MODELLING AND SIMULATIONS

MODELING PRINCIPLES

Materials

Main materials

Ljung, Lennart, and Torkel Glad. "Modeling of dynamic systems." (1994).

Supporting materials

 Franklin, Gene F., et al. Feedback control of dynamic systems. Vol. 3. Reading, MA: Addison-Wesley, 1994.

Singh, Kuldeep. Linear algebra: step by step. OUP Oxford, 2013.

Curriculum

- Must have knowledge of the modelling of some typical physical systems, such as mechatronic systems, flow dynamic systems, energy production/transportation/distribution systems, process systems etc., provision of operating conditions
- Must have insight into the theoretical modelling for dynamic systems, including the principles of mass balance, energy balance and momentum balance
- Must have the knowledge of experimental modelling of linear and non-linear dynamic systems, including the experiment design, data collection and pre-filtering, model structure selection, parameter estimation and model validation
- Must have insight of linearization techniques of nonlinear systems,
- Must be able to simulate the obtained mathematical model in some typical simulation environment, such as Matlab/Simulink

Scope of this course

- Physical modeling
- Transfer functions
- State space models
- Signal analysis
- Filtering
- System identification
- Case studies
 - Process
 - Mechatronic
 - Hydraulic
 - Biologic
- Numerical computing (Matlab/Simulink)

Content

- What are models for systems and signals?
 - Basic concepts
 - Types of models
- How to build a model for a given system?
 - Physical modeling
 - Experimental modeling

Definitions & usage

- System is defined as an object or a collection of objects whose properties we want to study
- A model of a system is a tool we use to answer questions about the system without having to do an
 experiment
 - Mental model
 - Verbal model
 - Physical model
 - Mathematical model

Why make a model?

'A model of a system is a tool we use to answer questions about the system without having to do an experiment' [1]

- To simulate system behavior without having access to/using the physical system
 - Relevant for large mechanical system e.g. offshore
 - Issues/dangers of doing specific experiment
 - Costly to run experiments
 - Relevant parameters are not measured
- To aid in controller development
 - Behaviors of system (e.g. in frequency domain) can be retrieved from model
 - Apply advanced model-based control techniques
 - Test a developed controller on the model (to do design verification)

What should the model look like?

- What will be modeled?
 - Choice of what will be included, in the final equations
- Is a complex model the best?
 - Are some details too small to be significant, and how can this be determined?
- When linear and non-linear?
 - There is a difference in "tools" for linear and nonlinear systems
 - Is the system strongly (very) non-linear or only weakly non-linear?
 - Does the system behave linearly for the desired operating range?

Basic principles

- Physical modelling
 - The model has physical relations
 - Equations from physics; e.g. classical mechanics, circuit theory.
 - Not a black-box model
- Identification
 - Input-output relation
 - Black-box
- In-between
 - Grey Box

Principle and Phases

- 1. Structure the problem:
 - Decomposition (cause and effect, variables) → block diagram
- 2. Formulate subsystems
 - Usually based on componentization of real system;
 e.g. the propeller, gearbox and generator of a wind turbine
- 3. Get system model via simplification
 - Selection of which **system behaviors** to include in final model

- Example with a WWTP
- Simple diagram
- Complex process

- Example with a WWTP
- Simple diagram
- Complex process
- Real data collected

- Example with a WWTP
- Simple diagram
- Complex process
- Real data collected
- Simplified model designed

$$\dot{X}_B(t) = \frac{Q_{in}}{V} \cdot X_{B,in} - \frac{Q_{out}}{V} \cdot X_B(t) + \frac{\mu \cdot S_S(t)}{K_S + S_S(t)} \cdot X_B(t) - b \cdot X_B(t)$$

$$\dot{S}_S(t) = \frac{Q_{in}}{V} \cdot S_{S,in} - \frac{Q_{out}}{V} \cdot S_S(t) - \frac{1}{Y} \cdot \frac{\mu \cdot S_S(t)}{K_S + S_S(t)} \cdot X_B(t)$$

$$\dot{S}_O(t) = \frac{Q_{in}}{V} \cdot S_{O,in} - \frac{Q_{out}}{V} \cdot S_O(t) - \frac{1 - Y}{Y} \cdot \frac{\mu \cdot S_S(t)}{K_S + S_S(t)} \cdot X_B(t) - b \cdot X_B(t)$$

- Example with a WWTP
- Simple diagram
- Complex process
- Real data collected
- Simplified model designed
- Comparison with simulations
 - Validation results???

