Unidade 1 – Sentenças, Representação Simbólica, Tautologia, Contradição e Contingência.

1 – Introdução e Conceitos Iniciais:

Geralmente nos expressamos, em português, através de gestos da fala e da escrita. No caso da escrita utilizamos interrogações, exclamações e conjunções expressadas em sentenças, que por sua vez, podem ser verdadeira ou falsa. Existem sentenças do tipo:

- A nota obtida em lógica depende do número de questões que acertar.
- Dez é menor do que sete.
- Existem formas de vida em outros planetas.

Ou seja, observa-se que as sentenças são passíveis de serem verdadeiras ou falsas. E justamente a interpretação da veracidade de sentenças que a lógica trata.

Na lógica matemática temos duas regras fundamentas:

I – Princípio da não contradição: Uma proposição não pode ser verdadeira e falsa ao mesmo tempo.

II – Princípio do terceiro excluído: Uma proposição é falsa ou verdadeira, não havendo um terceiro caso.

Proposição: É um conjunto de símbolos que exprimem um pensamento de sentido completo. Ou simplesmente, é uma frase que pode ser apenas verdadeira ou falsa. Exemplos:

- A lua é um satélite da terra. (verdadeira)
- $\pi > \sqrt{5}$. (falsa)
- Vasco da Gama descobriu o Brasil. (falsa)

Valores lógicos de uma proposição: O valor lógico de uma proposição é V se a proposição for verdadeira e **F** se ela for falsa.

Proposições simples e composta: Proposição simples é aquela que expressa uma única idéia, ou seja, não contém nenhuma outra proposição como parte integrante de si mesma. Em geral são referenciadas por letras minúsculas. Já uma proposição composta é aquela formada por uma combinação de mais de uma proposição simples, estas são em geral referenciadas por letras maiúsculas. Exemplo:

> q: Pedro é estudante.r: 25 é quadrado perfeito. **Q:** Carlos é careca e Pedro é estudante.

R: Se carlos é careta, então é feliz.

Quando deseja-se destacar que uma proposição composta P é formada pela combinação de proposições simples q, r, s, ...; então escreve-se:

P(q, r, s, K)

2 – Conectivos Lógicos:

Os conectivos são expressões utilizadas para compor novas proposições. Exemplos:

- P: O número 6 é par e o número 8 é cubo perfeito.
- Q: Não está chovendo.
- R: O triângulo é retângulo ou isósceles.
- S: O triângulo é equilátero se e somente se é equiângulo.
- T: Se Jorge é engenheiro, então sabe cálculo.

Assim, na lógica, destaca-se os conectivos usuais

e não ou se e somente se se ... então

3 – Tabela Verdade:

No caso de proposições compostas recorre-se ao uso da tabela verdade para verificar o valor lógico da proposição, ou seja, a tabela retrata todos os possíveis valores lógicos.

Exemplos:

1. Considerando a proposição p(q, r) têm-se:

q	r
V	V
V	F
F	V
F	F

2. Considerando agora a proposição p(q, r, s) têm-se:

q	r	S
V	V	V
V	V	F
V	F	V
V	F	F
F	V	V
F	V	F
F	F	V
F	F	F

Temos **2**³ = **8** combinações

3. Considerando agora a proposição p(q, r, s, t) têm-se:

q	r	S	t
V	V	V	V
V	V	V	F
V	V	F	V
V	V	F	F
V	F	V	V
V	F	V	F
V	F	F	V
V	F	F	F
F	V	V	V
F	V	V	F
F	V	F	V
F	V	F	F
F	F	V	V
F	F	V	F
F	F	F	V
F	F	F	F

Temos **2**⁴ = **16** combinações

A notação mais usual para o valor lógico de uma proposição P é V(P), assim se P é verdadeira os falsa escreve-se; V(P) = V ou V(P) = F.

Por exemplo, a proposição:

" $R: 2 \text{ \'e raiz da equação } x^2 + 3x - 4 = 0$ " têm valor lógico $V(\mathbf{R}) = \mathbf{F}$.

4 – Exercícios:

- 1. Determinar o valor lógico de cada uma das seguintes proposições:
- c) 0,13131313... é uma dízima periódica. resp: Verdadeiro
- e) $sen^2 30 + sen^2 60 = 2 \cdot resp$: Falso
- g) $(3+5)^2 = 3^2 + 5^2$. resp: Falso
- por 5. resp: Falso
 - k) $tg\frac{\pi}{4} < tg\frac{\pi}{6}$. resp: Falso

- a) O número 17 é primo. resp: verdadeiro b) Tiradentes morreu afogado. resp: falso
 - d) As diagonais de um paralelogramo são iguais. resp: Falso
 - f) 0, 4 e -4 são raízes da equação

$$x^3 - 16x = 0$$
. resp: verdadeiro

- h) b) -1 < -7. resp: falso
- Todo número divisível por 5 termina j) O número 125 é cubo perfeito. resp: verdadeiro
 - 1) O produto de dois números ímpares é um número ímpar. resp: verdadeiro

5 – Operações Lógicas Sobre Proposições:

Negação (~): A negação da proposição **P** é representada por ~**P**, cuja tabela verdade fica:

P	~P
V	F
F	V

Exemplo:

1. P:
$$2+3=5$$

~R: Carlos não é mecânico

~S: Nem todos os homens são elegantes

~T: Algum homem é elegante

Conjunção (\land , .): Dadas duas proposições $P \in Q$, a conjunção é representada por $P \land Q$ ou $P \cdot Q$ cuja tabela verdade fica:

P	Q	$P \wedge Q$
V	V	V
V	F	F
F	V	F
F	F	F

Exemplo:

 $P \wedge Q$: A neve é branca e **2** < **5**

2. R:
$$\pi > 4$$

$$R \wedge S: \pi > 4 \text{ e } sen \frac{\pi}{2} = 0$$

S:
$$sen \frac{\pi}{2} = 0$$

Disjunção (\vee , +): Dadas duas proposições $P \in Q$, a disjunção é representada por $P \vee Q$ ou P + Q cuja tabela verdade fica:

P	Q	$P \vee Q$
V	V	V
V	F	V
F	V	V
F	F	F

Exemplo:

1. P: A neve é branca

 $P \lor Q$: A neve ou branca e 2 < 5

Q: 2 < 5

Unidade 1 - Sentenças e Representação simbólica

2. R:
$$\pi > 4$$

S: $\operatorname{sen} \frac{\pi}{2} = 0$
R \vee S: $\pi > 4$ ou $\operatorname{sen} \frac{\pi}{2} = 0$

Disjunção Exclusiva (\checkmark , \oplus): Dadas duas proposições $P \in Q$, a disjunção exclusiva é representada por $P \lor Q$ ou $P \oplus Q$ cuja tabela verdade fica:

A tabela verdade de duas proposições *H* e *K*, da disjunção exclusiva fica:

P	Q	$P \ \ Q$
V	V	F
V	F	V
F	V	V
F	F	F

Exemplo:

1. Considere as proposições $P \in Q$ abaixo:

P: Carlos é médico ou professor.

Q: Mário é alagoano ou gaúcho.

Em P, Carlos pode ser médico; pode ser professor ou ainda pode ser médico e professor. Mas em Q, Mário é alagoano ou gaúcho. Assim em P temos a disjunção inclusiva (ou simplesmente disjunção) enquanto que em Q temos a disjunção exclusiva.

Condicional (\rightarrow) : Dadas as proposições $P \in Q$, a condicional é representada por $P \rightarrow Q$ cuja tabela verdade fica:

P	Q	$P \rightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

Exemplo:

1. P: O mês de maio têm 31 dias $P \rightarrow Q$: Se o mês de maio têm 31 dias, então a

Q: A Terra é plana terra é plana

2. R: Dante escreveu os lusíadas $R \rightarrow S$: Se Dante escreveu os lusíadas, então

S: Cantor criou a teoria dos Cantor criou a teoria dos conjuntos.

Conjuntos

OBS: Uma condicional $P \rightarrow Q$ <u>não afirma</u> que o consequente Q se <u>deduz</u> ou é consequência do antecedente P. O que o condicional afirma é <u>uma relação entre os valores lógicos</u> de P e Q de acordo com a tabela verdade.

Bicondicional (\leftrightarrow) : Dadas as proposições $P \in Q$, o bicondicional é representado por $P \leftrightarrow Q$ cuja tabela verdade fica:

P	Q	$P \leftrightarrow Q$
V	V	V
V	F	F
F	V	F
F	F	V

O bicondicional também pode ser lido da seguinte maneira:

- i) P é condição necessária e suficiente para Q, e
- ii) Q é condição necessária e suficiente para P

Exemplo:

1. P: Lisboa é a capital de Portugal P↔Q: Lisboa é a capital de Portugal se e

Q:
$$tg\frac{\pi}{4} = 3$$

somente se
$$tg\frac{\pi}{4} = 3$$

- 2. R: A terra é plana
- $R \leftrightarrow S$: A terra é plana se e somente se $\sqrt{2}$ é um
- S: $\sqrt{2}$ é um número racional

número racional

6 – Exercícios:

1. Sejam as proposições,

P: Está frio

Q: Está chovendo

Traduzir para a linguagem corrente as seguintes proposições.

