AsterlNetwork: Efficient Large-scale Datacenter Network for LLM Training

Tencent Datacenter Network Architect
Baojia Li
July 25 2023

Distributed LLM Training with 3D Parallelism

Tencent 腾讯

3-Dimension Parallelism

Parallelism	Features	Requirements for Communication	
Tensor Parallelism	The highest proportion~100GBCannot be overlapped	TP Allreduce	Intra-node over PCle/Nvlink
Pipeline Parallelism	10M~10G Cannot be overlapped	PP allreduce	Inter-node over IB/Ethernet
Data Parallelism	1G~10G Can be overlapped	DP allreduce	Inter-node over IB/Ethernet
Expert Parallelism	~10G Cannot be overlapped	AlltoAll	Inter-node over IB/Ethernet

Traffic type distribution for all pairs of GPUs

- Over 99% of GPU pairs carry no traffic
- > 0.25% of GPU pairs carry MP and second stage DP traffic between them

Challenge1: Increase in Network Size

Size of the GPU cluster is limited by the throughput of the switching chip and the number of device ports

- Performance: Affected by uneven multi-layer load balancing and multi-level network congestion, collective communication performance is degraded.
- Cost: the number of switches and optical modules increase.
- **Operation**: Affected by multi-layer PFC Pause, network operation risks increase.

In large-scale scenarios, the collective communication performance **drops by 35%**

	Congestion Control	Load Balancing Bias	Packet Loss	Collective Communication
Tradition Protocol	500us ~ 1ms	~ 40%	0.1%~1%	Topology-unaware
Self-developed Protocol	10us ~ 40us	~ 5%	0	Topology-aware

Challenge3: High Cluster Stability Requirements

A single node/device failure can cause the entire training to be disrupted

The technical system is complex and it is difficult to locate the fault point.

AstralNetwork: Self-developed TiTa and TCCL

Extreme cluster performance and intelligent operation

Network Scale of 100 thousands GPU in a single cluster

Block-Pod-Cluster

Block: 256 GPU

 Pod: 16~64 Block (4K~16K GPU) Cluster: Up to 16 Pod (64K~256K GPU)

Customized interconnection of AI traffic to maximize performance

- Multi-plane: Distribute cross-server GPU communication on 8 planes
- Traffic affinity: ensure that the single-task 8K/16K GPU is accessed on the same plane

Congestion control based on end-network coordination

Effective load of the whole network reaches more than 90%

Topology-aware affinity scheduling: minimizing traffic detours

> Suboptimal traffic scheduling

Suboptimal collective communication sequence

> Optimal traffic scheduling

Optimal collective communication sequence

Traffic cross LA groups was reduced by 50%~80%

Thanks