Analízis II. jegyzet

Vághy Mihály

Tartalomjegyzék

1.	Füg	gvénysorozatok és függvénysorok	7
		Függvénysorozat	7
		Pontonként konvergens függvénysorozat	7
		Egyenletesen konvergens függvénysorozat	7
		1.3.1. Tétel	7
	1.4.	Tétel	7
		Tétel	8
		Pontonként konvergens függvénysor	8
		Egyenletesen konvergens függvénysor	8
		Cauchy kritérium függvénysorokra	8
	1.0.	1.8.1. Tétel	9
	1.0		
		Weierstrass kritérium	9
		Összegfüggvény folytonossága	9
		Összefüggvény integrálhatósága	10
		Összegfüggvény deriválhatósága	10
		Hatványsor	
	1.14.	Konvergenciahalmaz	
		1.14.1. Tétel	
	1.15.	Konvergenciasugár	
		1.15.1. Konvergenciasugár meghatározása	
		Műveletek hatványsorokkal	
	1.17.	Analitikus függvény	12
	1.18.	Függvény előállítása hatványsorként	13
	1.19.	Taylor sor	13
		1.19.1. Tétel	
2.	Four	rier sorok	15
	2.1.	Trigonometrikus függvényrendszer	
		2.1.1. Tétel	15
	2.2.	Trigonometrikus polinom	16
	2.3.	Trigonometrikus sor	16
	2.4.	Tétel	16
	2.5.	Fourier sor	17
		2.5.1. Deriváltfüggvény Fourier sora	
	2.6.	Fourier sorok alaptétele	
		Bessel-egyenlőtlenség	
		Parseval-egyenlőség	
3.	Töb	bváltozós valós függvények	2 0
	3.1.	Kétdimenziós tér (sík)	20
	3.2.	Norma \mathbb{R}^2 -ben	20
	3.3.	Két pont távolsága	20
	3.4.	Intervallum	20
	3.5.	Gömb	20
	3.6.	Belső pont	20
	3.7.	Külső pont	20
	3.8.	Határpont	20
	3.9.	Torlódási pont	20
		Nyılt halmaz	$\frac{20}{21}$
		Zárt halmaz	$\frac{21}{21}$
		Halmaz lezártja	21
			21
		Pontsorozat	
	J.14.	Korlátos sorozat	21
		3.14.1. Tétel	21

3.15. Konvergens sorozat	<u>2</u> 1
3.15.1. Tétel	<u>2</u> 1
3.16. Cauchy-féle feltétel	21
3.16.1. Tétel	
3.17. Bolzano-Weierstrass tétel	
3.18. Két pont közti szakasz	
3.19. Két pont közti vonal	
3.19.1. Zárt görbe	
3.19.2. Folytonos görbe	
3.19.3. Sima görbe	
3.20. Összefüggő tartomány	
3.21. Konvex tartomány	
3.22. Monomiál	
3.23. Polinom	
3.24. Homogén polinom	
3.25. Kétváltozós függvény	
3.26. Folytonosság pontban	
3.27. Sorozatfolytonosság pontban	
3.28. Tétel	
3.29. Szakadás	
3.30. Egyenletes folytonosság	
3.31. Lipschitz folytonosság	
3.32. Tétel	
3.33. Tétel	
3.34. Heine tétel	
3.35. Bolzano tétel	
3.36. Weierstrass tétel	
3.37. Függvény határértéke	
3.38. Tétel	
3.39. Átviteli elv	24
3.40. Parciális derivált	$\dots \dots 25$
3.40.1. Parciális derivált függvény	
3.41. Másodrendű parciális derivált	
3.42. Tétel	$\dots \dots 25$
3.43. Tétel	
3.44. Kisordó	26
3.45. Teljes differenciálhatóság	
3.45.1. Tétel	
3.45.2. Tétel	
3.46. Érintősík egyenlete	
3.47. Tétel	
3.48. Tétel	
3.49. Gradiens	
3.50. Iránymenti derivált	
3.50.1. Tétel	
3.51. Második derivált	
3.52. Hesse mátrix	
3.52.1. Tétel	
3.53. Implicitfüggvény-tétel	
3.54. Láncszabály	
3.55. Szélsőérték	
3.55.1. Szükséges feltétel szélsőérték létezéséhez	
3.55.2. Stacionárius pont	
3.55.3. Nyeregpont	
3.55.4. Elégséges feltétel szélsőérték létezéséhez I	31

		3.55.5. Elégséges feltétel szélsőérték létezéséhez II	 	 32
	3.56.	6. Szükséges feltétel feltételes szélsőérték létezéséhez	 	 32
	3.57.	7. Lagrange-féle multiplikátor szabály	 	 32
	3.58.	8. Lagrange-féle középértéktétel	 	 32
		9. Tétel		
		0. Függvényrendszer		
		1. Jacobi mátrix		
		2. Invertálhatóság		
		3. Inverz rendszer Jacobi mátrixa		
		4. Tétel		
		5. Másodrendű Taylor formula		
		·		
	5.00.	6. Magasabbrendű Taylor formula	 	 34
1	Täh	bbszörös integrálok		35
4.		Jordan mérték \mathbb{R}^2 -ben		
	4.2.	Mérhető tartomány		
	4.0	4.2.1. Tétel		
		Jordan mérték tulajdonságai		
		Halmaz átmérője		
		Felosztás finomsága		
	4.7.	Kettős integrál		
		4.7.1. Tétel		
		4.7.2. Kettős integrál tulajdonságai	 	 36
	4.8.	Integrál középértéktétel	 	 37
	4.9.	Tétel	 	 37
	4.10.	0. Tétel	 	 37
		1. Normáltartomány		
		4.11.1. Tétel		
	4.12.	2. Helyettesítés kettős integrálban		
		3. Improprius integrál		
	1.10.	4.13.1. Tétel		
		4.13.2. Tétel		
	1 11	4. Majoráns kritérium		
		5. Vonalintegrál		
	4.10.	4.15.1. Tétel		
	1 16			
		6. Vektormező vonalintegrálja		
	4.17.	7. Potenciálos vektormező		
	4.10	4.17.1. Tétel		40
	4.18.	8. Köringetrál		40
		4.18.1. Tétel	 	 40
_	TD			41
э.		urier analízis		41
	5.1.	Dirac delta		41
		5.1.1. Dirac delta tulajdonságai		41
	5.2.			41
		5.2.1. Konvolúció tulajdonságai		41
		Fourier sor komplex alakja		42
	5.4.			42
		5.4.1. Tétel	 	 42
		5.4.2. Fourier transzformáció tulajdonságai	 	 43
	5.5.	Inverz Fourier transzformáció	 	 45
		5.5.1. Tétel	 	 45
	5.6.	Parseval egyenlet	 	 45

6.	Diffe	erenciálegyenletek	46
	6.1.	Lineárisan független függvények	46
	6.2.	Wronski determináns	46
		6.2.1. Tétel	46
	6.3.	n-edrendű lineáris differenciálegyenlet	46
		6.3.1. Tétel	46
	6.4.	Homogén lineáris, állandó együtthatós differenciálegyenlet	47
		6.4.1. Első eset	47
		6.4.2. Második eset	47
		6.4.3. Harmadik eset	48
		6.4.4. Negyedik eset	48
	6.5.	Állandók variálása	48
	6.6.	Kezdetiérték feladat	49
	6.7.	Peremérték feladat	49
	6.8.	Homogén lineáris, állandó együtthatós differenciálegyenlet rendszer	49
		6.8.1. Tétel	50
		6.8.2. Tétel	50
7.		nplex függvénytan	51
		Korlátos komplex sorozat	
	7.2.	Konvergens komplex sorozat	
	7.0	7.2.1. Tétel	
		Konjugált sorozat	
	1.4.	Abszolút konvergencia	
	7 =	7.4.1. Tétel	
		Konvergens végtelen sor	
		Függvény határértéke	
	1.1.	7.7.1. Tétel	
	7.8.	Folytonos függvény	
	1.0.	7.8.1. Tétel	
	7.0	Differenciálhatóság	
		Cauchy-Riemann egyenletek	
		Analitikus függvény	
		Laplace operátor	
		Harmonikus függvény	
	1.10.	7.13.1. Tétel	
	7.14.	Harmonikus társ	53
		Elemi függvények	53
		7.15.1. Exponenciális függvény	53
		7.15.2. Logaritmus függvény	54
		7.15.3. Trigonometrikus függvények	55
		7.15.4. Hatványfüggvény	55
	7.16.	Jordan görbe	55
		Görbe ívhossza	55
		Vonalintegrál	55
		7.18.1. Vonalintegrál tulajdonságai	55
		7.18.2. Vonalintegrál kiszámítása	56
		7.18.3. Newton-Leibniz formula	56
	7.19.	Cauchy féle alaptétel	56
		7.19.1. Cauchy féle alaptétel általánosítása	56
		Cauchy féle integrálformula	56
		Cauchy féle differenciálformula	56
		Taylor sorfejtés	57
	7.23.	Laurent sorfejtés	57

7.24. Zérus	57
7.25. Pólus	57
7.26. Reziduum	57
7.27. Szingularitás	57
7.28. Reziduum tétel	58

1. Függvénysorozatok és függvénysorok

1.1. Függvénysorozat

Függvénysorozat egy olyan hozzárendelés, mely $\forall n \in \mathbb{N}\text{-hez}$ hozzárendel egy

$$f_n(x): [a,b] \mapsto \mathbb{R}$$

függvényt. Ekkor a sorozatot (f_n) -el jelöljük.

1.2. Pontonként konvergens függvénysorozat

Adott az $f_n:[a,b]\mapsto\mathbb{R}$ függvénysorozat. Ekkor azt mondjuk, hogy az (f_n) sorozat pontonként konvergál az $f:[a,b]\mapsto\mathbb{R}$ függvényhez, ha $\forall x\in[a,b]$ esetén

$$\lim_{n \to \infty} f_n(x) = f(x)$$

azaz $\forall \varepsilon > 0$ és $\forall x \in [a, b]$ esetén $\exists N(\varepsilon, x)$, melyre $\forall n \geq N$ esetén

$$|f_n(x) - f(x)| < \varepsilon.$$

Ekkor $\lim f_n = f$.

1.3. Egyenletesen konvergens függvénysorozat

Adott az $f_n:[a,b]\mapsto\mathbb{R}$ függvénysorozat. Ekkor azt mondjuk, hogy az (f_n) sorozat egyenletesen konvergál az $f:[a,b]\mapsto\mathbb{R}$ függvényhez, ha $\forall \varepsilon>0$ esetén $\exists N(\varepsilon)$, melyre $\forall n\geq N$ esetén

$$\left| f_n(x) - f(x) \right| < \varepsilon$$

teljesül $\forall x \in [a, b].$

1.3.1. Tétel

Ha az (f_n) függvénysorozat egyenletesen konvergens, akkor pontonként is konvergens.

Bizonyítás

A definícióból azonnal látható, hogy $N(\varepsilon)$ megfelelő küszöbindex $\forall x, \varepsilon$ esetén.

1.4. Tétel

Ha az (f_n) függvénysorozat tagjai folytonosak, és (f_n) egyenletesen konvergens, akkor

$$\lim_{n \to \infty} f_n(x) = f(x)$$

is folytonos.

Bizonyítás

A háromszög-egyenlőtlenség miatt tudjuk, hogy

$$|f(x) - f(x_0)| \le |f_n(x) - f(x)| + |f_n(x_0) - f(x_0)| + |f_n(x) - f_n(x_0)|.$$

Legyen $\varepsilon > 0$ tetszőleges. Ekkor az egyenletes konvergencia miatt $\exists N\left(\frac{\varepsilon}{3}\right)$, melyre $\forall n \geq N$ esetén

$$\left| f_n(x) - f(x) \right| < \frac{\varepsilon}{3}$$

illetve

$$\left| f_n(x_0) - f(x_0) \right| < \frac{\varepsilon}{3}.$$

Továbbá tudjuk, hogy f_n folytonos, így $\frac{\varepsilon}{3}\text{-hoz }\exists \delta,$ melyre $\forall |x-x_0|<\delta$ esetén

$$\left| f_n(x) - f_n(x_0) \right| < \frac{\varepsilon}{3}.$$

Így $\forall \varepsilon > 0$ esetén $\exists \delta$, melyre $\forall |x - x_0| < \delta$ esetén

$$\left| f(x) - f(x_0) \right| < \varepsilon$$

azaz f valóban folytonos.

1.5. Tétel

Ha az (f_n) függvénysorozat egyenletesen konvergál f-hez, és $f_n:[a,b]\mapsto\mathbb{R}\in\mathcal{R}[\alpha,\beta]$, ahol $[\alpha,\beta]\subset[a,b]$, akkor

$$\lim_{n \to \infty} \int_{\alpha}^{\beta} f_n(x) dx = \int_{\alpha}^{\beta} \lim_{n \to \infty} f_n(x) dx = \int_{\alpha}^{\beta} f(x) dx.$$

Bizonvítás

Az egyenletes konvergencia miatt f(x) folytonos, így valóban integrálható.

1.6. Pontonként konvergens függvénysor

Adottak az $f_n:[a,b]\mapsto \mathbb{R}$ függvények. Ekkor azt mondjuk, hogy a $\left(\sum f_n\right)$ függvénysor pontonként konvergál az $f:[a,b]\mapsto \mathbb{R}$ függvényhez, ha

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

teljesül $\forall x \in [a, b]$, azaz $\forall \varepsilon > 0$ és $\forall x \in [a, b]$ esetén $\exists N(\varepsilon, x)$, melyre $\forall n \geq N$ esetén

$$\left| \sum_{k=1}^{n} f_k(x) - f(x) \right| < \varepsilon.$$

Ekkor

$$\sum_{n=1}^{\infty} f_n = f.$$

1.7. Egyenletesen konvergens függvénysor

Adottak az $f_n:[a,b]\mapsto\mathbb{R}$ függvények. Ekkor azt mondjuk, hogy a $\left(\sum f_n\right)$ függvénysor egyenletesen konvergál az $f:[a,b]\mapsto\mathbb{R}$ függvényhez, ha $\forall \varepsilon>0$ esetén $\exists N(\varepsilon)$, melyre $\forall n\geq N$ esetén

$$\left| \sum_{k=1}^{n} f_k(x) - f(x) \right| < \varepsilon$$

teljesül $\forall x \in [a, b].$

1.8. Cauchy kritérium függvénysorokra

A $\sum_{n=1}^{\infty} f_n(x)$ eleget tesz a Cauchy kritériumnak, ha $\forall \varepsilon > 0$ esetén $\exists N(\varepsilon)$, melyre $\forall n > m \geq N$ esetén

$$\left| \sum_{k=m}^{n} f_k(x) \right| < \varepsilon$$

teljesül $\forall x \in [a, b]$.

1.8.1. Tétel

A $\sum_{n=1}^{\infty} f_n(x)$ akkor és csak akkor egyenletesen konvergens, ha eleget tesz a Cauchy kritériumnak.

1.9. Weierstrass kritérium

Adottak az $f_n : [a, b] \mapsto \mathbb{R}$ függvények. Tegyük fel, hogy az f_n függvények korlátosak, és $|f_n(x)| < a_n$. Ekkor ha

$$\sum_{n=1}^{\infty} a_n < \infty$$

akkor

$$\sum_{n=1}^{\infty} f_n$$

egyenletesen konvergens.

Bizonyítás

A végtelen sorokra vonatkozó Cauchy kritérium miatt tudjuk, hogy $\forall \varepsilon > 0$ esetén $\exists N,$ melyre n > m > N esetén

$$\sum_{k=m}^{n} a_k < \varepsilon.$$

Ekkor

$$\left| \sum_{k=m}^{n} f_k(x) \right| \le \sum_{k=m}^{n} \left| f_k(x) \right| \le \sum_{k=m}^{n} a_k < \varepsilon.$$

1.10. Összegfüggvény folytonossága

Tegyük fel, hogy az $f_n:[a,b]\mapsto\mathbb{R}$ függvények folytonosak, továbbá a

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

egyenletesen konvergens. Ekkor $f:[a,b]\mapsto\mathbb{R}$ is folytonos.

Bizonyítás

Legyen

$$f(x) = \sum_{k=1}^{\infty} f_k(x) = \sum_{k=1}^{n} f_k(x) + \sum_{k=n+1}^{\infty} f_k(x) = F_n(x) + R_n(x).$$

Az egyenletes konvergencia miatt tetszőleges $\varepsilon>0$ esetén $\exists N$ küszöbindex, melyre n>N esetén

$$\left| f(x) - \sum_{k=1}^{n} f_k(x) \right| = \left| R_n(x) \right| < \frac{\varepsilon}{4}.$$

Ebből kapjuk, hogy $\left| R_n(x) - R_n(x_0) \right| < \frac{\varepsilon}{2}, \, \forall x, x_0 \in [a, b].$

Mivel $F_n(x)$ véges sok folytonos függvény összege, ezért önmaga is folytonos, tehát $\exists \delta > 0$, melyre $|x - x_0| < \delta$ esetén $|F_n(x) - F_n(x_0)| < \frac{\varepsilon}{2}$.

Azt kaptuk tehát, hogy $|x - x_0| < \delta$ esetén

$$|f(x) - f(x_0)| \le |F_n(x) - F_n(x_0)| + |R_n(x) - R_n(x_0)| < \varepsilon$$

tehát a függvény folytonos.

1.11. Összefüggvény integrálhatósága

Tegyük fel, hogy az $f_n:[a,b]\mapsto\mathbb{R}$ függvényekre $f_n\in\mathcal{R}[\alpha,\beta]$, ahol $[\alpha,\beta]\subset[a,b]$, továbbá a

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

egyenletesen konvergens. Ekkor

$$\int_{\alpha}^{\beta} f(x) dx = \int_{\alpha}^{\beta} \left(\sum_{n=1}^{\infty} f_n(x) \right) dx = \sum_{n=1}^{\infty} \int_{\alpha}^{\beta} f_n(x) dx.$$

1.12. Összegfüggvény deriválhatósága

Tegyük fel, hogy az $f_n:[a,b]\mapsto \mathbb{R}$ függvények differenciálhatóak, továbbá az

$$\sum_{n=1}^{\infty} f_n(x) = f(x)$$

és

$$\sum_{n=1}^{\infty} f'_n(x) = g(x)$$

egyenletesen konvergensek. Ekkor g(x) = f'(x), azaz

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

1.13. Hatványsor

Hatványsoron egy

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n$$

sort értünk, ahol x_0 rögzített valós szám.