- (a) ~ **P** Não está frio.
- (b) $P \wedge Q$ Está frio e está chovendo.

Está frio e chovendo.

- (c) $P \vee Q$
- Está frio ou está chovendo.

Está frio ou chovendo.

- (d) $\mathbf{Q} \leftrightarrow \mathbf{P}$
- Está chovendo se e somente se está frio.
- 2. Determinar o valor lógico de cada uma das seguintes proposições:

(a)
$$3+2=7$$
 e $5+5=10$

Resp: F

(b)
$$1 > 0 \land 2 + 2 = 4$$

Resp: V

Resp: V

(d)
$$5^2 = 10 \lor \pi$$
 é racional

Resp: F

(e) Se
$$3+2=6$$
 então $4+4=9$

Resp: V

Unidade 1 - Sentenças e Representação simbólica

(f)
$$\sqrt{3} > \sqrt{2} \to 2^0 = 2$$
 Resp: F

(g)
$$tg\pi = 1$$
 se e somente se $sen\pi = 0$ Resp: F

(h)
$$\sqrt{-1} = -1 \leftrightarrow \sqrt{-2} = -2$$
 Resp: V

(j)
$$2+2=4 \rightarrow (3+3=7 \leftrightarrow 1+1=4)$$
 Resp: V

(k)
$$\sim$$
 (sen0 = 0 ou cos 0 = 1) Resp: F

(1)
$$\sim (2^3 \neq 8 \text{ e } 4^2 \neq 4^3)$$
 Resp: F

3. Determinar V(p) em cada um dos seguintes casos:

(a)
$$V(q) = F$$
 e $V(p \land q) = F$ Resp. $V(p) = V$ ou $V(p) = F$

(b)
$$V(q) = F$$
 e $V(p \lor q) = F$ Resp: $V(p) = F$

4. Determinar V(p) e V(q) em cada um dos seguintes casos:

(a)
$$V(p \rightarrow q) = V$$
 e $V(p \land q) = F$ Resp: $V(p) = F$ e $V(q) = V$

(b)
$$V(p \leftrightarrow q) = V$$
 e $V(p \land q) = V$ Resp: $V(p) = V$ e $V(q) = V$

7 – Tabela Verdade de Uma Proposição Composta:

Com as proposições simples do tipo p, q, r, s, ... e fazendo uso dos conectivos \sim , \wedge , \vee , \rightarrow , \leftrightarrow é possível construir proposições compostas tais como:

$$P(p, q) = \sim (p \wedge \sim q)$$

onde, com o emprego da tabela verdade é possível verificar todas as possibilidades de V e F.

Exemplo:

1. Construir a TV das proposições seguintes.

a)
$$P(p, q) = \sim (p \wedge \sim q)$$

p	\boldsymbol{q}	~q	$P \wedge \sim q$	~ (p^ ~ q)
V	V	F	F	V
V	F	V	V	F
F	V	F	F	V
F	F	V	F	V

b)
$$P(p, q, r) = p \lor \sim r \rightarrow (q \land \sim r)$$

p	q	r	~r	$p \vee \sim r$	<i>q</i> ∧~ <i>r</i>	$p \lor \sim r \to q \land \sim r$
V	V	V	F	V	F	F
V	V	F	V	V	V	V
V	F	V	F	V	F	F
V	F	F	V	V	F	F
F	V	V	F	F	F	V
F	V	F	V	V	V	V
F	F	V	F	F	F	V
F	F	F	V	V	F	F

8 – Valor Lógico de Uma Proposição Composta:

Dada uma proposição P(p, q, r, s,...) pode-se determinar seu valor lógico conhecendo, a priori, os valores lógicos de p, q, r, s, ...

Exemplo:

1. Sabendo que $V(p) = V \in V(q) = F$, determinar V(P), onde

$$P(p,q) = \sim (p \vee q) \leftrightarrow (\sim p \land \sim q)$$

Resolução:

Mediante os valores lógicos de **p** e **q** pode-se obter:

$$V(P) = \sim (V \vee F) \leftrightarrow (\sim V \wedge \sim F) = \sim (V) \leftrightarrow (F \wedge V) = F \leftrightarrow F = V$$

2. Sejam as proposições $p: \pi = 3$ e $q: sen \frac{\pi}{2} = 0$. Determine o valor lógico da proposição: $P(p,q) = (p \to q) \to (p \to p \land q)$.

Resolução:

 $\overline{Como} \ \overline{V(P)} = F \ e \ V(q) = F \ então \ têm-se$:

$$V(P) = (F \rightarrow F) \rightarrow (F \rightarrow F \land F) = V \rightarrow (F \rightarrow F) = V \rightarrow V = V$$

9 – Precedência e Eliminação de Parêntesis:

O uso de parêntesis se faz necessário para evitar qualquer ambiguidade, assim, por exemplo, a proposição $p \land q \lor r$ pode ser escrita como:

1)
$$(p \wedge q) \vee r$$

2)
$$p \land (q \lor r)$$

que não têm o mesmo significado (basta construir a TV de ambas).

A ordem de precedência para os conectivos é

1°) ~, o mais fraco

2°) ^ **e** ∨

3°) →

 4°) \leftrightarrow , o mais forte,

portanto se tivéssemos a proposição $p \rightarrow q \leftrightarrow s \land r$, concluiríamos que ela é bicondicional. Para convertê-la numa condicional ou numa conjuntiva deve-se escrevê-las respectivamente nas formas:

$$p \to (q \leftrightarrow s \land r)$$
$$(p \to q \leftrightarrow s) \land r.$$

Pode-se fazer a eliminação de parêntesis quando um mesmo conectivo aparece sucessivamente repetido, fazendo associação a partir da esquerda, por exemplo,

10 – Exercícios:

1. Sejam as proposições,

P: Está frio

Q: Está chovendo

Traduzir para a linguagem corrente as seguintes proposições.

(a) $P \rightarrow \sim Q$ Se está frio, então não está chovendo.

(b) $P \lor \sim Q$ Está frio ou não está chovendo.

(c) $\sim P \wedge \sim Q$ Não está frio e não está chovendo.

(d) $P \leftrightarrow \sim Q$ Está frio se e somente se não está chovendo.

(e) $P \land \sim Q \rightarrow P$ Se está frio e não está chovendo, então está frio.

2. Sejam as proposições,

P: João é gaúcho

Q: Jaime é paulista

Traduzir para a linguagem corrente as seguintes proposições.

Unidade 1 – Sentenças e Representação simbólica

(a) ~ (P∧ ~ Q) Não é verdade que João é gaúcho e Jaime não é paulista.

(b) **~~ P** Não é verdade que João não é gaúcho.

(c) ~ (~ Pv ~ Q) Não é verdade que João não é gaúcho ou que Jaime não é paulista.

(d) **P** → ~ **Q** Se João é gaúcho, então Jaime não é paulista.

(e) ~ **P** ↔ ~ **Q** João não é gaúcho se e somente se Jaime não é paulista.

(f) $\sim (\sim Q \rightarrow P)$ Não é verdade que, se Jaime não é paulista, então João é gaúcho.

3. Sejam as proposições,

P: Marcos é alto

Q: Marcos é elegante

Traduzir para a linguagem simbólica as seguintes proposições.

(a) Marcos é alto e elegante. $P \wedge Q$

(b) Marcos é alto, mas não é elegante. $P \land \sim Q$

(c) Não é verdade que marcos é baixo ou elegante. $\sim (\sim P \lor Q)$

(d) Marcos não é nem alto e nem elegante. $\sim P_{\land} \sim Q$

(e) Marcos é alto ou é baixo e elegante. $P \lor (\sim P \land Q)$

(f) É falso que Marcos é baixo ou que não é elegante. ~ (~ P∨ ~ Q)

4. Construir a T.V. das seguintes proposições:

- (a) $P \land \sim Q \rightarrow P$
- (b) ~ **P** ↔~ **Q**
- (c) ~ (~ P ∨ ~ Q)

11 – Lista de Exercícios. 1

1. Sejam as proposições,

P: Suely é rica

Q: Suely é feliz

Traduzir para a linguagem simbólica as seguintes proposições.

