Равномерное распределение

Пример. Наблюдалось следующее распределение по минутам числа появлений на остановке автобуса, имеющего десятиминутный интервал движения:

Интервал в минутах	Число появлений автобуса		
0-2	35		
2-4	34		
4-6	38		
6-8	36		
8-10	42		

Проверить гипотезу о равномерном законе распределения. Уровень значимости принять $\alpha = 0.05$.

Решение. 1) Вычисляем по данному вариационному ряду вероятности p_i попадания СВ X в интервалы $[x_i; x_{i+1})$ по формуле

$$P(x_i < X < x_{i+1}) = \frac{x_{i+1} - x_i}{b - a},$$

где $i = \overline{1,k}$, $x_i = a$, $x_{k+1} = b$.

2) Для проверки гипотезы о том, что число появлений автобуса на остановке есть случайная величина, распределенная по равномерному закону, используем критерий χ^2 .

Все вычисления представим в виде расчетной таблицы.

The But meeting in pederability Budge pare retiron recompus.					
Интервал	m_{i}	$x_{i+1} - x_i$	$m_i = np_i$	$(m_i - np_i)^2$	
		$p_i = \frac{x_{i+1} - x_i}{b - a}$			
		<i>v</i> – <i>u</i>		np_i	
		2-0			
0-2	38	$\frac{2-0}{10} = 0,2$	38	0	
		$\frac{4-2}{10} = 0,2$			
2-4	34	=0,2	38	0,421	
		$\frac{6-4}{1} = 0,2$			
4-6	40	=0,2	38	0,105	
		10			
		$\frac{8-6}{10} = 0,2$	• •	0.40-	
6-8	36	$\frac{10}{10} = 0.2$	38	0,105	
		$\frac{10-8}{10} = 0,2$	•	0.44	
8-10	42	=0,2	38	0,421	
		10			
Сумма	190			1,052	

3) Определяем значение $\chi^2_{\alpha,\nu}$ по таблицам критических точек распределения χ^2 по заданному уровню α =0,05 и числу степеней свободы ν = 5 -1 = 4: $\chi^2_{0.05:4}$ = 9,5.

Так как 1,052 < 9,5, то нет оснований отклонить гипотезу о равномерном распределении X на отрезке [0;10].