

Data Science e Machine Learning Um dia na vida de um cientista de dados

Aishameriane Schmidt

Estatista - UFRGS Mestranda em Economia - UFSC

Matheus Magrin

Cientista da Computação - UFSC Cientista de dados - Bravi

Agenda

O que significa ser "cientista de dados"?

- O mito do datacórnio
- Tipos de cientistas de dados
- Conhecimentos úteis e onde obtê-los

Guia prático para análise de dados

- Entendendo a dor do cliente
- Enfrentando a horda de dados
- Transformando hipóteses em análises
- Interpretando resultados

Agenda

O que significa ser "cientista de dados"?

- O mito do datacórnio
- Tipos de cientistas de dados
- · Conhecimentos úteis e onde obtê-lo

Guia prático para análise de dados

- Entendendo a dor do cliente
- Enfrentando a horda de dados
- Transformando hipóteses em análises
- Interpretando resultados

Quem fala

Aishameriane

- Estatista UFRGS (2010)
- RBS, Cassol, Chaordic, Meritt, Bravi
- Economista to be UDESC (201?)
- Mestranda em Economia com Ênfase em Finanças e Mercado de Capitais -UFSC (2019)
- Não poderia viver de programação

Matheus

- Cientista da Computação UFSC (2013)
- Laboratório de Sistemas de Conhecimento/UFSC, Bravi
- Desenvolvedor Bravi (2013~14)
- Cientista de dados Bravi (2014~hoje)

Quem fala

Aishameriane

- Estatista UFRGS (2010)
- RBS, Cassol, Chaordic, Meritt, Bravi
- Economista to be UDESC (201?)
- Mestranda em Economia com Ênfase em Finanças e Mercado de Capitais -UFSC (2019)
- Não poderia viver de programação

Matheus

- Cientista da Computação UFSC (2013)
- Laboratório de Sistemas de Conhecimento/UFSC, Bravi
- Desenvolvedor Bravi (2013~14)
- Cientista de dados Bravi (2014~hoje)

Quem fala

Aishameriane

- Estatista UFRGS (2010)
- RBS, Cassol, Chaordic, Meritt, B
- Economista to b **DESC** (20)
- Ambos já Mestranda em Ed desenvolveram UFSC (2019) atividades na área de
- Não pou

Matheus

- Cienc
- Laboratório
- Desenve
- data science Cientista de dad ₁~hoje,

ercado de Capitais -

Bravi

O que são? - O que comem? - Onde vivem?

One problem with job post data is that "data scientist" is a loosey-goosey term.

• Barb Darrow, Fortune Tech, 2015.

One problem with job post data is that "data scientist" is a loosey-goosey term.

Generally speaking, practitioners are expected to know statistical analysis, predictive modeling and programming.

Oh, and having a certain **artistic flair** to guide how results are visualized is a definite plus.

• Barb Darrow, Fortune Tech, 2015.

One problem with job post data is that "data scientist" is a loosey-goosey term.

Generally speaking, practitioners are expected to know statistical analysis, predictive modeling and programming.

Oh, and having a certain **artistic flair** to guide how results are visualized is a definite plus.

But ask a dozen hiring managers and you may get a dozen variations on that theme.

• Barb Darrow, Fortune Tech, 2015.

Disponível em: http://fortune.com/2015/05/21/data-science-white-hot/

Recomendamos também:

O mito do datacórnio

O mito do datacórnio

Os tipos de cientistas de dados

Datacornius Statisticus

- Conhecimentos de métodos estatísticos
- Algum conhecimento em programação
- Conhecimentos de álgebra linear e cálculo
- Foco em conjuntos menores de dados

Os tipos de cientistas de dados

Datacornius Machinus Learningus

- Conhecimentos de programação
- Conhecimentos em técnicas de aprendizagem de máquina
- Foco em técnicas de análise para grandes volumes de dados
- Algum conhecimento em matemática e estatística

Os tipos de cientistas de dados

Datacornius Developeurs

- Conhecimentos de programação, estruturas de dados, importação e exportação de bancos de dados
- Conhecimentos em Big Data
- Algum conhecimento de matemática e/ou estatística

Os tipos de cientistas de dados

Datacornius Gerentus

- Conhecimento do negócio
- Conhecimento em gerenciamento de projetos e organização de equipes
- Meio de campo entre o time técnico e cliente final

Os tipos de cientistas de dados

Datacornius spp.

