Introduction to ComplexHeatmap

BRP seminar

Yuri Kotliarov

November 21, 2023

ComplexHeatmap package

- Powerful visualization method for revealing associations between multiple sources of information
- The richest toolset for constructing highly customizable heatmaps
- Modular design
- Automatically concatenates a list of heatmaps with proper row/column ordering
- Automatic legends
- Comprehensive annotations and decorations
- Additional functions and add-on packages for specific visualization tasks

Examples

More Examples

Visualization of the association between DNA methylation, gene expression, and related genomic features

Installation

Install a stable version from Bioconductor:

```
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
if (!requireNamespace("ComplexHeatmap", quietly = TRUE))
BiocManager::install("ComplexHeatmap")
```

or the most up-to-date version from github:

```
1 if (!requireNamespace("ComplexHeatmap", quietly = TRUE))
2 devtools::install_github("jokergoo/ComplexHeatmap")
```

Load the ComplexHeatmap package:

```
1 library(ComplexHeatmap)
```

Three major classes

- Heatmap defines a complete heatmap with multiple components
- HeatmapAnnotation defines a list of annotations with specific graphics
- *HeatmapList* manages a list of heatmaps and heatmap annotations. It automatically adjusts the correspondence of rows or columns in multiple heatmaps and annotations

Ь

Modular design

Generate input matrix with random data

```
1 set.seed(123)
2 \text{ nr1} = 4; \text{nr2} = 8; \text{nr3} = 6; \text{nr} = \text{nr1} + \text{nr2} + \text{nr3}
 3 \text{ nc1} = 6; nc2 = 8; nc3 = 10; nc = nc1 + nc2 + nc3
 4 mat = cbind(rbind(matrix(rnorm(nr1*nc1, mean = 1, sd = 0.5), nrow = nr1),
                      matrix(rnorm(nr2*nc1, mean = 0, sd = 0.5), nrow = nr2),
                     matrix(rnorm(nr3*nc1, mean = 0, sd = 0.5), nrow = nr3)),
                rbind(matrix(rnorm(nr1*nc2, mean = 0, sd = 0.5), nrow = nr1),
                      matrix(rnorm(nr2*nc2, mean = 1, sd = 0.5), nrow = nr2),
                      matrix(rnorm(nr3*nc2, mean = 0, sd = 0.5), nrow = nr3)),
                rbind(matrix(rnorm(nr1*nc3, mean = 0.5, sd = 0.5), nrow = nr1),
                      matrix(rnorm(nr2*nc3, mean = 0.5, sd = 0.5), nrow = nr2),
                      matrix(rnorm(nr3*nc3, mean = 1, sd = 0.5), nrow = nr3))
14 mat = mat[sample(nr, nr), sample(nc, nc)] # random shuffle rows and columns
15 rownames(mat) = paste0("row", seq len(nr))
16 colnames(mat) = paste0("column", seq len(nc))
17 dim(mat)
```

[1] 18 24

ŏ

A Single Heatmap

Changing heatmap colors

```
1 library(circlize)
 2 col_fun = colorRamp2(c(-2, 0, 2), c("green", "white", "red"))
 3 col fun(seq(-3, 3))
[1] "#00FF00FF" "#00FF00FF" "#B1FF9AFF" "#FFFFFFFF" "#FF9E81FF" "#FF0000FF"
[7] "#FF0000FF"
  1 Heatmap(mat, name = "value", col = col fun)
                                                                                                 row10
                                                                                                 row7
                                                                                                  row18
                                                                                                  row5
                                                                                                 row2
                                                                                                  row17
                                                                                                  row4
                                                                                                 row16 == 2
                                                                                                 row13
                                                                                                 row12
                                                                                                 row9
                                                                                                 row8
                                                                                                 row11
                                                                                                 row15
                                                                                                 row14
                                                                                                 row1
                                                                                                 row3
                                       column19
                                                                                          column7
                         column11
                                column20
                                            column8
                                                                           column6
                                                                               column12
                                    column4
                                                column21
                                                    column9
                                                           column22
                                                               column17
                                                                   column15
                                                                       column2
```

Binary matrix

```
1 binary mat = + (mat > 1)
 3 \text{ colors} = c("0" = "grey90",
              "1" = "navy")
 6 hm = Heatmap (binary mat,
           col = colors,
           row title = "Row title",
           row title side = "left",
10
           column title = "Column title",
11
           column title side = "bottom",
           heatmap legend param = list(
12
13
                   title = "value > 1", at = 0:1,
14
                   labels = c("No", "Yes")))
15 draw(hm)
```


Combining Heatmaps with binary data

We can customize the heatmap cells with *cell_fun* argument. Let's indicate values larger than 1.

The matrix doesn't need to be the same. For example, we can use matrix of p-values to show values with there significance (even with multiple levels - * ** ***).

Show values on the heatmap

The similar technique can be used to visulize matrix values (for a relatively small matrix)

See also laver fun argument for additional heatman customization techniques.

Hint: long row/column names


```
1 Heatmap(mat2,
2          row_names_max_width =
3          max_text_width(rownames(mat2)))
```


Row and column ordering (without clustering)

No clustering (original order)

```
1 Heatmap(mat,
2    name = "value",
3    cluster_rows = F,
4    cluster_columns = F,
5    column_title = "No clustering, original matrix order")
```


Order by vectors

```
1 row_vec = sample(1:nrow(mat))
2 column_vec = sample(1:ncol(mat))
3 Heatmap(mat, name = "value",
4 row_order = row_vec, column_order = column_vec,
5 column_title = "Order by vectors")
```


Clustering and splitting

You can specify clustering distance (*clustering_distance_X*) and linkage method (*clustering_method_X*), dendrogramm reordering function (*X_dend_reorder*) as well as a different clustering function (*cluster_X*).

