

Preliminary Data

HiPerFET™Power MOSFET

 $R_{\text{DS}\underline{\text{(on)}}}$ V_{DSS} I_{D25} 600V 36A 0.18Ω 250ns IXFK/FN 36N60 IXFK/FN 32N60 32A 600V 0.25Ω 250ns

N-Channel Enhancement Mode Avalanche Rated, High dv/dt, Low t_

Symbol	Test Conditions		ximu XFK	m Ratino	gs
V _{DSS}	T _J = 25°C to 150°C		600	600	V
\mathbf{V}_{DGR}	$T_J = 25$ °C to 150 °C; $R_{GS} = 1 \text{ M}\Omega$		600	600	V
$\overline{V_{gs}}$	Continuous		±20	±20	V
V _{GSM}	Transient		±30	±30	V
I _{D25}	T _C = 25°C, Chip capability	32N60	32	32	A
		36N60	36	36	Α
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	32N60	128	128	Α
	T 0500	36N60	144	144	A
I _{AR}	$T_{c} = 25^{\circ}C$		20	20	Α
E _{AR}	T _c = 25°C		30	30	mJ
dv/dt	$I_{_{S}} \leq I_{_{DM}}$, di/dt \leq 100 A/ μ s, $V_{_{DD}} \leq V_{_{DSS}}$ $T_{_{J}} \leq$ 150°C, $R_{_{G}}$ = 2 Ω		5	5	V/ns
$\overline{P_{D}}$	T _C = 25°C		500	520	W
$\overline{T_{J}}$		-	55	+150	°C
T _{JM}				150	°C
T _{stg}		-	55	+150	°C
T _L	1.6 mm (0.063 in) from case for 10 s		300	-	°C
V _{ISOL}	50/60 Hz, RMSt = 1 min $I_{ISOL} \le 1$ mAt = 1 s		-	2500 3000	V~ V~
M _d	Mounting torque Terminal connection torque		0.9/6	1.5/13 1.5/13	Nm/lb.in. Nm/lb.in.
Weight			10	30	g

G = Gate	D = Drain
S = Source	TAB = Drain
Either Source terr	minal at miniBLOC
can be used as Ma	in or Kelvin Source

Features

- · International standard packages
- JEDEC TO-264 AA, epoxy meet UL 94 V-0, flammability classification
- · miniBLOC with Aluminium nitride isolation
- Low $R_{_{DS\,(on)}}\,HDMOS^{\scriptscriptstyle TM}$ process • Rugged polysilicon gate cell structure
- · Unclamped Inductive Switching (UIS) rated
- · Low package inductance
- · Fast intrinsic Rectifier

Applications

Characteristic Values

Typ.

Max.

4.5

±200

400

0.18

0.25

2 mΑ

V

V

nΑ

μΑ

Ω

Ω

 $(T_1 = 25^{\circ}C, \text{ unless otherwise specified})$

Min.

600

36N60

32N60

25°C

T, = 125°C

2

- DC-DC converters
- Synchronous rectification
- Battery chargers
- · Switched-mode and resonant-mode power supplies
- · DC choppers
- · Temperature and lighting controls
- · Low voltage relays

Advantages

- · Easy to mount
- Space savings
- High power density

©1996 IXYS Corporation. All rights reserved.

 $V_{DS} = 0.8 V_{DSS}$

 $V_{GS} = 0 V$

Test Conditions

 $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$

 $V_{DS} = V_{GS}$, $I_{D} = 8 \text{ mA}$

 $V_{GS} = \pm 20 \ V_{DC}, \ V_{DS} = 0$

 V_{GS} = 10 V, I_{D} = 0.5 I_{D25} Pulse test, t \leq 300 μs , duty cycle \leq 2 %

92807G (01/96)

