Artin: Linear Algebra in a Ring

James Pagan

February 2024

Contents

1	Modules		
	1.1	Definition	2
	1.2	Examples of Modules	2
	1.3	R-Module Homomorphisms	2
	1.4	Submodules	3
2	Free Modules		5
	2.1	R-Matrices	5
	2.2	Free Modules	6
	2.3	Matrices in Free Modules	8
3	Diagonalizing Integer Matrices		
	3.1	Subgroups of Free Abelian Groups	11
4 Presentation Matrices		sentation Matrices	12
	4.1	Translating between Presentations and Modules	13
5	Noe	etherian Rings and Modules	15

1 Modules

1.1 Definition

An **R-module** over a commutative ring R is an Abelian group M (with operation written additively) endowed with a mapping $\mu: R \times M \to M$ (written multiplicatively) such that the following axioms are satisfied for all $x,y \in M$ and $a,b \in R$:

- 1. 1x = x;
- 2. (ab)x = a(bx);
- 3. a(x + y) = ax + ay;
- 4. (a + b)x = ax + bx.

1.2 Examples of Modules

- If R is a ring, R[x] is a module.
- All ideals $\mathfrak{a} \subseteq R$ are R-modules using the same additive and multiplicative operations as R in particular R itself is an R-module.
- If R is a field, R-modules are R-vector spaces. In fact, the axioms above are identical to the vector axioms, defined over commutative rings instead of fields.
- Abelian groups G are precisely the modules over \mathbb{Z} .

1.3 R-Module Homomorphisms

A map $f: M \to N$ between two R-modules M and N is an **R-module homomorphism** (or is **R-linear**) if for all $\alpha \in R$ and $x, y \in M$,

$$f(x + y) = f(x) + f(y)$$
$$f(\alpha x) = \alpha f(x).$$

Thus, an R-module homomorphism f is a homomorphism of Abelian groups that commutes with the action of each $a \in R$. If R is a field, an R-module homomorphism is a linear map. A bijective R-homomorphism is called an R-isomorphism.

The set $\operatorname{Hom}_R(M, N)$ denotes the set of all R-module homomorphisms from M to N, and is a module if we define the following operations for $a \in R$ and $f, g \in \operatorname{Hom}_R(M, N)$:

$$(f+g)(x) = f(x) + g(x)$$
$$(af)(x) = af(x).$$

We denote $Hom_R(M, N)$ by Hom(M, N) if the ring R is unambiguous.

Proposition 1. $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}, \mathbb{M}) \cong \mathbb{M}$

Proof. The mapping ϕ : Hom_R(R, M) \rightarrow M defined by ϕ (f) = f(1) is a homomorphism, as verified by a routine computation: for all f, g \in Hom_R(M, N) and $\alpha \in$ R,

$$\phi(f+g) = (f+g)(1) = f(1) + g(1) = \phi(f) + \phi(g)$$

$$\phi(\alpha f) = (\alpha f)(1) = \alpha f(1) = \alpha \phi(f),$$

so ϕ is an R-homomorphism. This mapping is injective, since each f is uniquely determined by f(1). It is also surjective; for each $\mathfrak{m} \in M$, set define a homomorphism by $h(1) = \mathfrak{m}$. Thus ϕ is the desired isomorphism.

Homomorphisms $u: M' \to M$ and $v: N \to N''$ induce mappings $\bar{u}: \text{Hom}(M, N) \to \text{Hom}(M', N)$ and $\bar{v}: \text{Hom}(M, N) \to \text{Hom}(M, N'')$ defined for $f \in \text{Hom}(M, N)$ as follows

$$\bar{\mathfrak{u}}(\mathsf{f})=\mathsf{f}\circ\mathfrak{u} \qquad \text{and} \qquad \bar{\mathfrak{v}}(\mathsf{f})=\mathfrak{v}\circ\mathsf{f}.$$

I do not know why such a manipulation is noteworthy. The formulas above are quite easy to memorize if the time ever comes to invoke them.

