More on Maximal Ideals and Ring of Fractions

Recall: $(X) \subset \mathbb{Z}[X]$ is prime, but $(X) \subsetneq (2, X)$, so it not maximal. $(X) \in \mathbb{R}[X]$ is maximal because $\mathbb{R}[X]/(X) \cong \mathbb{R}$ is a field

Example 8.1. Let $a \in \mathbb{R}$. We defined the evaluation homomorphism before:

$$\operatorname{Ev}_a : \mathbb{R}[X] \to \mathbb{R}$$

 $p(X) \mapsto p(a)$

Observe that Ev_a is in fact surjective. Then

$$\mathbb{R}[X]/\mathrm{Ker}(\mathrm{Ev}_a)\cong\mathbb{R} \implies \mathrm{Ker}(\mathrm{Ev}_a)$$
 is a maximal ideal

Denote $M_a := Ker(Ev_a)$

Claim: $M_a = (X - a)$ (e.g $M_0 = (X)$)

Proof.

If $p(X) \in (X - a)$ then we may write $p(X) = q(X) \cdot (X - a)$, $q(X) \in \mathbb{R}[X]$, then

$$\operatorname{Ev}_a(p(X)) = p(a) = q(a) \cdot (a - a) = 0 \implies p(X) \in M_a \implies (X - a) \subset M_a$$

Conversely, suppose $p(X) \in M_a = \text{Ker}(\text{Ev}_a)$. Let $p(X) = a_0 + a_1 X + a_2 X^2 + \cdots + a_n X^n$, then you can check with polynomial division that X - a divides p(X) with remainder exactly p(a) which is 0, hence X - a is a factor of p(X) [obviously, if p(X) is a polynomial with a root at X = a, then X - a is a factor], and we can write

$$\frac{p(X)}{X-a} = q(X)$$

therefore,

$$p(X)=q(X) \cdot (X-a) \implies p(X) \in (X-a) \implies M_a \subset (X-a)$$
 and hence $M_a=(X-a).$

Q: Is every maximal ideal of $\mathbb{R}[X]$ of the form M_a ?

For example, in \mathbb{Z} , the {maximal ideals} = {prime ideals} but we saw above that in $\mathbb{Z}[X]$ there exist prime ideals that are not maximal.

Two standard questions:

- (1) What are the primes?
- (2) What are the maximal ideals?

<u>Claim:</u> Consider $I = (X^2 + 1)$, then $I \subset \mathbb{R}[X]$ is a maximal ideal.

Proof. We have that

$$\mathbb{R}[X] = \{a_0 + a_1 X + a_2 X^2 + a_3 X^3 + \dots + a_n X^n | a_k \in \mathbb{R}, k = 0, 1, 2, \dots n\}$$

What does $\overline{X^n}$ look like in $\mathbb{R}[X]/(X^2+1)$? We can deduce from the zero coset of the

ideal:

$$X^2 + 1 \in (X^2 + 1) \implies \overline{X^2 + 1} = \overline{0} \implies \overline{X^2} = \overline{-1} \in \mathbb{R}[X]/I$$

Furthermore

$$X^{3} = X \cdot X^{2} \implies \overline{X^{3}} = \overline{X} \cdot \overline{(-1)} \in \mathbb{R}[x]/I$$

$$X^{4} = X^{2} \cdot x^{2} \implies \overline{X^{4}} = \overline{(-1)} \cdot \overline{(-1)} \in \mathbb{R}[X]/I$$

Therefore, since all powers of X greater than 2 can be deconstructed into products of -1 and X, we can collapse the cosets of the quotient to a convenient form:

$$\mathbb{R}[X]/I = \{ \overline{a_0 + a_1 X} \mid a_0, a_1 \in \mathbb{R} \}$$

with the rule $\overline{X} \cdot \overline{X} = \overline{-1}$.

This should be familiar and there is a ring isomorphism

$$\mathbb{R}[X]/I \to \mathbb{C}$$
$$\overline{1} \mapsto 1$$
$$\overline{X} \mapsto i$$

and since the quotient ring is isomorphic to the field \mathbb{C} , I is maximal.

Claim: $(X^2 + 1)$ is **not** maximal in $\mathbb{C}[X]$

Proof. We know that $X + i, x - i \in \mathbb{C}[X]$ and

$$(X+i)(X-i) = X^2 + 1 \in (X^2 + 1)$$

 $(X+i)(X-i)=X^2+1\in (X^2+1)$ But $X+i,X-i\notin (X^2+1)$ therefore (X^2+1) is not prime in $\mathbb{C}[X]$ and consequently

Observe if $a \in R \subset S$ Then

$$(a)_R = \{r \cdot a | r \in R\}$$

$$\cap$$

$$(a)_S = \{s \cdot a | s \in S\}$$

can have different properties as ideals, e.g.

$$\underbrace{(X) \subset \mathbb{Z}[X]}_{\text{prime}} \longrightarrow \underbrace{(x) \subset \mathbb{R}[X]}_{\text{maximal}}$$

$$\underbrace{(X^2+1) \subset \mathbb{R}[X]}_{\text{maximal}} \longrightarrow \underbrace{(X^2+1) \subset \mathbb{C}[X]}_{\text{not prime, not maximal}}$$

The Ring of Fractions

Q: How do we build \mathbb{Q} out of \mathbb{Z} ?

