TENTATIVE DOCUMENT

DMC Co., Ltd.

Analog Resistive Touch Screen Controller TSC-30/IC product specification

Table of Contents

1. Pro	oducts outline	2
1-1.	Scope of Application	2
1-2.	Outline	2
1-3.	Features	2
1-4.	General specification	3
2. Pir	n layout and representation	4
	n functions	
	tial setting	
	EEPROM setting	
4-2.	Communication mode setting	7
	Touch screen mode setting	
	Configuration in USB mode	
	Panel ID setting (USB mode)	
	ta sheet	
	Absolute maximum rating	
	Recommended operational conditions	
5-3.	Timing requirement	. 12
	DC standards	
6. Pa	ckaging Specification	16
	Outline	
6-2.	Notes on storage/handling	. 16
6-3.	Basic packaging	. 16
6-4.	Small group packaging	. 17
6-5.	Tray specification	. 18
6-6.	Product name label specification	. 18
	orage Specification	
	Storage Conditions	
	Baking	
	plementation Temperature Specification	
	eaning	
	anges and improvements	
	1. Version history	
	•	
	1. Warranty Period	
	2. Warranty Target	
	3. Warranty Exceptions	
	otes on use	
	1. Overall handling	
12-2	2. Others	. 24

Dimensional Drawing

Circuit Diagram

1. Products outline

1-1. Scope of Application

This specification applies to the TSC-30/IC.

1-2. Outline

TSC-30/IC is an analog touch screen control IC that performs A/D conversion on analog signal for the 4-wire, 5-wire and 8-wire resistive analog touch screen, and transmits coordination data with 10bit resolution to the host in a 9600bps serial (asynchronous) and USB.

At the coordinate detection, internal filtering process provides a stabilized coordinate value. By using the correction function, in addition to the losses that occur in the circuit, display deflection between touch screen input point that occur in each element and indicator cursor can be corrected to adjust the display position.

1-3. Features

- § Two coordinate output modes are provided and selected per application: "Coordinate data mode" where coordinate information is sent with 10bit resolution as it is, and "correction data mode" where read coordinate is converted to the indicator's display coordinate and sent.
- § "Correction data mode" is available after EEPROM is externally attached. It enables to set up to nine correction points. Coordinate data can be corrected with the base of correction points. Using this function allows the host driver to make the implementation of correction function unnecessary. In addition, by placing correction points at the touch screen center and center points of four edges of touch screen, resistance value deviation of transparent electrode film can be corrected.
- § USB has multi-touch screen function enable two simultaneous connections to the host.
- § Two external switch functions are always available in the coordinate (correction) data mode. Two pieces of external switch information are, at the transmission of coordinate data, included in the coordinate data as pen-down/pen-up information. Since in the pen-up mode, pen-up data can be always output to the host, this switch is available as a function switch.
- § At the touch screen input, buzzer and LED outputs are available. Input confirmation via display and sound is available.
- § In the serial communication, when no touch screen input is performed, the state moves to "power-save mode" so that such application can be supported that requests a low power consumption. In USB mode, USB suspend is supported and restored by the external interrupt of touch screen input.
- § Seven types of coordinate output rates are provided and either can be selected per application among seven types: six types from 30 to 150p/s plus one type, a point mode that outputs the coordinate only one time when pen-down is performed.

1-4. General specification

	Item	Rating	Notes	
Power supply vol	tage	DC 3.00V to 5.25V		
Dawer cancumpt	ion	125mW (standard)	Power supply voltage is 5V.	
Power consumpt	ion	30mW (standard)	Power supply voltage is 3.3V.	
Operating Temp	Asynchronous serial	-20 °C to +85 °C (No dew condensation)		
Operating remp	USB	0 °C to +70 °C (No dew condensation)		
Temperature rang	ge at storing	-40 °C to +125 °C (No dew condensation)		
	Communication scheme	Asynchronous, serial		
_	Communication rate	9600bps	7	
Communication scheme (serial)	Data length	8bits	Each setting is fixed	
conomic (condi)	Stop bit	1bit		
	Parity	None		
_	Transfer rate	USB Specification2.0 Full Speed		
Communication scheme (USB)	Transfer mode	Control transfer (command)		
soneme (GGB)	Transier mode	Interrupt transfer (coordinate)		
Operation frequer	ncy	6MHz	Fixed to 6MHz	
Coordinate output rate (point / second)		(1) Point mode (2) 30p/s (3) 50p/s (4) 80p/s (5) 100p/s (6) 130p/s (7) 150p/s	Point Mode: Only when touch screen is input, pen-down ID is sent once. After input ends, no pen-up ID is sent.	
Linearity error		±3 LSB		
Input response tir	ne	-	-	
Coordinate resolu		10bit (1024×1024)	In the correction data function, resolution follows the setting value	
Dimension (mm)		12×12×1.7		

