Universidad Nacional Autónoma de México Facultad de Ciencias

Álgebra lineal

Tarea examen 1

 $\{^{1}\ {\tt elias.lopezr,}^{\,2}\ {\tt acardosov2400,}^{\,3} {\tt emiliano}_{-}$ ${\tt gomez} \} \\ {\tt @ciencias.unam.mx}$

Fecha: 20/10/2024

Problema 1

Sea:

$$F = \{0, 1\}$$

con las operaciones modulo 2 definidas, es decir:

I.
$$Suma$$
: $0 + 0 = 0$, $0 + 1 = 1$, $1 + 1 = 0$, $1 + 0 = 1$

II. Multiplicación:
$$1 \cdot 1 = 1$$
, $0 \cdot 0 = 0$, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$

- a) Verificar que la multiplicación es una operación asociativa, que posee elemento neutro 1 y cada elemento distinto de 0 posee inverso multiplicativo
- b) Confirmar la distributividad del producto sobre la suma

Concluir que F es un campo

Demostración.

a) Veamos la siguiente tabla para la operación de multiplicación

Como la tabla es simetrica respecto a la diagonal por tanto la operación es asociativa, vemos que 1 es un elemento neutro, y que este posee un iverso multiplicativo (el mismo)

b) Para comprobar la distributividad de la multiplicación sobre la suma lo comprobamos manualmente:

$$0(0+0) = 0 = 0(0) + 0(0)$$

$$0(0+1) = 0 = 0(0) + 0(1)$$

$$0(1+1) = 0 = 0(1) + 0(1)$$

$$1(0+0) = 0 = 1(0) + 1(0)$$

$$1(0+1) = 1 = 1(0) + 1(1)$$

$$1(1+0) = 1 = 1(1) + 1(0)$$

$$1(1+1) = 0 = 1(1) + 1(1)$$

Por tanto la multiplicación se distribuye sobre la suma, como (F, +) y $(F - \{0\}, \cdot)$ son grupos abelianos se concluye que F es un campo

Problema 2

Sea:

$$F = \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

con las operaciones modulo 6 definidas, es decir:

I. Suma: Definida por:

$$a \oplus b = a + b + 1$$

II. Multiplicación: Definido por:

$$a \odot b = a \cdot b + a + b$$

- a) Verificar que (F, \oplus) es un grupo abeliano. En particular, determinar el elemento neutro (e_{\oplus}) y encontrar la fórmula del inverso aditivo de un elemento a.
- **b)** Verificar que $(F \{e_{\oplus}\}, \odot)$ es un grupo abeliano. Es decir identificar el elemento neutro mutiplicativo e_{\odot} , y para cada $a \in F$ con $a \neq e_{\odot}$, determinar si existe un iverso multiplicativo
- c) Comprobar la propiedad distributiva

$$a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$$

Demostración.

a) Veamos la siguiente tabla de \oplus :

\oplus	0	1	2	3	4	5
0	1	2	3	4	5	0
1	2	3	4	5	0	1
2	3	4	5	0	1	2
3	4	5	0	1	2	3
4	5	0	1	2	3	4
5	0	1	2	3	4	5

Como la tabla es simetrica respecto a la diagonal se sigue que \oplus es asociativa y conmutativa, luego podemos notar que $e_{\oplus} = 5$, ahora notemos que e_{\oplus} es su propio inverso, para $a \neq e_{\oplus}$, tenemos que siu inverso sera 4 - a pues $a \oplus (4 - a) = a + (4 - a) + 1 = 5$, por tanto (F, \oplus) es grupo abeliano

b) Veamos la siguiente table de ⊙:

0	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	3	5	1	3	5
2	2	5	2	5	2	5
3	3	1	5	3	1	5
4	4	3	2	1	0	5
5	5	5	5	5	5	5
1						

Notamos que el $e_{\odot}=0$, ademas de que no todo elemento en F cuenta con inverso multiplicativo por tanto $(F-\{e_{\oplus}\},\odot)$ no es grupo abeliano

c) Veamos que:

$$a\odot(b\oplus c) = a\oplus(b+c+1) = a(b+c+1) + a+b+c+1 = (ab+a+b) + (ac+a+c) + 1 = (a\odot b) \oplus (a\odot c)$$

