

O5 Chapiter

Constraint Satisfaction Problems

2I1AE1: Artificial Intelligence

Régis Clouard, ENSICAEN - GREYC

"Saying Deep Blue doesn't really think about chess is like saying an airplane doesn't fly because it doesn't flap its wings."

Drew McDermot

In this chapter

Constraint Satisfaction Search

- In which we see how treating states as more than just little black boxes.
- 1) Constraint Satisfaction Problems
- 2) Solving CSP with Search Algorithms
- 3) Solving CSP with specific Algorithms
 - 1) Forward Checking
 - 2) Arc Consistency
- 4) Heuristics for CSP

Configuration Search Problem

- Case of search problems of type "configuration finding"
 - State space search problems
 - ► Each state is a black box with no discernible internal structure.
 - States are handled by problem-specific routines:
 - get-successors() and is-goal() functions.
 - Search algorithms can use problem-specific heuristics to speed-up the search
 - Constraint satisfaction problems (CSP)
 - States conform to a standard and very simple representation (white box).
 - get-successors() and is-goal() are general functions.
 - Search algorithms use general-purpose heuristics.

Constraint Satisfaction Problem

- Constraint Satisfaction Problem is a subpart of configuration search problem where:
 - A state can be defined by a set of variables: $X_1, X_2, ..., X_n$.
 - Each variable X_i has a nonempty domain D_i of valid values.
 - ▶ A set of **constraints** exists on possible variable values: C_1 , C_2 ,..., C_m .
 - A complete **assignment** is one in which every variable is mentioned, and a **solution** to a CSP is a complete assignment that satisfies all the constraints.
- Special properties of the CSP lead to special solving algorithms.

Variety of Constraints

- Unary constraints involve a single variable.
 - e.g., A ≠ green, A > 3
- Binary constraints involve pairs of variables.
 - e.g., A ≠ C, A > C
- Higher-order constraints involve 3 or more variables.
 - e.g., function allDiff()

Example 1. N-Queens

Goal

N queens placed in non-attacking positions on the board.

Variables:

- Represent queens row, one for each column:
 - ► Q₁, Q₂, Q₃, Q₄

Domain:

- Row placement of each queen on the board:
 - $ightharpoonup Q_i \in \{1, 2, 3, 4\}$

Constraints:

- $Q_i \neq Q_i$: two queens not in the same row.
- $|Q_i Q_j| \neq |i j|$: two queens not on the same diagonal.

$$Q_1 = 2, Q_2 = 4$$

Example 2. Cryptarithmetic Puzzles

 Decipher the letters using the constraints that no two letters can have the same numerical value and the letters conform to the operation:

- Variables?
 - S, E, N, D, M, O, R, Y
 - $\bullet \quad X_1, X_2, X_3, X_4$
- Domain?
 - S, E, N, D, M, O, R, Y \in [0; 9]; $X_i \in \{0,1\}$
- Constraints?
 - allDiff(S, E, N, D, M, O, R, Y)
 - D + E = Y + 10. X_1
 - $X_1 + N + R = E + 10. X_2$
 - etc

Example 3. Map Coloring

 Color the Australian map using 3 different colors such that no adjacent countries have the same color.

Variables?

- Represent countries.
 - ► WA, NT, SA, Q, NSW, V, T

Domain?

• Country ∈ {Red, Blue, Green}

Constraints?

- WA ≠ NT,
- WA ≠ SA
- NT ≠ SA, ...

Solving CSP with State Space Search Algorithms

Formulation of a CSP as a Search Problem:

States

- ▶ Domain D_i of each variables X_i.
- ► Assignment of variables X_i with values from the domain D_i.

Initial state

- Domains: all values for all variables.
- ► No variable is assigned a value: {}.

Actions

- Assign a value to one of the unassigned variables such that it doesn't violate the constraints.
- Remove assigned variable from domains

Goal test

All variables are assigned and no constraints are violated.

Path cost

► A constant cost for every step (e.g., 1).

Type

Configuration finding

What search algorithm to use?

Informed search

Problem: no available heuristics.

Breadth-first search algorithm

- Problem: time and space complexity: $O(b^d)$.
- where $b = \max |D_i|$: maximum number of values for the variables d = |X|: number of variables in the CSP.

Depth-first search algorithm

- Since we know the depth d of the tree (m=d), it is complete.
- Since we search for a satisfying configuration not an optimal path, depth-first is relevant.
- Time complexity: $O(b^d)$ but space complexity: O(b.d).
- So, we can use DFS and no need to add a closed-list (space complexity is still O(b.d)).

