

Model Optimization and Tuning Phase Template

Date	10 July 2024
Team ID	SWTID1720097765
Project Title	Ecommerce Shipping Prediction Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Logistic Regression	<pre>lg = LogisticRegressionCV(n_jobs=-1,random_state= 1234) lg_param_grid = { 'Cs': [6,8,10,15,20], 'max_iter': [60,80,100] } lg_cv= GridSearchCV(lg,lg_param_grid,cv=5,scoring="accuracy", n_jobs=-1, verbose=3) lg_cv.fit(x_train_normalized,y_train) print("Best Score:" + str(lg_cv.best_score_)) print("Best Parameters: " + str(lg_cv.best_params_))</pre>	Fitting 5 folds for each of 15 candidates, totalling 75 fits Best Score:0.6356404077730116 Best Parameters: {'Cs': 6, 'max_iter': 60}
SVM	<pre>svc = svm.SVC(random_state=1234,kernel='rbf',C= 10, gamma= 5 , tol = 1e-2,verbose = 1) svc.fit(x_train_normalized, y_train) print('train_score',svc.score(x_train_normalized,y_train)) print('test_score',svc.score(x_test_normalized,y_test))</pre>	[LibSVM]train score 0.6650755767700876 test score 0.66681818181819

Performance Metrics Comparison Report (2 Marks):

Model	Bas	Baseline Metric			О	ptimiz	ed Me	etric			
MODELS	Name	Accuracy	f1 conta	Recall	Prenision	Name	Accuracy f1_score Reca	Recall	I Precision		
	0 logistic regression	11.57	74.43		59.27	0	logistic regression	59.27	74.43	100.00	59.27
	1 logistic regression CI		68.78		71.99	1	logistic regression CV	63.27	66.78	62.27	71.99
	2 XGBoos		69.63		73.00	2	XGBoost	65.27	68.84	64.72	73.52
	3 Ridge classifie	59.27	74.43	100.00	59.27	3	Ridge classifier	59.27	74.43	100.00	59.27
	4 KN0	63.27	68.39	67.02	69.81	4	KNN	63.27	68.39	67.02	69.81
	5 Random Fores	67.18	70.38	65.72	75.71	5	Random Forest	67.55	66.38	54.06	85.98
	6 Support Vector Classifie	59.27	74.43	100.00	59.27	6	Support Vector Classifier	67.05	69.06	62.04	77.86

Final Model Selection Justification (2 Marks):

Final Model	Reasoning

Random Forest

The Random Forest model was selected for its superior performance,
exhibiting high accuracy during hyperparameter tuning. Its ability to
handle complex relationships, minimize overfitting, and optimize
predictive accuracy aligns with project objectives, justifying its
selection as the final model.