1.14. Konvergenciahalmaz

Adott

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n$$

hatványsor. Ennek konvergenciahalmaza

$$\mathcal{H} = \left\{ x \in \mathbb{R} \middle| \sum_{n=0}^{\infty} c_n (x - x_0)^n < \infty \right\}.$$

1.14.1. Tétel

- 1. $x_0 \in \mathcal{H}$.
- 2. Ha $\xi \in \mathcal{H}$, akkor $\forall x$, melyre $|x x_0| < |\xi|$, $x \in \mathcal{H}$ teljesül.
- 3. Ha $\eta\notin\mathcal{H},$ akkor $\forall x,$ melyre $|x-x_0|>|\eta|,\,x\notin\mathcal{H}$ teljesül.

Bizonyítás

- 1. Triviális.
- 2. Tudjuk, hogy $\sum_{n=0}^{\infty} c_n (\xi x_0)^n < \infty$. Ekkor a számsorok konvergenciájára vonatkozó szükséges feltétel miatt $\left(c_n (\xi x_0)^n\right)$ nullsorozat, azaz $\exists K$, melyre $\forall n \in \mathbb{N}$ esetén

$$\left| c_n (x - x_0)^n \right| < K.$$

Tudjuk továbbá, hogy $|x - x_0| < |\xi - x_0|$, azaz

$$\left| \frac{x - x_0}{\xi - x_0} \right| < 0.$$

Ekkor

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n = \sum_{n=0}^{\infty} c_n (\xi - x_0)^n \left(\frac{x - x_0}{\xi - x_0} \right)^n$$

így

$$\left| \sum_{n=0}^{\infty} c_n (\xi - x_0)^n \left(\frac{x - x_0}{\xi - x_0} \right)^n \right| \le \sum_{n=0}^{\infty} \left| c_n (\xi - x_0)^n \right| \left| \frac{x - x_0}{\xi - x_0} \right|^n < K \sum_{n=0}^{\infty} \left| \frac{x - x_0}{\xi - x_0} \right|^n.$$

Egy olyan végtelen mértani sort kaptunk, amelynek a kvóciensének abszolútértéke kisebb, mint 1. Emiatt a sor nyilván konvergens.

3. Tegyük fel, hogy $x \in \mathcal{H}$. Ekkor az előző tétel miatt $\eta \in \mathcal{H}$, azonban ez ellentmondás.

1.15. Konvergenciasugár

Adott hatványsor konvergenciasugara

$$\varrho := \sup \{|x - x_0| \big| x \in \mathcal{H} \}.$$

Ha $\mathcal{H} = \{x_0\}$, akkor $\varrho := 0$. Ha $\mathcal{H} = \mathbb{R}$, akkor $\varrho := \infty$.

1.15.1. Konvergenciasugár meghatározása

Adott $\sum_{n=0}^{\infty} c_n (x-x_0)^n$ hatványsor. Ekkor ha létezik a

$$\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \gamma$$

vagy a

$$\lim_{n \to \infty} \sqrt[n]{|c_n|} = \gamma$$

határérték, akkor $\varrho = \frac{1}{\gamma}$.

Bizonyítás

1. A végtelen sorokra vonatkozó gyengített hányadoskritérium miatt ha

$$\lim_{n \to \infty} \left| \frac{c_{n+1}(x - x_0)^{n+1}}{c_n(x - x_0)^n} \right| = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| |x - x_0| = \gamma |x - x_0| < 1$$

akkor a sor konvergens. Ekkor azonban

$$|x - x_0| < \frac{1}{\gamma} \implies x_0 - \frac{1}{\gamma} < x < x_0 + \frac{1}{\gamma}.$$

Azt látjuk, hogy valóban $\varrho=\frac{1}{\gamma}.$

2. A végtelen sorokra vonatkozó gyengített gyökkritérium miatt ha

$$\lim_{n \to \infty} \sqrt[n]{|c_n(x - x_0)^n|} = \lim_{n \to \infty} \sqrt[n]{|c_n|} |x - x_0| = \gamma |x - x_0| < 1$$

akkor a sor konvergens. Ekkor azonban

$$|x - x_0| < \frac{1}{\gamma} \implies x_0 - \frac{1}{\gamma} < x < x_0 + \frac{1}{\gamma}.$$

Azt látjuk, hogy valóban $\varrho = \frac{1}{\gamma}$.

1.16. Műveletek hatványsorokkal

Legyen $f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$. Ekkor

- 1. $[x_0 r, x_0 + r]$ -ben a hatványsor egyenletesen konvergens, ahol $0 < r < \varrho$
- 2. $int\mathcal{H}$ -ban f folytonos
- 3. $int\mathcal{H}$ -ban f differenciálható, a k-adik derivált

$$f^{(k)}(x) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} c_n (x - x_0)^{n-k}$$

4. $int\mathcal{H}$ -ban f integrálható,

$$\int f(x) dx = \int \sum_{n=0}^{\infty} c_n (x - x_0)^n dx = \sum_{n=0}^{\infty} c_n \int (x - x_0)^n dx = \sum_{n=0}^{\infty} \frac{c_n}{n+1} (x - x_0)^{n+1}$$

Bizonyítás

1. Legyen $x_0 = 0$. Ekkor tudjuk, hogy |x| < r, azaz $|c_n x^n| < |c_n| r^n$. Tudjuk továbbá, hogy $\sum_{n=0}^{\infty} c_n r^n < \infty$, így a Weierstrass kritérium miatt

$$\sum_{n=0}^{\infty} c_n x^n$$

egyenletesen konvergens.

- 2. Az egyenletes konvergenciából következik.
- 3. Az egyenletes konvergencia mellett kell, hogy $\sum_{n=1}^{\infty} nc_n(x-x_0)^n$ egyenletesen konvergens legyen. A hányadoskritériumból

$$\lim_{n \to \infty} \left| \frac{(n+1)c_{n+1}}{nc_n} \right| = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \gamma.$$

Azt kapjuk tehát, hogy a deriváltakból álló sor konvergenciasugara megegyezik az eredeti sor konvergenciasugarával. Emiatt f(x) valóban tagonként differenciálható.

4. Az egyenletes kovnergenciából következik.

1.17. Analitikus függvény

Tegyük fel, hogy az $f:[a,b]\mapsto\mathbb{R}$ függvény felírható

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$

alakban x_0 valamilyen környezetében. Ekkor a függvény analitikus.

1.18. Függvény előállítása hatványsorként

1. Tegyük fel, hogy f egy hatványsor összegeként reprezentálható. Ekkor az előállítás egyértelmű.

2. Ha

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$

akkor

$$c_n = \frac{f^{(n)}(x_0)}{n!}.$$

Bizonyítás

1. Tegyük fel, hogy

$$f(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n = \sum_{n=0}^{\infty} d_n (x - x_0)^n.$$

Ekkor legyen

$$F(x) = \sum_{n=0}^{\infty} (d_n - c_n)(x - x_0)^n.$$

Látható, hogy $\forall k$ esetén

$$F^{(k)}(x) = 0$$

így $c_k = d_k$.

2. Legyen

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n.$$

Ekkor $\forall k$ esetén $f^{(k)}(x_0) = k!c_k$ azaz

$$c_k = \frac{f^{(k)}(x_0)}{k!}.$$

1.19. Taylor sor

Legyen adott $f:[a,b]\mapsto \mathbb{R}$ függvény, mely egy $x_0\in(a,b)$ pontban végtelen sokszor differenciálható. Ekkor az f függvény x_0 körüli Taylor sora

$$T(x) := \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

1.19.1. Tétel

Tegyük fel, hogy az $f:(x_0-\varepsilon,x_0+\varepsilon)\mapsto \mathbb{R}$ függvény végtelen sokszor differenciálható függvény. Tegyük fel, hogy $\exists K$, melyre $\forall k$ és $\forall x\in(x_0-\varepsilon,x_0+\varepsilon)$ esetén

$$\left|f^{(k)}(x)\right| \le K$$

teljesül. Ekkor

$$f(x) = T(x)$$

teljesül $\forall x \in (x_0 - \varepsilon, x_0 + \varepsilon)$ esetén.

Bizonyítás

Legyen

$$T(x) = \lim_{n \to \infty} \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

Ekkor a Lagrange-féle maradéktagot használva

$$f(x) - T(x) = \lim_{n \to \infty} \left(f(x) - \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \right) = \lim_{n \to \infty} \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

ahol $\xi~x$ és x_0 között van. Ekkor azonban

$$\lim_{n \to \infty} \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} \right| = \lim_{n \to \infty} \left| f^{(n+1)}(\xi) \right| \frac{|x - x_0|^{n+1}}{(n+1)!} \le K \lim_{n \to \infty} \frac{r^{n+1}}{(n+1)!} = 0.$$

Ez azt jelenti, hogy T(x) egyenletesen konvergál f(x)-hez.

2. Fourier sorok

2.1. Trigonometrikus függvényrendszer

Definiáljuk az alábbi függvényrendszert, ahol minden függvény $[-\pi,\pi]$ megszorítását nézzük

$$\phi_0 = 1$$

$$\phi_1 = \sin x \qquad \phi_2 = \cos x$$

$$\vdots \qquad \vdots$$

$$\phi_{2k-1} = \sin(kx) \qquad \phi_{2n} = \cos(kx)$$

$$\vdots \qquad \vdots$$

Tekintsük továbbá a

$$\mathcal{C} = \left\{ f : [-\pi, \pi] \mapsto \mathbb{R} \middle| ffolytonos \right\}$$

halmazt az alábbi skalárszorzattal, illetve normával

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) \, \mathrm{d}x$$
$$||f|| = \sqrt{\int_{-\pi}^{\pi} f^2(x) \, \mathrm{d}x}.$$

Ekkor $\mathcal C$ vektortér az össze
adásra, illetve a fent definiált skalárszorzatra nézve.

2.1.1. Tétel

A (ϕ_n) függvényrendszer ortogonális a \mathcal{C} vektortérben.

Bizonyítás

1.
$$n = m = 0$$

$$\int_{-\pi}^{\pi} \phi_n(x) \phi_m(x) \, \mathrm{d}x = \int_{-\pi}^{\pi} 1 \, \mathrm{d}x = 2\pi$$

2. $n = m \neq 0$ Vegyük észre, hogy

$$\int_{-\pi}^{\pi} \phi_n(x) \phi_m(x) \, dx = \begin{cases} \int_{-\pi}^{\pi} \sin^2(x) \, dx \\ \int_{-\pi}^{\pi} \cos^2(x) \, dx \end{cases}.$$

Könnyen láthatjuk, hogy

$$\int_{-\pi}^{\pi} \sin^2(x) \, dx = \int_{-\pi}^{\pi} \cos^2(x) \, dx.$$

Ugyanakkor

$$\int_{-\pi}^{\pi} \left(\sin^2(x) + \cos^2(x) \right) \mathrm{d}x = 2\pi.$$

Ebből

$$\int_{-\pi}^{\pi} \phi_n(x)\phi_m(x) \, \mathrm{d}x = \pi.$$

3. $n \neq m$

$$\int_{-\pi}^{\pi} \phi_n(x)\phi_m(x) dx = \begin{cases} \int_{-\pi}^{\pi} \sin\left(\frac{n+1}{2}x\right) \sin\left(\frac{m+1}{2}x\right) dx = \int_{-\pi}^{\pi} \frac{\cos\left(\frac{n-m}{2}x\right) - \cos\left(\frac{n+m+2}{2}x\right)}{2} dx \\ \int_{-\pi}^{\pi} \sin\left(\frac{n+1}{2}x\right) \cos\left(\frac{m}{2}x\right) dx = \int_{-\pi}^{\pi} \frac{\sin\left(\frac{n+m+1}{2}x\right) + \sin\left(\frac{m-n}{2}x\right)}{2} dx \\ \int_{-\pi}^{\pi} \cos\left(\frac{n}{2}x\right) \sin\left(\frac{m+1}{2}x\right) dx = \int_{-\pi}^{\pi} \frac{\sin\left(\frac{n+m+1}{2}x\right) + \sin\left(\frac{n-m}{2}x\right)}{2} dx \\ \int_{-\pi}^{\pi} \cos\left(\frac{n}{2}x\right) \cos\left(\frac{m}{2}x\right) = \int_{-\pi}^{\pi} \frac{\cos\left(\frac{n+m+1}{2}x\right) + \cos\left(\frac{n-m}{2}x\right)}{2} dx \end{cases}$$

Ebből láthatjuk, hogy

$$\int_{-\pi}^{\pi} \phi_n(x)\phi_m(x) \, \mathrm{d}x = 0.$$

2.2. Trigonometrikus polinom

Az $f:\mathbb{R}\mapsto\mathbb{R}$ n-ed fokú trigonometrikus polinom, ha

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{n} \left(a_k \cos(kx) + b_k \sin(kx) \right).$$

2.3. Trigonometrikus sor

Az $f: \mathbb{R} \to \mathbb{R}$ végtelen sor egy trigonometrikus sor, ha

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right).$$

2.4. Tétel

Tegyük fel, hogy

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right)$$

ahol a konvergencia egyenletes. Ekkor

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$$
 $k = 0, 1, ...$

 $\acute{\rm es}$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$$
 $k = 1, 2,$

Bizonyítás

1.

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, \mathrm{d}x = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{a_0}{2} \, \mathrm{d}x + \sum_{k=1}^{\infty} \left(a_k \int_{-\pi}^{\pi} \sin(kx) \, \mathrm{d}x + b_k \int_{-\pi}^{\pi} \cos(kx) \, \mathrm{d}x \right) =$$

Mivel $\forall k \in \mathbb{N}$ esetén

$$\int_{-\pi}^{\pi} \sin(kx) \, \mathrm{d}x = 0$$

és

$$\int_{-\pi}^{\pi} \cos(kx) \, \mathrm{d}x = 0.$$

Ekkor

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(0k) dx = a_0.$$

2.

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx =$$

$$= \frac{a_0}{2\pi} \int_{-\pi}^{\pi} \cos(kx) dx + \frac{1}{\pi} \sum_{j=1}^{\infty} \left(a_j \int_{-\pi}^{\pi} \cos(jx) \cos(kx) + b_j \int_{-\pi}^{\pi} \sin(jx) \cos(kx) \right).$$

Ekkor a trigonometrikus függvényrendszer ortogonalitása miatt

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) \, \mathrm{d}x = a_k.$$

3. Az előző ponthoz hasonlóan eljárva azonnal kapjuk a bizonyítandót.

2.5. Fourier sor

Az $f:[-\pi,\pi]\mapsto \mathbb{R}\ [-\pi,\pi]$ -n integrálható függvény Fourier sora

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right)$$

ahol a Fourier együtthatók

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) \, \mathrm{d}x$$

és

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx.$$

A sort közelíthetjük az n-edik Fourier polinommal

$$s_n = \frac{a_0}{2} + \sum_{k=1}^n \left(a_k \cos(kx) + b_k \sin(kx) \right).$$

2.5.1. Deriváltfüggvény Fourier sora

Adott $f: \mathbb{R} \mapsto \mathbb{R}$ 2 π periódusú, differenciálható függvény. Ekkor f' Fourier sora tagonkénti deriválással kiszámítható, azaz

$$f'(x) \sim \sum_{k=1}^{\infty} \left(-a_k k \sin(kx) + b_k k \cos(kx) \right).$$

Bizonyítás

Vizsgáljuk meg f' Fourier együtthatóit!

$$\alpha_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) \, dx = 0$$

$$\alpha_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) \cos(kx) \, dx = \frac{1}{\pi} \left(f(x) \cos(kx) \Big|_{-\pi}^{\pi} + k \int_{-\pi}^{\pi} f(x) \sin(kx) \right) =$$

$$= \frac{k}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) \, dx = kb_k.$$

Hasonlóan belátható, hogy

$$\beta_k = -ka_k$$

2.6. Fourier sorok alaptétele

Adott $f: \mathbb{R} \to \mathbb{R}$ 2 π periódusú függvény. Tegyük fel, hogy a $[-\pi, \pi]$ intervallumon f megfelel a Dirichlet feltételnek, azaz szakaszonként folytonos, legfeljebb véges sok szakadási hellyel, amelyek elsőfajú szakadások. Legyen továbbá az x_0 szakadási pontokban

$$f(x_0) = \frac{f(x_0 + 0) + f(x_0 - 0)}{2}.$$

Ekkor f-t előállítja a Fourier sora.

