Diffusion and random walks on graphs

Leonid E. Zhukov

School of Data Analysis and Artificial Intelligence
Department of Computer Science
National Research University Higher School of Economics

Structural Analysis and Visualization of Networks

Module 4

- Diffusions and random walks on graphs
- Epidemics on networks
- Information flow
- Oiffusion of innovations
- Social influence
- Trust propagation
- Segregation model on networks
- Unk prediction
- Node labeling
- Time evolution of networks

Lecture outline

- Random walks on graph
- 2 Diffusion on graph
 - Diffusion equation
 - Laplace operator
- Spectral graph theory
 - Normalized laplacian

• A random walk on graph on graph G is a sequence of vertices $v_0, v_1, ... v_t ...$, where each v_{t+1} is chosen to be a random neighbor of $v_t, \{v_t, v_{t+1}\} \in E(G)$ and probability of the transition is given by

$$P_{ij} = P(x_{t+1} = v_j | x_t = v_i),$$

where $\sum_{i} P_{ij} = 1$, matrix P - row stochastic

2D grid (k=2 regular graph)

image from wikipedia.org

- We will be considering undirected connected unweighted graphs
- Transition matrix

$$P_{ij} = \left\{ egin{array}{ll} 1/d(i)\,, & \mbox{if } \exists \ e(i,j), \ i \ \mbox{and} \ j \ \mbox{adjacent}, \\ 0 & , \ \mbox{otherwise} \end{array}
ight.$$

Using adjacency matrix

$$P_{ij} = \frac{A_{ij}}{d_i} = D_{ii}^{-1} A_{ij}$$
, where $D_{ij} = d_i \delta_{ij}$

- Let p_i(t) probability, that a walk is at node i at moment t (probability distribution vector, value per node)
- Random walk

$$p_j(t+1) = \sum_i P_{ij} p_i(t) = \sum_i \frac{p_i(t)}{d_i} A_{ij}$$

Matrix form

$$\vec{\mathbf{p}}(t+1) = \vec{\mathbf{p}}(t)\mathbf{P} = \vec{\mathbf{p}}(t)(\mathbf{D}^{-1}\mathbf{A})$$

• Starting from initial distribution $\vec{\mathbf{p}}(0)$ after t steps

$$\vec{\mathbf{p}}(t) = \vec{\mathbf{p}}(0)\mathbf{P}^t$$

 Random walk on connected non-bipartite graphs converges to limiting distribution

$$\lim_{t\to\infty} \vec{\mathbf{p}}(t) = \lim_{t\to\infty} \vec{\mathbf{p}}(0)\mathbf{P}^t = \vec{\pi}$$

• Limiting distribution = stationary distribution

$$\lim_{t\to\infty} \vec{\mathbf{p}}(t+1) = \lim_{t\to\infty} \vec{\mathbf{p}}(t)\mathbf{P}$$

$$ec{\pi} = ec{\pi} \mathsf{P}$$

ullet Left eigenvalue corresponding to $\lambda=1$

$$\lambda \vec{\pi} = \vec{\pi} \mathbf{P}$$

Random walk is reversible if

$$\pi_i P_{ij} = \pi_j P_{ji}$$

On undirected graph:

$$\pi_{i} \frac{A_{ij}}{d_{i}} = \pi_{j} \frac{A_{ji}}{d_{j}}$$
$$\frac{\pi_{i}}{d_{i}} = \frac{\pi_{j}}{d_{j}} = const$$

and
$$\sum_{i} \pi_{i} = 1$$

• Stationary (stable) distribution

$$\pi_i = \frac{d_i}{\sum_j d_j} = \frac{d_i}{2|E|}$$

Lazy random walk

$$ho_j(t+1) = rac{1}{2}
ho_j(t) + rac{1}{2}\sum_i rac{
ho_i(t)}{d_i}A_{ij}$$

Matrix form

$$ec{\mathbf{p}}(t+1) = rac{1}{2}ec{\mathbf{p}}(t)(\mathbf{I} + \mathbf{D}^{-1}\mathbf{A})$$

