

Product Data

(Optional hail guard shown.)

This product has been designed and manufactured to meet Energy Star® criteria for energy efficiency. However, proper refrigerant charge and proper air flow are critical to achieve rated capacity and efficiency. Installation of this product should follow all manufacturer's refrigerant charging and air flow manufacturer's refrigerant charging and air flow may reduce energy efficiency and shorten equipment life.

TABLE OF CONTENTS

PAGE	PAGE
FEATURES AND BENEFITS	COOLING TABLES
MODEL NUMBER NOMENCLATURE 4	STATIC PRESSURE TABLES
FACTORY OPTIONS & ACCESSORIES 5	FAN PERFORMANCE
ARI CAPACITY RATING 8	OUTDOOR AIR INTAKE & EXHAUST PERF 40
SOUND PERFORMANCE 9	ELECTRICAL INFO
PHYSICAL DATA	MCA / MOCP
WEIGHTS & DIMENSIONS	TYPICAL WIRING DIAGRAMS
APPLICATION DATA24	GUIDE SPECIFICATIONS

Heating & Cooling Systems

Your Bryant Packaged Heat Pump rooftop unit (RTU) was designed by customers for customers. With no-strip screw collars, handled access panels, and more we've made your unit easy to install, easy to maintain and easy to use.

Easy to install:

All Legacy Line[™] units are field-convertible to horizontal air flow; no special adapter curbs or kits are necessary. Convertible airflow design makes it easy to adjust to unexpected job-site complications. Lighter units make easy replacement. Bryant 3-8.5 ton 548J rooftops fit on existing Bryant curbs dating back to 1989. Also, our large control box gives you room to work and room to mount Bryant accessory controls.

Easy to maintain:

Easy access handles by Bryant provide quick and easy access to all normally serviced components. Our "no-strip" screw system has superior holding power and guides screws into position while preventing the screw from stripping the unit's metal. Take accurate pressure readings by reading condenser pressure with panels on. Simply remove the black, composite plug, route your gauge line(s) through the hole, and connect them to the refrigeration service valve(s). Now, you can take refrigeration system pressure readings without affecting the condenser airflow.

Easy to use:

The newly designed, master terminal board by Bryant puts all your connections and troubleshooting points in one convenient place, standard. Most low voltage connections are made to the same board and make it easy to find what you're looking for and easy to access it. Bryant rooftops have high and low pressure switches, a filter drier, and 2" (51mm) filters standard.

FEATURES AND BENEFITS

- Up to 28% lighter than similar industry units. Lighter rooftops make easier replacement jobs.
- 3-8.5 ton units fit on existing Bryant rooftop curbs making the utility connections the same. This saves time and money on replacement jobs.
- Standardized components and layout. Standardized components and controls make service and stocking parts easier.
- Scroll compressors on all units. This makes service, stocking parts, replacement, and trouble-shooting easier.
- Crankcase heater on all models (except 04 size) provides added protection in all applications.
- Precession sized suction line accumulator provide high reliability by preventing liquid from entering the compressor during low ambient conditions and reverse cycle switch over.
- Field convertible airflow (3-8.5 tons). Being able to convert a unit from vertical airflow to horizontal makes it easy to overcome job site complications.
- 4-way reversing valve rapidly changes the flow of refrigerant to quickly changeover from cooling to heating and heating to cooling.
- Easy-adjust, belt-drive motor available on all sizes. Bryant provides a factory solution for most points in the fan performance table. There's no need for field-supplied drives or motors.
- 3-5 ton models come standard with an Electric Drive X13, 5 speed/torque motor to provide exact performance in many applications. Belt drive motor optional.
- Provisions for bottom or side condensate drain.
- Capable of thru-the-base or thru-the-curb electrical routing.
- Dependable time/temperature defrost logic provides a defrost cycle, if needed, every 30, 60, 90 or 120 minutes and is adjustable.
- Single-point electrical connection.
- Sloped, composite drain pan. Sloped, composite drain pan sheds water; and won't rust.
- Standardized controls and control box layout. Standardized components and controls make stocking parts and service easier.
- Clean, easy to use control box.
- Standard coils are copper round tube, aluminum plate fin with optional coil coatings and copper fin design.
- Color-coded wiring.
- · Large, laminated wiring and power wiring drawings which are affixed to unit make troubleshooting easy.
- Single, central terminal board for test and wiring connections.
- Fast-access, handled, panels for easy access to the blower and blower motor, control box, and compressors.
- "No-strip" screw system guides screws into the panel and captures them tightly without stripping the screw, the panel, or the unit.
- Exclusive, newly-design indoor refrigerant header for easier maintenance and replacement.
- Mechanical cooling (115°F to 25°F or 46°C to -4°C) on Electro-Mechanical (E/M) and Direct Digital Controller (DDC) (RTU-MP controller).
- 2" (51mm) disposable filters on all units.
- High capacity refrigerant filter-drier on each circuit.
- · High pressure switch, loss of charge switch and freeze protection adds greater unit reliability.

MODEL NUMBER NOMENCLATURE

10 11 12 13 14 15 16 17 18 9 5 В 4 8 J 0 6 Α 0 0 0 Α 0 0 AA

Unit Type

548J = High Eff. Heat Pump

Voltage

E = 460 - 3 - 60

J = 208/230 - 1 - 60

P = 208/230 - 3 - 60

T = 575 - 3 - 60

Cooling Tons

04 = 3 Ton

07 = 6 Ton

05 = 4 Ton

08 = 7.5 Ton

06 = 5 Ton

09 = 8.5 Ton

Refrig. System Options

A = One-Stage Cooling Models

D = Two-Stage Cooling Models

Heat Level (Field-installed electric heaters available

000 = No Heat

Coil Options (Outdoor - Indoor)

A = AI/Cu - AI/Cu

B = Precoat Al/Cu - Al/Cu

C = E-coat Al/Cu - Al/Cu

D = E-coat Al/Cu - E-coat Al/Cu

E = Cu/Cu - Al/Cu

F = Cu/Cu - Cu/Cu

M = Al/Cu - Al/Cu - Louvered Hail guards

N = Precoat Al/Cu - Al/Cu - Louvered Hail Guards

P = E coat Al/Cu - Al/Cu - Louvered Hail Guards

Q = E coat Al/Cu - E coat Al/Cu - Louvered Hail Guards

R = Cu/Cu - Al/Cu - Louvered Hail Guards

S = Cu/Cu - Cu/Cu - Louvered Hail Guards

Design Revision

- = First Revision

Packaging

A = Standard

B = LTL

Factory Installed Options

0A = None

Outdoor Air Options

A = None

B = Temp econo w/ baro relief

E = Temp econo w/ baro relief & CO₂

H = Enthalpy econo w/ baro relief

L = Enthalpy econo w/ baro relief & CO₂

Q = Motorized 2 pos damper

Indoor Fan Options

0 = Electric Drive X13 Motor (04-06)

1 = Standard static option - Belt Drive

2 = Medium static option - Belt Drive

3 = High static option - Belt Drive

This product has been designed and manufactured to meet Energy Star® criteria for energy efficiency. However, proper refrigerant charge and proper air flow are critical to achieve rated capacity and efficiency. Installation of this product should follow all manufacturer's refrigerant charging and air flow instructions. Failure to confirm proper charge and air flow may reduce energy efficiency and shorten equipment life.

FACTORY OPTIONS AND/OR ACCESSORIES

Table 1 – FACTORY-INSTALLED OPTIONS AND FIELD-INSTALLED ACCESSORIES

CATEGORY	ITEM	FACTORY INSTALLED OPTION	FIELD INSTALLED ACCESSORY
Cabinet	Thru-the-base electrical connections	X	Х
	Cu/Cu indoor and/or outdoor coils	X	
Coil Options	Pre-coated outdoor coils	X	
	Premium, E-coated outdoor coils	X	
Condenser Protection	Condenser coil hail guard (louvered design)	X	Х
	Thermostats, temperature sensors, and subbases		Х
	RTU-MP Multi-protocol controller	X	
Controls	Smoke detector (supply and/or return air)	X	
	Time Guard II compressor delay control circuit		X
	Phase Monitor		Х
	EconoMi\$er IV (for electro-mechanical controlled RTUs)	X	X
	EconoMi\$er2 (for DDC controlled RTUs)	X	Х
Economizers	Motorized 2 position outdoor - air damper	X	Х
& Outdoor Air Dampers	Manual outdoor-air damper (25% and 50%)		X
Dampers	Barometric relief ¹	X	Х
	Power exhaust		X
	Single dry bulb temperature sensors ²	X	Х
	Differential dry bulb temperature sensors ²		Х
Economizer Sensors & IAQ Devices	Single enthalpy sensors ²	X	X
IAQ Devices	Differential enthalpy sensors ²		X
	CO ₂ sensor (wall, duct, or unit mounted) ²	X	X
Flactuie Haat	Electric Resistance Heaters		X
Electric Heat	Single Point Kit		Х
landa an Matau O Dalas	Multiple motor and belt drive packages	X	
Indoor Motor & Drive	Electric Drive, X13, 5-speed/torque (3-5 ton)	X	
Low Ambient Control	Motormaster® head pressure controller ³		Х
_	Convenience outlet (powered)	X	
Power Options	Convenience outlet (unpowered)	X	
Options	Non-fused disconnect	X	
Roof Curbs	Roof curb 14" (356mm)		Х
HOOT CUIDS	Roof curb 24" (610mm)		X

NOTES:

- 1. Included with economizer.
- 2. Sensors for optimizing economizer.
- 3. See application data for assistance.

FACTORY OPTIONS AND/OR ACCESSORIES (cont.)

Economizer (dry-bulb or enthalpy)

Economizers save money. They bring in fresh, outside air for ventilation; and provide cool, outside air to cool your building. This is the preferred method of low-ambient cooling. When coupled to CO₂ sensors, Economizers can provide even more savings by coupling the ventilation air to only that amount required.

Economizers are available, installed and tested by the factory, with either enthalpy or dry-bulb temperature inputs. There are also models for electromechanical as well as direct digital controllers. Additional sensors are available as accessories to optimize the economizers.

Economizers include gravity controlled, barometric relief equalizes building pressure and ambient air pressures. This can be a cast effective solution to prevent building pressurization.

CO₂ Sensor

Improves productivity and saves money by working with the economizer to intake only the correct amount of outside air for ventilation. As occupants fill your building, the CO_2 sensor detects their presence through increasing CO_2 levels, and opens the economizer appropriately.

When the occupants leave, the CO₂ levels decrease, and the sensor appropriately closes the economizer. This intelligent control of the ventilation air, called Demand Control Ventilation (DCV) reduces the overall load on the rooftop, saving money.

Smoke Detectors

Trust the experts. Smoke detectors make your application safer and your job easier. Bryant smoke detectors immediately shut down the rooftop unit when smoke is detected. They are available, installed by the factory, for supply air, return air, or both.

Louvered Hail Guards

Sleek, louvered panels protect the condenser coil from hail damage, foreign objects, and incidental contact.

Convenience Outlet (powered or un-powered)

Lower service bills by including a convenience outlet in your specification. Bryant will install this service feature at our factory, powered. Provides a convenient, 15 amp, 115V GFCI receptacle.

Non-fused Disconnect

This OSHA-compliant, factory-installed, safety switch allows a service technician to locally secure power to the rooftop.

Power Exhaust Pressure Relief

Superior internal building pressure control. This field-installed accessory may eliminate the need for costly, external pressure control fans.

RTU-MP, Multi-protocol Controller

Connect the rooftop to an existing BAS without needing complicated translators or adapter modules using the RTU-MP controller. This new controller speaks the 4 most common building automation system languages (Bacnet, Modbus, N2, and Lonworks). Use this controller when you have an existing BAS.

Time Guard II Control Circuit

This accessory protects your compressor by preventing short-cycling in the event of some other failure, prevents the compressor from restarting for 30 seconds after stopping. Not required with RTU-MP or authorized commercial thermostats.

Filter or Fan Status Switches

Use these differential pressure switches to detect a filter clog or indoor fan motor failure. When used in conjunction with a compatible unit controller/thermostat, the switches will activate an alarm to warn the appropriate personnel.

Motorized 2-Position Damper

The new Bryant 2-position, motorized outdoor air damper admits up to 100% outside air. Using reliable, gear-driven technology, the 2-position damper opens to allow ventilation air and closes when the rooftop stops, stopping unwanted infiltration.

Manual OA Damper

Manual outdoor air dampers are an economical way to bring in ventilation air. The dampers are available in 25% and 50% versions.

FACTORY OPTIONS AND/OR ACCESSORIES (cont.)

Motormaster Head Pressure Controller

The Motormaster motor controller is a low ambient, head pressure controller kit that is designed to maintain the unit's condenser head pressure during periods of low ambient cooling operation. This device should be used as an alternative to economizer free cooling not when economizer usage is either not appropriate or desired. The Motormaster will either cycle the outdoor-fan motors or operate them at reduced speed to maintain the unit operation, depending on the model.

Alternate Motors and Drives

Some applications need larger horsepower motors, some need more airflow, and some need both. Regardless of the case, your Bryant expert has a factory installed combination to meet your application. A wide selection of motors and pulleys (drives) are available, factory installed, to handle nearly any application.

Thru-the-Base Connections

Thru-the-base connections, available as either an accessory or as a factory option, are necessary to ensure proper connection and seal when routing wire and piping through the rooftop's basepan and curb. These couplings eliminate roof penetration and should be considered for gas lines, main power lines, as well as control power.

Electric Heaters

Bryant offers a full-line of field-installed accessory heaters. The heaters are very easy to use, install and are all pre-engineered and certified.

Table 2 – ARI COOLING RATING TABLES

	COOLING MODE										
548J*	NOMINAL CAPACITY (TONS)	NET COOLING CAPACITY (BTUH)	TOTAL POWER (kW)	SEER	EER	IPLV					
04A	3	37,000	3.3	13.40**	11.00	N/A					
05A	4	47,000	4.1	13.10**	11.20	N/A					
06A	5	61,500	5.5	13.20**	11.15	N/A					
07A	6	70,000	6.3	N/A	11.10	N/A					
08D	7.5	88,000	7.8	N/A	11.20	12.40					
09D	8.5	99,000	8.8	N/A	11.20	12.40					

NOTE:

All AHRI ratings are based on 230, 460 and 575 volt.

- Electric Drive (direct drive) X13 5 speed/torque motor. SEER rating is 13.0 for belt drive.
- Not applicable

	HEATING MODE									
		HEATING	G, LOW	HEATING	, HIGH					
548J*	HSPF	CAPACITY (BTUH)	СОР	CAPACITY (BTUH)	СОР					
04A	7.70	18,200	N/A	35,600	N/A					
05A	7.70	23,600	23,600	23,600	N/A	45,500	N/A			
06A	7.70	31,200	N/A	58,000	N/A					
07A	N/A	34,800	2.25	67,000	3.30					
08D	N/A	48,000	2.25	86,000	3.30					
09D	N/A	54,500	2.25	96,000	3.30					

LEGEND

ARI - Air-Conditioning, Heating and Refrigeration

Institute

ASHRAE American Society of Heating, Refrigerating

and Air Conditioning, Inc.

COP Coefficient of Performance **Energy Efficiency Ratio EER**

HSPF Heating Seasonal Performance Factor

Integrated Part Load Value **IPLV SEER** Seasonal Energy Efficiency Ratio

This product has been designed and manufactured to meet Energy Star® criteria for energy efficiency. However, proper refrigerant charge and proper air flow are critical to achieve rated capacity and efficiency. Installation of this product should follow all manufacturer's refrigerant charging and air flow instructions. Failure to confirm proper charge and air flow may reduce energy efficiency and shorten equipment life. equipment life.

NOTES:

- 1. Rated and certified under ARI Standard 210/240-06 or 340/360-07, as appropriate.
- 2. Ratings are based on:

Cooling Standard: 80°F (27°C) db, 67°F (19°C) wb indoor air temp and 95°F db outdoor air temp.

IPLV Standard: 80°F (27°C) db, 67°F (19°C) wb indoor air temp and 80°F (27°C) db outdoor air temp.

- 3. All 548J units comply with ASHRAE 90.1 2001, 2004 Energy Standard for minimum SEER and EER requirements.
- 4. Where appropriate, 548J units comply with US Energy Policy Act (2005). Refer to state and local codes or visit the following website: http://bcap-energy. org to determine if compliance with this standard pertains to your state, territory, or municipality.

Table 3 – MINIMUM - MAXIMUM AIRFLOWS ELECTRIC HEAT

LINUT	COC	LING	ELECTRIC HEATERS		
UNIT	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	
548J*04	900	1500	900	1500	
548J*05	1200	2000	1200	2000	
548J*06	1500	2500	1500	2500	
548J*07	1800	3000	1800	3000	
548J*08	2250	3750	2250**	3750	
548J*09	2550	4250	2250**	4250	

**Minimum electric heat CFM exceptions:

UNIT	UNIT VOLTAGE	HEATER kW	UNIT CONFIGURATION	REQUIRED MINIMUM CFM
548J*08	575	17.0	Horizontal or Vertical	2800
548J*09	575	34.0	Tionzoniai oi verticai	2350

Table 4 – SOUND PERFORMANCE TABLE

548J*	OUTDOOR SOUND (DB)										
5460"	A-WEIGHTED	63	125	250	500	1000	2000	4000	8000		
04A	77	78.9	81.7	74.9	72.5	70.3	65.6	65.6	62.6		
05A	80	90.4	84.6	77.6	77.5	74.8	70.6	68.0	64.2		
06A	80	92.7	84.9	79	76.7	73.8	69.6	66.4	62.8		
07A	78	88.0	79.5	76.2	75.8	72.5	68.6	65.7	62.4		
08D	82	89.7	81.5	80.5	79.2	77.1	73.2	70.2	67.4		
09D	84	90.8	85.2	81.6	79.5	78.1	74.0	70.4	66.5		

LEGEND

dB - Decibel

NOTES:

- Outdoor sound data is measure in accordance with ARI standard 270-95.
- Measurements are expressed in terms of sound power. Do not compare these values to sound pressure values because sound pressure accounts for specific environmental factors which do not match individual applications. Sound power values are independent of the environment and therefore more accurate.
- A-weighted sound ratings filter out very high and very low frequencies, to better approximate the response of an "average" human ear. A-weighted measurements for Bryant units are taken in accordance with 270-95.

Cable 5 – PHYSIC	AL DATA	(COOLING)		3 - 6 TONS		
		548J*04	548J*05	548J*06	548J*07	
Refrigeration System	n					
	# Circuits / # Comp. / Type	1 / 1 / Scroll	1 / 1 / Scroll	1 / 1 / Scroll	1 / 1 / Scroll	
Puron® refrig. (R-	410A) charge per circuit A/B (lbs-oz)	9 - 8 / -	10 -3 / -	12 - 13 / -	16 - 13 / -	
	Oil A/B (oz)	42 / –	42 / –	42 / –	56 /	
	Metering Device	Acutrol	Acutrol	Acutrol	Acutrol	
	High-pressure Trip / Reset (psig)	630 / 505	630 / 505	630 / 505	630 / 505	
	of Charge Pressure Trip / Reset (psig)	27 / 44	27 / 44	27 / 44	27 / 44	
Evap. Coil						
	Material	Cu / Al	Cu / Al	Cu / Al	Cu / Al	
	Coil type	3/8" RTPF	3/8" RTPF	3/8" RTPF	3/8" RTPF	
	Rows / FPI	3 / 15	3 / 15	4/ 15	4/ 15	
	Total Face Area (ft ²)	5.5	5.5	7.3	7.3	
vap. Fan and Moto	Condensate Drain Conn. Size	3/4"	3/4"	3/4"	3/4"	
vap. Fall allu Motol						
O	Motor Qty / Drive Type	1 / Direct	1 / Direct	1 / Direct	N/A	
Standard Static 1 phase	Max BHP	1	1	1	,	
d S d S	RPM Range	600-1200	600-1200	600-1200		
da da	Motor Frame Size	48	48	48		
tan	Fan Qty / Type	1 / Centrifugal	1 / Centrifugal	1 / Centrifugal	n / Centrifugal	
0	Fan Diameter x Length (in)	10 x 10	10 x 10	11 x 10		
.co	Motor Qty / Drive Type	1 / Direct	1 / Direct	1 / Direct	1 / Belt	
) stati	Max BHP	1	1	1	1.5	
Standard Static 3 phase	RPM Range	600-1200	600-1200	600-1200	878-1192	
ph	Motor Frame Size	48	48	48	56	
3 3	Fan Qty / Type	1 / Centrifugal	1 / Centrifugal	1 / Centrifugal	1 / Centrifugal	
	Fan Diameter x Length (in)	10 x 10	10 x 10	11 x 10	10 x 10	
	Material (Director)	4 / D = 14	4 / D = 14	4 / D - H	4 / Dalt	
. <u>e</u>	Motor Qty / Drive Type	1 / Belt 1.5	1 / Belt 1.5	1 / Belt 2	1 / Belt 2.9	
Sta	Max BHP RPM Range	1.5 819–1251	920–1303	1066-1380	1066-1380	
Medium Static 3 phase	Motor Frame Size	56	56	56	56	
3 pg	Fan Qty / Type	1 / Centrifugal	1 / Centrifugal	1 / Centrifugal	1 / Centrifugal	
Ž	Fan Diameter x Length (in)	10 x 10	10 x 10	10 x 10	10 x 10	
	r an Diameter x Length (iii)	10 % 10	10 x 10	10 % 10	10 x 10	
	Motor Qty / Drive Type	1 / Belt	1 / Belt	1 / Belt	1 / Belt	
ی	Max BHP	2	2	2.9	2.9	
High Static 3 phase	RPM Range	1035-1466	1035-1466	1208-1639	1208-1639	
) hg	Motor Frame Size	56	56	56	56	
j ≟ °	Fan Qty / Type	1 / Centrifugal	1 / Centrifugal	1 / Centrifugal	1 / Centrifugal	
	Fan Diameter x Length (in)	10 x 10	10 x 10	10 x 10	10 x 10	
Cond. Coil	Address of the	0/ 41	0/ 41	0/ 41	0 (4)	
	Material	Cu / Al 3/8" RTPF	Cu / Al	Cu / Al	Cu / Al	
	Coil type Rows / FPI		3/8" RTPF	3/8" RTPF	3/8" RTPF	
	Total Face Area (ft ²)	2 / 17 10.7	2 / 17 12.7118055	2/17	2 / 17	
Cond. fan / motor	TOTAL FACE ATEA (IL-)	10.7	12.7110000	15	21.25	
23.14. 1411 / IIIO(0)	Qty / Motor Drive Type	1 / direct	1 / direct	1 / direct	1 / direct	
	Motor HP / RPM	1/8 / 825	1/4 / 1100	1/4 / 1100	1/4 / 1100	
	Fan diameter (in)	1/6 / 625	22	22	22	
Filters	randameter (III)	<u></u>		<u></u>		
	RA Filter # / Size (in)	2 / 16 x 25 x 2	2 / 16 x 25 x 2	4 / 16 x 16 x 2	4 / 16 x 16 x 2	
	OA inlet screen # / Size (in)	1 / 20 x 24 x 1	1 / 20 x 24 x 1	1 / 20 x 24 x 1	1 / 20 x 24 x 1	

Table 6 –	PHYSICAL DATA	(COOLING)	7.5 - 8.5 TONS		
-		548J*08	548J*09		
Refrigera	tion System				
	# Circuits / # Comp. / Type	2 / 2 / Scroll	2 / 2 / Scroll		
Puron®	refrig. (R-410A) charge per circuit A/B (lbs-oz)	10 - 3 / 10 - 3	11 - 2 / 11 - 2		
	Oil A/B (oz)	42 / 42	42 / 42		
	Metering Device	Accutrol	Accutrol		
	High-pressure Trip / Reset (psig)	630 / 505	630 / 505		
	Loss of Charge Pressure Trip / Reset (psig)	27 / 44	27 / 44		
Evap. Co		,	,		
•	Material	Cu / Al	Cu / Al		
	Coil type	3/8" RTPF	3/8" RTPF		
	Rows / FPI	3 / 15	4 / 15		
	Total Face Area (ft ²)	11.1	11.1		
	Condensate Drain Conn. Size	3/4"	3/4"		
Even Fen	and Motor	3/4	3/4		
		1 / Belt	1 / Belt		
Standard Static	Motor Qty / Drive Type		1 / Belt 1.2		
Sts	Max BHP	1.2			
ard	RPM Range	460 – 652	460-652		
lg	RPM Range Motor Frame Size	56	56		
Sta	ran Qty / Type	1 / Centrifugal	1 / Centrifugal		
	Fan Diameter x Length (in)	15 x 15	15 x 15		
0	Motor Qty / Drive Type	1 / Belt	1 / Belt		
atic	Max BHP	2.9	2.9		
Medium Static	RPM Range	591 – 838	591 – 838		
ini	Motor Frame Size	56	56		
led	ຕ Fan Qty / Type	1 / Centrifugal	1 / Centrifugal		
2	Fan Diameter x Length (in)	15 x 15	15 x 15		
	Motor Qty / Drive Type	1 / Belt	1 / Belt		
o		2.9	2.9		
High Static	S RPM Range	838-1084	838–1084		
l S	Motor Frame Size	56	56		
Hig	Fan Qty / Type	1 / Centrifugal	1 / Centrifugal		
	Fan Diameter x Length (in)	15 x 15	15 x 15		
Cond. Co	sil				
Cona. CC	Material	Cu / Al	Cu / Al		
	Coil type	3/8" RTPF	3/8" RTPF		
	Rows / FPI				
	, _	2 / 17 25.1	2/17		
O 1 4	Total Face Area (ft²)	25.1	25.1		
Cond. fai	•	O / divo et	O / divo at		
	Qty / Motor Drive Type	2 / direct	2 / direct		
	Motor HP / RPM	1/4 / 1100	1/4 / 1100		
- 114 -	Fan diameter (in)	22.0	22.0		
Filters	RA Filter # / Size (in)	4 / 16 x 20 x 2	4 / 20 x 20 x 2		
	OA inlet screen # / Size (in)	1 / 20 x 24 x 1	1 / 20 x 24 x 1		
	OA IIIIet Screen # / Size (III)	1 / 2U X 24 X 1	1 / 2U X 24 X 1		

 -	-PH-HZ	IFM	ELECTRIC HEATER	NOM	APP		SINGLE POINT KIT PART NUMBER CRSINGLEXXXXXX			
UNIT	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TYPE	PART NUMBER CRHEATERXXXXXX	PWR (kW)	PWR (kW)	WITHOUT C.O. or UNPWRD C.O.		WITH PWRD C.O.		
	208/230-1-60 NOM. V					WITHOUT P.E.	WITH P.E.	WITHOUT P.E.	WITH P.E.	
	9		101A00	4.4	3.3/4.0	037A00	037A00	037A00	040A00	
	<u> </u>		102A00	6.5	4.9/6.0	040A00	040A00	040A00	040A00	
	o	STD DD	103B00	8.7	6.5/8.0	040A00	040A00	040A00	040A00	
	3/23	טט	104B00	10.5	7.9/9.6	040A00	040A00	040A00	040A00	
	208		102A00,102A00	13.0	9.8/11.9	041A00	041A00	041A00	041A00	
			101A00	4.4	3.3/4.0	-	-	-	-	
		CTD	102A00	6.5	4.9/6.0	-	-	-	037A00	
		STD DD	103B00	8.7	6.5/8.0	037A00	037A00	037A00	037A00	
		DD	104B00	10.5	7.9/9.6	037A00	037A00	038A00	038A00	
			105A00	16.0	12.0/14.7	038A00	038A00	038A00	038A00	
	9	MED BD	101A00	4.4	3.3/4.0	-		-		
	က်		102A00	6.5	4.9/6.0	_	-	_	-	
	o		103B00	8.7	6.5/8.0	-	037A00	037A00	037A00	
	208/230-3-60		104B00	10.5	7.9/9.6	037A00	037A00	037A00	038A00	
4	208		105A00	16.0	12.0/14.7	038A00	038A00	038A00	038A00	
548J*04			101A00	4.4	3.3/4.0	-	-	-	-	
48,		111011	102A00	6.5	4.9/6.0	-	-	-	-	
5		HIGH BD	103B00	8.7	6.5/8.0	_	037A00	037A00	037A00	
		DD	104B00	10.5	7.9/9.6	037A00	037A00	037A00	038A00	
			105A00	16.0	12.0/14.7	038A00	038A00	038A00	038A00	
			106A00	6.0	5.5	-	-	-	-	
		STD	107A00	8.8	8.1	-	-	-	-	
		DD	108A00	11.5	10.6	-	-	-	-	
			109A00	14.0	12.9	-	1	_	-	
	09		106A00	6.0	5.5	-	-	-	-	
	3-	MED BD	107A00	8.8	8.1	-	-	-	-	
	460-3-60		108A00	11.5	10.6	-	-	_	-	
			109A00	14.0	12.9	-	-	_	-	
			106A00	6.0	5.5	-	-	-	-	
		HIGH	107A00	8.8	8.1	_	-	_	-	
		BD	108A00	11.5	10.6	-	-	_	-	
			109A00	14.0	12.9	-	-	_	-	

LEGEND

APP PWR - 208 / 230V / 460V / 575V BD - Belt drive motor

C.O. – Convenient outlet
DD – Electric Drive X13 5 speed/torque motor

FLA - Full load amps
IFM - Indoor fan motor
NOM PWR - 240V / 480V / 600V
P.E. - Power exhaust

F	V-PH-HZ	IFM	ELECTRIC HEATER	NOM	APP		SINGLE POINT KI CRSINGL	T PART NUMBER EXXXXXX	
UNIT				PWR (kW)	WITHOUT C.O. o	or UNPWRD C.O.	WITH PWRD C.O.		
	60 NOM.					WITHOUT P.E.	WITH P.E.	WITHOUT P.E.	WITH P.E.
	09		101A00	4.4	3.3/4.0	037A00	040A00	040A00	040A00
	+	0.7.0	103B00	8.7	6.5/8.0	040A00	040A00	040A00	040A00
	0	STD DD	102A00,102A00	13.0	9.8/11.9	041A00	041A00	041A00	041A00
	/23	טט	103B00,103B00	17.4	13.1/16.0	041A00	041A00	041A00	041A00
	208/230		104B00,104B00	21.0	15.8/19.3	041A00	041A00	041A00	041A00
	1,		102A00	6.5	4.9/6.0	-	+	-	037A00
		STD	103B00	8.7	6.5/8.0	037A00	037A00	037A00	037A00
		DD	105A00	16.0	12.0/14.7	038A00	038A00	038A00	038A00
			104B00,104B00	21.0	15.8/19.3	039A00	039A00	039A00	039A00
	-60	MED	102A00	6.5	4.9/6.0	-	-	-	-
	3		103B00	8.7	6.5/8.0	-	037A00	037A00	037A00
	30	BD	105A00	16.0	12.0/14.7	038A00	038A00	038A00	038A00
	208/230		104B00,104B00	21.0	15.8/19.3	039A00	039A00	039A00	039A00
05	2	HIGH BD	102A00	6.5	4.9/6.0	-	-	-	-
548J*05			103B00	8.7	6.5/8.0	-	037A00	037A00	037A00
548			105A00	16.0	12.0/14.7	038A00	038A00	038A00	038A00
			104B00,104B00	21.0	15.8/19.3	039A00	039A00	039A00	039A00
			106A00	6.0	5.5	-	-	-	-
		STD	108A00	11.5	10.6	-	-	_	-
		DD	109A00	14.0	12.9	-	-	-	-
			108A00,108A00	23.0	21.1	037A00	037A00	037A00	037A00
	09-		106A00	6.0	5.5	-	-	-	-
	3-(MED	108A00	11.5	10.6	-	-	_	-
	460-3	BD	109A00	14.0	12.9	-	-	-	-
	46(108A00,108A00	23.0	21.1	037A00	037A00	037A00	037A00
			106A00	6.0	5.5	-	-	-	-
		HIGH	108A00	11.5	10.6	-	-	_	-
		BD	109A00	14.0	12.9	_	-	_	-
			108A00,108A00	23.0	21.1	037A00	037A00	037A00	037A00