2.7. Bessel-egyenlőtlenség

Tegyük fel, hogy

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right).$$

Ekkor $\forall n \in \mathbb{N}$ esetén

$$\frac{a_0^2}{2} + \sum_{k=1}^n \left(a_k^2 + b_k^2 \right) \le \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \, \mathrm{d}x \,.$$

Bizonyítás

Tudjuk, hogy

$$0 \leq \frac{1}{\pi} \int_{-\pi}^{\pi} \left(f(x) - \frac{a_0}{2} - \sum_{k=1}^{n} \left(a_k \cos(kx) + b_k \sin(kx) \right) \right)^2 =$$

$$= \frac{1}{\pi} \left(\int_{-\pi}^{\pi} f^2(x) \, \mathrm{d}x + \int_{-\pi}^{\pi} \frac{a_0^2}{4} \, \mathrm{d}x + \sum_{k=1}^{n} \left\{ a_k^2 \int_{-\pi}^{\pi} \cos^2(kx) \, \mathrm{d}x + b_k^2 \int_{-\pi}^{\pi} \sin^2(kx) \, \mathrm{d}x \right\} -$$

$$-a_0 \int_{-\pi}^{\pi} f(x) \, \mathrm{d}x + 2 \sum_{j=1}^{n} \sum_{\substack{k=1\\k\neq j}}^{n} \left\{ \int_{-\pi}^{\pi} a_j a_k \cos(jx) \cos(kx) \, \mathrm{d}x + \int_{-\pi}^{\pi} b_j b_k \sin(jx) \sin(kx) \, \mathrm{d}x \right\} +$$

$$+2 \sum_{j=1}^{n} \sum_{\substack{k=1\\k\neq j}}^{n} \left\{ \int_{-\pi}^{\pi} a_j b_k \cos(jx) \sin(kx) \, \mathrm{d}x \right\} -$$

$$-2 \sum_{k=1}^{n} \left\{ a_k \int_{-\pi}^{\pi} f(x) \cos(kx) \, \mathrm{d}x + b_k \int_{-\pi}^{\pi} f(x) \sin(kx) \, \mathrm{d}x \right\} +$$

$$+a_0 \sum_{k=1}^{n} \left\{ a_k \int_{-\pi}^{\pi} \cos(kx) \, \mathrm{d}x + b_k \int_{-\pi}^{\pi} \sin(kx) \, \mathrm{d}x \right\} \right\}.$$

Ekkor a trigonometrikus függvényrendszer ortogonalitása miatt azt kapjuk, hogy

$$0 \le \frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) dx + \frac{a_{0}^{2}}{2} + \sum_{k=1}^{n} \left(a_{k}^{2} + b_{k}^{2} \right) - \frac{a_{0}}{\pi} \int_{-\pi}^{\pi} f(x) dx - 2 \sum_{k=1}^{n} \left(\frac{a_{k}}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx + \frac{b_{k}}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx \right) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) dx + \frac{a_{0}^{2}}{2} + \sum_{k=1}^{n} \left(a_{k}^{2} + b_{k}^{2} \right) - a_{0}^{2} - 2 \sum_{k=1}^{n} \left(a_{k}^{2} + b_{k}^{2} \right).$$

Átrendezve az egyenlőtlenséget kapjuk, hogy

$$\frac{a_0^2}{2} + \sum_{k=1}^n \left(a_k^2 + b_k^2 \right) \le \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \, \mathrm{d}x \,.$$

2.8. Parseval-egyenlőség

Tegyük fel, hogy

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right).$$

Ekkor

$$\frac{a_0^2}{2} + \sum_{k=1}^{\infty} \left(a_k^2 + b_k^2 \right) = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \, \mathrm{d}x$$

3. Többváltozós valós függvények

3.1. Kétdimenziós tér (sík)

A kétdimenziós síkon a pontokat rendezett számpárokként értelmezzük, ahol P=(x,y). Az ilyen pontok halmazát \mathbb{R}^2 -el jelöljük. Ekkor

 $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \left\{ (x, y) \middle| x, y \in \mathbb{R} \right\}.$

3.2. Norma \mathbb{R}^2 -ben

Adott P = (x, y) pont. Ekkor P normája az origótól vett távolsága, azaz

$$||P|| = \sqrt{x^2 + y^2}.$$

3.3. Két pont távolsága

Adott P = (x, y) és P = (x', y') pontok. Ekkor a két pont távolsága

$$d(P, P') = ||P - P'|| = \sqrt{(x - x')^2 + (y - y')^2}.$$

3.4. Intervallum

Kétdimenziós intervallum (téglalap)

$$I = \{(x,y) | a_1 \le x \le b_1, a_2 \le y \le b_2 \}.$$

Ekkor felírhatjuk, hogy

$$I = [a_1, b_1] \times [a_2, b_2].$$

Az intervallum végpontjaként $\pm \infty$ is megengedett, illetve az intervallum végpontjait nem mindig vesszük bele a halmazba. Ennek megfelelően változik a direkt szorzat felírása.

3.5. Gömb

Adott $\varepsilon > 0$ és $P = (x', y') \in \mathbb{R}^2$. Ekkor az ε -sugarú gömb (környezet)

$$S(P,\varepsilon) = \Big\{ (x,y) \Big| \big\| (x,y) - (x',y') \big\| < \varepsilon \Big\}.$$

3.6. Belső pont

Adott $S \subset \mathbb{R}^2$. Azt mondjuk, hogy $P \in S$ belső pont, ha $\exists S(P, \varepsilon) \subset S$ környezet. A belső pontok halmaza int(S).

3.7. Külső pont

Adott $S \subset \mathbb{R}^2$. Azt mondjuk, hogy $P \in \mathbb{R}^2$ külső pont, ha $\exists S(P\varepsilon)$ környezet, melyre $S(P,\varepsilon) \cap S = \emptyset$. A külső pontok halmaza ext(S).

3.8. Határpont

Adott $S \subset \mathbb{R}^2$. Azt mondjuk, hogy $P \in \mathbb{R}^2$ határpont, ha $\forall S(P,\varepsilon)$ környezet esetén $S(P,\varepsilon) \cap S \neq \emptyset$ és $S(P,\varepsilon) \cap S^C \neq \emptyset$, ahol $S^C = \mathbb{R}^2 \backslash S$. A határpontok halmaza ∂S .

3.9. Torlódási pont

Adott $S \subset \mathbb{R}^2$. Azt mondjuk, hogy $P \in \mathbb{R}^2$ torlódási pont, ha $\forall S(P, \varepsilon)$ környezet esetén $S(P, \varepsilon) \cap S \setminus \{P\} \neq \emptyset$. Ezzel ekvivalensen $P \in \mathbb{R}^2$ torlódási pont, ha $\exists (P_n) \subset S$ pontsorozat, melyre $P_n \neq P$ és $\lim_{n \to \infty} P_n = P$.

3.10. Nyilt halmaz

Adott $S \subset \mathbb{R}^2$ nyílt, ha int(S) = S.

3.11. Zárt halmaz

Adott $S \subset \mathbb{R}^2$ zárt, ha $\partial S \subset S$.

3.12. Halmaz lezártja

Adott $S \subset \mathbb{R}^2$ lezártja $\overline{S} = S \cup \partial S$.

3.13. Pontsorozat

Pontsorozat alatt síkbeli pontok sorozatát értjük. Ekkor

$$\mathbb{N} \mapsto P_n = (x_n, y_n).$$

3.14. Korlátos sorozat

Azt mondjuk, hogy a (P_n) sorozat korlátos, ha $\exists K$, amire $\forall n \in \mathbb{N}$ esetén $||P_n|| \leq K$. Ezzel ekvivalensen a sorozat korlátos, ha $\exists S(C, \varrho)$ gömb, melyre $(P_n) \subset S(C, \varrho)$.

3.14.1. Tétel

Adott $(P_n) = ((x_n, y_n))$ sorozat akkor és csak akkor korlátos, ha (x_n) és (y_n) korlátos.

3.15. Konvergens sorozat

Adott (P_n) sorozat konvergens, és a határértéke P', ha

$$\lim_{n\to\infty} ||P_n - P'|| = 0.$$

Ekkor

$$\lim_{n\to\infty} P_n = P'.$$

Ezzel ekvivalensen (P_n) konvergens, ha $\forall \varepsilon > 0$ esetén $\exists N(\varepsilon)$ küszöbindex, melyre $\forall n \geq N$ esetén $P_n \in S(P', \varepsilon)$.

3.15.1. Tétel

Adott $(P_n) = (x_n, y_n)$ sorozat határértéke P' = (x', y') akkor és csak akkor, ha

$$\lim_{n \to \infty} x_n = x'$$

és

$$\lim_{n\to\infty} y_n = y'.$$

3.16. Cauchy-féle feltétel

A (P_n) sorozat teljesíti a Cauchy-feltételt, ha $\forall \varepsilon > 0$ esetén $\exists N(\varepsilon)$ küszöbindex, melyre $\forall n, m \geq N$ esetén

$$||P_n - P_m|| < \varepsilon.$$

3.16.1. Tétel

A (P_n) pontsorozat akkor és csak akkor konvergens, ha teljesíti a Cauchy-feltételt.

3.17. Bolzano-Weierstrass tétel

Adott (P_n) korlátos sorozatnak van konvergens részsorozata.

Bizonyítás

Legyen $P_n = (x_n, y_n)$. Tudjuk, hogy (P_n) korlátos, így (x_n) korlátos. Ekkor a számsorozatokra vonatkozó Bolzano-Weierstrass tétel miatt $\exists (x_{n_k})$ konvergens részsorozat. Mivel (y_n) korlátos, így (y_{n_k}) is korlátos. Ekkor a számsorozatokra vonatkozó Bolzano-Weierstrass tétel miatt $\exists (y_{n_{k_m}})$ konvergens részsorozat. Ekkor $(P_{n_{k_m}})$ konvergens.

3.18. Két pont közti szakasz

Adottak a P = (x, y) és P' = (x', y') pontok. Legyen továbbá

$$P(t) = ((1-t)x + tx', (1-t)y + ty').$$

Ekkor

$$\overline{PP'} = \Big\{ P(t) \Big| t \in [0,1] \Big\}.$$

3.19. Két pont közti vonal

Adottak a P = (x, y) és P' = (x', y') pontok. Legyenek továbbá adottak az

$$x, y : [\alpha, \beta] \mapsto \mathbb{R}$$

koordináta-függvények, ahol a vonal végpontjai $P = (x(\alpha), y(\alpha))$ és $P' = (x(\beta), y(\beta))$. Legyen továbbá

$$\gamma(t) := (x(t), y(t)) : [\alpha, \beta] \mapsto \mathbb{R}^2.$$

Ekkor a vonal (görbe)

$$\{\gamma(t) | t \in [\alpha, \beta] \}.$$

3.19.1. Zárt görbe

Azt mondjuk, hogy a

$$\left\{ \gamma(t) \middle| t \in [\alpha, \beta] \right\}$$

zárt, ha $\gamma(\alpha) = \gamma(\beta)$.

3.19.2. Folytonos görbe

Azt mondjuk, hogy egy görbe folytonos, ha a koordináta-függvényei folytonosak.

3.19.3. Sima görbe

Azt mondjuk, hogy egy görbe sima, ha a koordináta-függvényei simák.

3.20. Összefüggő tartomány

Adott $S \subset \mathbb{R}^2$ összefüggő, ha $\forall P,P' \in S$ esetén

$$\exists \Big\{ \gamma(t) \Big| t \in [\alpha, \beta], \gamma(t) \text{ folytonos} \Big\} \subset S.$$

3.21. Konvex tartomány

Adott $S \subset \mathbb{R}^2$ konvex, ha $\forall P, P' \in S$ esetén $\overline{PP'} \subset S$.

3.22. Monomiál

Adott $f(x,y) = ax^n y^m$ monomiál, ahol $a \in \mathbb{R}$ és $n,m \in \mathbb{N}$. Ekkor a monomiál foka deg $(ax^n y^m) = n + m$.

3.23. Polinom

Adott

$$P(x,y) = \sum_{n,m} a_{nm} x^n y^m$$

polinom, ahol $a_{nm} \in \mathbb{R}$ és $n, m \in \mathbb{N}$. Ekkor a polinom foka

$$\deg\left(P(x,y)\right) = \deg\left(\sum_{n,m} a_{nm} x^n y^m\right) = \max\left(n+m\right).$$

3.24. Homogén polinom

Egy polinom homogén, ha minden monomiáljának azonos a foka.

3.25. Kétváltozós függvény

Adott $S \subset \mathbb{R}^2$. Ekkor

$$f: S \mapsto \mathbb{R}$$

kétváltozós függvény, ahol S pontjaihoz $(x,y) \mapsto u$. Ekkor x,y független változók, u függő változó.

3.26. Folytonosság pontban

Adott f kétváltozós függvény és $(x_0, y_0) \in D_f$. Ekkor f folytonos az (x_0, y_0) pontban, ha $\forall \varepsilon > 0$ esetén $\exists \delta > 0$, melyre $\forall (x, y) \in D_f$, $||(x, y) - (x_0, y_0)|| < \delta$ esetén $|f(x, y) - f(x_0, y_0)|| < \varepsilon$.

3.27. Sorozatfolytonosság pontban

Adott f függvény sorozatfolytonos a $P_0 \in D_f$ pontban, ha $\forall (P_n) \subset D_f$ sorozatra $\lim_{n \to \infty} P_n = P_0$ esetén $\lim_{n \to \infty} f(P_n) = f(P_0)$.

3.28. Tétel

Az f függvény akkor és csak akkor folytonos a P_0 pontban, ha sorozatfolytonos P_0 -ban.

3.29. Szakadás

Ha egy f függvény nem folytonos egy $P_0 \in D_f$ pontban, akkor ott szakadása van.

3.30. Egyenletes folytonosság

Adott $f: S \mapsto \mathbb{R}$, ahol $S \subset \mathbb{R}^2$. Azt mondjuk, hogy f egyenletesen folytonos S-ben ha $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre $\forall P, P' \in S$, $\|P - P'\| < \delta$ esetén $|f(P) - f(P')| < \varepsilon$. Ekkor $\delta = \delta(\varepsilon)$ az ε -hoz tartozó folytonossági modulus.

3.31. Lipschitz folytonosság

Adott $f: S \mapsto \mathbb{R}$, ahol $S \subset \mathbb{R}^2$. Azt mondjuk, hogy f Lipschitz folytonos, ha $\exists L > 0$, melyre $\forall P, P' \in S$ esetén

$$|f(P) - f(P')| \le L||P - P'||$$

teljesül. Ekkor L a Lipschitz-konstans.

2018. február 12. 21:42 23 Vághy Mihály

3.32. Tétel

Ha f Lipschitz folytonos S-ben, akkor egyenletesen folytonos S-ben.

3.33. Tétel

Ha f egyenletesen folytonos S-ben, akkor folytonos S-ben.

3.34. Heine tétel

Adott $f: S \mapsto \mathbb{R}^2$ S-ben folytonos függvény, ahol S korlátos és zárt. Ekkor f egyenletesen folytonos S-ben.

3.35. Bolzano tétel

Adott $f: S \mapsto \mathbb{R}$ folytonos függvény, ahol S összefüggő. Legyen $(x_1, y_1), (x_2, y_2) \in S$, melyekre $a = f(x_1, y_1) < f(x_2, y_2) = b$. Ekkor $\forall c \in (a, b)$ számhoz $\exists (x_0, y_0) \in S$, melyer $f(x_0, y_0) = c$.

Bizonyítás

Mivel S folytonos, létezik az (x_1, y_1) és (x_2, y_2) pontokat összekötő folytonos görbe, azaz létezik $\gamma : [\alpha, \beta] \to \mathbb{R}^2$, $\gamma(t) = (x(t), y(t))$ függvény, melyre $\gamma(\alpha) = (x_1, y_1)$ illetve $\gamma(\beta) = (x_2, y_2)$. Ekkor az F(t) = f(x(t), y(t)) függvényre az egydimenziós Bolzano tétel miatt $\exists \xi \in (\alpha, \beta)$, melyre $F(\xi) = c$. Ekkor $(x_0, y_0) := \gamma(\xi)$ -re valóban $f(x_0, y_0) = c$.

3.36. Weierstrass tétel

Adott $f: S \mapsto \mathbb{R}$ folytonos függvény, ahol S korlátos és zárt. Ekkor R_f korlátos és zárt.

3.37. Függvény határértéke

Adott $f: S \mapsto \mathbb{R}$ függvény, és legyen $(x_0, y_0) \in \mathbb{R}^2$ torlódási pont D_f -ben. Azt mondjuk, hogy

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

ha $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre $(x,y) \in S$, $0 < \|(x,y) - (x_0,y_0)\| < \delta$ esetén $|f(x,y) - L| < \varepsilon$.

3.38. Tétel

Adott f folytonos függvény és $(x_0, y_0) \in int(D_f)$. Ekkor

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0).$$

3.39. Átviteli elv

Adott $f: S \mapsto \mathbb{R}$.

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

akkor és csak akkor, ha $\forall (P_n) \subset S, \, P_n \neq P, \, \lim_{n \to \infty} P_n = P_0$ pontsorozat esetén

$$\lim_{n \to \infty} f(P_n) = L$$

teljesül.

3.40. Parciális derivált

Adott $f: S \mapsto \mathbb{R}$ kétváltozós valós függvény. Legyen $(x_0, y_0) \in intS$. Ekkor a függvény x szerinti parciális deriváltja az (x_0, y_0) pontban

$$f'_x(x_0, y_0) = \frac{\partial}{\partial x} f(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}$$

Hasonlóan a függvény y szerinti parciális deriváltja az (x_0, y_0) pontban

$$f'_y(x_0, y_0) = \frac{\partial}{\partial y} f(x_0, y_0) = \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}.$$

3.40.1. Parciális derivált függvény

Tegyük fel, hogy $f: S \to \mathbb{R}$ minden pontjában létezik a parciális derivált. Ekkor értelmezhetjük a parciális derivált függvényt, amely ugyanolyan típusú, mint az eredeti függvényt.

3.41. Másodrendű parciális derivált

Adott $f: S \mapsto \mathbb{R}$, melynek létezik parciális derivált függvénye, aminek léteznek parciális deriváltjai. Ekkor a másodrendű parciális deriváltak

$$f_{xx}''(x,y) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} f(x,y) \right) = \frac{\partial^2}{\partial x^2} f(x,y)$$

$$f_{xy}''(x,y) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} f(x,y) \right) = \frac{\partial^2}{\partial y \partial x} f(x,y)$$

$$f_{yx}''(x,y) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} f(x,y) \right) = \frac{\partial^2}{\partial x \partial y} f(x,y)$$

$$f_{yy}''(x,y) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} f(x,y) \right) = \frac{\partial^2}{\partial y^2} f(x,y).$$

3.42. Tétel

Adott $f: S \to \mathbb{R}$ ahol $S \subset \mathbb{R}^2$, és legyen $(x_0, y_0) \in intD_f$. Tegyük fel, hogy $\exists U$ környezete (x_0, y_0) -nak, amiben $\exists \frac{\partial f}{\partial x}, \frac{\partial f}{\partial u}$ és $\exists K \in \mathbb{R}$, amire

$$\left| \frac{\partial f}{\partial x} \right| \le K \qquad \left| \frac{\partial f}{\partial y} \right| \le K$$

teljesül $\forall (x,y) \in U$ esetén. Ekkor f folytonos (x_0,y_0) -ban.