2. Pin layout and representation

Marking specification

TSC-30x Product number x: version number

xxx ROM number #### Lot number

3. Pin functions

Pin number	Pin name	I/O	Functional description			
1	PANEL_AD_XL	ı	Touch Screen XL input pin.			
2	PANEL_AD_XR	i	Touch Screen XR input pin.			
3	SW0	i	SW0 input pin; H=ON=1, L=OFF=0.			
4	SW1	i	SW1 input pin; H=ON=1, L=OFF=0.			
5	SWI	i	Unused pin. Via resistance; Vcc is connected.			
6		i				
7	CNIV/oo	P	Unused pin. Via resistance; Vcc is connected.			
	CNVss		Vss is connected.			
8	RESET	-	Reset input pin (active L).			
9	Vcc	Р	Power supply input pin; Vcc is connected.			
10	Vref	Р	A/D converter reference voltage input pin; Vcc is connected.			
11	Vss	Р	Power supply input pin (GND); GND is connected.			
12	Xin	ı	Clock input pin; When using external clock, clock is input to this pin.			
13	Xout	0	Clock output pin; When using external clock, this pin is opened.			
14	Vcc	Р	Power supply input pin; Vcc is connected.			
15	Vss	Р	Power supply input pin (GND); GND is connected.			
16	LED0	0	LED output pin; When internal initialization was finished correctly, output L.			
17	LED1	0	LED output pin; Touch input, ON=L, OFF=H.			
18	LED2	0	LED output pin; When a response for the command is NAK, output L.			
19		0	Unused pin; Opened.			
20	Vss	Р	Power supply input pin (GND); GND is connected.			
21	Vcc	Р	Power supply input pin; Vcc is connected.			
22	Vcc	Р	Power supply input pin; Vcc is connected.			
23	USBVref	Р	USB reference voltage input pin. If Vcc is 3.3V, Vcc is connected. If Vcc is 5V, GND is connected via capacitor.			
24	TrON	0	Identification signal for USB. D+ is connected via resistance (1.5k ohm).			
25	D+	I/O	Data send/receive pin; In USB mode, D+ pin. In serial mode, GND is connected via resistance (1k to 10k ohm).			
26	D-	I/O	Data send/receive pin; In USB mode, D- pin.			
			In serial mode, GND is connected via resistance (1k to 10k ohm).			
27	PANEL_YD/LL	0	Touch screen control pin.			
28	PANEL_YU/UL	0	Touch screen control pin.			
29	PANEL_XL/UR	0	Touch screen control pin.			
30	PANEL_XR/LR	0	Touch screen control pin.			
31	PANEL_LL	0	Touch screen control pin. Used only in 5-wire mode. In 4-wire mode, opened.			
32	PANEL_UR	0	Touch screen control pin. Used only in 5-wire mode. In 4-wire mode, opened.			
33		0	Unused pin; Opened.			
34		0	Unused pin; Opened.			
35	RxD_I	I	In sleep mode, start signal input pin by command reception. Only used serial communication mode.			
36	BEEP	0	BEEP output pin; H output.			
37	USB_PW	ı	USB power supply detection pin. In USB mode, USB-Vbus is connected. *1 In serial mode, GND is connected.			
38	PEN_UP		GND is connected.			
39	PANEL_THOb3	I/O	Touch screen control pin. Used only in 5-wire mode. In 4-wire mode, opened.			

