João Vítor Fernandes Dias

Timetabling Problem: desafios no desenvolvimento de um sistema de decisão voltado ao problema de organização de grade horária do ensino superior

Campos dos Goytacazes, RJ 23 de agosto de 2023

João Vítor Fernandes Dias

Timetabling Problem: desafios no desenvolvimento de um sistema de decisão voltado ao problema de organização de grade horária do ensino superior

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Ciência da Computação da Universidade Estadual do Norte Fluminense Darcy Ribeiro, sob orientação do Prof. Dr. Fermín Alfredo Tang Montané

Orientador: FermÍn Alfredo Tang Montané

Campos dos Goytacazes, RJ 23 de agosto de 2023

Lista de ilustrações

Figura 1 –	Disciplina atribuída no sistema acadêmico à determinada hora e local .	6
Figura 2 –	Disciplina não atribuída à determinada hora e local na grade de horários	
	do CCT	7
Figura 3 –	Resumo de trabalhos, parâmetros, dimensões, tempo e técnicas	13
Figura 4 –	Comparação entre artigos que solucionam o problema de grade horária	14
Figura 5 –	Análise de publicações aceitas	14
Figura 6 –	Estágios para a obtenção de grade horária ótima	16
Figura 7 –	Etapas do Design de Interação	17
Figura 8 –	Funcionamento geral do sistema	18

Sumário

1	INTRODUÇÃO
1.1	Problemáticas
1.2	Hipótese
1.3	Objetivos
1.3.1	Gerais
1.3.2	Específicos
1.4	Justificativas
1.5	Metodologia
1.6	Organização
2	CONTEXTO ACADÊMICO DO TIMETABLING PROBLEM 1
2.1	Definição de termos
2.2	Métodos de resolução
2.3	Desafios recorrentes
3	MODELAGEM GERAL DO SISTEMA 10
3.1	Estágios de execução
3.2	Iteração
3.3	Funcionamento
	REFERÊNCIAS

1 Introdução

No ensino superior brasileiro, cada curso de uma instituição de ensino tem em seu projeto pedagógico, ou seja, no documento que rege quais as atribuições e justificativas de existência do curso, uma listagem de disciplinas a serem ministradas em cada semestre ao longo de sua duração esperada. Disciplinas estas que para serem cursadas os discentes precisam cumprir determinados requisitos. Por exemplo, é esperado que o discente apenas curse a disciplina Cálculo 2 após haver obtido a aprovação prévia na disciplina Cálculo 1.

Embora haja este planejamento de duração do curso, diversos fatores podem influenciar esta previsão, dentre eles podemos citar eventos como:

- Quebra de pré-requisitos: onde o discente solicita permissão para inscrição em uma disciplina cujos pré-requisitos não são completamente cumpridos por si
- Trancamento de matrícula: onde o discente suspende temporariamente seus estudos na instituição
- Transferência interna: onde o discente migra entre cursos dentro da mesma instituição
- Transferência externa: onde o discente migra entre cursos entre diferentes instituições
- Reprovações: onde o discente não cumpre com o mínimo desempenho esperado na disciplina, geralmente está associado a ausência nas aulas e/ou desempenho inferior ao mínimo esperado nas avaliações.
- Disponibilidade de professores: onde os docentes não são suficientes para ministrar todas as disciplinas demandadas pelos discentes em um mesmo semestre.

Estes eventos tendem a, no geral, aumentar o tempo médio para conclusão do curso. Situação em sua maioria indesejada tanto pelos alunos, que mesmo durante seu estudo já visam o mercado de trabalho, quanto pelos professores e a instituição, visto que a evasão do ensino superior brasileiro é um problema existente e estudado a fim de ser minimizado.

Com isso, é esperado que a instituição busque alternativas para tornar mais dinâmica e atrativa a experiência dos discentes durante sua jornada. Uma dessas formas é tentando minimizar o impacto que as reprovações nas disciplinas causam nos semestres consecutivos. Para isso sendo então necessária uma análise das disciplinas que devem ser ministradas no próximo semestre, sendo então necessário definir quais, quando, onde, por quem e para quem serão ministradas. Esta tarefa, entretanto, não é trivial.

1.1 Problemáticas

Embora seja um problema atualmente, isso não significa que seja recente. Desde 1978 (BARHAM; WESTWOOD, 1978) o termo timetabling encontra-se no meio acadêmico como o termo referente ao tabelamento de grade horária, sendo assim, é este o termo que será principalmente utilizado neste trabalho. Neste artigo de 1978 já se propunha uma forma para que se obtivesse um tabelamento otimizado, e demonstrava que o método utilizado gerava bons resultados.

Outra característica é informada por Joshua (THOMAS; KHADER; BELATON, 2009) que fala sobre a multidimensional do problema de timetabling. Por causa dessa questão há uma complexidade elevada para conseguir conceber visual e mentalmente de que forma os dados relacionados ao problema se estruturam, assim dificultando a elaboração de sistemas computacionais que auxiliem nessa tarefa.

