

STAT604

Lesson SAS 12

Portions Copyright © 2009 SAS Institute Inc., Cary, NC, USA. All rights reserved. Reproduced with permission of SAS Institute Inc., Cary, NC, USA. SAS Institute Inc. makes no warranties with respect to these materials and disclaims all liability therefor.

Outputting to Multiple Data Sets

The DATA statement can specify multiple output data sets.

```
data EmpsAUC EmpsOnly PhoneOnly;
  merge EmpsAU(in=Emps) PhoneC(in=Cell);
  by EmpID;
  if Emps=1 and Cell=1
       then output EmpsAUC;
  else if Emps=1 and Cell=0
       then output EmpsOnly;
  else if Emps=0 and Cell=1
       then output PhoneOnly;
run;
```

Outputting to Multiple Data Sets

An OUTPUT statement can be used in a conditional statement to write the current observation to a specific data set that is listed in the DATA statement.

```
data EmpsAUC EmpsOnly PhoneOnly;
   merge EmpsAU(in=Emps) PhoneC(in=Cell);
   by EmpID;
   if Emps=1 and Cell=1
        then output EmpsAUC;
   else if Emps=1 and Cell=0
        then output EmpsOnly;
   else if Emps=0 and Cell=1
        then output PhoneOnly;
run;
```

Outputting to Multiple Data Sets

EmpsAUC

First	Gender	EmpID	Phone
Togar	M	121150	+61 (2) 5555-1795
Birin	M	121152	+61 (2) 5555-1667

EmpsOnly

First	Gender	EmpID	Phone
Kylie	F	121151	

PhoneOnly

First	Gender	EmpID	Phone
		121153	+61 (2) 5555-1348

Merge **EmpsAUUS** and **PhoneO** by **Country** to create a new data set named **EmpsOfc**.

EmpsAUUS

First	Gender	Country	
Togar	M	AU	•
Kylie	F	AU	•
Stacey	F	US	-
Gloria	F	US	*
James	M	US	•

Phone₀

Country	Phone
AU	+61 (2) 5555-1500
AU	+61 (2) 5555-1600
AU	+61 (2) 5555-1700
US	+1 (305) 555-1500
US	+1 (305) 555-1600

```
data EmpsOfc;
    merge EmpsAUUS PhoneO;
    by Country;
run;
```

The data sets are sorted by **Country**.

DATA Step Results:

EmpsOfc

First	Gender	Country	Phone
Togar	M	AU	+61 (2) 5555-1500
Kylie	F	AU	+61 (2) 5555-1600
Kylie	F	AU	+61 (2) 5555-1700
Stacey	F	US	+1 (305) 555-1500
Gloria	F	US	+1 (305) 555-1600
James	M	US	+1 (305) 555-1600

The SQL procedure creates different results than the DATA step for a many-to-many merge.

EmpsAUUS

First	Gender	Country	
Togar	M	AU	k
Kylie	F	AU	ł
Stacey	F	US	
Gloria	F	US	k
James	M	US	ł

Phone₀

Country	Phone
AU	+61 (2) 5555-1500
AU	+61 (2) 5555-1600
AU	+61 (2) 5555-1700
US	+1 (305) 555-1500
US	+1 (305) 555-1600

```
proc sql;
    create table EmpsOfc as
    select First, Gender, PhoneO.Country, Phone
    from EmpsAUUS, PhoneO
    where EmpsAUUS.Country=PhoneO.Country;
```

PROC SQL Results:

EmpsOfc

First	Gender	Country	Phone
Togar	M	AU	+61 (2) 5555-1500
Togar	M	AU	+61 (2) 5555-1600
Togar	M	AU	+61 (2) 5555-1700
Kylie	F	AU	+61 (2) 5555-1500
Kylie	F	AU	+61 (2) 5555-1600
Kylie	F	AU	+61 (2) 5555-1700
Stacey	F	US	+1 (305) 555-1500
Stacey	F	US	+1 (305) 555-1600
Gloria	F	US	+1 (305) 555-1500
Gloria	F	US	+1 (305) 555-1600
James	M	US	+1 (305) 555-1500
James	M	US	+1 (305) 555-1600

P2-Chapter 9: Combining SAS Data Sets

Objectives

- Show techniques to perform a match-merge for these special cases:
 - three or more SAS data sets that lack a single common variable
 - variable names that need to be altered to obtain the correct merge results.

Special Cases

Show techniques to perform a match-merge for these special cases:

- Three or more SAS data sets that lack a common variable
- Variable names that need to be altered to get the correct merge results

Multiple Data Sets without a Common Variable

The following report needs to be created using data from three data sets.

