CSCI 3022-002 Intro to Data Science Visual Exploratory Data Analysis

Opening Zoom Example: Calculate the Mean and Standard Deviation of the data set: Data (units in dollars): 2,4,3,5,6,4.

Example: Calculation of the SD

Data (units in dollars): 2,4,3,5,6,4.=

$$\frac{6.4.1}{\times}^{2} = \frac{2+4+3+5+6+9}{6}$$

Example: Calculation of the SD

Data (units in dollars): 2,4,3,5,6,4.

Since we mean business, we need the average first.

rean business, we need the average first.
$$\begin{array}{c}
X \\
X \\
X \\
X \\
X \\
X
\end{array}$$

$$\begin{array}{c}
\bar{X} \\
\bar{X} \\
\bar{X} \\
\bar{X}
\end{array}$$

$$\begin{array}{c}
\bar{X} \\
\bar{X} \\
\bar{X} \\
\bar{X}
\end{array}$$

$$\begin{array}{c}
\bar{X} \\
\bar{X} \\
\bar{X} \\
\bar{X}
\end{array}$$

$$\begin{array}{c}
\bar{X} \\
\bar{X} \\
\bar{X} \\
\bar{X}
\end{array}$$

$$\begin{array}{c}
\bar{X} \\
\bar{X} \\
\bar{X} \\
\bar{X}$$

$$\begin{array}{c}
\bar{X} \\
\bar{X} \\
\bar{X}
\end{array}$$

$$\begin{array}{c}
\bar{X} \\
\bar{X} \\
\bar{X}$$

$$\begin{array}{c}
\bar{X} \\
\bar{X} \\
\bar{X}
\end{array}$$

$$\begin{array}{c}
\bar{X} \\
\bar{X} \\
\bar{X}$$

$$\begin{array}{c}
\bar{X} \\
\bar{X} \\
\bar{X}
\end{array}$$

$$\begin{array}{c}
\bar{X} \\
\bar{X} \\
\bar{X}$$

$$\begin{array}{c}
\bar{X} \\
\bar{X} \\
\bar{X}
\end{array}$$

$$\begin{array}{c}
\bar{X} \\
\bar{X} \\
\bar{X} \\
\bar{X}$$

$$\begin{array}{c}
\bar{X} \\
\bar{X$$

Example: Calculation of the SD

Data (units in dollars): 2,4,3,5,6,4.

Since we mean business, we need the average first.

$$\bar{X} = \frac{2+4+3+5+6+4}{6} = \frac{24}{6} = 4$$

Now let's compute the deviations...

vectorized deviations $\overbrace{[(X-\bar{X})^2]}^{\text{deviations}} = [(2-4)^2, (4-4)^2, (3-4)^2, (5-4)^2, (6-4)^2, (4-4)^2]$

Example: Calculation of the SD

Data (units in dollars): 2,4,3,5,6,4. 5d:\$1.41

1=2 X==4 X6=4 Since we mean business, we need the average first.

$$\bar{X} = \frac{2+4+3+5+6+4}{6} = \frac{24}{6} = 4$$

Now let's compute the deviations...

and sum and "average" those!

Announcements and To-Dos

Announcements:

- 1. HW 1 Posted, due Friday!
- 2. Another nb day this Friday!

Last time we learned:

1. Loading, beginning to manipulate data in Python.

To do:

1. Start that HW! Ensure you can load the data and work with it. Practice your TeX/markdowns!

Last Time Recap:

We talked about two big types of measures for a data set $X_1 \dots X_n$: centrality and dispersion.

Measures	Stat	Calculation	Advantages
Centrality	Mean Median Mode	$\frac{\sum_{i=1}^{n} X_i}{n}$ middle value most common value	Uses all data, behaves nicely not pulled by single outliers 'indicative' of true data value
Dispersion	Variance SD Range IQR	$\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}$ $\sqrt{s^{2}}$ Max minus min $Q_{3}\text{-}Q_{1}$	Squared distance can be nice, no radical units same as data shows extremes like median: avoids outliers

Means and Medians:

One way we conceptualize the mean and the median as data scientists is we ask the question: "what single number is **closest** to our data." This requires us choose a definition of distance: squared or absolute?

We prove: Show that the *sample mean* of data $X_1, X_2, \dots X_n$ is the unique minimizer c of the function

$$f(c) = \sum_{i=1}^{n} (X_i - c)^2$$

NB: The *median* of data $X_1, X_2, \dots X_n$ is the possibly non-unique minimizer c of the

$$f(c) = \sum_{i=1}^{n} |X_i - c|$$

Proof: Differentiating yields

$$f(c) = \sum_{i=1}^{\infty} (X_i - c)^2$$

Proof: Differentiating yields

$$f'(c) = \frac{df}{dc} \sum_{i=1}^{n} (X_i - c)^2 = \sum_{i=1}^{n} -2(X_i - c).$$

Setting f'(c) = 0 gives

Proof: Differentiating yields

$$f'(c) = \frac{df}{dc} \sum_{i=1}^{n} (X_i - c)^2 = \sum_{i=1}^{n} -2(X_i - c).$$

Setting f'(c) = 0 gives

$$0 = \sum_{i=1}^{n} -2(X_{i} - c)$$

$$= 2nc - 2\sum_{i=1}^{n} X_{i}$$

$$c = \frac{\sum_{i=1}^{n} X_{i}}{n} = \bar{X}$$

$$0 = \sum_{i=1}^{n} X_{i}$$

Histograms

Definition: A *histogram* is a graphical representation of the distribution of numerical data.

