ELSEVIER

Contents lists available at ScienceDirect

Molecular Catalysis

journal homepage: www.elsevier.com/locate/mcat

Review

Catalytic decomposition of N₂O over cobalt based spinel oxides: The role of additives

Min-Jae Kim^{a,b}, Seung-Jae Lee^a, In-Soo Ryu^a, Min-Wook Jeon^{a,c}, Seung-Hyun Moon^a, Hyun-Seog Roh^b, Sang Goo Jeon^{a,*}

- ^a Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
- ^b Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 220-710, Republic of Korea
- ^c Department of Chemical Engineering, Chungnam National University, 99 Daehakro, Yuseong-gu, Daejeon, 305-764, Republic of Korea

ARTICLE INFO

Article history: Received 13 October 2016 Received in revised form 24 May 2017 Accepted 28 May 2017 Available online 10 June 2017

Keywords: N₂O decomposition Cobalt spinel oxide Surface area Redox ability

ABSTRACT

Catalytic activity at temperature below 400 °C for N_2O decomposition was investigated over catalysts based on cobalt oxide synthesized by a co-precipitation and impregnation method. The characteristics of the catalysts were assessed by XRD, BET, H_2 -TPR, O_2 -TPD, and XPS techniques, and the catalytic activity for N_2O decomposition was examined in the presence of O_2 and H_2O . In general, it was observed that the catalytic activity was enhanced by the increase of surface area and redox ability of the catalyst. In particular, the N_2O conversion of K/Co_3O_4 was notably higher than that of pure Co_3O_4 , while the Co-CeO₂ catalyst slightly improved the activity. The K/Co-CeO₂ catalyst decomposed 100% of N_2O at 375 °C reaction temperature without O_2 and O_2 in the reaction gas stream, and this value was lowered to 95.7% with the presence of O_2 and O_2 and O_2 and O_3 in the reaction gas stream, and this value was lowered to 95.7% with the presence of O_3 and O_3 and O_3 of O_3 of O_3 and O_3 of O_3 o

© 2017 Published by Elsevier B.V.

Contents

1.	Introduction	202
2.	Experimental	203
	2.1. Catalyst preparation	203
	2.2. Catalyst characterization	203
	2.3. Catalyst activity test	203
3.	Results & discussion	203
	3.1. Catalytic decomposition of N_2O	
	3.2. H ₂ -TPR and O ₂ -TPD	204
	3.3. XPS analysis	205
4.	Conclusions	206
	Acknowledgement	206
	Appendix A. Supplementary data	207
	References	

1. Introduction

Nitrous oxide (N_2O) causes environmental problems such as global warming and the ozone layer destruction. Although annual emissions of N_2O are much smaller than those of CO_2 , the Global Warming Potential (GWP) of N_2O is 310 times higher than that of CO_2 [1,2]. The concentration of N_2O in the earth's atmosphere

has been consistently increasing due to natural and anthropogenic activity (0.2% per year) [2,3]. One of the promising technologies for abatement of N_2O is catalytic decomposition, and various types of catalysts including noble metals [4–7], pure and mixed oxides [8–11], and ion-exchanged zeolites [12,13] accordingly have been studied. Recently, cobalt catalysts have been recognized as promising candidates for the decomposition of N_2O due to their comparatively high redox ability [14]. The adsorption of N_2O on the active site (Co^{2+}) causes a weakening of the N–O bond, releasing N_2 [8]. The unsaturated Co^{2+} ions are oxidized to Co^{3+} by oxygen species adsorbed on the surface of the catalyst. Due to

^{*} Corresponding author. E-mail address: sgjeon@kier.re.kr (S.G. Jeon).