Dada a grande quantidade de variáveis interconectadas e as características específicas de cada instituição (MIRANDA; REY; ROBLES, 2012), a organização destas informações buscando a melhor solução possível apresenta-se como um desafio. Principalmente se considerarmos que esta solução é, muitas vezes, buscada manualmente, estando também passível de erros humanos como ilustram as Figuras 1 e 2.

Nestas imagens, fica exemplificado um dos possíveis problemas que podem ocorrer durante a criação de grades horárias, que é, mesmo quando uma seção da universidade (o Sistema Acadêmico, ilustrado pela Figura 1 aloca uma turma a uma determinada sala, outra seção da mesma instituição (o Centro de Ciência e Tecnologia, ilustrado pela Figura 2) pode não estar ciente do mesmo, ou mesmo estando ciente pode acabar não delimitando aquela lacuna de tempo como ocupada, assim estando passível de uma segunda alocação naquele período de tempo naquela sala, assim gerando problemas.

Também segundo J. Miranda, embora o problema de atribuição de salas não seja novo e tenha extensa literatura a seu respeito, são poucos os que de fato implementaram um sistema para suporte de decisões. Isso se dá por diversos fatores, também listado pelo autor fazendo referência a trabalhos anteriores, sendo alguns deles a resistência organizacional a mudanças e adoção de novas tecnologias, nível de dificuldade do problema, dentre outros.

Algumas outras características que se apresentam como problemas são a falta de otimalidade das grades horárias desenvolvidas em boa parte das instituições de ensino superior e a quantidade de tempo necessária para a criação dessas grades não-ótimas.

Considerando que situações como a descrita acima são passíveis de ocorrer, e que a tarefa de criação de grades horárias é recorrente, um sistema de suporte à decisão que supra às necessidades dos seus usuários se faz necessário.

Turma (Graduação) Dados Básicos Código: EP Disciplina: PRO01122 - Metodologia Científica para Engenharia de Produção - HT: 68, HP: 0, HE: 0 Calendário: 2023/1 Vagas: 30 Local: Sala 105/CCT Máximo de faltas (horas): 17 Coordenador da turma: Manuel Antonio Molina Palma, D.Sc. (42528755) Direcionamentos Engenharia de Produção (Bacharelado / Presencial) Ciência da Computação (Bacharelado / Presencial) Horários Dia Horário inicial Horário término Terça 16:00 18:00 16:00 18:00 Quinta **Professores** Matrícula Nome Carga Horária 42528755 Manuel Antonio Molina Palma, D.Sc. 68

Figura 1 – Disciplina atribuída no sistema acadêmico à determinada hora e local

Fonte: o autor

1.2 Hipótese

Dada as características intrínsecas ao problema de agendamento de grade horária, é esperado que os softwares atualmente existentes que lidam com este problema não apresentem completas capacidades de se moldar ao caso de uma instituição específica.

E, caso a primeira hipótese se apresente correta, o software a ser desenvolvido, assim como seus similares, se apresentará como uma solução plausível para a resolução do problema proposto embora ainda apresente melhorias possíveis a serem implementadas. O software se apresentará de tal forma que os *stakeholders* que, esperadamente, decidirem não o utilizar não causarão a impossibilidade do uso do sistema.

SALA 105 Prédio do CCT -1º. Semestre 2023 Capacidade: 35 alunos SEGUNDA TERÇA QUARTA QUINTA SEXTA SÁBADO Horário 07:00 - 08:00 08:00 - 09:00 Métodos Estatístico Métodos Estatísti Introdução à para Engenharia para Engenharia Mecânica dos Transporte Computação Prof. Dialma 09:00 - 10:00 Solos I Prof. Arica Prof. Rivera Prof. Arica Prof. Tibana 10:00 - 11:00 Fotoguímica, fotofísic TEG-Mecânica Geotecnica de e fotobiologia dos solos... Barragens de terra. Ética Profissional 11:00 - 12:00 Prof. Sergio Prof. Rodrigo Profa, Maria Alves 12:00 - 13:00 13:00 - 14:00 Química Geral II 14:00 - 15:00 Administração de Administração de Prof. Sergio Prof. Nagipe Operações e serviços Operações e serviços Prof. André Prof. André 15:00 - 16:00 Matemática Discreta Metodologia Prof. Rafael Física II Cient. para Eng. De Física II Prof. Everton Produção Prof. Everton 17:00 - 18:00 18:00 - 19:00 Cálculo I Matemática Básica Cálculo I Matemática Básica Profa. Ana Senna Prof. Thallis Profa. Ana Senna Profa. Ana Senna Prof. Thallis 19:00 - 20:00 20:00 - 21:00 Tópicos em Ciências, Estratégias de Mecânica Mecânica Ensino e Sociedade Prof. Leonardo Prof. Leonardo 21:00 - 22:00 Prof. Roberto Faria Prof. Legendas: PG=Pós-Graduação; LF=Licenciatura em Física; LM=Licenciatura em Matemática; LQ=Licenciatura em Química

Figura 2 – Disciplina não atribuída à determinada hora e local na grade de horários do CCT

Fonte: o autor

1.3 Objetivos

Os objetivos deste documento podem ser divididos entre gerais e específicos, não havendo relação de superioridade de um em relação ao outro, visto que ambos igualmente nortearão o desenvolvimento da pesquisa.