LEGEND

- 208 / 230V / 460V / 575V

APP PWR BD - Belt drive motor C.O. - Convenient outlet

DD - Electric Drive X13 5 speed/torque motor

- Full load amps FLA IFM - Indoor fan motor - 240V / 480V / 600V NOM PWR P.E. - Power exhaust

L	V-PH-HZ	IFM	ELECTRIC HEATER	NOM	APP		SINGLE POINT KI CRSINGL	T PART NUMBER EXXXXXX	
LNO		TYPE	PART NUMBER CRHEATERXXXXXX	PWR (kW)	PWR (kW)	WITHOUT C.O.	or UNPWRD C.O.	WITH PWRD C.O.	
	-60 NOM.					WITHOUT P.E.	WITH P.E.	WITHOUT P.E.	WITH P.E.
	9		102A00	6.5	4.9/6.0	040A00	040A00	040A00	040A00
	<u> </u>	OTD	103B00	8.7	6.5/8.0	040A00	040A00	040A00	040A00
	0	STD DD	102A00,102A00	13.0	9.8/11.9	041A00	041A00	041A00	041A00
	1/23		103B00,103B00	17.4	13.1/16.0	041A00	041A00	041A00	041A00
	208/230-1		104B00,104B00	21.0	15.8/19.3	041A00	041A00	041A00	041A00
	- 1 1		102A00	6.5	4.9/6.0	-	-	037A00	037A00
		0.70	104B00	10.5	7.9/9.6	038A00	038A00	038A00	038A00
		STD DD	105A00	16.0	12.0/14.7	038A00	038A00	038A00	038A00
			104B00,104B00	21.0	15.8/19.3	039A00	039A00	039A00	039A00
			104B00,105A00	26.5	19.9/24.3	039A00	039A00	039A00	039A00
	09		102A00	6.5	4.9/6.0	-	-	-	037A00
	3-		104B00	10.5	7.9/9.6	037A00	037A00	038A00	038A00
	-0	MED BD	105A00	16.0	12.0/14.7	038A00	038A00	038A00	038A00
	/23		104B00,104B00	21.0	15.8/19.3	039A00	039A00	039A00	039A00
	208/230-3-60		104B00,105A00	26.5	19.9/24.3	039A00	039A00	039A00	039A00
	``	HIGH BD	102A00	6.5	4.9/6.0	-	_	037A00	037A00
90			104B00	10.5	7.9/9.6	038A00	038A00	038A00	038A00
548J*06			105A00	16.0	12.0/14.7	038A00	038A00	038A00	038A00
548			104B00,104B00	21.0	15.8/19.3	039A00	039A00	039A00	039A00
			104B00,105A00	26.5	19.9/24.3	039A00	039A00	039A00	039A00
			106A00	6.0	5.5	-	-	-	-
		OTD	108A00	11.5	10.6	_	_	-	-
		STD DD	109A00	14.0	12.9	-	-	-	-
			108A00,108A00	23.0	21.1	037A00	037A00	037A00	037A00
			108A00,109A00	25.5	23.4	037A00	037A00	037A00	037A00
			106A00	6.0	5.5	-	-	-	
	9-		108A00	11.5	10.6	_	_	-	-
	ဗ်	MED	109A00	14.0	12.9	-	-	-	-
	460-3-60	BD	108A00,108A00	23.0	21.1	037A00	037A00	037A00	037A00
	4		108A00,109A00	25.5	23.4	037A00	037A00	037A00	037A00
1			106A00	6.0	5.5	-	-	-	
			108A00	11.5	10.6	-	-	-	-
		HIGH BD	109A00	14.0	12.9	-	-	_	-
		טט	108A00,108A00	23.0	21.1	037A00	037A00	037A00	037A00
			108A00,109A00	25.5	23.4	037A00	037A00	037A00	037A00

LEGEND

APP PWR - 208 / 230V / 460V / 575V

BD – Belt drive motor C.O. – Convenient outlet

DD - Electric Drive X13 5 speed/torque motor

FLA - Full load amps
IFM - Indoor fan motor
NOM PWR - 240V / 480V / 600V
P.E. - Power exhaust

F	V-PH-HZ	IFM	ELECTRIC HEATER	NOM	APP	SINGLE POINT KIT PART NUMBER CRSINGLEXXXXXX						
L	. V-I	TYPE	PART NUMBER CRHEATERXXXXXX	PWR (kW)	PWR (kW)	WITHOUT C.O. o	r UNPWRD C.O.	WITH PW	/RD C.O.			
	NOM.					WITHOUT P.E.	WITH P.E.	WITHOUT P.E.	WITH P.E.			
			102A00	6.5	4.9/6.0	-	037A00	037A00	037A00			
			104B00	10.5	7.9/9.6	038A00	038A00	038A00	038A00			
		STD	105A00	16.0	12.0/14.7	038A00	038A00	038A00	038A00			
			104B00,104B00	21.0	15.8/19.3	039A00	039A00	039A00	039A00			
			104B00,105A00	26.5	19.9/24.3	039A00	039A00	039A00	039A00			
	90		102A00	6.5	4.9/6.0	037A00	037A00	037A00	037A00			
	3-		104B00	10.5	7.9/9.6	038A00	038A00	038A00	038A00			
	-0°	MED	105A00	16.0	12.0/14.7	038A00	038A00	038A00	038A00			
	208/230-3-60		104B00,104B00	21.0	15.8/19.3	039A00	039A00	039A00	039A00			
	208		104B00,105A00	26.5	19.9/24.3	039A00	039A00	039A00	039A00			
			102A00	6.5	4.9/6.0	037A00	037A00	037A00	037A00			
			104B00	10.5	7.9/9.6	038A00	038A00	038A00	038A00			
		HIGH	105A00	16.0	12.0/14.7	038A00	038A00	038A00	038A00			
7			104B00,104B00	21.0	15.8/19.3	039A00	039A00	039A00	039A00			
548J*07			104B00,105A00	26.5	19.9/24.3	039A00	039A00	039A00	039A00			
48			106A00	6.0	5.5	-	-	_	-			
ισ			108A00	11.5	10.6	_	-	-	-			
		STD	109A00	14.0	12.9	-	-	-	-			
			108A00,108A00	23.0	21.1	037A00	037A00	037A00	037A00			
			108A00,109A00	25.5	23.4	037A00	037A00	037A00	037A00			
			106A00	6.0	5.5	-	-	_	-			
	460-3-60		108A00	11.5	10.6	-	-	_	-			
	-3	MED	109A00	14.0	12.9	-	-	-	-			
	091		108A00,108A00	23.0	21.1	037A00	037A00	037A00	037A00			
	,		108A00,109A00	25.5	23.4	037A00	037A00	037A00	037A00			
			106A00	6.0	5.5	-	_	_	-			
			108A00	11.5	10.6	_	-	_	-			
		HIGH	109A00	14.0	12.9	_	-	_	-			
			108A00,108A00	23.0	21.1	037A00	037A00	037A00	037A00			
			108A00,109A00	25.5	23.4	037A00	037A00	037A00	037A00			

LEGEND

-	NOM. V-PH-HZ	IFM	ELECTRIC HEATER	NOM	АРР		SINGLE POINT KI CRSINGL	T PART NUMBER EXXXXXX	
UNIT	. V-F	TYPE	PART NUMBER CRHEATERXXXXXX	PWR (kW)	PWR (kW)	WITHOUT C.O.	or UNPWRD C.O.	WITH PW	/RD C.O.
	NON					WITHOUT P.E.	WITH P.E.	WITHOUT P.E.	WITH P.E.
	_		117A00	10.4	7.8/9.6	049A00	049A00	049A00	049A00
			110A00	16.0	12.0/14.7	049A00	049A00	049A00	049A00
		STD	111A00	24.8	18.6/22.8	051A00	051A00	051A00	051A00
			112A00	32.0	24.0/29.4	051A00	051A00	051A00	051A00
			112A00,117A00	42.4	31.8/38.9	053A00	053A00	053A00	053A00
	09		117A00	10.4	7.8/9.6	049A00	049A00	049A00	049A00
	3-		110A00	16.0	12.0/14.7	049A00	049A00	049A00	049A00
	9	MED	111A00	24.8	18.6/22.8	051A00	051A00	051A00	051A00
	/23		112A00	32.0	24.0/29.4	051A00	051A00	051A00	051A00
	208/230-3-60		112A00,117A00	42.4	31.8/38.9	053A00	053A00	053A00	053A00
	``		117A00	10.4	7.8/9.6	049A00	049A00	049A00	049A00
			110A00	16.0	12.0/14.7	049A00	049A00	049A00	049A00
		HIGH	111A00	24.8	18.6/22.8	051A00	051A00	051A00	051A00
_			112A00	32.0	24.0/29.4	051A00	051A00	051A00	051A00
0			112A00,117A00	42.4	31.8/38.9	053A00	053A00	053A00	053A00
548J*08 (2-STAGE COOL)			116A00	13.9	12.8	047A00	047A00	047A00	047A00
넁			113A00	16.5	15.2	047A00	047A00	047A00	047A00
¥		STD	114A00	27.8	25.5	047A00	050A00	050A00	050A00
S			115A00	33.0	30.3	050A00	050A00	050A00	050A00
3 (2			114A00,116A00	41.7	38.3	052A00	052A00	052A00	052A00
*0			116A00	13.9	12.8	047A00	047A00	047A00	047A00
187	9-		113A00	16.5	15.2	047A00	047A00	047A00	047A00
ú	ဗု	MED	114A00	27.8	25.5	050A00	050A00	050A00	050A00
	460-3-60		115A00	33.0	30.3	050A00	050A00	050A00	050A00
	4		114A00,116A00	41.7	38.3	052A00	052A00	052A00	052A00
			116A00	13.9	12.8	047A00	047A00	047A00	047A00
			113A00	16.5	15.2	047A00	047A00	047A00	047A00
		HIGH	114A00	27.8	25.5	050A00	050A00	050A00	050A00
			115A00	33.0	30.3	050A00	050A00	050A00	050A00
			114A00,116A00	41.7	38.3	052A00	052A00	052A00	052A00
		STD	118A00	17.0	17.0	047A00	047A00	047A00	047A00
	99	טוס	119A00	34.0	34.0	050A00	050A00	050A00	050A00
	575-3-60	MED	118A00	17.0	17.0	047A00	047A00	047A00	047A00
	5-	MED	119A00	34.0	34.0	050A00	050A00	050A00	050A00
	57.	111011	118A00	17.0	17.0	047A00	047A00	047A00	047A00
		HIGH	119A00	34.0	34.0	050A00	050A00	050A00	050A00

LEGEND

UNIT ON MON	74-4,	IFAA	ELECTRIC HEATER	NOM PWR	APP		SINGLE POINT KI CRSINGL	T PART NUMBER EXXXXXX	
	<u> </u>	IFM TYPE	PART NUMBER CRHEATERXXXXXX	PWR (kW)	PWR (kW)	WITHOUT C.O. o	or UNPWRD C.O.	WITH PW	RD C.O.
	2					WITHOUT P.E.	WITH P.E.	WITHOUT P.E.	WITH P.E.
	_		117A00	10.4	7.8/9.6	049A00	049A00	049A00	049A00
			110A00	16.0	12.0/14.7	049A00	049A00	049A00	049A00
		STD	111A00	24.8	18.6/22.8	051A00	051A00	051A00	051A00
			112A00	32.0	24.0/29.4	051A00	051A00	051A00	051A00
			112A00,117A00	42.4	31.8/38.9	053A00	053A00	053A00	053A00
ç	z l		117A00	10.4	7.8/9.6	049A00	049A00	049A00	049A00
3.			110A00	16.0	12.0/14.7	049A00	049A00	049A00	049A00
j	ĺ	MED	111A00	24.8	18.6/22.8	051A00	051A00	051A00	051A00
23	2		112A00	32.0	24.0/29.4	051A00	051A00	051A00	051A00
09/230-3-60	8		112A00,117A00	42.4	31.8/38.9	053A00	053A00	053A00	053A00
``	`		117A00	10.4	7.8/9.6	049A00	049A00	049A00	049A00
			110A00	16.0	12.0/14.7	049A00	049A00	049A00	049A00
		HIGH	111A00	24.8	18.6/22.8	051A00	051A00	051A00	051A00
			112A00	32.0	24.0/29.4	051A00	051A00	051A00	051A00
7			112A00,117A00	42.4	31.8/38.9	053A00	053A00	053A00	053A00
3 🖯			116A00	13.9	12.8	047A00	047A00	047A00	047A00
Ä		STD	113A00	16.5	15.2	047A00	047A00	047A00	047A00
<u> </u>			114A00	27.8	25.5	050A00	050A00	050A00	050A00
מי			115A00	33.0	30.3	050A00	050A00	050A00	050A00
548J*09 (2-STAGE COOL)			114A00,116A00	41.7	38.3	052A00	052A00	052A00	052A00
<u> </u>	F		116A00	13.9	12.8	047A00	047A00	047A00	047A00
548J	8		113A00	16.5	15.2	047A00	047A00	047A00	047A00
y 6	; -	MED	114A00	27.8	25.5	050A00	050A00	050A00	050A00
ļ ;	<u> </u>		115A00	33.0	30.3	050A00	050A00	050A00	050A00
4	4		114A00,116A00	41.7	38.3	052A00	052A00	052A00	052A00
	F		116A00	13.9	12.8	047A00	047A00	047A00	047A00
			113A00	16.5	15.2	047A00	047A00	047A00	047A00
		HIGH	114A00	27.8	25.5	050A00	050A00	050A00	050A00
			115A00	33.0	30.3	050A00	050A00	050A00	050A00
			114A00,116A00	41.7	38.3	052A00	052A00	052A00	052A00
	-		118A00	17.0	17.0	047A00	047A00	047A00	047A00
_	_	STD	119A00	34.0	34.0	050A00	050A00	050A00	050A00
ا	<u> ۱</u>		118A00	17.0	17.0	047A00	047A00	047A00	047A00
575-3-60	2	MED	119A00	34.0	34.0	050A00	050A00	050A00	050A00
575	2/2		118A00	17.0	17.0	047A00	047A00	047A00	047A00
		HIGH	119A00	34.0	34.0	050A00	050A00	050A00	050A00

LEGEND

WEIGHTS & DIMENSIONS

Fig. 1 - Dimensions 548J 04-07

C09019

C08337

WEIGHTS & DIMENSIONS (cont.)

UNIT			COR WEIGH	NER T (A)	CORNER WEIGHT (B)			CORNER WEIGHT (C)		NER T (D)	C . G	HEIGHT	
	LBS.	KG.	LBS.	KG.	LBS.	KG.	LBS.	KG.	LBS.	KG.	Х	Y	Z
548J-04A	505	229	136	62	130	59	117	53	123	56	36 1/4 [921]	22 1/8 [562]	16 3/8 [416]
548J-05A	510	231	138	63	131	59	118	54	124	56	36 1/4 [921]	22 1/8 [562]	16 1/2 [419]
548J-06A	590	268	159	72	146	66	137	62	149	68	35 5/8 [905]	22 5/8 [575]	20 1/8 [511]
548J-07A	630	286	166	75	166	75	149	68	149	68	37 1/4 [946]	22 1/8 [562]	20 3/4 [527]

Fig. 2 - Dimensions 548J 04-07

Fig. 3 - Service Clearance

LOC DIMENSION CONDITION 48" (1219 mm) Unit disconnect is mounted on panel 18" (457 mm) No disconnect, convenience outlet option Α 18" (457 mm) Recommended service clearance 12" (305 mm) Minimum clearance 42" (1067 mm) Surface behind servicer is grounded (e.g., metal, masonry wall) В 36" (914 mm) Surface behind servicer is electrically non-conductive (e.g., wood, fiberglass) Check for sources of flue products within 10-ft of unit fresh air intake hood Special 36" (914 mm) Side condensate drain is used С 18" (457 mm) Minimum clearance 42" (1067 mm) Surface behind servicer is grounded (e.g., metal, masonry wall, another unit) D 36" (914 mm) Surface behind servicer is electrically non-conductive (e.g., wood, fiberglass)

ROOFCURB ACCESSORY	Α	UNIT SIZE
CRRFCURB001A01	1' - 2" [356]	548J*04-07A
CRRFCURB002A01	2' - 0" [610]	

NOTES:

ROOFCURB ACCESSORY IS SHIPPED DISASSEMBLED.
INSULATED PANELS: 1" THK. POLYURETHANE FOAM, 1-3/4 # DENSITY.
DIMENSIONS IN [] ARE IN MILLIMETERS.
ROOFCURB: 18 GAGE STEEL ON 14 CURB, AND 16 GAGE STEEL ON 24" CURB.
ATTACH DUCTWORK TO CURB. (FLANGES OF DUCT REST ON CURB)
SERVICE CLEARANCE 4' ON EACH SIDE.

CONNECTION OF ARTHURS OF A CONNECTION OF A CONNECTION OF A CHARD-THE-CURB TYPE CONNECTIONS. PACKAGES CRBTMPWR003A01 AND 4A01 ARE FOR THE THRU-THE-BOTTOM TYPE CONNECTIONS.

CONNECTOR PKG. ACC.			В		С		AIN HOLE	POWER	CON.	TROL	ACCESSORY PWF	
CRBTMPWR001A01 CRBTMPWR002A01		2′-8 7/16″ [827]		1'-10 15/16" [583]		1 3/4"[44.5]		3/4″[19]NPT 1 1/4″[31.7]	1/2″[1:	1/2"[12.7]NPT		2.7]NPT
CRBTMPWF	CRBTMPWR003A01							3/4"[19]NPT				
CRBTMPWR004A01				,				1 1/4" [31.7]				,

Fig. 4 - Curb Dimensions 548J 04-07

Fig. 5 - Dimensions 548J 08-09

UNIT	UNIT STD. UNIT WEIGHT LBS. KG.		EIGHT WEIGHT (A)		CORNER CORNER WEIGHT (C			CORNER WEIGHT (D)		C.G.				
			LBS.	KG.	LBS.	KG.	LBS.	KG.	LBS. KG.		Х	Y	Z	
548J-08D	885	401	187	85	158	72	247	112	293	133	39 15/16 [1014] 35 1/4 [895] 23 1/2 [5			
548J-09D	910	413	200	91	166	75	247	112	297	135	39 5/8 [1006]	34 1/2 [876]	23 1/2 [597]	

Fig. 6 - Dimensions 548J 08-09

Fig. 7 - Service Clearance

LOC DIMENSION CONDITION 48" (1219 mm) Unit disconnect is mounted on panel 18" (457 mm) No disconnect, convenience outlet option Α 18" (457 mm) Recommended service clearance 12" (305 mm) Minimum clearance 42" (1067 mm) Surface behind servicer is grounded (e.g., metal, masonry wall) В 36" (914 mm) Surface behind servicer is electrically non-conductive (e.g., wood, fiberglass) Special Check for sources of flue products within 10-ft of unit fresh air intake hood 36" (914 mm) Side condensate drain is used С 18" (457 mm) Minimum clearance 42" (1067 mm) Surface behind servicer is grounded (e.g., metal, masonry wall, another unit) D 36" (914 mm) Surface behind servicer is electrically non-conductive (e.g., wood, fiberglass)

ROOFCURB	_ ^	LINIT OLZE
ACCESSORY	_ ^	UNIT SIZE
CRRFCURB003A01	1' - 2"	
CKKFCUKBUUSAUT	[356]	548J08, 09
CRRFCURB004A01	2' - 0"	0-10000, 03
G GGI (B00+) (01	[610]	

NOTES:

- ROSCURB ACCESSORY IS SHIPPED DISASSEMBLED.
 INSULATED PANELS: 1" THK. POLYURETHANE FOAM, 1-3/4 # DENSITY.
 DIMENSIONS IN [] ARE IN MILLIMETERS.
 ROOFCURB: 18 GAGE STEEL ON 14" CURB, AND 16 GAGE STEEL ON 24" CURB.
 ATTACH DUCTWORK TO CURB. (FLANGES OF DUCT REST ON CURB)
 SERVICE CLEARANCE 4" ON EACH SIDE.

 DIRECTION OF AIR FLOW.

- CONNECTOR PACKAGES CRBTMPWROO1A01 AND 2A01 ARE FOR THRU-THE-CURB TYPE CONNECTIONS. PACKAGES CRBTMPWROO3A01 AND 4A01 ARE FOR THE THRU-THE-BOTTOM TYPE CONNECTIONS.

CONNECTOR PKG. ACC.	В	С	D ALT DRAIN HOLE	POWER	CONTROL	ACCESSORY PWR
CRBTMPWR001A01 CRBTMPWR002A01	2'-8 7/16" [827]	1'-10 15/16" [583]	1 3/4"[44.5]	3/4″[19]NPT 1 1/4″[31.7]	1/2″[12.7]NPT	1/2 ["] [12.7]NPT
CRBTMPWR003A01				3/4" [19] NPT		
CRBTMPWR004A01				1 1/4"[31 7]		

Fig. 8 - Curb Dimensions 548J 08-09

APPLICATION DATA

Min operating ambient temp (cooling):

In mechanical cooling mode, your Bryant rooftop can safely operate down to an outdoor ambient temperature of 25°F (-4°C). It is possible to provide cooling at lower outdoor ambient temperatures by using less outside air, economizers, and/or accessory low ambient kits.

Max operating ambient temp (cooling):

The maximum operating ambient temperature for cooling mode is 115°F (46°C). While cooling operation above 115°F (46°C) may be possible, it could cause either a reduction in performance, reliability, or a protective action by the unit's internal safety devices.

Min and max airflow (cooling mode):

To maintain safe and reliable operation of your rooftop, operate within the cooling airflow limits. Operating above the max may cause blow-off, undesired airflow noise, or airflow related problems with the rooftop unit. Operating below the min may cause problems with coil freeze-up.

Airflow:

All units are draw-though in cooling mode.

Outdoor air application strategies:

Economizers reduce operating expenses and compressor run time by providing a free source of cooling and a means of ventilation to match application changing needs. In fact, they should be considered for most applications. Also, consider the various economizer control methods and their benefits, as well as sensors required to accomplish your application goals. Please contact your local Bryant representative for assistance.

Motor limits, break horsepower (BHP):

Due to Bryant's internal unit design, air path, and specially designed motors, the full horsepower (maximum continuous BHP) band, as listed in this manual, can be used with the utmost confidence. There is no need for extra safety factors, as Bryant's motors are designed and rigorously tested to use the entire, listed BHP range without either nuisance tripping or premature motor failure.

Sizing a rooftop

Bigger isn't necessarily better. While an air conditioner needs to have enough capacity to meet the load, it doesn't need excess capacity. In fact, having excess capacity typically results in very poor part load performance and humidity control.

Using higher design temperatures than ASHRAE recommends for your location, adding "safety factors" to the calculated load, and rounding up to the next largest unit, are all signs of oversizing air conditioners. Oversizing can cause short-cycling, and short cycling leads to poor humidity control, reduced efficiency, higher utility bills, drastic indoor temperature swings, excessive noise, and increased wear and tear on the air conditioner.

Rather than oversizing an air conditioner, wise contractors and engineers "right-size" or even slightly undersize air conditioners. Correctly sizing an air conditioner controls humidity better; promotes efficiency; reduces utility bills; extends equipment life, and maintains even, comfortable temperatures.

Low ambient applications

When equipped with a Bryant economizer, your rooftop unit can cool your space by bringing in fresh, cool outside air. In fact, when so equipped, accessory low-ambient kit may not be necessary. In low ambient conditions, unless the outdoor air is excessively humid or contaminated, economizer-based "free cooling" is the preferred less costly and energy conscious method.

In low ambient applications where outside air might not be desired (such as contaminated or excessively humid outdoor environments), your Bryant rooftop can operate to ambient temperatures down to -20°F (-29°C) using the recommended accessory Motor master low ambient controller.

SELECTION PROCEDURE (WITH 548J*07 EXAMPLE)

(Selection software by Bryant saves time by performing many of the steps below.)

I. Determine cooling and heating loads.

Given:	
Mixed Air Drybulb	80°F (27°C)
Mixed Air Wetbulb	67°F (19°C)
Ambient Drybulb	95°F (35°C)
TC_{Load}	65.0 MBH
SHC_{Load}	46.0 MBH
HC_{Load}	45.0 MBH
Outdoor-Air Winter Design Temp	0°F (-18°C)
Indoor-Air Winter Design Temp	70°F (21°C)
Vertical Supply Air	2100 CFM
External Static Pressure	0.66 in.wg
Electrical Characteristics	230-3-60

II. Make an initial guess at cooling tons.

Refrig. tons = TC_{Load} / 12 MBH per ton Refrig. tons = 65.0 / 12 = 5.42 tons

In this case, start by looking at the 548J*07.

III. Look up the rooftop's TC and SHC.

Table 11 shows that, at the application's supply air CFM, mixed air and ambient temperatures, the 548J*07 supplies:

 $TC_{Load} = 69.0 \text{ MBH}$ SHC_{Load} = 50.7 MBH.

IV. Calculate the building Latent Heat Load.

 $LC_{Load} = TC_{Load} - SHC_{Load}$ $LC_{Load} = 65.0 \text{ MBH} - 46.0 \text{ MBH} = 19.0 \text{ MBH}$

V. Select electric heat.

Enter the Instantaneous and Integrated Heating Ratings, Table 17 at 2100 cfm. At 70°F (21°C) return indoor air and 0°F (-18°C) air entering outdoor coil, the integrated heating capacity after interpolation, is 24,300 Btuh. (Select integrated heating capacity value since deductions for outdoor-coil frost and defrosting have already been made. No correction is required.)

Legend

BHP Break horsepower FLA Full load amps HC Heating Capacities LC Latent capacity LRA Lock rotor amp — (1,000) BTUH MBH MCA Min. circuit ampacity MOCP Max. over-current protection RPM Revolutions per minute

RTU — Rooftop unit
SHC — Sensible heat capacity

TC Total capacity

The required heating capacity is 45,000 Btuh. Therefore, 20,700 Btuh (45,000 - 24,300) additional electric heat is required.

Determine additional electric heat capacity in kW.

 $\frac{20,700 \text{ Btuh}}{3413 \text{ Btuh/kW}} = 6.1 \text{ kW of heat required.}$

Enter the Electric Heating Capacities table for 548J*07 at 208/230, 3-phase. The 6.5-kW heater at 230V most closely satisfies the heating required.

 $6.5 \text{ kW} \times 3413 = 22,185 \text{ Btuh}$

Total unit heating capacity is 46,485 Btuh (22,185 + 24,300).

VI. Calculate RTU Latent Heat Capacity

LC = TC - SHC LC = 69.0 MBH - 50.7 MBH = 18.3 MBH

VII. Compare RTU capacities to loads.

Compare the rooftop's SHC and LC to the building's Sensible and Latent Heat Loads.

See Notes 1 and 2.

VIII. Select factory options (FIOP)

Local code requires an economizer for any unit with TC larger than 65.0 MBH.

IX. Calculate the total static pressure.

External static pressure 0.66 in. wg
Sum of FIOP/Accessory static +0.14 in. wg
Total Static Pressure 0.80 in. wg

X. Look up the Indoor Fan RPM & BHP.

Table 34 shows, at 2100 CFM & ESP= 0.8, RPM = 1268 & BHP = 1.52

XI. Determine electrical requirements

Table 25 shows the MCA and MOCP of a 548J*07 (without convenience outlet) with 6.5 kW electric heater as:

MCA = 52.3 amps & MOCP = 60 amps Min. Disconnect Size: FLA = 50 & LRA = 199.

NOTES:

- Selecting a unit with a SHC slightly lower than the SHC_{Load} is often better than oversizing. Slightly lower SHC's will help control indoor humidity, and prevent temperature swings.
- If the rooftop's capacity meets the Sensible Heat Load, but not the Latent Heat Load.

