

## ETSI EN 300 328 V2.2.2 (DTS)

#### **TEST REPORT**

For

#### **Bluetooth Module**

**MODEL NUMBER: HM-BT4531** 

REPORT NUMBER: E01A23040015R00601

**ISSUE DATE: May 13, 2023** 

Prepared for

**Shenzhen Hope Microelectronics Co., Ltd** 

30th floor of 8th Building, C Zone, Vanke Cloud City, Xili Sub-district, Nanshan, Shenzhen, GD, P.R. China

Prepared by

Dong Guan Anci Electronic Technology Co., Ltd.

1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hitech Industrial Development Zone, Dongguan City, Guangdong Pr., China.

This report shall not be reproduced, except in full, without the written approval of Dong Guan Anci Electronic Technology Co., Ltd.

TRF No.: 01-R001-1A-LE TRF Originator: GTG TRF Date: 2022-06-29 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E01A23040015R00601 Page 2 of 60

## Revision History

| Rev. | Issue Date   | Revisions     | Revised By |
|------|--------------|---------------|------------|
| V0   | May 13, 2023 | Initial Issue | Duke       |

## **Summary of Test Results**

| Summary of Test Results                                  |                                      |                   |        |  |  |  |
|----------------------------------------------------------|--------------------------------------|-------------------|--------|--|--|--|
| Test Item Clause                                         |                                      | Limit/Requirement | Result |  |  |  |
| NORMAL AND<br>EXTREME<br>CONDITIONS                      | N/A                                  | Clause 5.1.2      | Pass   |  |  |  |
| RF output power                                          | Clause 5.4.2.2.1.2                   | Clause 4.3.2.2    | Pass   |  |  |  |
| Power Spectral<br>Density                                | Clause 5.4.3.2.1                     | Clause 4.3.2.3    | Pass   |  |  |  |
| Duty Cycle, Tx-<br>sequence, Tx-gap                      | Clause 5.4.2.2.1.3                   | Clause 4.3.2.4    | N/A    |  |  |  |
| Medium Utilization (MU) factor                           | Clause 5.4.2.2.1.4                   | Clause 4.3.2.5    | N/A    |  |  |  |
| Adaptivity (non-FHSS)                                    | Clause 5.4.6.2.1                     | Clause 4.3.2.6    | N/A    |  |  |  |
| Occupied Channel Bandwidth                               | Clause 5.4.7.2.1                     | Clause 4.3.2.7    | Pass   |  |  |  |
| Transmitter unwanted emissions in the out-of-band domain | Clause 5.4.8.2.1                     | Clause 4.3.2.8    | Pass   |  |  |  |
| Transmitter unwanted emissions in the spurious domain    | Clause 5.4.9.2.1& Clause 5.4.9.2.2   | Clause 4.3.2.9    | Pass   |  |  |  |
| Receiver spurious emissions                              | Clause 5.4.10.2.1& Clause 5.4.10.2.2 | Clause 4.3.2.10   | Pass   |  |  |  |
| Receiver Blocking                                        | Clause 5.4.11.2.1                    | Clause 4.3.2.11   | Pass   |  |  |  |
| Geo-location capability                                  | N/A                                  | Clause 4.3.2.12   | N/A    |  |  |  |

## Note:

<sup>1.</sup> N/A: In this whole report not applicable.

<sup>\*</sup>This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

<sup>\*</sup>The measurement result for the sample received is <Pass> according to <ETSI EN 300 328 V2.2.2 (DTS)> when <Accuracy Method> decision rule is applied.

# **CONTENTS**

| 1. | ATTE   | STATION OF TEST RESULTS                                  | 5  |
|----|--------|----------------------------------------------------------|----|
| 2. | TEST   | METHODOLOGY                                              | 6  |
| 3. | FACIL  | ITIES AND ACCREDITATION                                  | 6  |
| 4. | CALIE  | BRATION AND UNCERTAINTY                                  | 7  |
|    | 4.1.   | MEASURING INSTRUMENT CALIBRATION                         | 7  |
|    | 4.2.   | MEASUREMENT UNCERTAINTY                                  | 7  |
| 5. | EQUIF  | PMENT UNDER TEST                                         | 8  |
| ,  | 5.1.   | DESCRIPTION OF EUT                                       | 8  |
| ,  | 5.2.   | RECEIVER CATEGORY                                        | 8  |
| ,  | 5.3.   | CHANNEL LIST                                             | 9  |
| ,  | 5.4.   | MAXIMUM AVERAGE EIRP                                     | 9  |
| ,  | 5.5.   | TEST CHANNEL CONFIGURATION                               | 9  |
| ,  | 5.6.   | THE WORSE CASE POWER SETTING PARAMETER                   | 9  |
| ,  | 5.7.   | DESCRIPTION OF AVAILABLE ANTENNAS                        | 10 |
| ,  | 5.8.   | ENVIROMENTAL CONDITIONS FOR TESTING                      | 10 |
| ,  | 5.9.   | SUPPORT UNITS FOR SYSTEM TEST                            | 10 |
| ,  | 5.10.  | SETUP DIAGRAM                                            | 10 |
| ,  | 5.11.  | TEST SYSTEM CONFIGURATION                                | 11 |
| ,  | 5.12.  | DESCRIPTION OF THE EQUIPMENT UNDER TESTED                | 11 |
| 6. | MEAS   | URING EQUIPMENT AND SOFTWARE USED                        | 14 |
| 7. | TEST   | PROCEDURES AND RESULTS                                   | 15 |
|    | 7.1.   | RF output power                                          | 15 |
|    | 7.2.   | Power Spectral Density                                   | 15 |
|    | 7.3.   | Occupied Channel Bandwidth                               | 16 |
|    | 7.4.   | Transmitter unwanted emissions in the out-of-band domain | 17 |
|    | 7.5.   | Transmitter unwanted emissions in the spurious domain    | 18 |
|    | 7.6.   | Receiver spurious emissions                              | 20 |
|    | 7.7.   | Receiver Blocking                                        | 21 |
| 8. | TEST   | DATA                                                     | 25 |
| AF | PENDIX | (: PHOTOGRAPHS OF THE EUT                                | 60 |

REPORT NO.: E01A23040015R00601 Page 5 of 60

## 1. ATTESTATION OF TEST RESULTS

**Applicant Information** 

Company Name: Shenzhen Hope Microelectronics Co., Ltd

Address: 30th floor of 8th Building, C Zone, Vanke Cloud City, Xili

Sub-district, Nanshan, Shenzhen, GD, P.R. China

**Manufacturer Information** 

Company Name: Shenzhen Hope Microelectronics Co., Ltd

Address: 30th floor of 8th Building, C Zone, Vanke Cloud City, Xili

Sub-district, Nanshan, Shenzhen, GD, P.R. China

**EUT Information** 

EUT Name: Bluetooth Module

Model: HM-BT4531

Serial model: N/A Brand: N/A

Sample Received Date: April 20, 2023

Sample Status: Normal

Sample ID: A23040015 006

Date of Tested: April 20, 2023 to May 05, 2023

| APPLICABLE STANDARDS         |      |  |  |
|------------------------------|------|--|--|
| STANDARD TEST RESULTS        |      |  |  |
| ETSI EN 300 328 V2.2.2 (DTS) | Pass |  |  |

Prepared By:

Checked By:

Duke

**Project Engineer** 

Approved By:

Tiger Xu

TRF No.:

Laboratory Supervisor

Dyson

**Project Engineer** 

REPORT NO.: E01A23040015R00601 Page 6 of 60

## 2. TEST METHODOLOGY

All tests were performed in accordance with the standard ETSI EN 300 328 V2.2.2 (DTS)

## 3. FACILITIES AND ACCREDITATION

Site Description

Name of Firm : Dong Guan Anci Electronic Technology Co., Ltd.

