# Aktivitas Antihiperlipidemia Andrografolid dari Sambiloto (Andrographis paniculata (Burm. f.) Ness) secara In Silico

Susanti, N. M. P.<sup>1</sup>, Warditiani, N. K.<sup>1</sup>, Dewi, K. A. S.<sup>1</sup>, Oka, M.<sup>1</sup> Jurusan Farmasi Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Udayana

Korespondensi: Ni Made Pitri Susanti Jurusan Farmasi Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Udayana Jalan Kampus Unud-Jimbaran, Jimbaran-Bali, Indonesia 80361 Telp/Fax: 0361-703837 Email: dekpitsusanti@unud.ac.id

# **ABSTRAK**

Andrografolid merupakan kandungan utama yang terdapat dalam sambiloto (*Andrographis paniculata* (Burm. f.) Ness). Andrografolid memiliki aktivitas sebagai antihiperlipidemia. Hiperlipidemia merupakan abnormalitas yang terjadi pada komponen lemak plasma dapat berupa peningkatan kadar kolesterol, trigliserida, LDL atau penurunan HDL. Enzim HMG-CoA Reduktase merupakan enzim yang berperan dalam proses pembentukkan kolesterol. Penelitian ini bertujuan untuk mengetahui aktivitas andrografolid sebagai antihiperlipidemia dengan berikatan pada enzim HMG-CoA Reduktase sehingga sintesis kolesterol akan terhambat. *Docking molecular* merupakan suatu metode *in silico* yang digunakan untuk mengetahui aktivitas *molecular* suatu senyawa. Tahapan dalam penelitian ini meliputi penyiapan database protein dan struktur 3 dimensi andrografolid, optimasi struktur 3 dimensi andrografolid, preparasi protein HMG-CoA Reduktase (3CCW), validasi metode *docking* dan *docking molecular* andrografolid pada protein target, analisis afinitas ikatan. Hasil penelitian menunjukkan bahwa andrografolid memiliki aktivitas sebagai antihiperlipidemia melalui pembentukan ikatan hidrogen dengan asam amino SER684 dan LYS 691 pada enzim HMG-CoA reduktase dengan energi sebesar -3,63 kkal/mol, serta memiliki energi yang lebih rendah dibandingkan energi yang dibentuk oleh *native ligand* yaitu -1,02 kkal/mol.

Keyword: sambiloto, andrografolid, antihiperlipidemia, HMG-CoA Reduktase, docking molecular

#### 1. PENDAHULUAN

Androgfalid merupakan komponen utama sambiloto pada tanaman vang ditemukan pada semua bagian tanaman sambiloto. Bagian daun sambiloto memiliki kandungan senyawa andrografolid paling tinggi yaitu 2,5-4,8% dihitung terhadap berat keringnya (Prapanza dan Marito, 2003). Andrografolid memiliki beberapa aktivitas farmakologi diantaranya sebagai antihiperlipidemia, analgesik, antidiabetes. hepatoprotektif, antipiretik, antioksidan, antihiperglikemik, antihelmintik, antikanker (Dhiman et al., 2012; Nugroho et al, 2012).

Hiperlipidemia merupakan abnormalitas komponen lemak dalam plasma berupa peningkatan kadar kolesterol, LDL dan trigliserida serta dapat berupa penurunan jumlah HDL (DiPiro et al., 2008). Enzim HMG-CoA reduktase yang berfungsi untuk mengubah HMG-CoA menjadi asam mevalonat selanjutnya menjadi yang kolesterol. Penghambatan enzim HMG-CoA dapat mengurangi reduktase sintesis kolesterol dalam hati, sehingga akan terjadi peningkatan jumlah reseptor LDL, LDL masuk ke hati kemudian diekskresi melalui empedu dan kadar LDL dalam plasma menurun (NCEP, 2002).

Docking molecular mampu memperkirakan konformasi ikatan yang paling baik antara ligand dengan protein (Morris and Marguerita, 2008). Metode docking molecular dapat digunakan sebagai pengujian awal untuk mengetahui aktivitas

dari suatu senyawa karena dapat memberikan gambaran mengenai proses atau mekanisme yang terjadi antara protein target dengan senyawa (*ligand*). Sehingga dilakukan suatu penelitian in silico untuk mengetahui aktivitas andrografolid sebagai antihiperlipidemia melalui proses *docking molecular*.

