#Avantika Mishra #Registration Number import seaborn as sns

df=sns.load_dataset('car_crashes')

df

ат						
\	total	speeding	alcohol	not_distracted	no_previous	ins_premium
ò	18.8	7.332	5.640	18.048	15.040	784.55
1	18.1	7.421	4.525	16.290	17.014	1053.48
2	18.6	6.510	5.208	15.624	17.856	899.47
3	22.4	4.032	5.824	21.056	21.280	827.34
4	12.0	4.200	3.360	10.920	10.680	878.41
5	13.6	5.032	3.808	10.744	12.920	835.50
6	10.8	4.968	3.888	9.396	8.856	1068.73
7	16.2	6.156	4.860	14.094	16.038	1137.87
8	5.9	2.006	1.593	5.900	5.900	1273.89
9	17.9	3.759	5.191	16.468	16.826	1160.13
10	15.6	2.964	3.900	14.820	14.508	913.15
11	17.5	9.450	7.175	14.350	15.225	861.18
12	15.3	5.508	4.437	13.005	14.994	641.96
13	12.8	4.608	4.352	12.032	12.288	803.11
14	14.5	3.625	4.205	13.775	13.775	710.46
15	15.7	2.669	3.925	15.229	13.659	649.06
16	17.8	4.806	4.272	13.706	15.130	780.45
17	21.4	4.066	4.922	16.692	16.264	872.51
18	20.5	7.175	6.765	14.965	20.090	1281.55
19	15.1	5.738	4.530	13.137	12.684	661.88
20	12.5	4.250	4.000	8.875	12.375	1048.78

21	8.2	1.886	2.870	7.134	6.560	1011.14
22	14.1	3.384	3.948	13.395	10.857	1110.61
23	9.6	2.208	2.784	8.448	8.448	777.18
24	17.6	2.640	5.456	1.760	17.600	896.07
25	16.1	6.923	5.474	14.812	13.524	790.32
26	21.4	8.346	9.416	17.976	18.190	816.21
27	14.9	1.937	5.215	13.857	13.410	732.28
28	14.7	5.439	4.704	13.965	14.553	1029.87
29	11.6	4.060	3.480	10.092	9.628	746.54
30	11.2	1.792	3.136	9.632	8.736	1301.52
31	18.4	3.496	4.968	12.328	18.032	869.85
32	12.3	3.936	3.567	10.824	9.840	1234.31
33	16.8	6.552	5.208	15.792	13.608	708.24
34	23.9	5.497	10.038	23.661	20.554	688.75
35	14.1	3.948	4.794	13.959	11.562	697.73
36	19.9	6.368	5.771	18.308	18.706	881.51
37	12.8	4.224	3.328	8.576	11.520	804.71
38	18.2	9.100	5.642	17.472	16.016	905.99
39	11.1	3.774	4.218	10.212	8.769	1148.99
40	23.9	9.082	9.799	22.944	19.359	858.97
41	19.4	6.014	6.402	19.012	16.684	669.31
42	19.5	4.095	5.655	15.990	15.795	767.91
43	19.4	7.760	7.372	17.654	16.878	1004.75
44	11.3	4.859	1.808	9.944	10.848	809.38
45	13.6	4.080	4.080	13.056	12.920	716.20
46	12.7	2.413	3.429	11.049	11.176	768.95

47	10.6	4.452	3.498	8.692	9.116	890.03
48	23.8	8.092	6.664	23.086	20.706	992.61
49	13.8	4.968	4.554	5.382	11.592	670.31
50	17.4	7.308	5.568	14.094	15.660	791.14
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	ins_losse 145.0 133.9 110.3 142.3 165.6 139.9 167.0 151.4 136.0 144.1 142.8 120.9 82.7 139.1 108.9 114.4 133.8 137.1 194.7 96.5 192.7 135.6 152.2 133.3 155.7 144.4 85.1 114.8 138.7 120.2 138.7 120.2 138.7 120.2 139.8 120.7 150.0 127.8 109.7 133.5 178.8 104.6 153.8	8 AL AK AZ AR AZ AR AZ AR CO T DE C FL AH I D L I N A KY A ME DC FL IN A KY A ME MA MI N MS MT NE NV NH NJ NM NY NC ND OK OR OK OR				

```
39
        148.58
                   RI
        116.29
40
                    SC
41
         96.87
                    SD
        155.57
42
                   TN
        156.83
43
                   TX
44
        109.48
                   UT
45
                   VT
        109.61
46
        153.72
                   VA
47
        111.62
                   WA
48
        152.56
                   WV
49
        106.62
                   WI
50
        122.04
                   WY
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 8 columns):
     Column
                     Non-Null Count
                                      Dtype
- - -
     -----
 0
     total
                      51 non-null
                                      float64
 1
     speeding
                     51 non-null
                                      float64
 2
                                      float64
     alcohol
                     51 non-null
 3
                                      float64
     not_distracted
                     51 non-null
 4
     no previous
                     51 non-null
                                      float64
 5
     ins premium
                     51 non-null
                                      float64
     ins losses
 6
                     51 non-null
                                      float64
     abbrev
 7
                     51 non-null
                                      object
dtypes: float64(7), object(1)
memory usage: 3.3+ KB
sns.scatterplot(x="total",y='alcohol',data=df)
<Axes: xlabel='total', ylabel='alcohol'>
```


