```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.model selection import train test split
        from sklearn.metrics import confusion_matrix, classification_report
```

In [2]: | df = pd.read_csv("C:/Users/HP/Downloads/Iris.csv") df.head()

Out[2]: Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm **Species** 0.2 Iris-setosa 0 1 5.1 3.5 1.4 2 1 4.9 3.0 0.2 Iris-setosa 1.4 2 3 4.7 3.2 1.3 0.2 Iris-setosa 0.2 Iris-setosa 4.6 3.1 1.5 5.0 3.6 1.4 0.2 Iris-setosa

In [3]: df.shape

Out[3]: (150, 6)

In [4]: df.isnull().sum()

Out[4]: Id 0 SepalLengthCm 0 SepalWidthCm 0 PetalLengthCm 0 PetalWidthCm 0 Species 0 dtype: int64

In [5]: df.describe()

Out[5]:	ld		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	count	150.000000	150,000000	150.000000	150.000000	150.000000

			00 000000000000000000000000000000000000	g	
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000


```
In [8]: fig, axes = plt.subplots(1, 2)
         fig.set figwidth(20)
         sns.boxplot( x=df.iloc[:,1], y=df.loc[:,'Species'],
                      palette="flare", data=df,ax=axes[0])
         fig.axes[0].set xlabel("Sepal Length")
         sns.boxplot( x=df.iloc[:,2], y=df.loc[:,'Species'],
                      palette="flare", data=df,ax=axes[1])
         fig.axes[1].set_xlabel("Sepal Width")
         plt.show()
          lris-versicolo
           Iris-virginica
                                                    Iris-virginica
 In [9]: | fig, axes = plt.subplots(1, 2)
         fig.set_figwidth(20)
         sns.boxplot( x=df.iloc[:,3], y=df.loc[:,'Species'],
                      palette="flare", data=df,ax=axes[0])
         fig.axes[0].set_xlabel("Petal Length")
         sns.boxplot( x=df.iloc[:,4], y=df.loc[:,'Species'],
                      palette="flare", data=df,ax=axes[1])
         fig.axes[1].set_xlabel("Petal Width")
         plt.show()
In [10]: X = df.iloc[:,1:5]
         y = df.iloc[:,5]
         #Split the data to train and test
         X_train, X_test, y_train, y_test = train_test_split(X , y ,test_size=0.3, rand
         print(X_train.shape,X_test.shape)
          (105, 4) (45, 4)
```

In [11]: from sklearn.model_selection import train_test_split
 from sklearn.neighbors import KNeighborsClassifier

Assuming you have already defined X and y

Step 2: Create and train the KNN classifier
knn = KNeighborsClassifier(algorithm='auto', n_neighbors=3, weights='uniform')
knn.fit(X_train, y_train)

Step 3: Calculate and print accuracy
acc = knn.score(X_test, y_test)
print("Accuracy:", acc)

Accuracy: 0.93333333333333333

```
In [12]: y_pred = knn.predict(X_test)
    cm = confusion_matrix(y_test,y_pred)
    df_cm = pd.DataFrame(cm, species, species)
    sns.heatmap(df_cm, annot = True ,fmt = '.2f')
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.show()
```


In [13]: print(classification_report(y_pred,y_test))

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	14
Iris-versicolor	0.94	0.88	0.91	17
Iris-virginica	0.87	0.93	0.90	14
accuracy			0.93	45
macro avg	0.93	0.94	0.94	45
weighted avg	0.93	0.93	0.93	45

In []: