

PROPOSAL SKRIPSI

KLASIFIKASI JENIS BUNGA BOUGENVILLE MENGGUNAKAN KNN DAN EKSTRAKSI FITUR GLCM DAN HSV

NAUVAL MAULANA RIZKY IRAWAN NPM 21081010066

DOSEN PEMBIMBING

-

_

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET, DAN TEKNOLOGI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR FAKULTAS ILMU KOMPUTER PROGRAM STUDI INFORMATIKA SURABAYA 2024

LEMBAR PENGESAHAN

KLASIFIKASI JENIS BUNGA BOUGENVILLE MENGGUNAKAN KNN DAN EKSTRAKSI FITUR GLCM DAN HSV

Oleh : NAUVAL MAULANA RIZKY IRAWAN NPM. 21081010066

Telah dipertahankan dihadapan dan d Fakulktas Ilmu Komputer Universitas tanggal			
NIP. xxxxxxxx xxxxxx x xxx		<u></u>	(Pembimbing I)
xxxxxxx xxxxxx x xxx	NIP.		(Pembimbing II)
Nama Dosen NIP/NPT		<u></u>	(Pembimbing III) (Opsional/Tambahan)
<u>Nama Dosen</u> <u>NIP/NPT</u>		<u></u>	(Ketua Penguji)
Nama Dosen NIP/NPT		<u></u>	(Penguji I)
		Mengetahui, Dekan Fakultas Ilmu Kon	nputer

Prof. Dr. Ir. Novirina Hendrasarie, MT

NIP. 19681126 199403 2 001

SURAT PERNYATAAN ORISINALITAS

Yang bertandatangan di bawah ini:

Nama Mahasiswa : NAUVAL MAULANA RIZKY IRAWAN

Program Studi : Informatika

Dosen Pembimbing : -

dengan ini menyatakan bahwa isi sebagian maupun keseluruhan disertasi dengan

judul:

KLASIFIKASI JENIS BUNGA BOUGENVILLE MENGGUNAKAN KNN

DAN EKSTRAKSI FITUR GLCM DAN HSV

adalah benar-benar hasil karya intelektual mandiri, diselesaikan tanpa

menggunakan bahan-bahan yang tidak diizinkan dan bukan merupakan karya

pihak lain yang saya akui sebagai karya sendiri. Semua referensi yang dikutip

maupun dirujuk telah ditulis secara lengkap pada daftar pustaka. Apabila ternyata

pernyataan ini tidak benar, saya bersedia menerima sanksi sesuai peraturan yang

berlaku.

Surabaya,

Yang Membuat Pernyataan,

NAUVAL MAULANA RIZKY IRAWAN

NPM. 21081010066

5

ABSTRAK

Nama Mahasiswa / NPM : Nauval Maulana Rizky Irawan / 21081010066

Judul Skripsi : Klasifikasi Jenis Bunga Bougenville Menggunakan KNN

dan Ekstraksi Fitur GLCM dan HSV

Dosen Pembimbing : 1.

2.

Kata kunci:

ABSTRACT

Student Name / NPM : Nauval Maulana Rizky Irawan / 21081010066

Thesis Title : Classification of Bougainvillea Flower Types Using KNN

and GLCM and HSV Feature Extraction

Advisor : 1.

2.

ABSTRACT

Keywords:

KATA PENGANTAR

Puji syukur kehadirat Allah SWT atas segala rahmat, hidayah dan karunia-Nya kepada penulis sehingga skripsi dengan judul "Klasifikasi Dokumen Pdf Untuk Konversi Mata Kuliah Pada Program Rekognisi Pembelajaran Lampau Menggunakan Pendekatan NLP" dapat terselesaikan dengan baik.

