Chapter 3.9: Inverse Trigonometric Functions

Expected Skills:

- Be able to specify the domain and range of $\sin^{-1}(x)$, $\cos^{-1}(x)$, and $\tan^{-1}(x)$. Also be able to graph these functions.
- Be able to evaluate an inverse trigonometric function at a ratio which is related to the common angles of $0^{\circ} 30^{\circ} 45^{\circ} 60^{\circ} 90^{\circ}$.
- Be able to evaluate limits involving inverse trigonometric functions.
- Be able to differentiate $\sin^{-1}(x)$, $\cos^{-1}(x)$, and $\tan^{-1}(x)$. Also be able to use the derivative to solve application problems.

Practice Problems:

1. For each of the following functions, state the domain and the range.

(a)
$$f(x) = \sin^{-1} x$$

Domain: $[-1, 1]$, Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

(b)
$$f(x) = \cos^{-1} x$$

Domain: $[-1, 1]$, Range: $[0, \pi]$

(c)
$$f(x) = \tan^{-1} x$$

Domain: $(-\infty, \infty)$, Range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

2. Evaluate each of the following. (Do not use a calculator. And remember the ranges from problem 1.)

(a)
$$\arcsin \frac{\sqrt{3}}{2}$$
 $\left\lceil \frac{\pi}{3} \right\rceil$

(b)
$$\arcsin\left(-\frac{\sqrt{3}}{2}\right)$$
$$\boxed{-\frac{\pi}{3}}$$

- (c) $\arcsin \frac{\sqrt{3}}{2}$
 - $\frac{\pi}{6}$
- (d) $\arccos\left(-\frac{\sqrt{3}}{2}\right)$
 - $\frac{5\pi}{6}$
- (e) $\arctan \frac{\sqrt{3}}{3}$
 - $\frac{\pi}{6}$
- (f) $\arctan\left(-\frac{\sqrt{3}}{3}\right)$
 - $-\frac{\pi}{6}$
- 3. Use an inverse trigonometric function to express θ as a function of x:

+3

- 4. Find the exact value of each expression.
 - (a) $\sin\left(\tan^{-1}\left(\frac{3}{4}\right)\right)$
 - $\frac{3}{5}$

- (b) $\sec\left(\arctan\left(-\frac{3}{5}\right)\right)$
- (c) $\sin\left(\arccos\left(-\frac{2}{3}\right)\right)$
- (d) $\csc\left(\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$
- 5. Find the exact value of each expression. Remember the ranges from problem (1)!
 - (a) $\sin^{-1}\left(\sin\left(\frac{\pi}{3}\right)\right)$
 - (b) $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$
 - (c) $\cos^{-1}\left(\cos\left(\frac{\pi}{4}\right)\right)$ $\boxed{\frac{\pi}{4}}$
 - (d) $\cos^{-1} \left(\cos \left(-\frac{\pi}{4} \right) \right)$
 - (e) $\tan^{-1} \left(\tan \left(\frac{\pi}{6} \right) \right)$
 - (f) $\tan^{-1} \left(\tan \left(\frac{5\pi}{6} \right) \right)$

6. For each of the following, find all solutions in the interval $[0, 2\pi]$. Give the exact values, not decimal approximations.

(a)
$$(\sin x - 1)(4\sin x - 3) = 0$$

$$\frac{\pi}{2}, \arcsin\left(\frac{3}{4}\right), \pi - \arcsin\left(\frac{3}{4}\right)$$

- (b) $3\tan x = 1$ $\tan^{-1}\left(\frac{1}{3}\right), \pi + \tan^{-1}\left(\frac{1}{3}\right)$
- (c) $5\cos^2 x + 11\cos x + 2 = 0$

Notice that solving this equation reduces to solving $\cos x = -\frac{1}{5}$. So, there are solutions in both quadrants II and III. The reference angle is $\arccos\left(\frac{1}{5}\right)$. Thus, the two solutions of the given equation are $\pi - \arccos\left(\frac{1}{5}\right)$ and $\pi + \arccos\left(\frac{1}{5}\right)$. Alternatively, one could find the angle in the second quadrant by calculating $\arccos\left(-\frac{1}{5}\right)$. Then, the angle in the third quadrant is $2\pi - \arccos\left(-\frac{1}{5}\right)$

- (d) $3 \tan x = -1$ $\pi + \tan^{-1} \left(-\frac{1}{3} \right), 2\pi + \tan^{-1} \left(-\frac{1}{3} \right)$
- 7. Evaluate the following limits. If a limit does not exist, write $+\infty$, $-\infty$, or DNE.