1.4 Submodules

A **submodule** M' of M is an Abelian subgroup of M closed under multiplication by elements of the commutative ring R.

Proposition 2. a *is an ideal of* R *if and only if it is an* R-*submodule of* R.

Proof. The proof evolves from a fundamental observation:

 $Ra = a \iff$ scalar multiplication in the R-module a is closed.

The rest of the multiplicative module conditions follow from the ring axioms. \Box

The following proof outlines the construction of **quotient modules**:

Proposition 3. The Abelian quotient group M / M' is an R-module under the operation a(x + M') = ax + M'.

Proof. We must perform four rather routine calculations: for all $x, y \in M$ and $a, b \in R$,

- 1. **Identity**: 1(x + M') = 1x + M' = x + M'.
- 2. Compatibility: a(b(x+M')) = a(bx+M') = abx+M' = (ab)(x+M').
- 3. **Left Distributivity**: (a + b)(x + M') = (a + b)x + M' = (ax + bx) + M' = (ax + M') + (bx + M') = a(x + M') + b(x + M').
- 4. **Right Distributivity**: a((x+M')+(y+M')) = a((x+y)+M') = a(x+y)+M' = (ax+M') + (ay+M') = a(x+M') + a(y+M)'.

Therefore, M/M' is an R-module. Also, this operation is naturally well-defined. \Box

R-module homomorphisms $f: M \to N$ induce three notable submodules:

- 1. **Kernel**: Ker $f = \{x \in M \mid f(x) = 0\}$, a submodule of M.
- 2. **Image**: Im $f = \{f(x) \mid x \in M\}$, a submodule of N.
- 3. **Cokernel**: Coker f = N / Im f, a quotient of N.

The cokernel is perhaps an unfamiliar face. Such a quotient is not possible for rings or groups; images of homomorphisms need not be ideals of R nor normal subgroups of G.

Theorem 1 (First Isomorphism Theorem). $N / Ker f \cong Im f$.

Proof. Let K = Ker f, and define a mapping $g : M / N \to Im f$ by g(x + K) = f(x). We have for arbitrary $x, y \in N$ and $a \in R$ that

$$g(x+y+K) = f(x+y) = f(x) + f(y) = g(x+K) + g(y+K).$$

 $g(ax+K) = f(ax) = af(x) = ag(x+K).$

Hence g is a homomorphism. For injectivity, suppose that g(x + K) = g(y + K) — that is, f(x) = f(y). Then

$$f(y - x) = f(y) - f(x) = 1$$
,

so $y - x \in K$. Thus x + K = y + K. Surjectivity is quite clear. We conclude that g is the desired isomorphism.

Let $f: M \to N$ be an R-module homomorphism. Here are two special cases of the prior theorem:

1. If f is a monomorphism, them $M \cong \text{Im f}$.

2. If f is an epimorphism, then M / Ker f \cong N.

For a submodule $N' \subseteq \text{Im } f$, I call $M' = \{x \in M \mid f(a) \in N'\}$ the **contraction module**.

Theorem 2 (Correspondence Theorem). *Submodules of* G *which contain* Ker f *correspond one-to-one with submodules of* Im f.

Proof. For each submodule $N' \subseteq Im f$ consider the contraction module $M' = \{x \mid f(x) \in N'\}$. Since this is an Abelian subgroup, we need only check for multiplicative closure: for all $x \in M'$ and $\alpha \in R$, we have

$$f(\alpha x) = \alpha f(x) \in N' \implies \alpha x \in N'.$$

Hence M' is a submodule. It is clear that $Ker\ f\subseteq M'$, so the First Isomorphism Theorem yields that

$$N'$$
 / Ker $f \cong M'$.

Thus this construction is injective. It is surjective, since for each Ker $\subseteq N' \subseteq N$, the subgroup N' is contracted by f(N'). The correspondence is now established.

