LPC1100 系列微控制器

第九章 通用输入/输出口(GPIO)
用户手册 Rev1.00

广州周立功单片机发展有限公司

地址:广州市天河北路 689 号光大银行大厦 12 楼 F4

网址: http://www.zlgmcu.com

销售与服务网络(一)

广州周立功单片机发展有限公司

地址:广州市天河北路 689 号光大银行大厦 12 楼 F4

邮编: 510630

电话: (020)38730916 38730917 38730972 38730976 38730977

传真: (020)38730925 网址: www.zlgmcu.com

广州专卖店

地址: 广州市天河区新赛格电子城 203-204 室

电话: (020)87578634 87569917

传真: (020)87578842

北京周立功

地址: 北京市海淀区知春路 113 号银网中心 A 座 地址: 重庆市石桥铺科园一路二号大西洋国际大厦

1207-1208 室 (中发电子市场斜对面)

电话: (010)62536178 62536179 82628073

传真: (010)82614433

杭州周立功

地址: 杭州市天目山路 217 号江南电子大厦 502 室

电话: (0571)89719480 89719481 89719482

89719483 89719484 89719485

传真: (0571)89719494

深圳周立功

楼D室

电话: (0755)83781788 (5线)

传真: (0755)83793285

上海周立功

地址: 上海市北京东路 668 号科技京城东座 7E 室

电话: (021)53083452 53083453 53083496

传真: (021)53083491

南京周立功

地址: 南京市珠江路 280 号珠江大厦 1501 室

电话: (025) 68123901 68123902

传真: (025) 68123900

重庆周立功

(赛格电子市场) 1611 室

电话: (023)68796438 68796439

传真: (023)68796439

成都周立功

地址: 成都市一环路南二段 1 号数码科技大厦 403

电话: (028)85439836 85437446

传真: (028)85437896

武汉周立功

地址: 深圳市深南中路 2070 号电子科技大厦 C座 4 地址: 武汉市洪山区广埠屯珞瑜路 158 号 12128 室

(华中电脑数码市场)

电话: (027)87168497 87168297 87168397

传真: (027)87163755

西安办事处

地址: 西安市长安北路 54 号太平洋大厦 1201 室

电话: (029)87881296 83063000 87881295

传真: (029)87880865

销售与服务网络(二)

广州致远电子有限公司

地址:广州市天河区车陂路黄洲工业区3栋2楼

邮编: 510660

传真: (020)38601859

网址: www.embedtools.com (嵌入式系统事业部) www.embedcontrol.com (工控网络事业部)

www.ecardsys.com (楼宇自动化事业部)

技术支持:

CAN-bus:

电话: (020)22644381 22644382 22644253

邮箱: can.support@embedcontrol.com

MiniARM:

电话: (020)28872684 28267813

邮箱: miniarm.support@embedtools.com

无线通讯:

电话: (020) 22644386

邮箱: wireless@embedcontrol.com

编程器:

电话: (020)22644371

邮箱: programmer@embedtools.com

ARM 嵌入式系统:

电话: (020) 22644383 22644384

邮箱: NXPARM@zlgmcu.com

iCAN 及数据采集:

电话: (020)28872344 22644373

邮箱: ican@embedcontrol.com

以太网:

电话: (020)22644380 22644385

邮箱: ethernet.support@embedcontrol.com

串行通讯:

电话: (020)28267800 22644385

邮箱: serial@embedcontrol.com

分析仪器:

电话: (020)22644375

邮箱: tools@embedtools.com

楼宇自动化:

电话: (020)22644376 22644389 28267806

邮箱: mjs.support@ecardsys.com

mifare.support@zlgmcu.com

销售:

电话: (020)22644249 22644399 22644372 22644261 28872524

28872342 28872349 28872569 28872573 38601786

维修:

电话: (020)22644245

目 录

通用输	入/输出口(GPIO)	2
本章	5导读	2
9.2.1		
寄有		
9.3.1		
9.3.2		
9.3.3		
9.3.4		
9.3.5		
9.3.6		
9.3.7	GPIO 原始中断状态寄存器	
9.3.8	GPIO 屏蔽中断状态寄存器	5
9.3.9		
功能		
, , , , ,		
	本章 简介 9.2.1 寄在 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 9.3.7 9.3.8 9.3.9 功能	8 存器描述

第9章 通用输入/输出口(GPIO)

9.1 本章导读

每个端口上可用的 GPIO 引脚数目取决于 LPC111x 系列 ARM 的器件及其封装,可使用的 GPIO 引脚见表 9.1:

表 9.1 GPIO 配置

器件	封装	GPIO 端口 0	GPIO 端口 1	GPIO 端口 2	GPIO 端口 3	GPIO 引脚 的总数
LPC1111	HVQFN33	PIO0_0 到 PIO0_11	PIO1_0 到 PIO1_11	PIO2_0	PIO3_2 PIO3_4 PIO3_5	28
LPC1112	HVQFN33	PIO0_0 到 PIO0_11	PIO1_0 到 PIO1_11	PIO2_0	PIO3_2 PIO3_4 PIO3_5	28
LPC1113	HVQFN33	PIO0_0 到 PIO0_11	PIO1_0 到 PIO1_11	PIO2_0	PIO3_2 PIO3_4 PIO3_5	28
	LQFP48	PIO0_0 到 PIO0_11	PIO1_0 到 PIO1_11	PIO2_0 到 PIO2_11	PIO3_0 到 PIO3_5	42
	HVQFN33	PIO0_0 到 PIO0_11	PIO1_0 到 PIO1_11	PIO2_0	PIO3_2 PIO3_4 PIO3_5	28
LPC1114	PLCC44	PIO0_0 到 PIO0_11	PIO1_0 到 PIO1_11	PIO2_0 到 PIO2_11	PIO3_4 到 PIO3_5	38
	LQFP48	PIO0_0 到 PIO0_11	PIO1_0 到 PIO1_11	PIO2_0 到 PIO2_11	PIO3_0 到 PIO3_5	42

9.2 简介

9.2.1 特性

- 数字端口可以由软件配置为输入/输出;
- 每个单独引脚可被用作外部中断输入引脚;
- 每个中断可配置为下降沿、上升沿或边沿产生中断;
- 可对单独的中断级别编程;
- 所有 GPIO 引脚默认为输入;
- 端口引脚的读写数据操作是可屏蔽的。

9.3 寄存器描述

所有 GPIO 寄存器都为 32 位,可以字节、半字和字的形式访问。单个位(例如 GPIO 端口)也可通过直接写入端口管脚地址而设置。

表 9.2 寄存器总览: GPIO

(基址端口 0: 0x5000 0000; 端口 1: 0x5001 0000; 端口 2: 0x5002 0000; 端口 3: 0x5003 0000)

名称	访问	地址偏移量	描述	复位值
			端口 n 数据寄存器, 其中 PIOn_0 到	
GPIOnDATA	R/W	0x0000 - 0x3FFC	PIOn_11 引脚可用; 4096 个位置; 每一	0x00
			个数据寄存器都是 32 位宽	
-	-	0x4000 = 0x7FFC	保留	-
GPIOnDIR	R/W	0x8000	端口n的数据方向寄存器	0x00
GPIOnIS	R/W	0x8004	端口n的中断感应寄存器	0x00
GPIOnIBE	R/W	0x8008	端口n的中断边沿寄存器	0x00
GPIOnIEV	R/W	0x800C	端口n的中断事件寄存器	0x00
GPIOnIE	R/W	0x8010	端口n的中断屏蔽寄存器	0x00
GPIOnRIS	R	0x8014	端口n的原始中断状态寄存器	0x00
GPIOnMIS	R	0x8018	端口n的屏蔽中断状态寄存器	0x00
GPIOnIC	W	0x801C	端口n的中断清除寄存器	0x00
-	-	0x8020 - 0x8FFF	保留	0x00

9.3.1 GPIO 数据寄存器

数据寄存器允许在编程为输入的管脚上读取数据,并且对配置为输出的管脚编程。在 GPIO 地址空间的 4096 位置有同样的数据寄存器,而 12 位的地址总线可用于位屏蔽(见"写/读数据操作")。

表 9.3 GPIOnDATA 寄存器(GPIO0DATA,0x5000 0000-0x5000 3FFC; GPIO1DATA,地址 0x5001 0000-0x5001 3FFC; GPIO2DATA,地址 0x5002 0000-0x5002 3FFC; GPIO3DATA,地址 0x5003 0000 -0x5003 3FFC)位描述

位	符号	访问	描述	复位值
11:0	DATA	R/W	管脚 PIOn_0-PIOn_11 输入数据(读)或输出数据(写)	0x00
31:12	-	-	保留	0x00

9.3.2 GPIO 数据方向寄存器

表 9.4 GPIOnDIR 寄存器(IGPIO0DIR, 地址 0x5000 8000-GPIO3DIR, 地址 0x5003 8000) 位描述

位	符号	访问	值	描述	复位值
				选择管脚 x 作为输入或输出(x=0 到 11)	
11:0	IO	R/W	0	引脚 PIOn_x 配置为输入	0x00
			1	管脚 PIOn_x 配置为输出	
31:12	-	-	-	保留	-

9.3.3 GPIO 中断触发寄存器

表 9.5 GPIOnIS 寄存器(IGPIO0IS,0x5000 8004-GPIO3IS,0x5003 8004)位描述

位	符号	访问	值	描述	复位值	
					在管脚x下选择中断作为电平或边沿触发(x=0到11)	
11:0	ISENSE	R/W	0	PIOn_x 管脚上的中断配置为边沿触发	0x00	
			1	PIOn_x 管脚上的中断配置为电平触发		
31:12	-	-	-	保留	-	

9.3.4 GPIO 中断双边沿触发寄存器

表 9.6 GPIOnIBE 寄存器(IGPIO0IBE, 0x5000 8008 到 GPIO3IBE, 0x5003 8008)位描述

位	符号	访问	值	描述	复位值
			在管脚 x 上选择在双边沿上触发的中断(x=0 到 11)		
11:0	IBE	R/W	0	通过寄存器 GPIOnlEV 控制管脚 PIOn_x 上的中断	0x00
			1	管脚 PIOn_x 上双边沿触发中断	
31:12	-	-	-	保留	-

