

General information

Designation

Ochroma spp. (MD)

Tradenames

FLEXICORE, CONTOURKORE, PRO-BALSA

Typical uses

Cores for sandwich structures; model building; floatation; insulation;

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O		
Material family	Natural	
Base material	Wood (tropical)	
Renewable content	100	%

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 3 04	- 4	4.88	USD/lb
1 1100	0.04			000/10

Physical properties

Density	0.00614	-	0.00759	lb/in^3
Relative density	0.1	-	0.15	
Cells/volume	8.19e6	-	1.64e7	/in^3
Anisotropy ratio	10	-	30	

Mechanical properties

Young's modulus	0.0218	-	0.0276	10^6 psi
Yield strength (elastic limit)	0.087	-	0.145	ksi
Tensile strength	0.102	-	0.174	ksi
Elongation	* 1.26	-	1.54	% strain
Compressive strength	0.0899	-	0.174	ksi
Compressive stress @ 25% strain	0.16	-	0.305	ksi
Flexural modulus	0.0203	-	0.0247	10^6 psi
Flexural strength (modulus of rupture)	0.131	-	0.145	ksi
Shear modulus	* 0.00232	-	0.00334	10^6 psi
Shear strength	* 1.39	-	1.7	ksi
Rolling shear strength	* 0.0508	-	0.154	ksi
Bulk modulus	* 0.0116	-	0.0145	10^6 psi

BEDOFICK					
Poisson's ratio	* 0.02	-	0.04		
Shape factor	5.1				
Hardness - Vickers	* 0.28	-	0.34	HV	
Hardness - Brinell	* 0.667	-	0.827	ksi	
Hardness - Janka	* 62.9	-	76.4	lbf	
Fatigue strength at 10^7 cycles	* 0.0363	-	0.0479	ksi	
Mechanical loss coefficient (tan delta)	* 0.06	-	0.074		
Densification strain	0.65	-	0.75		
Differential shrinkage (radial)	* 0.05	-	0.06	%	
Differential shrinkage (tangential)	* 0.07	-	0.09	%	
Radial shrinkage (green to oven-dry)	* 3.2	-	7	%	
Tangential shrinkage (green to oven-dry)	4	-	4.8	%	
Volumetric shrinkage (green to oven-dry)	6.8	-	8.3	%	
Work to maximum strength	* 0.0157	-	0.0193	ft.lbf/in^3	
loon and O frageling reconstitution					
Impact & fracture properties	0.0000		0.0004	kai in^0 E	
Fracture toughness	0.0209	-	0.0264	ksi.in^0.5	
Thermal properties					
Glass temperature	171	-	216	°F	
Maximum service temperature	248	-	284	°F	
Minimum service temperature	* -99.4	-	-9.4	°F	
Thermal conductivity	* 0.0214	-	0.026	BTU.ft/hr.ft^2.°F	
Specific heat capacity	0.396	-	0.408	BTU/lb.°F	
Thermal expansion coefficient	* 10.3	-	15.1	µstrain/°F	
Electrical properties					
Electrical resistivity	* 2.1e14	-	7e14	µohm.cm	
Dielectric constant (relative permittivity)	* 1.68	-	2.05		
Dissipation factor (dielectric loss tangent)	* 0.014	-	0.017		
Dielectric strength (dielectric breakdown)	123	-	124	V/mil	
Magnetic properties					
Magnetic type	Non-mag	netio			
Optical properties					
Transparency	Opaque				
Durability					
Water (fresh)		Limited use			
Water (salt)	Limited u	ıse			

Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Limited use
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 4.99e3	-	5.5e3	BTU/lb
CO2 footprint, primary production	* 0.574	-	0.633	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 223	-	246	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0389	-	0.043	lb/lb
Fine machining energy (per unit wt removed)	* 391	-	432	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.0682	-	0.0753	lb/lb
Grinding energy (per unit wt removed)	* 577	-	638	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.101	-	0.111	lb/lb

Recycling and end of life

recoyoning and one or mo				
Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse	
Reference	
Shape	

