

Bioestatística Testes de Hipóteses 2 amostras

Mestrado Farmácia

Carina Silva

<u>carina.silva@estesl.ipl.pt</u>

SUMÁRIO

Testes de hipóteses paramétricos

Teste de hipóteses para a diferença de valores médios (amostras independentes e emparelhadas)

Testes de hipóteses não-paramétricos

Teste de ajustamento de Kolmogorov-Smirnov

Teste de Wilcoxon

Teste de Mann-Whitney

Teste de ajustamento de Kolmogorov-Smirnov

Muitas aplicações estatísticas tem como pressuposto a normalidade da variável aleatória em estudo. É nesse sentido que surge o teste não-paramétrico Kolmogorov-Smirnov, (K-S). Em alternativa existe o teste de ajustamento do Qui-Quadrado (Estatística Aplicada, Vol 2, Elizabeth et al).

Eventualmente numa primeira abordagem podemos fazer uma análise exploratória da variável, nomeadamente calcular o coeficiente de assimetria e de curtose e compará-los com os valores de uma distribuição Normal (coef assimetria=0, coef. Curtose=0,263). Pode-se ainda construir o papel de probabilidades e identificar (ou não) um comportamento normal:

Se os pontos se ajustarem à reta, então a distribuição da variável é normal.

Teste de ajustamento de Kolmogorov-Smirnov

Aplicação do teste K-S (com correção de Lilliefors)

Hipóteses:

H0: A distribuição da variável X é normal vs H1: A distribuição da variável X não é normal

Exemplo

OVOS DE CROCODILO

VAMOS SUPOR QUE TEMOS UMA AMOSTRA DO NÚMERO DE CROCODILOS NASCIDOS NUM ANO DOS OVOS DE CADA FÊMEA DE UM DETERMINADO NICHO ECOLÓGICO (NÃO É FÁCIL DE CONTAR, AS MÃES SÃO MUITO AGRESSIVAS, MAS COMO HABITUALMENTE OS RECOLHEM NA BOCA PARA OS LEVAR A SALVO PARA UMA ZONA ONDE SE PODEM CAMUFLAR, UMA BOA FILMAGEM PERMITE UMA CONTAGEM RAZOÁVEL). VERIFIQUE SE SEGUEM UMA DISTRIBUIÇÃO NORMAL.

HIPÓTESES

HO: OS DADOS DAS PROGÉNIE DE FÊMEAS DE CROCODILO SEGUEM UMA DISTRIBUIÇÃO NORMAL

VS

H1: OS DADOS DAS PROGÉNIE DE FÊMEAS DE CROCODILO NÃO SEGUEM UMA DISTRIBUIÇÃO NORMAL

Teste de ajustamento de Kolmogorov-Smirnov

Output!

Tests of Normality

	Koln	nogorov-Smir	nov ^a		Shapiro-Wilk	
	Statistic	df	% ig.	Statistic	df	Sig.
ovos	,085	60	,200*	,971	60	,165

- *. This is a lower bound of the true significance.
- a. Lilliefors Significance Correction

Normal Q-Q Plot of ovos

2-1-2-1-2-1-2-1-2-1-2-Observed Value

Detrended Normal Q-Q Plot of ovos

TOXIDADE DO TOLUENO

O Xicomanel•, preocupado com muita cola que cheirou na adolescência, foi perguntar a um neurologista conhecido se é verdade que o abuso de substância contendo tolueno produz alterações importantes no sistema nervoso. O neurologista mostrou-lhe os resultados de um estudo com ratos, em que um grupo experimental(2) tinha sido exposto durante uma hora a uma atmosfera com níveis altos de tolueno, e um grupo de controlo(1) tinha sido mantido em condições normais. Procedeu-se depois à determinação da quantidade de norepinefrina na medula adjacente ao cérebro.

