

What is claimed is:

1        1. A printed circuit board comprising:  
2            a signal layer comprising traces to communicate signals not associated with regulated  
3            supply voltages; and  
4            a supply voltage plane embedded in the signal layer to supply power to multiple  
5            supply voltage pins of a component mounted to the printed circuit board.

1        2. The printed circuit of claim 1, further comprising:  
2            a supply voltage plane layer separate from the signal layer.

6        3. The printed circuit board of claim 1, wherein the supply voltage plane has an  
20      outer boundary established by the supply voltage pins of the component.

2        4. The printed circuit board of claim 1, wherein the supply voltage plane lies  
25      substantially within a region located directly below the component, the component being  
3      mounted on top of the signal layer.

3        5. The printed circuit board of claim 1, wherein the supply voltage plane has an  
outer boundary that generally follows a projection of a main body of the component onto the  
signal layer.

1        6. The printed circuit board of claim 1, further comprising:  
2            a supply voltage plane layer different from the signal layer, the supply voltage plane  
3            layer comprising an embedded ground plane to provide ground connections for the signal  
4            layer.

1        7. The printed circuit board of claim 6, wherein the ground connections are  
2            associated with electrical devices connected to the component.

1           8.     The printed circuit board of claim 6, wherein the ground plane has an outer  
2     boundary established by the ground connections.

1           9.     The printed circuit board of claim 6, wherein the ground plane lies  
2     substantially within a region located directly below the component, the component being  
3     mounted on top of the signal layer.

1           10.    The printed circuit board of claim 6, wherein the ground plane is significantly  
2     larger than the supply voltage plane.

1           11.    The printed circuit board of claim 6, wherein the ground plane has an outer  
2     boundary that circumscribes a projection of the supply voltage plane onto the signal layer.

1           12.    The printed circuit board of claim 6, further comprising:  
2         a core layer,  
3         wherein the signal layer and the supply voltage plane layer are located on the same  
4     side of the core layer.

1           13.    The printed circuit board of claim 6, wherein the ground plane is arranged to  
2     reduce an inductance.

1           14.    The printed circuit board of claim 1, wherein the supply voltage plane is  
2     arranged to reduce an inductance.

1           15.    A printed circuit board comprising:  
2         a supply voltage plane layer to communicate a supply voltage; and  
3         a ground plane embedded in the supply voltage plane layer to provide ground  
4     connections to multiple pins of a component mounted to the printed circuit board.

1           16.    The printed circuit of claim 15, further comprising:  
2         a ground plane layer separate from the supply voltage plane layer.

1           17. The printed circuit board of claim 15, wherein the ground plane lies  
2 substantially within a region located directly below the component, the component being  
3 mounted on top of the signal layer.

1           18. The printed circuit board of claim 15, wherein the ground connections are  
2 associated with electrical devices connected to the component.

1           19. The printed circuit board of claim 15, wherein the ground plane has an outer  
2 boundary established by the ground connections.

1           20. A method comprising:  
2           for each high frequency component to be mounted on a printed circuit board,  
3 embedding an associated supply voltage plane in a signal layer of the printed board to provide  
4 power to the component, the signal layer being used to communicate high frequency signals  
associated with the high frequency component or components.

1           21. The method of claim 20, further comprising:  
2           coupling the supply voltage plane or planes embedded in the signal layer to a supply  
3 voltage plane layer separate from the signal layer.

1           22. The method of claim 21, wherein the coupling comprises:  
2           coupling an inductive element between at least one of the supply voltage plane or  
3 planes embedded in the signal layer and the supply voltage plane layer.

1           23. The method of claim 20, further comprising:  
2           locating each supply voltage plane embedded in the signal layer underneath the  
3 associated component, the component or components being mounted on top of the signal  
4 layer.

1           24. The method of claim 20, further comprising:  
2           for each supply voltage plane embedded in the signal layer, embedding an associated

3 ground plane in a supply voltage plane layer of the printed circuit board to provide ground  
4 connections for the component associated with said supply voltage plane embedded in the  
5 signal layer.

1 25. The method of claim 24, further comprising:  
2 providing a core to support the signal layer and the supply voltage plane layer; and  
3 locating the signal layer and the supply voltage plane layer on the same side of the  
4 core.

1 26. The method of claim 25, further comprising:  
2 providing a ground plane layer on the opposite side of the core from said same side of  
3 the core; and  
4 connecting the ground plane or planes embedded in the supply voltage plane layer to  
the ground plane layer.

1 27. A method comprising:  
2 for each high frequency component to be mounted on a printed circuit board,  
3 embedding an associated ground plane in a supply voltage plane layer of the printed circuit  
board to provide ground connections for the component, the supply voltage plane layer being  
used to communicate a supply voltage to the high frequency component or components.

1 28. The method of claim 27, further comprising:  
2 coupling the ground plane or planes embedded in the supply voltage plane layer to a  
3 ground plane layer separate from the supply voltage plane layer.

1 29. The method of claim 27, further comprising:  
2 locating each ground plane embedded in the supply voltage plane layer underneath the  
3 associated component, the component or components being mounted above the supply  
4 voltage plane layer.