# Analýza a návrh projektu Sense Break NSS

Semestrální projekt

Návrh softwarových systémů (B6B36NSS)

Odkaz na GitLab s podrobným popisem:

gitlab/sense-break-nss

Fakulta elektrotechnická, ČVUT v Praze

Vedoucí: Jiří Šebek

Autorka: Kamilla Ishmukhammedova

Datum: duben 2025

### Obsah

| Obsah                                               | 2   |
|-----------------------------------------------------|-----|
| Úvod                                                | 4   |
| Motivace projektu                                   | 4   |
| Cíl zadání                                          | 5   |
| Cílová skupina                                      | 5   |
| Technologie                                         | 6   |
| Backend                                             | 6   |
| Desktopová aplikace                                 | 6   |
| Databáze                                            | 6   |
| Messaging                                           | 6   |
| Verzování a automatizace                            | 6   |
| Architektura projektu                               | 7   |
| Typ architektury                                    | 7   |
| Komunikace                                          | 7   |
| Hlavní vrstvy backendové mikroslužby:               | 7   |
| Struktura desktopového klienta                      |     |
| Messaging                                           | 7   |
| Hlavní entity aplikace                              | 8   |
| 1. Uživatel (User)                                  |     |
| 2. Tréninková relace (TrainingSession)              |     |
| 3. Výsledek cvičení (TrainingResult)                |     |
| 4. Notifikace (Notification)                        |     |
| Popis služeb systému                                |     |
| 1. User Service                                     |     |
| 2. Auth Middleware                                  | 10  |
| 3. Training Service                                 | 10  |
| 4. Notification Service                             | 11  |
| 5. Desktop GUI (JavaFX klient)                      | 11  |
| Use-Case scénáře                                    | 12  |
| Registrace uživatele                                | 12  |
| 2. Přihlášení uživatele                             |     |
| 3. Spuštění tréninku                                |     |
| 4. Uložení výsledku tréninku                        |     |
| 5. Připomenutí tréninku                             | 13  |
| Databázové schéma                                   | 4.4 |
| (Entity-Relationship Diagram)                       |     |
| 1. Tabulka: Users                                   |     |
| Tabulka: TrainingSessions  Tabulka: TrainingPopulta |     |
| Tabulka: TrainingResults  Tabulka: Notifications    | 15  |
| - GUUDA WUUUAUUS                                    | 17  |

| Vztahy mezi tabulkami | 15 |
|-----------------------|----|
| UML diagramy systému  | 16 |
| Přehled diagramů      | 16 |
| 1. Class Diagram      | 17 |
| 2. Component Diagram  | 18 |
| 3. Sequence Diagrams: | 19 |
| User Service          | 19 |
| Training Service      | 20 |
| Result Service        | 20 |
| Notification Service  | 21 |
| Funkční požadavky     | 22 |
| Nefunkční požadavky   | 23 |

### Úvod

Tento dokument specifikuje cíle, požadavky a návrh systému **Sense Break**, semestrálního projektu v rámci kurzu **B6B36NSS – Návrh softwarových systémů**.

**Sense Break** je desktopová aplikace určená především pro vývojáře a uživatele, kteří tráví dlouhý čas u počítače. Poskytuje jednoduchá tréninková cvičení zaměřená na zrak a sluch – například sledování pohybujících se objektů nebo rozpoznávání tónů. Cílem projektu je podpořit prevenci přetížení smyslového vnímání a přispět k lepší péči o zdraví uživatelů formou krátkých interaktivních přestávek.

Aplikace je postavena na mikroservisní architektuře s oddělenými službami pro správu uživatelů, zpracování tréninků a notifikace. Projekt klade důraz na čistý návrh architektury, srozumitelnou dokumentaci, využití návrhových vzorů a použití standardních technologií s důrazem na bezpečnost, modularitu a jednoduchost nasazení.

## Motivace projektu

Dlouhodobá práce na počítači představuje značnou zátěž pro zrak i sluch, zejména u vývojářů, grafiků a dalších profesí, které tráví u obrazovky mnoho hodin denně. V důsledku toho může docházet k únavě očí, poklesu koncentrace nebo i chronickým potížím jako je syndrom suchého oka nebo snížená schopnost vnímat vysoké frekvence.

Hlavní motivací projektu **Sense Break** je vytvořit nástroj, který uživatelům pomůže tyto dopady minimalizovat pomocí pravidelných a krátkých tréninků zaměřených na smyslové vnímání. Cvičení budou navržena tak, aby byla snadno přístupná, nenáročná na provedení a vhodná jako součást každodenních "mikropřestávek" během pracovního dne.

