进而又知, 存在正常数 C = C(n, k), 与 p 无关, 使

$$||Eu||_{k,p,\mathbb{R}^n} \leqslant C(n,k)||u||_{k,p,\mathbb{R}^n_\perp}$$

第二步 考虑 $u \in W_p^k(\mathbb{R}_+^n)$ 的情况. 由定理 2.2.5 知, 存在 $u_\ell \in C^k(\overline{\mathbb{R}_+^n})$, 使得 $\|u_\ell - u\|_{k,p,\mathbb{R}_+^n} \longrightarrow 0$. 利用第一步的结论又知, $Eu_\ell \in C^k(\mathbb{R}^n)$ 并且具有引理的性质 (1) 和 (2). 于是

$$||Eu_i - Eu_\ell||_{k,p,\mathbb{R}^n} = ||E(u_i - u_\ell)||_{k,p,\mathbb{R}^n} \le C(n,k)||u_i - u_\ell||_{k,p,\mathbb{R}^n}.$$

因为在 $W_n^k(\mathbb{R}^n_+)$ 中 $u_\ell \longrightarrow u$, 由上式得

$$||Eu_i - Eu_\ell||_{k,p,\mathbb{R}^n} \longrightarrow 0.$$

故存在 $W_p^k(\mathbb{R}^n)$ 中的函数, 记为 Eu, 使得在 $W_p^k(\mathbb{R}^n)$ 中 $Eu_\ell \longrightarrow Eu$. 利用 $\|Eu_\ell\|_{k,p,\mathbb{R}^n} \leqslant C(n,k)\|u_\ell\|_{k,p,\mathbb{R}^n_+}$ 又知, 结论 (2) 对于 $u \in W_p^k(\mathbb{R}^n_+)$ 也成立.

因为在 \mathbb{R}^n_+ 上 $Eu_\ell = u_\ell$, 并且 $u_\ell \longrightarrow u$, $Eu_\ell \longrightarrow Eu$ 几乎处处成立, 所以 Eu = u 几乎处处于 \mathbb{R}^n_+ . 证毕.

引理 2.3.3 存在正常数 C = C(n,k) 和线性映射 $E: W_p^k(B^+) \longrightarrow W_p^k(B)$, 使得对每一个 $v \in W_p^k(B^+)$, 有

- (1) 在 B+ 上 Ev = v 几乎处处成立;
- (2) $||Ev||_{k,p,B} \le C||v||_{k,p,B^+}$.

这里的 $B \in \mathbb{R}^n$ 中以原点为心的球, B^+ 是上半球. 算子 E 被称为延 拓算子.

证明同于引理 2.3.2, 略去.

定理 2.3.1 假设 $1 \leq p \leq \infty$, Ω 有界, $\partial \Omega \in C^k$, \mathbb{R}^n 中的开集 $G \ni \Omega$, 则存在正常数 $C = C(n, k, \Omega, G)$ 和线性映射 $E: W_p^k(\Omega) \longrightarrow W_p^k(\mathbb{R}^n)$, 使得对每个 $u \in W_p^k(\Omega)$, 都有

- (1) 在 Ω 上 Eu = u 几乎处处成立;
- (2) spt{Eu} ∈ G;

(3) ||Eu||_{k,p,G} ≤ C||u||_{k,p,Ω}.
算子 E 被称为延拓算子.

证明 第一步 先考虑 $1 \leq p < \infty$ 的情况. 因为 $\partial \Omega \in C^k$, 并且是紧的, 利用有限覆盖知, 存在 N 个球 $B_j := B_{r_j}(x_j)$, $x_j \in \partial \Omega$, $r_j > 0$ 和对应的函数 $\phi_j \in C^k(\mathbb{R}^{n-1})$ 满足式 (1.4.5), 由 (1.4.6) 式确定了对应的 Φ_j 和 Ψ_j . 取 $\Omega_0 \in \Omega$, 使 $\Omega \subset \Omega_0 \cup (\bigcup_{j=1}^N B_j)$. 显然, 存在有界开集 G', 使 $\Omega \in G' \in \Omega_0 \cup (\bigcup_{j=1}^N B_j)$, $G' \in G$.

