1 Basic notation

Definition 1.1 (Independent increments) A stochastic process $(X_t)_{t\in T}$ has independent increments if for every $n \in \mathbb{N}_+$ and any $t_1 \leq t_2 \leq \cdots \leq t_n$, the increment $X_{t_2} - X_{t_1}, X_{t_3} - X_{t_2}, \cdots, X_{t_n} - X_{t_{n-1}}$ are independent;

2 Poisson process

Definition 2.1 (Poisson process (I)) A stochastic process $(N_t)_{t\geq 0}$ defined on a probability space (Ω, \mathcal{F}, P) is said to be a *Poisson process* with rate $\lambda > 0$ if

- 1. $N_0 = 0$;
- 2. $(N_t)_{t\geq 0}$ has independent increments: for any $n\in\mathbb{N}_+$ and any $0\leq t_1\leq t_2\leq\cdots\leq t_n$, the increment $N_{t_2}-N_{t_1},N_{t_3}-N_{t_2},\cdots,N_{t_n}-N_{t_{n-1}}$ are independent;
- 3. for any $0 \le s \le t$, $N_t N_s \sim \text{Pois}(\lambda(t-s))$, that is

$$P(N_t - N_s = k) = e^{-\lambda(t-s)} \frac{\lambda(t-s)^k}{k!} \quad (k = 0, 1, 2, \dots).$$

Definition 2.2 (Counting process) A counting process is a stochastic process $(N_t)_{t\geq 0}$ with values that are non-negative, integer, and non-decreasing:

- 1. $N_0 \ge 0$;
- 2. N_t is an integer;
- 3. If $0 \le s \le t$, then $N_s \le N_t$.

For any $0 \le s < t$, the counting process $N_t - N_s$ represents the number of events that occurred on (s, t].

Definition 2.3 (Poisson process (II)) A counting process $(N_t)_{t\geq 0}$ defined on a probability space (Ω, \mathcal{F}, P) is said to be a *Poisson process* with rate $\lambda > 0$ if

- 1. $N_0 = 0$;
- 2. $(N_t)_{t\geq 0}$ has stationary and independent increments;
- 3. For all $t \ge 0$, $P(N_{t+h} N_t = 1) = \lambda h + o(h)$ when $h \to 0$;
- 4. For all $t \ge 0$, $P(N_{t+h} N_t \ge 2) = o(h)$ when $h \to 0$;