				AMBIENT TEMPERATURE												
	_		_		85			95			105			115		
	5	48J*0)4		EA (dB)			EA (dB)			EA (dB)			EA (dB)		
				75	80	85	75	80	85	75	80	85	75	80	85	
			THC	31.4	31.4	35.7	29.6	29.6	33.6	27.6	27.6	31.5	25.6	25.6	29.1	
		58	SHC	27.1	31.4	35.7	25.5	29.6	33.6	23.8	27.6	31.5	22.0	25.6	29.1	
			THC	33.5	33.5	34.4	30.9	30.9	33.2	28.3	28.3	31.9	25.7	25.7	30.4	
_		62	SHC	24.8	29.6	34.4	23.6	28.4	33.2	22.3	27.1	31.9	20.9	25.7	30.4	
900 Cfm	EAT (wb)		THC	38.0	38.0	38.0	35.3	35.3	35.3	32.4	32.4	32.4	29.4	29.4	29.4	
000	<u> </u>	67	SHC	21.0	25.8	30.7	19.8	24.6	29.5	18.6	23.4	28.2	17.3	22.2	27.0	
6	7		THC	42.1	42.1	42.1	39.7	39.7	39.7	37.1	37.1	37.1	34.0	34.0	34.0	
		72	SHC	16.7	21.6	26.4	15.8	20.6	25.5	14.7	19.6	24.4	13.6	18.4	23.2	
		70	THC	-	44.9	44.9	-	43.0	43.0	-	40.5	40.5	-	37.5	37.5	
		76	SHC	-	17.8	22.7	-	17.1	22.0	-	16.2	21.1	-	15.2	20.1	
		F0	THC	33.7	33.7	38.3	31.7	31.7	36.0	29.6	29.6	33.6	27.4	27.4	31.2	
		58	SHC	29.1	33.7	38.3	27.3	31.7	36.0	25.5	29.6	33.6	23.6	27.4	31.2	
		62	THC	35.0	35.0	38.1	32.3	32.3	36.7	29.7	29.7	35.1	27.4	27.4	32.5	
Ε	<u> </u>	02	SHC	26.9	32.5	38.1	25.6	31.2	36.7	24.2	29.7	35.1	22.4	27.4	32.5	
5	×	67	THC	39.4	39.4	39.4	36.7	36.7	36.7	33.7	33.7	33.7	30.5	30.5	30.5	
1050 Cfm	EAT (wb)	07	SHC	22.4	28	33.6	21.2	26.8	32.4	20.0	25.6	31.2	18.7	24.3	29.9	
F	ш	72	THC	43.3	43.3	43.3	41.0	41.0	41.0	38.3	38.3	38.3	35.2	35.2	35.2	
			SHC	17.2	22.8	28.4	16.4	22.0	27.7	15.3	21.0	26.6	14.2	19.8	25.4	
		76	THC	-	45.8	45.8	-	44.0	44.0	-	41.6	41.6	-	38.6	38.6	
		,,,	SHC	-	18.4	24.2	-	17.8	23.5	-	16.9	22.7	-	15.9	21.6	
		58	THC	35.7	35.7	40.5	33.5	33.5	38.1	31.3	31.3	35.6	28.9	28.9	32.9	
			SHC	30.8	35.7	40.5	28.9	33.5	38.1	27.0	31.3	35.6	24.9	28.9	32.9	
		62	THC	36.3	36.3	41.5	33.6	33.6	39.7	31.3	31.3	37.1	29.0	29.0	34.3	
Ę	Q		SHC	28.9	35.2	41.5	27.4	33.6	39.7	25.6	31.3	37.1	23.6	29.0	34.3	
Ö	.≥	67	THC	40.4	40.4	40.4	37.8	37.8	37.8	34.7	34.7	34.7	31.4	31.4	32.6	
1200 Cfm	EAT (wb)		SHC	23.6	30.0	36.4	22.5	28.9	35.3	21.3	27.6	34.0	19.9	26.3	32.6	
	_	72	THC	44.1	44.1	44.1	42.0	42.0	42.0	39.2	39.2	39.2	36.0	36.0	36.0	
			SHC	17.7	23.9	30.2	16.9	23.3	29.6	15.9	22.3	28.6	14.7	21.1	27.5	
		76	SHC	_	46.6 19.0	46.6 25.5	_	44.4 18.3	44.4 24.7	-	42.3 17.6	42.3 24.0	-	39.4 16.6	39.4 23.1	
			THC	37.5	37.5	42.6	35.1	35.1	40.0	32.8	32.8	37.3	30.3	30.3	34.5	
		58	SHC	32.4	37.5	42.6	30.3	35.1	40.0	28.3	32.8	37.3	26.1	30.3	34.5	
			THC	37.6	37.6	44.4	35.2	35.2	41.6	32.8	32.8	38.8	30.3	30.3	35.9	
_		62	SHC	30.7	37.6	44.4	28.8	35.2	41.6	26.8	32.8	38.8	24.8	30.3	35.9	
Į,	(wp)		THC	41.2	41.2	41.2	38.6	38.6	38.6	35.6	35.6	36.7	32.2	32.2	35.3	
1350 Cfm	Ĺ	67	SHC	24.8	31.9	39	23.7	30.8	38.0	22.5	29.6	36.7	21.1	28.2	35.3	
13	EAT		THC	44.7	44.7	44.7	42.7	42.7	42.7	39.9	39.9	39.9	36.7	36.7	36.7	
		72	SHC	18.0	24.9	31.8	17.3	24.4	31.5	16.3	23.5	30.6	15.2	22.3	29.5	
			THC		47.2	47.2		44.9	44.9	_	42.9	42.9	-	39.9	39.9	
		76	SHC	-	19.5	26.6		18.7	25.7	_	18.1	25.2	-	17.2	24.4	
			THC	38.8	38.8	44.1	36.6	36.6	41.6	34.1	34.1	38.8	31.5	31.5	35.8	
		58	SHC	33.5	38.8	44.1	31.6	36.6	41.6	29.4	34.1	38.8	27.2	31.5	35.8	
			THC	38.8	38.8	45.9	36.6	36.6	43.3	34.1	34.1	40.4	31.6	31.6	37.3	
٦		62	SHC	31.7	38.8	45.9	29.9	36.6	43.3	27.9	34.1	40.4	25.8	31.6	37.3	
1500 Cfm	EAT (wb)	07	THC	41.8	41.8	41.8	39.2	39.2	40.6	36.3	36.3	39.3	32.8	32.8	37.9	
90	4	67	SHC	25.8	33.6	41.4	24.9	32.7	40.6	23.7	31.5	39.3	22.3	30.1	37.9	
7	ш	70	THC	45.2	45.2	45.2	43.2	43.2	43.2	40.5	40.5	40.5	37.2	37.2	37.2	
		72	SHC	18.4	25.8	33.3	17.7	25.4	33.2	16.8	24.6	32.5	15.6	23.5	31.4	
		76	THC		47.6	47.6		45.2	45.2	-	43.2	43.2		40.3	40.3	
L		76	SHC	-	19.9	27.5	-	19.1	26.7	-	18.6	26.3	-	17.7	25.6	
LEC	END	•								•				•		

Do not operate

Cfm - Cubic feet per minute (supply air)

EAT(db) - Entering air temperature (dry bulb)

EAT(wb) - Entering air temperature (wet bulb)

SHC - Sensible heat capacity

TC - Total capacity

			022	AMBIENT TEMPERATURE											
					85			95			105			115	
	5	48J*0)5		EA (dB)			EA (dB)			EA (dB)			EA (dB)	
				75	80	85	75	80	85	75	80	85	75	80	85
			TC	41.7	41.7	46.9	39.9	39.9	45.1	37.8	37.8	43.1	35.6	35.6	41.0
		58	SHC	36.5	41.7	46.9	34.7	39.9	45.1	32.5	37.8	43.1	30.3	35.6	41.0
		-00	TC	44.1	44.1	44.1	42.0	42.0	43.1	39.4	39.4	41.9	36.7	36.7	40.6
E	•	62	SHC	33.7	38.9	44.1	32.6	37.8	43.1	31.3	36.6	41.9	29.8	35.2	40.6
5	(wp	67	TC	48.8	48.8	48.8	46.4	46.4	46.4	43.7	43.7	43.7	40.9	40.9	40.9
1200 Cfm	EAT (wb)	07	SHC	28.2	33.4	38.6	27.1	32.4	37.6	25.9	31.3	36.6	24.6	30.0	35.4
÷	ш	72	TC	53.2	53.2	53.2	50.7	50.7	50.7	48.1	48.1	48.1	45.2	45.2	45.2
		12	SHC	22.3	27.5	32.7	21.3	26.5	31.8	20.2	25.5	30.8	18.9	24.4	29.8
		76	TC	-	56.2	56.2	-	53.8	53.8	-	51.1	51.1	-	48.0	48.0
		,,,	SHC	-	22.5	27.7		21.7	27.0	_	20.8	26.1	-	19.7	25.1
		58	TC	44.1	44.1	50.2	42.2	42.2	48.3	40.2	40.2	46.4	38.0	38.0	44.3
			SHC	38.1	44.1	50.2	36.1	42.2	48.3	34.0	40.2	46.4	31.7	38.0	44.3
		62	TC	45.8	45.8	48.3	43.3	43.3	47.1	40.8	40.8	45.8	38.0	38.0	44.3
٤	Q		SHC	36.2	42.3	48.3	34.9	41.0	47.1	33.4	39.6	45.8	31.7	38.0	44.3
1400 Cfm	(wb)	67	TC	50.2	50.2	50.2	47.7	47.7	47.7	44.9	44.9	44.9	42.0	42.0	42.0
40	EAT		SHC	29.7	35.8	41.9	28.7	34.8	40.9	27.5	33.7	39.9	26.2	32.5	38.8
_	-	72	TC	54.4	54.4	54.4	52.0	52.0	52.0	49.2	49.2	49.2	46.2	46.2	46.2
			SHC	22.9	28.9	35.0	21.9	28.0	34.1	20.8	27.0	33.2	19.5	25.8	32.2
		76	TC	-	57.1	57.1	-	54.8	54.8	_	52.0	52.0	-	48.7	48.7
			SHC TC	- 46.1	23.3 46.1	29.4	- 44.0	22.5	28.6	41.0	21.5 41.9	27.7		20.3	26.7
		58	SHC	46.1		53.1	44.0	44.0	51.0	41.9		48.9	39.6	39.6	46.8
			TC	39.2 46.9	46.1 46.9	53.1	37.1 44.6	44.0 44.6	51.0 50.5	34.8 42.0	41.9 42.0	48.9 49.0	32.4 39.6	39.6 39.6	46.8 46.8
		62	SHC	38.2	45.2	52.1 52.1	36.5	43.5	50.5	34.9	42.0	49.0	32.4	39.6	46.8
Ĕ	(b)		TC	51.2	51.2	51.2	48.7	48.7	48.7	45.9	45.9	45.9	42.8	42.8	42.8
1600 Cfm	EAT (wb)	67	SHC	31.1	38.0	45.0	30.1	37.1	44.0	28.9	35.9	43.0	27.5	34.7	42.0
160	EA		TC	55.3	55.3	55.3	52.9	52.9	52.9	50.0	50.0	50.0	46.9	46.9	46.9
		72	SHC	23.2	30.1	37.1	22.3	29.3	36.3	21.2	28.3	35.4	19.9	27.1	34.4
			TC	_	57.8	57.8	_	55.4	55.4		52.6	52.6	-	49.3	49.3
		76	SHC	_	23.9	30.8	_	23.1	30.1	_	22.1	29.2	_	20.9	28.2
			TC	47.7	47.7	55.5	45.6	45.6	53.5	43.4	43.4	51.3	41.0	41.0	49.1
		58	SHC	39.9	47.7	55.5	37.8	45.6	53.5	35.4	43.4	51.3	32.8	41.0	49.1
			TC	47.9	47.9	55.7	45.7	45.7	53.5	43.4	43.4	51.4	41.0	41.0	49.1
E		62	SHC	40.1	47.9	55.7	37.8	45.7	53.5	35.5	43.4	51.4	32.9	41.0	49.1
₽	dw)	07	TC	52.0	52.0	52.0	49.4	49.4	49.4	46.6	46.6	46.6	43.5	43.5	45.0
1800 Cfm	EAT (wb)	67	SHC	32.3	40.1	47.9	31.3	39.2	47.1	30.1	38.1	46.0	28.7	36.9	45.0
₩	E/	70	TC	55.9	55.9	55.9	53.5	53.5	53.5	50.6	50.6	50.6	47.4	47.4	47.4
		72	SHC	23.4	31.3	39.1	22.6	30.5	38.3	21.5	29.5	37.4	20.1	28.3	36.4
		76	TC	-	58.3	58.3	-	55.9	55.9	-	53.1	53.1	-	49.6	49.6
		/0	SHC	_	24.4	32.2	-	23.6	31.5	-	22.6	30.6	-	21.4	29.6
		58	TC	49.1	49.1	57.7	46.9	46.9	55.7	44.6	44.6	53.5	42.1	42.1	51.1
			SHC	40.4	49.1	57.7	38.2	46.9	55.7	35.8	44.6	53.5	33.1	42.1	51.1
		62	TC	49.1	49.1	57.7	47.0	47.0	55.7	44.7	44.7	53.5	42.2	42.2	51.2
Ę	(q		SHC	40.4	49.1	57.7	38.2	47.0	55.7	35.8	44.7	53.5	33.1	42.2	51.2
2000 Cfm	EAT (wb)	67	TC	52.6	52.6	52.6	50.0	50.0	50.0	47.1	47.1	49.0	44.0	44.0	47.9
Ö	EAT		SHC	33.4	42.0	50.7	32.5	41.2	49.9	31.2	40.1	49.0	29.8	38.8	47.9
Ø	"	72	TC	56.4	56.4	56.4	53.9	53.9	53.9	51.1	51.1	51.1	47.8	47.8	47.8
			SHC	23.6	32.2	40.9	22.8	31.5	40.3	21.7	30.6	39.4	20.3	29.3	38.4
		76	TC	_	58.6	58.6	-	56.3	56.3	-	53.4	53.4	-	49.9	49.9
	7		SHC	-	24.8	33.5	-	24.0	32.8	-	23.1	32.0		21.8	30.9

- Do not operate
Cfm - Cubic feet per minute (supply air)
EAT(db) - Entering air temperature (dry bulb)
EAT(wb) - Entering air temperature (wet bulb)
SHC - Sensible heat capacity
TC - Total capacity

			JOLING					AN		EMPERAT	TURE			3 10115	
1					85			95			105			115	
	5	48J*0	6		EA (dB)										
				75	80	85	75	80	85	75	80	85	75	80	85
			TC	52.7	52.7	59.2	49.9	49.9	56.5	46.9	46.9	53.6	43.6	43.6	50.4
		58	SHC	46.2	52.7	59.2	43.4	49.9	56.5	40.3	46.9	53.6	36.8	43.6	50.4
			TC	55.5	55.5	55.8	52.1	52.1	54.3	48.1	48.1	52.4	43.7	43.7	50.3
Ε	<u> </u>	62	SHC	42.8	49.3	55.8	41.1	47.7	54.3	39.2	45.8	52.4	36.7	43.5	50.3
5	Š	67	TC	61.7	61.7	61.7	58.1	58.1	58.1	54.1	54.1	54.1	49.6	49.6	49.6
1500 Cfm	EAT (wb)	07	SHC	35.6	42.1	48.6	34.0	40.5	47.1	32.2	38.8	45.5	30.2	37.0	43.8
7	ш	72	TC	68.0	68.0	68.0	64.3	64.3	64.3	60.1	60.1	60.1	55.5	55.5	55.5
		12	SHC	27.9	34.4	40.9	26.4	33.0	39.6	24.7	31.4	38.1	22.8	29.7	36.5
		76	TC	-	72.9	72.9	-	69.0	69.0	-	64.5	64.5	-	59.5	59.5
			SHC	-	28.0	34.5	-	26.6	33.2	-	25.1	31.8	-	23.4	30.2
		58	TC	56.0	56.0	63.6	53.0	53.0	60.7	49.9	49.9	57.7	46.5	46.5	54.5
			SHC	48.4	56.0	63.6	45.4	53.0	60.7	42.2	49.9	57.7	38.6	46.5	54.5
		62	TC	57.6	57.6	61.6	54.1	54.1	59.9	50.1	50.1	57.6	46.6	46.6	54.5
Ē	ē		SHC	46.4	54.0	61.6	44.6	52.2	59.9	42.1	49.8	57.6	38.7	46.6	54.5
1750 Cfm	EAT (wb)	67	TC SHC	63.6	63.6	63.6	59.9	59.9	59.9	55.7	55.7	55.7	51.1	51.1	51.1
175	ΕĀ		TC	38.0 69.9	45.6 69.9	53.2 69.9	36.4 66.0	44.0 66.0	51.7 66.0	34.5 61.7	42.3 61.7	50.1 61.7	32.5 56.9	40.5 56.9	48.4 56.9
-		72	SHC	29.0	36.6	44.2	27.5	35.2	42.8	25.7	33.5	41.3	23.7	31.7	39.7
			TC	-	74.6	74.6	-	70.6	70.6	-	65.8	65.8		60.5	60.5
		76	SHC	_	29.2	36.8	_	27.8	35.5	_	26.1	34.0		24.3	32.3
-			TC	58.8	58.8	67.4	55.8	55.8	64.5	52.5	52.5	61.4	48.8	48.8	57.9
		58	SHC	50.1	58.8	67.4	47.0	55.8	64.5	43.6	52.5	61.4	39.7	48.8	57.9
			TC	59.3	59.3	66.9	55.9	55.9	64.6	52.5	52.5	61.4	48.8	48.8	57.9
_		62	SHC	49.5	58.2	66.9	47.1	55.9	64.6	43.6	52.5	61.4	39.8	48.8	57.9
2000 Cfm	EAT (wb)		TC	65.1	65.1	65.1	61.3	61.3	61.3	56.9	56.9	56.9	52.2	52.2	52.8
8	₩	67	SHC	40.2	48.9	57.6	38.6	47.3	56.1	36.7	45.6	54.5	34.6	43.7	52.8
20	Ŋ	70	TC	71.3	71.3	71.3	67.3	67.3	67.3	62.8	62.8	62.8	57.8	57.8	57.8
		72	SHC	29.9	38.6	47.3	28.3	37.1	45.9	26.5	35.5	44.4	24.5	33.6	42.7
		76	TC	-	75.9	75.9	-	71.7	71.7	-	66.6	66.6	_	61.2	61.2
		76	SHC	-	30.2	38.9	-	28.7	37.6	-	27.0	36.0	-	25.1	34.3
		58	TC	61.0	61.0	70.8	57.9	57.9	67.8	54.5	54.5	64.5	50.7	50.7	60.9
			SHC	51.3	61.0	70.8	48.1	57.9	67.8	44.5	54.5	64.5	40.5	50.7	60.9
		62	TC	61.1	61.1	70.8	58.0	58.0	67.8	54.6	54.6	64.6	50.7	50.7	61.0
Ē	â		SHC	51.3	61.1	70.8	48.1	58.0	67.8	44.6	54.6	64.6	40.5	50.7	61.0
Ö	≥	67	TC	66.2	66.2	66.2	62.3	62.3	62.3	57.9	57.9	58.8	53.1	53.1	57.0
2250 Cfm	EAT (wb)		SHC	42.3	52.0	61.8	40.6	50.5	60.4	38.7	48.7	58.8	36.6	46.8	57.0
"	-	72	TC	72.3	72.3	72.3	68.3	68.3	68.3	63.7	63.7	63.7	58.5	58.5	58.5
			SHC TC	30.6	40.4 76.9	50.2	29.1	39.0	48.9 72.5	27.2	37.3 67.4	47.3	25.0	35.3 61.8	45.5
		76	SHC	-	31.1	76.9 40.9	-	72.5 29.6	39.5	_	27.9	67.4 37.9	_	25.9	61.8 36.2
			TC	63.0	63.0	73.8	59.8	59.8	70.7	56.2	56.2	67.3	52.3	52.3	63.7
		58	SHC	52.1	63.0	73.8	48.8	59.8	70.7	45.1	56.2	67.3	41.0	52.3	63.7
			TC	63.0	63.0	73.9	59.8	59.8	70.7	56.3	56.3	67.4	52.4	52.4	63.7
_		62	SHC	52.2	63.0	73.9	48.9	59.8	70.8	45.2	56.3	67.4	41.0	52.4	63.7
2500 Cfm	EAT (wb)		TC	67.2	67.2	67.2	63.1	63.1	64.5	58.7	58.7	62.8	53.8	53.8	61.0
8)	67	SHC	44.2	55.0	65.9	42.5	53.5	64.5	40.6	51.7	62.8	38.3	49.6	61.0
25	E/		TC	73.2	73.2	73.2	69.0	69.0	69.0	64.3	64.3	64.3	59.0	59.0	59.0
		72	SHC	31.3	42.2	53.1	29.7	40.7	51.7	27.8	38.9	50.1	25.5	36.9	48.3
		7.	TC		77.7	77.7		73.1	73.1	_	67.9	67.9		62.2	62.2
		76	SHC	-	32.0	42.9	_	30.5	41.5	_	28.6	39.8	_	26.6	38.0
L	1	L		L	L		L	-	l	1	L		L	1	

- Do not operate
Cfm - Cubic feet per minute (supply air)
EAT(db) - Entering air temperature (dry bulb)
EAT(wb) - Entering air temperature (wet bulb)
SHC - Sensible heat capacity
TC - Total capacity

Tabi	IC 11		JOLING	CAPA	CITIES		1-	STAGE		EMPERAT	TIDE		'	TONS	
					85			95	IDIENI II	LIVIPERAI	105			115	
	5	48J*0	7		EA (dB)										
				75	80	85	75	80	85	75	80	85	75	80	85
			TC	61.1	61.1	68.9	58.3	58.3	66.1	55.2	55.2	63.2	51.8	51.8	59.9
		58	SHC	53.3	61.1	68.9	50.4	58.3	66.1	47.2	55.2	63.2	43.7	51.8	59.9
			TC	64.1	64.1	65.2	60.5	60.5	63.6	56.5	56.5	61.8	52.1	52.1	59.7
_		62	SHC	49.6	57.4	65.2	47.8	55.7	63.6	45.8	53.8	61.8	43.4	51.6	59.7
Ç	(wp	07	TC	70.8	70.8	70.8	67.2	67.2	67.2	63.1	63.1	63.1	58.6	58.6	58.6
1800 Cfm	EAT (wb)	67	SHC	40.7	48.5	56.3	39.1	47.0	54.9	37.3	45.3	53.3	35.3	43.5	51.7
18	E,	70	TC	77.4	77.4	77.4	73.7	73.7	73.7	69.5	69.5	69.5	64.9	64.9	64.9
		72	SHC	31.1	38.9	46.7	29.6	37.5	45.5	27.9	36.0	44.0	26.0	34.2	42.5
		76	TC	-	82.0	82.0	-	78.4	78.4	_	73.9	73.9	_	68.8	68.8
		/6	SHC	-	30.9	38.8	-	29.7	37.6	-	28.1	36.2	-	26.4	34.6
		58	TC	64.6	64.6	73.7	61.6	61.6	70.8	58.4	58.4	67.7	54.8	54.8	64.3
		30	SHC	55.5	64.6	73.7	52.5	61.6	70.8	49.1	58.4	67.7	45.3	54.8	64.3
		62	TC	66.1	66.1	71.7	62.5	62.5	69.9	58.5	58.5	67.8	54.9	54.9	64.4
Ξ	(q	J	SHC	53.4	62.5	71.7	51.5	60.7	69.9	49.2	58.5	67.8	45.3	54.9	64.4
2100 Cfm	EAT (wb)	67	TC	72.8	72.8	72.8	69.0	69.0	69.0	64.8	64.8	64.8	60.2	60.2	60.2
100	AT	Ŭ,	SHC	43.1	52.2	61.3	41.5	50.7	59.9	39.7	49.1	58.4	37.7	47.3	56.8
2	ш.	72	TC	79.2	79.2	79.2	75.4	75.4	75.4	71.0	71.0	71.0	66.2	66.2	66.2
			SHC	31.9	41.1	50.2	30.5	39.7	49.0	28.7	38.1	47.5	26.7	36.3	45.9
		76	TC	-	83.1	83.1	-	79.8	79.8	-	75.1	75.1	_	69.7	69.7
			SHC		32.0	41.2	-	30.7	39.9	-	29.1	38.5		27.3	36.9
		58	TC	67.4	67.4	77.8	64.4	64.4	74.9	61.0	61.0	71.7	57.3	57.3	68.2
			SHC	57.0	67.4	77.8	53.9	64.4	74.9	50.3	61.0	71.7	46.4	57.3	68.2
		62	TC	67.8	67.8	77.4	64.4	64.4	74.9	61.0	61.0	71.7	57.3	57.3	68.3
Į,	(d/		SHC TC	56.5	66.9	77.4	53.9	64.4	74.9	50.3	61.0	71.7	46.4	57.3	68.3
00	EAT (wb)	67	SHC	74.3 45.3	74.3 55.7	74.3 66.1	70.4 43.7	70.4 54.2	70.4 64.7	66.1 41.9	66.1 52.6	66.1 63.3	61.4 39.9	61.4 50.8	61.7 61.7
2400 Cfm	EA.		TC	80.4	80.4	80.4	76.6	76.6	76.6	72.1	72.1	72.1	67.1	67.1	67.1
		72	SHC	32.6	43.0	53.4	31.2	41.7	52.3	29.3	40.1	50.8	27.2	38.2	49.2
			TC	-	84.0	84.0	-	80.7	80.7	_	76.0	76.0	-	70.4	70.4
		76	SHC	-	32.6	43.1		31.6	42.2	_	30.0	40.8		28.1	39.1
			TC	69.7	69.7	81.5	66.6	66.6	78.5	63.1	63.1	75.2	59.3	59.3	71.6
		58	SHC	58.0	69.7	81.5	54.8	66.6	78.5	51.1	63.1	75.2	47.0	59.3	71.6
			TC	69.8	69.8	81.5	66.6	66.6	78.4	63.2	63.2	75.2	59.4	59.4	71.7
Ę		62	SHC	58.0	69.8	81.5	54.8	66.6	78.4	51.2	63.2	75.2	47.1	59.4	71.7
Çfr	(wb)	07	TC	75.4	75.4	75.4	71.4	71.4	71.4	67.1	67.1	67.9	62.3	62.3	66.4
2700 Cfm	EAT (wl	67	SHC	47.2	59.0	70.7	45.7	57.6	69.4	43.9	55.9	67.9	41.8	54.1	66.4
27	Щ	70	TC	81.3	81.3	81.3	77.5	77.5	77.5	72.9	72.9	72.9	67.8	67.8	67.8
		72	SHC	33.0	44.8	56.5	31.7	43.6	55.5	29.8	41.9	54.0	27.7	40.0	52.4
		76	TC	-	84.9	84.9	-	81.3	81.3	-	76.6	76.6	-	70.8	70.8
		/0	SHC	-	33.4	45.2	-	33.0	44.9	-	30.8	43.0	-	28.8	41.3
		58	TC	71.7	71.7	84.7	68.5	68.5	81.7	64.9	64.9	78.3	61.0	61.0	74.7
			SHC	58.7	71.7	84.7	55.4	68.5	81.7	51.6	64.9	78.3	47.3	61.0	74.7
		62	TC	71.7	71.7	84.8	68.6	68.6	81.7	65.0	65.0	78.3	61.0	61.0	74.7
Ę	(q		SHC	58.7	71.7	84.8	55.4	68.6	81.7	51.6	65.0	78.3	47.4	61.0	74.7
3000 Cfm	EAT (wb)	67	TC	76.4	76.4	76.4	72.3	72.3	73.8	67.9	67.9	72.4	63.0	63.0	70.8
00	:AT		SHC	49.0	62.1	75.1	47.5	60.7	73.8	45.7	59	72.4	43.4	57.1	70.8
က		72	TC	82.0	82.0	82.0	78.2	78.2	78.2	73.5	73.5	73.5	68.2	68.2	68.2
			SHC	33.4	46.5	59.5	32.1	45.3	58.5	30.2	43.6	57.1	28.0	41.7	55.5
		76	TC	-	85.5	85.5		81.8	81.8	-	77.1	77.1	-	71.3	71.3
			SHC	-	34.2	47.2	-	33.0	46.3	-	31.6	45.1	-	29.5	43.3

Do not operate in this region
Cubic feet per minute (supply air)
Entering air temperature (dry bulb)
Entering air temperature (wet bulb) Cfm EAT(db) EAT(wb)

SHC - Sensible heat capacity

TC - Total capacity

			JOLING	CAIA					IRIENT T	EMPERAT	IIRF			7.5 TON	
					85			95	IDILINI II		105			115	
	5	48J*0	8		EA (dB)										
				75	80	85	75	80	85	75	80	85	75	80	85
			TC	77.4	77.4	87.8	74.1	74.1	84.1	69.8	69.8	79.2	65.2	65.2	74.1
		58	SHC	66.9	77.4	87.8	64.0	74.1	84.1	60.3	69.8	79.2	56.4	65.2	74.1
			TC	81.8	81.8	83.7	77.2	77.2	81.4	71.9	71.9	78.9	66.6	66.6	75.9
_		62	SHC	60.6	72.1	83.7	58.4	69.9	81.4	55.9	67.4	78.9	53.2	64.5	75.9
Ç	(wp	07	TC	90.6	90.6	90.6	86.0	86.0	86.0	80.8	80.8	80.8	75.1	75.1	75.1
2250Cfm	EAT (wb)	67	SHC	50.4	62.0	73.5	48.4	60.0	71.6	46.2	57.8	69.3	43.9	55.4	67.0
7	E	70	TC	99.4	99.4	99.4	94.7	94.7	94.7	89.5	89.5	89.5	83.8	83.8	83.8
		72	SHC	39.6	51.3	62.9	37.7	49.4	61.0	35.8	47.4	59.0	33.6	45.2	56.8
		76	TC	-	105.7	105.7	-	100.8	100.8	-	95.5	95.5	-	89.7	89.7
		70	SHC	-	42.1	54.5	-	40.4	52.8	-	38.6	50.9	-	36.5	48.8
		58	TC	81.8	81.8	92.8	78.0	78.0	88.6	74.1	74.1	84.2	69.5	69.5	78.9
		50	SHC	70.7	81.8	92.8	67.5	78.0	88.6	64.1	74.1	84.2	60.1	69.5	78.9
		62	TC	84.7	84.7	91.7	79.9	79.9	89.2	75.2	75.2	86.2	69.8	69.8	81.6
Ę	(q		SHC	65.2	78.5	91.7	62.9	76.1	89.2	60.3	73.3	86.2	56.8	69.2	81.6
2625 Cfm	EAT (wb)	67	TC	93.4	93.4	93.4	88.6	88.6	88.6	83.2	83.2	83.2	77.4	77.4	77.4
62	EAT		SHC	53.4	66.7	80.1	51.4	64.7	78.1	49.2	62.5	75.9	46.8	60.2	73.5
7	ш	72	TC	101.9	101.9	101.9	97.1	97.1	97.1	91.8	91.8	91.8	86.0	86.0	86.0
			SHC	40.8	54.1	67.5	38.9	52.3	65.6	36.9	50.3	63.6	34.8	48.1	61.5
		76	TC	-	107.7	107.7	-	102.6	102.6	-	97.2	97.2	-	91.2	91.2
			SHC		43.7	58.1	-	41.9	56.0	77.0	39.9	53.9	70.0	37.9	51.6
		58	TC	85.6	85.6	97.2	81.8	81.8	92.9	77.6	77.6	88.0	72.9	72.9	82.8
			SHC	74.1	85.6	97.2	70.7	81.8	92.9	67.1	77.6	88.0	63.0	72.9	82.8
		62	TC	87.0	87.0	98.9	82.5	82.5	95.4	78.0	78.0	90.5	73.3	73.3	85.6
ξ	(dv		SHC TC	69.4	84.1 95.5	98.9	66.6	81.0	95.4 90.5	63.1	76.8 85.1	90.5	59.6 79.0	72.6	85.6 79.6
0	EAT (wb)	67	SHC	95.5 56.1	71.2	95.5 86.2	90.5 54.1	90.5 69.2	84.2	85.1 51.9	67.0	85.1 82.1	49.5	79.0 64.6	79.6
3000 Cfm	EA		TC	103.8	103.8	103.8	98.8	98.8	98.8	93.4	93.4	93.4	87.5	87.5	87.5
		72	SHC	41.8	56.7	71.6	39.9	54.8	69.8	37.9	52.9	67.8	35.8	50.7	65.7
			TC	-	109.1	109.1	-	104.0	104.0	-	98.3	98.3	-	92.2	92.2
		76	SHC		44.9	60.6		43.1	58.6	_	41.1	56.4	_	39.0	54.2
			TC	88.9	88.9	100.9	84.9	84.9	96.4	80.5	80.5	91.4	75.7	75.7	86.0
		58	SHC	76.9	88.9	100.9	73.4	84.9	96.4	69.6	80.5	91.4	65.5	75.7	86.0
			TC	89.6	89.6	103.8	85.1	85.1	100.4	81.0	81.0	94.1	75.8	75.8	89.5
_		62	SHC	72.4	88.1	103.8	69.7	85.0	100.4	65.6	79.8	94.1	62.1	75.8	89.5
Ş	(w	0=	TC	97.1	97.1	97.1	92.1	92.1	92.1	86.5	86.5	87.9	80.3	80.3	85.4
3375 Cfm	EAT (wb)	67	SHC	58.7	75.3	92.0	56.7	73.4	90.1	54.5	71.2	87.9	52.0	68.7	85.4
33	Ē	70	TC	105.2	105.2	105.2	100.0	100.0	100.0	94.5	94.5	94.5	88.5	88.5	88.5
		72	SHC	42.6	59.0	75.3	40.7	57.1	73.5	38.8	55.2	71.6	36.6	53.1	69.5
		76	TC		110.1	110.1		105.0	105.0	-	99.2	99.2	-	92.9	92.9
L		76	SHC	-	45.9	62.8		44.1	60.9	-	42.1	58.7	-	40.0	56.4
		58	TC	91.6	91.6	104.0	87.5	87.5	99.4	83.0	83.0	94.3	78.1	78.1	88.7
			SHC	79.2	91.6	104.0	75.7	87.5	99.4	71.8	83.0	94.3	67.6	78.1	88.7
		62	TC	91.7	91.7	108.3	87.7	87.7	103.5	83.1	83.1	98.1	78.2	78.2	92.3
Ē	(q	02	SHC	75.2	91.7	108.3	71.8	87.7	103.5	68.1	83.1	98.1	64.1	78.2	92.3
3750 Cfm	EAT (wb)	67	TC	98.4	98.4	98.4	93.3	93.3	95.6	87.7	87.7	93.4	81.5	81.5	90.9
750	AT		SHC	61.1	79.3	97.5	59.1	77.3	95.6	56.9	75.2	93.4	54.5	72.7	90.9
က	ш	72	TC	106.2	106.2	106.2	101.0	101.0	101.0	95.4	95.4	95.4	89.3	89.3	89.3
			SHC	43.4	61.1	78.8	41.5	59.2	76.9	39.5	57.3	75.0	37.4	55.2	73.0
		76	TC	-	111.0	111.0		105.8	105.8	-	99.8	99.8	-	93.5	93.5
			SHC		46.8	64.9		45.1	63.1	-	43.0	60.8	-	40.9	58.4

- Do not operate in this region
Cfm - Cubic feet per minute (supply air)
EAT(db) - Entering air temperature (dry bulb)
EAT(wb) - Entering air temperature (wet bulb)
SHC - Sensible heat capacity
TC - Total capacity

