SEMANA A SEMANA DE ÁLGEBRA LINEAL

SEMESTRE 2025-1

SEMANAS	TEMAS				
1	 ◆ Presentación del curso. ◆ Vectores en R² y R³. Magnitud, dirección, vectores unitarios e igualdad de vectores. Geometría y operaciones algebraicas. ◆ Noción geométrica de combinación lineal, dependencia e independencia lineal. 				
2	 ◆ Proyección ortogonal en R² y R³. ◆ Producto vectorial en R³. 				
3	 Matrices 2 × 2 : Suma, multiplicación por un escalar y determinante. Multiplicación matriz-vector y combinación lineal de las columnas de una matriz. Guía de Python # 1 (No evaluativo). 				
4	 Matrices m × n: Tipos de matrices. Suma y multiplicación de matrices. Multiplicación de una matriz por un escalar. Propiedades de las operaciones con matrices. Guía de Python # 2 (No evaluativo). Taller #1 (Evaluativo). 				
5	 Transpuesta de una matriz. Matrices simétricas y antisimétricas. Operaciones elementales con filas. Matriz escalonada y escalonada reducida. Rango de una matriz. Interpretación del rango de una matriz mediante ejemplos de matrices 2 × 2 y 3 × 3. 				
6	 Sistemas de ecuaciones lineales. Forma matricial de un sistema lineal. Sistemas equivalentes. Método de Gauss-Jordan. Guía de Python # 3 (No evaluativo). 				
7	 Planteamiento y solución de problemas. Examen # 1. 				
8	 Análisis de la solución de un sistema de ecuaciones lineales. Teoremas sobre la solución de un sistema de ecuaciones lineales. Matriz inversa. Propiedades y aplicaciones. 				
9	 Cálculo del determinante de una matriz por cofactores. Matriz adjunta y cálculo de la inversa de una matriz por cofactores. Propiedades del determinante. Taller # 2 (Evaluativo). 				
10	 Definición de espacio vectorial. Ejemplos de espacios vectoriales: matrices m × n y ℝⁿ Subespacio vectorial. Combinación lineal, dependencia e independencia lineal. Guía de Python # 4 (No evaluativo). 				
11	♦ Combinación lineal, dependencia e independencia lineal.				
12	 Subespacio generado por un conjunto. Base y dimensión. Ejemplos en Rⁿ. Producto escalar y propiedades. Norma de un vector. Desigualdad de Schwarz. Ángulo entre vectores. Vectores ortogonales y paralelos. Guía de Python # 5 (No evaluativo). Examen # 2. 				
13	 Bases ortogonales y ortonormales Proyección ortogonal y proceso de Gram-Schmidt. Laboratorio con Python # (Evaluativo). Ejemplos de bases ortonormales, proyección ortogonal y proceso de Gram-Schmidt. 				
14	 Ejemplos de bases ortonormales, proyección ortogonal y proceso de Gram-Schmidt. Valores y vectores propios de una matriz. Interpretación geométrica. 				
15	 Valores y vectores propios de una matriz. Interpretación geométrica. Diagonalización de matrices matrices semejantes. Taller # 3 (Evaluativo). 				
16	♦ Diagonalización de matrices simétricas.				
17	◆ Examen # 3.				

Porcentajes de las actividades evaluativas.

Se realizarán tres (3) **exámenes parciales escritos** en las semanas establecidas y en los horarios correspondientes a la clase magistral. El contenido temático de cada examen parcial puede estar sujeto al criterio del docente, siempre y cuando eventualidades mayores lo ameriten. Los exámenes parciales poseen los siguientes porcentajes:

- ♦ Examen parcial #1 (26%).
- ♦ Examen parcial #2 (26%).
- ♦ Examen parcial #3 (30%).

Se realizarán tres (3) talleres en línea (**no supervisados**) mediante la plataforma Interactiva, en las fechas y con los porcentajes descritos a continuación:

- ♦ Taller #1 (4%) Activo desde viernes 14 de febrero hasta miércoles 19 de febrero.
- ♦ Taller #2 (4%) Activo desde viernes 21 de marzo hasta miércoles 26 de marzo.
- ♦ Taller #3 (4%) Activo desde jueves 8 de mayo hasta martes 13 de mayo.

Se le proporcionará al estudiante cinco (5) guías de Python (**no evaluativas**) en las semanas designadas, con el fin de reforzar la comprensión y asimilación de los temas teóricos de la clase magistral a partir de una componente computacional. Asimismo, en las semanas también designadas anteriormente, se realizarán un (1) laboratorio con Python **de carácter evaluativo** y con el siguiente porcentaje:

♦ Laboratorio #2 (6%).

Texto guía: García O., Villegas J.A. y Castaño J.I. (2012). Álgebra lineal. Fondo Editorial Universidad EAFIT. Medellín.

Calendario evaluativo

Semana	Lunes	Martes	Miércoles	Jueves	Viernes
1	20 – ene	21 – ene	22 – ene	23 – ene	24-ene
2	27 – ene	28 – ene	29 – ene	30 – ene	31-ene
3	3 – feb	4-feb	5 – feb	6 – feb	7 – feb
4 Taller 1	10 – feb	11 – feb	12 – feb	13 – feb	14 – feb
5	17 – feb	18 – feb	19 – feb	20 – feb	21 – feb
6	24 – feb	25 – feb	26-feb	27 – feb	28 – feb
7 Parcial 1	3 – mar	4 – mar	5 – mar	6 – mar	7 – mar
8	10 – mar	11 – mar	12 – mar	13 – mar	14 – mar
9 Taller 2	17 – mar	18 – mar	19 – mar	20 – mar	21 – mar
10	24 – mar	25 – mar	26 – mar	27 – mar	28 – mar
11	31 – mar	1-abr	2 – abril	3 – abril	4 – abril
12 Parcial 2	7-abr	8 – abril	9 – abril	10 – abril	11 – abril
Semana de receso	14-abr	15 – abril	16 – abril	17 – abril	18 – abril
13 Lab Python	21-abr	22– abril	23 – abril	24 – abril	25 – abril
14	28 –abril	29 – abril	30 – abril	1 – may	2-may
15 Taller 3	5 – may	6-may	7 – may	8 – may	9 – may
16	12 – may	13-may	14 – may	15 – may	16 – may
17 Parcial 3	19 – may	20-may	21 – may	22 – may	23 – may
18	26 – may	27-may	28 – may	29 – may	30– may

Fechas importantes - semestre 2025-1	
Clases: enero 20 a mayo 17	
Los días festivos o fechas con actividad de receso están marcados con	
Asamblea de carreras el 5 de marzo; no hay evaluaciones en todo el día y no hay clase entre 10:00 y 14:00. Marcado con	
Receso de semana santa: abril 14 al 20	
Reporte de notas correspondientes al 70% debe ser 15 días calendario después de realizada la evaluación y máximo hasta mayo 14	may-14
Fecha límite para que el estudiante solicite cancelación	may-18
Fecha límite para que el profesor apruebe cancelaciones	may-21
Fecha límite para el reporte de las notas correspondientes al 100%	jun-03

Coordinadores: Gabriel Ignacio Loaiza gloaiza@esfit.edu.co

Maria Amelia Salazar Pinzón masalazarp@eafit.edu.co