Converges (always!) to the same stationary distribution

$$(2\lambda-1)\vec{\pi}=\vec{\pi}(\mathbf{D}^{-1}\mathbf{A})$$

Theorem

Let λ_2 denote second largest eigenvalue of transition matrix $\mathbf{P} = \mathbf{D}^{-1}\mathbf{A}$, $\mathbf{p}(\mathbf{t})$ probability distribution vector and $\boldsymbol{\pi}$ stationary distribution. If walk starts from the vertex i, $p_i(0) = 1$, then after t steps for every vertex:

$$|p_j(t) - \pi_j| \leq \sqrt{\frac{d_j}{d_i}} \lambda_2^t$$

- For ${f P}={f D}^{-1}{f A}$, $\lambda_1=1$, $\lambda_2<1$
- ullet For $\mathbf{P}'=rac{1}{2}(\mathbf{I}+\mathbf{D}^{-1}\mathbf{A}),~\lambda_2'=rac{1}{2}(1+\lambda_2)$

Physics of Diffusion

- Let $\Phi(r, t)$ -concentration
- Fik's Law

$$J = -C\frac{\partial \Phi}{\partial r} = -C\nabla \Phi$$

Continuity equation (conserved quantity)

$$\frac{\partial \Phi}{\partial t} + \nabla J = 0$$

• Diffusion equation (heat equation)

$$\frac{\partial \Phi(r,t)}{\partial t} = C \Delta \Phi(r,t)$$

Diffusion

Laplacian 2D

$$\Delta f = \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

• Discretized Laplacian in 2D

$$\Delta f(x,y) = \frac{f(x+h,y) + f(x-h,y) + f(x,y+h) + f(x,y-h) - 4f(x,y)}{h^2}$$

Diffusion on network

• Some substance that occupy vertices, on each time step diffuses out $\phi_i(t)$ - quantity per node

$$\phi_{i}(t+1) = \phi_{i}(t) + \sum_{j} A_{ij}(\phi_{j}(t) - \phi_{i}(t))C\delta t$$

$$\frac{d\phi_{i}(t)}{dt} = C\sum_{j} A_{ij}(\phi_{j}(t) - \phi_{i}(t))$$

$$\frac{d\phi_i}{dt} = C(\sum_j A_{ij}\phi_j - \sum_j A_{ij}\phi_i) = C(\sum_j A_{ij}\phi_j - d_i\phi_i) = C\sum_j (A_{ij} - \delta_{ij}d_j)\phi_j$$

$$\frac{d\phi_i}{dt} = -C\sum_i L_{ij}\phi_j$$

Graph Laplacian

Graph Laplacian

$$L_{ij} = d_j \delta_{ij} - A_{ij} = D_{ij} - A_{ij}, \quad D_{ij} = d_j \delta_{ij}$$

$$L_{ij} = \left\{ \begin{array}{l} d(i) \ , \ \ \text{if} \ \ i = j, \\ -1 \ \ , \ \ \text{if} \ \ \exists \ e(i,j) - i \ \ \text{and} \ j \ \ \text{adjacent}, \\ 0 \ \ , \ \ \text{otherwise} \end{array} \right.$$

Matrix form

$$\mathbf{L} = \mathbf{D} - \mathbf{A}$$

Labeled graph	Degree matrix						Adjacency matrix						Laplacian matrix						
	/ 2	0	0	0	0	0 /	/ 0	1	0	0	1	0 /	1	2	-1	0	0	-1	0 \
$\binom{6}{1}$	0	3	0	0	0	0	1	0	1	0	1	0	-	-1	3	-1	0	-1	0
(4)-(5)-(1)	0	0	2	0	0	0	0	1	0	1	0	0		0	-1	2	-1	0	0
7 10	0	0	0	3	0	0	0	0	1	0	1	1		0	0	-1	3	-1	-1
(2)	0	0	0	0	3	0	1	1	0	1	0	0		-1	-1	0	-1	3	0
	0 /	0	0	0	0	1 /	0 /	0	0	1	0	0 /		0	0	0	-1	0	1 /

Diffusion on Graph

Diffusion equation

$$\frac{d\phi}{dt} + C\mathbf{L}\phi = 0$$

Eigenvector basis

$$\mathbf{L}\mathbf{v}_k = \lambda \mathbf{v}_k$$
 $\phi(t) = \sum_k a_k(t) \mathbf{v}_k, \ a_k(t) = \phi(t)^T \mathbf{v}_k$

