(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-249371 (P2001-249371A)

(43)公開日 平成13年9月14日(2001.9.14)

(51) Int.Cl.7

識別記号

FI G02F 1/365 テーマコート*(参考) 2 K O O 2

G 0 2 F 1/365

G 0 2 F 1/365

審査請求 未請求 請求項の数31 OL (全 20 頁)

(21)出願番号	特顧2000-58949(P2000-58949)	(71) 出願人 000005223
` /00\ 山崎 口	双合19年3月3日/9000 3 3)	富士通株式会社 神奈川県川崎市中原区上小田中4丁目1番
(22) 出顧日	平成12年3月3日(2000.3.3)	1号
		(72)発明者 渡辺 茂樹
		神奈川県川崎市中原区上小田中4丁目1番
		1号 富士通株式会社内
		(72)発明者 武田 鎮一
		神奈川県川崎市中原区上小田中4丁目1番
		1号 富士通株式会社内
		(74)代理人 100075384
		弁理士 松本 昂
•	• .	最終頁に続く

(54) 【発明の名称】 信号光を波形整形するための方法、装置及びシステム

(57) 【要約】

【課題】 本発明は信号光を波形整形するための方法、装置及びシステムに関し、十分な3R機能を得ることができる方法等を提供することが主な課題である。

【解決手段】 本発明による方法は、信号光を第1の波形整形装置102に供給して中間信号光を得るステップと、中間信号光を第1及び第2の信号光に分割するステップと、第1の信号光をクロック再生器72に供給してクロックパルスを得るステップと、第2の信号光及びクロックパルスを第2の波形整形装置106に供給してクロックパルスに同期した再生信号光を得るステップとを備えている。

本発明による装置の基本構成を示すプロック図

【特許請求の範囲】

【請求項1】 信号光を第1の波形整形装置に供給して 中間信号光を得るステップと、

上記中間信号光を第1及び第2の信号光に分割するステ ップレ

上記第1の信号光をクロック再生器に供給してクロック パルスを得るステップと、

上記第2の信号光及び上記クロックパルスを第2の波形 整形装置に供給して上記クロックパルスに同期した再生 信号光を得るステップとを備えた方法。

【請求項2】 請求項1に記載の方法であって、

上記第1及び第2の波形整形装置の各々は相互位相変調 によるスイッチングを用いた光ゲートである方法。

【請求項3】 請求項2に記載の方法であって、

上記光ゲートは非線形光ループミラーであり、

上記非線形光ループミラーは、方向性結合される第1及 び第2の光路を含む第1の光カプラと、上記第1及び第 2の光路を接続する非線形光学媒質からなるループ光路 と、上記ループ光路に方向性結合される第3の光路を含 む第2の光カプラとを備えている方法。

【請求項4】 請求項1に記載の方法であって、

上記クロック再生器はモードロックレーザである方法。

【請求項5】 請求項1に記載の方法であって、

上記クロックパルスを光フィルタに供給して上記クロッ クパルスのパルス幅を拡大するステップを更に備えた方

【請求項6】 請求項1に記載の方法であって、

上記信号光は異なる波長を有する複数の光信号を波長分 割多重して得られたWDM信号光である方法。

【請求項7】 請求項6に記載の方法であって、

上記WDM信号光を光遅延回路に供給して上記複数の光 信号の各タイミングを時間軸上で変化させるステップを 更に備えた方法。

【請求項8】 請求項7に記載の方法であって、

上記光遅延回路は波長分散を与える光学媒質である方

【請求項9】 請求項7に記載の方法であって、

上記中間信号光は単一波長を有する光時分割多重信号で

上記クロックパルスは上記複数の光信号に対応する複数 40 のクロックパルスであり、

上記再生信号光では上記複数のクロックパルスの波長に 対応する波長を有する複数の光信号が波長分割多重され ている方法。

【請求項10】 請求項6に記載の方法であって、

上記複数の光信号の偏波状態を一定にするステップを更 に備えた方法。

【請求項11】 信号光を供給されて中間信号光を出力 する第1の波形整形装置と、

上記中間信号光を第1及び第2の信号光に分割する光分 50 上記光再生器は、

岐器と、

上記第1の信号光を供給されてクロックパルスを出力す るクロック再生器と、

2 ,

上記第2の信号光及び上記クロックパルスを供給されて 上記クロックパルスに同期した再生信号光を出力する第 2の波形整形装置とを備えた装置。

【請求項12】 請求項11に記載の装置であって、

上記第1及び第2の波形整形装置の各々は相互位相変調 によるスイッチングを用いた光ゲートである装置。

10 【請求項13】 請求項12に記載の装置であって、

上記光ゲートは非線形光ループミラーであり、

上記非線形光ループミラーは、方向性結合される第1及 び第2の光路を含む第1の光カプラと、上記第1及び第 2の光路を接続する非線形光学媒質からなるループ光路 と、上記ループ光路に方向性結合される第3の光路を含 む第2の光カプラとを備えている装置。

【請求項14】 請求項11に記載の装置であって、

上記クロック再生器はモードロックレーザである装置。 【請求項15】 請求項11に記載の装置であって、

20 上記クロックパルスを供給されて上記クロックパルスの パルス幅を拡大する光フィルタを更に備えた装置。

【請求項16】 請求項11に記載の装置であって、 上記信号光は異なる波長を有する複数の光信号を波長分 割多重して得られたWDM信号光である装置。

【請求項17】 請求項16に記載の装置であって、 上記WDM信号光を供給されて上記複数の光信号の各タ イミングを時間軸上で変化させる光遅延回路を更に備え た装置。

【請求項18】 請求項17に記載の装置であって、

30 上記光遅延回路は波長分散を与える光学媒質である装

【請求項19】 請求項17に記載の装置であって、

上記第1の波形整形装置は上記WDM信号光を単一波長 を有する光時分割多重信号に変換し、

上記クロック再生器は上記複数の光信号に対応する複数 のクロックパルスを出力する複数のクロック再生器であ

上記再生信号光では上記複数のクロックパルスの波長に 対応する波長を有する複数の光信号が波長分割多重され ている装置。

【請求項20】 請求項16に記載の装置であって、

上記複数の光信号の偏波状態を一定にする偏波制御器を 更に備えた装置。

【請求項21】 信号光を伝搬させる第1の光ファイバ 伝送路と、

上記第1の光ファイバ伝送路に接続され上記信号光を再 生信号光に変換する光再生器と、

上記光再生器に接続され上記再生信号光を伝搬させる第 2の光ファイバ伝送路とを備えたシステムであって、

上記信号光を供給されて中間信号光を出力する第1の波 形整形装置と、

上記中間信号光を第1及び第2の信号光に分割する光分 岐器と、

上記第1の信号光を供給されてクロックパルスを出力するクロック再生器と、

上記第2の信号光及び上記クロックパルスを供給されて 上記再生信号光を出力する第2の波形整形装置とを備え ているシステム。

【請求項22】 請求項21に記載のシステムであって、

上記信号光は異なる波長を有する複数の光信号を波長分割多重して得られたWDM信号光であるシステム。

【請求項23】 請求項22に記載のシステムであって

上記光再生器は、上記WDM信号光を供給されて上記複数の光信号の各タイミングを時間軸上で変化させる光遅延回路を更に備えているシステム。

【請求項24】 請求項23に記載のシステムであって、

上記光遅延回路は波長分散を与える光学媒質であるシステム。

【請求項25】 請求項23に記載のシステムであって、

上記第1の波形整形装置は上記WDM信号光を単一波長を有する光時分割多重信号に変換し、

上記クロック再生器は上記複数の光信号に対応する複数 のクロックパルスを出力する複数のクロック再生器であ り

上記再生信号光では上記複数のクロックパルスの波長に 30 プローブ光と同じ波長を有している。 対応する波長を有する複数の光信号が波長分割多重され 【0004】第1及び第2の非線形光 ているシステム。 て半導体光アンプ (SOA) を用いる

【請求項26】 請求項22に記載のシステムであって

上記光再生器は上記複数の光信号の偏波状態を一定にする偏波制御器を更に備えているシステム。

【請求項27】 異なる波長を有する複数の光信号を波 長分割多重して得られたWDM信号光を光時分割多重信 号に変換するステップと、

上記複数の光信号の各々の速度に対応する周波数を有するクロックパルスを得るステップと、

上記光時分割多重信号及び上記クロックパルスを波形整形装置に供給して再生WDM信号光を得るステップとを備えた方法。

【請求項28】 請求項27に記載の方法であって、 上記クロックパルスを得るステップは上記複数の光信号 にそれぞれ対応して複数のクロックパルスを再生するス テップを含む方法。

【請求項29】 請求項28に記載の方法であって、 上記複数のクロックパルスを予め定められた遅延時間ず つ順次遅延させるステップを更に備えた方法。

【請求項30】 請求項28に記載の方法であって、 上記複数のクロックパルスを再生するステップは、上記

上記複数のクロックパルスを再生するステップは、上記 光時分割多重信号を複数のクロック再生器に供給するス テップを含む方法。

【請求項31】 請求項28に記載の方法であって、 上記複数のクロックパルスを再生するステップは、上記 WDM信号光をそれぞれ上記複数の光信号の波長に対応 する通過帯域を有する複数の光フィルタに供給するステ

10 ップと、上記複数の光フィルタの出力をそれぞれ複数の クロック再生器に供給するステップとを含む方法。

【発明の詳細な説明】

[0001]

【発明の風する技術分野】本発明は、信号光を波形整形 するための方法、装置及びシステムに関する。

[0002]

【従来の技術】光レベルで波形整形を行う従来の波形整形装置として、マッハツェンダ干渉計(MZI)型光ゲートがある。この光ゲートは、位相シフトを与えるための第1及び第2の非線形光学媒質を含むマッハツェンダ干渉計を例えば光導波路基板上に集積化して構成される。連続波(CW)光としてのプロープ光が等分配されて第1及び第2の非線形光学媒質に供給される。このとき、等分配されたプローブ光の干渉により出力光が得られないように干渉計の光路長が設定されている。

