Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный технический университет имени Н.Э. Баумана

Лабораторная работа №6 « Решение краевой здачи методом отрельбы» по дисциплине «Численные методы»

Студент группы ИУ9-61 Преподаватель Александрова О.С. Домрачева А.Б.

Исходные данные:

$$y'' + py' + qy = f(x), p = -2, q = 1, f(x) = 3 \exp x, y_0 = 2, y'_0 = 3$$

Задание:

1. Вычислить решение краевой задачи для линейного дифференциального уравнения второго порядка методом стельбы

Теоретические сведения:

 $y'' + p(x)y'' + q(x)y = f(x), \ y(a) = A, y(b) = B$ Общее решение имеет вид

$$y_{OH} = C_1 y_1 + C_2 y_2 + y \tag{1}$$

$$C_1 y_1(a) + C_2 y_2(a) + y(a) = A (2)$$

$$C_1 y_1(b) + C_2 y_2(b) + y(b) = B (3)$$

Если частное решение неоднородного уравнения удовлетворяет условию y(a) = A, а одно из частных решений однородного уравнения условию $y_1(a) = 0$, то первое уравнение системы принимает вид

$$C_1 * 0 + C_2 y_2(a) + A = A (4)$$

и следовательно $C_2=0$. Постоянную C_1 определяют из второго уравнения:

$$C_1 * y_1(b) + y(b) = B \tag{5}$$

Рассмотрим его сеточный аналог. Для этого разобьем отрезок [a,b] на n частей точками $x_0,x_1...,x_n$, где $x_i=a+ih,h=(b-a)/n$,

а производные в уравнении во всех внутренних точках заменим их разностными аналогами

$$y_i' = (y_{i+1} - y_{i-1})/2h, y_i'' = (y_{i+1} - 2y_i + y_{i+1})/h^2$$
 (6)

Подставив эти разностные аналоги в исходное уравнение, получим систему алгебраических уравнений для неизвестных y_i :

$$-y_{i-1} + (2 + hp(x_i))y_i - y_{i+1} = hf(x_i), \quad i = 1, 2, \dots, n-1$$

Решая эту систему вместе с граничными условиями $y_0 = A$ и $y_n = B$, получим численное решение краевой задачи.

Практическая реализация:

Листинг 1: Тригонометрическая интерполяция функции

```
import numpy as np
  import matplotlib.pyplot as plt
3
4
  def f(x, y, z):
       return z, 2 * z - y + 3 * np.exp(x)
6
7
8
   def solve_shooting_method(a, b, h, alpha, beta):
9
       n = int((b - a) / h) + 1
10
11
       x = np.linspace(a, b, n)
12
       y = np.zeros(n)
       z = np.zeros(n)
13
       y[0] = alpha
14
       z[0] = beta
15
16
       for i in range(1, n):
17
           k1, l1 = f(x[i - 1], y[i - 1], z[i - 1])
18
           k2, 12 = f(x[i - 1] + h / 2, y[i - 1] + h / 2 * k1, z[i - 1] -
19
           k3, 13 = f(x[i - 1] + h / 2, y[i - 1] + h / 2 * k2, z[i - 1] -
20
           k4, 14 = f(x[i - 1] + h, y[i - 1] + h * k3, z[i - 1] + h * 13)
21
22
           y[i] = y[i - 1] + h / 6 * (k1 + 2 * k2 + 2 * k3 + k4)
```


- (а) представление решения метода стрельбы
- (b) Аналитическое представление решения

Рис. 1: Графическое представление

```
z[i] = z[i - 1] + h / 6 * (11 + 2 * 12 + 2 * 13 + 14)
23
24
25
       return x, y
26
27
   alpha = 2
28
   beta = 3
29
30
  x, y = solve\_shooting\_method(0, 1, 0.05, alpha, beta)
31
32
   print("x =", x)
   print("y =", y)
33
34
  plt.plot(x, y)
35
  plt.xlabel('x')
  plt.ylabel('y')
37
38 plt.title('shooting method y'\' - 2y\' + y = 3*exp(x)')
   plt.grid(True)
  plt.show()
```

Результаты:

x	у (метод стрельбы)	у (аналитическое)	Погрешность
0.000000	2.000000	2.000000	0.000000
0.050000	2.159047	2.159048	0.000001
0.100000	2.337436	2.337436	0.000000
0.150000	2.537155	2.537155	0.000000
0.200000	2.760370	2.760370	0.000000
0.250000	3.009435	3.009434	0.000001
0.300000	3.286905	3.286906	0.000001
0.350000	3.595561	3.595562	0.000001
0.400000	3.938416	3.938417	0.000001
0.450000	4.318739	4.318740	0.000001
0.500000	4.740072	4.740073	0.000001
0.550000	5.206258	5.206259	0.000001
0.600000	5.721452	5.721453	0.000001
0.650000	6.290156	6.290157	0.000001
0.700000	6.917240	6.917241	0.000001
0.750000	7.607968	7.607969	0.000001
0.800000	8.368033	8.368034	0.000001
0.850000	9.203585	9.203586	0.000001
0.900000	10.121266	10.121267	0.000001
0.950000	11.128248	11.128248	0.000001
1.000000	12.232268	12.232268	0.000000

Выводы:

В ходе лабораторной работы был реализован алгоритм метода стрельбы и вычислены значения функции у(х) для различных значений х на заданном интервале. При сравнении полученных значений с аналитическим решением получена погрешность, которая оказалась практически равной нулю (0.000001). Это означает, что приближенное решение почти совпадает с точным решением задачи.

Метод стрельбы является эффективным численным методом для решения краевых задач для линейных дифференциальных уравнений второго порядка. Он позволяет найти приближенное решение с высокой точностью, особенно при использовании достаточно малого

шага итерации.