1.3.1 Gerais

Como objetivos gerais, espera-se conseguir desenvolver um sistema de suporte à decisão tal que aumente a eficiência, eficácia e efetividade do processo de criação de grades horárias que semestralmente demandam extensa quantidade de tempo dos coordenadores de curso na UENF e não alcançam a otimalidade. Nesse processo, também é esperado que as grades horárias finais tragam benefícios aos alunos como forma de mais disciplinas à sua disposição. Visto que estes muitas vezes lidam com grades horárias que não contemplam suas reais demandas. Dessa forma aumentando a satisfação de todos os participantes do processo, desde os coordenadores de curso até os alunos.

1.3.2 Específicos

Como objetivos mais específicos, podemos listar os seguintes:

- Entender de que forma os setores administrativos da UENF atualmente lidam com a questão do timetabling
- Obter as demandas de aprimoramentos desejadas pelos diferentes centros e laboratórios
- Modelar o sistema de resolução de timetabling de acordo com os requisitos demandados
- Encontrar o que é necessário para a adoção da aplicação de tabelamento de horário
- Incentivar o uso de uma ferramenta centralizada para a otimização do *Timetabling Problem*

1.4 Justificativas

Levando em conta a problemática evidenciada e os sucessos prévios dos artigos anteriores, vê-se grande potencial de auxílio e aumento na satisfação de todos os que utilizarem os métodos propostos. Não havendo um sistema geral que solucione todos os casos como evidenciado pelos pesquisadores da área, resta aos interessados rumarem em busca de uma solução entalhada nos moldes de sua instituição específica. Considerando que é um problema existente atualmente e que uma solução está disponível, o que se torna necessário é realizar o esforço inicial suficiente para que ocorra a quebra da inércia em que se encontram os processos ineficientes usuais para assim alcançar um melhor. Sendo assim, faz-se válida a pesquisa e desenvolvimento de um software que vise este propósito.

1.5 Metodologia

Considerando as dificuldades encontradas em trabalhos anteriores, entende-se que o maior desafio será superar as especificidades que serão encontradas durante a modelagem da universidade em questão. Para isso, será inicialmente necessária uma pesquisa bibliográfica com foco no estudo das abordagens qualitativas realizadas anteriormente que obtiveram sucesso em elicitar os requisitos adequados para as instituições de ensino.

Com este conhecimento, um material inicial para a pesquisa exploratória e qualitativa deve ser desenvolvido levando em conta as questões próprias da universidade em questão, visando também coletar dados relevantes para uma futura pesquisa com maior enfoque em características emergentes que a pesquisa anterior pode levantar, similar à como foi proposto e realizado por (ANDRE; DINATA, 2018).

Nesta pesquisa exploratória em formato de entrevista, algumas informações esperadas revolvem em torno das percepções dos *stakeholders* do sistema proposto, sendo esses

principalmente os professores, coordenadores de cursos, chefes de laboratório e diretores de centro. Estas percepções incluem o entendimento deles quanto ao método atual e às alternativas existentes, nível de insatisfação com o método atual, nível de desejo quanto à um novo método. Além disso, espera-se aproveitar o ensejo para elicitar as características e funcionalidades que gostariam de ter em um sistema de suporte à decisão, solicitando também que deem informações adicionais que gostariam de acrescentar.

Essas informações serão relevantes para se atingir a satisfação e uso futuro do sistema proposto. Pois, como é informado no (BOURQUE; FAIRLEY, 2014), uma das fontes de requisitos é o ambiente organizacional e como o software muitas vezes visa auxiliar em algum processo da instituição, processo este já condicionado à sua estrutura, cultura e políticas externas, o engenheiro de software precisa estar atento a elas, visto que o novo software não deve forçar mudanças não planejadas em processos de negócios.

Questionamentos similares também serão realizados com alunos, porém em formato de formulário online para facilitar o processamento dos dados coletados.

Tendo obtido as informações dos *stakeholders* primários, será então necessário modelar quais são as regras que ditam a estrutura organizacional em foco. Para este fim, serão utilizados diagramas conceituais utilizando softwares de suporte como o Visual Paradigm, draw.io e a ferramenta Mermaid.

