New interactive sheet

Loading the necessary python libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Loading the dataset

df=pd.read_csv(r"/content/VNL2023.csv")
df.head()

Next steps: (Generate code with df)

_		Player	Country	Age	Attack	Block	Serve	Set	Dig	Receive	Position	
	0	Ichikawa Yuki	Japan	28	15.80	1.13	1.40	0.07	4.80	5.60	ОН	ılı
	1	Romano Yuri	Italy	26	12.33	1.07	1.47	0.00	3.87	0.00	OP	
	2	Abdel-Aziz Nimir	Nederland	31	15.33	0.67	2.08	0.00	3.17	0.25	OP	
	3	Herrera Jaime Jesus	Cuba	28	15.00	0.92	1.75	0.00	3.33	0.17	OP	
	4	Takahashi Ran	Japan	22	11.53	0.67	1.00	0.07	6.40	5.07	ОН	

View recommended plots

Inspecting the data

df.shape

→ (131, 10)

df.describe()

	Age	Attack	Block	Serve	Set	Dig	Receive
count	131.000000	131.000000	131.000000	131.000000	131.000000	131.000000	131.000000
mean	27.809160	5.642672	0.845573	0.535802	2.192595	3.428397	1.684198
std	4.186268	4.256229	0.700896	0.454346	6.031587	2.077823	1.989939
min	19.000000	0.000000	0.000000	0.000000	0.000000	0.530000	0.000000
25%	25.000000	2.800000	0.370000	0.240000	0.000000	1.920000	0.000000
50%	27.000000	5.170000	0.690000	0.420000	0.000000	3.000000	0.330000
75%	30.000000	8.600000	1.140000	0.760000	0.000000	4.510000	3.385000
max	41.000000	15.800000	4.080000	2.080000	26.890000	11.440000	6.690000

Describing the dataset in a nutshell and showing the outliers

df.isna().sum()

New interactive sheet

It shows us that there is no null values in the dataset

df.duplicated().sum()

Next steps: (

This shows us that there is no duplicated rows in the dataset

Checking the correlation between colulmns

numeric_cols=df.select_dtypes(include={"int","float"}).columns
corr_matrix=df[numeric_cols].corr()
corr_matrix

	Age	Attack	Block	Serve	Set	Dig	Receive
	780						
Age	1.000000	-0.177849	-0.101040	-0.108367	0.177757	0.167141	-0.011067
Attack	-0.177849	1.000000	0.338412	0.768859	-0.430805	-0.098999	0.169892
Block	-0.101040	0.338412	1.000000	0.335954	-0.132019	-0.348347	-0.265206
Serve	-0.108367	0.768859	0.335954	1.000000	-0.154815	-0.052501	0.039642
Set	0.177757	-0.430805	-0.132019	-0.154815	1.000000	0.131659	-0.305869
Dig	0.167141	-0.098999	-0.348347	-0.052501	0.131659	1.000000	0.624733
Receive	-0.011067	0.169892	-0.265206	0.039642	-0.305869	0.624733	1.000000

View recommended plots

sns.heatmap(corr_matrix,annot=True,cmap="coolwarm",linewidth=5)
plt.title("Correlation Matrix of Heatmap")
plt.show()

Generate code with corr matrix

Above Correlation says:

- 1. Dig and Receive have relations between them
- 2. Serve and Attack have relation between them

position_counts=df["Position"].value_counts()
position_counts

	count
Position	
ОН	42
MB	32
OP	25
s	16
L	16

dtvne int64

plt.pie(position_counts,labels=position_counts.index,autopct="%1.1f%%",startangle=90)
plt.title("Distribution of Positions")
plt.show()

→

Distribution of Positions

avg_attack_by_country=df.groupby("Country")["Attack"].mean()
avg_attack_by_country.sort_values(ascending=False)

