投影矩阵

unknown

unknown

在讨论正交投影时,我们简要地讨论投影矩阵。特别地,我们讨论下面 的定理。

Theorem 1 令 $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ 是 \mathbb{R}^n 的子空间 W 的正交基。形成 $n \times k$ 矩阵

$$\mathbf{U} = \left[egin{array}{c|c} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_k \end{array}
ight]$$

那么 $\operatorname{proj}_{W} \mathbf{v} = \mathbf{U}\mathbf{U}^{T}\mathbf{v}_{\circ}$

矩阵 $\mathbf{U}\mathbf{U}^T$ 称为子空间 W 的投影矩阵。它不依赖于正交基的选择。如果我们不从 W 的正交基开始呢?

Theorem 2 令 $\{\mathbf{a}_1,\ldots,\mathbf{a}_k\}$ 是 \mathbb{R}^n 的子空间 W 的任意基。形成 $n\times k$ 矩阵

$$\mathbf{A} = \left[egin{array}{c|c} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_k \end{array}
ight]$$

那么W的投影矩阵是 $\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T$ 。

要知道为什么这个公式是真的, 我们需要一个引理。

Lemma 3 假设 **A** 是 $n \times k$ 矩阵,其列是线性独立的。那么 $\mathbf{A}^T \mathbf{A}$ 是可逆的。

为了解释这个引理为什么成立,考虑由 **A** 决定的变换 **A**: $\mathbb{R}^k \to \mathbb{R}^n$ 。由于 **A** 的列是线性独立的,所以这个变换是一对一的。此外,**A**^T 的零空间与 **A** 的列空间正交,因此,**A**^T 在 **A** 的列空间上是一对一的,因此,**A**^T A: $\mathbb{R}^k \to \mathbb{R}^k$ 是一对一的。根据可逆矩阵定理,**A**^T A 是可逆的。

现在我们可以计算 \mathbf{A} 列空间的投影矩阵 (注意, $W = \operatorname{Col} \mathbf{A}$)。矩阵 \mathbf{A} 列空间的任何元素都是 \mathbf{A} 列的线性组合, 即,

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_k\mathbf{a}_k$$

如果我们令

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ \vdots \\ x_k \end{array} \right]$$

那么

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_k\mathbf{a}_k = \mathbf{A}\mathbf{x}$$

给定 \mathbb{R}^n 中的 \mathbf{v} , 我们用 \mathbf{x}_p 表示对应于 \mathbf{v} 到 W 的投影的 \mathbf{x} 。换句话说, 令

$$\operatorname{proj}_W \mathbf{v} = \mathbf{A} \mathbf{x}_p$$

我们通过计算 \mathbf{x}_p 求投影矩阵。

v 向 W 的投影的特点是

$$\mathbf{v} - \operatorname{proj}_W \mathbf{v}$$

与W中的每个向量 \mathbf{w} 正交,也就是说,

$$\mathbf{w} \cdot (\mathbf{v} - \operatorname{proj}_W \mathbf{v}) = 0$$

对于 W 中的所有 \mathbf{w} 成立。因为 $\mathbf{w} = \mathbf{A}\mathbf{x}$ 对于某些 \mathbf{x} , 我们有

$$\mathbf{A}\mathbf{x} \cdot (\mathbf{v} - \mathbf{A}\mathbf{x}_p) = 0$$

对于在 \mathbb{R}^k 中所有的 \mathbf{x} 成立。用矩阵的形式写这个点积可以得到

$$(\mathbf{A}\mathbf{x})^T (\mathbf{v} - \mathbf{A}\mathbf{x}_n) = 0$$

相当于

$$(\mathbf{x}^T \mathbf{A}^T) (\mathbf{v} - \mathbf{A} \mathbf{x}_p) = 0$$

转换回点积, 我们有

$$\mathbf{x} \cdot \mathbf{A}^T \left(\mathbf{v} - \mathbf{A} \mathbf{x}_p \right) = 0$$

换句话说,向量 $\mathbf{A}^T(\mathbf{v} - \mathbf{A}\mathbf{x}_p)$ 与 \mathbb{R}^k 中的每个向量 \mathbf{x} 正交。 \mathbb{R}^k 中唯一具有这个性质的向量是零向量,所以我们可以得出这样的结论

$$\mathbf{A}^T \left(\mathbf{v} - \mathbf{A} \mathbf{x}_p \right) = \mathbf{0}$$

我们得到

$$\mathbf{A}^T \mathbf{v} = \mathbf{A}^T \mathbf{A} \mathbf{x}_n$$

从这个引理,我们知道 A^TA 是可逆的,并且我们有

$$\left(\mathbf{A}^T\mathbf{A}\right)^{-1}\mathbf{A}^T\mathbf{v} = \mathbf{x}_p$$

由于 $\mathbf{A}\mathbf{x}_p$ 是所需的投影,我们有

$$\mathbf{A} \left(\mathbf{A}^T \mathbf{A} \right)^{-1} \mathbf{A}^T \mathbf{v} = \operatorname{proj}_W \mathbf{v}$$

我们得出结论, W 的投影矩阵是

$$\mathbf{A} \left(\mathbf{A}^T \mathbf{A} \right)^{-1} \mathbf{A}^T$$

注意,任何投影矩阵 P 都满足这两个性质

- 1. $\mathbf{P}^2 = \mathbf{P}$,并且
- 2. **P** 是对称的。

任何满足这两个性质的矩阵都是 \mathbb{R}^n 中的某个子空间的投影矩阵 (see Exercise 36 in Section 7.1 of Lay)。