Model-Based Clustering II

Prof. Sharon McNicholas

STATS 780/CSE 780

1

STATS 780/CSE 780

Prof. Sharon McNicholas

Introduction

- We have seen model-based clustering using the GPCM models.
- Today, we look at mixture model-based clustering for higher dimensional data.
- As in the last lecture, some of the material is taken from McNicholas (2016).
- Note that bibliographic references are given at the end of these slides.

Factor Analysis

• Consider independent p-dimensional random variables $\mathbf{X}_1, \dots, \mathbf{X}_n$. The factor analysis model can be written

$$\mathbf{X}_i = \boldsymbol{\mu} + \mathbf{\Lambda} \mathbf{U}_i + \boldsymbol{\epsilon}_i, \tag{1}$$

for $i=1,\ldots,n$, where Λ is a $p\times q$ matrix of factor loadings, the latent factor $\mathbf{U}_i\sim \mathsf{N}(\mathbf{0},\mathbf{I}_q)$, and $\boldsymbol{\epsilon}_i\sim \mathsf{N}(\mathbf{0},\boldsymbol{\Psi})$, where $\boldsymbol{\Psi}=\mathrm{diag}(\psi_1,\psi_2,\ldots,\psi_p)$.

- ullet Note that the ${f U}_i$ are independently distributed and independent of the ϵ_i , which are also independently distributed.
- Factor analysis is a data reduction technique, i.e., q < p.

3

STATS 780/CSE 780

Prof. Sharon McNicholas

Factor Analysis

- From (1), it follows that the marginal distribution of \mathbf{X}_i under the factor analysis model is $\mathsf{N}(\boldsymbol{\mu}, \boldsymbol{\Lambda}\boldsymbol{\Lambda}' + \boldsymbol{\Psi})$. There are pq + p q(q-1)/2 free parameters in the covariance matrix $\boldsymbol{\Lambda}\boldsymbol{\Lambda}' + \boldsymbol{\Psi}$ (Lawley and Maxwell, 1962).
- Therefore, the reduction in free covariance parameters under the factor analysis model is

$$\frac{1}{2}p(p+1) - \left[pq + p - \frac{1}{2}q(q-1)\right] = \frac{1}{2}\left[(p-q)^2 - (p+q)\right], \quad (2)$$

and there is a reduction in the number of free parameters provided that (2) is positive, i.e., provided that

$$(p-q)^2 > (p+q).$$

4

Mixture of Factor Analyzers

 Analogous to the factor analysis model, the mixture of factor analyzers model assumes that

$$\mathbf{X}_i = \boldsymbol{\mu}_q + \boldsymbol{\Lambda}_g \mathbf{U}_{ig} + \boldsymbol{\epsilon}_{ig} \tag{3}$$

with probability π_q , for $i=1,\ldots,n$ and $g=1,\ldots,G$.

- Λ_g is a $p \times q$ matrix of factor loadings, the \mathbf{U}_{ig} are independently $\mathsf{N}(\mathbf{0},\mathbf{I}_q)$ and are independent of the ϵ_{ig} , which are independently $\mathsf{N}(\mathbf{0},\mathbf{\Psi}_g)$, where $\mathbf{\Psi}_g$ is a $p \times p$ diagonal matrix with positive diagonal elements.
- ullet It follows that the density of ${f X}_i$ from the mixture of factor analyzers model is

$$f(\mathbf{x}_i \mid \boldsymbol{\vartheta}) = \sum_{g=1}^{G} \pi_g \phi(\mathbf{x}_i \mid \boldsymbol{\mu}_g, \boldsymbol{\Lambda}_g \boldsymbol{\Lambda}_g' + \boldsymbol{\Psi}_g). \tag{4}$$

5

STATS 780/CSE 780

Prof. Sharon McNicholas

Mixture of Factor Analyzers

- Ghahramani and Hinton (1997) were the first to introduce a mixture of factor analyzers model; they constrain $\Psi_g = \Psi$ to facilitate an interpretation of Ψ as sensor noise.
- Tipping and Bishop (1999) introduce the closely related mixture of probabilistic principal component analyzers (MPPCA) model, where each Ψ_g matrix is isotropic, i.e., $\Psi_g = \psi_g \mathbf{I}_p$.
- ullet McLachlan and Peel (2000) use the unconstrained mixture of factor analyzers model, i.e., with $oldsymbol{\Sigma}_g = oldsymbol{\Lambda}_g oldsymbol{\Lambda}_q' + oldsymbol{\Psi}_g.$

