FLOATING POINT NUMBERS

IEEE floating point standard

Anandha Gopalan (with thanks to R. Hayden and N. Dulay)

axgopala@imperial.ac.uk

IEEE floating point standard

- IEEE: institute of electrical and electronic engineers (USA)
- Comprehensive standard for binary floating point arithmetic
- Widely adopted
 predictable results independent of architecture
- Standard defines:
 - Format of binary floating point numbers, i.e. how the fields are stored in memory
 - Semantics of arithmetic operations
 - Rules for error conditions

Single precision format (32-bit)

Sign	Exponent	Significand
S	E	F
1 bit	8 bits	23 bits

- Coefficient is called the significand in the IEEE standard
- Value represented is $\pm 1.F \times 2^{E-127}$
- The normal bit (the 1.) is omitted from the significand field → a hidden bit
- Single precision yields 24 bits (approx. 7 decimal digits of precision)
- Normalised ranges in decimal are approximately:

$$-10^{38}$$
 to -10^{-38} , 0, 10^{38} to 10^{-38}

Exponent field

 In the IEEE standard, exponents are stored as excess values, not as 2's complement

Example: In 8-bit excess-127

-127	would be held as	0000 0000
	•••	
0		0111 1111
1		1000 0000
128		1111 1111

 Allows non-negative floating point numbers to be compared using simple integer comparisons

Double precision format (64-bit)

Sign	Exponent	Significand	
S	E	F	
1 bit	11 bits	52 bits	

- Value represented is $\pm 1. F \times 2^{E-1023}$
- Double precision yields 53 bits (approx. 16 decimal digits of precision)
- Normalised ranges in decimal are approximately:

$$-10^{308}$$
 to -10^{-308} , 0, 10^{308} to 10^{-308}

 Single precision generally reserved for when memory is scarce or for debugging numerical calculations since rounding errors show up more quickly

Example: conversion to IEEE format

What is 42.6875 in IEEE single precision format?

- 1. Convert to **binary number**: $42.6875 = 10\ 1010\ .\ 1011$
- 2. Normalise: 1.010101011×2^5
- 3. Significand field is thus:

0101 0101 1000 0000 0000 000

4. Exponent field is (5 + 127 = 132): $1000\ 0100$

Sign	Exponent	Significand
S	E	F
0	1000 0100	0101 0101 1000 0000 0000 000

Hex: 422A C000

Example: conversion from IEEE format

What is the IEEE single precision value represented by **BEC0 0000** in decimal?

Sign	Exponent	Significand
S	E	F
1	0111 1101	1000 0000 0000 0000 0000 000

- 1. **Exponent field:** $0111 \ 1101 = 125$
- 2. True binary exponent: 125 127 = -2
- 3. Significand field + hidden bit:

 $1.1000\ 0000\ 0000\ 0000\ 0000\ 000$

- 4. So **unsigned value** is $1.1 \times 2^{-2} = 0.011$ (binary) = 0.25 + 0.125 = 0.375 (decimal)
- 5. Adding **sign bit** gives finally -0.375

Example: addition

Carry out the addition 42.6875 + 0.375 in IEEE single precision arithmetic

Number	Sign	Exponent	Significand
42.6875	0	1000 0100	0101 0101 1000 0000 0000 000
0.375	0	0111 1101	1000 0000 0000 0000 0000 000

- To add these numbers, exponents must be the same →
 make the smaller exponent equal to the larger by shifting
 significand accordingly
- Note: must restore hidden bit when carrying out floating point operations

Example: addition (cont.)

• **Significand** of larger no.: 1.0101 0101 1000 0000 0000 000

• Significand of smaller no.: 1.1000 0000 0000 0000 0000 000

• Exponents differ by $(1000\ 0100\ -0111\ 1101\ =\ 7)$ so shift binary point of smaller no. 7 places to the left:

• **Significand** of smaller no.: 0.0000 0011 0000 0000 0000 000

• **Significand** of larger no.: 1.0101 0101 1000 0000 0000 000

• **Significand** of **sum**: 1.0101 1000 1000 0000 0000 000

• So **sum** is $1.0101\ 1000\ 1 \times 2^5 = 10\ 1011.0001 = 43.0625$ Sign Exponent Significand F

Special values

- IEEE formats can encode five kinds of values: zero, normalised numbers, denormalised numbers, infinity and not-a-number (NaNs)
- Single precision representations:

