Theories of failure

1) Maximum principal stress Theory. (Rankinels Theory)

J & Jy (duction max principal stress theory

For brittle material

alg $\frac{E.s.}{a}$

graphical representation. 5,702 (5, is considered) of = to ut (of = tensik),

J= - Jy C. (It of 15 cm present enilei as

52752 (5215 constateron) 3)

Ozas = Ost (Oz is tensile) Be isline Gy Max shear etress Theory. (Gruce (Guest/ Tree ca's Theory) 4)

2)

2-25 < 28+ tar sorte Design

21-25 ₹ 27t

in mateual subject failur occurs to when biascal or Triancial stress occur

anteresterm now atany point in

component = mobile to 229th mode specimen in tension

tost.

TIF 0,1,02,03 are to principal stresser at a point on to component. Then show stress on three different blance are. - 3-01 2 The largest of there stress is

max 04 [742] = 7 Troops

(ie)

 $\frac{\sigma_{1}-\sigma_{2}}{2} = \frac{\sigma_{4}}{2}$ with safety $\frac{\sigma_{1}-\sigma_{2}}{2} = \frac{\sigma_{4}}{2}$ used for finding dimension of component (or) $\sigma_2 - \sigma_3 = \frac{\sigma_{44}}{F_{5}}$

reglecting F.s. tax compressive street

 $\frac{\sigma_1 - \sigma_2}{2} = \sigma_1 2$ $\frac{\sigma_1 - \sigma_2}{2} = \frac{\sigma_2 + \sigma_3}{2} = \frac{\sigma_3 + \sigma_4}{2}$ $\frac{\sigma_2 - \sigma_3}{2} = \frac{\sigma_3 + \sigma_4}{2}$

5-52= Zmax= 36 53-07 = 54

The above equation can be written as 21-05= 7 2At 02-03 = + Oyc=toy(assuming Oyt = Oyc) 23-01 = + off. For uniaxial condition. 02 20, 03 = 0, ... 01= tolt for brown stress and brun. JI-J2 = ± Jost. - (applicable In 2nd 4 4th quodra)

 $\sigma_2 = \pm \sigma_{\text{eff}}$ applicable in 1st 4 3rd quadrant?

In Hard Gradrant.

yieldy will ocem when

21-05 = 7 29t.

compressive.

DC constructed such that

7-02= - TH-

DC is constructed such that

01-02= - Ost.

Triprospt

on xaxes 0, =0, , 0, = 0, t.

similars

In fourth quadrant FAis drawn, such that

J- J2 =+ JH.

Inforced about or ascis-

21 = 08t. 1 25 = 0.

Imprept about yasu's.

02 = -08t- 1 01=0

In to Arst quadrate.

Bounday for hear & foor yher gleony, under. Biaxial strong

01102 = positive.

gueldy will depend on. of on oz whichever is.

grouter in magnitudes

suppose 07702,

7 T 02 7 01.

02 = + Oy+1

ABIS constructed such that of = out

Horizontell line.

BC13 constructed such

that J2 = Jut

similarly in to third graday (

J > 02

of = - aft. (DE 12 coestrates

2 = -08t 0, 202

(Ex 15 constructed,

hoxagen.

In cone of biabuch stress,

If a point with coordinates (07,02) falls.

Outside bexagen failure occurs.

If it falls Inside, It is safe.

Skon diagonal.

line of pure shear (locus of all boing)

Comros pardino to pure shear stress

The off-02 = T12.

The off-1 = -tan 450'

Tay.

GHIS Eanstructed such that. It pourses
through organ and p. moves an angle of
-450. with x asus.

This line is called shown diagonal or have shown.

It intersects Hereagen out two point or x H.
The pt of Intersection of line. (FA) and.
and out is on.

47 tox G1 H 0 = -1 we know $\sigma_1 = -\sigma_2 = \overline{c}_{12}, = \overline{\sigma}_{3t}$ $\sigma_1 - (\sigma_2) = \overline{z}_{12}, \overline{\sigma}_{3t}$ $\sigma_1 = \overline{z}_{12}, \overline{\sigma}_{3t}$ $\sigma_2 = \overline{z}_{12}, \overline{\sigma}_{3t}$ 212 = Oft

since it is not border live. (This is limb.

Value)

Trook = Tot

2.

Maximum Distartion Energy theory

Failure at he mochanical Component subjects.

to biasual. (a1) triasual stresses occur when.

strain Every / unit volume at any point in

te component = strain every of distortion/volume
in se component. of tension foot

in se component. of tension foot

when yielding starts.

03.

for unit emps subjected to three principal atress

0,10,2,0,3.

Total strain Enorgy U of the cube is

G1, G2, G3 -> strain in respective direction.

for direction -1.

along $-1 \neq \sqrt{1}$ E.

