Durée : 1 heure 30 minutes

Contrôle de géométrie analytique N°3

Barème sur 15 points

VOM: Groupe	
PRENOM:	
1. Dans le plan muni d'un repère orthonormé d'origine O , on considère l'ellipse $\mathcal E$ d'équation cartésienne $x^2+3y^2-1=0$.	
Soient P et Q deux points de l'ellipse \mathcal{E} . Q est le point diamétralement opposé au point P .	
On note t la tangente à l'ellipse $\mathcal E$ au point P et d la droite verticale passant par le point Q .	
On considère la perpendiculaire à d en P et la perpendiculaire à t en $Q.$	
Déterminer l'équation cartésienne du lieu des points H , intersection de ces deux perpendiculaires, lorsque le point P décrit l'ellipse $\mathcal E$.	
Montrer que ce lieu est une ellipse. Déterminer son centre, les foyers et les longueurs de son petit axe et de son grand axe.	4.5 pts

- 2. Dans le plan muni d'un repère orthonormé d'origine O, on considère l'ensemble \mathcal{F} des ellipses dont :
 - le centre Ω appartient à la droite d: y = 12,
 - une extrémité A du grand axe appartient à la droite a: y = x,
 - le foyer F le plus proche de A appartient à la droite g: y = 14.
 - a) Déterminer l'équation cartésienne, dépendante d'un paramètre, de la famille \mathcal{F} .
 - b) Déterminer l'équation cartésienne de l'ellipse $\mathcal E$ de la famille $\mathcal F$ dont la directrice correspondant au foyer F est la droite d'équation y = 44.

5 pts

3. Dans le plan, on donne deux points P et M, ainsi que deux cercles $\gamma_1(\Omega_1, r_1)$ et $\gamma_2(\Omega_2, r_2)$.

On considère un cercle $\gamma(\Omega, r)$ satisfaisant les conditions suivantes :

- Ω appartient à la polaire p du point P par rapport au cercle γ_2 ,
- le cercle γ est orthogonal au cercle γ_1 ,
- les tangentes aux cercles γ_1 , γ_2 et γ issues du point M sont isométriques.
- a) Construire rigoureusement (règle, équerre, compas), sur la donnée graphique ci-jointe, le cercle $\ \gamma \left(\Omega \,,\, r\right)$.

2.5 pts

b) Relativement à un repère orthonormé du plan, on donne les deux cercles γ_1 et γ_2 , ainsi que les points P et M de la manière suivante:

$$\gamma_1: x^2 + y^2 - 4 = 0$$

$$\gamma_2: (x - 6)^2 + (y - 3)^2 - 1 = 0$$
 $P(8; 2) \text{ et } M(4; y_M).$

Déterminer l'ordonnée y_M du point M.

Déterminer l'équation cartésienne du cercle γ et le caractériser géométriquement.

3 pts

Réponses

1.
$$9x^2 + 3y^2 - 1 = 0 \Leftrightarrow \frac{x^2}{\frac{1}{9}} + \frac{y^2}{\frac{1}{3}} - 1 = 0$$

Centre: $\Omega(0,0)$ et foyers: $F(0,\frac{\sqrt{2}}{3})$ et $F'(0,-\frac{\sqrt{2}}{3})$ grand axe: $2a = \frac{2\sqrt{3}}{3}$ et petit axe: $2b = \frac{2}{3}$

2. a)
$$\mathcal{F}$$
: $\frac{(x-\alpha)^2}{(\alpha-10)(\alpha-14)} + \frac{(y-12)^2}{(\alpha-12)^2} - 1 = 0$, $\alpha > 14$
b) \mathcal{E} : $\frac{(x-20)^2}{60} + \frac{(y-12)^2}{64} - 1 = 0$

3. b)
$$y_M = 0$$

 $\gamma : (x-1)^2 + (y+8)^2 - 61 = 0$: cercle de centre $\Omega(1, -8)$ et rayon $r = \sqrt{61}$.

