75.29 - Teoría de Algoritmos I: Trabajo Práctico n. 3

Equipo Q: Lavandeira, Lucas (#98042) lucaslavandeira@gmail.com

Rozanec, Matias (#97404) rozanecm@gmail.com

Sbruzzi, José (#97452) jose.sbru@gmail.com

18. junio. 2018

Facultad de Ingeniería, Universidad de Buenos Aires

${\rm \acute{I}ndice}$

Ι	$\mathbf{U}\mathbf{n}$	juego de batalla naval
1.	Dina	mico
	1.1. I	Explicación del algoritmo
		1.1.1. Calidad de heurística de Dinámico
		1.1.2. Complejidad temporal del algoritmo
	1.2.	Condiciones para que Dinámico sea óptimo
	1.3. I	Planteo matemático de la hipótesis y demostración
		1.3.1. Conceptos necesarios para expresar la hipótesis y la prueba
		1.3.2. Hipótesis
	1	1.3.3. Demostración: caso base
		1.3.4. Planteo del caso inductivo
		1.3.5. Demostración del caso inductivo
2.	Gree	do
	2.1. I	Explicación del algoritmo
		Calidad de heurística de Greedo
		Complejidad temporal del algoritmo Greedo
		Condiciones para que Greedo sea óptimo
3	Posic	rionamiento inicial de barcos

Parte I

Un juego de batalla naval

1. Dinamico

1.1. Explicación del algoritmo

El algoritmo pretende devolver la lista de las mejores partidas posibles que se resuelvan en t turnos y que terminen con el disparo d, sin embargo, no lo logra. Devuelve las mejores partidas posibles al aplicarles el disparo d a cada una de las mejores partidas posibles en t-1 turnos.

En la implementación javascript, los hiperparámetros del algoritmo (es decir, el tablero, la cantidad de lanzaderas, la cantidad de barcos y los puntos de vida de cada uno) también se pasan como argumentos.

1.1.1. Calidad de heurística de Dinámico

Dinamico no conforma un algoritmo de resolución de la situación planteada, sino una heurística. Esto se demuestra por medio del siguiente contraejemplo.

Hay una sola lanzadera.													
V_i	t1	t2	t3	t4	t5	t6	t7	t8	t9	t10	t11	t12	t13
10	9	1	1	1	1	1	1	1	1	1	1	1	10
1	1	1	1	1	1	1	1	1	1	1	1	1	10

En la solución mínima, el barco de vida 10 recibe un disparo en el primer turno, aprovechándose de esta forma el gran daño que puede recibir; y el puntaje alcanzado es 5. Sin embargo, debido a que Dinámico es una heurística que aplica un criterio de greedy para determinar la mejor decisión por turno, determina que la mejor decisión para el primer turno es la que lleve a un mejor puntaje, es decir, disparar al barco de salud 1 primero y al de salud 10 después. Así, el puntaje mínimo alcanzado por Dinámico será 11.

1.1.2. Complejidad temporal del algoritmo

El algoritmo Dinamico es memoizado. Como sus únicos parámetros son t y d, su complejidad temporal será lineal respecto de los valores que puede tomar cada uno de sus parámetros. En memoria, se generará una tabla como la siguiente:

turno	disparo posible 1	disparo posible 2	disparo posible 3	
t0				
$t_{-}1$				
t2				
$t_{-}3$				
t_4				
$t_{-}5$				

El costo añadido de computar la solución en cada çasilla" de la tabla es lineal al costo de obtener el puntaje de cada partida alternativa, y por lo tanto a la cantidad de partidas alternativas. Por otro lado, el costo de computar el puntaje de cada partida alternativa es lineal con la cantidad de barcos (ya que es necesario determinar si cada uno de ellos está vivo en la misma). Así, el costo del algoritmo memoizado para resolver mejoresPartidas(t,d) = O(t*disparosposibles*costodeobtenerpuntajedeunapartida) = O(t*disparosposibles*disparosposibles*costodeobtenerpuntajedeunapartida) = O(t*disparosposibles*disparosposibles*barcos).

1.2. Condiciones para que Dinámico sea óptimo

Dinámico será óptimo cuando la mejor decisión posible en cada turno sea la que más barcos mate en ese turno. Esto sólo puede darse cuando las vulnerabilidades relacionadas a cada barco solamente ascienden a lo largo de la partida, cuando el tablero no es rotatorio", tal como fue el planteo dado, es necesario asegurar también que ninguna partida dura tantos turnos como columnas del tablero. A continuación se demuestra esta afirmación para un tablero infinito, sin repeticiones.

