

Theory of Leaf-Level Gas Exchange Measurements

Pat Morgan and Jason Hupp Senior Application Scientists LI-COR Biosciences Lincoln, Nebraska, USA

Global Carbon cycle (x10¹⁵ gC)

How is Vegetation Measured?

Plant and Atmosphere Interface

Stomata regulate H₂O loss from and CO₂ entry into leaf

Ohm's Law

$$\Delta E = IR$$

$$I = \Delta E / R$$

```
\Delta E = driving force
(electric potential difference)

R = resistance

conductance = 1/R

l = current
```


Fick's First Law

$$J_{j} = -D_{j} \frac{\partial c_{j}}{\partial x}$$
$$= g_{j}^{\text{bl}} \Delta c_{j}^{\text{bl}}$$

 Δc_j = concentration gradient

 g_j = conductance

$$J_j = flux$$

H₂O and CO₂ Flux

Photosynthesis

$$A = (c_a - c_i)g_{CO2}$$

Transpiration

$$E = (w_i - w_a)g_{H2O}$$

Leaf Conductance

$$r_t = r_{bl} + r_s + r_c + r_m$$

Boundary Layer

The boundary layer retards the transfer of heat, CO₂, and H₂O from the leaf to the bulk air.

Stomatal Conductance (g_s)

- Major resistance in leaf
 - Regulated to prevent H₂O loss while maximizing CO₂ influx

Resistance within Apoplast and Cell

 Apoplastic resistance due to diffusion

How Are Conductance and Concentrations Measured to Calculate Photosynthesis and Transpiration Fluxes?

Wavelength (µm)

Mooney, H.A., et al. 1971. A mobile laboratory for gas exchange measurements. Photosynthetica, 5, 128-32.

LI-COR°

Infrared Gas Analyzers

Mooney, H.A., et al. 1971. A mobile laboratory for gas exchange measurements. Photosynthetica, 5, 128-32.

Absorption of light by molecules

Using light to study photosynthesis

H₂O and CO₂ Absorption in the IR region involves rotations

and vibrations

Oscillating dipole of a rotating polar molecule

Oscillating dipole of a vibrating non-polar molecule

H_2O

H₂O absorbs infrared light about 2.4 μm

CO_2

CO₂ absorbs infrared light about 4.2 μm

CO₂ Absorption Spectrum

Band Broadening Corrections

- Intermolecular collisions with other gases in mixtures affect the IR absorption lines of CO₂.
 - Increasing collisions increases the total absorption without corresponding increase in concentration.

$$C = f(V\frac{P_o}{P})\frac{T}{T_o}$$

C is CO₂ in μmol mol⁻¹, f(x) is the fundamental LI-COR gas analyzer calibration function, P & T are the total pressure (kPa) and temperature (K), P_o = 101.3 kPa, T_o = 273K.

Effective Pressure Broadening

 Not all gases equally effective in causing pressure broadening of absorption lines.

$$P_e = P_{N_2} + \sum \alpha_i P_i + b_{CO_2}$$

For example water and CO₂ in air would be:

$$P_e = P_{N_2} \alpha_{N_2} + P_{O_2} \alpha_{O_2} + P_w \alpha_w + b_{CO_2}$$

Pressure Broadening Cont.

 Substituting P_e for P in the CO₂ calculation gives the calibration equation that includes the pressure broadening effects of variable water vapor and oxygen:

$$C = c(w, x_o) F \left[\frac{VP_o}{P_c(w, x_o)} \right] \frac{T}{T_o}$$

Gas Exchange Techniques

Enclosure Methods

- Disturbs plants to some degree
- Possibility for controlled experiments
- Can measure individual components:
 - Different leaves
 - Roots
 - Soil

Micrometerological Methods

- Minimum disturbance
- Summary of large areas
- Difficult to do controlled experiments or isolate individual components

How Are Photosynthesis & Transpiration Measured in an Enclosure?

Closed System

$$A = \Delta CO_2 V (\Delta t S)^{-1}$$

No air enters or leaves the system

Leaks can cause large errors

Transient measurementCO₂, H₂O, T & P changes

LI-6250 Flow Schematic

Open System

$$A = (u_e c_e - u_o c_o) S^{-1}$$

- Flow of air must be constant & known (accurate flow meter)
- Steady-state measurement

controlling environmental variables

Measured Variables

- CO₂
- H₂O
- Flow rate
- Light
- Temperature
 - Air and Leaf

Assumptions

- Flow rate into chamber equals flow rate out
- Leaf interior saturated e(t_s)
- g_c is negligible
- g_{bl} is known
- Diffusion difference between CO₂ and H₂O is 1.6

Leaf Transpiration

$$sE = (\mu_i + sE)w_o - \mu_e w_e$$

$$E = \frac{\mu_e(w_o - w_e)}{s(1 - w_o)}$$

- Transpiration (E)
 calculated from
 entering and exiting
 H₂O concentrations
 and flow rates.
- Normalized to leaf area (s).

