Hour 4: open and closed sets in 1Rn

Read along: Spirak 1-10

HWI on Crowdmark Lonight, piazza

Theorem Desining "open" using rectangles is equivalent to desining open using balls.

Proof:

"Every open rectangle is open using the open ball def" "Every open ball is open the open rect. defn "

ball using 1.12

ball using 1.100

ball using 1.1,

Del": A set B is "closed" if $R^n \setminus B = B^c$ is open.

(1) \$\phi\$, 1R" are clopen

(2) Any union of open sets is open

Any intersection of closed sets is closed

(3) A finite intersection of open sets is open.

A finite union of closed sets is closed.

Prost:

(1) Rⁿ is open

⇒ & is closed (by def).

Ø is open (no points, vacuously true)
"Every horse in an empty set of horses has a horn"

=) IRM is closed

"Every horse in an empty set of horses how a horn"

② Suppose $\{A_{\alpha}\}_{\alpha\in I}$, where I is an indexing set, is a collection of open sets. $A = \bigvee_{\alpha\in I}A_{\alpha} = \{x: \exists \alpha\in I, \alpha\in A_{\alpha}\}$ is open. Let $\alpha\in A$. Find a such that $\alpha\in A_{\alpha}$. Find an open rect. R st $\alpha\in R$ $\subset A_{\alpha}$ $\subset A$.

Reminder: If Y_{α} is any collection of subsets of some universe U. Then, $(VY_{\alpha})^{c} = \cap Y_{\alpha}^{c}$ and $(\cap Y_{\alpha})^{c} = VY_{\alpha}^{c}$ "Re Morgan's laws"

Suppose $\{B_{\alpha}\}_{\alpha\in I}$ is a collection of closed sets, we need to show $\bigcap B_{\alpha}$ is closed. $(\bigcap B_{\alpha})^{c} = \bigcup B_{\alpha}^{c}$ is open $\Rightarrow \bigcap B_{\alpha}$ is closed.

3) Suppose A, & A, are open.

<u>Lemma</u>: The infersection of two open rectangles, if non-empty, is an open rectangle

Prove as an exercise.

Suppose $z \in A_1 \cap A_2$ by openness of A_1 . \mathcal{F} open vects R_1 s.t. $z \in R_1 \cap R_2 \subset A_1 \cap A_2$ an open vect.

Suppose Ai iel,...,n are open.

Suppose B_i i.e.i., n are closed $(\bigcup_{i=1}^{n} B_i)^{c} = \bigcap_{i=1}^{n} B_i^{c}$ which is open, which proves it.

$$\bigcap_{n>0} (-\frac{1}{n}, 1+\frac{1}{n}) = [0,1]$$

 \rightarrow intrinsection of open sets that is closed.