Zároveň je cílem projektu umožnit další rozšiřování funkcí a tréninkových modulů, čímž se aplikace může přizpůsobit různým typům uživatelů i jejich specifickým potřebám. Volba mikroservisní architektury reflektuje snahu o oddělení zodpovědností a snadnou údržbu systému do budoucna.

### Cíl zadání

#### Cílem projektu **Sense Break** je:

- 1. Navrhnout a realizovat desktopovou aplikaci zaměřenou na trénink zraku a sluchu formou jednoduchých cvičení
- 2. Rozdělit systém do samostatných mikroslužeb pro správu uživatelů, tréninkovou logiku a notifikace
- 3. Umožnit uživatelům registraci, přihlášení a sledování výsledků jednotlivých tréninků
- 4. Navrhnout jednoduché REST API pro komunikaci mezi službami a klientskou aplikací
- 5. Vytvořit desktopové GUI v technologii JavaFX pro pohodlné ovládání a zobrazení výsledků
- 6. Zajistit možnost snadného rozšíření o nové typy cvičení nebo služeb do budoucna
- 7. Připravit dokumentaci systému včetně funkčních a nefunkčních požadavků, UML diagramů a popisu architektury
- 8. Zohlednit principy použitelnosti, modularity a základní bezpečnosti při návrhu a implementaci

## Cílová skupina

Aplikace Sense Break je určená zejména pro tyto skupiny uživatelů:

- 1. Vývojáři, programátoři a IT pracovníci, kteří tráví většinu pracovní doby před obrazovkou počítače
- 2. Studenti technických oborů, kteří potřebují pravidelné přestávky během dlouhého učení nebo online výuky
- 3. Pracovníci na home office s omezeným pohybem a vysokou mírou práce s monitorem
- 4. Uživatelé s oslabeným zrakem nebo sluchem, kteří si chtějí udržovat funkční schopnosti pomocí nenáročných cvičení
- 5. Firmy a instituce hledající nástroje pro prevenci digitální únavy u svých zaměstnanců

## **Technologie**

#### **Backend**

- 1. Java 17 hlavní programovací jazyk pro všechny mikroslužby
- 2. Spring Boot framework pro tvorbu REST API a backendových služeb
- 3. Spring Web obsluha HTTP požadavků a definice REST endpointů
- 4. Spring Data JPA (Hibernate) ORM pro přístup k databázi

#### Desktopová aplikace

- JavaFX grafické uživatelské rozhraní pro spuštění tréninků a práci s výsledky
- 2. **HTTP klient (Java 11+)** komunikace s REST API ze strany desktopového klienta

#### Databáze

1. PostgreSQL – relační databáze pro ukládání uživatelů a výsledků cvičení

#### Messaging

- 1. RabbitMQ message broker pro asynchronní zpracování (např. notifikace)
- 2. Spring AMQP knihovna pro propojení Spring Boot aplikací s RabbitMQ

#### Verzování a automatizace

1. **GitLab** – verzovací systém a repozitář projektu

## Architektura projektu

#### Typ architektury

**Mikroslužby** – každá klíčová funkce systému (uživatelé, tréninky, notifikace) je implementována jako samostatná služba, která běží nezávisle a komunikuje přes REST API nebo messaging.

#### **Komunikace**

Desktopová aplikace (JavaFX) komunikuje s backendovými mikroslužbami prostřednictvím HTTP požadavků (REST API). Mezi některými službami (např. pro notifikace) probíhá komunikace asynchronně pomocí zpráv přes RabbitMQ.

#### Hlavní vrstvy backendové mikroslužby:

- Controller Layer zpracovává HTTP požadavky, volá příslušné služby a vrací odpovědi
- 2. Service Layer obsahuje aplikační logiku a validaci dat
- 3. Repository Layer přímý přístup k databázi pomocí Spring Data JPA
- 4. **Simple Auth Layer** jednoduchá vrstva pro ověření identity uživatele (např. kontrola ID nebo session)
- 5. **Messaging Layer** pro příjem a odesílání zpráv pomocí RabbitMQ (Notification Service)

#### Struktura desktopového klienta

- 1. Rozdělení do obrazovek (scén), řídicích tříd (controllers) a FXML souborů
- 2. Použití JavaFX komponent a layoutů pro zobrazení cvičení a výsledků
- 3. HTTP komunikace s mikroslužbami pomocí Java HTTP klienta

#### Messaging

- RabbitMQ přenáší zprávy mezi službami (např. notifikace po delší nečinnosti)
- 2. **Asynchronní zpracování** služby mohou zpracovávat události bez nutnosti přímé synchronní vazby

## Hlavní entity aplikace

### 1. Uživatel (User)

**Popis:** Základní entita reprezentující každého uživatele aplikace. Uživatel má přiřazenou roli, která určuje jeho přístup k funkcím systému.

