

SPCE061A

16-bit Sound Controller with 32K x 16 Flash Memory

Preliminary

SEP. 09, 2003

Version 0.5

SUNPLUS TECHNOLOGY CO. reserves the right to change this documentation without prior notice. Information provided by SUNPLUS TECHNOLOGY CO. is believed to be accurate and reliable. However, SUNPLUS TECHNOLOGY CO. makes no warranty for any errors which may appear in this document. Contact SUNPLUS TECHNOLOGY CO. to obtain the latest version of device specifications before placing your order. No responsibility is assumed by SUNPLUS TECHNOLOGY CO. for any infringement of patent or other rights of third parties which may result from its use. In addition, SUNPLUS products are not authorized for use as critical components in life support devices/ systems or aviation devices/systems, where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of Sunplus.

Table of Contents

PAGE 1. GENERAL DESCRIPTION...... 2 BLOCK DIAGRAM 4 6.2. MEMORY 6.3. PLL, CLOCK, POWER MODE 6.4. Power Savings Mode 6.5. LOW VOLTAGE DETECTION AND LOW VOLTAGE RESET...... 6.8. TIMER / COUNTER..... 6.9. SLEEP, WAKEUP AND WATCHDOG..... 6.10. ADC (ANALOG TO DIGITAL CONVERTER) / DAC...... 6.11. SERIAL INTERFACE I/O (SIO) 6.12. UART..... 6.13. AUDIO ALGORITHM..... 6.15. BONDING OPTION SUMMARY..... 7. ELECTRICAL SPECIFICATIONS

8.1	1 LIOATION OILCOTTO	
	. APPLICATION CIRCUIT - (1)	
8.2	2. APPLICATION CIRCUIT - (2)	
8.3	B. APPLICATION CIRCUIT - (3)	
8.4	APPLICATION CIRCUIT - (4)	
8.5	6. APPLICATION CIRCUIT - (5)	
8.6	6. APPLICATION CIRCUIT - (6)	
8.7	. APPLICATION CIRCUIT - (7)	
9. PA	CKAGE/PAD LOCATIONS	
9.1	. PAD ASSIGNMENT AND LOCATIONS	
	2. Package information	
10. DI	SCLAIMER	
11. RE	VISION HISTORY	
	10, 10	
	Sunding	50

16-BIT SOUND CONTROLLER WITH 32K X 16 FLASH MEMORY

1. GENERAL DESCRIPTION

The SPCE061A, a 16-bit architecture product, carries the newest 16-bit microprocessor, $\mu' n S P^{TM}$ (pronounced as *micro-n-SP*), developed by SUNPLUS Technology. This high processing speed assures the μ 'nSPTM is capable of handling complex digital signal processes easily and rapidly. Therefore, the SPCE061A is applicable to the areas of digital sound process and voice recognition. The operating voltage of 3.0V through 3.6V and speed of 0.32MHz through 49.152MHz yield the SPCE061A to be easily used in varieties of applications. The memory capacity includes 32K-word flash memory plus a 2K-word working SRAM. Other features include 32 programmable multi-functional I/Os, two 16-bit timers/counters, 32768Hz Real Time Clock, Low Voltage Reset/Detection, eight channels 10-bit ADC (one channel built-in MIC amplifier with auto gain controller), 10-bit DAC output and many others.

2. BLOCK DIAGRAM

3. FEATURES

- 16-bit μ 'nSPTM microprocessor
- CPU clock: 0.32MHz 49.152MHz
- Operating voltage: 3.0V 3.6V
- Program Flash Operating voltage: 3.0V 3.6V
- IO PortA & B operating voltage: 3.0V 5.5V
- 32K-word flash memory
- 2K-word working SRAM
- Software-based audio processing
- Crystal Resonator
- Standby mode (Clock Stop mode) for power savings,

Max. 2.0μA @ VDD = 3.6V

- Two 16-bit timers/counters
- Two 10-bit DAC outputs
- 32 general I/Os (bit programmable)
- 14 INT sources with two priority levels
- Key wakeup function (IOA0 7)
- Approx. 210 sec speech @ 2.4Kbit/per sec with SACM_S240
- PLL feature for system clock
- 32768Hz Real Time Clock (RTC)
- Eight channels 10-bit AD converter
- ADC external top reference voltage
- 2.0V voltage regulator output, 5mA of driving capability
- Serial interface I/O (SIO)
- Built-in microphone amplifier and AGC function
- UART receiver and transmitter (full duplex)
- Low voltage reset and low voltage detection
- Watchdog enable (bonding option)
- ICE function for development and down load into flash memory
- Security function to protect code to be read and written.

