6.2 数的定点表示和浮点表示

- 一、定点表示
- 二、浮点表示
 - -1. 浮点数的表示形式
 - -2. 浮点数的表示范围
 - -3. 浮点数的规格化形式
 - -4. 浮点数的规格化
- 三、举例
- 四、IEEE 754 标准

二、浮点表示

- 为什么在计算机中要引入浮点数表示?
- 浮点表示的格式是什么?
- 尾数和阶码的基值必须是2吗? 基值的影响?
- 表数范围与精度和哪些因素有关?
- 为什么要引入规格化表示?
- 目前浮点数表示格式的标准是什么?

二、浮点表示

- 为什么要引入浮点数表示
 - -编程困难,程序员要调节小数点的位置;
 - 数的表示范围小,为了能表示两个大小相差很大的数据,需要很长的机器字长;
 - 例如:太阳的质量是0.2*10³⁴克,一个电子的质量大约为0.9*10⁻²⁷克,两者的差距为10⁶¹以上,若用定点数据表示: 2*>10⁶¹,解的, x>203位。
 - 数据存储单元的利用率往往很低。

二、浮点表示

6.2

$$N = S \times r^{j}$$
 浮点数的一般形式 S 尾数 j 阶码 r 尾数的基值 计算机中 r 取 2、4、8、16 等 当 $r = 2$ $N = 11.0101$ $\checkmark = 0.110101 \times 2^{10}$ 规格化数 $= 1.10101 \times 2^{1}$ $= 1101.01 \times 2^{-10}$ $\checkmark = 0.00110101 \times 2^{100}$ 计算机中 S 小数、可正可负 i 整数、可正可负

2016/2/2

1. 浮点数的表示形式

6.2

- $S_{\rm f}$ 代表浮点数的符号
- n 其位数反映浮点数的精度
- m 其位数反映浮点数的表示范围
- j_t和 m 共同表示小数点的实际位置

2. 浮点数的表示范围

6.2

上溢 阶码 > 最大阶码 下溢 阶码 < 最小阶码 按 机器零 处理

最大负数
$$-2^{-(2^{m}-1)} \times 2^{-n}$$

$$-2^{-15} \times 2^{-10}$$

设
$$m=4$$
 $n=10$