ELE 382: Statistical Signal Processing

Fall 2017

Homework 8

Due date: Wednesday, Dec. 13 (at the beginning of class)

You are allowed to drop 1 problem without penalty. If you attempt all problems, then the problem with the lowest score will automatically be dropped. In addition, up to 2 bonus points will be awarded to each problem for clean, well-organized, and elegant solutions.

1. Bertsekas 9.7 (10 points)

Derive the ML estimator of the parameter of a Poisson random variable based on i.i.d. observations X_1 , \cdots , X_n . Is the estimator unbiased?

2. Bertsekas 9.8 (10 points)

We are given i.i.d. observations X_1, \dots, X_n that are uniformly distributed over the interval $[0, \theta]$. What is the ML estimator of θ ? Is it unbiased or asymptotically unbiased? Can you construct alternative estimators that are unbiased?

3. Bertsekas 9.9 (10 points)

We are given i.i.d. observations X_1, \dots, X_n that are uniformly distributed over the interval $[\theta, \theta + 1]$. Find the ML estimator.

4. Poisson processes (10 points)

Let $\{N(t), t \geq 0\}$ be a Poisson process with rate λ . Calculate $\mathbb{E}[N(t)]$ and $\mathbb{E}[N(t)N(t+s)]$.

5. Moving-average process. (10 points)

Let $\{X_n \mid n \geq 1\}$ be a discrete-time white Gaussian noise process, that is, $X_1, X_2, X_3 \dots$ are i.i.d. random variables with $X_n \sim \mathcal{N}(0, N)$. Consider the *moving-average* process $\{Y_n \mid n \geq 2\}$ defined by

$$Y_n = \frac{2}{3}X_{n-1} + \frac{1}{3}X_{n-2}, \quad n \ge 2.$$

Let $X_0 = 0$. Find the mean $\mathbb{E}[Y_n]$ and autocorrelation function $R_Y(m,n) = \mathbb{E}[Y_m Y_n]$ for the process $\{Y_n\}$.