Principles of Database Systems (CS307)

Lecture 13: Query Optimization

Yuxin Ma

Department of Computer Science and Engineering Southern University of Science and Technology

- Most contents are from slides made by Stéphane Faroult and the authors of Database System Concepts (7th Edition).
- Their original slides have been modified to adapt to the schedule of CS307 at SUSTech.

Query Optimization

- Purpose of query optimization
 - Select an effective way to retrieve the data based on queries while spending the least computational effort
 - However, it is only "spending less computational effort" in most scenarios, not least

Query Optimization

- Users don't need to consider the best way of writing queries
- Automated optimization can perform better (for most of the time)
 - Utilize the data dictionary
 - Real-time utilization based on physical storage changes
 - Optimizer can evaluate hundreds of execution plans in a very short time compared with human programmers
 - Human users do not need to learn advanced optimization techniques any more, which is conducted by optimizers instead

- The same query can be represented in different plans
 - E.g., retrieve the titles of those movies from China

```
select m.title
from movies m, countries c
where m.country = c.country_code and c.country_name = 'China';
```

• The corresponding relational algebra expressions:

```
(1) \prod_{title} (\sigma_{movies.country = countries.country\_code} \land countries.country = "China" (movies × countries))
(2) \prod_{title} (\sigma_{countries.country = "China"} (movies \bowtie_{movies.country = countries.country\_code} countries))
(3) \prod_{title} (movies \bowtie_{movies.country = countries.country = countries.country = "China"} (countries))
```

• The corresponding relational algebra expressions:

```
(1) \prod_{title} (\sigma_{movies.country = countries.country\_code} \land countries.country = "China" (movies × countries))
(2) \prod_{title} (\sigma_{countries.country = "China"} (movies \bowtie_{movies.country = countries.country\_code} countries))
(3) \prod_{title} (movies \bowtie_{movies.country = countries.country\_code} (\sigma_{countries.country = "China"} (countries))
```

- In (1), a full Cartesian product will be computed, which costs huge time for matching all pairs and massive temporary storage space for the intermediate product table
- In (2), a smaller intermediate join table is to be cached, which saves some space
- In (3), the filter ($\sigma_{\text{c.country} = \text{"}China"}$) reduces the size of the right table in the join operation, which saves a lot of time for pair matching and caching intermediate join table

• In addition, the filter operation can be further accelerated once an index is built upon the *country* column

```
(3) \prod_{title} (movies \bowtie_{movies.country = countries.country\_code} (\sigma_{countries.country = "China"} (countries))
```

Generating Equivalent Expressions

- Alternative ways of evaluating a given query
 - Equivalent expressions
 - Different algorithms for each operation

```
select name, title
from instructor
   natural join (teaches natural join course)
where dept_name = 'Music' and year = 2009;
```


(a) Initial expression tree

(b) Tree after multiple transformations

Generating Equivalent Expressions

• An evaluation plan defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated

```
select name, title
from instructor
   natural join (teaches natural join course)
where dept_name = 'Music' and year = 2009;
```


Transformation of Relational Expressions

- Two relational algebra expressions are said to be equivalent if the two
 expressions generate the same set of tuples on every legal database
 instance
 - Note: order of tuples is irrelevant
 - We don't care if they generate different results on databases that violate integrity constraints
- An equivalence rule says that expressions of two forms are equivalent
 - ... i.e., we can replace expression of the first form by second, or vice versa

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$\sigma_{\theta_1 \wedge \theta_2}(E) \equiv \sigma_{\theta_1}(\sigma_{\theta_2}(E))$$

2. Selection operations are commutative

$$\sigma_{\theta_1}(\sigma_{\theta_2}(E)) \equiv \sigma_{\theta_2}(\sigma_{\theta_1}(E))$$

3. Only the last in a sequence of projection operations is needed, the others can be omitted

$$\prod_{L_1} (\prod_{L_2} (...(\prod_{L_n} (E))...)) \equiv \prod_{L_1} (E)$$
where $L_1 \subseteq L_2 ... \subseteq L_n$