# 2. BAHAN DAN METODE

### 2.1 Bahan

Struktur 3D enzim HMG-CoA Reduktase (3CCW) yang diunduh dari *Protein Data Bank* (PDB) dan struktur 3D Andrografolid sari sambiloto

#### **2.2 Alat**

Komputer dengan perangkat lunak Chimera 1.10., HyperChem 8, Avogadro dan Autodock 4.2.

# 2.3 Prosedur Kerja

# 2.3.1 Preparasi Protein HMG-CoA Reduktase

Preparasi protein dilakukan dengan memisahkan *native ligand* dari protein, untuk menyediakan ruang (*pocket/cavity*) pada struktur 3D protein dengan menggunakan program Chimera 1.10.1.

# 2.3.2 Optimasi Struktur 3D Andrografolid

Optimasi struktur 3D andrografolid dilakukan dengan menggunakan program Avogadro dan HyperChem 8. Optimasi dilakukan menggunakan perhitungan Semiempiris AM1 dengan gradien energi 0,01 kkal/Å.

#### 2.3.3 Validasi Metode

Validasi metode dilakukan dengan mendocking-kan protein (HMG-CoA Reduktase) dan *native ligand*. Validasi dilakukan menggunakan program Autodock 4.2.

# 2.3.4 *Docking* Andrografolid dan Enzim HMG-CoA Reduktase

Andrografolid hasil optimasi didocking-kan pada enzim HMG-CoA Reduktase yang sudah dihilangkan native ligand-nya dengan program Autodock 4.2. dengan menggunakan flexible ligand rigid receptor.

#### 2.3.5 Analisis Data

Analisis data dilakukan menggunakan docking score. Docking score menunjukkan energi ikatan dari ligand dan protein target. Docking score andrografolid dibandingkan dengan docking score native ligand terhadap enzim HMG-CoA Reduktase. Energi ikatan yang rendah menunjukkan kekuatan dan stabilitas ikatan yang lebih baik, sehingga andrografolid berpotensi sebagai antihiperlipidemia.

#### 3. HASIL

# 3.1 Preparasi Protein HMG-CoA Reduktase

Protein HMG-CoA Reduktase yang digunakan diperoleh dari laman http://www.rcsb.org/pdb/home/home.do dengan kode ID 3CCW. Preparasi protein dilakukan dengan menggunakan program Chimera 1.10.1. Struktur HMG-CoA Reduktase serta *native ligand*nya dapat dilihat pada Gambar 1.



Gambar 1. Struktur HMG-CoA Reduktase (A) dan *native ligand* 

### 3.2 Optimasi Struktur 3D Andrografolid

Struktur 3D andrografolid yang diperoleh dari laman https://pubchem. ncbi. nlm. nih. gov/ compound dengan kode 5318517 dioptimasi dengan menggunakan bantuan program HyperChem 8. Struktur 3D andrografolid hasil optimasi ditampilkan pada Gambar 2.



Gambar 2. Hasil optimasi struktur 3D andrografolid

# 3.3 Validasi Metode

Validasi dilakukan dengan proses redocking HMG-CoA Reduktase dan *native* ligand nya. Hasil dan interaksi pada validasi metode docking molecular ditampilkan pada Tabel 1 dan Gambar 3.

Tabel 1. Validasi metode docking

| 1 abel 1. Validasi metode abeking |                                                                                     |                                                                                                                                            |  |
|-----------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| RMSD                              | Energi Ikatan                                                                       | Ikatan                                                                                                                                     |  |
| (Å)                               | (kkal/mol)                                                                          | Hidrogen                                                                                                                                   |  |
| 2,44                              | -1,02                                                                               | ARG590                                                                                                                                     |  |
|                                   |                                                                                     | LYS692                                                                                                                                     |  |
| 3,26                              | -1,0                                                                                | ARG590                                                                                                                                     |  |
|                                   |                                                                                     | SER684                                                                                                                                     |  |
| 3,33                              | -0,64                                                                               | ARG590                                                                                                                                     |  |
|                                   |                                                                                     | ARG590                                                                                                                                     |  |
| 4,56                              | -0,33                                                                               | ARG590                                                                                                                                     |  |
|                                   |                                                                                     | SER661                                                                                                                                     |  |
| 3,34                              | -0,24                                                                               | SER684                                                                                                                                     |  |
| 3,01                              | -0,23                                                                               | ARG590                                                                                                                                     |  |
|                                   |                                                                                     | SER684                                                                                                                                     |  |
|                                   |                                                                                     | LYS692                                                                                                                                     |  |
| 3,37                              | -0,13                                                                               | SER684                                                                                                                                     |  |
| 2,87                              | 0,01                                                                                | SER684                                                                                                                                     |  |
| 4,04                              | 0,16                                                                                | ARG590                                                                                                                                     |  |
|                                   |                                                                                     | SER661                                                                                                                                     |  |
| 3,2                               | 0,49                                                                                | ARG590                                                                                                                                     |  |
|                                   |                                                                                     | ARG590                                                                                                                                     |  |
|                                   | RMSD<br>(Å)<br>2,44<br>3,26<br>3,33<br>4,56<br>3,34<br>3,01<br>3,37<br>2,87<br>4,04 | RMSD (Å) Energi Ikatan (kkal/mol)  2,44 -1,02  3,26 -1,0  3,33 -0,64  4,56 -0,33  3,34 -0,24  3,01 -0,23  3,37 -0,13  2,87 0,01  4,04 0,16 |  |



