```
In [35]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt,seaborn as sns
```

In [36]: df=pd.read\_csv(r"C:\Users\user\Downloads\Mobile\_Price\_Classification\_train (1).csv")
 df

Out[36]:

|      | battery_power | blue | clock_speed | dual_sim | fc | four_g | int_memory | m_dep | mobile_wt | n_cores | <br>px_height | px_width | ram  |
|------|---------------|------|-------------|----------|----|--------|------------|-------|-----------|---------|---------------|----------|------|
| 0    | 842           | 0    | 2.2         | 0        | 1  | 0      | 7          | 0.6   | 188       | 2       | <br>20        | 756      | 2549 |
| 1    | 1021          | 1    | 0.5         | 1        | 0  | 1      | 53         | 0.7   | 136       | 3       | <br>905       | 1988     | 2631 |
| 2    | 563           | 1    | 0.5         | 1        | 2  | 1      | 41         | 0.9   | 145       | 5       | <br>1263      | 1716     | 2603 |
| 3    | 615           | 1    | 2.5         | 0        | 0  | 0      | 10         | 8.0   | 131       | 6       | <br>1216      | 1786     | 2769 |
| 4    | 1821          | 1    | 1.2         | 0        | 13 | 1      | 44         | 0.6   | 141       | 2       | <br>1208      | 1212     | 1411 |
|      |               |      |             |          |    |        |            |       |           |         | <br>          |          |      |
| 1995 | 794           | 1    | 0.5         | 1        | 0  | 1      | 2          | 0.8   | 106       | 6       | <br>1222      | 1890     | 668  |
| 1996 | 1965          | 1    | 2.6         | 1        | 0  | 0      | 39         | 0.2   | 187       | 4       | <br>915       | 1965     | 2032 |
| 1997 | 1911          | 0    | 0.9         | 1        | 1  | 1      | 36         | 0.7   | 108       | 8       | <br>868       | 1632     | 3057 |
| 1998 | 1512          | 0    | 0.9         | 0        | 4  | 1      | 46         | 0.1   | 145       | 5       | <br>336       | 670      | 869  |
| 1999 | 510           | 1    | 2.0         | 1        | 5  | 1      | 45         | 0.9   | 168       | 6       | <br>483       | 754      | 3919 |

2000 rows × 21 columns

In [37]: test\_df=pd.read\_csv(r"C:\Users\user\Downloads\Mobile\_Price\_Classification\_test.csv")
test\_df

Out[37]:

|      | id                     | battery_power | blue | clock_speed | dual_sim | fc | four_g | int_memory | m_dep | mobile_wt | <br>рс | px_height | px_width | ram  |
|------|------------------------|---------------|------|-------------|----------|----|--------|------------|-------|-----------|--------|-----------|----------|------|
| 0    | 1                      | 1043          | 1    | 1.8         | 1        | 14 | 0      | 5          | 0.1   | 193       | <br>16 | 226       | 1412     | 3476 |
| 1    | 2                      | 841           | 1    | 0.5         | 1        | 4  | 1      | 61         | 0.8   | 191       | <br>12 | 746       | 857      | 3895 |
| 2    | 3                      | 1807          | 1    | 2.8         | 0        | 1  | 0      | 27         | 0.9   | 186       | <br>4  | 1270      | 1366     | 2396 |
| 3    | 4                      | 1546          | 0    | 0.5         | 1        | 18 | 1      | 25         | 0.5   | 96        | <br>20 | 295       | 1752     | 3893 |
| 4    | 5                      | 1434          | 0    | 1.4         | 0        | 11 | 1      | 49         | 0.5   | 108       | <br>18 | 749       | 810      | 1773 |
|      |                        |               |      |             |          |    |        |            |       |           | <br>   |           |          |      |
| 995  | 996                    | 1700          | 1    | 1.9         | 0        | 0  | 1      | 54         | 0.5   | 170       | <br>17 | 644       | 913      | 2121 |
| 996  | 997                    | 609           | 0    | 1.8         | 1        | 0  | 0      | 13         | 0.9   | 186       | <br>2  | 1152      | 1632     | 1933 |
| 997  | 998                    | 1185          | 0    | 1.4         | 0        | 1  | 1      | 8          | 0.5   | 80        | <br>12 | 477       | 825      | 1223 |
| 998  | 999                    | 1533          | 1    | 0.5         | 1        | 0  | 0      | 50         | 0.4   | 171       | <br>12 | 38        | 832      | 2509 |
| 999  | 1000                   | 1270          | 1    | 0.5         | 0        | 4  | 1      | 35         | 0.1   | 140       | <br>19 | 457       | 608      | 2828 |
| 1000 | 1000 rows × 21 columns |               |      |             |          |    |        |            |       |           |        |           |          |      |

