Cálculo Relacional

Prof: Aldelir Fernando Luiz

Disciplina: Banco de Dados I Turma: 3ºsemestre

Curso: Bacharelado em Ciência da Computação

Semestre 01/

Tópicos

- Conceitos Básicos
- Cálculo Relacional

Conceitos Básicos

- Um banco de dados relacional consiste num conjunto de relações
- A estrutura de uma relação é definida pelo seu schema
- Uma relação pode ser representada como uma tabela de duas dimensões (i.e., linhas e colunas)
 - Relação R com atributos $A_1, A_2, ..., A_n = R(A_1, A_2, ..., A_n)$
- Uma tupla corresponde a uma linha/ocorrência da relação
 - $t = \langle v_1, v_2, ..., v_n \rangle$, onde v_i é um valor para o atributo A_i
- Um atributo A_i da relação R é denotador por
 - R.A_i

Conceitos Básicos

• Exemplo de relação, segundo o modelo relacional

Exemplo

Relação: Aluno (#cod_mat_aluno, nom_aluno, des_endereco)

Ocorrêcia: $t = \langle 123, \text{Aldelir Fernando, Blumenau/SC} \rangle$

Atributo: Aluno.nom_aluno

Introdução ao Cálculo Relacional

- O cálculo relacional consiste numa linguagem formal para consulta de relações
- A linguagem é declarativa, isto é, não procedimental, onde especifica-se "o que deve" ser recuperado em vez de "como" recuperar
 - É diferente da álgebra relacional, onde especifica-se uma sequencia de operações, numa ordem de aplicação destas
- Qualquer expressão especificada na álgebra relacional pode ser especificada no cálculo relacional e vice-versa
- O cálculo relacional é dividido em duas categorias de linguagem:
 - Cálculo relacional de tupla (CRT)
 - Cálculo relacional de domínio (CRD)

- É baseado na especificação de uma série de variáveis de tuplas
 - Cada variável de tupla percorre uma relação do Banco de Dados
 - Isto é, a variável pode assumir como seu valor qualquer tupla da relação
- Forma geral de especificação em cálculo relacional é a seguinte

- Em que:
 - t é uma variável (livre) de tupla
 - COND(t) é uma expressão condicional booleana, que envolve os atributos de t
 - O resultado desse cálculo é conjunto de todas as tuplas t, para as quais a avaliação de COND(t) resulta em VERDA-DEIRO (variáveis livres produzem o resultado da expressão)

Formalmente:

$$\{ a_1, a_2, ..., a_n \mid COND(t_1, t_2, ..., t_m) \}$$

onde

- t_i , sendo $1 \le i \le n$, são variáveis de tupla
- a_j, sendo 1 ≤ j ≤ n é um atributo de uma relação em que alguma das tuplas t_i varia
- COND é uma fórmula composta de átomos de cálculo de predicados

Átomo de cálculo de predicados

- Pode ser da forma
 - $R(t_i)$, onde R é o nome da relação e t_i é a variável de tupla
 - É avaliado como VERDADEIRO se t_i é uma tupla em R, e como FALSO no caso contrário
 - t_i . A op t_j . B, onde t_i e t_j são variáveis de tupla, A é um atributo da relação em que t_i varia, B é um atributo da relação em que t_i varia e op é um operador de comparação
 - t_i.A op c ou c op t_i.A, onde c é um valor constante, t_i é uma variável de tupla, A é um atributo da relação em que t_i varia e op é um operador de comparação
- Operadores de comparação: $=, \neq, <, \leq, >, \geq$

Composição de uma fórmula

- Uma fórmula (= condição booleana) é composta por um ou mais átomos conectados por meio de conectivos lógicos
 - AND, OR e NOT
 - ∧,∨e¬
- Definição recursiva
 - Regra 1: todo átomo é uma fórmula
 - Regra 2: se F₁ e F₂ são fórmulas, então também são fórmulas:
 - F_1 AND $F_2 \equiv F_1 \wedge F_2$
 - F_1 **OR** $F_2 \equiv F_1 \vee F_2$
 - NOT (F_1) e NOT $(F_2) \equiv \neg F_1$ e $\neg F_2$

