2/2

2/2

2/2

2/2

2/2

-1/2

2/2

2/2

2/2

2/2

2/2

## THLR Contrôle (35 questions), Septembre 2016

| Nom et prénom, lisibles :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Identifiant (de haut en bas) :                                                                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|
| LEON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  |  |  |  |
| Felix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | □0 □1 □2 □3 □4 □5 □6 <b>■</b> 7 □8 □9                                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |  |  |  |
| Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.  Il j'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +158/1/xx+···+158/5/xx+. |                                                                                                  |  |  |  |
| Q.2 Un alphabet est toujours muni d'une relation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d'ordre :                                                                                        |  |  |  |
| <b>faux</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | □ vrai                                                                                           |  |  |  |
| <b>Q.3</b> Pour $L_1 = \{a, b\}^*, L_2 = \{a\}^* \{b\}^*$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Box L_1 = L_2 \qquad \Box L_1 \not\subseteq L_2$                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |  |  |  |
| <b>Q.4</b> Soit le langage $L = \{a, b\}^*$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $S(L) = Pref(L)$ $\square$ $Suff(L) \cup Pref(L) = \emptyset$<br>$S(L) \cap Pref(L) = \emptyset$ |  |  |  |
| Q.5 Que vaut $Pref(\{ab,c\})$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |  |  |  |
| $\square \{a,b,c\} \qquad \square \{b,c,\varepsilon\} \qquad \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                  |  |  |  |
| Q.6 Que vaut $\overline{\{a\}\{b\}^*} \cap \{a\}^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (a, b)* $\{b\}\{a\}^* \cup \{b\}^*$                                                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\{a\}\{b\}^*\{a\}$                                                                              |  |  |  |
| <b>Q.7</b> Pour toute expression rationnelle $e$ , on a $e + \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\equiv \emptyset + e \equiv e.$                                                                 |  |  |  |
| wrai vrai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ faux                                                                                           |  |  |  |
| Q.8 Pour toutes expressions rationnelles $e, f$ , on a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(ef)^*e \equiv e(fe)^*.$                                                                        |  |  |  |
| vrai vrai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ faux                                                                                           |  |  |  |
| Q.9 Pour toutes expressions rationnelles e, f, simp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                |  |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |  |  |  |
| <b>Q.10</b> Soit $\Sigma$ un alphabet. Pour tout $A, L_1, L_2 \subseteq \Sigma^*$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  |  |  |  |
| faux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | □ vrai                                                                                           |  |  |  |
| Q.11 L'expression Perl '[-+]?[0-9A-F]+([-+/*][                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -+]?[0-9A-F]+)*' n'engendre pas :                                                                |  |  |  |
| □ ′-42-42′ □ ′-42′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ☐ '42+42' <b>☐</b> '42+(42*42)'                                                                  |  |  |  |



Combien d'états compte l'automate de Thompson d'une expression rationnelle composée de n opérations autres que la concaténation :

0/2

|   | 2                             |       |             |    |  |
|---|-------------------------------|-------|-------------|----|--|
| n | □ 2 <sup>2<sup>2</sup>:</sup> | $2^n$ | $\boxtimes$ | 2n |  |
|   | n foie                        |       |             |    |  |

Un automate fini qui a des transitions spontanées...

2/2

| est déterministe |  |
|------------------|--|
| est déterministe |  |

n'est pas déterministe



 $\square$   $n^2$ 

 $\frac{n}{2}$ 

 $\square$  accepte  $\varepsilon$ 

Quel automate ne reconnaît pas le langage décrit par l'expression  $(a^*b^*)^*$ . Q.14





2/2



Q.15



Quel est le résultat d'une élimination arrière des transitions spontanées?

2/2









Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents?

2/2







☐ Aucune de ces réponses n'est correcte.

Le langage  $\{ \stackrel{\bullet}{=}^n \stackrel{\bullet}{\cong}^n \mid \forall n \in \mathbb{N} \}$  est Q.17

2/2

rationnel

non reconnaissable par automate

☐ fini

□ vide

Q.18 A propos du lemme de pompage

2/2

☐ Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel

☐ Si un langage le vérifie, alors il est rationnel

Si un langage ne le vérifie pas, alors il n'est pas rationnel

Si un automate de n états accepte  $a^n$ , alors il accepte...