Site Location : 1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan,

Lake Hi-tech Industrial Development Zone, Dongguan

City, evelopment Zone, Dongguan City, Guangdong Pr., China.

REPORT NO.: E01A23040015R00601 Page 7 of 60

## 4. CALIBRATION AND UNCERTAINTY

## 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

## 4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Test Case   | Description                                           | Limit   | Uncertainties |  |
|-------------|-------------------------------------------------------|---------|---------------|--|
| 5.3.2.2.1.1 | RF Output Power                                       | ±1.5 dB | 1.15          |  |
| 5.3.2.2.1.2 | Duty Cycle                                            | ±5 %    | 0.03          |  |
|             | Tx Sequence                                           | ±5 %    | 0.03          |  |
|             | Tx Gap                                                | ±5 %    | 0.03          |  |
| 5.3.2.2.1.3 | Medium Utilisation                                    | ±5 %    | 0.10          |  |
| 5.3.3.2.1   | Power Spectral Density                                | ±3 dB   | 1.21          |  |
| 5.3.4.2.1   | Accumulated Dwell Time                                | ±5 %    | 0.05          |  |
|             | Minimum Frequency Occupation Time                     | ±5 %    | 0.15          |  |
| 5.3.5.2.1   | Hopping Frequency Separation                          | -       | 0.24          |  |
| 5.3.8.2.1   | Occupied Channel Bandwidth                            | ±5 %    | 1.71          |  |
| 5.3.92.1    | Out-of-band emissions                                 | ±3 dB   | 1.39          |  |
| 5.3.10.2.1  | Transmitter unwanted emissions in the spurious domain |         |               |  |
| L           | 30 MHz to 1 GHz                                       | ±3 dB   | 0.64          |  |
|             | 1 GHz to 12.75GHz                                     | ±3 dB   | 1.68          |  |
| 5.3.11.2.1  | Receiver Spurious emission                            |         | •             |  |
|             | 30 MHz to 1 GHz                                       | ±3 dB   | 0.64          |  |
|             | 1 GHz to 12.75GHz                                     | ±3 dB   | 1.68          |  |

| Test Item                                                                                                                                      | Uncertainty            |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|
| Uncertainty for Radiation Emission test                                                                                                        | 4.62 dB (30 MHz-1 GHz) |  |  |
|                                                                                                                                                | 3.50 dB (1 GHz-18 GHz) |  |  |
| Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2. |                        |  |  |

REPORT NO.: E01A23040015R00601 Page 8 of 60

# **5. EQUIPMENT UNDER TEST**

## 5.1. DESCRIPTION OF EUT

| EUT Name           |    | Bluetooth Module |
|--------------------|----|------------------|
| Model              |    | HM-BT4531        |
| EUT Classificatio  | n  | Class B          |
| Internal Frequence | СУ | 2500MHz          |
| Hardware Version   | n  | V1.0             |
| Ratings            |    | DC 1.8V-3.6V     |
| PC                 | DC | 3.3V             |

| Frequency Band:           | 2400 MHz to 2483.5 MHz     |
|---------------------------|----------------------------|
| Frequency Range:          | 2402 MHz to 2480 MHz       |
| Bluetooth Version:        | Bluetooth Ver.5.1 BLE      |
| Bluetooth Mode:           | Bluetooth LE               |
| Geo-location Capability:  | Not Support                |
| Type of Modulation:       | GFSK, π/4-DQPSK            |
| Number of Channels:       | 40                         |
| Channel Separation:       | 2 MHz                      |
| Maximum EIRP:             | 8.19 dBm                   |
| Antenna Type:             | Internal PCB antenna       |
| Antenna Gain:             | 0 dBi                      |
| Normal Test Voltage:      | 3.3 Vdc                    |
| Extreme Test Temperature: | Portable: -10 °C to +50 °C |

## **5.2. RECEIVER CATEGORY**

| EUT belong to | Receiver category | Relevant receiver clauses                                                                                                                                                            |
|---------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 1                 | Adaptive equipment with a maximum RF output power greater than 10 dBm e.i.r.p.                                                                                                       |
|               | 2                 | Non-adaptive equipment with a Medium Utilization (MU) factor greater than 1 % and less than or equal to 10 % or adaptive equipment with a maximum RF output power of 10 dBm e.i.r.p. |
|               | 3                 | Non-adaptive equipment with a maximum Medium Utilization (MU) factor of 1 % or adaptive equipment with a maximum RF output power of 0 dBm e.i.r.p.                                   |

## 5.3. CHANNEL LIST

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------|
| 0       | 2402               | 11      | 2424               | 22      | 2446               | 33      | 2468               |
| 1       | 2404               | 12      | 2426               | 23      | 2448               | 34      | 2470               |
| 2       | 2406               | 13      | 2428               | 24      | 2450               | 35      | 2472               |
| 3       | 2408               | 14      | 2430               | 25      | 2452               | 36      | 2474               |
| 4       | 2410               | 15      | 2432               | 26      | 2454               | 37      | 2476               |
| 5       | 2412               | 16      | 2434               | 27      | 2456               | 38      | 2478               |
| 6       | 2414               | 17      | 2436               | 28      | 2458               | 39      | 2480               |
| 7       | 2416               | 18      | 2438               | 29      | 2460               | /       | /                  |
| 8       | 2418               | 19      | 2440               | 30      | 2462               | /       | /                  |
| 9       | 2420               | 20      | 2442               | 31      | 2464               | 1       | /                  |
| 10      | 2422               | 21      | 2444               | 32      | 2468               | /       | /                  |

## **5.4. MAXIMUM AVERAGE EIRP**

| Test Mode                        | Frequency<br>(MHz) | Channel Number | Max AVG EIRP<br>(dBm) |
|----------------------------------|--------------------|----------------|-----------------------|
| GFSK(1Mbps),<br>π/4-DQPSK(2Mbps) | 2402 ~ 2480        | 0-39[40]       | 8.19                  |

## 5.5. TEST CHANNEL CONFIGURATION

| Test Mode       | Test Channel                                                     | Frequency                    |
|-----------------|------------------------------------------------------------------|------------------------------|
| LE 1M,<br>LE 2M | CH 0(Low Channel),<br>CH 19(MID Channel),<br>CH 39(High Channel) | 2402 MHz, 2440 MHz, 2480 MHz |

## 5.6. THE WORSE CASE POWER SETTING PARAMETER

| The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band |                   |                                 |                      |         |
|--------------------------------------------------------------------|-------------------|---------------------------------|----------------------|---------|
| Test Software Version                                              |                   | nrfconnect-setup-4.0.1-ia32.exe |                      |         |
| Madulatian Tuna                                                    | Transmit          | -                               | Test Software settin | g value |
| Modulation Type                                                    | Antenna<br>Number | CH 0                            | CH 19                | CH 39   |
| GFSK(1Mbps),<br>π/4-DQPSK (2Mbps)                                  | 1                 | Max                             | Max                  | Max     |

REPORT NO.: E01A23040015R00601 Page 10 of 60

## 5.7. DESCRIPTION OF AVAILABLE ANTENNAS

| Antenna | Frequency (MHz) | Antenna Type     | MAX Antenna Gain (dBi) |
|---------|-----------------|------------------|------------------------|
| 1       | 2402-2480       | External Antenna | 0                      |

| Test Mode                         | Transmit and Receive Mode | Description                                            |
|-----------------------------------|---------------------------|--------------------------------------------------------|
| GFSK(1Mbps),<br>π/4-DQPSK (2Mbps) | 1TX, 1RX                  | Chain 1 can be used as transmitting/receiving antenna. |

Note: The value of the antenna gain was declared by customer.

## 5.8. ENVIROMENTAL CONDITIONS FOR TESTING

| Environment Parameter | Selected Values During Tests |         |                                                                  |  |
|-----------------------|------------------------------|---------|------------------------------------------------------------------|--|
|                       |                              | Ambient |                                                                  |  |
| Test Condition        | Temperature (°C)             | Voltage | Relative<br>Humidity (%)                                         |  |
| TN/VN                 | +15 to +35                   | 3.3 V   | 20 to 75 (Except<br>Electrostatic<br>Discharge is<br>30% to 60%) |  |
| TH/VN                 | 40                           | 3.3 V   | 20 to 75                                                         |  |
| TL/VN                 | -10                          | 3.3 V   | 20 to 75                                                         |  |
| Domark:               |                              |         |                                                                  |  |

Remark:

1) NV: Normal Voltage; NT: Normal Temperature

## 5.9. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit

| Equipment | Manufacturer | Model No. |
|-----------|--------------|-----------|
| PC        | Lenovo       | T430      |

## 5.10. SETUP DIAGRAM



REPORT NO.: E01A23040015R00601 Page 11 of 60

## **5.11. TEST SYSTEM CONFIGURATION**

Tonsend SRD Test System



## 5.12. DESCRIPTION OF THE EQUIPMENT UNDER TESTED

(INFORMATION AS REQUIRED BY EN 300 328 V2.2.2, CLAUSE 5.4.1)

| a) | Modulation Type                                                             |                           |    |  |  |
|----|-----------------------------------------------------------------------------|---------------------------|----|--|--|
|    | FHSS                                                                        |                           |    |  |  |
|    | ⊠ non-FHSS                                                                  |                           |    |  |  |
| b) | FHSS Equipment Description                                                  |                           |    |  |  |
|    | The Number of Hopping Frequencies                                           | The Maximum               | /  |  |  |
|    | The Number of Hopping Frequencies                                           | The Minimum               | /  |  |  |
|    | The (average) dwell time                                                    | /                         |    |  |  |
| c) | Adaptive / Non-adaptive Equipment                                           |                           |    |  |  |
|    | □ Non-adaptive Equipment                                                    |                           |    |  |  |
|    | Adaptive Equipment Without the Possibility to Switch to A Non-adaptive Mode |                           |    |  |  |
|    | Adaptive Equipment Which can also operate in A Non-adaptive Mode            |                           |    |  |  |
| d) | Adaptive Equipment Description                                              |                           |    |  |  |
|    | The maximum Channel Occupancy Time implemented by the equipment /           |                           |    |  |  |
|    |                                                                             |                           |    |  |  |
|    | ☐ The equipment has implemented a DAA mechanism                             |                           |    |  |  |
|    | ☐ The equipment can operate in more than one adaptive mode                  |                           |    |  |  |
| e) | The different transmit operating mo                                         |                           |    |  |  |
|    | ☐ Equipm                                                                    | nent with only one antenr | na |  |  |

REPORT NO.: E01A23040015R00601 Page 12 of 60

|    |                                                                      |                                                         |                                                                                                  | vith two diversity a                    |               | nas but only           | one /       |
|----|----------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|------------------------|-------------|
|    | N 0                                                                  |                                                         |                                                                                                  | t any moment in ti                      |               |                        |             |
|    | Operating mode 1                                                     | _                                                       | Smart Antenna Systems with two or more antennas, but operating in a (legacy) mode where only one |                                         |               |                        |             |
|    | (single antenna)                                                     |                                                         |                                                                                                  | a (legacy) mode w<br>(e.g. IEEE 802.11  |               |                        | in amort    |
|    |                                                                      | antenna sy                                              |                                                                                                  | ` •                                     | 16            | egacy mode             | III SIIIaII |
|    |                                                                      |                                                         |                                                                                                  | stream/Standard                         | thro          | uahput/(e a            | IFFF        |
|    | Operating mode 2:                                                    | 802.11™ le                                              |                                                                                                  |                                         |               | agripat/(c.g.          |             |
|    | Smart Antenna Systems                                                |                                                         |                                                                                                  | nput (> 1 spatial sti                   | ear           | n) using Nor           | ninal       |
|    | Multiple Antennas withou                                             |                                                         | _                                                                                                |                                         |               | , 0                    |             |
|    | beam forming                                                         |                                                         |                                                                                                  | nput (> 1 spatial sti                   | rear          | n) using Nor           | ninal       |
|    |                                                                      | Channel Ba                                              |                                                                                                  |                                         |               |                        |             |
|    | Operating mode 3:                                                    | ☐ Single s                                              | patia                                                                                            | stream/Standard                         | thro          | oughput (e.g.          | IEEE        |
|    | Smart Antenna Systems                                                | - 802.11™ le                                            |                                                                                                  |                                         |               | n)aina Nam             | nin al      |
|    | Multiple Antennas with                                               | Channel Ba                                              |                                                                                                  | nput (> 1 spatial sti                   | ear           | n) using Nor           | ппа         |
|    | beam forming                                                         |                                                         |                                                                                                  | nput (> 1 spatial sti                   | ear           | n) using Nor           | ninal       |
|    |                                                                      | Channel Ba                                              |                                                                                                  |                                         | oui           | in doing ito           | mia         |
| f) | In case of Smart Antenr                                              | a Systems                                               |                                                                                                  |                                         |               |                        |             |
|    | The number of Receive c                                              |                                                         |                                                                                                  |                                         |               | 1                      |             |
|    | The number of Transmit of                                            |                                                         |                                                                                                  |                                         |               |                        |             |
|    | In case of beam forming, the maximum (additional) beam forming gain: |                                                         |                                                                                                  |                                         |               |                        |             |
| g) |                                                                      |                                                         |                                                                                                  |                                         |               |                        |             |
|    | Operating Frequency Ra                                               |                                                         | 2402                                                                                             | 2 MHz to 2480 MH                        | Z             |                        |             |
| h) | Nominal Channel Band                                                 | width(s)                                                | ı                                                                                                |                                         |               |                        |             |
|    | Occupied Channel Band                                                | width                                                   | 1.06                                                                                             | 3MHz                                    |               |                        |             |
| :\ | True of Farriament                                                   |                                                         |                                                                                                  |                                         |               |                        |             |
| i) | Type of Equipment  ⊠Stand-Alone                                      |                                                         |                                                                                                  |                                         |               |                        |             |
|    | Plug-in radio Equipme                                                | nnt .                                                   |                                                                                                  |                                         |               |                        |             |
|    | Combined Equipment                                                   |                                                         |                                                                                                  |                                         |               |                        |             |
| i) | The extreme operating                                                |                                                         | at ap                                                                                            | ply to the equipm                       | ent           | <u> </u>               |             |
| •  | Operating temperature ra                                             |                                                         |                                                                                                  | c to 50 °C                              |               |                        |             |
| k) | The intended combinat                                                |                                                         | adio                                                                                             | equipment powe                          | r se          | ttings and o           | one or      |
| N) | more antenna assembl                                                 |                                                         | -                                                                                                |                                         | eve           | ls                     |             |
|    | Antenna Type Integra                                                 | ıl Antenna                                              |                                                                                                  | enna Gain                               |               |                        | 0 ID:       |
|    |                                                                      |                                                         |                                                                                                  | ingle power level                       | 00            | ANT1                   | 0 dBi       |
|    | □ Dodies                                                             | atad Antannas                                           |                                                                                                  | corresponding<br>nna(s)                 | Ga            | ım                     |             |
|    | _                                                                    | □ Dedicated Antennas (equipment with antenna connector) |                                                                                                  | ultiple power                           | Do            | wer Level 1            |             |
|    | 1,                                                                   |                                                         |                                                                                                  | ngs and                                 |               | wer Level 1            |             |
|    |                                                                      |                                                         |                                                                                                  | corresponding                           |               |                        |             |
|    |                                                                      |                                                         | ante                                                                                             | nna(s)                                  | Po            | wer Level 3            |             |
| I) | The nominal voltages of the combined (host)                          | f the stand-al<br>equipment or                          | one<br>test                                                                                      | radio equipment o<br>jig in case of plu | or tl<br>g-in | ne nominal<br>devices: | voltages    |
|    | Details provided are for                                             | ☐ Testing of                                            | stan                                                                                             | d-alone equipmen                        | t             |                        |             |
|    | the                                                                  | ☐ Combined                                              | d equ                                                                                            | ipment                                  |               |                        |             |
|    |                                                                      | ☐ Test jig                                              |                                                                                                  |                                         |               |                        |             |
|    | Supply Voltage                                                       | ☐ AC mains                                              |                                                                                                  | State AC voltage                        |               |                        |             |

