1. Espacios vectoriales

Definición 1 (espacio vectorial). Un espacio vectorial sobre el campo \mathbb{F} es cualquier conjunto no vacío V que tiene una operación binaria llamada suma:

$$+: V \times V \to V$$

 $(u, v) \mapsto +(u, v) := u + v,$

tal que cumple las siguientes propiedades:

- S1) $u + v \in V \quad \forall u, v \in V$ cerradura de la suma.
- S2) $u + (v + w) = (u + v) + w \quad \forall u, v, w \in V$ asociatividad de la suma.
- S3) $u + v = v + u \quad \forall u, v \in V$ conmutatividad de la suma.
- S4) $\exists ! 0 \in V$ tal que v + 0 = 0 + v $\forall v \in V$ existencia del neutro aditivo para la suma.
- S5) $\forall v \in V \quad \exists ! v \in V \text{ tal que } v + (-v) = -v + v = 0$ existencia de inversos bajo la suma.

y una función

$$\begin{aligned} \cdot : & \mathbb{F} \times V \to V \\ (c, v) \mapsto \cdot (c, v) & \coloneqq c \cdot v, \end{aligned}$$

llamada producto por escalar que satisface:

- P1) $c \cdot v \in V \quad \forall c \in \mathbb{F} \text{ y } \forall v \in V \text{ cerradura del producto por escalar.}$
- P2) $(c+d) \cdot v = c \cdot v + d \cdot v \quad \forall c, d \in \mathbb{F} \text{ y } \forall v \in V \text{ distributividad de la suma de escalares.}$
- P3) $c \cdot (u+v) = c \cdot u + c \cdot v \quad \forall u, v \in V \text{ y } \forall c \in \mathbb{F}$ distributividad de la suma de vectores.
- P4) $(cd) \cdot v = c(d \cdot v) \quad \forall u \in V \ v \ \forall c, d \in \mathbb{F}$ associatividad del producto por escalar.
- P5) $\exists ! 1 \in \mathbb{F}$ tal que $1 \cdot v = v \quad \forall v \in V$ existencia del neutro multiplicativo del campo.

La estructura $(V, \mathbb{F}, +, \cdot)$ se llama espacio vectorial. Aunque también suele decirse que V es un espacio vectorial sobre el campo \mathbb{F} . Los elementos de V se llaman vectores y los elementos del campo \mathbb{F} , escalares.

Se abusa de la notación para simplificar el producto por escalar: en vez de escribir $c \cdot v$, ponemos cv.

En la literatura moderna de álgebra lineal, suele usarse la letra \mathbb{F} para denotar campos (fields) o cuerpos. pero cuando se quiere dar a entender que el campo es \mathbb{R} o \mathbb{C} , se acostumbra usar la letra \mathbb{K} .

Ejemplo 2 (el espacio vectorial \mathbb{R}^n sobre el campo \mathbb{R} con las operaciones usuales). Sean $u, v, w \in \mathbb{R}^n$ y $c, d \in \mathbb{R}$. Se definen la suma de vectores en \mathbb{R}^n

$$u + v = (u_1, u_2, \dots, u_n) + (v_1, v_2, \dots, v_n)$$

= $(u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$

y el producto por escalar

$$cv = c(v_1, v_2, \dots, v_n)$$

= $(cv_1, cv_2, \dots, cv_n)$.

S1) Cerradura de la suma: $iu + v \in \mathbb{R}^n$?

$$u + v = (u_1, \dots, u_n) + (v_1, \dots, v_n)$$

= $(u_1 + v_1, \dots, u_n + v_n) \in \mathbb{R}^n$,

porque para cada $j \in \{1, ..., n\}$, se tiene que $u_j + v_j \in \mathbb{R}$ por la cerradura de la suma en el campo.