Inference- As alcohol parameter increases, total number of car crashes increases

```
sns.scatterplot(x="no_previous",y='not_distracted',data=df)
<Axes: xlabel='no_previous', ylabel='not_distracted'>
```


Inference- No_previous and not_distracted parameters are directly proportional.....if one increases, other increases.

```
sns.scatterplot(x='not_distracted',y="alcohol",data=df)
<Axes: xlabel='not_distracted', ylabel='alcohol'>
```


sns.lineplot(x="total",y='not_distracted',data=df,errorbar=None)
<Axes: xlabel='total', ylabel='not_distracted'>

Inference- Overall the "not_distracted" and "total" are directly proportional other than the valleys at 17.5 and 14. These points may indicate areas of interest or potential outliers.

```
sns.displot(df["total"])
<seaborn.axisgrid.FacetGrid at 0x7c678cc10370>
```


Inference-The distribution is skewed to the left (negatively skewed), it indicates most data points are concentrated on the higher end of the "total" scale, with a long tail extending towards lower values.

```
sns.relplot(x="total",y="alcohol",data=df,hue="abbrev")
<seaborn.axisgrid.FacetGrid at 0x7c6748ddf5e0>
```


Inference-Relplot shows the relation between two parameters on the basis of hue given. Here abbreviations show the relationship between 'alcohol' and 'total' parameters.

```
sns.barplot(data=df,x="speeding",y="alcohol",hue="speeding")
<Axes: xlabel='speeding', ylabel='alcohol'>
```


Inference- Since all the values of all the columns are unique, barplot is shown as above.

```
sns.countplot(x='abbrev',data=df)
<Axes: xlabel='abbrev', ylabel='count'>
```


Inference-Each of the abbreviations given are unique and equal in number.

```
sns.barplot(x="total",y='abbrev',data=df,errorbar=None)
<Axes: xlabel='total', ylabel='abbrev'>
```


Inference-There are multiple abbreviations given in the 'abbrev' column. It shows that abbrev-WV, SC and ND have the greatest total.

```
sns.jointplot(x="no_previous",y='not_distracted',data=df)
<seaborn.axisgrid.JointGrid at 0x7c6748f93a60>
```


Inference-Histogram is the univariate analysis AND Scatterplot is the bivariate analysis. Both the parameters increases when other increases.

```
sns.jointplot(x="total",y='alcohol',data=df)
<seaborn.axisgrid.JointGrid at 0x7c67462bb940>
```


Inference-

```
sns.jointplot(x="no_previous",y='not_distracted',data=df)
sns.boxplot(x="total",y='not_distracted',data=df)
<Axes: xlabel='total', ylabel='not_distracted'>
```


Inference-The graph shows that they are symetrically skewed

corr=df.corr() <ipython-input-33-0014364bc22a>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric only to silence this warning. corr=df.corr() corr speeding alcohol not_distracted total no previous total 1.000000 0.611548 0.852613 0.827560 0.956179 speeding 0.611548 1.000000 0.669719 0.588010 0.571976 alcohol 0.852613 0.669719 1.000000 0.732816 0.783520 not distracted 0.827560 0.588010 0.732816 1.000000 0.747307 no previous 0.956179 0.571976 0.783520 0.747307 1.000000 -0.199702 -0.077675 -0.170612 -0.174856 ins_premium

```
0.156895
ins losses
               -0.036011 -0.065928 -0.112547
                                                     -0.075970
0.006359
                ins premium
                              ins losses
total
                   -0.199702
                               -0.036011
speeding
                   -0.077675
                               -0.065928
                               -0.112547
alcohol
                   -0.170612
                               -0.075970
not distracted
                   -0.174856
                   -0.156895
                               -0.006359
no_previous
ins premium
                    1.000000
                                0.623116
ins losses
                    0.623116
                                1.000000
```

Inference-Total and Speeding are highly co-related. Total and alcohol are highly co-related. Total and No_Previous are highly co-related.

```
sns.heatmap(corr,annot=True)
<Axes: >
```


Inference Can be derived on the basis of colors.

```
sns.violinplot(x="no_previous",y='not_distracted',data=df)
<Axes: xlabel='no_previous', ylabel='not_distracted'>
```