Newtonian physics PHYSICAL MODELING

Classical mechanics - translation & rotation

- There are two main forms of motion that are prevalent in modeling physical systems
 - Translation: means movement of mass in a direction
 - Rotation: means circular motion of a mass about an axis
- Also known as Newtonian mechanics

Newton's 2 law - Translation

Basis for derivations of equations from free body diagrams

$$\sum F = ma$$

 To derive differential (dynamic) equations remember that acceleration is the double derivative of position

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

equivalently:

$$\iint a \, dt = \int v \, dt = p$$

Force

 A force can change a velocity [v] of a object with a mass [m]:

$$F = a \cdot m$$

- Gravity acting on an object creates a force $F_g = g \cdot m$
- Thus F_g can change the position of the object
- The rate of change is depending on the magnitude of m and g and thus F_g
- The SI unit for torque is the newton meter (N·m)

Copyright ©2015 Pearson Education, All Rights Reserved

Energy storage; linear

Spring

$$f = -K(x_2 - x_1)$$

Friction

Newton's 2 law – Rotational Motion

Basis for derivations of equations from free body diagrams

$$\sum \tau = I \cdot \alpha$$

Where

$$I = Inertia = m \cdot r^2$$

 To derive differential (dynamic) equations remember that acceleration is the double derivative of position

$$\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$$
 equivalently:

$$\iint \alpha \, dt = \int \omega \, dt = \theta$$

Moment of inertia

Definition

- The moment of inertia of an object about a given axis describes how difficult it is to change its angular motion about that axis
- Plays the same role (or is equivalent to) mass in linear (translational) systems

Examples

Rotation

Torsional springs

$$-\tau = \frac{1}{c_t} \cdot \theta$$

Friction

$$-\tau = r \cdot \omega$$

Rotational Motion Example

Satellite Attitude Control

- Satellite position
- Angular position as output Θ
- Double integration system from the force inputs

$$F_c d + M_d = I \ddot{\theta}$$

DENMARK

System has following block diagram

Angular Velocity & Position

 The angular velocity of the particle at P with respect to the origin O is determined by the perpendicular component of the velocity vector v.

$$\omega = \frac{|v|\sin(\theta)}{|r|}$$

$$\vec{\omega} = \frac{\vec{r} \times \vec{v}}{|\vec{r}|^2}$$

- Angular velocity describes the speed of rotation and the orientation of the instantaneous axis about which the rotation occurs.
 - The direction of the angular velocity pseudo-vector will be along the axis of rotation; in this case (counter-clockwise rotation) the vector points up.

Torque

- Torque, moment or moment of force, is the tendency of a force to rotate an object about an axis
- The magnitude of torque depends on three quantities: the **force** applied, the **length** of the lever arm connecting the axis to the point of force application, and the **angle** between the force vector and the lever arm.

$$\tau = r \times F$$

$$\tau = r \cdot F \cdot \sin(\theta)$$

• Where τ Is torque vector, τ is the magnitude of the torque, \mathbf{F} is the force vector, \mathbf{F} is the magnitude of the force and θ is the angle between the force vector and the leaver arm vector.

$$\tau = \mathbf{r} \times \mathbf{F}$$

Gear

Gears have a proportional relationship to angular velocity and torque through the gear-ratio:

$$\tau_2 = \frac{r_2}{r_1} \cdot \tau_1$$

$$\omega_2 = \frac{r_1}{r_2} \omega_1$$

Gearing affect on Inertia

$$\frac{\tau_1}{\omega_1} = \left(\frac{r_1}{r_2}\right)^2 \cdot \frac{\tau_2}{\omega_2}$$

$$J_1 = \left(\frac{r_1}{r_2}\right)^2 \cdot J_2$$

Figure

Translation of angular to linear motion

• Different gear ratios equal to different distances traveled or their derivatives $[\omega, \alpha]$

The same occurs for the transferred torque

Example of an electromechanical system

Physical system illustration

• Schematic

Example of non-linearity: Friction

- Dry friction:
 - Surfaces rub against each other
 - Static
 - Dynamic
- Viscous friction:
 - In fluids (liquids or gasses), e.g. lubricated
 - Normally linear with speed, can be quadratic at high speed

$$F = B \cdot (V_2 - V_1)$$
or
$$F = B \cdot (V_2 - V_1)^2$$

Nonlinear friction 'Backlash'

- Dead-band
- Output is distorted
- Non-linear

Electrical circuits PHYSICAL MODELING

Electric circuits

Basic electric circuits and their euqations

Passive Electronics

- Passivity is a property of engineering systems, used in a variety of engineering disciplines, but most commonly found in analog electronics and control systems.
- A passive component, depending on field, may be either a component that consumes (but does not produce) energy (thermodynamic passivity), or a component that is incapable of power gain (incremental passivity).