(a) Suely é pobre e infeliz. Resp: $\sim P_{\land} \sim Q$

(b) Suely é pobre ou rica, mas é infeliz. Resp: $(\sim P \lor P) \land \sim Q$

2. Traduzir para a linguagem simbólica as seguintes proposições matemáticas.

(a)
$$(x + y = 0 \ e \ z > 0)$$
 ou $z = 0$ Resp: $(x + y = 0 \ \land \ z > 0) \lor z = 0$

(b)
$$x = 0$$
 e $(y + z > x$ ou $z = 0)$ Resp. $x = 0 \land (y + z > x \lor z = 0)$

(c)
$$x \neq 0$$
 ou $(x = 0 \text{ e } y < 0)$ Resp: $x \neq 0 \lor (x = 0 \land y < 0)$

(d)
$$(x = y \in z = t)$$
 ou $(x < y \in z = 0)$ Resp: $(x = y \land z = t) \lor (x < y \land z = 0)$

(e) Se
$$x > 0$$
 então $y = 2$ Resp: $x > 0 \rightarrow y = 2$

(f) Se
$$x + y = 2$$
 então $z > 0$ Resp: $x + y = 2 \rightarrow z > 0$

3. Determinar o valor lógico (V ou F) da proposição $\boldsymbol{p} \leftrightarrow \boldsymbol{q} \wedge \sim \boldsymbol{r}$, sabendo que $\boldsymbol{V}(\boldsymbol{p}) = \boldsymbol{V}(\boldsymbol{r}) = \boldsymbol{V}$.

Resolução:

Em termos de valor lógico temos que: Se V(q) = V, então $V(p \leftrightarrow q \land r) = V \leftrightarrow V \land r = V \leftrightarrow V \land F = V \leftrightarrow F = F$. Mas, se V(q) = F, então $V(p \leftrightarrow q \land r) = V \leftrightarrow F \land r = V \leftrightarrow F \land F = V \leftrightarrow F = F$. Portanto, independentemente do valor lógico de q a proposição será sempre falsa.

4. Suprimir o maior número possível de parêntesis na proposição $((q \leftrightarrow (r \lor q)) \leftrightarrow (p \land (\sim (\sim q))))$.

Resolução:

$$((q \leftrightarrow (r \lor q)) \leftrightarrow (p \land (\sim (\sim q)))) \qquad (q \leftrightarrow (r \lor q)) \leftrightarrow (p \land (\sim (\sim q))))$$
$$(q \leftrightarrow r \lor q) \leftrightarrow (p \land \sim q)$$

Unidade 1 - Sentenças e Representação simbólica

5. Determinar o valor lógico (V ou F) das seguintes proposições:

a)
$$p \land q \rightarrow p \lor r$$
, sabendo que $V(p) = V(r) = V$. Resp: Verdadeira

b)
$$(p \rightarrow \sim q) \land (\sim p \lor r)$$
, sabendo que $V(q) = F e V(r) = V$. Resp: Verdadeira

6. Suprimir o maior número possível de parêntesis nas proposições:

a)
$$((p \land (\sim q))) \leftrightarrow (q \leftrightarrow (r \lor q)))$$
 Resp: $p \land \sim q \leftrightarrow (q \leftrightarrow r \lor q)$

b)
$$(((p \lor q) \to (\sim r)) \lor ((((\sim q) \land r) \land q)))$$
 Resp: $(p \lor q \to \sim r) \lor (\sim q \land r \land q)$

7. Sabendo que as proposições " $\mathbf{x} = \mathbf{0}$ " e " $\mathbf{x} = \mathbf{y}$ " são verdadeiras e que as proposições " $\mathbf{y} = \mathbf{z}$ " e " $\mathbf{y} = \mathbf{t}$ " são falsas, determinar o valor lógico de cada uma das seguintes proposições:

a)
$$x = 0 \land x = y \rightarrow y \neq z$$
 Resp: Verdadeira

b)
$$x \neq y \lor y \neq z \rightarrow y = t$$
 Resp: Falsa

8. Sabendo que os valores lógicos das proposições p e q são respectivamente F e V, determinar o valor lógico da proposição $(p \land (\sim q \rightarrow p)) \land \sim ((p \leftrightarrow \sim q) \rightarrow q \lor \sim p)$. Resp: falsa

12 - Tautologia, Contradição e Contingência:

Tautologia é toda proposição composta que é verdadeira independentemente dos valores verdade das proposições simples que há compõem.

Exemplo:

1. Construir a TV das seguintes proposições:

a)
$$\sim (p \wedge \sim p)$$

p	~p	<i>p</i> ∧ ~ <i>p</i>	~ (p∧ ~ p)
V	F	F	V
F	V	F	V
		tautologia	

b)
$$p \lor (q \land \sim q) \leftrightarrow p$$

P	\boldsymbol{q}	~q	$q \wedge \sim q$	$p \lor (q \land \sim q)$	$p \lor (q \land \sim q) \leftrightarrow p$
V	V	F	F	V	V
V	F	V	F	V	V
F	V	F	F	F	V
F	F	V	F	F	V
					† tautologia

Observação: Se P(p, q, r, ...) é uma tautologia, então $P(P_0, Q_0, R_0, ...)$ também é tautologia, quaisquer que sejam as proposições P_0, Q_0, R_0 .

Contradição é toda proposição cujo valor lógico não é tautológico, ou seja, a última coluna é sempre falsa.

Exemple

1. Construir a TV das seguintes proposições:

b)
$$\sim p \wedge (p \wedge \sim q)$$

p	\boldsymbol{q}	~q	<i>p</i> ∧ ~ <i>q</i>	~ p	$\sim p \wedge (p \wedge \sim q)$
V	V	F	F	F	F
V	F	V	V	F	F
F	V	F	F	V	F
F	F	V	F	V	F
	_	_		_	<u></u>

T contradição

Observação: Se P(p,q,r,...) é uma contradição, então $P(P_0,Q_0,R_0,...)$ também é contradição, quaisquer que sejam as proposições P_0,Q_0,R_0 .

Contingência é toda proposição composta que não é tautológica nem contradição.

Exemplo:

3. Construir a TV da seguinte proposição:

$$x = 3 \land (x \neq y \rightarrow x \neq 3)$$

<i>x</i> = 3	<i>x</i> ≠ <i>y</i>	<i>x</i> ≠ 3	$x \neq y \rightarrow x \neq 3$	$x = 3 \land (x \neq y \rightarrow x \neq 3)$
V	V	F	F	F
V	F	F	V	V
F	V	V	V	F
F	F	V	V	F
		•		

T contingência

13 - Exercício:

1. Determinar quais das seguintes proposições são tautológicas, contraditórias, ou contingentes:

a)
$$p \rightarrow (\sim p \rightarrow q)$$

b)
$$\sim p \vee q \rightarrow (p \rightarrow q)$$

c)
$$p \rightarrow (q \rightarrow (q \rightarrow p))$$

d)
$$((p \rightarrow q) \leftrightarrow q) \rightarrow p$$

e)
$$p \lor \sim q \rightarrow (p \rightarrow \sim q)$$

f)
$$\sim p \vee \sim q \rightarrow (p \rightarrow q)$$

g)
$$p \rightarrow (p \lor q) \lor r$$

h)
$$p \land q \rightarrow (p \leftrightarrow q \lor r)$$

Resp: (a), (b), (c), (g), (h) tautológicas

(d), (e), (f) contingências

14 – Implicação lógica:

A palavra "<u>implicar</u>" significa: Originar, produzir como conseqüência, ser causa de: ...uma filosofia definitiva, ...implicaria a imobilidade do pensamento humano (Antero de Quental).

[DICMAXI Michaelis Português - Moderno Dicionário da Língua Portuguesa]

(Teorema): $P(p, q, r, ...) \Rightarrow Q(p, q, r, ...)$ se e somente se a condicional, $P(p, q, r, ...) \rightarrow Q(p, q, r, ...)$ é tautológica.

Aqui, deve-se reforçar que: os símbolos \rightarrow e \Rightarrow são distintos pois,

- O condicional é o resultado de uma **operação lógica**. Por exemplo, se considerarmos as proposições p e q, pode-se obter uma nova proposição expressa por $p \rightarrow q$.
- Já a implicação, estabelece uma relação. Por exemplo, que a condicional p→q
 é tautologia.

Exemplo:

1. Demonstre, mediante o teorema acima descrito, que $p \land \sim p \Rightarrow q$.

Resolução:

Para provarmos que $\mathbf{p} \land \mathbf{r} \Rightarrow \mathbf{q}$ deve-se mostrar que $\mathbf{p} \land \mathbf{r} \Rightarrow \mathbf{q}$ é tautológica, ou seja; da $T. V. t\hat{e}m$ -se:

р	q	~ p	<i>p</i> ∧ ~ <i>p</i>	$p \land \sim p \rightarrow q$
V	V	F	F	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V
				<u>†</u>

tautologia

assim pelo teorema têm-se que $p \land \sim p \Rightarrow q$.