Bizonyítás

Vizsgáljuk meg az $|f(x,y)-f(x_0,y_0)|$ kifejezést, ahol $(x,y) \in U$.

$$|f(x,y) - f(x_0,y_0)| = |f(x,y) - f(x_0,y) + f(x_0,y) - f(x_0,y_0)| \le$$
$$\le |f(x,y) - f(x_0,y)| + |f(x_0,y) - f(x_0,y_0)|.$$

Ekkor a Lagrange-féle középértéktételből

$$f(x,y) - f(x_0,y) = \frac{\partial f}{\partial x}(\xi_x, y)(x - x_0)$$

$$f(x_0, y) - f(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, \xi_y)(y - y_0)$$

2018. február 12. 21:42 25 Vághy Mihály

alkalmas ξ_x, ξ_y esetén. Ekkor

$$\left| f(x,y) - f(x_0, y_0) \right| \le \left| \frac{\partial f}{\partial x} (\xi_x, y)(x - x_0) \right| + \left| \frac{\partial f}{\partial y} (x_0, \xi_y)(y - y_0) \right| \le K|x - x_0| + K|y - y_0|.$$

Ekkor nyilván

$$\lim_{(x,y)\to(x_0,y_0)} |f(x,y) - f(x_0,y_0)| = 0.$$

Ez azt jelenti, hogy f valóban folytonos.

3.43. Tétel

Adott $f: S \mapsto \mathbb{R}$, és legyen $(x_0, y_0) \in intD_f$. Tegyük fel, hogy $\exists U$ környezete (x_0, y_0) -nak, amiben $\exists \frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y \partial x}$ és folytonosak az (x_0, y_0) pontban. Ekkor

$$\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y)$$

teljesül $\forall (x,y) \in U$ esetén.

3.44. Kisordó

Adott h(x) függvény kisordó 0-ban, ha

$$\lim_{x \to 0} \frac{h(x)}{x} = 0.$$

Ezt úgy jelöljük, hogy h(x) = o(x).

3.45. Teljes differenciálhatóság

Adott $f: S \to \mathbb{R}$ és legyen $(x_0, y_0) \in intD_f$. Azt mondjuk, hogy a függvény differenciálható az (x_0, y_0) pontban, ha $\exists A, B, C \in \mathbb{R}$, melyekre

$$f(x_0 + \Delta x, y_0 + \Delta y) = A\Delta x + B\Delta y + C + o\left(\sqrt{\Delta x^2 + \Delta y^2}\right)$$

teljesül elegendően kicsi $\Delta x, \Delta y$ esetén, ahol A, B, C függetlenek Δx -től és Δy -tól.

3.45.1. Tétel

Ha f differenciálható az $(x_0, y_0) \in intD_f$ pontban, akkor

$$A = \frac{\partial f}{\partial x}(x_0, y_0)$$
 $B = \frac{\partial f}{\partial y}(x_0, y_0)$ $C = f(x_0, y_0).$

Bizonyítás

1. Legyen $\Delta x = \Delta y = 0$. Ekkor valóban

$$f(x_0, y_0) = C.$$

2. Legyen $\Delta y = 0$. Ekkor

$$f(x_0 + \Delta x, y_0) = A\Delta x + f(x_0, y_0) + o(|\Delta x|).$$

Ebből kapjuk, hogy

$$\frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = A + \frac{o(|\Delta x|)}{\Delta x}$$

amiből nyilván

$$\frac{\partial f}{\partial x}(x_0,y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x,y_0) - f(x_0,y_0)}{\Delta x} = \lim_{\Delta x \to 0} \left(A + \frac{o(|\Delta x|)}{\Delta x}\right) = A.$$

3. Az előzőhöz analóg módon kapjuk, hogy

$$B = \frac{\partial f}{\partial y}(x_0, y_0).$$

3.45.2. Tétel

Legyen f differenciálható az $f(x_0, y_0) \in intD_f$ pontban. Ekkor

$$f(x,y) = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) + f(x_0, y_0) + o(\|(\Delta x, \Delta y)\|)$$

illetve

$$f(x,y) \approx \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) + f(x_0, y_0).$$

3.46. Érintősík egyenlete

Ha az f függvény differenciálható az (x_0, y_0) pontban, akkor az ehhez a ponthoz tartozó érintősík egyenlete

S:
$$\frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) - (z - f(x_0, y_0)) = 0.$$

Ekkor a sík normálvektora

$$\mathbf{n} = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0), -1\right).$$

3.47. Tétel

Ha f differenciálható az (x_0, y_0) pontban, akkor itt folytonos.

Bizonyítás

Tudjuk, hogyha f differenciálható az (x_0, y_0) pontban, akkor

$$f(x + \Delta x, y + \Delta y) = \frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y + f(x_0, y_0) + o(\|(\Delta x, \Delta y)\|).$$

Ebből azonnal kapjuk, hogy

$$\lim_{\substack{\Delta x \to 0 \\ x_0 \to 0}} f(x + \Delta x, y + \Delta y) = f(x_0, y_0).$$

3.48. Tétel

Adott $f: S \mapsto \mathbb{R}$ és legyen $(x_0, y_0) \in intD_f$. Tegyük fel $\exists U$ környezete (x_0, y_0) -nak, ahol $\exists \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ és folytonosak. Ekkor f differenciálható (x_0, y_0) -ban.

Bizonyítás

Vizsgáljuk meg az

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$

kifejezés értékét!

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y) + f(x_0, y_0 + \Delta y) - f(x_0, y_0).$$

Ekkor a Lagrange-féle középértéktételből

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y) = \frac{\partial f}{\partial x}(x_0 + \theta_1 \Delta x, y_0 + \Delta y) \Delta x$$
$$f(x_0, y_0 + \Delta y) - f(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0 + \theta_2 \Delta y) \Delta y$$

alkalmas $0 < \theta_1, \theta_2 < 1$ esetén. Ekkor a parciális deriváltak folytonossága miatt

$$\frac{\partial f}{\partial x}(x_0 + \theta_1 \Delta x, y_1 + \Delta y) = \frac{\partial f}{\partial x}(x_0, y_0) + \varepsilon(\Delta x, \Delta y)$$
$$\frac{\partial f}{\partial y}(x_0, y_0 + \theta_2 \Delta y) = \frac{\partial f}{\partial y}(x_0, y_0) + \varepsilon(\Delta y).$$

Ekkor

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y + o(\Delta x, \Delta y) \Delta x + o(\Delta y) \Delta y$$

azaz f valóban differenciálható.

3.49. Gradiens

Ha az f függvény differenciálható az (x_0, y_0) pontban, akkor ebben a pontban a derivált egy kétdimenziós vektor, a gradiens

$$\nabla f(x_0, y_0) = \nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right).$$

Ha egy függvény egy S tartomány minden pontjában differenciálható, akkor a deriváltfüggvény

$$\nabla f: S \mapsto \mathbb{R}^2$$

típusú lesz.

3.50. Iránymenti derivált

Adott f kétváltozós függvény és $\alpha \in [0, 2\pi)$. Ekkor az α irányú iránymenti derivált (ha létezik a határérték)

$$D_{\alpha}f(x_0, y_0) = \frac{\partial f}{\partial \alpha}(x_0, y_0) = \lim_{\varrho \to 0} \frac{f(x_0 + \varrho \cos \alpha, y_0 + \varrho \sin \alpha) - f(x_0, y_0)}{\varrho}.$$

Adott $v(v_1,v_2) \in \mathbb{R}^2$ irány esetén, ahol $\|v\| = 1,$ az iránymenti derivált

$$D_v(x_0, y_0) = \frac{\partial f}{\partial v}(x_0, y_0) = \lim_{\varrho \to 0} \frac{f(x_0 + \varrho v_1, y_0 + \varrho v_2) - f(x_0, y_0)}{\varrho}.$$

3.50.1. Tétel

Ha f differenciálható az (x_0, y_0) pontban, akkor itt létezik az iránymenti derivált tetszőleges $\alpha \in [0, 2\pi)$ esetén, és

$$\frac{\partial f}{\partial \alpha}(x_0, y_0) = \cos \alpha \frac{\partial f}{\partial x}(x_0, y_0) + \sin \alpha \frac{\partial f}{\partial y}(x_0, y_0) = \nabla f(x_0, y_0) \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}.$$

Hasonlóan

$$\frac{\partial f}{\partial v}(x_0,y_0) = v_1 \frac{\partial f}{\partial x}(x_0,y_0) + v_2 \frac{\partial f}{\partial y}(x_0,y_0) = \nabla f(x_0,y_0)v.$$

Bizonyítás

A differenciálhatóság miatt

$$f(x_0 + \varrho \cos \alpha, y_0 + \varrho \sin \alpha) - f(x_0, y_0) = \varrho \cos \alpha \frac{\partial f}{\partial x}(x_0, y_0) + \varrho \sin \alpha \frac{\partial f}{\partial y}(x_0, y_0) + o(|\varrho|).$$

Ekkor

$$\frac{f(x_0 + \varrho \cos \alpha, y_0 + \varrho \sin \alpha) - f(x_0, y_0)}{\varrho} = \cos \alpha \frac{\partial f}{\partial x}(x_0, y_0) + \sin \alpha \frac{\partial f}{\partial y}(x_0, y_0) + \frac{o(|\varrho|)}{\varrho}$$

így nyilván

$$\lim_{\varrho \to 0} \frac{f(x_0 + \varrho \cos \alpha, y_0 + \varrho \sin \alpha) - f(x_0, y_0)}{\varrho} = \cos \alpha \frac{\partial f}{\partial x}(x_0, y_0) + \sin \alpha \frac{\partial f}{\partial y}(x_0, y_0).$$

3.51. Második derivált

Adott $f: S \mapsto \mathbb{R}$ és $(x_0, y_0) \in S$. Azt mondjuk, hogy f kétszer differenciálható a pontban, ha a függvény differenciálható a pont egy környezetében, és a $\frac{\partial f}{\partial x}$ és a $\frac{\partial f}{\partial y}$ parciális deriváltak differenciálhatók a pontban.

3.52. Hesse mátrix

Ha az f függvény kétszer differenciálható az (x_0, y_0) pontban, akkor értelmezhetők a $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial x \partial y}$ és a $\frac{\partial^2 f}{\partial y^2}$ parciális deriváltak. Ekkor a ponthoz tartozó Hesse mátrix

$$H(x_0, y_0) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{pmatrix} = \begin{pmatrix} \nabla \frac{\partial f}{\partial x}(x_0, y_0) \\ \nabla \frac{\partial f}{\partial y}(x_0, y_0) \end{pmatrix}.$$

3.52.1. Tétel

Tegyük fel, hogy f kétszer differenciálható az értelmezési tartomány (x_0, y_0) belső pontjában. Ekkor

$$\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)$$

azaz a Hesse mátrix mindig szimmetrikus.

3.53. Implicitfüggvény-tétel

Tegyük fel, hogy F kétváltozós függvény differenciálható az (x_0, y_0) pont környezetében és $F(x_0, y_0) = 0$ illetve $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$. Ekkor $\exists I = I_1 \times I_2 \subset \mathbb{R}^2$ intervallum, melyre $\forall x \in I_1$ esetén az F(x, y) = 0 egyenletnek pontosan egy $y = f(x) \in I_2$ megoldása van. Tehát egyértelműen létezik $f: I_1 \mapsto I_2$ függvény, melyre

- 1. $f(x_0) = y_0$
- 2. $\forall x \in I_1$ esetén $f(x) \in I_2$
- 3. $\forall x \in I_1$ esetén F(x, f(x)) = 0
- 4. $\forall x \in I_1$ esetén $\frac{\partial F}{\partial y}(x, f(x)) \neq 0$.

Továbbá f differenciálható I_1 -ben és

$$f'(x) = -\frac{\frac{\partial F}{\partial x}(x, f(x))}{\frac{\partial F}{\partial y}(x, f(x))}.$$

3.54. Láncszabály

1. Kétváltozós belső függvény, egyváltozós külső függvény. Legyen $f: \mathbb{R} \mapsto \mathbb{R}$, illetve $\phi: \mathbb{R}^2 \mapsto \mathbb{R}$. Ekkor $F: \mathbb{R}^2 \mapsto \mathbb{R}$, és

$$F(x,y) = f(\phi(x,y)).$$

Tegyük fel, hogy ϕ differenciálható (x, y)-ban, illetve f differenciálható $\phi(x, y)$ -ban. Ekkor F is differenciálható, és

$$\nabla F(x,y) = \left(f'(\phi(x,y)) \frac{\partial \phi}{\partial x}(x,y), f'(\phi(x,y)) \frac{\partial \phi}{\partial y}(x,y) \right) = f'(\phi(x,y)) \nabla \phi(x,y).$$

2. Két darab egyváltozós belső függvény, kétváltozós külső függvény. Legyen $f: \mathbb{R}^2 \mapsto \mathbb{R}$, illetve $\varphi, \psi: \mathbb{R} \mapsto \mathbb{R}$. Ekkor $F: \mathbb{R} \mapsto \mathbb{R}$, és

$$F(t) = f(\varphi(t), \psi(t)).$$

Tegyük fel, hogy φ, ψ differenciálhatók t-ben, illetve f differenciálható $(\varphi(t), \psi(t))$ -ben. Ekkor F is differenciálható, és

$$F'(t) = \frac{\partial f}{\partial x} (\varphi(t), \psi(t)) \varphi'(t) + \frac{\partial f}{\partial y} (\varphi(t), \psi(t)) \psi'(t).$$

2018. február 12. 21:42 29 Vághy Mihály

3. Két darab kétváltozós belső függvény, kétváltozós külső függvény. Legyen $f(u,v): \mathbb{R}^2 \to \mathbb{R}$, illetve $\phi, \psi: \mathbb{R}^2 \to \mathbb{R}$. Ekkor $F: \mathbb{R}^2 \to \mathbb{R}$, és

$$F(x,y) = f(\phi(x,y), \psi(x,y)).$$

Tegyük fel, hogy ϕ, ψ differenciálhatók (x, y)-ban, illetve f differenciálható $(\phi(x, y), \psi(x, y))$ -ban. Ekkor F is differenciálható, és

$$\frac{\partial F}{\partial x}(x,y) = \frac{\partial f}{\partial u} \left(\phi(x,y), \psi(x,y) \right) \frac{\partial \phi}{\partial x}(x,y) + \frac{\partial f}{\partial v} \left(\phi(x,y,\psi(x,y)) \frac{\partial \psi}{\partial x}(x,y) \right)$$

$$\frac{\partial F}{\partial y}(x,y) = \frac{\partial f}{\partial u} \left(\phi(x,y), \psi(x,y) \right) \frac{\partial \phi}{\partial y}(x,y) + \frac{\partial f}{\partial v} \left(\phi(x,y), \psi(x,y) \right) \frac{\partial \psi}{\partial y}(x,y)$$

azaz

$$\nabla F(x,y) = \nabla f(u,v) \begin{pmatrix} \nabla \phi(x,y) \\ \nabla \psi(x,y) \end{pmatrix}.$$

Bizonyítás

1. f, ϕ differenciálhatósága miatt tudjuk, hogy

$$F(x + \Delta x, y + \Delta y) - F(x, y) = f(\phi(x + \Delta x, y + \Delta y)) - f(\phi(x, y)) =$$

$$= f'(\phi(x, y))(\phi(x + \Delta x, y + \Delta y) - \phi(x, y)) + o(\|\Delta x, \Delta y\|) =$$

$$= f'(\phi(x, y))\left(\nabla\phi(x, y)\left(\frac{\Delta x}{\Delta y}\right) + o(\|\Delta x, \Delta y\|)\right) + o(\|\Delta x, \Delta y\|) =$$

$$= f'(\phi(x, y))\nabla\phi(x, y)\left(\frac{\Delta x}{\Delta y}\right) + o(\|\Delta x, \Delta y\|).$$

Ez alapján F valóban differenciálható, és

$$\nabla F(x,y) = f'(\phi(x,y)) \nabla \phi(x,y).$$

2. f, ϕ, ψ differenciálhatósága miatt tudjuk, hogy

$$F(t + \Delta t) - F(t) = f(\phi(t + \Delta t), \psi(t + \Delta t)) - f(\phi(t), \psi(t)) =$$

$$\frac{\partial f}{\partial x}(\phi(t), \psi(t)) (\phi(t + \Delta t) - \phi(t)) + \frac{\partial f}{\partial y}(\phi(t), \psi(t)) (\psi(t + \Delta t) - \psi(t)) + o(\Delta t) =$$

$$= \frac{\partial f}{\partial x}(\phi(t), \psi(t)) \phi'(t) \Delta t + \frac{\partial f}{\partial y}(\phi(t), \psi(t)) \psi'(t) \Delta t + o(\Delta t).$$

Ez alapján F valóban differenciálható, és

$$F'(t) = \frac{\partial f}{\partial x} (\varphi(t), \psi(t)) \varphi'(t) + \frac{\partial f}{\partial y} (\varphi(t), \psi(t)) \psi'(t).$$

3. f, ϕ, ψ differenciálhatósága miatt tudjuk, hogy

$$F(x + \Delta x, y + \Delta y) - F(x, y) =$$

$$= f(\phi(x + \Delta x, y + \Delta y), \phi(x + \Delta x, y + \Delta y)) - f(\phi(x, y), \psi(x, y)) =$$

$$= \frac{\partial f}{\partial u}(\phi(x, y), \psi(x, y))(\phi(x + \Delta x, y + \Delta y) - \phi(x, y)) +$$

$$+ \frac{\partial f}{\partial v}(\phi(x, y), \psi(x, y))(\psi(x + \Delta x, y + \Delta y) - \psi(x, y)) + o(\|\Delta x, \Delta y\|) =$$

2018. február 12. 21:42 30 Vághy Mihály

$$= \frac{\partial f}{\partial u} (\phi(x, y), \psi(x, y)) \left(\nabla \phi(x, y) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} + o(\|\Delta x, \Delta y\|) \right) +$$

$$+ \frac{\partial f}{\partial v} (\phi(x, y), \psi(x, y)) \left(\nabla \psi(x, y) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} + o(\|\Delta x, \Delta y\|) \right) + o(\|\Delta x, \Delta y\|) =$$

$$= \nabla f(u, v) \begin{pmatrix} \nabla \phi(x, y) \\ \nabla \psi(x, y) \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} + o(\|\Delta x, \Delta y\|).$$

Ez alapján F valóban differenciálható, és

$$\nabla F(x,y) = \nabla f(u,v) \begin{pmatrix} \nabla \phi(x,y) \\ \nabla \psi(x,y) \end{pmatrix}.$$

3.55. Szélsőérték

Adott $f: S \to \mathbb{R}$, ahol $S \subset \mathbb{R}^2$. Ekkor $(x_0, y_0) \in S$ lokális minimum (maximum), ha $\exists U$ környezete, ahol $\forall (x, y) \in U$ esetén

$$f(x,y) \ge f(x_0, y_0)$$
 $(f(x,y) \le f(x_0, y_0)).$

Ha $U = D_f$, akkor (x_0, y_0) globális szélsőérték.