Transformer

Equations

Transforms v and i with a constant product.

- $u_1 \cdot i_1 = u_2 \cdot i_2$
- $u_1 = \alpha u_2$
- $i_1 = \frac{1}{\alpha}i_2$

Where α is the ratio of turns in the transformer

Diagram

Electric circuits

Kirchhoff's laws:

KCL

The algebraic sum of currents leaving a junction or node equals the algebraic sum of currents entering that node

KVL

The algebraic sum of all voltages taken around a closed path in a circuit is zero

Electric circuits: Node Analysis

Use KVL to find the equation of the circuit to the right,

- 1. Select 4 nodes, with 4 as reference
- 2. Voltages v_1 , v_2 and v_3 are unknowns

Node 2:

_

BLOCK DIAGRAMS

1. Summer

2. Comparator

3. Block

$$\therefore Y(s) = G(s)X(s)$$

•Blocks in Series

$$X_1 \longrightarrow G_1(s) \xrightarrow{X_2} G_2(s) \longrightarrow Y$$

are equivalent to...

$$X_1 \longrightarrow G_1(s)G_2(s)$$

AALBORG UNIVERS
DENMARK

Block Diagram and Transfer function

Masons rule

$$H = \frac{Openloop}{1 - Openloop \cdot Feedback} = \frac{H_1}{1 - H_1 \cdot H_2}$$

Example

$$H = \frac{Openloop}{1 - Openloop \cdot Feedback} = \frac{H_1}{1 - H_1 \cdot H_2} \\ H = \frac{\frac{1}{m_m} \cdot \frac{1}{s}}{1 - \left(\frac{1}{m_m} \cdot \frac{1}{s}\right) \cdot \left(-r_m\right)} = \frac{\frac{1}{m_m \cdot s}}{1 + \left(\frac{1}{m_m \cdot s}\right) \cdot r_m} = \frac{\frac{1}{m_m} \cdot \frac{1}{s}}{s + \left(\frac{r_m}{m_m}\right)} = \frac{\frac{1}{m_m} \cdot \frac{1}{s$$

Open- and closed-loop

- Open-loop Control: A control process which does not utilize the feedback mechanism, i.e., the output(s) has no effect upon the control input(s)
- Closed-loop Control: A control process which utilizes the feedback mechanism, i.e., the output(s) does have effect upon the control input(s)

DC motor

Equations

Torque

$$T = K_t i_a$$

Back emf

$$e = K_e \dot{\theta_m}$$

Where $K_t = K_e$

Diagram

DC motor model

Equations

Mechanical part equation, with inertia and friction

$$J_m \cdot \ddot{\theta}_{\rm m} + b \cdot \dot{\theta}_{\rm m} = K_t \cdot i_a$$

Electrical part equation from KVL (circuit)

$$L_a \cdot \frac{di_a}{dt} + R_a \cdot i_a = v_a - K_e \cdot \dot{\theta}_{\rm m}$$

Diagram

DC motor model

Diagram

Equations

Mechanical: $J_m \cdot \ddot{\theta}_m + b \cdot \dot{\theta}_m = K_t \cdot i_a$

Electrical: $L_a \cdot \frac{di_a}{dt} + R_a \cdot i_a = v_a - K_e \cdot \dot{\theta}_m$

 As the relative effect of the Inductance is neglible in many cases, we can simplify and combined the two equations:

$$J_m \cdot \ddot{\theta}_{\rm m} + \left(b + \frac{\dot{K_t} \cdot K_e}{R_a}\right) \cdot \dot{\theta}_{\rm m} = \frac{K_t}{R_a} \cdot v_a$$

EXERCISES

Exercise

Implement the following equation in Matlab:

$$\frac{\Theta(s)}{T_C(s)} = \frac{\frac{1}{ml^2}}{s^2 + \frac{g}{l}}$$

Using the following parameters:

$$m = 10 (kg)$$
$$l = 10 (m)$$

- Try and plot the system step response
- Try to change the length of the pendulum to 100 and compare the step response
- Compare the poles of the two systems

Copyright ©2015 Pearson Education, All Rights Reserved