ODE

$$\sum_{k} \left(\frac{da_{k}(t)}{dt} + C\lambda_{k} a_{k}(t) \right) \mathbf{v}_{k} = 0$$

$$\frac{da_{k}(t)}{dt} + C\lambda_{k} a_{k}(t) = 0$$

$$a_{k}(t) = a_{k}(0)e^{-C\lambda_{k}t}$$

Solution

$$\phi(t) = \sum a_k(0) \mathbf{v}_k e^{-C\lambda_k t}$$

Laplace matrix

• L - symmetric positive semidefinite

$$\phi^{\mathsf{T}} L \phi = \sum_{ij} L_{ij} \phi_i \phi_j = \sum_{ij} (d_i \delta_{ij} - A_{ij}) \phi_i \phi_j = \frac{1}{2} \sum_{ij} A_{ij} (\phi_i - \phi_j)^2$$

Spectral properties

$$\mathbf{L}\mathbf{v}_i = \lambda \mathbf{v}_i$$

- ullet real non-negative eigenvalues $\lambda_i \geq 0$ and orthogonal eigenvectors $oldsymbol{v}_i$
- smallest eigenvalue always $\lambda_1 = 0$ for $\mathbf{v}_1 = \mathbf{e} = [1, 1, 1...1]^T$

$$\mathbf{L}\mathbf{e} = (\mathbf{D} - \mathbf{A})\mathbf{e} = 0$$

- Number of zero eigenvalues = number of connected components
- In connected graph $\lambda_2 \neq 0$ algebraic connectivity of a graph (spectral gap), \mathbf{v}_2 Fiedler vector

Diffusion on Graph

Solution

$$\phi(t) = \sum_{k} a_{k}(0) \mathbf{v}_{k} e^{-C\lambda_{k}t}$$

• all $\lambda_i > 0$ for i > 1, $\lambda_1 = 0$:

$$\lim_{t o \infty} \phi(t) = a_1(0) \mathbf{v_1}$$

• Normalized solution $\mathbf{v}_1 = \frac{1}{\sqrt{N}}\mathbf{e}$

$$a_1(0) = \phi(0)^T \mathbf{v}_1 = \frac{1}{\sqrt{N}} \sum_j \phi_j(0)$$

Steady state

$$\lim_{t\to\infty}\phi(t)=(\frac{1}{N}\sum_j\phi_j(0))\mathbf{e}=const$$

Diffusion on Graph

Smoothing operator

Smoothing operator

$$(L\phi)_i = \sum_j (D_{ij} - A_{ij})\phi_j = \sum_j (d_i\delta_{ij}\phi_j - A_{ij}\phi_j) = d_i(\phi_i - \frac{1}{d_i}\sum_j A_{ij}\phi_j)$$

• Laplace equation $\nabla \phi = 0$, $(L\phi)_i = 0$, solution - harmonic function

$$\phi_i = \frac{1}{d_i} \sum_j A_{ij} \phi_j$$

Regression on graphs

Normalized Laplacian

Normalized Laplacian

$$\mathcal{L} = D^{-1/2}LD^{-1/2}$$

$$\mathcal{L}_{ij} = \left\{ egin{array}{l} 1 &, ext{ if } i=j, \\ -rac{1}{\sqrt{d_id_j}} \,, ext{ if } \exists \; e(i,j)-i ext{ and } j ext{ adjacent}, \\ 0 &, ext{ otherwise} \end{array} \right.$$

Connection to random walks:

$$P = D^{-1}A = D^{-1/2}(I - \mathcal{L})D^{1/2}$$

Similar matrices, share properties of represented linear operators, i.e. eigenvalues: $\lambda_{max}(P) = 1$, $\lambda_1(\mathcal{L}) = 0$.

Normalized Laplacian

Conductance of a vertex set S

$$\phi(S) = \frac{cut(S, V \setminus S)}{\min(vol(S), vol(V \setminus S))}$$

where $vol(S) = \sum_{i \in S} k_i$ - sum of all node degrees in the set

Cheeger's inequality

$$\lambda_2(\mathcal{L})/2 \le \min_{S} \phi(S) \le \sqrt{2\lambda_2(\mathcal{L})}$$

References

- Chung, Fan R.K. (1997). Spectral graph theory (2ed.). Providence, RI: American Math. Soc.
- Daniel A. Spielman. Spectral Graph theory. Combinatorial Scientific Computing. Chapman and Hall/CRC Press. 2011
- Lovasz, L. (1993). Random walks on graphs: a survey. In Combinatorics, Paul Erdos is eighty (pp. 353 – 397). Budapest: Janos Bolyai Math. Soc.