

Предсказание временных рядов

Лекция 1

Познакомимся!

Понизяйкин Владислав tg: @ArChanDD

Ушаков Михаил tg: @MuwecTb

Не теряйтесь!

tg-канал

github-репозиторий

Программа курса

- 5 лекций + практик
- 1 соревнование

Глава 1

Кто такие временные ряды и зачем они нужны?

1. Котировка акций

2. Численность населения Санкт-Петербурга

3. Миграционный прирост

4. Изменение температуры в Москве

Определение

Временной ряд - это данные, последовательно собранные в регулярные промежутки времени.

Определение

Временной ряд - это данные, последовательно собранные в регулярные промежутки времени.

Задача: продолжить имеющийся временной ряд в будущее - в то время, о котором мы мало что знаем (или нет?).

Фактически, нужно угадать функцию, которая его задает.

Еще пример

Какая функция задает этот ряд?

Еще пример

Какая функция задает этот ряд? Это y=x+sin(x)

Еще пример, теперь с шумом

А если построить график $y = x + \sin(x) + U$ где U имеет нормальное распределение N(0,1)?

Еще пример, теперь с шумом

А если построить график $y = x + \sin(x) + U$ где U имеет нормальное распределение N(0,1)?

И что делать?

Функция рандомная, получается угадать ее не выйдет?(

И что делать?

Функция рандомная, получается угадать ее не выйдет?(Нет, но ведь ее можно *приблизить*!

Приблизим!

Очевидно, что y = x + sin(x) + U приближается функцией y = x + sin(x)

Глава 2

Математическая модель временных рядов

Формальные определения

Определение. Временной ряд $\{x_t\}$ называется стационарным (в широком смысле), если

- 1. $\mathsf{E}x_t \equiv \mathrm{const}$ (среднее постоянно во времени);
- 2. $cov(x_t, x_{t+h}) = \gamma(h)$ (ковариация зависит только от лага h).

Формальные определения

Определение. Функция $\gamma(h)$ как функция от лаговой переменной, называется автоковариационной функцией временного ряда.

Формальные определения

Определение. Функция $\rho(h) = \operatorname{corr}(x_t, x_{t+h})$ называется автокорреляционной функцией (autocorrelation function, ACF) стационарного временного ряда.

Предложение. Для произвольного стационарного ряда существует предел автокорреляционной функции

$$\lim_{h \to \pm \infty} \rho(h) = 0.$$

Глава 3

Простые способы предсказать временной ряд

Какая модель будет считаться "наивной"?

^{* &}quot;Naive model" - наивная модель, обычно самая простая, очевидная, и в большинстве случаев бесполезная модель, которая тем не менее, почему-то существует.

Какая модель будет считаться "наивной"?

Самый простой способ сказать, какое значение будет 3 марта 2024 года - посмотреть, каким было значение 3 марта 2023 года.

To есть - y[i] = y[i-lag]

^{* &}quot;Naive model" - наивная модель, обычно самая простая, очевидная, и в большинстве случаев бесполезная модель, которая тем не менее, почему-то существует.

Какие подводные? Почему эта модель не очень хороша?

Какие подводные? Почему эта модель не очень хороша?

Плюсы:

- Очень просто
- Ничего обучать не нужно

Минусы:

- Никакого обобщения
- Не важен контекст, важно только что было *lag* шагов назад

Посмотрим на изменение стоимости акций *Visa*

Наивная модель не сработает - почему?

Посмотрим на изменение стоимости акций *Visa*

Наивная модель не сработает - почему? *Тренд**

^{*} тренд - глобальная или локальная тенденция изменения чего-либо (в нашем случае цены)

Посмотрим на изменение стоимости акций *Visa*

Наивная модель не сработает - почему? *Тренд**

^{*} тренд - глобальная или локальная тенденция изменения чего-либо (в нашем случае цены)

Вопрос: С какой скоростью растет цена?

Вопрос: С какой скоростью растет цена?

Вопрос 2: Зная это, мы можем как-то улучшить предсказание?

Вопрос 2: Зная это, мы можем как-то улучшить предсказание?

Ответ: Да, построим линейную регрессию!

Задача

Дано: набор точек (x,y)

Нужно: построить наиболее близкую к ним прямую вида y=kx+b

Задача

Дано: набор точек (x,y)

Нужно: построить наиболее близкую к ним прямую вида y=kx+b

Оптимизация: MSE (МНК)

Задача

Дано: набор точек (x,y)

Нужно: построить наиболее близкую к ним прямую вида y=kx+b

Оптимизация: MSE (МНК)

Для нашего примера, кстати, все работает хорошо!

Вопрос: что мы взяли за 🗶 ?

Для нашего примера, кстати, все работает хорошо!

Вопрос: что мы взяли за х?

Почему получилось? Преобразование координаты

Почему так можно делать? Потому что есть *сезонность*

А можно сделать лучше?

А можно сделать лучше?

Добавим экзогенные переменные

А можно сделать лучше?

Добавим экзогенные переменные

To есть сделаем из y = kx

$$y = \sum_{i=1}^{j} k_i x_i$$

Как итог:

Плюсы:

- Все еще несложно
- Много способов улучшить предсказание

Минусы:

- Все еще не учитываем контекст
- Очень много нужно сделать руками, чтобы получить хороший результат

Замечания

Замечание 1

• Заметили, что действительно существует предел автокорреляционной функции? В этом и беда...

Замечания

Замечание 1

• Заметили, что действительно существует предел автокорреляционной функции? В этом и беда...

Замечание 2

• Линейная регрессия сама по себе не особо сильная модель, но очень крутой инструмент! Мы с вами это еще увидим!

Вопросы?

