lame	Roll No	Section
------	---------	---------

National University of Computer and Emerging Sciences, Lahore Campus

Course: Information Retrieval BS(Data Science)
Duration: 25 Minutes
Paper Date: 22 Feb 2023
Section: BDS-6A
Exam: Quiz 2

Course Code: CS4051
Semester: Spring 2023
Total Marks: 10
Weight 0
Page(s): 2
Roll No:

Question 1

a) What is size of vocabulary (number of unique words) if total words in a collection are 100,000 Use Heap's law with k = 10 and $\beta = 0.5$ [2 Marks]

 $V = k(N)^{\beta}$ $V = 10(100,000)^{0.5}$

V = 3160

(b) What is size of vocabulary if 500 new documents are added to the above collection? Assume each document has 1000 words on average. [2 Marks]

N = 100,000 + 500*1000 = 600,000

 $V = k(N)^{\beta}$

 $V = 10(600,000)^{0.5}$

V = 7740

Question 2

Represent following 4 documents as vectors. Use TF.IDF weights. [3 Marks]

Document 1: Omar drove the car.

Document 2: Nadia and Omar ate oranges and snacks.

Document 3: Nadia ate oranges not snacks.

Document 4: Nadia and Omar ate snacks.

	Omar	drove	the	car	Nadia	and	ate	oranges	snacks	not
<d1></d1>	1	1	1	1	0	0	0	0	0	0
<d2></d2>	1	0	0	0	1	1	1	1	1	0
<d3></d3>	0	0	0	0	1	0	0	1	1	1
<d4></d4>	1	0	0	0	1	1	1	0	1	0

(a) Calculate cosine similarity between vectors of document 2 and document 3. [3 Marks]

Cosine sim (D2,D3) = D2.D3 / (|D2|*|D3|)

$$D2.D3 = 1*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*0 + 1*0 + 1*1 + 1*1 + 0*1 = 1+1+1 = 3$$

$$|D2| = sqrt((1)^2 + (0)^2 + (0)^2 + (0)^2 + (1)^2 + (1)^2 + (1)^2 + (1)^2 + (1)^2 + (0)^2) = sqrt(6) = 2.45$$

$$|D3| = sqrt((0)^2 + (0)^2 + (0)^2 + (0)^2 + (0)^2 + (1)^2 + (0)^2 + (0)^2 + (1)^2 +$$

Cosine sim (D2,D3) = D2.D3 / (|D2|*|D3|) = 3 / (2.45*2) = 0.61