9.3.5 GIPO 中断事件寄存器

表 9.7 GPIOnIEV 寄存器(IGPIO0IEV, 0x5000 800C 到 GPIO3IEV, 0x5003 800C) 位描述

位	符号	访问	值	描述	复位值
				在管脚 x 上选择要触发的上升沿或下降沿中断(x=0	
				到11)	
11:0	IEV	IEV R/W	0	根据 GPIOnlS 的设置(见表 9.5),上升沿或管脚	0x00
11:0	IEV K	K/W		PIOn_x 的高电平触发中断	UXUU
			1	根据 GPIOnlS 的设置(见表 9.5),下降沿或管脚	
				PIOn_x 的低电平触发中断	
31:12	-	-	-	保留	-

9.3.6 GPIO 中断屏蔽寄存器

如果 GPIOnlE 寄存器中的位设为高,对应的引脚就会触发各自的中断和配套的 GPIOnlNTR 线。清除该位就会禁止对应管脚的中断触发。

表 9.8 GPIOnIE 寄存器(IGPIO0IE,地址 0x5000 8010 到 GPIO3IE,地址 0x5003 8010)位描述

位	符号	访问	值	描述	复位值
				选择管脚 x 上要被屏蔽的中断 (x=0 到 11)	
11:0	MASK	R/W	0	管脚 PIOn_x 上的中断被屏蔽	0x00
			1	管脚 PIOn_x 上的中断不被屏蔽	
31:12	-	-	-	保留	-

9.3.7 GPIO 原始中断状态寄存器

GPIOnIRS 寄存器的位读出为高时反映了对应管脚上的原始(屏蔽之前)中断状态,表示在触发 GPIOIE 之前所有的要求都满足。位读出为 0 时表示对应的输入管脚还未启动中断。该寄存器为只读。

LPC1100 系列微控制器用户手册

©2010 Guangzhou ZLGMCU Development CO., LTD.

表 9.9 GPIOnIRS 寄存器(GPIO0IRS,地址 0x5000 8014 到 GPIO3IRS,地址 0x5003 8014)位描述

位	符号	访问	值	描述	复位值
				选择管脚 x 上要屏蔽的中断 (x=0 到 11)	
11:0	MASK	R	0	管脚 PIOn_x 上无中断	0x00
			1	PIOn_x 上满足的中断要求	
31:12	-	-	-	保留	-

9.3.8 GPIO 屏蔽中断状态寄存器

GPIOnMIS 寄存器中的位读为高反映了输入线的状态触发中断。读出为低则表示对应的输入管脚没有中断产生,或者中断被屏蔽。GPIOMIS 是屏蔽后的中断状态。该寄存器为只读。

表 9.10 GPIOnMIS 寄存器 (GPIO0MIS, 地址 0x5000 8018 到 GPIO3MIS, 地址 0x5003 8018) 位描述

位	访问	符号	值	描述	复位值			
							选择管脚 x 上要屏蔽的中断(x=0 到 11)	
11:0	R	MASK	0	管脚 PIOn_x 上无中断或中断屏蔽	0x00			
			1	PIOn_x 上的中断				
31:12	-	-	-	保留	-			

9.3.9 GPIO 中断清除寄存器

表 9.11 GPIOnIC 寄存器 (GPIO0IC, 地址 0x5000 801C 到 GPIO3IC, 地址 0x5003 801C) 位描述

位	访问	符号	值	描述	复位值
11:0	W	CLR		选择管脚 x 上要清除的中断(x=0 到 11)。清除中断边沿检测逻辑。该寄存器为只写注: GPIO 和 NVIC 块之间的同步装置产生 2 个时钟的延时。建议在清除中断边沿检测逻辑之后,退出中断服务程序之前	0x00
				增加 2 个 NOP	
			0	无影响	
			1	清除 PIOn_x 上的边沿检测逻辑	
31:12	-	-	-	保留	-

9.4 功能描述

9.4.1 写/读数据

为了能让软件在一个写操作过程中设置 GPIO 位而又不影响到其他的管脚,我们就需要用 14 位宽的地址总线中的第 2 到第 13 位来产生 12 位的屏蔽,在每个端口的 12 个 GPIO 管脚上进行读写操作。屏蔽 GPIODATA 寄存器可以在地址 0x0000 到 0x3FFC 之间任何一个地址处加载。

写操作

如果与 GPIO 数据位相关的地址位写入了高电平,GPIODATA 寄存器的值就会更新为 GPIO 数据位的值。如果地址位写入了低电平,对应的 GPIODATA 寄存器位不变。

u=不变

图 9.1 GPIODATA 寄存器的屏蔽写操作

读操作

如果与 GPIO 数据位相关的地址位都为高电平,则读出该值。如果地址位是低电平,则 GPIO 数据位读出为 0。

图 9.2 屏蔽的读操作