(a)
$$\lim_{x \to \infty} \arccos\left(\frac{-x^2}{x^2 + 3x}\right)$$

(b)
$$\lim_{x\to 0} \arctan\left(\frac{1}{x^2}\right)$$
 $\left[\frac{\pi}{2}\right]$

(c)
$$\lim_{h \to 0} \frac{\sin^{-1}\left(\frac{\sqrt{3}}{2} + h\right) - \frac{\pi}{3}}{h}$$

(Hint: Interpreting the limit as the derivative of a function a particular point.)

$$\left| \lim_{h \to 0} \frac{\sin^{-1} \left(\frac{\sqrt{3}}{2} + h \right) - \frac{\pi}{3}}{h} \right| = \frac{d}{dx} \left(\sin^{-1} \left(x \right) \right) \Big|_{x = \frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{1 - x^2}} \Big|_{x = \frac{\sqrt{3}}{2}} = 2$$

8. Calculate
$$\frac{dy}{dx}$$

(a)
$$y = (\tan^{-1} x)^3$$
$$\frac{3(\tan^{-1} x)^2}{1 + x^2}$$

(b)
$$y = 3x^2 \sin^{-1}(4x)$$

$$\frac{12x^2}{\sqrt{1 - 16x^2}} + 6x \sin^{-1}(4x)$$

9. Compute an equation of the line which is tangent to the graph of $f(x) = \cos^{-1} x$ at the point where $x = \frac{1}{2}$.

$$y = -\frac{2}{\sqrt{3}}x + \frac{\pi + \sqrt{3}}{3}$$

10. Find all value(s) of x at which the tangent lines to the graph of $f(x) = \tan^{-1}(4x)$ are perpendicular to the line which passes through (0,1) and (2,0).

$$x = \pm \frac{1}{4}$$

11. Let $f(x) = \arctan x^2$.

(a) Find all intervals on which f(x) is increasing and those on which f(x) is decreasing.

Decreasing on
$$(-\infty, 0)$$
; Increasing on $(0, \infty)$

(b) Locate all local extrema. Express each as an ordered pair (x, y).

Local minimum at
$$(0,0)$$
; No local maximum

(c) Find all intervals on which f(x) is concave up and those on which f(x) is concave down.

Concave down on
$$\left(-\infty, -\frac{1}{\sqrt[4]{3}}\right) \cup \left(\frac{1}{\sqrt[4]{3}}, \infty\right)$$
; Concave up on $\left(-\frac{1}{\sqrt[4]{3}}, \frac{1}{\sqrt[4]{3}}\right)$

(d) Locate all points of inflection. Express each as an ordered pair (x, y).

5

Points of inflection
$$\left(-\frac{1}{\sqrt[4]{3}}, \frac{\pi}{6}\right)$$
 and $\left(\frac{1}{\sqrt[4]{3}}, \frac{\pi}{6}\right)$

(e) Sketch f(x).

12. The screen at the front of a movie theater is 16 feet high and positioned 9 feet above eye level. How far away from the front of the room should you sit in order to have the "best" view? (HINT: Find the largest possible angle θ in diagram shown below.)

15 Feet

13. Find the area of the shaded region by adding together the area of the sector and the area of the triangle.

$$Area of R_{\text{Triangle}} = \frac{1}{2}bh = \frac{1}{2}(1)\left(\sqrt{3}\right) = \frac{\sqrt{3}}{2}; \text{ Area of } R_{\text{Sector}} = \frac{1}{2}r^2\theta = \frac{1}{2}(2)^2\left(\frac{\pi}{6}\right) = \frac{\pi}{3}.$$
Thus, the total area is $A = \frac{\sqrt{3}}{2} + \frac{\pi}{3}$.