Chapter 11 Monopoly

Monopoly

Monopoly

Challenge: Pricing the iPad

- Background:
 - In 2010, Apple started selling the first iPad
 - People loved it, and Apple had an effective monopoly on high end tablets despite the \$499 starting price
- Questions:
 - How did Apple set the price of the iPad?

Monopoly Definition

- 2 key characteristics must be present for a market to be a true monopoly market
 - 1. There must be a single seller of a good for which there is no good substitute
 - 2. There must be high barriers to entry that make it difficult for other firms to enter
- Monopoly is often referred to as being a matter of degree on the competition spectrum

- A monopoly is the only supplier of a good for which there is no close substitute
- Monopolies are not price takers like competitive firms
- Monopoly output is the market output
- The monopoly demand curve is the market demand curve
- Monopolists set their own prices given market demand
- Because demand is downward sloping, monopolists set price above the marginal cost to maximize profit

- Like all firms, monopolies maximize profits by setting price or output so that marginal cost equals marginal revenue
- Competitive case: MC = MR = p
- Here price is set not given, so they are price makers

- Monopolies maximize profit by setting price or output so that MR = MC
- Profit function to be maximized by choosing output Q:

$$\pi(Q) = R(Q) - C(Q)$$

R(Q) is the revenue function, C(Q) is the cost function

• The necessary condition for profit max:

$$\frac{\delta \pi(Q^*)}{\delta Q} = \frac{R(Q^*)}{\delta Q} - \frac{\delta C(Q^*)}{\delta Q} = 0$$

The sufficient condition for profit max:

$$\frac{\delta^2 \pi(Q^*)}{\delta Q^2} = \frac{\delta^2 R(Q^2)}{\delta Q^2} - \frac{\delta C(Q^2)}{\delta Q^2} < 0$$

- A firm's MR curve depends on the demand curve
 - MR is also downward sloping and lies below demand
- If p(Q) is the inverse demand function shows the price received for selling Q then the marginal revenue function is:

$$MR(Q) = \frac{\delta R(Q)}{\delta Q} = \frac{\delta p(Q)Q}{\delta Q} = p(Q)\frac{\delta Q}{\delta Q} + \frac{\delta p(Q)}{\delta Q}Q = p(Q) + \frac{\delta p(Q)}{\delta Q}Q$$

- ullet Given a positive value of Q, MR lies below inverse demand
- Selling one more unit requires the monopolist to lower the price
 - Price is lowered on the marginal unit and all other units sold

Average and Marginal Revenue

	Initial Revenue, R_1	Revenue with One More Unit, R_2	Marginal Revenue, $R_2 - R_1$
Competition Monopoly	$A \\ A + C$	A + B A + B	$B = p_1$ $B - C = p_2 - C$

Elasticity of Demand and Total, Average, and Marginal Revenue

Deriving a Firm's MR Curve

$$MR = p + \frac{\Delta p}{\Delta Q} \times Q$$

- At a given price, MR equals: $MR = p(1 + \frac{1}{\epsilon})$
- This means MR is closest to the price (and at its highest level) when elasticity is high
- ullet MR and the different ranges of ϵ have a defined relationship
 - MR at point of unitary elasticity ($\epsilon = -1$)
 - MR under elastic range is positive
 - MR under inelastic range is negative

Quantity, Price, MR, and ϵ for the Linear Inverse Demand Curve: Q=24-p

Q	Price, p	Marginal Revenue, MR	Elasticity of Demand, $\varepsilon = -p/Q$
0	24	24	-∞ ↑
1	23	22	–23 ·≒
2	22	20	-11 <u>se</u>
3	21	18	$ \begin{array}{ccc} -\infty & & \uparrow \\ -23 & & \downarrow \\ -11 & & -7 \\ -5 & & -5 \end{array} $
4	20	16	-5
5	19	14	-3.8
6	18	12	-3
7	17	10	-2.43
8	16	8	-2
9	15	6	-1.67
10	14	4	-1.4
11	13	2	-1.18
12	12	0	–1 .ဍ
13	11	-2	-1 -0.85 elastic
23	1	-22	$-0.043 \frac{8}{2}$
24	0	-24	0

Selecting the Profit Maximizing Output

- The monopolist, like every other firm, sets MR = MC to maximize profits
- Also like other types of firms, they must check to make sure producing at Q>0 is a better option than shutting down

Monopoly Example

- Inverse demand function: p(Q) = 24 Q
 - ullet Revenue function found by Inverse Demand imes Q
 - Can be used to find the marginal revenue function:

$$MR(Q) = 24 - 2Q$$

• Quadratic SR cost function: $C(Q) = VC(Q) + FC = Q^2 + 12 - UC(Q)$ use to find MC:

$$MC(Q) = \frac{\delta C(Q)}{\delta Q} = 2Q$$

Monopoly Example

• Profit maximizing output is obtained by producing Q^* :

$$MR(Q^*) = 24 - 2Q^* = 2Q^* = MC(Q)$$

$$24 = 4Q^*$$

- Solving for Q we get: $Q^* = 6$
- The inverse demand function indicates that people are willing to pay p=\$18 for 6 units of output

Finding a Monopoly's Inverse Demand and MR

- If a monopoly faces the demand function $Q = 25 \frac{1}{4}p^2$:
 - 1. Find the inverse demand
 - 2. Find MR
- If the cost function is $C(Q) = Q^2 + 2Q + 150$:
 - 3. Find MC
 - 4. Find the profit maximizing Q^* that the monopoly would choose to operate at by setting MR = MC

Maximizing Profit

Question

 Can monopolies charge whatever price they want for their good?

