## Vypočítateľnosť - nezaradené

## 1. Funkcie a čiastočné funkcie, projekcie, skladanie funkcií, trojice číslovacích (párovacích) funkcií.

Príklad. Extencionálnosť: Je rozdiel medzi funkciou a spôsobom jej zadania. Algoritmickú funkciu nemusíme zadať algoritmom, teda vieme mať zadanú funkciu ale nevedieť čo počíta. Preto sa budeme viac zaoberať zadaním.

f(x) = 1 ak v desiatkovom rozvoji čísla  $\Pi$  je presne x číslic 5 idúcich za sebou. Ináč f(x) = 0. Doteraz nikto nezistil, či existuje algoritmus, čo počíta túto funkciu.

g(x)=1 ak v desiatkovom rozvoji  $\Pi$  je aspoň x číslic 5 idúcich za sebou. 0 ináč. Táto funkcia je "monotónna" – najskôr je to jedna, a potom nula alebo je to stále jedna. V oboch prípadoch je to to vypočítateľná funkcia (iba jeden if, alebo iba výpis 1). Ale neviem algoritmus

Poznámka. Extencionálnosť znamená, že funkcia môže mať rôzne zadania.

tzv. Churchova  $\lambda$ -notácia.

**Označenie 1.26.** Nech  $F(x_1, ..., x_n)$  je výraz, ktorý pri dosadení ľubovoľných prvkov z množiny X za  $x_1, ..., x_n$  je nedefinovaný, alebo má hodnotu z množiny X. Potom znakom

$$\lambda_X x_1 \dots x_n F(x_1, \dots, x_n)$$

označíme takú n-árnu čiastočnú funkciu f na množine X, že pre všetky  $a_1, \ldots, a_n \in X$  platí

$$f(a_1,\ldots,a_n)=F(a_1,\ldots,a_n)$$

Pokiaľ nebude hroziť nedorozumenie, budeme index pri písmene  $\lambda$  vynechávať.

Príklad. Churchova  $\lambda$  notácia pre funkcie  $N^k \to N$ :

- $\lambda xy (5x + y)$
- λxyz (5x + y), z je fiktívna premenná.
- $\lambda y (5x + y)$ , x je parameter opisujúci množinu funkcií
- λy (10) unárna konštanta.
- λ (10) nulárna konštanta.
- $\lambda(x+1) = s(x)$
- $\lambda xy(x^3 + y) = \lambda yx(y^3 + x)$
- $\lambda xy (x^3 + y) \neq \lambda xy (y^3 + x)$

Úvod ku číslovacím funkciám:

**Definícia 3.41.** Nech pre všetky  $x_1, y_1, x_2, y_2 \in \mathbb{N}$  je  $(x_1, y_1) \prec (x_2, y_2)$  práve vtedy, keď  $x_1 + y_1 < x_2 + y_2$  alebo  $x_1 + y_1 = x_2 + y_2$  a  $x_1 < x_2$ .

Teraz môžeme podľa tohto usporiadania zoradiť všetky prvky množiny  $\mathbb{N} \times \mathbb{N}$  do prostej postupnosti

$$(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), \dots$$
 (3.41.1)

a definovať:

Definícia 3.42.

$$c(x,y) = \check{c}$$
íslo člena  $(x,y)$  v postupnosti (3.41.1)  
 $l(x) = \operatorname{prv\acute{y}}$  prvok dvojice na  $x$ -tom mieste postupnosti (3.41.1)  
 $r(x) = \operatorname{druh\acute{y}}$  prvok dvojice na  $x$ -tom mieste postupnosti (3.41.1)

Teda

$$c(0,0) = 0$$
,  $c(0,1) = 1$ ,  $c(1,0) = 2$ , ...  
 $l(0) = 0$ ,  $l(1) = 0$ ,  $l(2) = 1$ , ...  
 $r(0) = 0$ ,  $r(1) = 1$ ,  $r(2) = 0$ , ...

Príklad ku číslovacím funkciám:

**Príklad 3.63.** Dokážeme niekoľkými spôsobmi primitívnu rekurzívnosť funkcie f(x) danej predpisom

$$f(0) = 0,$$
  $f(1) = 1,$   $f(x + 2) = f(x + 1) + f(x),$ 

- t.j. Fibbonaciho postupnosti.
  - (a) Dokážeme najprv primitívnu rekurzívnosť funkcie g(x) = c(f(x), f(x+1)). Platí

$$g(0) = c(0,1) = 1,$$
  

$$g(x+1) = c(f(x+1), f(x+2)) =$$
  

$$= c(f(x+1), f(x+1) + f(x)) =$$
  

$$= c(r(g(x)), r(g(x)) + l(g(x)))$$

Teda funkcia g je primitívne rekurzívna, lebo vzniká operáciou primitívnej rekurzie z primitívne rekurzívnych funkcií  $\lambda(1)$ ,  $\lambda xy(c(\mathbf{r}(y),\mathbf{r}(y)+\mathbf{l}(y)))$ .

