Greedy Algorithms and Genome Rearrangements

Outline

- 1. Transforming Cabbage into Turnip
- 2. Genome Rearrangements
- 3. Sorting By Reversals
- 4. Pancake Flipping Problem
- 5. Greedy Algorithm for Sorting by Reversals
- 6. Approximation Algorithms
- 7. Breakpoints: a Different Face of Greed
- 8. Breakpoint Graphs

• Although cabbages and turnips share a recent common ancestor, they look and taste differently.

- In the 1980s Jeffrey Palmer studied evolution of plant organelles by comparing mitochondrial genomes of cabbage and turnip.
- He found 99% similarity between genes.
- These surprisingly similar gene sequences differed in gene order.
- This study helped pave the way to analyzing genome rearrangements in molecular evolution.

• Gene order comparison:

• Evolution is manifested as the divergence in gene order and orientation caused by these inversions of segments of genes

Another Example: Mice and Humans

• The X chromosomes of mice and humans give another example.

- What are the similarity blocks and how do we find them?
- What is the ordering of the blocks?
- What is the scenario for transforming one genome into another?

History of Chromosome X

Reversals: Example

Reversals

• Blocks represent conserved genes.

Reversals

- Blocks represent conserved genes.
- A reversal introduces two breakpoints, represented by

Reversals

- Blocks represent conserved genes.
- A reversal introduces two breakpoints, represented by
- As a result of the reversal, the gene ordering has changed to 1, 2, 3, 8, 7, 6, 5, 4, 9, 10.

Additional Genome Rearrangements

- Besides reversals, we also have:
 - 1. Fusion and fission of chromosomes

Additional Genome Rearrangements

- Besides reversals, we also have:
 - 1. Fusion and fission of chromosomes
 - 2. Translocations

Rearrangements: Mathematical Representation

Each number represents a conserved region; +/- represents orientation.

- Humans and mice have similar genomes, but their genes are ordered differently.
- ~245 rearrangements
 - Reversals
 - Fusions
 - Fissions
 - Translocations

- Waardenburg's syndrome is characterized by pigmentary dysphasia.
- A gene implicated in the disease was linked to human chromosome 2 but it was not clear where exactly it is located on chromosome 2.

- A breed of mice (with splotch gene) had similar symptoms caused by the same type of gene as in humans.
- Scientists succeeded in identifying location of gene responsible for disorder in mice; this gives clues to where the gene is located in humans.

• To locate where the corresponding gene is in humans, we have to analyze the relative architecture of human and mouse genomes.

Additional Application: Cancer

Normal cells will have a certain makeup of chromosomes, as revealed by "chromosome painting."

Additional Application: Cancer

- Rearrangements may disrupt genes and alter gene regulation.
- **Example**: translocation in leukemia yields "Philadelphia" chromosome:

• There are thousands of individual rearrangements known for different tumors.

Additional Application: Cancer

- MCF7 is the human breast cancer cell line.
- Cytogenetic analysis (low-resolution) suggests a complex architecture with many translocations.
 - What is the detailed architecture of MCF7 tumor genome?
 - What sequence of rearrangements produced MCF7?

Reversals: A Formal Motivation

• A sequence of n genes is represented by a permutation π , where a permutation is an ordering of the integers 1 to n:

$$\pi = \pi_{1} \dots \pi_{i-1} \pi_{i} \pi_{i+1} \dots \pi_{j-1} \pi_{j} \pi_{j+1} \dots \pi_{n}$$

$$\pi_{1} \dots \pi_{i-1} \pi_{j} \pi_{j-1} \dots \pi_{i+1} \pi_{i} \pi_{j+1} \dots \pi_{n}$$

• Reversal $\rho(i, j)$ reverses (flips) the elements from i to j in π

Reversals: Example

$$\pi = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$$

$$\rho(3,5)$$

1 2 5 4 3 6 7 8

Reversals: Example

$$\pi = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$$

$$\rho(3,5)$$

$$1 \ 2 \ 5 \ 4 \ 3 \ 6 \ 7 \ 8$$

$$\rho(5,6)$$

$$1 \ 2 \ 5 \ 4 \ 6 \ 3 \ 7 \ 8$$

Reversal Distance Problem

- <u>Goal</u>: Given two permutations, find the shortest series of reversals that transforms one into another
- Input: Permutations π and σ
- Output: A series of reversals $\rho_1, ..., \rho_t$ transforming π into σ , such that t is minimized
- The minimal such t is called the **reversal distance** between π and σ and is often written as $d(\pi, \sigma)$.