	10		JOLING	CAIA	CITIES	'		SIAGE		EMPERAT	URE		•	5.5 TON	
					85			95			105			115	
	5	48J*0	9		EA (dB)			EA (dB)			EA (dB)			EA (dB)	
				75	80	85	75	80	85	75	80	85	75	80	85
			TC	91.1	91.1	102.9	86.4	86.4	97.5	81.2	81.2	91.7	75.7	75.7	85.5
		58	SHC	79.4	91.1	102.9	75.2	86.4	97.5	70.8	81.2	91.7	66.0	75.7	85.5
			TC	96.0	96.0	99.4	89.2	89.2	96.4	83.0	83.0	93.4	76.5	76.5	88.0
Ε	<u> </u>	62	SHC	72.7	86.0	99.4	69.6	83.0	96.4	66.7	80.0	93.4	62.4	75.2	88.0
5	×	67	TC	106.4	106.4	106.4	100.4	100.4	100.4	92.9	92.9	92.9	86.0	86.0	86.0
2550 Cfm	EAT (wb)	67	SHC	60.4	73.8	87.2	57.7	71.1	84.5	54.7	68.1	81.6	51.8	65.2	78.6
22	ш	72	TC	117.3	117.3	117.3	111.2	111.2	111.2	104.3	104.3	104.3	97.0	97.0	97.0
		12	SHC	47.4	60.9	74.4	45.1	58.5	72.0	42.4	55.9	69.4	39.7	53.1	66.6
		76	TC	-	126.1	126.1	-	119.9	119.9	-	113.0	113.0	-	105.6	105.6
		,,,	SHC		50.3	64.3		48.0	61.8		45.6	59.4	-	43.0	56.7
		58	TC	96.5	96.5	109.0	91.7	91.7	103.5	86.7	86.7	97.9	80.5	80.5	90.9
			SHC	84.1	96.5	109.0	79.9	91.7	103.5	75.5	86.7	97.9	70.1	80.5	90.9
		62	TC	98.2	98.2	109.0	92.9	92.9	105.4	87.0	87.0	100.5	80.6	80.6	94.5
Ē	ā		SHC	78.1	93.6	109.0	75.1	90.2	105.4	71.3	85.9	100.5	66.7	80.6	94.5
2975 Cfm	EAT (wb)	67	TC	109.5	109.5	109.5	103.0	103.0	103.0	96.3	96.3	96.3	87.6	87.6	87.6
126	Ä		SHC	64.1	79.6	95.2	61.4	76.9	92.5	58.7	74.3	89.8	55.3	70.9	86.5
N		72	TC	120.6	120.6	120.6	114.2	114.2	114.2	107.3	107.3	107.3	99.5	99.5	99.5
			SHC	49.1	64.7	80.3	46.7	62.3	77.9	44.1	59.7	75.3	41.3	56.9	72.5
		76	TC	-	129.2	129.2	-	122.9	122.9	-	115.7	115.7	_	108.1	108.1
			SHC	101.0	52.3	68.4		50.0	65.8		47.6	63.5	- 04.0	45.0	60.8
		58	TC C	101.0	101.0	114.0	96.7	96.7	109.1	90.9	90.9	102.6	84.9	84.9	95.8
			SHC TC	88.0	101.0	114.0	84.2	96.7	109.1	79.2	90.9	102.6	74.0	84.9	95.8
		62	SHC	102.3 82.9	102.3 99.7	116.5 116.5	96.9 79.7	96.9 96.1	112.5 112.5	90.7 75.1	90.7 90.7	106.3 106.3	84.6 70.0	84.6 84.6	99.1 99.1
Ĕ	ð		TC	112.1	112.1	112.1	105.5	105.5	105.5	98.4	98.4	98.4	90.8	90.8	94.2
3400 Cfm	EAT (wb)	67	SHC	67.7	85.3	102.9	65.1	82.7	100.2	62.2	79.8	97.3	59.2	76.7	94.2
340	EA		TC	123.0	123.0	123.0	116.5	116.5	116.5	109.4	109.4	109.4	101.6	101.6	101.6
		72	SHC	50.5	68.2	85.9	48.2	65.8	83.5	45.6	63.2	80.8	42.8	60.4	78.1
			TC	-	131.5	131.5	-	124.9	124.9	-	117.7	117.7	-	109.9	109.9
		76	SHC	-	54.1	72.1	-	51.8	69.7	_	49.4	67.2	_	46.8	64.6
			TC	104.5	104.5	118.0	99.8	99.8	112.6	94.4	94.4	106.6	87.9	87.9	99.2
		58	SHC	91.1	104.5	118.0	86.9	99.8	112.6	82.3	94.4	106.6	76.6	87.9	99.2
			TC	105.0	105.0	123.0	100.3	100.3	117.5	93.4	93.4	109.5	87.3	87.3	102.3
E		62	SHC	86.9	105.0	123.0	83.0	100.3	117.5	77.4	93.4	109.5	72.3	87.3	102.3
₽	§ gg	07	TC	114.1	114.1	114.1	107.4	107.4	107.6	99.4	99.4	104.6	92.0	92.0	101.3
3825 Cfm	EAT (wb)	67	SHC	71.2	90.8	110.4	68.5	88.1	107.6	65.4	85.0	104.6	62.4	81.9	101.3
ຮ	Щ	70	TC	124.9	124.9	124.9	118.2	118.2	118.2	111.0	111.0	111.0	103.1	103.1	103.1
		72	SHC	51.9	71.5	91.1	49.5	69.1	88.7	47.0	66.6	86.2	44.2	63.8	83.4
		76	TC	-	133.3	133.3	-	126.5	126.5	-	119.2	119.2	-	111.2	111.2
		/6	SHC	-	55.7	75.6	-	53.5	73.3	-	51.1	70.8	-	48.5	68.1
		58	TC	108.6	108.6	122.6	102.7	102.7	115.9	97.4	97.4	110.0	90.8	90.8	102.5
			SHC	94.6	108.6	122.6	89.5	102.7	115.9	84.9	97.4	110.0	79.1	90.8	102.5
		62	TC	109.0	109.0	126.4	103.4	103.4	121.2	97.5	97.5	114.2	91.3	91.3	106.9
Ē	ā		SHC	89.5	107.9	126.4	85.6	103.4	121.2	80.7	97.5	114.2	75.6	91.3	106.9
Ö	.≥	67	TC	115.6	115.6	117.4	108.9	108.9	114.7	101.6	101.6	111.4	93.6	93.6	108.1
4250 Cfm	EAT (wb)	<u> </u>	SHC	74.3	95.9	117.4	71.7	93.2	114.7	68.7	90.1	111.4	65.6	86.8	108.1
4	ш	72	TC	126.4	126.4	126.4	119.7	119.7	119.7	112.3	112.3	112.3	104.2	104.2	104.2
			SHC	53.1	74.6	96.1	50.8	72.3	93.8	48.2	69.8	91.4	45.4	67.0	88.5
		76	TC	-	134.6	134.6	-	127.8	127.8	-	120.3	120.3	-	112.3	112.3
			SHC		57.2	78.8		55.0	76.6		52.6	74.1		50.0	71.5

- Do not operate in this region
Cfm - Cubic feet per minute (supply air)
EAT(db) - Entering air temperature (dry bulb)
EAT(wb) - Entering air temperature (wet bulb)
SHC - Sensible heat capacity
TC - Total capacity

					548J*	04					
RETURN	С	FM		TEMP	ERATURE	AIR ENTER	ING OUTD	OOR COIL	(°F db at 70	0% rh)	
AIR (°F db)	(STAND	ARD AIR)	-10	0	10	17	30	40	47	50	60
	000	Capacity	11.6	15.1	18.9	21.7	27.6	32.7	36.0	37.1	41.8
55	900	Int. Cap.	10.7	13.9	17.4	19.8	24.2	32.7	36.0	37.1	41.8
	1200	Capacity	12.0	15.5	19.4	22.3	28.4	33.5	36.7	37.8	42.7
	1200	Int. Cap.	11.1	14.3	17.8	20.3	24.9	33.5	36.7	37.8	42.7
	1500	Capacity	12.6	16.3	20.2	23.1	29.5	34.2	37.5	38.6	43.5
	1500	Int. Cap.	11.6	15.0	18.5	21.1	25.8	34.2	37.5	38.6	43.5
	900	Capacity	9.8	13.3	17.2	20.0	25.6	30.4	34.5	35.5	40.2
	900	Int. Cap.	9.0	12.3	15.7	18.2	22.5	30.4	34.5	35.5	40.2
	1200	Capacity	10.1	13.8	17.7	20.7	26.6	31.7	35.4	36.5	41.2
70	1200	Int. Cap.	9.3	12.7	16.3	18.8	23.3	31.7	35.4	36.5	41.2
	1500	Capacity	10.8	14.6	18.6	21.5	27.7	33.0	36.4	37.4	42.0
	1500	Int. Cap.	10.0	13.4	17.1	19.6	24.3	33.0	36.4	37.4	42.0
	900	Capacity	8.3	11.9	15.7	18.6	24.1	29.0	32.7	34.1	39.0
	900	Int. Cap.	7.7	10.9	14.4	16.9	21.2	29.0	32.7	34.1	39.0
80	1200	Capacity	8.6	12.4	16.3	19.3	25.1	30.2	34.3	35.4	40.1
	1200	Int. Cap.	8.0	11.4	15.0	17.6	22.0	30.2	34.3	35.4	40.1
	1500	Capacity	9.3	13.2	17.2	20.2	26.2	31.4	35.5	36.5	41.1
	1300	Int. Cap.	8.6	12.1	15.8	18.4	23.0	31.4	35.5	36.5	41.1

Table 15 – HEATING CAPACITIES

4 TONS

					548J*	05				71011	
RETURN	С	FM		TEMP			RING OUTD	OOR COIL	(°F db at 70	0% rh)	
AIR (°F db)	(STAND	ARD AIR)	-10	0	10	17	30	40	47	50	60
	4000	Capacity	17.5	22.0	26.6	30.0	36.8	42.6	47.1	48.9	55.3
	1200	Int. Cap.	16.2	20.2	24.4	27.3	32.2	42.6	47.1	48.9	55.3
70	4000	Capacity	17.5	22.1	26.7	30.2	37.3	43.5	47.9	49.8	56.1
	1600	Int. Cap.	16.2	20.3	24.5	27.5	32.7	43.5	47.9	49.8	56.1
	0000	Capacity	18.5	23.1	27.8	31.3	38.7	44.9	49.1	50.9	57.1
	2000	Int. Cap.	17.1	21.3	25.5	28.6	33.9	44.9	49.1	50.9	57.1
	1000	Capacity	15.8	20.3	25.0	28.3	35.0	40.5	44.7	46.7	53.0
	1200	Int. Cap.	14.6	18.7	22.9	25.8	30.6	40.5	44.7	46.7	53.0
	1000	Capacity	15.9	20.5	25.3	28.7	35.6	41.3	45.8	47.8	53.9
70	1600	Int. Cap.	14.7	18.9	23.2	26.1	31.2	41.3	45.8	47.8	53.9
	0000	Capacity	17.0	21.7	26.5	29.9	36.9	42.9	47.3	49.1	55.2
	2000	Int. Cap.	15.7	20.0	24.3	27.3	32.4	42.9	47.3	49.1	55.2
	1000	Capacity	14.2	18.8	23.5	26.9	33.6	39.0	43.2	45.1	51.4
	1200	Int. Cap.	13.1	17.3	21.6	24.6	29.4	39.0	43.2	45.1	51.4
80	1600	Capacity	14.4	19.1	23.9	27.4	34.2	39.8	44.2	46.1	52.4
	1600	Int. Cap.	13.3	17.6	22.0	25.0	30.0	39.8	44.2	46.1	52.4
Ī	2000	Capacity	15.5	20.3	25.2	28.7	35.6	41.4	45.9	47.8	53.8
	2000	Int. Cap.	14.3	18.7	23.1	26.1	31.2	41.4	45.9	47.8	53.8

LEGEND

Capacity – Instantaneous Capacity (1000 Btuh) includes indoor fan motor heat @ARI static conditions
Int. Cap. – Integrated Capacity is Instantaneous Capacity minus the effects of frost on the outdoor coil Integrated Capacity is Instantaneous Capacity minus the effects of frost on the outdoor coil and the heat required to defrost

Relative HumidityDry Bulb

db

					548J*	06					
RETURN	С	FM		TEMPE	RATURE A	IR ENTERI	NG OUTDO	OR COIL (°F DB AT 70	0% RH)	
AIR (°F DB)	(STAND	ARD AIR)	-10	0	10	17	30	40	47	50	60
	1500	Capacity	22.7	28.3	34.2	38.6	47.4	54.3	60.0	62.6	70.3
	1500	Int. Cap.	21.0	26.1	31.4	35.2	41.5	54.3	60.0	62.6	70.3
55	0000	Capacity	22.8	28.5	34.4	38.9	47.9	55.3	60.9	63.1	70.9
	2000	Int. Cap.	21.1	26.2	31.6	35.4	42.0	55.3	60.9	63.1	70.9
	0500	Capacity	24.2	30.0	35.9	40.4	49.6	56.9	62.3	64.4	72.0
	2500	Int. Cap.	22.4	27.6	33.0	36.8	43.5	56.9	62.3	64.4	72.0
	1500	Capacity	19.9	25.8	31.9	36.3	45.2	51.7	57.6	60.0	67.9
70	1500	Int. Cap.	18.4	23.7	29.3	33.1	39.6	51.7	57.6	60.0	67.9
70	0000	Capacity	20.1	26.1	32.3	36.7	45.8	52.9	58.4	61.0	68.8
70	2000	Int. Cap.	18.6	24.0	29.6	33.5	40.1	52.9	58.4	61.0	68.8
	2500	Capacity	21.5	27.6	33.8	38.3	47.5	54.7	60.4	62.7	70.2
	2500	Int. Cap.	19.9	25.4	31.1	35.0	41.6	54.7	60.4	62.7	70.2
	1500	Capacity	17.6	23.7	30.0	34.6	43.5	50.2	55.7	58.2	66.1
	1300	Int. Cap.	16.3	21.9	27.6	31.5	38.1	50.2	55.7	58.2	66.1
80	2000	Capacity	17.8	24.1	30.5	35.1	44.3	51.2	56.6	59.4	67.2
60	2000	Int. Cap.	16.5	22.2	28.0	32.0	38.8	51.2	56.6	59.4	67.2
	2500	Capacity	19.3	25.6	32.1	36.8	46.0	53.1	58.8	61.1	68.8
	2500	Int. Cap.	17.8	23.6	29.4	33.5	40.3	53.1	58.8	61.1	68.8

Table 17 – HEATING CAPACITY

6 TONS

					548J*	07					
RETURN	С	FM		TEMPE			NG OUTDO	OR COIL (°F DB AT 70	0% RH)	
AIR (°F DB)	(STAND	ARD AIR)	-10	0	10	17	30	40	47	50	60
	1000	Capacity	22.4	29.8	37.1	42.5	53.5	62.4	68.6	71.2	80.3
55	1800	Int. Cap.	20.7	27.4	34.1	38.8	46.9	62.4	68.6	71.2	80.3
	0.400	Capacity	24.6	32.1	39.6	45.1	56.4	65.6	71.5	74.2	83.8
55	2400	Int. Cap.	22.7	29.5	36.3	41.1	49.4	65.6	71.5	74.2	83.8
	2000	Capacity	27.4	35.0	42.5	48.2	59.5	68.6	74.5	77.2	86.8
	3000	Int. Cap.	25.3	32.2	39.0	43.9	52.1	68.6	74.5	77.2	86.8
70	1000	Capacity	17.7	25.5	33.2	38.6	49.5	58.5	65.0	67.7	76.5
	1800	Int. Cap.	16.4	23.5	30.5	35.2	43.4	58.5	65.0	67.7	76.5
	0.400	Capacity	19.9	27.9	35.8	41.4	52.7	62.0	68.4	71.0	80.3
70	2400	Int. Cap.	18.4	25.7	32.9	37.7	46.2	62.0	68.4	71.0	80.3
Ī	2000	Capacity	22.8	30.9	38.9	44.5	56.1	65.5	71.7	74.4	83.9
	3000	Int. Cap.	21.1	28.4	35.7	40.6	49.2	65.5	71.7	74.4	83.9
	1000	Capacity	13.9	21.9	29.9	35.5	46.2	55.3	62.0	64.9	73.7
80	1800	Int. Cap.	12.8	20.2	27.4	32.3	40.5	55.3	62.0	64.9	73.7
	0400	Capacity	16.0	24.4	32.6	38.4	49.6	59.0	65.8	68.6	77.5
	2400	Int. Cap.	14.8	22.5	29.9	35.0	43.5	59.0	65.8	68.6	77.5
 	2000	Capacity	18.8	27.4	35.8	41.6	53.1	62.7	69.4	72.1	81.4
	3000	Int. Cap.	17.4	25.2	32.8	37.9	46.6	62.7	69.4	72.1	81.4

LEGEND

Capacity - Instantaneous Capacity (1000 Btuh) includes indoor fan motor heat @ARI static conditions
Int. Cap. - Integrated Capacity is Instantaneous Capacity minus the effects of frost on the outdoor coil and the heat required to defrost rh - Relative Humidity
db - Typ Bulb

					548J*	08					
RETURN	С	FM		TEMP	ERATURE	AIR ENTER	ING OUTD	OOR COIL	(°F db at 70)% rh)	
(°F db)	(STAND	ARD AIR)	-10	0	10	17	30	40	47	50	60
	0050	Capacity			46.9	53.5	66.3	77.2	86.2	89.4	103.3
	2250	Int. Cap.			43.1	48.7	58.1	77.2	86.2	89.4	103.3
AIR (°F db) 225 55 300 375 225 70 300 375	2000	Capacity					68.5	80.2	89.8	93.1	106.7
55	3000	Int. Cap.					60.0	80.2	89.8	93.1	106.7
	0750	Capacity				58.9	72.5	84.6	94.5	97.6	110.6
	3/50	Int. Cap.				53.7	63.5	84.6	94.5	97.6	110.6
	2250	Capacity	25.9	34.6	43.6	50.2	62.7	73.0	81.4	84.5	98.0
3750 2250	2230	Int. Cap.	23.9	31.8	40.0	45.7	55.0	73.0	81.4	84.5	98.0
70	2000	Capacity	27.4	36.2	45.5	52.2	65.1	75.9	85.0	88.2	102.1
70	3000	Int. Cap.	25.3	33.4	41.8	47.6	57.0	75.9	85.0	88.2	102.1
	0750	Capacity	31.0	40.0	49.3	56.1	69.1	80.4	89.8	93.2	106.5
	3/50	Int. Cap.	28.6	36.8	45.3	51.1	60.6	80.4	89.8	93.2	106.5
	0050	Capacity	22.5	31.5	40.7	47.3	60.1	70.3	78.2	81.2	94.3
	2250	Int. Cap.	20.8	29.0	37.3	43.1	52.6	70.3	78.2	81.2	94.3
3750 2250	2000	Capacity	24.1	33.3	42.7	49.5	62.5	73.1	81.6	84.7	98.6
60	3000	Int. Cap.	22.3	30.6	39.2	45.2	54.8	73.1	81.6	84.7	98.6
80	3750	Capacity	27.8	37.1	46.6	53.5	66.7	77.5	86.4	89.7	103.4
	3/50	Int. Cap.	25.7	34.1	42.8	48.8	58.4	77.5	86.4	89.7	103.4

Table 19 – HEATING CAPACITY

8.5 TONS

ubic 17 -	1112/11111	G CAI ACI	1 1							0.5 10	110
					548J*	09					
RETURN	С	FM		TEMP	ERATURE	AIR ENTER	RING OUTD	OOR COIL	(°F db at 70	0% rh)	
AIR (°F db)		ARD AIR)	-10	0	10	17	30	40	47	50	60
	0550	Capacity	33.1	42.7	52.7	60.0	75.6	87.4	97.5	100.6	113.8
	2550	Int. Cap.	30.7	39.3	48.3	54.7	66.2	87.4	97.5	100.6	113.8
55	0.400	Capacity	34.4	44.0	54.2	61.8	77.5	89.9	100.2	103.1	115.7
	3400	Int. Cap.	31.8	40.5	49.8	56.4	67.9	89.9	100.2	103.1	115.7
	4050	Capacity	38.0	47.7	58.0	65.8	81.5	94.2	103.9	106.6	118.2
	4250	Int. Cap.	35.2	43.9	53.2	60.0	71.4	94.2	103.9	106.6	118.2
70	0550	Capacity	29.0	38.6	48.6	55.9	70.7	83.5	93.1	96.2	109.5
	2550	Int. Cap.	26.8	35.5	44.6	51.0	61.9	83.5	93.1	96.2	109.5
	0.400	Capacity	30.3	40.2	50.4	58.0	73.5	86.1	96.5	99.2	111.9
70	3400	Int. Cap.	28.0	37.0	46.3	52.9	64.4	86.1	96.5	99.2	111.9
Ī	4050	Capacity	34.0	44.0	54.4	62.1	77.8	90.5	100.5	103.3	115.2
	4250	Int. Cap.	31.5	40.5	50.0	56.6	68.2	90.5	100.5	103.3	115.2
	0550	Capacity	25.3	35.0	45.2	52.6	67.1	80.0	90.0	93.2	106.5
	2550	Int. Cap.	23.4	32.2	41.5	48.0	58.8	80.0	90.0	93.2	106.5
80	0.400	Capacity	26.6	36.7	47.2	54.8	69.8	83.0	93.1	96.2	109.2
	3400	Int. Cap.	24.6	33.8	43.3	50.0	61.2	83.0	93.1	96.2	109.2
	4050	Capacity	30.4	40.6	51.2	59.0	74.4	87.7	97.7	100.7	112.8
	4250	Int. Cap.	28.1	37.4	47.0	53.8	65.1	87.7	97.7	100.7	112.8

- Indicates operation not permissible

LEGEND

Capacity - Instantaneous Capacity (1000 Btuh) includes indoor fan motor heat @ARI static conditions
Int. Cap. - Integrated Capacity is Instantaneous Capacity minus the effects of frost on the outdoor coil and the heat required to defrost rh - Relative Humidity
db - Typ Bulb

Table 20 – STATIC PRESSURE ADDERS (Factory Options and/or Accessories)

Economizer

				3 –	6 TONS	3					
CFM (in. wg)	600	800	1000	1250	1500	1750	2000	2250	2500	2750	3000
Vertical Economizer	0.01	0.02	0.04	0.05	0.07	0.09	0.12	0.15	0.18	0.22	0.26
Horizontal Economizer	0.02	0.03	0.04	0.06	0.08	0.10	0.13	0.15	0.18	0.23	0.28

						7.	5 – 8.5	TONS								
CFM (in. wg)	2250	2500	2750	3000	3250	3500	3750	4000	4250	4500	4750	5000	5250	5500	5750	6000
Vertical Economizer	0.06	0.08	0.09	0.12	0.13	0.15	0.17	0.20	0.22	0.25	0.29	0.33	0.36	0.40	0.44	0.48
Horizontal Economizer	0.08	0.10	0.13	0.15	0.18	0.21	0.25	0.28	0.30	0.34	0.39	0.43	0.47	0.51	0.56	0.60

Electric Heaters

3 – 6 TONS										
CFM (in. wg)	600	900	1200	1400	1600	1800	2000	2200	2400	2600
1 Electric Heater Module	0.03	0.05	0.07	0.09	0.09	0.10	0.11	0.11	0.12	0.13
2 Electric Heater Modules	0.13	0.15	0.16	0.16	0.16	0.17	0.17	0.17	0.18	0.18

7.5 – 8.5 TONS																
CFM (in. wg)	2250	2500	2750	3000	3250	3500	3750	4000	4250	4500	4750	5000	5250	5500	5750	6000
1 Electric Heater Module	0.03	0.04	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.18
2 Electric Heater Modules	0.04	0.05	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.15	0.16	0.17	0.19	0.20

General fan performance notes:

- 1. Interpolation is permissible. Do not extrapolate.
- 2. External static pressure is the static pressure difference between the return duct and the supply duct plus the static pressure caused by any FIOPs or accessories.
- 3. Tabular data accounts for pressure loss due to clean filters, unit casing, and wet coils. Factory options and accessories may add static pressure losses, as shown in Table 20. Selection software is available, through your salesperson, to help you select the best motor/drive combination for your application.
- 4. The Fan Performance tables offer motor/drive recommendations. In cases when two motor/drive combinations would work, Bryant recommended the lower horsepower option.
- 5. For information on the electrical properties of Bryant motors, please see the Electrical information section of this book.
- 6. For more information on the performance limits of Bryant motors, see the application data section of this book.

FAN PERFORMANCE

Table 21 – 548J*04 ELECTRIC DRIVE, X13 MOTOR, 3 TON HORIZONTAL SUPPLY

SPEED (TORQUE) CFM **ESP BHP** TAP 900 0.70 0.31 975 0.60 0.30 1050 0.50 0.29 0.39 0.27 1125 1200 0.29 0.26 1 0.24 1275 0.21 1350 0.12 0.23 1425 0.03 0.21 1500 900 0.85 0.37 975 0.76 0.36 1050 0.66 0.36 1125 0.55 0.34 2 1200 0.46 0.34 0.32 1275 0.36 1350 0.27 0.31 1425 0.17 0.29 1500 0.07 0.27 900 1.02 0.44 0.45 975 0.94 1050 0.86 0.45 0.79 0.45 1125 3 1200 0.71 0.45 1275 0.61 0.44 1350 0.51 0.43 0.41 1425 0.40 1500 0.29 0.39 900 0.49 1.12 0.50 975 1.06 1050 1.00 0.52 1125 0.95 0.53 1200 0.89 0.54 4 0.80 0.53 1275 1350 0.70 0.52 1425 0.57 0.50 0.49 1500 0.46 900 1.18 0.52 975 1.14 0.54 0.56 1050 1.10 1125 1.06 0.58 1200 0.60 1.02 5 1275 0.98 0.63 1350 0.94 0.65 0.90 0.68 1425 1500 0.87 0.71

Table 22 – 548J*04 ELECTRIC DRIVE, X13 MOTOR, 3 TON VERTICAL SUPPLY

SPEED (TORQUE) TAP	CFM	ESP	ВНР			
	900	0.44	0.22			
	975	0.35	0.21			
	1050	0.24	0.20			
	1125	0.15	0.19			
1	1200	0.08	0.19			
	1275	0.02	0.18			
	1350	-	-			
	1425	-	-			
	1500	-	ı			
	900	0.64	0.30			
	975	0.53	0.29			
	1050	0.42	0.28			
	1125	0.32	0.27			
2	1200	0.24	0.26			
	1275	0.15	0.25			
	1350	0.07	0.24			
	1425		-			
	1500	-	1			
	900	0.93	0.42			
	975	0.80	0.41			
	1050	0.68	0.39			
	1125	0.57	0.38			
3	1200	0.47	0.37			
	1275	0.35	0.36			
	1350	0.26	0.34			
	1425	0.13	0.33			
	1500	0.08	0.32			
	900	1.04	0.47			
	975	0.92	0.46			
	1050	0.80	0.45			
	1125	0.71	0.45			
4	1200	0.62	0.45			
	1275	0.52	0.44			
	1350	0.43	0.44			
	1425	0.27	0.42			
	1500	0.22	0.41			
	900	1.10	0.50			
	975	1.00	0.49			
	1050	0.90	0.49			
_	1125	0.82	0.50			
5	1200	0.75	0.51			
	1275	0.70	0.54			
	1350	0.67	0.57			
	1425	0.60	0.60			
	1500	0.62	0.64			

Table 23 – 548J*05 ELECTRIC DRIVE, X13 MOTOR, 4 TON HORIZONTAL SUPPLY

SPEED (TORQUE) CFM **ESP BHP** TAP 1200 0.75 0.48 1300 0.63 0.46 1400 0.48 0.44 1500 0.33 0.41 1600 0.19 0.39 1 0.36 1700 0.05 1800 1900 _ -2000 1200 0.97 0.58 1300 0.88 0.59 1400 0.77 0.59 1500 0.64 0.59 1600 0.50 2 0.57 0.36 1700 0.54 1800 0.21 0.52 0.49 1900 0.06 2000 1200 0.98 0.59 0.60 1300 0.91 1400 0.82 0.62 0.71 0.62 1500 3 1600 0.58 0.61 1700 0.45 0.60 1800 0.31 0.58 1900 0.56 0.16 2000 0.03 0.52 0.59 1200 0.98 1300 0.92 0.62 1400 0.86 0.64 0.66 1500 0.79 1600 0.70 0.68 4 0.62 0.70 1700 1800 0.52 0.71 1900 0.37 0.69 0.21 0.67 2000 1200 1.02 0.60 1300 0.97 0.64 1400 0.92 0.67 1500 0.87 0.71 1600 0.82 0.75 5 1700 0.77 0.79 1800 0.71 0.84 0.88 1900 0.65 2000 0.58 0.92

Table 24 – 548J*05 ELECTRIC DRIVE, X13 MOTOR, 4 TON VERTICAL SUPPLY

SPEED (TORQUE) TAP	CFM	ESP	ВНР		
	1200	0.50	0.39		
	1300	0.36	0.37		
	1400	0.19	0.35		
	1500	0.10	0.33		
1	1600	0.02	0.32		
	1700	-	-		
	1800	-	-		
	1900	-	-		
	2000	-	-		
	1200	0.80	0.55		
	1300	0.69	0.55		
	1400	0.50	0.54		
[1500	0.38	0.52		
2	1600	0.24	0.50		
[1700	0.13	0.48		
	1800	0.01	0.46		
	1900		-		
	2000		-		
	1200	0.89	0.59		
	1300	0.78	0.61		
	1400	0.59	0.60		
	1500	0.46	0.58		
3	1600	0.31	0.56		
	1700	0.20	0.54		
	1800	0.07	0.52		
	1900	-	-		
	2000	-			
	1200	0.89	0.60		
	1300	0.80	0.63		
	1400	0.67	0.64		
	1500	0.57	0.65		
4	1600	0.43	0.65		
	1700	0.31	0.66		
	1800	0.23	0.65		
	1900	0.12	0.63		
	2000	0.01	0.62		
	1200	0.94	0.62		
	1300	0.85	0.65		
	1400	0.73	0.68 0.70		
_	1500	0.65			
5	1600	0.55	0.72		
	1700	0.47	0.75 0.78		
	1800	0.42			
	1900	0.39	0.82		
	2000	0.38	0.88		

Table 25 – 548J*06 ELECTRIC DRIVE, X13 MOTOR, 5 TON HORIZONTAL SUPPLY

SPEED (TORQUE) CFM **ESP BHP** TAP 1500 1.19 0.74 1625 1.01 0.73 1750 0.82 0.70 0.60 1875 0.66 2000 0.38 0.62 1 2125 0.16 0.57 2250 2375 _ -2500 1500 1.40 0.86 1625 1.25 0.88 1750 1.08 0.86 1875 0.90 0.84 2 2000 0.67 0.80 2125 0.75 0.44 2250 0.20 0.71 2375 --2500 1500 1.41 0.87 1625 1.28 0.89 1750 1.13 0.89 0.96 0.88 1875 3 2000 0.74 0.85 2125 0.51 0.80 2250 0.27 0.75 2375 0.70 0.02 2500 1500 1.44 0.89 1625 1.35 0.93 1750 1.24 0.96 0.98 1875 1.11 2000 0.90 0.96 4 0.69 0.92 2125 2250 0.43 0.86 2375 0.17 0.81 2500 1500 1.49 0.90 1625 1.38 0.95 1.28 1.00 1750 1875 1.18 1.05 2000 1.09 1.11 5 2125 0.97 1.11 2250 0.72 1.07 0.47 2375 1.02 2500 0.20 0.96

Table 26 – 548J*06 ELECTRIC DRIVE, X13 MOTOR, 5 TON VERTICAL SUPPLY

SPEED (TORQUE) TAP	CFM	ESP	ВНР
	1500	1.00	0.70
	1625	0.72	0.65
	1750	0.46	0.60
	1875	0.28	0.55
1	2000	0.14	0.51
	2125	0.00	0.52
	2250	_	_
	2375	-	-
	2500	-	-
	1500	1.18	0.88
	1625	1.00	0.90
	1750	0.75	0.87
	1875	0.51	0.83
2	2000	0.30	0.79
	2125	0.13	0.75
	2250	-	-
	2375	-	-
	2500		
	1500	1.19	0.88
	1625	1.03	0.91
	1750	0.80	0.90
	1875	0.56	0.87
3	2000	0.35	0.83
	2125	0.19	0.80
	2250	0.01	0.77
	2375	-	1
	2500	-	ı
	1500	1.25	0.89
	1625	1.09	0.93
	1750	0.89	0.96
	1875	0.65	0.94
4	2000	0.45	0.93
	2125	0.26	0.89
	2250	0.12	0.86
	2375	-	_
	2500	-	
	1500	1.26	0.90
	1625	1.16	0.96
	1750	0.99	1.01
	1875	0.80	1.05
5	2000	0.67	1.07
	2125	0.48	1.07
	2250	0.26	1.03
	2375	0.11	1.00
	2500	-	-

Table 27 - 548J*04

3 TON HORIZONTAL SUPPLY

	AVAILABLE EXTERNAL STATIC PRESSURE (IN. WG)											
CFM	0.2		0.4		0	0.6		.8	1.0			
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP		
900	574	0.13	707	0.23	817	0.34	913	0.47	999	0.61		
975	597	0.15	727	0.25	835	0.37	929	0.50	1015	0.64		
1050	621	0.18	747	0.28	853	0.40	946	0.53	1030	0.68		
1125	646	0.20	768	0.31	872	0.43	964	0.57	1047	0.72		
1200	671	0.23	790	0.34	892	0.47	982	0.61	1064	0.76		
1275	696	0.26	812	0.38	912	0.51	1001	0.65	1082	0.81		
1350	723	0.30	835	0.42	933	0.55	1020	0.70	1100	0.86		
1425	749	0.34	859	0.46	955	0.60	1040	0.75	1119	0.91		
1500	776	0.38	883	0.51	977	0.65	1061	0.80	1138	0.97		

			A\	/AILABLE E	XTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	1	.2	1.	.4	1.	.6	1.	1.8 2.0		.0
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
900	1078	0.77	1151	0.93	1220	1.11	1284	1.30	1346	1.49
975	1093	0.80	1165	0.97	1233	1.15	1297	1.33	1358	1.53
1050	1108	0.84	1180	1.01	1247	1.19	1311	1.38	1371	1.58
1125	1123	0.88	1195	1.05	1261	1.23	1325	1.42	1385	1.62
1200	1140	0.92	1210	1.10	1276	1.28	1339	1.47	1399	1.68
1275	1157	0.97	1226	1.15	1292	1.33	1354	1.53	1414	1.73
1350	1174	1.02	1243	1.20	1308	1.39	1370	1.59	1429	1.80
1425	1192	1.08	1260	1.26	1325	1.45	1386	1.65	1444	1.86
1500	1210	1.14	1278	1.33	1342	1.52	1403	1.72	1461	1.93

Italicized area - X13 electric (direct drive motor, see page 36 for speed/torque setting).

