Out-of-domain Text Classification

Faculty of Electrical Engineering, CTU in Prague

Tommaso Gargiani Supervisor: Ing. Petr Lorenc

Introduction to the problem

- Intent classification is crucial to conversational Al
- Terminology
 - in-domain (ID), in-scope sentence that belongs to a defined intent
 - out-of-domain (OOD), out-of-scope sentence that does not fall into any supported intent
- Classifiers generally perform very well on in-domain intents
 X they tend to struggle on out-of-domain sentences
- A chatbot that fails to recognise an out-of-domain query will give an unrelated answer, instead of using a fallback response
- Correcting this behaviour will improve the usability of chatbots

Project Goals

- Replicate and verify the results achieved by Larson et al. on their CLINC150 dataset using the same 3 baseline approaches (oos-train, oos-threshold and oos-binary)
- Compute results on two modified versions of the dataset:
 - 1. Version with a reduced number of in-domain intents
 - 2. Version with a reduced number of sentences and in-domain intents

Approaches to the problem

- Three baseline approaches to the problem oos-train, oos-threshold and oos-binary
- oos-train
 - an additional (151st) intent is trained
- oos-threshold
 - Intents with prediction confidence lower than the threshold are classified as out-of-domain
 - Threshold found as the value that yields the highest accuracy on validation set across all intents (including out-of-domain)
- oos-binary
 - First step binary classification (in- or out-of-domain)
 - Second step in-domain intent classification if predicted as in-domain, classify as out-of-domain otherwise
 - In-domain classifier always trained on the Full dataset

CLINC150 dataset

- Total of 23,700 queries
 - 22,500 in-domain
 - 1,200 out-of-domain
- 150 in-domain intents + one out-of-domain intent
- Several variants that differ by the number of train queries
- 4 variants of the dataset Full, Small, Imbalanced and OOS+
 - + 2 variants for binary (in- / out-of-domain classification) Undersample and Wikipedia Augmentation
- Number of queries in the validation/test split
 - Validation 20 queries per in-domain intent, 100 out-of-domain queries
 - Test 30 queries per in-domain intent, 1,000 out-of-domain queries

CLINC150 dataset

- Number of train queries
 - Full 100 queries per in-domain intent, 100 out-of-domain queries
 - Small 50 queries per in-domain intent, 100 out-of-domain queries
 - Imbalanced 25/50/75/100 queries per in-domain intent, 100 out-of-domain queries
 - OOS+ 100 queries per in-domain intent, 250 out-of-domain queries
 - Under 1,000 in-domain queries, 250 out-of-domain queries
 - Wiki Aug 15,000 in-domain queries, 15,000 out-of-domain queries

Dataset Modifications [1/2]

Reduction of in-domain intents

- Reduction of the 150 in-domain intents down to 3, 6, 9 and 12
- The random intent selection and measurement is repeated 30 times the final result is the mean of all results
- To represent scenarios where only a few in-domain intents are needed
- Real-world applications few in-domain intents are more common than many

Dataset Modifications [2/2]

Reduction of sentences and in-domain intents

- Dataset reduced by the previous modification + imposed limit on the number of sentences of every intent (considering also out-of-domain as one)
- The random intent selection and measurement is repeated 30 times the final result is the mean of all results
- Sentence limit per in-domain intent
 - Train/validation 18 sentences
 - Test 30 sentences
- Sentence limit on out-of-domain
 - Train/validation 20 sentences
 - Test 60 sentences
- To represent scenarios where only a few in-domain intents are needed and the dataset size is small
- oos-binary the sentences of the binary dataset are not limited, only the in-domain

Metrics

- Accuracy over the in-domain intents and recall on out-of-domain queries same as Larson et al.
 + false acceptance rate (FAR) and false recognition rate (FRR)
- FAR
 - Error of considering out-of-domain queries as in-domain
 - High FAR the chatbot tends to give an unrelated answer, instead of using a fallback response
- FRR
 - Error of considering in-domain queries as out-of-domain
 - High FRR the user might think that the system does not work generically, the system fails to guide the user through its dialogue design
- Both FAR and FRR should be as low as possible
- FRR minimisation is preferred in conversational Als

