

Computation Process using Scilab

Komputasi Proses

- 1. Pengenalan Scilab
- 2. Bahasa pemrograman dengan Scilab
- Metoda Numerik
- 4. Aplikasi Komputasi Proses dengan Scilab

Introduction

Physical & Mathematical MODELS

Simplified picture of REALITY

Engineers are symbolic analysts

TOOL to solve PROBLEMS

- Forecasting
- Controlling

Software

Language

Programme

Interactive program

Numerical computation & data visualization

Scilab

- Software gratis: http://www.scilab.org
- OS: Windows dan Linux
- Mirip dengan program Matlab


```
-->r=6

r =

6.

-->I uas=0. 25*%pi *r^2

I uas =

28. 274334
```


deff('(out1,out2,...)=modul(in1,in2,...)','persamaan'

Fungsi: mendefinisikan persamaan (rumus) pada jendela kerja

```
-->deff('A=luas(r)','A=0.25*%pi*r^2')
-->ls=luas(3)
ls =
7.0685835
-->
```


Perlu di eksekusi: -->exec('c:\scinum\luasbs.sci');

Tips:

Cara lebih mudah, dapat dilakukan (pilih salah satu):

- Pada menu bar "jendela editor", pilih Execute (Alt+x) → Load into Scilab
- Pada menu bar "jendela editor", Ctrl + l
- Pada menu bar "jendela kerja", pilih File → Exec... → pilih file yang akan dieksekusi

```
-->exec('c:\scilabc\luasbs.sci')
-->function hsl=luasbs(r);
--> hsl = 0.25*%pi*r^2;
-->endfunction;
-->
```


getf()	Fungsi: mengambil / mengaktifkan file *.sci pada suatu fungsi yang lain
•	, , , , , , , , , , , , , , , , , , , ,

1	function V= volbs (h,r)
2	getf('c:/scilabc/luasbs.sci')
3	V=h*luasbs(r)
4	endfunction

Is file_dir

Fungsi: menampilkan file pada 'direktori file'

```
-->|s c:/scinum
ans =
!volbs.sci !
! !!uasbs.sci !
-->
```

Apabila fungsi atau modul yang akan digunakan cukup banyak,maka penggunaan <u>getf()</u> tidak efektif

genlib('nama','file_dir')

Fungsi: membangun library dari fungsi (*.sci) pada 'direktori file'

-->genlib('libsbs','c:/scinum')

load('file_dir/lib')

Fungsi: memanggil library dari fungsi pada 'direktori file'

-->load('c:/scinum/lib')

DIFFERENSIASI NUMERIK

- Persamaan differensial merupakan model matematis yang paling sering muncul dalam bidang keteknikan maupun saintifik
- Salah satu penyelesaiannya dengan metode beda hingga (finite difference)

Definisi turunan (derivatif)

$$\frac{df(x)}{dx}\Big|_{x_0} = f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Jika h = $x - x_0 = \Delta x$ maka pendekatan turunan di atas adalah

$$f'(x_0) \approx \frac{f(x) - f(x_0)}{h} = \frac{f(x) - f(x_0)}{\Delta x}$$

Diketahui suatu fungsi y = f (x), ingin dicari $\frac{dy}{dx}$ pada x = x_0 .

Penyelesaiannya dapat menggunakan 3 cara yaitu:

- 1. Forward Difference (Beda Maju)
- 2. Backward Difference (Beda Mundur)
- 3. Central Difference (Beda Pusat)

1. Metode Beda Maju (Forward Difference)

Beda hingga maju pertama dari y pada i atau x didefinisikan :

$$\Delta y_i = y_{i+1} - y_i$$

atau
$$\Delta y(x) = y(x+h) - y(x)$$

Beda maju kedua pada i atau x didefinisikan :

$$\Delta^2 y_i = y_{i+2} - 2y_{i+1} + y_i$$

atau
$$\Delta^2 y(x) = y(x+2h) - 2y(x+h) + y(x)$$

Sehingga penyelesaiannya bisa dituliskan:

$$\frac{dy_i}{dx} = \frac{1}{h} \left(y_{i+1} - y_i \right) \quad \text{atau} \quad \frac{dy}{dx} \bigg|_{x = x_0} \cong \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