取 $\{\zeta_j\}_{j=0}^N$ 是 $\overline{\Omega}$ 从属于开覆盖 $\{\Omega_0, B_j\}_{j=1}^N$ 的一个 C^{∞} -单位分解, 并记 $u_j = u\zeta_j$. 当 $x \in \Omega$ 时, $u = \sum_{j=0}^N u\zeta_j = \sum_{j=0}^N u_j$, 并且成立

$$u_j \in W_p^k(\Omega), \quad j = 0, 1, \dots, N,$$

 $\operatorname{spt}\{u_0\} \subset \Omega_0, \quad \operatorname{spt}\{u_j\} \subset B_j, \quad j = 1, \dots, N.$

按照 (1.4.6) 的方式定义 Φ_j 和 Ψ_j . 在 B_j 中作变换: $y = \Phi_j(x)$, 并记 $v_j(y) = u_j(\Psi_j(y)), O_j = \Phi_j(\Omega \cap B_j), j = 1, \cdots, N$, 则 $v_j \in W_p^k(O_j)$, 并且 O_j 的一部分边界位于超平面 $\{y_n = 0\}$ 上, O_j 内的点满足 $y_n > 0$. 由于 $\mathrm{spt}\{u_j\} \subset B_j$, 所以 v_j 在 $\partial O_j \cap \{y_n > 0\}$ 的附近为零. 因为 $\Phi_j, \Psi_j \in C^k(\mathbb{R}^n)$, 利用 $v_j(y)$ 与 $u_j(x)$ 之间的关系易知

$$C^{-1}\|v_j\|_{k,p,O_j} \le \|u_j\|_{k,p,\Omega\cap B_j} \le C\|v_j\|_{k,p,O_j},$$
 (2.3.4)

其中正常数 C 不依赖于 p, 仅由 k, B_j 和 $D^{\alpha}\phi_j$ ($|\alpha| \leq k$) 确定.

把 v_j 在 $\mathbb{R}^n_+ \setminus O_j$ 上延拓为零, 那么 $v_j \in W_p^k(\mathbb{R}^n_+)$. 利用引理 2.3.2 知, 存在 $Ev_j \in W_p^k(\mathbb{R}^n)$ 满足

$$(Ev_j)(y) = v_j(y), y \in \mathbb{R}^n_+,$$

 $||Ev_j||_{k,p,\mathbb{R}^n} \le C(n,k)||v_j||_{k,p,\mathbb{R}^n_+} = C(n,k)||v_j||_{k,p,O_j}.$

利用估计式 (2.3.4) 又得

$$||Ev_j||_{k,p,\mathbb{R}^n} \le C(n, k, \Omega)||u_j||_{k,p,\Omega \cap B_j}$$
. (2.3.5)

令 $w_j = (Ev_j)(\Phi_j(x)), w = u_0 + \sum_{j=1}^N w_j, 那么 w \in W_p^k(\mathbb{R}^n), 并且在 <math>\Omega \perp w = u$. 同上, 存在仅依赖于 k 和 ϕ_j 的正常数 C, 使得

$$||w_j||_{k,p,\mathbb{R}^n} \leqslant C||Ev_j||_{k,p,\mathbb{R}^n}$$
.

再利用 LP 中的 Minkowski 不等式及式 (2.3.5) 知

$$||w||_{k,p,\mathbb{R}^n} \leq ||u_0||_{k,p,\mathbb{R}^n} + \sum_{j=1}^N ||w_j||_{k,p,\mathbb{R}^n}$$

$$\leq ||u_0||_{k,p,\Omega_0} + C \sum_{j=1}^N ||u_j||_{k,p,\Omega \cap B_j}$$

$$\leq C||u||_{k,p,\Omega},$$

这里的常数 C 也不依赖于 p.

取一个截断函数 $\zeta \in C_0^{\infty}(G')$, 在 Ω 上 $\zeta \equiv 1$. 令 $Eu = \zeta w$, 那么 $\operatorname{spt}\{Eu\} \subset G' \in G, Eu \in W_p^k(G)$, 在 Ω 上 Eu = u. 映射 E 的线性性 质以及不等式

$$||Eu||_{k,p,G} \leq C(n,k,\Omega,G)||u||_{k,p,\Omega}$$

都是显然的.