→

Attack

Country			
France	6.670000		
Japan	6.595000		
Cuba	6.344286		
Serbia	5.998750		
Italy	5.965000		
Slovenia	5.961250		
Argentina	5.925000		
Nederland	5.880000		
Poland	5.807000		
Canada	5.405714		
Bulgaria	5.282500		
Brazil	5.250000		
China	5.093750		
Germany	4.833750		
Iran	4.707778		
USA	4.600000		
dtures floot	4		

dtune: float64

avg_attack_by_country.sort_values(ascending=False).head(5).plot(kind="bar")
plt.title("Average Attack by Country")
plt.xlabel("Country")

plt.ylabel("Average Attack")
plt.show()

Cuba

Country

Serbia

ltaly

avg_serve_by_age=df.groupby("Age")["Serve"].mean()
avg_serve_by_age.sort_values(ascending=False)

Japan

₹		Serve
	Age	
	31	0.910000
	20	0.880000
	21	0.770000
	26	0.681053
	28	0.667273
	35	0.666667
	27	0.662500
	36	0.660000
	24	0.640667
	22	0.534286
	23	0.526667
	29	0.477500
	30	0.429231
	38	0.400000
	33	0.321429
	32	0.290000
	37	0.270000
	19	0.200000
	25	0.165714
	34	0.026667
	41	0.000000
	dtyna	· float64

df.groupby(["Country","Position"])["Attack"].max().reset_index().sort_values(ascending=False,by="Attack").head(20)

_		Country	Position	Attack	
	52	Japan	ОН	15.80	ılı
	58	Nederland	OP	15.33	
	33	France	OP	15.25	
	28	Cuba	OP	15.00	
	68	Serbia	OP	14.33	
	12	Bulgaria	ОН	14.25	
	22	China	ОН	13.50	
	72	Slovenia	ОН	12.62	
	8	Brazil	OP	12.46	
	48	Italy	OP	12.33	
	27	Cuba	ОН	12.33	
	43	Iran	OP	12.00	
	7	Brazil	ОН	11.85	
	2	Argentina	ОН	11.62	
	62	Poland	ОН	10.57	
	63	Poland	OP	10.57	
	47	Italy	ОН	10.45	
	38	Germany	OP	10.42	
	17	Canada	ОН	9.75	
	32	France	ОН	9.56	
	4				

 ${\tt df.groupby("Country")["Dig"].sum().sort_values(ascending=False).head(10)}\\$

```
→
                  Dig
       Country
       France
                38.59
        Italy
                35.89
                33.88
      Argentina
      Slovenia
                33.85
       Poland
                32.56
                32.38
       Japan
       Serbia
                30.64
        USA
                28.42
       Canada
                26.50
       Brazil
                24.61
     dtuna: float64
```

```
plt.scatter(df["Block"],df["Receive"])
plt.title("Scatter Plot : Block vs Receive")
plt.xlabel("Block")
plt.ylabel("Receive")
```

 \rightarrow Text(0, 0.5, 'Receive')


```
sns.boxplot(x=df["Serve"])
plt.title("Box Plot : Distribution of Serve Values")
plt.xlabel("Serve")
plt.show()
```


Box Plot : Distribution of Serve Values

plt.hist(df["Age"],bins=20,edgecolor="black")
plt.title("Histogram : Distribution of Age")
plt.xlabel("Age")
plt.ylabel("Frequency")
plt.show()


```
avg_attack_by_position=df.groupby("Position")["Attack"].mean()
avg_attack_by_position.sort_values(ascending=True).plot(kind="bar",color="green")
plt.title("Average Attack by Position")
plt.xlabel("Position")
plt.ylabel("Attack")
plt.show()
```



```
serve_trend_by_age=df.groupby("Age")["Serve"].mean()
serve_trend_by_age.plot(kind="line",marker="o",linestyle="-",color="orange")
plt.title("Serve Trend by Age")
plt.xlabel("Age")
plt.ylabel("Serve")
plt.show()
```

→

total_attack_block_by_country=df.groupby("Country")[["Attack","Block"]].sum()
total_attack_block_by_country.sort_values(ascending=False,by="Attack").plot(kind="bar",stacked=True,colormap="viridis",figsize=(12,6))
plt.title("Total Attack and Block by Country")
plt.xlabel("Country")
plt.ylabel("Total Attack and Block")
plt.show()

₹

Total Attack and Block by Country