Stochastic Simulation Generation of random variables Discrete sample space

Bo Friis Nielsen

Applied Mathematics and Computer Science

Technical University of Denmark

2800 Kgs. Lyngby – Denmark

Email: bfn@imm.dtu.dk

Plan W1.1-2

Random variables

Aim

- The scope is the generation of **independent** random variables $X_1, X_2, ... X_n$ with a **given distribution**, $F_x(x)$, (or probability density function [pdf]).
- We assume we have access to a supply (U_i) of random numbers, independent samples from the uniform distribution on]0, 1[.
- Our task is to transform U_i into X_i .

DTU —

Uniform distribution I

Our norm distribution or building block, U(0,1)

$$f(x) = 1$$
 $F(x) = x$ for $0 \le x \le 1$

$$E(X) = \frac{1}{2} \quad Var(X) = \frac{1}{12}$$

Coin

or uniform distribution

$$X = 0, 1$$

$$\mathsf{P}(X=i) = \frac{1}{2}$$

$$X := \left(U > \frac{1}{2}\right) \quad X = \lfloor (2U) \rfloor$$

Bernoulli trial

02443 - lecture 3

Toss a coin with P(X = 1) = p and P(X = 0) = 1 - p.

A fair die

or uniform distribution

$$X = 1, 2, \dots 6$$

$$P(X=i) = 1/6$$

$$X = \lfloor (6U) \rfloor + 1$$

Can be generalized $6 \rightarrow k$.

Discrete distribution - direct (crude) method

Suppose X can take k distinct values $x_1 < x_2 < \dots x_k$ with

$$p_i = P(X = x_i), \quad i = 1, 2, \dots, k$$

Then X takes the value x_i with probability p_i if U falls in an interval with length p_i . That is if

$$\sum_{j=1}^{i-1} p_j < U \le \sum_{j=1}^{i} p_j$$

or

$$X = x_i$$
 if $F(x_{i-1}) < U \le F(x_i)$

DTU

Geometric distribution, NB(1,p)

The discrete time version of waiting time. Memory-less.

$$f(n) = P(X = n) = (1 - p)^{n-1}p \quad n = 1, 2, \dots$$

$$F(n) = P(X \le n) = 1 - (1 - p)^n$$

$$X = n \quad if \quad F(n-1) < U \le F(n) \quad 1 - (1-p)^{n-1} < U \le 1 - (1-p)^n$$
$$n - 1 < \frac{\log(1-U)}{\log(1-p)} \le n$$

$$X = \left\lfloor \left(\frac{\log(U)}{\log(1-p)} \right) \right\rfloor + 1$$

Discrete distribution II

- 0 P1 P2
 - 1. Generate U
 - 2. Find the interval i which U belong to. $P_{i-1} < U \le P_i$
 - 3. output x_i
 - Linear search (E(X))
 - Rearrangement of intervals
 - Binary search
 - Indexed search

Rejection Method

Simple rejection More optimistic: acceptance method.

Assume $P(X = i) = p_i$ for i = 1, 2, ... k.

02443 - lecture 3

Let
$$c \geq p_i$$
 (then $p_i/c \leq 1$).

1.
$$I = |(k * U_1)| + 1$$

2. if $U_2 \leq p_I/c$ output: I Else goto 1.

frequency for
$$i$$
:
$$\frac{\frac{\frac{1}{k}\frac{p_i}{c}}{\sum_{j=1}^{k}\frac{1}{k}\frac{p_j}{c}} = p_i$$

Alias method

- A method for generating discrete random variates of general type
- From discrete uniform to general discrete
- Generate one random number
- One comparison
- Potentially one table look-up
- Drawback: Complex set-up procedure

