第一章 操作系统概述

- 1.1操作系统初步认识
- 1.2操作系统功能和定义
- 1.3 操作系统发展历史
- 1.4分时技术与分时操作系统
- 1.5 典型操作系统类型

《操作系统原理》

1.3操作系统发展历史

教师: 苏曙光

华中科技大学软件学院

用户需求提升和硬件技术进步是操作系统发展的两大动力!

计算机硬件发展的四个典型阶段

- 电子管时代【1946 1955】 //
- 晶体管时代【1955 1965】 ✓
- 集成电路时代【1965 1980】 ✓
- 大规模集成电路时代【1980 至今】

——速度,容量,稳定性,可靠性都得到逐步提高。

2017超级计算机排名

2017超级计算机排名

中国神威太湖之光成全球最快超级计算机

- 计算能力:每秒93千万亿次浮点运算 (93 PetaFlop/s)
- 配有10649600个CPU核=40960颗 申威26010CPU * 260核/颗
- 中国国家并行计算机工程和技术研 究中心(NRCPC)研发

现代的应用需求和计算机性能

很多领域的应用要求更高速的计算能力和响应能力!

信息服务

基因信息

气象预报

深度学习

生物理科技大学、索闍斯老师、《操作繁统原理》MOOC课程组版权所有

计算机硬件发展的四个典型阶段

- 电子管时代【1946 1955】
- 晶体管时代【1955 1965】
- 集成电路时代【1965 1980】
- 大规模集成电路时代【1980 至今】

操作系统发展的四个典型阶段

- 手工操作(无操作系统) 50年代早期 ✓
- 单道批处理系统 50年代 🗸
- 多道批处理系统 60年代初 ~
- 分时系统 60年代中

第一台数字电子计算机ENIAC

1.手工操作(没有操作系统)

- 电子管 时代【1946 1955】
 - ◆ 结构特点
 - 硬件: 电子管、接线面板(按钮/开关)
 - 程序:二进制程序,打孔:纸带和卡片
 - ◆ 使用特点
 - 程序准备/启动/结束: 手工处理, 繁琐耗时
 - ◆ 缺点
 - 效率低: CPU有效运行时间极低
 - 用户独占
 - 缺少交互

2.单道批处理系统

- 工作特点
 - 管理员事先将多个作业输入到磁盘形成作业队列;
 - 操作系统依次自动处理队列中的每个作业 ■ 装入—运行—撤出……
 - 程序的装入和撤出:自动完成,效率高
 - 运行完毕,通知用户取结果
- 工作特点
 - 批量:作业队列
 - 自动:识别作业,装入和撤出
 - 单道:依次,串行 华中科技大学.苏曙光老师.《操作系统原理》MOOC课程组版权所有

■ 背景

- 晶体管时代【1955 1965】
- 1955年, IBM 推出第一台晶体管计算机: 典型机型7094

单道批处理系统CPU的利用情况

红色: CPU在工作 蓝色: 外设在工作

■ 结论: 外设与CPU交替空闲和忙碌, CPU和外设利用效率低。

3.多道批处理系统

■ 多道批处理系统

- 定义:在内存中存放多道程序,当某道程序因为某种原因 (例执行I/O操作时)不能继续运行而放弃CPU时,操作 系统便调度另一程序投入运行。这样可以使CPU尽量忙碌, 提高系统效率。
- 提高系统CPU利用率
- 提供系统吞吐量

多道程序相互穿插的运行过程

A, B两道程序相互穿插运行, 使CPU和外设都尽量忙碌!

多道批处理系统的特点

多道:内存同时存放多道程序

并行:宏观上

串行:微观上