

Ensayo de un Compresor de tornillo

Laboratorio de máquinas ICM-557.

Segundo semestre 2020.

Profesores:

Cristóbal Galleguillos Ketterer

Tomas Herrera Muñoz.

Ayudante:

Ignacio Ramos.

Alumno:

Cristóbal Ramos Correa.

INDICE

INTRODUCCIÓN	3
OBJETIVO	jError! Marcador no definido.
METODOLOGIA	¡Error! Marcador no definido.
DESARROLLO DEL CONTENIDOS	4
1 Tablas de Valores	4
2 Curvas y cuestionarios	5
CONCLUSIONES	6
REFERENCIAS	7

INTRODUCCIÓN

En este informe se da por finalidad comprender en profundidad el funcionamiento de un compresor de tornillo.

se buscará entender el funcionamiento de esta máquina y analizarla en base a los resultados, curvas y valores entregados en la clase

DESARROLLO DEL CONTENIDOS

1.- Tablas de Valores

Valores medidos en la experiencia:

P.Des Veloc.	Temp	Hum.	Temp	Punto	
	Amb	Amb.	Desc.	Rocío	
pd	n	t _{amb}	H_{amb}	$t_{ m desc}$	PRP
[bar]	[rpm]	[°C]	%	[°C]	[℃]
5,5	4315	18	59,4	73	4
6	4350	19	58,9	73	4
7	4350	18	58,6	75	4
8	4176	18	58,9	76	4
9	3984	19	58,9	77	4

Temp.	Pres.	Corriente	Caudal	Pres.
EBP	EBP	Corriente	Caudai	Atm
t_{EBP}	Δh	I	Q	Patm
[°C]	[mm _{ca}]	[A]	[%]	$[mm_{Hg}]$
20	476	17	98	759,5
20	484	16	100	759,5
21	464	17	100	759,5
21,5	406	17	100	759,5
21	348	17	100	759,5

Valores calculados:

P.Des	Caudal		Velocidad
$p_{\rm d}$	Q		n
[bar]	[m3/h]	[%]	[rpm]
5,5	72,86	92,46	4315
6	72,84	92,71	4350
7	71,25	91,22	4350
8	69,37	95,31	4176
9	67,31	99,79	3984

P.Des	Caudal máx.
$p_{\rm d}$	Q
[bar]	[m3/hr]
5,5	78,8
6	78,5
7	78,1
8	72,8
9	67,4
9,5	64,8
12,5	51,12

¿Los valores están en el rango que corresponden?

Por lo analizado los valores están en el rango correspondiente en comparación a los análisis hechos en la experiencia.

2.- Curvas y cuestionarios

¿Qué significa el Punto de Rocío?

El punto de rocío es la temperatura más alta en donde comienza a condensarse el vapor de agua contenido en el aire, produciendo rocío, podríamos decir que es el ultimo instante en donde existe calor latente y en donde comienza s surgir el calor sensible del cambio de estado del agua.

Todo esto ocurre cuando la humedad relativa del fluido alcanza un 100% y el aire se satura.

El punto de rocío puede estimarse como:

$$Pr = \sqrt[8]{H/100} * (110 - T) - 110$$

Donde:

Pr = Punto de rocío.

T = Temperatura en °C.

H = Humedad relativa (expresada en porcentaje).

CONCLUSIONES

En este ensayo se logro comprender en detalle el funcionamiento del compresor de tornillo y los fenómenos físicos que están estrechamente relacionados con el funcionamiento de esta máquina.

Otro punto importante es que la experiencia y los resultados concuerdan, por ende estos resultados responden a lo que se consideraba como correcto.

REFERENCIAS

PAPER DE LA EXPERIENCIA Y APUNTES DE LA ASIGNATURA.

DIAGRAMAS CONTENIDOS EN LA EXPERIENCIA