PGMMs

- One can view the mixture of factor analyzers models and the MPPCA model, collectively, as a family of three models.
- This family can easily be extended to a four-member family by adding the model with component covariance $\Sigma_g = \Lambda_g \Lambda_g' + \psi \mathbf{I}_p$.
- Members of this family of four models have between G[pq-q(q-1)/2]+1 and G[pq-q(q-1)/2]+Gp free parameters in the component covariance matrices.

7

STATS 780/CSE 780

Prof. Sharon McNicholas

PGMMs

- A greater level of parsimony can be introduced by constraining the component factor loading matrices to be equal, i.e., $\Lambda_g = \Lambda$.
- McNicholas and Murphy (2008) develop a family of eight parsimonious Gaussian mixture models (PGMMs) for clustering by imposing, or not, each of the constraints $\Lambda_g = \Lambda$, $\Psi_g = \Psi$, and $\Psi_g = \psi_g \mathbf{I}_p$.
- Members of the PGMM family have between pq-q(q-1)/2+1 and G[pq-q(q-1)/2]+Gp free parameters in the component covariance matrices.
- McNicholas (2010) used the PGMM family for model-based classification, and Andrews and McNicholas (2011) applied it for model-based discriminant analysis.

8

PGMMs

$\overline{oldsymbol{\Lambda}_g = oldsymbol{\Lambda}}$	$\Psi_g = \Psi$	$\mathbf{\Psi}_g = \psi_g \mathbf{I}_p$	$oldsymbol{\Sigma}_g$	Free Cov. Paras.
С	С	С	$\mathbf{\Lambda}\mathbf{\Lambda}' + \psi \mathbf{I}_p$	pq - q(q-1)/2 + 1
C	С	U	$\boldsymbol{\Lambda}\boldsymbol{\Lambda}'+\boldsymbol{\Psi}$	pq - q(q-1)/2 + p
С	U	С	$\mathbf{\Lambda}\mathbf{\Lambda}' + \psi_g \mathbf{I}_p$	pq - q(q-1)/2 + G
С	U	U	$\mathbf{\Lambda}\mathbf{\Lambda}' + \mathbf{\Psi}_g$	pq - q(q-1)/2 + Gp
U	С	С	$\mathbf{\Lambda}_g \mathbf{\Lambda}_g' + \psi \mathbf{I}_p$	G[pq - q(q-1)/2] + 1
U	C	U	$\boldsymbol{\Lambda}_{g}\boldsymbol{\Lambda}_{g}^{\prime}+\boldsymbol{\Psi}$	G[pq - q(q-1)/2] + p
U	U	С	$\mathbf{\Lambda}_g \mathbf{\Lambda}_g' + \psi_g \mathbf{I}_p$	G[pq - q(q-1)/2] + G
U	U	U	$\boldsymbol{\Lambda}_{g}\boldsymbol{\Lambda}_{g}^{\prime}+\boldsymbol{\Psi}_{g}$	G[pq - q(q-1)/2] + Gp

9

STATS 780/CSE 780

Prof. Sharon McNicholas

Expanded PGMMs

• McNicholas and Murphy (2010) further parameterize the mixture of factor analyzers component covariance structure by writing

$$\mathbf{\Psi}_g = \omega_g \mathbf{\Delta}_g,$$

where $\omega_g \in \mathbb{R}^+$ and Δ_g is a diagonal matrix with $|\Delta_g| = 1$.

• The resulting mixture of modified factor analyzers model has component covariance structure

$$\Sigma_g = \Lambda_g \Lambda_g' + \omega_g \Delta_g.$$

• In addition to the constraint $\Lambda_g = \Lambda$, all legitimate combinations of the constraints $\omega_g = \omega$, $\Delta_g = \Delta$, and $\Delta_g = \mathbf{I}_p$ are imposed, resulting in a family of 12 PGMMs.

