表 6.3 常用的连续傅里叶变换对及其对偶关系

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega$$

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t} dt$$

	连续傅里呼	十变换对	相对偶的连续傅里叶变换对			
重	连续时间函数 $f(t)$	傅里叶变换 $F(\omega)$	连续时间函数 $f(t)$	傅里叶变换 F(ω)	重	
要					要	
√	$\delta(t)$	1	1	$2\pi\delta(\omega)$	√	
√	$\frac{d}{dt}\delta(t)$	jω	t	$j2\pi \frac{d}{d\omega}\delta(\omega)$		
	$\frac{d^{\frac{k}{k}}}{dt^{\frac{k}{k}}}\delta(t)$	$(j\omega)^k$	t^k	$2\pi j^{k} \frac{d^{k}}{d\omega^{k}} \delta(\omega)$		
√	u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$	$\frac{1}{2}\delta(t) - \frac{1}{j2\pi t}$	<i>u</i> (ω)		
	tu(t)	$j\pi \frac{d}{d\omega} \delta(\omega) - \frac{1}{\omega^2}$				
	$\operatorname{sgn}(t) = \begin{cases} 1, t > 0 \\ -1, t < 0 \end{cases}$	$\frac{2}{j\omega}$	$\frac{1}{\pi}, t \neq 0$	$F(\omega) = \begin{cases} -j, \omega > 0 \\ j, \omega < 0 \end{cases}$		
√	$\delta(t-t_0)$	$e^{-j\omega t_0}$	$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_{_{0}})$	√	
	$\cos \omega_0 t$	$\pi[\delta(\omega+\omega_{\scriptscriptstyle 0})+\delta(\omega-\omega_{\scriptscriptstyle 0})]$	$\delta(t+t_0)+\delta(t-t_0)$	$2\cos\omega t_{_{0}}$		
	$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	$\delta(t+t_{\scriptscriptstyle 0})-\delta(t-t_{\scriptscriptstyle 0})$	$j2\sin\omega t_{0}$		
✓	$f(t) = \begin{cases} 1, t < \tau \\ 0, t > \tau \end{cases}$	$\tau Sa(\frac{\omega \tau}{2})$	$\frac{W}{\pi}Sa(Wt)$	$F(\omega) = \begin{cases} 1, \omega < W \\ 0, \omega > W \end{cases}$	√ 	
√	$f(t) = \begin{cases} 1 - t /\tau, t < \tau \\ 0, t > \tau \end{cases}$	$\tau Sa^2(\frac{\omega\tau}{2})$	$\frac{W}{2\pi}Sa^2(\frac{Wt}{2})$	$F(\omega) = \begin{cases} 1 - \omega /W, \omega < W \\ 0, \omega > W \end{cases}$		
√	$e^{-at}u(t), \operatorname{Re}\{a\} > 0$	$\frac{1}{a+j\omega}$	$\frac{1}{\tau - jt}$	$2\pi e^{-\tau\omega}u(\omega), \tau > 0$		
	$e^{-a t }$, Re $\{a\} > 0$	$\frac{2a}{\omega^2 + a^2}$	$\frac{\tau}{t^2+\tau^2}$	$\pi e^{-\tau \omega }, \tau > 0$		
√	$e^{-at}\cos\omega_0 tu(t), \operatorname{Re}\{a\} > 0$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$				
√	$e^{-at}\sin\omega_0 t u(t), \operatorname{Re}\{a\} > 0$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$				
	$te^{-at}u(t),\operatorname{Re}\{a\}>0$	$\frac{1}{(a+j\omega)^2}$	$\frac{1}{(\tau - jt)^2}, \tau > 0$	$2\pi\omega e^{-\tau\omega}u(\omega)$		
	$\frac{t^{k-1}e^{-at}}{(k-1)!}u(t), \text{Re}\{a\} > 0$	$\frac{1}{(a+j\omega)^k}$				
√	$\delta_{T}(t) = \sum_{l=-\infty}^{+\infty} \delta(t - lT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta(\omega-k\frac{2\pi}{T})$				
√	$e^{-(rac{t}{r})^2}$	$\sqrt{\pi} \tau e^{-(\frac{\omega \tau}{2})^2}$				
√	$[u(t+\frac{\tau}{2})-u(t-\frac{\tau}{2})]\cos\omega_0 t$	$\frac{\tau}{2} \left[Sa \frac{(\omega + \omega_0)\tau}{2} + Sa \frac{(\omega - \omega_0)\tau}{2} \right]$				
	$\sum_{k=-\infty}^{+\infty} F_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}F_k\delta(\omega-k\omega_0)$				

连续傅里叶变换性质及其对偶关系

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega$$
$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) d\omega$$

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t} dt$$
$$F(0) = \int_{-\infty}^{+\infty} f(t) dt$$

