Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (\star) sur le chapitre 14 : Arithmétique dans \mathbb{Z} . Les exercices portent sur le chapitre 14 : Arithmétique dans \mathbb{Z} .

Chapitre 14: Arithmétique dans \mathbb{Z} .

Anneau euclidien

Relation de divisibilité dans \mathbb{Z} . (*) La relation de divisibilité induit une relation d'ordre sur \mathbb{N} . Eléments associés. Ensemble D(a) des diviseurs de a, $D^+(a)$ des diviseurs positifs de a. Multiples de a. (*) L'ensemble des multiples de a est un sous-groupe de \mathbb{Z} . Générateurs de $a\mathbb{Z}$. a divise b si et seulement si $b\mathbb{Z} \subset a\mathbb{Z}$. (*) Théorème de la division euclidienne. Expression du quotient et du reste à l'aide des parties entières. b divise a ssi a%b est nul. (*) Les sous-groupes de \mathbb{Z} sont monogènes. $a\mathbb{Z} + b\mathbb{Z}$ est sous-groupe de \mathbb{Z} .

Pgcd, ppcm

Le pgcd est défini par $0 \land 0 = 0$, sinon $a \land b = \max(D^+(a) \cap D^+(b))$ le plus grand diviseur positif commun à a et b. Réduction, si $d = a \land b$, il existe des entiers a', b' tels que a = da', b = db' et $a' \land b' = 1$. (*) $D(a) \cap D(b + na) = D(a) \cap D(b)$. Algorithme d'Euclide. (*) $D(a) \cap D(b) = D(a \land b)$. Homogénéité du pgcd, a divise b si et seulement si $a \land b = |a|$. (*) $a\mathbb{Z} + b\mathbb{Z} = (a \land b)\mathbb{Z}$. Relation et théorème de Bezout. Algorithme d'Euclide étendu.

Le ppcm est défini par $a \lor 0 = 0$. Si a et b tous deux non nuls, $a \lor b$ est leur grand multiple positif commun. (\star) $a\mathbb{Z} \cap b\mathbb{Z} = (a \lor b)\mathbb{Z}$. Homogénétié du ppcm.

Pgcd, ppcm d'une famille fini d'entiers relatifs. Associativité, commutativité. Homogénéité.

Entiers relatifs premiers entre eux

Théorème de Bezout. (*) Lemme de Gauss. (*) Formule des compléments. Résolution d'équations diophantiennes ax + by = c. Forme irréductible d'un rationnel. (*) $a \wedge b = 1$, $a \mid n$ et $b \mid n \Rightarrow (ab) \mid n$. (*) $a \wedge n = 1$ et $b \wedge n = 1 \Rightarrow (ab) \wedge n = 1$. Entiers premiers entre eux dans leur ensemble, deux à deux. La coprimalité deux à deux entraîne la coprimalité dans l'ensemble.

Anneau factoriel

p est dit premier lorsque $|D^+(p)|=2$. (\star) Soit $n\in\mathbb{Z}, |n|\geq 2$, alors n admet un diviseur premier. (\star) L'ensemble \mathcal{P} des entiers premiers positifs est infini. $n\in\mathbb{Z}, |n|\geq 2$ est premier ssi $\forall k\in[[1,|n|-1]], k\wedge n=1$. Lemme d'Euclide. Si $|n|\geq 2$ est non premier, il admet un diviseur premier p tel que $p\leq \sqrt{n}$. (\star) Théorème fondamental de l'arithmétique, existence. (\star) Théorème fondamental de l'arithmétique, unicité. Valuation p-adique. $|n|=\prod_{p\in\mathcal{P}}p^{v_p(n)}$. $n\in\mathbb{Z}^*$, $v_p(n)=1$

 $\max\{k \in \mathbb{N} | p^k \mid n\}. \ (\star) \ v_p(ab) = v_p(a) + v_p(b), v_p(a \land b) = \min(v_p(a), v_p(b)), v_p(a \lor b) = \max(v_p(a), v_p(b)). \ \text{Indicatrice d'Euler}, \varphi(p^k).$

Congruences

Relation de congruence modulo n. C'est une relation d'équivalence. $n \mid a \iff a \equiv 0[n]$. (*) Compatibilité avec l'addition et la multiplication. $a \equiv b[n]$ ssi a et b ont même reste dans leur division euclidienne par n. Entier inversible modulo n. (*) a est inversible modulo n ssi $a \land n = 1$. Résolution de congruences. (*) Petit théorème de Fermat.

* * * * *