Revisão de Ponteiros em C

Envie os arquivos **aula1_1.c e aula1_2.c** pelo Classroom. Use alocação dinâmica sempre que possível!!!

Exercícios:

- 1) No arquivo aula 11.c: Elabore um programa que declare 4 variáveis do tipo inteiro e 4 do tipo ponteiro para inteiro e faça com que as variáveis ponteiro apontem para as variáveis do tipo inteiro. Coloque comandos que permitam modificar os valores das variáveis inteiras através das variáveis ponteiro. Faça a simulação passo-a-passo para visualizar o que está acontecendo em cada linha do programa.
- 2) <u>No arquivo aula1 2.c:</u> Implemente funções em C para cada um dos problemas abaixo (todas as funções devem estar em um único arquivo aula1_2.c). Para cada uma das funções, implemente uma função *main* diferente (comente as outras para conseguir rodar):
 - 2.1) Implemente uma função que calcule a área da superfície e o volume de uma esfera de raio r. A área da superfície e o volume são dados, respectivamente, por $4\pi r^2$ e $4\pi r^3/3$. Essa função deve obedecer ao seguinte protótipo: void calc_esfera (float r, float* area, float* volume);
 - 2.2) Implemente uma função que calcule as raízes de uma equação do segundo grau, do tipo $ax^2 + bx + c = 0$. Essa função deve obedecer o seguinte protótipo: int raizes (float a, float b, float c, float* x1, float* x2);
 - 2.3) Implemente uma função que receba como parâmetro um vetor de números inteiros (vet) de tamanho n e retorne quantos números pares estão armazenados nesse vetor. Essa função deve obedecer ao protótipo: int pares (int n, int* vet);
 - 2.4) Implemente uma função que receba como parâmetro um vetor de números inteiros (vet) de tamanho n e inverta a ordem dos elementos armazenados nesse mesmo vetor. Essa função deve obedecer ao protótipo: void inverte (int n, int* vet);
 - 2.5) Implemente uma função que permita a avaliação de polinômios. Cada polinômio é definido por um vetor que contém seus coeficientes. Por exemplo, o polinômio de grau 2, $3x^2 + 2x + 12$, terá um vetor de coeficientes igual a vet[] = {12, 2, 3}. A função deve obedecer o seguinte protótipo: double avalia (double* poli, int grau, double x), onde poli é o vetor de coeficientes; grau é o grau do polinômio; x é o valor da variável.