Discrete Mathematics and Logic Lecture 9

Andrey Frolov

Innopolis University

Definition

A pair G = (V, E) is called an (undirected) graph, if

$$E \subseteq E(V) = \{\{u, v\} \mid u, v \in V \& u \neq v\}$$

The elements of V is called **vertices** of G, and those of E the **edges** of G.

Remark

Here, G is a simple graph.

Vertices are also called nodes or points; edges are called lines or links.

An edge $\{x, y\}$ is usually written as xy.

Definitions

- 1) Two vertices x, y of G are adjacent of neighbours, if xy is an edge of G.
- 2) A vertex v is **incident** with an edge e, if $v \in e$.
- 3) Two vertices incident with an edge are its **endvertices** or **ends**.
- 4) Two edges v, w of G are adjacent of neighbours, if one of their ends is the same.

Definitions

1) The set of neighbours of a vertex v in $G = (V_G, E_G)$ is denoted by $N_G(v)$ or shortly by N(v).

$$N_G(v) = \{u \in V_G \mid vu \in E_G\}$$

2) The degree (or valency) $d_G(v) = d(v)$ of a vertex v is the number of its neighbours:

$$d_G(v) = |N_G(v)|$$

If several people shake hands, then the number of hands shaken is even.

Lemma (Handshaking lemma)

For each graph $G = (V_G, E_G)$,

$$\sum_{v\in V_G} d_G(v) = 2\cdot |E_G|.$$

If several people shake hands, then the number of hands shaken is even.

Lemma (Handshaking lemma)

For each graph $G = (V_G, E_G)$,

$$\sum_{v\in V_G}d_G(v)=2\cdot |E_G|.$$

Proof

Every edge $e \in E_G$ has two ends.

Definition

Let G = (V, E) and G' = (V', E') be two graphs. We call G and G' isomorphic, and write $G \cong G'$, if there is a bijection $\varphi : V \to V'$ such that for all $x, y \in V$

$$xy \in E \Leftrightarrow \varphi(x)\varphi(y) \in E'$$
.

Such a map φ is called **isomorphism**. If G = G' then it is called an **automorphism**.

Note that the degrees of G do not determine G. Indeed, there are graphs $G = (V, E_G)$ and $H = (V, E_H)$ on the same set of vertices that are not isomorphic, but for which $d_G(v) = d_H(v)$ for all $v \in V$.

Definition

The graph G is the **complete graph**, if every two vertices are adjacent.

The order of a graph G = (V, E) is the number |V|.

Lemma

All complete graphs of order n are isomorphic with each other, and they will be denoted by K_n .

Definition

Let G = (V, E) be a graph, a vertex $v \in V$ be one of ends of an edge $e_1 \in E$, a vertex $w \in V$ be one of ends of an edge $e_k \in E$. The sequence $W = \{e_1, e_2, \ldots, e_k\}$ is called **walk** of length k from v to w, if the edges e_i and e_{i+1} are neighbours for all $i \in \{1, \ldots, k-1\}$.

Definition

Let $W = \{e_1, e_2, \dots, e_k\}$ be a walk $(e_i = u_i u_{i+1})$. We say that W is **closed**, if $u_1 = u_{k+1}$. W is **path**, if $u_i \neq u_j$ for all $i \neq i$. W is **cycle**, if it is closed, and $u_i \neq u_j$ for all $i \neq i$ except $u_1 = u_{k+1}$.

Definition

A non-empty graph G is called **connected** if, for any its vertices v, w, G contains a path from v to w.

Otherwise, G is called disconnected.

Definition

Let G = (V, E) be a graph. A maximal connected subgraph of G is called a **component** of G.

G' = (V', E') is subgraph of G, if $V' \subseteq V$ and $E' \subseteq E$.

Definition

Let
$$G = (V, E)$$
 and $G' = (V', E')$ be two graphs. We set

$$G \cup G' \leftrightharpoons (V \cup V', E \cup E')$$

$$G \cap G' \leftrightharpoons (V \cap V', E \cap E')$$

Proposition

Any graph is a disjoint union of all its connected components.

Proof

It is obvious. :)

Definition

Let G = (V, E) and G' = (V', E') be two graphs. We set

$$G - G' \leftrightharpoons (V, E \setminus E')$$

$$\overline{G} = K_{|V|} - G$$

Let G = (V, E) be a graph, and $E' \subseteq E$ and $e \in E$.

$$G - E'$$
 denotes $G - (V, E')$

$$G - e$$
 denotes $G - (V, \{e\})$

.

Definition

Let G = (V, E) be a graph and $U \subseteq V$. Suppose that E' contains all the edges $xy \in E$ with $x, y \in U$. Then we write G[U] = (U, E') and call it as **induced subgraph** of G.

If G' = (V', E') is a subgraph of G, then G[G'] = G[V'].

If U is subset of the vertex set V of a graph G, we write G - U for $G[V \setminus U]$.

Definition

Let G be a connected graph. Its edge e is called **bridge**, if G - e is disconnected.

Definition

A graph G is called k-connected (for $k \in \mathbb{N}$) if k < |G| and G - X is connected for every set $X \subseteq V_G$ with |X| < k.

0-connected graphs = (non-empty) graphs

1-connected graphs = connected graphs

exactly 2-connected graphs = connected graphs with bridges

Definition

A graph is called a **forest** if it does not contain any cycles.

A connected forest is called a tree.

Theorem (home-work)

The following are equivalent for a graph T:

- 1) T is tree,
- 2) any two vertices of T are linked by a unique path in T,
- 3) T is minimally connected, i.e., any its edge is a bridge,
- 4) T is maximally acyclic, i.e., T contains no cycle but $T \cup (\{x,y\}, \{\{x,y\}\})$ does, for any two non-adjacent vertices $x,y \in V_T$.

Definition

Let G = (V, E) be a connected graph. $G' = (V', E') \subseteq G$ is called **spanning tree**, if G' is tree and V' = V.

Theorem

Any connected graph has a spanning tree.

Proposition (home-work)

Any tree has a vertex with degree 1.

Theorem

A connected graph G with n vertices is a tree iff it has n-1 edges.

Proof (by induction)

Base. Let n = 1. G have no edges.

Hypothesis. Suppose that the theorem holds for any k < n.

Inductive step. (\Rightarrow). Let G be a tree with n vertices, and v have the degree 1. Then G-v is a tree with n-1 vertices and hence (by induction hypothesis) G-v has n-2 edges. Therefore, G has n-1 edges.

Proposition

Any tree has a vertex with degree 1.

Theorem

A connected graph G with n vertices is a tree iff it has n-1 edges.

Proof (by induction)

Inductive step. (\Leftarrow). Let G' be a connected graph with n-1 edges. Suppose that G' is a spanning tree of G. Since G' has n vertices and n-1 edges, by the first implication it follows that G'=G.

Thank you for your attention!