AY 250: Problem Set 1

Irina Ene

September 12, 2016

Problem 1

Data: 1 yellow and 1 green M&M.

Want: The probability that the yellow M&M comes from the 1994 bag.

It is clear (based on the description of the problem) that the yellow M&M came from either the 1994 or the 1996 bag, so let's label our two hypotheses as follow:

 H_1 : the yellow M&M came from the 1994 bag. H_2 : the yellow M&M came from the 1996 bag.

Now we can write the Bayes' table for this problem.

Hypothesis	P(H)	P(D H)	$P(D H) \times P(H)$	P(H D)
H_1	0.5	$0.2 \times 0.2 = 0.04$	0.02	0.02/0.027 = 0.74
$\overline{H_2}$	0.5	$0.14 \times 0.1 = 0.014$	0.007	0.007/0.027 = 0.26

- it is equally likely that the yellow M&M came from either the 1994 or the 1996 bag, so P(H) is 0.5 for both H_1 and and H_2 .
- $P(D|H_1)$ is the probability that the yellow M&M came from the 1994 bag (0.02) and, consequently, that the green M&M from the 1996 bag (0.02), hence $0.2 \times 0.2 = 0.04$.
- $P(D|H_2)$ is the probability we the yellow M&M came from the 1996 bag (0.14) and, consequently, that the green M&M came from the 1994 bag (0.1), hence $0.14 \times 0.1 = 0.014$.
- the evidence, P(D), is the sum of the two values in the $P(D|H) \times P(H)$ column, 0.02+0.007=0.027.

So, from the probability table, we can read that the relative probability that the yellow M&M came from the 1994 bag is 0.02, while the normalized probability is 0.74 = 74%.