3.4

Bases et repères de l'espace

Maths Spé terminale - JB Duthoit

Base et repère de l'espace 3.4.1

Définition

- On appelle base de l'espace tout triplet $(\vec{i}, \vec{j}, \vec{k})$ de vecteurs non coplanaires.
- On appelle **repère de l'espace** tout quadruplet $(O, \vec{i}, \vec{j}, \vec{k})$ où O est un point de l'espace et $(\vec{i}, \vec{j}, \vec{k})$ une base de l'espace.

Remarque

Dit autrement, trois vecteurs constituent une base de l'espace si et seulement si chacun de ces trois vecteurs n'est pas une combinaison linéaire des deux autres, c'est-à-dire si et seulement si les trois vecteurs sont linéairement indépendants.

Remarque

Le repère de l'espace $(O, \vec{i}, \vec{j}, \vec{k})$ est orthonormal si $\vec{i} \perp \vec{j}, \vec{i} \perp \vec{k}, \vec{j} \perp \vec{k}$ et $\|\vec{i}\| = \||\vec{j}\| = \|\vec{k}\| = 1$

Coordonnées d'un vecteur de l'espace 3.4.2

Propriété

Soit $(\vec{i}, \vec{j}, \vec{k})$ une base de l'espace. Pour tout vecteur \vec{u} de l'espace, il existe un triplet (x; y; z) de réels et un seul, tel que $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$.

Définition

Les réels x, y, z sont les coordonnées (ou composantes) du vecteur \vec{u} dans la base

On notera $\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ ou bien $\vec{u}(x; y; z)$.

Exercice 3.15

Dans la base $(\vec{i}\,,\vec{j}\,,\vec{k}\,)$, on considère les points N,R,Q et S, comme indiqués sur la figure ci-dessous :

Lire les coordonnées des vecteurs \overrightarrow{RN} , \overrightarrow{NP} , \overrightarrow{QP} , \overrightarrow{QR} et \overrightarrow{QN}

Propriété

Soit $\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et soit $\vec{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ deux vecteurs de l'espace dans une base du plan.

• $\vec{u} = \vec{v}$ équivaut à $\begin{cases} x = x' \\ y = y' \\ z = z' \end{cases}$

•
$$\vec{u} = \vec{v}$$
 équivant à
$$\begin{cases} x = x' \\ y = y' \\ z = z' \end{cases}$$

• Le vecteur
$$\vec{u} + \vec{v}$$
 a pour coordonnées $\begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$

• Si
$$\alpha$$
 est un réel, alors le vecteur $\alpha \vec{u}$ a pour coordonnées $\begin{pmatrix} \alpha x \\ \alpha y \\ \alpha z \end{pmatrix}$

Savoir-Faire 3.7

Savoir montrer que des vecteurs forment une base de l'espace

Dans une base $(\vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les vecteurs $\vec{u} \begin{pmatrix} 1 \\ -3 \\ 5 \end{pmatrix}$, $\vec{v} \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$ et

$$\overrightarrow{w} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$$
.

Montrer que les vecteurs \vec{u} , \vec{v} et \vec{w} forment une base de l'espace.

Méthode:

Pour montrer que trois vecteurs \vec{u} , \vec{v} et \vec{w} forment une base de l'espace, il suffit de démontrer que l'égalité $a\overrightarrow{u}+b\overrightarrow{v}+c\overrightarrow{w}=\overrightarrow{0}$ implique a=b=c=0.

Exercice 3.16

Dans une base $(\vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les vecteurs $\vec{u} \begin{pmatrix} -5 \\ 6 \\ -4 \end{pmatrix}$, $\vec{v} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$ et $\vec{w} \begin{pmatrix} 0 \\ 3 \\ 5 \end{pmatrix}$.

- 1. Montrer que \vec{u} et \vec{v} forment une base d'un plan.
- 2. Montrer que les vecteurs \vec{u} , \vec{v} et \vec{w} forment une base de l'espace.

