221 - Topology Long, Fall 2019

Homework 2

1. Let $f: X \to Y$ be a continuous function, and consider the space

$$G_f = \{(x, f(x)) \mid x \in X\}$$

equipped with the subspace topology. Prove that the map $X \to G_f$ given by $x \mapsto (x, f(x))$ is a homeomorphism.

- **2.** Prove that a map $F: X \to Y$ between metric spaces is continuous $\iff f(\overline{A}) \subset \overline{f(A)}$ for all $A \subset X$. [Does your proof use the metric?]
- **3.** Prove that if $\{A_{\alpha}\}_{{\alpha}\in\Gamma}$ are subsets of X, then $\overline{\bigcap_{{\alpha}\in\Gamma}A_{\alpha}}\subseteq\bigcap_{{\alpha}\in\Gamma}\overline{A}_{\alpha}$. Show equality need not hold.
- **4.** Prove that $W \subset X \times Y$ is open with the product topology $\iff \forall (x,y) \in W, \exists$ open subsets $U \subset X, V \subset Y$ such that $(x,y) \in U \times V \subset W$.
- **5.** Prove that the topology on X is discrete \iff the diagonal $\Delta = \{(x,y) \mid x \in X\}$ is open in $X \times X$.