Esta etapa será de grande importância pois guiará a pesquisa para quais serão os detalhes dos módulos existentes durante o desenvolvimento do projeto, bem como esclarecerá visualmente quais são as informações sobre os recursos que são necessárias para se calcular a grade ótima. Como por exemplo:

1. Salas

- a) Quais são as salas disponíveis?
- b) Quais as capacidades de cada um?
- c) Em quais horários estão disponíveis?
- d) Quais são suas peculiaridades?
 - i. Têm computadores?
 - ii. Têm quadro?
 - iii. Têm televisão?
 - iv. Têm projetor?

2. Alunos

- a) Quantos são?
- b) Quais matérias demandam?

3. Professores

- a) Quais disciplinas ministram?
- b) Quantas disciplinas podem ministrar?
- c) Quais seus horários de preferência?

Com as regras organizacionais e variáveis bem definidas, serão testados alguns softwares que visam a criação de grades horárias para confirmar se há a real necessidade de se desenvolver um software específico para a instituição. Após realizados os testes, caso os softwares existentes supram as necessidades, este será utilizado nos passos seguintes. De outro modo, haverá a necessidade de desenvolvimento de um sistema de suporte à decisão como ferramenta centralizada para este fim.

Independente de qual dos softwares será testada a aplicabilidade do mesmo no contexto universitário e será mensurada a satisfação dos *stakeholders* durante o seu uso, assim buscando assegurar o seu uso na criação de grades horárias ótimas futuras.

1.6 Organização

Este trabalho abordará capítulos que de forma resumida lidam com os seguintes tópicos:

- O capítulo 1 de introdução traça informações gerais sobre o assunto do trabalho, elaborando mais detalhadamente quanto à sua problemática, hipótese, objetivos, justificativas, a metodologia escolhida e a organização de suas informações.
- O capítulo 2 de revisão literária informa mais detalhadamente sobre os problemas de agendamento, suas categorias, soluções, desafios e definições de termos.
- O capítulo 3 de desenvolvimento apresenta as informações coletadas durante as entrevistas. Apresenta também a estrutura geral dos códigos feitos, principalmente ilustrando quais os comportamentos esperados em cada um dos módulos, bem como quais foram as ferramentas utilizadas e as práticas seguidas.
- O Capítulo 4 de resultados e discussões demonstra o software final utilizado, apresenta
 comparações das qualidades entre grades horárias geradas pelo software e as que
 foram utilizadas nos últimos semestres. Apresenta também a pesquisa de satisfação
 realizada com os stakeholders entrevistados no início do desenvolvimento.
- O Capítulo 5 da conclusão e trabalhos futuros finaliza o presente trabalho com os pensamentos gerais sobre a pesquisa e desenvolvimento, apresentando as características não abordadas e indicando caminhos a serem seguidos por pesquisadores posteriormente.

2 Contexto acadêmico do Timetabling Problem

Antes de prosseguirmos com o desenrolar deste trabalho, é adequado que primeiro definamos alguns parâmetros para o melhor entendimento do que está por vir.

2.1 Definição de termos

Ao longo dos anos de desenvolvimento acadêmico, diversos assuntos vão se aprofundando e se tornando mais específicos, assim, os estudiosos acabam cunhando novos termos que o auxiliam a desvencilhar as novas áreas específicas das suas áreas originárias. Porém, existe o potencial de que haja um crescimento desestruturado destes novos termos, assim vários termos diferentes podem se referir a um mesmo conceito, enquanto que um mesmo tempo pode se referir a vários conceitos diferentes de acordo com o autor.

Assim como feito por (WREN, 1996), definiremos os conceitos dos termos que serão usados ao longo deste trabalho.

O termo "timetable" tem o mesmo valor que "grade horária" e serão usadas como se fossem sinônimos mesmo sendo de línguas diferentes. Segundo (WREN, 1996), podemos definir timetable como uma estrutura que mostra quando que eventos ocorrerão, não havendo necessariamente a alocação de recursos.

Vale ressaltar que este termo não tem seu uso limitado para os fins desta pesquisa, sendo também usado para problemas de alocação de enfermeiros, esportes, funcionários e transportes (ARRATIA-MARTINEZ; MAYA-PADRON; AVILA-TORRES, 2021). Entretanto, neste trabalho, abordaremos principalmente os termos relacionados ao que pode ser chamado de *Educational Timetabling* (Ed-TT) (ALENCAR et al., 2019a), que é o que tende a envolver um conjunto específico de recursos relacionados à educação.

Wren também define os conceitos para class timetable, university examination timetable e university class timetable, tendo relevância apenas o último, que considera a disponibilidade de professores e salas, a quantidade de alunos e os requisitos que determinada disciplina exige.

Exemplo: Enquanto que a disciplina "Laboratório de Física" exige que a aula seja ministrada em um tipo de sala específica com os equipamentos necessários, a disciplina "computação e sociedade" não apresenta esta restrição, ficando limitada apenas à quantidade de pessoas na turma.

