$STA108_TermProjectEdits$

Gabriel Jones

2023-11-23

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
       intersect, setdiff, setequal, union
##
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
       select
## Warning: package 'leaps' was built under R version 4.3.2
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
##
       recode
```

Single Linear Regression Models & Analysis

Life Expectancy Analysis

Response QQ Plot

 $\textbf{Life Expectancy} \sim \textbf{Land Area}$

Table 1: Life Expectancy \sim Land Area

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	68.4102866	0.8068269	84.789303	0.0000000
Land Area	0.0000002	0.0000004	0.379057	0.7050826

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 $\textbf{Life Expectancy} \sim \textbf{Birth Rate}$

Table 2: Life Expectancy \sim Birth Rate

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	86.9231381	0.9012399	96.44839	0
Birth Rate	-0.8219937	0.0363068	-22.64021	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 $\textbf{Life Expectancy} \sim \textbf{Cell}$

Table 3: Life Expectancy \sim Cell

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	54.3145708	1.2926162	42.01910	0
Cell	0.1565293	0.0128266	12.20351	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 $Life\ Expectancy \sim CO2$

Table 4: Life Expectancy $\sim CO2$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	65.1673619	0.8378840	77.776114	0
CO2	0.6750591	0.0995408	6.781732	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 $\textbf{Life Expectancy} \sim \textbf{Elderly Population}$

Table 5: Life Expectancy \sim Elderly Population

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	58.780154	1.0230021	57.45849	0
Elderly Population	1.309561	0.1136439	11.52337	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 $Life\ Expectancy \sim GDP$

Table 6: Life Expectancy \sim GDP

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	64.323624	0.7525609	85.472984	0
GDP	0.000344	0.0000355	9.690967	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


Life Expectancy \sim Health

Table 7: Life Expectancy \sim Health

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	60.4502780	1.9492731	31.011703	0.00e+00
Health	0.7347805	0.1650418	4.452086	1.47e-05

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 $\textbf{Life Expectancy} \sim \textbf{Internet}$

Table 8: Life Expectancy \sim Internet

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	60.6542290	0.7560181	80.22854	0
Internet	0.2871813	0.0200382	14.33166	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 $\textbf{Life Expectancy} \sim \textbf{Population}$

Table 9: Life Expectancy \sim Population

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	68.4904710	0.7841700	87.3413582	0.0000000
Population	0.0007312	0.0057423	0.1273414	0.8988093

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


 ${\bf Life\ Expectancy} \sim {\bf Rural}$

Table 10: Life Expectancy \sim Rural

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	81.0758804	1.2775025	63.46436	0
Rural	-0.2819026	0.0254756	-11.06561	0

```
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## Saving 6.5 x 4.5 in image
## 'geom_smooth()' using formula = 'y ~ x'
```


Transformations

New Models

State All Rsq

Table 11: R Squared Values

XVar	Rsq	Adj.Rsq	Trans.Rsq
Birth Rate	0.7358520	0.7344164	NA
Cell	0.4473241	0.4443204	NA
CO2	0.1999718	0.1956238	0.5840630
Elderly Population	0.4191698	0.4160131	0.4694471
GDP	0.3379267	0.3343284	0.6272979
Health	0.0972474	0.0923412	NA
Internet	0.5274739	0.5249058	0.6156395
Land Area	0.0007803	-0.0046503	NA
Population	0.0000881	-0.0053462	NA
Rural	0.3995712	0.3963080	NA

Multifactor Models

22

Table 12: Forward Selection Predictiors

	Include
(Intercept)	TRUE
land_area	TRUE
population	FALSE
rural	TRUE
health	TRUE
internet	TRUE
birth_rate	TRUE
elderly_pop	TRUE
co2	FALSE
gdp	TRUE
cell	TRUE

Table 13: Forward Selection Algorithm | nbest=8

	land_area	population	rural	health	internet	birth_rate	elderly_pop co2	gdp	cell
1(1)						*			
2 (1)						*		*	
3 (1)					*	*		*	
4 (1)				*	*	*		*	
5 (1)				*	*	*	*	*	
6 (1)			*	*	*	*	*	*	
7 (1)	*		*	*	*	*	*	*	
8 (1)	*		*	*	*	*	*	*	*

Table 14: Backward Elimination Predictiors

	Include
(Intercept)	TRUE
land_area	TRUE
population	FALSE
rural	TRUE
health	TRUE
internet	TRUE
birth_rate	TRUE
elderly_pop	TRUE
co2	FALSE
gdp	TRUE
cell	TRUE

Table 15: Backward Elimination Algorithm | nbest=8 $\,$

	$land_area$	population	rural	health	internet	$birth_rate$	elderly_pop $co2$	gdp	cell
1(1)						*			
2 (1)					*	*			
3 (1)			*		*	*			

	land_area	population	rural	health	internet	birth_rate	elderly_pop co2	gdp	cell
4(1)			*	*	*	*			
5 (1)			*	*	*	*	*		
6 (1)			*	*	*	*	*	*	
7 (1)	*		*	*	*	*	*	*	
8 (1)	*		*	*	*	*	*	*	*

Best Model

Assess Multicollinearity

- ## Warning: 'select_()' was deprecated in dplyr 0.7.0.
 ## i Please use 'select()' instead.
- ## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
- ## generated.

Table 16: VIF Values For Two Factor Models

	LandArea	Population	Rural	Health	Internet	BirthRate	ElderlyPop	CO2	GDP	Cell
LandArea	Inf	1.265	1.017	1.001	1.005	1.005	1.009	1.018	1.009	1.001
Population	1.265	Inf	1.004	1.008	1.000	1.004	1.001	1.001	1.001	1.006
Rural	1.017	1.004	Inf	1.038	1.724	1.576	1.314	1.890	2.334	1.568
Health	1.001	1.008	1.038	Inf	1.109	1.057	1.150	1.017	1.106	1.019
Internet	1.005	1.000	1.724	1.109	Inf	2.682	1.900	2.662	3.127	2.087
BirthRate	1.005	1.004	1.576	1.057	2.682	Inf	2.894	3.103	2.797	1.812
ElderlyPop	1.009	1.001	1.314	1.150	1.900	2.894	Inf	1.524	1.762	1.339
CO2	1.018	1.001	1.890	1.017	2.662	3.103	1.524	Inf	4.368	2.064
GDP	1.009	1.001	2.334	1.106	3.127	2.797	1.762	4.368	Inf	2.014
Cell	1.001	1.006	1.568	1.019	2.087	1.812	1.339	2.064	2.014	Inf