REPORT NO.: E01A23040015R00601 Page 13 of 60

|    |                                                    | ⊠ DC | State DC voltage     | ☐ Internal Power Supply                                                                 |         |
|----|----------------------------------------------------|------|----------------------|-----------------------------------------------------------------------------------------|---------|
|    |                                                    |      |                      | External Power Supply or AC/DC adapter                                                  |         |
|    |                                                    |      |                      |                                                                                         | 3.3 V   |
|    |                                                    |      |                      | Other                                                                                   |         |
| m) | The equipment type                                 |      |                      |                                                                                         |         |
|    | ⊠ Bluetooth®                                       |      |                      |                                                                                         |         |
|    | ☐ IEEE 802.11™ [i.3]                               |      |                      |                                                                                         |         |
|    | ☐ Proprietary                                      |      |                      |                                                                                         |         |
| n) | Geo-location capability supported by the equipment |      | equipment clause 4.3 | ographical location determinates as defined in clause 4.3.1.2.12.2 is not accessible to | 13.2 or |
|    |                                                    |      | ⊠ No                 |                                                                                         |         |

REPORT NO.: E01A23040015R00601 Page 14 of 60

## 6. MEASURING EQUIPMENT AND SOFTWARE USED

## or Spurious Emissions Test

| Equipment Type              | Manufacturer    | Model No.               | Serial Number  | Calibrated until |
|-----------------------------|-----------------|-------------------------|----------------|------------------|
| EMI Test Receiver           | Rohde & Schwarz | ESPI                    | 100502         | 2023-10-07       |
| EMI Test Receiver           | Rohde & Schwarz | FSV40                   | 102257         | 2023-10-07       |
| Pre-Amplifier               | HP              | 8447D                   | 2727A06172     | 2023-05-12       |
| Pre-Amplifier               | A-INFO          | LA1018N4009             | J1013130524001 | 2023-05-12       |
| Bilog Antenna               | Schwarzbeck     | VULB9163                | VULB9163-588   | 2023-05-12       |
| Horn Antenna                | A-INFO          | LB-10180-SF             | J2031090612123 | 2023-05-12       |
| Cable                       | N/A             | N/A                     | 6#             | 2023-05-12       |
| Cable                       | N/A             | N/A                     | 1-1#           | 2023-05-12       |
| Cable                       | N/A             | N/A                     | 1-2#           | 2023-05-12       |
| Cable                       | N/A             | N/A                     | 7#             | 2023-05-12       |
| 3m Semi-anechoic<br>Chamber | chengyu         | 9m*6m*6m                | N/A            | 2023-05-12       |
| Test Software               | Farad           | EZ-EMC Ver:ANCI-<br>3A1 | N/A            | N/A              |

## For Other Test Items:

| Equipment Type               | Manufacturer    | Model No.      | Serial Number | Calibrated until |
|------------------------------|-----------------|----------------|---------------|------------------|
| Spectrum Analyzer            | Rohde & Schwarz | FSV40          | 102257        | 2023-10-07       |
| WIDEBAND RADIO COMMUNICATION | Rohde & Schwarz | CMW500         | 157423        | 2023-10-07       |
| Vector Signal<br>Generator   | Agilent         | 5182A          | MY50140563    | 2023-10-07       |
| ESG SERIES SIGNAL GENERATOR  | Agilent         | E4421B         | 40050971      | 2023-10-07       |
| USB RF Power sensor          | RadiPower       | RPR3006W       | 17I00015SNO88 | 2023-10-07       |
| RF Test Software             | MAIWEI          | MTS 8310       | N/A           | N/A              |
| Humidity Chamber             | GAOXIN          | GX-3000-150LHT | 1801027       | 2023-05-12       |
| Dc source                    | RUIYUAN         | WYK-6030K      | 180828026030  | 2023-05-12       |

REPORT NO.: E01A23040015R00601

Page 15 of 60

## 7. TEST PROCEDURES AND RESULTS

## 7.1. RF OUTPUT POWER

## **LIMITS**

| RF OUTPUT POWER                      |                                                                                                                                                                                                   |  |  |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Condition                            | Limit                                                                                                                                                                                             |  |  |  |
| ☐ Non-adaptive non-FHSS<br>Equipment | For non-adaptive non-FHSS equipment, where the manufacturer has declared an RF output power of less than 20 dBm e.i.r.p., the RF output power shall be equal to or less than that declared value. |  |  |  |
| Adaptive non-FHSS Equipment          | non-FHSS equipment shall be equal to or less than 20 dBm.                                                                                                                                         |  |  |  |

#### **TEST PROCEDURE**

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.2

The power sensor was used for power measurement, and it use a fast power sensor with a minimum sensitivity of -40 dBm and capable of minimum 1 MS/s.

The test software was used to control the power detector and the sampling unit.

For adaptive equipment, the measurement duration shall be long enough to ensure a minimum number of bursts (at least 10) are captured.

| Measurement |                      |  |
|-------------|----------------------|--|
|             | Radiated measurement |  |

#### **CALCULATIONS**

Add the (stated) antenna assembly gain G in dBi of the individual antenna.

- In case of smart antenna systems operating in mode with beamforming (see clause 5.3.2.2.4), add the additional beamforming gain Y in dB.
- If more than one antenna assembly is intended for this power setting, the maximum overall antenna gain (G or G + Y) shall be used.
- The RF Output Power (Pout) shall be calculated using the formula below:

$$P_{out} = A + G + Y$$

#### **TEST ENVIRONMENT**

| Temperature         | <b>24</b> ℃ | Relative Humidity | 50% |
|---------------------|-------------|-------------------|-----|
| Atmosphere Pressure | 101kPa      |                   |     |

#### **TEST RESULTS**

Please refer to section "Test Data" - Appendix APOWER SPECTRAL DENSITY

#### **LIMITS**

| Power Spectral Density |  |
|------------------------|--|
|                        |  |

TRF No.: 01-R001-1A-LE Global Testing, Great Quality.

REPORT NO.: E01A23040015R00601 Page 16 of 60

| Condition                       | Limit      |
|---------------------------------|------------|
| All types of non-FHSS equipment | 10 dBm/MHz |

## **TEST PROCEDURE**

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.3

R&S EMC32 software is used to control the spectrum analyzer to use the following settings:

| Start Frequency | 2400MHz                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stop Frequency  | 2483.5MHz                                                                                                                                                                                                                                                                                                                                                                                |
| Detector        | RMS                                                                                                                                                                                                                                                                                                                                                                                      |
| Sweep Point     | > 8 350; for spectrum analysers not supporting this number of sweep points, the frequency band may be segmented                                                                                                                                                                                                                                                                          |
| RBW             | 10KHz                                                                                                                                                                                                                                                                                                                                                                                    |
| VBW             | 30KHz                                                                                                                                                                                                                                                                                                                                                                                    |
| Trace Mode      | Max Hold                                                                                                                                                                                                                                                                                                                                                                                 |
| Sweep Time      | For non-continuous transmissions: 2 × Channel Occupancy Time × number of sweep points For non-adaptive equipment use the maximum TX-sequence time in the formula above instead of the Channel Occupancy Time For continuous transmissions: 10 s; the sweep time may be increased further until a value where the sweep time has no further impact anymore on the RMS value of the signal |

The test software acquires the trace data and calculate the Spectral Density in 1MHz.