Sea:

$$F = \{ a + b\sqrt{2} \, | a, \, b \in \mathbb{Q} \}$$

con las operaciones de suma y multiplicación:

- a) Comprobar que F es cerrado bajo la suma y la multiplicación de $\mathbb Q$
- **b)** Demostrar que existe un elemento neutro para la suma (el cero) y para la multiplicación (1)
- c) Para cada elemento $x=a+b\sqrt{2}$ con $x\neq 0$, encontrar o demostrar la existencia de su inverso multiplicativo en F
- d) Verificar las demas propiedades: existencia de inversos aditivos, asociatividad, conmutatividad y distributividad

Concluir que F es un campo

Demostración.

a) Tomemos $x, y \in F$, tenemos que:

$$x + y = (a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (d + b)\sqrt{2}$$

Como $(a+c) \in \mathbb{Q}$ y $(b+d) \in \mathbb{Q}$, se tiene que $x+y \in F$

Ahora veamos que:

$$x(y) = (a + b\sqrt{2})(c + d\sqrt{2}) = ac + ad\sqrt{2} + cb\sqrt{2} + cd(2) = (ac + 2cd) + (cb + ad)\sqrt{2}$$

Como $(ac + 2cd) \in \mathbb{Q}$ y $(cb + ad) \in \mathbb{Q}$, tenemos que $x(y) \in F$

b) Tenemos que $0 = 0 + 0\sqrt{2}$, como $0 \in F$, entonces $0 \in F$, como las operaciones de suma y multiplicación son las usuales se tiene que:

$$x+0=a+b\sqrt{2}+0=x \ \forall \ x\in F$$

Por tanto (F, +) tiene un elemento neutro 0.

De la misma manera tenemos que $1=1+\sqrt{2}0$, es decir $1\in F$, ademas de que:

$$1(x) = 1(a + \sqrt{2}b) = a + \sqrt{2}b = x \ \forall \ x \in F$$

Por tanto (F, \cdot) tiene un elemento neutro 1

c) Sea $x \in F$ tal que $x \neq 0$, se tiene que $x = a + \sqrt{2}b \neq 0 \implies a \neq \sqrt{2}b$, y por tanto $a - \sqrt{2}b \neq 0$, es decir $(a + \sqrt{2}b)(a - \sqrt{2}b) = a^2 - 2b^2 \neq 0$, por tanto tenemos que:

$$x\left(\frac{a-\sqrt{2}b}{a^2-2b^2}\right) = (a+\sqrt{2}b)\left(\frac{a-\sqrt{2}b}{a^2-2b^2}\right) = \frac{a^2-2b^2}{a^2-2b^2} = 1 \quad \forall x \in F$$

Por tanto (F, \cdot) tiene elementos inversos

d) Sea $x = a + \sqrt{2}b$, definimos $-x = -a - b\sqrt{2} \in F$, luego tenemos que $x + (-x) = a + (-a) + \sqrt{2}(b + (-b)) = 0$, por tanto (V, +), tiene inversos aditivos

Como $F \subset \mathbb{R}$ y \mathbb{R} es un campo bajo las misma operaciones usuales, ademas que F es cerrado bajo estas, la conmutatividad y asociatividad de +, \cdot son heredadas, a su vez que la distributividad de \cdot sobre +, de esto se sigue que (F,+) y $(F-\{0\},\cdot)$ son grupos abelianos, y por la distributividad se sigue que $(F,\cdot,+)$ es un campo

Problema 4

Sea $F = \mathbb{Z}$ con la operaciones definidas de la siguiente forma:

• Suma: Para $a, b \in \mathbb{Z}$ se define

$$a \oplus b = a + b - 1$$
.

