

生命科学基础I

Chapter 7

细胞的增殖、分化与凋亡

丁岩

5. 细胞死亡

5.1 细胞死亡的方式

5.1.1 细胞凋亡 (Apoptosis)

❖细胞凋亡是多细胞生物在发育过程中,一种由基因控制并受复 杂信号调节的细胞自然死亡的现象,亦称程序性细胞死亡 (Programmed cell death)

❖是细胞主动的生理性自杀行为

细胞凋亡的生物学功能

细胞凋亡过程中的小鼠趾

细胞凋亡的生物学功能

❖协调数量和功能

细胞凋亡的生物学功能

❖清除异常细胞,维持稳定

- Change in refractive index
- Cell shrinkage
- Chromatin condensation
- Membrane blebbing
- Nuclear fragmentation
- Apoptotic body formation
- Phagocytosis by surrounding cells

2000 细胞凋亡与人类疾病

- ❖凋亡不足:
 - 肿瘤
 - 自身免疫性疾病(自身免疫性淋巴增生综合征)
- ❖过度凋亡:
 - 免疫功能丧失
 - 引发炎症反应
 - 神经退行性病变

- ❖细胞坏死: 当细胞受到严重突发损伤,如极端的物理化学因素或者病理性刺激,导致细胞死亡的病理过程。常表现为成群细胞的丢失或破坏,是细胞被动死亡的过程
- ❖细胞坏死主要是由于细胞内ATP浓度下降到无法维持细胞正常的结构和功能,细胞从内崩解并将破碎受损的细胞器和染色质片段释放到胞外,引发周围组织的炎症反应
- ❖是否伴随炎症反应是区别细胞坏死和细胞凋亡的重要标志

5.1.2 坏死 (necrosis)

细胞凋亡和坏死的对比

比较内容	细胞凋亡	细胞坏死
质膜	不破裂	破裂
细胞核	固缩, DNA片段化	弥漫性降解
细胞质	由质膜包围形成凋亡小体	溢出,细胞破裂成碎片
细胞质生化改变	溶酶体的酶增多	溶酶体解体
蛋白质合成	有	无
基因活动	有基因调控	无基因调控
自吞噬	常见	缺少
线粒体	自身吞噬	肿胀
诱发因素	生理性信号	强烈刺激信号
对个体影响	生长、发育、生存所必需	引起炎症

5.1.3 自噬性死亡 (autophagic death)

- ❖ 自噬性细胞死亡:又叫做II型程序性细胞死亡,是指细胞利用溶 酶体降解、选择性地清除自身受损、衰老的细胞器或过剩的生物 大分子,释放出游离小分子供细胞回收利用的正常动态生命过程
- ❖是机体的一种自我保护机制

5.1.3 自噬性死亡 (autophagic death)

自噬的生物学意义

- ❖ 应激功能: 是细胞在饥饿条件的一种存活机制
- ❖ 防御功能: 当细胞受到致病性微生物感染时, 可起到防御作用
- ◆维持细胞稳态:在骨骼肌和心肌可帮助细胞浆成分进行更新
- ❖延长寿命:如果细胞自噬受损、衰竭,细胞损伤就会堆积、累加, 产生老化,因此有助于延长寿命
- ❖控制细胞死亡,自噬受到抑制可能会导致恶性肿瘤

5.2 凋亡的形态学改变和生理生化特征

▶ 内质网肿胀、积液形 成液泡

> 染色质固缩,凝集成 胞膜包裹,形成 颗粒状、新月状,沿 核膜分布

▶ 染色质片段化, 与细胞器聚集在 一起被内陷的细 凋亡小体

> 凋亡小体被临 近吞噬细胞吞 噬,在溶酶体 中被消化分解 吞噬细胞

正常细胞

凋亡起始

凋亡小体形成

细胞凋亡的形态学变化

胸腺细胞的凋亡

正常肝细胞(c)和凋亡肝细胞(d)