Gambar 3. Interaksi yang terjadi antara *native ligand* dan HMG-CoA Reduktase

# 3.4 Docking Andrografolid dan Enzim HMG-CoA Reduktase

Proses docking molecular dilakukan dengan men-docking-kan antara struktur 3D andrografolid hasil optimasi dan struktur HMG-CoA Reduktase hasil preparasi, serta menggunakan parameter yang sama seperti pada proses validasi. Hasil dan interaksi pada proses docking molecular ditunjukkan pada Tabel 2 dan Gambar 4.

Tabel 2. Energi ikatan dan ikatan hidrogen andrografolid dan HMG-CoA Reduktase

|            | Energi Ikatan | Ikatan   |
|------------|---------------|----------|
| Konformasi | (kkal/mol)    | Hidrogen |
| 1          | 2.62          | SER684   |
| 1          | -3,63         | LYS691   |
| 2.         | -3,5          | ARG590   |
| 2          |               | LYS692   |
| 3          | -3,48         | ARG590   |
| 3          |               | LYS692   |
| 4          | -3,47         | ARG590   |
|            |               | LYS692   |
| 5          | -3,08         | ARG590   |
|            |               | SER684   |
| 6          | -3,07         | ARG590   |
| 0          |               | SER684   |
| 7          | -2,89         | ARG590   |
| /          |               | SER684   |
| 8          | -2,88         | ARG590   |
|            |               | SER684   |
| 9          | 2.78          | ARG590   |
|            | -2,78         | SER661   |
| 10         | -2,63         | ARG590   |
|            |               | SER661   |



Gambar 4. Interaksi yang terjadi antara andrografolid dan HMG-CoA Reduktase

#### 4. PEMBAHASAN

Proses preparasi protein HMG-CoA Reduktase dilakukan dengan menggunakan rantai B. Para proses preparasi akan diperoleh struktur protein tanpa *native ligand* dan struktur *native ligand*, sehingga akan tersedia ruang (*pocket/cavity*) pada protein. Struktur protein yang diperoleh adalah protein yang telah kehilangan *native ligand*, molekul lain seperti air (H<sub>2</sub>O) serta atom-atom tunggal lainnya, sehingga pada saat proses *docking* yang berinteraksi hanya senyawa uji dengan protein (Kitchen *et al.*, 2004).

Proses optimasi andrografolid bertujuan untuk memperoleh konformasi struktur 3 dimensi andrografolid yang paling stabil. Optimasi senyawa dilakukan dengan menggunakan perhitungan Semi-empiris AM1 dengan gradien energi 0,01 kkal/Å (Hypercube, 1996). Energi hasil optimasi yang diperoleh sebesar -5509,50 kkal/mol.

Validasi metode dilakukan mengetahui apakah metode docking dengan parameter yang telah ditentukan dapat digunakan untuk proses docking selanjutnya. **RMSD** (Root Mean Square Deviation) merupakan suatu parameter menunjukkan kedekatan atau kemiripan native ligand struktur kristalografi dengan eksperimental yang di-docking-kan pada suatu protein. Hasil validasi menunjukkan nilai RMSD 2.44 Å, dimana nilai tersebut pada rentang validitas 1-3 (Betancourt and Jeffrey, 2001; Chao et al., 2005).

