Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт информационных технологий и анализа данных

наименование института

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 3 по дисциплине:

ИССЛЕДОВАНИЕ ОПЕРАЦИЙ

«Решение задачи линейного программирования с использованием метода искусственных переменных»

Выполнил	АСУб-20-2		Арбакова А.В.
_	шифр группы	подпись	Фамилия И.О.
Проверил			Китаева О.И.
<u>-</u>			Китасьа О.И.
	лолжность	полпись	Фамипия И О

1. Постановка задачи.

Цель работы: Приобретение навыков решения задач линейного программирования с использованием метода искусственных переменных.

Задание: Построить математическую модель для задачи индивидуального варианта, решить задачу с использованием метода искусственных переменных, проверить полученные результаты с использованием надстройки Поиск решения MS Excel, и дать экономическую интерпретацию полученных результатов.

Задача (вариант 2):

Для изготовления двух видов продукции x1 и x2 используют 4 вида ресурсов. Используя заданную модель задачи, определить план выпуска продукции, приносящий максимальную прибыль.

В индивидуальном варианте, целевая функция отражает прибыль от изготовления продукции, коэффициенты при переменных х1 и х2 - прибыль от производства соответствующего вида продукции. Неравенства задают ограничения по ресурсам.

Задание 2

$$F = 2x_1 + 2x_2 \rightarrow \max$$

$$3x_1 - 2x_2 \ge -6$$

$$x_1 + x_2 \ge 3$$

$$x_1 \le 3$$

$$x_2 \le 5$$

$$x_1 \ge 0, \quad x_2 \ge 0$$

2. Математическая модель задачи.

Записываем расширенную форму задачи и используем метод искусственных переменных – вводим искусственную переменную х₇

$$F = 2x_1 + 2x_2 + 0x_3 + 0x_4 + 0x_5 + 0x_6 - Mx_7 \to max$$

$$\begin{cases}
-3x_1 + 2x_2 + 1x_3 + 0x_4 + 0x_5 + 0x_6 + 0x_7 = 6 \\
x_1 + x_2 + 0x_3 - 1x_4 + 0x_5 + 0x_6 + 1x_7 = 3 \\
x_1 + 0x_2 + 0x_3 + 0x_4 + 1x_5 + 0x_6 + 0x_7 = 3 \\
0x_1 + x_2 + 0x_3 + 0x_4 + 0x_5 + 1x_6 + 0x_7 = 5 \\
x_1 \ge 0, x_2 \ge 0
\end{cases}$$

3. Результаты решения задачи с использованием симплекстаблиц.

С	-		2	2	0	0	0	0	-M
-	B_x	a_i0	A_1	A_2	A_3	A_4	A_5	A_6	A_7
0	х3	6	-3	2	1	0	0	0	0
-M	x7	3	1	1	0	-1	0	0	1
0	x5	3	1	0	0	0	1	0	0
0	х6	5	0	1	0	0	0	1	0
	D	-3M	-M-2	-M-2	0	M	0	0	0

Вводим в базис x_2 и A_2 и выводим из базиса искусственную переменную x_7 . Заменяем в таблице столбец искусственной переменной на столбец для поиска направляющей строки.

С	-		2	2	0	0	0	0	
_	$\mathbf{B}_{\mathbf{x}}$	a _i 0	\mathbf{A}_1	A_2	A_3	A_4	A_5	A_6	аі0/А(н.ст)
0	х3	0	-5	0	1	2	0	0	0
2	x2	3	1	1	0	-1	0	0	-
0	x5	3	1	0	0	0	1	0	-
0	х6	2	-1	0	0	1	0	1	2
	D	6	0	0	0	-2	0	0	

Вводим в базис x_4 и A_4 и выводим из базиса x_3 и A_3 .

С	-		2	2	0	0	0	0	
-	$\mathbf{B}_{\mathbf{x}}$	a_i0	A_1	A_2	A_3	A_4	A_5	A_6	аі0/А(н.ст)
0	x4	0	-2,5	0	0,5	1	0	0	-
2	x2	3	-1,5	1	0,5	0	0	0	-
0	x5	3	1	0	0	0	1	0	3
0	х6	2	1,5	0	-0,5	0	0	1	1,333333
	D	6	-5	0	1	0	0	0	

Вводим в базис x_1 и A_1 и выводим из базиса x_6 и A_6 .

C	-		2	2	0	0	0	0	
-	$\mathbf{B}_{\mathbf{x}}$	a_i0	A_1	A_2	A_3	A_4	A_5	A_6	а _і 0/А(н.ст)
0	x4	3,333333	0	0	-0,33333	1	0	1,666667	-
2	x2	5	0	1	0	0	0	1	-
0	x5	1,666667	0	0	0,333333	0	1	-0,66667	5
2	x1	1,333333	1	0	-0,33333	0	0	0,666667	-
	D	12,66667	0	0	-0,66667	0	0	3,333333	

Вводим в базис x_3 и A_3 , выводим из базиса x_5 и A_5 .

С	-		2	2	0	0	0	0
-	B_x	a _i O	A_1	A_2	A_3	A_4	A_5	A_6
0	x4	5	0	0	0	1	1	1
2	x2	5	0	1	0	0	0	1
0	х3	1,666667	0	0	1	0	3	-2
2	x1	3	1	0	0	0	1	0
	D	16	0	0	0	0	2	2

Оптимальный план найден. $X_1 = 3, X_2 = 5,$ значение целевой функции равно 16.

4. Результаты решения задачи задачи с помощью Ехсеl-таблиц.

	X1	X2
	3	5
Коэф. Цф	2	2
	Затраты	ресурсов
	3	-2
	1	1
	1	0
	0	1

Значения переменных X_1 и X_2 соответственно равны 3 и 5. Значение целевой функции равно 16.

5. Экономическая интерпретация полученных результатов.

Для максимизации прибыли рекомендуется выпускать 3 единицы первого вида продукции и 5 единиц второго. При этом прибыль составит 16 денежных единиц.