## **TEST ENVIRONMENT**

| Temperature         | <b>24</b> ℃ | Relative Humidity | 50% |
|---------------------|-------------|-------------------|-----|
| Atmosphere Pressure | 101kPa      |                   |     |

## **TEST RESULTS**

Please refer to section "Test Data" - Appendix **OCCUPIED CHANNEL BANDWIDTH** 

## **LIMITS**

| OCCUPIED CHANNEL BANDWIDTH |                                                                       |                                                                    |
|----------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|
| Condition Limit            |                                                                       | Limit                                                              |
| All types of equipment     |                                                                       | Each hopping frequency shall be within the 2400 to 2483.5 MHz band |
| Additional requirement     | For non-adaptive non-FHSS equipment with e.i.r.p. greater than 10 dBm | Each hopping frequency shall be equal to or less than 20 MHz       |

REPORT NO.: E01A23040015R00601 Page 17 of 60

## **TEST PROCEDURE**

Refer to ETSI EN 300 328 V2.2.2 (2019-07) clause 5.4.7

| Measurement |                        |  |
|-------------|------------------------|--|
|             | ⊠Conducted measurement |  |

Connect the UUT to the spectrum analyser and use the following settings:

| Center Frequency | The center frequency of the channel under test |
|------------------|------------------------------------------------|
| Frequency Span   | 2 × Nominal Channel Bandwidth                  |
| Detector         | RMS                                            |
| RBW              | ~ 1 % of the span without going below 1 %      |
| VBW              | 3 × RBW                                        |
| Trace            | Max hold                                       |
| Sweep Time       | 1s                                             |

## **TEST ENVIRONMENT**

| Temperature         | <b>24</b> ℃ | Relative Humidity | 50% |
|---------------------|-------------|-------------------|-----|
| Atmosphere Pressure | 101kPa      |                   |     |

#### **TEST RESULTS**

Please refer to section "Test Data" - Appendix **TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN** 

## **LIMITS**

| Transmitter Unwanted Emissions in The Out-Of-Band Domain |                                                                                                                            |  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Condition Limit                                          |                                                                                                                            |  |
| Under Normal Test Condition                              | The transmitter unwanted emissions in the out-of-band domain shall not exceed the values provided by the mask in figure 3. |  |



Figure 3: Transmit mask

REPORT NO.: E01A23040015R00601 Page 18 of 60

### **TEST PROCEDURE**

Refer to ETSI EN 300 328 V2.2.2 (2019-07) clause 5.4.8

| Measurement |                      |  |
|-------------|----------------------|--|
|             | Radiated measurement |  |

Connect the UUT to the spectrum analyser and use the following settings:

| Span             | Zero Span                                                                                           |
|------------------|-----------------------------------------------------------------------------------------------------|
| Filter Mode      | Channel Filter                                                                                      |
| Trace Mode       | Max Hold                                                                                            |
| Trigger Mode     | Video                                                                                               |
| Detector         | RMS                                                                                                 |
| Sweep Points     | Sweep time [µs] / (1 µs) with a maximum of 30 000                                                   |
| RBW / VBW        | 1MHz / 3MHz                                                                                         |
| Measurement Mode | Time Domain Power                                                                                   |
| Sweep Time       | > 120 % of the duration of the longest burst detected during the measurement of the RF Output Power |

#### **TEST ENVIRONMENT**

| Temperature         | <b>24</b> ℃ | Relative Humidity | 50% |
|---------------------|-------------|-------------------|-----|
| Atmosphere Pressure | 101kPa      |                   |     |

#### **TEST RESULTS**

Please refer to section "Test Data" - Appendix **TRANSMITTER UNWANTED EMISSIONS**IN THE SPURIOUS DOMAIN

#### **LIMITS**

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table 12.

In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and as e.i.r.p. for emissions above 1 GHz.

REPORT NO.: E01A23040015R00601 Page 19 of 60

Table 12: Transmitter limits for spurious emissions

| Frequency range     | Maximum power | Bandwidth |
|---------------------|---------------|-----------|
| 30 MHz to 47 MHz    | -36 dBm       | 100 kHz   |
| 47 MHz to 74 MHz    | -54 dBm       | 100 kHz   |
| 74 MHz to 87,5 MHz  | -36 dBm       | 100 kHz   |
| 87,5 MHz to 118 MHz | -54 dBm       | 100 kHz   |
| 118 MHz to 174 MHz  | -36 dBm       | 100 kHz   |
| 174 MHz to 230 MHz  | -54 dBm       | 100 kHz   |
| 230 MHz to 470 MHz  | -36 dBm       | 100 kHz   |
| 470 MHz to 694 MHz  | -54 dBm       | 100 kHz   |
| 694 MHz to 1 GHz    | -36 dBm       | 100 kHz   |
| 1 GHz to 12,75 GHz  | -30 dBm       | 1 MHz     |

## **TEST PROCEDURE**

Refer to Refer to ETSI EN 300 328 V2.2.2 (2019-07) clause 5.4.9

| Measurement                                    |  |
|------------------------------------------------|--|
| ☐ Conducted measurement ☐ Radiated measurement |  |

Spectrum analyser settings for pre-scan:

|               | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RBW           | 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VBW           | 300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Detector Mode | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Filter type   | 3 dB (Gaussian)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Trace Mode    | Max hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sweep Points  | $\geqslant$ 19 400 (< 1 GHz); $\geqslant$ 23 500 (> 1 GHz); for spectrum analysers not supporting this high number of sweep points, the frequency band may be segmented.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sweep Time    | For non continuous transmissions (duty cycle less than 100 %), the sweep time shall be sufficiently long, such that for each 100 kHz frequency step, the measurement time is greater than two transmissions of the UUT, on any channel.  For FHSS equipment operating in a normal operating (hopping not disabled) mode, the sweep time shall be further increased to capture multiple transmissions on any of the hopping frequencies.  The above sweep time setting may result in long measuring times in case of FHSS equipment. To avoid such long measuring times, an FFT analyser may be used. |

Spectrum analyser settings for the emissions identified during the pre-scan:

| Measurement Mode | Time Domain Power                                        |
|------------------|----------------------------------------------------------|
| Centre Frequency | Frequency of the emission identified during the pre-scan |
| RBW              | 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)                      |

REPORT NO.: E01A23040015R00601

Page 20 of 60

| VBW            | 300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)                                                                 |
|----------------|-----------------------------------------------------------------------------------------------------|
| Frequency Span | Zero Span                                                                                           |
| Sweep Mode     | Single Sweep                                                                                        |
| Detector Mode  | RMS                                                                                                 |
| Trace Mode     | Max hold                                                                                            |
| Trigger Mode   | Video (burst signals) or Manual (continuous signals)                                                |
| Sweep Points   | Sweep time [μs] / (1 μs) with a maximum of 30 000                                                   |
| Sweep Time     | > 120 % of the duration of the longest burst detected during the measurement of the RF Output Power |

#### **TEST ENVIRONMENT**

| Temperature         | <b>24</b> ℃ | Relative Humidity | 50% |
|---------------------|-------------|-------------------|-----|
| Atmosphere Pressure | 101kPa      |                   |     |

### **TEST RESULTS**

Please refer to section "Test Data" - Appendix **RECEIVER SPURIOUS EMISSIONS** 

### **LIMITS**

The spurious emissions of the receiver shall not exceed the values given in table 13. In case of non-FHSS equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or for emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and e.i.r.p. for emissions above 1 GHz.