4. APPLICATION FIELD

- Voice recognition products
- Intelligent interactive talking toys
- Advanced educational toys
- Kids learning products
- Kids storybook
- General speech synthesizer
- Long duration audio products
- Recording / playback products

5. SIGNAL DESCRIPTIONS

Mnemonic	PIN No.	Type	Description
IOA [15:8]	46 - 39	I/O	IOA [15:8]: bi-directional I/O ports
IOA [7:0]	34 - 27	I/O	IOA [7:0] can be software programmed to wakeup I/O pins
			IOA [6:0] can be optioned as ADC Line-in input
IOB [15:11]	50 - 54	I/O	IOB [15:11]: bi-directional I/O ports
IOB 10	57	I/O	IOB10 can also be selected as UART Transmitter (Tx).
IOB 9	58	I/O	IOB9 can also be Multi-duty cycle output of TimerB (BPWMO).
IOB 8	59	I/O	IOB8 can also be Multi-duty cycle output of TimerA (APWMO).
IOB 7	60	I/O	IOB7 can also be selected as UART receiver (Rx).
IOB 6	61	I/O	IOB6 is a bi-directional I/O ports.
IOB 5	62	I/O	IOB5 can also be selected as feedback signal with EXT2.
IOB 4	63	I/O	IOB4 can also be selected as feedback signal with EXT1.
IOB 3	64	I/O	IOB3 can also be selected as an external interrupt input pin (EXT2)(Negative-edge Triggered).
IOB 2	65	I/O	IOB2 can also be selected as an external interrupt input pin (EXT1)(Negative-edge Triggered).
IOB 1	66	I/O	IOB1 can also be selected as a serial interface data. (SDA)
IOB 0	67	I/O	IOB0 can also be selected as a serial interface clock (SCK)
DAC1	12	0	Audio DAC1 output
DAC2	13	0	Audio DAC2 output
X32I	2	ı	Oscillator Crystal input
X32O	1	0	Oscillator Crystal output
VCOIN	70	_l	RC filter connection for PLL
AGC	16	1	AGC control pin
MICN	19		Microphone differential input (negative)
MICP	21		Microphone differential input (positive)
V2VREF	14	0	2.0V output voltage, 5.0mA of driving capability (can be used as external ADC Line_IN top
			reference voltage)
MICOUT	18	0	Microphone 1 st amplifier output
OPI	17		Microphone 2 nd amplifier input
VEXTREF	23	ı	ADC Line_IN top external reference voltage input pin
VMIC	25	0	Microphone power supply
VADREF	22	0	AD reference voltage (generated by internal AD converter).
VDD	5, 69	I	Positive supply for logic
VSS	10, 26, 71	- 1	Ground reference for logic and I/O pins
VDDIO	37, 38, 56	-	Positive supply for I/O pins
VSSIO	35, 36, 48	I	Ground reference for I/O pins
AVDD	24	I	Positive supply for analog circuit including ADC, DAC and 2.0V regulator
AVSS	15	I	Ground reference for analog circuit including ADC, DAC and 2.0V regulator
RESET	68	ı	An active low reset to the chip
SLEEP	49	0	Sleep mode (active high)
ICE	7	ı	ICE enable (active high)
ICECLK	8	ı	ICE serial interface clock
ICESDA	9	I/O	ICE serial interface data
TEST	3	1	Connected to high for test mode, normally connected to GND (test mode disabled) or
	•	'	unconnected.
			Flash memory test, normally unconnected.

Mnemonic	PIN No.	Туре	Description
N/C	55	ı	Not used.
N/C	4	ı	Do NOT bonding and connect this pin. If user bonding this pin, IC will not work.
WDGOPT*	6	ı	Connected to high for watchdog disabled, unconnected for watchdog enabled.
PFUSE, PVIN	20, 11	ı	Security enable using fuse.

Note*: WDGOPT is the watchdog option pin, selected by bonding option. Remain WDGOPT float (unconnected to VDD) to enable the watchdog. In contrast, connecting WDGOPT to VDD will disable watchdog. The reason of placing WDTOPT adjacent to VDD is to facilitate connection between VDD and WDGOPT when disabling watchdog is necessary.

5.1. Ordering Information

Product Number	Package Type
SPCE061A-NnnV-C	Chip form
SPCE061A-NnnV-PL04n-W	Package form - LQFP 80
SPCE061A-NnnV-PP07n-W	Package form - PLCC 84

Note1: Code number is assigned for customer.

Note2: Code number (N = A - Z or 0 - 9, nn = 00 - 99); version (V = A - Z).

Note2: Code number (N = A - Z or 0 - 9, nn = 00 - 99); version (V = A - Z).

Note3: Code number (N = A - Z or 0 - 9, nn = 00 - 99); version (V = A - Z).

Note4: Code number (N = A - Z or 0 - 9, nn = 00 - 99); version (V = A - Z).

6. FUNCTIONAL DESCRIPTIONS

6.1. CPU

The SPCE061A is equipped with a 16-bit μ 'nSPTM, the newest 16-bit microprocessor by SUNPLUS and pronounced as *micro-n-SP*. Eight registers are involved in μ 'nSPTM: R1 - R4 (General-purpose registers), PC (Program Counter), SP (Stack Pointer), Base Pointer (BP) and SR (Segment Register). The interrupts include three FIQs (Fast Interrupt Request) and eight IRQs (Interrupt Request), plus one software-interrupt, BREAK.