Partial PROC PRINT Output

	-	rotal Retail		
Customer_Name	Quantity	Price	Product_Name	Supplier
Kyndal Hooks	2	\$69.40	Kids Sweat Round Neck, Large Logo	US 3298
Kyndal Hooks	1	\$14.30	Fleece Cuff Pant Kid'S	US 1303
Dericka Pockran	3	\$37.80	Children's Mitten	US 772
Wendell Summersby	1	\$39.40	Bozeman Rain & Storm Set	US 772
Sandrina Stephano	1	\$52.50	Teen Profleece w/Zipper	US 772
Wendell Summersby	1	\$50.40	Butch T-Shirt with V-Neck	ES 4742
Karen Ballinger	2 2	\$134.00	Children's Knit Sweater	ES 4742
Wendell Summersby		\$134.00	Children's Knit Sweater	ES 4742
Patricia Bertolozz:	i 1	\$23.50	Strap Pants BBO	ES 798
Kyndal Hooks	4	\$56.80	Osprey France Nylon Shorts	US 3664
Karen Ballinger	3	\$60.90	Osprey Girl's Tights	US 3664
Karen Ballinger	2	\$60.60	Logo Coord.Children's Sweatshirt	US 2963
David Black	I ¹	\$117.60	Big Guy Men's Clima Fit Jacket	US 1303

orion.customer

work.order_fact

orion.product_dim

9.04 **Quiz**

Any number of data sets can be merged in a single DATA step. However, the data sets must have a common variable and be sorted by that variable.

What is the common variable in the following data sets?

orion.customer

Customer_ID
Country
Gender
Personal_ID
Customer_Name
Customer_FirstName
Customer_LastName
Birth_Date
Customer_Address
• • •

work.order_fact

Customer_ID
Employee_ID
Street_ID
Order_Date
Delivery_Date
Order_ID
Order_Type
Product_ID
Quantity
• • •

orion.product dim

Product_ID		
Product_Line		
Product_Category		
Product_Group		
Product_Name		
Supplier_Country		
Supplier_Name		
Supplier_ID		

9.04 Quiz – Correct Answer

What is the common variable in the following data sets?

None. These data sets do not share one common variable. Therefore, they cannot be combined in a single DATA step.

Match-Merge without a Common Variable

If data sets do not share a common variable, combine them by using a series of merges in separate DATA steps. As usual, the data sets must be sorted by the appropriate BY variable.

Step 1: Merge orion.customer and work.order_fact by Customer_ID.

Step 2: Merge the results of Step1 and orion.product_dim by Product_ID.

Without a Common Variable – Step 1

Merge orion.customer and work.order_fact by Customer_ID.

```
proc sort data=orion.order fact
          out=work.order fact;
   by Customer ID;
   where year (Order Date) = 2007;
run;
                                 orion.customer is in
                                 order by Customer ID
data CustOrd;
   merge orion.customer(in=cust)
         work.order fact(in=order);
   by Customer ID;
   if cust=1 and order=1;
   keep Customer ID Customer Name Quantity
        Total Retail Price Product ID;
run;
```

Without a Common Variable – Step 2

Merge the results of Step 1, **CustOrd**, with **orion.product_dim** by **Product_ID**.

```
proc sort data=CustOrd;
   by Product ID;
                                     Product dimisin
run;
                                    order by Product ID
data CustOrdProd;
   merge CustOrd(in=ord)
         orion.product dim(in=prod);
   by Product ID;
   if ord=1 and prod=1;
   Supplier=catx(' ',Supplier Country,Supplier ID);
   keep Customer Name Quantity
        Total Retail Price Product Name Supplier;
run;
```

Altering Variable Names

With match-merging, two situations might require altering variable names:

- The BY variables have different names in the input data sets being merged.
- The data sets being merged have identically named variables that must both be kept in the merged output.

In both cases, the RENAME= data set option can be used to alter the variable names to get the desired results.

Business Scenario – Create Gift List

The Excel workbook **BonusGift.xls** contains a list of suppliers that want to send gifts to customers who purchased more than a specified minimum quantity of a product.

Use work. CustOrdProd and BonusGift.xls to determine the customers that will be sent gifts.

work.CustOrdProd

Customer_Name		
Quantity		
Total_Retail_Price		
Product_Name		
Supplier		

BonusGift.xls

SuppID	
Gift	
Quantity	

Business Scenario – Details

The data sets work. CustOrdProd and BonusGift.xls must be merged on values that are in two differently named variables.

The variables must have the same name for the matchmerge to work correctly.

Business Scenario – Details

You want to keep merged observations where the value of **Quantity** in **work**. **CustOrdProd** is more than the value of **Quantity** in **BonusGift**.xls.

work.CustOrdProd

The variables must have different names so that you can use a subsetting IF statement to compare them.

Access the Excel workbook, specify the worksheet to use, and release the workbook after the DATA step.

```
libname bonus pcfiles path='C:\SAS Sample
Data\prg2\BonusGift.xls'; *Rev. for 64 bit;
data CustOrdProdGift;
   merge CustOrdProd(in=c)
         bonus. 'Supplier$'n (in=s
            rename=(SuppID=Supplier
                    Quantity=Minimum));
  by Supplier;
   if c=1 and s=1 and Quantity > Minimum;
run;
libname bonus clear;
```

Use the RENAME= data set option to ensure that the BY variable has the same name to use for merging.

```
libname bonus pcfiles path='C:\SAS Sample
Data\prg2\BonusGift.xls';
data CustOrdProdGift;
   merge CustOrdProd(in=c)
         bonus. 'Supplier$'n(in=s
            rename=(SuppID=Supplier
                    Quantity=Minimum));
   by Supplier;
   if c=1 and s=1 and Quantity > Minimum;
run;
libname bonus clear;
```