正常白细胞及凋亡白细胞

・扫描电镜

在体外培养中相互接触的上皮细胞,贴附于培养皿表面

随着细胞凋亡的发生, 细胞变圆,彼此之间的 联系消失,形成小泡。

" 有许多凋亡小体的单个 死细胞

• 倒置相差显微镜

正常培养Hep2细胞 (箭头所示为凋亡细胞)

・普通光学显微镜

诱导凋亡的Hep2细胞示凋亡小体 (Giemsa染色)

A. 形态学染色法:

凋亡细胞的染色质浓缩、边缘化,核膜裂解、染色质分割成块状和 凋亡小体等典型的凋亡形态。

1、HE染色、Giemsa染色,光镜观察:凋亡细胞呈圆形,胞核深染,胞质浓缩, 染色质成团块状,细胞表面有"出芽"现象。

图 13-1 凋亡细胞染色质新月形边集现象(油镜) 体外培养的人肝癌细胞(HE 染色)

图 13-2 凋亡小体(油镜) 体外培养的人肝癌细胞(HE 染色)

A. 形态学染色法:

2、丫啶橙 (AO)染色,荧光显微镜观察:活细胞核呈黄绿色荧光, 胞质呈红色荧光。凋亡细胞核染色质呈黄绿色浓聚在核膜内侧, 可见细胞膜呈泡状膨出及凋亡小体。

A. 形态学染色法:

3、台盼蓝染色:鉴别活细胞和坏死细胞

图 13-5 凋亡细胞(不着色的带多个泡状凋 亡小体的细胞)(高倍) 体外培养的人肝癌细胞悬液(台盼蓝染色)

A. 形态学染色法:

4、DAPI染色: 4', 6- 二脒基-2- 苯基吲哚 (4', 6-diamidino-2phenylindole, DAPI), 是常用的一种与DNA结合的荧光染料

DAPI 染色显示凋亡细胞的染色质凝集

A. 正常细胞核; B. 凋亡细胞核。

B. DNA 电泳

- ▷ 凋亡细胞DNA断裂点均有规律的发生在核小体之间, 出现180 - 200bpDNA片断
- > 坏死细胞的DNA断裂点为无特征的杂乱片断

细胞色素C作用时间:

1. 0 h; 2. 1 h; 3. 2 h; 4. 3 h; 5. 4 h; 6. Control; 7. Marker

C. DNA 断裂的原位末端标记法

转移酶介导的dUTP缺口末端标记测定法(TUNEL)

是指在细胞(或组织)结构保持不变的情况下,用荧光素、地高辛或生物素标记 的脱氧尿嘧啶三磷酸 (dUTP)和末端脱氧核苷酸转移酶 (TdT)相反应与凋亡细胞 裂解后3'羟基(3'-OH)端结合,经显色反应后检测DNA裂解点的技术。

D. 流式细胞仪

mal Cell

Early stages of apoptosis

Late stages of apoptosis

Q1: 左上象限,为(Annexin V-/PI+),可能是已经没有细胞膜的细胞碎片,或者其他原因导致的死亡细胞;

Q2: 左下象限, 为正常 (活) 细胞 (Annexin V-/PI-);

Q3: 右上象限, 为晚期凋亡细胞 (Annexin V+/PI+);

Q4: 右下象限, 为早期凋亡细胞 (Annexin V+/PI-)。

000 小结

- ❖掌握细胞的三种死亡方式
- ❖掌握细胞凋亡与细胞坏死的区别
- ❖掌握细胞凋亡的形态学和生化特征

第三部分 第3次作业

- 1. 对比细胞有丝分裂和减数分裂的不同点。
- 2. 对比细胞凋亡和细胞坏死的不同点。
- ・ 截止日期: 2022 年 12月 11 日 11:59 p.m.

期末考试时间:

15周

题型:

- 一、单项选择 (1分×12=12分)
- 二、名词解释 (2分×12=24分)
- 三、填空 (0.5分×30空=15分)
- 四、简答 (5分×5=25分)
- 五、论述 (8分×3=24分)