Moreover, a high performance hardware multiplier with the capability of FIR filter is also built in to reduce the software multiplication loading.

6.2. Memory

6.2.1. SRAM

The amount of SRAM is 2K-word (including Stack), ranged from \$0000 through \$07FF with access speed of two CPU clock cycles.

6.2.2. Flash memory

Flash memory ($\$008000 \sim \$00FFFF$) is a high-speed memory with access speed of two CPU clock cycles. FLASH erase and program functions must be used in IDE tools.

6.3. PLL, Clock, Power Mode

6.3.1. PLL (Phase Lock Loop)

The purpose of PLL is to provide a base frequency (32768Hz) and to pump the frequency from 20.48MHz to 49.152MHz for system clock (Fosc). The default PLL frequency is 24.576MHz.

6.3.1.1. System clock

Basically, the system clock is provided by PLL and programmed by the Port_SystemClock (W) to determine the frequency of clock for system. The default system clock Fosc = 24.576MHz and CPU clock is Fosc/8 if not specified. The initial CPU clock is Fosc/8 after system wakes up and to be adjusted to desired CPU clock by programming the Port_SystemClock (W). This avoids Flash ROM reading failure when system wakes up.

6.3.1.2. 32768Hz RTC

The Real Time Clock (RTC) is normally used in watch, clock or other time related products. A 2Hz-RTC (1/2 second) function is loaded in SPCE061A. The RTC counts the timing as well as to

wake CPU up whenever RTC occurs. Since the RTC is generated each 0.5 seconds, time can be traced by the numbers of RTC occurrence. In addition, SPCE061A supports 32768Hz oscillator in strong mode and auto_weak mode. In strong mode, 32768Hz OSC always runs at the highest power consumption. In auto_weak mode, however, it runs in strong mode for the first 7.5 seconds and changes back to auto_weak mode automatically to save powers.

6.4. Power Savings Mode

The SPCE061A also offers a power savings mode (standby mode) for low power application needs. To enter standby mode, the desired key wakeup port(IOA[7:0]) must be configured to input first. And read the Port_IOA_Latch(R) to latch the IOA state before entering the standby mode. Also remember to enable the corresponding interrupt source(s) for wakeup. After that, stop the CPU clock by writing the STOP CLOCK Register (b0~b2 of Port_SystemClock (W)) to enter standby mode. In such mode, SRAM and I/Os remain in the previous states till CPU being awoken. The wakeup sources in SPCE061A include Port IOA7 - 0 and IRQ1 - IRQ6. After SPCE061A is awoken, the CPU will continue to execute the program. Programmer can also enable or disable the 32768Hz OSC when CPU is in standby mode.

6.5. Low Voltage Detection and Low Voltage Reset

6.5.1. Low voltage detection (LVD)

There are two LVD levels to be selected: 2.9V, and 3.3V. These levels can be programmed via Port_LVD_Ctrl (W). As an example, suppose LVD is given to 2.9V. When the voltage drops below 2.9V, the b15 of Port_LVD_Ctrl is read as HIGH. In such state, program can be designed to react to this condition.

6.5.2. Low voltage reset

In addition to the LVD, the SPCE061A has another important function, Low Voltage Reset (LVR). With the LVR function, a reset signal is generated to reset system when the operating voltage drops below 2.3V for 4 consecutive clock cycles. Without LVR, the CPU becomes unstable and malfunction when the operating voltage drops below 2.3V. The LVR will reset all functions to the initial operational (stable) states when the voltage drops below 2.3V. A LVR timing diagram is given as follows:

6.6. Interrupt

The SPCE061A has 14 interrupt sources, grouped into two types, FIQ (Fast Interrupt Request) and IRQ (Interrupt request). The priority of FIQ is higher than IRQ. FIQ is the high-priority interrupt while IRQ is the low-priority one. An IRQ can be interrupted by a FIQ, but not by another IRQ. A FIQ cannot be interrupted by any other interrupt sources.

Interrupt Source	Interrupt Name	Priority
Fosc/1024	FIQ_PWM/IRQ0_PWM	High(FIQ)
Timer A	FIQ_TMA/ IRQ1_TMA	High(FIQ)
Timer B	FIQ_TMB/ IRQ2_TMB	High(FIQ)
EXT2	IRQ3_EXT2	Low
EXT1	IRQ3_EXT1	Low
Key change wakeup	IRQ3_KEY	Low
4096Hz	IRQ4_4KHz	Low
2048Hz	IRQ4_2KHZ	Low
1024Hz	IRQ4_1KHz	Low
4Hz	IRQ5_4Hz	Low
2Hz	IRQ5_2Hz	Low
Time-base 1	IRQ6_TMB1	Low
Time-base 2	IRQ6_TMB2	Low
UART (TxRDY or RxRDY)	UART IRQ	Low

6.7. I/O

Two I/O ports are built in SPCE061A, PortA and PortB. The PortA is an ordinary I/O with programmable wakeup capability. In addition to the regular IO function, the PortB can also perform some special functions in certain pins. Suppose operating voltage is running at 3.6V (VDD) and VDDIO (power for I/O) operates from 3.6V (VDD) to 5.5V. In such condition, the I/O pad is capable of operating from 0V through VDDIO. However IOB13 and IOB14 are recommended to operate <=3.6V during standby mode, otherwise these two IOs will have current leakage. The following diagram is an I/O schematic.

