EPC2202 - Automotive 80 V (D-S) Enhancement **Mode Power Transistor**

 V_{DS} , 80 V $R_{DS(on)}$, 17 m Ω I_D, 18 A **AEC-Q101**

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR}. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

	Maximum Ratings					
	PARAMETER VALUE UNI					
V_{DS}	Drain-to-Source Voltage (Continuous)	80	V			
	Continuous ($T_A = 25$ °C, $R_{\theta JA} = 12$ °C/W)	18	Α			
I _D	Pulsed (25°C, $T_{PULSE} = 300 \mu s$)	75				
W	Gate-to-Source Voltage	5.75	V			
V _{GS}	Gate-to-Source Voltage	-4				
TJ	Operating Temperature	-40 to 150	°C			
T _{STG}	Storage Temperature	-40 to 150	C			

	Thermal Characteristics					
PARAMETER TYP						
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	2				
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board	4	°C/W			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	69				
		•	•			

Note 1: R_{BIA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

EPC2202 eGaN® FETs are supplied only in passivated die form with solder bars. Die size: 2.1 mm x 1.6 mm

Applications

- · Lidar/Pulsed Power Applications
- High Power Density DC-DC Converters
- · Class-D Audio
- High Intensity Headlamps

Benefits

- Ultra High Efficiency
- Ultra Low R_{DS(on)}
- Ultra Low Q_G
- Ultra Small Footprint

Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
·	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BV_DSS	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 300 \mu\text{A}$	80			V
I _{DSS}	Drain-Source Leakage	$V_{DS} = 64 \text{ V}, V_{GS} = 0 \text{ V}$		20	250	μΑ
I _{GSS}	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.01	3	mA
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		0.01	0.25	mA
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 3 \text{ mA}$	0.8	1.4	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 11 \text{ A}$		12	17	mΩ
V_{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.8		V

All measurements were done with substrate connected to source.

Dynamic Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance			345	415	
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		3		
Coss	Output Capacitance			230	345	рF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V -0+0 50 V V -0 V		279		
$C_{OSS(TR)}$	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0$ to 50 V, $V_{GS} = 0$ V		352		
R_{G}	Gate Resistance			0.4		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 11 \text{ A}$		3.2	4	
Q_GS	Gate-to-Source Charge			1		
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 50 \text{ V, } I_D = 11 \text{ A}$		0.55		,,C
$Q_{G(TH)}$	Gate Charge at Threshold			0.7		nC
Qoss	Output Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		18	27	
Q_{RR}	Source-Drain Recovery Charge			0		

All measurements were done with substrate connected to source.

Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 62.5% BV_{DSS} .

Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 62.5% BV_{DSS} .

Figure 1: Typical Output Characteristics at 25°C

Figure 2: Transfer Characteristics

Figure 3: $R_{DS(on)}$ vs. V_{GS} for Various Currents

Figure 4: $R_{DS(on)}$ vs. V_{GS} for Various Temperatures

Figure 7: Reverse Drain-Source Characteristics 25°C 125°C Isp — Source-to-Drain Current (A) $V_{GS} = 0 V$ 40 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 V_{SD} – Source-to-Drain Voltage (V)

Figure 9: Normalized Threshold Voltage vs. Temperature

Figure 10: Transient Thermal Response Curves

Figure 11: Safe Operating Area

TAPE AND REEL CONFIGURATION

4mm pitch, 8mm wide tape on 7" reel

	EPC2202 (note 1)			
Dimension (mm)	target	min	max	
а	8.00	7.90	8.30	
b	1.75	1.65	1.85	
c (see note)	3.50	3.45	3.55	
d	4.00	3.90	4.10	
е	4.00	3.90	4.10	
f (see note)	2.00	1.95	2.05	
g	1.5	1.5	1.6	

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

Part				
Number	Part # Marking Line 1	Lot_Date Code Marking line 2	Lot_Date Code Marking Line 3	
EPC2202	2202	YYYY	ZZZZ	

DIE OUTLINE

Solder Bar View

Side View

DIM		MICROMETERS			
DIM	MIN	Nominal	MAX		
A	2076	2106	2136		
В	1602	1632	1662		
c	1379	1382	1385		
d	577	580	583		
e	235	250	265		
f	195	200	205		
g	400	400	400		

Pad no. 1 is Gate:

Pads no. 3, 5 are Drain;

Pads no. 4, 6 are Source;

Pad no. 2 is Substrate.*

*Substrate pin should be connected to Source

RECOMMENDED LAND PATTERN

(units in µm)

The land pattern is solder mask defined.

Pad no. 1 is Gate;

Pads no. 3, 5 are Drain;

Pads no. 4, 6 are Source;

Pad no. 2 is Substrate. *

*Substrate pin should be connected to Source

RECOMMENDED STENCIL DRAWING

(measurements in μ m)

Recommended stencil should be 4mil (100 μ m) thick, must be laser cut, opening per drawing. The corner has a radius of R60

Intended for use with SAC305 Type 3 solder, reference 88.5% metals content.

Additional assembly resources available at

https://epc-co.com/epc/DesignSupport/AssemblyBasics.aspx

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

 $eGaN^{\circ}$ is a registered trademark of Efficient Power Conversion Corporation. EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx Information subject to change without notice.
Revised April, 2021