3.55.1. Szükséges feltétel szélsőérték létezéséhez

Tegyük fel, hogy f differenciálható. Ekkor ha (x, y) szélsőérték, akkor

$$\nabla f(x,y) = (0,0).$$

Bizonyítás

Legyen $f_1(x) = f(x, y_0)$ a kétváltozós függvény egyik metszetfüggvénye. Ekkor ha x_0 szélsőérték, akkor $f_1'(x_0) = 0$ kell, azonban $f_1'(x_0) = \frac{\partial f}{\partial x}(x_0, y_0)$. Hasonlóan belátható, hogy $\frac{\partial f}{\partial y}(x_0, y_0) = 0$ szükséges.

3.55.2. Stacionárius pont

Azt mondjuk, hogy (x, y) stacionárius pontja f-nek, ha

$$\nabla f(x,y) = (0,0).$$

3.55.3. Nyeregpont

Azt mondjuk, hogy (x, y) nyeregpont, ha stacionárius pont, de nem szélsőérték.

3.55.4. Elégséges feltétel szélsőérték létezéséhez I.

Tegyük fel, hogy f kétszer differenciálható (x_0, y_0) -ban, és $\nabla f(x_0, y_0) = 0$. Ekkor

- 1. det H > 0 esetén (x_0, y_0) -ban lokális szélsőérték van, ami
 - (a) $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) < 0$ esetén maximum
 - (b) $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0$ esetén minimum
- 2. $\det H = 0$ esetén további vizsgálat szükséges
- 3. $\det H < 0$ esetén (x_0, y_0) nyeregpont.

2018. február 12. 21:42 31 Vághy Mihály

3.55.5. Elégséges feltétel szélsőérték létezéséhez II.

Tegyük fel, hogy f kétszer differenciálható (x_0, y_0) -ban, és $\nabla f(x_0, y_0) = 0$. Ekkor

- 1. H > 0 esetén (x_0, y_0) lokális minimumhely
- 2. H < 0 esetén (x_0, y_0) lokális maximumhely
- 3. haH szemidefinit, akkor további vizsgálat szükséges.
- 4. ha H indefinit, akkor (x_0, y_0) nyeregpont.

3.56. Szükséges feltétel feltételes szélsőérték létezéséhez

Adott f kétváltozós, differenciálható függvény, melynek tekintsük a megszorítását az $\{(x,y)|\phi(x,y)=0\}$ halmazon. Ekkor ha az (x_0,y_0) pontban feltételes szélsőérték van, ha $\exists \lambda_0 \in \mathbb{R}$, melyre

$$\nabla f(x_0, y_0) - \lambda_0 \nabla \phi(x_0, y_0) = 0.$$

3.57. Lagrange-féle multiplikátor szabály

Adott f kétváltozós, differenciálható függvény, melynek tekintsük a megszorítását az $\{(x,y) | \phi(x,y) = 0\}$ halmazon. Legyen $F: \mathbb{R}^3 \mapsto \mathbb{R}$ olyan függvény, melyre

$$F(x, y, \lambda) = f(x, y) - \lambda \phi(x, y).$$

Ekkor ha (x_0, y_0) -ban feltételes szélsőértéke van f-nek a $\phi(x, y) = 0$ feltétel mellett, akkor $\exists \lambda_0 \in \mathbb{R}$, melyre

$$\nabla F(x_0, y_0, \lambda_0) = 0.$$

3.58. Lagrange-féle középértéktétel

Adott $f: D \to \mathbb{R}$ függvény. Legyen $(x_0, y_0) \in intD$, és U egy olyan környezete, ahol f differenciálható és $U \subset D$. Ekkor $\forall (x, y) \in U$ -hoz $\exists \theta \in (0, 1)$, melyre

$$f(x,y) - f(x_0, y_0) = \nabla f(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

ahol $\Delta x = x - x_0$, illetve $\Delta y = y - y_0$.

Bizonyítás

Legyen

$$F(t) = f(x_0 + t\Delta x, y_0 + t\Delta y)$$

ahol $F:[0,1]\mapsto\mathbb{R}$ differenciálható. Ekkor $F(0)=f(x_0,y_0)$ és F(1)=f(x,y). A Lagrange-féle középértéktétel miatt $\exists\theta\in(0,1)$, melyre

$$F'(\theta) = F(1) - F(0).$$

Továbbá a láncszabály miatt

$$F'(t) = \nabla f(x_0 + t\Delta x, y_0 + t\Delta y) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}.$$

Azt kaptuk tehát, hogy θ -ra

$$F'(\theta) = F(1) - F(0) = f(x, y) - f(x_0, y_0) = \nabla f(x_0 + \theta \Delta x, y_0 + \theta \Delta y) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}.$$

Éppen ezt kellett bizonyítanunk.

3.59. Tétel

Adott $f:D\mapsto \mathbb{R}$ függvény, ahol $D\subset \mathbb{R}^2$ konvex. Tegyük fel, hogy a függvény differenciálható, és $\nabla f=0$. Ekkor f konstans.

2018. február 12. 21:42 32 Vághy Mihály

3.60. Függvényrendszer

Adottak $\Phi, \Psi : D \to \mathbb{R}$, ahol $D \subset \mathbb{R}^2$. Legyen továbbá $\Phi(x,y) = \xi$ és $\Psi(x,y) = \eta$. Ekkor $F : D \to \mathbb{R}^2$ egy függvényrendszer vagy vektormező, melyre

$$F(x,y) = (\Phi(x,y), \Psi(x,y)) = (\xi, \eta).$$

3.61. Jacobi mátrix

Ha a Φ, Ψ függvények differenciálhatóak, akkor F is differenciálható, és a derivált a Jacobi mátrix

$$\mathcal{J}(x,y) = \begin{pmatrix} \frac{\partial \Phi}{\partial x}(x,y) & \frac{\partial \Phi}{\partial y}(x,y) \\ \frac{\partial \Psi}{\partial x}(x,y) & \frac{\partial \Psi}{\partial y}(x,y) \end{pmatrix} = \begin{pmatrix} \nabla \Phi(x,y) \\ \nabla \Psi(x,y) \end{pmatrix}.$$

Ekkor $D(x,y) = \det \mathcal{J}(x,y) = \frac{d(\xi,\eta)}{\mathrm{d}(x,y)}$ a Jacobi determináns.

3.62. Invertálhatóság

Tegyük fel, hogy a Φ , Ψ függvények injektívek. Ekkor az F leképezés invertálható, és az inverz rendszer alakja

$$x = g(\xi, \eta)$$

$$y = h(\xi, \eta).$$

3.63. Inverz rendszer Jacobi mátrixa

Tegyük fel, hogy az inverz rendszer függvényei differenciálhatók. Ekkor a Jacobi mátrix

$$\mathcal{K}(\xi,\eta) = \begin{pmatrix} \frac{\partial g}{\partial \xi}(\xi,\eta) & \frac{\partial g}{\partial \eta}(\xi,\eta) \\ \frac{\partial h}{\partial \xi}(\xi,\eta) & \frac{\partial h}{\partial \eta}(\xi,\eta) \end{pmatrix} = \begin{pmatrix} \nabla g(\xi,\eta) \\ \nabla h(\xi,\eta) \end{pmatrix}.$$

3.64. Tétel

Tegyük fel, hogy egy vektormező Jacobi mátrixa invertálható egy $(x,y) \in intD$ pontban. Ekkor a vektormező invertálható és

$$\mathcal{K}(\xi, \eta) = \left(\mathcal{J}(x, y)\right)^{-1}.$$

Továbbá

$$D(\xi, \eta) = \frac{1}{D(x, y)}.$$

Bizonyítás

Tudjuk, hogy

$$\xi = \Phi(g(\xi, \eta), h(\xi, \eta))$$
$$\eta = \Psi(g(\xi, \eta), h(\xi, \eta)).$$

Ekkor a láncszabály miatt

$$\nabla \xi(\xi, \eta) = \begin{pmatrix} 1 & 0 \end{pmatrix} = \nabla \Phi(x, y) \begin{pmatrix} \nabla g(\xi, \eta) \\ \nabla h(\xi, \eta) \end{pmatrix}$$

$$\nabla \eta(\xi, \eta) = \begin{pmatrix} 0 & 1 \end{pmatrix} = \nabla \Psi(x, y) \begin{pmatrix} \nabla g(\xi, \eta) \\ \nabla h(\xi, \eta) \end{pmatrix}.$$

Az egyenleteket rendezve azt kapjuk, hogy

$$\frac{\partial g}{\partial \xi} = \frac{\frac{\partial \Psi}{\partial y}}{\frac{\partial \Phi}{\partial x} \frac{\partial \Psi}{\partial y} - \frac{\partial \Phi}{\partial y} \frac{\partial \Psi}{\partial x}} = \frac{\frac{\partial \Psi}{\partial y}}{D(x, y)}$$

$$\frac{\partial g}{\partial \eta} = -\frac{\frac{\partial \Phi}{\partial y}}{\frac{\partial \Phi}{\partial x} \frac{\partial \Psi}{\partial y} - \frac{\partial \Phi}{\partial y} \frac{\partial \Psi}{\partial x}} = -\frac{\frac{\partial \Phi}{\partial y}}{D(x, y)}$$

$$\frac{\partial h}{\partial \xi} = -\frac{\frac{\partial \Psi}{\partial x}}{\frac{\partial \Phi}{\partial x} \frac{\partial \Psi}{\partial y} - \frac{\partial \Phi}{\partial y} \frac{\partial \Psi}{\partial x}} = -\frac{\frac{\partial \Psi}{\partial x}}{D(x, y)}$$

$$\frac{\partial h}{\partial \eta} = \frac{\frac{\partial \Phi}{\partial x} \frac{\partial \Psi}{\partial x} - \frac{\partial \Phi}{\partial y} \frac{\partial \Psi}{\partial x}}{\frac{\partial \Phi}{\partial x} \frac{\partial \Psi}{\partial x} \frac{\partial \Psi}{\partial x}} = \frac{\frac{\partial \Phi}{\partial x}}{D(x, y)}.$$

Ezek alapján

$$\mathcal{K}(\xi,\eta) = \frac{1}{D(x,y)} \begin{pmatrix} \frac{\partial \Psi}{\partial y} & -\frac{\partial \Phi}{\partial y} \\ -\frac{\partial \Psi}{\partial x} & \frac{\partial \Phi}{\partial x} \end{pmatrix} = \Big(\mathcal{J}(x,y)\Big)^{-1}.$$

Éppen ezt kellett bizonyítanunk.

3.65. Másodrendű Taylor formula

Tegyük fel, hogy $f: D \mapsto \mathbb{R}$ kétszer differenciálható $(x_0, y_0) \in intD$ -ben. Ekkor

$$f(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2} (\Delta x)^2 + 2 \frac{\partial^2 f}{\partial y \partial x} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} (\Delta y)^2 \right) + L_2$$

ahol L_2 a Lagrange-féle maradéktag.

Bizonyítás

Legyen $F:[0,1]\mapsto \mathbb{R}$ függvény és

$$F(t) = f(x_0 + t\Delta x, y_0 + t\Delta y).$$

Ekkor

$$\begin{split} F'(t) &= \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y \\ F''(t) &= \frac{\partial^2 f}{\partial x^2} (\Delta x)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} (\Delta y)^2. \end{split}$$

Felírva F-re a másodrendű Taylor formulát

$$F(1) - F(0) = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2} (\Delta x)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} (\Delta y)^2 \right) + L_2$$

azonban $F(1) - F(0) = f(x, y) - f(x_0, y_0)$. Ezzel kapjuk is a bizonyítandót.

3.66. Magasabbrendű Taylor formula

Tegyük fel, hogy $f:D\mapsto\mathbb{R}$ n-szer differenciálható $(x_0,y_0)\in intD$ -ben. Ekkor

$$f(x,y) = \sum_{m=0}^{n} \frac{1}{m!} \sum_{k=0}^{m} {m \choose k} \frac{\partial^{m} f}{\partial x^{k} \partial y^{m-k}} (\Delta x)^{k} (\Delta y)^{m-k} + L_{n}.$$

2018. február 12. 21:42 34 Vághy Mihály

4. Többszörös integrálok

4.1. Jordan mérték \mathbb{R}^2 -ben

Legyen adott egy R halmaz \mathbb{R}^2 -ben. Osszuk fel a síkot egységnyi oldalú négyzetráccsal! Legyen továbbá $A_0^-(R)$ azon négyzetek száma, amelyek teljesen benne vannak R-ben, illetve $A_0^+(R)$ azon négyzetek száma, amelyeknek van közös pontja R-el. Felezzük meg a négyzetek oldalait. Ekkor legyen $A_1^-(R)$ azon négyzetek száma, amelyek teljesen benne vannak R-ben, osztva 4-el, illetve $A_1^+(R)$ azon négyzetek száma, amelyeknek van közös pontja R-el, osztva 4-el. Ezt az eljárást folytatva, tehát mindig felezve a négyzetek oldalit, majd osztva 4^n -el definiálhatunk két sorozatot $\left(A_n^-(R)\right)$ -t és $\left(A_n^+(R)\right)$ -t. Ekkor ezek a sorozatok monotonok, és korlátosak, emiatt létezik

$$\lim_{n\to\infty} A_n^-(R) = A^-(R)$$

$$\lim_{n \to \infty} A_n^+(R) = A^+(R).$$

Mivel $\forall A_n^-(R) \leq A_n^+(R)$, így $A^-(R) \leq A^+(R)$

4.2. Mérhető tartomány

Ha $A^-(R) = A^+(R)$, akkor az R halmaz mérhető, és mértéke

$$A(R) := A^{-}(R) = A^{+}(R).$$

4.2.1. Tétel

Egy R halmaz pontosan akkor mérhető, ha

$$A(\partial R) = 0.$$

4.3. Jordan mérték tulajdonságai

- 1. Minden R halmaz esetén $A(R) \ge 0$.
- 2. Ha R, S mérhető halmaz, akkor $R \cup S$ és $R \cap S$ is mérhetők.
- 3. Ha $R \subset S$ mérhetők, akkor $A(R) \leq A(S)$.
- 4. Ha R, S mérhető halmazokra $intR \cap intS = \emptyset$, akkor $A(R \cup S) = A(R) + A(S)$.

4.4. Tétel

Legyen $f:[a,b]\mapsto \mathbb{R}^+$ integrálható függvény, és legyen

$$R = \Big\{(x,y)\Big|x\in[a,b],y\in[0,f(x)]\Big\}.$$

Ekkor

$$A(R) = \int_a^b f(x) \, \mathrm{d}x.$$

4.5. Halmaz átmérője

Adott $R \subset \mathbb{R}^2$ halmaz átmérője

$$\delta(R) := \sup \Big\{ \|P_1 - P_2\| \Big| P_1, P_2 \in R \Big\}.$$

4.6. Felosztás finomsága

Adott

$$R = \bigcup_{k=1}^{n} R_k$$

felosztás finomsága

$$\delta = \max \delta(R_k).$$

4.7. Kettős integrál

Legyen $R \subset \mathbb{R}^2$ korlátos és zárt mérhető halmaz, és rajta egy $f: R \mapsto \mathbb{R}^+$ folytonos függvény. Legyen

$$R = \bigcup_{k=1}^{n} R_k$$

felosztás, ahol $\forall R_k$ mérhető és $\forall R_k \cap R_j = \emptyset$. Legyen továbbá

$$m_k = \inf \left\{ f(x, y) \middle| x, y \in R_k \right\}$$

$$M_k = \sup \left\{ f(x,y) \middle| x, y \in R_k \right\}$$

és

$$s_n = \sum_{k=1}^n A(R_k) m_k \le V(S) \le \sum_{k=1}^n A(R_k) M_k = S_n$$

ahol

$$S = \Big\{(x,y,z) \Big| (x,y) \in R, z \in [0,f(x,y)] \Big\}.$$

Ekkor f folytonossága miatt a Heine-tétel által f egyenletesen folytonos. Emiatt $\forall \varepsilon > 0$ esetén $\exists \delta_0 > 0$, amelyre $\delta < \delta_0$ esetén $M_k - m_k < \varepsilon$. Ekkor

$$S_n - s_n = \sum_{k=1}^n A(R_k)(M_k - m_k) < \sum_{k=1}^n A(R_k)\varepsilon = \varepsilon A(R).$$

Tehát

$$\lim_{\delta \to 0} \left(\inf S_n \right) = \lim_{\delta \to 0} \left(\sup s_n \right)$$

azaz az integrál értelmezhető. Ekkor a keresett térfogat

$$V(S) = \iint_R f(x, y) dR = \iint_R f(x, y) d(x, y).$$

4.7.1. Tétel

Mérhető tartományon értelmezett folytonos függvény integrálható.