#### **Atributy:**

- user\_id (UUID) jednoznačný identifikátor uživatele
- username (String) zobrazované jméno uživatele
- email (String) unikátní e-mailová adresa
- password\_hash (String) bezpečně uložené heslo
- role (Enum: user, admin) uživatelská role
- created\_at (Timestamp) datum registrace
- last\_login (Timestamp) poslední přihlášení

### 2. Tréninková relace (TrainingSession)

Popis: Entita představující jedno konkrétní spuštěné cvičení (trénink) uživatele.

#### **Atributy:**

- session\_id (UUID) jednoznačný identifikátor relace
- user\_id (UUID, FK → User) odkaz na uživatele
- type (Enum: vision, hearing) typ tréninku
- start\_time (Timestamp) začátek cvičení
- end\_time (Timestamp) konec cvičení
- score (Integer) výsledek tréninku

### 3. Výsledek cvičení (TrainingResult)

**Popis:** Podrobnější výstup z tréninku s metrikami jako přesnost, reakční čas nebo úspěšnost.

#### **Atributy:**

- result id (UUID) identifikátor výsledku
- session\_id (UUID, FK → TrainingSession) odkaz na trénink
- reaction\_time\_ms (Integer) průměrný čas reakce
- accuracy\_percent (Float) procentuální úspěšnost

## 4. Notifikace (Notification)

Popis: Systémové upozornění uživateli – např. připomenutí, že je čas na další trénink.

#### **Atributy:**

- notification\_id (UUID) identifikátor notifikace
- user\_id (UUID, FK → User) cílový uživatel
- type (Enum: reminder, info) typ notifikace
- message (String) obsah zprávy
- scheduled\_at (Timestamp) plánovaný čas odeslání
- status (Enum: pending, sent, read) stav notifikace

## Popis služeb systému

#### 1. User Service

Popis: Spravuje registraci, přihlášení a správu základních informací o uživateli.

#### **Funkcionality:**

- Registrace nových uživatelů (POST /api/auth/register)
- Přihlášení uživatelů (POST /api/auth/login)
- Získání a aktualizace profilu přihlášeného uživatele (GET/PUT /api/users/me)

Použité technologie: Java 17, Spring Boot, PostgreSQL

#### 2. Auth Middleware

**Popis:** Jednoduchá vrstva ověření, že uživatel je přihlášený (např. kontrola session nebo identifikátoru).

#### **Funkcionality:**

- Ověření, že požadavek obsahuje platný identifikátor uživatele
- Odmítnutí přístupu při chybějící nebo neplatné identifikaci (401 Unauthorized)

Použité technologie: Java 17, Spring Boot

## 3. Training Service

**Popis:** Zpracovává logiku tréninků (zrakových a sluchových), zaznamenává výsledky a historii relací.

#### **Funkcionality:**

- Spuštění nového tréninku (POST /api/trainings/start)
- Zaznamenání výsledku tréninku (POST /api/trainings/:id/result)
- Načtení historie tréninků (GET /api/trainings/history)
- Získání detailu relace (GET /api/trainings/:id)

Použité technologie: Java 17, Spring Boot, PostgreSQL, Spring Data JPA

### 4. Notification Service

**Popis:** Zodpovídá za odesílání notifikací uživatelům, např. připomenutí plánovaného tréninku.

#### **Funkcionality:**

- Plánování a odesílání připomínek (SEND zpráva přes RabbitMQ)
- Příjem asynchronních požadavků od jiných služeb
- Správa notifikační fronty

Použité technologie: Java 17, Spring Boot, RabbitMQ, Spring AMQP

### 5. Desktop GUI (JavaFX klient)

Popis: Uživatelské rozhraní aplikace pro spouštění tréninků a zobrazení výsledků.

#### **Funkcionality:**

- Přihlášení/registrace uživatele
- Spuštění zrakového nebo sluchového cvičení
- Zobrazení historie výsledků
- Odesílání požadavků na REST API

Použité technologie: JavaFX, FXML, Java HTTP Client (JDK 11+)

### Use-Case scénáře

#### 1. Registrace uživatele

Popis: Nový uživatel se registruje pomocí e-mailu, jména a hesla.

