REGRESSION

- 1 A simple linear model
- 2 Ordinary Least Squares (OLS)
- 3 Regression output
- 4 Practice

Nate Silver's Political Calculus

To what extent can trust in government be predicted from variations in economic growth?

DV: Trust in government

"Just about always/Most of the time" (American National Election Studies)

IV: Economic performance

Change in per capita disposable income (Bureau of Economic Analysis)

Example and data provided by John Sides.

Dashed lines at averages. Pearson correlation $\rho = .86$ significant at p < .01.

Dashed lines at averages. Pearson correlation $\rho = .86$ significant at p < .01.

Dashed lines at averages. Pearson correlation $\rho = .86$ significant at p < .01.

Simple linear regression

Equations

$$Y = \alpha + \beta X + \epsilon$$
 $\hat{Y} = \hat{\alpha} + \hat{\beta} X + \hat{\epsilon}$ $\epsilon = Y - \hat{Y}$

Parameters

- Y is the dependent variable and \hat{Y} its predicted value
- X is the independent variable used as a predictor of Y
- \blacksquare α is the constant (intercept)
- \blacksquare β is the regression coefficient (slope)
- \bullet is the error term (residuals)

Warning

The model assumes a linear, additive relationship.

Ordinary Least Squares (OLS)

Error term

In a simple linear model $Y = \alpha + \beta X + \epsilon$, the regression coefficient β is calculated as to minimize the residual sum of squares

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} \epsilon^2$$

where $Y_i - \hat{Y}_i$ is the residual (or error term) of each observation.

Parameter estimation

$$\beta = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}_X} = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} \quad \alpha = \bar{Y} - \beta \bar{X}$$

reg y x

. regress trust income

Source	SS	df	MS			${\bf Number\ of\ obs}$	=	12
						F(1, 10)	=	29.64
Model	1908.80221	1	1908.802	221		Prob > F	=	0.0003
Residual	643.906248	10	64.39062	248		R-squared	=	0.7478
						Adj R-squared	=	0.7225
Total	2552.70846	11	232.0644	105		Root MSE	=	8.0244
trust	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
income	8.639373	1.586	767 5	.44	0.000	5.103836	1	2.17491
_cons	26.69501	3.888	016 6	87	0.000	18.03197	3	5.35805

Top left: ANOVA table. Top right: model fit.

Bottom: regression coefficients.

Interpretation of fit

Number of observations N, significance test $H_0: \beta = 0$, coefficient of determination R^2 , root mean square error (RMSE).

Goodness of fit

$$R^2=1-rac{\sum_{i=1}^n(Y_i-\hat{Y}_i)^2}{\sum_{i=1}^n(Y_i-ar{Y}_i)^2}=rac{ ext{residual sum of squares}}{ ext{total sum of squares}}$$

As the fit improves, $RSS \rightarrow 0$ and $R^2 \rightarrow 1$.

Sanity check

Focus on getting N and the RMSE right.

Adj R-squared = 0.7225Root MSE = 8.0244

Interpretation of regression coefficients

A regression coefficient estimates the variation in Y predicted by a change in one unit of X (recall that $Y = \alpha + \beta X + \epsilon$)

trust	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
income	8.639373	1.586767	5.44	0.000	5.103836	12.17491
_cons	26.69501	3.888016	6.87	0.000	18.03197	35.35805

- The coefficient is the slope β of the regression line and the constant is its intercept, the coordinate of origin $\alpha = \hat{Y}_{X=0}$.
- The standard error, *t*-value and *p*-value test whether the coefficient is significantly different from 0.

Logarithmic coefficients: see UCLA mini-guide

Linear-linear relationships: $Y = \alpha + \beta X$

An increase of one unit of X is associated with an increase of β_1 units of Y.

Log-linear relationships: $\ln Y = \alpha + \beta X$

An increase of one unit of X is associated with a 100 \times β_1 % increase in Y (true effect: $Y \times \exp(\beta_1)$).

Linear-log relationships: $Y = \alpha + \beta \ln X$

A 1% increase in X is associated with a 0.01 \times β_1 unit increase in Y (e.g. $\beta_1 \times \log(1.15)$ for +15% in X).

Log-log relationships: $\ln Y = \alpha + \beta \ln X$

A 1% increase in X is associated with a β_1 % increase in Y.

Factor coefficients

reg trust income i.republican

■ For Democrat presidents, republican == 0

$$Y = \alpha + \beta X_0 = \alpha$$

■ For Republican presidents, republican == 1

$$Y = \alpha + \beta X_1$$

Dummies in regression equations

- The first category (0) is used as the 'baseline' category, which is omitted.
- The same logic applies to any categorical variable passed to reg with i.

Practice: QOG dataset

Data:

- Quality of Government (QOG)
- Sample: countries, c. 2002

Variables:

- Fertility rate
- Education years
- Corruption Perceptions Index
- Human Development Index
- Female ministers

THE QOG STANDARD DATASET

CODEBOOK

April 6, 2011 (c)

Note: Those scholars who wish to use this dataset in their research are kindly requested to cite to the original source (as stated in this codecods) and use the following clistics: "Receig! Jan, Marcus Samanes, Solven Initiative and Sie Potality of Districtions and Contract Version 68p11. Unlowerly of Contractory The Quality of Government Institute,

Practice session

Class

* Get the do-file for this week.

srqm fetch week8.do

* Open to read and replicate.

doedit code/week8

Coursework

- Finish the do-file and read all comments at home.
- Correct your do-file and add significance tests.
- Correct your paper and substantiate its hypotheses.

Exercise

Ex 8.1. Quality of Government 2011

- Variables: d wdi_gdpc wdi_mege wdi_pb2 wdi_the
- Plot correlations and estimate simple linear regressions.

Ex 8.2. Quality of Government 2011

- Variables: d wdi_pb2 gol_polreg
- Plot correlations and estimate simple linear regressions, using wdi_pb2