- Os papéis não são fechados e nem não-intercambiáveis
 - Podem haver pôneis com mistura de mais de uma espécie de datacórnio!

Como buscar conhecimento?

Como buscar conhecimento?

"Quem está pensando em cancelar a assinatura?"

"Quem é mais propenso a fazer uma assinatura?"
"Quanto tempo o cliente precisa ser pagante para
começar a dar retorno sobre o gasto de aquisição?'
"Quanto do aumento de clientes desde a semana
passada pode ser atribuído à nova campanha de
marketing?"

"Quem está pensando em cancelar a assinatura?"

"Quem é mais propenso a fazer uma assinatura?"

"Quanto tempo o cliente precisa ser pagante para começar a dar retorno sobre o gasto de aquisição?" "Quanto do aumento de clientes desde a semana passada pode ser atribuído à nova campanha de marketing?"

"Quem está pensando em cancelar a assinatura?"

"Quem é mais propenso a fazer uma assinatura?"

"Quanto tempo o cliente precisa ser pagante para começar a dar retorno sobre o gasto de aquisição?"

"Quanto do aumento de clientes desde a semana passada pode ser atribuído à nova campanha de marketing?"

"Quem está pensando em cancelar a assinatura?"

"Quem é mais propenso a fazer uma assinatura?"

"Quanto tempo o cliente precisa ser pagante para começar a dar retorno sobre o gasto de aquisição?"

"Quanto do aumento de clientes desde a semana passada pode ser atribuído à nova campanha de marketing?"

"Quem está propenso a se tornar inadimplente?"

"Qual a faixa de crédito que pode ser concedida para o cliente?"

"O que este cliente pode gostar, sendo que nem conheço ele?"

"Em qual momento preciso interagir com o cliente para fidelizá-lo?"

"Quem está propenso a se tornar inadimplente?"

"Qual a faixa de crédito que pode ser concedida para o cliente?"

"O que este cliente pode gostar, sendo que nem conheço ele?"

"Em qual momento preciso interagir com o cliente para fidelizá-lo?"

"Quem está propenso a se tornar inadimplente?"

"Qual a faixa de crédito que pode ser concedida para o cliente?"

"O que este cliente pode gostar, sendo que nem conheço ele?"

"Em qual momento preciso interagir com o cliente para fidelizá-lo?"

"Quem está propenso a se tornar inadimplente?"

"Qual a faixa de crédito que pode ser concedida para o cliente?"

"O que este cliente pode gostar, sendo que nem conheço ele?"

"Em qual momento preciso interagir com o cliente para fidelizá-lo?"

"Quem está propenso a se tornar inadimplente?"

"Qual a faixa de crédito que pode ser concedida para o cliente?"

"O que este cliente pode gostar, sendo que nem conheço ele?"

"Em qual momento preciso interagir com o cliente para fidelizá-lo?"

Guia prático de análise de dados

- Delimite o problema
- Explore os dados (estatísticas e visualizações)
- Faça a análise inferencial
- Como interpretar os resultados

Delimite o problema

1º Passo: Entenda a dor da pessoa que é sua cliente

Delimite o problema

EXPECTATIVA:

- Objetivo:

Saber quaís clientes da loja X tem rísco de não pagar uma ou maís parcelas no prazo de vencimento;

- Técnica:

Modelo de regressão logística;

 Variável no banco de dados:

PARCELA_ATRASO == 1

Delimite o problema

EXPECTATIVA:

- Objetivo: Saber quais clientes da loja X tem rísco de não pagar uma ou mais parcelas no prazo de vencimento; Técnica: Modelo de regressão logística; Variável no banco de dados: PARCELA_ATRASO == 1

realidade:

