E40M Capacitors

Reading

- Reader:
 - Chapter 6 Capacitance

- A & L:
 - 9.1.1, 9.2.1

Why Are Capacitors Useful/Important?

How do we design circuits that respond to certain frequencies?

What determines how fast CMOS circuits can work?

Why do we often put a large "bypass" capacitor between Vdd and Gnd?

Capacitors

- What is a capacitor?
 - It is a new type of two terminal device
 - It is linear
 - Double V, you will double I
 - We will see it doesn't dissipate energy
 - Stores energy

- Rather than relating i and V
 - Relates Q, the charge stored on each plate, to Voltage
 - -Q=CV
 - Q in Coulombs, V in Volts, and C in Farads
- Like all devices, it is always charge neutral
 - Stores +Q on one lead, -Q on the other lead

iV for a Capacitor

- We generally don't work in Q, we like i and V
 - But current is charge flow, or dQ/dt
- So if Q = CV, and i=dQ/dt
 - i = C dV/dt
- This is a linear equation but between i and dV/dt. If you double i
 for all time, dV/dt will also double and hence V will double.

$$C = \frac{\epsilon A}{\epsilon A}$$

where ε is the dielectric constant

Capacitors Only Affect Time Response not Final Values

- Capacitors relate i to dV/dt
- This means if the circuit "settles down" and isn't changing with time, a capacitor has no effect (looks like an open circuit).

So What Do Capacitors Do?

- They affect how fast a voltage can change
 - Current sets dV/dt, and not V
 - Fast changes require lots of current
- For very small ∆t capacitors look like voltage sources
 - They can supply very large currents
 - And not change their voltage
- But for large ∆t
 - Capacitors look like open circuits (they don't do anything)

Capacitor Energy

The Power that flows into a charging capacitor is

$$P = iV = \left(C\frac{dV}{dt}\right)V$$

And the energy stored in the capacitor is

$$E = \int P dt$$

$$\therefore E = \int P dt = \int_{0}^{V} CV dV = \frac{1}{2} CV^{2}$$

 This energy is stored and can be released at a later time. No energy is lost.

Capacitor Types

- There are many different types of capacitors
 - Electrolytic, tantalum, ceramic, mica, . . .
- They come in different sizes
 - Larger capacitance
 - Generally larger size
 - Higher voltage compliance
 - Larger size
- Electrolytic have largest cap/volume
 - But they have limited voltage
 - They are polarized
 - One terminal must be + vs. other

http://en.wikipedia.org/wiki/Types_of_capacitor

Gate of MOS Transistor

- Is a capacitor between Gate and Source
- To change the gate voltage
 - You need a current pulse (to cause dV/dt)
- If the current is zero (floating)
 - dV/dt = 0, and the voltage remains what it was!

All Real Wires Have Capacitance

- It will take some charge to change the voltage of a wire
 - Think back to our definition of voltage
 - Potential energy for charge
 - To make a wire higher potential energy
 - Some charge has to flow into the wire, to make the energy higher for the next charge that flows into it
- This capacitance is what sets the speed of your computer
 - And determines how much power it takes!

Capacitor Info, If You Know Physics E&M...

- Models the fact that energy is stored in electric fields
 - Between any two wires that are close to each other
- A capacitor is formed by two terminals that are not connected
 - But are close to each other
 - The closer they are, the larger the capacitor
- To create a voltage between the terminals
 - Plus charge is collected on the positive terminal
 - Negative charge is collected on the negative terminal
- This creates an electric field (Gauss's law)
 - Which is what creates the voltage across the terminals
 - There is energy stored in this electric field

Capacitors in Parallel and Series

Capacitors in Parallel and Series

CAPACITOR RESISTOR CIRCUITS

Capacitors and Logic Gate Speeds

- When the input changes from low to high
 - The pMOS turns off, and the nMOS turns on
 - The output goes from high to low
- But in this model
 - The output changes as soon as the input changes

Gates Are NOT Zero Delay

- It would be great if logic gates had zero delay
 - But they don't
- Fortunately, it is easy to figure out the delay of a gate
 - It is just caused by the transistor resistance
 - Which we know about already
 - And the transistor and wire capacitance

Improved Model

- Just add a capacitor to the output node
 - Its value is equal to the capacitance of the gates driven
 - Plus the capacitance of the wire itself

RC Circuit Equation

- When the input to the inverter is low, the output will be at V_{dd}
 - Right after the input rises, here is the circuit
- Want to find the capacitor voltage verses time
- Just write the nodal equations:
 - We just have one node voltage, V_{out}

$$-i_{RES} = V_{out}/R_2$$

$$- i_{CAP} = CdV_{out}/dt$$

From KCL, the sum of the currents must be zero, so

$$\frac{dV_{out}}{dt} = -\frac{V_{out}}{R_2C}$$

RC Circuit Equations

- Solving, $\int_{5}^{V} \frac{dV_{out}}{V_{out}} = -\int_{0}^{t} \frac{dt}{R_{2}C} \text{ so that } \ln(V_{out}) \ln(5V) = -\frac{t}{R_{2}C}$
- This is an exponential decay
 - The x axis is in time constants

$$\therefore V_{out} = 5V(e^{-t/R_2C})$$

- The y axis has been normalized to 1
- Slope always intersects 0 one tau later (τ = RC)

What Happens When Input Falls?

Now the voltage across the capacitor starts at 0V

$$- i = (V_{dd} - V_{out})/R_1$$

$$- dV_{out}/dt = i/C$$

$$\frac{dV_{out}}{dt} = \frac{\left(V_{dd} - V_{out}\right)}{R_1C}$$

- Not quite the right form
 - Need to fix it by changing variables

- Define
$$V_{new} = V_{dd} - V_{out}$$

$$- dV_{out}/dt = = - dV_{new}/dt$$
, since V_{dd} is fixed

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$\int_{5}^{V} \frac{dV_{new}}{V_{new}} = -\int_{0}^{t} \frac{dt}{R_{1}C} \quad \text{so that} \quad \ln\left(V_{new}\right) - \ln\left(5\right) = -\frac{t}{R_{1}C} \quad \therefore V_{out} = 5V\left(1 - e^{-t/R_{1}C}\right)$$

RC Circuits in the Time Domain

In capacitor circuits, voltages change "slowly", while currents can be instantaneous.

Simple RC Circuit Demo

EveryCircuit Demo – CMOS Inverter

Interesting Aside

- Exponentials "never" reach their final value
- So if this logic gate is driving another gate, when does the next gate think its input is 0 or 1?
- This is one of the reasons why logic levels are defined as a range of values.

Learning Objectives

- Understand what a capacitor is
 - i=C dV/dt
 - It is a device that tries to keep voltage constant
 - Will supply current (in either direction) to resist voltage changes
- Understand how voltages and current change in R C circuits
 - Voltage waveforms are continuous
 - Takes time for their value to change
 - Exponentially decay to final value (the DC value of circuit)
 - Currents can charge abruptly
- In the next few lectures we'll return to representing signals in the frequency domain and learn about a new way to solve capacitor circuits.