2. Considere a proposição $(x = y \lor x < 4) \land x \nmid 4$, o que se poderia concluir a respeito de $x \in y$?

<u>Resolução:</u>

x = y	<i>x</i> < 4	$x = y \lor x < 4$	x ∢ 4	$(x = y \lor x < 4) \land x \triangleleft 4$
V	V	V	F	F
V	F	V	V	V
F	V	V	F	F
F	F	F	V	F

Mediante a T. V. pode-se dizer que

$$(x = y \lor x < 4) \land x \nmid 4 \Rightarrow x = y$$
$$(x = y \lor x < 4) \land x \nmid 4 \Rightarrow x \nmid y$$

15 – Equivalência Lógica

A palavra "<u>equivalência</u>" significa: Igualdade de valor, estimação entre duas coisas; correspondência. [DICMAXI Michaelis Português - Moderno Dicionário da Língua Portuguesa]

(Teorema): $P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...)$ se e somente se a bicondicional, $P(p, q, r, ...) \leftrightarrow Q(p, q, r, ...)$ é tautológica.

È importante lembrar que os símbolos ↔ e ⇔ são distintos pois,

• O bicondicional é o resultado de uma **operação lógica**, enquanto que a equivalência estabelece uma **relação**. Por exemplo, que a condicional $p \leftrightarrow q$ é tautologia.

Exemplo:

1. Demonstre, mediante o teorema acima descrito, que a proposição bicondicional $(\mathbf{p} \land \mathbf{q} \to \mathbf{c}) \leftrightarrow (\mathbf{p} \to \mathbf{q})$ é uma equivalência; onde $V(\mathbf{c}) = \mathbf{F}$.

Resolução:

Para provarmos que $(p \land \neg q \to c) \leftrightarrow (p \to q)$ representa $(p \land \neg q \to c) \Leftrightarrow (p \to q)$ deve-se mostrar que $(p \land \neg q \to c) \leftrightarrow (p \to q)$ é tautológica, ou seja; da T. V. têm-se:

р	q	c	~ q	<i>p</i> ∧ ~ <i>q</i>	$p \land \sim q \rightarrow c$	$p \rightarrow q$	$(p \land \sim q \to c) \leftrightarrow (p \to q)$
V	V	F	F	F	V	V	V
V	F	F	V	V	F	F	V
F	V	F	F	F	V	V	V
F	F	F	V	F	V	V	V

assim pelo teorema têm-se que $(p \land \neg q \to c) \Leftrightarrow (p \to q)$.

tautologia

2. Considerando as seguintes proposições verifique a equivalência mediante a T. V:

Resolução: A T. V. para a proposição é dada como:

р	~ p	~~ p				
V	F	V				
F	V	F				
1	idênticas					

b)
$$\sim p \rightarrow p \Leftrightarrow p$$

Resolução: A T. V. para a proposição é dada como:

c)
$$p \rightarrow q \Leftrightarrow \sim p \lor q$$

Resolução: A T. V. para a proposição é dada como:

р	q	~ p	~ p ∨ q	$p \rightarrow q$
V	V	F	V	V
V	F	F	F	F
F	V	V	V	V
F	F	V	V	V
			idêr	nticas

OBS: Esta equivalência é de grande importância, pois aqui a condicional pode ser trocada por uma disjunção !

d)
$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$$

Resolução: A T. V. para a proposição é dada como:

р	q	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \land (q \to p)$	$p \leftrightarrow q$
V	V	V	V	V	V
V	F	F	V	F	F
F	V	V	F	F	F
F	F	V	V	V	V
				idêntic	-as 1

OBS: Esta equivalência também é de grande importância, pois aqui a bicondicional pode ser trocada por uma conjunção!

16 – Exercícios

1. Mostre que as equivalências são verdadeiras

a)
$$(p \land q \rightarrow r) \Leftrightarrow (p \rightarrow (q \rightarrow r))$$
 é verdadeira.

Resolução:

р	q	r	p∧q	$p \land q \rightarrow r$	$q \rightarrow r$	$p \rightarrow (q \rightarrow r)$	$(p \land q \to r) \leftrightarrow (p \to (q \to r))$	
V	V	V	V	V	V	V	V	
V	V	F	V	F	F	F	V	
V	F	V	F	V	V	V	V	
V	F	F	F	V	V	V	V	
F	V	V	F	V	V	V	V	
F	V	F	F	V	F	V	V	
F	F	V	F	V	V	V	V	
F	F	F	F	V	V	V	V	
	† tautologia							

b)
$$p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\sim p \land \sim q)$$

Resolução: A T. V. para a proposição é dada como:

р	q	$p \leftrightarrow q$	p ^ q	~ p	~ q	~ <i>p</i> ∧ ~ <i>q</i>	$(p \land q) \lor (\sim p \land \sim q)$
V	V	V	V	F	F	F	V
V	F	F	F	F	V	F	F
F	V	F	F	V	F	F	F
F	F	V	F	V	V	V	V
idênticas							<u> </u>

OBS: Esta equivalência é importante, pois a bicondicional pode ser trocada por uma disjunção!

17 – Lista de Exercícios. 2

- 1. Sejam as proposições P: Carlos fala Francês, Q: Carlos fala Inglês, R: Carlos fala Alemão. Traduzir para a linguagem simbólica as seguintes proposições:
 - a) Carlos fala Francês ou Inglês, mas não fala Alemão.
 - b) Carlos fala Francês e Inglês, ou não fala Francês e Alemão.
 - c) É falso que Carlos fala Francês mas que não fala Alemão.
 - d) É falso que Carlos fala Inglês ou Alemão mas que não fala Francês.
 - 2. Traduzir para a linguagem simbólica as seguintes proposições matemáticas.
 - a) Se x = 1 ou z = 2 então y > 1.
 - b) Se Z > 5 então $x \ne 1$ e $x \ne 2$.
 - c) Se $x \neq y$ então x + z > 5 e y + z < 5.
 - 3. Determinar o valor lógico de cada uma das seguintes proposições:
 - a) 2+7=9 e 4+8=12
 - b) $0 > 1 \land \sqrt{3}$ é irracional
 - c) $2 = 2 \vee \operatorname{sen} \frac{\pi}{2} \neq \operatorname{tg} \frac{\pi}{4}$
 - d) Se |-1| = 0 então sen $\frac{\pi}{6} = \frac{1}{2}$
 - e) $tg\frac{\pi}{3} = \sqrt{3} \to 2 = 2$
 - f) $1 > sen \frac{\pi}{2} \leftrightarrow cos \frac{\pi}{4} < 1$
 - 4. Determinar V(p) em cada um dos seguintes casos:
 - a) V(q) = F e $V(p \rightarrow q) = V$
- b) V(q) = V e $V(p \leftrightarrow q) = F$
- 5. Determinar V(p) e V(q) em cada um dos seguintes casos:
- (a) $V(p \rightarrow q) = V$ e $V(p \lor q) = F$ (b) $V(p \leftrightarrow q) = F$ e $V(\sim p \lor q) = V$

Unidade 1 – Sentenças e Representação simbólica

6. Construir as tabelas verdade das seguintes proposições:

a)
$$\sim (p \rightarrow \sim q)$$

b)
$$(p \leftrightarrow \sim q) \leftrightarrow q \rightarrow p$$

c)
$$q \leftrightarrow \sim q \land p$$

d)
$$p \rightarrow r \leftrightarrow q \lor \sim r$$

7. Sejam as proposições $P: tg(\pi - x) = ctg(x)$ e $Q: \pi < 2$. Determinar o valor lógico de cada uma das seguintes proposições:

a)
$$\sim (p \wedge q) \leftrightarrow \sim p \vee \sim q$$

b)
$$(p \lor (\sim p \lor q)) \lor (\sim p \land \sim q)$$

8. Sabendo que a condicional $p \to q$ é verdadeira, determinar o valor lógico da condicional $p \land r \to q \to r$.

9. Mostrar que:

a)
$$q \Rightarrow p \rightarrow q$$
 b) $q \Rightarrow p \land q \leftrightarrow p$ c) $(x \neq 0 \rightarrow x = y) \land x \neq y \Rightarrow x = 0$

- 10. Mostre que $p \leftrightarrow \sim q$ não implica $p \rightarrow q$.
- 11. Mostre que as proposições p e q são equivalentes em cada um dos seguintes casos:

a)
$$p:1+3=4;$$
 $q:(1+3)^2=16$

b)
$$p : sen0 = 1;$$
 $cos0 = 0$

c)
$$p: x = y;$$
 $q: x + z = y + z (x, y, z \in R)$

d)
$$p:a\perp b;$$
 $q:b\perp a$

e)
$$p: O$$
 triângulo ABC é retângulo em A; $q: a^2 = b^2 + c^2$

12. Demonstre por tabela verdade as seguintes equivalências:

a)
$$p \land (p \lor q) \Leftrightarrow p$$

b)
$$(p \rightarrow q) \rightarrow r \Leftrightarrow p \land \sim r \rightarrow \sim q$$

c)
$$(p \rightarrow q) \lor (p \rightarrow r) \Leftrightarrow p \rightarrow q \lor r$$

1 – Introdução:

A álgebra das proposições constitui-se numa ferramenta matemática de grande importância, pois através dela pode-se operar sobre proposições utilizando-se de equivalências "notáveis".