#### **Kroky:**

- 1. Uživatel zadá registrační formulář: jméno, e-mail, heslo.
- 2. Systém ověří validitu údajů.
- 3. Systém vytvoří nového uživatele v databázi s výchozí rolí.
- 4. Uživatel je automaticky přihlášen nebo přesměrován na přihlášení.

Výsledek: Uživatel je zaregistrován a připraven používat aplikaci.

Služby: User Service, Auth Middleware

#### 2. Přihlášení uživatele

Popis: Existující uživatel se přihlašuje pomocí e-mailu a hesla.

#### **Kroky:**

- 1. Uživatel zadá e-mail a heslo.
- 2. Systém ověří, že údaje odpovídají uloženému záznamu.
- 3. Uživatel je přihlášen a přesměrován na hlavní obrazovku.

Výsledek: Uživatel získá přístup ke svému účtu.

Služby: User Service, Auth Middleware

#### 3. Spuštění tréninku

Popis: Uživatel spustí cvičení zaměřené na zrak nebo sluch.

#### **Kroky:**

- 1. Uživatel si vybere typ tréninku (zrakový / sluchový).
- 2. Systém vytvoří záznam nové tréninkové relace.
- 3. Desktopová aplikace zobrazí trénink a sleduje výsledek.
- 4. Po ukončení se výsledek odesílá na server.

**Výsledek:** Tréninková relace je zaznamenána v systému.

Služby: Training Service, Desktop GUI

#### 4. Uložení výsledku tréninku

**Popis:** Po skončení tréninku je výsledek uložen do databáze.

#### **Kroky:**

- 1. Klient odešle metriky (např. skóre, čas) na endpoint pro výsledky.
- 2. Systém vytvoří nový záznam výsledku a propojí ho s relací.
- 3. Výsledek je uložen a připraven k zobrazení.

Výsledek: Systém uchová výsledek daného tréninku pro pozdější analýzu.

Služby: Training Service

### 5. Připomenutí tréninku

Popis: Systém odešle uživateli upozornění, že je čas na další trénink.

#### **Kroky:**

- 1. Jiná služba (např. plánovač) odešle zprávu do RabbitMQ.
- 2. Notification Service zpracuje zprávu a připraví notifikaci.
- 3. Uživatel je informován (např. zobrazením zprávy v GUI).

Výsledek: Uživatel obdrží upozornění na trénink.

Služby: Notification Service

## Databázové schéma

(Entity-Relationship Diagram)

1. Tabulka: Users

| Sloupec    | Тур               | Popis                                               |
|------------|-------------------|-----------------------------------------------------|
| user_id    | UUID (PK)         | Jedinečný identifikátor uživatele                   |
| name       | String            | Jméno uživatele                                     |
| email      | String (unikátní) | E-mailová adresa                                    |
| password   | String            | Heslo (plaintext nebo základní hash, podle potřeby) |
| created_at | Timestamp         | Datum registrace                                    |
| last_login | Timestamp         | Datum posledního přihlášení                         |

## 2. Tabulka: TrainingSessions

| Sloupec    | Тур               | Popis                          |
|------------|-------------------|--------------------------------|
| session_id | UUID (PK)         | Jedinečný identifikátor relace |
| user_id    | UUID (FK → Users) | Odkaz na uživatele             |
| type       | Enum              | Typ cvičení (vision, hearing)  |
| start_time | Timestamp         | Čas zahájení tréninku          |
| end_time   | Timestamp         | Čas ukončení tréninku          |
| created_at | Timestamp         | Datum vytvoření relace         |

## 3. Tabulka: TrainingResults

| Sloupec       | Тур                          | Popis                       |
|---------------|------------------------------|-----------------------------|
| result_id     | UUID (PK)                    | Identifikátor výsledku      |
| session_id    | UUID (FK → TrainingSessions) | Odkaz na tréninkovou relaci |
| reaction_time | Integer (ms)                 | Průměrný čas reakce         |
| accuracy      | Float (%)                    | Úspěšnost v procentech      |
| score         | Integer                      | Výsledné skóre              |
| created_at    | Timestamp                    | Datum uložení výsledku      |

