RAPPORT PROJET

PRESENTATION DE l'OCR

FONCTIONNEMENT APPLI(démo)

- Contexte et objectifs
- Principe

Upload de facture

- Technologies utilisées
- Méthode et fonctionnement
- Traitement OCR

Architecture globale

Sécurité

Contexte et objectifs

Le projet OCR est une application web permettant l'extraction automatique de données à partir de factures numérisées. Il vise à :

- Automatiser la saisie de données
- **Réduire** les erreurs humaines
- Accélérer le traitement des factures

Technologies utilisées

Architecture globale

BACKEND Script 1. Traitement OCR des images 2. Segmentation des factures 3. Extraction des données 1. Gestion des routes **FastAPI** 2. Authentification JWT 3. Validation des requêtes

DATABASE

- 1. Modèles de données
- 2. Opérations CRUD
- 3. Connexion PostgreSQL
- 4. Gestion des sessions

<m

FRONTEND

Interface utilisateur

- 1.Templates Jinja2
- 2. JavaScript

Pages principales

- 1. Upload de factures
- 2. Visualisation des données
- 3. Monitoring système
- 4. Gestion des clients

DATA

- 1.Stockage des factures (PNG)
- 2.Données extraites (JSON)
- 3. Résultat de traitement

PRESENTATION DE l'OCR

<u>Principe</u>

- La reconnaissance optique des caractères, ou Optical Character Recognition
 - OCR en anglais, est une **conversion électronique** d'images textuelles dactylographiées, manuscrites ou imprimées. Ce texte est encodé par une machine dans un fichier de format texte.
- Avec l'OCR, un grand nombre de documents papier peuvent être numérisés en **texte lisible à la machine**, peu importe la langue et le format dans lesquels ils sont rédigés. Cette technique facilite non seulement le stockage, mais rend disponibles des données qui auparavant étaient difficilement accessibles.

PRESENTATION DE l'OCR

Méthodes et fonctionnements

- **Réalignement (de-skew)**: Processus de correction de l'inclinaison d'une image numérisée pour que le texte soit parfaitement horizontal.
- **Déparasitage (Despeckle)**: Technique de prétraitement qui élimine le bruit et les parasites (petites taches, points, imperfections) d'une image numérisée pour améliorer la qualité de la reconnaissance OCR.
- **Binarisation:** Processus qui convertit les images originales capturées en couleur ou en niveaux de gris en images numériques binaires composées uniquement de pixels noirs et blancs
- Suppression de la ligne: Nettoyer les boîtes et les lignes non glyphes.
- Analyse de mise en page ou « zonage »: Identifier les colonnes, les paragraphes, les légendes, sous forme de blocs.
- Détection de lignes et de mots: Établir des formes avec les mots et les caractères de base
- **Reconnaissance du script:** Identifie automatiquement le système d'écriture utilisé dans un document. Elle permet d'appliquer ensuite les algorithmes appropriés de reconnaissance de caractères.
- **Isolation des caractères ou « segmentation »**: Étape qui isole chaque caractère pour permettre sa reconnaissance ultérieure.
- **Normalisation:** Standardise les caractères extraits en uniformisant leur taille, inclinaison et épaisseur pour améliorer la précision de la reconnaissance OCR.

SERVICES D'IA ET SPÉCIFICATIONS FONCTIONNELLES

1/ Identification des services d'IA existants et utilisés

2/ Explication du fonctionnement des services

3/ Spécifications fonctionnelles

1/ Identification des services d'IA existants et utilisés

Tesseract

- Développeur: Google
- Type: Moteur OCR open source
- Utilisation dans le projet: Extraction de texte des factures

OpenCV

- Type: Bibliothèque de vision par ordinateur
- Utilisation: Prétraitement des images

Pyzbar

- Type: Lecteur de codes-barres/QR
- Utilisation: Décodage des QR codes sur les factures

2/ Explication du fonctionnement de ces services

TESSERACT envoi de l'image d'entrée API Input Trained Request Image Data Set accès à Tesseract par l'API Image OCR Data traitement image et Pre-processing **Engine** Extraction extraction des données s'assurer une qualité optimale Text API Open CV Conversion Response

OPENCY

OpenCV fonctionne selon un processus séquentiel pour traiter les images et vidéos :

- Acquisition d'image : Capture ou chargement d'images/vidéos depuis diverses sources
- **Prétraitement** : Amélioration de la qualité de l'image (filtrage, transformation de couleur, réduction du bruit)
- Extraction de caractéristiques : Identification des points d'intérêt et des motifs distinctifs
- **Détection d'objets** : Reconnaissance et localisation d'éléments spécifiques
- **Traitement avancé**: Application d'algorithmes spécifiques selon les besoins
- **Sortie** : Production des données traitées (images modifiées, informations extraites)

PIZBAR

Pyzbar est un module Python qui permet de détecter et décoder des codes-barres 1D et des QR codes à partir d'images. Il s'agit d'une intégration de la bibliothèque ZBar dans le langage Python.

Fonctionnalités principales:

- Détection et décodage simultanés des codes-barres et QR codes
- Support de différents types de codes (CODE128, QRCODE, etc.)
- Extraction d'informations complètes (données, type, position, orientation)
- Compatible avec les images provenant de PIL (Pillow) et OpenCV

3/ Spécifications fonctionnelles

SCHEMA FONCTIONNEL DE L'APPLICATION

MAQUETTE FIGMA

TRELLO

https://trello.com/b/Jzk5sl8l/ocr

AXES D'AMÉLIORATIONS

- Docker
- CI/CD
- IA : Clustering

MERCI DE VOTRE ATTENTION