- 4. Selections can be combined with Cartesian products and theta joins
 - a) $\sigma_{\theta}(E_1 \times E_2) \equiv E_1 \bowtie_{\theta} E_2$
 - b) $\sigma_{\theta_1}(E_1 \bowtie_{\theta_2} E_2) \equiv E_1 \bowtie_{\theta_1 \land \theta_2} E_2$

5. Theta-join operations (and natural joins) are commutative.

$$E_1 \bowtie E_2 \equiv E_2 \bowtie E_1$$

6. (a) Natural join operations are associative:

$$(E_1 \bowtie E_2) \bowtie E_3 \equiv E_1 \bowtie (E_2 \bowtie E_3)$$

(b) Theta joins are associative in the following manner:

$$(E_1 \bowtie_{\theta_1} E_2) \bowtie_{\theta_2 \wedge \theta_3} E_3 \equiv E_1 \bowtie_{\theta_1 \wedge \theta_3} (E_2 \bowtie_{\theta_2} E_3)$$

where θ_2 involves attributes from only E_2 and E_3

 Representation of Rule 5, 6(a) and 6(b) with diagrams

- 7. The selection operation distributes over the theta join operation under the following two conditions:
 - (a) When all the attributes in θ_0 involve only the attributes of one of the expressions (E_1) being joined:

$$\sigma_{\theta_0}(E_1 \bowtie_{\theta} E_2) \equiv (\sigma_{\theta_0}(E_1)) \bowtie_{\theta} E_2$$

• (b) When θ_1 involves only the attributes of E_1 and θ_2 involves only the attributes of E_2 :

$$\sigma_{\theta_1 \wedge \theta_2}(E_1 \bowtie_{\theta} E_2) \equiv (\sigma_{\theta_1}(E_1)) \bowtie_{\theta} (\sigma_{\theta_2}(E_2))$$

- 8. The projection operation distributes over the theta join operation as follows:
- (a) If θ involves only attributes from $L_1 \cup L_2$:

$$\prod_{L_1 \cup L_2} (E_1 \bowtie_{\theta} E_2) \equiv \prod_{L_1} (E_1) \bowtie_{\theta} \prod_{L_2} (E_2)$$

(b) In general, consider a join $E_1 \bowtie_{\theta} E_2$:

M

- Let L_1 and L_2 be sets of attributes from E_1 and E_2 , respectively,
- Let L_3 be attributes of E_1 that are involved in join condition θ , but are not in $L_1 \cup L_2$, and,
- Let L_4 be attributes of E_2 that are involved in join condition θ , but are not in $L_1 \cup L_2$:

$$\prod_{L_1 \cup L_2} (E_1 \bowtie_{\theta} E_2) \equiv \prod_{L_1 \cup L_2} (\prod_{L_1 \cup L_3} (E_1) \bowtie_{\theta} \prod_{L_2 \cup L_4} (E_2))$$

* Similar equivalences hold for left, right, and full outer join operations: \bowtie , \bowtie , and

9. The set operations union and intersection are commutative

$$E_1 \cup E_2 \equiv E_2 \cup E_1$$

 $E_1 \cap E_2 \equiv E_2 \cap E_1$

- However, set difference is not commutative
- 10. Set union and intersection are associative

$$(E_1 \cup E_2) \cup E_3 \equiv E_1 \cup (E_2 \cup E_3)$$

 $(E_1 \cap E_2) \cap E_3 \equiv E_1 \cap (E_2 \cap E_3)$

11. The selection operation distributes over \cup , \cap and -

(a)
$$\sigma_{\theta}\left(E_{1} \cup E_{2}\right) \equiv \sigma_{\theta}\left(E_{1}\right) \cup \sigma_{\theta}(E_{2})$$
(b)
$$\sigma_{\theta}\left(E_{1} \cap E_{2}\right) \equiv \sigma_{\theta}\left(E_{1}\right) \cap \sigma_{\theta}(E_{2})$$
(c)
$$\sigma_{\theta}\left(E_{1} - E_{2}\right) \equiv \sigma_{\theta}\left(E_{1}\right) - \sigma_{\theta}(E_{2})$$
(d)
$$\sigma_{\theta}\left(E_{1} \cap E_{2}\right) \equiv \sigma_{\theta}(E_{1}) \cap E_{2}$$
(e)
$$\sigma_{\theta}\left(E_{1} - E_{2}\right) \equiv \sigma_{\theta}(E_{1}) - E_{2}$$