■ **Producto:** Para $a, b \in \mathbb{Z}$ se define

$$a \odot b = a \cdot b - a - b + 2.$$

- I. Demostrar que (F, \oplus) es un grupo abeliano. En particular, determinar el elemento neutro aditivo e_{\oplus} y hallar el inverso aditivo de un elemento a.
- II. Determinar el elemento neutro multiplicativo e_{\odot} en $(F \setminus \{e_{\oplus}\}, \odot)$ y comprobar que no todo elemento $a \in F$ con $a \neq e_{\oplus}$ tiene inverso multiplicativo.
- III. Verificar la distributividad de \odot respecto a \oplus

Concluir que (F, \oplus, \odot) no es un campo

Demostración

(I)

Asociatividad

Sean $a, b, c \in \mathbb{Z}$

$$(a \oplus b) \oplus c = (a + b - 1) + c - 1$$

= $a + (b - 1 + c) - 1$
= $a + (b + c - 1) - 1$
= $a \oplus (b \oplus c)$.

Conmutatividad

Sean $a, b \in \mathbb{Z}$

$$a \oplus b = a + b - 1$$
$$= b + a - 1$$
$$= b \oplus a.$$

Neutro

Proponemos $e_{\oplus} \in \mathbb{Z}$ como $e_{\oplus} = 1$, de este modo $\forall a \in \mathbb{Z}$

$$a \oplus e_{\oplus} = a + 1 - 1 = a,$$

en efecto e_{\oplus} es el neutro.

Inverso

Sea $a \in \mathbb{Z}$ proponemos $b = -a + 2 \in \mathbb{Z}$, de modo que

$$a \oplus b = a + (-a + 2) - 1 = (a + (-a)) + (2 + (-1)) = 0 + 1 = 1 = e_{\oplus}.$$

Es decir b es el inverso de a.

 \therefore (F,\oplus) es un grupo abeliano.

(II)

Proponemos $e_{\odot} \in \mathbb{Z} \setminus \{e_{\oplus}\}$ como $e_{\odot} = 2$, de este modo $\forall a \in \mathbb{Z}$

$$a \odot e_{\odot} = a \cdot 2 - a - 2 + 2$$
$$= a.$$

Por tanto e_{\odot} es el neutro multiplicativo.

Supongamos que $\forall a \in \mathbb{Z} \setminus \{1\} \exists b \in \mathbb{Z} \setminus \{1\} \quad (a \odot b = e_{\odot}), \text{ es decir}$

$$2 = a \odot b$$

$$2 = a \cdot b - a - b + 2$$

$$0 = a \cdot b - a - b$$

$$0 = b(a - 1) - a$$

$$a = b(a - 1).$$

De modo que si a=3 entonces b no puede ser entero, por lo que no todo elemento en $(F \setminus \{e_{\oplus}\}, \odot)$ tiene inverso multiplicativo.

(III)

Sean $a, b, c \in \mathbb{Z}$

$$a \odot (b \oplus c) = a \odot (b + c - 1)$$

$$= a(b + c - 1) - a - (b + c - 1) + 2$$

$$= ab + ac - a - a - b - c + 2$$

$$= (ab - a - b + 2) + (ac - a - c + 2) - 2$$

$$= ((a \odot b) + (a \odot c) - 1) - 1$$

$$= (a \odot b) \oplus (a \odot c) - 1$$

Es decir en general las operaciones no son distributivas.

 $\div.$ (F,\oplus,\odot) no es un campo, pues no cumple con todas las propiedades de uno.

Sea $F = \mathbb{R}^2$ con la operaciones definidas de la siguiente forma:

Suma:

$$(a,b) \oplus (c,d) = (a+c,b+d).$$

• Producto:

$$(a,b)\otimes(c,d)=(ac-bd,ad+bc).$$

- I. Verificar que la suma y el producto están bien definidos y son operacioones en F.
- II. Demostrar que existe un elemento neutro para la suma ((0,0)) y para el producto ((1,0)).
- III. Comprobar que a cada elemento $(a, b) \neq (0, 0)$ le corresponde un inverso multiplicativo.
- IV. Verificar la conmutatividad, la asociatividad y la distributividad del producto respecto a la suma.

Demostración

(I)

Sean $(a,b),(c,d) \in \mathbb{R}^2$

$$(a,b) \oplus (c,d) = (a+c,b+d) \in \mathbb{R}^2$$

$$(a,b)\otimes(c,d)=(ac-bd,ad+bc)\in\mathbb{R}^2.$$

Pues $a,b,c,d\in\mathbb{R}$ y las operaciones suma y producto están bien definidas en \mathbb{R} .

