B.A.BA

EXERCICE 1.

Reconnaître les endomorphismes de \mathbb{R}^3 dans la liste suivante,

- 1. $f_1:(x,y,z)\longmapsto(x,xy,x-z);$
- **2.** $f_2:(x,y,z) \longmapsto (x+y,2x+5z,0);$
- 3. $f_3:(x,y,z) \longmapsto (x-3y,x+y,z+2)$.

EXERCICE 2.

Parmi les applications suivantes, lesquelles sont linéaires?

- **1.** $id_{\mathbb{E}}: \mathbb{E} \longrightarrow \mathbb{E}, \ u \longmapsto u$, où \mathbb{E} est un \mathbb{K} -ev.
- 2. $F: \mathscr{C}(\mathbb{R}) \longrightarrow \mathscr{C}(\mathbb{R}), f \longmapsto \exp \circ f.$
- 3. G: $\mathscr{C}(\mathbb{R}) \longrightarrow \mathscr{C}(\mathbb{R}), f \longmapsto f \times \cos$.
- 4. $H: \mathscr{C}^2(\mathbb{R}) \longrightarrow \mathscr{C}(\mathbb{R}), f \longmapsto f'' f.$
- **5.** $j: F \longrightarrow E, u \mapsto u$, où F est un sev d'un K-ev E.
- **6.** $T: \mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{n+1}, (u_k)_{k \in \mathbb{N}} \longmapsto (u_0, ..., u_n).$
- 7. S: $\mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{\mathbb{N}}$, $(u_k)_{k \in \mathbb{N}} \longmapsto (u_{k+1})_{k \in \mathbb{N}}$.

EXERCICE 3.

Soient f et g les endomorphismes de \mathbb{R}^2 définis par

$$g:(x,y) \longrightarrow (y,x)$$
 et $f:(x,y) \longrightarrow (x+y,2x)$.

- **1.** Montrer que f et g sont des isomorphismes de \mathbb{R}^2 . Déterminer f^{-1} et g^{-1} .
- **2.** On note $h = f \circ g g \circ f$. Justifier que $h \in \mathcal{L}(\mathbb{R}^2)$.
- **3.** A-t-on $f \circ g = g \circ f$? h est-elle injective?
- **4.** L'application h est-elle surjective ?

Exercice 4.★

Soient E un \mathbb{R} -ev, u et v dans $\mathcal{L}(E)$ tels que

$$u \circ v - v \circ u = u$$
.

Etablir que, pour tout k dans \mathbb{N}^* :

$$u^k \circ v - v \circ u^k = k u^k.$$

EXERCICE 5.

Soit f, un endomorphisme de E. Pour tout entier $k \ge 2$, on note

$$f^k = \underbrace{f \circ \cdots \circ f}_{k \text{ fois}}.$$

On suppose qu'il existe un entier $n \ge 2$ tel que f^n soit l'application identiquement nulle.

- **1.** Soit $x \in \text{Ker}(I f)$. Démontrer que $f^k(x) = x$ pour tout entier $k \ge 1$. En déduire que I f est injectif.
- 2. Simplifier les expressions

$$(I - f) \circ (I + f + f^2 + \dots + f^{n-1})$$

et $(I + f + f^2 + \dots + f^{n-1}) \circ (I - f)$

en utilisant les règles de calcul dans L(E) et en déduire que I-f est un automorphisme.

3. Démontrer que, pour tout entier $k \ge 1$, l'endomorphisme $\mathbf{I} - f^k$ est inversible. On précisera l'expression de son inverse.

Isomorphismes

EXERCICE 6.

Soit \mathbb{K} un corps. Pour $\sigma \in S_n$, on pose :

$$f_{\sigma}: \mathbb{K}^n \longrightarrow \mathbb{K}^n$$

 $(x_1, \dots, x_n) \longmapsto (x_{\sigma}(1), \dots, x_{\sigma}(n))$

On munit \mathbb{K}^n de la structure d'algèbre pour les opérations composante par composante.

- 1. Montrer que f_{σ} est un automorphisme d'algèbre.
- 2. Soit ϕ un automorphisme d'algèbre de \mathbb{K}^n . Montrer qu'il existe $\sigma \in \mathbb{S}_n$ tel que $\phi = f_{\sigma}$.
- 3. Trouver les sous-espaces de \mathbb{K}^n stables par tous les endomorphismes f_{σ} avec $\sigma \in \mathbb{S}_n$.