Penulis mengucapkan terima kasih kepada Bapak Dr. Ir. I Gede Susrama Mas Diyasa, ST. MT. IPU selaku Dosen Pembimbing utama yang telah meluangkan waktunya untuk memberikan bimbingan, nasehat serta motivasi kepada penulis. Dan penulis juga banyak menerima bantuan dari berbagai pihak, baik itu berupa moril, spiritual maupun materiil. Untuk itu penulis mengucapkan terima kasih kepada:

- 1. Ibu Prof. Dr. Ir. Novirina Hendrasarie, MT selaku Dekan Fakultas Ilmu Komputer Universitas Pembangunan Nasional "Veteran" Jawa Timur.
- 2. Ibu Fetty Tri Anggraeny selaku Ketua Program Studi InformatikaFakultas Ilmu Sosial Dan Ilmu Komputer Universitas Pembangunan Nasional "Veteran "Jawa Timur.
- 3. Ibu dan Almarhum Ayah Penulis yang selalu mendukung Penulis dari awal berkuliah hingga pada titik ini.

Penulis menyadari bahwa di dalam penyusunan skripsi ini banyak terdapat kekurangan. Untuk itu kritik dan saran yang membangun dari semua pihak sangat diharapkan demi kesempurnaan penulisan skripsi ini. Akhirnya, dengan segala keterbatasan yang penulis miliki semoga laporan ini dapat bermanfaat bagi semua pihak umumnya dan penulis pada khususnya.

Surabaya,	
	Penulis

DAFTAR ISI

LEMBAR J	UDUL SKRIPSI i	
LEMBAR F	PENGESAHAN SKRIPSIv	
LEMBAR F	PERSETUJUAN SKRIPSI vii	
ABSTRAK	xi	
KATA PEN	GANTAR xi	
DAFTAR IS	il xv	
DAFTAR G	AMBAR xviii	
DAFTAR T	ABEL xxiii	
DAFTAR N	OTASI xxv	
BAB 1 PEN	NDAHULUAN 1	
1.1.	Latar Belakang	1
1.2.	Rumusan Masalah	5
1.3.	Tujuan Penelitian	7
1.4.	Manfaat Penelitian	9
BAB 2 TIN	JAUN PUSTAKA	
2.1.	Penelitian Terdahulu	17
2.2.	Landasan Teori	21
2.3.	Pemrosesan Data Akusisi	23
2.3.1	Spermatozoa Manusia	23
2.3.2	Analisis Semen Manusia	24
2.3.3	Pengamatan Semen Secara Makroskospis	25
2.4.	Dst	34
BAB 3 DES	SAIN DAN IMPLEMNTASI SISTEM 71	
3.1.	Metode Penelitian	71
3.2.	Desain Sistem	72
3.3.	Pelacakan Pergerakan Kepala Spermatozoa	74
3.3.1.	Preprocessing	74
3.4.	Dst	92

LEMBAR .	UDUL SKRIPSI i	
LEMBAR I	PENGESAHAN SKRIPSI v	
LEMBAR I	PERSETUJUAN SKRIPSI vii	
ABSTRAK	xi	
KATA PEN	GANTAR xi	
DAFTAR IS	6l xv	
DAFTAR G	iAMBAR xviii	
DAFTAR T	ABEL xxiii	
DAFTAR N	IOTASI xxv	
BAB 1 PEI	NDAHULUAN 1	
1.1.	Latar Belakang	1
1.2.	Rumusan Masalah	5
1.3.	Tujuan Penelitian	7
1.4.	Manfaat Penelitian	9
BAB 2 TIN	JAUN PUSTAKA	
2.1.	Penelitian Terdahulu	17
2.2.	Landasan Teori	21
2.3.	Pemrosesan Data Akusisi	23
2.3.1	Spermatozoa Manusia	23
2.3.2	Analisis Semen Manusia	24
2.3.3	Pengamatan Semen Secara Makroskospis	25
BAB 4 PN	IGUJIAN DAN ANALISA	
4.1.	Metode Pengujian	94
4.2.	Hasil Pengujian	94
4.3.	Dst	114
BAB 5 PE	NUTUP 116	

