iOS 18 の視線トラッキング

宇佐見公輔

2025-02-18 / Mobile Act OSAKA 15

株式会社ゆめみ

自己紹介

- ・ 宇佐見公輔(うさみこうすけ)
 - ▶ 株式会社ゆめみ iOS テックリード

近況

- 「<u>ゆめみ大技林</u>」
 - 社外の方で執筆に参加してくださる方を募集中
 - 一緒に本を作りませんか?
- ゆめみの「<u>出社原則</u>」
 - ▶ 注意 : 「原則」という語はテクニカルタームで定義がある
 - ▶ 僕自身は、堺から京都オフィスまで片道2時間で例外に該当

iOS の視線トラッキング

視線トラッキングとは

- iOS のアクセシビリティ機能
 - ► iOS 18 から搭載
- 目だけで iPhone や iPad を 操作できる

参考

Apple、視線トラッキングなどの新しいアクセシ ビリティ機能を発表 プレスリリース 2024年5月15日

Apple、視線トラッキング、ミュージックの触覚、ボーカルショートカットなどの新しいアクセシビリティ機能を発表

6 9 × × 8

モバイルアプリのアクセシ ビリティ

「アクセシビリティ」という言葉の意味

なぜアクセシビリティを考えるのか

• 利用するものがアクセシブルであるかどうかは、障害者や高齢者に とっては生活に直結する重要な問題

ただ、その考え方だと、うっかりすると・・・

- 自分にもいつかはアクセシビリティが重要になるかもしれない
- でも、今の自分には重要ではない

という発想になってしまうかもしれない。

医学モデルと社会モデル

障害のとらえかたには、2つのモデルがある。

- 医学モデル
 - ▶ 障害は人の身体側にある
- 社会モデル
 - ▶ 障害は社会の側にある
 - ▶ 社会や環境が対応できていないがゆえに障害が生じている

アクセシビリティを考えるうえでは、社会モデルで考える。

モバイルアプリは社会の一部

現代は、モバイルコンピューティングの時代。

- モバイルアプリのユーザーは非常に多い
- 利用時間も長く、生活の一部になっている
- 繰り返し継続的に利用する

モバイルアプリは社会モデルにおいて、障害を発生させてしまう側に 属している。

アクセシビリティの考慮は、モバイルアプリ開発者の責務。

書籍「モバイルアプリアクセシビリティ入門」

「アクセシビリティとは」という話から、 主なトピックが網羅的に取り上げられて いる

参考

モバイルアプリアクセシビリティ入門 ─iOS+Android のデザインと実装:書籍案内 | 技術評論社

視線トラッキングを試す

視線トラッキングでできること

そんなわけで、試しに自分で新機能を使ってみよう。

目だけでできることは何があるか?

- 目でポインタを動かす
 - ▶ 視線を向けたところにポインタが移動する
 - 項目にスナップする設定もある
- ・ 目で選択する
 - ▶ 滞留コントロール : 注視すると選択になる

視線トラッキングを開始する

- 設定「視線トラッキング」をオン
 - ボタンのトリプルクリックでオンオフできるよう に設定しておくのがおすすめ
- 指示に従って視線トラッキングを調整する
 - ▶ 上部 5 ヶ所、下部 5 ヶ所、中央 3 ヶ所

参考

- <u>目の動きで iPhone を制御する Apple サポート (日本)</u>
- <u>目の動きで iPad を制御する Apple サポート (日本)</u>

視線トラッキングの調整についての注意

- 調整は、設定をオフからオンにするたび毎回始まる
 - オンオフを繰り返す場合には注意
- 再調整は、端末の左上を注視する
 - ▶ 慣れないうちは誤って再調整を始めてしまう

実際に使ってみると

- ポインタを移動するのがかなり難しい
 - ▶ 視線を向けているつもりでも、そこに動かない
 - ▶ iPhone のような小さい画面では、特に難しい
 - ▶ iPad のような大きい画面のほうが多少楽
- 滞留コントロールも難しい
 - 意外と視線が外れてしまう
- Apple Vision Pro と使用感が全然違う
 - センサーなどのハードウェアの力がやはりすごい

マウスなどと組み合わせる

目だけの操作にこだわらず、他の機能と組み合わせる。

ポインタコントロール(マウスやトラックパッドなど)との組み合わせは効果的。

- ポインタ移動の補助に
 - うまく動かないときに補助的に使う
- ・ 項目の選択に
 - マウスクリックで選択できる
 - 滞留コントロールに頼るよりも楽になる

他のアクセシビリティ機能との組み合わせ

次の機能との組み合わせも効果的。

- Assistive Touch
 - ▶ 仮想ボタンを出す機能
 - ▶ 視線トラッキングを補助するメニューがある
 - ▶ さらに、サウンドアクションも有益
- アシスティブアクセス
 - ▶ 画面をシンプルにする機能(らくらくホン)

開発時に考慮すること

プログラムコードからの操作はできない

- アクセシビリティ関連はプライバシーのかたまり
- Apple はプログラムコードからのアクセスを制限している

似たようなことは ARKit などを使うことである程度可能だが、この 視線トラッキングからの情報取得はできない。

UI デザインにおける考慮

アクセシビリティの考慮は、UIデザインとの関連が強い。

しかし実際のところ、視線トラッキングでの操作を、UI デザインで 考慮できるだろうか?

通常とは異なる操作方法なので難しいが、できることを考えてみる。

visionOS を参考にする

visionOS は主に視線で操作する。

そのため、セッションやガイドラインが参考になりそう。

- 空間入力のためのデザイン WWDC23
- 空間ユーザーインターフェイスのためのデザイン WWDC23
- 優れた visionOS アプリのデザイン WWDC24
- 視線 ヒューマンインターフェースガイドライン

項目の中央に視線を誘導する

視線の移動や注視が難しいことを考慮した注意点がある。

- 丸い形で中央に視線を誘導
- 鋭い形は外側に注意が逃げる
- 外側に縁取りを入れるのも同様に よくない

ボタンの大きさ・間隔

visionOS は、iOS などと比べてボタンの大きさや間隔が大きい。

- ボタンのタップ領域は 60pt
- ボタンの表示領域は 44pt
- 表示領域の間隔は **16pt**

ポインタが見た目で正確にあって いなくても、タップが可能になっ ている。

視線の誘導

- 一点に集中させる
 - 角丸ボタンなどは有効
- ・ 余白を十分にとる
- 重要なところに視線を集める

視線の誘導として考えた場合、実は、一般的な UI デザインの考え方と共通している。

通常のガイドラインも有益

視線トラッキングを考慮せずとも、通常のガイドラインも有益。

- ダークモード対応
 - ライト・ダークから視線を合わせやすいほうを選択
- Dynamic Type 対応
 - テキストの大きさも影響がある
 - ▶ 大きすぎると注視で視線が外れやすい
 - ユーザーの好みにあわせて変えられるのが大事

おわりに

iOS 18 の視線トラッキング

- iOS 18 からのアクセシビリティ機能
- 一度試してみると面白い
- 単独で使うのは大変なので、他の機能との組み合わせで
- 新たな視点で UI デザインを考えてみるのも良い