Corner anchor free and loss drive feature selection anchor free

CornerNet与feature selection anchor free表格总结

- CornerNet: 用左上角、右下角的一组点代替边界框 + 新型的池 化方式Corner pooling。
- Feature selection anchor free: 依据anchor-free分支计算loss来在线
 选择特征图 + anchor-based与anchor-free联合训练才能显著提高性能。
- RepPoints: 直接去预测9个representative points(这些顶点并没有明确的语义),然后找出包围这9个点的最紧框去和GT计算loss。然后loss只会回传给对生成这个框有贡献的那些点。
- 对比表格总结链接:
 <u>论文对比总结\CornerNet、Reppoints与Feature Selective Anchor-</u>
 Free Module for Single-Shot Object Detection对比分析.html

 CornerNet: Detecting Objects as P aired Keypoints ECCV.2018

CornerNet

- 主要思想就是把boxes看作左上和右下两个点,这样目标检测就 变成了两个关键点的检测。
- 通过卷积网络生成两个heatmap分别对应左上角和右下角的点,并 生成一个embedding vector,属于相同目标的嵌入向量更相似, 利用embedding vector来把属于同一类别的点组合起来构成box。
- 论文提出一种针对关键点预测的新池化方式,即corner pooling。

传统方法的不足

- 1. Anchor-based的方法需要anchor覆盖所有的ground truth box并且 IOU比较大,所以就需要非常多密集分布的anchor,导致了正负样本 的严重不平衡。
- 2. anchor的大小、比例与数量都需要人为的设计,在multi-scale的时候会更加明显,这种人为设定的方式可能不符合物体实际情况。
- 3.作者受到keypoint问题的启发,想到用关键点检测找到top-left和 Bottom-right两个点,来准确框出一个目标。

Motivation

- 灵感来源于Newell的多人姿态估计研究中的Bottom-Up的思想,利用 embedding后的角点的距离区分左上角和右下角的corner是否属于一个 类别,从而确定anchor。
- 文章的Corner Pooling来确保网络得到足够的信息,这比一般的临近位置pooling更加有效。
- 本文中,在CornerNet,卷积神经网络预测两份热力图,来代表不同类别的角点位置,一份代表左上角,一份代表右下角。同时网络还为每一个检测到的点预测一个特征向量,使得来自同一个物体之间的两个角点的向量之间的距离很小,为了得到更为致密的检测框,网络还输出一个偏移量,以此来轻微地调整角点的位置。

主要框架

- 1. 输入一张图像,经过backbone网络(Hourglass network)后,得 到feature map。
- 2. 将feature map同时输入到两个branch,分别用于预测Top-Left Corners和Bottom-right Corners。
- 3. 两个branch都会先经过一个叫Corner Pooling的网络,最后输出三个结果,分别是Heatmaps. Embeddings. Offsets。
- 4. 根据Heatmaps能够得到物体的左上角点和右下角点,根据Offsets对 左上角和右下角点位置进行更加精细的微调,根据Embeddings可以将 同一个物体的左上角和右下角点进行匹配,得到到最终的目标框。

Fig. 1 We detect an object as a pair of bounding box corners grouped together. A convolutional network outputs a heatmap for all top-left corners, a heatmap for all bottom-right corners, and an embedding vector for each detected corner. The network is trained to predict similar embeddings for corners that belong to the same object.

Detecting Corners

- 每个heatmaps集合的形式都是C*H*W,其中C代表的是检测目标的类别数,H和W则代表heatmap的分辨率。
- P(cij)代表在预测的特征图上位置(i,j)处类别c的得分,y(cij)是增加了 非标准高斯函数的实际标注特征图上对应位置对应类别的得分。
- 输出:设计一个focal loss公式计算 (i, j)像素是类别c的loss

$$y_{cij} = e^{-rac{x^2 + y^2}{2\sigma^2}}$$
 $L_{det} = rac{-1}{N} \sum_{c=1}^{C} \sum_{i=1}^{H} \sum_{j=1}^{W} \left\{ rac{(1 - p_{cij})^{lpha} \log{(p_{cij})}}{(1 - y_{cij})^{eta} \log{(1 - p_{cij})}} rac{ ext{if } y_{cij} = 1}{(1 - y_{cij})^{eta} (p_{cij})^{lpha} \log{(1 - p_{cij})}}
ight.$ otherwise