Sorting By Reversals Problem

- We will often simply assume that one of the permutations being considered is fixed as the most natural permutation, the identity $I = (1 \ 2 \ 3 \dots n)$; we now restate the problem.
- <u>Sorting By Reversals Problem</u>: Given a permutation, find a shortest series of reversals that transforms it into the identity.
- Input: Permutation π
- Output: A series of reversals $\rho_1, \dots \rho_t$ transforming π into the identity permutation such that t is minimum. We call the minimum such t the "reversal distance" of π , denoted $d(\pi)$

Sorting by Reversals: Example

- Say we are given $\pi = (2 \ 4 \ 3 \ 5 \ 8 \ 7 \ 6 \ 1)$
- We can sort π in four steps as follows:

```
\pi = (2 \ 4 \ 3 \ 5 \ 8 \ 7 \ 6 \ 1)
Step 0:
                     (2 3 4 5 8 7 6 1)
Step 1:
                     (5 4 3 2 8 7 6 1)
Step 2:
                     (5 4 3 2 1 6 7 8)
Step 3:
                     (1\ 2\ 3\ 4\ 5\ 6\ 7\ 8)
Step 4:
```

But can we sort π in three steps? Two? How can we know?

Sorting by Reversals: Example

- Say we are given $\pi = (2 \ 4 \ 3 \ 5 \ 8 \ 7 \ 6 \ 1)$
- We can sort π in four steps as follows:

```
\pi = (2 4 3 5 8 7 6 1)
Step 0:
                 (23458761)
Step 1:
                 (54328761)
Step 2:
                 (5 4 3 2 1 6 7 8)
Step 3:
                 (1\ 2\ 3\ 4\ 5\ 6\ 7\ 8)
Step 4:
```

But can we sort π in three steps? Two? How can we know?

Pancake Flipping Problem

- We take a short detour to discuss a slightly more specific problem, which first arose as a mathematics problem in the 1970s.
- A chef is sloppy; he prepares an unordered stack of pancakes of different sizes.
- The waiter wants to quickly rearrange them (so that the smallest winds up on top, down to the largest at the bottom).
- He does it by flipping over several from the top of the stack.

Pancake Flipping Problem

- <u>Goal</u>: Given a stack of *n* pancakes, what is the minimum number of flips needed to rearrange them into the perfect stack?
- <u>Input</u>: Stack of *n* pancakes
- Output: A minimal sequence of flips transforming the stack into the perfect stack.
- We should note, however, that this isn't very mathematical...

Pancake Flipping Problem

- Let's label the smallest pancake by 1, the biggest by *n*, etc.; a stack of pancakes can then be represented by a permutation.
- We can view a flip of the stack as a special reversal (called a "prefix reversal") which must involve the first element.
- With this mathematical framework, we will restate the pancake flipping problem as the "Sorting by Prefix Reversals Problem."

Sorting by Prefix Reversals

- Sorting by Prefix Reversals Problem: Given a permutation π , find the shortest sequence of prefix reversals transforming π into the identity permutation.
- Input: Permutation π
- Output: A series of prefix reversals $\rho_1, \dots \rho_t$ transforming π into the identity permutation and such that t is minimized.

Pancake Flipping Problem: Greedy Algorithm

- Greedy approach: at most 2 prefix reversals at most to place the biggest pancake on the bottom, at most 2 prefix reversals to place the second-biggest pancake in the second position from the bottom...
- This results in an algorithm which requires 2n 2 prefix reversals.
- Bill Gates (!) and Christos
 Papadimitriou showed in the
 mid-1970s that this problem can
 actually be solved by at most
 5/3 (n + 1) prefix reversals.

Christos Papadimitrou and Bill Gates flip pancakes

Note: This means that our greedy method is "close" to optimal

Sorting By Reversals: A Greedy Algorithm

- We now return to sorting by reversals.
- If the first three elements in permutation $\pi = 1\ 2\ 3\ 6\ 4\ 5$ are already in order, it does not make any sense to break them.
- The length of the already sorted prefix of π is denoted *prefix* (π)
 - In our example above, $prefix(\pi) = 3$
- This results in an idea for a greedy algorithm: increase *prefix* (π) at every step.

