EE3235 Analog Integrated Circuit Analysis and Design I Homework 1

Process Analysis

Due date: 2023.10.11 (Wed.) 23:30 (upload to eeclass system)

In this homework, you are to run HSPICE and evaluate the device performance with threshold voltage V_{th} , transconductance g_m , output conductance g_{ds} , saturation drain voltage V_{dsat} , intrinsic gain $g_m r_0$, power efficiency g_m/I_D , speed g_m/C_g , drain current I_D , and body effect as the benchmarks.

Suppose V_{DD} =1.8V, temperature=25°C, TT corner in this homework.

Please note that:

- 1. No delay allowed.
- 2. Please hand in your report using eeclass system.
- 3. Please generate your report with **pdf** format, name your report as

HWX_studentID_name.pdf.

- 4. Please hand in the spice code file (.sp) for each work. Do not include output file.
- 5. Please print waveform with white background, and make sure the X, and Y labels are clear.
- 6. Please do not zip your report.

Part I – Analyze with Diode Connected Structure

In part I, consider the schematic shown in Fig. 1. Please keep the bias current constant and sweep the channel length of M_{thn} and M_{thp} from $0.18\mu m$ to 10μ m with a step of $0.01\mu m$. Please probe the following parameters of M_{thn} and M_{thp} with respect to the channel length. Discuss your observations. (9 graphs, 18 curves)

- (1) Threshold voltage V_{th} . (plots of graphs for TT \cdot SS \cdot FF corners)
- (2) Transconductance g_m .
- (3) Output conductance g_{ds} .
- (4) Saturation drain voltage V_{dsat} .
- (5) Intrinsic gain $g_m r_0$.
- (6) Power efficiency g_m/I_D .
- (7) Speed g_m/C_q .

Fig. 1. Diode-connected.

Fig. 2. Drain current.

Part II – Drain Current I_D

As shown in Fig. 2, please run DC analysis with V_G from 0V to 1.8V with a step of 0.01V, then sweep the channel length of M_{idn} and M_{idp} from 1.8 μm to 10 μ m with a step of 1.8 μm . Probe I_D v.s. V_G with different channel lengths of M_{idn} and M_{idp} . Discuss your observations. (2 graphs, 10 curves)

Part III - Body Effect

We often assumed that the source and the body of a single transistor are connected, such that the threshold voltage V_{th} remains a constant while V_s varies, however, for a p-substrate process, all native transistors share the same body, and Vth varies with V_{SB} .

Fig. 3. Body effect.

- (1) For Mbn, given that VDD =1.8V, V_g =0.7V, V_s = V_B =0V, find a correct size when the drain current equals to $30\mu\text{A}(\pm1\mu\text{A})$ is allowed, and longer channel length is recommended in order to minimize the effect of channel length modulation)
- (2) Use the size derived above, sweep V_s from 0V to 1V with a step of 1mV, while V_{gs} , V_B and VDD fixed. Probe I_D v.s. V_s , V_{th} v.s. V_s and gm v.s. V_s . Discuss your observations. (3 graphs, 3 curves)

NTHUEE 112 Fall AICD I

(3) Repeat the steps in (2), but this time with the source and the body connected.

Compare the difference, discuss your observation and explain the cause.(3 graphs, 6 curves)

Please refer to the following examples to print your waveform.

Fig. 4. Example waveform of part I

Please plot the parameters of NMOS and PMOS in a single graph, there will be 9 graphs in part I.

Fig. 5. Example waveform of part II

Please plot the drain currents with different channel length in a single graph, there will be 2 graphs in part II, which are for NMOS and PMOS, respectively.

Fig. 6. Example waveform of part III

Please plot or with different channel length in a single graph, there will be 4 graphs in part III, which are for and of NMOS and PMOS, respectively.