Problem set 2

2024/10/28 徐靖 2200012917

1

首先注意到 R 被 C 严格占优

• 纯策略均衡

(U,L),(M,C)

• 甲纯策略,乙混合策略的均衡

注意到 $E_L=E_C$ 恒成立,因此 $\{(U,p\circ L+(1-p)\circ C):p\in [rac{4}{7},1)\}$ 和 $\{(M,p\circ L+(1-p)\circ C):p\in [rac{4}{7},1)\}$ 是Nash均衡

- 乙纯策略,甲混合策略的均衡不存在
- 混合策略均衡

对乙来说 L 和 C 无差别,由于 D 被 $\frac{1}{2}\circ U+\frac{1}{2}\circ M$ 严格占优,因此 $\sigma_1(D)=0$,且

$$3\sigma_2(L)=4(1-\sigma_2(L))\Rightarrow\sigma_2(L)=rac{4}{7}$$

从而 $\{(rac{4}{7}\circ L+rac{3}{7}\circ C,p\circ U+(1-p)\circ M):p\in(0,1)\}$ 是Nash均衡.

2

(1)

甲的最大最小策略是M,最大最小值是5

(2)

设 $a = \sigma_2(L)$, 则有

$$\max v_1 = \max\{6 - 4a, 5, 4 + 3a\} \ge 5$$

当 $a\in [\frac14,\frac13]$ 时, $\max v_1=5$ 乙的最小最大策略是 $\{(a\circ L,(1-a)\circ R)|a\in [\frac14,\frac13]\}$, 甲的最小最大值是 5

3

(1)

对于企业i,考虑一阶条件

$$0 = \frac{\partial u_i}{\partial x_i} = \frac{1}{x_i} - \frac{1}{A - \sum x_i}$$

联立i遍历[n]后的方程组,得到

$$x_i = rac{A}{n+1}$$

这是这个博弈的唯一纯策略纳什均衡, 此时 $u_i=2\ln A-2\ln(n+1)$

(2)

企业协调行动时, $\sum x_i$ 作为整体被 $i \in [n]$ 平分. 因此,

$$0 = rac{\partial u_i}{\partial x} = rac{1}{x} - rac{n}{A - nx}$$

解得 $x_i=x=rac{A}{2n}$, $u_i=2\ln(A/2)-\ln n, orall i$

(3)

实际上, $\lim_{n\to+\infty}2\ln(A/2)-\ln n=-\infty=\lim_{n\to+\infty}2\ln(A)-2\ln n$ 同时, $\lim_{n\to+\infty}x_i=0$ (1)和(2)两个结果是相同的

4

(1)

每个国家都做优化问题:

$$\max(90 - q - 10)q$$

解得 $q^* = 40$

(2)

设 a, b 在 A 产量分别为 q_{11}, q_{21} , 在 B 产量分别为 q_{12}, q_{22} . 两家公司面临最优化问题:

$$\max_{q_{i1},q_{i2}}(90-q_{1i}-q_{2i}-10)q_{ii}+(90-q_{1j}-q_{2j}-20)q_{ij}, j=3-i$$

考虑一阶条件后解得

$$q_{11} = q_{22} = 30, q_{12} = q_{21} = 20$$

(3)

最优化问题变为

$$\max_{q_{i1},q_{i2}}(90-q_{1i}-q_{2i}-10)q_{ii}+(90-q_{1j}-q_{2j}-50)q_{ij}, j=3-i$$

直接解一阶条件发现 $q_{ij}<0$ 这表明出口一定亏损,因为出口为正比虚拟的出口为负情形更劣因此结果同 (1), $q_{11}=q_{22}=40, q_{12}=q_{21}=0$

5

(1)

		Player 2				
		0	9	20		
	0	10, 10	0, 11	0, 0		
Player 1	9	11, 0	1, 1	-9, 0		
	20	0, 0	0, -9	-10, -10		

依次剔除严格劣策略, 最后只有 \$B\$ 存活

Player	2
---------------	---

		A(0)	B(9)	C(15)	D(20)
Player 1	A(0)	10, 10	0, 11	0, 5	0, 0
	B(9)	11, 0	1, 1	-9, 5	-9, 0
	C(15)	5, 0	5, -9	-5, -5	-15, 0
	D(20)	0, 0	0, -9	0, -15	-10, -10

由于是对称博弈, 因此Nash均衡下两位行贿者策略相同

- 没有纯策略Nash均衡
- 设四种纯策略的概率为 a, b, c, d. a + b + c + d = 1
 - 。 若 d>0,则 A 严格比 D 更优, 因此 d=0
- 对 $a,b,c,\ a+b+c=1$,解方程组 v(A)=v(B)=v(C) 发现 $(0.4\circ A+0.5\circ B+0.1\circ C,0.4\circ A+0.5\circ B+0.1\circ C)$ 是唯一Nash均衡

6

(1)

$$(\frac{1}{3}, \frac{1}{3}, \frac{2}{3})$$

对玩家 1,2, 无论偏移到何值玩家 3 都必胜, 也就是1和2必败, 1/3 与其他立场无差异对玩家 3, 立场为 2/3 时已经获胜, 不可能更优 因此该策略组合是Nash均衡

(2)

没有人会选择输掉选举的政治立场,因为此时不参选是可获利的偏离,因此所有参选者得票数并列。 考虑nash均衡的情形:

- 假如有2人未参选, 未参选的一个候选人和参选者选择同一个政治立场是可获利的偏移, 因此不存在 nash均衡
- 假如只有1人未参选, 设参选者的政治立场是 x, y,
 - 。 由得票相同可知 x + y = 1 或 x = y

- 。 假如 $x \neq y$, 则 $y \neq 0.5$, 选 x 的侯选者改为 $\frac{y+0.5}{2}$ 可以彻底赢得选举, 矛盾. 因此 x=y=0.5
- 。 此时未参选者选择 0.5 是可获利的偏离, 因此这一情形下不存在nash均衡
- 假如三个人都参选了, 不妨设三个人的政治立场是 $0 \le x \le y \le z \le 1$
 - 。 考虑 x=y=z=k, 任意一位候选人只需选 $\frac{k+0.5}{2}$ 即可彻底获胜
 - 。 考虑 x < y < z,,由票数相等解得, $(\frac{1}{6},\frac{1}{2},\frac{1}{6})$,第一位候选人选 $\frac{1}{3}$ 即可彻底赢得选举
 - 。 考虑 x=y< z, (x< y=z 同理), 发现 $\frac{z}{2}=\frac{z}{3}$, 最后一位候选人选 $\frac{2}{3}$ 即可彻底赢得选举

综上, Nash均衡不存在