x和y表示的是以(i,j)为坐标原点的相对坐标。 y_{cij}在真值位置值为1,真值附近一定范围内的值 不为0,与真值位置的距离越大,其值逐渐衰减。

α和β是一组超参(作者分别设定2,4), 用来控制图像中每个点对loss的贡献程度。

Corner adjustment

考虑到特征图与原图之间的分辨率差距,将特征图上某位置映射回原图通常会带来位置精度损失,而这对预测框和标注框之间的重叠比影响较大, 因此,网络输出位置偏移量在角点映射回原图之前来轻微地调整其位置。

$$o_k = \left(\frac{x_k}{n} - \left\lfloor \frac{x_k}{n} \right\rfloor, \frac{y_k}{n} - \left\lfloor \frac{y_k}{n} \right\rfloor \right)$$

• loss计算采用Smooth1 Loss:从两个方面限制梯度:当预测框与GT差别过大时,梯度值不至于过大;当预测框与GT差别很小时,梯度值足够小。

$$L_{off} = rac{1}{N} \sum_{k=1}^{N} SmoothL1Loss(o_k, \hat{o}_k)$$

Grouping Corners

- 主要思想是,在生成角点heatmap时,同时生成一个embedding vector, loss具有两种,L_{pull}和L_{push};如果一个左上角角点和右下角 角点属于同一个物体,那么他们的embedding vector之间的距离就应 该非常小,根据这个距离来对Corner点进行匹配。
- Embedding本质是用一个低维的向量表示一个物体,可以是一个词,或是一个商品。这个embedding向量的性质是能使距离相近的向量对应的物体有相近的含义。比如 Embedding(复仇者联盟)和Embedding(钢铁侠)之间的距离很接近,与Embedding(乱世佳人)的距离就会远一些。

$$L_{pull} = rac{1}{N} \sum_{k=1}^{N} \left[\left(e_{t_k} - e_k \right)^2 + \left(e_{b_k} - e_k \right)^2 \right],$$
 $L_{push} = rac{1}{N(N-1)} \sum_{k=1}^{N} \sum_{j=1, j
eq k}^{N} \max(0, \Delta - |e_k - e_j|)$

左式中 e_{tk} 和 e_{bk} 表示图像中第k个目标的top-left点和bottom-right点的embedding向量,N表示物体类别的数量。 $e_k = (e_{t_k} + e_{b_k})/$ 表示两个embedding向量的均值。

Corner Pooling

- 下图是top-left corner的 Corner Pooling过程。在水平方向,从最右端开始往最左端遍历,每个位置的值都变成从最右到当前位置为止,出现的最大的值。在垂直方向上,从下到上扫描填充遇到的最大的值。同理,bottom-right corner的Corner Pooling最左端往最右端. 最上往最下遍历。
- 通过Corner Pooling的方式能够一定程度上体现出当前点出发的 射线是否与物体向交。

使用总loss驱动Corner对选择

完整的training loss是:

$$L = L_{det} + \alpha L_{pull} + \beta L_{push} + \gamma L_{off}$$

- $\alpha = \beta = 0.1, \ \gamma = 1$
- 在训练期间,设置网络的输入分辨率511×511,导致输出分辨率为128×128。为了减少过拟合,采用标准的数据增强技术,包括随机水平翻转、随机缩放、随机裁剪和随机色彩抖动,其中包括调整图像的亮度,饱和度和对比度。最后,将PCA应用于输入图像。

实验

• conner pooling的消融比实验,可以看出添加conner pooling(第二行)对能提升2.0mAP,在目标尺度比较大的数据中提升3.6。

	AP	$ m AP^{50}$	$\mathrm{AP^{75}}$	AP^s	AP^m	AP^l
w/o corner pooling	36.5	52.0	38.8	17.5	38.9	49.4
w/ corner pooling	38.4	53.8	40.9	18.6	40.5	51.8
improvement	+2.0	+2.1	+2.1	+1.1	+2.4	+3.6