Exercice 7.

Soit f l'endomorphisme de \mathbb{R}^3 défini par

$$(x, y, z) \longrightarrow (2x - y, -x + y, x - z).$$

Prouver que f est un isomorphisme de \mathbb{R}^3 et expliciter son isomorphisme réciproque f^{-1} .

Exercice 8.★

Soient f_k les fonctions de \mathbb{R} dans \mathbb{R} définies par

$$\forall k \in \{0,1,2\}, f_k : x \longmapsto x^k e^{2x}.$$

On note E le sous espace vectoriel de $\mathbb{R}^{\mathbb{R}}$ engendré par ces trois vecteurs.

- 1. Quelles est la dimension de E ? En donner une base.
- 2. On note D l'opérateur de dérivation défini par

$$D: f \in E \longrightarrow f'$$
.

Prouver que $D \in \mathcal{L}(E)$.

3. Montrer que $D \in GL(E)$.

Noyau et image d'une application linéaire

EXERCICE 9.

Soit Φ l'application de \mathbb{R}^3 dans \mathbb{R}^4 définie par

$$(x, y, z) \longrightarrow (x+z, y-z, x+y+z, x-y-z).$$

- **1.** Montrer que Φ est linéaire.
- **2.** Φ est-elle injective ?
- **3.** Etudier la surjectivité de Φ . Donner une base de $\text{Im}(\Phi)$.

Exercice 10.

Soient $\alpha \in \mathbb{R}$ et f_{α} l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^3 définie par

$$(x, y, z, t) \longrightarrow (x + y + \alpha z + t, x + z + t, y + z).$$

Déterminer en fonction de $\alpha \in \mathbb{R}$ des bases des espaces vectoriels $\text{Ker}(f_{\alpha})$ et $\text{Im}(f_{\alpha})$.

Exercice 11.

Soit f l'endomorphisme de \mathbb{R}^3 défini par

$$f((x, y, z)) = (x, 0, y).$$

On note $(e_k)_{1 \le k \le 3}$ la base canonique de \mathbb{R}^3 .

- **1.** Déterminer des bases de Im(f) et Ker(f).
- **2.** On note $E = \{(x, y, 0) \in \mathbb{R}^3, (x, y) \in \mathbb{R}^2\}$. Déterminer des bases des sous-espaces vectoriels f(E) et $f^{-1}(E)$.

Exercice 12.★

Soient E l'ensemble des applications continues de \mathbb{R}_+ dans \mathbb{R} et ψ l'application de E dans E qui à f associe l'application g de \mathbb{R}_+ dans \mathbb{R} définie par

$$\forall x \ge 0, \ g(x) = \int_0^x 2t f(t) dt.$$

- 1. Justifier que E est un espace vectoriel réel pour les opérations usuelles sur les fonctions.
- **2.** Quelle est la dimension de E ?
- 3. Montrer que ψ est un endomorphisme de E.
- 4. Etudier l'injectivité puis la surjectivité de ψ . Formuler en termes de contre-exemple les résultats précédents.
- **5.** Soit $\lambda \in \mathbb{R}$. Déterminer le sous-espace vectoriel $\text{Ker}(\psi \lambda i d_{\text{E}})$.

EXERCICE 13.

On considère $\mathbb C$ comme un $\mathbb R$ -espace vectoriel. On définit l'application u par

$$u: z \longmapsto iz - i\overline{z}$$
.

- **1.** Prouver que $u \in \mathcal{L}(\mathbb{C})$.
- **2.** Déterminer Ker(u) et Im(u).
- 3. Calculer u^2 .
- 4. En déduire que l'endomorphisme $id_{\mathbb C}+2u$ est inversible et calculer son inverse.

Exercice 14.

Soient E un \mathbb{C} -espace vectoriel, $u \in \mathcal{L}(E)$ et $X^2 + aX + b$ un polynôme à coefficients complexes.