2. Metode Beda Mundur (Backward Difference)

Beda hingga mundur pertama dari y pada i atau x didefinisikan :

$$\nabla y_i = y_i - y_{i-1}$$

atau
$$\nabla y(x) = y(x) - y(x-h)$$

Beda mundur kedua pada i atau x didefinisikan:

$$\nabla^2 y_i = y_i - 2y_{i-1} + y_{i-2}$$

atau
$$\nabla^2 y(x) = y(x) - 2y(x-h) + y(x-2h)$$

Sehingga penyelesaiannya bisa dituliskan:

$$\frac{dy_i}{dx} = \frac{1}{h} \left(y_i - y_{i-1} \right) \qquad \text{atau} \qquad \frac{dy}{dx} \bigg|_{x = x} \cong \frac{f(x_0) - f(x_0 - \Delta x)}{\Delta x}$$

3. Metode Beda Pusat (Central Difference)

Beda hingga terpusat pertama dari y pada i atau x didefinisikan

$$\partial y_i = y_{i+\frac{1}{2}} - y_{i-\frac{1}{2}}$$

atau $\delta y(x) = y(x+1/2 h) - y(x-1/2 h)$

Turunan beda terpusat selanjutnya adalah:

$$\frac{dy_{i}}{dx} = \frac{1}{2h} (y_{i+1} - y_{i-1}) \qquad ; \qquad \frac{d^{2}y_{i}}{dx^{2}} = \frac{1}{h^{2}} (y_{i+1} - 2y_{i} + y_{i-1})$$

$$\frac{d^{3}y_{i}}{dx^{3}} = \frac{1}{2h^{3}} (y_{i+2} - 2y_{i+1} + 2y_{i-1} - y_{i-2})$$

Penyelesaiannya dapat dituliskan

$$\frac{dy_i}{dx} = \frac{1}{2h} \left(y_{i+1} - y_{i-1} \right) \quad \text{atau} \quad \left. \frac{dy}{dx} \right|_{x = x} \\ \cong \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{2\Delta x}$$

Derivatif Orde Dua

Untuk penurunan (derivatif) pangkat dua dengan metode beda hingga terpusat digunakan rumus dengan bentuk:

$$\frac{d^2 y_i}{dx^2} = \frac{1}{h^2} (y_{i+2} - 2y_i + y_{i-1})$$

Atau dapat juga dituliskan:

$$\frac{d^2y}{dx^2}\bigg|_{x=x} \cong \frac{f(x_0 + \Delta x) - 2f(x_0) + f(x_0 - \Delta x)}{\Delta x^2}$$

INTEGRASI NUMERIS

Jika ada fungsi $Y = \int_{x_0}^{x_n} f(x) dx$ sedangkan f(x) sulit sekali untuk diintegrasikan secara analitik, maka cara yang paling mudah adalah dengan mengintegrasikannya secara numerik

- □ Dalam perhitungan integrasi numerik, luasan di bawah kurva akan diubah dalam bentuk trapesium, dimana ruang kosong merupakan bagian dari kesalahan numerik
- ☐ Untuk mengatasi kesalahan dilakukan dengan cara membagi menjadi trapesium dengan segmen yang lebih kecil
- \square Integrasi dilakukan dengan menggunakan interval $\triangle x$ yang sama (homogen) sepanjang batas integrasi dari x_0 sampai x_n
- □ Batas/interval integrasi dibagi menjadi n interval

$$\Delta x = \frac{(X_n - X_0)}{n}$$

□ Batas interval diberi indeks 0, 1, 2,, n sehingga

$$x_i = x_0 + i \cdot \Delta x$$

Penyelesaian numerik dapat dilakukan dengan dua cara, yaitu

$$\int_{x_0}^{x_n} f(x) dx \cong \frac{\Delta x}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$$

Simpson Rule

$$\int_{x_0}^{x_n} f(x) dx \cong \frac{\Delta x}{3} \left[f(x_0) + 4 \sum_{i=1,3,5}^{n-1} f(x_i) + 2 \sum_{i=2,4,6}^{n-2} f(x_i) + f(x_n) \right]$$

AKAR PERSAMAAN (PERSAMAAN NON LINIER)

- Merupakan bentuk persamaan aljabar yang nilainya sama dengan nol
- $ightharpoonup Untuk satu variabel bebas x, maka <math>f(x) \cong 0$
- Banyak digunakan dalam model keteknikan maupun saintis