S2) Asociatividad de la suma: $\xi(u+v) + w = u + (v+w)$?

$$(u+v)+w=((u_1,\ldots,u_n)+(v_1,\ldots,v_n))+(w_1,\ldots,w_n)$$

$$=(u_1+v_1,\ldots,u_n+v_n)+(w_1,\ldots,w_n) \text{ por definición de suma en } \mathbb{R}^n$$

$$=((u_1+v_1)+w_1,\ldots,(u_n+v_n)+w_n) \text{ por definición de suma en } \mathbb{R}^n$$

$$=(u_1+(v_1+w_1),\ldots,u_n+(v_n+w_n)) \text{ por asociatividad de la suma en } \mathbb{R}$$

$$=(u_1,\ldots,u_n)+(v_1+w_1,\ldots,v_n+w_n) \text{ por definición de suma en } \mathbb{R}^n$$

$$=(u_1,\ldots,u_n)+((v_1,\ldots,v_n)+(w_1,\ldots,w_n)) \text{ por definición de suma en } \mathbb{R}^n$$

$$=u+(v+w).$$

S3) Conmutatividad de la suma: $\lambda u + v = v + u$?

$$u+v=(u_1,\ldots,u_n)+(v_1,\ldots,v_n)$$

= (u_1+v_1,\ldots,u_n+v_n) por definición de suma en \mathbb{R}^n
= (v_1+u_1,\ldots,v_n+u_n) por conmutatividad de la suma en \mathbb{R}
= $(v_1,\ldots,v_n)+(u_1,\ldots,u_n)$ por definición de suma en \mathbb{R}^n
= $v+u$.

S4) Existencia del neutro aditivo: supongamos que $e=(e_1,\ldots,e_n)\in\mathbb{R}^n$ es tal que u+e=e+u=u, entonces:

$$u + e = (u_1, \dots, u_n) + (e_1, \dots, e_n) = (u_1 + e_1, \dots, u_n + e_n).$$

Pero como debe cumplirse que u + e = u, entonces

$$(u_1 + e_1, \dots, u_n + e_n) = (u_1, \dots, u_n).$$

Luego, por igualdad de n-tuplas se tiene que para cada $j \in \{1, ..., n\}$

$$u_i + e_i = u_i \implies e_i = 0$$

gracias a la existencia de los inversos aditivos del campo. De lo anterior concluimos que $e = (0, ..., 0) \in \mathbb{R}^n$. Ahora debemos ver si $e \in \mathbb{R}^n$ es único. Para esto, suponemos que existe otro neutro: $e' \in \mathbb{R}^n$ tal que u + e' = u. Entonces

$$e = e + e' = e'$$
.

S5) Existencia de inversos aditivos: supongamos que $v' \in \mathbb{R}^n$ es el inverso aditivo de v. Entonces debe cumplirse que v + v' = v' + v = e. Observemos que

$$(v_1 + v'_1, \dots, v_n + v'_n) = (0, \dots, 0)$$

Por igualdad de *n*-tuplas, para cada $j \in \{1, ..., n\}$ se tiene que

$$v_j + v_j' = 0 \implies v_j' = -v_j$$

por la existencia de inversos aditivos en el campo. Consecuentemente, v^\prime se denotará por -v y

$$-v=(-v_1,\ldots,-v_n).$$

Para ver la unicidad, supongamos que v' y v'' son, ambos, inversos aditivos de v. Entonces v' + v = 0 y v'' + v = 0. En consecuencia,

$$v' + v = v'' + v.$$

Si sumamos en ambos miembros v', que es uno de los inversos aditivos de v, tenemos que

$$(v' + v) + v' = (v'' + v) + v'$$

$$v' + (v + v') = v'' + (v + v')$$

$$v' + 0 = v'' + 0$$

$$v' = v''.$$

Luego, el inverso aditivo de v es único y se denotará por -v.

P1) Cerradura del producto por escalar: $cv \in \mathbb{R}^n$?

$$cv = c(v_1, \dots v_n)$$

= $(cv_1, \dots, cv_n) \in \mathbb{R}^n$

porque para cada $j \in \{1, ..., n\}$, se tiene que $cv_j \in \mathbb{R}$ por la cerradura del producto en el campo.