4.7.2. Kettős integrál tulajdonságai

1. Linearitás

$$\iint_R (\alpha f + \beta g) \, \mathrm{d}R = \alpha \iint_R f \, \mathrm{d}R + \beta \iint_R g \, \mathrm{d}R$$

2. Legyen $R = R_1 \cup R_2$, ahol $R_1 \cap R_2 = \emptyset$. Ekkor

$$\iint_{R} f \, \mathrm{d}R = \iint_{R_1} f \, \mathrm{d}R_1 + \iint_{R_2} f \, \mathrm{d}R_2.$$

3. Monotonitás Legyen $f(x,y) \leq g(x,y) \; \forall (x,y) \in R$ esetén. Ekkor

$$\iint_{R} f \, \mathrm{d}R \le \iint_{R} g \, \mathrm{d}R.$$

4. Háromszög-egyenlőtlenség

$$\left| \iint_R f \, \mathrm{d}R \, \right| \le \iint_R |f| \, \mathrm{d}R$$

4.8. Integrál középértéktétel

Legyen f korlátos, ahol $m \leq f(x,y) \leq M$ teljesül $\forall (x,y) \in R$ esetén. Ekkor

$$mA(R) \le \iint_R f \, \mathrm{d}R \le MA(R).$$

Ha f folytonos és R összefüggő, akkor $\exists (\xi, \eta) \in R$, melyre

$$\iint_{R} f \, \mathrm{d}R = f(\xi, \eta) A(R)$$

teljesül.

4.9. Tétel

Legyen $R = [a, b] \times [c, d]$, és tegyük fel, hogy $f(x, y) = \Phi(x)\Psi(y)$. Ekkor

$$\iint_{R} f(x,y) d(x,y) = \iint_{R} \Phi(x)\Psi(y) d(x,y) = \int_{a}^{b} \Phi(x) dx \int_{c}^{d} \Psi(y) dy.$$

Bizonyítás

Osszuk fel az [a, b] intervallumot n egyenlő részre, a [c, d] intervallumot pedig m egyenlő részre. Legyen továbbá az így létrehozott R_{ij} téglalapokra $(\xi_i, \eta_i) \in R_{ij}$. Ekkor az integrál közelítő összege

$$V_{nm} = \sum_{i=1}^{n} \sum_{j=1}^{m} f(\xi_i, \eta_j) \Delta x \Delta y = \sum_{i=1}^{n} \sum_{j=1}^{m} \Phi(\xi_i) \Psi(\eta_j) \Delta x \Delta y = \sum_{i=1}^{n} \Phi(\xi_i) \Delta x \sum_{j=1}^{m} \Phi(\eta_j) \Delta y.$$

Ekkor nyilván

$$\lim_{\substack{n \to \infty \\ m \to \infty}} V_{nm} = \iint_R f(x, y) d(x, y) = \int_a^b \Phi(x) dx \int_c^d \Psi(y) dy.$$

4.10. Tétel

Legyen $R = [a, b] \times [c, d]$. Ekkor

$$\iint_R f(x,y) d(x,y) = \int_a^b \int_c^d f(x,y) dy dx = \int_c^d \int_a^b f(x,y) dx dy.$$

Bizonyítás

Osszuk fel az [a,b] intervallumot n egyenlő részre, a [c,d] intervallumot pedig m egyenlő részre. Legyen továbbá az így létrehozott R_{ij} téglalapokra $(\xi_i,\eta_j)\in R_{ij}$. Ekkor az integrál közelítő összege

$$V_{nm} = \sum_{i=1}^{n} \sum_{j=1}^{m} f(\xi_i, \eta_j) \Delta x \Delta y = \sum_{j=1}^{m} \sum_{i=1}^{n} f(\xi_i, \eta_j) \Delta x \Delta y.$$

Ekkor

$$\lim_{n \to \infty} \lim_{m \to \infty} V_{nm} = \lim_{n \to \infty} \sum_{i=1}^{n} \int_{c}^{d} f(\xi_{i}, y) \, \mathrm{d}y \, \Delta x = \int_{a}^{b} \int_{c}^{d} f(x, y) \, \mathrm{d}y \, \mathrm{d}x.$$

Hasonlóan

$$\lim_{m \to \infty} \lim_{n \to \infty} V_{nm} = \lim_{m \to \infty} \sum_{i=1}^{m} \int_{a}^{b} f(x, \eta_{j}) dx \, \Delta y = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy.$$

Ekkor nyilván

$$\lim_{\substack{n \to \infty \\ m \to \infty}} V_{nm} = \iint_R f(x, y) \, \mathrm{d}(x, y) = \int_a^b \int_c^d f(x, y) \, \mathrm{d}y \, \mathrm{d}x = \int_c^d \int_a^b f(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$

4.11. Normáltartomány

Adott $R \subset \mathbb{R}^2$ x szerinti normáltartomány, ha $\exists [a,b]$, továbbá $\exists \Phi_1 \leq \Phi_2 : [a,b] \mapsto \mathbb{R}$ szakaszonként folytonos függvények, melyekre

$$R = \Big\{(x,y) \in \mathbb{R}^2 \Big| x \in [a,b], y \in \left[\Phi_1(x), \Phi_2(x)\right]\Big\}.$$

Hasonlóan $R \subset \mathbb{R}^2$ y szerinti normáltartomány, ha $\exists [c,d]$, továbbá $\exists \Psi_1 \leq \Psi_2 : [c,d] \mapsto \mathbb{R}$ szakaszonként folytonos fügyvények, melyekre

$$R = \{(x, y) \in \mathbb{R}^2 | y \in [c, d], x \in [\Psi_1(y), \Psi_2(y)] \}.$$

4.11.1. Tétel

Legyen R egy x szerinti normáltartomány. Ekkor

$$\iint_R f(x,y) \, \mathrm{d}(x,y) = \int_a^b \int_{\Phi_1(x)}^{\Phi_2(x)} f(x,y) \, \mathrm{d}y \, \mathrm{d}x.$$

Hasonlóan, ha R egy y szerinti normáltartomány, akkor

$$\iint_{R} f(x,y) \, d(x,y) = \int_{c}^{d} \int_{\Psi_{1}(y)}^{\Psi_{2}(y)} f(x,y) \, dx \, dy.$$

4.12. Helyettesítés kettős integrálban

Legyen $f:R\mapsto\mathbb{R}$ integrálható függvény. Legyen

$$x = \Phi(u, v)$$

$$y = \Psi(u, v)$$

invertálható és differenciálható függvényrendszer. Legyen továbbá

$$R' = \left\{ (u, v) \in \mathbb{R}^2 \middle| \left(\Phi(u, v), \Psi(u, v) \right) \in R \right\}.$$

Ekkor

$$\iint_{R} f(x,y) d(x,y) = \iint_{R'} f(\Phi(u,v), \Psi(u,v)) D(u,v) d(u,v)$$

ahol D(u, v) a Jacobi determináns.

4.13. Improprius integrál

Adott $f: R \mapsto \mathbb{R}$, ahol f vagy R nem korlátos. Tegyük fel, hogy létezik olyan (R_n) mérhető sorozat, melyre $R_1 \subset R_2 \subset \cdots \subset R$, ahol $f \in \mathcal{R}(R_n)$ és

$$\bigcup_{n=1}^{\infty} R_n = R.$$

Ekkor ha

$$\exists \lim_{n \to \infty} \iint_{R_n} f(x, y) \, \mathrm{d}R_n$$

és független (R_n) megválasztásától, akkor azt mondjuk, hogy f improprius értelemben integrálható R-n és

$$\iint_{R} f(x,y) dR = \lim_{n \to \infty} \iint_{R_{-}} f(x,y) dR_{n}.$$

4.13.1. Tétel

Adott $f:R\mapsto\mathbb{R}$. Tegyük fel, hogy az abszolút integrálokból álló sorozat egyenletesen korlátos. Ekkor f impropriusan integrálható.

4.13.2. Tétel

Adott $f: R \mapsto \mathbb{R}$. Ekkor ha létezik olyan megfelelő (R_n) tartománysorozat, melyre

$$\lim_{n\to\infty}\iint_{R_n} f(x,y) \, \mathrm{d}R_n$$

akkor minden más megfelelő (S_n) tartománysorozatra

$$\lim_{n \to \infty} \iint_{S_n} f(x, y) dS_n = \lim_{n \to \infty} \iint_{R_n} f(x, y) dR_n = \iint_R f(x, y) dR.$$

4.14. Majoráns kritérium

Adott $f:R\mapsto \mathbb{R}$ nem korlátos. Tegyük fel, hogy $\exists \alpha\in(0,2), M>0$ melyre

$$|f(x,y)| \le \frac{M}{\|(x,y)\|^{\alpha}}.$$

Ekkor f impropriusan integrálható R-n.

4.15. Vonalintegrál

Adott $f: R \mapsto \mathbb{R}$ kétváltozós függvény és

$$\Gamma = \left\{ \gamma(t) \middle| t \in [a, b] \right\} \in R$$

sima görbe, ahol $\gamma(t) = (x(t), y(t))$. Ekkor f Γ görbe menti vonalintegrálja

$$\int_{\Gamma} f(x,y) ds = \int_a^b f(x(t), y(t)) \sqrt{x'(t)^2 + y'(t)^2} dt.$$

Bizonyítás

Írjunk fel egy közelítő összeget! Legyen

$$\mathcal{F} = \{ a = t_0 < t_1 < \dots < t_n = b \}$$

felosztás. Közelítsük a vonalintegrált téglalapokkal, melynek a magassága $f(\gamma(t_i))$ az alapja pedig

$$\sqrt{(x(t_{i+1}) - x(t_i))^2 + (y(t_{i+1}) - y(t_i))^2}.$$

Ekkor a közelítő összeg

$$I_n = \sum_{i=0}^{n-1} f(\gamma(t_i)) \sqrt{(x(t_{i+1}) - x(t_i))^2 + (y(t_{i+1}) - y(t_i))^2} =$$

$$= \sum_{i=0}^{n-1} f(\gamma(t_i)) \sqrt{\left(\frac{x(t_{i+1}) - x(t_i)}{t_{i+1} - t_i}\right)^2 + \left(\frac{y(t_{i+1}) - y(t_i)}{t_{i+1} - t_i}\right)^2} (t_{i+1} - t_i).$$

A Lagrange-féle középértéktétel miatt $\exists \xi_i, \eta_i \in [t_i, t_{i+1}]$, melyekre

$$\frac{x(t_{i+1}) - x(t_i)}{t_{i+1} - t_i} = x'(\xi_i) \qquad \frac{y(t_{i+1}) - y(t_i)}{t_{i+1} - t_i} = y'(\eta_i).$$

Ekkor

$$I_n = f(\gamma(t_i)) \sqrt{x'(\xi_i)^2 + y'(\eta_i)^2} \Delta t_i.$$

Vegyük észre, hogy ez egy Riemann összeg, azaz

$$\lim_{\substack{n \to \infty \\ \delta(\mathcal{F}) \to 0}} I_n = \int_a^b f(\gamma(t)) \sqrt{x'(t)^2 + y'(t)^2} \, dt = \int_a^b f(x(t), y(t)) \sqrt{x'(t)^2 + y'(t)^2} \, dt.$$

4.15.1. Tétel

Adott f függvény vonalintegrálja Γ mentén független Γ paraméterezésétől.

4.16. Vektormező vonalintegrálja

Adott $F: R \mapsto \mathbb{R}^2$

$$F(x,y) = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$

vektormező és

$$\Gamma = \Big\{\gamma(t) \Big| t \in [a,b] \Big\} \in R$$

sima görbe. Ekkor a vektormező vonalintegrálja

$$\int_{\Gamma} F(\mathbf{r}) d\mathbf{r} = \int_{a}^{b} \langle F(\gamma(t)), \dot{\gamma}(t) \rangle dt = \int_{a}^{b} (f(\gamma(t))\dot{x}(t) + g(\gamma(t))\dot{y}(t)) dt.$$

Bizonyítás

$$\int_{\Gamma} F(\mathbf{r}) d\mathbf{r} = \int_{\Gamma} (f(x, y) - g(x, y)) \begin{pmatrix} dx \\ dy \end{pmatrix} = \int_{\Gamma} f(x, y) dx + \int_{\Gamma} g(x, y) dy =$$

$$= \int_{\Gamma} f(\gamma(t)) \dot{x}(t) dt + \int_{\Gamma} f(\gamma(t)) \dot{y}(t) dt = \int_{a}^{b} \langle F(\gamma(t)), \dot{\gamma}(t) \rangle dt.$$

4.17. Potenciálos vektormező

Azt mondjuk, hogy F potenciálos vektormező, ha $\exists f$ differenciálható függvény, melyre $F = \nabla f$.

4.17.1. Tétel

Adott F potenciálos vektormező, aminek potenciálja f és adott

$$\Gamma = \left\{ \gamma(t) \middle| t \in [a, b] \right\}$$

sima görbe. Ekkor

$$\int_{\Gamma} F(\mathbf{r}) d\mathbf{r} = f(\gamma(b)) - f(\gamma(a)).$$

Bizonyítás

$$\int_{\Gamma} F(\mathbf{r}) d\mathbf{r} = \int_{a}^{b} \langle F(\gamma(t)), \dot{\gamma}(t) \rangle dt = \int_{a}^{b} \frac{d}{dt} f(\gamma(t)) dt = f(\gamma(b)) - f(\gamma(a)).$$

4.18. Köringetrál

Adott Fvektormező és Γ zárt, sima görbe. Ekkor F Γ menti vonalintegrálja

$$\oint_{\Gamma} F(\mathbf{r}) \, \mathrm{d}\mathbf{r} \,.$$

4.18.1. Tétel

Adott F vektormező és Γ zárt, sima görbe. Ekkor F potenciálos akkor és csak akkor, ha

$$\oint_{\Gamma} F(\mathbf{r}) \, \mathrm{d}\mathbf{r} = 0.$$

5. Fourier analízis

5.1. Dirac delta

Adott $\varepsilon > 0$. Ekkor legyen

$$\delta_{\varepsilon}(x) = \begin{cases} \frac{1}{2\varepsilon}, & \text{ha } |x| < \varepsilon \\ 0, & \text{ha } |x| \ge \varepsilon \end{cases}.$$

A Dirac delta

$$\delta(x) = \lim_{\varepsilon \to 0} \delta_{\varepsilon}(x).$$

5.1.1. Dirac delta tulajdonságai

1.

$$\int_{-\infty}^{\infty} \delta(x) \, \mathrm{d}x = 1.$$

2.

$$\int_{-\infty}^{\infty} \delta(x) f(x) \, \mathrm{d}x = f(0)$$

5.2. Konvolúció

Adottak $f,g:\mathbb{R}\mapsto\mathbb{R}$ abszolút integrálható függvények. Ekkor a két függvény konvolúciója

$$(f * g)(x) = \int_{-\infty}^{\infty} f(y)g(x - y) \, \mathrm{d}y.$$

5.2.1. Konvolúció tulajdonságai

- 1. Kommutatív, azaz f * g = g * f.
- 2. Asszociatív, azaz f * (g * h) = (f * g) * h.
- 3. Disztributív, azaz

$$(f+g)*h = f*h+g*h.$$

4. f*g abszolút integrálható és

$$\int_{-\infty}^{\infty} \left| (f * g)(x) \right| dx \le \int_{-\infty}^{\infty} \left| f(x) \right| dx \int_{-\infty}^{\infty} \left| g(x) \right| dx.$$

5. Dirac delta a konvolúció egysége, azaz

$$(\delta * f)(x) = \int_{-\infty}^{\infty} \delta(y) f(x - y) \, \mathrm{d}y = f(x).$$

Bizonyítás

1.

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x)g(x - y) \, \mathrm{d}y \underset{\mathrm{d}u = -\mathrm{d}y}{=} - \int_{\infty}^{-\infty} f(x - u)g(u) \, \mathrm{d}u =$$
$$= \int_{-\infty}^{\infty} f(x - u)g(u) \, \mathrm{d}u = (g * f)(x)$$

2.

5.3. Fourier sor komplex alakja

Legyen $f: \mathbb{R} \to \mathbb{R}$ 2 π szerint periodikus, szakaszonként folytonosan differenciálható függvény, melynek csak elsőfajú szakadása van, ahol

$$f(x) = \frac{f(x+0) + f(x-0)}{2}.$$

Ekkor

$$f(x) = \sum_{n = -\infty}^{\infty} \alpha_n e^{inx}$$

ahol

$$\alpha_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} \, \mathrm{d}x.$$

Bizonyítás

Tudjuk, hogy

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \frac{e^{inx} + e^{-inx}}{2} + b_n \frac{e^{inx} - e^{-inx}}{2i} \right) = \sum_{n=-\infty}^{\infty} \alpha_n e^{inx}$$

ahol

$$\alpha_n = \frac{a_n - ib_n \operatorname{sgn}(n)}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx.$$

5.4. Fourier transzformáció

Legyen $f:\mathbb{R}\mapsto\mathbb{R}$ szakaszonként folytonosan differenciálható, abszolút integrálható függvény, azaz

$$\int_{-\infty}^{\infty} |f(x)| \, \mathrm{d}x < \infty$$

melynek csak elsőfajú szakadása van, ahol

$$f(x) = \frac{f(x+0) + f(x-0)}{2}.$$

Ekkor a függvény Fourier transzformáltja $\hat{f}:\mathbb{R}\mapsto\mathbb{C}$

$$\mathcal{F}(f,s) = \hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-isx} \, \mathrm{d}x \,.$$

5.4.1. Tétel

Legyen

$$\hat{f}_A(s) = \frac{1}{\sqrt{2\pi}} \int_{-A}^A f(x) e^{-isx} \, \mathrm{d}x.$$

Ekkor \hat{f}_A egyenletesen konvergál \hat{f} -hez.

Bizonyítás

$$\left| \hat{f}_A(s) - \hat{f}(s) \right| \le \frac{1}{\sqrt{2\pi}} \int_{|x| > A} \left| f(x) \right| \left| e^{-isx} \right| dx = \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{-A} \left| f(x) \right| dx + \int_{A}^{\infty} \left| f(x) \right| dx \right) < \varepsilon$$

bizonyos A_0 küszöb után, hiszen f abszolút integrálható. Ekkor

$$\left|\hat{f}_A(s) - \hat{f}(s)\right| \le \frac{1}{\sqrt{2\pi}}\varepsilon.$$

Mivel A_0 független s-től, így valóban egyenletes a konvergencia.

