Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

(currently amended) A character recognition method, comprising:
 determining a sequence of corner hits within a <u>physical template constraining an input</u>
 device <u>guide</u>; and

identifying a character based on said sequence of corner hits.

- 2. (original) The method of claim 1 wherein each of said sequences of corner hits defines a single stroke, and wherein each single stroke is representative of one of a letter, number, punctuation or mode.
- 3. (currently amended) The method of claim 2 additionally comprising identifying a <u>letter</u> character as being upper case when said stroke representative of said character ends in a <u>common</u> predetermined corner <u>and lower case when said stroke does not end in said common predetermined corner</u>.
- 4. (currently amended) The method of claim 2 wherein said input device is a touch sensitive surface, said method additionally comprising detecting loss of contact with [[a]] the touch sensitive surface, said loss of contact indicating the end of a stroke.
- 5. (original) The method of claim 2 additionally comprising detecting the actuation of a switch, said actuation indicating the end of a stroke.
- 6. (currently amended) The method of claim 2 wherein said input device is a joystick, said method additionally comprising detecting lack of movement of [[a]] the joystick for a predetermined period of time, said lack of movement indicating the end of a stroke.
- 7. (original) The method of claim 6 wherein said detecting lack of movement includes detecting the joystick at two identical positions within said predetermined period of time.

Application No. 10/811,761 Amendment Dated 18 April 2008

Reply to Office Action of 18 January 2008

8. (currently amended) The method of claim 7 wherein said positions points correspond to a

center point points.

9. (original) The method of claim 1 wherein said identifying a character is comprised of

comparing the determined sequence of corner hits to data representative of a plurality of stored

sequences of corner hits, selecting one of the stored sequences of corner hits based on said

comparing, and outputting a character linked to said selected one of said stored sequences of

corner hits.

10. (original) The method of claim 9 wherein said comparing includes comparing the

determined sequence of corner hits to a library of stored sequences of corner hits which is

representational of a printed alphabet.

11. (currently amended) The method of claim 9 additionally comprising changing the stored

sequences of corner hits that are linked to a each character.

12. (original) The method of claim 11 wherein said changing includes providing one example of

a sequence of corner hits and the character to which that sequence is to be linked.

13. (currently amended) The method of claim 1 wherein said corner hits include corner area hits,

said method additionally comprising varying the size of the corner areas while said sequence of

corner hits is determined corners.

14. (currently amended) The method of claim 13 wherein said varying the size includes

decreasing the size of only certain corner areas corners.

15. (currently amended) The method of claim 13 wherein said varying the size includes

decreasing the size of certain corner areas corners more than the size of other corner areas

corners.

- 4 -

16. (currently amended) The method of claim 1 wherein said corner hits include corner area hits, said method additionally comprising varying the shape of the corner areas while said sequence of corner hits is determined corners.

17. (currently amended) A letter character recognition method, comprising:

determining a sequence of corner hits within a unistroke;

identifying a letter character based on said sequence of corner hits; and

identifying said letter character as being upper case when said unistroke ends in a

common predetermined corner and lower case when said unistroke does not end in the common predetermined corner.

- 18. (cancelled)
- 19. (cancelled)
- 20. (currently amended) The method of claim <u>17</u> 18 additionally comprising detecting loss of contact with a touch sensitive surface, said loss of contact indicating the end of <u>the</u> [[a]] unistroke.

. . ;

- 21. (currently amended) The method of claim <u>17</u> 18 additionally comprising detecting the actuation of a switch, said actuation indicating the end of the [[a]] unistroke.
- 22. (currently amended) The method of claim <u>17</u> 18 additionally comprising detecting lack of movement of a joystick for a predetermined period of time, said lack of movement indicating the end of <u>the unistroke</u> a <u>stroke</u>.
- 23. (original) The method of claim 22 wherein said detecting lack of movement includes detecting the joystick at two identical positions within said predetermined period of time.