Uma de suas aplicações consiste no fato da simplificação de trechos de códigos computacionais, pois quanto mais simples o código mais simples será de ser entendido e poderá ser executado com maior rapidez.

2 - Propriedades da Conjunção:

Considerando as proposições p, q e r; e sejam as proposições t e c tal que V(t) = V e V(c) = F. Assim são válidas as seguintes propriedades:

a) INDEPOTENTE: $p \land p \Leftrightarrow p$

Ex.:
$$x \neq 1 \land x \neq 1 \Leftrightarrow x \neq 1$$

Obs.: Dizer por exemplo, que é válida a propriedade **indepotente** é o mesmo que verificar o teorema relativo à equivalência (página 19), ou seja:

р	$p \wedge p$	$p \land p \leftrightarrow p$	
V	V	V	
F	F	V	

como $p \land p \leftrightarrow p$ é tautológica, então pelo teorema da equivalência temos que $p \land p \Leftrightarrow p$.

Daqui por diante, para as próximas propriedades, as equivalências descritas são válidas, uma vez que sua validade pode ser aferida segundo o mesmo raciocínio descrito para a propriedade indepotente.

b) COMUTATIVA: $p \land q \Leftrightarrow q \land p$

Ex.:
$$\pi > 3 \land \pi < 4 \Leftrightarrow \pi < 4 \land \pi > 3$$

c) ASSOCIATIVA: $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

Ex.:
$$(x \neq 0 \land x > 1) \land x < 3 \Leftrightarrow x \neq 0 \land (x > 1 \land x < 3)$$

d) IDENTIDADE: $p \land t \Leftrightarrow p \in p \land c \Leftrightarrow c$ Elemento neutro

Elemento absorvente

Ex.: $x \neq 1 \land |x| \ge 0 \Leftrightarrow x \neq 1$ e $x \neq 1 \land |x| < 0 \Leftrightarrow |x| < 0$

3 – Propriedades da Disjunção:

Considerando novamente as proposições p, q e r; e ainda t e c onde V(t) = V e V(c) = F, então são válidas as seguintes propriedades:

a) INDEPOTENTE: $p \lor p \Leftrightarrow p$

Ex.: $x \le 1 \lor x \le 1 \Leftrightarrow x \le 1$

b) COMUTATIVA: $p \lor q \Leftrightarrow q \lor p$

Ex.: $a > b \lor b < c \Leftrightarrow b < c \lor a > b$

c) ASSOCIATIVA: $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$

Ex.: $(x \ne 1 \lor x \ge 2) \lor x < 4 \Leftrightarrow x \ne 1 \lor (x \ge 2 \lor x < 4)$

d) IDENTIDADE: $p \lor t \Leftrightarrow t \in p \lor c \Leftrightarrow p$

Elemento absorvente

Ex.: $x \neq 1 \lor |x| \ge 0 \Leftrightarrow |x| \ge 0$ e $x \neq 0 \lor x^2 < 0 \Leftrightarrow x \neq 0$

4 – Propriedades da Conjunção e Disjunção:

Sejam as proposições p, q e r; então têm-se que:

a) DISTRIBUTIVAS:

(i)
$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

(i)
$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$
 (ii) $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$

b) ABSORÇÃO:

(i)
$$p \land (p \lor q) \Leftrightarrow p$$

(ii)
$$p \lor (p \land q) \Leftrightarrow p$$

c) REGRAS DE **DE MORGAN** (1806-1871):

(i)
$$\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$$

(ii)
$$\sim (p \lor q) \Leftrightarrow \sim p \land \sim q$$

5 – Negação da Condicional e da Bicondicional:

Dadas as proposições p, q têm-se que a negação da condicional é:

$$\sim (p \rightarrow q) \Leftrightarrow p \land \sim q$$

e a negação da bicondicional será;

$$\sim (p \leftrightarrow q) \Leftrightarrow (p \land \sim q) \lor (\sim p \land q).$$

6 – Exercícios:

1. Dar a negação em linguagem corrente da proposição:

"Rosas são vermelhas e violetas são azuis".

Resolução:

Denotando p: rosas são vermelhas e q: violetas são azuis, então teremos que a prop. Composta é:

$$P = p \wedge q$$

logo a negação de P será:

$$\sim P = (\sim p \land q) = \sim p \lor \sim q$$

Portanto em linguagem corrente teremos

"Rosas não são vermelhas ou violetas não são azuis"

2. Demonstrar as seguintes regras de **DE MORGAN** para três proposições:

a)
$$\sim (p \wedge q \wedge r) \Leftrightarrow \sim p \vee \sim q \vee \sim r$$
 b) $\sim (p \vee q \vee r) \Leftrightarrow \sim p \wedge \sim q \wedge \sim r$

3. Simplifique a expressão condicional, abaixo, de um trecho de programa pascal, após reescreva o comando.

IF (FLUXOEXT>FLUXOINT) AND NOT ((FLUXOEXT>FLUXOINT) AND (PRESSÃO<1000)) THEN COMANDO 1

ELSE

COMANDO 2.

Resolução:

Denotando a: fluxoext > fluxoint; b: pressão < 1000, então teremos que a expressão condicional será dada por

$$E = a \wedge \sim (a \wedge b)$$

que pode ser simplificada conforme:

$$E = a \land \neg (a \land b) = a \land (\neg a \lor \neg b) = (a \land \neg a) \lor (a \land \neg b) = F \lor (a \land \neg b) = (a \land \neg b)$$

portanto teremos que

$$E = (a \land \sim b)$$

que é equivalente a expressão original.

4. Considere o seguinte fragmento de um programa pascal:

Os valores de entrada para a são 1.0, 5.1, 2.4, 7.2 e 5.3. Quais são os valores de saída?

Resolução:

Saídas:

5. Reescreva o programa pascal a seguir com uma expressão condicional simplificada:

6. (a) Verifique que $\mathbf{A} \rightarrow \mathbf{B}$ é equivalente a $\mathbf{A'} \vee \mathbf{B}$. (b) usando a parte (a) e outras equivalências, escreva a negação da sentença "Se Pedro passar em seu curso de física, então ele se formará."

7 – Regras de inferência para a lógica Proposicional:

Dadas as proposições $P_1, P_2, P_3, ..., P_n$ e Q (proposições quaisquer), denomina-se "**argumento**", a toda afirmação de que; dada a sequência

$$P_1, P_2, P_3, ..., P_n$$

têm-se como consequência uma proposição final Q.

As proposições $P_1, P_2, P_3, ..., P_n$ são denominadas premissas do argumento e Q é denominada conclusão do argumento. Em geral indica-se um argumento como:

$$P_1, P_2, P_3, ..., P_n \mid -Q$$

ou na forma mais usual

 P_1 P_2 P_3 M P_n Q

e este é válido se e somente se a conclusão Q é verdadeira toda vez que as premissas $P_1, P_2, P_3, ..., P_n$ são verdadeiras, logo dizemos que a verdade das premissas é incompatível com a falsidade da conclusão.

OBSERVAÇÃO: As premissas são verdadeiras ou admitidas como tal, a lógica só se preocupa com a validade dos argumentos e não com a verdade ou falsidade das premissas e das conclusões. A validade de um argumento depende exclusivamente da relação existente entre as premissas e a conclusão. Portanto dizer que um argumento é válido significa afirmar que as premissas estão relacionadas de tal modo com a conclusão que não é possível ter a conclusão falsa se as premissas são verdadeiras.

<u>Teorema:</u> Um argumento $P_1, P_2, P_3, ..., P_n \mid Q$ é válido se e somente se a condicional $P_1, P_2, P_3, ..., P_n \rightarrow Q$ é tautológica.

Para demonstrar o argumento $P_1, P_2, P_3, ..., P_n \mid Q$, pode-se fazer uso da T. V. e do teorema anterior. Se tivéssemos cinco proposições simples compondo um argumento, necessitaríamos construir uma T. V. de $2^5 = 32$ linhas, tarefa esta muito trabalhosa, porém correta. Para contornar este tipo de problema, faz-se a validação de uma argumentação através das regras de inferência, minimizando assim o trabalho a ser desenvolvido.

Uma outra consideração a ser comentada é: Considerando o argumento

$$\begin{array}{c|c}
P_1 & P_2 & P_3 \\
p \land \neg q, p \to \neg r, q \lor \neg s \mid --- \neg (r \lor s)
\end{array}$$

chamamos de condicional associada a forma $(p \land \neg q) \land (p \to \neg r) \land (q \lor \neg s) \to \neg (r \lor s)$.