 \therefore la suma y el producto están bien definidos y son operaciones en F.

(II)

Neutro suma

Sea $(a,b) \in \mathbb{R}^2$

$$(0,0) \oplus (a,b) = (0+a,0+b)$$

= (a,b) .

$$(a,b) \oplus (0,0) = (a+0,b+0)$$

= (a,b) .

Neutro producto

Sea $(a,b) \in \mathbb{R}^2$

$$(1,0) \otimes (a,b) = (1 \cdot a - 0 \cdot b, 1 \cdot b + 0 \cdot a)$$

= (a,b) .

$$(a,b) \otimes (1,0) = (a \cdot 1 - b \cdot 0, a \cdot 0 + b \cdot 1)$$

= (a,b) .

(III)

Sea $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$, tomamos $(c,d) \in \mathbb{R}^2$ como $(c,d) = \left(\frac{a}{a^2+b^2}, \frac{-b}{a^2+b^2}\right)$, de modo que

$$(a,b) \otimes (c,d) = (a \cdot c - b \cdot d, a \cdot d + b \cdot c)$$

$$= (a \cdot \frac{a}{a^2 + b^2} - b \cdot \frac{-b}{a^2 + b^2}, a \cdot \frac{-b}{a^2 + b^2} + b \cdot \frac{a}{a^2 + b^2})$$

$$= (\frac{a^2 + b^2}{a^2 + b^2}, \frac{-ab + ab}{a^2 + b^2})$$

$$= (1,0).$$

Es decir para cada $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$ existe un inverso multiplicativo.

(IV)

Conmutatividad

Sean $(a, b), (c, d) \in \mathbb{R}^2$

$$(a,b) \odot (c,d) = (a \cdot c - b \cdot d, a \cdot d + b \cdot c)$$
$$= (c \cdot a - d \cdot b, c \cdot d + d \cdot b)$$
$$= (c,d) \odot (a,b).$$

Asociatividad

Sean $(a,b),(c,d),(e,f) \in \mathbb{R}^2$

$$\begin{split} ((a,b)\odot(c,d))\odot(e,f) &= (ac-bd,ad+bc)\odot(e,f) \\ &= ((ac-bd)e - (ad+bc)f, (ad+bc)e + (ac-bd)f) \\ &= (ace-bde-adf-bcf,ade+bce+acf-bdf) \\ &= (a(ce-df)-b(de+cf), a(de+cf)+b(ce-df)) \\ &= (a,b)\odot(ce-df,de+cf) \\ &= (a,b)\odot((c,d)\odot(e,f)). \end{split}$$

Distributividad

Sean $(a,b),(c,d),(e,f) \in \mathbb{R}^2$

$$(a,b) \otimes ((c,d) \oplus (e,f)) = (a,b) \otimes (c+e,d+f)$$

$$= (a(c+e) - b(d+f), a(d+f) + b(c+e))$$

$$= (ac + ae - bd - bf, ad + af + bc + be)$$

$$= (ac - bd + ae - bf, ad + bc + af + be)$$

$$= (ac - bd, ad + bc) + \otimes (ae - bf, af + be)$$

$$= (a,b) \otimes (c,d) + (a,b) \otimes (e,f).$$

Una función $f : \mathbb{R} \to \mathbb{R}$ se llama **función par** si para todo $t \in \mathbb{R}$ se cumple que f(t) = f(-t). Demostrar que el conjunto $P := \{f : \mathbb{R} \to \mathbb{R} | f \text{ es par} \}$, con las siguientes operaciones:

$$\forall f, g \in P \ y \ c \in \mathbb{R} : (f+g)(s) = f(s) + g(s) \ y \ (cf)(s) = c(f(s))$$

Es un \mathbb{R} – espacio vectorial

Demostración.