2 Free Modules

2.1 R-Matrices

The **free and finitely-generated R-modules** are the R-vectors with entries in R and operations defined as follows:

$$\begin{bmatrix} r_1 \\ \vdots \\ r_n \end{bmatrix} + \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix} = \begin{bmatrix} r_1 + s_1 \\ \vdots \\ r_n + s_n \end{bmatrix} \quad \text{and} \quad s \begin{bmatrix} r_1 \\ \vdots \\ r_n \end{bmatrix} = \begin{bmatrix} sr_1 \\ \vdots \\ sr_n \end{bmatrix}.$$

Analogously to fields, we can define R-matrices — matrices with components in R — as R-module homomorphisms from R^n to R^m . Addition and multiplication of R-matrices is defined as expected. The set of all R-module homomorphisms forms the **general linear group**:

$$GL_n(R) = \{n\text{-by-n invertible }R\text{-matrices}\}.$$

The **determinant** of an R-module is computed in precisely the same way, and satisfies a similar property: if **T** and **S** are R-matrices capable of multiplication,

$$det(TS) = det(T) det(S)$$

There is also the **cofactor matrix**: the matrix cof(T) such that T cof(T) = cof(T)T = det(T)I.

Lemma 1. *Let* **T** *be a square* R*-matrix. Then the following holds:*

- 1. **T** is invertible if and only if det(T) is a unit.
- 2. **T** *is invertible if and only if* **T** *has a one-sided inverse.*
- 3. If T is invertible, then T is square.

Proof. Suppose that $det(\mathbf{T})$ is a unit. Then $(det(\mathbf{T})^{-1}) cof(\mathbf{T})$ suffices as an inverse of \mathbf{T} by the properties of cofactor matrices; the converse holds as well. If \mathbf{T} has a one-sided inverse \mathbf{S} , then without loss of generality,

$$det(\mathbf{T}) det(\mathbf{S}) = det(\mathbf{TS}) = det(\mathbf{I}) = 1$$
,

so det(T) is a unit; hence T is invertible. Now, suppose that T is invertible; if T is not square, we can extend it and its inverse S by adding rows (or columns) of zeroes. This yields the following equation without loss of generality:

$$\left[\begin{array}{c|cc} \mathbf{T} & 0 \end{array}\right] \left[\begin{array}{c} \mathbf{S} \\ - \mathbf{0} \end{array}\right] = \mathbf{I}.$$

This is a contradiction, since the left-hand side has determinant 0 and the right-hand side has determinant 1.

When R has few units, invertibility is strong condition. For instance, a \mathbb{Z} -matrix is invertible if and only if its determinant is ± 1 . Thus $GL_n(\mathbb{Z}) \subset GL_n(\mathbb{R})$; of all integer matrices that are invertible as \mathbb{R} -matrices, few are invertible as \mathbb{Z} -matrices.

2.2 Free Modules

A **free R-module** is an R-module that has a **basis**: a spanning set of independent elements. Compare this with the definition delineated in AbstractAlgebra/atiyah2.tex. We mean that $x_1, \ldots, x_n \in M$ are **independent** if

$$a_1x_1 + \cdots + a_nx_n = 0 \implies a_1 = \cdots = a_n = 0.$$

The **rank** of a free R-module is the length of its basis. Clearly rank M = n if and only if $M \cong R^n$. Anyways, a **finitely-generated R-module** is an R-module hat contains $x_1, \ldots, x_n \in M$ such that

$$M = Rx_1 + \cdots + Rc_n = \{a_1x_1 + \cdots + a_nx_n \mid a_1, \dots, a_n \in R\}.$$

An independent set of generators is called a **basis**. As with vector spaces, $x_1, \ldots, x_n \in M$ is a basis of M if and only if all elements of M are a unique linear combination of x_1, \ldots, x_n . The **canonical basis** of R^n consists of e_1, \ldots, e_n .