Por outro lado, se considerarmos a condicional associada

$$(p \rightarrow q \lor r) \land (\sim s) \land (q \lor r \rightarrow s) \rightarrow (s \rightarrow p \land \sim q)$$

o argumento correspondente a esta condicional será

$$p \rightarrow q \lor r, \sim s, q \lor r \rightarrow s \mid ---- s \rightarrow p \land \sim q$$

que também pode ser expressado sob a forma

$$p \to q \lor r$$

$$\sim s$$

$$q \lor r \to s$$

$$s \to p \land \sim q$$

8 – Argumentos válidos Fundamentais:

Os argumentos válidos fundamentais são utilizados para executar passo a passo uma dedução ou demonstração de um outro argumento mais complexo. Os argumentos fundamentais são:

1) Adição (AD)

i)
$$\frac{p}{p \vee q}$$

i)
$$\frac{p}{p \vee q}$$
 ii) $\frac{p}{q \vee p}$

2) Simplificação (SIMP)

i)
$$\frac{p \wedge q}{p}$$

i)
$$\frac{p \wedge q}{p}$$
 ii) $\frac{p \wedge q}{q}$

3) Conjunção (CONJ)

i)
$$\frac{\rho}{p \wedge q}$$

i)
$$\frac{q}{p \wedge q}$$
 ii) $\frac{q}{q \wedge p}$

4) Absorção (ABS)

$$\frac{p \to q}{p \to (p \land q)}$$

5) Modus Ponens (MP)

$$\frac{p \to q}{q}$$

6) Modus Tollens (MT)

$$\frac{p \to q}{\sim q}$$

7) Silogismo Disjuntivo (SJ)

$$p \lor q$$
 $p \lor q$ ii) $\frac{p \lor q}{p}$

8) Silogismo Hipotético (SH)

$$\begin{array}{c}
p \to q \\
q \to r \\
p \to r
\end{array}$$

9) Dilema Construtivo (DC)

$$p \to q$$

$$r \to s$$

$$\frac{p \lor r}{q \lor s}$$

10) Dilema Destrutivo

$$p \to q$$

$$r \to s$$

$$\frac{\sim q \lor \sim s}{\sim p \lor \sim r}$$

A validade dos 10 argumentos pode ser facilmente verifica mediante o teorema anterior, por exemplo, a seguir é verificada a validade do argumento Silogismo Hipotético

р	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$	$p \rightarrow q \land q \rightarrow r$	$(p \to q \land q \to r) \to (p \to r)$
V	V	V	V	V	V	V	V
V	V	F	V	F	F	F	V
V	F	V	F	V	V	F	V
V	F	F	F	V	F	F	V
F	V	V	V	V	V	V	V
F	V	F	V	F	V	F	V
F	F	V	V	V	V	V	V
F	F	F	V	V	V	V	V

Com o auxílio das regras de inferência pode-se deduzir outras regras, ou demonstrar a validade de outras regras, por exemplo; o que se pode concluir, abaixo, a partir das premissas dadas ?

$$P_1: p \land q \rightarrow r$$

 $P_2: q \rightarrow r \land s$
 $P_3: \sim r \lor \sim (r \land s)$
 $Q: \sim (p \land q) \lor \sim q$ DD

Exemplo: Verifique a validade do argumento: $p \rightarrow q$, $p \land r \mid ---q$.

$$\begin{array}{ccc}
1 - p \rightarrow q \\
2 - p \wedge r \\
\hline
3 - p & 2, SIM \\
4 - q & 1,2, MP
\end{array}$$

9 – Exercícios de Aprendizagem:

1. Demonstre a validade dos seguintes argumentos:

a)
$$p \wedge q, p \vee r \rightarrow s \mid -p \wedge s$$

b)
$$p \rightarrow (q \rightarrow r)$$
, $p \rightarrow q$, $p \mid -r$

c)
$$e \rightarrow s, \sim t \rightarrow \sim j, e \wedge j \mid -t \vee s \mid$$

d)
$$p \rightarrow q.r, p, t \rightarrow q', t+s \mid --- s$$

2. O argumento abaixo é válido?

3. Prove que o argumento seguinte é válido:

"Admitindo a linguagem assembly.

Se usamos a linguagem asssembly, então o programa será executado mais rapidamente. Se usamos a linguagem asssembly, o programa terá mais linhas de código. Portanto o programa será executado mais rapidamente e terá mais linhas de código"

4. Verifique a validade dos seguintes argumentos:

Se
$$x^{y} = 16$$
 e $y^{x} = 16$, então $x = y$
a) $\frac{x \neq y}{Logo, x^{y} \neq 16 \text{ ou } y^{x} \neq 16}$

Se trabalho não posso estudar.

b) Trabalho ou serei aprovado em lógica. Trabalhei. Por tanto, fui reprovado em lógica.

10 – Lista de Exercícios:

- 1. Usando todas as equivalências já estudadas até o momento e as propriedades da álgebra de proposições simplifique as seguintes proposições:
 - a) $\sim (\sim p \rightarrow \sim q)$, sugestão use a equivalência $\nabla \rightarrow \Sigma \Leftrightarrow \nabla' \vee \Sigma$
 - b) $\sim (p \lor q) \lor (\sim p \land q)$ c) $\sim (p \lor \sim q)$

- d) $\sim (\sim p \land q)$ e) $\sim (\sim p \lor \sim q)$ f) $(p \lor q) \land \sim p$ g) $(p \to q) \land (\sim q)$
 - g) $(p \rightarrow q) \land (\sim p \rightarrow q)$
- h) $p \land (p \rightarrow q) \land (p \rightarrow \sim q)$
- 2. Provar t' dadas as premissas:

1.
$$p \rightarrow s$$

3.
$$s.r \rightarrow t'$$

4.
$$q \rightarrow r$$

2. Prove que os seguintes argumentos são válidos

a)
$$t \rightarrow r, \sim r, t \lor s \mid --- s$$

b)
$$(s.q) \land (t \rightarrow q') \land (t' \rightarrow r) \rightarrow (r+s)$$

3. Provar que x + y = 5 dadas as premissas

1.
$$3x + y = 11 \leftrightarrow 3x = 9$$

2.
$$(3x = 9 \rightarrow 3x + y = 11) \leftrightarrow y = 2$$

3.
$$y \neq 2 \lor x + y = 5$$

Resposta:

1. (a)
$$\sim p \wedge q$$
 (b) $\sim p$ (c) $\sim p \wedge q$ (d) $p \vee q$ (e) $p \wedge q$

(b)
$$\sim \mu$$

(c)
$$\sim p \wedge c$$

(d)
$$p \vee q$$

$$(e) p \wedge q$$

(1)
$$\sim p \wedge q$$

(f)
$$\sim p \wedge q$$
 (g) q (h) F (falsa)

Unidade 3 – Quantificadores, Predicados e validade

1 – Introdução:

Considere a sentença dada por "para todo x, x > 0", admitindo que seja verdadeira sobre inteiros, não é possível expressar a sentença, apenas, através de proposições e ou conectivos lógicos. Pois ela contém dois elementos novos que são: "para todo x" e "x > 0".

O elemento "para todo" é denominado **quantificador** e o elemento x > 0 é denominado **predicado**. O quantificador "para todo" é mais precisamente denominado como **quantificador universal** e simbolizado por " \forall ", este pode ser expresso também como "qualquer que seja" ou "para todo o valor de".

Portanto a sentença "para todo x, x > 0" pode ser simbolizada como $(\forall x)(x > 0)$, já uma expressão genérica, relacionada ao quantificador universal, pode ser simbolicamente escrita na forma $(\forall x)(P(x))$, onde P(x) é um predicado qualquer.

Considere agora a sentença "existe x tal que x > 0", admitindo que seja verdadeira também sobre inteiros, não é possível expressar a sentença, apenas, através de proposições e ou conectivos lógicos, devido ao fato de conter também dois elementos novos; "existe x" e "x > 0". O quantificador "existe" é denominado **quantificador existencial** e simbolizado por " \exists ", este é equivalente também a, "existe um" ou "para pelo menos um" ou ainda "para algum".

Sendo assim, a sentença "existe x, x > 0" pode ser simbolizada sob a forma $(\exists x)(x > 0)$, já uma expressão genérica pode ser expressada por $(\exists x)(P(x))$, onde P(x) é um predicado qualquer.

2 – Quantificadores:

Quantificador Universal:

Seja P(x) uma sentença em um conjunto não vazio A e seja V_P o seu conjunto verdade, onde $V_P = \{x \mid x \in A \land P(x)\}$. Quando $V_P = A$, isto é, todos os elementos do conjunto A satisfazem a sentença P(x), pode-se afirmar que:

 $V_P = A$

Unidade 3 - Quantificadores, Predicados e validade

- para todo elemento x de A, P(x) é verdadeira;
- ou, qualquer que seja o elemento x de A, P(x) é verdadeira; simbolicamente indica-se tal fato por

$$(\forall x \in A)(P(x)) \Leftrightarrow V_P = A$$
.