Change the name of the **Quantity** variable from the Excel worksheet so that it can be use in a subsetting IF.

```
libname bonus pcfiles path='C:\SAS Sample
Data\prg2\BonusGift.xls';
data CustOrdProdGift;
   merge CustOrdProd(in=c)
          bonus. 'Supplier$'n(in=s
             rename=(SuppID=Supplier
                      Quantity=Minimum));
   by Supplier;
   if c=1 and s=1 and Quantity > Minimum;
run;
      Quantity value
                            Renamed Quantity value
libna from the CustOrdProd
                           from the 'Supplier$'n data
                           set
     data set
```

Use the IN= option and a condition in the subsetting IF statement to keep only the matches.

```
libname bonus pcfiles path='C:\SAS Sample
Data\prg2\BonusGift.xls';
data CustOrdProdGift;
   merge CustOrdProd(in=c)
         bonus. 'Supplier$'n(in=s
            rename=(SuppID=Supplier
                    Quantity=Minimum));
   by Supplier;
   if c=1 and s=1 and Quantity > Minimum;
run;
libname bonus clear;
```

Fifty-two gifts will be sent to customers.

Partial SAS log

```
207 libname bonus 'BonusGift.xls';
NOTE: Libref BONUS was successfully assigned as follows:
                     EXCEL
      Engine:
      Physical Name: BonusGift.xls
208
209
     data CustOrdProdGift;
210
       merge CustOrdProd(in=c)
211
              bonus.'Supplier$'n(in=s
212
                 rename=(SuppID=Supplier
213
                         Quantity=Minimum));
214
        by Supplier;
215
        if c=1 and s=1 and Quantity > Minimum;
216
    run;
NOTE: There were 148 observations read from the data set WORK.CUSTORDPROD.
NOTE: There were 18 observations read from the data set BONUS. 'Supplier$'n.
NOTE: The data set WORK.CUSTORDPRODGIFT has 52 observations and 7 variables.
NOTE: DATA statement used (Total process time):
      real time
                          0.04 seconds
      cpu time
                          0.03 seconds
```

Create Gift List – Output

Sort the data set by customer name prior to printing the list of customers and the gifts that they should receive.

```
proc sort data=CustOrdProdGift;
  by Customer_Name;
run;

proc print data=CustOrdProdGift;
  var Customer_Name Gift;
run;
```

Create Gift List – Output

The output below shows the list of customers and gifts.

Partial PROC PRINT output

Customer_Name	Gift
Alvan Goheen Angel Borwick Cynthia Martinez Cynthia Martinez Cynthia Martinez Cynthia Mccluney Cynthia Mccluney Cynthia Mccluney	Travel Mug Belt Pouch Travel Set Gift Card Travel Mug Tote Bag Tote Bag Gift Card
David Black Dericka Pockran Dericka Pockran Dericka Pockran	Backpack Coupon Travel Mug Travel Mug

Chapter 10: Combining SAS Data Sets

10.1 Introduction to Combining Data Sets
10.2 Appending a Data Set
10.3 Concatenating Data Sets
10.4 Merging Data Sets One-to-One
10.5 Merging Data Sets One-to-Many
10.6 Merging Data Sets with Nonmatches

Objectives

- Append one SAS data set to another SAS data set by using the APPEND procedure.
- Append a SAS data set containing additional variables to another SAS data set by using the FORCE option with the APPEND procedure.

Appending and Concatenating

Appending and concatenating involves combining SAS data sets, one after the other, into a single SAS data set.

- Appending adds the observations in the second data set directly to the end of the original data set.
 - Concatenating copies all observations from the first data set and then copies all observations from one or more successive data sets into a new data set.

The APPEND Procedure

The APPEND procedure adds the observations from one SAS data set to the end of another SAS data set. General form of the APPEND procedure:

BASE= names the data set to which observations are added.

DATA= names the data set containing observations that are added to the base data set.

The APPEND Procedure

Requirements:

- Only two data sets can be used at a time in one step.
- The observations in the base data set are not read.
- The variable information in the descriptor portion of the base data set cannot change.

Business Scenario

Emps is a master data set that contains employees hired in 2006 and 2007.

Emps

First	Gender	HireYear
Stacey	F	2006
Gloria	F	2007
James	M	2007

Business Scenario

Emps is a master data set that contains employees hired in 2006 and 2007.

Emps

First	Gender	HireYear
Stacey	F	2006
Gloria	F	2007
James	M	2007

The employees hired in 2008, 2009, and 2010 need to be appended.

Emps2008

First	Gender	HireYear
Brett	M	2008
Renee	F	2008

Emps2009

First	HireYear
Sara	2009
Dennis	2009

Emps2010

First	HireYear	Country
Rose	2010	Spain
Eric	2010	Spain

10.02 Quiz

How many observations will be in **Emps** after appending the three data sets?

Emps

First	Gender	HireYear
Stacey	F	2006
Gloria	F	2007
James	M	2007

Emps2008

First	Gender	HireYear
Brett	M	2008
Renee	F	2008

Emps2009

First	HireYear
Sara	2009
Dennis	2009

First	HireYear	Country
Rose	2010	Spain
Eric	2010	Spain

10.02 Quiz – Correct Answer

How many observations will be in **Emps** after appending the three data sets?