| 2/2  | $a^{p}(a^{q})^{*} \text{ avec } p \in \mathbb{N}, q \in \mathbb{N}^{*}: p+q \leq n \qquad \square \qquad a^{n+1} \qquad \square \qquad a^{n}a^{m} \text{ avec } m \in \mathbb{N}^{*}$ $\square \qquad (a^{n})^{m} \text{ avec } m \in \mathbb{N}^{*}$ |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | <b>Q.20</b> Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la $n$ -ième lettre avant la fin est un $a$ (i.e., $(a + b + c + d)^*a(a + b + c + d)^{n-1}$ ):                        |
| 0/2  |                                                                                                                                                                                                                                                       |
|      | Q.21 Déterminiser cet automate : $\xrightarrow{a,b}$ $\xrightarrow{a,b}$ $\xrightarrow{a,b}$ $\xrightarrow{a,b}$ $\xrightarrow{a,b}$                                                                                                                  |
| 0/0  |                                                                                                                                                                                                                                                       |
| 2/2  | $\Box \stackrel{b}{\longleftrightarrow} \stackrel{a}{\longleftrightarrow} \stackrel{a,b}{\longleftrightarrow} $                                                                                                                                       |
|      | Q.22 Duelle(s) opération(s) préserve(nt) la rationnalité?                                                                                                                                                                                             |
| 0/2  | <ul> <li>☑ Différence</li> <li>☑ Différence symétrique</li> <li>☑ Union</li> <li>☑ Intersection</li> <li>☑ Aucune de ces réponses n'est correcte.</li> </ul>                                                                                          |
|      | Q.23 Duelle(s) opération(s) préserve(nt) la rationnalité?                                                                                                                                                                                             |
| 0/2  | ⊠ Sous – mot ⊠ Suff ⊠ Transpose ⊠ Fact ⊠ Pref<br>□ Aucune de ces réponses n'est correcte.                                                                                                                                                             |
|      | <b>Q.24</b> Soit <i>Rec</i> l'ensemble des langages reconnaissables par DFA, et <i>Rat</i> l'ensemble des langages définissables par expressions rationnelles.                                                                                        |
| -1/2 |                                                                                                                                                                                                                                                       |
|      | <b>Q.25</b> Si $L_1$ , $L_2$ sont rationnels, alors:                                                                                                                                                                                                  |
| 0/2  |                                                                                                                                                                                                                                                       |
|      | Q.26 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il                                                                       |
| 0/2  | □ accepte un langage infini □ est déterministe □ a des transitions spontanées □ accepte le mot vide                                                                                                                                                   |
|      | Q.27 On peut tester si un automate déterministe reconnaît un langage non vide.                                                                                                                                                                        |
| 0/2  | <ul><li>☑ Oui</li><li>☑ Non</li><li>☐ Seulement si le langage n'est pas rationnel</li><li>☐ Cette question n'a pas de sens</li></ul>                                                                                                                  |
|      | Q.28 Combien d'états a l'automate minimal qui accepte le langage $\{a, b, c, \dots, y, z\}^+$ ?                                                                                                                                                       |
| 2/2  | ■ 2 □ Il en existe plusieurs! □ 26 □ 1 □ 52                                                                                                                                                                                                           |
|      | Q.29 Si L et L' sont rationnels, quel langage ne l'est pas nécessairement?                                                                                                                                                                            |

2/2



| 0.30 | Combien d'états a | l'automate minimal | qui accepte | le langage (a. ab. abc) | 1? |
|------|-------------------|--------------------|-------------|-------------------------|----|

2/2

1/2

|        | TI | n'exi  | ste | nas  |
|--------|----|--------|-----|------|
| $\Box$ | 11 | II exi | sie | pas. |

Quels états peuvent être fusionnés sans changer le langage reconnu.



☐ 1 avec 3

7

☐ 2 avec 4

☐ 0 avec 1 et avec 2

1 avec 2

☐ Aucune de ces réponses n'est correcte.

Considérons  $\mathcal{P}$  l'ensemble des palindromes (mot u égal à son tranposé/image miroir  $u^R$ ) de longueur paire sur  $\Sigma$ , i.e.,  $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}.$ 

2/2

| $\mathbf{I}$ | existe un $arepsilon$ -NFA qui reconnaisse ${\cal P}$ |
|--------------|-------------------------------------------------------|
|              | Il aviata un NIEA qui reconnaisse d                   |

P ne vérifie pas le lemme de pompage

 $\square$  Il existe un DFA qui reconnaisse  $\mathcal P$ 

Q.33



Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

$$\Box$$
  $a^* + b^* + c^*$ 

$$\Box$$
  $(a+b+c)^*$ 

Sur  $\{a,b\}$ , quel est le complémentaire de . Q.34







-1/2



Q.35



Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?

- $\Box (ab^* + (a+b)^*)(a+b)^+$

Q.36 Sur {a, b}, quel automate reconnaît le complémentaire du langage de

2/2







+158/5/2+



Fin de l'épreuve.

+158/6/1+