Exercice 3.17

Dans une base $(\vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les vecteurs $\vec{u} \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$, $\vec{v} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ et $\vec{w} \begin{pmatrix} 0 \\ -4 \\ -2 \end{pmatrix}$. Montrer que les vecteurs \vec{u} , \vec{v} et \vec{w} forment une base de l'espace.

cd o

Exercice 3.18

Dans une base $(\vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère les vecteurs $\vec{u} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\vec{v} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ et $\vec{w} \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$. Montrer que les vecteurs \vec{u} , \vec{v} et \vec{w} ne forment pas une base de l'espace.

3.4.3 Coordonnées d'un point de l'espace

Propriété

Un repère $(O, \vec{i}, \vec{j}, \vec{k})$ de l'espace étant donné, pour tout point M de l'espace, il existe un unique triplet (x; y; z) de réels tel que $\overrightarrow{OM} = x\vec{i} + y\vec{j} + z\vec{k}$.

Définition

Les réels x, y, z sont les **coordonnées de M** dans le repère $(O, \vec{i}, \vec{j}, \vec{k})$. x est l'abscisse de M, y est l'ordonnée de M et z est la **cote** de M.

Savoir-Faire 3.8

SAVOIR LIRE LES COORDONNÉES DE POINTS DANS L'ESPACE

Soit ABCD un tétraèdre. On note I le milieu de [CD] et J celui de [BD].

- 1. L'espace est rapporté au repère $(A, \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})$
 - a) Lire les coordonnées de tous les points de la figure.
 - b) Lire les coordonnées du vecteur \overrightarrow{BD} .
- 2. L'espace est rapporté au repère $(B, \overrightarrow{BA}, \overrightarrow{BC}, \overrightarrow{BD})$
 - a) Lire les coordonnées de tous les points de la figure.
 - b) Lire les coordonnées du vecteur \overrightarrow{BD} et du vecteur \overrightarrow{AC} .
- 3. L'espace est rapporté au repère $(B, \overrightarrow{BA}, \overrightarrow{BC}, \overrightarrow{CD})$
 - a) Lire les coordonnées de tous les points de la figure.
 - b) Lire les coordonnées du vecteur \overrightarrow{BD} et du vecteur \overrightarrow{AC} .

Exercice 3.19

ABCDEF est un prisme à base triangulaire. I est le milieu de [AB] et J le milieu de [EF]. On rappelle aussi qu'un prisme est un polyèdre à deux bases parallèles et dont les faces sont des parallélogrammes.

- 1. Décomposer le vecteur \overrightarrow{AI} dans la base $(\overrightarrow{AB}, \overrightarrow{AC})$
- 2. Décomposer le vecteur \overrightarrow{AB} dans la base $(\overrightarrow{AI},\overrightarrow{BC})$
- 3. Décomposer le vecteur \overrightarrow{AJ} dans la base $(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})$
- 4. Décomposer le vecteur \overrightarrow{DI} dans la base $(\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD})$
- 5. Lire les coordonnées de tous les points dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})$

3.4.4 Opérations sur les coordonnées

Propriété

On considère deux point de l'espace
$$A(x_A; y_A; z_A)$$
 et $B(x_B; y_B; z_B)$.
Le vecteurs \overrightarrow{AB} a pour coordonnées $\begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$

Exercice 3.20

Soient A(1; -7; 4) et B(21; 11; 1) deux points de l'espace rapporté à un repère. Calculer les coordonnées du vecteur \overrightarrow{AB}

Propriété

On considère deux point de l'espace $A(x_A; y_A; z_A)$ et $B(x_B; y_B; z_B)$. Le milieu I de [AB] a pour coordonnées $\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}; \frac{z_A + z_B}{2}\right)$.

Exercice 3.21

Soient A(1; -7; 4) et B(21; 11; 1) deux points de l'espace rapporté à un repère. Calculer les coordonnées du milieu I du segment [AB]

Exercice 3.22

A(-2; 8; 9), B(-4; 4; 5), C(0; 4; -3), D(-8; 6; 7) et E(1; -2; 3) sont des points de l'espace muni d'un repère $(O, \vec{i}, \vec{j}, \vec{k})$. On note I et J les milieux respectifs de [AB] et [DC].

- 1. Les points A, B et C sont-ils alignés?
- 2. Calculer les coordonnées des points I et J
- 3. Calculer les coordonnées du point L tel que $\overrightarrow{BL} = \frac{1}{4}\overrightarrow{BC}$
- 4. Montrer que les points I, J, L et E sont coplanaires