From Last Time

$$A + B \longrightarrow F$$

rate =
$$k[A]^m[B]^n = d[P]/dt$$

In this rate law, **m** and **n** are <u>orders</u> of the reaction components, **k** is the <u>rate constant</u>.

The <u>overall reaction rate</u> has an order that is **m** + **n**

Eyring equation: used to determine the activation parameters $(\Delta G^{\ddagger}, \Delta S^{\ddagger}, \Delta H^{\ddagger})$ for each elementary step of a reaction.

$$k = \kappa \left(\frac{k_{\rm B}T}{h}\right) K^{\ddagger 1}$$

Experimentally useful expression of the Eyring equation:

$$\ln\left(\frac{k}{T}\right) = \frac{-\Delta H^{\ddagger}}{R} \cdot \frac{1}{T} + \ln\left(\frac{k_{B}}{h}\right) + \frac{\Delta S^{\ddagger}}{R}$$

Transition state theory (TST): assumes the reactants and activated complex are in preequilibrium.

Arrhenius equation: used to experimentally determine the energy for a reaction barrier. Is macroscopic treatment; *does not consider mechanism.*

$$k = Ae^{(-E_a/RT)}$$

From Last Time

Experimental methods to determine the orders of a reaction:

- •the method of <u>isolation</u> puts all but one reactant in such a large excess that their concentration change over the course of the reaction is essentially zero.
- the method of **initial rates** measures the rate at the beginning of the reaction (<10% conversion) for several initial concentrations of the reactant.

Zero order rates: (no reaction can be zero order in **all** reagents/catalysts)

Consider a reaction that consumes A, but shows no rate dependence on A.

rate law:
$$-\frac{d[A]}{dt} = k[A]^0 = k$$

integrated $-[A] = kt$
rate law:

First order rates:

reaction: $A \longrightarrow P$

rate law: $\frac{d[P]}{dt} = k[A]$

integrated rate law: $\ln \left(\frac{[A]}{[A]_0} \right) = -k$

Consider the process:

$$A + A \rightarrow P$$

Which is 2nd order in A

the differential rate law is:

$$\frac{d[P]}{dt} = k[A]^2$$
 or expressed as

$$-\frac{1}{2}\frac{d[A]}{dt} = k[A]^2$$

(in many text books, this is wrapped into the rate constant and is not shown)

$$-\frac{\mathsf{d}[\mathsf{A}]}{[\mathsf{A}]^2} = 2 \cdot k \mathsf{d}^{\mathsf{I}}$$

Consider the process:

$$A + A \rightarrow P$$

Which is 2nd order in A

the differential rate law is:

$$\frac{\mathsf{d}[\mathsf{P}]}{\mathsf{d}} = k[\mathsf{A}]^2 \quad \text{or expressed as}$$

$$-\frac{1}{2}\frac{d[A]}{dt} = k[A]^2$$

and so:

$$-\frac{\mathsf{d}[\mathsf{A}]}{[\mathsf{A}]^2} = 2 \cdot k \mathsf{d} \mathsf{t}$$

the integrated rate law is written as:

$$\frac{1}{[A]} - \frac{1}{[A]_0} = 2 \cdot kt$$

Integrating this equation between $[A]_0$ and [A] and between t=0 and t, we get the integrated rate law

Consider the process:

$$A + A \rightarrow P$$

Which is 2nd order in A

the differential rate law is:

$$\frac{\mathsf{d}[\mathsf{P}]}{\mathsf{d}\mathsf{t}} = k[\mathsf{A}]^2$$

$$-\frac{1}{2}\frac{d[A]}{dt}=k[A]^2$$

and so:

$$-\frac{\mathsf{d}[\mathsf{A}]}{[\mathsf{A}]^2} = 2 \cdot k \mathsf{d} \mathsf{t}$$

the integrated rate law is:

$$\frac{1}{[A]} - \frac{1}{[A]_0} = 2 \cdot k t$$

Plot 1/[A] versus t; slope is **a**k where **a** is the stoichiometry of [A]

