CheatSheet de Probabilité Continue

Yehor Korotenko

October 22, 2025

1 Mathématiques Générales

Binomial 1.1

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Propriétés utiles:

1.
$$\binom{n}{0} = \binom{n}{n} = 1$$

$$2. \binom{n}{1} = n$$

3.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Les loi à densité

Normale / Gaussienne 2.1

La sommes du grand nombre des v.a.s tend vers la v.a qui suit la loi normale. Soit $Z \sim \mathcal{N}(0,1)$, alors

$$f_Z(z) = \phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$

Cette loi s'appelle loi normale standarte.

Soit $X = \mu Z + \sigma$, alors $X \sim \mathcal{N}(\mu, \sigma^2)$ et

$$f_X(z) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

L'esperance et la variance sont:

$$E[X] = \mu Var(X) = \sigma^2$$

Propriétés utiles. Les propriétés suivantes s'appliques à la loi normale standarte.

- 1. Si $Z \sim \mathcal{N}(0,1)$, alors $-Z \sim \mathcal{N}(0,1)$
- 2. Si $Z \sim \mathcal{N}(0,1)$ et $\Phi(z)$ est son CDF, alors

$$\Phi(z) = 1 - \Phi(-z)$$

2.2Loi exponentielle

Cette loi est un équivalent continue de la loi géomètrique discrète. La v.a qui suit cette loi dit combien de temps il reste d'attendre avant que le premier succès arrive. Soit $X \sim Exp(\lambda)$, alors

$$f_X(z) = \lambda e^{-\lambda z}$$

L'esperance et la variance sont:

$$E[X] = \frac{1}{\lambda}$$
 $Var(X) = \frac{1}{\lambda^2}$

Propriétés utiles.

1. Si $X \sim Exp(\lambda)$, alors

$$P(X \ge s + t | X \ge s) = P(X \ge t)$$

Intuition: Une ampoule de durée de vie exponentielle : même si elle a déjà duré 3 heures, la probabilité qu'elle tienne encore 2 heures est la même que pour une ampoule toute neuve.

2.3 Loi Beta

Probabilité des probabilité. On utilise cette loi quand on veut estimer ou calculer le paramètre d'une probabilité en fonctions de nombres de succès et échecs.

Si $X \sim Beta(\alpha, \beta)$ alors:

$$f_X(z) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

οù

$$B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt$$

L'esperance et variance sont:

$$E[X] = \frac{\alpha}{\alpha + \beta} \qquad Var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

2.4 Loi Gamma

Si la loi exponentielle dit combien de temps il faut attendre avant que le succès arrive, alors la loi Gamma dit combien de temps il faut attendre avant que le $k^{i\text{\`e}me}$ succès arrive.

Alors si $X \sim Gamma(\alpha, \beta)$ (notons aussi $r = \alpha$ et $\lambda = \beta$), alors:

$$f(t) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} t^{\alpha - 1} e^{-\beta t}$$

où
$$\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha-1} e^{-t} \, dt$$
 appelée une fonction Gamma

dans le cas où $\alpha = r \in \mathbb{N}$:

$$f(t) = e^{-\lambda t} \frac{\lambda^r t^{r-1}}{(r-1)!}$$

L'esperance et variance sont:

$$E[X] = \frac{\alpha}{\beta} \qquad Var(X) = \frac{\alpha}{\beta^2}$$