Strutture dati - Parte 1

Dipartimento di Elettronica e Informazione Politecnico di Milano

16 giugno 2017

Strutture dati

Organizzare i dati processati

- Spesso algoritmi efficienti necessitano di poter accedere, modificare, cancellare i dati su cui agiscono con opportune complessità asintotiche
- L'unico modo che abbiamo visto finora di organizzare elementi su cui effettuiamo un calcolo (nello pseudocodice) sono i vettori
- Analizziamo come è possibile rappresentare collezioni di elementi in modo più organizzato → strutture dati più evolute
- Queste strutture possono usare etichette opache (chiavi) per identificare un oggetto
- Analizziamo la loro efficienza in termini di quella delle operazioni che effettuiamo su di esse

Operazioni tipiche su strutture dati

Interrogare la struttura

- Search(S,k): restituisce il riferimento a k in S, NIL se k non è contenuto in S
- Minimum(S): se gli elementi sono ordinati, restituisce il più piccolo (o quello con la chiave più piccola)
- Maximum(S): come sopra, ma il più grande
- Successor(S,x.k): restituisce l' elemento che segue x (se ordinati) nella struttura (o la cui chiave segue quella di x.k)
- Predecessor(S,x.k): come sopra, ma considerando il precedente

Modificare la struttura

- Insert(S,x): Inserisce un oggetto nella struttura
- Delete(S,x): Cancella un oggetto dalla struttura

Analisi critica di strutture note

Vettori

- Un vettore è una struttura dati compatta in memoria in cui si accede direttamente ad ogni elemento, data la sua posizione
- L'indice del vettore agisce come chiave a tutti gli effetti
- ullet Se il vettore di lunghezza n non è ordinato:
 - ullet ricerca, minimo, massimo, successore sono $\mathcal{O}(n)$
 - inserimento e cancellazione costano $\mathcal{O}(n)$ (la cancellazione può essere ridotta a $\mathcal{O}(1)$ usando dei simboli di "cella vuota")
- Se il vettore di lunghezza n è ordinato:
 - minimo e massimo: $\Theta(1)$, ricerca e successore $\Theta(\log(n))$
 - inserimento e cancellazione costano $\mathcal{O}(n)$
- Inserimenti in vettore pieno:
 - sono rifiutati (tenendo un conteggio degli elementi): $\mathcal{O}(1)$
 - causano una riallocazione $\mathcal{O}(n)$: (causa copie)

Analisi critica di strutture note

Liste semplicemente connesse

- Una lista semplice stocca gli elementi sparsi in memoria: ogni elemento ha un riferimento al successivo (i.e., puntatore)
- ullet Se la lista di lunghezza n non è ordinata:
 - ullet ricerca, minimo, massimo, successore sono $\mathcal{O}(n)$
 - inserimento: $\mathcal{O}(1)$, cancellazione: $\mathcal{O}(n)$ se l'elemento va trovato, $\mathcal{O}(1)$ se si ha un riferimento
- Se la lista di lunghezza n è ordinata:
 - ullet uno dei due tra minimo e massimo è $\Theta(1)$ l'altro $\Theta(n)$
 - ullet Con puntatore accessorio all'ultimo elemento: entrambi $\Theta(1)$
 - ricerca e successore sono $\mathcal{O}(n)$
 - inserimento: $\mathcal{O}(n)$, cancellazione: $\mathcal{O}(n)$

Pile (Stack)

Una struttura dati familiare

- Una pila è una struttura dati con le seguenti operazioni:
 - Push(S,e): aggiunge l'elemento in cima alla pila
 - Pop(S,e): restituisce l'elemento in cima alla pila cancellandolo
 - Empty(S): restituisce true se la pila è vuota
- Questa struttura dati astratta può essere realizzata usando una lista semplicemente connessa o un vettore

Realizzazione con lista

- Lo stoccaggio dati è nella lista, le operazioni diventano:
 - Push(S,e): inserisci in testa alla lista $\mathcal{O}(1)$
 - Pop(S,e): restituisci il primo elemento della lista, cancellandolo dalla stessa $\mathcal{O}(1)$
 - Empty(S): controlla se il successore della testa è NIL: $\mathcal{O}(1)$

Pile (Stack)