Depth-First Search Algorithm

- No need to use a closed-list just use a subtle generation of successors
 → backtracking search:
 - Choose values for one variable at a time that keeps the solution consistency.
 - Backtrack when a variable has no legal value left to assign.

```
function BACKTRACKING-SEARCH(problem) returns a solution, or failure
  return BACKTRACK({ }, problem) # set initial assignment
function BACKTRACK(assignment, problem) returns a solution, or failure
  IF assignment is complete THEN return assignment
  var ← SELECT-UNASSIGNED-VARIABLE(problem)
  FOREACH value in ORDER-DOMAIN-VALUES(var, assignment, problem) DO
    add {var = value} to assignment
    IF value is consistent with assignment THEN
      result ← BACKTRACK(assignment, problem)
      IF result ≠ failure THEN
        return assignment
    remove \{var = value\} and inferences from assignment
  return failure
```

Backtracking Example: Map Coloring

Backtracking Search

- Not efficient
 - Based on combination of all possible values for each variable.
 - Time complexity O(b^d)
- Can we do better?
 - Yes. Take benefit from constraint propagation.
 - ► The choice of one value for one variable reduces the domain for other variables.

Constraint Propagation

- A state is defined by
 - A set of variables.
 - The possible **values** of each variables: domains.
 - List of legal and illegal assignments for unassigned variables.
- Legal and illegal assignments are represented via:
 - equations
 - inequations
 - disequations
- Example: map coloring
 - Equation: WA = Red
 - Disequation: NT ≠ Red

Constraint Propagation

- Constraints + assignments can entail new equations and disequations.
 - e.g. WA = Red \rightarrow NT \neq Red, SA \neq Red
- Constraint propagation
 - The process of inferring new equations and disequations from existing equations, disequations and inequations.
 - This can drastically reduce the search space (branching factor).

Constraint Graph

- Constraint graph is an efficient representation of constraints → identify coupling between variables
 - **nodes** are variables.
 - arcs are constraints.
- Example: Map coloring of Australia territories with three colors Red, Green, Blue.

Constraint Propagation Techniques

- Backtracking Search is a look-back algorithm.
 - Check consistency only for complete assignments: too late.
- Constraint propagation leads to look-ahead algorithm.
 - Check consistency after each assignment through constraint propagation and prune the search tree.
 - Two look-ahead algorithms:
 - Forward checking
 - Arc consistency

1. Forward Checking Algorithm (Haralick 1980)

Idea

 After each assignment prune the domains of variables connected in the constraint graph.

Algorithm

- At the start, record the set of all legal values.
- If you assign a variable, remove values that are now not legal anymore from the connected variables.
- If a node's set of legal values becomes empty, then backtrack immediately.
- Time complexity O(b^d) but often better.

Assignment: WA = {R}

Constraint propagation

Assignment: SA = {G}

Constraint propagation

T {R, G, B}

Assignment: Q = {B}

Constraint propagation

Backtrack to last assignment Q= {B}

Assignment: Q = {R}, etc

Forward Checking Algorithm

```
function FC-SEARCH(domains) returns solution/failure
  return RECURSIVE-FC-SEARCH({ }, domains)
function RECURSIVE-FC-SEARCH(assignment, domains) returns solution
  IF assignment is complete THEN return assignment
  var ← SELECT-UNASSIGNED-VARIABLE(assignment, domains)
  FOREACH value in ORDER-DOMAIN-VALUES(var, assignment, domains) DO
      add {var = value} to assignment
     domains1 ← FORWARD-CHECKING(var, value, copy(domains))
      IF domains1!= failure THEN
          result ← RECURSIVE-FC-SEARCH(assignment, domains1)
          IF result != failure THEN return assignment
      remove {var = value} from assignment
  return failure
function FORWARD-CHECKING(var, value, domains) returns domains/failure
  FOREACH xi in domains whose values are constrained by var
    IF \exists v in domains st xi=v () is inconsistent with var=value THEN
      remove v from the domain of xi in domains
      IF the domain of xi is empty THEN return failure
  return domains
                                                               [sudoku.sh
```

2. Arc Consistency Algorithm

Constant

 Forward checking does not not look far enough forward After each variable assignment X_i, forward checking is limited to a propagation of constraints to the variables X_i directly connected to X in the constraint graph.

Idea

 After each assignment, prune the domains of all the connected variables and all variables connected to variable whose domain has been modified.

Definition

- 'Arc' refers to direct arc in the constraint graph.
- X→Y is consistent iff for every value of X, there is some value of Y after applying all the constraints.

