AI model Of Diabetes Prediction 3rd semester project Session 2019-2023

BS SOFTARE ENGINEERING

Department of Software Engineering Faculty of Computer Science & Information Technology The Superior College, Lahore

FALL 2023

Table of content

Contents

Introduction:	
Modules:	
Methodology:	
1. Data Collection:	
2. Data Preprocessing:	
3. Feature Engineering:	
5. Model Evaluation:	
Results:	
Model Performance:	
Diabetic Prediction:	C

Table of figures

Figure 1	4
Figure 2	
Figure 3	4
Figure 4	
Figure 5	
Figure 6	
Figure 7	
Figure 8	6
Figure 9	7
Figure 10	
Figure 11	
Figure 12	8
Figure 13	9
Figure 14	

Introduction:

This project aims to develop an AI-powered prediction model that can accurately forecast diabetic prediction based on historical data.

Modules:

Here are some modules that we have to import before going further.

```
import pandas as pd
import numpy as np
import pickle
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train_test_split
from sklearn import sym
from sklearn.metrics import accuracy_score
```

Figure 1

Methodology:

This project employed a machine learning approach to develop a loan status prediction model. The methodology consisted of the following steps:

1. Data Collection: A dataset containing loan applications, credit reports, and loan status (default or non-default) was collected from Kaggle.

Figure 3

2. Data Preprocessing: The dataset was cleaned, transformed, and normalized to prepare it for modeling

Artificial Intelligence: Prediction Model of diabetes diseases

```
Data loading

1    Ddata = pd.read_csv(filepath_or_buffer=r"D:\superior\semester_3rd\lab_AI\final project\diabetes.csv")
```

Figure 4

```
1 Ddata.shape
(768, 9)
  1 Ddata.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
#
    Column
                             Non-Null Count Dtype
0 Pregnancies
                             768 non-null
                                            int64
1 Glucose
                             768 non-null
                                            int64
2 BloodPressure
                             768 non-null
                                            int64
3 SkinThickness
                             768 non-null
                                            int64
                             768 non-null int64
4 Insulin
```

Figure 5

Figure 6

```
1 Ddata.groupby(by='Outcome').mean()

1 Ddata.to_csv(path_or_buf=r"D:\superior\semester_3rd\lab_AI\final project\encoded_diabetes.csv")
```

Figure 7

3. Feature Engineering: Now we split data into x and y train and test for model evaluation.

```
Train Test split

1  x = Ddata.drop(labels=['Outcome'] , axis=1)
2  y = Ddata['Outcome']
```

Figure 8

Artificial Intelligence: Prediction Model of diabetes diseases

```
Data Standarization

1  scaler = StandardScaler()

1  scaler.fit(X=x)

1  stand_data = scaler.transform(X=x)

[16]
```

Figure 9

```
1 x_train , x_test , y_train , y_test = train_test_split(x,y , test_size=0.2, stratify= y, random_state=2)
```

Figure 10

5. Model Evaluation: The performance of the selected model was evaluated using metrics such as accuracy, precision.

```
Training the model

1 model = svm.SVC(kernel='linear')

1 model.fit(X=x_train,y=y_train)

20]

1 pickle.dump(obj=model,file=open(file='model_svc.pkl',mode='wb'))
21]
```

Figure 11

Results:

The results of the project are presented below:

Model Performance: The random forest model outperformed other algorithms, achieving an accuracy of 80%,

```
1 train_accuracy = model.predict(X=x_train)
2 train_accuracy = accuracy_score(y_true=train_accuracy,y_pred=y_train)

1 print(f'Accuracy score of model: {train_accuracy}')

Accuracy score of model: 0.7736156351791531

1 test_accuracy = model.predict(X=x_test)
2 test_accuracy = accuracy_score(y_true=test_accuracy,y_pred=y_test)
```

Figure 12

Artificial Intelligence: Prediction Model of diabetes diseases

Figure 13

Diabetic Prediction: The model accurately predicted loan status for 75% of the test dataset.

```
1 test_accuracy = model.predict(X=x_test)
2 test_accuracy = accuracy_score(y_true=test_accuracy,y_pred=y_test)

1 print(f"Accuracy of test: {test_accuracy}")

Accuracy of test: 0.7597402597402597
```

Figure 14