Realizzazione con vettore

- Lo stoccaggio dati è nella celle del vettore, viene mantenuto l'indice della cima della pila (Top of Stack, ToS)
 - Push(S,e): se c'è spazio, Incrementa ToS, salva e in A[ToS]: $\mathcal{O}(1)$; se manca spazio rifiuta $\mathcal{O}(1)$ o rialloca $\mathcal{O}(n)$
 - ullet Pop(S): restituisci A[ToS] corrente, decrementa ToS: $\mathcal{O}(1)$
 - Empty(S): Restituisci ToS $\stackrel{?}{=}$ 0: $\mathcal{O}(1)$
- Nessun vantaggio (dal punto di vista astratto) rispetto all'implementazione a pila, (uno svantaggio se si rialloca)
 - In pratica, avere dati non coesi in memoria penalizza le caches
 - → può valer la pena di usare un vettore se non ci sono troppe riallocazioni (e.g., con una preallocazione ragionata)

Code (Queues)

Struttura ed operazioni

- Una coda è una struttura dati con le seguenti operazioni:
 - Enqueue(Q,e): aggiunge e alla fine della coda
 - Dequeue (Q): restituisce l'elemento all'inizio della coda, cancellandolo dalla stessa
 - Empty(Q): restituisce true se la coda è vuota
- Come nel caso della pila, è possibile realizzare una coda sia con una lista che con un vettore

Code (Queues)

Realizzazione con vettore

- Lo stoccaggio dei dati è effettuato in un vettore A, lungo l, con indice del primo elemento 0
- Teniamo traccia della posizione dove va inserito un nuovo elemento e di quella dell'elemento più vecchio con due indici tail e head e del numero di elementi contenuti n
- ullet Gli indici vengono incrementati $\mod l$
 - Enqueue(Q,e): se n < l, inserisci l'elemento in $A[\mathtt{tail}]$, incrementa n e \mathtt{tail} : $\mathcal{O}(1)$, altrimenti segnala l'errore, $\mathcal{O}(1)$
 - Dequeue(Q): se n>0, restituisci A[head] corrente, decrementa n, incrementa head: $\mathcal{O}(1)$
 - Empty(S): Restituisci $n \stackrel{?}{=} 0$: $\mathcal{O}(1)$
- Per ampliare lo stoccaggio: allocazione fresca e copia degli elementi estraendoli con Dequeue (Q): $\Theta(n)$

Code (Queues)

Realizzazione con lista

- Lo stoccaggio dei dati è effettuato negli elementi della lista
- Teniamo traccia dell'ultimo elemento della lista (oltre al primo) con un puntatore tail
 - Enqueue(Q,e): inserisci l'elemento e in coda alla lista, aggiornando tail: $\mathcal{O}(1)$
 - Dequeue (Q): restituisci l'elemento in testa se diverso da NIL, cancellandolo e aggiornando head: $\mathcal{O}(1)$
 - Empty(S): Restituisci head $\stackrel{?}{=}$ tail: $\mathcal{O}(1)$

Mazzo o coda a due fini (Deque)

Struttura dati

- La struttura dati si comporta come un mazzo di carte, di cui ognuna contiene un elemento
- E'possibile aggiungere sia in testa che in coda alla struttura:
 - PushFront(Q,e): inserisci l'elemento e in testa al mazzo
 - PushBack(Q,e): inserisci l'elemento e in coda al mazzo
 - PopFront(Q): restituisci l'elemento in testa, cancellandolo
 - PopBack(Q): restituisci l'elemento in testa, cancellandolo
 - Empty(S): Restituisci true se il mazzo è vuoto

Mazzo o coda a due fini (Deque)

Realizzazione con vettore

- Lo stoccaggio dei dati è effettuato in modo analogo alla coda semplice
- PushBack e PopFront si comportano come Enqueue e Dequeue della coda realizzata con un vettore
 - PopBack(Q): se n > 0, restituisci A[tail] corrente, decrementa n, decrementa tail: $\mathcal{O}(1)$
 - PushFront(Q,e): se n < l, decrementa e head, inserisci l'elemento in $A[{\tt head}]$, incrementa $n:\mathcal{O}(1)$, altrimenti segnala l'errore, $\mathcal{O}(1)$
 - Empty(S): Restituisci $n \stackrel{?}{=} 0$: $\mathcal{O}(1)$
- Ampliamento dello stoccaggio: come per la coda

