1. Turingov stroj

1.1. **UVOD**

Obrada podataka: svrsishodna djelatnost koja ima za cilj da se iz raspoloživih podataka dobije tražena informacija Komponente:

- podatak
- algoritam
- izvršitelj

- Podatak objekt u obradi
- Algoritam precizna uputa ("recept") koja opisuje transformaciju ulaznih podataka u traženi rezultat
- Izvršitelj?

Algoritam (Abu Ja'far Mohammed ibn al- Khowarizmi; algorism) – postupci transformacije grupirani u korake algoritma

Svojstva algoritma:

- Određenost
- Konačnost
- Širina primjene (područje uporabe)

Primjer: Euklidov algoritam (Euclid, 400 B.C.) – rješava zadatke tipa: Za dana dva prirodna broja a, b treba naći njihovu najveću zajedničku mjeru.

- korak: Promatrajte dva broja: a i b. Prijeđite na sljedeći korak;
- 2. korak: Usporedite brojeve a i b. Prijeđite na sljedeći korak;
- 3. korak: Ako su promatrani brojevi jednaki, svaki daje traženi rezultat obustavite postupak računanja. Ako brojevi nisu jednaki prijeđite na sljedeći korak;
- 4. korak: Ako je prvi promatrani broj manji od drugog, zamijenite im mjesta. Prijeđite na sljedeći korak;
- 5. korak: Oduzmite drugi broj od prvog i promatrajte taj drugi broj i ostatak. Prijeđite na korak 2.

Zadaci:

- Naći najveću zajedničku mjeru brojeva a = 28
 b = 124.
- 2. Naći najveću zajedničku mjeru brojeva 250 i 111.
- 3. Za neki n∈ Z⁺ naći najveću zajedničku mjeru dvaju pozitivnih brojeva 8n+3 i 5n+2.

Euklidov algoritam namijenjen izvršitelju - čovjeku

Kako bi izgledao algoritam namijenjen stroju (računalu)?

Zadatak 4. Napisati program u višem programskom jeziku (npr. u C, C++ ili Pascalu) za Euklidov algoritam.

```
Program EuclideanAlgorithm (input, output);
Var
           a, b, c, d, r: integer;
Begin
           Writeln ('Zelimo naci najvecu zajednicku mjeru, odnosno najveci');
           Writeln ('dieliteli dvaju pozitivnih brojeva a i b');
           Write ('a = '):
           Read (a);
           Write ('b = ');
           Read (b);
           r := a \text{ Mod } b:
           d := b:
           While r < 0 do
                       Begin
                                 c := d;
                                 d := r:
                                 r := c \text{ Mod d};
                        End
           Writeln ('Najveca zajednicka mjera brojeva ',a: 0,' i 'b, 0,' je ', d:0');
End.
```

Opaska: u programu je namjerno ugrađena logička pogreška – nadite je

Drugi pristup:

Računanje je proces određivanja izlazne supstitucije, za zadanu određenu ulaznu supstituciju, koja se pokorava svim specifičnim svojstvima problema.

(Garey & Johnson, 1979)

izlazna supstitucija? ulazna supstitucija? specifična svojstva problema? Primjer: Problem naprtnjače

- Zadano: i) Naprtnjača nosivosti (kapaciteta) C [kg];
 - ii) N objekata (predmeta) koje bi trebalo ponijeti; Svaki je predmet određen svojom težinom w_k i vrijednosti v_k ; k = 1, 2, ..., N;

Potrebno je naći udio F_k svakog predmeta tako da:

- a) ne prenatrpate naprtnjaču;
- b) maksimizirate vrijednost koju nosite

(Opaska: Predmeti se mogu rastaviti na dijelove čija je vrijednost proporcionalna njihovoj težini)

Parametri i varijable problema:

$$C, N, w_1, v_1, F_1, ..., w_N, v_N, F_N$$

Primjer ulazne supstitucije:

C = 14 kg, N = 3,
$$w_1$$
 = 4 kg, v_1 = 30 \$
$$w_2$$
 = 6 kg, v_2 = 48 \$
$$w_3$$
 = 7 kg, v_3 = 50 \$

Rješenje (izlazna supstitucija): U naprtnjaču stavljamo:

- Cijeli predmet 1 i cijeli predmet 2
- 4/7 predmeta 3

Ukupna vrijednost u naprtnjači: 106,57 \$

Algoritam:

- korak: Razvrstaj objekte na temelju omjera vrijednosti i težine (predmet 2 = 48/6 = 8 \$/kg; predmet 1= 30/4 =7,5 \$/kg; predmet 3 = 50/7 = 7,14 \$/kg)
- korak: Ponavljaj sve dok se naprtnjača ne prenatrpa:
 - Iz skupa predmeta uzmi predmet s najvećim omjerom vrijednost/težina i smjesti ga cijelog u naprtnjaču.
- korak: Izvadi iz naprtnjače posljednji predmet i razdijeli ga tako da upravo njegovi dijelovi popune naprtnjaču.

Algoritam je namijenjen čovjeku.