localhost:8888/notebooks/Random Forest.ipynb

```
In [38]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 2000 entries, 0 to 1999
         Data columns (total 21 columns):
                             Non-Null Count Dtype
          # Column
          0
              battery_power 2000 non-null
                                           int64
                             2000 non-null
                                            int64
          1
              blue
          2
              clock_speed
                             2000 non-null
                                            float64
              dual_sim
                             2000 non-null
                                            int64
                             2000 non-null
          4
              fc
                                             int64
          5
              four_g
                             2000 non-null
                                            int64
              int_memory
                             2000 non-null
                                            int64
          6
              m_dep
                             2000 non-null
                                            float64
                             2000 non-null
          8
              {\tt mobile\_wt}
                                            int64
              n_cores
                             2000 non-null
          9
                                            int64
          10
                             2000 non-null
                                             int64
              рс
                             2000 non-null
                                             int64
          11
              px_height
                             2000 non-null
                                            int64
          12
              px_width
                             2000 non-null
          13
             ram
                                            int64
          14 sc h
                             2000 non-null
                                            int64
                             2000 non-null
                                            int64
          15 sc_w
                             2000 non-null
                                            int64
          16 talk_time
          17
                             2000 non-null
                                            int64
              three_g
          18
              touch_screen
                             2000 non-null
                                             int64
                             2000 non-null
                                            int64
          19 wifi
                             2000 non-null
          20 price_range
                                            int64
         dtypes: float64(2), int64(19)
         memory usage: 328.3 KB
In [39]: x=df.drop('wifi',axis=1)
         y=['wifi']
In [40]: df['dual_sim'].value_counts()
Out[40]: dual_sim
              1019
         1
               981
         Name: count, dtype: int64
```

```
In [41]: HO={"four_g":{"Yes":1,"No":0}}
    df=df.replace(HO)
    print(df)
```

| 0<br>1<br>2<br>3<br>4<br><br>1995<br>1996<br>1997<br>1998<br>1999 | 10<br>5<br>6<br>18<br>7<br>19<br>19                | yer blue 42 0 21 1 63 1 15 1 221 1 94 1 165 1 11 0 11 0 112 0 110 1 | clock                     | _speed | dual_sim                                            | 1<br>0<br>2<br>0<br>13                                          | g in 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1          |                              | ry 7 \ 53 41 10 44 2 39 36 46 45                             |   |
|-------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|---------------------------|--------|-----------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|------------------------------|--------------------------------------------------------------|---|
| 0<br>1<br>2<br>3<br>4<br><br>1995<br>1996<br>1997<br>1998<br>1999 | m_dep mobi 0.6 0.7 0.9 0.8 0.6 0.8 0.2 0.7 0.1 0.9 | le_wt n_ 188 136 145 131 141 106 187 108 145 168                    | cores 2 3 5 6 2 6 4 8 5 6 | p      | x_height 20 905 1263 1216 1208 1222 915 868 336 483 | px_width                                                        | ram 2549 2631 2603 2769 1411 668 2032 3057 869 3919 | sc_h 9 17 11 16 8 13 11 9 18 | sc_w<br>7<br>3<br>2<br>8<br>2<br><br>4<br>10<br>1<br>10<br>4 | \ |
| 0<br>1<br>2<br>3<br>4<br><br>1995<br>1996<br>1997<br>1998<br>1999 | talk_time 19 7 9 11 15 19 16 5 19 2                | three_g 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                             | touch_s                   | screen | wifi pr.  1 0 0 0 0 1 1 1 1                         | ice_range<br>1<br>2<br>2<br>2<br>1<br><br>0<br>2<br>3<br>0<br>3 |                                                     |                              |                                                              |   |

[2000 rows x 21 columns]

```
In [42]: test_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 21 columns):
```

| Ducu       | COTAMINIS (COCAT | ZI COIUMIS).   |         |
|------------|------------------|----------------|---------|
| #          | Column           | Non-Null Count | Dtype   |
|            |                  |                |         |
| 0          | id               | 1000 non-null  | int64   |
| 1          | battery_power    | 1000 non-null  | int64   |
| 2          | blue             | 1000 non-null  | int64   |
| 3          | clock_speed      | 1000 non-null  | float64 |
| 4          | dual_sim         | 1000 non-null  | int64   |
| 5          | fc               | 1000 non-null  | int64   |
| 6          | four_g           | 1000 non-null  | int64   |
| 7          | int_memory       | 1000 non-null  | int64   |
| 8          | m_dep            | 1000 non-null  | float64 |
| 9          | mobile_wt        | 1000 non-null  | int64   |
| 10         | n_cores          | 1000 non-null  | int64   |
| 11         | pc               | 1000 non-null  | int64   |
| 12         | px_height        | 1000 non-null  | int64   |
| 13         | px_width         | 1000 non-null  | int64   |
| 14         | ram              | 1000 non-null  | int64   |
| <b>1</b> 5 | sc_h             | 1000 non-null  | int64   |
| 16         | SC_W             | 1000 non-null  | int64   |
| 17         | talk_time        | 1000 non-null  | int64   |
| 18         | three <u></u> g  | 1000 non-null  | int64   |
| 19         | touch_screen     | 1000 non-null  | int64   |
| 20         | wifi             | 1000 non-null  | int64   |
| dtvpe      | es: float64(2),  | int64(19)      |         |

dtypes: float64(2), int64(19)
memory usage: 164.2 KB

In [43]: test\_df.describe()

## Out[43]:

|       | id          | battery_power | blue        | clock_speed | dual_sim    | fc          | four_g      | int_memory  | m_dep       | mobile |
|-------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|
| count | 1000.000000 | 1000.000000   | 1000.000000 | 1000.000000 | 1000.000000 | 1000.000000 | 1000.000000 | 1000.000000 | 1000.000000 | 1000.0 |
| mean  | 500.500000  | 1248.510000   | 0.516000    | 1.540900    | 0.517000    | 4.593000    | 0.487000    | 33.652000   | 0.517500    | 139.5  |
| std   | 288.819436  | 432.458227    | 0.499994    | 0.829268    | 0.499961    | 4.463325    | 0.500081    | 18.128694   | 0.280861    | 34.8   |
| min   | 1.000000    | 500.000000    | 0.000000    | 0.500000    | 0.000000    | 0.000000    | 0.000000    | 2.000000    | 0.100000    | 80.0   |
| 25%   | 250.750000  | 895.000000    | 0.000000    | 0.700000    | 0.000000    | 1.000000    | 0.000000    | 18.000000   | 0.300000    | 109.7  |
| 50%   | 500.500000  | 1246.500000   | 1.000000    | 1.500000    | 1.000000    | 3.000000    | 0.000000    | 34.500000   | 0.500000    | 139.0  |
| 75%   | 750.250000  | 1629.250000   | 1.000000    | 2.300000    | 1.000000    | 7.000000    | 1.000000    | 49.000000   | 0.800000    | 170.0  |
| max   | 1000.000000 | 1999.000000   | 1.000000    | 3.000000    | 1.000000    | 19.000000   | 1.000000    | 64.000000   | 1.000000    | 200.0  |