Metode Penyelesaian Akar Persamaan

- Metode Pengurungan (bracketing method)
 - Memerlukan dua titik sebagai tebakan awal
- 2. Metode Terbuka (open method)
 - Hanya memerlukan satu titik sebagai tebakan awal

1. METODE PENGURUNGAN

Dilakukan dengan menebak 2 angka

- a. Metode Bisection (bagi dua)
- b. Metode Regula Falsi (posisi palsu) atau Metode Interpolasi Linier

a. Metode Bisection (Bagi Dua)

- ☐ Merupakan metode yang paling sederhana
- \Box Diawali dengan menebak dua nilai yaitu nilai bawah (sblm akar) x_a dan nilai atas (stlh akar) x_b
- \Box Tebakan benar jika $f(x_b)$ dan $f(x_a)$ mempunyai tanda yang berlawanan : $f(x_b)$. $f(x_a)$ < 0
- \Box Jika $f(x_b)$. $f(x_a) > 0$ maka tebakan awal diulangi
- \square Nilai kedua tebakan dibagi dua, disebut x_c
- \square Nilai x_c akan menggantikan posisi nilai lama.
- \Box Jika x_c berada pada posisi x_b disebut dengan x_b' dan jika berada pada posisi x_a akan diubah menjadi x_a'

Algoritma Bisection (Bagi Dua)

- 1. Tebak akar atas, x_a dan akar bawah, x_b
- 2. Periksa $f(x_a).f(x_b)=0 \Rightarrow stop \Rightarrow didapat harga akar$
- 3. Periksa $f(x_a).f(x_b)<0$, jika tidak \implies kembali ke-1
- 4. Periksa kriteria penghentian, jika terpenuhi ⇒ stop ⇒ tulis akar
- 5. Perkirakan akar yang dicari

$$x_c = (x_a + x_b)/2$$

- 6. Evaluasi akar $x_c \implies \text{Hitung } f(x_c)$
 - a. Jika $f(x_c).f(x_a)>0$, \Longrightarrow maka x_c berada di subinterval bawah \Longrightarrow Atur $x_a = x_c \Longrightarrow$ kembali ke-4
 - b. Jika $f(x_c).f(x_a)<0$, \Longrightarrow maka x_c berada di subinterval atas \Longrightarrow Atur $x_b = x_c \Longrightarrow$ kembali ke-4
 - c. Jika $f(x_b).f(x_c)=0$, \Longrightarrow maka didapat harga akar yang selesai

b. Metode Regula Falsi (Posisi Palsu)

- ☐ Merupakan perbaikan dari metode bisection
- \Box Dilakukan dengan menarik garis lurus pada kedua interval x_b dan x_a

$$\Box \text{ Harga } x_c = x_a - \frac{f(x_a)(x_b - x_a)}{f(x_b) - f(x_a)}$$

□ Algoritma sama dengan metode bisection, hanya tahapan 5 diganti nilai x_cnya

2. METODE TERBUKA

Dilakukan dengan menebak 1 angka

- a. Metode Pertemuan Dua Grafik
- b. Metode Newton Raphson
- c. Metode Secant

b. Metode Newton Raphson

- □ Mula-mula diperkirakan harga x; awal kemudian dipotongkan tha kurva dan ditarik garis singgung
- ☐ Garis singgung merupakan tangen atau slope.
- \Box Slope merupakan turunan pertama dari $f(x_i)$ sehingga didapat hubungan :

$$f'(x_i) = \frac{f(x_i)}{(x_i - x_{i+1})}$$

□ Persamaan Newton Raphson:

$$X_{i+1} = X_i - \frac{f(X_i)}{f'(X_i)}$$

Algoritma Newton Raphson

- 1. Tuliskan fungsi f(x)
- 2. Cari harga f'(x)
- 3. Masukkan tebakan awal x_0
- 4. Masukkan parameter penghentian program:
 - Kesalahan relatif perkiraan E_{bs}
 - > Jumlah iterasi maksimum
- 5. Inisialisasi harga: iterasi = 0 dan E_{as} = 1.1 E_{bs}
- 6. Jika kesalahan relatif (E_{as} > E_{bs}) dan (iterasi < iterasi makasimum) maka:

a. Harga
$$x_{iter} = x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

b. Cek harga
$$E_{as}$$
 $E_{as} = \left| \frac{x_{iter} - x_{iter-1}}{x_{iter}} \right|$

c. Iterasi = iterasi + 1

Ulangi 6 sampai kondisi tercapai

Tulis $x_{iter} = akar$

c. Metode Secant

- \sim Kelemahan metode Newton Raphson, harus mencari turunan pertama dari fungsi $f(x_i)$
- Metode secant untuk menghindari turunan pertama dengan turunan numerik mundur

$$f'(x_i) = \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

Sub Program PERSAMAAN NON LINEAR

Scilab menyediakan sub program untuk menyelesaikan satu atau beberapa sistem persamaan non linear secara simultan dengan menggunakan perintah **fsolve**

$$x = fsolve(x0, persamaan)$$

Contoh:

Akan dicari akar persamaan simultan non linear dari:

$$x^2 + xy = 10$$
$$y + 3xy^2 = 57$$

Kedua persamaan diubah menjadi : $f_1(x, y) = x^2 + xy - 10 = 0$

$$f_2(x, y) = y + 3xy^2 - 57 = 0$$

Persamaan ditulis dalam bentuk matrik dengan x sebagai x(1) dan y sebagai x(2)

Contoh:

Diketahui persamaan Van der Waals untuk menggambarkan kondisi gas non-ideal:

$$\left(P + \frac{a}{V^2}\right)\left(V - b\right) = RT$$

Hitunglah volume molar udara (V) pada 50 atm dan suhu -100°C jika diketahui nilai konstanta a = 1.33 atm.liter²/gmol, b = 0.0366 liter/gmol dan R = 0.08205 liter.atm/K.gmol

PERSAMAAN DIFERENSIAL

1. Persamaan Diferensial Biasa (ODE), hanya terdapat 1 variabel bebas

$$\frac{d^2y}{dx^2} + y\frac{dy}{dx} = kx$$

2. Persamaan Diferensial Parsial (PDE), terdapat lebih dari 1 variabel bebas

$$\alpha \frac{\partial^2 \mathbf{T}}{\partial \mathbf{x}^2} = \frac{\partial \mathbf{T}}{\partial \mathbf{t}}$$

Persamaan Diferensial Biasa (ODE)

Berdasarkan pangkat (Orde):

• PDB Orde satu : $\frac{dy}{dx} + y = kx$

• PDB Orde dua : $\frac{d^2y}{dx^2} + y\frac{dy}{dx} = kx$

• PDB Orde tiga : $\frac{d^3y}{dx^3} + a\frac{d^2y}{dx^2} + b\left(\frac{dy}{dx}\right)^2 = kx$

Berdasarkan kondisi batas:

 IVP (Initial Value Problems), bila nilai variabel tak bebas atau turunannya diketahui pada kondisi nilai mula-mula

 BVP (Boundary Value Problems), bila nilai variabel tak bebas atau turunannya diketahui lebih dari satu nilai variabel bebasnya

Persamaan Diferensial Parsial (PDE)

• PDE Order dua :
$$\frac{\partial^2 C}{\partial x^2} + D_e \frac{\partial C}{\partial y} = 0$$

• PDE Order tiga : $\left(\frac{\partial^3 u}{\partial x^3}\right)^2 + \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial u}{\partial y} = 0$

Penyelesaian Persamaan Diferensial Biasa (ODE)

- 1. Metode Euler (Eksplisit)
- 2. Metode Euler Modifikasi (Implisit)
- 3. Metode Runge-Kutta

1. Metode Euler (Eksplisit)

Disebut juga metoda integrasi nilai awak $\frac{dy}{dx} = f(x, y)$

$$\frac{dy}{dx} = f(x, y)$$

Kondisi awal : $y(x_0) = y_0$

$$\int_{y_i}^{y_{i+1}} dy = \int_{x_i}^{x_{i+1}} f(x, y) dx \qquad \qquad y_{i+1} - y_i = \int_{x_i}^{x_{i+1}} f(x, y) dx$$

$$y_{i+1} = y_i + h f(x_i, y_i)$$

Perbandingan Analitis dengan Metode Euler (Eksplisit)

