

Applications

- Brushed Motor drive applications
- BLDC Motor drive applications
- Battery powered circuits
- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches
- DC/DC and AC/DC converters
- DC/AC Inverters

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free

www.irf.com

Strong/RFET™IRFB7430PbF

HEXFET® Power MOSFET

V _{DSS}	40V
R _{DS(on)} typ.	1.0m Ω
max.	1.3m Ω
I _{D (Silicon Limited)}	409A①
I _{D (Package Limited)}	195A

G	D	S
Gate	Drain	Source

Ordering Information

Base Part Number	Package Type	Standard Pac	Complete Part Number	
		Form		
IRFB7430PbF	TO-220	Tube	50	IRFB7430PbF

V_{GS,} Gate -to -Source Voltage (V) **Fig 1.** Typical On-Resistance vs. Gate Voltage

Fig 2. Maximum Drain Current vs. Case Temperature

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	409 ^①	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	289①	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Wire Bond Limited)	195	A
I _{DM}	Pulsed Drain Current ②	1524	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	375	W
	Linear Derating Factor	2.5	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting torque, 6-32 or M3 screw	10lbf· in (1.1N· m)	

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ③	760	mJ
E _{AS (tested)}	Single Pulse Avalanche Energy Tested Value ®	1360	
I _{AR}	Avalanche Current ②	See Fig. 14, 15, 22a, 22b	Α
E _{AR}	Repetitive Avalanche Energy ②		mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		0.40	
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.014		V/°C	Reference to 25°C, I _D = 1.0mA ^②
В			1.0	1.3	mΩ	V _{GS} = 10V, I _D = 100A ⑤
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.2			$V_{GS} = 6.0 \text{ V}, I_D = 50 \text{ A}$ §
V _{GS(th)}	Gate Threshold Voltage	2.2		3.9	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	$V_{DS} = 40V, V_{GS} = 0V$
				150		$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
R_{G}	Internal Gate Resistance		2.1		Ω	

- \odot Calculated continuous current based on maximum allowable junction \odot Pulse width \leq 400 μ s; duty cycle \leq 2%. temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
- 2 Repetitive rating; pulse width limited by max. junction temperature.
- R_G = 50 $\!\Omega_{\rm ,}$ I_{AS} = 100 A, V_{GS} =10 V.
- $\textcircled{4} \quad I_{SD} \leq 100 \text{A}, \ di/dt \leq 990 \text{A}/\mu \text{s}, \ V_{DD} \leq V_{(BR)DSS}, \ T_{J} \leq 175^{\circ} \text{C}.$

- © Coss eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- $\ensuremath{\mathfrak{D}}$ Coss eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- $\ \ \, \mbox{$\mathbb{R}$}_{\theta} \, \mbox{is measured at T_J approximately 90°C...}$
- 9 This value determined from sample failure population, starting T_J = 25°C, L= 0.15mH, R_G = 50 Ω , I_{AS} = 100A, V_{GS} =10V.

2 www.irf.com

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	150			S	$V_{DS} = 10V, I_{D} = 100A$
Q_g	Total Gate Charge		300	460	nC	I _D = 100A
Q_{gs}	Gate-to-Source Charge		77			V _{DS} =20V
Q_{gd}	Gate-to-Drain ("Miller") Charge		98			V _{GS} = 10V ⑤
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		202			$I_D = 100A, V_{DS} = 0V, V_{GS} = 10V$
t _{d(on)}	Turn-On Delay Time		32		ns	$V_{DD} = 20V$
t _r	Rise Time		105			$I_D = 30A$
$t_{d(off)}$	Turn-Off Delay Time		160			$R_G = 2.7\Omega$
t_f	Fall Time		100			V _{GS} = 10V ^⑤
C _{iss}	Input Capacitance		14240		pF	$V_{GS} = 0V$
Coss	Output Capacitance		2130			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		1460			f = 1.0 MHz
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related) ②		2605			$V_{GS} = 0V$, $V_{DS} = 0V$ to 32V \odot
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)®		2920			V _{GS} = 0V, V _{DS} = 0V to 32V ⑥

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			394①	Α	MOSFET symbol	
	(Body Diode)					showing the	
I _{SM}	Pulsed Source Current			1576	Α	integral reverse	
	(Body Diode) ②					p-n junction diode.	
V_{SD}	Diode Forward Voltage		0.86	1.2	V	$T_J = 25$ °C, $I_S = 100$ A, $V_{GS} = 0$ V $^{\circ}$	
dv/dt	Peak Diode Recovery ®		2.7		V/ns	$T_J = 175$ °C, $I_S = 100$ A, $V_{DS} = 40$ V	
t _{rr}	Reverse Recovery Time		52		ns	$T_J = 25^{\circ}C$ $V_R = 34V$,	
			52			$T_{J} = 125^{\circ}C$ $I_{F} = 100A$	
Q_{rr}	Reverse Recovery Charge		97		nC	T _J = 25°C di/dt = 100A/μs ⑤	
			97			T _J = 125°C	
I _{RRM}	Reverse Recovery Current		2.3		Α	$T_J = 25$ °C	
t _{on}	Forward Turn-On Time	Intrinsion	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

www.irf.com 3

Fig 3. Typical Output Characteristics

Fig 5. Typical Transfer Characteristics

Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

Fig 4. Typical Output Characteristics

Fig 6. Normalized On-Resistance vs. Temperature

Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

4

Fig 9. Typical Source-Drain Diode Forward Voltage

Fig 11. Drain-to-Source Breakdown Voltage

Fig 10. Maximum Safe Operating Area

Fig 12. Typical C_{OSS} Stored Energy

Fig 13. Typical On-Resistance vs. Drain Current

Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 15. Typical Avalanche Current vs. Pulsewidth

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
- Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

 t_{av} = Average time in avalanche.

 $D = Duty cycle in avalanche = t_{av} \cdot f$

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D\;(ave)} = 1/2\;(\;1.3\text{·BV·I}_{av}) = \triangle\text{T/}\,Z_{thJC}\\ I_{av} = 2\triangle\text{T/}\left[1.3\text{·BV·}Z_{th}\right]\\ E_{AS\;(AR)} = P_{D\;(ave)}\cdot t_{av} \end{split}$$

Fig 17. Threshold Voltage vs. Temperature

Fig. 19 - Typical Recovery Current vs. dif/dt

Fig. 18 - Typical Recovery Current vs. di_f/dt

Fig. 20 - Typical Stored Charge vs. dif/dt

Fig. 21 - Typical Stored Charge vs. dif/dt

Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 22a. Unclamped Inductive Test Circuit

Fig 23a. Switching Time Test Circuit

Fig 24a. Gate Charge Test Circuit

8

Fig 22b. Unclamped Inductive Waveforms

Fig 23b. Switching Time Waveforms

Fig 24b. Gate Charge Waveform

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- SE

 MICHISONING AND TOLERANCING AS PER ASME Y14.5 M- 1994,
 DMCHISONING AND TOLERANCING AS PER ASME Y14.5 M- 1994,
 DMCHISONIS ARE SHOWN IN INCHES [MILLIMETERS].
 LEAD DMCHISON B. DIA & E DO NOT INCLUDE MOLD FLASH
 MOLD FLASH
 SHALL NOT EXCEED, DOS" (10.127) PER DISE. THESE DMCHISONIS ARE
 MALADERD AT THE OUTDRIVOST EXTREMES DO THE PLASTIC BODY.
 DMCHISON SI, DS & cl APPL' TO BASE METAL ONLY.
 CONTROLLING DIMPOSION : NOSES.
 THERMAL PAD CONTOUR OPTIONAL WITHIN DMCHISONIS EHILD & ET
 DMCHISONIS DAY. THE DEFINE A ZONE WHERE STAMPING
 AND SINGULATION IRREGULARITES ARE ALLOWD.

- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (mox.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

	DIMENSIONS					
SAMBOL	MILLIM	ETERS	INC	INCHES		
	Min.	MAX.	MIN.	MAX.	NOTES	
A	3,56	4,83	,140	.190		
A1	0,51	1.40	,020	.055		
A2	2.03	2.92	.080	.115		
ь	0.38	1.01	.015	.040		
b1	0.38	0.97	.015	.038	5	
b2	1,14	1,78	.045	.070		
b3	1.14	1.73	.045	.068	5	
c	0.36	0.61	.014	.024		
c1	0.36	0.56	.014	.022	5	
D	14.22	16.51	.560	.650	4	
D1	8.38	9.02	.330	.355		
D2	11.68	12.88	.460	.507	7	
E	9.65	10.67	.380	.420	4,7	
E1	6.86	8.89	.270	.350	7	
E2	-	0,76	-	.030	8	
e	2,54	BSC BSC	SC ,100 BSC			
e1	5,08		.200 BSC			
H1	5.84	6.86	.230	.270	7.8	
L	12.70	14,73	.500	.580		
L1	3,56	4,06	,140	,160	3	
øP	3.54	4.08	.139	.161		
0	2.54	3.42	.100	.135		

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789

ASSEMBLED ON WW 19, 2000 IN THE ASSEMBLY LINE 'C'

Note: 'P' in assembly line position indicates 'Lead - Free'

TO-220AB packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification information†

Qualification level	Industrial††					
	(per JEDEC JESD47F††† guidelines)					
	TO-220 Not applicable					
RoHS compliant	Yes					

- Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105