Although data can be written into the same register through Port_Data and Port_Buffer, they can be read from different places, Buffer (R) and Data (R). The IOA [7:0] is the key wakeup port. To activate key wakeup function, latch data on PORT_IOA_Latch

and enable the key wakeup function. Wakeup is triggered when the PortA state is different from at the time latched. In addition to an ordinary I/O port, PortB carries some special functions. A summary of PortB special functions is listed as follows:

Special function in PortB

PortB	Special Function	Function Description	Note
IOB0	SCK	Serial interface clock	Refer to see SIO section
IOB1	SDA	Serial interface data	Refer to see SIO section
IOB2	EXT1	External interrupt source 1(Negative-edge Triggered)	IOB2 set as input mode
	Feedback	Works with IOB4 by adding a RC circuit between	IOB2 set as inverted output
	Output1	them to get an OSC to EXT1 interrupt	
IOB3	EXT2	External interrupt source 2(Negative-edge Triggered)	IOB3 set as input mode
	Feedback	Works with IOB5 by adding a RC circuit between	IOB3 set as inverted output
	Output2	them to get an OSC to EXT2 interrupt	
IOB4	Feedback Input1		
IOB5	Feedback Input2		
IOB7	Rx	UART Receiver	Refer to see UART section
IOB8	APWMO	TimerA PWM output	Refer to Timer/Counter section
IOB9	BPWMO	TimerB PWM output	Refer to Timer/Counter section
IOB10	Тх	UART Transmitter	Refer to UART section

Default state: Pull Low **PWM:** Pulse Width Modulation

Refer to the above table, the configuration of IOB2, IOB3, IOB4, and IOB5 involves feedback function in which an OSC frequency can be obtained from EXT1 (EXT2) by simply adding a RC circuit between IOB2 (IOB3) and IOB4 (IOB5).

6.8. Timer / Counter

The SPCE061A provides two 16-bit timers/counters, TimerA and TimerB. The TimerA is called a universal counter. TimerB is a general-purpose counter. The clock source of TimerA comes from the combination of clock source A and clock source B. In TimerB, the clock source is given from source C. When timer overflows, an INT signal is sent to CPU to generate a time-out

signal **Clock of Source A** Clock of Source B **Clock of Source C** Fosc/2 2048Hz Fosc/2 Fosc/256 1024Hz Fosc/256 32768Hz 256Hz 32768Hz 8192Hz TMB1 8192Hz 4096Hz 4Hz 4096Hz 2Hz 1 1 0 1 0 EXT1 EXT1 EXT2

Initially, write a value of N into a timer and select a desired clock source, timer will start counting from N, N+1, N+2, ... through FFFF. An INT (TimerA/TimerB) signal is generated at the next clock after reaching "FFFF" and the INT signal is transmitted to INT controller for further processing. At the same time, N will be reloaded into timer and start all over again. The clock source A is a high frequency source and clock source B is a low frequency source. The combination of clock source A and B provides a variety of speeds to TimerA. A "1" represents pass signal and not gating. In contrast, "0" indicates deactivating timer. The EXT1 and EXT2 are the external clock sources. Moreover, counter can generate time-out signal for input clock source to a four bits (16 levels) PWM pulse width counter. A variety of clock duration can be generated and exported from IOB8 (APWMO) and IOB9 (BPWMO).

The following example is a 3/16-duration cycle. The APWMO waveform is made by selecting a pulse width through Port_TimerA_Ctrl (W) [9:6]. As a result, each 16 cycles will generate a pulse width defined in control port. These PWM signals can be applied for controlling the speed of motor or other devices.

Generally speaking, the clock source A and C are fast clock sources and source B comes from RTC system (32768Hz). Therefore, clock source B can be utilized as a precise counter for time counting, e.g., the 2Hz clock can be used for real time counting.

6.8.1. Timebase

Timebase, generated by 32768Hz, is a combination of frequency selections. The outputs of timebase block are named to TMB1 and TMB2. TMB1 is frequency for TimerA (Clock source B). The TMB1 and TMB2 are the sources for Interrupt (IRQ6). Furthermore, timebases generates additional 2Hz to 4096Hz interrupt sources (IRQ4 and IRQ5) for Real-Time-Clock (RTC).

TMB2	TMB1
128Hz	8Hz
256Hz	16Hz
512Hz	32Hz
1024Hz	64Hz
Default: 128Hz	Default: 8Hz

6.9. Sleep, Wakeup and Watchdog

6.9.1. Wakeup and sleep

- 1) Sleep: After power-on reset, IC starts running until a sleep command occurs. When a sleep command is accepted, IC will turn the system clock (PLL) off. After all, it enters sleep mode.
- 2) Wakeup: CPU waking up from sleep mode requires a wakeup signal to turn the system clock (PLL) on. The IRQ signal makes CPU to complete the wakeup process and initialization. The key wakeup and interrupt sources (IRQ1 - IRQ6) can be used for wakeup sources.

