

R语言应用

杨滢

更多关注, 敬请留意: www.novogene.cn

主要内容

R语言基础

ggplot2绘图

R语言基础

Reference:

- 统计建模与R软件。薛毅。清华大学出版社。
- R语言与统计分析。汤银才。高等教育出版社。
- R语言实战(R in Action)。著: RobertI.Kabacoff; 译: 高涛/肖楠/陈 钢。人民邮电出版社

R语言简介

- R是一种有着强大统计分析和作图功能的软件系统(编程语言);
- 统计分析能力突出,部分统计功能整合在R语言的底层,但大多数则以包(packages)的形式提供,资源极其丰富;
- R具有强大的数据展示能力,高质量的图像生成,各种现代图像库: graphics, grid, lattice, ggplot2...;
- R的编程语言本质,注定了其强大的拓展和开发能力,可以编制自己的函数,或制作独立的统计分析包,快速实现新算法;
- 灵活,便于与其他工具整合,实现流程化;
- 官方网址: http://www.r-project.org;

R软件下载和安装

Download and Install R

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of these versions of R:

- Download R for Linux
- Download R for (Mac) OS X
- Download R for Windows

R is part of many Linux distributions, you should check with your Linux package management system in addition to the link above.

注:

为了后续课程顺利进行,考虑到程序包的兼容性,请安装2.15.3版本

程序包(packages)的安装和加载

基本知识

- 符号:
 - >命令或者运算提示符 +续行符
- 基本算术运算
 - +加号 -减号 *乘号 /除号 ^乘方
- 赋值符

- 求助符
 - ? 或 help()

数据结构与语法

 在R运行时,所有变量、数据、函数以及结果都是以对象的形式存入 计算机的活动内存中的,并冠以相应的变量名。在R中进行的所有操 作都是针对存储在活动内存中的对象的。

Nevogene

Providing advanced genomic solutions!

数据结构

向量

- 定义:用于存储数值型、字符型或逻辑性数据的一维数组。
- c()创建户量,eg: a<-c(1,2,3,4,5,6) b<-c("one","two","three") c<-c(TRUE,FALSE,TRUE,TRUE,FALSE)
- seq(),rep()创建有规律的数值型标量,eg:

```
x<-1:5
y<-seq(-5,5, by=1)
z<-rep(c(1,4,6), times=3)
```


常用统计函数

- max(x) 最大值
- min(x) 最小值
- range(x) 数值的范围
- which.max(x) 最大值下标
- which.min(x) 最小值下标
- mean(x) 均值
- median(x) 中位数
- var(x) 方差
- sd(x) 标准差
- length(x) 长度
- sum(x) 总和

矩阵

- 定义:二维数组,每个元素拥有相同的模式。实际上是有一个附加属性(维数 dim)的向量。
- matrix()创建矩阵: #默认情况下,矩阵是按列排列eg1: mymatrix<-matrix(1:15, nrow=3, ncol=5, byrow=TRUE)
 eg2:
 cells<-c(1,26,24,68)
 rnames <-c("R1", "R2")
 cnames<-c("C1", "C2")
 matrix(cells, nrow=2, ncol=2, byrow=TRUE, dimnames=list(rnames, cnames))
- 矩阵的下标运算: mymatrix[1,2], mymatrix[,c(1,3)]
- 数组: 与矩阵类似,但是维度可以大于2. 通过array()创建

数据框

- 定义: 与矩阵类似, 但不同的列包含不同类型的数据
- data.frame()创建, eg:

```
df<-data.frame(
    Name=c("Alice", "Becka", "James", "Jeffrey", "John"),
    Sex=c("F", "F", "M", "M", "M"),
    Age=c(13,13,12,13,12),
    Height=c(56.5,65.3,57.3,62.5,59.0),
    Weight=c(84,98,83,84,99)
```

• 矩阵转数据框?

x<-data.frame(mymatrix) #采用data.frame()将矩阵转为一个数据框 new_df<-as.data.frame(mymatrix) #采用as.data.frame()强制转换

列表

- 定义:一些对象的有序集合。最为复杂。其各元素类型可以是任意对象,不同元素不必是同一类型。
- list()创建, eg:
 lst<-list(name='fred',wife='mary',no.children=3,child.ages=c(4,7,9))

