SIGNAL PROCESSING Through GATE

EE1205-TA Group

 $Author:\ Sayyam\ Palrecha$

Copyright ©2024 by Sayyam Palrecha

 ${\rm https://creative commons.org/licenses/by-sa/3.0/}$

 $\quad \text{and} \quad$

 $\rm https://www.gnu.org/licenses/fdl-1.3.en.html$

Contents

In	ntroduction	
1	Harmonics	1
2	Filters	3
3	Z-transform	5
4	Systems	7
5	Sequences	13
6	Sampling	15
7	Contour Integration	17
8	Laplace Transform	19
9	Fourier transform	21

Introduction

This book provides solutions to signal processing problems in GATE.

Harmonics

Z-transform

Systems

4.1 The damping ratio and undamped natural frequency of a closed loop system as shown in the figure, are denoted as ζ and ω_n , respectively. The values of ζ and ω_n are

- (a) $\zeta = 0.5$ and $\omega_n = 10$ rad/s
- (b) $\zeta = 0.1$ and $\omega_n = 10$ rad/s
- (c) $\zeta = 0.707$ and $\omega_n = 10$ rad/s
- (d) $\zeta = 0.707$ and $\omega_n = 100$ rad/s

(GATE EE 2022)

Solution: We will use Mason's Gain Formula to calculate the transfer function of

Parameter	Description	Values
m	load of system	
k	stiffness of system	
ω_n	Natural frequency	$\sqrt{\frac{k}{m}}$
ζ	Damping ratio	$\frac{c}{2m\omega_n}$
y(t)	Output of system	1
$\mathbf{x}(t)$	Input to the system	
c	Damping coefficient	
T(s)	Transfer function of system	$\frac{Y(s)}{R(s)}$

Table 4.1: Parameter Table

this system. First converting the given diagram to a signal flow graph :

Figure 4.1: Signal Flow Diagram

Mason's Gain Formula is given by:

$$H(s) = \sum_{i=1}^{N} \left(\frac{P_i \Delta_i}{\Delta}\right)$$
 (4.1)

This signal flow graph has only one forward path whose gain is given by :

$$P_{1} = \frac{10}{s} \frac{10}{s}$$

$$= \frac{100}{s^{2}}$$
(4.2)

$$=\frac{100}{s^2} \tag{4.3}$$

Parameter	Description
N	Number of forward paths
L	Number of loops
P_k	Forward path gain of k^{th} path
Δ_k	Associated path factor
Δ	Determinant of the graph

Table 4.2: Parameter Table - Mason's Gain Law

Parameter	Formula
Δ	$1 + \sum_{k=1}^{L} \left((-1)^k \text{ Product of gain of groups of k isolated loops} \right)$
Δ_k	Δ part of graph that is not touching k^{th} forward path

Table 4.3: Formula Table - Mason's Gain Law

The loop gain for loop between Node-2 and Node-3 is :

$$L_1 = \frac{10}{s} (-1)$$

$$= -\frac{10}{s}$$
(4.4)
(4.5)

$$= -\frac{10}{s} \tag{4.5}$$

The loop gain for loop between Node-1 and Node-4 is :

$$L_1 = \frac{10}{s} \frac{10}{s} (-1)$$

$$= -\frac{100}{s^2}$$
(4.6)

$$= -\frac{100}{s^2} \tag{4.7}$$

Using Table 4.3, Δ is:

$$\Delta = 1 - \left(-\frac{10}{s} - \frac{100}{s^2} \right) \tag{4.8}$$

$$=1+\frac{10}{s}+\frac{100}{s^2}\tag{4.9}$$

There are no two isolated loops available. Hence all further terms will b zero.

As both the loops are in contact with the only forward path,

$$\Delta_1 = 1 \tag{4.10}$$

Using equation (4.1):

$$H(s) = \frac{\frac{100}{s^2}}{1 + \frac{10}{s} + \frac{100}{s^2}}$$

$$= \frac{100}{s^2 + 10s + 100}$$
(4.11)

$$=\frac{100}{s^2+10s+100}\tag{4.12}$$

Referring to Table 4.1, the general equation of the damping system is second order and can be written as:

$$m\ddot{y}(t) + c\dot{y}(t) + ky(t) = x(t) \tag{4.13}$$

Take the Laplace transform and solve for $\frac{Y(s)}{X(s)}$:

$$\frac{Y(s)}{X(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
(4.14)

$$\implies H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \tag{4.15}$$

Comparing equations (4.12) and (4.15) ,

$$\omega_n^2 = 100 \tag{4.16}$$

$$\implies \omega_n = 10 \text{ rad/s}$$
 (4.17)

$$2\zeta\omega_n = 10\tag{4.18}$$

$$\implies \zeta = 0.5 \tag{4.19}$$

Figure 4.2: Magnitude plot

Figure 4.3: Phase plot

Sampling

Contour Integration

Fourier transform