Table 13: Spurious emission limits for receivers

| Frequency range    | Maximum power | Bandwidth |
|--------------------|---------------|-----------|
| 30 MHz to 1 GHz    | -57 dBm       | 100 kHz   |
| 1 GHz to 12,75 GHz | -47 dBm       | 1 MHz     |

## **TEST PROCEDURE**

Please refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.10

| Measurement                                    |  |
|------------------------------------------------|--|
| ☐ Conducted measurement ☐ Radiated measurement |  |

Please refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.10

Spectrum analyser settings for pre-scan:

| RBW | 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz) |
|-----|-------------------------------------|
|-----|-------------------------------------|

REPORT NO.: E01A23040015R00601 Page 21 of 60

| VBW           | 300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)                                                                                                                                      |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Detector Mode | Peak                                                                                                                                                                     |
| Filter type   | 3 dB (Gaussian)                                                                                                                                                          |
| Trace Mode    | Max hold                                                                                                                                                                 |
|               | $\geqslant$ 19 400 (< 1 GHz); $\geqslant$ 23 500 (> 1 GHz); for spectrum analysers not supporting this high number of sweep points, the frequency band may be segmented. |
| Sweep Time    | Auto                                                                                                                                                                     |

Spectrum analyser settings for the emissions identified during the pre-scan:

| Measurement Mode | Time Domain Power                                        |
|------------------|----------------------------------------------------------|
| Centre Frequency | Frequency of the emission identified during the pre-scan |
| RBW              | 100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)                      |
| VBW              | 300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)                      |
| Frequency Span   | Zero Span                                                |
| Sweep Mode       | Single Sweep                                             |
| Detector Mode    | RMS                                                      |
| Trace Mode       | Max hold                                                 |
| Trigger Mode     | Video (burst signals) or Manual (continuous signals)     |
| Sweep Points     | ≥ 30 000                                                 |
| Sweep Time       | 30 ms                                                    |

## **TEST ENVIRONMENT**

| Temperature         | <b>24</b> ℃ | Relative Humidity | 50% |
|---------------------|-------------|-------------------|-----|
| Atmosphere Pressure | 101kPa      |                   |     |

### **TEST RESULTS**

Please refer to section "Test Data" - Appendix RECEIVER BLOCKING

#### **LIMITS**

Performance Criteria

For equipment that supports a PER or FER test to be performed, the minimum performance criterion shall be a PER or FER less than or equal to 10 %.

For equipment that does not support a PER or a FER test to be performed, the minimum performance criterion shall be no loss of the wireless transmission function needed for the intended use of the equipment.

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16.

REPORT NO.: E01A23040015R00601 Page 22 of 60

## Receiver Category 1

Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

| Wanted signal mean power from companion device (dBm) (see notes 1 and 4)                   | Blocking signal<br>frequency<br>(MHz)              | Blocking signal<br>power (dBm)<br>(see note 4) | Type of<br>blocking<br>signal |
|--------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-------------------------------|
| (-133 dBm + 10 × log <sub>10</sub> (OCBW)) or -68 dBm<br>whichever is less<br>(see note 2) | 2 380<br>2 504                                     |                                                |                               |
| (-139 dBm + 10 × log <sub>10</sub> (OCBW)) or -74 dBm<br>whichever is less<br>(see note 3) | 2 300<br>2 330<br>2 360<br>2 524<br>2 584<br>2 674 | -34                                            | CW                            |

- NOTE 1: OCBW is in Hz.
- NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P<sub>min</sub> + 26 dB where P<sub>min</sub> is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.
- NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P<sub>min</sub> + 20 dB where P<sub>min</sub> is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.
- NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

REPORT NO.: E01A23040015R00601 Page 23 of 60

☐ Receiver Category 2

Table 15: Receiver Blocking parameters receiver Category 2 equipment

| Wanted signal mean power from companion device (dBm) (see notes 1 and 3)                                     | Blocking<br>signal<br>frequency<br>(MHz) | Blocking<br>signal power<br>(dBm)<br>(see note 3) | Type of blocking<br>signal |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|----------------------------|
| (-139 dBm + 10 × log <sub>10</sub> (OCBW) + 10 dB)<br>or (-74 dBm + 10 dB) whichever is less<br>(see note 2) | 2 380<br>2 504<br>2 300<br>2 584         | -34                                               | CW                         |

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P<sub>min</sub> + 26 dB where P<sub>min</sub> is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

☐ Receiver Category 3

Table 16: Receiver Blocking parameters receiver Category 3 equipment

| Wanted signal mean power from companion device (dBm) (see notes 1 and 3)                                     | Blocking<br>signal<br>frequency<br>(MHz) | Blocking<br>signal power<br>(dBm)<br>(see note 3) | Type of blocking<br>signal |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|----------------------------|
| (-139 dBm + 10 × log <sub>10</sub> (OCBW) + 20 dB)<br>or (-74 dBm + 20 dB) whichever is less<br>(see note 2) | 2 380<br>2 504<br>2 300<br>2 584         | -34                                               | CW                         |

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P<sub>min</sub> + 30 dB where P<sub>min</sub> is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

#### **TEST PROCEDURE**

Please refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.11

REPORT NO.: E01A23040015R00601 Page 24 of 60

| M                       | leasurement          |
|-------------------------|----------------------|
| □ Conducted measurement | Radiated measurement |

## Step 1:

- For non-FHSS equipment, the UUT shall be set to the lowest operating channel on which the blocking test has to be performed (see clause 5.4.11.1). Step 2:
- The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.

  Step 3:
- With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device using the test setup shown in figure 6.
- Unless the option provided in note 2 of the applicable table referred to in clause 5.4.11.2.1 is used, the level of the wanted signal shall be set to the value provided in the table corresponding to the receiver category and type of equipment. The test procedure defined in clause 5.4.2, and more in particular clause 5.4.2.2.1.2, can be used to measure the (conducted) level of the wanted signal however no correction shall be made for antenna gain of the companion device (step 6 in clause 5.4.2.2.1.2 shall be ignored). This level may be measured directly at the output of the companion device and a correction is made for the coupling loss into the UUT. The actual level for the wanted signal shall be recorded in the test report.
- When the option provided in note 2 of the applicable table referred to in clause 5.4.11.2.1 is used, the attenuation of the variable attenuator shall be increased in 1 dB steps to a value at which the minimum performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still met. The resulting level for the wanted signal at the input of the UUT is Pmin. This signal level (Pmin) is increased by the value provided in note 2 of the applicable table corresponding to the receiver category and type of equipment. Step 4:
- The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment.
- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 are met then proceed to step 6.

#### Step 5:

- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is not met, step 3 and step 4 shall be repeated after that the frequency of the blocking signal set in step 2 has been increased with a value equal to the Occupied Channel Bandwidth except:
- For the blocking frequency 2 380 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be increased by 3 dB.
- For the blocking frequency 2 503,5 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be decreased by 3 dB.
- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still not met, step 3 and step 4 shall be repeated after that the frequency of the blocking signal set in step 2 has been decreased with a value equal to the Occupied Channel Bandwidth except:
- For the blocking frequency 2 380 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be decreased by 3 dB.
- For the blocking frequency 2 503,5 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be increased by 3 dB.
- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still not met, the UUT fails to comply with the Receiver Blocking requirement and step 6 and step 7 are no longer required.

TRF No.: 01-R001-1A-LE Global Testing, Great Quality.