Greedy Algorithm: Example

• Doing so, π can be sorted in two steps:

• The number of steps needed to sort a permutation of length n is at most (n-1).

Note: Why is it n-1 and not n? Think about the final step...

Greedy Algorithm: Pseudocode

SimpleReversalSort(*p*)

```
1 for i \leftarrow 1 to n - 1
  j \leftarrow \text{position of element } i \text{ in } p \text{ (i.e., } p_i = i)
    if j \neq i
     p \leftarrow p * r(i, j)
        output p
6
     if p is the identity permutation
       return
```

• SimpleReversalSort does not guarantee the smallest number of reversals and takes five steps on $\pi = 6 \ 1 \ 2 \ 3 \ 4 \ 5$:

- SimpleReversalSort does not guarantee the smallest number of reversals and takes five steps on $\pi = 6 \ 1 \ 2 \ 3 \ 4 \ 5$:
 - Step 0: <u>6 1</u> 2 3 4 5

- SimpleReversalSort does not guarantee the smallest number of reversals and takes five steps on $\pi = 6 \ 1 \ 2 \ 3 \ 4 \ 5$:
 - Step 0: <u>6 1</u> 2 3 4 5
 - Step 1: 1 <u>6 2</u> 3 4 5

- SimpleReversalSort does not guarantee the smallest number of reversals and takes five steps on $\pi = 6 \ 1 \ 2 \ 3 \ 4 \ 5$:
 - Step 0: <u>6 1</u> 2 3 4 5
 - Step 1: 1 <u>6 2</u> 3 4 5
 - Step 2: 1 2 6 3 4 5

- SimpleReversalSort does not guarantee the smallest number of reversals and takes five steps on $\pi = 6 \ 1 \ 2 \ 3 \ 4 \ 5$:
 - Step 0: 6 1 2 3 4 5
 - Step 1: 1 <u>6 2</u> 3 4 5
 - Step 2: 1 2 <u>6 3</u> 4 5
 - Step 3: 1 2 3 <u>6 4</u> 5

- SimpleReversalSort does not guarantee the smallest number of reversals and takes five steps on $\pi = 6 \ 1 \ 2 \ 3 \ 4 \ 5$:
 - Step 0: <u>6 1</u> 2 3 4 5
 - Step 1: 1 <u>6 2</u> 3 4 5
 - Step 2: 1 2 <u>6 3</u> 4 5
 - Step 3: 1 2 3 <u>6 4</u> 5
 - Step 4: 1 2 3 4 6 5

- SimpleReversalSort does not guarantee the smallest number of reversals and takes five steps on $\pi = 6 \ 1 \ 2 \ 3 \ 4 \ 5$:
 - Step 0: 6 1 2 3 4 5
 - Step 1: 1 <u>6 2</u> 3 4 5
 - Step 2: 1 2 <u>6 3</u> 4 5
 - Step 3: 1 2 3 <u>6 4</u> 5
 - Step 4: 1 2 3 4 6 5
 - Step 5: 1 2 3 4 5 6

• But π can be sorted in two steps:

- But π can be sorted in two steps:
 - Step 0: <u>6 1 2 3 4 5</u>

- But π can be sorted in two steps:
 - Step 0: <u>6 1 2 3 4 5</u>
 - Step 1: <u>5 4 3 2 1</u> 6

- But π can be sorted in two steps:
 - Step 0: <u>6 1 2 3 4 5</u>
 - Step 1: <u>5 4 3 2 1</u> 6
 - Step 2: 1 2 3 4 5 6

Approximation Algorithms

- The previous slide has shown that SimpleReversalSort is not optimal for sorting by reversals.
- Often when we cannot find an optimal algorithm, we will use approximation algorithms instead, which find good approximate solutions rather than optimal ones.
- Define the approximation ratio of an algorithm A on input π as:

$$A(\pi) / OPT(\pi)$$

where

 $A(\pi)$ = solution produced by algorithm A

 $OPT(\pi)$ = optimal solution of the problem

Approximation Ratio/Performance Guarantee

- The approximation ratio (performance guarantee) of a minimization algorithm A is the maximum approximation ratio of all inputs of size n.
- Formally, for a minimization algorithm A, the approximation ratio of A is as follows:

$$R = \max_{|\pi|=n} \frac{A(\pi)}{OPT(\pi)}$$

Big Question: What is the best approximation ratio we can find for sorting by reversals?