Explore os dados

Limpeza do banco de dados

Explore os dados

Limpeza do banco de dados

- Os dados dificilmente estarão prontos para análise;
- Muitas variáveis precisarão ser criadas:
 - Número de faltas no semestre é preciso somar as faltas de todos os dias letivos;
 - Acessou pelo menos uma vez o material virtual é necessário fazer checagem dos logins no sistema;
 - Reprovação anterior na mesma matéria é preciso verificar se já houve matrícula na matéria e se houve reprovação (além disso verificar se a reprovação foi por nota ou por faltas);
 - etc

Limpeza do banco de dados

- Os dados dificilmente estarão prontos para análise;
- Muitas variáveis precisarão ser criadas:
 - Número de faltas no semestre
 - Acessou pelo menos uma vez o material virtual
 - Reprovação anterior na mesma matéria

Limpeza do banco de dados

- Os dados dificilmente estarão prontos para análise;
- Muitas variáveis precisarão ser criadas:
 - Número de faltas no semestre

É preciso somar as faltas de todos os dias letivos

Limpeza do banco de dados

- Os dados dificilmente estarão prontos para análise;
- Muitas variáveis precisarão ser criadas:
 - Número de faltas no semestre -É preciso somar as faltas de todos os dias letivos;
 - Acessou pelo menos uma vez o material virtual Necessário fazer checagem dos logins no sistema

Limpeza do banco de dados

- Os dados dificilmente estarão prontos para análise;
- Muitas variáveis precisarão ser criadas:
 - Número de faltas no semestre -É preciso somar as faltas de todos os dias letivos;
 - Acessou pelo menos uma vez o material virtual é Necessário fazer checagem dos logins no sistema;
 - Reprovação anterior na mesma matéria

É preciso verificar se já houve matrícula na matéria e se houve reprovação Além disso, verificar se a reprovação foi por nota ou por faltas

Entendimento das variáveis (dicas)

 Cuidado com as variáveis que se sobrescrevem: logs de sistema, acessos, etc.

- Cuidado com as variáveis que se sobrescrevem: logs de sistema, acessos, etc.
- Cuidado com variáveis que, por mudanças de versão no sistema, deixaram de ser utilizadas;

- Cuidado com as variáveis que se sobrescrevem: logs de sistema, acessos, etc.
- Cuidado com variáveis que, por mudanças de versão no sistema, deixaram de ser utilizadas;
- Pegue um caso "conhecido" e verifique se as informações das variáveis são consistentes com a realidade.

- Cuidado com as variáveis que se sobrescrevem: logs de sistema, acessos, etc.
- Cuidado com variáveis que, por mudanças de versão no sistema, deixaram de ser utilizadas;
- Pegue um caso "conhecido" e verifique se as informações das variáveis são consistentes com a realidade.
- Cuidado com dados que estão localizados no tempo

Entendimento das variáveis (dicas)

 Certifique-se de que haverá um prazo máximo para que suas dúvidas sejam resolvidas pelo cliente;

- Certifique-se de que haverá um prazo máximo para que suas dúvidas sejam resolvidas pelo cliente;
- Faça um registro das dúvidas e de quais foram as respostas dadas (e por quem foram dadas);

- Certifique-se de que haverá um prazo máximo para que suas dúvidas sejam resolvidas pelo cliente;
- Faça um registro das dúvidas e de quais foram as respostas dadas (e por quem foram dadas);
- Faça testes para verificar se a resposta dada é consistente com o que os dados falam;

FAREI A ANÁLISE SEM FAZER A DESCRITIVA FARELA ANÁLISE SEM FAZER A DESCRI ÃO FARELA ANÁLISE SEM FAZER A DESCRITIVA NÃO FAREI A ANÁLISE SEM FAZER A DESCRITIVA ANTES O FAREI A ANÁLISE SEM FAZER A NÃO FAREI A ANÁLISE SEM FAZER A DESCRITI

nafilio.com

Quarteto de Anscombe

Quarteto de Anscombe

Propriedade	Valor
Média de x	9
Variância de x	11
Média de y	7,50
Variância de y	4,125
Correlação	0,816
Regressão linear	y = 3,0 + 0,50x

Meet the Datasaurus Dozen!