- * The preceding equivalence does not hold for \cup
- 12. The projection operation distributes over union

$$\Pi_{L}(E_1 \cup E_2) \equiv (\Pi_{L}(E_1)) \cup (\Pi_{L}(E_2))$$

Transformation Example: Pushing Selections

• Query: Find the names of all instructors in the Music department, along with the titles of the courses (in the Music department) that they teach

```
select name, title
from instructor natural join (teaches natural join course
where dept_name = 'Music';
```

- $\Pi_{name, title}(\sigma_{dept \ name = \ Music}, (instructor \bowtie (teaches \bowtie \Pi_{course \ id, \ title} (course))))$
- Transformation using rule 7(a):
 - $\Pi_{name, title}((\sigma_{dept \ name = \ Music}, (instructor)) \bowtie (teaches \bowtie \Pi_{course \ id, \ title} (course)))$

Transformation Example: Multiple Transformations

- Query: Find the names of all instructors in the Music department who have taught a course in 2017, along with the titles of the courses that they taught
 - $\Pi_{name, title}(\sigma_{dept_name= "Music" \land year = 2017}(instructor \bowtie (teaches \bowtie \Pi_{course_id, title}(course))))$
- Transformation using join associatively (Rule 6(a)):
 - $\Pi_{name, title}(\sigma_{dept_name= "Music" \land year = 2017}((instructor \bowtie teaches) \bowtie \Pi_{course_id, title}(course)))$
- Second form provides an opportunity to apply the "perform selections early" rule, resulting in the subexpression:
 - $\sigma_{dept_name = \text{``Music''}}(instructor) \bowtie \sigma_{year = 2017}(teaches)$

Transformation Example: Multiple Transformations

(a) Initial expression tree

(b) Tree after multiple transformations

* Transformation Example: Pushing Projections

- Consider $\Pi_{name, \ title}(\sigma_{dept \ name= \ 'Music''}(instructor) \bowtie teaches) \bowtie \Pi_{course \ id, \ title}(course))))$
- When we compute

```
(\sigma_{dept\_name = "Music"}(instructor) \bowtie teaches),
```

we obtain a relation whose schema is:

(ID, name, dept_name, salary, course_id, sec_id, semester, year)

• Push projections using equivalence rules 8a and 8b; eliminate unneeded attributes from intermediate results to get:

```
\Pi_{\text{name, title}}(\Pi_{\text{name, course\_id}} (\sigma_{\text{dept\_name= 'Music''}}(\text{instructor}) \bowtie \text{teaches})) \bowtie \Pi_{\text{course\_id, title}}(\text{course}))))
```

Performing the projections <u>as early as possible</u> reduces the size of the relation to be joined

Join Ordering Example

• For all relations r_1 , r_2 , and r_3 ,

$$(r_1 \bowtie r_2) \bowtie r_3 = r_1 \bowtie (r_2 \bowtie r_3)$$

- * (Join Associativity) ⋈
- If $r_2 \bowtie r_3$ is quite large and $r_1 \bowtie r_2$ is small, we choose

$$(r_1 \bowtie r_2) \bowtie r_3$$

so that we compute and store a smaller temporary relation

Cost Estimation

- Cost difference between evaluation plans for a query can be enormous
 - E.g., seconds vs. days in some cases
- Steps in cost-based query optimization
 - 1. Generate logically equivalent expressions using equivalence rules
 - 2. Annotate resultant expressions to get alternative query plans
 - 3. Choose the cheapest plan based on estimated cost

Cost Estimation

- Estimation of plan cost based on:
 - Statistical information about relations, such as:
 - number of tuples, number of distinct values for an attribute
 - Statistics estimation for intermediate results
 - to compute cost of complex expressions
 - Cost formulae for algorithms, computed using statistics

For more, please refer to Section 16.3 "Estimating Statistics of Expression Results" in the reference textbook