Kako bi izgledao algoritam namijenjen stroju?

- Računalo;

- Inteligentni stroj s vidnom percepcijom i drugim senzorima (npr. težine, pritiska) opremljen mehaničkim hvataljkama, bazom znanja, strojem za zaključivanje i sučeljem za razumijevanje prirodnog jezika;

1.2. Specijalan slučaj: Izvršitelj Turingov stroj

(A. M. Turing, "On Computable Numbers, with an Application to the Entscheidungsproblem", *Proc. of the London Math. Society, 2nd Series,* 42: pp.230-265,1936.)

Raščlanjivanje računskog postupka na vrlo jednostavne, elementarne operacije kod Turingovog stroja (TS) svedeno je do graničnih mogućnosti.

Definicija TS iz teorije automata:

TS = (Q, S, T, b,
$$q_0$$
, q_f , δ)

Komponente Turingovog stroja:

Vanjska memorija TS je s obje strane neograničena vrpca (traka) podijeljena na polja – svako polje može sadržavati samo jedan znak.

TS barata konačnim brojem znakova (simbola):

s₁, s₂, ..., s_k koji oblikuju vanjsku abecedu stroja:

$$S = \{S_1, S_2, ..., S_k\}$$

U skupu S nalazi se i prazni (pusti) simbol b:

-upisivanjem praznog znaka u bilo koje polje vrpce briše se znak koji se tamo nalazio;

(Specifičnost simbola b!)

Izraz zapisan na vrpci predstavljen je konačnim nizom znakova vanjske abecede (različitih od praznog znaka);

Skup T = $\{t_1, t_2, ... t_{|T|}\}$ – skup simbola koji se pojavljuju na vrpci bez praznih simbola:

$$T = S/b$$

Rad Turingovog stroja:

- Na početku rada stroja na vrpci se nalazi zapisan početni izraz (početna, ulazna informacija);
- Rad stroja se odvija u taktovima
 (Odvijanjem taktova stroj početnu informaciju preoblikuje u (među)informaciju, itd.; na kraju svakog takta znaci zapisani na vrpci stroja oblikuju odgovarajuću (među)informaciju);

A – početna informacija zapisana na vrpci na početku rada stroja

Dva slučaja:

 Nakon konačnog broja taktova stroj se zaustavlja dajući Stop-signal i pri tomu je na vrpci zapisana informacija B.

Stroj je primjenjiv za početnu informaciju A i prerađuje je u informaciju ili rezultat *B*.

2. Stroj nikad ne staje i nikad ne daje Stop-signal.

Stroj nije primjenjiv za početnu informaciju A..

$$Q = \{q_0, q_1, q_2, ..., q_{|Q-1|}\}$$
 – skup unutarnjih stanja

- q₀ početno stanje stroja (stanje stroja na početku
 1.takta);
- q_f konačno stanje stroja (!);

Sustav elementarnih operacija i naredbi:

- u svakom taktu naredba propisuje samo zamjenu pojedinačnog znaka s_i, upisanog u promatranom polju, nekim drugim znakom s_i:
 - ako je j = i sadržaj se promatranog polja ne mijenja;
- ako je s_j = b sadržaj se promatranog polja briše.
 - ako je j ≠ i tada se s_i zamjenjuje sa s_i;

Turingov stroj ima glaviu za čitanje i pisanje (R/W head).20

Glava za čitanje i pisanje, pri prijelazu s jednog takta na drugi, može se pomaknuti naviše za jedno polje (adresa se promatranog polja, može promijeniti za +1 ili –1 ili 0);

Tri "standardne" adresne naredbe:

- D promatraj desno susjedno polje;
- L promatraj lijevo susjedno polje;
- Ø ili N ostani na istom polju.

Skup naredbi za pomak glave P = $\{N \text{ ili } \emptyset, D, L\}$

Obrada informacije u Turingovom stroju odvija se u logičkom bloku \mathcal{L} koji se može nalaziti u nekom od konačnog broja unutarnjih stanja Q = $\{q_0, q_1, q_2, ..., q_{|Q-1|}\}$.

Ulazna dvojka: (s_i, q_n)

Izlazna trojka: (s_i, p, q_i)

 $p \in P$

Logički blok \mathcal{L} ostvaruje funkciju koja svakoj dvojci na ulazu pridružuje izlaznu trojku.

 δ - logička funkcija stroja

$$δ$$
: S × Q → S × P × Q

Logička se funkcija stroja može prikazati tablicom koja se naziva funkcionalna shema TS

	q_1	q_2	q ₃	
^	$q_4 D \wedge$	q ₃ L	$q_1 D \alpha$	•••
	$q_2 N \alpha$	$q_4 D \wedge$	$q_3 N \beta$	•••
α	$q_1 D \alpha$	$q_2 D \alpha$	$q_4 N \alpha$	•••
β	•••	•••	•••	•••

Vanjska abeceda

Unutarnja stanja

Turingov stroj:

TS = (Q, S, T, b,
$$q_0$$
, q_f , δ)

Q – skup unutarnjih stanja stroja;

S – skup simbola vanjske abecede;

T = S / b;

b – pusti simbol;

q₀ – početno stanje stroja;

q_f – konačno stanje stroja;

δ - logička funkcija stroja

Polje za pohranu unutarnjeg stanja

1.3. Primjeri programa za TS

Primjer 1: Zbrajanje Turingovim strojem

Početno stanje

Zadatak: Napisati "program" za TS koji zbraja štapiće!