Matejka, J.; Fitzmaurice, G. Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics Through Simulated Annealing. ACM SIGCHI on Human Factors in Computing Systems. https://www.autodeskresearch.com/publications/samestats

Cuidado com os zeros!

Cuidado com os valores discrepantes!

Técnicas de Análise Descritiva

- Medidas descritivas: Média, moda, mediana, desvio padrão, correlações

Técnicas de Análise Descritiva

- Medidas descritivas: Média, moda, mediana, desvio padrão, correlações

Técnicas de Análise Descritiva

- Medidas descritivas: Média, moda, mediana, desvio padrão, correlações
- Gráficos:

Boxplot, histogramas (variáveis quantitativas)
Gráficos de barra e pizzas (variáveis qualitativas)

Técnicas de Análise Descritiva

- Medidas descritivas:
 Média, moda, mediana, desvio padrão, correlações
- Gráficos:

Boxplot, histogramas (variáveis quantitativas) Gráficos de barra e pizzas (variáveis qualitativas)

- Tabelas de frequências
- Tabelas cruzadas

O problema fundamental da inferência estatística é inferir, através das estimativas obtidas com base em uma amostra, características dos parâmetros populacionais.

Técnicas Inferenciais

Testes de hipóteses Análise de Regressão Séries Temporais Métodos Causais Análise de Experimentos Etc

Schmidt, A.; Boito, F. Z.; Pilla, L. L..

Fundamentos de Estatística para Análise de Desempenho

Mini curso da 17ª Escola Regional de Alto Desempenho - ERAD-RS 2017

Técnicas Inferenciais

Testes de hipóteses
Análise de Regressão
Séries Temporais
Métodos Causais
Análise de Experimentos
Etc

Abordagem Bayesiana x Clássica

Schmidt, A.; Boito, F. Z.; Pilla, L. L..

Fundamentos de Estatística para Análise de Desempenho

Mini curso da 17ª Escola Regional de Alto Desempenho - ERAD-RS 2017

Técnicas Inferenciais

Testes de hipóteses
Análise de Regressão
Séries Temporais
Métodos Causais
Análise de Experimentos
Etc

Abordagem Bayesiana x Clássica

Métodos Paramétricos e Não-paramétricos

Fonte:

Schmidt, A.; Boito, F. Z.; Pilla, L. L..

Fundamentos de Estatística para Análise de Desempenho

Mini curso da 17ª Escola Regional de Alto Desempenho - ERAD-RS 2017

Algoritmos de ML

- Supervisionados
 - Classificação
 - Regressão
- Não supervisionados
 - Recomendação
 - Clustering
 - Redução de dimensionalidade

Algoritmos de ML

- Supervisionados
 - Classificação
 - Regressão
- Não supervisionados
 - Recomendação
 - Clustering
 - Redução de dimensionalidade

Entenda seu problema e escolha as suas armas

A sua arma mais importante...

Im()

KNN, Random Forests

Algorítmos genéticos, Estatística Avançada Programação

Combinar ferramentas de acordo com seu problema

inglip com

Suas conclusões devem ser consistentes de acordo com o que os dados permitem concluir e as técnicas informam

MY HOBBY: EXTRAPOLATING

Fonte: XKCD

https://xkcd.com/605/

- A etapa de limpeza dos dados com as decisões tomadas;
- Etapa de análise descritiva, novamente com as decisões tomadas e achados relevantes (e aqueles que não pareceram relevantes também!);
- A construção do modelo, com as principais tentativas e a versão final;
 - Inclua a interpretação, quando houver;
 - Se for um modelo preditivo/classificatório, inclua a etapa de validação e resultados relacionados;
- Faça considerações a respeito dos possíveis impactos que as decisões tomadas (de inclusão/exclusão de variáveis, tipo de modelo, limitações nos dados) tem nos resultados obtidos e nas extrapolações

- A etapa de limpeza dos dados com as decisões tomadas;
- Etapa de análise descritiva, novamente com as decisões tomadas e achados relevantes (e aqueles que não pareceram relevantes também!);
- A construção do modelo, com as principais tentativas e a versão final;
 - Inclua a interpretação, quando houver;
 - Se for um modelo preditivo/classificatório, inclua a etapa de validação e resultados relacionados;
- Faça considerações a respeito dos possíveis impactos que as decisões tomadas (de inclusão/exclusão de variáveis, tipo de modelo, limitações nos dados) tem nos resultados obtidos e nas extrapolações

