

Identification of the mutational signatures active in individual tumors

Rosario Michael Piro

Freie Universität Berlin Charité–Universitätsmedizin Berlin German Cancer Consortium (DKTK)

Challenges in Data-driven Genomic Computing, Como, March 6-8, 2019

Outline

Background

Mutational processes and mutational signatures De-novo inference of mutational signatures

Mutational signatures in individual tumors

Alexandrov signatures

Shiraishi signatures: decompTumor2Sig

Results

Evaluation

Decomposition of tumor genomes into signatures

Freie Universität Berlin

Mutational processes and somatic mutations

- Somatic mutations of individual tumors are caused by different mutational processes
- Mutational processes can significantly vary between tumors
 - between different cancer types
 - between individual tumors of the same cancer type
- ► The sequence context of mutated bases is important!
- Examples
 - Lung cancers of tobacco smokers have a highly increased number of cytosine>adenine (C>A) transversions
 - Spontaneous deamination of 5-methylcytosine (age-related) causes cytosine>thymine (C>T) transitions in the context of CpGs
 - See, for example, Alexandrov and Stratton, Curr Opin Genet Dev 24:52–60, 2014
- Mutational processes can be represented by means of "mutational signatures"
 - Reflect the frequencies of base changes within their sequence context

First published concept/notion of mutational signatures:

"Full" model (Alexandrov et al, Nature 500:415-421, 2013)

- ► Full dependency between mutated and adjacent bases
- For 3-base sequence contexts: 6 x 4 x 4 = 96 parameters
- Can be described by a vector of 96 probabilities (i.e., sum is 1)

https://cancer.sanger.ac.uk/cosmic/ signatures

Alternative concept/notion of mutational signatures:

"Independent" model (Shiraishi et al, PLoS Genet 11:e1005657, 2015)

Nucleotide	change	(central	base)	

C>A	C>G	C>T	T>A	T>C	T>G
0.004	0.006	0.928	0.009	0.038	0.015

Flanking base	es			
Position	A	С	G	T
-2	0.237	0.228	0.293	0.242
-1	0.362	0.220	0.279	0.139
+1	0.131	0.053	0.764	0.052
+2	0.232	0.277	0.277	0.214

Transcription s	strand		
plus strand	minus	strand	
0.493	0.	507	

- Mutated base and adjacent bases as independent features
- For 5-base sequence contexts + transcriptional direction: 6+4 x 4+2 = 24 parameters
- ► Can be described by a table

(The following describes Alexandrov signatures; same for Shiraishi)

- ► The somatic mutations of a tumor are caused by multiple mutational processed. → We observe an overlap of multiple mutational signatures!
- ▶ Basic idea: the 96 mutation frequencies observed in tumor genome \vec{g} can be described as the weighted sum of N signature vectors \vec{s}_k :

$$ec{g} = \sum_{k=1}^N w_k ec{s}_k \qquad ext{with} \qquad \sum_{k=1}^N w_k = 1, w_k \geq 0$$

► For a set of G tumor genomes we have:

$$G = S \times W$$

- ► **G** is the 96 × G-matrix of observed mutation frequencies in the tumors;
- **S** is the $96 \times N$ -matrix containing all signatures (one per column); and
- ► **W** is the *N* × *G*-matrix of weights (also called "exposures" or "contributions") of the signatures in the single tumors

How are mutational signatures derived?

▶ For a set of G tumor genomes we have:

$$\textbf{G} = \textbf{S} \times \textbf{W}$$

- ► **G** is the 96 × *G*-matrix of observed mutation frequencies in the tumors;
- ► **S** is the 96 × *N*-matrix containing all signatures (one per column); and
- ▶ **W** is the *N* × *G*-matrix of weights (also called "exposures" or "contributions") of the signatures in the single tumors
- Derive S and W at the same time!
 - Non-negative matrix factorization (Alexandrov et al, Cell Reports 3:246–259, 2013)
 - Principal component analysis (Gehring et al, Bioinformatics 31:3673–3675, 2015)
- Requires a large set of tumors!
- What if you what to determine which mutational processes contributed to the mutation load of a single tumor???
 (E.g., in a clinical setting)

