Hybridization: The Shape Of Things To Come

A. Intro

B. Electron Counting

In Atoms

The blue and red electrons are shared in bonds, two per bond, so ammonia has two electrons that are not in bonds, *ie* a lone pair.

C __CH₄_ N __NH₃__ O __H₂O__ F __HF___ CI __HCI__ Br __HBr___ S __H₂S___

 $N 2s^22p^12p^12p^11s^11s^11s^1 H_3$

water			$H 1s^{1}2p^{1}2p^{1}2p^{1}2p^{1}2p^{1}2s^{2}F$	-	
electronic structure	bonds	lone pairs	hydrogen fluoride electronic structure	bonds	lone pairs
H 1s ¹ 4p ¹ 4p ¹ 4p ¹ 4p ¹ 4p ¹ 3 hydrogen bromide	1 d ¹⁰ 4s ² Br bonds	3 lone pairs	$C 2s^{2}2p^{1}2p^{1}1s^{1}1s^{1}1s^{1}1s^{1}$ methane	4 bonds	0 lone pairs
electronic structure	Donus	ione pans	electronic structure	DONUS	ione pans
B $2s^22p^11s^11s^11s^1$	3	0	$H_2 1s^11s^13p^13p^13p^13p^13s^2 S$	2	2
B 2s ² 2p ¹ 1s ¹ 1s ¹ 1s ¹ H ₃ borane electronic structure	3 bonds	0 Ione pairs	H ₂ 1s ¹ 1s ¹ 3p ¹ 3p ¹ 3p ¹ 3p ¹ 3s ² S hydrogen sulfide electronic structure	2 bonds	2 Ione pairs
borane	bonds		hydrogen sulfide		

electrons is lost

C. Mixing Atomic Orbitals To Maximize Overlap In Molecules

Combining s- and p-Orbitals

called <u>atomic</u> orbitals.

have <u>different</u> shapes as atomic orbitals.

denoted as \underline{sp} , whereas \underline{sp}^2 surfaces are formed if $two\ p$ -orbitals are mixed with one s-.

Geometric Shapes

a <u>sp³</u> hybrid.

the boy <u>in the middle</u>. girl-boy-girl angle is <u>180</u> <u>ideal bond</u> angle.

middle of a <u>triangle</u> with then <u>120°</u>.

a <u>tetrahedron</u>, <u>109°</u>.

Shapes Of Molecules Based On Geometric Shapes

- 2 sp-hybrid orbitals.
- 3 hybrid orbitals, and
- 4 arise from.

Bold lines mean dashed lines

will be <u>sp²</u> hybridized.
A tetrahedron of <u>sp³</u> hybrids if <u>4</u> bonds
<u>sp</u> hybrid orbitals.

- 0 lone pairsit is <u>tetrahedral</u>.
- 3 lone pairs.
- 4 entities

hydrogen fluoride is approximately <u>tetrahedral</u>.

Water

4 objects

tetrahedral

hydrogen chloride, <u>4</u>
CI is <u>tetrahedral</u>

```
ammonia, <u>4</u>
<u>tetrahedral</u>
hydrogen sulfide, <u>4</u>
<u>tetrahedral</u> arrangement; and,
borane, <u>3</u>
<u>triangular</u> arrangement.
```

C in methane is tetrahedral with a dihedral angle of 109°

O in water is tetrahedral with a dihedral angle of 109°

Br in hydrogen bromide is tetrahedral with a dihedral angle of 109°

N in ammonia is *tetrahedral* with a dihedral angle of 109°

S in H₂S is <u>tetrahedral</u> with a dihedral angle of <u>109°</u>

B in BH₃ is *trigonal* with a dihedral angle of <u>120°</u>

an sp hybrid consisting of 2 MOs in a linear arrangement with a dihedral angle of 180°

3 sp² MOs, and these arrange in a trigonal arrangement with a dihedral angle of 120°

4 sp3 MOs, and these arrange in a tetrahedral arrangement with a dihedral angle of 109°

D. Multiple Bonds

<u>8</u> electrons in its second shell

<u>7</u> electrons in its second shell; this <u>is not</u> a <u>are</u> relatively reactive.

<u>sp³</u> hybridized

σ-bonded sp hybridized C-atoms

ethene **before** mixing p-orbitals

ethene **after** mixing p-orbitals

are called sigma.

pi bond.

Maximal overlap is achieved

Perpendicular *p*-orbitals <u>do</u> interact.

of a π bond.

<u>1</u>line(s), and π -bonds are represented by adding <u>2</u> parallel line(s).

because they <u>would not</u> contribute to the binding interaction. Atoms in molecules <u>can</u> selectively

Carbene, CH_2 , $\underline{6}$ shared electrons in the *C*-second shell. this is called the *singlet* state.

Alternatively, carbenes can be sp^2 -hybridized with one electron in each of the hybrid lobes that does not point to a hydrogen; this is a *triplet* state.

σ-bonded sp hybridized C-atoms

two $\underline{\pi}$ bonds surrounding the $\underline{\sigma}$ bond called a \underline{triple} bond.

it does not matter if.

are \underline{sp} hybridized, three \underline{sp}^2 , and four \underline{sp}^3 .

acetic acid

cis-1-hydroxy-2-butene

naproxen

alendronate

aspirin