Adjacencies and Breakpoints

• Let $\pi = \pi_1 \pi_2 \pi_3 \dots \pi_{n-1} \pi_n$ be a permutation. A pair of elements π_i and π_{i+1} is called an **adjacency** if

$$\pi_{i+1} = \pi_i \pm 1$$

The remaining pairs are called **breakpoints**.

• Example:

$$\pi = 1 \ 9 \ 3 \ 4 \ 7 \ 8 \ 2 \ 6 \ 5$$

- (3, 4), (7, 8) and (6,5) are adjacent pairs
- (1,9), (9,3), (4,7), (8,2) and (2,5) are breakpoints.

Extending Permutations

- We put two elements $\pi_0 = 0$ and $\pi_{n+1} = n+1$ at the ends of π .
- Example:

$$\pi = 1 \ | 9 \ | 3 \ | 4 \ | 7 \ | 8 \ | 2 \ | 6 \ | 5$$
Extending with 0 and 10

 $\pi = 0 \ | 1 \ | 9 \ | 3 \ | 4 \ | 7 \ | 8 \ | 2 \ | 6 \ | 5 \ | 10$

• Note that after extension, both a new breakpoint (5, 10) and a new adjacency (0, 1) have been created.

- Define $b(\pi)$ to be the number of breakpoints in the extension of π .
- Note that sorting by reversals appears to correspond to removal of breakpoints.

Example:

$$\pi = 2 \ 3 \ 1 \ 4 \ 6 \ 5$$
 $0 \ 2 \ 3 \ 1 \ 4 \ 6 \ 5 \ 7$
 $0 \ 1 \ 3 \ 2 \ 4 \ 6 \ 5 \ 7$
 $0 \ 1 \ 2 \ 3 \ 4 \ 6 \ 5 \ 7$
 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$
 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$
 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$

How many breakpoints can each reversal eliminate?

$$\pi = 2 \ 3 \ 1 \ 4 \ 6 \ 5$$
 $0 \ 2 \ 3 \ 1 \ 4 \ 6 \ 5 \ 7$
 $0 \ 1 \ 3 \ 2 \ 4 \ 6 \ 5 \ 7$
 $0 \ 1 \ 2 \ 3 \ 4 \ 6 \ 5 \ 7$
 $0 \ 1 \ 2 \ 3 \ 4 \ 6 \ 5 \ 7$
 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$
 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$
 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$

- How many breakpoints can each reversal eliminate?
- Each reversal eliminates at most 2 breakpoints.

- How many breakpoints can each reversal eliminate?
- Each reversal eliminates at most 2 breakpoints.
- This implies:
 - $d(\pi) \ge b(\pi) / 2$
 - We will use this idea to create a new greedy algorithm.

$$\pi = 2 \ 3 \ 1 \ 4 \ 6 \ 5$$
 $0 \ 2 \ 3 \ 1 \ 4 \ 6 \ 5 \ 7$
 $0 \ 1 \ 3 \ 2 \ 4 \ 6 \ 5 \ 7$
 $0 \ 1 \ 2 \ 3 \ 4 \ 6 \ 5 \ 7$
 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$
 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$
 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$

A Better Greedy Algorithm

BreakPointReversalSort(π)

- 1 while *b*(π) > 0
- 2 Among all possible reversals, choose reversal r minimizing $b(\pi \cdot \rho)$
- 3 $\pi \leftarrow \pi \cdot \rho(i, j)$
- 4 output π
- 5 return

A Better Greedy Algorithm

BreakPointReversalSort(π)

- 1 while *b*(π) > 0
- 2 Among all possible reversals, choose reversal r minimizing $b(\pi \cdot \rho)$
- $3 \pi \leftarrow \pi \cdot \rho(i, j)$
- 4 output π
- 5 return

• **Problem**: this algorithm may never terminate.

Strips

- Strip: an interval between two consecutive breakpoints in a permutation.
 - **Decreasing strip**: a strip of elements in decreasing order (e.g. 6 5 4 and 3 2).
 - Increasing strip: a strip of elements in increasing order (e.g. 6789)

• A single-element strip can be declared either increasing or decreasing. We will choose to declare them as decreasing with exception of the strips 0 and n + 1.

