Databáze o poznámky k přednášce

1. Relace

verze z 18. září 2023

1 Relace a relační proměnné

Představme si, že chceme uchovávat informace o filmech, které vlastníme. Naše právě vznikající kolekce obsahuje pouhé tři filmy: The Avengers (1998), The Avengers (2012) a The Matrix (1999). Číslo v závorce uvedené za názvem filmu je rokem vydání filmu.

Vhodné řetězce písmen anglické abecedy a podtržítka budeme nazývat atributy. Například title, year nebo movie id jsou atributy. Množinu všech atributů označíme \mathcal{Y} .

Každému atributu $y \in \mathcal{Y}$ je přiřazena spočetná množina D_y nazývaná jeho do**ména**. Například D_{title} může být množina všech řetězců nad anglickou abecedou a D_{year} množina všech přirozených čísel.

Konečná podmnožina množiny atributů \mathcal{Y} se nazývá **relační schéma**. Například {title, year} je relační schéma.

Mějme relační schéma R. Zobrazení $t: R \to \bigcup_{y \in R} D_y$, kde pro každé $y \in R$ je $t(y) \in D_y$, se nazývá *n*-tice nad R. Například {\langle title, 'The Matrix' \rangle, \langle year, 1999 \rangle } je n-tice nad {title, year}. Množinu všech n-tic nad relačním schématem R zna- $\check{\text{cime Tupl}}(R).$

Konečná podmnožina množiny Tupl(R) se nazývá **relace** nad R. Například

```
\{\{\langle \text{title}, '\text{The Avengers'} \rangle, \langle \text{year}, 1998 \rangle \},
  \{\langle \text{title}, '\text{The Avengers'} \rangle, \langle \text{year}, 2012 \rangle \},
  \{\langle \text{title}, '\text{The Matrix'} \rangle, \langle \text{year}, 1999 \rangle \} \}
```

je relace nad {title, year}.

Relaci můžeme přehledně zadat tabulkou. Například předchozí relaci můžeme zadat tabulkou:

title	year
The Avengers	1998
The Avengers	2012
The Matrix	1999

Všimněte si, že tabulka oproti relaci navíc určuje pořadí n-tic a atributů. Tedy i tato tabulka určuje stejnou relaci:

year	title	
1999	The Matrix	
1998	The Avengers	
2012	The Avengers	

Prázdnou relací nad R rozumíme prázdnou množinu.

Necht \mathcal{D} je relace nad R a V(t) je výroková forma, kde proměnná t má obor hodnot Tupl(R). Pak V(t) se nazývá **charakteristická vlastnost** \mathcal{D} (zkráceně jen **vlastnost** určující \mathcal{D}), jestliže platí

 $t \in \mathcal{D}$, právě když V(t) je pravdivé;

což lze zkráceně zapsat jako $\mathcal{D} = \{t \in \text{Tupl}(R) \mid V(t)\}.$

Například výroková forma "Vlastním film t(title) vytvořený roku t(year)." je charakteristickou vlastností relace

title	year
The Avengers	1998
The Avengers	2012
The Matrix	1999

Charakteristické vlastnosti relací budeme zjednodušovat vynecháním proměnné t. Tedy předchozí vlastnost je zkráceně: "Vlastním film title vytvořený roku year."

Databáze vždy zachycuje jen omezenou část reálného světa. Například udržujeme informace jen o vlastněných filmech. Pokud jasně určíme část světa, která nás zajímá, můžeme charakteristické vlastnosti relací zjednodušit.

Například místo:

"Vlastním film title vydaný roku year."

uvedeme jen:

"Film title byl vydaný roku year."

K označení prvku reálného světa používáme **identifikátor** (zkráceně **id**). Přičemž identifikátor musí prvek jednoznačně určovat. Jako identifikátor prvku se často používají přirozená čísla nebo náhodné řetězce. Pro účely databáze se prvek ztotožňuje se svým identifikátorem.

Například vlastnost "Film movie_id má název title a byl vydaný roku year." určuje relaci:

movie_id	title	year
1	The Avengers	1998
2	The Avengers	2012
3	The Matrix	1999

Relace modelují jak entity reálného světa (například filmy nebo herce), tak vztahy mezi nimi (například role herce ve filmu).