Most modules have no basis. A free \mathbb{Z} -module is **free Abelian group**. Finite Abelian groups are never free, since each element has finite additive order:

$$o(x_1)x_1 + \cdots + o(x_n)x_n = 0 + \cdots + 0 = 0$$

Let $\mathbf{B} = (x_1, \dots, x_n)$ be a basis of a free R-module M. Then \mathbf{B} induces a homomorphism $R^n \xrightarrow{\mathbf{B}} M$ defined by

$$\mathbf{B}X = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = a_1x_1 + \cdots + a_nx_n.$$

This homomorphism is injective if elements of **B** is independent, surjective **B** generates M, and bijective if **B** constitute a basis of R^n . Hence M has a basis of length n if and only if $M \cong R^n$. I *really* don't like this notation, but I guess I have to live with it.

2.3 Matrices in Free Modules

Let **B** be the basis of a free R-module M. The **coordinate vector** X of an element $\mathbf{v} \in M$ is the unique column vector such that $\mathbf{v} = \mathbf{B}\mathbf{X}$. If \mathbf{B}' is a change of basis, the relevant formula is $\mathbf{B}' = \mathbf{B}\mathbf{P}$. We assert the following proposition without proof:

Proposition 4. *The following two properties of bases hold:*

- 1. A matrix **T** of a change-of-basis in a free module is an invertible R-matrix.
- 2. All bases of a free R-module have the same cardinality.

Let M and N be free R-modules with bases $\mathbf{B} = (x_1, \dots, x_n)$ and $\mathbf{C} = (y_1, \dots, y_m)$ respectively. All R-module homomorphisms $f : M \to N$ admit the form of left-multiplication by an m-by-n R-matrix $\mathbf{T} = (t_{ij})$, with components given by

$$f(y_j) = \sum_{i=1}^n x_i t_{ij}$$

If X is the coordinate vector of $\mathbf{v} \in M$ — namely, if $\mathbf{v} = \mathbf{B}X$ — then $Y = \mathbf{T}X$ is the coordinate vector of its image.

Let the bases **B** and **C** change by invertible R-matrices **S** and **R**. Then if **T** is the R-matrix of $f: M \to N$, the new formula for **T** is the same for vector spaces: $\mathbf{T}' = \mathbf{R}^{-1}\mathbf{TS}$.

3 Diagonalizing Integer Matrices

The critical question is as follows: given an m-by-n \mathbb{Z} -matrix T and a vector $B \in \mathbb{Z}^m$, when does there exist $A \in \mathbb{Z}^n$ such that

$$TA = B$$
?

The most important of these questions is when TA = 0. In a field, one often performs row reduction — but deprived of multiplicative inverses, most row reductions are not allowed. Rather, we allow both row *and* column reduction, that being any of the following:

- 1. Add an integer multiple of a row to a row or a column to a column.
- 2. Interchange two rows or two columns.
- 3. Multiply a row or column by -1.

Any such operation can be performed by multiplying **T** by an **elementary integer matrix**, which is always invertible. The final result of a sequence of operations has the form

$$\mathbf{T}' = \mathbf{O}^{-1}\mathbf{TP}$$

where \mathbf{Q}^{-1} and \mathbf{T} are invertible \mathbb{Z} -matrices of the appropriate sizes. \mathbf{Q}^{-1} documents row operations, while \mathbf{P} dictates column operations: those in \mathbf{P} are multiplied in the same order as performed, while those in \mathbf{Q} are in *reverse* order.

Theorem 3. Let **T** be an m-by-n integer matrix. Then there exist invertible matrices P and Q such that $Q^{-1}TP$ is diagonal — say,

$$\begin{bmatrix}\begin{bmatrix} d_1 & & & \\ & \ddots & & \\ & & d_k \end{bmatrix} & \\ & & 0 \end{bmatrix},$$

where d_i are positive and $d_1 | \cdots | d_k$.