Exemplo

 Encontrar todos os produtos cujo preço unitário é superior à R\$ 250,00.

```
\{ t \mid PRODUTO(t) \ AND \ t.preco > 250 \} ou \{ t \mid PRODUTO(t) \land t.preco > 250 \}
```

- t denota a variável livre
- PRODUTO(t) especifica que a relação de intervalo (ou relação limite) de t é PRODUTO
- t.preco > 250 é a condição para selecionar combinações de tuplas t

Importante

 Para cada t selecionada, a consulta recupera os valores para todos os atributos definidos na relação PRODUTO

Outro exemplo

 Encontrar a denominação e quantidade de todos produtos cujo preço unitário é superior à R\$ 250,00.

```
\{ \ t.denominacao, t.quantidade \ | \ PRODUTO(t) \ AND \ t.preco > 250 \ \}
ou
\{ \ t.denominacao, t.quantidade \ | \ PRODUTO(t) \land t.preco > 250 \ \}
```

 t.denominacao, t.quantidade denotam os atributos requisitados – são variáveis livres

Importante

 Para cada t selecionada, a consulta recupera apenas os valores dos atributos "denominacao" e "quantidade" da relação PRODUTO

- O que deve conter numa expressão do cálculo relacional de tuplas
 - Para cada variável de tupla t, a relação limite R de t especificada como uma condição na forma R(t)
 - R(t) restringe o domínio de t
 - Se a relação limite não for especificada, t percorrerá todas as tuplas possíveis (e existentes) no universo do banco de dados
 - Uma condição para selecionar combinações de tuplas em particular
 - Um conjunto de atributos a serem recuperados
 - Os valores s\(\tilde{a}\)o recuperados para cada tupla selecionada

 Exemplo: A partir da relação veículo, selecionar todos os veículos da marca GM cujo ano é superior à 2016

Exemplo

```
\{t \mid VEICULO(t) \ AND \ t.Marca = `GM' \ AND \ t.Ano > 2016\} ou \{t \mid VEICULO(t) \ \land \ t.Marca = `GM' \ \land \ t.Ano > 2016\}
```

		Veiculo		
Matricula	Marca	Modelo	Ano	Fabricação
VX0281	VW	Polo	2013	2013
GX9231	GM	Sonic	2016	2016
FX2655	Ford	Fusion	2011	2011
GX7177	GM	Cruize	2017	2018
HX9811	Hyunday	HB20	2016	2016

 $\{t \mid VEICULO(t) \land t.Marca = 'GM' \land t.Ano > 2016\}$

- VEICULO(t) denota que a relação de intervalo/limite de t é VEICULO
- A expressão/consulta recupera cada tupla t de VEICULO que satisfaz a condição t.Marca = 'GM' ∧ t.Ano > 2016
- Para cada t selecionada, a consulta recupera os valores para todos os atributos de VEICULO

 Exemplo: A partir da relação veículo, recuperar as marcas e modelos dos veículos cujo ano é igual ou superior à 2016

Exemplo

```
 \begin{aligned} & \{ \textit{t.Marca}, \textit{t.Modelo} \mid \textit{VEICULO}(\textit{t}) \; \textit{AND} \; \textit{t.Ano} \geq 2016 \} \\ & \text{ou} \\ & \{ \textit{t.Marca}, \textit{t.Modelo} \mid \textit{VEICULO}(\textit{t}) \; \land \; \textit{t.Ano} \geq 2016 \} \end{aligned}
```

Veiculo		
Marca	Modelo	
VW	Polo	
GM	Sonic	
Ford	Fusion	
GM	Cruize	
Hyunday	HB20	

- Expressões escritas para o cálculo relacional admitem o uso dos quantificadores existencial (∃) e universal (∀)
 - ∃ existe pelo menos um
 - ∀ para todo e qualquer
- As variáveis (livres) são associadas a quantificadores num escopo
- Numa expressão, uma variável de tupla t é considerada livre se não estiver quantificada
- Se a variável de tupla t estiver quantificada em uma cláusula (∃t) ou (∀t) ela é limite