5.4.2. Fourier transzformáció tulajdonságai

1. Ha f páros, akkor

$$\hat{f}(s) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(t) \cos(st) dt.$$

2. Ha f páratlan, akkor

$$\hat{f}(s) = -i\sqrt{\frac{2}{\pi}} \int_0^\infty f(t) \sin(st) dt.$$

- 3. \hat{f} folytonos
- 4. Linearitás

$$\mathcal{F}(\alpha f + \beta g, s) = \alpha \mathcal{F}(f, s) + \beta \mathcal{F}(g, s)$$

5. Átskálázás

$$\mathcal{F}(f(ax), s) = \frac{1}{|a|} \mathcal{F}(f(x), \frac{s}{a}) \qquad (a \neq 0)$$

6. Időeltolás

$$\mathcal{F}(f(x-x_0),s) = e^{-ix_0s}\mathcal{F}(f(x),s)$$

7. Frekvenciaeltolás

$$\mathcal{F}(e^{ikx}f(x),s) = \mathcal{F}(f(x),s-k)$$

8. Tegyük fel, hogy

$$\int_{-\infty}^{\infty} |xf(x)| \, \mathrm{d}x < \infty.$$

Ekkor

$$\mathcal{F}(xf(x),s) = -i\frac{\mathrm{d}}{\mathrm{d}s}\mathcal{F}(f(x),s).$$

9. Tegyük fel, hogy

$$\int_{-\infty}^{\infty} |f'(x)| \, \mathrm{d}x < \infty.$$

Ekkor

$$\mathcal{F}(f',s) = is\mathcal{F}(f,s).$$

10.

$$\mathcal{F}(f * g, s) = \sqrt{2\pi} \mathcal{F}(f, s) \mathcal{F}(g, s)$$

11.

$$\mathcal{F}(fg,s) = \frac{1}{\sqrt{2\pi}}\mathcal{F}(f,s)*\mathcal{F}(g,s)$$

Bizonyítás

1. Tudjuk, hogy

$$\hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \cos(st) dt - \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \sin(st) dt.$$

Ekkor ha f páros, akkor

$$\hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \cos(st) dt = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos(st) dt.$$

2. Tudjuk, hogy

$$\hat{f}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \cos(st) dt - \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \sin(st) dt.$$

Ekkor ha f páratlan, akkor

$$\hat{f}(s) = -i\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \sin(st) dt = -i\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \sin(st) dt.$$

- 3. Az egyenletes konvergenciából következik.
- 4. Az integrálás linearitásából következik

5.
$$\mathcal{F}(f(ax), s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(ax)e^{-isx} dx = \frac{1}{\frac{1}{a}y = x} \frac{1}{\sqrt{2\pi}} \int_{-\operatorname{sgn} a\infty}^{\operatorname{sgn} a\infty} f(y)e^{-i\frac{s}{a}y} \frac{1}{a} dy = \frac{1}{|a|\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{-i\frac{s}{a}y} dy = \frac{1}{|a|} \mathcal{F}(f(x), \frac{s}{a})$$

6. $\mathcal{F}(f(x-x_0),s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-x_0)e^{-isx} dx \underset{\substack{y=x-x_0\\ dy=dx}}{=}$ $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{-is(y+x_0)} dy = e^{-isx_0} \mathcal{F}(f(x),s)$

7.
$$\mathcal{F}\left(e^{ikx}f(x),s\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i(s-k)x} \, \mathrm{d}x = \mathcal{F}\left(f(x),s-k\right)$$

8. $\frac{\mathrm{d}}{\mathrm{d}s}\mathcal{F}(f(x),s) = \frac{\mathrm{d}}{\mathrm{d}s}\left(\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{-isx}\,\mathrm{d}x\right) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)\frac{\mathrm{d}}{\mathrm{d}s}e^{-isx}\,\mathrm{d}x$

hiszen az egyenletes konvergencia miattt az integrálás és a deriválás sorrendje megcserélhető. Ekkor

$$\frac{\mathrm{d}}{\mathrm{d}s}\mathcal{F}(f(x),s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)(-ix)e^{-isx} \,\mathrm{d}x = -i\mathcal{F}(xf(x),s).$$

9.
$$\mathcal{F}(f',s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(x)e^{-isx} dx = \frac{1}{\sqrt{2\pi}} f(x)e^{-isx} \bigg|_{-\infty}^{\infty} + is \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-isx} dx = is \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-isx} dx = is \mathcal{F}(f,s)$$

10.
$$\mathcal{F}(f * g, s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (f * g)(x) e^{-isx} \, \mathrm{d}x = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(y) g(x - y) \, \mathrm{d}y \right) e^{-isx} \, \mathrm{d}x =$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y) e^{-isy} \, \mathrm{d}y \int_{-\infty}^{\infty} g(x - y) e^{-is(x - y)} \, \mathrm{d}x = \sqrt{2\pi} \mathcal{F}(f, s) \mathcal{F}(g, s)$$

11.
$$\mathcal{F}(fg,s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)g(x)e^{-isx} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(r)e^{irx} dr \, g(x)e^{-isx} dx =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(r) \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x)e^{-i(s-r)x} dx \right) dr = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(r)\hat{g}(s-r) dr =$$

$$= \frac{1}{\sqrt{2\pi}} \mathcal{F}(f,s) * \mathcal{F}(g,s)$$

5.5. Inverz Fourier transzformáció

Legyen $f: \mathbb{R} \to \mathbb{R}$ szakaszonként folytonosan differenciálható, abszolút integrálható függvény, azaz

$$\int_{-\infty}^{\infty} |f(x)| \, \mathrm{d}x < \infty$$

melynek csak elsőfajú szakadása van, ahol

$$f(x) = \frac{f(x+0) + f(x-0)}{2}.$$

Ekkor

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(s) e^{isx} \, \mathrm{d}s.$$

5.5.1. Tétel

Tegyük fel, hogy

$$\int_{-\infty}^{\infty} |f'(x)| \, \mathrm{d}x < \infty \qquad \int_{-\infty}^{\infty} |f''(x)| \, \mathrm{d}x < \infty.$$

Legyen

$$f_A(x) = \frac{1}{\sqrt{2\pi}} \int_{-A}^{A} \hat{f}(s)e^{isx} ds.$$

Ekkor f_A egyenletesen konvergál f-hez.

5.6. Parseval egyenlet

Tegyük fel, hogy

$$\int_{-\infty}^{\infty} |f'(x)| dx < \infty \qquad \int_{-\infty}^{\infty} |f''(x)| dx < \infty.$$

Ekkor

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(s)|^2 ds.$$

Bizonyítás

$$\int_{-\infty}^{\infty} f^2(x) \, \mathrm{d}x = \int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(s) e^{isx} \, \mathrm{d}s \, \mathrm{d}x = \int_{-\infty}^{\infty} \hat{f}(s) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} \, \mathrm{d}x \, \mathrm{d}s = \int_{-\infty}^{\infty} \hat{f}(s) \hat{f}(-s) \, \mathrm{d}s = \int_{-\infty}^{\infty} \left| \hat{f}(s) \right|^2 \, \mathrm{d}s$$

6. Differenciálegyenletek

6.1. Lineárisan független függvények

Adottak $y_1, y_2, \dots, y_n : D \mapsto \mathbb{R}$ függvények. Ezek lineárisan függetlenek, ha

$$y(x) := \sum_{k=1}^{n} c_k y_k(x) \equiv 0 \implies \forall c_k = 0.$$

6.2. Wronski determináns

Adottak y_1, y_2, \dots, y_n (n-1)-szer differenciálható függvények. Ekkor a Wronski determináns

$$W[y_1, y_2, \dots, y_n] = \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}.$$

6.2.1. Tétel

Az y_1, y_2, \dots, y_n függvények lineárisan összefüggők akkor és csak akkor, ha

$$W[y_1, y_2, \dots, y_n] = 0.$$

Bizonyítás

Tegyük fel, hogy a függvények összefüggők. Ekkor van köztük egy y_k függvény, melyre

$$y_k = -\sum_{j \neq k} \frac{c_j}{c_k} y_j.$$

Hasonlóan

$$y_k' = -\sum_{j \neq k} \frac{c_j}{c_k} y_j'.$$

A gondolatmenetet követve láthatjuk, hogy a mátrix k-adik oszlopa előáll a többi lineáris kombinációjaként, ezért a determináns nulla.

Most tegyük fel, hogy a determináns nulla. Tudjuk, hogy ekkor az oszlopok összefüggő rendszert alkotnak, amiből az előző gondolatmenet mentén láthatjuk, hogy az y_k függvények összefüggő rendszert alkotnak.

6.3. n-edrendű lineáris differenciálegyenlet

Adott L lineáris operátor, melyre

$$L[y] = \sum_{k=0}^{n} a_{n-k} y^{(k)}.$$

Homogén differenciálegyenlet (HDE) esetén L[y] = 0 megoldásait keressük, inomogén differenciálegyenlet (IDE) esetén L[y] = f(x) megoldásait keressük.

6.3.1. Tétel

Az L[y] = 0 egyenletnek létezik n darab lineárisan független megoldása, melyekre az összes többi megoldás ezek lineáris kombinációja.

Bizonyítás

A tétel második részét látjuk be. Tudjuk, hogy $L[y] = L[y_k] = 0$, tehát

$$W[y, y_1, \dots, y_n] = 0.$$

Mivel

 $W[y_1, y_2, \dots, y_n] \neq 0$

így

$$y = \sum_{k=1}^{n} a_k y_k.$$

6.4. Homogén lineáris, állandó együtthatós differenciálegyenlet

Ebben az esetben

$$L[y] = y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0$$
 $a_k \in \mathbb{R}$.

A differenciálegyenlet karakterisztikus polinomja

$$P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n.$$

A HDE megoldásait $y=e^{\lambda x}$ alakban keresve

$$L[e^{\lambda x}] = e^{\lambda x} P(\lambda) = 0 \implies P(\lambda) = 0.$$

6.4.1. Első eset

Tegyük fel, hogy P n különböző gyöke mind valós, legyenek a gyökök $\lambda_1, \lambda_2, \dots, \lambda_n$. Ekkor az alapmegoldások

$$y_1(x) = e^{\lambda_1 x}$$

$$y_2(x) = e^{\lambda_2 x}$$

$$\vdots$$

$$y_n(x) = e^{\lambda_n x}$$

illetve az általános megoldás

$$y(x) = \sum_{k=1}^{n} c_k e^{\lambda_k x}$$
 $c_k \in \mathbb{R}$.

6.4.2. Második eset

Tegyük fel, hogy P m darab gyöke k_m -szeres gyök, ahol nyilván $\sum_{j=1}^m k_j = n$. Ekkor az alapmegoldások

$$y_1(x) = e^{\lambda_1 x}$$

$$\vdots$$

$$y_{k_1}(x) = x^{k_1 - 1} e^{\lambda_1 x}$$

$$y_{k_1 + 1}(x) = e^{\lambda_2 x}$$

$$\vdots$$

$$y_{k_1 + k_2}(x) = x^{k_2 - 1} e^{\lambda_2 x}$$

$$\vdots$$

$$y_{k_1 + k_2 + \dots + 1}(x) = e^{\lambda_m x}$$

$$\vdots$$

$$y_n(x) = x^{k_m - 1} e^{\lambda_m x}$$

illetve az általános megoldás

$$y(x) = \sum_{j=1}^{m} \sum_{l=0}^{k_j-1} c_{jl} x^l e^{\lambda_j x}.$$

6.4.3. Harmadik eset

Tegyük fel, hogy az egyenletnek gyöke a $\lambda=\alpha+i\beta$ komplex szám. Ekkor tudjuk, hogy $\overline{\lambda}=\alpha-i\beta$ is gyök. A két alapmegoldás

$$u_1(x) = e^{\lambda x} = e^{\alpha x} (\cos(\beta x) + i \sin(\beta x))$$

$$u_2(x) = e^{\overline{\lambda}x} = e^{\alpha x} (\cos(\beta x) - i \sin(\beta x)).$$

Tudjuk, hogy alapmegoldások lineáris kombinációja is megoldás, ezért a fenti megoldásokból definiáljuk az új, valós alapmegoldásokat

$$y_1(x) = \frac{u_1(x) + u_2(x)}{2} = e^{\alpha x} \cos(\beta x)$$
$$y_2(x) = \frac{u_1(x) - u_2(x)}{2i} = e^{\alpha x} \sin(\beta x).$$

6.4.4. Negyedik eset

Többszörös komplex gyököknél hasonlóan kell eljárni, mint többszörös valós gyököknél.

6.5. Állandók variálása

Adott

$$L[y] = y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = f(x).$$

Legyenek az L[y]=0 homogén differenciálegyenlet alapmegoldásai az y_1,y_2,\ldots,y_n függvények. Ekkor a partikuláris megoldás

$$y_p(x) = \sum_{k=1}^{n} \gamma_k(x) y_k(x)$$

ahol

$$\begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_n \end{pmatrix} = \int W^{-1} \begin{pmatrix} 0 & 0 & \dots & f \end{pmatrix}^{\mathrm{T}} d \begin{pmatrix} x \\ x \\ \vdots \\ x \end{pmatrix}.$$

ahol W a Wronski mátrix. Ekkor az általános megoldás

$$y(x) = y_p(x) + \sum_{k=1}^{n} c_k y_k(x).$$

Bizonyítás

Állítsuk az γ_k, y_k függvényekre a következő feltételeket

$$\sum_{k=1}^{n} \gamma_k' y_k = 0$$

$$\sum_{k=1}^{n} \gamma_k' y_k' = 0$$

 $\sum_{k=1}^{n} \gamma_k' y_k^{(n-1)} = f$

azaz

$$W\begin{pmatrix} \gamma_1' \\ \gamma_2' \\ \vdots \\ \gamma_n' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ f \end{pmatrix}$$

Ekkor $y_p = \sum_{k=1}^n \gamma_k y_k$ esetén

$$y'_p = \sum_{k=1}^n \gamma'_k y_k + \sum_{k=1}^n \gamma_k y'_k = \sum_{k=1}^n \gamma_k y'_k.$$

Hasonlóan

$$y_p^{(m)} = \sum_{k=1}^n \gamma_k' y_k^{(m-1)} + \sum_{k=1}^n \gamma_k y_k^{(m)} = \sum_{k=1}^n \gamma_k y_k^{(m)}$$

illetve

$$y_p^{(n)} = \sum_{k=1}^n \gamma_k' y_k^{(n-1)} + \sum_{k=1}^n \gamma_k y_k^{(n)} = f + \sum_{k=1}^n \gamma_k y_k^{(n)}.$$

Ebből

$$L[y_p] = f + \sum_{k=1}^{n} \gamma_k L[y_k] = f.$$

Tehát $y_p = \sum_{k=1}^n \gamma_k y_k$ valóban megoldása az IDE-nek. Mivel $W \neq 0$, így a feltételekből azonnal következik, hogy

$$\begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_n \end{pmatrix} = \int W^{-1} \begin{pmatrix} 0 & 0 & \dots & f \end{pmatrix}^{\mathrm{T}} \mathrm{d} \begin{pmatrix} x \\ x \\ \vdots \\ x \end{pmatrix}.$$

6.6. Kezdetiérték feladat

Olyan megoldást keresünk, melyre $y^{(k)}(x_0) = \xi_{k+1}$ teljesül, $k = 0, 1, \dots, n-1$. Ekkor létezik egyértelmű megoldás.

6.7. Peremérték feladat

Olyan megoldást keresünk, melyre $y(x_k) = \xi_k$ teljesül, $k = 1, 2, \dots, n$. Ekkor létezik egyértelmű megoldás.

6.8. Homogén lineáris, állandó együtthatós differenciálegyenlet rendszer

Adott az

$$y'_{1} = \sum_{k=1}^{n} a_{1k} y_{k}$$

$$y'_{2} = \sum_{k=1}^{n} a_{2k} y_{k}$$

$$\vdots$$

$$y'_{n} = \sum_{k=1}^{n} a_{nk} y_{k}$$

DER a kezdetiértékekkel $y_k(0) = y_{0k}$. Az egyenletrendszer az

$$Y_{0} = \begin{pmatrix} y_{01} \\ y_{02} \\ \vdots \\ y_{0n} \end{pmatrix} \qquad Y(x) = \begin{pmatrix} y_{1}(x) \\ y_{2}(x) \\ \vdots \\ y_{n}(x) \end{pmatrix} \qquad Y'(x) = \begin{pmatrix} y'_{1}(x) \\ y'_{2}(x) \\ \vdots \\ y'_{n}(x) \end{pmatrix} \qquad A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

mátrixokkal kompakt módon felírható

$$Y'(x) = AY(x) \qquad Y(0) = Y_0$$

alakban.

6.8.1. Tétel

Az

$$Y'(x) = AY(x) \qquad Y(0) = Y_0$$

egyenletrendszer megoldása

$$Y(x) = e^{Ax}Y_0.$$

6.8.2. Tétel

Adott az

$$Y'(x) = AY(x) \qquad Y(0) = Y_0$$

egyenletrendszer. Tegyük fel, hogy az A kisérő mátrix $\lambda_1, \lambda_2, \dots, \lambda_n$ sajátértékei mind különbözőek. Ekkor az s_1, s_2, \dots, s_n sajátértékek független rendszert alkotnak, illetve a DER lineárisan független megoldásrendszere

$$Y_k = e^{\lambda_k x} s_k$$

továbbá a kezdetiérték feladat egyértelmű megoldása

$$Y = \sum_{k=1}^{n} c_k Y_k$$

alakban írható.

7. Komplex függvénytan

7.1. Korlátos komplex sorozat

Azt mondjuk, hogy a (z_n) sorozat korlátos, ha $(|z_n|)$ korlátos.

7.2. Konvergens komplex sorozat

Azt mondjuk, hogy (z_n) konvergens és határértéke $z \in \mathbb{C}$, ha

$$\lim_{n \to \infty} |z_n - z| = 0.$$

7.2.1. Tétel

A (z_n) sorozat akkor és csak akkor konvergens, ha a $(\operatorname{Re} z_n)$ és $(\operatorname{Im} z_n)$ sorozatok konvergensek. Ekkor

$$\lim_{n \to \infty} z_n = \lim_{n \to \infty} \operatorname{Re} z_n + i \lim_{n \to \infty} \operatorname{Im} z_n.$$

7.3. Konjugált sorozat

A (z_n) sorozat konjugált sorozata $(\overline{z_n})$.