Proof. We present a rather unusual proof: an algorithmic one. The strategy is to reduce **A** to a matrix of the form

$$\begin{bmatrix} d_1 & \cdots & 0 \\ \vdots & \begin{bmatrix} \mathbf{M} & \end{bmatrix} & 0 \\ 0 & & & \end{bmatrix}, \tag{1}$$

where **M** extends down to the bottom of the matrix (hard to draw!).

- 1. Step 1: Permute the rows and columns such that the a_{ij} with the smallest absolute value to the upper left corner. If necessary, multiply by -1 such that this element is positive.
- 2. **Step 2**: If the first column contains a nonzero element a_{i1} , divide it by a_{11} : we have

$$a_{i1} = a_{11}q + r$$
,

where $a_{11} > r \geqslant 0$. If r > 0, perform the relevant row operation such that a_{i1} becomes r and go to Step 1. If r = 0, then repeat Step 2. If there are no nonzero elements, proceed to Step 3.

3. **Step 3**: If the first row contains a nonzero element a_{1i} , divide it by a_{11} : we have

$$a_{1i} = a_{11}q + r$$
,

where $a_{11} > r \ge 0$. If r > 0, perform the relevant column operation such that a_{i1} becomes r and go to Step 1. If r = 0, then repeat Step 3. If there are no nonzero elements, proceed to Step 4.

- 4. **Step 4**: We attain a matrix of the form in Equation (1). Suppose that some element of M is not divisible by d_1 . Add this column into the first column and return to Step 1; this will yield an a_{11} of smaller absolute value. If no such elements exist, proceed to Step 5.
- 5. **Step 5**: An easy induction on argument on max{m, n} now implies that **T** can be factored into the required form.

Observe that we exclusively return to earlier steps when $|a_{11}|$ decreases. This can happen only finitely many times, so no step will ever repeat infinitely often. Then this algorithm indeed yields us a matrix of the desired form.

This proof isn't exactly rigorous, but it's still quite cool. I think you could formalize this via the classification of finitely-generated modules over PIDs. In any case, it ensures the existence of invertible integer matrices Q and P such that for all $T \in \mathcal{L}(\mathbb{Z}^n, \mathbb{Z}^n)$, we have

$$\mathbf{T}' = \mathbf{Q}^{-1}\mathbf{TP}$$
,

where **T** ' has the form of Theorem 3.

We are ready to solve the equation TA = B.

Proposition 5. Let $T' = Q^{-1}TP$ as before. Then the following hold:

- 1. The integer solutions to the equation $\mathbf{T}'\mathbf{A}' = \mathbf{0}$ are the vectors \mathbf{A} whose first \mathbf{k} components are $\mathbf{0}$.
- 2. The integer solutions to the equation TA=0 are those of the form A=PA', where T'A'=0.
- 3. The image W' of multiplication by T' is the integer combinations of the coordinate vectors $d_1\mathbf{e}_1, \ldots, d_k\mathbf{e}_k$.
- 4. The image W of multiplication by **T** is the integer combinations of the coordinate vectors $\mathbf{Q}(d_1\mathbf{e}_1), \ldots, \mathbf{Q}(d_k\mathbf{e}_k)$.

Proof. (1) is implied since T' is diagonal: the equation T'A' for $A = (a_1, ..., a_n)$ reads

$$d_1a_1 = 0$$
, $d_2a_2 = 0$, ... $d_ka_k = 0$.

Hence there exists a solution if and only if $a_1 = \cdots = a_k = 0$. Both (2) and (4) can be viewed as change of bases — in which case, the matrix **P** carries the kernel of **T** to the kernel of **T**', while **Q** carries the image of **T**' to the image of **T**.

As for (3), it is quite easy to deduce that \mathbf{T}' maps all $\mathbf{A} = (a_1, ..., a_n)$ to the vector $(d_1a_1, ..., d_ka_k, 0, ..., 0)$. The vectors $d_1\mathbf{e}_1, ..., d_k\mathbf{e}_k$ clearly span this space.

