Package 'gridsampler'

October 13, 2022

License GPL-3

Title A Simulation Tool to Determine the Required Sample Size for Repertory Grid Studies

Type Package

LazyLoad yes

Description Simulation tool to facilitate determination of required sample size to achieve category saturation for studies using multiple repertory grids in conjunction with content analysis.

Version 0.6

Date 2016-11-23

Imports shiny, ggplot2, reshape2, plyr, shinythemes, BiasedUrn, shinyBS

Suggests knitr, testthat, rmarkdown

Encoding UTF-8

URL https://github.com/markheckmann/gridsampler

BugReports https://github.com/markheckmann/gridsampler/issues

VignetteBuilder knitr

RoxygenNote 5.0.1

NeedsCompilation no

Author Mark Heckmann [aut, cre], Lukas Burk [aut]

Maintainer Mark Heckmann < heckmann.mark@gmail.com>

Repository CRAN

Date/Publication 2016-11-23 17:24:13

2 calc_probabilities

R topics documented:

———		10
Index		10
	sim_one_person	8
	sim_n_persons_x_times_many_n	
	sim_n_persons_x_times	
	sim_n_persons	
	prob_categories	
	gridsampler	
	expected_frequencies	
	draw_n_person_sample	
	draw_multiple_n_persons_x_times	
	calc_probabilities	
	gridsampler-package	

Description

gridsampler - A sample size simulation software for repertory grid studies

studies

References

- Green, B. (2004). Personal construct psychology and content analysis. Personal Construct Theory & Practice, 1(3), 82-91.
- \bullet Jankowicz, D. (2004). The easy guide to repertory grids. Chichester, England: John Wiley & Sons.

calc_probabilities

Probability for certain degree of saturation

Description

Calculate probability for getting certain proportion of categories with at least m constructs

Usage

```
calc\_probabilities(r, n, ms, min.props = c(0.9, 0.95, 0.99))
```

Arguments

r	A dataframe. The result returned from sim_n_persons_x_times_many_n.
n	Vector of n for which to calculate probabilities.
ms	minimal number of constructs in each category
min.props	Proportion of categores to contain at least m constructs.

See Also

Other Utilities: expected_frequencies, prob_categories

Examples

```
prob <- dexp(1:30, .05) 

n \leftarrow seq(10, 80, by = 20) 

r \leftarrow sim_n_persons_x_times_many_n(prob, n, a = 7, times = 100) 

dd \leftarrow calc_probabilities(r, n, ms=1:5, min.props = c(0.9, .95, 1)) 

head(dd)
```

```
draw_multiple_n_persons_x_times
```

Draw and redraw results of simulation

Description

Draw and redraw results of simulation

Usage

```
draw_multiple_n_persons_x_times(d)
```

Arguments

d

A dataframe as returned by calc_probabilities.

See Also

Other Plotting: draw_n_person_sample

Examples

```
## simulate
prob <- dexp(1:30, .05)  # probabilities for categories
N <- seq(10, 80, by = 10)  # smaple sizes to simulate
r <- sim_n_persons_x_times_many_n(prob, n = N, a = 7, times = 100, progress = "none")
# calculate and draw
M <- 1:5  # minimal number of categories to evaluate
p <- c(0.9, .95, 1)  # proportion of categories for which minimal m holds
d <- calc_probabilities(r, n = N, ms = M, min.props = p)
draw_multiple_n_persons_x_times(d)</pre>
```

Description

Produce graphic for a single sample of n persons

Usage

```
draw_n_person_sample(prob, n, a = 10, ap = rep(1/length(a), length(a)))
```

Arguments

prob Probability to draw a construct from a certain category.

Number of persons, i.e. grids to be sampled.a Possible number of attributes sampled from.

ap Attribute probabilities, i.e. for each number of attributes given in a.

See Also

Other Plotting: draw_multiple_n_persons_x_times

Examples

```
draw_n_person_sample(dexp(1:30, rate = .05), n = 100, a = 10)
draw_n_person_sample(dexp(1:30, rate = .05), n = 100, a = 1:5, ap = 5:1)
```

Description

Produce ggplot of percentiles for simulated frequencies

Usage

```
expected_frequencies(r)
```

Arguments

r A dataframe. The result returned from sim_n_persons_x_times.

Value

Draws a ggplot

gridsampler 5

See Also

Other Utilities: calc_probabilities, prob_categories

Examples

```
r <- sim_n_persons_x_times(dexp(1:30, rate = .05), n = 50, a = 5:7, ap = 1:3, 100) expected_frequencies(r)
```

gridsampler

Run gridsampler app

Description

This function starts the gridsampler shiny app.

