

FORMULARIO DE ESTADÍSTICA INFERENCIAL

CASOS		DISTRIBUCIÓN MUESTRAL DE LA MEDIA		
σ^2 conocida			$\overline{X} \sim N(\mu_{\overline{X}}, \sigma^2_{\overline{X}}) \rightarrow Z = \overline{X}$	$\frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} \sim N(0, 1)$
		$\mu_{ar{X}}=\mu$	$\sigma^2_{\bar{X}} = \frac{\sigma^2}{n}$	$\sigma^2_{\bar{X}} = \frac{\sigma^2}{n} \left(\frac{N-n}{N-1} \right)$
	$n \geq 30$ (Población normal	$\overline{X} \approx N(\mu_{\overline{X}}, \hat{\sigma}^2_{\overline{X}}) \rightarrow Z = \frac{\overline{X} - \mu_{\overline{X}}}{\widehat{\sigma}_{\overline{X}}} \approx N(0, 1)$		
σ^2 desconocida	o no normal)	$\mu_{ar{X}}=\mu$	$\hat{\sigma}^2_{\bar{X}} = \frac{s^2}{n}$	$\hat{\sigma}^2_{\bar{X}} = \frac{s^2}{n} \left(\frac{N-n}{N-1} \right)$
	n < 30 (Población normal)	$T = rac{\overline{X} - \mu}{rac{S}{\sqrt{n}}} \sim t_{(n-1)}$		

DISTRIBUCIÓN MUESTRAL DE LA PROPORCIÓN		
$\overline{p} \approx N(\mu_{\overline{p}}, \sigma^2_{\overline{p}}) \rightarrow Z = \frac{\overline{p} - \mu_{\overline{p}}}{\sigma_{\overline{p}}} \approx N(0, 1)$		
$\mu_{ar{p}}=p$	$\sigma^2_{\bar{p}} = \frac{p(1-p)}{n}$	$\sigma^2_{\bar{p}} = \frac{p(1-p)}{n} \left(\frac{N-n}{N-1}\right)$

CASOS		DISTRIBUCIÓN MUESTR	AL DE LA DIFERENCIA DE MEDIAS	
${\sigma_1}^2y{\sigma_2}^2$ son conocidas			$\overline{X}_1 - \overline{X}_2 \sim N(\mu_{\overline{X}_1 - \overline{X}_2}, \sigma^2_{\overline{X}_1 - \overline{X}_2}) \rightarrow Z$	$=\frac{(\overline{X}_{1}-\overline{X}_{2})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{{\sigma_{1}}^{2}}{n_{1}}+\frac{{\sigma_{2}}^{2}}{n_{2}}}}\sim N(0,1)$
		$\mu_{\bar{X}_1 - \bar{X}_2} = \mu_1 - \mu_2$	$\sigma^2_{\bar{X}_1 - \bar{X}_2} = \frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}$	
$\sigma_1^2 y \sigma_2^2$	$n_1 \geq 30 \ y \ n_2 \geq 30$ (Poblaciones normales y no normales)		$\overline{X}_1 - \overline{X}_2 \approx N(\mu_{\overline{X}_1 - \overline{X}_2}, \widehat{\sigma}^2_{\overline{X}_1 - \overline{X}_2}) \rightarrow Z$	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \approx N(0, 1)$
desconocidas			$\mu_{\bar{X}_1 - \bar{X}_2} = \mu_1 - \mu_2$	$\hat{\sigma}^2_{\bar{X}_1 - \bar{X}_2} = \frac{{s_1}^2}{n_1} + \frac{{s_2}^2}{n_2}$
	$ \begin{vmatrix} n_1 < 30 & y \\ n_2 < 30 \end{vmatrix} $		$\sqrt{\frac{s_c}{n_1}}$	$-\frac{(\mu_1-\mu_2)}{-\frac{s_c^2}{n_2}} \sim t_{(n_1+n_2-2)}$
	(Poblaciones normales) $\sigma_1^2 \neq \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$	$T = \frac{(\overline{X}_1 - \overline{X}_2)}{\sqrt{1 + (\overline{X}_1 - \overline{X}_2)}}$	$\frac{\overline{K}_2) - (\mu_1 - \mu_2)}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \sim t_{(r)}$