数据结构

常用R函数

函数	功能
head(object)	查看对象的开始部分
tail(object)	查看对象的最后部分
ls()	显示当前的对象列表
length(object)	显示对象中的元素/成分数量
dim(object)	显示对象维度
c(object, object,)	将对象合并入一个向量
object	输出对象
mode(object)	显示对象的类型
t(object)	转置对象
summary(object)	
r	

Nevogene

Providing advanced genomic solutions!

nchar,nzchar

- 功能说明:
 - nchar: 统计字符的长度
 - nzchar: 统计字符是否为空

example:

- nchar(c("Novogene","RNA-seq"))
- nzchar("")
- nzchar("Novogene")

- substr
- 功能说明:对字符进行特定区域的提取
- substr(x, start, stop) example:
- x=c("Novogene")
- substr(x,5,9)

- paste
- 功能说明:字符串的连接
- paste (..., sep = " ", collapse = NULL)
 sep为向量间连接符
 collapse为字符内部连接符
 - example: 产生 "AvsB"
- paste("a", "b", sep="vs")
- *paste*(c("a", "b"), collapse="vs")

- subset
- 功能说明: 提取数据框中满足某一条件的行

example: 提取至少有一个样品的rpkm值大于1的行。

- rpkm<-read.delim("rpkm.xls",row.names=1)
- rpkm_1<-subset(rpkm,A1>1 |A2>1 |B1>1 |B2>1)
- *dim(rpkm_1)*

- 添加列
- merge(datatframeA,dataframeB,by="ID"), 按照ID合并 datatframeA,dataframeB
- cbind(A,B),不需要索引,直接合并A,B
- 添加行
- rbind(A,B)

数据的读写

- 从带分隔符的文本文件导入数据
- 1. read.table()/read.delim(),eg:

```
rpkm<-read.table('rpkm.xls',header=T,row.names=1)
rpkm<-read.delim('rpkm.xls',row.names=1)
head(rpkm)
logrpkm<-log10(rpkm+1)
write.table(logrpkm,'logrpkm.xls',sep='\t',quote=F)</pre>
```

• 2.利用剪贴板:一种最简单的方法是打开Excel中电子表格,选中需要的数据区域,再复制到剪贴板中(使用CTRL+C),然后在R中键入命令

mydata<-read.delim("clipboard")</pre>

ggplot2绘图

- Reference:
- ggplot2数据分析与图形艺术。

简单、优雅

ggplot2绘图示例

快速开始~一个简单的例子

- library(ggplot2)
- data(package='ggplot2')
- head(diamonds)
- p<-ggplot(diamonds,aes(x=carat))

• p+geom_histogram(binwidth=0.1,aes(fill=cut),position='dodge')+xlim(0,3)

+coord_flip()+facet_grid(.~cut)

Nevogene

omic solutions!

基本概念

- 数据(Data)和映射(Mapping)
- 标度(Scale)
- 几何对象(Geometric)
- 统计变换(Statistics)
- 坐标系统(Coordinate)
- 图层 (Layer)
- 分面(Facet)

数据(Data)和映射(Mapping)

• 将数据中的变量映射到图形属性。映射控制了二者之间的关系。

length	width	depth	trt
2	3	4	a
1	2	1	a
4	5	15	b
9	10	80	b

标度(scale)

• 标度负责控制映射后图形属性的显示方式。具体形式上来看是图例和 坐标刻度。Scale和Mapping是紧密相关的概念。

X	Y	Color
2	3	a
1//	2	a
4	5	b
9	10	b

几何对象(Geometric)

- 几何对象代表我们在图中实际看到的图形元素,如点、线、多边形等。
- ✓ geom_point()绘制散点图
- ✓ geom_smooth()拟合一条平滑曲线
- ✓ geom_boxplot()绘制箱线图
- ✓ geom_path()和geom_line()绘制数据之间的连线 对于一维连续变量:
- ✓ geom_histogram()绘制直方图
- ✓ geom_density()绘制密度曲线 对于一维离散变量:
- ✓ geom_bar()绘制条形图
- 一般用法:

geom_xxx(mapping,data,binwidth,...,postion)

Geoms

统计变换(statistics)

• 对原始数据进行某种计算,例如对二元散点图加上一条回归线。

Nevogene

Providing advanced genomic solutions!