Consider the process:

$$A + A \rightarrow P$$

Which is 2nd order in A

the differential rate law is:

$$\frac{\mathsf{d}[\mathsf{P}]}{\mathsf{d}t} = k[\mathsf{A}]^2$$

$$-\frac{1}{2}\frac{d[A]}{dt} = k[A]^2$$

and so:

$$-\frac{\mathsf{d}[\mathsf{A}]}{[\mathsf{A}]^2} = 2 \cdot k \mathsf{d} \mathsf{t}$$

the integrated rate law is:

$$\frac{1}{[A]} - \frac{1}{[A]_0} = 2 \cdot kt$$

[A] at any time **t** during the course of the reaction can be calculated from

[A] =
$$\frac{[A]_0}{1 + [A]_0 \cdot 2 \cdot kt}$$

More on 2nd Order Reactions

For the general process:

there are many ways by which a reaction can be 2nd order overall

2 nd Order in A 0 th order in B	rate = <i>k</i> [A] ²
2 nd Order in B 0 th order in A	rate = <i>k</i> [B] ²
1st Order in A 1st order in B	rate = <i>k</i> [A][B]

Let's consider the case of rate = k[A][B]

2nd Order Reactions: First Order in Each of Two Species

Consider the process: A + B → products

- 2nd order overall reaction, 1st order in each A and B
- rate = k[A][B]
- Based on the fact that when one molecule of A reacts, one molecule of B is consumed, the following equation results:

In
$$\left(\frac{[B][A]_0}{[A][B]_0}\right) = ([B]_0 - [A]_0) \cdot kt$$

this is the integrated rate law

this expression is awkward to use, (and not that simple to derive)

2nd Order Reactions: First Order in Each of Two Species

Consider the process: $A + B \rightarrow products$

- 2nd order overall reaction, 1st order in each A and B
- rate = k[A][B]
- Based on the fact that when one molecule of A reacts, one molecule of B is consumed, the following equation results:

In
$$\left(\frac{[B][A]_0}{[A][B]_0}\right) = ([B]_0 - [A]_0) \cdot kt$$

this is the integrated rate law

this expression is awkward to use, (and not that simple to derive)

What simplifications can we make here??

Consider the case of

rate =
$$k[A][B]$$

In
$$\left(\frac{[B][A]_0}{[A][B]_0}\right) = ([B]_0 - [A]_0) \cdot kt$$

If we set
$$[A]_0 = [B]_0$$
, then
rate = $2k[A]^2$

we've seen this before!

rate =
$$k[A][B]$$

integrated rate law:

In
$$\left(\frac{[B][A]_0}{[A][B]_0}\right) = ([B]_0 - [A]_0) \cdot kt$$

If we have a <u>little</u> bit of **A** and a <u>lot</u> of **B**, then we can assume the [**B**] remains constant

rate =
$$k[A][B]$$

integrated rate law:

In
$$\left(\frac{[B][A]_0}{[A][B]_0}\right) = ([B]_0 - [A]_0) \cdot kt$$

If we have a <u>little</u> bit of **A** and a <u>lot</u> of **B**, then we can assume the [**B**] remains constant

$$\frac{d[A]}{[A]} \approx -kdt$$
 and $\ln \left(\frac{[A]}{[A]_0}\right) \approx -kt$

This allows us to determine a pseudo-order in **A**. We can also conduct experiments with a <u>little</u> bit of **B** and a <u>lot</u> of **A**, to determine psuedo-order in **B**.

rate =
$$k[A][B]$$

integrated rate law:

In
$$\left(\frac{[B][A]_0}{[A][B]_0}\right) = ([B]_0 - [A]_0) \cdot kt$$

If we have a <u>little</u> bit of **A** and a <u>lot</u> of **B**, then we can assume the [**B**] remains constant

$$\frac{d[A]}{[A]} \approx -kdt$$
 and $\ln \left(\frac{[A]}{[A]_0}\right) \approx -kt$

total reaction order = order in [A] + order in [B]

Overview of Common Rate Laws

a table of useful reactions, rate laws, and integrated rate laws:

reaction rate law		integrated rate law	
A → P	$\frac{d[P]}{dt} = k[A]$	$ \ln\left(\frac{[A]}{[A]_0}\right) = -kt $	
2A → P	$\frac{d[P]}{dt} = k[A]^2$	$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$	
A + B → P	$\frac{d[P]}{dt} = k[A][B]$	In $\left(\frac{[B][A]_0}{[A][B]_0}\right) = ([B]_0 - [A]_0) \cdot kt$	

Why Do We Care?

Kinetic experiments provide information about the mechanism of a reaction...which can enable the development of improved

reaction conditions.