Classifiers

- Same classifiers and hyperparameters (where possible) as Larson et al.
- FastText 100 and 300-dimensional pre-trained word vectors in .vec format
- SVM Scikit-learn implementation
- MLP Scikit-learn implementation
- BERT 😥 Tranformers implementation
- Rasa 30 train epochs, spaCy language model

Results on original dataset

Results on all 150 intents

		In-Domain Accuracy			Out-of-Domain Recall			FAR				FRR					
		Full	Small	Imbala nced	OOS+	Full	Small	Imbala nced	OOS+	Full	Small	Imbala nced	OOS+	Full	Small	Imbala nced	OOS+
FastText	cc.en.100. vec	89.2	86.2	86.7	88.9	23.2	23.1	25.2	43.1	76.8	76.9	74.8	56.9	0.4	0.7	0.5	0.9
FastText	cc.en.300. vec	89.7	87.1	87.1	89.1	24.9	24.4	26.4	43.2	75.1	75.6	73.6	56.8	0.4	0.6	0.5	1.1
FastText	PAPER	89.0	84.5	87.2	89.2	9.7	23.2	12.2	32.2	90.3	76.8	87.8	67.8				
SVM		90.7	88.5	89.0	90.4	37.6	47.3	42.8	58.2	62.4	52.7	57.2	41.8	1.4	2.4	1.8	2.4
SVM	PAPER	91.0	89.6	89.9	90.1	14.5	18.6	16.0	29.8	85.5	81.4	84.0	70.2				
MLP		90.9	88.3	89.8	90.6	10.8	14.9	12.5	23.9	89.2	85.1	87.5	76.1	0.1	0.4	0.3	0.4
MLP	PAPER	93.5	91.5	92.5	94.1	47.4	52.2	35.6	53.9	52.6	47.8	64.4	46.1				
BERT		95.9	95.2	94.7	95.9	35.6	41.8	39.9	53.0	64.4	58.2	60.1	47.0	0.1	0.2	0.2	0.3
BERT	PAPER	96.9	96.4	96.3	96.7	40.3	40.9	43.8	59.2	59.7	59.1	56.2	40.8				
Rasa		91.2	86.4	88.9	90.9	19.1	20.8	28.6	44.6	80.9	79.2	71.4	55.4	0.2	0.3	0.6	0.7
Rasa	PAPER	91.5	88.9	89.2	90.9	45.3	55.0	49.6	66.0	54.7	45.0	50.4	34.0				

Results on all 150 intents

		In-Domain Accuracy			Out-c	of-Domain	Recall		FAR		FRR		
		Full	Small	Imbalanc ed	Full	Small	Imbalanc ed	Full	Small	Imbalanc ed	Full	Small	Imbalanc ed
FastText	cc.en.100.ve c	88.8	86.5	87.1	11.9	8.0	9.1	88.1	92.0	90.9	0.4	0.3	0.2
FastText	cc.en.300.ve c	90.0	87.4	86.8	6.8	2.4	28.6	93.2	97.6	71.4	0.1	0.0	1.7
FastText	PAPER	88.6	84.8	86.6	28.3	6.0	33.2	71.7	94.0	66.8			
SVM		90.6	88.5	88.0	22.7	36.2	35.9	77.3	63.8	64.1	1.2	2.9	3.6
SVM	PAPER	88.2	85.6	86.0	18.0	13.0	0.0	82.0	87.0	100.0			
MLP		90.8	88.5	89.6	14.2	14.9	23.3	85.8	85.1	76.7	0.5	0.7	1.3
MLP	PAPER	93.4	91.3	92.5	49.1	32.4	13.3	50.9	67.6	86.7			
BERT		95.7	94.8	94.6	40.5	26.7	16.7	59.5	73.3	83.3	0.7	0.4	0.5
BERT	PAPER	96.2	96.2	95.9	52.3	58.9	52.8	47.7	41.1	47.2			
Rasa		91.5	86.3	88.0	17.7	8.2	28.5	82.3	91.8	71.5	0.4	0.5	2.0
Rasa	PAPER	90.9	89.6	89.4	31.2	1.0	0.0	68.8	99.0	100.0			