6.9.2. Watchdog

The purpose of watchdog is to monitor if the system operates normally. Within a certain period, watchdog must be cleared. If watchdog is not cleared, CPU assumes the program has been running in an abnormal condition. As a result, the CPU will reset the system to the initial state and start running the program all over again. The watchdog function can be removed by bonding option. In SPCE061A, the clear period is 0.75 seconds. If vatchdog is cleared within each 0.75 seconds, the system will not be reset. To clear watchdog, simply write "0bxxxx xxxx xxxx xx01" to Port_Watchdog_Clear(W). The content written to Port Watchdog Clear (W) for watchdog clearance must be exactly the same as the one illustrated above (0bxxxx xxxx xxxx xx01). Other values given to the Port Watchdog Clear (W) for watchdog clearance may end up with system reset. watchdog function remains enabled during standby mode if the 32768Hz is turned on.

6.10. ADC (Analog to Digital Converter) / DAC

The SPCE061A has eight channels 10-bit ADC (Analog to Digital Converter). The function of an ADC is to convert analog signal to digital signal, e.g. a voltage level into a digital word. The eight channels of ADC can be seven channels of line-in from IOA [6:0] or one channel microphone (MIC) input through amplifier and AGC The MIC amplifier circuit is capable of reducing common mode noise by transmitting signals through differential MIC Inputs (MICN, MICP). Moreover, an external resistor can be applied to adjust microphone gain and time of AGC operating. The AD needs to select source of line-in before conversion. The ADC is able to choose the external or internal (=AVDD) top reference voltage. If constant voltage source is unavailable, SPCE061A offers a constant voltage 2.0V with 5.0mA driving ability with a capacitor connected.

The SPCE061A has two 10-bit D/A with 2.0mA or 3.0mA driving current for audio outputs, DAC1 and DAC2.

6.11. Serial Interface I/O (SIO)

Serial interface I/O offers a one-bit serial interface for communication. This serial interface is capable of transmitting or

receiving data via two I/O pins, IOB0 (SCK) and IOB1 (SDA).

6.12. UART

UART block provides a full-duplex standard interface that facilitates the communication with other devices. With this interface, SPCE can transmit and receive simultaneously. The maximum baud-rate can be up to 115200bps. This function can be accomplished by using PortB and Interrupt (UART IRQ). The

Rx and Tx of UART are shared with IOB7 and IOB10. When SPCE061A receives and/or transmits a frame of data, the b7 (RxRDY) and/or b6 (TxRDY) in Port_UART_Command2(R) will be set to "1" and the UART IRQ is activated at the same time.

6.13. Audio Algorithm

The following speech types can be used in SPCE061A: PCM, LOG PCM, SACM_S200, SACM_S240, SACM_S480, SACM_S530, SACM_S720, SACM_A1600, SACM_A2000, SACM_A3200 and SACM_A2000_DVR (Digital Voice Recorder). For melody synthesis, the SPCE061A supports SACM_MS01 (FM) and SACM_MS02 (wave-table) synthesizers.

6.14. IDE Tools Function

The functions of IDE include the follows:

- 1). C compiler, Assembly, and Linker.
- 2). Download program into FLASH (refer to 7.7.application circuit-(7)).
- 3). Single step trace
- 4). Break point (break point for debugging)
- 5). Run (execute)

6.15. Bonding Option Summary

The SPCE061A has the following bonding options:

6.15.1. Watchdog function

WDGOPT is the optional pin for watchdog by bonding option. The shape looks as the figure given below. When watchdog is selected, WDGOPT is floating. If watchdog is not selected, WDGOPT is connected to VDD. The reason for WDGOPT adjacent to VDD is that when watchdog is not selected, it is easy to make the connection between VDD and WDGOPT.

6.16. Security Function

Security function is able to protect code to be read or written. When program is downloaded into flash memory, program can be read/written protection from IDE tools for security purpose. Burn fuse to disable IDE function, where PFUSE supplies 5.0V and PVIN connects to ground (0V) about one second. After all, the flash memory can no longer be read or written.

7. ELECTRICAL SPECIFICATIONS

7.1. Absolute Maximum Ratings

Characteristics	Symbol	Ratings
DC Supply Voltage	V ₊	< 4.0V
PortA/B Pad Supply Voltage	VDD _{IO}	< 7.0V
Input Voltage Range	V _{IN}	-0.5V to V ₊ + 0.5V
Operating Temperature	T _A	0°C to +60°C
Storage Temperature	T _{STO}	-50℃ to +150℃

Note: Stresses beyond those given in the Absolute Maximum Rating table may cause operational errors or damage to the device. For normal operational conditions see DC Electrical Characteristics.