1. On note r_1 et r_2 les deux racines (éventuellement confondues) de $X^2 + aX + b$. Montrer que

$$u^2 + a u + b \operatorname{Id}_{E} = (u - r_1 \operatorname{Id}_{E}) \circ (u - r_2 \operatorname{Id}_{E}) = (u - r_2 \operatorname{Id}_{E}) \circ (u - r_1 \operatorname{Id}_{E})$$

- **2.** On pose $F = \text{Ker}(u^2 + au + b \text{ Id}_E)$, $F_1 = \text{Ker}(u r_1 \text{ Id}_E)$ et $F_2 = \text{Ker}(u r_2 \text{ Id}_E)$. Montrer que $F_1 \subset F$ et $F_2 \subset F$.
- **3.** A partir de maintenant, on supose que les deux racines r_1 et r_2 sont *distinctes*. Montrer que $F = F_1 \oplus F_2$.
- **4. Application :** Dans cette question, on suppose que E est le \mathbb{C} -espace vectoriel des fonctions de \mathbb{R} dans \mathbb{C} de classe \mathscr{C}^{∞} et que u est l'endomorphisme de E qui à f associe f'. On considère l'équation différentielle (\mathscr{E}) y'' + ay' + by = 0 dont on cherche les solutions à valeurs complexes.
 - **a.** Montrer que toute solution de (\mathcal{E}) est de classe \mathcal{C}^{∞} sur \mathbb{R} .
 - **b.** Montrer que l'ensemble des solutions de (\mathcal{E}) est F.
 - **c.** Déterminer F_1 et F_2 .
 - **d.** En déduire le résultat du cours déjà connu : les solutions de (\mathcal{E}) sont les fonctions de \mathbb{R} dans \mathbb{C} du type $t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t}$ avec λ et μ décrivant \mathbb{C} .

Exercice 15.

Pour $f \in \mathcal{C}([0,1],\mathbb{R})$ et $x \in [0,1]$, on pose $\Phi(f)(x) = \int_0^1 \min(x,t) f(t) dt$.

- **1.** Prouver que Φ est un endomorphisme de $\mathscr{C}([0,1],\mathbb{R})$.
- **2.** En utilisant la relation de Chasles, trouver une autre expression de $\Phi(f)(x)$. En déduire que $\Phi(f)$ est de classe \mathscr{C}^2 et exprimer $\Phi(f)''$ en fonction de f.
- 3. En déduire $Ker\Phi$ et $Im\Phi$.

EXERCICE 16.

On considère le sous-espace vectoriel F de $\mathscr{C}^1(\mathbb{R})$ engendré par la famille $\mathscr{B}=(\sin,\cos,\sinh,\cosh)$.

- **1.** Montrer que \mathcal{B} est une base de F.
- **2.** On note D l'opérateur de dérivation. Montrer que F est stable par D. On notera d l'endomorphisme de F induit par D.
- **3.** On note M la matrice de d dans la base \mathcal{B} . Calculer M^n pour tout $n \in \mathbb{N}$.
- **4.** Montrer que d est un automorphisme de F. Écrire la matrice de d^{-1} dans la base \mathcal{B} .
- **5.** On note f = d Id. Déterminer l'image et le noyau de f.
- **6.** On note g = d + Id. Déterminer l'image et le noyau de $g \circ f$.

Exercice 17.

Déterminer une base du noyau et de l'image des applications linéaires définies par :

- 1. f(x, y, z) = (2x + y + z, x + 2y + z, x + y + 2z);
- **2.** f(x, y, z) = (y + z, x + z, x + y);
- 3. f(x,y,z)=(x+y+z,2x-y-z,x+2y+2z);
- **4.** f(x, y, z) = (x + 2y z, x + 2y z, 2x + 4y 2z).

EXERCICE 18.

Soient

$$f: \mathbb{R}^3 \to \mathbb{R}^3, \ (x, y, z) \mapsto (x, y, 0),$$
$$g: \mathbb{R}^2 \to \mathbb{R}^3, \ (x, y) \mapsto (x - y, x + y, x + 2y)$$

et

$$h: \mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto x - 3y + 2z.$$

- 1. Montrer que f, g et h sont linéaires.
- 2. Déterminer noyau et image dans chaque cas.

EXERCICE 19.

Soient E un \mathbb{R} -ev de dimension finie, f et g dans $\mathcal{L}(E)$. Etablir que

$$\operatorname{Im}(f) + \operatorname{Ker}(g) = \operatorname{E} \iff \operatorname{Im}(g \circ f) = \operatorname{Im}(g).$$

Exercice 20.★

Soient E et F deux \mathbb{R} -ev, $f \in L(E, F)$ et $g \in \mathcal{L}(F, E)$ telles que

$$f \circ g \circ f = f$$
 et $g \circ f \circ g = g$.

Etablir que

$$E = Ker(f) \oplus Im(g)$$
 et $F = Ker(g) \oplus Im(f)$.