实验

- 对于每一个角点,只有一个正样本(实际标注),其他的位置都是负 样本。训练时,对于在正样本半径内的负样本减少惩罚,而不是同等 地给予惩罚。这是因为一对离实际标注很近的角点,同样能够产生一 个与实际标注框重叠比很高的检测框。
- Table2是关于对不同位置负样本采取不同权重的损失函数的效果。第一行是不采用惩罚策略;第二行是采用固定半径值的效果,提升2.7;第三行是采用基于目标计算得到的半径值的效果,再次提升2.8。

	AP	$\mathrm{AP^{50}}$	AP^{75}	AP^s	AP^m	AP^l
w/o reducing penalty	32.9	49.1	34.8	19.0	37.0	40.7
fixed radius	35.6	52.5	37.7	18.7	38.5	46.0
object-dependent radius	38.4	53.8	40.9	18.6	40.5	51.8

实验

- 下表中具有沙漏网络的CornerNet的性能比具有FPN的CornerNet的性能高出8.2%,而具有沙漏网络的anchor-based的探测器的性能高出5.5%。
- 结果表明,骨干网的选择很重要,沙漏网络对于CornerNet的性能至 关重要。

	AP	$ m AP^{50}$	AP^{75}	AP^s	AP^m	AP^l
FPN (w/ ResNet-101) + Corners	30.2	44.1	32.0	13.3	33.3	42.7
Hourglass + Anchors	32.9	53.1	35.6	16.5	38.5	45.0
Hourglass + Corners	38.4	53.8	40.9	18.6	40.5	51.8

实验

通过多尺度评估, CornerNet的AP达到42.2%, 在现有的一阶段方法中处于最先进水平,并且与两阶段方法相比具有竞争力。

Method	Backbone	AP	AP^{50}	AP^{75}	AP^s	AP^m	AP^l	AR ¹	AR^{10}	AR^{100}	AR ^s	AR^m	AR^{l}
Two-stage detectors	N	W.											
DeNet (Tychsen-Smith and Petersson, 2017a)	ResNet-101	33.8	53.4	36.1	12.3	36.1	50.8	29.6	42.6	43.5	19.2	46.9	64.3
CoupleNet (Zhu et al., 2017)	ResNet-101	34.4	54.8	37.2	13.4	38.1	50.8	30.0	45.0	46.4	20.7	53.1	68.5
Faster R-CNN by G-RMI (Huang et al., 2017)	Inception-ResNet-v2 (Szegedy et al., 2017)	34.7	55.5	36.7	13.5	38.1	52.0	-	720	-	-	_	-
Faster R-CNN+++ (He et al., 2016)	ResNet-101	34.9	55.7	37.4	15.6	38.7	50.9	1211	7727	725	123	7527	72
Faster R-CNN w/ FPN (Lin et al., 2016)	ResNet-101	36.2	59.1	39.0	18.2	39.0	48.2	-	-		-	-	-
Faster R-CNN w/ TDM (Shrivastava et al., 2016)	Inception-ResNet-v2	36.8	57.7	39.2	16.2	39.8	52.1	31.6	49.3	51.9	28.1	56.6	71.1
D-FCN Dai et al., 2017	Aligned-Inception-ResNet	37.5	58.0	17	19.4	40.1	52.5	950	059	3578	1 1572	0.53	1878
Regionlets Xu et al., 2017	ResNet-101	39.3	59.8	177	21.7	43.7	50.9	270	3370	1979	270	3370	3375
Mask R-CNN (He et al., 2017)	ResNeXt-101	39.8	62.3	43.4	22.1	43.2	51.2	17.1	0.73			1.7	-
Soft-NMS (Bodla et al., 2017)	Aligned-Inception-ResNet	40.9	62.8	87	23.3	43.6	53.3	150	251	878	1.553	251	878
LH R-CNN Li et al., 2017	ResNet-101	41.5			25.2	45.3	53.1	171	875	1171	1.70	855	3.73
Fitness-NMS (Tychsen-Smith and Petersson, 2017b)	ResNet-101	41.8	60.9	44.9	21.5	45.0	57.5	3.5%	0.70		1.0	(*)	100
Cascade R-CNN Cai and Vasconcelos 2017	ResNet-101	42.8	62.1	46.3	23.7	45.5	55.2	1.00	653		1 100	653	100
D-RFCN + SNIP (Singh and Davis, 2017)	DPN-98 (Chen et al., 2017)	45.7	67.3	51.1	29.3	48.8	57.1	(*)	3373	10.5	1880	100	10.5
One stage detectors													
YOLOv2 Redmon and Farhadi, 2016	DarkNet-19	21.6	44.0	19.2	5.0	22.4	35.5	20.7	31.6	33.3	9.8	36.5	54.4
DSOD300 (Shen et al., 2017a)	DS/64-192-48-1	29.3	47.3	30.6	9.4	31.5	47.0	27.3	40.7	43.0	16.7	47.1	65.0
GRP-DSOD320 (Shen et al., 2017b)	DS/64-192-48-1	30.0	47.9	31.8	10.9	33.6	46.3	28.0	42.1	44.5	18.8	49.1	65.0
SSD513 (Liu et al., 2016)	ResNet-101	31.2	50.4	33.3	10.2	34.5	49.8	28.3	42.1	44.4	17.6	49.2	65.8
DSSD513 (Fu et al., 2017)	ResNet-101	33.2	53.3	35.2	13.0	35.4	51.1	28.9	43.5	46.2	21.8	49.1	66.4
RefineDet512 (single scale) Zhang et al., 2017	ResNet-101	36.4	57.5	39.5	16.6	39.9	51.4	950	3370	1575	07/0	9970	0.73
RetinaNet800 (Lin et al., 2017)	ResNet-101	39.1	59.1	42.3	21.8	42.7	50.2	17.1	0.75	-	-	0.70	
RefineDet512 (multi scale) (Zhang et al., 2017)	ResNet-101	41.8	62.9	45.7	25.6	45.1	54.1	150	251	874	3-3	250	873
CornerNet511 (single scale)	Hourglass-104	40.6	56.4	43.2	19.1	42.8	54.3	35.3	54.7	59.4	37.4	62.4	77.2
CornerNet511 (multi scale)	Hourglass-104	42.2	57.8	45.2	20.7	44.8	56.6	36.6	55.9	60.3	39.5	63.2	77.3