- (b) Môžeme postupovať rovnako ako v prípade (a), len zvoliť  $g(x) = 2^{f(x)} \cdot 3^{f(x+1)}$  a používať funkcie  $\exp_0(x)$ ,  $\exp_1(x)$  namiesto funkcií  $ex_0(x)$ ,  $ex_1(x)$  namiesto funkcií  $ex_0(x)$ . (Nezáleží na tom, že z týchto funkcií nemožno vytvoriť trojicu číslovacích funkcií.)
- (c) Dokážeme najprv primitívnu rekurzívnosť funkcie  $h(x) = c^{x+1}(f(0), f(1), \dots, f(x))$ . Pre  $x \in \mathbb{N}, x \neq 0$  platí

$$f(x) = r(h(x)),$$
  

$$f(x-1) = r(l(h(x)))$$
  

$$h(x+1) = c(h(x), r(h(x)) + r(l(h(x))))$$

Tento vzťah upravíme tak, aby platil aj pre x=0:

$$h(x+1) = c(h(x), \mathbf{r}(h(x)) + \mathbf{r}(\mathbf{l}(h(x)))) + \overline{\mathbf{sg}}(x)$$

Posledný vzťah spolu so vzťahom h(0) = 0 definuje funkciu h primitívnou rekurziou z primitívne rekurzívnych funkcií. Teda funkcia h, a potom aj funkcia f(x) = r(h(x)) je primitívne rekurzívna.

(d) Namiesto funkcie h z bodu (c) možno použiť funkciu

$$h(x) = p_0^{f(0)} \cdot p_1^{f(1)} \cdots p_x^{f(x)}$$

Funkcia f sa dá vyjadriť pomocou funkcie h takto:

$$f(x) = \exp(\operatorname{npr}(h(x)) \div 1, h(x))$$

## 2. Univerzálne funkcie a čiastočné funkcie. + univerzálne množiny

Cvičenie. Existuje rekurzívna množina  $R\subseteq \mathbb{N}\times \mathbb{N}$ , ktorá je univerzálna pre triedu všetkých rekurzívnych podmnožín  $\mathbb{N}$ ?

Riešenie. Nech existuje. M je rekurzívna, ak jej  $\chi_M$  je vypočítateľná. Rekurzívnych množín je

|                 |              | 0 | 1 | 2 | 3 | 4 |
|-----------------|--------------|---|---|---|---|---|
| nekonečne veľa. | $\chi_{M_0}$ | 0 | 1 | 1 | 1 | 0 |
|                 | $\chi_{M_1}$ | 0 | 1 | 1 | 1 | 0 |
|                 |              |   |   |   |   |   |
|                 | $\chi_{M_i}$ | 0 | 1 | 1 | 1 | 0 |

Zoberiem diagonálu, tam to znegujem  $\chi(x)=1-\chi_x(x)$  Táto tam nepatrí, ale je rekurzívne spočítateľná.

Cvičenie. Ukážte, že ani U(n,n) nemá vypočítateľné zúplnenenie.

**Riešenie.** Ak U(n,n) nie je vypočítateľné zúplnenie, potom U(n,n)+1 nie je vypočítateľné zuplnenie.

**Poznámka.** Funkcia d(n) = U(n,n) nemá vypočítateľné zúplnenie. Preto jej definičný obor je množina, ktorá je rekurzívne očíslovateľná, ale nie je rekurzívna. Podľa Postovej vety, to znamená, že doplnok k jej definičnému oboru nie je rekurzívne očíslovateľný (komplement Arg(U(n,n)) nie je rekurzívne očíslovateľný. Z toho vyplýva, že definičný obor celej U je rekurzívne očíslovateľný. Z toho vyplýva, že doplnok k Arg(U(n,x)) nie je rekurzívne očíslovateľný.

Problém zastavenia turingovho stroja nie je algoritmicky riešiteľný.

**Priamy ťah na bránku:** Máme formalizáciu pojmu algoritmus. Prvá podmienka je, že chceme vedieť o texte rozhodnúť, či daný text opisuje program, alebo nie. Chceme číslovanie programov  $(p_0, p_1, \dots)$ , číslovanie funkcií  $\mathbb{N} \to \mathbb{N}$ , univerzálnu funkciu U(n, x), diagonála U(n, n) nemá vypočítateľné zúplnenie. A teda Arg(U(n, n)) je rekurzívne očíslovateľná množina, ktorá nie je rekurzívna množina.

# 3. Primitívne rekurzívne, rekurzívne funkcie a čiastočne rekurzívne (vypočítateľné) funkcie (na množine »).

Programátorská poznámka ku primitívnej rekurzii: pamäť obsahuje n+2 hodnôt (y, f(y,  $\overline{x}$ ),  $\overline{x}$ )

$$\begin{array}{l} P \ \{k, \ \overline{\mathbb{X}} \in N^{n+1}\} \\ F := h(\ \overline{\mathbb{X}}\ ); \\ Y := 0; \\ While \ Y < k \ do \ begin \\ F := g(Y,F,\ \overline{\mathbb{X}}\ ); \\ Y := s(Y); \\ End \ \{F := f(k,\ \overline{\mathbb{X}}\ )\} \end{array}$$

Poznámka. Primitívne rekurzívne funkcie sú totálne. Tvrdenie dokazujeme indukciou vzhľadom na zostrojenie, všetky základné operácie (0,s,I,S,R) zachovávajú totálnosť.

Poznámka ku vete 5.0.3. Veta umožňuje meniť poradie premenných, stotožňovať premenné  $(k_i=k_j)$  a pridávať fiktívne premenné (m<n)

**Príklad.** Nech  $\lambda xy(x^y) \in M$   $\lambda x(x^x) \in M$ . – stotožnenie premenných.  $\lambda xyz(x^y) \in M$ . – dodanie fiktívnej premennej.  $\lambda xz(x^x) \in M$ .  $\lambda x, y(y^n) \in M$ . – permutácia premenných.

Príklady na primitívne rekurzívne funkcie

## Veta 3.12. Funkcie

$$sg(x) = \begin{cases} 0, & \text{ak } x = 0 \\ 1, & \text{ak } x \neq 0 \end{cases}$$
$$\overline{sg}(x) = 1 - sg(x)$$

sú primitívne rekurzívne.