Exercice 21.

Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications linéaires. Que pensez vous des propositions suivantes ?

- **1.** $\operatorname{Ker}(g \circ f) = \operatorname{Ker}(f) \cap \operatorname{Ker}(g)$;
- **2.** $\operatorname{Ker}(g \circ f) \subset \operatorname{Ker}(f)$;
- 3. $\operatorname{Ker}(g \circ f) \subset \operatorname{Ker}(f)$;
- **4.** $\operatorname{Im}(f) \subset \operatorname{Ker}(g)$ si et seulement si $g \circ f = 0$.

Exercice 22.★★

Soient E un espace vectoriel sur $\mathbb K$ et f appartenant à $\mathcal L(\mathsf E)$. Montrer l'équivalence suivante

$$\operatorname{Ker}(f^2) = \operatorname{Ker}(f)$$
 si et seulement si $\operatorname{Im}(f) \cap \operatorname{Ker}(f) = \{0\}.$

EXERCICE 23.

Soient E un K-ev, f et g deux endomorphismes de E tels que $f \circ g = id_E$.

- **1.** Etablir que f est surjective et g injective.
- **2.** Montrer que $p = g \circ f$ est un projecteur de E.
- 3. Etablir que Im(p) = Im(g) et Ker(p) = Ker(f).
- **4.** Montrer que

$$Ker(f) \oplus Im(g) = E$$
.

Exercice 24.

Soient E un \mathbb{K} -ev et $f \in \mathcal{L}(\mathsf{E})$. Montrer que

$$\operatorname{Ker}(f) \cap \operatorname{Im}(f) = f(\operatorname{Ker}(f \circ f)).$$

EXERCICE 25.

Soit u un endomorphisme de E, pour tout entier naturel p, on notera $I_p = \operatorname{Im} u^p$ et $K_p = \operatorname{Ker} u^p$.

- **1.** Montrer que : $\forall p \in \mathbb{N}$, $K_p \subset K_{p+1}$ et $I_{p+1} \subset I_p$.
- **2.** On suppose que E est de dimension finie et u injectif. Déterminer I_p et K_p pour tout $p \in \mathbb{N}$.
- **3.** On suppose que E est de dimension finie $n \in \mathbb{N}$.
 - **a.** Montrer qu'il existe un plus petit entier naturel $r \le n$ tel que : $K_r = K_{r+1}$.
 - **b.** Montrer qu'alors : $I_r = I_{r+1}$ et que : $\forall p \in \mathbb{N}$, $K_r = K_{r+p}$ et $I_r = I_{r+p}$.
 - **c.** Montrer que : $E = K_r \oplus I_r$.
- **4.** Lorsque E n'est pas de dimension finie, existe-t-il un plus petit entier naturel r tel que $\mathbf{K}_r = \mathbf{K}_{r+1}$?

EXERCICE 26.

Soient f et g deux endomorphismes d'un espace vectoriel E.

- **1.** Montrer que si $g \circ f$ est surjective, alors g est surjective.
- **2.** Montrer que si g est surjective et E = Im f + Ker g, alors $g \circ f$ est surjective.
- 3. Formuler des énoncés similaires pour l'injectivité.

Exercice 27.

Soient u et v deux endomorphismes d'un espace vectoriel E qui commutent.

- **1.** Montrer que Im u et Ker u sont stables par v.
- **2.** On suppose que $E = \operatorname{Ker} u \oplus \operatorname{Ker} v$. Montrer que $\operatorname{Im} u \subset \operatorname{Ker} v$ et que $\operatorname{Im} v \subset \operatorname{Ker} u$.
- 3. Montrer que les inclusions précédentes sont des égalités si E est de dimension finie.

EXERCICE 28.

Soient E et F deux espaces vectoriels, $f \in \mathcal{L}(E,F)$, G et H deux sous-espaces vectoriels de E.

- **1.** Montrer que f(G + H) = f(G) + f(H).
- **2.** Montrer que si G et H sont en somme directe et que f est injective, alors $f(G \oplus H) = f(G) \oplus f(H)$.

Exercice 29.

Soient E un espace vectoriel et $f \in \mathcal{L}(E)$. Montrer l'équivalence suivante :

$$E = \operatorname{Im} f + \operatorname{Ker} f \iff \operatorname{Im} f = \operatorname{Im} f^2$$

Exercice 30.

Soient E un espace vectoriel et f, g deux projecteurs de E.

