Formal languages and Automata 形式语言与自动机

Chapter 2 FINITE AUTOMATA

Beijing University of Posts and Telecommunications

北京邮电大学

刘咏彬 liuyb@bupt.edu.cn

2023.9

REDUCTION OF THE NUMBER OF STATES IN FINITE AUTOMATA

- Any dfa defines a unique language, but the converse is not true.
- For a given language, there are many dfa's that accept it.
- The two dfa's depicted in Figure 2.17(a) and 2.17(b) are equivalent

Indistinguishable and Distinguishable(1)

DEFINITION 2.8

Two states p and q of a dfa are called indistinguishable (不可区分的) if

$$\delta^*(p, w) \in F$$
 implies $\delta^*(q, w) \in F$,

and

$$\delta^*(p, w) \notin F$$
 implies $\delta^*(q, w) \notin F$,

for all $w \in \Sigma^*$.

If, on the other hand, there **exists** some string $w \in \Sigma^*$ such that

$$\delta^*(p, w) \in F$$
 and $\delta^*(q, w) \notin F$,

or vice versa, then the states p and q are said to be distinguishable (可区分的) by astring w.

Indistinguishable and Distinguishable(2)

- Two states are either indistinguishable or distinguishable.
- Indistinguishability has the properties of an equivalence relation (等价关系):

If p and q are indistinguishable and if q and r are also indistinguishable, then so are p and r, and all three states are indistinguishable.

Procedure: mark (1)

- Finding pairs of distinguishable states
- procedure: mark
 - 1. Remove all inaccessible (不可达的) states.
 - 2. Consider all pairs of states (p, q). If $p \in F$ and $q \notin F$ or vice versa, mark the pair (p, q) as distinguishable.
 - 3. Repeat the following step until no previously unmarked pairs are marked:

For all pairs $(p,\,q)$ and all $a\in\Sigma$, compute $\delta(p,\,a)\!=\!p_a$ and $\delta(q,\,a)\!=\!q_a$. If the pair $(p_a,\,q_a)$ is marked as distinguishable, mark $(p,\,q)$ as distinguishable.

- 1. Remove q5
- 2. fill in the distinguishable table

q_1				
q_2				
q_3	X	X	X	
q_4	X	X	X	
	q_0	q_1	q_2	q_3

Procedure: mark (2)

- Finding pairs of distinguishable states
- Procedure: mark
 - 1. Remove all inaccessible (不可达的) states.
 - 2. Consider all pairs of states (p, q). If $p \in F$ and $q \notin F$ or vice versa, mark the pair (p, q) as distinguishable.
 - 3. Repeat the following step until no previously unmarked pairs are marked:

For all pairs $(p,\,q)$ and all $a\in\Sigma$, compute $\delta(p,\,a)\!=\!p_a$ and $\delta(q,\,a)\!=\!q_a$. If the pair $(p_a,\,q_a)$ is marked as distinguishable, mark $(p,\,q)$ as distinguishable.

- 1. Remove q5
- 2. fill in the distinguishable table. mark all the final state and non-final state pairs

q_1				
q_2				
q_3	X	X	X	
q_4	X	X	X	
	q_0	q_1	q_2	q_3

EXAMPLE OF PROCEDURE MARK

1. Remove q5
2. fill in the distinguishable table. mark all the final state and non-final state pairs

- $\Rightarrow \textbf{3.} \ \delta(q_0, 1) = q_2, \delta(q_1, 1) = q_3, \\ (q_2, q_3) \ \text{are distinguishable, so} \\ \text{mark } (q_0, q_1) \ \text{as distinguishable} \\ \delta(q_0, 1) = q_2, \delta(q_2, 1) = q_4, \ (q_2, q_4) \\ \text{are distinguishable, so mark} \\ (q_0, q_2) \ \text{as distinguishable}$
- ➡ 4. Starting from q₃ or q₄, reading any binary string leads to a transition to an final state, hence (q₃, q₄) are indistinguishable.

5. $\delta(q_1, 0)=q_2, \delta(q_2, 0)=q_2, \delta(q_1, 1)=q_3, \delta(q_2, 1)=q_4, (q_3, q_4)$ is indistinguishable, hence (q_1, q_2) are indistinguishable

q_1	X			
q_2	X			
q_3	X	X	X	
q_4	X	X	X	
	q_0	q_1	q_2	q_3

Proof of Procedure Mark (1)

• THEOREM 2.3

The **procedure mark**, applied to any dfa $M=(Q, \Sigma, \delta, q_0, F)$, terminates and determines **all** pairs of distinguishable states.

• Proof:

Note first that states q_i and q_j are distinguishable with a string of length n if and only if there are transitions

$$\delta(q_i, a) = q_k \tag{2.5}$$

and

$$\delta(q_i, a) = q_l \tag{2.6}$$

for some $a\!\in\!\Sigma,$ with q_k and q_l distinguishable by a string of length $n\!-\!1.$

Proof of Procedure Mark (2)

We First to show that at the completion of the nth pass through the loop in step 3, all states distinguishable by strings of length n or less have been marked.

Proof by induction:

- In step 2, we mark all pairs indistinguishable by λ , so we have a basis with n = 0 for an induction.
- Assume that the claim is true for all i = 0, 1, ..., n − 1. all states distinguishable by strings of length up to n − 1 have been marked.
- Because of (2.5) and (2.6) above, at the end of this pass, all states distinguishable by strings of length up to n will bemarked.
- By induction then, we can claim that, for any n, at the completion of the nth pass, all pairs distinguishable by strings of length n or less have been marked.