启发性或普适性

- 1. 用左上角与右下角的一对corner代替了anchor box。
- 2. 提出了一种新的池化方式用于检测边角: corner pooling。

总结

- 1. CornerNet = Detecting Corners + Grouping Corners + Corner Pooling。
- 2. 用左上角、右下角的一组点代替边界框 + 新型的池化方式Corner pooling。
- 3. 在CornerNet中,卷积神经网络预测两份热力图,来代表不同类别的角点位置,一份代表左上角,一份代表右下角。同时网络还为每一个检测到的点预测一个特征向量,使得同一个物体之间的两个角点的向量之间的距离很小,为了得到更为致密的检测框,网络输出一个偏移量来轻微地调整角点的位置。

总结

- 1. 怎么检测这个两个点? 生成keypoint的heatmap, heatmap中响应值最大的位置就是点的位置。
- 2. 怎么知道这两个点所组成的框包含物体的类别? Corner响应值最大所在的channel即对应了物体的类别。
- 3. 当图像中有多个物体时,怎么知道哪些点可以组成框? (哪些左上角的点和哪些右下角的点能够组成有效的框)
 生成embedding向量,用向量的距离衡量两个Corner是否可以组成对。

总结

- 4. Loss是什么形式?
 loss总共分了三个部分,一部分是用于定位keypoint点的detecting loss,一个是用于精确定位的offset loss,一个是用于对Corner点进行配对的grouping loss。
- 5. 网络结构是怎么样的? 使用Hourglass作为backbone,使用Corner Pooling构造了prediction module,用来得到最终的结果。
- 6. 有没有什么比较新奇的东西?
 提出的Corner Pooling。第一次使用检测点的方法检测物体。

我的观点

- 1. 把检测目标框变成一对关键点的问题,即左上角和右下角,这样就 消除了锚框的设计麻烦。另外,采用的角点池化(corner pooling)技 术帮助CNN更好地定位角点位置。
- 2. 左上角右下角关键点分开预测,速度上计算比较慢,一定程度上也可能忽视了两点之间的关联信息。

 Feature Selective Anchor-Free Module for Single-Shot Object Detection CVPR.2019

FSAF

- FSAF的出发点是让图像中的每个目标实例自主选择最适合的特征 层,这样,在feature level选择这一步骤中,就不需要再进行 anchor的设置,实现了anchor-free。
- 在train阶段,根据loss自动选择最佳的feature level。被选择的feature level就进行后续的回归和预测。在inference阶段,FSAF可以独立预测,也可以与anchor-based方法相结合。
- feature 选择的依据有原来的instance size变成了instance content, 使得每个实例能够自由的选择最优层级来优化网络。