DISTRIBUCIÓN MUESTRAL DE LA DIFERENCIA DE PROPORCIONES		
$\overline{p}_1 - \overline{p}_2 \approx N\left(\mu_{\overline{p}_1 - \overline{p}_2}, \sigma^2_{\overline{p}_1 - \overline{p}_2}\right) \rightarrow Z = \frac{(\overline{p}_1 - \overline{p}_2) - \mu_{\overline{p}_1 - \overline{p}_2}}{\sigma_{\overline{p}_1 - \overline{p}_2}} \approx N(0, 1)$		
$\mu_{\overline{p}_1 - \overline{p}_2} = p_1 - p_2$	$\sigma^2_{\overline{p}_1 - \overline{p}_2} = \frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}$	

CASOS		INTERVALO DE CONFIANZA PARA LA MEDIA	
		$IC(\mu, 1-\alpha) = [\overline{X} - Z_{1-\frac{\alpha}{2}}]$	$\sigma_{\overline{X}}$; $\overline{X} + Z_{1-\frac{\alpha}{2}}\sigma_{\overline{X}}$]
σ^2 conocida		$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$	$\sigma_{ar{X}} = rac{\sigma}{\sqrt{n}} \sqrt{rac{N-n}{N-1}}$
σ^2 desconocida	$n \geq 30$ (Población normal o no normal)	$IC(\mu, 1-\alpha) = [\overline{X} - Z_{1-\frac{\alpha}{2}}]$	$\widehat{\sigma}_{\overline{X}}$; $\overline{X} + Z_{1-\frac{\alpha}{2}} \widehat{\sigma}_{\overline{X}}$
	n < 30 (Población normal)	$IC(\mu, 1-\alpha) = \left[\overline{X} - t_{\left(1-\frac{\alpha}{2}\right)}\right]$	$(x_{n-1})\widehat{\sigma}_{\overline{X}}; \overline{X} + t_{\left(1-\frac{\alpha}{2},n-1\right)}\widehat{\sigma}_{\overline{X}}$

	$\widehat{\sigma}_{\bar{X}} = \frac{s}{\sqrt{n}}$	$\widehat{\sigma}_{\bar{X}} = \frac{s}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$
TAMAÑO DE MUESTRA	$n = \left(\frac{Z_{1-\frac{\alpha}{2}} \sigma}{e}\right)^2$	$n = \frac{\sigma^2 N}{\sigma^2 + (N-1) \left(\frac{e}{Z_{1-\frac{\alpha}{2}}}\right)^2}$

INTERVALO DE CONFIANTA DADA LA	$IC(p, 1-\alpha) = [\overline{p} - Z_{1-\frac{\alpha}{2}}\widehat{\sigma}_{\overline{p}}; \overline{p} + Z_{1-\frac{\alpha}{2}}\widehat{\sigma}_{\overline{p}}]$		
INTERVALO DE CONFIANZA PARA LA PROPORCIÓN	$\hat{\sigma}_{ar{p}} = \sqrt{rac{ar{p}(1-ar{p})}{n}}$	$\widehat{\sigma}_{ar{p}} = \sqrt{\frac{ar{p}(1-ar{p})}{n}} \sqrt{\frac{N-n}{N-1}}$	
TAMAÑO DE MUESTRA	$n = \left(\frac{Z_{1-\frac{\alpha}{2}}\sqrt{\bar{p}(1-\bar{p})}}{e}\right)^{2}$	$n = \frac{\bar{p}(1-\bar{p})N}{\bar{p}(1-\bar{p}) + (N-1)\left(\frac{e}{Z-a}\right)^2}$	
	Si $ar{p}$ es desconocida se estima por 0.5	$\left(\frac{2}{1-\frac{\alpha}{2}}\right)$	

INTERVALO DE CONFIANZA PARA LA VARIANZA

$$IC(\sigma^2, 1-\alpha) = \left[\frac{(n-1)s^2}{\chi^2_{\left(1-\frac{\alpha}{2},n-1\right)}}; \frac{(n-1)s^2}{\chi^2_{\left(\frac{\alpha}{2},n-1\right)}}\right]$$