Dôkaz: Tieto funkcie vznikajú primitívnou rekurziou z konštantných funkcií, napríklad

$$sg(0) = 0$$

$$sg(x+1) = 1$$

a preto sú primitívne rekurzívne.

## Lema 3.13. Funkcia

$$x - 1 = \begin{cases} 0, & \text{ak } x = 0 \\ x - 1 & \text{ak } x \neq 0 \end{cases}$$

je primitívne rekurzívna.

 $D\hat{o}kaz$ : Funkcie 0,  $I_1^2$  sú primitívne rekurzívne a platí

$$0 \div 1 = 0$$
$$(x+1) \div 1 = I_1^2(x, x \div 1)$$

Tým je lema dokázaná. □

## Veta 3.14. Funkcie

$$x \dot{-} y = \begin{cases} 0, & \text{ak } x < y \\ x - y, & \text{ak } x \ge y \end{cases}$$
$$|x - y| = (x \dot{-} y) + (y \dot{-} x)$$

sú primitívne rekurzívne.

Dôkaz: Pre prvú funkciu stačí uvážiť vzťahy

$$x \doteq 0 = x$$
  
$$x \doteq (y+1) = (x \doteq y) \doteq 1$$

Primitívna rekurzívnosť funkcie |x-y| vyplýva teraz už bezprostredne z jej definície.  $\square$ 

Poznámka.

1. 
$$A = B \rightarrow sg(|A - B|) = 0$$
,  $\bar{Sg}(|A - B|) = 1$ 

2. 
$$A \neq B \rightarrow sg(|A - B|) = 1$$
,  $\bar{Sg}(|A - B|) = 0$ 

3. 
$$A \le B \rightarrow sg(A \stackrel{\cdot}{-} B) = 0$$
,  $\overline{Sg}(|A \stackrel{\cdot}{-} B|) = 1$ 

4. 
$$A > B \rightarrow sg(A - B) = 1$$
,  $\bar{Sg}(|A - B|) = 0$ 

5. 
$$A < B \rightarrow sg(B - A) = 1$$
,  $\bar{Sg}(|B - A|) = 0$ 

Príklady na primitívne rekurzívne funkcie so sumami alebo sučinmi:

### Veta 3.29. Funkcia

$$x \; \text{MOD} \; y = \begin{cases} \text{zvyšok pri delení} \; x/y, & \text{ak} \; y \neq 0, \\ x, & \text{ak} \; y = 0 \end{cases}$$

je primitívne rekurzívna.

 $D\hat{o}kaz$ : Platí x MOD  $y=x\div y.\lfloor x/y\rfloor$ , a teda fukcia MOD je primitívne rekurzívna, lebo vzniká skladaním z primitívne rekurzívnych funkcií.  $\Box$ 

### Veta 3.30. Funkcie

$$\begin{aligned} \operatorname{div}(x,y) &= \begin{cases} 1, & \text{ak } y \text{ je deliteľom } x \text{ (t.j. } y | x), \\ 0, & \text{ak } y \text{ nie je deliteľom } x \text{ (t.j. } y / x) \end{cases} \\ \operatorname{nd}(x) &= \begin{cases} \operatorname{počet} \text{ (kladných) deliteľov } x, & \text{ak } x \neq 0, \\ 0, & \text{ak } x = 0 \end{cases} \end{aligned}$$

sú primitívne rekurzívne.

Dôkaz: Veta vyplýva bezprostredne zo vzťahov

$$\operatorname{div}(x, y) = \overline{\operatorname{sg}}(x \text{ MOD } y)), \quad \operatorname{nd}(x) = \sum_{i=1}^{x} \operatorname{div}(x, i) \quad \Box$$

## Veta 3.32. Funkcie

$$\chi_p(x) = \begin{cases} 0, & \text{ak } x \text{ je prvočíslo,} \\ 1, & \text{ak } x \text{ nie je prvočíslo,} \end{cases}$$

 $\pi(x) = \text{počet prvočísel menších alebo rovnajúcich sa } x$ 

sú primitívne rekurzívne.

Dôkaz: Prvočísla sú čísla, ktoré majú práve dva kladné delitele, a preto platí

$$\chi_p(x) = \operatorname{sg} |\operatorname{nd}(x) - 2|$$

Pre funkciu  $\pi(x)$  zrejme platí

$$\pi(x) = \sum_{i=0}^{x} \overline{sg}(\chi_p(i))$$

Z uvedených vyjadrení vyplýva, že funkcie  $\chi_p(x),\,\pi(x)$  sú primitívne rekurzívne.  $\ \square$ 

## Príklady na primitívne rekurzívne funkcie s minimalizáciou:

## Veta 3.33. Funkcia

$$p(x) = x$$
-té prvočíslo,

t.j. p(0) = 2, p(1) = 3, p(2) = 5, . . . je primitívne rekurzívna.

Dôkaz: Platí

$$p(x) = \mu_y(|\pi(y) - (x+1)| = 0)$$

teda funkcia p(x) vzniká z funkcie  $\lambda yx|\pi(y)-(x+1)|$  minimalizáciou. Matematickou indukciou sa dá dokázať, že platí

$$p(x) < 2^{2^x}$$

Funkcia  $2^{2^x}$  je primitívne rekurzívna, a preto podľa vety 3.26 aj funkcia p(x) je primitívne rekurzívna.  $\square$ 

## 4. Primitívne rekurzívne, rekurzívne a rekurzívne spočítateľné množiny a predikáty a ich vlastnosti.

**Príklad.** Existuje nerekurzívna množina  $M \subset \mathbb{N}$ .

**Príklad.** Množina dvojíc  $(n, n^2), n \in \mathbb{N}$  a n je nepárne je rekurzívne očíslovateľná.

```
x:=0; while true do if (x mod 2=1) then write((x, x^2)) x:=x+1
```

Odstránenie opakovania tlače zabezpečíme pamäťou. Budeme si pamätať čo už sme vytlačili a pri každom tlačení pozrieme do pamäte a vytlačíme prvok, ak sa v pamäti nenachádza.