Proof of Procedure Mark (3)

- To show that this procedure marks all distinguishable states, assume that the loop terminates after n passes. This means that during the nth pass no new states were marked.
- From (2.5) and (2.6), it then follows that there cannot be any states distinguishable by a string of length n, but not distinguishable by any shorter string.
- But if there are no states distinguishable only by strings of length n, there cannot be any states distinguishable only by strings of length n+ 1, and so on.
- As a consequence, when the loop terminates, all distinguishable pairs have been marked.

Procedure mark

- The procedure mark can be implemented by partitioning the states into equivalence classes.
- Whenever two states are found to be distinguishable, they are immediately put into separate equivalence classes.
- mark $\{q_0, q_1, q_2, q_3, q_4\}$
 - 0th pass distinguishable: {q₀,q₁,q₂},{q₃,q₄}
 - 1th pass distinguishable: {q₀},{q₁,q₂},{q₃,q₄}
 - 2th pass distinguishable: stop

EXAMPLE 2.15

Consider the automaton in Figure 2.18.

In the second step of procedure mark we partition the state set into final and nonfinal states to get two equivalence classes $\{q_0, q_1, q_3\}$ and $\{q_2, q_4\}$. In the next step, when we compute

$$\delta(q_0, 0) = q_1$$

and

$$\delta(q_1, 0) = q_2,$$

we recognize that q_0 and q_1 are distinguishable, so we put them into different sets. So $\{q_0, q_1, q_3\}$ is split into $\{q_0\}$ and $\{q_1, q_3\}$. Also, since $\delta(q_2, 0) = q_3$ and $\delta(q_4, 0) = q_4$, the class $\{q_2, q_4\}$ is split into $\{q_2\}$ and $\{q_4\}$. The rest of the computations show that no further splitting is needed.

FIGURE 2.18

Construction of the Minimal Dfa

• Procedure: reduce

Given a dfa $M=(Q,\Sigma,\delta,q_0,F)$, we construct a reduced dfa $\widehat{M}=(\widehat{Q},\Sigma,\widehat{\delta},q_0,\widehat{F})$ as follows.

- 1. Use procedure mark to generate the equivalence classes, $say\{q_i, q_j, \cdots, q_k\}$, as described.
- 2. For each set $\{q_i, q_j, \dots, q_k\}$ of such indistinguishable states, create a state labeled $ij \cdots k$ for \widehat{M} .
- 3. For each transition rule of M of the form

$$\delta(q_r, a) = q_p$$

find the sets to which q_r and q_p belong. If $q_r \in \{q_i, q_j, \cdots, q_k\}$ and $q_p \in \{q_l, q_m, \cdots, q_n\}$, add to $\widehat{\delta}$ a rule

$$\widehat{\delta}(ij\cdots k) = lm\cdots n.$$

- 5. The initial state \hat{q}_0 is that state of \hat{M} whose label includes the 0.
- 6. \widehat{F} is the set of all the states whose label contains i such that $q_i \in F$

EXAMPLE 2.16

Continuing with Example 2.15, we create the states in Figure 2.19. Since, for example,

$$\delta(q_1,0)=q_2,$$

there is an edge labeled 0 from state 13 to state 2. The rest of the transitions are easily found, giving the minimal dfa in Figure 2.19.

FIGURE 2.19

Minimal Dfa

• THEOREM 2.4

ullet Given any dfa M, application of the procedure reduce yields another dfa \widehat{M} such that

$$L(M) = L(\widehat{M})$$

• Furthermore, \widehat{M} is minimal in the sense that there is no other dfa with a smaller number of states that also accepts L(M).

Proof \widehat{M} is equivalent to the original dfa

- This is relatively easy and we can use inductive arguments similar to those used in establishing the equivalence of dfa's and nfa's.
- ullet $\delta^*(q_i,w)=q_j$ if and only if the label of is of the $\widehat{\delta}^*(q_i,w)=q_j$ form $\cdots j\cdots$

Proof \widehat{M} is minimal (1)

- Proof by contradiction
 - Assume that there is an equivalent dfa M_1 , with transition function δ_1 and initial state q_0 , equivalent to \widehat{M} , but with fewer states.
 - Since there are no inaccessible states in \widehat{M} , there must be distinct strings w_1, w_2, \cdots, w_m such that

$$\widehat{\delta}^*(p_0, w_i) = p_i, i = 1, 2, \dots, m$$

• But since M_1 has fewer states than \widehat{M} strings, say w_k and w_l , such that

$$\delta_1^*(q_0, w_k) = \delta_1^*(q_0, w_l)$$

Proof \widehat{M} is minimal (2)

- Since p_k and p_l are distinguishable, there must be some string x such that $\widehat{\delta}^*(p_0, w_k x) = \widehat{\delta}^*(p_k, x)$ is a final state, and $\widehat{\delta}^*(p_0, w_l x) = \widehat{\delta}^*(p_l, x)$ is a nonfinal state (or vice versa).
 - In other words, $w_k x$ is accepted by \widehat{M} and $w_l x$ is not.
 - But note that
 - $\delta_1^*(q_0, w_k x) = \delta_1^*(\delta_1^*(q_0, w_k), x)$ = $\delta_1^*(\delta_1^*(q_0, w_l), w_k)$
- Thus, M_1 either accepts both $w_k x$ and $w_l x$ or rejects both, contradicting the assumption that \widehat{M} and M_1 are equivalent. This contradiction provesthat M_1 cannot exist.

补充

For any regular language regular language L, in an isomorphic sense (在同构意义上), the minimal dfa of L is unique.

• Dfa isomorphism means that for any regular language RL, the minimal DFA accepting RL has a unique structure where states are one-to-one corresponded and state transitions are also corresponded accordingly between the DFAs.

END