Med static motor and drive (belt drive)

High static motor and drive (belt drive)

Table 28 - 548J*04

3 TON VERTICAL SUPPLY

	AVAILABLE EXTERNAL STATIC PRESSURE (IN. WG)												
CFM	0.2		0.4		0	.6	0.8		1.	.0			
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP			
900	594	0.15	740	0.25	867	0.37	981	0.52	1084	0.68			
975	618	0.17	758	0.28	881	0.40	991	0.55	1092	0.71			
1050	642	0.19	777	0.30	896	0.43	1003	0.58	1102	0.75			
1125	668	0.22	797	0.34	912	0.47	1017	0.62	1113	0.79			
1200	695	0.25	818	0.37	930	0.51	1032	0.66	1126	0.83			
1275	722	0.29	841	0.41	949	0.55	1048	0.71	1140	0.88			
1350	750	0.33	864	0.46	968	0.60	1065	0.76	1155	0.93			
1425	778	0.37	888	0.50	989	0.65	1083	0.81	1171	0.99			
1500	807	0.42	913	0.56	1011	0.71	1103	0.87	1188	1.05			

	AVAILABLE EXTERNAL STATIC PRESSURE (IN. WG)												
CFM	1.2		1.4		1	1.6		.8	2.0				
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP			
900	1180	0.86	1269	1.05	1354	1.25	1434	1.47	1511	1.70			
975	1186	0.89	1275	1.08	1358	1.29	1437	1.51	1513	1.74			
1050	1194	0.92	1281	1.12	1363	1.32	1441	1.54	1516	1.78			
1125	1204	0.97	1289	1.16	1370	1.37	1447	1.59	1520	1.82			
1200	1215	1.01	1298	1.21	1378	1.42	1454	1.64	1526	1.87			
1275	1227	1.06	1309	1.26	1387	1.47	1462	1.69	1533	1.92			
1350	1240	1.12	1321	1.32	1397	1.53	1471	1.75	1541	1.99			
1425	1254	1.18	1333	1.38	1409	1.59	1481	1.82	-	_			
1500	1270	1.24	1347	1.45	1421	1.66	1492	1.89	_	_			

Italicized area - X13 electric (direct drive motor, see page 36 for speed/torque setting).

Med static motor and drive (belt drive)

High static motor and drive (belt drive)

Bold Face indicates field-supplied drive

1. Recommend using field - supplied fan pulley (part no. KR11AD561), motor pulley (part no. KR11HY181) and belt (part no.KR29AF041).

Table 29 - 548J*05

4 TON HORIZONTAL SUPPLY

	AVAILABLE EXTERNAL STATIC PRESSURE (IN. WG)											
CFM	0.2		0.4		0	0.6		.8	1.0			
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP		
1200	671	0.23	790	0.34	892	0.47	982	0.61	1064	0.76		
1300	705	0.28	820	0.39	919	0.52	1007	0.67	1088	0.82		
1400	740	0.33	851	0.45	947	0.58	1034	0.73	1113	0.89		
1500	776	0.38	883	0.51	977	0.65	1061	0.80	1138	0.97		
1600	813	0.45	916	0.58	1007	0.73	1089	0.89	1165	1.05		
1700	851	0.52	949	0.66	1038	0.81	1118	0.97	1192	1.15		
1800	888	0.60	984	0.75	1069	0.90	1148	1.07	1221	1.25		
1900	927	0.69	1019	0.84	1102	1.00	1179	1.18	1250	1.36		
2000	965	0.78	1054	0.94	1135	1.11	1210	1.29	1280	1.48		

	AVAILABLE EXTERNAL STATIC PRESSURE (IN. WG)											
CFM	1.2		1.4		1.6		1.8		2.0			
	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	ВНР		
1200	1140	0.92	1210	1.10	1276	1.28	1339	1.47	1399	1.68		
1300	1162	0.99	1232	1.16	1297	1.35	1360	1.55	1419	1.75		
1400	1186	1.06	1254	1.24	1319	1.43	1381	1.63	1439	1.84		
1500	1210	1.14	1278	1.33	1342	1.52	1403	1.72	1461	1.93		
1600	1236	1.23	1302	1.42	1365	1.62	1425	1.82	1483	2.04		
1700	1262	1.33	1328	1.52	1390	1.72	1449	1.93	1505	2.15		
1800	1289	1.44	1354	1.63	1415	1.84	1473	2.05	1529	2.27		
1900	1317	1.55	1380	1.75	1441	1.96	1498	2.18	-	-		
2000	1345	1.68	1408	1.88	1467	2.10	1524	2.32	-	-		

Italicized area - X13 electric (direct drive motor, see page 37 for speed/torque setting).

Med static motor and drive (belt drive)

High static motor and drive (belt drive)

Bold Face indicates field-supplied drive

1. Recommend using field - supplied fan pulley (part no. KR11AD561), motor pulley (part no. KR11HY181) and belt (part no.KR29AF041).

Table 30 - 548J*05

4 TON VERTICAL SUPPLY

	AVAILABLE EXTERNAL STATIC PRESSURE (IN. WG)											
CFM	0.2		0.4		0.6		0.8		1.0			
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР		
1200	695	0.25	818	0.37	930	0.51	1032	0.66	1126	0.83		
1300	731	0.30	849	0.43	955	0.57	1053	0.72	1145	0.89		
1400	769	0.36	880	0.49	982	0.63	1077	0.79	1166	0.97		
1500	807	0.42	913	0.56	1011	0.71	1103	0.87	1188	1.05		
1600	847	0.49	948	0.63	1042	0.79	1130	0.96	1213	1.14		
1700	887	0.57	983	0.72	1073	0.88	1158	1.06	1239	1.24		
1800	928	0.66	1020	0.82	1106	0.98	1188	1.16	1266	1.35		
1900	969	0.76	1057	0.92	1140	1.09	1219	1.28	1295	1.48		
2000	1010	0.87	1095	1.04	1175	1.21	1251	1.41	1325	1.61		

			A\	VAILABLE E	XTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	1	1.2 1.4		1	.6	1	.8	2.0		
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
1200	1215	1.01	1298	1.21	1378	1.42	1454	1.64	1526	1.87
1300	1231	1.08	1313	1.28	1390	1.49	1465	1.71	1536	1.94
1400	1249	1.16	1329	1.36	1405	1.57	1478	1.79	-	
1500	1270	1.24	1347	1.45	1421	1.66	1492	1.89	-	
1600	1292	1.34	1367	1.54	1440	1.76	1509	1.99	-	
1700	1315	1.44	1389	1.65	1459	1.88	1527	2.11	-	
1800	1341	1.56	1412	1.77	1481	2.00	-	-	-	
1900	1367	1.68	1437	1.90	1504	2.13	_	_	-	
2000	1395	1.82	1463	2.04	1528	2.28		-	-	

Italicized area - X13 electric (direct drive motor, see page 37 for speed/torque setting).

Med static motor and drive (belt drive)

High static motor and drive (belt drive)

Bold Face indicates field-supplied drive

1. Recommend using field - supplied fan pulley (part no. KR11AD561), motor pulley (part no. KR11HY181) and belt (part no. KR29AF041).

Table 31 - 548J*06

5 TON HORIZONTAL SUPPLY

	AVAILABLE EXTERNAL STATIC PRESSURE (IN. WG)											
CFM	0.2		0.4		0	0.6		.8	1.0			
	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР		
1500	725	0.33	840	0.46	937	0.60	1023	0.75	1101	0.90		
1625	765	0.40	876	0.54	970	0.68	1054	0.84	1131	1.00		
1750	806	0.48	912	0.63	1004	0.78	1087	0.94	1162	1.11		
1875	847	0.57	950	0.72	1039	0.88	1120	1.05	1194	1.23		
2000	889	0.66	988	0.83	1075	1.00	1154	1.18	1226	1.36		
2125	931	0.78	1027	0.95	1112	1.13	1189	1.31	1260	1.50		
2250	974	0.90	1067	1.08	1149	1.27	1224	1.46	1294	1.66		
2375	1018	1.03	1107	1.23	1187	1.43	1261	1.63	1329	1.84		
2500	1061	1.19	1148	1.39	1226	1.59	1297	1.81	1364	2.02		

			A\	/AILABLE E	XTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	1	.2	1.	.4	1.	.6	1.	.8	2.	.0
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
1500	1172	1.06	1239	1.23	1302	1.40	1361	1.58	1418	1.77
1625	1201	1.16	1267	1.34	1329	1.52	1388	1.71	1444	1.90
1750	1231	1.28	1296	1.46	1358	1.65	1416	1.84	1472	2.04
1875	1262	1.41	1326	1.60	1387	1.79	1445	1.99	1499	2.20
2000	1294	1.55	1357	1.74	1417	1.95	1474	2.15	1528	2.36
2125	1326	1.70	1388	1.90	1447	2.11	1504	2.33	1557	2.55
2250	1359	1.87	1420	2.08	1479	2.29	1534	2.51	1587	2.74
2375	1393	2.05	1453	2.27	1511	2.49	1566	2.72	-	-
2500	1427	2.24	1487	2.47	1543	2.70	1597	2.94	-	-

Italicized area - X13 electric (direct drive motor, see page 38 for speed/torque setting).

Med static motor and drive (belt drive)

High static motor and drive (belt drive)

Table 32 - 548J*06

5 TON VERTICAL SUPPLY

			Α\	/AILABLE E	XTERNAL ST	TATIC PRES	SURE (IN. W	G)		
CFM	0.	.2	0.	.4	0	.6	0	.8	1.	.0
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
1500	794	0.41	902	0.55	993	0.69	1074	0.85	1147	1.00
1625	840	0.49	945	0.64	1034	0.80	1113	0.96	1185	1.13
1750	888	0.59	988	0.75	1075	0.92	1153	1.09	1223	1.26
1875	936	0.70	1033	0.87	1117	1.05	1193	1.23	1263	1.41
2000	984	0.82	1078	1.00	1160	1.19	1235	1.39	1303	1.58
2125	1033	0.96	1124	1.15	1204	1.35	1277	1.56	1343	1.76
2250	1083	1.11	1170	1.32	1248	1.53	1319	1.74	1385	1.96
2375	1133	1.28	1217	1.50	1293	1.72	1363	1.95	1427	2.17
2500	1183	1.47	1265	1.70	1339	1.93	1406	2.17	1470	2.41

			ΑV	VAILABLE E	XTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	1	.2	1.	.4	1	.6	1	.8	2	.0
	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	BHP
1500	1214	1.16	1277	1.33	1336	1.50	1392	1.67	1445	1.85
1625	1251	1.30	1313	1.47	1371	1.65	1427	1.83	1479	2.02
1750	1289	1.44	1350	1.63	1407	1.81	1462	2.01	1514	2.20
1875	1327	1.60	1387	1.80	1444	1.99	1498	2.19	1550	2.40
2000	1366	1.78	1426	1.98	1482	2.19	1535	2.40	1586	2.61
2125	1406	1.97	1464	2.18	1520	2.40	1573	2.62	1623	2.84
2250	1446	2.18	1504	2.40	1559	2.62	1611	2.85	_	-
2375	1487	2.40	1544	2.63	1598	2.87	-	_	-	
2500	1529	2.64	1585	2.89	-	-	-	_	-	

Italicized area - X13 electric (direct drive motor, see page 38 for speed/torque setting).

Non-shaded area – X13 electric drive motor, see page 38 for speed/torque setting.

Med static motor and drive (belt drive)

High static motor and drive (belt drive)

Table 33 - 548J*07

6 TON HORIZONTAL SUPPLY

			A\	/AILABLE E	XTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	0.	.2	0.	.4	0	.6	0.	.8	1.	.0
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
1800	-		927	0.66	1018	0.82	1100	0.98	1174	1.15
1950	-	-	973	0.79	1061	0.95	1140	1.13	1213	1.31
2100	923	0.75	1019	0.92	1104	1.10	1182	1.29	1253	1.48
2250	974	0.90	1067	1.08	1149	1.27	1224	1.46	1294	1.66
2400	1026	1.06	1115	1.26	1195	1.46	1268	1.66	1336	1.87
2550	1079	1.25	1164	1.46	1241	1.67	1312	1.88	1379	2.10
2700	1132	1.46	1214	1.67	1289	1.90	1358	2.12	1422	2.35
2850	1186	1.69	1264	1.92	1336	2.15	1404	2.39	1467	2.63
3000	1240	1.94	1315	2.18	1385	2.43	1451	2.68	1512	2.93

			A\	VAILABLE E	XTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	1	.2	1.	.4	1	.6	1	.8	2	.0
	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	BHP
1800	1244	1.33	1308	1.51	1369	1.70	1427	1.90	1483	2.10
1950	1281	1.49	1345	1.68	1405	1.88	1462	2.09	1517	2.30
2100	1320	1.67	1382	1.87	1441	2.08	1498	2.29	1552	2.51
2250	1359	1.87	1420	2.08	1479	2.29	1534	2.51	1587	2.74
2400	1400	2.09	1460	2.31	1517	2.53	1572	2.76	-	-
2550	1441	2.33	1500	2.55	1557	2.79	-	_	-	-
2700	1483	2.59	1541	2.83	-	_	-	_	-	-
2850	1527	2.87	-	_	-	-	_	_	-	-
3000	_	_		-	-	-	_	-	-	_

Std static motor and drive (belt drive)

Med static motor and drive (belt drive)

High static motor and drive (belt drive)

Table 34 - 548J*07

6 TON VERTICAL SUPPLY

			A\	/AILABLE EX	KTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	0	.2	0.	.4	0	.6	0	.8	1.	.0
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
1800	907	0.63	1006	0.80	1092	0.97	1169	1.14	1239	1.32
1950	965	0.77	1060	0.95	1143	1.13	1218	1.32	1287	1.51
2100	1024	0.93	1115	1.12	1195	1.32	1268	1.52	1335	1.72
2250	1083	1.11	1170	1.32	1248	1.53	1319	1.74	1385	1.96
2400	1143	1.32	1227	1.54	1302	1.76	1371	1.99	1435	2.22
2550	1203	1.55	1284	1.78	1357	2.02	1424	2.26	1487	2.50
2700	1264	1.81	1342	2.06	1412	2.31	1478	2.56	1539	2.82
2850	1326	2.09	1400	2.36	1469	2.62	1532	2.89	_	-
3000	1387	2.41	1459	2.69	-	_	_	-	-	-

			A۱	VAILABLE E	XTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	1	.2	1.	.4	1.	.6	1	.8	2	.0
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
1800	1304	1.51	1365	1.69	1422	1.88	1477	2.08	1528	2.28
1950	1350	1.71	1410	1.91	1467	2.11	1520	2.31	1572	2.52
2100	1398	1.93	1457	2.14	1512	2.35	1565	2.57	1616	2.79
2250	1446	2.18	1504	2.40	1559	2.62	1611	2.85	-	-
2400	1496	2.45	1552	2.68	_	-	_	_	-	_
2550	1546	2.75	_	_	-	-	-	_	-	-
2700	_	_	-	-	-	-	-	-	-	-
2850	-	-		-	-	-	-	-	-	-
3000	_	-	-	-	-	-	_	-	-	-

Std static motor and drive (belt drive)

Med static motor and drive (belt drive)

High static motor and drive (belt drive)

Table 35 - 548J*08

7.5 TON HORIZONTAL SUPPLY

			ΑV	VAILABLE EX	KTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	0	.2	0.	.4	0	.6	0.	.8	1	.0
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
2250	-	_	509	0.40	587	0.52	659	0.66	725	0.80
2438	_	_	525	0.46	600	0.59	669	0.73	733	0.88
2625	465	0.40	543	0.53	614	0.67	680	0.82	743	0.97
2813	487	0.47	561	0.61	629	0.76	693	0.91	753	1.08
3000	510	0.55	580	0.70	646	0.86	707	1.02	765	1.19
3188	534	0.65	600	0.80	663	0.96	722	1.13	779	1.31
3375	557	0.75	621	0.91	681	1.08	738	1.26	793	1.44
3563	582	0.86	642	1.03	700	1.21	755	1.39	808	1.58
3750	606	0.99	664	1.17	720	1.35	773	1.54	824	1.74

			ΑV	/AILABLE E	XTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	1.	.2	1.	.4	1.	.6	1.	.8	2	.0
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
2250	788	0.94	847	1.09	903	1.25	957	1.41	1009	1.58
2438	794	1.03	852	1.19	907	1.36	959	1.52	1010	1.70
2625	802	1.13	858	1.30	911	1.47	963	1.64	1012	1.82
2813	811	1.24	865	1.41	917	1.59	967	1.77	1016	1.96
3000	821	1.36	874	1.54	925	1.72	974	1.91	1021	2.11
3188	832	1.49	884	1.68	933	1.87	981	2.06	1028	2.26
3375	845	1.63	895	1.82	943	2.02	990	2.22	1035	2.43
3563	858	1.78	907	1.98	954	2.19	1000	2.40	1044	2.61
3750	873	1.94	920	2.15	966	2.36	1011	2.58	1054	2.80

Std static motor and drive (belt drive)

Med static motor and drive (belt drive)

High static motor and drive (belt drive)

Table 36 - 548J*08

7.5 TON VERTICAL SUPPLY

			ΑV	/AILABLE EX	(TERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	0	.2	0.	.4	0	.6	0.	.8	1.	.0
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
2250	-		528	0.43	597	0.54	658	0.66	713	0.78
2438	470	0.37	548	0.50	615	0.62	675	0.75	729	0.88
2625	494	0.45	569	0.58	634	0.71	692	0.85	745	0.99
2813	518	0.53	590	0.67	653	0.82	710	0.96	763	1.11
3000	543	0.62	612	0.77	673	0.93	729	1.08	780	1.24
3188	568	0.72	635	0.89	694	1.05	749	1.21	799	1.38
3375	593	0.84	658	1.01	716	1.19	769	1.36	818	1.53
3563	619	0.97	681	1.15	737	1.33	789	1.52	837	1.70
3750	645	1.11	705	1.30	760	1.49	810	1.68	857	1.88

			ΑV	VAILABLE EX	XTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	1	.2	1.	.4	1.	.6	1	.8	2	.0
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
2250	764	0.89	812	1.02	856	1.14	899	1.26	939	1.39
2438	779	1.00	826	1.13	870	1.26	912	1.40	952	1.53
2625	795	1.12	841	1.26	885	1.40	926	1.54	966	1.68
2813	811	1.25	857	1.40	900	1.55	941	1.69	980	1.84
3000	828	1.39	873	1.55	916	1.70	956	1.86	995	2.02
3188	846	1.54	890	1.71	932	1.87	972	2.04	1010	2.21
3375	864	1.70	907	1.88	949	2.05	988	2.23	1026	2.40
3563	882	1.88	925	2.06	966	2.25	1005	2.43	1042	2.62
3750	902	2.07	944	2.26	984	2.45	1022	2.65	1059	2.84

Std static motor and drive (belt drive)

Med static motor and drive (belt drive)

High static motor and drive (belt drive)

Table 37 - 548J*09

8.5 TON HORIZONTAL SUPPLY

			A\	/AILABLE E	XTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	0.	.2	0.	.4	0	.6	0	.8	1	.0
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
2550	468	0.39	546	0.52	618	0.66	684	0.80	747	0.96
2763	493	0.47	567	0.61	635	0.76	699	0.91	760	1.07
2975	520	0.57	589	0.72	654	0.87	716	1.03	774	1.20
3188	547	0.68	613	0.83	675	1.00	733	1.17	789	1.34
3400	575	0.80	637	0.96	696	1.14	752	1.31	806	1.50
3613	603	0.94	662	1.11	719	1.29	773	1.48	824	1.67
3825	631	1.09	688	1.27	742	1.46	794	1.66	843	1.86
4038	660	1.26	714	1.45	766	1.65	816	1.85	864	2.06
4250	689	1.45	741	1.65	790	1.86	838	2.07	885	2.29

			A	VAILABLE E	XTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	1	.2	1	.4	1	.6	1	.8	2	.0
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
2550	806	1.11	863	1.28	916	1.45	968	1.62	1018	1.80
2763	817	1.24	871	1.41	924	1.59	974	1.77	1022	1.95
2975	829	1.37	882	1.55	932	1.74	981	1.93	1028	2.12
3188	843	1.53	894	1.71	943	1.90	990	2.10	1036	2.30
3400	858	1.69	907	1.88	955	2.09	1001	2.29	1046	2.50
3613	874	1.87	922	2.07	968	2.28	1013	2.49	1057	2.71
3825	891	2.07	938	2.28	983	2.49	1027	2.71	_	-
4038	910	2.28	955	2.50	999	2.72	1041	2.95	-	
4250	930	2.51	973	2.74	1015	2.97	1057	3.21	-	

Std static motor and drive (belt drive)

Med static motor and drive (belt drive)

High static motor and drive (belt drive)

Table 38 - 548J*09

8.5 VERTICAL SUPPLY

			A\	VAILABLE EX	KTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	0	.2	0.	.4	0	.6	0	.8	1.	.0
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
2550	495	0.43	570	0.56	634	0.70	693	0.83	746	0.96
2763	524	0.53	595	0.67	657	0.81	714	0.95	766	1.09
2975	552	0.63	620	0.79	681	0.94	736	1.09	787	1.24
3188	582	0.76	647	0.92	705	1.08	759	1.25	808	1.41
3400	611	0.89	674	1.07	730	1.24	782	1.42	831	1.59
3613	641	1.05	701	1.23	756	1.42	806	1.60	854	1.79
3825	672	1.22	729	1.42	782	1.61	831	1.81	877	2.00
4038	702	1.41	758	1.62	809	1.83	857	2.03	901	2.24
4250	733	1.62	787	1.84	836	2.06	883	2.28	926	2.49

			A\	VAILABLE E	XTERNAL ST	ATIC PRES	SURE (IN. W	G)		
CFM	1	.2	1.	.4	1.	.6	1.	.8	2	.0
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР
2550	795	1.09	841	1.23	885	1.36	926	1.50	965	1.64
2763	814	1.24	859	1.38	902	1.53	943	1.68	982	1.82
2975	834	1.40	878	1.55	921	1.71	961	1.86	999	2.02
3188	855	1.57	898	1.74	940	1.90	979	2.07	1017	2.24
3400	876	1.76	919	1.94	960	2.12	998	2.29	1036	2.47
3613	898	1.97	940	2.16	980	2.34	1018	2.53	1055	2.72
3825	921	2.20	962	2.40	1001	2.59	1039	2.79	_	-
4038	944	2.45	984	2.65	1023	2.86	_	_	-	-
4250	968	2.71	-	-	-	-	-	-	-	

Std static motor and drive (belt drive)

Med static motor and drive (belt drive)

High static motor and drive (belt drive)

Table 39 – PULLEY ADJUSTMENT

	-	T CEEE T TROUGHT THE						= =					
LIN	NIT	MOTOR/DRIVE COMBO				MC	OTOR PU	LLEY TU	RNS OP	EN			
U.		MOTOR/BRIVE COMBO	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
40	phase	Medium Static	1251	1208	1165	1121	1078	1035	992	949	905	862	819
0	က	High Static	1466	1423	1380	1337	1294	1251	1207	1164	1121	1078	1035
05	phase	Medium Static	1303	1265	1226	1188	1150	1112	1073	1035	997	958	920
0	က	High Static	1466	1423	1380	1337	1294	1251	1207	1164	1121	1078	1035
90	phase	Medium Static	1380	1349	1317	1286	1254	1223	1192	1160	1129	1097	1066
8	3 pł	High Static	1639	1596	1553	1510	1467	1424	1380	1337	1294	1251	1208
	se	Standard Static	1192	1161	1129	1098	1066	1035	1004	972	941	909	878
07	pha	Medium Static	1380	1349	1317	1286	1254	1223	1192	1160	1129	1097	1066
	3	High Static	1639	1596	1553	1510	1467	1424	1380	1337	1294	1251	1208
	se	Standard Static	652	633	614	594	575	556	537	518	498	479	460
80	phase	Medium Static	838	813	789	764	739	715	690	665	640	616	591
	3 p	High Static	1084	1059	1035	1010	986	961	936	912	887	863	838
	se	Standard Static	652	633	614	594	575	556	537	518	498	479	460
60	pha	Medium Static	838	813	789	764	739	715	690	665	640	616	591
	3 p	High Static	1084	1059	1035	1010	986	961	936	912	887	863	838

NOTE: Do not adjust pulley further than 5 turns open.

⁻ Factory settings

ECONOMIZER, BAROMETRIC RELIEF AND PE PERFORMANCE

Fig. 9 - Barometric Relief Flow Capacity

Fig. 13 - Barometric Relief Flow Capacity

Fig. 10 - Outdoor Air Damper Leakage

Fig. 14 - Outdoor Air Damper Leakage

Fig. 11 - Return Air Pressure Drop

Fig. 15 - Return Air Pressure Drop

Fig. 12 - Horizontal Power Exhaust Performance

Fig. 16 - Power Exhaust Performance

C09034

C09031

C08012

548J

ELECTRICAL INFORMATION

Table 40 - 548J*04

1-Stage Cooling

3 TONS

V-Ph-Hz		TAGE NGE	СОМІ	P (ea)	OFM (e	ea)			IFM		
V-PII-H2	MIN	MAX	RLA	LRA	WATTS	FLA	TYPE	Max WATTS	Max AMP Draw	EFF at Full Load	FLA
208-1-60	187	253	17.9	112	190	0.9	DD-STD	980	7.8	84%	7.4
230-1-60	187	253	17.9	112	190	0.9	DD-STD	980	7.8	84%	7.4
							DD-STD	980	7.8	84%	7.4
208-3-60	187	253	13.2	88	190	0.9	MED	2000	5.5	80%	5.2
							HIGH	2000	5.5	80%	5.2
							DD-STD	980	7.8	84%	7.4
230-3-60	187	253	13.2	88	190	0.9	MED	2000	5.5	80%	5.2
							HIGH	2000	5.5	80%	5.2
							DD-STD	980	8.0	84%	7.6
460-3-60	414	506	6.0	44	190	0.5	MED	2000	2.7	80%	2.6
							HIGH	2000	2.7	80%	2.6
							DD-STD	980	4.2	84%	4.0
575-3-60	518	633	NA	NA	190	0.4	MED	2000	2.5	80%	2.4
							HIGH	2000	2.1	80%	2.0

Table 41 – 548J*05

1-Stage Cooling

4 TONS

V-Ph-Hz		TAGE NGE	СОМ	P (ea)	OFM (ea)			IFM		
V-Pn-HZ	MIN	MAX	RLA	LRA	WATTS	FLA	TYPE	Max WATTS	Max AMP Draw	EFF at Full Load	FLA
208-1-60	187	253	21.8	117	325	1.5	DD-STD	980	7.8	84%	7.4
230-1-60	187	253	21.8	117	325	1.5	DD-STD	980	7.8	84%	7.4
							DD-STD	980	7.8	84%	7.4
208-3-60	187	253	13.7	83	325	1.5	MED	2000	5.5	80%	5.2
							HIGH	2000	5.5	80%	5.2
							DD-STD	980	7.8	84%	7.4
230-3-60	187	253	13.7	83	325	1.5	MED	2000	5.5	80%	5.2
							HIGH	2000	5.5	80%	5.2
							DD-STD	980	8.0	84%	7.6
460-3-60	414	506	6.2	41	325	0.8	MED	2000	2.7	80%	2.6
							HIGH	2000	2.7	80%	2.6
							DD-STD	980	4.2	84%	4.0
575-3-60	518	633	4.8	37	325	0.6	MED	2000	2.5	80%	2.4
							HIGH	2000	2.1	80%	2.0

Table 42 – 548J*06

1-Stage Cooling

5 TONS

V-Ph-Hz		TAGE NGE	COM P (ea)		OFM (ea)		IFM				
	MIN	MAX	RLA	LRA	WATTS	FLA	TYPE	Max WATTS	Max AMP Draw	EFF at Full Load	FLA
208-1-60	187	253	26.2	134	325	1.5	DD-STD	980	7.8	84%	7.4
230-1-60	187	253	26.2	134	325	1.5	DD-STD	980	7.8	84%	7.4
							DD-STD	980	7.8	84%	7.4
208-3-60	187	253	15.6	110	325	1.5	MED	2000	5.5	80%	5.2
							HIGH	2770	7.9	81%	7.5
							DD-STD	980	7.8	84%	7.4
230-3-60	187	253	15.6	110	325	1.5	MED	2000	5.5	80%	5.2
							HIGH	2770	7.9	81%	7.5
							DD-STD	980	8.0	84%	7.6
460-3-60	414	506	7.7	52	325	0.8	MED	2000	2.7	80%	2.6
							HIGH	2770	3.6	81%	3.4
							DD-STD	980	4.2	84%	4.0
575-3-60	518	633	5.8	39	325	0.6	MED	2000	2.1	80%	2.0
							HIGH	2770	2.9	81%	2.8

ELECTRICAL INFORMATION (cont.)

