Algorithmic Game Theory

Summer Term 2025
Tutorial Session - Week 2

Exercise 1:

Consider the following cost-minimization game. Two car drivers approach a junction. Both drivers can either stop at (S) or cross (C) the junction. If a driver decides to stop, she incurs little costs because of the waiting time. If both drivers decide to cross the junction, they will crash - resulting in high costs for both drivers. List all pure and mixed Nash equilibria.

	C(ross)		S(top)	
C(ross)		100		1
	100		0	
S(top)		0		1
	1		1	

Exercise 2:

- a) Specify the payoff matrix for the well-known game rock-paper-scissors¹. Assume that winning has a cost of -1, losing a cost of 1, a tie a cost of 0.
- b) Mark the best responses with boxes. Do we have a pure Nash equilibrium?
- c) Compute a mixed Nash equilibrium. Could you have guessed it?

¹https://en.wikipedia.org/wiki/Rock_paper_scissors