40	PANEL_THOb2	I/O	Touch screen control pin. Used only in 5-wire mode. In 4-wire mode, opened.			
41	PANEL_THOb1	I/O	Touch screen control pin. Used only in 5-wire mode. In 4-wire mode, opened.			
42	PANEL_THOa	I/O	Pen down detection pin.			
43	PANEL_THI	Ι	In sleep mode, start signal input pin by pen down.			
44		0	Unused pin; Opened.			
45		0	Unused pin; Opened.			
46		0	Unused pin; Opened.			
47	EEP-DO/JP12	I	Vcc is connected. When using EEPROM, EEPROM DO is connected.			
48	EEP-DI/JP11	I/O	When using EEPROM, EEPROM DI is connected.			
40	ELI-DI/JI II	1/0	When not using EEPROM, Vcc is connected via resistance.			
49	EEP-CLK/JP10	I/O	When using EEPROM, Keeping SEPROM Vision connected.			
			When not using EEPROM, Vcc is connected via resistance. EEPROM setting pin shared with EEPROM CS signal output pin.			
50	50 EEP-CS/JP9		EEPROM is set via resistance and Vcc or GND is connected. (L=Used, H=Not used)			
			When using EEPROM, EEPROM CS is connected.			
51	RxD	Ι	In serial mode, data receive pin.			
52	TxD	0	In serial mode, data send pin.			
53		0	Unused pin; Opened.			
54		0	Unused pin; Opened.			
55	JP1	Ι	GND is connected.			
56	JP2		GND is connected.			
57	JP3	I	GND is connected.			
58	JP4	ı	Panel ID select pin.			
59	JP5	ı	Panel ID select pin.			
60	JP6	ı	Touch screen mode setting pin; L=4 / 8 wire, H=5-wire			
61	JP7	I	Touch screen mode setting pin; L=4 / 5 wire, H=8-wire			
			In USB mode, if Vcc is 5V, Vcc is connected via resistance. If Vcc is 3.3V, GND is			
62	JP8	I	connected.			
63	DANEL AD VD	ı	In serial mode, Vcc is connected via resistance or GND is connected.			
	PANEL_AD_YD		Touch Screen YD input pin.			
64	PANEL_AD_YU	ı	Touch Screen YU input pin.			

^{*1:} Please be careful if you use a external power supply not to exceed the power supply voltage in this terminal.

4. Initial setting

4-1. EEPROM setting

Depending on that calibration is performed in either TSC-30/IC or host, you can select whether EEPROM is used or not to store the correction data. EEPROM selection can be set via pin number 50, where hardware reset release enables the setting.

4-2. Communication mode setting

Communication mode setting for serial/USB is performed by setting pin number 37 to "H" or "L". When power supply is turned on, or hardware reset is released, pin number 37 is read to turn on in either USB/ serial mode.

No both communication schemes are used at a time. After the hardware reset, if setting is performed with jumper switch, the setting is enabled by power supply restart or hardware reset.

4-3. Touch screen mode setting

Touch screen mode setting for 4-wire, 5-wire or 8-wire is performed by setting pin number 60 and 61 to "H" or "L". When power supply is turned on, or hardware reset is released, pin number 60 and 61 are read to turn on in either 4-wire, 5-wire or 8-wire mode.

Mode	Pin number 60	Pin number 61
4-wire touch screen	GND	GND
5-wire touch screen	Vcc	GND
8-wire touch screen	GND	Vcc

4-4. Configuration in USB mode

§ Basic configuration

Item	Specification
USB standard	Specification Rev2.0 Full Speed
Power supply	Bus power supply / Self-Power
Device class	Vendor definition
Interrupt (coordinate) transfer interval	1ms
End point buffer size	EP0: 8byte EP1: 5byte (EP0: control transfer, EP1: interrupt transfer)

§ Connection with Host

Coordinate data, correction value or other various output data are all output to the host as a response to IN token. Output coordinate in coordinate data mode and correction data mode is output in the interrupt transfer, while other data is output to the host with control transfer.

4-5. Panel ID setting (USB mode)

If two (three or four) touch screens to the same host are connected simultaneously, each TSC-30/IC to the host needs panel ID setting. This function is enabled in the USB mode, by setting pin number 58 (JP4) and pin number 59 (JP5) to "H" or "L". Setting is enabled when hardware is reset, where Device Descriptor's iProduct is set to "0" or "1" and this value is identified by the

host as panel ID.