7.2. DC Characteristics (VDD = 3.6V, VDD_{IO} = 3.6V (PortA & B), T_A = 25°C)

Characteristics	Coursells and	Symbol Limit Min. Typ.		Limit		Test Condition	
Characteristics	Symbol			Max.	Unit	Test Condition	
Operating Voltage	VDD	3.0	3.3	3.6	V	,	
Operating Current	I _{OP}	-		33	mA	F _{OSC} = 49.152MHz, AD, DAC disable, no load	
Standby Current	I _{STB}	<u> </u>)	2.0	μΑ	Disable 32KHz crystal Enable 32Khz, Disable PLL (Fosc)	
Input High Level	V _{IH}	-	-	0.7VDD _{IO}	V		
Input Low Level	V _{IL}	-	- (0.3VDD _{IO}	V	_	
Output DAC current (AUD1, AUD2)	I _{AUD}	9 -		-2.0 -3.0	mA	2.0mA mode For one channel DAC	
Output High Current	Іон	-	_	-3.2	mA	V _{OH} = 2.9V	
Output Low Current	l _{OL}	-	-	7.0	mA	V _{OL} = 0.7V	
Input Pull-Low Resister (PA15 :0, PB15 :0)	R _{PL}		- 0	165	ΚΩ	$VDD_{IO} = 3.6V$ $V_{IN} = VDD$	
Input Pull-High Resister (PA15 :0, PB15 :0)	R _{PH}		5	210	ΚΩ	$VDD_{IO} = 3.6V$ $V_{IN} = VSS$	

Col Shubb.

SEP. 09, 2003

7.3. DC Characteristics (VDD = 3.3V, VDD $_{\rm IO}$ = 5.5V (PortA & B), T $_{\rm A}$ = 25°C)

Observa standation	0 h l		Limit			Test Condition	
Characteristics	Symbol	Min.	Тур.	Max.	Unit	rest condition	
Operating Voltage	VDD	3.0	3.3	3.6	V		
Operating Current	I _{OP}	-	26	-	mA	F _{OSC} = 49.152MHz, AD, DAC disable, no loading	
Chan dlay Course of				2.0		Disable 32KHz crystal When IOB13, IOB14 < = 3.6V	
Standby Current	I _{STB}	-	1	5.0	μА	Enable 32Khz, Disable PLL (Fosc) When IOB13, IOB14 < = 3.6V	
Input High Level	V _{IH}	-	0.7VDD _{IO}	- •	V		
Input Low Level	V _{IL}	-	0.3VDD _{IO}	-	V		
Output DAC current (AUD1, AUD2)	I _{AUD}	-	-2.0 -3.0	3	mA	2.0mA mode For one channel DAC	
Output High Current	I _{OH}	-	-5.0	_	mA	V _{OH} = 4.0V	
Output Low Current	I _{OL}	-	12	-	mA	V _{OL} = 1.0V	
Input Pull-Low Resister (PA15 :0, PB15 :0)	R _{PL}	- 🗴	110	C	ΚΩ	$VDD_{IO} = 5.5V$ $V_{IN} = VDD$	
Input Pull-High Resister (PA15 :0, PB15 :0)	R _{PH}		150		ΚΩ	VDD _{IO} = 5.5V V _{IN} = VSS	

7.4. DC Characteristics (VDD = 3.3V, VDD_{IO} = 3.3V (PortA & B), $T_A = 25^{\circ}C$)

Characteristics	Charles		Limit		Unit	Test Condition	
Characteristics	Symbol	Min. Typ.		Max.	Unit		
Operating Voltage	VDD	3.0	3.3	3.6	V		
Operating Current	l _{OP}	-	26	-	mA	F _{OSC} = 49.152MH AD, DAC disable	
Oten dha Oamant				2.0		Disable 32KHz c	rystal
Standby Current	I _{STB}	-	-	5.0	μΑ	Enable 32Khz, D	isable PLL (Fosc)
Input High Level	V _{IH}	-	0.7VDD _{IO}	-	V		
Input Low Level	V _{IL}	-	0.3VDD _{IO}	-	V		
Output DAC current			-2.0		m A	2.0mA mode	For one channel
(AUD1, AUD2)	I _{AUD}	-	-3.0	-	mA	3.0mA mode	DAC
Output High Current	I _{OH}	-	-2.9	-	mA	V _{OH} = 2.6V	
Output Low Current	I _{OL}	-	6.7	-	mA	V _{OL} = 0.7V	
Input Pull-Low Resister (PA15 :0, PB15 :0)	R_{PL}	-	175	-	ΚΩ	$VDD_{IO} = 3.3V$ $V_{IN} = VDD$	
Input Pull-High Resister (PA15 :0, PB15 :0)	R _{PH}	-	242	-	ΚΩ	$VDD_{IO} = 3.3V$ $V_{IN} = VSS$	