$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) d\omega$$

$$F(0) = \int_{-\infty}^{+\infty} f(t)dt$$

	连续傅里叶变换对				相对偶的连续傅里叶变换对			
重要	名称	连续时间函数 $f(t)$	傅里叶变换 F(ω)	名称	连续时间函数 $f(t)$	傅里叶变换 F(ω)	重要	
√	线性	$\alpha f_1(t) + \beta f_2(t)$	$\alpha F_1(\omega) + \beta F_2(\omega)$					
√	尺度比 例变换	$f(at), a \neq 0$	$\frac{1}{ a }F(\frac{\omega}{a})$					
	对偶性	f(t)	$g(\omega)$		g(t)	$2\pi f(-\omega)$	√	
√	时移	$f(t-t_0)$	$F(\omega)e^{-j\omega t_0}$	频移	$f(t)e^{j\omega_{0}t}$	$F(\omega-\omega_0)$	√	
	时域微 分性质	$\frac{d}{dt}f(t)$	$j\omega F(\omega)$	频域微 分性质	-jtf(t)	$\frac{d}{d\omega}F(\omega)$	√	
	时域积 分性质	$\int_{-\infty}^{\prime}f(au)d au$	$\frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$	频域积 分性质	$\frac{f(t)}{-jt} + \pi f(0)\delta(t)$	$\int_{-\infty}^{\omega} F(\sigma) d\sigma$		
1	时域卷 积性质	f(t) * h(t)	$F(\omega)H(\omega)$	频域卷 积性质	f(t)p(t)	$\frac{1}{2\pi}F(\omega)*P(\omega)$	√	
1	对称性	$f(-t)$ $f^*(t)$	$F(-\omega)$ $F^*(-\omega)$	奇偶虚 实性质	$f(t)$ 是实函数 $f_o(t) = Od\{f(t)\}$ $f_e(t) = Ev\{f(t)\}$	$j\operatorname{Im}\{F(\omega)\}$ $\operatorname{Re}\{F(\omega)\}$		
		$f^*(-t)$	$F^{^{st}}(\omega)$					
	希尔伯 特变换	f(t) = f(t)u(t)	$F(\omega) = R(\omega) + jI(\omega)$ $R(\omega) = I(\omega) * \frac{1}{\pi \omega}$					
√	时域抽 样	$f(t)\sum_{n=-\infty}^{+\infty}\delta(t-nT)$	$\frac{1}{T}\sum_{k=-\infty}^{+\infty}F(\omega-k\frac{2\pi}{T})$	频域抽 样	$\frac{1}{\omega_0} \sum_{n=-\infty}^{+\infty} f(t - n \frac{2\pi}{\omega_0})$	$F(\omega)\sum_{k=-\infty}^{+\infty}\delta(\omega-k\omega_0)$		
√	帕什瓦 尔公式	$\int_{-\infty}^{\infty} \left f(t) \right ^2 dt$	$=\frac{1}{2\pi}\int_{-\infty}^{\infty}\left F(\omega)\right ^2d\omega$					

取反-----取反

共轭----共轭取反

共轭取反----共轭

基本的离散傅里叶级数对

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega$$
$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) d\omega$$

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t} dt$$

$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) d\omega$$

$$F(0) = \int_{-\infty}^{+\infty} f(t)dt$$

	2/1					
	离散傅里叶绿	及数对	相对偶的离散傅里叶级数对			
重要	周期 N 的序列 $f[n]$	傅里叶级数系数 $\tilde{F_k}$	周期 N 的序列 $f[n]$	傅里叶级数系数 $\tilde{F_k}$	重要	
√						
√						
					√	
√					√	
					√	
√					√	
√						
√						
√						