Quando A é um conjunto finito, isto é, $A = \{a_1, a_2, a_3, a_4, ..., a_n\}$ têm-se que

$$(\forall x \in A)(P(x)) \Leftrightarrow (P(a_1) \land P(a_2) \land P(a_3) \land P(a_4) \land ... \land P(a_n)).$$

Exemplo:

- 1) Seja $A = \{3, 5, 7\}$ e P(x): $x \in P(x)$ descreva como $(\forall x \in A)(x \in P(x))$
- 2) Verifique a veracidade das proposições

a)
$$(\forall n \in N)(n+5>3)$$
 b) $(\forall n \in N)(n+3>7)$ c) $(\forall x \in R)(x^2 \ge 0)$

Quantificador Existencial:

Seja P(x) uma sentença em um conjunto não vazio A e V_P o seu conjunto verdade onde $V_P = \{x \mid x \in A \land P(x)\}$. Quando V_P não é vazio, então pelo menos um elemento do conjunto A satisfaz a sentença P(x), assim pode-se afirmar que:

- existe pelo menos um elemento x de A tal que P(x) é verdadeira;
- ou que para algum elemento x de A, P(x) é verdadeira;

simbolicamente indica-se tal fato por

$$(\exists x \in A)(P(x)) \Leftrightarrow V_P.$$

Quando A é um conjunto finito, isto é, $A = \{a_1, a_2, a_3, a_4, ..., a_n\}$ têm-se que

$$(\exists x \in A)(P(x)) \Leftrightarrow (P(a_1) \vee P(a_2) \vee P(a_3) \vee P(a_4) \vee ... \vee P(a_n)).$$

Unidade 3 – Quantificadores, Predicados e validade

Exemplo:

- 3) Seja $A = \{3, 5, 7\}$ e P(x): $x \in par$, descreva como e a expressão predicada $(\exists x \in A)(x \in par)$
- 4) Verifique a veracidade das proposições

a)
$$(\exists n \in N)(n+4<8)$$
 b) $(\exists n \in N)(n+5<3)$ c) $(\exists x \in R)(x^2<0)$

Quantificador de Existência e Unicidade:

Considere a seguinte sentença em R;

i)
$$x^2 = 16$$
 ii) $x^3 = 27$.

Os valores em R que satisfazem (i) são: a = -4 e b = 4, então podemos escrever,

$$(\exists a, b \in R)(a^2 = 16 \land b^2 = 16 \land a \neq b)$$

Agora, o valor em R que satisfaz (ii) é c = 3, logo escrevemos

$$(\exists c \in R)(c^3 = 27).$$

Como o único valor que satisfaz o quantificador acima é c = 3, então dizemos que existe um único número real. Desta forma a expressão quantificada (ii) é expressa na forma

$$(\exists ! x \in R)(x^3 = 27).$$

Existem muitas proposições que enunciam afirmações de existência e unicidade, assim por exemplo, no universo R, é verdadeiro afirmar que

$$m \neq 0 \Rightarrow (\forall n)(\exists ! x)(mx = n).$$

Exemplo:

5) Verifique a veracidade das proposições

a)
$$(\exists ! x \in N)(x^2 - 9 = 0)$$
 b) $(\exists ! x \in Z)(-1 < x < 1)$ c) $(\exists ! x \in R)(|x| = 0)$

3 – Negação de Proposições Quantificadas

Sejam as proposições;

- i) Toda pessoa fala inglês;
- ii) Alguém foi a lua.

A negação dessas proposições é dada por

- i') Nem toda pessoa fala inglês;
- ii') Ninguém foi a lua.

assim a negação de proposições quantificadas é expressa como:

$$\sim [(\forall x \in A)(p(x))] \Leftrightarrow [(\exists x \in A)(\sim p(x))]$$

$$\sim [(\exists x \in A)(p(x))] \Leftrightarrow [(\forall x \in A)(\sim p(x))]$$

que são denominadas como segundas regras de De Morgan.

Exemplos:

- 1) Dê a negação das seguintes proposições:
- a) $(\forall n \in N)(n+2>8)$
- b) $(\forall x \in R)(3x-5=0)$
- c) $(\exists x \in R)(sen(x) = 0)$

Unidade 3 - Quantificadores, Predicados e validade

4 – Lista de Exercícios

1. Sendo R o conjunto dos números reais, determinar o valor lógico de cada uma das seguintes proposições:

a)
$$(\forall x \in R)(|x| = x)$$
 b) $(\exists x \in R)(x^2 = x)$ c) $(\exists x \in R)(|x| = 0)$

b)
$$(\exists x \in R)(x^2 = x)$$

c)
$$(\exists x \in R)(|x| = 0)$$

d)
$$(\exists x \in R)(x+2=x)$$
 e) $(\forall x \in R)(x+1>x)$ f) $(\forall x \in R)(x^2=x)$

e)
$$(\forall x \in R)(x+1>x)$$

f)
$$(\forall x \in R)(x^2 = x)$$

2. Sendo $A = \{1, 2, 3, 4, 5\}$, determinar o valor lógico de cada uma das seguintes proposições:

a)
$$(\exists x \in A)(x+3=10)$$
 b) $(\forall x \in A)(x+3<10)$ c) $(\exists x \in A)(x+3<5)$

b)
$$(\forall x \in A)(x+3 < 10)$$

c)
$$(\exists x \in A)(x+3<5)$$

d)
$$(\forall x \in A)(x+3 \le 7)$$

e)
$$(\exists x \in A)(3^x > 72)$$

d)
$$(\forall x \in A)(x+3 \le 7)$$
 e) $(\exists x \in A)(3^x > 72)$ f) $(\exists x \in A)(x^2+2x=15)$

3. Dar a negação das proposições abaixo:

a)
$$(\forall x \in R)(|x| = x)$$
 b) $(\exists x \in R)(x^2 = x)$ c) $(\exists x \in R)(|x| = 0)$

b)
$$(\exists x \in R)(x^2 = x)$$

c)
$$(\exists x \in R)(|x| = 0)$$

d)
$$(\exists x \in R)(x+2=x)$$

d)
$$(\exists x \in R)(x+2=x)$$
 e) $(\forall x \in R)(x+1>x)$ f) $(\forall x \in R)(x^2=x)$

f)
$$(\forall x \in R)(x^2 = x)$$

4. Sendo $A = \{1, 2, 3, 4, 5\}$, dar a negação das proposições abaixo

a)
$$(\exists x \in A)(x+3=10)$$
 b) $(\forall x \in A)(x+3<10)$ c) $(\exists x \in A)(x+3<5)$

b)
$$(\forall x \in A)(x+3<10)$$

c)
$$(\exists x \in A)(x+3 < 5)$$

d)
$$(\forall x \in A)(x+3 \le 7)$$

e)
$$(\exists x \in A)(3^x > 72)$$

d)
$$(\forall x \in A)(x+3 \le 7)$$
 e) $(\exists x \in A)(3^x > 72)$ f) $(\exists x \in A)(x^2+2x=15)$

5 – Contra - Exemplo

Para mostrar que uma proposição da forma $(\forall x \in A)(p(x))$ é falsa basta mostrar que a sua negação, $(\exists x \in A)(\sim p(x))$, é verdadeira. Isto é, que existe pelo menos um elemento $x_0 \in A$ tal que $p(x_0)$ é uma proposição falsa. O elemento x_0 é chamado de **contra – exemplo** para a proposição $(\forall x \in A)(p(x)).$

Exemplos:

- 1. Mostre que as proposições abaixo são falsas, exibindo um contra exemplo:
 - a) $(\forall n \in N)(2^n > n^2)$

b) $(\forall x \in R)(|x| \neq 0)$

c) $(\forall x \in R)(x^2 > x)$

d) $(\forall x \in R)((x+2)^2 = x^2 + 4)$

6 – Lista de Exercícios

- 1. Sendo $A = \{2, 3, 4, 5, ..., 9\}$, dar um contra exemplo para cada uma das seguintes proposições:

 - a) $(\forall x \in A)(x+5<12)$ b) $(\forall x \in A)(x \notin primo)$ c) $(\forall x \in A)(x^2>1)$

- d) $(\forall x \in A)(x \notin par)$ e) $(\forall x \in A)(0^x = 0)$
- 2. Sendo $A = \{1, 2, 3, 4, 5\}$, dar a negação das proposições abaixo

 - a) $(\exists x \in A)(x+3=10)$ b) $(\forall x \in A)(x+3<10)$ c) $(\exists x \in A)(x+3<5)$

- d) $(\forall x \in A)(x+3 \le 7)$ e) $(\exists x \in A)(3^x > 72)$ f) $(\exists x \in A)(x^2+2x=15)$
- 3. Sendo A um conjunto qualquer, dar a negação de cada uma das seguintes proposições:
- a) $(\forall x \in A)(p(x)) \land (\exists x \in A)(q(x))$ b) $(\exists x \in A)(p(x)) \lor (\forall x \in A)(q(x))$ c) $(\exists x \in A)(\sim p(x)) \lor (\lor x \in A)(\sim q(x))$ d) $(\exists x \in A)(p(x)) \rightarrow (\forall x \in A)(\sim q(x))$
- 4. Dar a negação de cada uma das seguintes sentenças:

 - a) $(\forall x)(x+2 \le 7) \land (\exists x)(x^2-1=3)$ b) $(\exists x \in A)(x^2=9) \lor (\forall x)(2x-5 \ne 7)$

7 – Quantificação de Sentenças Abertas com Mais de Uma Variável

Quantificação Parcial

Considere o conjunto $\mathbf{A} = \{1, 2, 3, 4, 5\}$ o universo das variáveis \mathbf{x}, \mathbf{y} e considere também a seguinte sentença,

$$(\exists x \in A)(2x+y<7).$$

Essa sentença não pode ser considerada uma proposição, pois o seu valor lógico não depende da variável x (variável aparente), mais sim da variável y (variável livre). Desta forma chama-se essa sentença de sentença aberta em y; cujo conjunto verdade é $\{1,2,3,4\}$, pois somente para y = 5 não existe $x \in A$ tal que 2x + y < 7.

