Assignment 16 (7/24)

Subhadip Chowdhury

• This homework is due at the beginning of class on **Tuesday** 7/31. You are encouraged to work together on these problems, but you must write up your solutions independently.

Least Upper Bound

Theorem 1.1. Let M be the least upper bound of a set S. Then for all $\epsilon > 0$, there exists a $x \in S$ such that $M - \epsilon < x \le M$.

Before beginning the proof, let's try to understand the second sentence above. We can break it up into 3 parts as follows;

For all $\epsilon > 0$,

there exists a $x \in S$ such that,

$$M - \epsilon < x \le M$$
.

We would like to do a proof by contradiction. So we will start by finding out what is the *negation* of above sentence.

The opposite of saying that "for all $\epsilon > 0$, something happens" is to say that "we can find **some** $\epsilon > 0$ for which that something does not happen". ... ①

The "something" here is the part "there exists a $x \in S$ such that $M - \epsilon < x \le M$ ".

So next we need to understand how to write the part: "something does not happen."

The opposite of saying "there exists a $x \in S$ such that blah is true" is to say "there does **not** exist **any** $x \in S$ such that blah is true". This is equivalent to saying "blah is false **for all** $x \in S$ ".

Now the "something" part reads as "there exists a $x \in S$ such that blah inequality is true".

Thus to write that the "something does not happen", is to say "blah inequality is false for all $x \in S$ ". ... ② Combining ① and ②, we have the following so far:

we can find some $\epsilon > 0$ for which blah inequality is false for all $x \in S$

...(3)

So all that remains is to understand what it means to say "blah inequality is false".

Note that blah inequality is $M - \epsilon < x \le M$, there are two inequalities here. We can interpret the chain of inequalities as " $M - \epsilon < x$ and $x \le M$ ". So the "chain of inequalities is false" means

either
$$M - \epsilon \ge x$$
 or $x > M$.

...(4)

Combining ③ and ④, we have the complete negation statement:

we can find some $\epsilon > 0$ for which either $M - \epsilon \ge x$ or x > M for all $x \in S$.

Rewriting above sentence in more common mathematical language, we get

There exists some $\epsilon > 0$ such that either $M - \epsilon \ge x$ or x > M for all $x \in S$.

Now let's begin the proof.

Proof. Assume, for the sake of contradiction, that there exists some $\epsilon > 0$ such that either $M - \epsilon \ge x$ or x > M for all $x \in S$.

Since M is an upper bound of S, the option x > M is not possible. Hence we must have $M - \epsilon \ge x$ for all $x \in S$.

Then, by definition, $(M - \epsilon)$ is an upper bound of S. But $(M - \epsilon)$ is less that M, which is supposed to be the *least* i.e. the smallest upper bound. Contradiction!

Also look up theorem 11.1.2 from the book for another way of writing the same proof.

Problems

Exercise 5. Write the negation of the following statements.

- (a) For all $x \in P$, there exists $y \in Q$ such that, R is true for all $z \in S$.
- (b) For all $\epsilon > 0$, there exists a natural number N such that, $\frac{1}{n} < \epsilon$ for all n > N.
- (c) For all $\epsilon > 0$, there exists a natural number N such that, if n > N then $\frac{1}{n} < \epsilon$.
- (d) For all $\epsilon > 0$, there exists a natural number N such that, $|a_n l| < \epsilon$ for all n > N.
- (e) For all $\epsilon > 0$, there exists a $\delta > 0$ such that, if $|x c| < \delta$ then $|f(x) l| \le \epsilon$.

Exercise 6. *Do exercise* 11.1.(32*a*).