MINISTERUL EDUCAȚIEI, CERCETĂRII, TINERETULUI ȘI SPORTULUI

Olimpiada de Fizică - Etapa națională 1 – 6 aprilie 2012, Ilfov

PROBA TEORETICĂ

Barem de evaluare şi de notare

Se punctează în mod corespunzător oricare altă modalitate de rezolvare, care conduce la rezultate corecte

Problema I A. Datele pentru calculator

	71. Duttu petitru tuituutoi		
Nr. item	Sarcina de lucru nr.1		Punctaj
1.a.	Pentru: reprezentarea binară cu "cuvinte" de opt biţi a numărului 217 $1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 217$ reprezentarea grafică	0,20p	0,60p
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,40p	
1.b.	Pentru:		1,20p
	• $\frac{U_{efectiv}^2 \cdot T}{R} = Q$, sau $\frac{U_{efectiv}^2 \cdot T}{R} = \frac{1}{R} \int_{0}^{T} (u(t))^2 \cdot dt$	0,40p	1,200
	$\frac{u^2}{R}$ $\frac{U_1^2}{R}$ 0 $\frac{1}{2\tau}$ 3τ 4τ 5τ 6τ 7τ 8τ t căldura Q disipată pe rezistorul cu rezistența electrică R într-o perioadă T este dată de suma ariilor dreptunghiurilor marcate pe figură $Q = \frac{U_1^2 \cdot 5\tau}{R}$	0,40p	
	$U_{efectiv} = U_1 \cdot \sqrt{\frac{5}{8}}$ $U_{efectiv} = 0.40 \text{ V}$	0,20p 0,20p	
1.c.	Pentru:	-,0	0,40p
	■ 255 ₁₀ = 11111111 ₂	0,20p	
	$ U_{efectiv,255} = 0.50V $	0,20p	

B. Simetrie

	B. Simetrie	
Nr. item	Sarcina de lucru nr.1	Punctaj
1.a.	Pentru:	1,20p
	precizarea nodurilor aflate - din motive de simetrie – la acelaşi potențial I,O,E şi U,L,D	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	• expresia rezistenței electrice echivalente $R_{P-R} = \frac{4 \cdot R_1 + R_2}{6}$ 0,40	
1.b.	Pentru: precizarea nodurilor aflate - din motive de simetrie – la acelaşi potenţial <i>I,M</i> şi respectiv <i>H,B</i>	1,40p
	$\begin{bmatrix} R_1 & R_1 \\ \hline R_1 & R_1 \\ \hline R_2 & R_2 \\ \hline R_2 & R_2 \end{bmatrix}$ $(0,60)$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$ \begin{array}{c c} \frac{2R_1}{5} + R_2 \\ \hline S & R_2 & C \end{array} $ 0,20	0
	expresia rezistenței electrice echivalente $R_{S-C} = \frac{(2 \cdot R_1 + 5 \cdot R_2) \cdot R_2}{2(R_1 + 5 \cdot R_2)}$ 0,40	
1.c.	Pentru:	0,40p
	condiția de egalitate a celor două rezistențe electrice echivalente $\frac{4 \cdot R_1 + R_2}{3} = \frac{\left(2 \cdot R_1 + 5 \cdot R_2\right) \cdot R_2}{R_1 + 5 \cdot R_2}$ 0,20)	
	• $R_2 = 1.73 \Omega$ 0,20)

Nr. Sarcina de lucru nr.2		Punctaj
Pentru: precizarea nodurilor aflate - din motive de simetrie - la acelaşi potenţia şi <i>U,L,D</i> P Z ₁	0,40p	2,60p
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,20p	
expresia impedanței bobinei - scrisă sub formă de număr complex $Z_1^* = R_L + i \cdot X_L$	0,40p	
• expresia impedanței condensatorului, considerat ideal $Z_2^* = -\frac{i}{2 \cdot \pi}$	<i>v</i> ⋅ <i>C</i> 0,40p	
$Z_{P-R}^* = \frac{Z_1^*}{3} + \frac{Z_2^*}{6} + \frac{Z_1^*}{3}$	0,40p	
$Z_{P-R}^* = \frac{4 \cdot R_L + i \cdot \left(4 \cdot X_L - \frac{1}{2 \cdot \pi \cdot \nu \cdot C}\right)}{6}$	0,20p	
• condiția de rezonanță $4 \cdot X_L - \frac{1}{2 \cdot \pi \cdot \nu \cdot C} = 0$	0,20p	
■ expresia capacității condensatorului $C = \frac{1}{8 \cdot \pi \cdot \nu \cdot X_L}$	0,20p	
• $C = 0.80 mF$	0,20p	
2.b. Pentru: • rezistența electrică echivalentă a rețelei $R'_{P-R} = \frac{2 \cdot R_L}{3}$	0,20p	0,40p
• $R_{P-R}^{'} = 2,00\Omega$	0,20p	
2.c. Pentru: ■ P _{reactiv} = 0,00 VAR	0,20p	0,80p
$ P_{aparent} = \frac{U_0^2}{R_{P-R}'} $	0,20p	
$P_{activ} = 40,50 W$ $P_{aparent} = 40,50 VA$	0,20p 0,20p	
Oficiu		1,00p
TOTAL Problema I		10p

© Barem de evaluare şi de notare propus de: Dr. Delia DAVIDESCU – Centrul Național de Evaluare şi Examinare – M E C T S Dr. Constantin COREGA – Colegiul Național "Emil Racoviță", Cluj – Napoca Conf. univ. dr. Adrian DAFINEI - Facultatea de Fizică – Universitatea București

MINISTERUL EDUCAȚIEI, CERCETĂRII, TINERETULUI ȘI SPORTULUI

Olimpiada de Fizică - Etapa națională 1 – 6 aprilie 2012, Ilfov

PROBA TEORETICĂ

Barem de evaluare şi de notare

Se punctează în mod corespunzător oricare altă modalitate de rezolvare, care conduce la rezultate corecte

Problema a II-a A. Fluierul

Nr. item	Sarcina de lucru nr.1	Punctaj
1.a.	Pentru:	1,60p
	modelarea fluierului, în situația în care se astupă deschizăturile N și P , printr-un tub sonor deschis la ambele capete, având lungimea $\begin{cases} \ell_{MQ} = \ell \\ \ell_{MQ} = 38 cm \end{cases}$ 0,	20p
	condiția de apariție a ventrelor la ambele capete ale fluierului de lungime ℓ $\ell = k \cdot \frac{\lambda_k}{2} \text{ , unde } k = 1, 2, 3, \dots$.40p
	relația dintre viteza c de propagare a undelor sonore, frecvența v_k și lungimea de undă λ_k a acestora $\lambda_k = \frac{c}{v_k}$	40p
		,20p
	expresia frecvenței sunetului fundamental $v_1 = \frac{k \cdot c}{2 \cdot \ell}$ 0,	,20p
	$v_1 = 447 Hz$ 0,	,20p
1.b.	Pentru: modelarea fluierului, în cazul când nu se astupă deschizăturile N și P , printrun tub sonor deschis la ambele capete, având lungimea $\begin{cases} \ell_{MN} = \frac{\ell}{2} \\ \ell_{MN} = 19 cm \end{cases}$ 0,	,20p
	expresia lungimii de undă pentru sunetele emise $\begin{cases} \lambda_k = \frac{2 \cdot \ell_{MN}}{k} \\ \lambda_k = \frac{\ell}{k} \end{cases}, \text{ unde } k = 1, 2, 3, \dots \end{cases}$ 0,	,20p
		,20p

1.c.	Pentru:		0,80p
	expresia pentru frecvenţele sunetelor emise, în cazul când se astupă doar deschizătura P a fluierului $ \begin{cases} v_k = \frac{k \cdot c}{2 \cdot \ell_{MN}} \\ v_k = \frac{k \cdot c}{\ell} \end{cases}, \text{ unde } k = 1,2,3, $	0,20p	
	modelarea fluierului, în cazul când se astupă numai deschizătura N , printr-un tub sonor deschis la ambele capete, având lungimea $\ell_{MP} = \frac{3 \cdot \ell}{4}$	0,20p	
	expresia pentru frecvenţele sunetelor emise, în cazul când se astupă doar deschizătura N a fluierului $v_k' = \frac{2}{3} \cdot \frac{k \cdot c}{\ell}$, unde $k = 1, 2, 3,$	0,20p	
	$ \begin{bmatrix} \frac{v_k}{v_k'} = \frac{3}{2} \\ \frac{v_k}{v_k'} = 1,5 \end{bmatrix} $	0,20p	

B. Oscilațiile lustrei

Nr. item	Sarcina de lucru nr.1		Punctaj
1.a.	Pentru: mişcarea centrului O de masă al cadrului este o mişcare oscilatorie armonică a unui punct material cu masa $4m$, legat de un fir cu lungimea constantă $\ell\sqrt{2}$ fixat la un capăt $ = $	0,60p 0,40p	1,00р
Nr. item	Sarcina de lucru nr.2		Punctaj
2.a.	Pentru:		0,40p
	- coordonatele vârfului C al cadrului în poziția inițială $C(\ell,0,0)$	0,40p	
2.b.	Pentru: coordonatele vârfului C'' al cadrului în pentru poziția rotită, exprimate în funcție de h și φ $C''(\ell \cos \varphi, \ell \sin \varphi, h)$	0,60p	0,60p
2.c.	Pentru:		1,00p
	$\bullet h = \ell \sqrt{2} \left[1 - \sqrt{\cos \varphi} \right]$	0,20p	1,000
	$ CC'' = 2\ell\sqrt{1-\sqrt{\cos\varphi}} $	0,20p	
	$ CC'' = 2\ell\sqrt{2}\sin\frac{\alpha}{2} $	0,20p	
		0,20p	

	$\alpha = 2 \arcsin \left(\frac{\sqrt{1 - \sqrt{\cos \varphi}}}{\sqrt{2}} \right)$ 0,20p	
2.d.	Pentru: coordonatele vârfului C'' al cadrului, exprimate în funcție de ℓ și α	0,60p
	$ C'' \left(\ell \left(1 - 2 \sin^2 \frac{\alpha}{2} \right)^2, \ell \sqrt{1 - \left(1 - 2 \sin^2 \frac{\alpha}{2} \right)^4}, 2\sqrt{2} \ell \sin^2 \frac{\alpha}{2} \right) $ $0,60p$	
Nr. item	Sarcina de lucru nr.3	Punctaj
3.a.	Pentru:	1,20p
	• $h = 0$, pentru unghiuri α mici 0,20p	
	T = mg 0,20p	
	modulul componentei din planul cadrului, pentru fiecare dintre tensiuni $_{T'}$ _ $mg\varphi$ 0,20p	
	$T' = \frac{mg\varphi}{\sqrt{2}}$	
	expresia modulului momentului forțelor care rotesc cadrul, atunci când firele de	
	suspensie sunt rotite cu unghiul α $M = m \cdot g \cdot \alpha \cdot \ell \cdot = \frac{m \cdot g \cdot \ell}{\sqrt{2}} \cdot \varphi$ 0,40p	
3.b.	Pentru:	0,40p
	lungimea s a arcului de cerc descris de oricare dintre corpurile de masă m 0,20p	
3.c	Pentru:	0,40p
	$\ddot{\varphi} + \frac{g}{\sqrt{2} \cdot \ell} \cdot \varphi = 0 $ 0,20p	
3.d	Pentru:	0,40p
	• expresia pulsației mişcării oscilatorii a cadrului $\omega_r = \sqrt{\frac{g}{\sqrt{2} \cdot \ell}}$ 0,20p	
	expresia perioadei mişcării oscilatorii a cadrului $T_r = 2\pi \sqrt{\frac{\sqrt{2} \cdot \ell}{g}}$ 0,20p	
Ofici		1,00p
TOT	AL Problema a II-a	10p

© Barem de evaluare şi de notare propus de:

Dr. Delia DAVIDESCU – Centrul Național de Evaluare și Examinare – M E C T S Dr. Constantin COREGA – Colegiul Național "Emil Racoviță", Cluj – Napoca Conf. univ. dr. Adrian DAFINEI - Facultatea de Fizică – Universitatea București

MINISTERUL EDUCAȚIEI, CERCETĂRII, TINERETULUI ȘI SPORTULUI

Olimpiada de Fizică - Etapa națională 1 – 6 aprilie 2012, Ilfov

PROBA TEORETICĂ

Barem de evaluare și de notare

Se punctează în mod corespunzător oricare altă modalitate de rezolvare, care conduce la rezultate corecte

Problema a III-a A. Anemometru Sonic

Nr.	Sarcina de lucru nr.1		Punctaj
item 1.a.	Pentru:		1,00p
	Când sunetul se propagă în sensul vântului $t_{01} = \frac{L}{c+v_d}$; în sens contrar $t_{02} = \frac{L}{c-v_d}. \text{ Astfel},$ $v_a = \frac{L}{2} \frac{t_{02} - t_{01}}{t_{02}t_{01}} \text{ și } c = \frac{L}{2} \frac{t_{02} + t_{01}}{t_{02}t_{01}}$	1,00p	, ,
1.b.	Pentru:		0,50p
),50p	-
Nr. item	Sarcina de lucru nr.2		Punctaj
2.a.	Pentru:		2,00p
	\vec{v}_{AB} \vec{v}_{l} \vec{v}_{a} \vec{v}_{a} \vec{v}_{a} \vec{v}_{a} \vec{v}_{l}	1,00p	
	În expresiile de la punctul 1.a. se fac înlocuirile: $\begin{array}{c} \bullet & v_a \rightarrow v_l \\ c \rightarrow c \cdot \cos \theta \end{array}$),50p	
	Astfel: $v_L = \frac{L}{2} \frac{t_2 - t_1}{t_2 t_1}$),50p	
2.b.	Pentru: $c \cdot \cos \theta = \frac{L}{2} \cdot \frac{t_2 + t_1}{t_2 \cdot t_1}, c \cong \frac{L}{2} \cdot \frac{t_2 + t_1}{t_2 \cdot t_1}$ (cum $v_a << c \Rightarrow \cos \theta \approx 1!$)),50p	0,50p
2.c.	Pentru:),50p	0,50p
2.d.	Pentru: Picăturile de ploaie determină modificare vitezei de propagare a sunetului!),50p	0,50p

Nr. item	Sarcina de lucru nr.3		Punctaj
3.a.	Pentru:		1,00p
	$c = \sqrt{-\frac{V}{\rho}\frac{\Delta p}{\Delta V}}, pV^{\gamma} = (p + \Delta p)(V + \Delta V)^{\gamma}, V \cdot \Delta p + \gamma p \cdot \Delta V = 0$,50p	
	$-\frac{\Delta p}{\Delta V} = -\gamma \frac{p}{V}, c = \sqrt{\frac{\gamma p}{\rho}} pV = \nu RT, p = \frac{\rho}{\mu_a} RT, c = \sqrt{\frac{\gamma RT}{\mu_a}}$,50p	
3.b.	Pentru:		0,50p
	$T = \frac{c^2 \mu_a}{\gamma R} \Rightarrow T = 293 \text{ K}$,50p	

B. Unda de șoc

Nr. item	Sarcina de lucru nr.1	Punctaj
1.a.	Pentru:	2,50p
	Alegem originea axei <i>Ox</i> conform figurii. Drept moment iniţial <i>t</i> = 0 considerăm momentul când unda ajunge la pană. Astfel, forţa care va acţiona o,50p asupra penei va depinde doar de coordonata <i>x</i> a frontului undei de şoc.	
	Proiecția pe orizontală a acestei forțe este $F_x = p_0 cx t g\alpha = p_0 cx \frac{a}{b} = \frac{p_0 ca}{b} vt$, unde $x = vt$, este coordonata frontului de undă la momentul t .	
	Când întreaga pană se va afla în zona de presiune ridicată, forța rezultantă care va acționa asupra ei va fi zero.	
	Din teorema de variație a impulsului: $F_{med.x} \cdot \Delta t = \Delta p_x \Rightarrow v_x = \frac{F_{med.x} \cdot \Delta t}{m} \cdot 0,50p$	
	Decoarece forța depinde linear de timp $F_{med,x} = \frac{F_{max}}{2} = \frac{p_0 ca}{2}$ $v_x = \frac{1}{m} \cdot \frac{p_0 ca}{2} \Delta t = \frac{p_0 cab}{2m}$ 0,50p	
Ofici	u	1,00p
TOT	AL Problema a III-a	10p

© Barem de evaluare şi de notare propus de:

Dr. Delia DAVIDESCU – Centrul Național de Evaluare și Examinare – M E C T S Dr. Constantin COREGA – Colegiul Național "Emil Racoviță", Cluj – Napoca Conf. univ. dr. Adrian DAFINEI - Facultatea de Fizică – Universitatea București