JP4	JP5	iProduct	Panel ID
L	L	00h	0
Н	L	01h	1
L	Н	02h	2
Н	Н	03h	3

5. Data sheet

5-1. Absolute maximum rating

Item	Symbol Ra		ting	Unit	Description
item	Cymbol	Minimum	Maximum	Offic	Description
Power supply voltage	Vcc	-0.3	6.5	V	
Input voltage	Vı	-0.3	Vcc+0.3	V	
Output voltage	Vo	-0.3	Vcc+0.3	V	
Power consumption	PD		500	mW	Ta=25°C
Operation temperature	Topr	-20	+85	°C	
Storage temperature	Tstg	-40	+125	°C	

5-2. Recommended operational conditions

			Rating		1.1	Description
Item	Symbol	Minimum	Standard	Maximum	Unit	
Power supply voltage	Vcc	3.00	5.00	5.25	V	
Analog reference voltage	AVcc		Vcc		V	
Analog reference voltage	AVREF	2.0		Vcc	V	
		3.0		3.6	V	Vcc=3.6 to 4.0V
Analog reference voltage USB	USBVREF	3.0		Vcc	V	Vcc=3.0 to 3.6V
Power supply voltage	Vss		0		V	
Analog reference voltage	AVss		0		V	
"H" input voltage (Pin number 16-19, 27-50)	VIH	0.8Vcc		Vcc	٧	
"H" input voltage (Pin number 1-6, 51-64)	Vih	0.8Vcc		Vcc	V	
"H" input voltage RESET, XIN, Pin number 7, 15	Vıн	0.8Vcc		Vcc	V	
"H" input voltage D+, D-	Vıн	2.0		3.6	V	
"L" input voltage (Pin number 16-19, 27-50)	VIL	0		0.2Vcc	V	
"L" input voltage (Pin number 1-6, 51-64)	VIL	0		0.2Vcc	V	
"L" input voltage RESET, XIN, Pin number 7, 15	VIL	0		0.2Vcc	V	
"L" input voltage D+, D-	VIL	0		0.8	V	
"H" output total peak current *1 (Pin number 16-19, 27-50)	ΣΙοн (peak)			-80	mA	
"H" output total peak current *1 (Pin number 1-6, 51-64)	ΣΙοн (peak)			-80	mA	
"L" output total peak current *1 (Pin number 27-50)	ΣIoL (peak)			80	mA	
"L" output total peak current *1 (Pin number 16-19)	ΣIoL (peak)			80	mA	
"L" output total peak current *1 (Pin number 1-6, 51-64)	ΣIoL (peak)			80	mA	
"H" output total average current*1 (Pin number 16-19, 27-50)	ΣIoн (avg)			-40	mA	
"H" output total average current*1 (Pin number 1-6, 51-64)	Σloн (avg)			-40	mA	
"L" output total average current*1 (Pin number 27-50)	Σlo _L (avg)			40	mA	
"L" output total average current*1 (Pin number 16-19)	ΣIoL (avg)			40	mA	
"L" output total average current *1 (pin number 1-6, 51-64)	ΣloL (avg)			40	mA	
"H" output peak current *2 (Pin number 16-19, 27-50)	loн (peak)			-10	mA	
"H" output peak current *2 (Pin number 1-6, 51-64)	loн (peak)			-10	mA	

"L" output peak current *2 (Pin number 27-50)	loн (peak)		10	mA	
"L" output peak current *2 (Pin number 16-19)	loн (peak)		20	mA	
"L" output peak current *2 (Pin number 1-6, 51-64)	loн (peak)		10	mA	
"H" output average current *3 (Pin number 16-19, 27-50)	Iон (avg)		-5	mA	
"H" output average current *3 (Pin number 1-6, 51-64)	Iон (avg)		-5	mA	
"L" output average current *3 (Pin number 27-50)	lol (avg)		5	mA	
"L" output average current *3 (Pin number 16-19)	lol (avg)		10	mA	
"L" output average current *3 (Pin number 1-6, 51-64)	lol (avg)		5	mA	
Vibration frequency *4	XIN		6.0	MHz	

^{*1} The total peak output current is the absolute value of the peak currents flowing through all the applicable ports. The total average output current is the average value of the absolute value of the currents measured over 100ms flowing through all the applicable ports.

^{*2} The peak output current is the absolute value of the peak current flowing in each port.

^{*3} The average output current is the average value of the absolute value of the currents measured over 100ms.

^{*4} The duty of oscillation frequency is 50%.