STATS 780/CSE 780 Prof. Sharon McNicholas

Expanded PGMMs

	Expanded PGN	IM Nomenclat			
$\overline{oldsymbol{\Lambda}_g = oldsymbol{\Lambda}}$	$oldsymbol{\Delta}_g = oldsymbol{\Delta}$	$\omega_g = \omega$	$\mathbf{\Delta}_g = \mathbf{I}_p$	PGMM Equiv.	$\boldsymbol{\Sigma}_g$
С	С	С	С	CCC	$\mathbf{\Lambda}\mathbf{\Lambda}' + \omega \mathbf{I}_p$
С	C	U	C	CUC	$\mathbf{\Lambda}\mathbf{\Lambda}' + \omega_g \mathbf{I}_p$
U	C	С	C	UCC	$\mathbf{\Lambda}_g\mathbf{\Lambda}_g'+\omega\mathbf{I}_p$
U	C	U	C	UUC	$\mathbf{\Lambda}_g\mathbf{\Lambda}_g'+\omega_g\mathbf{I}_p$
С	C	С	U	CCU	$\mathbf{\Lambda}\mathbf{\Lambda}' + \omega\mathbf{\Delta}$
С	C	U	U	_	$\mathbf{\Lambda}\mathbf{\Lambda}' + \omega_g\mathbf{\Delta}$
U	C	С	U	UCU	$\boldsymbol{\Lambda}_{g}\boldsymbol{\Lambda}_{g}^{\prime}+\omega\boldsymbol{\Delta}$
U	С	U	U	_	$oldsymbol{\Lambda}_g oldsymbol{\Lambda}_g' + \omega_g oldsymbol{\Delta}$
С	U	С	U	_	$\mathbf{\Lambda}\mathbf{\Lambda}' + \omega\mathbf{\Delta}_g$
С	U	U	U	CUU	$\mathbf{\Lambda}\mathbf{\Lambda}' + \omega_g \mathbf{\Delta}_g$
U	U	С	U	_	$\mathbf{\Lambda}_g \mathbf{\Lambda}_g' + \omega \mathbf{\Delta}_g$
U	U	U	U	UUU	$\mathbf{\Lambda}_g\mathbf{\Lambda}_g'+\omega_g\mathbf{\Delta}_g$

11

STATS 780/CSE 780

Prof. Sharon McNicholas

Comments

- Note that an AECM algorithm (Meng and van Dyk, 1997) is used for parameter estimation.
- I want to look at quite a few clustering examples now.
- We can use the pgmm package in R.
- We can also compare with other clustering approaches.
- Then, on to clustering longitudinal data.

STATS 780/CSE 780 Prof. Sharon McNicholas

References

- Andrews, J.L. and P.D. McNicholas (2011). 'Mixtures of modified t-factor analyzers for model-based clustering, classification, and discriminant analysis'. *Journal of Statistical Planning* and Inference 141(4), 1479–1486.
- Ghahramani, Z. and G.E. Hinton (1997). The EM algorithm for factor analyzers. Technical Report CRG-TR-96-1, University of Toronto, Toronto, Canada.
- Lawley, D.N. and A.E. Maxwell (1962). 'Factor analysis as a statistical method'. *Journal of the Royal Statistical Society: Series D* 12(3), 209–229.
- McLachlan, G. J. and D. Peel (2000). Mixtures of factor analyzers. In Proceedings of the Seventh International Conference on Machine Learning, pp. 599–606. San Francisco: Morgan Kaufmann.
- McNicholas, P.D. (2010). 'Model-based classification using latent Gaussian mixture models'.
 Journal of Statistical Planning and Inference 140(5), 1175–1181.
- McNicholas, P.D. (2016), Mixture Model-Based Classification, Boca Raton: Chapman & Hall/CRC Press.
- McNicholas, P.D. and T.B. Murphy (2008). 'Parsimonious Gaussian mixture models'. *Statistics and Computing* **18**(3), 285–296.
- McNicholas, P.D. and T.B. Murphy (2010). 'Model-based clustering of microarray expression data via latent Gaussian mixture models'. *Bioinformatics* 26(21), 2705–2712.
- Meng, X.-L. and D. van Dyk (1997). 'The EM algorithm An old folk song sung to a fast new tune (with discussion)'. Journal of the Royal Statistical Society: Series B 59(3), 511–567.