

Consistency Checking for Transactional Databases

Senior Engineer @ Tencent Database (TDSQL)
Yuxing Chen

Content

function (d. filter.ID= parentNode function pa(a) {return length Background

Tencent Enterprise Distributed Database Serve more than 500K enterprise customers Applications cover billions of users

Tencent Enterprise Distributed Database

Serve more than 500K enterprise customers

Applications cover billions of users

OLTP

OLAP

Enterprise MySQL(CDB)

- MySQL Compatible
- **Enhanced with** enterprise-level features

TDSQL-C

- Cloud native
- Shared storage
- MySQL and PG compatible

TDSQL

- Shared nothing
- MySQL compatible

TDSQL-A

- Shared nothing
- MPP + Column store
- Oracle Compatible

Isolation levels vs. Data anomalies

	PO:Dirty Write	P1:Dirty Read	P2:Non- repeatable Read	P3:Phantom
Read Uncommitte d	Not Possible	Possible	Possible	Possible
Read Committed	Not Possible	Not Possible	Possible	Possible
Repeatable Read	Not Possible	Not Possible	Not Possible	Possible
Serializable	Not Possible	Not Possible	Not Possible	Not Possible

The stronger the levels, the less the anomalies

Anomaly occurrences by ANSI SQL

	PO:Dirty Write	P1:Dirty Read	P4C:Cursor Lost Update	P4:Lost Update	P2:Non- repeatable Read	P3:Phantom	A5A: Read Skew	A5B: Write 5kew
Read Uncommitted	Not Possible	Possible	Possible	Possible	Possible	Possible	Possible	Possible
Read Committed	Not Possible	Not Possible	Possible	Possible	Possible	Possible	Possible	Possible
Cursor Stability	Not Possible	Not Possible	Not Possible	Possible	Possible	Possible	Possible	Possible
Repeatable Read	Not Possible	Not Possible	Not Possible	Not Possible	Not Possible	Possible	Not Possible	Not Possible
Snapshot Isolation	Not Possible	Not Possible	Not Possible	Not Possible	Not Possible	Not Possible	Possible	Possible
Serializable	Not Possible	Not Possible	Not Possible	Not Possible	Not Possible	Not Possible	Not Possible	Not Possible

More isolation levels and anomalies


```
return .nodeName.toLowerCase
){var_c=b.nodeName.toLowerCase
function
disabled=(d, filter.ID= parentNode
disabled=(d, filter.ID= isDisabled
function pa(a){return
length
length
Otivation
&&a}c=ga.support=
```


Non traditional isolation levels

MongoDB: Snapshot Isolation level

DB2: Cursor Stability level

TiDB: Optimistic level

Databricks: WriteSerializable level

SQL Server: Read Committed Snapshot Isolation level

User:

1 Selection of a level for application, understanding of a new level:
want to know expected and unexpected anomalies in advance
2 Databases may not meet the level they claim or may not perform the same
Oracle claimed Serializable support but existing Write Skew
PostgreSQL does not allow Phantom but allow Write Skew at RR level
SQL Server does not allow Write Skew but allow Phantom at RR level

Vendors:

1 Iteration developing yet regression test may be incomplete

PostgreSQL exists Write Skew from v9.1 to v12.3

2 How do we verify a newly developed database

Design flaw, program bugs, other optimization may yield unexpected anomalies.

```
Solutions
```


Jepsen/Elle

Pros:

- 1. Isolation verification
- 2. Efficient checking

Cons:

- 1. Random test and sometimes hard to construct SQL test cases
- 2. No range queries, can not distinguish RR and SER levels

Reference: Peter Alvaro, Kyle Kingsbury: Elle: Inferring Isolation Anomalies from

Experimental Observations. Proc. VLDB Endow. 14(3): 268-280 (2020)

Cobra

Pros:

- 1. test K-V serializability
- 2. can catch the workload throughput

Cons:

- 1. Random test and sometimes hard to construct SQL test cases
- 2. No range queries, can not distinguish RR and SER levels

Reference: Cheng Tan, Changgeng Zhao, Shuai Mu, Michael Walfish: Cobra: Making

Transactional Key-Value Stores Verifiably Serializable. OSDI 2020: 63-80

```
Summary
```


TDSQL cares about the correctness of the databases.

Current tools of isolation verification still

Lack reproducibility and understandability

Lack predicate anomaly verifications

Thanks

Yuxing Chen axingguchen@tencent.com

Reference:

Atul Adya, Barbara Liskov, Patrick E. O'Neil: Generalized Isolation Level Definitions. ICDE 2000: 67-78

Peter Alvaro, Kyle Kingsbury: Elle: Inferring Isolation Anomalies from Experimental Observations. Proc. VLDB Endow. 14(3): 268-280 (2020)

Cheng Tan, Changgeng Zhao, Shuai Mu, Michael Walfish: Cobra: Making Transactional Key-Value Stores Verifiably Serializable. OSDI 2020: 63-80