

Linear Algebra-Sheet 1 on Basics of Linear Algebra

Q1. Determine the values of α, β, γ when $A = \begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{bmatrix}$ is orthogonal.

Answer:
$$\alpha=\pm\frac{1}{\sqrt{2}}$$
, $\beta=\pm\frac{1}{\sqrt{6}}$, $\gamma=\pm\frac{1}{\sqrt{3}}$

Q2. If A is real skew symmetric matrix such that $A^2 + I = 0$, show that A is orthogonal and is of even order.

- Q3. Find the inverse of the matrix $S = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ and show that the transform of the matrix $A = \begin{bmatrix} b+c & c+a & b-c \\ c-b & c+b & a-b \\ b-c & a-c & a+b \end{bmatrix}$ by S, i.e. SAS-1 is a diagonal matrix.
- Q4. P, Q are non singular matrices. Show that if

$$A = \begin{bmatrix} P & O \\ O & Q \end{bmatrix}$$
, then $A^{-1} = \begin{bmatrix} P^{-1} & O \\ O & Q^{-1} \end{bmatrix}$

- Q5. If $f(x) = \begin{vmatrix} x+c_1 & x+a & x+a \\ x+b & x+c_2 & x+a \\ x+b & x+b & x+c_3 \end{vmatrix}$ then show that f(x) is linear in x. Also deduce that $f(0) = \frac{bg(a)-ag(b)}{(b-a)}, \text{ where } g(x) = (c_1-x)(c_2-x)(c_3-x).$
- Q6. Find the value of $\begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix}$ where $l_1^2 + m_1^2 + n_1^2 = 1$, etc. and $l_1l_2 + m_1m_2 + n_1n_2 = 0$ etc.

Answer: $\Delta = \pm 1$

Q7. If
$$f(x) = \begin{vmatrix} \sin^5 x & \log \sin x & \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \\ n & \sum_{k=1}^n k & \prod_{k=1}^n k \\ 8/15 & \frac{\pi}{2} \log 2 & \frac{\pi}{4} \end{vmatrix}$$
. Then find the value of $\int_0^{\pi/2} f(x) dx$

Answer: 0

Q8. Let n be a positive integer and
$$\Delta_r=\begin{vmatrix}2r-1&n_{C_r}&1\\n^2-1&2^n&n+1\\tan^2(n^2)&tan^2(n)&tan^2(n+1)\end{vmatrix}$$
 . Then prove that $\sum_{r=0}^n\Delta_r=0$.