9 observations

Emps

First	Gender	HireYear
Stacey	F	2006
Gloria	F	2007
James	M	2007

Emps2008

First	Gender	HireYear
Brett	M	2008
Renee	F	2008

Emps2009

First	HireYear
Sara	2009
Dennis	2009

First	HireYear	Country
Rose	2010	Spain
Eric	2010	Spain

10.03 Quiz

How many variables will be in **Emps** after appending the three data sets?

Emps

First	Gender	HireYear
Stacey	F	2006
Gloria	F	2007
James	M	2007

Emps2008

First	Gender	HireYear
Brett	M	2008
Renee	F	2008

Emps2009

First	HireYear
Sara	2009
Dennis	2009

First	HireYear	Country
Rose	2010	Spain
Eric	2010	Spain

10.03 Quiz – Correct Answer

How many variables will be in **Emps** after appending the three data sets?

3 variables

Emps

First	Gender	HireYear
Stacey	F	2006
Gloria	F	2007
James	M	2007

The base data set variable information cannot change.

Emps2008

First	Gender	HireYear
Brett	M	2008
Renee	F	2008

Emps2009

First	HireYear
Sara	2009
Dennis	2009

First	HireYear	Country
Rose	2010	Spain
Eric	2010	Spain

Emps

First	Gender	HireYear
Stacey	F	2006
Gloria	F	2007
James	M	2007

Emps2008

First	Gender	HireYear
Brett	M	2008
Renee	F	2008

The data sets contain the same variables.

```
84 proc append base=Emps
85 data=Emps2008;
86 run;

NOTE: Appending WORK.EMPS2008 to WORK.EMPS.
NOTE: There were 2 observations read from the data set
WORK.EMPS2008.

NOTE: 2 observations added.
NOTE: The data set WORK.EMPS has 5 observations and 3 variables.
```

First	Gender	HireYear
Stacey	F	2006
Gloria	F	2007
James	M	2007
Brett	M	2008
Renee	F	2008

Emps

First	Gender	HireYear
Stacey	F	2006
Gloria	F	2007
James	M	2007
Brett	M	2008
Renee	F	2008

Emps2009

First	HireYear
Sara	2009
Dennis	2009

The BASE= data set has a variable that is not in the DATA= data set.

```
90 proc append base=Emps
91 data=Emps2009;
92 run;
```

NOTE: Appending WORK.EMPS2009 to WORK.EMPS.

WARNING: Variable Gender was not found on DATA file.

NOTE: There were 2 observations read from the data set

WORK.EMPS2009.

NOTE: 2 observations added.

NOTE: The data set WORK.EMPS has 7 observations and 3 variables.

First	Gender	HireYear
Stacey	F	2006
Gloria	F	2007
James	M	2007
Brett	M	2008
Renee	F	2008
Sara		2009
Dennis		2009

Emps

First	Gender	HireYear
Stacey	F	2006
Gloria	F	2007
James	M	2007
Brett	M	2008
Renee	F	2008
Sara		2009
Dennis		2009

Emps2010

First	HireYear	Country
Rose	2010	Spain
Eric	2010	Spain

The DATA= data set has a variable that is not in the BASE= data set.

```
96
     proc append base=Emps
97
                 data=Emps2010;
98
     run;
NOTE: Appending WORK.EMPS2010 to WORK.EMPS.
WARNING: Variable Country was not found on BASE file. The
         variable will not be added to the BASE file.
WARNING: Variable Gender was not found on DATA file.
ERROR: No appending done because of anomalies listed above.
       Use FORCE option to append these files.
NOTE: 0 observations added.
NOTE: The data set WORK.EMPS has 7 observations and 3 variables.
NOTE: Statements not processed because of errors noted above.
NOTE: The SAS System stopped processing this step because of
      errors.
```

The FORCE option forces the observations to be appended when the DATA= data set contains variables that are not in the BASE= data set.

General form of the FORCE option:

```
PROC APPEND BASE = SAS-data-set DATA = SAS-data-set FORCE; RUN;
```

The FORCE option causes the extra variables to be dropped and issues a warning message.

```
100 proc append base=Emps
101 data=Emps2010 force;
102 run;

NOTE: Appending WORK.EMPS2010 to WORK.EMPS.
WARNING: Variable Country was not found on BASE file. The
variable will not be added to the BASE file.
WARNING: Variable Gender was not found on DATA file.
NOTE: FORCE is specified, so dropping/truncating will occur.
NOTE: There were 2 observations read from the data set
WORK.EMPS2010.
NOTE: 2 observations added.
NOTE: The data set WORK.EMPS has 9 observations and 3 variables.
```

First	Gender	HireYear
Stacey	F	2006
Gloria	F	2007
James	M	2007
Brett	M	2008
Renee	F	2008
Sara		2009
Dennis		2009
Rose		2010
Eric		2010

Situation	Action
BASE= data set contains a variable that is not in the DATA= data set.	The observations are appended, but the observations from the DATA= data set have a missing value for the variable that was not present in the DATA= data set. The FORCE option is not necessary in this case.
DATA= data set contains a variable that is not in the BASE= data set.	Use the FORCE option in the PROC APPEND statement to force the concatenation of the two data sets. The statement drops the extra variable and issues a warning message.