1.3. Planteo matemático de la hipótesis y demostración

1.3.1. Conceptos necesarios para expresar la hipótesis y la prueba

Sea v(t,b) la vulnerabilidad del barco t en el turno b, con $t\geq 0$ y $1\geq b\geq B$, siendo B la cantidad de barcos. Sea d(t,b) una función tal que

$$d(t,b) = \begin{cases} 1 & \text{si se dispara al barco } b \text{ en el turno } t \\ 0 & \text{en otro caso} \end{cases}$$

Y sea D el conjunto de todos los disparos d que cumplen que:

$$\sum_{b=1}^{B} d(t, b) = L \forall t \ge 0$$

Sea $h_{d,v}(t,b)$ una función que representa la salud del barco b en el turno t, al usar los disparos d y las vulnerabilidades v:

$$h_{d,v}(t,b) = \begin{cases} h(t-1,b) - v(t,b) \cdot d(t,b) & \text{si } t > 0 \\ V_b & \text{si } t = 0 \end{cases}$$

Siendo V_b la salud inicial de cada barco. Sea $H_{d,v}(b,t)$ una función que indica si el barco b vive en el turno t, usando los disparos d y las vulnerabilidades v.

$$H_{d,v}(t,b) = \begin{cases} 1 & \text{si } h_{d,v}(t,b) > 0 \\ 0 & \text{en caso contrario} \end{cases}$$

Y sea también $H_{d,v}(t)$ tal que:

$$H_{d,v}(t) = \sum_{b=1}^{B} H_{d,v}(t,b)$$

Sea la función G(d, v, t) que indica si en el turno t, el disparo d representa una formado por medio de la estrategia greedy, que consiste en elegir el disparo que destruya más barcos:

$$G(d, v, t) = \begin{cases} 1 & \text{si } h_{d, v}(t) = \min_{d' \in D} \left\{ H_{d', v}(t) \right\} \\ 0 & \text{si no} \end{cases}$$

Sea la función G*(d,v,t) que representa si los disparos de todos los turnos hasta t fueron greedy:

$$G^*(d, v, t) = \begin{cases} G(d, v, t) \cdot G^*(d, v, t - 1) & \text{si } T > 0 \\ 1 & \text{si } T = 0 \end{cases}$$

Sea la función $P_{d,v}(t)$ la cantidad de puntos acumulados hastael turno t al usar el disparo d y las vulnerabilidades v:

$$P_{d,v}(t) = \begin{cases} H_{d,v}(t) + P_{d,v}(t-1) & \text{si } t > 0\\ 0 & \text{si } t = 0 \end{cases}$$

1.3.2. Hipótesis

Para cualquier T natural mayor a 0 se cumple que:

Dado v tal que:

$$v(t+1,b) \ge v(t,b) \forall 0 \le t \le T, 1 \le b \le B$$

Y dado d tal que:

$$G^*(d, v, T) = 1$$

Entonces:

$$P_{d,v}(T) = \min_{d' \in D} \left\{ P_{d',v}(T) \right\}$$

1.3.3. Demostración: caso base

Para T=0 la hipótesis es verdadera porque $P_{d,v}(T)=0 \forall d, v$.

1.3.4. Planteo del caso inductivo

Para T > 0, tenemos que se cumple para T - 1 que:

Dado v tal que:

$$v(t+1,b) \ge v(t,b) \forall 0 \le t \le T-1, 1 \le b \le B$$

Y dado d tal que:

$$G^*(d, v, T - 1) = 1$$

Entonces:

$$P_{d,v}(T-1) = min_{d' \in D} \{ P_{d',v}(T-1) \}$$

A partir de esa proposición, queremos probar que teniendo:

Dado v tal que:

$$v(t+1, b) \ge v(t, b) \forall 0 \le t \le T, 1 \le b \le B$$

Y dado d tal que:

$$G^*(d, v, T) = 1$$

Podemos concluir que:

$$P_{d,v}(T) = min_{d' \in D} \{ P_{d',v}(T) \}$$

1.3.5. Demostración del caso inductivo

Por la definición de P:

$$P_{d,v}(T) = H_{d,v}(T) + P_{d,v}(T-1)$$

Por la hipótesis inductiva, que afirma que $P_{d,v}(T-1) = \min_{d^* \in D} \{P_{d^*,v}(T-1)\}$ podemos definir que:

$$P_{d,v}(T) = H_{d,v}(T) + min_{d^* \in D} \{P_{d^*,v}(T-1)\}$$

Debido a que:

$$G^*(d, v, T) = 1 \Rightarrow G(d, v, T) = 1 \Rightarrow H_{d,v}(T) = \min_{d' \in D} \{H_{d',v}(T)\}$$