Persamaan diferensial yang diselesaikan:

$$\frac{dy}{dx} = 4x^3 - 6x^2 + 8$$
 Dimana x = 0, y = 2 (kondisi awal); x_a=3, h=0.5

X _i	y _{analtk}	$\mathbf{y}_{ ext{euler}}$	% kslhan
0	2	2	-
0.5	5.81	6	3.27
1	9	9.5	5.56
1.5	12.31	12.5	1.54
2	18	16.5	8.33
2.5	29.81	24.5	17.81
3	53	41	22.64

Algoritma Metode Euler (Eksplisit)

- 1. Tentukan $x = x_0$ dan $y = y_0$
- 2. Tentukan nilai awal x_0 dan nilai akhir x_a dari variabel bebas
- 3. Tentukan nilai h
- 4. Inisialisasi i = 0
- 5. Buat persamaan f(x,y), modul terpisah
- 6. Vektor $x(i)=[x_0, x_0+h, x_0+2h,...,x_n]$
- 7. Jumlah loop, $n=(x_a-x_0)/h$
- 8. Untuk i=0 sampai n-1 maka:
- 9. $y_{i+1}=y_i + hf(x_i,y_i)$
- 10. x = x + h
- 11. Simpan nilai x_i , y_i
- 12. Lanjutkan i

2. Metode Euler Modifikasi (Implisit)

- Untuk memperkecil kesalahan
- Merupakan gabungan antara beda maju dan beda mundur
- Beda maju pertama dari y pada i sama dengan beda mundur pertama dari y pada i+1

$$\Delta y_i = y_{i+1} - y_i = \nabla y_{i+1} \qquad \qquad y_{i+1} = y_i + \nabla y_{i+1}$$

$$y_{i+1} = y_i + h f(x_{i+1}, y_{i+1})$$

□ Untuk memperbaiki metode Euler, maka metode Euler eksplisit digunakan untuk memprediksi nilai y_{i+1}

$$(y_{i+1})_{pred} = y_i + h(f(x_i, y_i)) - - + f_{pred}$$

□ Nilai prediksi pada persamaan di atas digunakan untuk mengkoreksi metoda implisit

$$(y_{i+1})_{kork} = y_i + h(f(x_{i+1}, (y_{i+1})_{pred})) - - f_{corr}$$

- ☐ Persamaan di atas disebut dengan Metode Prediktor Korektor atau Metode Heun
- □ Kombinasi metoda beda maju dan beda mundur dituliskan dalam bentuk

$$\begin{aligned} \boldsymbol{y}_{i+1} &= \boldsymbol{y}_i + \frac{1}{2} \left(\nabla \boldsymbol{y}_i + \nabla \boldsymbol{y}_{i+1} \right) \\ \left(\boldsymbol{y}_{i+1} \right) &= \boldsymbol{y}_i + \frac{1}{2} h f \left(\boldsymbol{x}_i, \boldsymbol{y}_i \right) + \frac{1}{2} h f \left(\boldsymbol{x}_{i+1}, \boldsymbol{y}_{i+1} \right) \\ f_{\text{pred}} \end{aligned}$$

Perbandingan dengan Analitis

X _i	y _{analtk}	$\mathbf{y}_{ ext{euler}}$	% kslhan Euler	y _{euler-mod}	% kslhan Euler-mod
0	2	2	-	2	-
0.5	5.81	6	3.27	5.75	1.03
1	9	9.5	5.56	9	0.0
1.5	12.31	12.5	1.54	12.5	1.54
2	18	16.5	8.33	18.5	2.78
2.5	29.81	24.5	17.81	30.75	3.15
3	53	41	22.64	54.5	2.83

3. Metode Runge-Kutta

- Merupakan metode untuk menyelesaikan persamaan diferensial dengan ketelitian dan kestabilan yang cukup tinggi.
- Sangat umum digunakan untuk menyelesaikan bentuk PDB baik linear maupun non linear dengan problema kondisi awal

Bentuk penyelesaian berdasarkan orde (pangkat):

> Orde (pangkat) dua: $y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2)$

Dimana nilai dari k_i adalah : $k_1 = h f(x_i, y_i)$

$$\mathbf{k}_2 = \mathbf{h} \, \mathbf{f} \big(\mathbf{x}_i + \mathbf{h}, \mathbf{y}_i + \mathbf{k}_1 \big)$$

