Assessing-Model-Accuracy

The most important thing in <u>Statistical Learning</u> is choosing the right method for you data set, Its depends on these concepts:

Measuring the quality of fit

- A way to ensure how well its predictions actually match the Observed data
- How close is the predicted <u>Response</u> value for a given <u>Observation</u> to the real true <u>Response</u>
 In Linear Regression most commonly used :

$$ext{Mean squard error} = ext{MSE} = rac{1}{n} \sum_{i=1}^n \left(y_i - \hat{f}(x_i)
ight)^2$$

- $\hat{f}(x_i)$ is the prediction that \hat{f} gives for the ith Observation
- $ullet y_i \hat{f}(x_i)$ how far is the prediction from the real Response we seek

MSE is computed using Training Data --> referred to Training MSE

- How well the model perform on it isn't important but the model accuracy on new **unseen data** After computing $\hat{f}(x_1)\dots\hat{f}(x_n)$ we can about how $\hat{f}(x_i)\approx y_0$
- ullet y_0 is the prediction for the **unseen data** (x_0,y_0)
- ullet we want the method that gives the lowest $test\ MSE$
- $\operatorname{Avg}(y_0 \hat{f}(x_0))^2$ as small as possible (degrees of freedom)

Note : Training MSE < Test MSE

Data from f

- Each circle is an Observation
- Black curve -> f real form
- All other curves are estimate of $f pprox \hat{f}$

Training vs Test MSE:

- Training MSE -> grey
- Test MSE -> Red
- Dashed line is the irreducible error $Var(\varepsilon)$ We notice that $Test\ MSE$ is always bigger than the $Training\ MSE$, and that the more Flexible the model is better $Test\ MSE$ results are till it reach a point increasing the model **Flexibility** will result spike on the $Test\ MSE$ even tho it performed the best on the $Test\ MSE$ and that the more Flexible the model is $Test\ MSE$ even the it
- We mostly estimate $Test\ MSE$ and its more difficult most of the time no $Test\ data$ is available, One important method is $Test\ MSE$ cross validation to estimate the $Test\ MSE$

The Bias-Variance Trade-off

- The U-shape curve on the Test MSE is the result two properties
 - 1. Variance of $\hat{f}(x_0)$
 - 2. Squared bias of $\hat{f}(x_0)$
 - 3. Variance of error $Var(\varepsilon)$ -> irreducible

$$E(y_0-\hat{f}(x_0))^2=Var(\hat{f}(x_0))+[Bias(\hat{f}(x_0))]^2+Var(arepsilon)$$

- $E(y_0 \hat{f}(x_0))^2$ expected Test MSE at x_0
- x_0 unseen Observation

To minimize the expected $\mathrm{Test}\ \mathrm{MSE}$ -> we need a method/model that minimize the Variance and the Bias of \hat{f}

- The Variance of \hat{f} refers the amount of change in \hat{f} if we estimated by different data set
 - different data sets will give different \hat{f}
 - Higher Variance in $\hat{f} \implies$ The smallest change in the data set will result in a very different estimate of \hat{f}
 - \hat{f} shouldn't vary much between different data sets
 - More flexible methods \implies Higher Variance
- The **Bias** of \hat{f} refers to the error introduced by approximating a real life problem which is very **complex** into \to Simple Models
 - For example Linear regression will assume there is a Linear relationship between Y and X, its unlikely any real life problem is like that
 - More flexible methods \implies Lower Bias

- As we increase the flexibility of the model the Bias tends to initially decrease
 - Faster than the *Variance*
 - As a result of that The Test MSE decline on
- At some point increasing the flexibility got no effect on the Bias
- But the Variance will increase significantly (Left and Center Figures)
- In Center Figure f we estimating is Linear in nature so increasing the flexibility got no effect on the Bias
- In the Right Figure f is very non-Linear that's why we notice a huge drop off in the **Bias** as the flexibility increase

In real life Computing The $Test\ MSE, Bais, Variance$ is impossible due to not knowing the real form of f so most of the time we estimate them.

The Classification setting

- When it comes to classification problems $y_1, \ldots y_n$ is a qualitative
- To quantify the accuracy of estimating $\hat{f} o ext{Training error rate}$

$$rac{1}{n}\sum_{i=1}^n I(y_i
eq \hat{y}_i)$$

- \hat{y}_i is the predicted category, class label for the ith Observation using \hat{f}
- $I(y_i
 eq \hat{y}_i)$ indicator variable o 1 if the prediction is wrong $\implies y_i
 eq \hat{y}_i$
- and ightarrow 0 if the prediction is correct $\implies y_i = \hat{y}_i$
- its only for the <u>Training Data</u>

We interested in the **unseen data** error rate on the Observation (x_0, y_0) and its called $test\ error$.

The Bayes Classifier

- Derived from the <u>Bayes' theorem</u> Bayes Classifier
- Assigns each Observation to the most likely class given the Predictor value $X=x_0$

$$Pr(Y = j|X = x_0)$$

ullet Bayes Classifier Predicts a class 1 for example if $Pr(Y=1|X=x_0)>0.5$

 X_1

- ullet The orange shaded area the Probability Pr(Y=orange|X)>50%
- The Blue shaded area the Probability Pr(Y=blue|X)>50%
- The Purple line represent the points where Probability is exactly 50% oBayes decision boundary
- The Bayes Classifier produces the lowest possible test error rate
- And always Pick the class with the highest value

The error rate will always be:

$$1 - E(max_j \mathrm{Pr}(Y = j|X))$$

• The Bayes Classifier is Used in K-Nearest Neighbors To predict the most likely class k for a given Observation