- 24. (currently amended) The method of claim 23 wherein said <u>positions</u> points correspond to <u>a</u> center <u>points</u>.
- 25. (currently amended) The method of claim 17 wherein said identifying a <u>letter</u> character is comprised of comparing the determined sequence of corner hits to data representative of a plurality of stored sequences of corner hits, selecting one of the stored sequences of corner hits based on said comparing, and outputting <u>the letter</u> [[a]] character linked to said selected one of said stored sequences of corner hits.
- 26. (original) The method of claim 25 wherein said comparing includes comparing the determined sequence of corner hits to a library of stored sequences of corner hits which is representational of a printed alphabet.
- 27. (currently amended) The method of claim 25 additionally comprising changing the stored sequences of corner hits that are linked to each a letter character.
- 28. (currently amended) The method of claim 27 wherein said changing includes providing one example of a sequence of corner hits and the <u>letter</u> character to which that sequence is to be linked.
- 29. (currently amended) The method of claim 17 wherein said corner hits include corner area hits, said method additionally comprising varying the size of the corner areas while said sequence of corner hits is determined eorners.
- 30. (currently amended) The method of claim 29 wherein said varying the size includes decreasing the size of only certain <u>corner areas</u> eorners.
- 31. (currently amended) The method of claim 29 wherein said varying the size includes decreasing the size of certain <u>corner areas</u> eorners more than the size of other <u>corner areas</u> eorners.

32. (currently amended) The method of claim 17 wherein said corner hits include corner area hits, said method additionally comprising varying the shape of the corner areas while said sequence of corner hits is determined corners.

33. (currently amended) A method of generating a stroke characters, comprising:

determining a sequence of corner hits within a physical template constraining an input device;

creating a stroke by striking a series of corners irrespective of the path between the corners; and

generating information indicative of the end of each stroke.

34. (currently amended) The method of claim 33 wherein said <u>input device is ereating includes</u> moving an object within a guide while the object is in contact with a touch sensitive surface, and wherein said generating <u>information</u> includes lifting <u>an</u> the object out of contact with the touch sensitive surface.

35. (currently amended) The method of claim 33 wherein said creating includes moving a joystick within a guide and wherein said generating information includes activating a switch.

36. (currently amended) The method of claim 33 wherein said <u>input device is ereating includes</u> moving a joystick <u>within guide</u>, and wherein said generating <u>information</u> includes returning the joystick to a predetermined position for a predetermined period of time.

37. (cancelled)

38. (currently amended) A <u>computer readable</u> memory carrying software which, when executed, performs a method comprising:

determining a sequence of corner hits within a <u>physical template constraining an input</u> device guide; and

identifying a character based on said sequence of corner hits.

- 39. (original) The memory of claim 38 wherein each of said sequences of corner hits defines a single stroke, and wherein each single stroke is representative of one of a letter, number, punctuation or mode.
- 40. (currently amended) The memory of claim 39 additionally comprising identifying a <u>letter</u> character as being upper case when said stroke representative of said character ends in a <u>common</u> predetermined corner <u>and lower case when said stroke does not end in said common</u> predetermined corner.
- 41. (currently amended) The memory of claim 39 wherein said input device is a touch sensitive surface, said method additionally comprising detecting loss of contact with the [[a]] touch sensitive surface, said loss of contact indicating the end of a stroke.
- 42. (original) The memory of claim 39 additionally comprising detecting the actuation of a switch, said actuation indicating the end of a stroke.
- 43. (currently amended) The memory of claim 39 wherein said input device is a joystick, said method additionally comprising detecting lack of movement of the [[a]] joystick for a predetermined period of time, said lack of movement indicating the end of a stroke.
- 44. (original) The memory of claim 43 wherein said detecting lack of movement includes detecting the joystick at two identical positions within said predetermined period of time.
- 45. (currently amended) The memory of claim 44 wherein said <u>positions</u> points correspond to <u>a</u> center <u>point</u> points.
- 46. (original) The memory of claim 38 wherein said identifying a character is comprised of comparing the determined sequence of corner hits to data representative of a plurality of stored

sequences of corner hits, selecting one of the stored sequences of corner hits based on said comparing, and outputting a character linked to said selected one of said stored sequences of corner hits.

