Deep Neural Network (DNN)

Alex Tse University College London

Alex Tse (UCL) Deep Neural Networ

Deep Neural Networks

Figure: An example of deep neural networks. Source: [1]

DNNs to approximate continuous functions in $\mathcal{C}(\mathbb{R}^d, \mathbb{R}^e)$.

Let $h^{(I)}$ denote the I^{th} layer with n_I neurons.

- Input layer $(h^{(0)}: \mathbb{R}^d \to \mathbb{R}^{n_0} \text{ with } n_0 = d): h^{(0)}(x) = x, \forall x \in \mathbb{R}^d.$
- Hidden layer $(h^{(I)}: \mathbb{R}^d \to \mathbb{R}^{n_I}): \forall I \in \{1, 2, \dots, L-1\}.$
- Output layer $(h^{(L)}: \mathbb{R}^d \to \mathbb{R}^e)$.

 $(h^{(I)})_{I=1}^L$ is defined in the following recursive way that for any $x \in \mathbb{R}^d$,

$$z^{(l+1)}(x) = h^{(l)}(x)W^{(l)} + b^{(l)},$$

$$h^{(l+1)}(x) = \sigma_{l+1}(z^{(l+1)}(x)),$$

where $W^{(I)}$ is a $n_I \times n_{I+1}$ matrix, $b^{(I)}$ is a n_{I+1} dimensional row vector and σ_I is the activation function on the I^{th} layer. Here $\theta := (W^{(I)}, b^{(I)})_{I=1}^{L-1}$ is the parameters of DNNs, which can be trained from data.

4D > 4@ > 4 = > = 9 Q Q

Neural Network Building Block

Formulas

For any $I \in \{1, \cdots, (L-1)\}$,

$$z_j^{(l+1)} = \sum_{i=1}^{n_l} W_{i,j}^{(l)} h_i^{(l)} + b_j^{(l)},$$

 $h_i^{(l+1)} = \sigma_{l+1}(z_i^{(l+1)}),$

where $i \in \{1, \dots, n_l\}$, $j \in \{1, \dots, n_{l+1}\}$, $W_{i,j}^{(l)}$ is the weight from incoming node i to output node j on the layer l.

Alex Tse (UCL)

Questions

Can you write down the mathematical formulation of the DNN example shown in the following figure? What is the corresponding number of model parameters?

5/7

Alex Tse (UCL) Deep Neural Network September, 2022

Thanks for your attention!

6/7

Alex Tse (UCL) Deep Neural Network September, 2022

References I

Hao Ni, Xin Dong, Jinsong Zheng, and Guangxi Yu. An Introduction to Machine Learning in Quantitative Finance (Chinese version). Tsinghua University Press, 2021.

Alex Tse (UCL)