Reducing the Number of Breakpoints

- **Theorem 1**: If a permutation π contains at least one decreasing strip, then there exists a reversal ρ which decreases the number of breakpoints (i.e. $b(\pi \cdot \rho) < b(\pi)$).
- We will use this result to help adapt our algorithm to one which is guaranteed to terminate.

- For $\pi = 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2$ 0 1 4 6 5 7 8 3 2 9 $b(\pi) = 5$
 - Choose decreasing strip with the smallest element k in π (k = 2 in this case)

- For $\pi = 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2$ 0 1 4 6 5 7 8 3 2 9 $b(\pi) = 5$
 - Choose decreasing strip with the smallest element k in π (k = 2 in this case)
 - Find k-1 in π

- For $\pi = 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2$ 0 1 4 6 5 7 8 3 2 9 $b(\pi) = 5$
 - Choose decreasing strip with the smallest element k in π (k = 2 in this case)
 - Find k-1 in π
 - Reverse the segment between k-1 and k:
- 0 1 4 6 5 7 8 3 2 9 $b(\pi) = 5$
 - 0 1 2 3 8 7 5 6 4 9 $b(\pi) = 4$

- For $\pi = 1 \ 4 \ 6 \ 5 \ 7 \ 8 \ 3 \ 2$ 0 1 4 6 5 7 8 3 2 9 $b(\pi) = 5$
 - Choose decreasing strip with the smallest element k in π (k = 2 in this case)
 - Find k-1 in π
 - Reverse the segment between k-1 and k:

0 1 4 6 5 7 8 3 2 9
$$b(\pi) = 5$$

0 1 2 3 8 7 5 6 4 9
$$b(\pi) = 4$$

• This gives us a way of decreasing the number of breakpoints, but what if there are no decreasing strips?

The Case of No Decreasing Strips

- If there is no decreasing strip, there may be no reversal that reduces the number of breakpoints (i.e. $b(\pi \cdot \rho) \ge b(\pi)$ for any reversal ρ).
- By reversing an increasing strip (# of breakpoints stay unchanged), we will create a decreasing strip at the next step. Then the number of breakpoints will be reduced in the following step (by Theorem 1).
- Example:

$$\pi = 0 \ 1 \ 2 \ | 5 \ 6 \ 7 \ | 3 \ 4 \ | 8 \ b(\pi) = 3$$

$$\pi \cdot \rho(6,7) = 0 \ 1 \ 2 \ | 5 \ 6 \ 7 \ | 4 \ 3 \ | 8 \ b(\pi) = 3$$

• $\rho(6,7)$ creates a decreasing strip thus guaranteeing that the next step will decrease the # of breakpoints.

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort(p)

```
1 while b(\pi) > 0
     if \pi has a decreasing strip
3
       Among all possible reversals, choose reversal \rho
           that minimizes b(\pi \cdot \rho)
    else
4
       Choose a reversal r that flips an increasing strip in
     \pi \leftarrow \pi \cdot \rho
6
  output \pi
8 return
```

Performance Guarantee

- *ImprovedBreakPointReversalSort* is an approximation algorithm with a performance guarantee of at most 4.
 - It eliminates at least one breakpoint in every two steps; at most $2b(\pi)$ steps.
 - Approximation ratio: $2b(\pi) / d(\pi)$
- Optimal algorithm eliminates at most 2 breakpoints in every step: $d(\pi) \ge b(\pi) / 2$
- Performance guarantee:
 - $(2b(\pi)/d(\pi)) \le [2b(\pi)/(b(\pi)/2)] = 4$

Signed Permutations

- Up to this point, all permutations to sort were unsigned.
- But genes have directions... so we should consider signed permutations.

SIGNED Reversals

• Blocks represent conserved genes.

SIGNED Reversals

- Blocks represent conserved genes.
- A reversal introduces two breakpoints, represented by

SIGNED Reversals

- Blocks represent conserved genes.
- A reversal introduces two breakpoints, represented by
- As a result of the reversal, the gene ordering has changed to 1, 2, 3, -8, -7, -6, -5, -4, 9, 10.

GRIMM Web Server

- Real genome architectures are represented by signed permutations.
- Efficient algorithms to sort signed permutations have been developed.
- GRIMM web server computes the reversal distances between signed permutations.