Monopoly Example

- Should a profit-maximizing monopoly produce at Q^* or shut down?
- As with competitive firms, a monopoly should shut down in the short run if the the monopolist's price is less than its AVC
- In our example, AVC at $Q^* = 6$ is \$6
- Because p = \$18 is clearly about \$6, the monopoly in this example should produce in the SR

Mathematical Approach

- Take the expression for MC that is either given or easily derived from the cost curve and set it equal to MR
- MR will either be given or easily determined from the rules we went over
- The Q that equates MR and MC will be the monopoly's output level
 - This Q goes into the demand curve (not MR or MC curve) to find the market price

Competition v. Monopoly in Setting Output

• Differences:

- The firm's supply curve is no longer equal to the portion of their MC crave above the minimum of the AVC curve
- MR used to be equal to p, but now MR is always less than

Similarities:

- Firms still use MR = MC profit max rule
- Shut-down rule still the same

Measuring Market Power

- Any firm that is not a price taker has market power
- Market power: the ability to raise price above MC without losing all their business
- However, monopoly is not a condition that is binary it's a matter of degree
- The degree to which a monopolist can raise price while still retaining sales reflects their market power

Market Power & Price Elasticity of Demand

- The ability of a monopolist to raise their price without losing all their customers will depend on how price sensitive consumers in the market are
 - This is captured by the price elasticity of demand
- When consumers have inelastic demand, this creates more market power for the monopoly
- When consumers have elastic demand, market power will be small

The Lerner Index

 One common measure of a monopoly's strength is their Lerner Index Score

Lerner Index =
$$\frac{p - MC}{p} = -\frac{1}{\epsilon}$$

- This captures the size of the price markup above the MC
 - Competitive firms have a Learner Index = 0
 - The Lerner Index goes to 1 as a firm gets more power

Sources of Market Power

- Ceteris paribus, firms have less market power as:
 - Better substitutes are introduced
 - Other firms enter the market and produce the same good
 - Other firms locate more closely to them geographically

Welfare Effects of Monopoly

- Having defined welfare as the sum of consumer and producer surplus, we can see monopolies reduce social welfare
- Compared to a competitive market, monopolies do not maximize social welfare

Deadweight Loss of Monopoly

	Competition	Monopoly	Change
Consumer Surplus, CS Producer Surplus, PS	$A+B+C \\ D+E$	A B + D	$-B - C = \Delta CS$ $B - E = \Delta PS$
Welfare, $W = CS + PS$	A + B + C + D + E	A + B + D	$-C - E = \Delta W = DWL$

Why Monopolies Exist

- 2 reasons why markets become monopolized:
 - 1. Market related cost advantages
 - 2. Government regulation creates it

Cost Advantages

- Cost advantages can occur for many reasons
 - 1. Control of an essential facility a scarce resource that a rival firm needs to survive (e.g. owning a quarry in a region generates a cost advantage for gravel)
 - 2. Use of superior production technology or organization (e.g. Henry Ford's assembly lines and standardization)
 - 3. Protection from imitation through patents or informational secrets

Natural Monopoly

- Natural monopoly: a situation where a single firm can produce the entire market output at the lowest possible cost
- 2 conditions must be met to have a natural monopoly situation occur int he real world
 - 1. High fixed costs
 - 2. Constant or decreasing MC (i.e. the opposite of what tends to happen at extremely high levels of production for most types of goods)

Natural Monopoly Example

- Most people think of public utilities electric, gas, water/ sewer service, cable
- Computer operating systems another good example

Government Actions that Create Market Power

- Barriers to entry that prevent additional firms from entry:
 - Issuing licenses that are difficult to obtain
 - Granting exclusive production rights
 - Auctioning off exclusive production rights
- Patents: exclusive right to sell a product or use a particular technology for a length of time
 - The good side: patents stimulate research
 - Bad: create deadweight loss

Government Actions that Create Monopolies

- 1. Make it difficult for new firms to obtain licenses to operate
 - U.S. cities require new hospitals to secure a certificate of need to show need for new facility
- 2. Granting the firm rights to be a monopoly
 - Public utilities operated by private companies
 - Patents
- 3. Auctioning the rights to be a monopoly
 - Selling government monopolies to private firms (privatization)

Government Acting to Deal with Market Power

- In the case of strong market power, governments face 2 options:
 - Destroy the market power by breaking up the monopoly into smaller pieces and forcing competition around them

 antitrust
 - 2. Regulate the price the monopoly is allowed to charge directly (try to turn them into a price take)
 - This involves use of oversight agencies who monitor the monopoly and work to estimate the optimal prices that they should be allowed to charge

How Do Governments Regulate Price?

- 1. Optimal price regulation: government imposes a price ceiling that is equal to the competitive price, eliminating DWL
- 2. Non-optimal price regulation: government imposes a price ceiling that is not set at the competitive level, which reduces but does not eliminate the DWL
- 3. Increasing competition: allowing/encouraging market entry by new domestic firms and ending import bans that kept out international firms

Problems with Optimal Price Regulation

- Main problem: the monopoly is forced out of business if the price is set at the socially efficient level
- Additional problems:
 - Unknown MC curve: the monopoly is the best source of their cost info and they don't want to give it away
 - The regulated industry/firm has incentive to exert influence over the regulators

Monopoly Decisions Over Time and Behavioral Econ

- A good has a network externality if one person's demand depends not the consumption of a good by others
 - With a positive network externality, value to consumer grows as the of units sold increases (e.g. telephones, online platforms)
 - With a negative network externality, value to the consumer grows as fewer people posses the good (e.g. paintings)
- A bandwagon effect is a popularity-based explanation for a positive network externality — social networks
- A snob effect is an explanation for a negative network externality people like bragging about their art collection