Například relace

actor_name	movie_title	movie_year
Keano Reeves	The Matrix	1999
Keano Reeves	Dracula	1992
Laurence Fishburne	The Matrix	1999
Gary Oldman	Dracula	1992
Anthony Hopkins	The Elephant Man	1980

určená vlastností

"Zajímá mě herec actor_name, který hrál ve mnou vlastněném filmu movie_title z roku movie_year."

zachycuje vztah mezi entitami. Vlastnost lze zkrátit na: "Herec actor_name hrál ve filmu movie_title z roku movie_year."

Relační proměnná je proměnná, jejíž hodnota je relace. Typem relační proměnné je relační schéma. Hodnotou relační proměnné může být pouze relace nad tímto schématem. K relační proměnné přísluší výroková foma, která je vždy charakteristickou vlastností její hodnoty. Základní relace je relační proměnná, jejíž hodnotu lze přímo měnit. Více o přímé změně hodnoty proměnné se dozvíte v některé z následujících přednášek.

Například základní relace movie nad {title, year}, určená vlastností "Film title je z roku year." má hodnotu:

title	year
The Avengers	1998
The Avengers	2012
The Matrix	1999

2 SQL

SQL tabulky jsou podobné relacím, ale liší se od nich tím, že určují pořadí sloupců i řádků, názvy sloupců nemusí být jedinečné, můžou obsahovat duplicitní řádky a buňka tabulky nemusí obsahovat hodnotu.

Jako relaci můžeme chápat SQL tabulku, kde

- názvy sloupců jsou jedinečné,
- nejsou duplicitní řádky,
- se nespoléháme na pořadí řádků,

• všechny buňky mají hodnotu.

Jiné tabulky používat nebudeme.

Skalární typ dává jméno množině, která může být doménou atributů. Například integer je skalárním typem, který dává jméno množině celých čísel od $-2\,147\,483\,648$ do $2\,147\,483\,647$. Skalární typ text¹ pojmenovává množinu všech řetězců. Další skalární typy PostgeSQL můžete najít v dokumentaci. Atribut (sloupec) SQL tabulky má doménu určenou skalárním typem.

Přijmeme následující omezení. Stejné atributy v různých SQL tabulkách musí být stejného skalárního typu.

Skalární typ atributů můžeme zobrazit v tabulce:

title text	year integer
The Avengers	1998
The Avengers	2012
The Matrix	1999

Příkaz

```
CREATE TABLE relation (
    attribute1 scalar_type1,
    attribute2 scalar_type2,
    :
);
```

deklaruje základní relaci *relation* nad {attribute1, attribute2, ...}. Doména atributu attributei je dána skalárním typem scalar_typei. Hodnotou je prázdná relace.

Příklad:

```
CREATE TABLE movie (
    title text,
    year integer,
);
```

Příkaz

```
TABLE relation;
```

zobrazí hodnotu relační proměnné relation.

Příklad:

¹Není ve standardu SQL.

```
# TABLE movie;
title | year
------(0 rows)
```

Následující příkaz slouží k přidání n-tic do relační proměnné. Nechť relation je relační proměnná nad $R = \{y_1, \ldots, y_n\}$ a hodnotou \mathcal{D} a t_1, \ldots, t_m jsou n-tice nad R takové, že množiny \mathcal{D} a $\{t_1, \ldots, t_m\}$ jsou disjunktní. Předpokládáme pořadí atributů y_1, \ldots, y_n dané při deklaraci proměnné.

Příkaz

```
INSERT INTO relation VALUES (t_1(y_1), \ldots, t_1(y_n)), \vdots (t_m(y_1), \ldots, t_m(y_n));
```

nastaví hodnotu proměnné **relation** na $\mathcal{D} \cup \{t_1, \ldots, t_m\}$

Například po vykonání

se změní hodnota proměnné na

Pokud dále vykonáme příkaz:

```
INSERT INTO movie VALUES ('A Space Odyssey', 1968);
```

Proměnná získá hodnotu:

```
# TABLE movie;

title | year

-------

The Matrix | 1999

The Avengers | 2012

The Avengers | 1998

A Space Odyssey | 1968
(4 rows)
```

Připomínám, že na pořadí n-tic se nelze spolehnout.

Příkaz

DROP TABLE relation;

zruší základní relaci relation.

Příklad:

DROP TABLE movie;