• este não é o nome verdadeiro, em virtude de salvaguardar a identidade do indivíduo

$$\textit{Hipóteses} \begin{cases} H_0: \mu_1 = \mu_2 \\ \mu_1 \neq \mu_2 \text{ (teste bilateral)} \\ \mu_1: \begin{pmatrix} \mu_1 \neq \mu_2 \text{ (teste uni. esq.)} \\ \mu_1 > \mu_2 \text{ (teste uni. dir.)} \end{pmatrix} \text{ ou } \begin{cases} H_0: \mu_1 - \mu_2 = d_0 \\ \mu_1 - \mu_2 \neq d_0 \text{ (teste uni. esq.)} \\ \mu_1 - \mu_2 < d_0 \text{ (teste uni. esq.)} \\ \mu_1 - \mu_2 > d_0 \text{ (teste uni. dir.)} \end{cases}$$

Valor da Estatística de teste sob as condições de H_0 :

• se $n_1 > 30 \land n_2 > 30$ (grandes amostras) e X_1 e X_2 seguem uma distribuição arbitrária

 \Rightarrow se σ_1 , σ_2 conhecidos

$$z_0 = \frac{\overline{x_1 - x_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \qquad z_0 = \frac{(\overline{x_1 - x_2}) - d_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

• se $n_1 > 30 \land n_2 > 30$ (grandes amostras) e X_1 e X_2 seguem uma distribuição arbitrária

 \Rightarrow se σ_1 , σ_2 desconhecidos

$$z_0 = \frac{\overline{x_1 - x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \qquad \text{ou} \qquad z_0 = \frac{\overline{(x_1 - x_2)} - d_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- se $n_1 \le 30 \lor n_2 \le 30$ (pequenas amostras), e X_1 e X_2 seguem uma distribuição normal
 - \Rightarrow se σ_1 , σ_2 conhecidos

$$z_{0} = \frac{\overline{x_{1} - x_{2}}}{\sqrt{\frac{\sigma_{1}^{2} + \sigma_{2}^{2}}{n_{1} + n_{2}}}} \qquad z_{0} = \frac{(\overline{x_{1} - x_{2}}) - d_{0}}{\sqrt{\frac{\sigma_{1}^{2} + \sigma_{2}^{2}}{n_{1} + n_{2}}}}$$

• se $n_1 \le 30 \lor n_2 \le 30$ (pequenas amostras), e X_1 e X_2 seguem uma distribuição normal

⇒ se σ₁, σ₂ desconhecidos, populações homocedásticas (variâncias não significativamente diferentes)

$$t_0 = \frac{\overline{x_1 - x_2}}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \times \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

ou

$$t_0 = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - d_0}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \times \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

 se σ₁, σ₂ desconhecidos, populações heterocedásticas (variâncias significativamente diferentes)

$$t_0 = \frac{\overline{x_1 - x_2}}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}} \quad \text{ou} \quad t_0 = \frac{\left(\overline{x_1 - x_2}\right) - d_0}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$$

TOXIDADE DO TOLUENO

O Xicomanel•, preocupado com muita cola que cheirou na adolescência, foi perguntar a um neurologista conhecido se é verdade que o abuso de substância contendo tolueno produz alterações importantes no sistema nervoso. O neurologista mostrou-lhe os resultados de um estudo com ratos, em que um grupo experimental(2) tinha sido exposto durante uma hora a uma atmosfera com níveis altos de tolueno, e um grupo de controlo(1) tinha sido mantido em condições normais. Procedeu-se depois à determinação da quantidade de norepinefrina na medula adjacente ao cérebro.

• este não é o nome verdadeiro, em virtude de salvaguardar a identidade do indivíduo

RESOLUÇÃO:

HIPÓTESE: H0 : μ1 = μ2 vs H1 : μ1 ≠ μ2

CONDIÇÕES DE APLICABILIDADE:

n1=31, n2=31 $\sigma_1 \in \sigma_2$ DESCONHECIDOS

Caminho no SPSS para o teste e para a construção de I.C.: analyse \rightarrow compare means \rightarrow independent samples \rightarrow ...