Analogamente, seja o conjunto $A = \{1, 2, 3, 4, 5\}$ o universo das variáveis x, y e considere também a seguinte sentença,

$$(\forall y \in A)(2x + y < 10).$$

Essa sentença também não pode ser considerada uma proposição, pois o seu valor lógico não depende da variável y (variável aparente), mais sim da variável x (variável livre). Assim, temos que essa sentença é na verdade uma sentença aberta em x; cujo conjunto verdade é $\{1,2\}$, pois somente para x=1 ou x=2 se tem 2x+y<10 para todo $y \in A$.

Quantificação Múltipla

Toda sentença aberta precedida de quantificadores, um para cada variável, é uma proposição, pois assume um dos valores lógicos V ou F. São exemplos de proposições as seguintes expressões:

$$(\forall x \in A)(\forall y \in B)(p(x,y))$$
$$(\forall x \in A)(\exists y \in B)(p(x,y))$$
$$(\exists x \in A)(\forall y \in B)(\forall z \in C)(p(x,y,z))$$

Exercícios:

1) Considere os conjuntos $H = \{Jorge, Claudio, Paulo\}$, $M = \{Suely, Carmen\}$ e seja p(x, y) a sentença aberta em $H \times M$: "x é irmão de y". Discuta o significado das proposições:

$$A: (\forall x \in H)(\exists y \in M)(p(x,y)) \qquad B: (\exists y \in M)(\forall x \in H)(p(x,y))$$

2) Interprete, e discuta a equivalência

$$(\forall x \in N)(\forall y \in N)((x+y)^2 > x^2 + y^2) \Leftrightarrow (\forall x, y \in N)((x+y)^2 > x^2 + y^2)$$

3) Verifique o valor lógico de

$$(x+y)^2 > x^2 + y^2, \forall x, y \in \mathbb{N}$$
$$(x+y)^2 > x^2 + y^2, \forall x, y \in \mathbb{R}$$

4) Considere os conjuntos $A = \{1,2,3,4\}$ e $B = \{0,2,4,6,8\}$ e a sentença aberta em $A \times B$: " 2x + y = 8". Verifique o valor lógico das proposições:

S:
$$(\forall x \in A)(\exists y \in B)(2x + y = 8)$$

M: $(\forall y \in B)(\exists x \in A)(2x + y = 8)$
N: $(\exists y \in B)(\forall x \in A)(2x + y = 8)$
T: $(\exists x \in A)(\forall y \in B)(2x + y = 8)$

Operações Sobre Quantificadores

Quantificadores de mesma espécie podem ser comutados, ou seja,

$$(\forall x)(\forall y)(p(x,y)) \Leftrightarrow (\forall y)(\forall x)(p(x,y))$$
$$(\exists x)(\exists y)(p(x,y)) \Leftrightarrow (\exists y)(\exists x)(p(x,y)).$$

Quantificadores de espécies diferentes não podem em geral ser comutados; Exemplo: Seja x, y variáveis no universo dos números naturais. A proposição

$$(\forall x)(\exists y)(y>x)$$

é verdadeira, mas a proposição

$$(\exists y)(\forall x)(y>x)$$

é falsa.

Exercício:

4) Sendo $A = \{1, 2, 3, ..., 9, 10\}$, determinar o valor lógico de cada uma das seguintes proposições:

$$M: (\forall x \in A)(\exists y \in A)(x+y<14)$$
 $N: (\exists y \in A)(\forall x \in A)(x+y<14)$

Negação de Proposições com Quantificadores

A negação de proposições com mais de um quantificador se obtém mediante a aplicação sucessiva das regras de negação para proposições com um único quantificador, assim têm-se, por exemplo que;

1)
$$\sim (\forall x)(\forall y)(p(x,y)) \Leftrightarrow (\exists x)[\sim (\forall y)(p(x,y))] \Leftrightarrow (\exists x)(\exists y)(\sim p(x,y))$$

2)
$$\sim (\exists x)(\exists y)(p(x,y)) \Leftrightarrow (\forall x)[\sim (\exists y)(p(x,y))] \Leftrightarrow (\forall x)(\forall y)(\sim p(x,y))$$

3)
$$\sim (\forall x)(\exists y)(p(x,y)) \Leftrightarrow (\exists x)[\sim (\exists y)(p(x,y))] \Leftrightarrow (\exists x)(\forall y)(\sim p(x,y))$$

4)
$$\sim (\exists x)(\forall y)(p(x,y)) \Leftrightarrow (\forall x)[\sim (\forall y)(p(x,y))] \Leftrightarrow (\forall x)(\exists y)(\sim p(x,y))$$

5)
$$\sim (\exists x)(\exists y)(\forall z)(p(x,y,z)) \Leftrightarrow (\forall x)[\sim (\exists y)(\forall z)(p(x,y,z))] \Leftrightarrow (\forall x)(\forall y)(\exists z)(\sim p(x,y,z))$$

etc. ...

8 - Lista de Exercícios

1) Sendo **{1,2,3,4,5}** o universo das variáveis x e y, determinar o conjunto verdade de cada uma das seguintes sentenças abertas:

a)
$$(\exists y)(2x + y < 7)$$
 b) $(\forall x)(2x + y < 10)$

2) Sendo {1,2,3} o universo das variáveis x e y, determinar o valor lógico de cada uma das seguintes proposições:

a)
$$(\exists x)(\forall y)(x^2 < y + 1)$$
 b) $(\forall x)(\exists y)(x^2 + y^2 < 12)$

c)
$$(\forall x)(\forall y)(x^2 + y^2 < 12)$$
 d) $(\forall x)(\forall y)(x^2 + 2y < 10)$

e)
$$(\exists x)(\forall y)(x^2 + 2y < 10)$$
 f) $(\forall x)(\exists y)(x^2 + 2y < 10)$

g)
$$(\exists x)(\exists y)(x^2 + 2y < 10)$$

3) Sendo **{1,2,3}** o universo das variáveis x, y e z, determinar o valor lógico de cada uma das seguintes proposições:

a)
$$(\exists x)(\forall y)(\exists z)(x^2 + y^2 < 2z^2)$$
 b) $(\exists x)(\exists y)(\forall z)(x^2 + y^2 < 2z^2)$

Unidade 3 - Quantificadores, Predicados e validade

4) Sendo R o conjunto dos números reais, determinar o valor lógico de cada uma das seguintes proposições:

a)
$$(\forall y \in R)(\exists x \in R)(x + y = y)$$
 b) $(\forall x \in R)(\exists y \in R)(x + y = 0)$

b)
$$(\forall x \in R)(\exists y \in R)(x + y = 0)$$

c)
$$(\forall x \in R)(\exists y \in R)(x \cdot y = 1)$$
 d) $(\forall y \in R)(\exists x \in R)(y < x)$

d)
$$(\forall y \in R)(\exists x \in R)(y < x)$$

5) Dar a negação de cada uma das seguintes proposições:

a)
$$(\forall x)(\exists y)(p(x)\lor q(y))$$
 b) $(\exists x)(\forall y)(p(x)\lor \sim q(y))$

b)
$$(\exists x)(\forall y)(p(x) \vee \neg q(y))$$

c)
$$(\exists y)(\exists x)(p(x) \land \sim q(y))$$

c)
$$(\exists y)(\exists x)(p(x) \land \neg q(y))$$
 d) $(\forall x)(\exists y)(p(x,y) \rightarrow q(y))$

e)
$$(\exists x)(\forall y)(p(x,y)\rightarrow q(x,y))$$

6) Indique o valor verdade de cada uma das proposições abaixo onde o domínio consiste nos estados do Brasil;

$$Q(x,y)$$
: $x \in ao$ norte de y

$$P(x)$$
: x começacom a letra p e

aé Paraná.

a)
$$(\forall x)(P(x))$$
 b) $(\forall x)(\forall y)(\forall z)(Q(x,y) \land Q(y,z) \rightarrow Q(x,z))$

c)
$$(\exists y)(\exists x)Q(y,x)$$

c)
$$(\exists y)(\exists x)Q(y,x)$$
 d) $(\forall x)(\exists y)(P(y) \land Q(x,y))$

e)
$$(\exists y)(Q(a,y))$$