10.04 Quiz

How many observations will be in **Emps** if the program is submitted a second time?

Submitting this program once appends six observations to the **Emps** data set, which results in a total of nine observations.

```
proc append base=Emps
    data=Emps2008;
run;
proc append base=Emps
    data=Emps2009;
run;
proc append base=Emps
    data=Emps2010 force;
run;
run;
7 obs + 2 obs = 9 obs
```

10.04 Quiz – Correct Answer

How many observations will be in **Emps** if the program is submitted a second time?

15 observations (9 + 2 + 2 + 2)

Be careful; observations are added to the BASE= data set every time that you submit the program.

Chapter 10: Combining SAS Data Sets

10.1 Introduction to Combining Data Sets	
10.2 Appending a Data Set	
10.3 Concatenating Data Sets	
10.4 Merging Data Sets One-to-One	
10.5 Merging Data Sets One-to-Many	
10.6 Merging Data Sets with Nonmatches	

Objectives

- Concatenate two or more SAS data sets by using the SET statement in a DATA step.
- Change the names of variables by using the RENAME= data set option.
- Compare the APPEND procedure to the SET statement.
- Interleave two or more SAS data sets by using the SET and BY statements in a DATA step.

Appending and Concatenating

Appending and concatenating involves combining SAS data sets, one after the other, into a single SAS data set.

- Appending adds the observations in the second data set directly to the end of the original data set.
- Concatenating copies all observations from the first data set and then copies all observations from one or more successive data sets into a new data set.

The SET Statement

The SET statement in a DATA step reads observations from one or more SAS data sets.

```
DATA SAS-data-set;

SET SAS-data-set1 SAS-data-set2 . . .;

<additional SAS statements>
RUN;
```

- Any number of data sets can be in the SET statement.
- The observations from the first data set in the SET statement appear first in the new data set. The observations from the second data set follow those from the first data set, and so on.

Concatenate **EmpsDK** and **EmpsFR** to create a new data set named **EmpsAll1**.

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

The data sets contain the same variables.

```
data EmpsAll1;
    set EmpsDK EmpsFR;
run;
```

Compilation

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

```
data EmpsAll1;
    set EmpsDK EmpsFR;
run;
```

PDV

First	Gender	Country

First Gender Country

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

```
data EmpsAll1;
set EmpsDirun;
Initialize PDV
```

PDV

First	Gender	Country

First	Gender	Country
-------	--------	---------

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

```
data EmpsAll1;
    set EmpsDK EmpsFR;
run;
```

PDV

First	Gender	Country
Lars	M	Denmark

First	Gender	Country
-------	--------	---------

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

PDV

First	Gender	Country	
Lars	M	Denmark	-

	First	Gender	Country
-	Lars	M	Denmark

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

```
data EmpsAll1;
    set EmpsDK EmpsFR;
run;
```

PDV

First	Gender	Country
Kari	F	Denmark

First	Gender	Country
Lars	M	Denmark

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

PDV

First	Gender	Country
Kari	F	Denmark

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

```
data EmpsAll1;
    set EmpsDK EmpsFR;
run;
```

PDV

First	Gender	Country
Jonas	M	Denmark

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

PDV

Gender	Country
M	Denmark
	Gender M

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsDK

	Fir	st	Gender	Country
	Lar	S	M	Denmark
	Kar	i	F	Denmark
EC	OF na	as	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

```
data EmpsAll1;
    set EmpsDK EmpsFR;
run;
```

PDV

First	Gender	Country
Jonas	M	Denmark

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

```
data EmpsAll1;

set EmpsD.

Reinitialize PDV
```

PDV

First	Gender	Country

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

```
data EmpsAll1;
    set EmpsDK EmpsFR;
run;
```

PDV

First	Gender	Country
Pierre	M	France

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

PDV

First	Gender	Country
Pierre	M	France

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark
Pierre	M	France

Execution

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

```
data EmpsAll1;
    set EmpsDK EmpsFR;
run;
```

PDV

First	Gender	Country
Sophie	F	France

EmpsAll1

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark
Pierre	M	France

Execution

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

First	Gender	Country
Pierre	M	France
Sophie	F	France

data EmpsAll1;
set EmpsDK EmpsFR;

run;
Implicit OUTPUT;
Implicit RETURN;

First	Gender	Country
Sophie	F	France

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark
Pierre	M	France
Sophie	F	France

Execution

EmpsDK

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark

EmpsFR

	Fi	irst	Gender	Country
	Pi	erre	M	France
EC)F	phie	F	France
		Ь		

```
data EmpsAll1;
    set EmpsDK EmpsFR;
run;
```

PDV

First	Gender	Country
Sophie	F	France

EmpsAll1

First	Gender	Country
Lars	M	Denmark
Kari	F	Denmark
Jonas	M	Denmark
Pierre	M	France
Sophie	F	France

Unlike-Structured Data Sets

Concatenate **EmpsCN** and **EmpsJP** to create a new data set named **EmpsAll2**.

