Homework 4

1. For the amplifier circuits below, fine gain, input impedance, output impedance, and the voltage swing (peak-to-peak). Assume that all transistors are biased such that: $VDD = 3V, V_{th} = 0.5V, V_{OD} = 0.2V, \gamma = 0, \ \lambda = 0.1V^{-1}, \ I_D = 1mA, \ R_S = 1k\Omega$.

- **2.** Consider a common-source amplifier with R_s =100 Ω source degeneration (like Fig 3.23a from the book) and R_D =10k Ω . For NMOS, assume: VDD=1V, V_{Th} =0.3V, $\mu_n C_{ox} = 100uA/V^2$, $\lambda = \gamma = 0$.
 - a) Find W/L and V_{in} bias point to achieve Gain>10 and V_{out} DC bias of VDD/2.
 - b) How would the gain change if $\lambda = 0.1V^{-1}$?
 - c) How much is the output voltage swing?
 - d) If we are informed that gate-oxide thickness (t_{ox}) ended up 10% thicker than nominal target value after fabrication, how much this impacts the gain? (*Hint*: what aspect of NMOS device will be influenced by t_{ox} ?)
 - e) Compare your result from part (d) with a simple common-source topology case (w/o source degeneration). Which topology is more robust to process variations?
- 3. In this problem, we are interested to build an audio amplifier with a gain of 10. Assume the "speaker" that we will drive with our amplifier can be modeled as a load resistor (R_L) of 100 Ω . For MOSFETs: VDD=1V, $V_{th}=0.3V$, $\lambda=0$, $\mu_n C_{ox}=\frac{100\mu A}{V^2}$
 - a) First, let's design a common-source amplifier with $R_D = 1k\Omega$ and a gain of 10 such that output bias will be at VDD/2. Find W/L and V_{GS} bias point.
 - b) Now, include the loading impact of R_{L} . How much is the gain once you connect the output node to R_{L} ?
 - c) If you have to adjust your design to achieve the target gain, how do you redesign your amplifier? (Assume the bias point will not be affected by R_L since it can be AC-coupled)
 - d) What's the static power consumption from the supply in this amplifier? (*Hint*: Supply Power = $V_{DD} * I_D$)

Now, instead of fully redesigning your common-source amplifier from part (a), let's add a source-follower buffer with a gain of 0.5 to drive the load. Assume $R_S = 1k\Omega$, and R_L is AC-coupled.

- e) First, find the W/L and bias point of the source-follower NMOS (M2) such that V_{out} of that stage will be at VDD/2 bias.
- f) Now modify your CS amplifier such that overall gain will be still 10 and V_{out} is now biased at VDD/2+V_{GS2} Find new W/L and V_{GS} bias point.
- g) What's the static power consumption from the supply by both of these stages? Compare the results with part (d).

- **4.** Common-Gate Amp. Assume VDD=1V, $V_{th}=0.3V$, $\lambda_n=0.1V^{-1}$, $\gamma=0$, $\mu_n C_{ox}=\frac{100\mu A}{V^2}$, $I_1=0.2mA$, and C_1 will be shorted in small-signal models and open for DC/bias analysis)
 - a) Find R_D , and V_{GS} - V_{th} and W/L of the M1 to achieve a gain of 50 and input impedance of 50Ω (you can assume $\lambda=0$ for this part).
 - b) If we realize I₁ current-source with a single NMOS device at a fixed gate bias of 0.5V, draw the new circuit and find W/L of the new NMOS.
 - c) What's the output swing for part (b)?
 - d) How much adding this new NMOS changes the gain?
 - e) **Bonus:** if this amplifier is designed for recording neural activities at 300Hz-20kHz frequencies, what should be acceptable C₁ values as a AC-decoupling cap?