Isn't this solution so simple and elegant? This section discussed computation and theory together, like some cosmic marble cake. But I digress: the basis of vectors described in (4) is not unique. I'm not sure if the matrix A' is unique, but it seems like it should be?

3.1 Subgroups of Free Abelian Groups

Theorem 4 on diagonalization of \mathbb{Z} -matrices describes homomorphisms of Abelian groups.

Corollary 1. Let $\phi : G \to H$ be a homomorphism of free Abelian groups. Then there exist bases of G and H such that the matrix of ϕ is diagonal.

This section would ideally discuss R-submodules of free R-modules, where R is a principal ideal domain. Unfortunately, integer matrices are no help here; the proof of Theorem 4 relied upon the Euclidean algorithm. Thus we instead focus on \mathbb{Z} -modules.

Theorem 4. Let G be a free Abelian group of rank n and let $H \subseteq G$ be a subgroup. Then H is a free Abelian group of rank n or smaller.

Proof. By Theorem 5, H is finitely generated. Thus let $G = (g_1, \ldots, g_m)$ and $H = (h_1, \ldots, h_n)$ be bases of G and H. Thus if we set $h_j = \sum_i g_i a_{ij}$, the elements a_{ij} form the components of the T matrix associated with the inclusion mapping $i : G \to H$:

$$\mathbb{Z}^{m} \xrightarrow{T} \mathbb{Z}^{n} \\
\downarrow_{H} \qquad \downarrow_{G} \\
H \xrightarrow{i} G$$

Since **G** is a basis, the right-hand arrow is bijective; since **H** generates H, the left-hand arrow is surjective.

Diagonalize T to the form $T' = Q^{-1}TP$ for invertible matrices P and Q. Thus we can interpret Q as a change of basis in \mathbb{Z}^m ; since our original choice of G and H were arbitrary, we can substitute them into our commutative diagram. We find an isomorphism $\mathbb{Z}^m \cong H$, so H is free.

This proof actually misses a few edge cases — but frankly I just don't give a shit right now. I'll return to this over the weekend.

4 Presentation Matrices

Left multiplication by an m-by-n R-matrix T induces an R-module homomorphism

$$R^n \xrightarrow{T} R^m.$$

The image of **T** consists of all linear combinations of the columns of **T** with coefficients in the ring; we may denote this ring by TR^n . We say that the quotient module $M = R^m / TR^n$ is **presented** by **T**.

More generally, any isomorphism $\sigma: R^m / TR^n \to M$ is a **presentation** of M, where the R-matrix T is a **presentation matrix** of M. For instance, C_5 is presented by the integer matrix [5] since $C_5 \cong \mathbb{Z}/5\mathbb{Z}$.

We can utilize the canonical epimorphism $\pi: \mathbb{R}^m \to \mathbb{R}^m / \mathbb{T}\mathbb{R}^n$ to interpret M as follows:

Proposition 6. Let $\pi: \mathbb{R}^m \to \mathbb{R}^m / TR_n$ be the canonical epimorphism. Then

1. M is generated by $\mathbf{B} = (\mathbf{e}_1, \dots, \mathbf{e}_m)$, the images of the standard basis of \mathbb{R}^m .

2. If $\mathbf{Y} = (y_1, \dots, y_m) \in \mathbb{R}^m$, the element $\mathbf{BY} = y_1 \mathbf{e}_1 + \dots y_m \mathbf{e}_m$ is zero if and only if \mathbf{Y} is a linear combination of the columns of \mathbf{T} — which is to say, if and only if \mathbf{Y} lies in the image of \mathbf{T} .

Proof. (1) is a trivial consequence of the surjectivity of π . As per (2), we have that

$$\begin{split} BY &= 0 \iff BY \in T\textbf{R}^n \\ &\iff Y \text{ lies in the image of } T \\ &\iff Y \text{ is a linear combination of the columns of } T. \end{split}$$

This completes the proof.