Aqui, visto que uma solução final envolverá várias dimensões (Professores x Dis-

ciplinas x Sala x Alunos x Horários x Dias), consideraremos timetable como esse pacote de valores distribuídos em uma só estrutura. Para que esses valores sejam distribuídos, daremos o nome de **alocação** ao ato de criar qualquer relação entre as dimensões. Como a relação de horários e dias será considerada fixa, a **alocação** se referirá à atribuição como a de professores a disciplinas, disciplinas a salas, disciplinas a um determinado padrão de dias e horários, etc.

Para que esta alocação ocorra, é necessário atender a certos critérios, e aí entra o "problema de organização de grade horária", também chamado de timetabling problem. Esta é uma subcategoria do **problema de agendamento** (scheduling Optimization Problem) (ALENCAR et al., 2019a) que por sua vez é definido por (WREN, 1996) como sendo:

Resolver problemas práticos relacionados à alocação, sujeito a restrições, de recursos a objetos sendo colocados no espaço-tempo, usando ou desenvolvendo quaisquer ferramentas que possam ser apropriadas. Os problemas irão frequentemente se relacionar à satisfação de certos objetivos.

Outro termo relevante a se pontuar são as hard and soft constraints que podemos chamar de restrições rígidas e flexíveis. (ALENCAR et al., 2019a) as define dizendo que as restrições rígidas são de atendimento obrigatório, enquanto as restrições flexíveis são opcionais, mas convenientes para melhorar a qualidade da solução obtida.

Exemplo de restrição rígida: nem professores nem alunos podem ser alocados simultaneamente a duas salas ou disciplinas simultaneamente. Uma solução que viole esta restrição se torna automaticamente inviável.

Exemplo de restrição flexível: professor J. prefere não dar aulas nas tardes de sexta-feira, e prefere dar aula nas manhãs da segunda-feira. Uma solução que viole esta restrição não se torna inviável, porém tende a ter menos valor neste critério do que uma solução que siga as preferências definidas.

Alguns outros termos similares a este campo de pesquisa encontrados na literatura são periodic event scheduling problem, timetable scheduling, class scheduling, student scheduling, university course timetabling, dentre outros.

2.2 Métodos de resolução

Existem diversas implementações já realizadas, utilizando uma miríade de métodos. Em seu trabalho (MIRANDA; REY; ROBLES, 2012), J. Miranda informa sobre diversos sistemas baseados em computador para auxiliar na tarefa de agendamento. J. Miranda também cita um dos métodos de resolução como sendo o **modelo de programação inteira** e **heurísticas**.

Outros trabalhos buscaram condensar em forma de tabela as informações encontradas. Abaixo estão dispostas algumas das tabelas encontradas durante o estudo bibliográfico e que foram elaboradas por diversos autores.

Na figura 3, (ALEGRE, 2012) traça a relação entre os diversos autores, ano de sua publicação e seu país de origem com os dados encontrados em seus trabalhos quanto aos parâmetros utilizados na elaboração da grade horária, quão grandes eram cada um de seus parâmetros, quanto tempo foi necessário para achar uma solução e quais foram as técnicas utilizadas.

	Parâmetros Dimensões				es	Técnica														
			Turmas	Disciplinas	Professores	Locais de aula	Turmas	Professores	Locais de aula	Aulas		MIP	Heurísticas	S	GA	GRASP	1	CLP	N.	Outras
Autores	Ano	País	_	_	Ã	H		<u> </u>		_	Tempo	Σ	Ξ	E	b	Ö	SA	C	Z	0
1 Gotlieb	1962	Canadá	✓				111		107		NI	V								
2 Lawrie	1969	Inglaterra	✓	✓	✓		NI	74		NI	NI	✓								
3 De Werra	1970	Canadá	✓	✓	✓		48	84		NI	50 min*		✓							
4 Gans	1981	Holanda	✓	✓	✓	✓	NI	NI	NI	NI	NI		✓							
5 Abramson	1991	Austrália	✓		✓	✓	101	37	24	3030	14 h						✓			
6 Alvarez-Valdes et al	1996	Espanha	✓		✓	✓	26	60	NI	1100	NI			✓						
7 Wright	1996	Inglaterra	✓	✓	✓		NI	80		NI	NI			✓						
8 Birbas et al.	1997	Grécia	✓	✓	✓		21	46		721	NI	✓								
9 Colomi et al.	1998	Itália	✓	✓	✓		10	24		300	8 h			✓	✓		✓			
10 Schaerf	1999Ъ	Itália	✓		✓		38	61		1368	4,5 h			✓						
11 Smith et al.	2003	Austrália	✓		✓	✓	8	8	8	240	7,2 min								✓	
12 Valouxis; Housos	2003	Grécia	✓	✓	✓		9	23		315	1 h							✓		
13 Carrasco; Pato	2004	Portugal	✓		✓	✓	92	107	27	626	8,6 min								✓	
14 Santos; Ochi; Souza	2004	Brasil	✓		✓		20	33		500	NI			✓						
15 Moura et al.	2004	Brasil	✓		✓		NI	NI		NI	4 min			✓	✓	✓				✓
16 Avella et al.	2007	Itália	✓		✓		43	82		1548	20 min						✓			✓
17 Marte	2007	Alemanha	V		✓	✓	**	91	NI	1157	NI							✓		
18 Jacobsen et al.	2007	Alemanha	✓		✓	✓	**	91	NI	1157	100 s			✓				✓		
19 Santos; Souza	2007	Brasil	1		✓		20	33		NI	NI	1	✓	✓	✓		✓			✓
20 Belingiannis et al.	2008	Grécia	✓	✓	✓		13	35		455	45 min				✓					
J																			i i	