双边拉氏变换对与双边 Z 变换对的类比关系

$$F(s) = \int_{-\infty}^{+\infty} f(t)e^{-st}dt$$

$$F(z) = \sum_{n=-\infty}^{+\infty} f[n]z^{-n}$$

双边拉氏变换对			双边Z变换对			
重要	连续时间函数 $f(t)$	像函数 F(s) 和收敛域	离散时间序列 $f[n]$	像函数 F(z) 和收敛域	重要	
√	$\delta(t)$	1,整个 s 平面	$\delta[n]$	1,整个Z平面	√	
	$\delta^{^{(k)}}(t)$	<i>s</i> ^k ,有限 s 平面	$\Delta^k \mathcal{S}[n]$	$(1-z^{-1})^k$, $ z >0$		
1	u(t)	$1/s$, $Re\{s\} > 0$	u[n]	$1/(1-z^{-1})$, $ z >1$	1	
√	tu(t)	$1/s^2$, $Re\{s\} > 0$	(n+1)u[n]	$1/(1-z^{-1})^2$, $ z > 1$	√	
	$\frac{t^{k-1}}{(k-1)!}u(t)$	$\frac{1}{s^k}, \operatorname{Re}\{s\} > 0$	$\frac{(n+k-1)!}{n!(k-1)!}u[n]$	$1/(1-z^{-1})^k$, $ z >1$		
	-u(-t)	$1/s$, Re $\{s\} < 0$	-u[-n-1]	$1/(1-z^{-1})$, $ z <1$		
	-tu(-t)	$1/s^2$, $Re\{s\} < 0$	-(n+1)u[-n-1]	$1/(1-z^{-1})^2$, $ z <1$		
	$-\frac{t^{k-1}}{(k-1)!}u(-t)$	$\frac{1}{s^k}, \operatorname{Re}\{s\} < 0$	$-\frac{(n+k-1)!}{n!(k-1)!}u[-n-1]$	$1/(1-z^{-1})^k$, $ z <1$		
√	$e^{-at}u(t)$	$\frac{1}{s+a}, \operatorname{Re}\{s\} > \operatorname{Re}(-a)$	$a^nu[n]$	$1/(1-az^{-1})$, $ z > a $	√	
√	$te^{-at}u(t)$	$\frac{1}{(s+a)^2}, \operatorname{Re}\{s\} > \operatorname{Re}(-a)$	$(n+1)a^nu[n]$	$1/(1-az^{-1})^2$, $ z > a $		
	$\frac{t^{k-1}}{(k-1)!}e^{-at}u(t)$	$\frac{1}{(s+a)^k}, \operatorname{Re}\{s\} > \operatorname{Re}(-a)$	$\frac{(n+k-1)!}{n!(k-1)!}a^nu[n]$	$1/(1-az^{-1})^k$, $ z > a $		
	$-e^{-at}u(-t)$	$\frac{1}{s+a}, \operatorname{Re}\{s\} < \operatorname{Re}(-a)$	$-a^nu[-n-1]$	$1/(1-az^{-1}), z < a $		
	$-\frac{t^{k-1}}{(k-1)!}e^{-at}u(-t)$	$\frac{1}{(s+a)^k}, \operatorname{Re}\{s\} < \operatorname{Re}(-a)$	$-\frac{(n+k-1)!}{n!(k-1)!}a^{n}u[-n-1]$	$1/(1-az^{-1})^k, z < a $		
√	$\cos \omega_0 t u(t)$	$\frac{s}{s^2 + \omega_0^2}, \text{Re}\{s\} > 0$	$\cos \Omega_0 nu[n]$	$\frac{1 - (\cos \Omega_{_{0}})z^{^{-1}}}{1 - (2\cos \Omega_{_{0}})z^{^{-1}} + z^{^{-2}}}$	√	
√	$\sin \omega_0 t u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}, \text{Re}\{s\} > 0$	$\sin \Omega_{_0} nu[n]$	$\frac{(\sin \Omega_{_{0}})z^{^{-1}}}{1 - (2\cos \Omega_{_{0}})z^{^{-1}} + z^{^{-2}}}$	√	
√	$e^{-at}\cos\omega_0 tu(t)$	$\frac{s}{(s+a)^2 + \omega_0^2}, \text{Re}\{s\} > -a$	$a^n \cos \Omega_0 nu[n]$	$\frac{1 - (a\cos\Omega_{0})z^{-1}}{1 - (2a\cos\Omega_{0})z^{-1} + z^{-2}}$		
√	$e^{-at}\sin\omega_0 t u(t)$	$\frac{\omega_{_0}}{(s+a)^2+\omega_{_0}^2}, \text{Re}\{s\} > -a$	$a^n \sin \Omega_0 nu[n]$	$\frac{(a\sin\Omega_{_{0}})z^{^{-1}}}{1-(2a\cos\Omega_{_{0}})z^{^{-1}}+z^{^{-2}}}$		
	$e^{-a t }$, Re{a} > 0	$\frac{-2a}{s^{3}-a^{3}}, \text{Re}\{a\} > \text{Re}\{s\} > \text{Re}\{-a\}$	$a^{ n }$, $ a < 1$	$\frac{(a-a^{'})z^{''}}{(1-az^{'})(1-a^{'}z^{''})}, a < z < 1/a $		
	$e^{-a t }\operatorname{sgn}(t)$, $\operatorname{Re}\{a\} > 0$	$\frac{2s}{s^2-a^2}, \operatorname{Re}\{a\} > \operatorname{Re}\{s\} > \operatorname{Re}\{-a\}$	$a^{ n }\operatorname{sgn}[n], a <1$	$\frac{1-z^{-1}}{(1-az^{-1})(1-a^{-1}z^{-1})}, a < z < 1/a $		