Ciência da Computação

Prof. Tiago J. Arruda

Exercícios Propostos¹

↑ Comprimento de curvas

1. Calcule os comprimentos de arco das seguintes curvas nos intervalos indicados.

(a)
$$y = \frac{1}{3}(x^2 + 2)^{3/2}$$
, $0 \le x \le 3$

(c)
$$y = \frac{x^3}{6} + \frac{1}{2x}$$
, $1 \le x \le 2$

(b)
$$y = x^{3/2}$$
, $0 \le x \le 4$

(d)
$$y = \cosh x = \frac{e^x + e^{-x}}{2}$$
, $0 \le x \le 1$

- 2. Uma circunferência de raio R centrada na origem do plano cartesiano tem equação $x^2 + y^2 = R^2$. Mostre que o perímetro da circunferência é $2\pi R$.
- **3.** O gráfico da equação $x^{2/3} + y^{2/3} = 1$ faz parte de uma família de curvas chamadas astroides (e não asteroides) por causa de sua aparência de estrela.

Calcule o comprimento desse astroide em particular, determinando o comprimento de meio pedaço do primeiro quadrante, $y=(1-x^{2/3})^{3/2},\, \frac{\sqrt{2}}{4}\leq x\leq 1,$ e multiplicando o resultado por 8.

↑ Volume de sólidos de revolução

4. Use o *método dos discos* para encontrar o volume do sólido obtido pela rotação da região delimitada pelas curvas em torno do **eixo** x. Esboce a região, o sólido e um disco típico.

(a)
$$y = 1 - x^2$$
, $y = 0$

(c)
$$y = \sqrt{25 - x^2}$$
, $y = 0$, $x = 2$, $x = 4$

(b)
$$y = x, y = x^2$$

(d)
$$y = \frac{1}{4}x^2$$
, $y = 5 - x^2$

5. (a) Calcule o volume do elipsoide de revolução gerado pela elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, rotacionada ao redor do **eixo** x. Use o resultado para mostrar que o volume de uma esfera de raio R é $V = \frac{4\pi}{3}R^3$.

(b) Mostre que o volume de um cone de raio R e altura h é $V = \frac{1}{3}\pi R^2 h$.

6. Use o m'etodo das cascas cilíndricas para achar o volume gerado pela rotação da região delimitada pelas curvas em torno do <math>eixo y.

¹Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. **Data máxima de entrega: 29/05/2025 até 14:00 horas**

Ciência da Computação

Prof. Tiago J. Arruda

(a)
$$y = x^2$$
, $y = 0$, $x = 1$

(c)
$$y = x^2$$
, $y = 6x - 2x^2$

(b)
$$y = 4x - x^2$$
, $y = x$

(d)
$$y = \sqrt{x}, y = 2x$$

$\underline{\wedge}$ <u>Área da superfície</u>

7. Calcule a área exata da superfície obtida pela rotação da curva em torno do eixo x.

(a)
$$y = x^3$$
, $0 \le x \le 2$

(c)
$$y = \sqrt{1+4x}$$
, $1 \le x \le 5$

(b)
$$y = \sqrt{x}$$
, $\frac{3}{4} \le x \le \frac{15}{4}$

sólido é infinita.

(d)
$$y = \frac{x^3}{6} + \frac{1}{2x}$$
, $\frac{1}{2} \le x \le 1$

8. Mostre que área da superfície de uma esfera de raio R é $4\pi R^2$.

9. O sólido de revolução conhecido como "Trombeta de Gabriel" consiste na rotação ao redor do eixo x da região do plano sob o gráfico da função $f(x) = \frac{1}{x}$ para $x \ge 1$.

