Presentation for quantitative wealth and investment management QWIM

The Authors
June 2021

1

Literature Review

Metrics for assessing performance

Results

Some images

References

Over recent decades, machine learning ML algorithms have achieved remarkable success in various areas

Given a large representative dataset, ML algorithms can learn to identify complex non-linear patterns and explore unstructured relationships without hypothesizing them in advance.

Thus, ML algorithms are not limited by assumptions or pre-defined data generating processes, which allows the data to speak for itself.

Literature Review

Literature Review

Some references: Baltas and Scherer (2019), Li et al. (2020), and Rasekhschaffe and Jones (2019)

Literature Review (cont.)

More references

Metrics for assessing performance

Metric: symmetric mean absolute percentage error sMAPE

$$sMAPE \triangleq \frac{2}{h} \sum_{t=n+1}^{n+h} \frac{\left| Y_t - \widehat{Y}_t \right|}{\left| Y_t \right| + \left| \widehat{Y}_t \right|} * 100 ()$$

where Y_t is the value of the time series at point t, Y_t the estimated forecast, h the forecasting horizon, n the number of the data points available in-sample, and m the time interval between successive observations considered for each data frequency, i.e., 12 for monthly, four for quarterly, 24 for hourly and one for yearly, weekly and daily data.

Metric: mean absolute scaled error M

$$sMAPE \triangleq \frac{1}{h} \frac{\sum_{t=n+1}^{n+h} \left| Y_t - \widehat{Y}_t \right|}{\frac{1}{n-m} \sum_{t=m+1}^{n} \left| Y_t - Y_{t-m} \right|}$$

where Y_t is the value of the time series at point t, $\widehat{Y_t}$ the estimated forecast, h the forecasting horizon, n the number of the data points available in-sample, and m the time interval between successive observations considered for each data frequency, i.e., 12 for monthly, four for quarterly, 24 for hourly and one for yearly, weekly and daily data.

7

Results

Comparison was performed against 4 models from M4 competition, each best in their respective model class:

- Best pure ML: best entry among the 6 pure ML models.
- Best statistical: best pure statistical model
- Best ML/TS combination: second best entry
- DL/TS hybrid: winner of M4 competition

The results are summarized in following tables (lower values are better).

In parantheses we show the number of datasets of that type.

8

The results (cont.)

 $\label{table 1: Performance on M4 test set: sMAPE (top) and OWA and M4 Rank (botom)} % \[\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right$

	Yearly	Quaterly	Monthly	Others	Average
	(23K)	(24K)	(48K)	(5K)	(100K)
Best pure ML	14.397	11.031	13.973	4.566	12.894
Best statistical	13.366	10.155	13.002	4.682	11.986
Best ML/TS combination	13.528	9.733	12.639	4.118	11.720
DL/TS hybrid, M4 winner	13.176	9.679	12.126	4.014	11.374
NBEATS-G	12.855	9.378	12.130	3.979	11.229
NBEATS-I	12.823	9.418	12.048	4.199	11.203
NBEATS-I+G	12.812	9.372	12.064	4.063	11.190

	Yearly	Quaterly	Monthly	Others	Average	Rank
Best pure ML	0.859	0.939	0.941	0.991	0.915	23
Best statistical	0.788	0.898	0.905	0.989	0.861	8
Best ML/TS combination	0.799	0.847	0.858	0.914	0.838	2
DL/TS hybrid, M4 winner	0.778	0.847	0.836	0.920	0.821	1
NBEATS-G	0.755	0.814	0.823	0.876	0.799	
NBEATS-I	0.753	0.8219	0.820	0.911	0.799	
NBEATS-I+G	0.752	0.814	0.819	0.889	0.797	

As model learns seasonal behavior and dependencies on given covariates across time series, minimal feature engineering needed to capture complex behavior

- DeepAR makes probabilistic forecasts through Monte Carlo samples used to compute consistent quantile estimates for all sub-ranges in the prediction horizon
- By learning from similar items, our method is able to provide forecasts for items with little or no history at all, a case where traditional single-item forecasting methods fail

Table 2: Results for methods implemented in GluonTS

Dataset	AutoARIMA	AutoETS	Prophet	DeepAR
SP500	0.975±0.001	0.982± 0.001	0.985±0.001	0.837±0.002
M4 Daily	0.024±0.000	0.023±0.000	0.090±0.000	0.028±0.000
M4 Monthly	0.097±0.000	0.099±0.000	0.132±0.000	0.135±0.003
M4 Quarterly	0.080±0.000	0.078±0.000	0.123±0.000	0.091±0.001
M4 Weekly	0.050±0.000	0.051±0.000	0.108±0.000	0.072±0.003
M4 Yearly	0.124±0.000	0.126±0.000	0.156±0.000	0.120±0.002

Dataset	NPTS	Transformer	CNNQR	DeepAR
SP500	0.832±0.000	0.836±0.001	0.907±0.006	0.837±0.002
M4 Daily	0.145±0.000	0.028±0.000	0.026±0.001	0.028±0.000
M4 Monthly	0.233±0.000	0.134±0.002	0.126±0.002	0.135±0.003
M4 Quarterly	0.255±0.000	0.095±0.003	0.091±0.000	0.091±0.001
M4 Weekly	0.296±0.001	0.075±0.005	0.056±0.000	0.072±0.003
M4 Yearly	0.355±0.000	0.127±0.004	0.121±0.000	0.120±0.002

Some images

Figure 1: First time series

Figure 2: Second time series

References

- Baltas, N. and Scherer, B. (2019). "Tail Risk in the Cross Section of Alternative Risk Premium Strategies." In: The Journal of Portfolio Management.
- Li, Y., Turkington, D., and Yazdani, A. (2020). "Beyond the Black Box: An Intuitive Approach to Investment Prediction with Machine Learning." In: The Journal of Financial Data Science.
- Rasekhschaffe, K. and Jones, R. (2019). "Machine Learning for Stock Selection." In: Financial Analysts Journal.