Berdasarkan hasil docking pada tabel 2, nilai energi ikatan terendah yang diperoleh -3,63 kkal/mol dengan ikatan hidrogen yang terbentuk adalah terhadap asam amino SER684 dan LYS 691. Untuk mengetahui aktivitas andrografolid sebagai antihiperlipidemia, maka hasil dari docking andrografolid dibandingkan dengan hasil docking dari native ligand terhadap protein HMG-CoA Reduktase. Energi ikatan terendah hasil docking native ligand terhadap HMG-CoA Reduktase yaitu -1,02 kkal/mol. Energi andrografolid lebih ikatan dibandingkan dengan native ligand, sehingga ikatan andrografolid terhadap HMG-CoA Reduktase semakin kuat dan stabil. Untuk mengetahui afinitas andrografolid pada protein HMG-CoA Reduktase, maka dilakukan *docking* terhadap obat yang bekerja

protein yang sama. Rosuvastatin merupakan obat yang bekerja pada protein HMG-CoA Reduktase, dimana rosuvastatin merupakan obat yang telah terbukti memiliki aktivitas antididlipidemia dengan mengatur kadar kadar kolesterol, trigliserida, LDL dan HDL didalam tubuh (Bullano et al., 2006). Energi ikatan yang terbentuk dari rosuvastatin adalah -1.48 kkal/mol, dimana nilai ini lebih dibandingkan besar iika dengan andrografolid andrografolid, sehingga berpotensi sebagai antihiperlipidemia.

#### 5. KESIMPULAN

Andrografolid berpotensi sebagai antihiperlipidemia melalui interaksi dengan protein HMG-CoA Reduktase, energi ikatan -3,63 kkal/mol dengan ikatan hidrogen pada asam amino SER684, LYS691.

#### UCAPAN TERIMA KASIH

Penulis mengucapkan terimakasi kepada semua pihak yang telah membantu penelitian ini.

#### DAFTAR PUSTAKA

Betancourt, M.R., and Jeffrey S. 2001. Universal Similarity Measure for Comparing Protein Structures. *Biopolymers*. Vol. 59. P. 305-309.

Bullano, MF, Wertz DA, Yang GW, Kamat S, Borok GM, Gandhi S, McDonough KL, Willey VJ. 2006. Effect of Rosuvastatin Compared with Other Statins on Lipid Levels and National Cholesterol Education Program Goal Attainment for Low-Density Lipoprotein Cholesterol in a Usual Care Setting. *Pharmacotherapy*. Vol 26, no. 4.

Chao, A.E., Victor G., Bruce J.B., and Richard F. 2005. Importance of Accurate Charges in Molecular Docking: Quantum Mechanical/Molecular Mechanical (QM/MM) Appoarch. *Journal of Computational Chemistry*. Vol 26. No 9. P. 915-931.

Dhiman A., Goyal J., Sharma K., Nanda A., and Dhiman S. 2012. A Riview on

- Medicinal Prospectives of Andrographis paniculata Ness. Jurnal of Pharmaceutical and Scientific Innovation. JPSI 1(1). P. 1-4.
- DiPiro, J. T., R. L. Talbert, G.C. Yee, G. R. Matzke, B. G. Wells, dan L. M. Posey. 2008. *Pharmacotherapy A Pathophysiologic Approach Seventh Edition*. USA: McGraw-Hill Medical Publishing Division.
- Hypercube. 1996. *HyperChem*® *Computational Chemistry*. Canada: Hypercube Inc.
- Kitchen, D.B., H. Decornez, J.R. Furr, and J. Bajorath. 2004. Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications. *Drug Discovery*. Vol. 3. P. 935-949.
- Morris G.M and Marguerita L.W. 2008. Molecular Docking. *Methods Mol Biol*. 443: 365-382.
- NCEP. 2002. Detection, Evaluation and Treatment of High Blood Cholesterolin Adults (Adult Treatment Planel III). National Cholesterol Education Perangkat lunak National Heart, Lung and Blood Institute
- National Institutes of Health NIH Publication. No. 02-5215.
- Nugroho, A.E., M. Andrie., N.K Warditiani., E. Siswanto., S. Pramono and E. Lukitaningsih. 2012. Antidiabetic and Antihiperlipidemic Effect of *Andrographis paniculata* (Burm. f.) Nees and Andrographolide in High-Fructose-Fat-Fed Rats. *Indian J Pharmacol*. Vol. 44(3). Pp 377-381.
- Prapanza, E. dan L.M. Marianto. 2003. Khasiat dan Manfaat Sambiloto: Raja Pahit Penakluk Aneka Penyakit. Jakarta: AgroMedia Pustaka. P. 3-9.