TancarFlow

```
TensorFlow API r1.4

tf.nn.pool
```

```
pool(
    input,
    window_shape,
    pooling_type,
    padding,
    dilation_rate=None,
    strides=None,
    name=None,
    data_format=None
)
```

Defined in tensorflow/python/ops/nn_ops.py.

See the guide: Neural Network > Pooling

Performs an N-D pooling operation.

In the case that $data_format$ does not start with "NC", computes for $0 \le b \le batch_size$, $0 \le x[i] \le authorse author$

```
output[b, x[0], ..., x[N-1], c] =
   REDUCE_{z[0], ..., z[N-1]}
   input[b,
        x[0] * strides[0] - pad_before[0] + dilation_rate[0]*z[0],
        ...
   x[N-1]*strides[N-1] - pad_before[N-1] + dilation_rate[N-1]*z[N-1],
   c],
```

where the reduction function REDUCE depends on the value of **pooling_type**, and pad_before is defined based on the value of **padding** as described in the comment here. The reduction never includes out-of-bounds positions.

In the case that data_format starts with "NC", the input and output are simply transposed as follows:

Args:

- input: Tensor of rank N+2, of shape [batch_size] + input_spatial_shape + [num_channels] if data_format does not start with "NC" (default), or [batch_size, num_channels] + input_spatial_shape if data_format starts with "NC". Pooling happens over the spatial dimensions only.
- window_shape : Sequence of N ints >= 1.
- pooling_type: Specifies pooling operation, must be "AVG" or "MAX".
- padding: The padding algorithm, must be "SAME" or "VALID". See the comment here
- dilation_rate: Optional. Dilation rate. List of N ints >= 1. Defaults to [1]*N. If any value of dilation_rate is > 1, then all values of strides must be 1.
- strides: Optional. Sequence of N ints >= 1. Defaults to [1]*N. If any value of strides is > 1, then all values of

dilation_rate must be 1.

- name: Optional. Name of the op.
- data_format: A string or None. Specifies whether the channel dimension of the input and output is the last dimension (default, or if data_format does not start with "NC"), or the second dimension (if data_format starts with "NC"). For N=1, the valid values are "NWC" (default) and "NCW". For N=2, the valid values are "NHWC" (default) and "NCHW".
 For N=3, the valid values are "NDHWC" (default) and "NCDHW".

Returns:

Tensor of rank N+2, of shape [batch_size] + output_spatial_shape + [num_channels]

if data_format is None or does not start with "NC", or

[batch_size, num_channels] + output_spatial_shape

if data_format starts with "NC", where output_spatial_shape depends on the value of padding:

If padding = "SAME": output_spatial_shape[i] = ceil(input_spatial_shape[i] / strides[i])

If padding = "VALID": output_spatial_shape[i] = ceil((input_spatial_shape[i] - (window_shape[i] - 1) * dilation_rate[i]) / strides[i]).

Raises:

• ValueError: if arguments are invalid.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0 License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated November 2, 2017.