Rješenje:

Vanjska abeceda: $S = \{|, *, b\}$ Skup unutarnjih stanja: $Q = \{q_0, q_1, q_2, q_f = !\}$

Konačno rješenje:

	q_0	\mathbf{q}_1	q_2
	q_2Db	q_1L	q ₂ D
b	q_0Db	q_0Db	q ₁ N
*	!Nb	q_1L^*	q ₂ D *

$$b = \land$$

Analiza rješenja:

Početno stanje:

Prvi takt: Promatrani štapić se briše i glava se pomiče udesno te stroj prelazi u stanje q₂

$$(|, q_0) \rightarrow (q_2, D, b)$$

Drugi takt:
$$(|, q_2) \rightarrow (q_2, D, |)$$

Treći takt:

$$(|, q_2) \rightarrow (q_2, D, |)$$

Četvrti takt:

$$(|, q_2) \rightarrow (q_2, D, |)$$

Peti takt:

$$(|, q_2) \rightarrow (q_2, D, |)$$

. . .

7. takt:

$$(*, q_2) \to (q_2, D, *)$$

...

11.takt:

$$(|,q_2) \rightarrow (q_2,D,|)$$

12. takt:

$$(b, q_2) \rightarrow (q_1, N, |)$$

13. takt:

$$(|,q_1) \rightarrow (q_1,L,|)$$

14.takt:

$$(|, q_1) \rightarrow (q_1, L, |)$$

15.takt:

$$(|,q_1) \rightarrow (q_1,L,|)$$

. . .

. . .

Definicija k-te konfiguracije Turingovog stroja:

Slika vrpce s informacijom koja se na njoj nalazi u početku k-tog takta, pri čemu je ispod promatranog polja zapisan znak stanja koji ulazi u logički blok \mathcal{L} u početku k-tog takta.

Ilustracija k-tih konfiguracija:

3. konfiguracija

 \wedge

Predzadnja konfiguracija: 90

Zadnja konfiguracija:

 \wedge

 q_f

Primjer 2:

Inkrementiranje broja predočenog u dekadnom brojevnom sustavu

 $/n \rightarrow n + 1/$:

Zadan je dekadski zapisan broj n, treba naći dekadni zapis broja n+1

Vanjska abeceda: 0, 1, 2, ..., 9, b Unutarnja stanja stroja: q_0 (početno i ujedno radno stanje) i q_f – konačno stanje stroja.

Rješenje: Funkcionalna shema stroja

	q_0
0	!N1
1	!N2
2	!N3
3	!N4
4	!N5
5	!N6
6	!N7
7	!N8
8	!N9
9	q_0L0
???	????

Fizička izvedba Turingovog stroja (S. Ribarić, D. Krleža, N. Pavešić, " A Turing Machine with Robot Arm and Eye", Proc. of the 5th IEEE Conf. on Intelligent Eng. Systems, INES 2001, Helsinki, 273-276.)

S. Ribarić, Arhitektura računala 2

U fizičkoj izvedbi Turingovog stroja koriste se zasadi raspoznavanja uzoraka, robotike i umjetne inteligencije

- Glava za čitanje i pisanje: kombinacija robotske ruke i TV kamere;
- Vanjska memorija: Papirna vrpca s označenim poljima;
- Umjesto pomaka glave za čitanje i pisanje pomiče se vrpca;
- Simboli vanjske abecede su pločice s geometrijskim likovima u boji;
- Logički blok ostvaren osobnim računalom;
- Postojanje "poola" simbola vanjske abecede;

S. Ribarić, Arhitektura računala 2

S. Ribarić, Arhitektura računala 2

Izgled korisničkog sučelja za programiranje TS-a:

S. Ribarić, Arhitektura računala 2

Zadaci:

- 5. Napisati program za TS koji pretvara binarni zapis broja u potpuni ili dvojni komplement. Glava za čitanje i pisanje (R/W) nalazi se početno na krajnje lijevoj binarnoj znamenci niza.
- 6. Napisati program za TS koji inkrementira vrijednost broja predočenog u oktalnom sustavu. Glava R/W nalazi se početno na krajnje desnoj znamenci niza.
- 7. Napisati program za inkrementiranje rimskih brojeva u rasponu od I III (elementi vanjske abecede su b, I, II, III, IV). Glava za čitanje i pisanje (R/W) nalazi se početno na krajnje lijevoj binarnoj znamenci niza.Odrediti 4.konfiguraciju stroja za početni niz III.

8. Napisati program za TS koji pronalazi zapis na traci u slučaju kada nije poznata početna pozicija glave R/W niti njen relativni položaj u odnosu na zapisani niz.