DAA Assignment 2, Feb 3

- 1. Write Asymptotic notations for the following $(O, o, \Omega, \omega, \theta)$
 - (a) 6n + 3
 - (b) $10^{1000} \frac{1}{n^2} + n^3 6n + 17$
 - (c) $n^3 3^n + 100n^6$
 - (d) $n^3 + (0.5^n) + 100n$
 - (e) n + sinn
- 2. Prove that $10n 6 \neq \theta(n^2)$
- 3. Prove that $n^2 + 5n 6 \neq o(n^2)$
- 4. Prove that $n^k = o(c^n)$, for any fixed integer $k \ge 0$ and any fixed constant c > 1
- 5. Prove or disprove: O, Ω, θ notations are reflexive, symmetric and transitve.
- 6. Prove: If $f(n) = \theta(g(n))$, then $f(n) \neq o(g(n))$,
- 7. Solve assuming suitable values for base case:
 - (a) $T(n) = 3T(\sqrt{n}) + 1$
 - (b) T(n) = 3T(n-3) + n
 - (c) $T(n) = 5T(\frac{n}{2} + 6) + n^2$
 - (d) $T(n) = \sqrt{T(n-1)T(n-2)}$
- 8. Solve using recursion tree and Master's Theorem
 - (a) $T(n) = 3T(\frac{n}{2}) + n \log n$
 - (b) $T(n) = 3T(\frac{n}{2}) + 2^n$
 - (c) $T(n) = 4T(\frac{n}{2}) + n^2$
 - (d) $T(n) = 4T(\frac{n}{2}) + \frac{n^2}{2^n}$
 - (e) $T(n^2) = 16T(\frac{n^2}{4}) + n^2 \log n$
- 9. Present tight asymptotic complexity (θ notation) for the following.
 - (a) To list all permutations of a set of size 6.
 - (b) To list all reflexive relations on a set of size 10.
 - (c) To list all subsets of size $\log n$, given a set of size n^2 , n is a variable.
 - (d) To compute the determinant of a matrix of order n
 - (e) To find the cofactor matrix of a matrix of order n
- 10. Read (i) Bubble sort (ii) Selection sort (iii) Insertion sort, and trace the algorithm for the following inputs
 - a) -1,1,2,3
 - b) 4,3,2,1
 - c) -1,1,2,6,5,4