- **1.** Montrer que Im f = Im g si et seulement si $f \circ g = g$ et $g \circ f = f$.
- 2. Donner une condition nécessaire et suffisante pour que Ker f = Ker g.

Exercice 31.

Soient E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Montrer que les propositions suivantes sont équivalentes :

- (i) $E = \operatorname{Im} f \oplus \operatorname{Ker} f$;
- (ii) $E = \operatorname{Im} f + \operatorname{Ker} f$;
- (iii) $\operatorname{Im} f = \operatorname{Im} f^2$;
- (iv) $\operatorname{Ker} f = \operatorname{Ker} f^2$.

Exercice 32.

Soit E un espace vectoriel de dimension finie. Montrer l'équivalence entre les propositions suivantes :

- (i) il existe $f \in \mathcal{L}(E)$ tel que Ker $f = \operatorname{Im} f$;
- (ii) dim E est paire.

Exercice 33.

Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

- **1.** Montrer que Ker $f \subset \text{Ker } g \circ f$.
- **2.** Montrer que $\operatorname{Im} g \circ f \subset \operatorname{Im} g$.
- 3. Montrer que $g \circ f = 0 \iff \operatorname{Im} f \subset \operatorname{Ker} g$.

Endomorphismes nilpotents

Exercice 34.★

Soient E un espace vectoriel sur $\mathbb K$ de dimension finie et f un endomorphisme de E. On souhaite prouver l'équivalence des deux propriétés suivantes :

- (*) Il existe un projecteur p de E tel que $f = p \circ f f \circ p$ (**) $f^2 = 0$
- **1.** Supposons (*) vérifiée. Prouver que $p \circ f \circ p = 0$, puis que $f = p \circ f$. En déduire que (**) est vérifiée.
- 2. Supposons (**) vérifiée. Soit S un supplémentaire de Ker f dans E et p le projecteur sur Ker(f) parallèlement à S. Prouver la propriété (*).

Exercice 35.★★

Soit E un espace vectoriel sur \mathbb{K} de dimension finie n. Un endomorphisme u de E est dit nilpotent s'il existe $p \in \mathbb{N}$ tel que $u^p = 0$.

- **1.** Donner des exemples d'endomorphismes nilpotents de \mathbb{R}^2 puis de \mathbb{R}^3 .
- 2. Montrer qu'un endomorphisme nilpotent n'est jamais un isomorphisme.
- **3.** Soit $u \in \mathcal{L}(E)$ tel que

$$\forall x \in E, \exists p_x \in \mathbb{N}, u^{p_x}(x) = 0.$$

Montrer que u est nilpotent.

4. Montrer que si u est un endomorphisme nilpotent alors $id_E - u \in GL(E)$.

Exercice 36.★

Soient E un espace vectoriel sur $\mathbb K$ de dimension 3 et f appartenant à $\mathscr L(E)$.

- **1.** On suppose dans cette question que $f^2 = 0$ et $f \neq 0$. Calculer le rang de f.
- 2. On suppose dans cette question que $f^3 = 0$ et $f^2 \neq 0$. Calculer le rang de f.

Exercice 37.★★

Soient E un espace vectoriel sur \mathbb{K} et u un endomorphisme de E.

1. On suppose dans cette question l'existence d'un *projecteur p* de E tel que

$$u = p \circ u - u \circ p$$
.

- **a.** Démontrer que $p \circ u \circ p = 0$. On précisera de quel 0 il s'agit.
- **b.** Prouver que $u \circ p = 0$.
- **c.** En déduire que $u^2 = 0$.
- **2.** On suppose dans cette question que $u^2 = 0$.
 - **a.** Démontrer que $\text{Im}(u) \subset \text{Ker}(u)$.
 - b. Soient H et S deux sous-espaces vectoriels supplémentaires dans E tels que

$$\operatorname{Im}(u) \subset \operatorname{H} \subset \operatorname{Ker}(u)$$
.

En notant q la projection sur H parallèlement à S , reconnaître l'application linéaire $q\circ u-u\circ q$.

3. Donner une condition n'ecessaire et suffisante pour qu'il existe un projecteur p de E tel que

$$u = p \circ u - u \circ p$$
.

Exercice 38.★

Soient E un espace vectoriel de dimension n et f une application linéaire de E dans lui-même. Montrer que les deux assertions qui suivent sont équivalentes :

1.
$$\operatorname{Ker}(f) = \operatorname{Im}(f)$$
.