坐标系统(Coordinate)

• 坐标系统控制坐标轴幵影响所有图形元素,坐标轴可以进行变换以满足不同的需要。

图层(Layer)

• 数据、映射、几何对象、统计变换等构成一个图层。图层可以允许用户一步步的构建图形,方便单独对图层进行修改。

分面(Facet)

• 条件绘图,将数据按某种方式分组,然后分别绘图。分面就是控制分组绘图的方法和排列形式。

直方图分解步骤

- library(ggplot2)
- data(package='ggplot2')
- head(diamonds)
- p<-ggplot(diamonds,aes(x=carat))
- p+geom_histogram()
- p+geom_histogram(binwidth=0.3)
- p+geom_histogram(binwidth=0.3,aes(fill=cut))
- p+geom_histogram(binwidth=0.3,aes(fill=cut),position='dodge')+xlim(0,3)
- p+geom_histogram(binwidth=0.3,aes(fill=cut),position='fill')+xlim(0,3)
- p+geom_histogram(binwidth=0.3,aes(fill=cut),position='stack')+xlim(0,3)
- ##position的三种类型为: 'dodge'(并列); 'stack'(堆叠); fill(填充)

- p+geom_histogram(binwidth=0.1,aes(fill=cut),position='dodge')+xlim(0,3)+coord_flip()
- p+geom_histogram(binwidth=0.1,aes(fill=cut))+xlim(0,3)+coord_flip()+fa
 cet_grid(.~cut)
- p+geom_histogram(binwidth=0.3,aes(fill=cut),position='dodge')+xlim(0,3)
 +ggtitle('直方图')+xlab('CARAT')+ylab('COUNT')

柱形图

- p<-ggplot(mpg, aes(x=manufacturer))
- p+geom_bar(aes(fill=factor(year)),position="dodge")
- p+geom_bar(aes(fill=factor(year)),position="dodge")+theme(axis.text.x=el ement_text(hjust=1,angle=45))

Providing advanced genomic solutions!

散点图

- head(mpg)
- p<-ggplot(mpg,aes(x=cty,y=hwy))
- p+geom_point()
- p+geom_point(colour='red')
- p+geom_point(colour='red',size=5)
- p+geom_point(colour='red',shape=4)

- r<-round(cor(mpg\$cty,mpg\$hwy),3)
- p+geom_point(colour='red',shape=4)+geom_smooth(method='lm')+annotat e("text", 15,44, label= paste("Pearson's r :", r), size=3,colour='blue')

- p<-ggplot(mpg,aes(x=cty,y=hwy,colour=factor(cyl)))+geom_point()
- p
- p+stat_smooth(method='lm')
- ggplot(mpg,aes(x=cty,y=hwy))+geom_point(aes(colour=factor(cyl)))+stat_smooth(method='lm')
- p<-ggplot(mpg,aes(x=cty,y=hwy,colour=factor(cyl)))+geom_point()
- p
- p+scale_color_manual(values=c("DarkGoldenrod4", "Gold", "#7FFFD4", "#FF6A6A"))
- http://www.cnblogs.com/xianghang123/archive/2012/06/13/2547604.ht

ml RGB配色表)

Nevogene

itions!

- ggplot(mpg,aes(x=cty,y=hwy))+geom_point(aes(colour=factor(cyl),size=y ear))+stat_smooth(method='lm')
- ggplot(mpg,aes(x=cty,y=hwy))+geom_point(aes(colour=factor(cyl)))+stat_smooth(method='lm')+facet_grid(~year)

箱型图

- ggplot(mpg,aes(x=factor(year),y=hwy))+geom_boxplot(aes(fill=factor(year)))
- ggplot(mpg,aes(x=factor(year),y=hwy))+geom_boxplot(aes(fill=factor(year)))+xla b('year')
- ggplot(mpg,aes(x=factor(year),y=hwy))+geom_boxplot(aes(fill=factor(year)))+xla b('year')+scale_fill_brewer('year',palette='Set1')
- ggplot(mpg,aes(x=factor(year),y=hwy))+geom_boxplot(aes(fill=factor(year)))+xla b('year')+scale_fill_brewer('year',palette='Set2')

• ggplot(mpg,aes(x=factor(year),y=hwy))+geom_boxplot(aes(fill=factor(year)))+xla b('year')+scale_fill_brewer('year',palette='Accent')

总结

- · R语言基础:
- ✓ R的安装及R包的安装加载;
- ✔ R的基本使用: 常用的数据结构、语法、函数
- ggplot2绘图
- ✓ ggplot2的语法结构
- ✓ ggplot2的常见类型图形的绘制:直方图、柱形图、散点图、箱线图

一个简单的练习

Providing advanced genomic solutions!

Thanks for your attention!

更多关注, 敬请留意: www.novogene.cn