5-3. Timing requirement

§ Reset

(Vcc = 3.0 to 5.25V , Vss = 0V , Ta = -20 to 85°C)

Item	Symbol	Ra	Rating		Description
Item	Cymbol	Minimum	Maximum	Unit	Description
RESET L width	tw	2		μs	

§ Power-on reset

Reset input voltage shall be 0.6V or below at the timing when power supply voltage crosses 3.0V.

 $(Ta = -20 \text{ to } 85^{\circ}C)$

§ External clock timing

Item	Symbol	Rat	Rating		Description
item	Syllibol	Minimum	Maximum	Unit	Description
Input cycle	tc	166		ns	
Clock pulse width	twH, twL	70		ns	

§ Clock input circuit

Using ceramic vibrator

External clock input circuit

5-4. DC standards

(Vcc=3.00 to 5.25V, Vss=0V, Ta=-20 to 85°C, unless otherwise noted)

Item	Symbol	Condition	Rating			Unit	
			Minimum	Standard	Maximum		
"H" Output voltage	Vон	IOH = -10mA VCC = 4.0 to 5.25V	Vcc-2.0			V	
(Pin number 16-19, 27-50)		IOH = -1.0mA	VCC-1.0				
"H" Output voltage (Pin number 1-6, 51-64)	Vон	IOH = -10mA VCC = 4.0 to 5.25V	Vcc-2.0				
		IOH = -1mA	Vcc-1.0				
"H" Output voltage (Pin number. 25 (D+), 26 (D-))	Vон	Pull-down with 0V via a resistor of 15kΩ±5%	2.8		3.6	V	
"L" Output voltage (Pin number 27-50)	Vol	IoL = 10mA Vcc = 4.0 to 5.25V			2.0	V	
		IOL = 1mA			1.0	V	
"L" Output voltage (Pin number 16-19)	Vol	IoL = 20mA Vcc = 4.0 to 5.25V			2.0	V	
		IOL = 1mA			1.0	V	
"L" Output voltage (Pin number. 25 (D+), 26 (D-))	Vol	Pull-up with 3.6V via a resistor of 15kΩ±5%			0.3	V	
"L" Output voltage	Vol	IoL = 10mA Vcc = 4.0 to 5.25V			2.0	· v	
(Pin number 1-6, 51-64)	VOL	IoL = 1mA			1.0		
hysteresis (Pin number 35-37)	VT+ - VT-			0.6		V	
hysteresis (Pin number 1-6, 51-64)	VT+ - VT-			0.6		V	
hysteresis (Pin number 25(D+), 26(D-))	VT+ - VT-			0.25		V	
hysteresis (Pin number 8)	VT+ - VT-			0.5		٧	
"H" Input current (Pin number 16-19, 27-50)	Іін	Vı = Vcc			5.0	μΑ	
"H" Input current (Pin number 1-6, 51-64)	Іін	Vı = Vcc			5.0	μΑ	
"H" Input current (Pin number 7, 8)	Іін	Vı = Vcc			5.0	μΑ	
"H" Input current (Pin number 12)	Іін	Vı = Vcc		4.0		μΑ	
"L" Input current (Pin number 16-19, 27-50)	lıL	VI = VSS			-5.0	μΑ	
Input "L" current (Pin number 1-6, 51-64)	lıL	VI = VSS			-5.0	μΑ	
Input "L" current (Pin number 7, 8, 15)	lıL	VI = VSS			-5.0	μΑ	
Input "L" current (Pin number 12)	lıL	Vı = Vss		-4.0		μΑ	

	lcc1	Normal mode *1	Vcc= 4.0 to 5.25V	2.1	60	mA
			Vcc= 3.0 to 4.0V		35	mA
Power supply current	lcc2	STOP mode	Vcc= 3.0 to 5.25V	2.0		mA
	lcc3	suspend mode*3	Vcc= 4.0 to 5.25V	125.0	250	uA
			Vcc= 3.0 to 5.25V	0.1		uA

^{*1:} All USB difference-input circuits enabled. Leaving I/O pins open. Operating functions: CPU, Timers

^{*2:} All USB difference-input circuits enabled. Leaving I/O pins open. Operating functions: Timers, USB receiving. Disabled functions: CPU.

