

Moreau-Yosida Density-Potential Inversion

Maryam Lotfigolian

OSLO METROPOLITAN UNIVERSITY
STORBYLINIVERSITETET

Acknowledgements

With A. Csirik, ^{1,2} M. Penz, ^{1,3} V. Bakkestuen, ¹ V. Falmår, ¹ A. Davidov, ¹ M. Ruggenthaler, ³ A. Laestadius, ^{1,2} O. Bohle, ² and E. Tellgren. ²

- Department of Computer Science, Oslo Metropolitan University
- 2 Hylleraas Centre for Quantum Molecular Sciences, University of Oslo
- 3 Max Planck Institute for the Structure and Dynamics of Matter

Funded under ERC StG No. 101041487 REGAL

Outline

- 1 Introduction
- 2 Mathematical Framework
- 3 Kohn-Sham Inversion
- 4 Moreau-Yosida Regularization
- 5 Variational Formulation of the Problem

Introduction

- Challenge: No explicit formula exists for total energy from electron density in many-body quantum systems.
- Kohn-Sham (KS) Method: Approximates energy using an exchange-correlation (xc) functional.
- **Objective**: Derive effective potentials from densities via variational principles and optimization (e.g., MY regularization).

$$\widehat{H} = -\frac{1}{2} \sum_{j} \nabla_{j}^{2} + \sum_{k < j} |\mathbf{r}_{j} - \mathbf{r}_{k}|^{-1} + \sum_{j} v_{\mathrm{ext}}(\mathbf{r}_{j})$$

$$\widehat{H}_{\mathrm{KS}} = -\frac{1}{2} \sum_{j} \nabla_{j}^{2} + \sum_{j} \underbrace{[v_{\mathrm{ext}}(\mathbf{r}_{j}) + v_{\mathrm{H}}(\mathbf{r}_{j}) + v_{\mathrm{xc}}(\mathbf{r}_{j})]}_{v_{\mathrm{eff}}(\mathbf{r}_{j})}$$

Mathematical Framework

- **Functional** $\mathcal{F}(\rho)$:
 - Represents the internal energy of a non-interacting system as a function of the density ρ .
 - $\mathcal{F}(\rho)$ is convex and lower semicontinuous (lsc).
- Space \mathcal{D} :
 - \blacksquare \mathcal{D} is a Banach space, assumed to be uniformly convex.
 - The density ρ belongs to this space: $\rho \in \mathcal{D}$.
- **Duality Mapping** \mathcal{J} :
 - $\mathcal{J}:\mathcal{D}\to\mathcal{D}^*$ is defined by:

$$\mathcal{J}(\rho) = \left\{ v \in \mathcal{D}^* : \|v\|_{\mathcal{D}^*}^2 = \|\rho\|_{\mathcal{D}}^2 = \langle v, \rho \rangle \right\} \quad \Rightarrow \quad \mathcal{J}(\rho) = \underline{\partial}(\frac{1}{2}\|\rho\|_{\mathcal{D}}^2)$$

- Associates each $\rho \in \mathcal{D}$ with $v \in \mathcal{D}^*$ satisfying the above conditions.
- In uniformly convex spaces, \mathcal{J} is single-valued and captures the dual relationship between densities and potentials.

The Subdifferential $\underline{\partial}$

- Differentiability cannot always be assumed, especially for convex functionals on infinite-dimensional spaces.
- **Subdifferential** $\underline{\partial}$ generalizes the gradient concept:

Kohn-Sham Inversion

Kohn-Sham Inversion

- Kohn-Sham (KS) Inversion: Reconstructs energy functional from ground-state density by finding the corresponding potential.
- Enables development of accurate xc functionals.

Moreau-Yosida Regularization

Moreau-Yosida Regularization

- Moreau-Yosida (MY) Regularization: Handles stability and non-differentiability in optimization.
- Combines regularization with optimization to derive accurate potentials.