Stomatal Conductance (gsw)

$$g_{sw} = \frac{1}{\frac{1}{g_{tw}} - \frac{k_f}{g_{bw}}}$$

$$g_{tw} = \frac{E\left(1 - \frac{w_l - w_e}{2}\right)}{w_l - w_e}$$

$$k_f = \frac{k^2 + 1}{(k+1)^2}$$

- g_{tw} is calculated from the E, the measured H₂O in chamber (w_e) and assumed H₂O inside leaf (w_I)
- **g**_{sw} (mol H₂O m⁻² s⁻¹) is calculated from total conductance
 - Boundary layer known
- k_f is a factor based on the estimate k
 - **k** = fraction of stomatal conductance of one side of the leaf to the other (stomatal ratio).

Photosynthesis

- $u_0 = u_e + sE$
- $sA = u_e c_e (u_e + sE) c_o$

$$A = \frac{u(C_r - C_s)}{100S} - C_s E$$

- μ is flow rate (μmol mol⁻¹), *Cr* and *Cs* are reference and sample CO₂ concentrations (μmol mol⁻¹), *S* is leaf area (m²), and *E* is transpiration (mol m⁻² s⁻¹)
- Dilution due to H₂O vapor

C_i

- $g_{sc} = 1.6 g_{sw}$
- $r_{sc} = 1 / g_{sc}$
- Fick Law

•
$$A = (c_a - c_i) / r_{sc}$$

C_i cont'd.

$$g_{tc} = \frac{1}{\frac{1.6}{g_{sw}} + \frac{1.37k_f}{g_{bw}}}$$

$$C_i = \frac{(g_{tc} - \frac{E}{2})C_s - A}{g_{tc} + \frac{E}{2}}$$

 The ratio between the diffusivities of CO₂ and water in the boundary layer is 1.37, compared to 1.6 in air

Some Uses of Leaf-level Measures

- Plant growth models
- GCMs
 - Canopy A, E and g_s validation and modeling
- Eddy Covariance
 - Scale-up validation

What parameters do researchers want to measure?

- Net flux of CO₂ (photosynthesis or respiration)
- Transpiration (E) & Stomatal Conductance (g_s)
- Leaf internal CO₂ concentration (C_i) and CO₂ concentration inside the chloroplast (C_c)
- Electron Transport Rate (J)
- Velocity of Carboxylation (V_c)

Exploring limitations to photosynthesis

Journal of Experimental Botany, Vol. 54, No. 392, pp. 2393–2401, November 2003 DOI: 10.1093/jxb/erg262

REVIEW ARTICLE: FIELD TECHNIQUES

Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error A-C_i Curves

Farquhar, von Caemmerer & Berry analysis:

S. P. Long
$1,*$
 and C. J. Bernacchi 2

¹ Departments of Crop Sciences and Plant Biology, University of Illinois at Urbana-Champaign, 379 Edward B. Madigan Laboratory, Urbana, IL 61801, USA

$$A = \min\{w_{c}, w_{j}, w_{p}\} \left(1 - \frac{\Gamma*}{C_{i}}\right) - R_{d}$$

$$V_{c, \max} C_{i}$$

$$w_c = \frac{V_{c,\text{max}}C_i}{C_i + K_c(1 + O/K_o)}$$

$$w_j = \frac{JC_i}{4.5C_i + 10.5\Gamma^*}$$

$$w_p = \frac{3V_{tpu}}{\left(1 - \frac{\Gamma^*}{C_i}\right)}$$

Exploring limitations to photosynthesis

Photosynthesis depends more on the number of photons, rather than the amount of energy of the photons

- Irradiance: Radiant flux incident on a surface (W m⁻²)
- Photosynthetically Active Radiation (PAR): Radiation 400 to 700 nm (W m⁻²), about 50% of total radiation
- Photosynthetic Photon Flux Density (PPFD): Number of photons (400-700 nm) incident per unit time and area (µmol m⁻² s⁻¹)

Exploring limitations to photosynthesis Light Curves

Flow Path

Mixing and Analyzers

