

TEST REPORT

FCC ID: 2ABMREB1

Product: Bluetooth Earphone

Model No.: MEE audio EB1

Additional Model No.: N/A

Trade Mark: N/A

Report No.: TCT180322E001

Issued Date: Mar. 23, 2018

Issued for:

S2E, Inc.

817 Lawson St. City of Industry, CA 91748, United States

Issued By:

Shenzhen Tongce Testing Lab.

1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

	st Certification			
2. Te	st Result Summary	(C)	(0)	4
	JT Description			
	enera Information			
4.1	. Test environment and mode			6
4.2	. Description of Support Units			6
5. Fa	cilities and Accreditations	<u>(G)</u>	(6)	7
5.1	. Facilities			7
	. Location			
5.3	. Measurement Uncertainty	(0)	(<u>C</u>	7
6. Te	st Results and Measuremen	t Data		8
6.1	. Antenna requirement	<u></u>		8
6.2	. Conducted Emission			9
	. Conducted Output Power			
6.4	. Emission Bandwidth			16
	. Power Spectral Density			
	. Test Specification			
6.7	. Conducted Band Edge and Spu	ırious Emission M	easurement	22
6.8	. Radiated Spurious Emission M	easurement		25
Appe	ndix A: Photographs of Tes	t Setup		
Appe	ndix B: Photographs of EU1			

1. Test Certification

Product:

Bluetooth Earphone

Model No.:

MEE audio EB1

Additional N/A

Model No.:

Trade Mark:

N/A

Applicant:

S2E, Inc.

Address: 817 Lawson St. City of Industry, CA 91748, United States

Manufacturer: S2E, Inc.

Address: 817 Lawson St. City of Industry, CA 91748, United States

Date of Test: Dec. 28, 2017 – Jan. 02, 2018

Applicable FCC CFR Title 47 Part 15 Subpart C Section 15.247

Standards: KDB 558074 D01 DTS Meas Guidance v04

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By: Jan. 02, 2018

Jin Wang

Reviewed By: Date: Mar. 23, 2018

Beryl Zhao

Approved By: / Date: Mar. 23, 2018

Tomsin

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PASS
6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	1§5.247(d) §2.1051, §2.1057	PASS
Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product:	Bluetooth Earphone
Model No.:	MEE audio EB1
Additional Model No.:	N/A
Trade Mark:	N/A
Hardware Version:	5.0
Software Version:	1.0
BT Version:	V5.0
Operation Frequency:	2402MHz~2480MHz
Channel Separation:	2MHz
Number of Channel:	40
Transfer Rate:	3 Mbps
Modulation Technology:	GFSK
Antenna Type:	Internal Antenna
Antenna Gain:	2dBi
Power Supply:	Rechargeable Li-ion battery DC 3.7V

Operation Frequency each of channel

<u> </u>		<i>,</i>					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
							•••
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Remark: Channel 0, 19 & 39 have been tested.						

4. Genera Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1		1	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 6 of 40

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District,

Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
9	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is Internal antenna which permanently attached, and the best case gain of the antenna is 2dBi.

6.2. Conducted Emission

6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	No.		
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013			
Frequency Range:	150 kHz to 30 MHz	<u>(C1)</u>	(C)		
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto				
	Frequency range (MHz)	Quasi-peak	dBuV) Average		
Limits:	0.15-0.5 0.5-5 5-30	66 to 56* 56 60	56 to 46* 46 50		
	Refere	nce Plane	120		
Test Setup:	Test table/Insulation plan Remark E.U.T: Equipment Under Test LISN Line Impedence Stabilization Test table height=0.8m	EMI Receiver	Iter — AC power		
Test Mode:	Charging + Transmitting	ng Mode			
Test Procedure:	 The E.U.T is conners impedance stabilized provides a 500hm/s measuring equipme The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10: 2013 	cation network 50uH coupling im nt. ces are also connects with 50ohm terr diagram of the line are checkence. In order to five positions of equals must be changed.	(L.I.S.N.). This appedance for the ected to the main a 500hm/50uH mination. (Please test setup and ed for maximum and the maximum sipment and all of ged according to		
	ANSI C03.10. 2013	on conducted me	asurement.		