Figura 3 – Resumo de trabalhos, parâmetros, dimensões, tempo e técnicas.

21 Birbas et al.

22 Belingiannis et al.

23 Zhang et al.

Grécia

Grécia

2008

2009

2010

Fonte: (ALEGRE, 2012)

13 | 35

21 48 NI

404

455

4 min

45 min

Na figura 4, (ARRATIA-MARTINEZ; MAYA-PADRON; AVILA-TORRES, 2021), apresenta uma comparação similar à anterior, porém não separada em categorias, apenas categorizando entre verdadeiro e falso algumas características como alocação de salas, professores, nível institucional e método exato ou inexato.

Na figura 5, (ALENCAR et al., 2019a) explora uma categoria mais específica do problema, que é a característica da interatividade das interfaces desenvolvidas. Este apresenta características qualitativas quanto aos métodos, os dados dispostos, as técnicas

NI: Não Informado

^{* 5%} não solucionado

^{**} No modelo alemão, alunos - e não turmas - são alocados

^{***} Os autores são de diversos países. O estudo não aponta o país em que o modelo foi baseado

Figura 4 – Comparação entre artigos que solucionam o problema de grade horária

A comparison of similar papers that solve the university timetabling problem.

Characteristics	MirHassani [2]	Dimopoulou and Miliotis [9]	Philips et al. [11]	Oladejo et al. [12]	Aladag and Hocaoglu [13]	Abuhamdah and Ayob [14]	Lu and Hao [15]	Abdullah et al. [19]	Chen and Shih [20]	Bolaji et al. [21]	Di Gaspero and Shaerf [25]	Qu and Burke [26]	Veenstra and Vis [27]	Lemos et al. [28]	Our work
Course timetabling	✓	✓	1	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Professor assignment	✓	✓	_	_	✓	_	_	_	_	_	_	_	✓	_	1
Schedule Classroom/	✓	✓	✓	_	✓	✓	✓	✓	1	1	✓	✓	✓	_	1
space assignment	_	✓	✓	✓	✓	✓	✓	✓	1	✓	✓	✓	✓	✓	_
Department level	_	✓	_	_	✓	_	_	_	_	_	✓	_	_	✓	✓
Institutional level	✓	✓	1	✓	_	_	_	-	_	_	_	_	✓	_	_
Exact method Nonexact method	/	1	_	✓	<u>_</u>	<u> </u>	<u>_</u>	<u>_</u>	_ <	<u>_</u>		<u>_</u>	1	1	✓

Fonte: (ARRATIA-MARTINEZ; MAYA-PADRON; AVILA-TORRES, 2021) - editado

de interação e o método utilizado para solucionar o problema de grade horária educacional. Nesta figura, os autores usam "Y"para simbolizar "Sim", "N"para "Não"e - "para "Inconclusivo".

Figura 5 – Análise de publicações aceitas.

Analysis of the Accepted Publications. Some features are marked as [Y]es, [N]o or [-] for inconclusive.