Table 43 – 548J*07

1-Stage Cooling

6 TONS

	VOLT RAN	AGE	СОМІ	P (ea)	OFM (e	ea)			IFM		
V-Ph-Hz	MIN	MAX	RLA	LRA	WATTS	FLA	TYPE	Max WATTS	Max AMP Draw	EFF at Full Load	FLA
							STD	1600	5.5	80%	5.2
208-3-60	187	253	19.0	123	325	1.5	MED	2770	7.9	81%	7.5
							HIGH	2770	7.9	81%	7.5
							STD	1600	5.5	80%	5.2
230-3-60	187	253	19.0	123	325	1.5	MED	2770	7.9	81%	7.5
							HIGH	2770	7.9	81%	7.5
							STD	1600	2.7	80%	2.6
460-3-60	414	506	9.7	62	325	8.0	MED	2770	3.6	81%	3.4
							HIGH	2770	3.6	81%	3.4
							STD	1600	2.5	80%	2.4
575-3-60	518	633	7.4	50	325	0.6	MED	2770	2.9	81%	2.8
							HIGH	2770	2.9	81%	2.8

Table 44 – 548J*08

2-Stage Cooling

7.5 TONS

V-Ph-Hz 208-3-60 230-3-60	VOLT	AGE	COMP	(Cir 1)	COMP	(Cir 2)	OFM	(ea)			IFM		
V-Ph-Hz	RAN		RLA	LRA	RLA	LRA	WATTS	FLA	TYPE	Max	Max AMP	EFF at Full	FLA
	MIN	MAX								WATTS	Draw	Load	
									STD	1310	5.5	80%	5.2
208-3-60	187	253	13.1	83	13.1	83	325	1.5	MED	2770	7.9	81%	7.5
									HIGH	2770	7.9	81%	7.5
									STD	1310	5.5	80%	5.2
230-3-60	187	253	13.1	83	13.1	83	325	1.5	MED	2770	7.9	81%	7.5
									HIGH	2770	7.9	81%	7.5
									STD	1310	2.7	80%	2.6
460-3-60	414	506	6.1	41	6.1	41	325	0.8	MED	2770	3.6	81%	3.4
									HIGH	2770	3.6	81%	3.4
									STD	1310	2.5	80%	2.4
575-3-60	518	633	4.4	33	4.4	33	325	0.6	MED	2770	2.9	81%	2.8
									HIGH	2770	2.9	81%	2.8

Table 45 - 548J*09

2-Stage Cooling

8.5 TONS

	VOLT	AGE	COMP	(Cir 1)	COMP	(Cir 2)	OFM	(ea)			IFM		
V-Ph-Hz	RAN	IGE	DIA	LRA	RLA	LRA	WATTS	FLA	TYPE	Max	Max AMP	EFF at Full	E1 A
	MIN	MAX	RLA	LRA	RLA	LRA	WAIIS	FLA	ITPE	WATTS	Draw	Load	FLA
									STD	1310	5.5	80%	5.2
208-3-60	187	253	16.0	91	13.7	83	325	1.5	MED	2770	7.9	80%	7.5
									HIGH	2770	7.9	80%	7.5
									STD	1310	5.5	80%	5.2
230-3-60	187	253	16.0	91	13.7	83	325	1.5	MED	2770	7.9	80%	7.5
									HIGH	2770	7.9	80%	7.5
									STD	1310	2.7	80%	2.6
460-3-60	414	506	7.0	46	6.2	41	325	0.8	MED	2770	3.6	80%	3.4
									HIGH	2770	3.6	80%	3.4
									STD	1310	2.5	80%	2.4
575-3-60	518	633	5.6	37	4.8	37	325	0.6	MED	2770	2.9	80%	2.8
									HIGH	2770	2.9	81%	2.8

Table 46 – MCA/MOCP DETERMINATION WITHOUT C.O. OR UNPWRD C.O.

	ZH		ELEC	C. HTR			WITH	OUT C.O.	or UNPWR C.0	Э.		
⊨	NOM. V-PH-HZ	IFM				WITHOU	T P.E.			WITH F	?E.	
TINO	A. V.	TYPE	Nom (kW)	FLA	MCA	МОСР	DISC	. SIZE	MCA	МОСР	DISC	. SIZE
	N N		, ,		IVICA	WIOCF	FLA	LRA	IVICA	WIOCF	FLA	LRA
	208/230-1-60	DD-STD	3.3/4.4 4.9/6.5 6.5/8.7 7.9/10.5 9.8/13.0	15.9/18.3 23.5/27.1 31.4/36.3 37.9/43.8 46.9/54.2	30.7 50.6/53.6 60.1/64.6 69.9/76.1 78.1/85.4 89.3/98.4	45 60/60 70/70 70/80 80/90 90/100	30 48/51 57/61 66/72 74/81 84/92	121 137/139 145/148 152/157 159/165 215/229	32.6 52.5/55.5 62.0/66.5 71.8/78.0 80.0/87.3 91.2/100.3	50 60/60 70/70 80/80 80/90 100/110	32 51/53 59/63 68/74 76/83 86/95	123 139/141 147/150 154/159 161/167 217/231
		DD-STD	3.3/4.4 4.9/6.5 6.5/8.7 7.9/10.5 12.0/16.0	9.2/10.6 13.6/15.6 18.1/20.9 21.9/25.3 33.4/38.5	24.8 36.3/38.1 41.8/44.3 47.4/50.9 52.2/56.4 66.6/72.9	30 45/45 50/50 50/60 60/60 70/80	25 35/37 40/43 46/49 50/54 63/69	97 106/108 111/113 115/118 119/122 130/136	26.7 38.2/40.0 43.7/46.2 49.3/52.8 54.1/58.3 68.5/74.8	30 45/50 50/50 50/60 60/60 70/80	27 37/39 43/45 48/51 52/56 65/71	99 108/110 113/115 117/120 121/124 132/138
	208/230-3-60	MED	- 3.3/4.4 4.9/6.5 6.5/8.7 7.9/10.5 12.0/16.0	9.2/10.6 13.6/15.6 18.1/20.9 21.9/25.3 33.4/38.5	22.6 34.1/35.9 39.6/42.1 45.2/48.7 50.0/54.2 64.4/70.7	30 45/45 45/50 50/50 50/60 70/80	22 33/34 38/40 43/46 47/51 61/66	109 118/120 123/125 127/130 131/134 142/148	24.5 36.0/37.8 41.5/44.0 47.1/50.6 51.9/56.1 66.3/72.6	30 45/45 50/50 50/60 60/60 70/80	24 35/37 40/42 45/48 50/53 63/69	111 120/122 125/127 129/132 133/136 144/150
548J*04		HIGH	- 3.3/4.4 4.9/6.5 6.5/8.7 7.9/10.5 12.0/16.0	9.2/10.6 13.6/15.6 18.1/20.9 21.9/25.3 33.4/38.5	22.6 34.1/35.9 39.6/42.1 45.2/48.7 50.0/54.2 64.4/70.7	30 45/45 45/50 50/50 50/60 70/80	22 33/34 38/40 43/46 47/51 61/66	120 129/131 134/136 138/141 142/145 153/159	24.5 36.0/37.8 41.5/44.0 47.1/50.6 51.9/56.1 66.3/72.6	30 45/45 50/50 50/60 60/60 70/80	24 35/37 40/42 45/48 50/53 63/69	122 131/133 136/138 140/143 144/147 155/161
		DD-STD	- 6.0 8.8 11.5 14.0	7.2 10.6 13.8 16.8	16.0 25.0 29.3 33.3 37.0	20 30 30 35 40	16 24 28 32 36	53 60 64 67 70	17.0 26.0 30.3 34.3 38.0	20 30 35 35 40	17 26 30 33 37	54 61 65 68 71
	460-3-60	MED	- 6.0 8.8 11.5 14.0	7.2 10.6 13.8 16.8	10.6 19.6 23.9 27.9 31.6	15 20 25 30 35	10 19 23 26 30	54 61 65 68 71	11.6 20.6 24.9 28.9 32.6	15 25 25 30 35	12 20 24 27 31	55 62 66 69 72
		HIGH	- 6.0 8.8 11.5 14.0	7.2 10.6 13.8 16.8	10.6 19.6 23.9 27.9 31.6	15 20 25 30 35	10 19 23 26 30	60 67 71 74 77	11.6 20.6 24.9 28.9 32.6	15 25 25 30 35	12 20 24 27 31	61 68 72 75 78
	9-	DD-STD	-	-	5.4	15	5	5	7.4	15	7	7
	575-3-60	MED	-	-	3.4	15	3	8	5.4	15	5	10
	575	HIGH			2.9	15	3	12	4.9	15	5	14

LEGEND

C.O. – Convenient outlet
DD – Electric Drive X13 Motor
DISC – Disconnect
FLA – Full load amps

IFM - Indoor fan motor
LRA - Locked rotor amps
MCA - Minimum circuit amps
MOCP - Maximum over current protection

P.E. – Power exhaust

UNPWRD C.O. - Unpowered convenient outlet

NOTES:

 In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. Canadian units may be fuse or circuit breaker.

2. Unbalanced 3-Phase Supply Voltage

Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percentage of voltage imbalance.

Example: Supply voltage is 230-3-60

 $\begin{array}{l} \mathsf{AB} = 224 \mathsf{V} \\ \mathsf{BC} = 231 \mathsf{V} \end{array}$

AC = 231VAC = 226V

Average Voltage = (224 + 231 + 226) 3 =

= 227

Determine maximum deviation from average voltage.

(AB) 227 – 224 = 3V Maximum deviation is 4V. (BC) 231 – 227 = 4V Determine percent of voltage imbalance.

% Voltage Imbalance = 100 x = 1.76%

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

Table 46 – (cont.) MCA/MOCP DETERMINATION WITHOUT C.O. OR UNPWRD C.O.

	HZ		ELEC	. HTR			WITH	OUT C.O.	or UNPWR C.0) .		
E	품	IFM				WITHOU'	T P.E.			WITH F	P.E.	
UNIT	NOM. V-PH-HZ	TYPE	Nom (kW)	FLA	мол	моор	DISC	SIZE	мол	MOOD	DISC	SIZE
	No No		, ,		MCA	МОСР	FLA	LRA	MCA	MOCP	FLA	LRA
	99			**	36.2	50	35	128	38.1	50	37	130
	208/230-1-60		3.3/4.4	15.9/18.3	56.0/59.0	60/60	54/56	144/146	57.9/60.9	60/70	56/59	146/148
	Ţ	DD-STD	6.5/8.7	31.4/36.3	75.4/81.5	80/90	71/77	159/164	77.3/83.4	80/90	74/79	161/166
	33	00-310	9.8/13.0	46.9/54.2	94.8/103.9	100/110	89/98	222/236	96.7/105.8	100/110	91/100	224/238
	8		13.1/17.4	62.8/72.5	114.7/126.8	125/150	108/119	254/273	116.6/128.7	125/150	110/121	256/275
	2		15.8/21.0	75.8/87.5	130.9/145.5	150/150	122/136	280/303	132.8/147.4	150/150	125/138	282/305
			_		26.0	30	26	94	27.9	40	28	96
			4.9/6.5	13.6/15.6	43.0/45.5	50/50	42/44	108/110	44.9/47.4	50/50	44/46	110/112
		DD-STD	6.5/8.7	18.1/20.9	48.7/52.2	50/60	47/50	112/115	50.6/54.1	60/60	49/52	114/117
			12.0/16.0	33.4/38.5	67.8/74.2	70/80	64/70	127/133	69.7/76.1	70/80	67/72	129/135
			15.8/21.0	43.8/50.5	80.8/89.2	90/90	76/84	182/195	82.7/91.1	90/100	79/86	184/197
	208/230-3-60		-	-	23.8	30	23	106	25.7	30	26	108
	6		4.9/6.5	13.6/15.6	40.8/43.3	50/50	39/41	120/122	42.7/45.2	50/50	41/44	122/124
	9	MED	6.5/8.7	18.1/20.9	46.5/50.0	50/50	44/47	124/127	48.4/51.9	50/60	46/50	126/129
	73		12.0/16.0	33.4/38.5	65.6/72.0	70/80	62/68	139/145	67.5/73.9	70/80	64/70	141/147
	8		15.8/21.0	43.8/50.5	78.6/87.0	80/90	74/82	194/207	80.5/88.9	90/90	76/84	196/209
	~		_		23.8	30	23	117	25.7	30	26	119
			4.9/6.5	13.6/15.6	40.8/43.3	50/50	39/41	131/133	42.7/45.2	50/50	41/44	133/135
10		HIGH	6.5/8.7	18.1/20.9	46.5/50.0	50/50	44/47	135/138	48.4/51.9	50/60	46/50	137/140
ő			12.0/16.0	33.4/38.5	65.6/72.0	70/80	62/68	150/156	67.5/73.9	70/80	64/70	152/158
548J*05			15.8/21.0	43.8/50.5	78.6/87.0	80/90	74/82	205/218	80.5/88.9	90/90	76/84	207/220
25			-	-	16.5	20	17	51	17.5	25	18	52
			6.0	7.2	25.5	30	25	58	26.5	30	26	59
		DD-STD	11.5	13.8	33.8	35	33	65	34.8	35	34	66
			14.0	16.8	37.5	40	36	68	38.5	40	37	69
			23.0	27.7	51.1	60	49	106	52.1	60	50	107
			-		11.2	15	11	52	12.2	15	12	53
	9		6.0	7.2	20.2	25	19	59	21.2	25	20	60
	က်	MED	11.5	13.8	28.4	30	27	66	29.4	30	28	67
	460-3-60		14.0	16.8	32.2	35	30	69	33.2	35	32	70
	46		23.0	27.7	45.8	50	43	107	46.8	50	44	108
			_	-	11.2	15	11	58	12.2	15	12	59
			6.0	7.2	20.2	25	19	65	21.2	25	20	66
		HIGH	11.5	13.8	28.4	30	27	72	29.4	30	28	73
			14.0	16.8	32.2	35	30	75	33.2	35	32	76
			23.0	27.7	45.8	50	43	113	46.8	50	44	114
	09	DD-STD	_	-	10.6	15	11	43	12.5	15	13	45
	-3-	MED	-	-	9.0	15	9	46	10.9	15	11	48
	575-3-60	HIGH	_	-	8.6	15	9	50	10.5	15	11	52
See		s page 49.										

Table 46 – (cont.) MCA/MOCP DETERMINATION WITHOUT C.O. OR UNPWRD C.O.

	ZH-		ELEC	. HTR			WITH	OUT C.O.	or UNPWR C.	D .		
E	분	IFM				WITHOU	T P.E.			WITH F	P.E.	
UNIT	NOM. V-PH	TYPE	Nom (kW)	FLA	MOA	MOOD	DISC	. SIZE	MOA	моор	DISC	. SIZE
	Š.		, ,		MCA	MOCP	FLA	LRA	MCA	МОСР	FLA	LRA
	-60		-	-	41.7	60	40	145	43.6	60	43	147
	Ĭ		4.9/6.5	23.5/27.1	71.0/75.5	80/80	67/72	169/172	72.9/77.4	80/80	70/74	171/174
	Ä	DD-STD	6.5/8.7	31.4/36.3	80.9/87.0	90/100	76/82	176/181	82.8/88.9	100/100	79/84	178/183
	23(000	9.8/13.0	46.9/54.2	100.3/109.4	110/110	94/103	239/253	102.2/111.3	110/125	96/105	241/255
	208/230-1		13.1/17.4	62.8/72.5	120.2/132.3	125/150	113/124	271/290	122.1/134.2	125/150	115/126	273/292
	2		15.8/21.0	75.8/87.5	136.4/151.0	150/175	128/141	297/320	138.3/152.9	150/175	130/143	299/322
			-		28.4	40	28	121	30.3	45	30	123
			4.9/6.5	13.6/15.6	45.4/47.9	50/50	44/46	135/137	47.3/49.8	50/60	46/48	137/139
		DD-STD	7.9/10.5	21.9/25.3	55.8/60.0	60/70	53/57	143/146	57.7/61.9	60/70	56/59	145/148
		00-310	12.0/16.0	33.4/38.5	70.2/76.5	80/80	67/72	154/160	72.1/78.4	80/80	69/75	156/162
			15.8/21.0	43.8/50.5	83.2/91.5	90/100	79/86	209/222	85.1/93.4	90/100	81/88	211/224
			19.9/26.5	55.2/63.8	97.4/108.2	100/110	92/102	231/249	99.3/110.1	100/125	94/104	233/251
	စ္က		-		26.2	40	26	144	28.1	40	28	146
	Ĭ		4.9/6.5	13.6/15.6	43.2/45.7	50/50	41/44	158/160	45.1/47.6	50/50	43/46	160/162
	Ÿ	MED	7.9/10.5	21.9/25.3	53.6/57.8	60/60	51/55	166/169	55.5/59.7	60/60	53/57	168/171
	208/230-3-60	MED	12.0/16.0	33.4/38.5	68.0/74.3	70/80	64/70	177/183	69.9/76.2	70/80	66/72	179/185
	8/2		15.8/21.0	43.8/50.5	81.0/89.3	90/90	76/84	232/245	82.9/91.2	90/100	78/86	234/247
	20		19.9/26.5	55.2/63.8	95.2/106.0	100/110	89/99	254/272	97.1/107.9	100/110	91/101	256/274
				***	28.5	40	28	170	30.4	45	30	172
			4.9/6.5	13.6/15.6	45.5/48.0	50/50	44/46	184/186	47.4/49.9	50/60	46/48	186/188
			7.9/10.5	21.9/25.3	55.9/60.1	60/70	53/57	192/195	57.8/62.0	60/70	56/60	194/197
·		HIGH	12.0/16.0	33.4/38.5	70.3/76.6	80/80	67/73	203/209	72.2/78.5	80/80	69/75	205/211
, 0			15.8/21.0	43.8/50.5	83.3/91.6	90/100	79/86	258/271	85.2/93.5	90/100	81/89	260/273
548J*06			19.9/26.5	55.2/63.8	97.5/108.3	100/110	92/102	280/298	99.4/110.2	100/125	94/104	282/300
25			_		18.0	25	19	62	19.0	25	20	63
			6.0	7.2	27.0	30	27	69	28.0	30	28	70
		DD 07D	11.5	13.8	35.3	40	34	76	36.3	40	36	77
		DD-STD	14.0	16.8	39.0	40	38	79	40.0	45	39	80
			23.0	27.7	52.7	60	50	117	53.7	60	52	118
			25.5	30.7	56.4	60	54	123	57.4	60	55	124
			_	-	13.0	20	13	69	14.0	20	14	70
	90		6.0	7.2	22.0	25	21	76	23.0	25	22	77
	Ä.		11.5	13.8	30.3	35	29	83	31.3	35	30	84
	460-3-60	MED	14.0	16.8	34.0	35	32	86	35.0	40	33	87
	96		23.0	27.7	47.7	50	45	124	48.7	50	46	125
	`		25.5	30.7	51.4	60	48	130	52.4	60	49	131
			-		13.8	20	14	82	14.8	20	15	83
			6.0	7.2	22.8	25	22	89	23.8	25	23	90
			11.5	13.8	31.1	35	30	96	32.1	35	31	97
		HIGH	14.0	16.8	34.8	35	33	99	35.8	40	34	100
			23.0	27.7	48.5	50	46	137	49.5	50	47	138
			25.5	30.7	52.2	60	49	143	53.2	60	50	144
	9-	DD-STD	-	-	11.9	15	12	45	13.8	20	14	47
	-3-	MED	-	-	9.9	15	10	52	11.8	15	12	54
	575	HIGH	-	-	10.7	15	11	63	12.6	15	13	65
_		0 0000 10										

Table 46 – (cont.) MCA/MOCP DETERMINATION WITHOUT C.O. OR UNPWRD C.O.

	HZ.		ELEC	C. HTR		WITHOUT C.O. or UNPWR C.O.									
⊨	품	IFM				WITHOU	T P.E.			WITH F	?E.				
UNIT	NOM. V-PH-HZ	TYPE	Nom (kW)	FLA			DISC	. SIZE			DISC	. SIZE			
	NO No		(,		MCA	MOCP	FLA	LRA	MCA	MOCP	FLA	LRA			
			-	-	30.5	45	30	146	32.4	50	32	148			
			4.9/6.5	13.6/15.6	47.5/50.0	60/60	45/47	160/162	49.4/51.9	60/60	47/50	162/164			
		STD	7.9/10.5	21.9/25.3	57.8/62.1	60/70	55/59	168/171	59.7/64.0	60/70	57/61	170/173			
		310	12.0/16.0	33.4/38.5	72.2/78.6	80/80	68/74	179/185	74.1/80.5	80/90	70/76	181/187			
			15.8/21.0	43.8/50.5	85.2/93.6	90/100	80/88	234/247	87.1/95.5	90/100	82/90	236/249			
			19.9/26.5	55.2/63.8	99.5/110.2	100/125	93/103	256/274	101.4/112.1	110/125	95/105	258/276			
	0		-	-	32.8	50	32	183	34.7	50	34	185			
	208/230-3-60		4.9/6.5	13.6/15.6	49.8/52.3	60/60	48/50	197/199	51.7/54.2	60/60	50/52	199/201			
	-3	MED	7.9/10.5	21.9/25.3	60.1/64.4	70/70	57/61	205/208	62.0/66.3	70/70	60/63	207/210			
	230	IVILD	12.0/16.0	33.4/38.5	74.5/80.9	80/90	71/76	216/222	76.4/82.8	80/90	73/79	218/224			
	80		15.8/21.0	43.8/50.5	87.5/95.9	90/100	83/90	271/284	89.4/97.8	90/100	85/92	273/286			
	Ñ		19.9/26.5	55.2/63.8	101.8/112.5	110/125	96/106	293/311	103.7/114.4	110/125	98/108	295/313			
			-	-	32.8	50	32	183	34.7	50	34	185			
			4.9/6.5	13.6/15.6	49.8/52.3	60/60	48/50	197/199	51.7/54.2	60/60	50/52	199/201			
		HIGH	7.9/10.5	21.9/25.3	60.1/64.4	70/70	57/61	205/208	62.0/66.3	70/70	60/63	207/210			
		HIGH	12.0/16.0	33.4/38.5	74.5/80.9	80/90	71/76	216/222	76.4/82.8	80/90	73/79	218/224			
			15.8/21.0	43.8/50.5	87.5/95.9	90/100	83/90	271/284	89.4/97.8	90/100	85/92	273/286			
			19.9/26.5	55.2/63.8	101.8/112.5	110/125	96/106	293/311	103.7/114.4	110/125	98/108	295/313			
<u></u>			-	-	15.5	25	15	73	16.5	25	16	74			
548J*07		STD	6.0	7.2	24.5	30	23	80	25.5	30	24	81			
148			11.5	13.8	32.8	35	31	87	33.8	40	32	88			
4,			14.0	16.8	36.5	40	34	90	37.5	40	36	91			
			23.0	27.7	50.2	60	47	128	51.2	60	48	129			
			25.5	30.7	53.9	60	50	134	54.9	60	52	135			
			-	-	16.3	25	16	92	17.3	25	17	93			
	09		6.0	7.2	25.3	30	24	99	26.3	30	25	100			
	9	MED	11.5	13.8	33.6	35	32	106	34.6	40	33	107			
	460-3-60	IVILD	14.0	16.8	37.3	40	35	109	38.3	40	36	110			
	46		23.0	27.7	51.0	60	48	147	52.0	60	49	148			
			25.5	30.7	54.7	60	51	153	55.7	60	52	154			
			-	-	16.3	25	16	92	17.3	25	17	93			
			6.0	7.2	25.3	30	24	99	26.3	30	25	100			
		HIGH	11.5	13.8	33.6	35	32	106	34.6	40	33	107			
		HIGH	14.0	16.8	37.3	40	35	109	38.3	40	36	110			
			23.0	27.7	51.0	60	48	147	52.0	60	49	148			
			25.5	30.7	54.7	60	51	153	55.7	60	52	154			
	-60	STD	-	-	12.3	15	12	59	14.2	20	14	61			
	ကို	MED	-	1	12.7	20	12	74	14.6	20	15	76			
	575	HIGH	-	1	12.7	20	12	74	14.6	20	15	76			
See	Note	s page 49.													

 $\begin{tabular}{ll} Table~46-(cont.)~MCA/MOCP~DETERMINATION~WITHOUT~C.O.~OR~UNPWRD~C.O. \end{tabular}$

	보		ELEC	C. HTR			WITH	IOUT C.O.	or UNPWR C.	0.		
_	H	IFM				WITHOL	JT P.E.			WITH F	?.E.	
L	NOM. V-PH-HZ	TYPE	Nom (kW)	FLA		1400D	DISC	SIZE		MOOD	DISC	SIZE
	NON				MCA	МОСР	FLA	LRA	MCA	МОСР	FLA	LRA
					37.7	50	40	193	41.5	50	44	197
			7.8/10.4	21.7/25.0	64.8/68.9	70/70	65/68	215/218	68.6/72.7	70/80	69/73	219/222
		STD	12.0/16.0	33.4/38.5	79.4/85.8	80/90	78/84	226/232	83.2/89.6	90/90	82/88	230/236
		OID	18.6/24.8	51.7/59.7	102.3/112.3	110/125	99/108	245/253	106.1/116.1	110/125	103/113	249/257
			24.0/32.0	66.7/77.0	121.1/133.9	125/150	116/128	260/270	124.9/137.7	125/150	121/132	264/274
			31.8/42.4	88.4/102.0	148.2/165.2	150/175	141/157	370/397	152.0/169.0	175/175	146/161	374/401
	0		_	-	40.0	50	42	230	43.8	50	47	234
	9		7.8/10.4	21.7/25.0	67.1/71.2	70/80	67/71	252/255	70.9/75.0	80/80	72/75	256/259
	ို	MED	12.0/16.0	33.4/38.5	81.7/88.1	90/90	81/86	263/269	85.5/91.9	90/100	85/91	267/273
	208/230-3-60	IVILD	18.6/24.8	51.7/59.7	104.6/114.6	110/125	102/111	282/290	108.4/118.4	110/125	106/115	286/294
	8 6		24.0/32.0	66.7/77.0	123.4/136.2	125/150	119/131	297/307	127.2/140.0	150/150	123/135	301/311
	8		31.8/42.4	88.4/102.0	150.5/167.5	175/175	144/160	407/434	154.3/171.3	175/175	148/164	411/438
			-		40.0	50	42	230	43.8	50	47	234
			7.8/10.4	21.7/25.0	67.1/71.2	70/80	67/71	252/255	70.9/75.0	80/80	72/75	256/259
			12.0/16.0	33.4/38.5	81.7/88.1	90/90	81/86	263/269	85.5/91.9	90/100	85/91	267/273
		HIGH	18.6/24.8	51.7/59.7	104.6/114.6	110/125	102/111	282/290	108.4/118.4	110/125	106/115	286/294
			24.0/32.0	66.7/77.0	123.4/136.2	125/150	119/131	297/307	127.2/140.0	150/150	123/135	301/311
			31.8/42.4	88.4/102.0	150.5/167.5	175/175	144/160	407/434	154.3/171.3	175/175	148/164	411/438
			-	-	17.9	20	19	95	19.7	25	21	97
			13.9	16.7	38.8	40	38	112	40.6	45	40	114
		OTD	16.5	19.8	42.7	45	42	115	44.5	45	44	117
80		STD	27.8	33.4	59.7	60	57	128	61.5	70	59	130
548J*08			33.0	39.7	67.6	70	65	135	69.4	70	67	137
548			41.7	50.2	80.7	90	77	195	82.5	90	79	197
			-	-	18.7	25	20	114	20.5	25	22	116
	စ္က		13.9	16.7	39.6	40	39	131	41.4	45	41	133
	460-3-60		16.5	19.8	43.5	45	43	134	45.3	50	45	136
	ï	MED	27.8	33.4	60.5	70	58	147	62.3	70	60	149
	46		33.0	39.7	68.4	70	65	154	70.2	80	68	156
			41.7	50.2	81.5	90	78	214	83.3	90	80	216
					18.7	25	20	114	20.5	25	22	116
			13.9	16.7	39.6	40	39	131	41.4	45	41	133
			16.5	19.8	43.5	45	43	134	45.3	50	45	136
		HIGH	27.8	33.4	60.5	70	58	147	62.3	70	60	149
			33.0	39.7	68.4	70	65	154	70.2	80	68	156
			41.7	50.2	81.5	90	78	214	83.3	90	80	216
			_	-	13.5	15	14	77	17.3	20	19	81
		STD	17.0	20.4	39.0	40	38	97	42.8	45	42	101
			34.0	40.9	64.6	70	61	118	68.4	70	66	122
	-60		_	-	13.9	20	15	92	17.7	20	19	96
	ဗု	MED	17.0	20.4	39.4	40	38	112	43.2	45	43	116
	575-3		34.0	40.9	65.0	70	62	133	68.8	70	66	137
	ίς.		-	-	13.9	20	15	92	17.7	20	19	96
		HIGH	17.0	20.4	39.4	40	38	112	43.2	45	43	116
			34.0	40.9	65.0	70	62	133	68.8	70	66	137
<u></u>	Notos	s nage 49	L	L	l				L			

 $\begin{tabular}{ll} Table~46-(cont.)~MCA/MOCP~DETERMINATION~WITHOUT~C.O.~OR~UNPWRD~C.O. \end{tabular}$

	¥		ELEC	C. HTR		WITHOUT C.O. or UNPWR C.O.									
⊨	품	IFM				WITHOU	IT P.E.			WITH F	P.E.				
UNIT	NOM. V-PH-HZ	TYPE	Nom (kW)	FLA			DISC	. SIZE			DISC	. SIZE			
	Š		(,		MCA	МОСР	FLA	LRA	MCA	МОСР	FLA	LRA			
			-	-	41.9	50	44	201	45.7	60	48	205			
			7.8/10.4	21.7/25.0	69.0/73.2	70/80	69/72	223/226	72.8/77.0	80/80	73/77	227/230			
		STD	12.0/16.0	33.4/38.5	83.7/90.0	90/100	82/88	234/240	87.5/93.8	90/100	86/92	238/244			
		015	18.6/24.8	51.7/59.7	106.5/116.5	110/125	103/112	253/261	110.3/120.3	125/125	107/117	257/265			
			24.0/32.0	66.7/77.0	125.3/138.2	150/150	120/132	268/278	129.1/142.0	150/150	125/137	272/282			
			31.8/42.4	88.4/102.0	152.4/169.4	175/175	145/161	378/405	156.2/173.2	175/175	150/165	382/409			
	စ္တ		-	-	44.2	60	46	238	48.0	60	51	242			
	3 – (7.8/10.4	21.7/25.0	71.3/75.5	80/80	71/75	260/263	75.1/79.3	80/80	76/79	264/267			
	Ä	MED	12.0/16.0	33.4/38.5	86.0/92.3	90/100	85/91	271/277	89.8/96.1	90/100	89/95	275/281			
	/23		18.6/24.8	51.7/59.7	108.8/118.8	110/125	106/115	290/298	112.6/122.6	125/125	110/119	294/302			
	208/230-3-60		24.0/32.0	66.7/77.0	127.6/140.5	150/150	123/135	305/315	131.4/144.3	150/150	127/139	309/319			
	``		31.8/42.4	88.4/102.0	154.7/171.7	175/175	148/164	415/442	158.5/175.5	175/200	152/168	419/446			
			-		44.2	60	46	238	48.0	60	51	242			
		HIGH	7.8/10.4	21.7/25.0	71.3/75.5	80/80	71/75	260/263	75.1/79.3	80/80	76/79	264/267			
			12.0/16.0	33.4/38.5	86.0/92.3	90/100	85/91	271/277	89.8/96.1	90/100	89/95	275/281			
			18.6/24.8	51.7/59.7	108.8/118.8	110/125	106/115	290/298	112.6/122.6	125/125	110/119	294/302			
			24.0/32.0	66.7/77.0	127.6/140.5	150/150	123/135	305/315	131.4/144.3	150/150	127/139	309/319			
			31.8/42.4	88.4/102.0	154.7/171.7	175/175	148/164	415/442	158.5/175.5	175/200	152/168	419/446			
			10.0	16.7	19.2	25 45	20	100	21.0	25	22	102			
			13.9 16.5	16.7 19.8	40.0 43.9	45 45	39 43	117 120	41.8 45.7	45 50	41 45	119 122			
		STD	27.8	33.4	60.9	70	58	133	62.7	70	60	135			
ě			33.0	39.7	68.8	70	66	140	70.6	80	68	142			
548J*09			41.7	59.7 50.2	81.9	90	78	200	83.7	90	80	202			
5			41.7	50.2	20.0	25	21	119	21.8	25	23	121			
			13.9	16.7	40.8	45	40	136	42.6	45	42	138			
	460-3-60		16.5	19.8	44.7	45	44	139	46.5	50	46	141			
	3	MED	27.8	33.4	61.7	70	59	152	63.5	70	61	154			
	091		33.0	39.7	69.6	70	67	159	71.4	80	69	161			
	1		41.7	50.2	82.7	90	79	219	84.5	90	81	221			
			-	-	20.0	25	21	119	21.8	25	23	121			
			13.9	16.7	40.8	45	40	136	42.6	45	42	138			
			16.5	19.8	44.7	45	44	139	46.5	50	46	141			
		HIGH	27.8	33.4	61.7	70	59	152	63.5	70	61	154			
			33.0	39.7	69.6	70	67	159	71.4	80	69	161			
			41.7	50.2	82.7	90	79	219	84.5	90	81	221			
			_	-	15.4	20	16	85	19.2	25	20	89			
		STD	17.0	20.4	40.9	45	40	105	44.7	45	44	109			
			34.0	40.9	66.5	70	63	126	70.3	80	68	130			
	575-3-60		_	-	15.8	20	17	100	19.6	25	21	104			
	ဗု	MED	17.0	20.4	41.3	45	40	120	45.1	50	44	124			
	75.		34.0	40.9	66.9	70	64	141	70.7	80	68	145			
	5		-	-	15.8	20	17	100	19.6	25	21	104			
		HIGH	17.0	20.4	41.3	45	40	120	45.1	50	44	124			
			34.0	40.9	66.9	70	64	141	70.7	80	68	145			
	NI-t-	s nage 40	1		1 22.3										

Table 47 - MCA/MOCP DETERMINATION WITH PWRD C.O.