【0003】第1及び第2の非線形光学媒質の一方には 更に光信号が供給される。光信号及びプローブ光のパワーを適切に設定することによって、光信号に同期する変 換光信号がこの光ゲートから出力される。変換光信号は プローブ光と同じ波号を有している。

【0004】第1及び第2の非線形光学媒質の各々として半導体光アンプ(SOA)を用いることが提案されている。例えば、波長 1.5μ m帯において、両端面を無反射化処理したInGaAs-SOAを各非線形光学媒質として用い、これらをInP/GaInAsP基板上に集積化したものが作製されている。

【0005】従来知られている他の波形整形装置として、非線形光ループミラー(NOLM)がある。NOLMは、方向性結合される第1及び第2の光路を含む第1の光力プラと、第1及び第2の光路を接続するループ光路と、ループ光路に方向性結合される第3の光路を含む第2の光カプラとを備えている。

【0006】ループ光路の一部または全体を非線形光学 媒質から構成するとともに、第1及び第3の光路にそれ ぞれプローブ光及び光信号を供給することによって、変 換光信号が第2の光路から出力される。

【0007】NOLMにおける非線形光学媒質としては 光ファイバが一般的である。特に、非線形光学媒質とし てSOAを用いたNOLMはSLALOM (Semiconduc 50 torLaser Amplifier in a Loop Mirror) と称される。

151 (71

1717

【0008】ところで、近年実用化されている光ファイ バ通信システムにおいては、伝送路損失や分岐損失等に よる信号パワーの低下を、エルピウムドープファイバ増 幅器 (EDFA) 等の光増幅器を用いて補償している。 光増幅器はアナログ増幅器であり、信号を線形増幅する ものである。この種の光増幅器においては、増幅に伴っ て発生する自然放出光(ASE)雑音の付加により信号 対雑音比 (S/N比) が低下するので、中継数ひいては 伝送距離に限界が生じる。また、光ファイバの持つ波長 分散やファイバ内の非線形光学効果による波形劣化も伝 送限界を与える要因である。こうした限界を打破するた めには、信号をデジタル的に処理する再生中継器が必要 であり、その実現が望まれている。特に、全ての処理を 光レベルにおいて行う全光再生中継器は、信号のピット レートやパルス形状等に依存しないトランスペアレント な動作を実現する上で重要である。

【0009】全光再生中継器に必要な機能は、振幅再生 又はリアンプリフィケーション(Reamplific ation)と、波形整形又はリシェイピング(Res haping)と、タイミング再生又はリタイミング (Retiming)とである。これらの機能は3R機 能と称され、特に前二者は2R機能と称される。

[0010]

【発明が解決しようとする課題】波形整形装置と光増幅器を組み合わせることにより、あるいは光増幅機能を有する波形整形装置を用いることにより、2R機能を提供することができる。また、それに加えてクロック再生器を並行して用いることにより3R機能を提供することができる。

【0011】我々は、先に2R機能及び/又は3R機能を提供するための波形整形装置を提案した(特願平11-293189号)。この装置においては、2つのNOLMを組み合わせることによって、波形整形或いは光ゲートの機能を得る場合における波長変換の自由度を大きくしている。

【0012】特に、3R機能を提供するための波形整形装置においては、クロック再生器でクロックパルスを抽出するもとになる光信号の劣化度合いに応じて、十分な3R機能を得ることができない場合があるという問題がある。

【0013】一方、伝送容量を飛躍的に拡大するために 波長分割多重(WDM)を適用する場合、3R機能を提 供するための波形整形装置が多重数に応じて複雑化する ことが予想されるので、WDMに適した波形整形装置が 求められている。

【0014】よって、本発明の目的は、十分な3R機能を得ることができる波形整形のための方法、装置及びシステムを提供することである。

【0015】本発明の他の目的は、WDMに適した波形 整形のための方法、装置及びシステムを提供することで 50

ある。

【0016】本発明の更に他の目的は以下の説明から明らかになる。

6

[0017]

【課題を解決するための手段】本発明によると、信号光を第1の波形整形装置に供給して中間信号光を得るステップと、中間信号光を第1及び第2の信号光に分割するステップと、第1の信号光をクロック再生器に供給してクロックパルスを得るステップと、第2の信号光及びクロックパルスを第2の波形整形装置に供給してクロックパルスに同期した再生信号光を得るステップとを備えた方法が提供される。

【0018】この方法によると、第1の波形整形装置で得られた中間信号光に基づいてクロックパルスを得ることができるので、クロック再生における忠実度が高まり、十分な3R機能を得ることができる。また、後述するようにこの方法を効果的にWDMに適用することができる。

【0019】望ましくは、第1及び第2の波形整形装置 20 の各々は相互位相変調によるスイッチングを用いた光ゲートである。たとえば、光ゲートとして非線形光ループミラー (NOLM) を用いることができる。NOLM は、方向性結合される第1及び第2の光路を含む第1の光カプラと、第1及び第2の光路を接続する非線形光学 媒質からなるループ光路と、ループ光路に方向性結合される第3の光路を含む第2の光カプラとを備えている。 【0020】望ましくは、クロック再生器はモードロックレーザである。

【0021】本発明による方法は、クロックパルスを光 30 フィルタに供給してクロックパルスのパルス幅を拡大す るステップを更に備えていてもよい。

【0022】第1の波形整形装置に供給される信号光は、異なる波長を有する複数の光信号を波長分割多重して得られたWDM信号光であり得る。例えば、WDM信号光は光遅延回路に供給されて、複数の光信号の各タイミングが時間軸上で変化させられる。そして、第1の波形整形装置の特定の機能によって、WDM信号光は、単一波長を有する光時分割多重信号として与えられる中間信号光に変換される。この場合、クロックパルスは複数の光信号に対応する複数のクロックパルスであることが望ましく、そうすることにより、再生信号光では、複数のクロックパルスの波長に対応する波長を有する複数の光信号が波長分割多重されていることになる。

【0023】光遅延回路としては波長分散を与える光学媒質(例えば光ファイバ)を用いることができる。

【0024】本発明による方法は、複数の光信号の偏波 状態を一定にするステップを更に備えていてもよい。こ れにより、各波形整形装置における偏波依存性を回避す ることができる。

0 【0025】本発明の他の側面によると、信号光を供給

されて中間信号光を出力する第1の波形整形装置と、中間信号光を第1及び第2の信号光に分割する光分岐器と、第1の信号光を供給されてクロックパルスを出力するクロック再生器と、第2の信号光及びクロックパルスを供給されてクロックパルスに同期した再生信号光を出力する第2の波形整形装置とを備えた装置が提供される。この装置を用いて、本発明による方法を容易に実施することができる。

【0026】本発明の更に他の側面によると、信号光を伝搬させる第1の光ファイバ伝送路と、第1の光ファイバ伝送路に接続され信号光を再生信号光に変換する光再生器と、光再生器に接続され再生信号光を伝搬させる第2の光ファイバ伝送路とを備えたシステムが提供される。光再生器としては、本発明による装置を用いることができる。このシステムを用いて本発明による方法を容易に実施することができる。

【0027】本発明の別の側面によると、異なる波長を有する複数の光信号を波長分割多重して得られたWDM信号光を光時分割多重信号に変換するステップと、複数の光信号の各々の速度に対応する周波数を有するクロックパルスを得るステップと、光時分割多重信号及びクロックパルスを波形整形装置に供給して再生WDM信号光を得るステップとを備えた方法が提供される。

【0028】望ましくは、クロックパルスを得るステップは、複数の光信号にそれぞれ対応して複数のクロック・パルスを再生するステップを含む。

【0029】この方法は、複数のクロックパルスを予め 定められた遅延時間ずつ順次遅延させるステップを更に 備えていてもよい。

【0030】複数のクロックパルスを再生するステップは、光時分割多重信号を複数のクロック再生器に供給するステップを含むことができる。

【0031】あるいは、複数のクロックパルスを再生するステップは、WDM信号光をそれぞれ複数の光信号の波長に対応する通過帯域を有する複数の光フィルタに供給するステップと、複数の光フィルタの出力をそれぞれ複数のクロック再生器に供給するステップとを含むことができる。

[0032]

【発明の実施の形態】以下、添付図面を参照して、本発明の望ましい実施形態を詳細に説明する。全図を通して 実質的に同一又は類似の部分には同一の符号が付されて いる。

【0033】図1を参照すると、本発明に適用可能なNOLM(非線形光ループミラー)の構成が示されている。このNOLMは、方向性結合される第1及び第2の光路2及び4を含む第1の光カプラ6と、第1及び第2の光路2及び4を接続するループ光路8と、ループ光路8に方向性結合される第3の光路10を含む第2の光カプラ12とを備えている。

【0034】ループ光路8の一部または全部は非線形光 学媒質NLによって提供されている。第1の光カプラ6 のカップリング比は実質的に1:1に設定される。

【0035】このNOLMの動作を簡単に説明すると、
波長 λ probeを有するプローブ光が光力プラ6の第
1の光路 2 に入力され、波長 λ sigを有する光信号が
光力プラ12の第3の光路10に入力されたときに、波
長 λ probeを有する変換光信号が光力プラ6の第2
の光路 4 から出力されるというものである。プローブ光
は連続波(CW)光或いは光パルスであり得る。ここでは、プローブ光はCW光として図示されている。

【0036】プローブ光は、光カプラ6によりパワーが 等しい2成分に分けられ、これら2成分は、ループ光路 8をそれぞれ時計回り及び反時計回りに厳密に同一光路 長で伝搬し、非線形光学媒質NLにより共に等しい位相 シフトゥを受けた後、光カプラ6により合成される。光 カプラ6における合成に際して、2成分のパワーは等しく位相も一致しているので、合成により得られた光はあ たかもミラーにより反射されるがごとく第1の光路2から出力され、ポート4からは出力されない。

【0038】今、位相差がπになるように入力光信号のパワーを設定すれば、オンパルスのときに合成された2成分が第2の光路4だけから出力されるようなスイッチ動作が可能になる。このようにして、波長λsigの光信号から波長λprobeの変換光信号への変換が行なわれる。即ち、光信号のデータに関して波長変換が行なわれていることになる。