Podemos concluir, combinando estas últimas dos proposiciones, que:

$$P_{d,v}(T) = \min_{d' \in D} \{ H_{d',v}(T) \} + \min_{d^* \in D} \{ P_{d^*,v}(T-1) \}$$

Una manera alternativa de definir $P_{d,v}(t)$ es:

$$P_{d,v}(t) = \sum_{i=1}^{t} H_{d,v}(i)$$

Agregando esta definición a la proposición anterior tenemos que:

$$P_{d,v}(T) = \min_{d' \in D} \left\{ H_{d',v}(T) \right\} + \min_{d^* \in D} \left\{ \sum_{i=1}^{T-1} H_{d^*,v}(i) \right\}$$

Debido a que los disparos d en cada uno de los turnos son independientes, y la minimización tiene en cuenta sólo la efectividad de cada turno:

$$P_{d,v}(T) = \min_{d' \in D} \left\{ H_{d',v}(T) \right\} + \sum_{i=1}^{T-1} \min_{d^* \in D} \left\{ H_{d^*,v}(i) \right\}$$

$$P_{d,v}(T) = \sum_{i=1}^{T} \min_{d^* \in D} \{ H_{d^*,v}(i) \}$$

Teniendo en cuenta la independencia de los disparos en cada uno de los turnos citada anteriormente, consecuencia de la condición impuesta sobre v, que implica que cualquier barco que podría haber sido destruído en cierto turno puede ser destruído en el siguiente, podemos concluir que:

$$P_{d,v}(T) = \min_{d'' \in D} \left\{ \sum_{i=1}^{T} H_{d'',v}(i) \right\}$$

Lo cual concluye la demostración.

2. Greedo

2.1. Explicación del algoritmo

En el caso del algoritmo Greedy, para elegir el mejor disparo se utilizó una heurística más efectiva que para la solución dinámica. Greedo evalúa según el mejor puntaje posible a cada paso. Este puntaje se obtiene suponiendo que en todos los turnos siguientes se dispone de tantas lanzaderas como barcos. Así, al intentar maximizar el mejor puntaje posible en vez del puntaje actual, Greedo no prioriza el disparo que más barcos mate sino el disparo que haga que la solución empeore lo menos posible.

Para ponerlo en términos más sencillos, Greedo se pregunta, para cada barco *Cuánto pierdo* si no te disparo? y evaluando eso define qué movimiento hacer a continuación.

```
Algorithm 2: obtenerMejor(p)
```

```
\mathbf{Data}: Partida inicial a mejorar p
```

Result: La mejor partida que puede obtener el algoritmo

 $p \leftarrow \text{Partida a mejorar}$

if barcosVivos(p) = 0 then

 \lfloor return p

else

 $D' \leftarrow \{d \in D \mid d \text{ impacta barcos vivos de } p \}$

 $P \leftarrow \operatorname{conDisparo}(D',p)$

 $p^* \leftarrow$ una de las partidas con el menor puntaje posible de P

return $obtenerMejor(p^*)$

2.2. Calidad de heurística de Greedo

A continuación se presenta un caso en el que el algoritmo Greedy falla. Hay una sola lanzadera.

	V_i	t1	t2	t3	t4	t5	t6	t7	t8	t9	t10	t11	t12	t13
_	15	5	5	10	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	10	1	0	10	1	1	1	1	1	1	1	1	1	1

En este caso, el algoritmo puede tomar dos decisiones distintas respecto del primer disparo: o bien dispararle al barco de salud 15 o bien al de salud 10. Ambas decisiones tienen la misma penalización, debido a que la misma está definida por el puntaje que se alcanzaría si se pudiera disparar 2 veces por turno y, al comenzar, ambos barcos serían dstruídos en la columna t3 según esta aproximación. La decisión desemboca en una de dos situaciones:

Disparando inicialmente al barco de vida 15. Hay una sola lanzadera.

V_i	t3	t4	t5	t6	t7	t8	t9	t10	t11	t12	t13
5	10	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
10	10	1	1	1	1	1	1	1	1	1	1

A partir de aquí, el algoritmo decide disparar al barco que ahora tiene vida 5, con lo cual, a partir de este turno, se alcanza un puntaje de 10 puntos. La alternativa es disparar al barco de vida 10, lo cual llevaría a un puntaje de 50 puntos.

Disparando inicialmente al barco de vida 10. Hay una sola lanzadera.