Stu	dy Identification and Charac		Interaction	n types by I'	V Techniqu	Application and Solution Techn. Appl.			
Reference Identification	IV Method Applied	Displayed Data Elements by IV Method	OF	Constr.	Optimiz. Techn.	Manual Solution	Select Area	Applie.	Method(s) Used to Solve the Ed-TTP
Piechowiak and Kolski (2004)	2D-table and time chart.	timetable, resources x time.	N	Y	N	Y	N	Y	Manual with constraint-based rea- soning.
Thomas et al. (2008)	Oriented cluster graph drawing.	classes and students enrolled.	_	Y	N	Y	N	N	Manual or by any automatic sche- duler.
Thomas et al. (2009b)	Directed graph drawing, histogram, daisy chart, tree view	pre-processing data (raw input data).	N	N	N	N	Y	Y	There is no attempt to solve the pro- blem, just processing/visualizing raw input data.
Thomas et al. (2009a)	2D-table, oriented clus- ter graph drawing, histo- gram and tree represen- tation	timetable (complete) and pre- processing data (raw input data).	N	Y	N	N	Y	Y	Constraint Satisfaction Program.
Thomas et al. (2010b)	2D-table, graph drawing (2D, 3D).	timetable (complete), constraints and conflicts.	-	Y	N	Y	Y	Y	Constraint Satisfaction Program (in a constraints network, with back- tracking) with user collaboration.
Thomas et al. (2010c)	2D-table, graph drawing (2D, 3D).	timetable (complete), constraints and conflicts.	-	Y	N	Y	Y	Y	Constraint Satisfaction Program (ir a constraints network) with user collaboration.
Thomas et al. (2010a)	2D-table, graph drawing, tree representation	timetable (complete), constraints, conflicts.	N	Y	N	Y	Y	Y	Visual analysis heuristics and evo- lutionary algorithms.
Abdelraouf et al. (2011)	Undirected graph dra- wing (representing peop- les, courses,)	timetable with day/time, graphs and text	N	Y	N	Y	N	Y	Constraint satisfaction problem solving.
Thomas et al. (2011)	Parallel coordinates (for uni/multi dimensional variables).	timetable (complete).	N	N	N	N	Y	Y	There is no resolution of the pro- blem, just processing raw data.
Thomas et al. (2012)	2D-table, graph drawing (2D, 3D), parallel coordinates.	timetable (complete), constraints and conflicts.	-	Y	-	Y	-	Y	Manual and user-driven problem solving environment, with clashes reconciliation (AI Techniques).

Fonte: (ALENCAR et al., 2019a) - editado

2.3 Desafios recorrentes

Apesar da vasta quantidade de trabalhos realizados com este fim, o *Timetabling Problem* segue sendo uma área sem uma solução definitiva.

Tomáš Müller (MURRAY; MüLLER; RUDOVá, 2007) traz a questão da modelagem como um dos maiores obstáculos. À medida em que a complexidade aumenta, se torna

cada vez mais difícil desenvolver uma solução efetiva. Assim fazendo com que a solução para uma universidade possa não ter utilidade para outras, ou até mesmo não seja capaz de lidar com todos os problemas de uma mesma universidade.

Apesar do contrafluxo encontrado na resolução desse problema, Tomáš cita que, apesar da complexidade, é sim possível desenvolver soluções que tenham uso prático, mesmo que não seja um processo fácil. As ferramentas existem e estão disponíveis. Restando então considerar e resolver as preocupações dos usuários às questões, visto que as técnicas de resolução já se encontram vastamente documentados.

Com isso, entramos também no ramo da Interação Homem-Máquina, ramo abordado por Dinata (ANDRE; DINATA, 2018) que visou em seu desenvolvimento a criação de uma interface focada no usuário. Assim minimizando o atrito na abordagem desse problema complexo. Também sendo área de enfoque de (ALENCAR et al., 2019a) em sua revisão literária

3 Modelagem geral do sistema

Tendo esclarecido sobre as questões gerais do trabalho e da área de estudo. Agora nos aprofundaremos um pouco mais na modelagem e criação de diagramas que ilustrem o funcionamento geral do sistema e a forma como se dará a execução da metodologia proposta.

3.1 Estágios de execução

Em seu trabalho de aplicação prática, (MIRANDA; REY; ROBLES, 2012) estruturou estágios que compõem o processo necessário para que enfim se alcance a definição de *timetables* ótimas.

Figura 6 – Estágios para a obtenção de grade horária ótima

Fonte: (MIRANDA; REY; ROBLES, 2012)

Na Figura 6, estão dispostos 4 estágios principais. O primeiro dispõe da aquisição de informações. O meio de aquisição não é relevante para o momento atual, apenas considera-se que esta informação será obtida. No segundo estágios são definidas grades horárias preliminares para se atribuir os alunos. No terceiro, os alunos se inscrevem e a demanda é ajustada, por fim, no quarto estágio, ocorre a alocação final das salas.

3.2 Iteração

Para se alcançar uma alta satisfação por parte dos *stakeholders*, vê-se necessária a constante interação com os mesmos. Para isto, será seguida a estrutura utilizada por (ANDRE; DINATA, 2018).

Designs Alternativos

Prototipagem

Avaliação

Produto Final

Figura 7 – Etapas do Design de Interação

Fonte: o autor

Seguindo o conceito do Design de Interação, a Figura 7 ilustra o ciclo de ações a serem tomadas durante o desenvolvimento do sistema, caso este venha a ser necessário. Neste modelo de pesquisa, os *stakeholders* serão consultados continuamente enquanto lhes é apresentado protótipos do sistema, para que assim informem quanto às suas percepções. Esta dinâmica tem como finalidade encontrar um design tal que seja adequado aos desejos e necessidades de seus usuários finais.

3.3 Funcionamento

O sistema final seguirá uma dinâmica similar à que foi ilustrada por (ALENCAR et al., 2019b) em seu trabalho sobre o uso da Visualização de Informações em relação às Ed-TTPs.