OUTPUT!!!:

Group Statistics

				Std.	Std. Error
	GRUPOS	N	Mean	Deviation	Mean
TRATAMEN	controlo	31	3,5161	1,6098	,2891
	experimental	31	2,0645	,8920	,1602

Independent Samples Test

		Levene's Test for Equality of Variances				t-test fo	r Equality c	of Means		
	Assumptions	F	Sig.	t	df	Sig. (2-ta iled)	Mean Differe nce	Std. Error Differ ence	Confi Interva	5% dence al of the rence Upper
TRATAMEN	Equal variances assumed	22,912	,000	4,392	60	,000	1,4516	,3305	,7904	2,1128
	Equal variances not assumed			4,392	46,836	,000	1,4516	,3305	,7866	2,1166

Exercício 1 da Ficha 3 Base de dados: GLICEMIA_CEREBRO.sav

EFEITO RÁPIDO

NUM ESTUDO SOBRE OS EFEITOS DE DOIS CALMANTES PARA USO EM PRISIONEIROS VIOLENTOS EM SITUAÇÕES DE MOTINS, OBTEVE-SE A COLABORAÇÃO DE 15 VOLUNTÁRIOS. EM SITUAÇÕES PROVOCADAS ERAM DISPARADOS DARDOS QUE INJETAVAM AS SUBSTÂNCIAS NARCÓTICAS (TIPO A EM 8 PRISIONEIROS, TIPO B EM OUTROS 7), MEDINDO-SE O TEMPO EM SEGUNDOS QUE DEMORARAM A FAZER EFEITO.

TESTE AO NÍVEL DE SIGNIFICÂNCIA DE 5% SE EXISTEM DIFERENÇAS SIGNIFICATIVAS NO TEMPO MÉDIO A FAZER EFEITO ENTRE OS DOIS NARCÓTICOS.

<u>RESOLUÇÃO</u>

DIMENSÕES PEQUENAS (nA=8 E nB=7), ENTÃO VAMOS TESTAR O AJUSTAMENTO À NORMAL DAS DUAS POPULAÇÕES

Tests of Normality

		Kolmogorov-Smirnov ^a				Shapiro-Wilk	
	SUBSTANC	Statistic	df	Sig.	Statistic	df	Sig.
TEMPOS	Α	,206	8	,200*	,917	8	,404
	В	,389	7	,002	,706	7	,004

^{*} This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Teste de Mann-Whitney

Teste de Mann-Whitney

É o teste não-paramétrico alternativo ao teste paramétrico para diferença de valores médios para duas amostras independentes.

Em que situações se aplica:

- Duas amostras independentes
- Variáveis pelo menos em escala ordinal
- Quando a condição de normalidade não se verifica para variáveis em escala métrica e n<30

Hipóteses:

$$H_0$$
: $F(X) = F(Y)$ vs. H_1 : $F(X) \neq F(Y)$ ou H_1 : $F(X) < F(Y)$ ou H_1 : $F(X) > F(Y)$

Nota: deve usar-se o valor-p valor exato para n_1 <30, caso contrário pode usar-se valor-p assintótico

Teste de Mann-Whitney

Exemplo (Cont.):

EFEITO RÁPIDO

NUM ESTUDO SOBRE OS EFEITOS DE DOIS CALMANTES PARA USO EM PRISIONEIROS VIOLENTOS EM SITUAÇÕES DE MOTINS, OBTEVE-SE A COLABORAÇÃO DE 15 VOLUNTÁRIOS. EM SITUAÇÕES PROVOCADAS ERAM DISPARADOS DARDOS QUE INJECTAVAM AS SUBSTÂNCIAS NARCÓTICAS (TIPO A EM 8 PRISIONEIROS, TIPO B EM OUTROS 7), MEDINDO-SE O TEMPO EM SEGUNDOS QUE DEMORARAM A FAZER EFEITO.

TESTE AO NÍVEL DE SIGNIFICÂNCIA DE 5% SE EXISTEM DIFERENÇAS SIGNIFICATIVAS NOS DOIS NARCÓTICOS.

RESOLUÇÃO

TESTE DE MANN-WHITNEY

 H_0 : A DISTRIBUIÇÃO DE X É IGUAL À DISTRIBUIÇÃO DE Y vs. H_1 : A DISTRIBUIÇÃO DE X É DIFERENTE DA DISTRIBUIÇÃO DE Y

Caminho no SPSS: Analyse→Nonparametrics Testes→2 independent samples→...

