

EVO Aplikované evoluční algoritmy Graph Coloring Problem

Tadeáš Kachyňa xkachy00@stud.fit.vutbr.cz

Popis problému

Problém barvení grafů by se dal popsat jako problém nalezení takových barev vrcholů, aby dva sousedící vrcholy nesdílely stejnou barvu. Víme, že se jedná o NP-úplný problém, takže nelze efektivně najít jeho optimální řešení. Zadání jsem si zvolil, protože mi přišlo jako jedno z nejzajimavějších a chtěl by se o algoritmu samotném dozvědvět více. Barvení grafů se těší mnoha praktickým aplikacím i teoretickým výzvám. Pro příklad užití můžu zmínit známou a populární skládačku Sudoku. Kromě klasických typů problémů lze na graf či barvy přiřadit různá omezení. Barvení grafů je taktéž stále velmi aktivní oblastí výzkumu.

Implementační prostředí

Jako implemetační prostředí jsem zvolil jazyk Python 3 s podporou knihoven numpy pro rychlejší realizaci výpočtů a matplotlib pro případné vykreslení grafů (například fitness funkce). Při implementaci genetického algoritmu se budu inspirovat již vytvořeným algoritmem v jazyce C od dr. Bidla¹, který mi byl v zadání doporučen. Taktéž mi bude inspirací algoritmus² přímo řešící tento problém v jazyce Java. Narozdíl od jiných implementací má i pěkné vizuální zpracování, které můžete vidět na obrázku níže.

Obrázek 1: Algoritmus realizující i vizuální podobu.

¹http://www.fit.vutbr.cz/ bidlom/BIN/BIN GA.tar

²https://github.com/soroushj/graph-coloring-genetic-algorithm

Způsob řešení

Jak jsem již zmínil v předchozím odstavci, plánuji provádět experimenty na tomto algoritmu v jazyce Python. Algoritmus nejprve inicializuje počáteční populaci. Každý chromozom zde bude vyjádřen vektorem čísel, kde každé číslo bude reprezentovat nějakou barvu. Taktéž bude vygenerována matice vrcholů, kde číslo 1 bude znamenat, že jsou vrcholy spojené. Protože je graf neorientovaný, tak bude matice symetrická. Abych dokázal dané jedince v populaci ohodnotit, tak potřebuji fitness fuknci. Ta ohodnotí negativně všechny konflikty barev, které následně sečte. Nejlépe ohodnocený uzel bude mít hodnotu fitness 0.

Obrázek 2: Jednoduchý graf demonstrující fitness funkci a taktéž znázornění vrcholů v matici.

Následně pomocí selekce (*rulety nebo turnaje*) vyberu z populace několik jedinců s vysokou zdatností a aplikuji na ně genetické operátory - *mutaci, křížení* čímž vytvořím novou generaci jedinců, kterou opět ohodnotím fitness funkcí. Takto probíhá algoritmus dokud nenajdu nejlepší řešení nebo nedosáhnu určitého počtu generací dané podmínkou.