DAFTAR GAMBAR

Gambar 1.1	Gambaran Permasalahan Dengan Analisis Spermatozoa	
	Manusia	4
Gambar 1.2	Perangkat yang digunakan untuk mengambil citra dan video	
	spermatozoa, di laboratorium mikrobiologi Poltekes Surabaya	
	– 20 spermatozoa	9
Gambar 1.3.	Diagram Tulang Ikan Penelitian	12
Gambar 1.4.	Alur Penentuan Abnormalitas Bentuk dan Pergerakan	
	Spermatozoa	13
Gambar 2.1.	Kerangka Konsep Untuk Klasifikasi Hasil Pemeriksaan	
	Spermatozoa	22
Gambar 2.2.	Struktur Morfologi Sperma	25
Gambar 2.3.	Bright field microscope: (a) Prinsip kerja bright field	
	microscope, (b) Irisan bright field microscope	31
Gambar 2.4	Phase contrast microscope	32
Gambar 2.5	Perbandingan kontras image sel hidup dari dua jenis	
	mikroskop : (a) bright field microscope , (b) phase contrast	
	microscope	32
Gambar 2.6.	Prosedur pengambilan data citra dan video sperma, (a) Bright	
	field microscope yang digunakan, (b) Cairan sperma yang	
	sudah diteteskan di atas kaca preparat	33
Gambar 2.7.	Pemrosesan Awal Ketidaknormalan Sperma Berdasarkan	
	Morfologi	34
Gambar 2.8.	Konversi RGB ke Grey scale pada Citra Spermatozoa. (a) Citra	36
	RGB, (b) Citra Grey Scale	
Gambar 2.9.	Distribusi <i>Gaussian</i> 1D	38
Gambar 2.10.	Distribusi 2D <i>Gaussian</i>	38
Gambar 2.11.	Prosess background subtraction	39
Gambar 2.12.	Alur proses dari basic model background subtraction	40
Gambar 2.13.	Alur diagram dari algoritma Frame Difference	41
Gambar 2.14.	Alur diagram dari algoritma Weighted Moving Mean	42

DAFTAR TABEL

Tabel 1.1	Matriks Posisi Penelitian pada Penelitian Terkait	6
Tabel 2.1.	Gambaran Makroskopik Analisis Semen (Standart WHO,	28
	2010)	
Tabel 2.2	Klasifikasi Morfologi Sperma (Wein et al., 2012)	29
Tabel 2.3	Hasil review background subtraction (Li, Q 2012) dan Penelitian	39
	(Basuki, 2016)	
Tabel 3.1.	Hasil Ekstraksi Fitur Kelas Spermatozoa (Valid) dan Bukan	85
	Spermatozoa (Tidak Valid) untuk Data <i>Training</i>	
Tabel 3.2.	Hasil Pengujian Klasifikasi Sperma Dengan Metode Support	88
	Vector Machine (SVM)	
Tabel 3.3.	Hasil Pengujian Klasifikasi Sperma Dengan Metode K-Nearest	90
	Neighbour (K-NN)	
Tabel 4.1.	Contoh perbandingan hasil pelacakan spermatozoa setiap	109
	algoritma Basic background subtraction pada frame ke 120	
Tabel 4.2.	Contoh perbandingan hasil pelacakan spermatozoa setiap	112
	algoritma statistical background subtraction pada frame ke 120	
Tabel 4.3.	Hasil dari precision, recall, dan f-measure dari setiap algoritma	114
	background subtraction	
Tabel 5.1.	Identifikasi Spermatozoa (J. Elia, 2010)	120
Tabel 5.2.	Posisi Sperma Data Uji Selama Penjejakan	132
Tabel 5.3.	Posisi Data Sperma Manusia Selama Penjejakan	133
Tabel 5.4.	Regresi Linear dan Nilai <i>RMS</i> Data Sperma Uji Selama	134
	Penjejakan	
Tabel 5.5.	Regresi Linear dan Nilai RMS Data Sperma Manusia Selama	135
	Penjejakan	
Tabel 5.6.	Jumlah Dan Prosentase Dari Kelompok Spermatozoa	135

DAFTAR NOTASI

: Intensitas

 W_R : weight factor

H : hue

S : saturation

V : value

dst : Gambar akumulator

scr: Gambar InputF: ForegroundB: Background

f : Frame

SE : Structuring Element

ECD : Equivalent Circular Diameter

b : bias

 $WED(fi \rightarrow prototype)$: bobot euclidian distance antara vektor fitur $fi \rightarrow prototype$