We want to add in multiplicative inverses like $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ but we can't just add them in and get a ring.

Consider

$$\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) = \{(m, n) \mid m, n \in \mathbb{Z}, n \neq 0\}$$

and think of the elements of this set as the fractions $\frac{m}{n}$.

There are some repeats if we care about multiplication and addition like

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6}$$

We should define an equivalence relation

$$\frac{a}{b} \sim \frac{c}{d} \Longleftrightarrow ad = bc$$

e.g $\frac{4}{6} \sim \frac{6}{9}$ because $4 \cdot 9 = 36 = 6 \cdot 6$.

Definition 8.1: Field of Rational Numbers

The field of rational numbers is

$$\mathbb{Q} \coloneqq \left\{ \frac{m}{n} \middle| \ m, n \in \mathbb{Q}, \ n \neq 0 \right\} / \sim$$

and this is a field with operations given by

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

We can also see that there is an injective ring homomorphism

$$\mathbb{Z} \to \mathbb{Q}$$
$$n \mapsto \frac{n}{1}$$

Claim: If F is a field and there is an injective ring homomorphism

$$f: \mathbb{Z} \to F$$

Then it factors through \mathbb{Q} , i.e there is a ring homomorphism

$$\overline{f}: \mathbb{Q} \to F$$
 such that $f(n) = \overline{f}\left(\frac{n}{1}\right)$

This is basically saying that if you have an injective homomorphism from Z to a field F, then under the homomorphism the integers will have inverses $f(2) \cdot \frac{1}{2} \in F$ and one should

see that this is exactly the rationals \mathbb{Q} existing inside F.

Suppose R is any commutative ring with $1 \neq 0$.

Q: Can we do something similar with general rings R? i.e

$$R \times (R \setminus \{0\}) = \{(r, s) \mid r, s \in R, s \neq 0\}$$

(again, we will write (r, s) as $\frac{r}{s}$). We want to define $r^{-1} = \frac{1}{r}, r \neq 0$.

However, if r is a zero divisor, $r \cdot s = 0$ then in this case we want to exclude

$$\frac{1}{r} \cdot \frac{1}{s} = \frac{1}{r \cdot s} = \frac{1}{0}$$

Definition 8.2: Field of Fractions

Let R be an integral domain with $1 \neq 0$. Consider

$$R \times (R \setminus \{0\}) = \{(r, s) \mid r, s \in R, s \neq 0\}$$

Define an equivalence relation (exercise to show it is) by

$$\frac{a}{r} \sim \frac{b}{s} \Longleftrightarrow a \cdot s = b \cdot r$$

There is no ambiguity in the equality of products since R is integral there are no zero zero divisors, $s, r \neq 0$.

The field of fractions of R is

$$Q(R) := R \times (R \setminus \{0\}) / \sim = \left\{ \left[\frac{a}{b} \right] \middle| a, b \in R, b \neq 0 \right\}$$

Theorem 8.1

Q(R) is a field with operations

$$\frac{a}{r} + \frac{b}{s} = \frac{as + br}{rs}, \qquad \frac{a}{r} \cdot \frac{b}{s} = \frac{ab}{rs}$$

The map

$$i: R \to Q(R)$$

 $r \mapsto \frac{r}{1}$

is an injective ring homomorphism (we say R is a subring of its field of fractions). Moreover, if F is any field such that $R \subset F$ is a subring (i.e there exists an injective ring homomorphism $f: R \to F$), then there is a ring homomorphism

$$\overline{f}: Q(R) \to F \text{ such that } f(x) = \overline{f} \circ i(x)$$

$$R \xrightarrow{i} Q(R)$$

$$\downarrow f$$

Proof. Think about it.....

Example 8.2. $Q(\mathbb{Z}) = \mathbb{Q}$

Example 8.3. $R = \mathbb{R}[X]$ is an integral domain. The fractional field of R is the field of rational functions

$$Q(R) = \mathbb{R}(X) := \left\{ \frac{p(X)}{q(X)} \middle| p, q \in \mathbb{R}[X], q \neq 0 \right\}$$

Example 8.4. If R is any integral domain with field of fractions Q(R) = F. Consider the integral domain R[X]. Then in particular $R \subset R[X]$, and $R[X] \subset Q(R[X])$ which tells us that

$$R \xrightarrow{\text{inclusion}} Q(R[X])$$

$$F$$

e.g $\mathbb{Z} \subset \mathbb{Z}[X]$, so in particular $\mathbb{Q} \subset Q(\mathbb{Z}[X])$.

In fact, since in $Q(\mathbb{Z}[X])$ you've added inverses to the coefficients but you also inverses to the polynomials, so you will get the field of rational functions

$$Q(\mathbb{Z}[X]) = \mathbb{R}(X)$$

Furthermore, this is generally true, as the field of fractions of R[X] is going to be the rational functions with coefficients in the field of fractions of R, i.e

$$Q(R[X]) = F(X)$$