Symbol

V_{DSS}

 $V_{GH(\underline{th})}$

I_{GSS}

l_{DSS}

 $R_{DS(on)}$

Symbol	Test Conditions $(T_J = 25^{\circ}C, \text{ unless})$ min			
g_{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 0.5 I_{D25}, \text{ pulse test}$	36		S
C _{iss})	9000		pF
\mathbf{C}_{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	840		pF
\mathbf{C}_{rss}		280		pF
t _{d(on)}		30		ns
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = 0.5 I_{D25}$	45		ns
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 1 \Omega \text{ (External)},$	100		ns
t _f	J	60		ns
Q _{g(on)}		325		nC
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = 0.5 I_{D25}$	60		nC
\mathbf{Q}_{gd}		120		nC
R _{thJC}	TO-264 AA		0.25	K/W
R_{thCK}	TO-264 AA	0.15		K/W
R _{thJC}	miniBLOC, SOT-227 B		0.24	K/W
R_{thCK}	miniBLOC, SOT-227 B	0.05		K/W

Source-Drain Diode

Characteristic Values

 $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$

Symbol	Test Conditions	Min.	Typ.	Max.	
I _s	$V_{GS} = 0$ $V_{GS} = 0$	36N60		36	A
I _s	$V_{GS} = 0$	32N60		32	A
I _{sm}	Repetitive; pulse width limited by T	36N60		144	Α
		32N60		128	Α
V _{SD}	$I_{_F} = I_{_S} $ A, $V_{_{GS}} = 0 $ V, Pulse test, t $\leq 300 $ μs , duty cycle d $\leq 2 $ 9	%		1.5	V
t _{rr}			20	250	ns A

TO-264 AA Outline

Dim.	Millimeter		Inches		
	Min.	Max.	Min.	Max.	
Α	4.82	5.13	.190	.202	
A1	2.54	2.89	.100	.114	
A2	2.00	2.10	.079	.083	
b	1.12	1.42	.044	.056	
b1	2.39	2.69	.094	.106	
b2	2.90	3.09	.114	.122	
С	0.53	0.83	.021	.033	
D	25.91	26.16	1.020	1.030	
Е	19.81	19.96	.780	.786	
е	5.46	BSC	.215	15 BSC	
J	0.00	0.25	.000	.010	
K	0.00	0.25	.000	.010	
L	20.32	20.83	.800	.820	
L1	2.29	2.59	.090	.102	
Р	3.17	3.66	.125	.144	
Q	6.07	6.27	.239	.247	
Q1	8.38	8.69	.330	.342	
R	3.81	4.32	.150	.170	
R1	1.78	2.29	.070	.090	
S	6.04	6.30	.238	.248	
Т	1.57	1.83	.062	.072	

miniBLOC, SOT-227 B

M4 screws (4x) supplied

Min solews (nx) supplied				
Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
Α	31.50	31.88	1.240	1.255
В	7.80	8.20	0.307	0.323
С	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
E	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
Н	38.00	38.23	1.496	1.505
J	11.68	12.22	0.460	0.481
K	8.92	9.60	0.351	0.378
L	0.76	0.84	0.030	0.033
M	12.60	12.85	0.496	0.506
N	25.15	25.42	0.990	1.001
0	1.98	2.13	0.078	0.084
P	4.95	5.97	0.195	0.235
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.174
S	4.72	4.85	0.186	0.191
Т	24.59	25.07	0.968	0.987
U	-0.05	0.1	-0.002	0.004

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig.1. Output Characteristics

Fig. 3. Rds(on) vs. Drain Currente

Fig. 5. Drain Current vs.
Case Temperature

Fig. 2. Input Admittance

Fig. 4. Temperature Dependence of Drain to Source Resistance

Fig. 6. Temperature Dependence of Breakdown Voltage and Threshold Voltage

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 7. Gate Charge

Fig. 8. Capacitance Curves

Fig. 9. Source Current vs. Source to Drain Voltage

Fig. 10. Transient Thermal Impedance

Pulse Width - Seconds

IXYS reserves the right to change limits, test conditions, and dimensions.