f(x): Fungsi Vektor Masukan

 $d(x^{'}, x)$: jarak di antara data uji z ke setiap vector data latih

K(x, y) : fungsi kernel linear

G(x) : fungsi Gaussian satu dimensi σ : standard deviasi dari distribusi

G(x, y) : fungsi Gaussian dua dimensi

BABI

PENDAHULUAN

1.1. Latar Belakang

Dalam dunia tanaman hias terdapat banyak sekali jenis tanaman yang ada baik yang memiliki bunga ataupun tidak bahkan tidak sedikit tanaman yang memiliki nama dan bentuk yang cukup mirip namun ternyata merupakan jenis tanaman yang berbeda, salah satunya tanaman bougenville yang memiliki bunga dengan berbagai warna yang berbeda dimana orang awam pasti akan menganggap bahwa seluruh tanaman bougenville itu sama karena sangat mirip satu antara yang lain akan tetapi terdapat banyak jenis tanaman bougenville yang ada di dunia.

Untuk mempermudah dan memanfaatkan perkembangan teknologi saat ini, maka pengolahan citra digital dan kecerdasan buatan (AI) telah memberikan solusi yang efisien untuk permasalahan klasifikasi objek visual. Salah satu algoritma yang sering digunakan untuk klasifikasi adalah K-Nearest Neighbors (KNN). KNN dikenal karena kesederhanaannya namun tetap efektif dalam menangani berbagai jenis data, termasuk citra digital.

Selain algoritma klasifikasi, fitur yang diekstraksi dari citra memainkan peran penting dalam menentukan performa model. Gray-Level Co-occurrence Matrix (GLCM) digunakan untuk mengekstraksi fitur tekstur seperti kontras, korelasi, energi, dan homogenitas, sementara HSV (Hue, Saturation, Value) digunakan untuk mengekstraksi fitur warna yang lebih stabil di bawah kondisi pencahayaan yang bervariasi.

Penelitian ini bertujuan untuk mengklasifikasikan spesies bunga Bougenville menggunakan algoritma KNN dengan fitur yang diekstraksi menggunakan GLCM dan HSV. Hasil penelitian ini diharapkan dapat memberikan kontribusi dalam bidang pengolahan citra digital, khususnya dalam klasifikasi tanaman hias, serta menjadi dasar untuk pengembangan sistem klasifikasi otomatis di masa depan.

1.2. Rumusan Masalah

1. Bagaimana proses ekstraksi fitur tekstur menggunakan metode Gray-Level Co-occurrence Matrix (GLCM) pada citra bunga Bougenville?

- 2. Bagaimana proses ekstraksi fitur warna menggunakan metode Hue, Saturation, Value (HSV) pada citra bunga Bougenville?
- 3. Bagaimana performa algoritma K-Nearest Neighbors (KNN) dalam mengklasifikasikan spesies bunga Bougenville berdasarkan fitur yang diekstraksi menggunakan GLCM dan HSV?
- 4. Parameter K dan metrik jarak apa yang optimal untuk meningkatkan akurasi klasifikasi bunga Bougenville menggunakan algoritma KNN?
- 5. Seberapa efektif kombinasi fitur tekstur (GLCM) dan fitur warna (HSV) dalam meningkatkan performa klasifikasi bunga Bougenville

1.3. Tujuan Penelitian

- 1. Untuk Mengetahui seberapa pengaruhnya objek yang diteliti terhadap akurasi dari algoritma KNN dan ekstraksi GLCM dan HSV yang digunakan
- 2. Membantu orang awam dalam mengenali jenis-jenis tanaman bunga bougenville dengan instan

1.4. Manfaat Penelitian

Penelitian yang dilakukan mempunyai manfaat untuk masyarakat, seperti membantu masyarakat luas khususnya yang memiliki minat pada tanaman hias agar dapat mengetahui jenis-jenis tanaman bunga bougenville tanpa perlu bertanya kepada pedagang dahulu. Untuk akademik, membuktikan bahwa bunga bougenville dapat atau tidak dapat diklasifikasi dengan baik menggunakan algoritma KNN dan Ekstraksi fitur GLCM dan HSV

BAB II

TINJAUN PUSTAKA

- 2.1. Penelitian Terdahulu
- 2.2. Landasan Teori

Gambar 2.1. Kerangka Konsep Untuk Klasifikasi Hasil Pemeriksaan Spermatozoa

BAB III

DESAIN DAN IMPLEMENTASI SISTEM

3.1. Metode Penelitian