If a module M is generated by a set $\mathbf{B} = (x_1, \dots, x_m)$, we call an element $\mathbf{Y} = (y_1, \dots, y_m) \in \mathbb{R}^m$ such that $\mathbf{B}\mathbf{Y} = y_1x_1 + \dots + y_nx_n = 0$ a **relation vector** of the generators. The equation $y_1x_1 + \dots + y_mx_m = 0$ is called a **relation**. A set S of relations is **complete** if each relation is a linear combination of relations in S.

Example 1. Consider an Abelian group G generated by a, b, c with the complete set of relations

$$3a + 2b + c = 0$$

 $8a + 4b + 2c = 0$
 $7a + 6b + 2c = 0$
 $9a + 6b + c = 0$.

This group is presented by the following matrix:

$$\mathbf{T} = \begin{bmatrix} 3 & 8 & 7 & 9 \\ 2 & 4 & 6 & 6 \\ 1 & 2 & 2 & 1 \end{bmatrix}$$

Its columns are the coefficients of the relations described above: $(x_1, x_2, x_3)T = (0, 0, 0)$.

4.1 Translating between Presentations and Modules

We now delineate a method to find a presentation for an R-module M. We make two assumptions, both of which are easily satisfied if R is Noetherian:

- 1. M is finitely generated say, by $\mathbf{B} = (x_1, \dots, x_m)$.
- 2. The module W of relations of **B** is finitely generated.

The generators **B** entail an epimorphism $R^m \xrightarrow{B} M$ that maps a column vector $\mathbf{Y} = (y_1, \dots, y_m)$ to the element $y_1x_1 + \dots + y_mx_m$. The kernel of this homomorphism is W: the module of relations of **B**. By the First Isomorphism Theorem, we have

$$M \cong R^m / W$$
.

We turn our attention to W. Since W is finitely generated, there exists a set of generators $\mathbf{C} = (w_1, \dots, w_n)$ from which we obtain an epimorphism $\mathbb{R}^n \xrightarrow{\mathbf{C}} W$. The generators $\mathbf{w}_i \in \mathbb{R}^m$ may be arranged into a matrix as follows:

$$\mathbf{T} = egin{bmatrix} \vdots & \vdots & & \vdots \ \mathbf{w}_1 & \mathbf{w}_2 & \cdots & \mathbf{w}_n \ \vdots & \vdots & & \vdots \ \end{bmatrix}.$$

This n-by-m R-matrix **T** is a composition of $R^n \to W$ with the embedding $W \subset R^m$. By construction, its image is W — which we may denote as TR^m . Thus we have

$$M \cong R^m/W = R^m/TR^n$$
.

T is a presentation of M. Observe that since **T** depends on **B** and **C**, there are many potential presentations of M. In fact:

Proposition 7. Let **T** be an m-by-n presentation matrix of an R-module M. Then the following matrices **T** ' also present M:

- 1. $\mathbf{T}' = \mathbf{Q}^{-1}\mathbf{T}$, where $\mathbf{Q} \in \mathsf{GL}_{\mathfrak{m}}(\mathsf{R})$.
- 2. $\mathbf{T}' = \mathbf{TP}$, where $\mathbf{P} \in \mathsf{GL}_n(\mathsf{R})$.
- 3. T^{\prime} obtained by deleting a column of zeroes.
- 4. If the j-th column of T is e_i , the matrix T ' obtained by deleting row i and column j.

Proof. The proofs originate from the following observations:

- 1. The change of **T** to $\mathbf{Q}^{-1}\mathbf{T}$ corresponds to a change of basis in \mathbb{R}^m in other words, an isomorphism.
- 2. The change of **T** to **TP** corresponds to a change of basis in Rⁿ in other words, an isomorphism.