A Figura 8 apresenta o comportamento geral do sistema, como seus diferentes segmentos interagem entre si e de que forma o usuário interage com o mesmo. O usuário poderá ajustar os objetivos da otimização e suas restrições, elas serão utilizadas nos métodos de otimização. Estes métodos serão utilizados para se alcançar soluções para estes critérios, as melhores serão então armazenadas. Em posso destes dados, a aplicação apresentará visualmente estas informações ao usuário, permitindo que ele interaja dinamicamente a fim de alcançar seus objetivos.

Figura 8 - Funcionamento geral do sistema

Fonte: (ALENCAR et al., 2019b)

Referências

ALEGRE, P. Desenvolvimento de um Modelo para o School Timetabling Problem Baseado na Meta-Heurística Simulated Annealing. *Simulated Annealing*, 2012. Citado na página 13.

ALENCAR, W. et al. Visualization Methods for Educational Timetabling Problems: A Systematic Review of Literature. In: *Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications*. Prague, Czech Republic: SCITEPRESS - Science and Technology Publications, 2019. p. 275–281. ISBN 978-989-758-354-4. Disponível em: http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007375802750281. Citado 5 vezes nas páginas 11, 12, 13, 14 e 15.

ALENCAR, W. D. S. et al. Information Visualization for Highlighting Conflicts in Educational Timetabling Problems. In: BEBIS, G. et al. (Ed.). *Advances in Visual Computing*. Cham: Springer International Publishing, 2019. v. 11844, p. 275–288. ISBN 978-3-030-33719-3 978-3-030-33720-9. Series Title: Lecture Notes in Computer Science. Disponível em: http://link.springer.com/10.1007/978-3-030-33720-9_21. Citado 2 vezes nas páginas 17 e 18.

ANDRE, A.; DINATA, H. Interaction Design to Enhance UX of University Timetable Plotting System on Mobile Version. *IOP Conference Series: Materials Science and Engineering*, v. 407, p. 012174, set. 2018. ISSN 1757-899X. Disponível em: https://iopscience.iop.org/article/10.1088/1757-899X/407/1/012174. Citado 3 vezes nas páginas 8, 15 e 17.

ARRATIA-MARTINEZ, N. M.; MAYA-PADRON, C.; AVILA-TORRES, P. A. University Course Timetabling Problem with Professor Assignment. *Mathematical Problems in Engineering*, v. 2021, p. 1–9, jan. 2021. ISSN 1563-5147, 1024-123X. Disponível em: https://www.hindawi.com/journals/mpe/2021/6617177/. Citado 3 vezes nas páginas 11, 13 e 14.

BARHAM, A. M.; WESTWOOD, J. B. A Simple Heuristic to Facilitate Course Timetabling. *The Journal of the Operational Research Society*, v. 29, n. 11, p. 1055, nov. 1978. ISSN 01605682. Disponível em: https://www.jstor.org/stable/3009353?origin=crossref. Citado na página 5.

BOURQUE, P.; FAIRLEY, R. E. (Ed.). SWEBOK: guide to the software engineering body of knowledge. Version 3.0. Los Alamitos, CA: IEEE Computer Society, 2014. OCLC: 880350861. ISBN 978-0-7695-5166-1. Citado na página 9.

MIRANDA, J.; REY, P. A.; ROBLES, J. M. udpSkeduler: A Web architecture based decision support system for course and classroom scheduling. *Decision Support Systems*, v. 52, n. 2, p. 505–513, jan. 2012. ISSN 01679236. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0167923611001746. Citado 3 vezes nas páginas 5, 12 e 16.

Referências 20

MURRAY, K.; MüLLER, T.; RUDOVá, H. Modeling and Solution of a Complex University Course Timetabling Problem. In: BURKE, E. K.; RUDOVá, H. (Ed.). *Practice and Theory of Automated Timetabling VI*. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. v. 3867, p. 189–209. ISBN 978-3-540-77344-3. Series Title: Lecture Notes in Computer Science. Disponível em: http://link.springer.com/10.1007/978-3-540-77345-0_13. Citado na página 14.

THOMAS, J. J.; KHADER, A. T.; BELATON, B. Visualization Techniques on the Examination Timetabling Pre-processing Data. In: 2009 Sixth International Conference on Computer Graphics, Imaging and Visualization. Tianjin, China: IEEE, 2009. p. 454–458. ISBN 978-0-7695-3789-4. Disponível em: http://ieeexplore.ieee.org/document/5298764/ >. Citado na página 5.

WREN, A. Scheduling, timetabling and rostering — A special relationship? In: GOOS, G. et al. (Ed.). *Practice and Theory of Automated Timetabling*. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. v. 1153, p. 46–75. ISBN 978-3-540-61794-5 978-3-540-70682-3. Series Title: Lecture Notes in Computer Science. Disponível em: http://link.springer.com/10.1007/3-540-61794-9_51. Citado 2 vezes nas páginas 11 e 12.