Alexandrov signatures in a single tumor

▶ Remember: the 96 mutation frequencies observed in *one* tumor genome \vec{g} can be described as weighted sum of N signatures \vec{s}_k :

$$\vec{g} = \sum_{k=1}^{N} w_k \vec{s}_k$$
 with $\sum_{k=1}^{N} w_k = 1, w_k \ge 0$

- ▶ Given: \vec{g} (observed mutations), \vec{s}_k (signatures)
- ► Goal: "Signature refitting"

 Compute weights w_k which minimize the error terms (ϵ_k) !
 - → most likely contributions to the mutational load of the tumor!
- ► Tool: deconstructSigs (Rosenthal et al, Genome Biol 17:31, 2016)
 - ▶ R package; constructs a solution by iteratively adding single mutational signatures to minimize the sum-squared error between \vec{g} and $\sum_{k=1}^{N} (w_k \vec{s}_k)$

decompTumor 2549.

Quadratic programming approach

(Following Lynch, F1000Research 5:1253, 2016)

We want $\mathbf{S}\vec{w} \approx \vec{g}$, so we can solve the following (because $\vec{\epsilon} = \vec{g} - \mathbf{S}\vec{w}$)

Problem

minimize
$$(\vec{g} - \mathbf{S}\vec{w})^T (\vec{g} - \mathbf{S}\vec{w})$$

subject to $\sum_{s=1}^k w_s = 1, w_s \ge 0$

Since $\vec{g}^T \vec{g}$ is constant and $(\mathbf{S}\vec{w})^T \vec{g} = \vec{g}^T \mathbf{S}\vec{w}$, we can simplify the problem:

minimize
$$-\vec{g}^T \mathbf{S} \vec{w} + \frac{1}{2} \vec{w}^T \mathbf{S}^T \mathbf{S} \vec{w}$$
 subject to $\sum_{s=1}^k w_s = 1, w_s \ge 0$

- Classical quadratic programming problem!
- ► Can be easily solved using the R package quadprog

Accuracy of signature contributions/weights

Figure 2: Comparison of contributions/weights ("exposures") predicted for individual tumors (decompTumor2Sig; y-axis) and collectively computed (pmsignature; x-axis). Left: leave-one-out test on 21 breast cancers (r = 0.923). Right: test set of 44 out of 435 tumors (r = 0.807).

Median weight differences ($|w_k - w'_{\nu}|$): (A) 0.018 and (B) 0.019

- Signature refitting better explains the observed variance of a tumor's mutation frequencies
- Explained variance R² defined as:

$$R^2 = 1 - \frac{\mathrm{Var}(g - \hat{g})}{\mathrm{Var}(g)} = 1 - \frac{\sum_{i=1}^{p} (g_i - \hat{g}_i)^2}{\sum_{i=1}^{p} (g_i - g_i^*)^2}$$

where g is the observed, g^* a uniform, "flat" tumor genome, and \hat{g} the genome predicted by the computed weights (hence $g - \hat{g}$ is the error).

 Much less parameters to be estimated ...

Subsets of signatures explain tumor genomes

In many cases >95% of the variance in a tumor's mutation frequencies is determined by a subset of signatures.

Decomposition of example tumors

Contributions to lung adenocarcinoma (left) and medulloblastoma (right)

Contributions to 21 breast cancer genomes (data: Nik-Zainal et al., Cell, 2012)

Signature 3:

associated with failure of DNA double-strand break-repair (germline and somatic mutations in BRCA1 and BRCA2)

Signature 1:

spontaneous deamination of 5-methylcytosine (age-related)

Signatures 2 & 13:

attributed to activity of APOBEC family members

Acknowledgments

- Freie Universtiät Berlin
 - Sandra Krüger (*)
 - Annalisa Marsico
- The University of Tokyo
 - Yuichi Shiraishi
- German Cancer Research Center (DKFZ), Heidelberg
 - Susanne Gröbner
 - Marc Zapatka
 - Peter Lichter

 - Stefan Pfister
- ▶ Politecnico di Milano
 - Stefano Ceri
 - Eirini Stamoulakatou
 - Pietro Pinoli
- ► IBM Research Zurich
 - Maria Rodriguez Martinez
 - An-phi Nguyen

Questions?

