集合及其运算

离散数学一集合论

南京大学计算机科学与技术系

回顾

- 证明方法
 - 直接证明
 - 反证法
 - 分情形证明
 - 等价性证明
 - 存在性证明
 - 唯一性证明
 - 寻找反例

提要

- 基本概念
 - 集合及其描述
 - 集合相等、子集关系
 - 幂集
- 集合运算
 - 交、并、补、广义交、广义并、笛卡尔乘积
 - 集合恒等式
 - 集合相关命题的证明方式
- 集合悖论与公理集合论

集合的定义

- 直观的定义
 - 一个集合是一组无序的对象,这些对象称为这个集合的元素或成员。
 - $a \in A$ 表示a是集合A的一个成员, $a \notin A$ 表示a不是A的成员。
- Georg Cantor的描述
 - [English translation] A set is a collection into a whole of definite, distinct objects of our intuition or our thought. The objects are called elements (member) of the set.

Naïve set theory, 朴素集合论

集合的描述

• 外延法: 罗列、枚举

•
$$V = \{a, e, i, o, u\}$$

• {1, 3, 5, 7, 9}

$$N=\{0, 1, 2, 3, ...\}$$

R: 实数集

• 概括法:

- $\{x \mid P(x)\}, P$: 某种思维、观察中总结出的对象性质
 - $a \in \{x \mid P(x)\} \leftrightarrow P(a)$
- - $[a, b] = \{x \in \mathbf{R} \mid a \le x \le b\}$

集合的描述

• 文氏图(Venn diagrams)//John Venn

希腊字母、拉丁字母、西里尔字母

集合相等、子集关系

- 定义:集合相等当且仅当它们有同样的元素
 - A=B 当且仅当 $\forall x(x \in A \leftrightarrow x \in B)$ //外延原则
- 定义: 集合A称为集合B的子集,记作 $A \subset B$
 - $\forall x (x \in A \rightarrow x \in B)$
 - 如果 $A\subseteq B$,但 $A\neq B$,则A是B的真子集,记作 $A\subset B$
- 定理:对任意集合A和B, A=B 当且仅当:
 - $A \subseteq B$, $\exists B \subseteq A$

子集关系的一个性质

- 证明:如果X⊆Y且Y⊆Z,则X⊆Z
- 要证明: "对任意的 a, 如果 $a \in X$, 则 $a \in Z$ "
- 证明:
 - 对任意的 $a \in X$
 - 根据已知的"X⊆Y",可得: a∈Y
 - 根据已知的 "Y⊂Z", 可得: *a*∈Z
 - 所以, $\forall a (a \in X \rightarrow a \in Z)$, 即X $\subseteq Z$

• 有限集合及其基数

• 若 \mathbf{S} 恰有n个不同的元素,n是自然数,就说 \mathbf{S} 是有限集合,而n是 \mathbf{S} 的基数,记作 $|\mathbf{S}|=n$ 。

• 无限集合

• 如果一个集合不是有限的,就说它是无限的。

- 存在一个没有任何元素的集合: 空集Ø
- 关于空集的一些性质:
 - 空集是任何集合的子集。
 - $\emptyset \subseteq A$, $\exists \exists \forall x (x \in \emptyset \to x \in A)$
 - 空集是唯一的,可以用 Ø表示
 - 如果 $Ø_1$, $Ø_2$ 都是空集,则 $Ø_1 \subseteq Ø_2$ 和 $Ø_2 \subseteq Ø_1$ 均为真

关于空集的讨论

- 空集本身可以是一个对象,可以是某个集合的元素
 - $\emptyset \in \{\emptyset\}, \emptyset \subseteq \{\emptyset\}$
- 事实上,我们从空集开始构造整个集合世界!
 - 自然数
 - 有理数
 - 实数(幂集运算)
 - ...

幂集

- S是一个集合, S的幂集是S的所有子集的集合
- 举例
 - $\rho(\{a,b\}) = \{\emptyset,\{a\},\{b\},\{a,b\}\}$
 - $\bullet \quad \rho(\emptyset) = \{\emptyset\}$

If $\rho(A) \subseteq \rho(B)$, then $A \subseteq B$

$$\mathcal{P}(X)$$

$$\mathfrak{P}(X)$$

$$\mathcal{P}(X)$$

$$\mathcal{O}(X)$$

$$\mathbb{P}(X)$$

如果 |A|=n, 则 $|\rho(A)|=2^n$ 幂集的另一种记法: 2^A

$$C(4, 0)+C(4, 1)+C(4, 2)+C(4, 3)+C(4, 4)=24$$

$$A = \{1, ..., n\}$$

$$\sum_{k=0...n} C(n, k) = 2^n$$

- 运算定义的基本方式:将结果定义为一个新的集合
 - - 并集: {1,2,3}
 - $\overline{\Sigma}$: $A \cap B = \{ x \mid x \in A \land x \in B \}$
 - 交集: {3}

相对补(差)

NANOTA STATE

- B对于A的补集
 - A-B= $\{x \mid x \in A \land x \notin B\}$
- 举例,A-B={1}
- 若有一个我们关心的"所有"对象的集合,称为全集,常用U表示, U-B称为B的"补集",记为~B
 - $x \in \sim B \leftrightarrow x \notin B$

对称差

- 对称差
 - $A \oplus B = (A-B) \cup (B-A)$
- 证明: A⊕B=(A∪B)-(A∩B)
 - $(A-B)\cup(B-A)\subseteq(A\cup B)-(A\cap B)$
 - $(A \cup B) (A \cap B) \subseteq (A B) \cup (B A)$

- 广义并
 - 设A为集合,A的所有元素的并,记为UA; 定义为 U $A = \{x | \exists y (y \in A \land x \in y)\}$
- 广义交
 - 设A为非空集合,A的所有元素的交,记为 $\bigcap A$,定义为: $\bigcap A = \{x | \forall y (y \in A \rightarrow x \in y)\}$

- 包含关系下两个集合的最小上界和最大下界
 - 最小上界:
 - $A \subseteq A \cup B$, $B \subseteq A \cup B$

----A和B的上界

- 对任意X, 若A⊆X, B⊆X,则A∪B⊆X
 ----最小上界
- 最大下界:
 - $A \cap B \subseteq A$, $A \cap B \subseteq B$

----A和B的下界

• 对任意X,若X⊆A,X⊆B,则X⊆A \cap B ----最大下界

集合与谓词逻辑

- 在量化逻辑表达式中使用集合符号
 - $\forall x \in S(P(x)) \land \exists \forall x (x \in S \rightarrow P(x))$

$$\underset{x \in S}{\forall} P(x)$$

• $\exists x \in S(P(x))$ 代表 $\exists x (x \in S \land P(x))$

$$\underset{x \in S}{\exists} P(x)$$

- 举例
 - $\forall x \in R(x^2 \ge 0): \forall x(x \in R \rightarrow (x^2 \ge 0))$
 - $\exists x \in Z(x^2=1): \exists x(x \in Z \land x^2=1)$
- 逻辑表达式的真值集合, $\{x \in D \mid P(x)\}$

小练习

试证明:

$$\{x \in X | p(x)\} \subseteq \{x \in X | q(x)\} \leftrightarrow \bigvee_{x \in X} (p(x) \to q(x))$$

笛卡尔乘积

- 有序偶:
 - 有序偶(a,b)=(x,y) 当且仅当 a=x, b=y
 - 实际上: (a,b)={{a},{a,b}}
- 集合A和B的笛卡尔乘积
 - $A \times B = \{(a, b) | a \in A \land b \in B\}$
- 何种情形下,A×B=B×A
- 集合A₁, A₂,...,A_n的笛卡尔乘积
 - $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) | a_i \in A_i, i=1,2,...n\}$

集合相关命题的基本证明方式

- 直接使用集合包含、相等定义
 - $A \cup B = B \Rightarrow A \subseteq B$

证明:

对任何x,假设 $x \in A$

由集合并定义: $x \in A \cup B$

由已知条件: A∪B=B

 $\therefore x \in B$

因此: A⊆B

- 利用运算定义作逻辑等值式推演
 - 例: A-(B∪C) = (A-B)∩(A-C)

$$A-(B \cup C) = \{x | x \in A \land x \notin B \cup C\}$$

$$= \{x | x \in A \land (x \notin B \land x \notin C)\}$$

$$= \{x | (x \in A \land x \notin B) \land (x \in A \land x \notin C)\}$$

$$= (A-B) \cap (A-C)$$

等价的描述方式:

$$x \in A-(B \cup C) \Leftrightarrow (x \in A) \land (x \notin (B \cup C)) \Leftrightarrow x \in A \land x \notin B \land x \notin C$$

 $\Leftrightarrow (x \in A \land x \notin B) \land (x \in A \land x \notin C)$
 $\Leftrightarrow (x \in (A-B)) \land (x \in (A-C))$
 $\Leftrightarrow x \in (A-B) \cap (A-C)$

- 利用已知恒等式或等式作集合代数推演
 - 例: A∩B=A ⇔ A-B=Ø

- 利用已知恒等式或等式作集合代数推演
 - 例: 己知A⊕B=A⊕C, 证明B=C

```
B=\emptyset \oplus B
=(A \oplus A) \oplus B
=A \oplus (A \oplus B)
=A \oplus (A \oplus C)
=C
```


等式	名 称
$A \cup \emptyset = A$ $A \cap U = A$	恒等律
$A \cup U = U$ $A \cap \emptyset = \emptyset$	支配律
$A \cup A = A$ $A \cap A = A$	幂等律
~(~A)=A	补集律
$A \cup B = B \cup A$ $A \cap B = B \cap A$	交换律

等式	名 称
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	结合律
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	分配律
\sim (A \cup B)= \sim A \cap \sim B \sim (A \cap B)= \sim A \cup \sim B	德摩根定律
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	吸收律
$A \cup \sim A = U$ $A \cap \sim A = \emptyset$	补律

- 利用成员表证明集合恒等式
 - $A \cup (A \cap B) = A$

A	В	A∩B	
1	1	1	1
1	0	0	1
0	1	0	0
0	0	0	0

文氏图的更多例子

~A∩~B

• $(A-(B\cup C))\cup((B\cup C)-A)$

文氏图与数学证明

- 文氏图不能代替数学证明,但可以帮助推 测结论
- 例子:
 - $(A-B)\cup(A-C)=A$?

充要条件: A∩B∩C=Ø

NAN DE LES

集合悖论

- A={x | P(x)}, 实际上不能保证: 对任意的性质 P, 这样的定义都有意义。
- 例如:
 - 1)存在不以自己为元素的集合,称它们为"平凡集"
 - 天上的星星、教室里的同学
 - 2)定义包含所有"平凡集"的集合
 - $\bullet \quad \mathbf{A} = \{x | x \notin x\}$
- Russell 悖论:
 - 定义 $R = \{x \mid x \notin x\}$ 。则如果R存在,定有: $R \in R$ iff. $R \notin R$
 - 理发师悖论: "我给所有不给自己理发的人理发"

重新考察广义交

- 广义交
 - 设A为非空集合,A的所有元素的交,记为 $\bigcap A$,定义为: $\bigcap A = \{x | \forall y (y \in A \rightarrow x \in y)\}$

• – but why?

• 广义并和交的另一种记法

$$x \in \bigcup_{X \in \mathcal{C}} X \Longleftrightarrow \exists_{X \in \mathcal{C}} x \in X$$

$$x \in \bigcap_{X \in \mathcal{C}} X \Longleftrightarrow \bigvee_{X \in \mathcal{C}} x \in X$$

试证明:

Let
$$\mathcal{C} = \{A, B\}$$
. Show that
$$\bigcup_{X \in \mathcal{C}} X = A \cup B, \ \bigcap_{X \in \mathcal{C}} X = A \cap B$$

Show that
$$\bigcup_{X \in \emptyset} X = \emptyset$$

Given a collection of sets $\mathcal{C} \neq \emptyset$ show that, for any $A \in \mathcal{C}$,

$$\bigcap_{X \in \mathcal{C}} X = \left\{ x \in A \mid \bigvee_{X \in \mathcal{C}} x \in X \right\}$$

Theorem (Russell's paradox). $\bigcap_{X \in \emptyset} X$ is not a set.