Definition

Let $\mathcal D$ be uniformly convex and $\mathcal F:\mathcal D\to\mathbb R$ convex and lower semicontinuous functional. For some $\varepsilon>0$, the *Moreau-Yosida regularization* of $\mathcal F$ at $\rho_{\sf qs}$ is

$$\mathcal{F}^{\varepsilon}(\rho_{\text{gs}}) = \inf_{\rho \in \mathcal{D}} \Big\{ \mathcal{F}(\rho) + \tfrac{1}{2\varepsilon} \big\| \rho - \rho_{\text{gs}} \big\|_{\mathcal{D}}^2 \Big\}.$$

Variational Formulation of the Problem

Optimization Problem:

$$\min_{\rho \in \mathcal{D}} \left(\underbrace{\mathcal{F}(\rho) + \frac{1}{2\varepsilon} \|\rho - \rho_{\rm gs}\|_{\mathcal{D}}^2}_{\mathcal{E}(\rho; \rho_{\rm gs})} \right) \tag{2}$$

- The regularization term keeps ρ close to the reference density $\rho_{\rm gs}$, with $\varepsilon>0$ controlling the penalty's strength.
- The proximal point $\rho^{\varepsilon} = \operatorname{argmin}_{\rho \in \mathcal{D}} \mathcal{E}(\rho, \rho_{gs})$ minimizes this expression.
- The stationary condition for this optimization is:

$$\underline{\partial} \mathcal{F}(\rho^{\varepsilon}) + \frac{1}{\varepsilon} J(\rho^{\varepsilon} - \rho_{\mathsf{gs}}) \ni 0.$$

Derivation of V_{eff}

■ The ground-state density ρ_{gs} is defined as:

$$\rho_{\text{gs}} = \operatorname*{argmin}_{\rho \in \mathcal{D}} \left(\mathcal{F}(\rho) + \langle V_{\text{eff}}, \rho \rangle \right)$$

■ The proximal point $\rho^{\varepsilon}(\rho_{gs})$ is defined as:

$$\rho^{\varepsilon}(\rho_{\mathsf{gs}}) = \operatorname*{argmin}_{\rho \in \mathcal{D}} \left(\mathcal{F}(\rho) + \frac{1}{2\varepsilon} \|\rho - \rho_{\mathsf{gs}}\|_{\mathcal{D}}^{2} \right)$$

The stationary condition leads to:

$$\begin{split} & \underline{\partial} \mathcal{F}(\rho_{\mathsf{gs}}) + V_{\mathsf{eff}} \ni 0 \\ & \underline{\partial} \mathcal{F}(\rho^{\varepsilon}) + \frac{1}{\varepsilon} J(\rho^{\varepsilon} - \rho_{\mathsf{gs}}) \ni 0 \end{split}$$

■ As $\varepsilon \to 0$ and $\rho^{\varepsilon} \to \rho_{\text{qs}}$, the effective potential V_{eff} is derived as:

$$V_{\mathsf{eff}} = \lim_{arepsilon o 0} rac{1}{arepsilon} J(
ho^{arepsilon} -
ho_{\mathsf{gs}})$$

The Inversion Algorithm

Let $\rho \in \mathbb{R}$. Consider the functional:

$$\mathcal{F}(\rho) = \begin{cases} \frac{1}{2}\rho^2, & \text{if } |\rho| \le 1, \\ \infty, & \text{if } |\rho| > 1 \end{cases}$$

MY regularization smooths the non-differentiable edge at $|\rho|=1$.