REPORT NO.: E01A23040015R00601 Page 25 of 60

• It shall be recorded in the test report whether the shift of blocking frequencies as described in the present step was used.

Step 6:

- Repeat step 4 and step 5 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment. Step 7:
- For non-FHSS equipment, repeat step 2 to step 6 with the UUT operating at the highest operating channel on which the blocking test has to be performed (see clause 5.4.11.1). Step 8:
- It shall be assessed and recorded in the test report whether the UUT complies with the Receiver Blocking requirement.

#### **TEST ENVIRONMENT**

| Temperature         | 24℃    | Relative Humidity | 50% |
|---------------------|--------|-------------------|-----|
| Atmosphere Pressure | 101kPa |                   |     |

#### **TEST RESULTS**

Please refer to section "Test Data" - Appendix **TEST DATA** 

#### **RF Output Power**

| Condition | Mode      | Frequency<br>(MHz) | Antenna | Max Burst RMS<br>Power (dBm) | Burst<br>Number | Gain<br>(dB) | Max EIRP<br>(dBm) | Limit<br>(dBm) | Verdict |
|-----------|-----------|--------------------|---------|------------------------------|-----------------|--------------|-------------------|----------------|---------|
| NVNT      | BLE<br>1M | 2402               | Ant1    | 7.76                         | 161             | 0            | 7.76              | 20             | Pass    |
| NVNT      | BLE<br>1M | 2440               | Ant1    | 7.95                         | 160             | 0            | 7.95              | 20             | Pass    |
| NVNT      | BLE<br>1M | 2480               | Ant1    | 8.17                         | 161             | 0            | 8.17              | 20             | Pass    |
| NVLT      | BLE<br>1M | 2402               | Ant1    | 7.83                         | 160             | 0            | 7.83              | 20             | Pass    |
| NVLT      | BLE<br>1M | 2440               | Ant1    | 7.97                         | 161             | 0            | 7.97              | 20             | Pass    |
| NVLT      | BLE<br>1M | 2480               | Ant1    | 8.19                         | 161             | 0            | 8.19              | 20             | Pass    |
| NVHT      | BLE<br>1M | 2402               | Ant1    | 7.85                         | 160             | 0            | 7.85              | 20             | Pass    |
| NVHT      | BLE<br>1M | 2440               | Ant1    | 7.98                         | 160             | 0            | 7.98              | 20             | Pass    |
| NVHT      | BLE<br>1M | 2480               | Ant1    | 8.19                         | 161             | 0            | 8.19              | 20             | Pass    |
| NVNT      | BLE<br>2M | 2402               | Ant1    | 7.86                         | 161             | 0            | 7.86              | 20             | Pass    |
| NVNT      | BLE<br>2M | 2440               | Ant1    | 8                            | 161             | 0            | 8                 | 20             | Pass    |
| NVNT      | BLE<br>2M | 2480               | Ant1    | 8.15                         | 160             | 0            | 8.15              | 20             | Pass    |
| NVLT      | BLE<br>2M | 2402               | Ant1    | 7.87                         | 161             | 0            | 7.87              | 20             | Pass    |
| NVLT      | BLE<br>2M | 2440               | Ant1    | 7.99                         | 161             | 0            | 7.99              | 20             | Pass    |
| NVLT      | BLE<br>2M | 2480               | Ant1    | 8.18                         | 160             | 0            | 8.18              | 20             | Pass    |
| NVHT      | BLE<br>2M | 2402               | Ant1    | 7.87                         | 161             | 0            | 7.87              | 20             | Pass    |
| NVHT      | BLE<br>2M | 2440               | Ant1    | 8                            | 160             | 0            | 8                 | 20             | Pass    |
| NVHT      | BLE<br>2M | 2480               | Ant1    | 8.17                         | 160             | 0            | 8.17              | 20             | Pass    |



















REPORT NO.: E01A23040015R00601 Page 35 of 60

## **Power Spectral Density**

| Condition | Mode   | Frequency (MHz) | Antenna | Max PSD (dBm/MHz) | Limit (dBm/MHz) | Verdict |
|-----------|--------|-----------------|---------|-------------------|-----------------|---------|
| NVNT      | BLE 1M | 2402            | Ant1    | 8.25              | 10              | Pass    |
| NVNT      | BLE 1M | 2440            | Ant1    | 8.4               | 10              | Pass    |
| NVNT      | BLE 1M | 2480            | Ant1    | 8.61              | 10              | Pass    |
| NVNT      | BLE 2M | 2402            | Ant1    | 6.95              | 10              | Pass    |
| NVNT      | BLE 2M | 2440            | Ant1    | 7.25              | 10              | Pass    |
| NVNT      | BLE 2M | 2480            | Ant1    | 7.38              | 10              | Pass    |











REPORT NO.: E01A23040015R00601 Page 39 of 60

## **Occupied Channel Bandwidth**

| Condition | Mode      | Frequency<br>(MHz) | Antenna | Center<br>Frequency (MHz) | OBW<br>(MHz) | Lower Edge<br>(MHz) | Upper Edge<br>(MHz) | Limit OBW<br>(MHz) | Verdict |
|-----------|-----------|--------------------|---------|---------------------------|--------------|---------------------|---------------------|--------------------|---------|
| NVNT      | BLE<br>1M | 2402               | Ant1    | 2401.982                  | 1.095        | 2401.435            | 2402.529            | 20                 | Pass    |
| NVNT      | BLE<br>1M | 2440               | Ant1    | 2439.983                  | 1.061        | 2439.453            | 2440.513            | 20                 | Pass    |
| NVNT      | BLE<br>1M | 2480               | Ant1    | 2479.982                  | 1.063        | 2479.451            | 2480.513            | 20                 | Pass    |
| NVHT      | BLE<br>1M | 2402               | Ant1    | 2402.006                  | 1.079        | 2401.467            | 2402.545            | 20                 | Pass    |
| NVNT      | BLE<br>2M | 2402               | Ant1    | 2401.992                  | 2.246        | 2400.869            | 2403.115            | 20                 | Pass    |
| NVNT      | BLE<br>2M | 2440               | Ant1    | 2439.996                  | 2.166        | 2438.913            | 2441.079            | 20                 | Pass    |
| NVNT      | BLE<br>2M | 2480               | Ant1    | 2479.992                  | 2.182        | 2478.901            | 2481.083            | 20                 | Pass    |