7.5. ADC Characteristics (VDD = 3.3V, $T_A = 25^{\circ}$ C)

Observatoristics	Oh. al		Unit		l lmi4
Characteristics	Symbol	Min.	Тур.	Max.	Unit
ADC Power Dissipation for LINE_IN	IADC	-	1.0	ı	mA
ADC Power Dissipation For MIC_IN		-	1.9	-	mA
ADC LINE_IN Input Voltage Range from IOA[6:0]	VINL (Note 1)	VSS - 0.3	-	VDD + 0.3	V
ADC Microphone Input Voltage Range	VINM	VSS - 0.3	-	VDD + 0.3	V
External ADC Top Voltage	VEXTREF (Note 2)	2.0	-	VDD + 0.3	V
Resolution of ADC	RESO	-	-	10	bits
Signal-to-Noise Plus Distortion of ADC from Line In	SINAD (Note 4)		56		dB
Effective Number of Bit	ENOB (Note 5)		9.0)	bits
Integral Non-Linearity of ADC	INL	5	±4.0	-	LSB (Note 3)
Differential Non-Linearity of ADC	DNL (Note 6)	-	±0.5	-	LSB
AD Conversion Rate	F _{CONV}	- 4	-	Fcpu/512	Hz
Microphone Amplifier Gain (Note 7)	A _{MIC}		⊌].	42	dB

Note1: Internal protection diodes clamp the analog input to VDD and VSS. These diodes allow the analog input to swing from (VSS-0.3V) to (VDD+0.3V) without causing damages to the devices.

Note2: The ADC performance is limited by the system noise level and therefore, the SPCE061A only guarantees to the 8-bit accuracy when VEXTREF is 2.0V.

Note3: The LSB means Least Significant Bit. VINL = 2.0V, 1LSB = 2.0V/2^10 = 1.953mV.

Note4: The SINAD testing condition at VINLp-p = 0.8*VDD, FCONV = FCDU/512 = 49MHz/512 = 95KHz, Fin = 1.0KHz Sine waves at VDD = 3.0V from the IOA [6:0] input.

Note5: ENOB = (SINAD-1.76)/6.02.

Note6: The ADC of SPCE061A guarantees no data missed during conversion.

Note7: The microphone amplifier maximum gain = 15 * (60K / (1.5K + REXT) V/V. The REXT is external resistor between OPI and MICOUT. The gain is 132V/V (=42dB) when REXT is 5.1K.

7.6. V2VREF Regulator Characteristics (VDD = 3.3V, T_A = 25℃

		Limit					
Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition	
Output Voltage Accuracy	V2VREF	1.8	2.0	2.2	V	AVDD = 3.3V, I _{OUT} ≦5mA	
Output Current	I _{out}	1	5.0	1	mA	AVDD = 3.3V, V2VREF = 2.0V	
Input Voltage	AVDD	3.0	3.3	3.6	٧	I _{OUT} ≦5mA , V2VREF = 2.0V	

Note1: The V2VREF Regulator output current maximum 🛓 5mA, It is not matching to make a large current driver application. Our suggestion can be used as external ADC Line_IN reference voltage.

7.7. DAC Characteristics (VDD = 3.3V, T_A = 25°C)

Oh avanta data a	Symbol	Unit			1114	
Characteristics		Min.	Тур.	Max.	Unit	
DAC resolution	RESO	-	-	10	bit	
Signal to Noise Ratio of DAC	SNR	-	54	-	dB	
Sample Rate	Fs	-	-	100K	Hz	

7.8. Pull High Resister and VDD_{IO}

7.10. Pull Low Resister and VDD_{IO}

7.9. I/O Output High Current I_{OH} and V_{OH}

7.11. I/O Output Low Current IoL and Vol

8. APPLICATION CIRCUITS

8.1. Application Circuit - (1)

8.2. Application Circuit - (2)

8.5. Application Circuit - (5)

8.7. Application Circuit - (7)

9. PACKAGE/PAD LOCATIONS

9.1. PAD Assignment and Locations

Please contact Sunplus sales representatives for more information.

24

SEP. 09, 2003

9.2. Package information

9.2.1. LQFP 80

Sumbol	Dimension in inch			
Symbol	Min.	Тур.	Max.	
A	-	-	0.063	
A1	0.002	-	0.006	
A2	0.053	0.055	0.057	
b	0.007	0.009	0.011	
С	0.004	-	0.008	
D		0.551 BSC.		
D1		0.472 BSC.		
Е	0.551 BSC.			
E1	0.472 BSC.			
е		0.020 BSC.		
L1		0.039 REF		