Cvičenie. Nech  $F \subseteq \mathbb{N} \times \mathbb{N}$  je rekurzívne očíslovateľná množina (neprázdna). Ukážte, že existuje vypočítateľná funkcia  $f : \mathbb{N} \to \mathbb{N}$  taká, že  $f \subseteq F$  (s maximálnym definičným oborom)

### Riešenie.

- a)  $f = \emptyset$  nikde nie je definovaná (ale už so zmeneným zadaním je toto zle:-).
- b) Máme generátor G množiny F. Ak vygeneruje (x, y), tak sa pozrem, či už som x vygeneroval, ak nie, tak vyhodím (x, y), a ináč si zapíšem x.

Cvičenie. Nech  $M \subseteq \mathbb{N}$  je nekonečná, rekurzívne očíslovateľná množina. Ukážte, že existuje nekonečne veľa poradí, generovania M, takých, že pre ne existuje generátor.

Riešenie. Každý generátor bude mať parameter p. Generátor  $M_p$  funguje ako generátor (bez opakovania) množiny M, ale ak vypočíta p-ty výsledok, počká aj na p+1 výsledok a v poradí ich vymení. Alebo najskôr vypočíta prvých p a potom ich dá v opačnom poradí. Alebo dá p-ty ako prvý, prvý ako p-ty.

Cvičenie. Nech  $F \subseteq \mathbb{N} \times \mathbb{N}$  je rekurzívne očíslovateľná množina (neprázdna). Ukážte, že existuje vypočítateľná funkcia  $f : \mathbb{N} \to \mathbb{N}$  taká, že  $f \subseteq F$  (s maximálnym definičným oborom)

### Riešenie.

- a) f = ∅ nikde nie je definovaná (ale už so zmeneným zadaním je toto zle:-).
- b) Máme generátor G množiny F. Ak vygeneruje (x, y), tak sa pozrem, či už som x vygeneroval, ak nie, tak vyhodím (x, y), a ináč si zapíšem x.

Cvičenie. Nech  $M \subseteq \mathbb{N}$  je nekonečná, rekurzívne očíslovateľná množina. Ukážte, že existuje nekonečne veľa poradí, generovania M, takých, že pre ne existuje generátor.

Riešenie. Každý generátor bude mať parameter p. Generátor  $M_p$  funguje ako generátor (bez opakovania) množiny M, ale ak vypočíta p-ty výsledok, počká aj na p+1 výsledok a v poradí ich vymení. Alebo najskôr vypočíta prvých p a potom ich dá v opačnom poradí. Alebo dá p-ty ako prvý, prvý ako p-ty.

Cvičenie. Nech  $M\subseteq \mathbb{N}, K\subseteq \mathbb{N}$  sú rekurzívne očíslovateľné s neprázdnym prienikom. Ukážte, že existujú podmnožiny  $M'\subseteq M, K'\subseteq K$ , ktoré sú rekurzívne očíslovateľné, ale  $M'\cap K'=\emptyset$ , ale  $M'\cup K'=M\cup K$ .

**Riešenie.** Generujeme M aj K. Ak príde skôr z M, tak ho vygeneruje M', ináč ho vygeneruje K'. (spoločné prvky sú toho, kto ich skôr vygeneruje)

Cvičenie. Ukážte, že každá rekurzívne očíslovateľná množina M sa dá zapísať v tvare očíslovanej postupnosti, pričom f(0), f(1), pričom f je vypočítateľná a bez opakovania.

**Riešenie.** Máme generátor M, generujeme, vyhadzujeme duplikáty a pridávame poradie. Toto je vypočítateľné: dostaneme (x,y) a počkáme prvých x rôznych.

Cvičenie. Každá nekonečná rekurzívna očíslovateľná množina  $M\subseteq \mathbb{N}$  obsahuje nekonečnú rekurzívnu podmnožinu.

Riešenie. M je nekonečná postupnosť – M obsahuje nekonečnú rastúcu podpostupnosť. Pamätáme si posledné maximum a ak príde väčší, tak ho vyhodíme. Je to rekurzívne – ak je maximum už väčšie ako vstup, tak viem, že ho už nevygenerujem.

Cvičenie. Ku každej vypočítateľnej funkcii jednej premennej existuje vypočítateľná funkcia g, ktorá (je "pseudoinverzia") spĺňa vlastnosti:

- a) definičný obor g=obor hodnôt f
- b) f(g(f(x))) = f(x) pre všetky x z definičného oboru f.

Riešenie. Zoberiem (x, y) vyhodím (y, x), ale ak už také y bolo, tak nevyhodím.

Príklad. Nasledujúce množiny sú rekurzívne: N: if  $n \in N$  then  $1 = \lambda(1)$  else 0

 $\emptyset$ : if  $n \in \emptyset$  then  $1 = \lambda(0)$  else 0

Príklad primitívne rekurzívnych množín:

| Putlacy: | 3993 (0) x K = N = (x) & X                                                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------|
|          | Xzm (x) = x mod z<br>Xzm (x) = sg (x mod z)                                                                        |
|          | M= {an. am}<br>Xn (x) = eg (1x-an)                                                                                 |
|          | $X_{\leq}(x,y) = sg(x-y)$<br>$X_{=}(x,y) = sg( x-y )$<br>$X_{\neq}(x,y) = sg( x-y )$<br>$X_{<}(x,y) = sg( x+x -y)$ |

## Lema 7.2.2 a) $ROM = \Sigma_1, VRM = \Sigma_1 \cap \Pi_1$

- b)  $A \in \Sigma_n \Leftrightarrow \bar{A} \in \Pi_n; a \in \Pi_n \Leftrightarrow \bar{A} \in \Sigma_n.$
- c) Zjednotenie a prienik k-árnych  $\Sigma_n$  množín (relácii) je opäť  $\Sigma_n$  (relácia) množina. Zjednotenie a prienik k-árnych  $\Pi_n$  množín(relácii) je opäť  $\Pi_n$  (relácia) množina.
- d)  $\Sigma_n$  podmienky aj  $\Pi_n$  podmienky sú uzavreté na ohraničenú kvantifikáciu.
- e)  $\Sigma_n$  podmienky sú uzavreté na existenčnú kvantifikáciu a  $\Pi_n$  podmienky sú uzavreté na všeobecnú kvantifikáciu.
- $f) \Sigma_n \cup \Pi_n \subseteq \Sigma_{n+1} \cap \Pi_{n+1}.$
- g) ak  $A \leq_m B$  a  $B \in \Sigma_n$ , potom aj  $A \in \Sigma_n$ .
- h) ak  $A \leq_m B$  a  $B \in \Pi_n$ , potom aj  $A \in \Pi_n$ .

## Aritmetická hierarchia:

#### Aritmetická hierarchia:

$$VRM \subseteq \Sigma_1 \subseteq \Sigma_2 \subseteq \Sigma_3 \subseteq \cdots$$

$$VRM \subseteq \Pi_1 \subseteq \Pi_1 \subseteq \Pi_3 \subseteq \cdots$$

$$\Sigma_i \subseteq \Pi_{i+1}$$

$$\Pi_i \subseteq \Sigma_{i+1}$$

Lema 9.1.1 (Podozrenie o možnom kolapse hierarchie)  $Ak \Sigma_n \subseteq Pi_n$  alebo  $\Pi_n \subseteq \Sigma_n$ . Potom pre každé  $m \ge n$  platí vzťah  $\Sigma_m = \Pi_m = \Sigma_n$ .

**Dôkaz.** a) Ukážeme  $\Pi_n = \Sigma_n$ . (z predpokladu, že  $\Sigma_n \subseteq \Pi_n$ , tak  $\Pi_n \subseteq \Sigma_n$ ). Ak  $A \in \Pi_n$ , potom  $\bar{A} \in \Sigma_n$ , potom  $\bar{A} \in \Pi_n$ , potom  $A \in \Sigma_n$ .

- b) Ukážeme, že  $\Sigma_{n+1} \subseteq \Sigma n$ .  $A = \{\bar{x} | (\exists v) P(\bar{x}, v) \}$ .  $P(\bar{x}, v) \in \Pi_n = \Sigma_n$ . Pridanie existenčného kvantifikátora to nezmení, bude stále v  $\Sigma_n$ .
- c)  $\Pi_{n+1} \subseteq Pi_n$ .
- d) stačí spraviť indukciu

**Definícia.** Množina  $B \subseteq \mathbb{N}$  je  $\Sigma_n$ -kompletná ak  $B \in \Sigma_n \wedge (\forall A)(A \in \Sigma_n \Rightarrow A \leq_m B)$ . Množina  $B \subseteq \mathbb{N}$  je  $\Pi_n$ -kompletná ak  $B \in \Pi_n \wedge (\forall A)(A \in \Pi_n \Rightarrow A \leq_m B)$ . Relácia  $Q \subseteq \mathbb{N}^2$  je  $\Sigma_n$ -univerzálna ak  $Q \in \Sigma_n$  a  $(\forall A)(A \subseteq \mathbb{N} \wedge A \in \Sigma_n \Rightarrow (\exists a)(A = \{v | Q(a|v)\}))$ Relácia  $Q \subseteq \mathbb{N}^2$  je  $\Pi_n$ -univerzálna ak  $Q \in \Pi_n$  a  $(\forall A)(A \subseteq \mathbb{N} \wedge A \in \Pi_n \Rightarrow (\exists a)(A = \{v | Q(a|v)\}))$ 

**Definícia.**  $Q_1 = \{(x,v)|v \in W_x\} = \{(x,v)|\Phi_x(v) \text{ je definované }\}.$   $Q_{n+1} = \{(x,v)|(\exists y)(Q_n(x,c(v,y)))\}$   $H_n = \{c(x,v)|Q_n(x,v)\}$   $D_n = \{x|Q_n(x,x)\}$ 

Poznámka.  $H_1 = K_0 = \{c(x, v) | v \in W_x\}$   $D_1 = K = \{x | x \in W_x\}$ Indukciou sa dá dokázať, že  $Q_n \in \Sigma_n$ . Dokaz:

- 1.  $Q_1=\{(x,v)|v\in W_x\}$ . Je to definičný obor nejakého algoritmu,  $\Phi_x(v)$  je definovaná. ROM =  $\{(x,v)|(\exists y)T(x,v,y)\}i$  je to  $\Sigma_1$
- 2.  $Q_{n+1} = \{(x, v) | (\exists y)(T(x, v, y))\}$ . Zoberieme to, znegujeme, kvantifikatory sa otocia, negacia sa otocia, a teda to patri do  $\Sigma_{n+1}$ . Preto aj  $H_n \in \Sigma_n$  a  $D_n \in \Sigma_n$ .

### Veta 9.1.2

- 1. Každé  $Q_n$  je  $\Sigma_n$ -univerzálna a doplnok je  $\Pi_n$ -univerzálny.
- 2.  $H_n$  je  $\Sigma_n$ -kompletná,  $\bar{H}_n$  je  $\Pi_n$  kompletná.
- 3.  $D_n \in \Sigma_n \backslash \Pi_n \ a \ \bar{D_n} \in \Pi_n \backslash \Sigma_n$ .

## Veta 9.1.3 (S - m - n)

Pre každú dvojicu nenulových čísiel n a m existuje všeobecne rekurzívna funkcia  $S_n^m \in VRF^{(n+1)}$  taká, že pre každé  $e, x_1, \ldots, x_n$  platí:

$$\Phi_{S_n^m(e,x_1,...,x_n)}^{(m)} = \lambda v_1, ..., v_m(\Phi_e^{n+m}(x_1,...,x_n,v_1,...,v_m)$$

**Dôkaz.** e – číslo programu P – načítava n+m vstupných hodnôt. P' – program, ktorý miesto načítavanie  $x_1, \ldots, x_n$  bude ich mať v sebe zapísané. Potom podľa church tézy to platí.

#### Veta 9.1.4

- (a)  $Nech\ \Psi \in RF^{(n+m)}$ .  $Potom\ existuje\ g \in VRF^{(n)}$ ,  $ktor\'a\ pre\ ka\check{z}d\acute{e}\ x_1,\ldots,x_n\ spl\~n\ a\ \Phi^{(m)}_{g(x_1,\ldots,x_n)} = \lambda v_1,\ldots,v_m\Psi(x_1,\ldots,x_n,v_1,\ldots,v_m)$ .
- (b) Nech  $Q \in ROM^{(n+m)}$  je relácia. Potom existuje taká  $g \in VRF^{(n)}$ , ktorá pre každé  $x_1, \ldots, x_n$   $spĺňa\ W_{g(x_1,\ldots,x_n)}^{(m)} = \{v_1,\ldots,v_m|Q(x_1,\ldots,x_n,v_1,\ldots,v_m\}.$

**Príklad.**  $Unb = \{x|W_x \text{ je nekonečná }\}.$ 

Riešenie.  $W_x$  je nekonečná  $\Leftrightarrow (\forall v_1)(\exists v_2)(v_1 < v_2 \land v_2 \in W_x)$ 

Poznámka –  $\Phi_x(v_2)$  je definovaná.

Platí:  $\Sigma_1 = ROM$ 

 $v_1 < v_2$  – primitívne rekurzívne.

 $v_2 \in W_x$  – byť v definičnom obore, to nie je VRM, ale ROM

 $min(y, T(e, x_1, \ldots, x_n, y) - ak (\exists y) T(e, x_1, \ldots, x_n, y)$ 

T je PR

konjukcia – je ROM

Pridám existenčný kvantifikátor – je to uzavreté, stále ROM.

Pridáv všeobecný – je to potom  $\Pi_2$ 

**Príklad.**  $Rec = \{x|W_x \text{ je všeobecne rekurzívna }\}$ 

**Dôkaz.**  $W_x$  je rekurzívna  $\Leftrightarrow (\exists y)(W_y = \bar{W_x}) \Leftrightarrow (\exists y)(\forall v)((v \in W_y \land v \notin W_x) \lor (v \notin W_y \land v \in W_x))$   $(v \in W_y)$  je ROM.

 $(v \notin W_x)$  podľa (c),(f)  $\Rightarrow$  je konjukcia v  $\Sigma_2 \cap \Pi_w$ . Druhý kus toho tam tiež patrí,  $\vee$  to nezmení. Všeobecný kvantifikátor to dá na  $\Pi_2$  a existenčný na  $\Sigma_3$ .

**Príklad.** Totálnosť  $Tot=^{def}\{x|\Phi_x$  je totálna }. Cieľ: ukážeme, že Tot je  $\Pi_2$ -kompletná.

- a)  $Tot \in \Pi_2 e \in Tot \Leftrightarrow (\forall v)(\exists y)(T(e, v, y) = 0)$
- b) Ukážeme, že  $(\forall A)(A \in \Pi_2 \Rightarrow A \leq_m Tot)$ .

Nech  $A \subseteq \mathbb{N}$  je ľubovoľná  $\Pi_2$  množina.

$$A = \{x | (\forall v)(\exists y)R(x, v, y)\}$$

$$x \in A \Leftrightarrow (\forall v)(\exists y)R(n, v, y).$$

$$\Psi(x, v) = {}^{def} \lambda v(min(y, R(x, v, y))) \in \check{\mathsf{CRF}}$$

Konštanta  $x \in A \to \Psi(x, v)$  je totálna

Konštanta  $x \notin A \to \Psi(x,v)$  nie je totálna

 $\Psi(x,v) = \Phi_{g(x)}(v),$ t.j. g(x) (je VRF) je index funkcie $\Phi(x,v).$ 

 $x \in A \Leftrightarrow \Phi_{q(x)}(v)$  je totálna funkcia  $\Leftrightarrow g(x) \in Tot$ .

Príklad. Niekde definované funkcie.

$$B=^{def}\{x|W_x\neq\emptyset\}=\{x|(\exists y)y\in W_x\}.$$

- a)  $B \in \Sigma_1$ .
- b)  $(\forall A \in \Sigma_1)(A \leq_m B)$ . Nech A je ľubovoľná ROM. Nech  $Q_A = ^{def} \{(x,v)|x \in A\} = A \times \mathbb{N}$   $Q_A$  je ROM.