- 47. (original) The memory of claim 46 wherein said comparing includes comparing the determined sequence of corner hits to a library of stored sequences of corner hits which is representational of a printed alphabet.
- 48. (currently amended) The memory of claim 46 additionally comprising changing the stored sequences of corner hits that are linked to <u>a each</u> character.
- 49. (original) The memory of claim 48 wherein said changing includes providing one example of a sequence of corner hits and the character to which that sequence is to be linked.
- 50. (currently amended) The memory of claim 38 wherein said corner hits include corner area hits, said method additionally comprising varying the size of the corner areas while said sequence of corner hits is determined corners.
- 51. (currently amended) The memory of claim 50 wherein said varying the size includes decreasing the size of only certain corner areas corners.
- 52. (currently amended) The memory of claim 50 wherein said varying the size includes decreasing the size of certain <u>corner areas</u> eorners more than the size of other <u>corner areas</u> eorners.
- 53. (currently amended) The memory of claim 38 wherein said corner hits include corner area hits, said method additionally comprising varying the shape of the corner areas while said sequence of corner hits is determined corners.

- 54. (new) The method of claim 1 wherein said determining a sequence includes determining a sequence of corner hits resulting from a unistroke.
- 55. (new) The method of claim 17 wherein said determining a sequence of corner hits includes determining a sequence of corner hits within a physical template constraining an input device.
- 56. (new) A computer readable memory carrying software which, when executed, performs a method, comprising:

determining a sequence of corner hits within a unistroke;

identifying a letter character based on said sequence of corner hits; and

identifying said letter character as being upper case when said unistroke ends in a common predetermined corner and lower case when said unistroke does not end in the common predetermined corner.

- 57. (new) The memory of claim 56 additionally comprising detecting loss of contact with a touch sensitive surface, said loss of contact indicating the end of the unistroke.
- 58. (new) The memory of claim 56 additionally comprising detecting the actuation of a switch, said actuation indicating the end of the unistroke.
- 59. (new) The memory of claim 56 additionally comprising detecting lack of movement of a joystick for a predetermined period of time, said lack of movement indicating the end of the unistroke.
- 60. (new) The memory of claim 59 wherein said detecting lack of movement includes detecting the joystick at two identical positions within said predetermined period of time.
- 61. (new) The memory of claim 60 wherein said positions correspond to a center point.
- 62. (new) The memory of claim 56 wherein said identifying a letter character is comprised of

Application No. 10/811,761 Amendment Dated 18 April 2008

Reply to Office Action of 18 January 2008

comparing the determined sequence of corner hits to data representative of a plurality of stored sequences of corner hits, selecting one of the stored sequences of corner hits based on said comparing, and outputting the letter character linked to said selected one of said stored sequences of corner hits.

63. (new) The memory of claim 62 wherein said comparing includes comparing the determined sequence of corner hits to a library of stored sequences of corner hits which is representational of a printed alphabet.

64. (new) The memory of claim 62 additionally comprising changing the stored sequences of corner hits that are linked to a letter character.

65. (new) The memory of claim 64 wherein said changing includes providing one example of a sequence of corner hits and the letter character to which that sequence is to be linked.

66. (new) The memory of claim 56 wherein said corner hits include corner area hits, said method additionally comprising varying the size of the corner areas while said sequence of corner hits is determined.

67. (new) The memory of claim 66 wherein said varying the size includes decreasing the size of only certain corner areas.

68. (new) The memory of claim 66 wherein said varying the size includes decreasing the size of certain corner areas more than the size of other corner areas.

69. (new) The memory of claim 56 wherein said corner hits include corner area hits, said method additionally comprising varying the shape of the corner areas while said sequence of corner hits is determined.

70. (new) The memory of claim 38 wherein said determining a sequence includes determining a sequence of corner hits resulting from a unistroke.

71. (new) The memory of claim 56 wherein said determining a sequence of corner hits includes determining a sequence of corner hits within a physical template constraining an input device.