Problem 1

The intividual homogenous transformations are:

$$H_1^{\circ}(Rx_1\pi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & C\Pi - S\Pi & 0 \\ 0 & +S\Pi & C\Pi & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_2(T_{2,5}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H(Ty,-3) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

a) fixed -> premuetiply convent -> post nuchiply.

overall homogenous trans, matrix:

1

b) Co-ordinates of trame 3 origin wit frame D

Frame 3's origin is like any other point in frame 3. Hence, to get its coordinates in frame 0, we can do

$$= \begin{bmatrix} 0 \\ -3 \\ -5 \end{bmatrix} \Rightarrow \text{Therefore, } 0_3^\circ = \begin{bmatrix} 0 & -3 & -5 \end{bmatrix}^T$$

we have Hi and Hi from past a

$$\frac{1}{42} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$p^{0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -5 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 4 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -3 \\ -4 \\ -6 \\ 1 \end{bmatrix}$$

We just calculated p° and we have H3° .: from equator: p° = H3° p3

$$H_3^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & 0 & -3 \\ 0 & 0 & 4 & -5 \end{bmatrix}$$
 Here $R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $d = \begin{bmatrix} 0 & -3 & -5 \end{bmatrix}^T$

We know that

$$H = \begin{bmatrix} R & d \\ 0 & 1 \end{bmatrix}$$
 and $H^{\dagger} = \begin{bmatrix} RT & -R^{T}d \\ 0 & 1 \end{bmatrix}$

$$-R^{T}J = (-1) \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ -3 \\ -5 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \\ -5 \end{bmatrix}$$

$$H^{d} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -3 \\ 0 & 0 & -1 & -5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P^{3} = (H_{3}^{0})^{\dagger} P^{0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -3 \\ 0 & 0 & -1 & -5 \end{bmatrix} \begin{bmatrix} -3 \\ -4 \\ -6 \\ 1 \end{bmatrix}$$
 Any mentating

$$p^{3} = [-3 \ 1 \ 1]^{T}$$

Problem 2

Frame 1 is translated with frame o by Im in both + y & + 3 directions

Frame 2 is translated with frame 1
- by 0.5 m along thety-axis.
- by 0.1 m along the+8-axis.
- by 0.5 m along the-x-axis.

$$= \begin{bmatrix} 1 & 0 & 0 & -05 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_{2}^{1} = \begin{bmatrix} 1 & 0 & 0 & -0.5 \\ 0 & 1 & 0 & 0.5 \\ 0 & 0 & 1 & 0.1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -0.5 \\ 0 & 1 & 0 & 0.5 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -0.5 \\ 0 & 1 & 0 & 1.5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

But before that, H3-?

The rotation matrix can be calculated using:

$$R_{3}^{2} = \begin{bmatrix} x_{3}^{2} & | & y_{3}^{2} & |$$

The translation vector is 1.9m along 3-axis (i.e) $T_3^2 = \begin{bmatrix} 0 & 0 & 1.9 \end{bmatrix}^T$

$$H_{3}^{0} = H_{1}^{0} H_{2}^{1} H_{3}^{2}$$

$$= H_{2}^{0} H_{3}^{2}$$

$$= \begin{bmatrix} 1 & 0 & 0 & -0.5 \\ 0 & 1 & 0 & 1.5 \\ 0 & 0 & 1 & 1.1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_3^0 = \begin{bmatrix} 0 & 0 & 0.5 \\ 1 & 0 & 0 & 1.5 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Problem 3

i	0	d	۵	~	Notes.
	T/2	litdi*	0	11/2	No→N, about 2. 20→N, along 2. 20→N, along 2, 20→N, along 2, 20→2, along 2,
2	-T/2	l2+d2*	0	π_{l_2}	$2_1 \rightarrow 2_2$ about 2_1 $2_1 \rightarrow 2_2$ along 2_1 $2_1 \rightarrow 2_2$ along 2_2 $2_1 \rightarrow 2_2$ about 2_2
3	0	13+0x	0	Ö	22 -> 23 about 22 22 -> 23 along Z2 Z2 -> 23 along 23 Z2 -> 23 about 23

Homogenous transformation matrix di il giren by:

forward kinematics transf. matria: T3 = A, A, A 3

$$T_{3}^{0} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1_{2} + d_{2} \\ 0 & 0 & -1 & -1_{2} + d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

		No			
			a	d	Hdes.
i	0	d		-T1/2	nonly ab 20
1	θ,*	٤١	0		20 7 X1 al 20 20 7 X1 al X1 20 7 Z1 al X1
2	0 2 [*]	12	٥	T12	$\chi_1 \rightarrow \chi_2$ ab Z_1 $Z_1 \rightarrow \chi_2$ al Z_1 $Z_1 \rightarrow \chi_2$ al χ_2 $Z_1 \rightarrow Z_2$ ab χ_2
3	0	Latda*	٥	0	$\chi_2 \rightarrow \chi_3$ at χ_2 $\chi_2 \rightarrow \chi_3$ at χ_3 $\chi_2 \rightarrow \chi_3$ at χ_3 $\chi_2 \rightarrow \chi_3$ at χ_3
4	04	LA	0	11/2	23 → ×4 ab 23 23 → ×4 al ×4 23 → ×4 al ×4 23 → ×4 ab ×4
5	95	0	υ	-T1/2	24 -> 15 al 24 24 -> 15 al 24 24 -> 15 al 16 24 -> 25 al 15
6	06*	ls+la	0	0	25-126 ab 25- 25-126 ab 26- 25-126 ab 26 25-126 ab 26

$$A_{1} = \begin{bmatrix} co_{1} & 0 & -co_{1} & 0 \\ so_{1} & 0 & co_{1} & 0 \\ 0 & -1 & 0 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{B} = \begin{bmatrix} co_{1} & -so_{2} & 0 & 0 \\ so_{2} & co_{2} & 0 & 0 \\ 0 & 0 & 1 & l_{5} + l_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{6}^{b} = A_{1} \cdot A_{2} \cdot A_{3} \cdot A_{4} \cdot A_{5} \cdot A_{6}.$$

$$= \begin{bmatrix} co_{1} & 0 & -so_{1} & 0 \\ so_{1} & 0 & co_{1} & 0 \\ 0 & -1 & 0 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} co_{2} & 0 & so_{2} & 0 \\ so_{2} & 0 & -co_{2} & 0 \\ 0 & 1 & 0 & l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 &$$

							-				-7
T (04	D	504	D	T. cos	0	-505	0	COL	-506	D	0
504	n	-004	D	CO5- 505 0	D	COS	D	506	COC	0	0
	1	~	0,	10	-1	٥	0	0	D	ı	Istle
\	1	0	1	0		6	,	0	n	'n	(
	0	O	ı	7 [U			0		,