Load Balancing / Auto Scaling

CSCI 4417/5417

Introduction to System Administration

High Availability - Critical systems must be operative as much as possible

Total Cost of Ownership (TCO) - Total cost for acquiring and maintaining a system

Acquisition Cost - Cost of acquiring the system

Research Install the system

Design Develop applications

Source the produces Train users

Purchase the products Deploy the system

Maintenance Cost - Cost of maintaining availability to end users

Systems management

Maintenance of hardware and software components

User support

Environmental factors

Other (depending on type of system and circumstances)

While the above may seem straightforward, quantifying each cost is difficult

Accounting

No record of all employee activities by task

No accurate inventory

TCO is an attempt to understand what costs could reasonably be, not exact figures

Availability is the most significant contributor to TCO

Service Level Agreement

Availability and uptime

Response time

Number of concurrent users supported

Performance benchmarks

Advance notification of change

Help desk response time

Provide usage statistics

May also include a plan for addressing downtime and documentation for how the service provider will compensate customers in the event of contract breach.

Availability %	Downtime per year	Downtime per month	Downtime per week	Downtime per day
90% ("one nine")	36.5 days	72 hours	16.8 hours	2.4 hours
95%	18.25 days	36 hours	8.4 hours	1.2 hours
97%	10.96 days	21.6 hours	5.04 hours	43.2 minutes
98%	7.30 days	14.4 hours	3.36 hours	28.8 minutes
99% ("two nines")	3.65 days	7.20 hours	1.68 hours	14.4 minutes
99.8%	17.52 hours	86.23 minutes	20.16 minutes	2.88 minutes
99.9% ("three nines")	8.76 hours	43.8 minutes	10.1 minutes	1.44 minutes
99.99% ("four nines")	52.56 minutes	4.38 minutes	1.01 minutes	8.66 seconds
99.999% ("five nines")	5.26 minutes	25.9 seconds	6.05 seconds	864.3 milliseconds
99.9999% ("six nines")	31.5 seconds	2.59 seconds	604.8 milliseconds	86.4 milliseconds
99.99999% ("seven nines")	3.15 seconds	262.97 milliseconds	60.48 milliseconds	8.64 milliseconds
99.999999% ("eight nines")	315.569 milliseconds	26.297 milliseconds	6.048 milliseconds	0.864 milliseconds
99.9999999% ("nine nines")	31.5569 milliseconds	2.6297 milliseconds	0.6048 milliseconds	0.0864 milliseconds

East Tennessee State University
Department of Computing
Jack Ramsey, Lecturer

Scalability

The ability of a system to handle spikes in loads by launching additional resources

Can be proactive or reactive

Load Balancing

Spreading the load across several - or - more machines

Different scheduling schemes

Round robin
Weighted round robin
By connections
Many others

Fault Tolerance

The way in which an operating system responds to a hardware or software failure

System's ability to allow for failures or malfunctions

Power failure

Using backup system

Mirrored disks

Multiple processors comparing data for errors

Redundancy

References

Piedad, F. & Hawkins, M. (2001). High availability: Design, techniques, and processes. Upper Saddle River, NJ: Prentice Hall.