EmpsCN

First	Gender	Country	
Chang	M	China	
Li	M	China	
Ming	F	China	

EmpsJP

First	Gender	Region
Cho	F	Japan
Tomi	M	Japan

The data sets do not contain the same variables.

```
data EmpsAll2;
    set EmpsCN EmpsJP;
run;
```


10.05 Quiz

How many variables will be in **EmpsAll2** after concatenating **EmpsCN** and **EmpsJP**?

EmpsCN

First	Gender	Country	
Chang	M	China	
Li	M	China	
Ming	F	China	

EmpsJP

First	Gender Region	
Cho	F	Japan
Tomi	M	Japan

```
data EmpsAll2;
    set EmpsCN EmpsJP;
run;
```

10.05 Quiz – Correct Answer

How many variables will be in **EmpsAll2** after concatenating **EmpsCN** and **EmpsJP**?

EmpsCN

First	Gender	Country	
Chang	M	China	
Li	M	China	
Ming	F	China	

EmpsJP

First	Gender	Region	
Cho	F	Japan	
Tomi	M	Japan	

Four variables

First, Gender, Country, and Region

EmpsCN

First	Gender	Country	
Chang	M	China	
Li	M	China	
Ming	F	China	

EmpsJP

First	Gender Region	
Cho	F	Japan
Tomi	M	Japan

```
data EmpsAll2;
    set EmpsCN EmpsJP;
run;
```

First	Gender	Country	

EmpsCN

First	Gender	Country	
Chang	M	China	
Li	M	China	
Ming	F	China	

EmpsJP

First	Gender Region	
Cho	F	Japan
Tomi	M	Japan

```
data EmpsAll2;
    set EmpsCN EmpsJP;
run;
```

First	Gender	Country	Region

Final Results

EmpsAll2

First	Gender	Country	Region
Chang	M	China	
Li	M	China	
Ming	F	China	
Cho	F		Japan
Tomi	M		Japan

Compilation Using the RENAME Option

EmpsCN

First	Gender	Country
Chang	M	China
Li	M	China
Ming	F	China

EmpsJP

First	Gender	Region
Cho	F	Japan
Tomi	M	Japan

```
data EmpsAll2;
    set EmpsCN EmpsJP(rename=(Region=Country));
run;
```

First	Gender	Country

EmpsCN

First	Gender	Country
Chang	M	China
Li	M	China
Ming	F	China

EmpsJP

First	Gender	Region
Cho	F	Japan
Tomi	M	Japan

```
data EmpsAll2;
    set EmpsCN EmpsJP(rename=(Region=Country));
run;
```

First	Gender	Country

EmpsCN

First	Gender	Country
Chang	M	China
Li	M	China
Ming	F	China

EmpsJP

Region
Japan
Japan

```
data EmpsAll2;
   set EmpsCN EmpsJP(rename=(Region=Country));
run;
```

First	Gender	Country

EmpsCN

First	Gender	Country
Chang	M	China
Li	M	China
Ming	F	China

EmpsJP

First	Gender	Region
Cho	F	Japan
Tomi	M	Japan

```
data EmpsAll2;
   set EmpsCN EmpsJP(rename=(Region=Country));
run;
```

First	Gender	Country

EmpsCN

First	Gender	Country
Chang	M	China
Li	M	China
Ming	F	China

EmpsJP

First	Gender	Region
Cho	F	Japan
Tomi	M	Japan

```
data EmpsAll2;
    set EmpsCN EmpsJP(rename=(Region=Country));
run;
```

First	Gender	Country

Final Results

EmpsAll2

First	Gender	Country
Chang	M	China
Li	M	China
Ming	F	China
Cho	F	Japan
Tomi	M	Japan

APPEND Procedure versus SET Statement

- The data set that results from concatenating two data sets with the SET statement is the same data set that results from concatenating them with the APPEND procedure if the two data sets contain the same variables.
- The APPEND procedure concatenates much faster than the SET statement because the APPEND procedure does not process the observations from the BASE= data set.
- The two methods are significantly different when the variables differ between data sets.

APPEND Procedure versus SET Statement

Criterion	APPEND Procedure	SET Statement
Number of data sets that you can concatenate	Uses two data sets.	Uses any number of data sets.
Handling of data sets that contain different variables	Uses all variables in the BASE= data set and assigns missing values to observations from the DATA= data set where appropriate; cannot include variables found only in the DATA= data set.	Uses all variables and assigns missing values where appropriate.

10.07 Multiple Choice Poll

Which method would you use if you wanted to create a new variable at the time of concatenation?

- a. APPEND procedure
- b. SET statement

10.07 Multiple Choice Poll – Correct Answer

Which method would you use if you wanted to create a new variable at the time of concatenation?

- a. APPEND procedure
- b.) SET statement

```
data EmpsBonus;
   set EmpsDK EmpsFR;
   if Country='Denmark'
        then Bonus=300;
   else Bonus=500;
run;
```

Interleaving intersperses observations from two or more data sets, based on one or more common variables.

The SET statement with a BY statement in a DATA step interleaves SAS data sets.

