3. REQUIREMENT ANALYSIS

Customer Journey map:-

Customer Problem Statement Template

Data Flow Diagram:-

Solution Requirement:-

Functional Requirements:-

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
		- Registration through Form
FR-1	User Registration	- Registration through Gmail
		- Registration through LinkedIn
FR-2	User Confirmation	- Confirmation via Email
FK-Z	oser commination	- Confirmation via OTP
		- Import Environmental Data
FR-3	Data Integration	- Import Management Data
		- Data Cleaning and Transformation
		- Create Dashboards in Power BI
FR-4	Data Visualization	- Display Trends and Correlations
		- Generate Customized Reports
		- Develop Machine Learning Models
FR-5	Prediction System	- Predict Plant Growth Stages
		- Provide Recommendations

Non-Functional Requirements:

NFR No.	Non-Functional Requirement	Description	
NFR-1	llUsability	The solution must have an intuitive and user-friendly interface.	
NFR-2	Security	Ensure secure data storage and user authentication.	
NFR-3	lReliability	The system should be highly dependable and provide accurate predictions.	
NFR-4	Performance	Maintain fast processing and data visualization even with large datasets.	
NFR-5	Availability	Ensure 99.9% system uptime to guarantee accessibility.	
NFR-6	l Scalability	The solution must be scalable to handle increasing data volumes and users.	

Technology Stack

Application Components

S.No	Component	Description	Technology
1		Apps to interact with the Power Bl	HTML, CSS, JavaScript, ReactJS
2	Application Logic-1	Data ingestion logic to extract environmental and management data from various sources	Python
3	Application Logic-2	Speech-to-text logic for audio input (e.g., voice commands for querying plant growth stages)	IBM Watson STT service

S.No	Component	Description	Technology
4	Application Logic-3	Virtual assistant to answer user queries related to plant growth predictions	IBM Watson Assistant
5	Database	Stores raw and transformed data, including historical plant growth and environmental factors	MySQL, NoSQL
6	Cloud Database	Centralized storage of large-scale data for scalability	IBM Cloudant
7	File Storage	Storage for large environmental datasets and model output	IBM Block Storage or Cloud-based storage
8	External API-1	Provides real-time environmental data (e.g., weather conditions)	IBM Weather API
9	External API-2	Identity verification for restricted access (if required)	Aadhar API
10	Machine Learning Model	Predicts plant growth stages based on input data	Custom ML Model (developed in Python)
11	Infrastructure (Server/Cloud)	Deployment of application on a cloud platform for scalability and availability	Kubernetes on IBM Cloud

Application Characteristics

S.No	Characteristics	Description	Technology
1	Open-Source Frameworks	Frameworks to build the application frontend or backend	ReactJS, Flask, Django
112 1	Security Implementations	Implements access controls, encryptions, and secure API calls	SHA-256, IAM Controls, OWASP Guidelines
3	Scalable Architecture	Designed as microservices or a 3-tier architecture for scaling	Kubernetes, Docker
4	Availability	Load balancers and distributed servers ensure consistent access	Load Balancers, Distributed Cloud Servers

S.No	Characteristics	Description	Technology
5	Performance	Performance optimization using caching and CDNs	CDN, Redis Cache