> Orde (pangkat) tiga: $y_{i+1} = y_i + \frac{1}{6}(k_1 + 4k_2 + k_3)$

Dimana nilai dari k_i adalah : $k_1 = h f(x_i, y_i)$

$$k_2 = h f\left(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right)$$
 ; $k_3 = h f\left(x_i + h, y_i + 2k_2 - k_1\right)$

> Orde (pangkat) empat : $y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$

Dimana nilai dari ki adalah:

$$k_1 = h f(x_i, y_i)$$
 $k_3 = h f(x_i + \frac{h}{2}, y_i + \frac{k_2}{2})$

$$k_2 = h f\left(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right)$$
 $k_4 = h f\left(x_i + h, y_i + k_3\right)$

Perbandingan dengan Analitis

X _i	y _{analtk}	$\mathbf{y}_{ ext{euler}}$	% kslhan Euler	y _{euler-mod}	% kslhan Euler- mod	y_{rk4}	% kslhan rk4
0	2	2	-	2	-	2	-
0.5	5.8125	6	3.27	5.75	1.03	5.8125	0
1	9	9.5	5.56	9	0.0	9	0
1.5	12.3125	12.5	1.54	12.5	1.54	12.3125	0
2	18	16.5	8.33	18.5	2.78	18	0
2.5	29.8125	24.5	17.81	30.75	3.15	29.8125	0
3	53	41	22.64	54.5	2.83	53	0

Sub Program PDB

Scilab menyediakan sub program siap pakai untuk menyelesaikan persoalan PDB

Bentuk persamaan : $\frac{dy}{dt} = fungsi$

Dimana:

y0 = kondisi awal dari variabel tak bebas (y)

t0 = kondisi awal dari variabel bebas (t)

t = batasan simulasi dari variabel bebas

Persamaan Diferensial Biasa Simultan

Merupakan sekumpulan persamaan diferensial biasa yang harus diselesaikan secara simultan

$$\frac{dy_1}{dx} = f_1(x, y_1, y_2, ..., y_n)$$

$$\frac{dy_2}{dx} = f_2(x, y_1, y_2, ..., y_n)$$

•

.

$$\frac{dy_{n}}{dx} = f_{n}(x, y_{1}, y_{2}, ..., y_{n})$$

Penyelesaian dengan menggunakan metode Runge Kutta orde empat

$$y_{i+1,j} = y_{i,j} + \frac{1}{6} (k_{1j} + 2k_{2j} + 2k_{3j} + k_{4j})$$

Dengan nilai k adalah:

$$\begin{aligned} k_{1,j} &= hf_{j} \Big(x_{i}, y_{i,1}, y_{i,2}, ..., y_{i,n} \Big) \\ k_{2,j} &= hf_{j} \Bigg(x_{i} + \frac{h}{2}, y_{i,1} + \frac{k_{1,1}}{2}, y_{i,2} + \frac{k_{1,2}}{2}, ..., y_{i,n} + \frac{k_{1,n}}{2} \Bigg) \\ k_{3,j} &= hf_{j} \Bigg(x_{i} + \frac{h}{2}, y_{i,1} + \frac{k_{2,1}}{2}, y_{i,2} + \frac{k_{2,2}}{2}, ..., y_{i,n} + \frac{k_{2,n}}{2} \Bigg) \\ k_{4,j} &= hf_{j} \Big(x_{i} + h, y_{i,1} + k_{3,1}, y_{i,2} + k_{3,2}, ..., y_{i,n} + k_{3,n} \Big) \end{aligned}$$

Dimana j = 1, 2, ..., $n \rightarrow$ menunjukkan nomor persamaannya

Jika dalam sistem terdapat dua persamaan diferensial biasa dengan bentuk

$$\frac{dy_1}{dx} = f_1(x, y_1, y_2)$$
$$\frac{dy_2}{dx} = f_2(x, y_1, y_2)$$

Maka penyelesaian persamaan diferensial biasa tersebut dengan menggunakan metode Runge Kutta orde 4 secara simultan adalah :

