

LICENCE 3^E ANNÉE PARCOURS MATHÉMATIQUES

2018-2019 M67, GÉOMÉTRIE ÉLÉMENTAIRE

RATTRAPAGE

21 juin 2019

[durée : 3 heures]

!\ Documents autorisés : Une feuille A4 recto-verso écrite à la main.

Exercice 1 (Construction à la règle et compas)

- a) Soient A_1 et A_2 deux points distincts du plan. Construire à la règle et au compas (en rédigeant le programme de construction choisi) les sommets A_1, A_2, \ldots, A_8 d'un octogone régulier 1 ayant A_1A_2 pour côté.
- b) Déterminer l'aire de cet octogone régulier en fonction de la longueur $a = A_1 A_2$.

Exercice 2 (Quadrilatère inscriptible et aire)

- a) À quelle condition un parallélogramme ABCD est-il inscrit dans un cercle 2 ?
- b) Soit \mathcal{C} un cercle de rayon R. Quelle est l'aire maximale d'un parallélogramme inscrit dans le cercle \mathcal{C} ?
- c) Soit \mathcal{C} un cercle de rayon R et ABCD un parallélogramme d'aire S inscrit dans \mathcal{C} . Exprimer le périmètre P de ABCD en fonction du rayon R et de l'aire S.
- d) Soit \mathcal{C} un cercle de rayon R. Quel est le périmètre maximal d'un parallélogramme inscrit dans le cercle \mathcal{C} ?

^{1.} Octogone convexe dont les côtés ont tous la même longueur.

^{2.} C.-à-d. a les quatre sommets sur un même cercle.

Exercice 3 (Triangles)

Soit ABC un triangle. On considère le triangle A'B'C' obtenu en prolongeant vers l'extérieur chaque côté de la moitié de sa longueur. Plus précisément, A' est le point de [CA) tel que $AA' = \frac{1}{2}CA$, B' le point de [AB) tel que $BB' = \frac{1}{2}AB$ et C' le point de [BC) tel que $CC' = \frac{1}{2}BC$.

- a) Calculer l'aire de A'B'C' en fonction de l'aire de ABC.
- **b)** Démontrer que la droite (AC) coupe la droite (B'C') en un point M situé entre B' et C'.
- c) Démontrer que $\frac{C'M}{B'M} = \frac{1}{3}$. Indication : On peut utiliser le lemme dit « du chevron ».
- d) Expliquer comment retrouver le triangle d'origine ABC à partir du triangle A'B'C'.

Exercice 4 (Kangourou 2005)

Dans le quadrilatère JKLM, la droite (KM) est la bissectrice de \widehat{JKL} et JL = KL. En sachant que $\widehat{KML} = 80^\circ$ et $\widehat{JLK} = 20^\circ$, que vaut l'angle \widehat{KJM} ?