Ranks

	substanc	N	Mean Rank	Sum of Ranks
tempos	Α	8	7,00	56,00
	В	7	9,14	64,00
	Total	15		

Test Statistics^b

	tempos	
Mann-Whitney U	20,000	
Wilcoxon W	56,000	
Z	-,926	
Asymp. Sig. (2-tailed)	,355	
Exact Sig. [2*(1-tailed Sig.)]	,397 ^a	

Not corrected for ties.

b. Grouping Variable: substanc

Exercício 2 da Ficha 3 Base de dados: GLICEMIA_CEREBRO.sav

HIPERTENSÃO

Um grupo de 20 hipertensos, foi submetido durante 30 dias a um regime de dieta sem sal. Apresentam-se a seguir os valores da pressão sistólica para esses indivíduos antes e depois da dieta. Verifique se a dieta provocou alguma alteração, para um nível de significância de 5%, e admita a normalidade dos dados.

RESOLUÇÃO:

HIPÓTESE: $H0: \mu d = 0$ vs. $H1: \mu d > 0$

CONDIÇÕES DE APLICABILIDADE:

n=20 σd DESCONHECIDO D normal

Hipóteses: as apresentadas anteriormente, ou

$$\begin{cases} H_0: \mu = 0 \\ \mu \neq 0 \text{ (teste bilateral)} \\ H_1: \begin{cases} \mu \neq 0 \text{ (teste uni. esq.)} \\ \mu > 0 \text{ (teste uni. dir.)} \end{cases}$$
 ou
$$\begin{cases} H_0: \mu = d_0 \\ \mu \neq d_0 \text{ (teste uni. esq.)} \\ \mu > d_0 \text{ (teste uni. dir.)} \end{cases}$$

onde μ é o valor médio das diferenças.

- n > 30 (grandes amostras), e D é uma variável aleatória com distribuição arbitrária
 ⇒ se σ conhecido
- n≤30 (pequenas amostras) e D é uma variável aleatória. com distribuição Normal
 ⇒ se σ conhecido

$$z_0 = \frac{\overline{d}}{\frac{\sigma_D}{\sqrt{n}}} \qquad \text{ou} \qquad z_0 = \frac{\overline{d} - d_0}{\frac{\sigma_D}{\sqrt{n}}}$$

• n > 30 (grandes amostras), e D é uma variável aleatória com distribuição arbitrária

⇒ se σ desconhecido

$$z_0 = \frac{\overline{d}}{\frac{s_D}{\sqrt{n}}} \qquad \text{ou} \qquad z_0 = \frac{\overline{d} - d_0}{\frac{s_D}{\sqrt{n}}}$$

• n≤30 (pequenas amostras) e D é uma variável aleatória. com distribuição Normal

⇒ se σ desconhecido

$$t_0 = \frac{\overline{d}}{\frac{s_D}{\sqrt{n}}}$$
 ou $t_0 = \frac{\overline{d} - d_0}{\frac{s_D}{\sqrt{n}}}$

HIPERTENSÃO

Um grupo de 20 hipertensos, foi submetido durante 30 dias a um regime de dieta sem sal. Apresentam-se a seguir os valores da pressão sistólica para esses indivíduos antes e depois da dieta.

Verifique se a dieta provocou alguma alteração, para um nível de significância de 5%, e admita a normalidade dos dados.

RESOLUÇÃO:

HIPÓTESE: $H0: \mu d = 0$ vs $H1: \mu d > 0$

CONDIÇÕES DE APLICABILIDADE:

n=20 od DESCONHECIDO D normal

Caminho no SPSS: analyse \rightarrow compare means \rightarrow paired samples T test \rightarrow ...

OUTPUT!!!:

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair	antes da dieta	18,6000	20	,7327	,1638
1	depois da dieta	16,5250	20	,8252	,1845

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	antes da dieta & depois da dieta	20	,468	,037

Paired Samples Test

		Paired Differences							
			Std.	Std. Error	Interva	nfidence I of the rence			Sig.
		Mean	Deviation	Mean	Lower	Upper	t	df	(2-tailed)
Pair 1	antes da dieta - depois da dieta	2,0750	,8071	,1805	1,6973	2,4527	11,497	19	,000