DATA SAS-data-set; SET SAS-data-set1 SAS-data-set2 . . .; BY <DESCENDING> by-variable(s);

<additional SAS statements>

RUN;

Use the SORT procedure to sort the data sets by the BY variable.

The data sets must be sorted by the BY *variable*.

EmpsCN

First	Gender	Country
Chang	M	China
Li	M	China
Ming	F	China

EmpsJP

First	Gender	Region
Cho	F	Japan
Tomi	M	Japan

Which value comes first?

Chang

```
data EmpsAll2;
    set EmpsCN EmpsJP(rename=(Region=Country));
    by First;
run;
```

First	Gender	Country
Chang	M	China

EmpsCN

First	Gender	Country
Chang	M	China
Li	M	China
Ming	F	China

EmpsJP

First	Gender	Region
Cho	F	Japan
Tomi	M	Japan

Which value comes first?

Cho

First	Gender	Country

EmpsCN

First	Gender	Country
Chang	M	China
Li	M	China
Ming	F	China

EmpsJP

First	Gender	Region
Cho	F	Japan
Tomi	M	Japan

Which value comes first?

Cho

```
data EmpsAll2;
    set EmpsCN EmpsJP(rename=(Region=Country));
    by First;
run;
```

First	Gender	Country
Cho	F	Japan

EmpsCN

First	Gender	Country
Chang	M	China
Li	M	China
Ming	F	China

EmpsJP

First	Gender	Region
Cho	F	Japan
Tomi	M	Japan

Which value comes first?

Li

```
data EmpsAll2;
    set EmpsCN
    by First;
run;
(Region=Country));
```

First	Gender	Country

EmpsCN

First	Gender	Country
Chang	M	China
Li	M	China
Ming	F	China

EmpsJP

First	Gender	Region
Cho	F	Japan
Tomi	M	Japan

Which value comes first?

Li

```
data EmpsAll2;
    set EmpsCN EmpsJP(rename=(Region=Country));
    by First;
run;
```

First	Gender	Country
Li	M	China

EmpsCN

First	Gender	Country
Chang	M	China
Li	M	China
Ming	F	China

EmpsJP

First	Gender	Region
Cho	F	Japan
Tomi	M	Japan

Which value comes first?

Ming

```
data EmpsAll2;
    set EmpsCN EmpsJP(rename=(Region=Country));
    by First;
run;
```

First	Gender	Country
Ming	F	China

EmpsCN

	First	Gender	Country
	Chang	M	China
	T.i	M	China
EC	OF ng	F	China

EmpsJP

First	Gender	Region
Cho	F	Japan
Tomi	M	Japan

Which value comes first?

Tomi

First	Gender	Country

EmpsCN

]	First	Gender	Country
C	hang	M	China
T	ij	M	China
EOF	ng	F	China

EmpsJP

First	Gender	Region
Cho	F	Japan
Tomi	M	Japan

Which value comes first?

Tomi

```
data EmpsAll2;
    set EmpsCN EmpsJP(rename=(Region=Country));
    by First;
run;
```

First	Gender	Country
Tomi	M	Japan

Chapter 12: Producing Summary Reports

12.1 Using the FREQ Procedure 12.2 Using the MEANS Procedure 12.3 Using the TABULATE Procedure

Chapter 12: Producing Summary Reports

12.1 Using the FREQ Procedure 12.2 Using the MEANS Procedure 12.3 Using the TABULATE Procedure

Objectives

- Produce one-way and two-way frequency tables with the FREQ procedure.
- Enhance frequency tables with options.
- Produce output data sets by using the OUT= option in the TABLES and OUTPUT statements.

The FREQ Procedure

The FREQ procedure can do the following:

- produce one-way to n-way frequency and crosstabulation (contingency) tables
- compute chi-square tests for one-way to n-way tables and measures of association and agreement for contingency tables
- automatically display the output in a report and save the output in a SAS data set

General form of the FREQ procedure:

```
PROC FREQ DATA=SASdataset < option(s)>;
    TABLES variable(s) < I option(s)>;
RUN;
```

The FREQ Procedure

A FREQ procedure with no TABLES statement generates one-way frequency tables for all data set variables.

```
proc freq data=orion.sales;
run;
```

This PROC FREQ step creates a frequency table for the following nine variables:

- Employee ID
- First Name
- Last_Name
- Gender
- Salary

- Job Title
- Country
- Birth_Date
- Hire_Date

The TABLES statement specifies the frequency and crosstabulation tables to produce.

```
proc freq data=orion.sales;
    tables Gender Country;
run;

one-way
frequency tables
```

An asterisk between variables requests a *n*-way crosstabulation table.

```
proc freq data=orion.sales;
    tables Gender*Country;
run;

two-way
frequency table
```

A one-way frequency table produces frequencies, cumulative frequencies, percentages, and cumulative percentages.

```
proc freq data=orion.sales;
   tables Gender Country;
run;
```

	Т	he FREQ Pro	cedure	
Gender	Frequency	Percent	Cumulative Frequency	Cumulative Percent
F M	68 97	41.21 58.79	68 165	41.21 100.00
Country	Frequency	Percent	Cumulative Frequency	Cumulative Percent
AU US	63 102	38.18 61.82	63 165	38.18 100.00

An *n*-way frequency table produces cell frequencies, cell percentages, cell percentages of row frequencies, and cell percentages of column frequencies, plus total frequency and percent.