6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Test Receiver	R&S	ESPI	101401	Jun. 12, 2018		
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 27, 2018		
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 27, 2018		
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Limit:	FCC Part	15C	Conduction(QP)
-			animonous land

rilase.		rempetature		
Power:	AC 120V/60Hz	Humidity:	55	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBu∀	dB	dBuV	dBu∀	dB	Detector	Comment	
1		0.1590	25.55	11.49	37.04	65.52	-28.48	peak		
2	*	0.4875	24.45	11.32	35.77	56.21	-20.44	peak		
3		1.2885	12.71	11.36	24.07	56.00	-31.93	peak		
4		2.0985	11.66	11.66	23.32	56.00	-32.68	peak		
5	il	23.2800	12.76	10.73	23.49	60.00	-36.51	peak		
6	- 6	28.8060	20.84	10.71	31.55	60.00	-28.45	peak		

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1545	25.62	11.49	37.11	65.75	-28.64	peak		
2		0.4875	21.47	11.32	32.79	56.21	-23.42	peak		
3		1.4325	13.33	11.42	24.75	56.00	-31.25	peak		
4		3.3315	11.71	11.22	22.93	56.00	-33.07	peak		
5	- 6	23.3745	14.91	10.73	25.64	60.00	-34.36	peak		
6	Ţ,	28.8105	22.58	10.71	33.29	60.00	-26.71	peak		

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 12 of 40

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074
Limit:	30dBm
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04. Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 x RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018
Antenna Connector	TCT	RFC-01	N/A	Sep. 27, 2018

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 13 of 40

6.3.3. Test Data

BT LE mode						
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result			
Lowest	6.11	30.00	PASS			
Middle	7.01	30.00	PASS			
Highest	7.02	30.00	PASS			

Test plots as follows:

BT LE mode

Lowest channel

Middle channel

Highest channel

6.4. Emission Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

6.4.2. Test Instruments

RF Test Room								
Equipment Manufacturer Model Serial Number Calil								
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018				
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018				
Antenna Connector	TCT	RFC-01	N/A	Sep. 27, 2018				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.4.3. Test data

Test channel	6dB Emission Bandwidth (kHz)					
rest channel	BT LE mode	Limit	Result			
Lowest	695.80	>500k	0			
Middle	690.90	>500k	PASS			
Highest	691.00	>500k	(c)			

Test plo	ots as follow	rs:			

BT LE mode

Lowest channel

Middle channel

Highest channel

6.5. Power Spectral Density

6.6. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)			
Test Method:	KDB558074			
Limit:	The peak power spectral density shall not be greated than 8dBm in any 3kHz band at any time interval of continuous transmission.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Refer to item 4.1			
Test Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 			
Test Result:	PASS			

6.6.1. Test Instruments

	<u> </u>							
RF Test Room								
Equipment Manufacturer Model Serial Number Calibration Du								
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018				
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018				
Antenna Connector	тст	RFC-01	N/A	Sep. 27, 2018				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.6.2. Test data

Report No.: TCT180322E001

Toot shannal	Power Spectral Density (dBm/3kHz)					
Test channel	BT LE mode	Limit	Result			
Lowest	-9.32	8 dBm/3kHz	100			
Middle	-8.38	8 dBm/3kHz	PASS			
Highest	-8.44	8 dBm/3kHz	(3)			

Test plots as follows:

Lowest channel

Middle channel

Highest channel

6.7. Conducted Band Edge and Spurious Emission Measurement

6.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Structure Analysis EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

TESTING CENTRE TECHNOLOGY Report No.: TCT180322E001

6.7.2. Test Instruments

	RF Test Room											
Equipment	Manufacturer	Model	Serial Number	Calibration Due								
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 27, 2018								
Spectrum Analyzer	ROHDE&SCH WARZ	FSQ	200061	Sep. 27, 2018								
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018								
Antenna Connector	TCT	RFC-01	N/A	Sep. 27, 2018								

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.7.3. Test Data

6.8. Radiated Spurious Emission Measurement

6.8.1. Test Specification

FCC Part15	C Section	n 15.209	(0)		(6				
ANSI C63.10: 2013									
9 kHz to 25 GHz									
3 m	K			100					
Horizontal & Vertical Refer to item 4.1									
Refer to item	1 4.1	((0)		Ć				
Frequency 9kHz- 150kHz	Quasi-pea	k 200Hz	VBW 1kHz	Quas	Remark si-peak Value				
30MHz	Quasi-pea	IK 9KHZ	30KHZ	Quas	i-peak Value				
30MHz-1GHz Above 1GHz	Peak	1MHz	300KHz 3MHz	Peak Value					
	Peak	1MHz	10Hz	Ave	erage Value				
Frequen	ісу			Measurement Distance (meters)					
		,		300					
			30						
	\sim		30						
				3					
				3					
				3					
Above 9	00	500	.G		3 (.0				
Frequency		Field Strength (microvolts/meter)		nce Detector					
Abovo 1GH:	,	500	3		Average				
Above IGH	2	5000	3		Peak				
	Distance = 3m		OMHz	Т <u> </u>	Computer				
	ANSI C63.10 9 kHz to 25 0 3 m Horizontal & Refer to item Frequency 9kHz-150kHz 150kHz- 30MHz 30MHz-30MHz Above 1GHz Frequency 0.009-0.4 0.490-1.3 1.705-3 30-88 88-216 216-96 Above 9 Frequency Above 1GHz	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1 Frequency Detector 9kHz-150kHz Quasi-pea 150kHz-Quasi-pea 15	9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1 Frequency	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1 Frequency	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1				