Sea $F := \{f : \mathbb{R} \to \mathbb{R} | f \text{ es funcion}\}$, en clase se ha demostrado que F con las operaciones definidas es un espacio vectorial real por tanto basta demostrar que $P \subset F$ es un subespacio de F, para esto tomamos $f, g \in P$ y $\lambda \in \mathbb{R}$, dmostraremos que $\lambda f + g \in P$:

$$\lambda f + g(-x) = \lambda f(-x) + g(-x) = \lambda f(x) + g(x) = \lambda f + g(x)$$

Por tanto $\lambda f + g \in P$, es decir P es un subespacio vectorial de F

Problema 7

Sea
$$V = \{(a_1, a_2) | a_1, a_2 \in \mathbb{R}\}$$
. Para $(a_1, a_2), (b_1, b_2) \in V \ y \ c \in \mathbb{R}$ definitions $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2) \ y \ c \cdot (a_1, a_2) = (ca_1, a_2).$ ¿Es $V \ un \ \mathbb{R} - espacio \ vectorial$

Demostración.

Si V cumpliera ser un espacio vectorial bajo la soperaciones definidas se tendria que necesariamente (V, +) es un grupo abeliano, proponemos que $(0, 1) \in V$ es un neutro para V

$$(a_1, a_2) + (0, 1) = (a_1 + 0, a_2 \cdot 1) = (a_1, a_2) \ \forall \ (a_1, a_2) \in V$$

Ahora tomemos $(b_1,0) \in V$, demostremos que este elemento no tiene inverso en V:

$$(b_1,0)+(a_1,a_2)=(b_1+a_1,0\cdot a_2)=(b_1,0)\neq (0,1) \ \forall (a_1,a_2)\in V$$

Por tanto (V, +) no es un grupo abeliano, y por tanto V no es un espacio vectorial con esas operaciones \Box

Sea $V = \{(a_1, a_2) | a_1, a_2 \in \mathbb{F}\}$, donde \mathbb{F} es un campo. Definimos la suma de elementos de V coordenada a coordenada. Para $c \in \mathbb{F}$ y (a_1, a_2) definimos el producto como $c(a_1, a_2) = (a_1, 0)$. ¿Es V un \mathbb{F} – espacio vectorial con las operaciones definidas?

Demostración.

Si V fuera un espacio vectorial tendriamos que para $1 \in \mathbb{F}$, neutro para el producto de \mathbb{F} , deberia cumplir que:

$$1 \cdot (a_1, a_2) = (a_1, a_2) \ \forall (a_1, a_2) \in V$$

Sin embargo tomemos (b_1, b_2) , tal que $b_2 \neq 0$, donde 0 es el neutro para la suma de \mathbb{F} , tenemos que:

$$1 \cdot (b_1, b_2) = (b_1, 0) \neq (b_1, 0)$$

Por tanto V no puede ser un espacio vectorial con esa operación como producto por escalar

Problema 9

Sea
$$V = \{(a_1, a_2) | a_1, a_2 \in \mathbb{R}\}$$
. Para $(a_1, a_2), (b_1, b_2) \in V$ y $c \in \mathbb{R}$ definitions $(a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2)$ y $c(a_1, a_2) = (ca_1, a_2)$. ¿Es V un \mathbb{R} – espacio vectorial

Demostración.

Veamos que se no cumplen las propiedades para el producto escalar.

Distributividad escalar

Pues para cualesquiera $\lambda, \mu \in \mathbb{R}$, y para cada $(a_1, a_2) \in V$

$$(\lambda + \mu)(a_1, a_2) = ((\lambda + \mu)a_1, (\lambda + \mu)a_2)$$

= $(\lambda a_1 + \mu a_1, \lambda a_2 + \mu a_2)$

Mientras que

$$\lambda(a_1, a_2) + \mu(a_1, a_2) = (\lambda a_1, \lambda a_2) + (\mu a_1, \mu a_2)$$
$$= (\lambda a_1 + 2\mu a_1, \lambda a_2 + 3\mu a_2)$$

Página 12 de 13

Asi en general

$$(\lambda + \mu)(a_1, a_2) \neq \lambda(a_1, a_2) + \mu(a_1, a_2)$$

Por tanto no cumple con la distributividad escalar.

 \therefore V no es un \mathbb{R} -espacio vectorial.