- A etapa de limpeza dos dados com as decisões tomadas;
- Etapa de análise descritiva, novamente com as decisões tomadas e achados relevantes (e aqueles que não pareceram relevantes também!);
- A construção do modelo, com as principais tentativas e a versão final:
 - Inclua a interpretação, quando houver;
 - Se for um modelo preditivo/classificatório, inclua a etapa de validação e resultados relacionados;

- A etapa de limpeza dos dados com as decisões tomadas;
- Etapa de análise descritiva, novamente com as decisões tomadas e achados relevantes (e aqueles que não pareceram relevantes também!);
- A construção do modelo, com as principais tentativas e a versão final;
 - Inclua a interpretação, quando houver;
 - Se for um modelo preditivo/classificatório, inclua a etapa de validação e resultados relacionados;
- Faça considerações a respeito dos possíveis impactos que as decisões tomadas a respeito dos dados tenham sobre os resultados obtidos e nas extrapolações.

 Faça uma pré-apresentação mais detalhada para a equipe técnica do cliente, para alinhar resultados e corrigir pequenos problemas;

- Faça uma pré-apresentação mais detalhada para a equipe técnica do cliente, para alinhar resultados e corrigir pequenos problemas;
 - Se necessário, refaça essa pré-apresentação com pontos que não ficaram bons da primeira vez;

- Faça uma pré-apresentação mais detalhada para a equipe técnica do cliente, para alinhar resultados e corrigir pequenos problemas;
 - Se necessário, refaça essa pré-apresentação com pontos que não ficaram bons da primeira vez;
- Prepare uma apresentação final, ressaltando os pontos principais e contando a história para o cliente

- Faça uma pré-apresentação mais detalhada para a equipe técnica do cliente, para alinhar resultados e corrigir pequenos problemas;
 - Se necessário, refaça essa pré-apresentação com pontos que não ficaram bons da primeira vez;
- Prepare uma apresentação final, ressaltando os pontos principais e contando a história para o cliente - se possível envolva a equipe técnica da empresa cliente junto;

- Faça uma pré-apresentação mais detalhada para a equipe técnica do cliente, para alinhar resultados e corrigir pequenos problemas;
 - Se necessário, refaça essa pré-apresentação com pontos que não ficaram bons da primeira vez;
- Prepare uma apresentação final, ressaltando os pontos principais e contando a história para o cliente - se possível envolva a equipe técnica da empresa cliente junto;
 - Deixe os detalhes sórdidos para seu relatório técnico

 Dependendo do contrato, entregue as bases de dados transformadas e códigos finais;

- Dependendo do contrato, entregue as bases de dados transformadas e códigos finais;
- Lembre-se de especificar no contrato inicial a periodicidade de avaliação de performance do modelo além dos custos para atualização do modelo.

 Data Science não é: matemática ou estatística ou programação ou machine learning;

- Data Science não é: matemática ou estatística ou programação ou machine learning;
 - É um conjunto de técnicas de diversas áreas que possibilita trazer luz sobre situações reais quando temos dados disponíveis;
 - Você não precisa dominar tudo!

- Data Science não é: matemática ou estatística ou programação ou machine learning;
 - É um conjunto de técnicas de diversas áreas que possibilita trazer luz sobre situações reais quando temos dados disponíveis;
 - Você não precisa dominar tudo!
- Não existe receita de bolo (sry about that)

Registre tudo em um daily-log da equipe;

- Registre tudo em um daily-log da equipe;
- A skill mais importante é a capacidade de transformar um problema do cotidiano em uma pergunta de data science;

- Registre tudo em um daily-log da equipe;
- A skill mais importante é a capacidade de transformar um problema do cotidiano em uma pergunta de data science;
- Valorize o trabalho em equipe e discuta os resultados constantemente.

MUITO OBRIGADO!

aishameriane@gmail.com

braunmagrin@gmail.com