Proof. We will prove by contradiction. This method consists in assuming the result we want to prove is false and arriving at a contradiction. The contradiction shows that our assumption was wrong, hence the result is true. So assume $A = \bigcap_{X \in \emptyset} X$ is a set. we can build the set

$$B = \{ Y \in A \mid Y \notin Y \}$$

Then, by definition of B, the following is a true sentence:

$$B \in B \iff (B \in A \text{ and } B \notin B)$$

It follows that both sentences $B \notin A$ and $B \notin B$ must be true. Then, by definition of A,

$$B \notin A \Leftrightarrow \operatorname{not} \left(\bigvee_{X \in \emptyset} B \in X \right) \Leftrightarrow \exists_{X \in \emptyset} B \notin X$$

But this last sentence is false so we have reached a contradiction. We conclude A is not a set.

- 用公理来约束集合世界,以摆脱悖论
 - 集合相等(=)和元素属于集合的关系(∈)
 - 某种集合存在性, 亦即给定合法集合构造原则
- Zermelo–Fraenkel set theory with the axiom of Choice (ZFC集合论)参见附录

外延公理 正则公理 分离公理模式 配对公理 并集公理 替代公理模式 无穷公理 幂集公理 选择公理

Zermelo—Fraenkel set theory with the axiom of choice

- 外延公理
- 正则公理
- 分离公理模式
- 配对公理
- 并集公理
- 替代公理模式
- 无穷公理
- 幂集公理
- 选择公理(或,良序定理)

- 外延公理(Axiom of extensionality)
 - 如果两个集合含有同样的元素,则它们是相等的。

$$\forall x \forall y [\forall z (z \in x \Leftrightarrow z \in y) \Rightarrow x = y].$$

- 正则/基础公理(Axiom of regularity/foundation)
 - 任意非空集*x*包含一个成员*y*, *x*与集合*y*是不相交的

$$\forall x [\exists a (a \in x) \Rightarrow \exists y (y \in x \land \neg \exists z (z \in y \land z \in x))].$$

- 分离公理模式(Axiom schema of separation)
 - 对任意集合z和任意对z的元素x有定义的逻辑谓词 $\phi(x)$,存在z的子集y,使 $x \in y$ 当且仅当 $x \in z$ 而且 $\phi(x)$ 为真。

$$\forall z \forall w_1 \dots w_n \exists y \forall x [x \in y \Leftrightarrow (x \in z \land \phi)].$$

配对公理(Axiom of pairing)

$$\forall x \forall y \exists z (x \in z \land y \in z).$$

并集公理(Axiom of union)

$$\forall \mathcal{F} \,\exists A \,\forall Y \,\forall x [(x \in Y \land Y \in \mathcal{F}) \Rightarrow x \in A].$$

• 替代公理模式(Axiom schema of replacement)

$$\forall A \forall w_1, \dots, w_n \big[\forall x (x \in A \Rightarrow \exists ! y \phi) \Rightarrow \exists B \forall x \big(x \in A \Rightarrow \exists y (y \in B \land \phi) \big) \big].$$

- 无穷公理(Axiom of infinity)
 - S(y)是指 y∪{y}

$$\exists X \left[\varnothing \in X \land \forall y (y \in X \Rightarrow S(y) \in X) \right].$$

• 幂集公理 (Axiom of power set)

$$\forall x \exists y \forall z [z \subseteq x \Rightarrow z \in y].$$

- 选择公理(Axiom of choice)
 - 任一非空集合族 $(S_i)_{i \in I}$,均存在元素族 $(s_i)_{i \in I}$, $\forall i \in I$. $s_i \in S_i$
- 或,良序定理(Well-ordering theorem) $\forall X \exists R (R \text{ well-orders } X).$

参考: Zermelo-Fraenkel set theory @Wiki

Q&A

欢迎提问