Usage

```
gridsampler(display.mode = "auto",
  launch.browser = getOption("shiny.launch.browser", interactive()))
```

Arguments

```
display.mode auto by default, can also be showcase. See runApp.

launch.browser Boolean, set TRUE to open the app in the browser. See runApp.
```

Examples

```
## Not run:
gridsampler()
## End(Not run)
```

prob_categories

Probability for certain degree of saturation

Description

Calculate probability for getting certain proportion of categories with at least m constructs

Usage

```
prob_categories(r, m, min.prop = 1)
```

6 sim_n_persons

Arguments

r A dataframe. The result returned from sim_n_persons_x_times.

m minimal number of constructs in each category

min.prop Proportion of categores to contain at least m constructs.

See Also

Other Utilities: calc_probabilities, expected_frequencies

Examples

```
r <- sim_n_persons_x_times(dexp(1:30, rate = .05), n = 50, a = 5:7, times = 100, progress = "none") prob_categories(r, 4, min.prop = .9)
```

sim_n_persons

Simulate n persons

Description

Function is a simple replicate wrapper around sim_one_person

Usage

```
sim_n_persons(prob, n, a = 10, ap = rep(1/length(a), length(a)))
```

Arguments

prob	Probability to draw a construct from a certain category.
n	Number of persons, i.e. grids to be sampled.
a	Possible number of attributes sampled from.
ар	Attribute probabilities, i.e. for each number of attributes given in a.

See Also

Other Simulations: sim_n_persons_x_times_many_n, sim_n_persons_x_times, sim_one_person

Examples

sim_n_persons_x_times

```
sim_n_persons_x_times Complete simulation
```

Description

Complete simulation

Usage

```
sim_n_persons_x_times(prob, n, a, ap = rep(1/length(a), length(a)),
times = 100, progress = "text")
```

Arguments

prob	Probability to draw a construct from a certain category. Length of vector determines number of categories.
n	Number of persons, i.e. grids to sample.
а	Number of constructs to be sampled.
ар	Probabilities for each number of attributes to be sampled.
times	Number of times to repeat each simulation.
progress	Type of progress bar shown during simulation.

See Also

 $Other\ Simulations: \ \verb|sim_n_persons_x_times_many_n|, \ \verb|sim_n_persons|, \ \verb|sim_one_person|$

Examples

```
## Not run:
sim_n_persons_x_times(dexp(1:30, .05), n = 2, a = c(1,30), ap = 1:2, times = 100)
sim_n_persons_x_times(dexp(1:30, .05), n = 2, a = c(1,30), times = 200, progress = "tk")
## End(Not run)
sim_n_persons_x_times_many_n
```

Description

Creates simulation results for different n. Runs $sim_n_persons_x_times$ for different n.

Simulate for different n

Usage

```
sim_n_persons_x_times_many_n(prob, n = seq(10, 80, by = 10), a = 7,
ap = rep(1/length(a), length(a)), times = 100, progress = "text")
```

8 sim_one_person

Arguments

prob	Probability to draw a construct from a certain category. Length of vector determines number of categories.
n	Number of persons, i.e. grids to sample.
a	Number of constructs to be sampled.
ар	Probabilities for each number of attributes to be sampled.
times	Number of times to repeat each simulation.
progress	Type of progress bar shown during simulation.

Value

A result dataframe.

See Also

Other Simulations: sim_n_persons_x_times, sim_n_persons, sim_one_person

Examples

```
## Not run:
r <- sim_n_persons_x_times_many_n(dexp(1:30, .05), a = 7, times = 100)
r <- sim_n_persons_x_times_many_n(dexp(1:30, .05), a = 5:7, ap = 1:3, times = 100)
## End(Not run)</pre>
```

sim_one_person

Simulate a single grid

Description

Simulate a single grid

Usage

```
sim\_one\_person(prob, a = 10)
```

Arguments

prob Probability to draw a construct from a certain category.

a Number of constructs to be sampled.

See Also

Other Simulations: sim_n_persons_x_times_many_n, sim_n_persons_x_times, sim_n_persons

sim_one_person 9

Examples

```
# draw from exponential distribution
p <- dexp(1:20, rate = .1)
sim_one_person(p, a = 10)</pre>
```

Index

```
* package
    {\tt gridsampler-package}, {\tt 2}
* repgrid
    gridsampler-package, 2
calc_probabilities, 2, 3, 5, 6
draw_multiple_n_persons_x_times, 3, 4
draw_n_person_sample, 3, 4
expected_frequencies, 3, 4, 6
gridsampler, 5
{\tt gridsampler-package}, {\color{red} 2}
prob_categories, 3, 5, 5
runApp, 5
sim_n_persons, 6, 7, 8
sim_n_persons_x_times, 4, 6, 7, 7, 8
sim_n_persons_x_times_many_n, 2, 6, 7, 7,
sim\_one\_person, 6-8, 8
```