Default clustering

```
1 Heatmap(mat, name = "value",
2 cluster_rows = T, cluster_columns = T)
```


Split dendrogramm branches

```
1 Heatmap(mat, name = "value",
2 row_split = 2, column_split = 3)
```


Splitting the Heatmap

K-mean clustering

Categorical vector(s)

```
1 row_group = rep(c("A", "B"), 9)
2 column_group = rep(c("C", "D"), 12)
3 Heatmap(mat, name = "value",
4 row_split = row_group, column_split = column_group)
```


Heatmaps concatenation

Horizontal concatenation

The number of rows of all matrices have to match.

```
1 Heatmap(mat, name = "mat") +
2 Heatmap(binary_mat, name = ">1")
```


Vertical concatenation

The number of columns of all matrices have to match.

```
1 Heatmap(mat, name = "mat") %v%
2 Heatmap(binary_mat, name = ">1")
```


Heatmap annotations

Use *HeatmapAnnotation* function for column annotation, and *rowAnnotation* - for row annotation.

Data frame as data source for color bar annotation

Helper functions and legends

Instead of data frame you can use vectors and matrices (numeric or categorical).

For annotations other than color bar (anno_simple) the legends need to be created explicitly, but it's pretty simple.

```
1 df.samp$Age group = ifelse(
     df.samp$Age > 50, "older", "younger")
 3 col sex = c(F = "pink", M = "lightblue")
 4 col age = c(younger = "gold", older = "darkred")
 6 ha = HeatmapAnnotation(
     Sex = df.samp$Sex, col = list(Sex = col sex),
     Age = anno points(df.samp$Age,
             gp = gpar(col = col age[df.samp$Age group]),
             height = unit(20, "mm")))
11 ha row = rowAnnotation(bp = anno boxplot(mat))
13 lgd list = list(
     Legend(labels = c("younger", "older"),
15
       title = "Age Group", type = "points", pch = 16,
       legend gp = gpar(col = col age)))
16
17
18 hm = Heatmap(mat, name = "value",
```


Annotation helper functions

- anno_simple (default)
- anno_points
- anno_lines
- anno_barplot
- anno_numeric
- anno_text
- anno_textbox

- anno_boxplot
- anno_histogram
- anno_density
- anno_joyplot
- anno_horizon
- anno_summary
- anno_image

- anno_empty
- anno_block
- anno_customize
- anno_mark
- anno_link
- anno_zoom

Examples of annotation

More advanced annotations

Heatmap Decoration

After Heatmap is created you can still add some decorating elements (text, lines, symbols, etc.) to different parts of the Heatmap (heatmap body, annotations, dendrograms, titles, row and column names).

- decorate_heatmap_body
- decorate_annotation
- decorate_dend
- decorate_title
- decorate_dimnames
- ...

Example: Measles cases in US

Oncoprint - visualizaing genomic alterations

```
1 mut = read.table(textConnection(
 2 "s1,s2,s3
 3 gl, snv; indel, snv, indel
 4 g2,,snv;indel,
 5 g3, snv,, indel; snv"),
 6 row.names = 1, header = TRUE,
 7 sep = ",", stringsAsFactors = FALSE)
 9 mut = as.matrix(mut)
10 mut
                          s3
   s1
               s2
g1 "snv; indel" "snv"
                           "indel"
               "snv; indel" ""
                           "indel;snv"
 1 get type fun = function(x)
 2 strsplit(x, ";")[[1]]
 3 get type fun(mut[1, 1])
[1] "snv" "indel"
```

```
1 col = c(snv = "seagreen", indel = "blue")
2 alter_fun = list(
3    snv = function(x, y, w, h)
4       grid.rect(x, y, w*0.9, h*0.9,
5       gp = gpar(fill = col["snv"], col = NA)),
6    indel = function(x, y, w, h)
7       grid.rect(x, y, w*0.9, h*0.4,
8       gp = gpar(fill = col["indel"], col = NA))
9    )
10 oncoPrint(mut, alter_fun = alter_fun, col = col)
```


Oncoprint for AYA project

This Oncoprint represents 533 NCI-MATCH Breast cancer patients (including 25 AYA patients below 40 y.o.) and 26 oncogenic genes that were mutated in 6 or more patients.

More ComplexHeatmap plots

- C. The lung adenocarcinoma carcinoma dataset from cBioPortal (a subset)
- D. The H3K4me3 ChIP-seq peaks from six human tissues are from the Roadman project

More ComplexHeatmap plots

Values in the first 10 columns are generated from the normal distribution, and values in the second 10 columns are generated from the uniform distribution.

Related packages

- InteractiveComplexHeatmap converts a Heatmap into a Shiny app
- simplifyEnrichment summarizes gene lists with gene enrichment analysis
- EnrichedHeatmap visualizes the enrichment of a certain type of genomic signal on a list of genomic features of interest. For example, how chromatin modifications are enriched around gene TSSs, or how DNA is lowly methylated around CGIs.

Some Helper packages

- circlize color functions
- *cluster*, *seration*, *biclust* additional clustering algorithms
- *dendextend* color and other rendering options for dendrograms
- dendsort dendrogram reordering
- magick rastering Heatmap
- *gridtext* customized text annotation

Reference and Help

To learn about ComplexHeatmap and related packages see https://jokergoo.github.io/ComplexHeatmap-reference/book.

Github: https://github.com/jokergoo/ComplexHeatmap

Ask questions, report bugs in the issues section of the Github.

Citations

Zuguang Gu, et al., Complex heatmaps reveal patterns and correlations in multidimensional genomic data, Bioinformatics, 2016.

Zuguang Gu. Complex Heatmap Visualization, iMeta, 2022.