「ブロックチェーン技術概論 理論と実践」(第1刷)正誤表

最新情報は、サポートページ(https://github.com/blockchain-programming/book2021)をご覧ください.

2022 年 7 月 25 日時点

ページ	場所	誤	正
v.	一番下の行	(一番下の行に追加)	4.6 秘密計算102
22	上から1行目	計算コストと考えます。	計算コスト *6 と考えます。
31	上から 11–12 行目	メカニズム使用した	メカニズムを使用した
54	上から 11 行目	1996 年	1994 年
70	下から2行目	誤:https://cryptorating.eu/whitepapers/イーサリアム/イーサリアム_white_paper.pdf	
	(参考文献 [2])	\pm : https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf	
75	上から 16, 19, 22 行目	生成限 g	生成元 g
93	上から 10 行目	公開鍵暗号と使って	公開鍵暗号を使って
99	上から 6–8 行目	誤: R については楕円曲線離散対数問題が困難であるという前提から rG の r を知ることは不可能とし, $s=(r+ed) \bmod n$ と $s=r$ が同じエントロピーをもつことを考えると検証者にはこの 2 つの確率変数はともに乱数と区別できません。したがってゼロ知識性 正:楕円曲線離散対数問題が困難であるという前提から, $R=rG$ から r を知ることや $eP=edG$ から ed を知ることは不可能です。 $s=(r+ed) \bmod n$ と $s=r$ の s は確率変数として区別できないので ed はわかりません。したがって d に関するゼロ知識性	
100	下から2行目	誤:対偶をとれば「間違った命題は証明できない」ということになります。 正:対偶をとると「偽なる命題は証明によって否定される」ことになります。	
102	下から9行目	秘密計算	4.6 秘密計算
103	上から9行目	ブラックリーの (t,n) しきい値秘密分散法の例	ブラックリーの (t,n) しきい値秘密分散法の簡単な例
103	上から 10 行目	してみましょう。	してみましょう (図 4.14)。

ページ	場所	誤	正
103	下から4行目	誤:ブラークリーの (t,n) しきい値秘密分散法は,空間の次元を変えることで,	
		正:ブラークリーの (t,n) しきい値秘密分散法では,シェアを秘密情報の点 s とランダムな点 r を通る t 次元空間の中の $(t-1)$ 次元超平面	
		とすることで、	
121	上から6行目	ビットコインの	ビットコインを
130	上から3つ目のコード	誤:(実行結果が途中で切れています)	
		正:サポートページ(https://github.com/blockchain-programming/book2021)に完全版を掲載しています.	
134	下から 3 行目	2040年	2041 年ごろ
134	下から2行目	210000 btc	$21000000\mathrm{btc}$
134	下から1行目	$210000 = \sum_{i=0}^{\infty} 210000 \frac{50}{2^i}$	$21000000 = \sum_{i=0}^{\infty} 210000 \frac{50}{2^i}$
135	上から 11, 15 行目	係数	係数(のリトルエンディアン)
135	上から 16 行目	誤:0x 00000000 0004864c 00000000 00000000 00000000 00000000 0000	
		$\mathbb{E}: 0x00000000004c8604000000000000000000000000000000000000$	
151	表 6.8 の説明	(行は前半2ビットで後半3ビット)	(行は前半2ビットで,列は後半3ビット)
151	上から 13 行目	ファーマット	フォーマット
167	上から7行目	ゲーム論	ゲーム理論
168	上から7行目	ゲーム論	ゲーム理論
221	下から1行目	ZK-Rolleup	ZK-Rollups
224	上から 20 行目	Locked	Lock
341	上から 4 行目	加法逆元演算 — a	加法逆元
347	下から4行目	$\theta^1 = 1$	$ heta^1 = heta$
350	上から9行目	点を $R^{'}$	点 $R^{'}$
351	上から6行目	$\{(x,y)\mid x,y\in GF(p)\}\cup\{(\infty,\infty)\}$	$\{(x,y)\mid x,y\in GF(p)\}\cup \{(\infty,\infty)\}$. ここで (∞,∞) は無限遠点 O.

ページ 場所

誤

正

352 上から 9 行目

 $(x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_3 - y_1) + y_1)$

 $(x_3, y_3) = (\lambda^2 - x_1 - x_2, \lambda(x_3 - x_1) + y_1)$