P2) Distributividad del producto por escalar con respecto a la suma de escalares: i(c+d)v = cv + dv?

$$(c+d)v = (c+d)(v_1, \ldots, v_n)$$

= $((c+d)v_1, \ldots, (c+d)v_n)$ por definición del producto por escalar
= $(cv_1 + dv_1, \ldots, cv_n + dv_n)$ por distributividad en el campo
= $(cv_1, \ldots, cv_n) + (dv_1, \ldots, dv_n)$ por definición de suma en \mathbb{R}^n
= $c(v_1, \ldots, v_n) + d(v_1, \ldots, v_n)$ por definición del producto por un escalar
= $cv + dv$.

P3) Distributividad del producto por escalar con respecto a la suma de vectores: $i_i c(u + v) = cu + cv$?

$$c(u+v) = c((u_1, \ldots, u_n) + (v_1, \ldots v_n))$$

 $= c(u_1 + v_1, \ldots, u_n + v_n)$ por definición de suma en \mathbb{R}^n
 $= (c(u_1 + v_1), \ldots, c(u_n + v_n))$ por definición del producto por escalar
 $= (cu_1 + cv_1, \ldots, cu_n + cv_n)$ por distributividad en el campo
 $= (cu_1, \ldots, cu_n) + (cv_1, \ldots, cv_n)$ por definición de suma en \mathbb{R}^n
 $= c(u_1, \ldots, u_n) + c(v_1, \ldots, v_n)$ por definición del producto por escalar
 $= cu + cv$.

P4) Asociatividad del producto por escalar: i(cd)v = c(dv)?

$$(cd)v = (cd)(v_1, \ldots, v_n)$$

= $((cd)v_1, \ldots, (cd)v_n)$ por definición del producto por escalar
= $(c(dv_1), \ldots, c(dv_n))$ por asociatividad del producto en el campo
= $c(dv_1, \ldots, dv_n)$ por definición del producto por escalar
= $c(dv)$.

P5) Existencia de la identidad escalar: sabemos que \mathbb{R} , por ser campo, tiene un elemento neutro multiplicativo o identidad, denotado por 1. Sin embargo, vamos a encontrar dicho elemento mediante el análisis siguiente:

sea $k \in \mathbb{R}$ la identidad, tal que kv = v para todo v de V. Entonces

$$kv = k(v_1, \dots, v_n)$$

= (kv_1, \dots, kv_n) .

Pero kv = v debe satisfacerse, entonces

$$(kv_1,\ldots,kv_n)=(v_1,\ldots,v_n).$$

Por igualdad de n-tuplas, para caja $j\in\{1,\ldots,n\}$ se tiene que

$$kv_j = v_j \implies k = 1$$

por la existencia de inversos multiplicativos en el campo (para todo $v_j \in \mathbb{R}, v_j \neq 0$, su inverso multiplicativo existe y es $v_j^{-1} \in \mathbb{R}$ tal que $v_j v_j^{-1} = 1$). Consecuentemente, k = 1.

Para mostrar la unicidad, supongamos que existe otro escalar $k' \in \mathbb{R}$ tal que k'v = v para todo $v \in V$. Entonces 1v = v y k'v = v, por lo que

$$1v = k'v$$

$$(1v_1, \dots, 1v_n) = (k'v_1, \dots, k'v_n).$$

Si tomamos la j-ésima componente de cada miembro, tenemos que $1v_j = k'v_j$ para cada $j \in \{1, \ldots, n\}$. Entonces para cualquier $v_j \neq 0$ existe su inverso multiplicativo v_j^{-1} tal que $v_j v_j^{-1} = 1$. Así, 1 = k' y el escalar identidad es único.

Por lo anterior podemos concluir que $(\mathbb{R}^n, \mathbb{R}, +, \cdot)$ es un espacio vectorial real.