Figure 3. Plot of k_{obs} vs $[1b]^2$ for the catalytic ring opening of cyclohexene oxide with HN₃. Individual runs were monitored for appearance of product by GC using an internal standard. Initial concentrations: [epoxide] = 2.0 M, [HN₃] = 0.2 M in TBME.

Why Do We Care?

Kinetic experiments provide information about the mechanism of a reaction...which can enable the development of improved

reaction conditions.

$$\begin{array}{c} & & & \\ & &$$

5 M = Co(OTs)

n = 1 - 5

Figure 3. Plot of $k_{\rm obs}$ vs $[1b]^2$ for the catalytic ring opening of cyclohexene oxide with HN₃. Individual runs were monitored for appearance of product by GC using an internal standard. Initial concentrations: [epoxide] = 2.0 M, [HN₃] = 0.2 M in TBME.

entry	\mathbb{R}^1	\mathbb{R}^2	catalyst	$(\text{mol }\%)^b$	(%) ^c	(%) ^d
1	Н	CH ₂ Cl	monomer (1c)	4.0^{e}	96	99
			oligomer (5)	0.25	99	99
2	o-O(allyl)	CH_2Cl	1c	4.4	48	84
			5	0.25	99	98
3	Н	C_6H_5	1c	4.0	f	n.d.
			5	1.0	60	97
4	Н	c-hexyl	1c	0.8	89	94
		•	5	0.5	99	98

Hansen, K.B.; Leighton, J.L.; Jacobsen, E.N. *J. Am. Chem. Soc.* **1996**, *118*, 10924 Ready, J.M.; Jacobsen, E.N. *J. Am. Chem. Soc.* **2001**, *123*, 2687

The Steady State Approximation

For a multistep reaction involving a transient intermediate, it is assumed that large concentrations of the intermediate do not accumulate. The **concentration of** the reactive intermediate can be assumed to be constant over the course of the reaction.

One possible scenario:

$$k_1$$
 k_2
 k_2
 k_1
 k_2
 k_2
 k_2
 k_3

$$\frac{d[P]}{dt} = k_2[I][B] \qquad \frac{d[I]}{dt} = k_1[A] - k_1[I] - k_2[I][B] = 0$$

$$\frac{d[P]}{dt} = \frac{k_1 k_2[A][B]}{k_{-1} + k_2[B]}$$

The Steady State Approximation

A second possible scenario:

$$A + B \xrightarrow{k_1} I \xrightarrow{k_2} P$$

$$\frac{d[I]}{dt} = k_2[I]$$

$$\frac{d[I]}{dt} = k_1[A][B] - k_1[I] - k_2[I] = 0$$

$$[I] = \frac{k_1[A][B]}{k_1 + k_2}$$

$$\frac{d[P]}{dt} = \frac{k_1 k_2[A][B]}{k_{-1} + k_2} = k_{obs}[A][B]$$

$$k_{\text{obs}} = \frac{k_1 k_2}{k_{-1} + k_2}$$

Cannot decipher whether $k_{\rm obs}$ represents a single elementary step, or a combination of several rate constants for individual elementary steps

Michaelis-Menten Equation: Enzyme Kinetics

A model to describe the kinetics of enzyme catalysis, also applicable to many small molecule catalyst systems

(rate-determining step)

E + S

$$k_1$$

E:S

 k_{cat}

E:P

 k_{-1}

Does this look familiar?

$$\frac{d[P]}{dt} = k_{cat}[ES]$$

$$\frac{d[E:S]}{dt} = k_1([E]_o - [E:S])[S] - k_{-1}[E:S] - k_{cat}[E:S] = 0$$

$$\frac{d[P]}{dt} = \frac{k_1 k_{\text{cat}}[E]_o[S]}{k_{-1} + k_{\text{cat}} + k_1[S]} = \frac{k_{\text{cat}}[E]_o[S]}{[S] + K_{\text{M}}} \qquad K_{\text{M}} = \frac{k_{\text{cat}} + k_{-1}}{k_1}$$

Michaelis-Menten Equation: Enzyme Kinetics

A model to describe the kinetics of enzyme catalysis, also applicable to many small molecule catalyst systems

$$E + S \xrightarrow{k_1} E:S \xrightarrow{k_{cat}} E:P \xrightarrow{E} E + P$$
Does this look familiar?

More commonly expressed as:

$$v = \frac{v_{\text{max}}[S]}{[S] + K_{\text{M}}}$$