Using Bidirectional Attention Flow & Option Pointer for Question Answering

Mei Fu, Yuqing Xia

Introduction

- Task

Use deep learning models to help machine better understanding relations between context and question, including vector representation and similarity matrix representation.

- Dataset

CNN/DailyMail dataset released by DeepMind

- 1) anonymized the noun entities (e.g. @entity01) to force the model to learn from the context instead of the entity itself
- 2) the news stories provide more sufficient background information compared with other dataset such as SQuAD, which normally contains only several sentences

Story @entity0, @entity1 (@er @entity3 lure @entity5 an migrants by offering disco onto overcrowded ships if more potential passengers investigation has revealed in the @entity1 capital of (d @entity6 unts to get people bring , a @entity2
bare the system for loading poor and desperate refugee conversation that a @entity secretly filmed	@entity0 laid g boats with s, during a
Query @placeholder investigation the business inside a huma ring	
Answer @entity2	
Words @entity3:Smugglers @entity2:CNN @entity1:Libyan @entity0:Tripoli	

Baseline - Logistic Regression

1. Entity Frequency

words that be chosen as target entity has average of 8 times of appearance in the context

2. First Index Location

- content that appear before are more important as word that appear later
- 80% of entities show up in the 1/3 of the whole contexts

3. Bi-gram Exact Match

• tokens at the end or around (2 indexes around) the matched results have high probabilities as correct answers

4. Distance

- minimum distance between each entities in current news set each entities or clues in the question data
- entities that have distance between 1 10 tend be a correct answer

5. Embedding Similarity

within the top 5 similar words of @placeholder

Stronger Models!

VECTOR REPRESENTATION

- Word Embedding
- Char Embedding (average)

INPUT

- Passage Input (n,300,)
- Question Input (n,46,)
- Option Input (n,102)

OUTPUT

- Option Input (n,102)

Challenges & Solutions

1. Dynamic entity representation

LSTM Encoding + CNN char embedding with max-pooling

2. Context Window

19 word window of that is centered on every entity

3. Sum entity probabilities in multiple locations

Adding a masking layer which takes all word codes of entity as input

Results

Model (Train Size) \ Accuracy	Train	Validation	Test
Logistic Regression (87k)	-	38.0	41.4
BiGRU + Attention x 2 (20k) (simplified R-Net)	46.0	-	-
BiGRU + Attention + Masking (ave) (20k)	60.5	54.6	54.9
BiGRU + Attention + Masking (ave) (87k)	64.1	63.8	63.6
BiGRU + Attention + Masking (sum) (87k)	67.3	66.1	66.9
CNN +(win)+ BiGRU + Att + Masking(sum) (87k)	62.9	63.8	64.7
BiGRU + Attention + Masking (sum) (175k)	65.2	66.9	67.2
BiLSTM + Attention + Masking (sum) (175k)	66.3	66.5	67.1
Kadlec et al. (2016) ¹	-	68.6	69.5
Chen et al. (2016) ²	-	73.8	73.6
Minjoon et al. (2017) ³	-	76.3	76.9

Thanks!