Exercício 3 da Ficha 3 Base de dados: GLICEMIA_CEREBRO.sav

Teste de Wilcoxon

Exemplo

QUEIMADURAS

A FIM DE TESTAR UM NOVO MEDICAMENTO PARA QUEIMADURAS, APROVEITA-SE O FACTO DAS LESÕES PROVOCADAS POR EXCESSO DE EXPOSIÇÃO AO SOL DOS OMBROS DE UM MESMO INDIVÍDUO SEREM EM GERAL DE IDÊNTICA GRAVIDADE. UM DOS OMBROS É TRATADO COM O NOVO MEDICAMENTO, E O OUTRO COM O MEDICAMENTO USUAL. REGISTA-SE O N.º DE HORAS ATÉ À CICATRIZAÇÃO COM O MEDICAMENTO USUAL (xi) E O N.º DE HORAS COM O MEDICAMENTO NOVO (yi).

Xi: 15.4, 19.3, 4.2, 19.3, 45.2, 18.6, 11.2, 18.1, 33.0 Yi: 14.7, 28.9, 7.4, 19.3, 54.2, 27.4, 12.8, 15.4, 36.4

OS DADOS NÃO SEGUEM UMA DISTRIBUIÇÃO NORMAL.

VERIFIQUE SE OS MEDICAMENTOS TÊM EFEITOS SEMELHANTES PARA UM NÍVEL DE SIGNIFICÂNCIA DE 5%.

RESOLUÇÃO

UMA VEZ QUE O PRESSUPOSTO DE NORMALIDADE NÃO SE VERIFICA E TEMOS AMOSTRAS EMPARELHADAS VAMOS APLICAR O TESTE DE WILCOXON.

Teste de Wilcoxon

É o teste não-paramétrico alternativo ao teste paramétrico para diferença de valores médios para duas amostras emparelhadas.

Em que situações se aplica:

- Duas amostras emparelhadas
- Variáveis pelo menos em escala ordinal
- Quando a condição de normalidade não se verifica para variáveis em escala métrica e n<30
 - A distribuição X-Y tem de ser simétrica

Hipóteses:

$$H_0$$
: $F(X) = F(Y)$ vs. H_1 : $F(X) \neq F(Y)$ ou H_1 : $F(X) < F(Y)$ ou H_1 : $F(X) > F(Y)$

Nota: deve usar-se o valor-p valor exato para n_1 <30, caso contrário pode usar-se valor-p assintótico

Exemplo

QUEIMADURAS

UMA VEZ QUE O PRESSUPOSTO DE NORMALIDADE NÃO SE VERIFICA E TEMOS AMOSTRAS EMPARELHADAS VAMOS APLICAR O TESTE DE WILCOXON.

HO:
$$F(X) = F(Y)$$
 vs. H1: $F(X) \neq F(Y)$

Vai-se construir uma nova variável Z=X-Y e verificar se a distribuição é simétrica Caminho no SPSS: Compute→Transform→...

Calcular o coeficiente de assimetria da nova variável a partir do comando Analyze - Statistics Descriptives - ...

Descriptive Statistics

	N	Skew	ness
	Statistic	Statistic	Std. Error
dif	9	-,236	,717
Valid N (listwise)	9		

Como -0.236/0.717=-0.329 está entre -2 e 2, podemos concluir que a distribuição é simétrica.

Output (legacy)

Ranks

		N	Mean Rank	Sum of Ranks
novo - usual	Negative Ranks	2ª	2,00	4,00
	Positive Ranks	6 ^b	5,33	32,00
	Ties	1°		
	Total	9	66	

- a. novo < usual
- b. novo > usual
- c. novo = usual

	novo - usual
Z	-1,960 ^b
Asymp. Sig. (2-tailed)	,050
Exact Sig. (2-tailed)	,055
Exact Sig. (1-tailed)	,027
Point Probability	,008

- a. Wilcoxon Signed Ranks Test
- b. Based on negative ranks.

Output

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The median of differences between usual and novo equals 0.	Related- Samples Wilcoxon Signed Rank Test	,050	Reject the null hypothesis

Asymptotic significances are displayed. The significance level is ,05.

Teste de Wilcoxon

Total N	9
Test Statistic	32,000
Standard Error	7,141
Standardized Test Statistic	1,960
Asymptotic Sig. (2-sided test)	,050

Exercício 4 da Ficha 3 Base de dados: GLICEMIA_CEREBRO.sav