Results on all 150 intents

		In-Domai	n Accuracy	Out-of-Doi	main Recall	F/	AR	FRR		
		Under	Wiki Aug	Under	Wiki Aug	Under	Wiki Aug	Under	Wiki Aug	
FastText	cc.en.100.vec	86.6	82.6	29.7	58.8	70.3	41.2	3.4	8.7	
FastText	cc.en.300.vec	87.0	87.9	30.7	29.9	69.3	70.1	3.5	2.6	
FastText	PAPER	88.1	87.0	22.7	31.4	77.3	68.6			
SVM		89.6	88.7	24.7	31.3	75.3	68.7	1.8	3.5	
SVM	PAPER	88.4	89.3	32.2	37.7	67.8	62.3			
MLP		85.6	85.9	43.5	54.9	56.5	45.1	6.5	6.9	
MLP	PAPER	90.1	92.9	52.8	32.4	47.2	67.6			
BERT		91.7	94.9	59.7	44.8	40.3	55.2	4.7	1.3	
BERT	PAPER	94.4	96.0	46.5	40.4	53.5	59.6			
Rasa		87.0	90.6	41.4	28.2	58.6	71.8	4.1	1.0	
Rasa	PAPER	87.5		37.7		62.3				

Results Comparison

All 150 intents

- Good overall accuracy, best in oos-train
- Recall and FAR
 - No approach is significantly better than the others, no simple comparison
 - oos-train (on OOS+) is comparable with oos-binary + it has lower FRRs
 - Results far from the desired recall
- FRR is always relatively low, oos-binary has the highest FRR

Possible Reasons of Measured Differences

All 150 intents

- Classifier implementation the paper did not specify the used implementations
- Hyperparameters not all could be set / were specified
- FastText the paper did not specify the format
- Rasa the paper did not specify the number of epochs
- oos-binary the paper did not specify the dataset for in-domain training

Results on modified datasets

Accuracy on reduced in-domain intents

Accuracy on reduced in-domain intents and limited sentences

Out-of-domain recall on reduced in-domain intents

Out-of-domain recall on reduced in-domain intents and limited sentences

Accuracy on reduced in-domain intents

Accuracy on reduced in-domain intents and limited sentences

Out-of-domain recall on reduced in-domain intents

Out-of-domain recall on reduced in-domain intents and limited sentences

00s-binary

Accuracy on reduced in-domain intents

Accuracy on reduced in-domain intents and limited sentences

Out-of-domain recall on reduced in-domain intents

Out-of-domain recall on reduced in-domain intents and limited sentences

FAR and FRR - all approaches

- FAR dependent on recall, using the formula FAR = 100 recall
- FRR always only a few percent on all approaches

Results Comparison [1/2]

- Accuracy on reduced in-domain intents
 - Both oos-train and oos-threshold (excl. 3 selections) very high results
 - oos-binary results extremely depend on used classifier
- Accuracy on reduced in-domain intents and limited sentences
 - oos-train, oos-threshold similar (high) results, Rasa accuracy plummets on increasing number of intents
 - oos-binary again, very different results based on classifier

Results Comparison [2/2]

- Recall on reduced in-domain intents
 - Best overall results oos-train, worst results oos-binary
 - Large difference between best and worst approach
- Recall on reduced in-domain intents and limited sentences
 - Best overall results oos-train, worst results oos-binary

Conclusion

- Out-of-domain performance tends to improve with
 - More out-of-domain data
 - Smaller imbalance between total number of in-domain and out-of-domain in the train set (provided that there is enough out-of-domain data – does not apply to the previous sentences limiting)
- No simple outcomes

Thank you for your attention!