^{*3:} All USB difference-input circuits disabled. Leaving I/O pins open. Oscillation stopped.

6. Packaging Specification

6-1. Outline

With a basic packaging unit of 800, TSC-20/IC is packaged for the number of 800 and its multiple using damp-proof aluminum laminate bags (Basic packaging). If the delivery quantity is less than 800 or not multiple of 800, or the product can not be packaged with a unit of 800, then no damp-proof packaging specification is applicable (Small group packaging).

If packaged with small group packaging, the products may be dampened. Before packaging, the product shall take the baking process as specified in [Baking] defined in "7. Storage Specification".

6-2. Notes on storage/handling

- (1) Handle the packages with care and avoid throwing and dropping them. Or, a large impact may be imposed, causing packaging material's damage, broken package or bending lead.
- (2) Cardboard box may be deteriorated in its strength and deformed due to storage site's humidity, stacking condition and storage duration. It is desirable to keep the storage under normal temperature/humidity (5 to 35 °C, 45 to 75%RH). For warehousing, follow the FIFO principle.
- (3) After unpacking, be careful in handling the product to avoid electrostatic breakdown.

6-3. Basic packaging

6-3-1. Packaging type

Damp-proof packaging (Aluminum laminate bag)

6-3-2. Packaging quantity specification

Quantity per tray	Number of trays	Quantity per packages		
160	5 + 1(cover)	800		

6-3-3. Diagram for packaging box sizes

6-4. Small group packaging

6-4-1. Packaging type

General packaging (No damp-proof processing)

6-4-2. Packaging quantity specification

Quantity per tray	Number of trays	Quantity per packages		
160	1 – 5 + 1(cover)	1 - 799		

^{*} No sizes specified for packaging box (Cardboard box) used for transportation.

6-5. Tray specification

This tray is heat-proof type, allowing the heating with 125 °C for 24 hours. During heating/cooling process, however, bending may occur. In baking process, to minimize the bending, heat and cool the tray by placing it on a flat plate.

6-6. Product name label specification

DMC P/N: Product number (TSC-30/IC)

QTY: Quantity

DAC: DMC Control Number

7. Storage Specification

7-1. Storage Conditions

For storing the product until its implementation, it is recommended that the following storage conditions are applied:

1. Before unpacking the damp-proof package (Aluminum laminate bag)

Temperature and humidity: 5 to 40 °C, 20 - 80%RH

Duration: Two years or less

2. After unpacking the damp-proof package (Aluminum laminate bag)

For the storing duration after the damp-proof package is unpacked and before the implementation, it is recommended that the following storage conditions is to be applied:

(1) Reflow method: Two weeks or less under the ambient condition: 30 °C, 70%RH or less

3. Temporary storage after damp-proof package is unpacked

To store again temporarily the once unpacked and unused damp-proof package, it is recommended to pack it again into another damp-proof bag with desiccant within a shorter time after opened (Around 10 minutes) as far as possible, and fold the bag's opening, followed by sealing with adhesive material such as adhesive tape, then store it under the following conditions:

Temperature, humidity: 5 to 40 °C, 20 - 80%RH Duration: One month or less

7-2. Baking

If any condition among those 1 to 3 listed below is applicable, it is recommended to apply the baking as described below to dry the moisture the package absorbs.

You may place the tray used for damp-proof packaging directly into the thermostatic chamber since the tray is heat-proof type. When placing into the chamber or after removing from it, to avoid deformation, cool the tray by placing it on the flat plate such as surface table.

- 1. Any condition among 1 to 3 in [7-1. Storage condition] is unsatisfied
- 2. Indicator's 30% Humidity Check section changes the color to lavender or pink
- 3. Blue color indicator of desiccant (Silica gel) changes to pink or white

Baking method

Temperature: 125 °C

Duration: 20 to 24 hours

Frequency: Four times or less (Upper limit: 96 accumulative hours)

8. Implementation Temperature Specification

We do not recommend the wave soldering method.

1. Reflow method (Infrared reflow, air reflow)

Frequency: Three times or less

Temperature: The following device surface temperature profile is recommended.

Figure 1: Infrared reflow, air reflow temperature profile

2. Soldering iron (Manual soldering)

Soldering bit's temperature: 370 °C or lower Soldering time: Five seconds or less/terminal

9. Cleaning

In case of cleaning boards with solvents after soldering, following items should be taken attention.