- 02443 -----

A six-point distribution

$$P(X = 1) = \frac{17}{96}$$
 $P(X = 2) = \frac{1}{12}$ $P(X = 3) = \frac{1}{3}$

$$P(X=2) = \frac{1}{12}$$

$$P(X=3) = \frac{1}{3}$$

$$\mathsf{P}(X=4) = \frac{1}{4}$$

$$P(X = 4) = \frac{1}{4}$$
 $P(X = 5) = \frac{1}{24}$ $P(X = 6) = \frac{11}{96}$

$$P(X = 6) = \frac{11}{96}$$

Alias method

- Setup procedure
 - \diamond Generate the table of F(I)-values, (which part of the mass belongs to I itself.
 - \diamond Generate the table of L(I)-values, (the alias of class I)
- Method at run time
 - \diamond Generate $I:I = |k*U_1|+1$
 - ♦ Test against F(I).If $U_2 \le F(I)$ then return X = I else return X = L(I). The L, F tables for the six-point distribution

$$F(1) = 1$$
 $F(2) = \frac{1}{2}$ $F(3) = \frac{15}{16}$ $F(4) = 1$ $F(5) = \frac{1}{4}$ $F(6) = \frac{11}{16}$ $L(1) = 1$ $L(2) = 4$ $L(3) = 1$ $L(4) = 4$ $L(5) = 3$ $L(6) = 3$

Alias Method

On setup: generate F and L.

Generation:

1.
$$I = \lfloor (k * U_1) \rfloor + 1$$

2. if $U_2 \leq F(I)$ output I else output L(I).

The Alias tables

DTU

Generate F and L.

Pseudo code. p is a vector containing the probabilities.

- 1. $L=\{1,\ldots,k\}$
- 2. F=k*p (F=1 is equivalent for the uniform dist.)
- 3. G=find(F>=1) and S=find(F<=1)
- 4. while ~isempty(S),
 - (a) i=G(1) and j=S(1)
 - (b) L(j)=i and F(i)=F(i)-(1-F(j))
 - (c) if F(i)<1-eps then G(1)=[] and $S=[S\ i]$
 - (d) S(1) = []

Rejection Method

General method

Aim: We will generate X with probabilities $p_i = P(X = i)$.

Assume Y with probabilities $q_i = P(Y = i)$ is easily generated and $C \ge \frac{p_i}{q_i}$ for all $i = 1, \ldots$

- 1. Generate Y with probability q_i and let $X^* = Y$.
- 2. Generate U_2 .

 If $U_2 \leq \frac{p_{X^\star}}{Cq_{X^\star}}$ output $X = X^\star$ else goto 1.

Rejection Method: Probability for X = i:

$$\begin{split} \mathsf{P}(X=i) &= \mathsf{P}(X^\star = i | \mathsf{accept}) \\ &= \frac{\mathsf{P}(X^\star = i, \mathsf{accept})}{\mathsf{P}(\mathsf{accept})} \\ &= \frac{\mathsf{P}(X^\star = i) \mathsf{P}(\mathsf{accept}) | X^\star = i)}{\mathsf{P}(\mathsf{accept})} \\ &= \frac{q_i \cdot \frac{p_i}{Cq_i}}{\sum_j q_j \frac{p_j}{Cq_j}} \\ &= p_i \end{split}$$

Excercise 2

Discrete random variables

In the excercise you can use a build in procedure for generating random numbers. Compare the results obtained in simulations with expected results. Use histograms (and tests).

- 1. Choose a value for the probability parameter p in the geometric distribution and simulate 10,000 outcomes. You can experiment with a small, moderate and large value if you like.
- 2. Simulate the 6 point distribution with

X	1	2	3	4	5	6
p_i	7/48	5/48	1/8	1/16	1/4	5/16

(a) by applying a direct (crude) method

- (b) by using the the rejction method
- (c) by using the Alias method
- 3. Compare the three different methods using adequate criteria, then discuss the results.
- 4. Give recommendations of how to choose the best suited method in different settings, i.e., discuss the advantages and drawbacks of each method. If time permits substantiate by running experiments.