第二步 考虑 $p=\infty$ 的情况. 设 $u\in W^k_\infty(\Omega)$. 因为 Ω 有界, 所以 对任意的 $1\leqslant p<\infty$, 都有 $u\in W^k_p(\Omega)$, 并且还存在仅依赖于 k 和 Ω 的正常数 $C(k,\Omega)$, 使得

$$||u||_{k,p,\Omega} \leqslant C(k,\Omega)||u||_{k,\infty,\Omega}, \quad \forall \ 1 \leqslant p < \infty, \ u \in W_{\infty}^{k}(\Omega).$$

利用第一步证得的结论知, 存在 $E_pu \in W_p^k(\mathbb{R}^n)$, 使得 $E_pu = u$ 在 Ω 上几乎处处成立, $\operatorname{spt}\{E_pu\} \in G' \in G$, 并且存在与 p 无关的正常数 C, 使得

$$||E_p u||_{k,p,G} \leqslant C||u||_{k,p,\Omega} \leqslant C||u||_{k,\infty,\Omega}.$$

容易看出, 当 $j \ge p$ 时, $E_j u \in W_p^k(G)$, 并且还可以选取一个与 j 和 p 无关的常数 C, 使得

$$||E_j u||_{k,p,G} \leqslant C ||E_j u||_{k,j,G} \leqslant C ||u||_{k,\infty,\Omega}, \quad \forall \ j \geqslant p.$$

这说明 $\{E_{ju}\}_{j=p}^{\infty}$ 是 $W_{p}^{k}(G)$ 中的有界列, 因而存在子列, 记为 $\{E_{jp}u\}$, 存在函数 $u_{p} \in W_{p}^{k}(G)$, 使得在 $W_{p}^{k}(G)$ 中 $E_{jp}u \longrightarrow u_{p}$. 显然, $u_{p} = u$ 在 Ω 上几乎处处成立, $\operatorname{spt}\{u_{p}\} \subset \overline{G'}$ (因为 $\operatorname{spt}\{E_{jp}u\} \subseteq G'$), 并且

$$||u_p||_{k,p,G} \leqslant ||E_{jp}u||_{k,p,G} \leqslant C||u||_{k,\infty,\Omega}.$$

先取 p=1, 得到序列 $\{E_{j1}u\}$ 和 $u_1 \in W_1^k(G)$, 在 $W_1^k(G)$ 中 $E_{j1}u \longrightarrow u_1$. 再取 p=2, 同上, $\{E_{j1}u\}$ 是 $W_2^k(G)$ 中的有界列, 故存在 $\{E_{j1}u\}$ 的子列 $\{E_{j2}u\}$ 和 $u_2 \in W_2^k(G)$, 在 $W_2^k(G)$ 中 $E_{j2}u \longrightarrow u_2$. 易证, $u_2 \in W_1^k(G)$ 并且在 $W_1^k(G)$ 中 $u_2 = u_1$. 从而, $u_1 \in W_2^k(G)$. 重复 这样做下去, 利用抽对角线方法便可得到序列 $\{E_{jj}u\}$ 和函数 u_* (事实上, $u_* = u_j$ 对于 $j = 1, 2, \cdots$ 都成立), 满足:

- (i) 对于任意的 1 ≤ q<∞, 有 u_{*} ∈ W_q^k(G), ||u_{*}||_{k,q,G}≤C||u||_{k,∞,Ω},
 并且在 W_q^k(G) 中 E_{jj}u → u_{*};
- (ii) $u_* = u$ 在 Ω 上几乎处处成立, $\operatorname{spt}\{u_*\} \subset \overline{G'} \in G$. 利用定理 1.3.7 的 (2), 从事实 (i) 推知 $u_* \in W^k_\infty(G)$ 并且 $\|u_*\|_{k,\infty,G} \leq C\|u\|_{k,\infty,\Omega}$. 再由事实 (ii) 知,

$$u_* \in W^k_{\infty}(\mathbb{R}^n), \quad ||u_*||_{k,\infty,\mathbb{R}^n} \leqslant C||u||_{k,\infty,\Omega}.$$

若定义 $E_{\infty}u = u_*$, 那么 E_{∞} 的线性性质可以从 E_p 的线性性质和证明过程中看出. 因而, $E_{\infty}u = u_*$ 即是所要的延拓. 证毕.

定理 2.3.2 下面的稠密性结论成立:

- C₀[∞](R₊ⁿ) 在 W_p^k(R₊ⁿ) 中稠密. 这里, u ∈ C₀[∞](R₊ⁿ) 是指 u ∈ C[∞](R₊ⁿ), 并且存在 K > 0, 当 x ∈ R₊ⁿ 且 |x| ≥ K 时 u(x) = 0;
 - (2) 如果 Ω 有界并且 $\partial\Omega \in C^k$, 那么 $C^{\infty}(\overline{\Omega})$ 在 $W_p^k(\Omega)$ 中稠密.

