Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6
 - ICMP (v4, v6)

- 4.4 Generalized Forward and SDN
 - match
 - action
 - OpenFlow examples of match-plus-action in action

The Internet network layer - revisited

host, router network layer functions:

ICMP: internet control message protocol

- used by hosts & routers to communicate networklevel information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

<u>Type</u>	<u>Code</u>	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Traceroute and ICMP

- source sends series of UDP segments to dest
 - first set has TTL = I
 - second set has TTL=2, etc.
 - unlikely port number
- when nth set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type II, code 0)
 - ICMP messages includes name of router & IP address

 when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

4.4 Generalized Forward and SDN

- match
- action
- OpenFlow examples of match-plus-action in action

Destination-Based Forwarding – Revisited

Generalized Forwarding and SDN

Each router contains a *flow table* that is computed and distributed by a *logically centralized* routing controller

OpenFlow data plane abstraction

- flow: defined by header fields (of multiple protocols)
- generalized forwarding: simple packet-handling rules
 - Pattern: match values in packet header fields
 - Priority: disambiguate overlapping patterns
 - Actions: for matched packet: drop, forward, modify, matched packet; or send matched packet to controller
 - Counters: #bytes and #packets

Flow table in a router (computed and distributed by controller) define router's match+action rules

OpenFlow data plane abstraction

- flow: defined by header fields
- generalized forwarding: simple packet-handling rules
 - Pattern: match values in packet header fields
 - Priority: disambiguate overlapping patterns
 - Actions: for matched packet: drop, forward, modify, matched packet or send matched packet to controller
 - Counters: #bytes and #packets

*: wildcard

- 1. src=1.2.*.*, $dest=3.4.5.* \rightarrow drop$
- 2. $src = *.*.*.*, dest=3.4.*.* \rightarrow forward(2)$
- 3. src=10.1.2.3, $dest=*.*.*.* \rightarrow send to controller$

OpenFlow: Flow Table Entries

Examples

Destination-based forwarding:

Switch Port			MAC dst			IP Src				TCP dport	Action
*	*	*		*	*	*	51.6.0.8	*	*	*	port6

IP datagrams destined to IP address 51.6.0.8 should be forwarded to router output port 6

Firewall:

Switch Port			Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Forward
*	*	*	*	*	*	*	*	*	22	drop

do not forward (block) all datagrams destined to TCP port 22

Switch Port	MA(src		MAC dst		VLAN ID	IP Src		IP Prot	TCP sport	TCP dport	Forward
*	*	*		*	*	128.119.1.1	*	*	*	*	drop

do not forward (block) all datagrams sent by host 128.119.1.1

Examples

Destination-based layer 2 (switch) forwarding:

Switch Port	MAC src	MAC dst		VLAN ID	IP Src	IP Dst	IP Prot		TCP dport	Action
*	22:A7:23: 11:E1:02	*	*	*	*	*	*	*	*	port3

layer 2 frames from MAC address 22:A7:23:11:E1:02 should be forwarded to output port 6

OpenFlow abstraction

- match+action: unifies different kinds of devices
- https://www.opennetworking.org/

	Match	Action
Router	longest destination IP prefix	forward out a link
Switch	Destination Mac address	Forward or flood
Firewall	IP addresses and TCP/UDP port numbers	Permit or Deny
NAT	IP address and port	rewrite address and port
Load Balancer		

OpenFlow abstraction

- match+action: unifies different kinds of devices
- Router
 - match: longest destination IP prefix
 - action: forward out a link
- Switch
 - match: destination
 MAC address
 - action: forward or flood

- Firewall
 - match: IP addresses and TCP/UDP port numbers
 - action: permit or deny
- NAT
 - match: IP address and port
 - action: rewrite address and port

OpenFlow example

forward(4)

IP Src = 10.3.*.*

IP Dst = 10.2.*.*

from there to s2 match action IP Src = 10.3.*.*Host h6 Compare to destinationforward(3) IP Dst = 10.2.*.* 10.3.0.6 based forwarding s3 controller Host h5 10.3.0.5 **s**1 s2 Host h4 10.2.0.4 Host h1 10.1.0.1 Host h2 10.1.0.2 match action Host h3 match action ingress port = 2 forward(3) 10.2.0.3 IP Dst = 10.2.0.3 ingress port = 1

Example: datagrams from

hosts h5 and h6 should be

sent to h3 or h4, via s1 and

ingress port = 2

IP Dst = 10.2.0.4

forward(4)

Chapter 4: done!

- 4.1 Overview of Network layer: data plane and control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - NAT
 - IPv6
 - ICMP

- 4.4 Generalized Forward and SDN
 - match plus action
 - OpenFlow example

Question: how do forwarding tables (destination-based forwarding) or flow tables (generalized forwarding) computed?

Answer: by the control plane (next chapter)