Sequence Learning

Feed-Forward Networks for Sequence Data

Korbinian Riedhammer

Todo

- Kurzeinführung (30-45min) Perzeption (1), Feed-Forward Netz (2; mit Aktivierungsfunktionen), Backprop (2-3)
- Fasttext (char-ngram word2vec); evtl. Konzept Byte-Pair-Encoding

Feed-Forward Networks

...on sequence data

Context is Crucial

Solution: Use context windows to learn temporal relations

Connectionist HMM

- Observation: At decoding time, we need emission probabilities of all (active) states
- Problem: GMMs don't generalize well
- Idea: Use NN to "predict" emission probs for all states at the same time

Connectionist HMM

- requires alignment
- "one-hot encoding"
- cross-entropy loss

- Recall n-gram probabilities: count observed ngrams, use back-off for unseen
- Bi-grams probabilities limit the context: $P(w_1, w_2, ..., w_n) = P(w_1) \prod_{i=2}^{N} P(w_i | w_{i-1})$
- How could we learn (not count) these?

Why word-embeddings?

[1, 1, 1, ..., -102, -99, -93]


```
[7.3945923e+03, 2.7395833e+03, 2.1257576e+04, 4.2160831e+05, 2.9105340e+06, 4.6765578e+05], [2.1494924e+04, 2.4632730e+04, 1.9541261e+05, 3.1385060e+06, 8.9293340e+06, 4.5901940e+06], [1.8762828e+05, 5.4574359e+04, 9.2627324e+03, 2.8369732e+06, 2.3244162e+06, 2.3561962e+07]...
```

Why word-embeddings?

One-hot representation

very	enjoyable	nonsense	this	movie
1		0	0	0
	1	0	0	0
	0	1	0	0
C	0	0	1	0
(0	0	0	1

One-hot representation

very	enjoyable	nonsense	this	movie	film
1	0	0	0	0	
0	1	0	0	0	
0	0	1	0	0	
0	0	0	1	0	
0	0	0	0	1	

One-hot representation

Problems:

- → No relationships between words (e.g., synonyms like film/movie)
- Vocabulary size explodes

very	enjoyable	nonsense	this	movie	film
1	0	0	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0
0	0	0	0	1	
				-	0
0	0	0	0	0	1

How to improve?

- fixed size vectors
- meaningful representations

dog	movie	film

How to improve?

- words
- meaning encoded in values
- distributed representations

dog	movie	film		
	0.9	0.8	0.8	"moves"
	0.0	0.6	0.6	art
	0.9	0.8	0.2	US-English
	0.0	0.0	1.0	creature
	1.0	1.0	0.5	noun
	•••	•••		

How would you automatically generate distributed representations?

dog

0.9

0.0

0.0

1.0

Behind the tree <u>hides</u> a <u>hairy</u>, <u>small Wolpertinger</u>.

Behind the tree <u>hides</u> a <u>hairy</u>, <u>small Wolpertinger</u>.

A small tabby cat hides behind the barn.

Behind the tree <u>hides</u> a <u>hairy, small Wolpertinger</u>.

A small tabby cat hides behind the barn.

A <u>scruff little</u> <u>dog</u> <u>hides</u> under the car.

"You shall know a word by the company it keeps."

General idea:

- Embeddings can be automatically learnt from data
- Enough data represents covers many relationships
- Include the context / context words

I would like a glass of apple juice.

An apple grows on the tree.

Yesterday, my father baked an apple pie.

She drank a glass of orange juice.

There is an orange tree in the backyard.

First, peel the orange.

[&]quot;Distributed Representations of Words and Phrases and their Compositionality", Tomas Mikolov et al., 2013

[&]quot;Distributed Representations of Words and Phrases and their Compositionality", Tomas Mikolov et al., 2013

Where to the projection matrices W_T

and W_{C} come from?

→ They have to be learned!

Word2Vec Skip-gram

- Skip-gram:
 - choose context words to generate positive samples
 - must be in relationship to target word, e.g., environment of +/- 2 words around the target word
 - Example:

Negative sampling

- Negative sampling:
 - choose random words from the vocabulary
 - label as negative samples
 - Sampling frequency depending on the frequency of words in the dataset
 - Let's go see a movie at the cinema

Zielwort	Kontextwort	Label
movie	see	1
movie	dear	0
movie	autotomy	0
movie	where	0

Word2Vec Training

Word2Vec Training

Where will embeddings be extracted?