传统方法的不足

- 1.预设的anchor size不是任意的,被束缚住尺寸的anchor有助于后续的统一学习,但是对于形状特殊的目标学习不到,如长细条的画板,电线等。
- 2.anchor的数量是十分密集的,即使用nms或者soft-nms去重, 负样本的数量依然非常多,与正样本比例严重失衡,RetinaNet 等采取合适的比例参数平衡这个差异。
- 3.Anchor数量巨多,需要每一个都进行IOU计算,耗费巨大的算力,降低了效率,步骤十分繁琐,而这些冗余其实是可以消灭的。

Motivation

- 1. 以FPN为例,一般来说,浅层特征对应小物体,深层特征对应大物体。但是这种大,小的界定是人为进行选择的,下图中,几乎同样角度的车的图像,长宽的差距也是相同的,但是60x60size的图像分配到了medium anchors,而50x50size和40x40size都被分到了small anchors,这是不符合正确认识。
- 2. overlap-based anchor sampling: anchor的密集采样,导致计算量提升,效率下降。

- 1. FSAF主要包含无anchor分支的实现及在线特征选择两部分,本 质是anchor free的分支使用在线特征选择。
- 2. 在train时, anchor free的分支添加到特征金字塔的每一层,从而可以以任意层次对box进行编码解码。将每个实例动态的放置在最适合的特征层次上。
- 3. 在inference时,FSAF可以结合anchor based的分支并行的输出预测结果。

- 1. 在RetinaNet的输出端,FSAF分别引入两层额外的卷积层,分别用于anchor-free分支的分类及回归。3x3xK的卷积层添加到分类分支.回归分支之后,后接sigmoid函数,其预测每个位置上K个类别的概率,以anchor-free的方式预测框的偏移量。
- 2. 白色部分为有效框,灰色部分为忽略框,对应到训练中,白色为正例,区域会填充1;灰色是忽略区域,不参与梯度回传;黑色为负例,区域会填充0。

anchor-free branch

for one feature level

instance

class output

- 在线特征选择机制。每一个实例都经过所有的anchor-free branch来 计算平均分类损失和平均回归损失,然后选择损失最小的anchorfree branch对应的损失作为最后的监督该实例的信号。
- 下图中最下面的这路梯度最小,训练阶段则只对最下面的这路进行 梯度更新,上面的两路不做任何变化。

$$L_{FL}^I(l) = \frac{1}{N(b_e^l)} \sum_{i,j \in b_e^l} FL(l,i,j)$$

$$L^I_{IoU}(l) = \frac{1}{N(b_e^l)} \sum_{i,j \in b_e^l} IoU(l,i,j)$$

$$l^* = \arg\min_{l} L^I_{FL}(l) + L^I_{IoU}(l)$$

N(ble)为ble的像素数

实验

- 1. 只使用Heuristic feature selection效果差于只使用Anchor-based branches; 只使用Online feature selection 效果持平只使用Anchor based branches; Online feature selection 和Anchor based branches结合使用效果最好,比基线提升1.5个点。
- 2.基于anchor-based的RetinaNet网络中插入anchor-free模块后,像滑板、飞盘等这种较小. 尺度比较不规则的物体检测效果会更好。

	Anchor-	Anchor-free branches							
	based	Heuristic feature	Online feature	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
	branches	selection Eqn. (3)	selection Eqn. (2)						
RetinaNet	√		***************************************	35.7	54.7	38.5	19.5	39.9	47.5
		√		34.7	54.0	36.4	19.0	39.0	45.8
0			✓	35.9	55.0	37.9	19.8	39.6	48.2
Ours	✓	✓		36.1	55.6	38.7	19.8	39.7	48.9
	√		\checkmark	37.2	57.2	39.4	21.0	41.2	49.7

实验

- 1. 所有框都是anchor-free的检测结果,绿框表示其和anchor-based 选择特征层一致,小目标在大分辨率层,大目标在小分辨率层;
- 2. 红色的表示其和anchor-based选择的特征层不一致。图像中小目标等更难的样本可以检测出来,证明其特征选择的有效。

a: RetinaNet (anchor-based, ResNeXt-101)

b: Ours (anchor-based + FSAF, ResNet-50)

