C 3152

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2007.

Fifth Semester

Computer Science and Engineering

CS 1303 — THEORY OF COMPUTATION

(Regulation 2004)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is a finite automation? Give two examples.
- 2. Enumerate the differences between DFA and NFA.
- 3. Verify whether $L = \{a^{2n} | n \ge 1\}$ is regular.
- 4. Mention the closure properties of regular languages.
- 5. Let the productions of a grammar be $S\to 0B\ |1A,A\to 0|\ 0S\ |1AA,B\to 1\ |1S|\ 0BB\ .$ For the string 0110 find a rightmost derivation.
- 6. Define the languages generated by a PDA using the two methods of accepting a language.
- 7. State pumping lemma for context free language.
- 8. Define a Turing Machine.
- 9. Differentiate between recursive and recursively enumerable languages.
- 10. Mention any two undecidability properties for recursively enumerable languages.

PART B - (5 × 16 = 80 marks)

11. (a) (i) Prove the following by the principle of induction

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$
 (6)

(ii) For the finite state machine M given in the following table, test whether the strings 101101,11111 are accepted by M. (4)

State		Input	
	0	1	5
$\rightarrow q_0$	q_0	q_1	
q_1	q_3	q_{0}	
$q^{}_2$	q_0	q_3	
q_3	q_1	q_2	

(iii) Construct a DFA that accepts all the strings on {0,1} except those containing the substring 10 i. (6)

- (b) (i) Prove that there is no string x in $(a, b)^*$ such that ax = xb. (6)
 - (ii) Construct a non-deterministic finite automation accepting the same set of strings over (a, b) ending in aba. Use it to construct a DFA accepting the same set of strings. (10)
- 12. (a) (i) Verify whether the finite automata M_1 and M_2 given below are equivalent over $\{a, b\}$.

Construct transition diagram of a finite automaton corresponding to the regular expression (a $b + c^*$)* b. (8)

Or

(8)

(b) (i) Construct a minimum state automaton equivalent to a given automaton M whose transition table is given below.

State		Input	
	a	b	
→ q ₀	q_0	q_3	
q_1	q_2	$q_{\scriptscriptstyle 5}$	
q_2	q_3	q_4	\(\frac{1}{2}\)
q_3	q_0	$q_{\scriptscriptstyle 5}$	
q_4	q_0	q_6	
q_{5}	q_1	q_4	
$\overline{q_6}$	q_1	q_3	
			(8)

(ii) Find the regular expression corresponding to the finite automaton given below. (8)

- 13. (a) (i) Find a derivation tree of a*b+a*b given that a*b+a*b is in L(G) where G is given by $S \rightarrow S + S \mid S*S, S \rightarrow a \mid b$. (6)
 - (ii) Show that the grammar $S \rightarrow a \mid abSb \mid aAb, A \rightarrow bS \mid aAAb$ is ambiguous. (6)
 - (iii) Consider the following productions:

 $S \rightarrow aB|bA$

 $A \rightarrow aS | bAA | a$

 $B \rightarrow bS |aBB|b.$

For the string aaabbabbba, find a leftmost derivation. (4)

Or

	(b)	(1)	Construct a PDA accepting by empty stack the language $\{a^m b^m c^n \mid m, n \ge 1\}$. (8)
		(ii)	Show that set of all strings over {a, b} consisting of equal number of a's and b's is accepted by a deterministic PDA.
14.	(a)	(i)	Find a grammar in Chomsky normal form equivalent to $S \to aAbB$, $A \to aA \mid a$, $B \to bB \mid b$.
		(ii)	Convert the grammar $S \to AB$, $A \to BS \mid b$, $B \to SA \mid a$ into Greibach normal form. (8)
			Or
	(b)	(i)	Show that $L = \{a^n b^n c^n \mid n \ge 1\}$ is not a context-free language. (6)
		(ii)	Design a Turing Machine that computes $x + y$ where x and y are positive integers. (8)
		(iii)	What are the features of a Universal Turing Machine? (2)
15.	(a)	(i)	Show that "If a language L and its compliment \overline{L} are both recursively enumerable, then both languages are recursive". (6)
		(ii)	Show that halting problem of Turing Machine is undecidable. (5)
		(iii)	Does PCP with two lists $x = (b, b ab^3, ba)$ and $y = (b^3, ba, a)$ have
			a solution? (5)
	(b)	(1)	Show that the characteristic function of the set of all even numbers is recursive. (6)
		(ii)	Let $\sum = \{0, 1\}$. Let A and B be the lists of three strings each, defined
			as
			List A List B
			w ₁ x ₁
			1 1 111
			2 10111 10
			3 10 0
			Does this PCP have a solution? (5)
		(iji)	Show that it is undecidable for arbitrary CFG's G1 and G2 whether
	/		$L(G1) \cap L(G_2)$ is a CFL. (5)