	HZ		ELEC	. HTR				WITH PW	/RD C.O.			
⊨	NOM. V-PH-HZ	IFM				WITHOU	T P.E.			WITH F	P.E.	
UNIT	A. V.	TYPE	Nom (kW)	FLA	MCA	МОСР	DISC	. SIZE	MCA	MOCD	DISC	. SIZE
	Į Š		, ,		MCA	WIOCF	FLA	LRA	MCA	MOCP	FLA	LRA
	l .		_		35.5	50	36	126	37.4	50	38	128
	-60		3.3/4.4	15.9/18.3	55.4/58.4	60/60	54/57	142/144	57.3/60.3	60/70	56/59	144/146
	Ţ	DD OTD	4.9/6.5	23.5/27.1	64.9/69.4	70/80	63/67	150/153	66.8/71.3	70/80	65/69	152/155
	30	DD-STD	6.5/8.7	31.4/36.3	74.7/80.9	80/90	72/77	157/162	76.6/82.8	80/90	74/80	159/164
	208/230-1		7.9/10.5	37.9/43.8	82.9/90.2	90/100	79/86	164/170	84.8/92.1	90/100	81/88	166/172
	20		9.8/13.0	46.9/54.2	94.1/103.2	100/110	90/98	220/234	96.0/105.1	100/110	92/100	222/236
			-		29.6	40	30	102	31.5	40	32	104
			3.3/4.4	9.2/10.6	41.1/42.9	50/50	41/42	111/113	43.0/44.8	50/50	43/45	113/115
		DD-STD	4.9/6.5	13.6/15.6	46.6/49.1	50/50	46/48	116/118	48.5/51.0	50/60	48/50	118/120
		00-510	6.5/8.7	18.1/20.9	52.2/55.7	60/60	51/54	120/123	54.1/57.6	60/60	53/56	122/125
			7.9/10.5	21.9/25.3	57.0/61.2	60/70	55/59	124/127	58.9/63.1	60/70	58/62	126/129
			12.0/16.0	33.4/38.5	71.4/77.7	80/80	69/75	135/141	73.3/79.6	80/80	71/77	137/143
	စ္က		_		27.4	40	28	114	29.3	40	30	116
	208/230-3-60		3.3/4.4	9.2/10.6	38.9/40.7	45/50	38/40	123/125	40.8/42.6	50/50	40/42	125/127
		MED	4.9/6.5	13.6/15.6	44.4/46.9	50/50	43/46	128/130	46.3/48.8	50/50	46/48	130/132
		MED	6.5/8.7	18.1/20.9	50.0/53.5	60/60	49/52	132/135	51.9/55.4	60/60	51/54	134/137
			7.9/10.5	21.9/25.3	54.8/59.0	60/60	53/57	136/139	56.7/60.9	60/70	55/59	138/141
			12.0/16.0	33.4/38.5	69.2/75.5	70/80	66/72	147/153	71.1/77.4	80/80	68/74	149/155
			-	-	27.4	40	28	125	29.3	40	30	127
		HIGH	3.3/4.4	9.2/10.6	38.9/40.7	45/50	38/40	134/136	40.8/42.6	50/50	40/42	136/138
04			4.9/6.5	13.6/15.6	44.4/46.9	50/50	43/46	139/141	46.3/48.8	50/50	46/48	141/143
548J*04			6.5/8.7	18.1/20.9	50.0/53.5	60/60	49/52	143/146	51.9/55.4	60/60	51/54	145/148
548			7.9/10.5	21.9/25.3	54.8/59.0	60/60	53/57	147/150	56.7/60.9	60/70	55/59	149/152
			12.0/16.0	33.4/38.5	69.2/75.5	70/80	66/72	158/164	71.1/77.4	80/80	68/74	160/166
			-		18.2	25	19	55	19.2	25	20	56
			6.0	7.2	27.2	30	27	62	28.2	30	28	63
		DD-STD	8.8	10.6	31.5	35	31	66	32.5	35	32	67
			11.5	13.8	35.5	40	35	69	36.5	40	36	70
			14.0	16.8	39.2	40	38	72	40.2	45	39	73
	o o				12.8	15	13	56	13.8	20	14	57
	460-3-60		6.0	7.2	21.8	25	21	63	22.8	25	22	64
	၅	MED	8.8	10.6	26.1	30	25	67	27.1	30	26	68
	091		11.5	13.8	30.1	35	29	70	31.1	35	30	71
	7		14.0	16.8	33.8	35	32	73	34.8	35	33	74
			-		12.8	15	13	62	13.8	20	14	63
			6.0	7.2	21.8	25	21	69	22.8	25	22	70
		HIGH	8.8	10.6	26.1	30	25	73	27.1	30	26	74
			11.5	13.8	30.1	35	29	76	31.1	35	30	77
			14.0	16.8	33.8	35	32	79	34.8	35	33	80
	-60	DD-STD	-	-	7.1	15	7	7	9.5	15	9	9
	မ	MED	-	-	5.1	15	5	10	7.5	15	7	12
	575	HIGH	-		4.6	15	5	14	7.0	15	7	16

Table 47– (cont.) MCA/MOCP DETERMINATION WITH PWRD C.O.

	N		F1 F6	LITO	I			\4/1 T 11 D\4	(DD 0 0			
	푸		ELEC	C. HTR				WITH PW	/RD C.O.			
⊨	Ŧ	IFM				WITHOU'	T P.E.			WITH I	P.E.	
TIND	NOM. V-PH-HZ	TYPE	Nom (kW)	FLA	MCA	МОСР	DISC	SIZE	MCA	МОСР	DISC	SIZE
	Ŏ.		, ,		IVICA	WIOCP	FLA	LRA	WICA	WOCF	FLA	LRA
	9		-	-	41	60	41	133	42.9	60	43	135
	208/230-1-60		3.3/4.4	15.9/18.3	60.8/63.8	70/80	59/62	149/151	62.7/65.7	80/80	61/64	151/153
	<u> </u>	DD-STD	6.5/8.7	31.4/36.3	80.2/86.3	90/90	77/83	164/169	82.1/88.2	90/100	79/85	166/171
	33	55 315	9.8/13.0	46.9/54.2	99.6/108.7	100/110	95/103	227/241	101.5/110.6	110/125	97/105	229/243
	8		13.1/17.4	62.8/72.5	119.5/131.6	125/150	113/124	259/278	121.4/133.5	125/150	115/126	261/280
	ă		15.8/21.0	75.8/87.5	135.7/150.3	150/175	128/141	285/308	137.6/152.2	150/175	130/144	287/310
			-	-	30.8	40	32	99	32.7	45	34	101
			4.9/6.5	13.6/15.6	47.8/50.3	50/60	47/49	113/115	49.7/52.2	60/60	49/52	115/117
		DD-STD	6.5/8.7	18.1/20.9	53.5/57.0	60/60	52/56	117/120	55.4/58.9	60/60	55/58	119/122
			12.0/16.0	33.4/38.5	72.6/79.0	80/80	70/76	132/138	74.5/80.9	80/90	72/78	134/140
	_		15.8/21.0	43.8/50.5	85.6/94.0	90/100	82/90	187/200	87.5/95.9	90/100	84/92	189/202
	99-			-	28.6	40	29	111	30.5	40	31	113
	ά		4.9/6.5	13.6/15.6	45.6/48.1	50/50	45/47	125/127	47.5/50.0	50/60	47/49	127/129
	ģ	MED	6.5/8.7	18.1/20.9	51.3/54.8	60/60	50/53	129/132	53.2/56.7	60/60	52/55	131/134
	208/230-3-60		12.0/16.0	33.4/38.5	70.4/76.8	80/80	67/73	144/150	72.3/78.7	80/80	70/75	146/152
	88		15.8/21.0	43.8/50.5	83.4/91.8	90/100	79/87	199/212	85.3/93.7	90/100	82/89	201/214
	(1		-	-	28.6	40	29	122	30.5	40	31	124
			4.9/6.5	13.6/15.6	45.6/48.1	50/50	45/47	136/138	47.5/50.0	50/60	47/49	138/140
м		HIGH	6.5/8.7	18.1/20.9	51.3/54.8	60/60	50/53	140/143	53.2/56.7	60/60	52/55	142/145
<u>*</u>			12.0/16.0	33.4/38.5	70.4/76.8	80/80	67/73	155/161	72.3/78.7	80/80	70/75	157/163
548J*05			15.8/21.0	43.8/50.5	83.4/91.8	90/100	79/87	210/223	85.3/93.7	90/100	82/89	212/225
25			-	-	18.7	25	19	53	19.7	25	20	54
			6.0	7.2	27.7	30	28	60	28.7	30	29	61
		DD-STD	11.5	13.8	36.0	40	35	67	37.0	40	36	68
			14.0	16.8	39.7	40	39	70	40.7	45	40	71
			23.0	27.7	53.3	60	51	108	54.3	60	52	109
					13.4	15	14	54	14.4	20	15	55
	460-3-60		6.0	7.2	22.4	25	22	61	23.4	25	23	62
	ကု	MED	11.5	13.8	30.6	35	29	68	31.6	35	31	69
	<u>,</u>		14.0	16.8	34.4	35	33	71	35.4	40	34	72
	4		23.0	27.7	48.0	50	45	109	49.0	50	47	110
					13.4	15	14	60	14.4	20	15	61
			6.0	7.2	22.4	25	22	67	23.4	25	23	68
		HIGH	11.5	13.8	30.6	35	29	74	31.6	35	31	75
			14.0	16.8	34.4	35	33	77	35.4	40	34	78
			23.0	27.7	48.0	50	45	115	49.0	50	47	116
	09-	DD-STD	-	-	12.3	15	13	45	14.2	20	15	47
	မ	MED	-	-	10.7	15	11	48	12.6	15	13	50
	575	HIGH	_	-	10.3	15	10	52	12.2	15	13	54

Table 47 – (cont.) MCA/MOCP DETERMINATION WITH PWRD C.O.

	¥		ELEC	. HTR				WITH PV	/RD C.O.			
L	PH-	IFM				WITHOU	T P.E.			WITH F	P.E.	
UNIT	NOM. V-PH-HZ	TYPE	Nom (kW)	FLA		MOOD	DISC	. SIZE		моор	DISC	. SIZE
	NON		,		MCA	МОСР	FLA	LRA	MCA	MOCP	FLA	LRA
	O,		-	-	46.5	60	46	150	48.4	60	48	152
	-60		4.9/6.5	23.5/27.1	75.8/80.3	80/90	73/77	174/177	77.7/82.2	80/100	75/79	176/179
	Ţ	DD-STD	6.5/8.7	31.4/36.3	85.7/91.8	100/100	82/88	181/186	87.6/93.7	100/100	84/90	183/188
	330	00-310	9.8/13.0	46.9/54.2	105.1/114.2	110/125	100/108	244/258	107.0/116.1	110/125	102/110	246/260
	208/230-1		13.1/17.4	62.8/72.5	125.0/137.1	125/150	118/129	276/295	126.9/139.0	150/150	120/131	278/297
	8		15.8/21.0	75.8/87.5	141.2/155.8	150/175	133/147	302/325	143.1/157.7	150/175	135/149	304/327
			-	-	33.2	45	34	126	35.1	50	36	128
			4.9/6.5	13.6/15.6	50.2/52.7	60/60	49/52	140/142	52.1/54.6	60/60	52/54	142/144
		DD-STD	7.9/10.5	21.9/25.3	60.6/64.8	70/70	59/63	148/151	62.5/66.7	70/70	61/65	150/153
		טופ-טט	12.0/16.0	33.4/38.5	75.0/81.3	80/90	72/78	159/165	76.9/83.2	80/90	74/80	161/167
			15.8/21.0	43.8/50.5	88.0/96.3	90/100	84/92	214/227	89.9/98.2	90/100	86/94	216/229
			19.9/26.5	55.2/63.8	102.2/113.0	110/125	97/107	236/254	104.1/114.9	110/125	99/109	238/256
	9			-	31	45	31	149	32.9	45	33	151
	Ĭ		4.9/6.5	13.6/15.6	48.0/50.5	60/60	47/49	163/165	49.9/52.4	60/60	49/51	165/167
	Ï	MED	7.9/10.5	21.9/25.3	58.4/62.6	60/70	56/60	171/174	60.3/64.5	70/70	59/62	173/176
	330	MED	12.0/16.0	33.4/38.5	72.8/79.1	80/80	70/75	182/188	74.7/81.0	80/90	72/78	184/190
	208/230-3-60		15.8/21.0	43.8/50.5	85.8/94.1	90/100	82/89	237/250	87.7/96.0	90/100	84/91	239/252
	8		19.9/26.5	55.2/63.8	100.0/110.8	100/125	95/105	259/277	101.9/112.7	110/125	97/107	261/279
				-	33.3	45	34	175	35.2	50	36	177
			4.9/6.5	13.6/15.6	50.3/52.8	60/60	49/52	189/191	52.2/54.7	60/60	52/54	191/193
		HIGH	7.9/10.5	21.9/25.3	60.7/64.9	70/70	59/63	197/200	62.6/66.8	70/70	61/65	199/202
ဖွ		пісн	12.0/16.0	33.4/38.5	75.1/81.4	80/90	72/78	208/214	77.0/83.3	80/90	74/80	210/216
<u>×</u>			15.8/21.0	43.8/50.5	88.1/96.4	90/100	84/92	263/276	90.0/98.3	90/100	86/94	265/278
548J*06			19.9/26.5	55.2/63.8	102.3/113.1	110/125	97/107	285/303	104.2/115.0	110/125	99/109	287/305
Ď.				-	20.2	25	21	64	21.2	25	22	65
			6.0	7.2	29.2	30	29	71	30.2	35	30	72
		DD-STD	11.5	13.8	37.5	40	37	78	38.5	40	38	79
		טופ-טט	14.0	16.8	41.2	45	40	81	42.2	45	42	82
			23.0	27.7	54.9	60	53	119	55.9	60	54	120
			25.5	30.7	58.6	60	56	125	59.6	60	58	126
			-		15.2	20	15	71	16.2	20	16	72
	90		6.0	7.2	24.2	30	24	78	25.2	30	25	79
	460-3-60	MED	11.5	13.8	32.5	35	31	85	33.5	35	32	86
		MED	14.0	16.8	36.2	40	35	88	37.2	40	36	89
	46		23.0	27.7	49.9	50	47	126	50.9	60	48	127
			25.5	30.7	53.6	60	51	132	54.6	60	52	133
					16	20	16	84	17.0	20	17	85
			6.0	7.2	25.0	30	24	91	26.0	30	26	92
		HIGH	11.5	13.8	33.3	35	32	98	34.3	35	33	99
		ПМП	14.0	16.8	37.0	40	36	101	38.0	40	37	102
			23.0	27.7	50.7	60	48	139	51.7	60	49	140
			25.5	30.7	54.4	60	52	145	55.4	60	53	146
	09-	DD-STD	-	+	13.6	15	14	47	15.5	20	16	49
	မ	MED	-	-	11.6	15	12	54	13.5	15	14	56
	575	HIGH		ı	12.4	15	13	65	14.3	20	15	67

 $\begin{tabular}{ll} Table~47-(cont.)~MCA/MOCP~DETERMINATION~WITH~PWRD~C.O. \end{tabular}$

	HZ		ELECTRI	C HEATER				WITH PV	VRD C.O.			
⊨	H-H	IFM				WITHOU	T P.E.			WITH F	P.E.	
UNIT	NOM. V-PH-HZ	TYPE	Nom (kW)	FLA	MCA	МОСР	DISC	SIZE	MCA	МОСР	DISC	. SIZE
	NON I				IVICA	WIOCP	FLA	LRA	IVICA	WIOCF	FLA	LRA
			-	-	35.3	50	35	151	37.2	50	37	153
			4.9/6.5	13.6/15.6	52.3/54.8	60/60	51/53	165/167	54.2/56.7	60/60	53/55	167/169
		STD	7.9/10.5	21.9/25.3	62.6/66.9	70/70	60/64	173/176	64.5/68.8	70/80	62/66	175/178
		טוט	12.0/16.0	33.4/38.5	77.0/83.4	80/90	73/79	184/190	78.9/85.3	80/90	76/82	186/192
			15.8/21.0	43.8/50.5	90.0/98.4	90/100	85/93	239/252	91.9/100.3	100/110	88/95	241/254
			19.9/26.5	55.2/63.8	104.3/115.0	110/125	99/108	261/279	106.2/116.9	110/125	101/111	263/281
	o		-	-	37.6	50	38	188	39.5	50	40	190
	208/230-3-60		4.9/6.5	13.6/15.6	54.6/57.1	60/60	53/56	202/204	56.5/59.0	60/60	56/58	204/206
	ျိ	MED	7.9/10.5	21.9/25.3	64.9/69.2	70/80	63/67	210/213	66.8/71.1	80/80	65/69	212/215
	23(IVILD	12.0/16.0	33.4/38.5	79.3/85.7	80/90	76/82	221/227	81.2/87.6	90/90	78/84	223/229
	/80		15.8/21.0	43.8/50.5	92.3/100.7	100/110	88/96	276/289	94.2/102.6	100/110	90/98	278/291
	2		19.9/26.5	55.2/63.8	106.6/117.3	110/125	101/111	298/316	108.5/119.2	110/125	103/113	300/318
			-	-	37.6	50	38	188	39.5	50		190
			4.9/6.5	13.6/15.6	54.6/57.1	60/60	53/56	202/204	56.5/59.0	60/60	56/58	204/206
		HIGH	7.9/10.5	21.9/25.3	64.9/69.2	70/80	63/67	210/213	66.8/71.1	80/80	65/69	212/215
		Tildi	12.0/16.0	33.4/38.5	79.3/85.7	80/90	76/82	221/227	81.2/87.6	90/90	50 40 1/60 56/58 2 1/80 65/69 2 1/90 78/84 2 1/110 90/98 2 1/125 103/113 3 25 19	223/229
		HIGH	15.8/21.0	43.8/50.5	92.3/100.7	100/110	88/96	276/289	94.2/102.6	100/110	· '	278/291
			19.9/26.5	55.2/63.8	106.6/117.3	110/125	101/111	298/316	108.5/119.2	110/125		300/318
04			-	-	17.7	25	18	75	18.7	25		76
548J*07		STD	6.0	7.2	26.7	30	26	82	27.7	30		83
548			11.5	13.8	35.0	40	33	89	36.0	40	35	90
			14.0	16.8	38.7	40	37	92	39.7	45	38	93
			23.0	27.7	52.4	60	49	130	53.4	60	51	131
			25.5	30.7	56.1	60	53	136	57.1	60	54	137
			_	-	18.5	25	19	94	19.5	25	20	95
	9-		6.0	7.2	27.5	30	27	101	28.5	30	28	102
	460-3-60	MED	11.5	13.8	35.8	40	34	108	36.8	40	36	109
	-09		14.0	16.8	39.5	45	38	111	40.5	45	39	112
	4		23.0	27.7	53.2	60	50	149	54.2	60	52	150
			25.5	30.7	56.9	60	54	155	57.9	60	55	156
			-	7.0	18.5	25	19	94	19.5	25	20	95
			6.0	7.2	27.5	30	27	101	28.5	30	28	102
		HIGH	11.5	13.8	35.8	40	34	108	36.8	40	36	109
			14.0	16.8	39.5	45	38	111	40.5	45	39	112
			23.0	27.7	53.2	60	50	149	54.2	60	52 55	150
		075	25.5	30.7	56.9	60	54	155	57.9	60	55	156
	9	STD	-	-	14.0	20	14	61	15.9	20	16	63
	5-3	MED		-	14.4	20	14	76	16.3	20	17	78
<u></u>	57	HIGH	-	-	14.4	20	14	76	16.3	20	17	78

Table 47 – (cont.) MCA/MOCP DETERMINATION WITH PWRD C.O.

	Z		ELECTRI	C HEATER	WITH PWRD C.O.									
_	-H	1584				WITHOU	T P.E.			WITH F	?E.			
LIND	NOM. V-PH-HZ	IFM TYPE	Nom (kW)	FLA	MOA	МОСР	T	. SIZE	MOA		ı	. SIZE		
	NON				MCA	MOCP	FLA	LRA	MCA	МОСР	FLA	LRA		
			-	-	42.5	50	45	198	46.3	50	49	202		
			7.8/10.4	21.7/25.0	69.6/73.7	70/80	70/74	220/223	73.4/77.5	80/80	74/78	224/227		
		STD	12.0/16.0	33.4/38.5	84.2/90.6	90/100	83/89	231/237	88.0/94.4	90/100	88/94	235/241		
		310	18.6/24.8	51.7/59.7	107.1/117.1	110/125	105/114	250/258	110.9/120.9	125/125	109/118	254/262		
			24.0/32.0	66.7/77.0	125.9/138.7	150/150	122/134	265/275	129.7/142.5	150/150	126/138	269/279		
			31.8/42.4	88.4/102.0	153.0/170.0	175/175	147/162	375/402	156.8/173.8	175/175	151/167	379/406		
	0		-	-	44.8	50	48	235	48.6	60	52	239		
	9-		7.8/10.4	21.7/25.0	71.9/76.0	80/80	73/76	257/260	75.7/79.8	80/80	77/81	261/264		
	<u>۱</u>	MED	12.0/16.0	33.4/38.5	86.5/92.9	90/100	86/92	268/274	90.3/96.7	100/100	91/96	272/278		
	230	IVIED	18.6/24.8	51.7/59.7	109.4/119.4	110/125	107/116	287/295	113.2/123.2	125/125	112/121	291/299		
	208/230-3-60		24.0/32.0	66.7/77.0	128.2/141.0	150/150	124/136	302/312	132.0/144.8	150/150	129/141	306/316		
	Ñ		31.8/42.4	88.4/102.0	155.3/172.3	175/175	149/165	412/439	159.1/176.1	175/200	154/169	416/443		
			-	-	44.8	50	48	235	48.6	60	52	239		
			7.8/10.4	21.7/25.0	71.9/76.0	80/80	73/76	257/260	75.7/79.8	80/80	77/81	261/264		
		111011	12.0/16.0	33.4/38.5	86.5/92.9	90/100	86/92	268/274	90.3/96.7	100/100	91/96	272/278		
		HIGH	18.6/24.8	51.7/59.7	109.4/119.4	110/125	107/116	287/295	113.2/123.2	125/125	112/121	291/299		
			24.0/32.0	66.7/77.0	128.2/141.0	150/150	124/136	302/312	132.0/144.8	150/150	129/141	306/316		
			31.8/42.4	88.4/102.0	155.3/172.3	175/175	149/165	412/439	159.1/176.1	175/200	154/169	416/443		
			_	_	20.1	25	21	97	21.9	25	23	99		
			13.9	16.7	41.0	45	41	114	42.8	45	43	116		
		OTD	16.5	19.8	44.9	45	44	117	46.7	50	46	119		
80		STD	27.8	33.4	61.9	70	60	130	63.7	70	62	132		
548J*08			33.0	39.7	69.8	70	67	137	71.6	80	69	139		
548			41.7	50.2	82.9	90	79	197	84.7	90	81	199		
			-	-	20.9	25	22	116	22.7	25	24	118		
	စ္က		13.9	16.7	41.8	45	42	133	43.6	45	44	135		
	460-3-60	MED	16.5	19.8	45.7	50	45	136	47.5	50	47	138		
	Ü	MED	27.8	33.4	62.7	70	61	149	64.5	70	63	151		
	46		33.0	39.7	70.6	80	68	156	72.4	80	70	158		
			41.7	50.2	83.7	90	80	216	85.5	90	82	218		
			-	-	20.9	25	22	116	22.7	25	24	118		
			13.9	16.7	41.8	45	42	133	43.6	45	44	135		
			16.5	19.8	45.7	50	45	136	47.5	50	47	138		
		HIGH	27.8	33.4	62.7	70	61	149	64.5	70	63	151		
			33.0	39.7	70.6	80	68	156	72.4	80	70	158		
			41.7	50.2	83.7	90	80	216	85.5	90	82	218		
			-	-	15.2	20	16	79	19.0	25	21	83		
		STD	17.0	20.4	40.7	45	40	99	44.5	45	44	103		
			34.0	40.9	66.3	70	63	120	70.1	80	68	124		
	-60		-	-	15.6	20	17	94	19.4	25	21	98		
	ုဗု	MED	17.0	20.4	41.1	45	40	114	44.9	45	45	118		
	575-3		34.0	40.9	66.7	70	64	135	70.5	80	68	139		
	ß		_	-	15.6	20	17	94	19.4	25	21	98		
		HIGH	17.0	20.4	41.1	45	40	114	44.9	45	45	118		
			34.0	40.9	66.7	70	64	135	70.5	80	68	139		
<u> </u>	NI.I.	s nage 49	1	1										

 $\begin{tabular}{ll} Table~47-(cont.)~MCA/MOCP~DETERMINATION~WITH~PWRD~C.O. \end{tabular}$

	·HZ		ELECTRI	C HEATER				WITH PV	VRD C.O.			
⊨	PH-	IFM				WITHOU	T P.E.			WITH F	?E.	
LIND	NOM. V-PH-HZ	TYPE	Nom (kW)	FLA		1400D	DISC	SIZE		моор	DISC	SIZE
	NON				MCA	МОСР	FLA	LRA	MCA	МОСР	FLA	LRA
			-	-	46.7	60	49	206	50.5	60	53	210
			7.8/10.4	21.7/25.0	73.8/78.0	80/80	74/78	228/231	77.6/81.8	80/90	78/82	232/235
		STD	12.0/16.0	33.4/38.5	88.5/94.8	90/100	88/93	239/245	92.3/98.6	100/100	92/98	243/249
		015	18.6/24.8	51.7/59.7	111.3/121.3	125/125	109/118	258/266	115.1/125.1	125/150	113/122	262/270
			24.0/32.0	66.7/77.0	130.1/143.0	150/150	126/138	273/283	133.9/146.8	150/150	130/142	277/287
			31.8/42.4	88.4/102.0	157.2/174.2	175/175	151/166	383/410	161.0/178.0	175/200	155/171	387/414
	90		_		49.0	60	52	243	52.8	60	56	247
	208/230-3-60		7.8/10.4	21.7/25.0	76.1/80.3	80/90	77/81	265/268	79.9/84.1	80/90	81/85	269/272
	0-	MED	12.0/16.0	33.4/38.5	90.8/97.1	100/100	90/96	276/282	94.6/100.9	100/110	95/100	280/286
	/23		18.6/24.8	51.7/59.7	113.6/123.6	125/125	111/120	295/303	117.4/127.4	125/150	116/125	299/307
	508		24.0/32.0	66.7/77.0	132.4/145.3	150/150	128/140	310/320	136.2/149.1	150/150	133/145	314/324
	,,		31.8/42.4	88.4/102.0	159.5/176.5	175/200	153/169	420/447	163.3/180.3	175/200	158/173	424/451
					49.0	60	52	243	52.8	60	56	247
		HIGH	7.8/10.4	21.7/25.0	76.1/80.3	80/90	77/81	265/268	79.9/84.1	80/90	81/85	269/272
			12.0/16.0	33.4/38.5	90.8/97.1	100/100	90/96	276/282	94.6/100.9	100/110	95/100	280/286
			18.6/24.8	51.7/59.7	113.6/123.6	125/125	111/120	295/303	117.4/127.4	125/150	116/125	299/307
			24.0/32.0	66.7/77.0	132.4/145.3	150/150	128/140	310/320	136.2/149.1	150/150	133/145	314/324
			31.8/42.4	88.4/102.0	159.5/176.5	175/200	153/169	420/447	163.3/180.3	175/200	158/173	424/451
			-		21.4	25	23	102	23.2	30	25	104
			13.9	16.7	42.2	45	42	119	44.0	45	44	121
1_		STD	16.5	19.8	46.1	50	45	122	47.9	50	47	124
\$0*			27.8	33.4	63.1	70	61	135	64.9	70	63	137
548J*09			33.0	39.7	71.0	80	68	142	72.8	80	70	144
25			41.7	50.2	84.1	90	80	202	85.9	90	82	204
			-	-	22.2	25	23	121	24.0	30	26	123
	460-3-60		13.9	16.7	43.0	45	43	138	44.8	45	45	140
	-3-	MED	16.5	19.8	46.9	50	46	141	48.7	50	48	143
	-09		27.8	33.4	63.9	70	62	154	65.7	70	64	156
	4		33.0	39.7	71.8	80	69	161	73.6	80	71	163
			41.7	50.2	84.9	90	81	221	86.7	90	83	223
			-	-	22.2	25	23	121	24.0	30	26	123
			13.9	16.7	43.0	45	43	138	44.8	45	45	140
		HIGH	16.5	19.8	46.9	50	46	141	48.7	50	48	143
			27.8	33.4 39.7	63.9	70	62	154	65.7	70	64	156
			33.0		71.8	80	69	161	73.6	80	71	163
			41.7	50.2	84.9	90	81	221	86.7	90	83	223
Ì		CTD	17.0	- 20.4	17.1	20	18	87	20.9	25 50	22	91
		STD	17.0	20.4	42.6	45	42	107	46.4	50	46	111
	90		34.0	40.9	68.2	70	65	128	72.0	80	69	132
Ì	575-3-60	MED	17.0	- 20.4	17.5	20	19	102	21.3	25	23	106
Ì	5-	MED	17.0	20.4	43.0 68.6	45 70	42 66	122	46.8 72.4	50	46 70	126
Ì	57.		34.0	40.9	68.6 17.5	70 20	66 19	143 102	72.4 21.3	80 25	70 23	147 106
Ì		MICH	17.0	- 20.4	43.0	45	42		21.3 46.8	50	23 46	126
		HIGH	17.0 34.0	20.4 40.9	68.6	70	66	122 143	46.8 72.4	80	70	147
See	Note	 s page 49.	J-4.U	₩.8	00.0	70	00	140	14.4	00	70	147

TYPICAL WIRING DIAGRAMS

Fig. 17 - 1-Stage Cooling Typical Power Diagram

Fig. 18 - 2-Stage Cooling Typical Power Diagram

C09065

Fig. 19 - Multi-Protocol Option Diagram

Fig. 20 - 1-Stage Typical Wiring Diagram

Fig. 21 - 2-Stage Typical Wiring Diagram

SEQUENCE OF OPERATION

Cooling, unit without economizer

When thermostat calls for cooling, terminals G and Y1 are energized. The indoor-fan contactor (IFC), reversing valve solenoid (RVS) and compressor contactor are energized and indoor-fan motor, compressor, and outdoor fan starts. The outdoor fan motor runs continuously while unit is cooling.

Heating, unit without economizer

Upon a request for heating from the space thermostat, terminal W1 will be energized with 24V. The IFC, outdoor-fan contactor (OFC), C1, and C2 will be energized. The indoor fan, outdoor fans, and compressor no. 1, and compressor no. 2 are energized and reversing valves are deenergized and switch position.