2.
$$f^2 = 0$$
, $n = 2 \operatorname{rg}(f)$.

Exercice 39.

Soit E un espace vectoriel de dimension finie et f un endomorphisme de E nilpotent d'indice n. On pose

$$\begin{array}{ccc} \Phi \colon \ \mathscr{L}(\mathsf{E}) & \longrightarrow & \mathscr{L}(\mathsf{E}) \\ g & \longmapsto & f \circ g - g \circ f \end{array}$$

- 1. Montrer que $\Phi^p(g) = \sum_{k=0}^p (-1)^k \binom{p}{k} f^{p-k} \circ g \circ f^k$. En déduire que Φ est nilpotent.
- 2. Soit $a \in \mathcal{L}(E)$. Montrer qu'il existe $b \in \mathcal{L}(E)$ tel que $a \circ b \circ a = a$. En déduire l'indice de nilpotence de Φ .

Projecteurs, symétries et homothéties

Exercice 40.

On note $E = \mathbb{R}^4$,

$$F = \{(x, y, z, t) \in E \mid z = y + t = 0\}$$

et G =
$$\{(x, y, z, t) \mid x = y + z = 0\}.$$

- **1.** Prouver que F et G sont des plans vectoriels de E.
- 2. Montrer que F et G sont supplémentaires dans E.
- 3. Donner les expressions analytiques de p et s, respectivement projecteur sur F parallèlement à G et symétrie par rapport à F parallèlement à G.

Exercice 41.★

On note $E = \mathbb{R}^{\mathbb{R}}$, \mathscr{A} le sous-espace vectoriel de E constitué des fonctions affines et on pose

$$\mathcal{N} = \Big\{ f \in \mathbf{E} \ \Big| \ f(0) = f(1) = 0 \Big\}.$$

- 1. Montrer que les sous-espaces vectoriel $\mathscr A$ et $\mathscr N$ sont supplémentaires dans E.
- 2. Expliciter le projecteur sur ${\mathscr A}$ parallèlement à ${\mathscr N}.$
- 3. Expliciter la symétrie par rapport à ${\mathscr A}$ parallèlement à ${\mathscr N}.$

Exercice 42.★

Soient E un espace vectoriel sur \mathbb{K} , p et q deux projecteurs de E.

1. Prouver que

$$p \circ q + q \circ p = 0$$
 si et seulement si $p \circ q = q \circ p = 0$.

2. Montrer que p + q est un projecteur si et seulement si

$$p \circ q = q \circ p = 0.$$

3. On suppose que p + q est un projecteur de E. Montrer que

$$\operatorname{Im}(p+q) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$$

et

$$\operatorname{Ker}(p+q) = \operatorname{Ker}(p) \cap \operatorname{Ker}(q)$$
.

Exercice 43.★

Soient E un espace vectoriel sur \mathbb{K} , p et q deux projecteurs de E tels que $p \circ q = q \circ p$.

- **1.** Prouver que $\psi = p \circ q$ est un projecteur de E.
- **2.** Montrer que $\operatorname{Im}(\psi) = \operatorname{Im}(p) \cap \operatorname{Im}(q)$.
- 3. Etablir que $Ker(\psi) = Ker(p) + Ker(q)$.

Exercice 44.★★

Soit E un espace vectoriel de dimension finie et A une partie finie de GL(E) stable par composition. On pose $p = \frac{1}{|\mathbf{A}|} \sum_{f \in \mathbf{A}} f$. Montrer que p est un projecteur.

EXERCICE 45.

Soit E un \mathbb{K} -espace vectoriel et p un projecteur de E. Pour quelles valeurs de $\lambda \in \mathbb{K}$, $\mathrm{Id} + \lambda p$ est-il un automorphisme?

Exercice 46.

Soient p et q deux projecteurs d'un espace vectoriel E qui commutent.

- **1.** Montrer que $p + q p \circ q$ et $p \circ q$ sont des projecteurs.
- 2. Montrer que $\operatorname{Ker}(p \circ q) = \operatorname{Ker} p + \operatorname{Ker} q$ et que $\operatorname{Im}(p \circ q) = \operatorname{Im} p \cap \operatorname{Im} q$.
- 3. Montrer que $\operatorname{Ker}(p+q-p\circ q)=\operatorname{Ker} p\cap \operatorname{Ker} q$ et que $\operatorname{Im}(p+q-p\circ q)=\operatorname{Im} p+\operatorname{Im} q$.

