	CHEC	KUST	0								•		•			0				•					
	fisz		•	im	Derm	ple	to			tem.	Y O	isoli	VŽI	· [\supset	•	nõe		M.	ten	di	1			
					•								•			•									
PA	rte 1		۰		0						۰		0		۰	0			۰	۰	۰		٠	۰	۰
	. 7.		•										0					• •			•				
	.		•		٠						•		۰		٠	•	•		٠	•					
	 . 3 .		0		۰						•		•		۰	•			•	0					
	· 4.		•		•	•				• •	•	• •	•		•	•	•		•	•	•	•			•
	· s .		0			0 (•		•		٠	•			•	•	•	•			•
	. 6.		•		•	•				• •	•	• •	•		•	•	•		•	•	•	•			•
	7,		•	• •	٠	•				• •	•	• •	•			•	•		•	•	•	•			•
	. 8 <i>.</i>		٠	• •	۰			٠			۰		۰		۰	0	•	• •	۰	۰	۰	۰	۰		۰
											•		٠		۰	۰			•		۰	۰	۰		
	.9.	• •	•		tes	te	Μ.	de	Ws	rtceu	cn>?		iem	٠		w b	los	Y	as	net	tas	١	Le c	لس	la
	.9.	• •	•											د د	Josev	w 6	los	. V	ios	net	tas		ie d	i Liu	la
			•							i na					rxen	w t	los	· V	ias	ron	fas		le d	لسد	la
	. 9 .														uxan	w 6	los	V		ren	tas		اف د د د	لسد	la
	. 9 . . 40 . . 37.8. . 1 .									i na		o na			•	•			•	•	fars		de c	لسح	la
	. 9 . . 40 . . 37.8. . 1 .									i na					•	•			•	•	tas				ia.
	. 9 . . 40 . . 37.8. . 1 .									i na		o na				•			•	•	tas		de c		å
	9. .40. .378. .4. .2.									i na		o va				•			•	•	tas		de c		la .
	9. .20. .RTE :									i na		o va				•			•	•	tas		de c		
	9. .20. .RTE : .2. .3. .4.									i na		o va				•			•	•	tas		de c		

1. Determine o domínio de convergência da série e esboce o gráfico de f.

(a)
$$f(x) = \sum_{n=1}^{+\infty} x^n$$

$$f(x) = \lim_{n \to \infty} f(x) = \lim_{n \to \infty} x^n = 0 \quad \text{paxa. } x < 7$$

(b)
$$f(x) = \sum_{n=1}^{+\infty} nx^n$$

. O dominio de fré à conjunto de todos os a para os queis a verquência. finca converge. Assim,

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} nx^n =$$

2. Determine o limite $f(x) = \lim_{n \to \infty} f_n(x)$, onde $x \in X$, e mostre que a sequência (f_n) não converge uniformemente a f, nos casos abaixo.

(ardonal aon) sis nigores nos solue

$$kn \rightarrow k$$
 ($kn : X \rightarrow R$) we $kx \in X$

 $\lim_{x\to\infty} f_{n}(x) = f(x)$

emvergincia uniforme

1 km(x) - f(x) 1 < E

2. Le
$$fn \Rightarrow f$$
 então $fn \Rightarrow f$ se não converge de juite normal não converge uniforme.

(a) $f_n(x) = \frac{\sin(nx)}{1+n^2x^2}$, $X = \mathbb{R}$. Dica: analise o que ocorre nos pontos $x_n = \frac{\pi}{2n}$

· calcular limite

$$\lim_{n \to +\infty} f_n(\infty) = \lim_{n \to +\infty} \frac{\text{Usen}(n\infty)}{1 + n^2 \infty^2}$$

$$\lim_{N \to +\infty} f_{N}(\infty) = 0 \qquad \forall \infty \in \mathbb{R}$$

In não converge uniformemente para l'us:

exists $\varepsilon > 0$ tal que para todo no εN exists $\infty \varepsilon \times tal$ que resiste n > no com $|\int_{\Omega} (x) - f(x)| > \varepsilon$

$$\int \ln(2\pi) = \frac{1 + n^2 \left(\frac{\pi}{2n}\right)^2}{1 + n^2 \left(\frac{\pi}{2n}\right)^2}$$

consolução do menitor : vão terminei

- **2.** Determine o limite $f(x) = \lim f_n(x)$, onde $x \in X$, e mostre que a sequência (f_n) não converge uniformemente a f, nos casos abaixo.
 - (a) $f_n(x) = \frac{\sin(nx)}{1+n^2x^2}$, $X = \mathbb{R}$. Dica: analise o que ocorre nos pontos $x_n = \frac{\pi}{2n}$.

primiramente, rames determinar o limite f(x): lim fn(x)

 $\lim_{n\to\infty} \int_{u} \int_{u} \int_{u} \frac{1+u_{0}xg}{v_{0}u_{0}} = 0$

pelo teorema da convergência uni forme:

. In converge uniformemente para f ve:

eticise eup lat. X 3 ax eticise NI 3 on abot exag eup lat. O < 3. eticise

1 h > no com / fn(x) - f(x) / < E

assim; temps

 $|n\rangle \sim n_0 \rightarrow \left|\frac{\sin(n_x)}{1+n^2x^2} - \frac{1}{x^2}\right| \sim \varepsilon$

I = nx me mf. abnoxilano.