PAD No.	PAD Name	PAD No.	PAD Name
1	X32O	21	MICP
2	X32I	22	VADREF
3	TEST	23	VEXTREF
4	N/C	24	AVDD
5	VDD	25	VMIC
6	N/C	26	N/C
7	ICE	27	VSS
8	ICECLK	28	IOA0
9	ICESDA	29	IOA1
10	VSS	30	IOA2
11	PVIN	31	IOA3
12	DAC1	32	IOA4
13	DAC2	33	IOA5
14	V2VREF	34	IOA6
15	AVSS	35	IOA7
16	AGC	36	VSSIO
17	OPI	37	VSSIO
18	MICOUT	38	VDDIO
19	MICN	39	VDDIO
20	PFUSE	40	IOA8
41	N/C	61	N/C
42	N/C	62	N/C
43	IOA9	63	IN/C
44	IOA10	64	VDDIO
45	IOA11	65	IOB10
46	IOA12	66	IOB9
47	IOA13	67	IOB8
48	IOA14	68	IOB7
49	IOA15	69	IOB6
50	N/C	70	IOB5
51	N/C	71	IOB4
52	VSSIO	72	IOB3
53	N/C	73	IOB2
54	SLEEP	74	IOB1
55	IOB15	75	IOB0
56	IOB14	76	RESET
57	IOB13	77	N/C
58	IOB12	78	VDD
59	IOB11	79	VCOIN
60	NC	80	VSS

9.2.2. PLCC 84

27

Preliminary Version: 0.5

PAD No.	PAD Name	PAD No.	PAD Name
1	IOB4	22	DAC2
2	IOB3	23	V2VREF
3	IOB2	24	AVSS
4	IOB1	25	AGC
5	IOB0	26	OPI
6	RESET	27	MICOUT
7	VDD	28	MICN
8	VCOIN	29	PFUSE
9	VSS	30	N/C
10	N/C	31	N/C
11	N/C	32	N/C
12	X32O	33	MICP
13	X32I	34	VADREF
14	TEST	35	VEXTREF
15	VDD	36	AVDD
16	ICE	37	VMIC
17	ICECLK	38	VSS
18	ICESDA	39	N/C
19	VSS	40	N/C
20	PVIN	41	IOA0
21	DAC1	42	IOA1
43	IOA2	64	IOB15
44	IOA3	65	IOB14
45	IOA4	66	IOB13
46	IOA5	67	IOB12
47	IOA6	68	IOB11
48	IOA7	69	N/C
49	VSSIO	70	N/C
50	VSSIO	71	N/C
51	VDDIO	72	N/C
52	VDDIO	73	N/C
53	IOA8	74	N/C
54	IOA9	75	VDDIO
55	IOA10	76	IOB10
56	IOA11	77	IOB9
57	IOA12	78	IOB8
58	IOA13	79	IOB7
59	IOA14	80	IOB6
60	IOA15	81	IOB5
61	N/C	82	N/C
62	VSSIO	83	N/C
63	SLEEP	84	N/C

Preliminary Version: 0.5

10. DISCLAIMER

The information appearing in this publication is believed to be accurate.

Integrated circuits sold by Sunplus Technology are covered by the warranty and patent indemnification provisions stipulated in the terms of sale only. SUNPLUS makes no warranty, express, statutory implied or by description regarding the information in this publication or regarding the freedom of the described chip(s) from patent infringement. FURTHER, SUNPLUS MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. SUNPLUS reserves the right to halt production or alter the specifications and prices at any time without notice. Accordingly, the reader is cautioned to verify that the data sheets and other information in this publication are current before placing orders. Products described herein are intended for use in normal commercial applications. Applications involving unusual environmental or reliability requirements, e.g. military equipment or medical life support equipment, are specifically not recommended without additional processing by SUNPLUS for such applications. Please note that application circuits illustrated in this document are for reference purposes only.

Preliminary Version: 0.5

11. REVISION HISTORY

Date	Revision #	Description	Page
SEP. 09, 2003	0.5	Update package information	25
SEP. 09, 2003	0.4	1 Correct Standby current condition 2μA @ VDD = 3.6V	1
		2 Correct "6.5.1 Low Voltage Detection (LVD) "	8
		3 Add "9.1 LQFP 80 and QPF84 package"	24 - 28
JAN. 30. 2003	0.3	1. Correct "1. General Description".	4
		2. Correct "3. Features".	4
		3. Correct "5. Signal Descriptions" PIN No. 4.	6
		4. Correct "6.5.1 Low Voltage Detection (LVD) "	8
		5. Correct " <u>6.7. I/O</u> "	8
		6. Correct " <u>7.3. DC Characteristics</u> " Standby Current	12
		7. Delete "7.5 DC Characteristics (VDD = 2.7V, VDDIO = 2.7V (PORTA&B) "	13
		8. Delete "7.6 DC Characteristics (VDD = 2.4V, VDDIO = 2.4V (PORTA&B) "	14
		9. Add " <u>9.1 PAD Assignment</u> " Note4	22
NOV. 07. 2002	0.2	1. Add VDD = 3.6 / 3.3 / 2.7 /2.4 V Standby Current " 32Khz Enable, PLL Disable(Fosc) ".	12,13,14
		2. Add " 6.2. DC Characteristics (VDD = 3.6V) ".	12
		3. Add "7.7. Application Circuit - (7)".	22
		4. Add " 7.8. V2VREF Regulator Characteristics ".	15
		5. Add " 6.15 IDE Tools Function ".	11
		6. Correct "8.5. Application Circuit – (5) ".	20
AUG. 02, 2002	0.1	7. Correct " 6.14. Bonding Option Summary ". Original	11 24
	SUI	plus use	
Kok	SU		