Algorithm

- Consider all arcs X→Y.
- Remove all values from X that makes the $X \rightarrow Y$ inconsistent.
- If X looses a value, neighbors of X need to be rechecked.
- If X is empty, then backtrack.
- Time complexity: O(b²d³)

Assignment: WA = {R}

■ Arc consistency: check arcs $\{NT \rightarrow WA, SA \rightarrow WA\}$

■ NT → WA: R makes the node inconsistent, so remove R from NT

- Since NT domain was modified, add arcs WA→NT, SA→ NT, Q→NT
- In the list $\{SA \rightarrow WA, WA \rightarrow NT, SA \rightarrow NT, Q \rightarrow NT\}$

T {R, G, B}

Arc Consistency Algorithm: AC-3

```
function AC3(domains) returns domains
  queue ← all the arcs in domains
  WHILE queue is not empty DO
    (X_i, X_i) \leftarrow REMOVE-FIRST(queue)
    IF RM-INCONSISTENT-VALUES(X_i, X_i, domains) THEN
      IF domains[X_i] is empty THEN return failure
      FOREACH X_k in NEIGHBOURS [X_i] DO
        add (X_k, X_i) to queue
  return domains
function RM-INCONSISTENT-VALUES(X_i, X_i, domains) returns boolean
  removed ← false
  FOREACH x in domains[X_i] DO
    IF no value y in domains [X_i] allows (x,y) to satisfy constraint (X_i, X_i)
    THEN delete x from domains [X_i]
         removed ← true
  return removed
```

Using Arc Consistency

Pros and cons

- The number of backtracking is reduced with arc consistency (less steps).
- The computation time is increased at each step with arc consistency.
- Arc consistency (eg, AC-3) can be used in two ways:
 - Preprocessing
 - ▶ Pruning the domain of variables before the beginning of the search process.
 - Then use forward checking for example.
 - Maintaining Arc Consistency
 - Propagation step after every assignment during search (like forward checking).
 - Add in the queue only the arc to the assigned variable.

Heuristics for CSPs

- Previous CSP algorithms leave two things unspecified:
 - Which variable to assign next? (ie, content of method SELECT-UNASSIGNED-VARIABLE() of the general algorithm)
 - Which value to choose first? (ie, content of method ORDER-DOMAIN-VALUES()
 of the general algorithm)
- Heuristics
 - Variable ordering
 - Most constrained variable
 - Choose the variable with the minimum remaining values.
 - ▶ Degree heuristic
 - Choose the variable involved in the largest number of constraints.
 - → Constraint propagation will reduce the branching factor of search tree.
 - Value ordering
 - Least constraining value
 - Choose the value removing the least values from the domain of the neighbor variables
 - \rightarrow Try to leave the maximum flexibility for subsequent variable assignments.

Example. Map Coloring

Heuristics

- Most constrained variable
 - Countries NT and SA are the most constrained one (cannot use Red).
- Degree heuristic
 - Country SA is the variable involved in the largest number of constraints.
- Least constraining value
 - Red is the least constraining valid color for Q.

Conclusion

- Constraint networks consist of variables associated with finite domains and constraints.
 - A partial assignment maps some variables to values, a total assignment does so for all variables.
 - A partial assignment is consistent if it complies with all constraints.
 - A consistent total assignment is a solution.
- The constraint satisfaction problem (CSP) consists in finding a solution for a constraint network.
- In practice
 - Experimental results have shown that in most cases a good constraint propagation algorithm (like Forward Checking), preceded by Arc Consistency Checking with a good set of heuristics (like Minimum Remaining Values or Least Constraint Value) can go a long way in solving difficult CSP problems.

Demos

Backtracking

- Sudoku1-1.sh on grid 0 (explored states : 27)
- On other grids, no solution in reasonable time

Forward Checking

- Sudoku2-1.sh sur la grille 0 (time: 0s, explored states: 18)
- Sudoku2-2.sh sur la grille 1 (1s, 5942)

AC3 et MAC

- Sudoku3-1.sh AC3 on grid 1 (0s, 81)
- Sudoku3-2.sh MAC on grid 1 (0.1s, 82)
- Sudoku3-3.sh AC3 on grid 5 (0.6s, **5343**)
- Sudoku3-4.sh MAC on grid 5 : (0.6s, **460**)

Heuristic

- Sudoku4-1.sh FC without heuristic on grid 5 (1.8s, 10,074)
- Sudoku4-2.sh FC with heuristic on grid 5 (0s, 232)
- Sudoku4-3.sh AC3 with heuristic on grid 5 (0s, 232)
- Sudoku4-4.sh MAC with heuristic on grid 5 (longer: 0.1s, 96)