 $| f(m(son)) | = | sen(n \frac{\pi}{2n}) | = \frac{1}{1 + n^2(\frac{\pi}{2n})^2} = \frac{1}{1 + n^2(\frac{\pi}{$

como. $|f_m(x_m)| > \mathcal{E}$ para $x_m = \mathcal{T}$.

ternos que a vecquência for não converge uniformemente a f

(b) $\frac{n}{x+n}$, $X = [0, +\infty)$. Dica: analise o que ocorre nos pontos $x_n = n$.

(x) mp. mil = (x) f. stimil o xexilano comerci., etnomosiemira.

$$\lim_{n \to \infty} \frac{1}{2n} = \frac{1}{2n} = \lim_{n \to \infty} \frac{1}{2n} = 0$$

pelo teorma da convergência uniforme

In converge uniformemente para f. is:

existe E > 0 tal que para todo no E IN existe 200 E X tal que existe

3 sb. shough der our e. 3 > 1(x) f - (x) mp. 1 + (x) f = (x)

comet, misses.

$$3 \times | 0 - \frac{N}{N+\infty} | \leftarrow 0 \times C$$

analisando in me mo in temes

$$\int_{\Omega} \int_{\Omega} \int_{\Omega$$

assim, temos que não esciste no que depende de E. e. 1 (n(ocn) 1 > E.

3. Mostre a convergência uniforme de (f_n) em $X \subset \mathbb{R}$ nos casos abaixo.

(a)
$$f_n(x) = \frac{\operatorname{sen} nx}{n^7} \in X = \mathbb{R}$$
.

pelo teorema da converção cia uni forme:

for converge uniformemente para from:

exciste E>O tal que paxa todo no EIN existe xo EX tal que exciste

n>no com /fm(x) - f(x) / < &

primeramente, vamos calcular $f(x) = \lim_{n \to \infty} f_n(x)$

lim ven na = 0

agora, names auchior fm(x)

 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{x^{R}} = \lim_{x \to \infty} \frac{1}{x^{R}}$

· limitamos · 1. por . E.

 $\frac{1}{3}\sqrt{\frac{1}{5}}$ $\Rightarrow \sqrt{\frac{1}{5}}$ $\Rightarrow \sqrt{\frac{1}{5}}$ $\Rightarrow \sqrt{\frac{1}{5}}$ $\Rightarrow \sqrt{\frac{1}{5}}$ $\Rightarrow \sqrt{\frac{1}{5}}$

podemes de 3. de ou semestro de la contrado de la contrado.

 $n > n_0 \Rightarrow \frac{1}{2} \frac{\sqrt{n_0 n_0 x_0}}{\sqrt{n_0 n_0 x_0}} = \frac{1}{2} \frac{1}{2$

a, assim, for converge uniformemente a f.

8. Mostre que a série dada converge uniformemente no intervalo dado.

(a)
$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$
 em $[-r, r], r > 0$.

Para todo $x \in [-\infty, \infty]$, temos $|x| \leq \omega$. Logo, para todo $x \in [-\infty, \infty]$ a pora todo natural $n \geq 1$, temos

$$\left| \frac{x^{N}}{N!} \right| \leq \left| \frac{y^{N}}{N!} \right| = an$$

temos:

$$\lim_{N \to \infty} \frac{\alpha n + 1}{\alpha n} = \lim_{N \to \infty} \frac{\sigma n + 1}{(n + 1)!} \cdot \frac{n!}{\sigma n} = \lim_{N \to \infty} \frac{\sigma}{n + 1} = 0$$

como.
$$L < L$$
, a bérie numérica. $\sum_{N=0}^{\infty} \frac{\pi^N}{n!}$. \bar{x} con vergente

Nestas condições, pelo critério M de Weierstras, a vérie $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converge uniformemente em [-x,x] para todo x>0.

(b)
$$\sum\limits_{n=1}^{+\infty} \frac{x^n}{2n+1},$$
 em $\left[-r,r\right], 0 < r < 1.$

Pava todo $x \in [-x, x, 1]$, temes $|x| \leq x$. Logo, para todo $x \in [-x, x, 1]$ se para todo natural $n \geq 1$, temes:

$$\frac{x^n}{2n+1} \leq \frac{x^n}{2n+1} = x^n$$

termos.

$$\lim_{n\to\infty} \frac{\alpha n+1}{\alpha n} = \lim_{n\to\infty} \frac{\alpha n+1}{\alpha(n+1)+1} = \lim_{n\to\infty} \frac{\alpha n}{(\alpha n+2)+1} = \lim_{$$

=
$$\lim_{n \to \infty} \frac{2n \pi}{2n + 2 + 2}$$
 = $2\pi \lim_{n \to \infty} \frac{n}{2n + 3}$ = $2\pi \lim_{n \to \infty} \frac{4}{(2n + 3) \cdot \frac{1}{n}}$

$$= 2\pi \lim_{n \to \infty} \frac{1}{2} = 2\pi \cdot \underline{1} = \sigma c$$

Como or é menor que 1, temos que $\sum_{n=1}^{\infty} \frac{x^n}{2^{n+1}}$ converge. Assim, pelo cutério M de Weixtras a vérie $\sum_{n=1}^{\infty} \frac{z^n}{2^n+1}$ converge.