CASOS		INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS
${\sigma_1}^2y{\sigma_2}^2$ son conocidas		$IC(\mu_{1}-\mu_{2},1-\alpha) = [(\bar{X}_{1}-\bar{X}_{2})-Z_{1-\frac{\alpha}{2}}\sigma_{\bar{X}_{1}-\bar{X}_{2}};(\bar{X}_{1}-\bar{X}_{2})+Z_{1-\frac{\alpha}{2}}\sigma_{\bar{X}_{1}-\bar{X}_{2}}]$ $\sigma_{\bar{X}_{1}-\bar{X}_{2}} = \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
	$n_1 \ge 30 \ y \ n_2 \ge 30$ (Poblaciones normales y no normales)	$IC(\mu_{1}-\mu_{2},1-\alpha) = [(\bar{X}_{1}-\bar{X}_{2}) - Z_{1-\frac{\alpha}{2}}\hat{\sigma}_{\bar{X}_{1}-\bar{X}_{2}}; (\bar{X}_{1}-\bar{X}_{2}) + Z_{1-\frac{\alpha}{2}}\hat{\sigma}_{\bar{X}_{1}-\bar{X}_{2}}]$ $\hat{\sigma}_{\bar{X}_{1}-\bar{X}_{2}} = \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}$
$\sigma_1^{\ 2}\ y\ \sigma_2^{\ 2}$ desconocidas	$n_1 < 30 \ y$ $n_2 < 30$ (Poblaciones	$\begin{aligned} \text{Si } \sigma_1^{\ 2} &= \ \sigma_2^{\ 2} \\ IC(\mu_1 - \mu_2, 1 - \alpha) &= \left[(\overline{X}_1 - \overline{X}_2) - t_{\left(1 - \frac{\alpha}{2}, n_1 + n_2 - 2\right)} \widehat{\sigma}_{\overline{X}_1 - \overline{X}_2}; \ (\overline{X}_1 - \overline{X}_2) + \ t_{\left(1 - \frac{\alpha}{2}, n_1 + n_2 - 2\right)} \widehat{\sigma}_{\overline{X}_1 - \overline{X}_2} \right] \\ \widehat{\sigma}_{\overline{X}_1 - \overline{X}_2} &= \sqrt{\frac{s_c^2}{n_1} + \frac{s_c^2}{n_2}}, \ \text{donde } s_c^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \\ \hline \text{Si } \sigma_1^2 \neq \sigma_2^2 \end{aligned}$
	normales)	$IC(\mu_{1}-\mu_{2},1-\alpha) = \left[(\overline{X}_{1}-\overline{X}_{2}) - t_{\left(1-\frac{\alpha}{2}r\right)} \widehat{\sigma}_{\overline{X}_{1}-\overline{X}_{2}}; (\overline{X}_{1}-\overline{X}_{2}) + t_{\left(1-\frac{\alpha}{2}r\right)} \widehat{\sigma}_{\overline{X}_{1}-\overline{X}_{2}} \right]$ $\widehat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}} = \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} \text{ y } r = \frac{\left(\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2} + \left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}$

INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE PROPORCIONES	$IC(p_1-p_2, 1-\alpha) = [(\overline{p}_1 - \overline{p}_2) - Z_{1-\frac{\alpha}{2}} \widehat{\sigma}_{\overline{p}_1-\overline{p}_2}; (\overline{p}_1 - \overline{p}_2) + Z_{1-\frac{\alpha}{2}} \widehat{\sigma}_{\overline{p}_1-\overline{p}_2}]$ $\widehat{\sigma}_{\overline{p}_1-\overline{p}_2} = \sqrt{\frac{\overline{p}_1(1-\overline{p}_1)}{n_1} + \frac{\overline{p}_2(1-\overline{p}_2)}{n_2}}$
--	--

INTERVALO DE CONFIANZA PARA LA RAZÓN DE DOS VARIANZAS
$$IC\left(\frac{{\sigma_1}^2}{{\sigma_2}^2}, 1-\alpha\right) = \left[\frac{s_1^2}{s_2^2}F\left(\frac{\alpha}{2}; n_2-1, n_1-1\right); \frac{s_1^2}{s_2^2}F\left(1-\frac{\alpha}{2}; n_2-1, n_1-1\right)\right]$$

$$F\left(\frac{\alpha}{2}; r_2, r_1\right) = \frac{1}{F\left(1-\frac{\alpha}{2}; r_1, r_2\right)}$$