Ak 
$$x \in A \to \{v | (x, v) \in Q_A\} = \mathbb{N}$$

Ak 
$$x \notin A \to \{v | (x, v) \in Q_A\} = \emptyset$$

$$x \in A \Leftrightarrow W_{g(x)} \neq \emptyset.$$
 – dokonči si to  $(S-m-n$ veta)

$$t.j.A \leq_m B \Rightarrow B$$
je  $\Sigma_1\text{-kompletn\'a} \Rightarrow B \notin VRM, \bar{B} \notin ROM.$ 

## 5. Modely vypočítateľ nosti (Turingove stroje a iné modely).

**Veta 8.45.** Pre každý registrový stroj Z a každé  $n \in \mathbb{N}$  existuje taký Turingov stroj T, že  $\Phi_Z^n = \Phi_T^n$ .

 $D\hat{o}kaz$ : Nech Q je množina všetkých vnútorných stavov v M-inštrukciách stroja Z a nech  $q_u$ ,  $q_v$  (u < v) sú vnútorné stavy s najnižšími indexmi, ktoré nepatria do množiny  $Q \cup \{q_0, q_1\}$ . Označme Z' stroj, ktorý vznikne zo Z nahradením  $q_1$ ,  $q_0$  symbolmi  $q_u$ ,  $q_v$ . Každej M-inštrukcii X stroja Z' priraďme Turingov stroj  $T_X$  tak, aby boli splnené nasledujúce podmienky:

- (1) Ak  $X = (q_i S_j P q_k)$  alebo  $X = (q_i S_j M q_k)$ , tak existuje jediná inštrukcia stroja  $T_X$ , ktorá sa začína  $q_i$ , a jediná inštrukcia T-stroja  $T_X$ , ktorá sa končí  $q_k$ . Žiadne ďalšie T-inštrukcie stroja  $T_X$  neobsahujú vnútorné stavy z množiny  $Q \cup \{q_0, q_1, q_u, q_v\}$ .
- (2) Ak  $X = (q_i S_j q_r q_s)$ , tak existuje jediná T-inštrukcia stroja  $T_X$  začínajúca sa  $q_i$ , jediná jeho T-inštrukcia končiaca sa  $q_s$ . Okrem týchto výnimiek neobsahujú T-inštrukcie stroja  $T_X$  vnútorné stavy z množiny  $Q \cup \{q_0, q_1, q_u, q_v\}$ .
- (3) Žiaden vnútorný stav, ktorý nepatrí do množiny  $Q \cup \{q_0, q_1, q_u, q_v\}$ , sa nenachádza v inštrukciách dvoch strojov  $T_X$ ,  $T_Y$  pre  $X \neq Y$ .
- (4) Ak  $X=(q_iS_jPq_k)$ , resp.  $X=(q_iS_jMq_k)$ , tak pre každé  $m\geq j$  a všetky  $k_0,\ldots,k_m\in\mathbb{N}$  platí

$$q_{i}\operatorname{Slv}(k_{0},\ldots,k_{j-1},k_{j},k_{j+1},\ldots,k_{m}) \stackrel{T_{X}}{\Longrightarrow}$$

$$\stackrel{T_{X}}{\Longrightarrow} q_{k}\operatorname{Slv}(k_{0},\ldots,k_{j-1},k_{j}+1,k_{j+1},\ldots,k_{m})$$

$$(8.45.1)$$

resp.

$$q_{i}\operatorname{Slv}(k_{0},\ldots,k_{j-1},k_{j},k_{j+1},\ldots,k_{m}) \stackrel{T_{X}}{\Longrightarrow}$$

$$\stackrel{T_{X}}{\Longrightarrow} q_{k}\operatorname{Slv}(k_{0},\ldots,k_{j-1},k_{j}-1,k_{j+1},\ldots,k_{m})$$

$$(8.45.2)$$

(5) Ak  $X=(q_iS_jq_rq_s)$ , tak pre každé  $m\geq j$  a všetky  $k_0,\ldots,k_m\in\mathbb{N}$  platia vzťahy

$$q_{i}\operatorname{Slv}(k_{0},\ldots,k_{j-1},0,k_{j+1},\ldots,k_{m}) \stackrel{T_{X}}{\Longrightarrow}$$

$$\stackrel{T_{X}}{\Longrightarrow} q_{s}\operatorname{Slv}(k_{0},\ldots,k_{j-1},0,k_{j+1},\ldots,k_{m})$$

$$(8.45.3)$$

$$q_{i}\operatorname{Slv}(k_{0},\ldots,k_{j-1},k_{j}+1,k_{j+1},\ldots,k_{m}) \stackrel{T_{X}}{\Longrightarrow}$$

$$\stackrel{T_{X}}{\Longrightarrow} q_{r}\operatorname{Slv}(k_{0},\ldots,k_{j-1},k_{j}+1,k_{j+1},\ldots,k_{m})$$

$$(8.45.4)$$

Teraz vytvorme Turingov stroj T' ako množinové zjednotenie všetkých T-strojov  $T_X$ :

$$T' = \bigcup \{ T_X | X \in Z' \} \tag{8.45.5}$$

Turingov stroj T' má nasledujúcu vlastnosť: Ak m je prirodzené číslo väčšie alebo rovnajúce sa najväčšiemu indexu registrov  $R_i$  v inštrukciách M-stroja Z', tak pre všetky  $r_0, r_1, \ldots, r_m, s_0, s_1, \ldots, s_m \in \mathbb{N}$  a všetky  $q_i, q_j \in (Q \setminus \{q_0, q_1\}) \cup \{q_u, q_v\}$  platí

$$(q_i; r_0, r_1, \dots, r_m) \stackrel{Z'}{\Longrightarrow} (q_i; s_0, s_1, \dots, s_m)$$
 (8.45.6)

práve vtedy, keď

$$q_i \operatorname{Slv}(r_0, r_1, \dots, r_m) \stackrel{T'}{\Longrightarrow} q_j \operatorname{Slv}(s_0, s_1, \dots, s_m)$$
 (8.45.7)

