Advances Towards Practical Implementations of Isogeny Based Signatures

Robert Gorrie

McMaster University – Department of Computing & Software gorrierw@mcmaster.ca

November 13, 2018

Overview

Introduction & Background
Post-quantum Cryptography & Motivation
Elliptic Curves & Isogenies
Supersingular Isogeny Diffie-Hellman
Isogeny-based Signatures

Batching Field Element Inversions
Batching Partial Inversions
Implementing Batching in SIDH 2.0
Performance of Inversion Batching

Compressing Isogeny-based Signatures SIDH Public Key Compression Implementing in SIDH 2.0 Advantage and Cost of Compressions

Results
Performance Measurements

Public-key Cryptography

There are five rudimentary concerns of information security:

- Confidentiality: information must be kept private from unauthorized individuals
- Integrity: information must not be altered by unauthorized individuals
- Availability: information must be available for authorized individuals
- Authenticity: information must have a verifiable source
- ► *Non-repudiation*: the source of information must be publicly verifiable

Public-key Cryptography

The goal of cryptography is to define mathematically precise means of ensuring these information security goals.

Cryptographic protocols can be either *private-key* or *public-key* systems.

Public-key systems require that every party takes ownership of both a public key (pk), the value of which is known by everyone on the network, and a private key (sk), known only to the owner.

Introduction & Background
Batching Field Element Inversions
Compressing Isogeny-based Signatures

Post-quantum Cryptography & Motivation Elliptic Curves & Isogenies Supersingular Isogeny Diffie-Hellman Isogeny-based Signatures

Quantum Cryptanalysis

Efficient large-scale quantum computing \rightarrow breaking most modern public-key cryptosystems.

This has lead to the development of the field known as post-quantum cryptography – the aim of which is to develop cryptosystems resistant to quantum cryptanalysis.

Post-quantum Cryptography

Common approaches to post-quantum cryptography include

- ► Lattice-based cryptography
- ► Hash-based cryptography
- Multivariate-based cryptography
- ► Code-based cryptography
- ► Isogeny-based cryptography

Post-quantum Cryptography

	Key Gen	Sign	Verify
	•		
SIDH	84,499,270	4,950,023,141.65	3,466,703,991.09
Sphincs	17,535,886.94	653,013,784	27,732,049
qTESLA	1,059,388	460,592	66,491
Picnic	13,272	9,560,749	6,701,701
RSA	12,800,000	1,113,600	32400
ECDSA	1,470,000	128,928	140,869

Elliptic Curves as a Group

Elliptic curves are a class of algebraic curves satisfying

$$E: y^2 = x^3 + ax + b.$$

We can define a group composed of all the points P = (x, y) satisfying E.

Elliptic Curves as a Group

Isogenies

Isogenies are maps that take a point on one elliptic curve to a point on another. For an isogeny ϕ mapping from E_1 to E_2 , we can write

$$\phi: E_1 \to E_2$$

These maps have the following two properties

$$ightharpoonup \phi(\mathcal{O}) = \mathcal{O}$$

$$ightharpoonup \phi(P^{-1}) = (\phi(P)^{-1})$$

Key Exchange Protocols

Key exchange protocols are cryptographic schemes used to establish a shared secret between two party members. These can be defined by a tuple of algorithms $\Pi_{kex} = (\text{KeyGen}, \text{SecAgr}).$

Key Exchange Protocols

Public parameter:

Introduction & Background
Batching Field Element Inversions
Compressing Isogeny-based Signatures
Results

Post-quantum Cryptography & Motivation Elliptic Curves & Isogenies Supersingular Isogeny Diffie-Hellman Isogeny-based Signatures

Supersingular Isogeny Diffie-Hellman

Interactive Identification Schemes

$$E = mc^2$$

Signature Schemes

$$E = mc^2$$

Fiat-Shamir Transform

$$E = mc^2$$

Yoo Signatures

$$E = mc^2$$

Table

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table: Table caption

Batching Partial Inversions Implementing Batching in SIDH 2.0 Performance of Inversion Batching

Signature Schemes

$$E = mc^2$$

Verbatim

```
Example (Theorem Slide Code)
```

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

Introduction & Background Batching Field Element Inversions Compressing Isogeny-based Signatures Results

SIDH Public Key Compression Implementing in SIDH 2.0 Advantage and Cost of Compressions

Figure

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2012].

SIDH Public Key Compression Implementing in SIDH 2.0 Advantage and Cost of Compressions

Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2012].

Performance Measurements

Questions?

References

John Smith (2012)
Title of the publication

Journal Name 12(3), 45 – 678