Amazon Sentimental Analysis

Classification Problem:

Daily Analysis of a product such as emotions, sentiment etc. using Amazon data

Text_ID | Product_Description | Product_Type | Sentiment

Team: Pankti Rashmin Satra

EDA & VISUALIZATION

```
        Product_Type
        0
        1
        2
        3
        4
        5
        6
        7
        8
        9
        All

        Sentiment
        0
        0
        2
        1
        0
        0
        2
        0
        1
        105
        111

        1
        4
        5
        69
        49
        0
        36
        84
        43
        65
        44
        399

        2
        1
        1
        15
        10
        0
        6
        16
        8
        6
        3702
        3765

        3
        47
        53
        379
        240
        19
        171
        563
        276
        122
        219
        2089

        All
        52
        59
        465
        300
        19
        213
        665
        327
        194
        4070
        6364
```

```
def review cleaning(text):
    stop words = stopwords.words('english')
    stop_words.extend(["sxsw","@","rt","re","w","u","m","s","sxswi","mention","link","amp","sx","sw","wi","sxs",
                       "google", "app", "phone", "pad", "apple", "austin", "quot", "android", "ipad", "marissa", "mayer",
                       "social", "network", "store", "via", "popup", "called", "zlf", "zms", "quotmajorquot"])
    text = normalize("NFKD", text).encode("ascii", "ignore").decode("utf-8", "ignore") # Encoding & Decoding Data
    text = contractions.fix(text)
                                                                                    #Contraction Replacement
    text = re.sub("\[.*?\]","", text)
                                                                                    #brackets
    text = re.sub("https?://\S+|www\.\S+", "", text)
                                                                                    #links
   text = re.sub("<.*?>+", "", text)
                                                                                    #characters
    text = re.sub("[%s]" % re.escape(string.punctuation), "", text)
                                                                                    #punctuations
    text = re.sub("\n","", text)
                                                                                    #new line
    text = re.sub("\w^*\d\w^*", "", text)
                                                                                    #numbers
    text = " ".join([s for s in re.split("([A-Z][a-z]+[^A-Z]*)",text) if s])
                                                                                    #Split attached Uppercase words
    text = "".join("".join(s)[:2] for _, s in itertools.groupby(text))
                                                                             #remove letter repeating twice in continuation
    text = str(text).lower()
                                                                                    #Normalization
    text = " ".join(s for s in str(text).split() if s not in stop words)
                                                                                    #stopwords
    text = " ". join([w.lemmatize() for w in TextBlob(text).words])
                                                                                    #Lemmatizaion
    return text
```

SENTIMENTAL ANALYSIS

	mean	median
	Polarity_score	Polarity_score
Sentiment		
0	0.078659	0.000000
1	0.022575	0.000000
2	0.101766	0.000000
3	0.211351	0.136364

since sentiment 0 & 1 have very few reviews and polarity scores to a similar range, we combine both of them to balance the data

```
amazon["Sentiment"] = amazon["Sentiment"].replace(0,1)
labelencoder = LabelEncoder()
amazon["Sentiment"] = labelencoder.fit_transform(amazon["Sentiment"])
```

			mean	median		
			Polarity_score	Polarity_score		
	Senti	ment				
Negative	—	0	0.034782	0.000000		
Neutral	—	1	0.101766	0.000000		
Positive	—	2	0.211351	0.136364		

MODEL BUILDING

```
X = TfidfVectors, Product_Type,
Polarity_score
Shape = ( 6364, 7592 )
```

Y = Sentiment

Shape =
$$(6364, 1)$$

Accuracy	Sentiment	Classifier								
Accuracy	Sentiment	SVM	XGBM	AB	KNN	RF	CART	GB		
	0	1.00	0.61	0.00	0.72	0.00	0.00	0.73		
Precision	1	0.92	0.92	0.92	0.91	0.60	0.60	0.92		
	2	0.83	0.83	0.80	0.84	1.00	0.50	0.83		
	0	0.16	0.18	0.00	0.22	0.00	0.00	0.21		
Recall	1	0.98	0.98	0.98	0.98	1.00	1.00	0.98		
	2	0.91	0.88	0.91	0.88	0.01	0.01	0.89		
	0	0.28	0.28	0.00	0.33	0.00	0.00	0.32		
F1	1	0.95	0.94	0.95	0.94	0.75	0.75	0.95		
	2	0.86	0.85	0.85	0.86	0.01	0.01	0.86		
Mode	l Score	88.61%	87.82%	87.27%	88.37%	60.41%	60.33%	88.53%		

Trained Model using Various Classifiers like:

SVM, XG Boost, Ada Boost, KNN, Random Forest, Decision Tree, Gradient Boosting

	0	1	2	3	4	5	6	7	8	9	 7582	7583	7584	7585	7586	7587	7588	7589	Product_Type	Polarity_score
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9	0.0
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9	0.3
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9	-0.6

FINAL MODEL BASED ON ACCURACY

Gradient Boosting Model returns the Highest Accuracy model = GradientBoostingClassifier()

model.fit(X,Y)

dump(model, open("Amazon.sav", "wb"))

loaded_model = load(open('Amazon.sav', 'rb'))

result = loaded_model.score(X, Y)

89.3935%

<u>Accuracy</u>

Classification	Report -			
	precision	recall	f1-score	support
0	0.73	0.21	0.32	106
1	0.92	0.98	0.95	767
2	0.83	0.89	0.86	400
accuracy			0.89	1273
macro avg	0.83	0.69	0.71	1273
weighted avg	0.88	0.89	0.87	1273

DEPLOYMENT

- Deployed model on Streamlit using command prompt
- Predict Button to Predict the Sentiment
- Download Button to save prediction as .csv file.

