MATH 405: Assignment 6

Micah Sherry

April 30, 2025

1. If G is a commutative Group Then $H = \{\alpha \in G | \alpha = g^2 \text{ for some } g \in G\}$ is a Subgroup of G.

Proof. Let G be a commutative Group and let $H=\{\alpha\in G|\alpha=g^2\text{ for some }g\in G\}$. Notice $e=e^2\in H$. So, $H\neq\varnothing$.

let $x^2, y^2 \in H$. Consider,

$$x^2y^2 = xxyy$$

= $xyxy$ (By commutativity of G)
= $(xy)^2$

Since, $xy \in G$, $(xy)^2 \in H$ thus H is closed under the operation of the group. Let $g^2 \in H$. Notice $(g^{-1})^2 \in H$ because $g^{-1} \in G$. Consider,

$$(g^{-1})^2 g^2 = g^{-1} g^{-1} g g$$

= e (By definition of inverses)

Therefore $(g^{-1})^2$ is the inverse of g^2 . So H contains inverses for each element of H. Thus H is a Subgroup of G.

2. let H and K be Subgroup of a commutative group G. Define $HK = \{hk | h \in H \text{ and } k \in G\}$

Proof. Notice $e \in H$ and $e \in K$ therefore $e^2 = e \in HK$. So $HK \neq \emptyset$. let $h_1, h_2 \in H$ and $k_1, k_2 \in K$. Consider,

$$(h_1k_1)(h_2k_2) = h_1k_1h_2k_2$$

= $(h_1h_2)(k_1k_2)$ (by commutativity of G)

Notice $(h_1h_2) \in H$ and (k_1k_2) So, $(h_1h_2)(k_1k_2) \in HK$. Let $h \in H$ and $k \in K$, notice $h^{-1}k^{-1} \in HK$ Consider,

$$(h^{-1}k^{-1})(hk) = h^{-1}k^{-1}hk$$

= $h^{-1}hk^{-1}k$ (by commutativity)
= e (by definition of inverses)

Therefore $h^{-1}k^{-1}$ is the inverse of hk. Thus HK is a Subgroup of G.

3. Find the order of each element in U_{20}

element of U_{20}	order
1	1
3	4
7	4
9	2
11	2
13	4
17	4
19	2

- 4. Let G be a group and $g \in G$ be an element with finite order prove each of the following statements:
 - (a) $ord(g^{-1})$ is finite. proof of this follows from proof of part b
 - (b) $ord(g^{-1}) = ord(g)$

Proof. let $g \in G$ with $ord(g) = n \in \mathbb{N}$

$$g^n=e$$

$$(g^n)^{-1}=e^{-1}$$

$$(g^{-1})^n=e$$
 (by properties of exponents and since e is self inverse)

Assume for the sake of contradiction that there exist $r \in \mathbb{N}$ such that 0 < r < n such that $(g^{-1})^r = e$. So,

$$(g^{-1})^r=e$$

$$((g^{-1})^r)^{-1}=e^{-1}$$

$$g^r=e$$
 (by properties of exponents and since e is self inverse)

since 0 < r < n this implies that ord(g) = r which contradicts the assumption therefore $ord(g^{-1}) = n$

5. let a and b be elements of a commutative Group g. If the ord(a) and ord(b) are finite then ord(ab) is finite.

Proof. let $a, b \in G$ with ord(a) = m and ord(b) = n. Notice

$$a^{m} = (a^{m})^{n} = a^{mn} = e^{n} = e$$

And Similarly

$$b^n = (b^n)^m = b^{nm} = e^m = e$$

Now Consider,

$$a^{nm}b^{nm} = e$$
 (since $a^{nm} = b^{nm} = e$)
 $(ab)^{nm} = e$ (since G is commutative)

Therefore the 0 < ord(ab) < mn, which is finite.