GRIMM Web Server

- 1) Represent the elements of the permutation $\pi = 2\ 3\ 1\ 4\ 6\ 5$ as vertices in a graph (ordered along a line).
- 2) Connect vertices in order given by π with solid edges.
- 3) Connect vertices in order given by 1 2 3 4 5 6 with dotted edges.
- 4) Superimpose solid and dotted paths.

- If we line up the dotted path (instead of the solid path) on a horizontal line, then we would get the following graph.
- Although they look different, these graphs are the same.

- How does a reversal change the breakpoint graph?
 - The dotted paths stay the same for both graphs.
 - However, the red (solid) edges are replaced with blue ones.

A reversal removes 2 edges (red) and replaces them with 2 new edges (blue).

Case 1:

Both edges belong to the same cycle

- Remove the center black edges and replace them with new black edges (there are two ways to replace them)
- (a) After this replacement, there now exists 2 cycles instead of 1 cycle
- (b) Or after this replacement, there still exists 1 cycle

$$\mathbf{c}(\pi\rho) - \mathbf{c}(\pi) = \mathbf{0}$$

This is called a proper reversal since there's a cycle increase after the reversal.

Case 2:

The edges belong to different cycles

- Remove the center black edges and replace them with new black edges
- After the replacement, there now exists 1 cycle instead of 2 cycles

$$c(\pi \rho) - c(\pi) = -1$$

Therefore, for every permutation π and reversal ρ , $c(\pi\rho) - c(\pi) \leq 1$

- Since the identity permutation of size n contains the maximum cycle decomposition of n+1, c(identity) = n+1
- $c(identity) c(\pi)$ equals the number of cycles that need to be "added" to $c(\pi)$ while transforming π into the identity
- Based on the previous theorem, at best after each reversal, the cycle decomposition could increased by one, then:

$$d(\pi) = c(identity) - c(\pi) = n+1 - c(\pi)$$

• Yet, not every reversal can increase the cycle decomposition

- Recall that genes are *directed* fragments of DNA and we represent a genome by a signed permutation
- If genes are in the same position but there orientations are different, they do not have the equivalent gene order
- For example, these two permutations have the same order, but each gene's orientation is the reverse; therefore, they are not equivalent gene sequences

- Begin by constructing a normal signed breakpoint graph
- Redefine each vertex x with the following rules:
 - If vertex x is positive, replace vertex x with vertex 2x-1 and vertex 2x
 - \triangleright If vertex x is negative, replace vertex x with vertex 2x and vertex 2x-1
 - \blacktriangleright The extension vertices x = 0 and x = n+1 are kept as they were before

- Begin by constructing a normal signed breakpoint graph
- Redefine each vertex x with the following rules:
 - *If vertex x is positive, replace vertex x with vertex 2x-1 and vertex 2x*
 - If vertex x is negative, replace vertex x with vertex 2x and vertex 2x-1
 - The extension vertices x = 0 and x = n+1 are kept as they were before

- Construct the breakpoint graph as usual
- Notice the alternating cycles in the graph between every other vertex pair
- Since these cycles came from the same signed vertex, we will not be performing any reversal on both pairs at the same time; therefore, these cycles can be removed from the graph

Interleaving Edges

- Interleaving edges are grey edges that cross each other Example: Edges (0,1) and (18, 19) are interleaving
- Cycles are interleaving if they have an interleaving edge

Interleaving Graphs

• An Interleaving Graph is defined on the set of cycles in the Breakpoint graph and are connected by edges where cycles are interleaved

Interleaving Graphs

- Oriented cycles are cycles that have the following form
- Mark them on the interleave graph
- Unoriented cycles are cycles that have the following form
- In our example, A, B, D, E are unoriented cycles while C, F are oriented cycles

Hurdles

- Remove the oriented components from the interleaving graph
- The following is the breakpoint graph with these oriented components removed
- Hurdles are connected components that do not contain any other connected components within them

Reversal Distance with Hurdles

- Hurdles are obstacles in the genome rearrangement problem
- They cause a higher number of required reversals for a permutation to transform into the identity permutation
- Let $h(\pi)$ be the number of hurdles in permutation π
- Taking into account of hurdles, the following formula gives a tighter bound on reversal distance:

$$d(\pi) \ge n+1-c(\pi)+h(\pi)$$