「通测检测 Report No.: TCT180322E001 Antenna Tower Search Antenna EUT 4m RF Test Receiver Turn 0.8m Above 1GHz 1. For the radiated emission test below 1GHz: The EUT was placed on a turntable with 0.8 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level. For the radiated emission test above 1GHz: **Test Procedure:** Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of

significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission

and staying aimed at the emission source for receiving the maximum signal. The final

Ī	CT	通测检测 TESTING CENTRE TECHNOLOGY

		Report No.: TCT180322E0
		measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission
		level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW 承BW;
		Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum
Test mod	۵.	power control level for the tested mode of operation. Refer to section 4.1 for details
Test resu	its:	PASS (C)

6.8.2. Test Instruments

Report No.: TCT180322E001

	Radiated Em	ission Test Si	te (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 27, 2018
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ	200061	Sep. 27, 2018
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 27, 2018
Pre-amplifier	HP	8447D	2727A05017	Sep. 27, 2018
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 27, 2018
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 27, 2018
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 27, 2018
Horn Antenna	Schwarzbeck	BBH 9170	582	Jun. 07, 2018
Antenna Mast	Keleto	CC-A-4M	N/A	N/A
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 27, 2018
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 27, 2018
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 27, 2018
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 27, 2018
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

TESTING CENTRE TECHNOLOGY Report No.: TCT180322E001

6.8.3. Test Data

Please refer to following diagram for individual

Below 1GHz

Horizontal:

Site Polarization: Horizontal Temperature: 25
Limit: FCC Part 15C 3M Radiation Power: DC 3.7V Humidity: 55 %

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1		30.4238	35.37	-13.75	21.62	40.00	-18.38	peak			
2		47.6586	29.33	-12.67	16.66	40.00	-23.34	peak			
3		105.6415	30.10	-12.23	17.87	43.50	-25.63	peak			
4		191.7450	42.22	-13.24	28.98	43.50	-14.52	peak			
5		399.0302	29.50	-5.82	23.68	46.00	-22.32	peak			
6		782.3453	30,06	1.58	31.64	46.00	-14.36	peak			

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dB/m	dB	Detector	cm	degree	Comment
1	*:	32.7486	43.72	-13.52	30.20	40.00	-9.80	peak			
2		38.7518	39.43	-12.95	26.48	40.00	-13.52	peak			
3		81.2117	42.23	-16.86	25.37	40.00	-14,63	peak			
4		173.8135	34.56	-14.35	20.21	43.50	-23.29	peak			
5		385.2805	28.99	-6.22	22.77	46.00	-23.23	peak			
6		842.1296	29.31	2.49	31.80	46.00	-14.20	peak			

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (High channel) was submitted only.

Page 30 of 40

Above 1GHz

Low chann	el: 2402 M	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2390	Н	47.21	ŀ	-7.52	39.69	-	74	54	-14.31
4804	Н	43.61	ŀ	7.44	51.05	-	74	54	-2.95
7206	Н	35.55	ŀ	13.54	49.09	-	74	54	-4.91
	Ĭ							-/.	
	(())		(.G			.ci\)		(.c)	
2390	V	49.12		-7.52	41.60	<u></u>	74	54	-12.40
4804	V	43.36		7.44	50.80		74	54	-3.20
7206	V	37.48		13.54	51.02		74	54	-2.98
	V			/	·				

Middle cha	nnel: 2440)MHz		0					0
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	(CH)	43.64	-420	7.01	50.65	(C) }	74	54	-3.35
7320	4	36.84		13.21	50.05	<u></u>	74	54	-3.95
	Н								
4880	V	44.71		7.01	51.72		74	54	-2.28
7320	V	36.74		13.21	49.95		74	54	-4.05
	V								

High chann	el: 2480 N	ЛHz		·.					
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
2483.5	Н	48.95		-7.52	41.43		74	54	-12.57
4960	Н	43.58		7.44	51.02		74	54	-2.98
7440	Н	34.56		13.54	48.10		74	54	-5.90
)	Н	\			<i>)</i>		\\\\		
2483.5	V	48.94		-7.52	41.42		74	54	-12.58
4960	V	43.42		7.44	50.86		74	54	-3.14
7440	, GV	37.53	-4,0	13.54	51.07	, C	74	54	-2.93
	V			/				77	

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Appendix A: Photographs of Test Setup
Product: Bluetooth Earphone
Model: MEE audio EB1 **Radiated Emission**

Conducted Emission

Appendix B: Photographs of EUT Product: Bluetooth Earphone Model: MEE audio EB1 External Photos

Page 35 of 40

TCT通测检测 TESTING CENTRE TECHNOLOGY

Product: Bluetooth Earphone Model: MEE audio EB1 Internal Photos

TCT通测检测
TESTING CENTRE TECHNOLOGY

Report No.: TCT180322E001

Page 39 of 40