	The FREQ P	rocedure		
Tab	ole of Gende	r by Coun	try	
Gender	Country			
Frequen Percent Row Pct Col Pct		lus	Total	
F	27 16.36 39.71 42.86	41 24.85 60.29 40.20	68 41.21	
M	36 21.82 37.11 57.14	61 36.97 62.89 59.80	97 58.79	
Total	63 38.18	102 61.82	165 100.00	

12.01 Multiple Choice Poll

Which of the following statements **cannot** be added to the PROC FREQ step to enhance the report?

- a. FORMAT
- b. SET
- c. TITLE
- d. WHERE

12.01 Multiple Choice Poll – Correct Answer

Which of the following statements **cannot** be added to the PROC FREQ step to enhance the report?

- a. FORMAT
- b.) SET
 - c. TITLE
 - d. WHERE

Additional SAS Statements

Additional statements can be added to enhance the report.

```
proc format;
   value $ctryfmt 'AU'='Australia'
                   'US'='United States';
run;
options nodate pageno=1;
ods html file='p112d01.html';
proc freq data=orion.sales;
   tables Gender*Country;
   where Job Title contains 'Rep';
   format Country $ctryfmt.;
   title 'Sales Rep Frequency Report';
run;
ods html close;
```

Additional SAS Statements

HTML Output

Sales Rep Frequency Report

The FREQ Procedure

Frequency Percent Row Pct Col Pct

Ta	ıble of Gen	der by Country	
	C	ountry	
Gender	Australia	United States	Total
F	27 16.98 40.30 44.26	40 25.16 59.70 40.82	67 42.14
М	34 21.38 36.96 55.74	58 36.48 63.04 59.18	92 57.86
Total	61 38.36	98 61.64	159 100.00

Options to Suppress Display of Statistics

Options can be placed in the TABLES statement after a forward slash to suppress the display of the default statistics.

Option	Description
NOCUM	suppresses the display of cumulative frequency and cumulative percentage.
NOPERCENT	suppresses the display of percentage, cumulative percentage, and total percentage.
NOFREQ	suppresses the display of the cell frequency and total frequency.
NOROW	suppresses the display of the row percentage.
NOCOL	suppresses the display of the column percentage.

Options to Suppress Display of Statistics

Options to Suppress Display of Statistics

12.02 Quiz

Which TABLES statement correctly creates the report?

- a. tables Gender nocum;
- b. tables Gender nocum nopercent;
- C. tables Gender / nopercent;
- d. tables Gender / nocum nopercent;

```
The FREQ Procedure

Gender Frequency

F 68
M 97
```

12.02 Quiz – Correct Answer

Which TABLES statement correctly creates the report?

- a. tables Gender nocum;
- b. tables Gender nocum nopercent;
- C. tables Gender / nopercent;
- d. tables Gender / nocum nopercent;

```
The FREQ Procedure

Gender Frequency

F 68
M 97
```

Additional TABLES Statement Options

Additional options can be placed in the TABLES statement after a forward slash to control the displayed output.

Option	Description
LIST	displays <i>n</i> -way tables in list format.
CROSSLIST	displays <i>n</i> -way tables in column format.
EORMAT=	formats the frequencies in <i>n</i> -way tables.

LIST and CROSSLIST Options

Gender	Country	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
F	Australia	27	16.36	27	16.36		
F	United States	41	24.85	68	41.21		
M	Australia	36	21 02	104	ഭാ വാ		
М	United States	61	table	es Gend	der*Cou	ntry /	list;

	Tat	ole of Gender b	y Country			
Gender	Country	Frequency	Percent	Row Percent	Column Percent	
F	Australia United States	27 41	16.36 24.85	39.71 60.29	42.86 40.20	
	Total	68	41.21	100.00		
M	Australia	36	21.82	37.11	57.14	
	United States	tables	Gende	r*Cou	ntry /	crosslist
	Total	31	50.79	100.00		
Total	Australia United States	63 102	38.18 61.82		100.00	
	Total	165	100.00			p112c

FORMAT= Option (Listing Output Only)

Partial PROC FREQ Outputs

PROC FREQ Statement Options

Options can also be placed in the PROC FREQ statement.

Option	Description
NLEVELS	displays a table that provides the number of levels for each variable named in the TABLES statement.
PAGE	displays only one table per page.
COMPRESS	begins the display of the next one-way frequency table on the same page as the preceding one-way table if there is enough space to begin the table.

COMPRESS Option

```
proc freq data=orion.sales;
    tables Gender Country Employee_ID;
run;

page 1 page 1 pages 2-5
```


NLEVELS Option

```
proc freq data=orion.sales nlevels;
   tables Gender Country Employee_ID;
run;
```

Partial PROC FREQ Output

The	e FREQ Procedure
Number	of Variable Levels
Variab:	ole Levels
Gender Country Employe	~y 2

PAGE Option

```
proc freq data=orion.sales;
    tables Gender Country Employee_ID;
run;

page 1 page 1 pages 2-5
```