V_i	t3	t4	t5	t6	t7	t8	t9	t10	t11	t12	t13
10	10	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
9	10	1	1	1	1	1	1	1	1	1	1

A partir de aquí, el algoritmo decide disparar al barco que ahora tiene vida 10 (de lo contrarío obtendría un puntaje de 100), y alcanza una penalización de 9.

Así, vemos que el algoritmo puede alcanzar situaciones subóptimas cuando encuentra que debería destruir más barcos de los que le es posible en la misma columna. El algoritmo Baco, codificado de forma similar a Greedo, postpone estas decisiones, devolviendo a cada paso las mejores soluciones posibles. Se incluyó en el código del trabajo práctico.

2.3. Complejidad temporal del algoritmo Greedo

El algoritmo Greedo ejecuta una única llamada recursiva, que concluye cuando el algoritmo destruye todos los barcos. Así, tal llamada recursiva implica una complejidad temporal de $O(\text{ejecucion} \cdot \text{turnosMaximos})$.

El tiempo de ejecución del algoritmo en sí es lineal con el tiempo de ejecución del algoritmo que calcula el mejor puntaje posible de una partida y la cantidad de configuraciones de disparos posibles: $O(\text{calculo mejor puntaje posible} \cdot \text{disparos posibles} \cdot \text{turnosMaximos})$.

El cálculo del mejor puntaje posible es lineal con la cantidad de barcos y con el tiempo de ejecución del algoritmo que descubre la supervivencia mínima de cada barco: $O(\text{cálculo supervivencia mínima} \cdot \text{barcos} \cdot \text{disparos posibles} \cdot \text{turnosMaximos}).$

El algoritmo que descubre la supervivencia mínima de cada barco tiene una complejidad temporal que depende totalmente del problema: Se inicializa una variable con la salud del barco y se recorren las columnas avanzando y restando la vulnerabilidad correspondiente del acumulador hasta que el mismo se torne 0. Es posible escribir este algoritmo de forma que sea lineal con la cantidad de casilleros de la fila del barco. A continuación se detalla el pseudocódigo para lo mismo:

Algorithm 3: supervivencia(v,h) $v \leftarrow \text{array de vulnerabilidades de la fila}$ $h \leftarrow \text{Salud inicial del barco analizado}$ $T \leftarrow \text{Suma de todos los valores de } v$ $vueltas \leftarrow \lfloor h/T \rfloor$ $i \leftarrow vueltas \cdot len(v)$ $h \leftarrow h - vueltas \cdot T$ while h > 0 do $\begin{vmatrix} i \leftarrow i + 1 \\ h \leftarrow h - v_i \end{vmatrix}$

Por lo tanto, el algoritmo tiene la complejidad temporal:

return i

 $O(\text{columnas del tablero} \cdot \text{barcos} \cdot \text{disparos posibles} \cdot \text{turnosMaximos})$

2.4. Condiciones para que Greedo sea óptimo

Greedo es óptimo cuando no se da la necesidad de tomar decisiones alternativas, es decir, cuando hay una única solución mejor.

El menor puntaje estimado siempre será mayor al puntaje de la solución real, siempre y cuando la cantidad de barcos vivos sea mayor a la cantidad de lanzaderas. De lo contrario, estos puntajes serán iguales. Así, el juego nunca puede terminar con un puntaje menor al mínimo estimado. El algoritmo Baco descarta unicamente las decisiones que perjudican esta cota inferior. Sin embargo, la misma crece a lo largo de la ejecución del programa, hasta que coinciden la cota inferior y el puntaje encontrado. Debido a esto, es razonable pensar que Baco llega al óptimo. Esta afirmación no se demuestra sino que se deja como razonable.

Greedo, por otro lado, sí descarta decisiones que tienen la menor cota, con lo cual, puede descartar una rama" de decisiones que lleve a la solución óptima, la cual sí alcanzaría Baco. En el código se incluye el algoritmo Dinámico Jr., que aplica la heurística de Greedo al esquema de Dinamico. Es posible que ese algoritmo sí pueda alcanzar el óptimo en tiempo polinómico.

3. Posicionamiento inicial de barcos

La esencia del algoritmo se basa en analizar, por cada uno de los barcos, cuál será el casillero de inicio que le brindará la mayor cantidad de puntos. Esto se logra haciendo avanzar al barco un casillero hacia adelante y restándole en cada paso la cantidad de vida correspondiente, hasta que el barco es destruido. La posición inicial óptima será la que le brinde al barco la mayor cantidad de posiciones avanzadas. La complejidad para el cálculo inicial de cada uno de los barcos es entonces linealmente proporcional a la cantidad de columnas.