启发性或普适性

- 1. anchor-free的方法能够在精度上媲美 anchor-based,最大的功劳归于FPN(特征金字塔)与Focal Loss的提出。
- 2. 在每个位置只预测一个框的情况下, FPN 的结构对尺度起到了很好的弥补;
- 3. Focal loss解决正负样本类别不平衡的问题,通过减少容易分类的样本的权重,使模型在训练时更专注难分类的样本,改善模型的优化方向。

总结

 RetinaNet+FSAF = 依据anchor-free分支计算loss来在线选择特征图 + anchor-based与anchor-free联合训练才能显著提高性能

我的观点

- 1. FSAF可以看做是anchor-free系列的尝试,它并没有完全摒弃anchor, 而是选择anchor-free分支作为特征层选择的工具,帮助每个实例动态 选择最佳特征层,之后还是需要用anchor based计算分类和位置回归。
- 2. 从feature selection角度设计FSAF module来提升性能,从loss角度 来看,其提升了梯度反传的效率,有点类似于SNIP,只更新特定scale 内物体对应的梯度;但效率比SNIP更高。
- 3. 对提出的想法的性能调优也不简单,例如对重叠区域的处理,对回 归范围的限制,如何将 target assign 给不同的 FPN level, head 是 否 share 参数试验调优等。

Chapter

存在问题

- 1. 感觉现在的新出的方法特别多,将近期看过的文章作如下总结:
- 2. 总结链接为 <u>anchor based方法与anchor-free方法总结.xlsx</u>
- 3. anchor-free方法的公式计算部分没有理解得很深刻,需要看源码来深入理解。

anchor based改进

anchor based改 进			
角度	论文	mAP	工作阐述
数据层面	Stitcher	41.3(Res-101-FPN)	Stitcher = 利用单张图片中小目标loss的阈值,将大中目标转换中小目标,重新加入训练。(相当于数据增广)
网络层面	FPN	36.2	采用多尺度特征融合(在当前层进行卷积操作之前,将上一层的特征图上采样与当前层的特征图相加,即通过对上一层特征上采样与浅层特征做融合得到深层特征)方式进行预测,这样可保留上一层的一些细节信息,提高准确度;FPN的每一层进行独立预测。
	TridentNet	48.4(TridentNet* + Image Pyramid ResNet-101- Deformable)	对同一物体使用不同大小的感受野来实现数据增广 + 共享权重参数带来对各种尺度适应性
	Adaptive Training Sample Selection	50.7((Multi-scale testing+ResNeXt-64x4d-101-DCN)	ATSS=自适应样本选择(计算所有的IOU的mean (mg)和 std dev (vg),根据自适应阈值tg = mg + vg,并增加条 件:center在物体内部,对anchors进行筛选)

anchor free方面

角度	论文	mAP	工作阐述
corner(假free)	CornerNet(鼻祖)	44.6	CornerNet = 用左上角、右下角的一组点代替边界框 + 新型的池化方式Corner pooling。
center point(假free)	CenterNet(CornerNet 改进)	47.0(Hourglass- 104)	在CornerNet的基础上加入了一支中心点预测,能够组成一个物体的要求不仅仅是两个顶点能匹配,同时这两个顶点定义的框的中心也要有对应的中心点相应,这样就缓解了很多奇怪的误检。CenterNet同时还提出了Center Pooling和Cascade Corner Pooling来改善对于中心点和顶点预测的精度。
key points(真free)	RepPoints(提出使用关 键点来表示物体)	46.5	直接去预测9个representative points(这些顶点并没有明确的语义),然后找出包围这9个点的最紧框去和GT计算loss。然后loss只会回传给对生成这个框有贡献的那些点。
feature layer selection(假free)		42.1	RetinaNet+FSAF = 依据anchor-free分支计算loss来在线选择特征图 + anchor-based与anchor-free联合训练才能显著提高性能。

我接下来需要做的

• 1.双边分支网络BBN(few shot)在长尾分布问题上的对比分析。

• 2. 写一份reppoints的代码分析,读懂 reppoints的计算过程。