All-Pair Shortest Path

Floyd-Warshall's Algorithm

- □ Negative Weight Edges may be present, But we assume that there are no negative weight cycles.
- ☐ It follows **Dynamic Programming** approach.
- \Box For a given directed graph G(V, E) of n vertices Input to this algorithm is an n x n matrix **W** representing edge weights.

$$w_{ij} = \begin{cases} 0 & \text{if } i = j, \\ \text{the weight of directed edge } (i, j) & \text{if } i \neq j \text{ and } (i, j) \in E \\ \infty & \text{if } i \neq j \text{ and } (i, j) \notin E \end{cases}$$

Optimal substructure

Sub-problem: For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in {1,...,k-1}.

Let D^(k-1)[u,v] be the solution to this sub-problem.

will fill in the n-by-n arrays $D^{(0)}, D^{(1)}, ..., D^{(n-1)}$ iteratively and then we'll be done.

Our DP algorithm

(We omit edges in the picture below).

How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

 $D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, ..., k\}$.

How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

 $D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, ..., k\}$.

How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

 $D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, ..., k\}$.

How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

• $D^{(k)}[u,v] = min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$

Case 1: Cost of shortest path through {1,...,k-1} Case 2: Cost of shortest path from u to k and then from k to v through {1,...,k-1}

- Optimal substructure:
 - We can solve the big problem using smaller problems.
- Overlapping sub-problems:
 - D^(k-1)[k,v] can be used to help compute D^(k)[u,v] for lots of different u's.

 $d_{ij}^{(k)}$ — weight of shortest path from vertex i to j for which intermediate vertices are $v_1, ..., v_k$

```
FloydWarshall(matrix W)

n \leftarrow rows[W]

D^{(0)} \leftarrow W

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

d_{ij}^{(k)} \leftarrow min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})

return D^{(n)}
```

Running Time: O (n³)

$$W = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 3 & \infty & 7 \\ 8 & 0 & 2 & \infty \\ 5 & \infty & 0 & 1 \\ 2 & \infty & \infty & 0 \end{bmatrix}$$

$$D^{0} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & \infty & 7 \\ 8 & 0 & 2 & \infty \\ 5 & \infty & 0 & 1 \\ 2 & \infty & \infty & 0 \end{bmatrix}$$

$$D^{0} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & \begin{bmatrix} 0 & 3 & \infty & 7 \\ 8 & 0 & 2 & \infty \\ 5 & \infty & 0 & 1 \\ 2 & \infty & \infty & 0 \end{bmatrix}$$

$$D^{1} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 3 & \infty & 7 \\ 8 & 0 & 2 & 15 \\ 5 & 8 & 0 & 1 \\ 2 & 5 & \infty & 0 \end{bmatrix}$$

$$D^{2} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & \begin{bmatrix} 0 & 3 & 5 & 7 \\ 8 & 0 & 2 & 15 \\ 5 & 8 & 0 & 1 \\ 2 & 5 & 7 & 0 \end{bmatrix}$$

$$D^{3} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & \begin{bmatrix} 0 & 3 & 5 & 6 \\ 7 & 0 & 2 & 3 \\ 5 & 8 & 0 & 1 \\ 2 & 5 & 7 & 0 \end{bmatrix}$$

$$D^{4} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & \begin{bmatrix} 0 & 3 & 5 & 6 \\ 5 & 0 & 2 & 3 \\ 3 & 6 & 0 & 1 \\ 2 & 5 & 7 & 0 \end{bmatrix}$$

Floyd-Warshall's Algorithm(Example 3)

	$D_{(0)}$				
	1	2	3	4	5
_	0	3	8	8	-4
2	8	0	8	1	7
ယ	8	4	0	8	8
4	2	8	-5	0	8
5	8	8	∞	6	0

	$D^{(1)}$				
Ī	1	2	3	4	5
_	0	3	8	8	-4
2	8	0	8	1	7
3	8	4	0	8	8
4	2	5	-5	0	-2
5	8	8	∞	6	0

	$D^{(2)}$				
Ī	1	2	3	4	5
_	0	3	8	4	-4
2	8	0	8	1	7
3	8	4	0	5	11
4	2	5	-5	0	-2
5	∞	8	∞	6	0

	$D^{(3)}$				
ı	1	2	3	4	5
_	0	3	8	4	-4
2	8	0	8	1	7
3	8	4	0	5	11
4	2	-1	-5	0	-2
5	∞	∞	∞	6	0

	D ⁽⁴⁾				
·	1	2	3	4	5
_	0	3	-1	4	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

	$D^{(5)}$				
	1	2	3	4	5
_	0	3	-1	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0