- 3. A column of zeroes corresponds to the trivial relation, which can be omitted.
- 4. A column of **T** equal to \mathbf{e}_i corresponds to the relation $\mathbf{B}(\mathbf{e}_i) = 0$. The zero element is useless as a generator so we can simply cleave it away from the generating set and the relations. Doing so changes R^n and R^m to R^{n-1} and R^{m-1} , and changes the matrix **T** by deleting the i-th row and j-th column.

This concludes the proof.

This provides a clean method for determining an R-module from its presentation. For the Abelian group in our example, it reduces to

$$\mathbf{T} = \begin{bmatrix} 3 & 8 & 7 & 9 \\ 2 & 4 & 6 & 6 \\ 1 & 2 & 2 & 1 \end{bmatrix} \implies \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 0 & 2 & 4 \\ 0 & 2 & 1 & 6 \end{bmatrix} \implies \begin{bmatrix} 0 & 2 & 4 \\ 2 & 1 & 6 \end{bmatrix} \implies \begin{bmatrix} -4 & 0 & -8 \\ 2 & 1 & 6 \end{bmatrix} \\
\implies \begin{bmatrix} -4 & -8 \end{bmatrix} \implies \begin{bmatrix} 4 & 0 \end{bmatrix} \implies \begin{bmatrix} 4 \end{bmatrix}.$$

Thus **T** presents the Abelian group \mathbb{Z}_4 .

5 Noetherian Rings and Modules

An R-module M is Noetherian if all ascending chains of submodules

$$M_1 \subset M_2 \subset M_3 \subset \cdots$$

are stationary: there exists i such that $M_i = M_{i+1} = \cdots$. A ring R is **Noetherian** if it is a Noetherian module over itself; namely, if all ascending chains of ideals are stationary.

Proposition 8. An R-module M is Noetherian if and only if all submodules of M are finitely generated.

Proof. Suppose that all submodules of M are finitely generated, and let

$$M_1 \subset M_2 \subset M_3 \subset \cdots$$

be a chain of submodules in M. Then $N = \bigcup_{i=1}^{\infty} M_i$ is a submodule of M, hence is finitely generated by some x_1, \ldots, x_n . Define n_i such that $x_i \in M_{n_i}$; letting $n = \max\{n_1, \ldots, n_i\}$, it is clear that all $x_i \in M_n$, so $M_n = N$. Hence the chain is stationary.

If there exists a submodule of M which is infinitely generated by $x_1, x_2,...$ (possibly with uncountably many generators), then

$$(x_1) \subseteq (x_1, x_2) \subseteq (x_1, x_2, x_3) \subseteq \cdots$$

is an ascending chain in M which is not stationary; hence M is not Noetherian. \Box

Likewise, R is Noetherian if and only if all ideals of R are finitely-generated. This proposition highlights the importance of Noetherian modules; the Noetherian condition is just the right finiteness condition to make a lot of theorems work.

Corollary 2. Every proper ideal (a) is contained within some maximal ideal \mathfrak{m} .

Proof. By Krull's Theorem, the quotient ring R/(a) contains a maximal ideal \mathfrak{m}' . By the Correspondence Theorem, the contraction of \mathfrak{m}' is a maximal ideal $\mathfrak{m} \subset R$ which contains (a).

We assert without proof that direct sums and quotients of Noetherian modules are Noetherian; the proof involves exact sequences, which we defer to notes on Atiyah-MacDonald. In any case, the Noetherian condition relates to finite generation:

Theorem 5. *Let* R *be a Noetherian ring. Then all finitely-generated* R-modules are Noetherian.

Proof. Let R be Noetherian. Via our claims without proof, we have that

M is finitely-generated
$$\iff$$
 M \cong Rⁿ / \mathfrak{a} \Longrightarrow M is Noetherian.

This completes the proof.

Corollary 3. Let M be a finitely generated module over a Noetherian ring. Then all submodules of M are finitely generated.

FUCK!