In [43]: **import** numpy **as** np**import** pandas **as** pd**import** matplotlib.pyplot **as** plt**import** seaborn **as** sns In [13]: df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')df

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner
0	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual	First Owner
1	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual	First Owner
2	Hyundai Verna 1.6 SX	2012	600000	100000	Diesel	Individual	Manual	First Owner
3	Datsun RediGO T Option	2017	250000	46000	Petrol	Individual	Manual	First Owner
4	Honda Amaze VX i-DTEC	2014	450000	141000	Diesel	Individual	Manual	Second Owner
•••								
4335	Hyundai i20 Magna 1.4 CRDi (Diesel)	2014	409999	80000	Diesel	Individual	Manual	Second Owner
4336	Hyundai i20 Magna 1.4 CRDi	2014	409999	80000	Diesel	Individual	Manual	Second Owner
4337	Maruti 800 AC BSIII	2009	110000	83000	Petrol	Individual	Manual	Second Owner
4338	Hyundai Creta 1.6 CRDi SX Option	2016	865000	90000	Diesel	Individual	Manual	First Owner
4339	Renault KWID RXT	2016	225000	40000	Petrol	Individual	Manual	First Owner

 $\overline{4340 \text{ rows} \times 8 \text{ columns}}$

def comp(x):

Out[13]:

return x[:x.index(" ")]

df["comp"] = df["name"].apply(comp)

In [70]:

df.to_csv('CAR DETAILS FROM CAR DEKHO.csv')

In [71]:

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')df

 $4340 \text{ rows} \times 11 \text{ columns}$

In [75]:

df = df.loc[:, ~df.columns.str.contains('^Unnamed:0.1')]df = df.loc[:, ~df.columns.str.contains('\Unnamed:0')]

In [76]:

df

Out[76]:

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner	comp
0	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual	First Owner	Maruti
1	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual	First Owner	Maruti
2	Hyundai Verna 1.6 SX	2012	600000	100000	Diesel	Individual	Manual	First Owner	Hyundai
3	Datsun RediGO T Option	2017	250000	46000	Petrol	Individual	Manual	First Owner	Datsun
4	Honda Amaze VX i-DTEC	2014	450000	141000	Diesel	Individual	Manual	Second Owner	Honda
•••									
4335	Hyundai i20 Magna 1.4 CRDi (Diesel)	2014	409999	80000	Diesel	Individual	Manual	Second Owner	Hyundai
4336	Hyundai i20 Magna 1.4 CRDi	2014	409999	80000	Diesel	Individual	Manual	Second Owner	Hyundai
4337	Maruti 800 AC BSIII	2009	110000	83000	Petrol	Individual	Manual	Second Owner	Maruti
4338	Hyundai Creta 1.6 CRDi SX Option	2016	865000	90000	Diesel	Individual	Manual	First Owner	Hyundai
4339	Renault KWID RXT	2016	225000	40000	Petrol	Individual	Manual	First Owner	Renault

 $4340 \text{ rows} \times 9 \text{ columns}$

In [79]:

df.to_csv('CAR DETAILS FROM CAR DEKHO.csv', index = False)

In [83]:

df = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')df

Out[83]:

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner	comp
0	Maruti 800 AC	2007	60000	70000	Petrol	Individual	Manual	First Owner	Maruti
1	Maruti Wagon R LXI Minor	2007	135000	50000	Petrol	Individual	Manual	First Owner	Maruti

	name	year	selling_price	km_driven	fuel	seller_type	transmission	owner	comp
2	Hyundai Verna 1.6 SX	2012	600000	100000	Diesel	Individual	Manual	First Owner	Hyunda i
3	Datsun RediGO T Option	2017	250000	46000	Petrol	Individual	Manual	First Owner	Datsun
4	Honda Amaze VX i-DTEC	2014	450000	141000	Diesel	Individual	Manual	Second Owner	Honda
•••									•••
4335	Hyundai i20 Magna 1.4 CRDi (Diesel)	2014	409999	80000	Diesel	Individual	Manual	Second Owner	Hyunda i
4336	Hyundai i20 Magna 1.4 CRDi	2014	409999	80000	Diesel	Individual	Manual	Second Owner	Hyunda i
4337	Maruti 800 AC BSIII	2009	110000	83000	Petrol	Individual	Manual	Second Owner	Maruti
4338	Hyundai Creta 1.6 CRDi SX Option	2016	865000	90000	Diesel	Individual	Manual	First Owner	Hyunda i
4339	Renault KWID RXT	2016	225000	40000	Petrol	Individual	Manual	First Owner	Renault

 $4340 \text{ rows} \times 9 \text{ columns}$

In [73]:

df.isnull().sum()

Out[73]:

Unnamed: 0.1 0 Unnamed: 0 0

name 0

year 0 selling_price 0

km_driven 0

fuel 0 seller_type 0

transmission

owner 0 comp 0

dtype: int64

In [84]:

 $c = ['r', 'y', 'g', 'b'] \\ plt.figure(figsize=(20,7)) \\ AS = sns.countplot(x = "year" , data = df) \\ \textit{for bars in AS.containers:}$

AS.bar_label(bars)plt.show()

by this graph we can conclude the maximum sales of cars is from year 2017 & min of 1992 & 1995 In [85]:

c = ['r', 'y', 'g', 'b'] plt.figure(figsize=(20,7))AS = sns.countplot(x = "fuel", data = df) for bars in AS.containers:

AS.bar_label(bars)plt.show()

BY this data we get to know that the dieselA is selling the most with petrol where as electric are selling least in no In [4]:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as snsdf = pd.read_csv('CAR DETAILS FROM CAR DEKHO.csv')

In [41]:

import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as sns

plt.figure(figsize=(30,8))AS = sns.countplot(x = "comp", data = df, hue = "fuel") for bars in AS.containers:

AS.bar_label(bars)plt.xticks(rotation=45) # Rotate x-axis labels for better visibility plt.show()

here most sold fuel is diesel = 350 & company which sold most cars is maruti 852
In [42]:
plt.figure(figsize=(25,8))AS = sns.countplot(x = "year", data = df , hue= "fuel")for bars in AS.containers:
AS.bar_label(bars)plt.xticks(rotation=90) # Rotate x-axis labels for better visibility
plt.show()

by this data we can conclude that overall diesel was most sold fuel and its most consumption was in 2013 In [56]:

fig, axes = plt.subplots(1, 2, figsize=(15, 6)) As = sns.countplot(ax=axes[0], x="transmission", data=df)**for** bars **in** As.containers:

As.bar_label(bars)axes[0].set_title("Transmission") # Add title to the first subplot

Second subplot for "owner"ss = sns.countplot(ax=axes[1], x="owner", data=df)for bars in ss.containers: ss.bar_label(bars)axes[1].set_title("Owner") # Add title to the second subplot

Adjust layout and show the plotplt.tight_layout()plt.show()

Here, most sold cars transmission type is manual total 3892 units were sold and 448 automatic cars are sold where these sold cars. Where as most cars owner where first owner.