Elliptic curves: homework 10

Mastermath / DIAMANT, Spring 2019 Martin Bright and Marco Streng

- **1.** Let k be a field of characteristic different from 2. Suppose that k contains i, a square root of -1. Let E be the elliptic curve over k given by $Y^2 = X^3 X$.
 - (a) Show that [i](x,y) = (-x,iy) defines an endomorphism $[i]: E \longrightarrow E$ and that [i] satisfies $[i]^2 + [1] = 0$ in $\operatorname{End}(E)$.
 - (b) For $a, b \in \mathbb{Z}$, show that the degree of the endomorphism a + b[i] of E is equal to $a^2 + b^2$.
 - (c) Compute formulas for the isogeny $\phi = [1] + [i]$.
 - (d) Compute the points in $\ker(\phi)$ for $\phi = [1] + [i]$. [Note: this can easily be done without doing (c).]
- **2.** Let E be the elliptic curve over \mathbb{F}_2 given by $Y^2 + Y = X^3$. Compute the dual of its Frobenius endomorphism.
- **3.** (Inspired by Silverman, Exercise 3.32) Let $\phi \in \operatorname{End}(E)$ be an endomorphism and let

$$d = \deg(\phi)$$
, and $t = 1 + \deg(\phi) - \deg(1 - \phi) \in \mathbb{Z}$.

- (a) Prove $t = \phi + \widehat{\phi}$ and $\phi^2 t\phi + d = 0$ in End(E).
- (b) Give a formula for $deg(m\phi n)$ in terms of m, n, d, t.
- (c) Prove $|t| \leq 2\sqrt{d}$. [Hint: use $\deg(m\phi n) \geq 0$ for all $m, n \in \mathbb{Z}$.]
- (d) Prove Hasse's theorem, which states that for E/\mathbb{F}_q an elliptic curve, we have

$$|\#E(\mathbb{F}_q) - (q+1)| \le 2\sqrt{q}.$$

[Hint: show that $E(\mathbb{F}_q) = \ker(1 - \operatorname{Frob}_q)$.]

- **4.** Let k be a field and let E be an elliptic curve over k.
 - (a) Show that for $m \geq 3$ not divisible by char k, the natural map $\operatorname{Aut} E \to \operatorname{Aut}(E[m])$ is injective, while for m=2 its kernel is $\{\pm \operatorname{id}\}$. [Notes: this is [Silverman, Exercise 3.12], and you are not allowed to use [Silverman, Theorem III.10.1]. Hint for one approach to this problem: use Problem 3(c).]
 - (b) Show that the order of Aut E is at most 12 when char $k \neq 2$, while it is at most 48 when char k = 2. (It is actually ≤ 24 .)
 - (c) Show that the order of an automorphism of E is 1, 2, 3, 4 or 6. [Hint: use Problems 3(a) and 3(b).]