

Representation

Template Models

Temporal Models

Distributions over Trajectories ALICIATION OF TRAJECTORIES Pick time granularity A Line Of 1 2 3 4 5

- $X^{(t)}$ variable X at time $t\Delta$
- $X^{(\dagger;\dagger')} = \{X^{(\dagger)}, ..., X^{(\dagger')}\}, (\dagger \leq \dagger')$

Want to represent P(X^(p:t')) for any t, t'

 (xt, \ldots, xtp)

时不变性

Time Invariance

- Template probability mode (P(X' | X))
- For all t:

模板转移模型

Template Transition Model

Initial State Distribution

Time slice 0

Ground Bayesian Network

Daphne Koller

2-时间片段贝叶斯网(2TBN)

2-time-slice Bayesian Network

- A transition model (2TBN) over X₁,...,X_n is specified as a BN fragment such that:
 - The nodes include $X_1',...,X_n'$ and a subset of $X_1,...,X_n$
- Only the nodes $X_1',...,X_n'$ have parents and a CPD.

 The 2TBN defines a conditional distribution

$$P(oldsymbol{X}' \mid oldsymbol{X}) = \prod_{i=1}^n P(X_i' \mid \mathbf{Pa}_{X_i'})$$
 Chain tule

满足该条件的,就是2TBN

Daphne Koller

Dynamic Bayesian Network

• A dynamic Bayesian network (DBN) over $X_1,...,X_n$ is defined by a

+ - a Bayesian network BN⁽⁰⁾ over $X_1^{(0)}$,..., $X_n^{(0)}$

Ground Network

- For a trajectory over 0,..., T we define a ground (unrolled network) such that
- The dependency model for $X_1^{(0)}$,..., $X_n^{(0)}$ is copied from $BN^{(0)}$
- The dependency model for $X_1^{(\dagger)}$,..., $X_n^{(\dagger)}$ for all t > 0 is copied from BN_

Summary

- DBNS are a compact representation for encoding structured distributions over arbitrarily long temporal trajectories
- They make assumptions that may require appropriate model (re)design:
 - Markov assumption
 - Time invariance