Mazzo o coda a due fini (Deque)

Realizzazione con lista doppiamente concatenata

- Un elemento di una lista doppiamente concatenata ha puntatori sia al precedente che al seguente.
- Un modo comune di rappresentarne una vuota è una coppia di elementi, head e tail che puntano l'uno all'altro
- PushBack e PopFront si comportano come Enqueue e Dequeue di una coda realizzata con una lista
 - PopBack(Q): restituisci tail.prev corrente se diverso da head, rimuovendolo dalla lista: $\mathcal{O}(1)$
 - PushFront(Q,e): aggiungi l'elemento in testa, aggiornando head e il suo successore $\mathcal{O}(1)$
 - Empty(S): Restituisci head.next $\stackrel{?}{=}$ tail.prev: $\mathcal{O}(1)$
- Ampliamento dello stoccaggio: come per la coda

Riassumendo

Strutture dati lineari

- Tutte le operazioni viste su pile, code e mazzi sono $\mathcal{O}(1)$ nel caso delle implementazioni basate su lista, o su vettore con stoccaggio finito
- Le implementazioni che utilizzano vettori come stoccaggio e consentono di ampliarli nel caso vi sia necessità pagano un costo lineare per l'ampliamento

Liste doppiamente concatenate

- Si comportano come le liste semplici, tranne la cancellazione
- Cancellare un elemento arbitrario, che viene fornito alla Delete(L,e) è O(1): $e.prev.next \leftarrow e.next$; $e.next.prev \leftarrow e.prev$

Dizionari

Rappresentare collezioni di oggetti

- Un dizionario è una struttura dati astratta che contiene elementi accessibili direttamente, data la loro chiave
- Offerto da alcuni linguaggi di programmazione come tipo base
- Assumiamo che le chiavi siano numeri naturali
 - Nel caso non lo siano, è sufficiente considerare la loro rappresentazione binaria il corrispettivo numero
- Le operazioni supportate sono Insert, Delete e Search
- E'possibile implementare un dizionario con diverse strutture dati concrete

Dizionari

Un primo approccio

- Nel caso in cui le possibili chiavi siano un numero limitato un'implementazione di un dizionario è un vettore di puntatori
- Le chiavi vengono usate come indice del vettore
- Le operazioni sul dizionario sono implementate come:
 - Insert(D,e): $D[e.key] \leftarrow e$
 - Delete(D,e): $D[e.key] \leftarrow NIL$
 - Search(D,e.key): return D[e.key]
- ullet Complessità computazionale: $\Theta(1)$ per tutte le azioni
- ullet Complessità spaziale: $\mathcal{O}(|\mathbf{D}|)$, con \mathbf{D} il dominio delle chiavi
 - Estremamente oneroso se il dominio è molto ampio

Tabelle Hash

Maggior efficienza in spazio

- Una tabella hash implementa un dizionario con una complessità in memoria pari al numero di chiavi effettivamente presenti
 - Il dominio delle chiavi D essere arbitrariamente grande/infinito
- ullet Approccio tipico: prealloco spazio per m chiavi
 - ullet Rialloco solo quando devo inserire n>m chiavi
- Idea principale: uso come indice della tabella il risultato del calcolo di una funzione della chiave h(k)
 - $h(\cdot): \mathbf{D} \to \{0, \dots, m-1\}$ è detta funzione di hash

Tabelle Hash

Efficienza

• Se il calcolo di h è $\mathcal{O}(k)$ la tabella di hash ideale ha la stessa efficienza temporale del dizionario fatto con il vettore di $|\mathbf{D}|$ puntatori

Il problema delle collisioni

- Idealmente, h dovrebbe mappare ogni chiave su di un distinto elemento del suo codominio
 - Impossibile! Per costruzione $|\mathbf{D}|\gg m$ (specie se $|D|=\infty$)
- Chiamiamo *collisione* ogniqualvolta per $k_1, k_2; k_1 \neq k_2$ abbiamo che $h(k_1) = h(k_2)$

Gestione delle collisioni

Indirizzamento chiuso (open hashing)

