MATHEMATICAL STATISTICS

- I. GIVEN A SET OF DATA POINTS:
-) SAMPLE MEAN OF THE DATA POINTS IN THE SET X:15 &

 The set is the
- ii) SAMPLE VARIANCE OF THE DATA POINTS IN THE SET X

$$s^{2} = \frac{1}{(m-1)} \sum_{i=1}^{m} (x_{i} - \bar{x})^{2}$$
 ; $m > 1$

EXAMPLE1: X = {-3,-4, +5, +3}

FIND SAMPLE MEAN AND SAMPLE VARIANCE OF X

SOLUTION: IXI=4=m

SAMPLE VARIANCE = 52 = 1 (x, -2)2

 $=\frac{1}{3}\left[\left(-3-0.25\right)^{2}+\left(-4-0.25\right)^{2}+\left(5-0.25\right)^{2}+\left(3-0.25\right)^{2}\right]$

Z = 0.25; 52 5 19.58

口

EXAMPLE 2: X= {-2,7,-3,2}

- a) FIND SAMPLE MEAN OF POINTS IN THE SET X
- b) SIII WARIANCE II II II X
- C) SHIFT EACH DATA POINT IN THE SET BY 3 UNITS
 - i) FIND THE NEW SAMPLE MEAN
- ii) " " " VARIANCE.

SOLUTION :

b)
$$5x^2 = \frac{1}{3} \left[(-2-1)^2 + (7-1)^2 + (-3-1)^2 + (2-1)^2 \right]$$

= $\frac{1}{3} \left[9 + 36 + 16 + 1 \right] = \frac{62}{3} = \left[20\frac{2}{3} \right]$

C) NEW SET OF DATA POINTS:

OF THE DIRECTED VALUE

ii)
$$5y^2 = \frac{1}{3} \left[(1-4)^2 + (10-4)^2 + (0-4)^2 + (5-4)^2 \right]$$

= $\frac{1}{3} \left[9 + 36 + 16 + 1 \right] = \left[20 \frac{2}{3} \right] = 5x^2$

LESSON IF EACH DATA POINT IS SHIFTED BY THE SAME VALUE, THEN:

1. THE SAMPLE MEAN SHIFTS BY THE SAME VALUE.

= 1 0+36+16+4 = 56 = 18=

2. THE SHMPLE VARIANCE DOES NOT CHANGE. I

THE SAMPLY VARIANCE IS MULTIPLIED BY THE SOVERE

EXAMPLE 3: X = {-1, 2, -3, -2}

- a) FIND SAMPLE MEAN OF THE POINTS IN THE SET X
- b) FIND " VARIANCE " " " " X
- C) DILATE EACH DATA POINT IN THE SET BY -2

 i) FIND THE NEW SAMPLE MEAN

 ii) " " VARIANCE.

SOLUTION :

6)
$$S_{x}^{2} = \frac{1}{3} \left[(-1+1)^{2} + (2+1)^{2} + (-3+1)^{2} + (-2+1)^{2} \right]$$

= $\frac{1}{3} \left[9 + 4 + 1 \right] = 4 + \frac{2}{3}$

C) NEW SET OF DATA POINTS :

ii)
$$5\frac{2}{7} = \frac{1}{3} \left[(2-2)^2 + (-4-2)^2 + (6-2)^2 + (4-2)^2 \right]$$

= $\frac{1}{3} \left[0 + 36 + 16 + 4 \right] = \frac{56}{3} = \left[18\frac{2}{3} \right] = (-2)^2 s_{\pi}^2$

LESSON: IF EACH DATA POINT IS DILATED BY THE SAME AMOUNT, THEN:

- 1. THE SAMPLE MEAN IS ALSO DILATED BY THE SAME AMOUNT.
- 2. THE SAMPLE VARIANCE IS MULTIPLIED BY THE SQUARE OF THE DILATED VALUE.