8 rows × 21 columns

In [44]: test\_df['blue'].value\_counts()

Out[44]: blue

1 516 0 484

Name: count, dtype: int64

```
In [45]: test_df['fc'].value_counts()
Out[45]: fc
               210
         1
               124
         2
                97
         4
                80
         5
                74
                70
         3
         6
                59
                50
         9
                41
         8
                38
         10
                37
         11
                29
         13
                21
         12
                17
         14
                16
         15
                12
         16
                11
         18
                10
         17
                 2
         19
                 2
         Name: count, dtype: int64
In [46]: x=df.drop('price_range',axis=1)
         y=df['price_range']
In [47]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.7,random_state=42)
         x_train.shape,x_test.shape
Out[47]: ((1400, 20), (600, 20))
In [48]: from sklearn.ensemble import RandomForestClassifier
         rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[48]: ▼ RandomForestClassifier
          RandomForestClassifier()
In [49]: rf=RandomForestClassifier()
In [50]: |param={'max_depth':[2,3,5,10,20],'min_samples_leaf':[5,10,20,50,100,200],'n_estimators':[10,25,30,50,100,200]
In [51]: | from sklearn.model_selection import GridSearchCV
         grid_search=GridSearchCV(estimator=rf,param_grid=param,cv=2,scoring="accuracy")
         grid_search.fit(x_train,y_train)
Out[51]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [52]: grid_search.best_score_
Out[52]: 0.835
In [53]: rf_best=grid_search.best_estimator_
         print(rf_best)
         RandomForestClassifier(max depth=20, min samples leaf=5)
```

```
In [54]: from sklearn.tree import plot_tree
    plt.figure(figsize=(80,40))
    plot_tree(rf_best.estimators_[5],feature_names=x.columns,class_names=['0','1','2','3'],filled=True);
```



```
In [73]: from sklearn.tree import plot_tree
plt.figure(figsize=(80,40))
plot_tree(rf_best.estimators_[7],feature_names=x.columns,class_names=['0','1','2','3'],filled=True);
```



```
In [56]: rf_best.feature_importances_
```

```
In [57]: imp_df=pd.DataFrame({"Varname":x_train.columns,"Imp":rf_best.feature_importances_})
imp_df.sort_values(by="Imp",ascending=False)
```

## Out[57]:

|    | Varname       | lmp      |
|----|---------------|----------|
| 13 | ram           | 0.598278 |
| 0  | battery_power | 0.067266 |
| 11 | px_height     | 0.050425 |
| 12 | px_width      | 0.046024 |
| 6  | int_memory    | 0.029952 |
| 8  | mobile_wt     | 0.029122 |
| 10 | рс            | 0.023214 |
| 16 | talk_time     | 0.020345 |
| 14 | sc_h          | 0.020279 |
| 2  | clock_speed   | 0.020216 |
| 15 | sc_w          | 0.019556 |
| 7  | m_dep         | 0.018130 |
| 4  | fc            | 0.015542 |
| 9  | n_cores       | 0.014041 |
| 19 | wifi          | 0.005345 |
| 5  | four <u>g</u> | 0.005330 |
| 3  | dual_sim      | 0.005004 |
| 18 | touch_screen  | 0.004516 |
| 1  | blue          | 0.003985 |
| 17 | three_g       | 0.003430 |

```
In [58]: imp_df=pd.DataFrame({"Varname":x_train.columns,"Imp":rf_best.feature_importances_})
imp_df.sort_values(by="Imp",ascending=False)
```