- Ogni riga della tabella (bucket) contiene la testa di una lista al posto del puntatore ad un singolo elemento
- Nel caso di collisione, l'elemento nuovo viene aggiunto in testa alla lista $(\Theta(1))$
- Per cercare/cancellare un elemento di chiave k, è necessario cercare nell'intera lista di quelli del bucket h(k)

Gestione delle collisioni

Indirizzamento aperto (closed hashing)

- In caso di collisione si seleziona secondo una regola deterministica un altro bucket (procedimento di ispezione)
- Nel caso non si trovino bucket vuoti:
 - ullet L'inserimento semplicemente fallisce $\Theta(1)$
 - Si rialloca una tabella più grande e si ri-inseriscono tutti gli elementi della vecchia nella nuova (re-hashing), incluso il nuovo $\Theta(n)$
- Si modifica la procedura di ricerca, affinchè, se l'elemento non viene trovato nel suo bucket, essa effettui la stessa ispezione
- La cancellazione è effettuata inserendo un opportuno valore (tombstone) che non corrisponde ad alcuna chiave

Procedure di ispezione

Ispezione lineare (Linear probing) e clustering

- Il metodo di ispezione più semplice è l'ispezione lineare
 - Dato h(k,1)=a il bucket dove avviene la collisione al primo tentativo di inserimento, si sceglie $h(k,i)=a+c\cdot i$ come bucket candidato per l'i-esimo inserimento
- Problema: se ci sono molte collisioni su un dato bucket, peggiorerà la probabilità di collisione in tutte le vicinanze
 - Il fenomeno è detto di clustering delle collisioni
 - Per alcune scelte di h, il peggiorare delle prestazioni dovuto al clustering dell'ispezione lineare è molto forte
 - É possibile avere clustering di dimensione logaritmica nella dimensione della tabella, effettuando rehashing molto prima che sia piena

Procedure di ispezione

Ispezione quadratica (Quadratic probing)

 Per mitigare il fenomeno del clustering è possibile utilizzare il criterio di ispezione quadratica:

$$h(k,i) = a + c_1 i + c_2 i^2 \bmod n$$

- Viene evitato il clustering banale nell'intorno di alcuni elementi
- Non è più garantito a priori che la sequenza di ispezione tocchi tutte le celle: potrei dover fare rehashing a tabella non piena
- Chiavi con la stessa posizione iniziale generano ancora clustering: hanno la stessa sequenza di ispezione!

Una sequenza ideale

Per tabelle di dimensione $n=2^m$

- ullet Lemma: $h(k,i)=a+rac{1}{2}i+rac{1}{2}i^2$ genera tutti i valori in [0,n-1]
- Dimostrazione: (Per assurdo) Esistono $0 tali che <math>\frac{1}{2}p+\frac{1}{2}p^2=\frac{1}{2}q+\frac{1}{2}q^2 \bmod n \Rightarrow p+p^2=q+q^2 \bmod 2n$
- Fattorizzando abbiamo $(q-p)(p+q+1)=0 \mod 2n$
 - Se $(q-p) = 0 \mod 2n \Rightarrow q = p$
 - $(p+q+1)=0 \bmod 2n$: dati i range possibili $0 la somma è <math>\in [1,2n-2]$ £
 - $(q-p)(p+q+1)=0 \mod 2n$, ma $(q-p)\neq 0 \mod 2n$ e $(p+q+1)\neq 0 \mod 2n$: (q-p)-(p+q+1)=2p+1, quindi almeno uno tra (q-p) e (p+q+1) è dispari
 - Essendo $n=2^m$ il fattore pari è multiplo di 2n, ma $(q-p) \leq n-1$ e $(p+q+1) \leq 2n-2$ ${\bf 1}$

Doppio Hashing

Un'ispezione dipendente dalla chiave

- Definiamo $h(k,i) = h_1(k) + h_2(k)i \mod n$: il passo di ispezione dipende dalla chiave
- Per essere sicuro di ispezionare tutti i bucket, $h_2(k)$ deve essere coprimo con n :
 - Per $n=2^m$ basta fare sì che h_2 generi solo numeri dispari
 - ullet Se m è primo, basta fare sì che h_2 generi un numero < m
 - N.B.: h₂ non deve mai dare zero, altrimenti la sequenza di ispezione degenera

Efficienza computazionale

Ipotesi di Hashing Uniforme Semplice (IHUS)

- Una opportuna scelta di h fa sì che ogni chiave abbia la stessa probabilità $\frac{1}{n}$ di finire in una qualsiasi delle n celle
- Come fare "la scelta opportuna"? Dipende dalla distribuzione delle chiavi da inserire...

Metodo della divisione

- Un metodo semplice è $h(k) = k \mod n$
 - ullet Va evitato $m=2^i\colon h(k)$ dipende solo dai bit meno significativi
- ullet Un'idea ragionevole è n primo, vicino ad una potenza di 2
 - Primi di Fermat: hanno forma $2^{i} + 1$, e.g., 17,257,65537
 - ullet Primi di Mersenne: hanno forma 2^i-1 , e.g.,127,8191,131071

Efficienza computazionale

Metodo della moltiplicazione

- Un metodo semplice è $h(k) = \lfloor n(\alpha k \lfloor \alpha k \rfloor) \rfloor$ con α scelto come una costante $\in \mathbb{R}$
- ullet In questo caso, la dimensione della tabella n non è critica
 - Spesso si prende $n=2^m$ in modo da effettuare le moltiplicazioni con un semplice shift
- \bullet Una scelta possibile per A è $\frac{\sqrt{5}-1}{2}$ (proposto da Knuth): dà buoni risultati in pratica
- Un modo pratico di calcolare h(k) in C, nota la larghezza di parola del calcolatore (e.g. 32b) è calcolare

```
k * (uint32_t)((double)A * ((uint64_t)1 << 32)))</pre>
```

• La porzione in rosso è costante e può essere precalcolata

Efficienza computazionale

Stime di costo

- Caso pessimo: tutti gli elementi collidono dando origine ad una lista (open hashing) o sequenza di ispezione (closed hashing) lunga n elementi: Insert/Delete/Search in $\mathcal{O}(n)$
- Chiamiamo fattore di carico $\alpha = \frac{n}{m}$, $0 \le \alpha \le \frac{|\mathbf{D}|}{m}$
- Sotto l'IHUS, per l'open hashing abbiamo che:
 - La lunghezza media di una lista è il fattore di carico
 - \bullet II tempo medio per cercare una chiave non presente è $\Theta(1+\alpha)$
 - Il tempo medio per cercare una chiave presente è sempre $\Theta(1+\alpha)$ (risultato del calcolo del valor medio del numero di oggetti aggiunti al bucket di x dopo che x è stato inserito)
- In pratica, se il fattore di carico non è eccessivo tutte le operazioni sono $\mathcal{O}(1)$ in media

Stime di costo

Closed hashing

- Il tempo per trovare un elemento dipende anche dalla sequenza di ispezione
- Ipotesi di hashing uniforme: generalizziamo la IHUS dicendo che tutte le sequenze di ispezione sono equiprobabili
- Il fattore di carico è sempre: $0 \le \alpha \le 1$ (al massimo un oggetto per bucket)
- Se consideriamo la v.a. $\mathcal X$ che modella il numero di passi di ispezione fatti senza trovare il valore desiderato, abbiamo $\Pr(\mathcal X \geq i) = \alpha^{i-1}$ il cui valor medio su $i \ \mbox{è} \ \frac{1}{1-\alpha}$
- Il numero medio di tentativi prima di trovare un elemento desiderato è ricavato assumendo di trovarlo al j-esimo tentativo e mediando il numero di insuccessi su tutte le n chiavi presenti in tabella: si ottiene $\frac{1}{\alpha}\log(\frac{1}{1-\alpha})$

Hashing universale

Prevenire casi pessimi indotti

- Abbiamo finora presunto che le collisioni fossero accidentali
- Se vengono indotte da un utente che conosce la funzione di hash ed inserisce una sequenza di elementi ad-hoc? Accessi in $\mathcal{O}(n)$! Casi pratici: PHP, filesystem ext3/4
- Come evitarlo? Scegliendo una funzione di hash casualmente all'interno di una famiglia di buone funzioni
- Si può dimostrare che $h_{a,b}(k) = ((ak+b) \bmod p) \bmod n$ con p primo, p > n, per qualunque $a, b \in \mathbb{Z} \setminus 0$ distribuisce uniformemente le chiavi nella tabella
- É sufficiente scegliere casualmente a e b all'interno del programma, per ogni istanza della tabella