- *Administrative guidance and regulation.
- *Residual ionic (non ionic) contamination.
- *Solvent resistance of parts.

10Changes and improvements

10-1. Version history

§ TSC-30/IC

Ver0.1 (July 31, 2007)

Draft release

Ver0.2 (September 27, 2007)

- 2. Pin layout Pin layout was changed. (SW0, SW1, LED0, LED2, RxD_I)
- 3. Pin functions Pin functions were changed. (LED0, LED2, USB_PW, EEP-DI/JP11, EEP-CLK/JP10, JP3, JP8)
- 4-2. Communication mode setting Terminal number was changed from 57 to 37.
- 4-5. Panel ID setting (USB mode) Replaced setting of JP4 with JP5.
- "6. Packing Specification" was added.
- "7. Storage Specification" was added.
- "8. Implementation Temperature Specification" was added.
- "9. Cleaning" was added.

Ver0.3 (November 29, 2007)

- 1-2. Outline 8-wire touch screen was added.
- 3. Pin function Pin functions were changed. (USBVref, USB_PW, JP6, JP7)
- 4-3. Touch screen mode setting 8-wire touch screen mode was added.
- 6-6. Product name label specification "Pb Free" was added.

Circuit Diagram In USB mode, Vcc is 3.3V, it changed the circuit of the USB PW terminal.

Circuit Diagram A capacitor was added to a power I/F circuit.

11. Warranty

11-1. Warranty Period

- § The warranty period is limited to 1 year from the date of shipping. The warranty for the initial defection such as appearance defection is limited to 1 month.
- § Any defected parts under proper use will be examined by the supplier and replaced by the new parts if the defection is considered to be caused by the supplier.
- § The replacement is subject to be included in the next lot.

11-2. Warranty Target

- § The warranty only covers the product itself and does not cover any damage to others caused by using this product. Onsite repair or replacement is not supported.
- § We will do our best for delivery problem and product defections, but the warranty for the production line is not covered.

11-3. Warranty Exceptions

Following conditions are not covered with the warranty and subject to charge.

- § Any malfunctions and damages during transportation and transfer by the user.
- § Any malfunctions and damages caused by a natural disaster or a fire.
- § Any malfunctions and damages caused by static electricity
- § Any malfunctions and damages caused by the failure of the associated equipment.
- § If the product is remodeled, disassembled or repaired by the user.
- § If the product is glued onto the equipment and uninstalled.
- § Any malfunctions and damages caused by an improper usage and handling against the specifications and notes.

12. Notes on use

12-1. Overall handling

- § When using the product, do not place it close to, or make it contact with, the conductive materials such as metal.
- § Do not touch the metal part in the product directly with your hands. Or, it may be destructed by the static electricity. If you contact, or may contact, it directly with your hand, prepare in advance the measure against static electricity.
- § To store the product, use an appropriate packing box and keep the storage temperature range with no overload on it.
- § In using the product or storing it, avoid the following conditions:
 - Conditions where water is, or may be, attached to the product.
 - Conditions where condensation takes place, or may take place.
 - In the ambience of organic solvent or acidity or contact, or where the product contacts them.
- § Do not alter or disassemble the product.

12-2. Others

- § This specification may be changed for improvement without prior notices.
- § No liabilities are taken by us for any damage caused by use of this product.
- § This product intends to be used for the standard applications (e.g. office equipment and OA devices, industrial use, communication devices, household equipment). Avoid its use where failure or malfunction directly may affect the human body or special applications where extremely high reliability is required (e.g. airline and space industries, nuclear controls, medical use for life-sustaining).
- § Semi-conductor devices may fail in a certain possibility. Keep the safety design in your mind so that possible failure in this product shall not cause physical accidents such as injury and death, fire and other social damages.

TSC-30/IC Product Specification Version 0.3: Issued at November 29, 2007 ©2007 DMC Co., Ltd.

This document is allowed to redistribute but no alteration, part or all, is prohibited.

DMC Co., Ltd.

http://www.dmccoltd.com/english/ 9F Kanda Sent-Building 1-2-4, Yushima, Bunkyo-ku, Tokyo, 113-0034 Japan Phone: +81-3-5209-7131 (Japanese), 7135 (English) Fax: +82-3-5209-7130