IEEE value	Sign field	Exponent	Significand	True exponent
±0	0 or 1	0	0 (all zeros)	
± denormalised no.	0 or 1	0	Any non-zero bit pattern	-126
±normalised no.	0 or 1	1 254	Any bit pattern	−126 127
±∞	0 or 1	255	0 (all zeros)	
Not-a-number	0 or 1	255	Any non-zero bit pattern	

Denormalised numbers

- An all zero exponent is used to represent both zero and denormalised numbers
- An all one exponent is used to represent infinities and not-a-numbers
- Means range for normalised numbers is reduced, for single precision the exponent range is $-126 \dots 127$ rather than $-127 \dots 128$
- **Denormalised numbers** represent values between the underflow limits and zero, i.e. for single precision we have $\pm 0.F \times 2^{-126}$
- Allows a more gradual shift to zero useful in some numerical applications

Infinities and NaNs

- Infinities represent values exceeding the overflow limits and for divisions of non-zero quantities by zero
- You can do basic 'arithmetic' with them, e.g.:

$$\infty + 5 = \infty$$
, $\infty + \infty = \infty$

 NaNs represent the result of operations which have no (real) mathematical interpretation, e.g.

$$\frac{0}{0}$$
, $+\infty + -\infty$, $0 \times \infty$, square root of a negative number

 Operations resulting in NaNs can either yield a NaN result (quiet NaN) or an exception (signalling NaN)

Special Operations

Operation	Result
N ÷ ± Infinity	0
± Infinity × ± Infinity	± Infinity
± non-zero ÷ 0	± Infinity
Infinity + Infinity	Infinity
± 0 ÷ ± 0	NaN
Infinity - Infinity	NaN
± Infinity ÷ ± Infinity	NaN
± Infinity × 0	NaN

© SOME FUN ©

Floating Point Precision

Apologies for the C code ⊗

```
#include <stdio.h>
int main() {
  float a, b, c;
  float EPSILON = 0.0000001;
  a = 1.345f; b = 1.123f;
  c = a + b;
  if (c == 2.468)
    printf ("They are equal.\n");
  else
    printf ("\nThey are not equal! The value of c is %.10f or %f\n",c,c);
 // With some tolerance
 if (((2.468 - EPSILON) < c) \&\& (c < (2.468 + EPSILON)))
   printf ("\n^{.10}f is equal to 2.468 with tolerance\n^{.}, c);
```

Run-time

```
vm-shell4.doc.ic.ac.uk - PuTTY
[axgopala@vm-shell4 ~]$ gcc imprecision.c
[axgopala@vm-shell4 ~]$
[axgopala@vm-shell4 ~]$ ./a.out
They are not equal! The value of c is 2.4679999352 or 2.468000
2.4679999352 is equal to 2.468 with tolerance
[axgopala@vm-shell4 ~]$
```

Finding Machine Epsilon

Pseudo-code (thank goodness for that !!! ②)

```
Set machineEps = 1.0;

Loop

machineEps = machineEps/2.0

Until ((1 + machineEps/2.0) != 1)

Print machineEps
```

Finding Machine Epsilon

 C code (yes, it had to be there ②) #include <stdio.h> int main(int argc, char **argv) float machEps = 1.0f; **do** { machEps /= 2.0f; // If next epsilon yields 1, then break, because current // epsilon is the machine epsilon. while ((float)(1.0 + (machEps/2.0f)) != 1.0);printf("\nCalculated Machine epsilon: %G\n\n", machEps); return 0;

Finding Machine Epsilon

In Java

```
public class machEps
 private static void calculateMachineEpsilonFloat() {
     float machEps = 1.0f;
     do {
       machEps /= 2.0f;
     } while ((float)(1.0 + (machEps/2.0))!= 1.0);
     System.out.println( "Calculated machine epsilon: " + machEps );
 }
 public static void main (String args[])
     calculateMachineEpsilonFloat ();
```

Run-time

Special Operations

Example

```
#include <stdio.h>
int main (int argc, char **argv)
 float a = 1.0/0.0;
 float b = a * -100;
 float c = b/a;
 int d = 2 * 10 + 3;
 printf ("\nValue of a = \%f\n\n", a);
 printf ("\nValue of b = %f\n\n", b);
 printf ("\nValue of c = %f\n\n", c);
 printf ("\nValue of d = %d\n\n", d);
```

Run-time

```
pixel05.win.doc.ic.ac.uk - PuTTY
[axgopala@pixel05 code_snippets]$ gcc infinan.c
[axgopala@pixel05 code snippets]$ ./a.out
Value\ of\ a = inf
Value\ of\ b = -inf
Value\ of\ c = -nan
Value\ of\ d=23
[axgopala@pixel05 code snippets]$
```