7.4. Abszolút konvergencia

Azt mondjuk, hogy (z_n) abszolút konvergens, ha $(|z_n|)$ konvergens.

7.4.1. Tétel

Ha (z_n) konvergens, akkor abszolút konvergens is.

7.5. Konvergens végtelen sor

A $\sum_{n=1}^{\infty} z_n$ sor akkor és csak akkor konvergens, ha $\sum_{n=1}^{\infty} \operatorname{Re} z_n$ és $\sum_{n=1}^{\infty} \operatorname{Im} z_n$ konvergensek. Ekkor

$$\sum_{n=1}^{\infty} z_n = \sum_{n=1}^{\infty} \operatorname{Re} z_n + i \sum_{n=1}^{\infty} \operatorname{Im} z_n.$$

7.6. Komplex függvény kanonikus alakja

Adott $f:\mathbb{C}\mapsto\mathbb{C}.$ Ekkor a függvény kanonikus alakja

$$f(z) = u(x, y) + iv(x, y)$$

ahol $u, v : \mathbb{R}^2 \to \mathbb{R}$.

7.7. Függvény határértéke

Adott f függvény határértéke a z_0 pontban H, ha $\forall \varepsilon > 0$ esetén $\exists \delta > 0$, melyre $0 < |z - z_0| < \delta$ esetén $|f(z) - H| < \varepsilon$ teljesül.

7.7.1. Tétel

Adott f(z) = u(x,y) + iv(x,y) komplex függvény. Ekkor $\lim_{z\to z_0} f(z) = H$ akkor és csak akkor, ha

$$\lim_{(x,y)\to(x_0,y_0)} u(x,y) = \operatorname{Re} H$$

$$\lim_{(x,y)\to(x_0,y_0)} v(x,y) = \operatorname{Im} H.$$

7.8. Folytonos függvény

Adott $f: \mathbb{C} \mapsto \mathbb{C}$ komplex függvény. Ekkor f folytonos $z_0 \in D_f$, ha $\forall \varepsilon > 0$ esetén $\exists \delta > 0$, melyre $\forall z \in D_f$, $|z - z_0| < \delta$ esetén $|f(z) - f(z_0)| < \varepsilon$.

7.8.1. Tétel

f akkor és csak akkor folytonos z-ben, ha u, v folytonosak (Re z, Im z)-ben.

7.9. Differenciálhatóság

Adott $f: \mathbb{C} \mapsto \mathbb{C}$ komplex függvény. Ekkor f differenciálható a $z_0 \in intD_f$ pontban, ha

$$\exists \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} < \infty.$$

7.10. Cauchy-Riemann egyenletek

Adott $f:\mathbb{C}\mapsto\mathbb{C}$ komplex függvény. f differenciálható a $z_0\in intD_f$ pontban akkor és csak akkor, ha

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0)$$
$$\frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0).$$

Bizonyítás

Tegyük fel, hogy f differenciálható a z_0 pontban. Ekkor

$$f'(z_0) = \lim_{r \to 0} \frac{u(x_0 + r, y_0) + iv(x_0 + r, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{r} =$$

$$= \lim_{r \to 0} \frac{u(x_0 + r, y_0) - u(x_0, y_0)}{r} + i\lim_{r \to 0} \frac{v(x_0 + r, y_0) - v(x_0, y_0)}{r} = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0).$$

Hasonlóan

$$f'(z_0) = \lim_{s \to 0} \frac{u(x_0, y_0 + s) + iv(x_0, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{is} =$$

$$= \lim_{s \to 0} \frac{u(x_0, y_0 + s) - u(x_0, y_0)}{is} + i \lim_{s \to 0} \frac{v(x_0, y_0 + s) - v(x_0, y_0)}{is} = \frac{\partial v}{\partial y}(x_0, y_0) - i \frac{\partial u}{\partial y}(x_0, y_0).$$

Ebből azonnal kapjuk az állítást.

Most tegyük fel, hogy a függvény kielégíti a Cauchy-Riemann egyenleteket. Ekkor

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{r + is \to 0} \frac{u(x_0 + r, y_0 + s) + iv(x_0 + r, y_0 + s) - u(x_0, y_0) - iv(x_0, y_0)}{r + is} =$$

$$= \lim_{r + is \to 0} \frac{\frac{\partial u}{\partial x}r + \frac{\partial u}{\partial y}s + i\frac{\partial v}{\partial x}r + i\frac{\partial v}{\partial y}s + o(|h|)}{r + is} = \lim_{r + is \to 0} \frac{\frac{\partial u}{\partial x}r - \frac{\partial v}{\partial x}s + i\frac{\partial v}{\partial y}r + i\frac{\partial u}{\partial x}s + o(|h|)}{r + is} =$$

$$= \lim_{r + is \to 0} \frac{\frac{\partial u}{\partial x}(r + is) + \frac{\partial v}{\partial x}(-s + ir) + o(|h|)}{r + is} = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0).$$

Azt kaptuk tehát, hogy a határérték létezik, így a függvény differenciálható.

7.11. Analitikus függvény

Azt mondjuk, hogy az f komplex függvény analitikus, ha differenciálható $\forall z \in D_f$ -ben.

7.12. Laplace operátor

A kétdimenziós Laplace operátor

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

7.13. Harmonikus függvény

Adott $u: \mathbb{R}^2 \to \mathbb{R}$ folytonos, kétszer differenciálható függvény. Azt mondjuk, hogy u harmonikus, ha

$$\Delta u = 0$$

teljesül D_u -n.

7.13.1. Tétel

Ha az f(z) = u(x, y) + iv(x, y) differenciálható, akkor u, v harmonikusak.

Bizonyítás

A Cauchy-Riemann egyenletekből

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} &= -\frac{\partial v}{\partial x}. \end{split}$$

Az első egyenletet x szerint, a másodikat y szerint deriválva

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y}$$
$$\frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial y \partial x}$$

Ebből

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial^2 v}{\partial y \partial x} = 0.$$

Hasonlóan be lehet látni, hogy v harmonikus.

7.14. Harmonikus társ

Adott $u:D\mapsto\mathbb{R}$ harmonikus függvény, ahol D egyszeresen összefüggő tartomány. Ekkor $\exists v:D\mapsto\mathbb{R}$ harmonikus függvény, amelyre f(z)=u(x,y)+iv(x,y) differenciálható. Akkor v az u harmonikus társa és fordítva.

7.15. Elemi függvények

7.15.1. Exponenciális függvény

Az exponenciális függvény

$$e^z = e^x(\cos y + i\sin y).$$

- 1. A függvény analitikus és $(e^z)' = e^z$.
- 2. $z_1, z_2 \in \mathbb{C}$ esetén

$$e^{z_1 + z_2} = e^{z_1} e^{z_2}.$$

3. A függvény $2\pi i$ szerint periodikus.

Bizonyítás

1. A függvény kanonikus alakja

$$e^z = e^x(\cos y + i\sin y).$$

Legyen $u(x,y) = e^x \cos y$ és $v(x,y) = e^x \sin y$ így $e^z = u(x,y) + iv(x,y)$.

$$\frac{\partial u}{\partial x} = e^x \cos y = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -e^x \sin y = -\frac{\partial v}{\partial x}$$

Azt látjuk, hogy a függvény eleget tesz a Cauchy-Riemann egyenleteknek, tehát differenciálható.

$$(e^z)' = e^x \cos y + ie^x \sin y = e^z.$$

2.
$$e^{z_1+z_2} = e^{x_1+x_2+i(y_1+y_2)} = e^{x_1+x_2} \left(\cos(y_1+y_2) + i\sin(y_1+y_2)\right) =$$

$$= e^{x_1+x_2} \left(\cos y_1 \cos y_2 - \sin y_1 \sin y_2 + i(\sin y_1 \cos y_2 + \sin y_2 \cos y_1)\right) =$$

$$= e^{x_1} (\cos y_1 + i\sin y_1) e^{x_2} (\cos y_2 + i\sin y_2) = e^{z_1} e^{z_2}$$

3. $e^{z+2\pi i} = e^x (\cos(y+2\pi) + i\sin(y+2\pi)) = e^z.$

7.15.2. Logaritmus függvény

A logaritmus függvény

$$\ln z = \ln |z| + i(\operatorname{arc} z + 2k\pi) \qquad k \in \mathbb{Z}.$$

A logaritmus főértéke $\operatorname{Ln} z = \ln |z| + i \operatorname{arc} z$.

1. $e^{\ln z} = z$

2. $z_1, z-2 \in \mathbb{C}$ esetén

$$\ln(z_1 z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2 + 2k\pi i \qquad k \in \mathbb{Z}.$$

3. $\frac{d}{dz}\operatorname{Ln} z = \frac{1}{z}$

Bizonyítás

1.
$$e^{\ln z} = e^{\ln|z| + i(\operatorname{arc} z + 2k\pi)} = |z|e^{i\operatorname{arc} z} = |z|(\cos(\operatorname{arc} z) + i\sin(\operatorname{arc} z)) = z$$

2.
$$\ln(z_1 z_2) = \ln|z_1 z_2| + i(\operatorname{arc}(z_1 z_2) + 2k\pi) = \ln|z_1| + \ln|z_2| + i(\operatorname{arc}z_1 + \operatorname{arc}z_2 + 2k\pi) =$$
$$= \operatorname{Ln}z_1 + \operatorname{Ln}z_2 + 2k\pi i$$

3.
$$(e^{\operatorname{Ln} z})' = e^{\operatorname{Ln} z} \operatorname{Ln}' z = 1 \implies \operatorname{Ln}' z = \frac{1}{z}$$

7.15.3. Trigonometrikus függvények

1.

$$\sin z = \frac{e^{iz} - e^{iz}}{2i} = \sin x \operatorname{ch} y + i \cos x \operatorname{sh} y$$

$$\sin' z = \cos z$$

2.

$$\cos z = \frac{e^{iz} + e^{iz}}{2} = \cos x \operatorname{ch} y - i \sin x \operatorname{sh} y$$
$$\cos' z = -\sin z$$

7.15.4. Hatványfüggvény

A hatványfüggvény

$$z^{\lambda} = e^{\lambda \ln z}.$$

A függvény főértékét kapjuk meg, ha a logaritmus főértékét használjuk.

7.16. Jordan görbe

 $L \subset \mathbb{C}$ Jordan görbe a komplex számsíkon, ha $\exists \gamma : [\alpha, \beta] \mapsto \mathbb{C}$ folytonos függvény, melyre

$$L = \left\{ z(t) = x(t) + iy(t) \middle| t \in [\alpha, \beta] \right\}.$$

A görbe zárt, ha $z(\alpha) = z(\beta)$. A görbe sima, ha x, y simák.

7.17. Görbe ívhossza

L sima Jordan görbe ívhossza

$$s(L) = \int_{\alpha}^{\beta} \sqrt{(x'(t))^2 + (y'(t))^2} dt.$$

7.18. Vonalintegrál

Legyen az L görbe egy felosztása $\alpha = t_0 < t_1 < \dots < t_n = \beta$, illetve legyen a k-adik ív tetszőleges pontja ξ_k . Ekkor

$$\int_{L} f(z) dz = \lim_{\substack{n \to \infty \\ \delta_n \to 0}} \sum_{k=1}^{n} f(\xi_k) \left(z(t_k) - z(t_{k-1}) \right)$$

ahol δ_n a leghosszabb ív hossza. Ha a görbe zárt, akkor az \oint_L jelölést használjuk.

7.18.1. Vonalintegrál tulajdonságai

1. Linearitás

$$\int_{L} (\alpha f + \beta g) \, \mathrm{d}z = \alpha \int_{L} f \, \mathrm{d}z + \beta \int_{L} g \, \mathrm{d}z$$

2.

$$\int_{-L} f \, \mathrm{d}z = -\int_{L} f \, \mathrm{d}z$$

3. Ha $L = L_1 + L_2$, ahol $L_1 \cap L_2 = \emptyset$, akkor

$$\int_L f \, \mathrm{d}z = \int_{L_1} f \, \mathrm{d}z + \int_{L_2} f \, \mathrm{d}z.$$

- 4. Ha f folytonos, akkor létezik $\int_L f \, dz$.
- 5. Ha f korlátos és $|f(z)| \leq M \ \forall z \in L$ esetén, akkor

$$\left| \int_{L} f \, \mathrm{d}z \, \right| \leq Ms(L).$$

7.18.2. Vonalintegrál kiszámítása

Legyen az L görbe paraméteres megadása

$$z(t) = x(t) + iy(t) = r(t)e^{i\theta(t)}$$
 $t \in [\alpha, \beta].$

Ekkor

$$\int_{L} f(z) dz = \int_{\alpha}^{\beta} f(z(t))z'(t) dt = \int_{\alpha}^{\beta} f(x(t) + iy(t))(x'(t) + iy'(t)) dt =$$

$$= \int_{\alpha}^{\beta} f(r(t)e^{i\theta(t)})(r'(t)e^{i\theta(t)} + ir(t)e^{i\theta(t)}\theta'(t)) dt.$$

7.18.3. Newton-Leibniz formula

Adott $f: \mathbb{C} \mapsto \mathbb{C}$ komplex függévény. Tegyük fel, hogy létezik F analitikus komplex függvény, melyre F' = f. Ekkor

$$\int_{L} f(z) dz = F(z(\beta)) - F(z(\alpha))$$

ahol

$$L = \Big\{ z(t) = x(t) + iy(t) \Big| t \in [\alpha, \beta] \Big\}.$$

7.19. Cauchy féle alaptétel

Tegyük fel, hogy $D \subset \mathbb{C}$ egyszeresen összefüggő tartomány és $L \subset D$ egy sima, zárt görbe. Ekkor ha az $f: D \mapsto \mathbb{C}$ függvény analitikus, akkor

$$\oint_L f(z) \, \mathrm{d}z = 0.$$

7.19.1. Cauchy féle alaptétel általánosítása

Legyen $D \subset \mathbb{C}$ összefüggő tartomány, melynek határa az L görbe. Tegyük fel továbbá, hogy D nem egyszeresen összefüggő, legyenek L_k a lyukakat körvevevő görbék, melyeknek irányítása megegyezik L-ével. Legyen továbbá f analitikus függvény. Ekkor

$$\oint_L f(z) dz = \sum_{k=1}^n \oint_{L_k} f(z) dz.$$

7.20. Cauchy féle integrálformula

Legyen $D \subset \mathbb{C}$ egyszeresen összefüggő tartomány és $f: D \mapsto \mathbb{C}$ analitikus függvény. Adott $z_0 \in intD$ és $L \subset D$ olyan görbe, amely körbeveszi z_0 -t. Ekkor

$$f(z_0) = \frac{1}{2\pi i} \oint_L \frac{f(z)}{z - z_0} \,\mathrm{d}z.$$

7.21. Cauchy féle differenciálformula

Legyen $D\subset\mathbb{C}$ egyszeresen összefüggő tartomány és $f:D\mapsto\mathbb{C}$ analitikus függvény. Ekkor f akárhányszor differenciálható D-ben és $\forall z_0\in intD$ esetén

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_L \frac{f(z)}{(z - z_0)^{n+1}} \,\mathrm{d}z$$

ahol $L \subset D$ tetszőleges olyan görbe, amely körbeveszi z_0 -t.

7.22. Taylor sorfejtés

Legyen $f:D\mapsto\mathbb{C}$ függvény, amely differenciálható z_0 környezetében. Ekkor f z_0 -ban Taylor sorba fejthető és

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

ahol $L \subset D$ olyan görbe, amely körbeveszi z_0 -t és

$$c_n = \frac{1}{2\pi i} \oint_L \frac{f(z)}{(z-z_0)^{n+1}} dz.$$

7.23. Laurent sorfejtés

Legyen f analitikus egy

$$D = \left\{ z \in \mathbb{C} \middle| |z - z_0| \in (r, R) \right\}$$

körgyűrűben. Ekkor ebben a körgyűrűben f Laurent sorba fejthető és

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n$$

ahol $L \subset D$ olyan görbe, amely körbeveszi z_0 -t és

$$c_n = \frac{1}{2\pi i} \oint_L \frac{f(z)}{(z-z_0)^{n+1}} dz.$$

7.24. Zérus

Tegyük fel, hogy

$$f(z) = (z - z_0)^n h(z)$$

alakban írható. Ekkor z_0 n-szeres vagy n-edrendű zérusa f-nek.

7.25. Pólus

Tegyük fel, hogy

$$f(z) = \frac{1}{(z - z_0)^n} h(z)$$

alakban írható. Ekkor z_0
 $n\text{-}\mathrm{szeres}$ vagy $n\text{-}\mathrm{edrend} \mathbbmss{u}$ pólus
a $f\text{-}\mathrm{nek}.$

7.26. Reziduum

Az f függvény reziduuma a z_0 pontban

$$\operatorname{Res}_{z=z_0} f(z) = \frac{1}{2\pi i} \oint_L f(z) \, \mathrm{d}z.$$

7.27. Szingularitás

f függvény szingularitása z_0 , ha itt nem analitikus.

1. Megszüntethető a szingularitás, ha

$$\exists \lim_{z \to z_0} f(z).$$

Ekkor f Laurent sorában nincsen negatív indexű tag.

- 2. Nem esszenciális a szingularitás, ha $\exists n \in \mathbb{N}$ melyre $c_{-n} \neq 0$, de $\forall k < -n$ esetén $c_k = 0$. Ekkor z_0 n-edrendű pólus.
- 3. Esszenciális a szingularitás, ha nem létezik az előző pontban említett n.

7.28. Reziduum tétel

Adott $D \in \mathbb{C}$ egyszeresen összefüggő tartomány és f függvény, amely véges sok a_k szingularitástól eltekintve analitikus D-n. Ekkor $L \subset D$ zárt görbe esetén, amely körbeveszi a szingularitásokat

$$\oint_L f(z) dz = 2\pi i \sum_{k=1}^n \operatorname{Res}_{z=a_k} f(z).$$