Exercice 47.

Soient H_1 et H_2 deux sous-espaces supplémentaires de $\mathcal{L}(\mathbb{R}^n)$ vérifiant la propriété suivante :

$$\forall (f,g) \in H_1 \times H_2, f \circ g + g \circ f = 0$$

- **1.** Justifier qu'il existe $(p_1, p_2) \in H_1 \times H_2$ tel que $p_1 + p_2 = Id$.
- **2.** Montrer que p_1 et p_2 sont des projecteurs.
- 3. Montrer que dim $H_1 \le (n \operatorname{rg} p_2)^2$ et dim $H_2 \le (n \operatorname{rg} p_1)^2$.
- **4.** Quel est le nombre de choix possibles pour le couple (H_1, H_2) ?

EXERCICE 48.

Soit E un \mathbb{R} -espace vectoriel. Soit $u \in \mathcal{L}(E)$ tel que $u^2 - 3u + 2\operatorname{Id}_E = 0$.

- **1.** Montrer que $u \in GL(E)$ et exprimer u^{-1} en fonction de u.
- **2.** On pose $f = u \text{Id}_E$ et $g = 2 \text{Id}_E u$. Montrer que $f \circ g = g \circ f = 0$.
- 3. Vérifier que f et g sont des projecteurs.
- **4.** Montrer que Im f = Ker g et Im g = Ker f.
- **5.** Montrer que $E = \operatorname{Ker} f \oplus \operatorname{Ker} g$ et $E = \operatorname{Im} f \oplus \operatorname{Im} g$.

Exercice 49.

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel \mathcal{E} de dimension $n \ge 1$ qui commute avec tous les endomorphismes de \mathcal{E} , c'est-à-dire

$$\forall g \in \mathcal{L}(E), \quad f \circ g = g \circ f$$

- **1.** Soit u un vecteur non nul de E. Justifier l'existence d'un supplémentaire H_u de vect(u) dans E. Quelle est la dimension de H_u ?
- **2.** En considérant le projecteur p_u sur vect(u) parallèlement à H_u , montrer qu'il existe $\lambda_u \in \mathbb{K}$ tel que $f(u) = \lambda_u u$.
- 3. Soit $v \in E$ non colinéaire à u. On montre de même qu'il existe $\lambda_v \in \mathbb{K}$ tel que $f(v) = \lambda_v v$. Montrer que $\lambda_u = \lambda_v$. On pourra considérer le vecteur u + v.
- 4. Reprendre la question précédente lorsque v est non nul et colinéaire à u.
- **5.** En déduire que les endomorphismes de E commutant avec tous les endomorphismes sont les homothéties.

Exercice 50.

On pose $E = \mathbb{R}^{\mathbb{R}}$. Montrer que l'application s qui à une fonction $f \in E$ associe l'application $x \mapsto f(-x)$ est une symétrie dont on précisera les éléments caractéristiques.

Rang d'une application linéaire

EXERCICE 51.

Soient E un espace vectoriel réel de dimension n , f et g deux endomorphismes tels que

$$f + g = i d_E$$
 et $rg(f) + rg(g) \le n$.

1. Montrer que

$$E = Im(f) \oplus Im(g)$$
.

2. Après avoir justifié l'égalité $f\circ g=g\circ f$, prouver que f et g sont des projecteurs de E.

EXERCICE 52.

Soient E un \mathbb{K} -ev de dimension finie, f et g deux endomorphismes de E.

1. Etablir que

$$\dim(\operatorname{Ker}(f \circ g)) \leq \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Ker}(g)).$$

2. Montrer que l'inégalité précédente est une égalité si et seulement si $\operatorname{Ker}(f) \subset \operatorname{Im}(g)$.

EXERCICE 53.

Soient $u, v \in \mathcal{L}(E)$ où E est un espace vectoriel de dimension finie. Déterminer le rang de l'endomorphisme de $\mathcal{L}(E)$ $\Phi: f \mapsto v \circ f \circ u$.

Exercice 54.

Soient $f \in \mathcal{L}(E,F)$, $g \in \mathcal{L}(F,G)$ et $h \in \mathcal{L}(G,H)$ où E,F,G,H sont des espaces vectoriels de dimension finie. Montrer que

$$rg(g \circ f) + rg(h \circ g) \leq rg(h \circ g \circ f) + rg(g)$$

Exercice 55.★

Soient E et F deux espaces vectoriels, f et g deux applications linéaires de rang fini de E dans F.