Uso de quantificadores em uma fórmula

- Regra 3: Se F é uma fórmula, então (∃t)(F) também é uma fórmula, em que t é uma variável de tupla
 - (∃t)(F) é VERDADEIRO se existir alguma tupla que torne F verdadeiro
- Regra 4: Se F é uma fórmula, então (∀t)(F) também é uma fórmula, em que t é uma variável de tupla
 - (∀t)(F) é VERDADEIRO se todas as tuplas no universo de tuplas tornam F verdadeiro

Quantificador existencial

- Notação
 - $(\exists t)(C)$
- Define uma variável não-livre t associada sempre com uma relação R – e avalia uma condição C(t) para ela
 - mais precisamente, verifica se existe alguma tupla t em R para o qual C(t) seja verdadeiro
- Uma fórmula (∃t)(C) será verdadeira se houver alguma tupla que torne C verdadeira

 Ex.: Listar os nomes dos colaboradores que trabalham no departamento Financeiro

 $\{t.nome \mid COLABORADOR(t) \land (\exists d)(DEPARTAMENTO(d) \land d.descricao = 'Financeiro' \land d.depto = t.depto \}$

Colaborador

CPF	Nome	Depto
1234	Aldelir	4
1245	Alice	1
1256	Milena	3
1267	Mariana	3
1278	Lilian	2

Departamento

Depto	Descricao
1	Compras
2	Contabilidade
3	Financeiro
4	Serviços
5	Vendas

• Ex.: Listar os nomes dos veículos fabricados na Alemanha

Relações

Carro

Marca	Modelo
Opel	Captiva
Ford	Focus
Opel	Cruize
Opel	Sonic
Ford	Fusion

Local

Fabrica	Pais
Opel	Alemanha
Ford	EUA

Operação

 $\{t.modelo \mid carro(t) \land (\exists I)(local(I) \land I.pais = 'Alemanha' \land I.fabrica = t.marca)\}$

Modelo
Captiva
Cruize
Sonic

Quantificador universal

- Notação
 - (∀*t*)(*C*)
- Verifica se toda tupla t satisfaz a condição C(t)
 - mais precisamente, verifica se existe alguma tupla t em R para o qual C(t) seja verdadeiro
- Comumente empregado em consultas que:
 - envolvem a associação com tuplas de relação que não irão compor o resultado
 - análogo ao princípio da divisão da álgebra relacional
- Uma fórmula (∀t)(C) será verdadeira se todas as tuplas avaliadas por C sejam verdadeira

Colaborador

CPF	Nome	Salario
1	Ambrósia	1500
2	Veneravez	2350
3	Babilônio	1250

Projeto

Codigo	Denominacao
1	Hidráulico
2	Estrutural
3	Elétrico

Alocacao

Codigo	CPF	Horas
1	1	25
2	3	10
1	2	30
3	3	20
2	2	30
1	3	30
3	2	30

Exercícios – 1ª Parte

- A partir do conjunto de relações fornecidas a seguir, elaborar as expressões do cálculo relacional para obter o que se pede.
 - A denominação dos produtos comercializados por Kilo ou Litro
 - 2 A denominação dos fornecedores que fornecem o produto de código P5
 - 3 A denominação dos produtos comercializados por fornecedores localizados na cidade de Joinville
 - A denominação dos fornecedores que fornecem algum produtos do tipo Eletrônico
 - 6 A denominação dos produtos do tipo Alimentício, que tiveram pedidos com quantidade superior a 500 unidades

FORNECEDOR (#cod_fornecedor, den_fornecedor, #cod_municipio)
PRODUTO (#cod_produto, den_produto, #cod_un_medida, #cod_tipo)

UNIDADE MEDIDA (#cod un medida, den un medida)

MUNICIPIO (#cod_municipio, nom_municipio)

TIPO (#cod_tipo, den_tipo)

PEDIDO (#cod_fornecedor, #cod_produto, qtd_vendida)

Cálculo Relacional

Obrigado!?