Nech teraz m' je maximálny index registra v M-inštrukciách stroja Z (ak  $Z = \emptyset$ , položíme m' = 0) a  $m = \max(m', n)$ . Nájdime také T-stroje  $T_1, T_2,$  že

- (1)  $T_1$  obsahuje jedinú inštrukciu začínajúcu sa  $q_1$  a jedinú inštrukciu končiacu sa  $q_u$ .  $T_2$  obsahuje jedinú inštrukciu začínajúcu sa  $q_v$  a jedinú inštrukciu končiacu sa  $q_0$ . Okrem týchto výnimiek neobsahujú inštrukcie strojov  $T_1$ ,  $T_2$ , T' žiadne rovnaké vnútorné stavy.
- (2) pre všetky  $k_0, k_1, \dots, k_n \in \mathbb{N}$  platí

$$q_1 \operatorname{Slv}(k_1, \dots, k_n) \stackrel{T_1}{\Longrightarrow} q_u \operatorname{Slv}(0, k_1, \dots, k_n, \underbrace{0, \dots, 0}_{m-n})$$

(3) pre každé  $r \in \mathbb{N}$ , a  $k_0, k_1, \dots, k_r \in \mathbb{N}$ 

$$q_v \operatorname{Slv}(k_0, k_1, \dots, k_r) \stackrel{T_2}{\Longrightarrow} q_0 \operatorname{Slv}(k_0)$$
 (8.45.8)

Teraz už môžeme vytvoriť stroj T:

$$T = T' \cup T_1 \cup T_2 \tag{8.45.9}$$

Dôkaz rovnosti  $\Phi_Z^n = \Phi_T^n$  prenechávame čitateľovi ako cvičenie.  $\square$ 

## 6. Ekvivalentnosť modelov vypočítateľ nosti.

Veta 7.0.2 a)  $A \subseteq \mathbb{N} \Rightarrow \emptyset \leq_m A$ 

- b)  $\emptyset \neq A \subseteq \mathbb{N} \Rightarrow \mathbb{N} \leq_m A$
- c)  $\emptyset \not\leq_m \mathbb{N} \ a \ \mathbb{N} \not\leq_m \emptyset$
- $d) A =_m \emptyset \Rightarrow A = \emptyset$
- $e) A =_m \mathbb{N} \Rightarrow A = \mathbb{N}$
- f)  $\emptyset \subseteq A, B \subseteq a \ A, B \ sú \ všeobecne rekurzívne množiny, potom <math>A =_m B$
- g)  $A,B\subseteq\mathbb{N},A\leq_m B,$  B je všeobecne rekurzívna množina, potom A je všeobecne rekurzívna množina.
- h) A je všeobecne rekurzívna, B je rekurzívne očíslovateľná, ale nie je všeobecne rekurzívna, potom  $A \leq_m B, A \neq_m B.$
- i) Všeobecne rekurzívne množiny tvoria 3 triedy ekvivalencie

Veta 4.0.5 Existuje prostá množina.

**Dôkaz.** Potrebujeme zostrojiť  $S \subseteq \mathbb{N}$  a jej doplnok  $\bar{S}$ .

S je rekurzívne očíslovateľná.

 $\bar{S}$  je imúnna množina – je nekonečná, neobsahuje rekurzívne očíslovateľné podmnožiny.

Stačí: do S dáme aspoň jeden prvok z každej nekonečnej rekurzívne očíslovateľnej množiny ale tak, aby mimo S ostalo nekonečne veľa prvkov. Napríklad: Z množiny číslo i vyberieme prvok s veľkosťou aspoň 2i.

W – univerzálna množina?

Nech 
$$T = \{(i, x) | (x \in w_i) \land (x > 2i)\} = W \cap \{(i, x) | (x > 2i)\}$$

W – rekurzívne očíslovateľná množina,  $\{(i,x)|(x>2i)\}i$  je rekurzívna množina – aj očíslovateľná, čiže prienik je tiež rekurzívne očíslovateľná množina.

Pri generovaní monžiny T budeme odhadzovať tie dvojice (i, x), ktorého prvý člen i sme už "stretli". Z každého  $w_i$  spravíme jedno číslo (ak  $w_i$  je nekonečné).

Takto vygenerujeme množinu T'. S je projekcia množiny T'.

S je rekurzívne očíslovateľná množina, má spoločný prvok s každou nekonečnou rekurzívne očíslovateľnou množinou a  $\bar{S}$  je nekonečná množina, lebo z prvých i množín sme vybrali maximálne i prvkov a aspoň i prvkov ostalo.

**Definícia.** Budeme hovoriť, že množina je imúnna, ak je nekonečná a neobsahuje nekonečné rekurzívne očíslovateľné podmnožiny (Rekurzívne očíslovateľná množina sa nazýva prostou, ak jej doplnok je imúnny).

Poznámka. Prostá funkcia nemôže byť rekurzívna (Postova veta).