To construct a histogram:

height = "H" of times with a data inside interval

"Bin" the measured values of the Vol. (The bins are typically consecutive, non-overlapping, and are usually equal size.)

in the range.

Frequency histogram: count how many values fall into each bin/interval and draw accordingly.

Density histogram: count how many values fall into each bin, and adjust the height such that the sum of the area of all bins equals 1. Equivalently: construct a Frequency histogram and divide the y axis by the total data count.

Old Faithful Histogram

Z inpotent 1) gap at so zoo things; 2) none often 200-300 than

The number of bins chosen may lead to very different pictures of the data!

Friedman-Diaconis: bin width
$$= 2$$

Where bins begin and end may also matter!

9/18

How many bins?

A lot of statisticians advise different rules or sanity checks for histogram bins.

Textbook:

$$n_{bins}=1+3.3\log_{10}(n)$$
 $w_{bins}=rac{3.49s}{n^{1/3}}$ 5:571. Nev.

Don't memorize these. My heuristic for binning: start with "too many" bins at first if you have to, and slowly expand the bin size to ensure:

- 1. The data starts to "smooth" out a little... but
- 2. We don't smooth over what appear to be distinct multiple modes

Histogram Example

Find the frequency histogram with bin width 5 of the data on left, with left-most bin edge at

35. 50 -

Histogram Example

Find the frequency histogram with bin width 5 of the data on left, with left-most bin edge at 35.

Histogram Descriptives

Histograms come in a variety of shapes.

Symmetric

Positive Skew

12 / 18

Mullen: Visual EDA Fall 2020

Histogram Descriptives

Histogram Descriptives

Histograms come in a variety of shapes.

Unimodal

Bimodal

Multimodal

Mullen: Visual EDA

Quartiles, Day 2

Compute the Quartiles and the IQR of the data to the left, with

$$x = [38, 41, 41, 41, 41, 41, 43, 44, 44, 48, 49]$$

Mullen: Visual EDA

Quartiles, Day 2

Compute the Quartiles and the IQR of the data to the left, with

$$x = [38, 41, 41, 41, 41, 42, 43, 44, 44, 48, 49]$$

n=11 is odd, so Q_2 or the median is the 6th sorted value of 42. Then 41 and 44 divide the halves in half, and are the 3rd and 9th sorted data points.

$$x = [38, 41, 41, 41, 41, 42, 43, 44, 44, 48, 49]$$

This makes the IQR = 44 - 41 = 3

Boxplots

A boxplot is a convenient way of graphically depicting groups of numerical data through the five number summary: minimum, first quartile, median, third quartile, and maximum.

- 1. The box extends from Q1 to Q3
- 2. The median line displays the median

- 3. The whiskers extend to farthest data point within $1.5 \times IQR$ of each quartile
- 4. The fliers or outliers are any points outside of the whiskers
- 5. The width of the box is unimportant
- 6. Can be horizontally or vertically oriented

Boxplots

Why do we use box plots?

- 1. They depict centrality via the median.
- 2. They depict dispersion through both the range and the IQR
- 3. Major outliers are shown
- 4. The median's location within the IQR suggests skewness; so too may lopsided whisker lengths or outliers

When might a box-whisker plot be misleading?

•

When might a box-whisker plot be particularly useful?

•

16 / 18

Boxplots

Why do we use box plots?

- 1. They depict centrality via the median.
- 2. They depict dispersion through both the range and the IQR
- 3. Major outliers are shown
- 4. The median's location within the IQR suggests skewness; so too may lopsided whisker lengths or outliers

When might a box-whisker plot be misleading?

• No indication of how data are dispersed (is there "no-man's land"?)

When might a box-whisker plot be particularly useful?

• Comparing medium numbers of variables or columns quickly (say, 3-10); and much easier than histograms

Mullen: Visual EDA

Fall 2020

16 / 18

Boxplot Example

Draw the box-whisker plot for the data to the left.

Title

Today we learned

- 1. How to represent data with histograms and box-whisker plots (boxplots)
- 2. Some strengths and weaknesses of each

Moving forward:

- No class Monday for Labor Day.
- Notebook day: making some histograms, boxplots, and playing around with data frames.
- 3 of the next 5 course meetings are notebook days.

Next time in lecture (Friday):

- We probably talk about probability!