【0039】非線形光学効果として光カー効果(光信号とプロープ光による相互位相変調(XPM))を用いるとすると、位相シフトΔφはγPLに比例する。ここにγは非線形光学媒質NLの非線形係数、Pは非線形光学媒質NL内における光パワー、Lは非線形光学媒質NLにおける光カー効果の相互作用長である。

【0040】図2は位相差Δφに対するNOLMの出力特性を示すグラフである。グラフの主要部分における縦軸はポート4から出力される変換光信号のパワーPout、横軸は位相差Δφを示している。符号14で示されるコサインカーブにおいて、極小値を与える位相差Δφ50 は0に相当し、極大値を与えるΔφはπに相当してい

る。従って、位相差ΔφのΟ及びπにそれぞれ入力光信 号の"O"レベル (Pspace) 及び"1"レベル (Pmark)を対応させることにより入力光信号に付 随する雑音の抑圧が可能である。これは、【1-cos (Δo) } / 2に従う変換においては、線形増幅変換の 場合と異なりパルスの立ち上がり及びピーク付近での過 飽和特性があるからである。

【0041】NOLMにおける非線形光学媒質NLとし て最も一般的なのは光ファイバである。分散シフトファ イバ(DSF)が主に用いられており、その長さは通常 数kmである。一方、非線形光学媒質NLとしてSOA (半導体光増幅器)を用いたものも提案されている(S LALOM) .

【0042】SOAタイプは小型集積化の点で優れてい る。しかし、SOAから付加される自然放出光(AS E)雑音の影響により変換の際に信号対雑音(S/N) 比が低下したり、キャリア効果に起因する速度制限等の 課題がある。

【0043】一方、ファイバタイプのNOLMでは、フ ァイバ内の三次非線形光学効果の応答時間がフェムト秒 オーダと非常に高速であるが、長いファイバを必要とす るので、速度制限をなくすためには高精度の分散管理が 必要になる。また、入力光信号の偏波状態に対する依存 性やループ内での偏波変動に対する対策が難しいといっ た課題もある。

【0044】発明者は、特願平10-176316号

 $\gamma = \omega n_2 / c A_{eff}$

で表される。ここに、ωは光角周波数、cは真空中の光 速を表し、n2及びAeffは光ファイバの非線形屈折率及 び有効コア断面積をそれぞれ表す。

【0048】従来のDSFの非線形係数はv=2.6W -1 k m-1程度と小さいので、十分な変換効率を得るため には数 k m ~ 10 k m 以上の長さが必要である。より短 尺のDSFで十分な変換効率を実現することができると すれば、零分散波長を高精度に管理することが可能とな り、高速・広帯域変換を実現することができる。・

【0049】一般に、光ファイバの3次非線形効果を高 めるためには、(1)式において非線形屈折率 n2を大 きくし、あるいは有効コア断面積Aeffに対応するモー ドフィールド径(MFD)を小さくして光強度を高くす るのが有効である。

【0050】非線形屈折率n2を大きくするためには、 例えば、クラッドにフッ素等をドープしあるいはコアに 高濃度のGeO2をドープすればよい。コアにGeO2を 25~30mo1%ドープすることによって、非線形屈 折率 n_2 として 5×10^{-20} m²/W以上の大きな値が得 られている (通常のシリカファイバでは約3.2×10 $^{-20}$ m²/W).

【0051】一方、MFDを小さくすることは、コア及

10

(平成10年6月23日出願) において、高非線形分散 シフトファイバ(HNL-DSFを用いたコンパクトな NOLMを提案した。本発明は主にこのNOLMを多段 に縦列接続(カスケード接続)した構成による高性能な 波形整形装置を提供し、これを用いて光2R等の光信号 処理を実現せんとするものである。ここで、「2R」は リシェーピング(振幅再生)及びリジェネレイション (波形等化及び雑音抑圧等) の2つの機能を意味してい

【0045】光通信システムにおける光信号処理に適用 10 可能な非線形光学効果としては、主に、2次非線形光学 媒質中の三光波混合あるいは、3次非線形光学媒質中の 自己位相変調 (SPM)、相互位相変調 (XPM) 及び 四光波混合 (FWM) 等の光カー効果が考えられる。2 次非線形光学媒質としては、InGaAs及びLiNb O3等がある。3次非線形光学媒質としては、半導体光 アンプ(SOA)及び発振状態にある分布帰還レーザダ イオード(DFB-LD)等の半導体媒質あるいは光フ ァイバが考えられる。

【0046】本発明では、特に光ファイバ内の光カー効 果を用いることができる。光ファイバとしては単一モー ドファイバが適しており、特に波長分散が比較的小さい 分散シフトファイバ(DSF)が望ましい。

【0047】一般に、光ファイバの3次非線形係数γ

 $\cdots \cdots (1)$

より可能である。このようなDSFの設計は分散補償フ ァイバ(DCF)の場合と同様である。例えば、コアに GeO2を25~30mo1%ドープし、且つ、比屈折 率差 △を2.5~3.0%に設定することによって、4 μmよりも小さなMFDが得られている。そして、非線 形屈折率n2を大きくすることとMFDを小さくするこ ととの総合効果として、 $1.5 \,\mathrm{W}^{-1}\,\mathrm{km}^{-1}$ 以上の大きな非 線形係数γを有する光ファイバ (HNL-DSF) が得 られている。

【0052】他に重要な要素として、上述のように大き な非線形係数 y を有するHNL-DSFが、用いる波長 帯で零分散を持つことである。この点に関しても各パラ メータを以下のように設定することにより満足すること ができる。通常のDCFにおいては、一般にMFDを一 定にした条件で比屈折率差Δを大きくすると、分散値は 正常分散領域で大きくなる。一方、コア径を大きくする と分散は減少し、逆にコア径を小さくすると分散は大き くなる。従って、用いる波長帯においてMFDをある値 に設定した状態で、コア径を大きくしていくと分散をO とすることが可能である。

【0053】長さしの光ファイバ中での光カー効果によ る位相シフトは、y PpLに比例する。ここに、Ppは平 びクラッド間の比屈折率差Δあるいはコア形状の設計に 50 均ポンプ光パワーである。従って、非線形係数γが15

条件を得ることができる。

 $W^{-1}km^{-1}$ のファイバは通常のDSFに比べて2.6/ 15≒1/5. 7程度の長さで同じ変換効率を達成可能 である。上述のように通常のDSFでは10km程度の 長さが必要であるが、このように大きな非線形係数γを 有するHNL-DSFにあっては、1~2km程度の長 さで同様の効果が得られることになる。実用上は、ファ イバが短くなる分損失も小さくなるので、同じ効率を得 るために更にファイバを短くすることができる。このよ うに短いファイバにおいては、零分散波長の制御性がよ くなり、以下に説明するように極めて広帯域の変換が可 能になる。更に、数kmのファイバ長であれば、定偏波 化が可能になり偏波面保存能力が確保されているので、 HNL-DSFの本発明への適用は、高い変換効率及び 広い変換帯域を達成し且つ偏波依存性を排除する上で極 めて有効である。

【0054】光ファイバを用いて光カー効果、特にXP Mを有効に発生させて、光信号から変換光信号への変換 効率を高めるためには、プローブ光と光信号との間の位 相整合をとる必要がある。図3によりこれを説明する。

【0055】図3はNOLMにおける位相整合の説明図 である。ここでは、光路2に供給される波長 lprob eのプローブ光及び光路10に供給される波長 lsig の光信号の各々が光パルスであると仮定する。プローブ 光としての光パルスは、光カプラ6においてループ光路 8を時計回りに伝搬する第1プローブパルスと反時計回 りに伝搬する第2プローブパルスとに分岐される。ま た、光信号としての光パルスは、光カプラ12を通って 信号パルスとしてループ光路8内に時計回りに導入され

【0056】ループ光路8における位相整合条件は、ル ープ光路8内を共に時計回りに伝搬する信号パルス及び 第1プローブパルスのタイミングの一致性により与えら れる。もし、信号パルス及び第1プローブパルスのタイ ミングが一致しない場合には、XPMによる光カーシフ トが制限され、有効なスイッチ動作あるいはゲート動作 が困難になる。

【0057】信号パルス及び第1プローブパルスの波長 は異なるので、ループ光路8における信号パルス及び第 1プローブパルスの群速度は異なり、結果としてループ 光路8の長さに比例するタイミングずれが生じる(ウォ ークオフ)。これを回避するためには、信号パルス及び 第1プローブパルスの群速度が一致するような波長配置 を選択することが望ましい。

【0058】タイミングずれを最小限に抑えるための最 も有効な波長配置は、信号パルスの波長及び第1プロー ブパルスの波長をループ光路8の零分散波長に対して実 質的に対称に位置させることにより得られる。零分散波 長に近い広い帯域に渡って、波長分散はほぼ直線的に変 化しており、上述の波長配置により信号パルス及び第1 プローブパルスの群速度を一致させて、良好な位相整合 50 非線形長を基準にすればよい。非線形長に比べて十分短

【0059】このように、本発明のある側面によると、 ループ光路の零分散波長をλoとするときに、λsig $+\lambda p r o b e = 2 \lambda_0 と することによって、位相整合$ 条件を得ることができ、光信号から変換光信号への変換 効率を高めることができる。

12

【0060】しかし、このような波長配置をとっても、 零分散波長自体がファイバ長手方向に変動していると、 群速度間にずれが生じ、これが変換帯域及び変換可能な 信号速度に制限を与える。このように、ファイバによる 変換帯域は分散により制限されることになる。長手方向 の分散が完全に制御され、例えば全長(正確には非線形 長) に渡り唯一の零分散波長を有するファイバが作られ たとすれば、プローブ光の波長と光信号の波長とをこの 零分散波長に関して対称な位置に配置することにより事 実上無限大の(分散の波長依存性が直線状である範囲で 制限のない程広い)変換帯域が得られることになる。し かし、実際には、零分散波長が長手方向にばらつくた。 め、位相整合条件が理想状態からずれ、これにより帯域 が制限される。

【0061】広帯域化を実現するための第1の方法は、 ループ光路8の一部又は全部としてHNL-DSFを用 いることである。HNL-DSFを用いた場合には、1 ~2km程度の長さで十分な変換が可能になるので、分 散の制御性がよくなり、広帯域特性を得やすい。その 際、特に光カー効果の発生効率が高い入力端付近の零分 散波長のばらつきを小さく抑えることができれば、最も 効率よく帯域を拡大可能である。更に、ファイバを複数 の小区間に分割し、零分散波長が似ている区間同士をス 30 プライス等により繋ぎ合わせていく(当初のファイバ端 から数えた順番とは違う順番で)ことにより、全長にお ける平均分散は同じであるにも係わらず、広い変換帯域 を得ることができる。

【0062】あるいは又、十分広い変換帯域を得るのに 必要な程度に高精度な分散制御が可能な長さ(例えば数 100m以下)のファイバを予め多数用意しておき、所 要の零分散波長のものを組み合わせてスプライスして、 所要の変換効率を得るのに必要な長さのファイバを作る ことも可能である。

【0063】このようにして変換帯域を拡大する場合に は、光強度の高い入力端(例えば非線形光学媒質の両 端)付近に零分散波長のばらつきの少ない部分を集める のが有効である。また、必要に応じて順次分割数を増や したり、入力端から離れた位置で比較的分散の大きな部 分では、分散の正負を交互に配置する等により小区間を 適切に組み合わせることによって、更に変換帯域を拡大 することができる。

【0064】光ファイバを分割するに際して各区間をど の程度短くすれば十分か否かの目安としては、例えば、

いファイバ内での3次非線形効果においては、位相整合はそのファイバの平均分散値に依存すると考えることができる。一例として、非線形係数 γ が 2. 6 W $^{-1}$ k m $^{-1}$ のファイバで30 m W 程度のポンプ光パワーを用いた3次非線形効果においては、非線形長は12. 8 k m 程度になるから、その1/10 程度、即ち1 k m $^{-1}$ を回りとしては、非線形係数 γ が 1 5 W $^{-1}$ k m $^{-1}$ のファイバで30 m W 程度のポンプ光パワーを用いた3次非線形効果においては、非線形係数 γ が 1 5 W m 程度になるから、その1/10 程度、即ち200 m が 1 つの目安となろう。いずれにしても、非線形長に比べて十分短いファイバの平均零分散波長を測定し、ほぼ同じ値のものを組み合わせて所要の変換効率のファイバを構成すれば、広い変換帯域を得ることができる。

【0065】このようなファイバによるFWMの帯域を 拡大する方法に関する付加的な詳細については、特願平 10-176316号を参照されたい。

【0066】尚、FWMの発生には、ファイバの零分散 波長とポンプ光の波長とがほぼ一致するように設定する のが有効であるが、その際、ポンプ光、信号光あるいは 変換光のパワーがファイバ内の誘導ブリユアン散乱 (SBS) のしきい値を超えると、FWMの発生効率が低下する。SBSの影響を抑圧するためには、ポンプ光又は信号光について周波数変調又は位相変調を行なえばよい。その際の変調速度は数100kHz程度で十分であり、信号光の信号速度がGb/s以上の高速信号である 場合には変調による影響は殆ど無い。

【0067】図1に示されたNOLMが動作するためには、プローブ光の偏波状態がループ光路8内で保持される必要がある。すなわち、光カプラ6で分離されたプローブ光は、ループ光路8内を各々時計回り及び反時計回り方向に伝搬した後、同じ偏波状態で光カプラ6に戻って来る必要がある。

【0068】HNL-DSFを用いることによって、偏波状態を保持するのに十分短い長さでループ光路8を構成することができる。例えば、偏波コントローラを用いてループ光路8内における偏波状態を調節することができる。

【0069】尚、光信号の偏波状態は基本的にはプローブ光の偏波状態にほぼ一致させるのがよいが、ファイバ内の偏波分散等にも影響されることがあり、出力される光のパワーが最大になるように両者の偏波状態を最適化するのがよい。

【0070】図4は本発明を適用可能な装置の第1実施 形態を示す図である。この装置は、カスケード接続され た第1の非線形ループミラー(NOLM1)及び第2の 非線形ループミラー(NOLM2)を有している。NO LM1及びNOLM2の各々は、方向性結合される第1 及び第2の光路2及び4を含む第1の光カプラ6と、第 1及び第2の光路2及び4を接続するループ光路8と、 ループ光路 8 に方向性結合される第3の光路10を含む 第2の光カプラ12とを備えている。

【0071】第1の光カプラ6のカップリング比は実質的に1:1に設定される。ループ光路8の一部又は全部は非線形光学媒質によって提供される。より特定的には、この実施形態では、広い変換帯域を得ることのほか前述した付加的な効果を得るために、ループ光路8はHNL-DSFによって提供されている。

【0072】NOLM1及びNOLM2をカスケード接続するために、NOLM1の第2の光路4はNOLM2の第3の光路10に光学的に接続される。

【0073】NOLM1の第1の光路2には、波長 λ_1 を有する第1のプローブ光が供給される。、NOLM1の第3の光路10には波長 λ_S ($\neq \lambda_1$)及びパワーPS1を有する入力光信号(信号光としての)が供給される。その結果、NOLM1の第2の光路4からは、波長 λ_1 及びパワーPS2を有し且つ入力光信号に同期した中間光信号(中間信号光としての)が出力される。出力された中間光信号はNOLM2の第3の光路10に供給される。NOLM2の第1の光路2には、波長 λ_2 ($\neq \lambda_1$)を有する第2のプローブ光が供給される。その結果、NOLM2の第2の光路4からは、波長 λ_2 及びパワーPoutを有し且つ中間光信号に同期した出力光信号が出力される。

【0074】第1及び第2のプローブ光の各々は、CW 光であっても良いし、或いは入力光信号のピットレート と同等の或いは異なる周波数で入力光信号と時間的に同 期するクロックパルスであっても良い。

【0075】図4に示される実施形態は2つの非線形ル 30 ープミラーを用いた2段構成であるが、この構成に順じ て3段、4段、…、順次多段に複数の非線形ループミラ ーをカスケード接続してもよい。

【0076】この多段構成(2段構成を含む)の装置に本発明を適用することによって、少なくとも2つの技術的効果が得られる。

【0077】まず第1に、本発明による装置においては 波長変換の自由度が大きくなる。例えば、図5の(A) に示されるように、波長 \(\lambda\) 1と波長 \(\lambda\) 50 符号に等しく設定することにより、1段 \(\lambda\) 構成による場合と比較して大きな波長変換を行なうことができる。また、図5の(B)に示されるように、波長変換を伴うことない等しく設定することによって、波長変換を伴うことないに波形整形は1段構成では不可能である。図示はしないが、波長 \(\lambda\) 2は波長 \(\lambda\) 1と \(\lambda\) 50 次長 表 1 と \(\lambda\) 50 次段 数にすることによって、更に柔軟 な波長変換が可能になる。

【0078】第2に、本発明による装置においては1段 構成の場合と比較して波形整形機能が改善される。前述 したように、1段構成における入出力特性は (1-co $s(\Delta \phi)$ / 2 = $sin^2(\Delta \phi/2)$ rows ho > n(nは自然数)段構成の規格化入出力関数(特性関数) fn(x)は以下のように表すことができる。

[0079]

 $f n (x) = s i n^2 {\pi f_{(n-1)}(x) / 2}$ $f_0(x) = x$

図6はこの関数をプロットしたものである。段数が大き くなるに従ってデジタル動作(n=∞の場合に相当)に 近づいていることがわかる。n=2の場合には、n=1 の場合に比べてよりデジタル動作に近づいており、より 優れた波形整形特性が期待できる。従って、本発明によ ると、従来の1段構成のNOLMでは得られなかった優 れた波形整形及び雑音抑圧が可能になる。

【0080】図4に示される実施形態では、NOLM1 及びNOLM2のループ光路8としてHNL-DSFが 用いられている。HNL-DSFの分散はビットレート やパルス形状等により適宜最適化することができる。例 えば、短パルスを用いた高ビットレート信号の場合であ れば、2つのパルスのウォークオフ(図3による説明を 参照) が発生しないように設定するのが望ましい。一例 としては、HNL-DSFの零分散波長を信号光波長 (入力光信号の波長 λ S又は中間光信号の波長 λ 1) とプ ローブ光波長(第1のプローブ光の波長λ1又は第2の プローブ光の波長 \(\lambda_2\right) の中間付近に配置することが考 えられる。この場合、NOLM1及びNOLM2の各々 において2つのパルスはほぼ同じ群速度になるので、ウ ォークオフを最小にすることができる。ここで、信号光 波長とプローブ光波長のどちらを正常分散領域に配置し 他方を異常分散領域に配置するかについては、特性を見 た上で適宜最適化することができる。

【0081】このように、本発明のある側面によると、 NOLM1のループ光路8を提供するHNL-DSF は、波長 l 1と波長 l Sの実質的に中間の零分散波長を有 しており、NOLM2のループ光路8を提供するHNL 一DSFは、波長 llと波長 l2の実質的に中間の零分散 波長を有している。これによりウォークオフの発生を防 止して、短パルスを用いた高ビット信号の波形整形が可 能になる。

【0082】或いはまた、零分散波長を2つのパルスよ りも長波長側或いは短波長側に設定しても良い。この場 合、ウォークオフを最小にすることはできないが、次の ような利点が得られる。まず、長波長側に設定する場合 には、信号光波長及びプローブ光波長は共に正常分散領 域にあることになり、変調不安定効果を抑圧することが できる。また、短波長側に設定する場合には信号光波長 及びプローブ光波長は異常分散領域にあることになり、 パルス圧縮効果を用いることができる。どのような配置

に設定するかは実際のシステムの条件に応じて決定する ことができる。

16

【0083】このように、本発明のある側面によると、 波長 l 1及び l SはNOLM l のループ光路 8を提供する HNL-DSFの正常分散領域及び異常分散領域のいず れか一方にあり、波長 l 1及び l 2はNOLM 2のループ 光路8を提供するHNL-DSFの正常分散領域及び異 常分散領域のいずれか一方にある。これにより、変調不 安定効果を抑圧することができ、或いはパルス圧縮効果 を用いることができるようになる。

【0084】図4に示される実施形態では、各ループ光 路8をHNL-DSFから構成している。HNL-DS Fにあっては、従来のDSFに比べて3次非線形係数を 5~10倍に大きくすることが可能であるため、位相差 Δφをπとするために必要な光パワーと長さの積を1/ 5~1/10にすることが可能である。従って、同じ信 号パワーに対する所要長も1/5~1/10で足り、そ の結果1 k m あるいはそれ以下の長さで十分な特性を得 ることができる。その結果、波長分散による信号速度制 限が少なくしかも入力光信号の偏波状態に対する依存性 を排除することができ、ループ光路8内における偏波変 動に対する対策が不要なNOLMの提供が可能になる。

【0085】このように、本発明のある側面によると、 各ループ光路8は非線形光学媒質としての光ファイバに よって提供される。その光ファイバは、例えば、その光 ファイバが偏波面保存能力を有する程度にその光ファイ バの長さを短くするのに十分大きな非線形係数を有して いる。それにより、入力光信号の偏波状態に対する依存 性を小さくすることができる。同じ目的のために、ルー プ光路8を提供する光ファイバとして偏波保持ファイバ を用いても良い。

【0086】図7は本発明を適用可能な装置の第2実施 形態を示す図である。ここでは、NOLM1及びNOL M2の各々のループ光路8は、各々位相シフトΔø/2 を与える半部分8-1及び8-2からなる。半部分8-1及び8-2の各々は、偏波保持ファイバ(PMF)型 に構成されるHNL-DSFからなる。

【0087】半部分8-1及び8-2の両方により与え 40. 同じようにして波形整形が可能である。

【0088】特にこの実施形態では、ループ光路8の中 点近傍即ち半部分8-1及び8-2の接続点に偏波状態 を直交させるための1/2板機能24を付加している。 この1/2板機能24は、例えば、半部分8-1及び8 - 2の主軸が互いに直交するようにこれらをスプライス 接続することにより得られる。

【0089】これにより、変換効率が入力光信号の偏波 状態に依存しなくなり、しかも、 1/2板機能24が付 加されているので、各偏波保持ファイバの2偏波モード 間の群速度の違いに起因する偏波分散を抑圧することが

できる。

【0090】具体的には、光カプラ6を介してループ光路8に導入される各プローブ光の偏被面を各偏被保持ファイバの主軸に対して45°傾斜させておくことによって、NOLM1の光カプラ12からループ光路8に導入される光信号の偏波状態に依存しない変換効率を得ることができる。

【0091】尚、変換効率は、NOLM1の光カプラ12を介してループ光路8に導入される入力光信号のパワーとNOLM2の光カプラ6を介してループ光路8から取り出される出力光信号のパワーとの比により定義される。

【0092】図8は本発明を適用可能な装置の第3実施形態を示す図である。NOLM1の動作は、光カー効果、特にXPMにおける位相シフトの大きさに依存するため、そのループ光路8に導入される入力光信号及び第1のプローブ光のパワーを調節し得るようにしておくことが望ましい。そこで、この実施形態では、第1のプローブ光のパワーP1を調節するためにパワーコントローラ18を設け、入力光信号のパワーP51を調節するためにパワーコントローラ18を設け、入力光信号のパワーP51を調節するためにパワーコントローラ20を設けている。パワーコントローラ18及び20の各々としては、可変光アッテネータ若しくは可変利得光アンプ又はこれらの組み合わせを用いることができる。

【0093】パワーコントローラ18及び20は制御回路22により自動制御される。制御回路22は、例えば、光カプラ24により第2の光路4から抽出された中間光信号の一部を受けるパワーモニタ26の出力信号に基き、パワーモニタ26により検出された中間光信号のパワーが大きくなるようにパワーコントローラ18及び20の少なくともいずれか一方を制御する。その代わりに、制御回路22は、例えば、光カプラ28により第1の光路2から第1のプローブ光と逆向きに出力される光の一部を受けるパワーモニタ30に出力される光の一部を受けるパワーモニタ30により検出されたパワーが小さくなもいずりにパワーコントローラ18及び20の少なくともいずれか一方を制御するようにしても良い。第1のプローブ光と同じ次長21を有している。

【0094】このような制御により、NOLM1のループ光路8において適切な位相差が生じるように入力光信号及び第1のプローブ光の少なくともいずれか一方のパワーを制御することができるので、自動的に高い変換効率を維持することができる。

【0095】一方、NOLM2の動作も、光カー効果、特にXPMにおける位相シフトの大きさに依存するため、そのループ光路8に導入される中間光信号及び第2のプローブ光のパワーを調節し得るようにしておくことが望ましい。そこで、この実施形態では、第2のプローブ光のパワーP2を調節するためにパワーコントローラ

18

32を設け、中間光信号のパワー PS2を調節するためにパワーコントローラ34を設けている。パワーコントローラ32及び34の各々としては、可変光アッテネータ若しくは可変利得光アンプ又はこれらの組み合わせを用いることができる。

【0096】パワーコントローラ32及び34は制御回路22により自動制御される。制御回路22は、例えば、光カプラ36により第2の光路4から抽出された出力光信号の一部を受けるパワーモニタ38の出力信号に基き、パワーコントローラ38により検出された出力光信号のパワーが大きくなるようにパワーコントローラ32及び34の少なくともいずれか一方を制御する。その代わりに、制御回路22は、例えば、光カプラ40により第1の光路2から第2のプローブ光と逆向きに出力される光の一部を受けるパワーモニタ42の出力信号に基き、パワーモニタ42により検出されたパワーが小くくなるようにパワーコントローラ32及び34の少なくともいずれか一方を制御するようにしても良い。第2のプローブ光と逆向きに出力される光は第2のプローブ光と同じ波長22を有している。

【0097】このような制御により、NOLM2のループ光路8において適切な位相差が生じるように中間光信号及び第2のプローブ光の少なくともいずれか一方のパワーを制御することができるので、自動的に高い変換効率を維持することができる。

【0098】NOLM1において、第1のプローブ光、 入力光信号、或いは中間光信号の構域外の雑音光を抑圧 するために、光フィルタ44、46及び48が用いられ ている。光フィルタ44は、光力プラ6からループ光路 8に導入される第1のプローブ光に作用させるためにパ ワーコントローラ18と第1の光路2との間に設けられ ている。光フィルタ44としては、第1のプローブ光の 波長入1を含む通過帯域を有する光帯域通過フィルタ

(BPF) を用いることができる。

【0099】光フィルタ46は、光カプラ12を介してループ光路8に導入される入力光信号に作用させるために、パワーコントローラ20と第3の光路10との間に設けられている。光フィルタ46としては、入力光信号の波長 λ_1 を含む通過帯域を有する光帯域通過フィルタ40あるいは第1のプロープ光の波長 λ_1 を含む阻止帯域を有する光帯域阻止フィルタ(BSF)を用いることができる

【0100】このように、光帯域阻止フィルタを用いた場合にもSNRが改善されるのは、波形整形されるべき入力光信号は一般に伝送によりASE雑音を伴っており、中間光信号の波長 λ_1 の近傍で予めASE雑音の成分を除去しておくことによって、中間光信号のSNRが改善されるからである。

【0101】光フィルタ48は、NOLM1のループ光 50 路8から光カプラ6を介して出力される中間光信号に作

用させるために、第2の光路4に接続されている。光フ ィルタ48としては中間光信号の波長 12を含む通過帯 域を有する光帯域通過フィルタ或いは入力光信号の波長 λSを含む阻止帯域を有する光帯域阻止フィルタを用い ることができる。

【0102】尚、各フィルタの通過帯域或いは阻止帯域 の中心波長は、第1のプロープ光の中心波長或いは入力 光信号の中心波長に一致する。各フィルタの通過帯域又 は阻止帯域の幅は、入力光信号の帯域にほぼ等しいかそ れよりも僅かに広い。各フィルタとしては誘電体多層膜 フィルタ、ファイバグレーティングフィルタ等を用いる ことができる。

【0103】NOLM2において、第2のプローブ光、 中間光信号、或いは出力光信号の帯域外の雑音光を抑圧 するために、光フィルタ50,52及び54が用いられ ている。光フィルタ50は、第1の光路2からループ光 路8に導入される第2のプローブ光に作用させるため に、パワーコントローラ32と第1の光路2との間に設 けられている。光フィルタ50としては、第2のプロー ブ光の波長 λ 2を含む通過帯域を有する光帯域通過フィ ルタを用いることができる。

【0104】光フィルタ52は、光カプラ12を介して ループ光路8に導入される中間光信号に作用させるため に、パワーコントローラ34と第3の光路10との間に 設けられている。光フィルタ52としては、第2のプロ ープ光の波長 2.2を含む阻止帯域を有する光帯域阻止フ ィルタを用いることができる。

【0105】光フィルタ54は、ループ光路8から光力 プラ6を介して出力される出力光信号に作用させるため に、光路4に接続されている。光フィルタ54として は、出力光信号の波長 22を含む通過帯域を有する光帯 域通過フィルタ或いは中間光信号の波長 λ1を含む阻止 帯域を有する光帯域阻止フィルタを用いることができ

【0106】尚、各フィルタの通過帯域或いは阻止帯域 の中心波長は、第2のプローブ光の中心波長或いは中間 光信号の中心波長に一致する。各フィルタの通過帯域又 は阻止帯域の幅は、入力光信号又は中間光信号の帯域に ほぼ等しいかそれよりも僅かに広い。各フィルタとして は、誘電体多層膜フィルタ、ファイバグレーティングフ ィルタ等を用いることができる。

【0107】図9は本発明を適用可能なシステムの第1 実施形態を示すプロック図である。このシステムは、波 形整形装置(光再生器としての)56を有している。波 形整形装置56は本発明による装置あるいは本発明を適 用可能な装置の種々の実施形態により提供され得る。波 形整形装置56は、第1のプローブ光のための入力ポー ト56A(NOLM1の第1の光路2に対応)と、第2 のプローブ光のための入力ポート56B (NOLM2の 第1の光路2に対応)と、入力光信号のための入力ポー 50 ァイバ増幅器 (EDFA) が用いられている場合、各光

ト56C (NOLM1の第3の光路10に対応)と、出 力光信号のための出力ポート56D(NOLM2の第2 の光路4に対応)とを有している。

【0108】入力ポート56Aには第1のプローブ光源 58が接続されており、光源58から出力された第1の プローブ光 (波長 1) は波形整形装置 5 6 に供給され る。入力ポート56Bには第2のプローブ光源60が接 続されており、光源60から出力された第2のプローブ 光(波長 12) は波形整形装置 56に供給される。尚、 波形整形装置として後述する本発明による装置を用いる

場合には、NOLM1の出力に基づいて得られたクロッ クパルスを第2のプローブ光として用いることができる ので、第2のプローブ光源60は不要である。

【0109】入力ポート56Cには第1の光ファイバ伝 送路62が接続されており、光ファイバ伝送路62によ り伝送された入力光信号(波長 \ S) は波形整形装置 5 6に供給される。出力ポート56Dには第2の光ファイ バ伝送路64が接続されており、光ファイバ伝送路64 は波形整形装置56から出力された出力光信号(波長ん 20 2) を伝送する。

【0110】光ファイバ伝送路62の入力端には、入力 光信号を光ファイバ伝送路62に供給する光送信機(T X) 66が接続されており、光ファイバ伝送路64の出 力端には、光ファイバ伝送路64により伝送された出力 光信号を受ける光受信機(RX)68が接続されてい

【0111】光送信機66における光信号の変調方法と しては、例えば光振幅(強度)変調が採用される。この 場合、光受信機68では、例えば直接検波を行うことが 30 できる。

【0112】光ファイバ伝送路62及び64の各々とし ては、単一モードのシリカファイバ、1.3μm零分散 ファイバ、1.55μm分散シフトファイバ等を用いる ことができる。

【0113】波形整形装置56においてNOLM1及び NOLM2の各々の非線形光学媒質として用いられるH NL-DSFを単一モード型に構成し、そのモードフィ ールド径を光ファイバ伝送路62及び64の各々のモー ドフィールド径よりも小さくすることによって、HNL -DSFの長さを短くするのに十分大きな非線形係数を 得ることができる。

【0114】このシステムによると、波形整形装置56 において本発明に従った波形整形の動作が可能になると 共に、その動作により、波長変換を伴って或いは波長変 換を伴わずに得られた出力光信号を第2の光ファイバ伝 送路64により伝送することができる。

【0115】図示はしないが、光ファイバ伝送路62及 び64を含む光路上に単一又は複数の光増幅器が設けら れていても良い。各光増幅器としてエルビウムドープフ

増幅器ではASE雑音が発生しこれが累積するので、図9に示されるシステムでは、前述した波形整形装置56における波形整形或いは雑音抑圧の原理に従って、SNRが改善される。

【0116】この実施形態では、波形整形装置56を光ファイバ伝送路62及び64の間に設けて中継器として用いているが、光受信機68の内部或いはその近傍に本発明による装置を設けることによって、受信感度を改善することができる。

【0117】図示はしないが、図9に示されるシステムは、光ファイバ伝送路62及び64の少なくともいずれか一方の分散を補償するための分散補償器を更に備えていても良い。分散補償器は、例えば、各光ファイバ伝送路の分散と逆符号の分散を与える。分散補償器の分散の絶対値は、例えば、光受信機68における受信状態が最適になるように調節される。分散補償器を用いることによって、光ファイバ伝送路で生じる波長分散を抑圧することができるので、長距離の伝送が可能になる。

【0118】本発明を適用可能な装置の実施形態においては、各プローブ光はCW光或いは光パルスであり得る。例えば、第1のプローブ光としてCW光を用い、第2のプローブ光として入力光信号に同期した光パルスとすることができる(この実施形態は後で詳細に説明する)。この光パルスが入力光信号の基準周波数で発振するクロックパルスである場合、出力光信号はその基準周波数でリタイミングされたものになる。即ち、波形整形の機能と共にこのリタイミング機能を用いることにより、光レベルでの3R処理が可能になる。ここで、「3R」は前述した2R及びリタイミングの意味である。尚、第1のプローブ光を光パルスとするとともに第2のプローブ光をCW光としても良いし、或いは、第1及び第2のプローブ光の両方を光パルスにしても良い。

【0119】図10は本発明を適用可能な装置の第4実 施形態を示すプロック図である。この装置は、光分岐器 70、クロック再生器72、タイミング調節器73、波 形整形装置74及びプローブ光源76を備えている。光 分岐器70には、ファイバ伝送に際しての分散や非線形 光学効果により波形が歪んだ信号光、光アンプによる中 継伝送に際しての光アンプのASE雑音の累積により波 形が乱れた信号光、或いは偏波分散等によりジッターが 累積した信号光が供給される。光分岐器70はその入力 信号光を第1及び第2の信号光に分岐する。第1及び第 2の信号光はそれぞれクロック再生器72及び波形整形 装置74に供給される。クロック再生器72は供給され た第1の入力信号光に基きクロックパルスを発生する。 ここでは、信号光の波長及び速度(ピットレート)はそ れぞれえS及びfSであり、クロックパルスの波長及び周 波数はそれぞれλc及びfsである。発生したクロックパ ルスはタイミング調節器73でタイミングを調節されて 波形整形装置74に供給される。

【0120】被形整形装置74は、プローブ光源76からのプローブ光を受ける入力ポート74Aと、クロック再生器72からのクロックパルスを受ける入力ポート74Bと、光分岐器70からの第2の信号光を受ける入力ポート74Cと、出力ポート74Dを有している。被形整形装置74は、供給された第2の入力信号光及びクロックパルスに基き波形整形を行い、再生信号光を出力ポート74Dから出力する。再生信号光の波長及び速度はそれぞれ入c及びfsである。

7 【0121】この実施形態では、ポート74AはNOLM1の第1の光路2に対応し、ポート74BはNOLM2の第1の光路2に対応し、ポート74CはNOLM1の第3の光路10に対応し、ポート74DはNOLM2の第2の光路4に対応している。従って、プローブ光源76から供給されるプローブ光は第1のプローブ光として用いられ、クロックパルスが第2のプローブ光として用いられている。その結果として、再生信号光の波長がクロックパルスの波長に等しくなっているのである。

【0122】或いは又、クロックパルスをポート74A に入力し、プローブ光源76からのプローブ光をポート74Bに入力するようにしても良い。この場合、再生信号光の波長はプローブ光源76から供給されるプローブ光の波長に等しくなる。

【0123】或いは又、プローブ光源76を用いずに、クロックパルスを第1及び第2のクロックパルスに分岐し、第1及び第2のクロックパルスの一方を波長変換した後に両方をそれぞれポート74A及び7.4 Bに入力しても良い。

【0124】このように、本実施形態によると、再生さ30.れたクロックパルスを用いて波形整形を行っているので、タイミングも含めて光レベルでの信号再生が可能になる。従って、この実施形態によると、全光3R信号再生装置の提供が可能になる。

【0125】図10に示される実施形態においては波形整形装置74は、速度fsの信号と周波数fsのクロックパルスとのAND回路として機能している。クロックパルスの周波数を信号速度の分周倍(例えば信号速度が40Gb/sである場合10GHz)に設定することによって、OTDM(光時分割多重)信号のデマルチプレクシング等の動作を行うことができる。

【0126】クロック再生器72としては、信号光に含まれる周波数成分を感知し(引き込み)、ここから基準周波数のクロックパルスを発生させるモードロックレーザを用いることができる。或いは、波長 L_S 、速度 L_S の信号光を波長 L_S で連続発振しているレーザに入力し、このレーザ内の光変調器を信号光で L_S の調する。そして、この変調周波数がレーザの共振周期に対応するようにレーザの光路長を調節することによって、波長 L_S のクロックパルスを発生することができる。

【0127】図11はクロック再生器の実施形態を示すブロック図である。このクロック再生器は、入力ポート78及び出力ポート80間に設けられる光パス82と、光パス82に光学的に結合される(例えば方向性結合される)光ループ83を含む能動リングレーザ84とを備えている。

【0128】入力ポート78には波長 \(\lambda\) 、速度 \(\frac{1}{2}\) S、速度 \(\frac{1}{2}\) S、速度 \(\frac{1}{2}\) S、速度 \(\frac{1}{2}\) S、速度 \(\frac{1}{2}\) S、速度 \(\frac{1}{2}\) S、进度 \(\frac{1}{2}\) S、进程 \(\frac{1}{2}\) A 3 でレーザ発振が生じるように光ループ 8 3 の周回周期の逆数の整数倍になるように光ループ 8 3 の光路長を調節する調節器 8 8 と、信号光に基 きレーザ発振をモードロックするための光変調器 (又は 非線形光学媒質) 9 0 とを含む。能動リングレーザ 8 4 はレーザ発振の波長 \(\frac{1}{2}\) Cを含む通過構域を有する光帯域 通過フィルタ 9 2 を更に含んでいても良い。

【0129】この構成によると、能動リングレーザ84のレーザ発振がモードロックされる結果、波長 λ_C 、周波数 f_S のクロックパルスが発生し、そのクロックパルスが出力ポート80から出力される。従って、光/電気変換を行なうことなしにクロックパルスを得ることができ、信号光の速度やパルス形状等に依存しない全光クロック再生器の提供が可能になる。

【0130】光変調器90としては、LiNbO3強度 変調器やEA (電界吸収)型変調器等の電気/光変調器 を用いることができるほか、二次若しくは三次の非線形 光学効果或いは相互利得変調等によるものを用いること ができる。例えば、光ファイバ内の四光波混合を用いる 場合であれば、信号光の波長 lsをファイバの零分散波 長付近の波長に設定して連続発振光に効果的にAM変調 をかけ、これによりクロックパルスを発生可能である。 一方、半導体光アンプ(SOA)を用いる場合には、信 号光をポンプ光として用いることができる。更に、発振 状態のDFB-LD内の四光波混合を用いる場合には、 信号光の波長をDFB-LDの発振光とは異なる波長に 設定し、この信号光を比較的高いパワーで入力すること により利得飽和を起こし、これにより四光波混合の効率 に変調をかけると共に、相互利得変調(XGM)効果に より連続発振光に有効にAM変調をかけることができ る。XGMについては、SOA内の四光波混合を用いる 場合にも発生するので、これを積極的に用いても良い。 【0131】また、2次の非線形光学効果の場合にも、 信号光をポンプ光として用いれば、ほぼ同じ効果を得る ことができる。一方、相互位相変調(XPM)を用いる 場合には、例えば位相変調による偏波状態の変動を用い

【0132】図10に示される装置は、図9に示される 波形整形装置56と同様に、伝送路の途中に設けられる 全光2R再生中継器若しくは3R再生中継器として、或 いは受信側に置いて受信感度を高めるために使用するこ

てAM変調を発生させることができる。

とができる。いずれにしても、中継光アンプ或いは光プリアンプと組み合わせることによって、高品質な伝送が可能になる。また、光ファイバ伝送路の分散や非線形光学効果により波形が歪む場合には分散補償器や非線形補償器(例えば位相共役器)を用いて波形を補償した後に、波形整形或いは雑音除去を行うことが有効である。

【0133】以上説明した実施形態では、複数のNOLMをカスケード接続しているが、NOLMと同様の動作原理に基く複数の干渉計をカスケード接続してもよい。
10 干渉計の例としては、SOA—MZI, SOA—MI等がある。

【0134】図12は本発明による装置の基本構成を示すブロック図である。この装置は、信号光を供給されて中間信号光を出力する第1の波形整形装置102と、中間信号光を第1及び第2の信号光に分割する光分岐器(例えば光カプラ)104と、第1の信号光を供給されてクロックパルスを出力するクロック再生器72と、第2の信号光及びクロックパルスを供給されてクロックパルスに同期した再生信号光を出力する第2の波形整形装20 置106とを備えている。

【0135】波形整形装置102及び106の各々としては、図1に示されるNOLMを用いることができる。 また、クロック再生器72の具体的構成については、図 11に示されている。

【0136】図12に示される基本構成によると、波形整形装置102及び106を用いていることにより、あるいは、これに加えて図示しない光増幅器を用いていることにより、光レベルでの2R機能を得ることができる。また、クロック再生器72で得られたクロックパルスと第2の光信号とのANDをとるようにしているので、光レベルでのリタイミングを行うことができ、光レベルでの3R機能を得ることができる。

【0137】図13は本発明による装置の第1実施形態を示すプロック図である。この実施形態は、図4に示される実施形態との対比において、クロック再生器72から出力されたクロックパルスを第2の波形整形装置106としてのNOLM2における第2のプローブ光として用いている点で特徴付けられる。より特定的には次のと40 おりである。

【0138】図13に示される実施形態では、第1及び第2の波形整形装置102及び106としてそれぞれNOLM1及びNOLM2が用いられている。NOLM1及びNOLM2の各々は、方向性結合される第1及び第2の光路2及び4を含む第1の光カプラ6と、第1及び第2の光路2及び4を接続するループ光路8と、ループ光路8に方向性結合される第3の光路10を含む第2の光カプラ12とを備えている。NOLM1及びNOLM2をカスケード接続するために、NOLM1の第2の光路4はNOLM2の第3の光路10に光学的に接続され

る。

【0139】第1の光カプラ6のカップリング比は実質的に1:1に設定される。ループ光路8の一部又は全部は非線形光学媒質によって提供される。より特定的には、この実施形態では、広い変換帯域を得ることのほか前述した付加的な効果を得るために、ループ光路8はHNL-DSFによって提供されている。

【0140】NOLM1の第1の光路2には、波長 l₁ を有する第1のプローブ光が供給される。NOLM1の 第3の光路10には波長 \S(≠ \lambda_1) 及び速度 (ビット レート)fSを有する信号光が供給される。信号光が第 1のプローブ光をスイッチングする結果、NOLM1の 第2の光路4からは、波長11及び速度fsを有する中間 信号光が出力される。出力された中間信号光は、光分岐 器104によって第1及び第2の信号光に分岐され、第 1の信号光はクロック再生器72に供給され、第2の信 号光はNOLM2の第3の光路10に供給される。NO LM2の第1の光路2には、クロック再生器72から出 力されたクロックパルスが第2のプローブ光(図4参 照)として供給される。クロックパルスは波長 lc及び 周波数 f sを有している。第2の信号光がクロックパル スをスイッチングする結果、NOLM2の第2の光路4 からは、波長λc及び速度 f Sを有し且つクロックパルス に同期した再生信号光が出力される。

【0141】第1のプローブ光は、CW光であっても良いし、或いは信号光のピットレートと同等の或いは異なる周波数で信号光と時間的に同期するクロックパルスであっても良い。

【0142】図13に示される実施形態では、NOLM 1から出力された中間信号光に基づきクロック再生器72がクロックパルスを再生している。NOLM1においてはある程度波形整形がなされているので、図10に示される実施形態のように直接的に信号光に基づきクロックパルスを再生する場合と比較して、クロック再生が正確でしかも容易になる。その結果、NOLM2における光ゲートの機能あるいはAND動作が正確になり、十分な3R機能が可能になる。また、図13に示される実施形態によると、重複する説明は避けるが、図4に示される実施形態におけるのと同様に、波長変換の自由度が大きくなる。

【0143】図14は本発明による装置の第2実施形態を示すプロック図である。この実施形態は、図12に示される基本構成と対比して、クロック再生器72と第2の波形整形装置106の間に光フィルタ108が付加的に設けられている点で特徴付けられる。光フィルタ108としては、狭帯域な光バンドパスフィルタを用いることができ、その通過帯域の中心波長はクロックパルスの波長に一致するように設定される。

【0144】クロック再生器72として図11に示されるようなモードロックレーザを用いる場合、得られるク

ロックパルスが過剰に短パルス化していることがある。 図14に示される実施形態では、クロックパルスが光フィルタ108を通過する結果、クロックパルスのパルス 幅が適当に拡大される。その結果、上述の短パルス化に 起因する不具合を防止することができる。

【0145】図15は本発明を適用可能なシステムの第2実施形態を示すプロック図である。この実施形態は、図9に示される実施形態と対比して、多段構成の波形整形装置56に限定されない光ゲート装置110が用いちれている点と、WDMが具体的に適用されている点とで特徴付けられる。光ゲート装置110としては図1に示されるようなNOLMを用いることができ、光ゲート装置110には、プローブ光源112から出力されたプローブ光Eprobeが供給されている。

【0146】光ファイバ伝送路62の入力端は光マルチプレクサ113に接続されている。光マルチプレクサ113には、光送信機114(#1,…,#4)から出力された4チャネルの光信号 E_{S1} ,…, E_{S4} がそれぞれ光遅延回路116(#1,…,#4)により時間軸上の位20 置を調節された後に供給されている。

【0147】光信号 E_{S1} , …, E_{S4} の波長はそれぞれ λ_{S1} , …, λ_{S4} であり、互いに異なる。光信号 E_{S1} , …, E_{S4} はデータの繰り返し時間Tに比べて十分短い時間幅を有する短パルスによる強度変調により得られている。これらの光信号は、光遅延回路116 (#1, …, #4)により順にT/4の時間だけシフトさせられる。従って、光マルチプレクサ113から出力される信号光は、時間軸上で一致しない波長分割多重信号となる。

【0148】このような波長分割多重信号が光ゲート装 30 置110に供給されると、4チャネルの波長全でがプローブ光の波長 λ probeに変換されるので、光ゲート装置110から光ファイバ伝送路64に出力される変換信号光Ecは、光時分割多重信号(OTDM信号)となる。

【0149】このように、図15に示されるシステムに よると、波長分割多重信号を時分割多重信号に変換する ことができる(WDM/OTDM変換)。

【0150】ここでは、4チャネルの波長分割多重信号を例示しているが、チャネル数は4には限定されない。 40 例えば、N(Nは1より大きい整数)チャネルの波長分割多重信号が用いられている場合には、Nチャネルの光時分割多重信号が得られる。この場合、N台の光遅延回路が用いられ、これらにおける時間シフトはT/Nに設定される。

【0151】図15の実施形態では、WDM信号光(波 長分割多重信号)を構成している複数の光信号のタイミ ングを変化させるために複数の光遅延回路を用いている ので、これを光中継器に適用する場合に光中継器の構成 が複雑になる。この点を改良した実施形態を以下に説明 50 する。

【0152】図16は本発明を適用可能なシステムの第3実施形態を示すプロック図である。ここでは、1台の光遅延回路118を用いてWDM信号光の複数の光信号を一括して順次遅延させた後に、光ファイバ伝送路62を介して光ゲート装置110に入力している。光遅延回路118としては、波長分散を与える光学媒質を用いることができる。例えば、光ファイバ等の光学媒質においては、波長に対して分散がほぼ直線状に変化するので、これを用いることによって、複数の光遅延回路の遅延時間を調節する場合のようにほぼ線形な遅延を複数の光信号に与えることができる。

【0153】このように、図16に示されるシステムにおいては1台の光遅延回路を用いて複数の光信号に一括して遅延を与えるようにしているので、装置の構成を簡単にしてシステムの信頼性を高めることができる。

【0154】図17は本発明による装置の第3実施形態を示すプロック図である。この実施形態は、図12に示される実施形態と対比して、波形整形されるべき信号光が異なる波長(λ_{S1} , …, λ_{S4})を有する複数の光信号を波長分割多重して得られたWDM信号光である点と、これに合わせて複数のクロック再生器72(#1, …, #4)が用いられている点とで特徴付けられる。

【0155】WDM信号光は、偏波制御器122と、光遅延回路118(図16参照)としての光ファイバ120とを介して第1の波形整形装置102に供給される。光ファイバ120は波長分散β2を有しており、WDM信号光の複数の光信号の各タイミングを時間軸上で変化させる。偏波制御器122は、波形整形装置102及び106等が偏波依存性を有している可能性に対処するために設けられており、WDM信号光の複数の光信号の各偏波状態を一定にするように機能する。偏波制御器122は、例えば、SOA(半導体光増幅器)におけるXPM(相互位相変調)あるいはXGM(相互利得変調)を用いた光ゲートを各波長チャネルに適用することによって構成され得る。

【0156】偏波制御器122として上述のような光ゲートを用いている場合、偏波制御器120から出力される光の偏波面は、その光ゲートにおけるプローブ光の偏波面に確定されるので、波形整形装置102及び106等における偏波依存性に対処することができる。この場合、偏波制御器122から出力された光の偏波面を維持してその光を第1の波形整形装置102に供給するために、光ファイバ120として偏波面維持ファイバ(PMF)を用いることが望ましい。尚、光ファイバ120における偏波面維持能力が十分でない場合には、偏波制御器122は、光ファイバ120と第1の波形整形装置102との間に設けられていてもよい。

形整形装置102として図13等に示されるNOLM1が用いられている場合には、中間信号光の波長は第1のプローブ光の波長 λ_1 に一致する。波形整形装置102から出力された中間信号光は、光分岐器104により第1及び第2の信号光に分割され、第1の信号光は各々クロック再生器72(#1、…、#4)に供給され、第2の信号光は第2の波形整形装置106に供給される。

【0158】クロック再生器 72(#1, …, #4)は、第1の信号光に基づいてそれぞれ波長 λ_{C1} , …, λ_{C4} を有するクロックパルスを再生する。特にこの実施形態では、第2の波形整形装置 106から出力される再生信号光における波長関係を入力されたWDM信号光における波長関係に一致させるために、波長 λ_{C1} , …, λ_{C4} は波長 λ_{C1} , …, λ_{C4} は波長 λ_{C1} , …, λ_{C4} に被長 λ_{C1} , …, λ_{C4} になけるを関係に一致させるために、波長 λ_{C1} , …, λ_{C4} になけるが、WDM信号光を構成している複数の光信号の各々の速度(繰り返し周波数;ビットレートに対応)に相当している。

【0159】クロック再生器72(#2, #3及び#4)と第2の波形整形装置106との間にはそれぞれ光遅延回路124(#1, #2及び#3)が付加的に設けられている。光遅延回路124(#1, #2及び#3)はそれぞれクロックパルスに遅延時間 τ_1 , τ_2 及び τ_3 を与える。遅延時間 τ_1 , τ_2 及び τ_3 は、それぞれ、中間信号光におけるあるパルスから次のパルス、その次のパルス、及びその次の次のパルスまでの時間間隔に設定される。

【0160】この構成によると、第2の波形整形装置106において、時分割多重信号としての中間信号光(第2の信号光)が複数のクロックパルスを一括してスイッチングすることができるので、第1の波形整形装置102に入力されたWDM信号光に対する3R機能が可能になる。また、波形整形装置102及び106をWDM信号光の複数の波長チャネルに共用しているので、装置構成を簡単にしてシステムの信頼性を高めることができる。

【0161】図18は本発明による装置の第4実施形態を示すプロック図である。この実施形態は、図17の実施形態では各クロックパルスが中間信号光としての光時分割多重信号に基づいて得られているのと対比して、波40 形整形されるべきWDM信号光に基づいて各クロックパルスが得られている点で特徴付けられる。

【0162】そのために、この実施形態では、図17等に示される光分岐器104に代えて、第1の波形整形装置102の上流側、より特定的には偏波制御器122と光ファイバ120の間に光分岐器104、を設けている。光分岐器104、で分岐されたWDM信号光の一部は、WDM信号光の波長チャネル数に応じた複数の光フィルタ126(#1,…,#4)に供給される。光フィルタ126(#1,…,#4)は、それぞれ、WDM信号光の複数の光信号の波長151、…。154に対応する通

過帯域を有している。従って、光フィルタ126 (# 1,…, #4)によってそれぞれWDM信号光の複数の 光信号を抽出することができる。

【0163】クロック再生器72(#1, …, #4)の各々は、抽出された各光信号に基づいて容易に各クロックパルスを再生することができる。即ち、図17に示される実施形態においては、各クロック再生器が光時分割多重信号に基づいてその4倍の周期を有するクロックパルスを再生する必要があり、クロック再生器の構成が複雑になる可能性があるのと対比して、図18に示される実施形態では、各クロック再生器が抽出された光信号に基づいてその周期に等しい周期を有するクロックパルスを容易に再生することができるものである。

【0164】この実施形態によると、図17に示される 実施形態による場合と同様に、第2の波形整形装置10 6において、光時分割多重信号としての中間信号光(第 2の信号光)が複数のクロックパルスを一括してスイッ チングすることができるので、第1の波形整形装置10 2に入力されたWDM信号光に対する3R機能が可能に なる。また、波形整形装置102及び106をWDM信 号光の複数の波長チャネルに共用しているので、装置構 成を簡単にしてシステムの信頼性を高めることができ る。

【0165】この実施形態においては、光フィルタ126(#1, …, #4)の各々の通過帯域の適切な設定によって、WDM信号光における任意の波長チャネルを選択することができる。従って、図18に示される装置は、光ADM(アッド・ドロップ・マルチプレクサ)や光クロスコネクトに効果的に適用することができる。

【0166】図17及び18に示される実施形態では、 4チャネルのWDM信号光を例示しているが、チャネル 数は4には限定されない。たとえば、N(Nは1より大 きい整数)チャネルのWDM信号光が用いられている場 合には、Nチャネルの光時分割多重信号が得られるの で、これに合わせてN台のクロック再生器が用いられ る。

【0167】波形整形装置102及び106の各々としては、図13に示される実施形態と同様にNOLMを用いることができるが、本発明はこれに限定されない。一般的な2R再生器、例えば、光/電気変換を用いて電気 40段で信号処理するタイプの2R再生器を波形整形装置102及び106の各々として用いることもできる。

[0168]

【発明の効果】以上説明したように、本発明によると、十分な3R機能を得ることができる波形整形のための方法、装置及びシステムを提供することが可能になるという効果が生じる。また、本発明によると、WDMに適した波形整形のための方法、装置及びシステムの提供が可能になるという効果もある。

【図面の簡単な説明】

【図1】図1は本発明に適用可能なNOLM(非線形光ループミラー)の構成を示す図である。

【図2】図2は位相差 Δ ϕ に対するNOLMの出力特性を示すグラフである。

【図3】図3はNOLMにおける位相整合の説明図である。

【図4】図4は本発明を適用可能な装置の第1実施形態を示す図である。

0 【図5】図5の(A)及び図5の(B)は本発明を適用可能な装置における波長変換の例を示す図である。

【図6】図6は多段接続されたNOLMの特性関数を示すグラフである。

【図7】図7は本発明を適用可能な装置の第2実施形態を示す図である。

【図8】図8は本発明を適用可能な装置の第3実施形態を示す図である。

【図9】図9は本発明を適用可能なシステムの第1実施 形態を示すブロック図である。

20 【図10】図10は本発明を適用可能な装置の第4実施形態を示すブロック図である。

【図11】図11はクロック再生器の実施形態を示すプロック図である。

【図12】図12は本発明による装置の基本構成を示す プロック図である。

【図13】図13は本発明による装置の第1実施形態を示すブロック図である。

【図14】図14は本発明による装置の第2実施形態を示すプロック図である。

30 【図15】図15は本発明を適用可能なシステムの第2 実施形態を示すプロック図である。

【図16】図16は本発明を適用可能なシステムの第3 実施形態を示すプロック図である。

【図17】図17は本発明による装置の第3実施形態を示すブロック図である。

【図18】図18は本発明による装置の第4実施形態を 示すプロック図である。

【符号の説明】

2 第1の光路

4 第2の光路

6 第1の光カプラ

8 ループ光路

10 第3の光路

12 第2の光カプラ

72 クロック再生器

102 第1の波形整形装置

104 光分岐器

106 第2の波形整形装置

【図1】

【図2】

[図3]

本発明に適用可能なNOLMの構成を示す図 位相差ムφに対するNOLMの出力特性を示すグラフ

NOLMにおける位相整合の説明図

【図4】

【図5】

[図6]

本発明を適用可能な装置の第1実施形態を示す図

波長変換の例を示す図

多段接続されたNOLMの特性関数を示すグラフ

0.4 0. 入力 (%) 0.8

0.8

(A) NOLM1 NOLM2

\[\lambda \text{ \lambda} \t

(B)

【図16】

本発明を適用可能なシステムの 第3実施形態を示すブロック図

【図8】

【図9】

本発明を適用可能な装置の第2実施形態を示す図 本発明を適用可能な装置の第3実施形態を示す図

第3 実施形態を示す図 本発明を適用可能なシステムの (1) 第1 実施形態を示すブロック図 詳3 ***

【図10】

【図15】

本発明を適用可能なシステムの 第2実施形態を示すブロック図

本発明を適用可能な装置の 第4 実施形態を示すプロック図

【図12】

本発明による装置の基本構成を示すプロック図

【図11】

クロック再生器の実施形態を示すプロック図

【図14】

本発明による装置の第2実施形態を示すプロック図

【図13】

本発明による装置の第1実施形態を示すプロック図

【図17】

本発明による装置の第3実施形態を示すブロック図

【図18】

本発明による装置の第4実施形態を示すプロック図

フロントページの続き

(72) 発明者 廣西 一夫

神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 Fターム(参考) 2K002 AA02 AB40 BA02 CA15 DA10 EA30 GA10 HA27