If the space temperature continues to fall while W1 is energized, W2 will be energized with 24V, and the heater contactor(s) (HC) will be energized, which will energize the electric heater(s).

When the space thermostat is satisfied, W2 will be deenergized first, and the electric heater(s) will be deenergized.

Upon a further rise in space temperature, W1 will be deenergized.

Cooling, unit with EconoMi\$er IV

When free cooling is not available, the compressors will be controlled by the zone thermostat. When free cooling is available, the outdoor-air damper is modulated by the EconoMi\$er IV control to provide a 50 to 55°F (10° to 13°C) mixed-air temperature into the zone. As the mixed-air temperature fluctuates above 55 or below 50°F (13° to 10°C), the dampers will be modulated (open or close) to bring the mixed-air temperature back within control.

If mechanical cooling is utilized with free cooling, the outdoor-air damper will maintain its current position at the time the compressor is started. If the increase in cooling capacity causes the mixed-air temperature to drop below 45°F (7°C), then the outdoor-air damper position will be decreased to the minimum position. If the mixed-air temperature continues to fall, the outdoor-air damper will close. Control returns to normal once the mixed-air temperature rises above 48°F (9°C).

If optional power exhaust is installed, as the outdoor-air damper opens and closes, the power exhaust fans will be energized and deenergized.

If field-installed accessory CO₂ sensors are connected to the EconoMi\$er IV control, a demand controlled ventilation strategy will begin to operate. As the CO₂ level in the zone increases above the CO₂ setpoint, the minimum position of the damper will be increased proportionally. As the CO₂ level decreases because of the increase in fresh air, the outdoor-air damper will be proportionally closed.

For EconoMi\$er IV operation, there must be a thermostat call for the fan (G). If the unit is occupied and the fan is on, the damper will operate at minimum position. Otherwise, the damper will be closed.

When the EconoMi\$er IV control is in the occupied mode and a call for cooling exists (Y1 on the thermostat), the control will first check for indoor fan operation. If the fan is not on, then cooling will not be activated. If the fan is on, then the control will open the EconoMi\$er IV damper to the minimum position.

On the initial power to the EconoMi\$er IV control, it will take the damper up to $2^1/_2$ minutes before it begins to position itself. Any change in damper position will take up to 30 seconds to initiate. Damper movement from full closed to full open (or vice versa) will take between $1^1/_2$ and $2^1/_2$ minutes.

If free cooling can be used as determined from the appropriate changeover command (switch, dry bulb, enthalpy curve, differential dry bulb, or differential enthalpy), then the control will modulate the dampers open to maintain the mixed-air temperature setpoint at 50° to 55°F (10° to 13°C).

If there is a further demand for cooling (cooling second stage — Y2 is energized), then the control will bring on compressor stage 1 to maintain the mixed-air temperature setpoint. The EconoMi\$er IV damper will be open at maximum position. EconoMi\$er IV operation is limited to a single compressor.

Heating, unit with EconoMi\$er

When the room temperature calls for heat through terminal W1, the indoor (evaporator) fan contactor (IFC) and heater contactor no. 1 (HC1) are energized and the reversing valve(s) deenergize and switches position. On units equipped for 2 stages of heat, when additional heat is needed, heater contactor no. 2 is energized through W2. The economizer damper moves to the minimum position. When the thermostat is satisfied, the damper moves to the fully closed position.

Defrost

When the temperature of the outdoor coil drops below 28°F (-2°C) as sensed by the defrost thermostat (DFT2) and the defrost timer is at the end of a timed period (adjustable at 30, 60, 90 or 120 minutes), reversing valve solenoids (RVS1 and RVS2) are energized and the OFC is deenergized. This switches the position of the reversing valves and shuts off the outdoor fan. The electric heaters (if installed) will be energized.

The unit continues to defrost until the coil temperature as measured by DFT2 reaches 65°F (18°C), or the duration of defrost cycle completes a 10-minute period.

During the Defrost mode, if circuit 1 defrosts first, RVS1 will oscillate between Heating and Cooling modes until the Defrost mode is complete.

At the end of the defrost cycle, the electric heaters (if installed) will be deenergized; the reversing valves switch and the outdoor-fan motor will be energized. The unit will now operate in the Heating mode.

If the space thermostat is satisfied during a defrost cycle, the unit will continue in the Defrost mode until the time or temperature constraints are satisfied.

Automatic changeover

When the system selection switch is set at AUTO. position, unit automatically changes from heating operation to cooling operation when the temperature of the conditioned space rises to the cooling level setting. When the temperature of the conditioned space falls to the heating level setting, unit automatically changes from cooling to heating operation (with a 3°F deadband in between).

Continuous air circulation

Turn unit power on. Set system control at OFF position. Set fan switch at ON position. The indoor-fan contactor is energized through the thermostat switch and the indoor fan runs continuously.

Cycle-LOC[™] protection

If unit operation is interrupted by an open high-pressure switch, low-pressure switch, indoor coil freeze stat, or by compressor internal line-break device (overcurrent or overtemperature), and compressor is calling for either cooling or heating, Cycle-LOC protection device simultaneously locks out unit and lights a warning light on the thermostat. Restart the unit by manually turning thermostat to OFF and then to ON position. If any of the protective devices opens again, the unit continues to lock out until corrective action is taken.

NOTE: If the unit fails to operate due to compressor over-current condition, restart by manually resetting circuit breakers at the unit. Restart cannot be accomplished at the room thermostat.

Emergency heat

If compressor is inoperative due to a tripped safety device (high or low pressure, indoor coil freeze stat, overcurrent, or overtemperature), the Cycle-LOC device locks out the compressor and lights a warning light on the room thermostat. When the switch is on (thermostat is set to the EM HT position), compressor circuit and outdoor thermostats are bypassed, and the second stage of thermostat energizes the indoor blower and the electric resistance heaters.

GUIDE SPECIFICATIONS - 548J*04-09

Note about this specification:

Bryant created this specification in "Masterformat" as published by the Construction Specification Institute. Please feel free to copy this specification directly into your building specifications.

Rooftop Packaged Heat Pump

HVAC Guide Specifications

Size Range: 3 to 8.5 Nominal Tons

This product has been designed and manufactured to meet Energy Star® criteria for energy efficiency. However, proper refrigerant charge and proper air flow are critical to achieve rated capacity and efficiency. Installation of this product should follow all manufacturer's refrigerant charging and air flow manufacturer's refrigerant charging and air flow manufacture to confirm proper charge and air flow may reduce energy efficiency and shorten equipment life.

Section Description

23 06 80 Schedules for Decentralized HVAC Equipment

23 06 80.13 Decentralized Unitary HVAC Equipment Schedule

23 06 80.13.A. Rooftop unit schedule

1. Schedule is per the project specification requirements.

23 07 16 HVAC Equipment Insulation

23 07 16.13 Decentralized, Rooftop Units:

23 07 16.13.A. Evaporator fan compartment:

- 1. Interior cabinet surfaces shall be insulated with a minimum 1/2-in. thick, minimum 1 1/2 lb density, flexible fiberglass insulation bonded with a phenolic binder, neoprene coated on the air side.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.

23 07 16.13.B. Electric heat compartment:

- 1. Aluminum foil-faced fiberglass insulation shall be used.
- 2. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.

23 09 13 Instrumentation and Control Devices for HVAC

23 09 13.23 Sensors and Transmitters

23 09 13.23.A. Thermostats

1. Thermostat must

a. have capability to energize 2 different stages of cooling, and 2 different stages of heating.

b. include capability for occupancy scheduling.

23 09 23 Direct-digital Control system for HVAC

23 09 23.13 Decentralized, Rooftop Units:

23 09 23.13.A. N/A

23 09 23.13.B. Multi-protocol, direct digital controller:

- 1. Shall be ASHRAE 62-2001 compliant.
- 2. Shall accept 18-30VAC, 50-60Hz, and consumer 15VA or less power.
- 3. Shall have an operating temperature range from -40°F (-40°C) to 130°F (54°C), 10% 90% RH (non-condensing).
- 4. Shall include built-in protocol for BACNET (MS/TP and PTP modes), Modbus (RTU and ASCII), Johnson N2 and LonWorks. LonWorks Echelon processor required for all Lon applications shall be contained in separate communication board.
- 5. Shall allow access of up to 62 network variables (SNVT). Shall be compatible with all open controllers
- 6. Baud rate Controller shall be selectable using a dipswitch.

- 7. Shall have an LED display independently showing the status of serial communication, running, errors, power, all digital outputs, and all analog inputs.
- 8. Shall accept the following inputs: space temperature, setpoint adjustment, outdoor air temperature, indoor air quality, outdoor air quality, compressor lock-out, fire shutdown, enthalpy switch, and fan status/filter status/humidity/remote occupancy.
- 9. Shall provide the following outputs: economizer, fan, cooling stage 1, cooling stage 2, heat stage 1, heat stage 2, heat stage 3/ exhaust/ reversing valve.
- 10. Shall have built-in surge protection circuitry through solid state polyswitches. Polyswitches shall be used on incoming power and network connections. Polyswitches will return to normal when the "trip" condition clears.
- 11. Shall have a battery back-up capable of a minimum of 10,000 hours of data and time clock retention during power outages.
- 12. Shall have built-in support for Bryant technician tool.
- 13. Shall include an EIA-485 protocol communication port, an access port for connection of either a computer or a Bryant technician tool, an EIA-485 port for network communication to intelligent space sensors and displays, and a port to connect an optional LonWorks communications card.
- 14. Software upgrades will be accomplished by either local or remote download. No software upgrades through chip replacements are allowed.

23 09 33 Electric and Electronic Control System for HVAC

23 09 33.13 Decentralized, Rooftop Units:

23 09 33.13.A. General:

- 1. Shall be complete with self-contained low-voltage control circuit protected by a resettable circuit breaker on the 24-v transformer side. Transformer shall have 75VA capability.
- 2. Shall utilize color-coded wiring.
- 3. Shall include a central control terminal board to conveniently and safely provide connection points for vital control functions such as: smoke detectors, phase monitor, economizer, thermostat, DDC control options, loss of charge, freeze switch, high pressure switches.
- 4. Unit shall include a minimum of one 8-pin screw terminal connection board for connection of control wiring.
- 5. Shall include integrated defrost system to prevent excessive frost accumulation during heating duty, and shall be controlled as follows:
 - a. Defrost shall be initiated on the basis of time and coil temperature.
 - b. A 30,60,90,120 minute timer shall activate the defrost cycle only if the coil temperature is low enough to indicate a heavy frost condition.
 - c. Defrost cycle shall terminate when defrost thermostat are satisfied and shall have a positive termination time of 10 minutes.
- 6. Defrost system shall also include:
 - a. Defrost Cycle Indicator LED.
 - b. Dip switch selectable defrost time between 30,60,90 and 120 minutes. Factory set at 30 minutes.
 - c. Molded plug connection to insure proper connection.

23 09 33.23.B. Safeties:

- 1. Compressor over-temperature, over current.
- 2. Loss of charge switch.
 - a. Units with 2 compressors shall have different sized connectors for the circuit 1 and circuit 2 low and high pressure switches. They shall physically prevent the cross-wiring of the safety switches between circuits 1 and 2.
 - b. Loss of charge switch shall use different color wire than the high pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
- 3. High-pressure switch.
 - a. Units with 2 compressors shall have different sized connectors for the circuit 1 and circuit 2 low and high pressure switches. They shall physically prevent the cross-wiring of the safety switches between circuits 1 and 2.
 - b. High pressure switch shall use different color wire than the low pressure switch. The purpose is to assist the installer and service technician to correctly wire and or troubleshoot the rooftop unit.
- 4. Freeze protection thermostat, evaporator coil.
- 5. Automatic reset, motor thermal overload protector.

23 09 93 Sequence of Operations for HVAC Controls

- 23 09 93.13 Decentralized, Rooftop Units:
- 23 09 93.13 INSERT SEQUENCE OF OPERATION

23 40 13 Panel Air Filters

- 23 40 13.13 Decentralized, Rooftop Units:
- 23 40 13.13.A. Standard filter section
 - 1. Shall consist of factory-installed, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
 - 2. Unit shall use only one filter size. Multiple sizes are not acceptable.
 - 3. Filters shall be accessible through an access panel with "no-tool" removal as described in the unit cabinet section of this specification (23 81 19.13.H).

23 81 19 Self-Contained Air Conditioners

- 23 81 19.13 Small-Capacity Self-Contained Air Conditioners (548J*04-09)
- 23 81 19.13.A. General
 - 1. Outdoor, rooftop mounted, electrically controlled, heating and cooling unit utilizing a(n) hermetic scroll compressor(s) for cooling duty and heat pump for heating duty.
 - 2. Factory assembled, single-piece heating and cooling rooftop unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, and special features required prior to field start-up.
 - 3. Unit shall use environmentally safe, Puron refrigerant.
 - 4. Unit shall be installed in accordance with the manufacturer's instructions.
 - 5. Unit must be selected and installed in compliance with local, state, and federal codes.

23 81 19.13.B. Quality Assurance

- 1. Unit meets ASHRAE 90.1-2004 minimum efficiency requirements.
- 2. 3-phase units are Energy Star qualified.
- 3. Unit shall be rated in accordance with AHRI Standards 210/240 and 340/360.
- 4. Unit shall be designed to conform to ASHRAE 15, 2001.
- 5. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- 6. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- 7. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- 8. Unit casing shall be capable of withstanding Federal Test Method Standard No. 141 (Method 6061) 5000-hour salt spray.
- 9. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered by ISO 9001:2000.
- 10. Roof curb shall be designed to conform to NRCA Standards.
- 11. Unit shall be subjected to a completely automated run test on the assembly line. The data for each unit will be stored at the factory, and must be available upon request.
- 12. Unit shall be designed in accordance with UL Standard 1995, including tested to withstand rain.
- 13. Unit shall be constructed to prevent intrusion of snow and tested to prevent snow intrusion into the control box up to 40 mph.
- 14. Unit shake tested to assurance level 1, ASTM D4169 to ensure shipping reliability.
- 23 81 19.13.C. Delivery, Storage, and Handling
 - 1. Unit shall be stored and handled per manufacturer's recommendations.
 - 2. Lifted by crane requires either shipping top panel or spreader bars.
 - 3. Unit shall only be stored or positioned in the upright position.
- 23 81 19.13.D. Project Conditions
 - 1. As specified in the contract.
- 23 81 19.13.E. Project Conditions
 - 1. As specified in the contract.
- 23 81 19.13.F. Operating Characteristics
 - 1. Unit shall be capable of starting and running at 115°F (46°C) ambient outdoor temperature, meeting maximum load criteria of AHRI Standard 210/240 or 340/360 at ± 10% voltage.
 - 2. Compressor with standard controls shall be capable of operation from 25°F (-4°C), ambient outdoor temperatures. Accessory winter start kit is necessary if mechanically cooling at ambient temperatures below 25°F (-4°C).
 - 3. Unit shall be capable of simultaneous heating duty and defrost cycle operation when using accessory electric heaters.
 - 4. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.

- 5. Unit shall be factory configured for vertical supply & return configurations.
- 6. Unit shall be field convertible from vertical to horizontal configuration
- 7. Unit shall be capable of mixed operation: vertical supply with horizontal return or horizontal supply with vertical return.

23 81 19.13.G. Electrical Requirements

1. Main power supply voltage, phase, and frequency must match those required by the manufacturer.

23 81 19.13.H. Unit Cabinet

- 1. Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a pre-painted baked enamel finish on all externally exposed surfaces.
- 2. Unit cabinet exterior paint shall be: film thickness, (dry) 0.003 inches minimum, gloss (per ASTM D523, 60°F): 60, Hardness: H-2H Pencil hardness.
- 3. Evaporator fan compartment interior cabinet insulation shall conform to AHRI Standards 210/240 or 340/360 minimum exterior sweat criteria. Interior surfaces shall be insulated with a minimum 1/2-in. thick, 1 lb density, flexible fiberglass insulation, neoprene coated on the air side. Aluminum foil-faced fiberglass insulation shall be used in the heat compartment.
- 4. Base of unit shall have a minimum of three locations for thru-the-base electrical connections (factory installed or field installed), standard.
- 5. Base Rail
 - a. Unit shall have base rails on a minimum of 2 sides.
 - b. Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.
 - c. Holes shall be provided in the base rail for moving the rooftop by fork truck.
 - d. Base rail shall be a minimum of 16 gauge thickness.
- 6. Condensate pan and connections:
 - a. Shall be a sloped condensate drain pan made of a non-corrosive material.
 - b. Shall comply with ASHRAE Standard 62.
 - c. Shall use a 3/4" -14 NPT drain connection, possible either through the bottom or end of the drain pan. Connection shall be made per manufacturer's recommendations.

7. Top panel:

a. Shall be a single piece top panel on 04 thru 09 sizes.

8. Electrical Connections

- a. All unit power wiring shall enter unit cabinet at a single, factory-prepared, knockout location.
- b. Thru-the-base capability
- (1.) Standard unit shall have a thru-the-base electrical location(s) using a raised, embossed portion of the unit basepan.
- (2.) Optional, factory-approved, water-tight connection method must be used for thru-the-base electrical connections.
- (3.) No basepan penetration, other than those authorized by the manufacturer, is permitted.
- 9. Component access panels (standard)
 - a. Cabinet panels shall be easily removable for servicing.
 - b. Unit shall have one factory installed, tool-less, removable, filter access panel.
 - c. Panels covering control box, indoor fan, indoor fan motor, gas components (where applicable), and compressors shall have molded composite handles.
 - d. Handles shall be UV modified, composite permanently attached, and recessed into the panel.
 - e. Screws on the vertical portion of all removable access panel shall engage into heat resistant, molded composite collars.
 - f. Collars shall be removable and easily replaceable using manufacturer recommended parts.

23 81 19.13.I. N/A

23 81 19.13.J. Coils

- 1. Standard Aluminum/Copper Coils: on all models.
 - a. Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
 - b. Evaporator coils shall be leak tested to 150 psig, pressure tested to 450 psig, and qualified to UL 1995 burst test at 1775 psig.
 - c. Condenser coils shall be leak tested to 150 psig, pressure tested to 650 psig, and qualified to UL 1995 burst test at 1980 psig.

- 2. Optional Pre-coated aluminum-fin condenser coils: on all models.
 - a. Shall have a durable epoxy-phenolic coating to provide protection in mildly corrosive coastal environments.
 - b. Coating shall be applied to the aluminum fin stock prior to the fin stamping process to create an inert barrier between the aluminum fin and copper tube.
 - c. Epoxy-phenolic barrier shall minimize galvanic action between dissimilar metals.
- 3. Optional Copper-fin evaporator and condenser coils: on all models.
 - a. Shall be constructed of copper fins mechanically bonded to copper tubes and copper tube sheets.
 - b. Galvanized steel tube sheets shall not be acceptable.
 - c. A polymer strip shall prevent coil assembly from contacting the sheet metal coil pan to minimize potential for galvanic corrosion between coil and pan.
- 4. Optional E-coated aluminum-fin evaporator and condenser coils: on all models.
 - a. Shall have a flexible epoxy polymer coating uniformly applied to all coil surface areas without material bridging between fins.
 - b. Coating process shall ensure complete coil encapsulation of tubes, fins and headers.
 - c. Color shall be high gloss black with gloss per ASTM D523-89.
 - d. Uniform dry film thickness from 0.8 to 1.2 mil on all surface areas including fin edges.
 - e. Superior hardness characteristics of 2H per ASTM D3363-92A and cross-hatch adhesion of 4B-5B per ASTM D3359-93.
 - f. Impact resistance shall be up to 160 in.-lb (ASTM D2794-93).
 - g. Humidity and water immersion resistance shall be up to minimum 1000 and 250 hours respectively (ASTM D2247-92 and ASTM D870-92).
 - h. Corrosion durability shall be confirmed through testing to be no less than 1000 hours salt spray per ASTM B117-90.

23 81 19.13.K. Refrigerant Components

- 1. Refrigerant circuit shall include the following control, safety, and maintenance features:
 - a. Fixed orifice metering system shall prevent mal-distribution of two-phase refrigerant by including multiple fixed orifice devices in each refrigeration circuit. Each orifice is to be optimized to the coil circuit it serves.
 - b. Refrigerant filter drier.
 - c. Service gauge connections on suction and discharge lines.
 - d. Pressure gauge access through a specially designed access port in the top panel of the unit.
 - e. Suction line accumulator to provide protection in all operating modes from cooling, heating and reverse cycle switching.
- 2. There shall be gauge line access port in the top of the rooftop, covered by a black, removable plug.
 - a. The plug shall be easy to remove and replace.
 - b. When the plug is removed, the gauge access port shall enable maintenance personnel to route their pressure gauge lines.
 - c. This gauge access port shall facilitate correct and accurate condenser pressure readings by enabling the reading with the compressor access panel on.
 - d. The plug shall be made of a leak proof, UV-resistant, composite material.
- 3. Compressors
 - a. Unit shall use one fully hermetic, scroll compressor for each independent refrigeration circuit.
 - b. Models shall be available with single compressor designs on 04-12 models, plus additional 2 compressor (stage) models from 08-09 sizes.
 - c. Compressor motors shall be cooled by refrigerant gas passing through motor windings.
 - d. Compressors shall be internally protected from high discharge temperature conditions.
 - e. Compressors shall be protected from an over-temperature and over-amperage conditions by an internal, motor overload device.
 - f. Compressor shall be factory mounted on rubber grommets.
 - g. Compressor motors shall have internal line break thermal, current overload and high pressure differential protection.
 - h. Crankcase heaters shall be utilized on all models (except 04 size) to protect compressor with specific refrigerant charge.

23 81 19.13.L. Filter Section

- 1. Filters access is specified in the unit cabinet section of this specification.
- 2. Filters shall be held in place by a pivoting filter tray, facilitating easy removal and installation.

- 3. Shall consist of factory-installed, low velocity, throw-away 2-in. thick fiberglass filters.
- 4. Filters shall be standard, commercially available sizes.
- 5. Only one size filter per unit is allowed.

23 81 19.13.M. Evaporator Fan and Motor

- 1. Evaporator fan motor:
 - a. Shall have permanently lubricated bearings.
 - b. Shall have inherent automatic-reset thermal overload protection or circuit breaker.
 - c. Shall have a maximum continuous bhp rating for continuous duty operation; no safety factors above that rating shall be required.
- 2. Electric Drive (Direct Drive) X13 5 Speed/Torque Evaporator Fan:
 - a. Multi speed motor with easy quick adjustment settings.
 - b. Blower fan shall be double-inlet type with forward-curved blades.
 - c. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.
 - d. Standard on all 04-06 models with 208/230/1/60 operation
 - e. Standard on all 04-06 3-phase models, with optional belt drive.
- 3. Belt-driven Evaporator Fan:
 - a. Belt drive shall include an adjustable-pitch motor pulley.
 - b. Shall use sealed, permanently lubricated ball-bearing type.
 - c. Blower fan shall be double-inlet type with forward-curved blades.
 - d. Shall be constructed from steel with a corrosion resistant finish and dynamically balanced.
 - e. Standard on all 07 size models. Optional on all 04-06 3-phase models.

23 81 19.13.N. Condenser Fans and Motors

- 1. Condenser fan motors:
 - a. Shall be a totally enclosed motor.
 - b. Shall use permanently lubricated bearings.
 - c. Shall have inherent thermal overload protection with an automatic reset feature.
 - d. Shall use a shaft-down design on 04 to 09 models.
- 2. Condenser Fans:
 - a. Shall be a direct-driven propeller type fan.
 - b. Shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.

23 81 19.13.O. Special Features, Options and Accessories

- 1. Integrated Economizers:
 - a. Integrated, gear-driven parallel modulating blade design type capable of simultaneous economizer and compressor operation.
 - b. Independent modules for vertical or horizontal return configurations shall be available. Vertical return modules shall be available as a factory installed option.
 - c. Damper blades shall be galvanized steel with composite gears. Plastic or composite blades on intake or return shall not be acceptable.
 - d. Shall include all hardware and controls to provide free cooling with outdoor air when temperature and/or humidity are below setpoints.
 - e. Shall be equipped with gear driven dampers for both the outdoor ventilation air and the return air for positive air stream control.
 - f. Shall be equipped with low-leakage dampers, not to exceed 2% leakage at 1 in. wg pressure differential.
 - g. Shall be capable of introducing up to 100% outdoor air.
 - h. Shall be equipped with a barometric relief damper capable of relieving up to 100% return air.
 - i. Shall be designed to close damper(s) during loss-of-power situations with spring return built into motor.
 - j. Dry bulb outdoor-air temperature sensor shall be provided as standard. Outdoor air sensor setpoint shall be adjustable and shall range from 40 to 100°F / 4 to 38°C. Additional sensor options shall be available as accessories.
 - k. The economizer controller shall also provide control of an accessory power exhaust unit function. Factory set at 100%, with a range of 0% to 100%.
 - 1. The economizer shall maintain minimum airflow into the building during occupied period and provide design ventilation rate for full occupancy. A remote potentiometer may be used to override the damper setpoint.
- m. Dampers shall be completely closed when the unit is in the unoccupied mode.

- n. Economizer controller shall accept a 2-10Vdc CO₂ sensor input for IAQ/DCV control. In this mode, dampers shall modulate the outdoor-air damper to provide ventilation based on the sensor input.
- o. Compressor lockout sensor shall open at 35°F (2°C) and closes at 50°F (10°C).
- p. Actuator shall be direct coupled to economizer gear. No linkage arms or control rods shall be acceptable.
- q. Economizer controller shall provide indications when in free cooling mode, in the DCV mode, or the exhaust fan contact is closed.

2. Two-Position Motorized Damper

- a. Damper shall be a Two-Position Motorized Damper. Damper travel shall be from the full closed position to the field adjustable %-open setpoint.
- b. Damper shall include adjustable damper travel from 25% to 100% (full open).
- c. Damper shall include single or dual blade, gear driven dampers and actuator motor.
- d. Actuator shall be direct coupled to damper gear. No linkage arms or control rods shall be acceptable.
- e. Damper will admit up to 100% outdoor air for applicable rooftop units.
- f. Damper shall close upon indoor (evaporator) fan shutoff and/or loss of power.
- g. The damper actuator shall plug into the rooftop unit's wiring harness plug. No hard wiring shall be required.
- h. Outside air hood shall include aluminum water entrainment filter

3. Manual damper

a. Manual damper package shall consist of damper, air inlet screen, and rain hood which can be preset to admit up to 50% outdoor air for year round ventilation.

4. Head Pressure Control Package

- a. Controller shall control coil head pressure by condenser-fan speed modulation or condenser-fan cycling and wind baffles.
- b. Shall consist of solid-state control and condenser-coil temperature sensor to maintain condensing temperature between 90°F (32°C) and 110°F (43°C) at outdoor ambient temperatures down to -20°F (-29°C).
- 5. Condenser Coil Hail Guard Assembly
 - a. Shall protect against damage from hail.
 - b. Shall be louvered design.
- 6. Unit-Mounted, Non-Fused Disconnect Switch:
 - a. Switch shall be factory-installed, internally mounted.
 - b. National Electric Code (NEC) and UL approved non-fused switch shall provide unit power shutoff.
 - c. Shall be accessible from outside the unit
 - d. Shall provide local shutdown and lockout capability.

7. Convenience Outlet:

- a. Powered convenience outlet.
 - (1.) Outlet shall be powered from main line power to the rooftop unit.
 - (2.) Outlet shall be powered from line side or load side of disconnect by installing contractor, as required by code. If outlet is powered from load side of disconnect, unit electrical ratings shall be UL certified and rated for additional outlet amperage.
 - (3.) Outlet shall be factory-installed and internally mounted with easily accessible 115-v female receptacle.
 - (4.) Outlet shall include 15 amp GFI receptacles with independent fuse protection.
 - (5.) Voltage required to operate convenience outlet shall be provided by a factory-installed step-down transformer.
 - (6.) Outlet shall be accessible from outside the unit.
- b. Non-Powered convenience outlet.
 - (1.) Outlet shall be powered from a separate 115-120v power source.
 - (2.) A transformer shall not be included.
 - (3.) Outlet shall be factory-installed and internally mounted with easily accessible 115-v female receptacle.
 - (4.) Outlet shall include 15 amp GFI receptacles.
 - (5.) Outlet shall be accessible from outside the unit.

8. Thru-the-Base Connectors:

- a. Kits shall provide connectors to permit electrical connections to be brought to the unit through the unit basepan.
- b. Minimum of three connection locations per unit.

9. Fan/Filter Status Switch:

- a. Switch shall provide status of indoor evaporator fan (ON/OFF) or filter (CLEAN/DIRTY).
- b. Status shall be displayed either over communication bus (when used with direct digital controls) or with an indicator light at the thermostat.

10. Propeller Power Exhaust:

- a. Power exhaust shall be used in conjunction with an integrated economizer.
- b. Independent modules for vertical or horizontal return configurations shall be available.
- c. Horizontal power exhaust is shall be mounted in return ductwork.
- d. Power exhaust shall be controlled by economizer controller operation. Exhaust fans shall be energized when dampers open past the 0-100% adjustable setpoint on the economizer control.

11. Roof Curbs (Vertical):

- a. Full perimeter roof curb with exhaust capability providing separate air streams for energy recovery from the exhaust air without supply air contamination.
- b. Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
- c. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.
- 12. High-Static Indoor Fan Motor(s) and Drive(s) (04-09):
 - a. High-static motor(s) and drive(s) shall be factory-installed to provide additional performance range.
- 13. Thru-the-Bottom Utility Connectors:
 - a. Kit shall provide connectors to permit electrical connections to be brought to the unit through the basepan.

14. Fan/Filter Status Switch:

a. Provides status of indoor (evaporator) fan (ON/ OFF) or filter (CLEAN/DIRTY). Status shall be displayed over communication bus when used with direct digital controls or with an indicator light at the thermostat.

15. Outdoor Air Enthalpy Sensor:

a. The outdoor air enthalpy sensor shall be used to provide single enthalpy control. When used in conjunction with a return air enthalpy sensor, the unit will provide differential enthalpy control. The sensor allows the unit to determine if outside air is suitable for free cooling.

16. Return Air Enthalpy Sensor:

a. The return air enthalpy sensor shall be used in conjunction with an outdoor air enthalpy sensor to provide differential enthalpy control.

17. Indoor Air Quality (CO₂) Sensor:

- a. Shall be able to provide demand ventilation indoor air quality (IAQ) control.
- b. The IAQ sensor shall be available in duct mount, wall mount, or wall mount with LED display. The setpoint shall have adjustment capability.

18. Smoke detectors:

- a. Shall be a Four-Wire Controller and Detector.
- b. Shall be environmental compensated with differential sensing for reliable, stable, and drift-free sensitivity.
- c. Shall use magnet-activated test/reset sensor switches.
- d. Shall have tool-less connection terminal access.
- e. Shall have a recessed momentary switch for testing and resetting the detector.
- f. Controller shall include:
 - (1.) One set of normally open alarm initiation contacts for connection to an initiating device circuit on a fire alarm control panel.
 - (2.) Two Form-C auxiliary alarm relays for interface with rooftop unit or other equipment.
 - (3.) One Form-C supervision (trouble) relay to control the operation of the Trouble LED on a remote test/reset station.
 - (4.) Capable of direct connection to two individual detector modules.
 - (5.) Can be wired to up to 14 other duct smoke detectors for multiple fan shutdown applications.

19. Time Guard

- a. Shall prevent compressor short cycling by providing a 5-minute delay (±2 minutes) before restarting a compressor after shutdown for any reason.
- b. One device shall be required per compressor.

20. Electric Heat:

- a. Heating Section
 - (1.) Heater element open coil resistance wire, nickel-chrome alloy, 0.29 inches inside diameter, strung through ceramic insulators mounted on metal frame. Coil ends are staked and welded to terminal screw slots.

(2.) Heater assemblies are provided with integral fusing for protection of internal heater circuits not exceeding 48 amps each. Auto reset thermo limit controls, magnetic heater contactors (24V coil) and terminal block all mounted in electric heater control box (minimum 18 ga galvanized steel) attached to end of heater assembly.