## Out[58]:

|    | Varname       | lmp      |
|----|---------------|----------|
| 13 | ram           | 0.598278 |
| 0  | battery_power | 0.067266 |
| 11 | px_height     | 0.050425 |
| 12 | px_width      | 0.046024 |
| 6  | int_memory    | 0.029952 |
| 8  | mobile_wt     | 0.029122 |
| 10 | рс            | 0.023214 |
| 16 | talk_time     | 0.020345 |
| 14 | sc_h          | 0.020279 |
| 2  | clock_speed   | 0.020216 |
| 15 | sc_w          | 0.019556 |
| 7  | m_dep         | 0.018130 |
| 4  | fc            | 0.015542 |
| 9  | n_cores       | 0.014041 |
| 19 | wifi          | 0.005345 |
| 5  | four <u>g</u> | 0.005330 |
| 3  | dual_sim      | 0.005004 |
| 18 | touch_screen  | 0.004516 |
| 1  | blue          | 0.003985 |
| 17 | three_g       | 0.003430 |
|    |               |          |

```
In [59]: X=test_df.drop('dual_sim',axis=1)
         Y=test_df['dual_sim']
In [60]: from sklearn.model_selection import train_test_split
         X_train, X_test, Y_train, Y_test=train_test_split(X,Y,train_size=0.7,random_state=42)
         x_train.shape,x_test.shape
Out[60]: ((1400, 20), (600, 20))
In [61]: | from sklearn.ensemble import RandomForestClassifier
         rfc=RandomForestClassifier()
         rfc.fit(x_test,y_test)
Out[61]:
          ▼ RandomForestClassifier
         RandomForestClassifier()
In [63]: rf=RandomForestClassifier()
In [64]: | param={'max_depth':[2,3,5,10,20], 'min_samples_leaf':[5,10,20,50,100,200], 'n_estimators':[10,25,30,50,100,200]
In [66]: from sklearn.model_selection import GridSearchCV
         grid_search=GridSearchCV(estimator=rf,param_grid=param,cv=2,scoring="accuracy")
         grid_search.fit(x_test,y_test)
Out[66]:
                      GridSearchCV
           ▶ estimator: RandomForestClassifier
                RandomForestClassifier
In [67]: grid_search.best_score_
Out[67]: 0.816666666666667
In [68]: rf_best=grid_search.best_estimator_
         print(rf_best)
         RandomForestClassifier(max_depth=5, min_samples_leaf=10, n_estimators=50)
In [71]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
         plot_tree(rf_best.estimators_[5],feature_names=x.columns,class_names=['0','1','2','3'],filled=True);
```

```
In [70]: from sklearn.tree import plot_tree
    plt.figure(figsize=(80,40))
    plot_tree(rf_best.estimators_[7],feature_names=x.columns,class_names=['0','1','2','3'],filled=True);
```



In [75]: imp\_df=pd.DataFrame({"Varname":x\_train.columns,"Imp":rf\_best.feature\_importances\_})
imp\_df.sort\_values(by="Imp",ascending=False)

## Out[75]:

|    | Varname       | Imp      |
|----|---------------|----------|
| 13 | ram           | 0.562947 |
| 0  | battery_power | 0.072715 |
| 12 | px_width      | 0.055520 |
| 11 | px_height     | 0.052557 |
| 6  | int_memory    | 0.033023 |
| 8  | mobile_wt     | 0.031791 |
| 10 | рс            | 0.028723 |
| 16 | talk_time     | 0.022295 |
| 2  | clock_speed   | 0.021603 |
| 9  | n_cores       | 0.021560 |
| 15 | sc_w          | 0.019275 |
| 14 | sc_h          | 0.018927 |
| 4  | fc            | 0.012697 |
| 7  | m_dep         | 0.011390 |
| 18 | touch_screen  | 0.008126 |
| 19 | wifi          | 0.007894 |
| 3  | dual_sim      | 0.007153 |
| 1  | blue          | 0.006068 |
| 5  | four_g        | 0.004554 |
| 17 | three_g       | 0.001182 |

In [ ]: