Half-Wave Rectifier with RC Load (I)

$$V_{dc} = V_{s} - V_{on}$$

$$I_{dc} = \frac{V_{dc}}{R}$$

ripple voltage
$$V_{r} = (V_{s} - V_{on}) \left(1 - e^{-\frac{T - \Delta T}{RC}}\right)$$

$$\cong (V_{s} - V_{on}) \left(\frac{T - \Delta T}{RC}\right) if(T - \Delta T) \ll RC$$

$$\cong (V_{s} - V_{on}) \left(\frac{T}{RC}\right) if\Delta T \ll T$$

Half-Wave Rectifier with RC Load (II)

conduction angle and interval $\Theta_c = W \Delta T$

$$V_{s} - V_{on}$$

$$V_{s} = V_{on}$$

$$V_{s$$

Time

$$\mathbf{V_{out}} \quad V_{s} \sin \left[\omega \left(\frac{5T}{4} - \Delta T \right) \right] - V_{on} = (V_{s} - V_{on}) - V_{r}$$

$$V_{\rm s} \sin\left(\frac{5\pi}{2} - \theta_{\rm c}\right) - V_{\rm on} = (V_{\rm s} - V_{\rm on}) - V_{\rm r}$$

$$V_s \cos \theta_c = V_s - V_r$$

$$\cos \theta_c = \frac{V_s - V_r}{V_s} \cong 1 - \frac{{\theta_c}^2}{2}$$
 if θ_c very small

$$\theta_c = \sqrt{\frac{2V_r}{V_s}}$$

$$\theta_{c} = \sqrt{\frac{2V_{r}}{V_{s}}}$$

$$\Delta T = \frac{\theta_{c}}{\omega} = \frac{1}{\omega} \sqrt{\frac{2V_{r}}{V_{s}}}$$

Half-Wave Rectifier with RC Load (III)

$$V_s \sin \omega t$$
 $C = R$
 V_{out}

The charge filled on C during ΔT is discharged during $T - \Delta T$.

$$Q \simeq \frac{I_{peak}\Delta T}{2} = I_{dc}(T - \Delta T) \simeq I_{dc}T$$

$$I_{peak} = \frac{2I_{dc}T}{\Delta T}$$

During charging period (ΔT), almost all diode current goes to C.

$$\left| \frac{1}{SC} \right| = \frac{1}{2\pi \frac{1}{\pi}C} = \frac{T}{2\pi C} \ll R \text{ if } RC \gg T$$

Half-Wave Rectifier with RC Load (IV)

Peak-inverse-voltage (PIV) $\cong 2V_s - V_{on}$

If too large, the diode breaks down.

Example

Find the value of the dc output voltage, dc output current, ripple voltage, conduction interval, conduction angle and diode peak current for a half-wave rectifier driven from a transformer having a secondary voltage of 12.6 $V_{\rm rms}$ (60 Hz) with $R=15~\Omega$ and $C=25,\!000~\mu F.$ Assume $V_{on}=1~V.$

$$\begin{split} &V_{dc} = \boxed{12.6\sqrt{2} - 1} = 16.8 \text{ (V)} \\ &I_{dc} = \frac{16.8}{15} = 1.12 \text{ (A)} \\ &V_r \cong V_{dc} \frac{T}{RC} = 16.8 \frac{\frac{1}{60}}{15 \times 25000 \times 10^{-6}} = 0.747 \text{ (V)} \\ &\theta_c \cong \sqrt{\frac{2V_r}{V_s}} = \sqrt{\frac{2 \times 0.747}{12.6 \times \sqrt{2}}} = 0.29 \text{ (rad) or } 16.6^\circ \\ &\Delta T \cong \frac{\theta_c}{\omega} = \frac{0.29}{2\pi \times 60} = 7.69 \times 10^{-4} \text{ (sec)} \\ &I_{peak} = \frac{2 \times 1.12 \times \frac{1}{60}}{7.69 \times 10^{-4}} = 48.6 \text{ (A)} \end{split}$$

- Make sure all assumptions are valid. Make sure RC >> T
- Since R is small (15 Ω), C needs to be large (25,000 μF) to maintain a low V_r
- The diode must be able to handle these repetitively high peak currents.

Full-Wave Bridge Rectifier (I)

Full-Wave Bridge Rectifier (I)