证明 记 $A = \Omega$ 或者 $A = \mathbb{R}_+^n$, 并设 $u \in W_p^k(A)$. 当 $A = \Omega$ 时利用定理 2.3.1, 当 $A = \mathbb{R}_+^n$ 时利用引理 2.3.2, 总存在 $v \in W_p^k(\mathbb{R}^n)$, 使得在 $A \perp v = u$ 并且 $||v||_{k,p,\mathbb{R}^n} \leq C||u||_{k,p,A}$.

因为 $C_0^{\infty}(\mathbb{R}^n)$ 在 $W_p^k(\mathbb{R}^n)$ 中稠密 (定理 2.2.6), 故存在 $v_j \in C_0^{\infty}(\mathbb{R}^n)$, 在 $W_p^k(\mathbb{R}^n)$ 中 $v_j \longrightarrow v$. 显然, 当 $A = \mathbb{R}^n_+$ 时 $v_j \in C_0^{\infty}(\overline{\mathbb{R}^n_+})$, 当 $A = \Omega$ 时 $v_j \in C^{\infty}(\overline{\Omega})$, 并且 $\|v_j - u\|_{k,p,A} = \|v_j - v\|_{k,p,A} \leqslant \|v_j - v\|_{k,p,\mathbb{R}^n} \longrightarrow 0.$

2.4 边界迹和迹定理

给定一个函数 $u \in C(\overline{\Omega})$, 我们知道 u 在 $\partial\Omega$ 上的值. 给定一个函数 $u \in W_p^k(\Omega)$, $k \geq 1$, 如何确定 u 在 $\partial\Omega$ 上的值呢? 虽然 $\partial\Omega$ 是 n-1 维的, 任意改变 u 在 $\partial\Omega$ 上的值, 都不影响 u 在 Ω 上的可积性与其积分值, 但是会影响其弱导数. 因此, 对于 $W_p^k(\Omega)$ 中的函数 u 而言, 简单地讲 u 在 $\partial\Omega$ 上的值是没有意义的. 但是在函数空间以及偏微分方程的研究中, 通常会涉及 $W_p^k(\Omega)$ 中的函数在 $\partial\Omega$ 上的"广义取值", 这就是我们将要引入的边界迹 (有时也简称为迹). 对于给定的 $u \in W_p^k(\Omega)$, $k \geq 1$, 在某个等价类中 u 在边界上的迹是唯一确定的.

我们先讨论空间 $W_p^1(\Omega)$.

定理 2.4.1 设 Ω 有界, $\partial\Omega \in C^1$, 那么存在一个有界线性算子

$$\gamma_0 : W_p^1(\Omega) \longrightarrow L^p(\partial\Omega)$$

和一个正常数 $C = C(n, p, \Omega)$, 使得

- (1) $\gamma_0 u = u|_{\partial\Omega}$ 对所有 $u \in W^1_p(\Omega) \cap C(\overline{\Omega})$ 成立;
- (2) ||γ₀u||_{p,∂Ω} ≤ C||u||_{1,p,Ω}, ∀ u ∈ W¹_p(Ω).
 称 γ₀ 是迹算子, γ₀u 是函数 u 在 ∂Ω 上的零次迹.

证明 先假设 $u \in C^1(\overline{\Omega})$. 给定 $x_0 \in \partial \Omega$, 并假设在 x_0 的邻域内 $\partial \Omega$ 位于超平面 $\{x_n = 0\}$ 上, 且存在 r > 0 使得 $B_r(x_0) \cap \Omega = B_r^+(x_0)$. 简记 $B = B_r(x_0)$, $\Gamma = \partial \Omega \cap B_{r/2}(x_0)$.

选取 $\zeta \in C_0^\infty(B)$, 在 B 内 $\zeta \geqslant 0$, 并且在 $B_{r/2}(x_0)$ 内 $\zeta \equiv 1$. 记 $x' = (x_1, \cdots, x_{n-1})$. 运用 Young 不等式, 直接计算知

$$\int_{\Gamma} |u|^{p} dx' \leq \int_{x_{n}=0} \zeta |u|^{p} dx' = -\int_{B^{+}} (\zeta |u|^{p})_{x_{n}} dx
= -\int_{B^{+}} \left[|u|^{p} \zeta_{x_{n}} + p|u|^{p-1} (\operatorname{sgn} u) u_{x_{n}} \zeta \right] dx
\leq C \int_{B^{+}} \left(|u|^{p} + |Du|^{p} \right) dx.$$
(2.4.1)