### 4. Tabulka: Notifications

| Sloupec         | Тур               | Popis                      |
|-----------------|-------------------|----------------------------|
| notification_id | UUID (PK)         | Identifikátor notifikace   |
| user_id         | UUID (FK → Users) | Cílový uživatel            |
| type            | Enum              | Typ (reminder, info)       |
| message         | String            | Obsah zprávy               |
| scheduled_at    | Timestamp         | Plánovaný čas odeslání     |
| status          | Enum              | Stav (pending, sent, read) |

### Vztahy mezi tabulkami

- User má mnoho tréninkových relací (1:N, users.id → training\_sessions.user\_id)
- 2. User má mnoho notifikací (1:N, users.id  $\rightarrow$  notifications.user\_id)
- 3. TrainingSession má mnoho výsledků (1:N, training\_sessions.id  $\rightarrow$  training\_results.session\_id)

# UML diagramy systému

Pro lepší přehlednost a pochopení návrhu systému Sense break byly vytvořeny UML diagramy. Diagramy pokrývají základní strukturu systému, vztahy mezi hlavními entitami, architekturu komponent a hlavní scénáře použití.

## Přehled diagramů

| Diagram                                    | Popis                                                                                                          |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Class Diagram                              | Struktura hlavních entit systému (User, TrainingSession,<br>TrainingResult, Notification) a jejich vztahů.     |
| Component Diagram                          | Rozložení systému na hlavní komponenty (Desktop klient, mikroslužby, databáze, messaging) a jejich komunikaci. |
| Sequence Diagram –<br>User Service         | Registrace a přihlášení uživatele – komunikace mezi<br>Desktop klientem, User Service a databází.              |
| Sequence Diagram –<br>Training Service     | Spuštění tréninku – vytvoření a uložení metadat tréninku.                                                      |
| Sequence Diagram –<br>Result Service       | Uložení výsledku tréninku – validace a uložení výsledku do<br>databáze.                                        |
| Sequence Diagram –<br>Notification Service | Odeslání notifikace – příjem zprávy z RabbitMQ a předání upozornění uživateli.                                 |

### 1. Class Diagram



## 2. Component Diagram



### 3. Sequence Diagrams:

#### **User Service**



#### **Training Service**



#### **Result Service**



#### **Notification Service**



# Funkční požadavky

Definují, **co systém musí dělat** – tedy hlavní funkcionalitu.

| ID | Funkční požadavek              | Popis                                                             |
|----|--------------------------------|-------------------------------------------------------------------|
| F1 | Registrace uživatele           | Uživatel se může zaregistrovat zadáním jména,<br>e-mailu a hesla. |
| F2 | Přihlášení uživatele           | Registrovaný uživatel se může přihlásit do systému.               |
| F3 | Spuštění tréninku              | Uživatel může spustit zrakový nebo sluchový trénink.              |
| F4 | Uložení výsledku<br>tréninku   | Systém uloží výsledky tréninku (reakční čas, skóre, přesnost).    |
| F5 | Zobrazení historie<br>tréninků | Uživatel může zobrazit historii svých dokončených tréninků.       |
| F6 | Plánování notifikací           | Uživatel může naplánovat připomenutí na trénink.                  |
| F7 | Odeslání notifikace            | Systém pošle uživateli připomenutí skrze Notification Service.    |

# Nefunkční požadavky

Definují **jak systém funguje** – výkonnost, bezpečnost, spolehlivost atd.

| ID  | Nefunkční požadavek        | Popis                                                                       |
|-----|----------------------------|-----------------------------------------------------------------------------|
| NF1 | Hashování hesel            | Hesla musí být uložena bezpečně pomocí<br>hashovacího algoritmu.            |
| NF2 | Autentizace                | Přístup k API je chráněn pomocí ověření<br>uživatele (bez RBAC).            |
| NF3 | Dostupnost systému         | Systém by měl být dostupný 24/7.                                            |
| NF4 | Responzivní GUI            | Desktopová aplikace musí být přehledná a<br>funkční na různých rozlišeních. |
| NF5 | Škálovatelnost<br>backendu | Backend by měl být připraven běžet v<br>mikroslužbové architektuře.         |
| NF6 | Zabezpečení                | Ochrana proti běžným útokům (např. XSS, CSRF).                              |
| NF7 | Rychlá odezva systému      | Odezva API musí být < 500 ms při běžném<br>zatížení.                        |
| NF8 | Zálohování                 | Data v databázi musí být pravidelně zálohována.                             |
| NF9 | Zpracování chyb            | API musí vracet konzistentní chybové hlášky (4xx, 5xx).                     |