- independent of vocabulary size
- smaller dimensionality than vocabulary size
- representation of relationships between words

Problem solved

Very enjoyable nonsense, this movie

very	enjoyable	nonsense	this	movie
0.6	0.01	0.03	0.3	0.01
0.02	0.9	0.32	0.88	0.12
(0.2	0.25	0	0.25
0.22	0.33	0.8	0.1	0.2
0.88	0.65	0.23	0.24	0.1
0.02	0.23	0.65	0.44	0.9

Attention:

 W_T is usually pre-trained on large databases, only "fine-tuning" necessary later

Visualization of semantic relationships of words;

Good embeddings encode semantic relationships

Spain

Italy Madrid

Germany Rome

Berlin

Turkey Ankara

Russia Moscow

Canada Ottawa

Japan Tokyo

Vietnam Hanoi

China Beijing

Male-Female

Verb tense

Country-Capital

Limitations

- Out-of-Vocabulary
 - Also: typos, compounds

- Morphology
 - Also: slang, shortening

Shared radical

eat eats eaten eater eating

- Observation: Words are inherently a problem (OOV, typos, morphology, etc.)
- Solution:
 - Use sub-words (character n-grams) instead
 - Re-use skip-gram and negative sampling
 - Bojanowski 2017: 3-6 grams

Step 1: Decompose to Sub-Words

Enclose any word in the training set with <>

Extract character n-grams with sliding window

Use hashing to reduce memory; count for bin instead of actual token

Step 2: Modify Skip-Gram & Negative Sampling

 Sum up the n-gram vectors and the vector of the actual word

- Sample positive and negative context (word vectors)
- Compute dot-product for actual and negative context, and use SGD to update parameters

Insights

 Improves performance on syntactic word analogy tasks significantly for morphologically rich language like Czech and German

Singular/plural Base/Comparative cat
$$\rightarrow$$
 cats good \rightarrow better dog \rightarrow ? rough \rightarrow ?

 Degrades performance on semantic analogy tasks compared to Word2Vec.

	word2vec- skipgram	word2vec- cbow	fasttext
Czech	52.8	55.0	77.8
German	44.5	45.0	56.4
English	70.1	69.9	74.9
Italian	51.5	51.8	62.7

	word2vec-skipgram	word2vec-cbow	fasttext
Czech	25.7	27.6	27.5
German	66.5	66.8	62.3
English	78.5	78.2	77.8
Italian	52.3	54.7	52.3

Insights

- Using sub-word information with character-ngrams has better performance than CBOW and skip-gram baselines on wordsimilarity task.
- Representing out-of-vocab words by summing their subwords has better performance than assigning null vectors.

		skipgra	cbo	FT null	FT char
Arabic	WS353	51	52	54	55
	GUR35	61	62	64	70
German	GUR65	78	78	81	81
	ZG222	35	38	41	44
English	RW	43	43	46	47
	WS353	72	73	71	71
Spanish	WS353	57	58	58	59
French	RG65	70	69	75	75
Romani	WS353	48	52	51	54
Russian	HJ	69	60	60	66

Time-delay Neural Networks

Waibel et al. 1989

- Frames are typically features (MFCC, word embeddings, ...)
- Concatenate frames to form contexts
- Go from narrow to wide with layers
- Lower layers learn "local" features
- Higher layers learn temporal relationships

ConvNets

- Motivation:
 - Convolution of signal with special kernels can be a great feature
 - Well established in computer graphics (eg. Sobel edge detector)
- 1D time series: 1D convolutions
 - "within-feature convolutions"
- 2D image: 2D convolutions
 - "across-feature convolutions"

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

ConvNets Building Blocks

- Convolution:
 - kernel size, eg. 3x3, 1x3
 - stride, step size, eg. 1
 - padding, what to do at the edges? eg. zero-pad
- Pooling to reduce/increase resolution
 - average, max, ...

Historic Note

- TDNN (1989): effectively 1D convolutions
- LeCun at al., 1998: LeNet-5 architecture, MNIST error rate 0.8% (regular FF: 4.7%)

Recap

Feed-Forward Networks for Sequence Data

- Use context windows, eg. by concatenation
- Use embeddings for discrete symbols (which effectively use 1-hot)
- Use convolutions (1D, 2D) to extract temporal structure from context window
- Works for all modalities:
 - Audio: eg. MFB, MFCC
 - Text: Word Vectors