The original and regularized functionals are:

$$\mathcal{F}(\rho) = \begin{cases} \frac{1}{2}\rho^2, & \text{if } |\rho| \leq 1, \\ \infty, & \text{if } |\rho| > 1 \end{cases} \Rightarrow \mathcal{F}^{\varepsilon}(\rho) = \begin{cases} \frac{1}{2} + \frac{1}{2\varepsilon}(1-\rho)^2, & \text{if } \rho \geq 1+\varepsilon, \\ \frac{\rho^2}{2(1+\varepsilon)}, & \text{if } |\rho| \leq 1+\varepsilon, \\ \frac{1}{2} + \frac{1}{2\varepsilon}(1+\rho)^2, & \text{if } \rho \leq -1-\varepsilon. \end{cases}$$

■ The solution ρ_{ε} is given by:

$$\rho^{\varepsilon} = \begin{cases} -1 & \text{if } \rho \leq -1 - \varepsilon \\ \frac{\rho}{\varepsilon + 1} & \text{if } |\rho| \leq 1 + \varepsilon \\ 1 & \text{if } \rho \geq 1 + \varepsilon \end{cases}$$

■ Within the interval $|\rho| \le 1 + \varepsilon$,

$$|\rho^{\varepsilon}(\rho_1) - \rho^{\varepsilon}(\rho_2)| = \frac{1}{1+\varepsilon} |\rho_1 - \rho_2|, \quad \forall \rho_1, \rho_2 \in [-1-\varepsilon, 1+\varepsilon].$$

Since $\frac{1}{1+\varepsilon} < 1$ for $\varepsilon > 0$, the proximal map ρ^{ε} is indeed a contraction mapping.

For $\rho_{\rm gs}\in (-1,1)$, the proximal map $\rho^{\varepsilon}=\frac{\rho_{\rm gs}}{1+\varepsilon}$. The duality mapping J in this case is trivial (J(x)=x), so:

$$\frac{1}{\varepsilon}J(\rho^{\varepsilon}-\rho_{\mathrm{gs}})=\frac{1}{\varepsilon}\left(-\frac{\varepsilon\rho_{\mathrm{gs}}}{1+\varepsilon}\right)=-\frac{\rho_{\mathrm{gs}}}{1+\varepsilon}.$$

Taking the limit as $\varepsilon \to 0$:

$$V_{\mathsf{eff}} = \lim_{arepsilon o 0} - rac{
ho_{\mathsf{gs}}}{1+arepsilon} = -
ho_{\mathsf{gs}}.$$

Thus, the effective potential is:

$$V_{\mathsf{eff}} = -\rho_{\mathsf{gs}}, \quad \rho_{\mathsf{gs}} \in (-1, 1).$$

Numerical Example

Consider the functional:

$$\mathcal{F}(\rho) = \begin{cases} 1 - \sqrt{1 - \rho^2}, & \text{if } |\rho| \le 1, \\ \infty, & \text{if } |\rho| > 1 \end{cases}$$

- Apply MY regularization for $\varepsilon = 0.1$.
- The regularized functional $\mathcal{F}^{\varepsilon}(\rho)$ becomes smoother, eliminating non-differentiable points.

Summary

- **Objective:** Reconstruct effective potentials V_{eff} from given densities using variational principles and Moreau-Yosida (MY) regularization.
- **Kohn-Sham Inversion:** Links ground-state density ρ_{gs} to effective potentials for more accurate xc functionals.
- MY Regularization:
 - Smooths non-differentiabilities in optimization problems.
 - Ensures stability and convergence through the proximal map.
- Effective Potential:

$$V_{\mathsf{eff}} = \lim_{arepsilon o 0} rac{1}{arepsilon} J(
ho^{arepsilon} -
ho_{\mathsf{gs}})$$

Thank you for your attention!

Questions?

Maryam Lotfigolian
OSLO METROPOLITAN UNIVERSITY
STORRYLINIVERSITETET

Non-Expansive Property of the Proximal Map

Proximal Map:

$$\rho^{\varepsilon} = \operatorname{prox}_{\varepsilon f}(\rho)$$

Non-Expansive Property:

$$\|\rho_1^{\varepsilon} - \rho_2^{\varepsilon}\| \le \|\rho_1 - \rho_2\|, \quad \forall \rho_1, \rho_2 \in \mathcal{D}$$

- The mapping $\rho \mapsto \rho^{\varepsilon}(\rho)$ is non-expansive for each $\varepsilon > 0$.
- This property ensures stability in optimization and guarantees convergence of iterative schemes using the proximal map.

