Lab Assignment -1

Name: J Viswaksena Roll.no: AM.EN.U4AIE21035

Design DFA for the following languages.

- 1. DFA for strings over the alphabet {a, b}
 - i. starting with a and ending with a.

ii. starting with a.

iii. containing aa as a substring.

iv. starting and ending with the same letters.

v. starting and ending with different letters.

- 2. DFA for strings over the alphabet $\{0, 1\}$
 - i. L={w/w starts with a 0 where $w \in \{0, 1\}^*$ }

ii. L={w/w ends with a 1 where $w \in \{0, 1\}^*$ }

iii. L={w/w has length exactly 2 where $w \in \{0, 1\}^*\}$

iv. L={w/w has length at most 2 where $w \in \{0, 1\}^*$ }

v. L={w/w contains the substring 11 where $w \in \{0, 1\}^*$ }

3. L={ $aw_1aaw_2a : w_1, w_2 \in \{a, b\}^*$ }

4. L={baⁿ : $n \ge 1$, $n \ne 4$ }

5. L={w | $n_a(w) \mod 3 = 0 \text{ and } n_b(w) \mod 2 = 0$ }

6. L={w: there are exactly two runs of a's of length 3} on {a, b}}

7. All strings with at least one b and exactly two a's on $\{a, b\}$

8. All strings that contain substring 000, but not 0000 on $\{0,1\}$.

9. Construct deterministic finite automata (DFA) for the language $L = \{ w : w \text{ has odd number of 0's and } w \text{ has odd number of 1's}, over the alphabet <math>\Sigma = \{0,1\}.$