Sub (b) In (a)

$$U = \frac{1}{2E} \left[\sigma_1^2 - \mu(\sigma_1\sigma_2 + \sigma_1\sigma_3) + \sigma_2\sigma_3 \right] + \sigma_2^2 - \mu(\sigma_1\sigma_2 + \sigma_2\sigma_3)$$

$$= \frac{1}{2E} \left[\sigma_1^2 + \sigma_2^2 + \sigma_3^2 \right] - 2\mu(\sigma_1\sigma_2 + \sigma_2\sigma_3)$$

$$= \frac{1}{2E} \left[\sigma_1^2 + \sigma_2^2 + \sigma_3^2 \right] - 2\mu(\sigma_1\sigma_2 + \sigma_2\sigma_3)$$
The total ethan Energy resolved into

two component.

$$U_V \rightarrow change at volume with no distribution of the above the property of the change involume.

$$U_V \rightarrow change involume.$$

$$U = U_V + U_d.$$

$$\sigma_2 d.$$

$$\sigma_3 d$$

$$\sigma_3 d$$$$

$$\sigma_{1} = \sigma_{1d} + \sigma_{V}$$

$$\sigma_{2} = \sigma_{2d} + \sigma_{V}$$

$$\sigma_{3} = \sigma_{3d} + \sigma_{V}$$

$$\sigma_{3} = \sigma_{3d} + \sigma_{V}$$

$$\sigma_{4} = \sigma_{3d} + \sigma_{V}$$

$$\sigma_{5} = \sigma_{3d} + \sigma_{V}$$

$$\sigma_{7} = \sigma_{3d} + \sigma_{V}$$

Jid, Jed, Jed came distortion of cube with.

no charge in volume,

JV = resultin volume change-

, - Jian Jan Jad donot change, to volume of the cube.

$$G_{3d} = \frac{1}{E} \left[\sigma_{3d} - \mu \sigma_{1d} + \sigma_{2d} \right],$$

$$\frac{1}{E}\left[\sigma_{1d}+\sigma_{2d}+\sigma_{3d}\right]-2\mu\left[\sigma_{1d}+\sigma_{2d}+\sigma_{3d}\right]=0$$

Substitute (B) IN (O)

$$\frac{1}{1} - \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$$

$$\frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$$

$$\frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$$

$$\frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1}$$

$$\frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1}$$

$$\frac{1}{1} + \frac{1}{1} + \frac{1}{1}$$

$$\frac{1}{1} + \frac{1}{1} + \frac{1}{1}$$

$$\frac{1}{1} + \frac{1}{1} + \frac{1}{1}$$

$$\frac{1}{1} + \frac{1}{1}$$

$$\frac{$$

$$U_{V^{2}} = \frac{3}{2E} (1-2\mu), (\sigma_{1}+\sigma_{2}+\sigma_{3})^{2}$$

$$U_V = \frac{1}{6E} (1-2\mu) (\sigma_{1} + \sigma_{2} + \sigma_{3})^{2} - (m)$$

$$=\frac{1}{2E}\left[\left(\sigma_{1}^{2}\sigma_{2}^{2}+\sigma_{3}^{2}\right)-2h\left(\sigma_{1}\sigma_{2}+\sigma_{2}\sigma_{3}+\sigma_{1}\sigma_{3}\right)\right]$$

$$= \frac{2E}{1} \left[\frac{212+02}{403} + \frac{203}{400} + \frac{203}{400}$$

$$A = \frac{1}{3} (1-2h) (\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + 2h\sigma_1\sigma_2 + 2\sigma_1\sigma_3 + 2\sigma_2\sigma_3)$$

$$= \frac{1}{6E} \left[3\sigma_{1}^{2} + 3\sigma_{2}^{2} + 3\sigma_{3}^{2} - 6\mu\sigma_{1}\sigma_{2} - 6\mu\sigma_{2}\sigma_{3} - 6\mu\sigma_{1}\sigma_{3} - 6\mu\sigma_{1}\sigma_{3} \right]$$

$$+ \frac{1}{\sigma_{1}^{2} - \sigma_{2}^{2} - \sigma_{3}^{2} + 2\sigma_{1}\sigma_{2} - 2\sigma_{1}\sigma_{3} - 2\sigma_{2}\sigma_{3}}{2\sigma_{2}\sigma_{3}\sigma_{2} + 2\mu(\sigma_{1}\sigma_{2} + \sigma_{2}^{2} + \sigma_{3}^{2}) + 2\mu(\sigma_{1}\sigma_{2} + \sigma_{2}^{2}\sigma_{3})}$$

$$= \frac{1}{6E} \left[20,2+20,2+20,3^2-4\mu0,0$$

$$-20702 - 20703 - 20203.$$

$$= \int_{6E} \left[2\sigma_{1}^{2} + 2\sigma_{2}^{2} + 2\sigma_{3}^{2} - 2\sigma_{1}\sigma_{2} - 2\sigma_{1}\sigma_{2} - 2\sigma_{1}\sigma_{3} - 2\sigma_{2}\sigma_{3} \right].$$

$$+\frac{H}{6E}$$
 $\begin{bmatrix} 201^{2}+202^{2}+203^{2}-20102\\ -80103-20203 \end{bmatrix}$

$$U_{d} = \left(\frac{1+h}{bE}\right) \left[\left(\sigma_{1}-\sigma_{2}\right)^{2} + \left(\sigma_{2}-\sigma_{3}\right)^{2} + \left(\sigma_{3}-\sigma_{1}\right)^{2}\right]$$

In simple Tension test 0,=0y.

can (n) be comoz

from (n) and (o)

$$2 \sigma_{8}^{2} = (\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}$$

 $\frac{20}{3} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{$

and corresponds mohr circle 1/2.