$$y_{i+1,1} = y_{i,1} + \frac{1}{6} (k_{1,1} + 2k_{2,1} + 2k_{3,1} + k_{4,1})$$

$$y_{i+1,2} = y_{i,2} + \frac{1}{6} (k_{1,2} + 2k_{2,2} + 2k_{3,2} + k_{4,2})$$

dimana:

$$\begin{aligned} k_{1,1} &= hf_1 \Big(x_i, y_{i,1}, y_{i,2} \Big) \\ k_{1,2} &= hf_2 \Big(x_i, y_{i,1}, y_{i,2} \Big) \\ k_{2,1} &= hf_1 \Bigg(x_i + \frac{h}{2}, y_{i,1} + \frac{k_{1,1}}{2}, y_{i,2} + \frac{k_{1,2}}{2} \Big) \\ k_{2,2} &= hf_2 \Bigg(x_i + \frac{h}{2}, y_{i,1} + \frac{k_{1,1}}{2}, y_{i,2} + \frac{k_{1,2}}{2} \Big) \\ k_{3,1} &= hf_1 \Bigg(x_i + \frac{h}{2}, y_{i,1} + \frac{k_{2,1}}{2}, y_{i,2} + \frac{k_{2,2}}{2} \Big) \\ k_{3,2} &= hf_2 \Bigg(x_i + \frac{h}{2}, y_{i,1} + \frac{k_{2,1}}{2}, y_{i,2} + \frac{k_{2,2}}{2} \Big) \\ k_{4,1} &= hf_1 \Big(x_i + h, y_{i,1} + k_{3,1}, y_{i,2} + k_{3,2} \Big) \\ k_{4,2} &= hf_2 \Big(x_i + h, y_{i,1} + k_{3,1}, y_{i,2} + k_{3,2} \Big) \end{aligned}$$

Akan diselesaikan dan divisualisasikan dua buah persamaan diferensial biasa sebagai berikut :

$$\frac{dy_1}{dx} = -0.5 y_1$$

$$\frac{dy_2}{dx} = 4 - 0.3 y_2 - 0.1 y_1$$

Dengan kondisi awal (batas):

$$x = 0$$
; $y_1 = 4$; $y_2 = 2$

Contoh:

Dua buah tangki air tersambung secara seri dan saling berinteraksi. Kecepatan aliran keluar merupakan fungsi akar kuadrat dari ketinggian air, jadi untuk tangki 1 kecepatan alirannya adalah $\sqrt{h_1-h_2}$ sedangkan untuk tangki 2 sebagai fungsi $\sqrt{h_2}$. Akan ditentukan ketinggian h_1 dan h_2 sebagai fungsi waktu dari t = 0 sampai t = 40 menit dengan interval 4 menit. Setelah disusun neraca bahan, diperoleh persamaan diferensial simultan sebagai fungsi waktu :

$$\frac{dh_1}{dt} = \frac{F}{A_1} - \frac{\beta_1}{A_1} \sqrt{h_1 - h_2} \qquad ; \qquad \frac{dh_2}{dt} = \frac{\beta_2}{A_2} \sqrt{h_1 - h_2} - \frac{\beta_2}{A_2} \sqrt{h_2}$$

Harga-harga parameter yang ada:

$$\beta_1$$
 = 2,5 ft^{2,5}/menit β_2 = 5/ $\sqrt{6}$ ft³/menit A_1 = 5 ft² A_2 = 10 ft² A_3 F = 5 ft³/menit Dengan kondisi awal pada t = 0, A_1 = 12 ft dan A_2 = 7 ft

Uap campuran keluar dari kondensor parsial kolom destilasi yang beroperasi pada 1 atm dengan komposisi 47% mol air (1), 20% mol asam formiat (2) dan sisanya methanol (3). Pada kondensor terjadi kesetimbangan antara uap dan cairannya dan berlaku persamaan-persamaan berikut:

$$x_i = \frac{y_i}{K_i}$$
 dimana, $K_i = \frac{P^{o_i}}{P}$ dan untuk P^{o_i} diperkirakan dengan persamaan Antoine :

$$P^{o_i} = exp\left(A_i - \frac{B_i}{T + C_i}\right)$$
 dengan i = 1, 2, 3 dan $\sum_i x_i = 1$

Perkirakanlah suhu operasi pada operasi kondensor (=dewpoint uap campuran) dalam °C, dengan data konstanta

Po dalam mmHg dan T dalam Kelvin