1. Montrer que

$$|\operatorname{rg}(f) - \operatorname{rg}(g)| \le \operatorname{rg}(f+g) \le \operatorname{rg}(f) + \operatorname{rg}(g)$$

2. Prouver que rg(f+g) = rg(f) + rg(g) si et seulement si

$$\operatorname{Im}(f) \cap \operatorname{Im}(g) = \{0_{F}\}$$
 et $\operatorname{Ker}(f) + \operatorname{Ker}(g) = \operatorname{E}$

Formes linéaires et hyperplans

Exercice 56.

Soient E un \mathbb{K} -espace vectoriel et f un endomorphisme de E dont l'image est une droite vectorielle vect(u) avec $u \neq 0_{\mathbb{F}}$. On pose alors :

$$\forall x \in E, f(x) = \varphi(x)u$$

Montrer que φ est une forme linéaire sur E et qu'il existe $\lambda \in \mathbb{K}$ tel que $f^2 = \lambda f$.

Exercice 57.

Soit E un \mathbb{R} -espace vectoriel de dimension finie n, avec $n \ge 2$. On rappelle que E^* est l'ensemble des formes linéaires sur E.

- **1.** Soient φ et ψ deux éléments non nuls de E* tels que $\text{Ker}(\varphi) = \text{Ker}(\psi)$. Montrer qu'il existe un réel non nul λ tel que $\psi = \lambda \varphi$.
- **2.** Soit H un hyperplan de E. Montrer que l'ensemble D(H) des éléments de E* dont le noyau contient H est un sous-espace vectoriel de E* dont on précisera la dimension.
- 3. On appelle transvection de E tout endomorphisme f de E possédant les deux propriétés suivantes :
 - ► $Ker(f Id_E)$ est un hyperplan de E;
 - $ightharpoonup Im(f-Id_E) \subset Ker(f-Id_E).$

On appelle $\text{Ker}(f - \text{Id}_{\text{E}})$ la base de f et $\text{Im}(f - \text{Id}_{\text{E}})$ la direction de f.

- a. Soit φ un élément non nul de E* et u un vecteur non nul de Ker (φ) . Pour tout vecteur x de E, on pose $f(x) = x + \varphi(x)u$. Justifier l'existence de u et montrer que f est une transvection dont on précisera la base et la direction.
- **b.** Réciproquement, soit f une transvection de E. Montrer qu'il existe un élément non nul φ de E* et un vecteur u non nul de $\operatorname{Ker}(\varphi)$ tels que $f(x) = x + \varphi(x)u$ pour tout $x \in E$.

EXERCICE 58.

Soient E un espace vectoriel de dimension $n \in \mathbb{N}^*$ et $\varphi_1, \dots, \varphi_n$ des formes linéaires sur E. On suppose qu'il existe $x \in E$ non nul tel que

$$\forall i \in [1, n], \varphi_i(x) = 0$$

Montrer que la famille $(\varphi_1,...,\varphi_n)$ est liée.

Exercice 59.

On considère un espace vectoriel E de dimension finie.

1. Soit F un sous-espace vectoriel de E. On note

$$G = \{ \varphi \in E^*, \forall x \in F, \varphi(x) = 0 \}$$

Montrer que G est un sous-espace vectoriel de E^* et que $\dim F + \dim G = \dim E$.

2. Soit F un sous-espace vectoriel de E*. On note

$$G = \{x \in E, \forall \varphi \in F, \varphi(x) = 0\}$$

Montrer que G est un sous-espace vectoriel de E et que $\dim F + \dim G = \dim E$.

3. On se donne des éléments $\varphi_1, \dots, \varphi_m$ de E*. Montrer que

$$\dim\left(\bigcap_{i=1}^{m} \operatorname{Ker} \varphi_{i}\right) + \operatorname{rg}(\varphi_{1}, \dots, \varphi_{m}) = \dim E$$

Exercice 60.★

Soient E un espace vectoriel sur \mathbb{K} , f et g deux formes linéaires sur E non nulles.

1. Prouver que

$$Ker(f) \subset Ker(g)$$

si et seulement si il existe $\lambda \in \mathbb{K}^*$ tel que $g = \lambda f$.

2. En déduire une *condition nécessaire et suffisante* pour que f et g définissent le même hyperplan H. En déduire toutes les équations de H.