REPORT NO.: E01A23040015R00601 Page 44 of 60

#### Transmitter unwanted emissions in the out-of-band domain

| Condition | Mode   | Frequency (MHz) | Antenna | OOB Frequency (MHz) | Level (dBm/MHz) | Limit (dBm/MHz) | Verdict |
|-----------|--------|-----------------|---------|---------------------|-----------------|-----------------|---------|
| NVNT      | BLE 1M | 2402            | Ant1    | 2399.5              | -26.1           | -10             | Pass    |
| NVNT      | BLE 1M | 2402            | Ant1    | 2399.405            | -26.05          | -10             | Pass    |
| NVNT      | BLE 1M | 2402            | Ant1    | 2398.405            | -28.94          | -20             | Pass    |
| NVNT      | BLE 1M | 2402            | Ant1    | 2398.31             | -29.18          | -20             | Pass    |
| NVNT      | BLE 1M | 2480            | Ant1    | 2484                | -29.54          | -10             | Pass    |
| NVNT      | BLE 1M | 2480            | Ant1    | 2484.063            | -29.41          | -10             | Pass    |
| NVNT      | BLE 1M | 2480            | Ant1    | 2485.063            | -31.35          | -20             | Pass    |
| NVNT      | BLE 1M | 2480            | Ant1    | 2485.126            | -31.44          | -20             | Pass    |
| NVHT      | BLE 1M | 2402            | Ant1    | 2399.5              | -44.22          | -10             | Pass    |
| NVHT      | BLE 1M | 2402            | Ant1    | 2399.421            | -44.49          | -10             | Pass    |
| NVHT      | BLE 1M | 2402            | Ant1    | 2398.421            | -49.03          | -20             | Pass    |
| NVHT      | BLE 1M | 2402            | Ant1    | 2398.342            | -49.19          | -20             | Pass    |
| NVNT      | BLE 2M | 2402            | Ant1    | 2399.5              | -17.68          | -10             | Pass    |
| NVNT      | BLE 2M | 2402            | Ant1    | 2399.393            | -21.51          | -10             | Pass    |
| NVNT      | BLE 2M | 2402            | Ant1    | 2398.393            | -29.42          | -20             | Pass    |
| NVNT      | BLE 2M | 2402            | Ant1    | 2398.286            | -29.54          | -20             | Pass    |
| NVNT      | BLE 2M | 2480            | Ant1    | 2484                | -29.11          | -10             | Pass    |
| NVNT      | BLE 2M | 2480            | Ant1    | 2485                | -31.13          | -10             | Pass    |
| NVNT      | BLE 2M | 2480            | Ant1    | 2485.182            | -31.48          | -10             | Pass    |
| NVNT      | BLE 2M | 2480            | Ant1    | 2486.182            | -32.74          | -20             | Pass    |
| NVNT      | BLE 2M | 2480            | Ant1    | 2487.182            | -34.31          | -20             | Pass    |
| NVNT      | BLE 2M | 2480            | Ant1    | 2487.364            | -34.64          | -20             | Pass    |







REPORT NO.: E01A23040015R00601 Page 48 of 60

### Transmitter unwanted emissions in the spurious domain

| Condition    | Mode             | Frequency<br>(MHz) | Antenna | Range<br>(MHz)              | Spur Freq<br>(MHz) | Peak<br>(dBm)    | RMS<br>(dBm) | Limit<br>(dBm) | Verdict      |
|--------------|------------------|--------------------|---------|-----------------------------|--------------------|------------------|--------------|----------------|--------------|
| NVNT         | BLE<br>1M        | 2402               | Ant1    | 30 -47                      | 36.25              | -69.35           | NA NA        | -36            | Pass         |
| NVNT         | BLE<br>1M        | 2402               | Ant1    | 47 -74                      | 47.25              | -69.11           | NA           | -54            | Pass         |
| NVNT         | BLE<br>1M        | 2402               | Ant1    | 74 -87.5                    | 78.00              | -69.26           | NA           | -36            | Pass         |
| NVNT         | BLE<br>1M        | 2402               | Ant1    | 87.5 -118                   | 105.05             | -67.98           | NA           | -54            | Pass         |
| NVNT         | BLE<br>1M        | 2402               | Ant1    | 118 -174                    | 171.85             | -68.25           | NA           | -36            | Pass         |
| NVNT         | BLE<br>1M        | 2402               | Ant1    | 174 -230                    | 183.15             | -67.07           | NA           | -54            | Pass         |
| NVNT         | BLE<br>1M        | 2402               | Ant1    | 230 -470                    | 266.80             | -67.27           | NA           | -36            | Pass         |
| NVNT         | BLE<br>1M        | 2402               | Ant1    | 470 -694                    | 684.90             | -66.85           | NA           | -54            | Pass         |
| NVNT         | BLE<br>1M        | 2402               | Ant1    | 694 -1000                   | 854.40             | -65.19           | NA           | -36            | Pass         |
| NVNT         | BLE<br>1M        | 2402               | Ant1    | 1000 -2398                  | 2397.50            | -25.50           | -34.34       | -30            | Pass         |
| NVNT         | BLE<br>1M        | 2402               | Ant1    | 2485.5 -<br>12750           | 4804.50            | -32.53           | -32.94       | -30            | Pass         |
| NVNT         | BLE<br>1M        | 2440               | Ant1    | 30 -47                      | 39.55              | -69.10           | NA           | -36            | Pass         |
| NVNT         | BLE<br>1M        | 2440               | Ant1    | 47 -74                      | 71.80              | -69.29           | NA           | -54            | Pass         |
| NVNT         | BLE<br>1M        | 2440               | Ant1    | 74 -87.5                    | 81.30              | -68.92           | NA           | -36            | Pass         |
| NVNT         | BLE<br>1M        | 2440               | Ant1    | 87.5 -118                   | 98.80              | -68.20           | NA           | -54            | Pass         |
| NVNT         | BLE<br>1M        | 2440               | Ant1    | 118 -174                    | 146.90             | -68.28           | NA           | -36            | Pass         |
| NVNT         | BLE<br>1M        | 2440               | Ant1    | 174 -230                    | 199.40             | -67.79           | NA           | -54            | Pass         |
| NVNT         | BLE<br>1M        | 2440               | Ant1    | 230 -470                    | 288.85             | -66.98           | NA           | -36            | Pass         |
| NVNT         | BLE<br>1M        | 2440               | Ant1    | 470 -694                    | 682.05             | -66.39           | NA           | -54            | Pass         |
| NVNT         | BLE<br>1M        | 2440               | Ant1    | 694 -1000                   | 911.30             | -66.12           | NA           | -36            | Pass         |
| NVNT         | BLE<br>1M        | 2440               | Ant1    | 1000 -2398                  | 2396.00            | -44.58           | NA           | -30            | Pass         |
| NVNT         | BLE<br>1M        | 2440               | Ant1    | 2485.5 -<br>12750           | 4880.50            | -34.06           | -34.56       | -30            | Pass         |
| NVNT         | BLE<br>1M        | 2480               | Ant1    | 30 -47                      | 45.50              | -69.27           | NA           | -36            | Pass         |
| NVNT         | BLE<br>1M        | 2480               | Ant1    | 47 -74                      | 59.65              | -68.79           | NA           | -54            | Pass         |
| NVNT         | BLE<br>1M        | 2480               | Ant1    | 74 -87.5                    | 83.90              | -69.09           | NA           | -36            | Pass         |
| NVNT         | BLE<br>1M        | 2480               | Ant1    | 87.5 -118                   | 114.90             | -68.37           | NA           | -54            | Pass         |
| NVNT         | BLE<br>1M        | 2480               | Ant1    | 118 -174                    | 147.20             | -67.54           | NA           | -36            | Pass         |
| NVNT         | BLE<br>1M        | 2480               | Ant1    | 174 -230                    | 186.95             | -67.34           | NA           | -54            | Pass         |
| NVNT         | BLE<br>1M        | 2480               | Ant1    | 230 -470                    | 460.90             | -67.21           | NA<br>NA     | -36            | Pass         |
| NVNT         | BLE<br>1M        | 2480               | Ant1    | 470 -694                    | 641.80             | -67.02           | NA<br>NA     | -54            | Pass         |
| NVNT<br>NVNT | BLE<br>1M        | 2480               | Ant1    | 694 -1000<br>1000 -2398     | 824.35<br>2397.00  | -66.00<br>-49.77 | NA<br>NA     | -36            | Pass<br>Pass |
| NVNT         | BLE<br>1M<br>BLE | 2480               | Ant1    | 2485.5 -                    | 2486.00            | -49.77           | -35.9        | -30<br>-30     | Pass         |
| NVHT         | 1M<br>BLE        | 2480               | Ant1    | 2485.5 -<br>12750<br>30 -47 | 33.75              | -69.02           | -35.9<br>NA  | -36            | Pass         |
| NVHT         | 1M<br>BLE        | 2402               | Ant1    | 47 -74                      | 57.30              | -69.02           | NA<br>NA     | -54            | Pass         |
| INVIII       | 1M               | 2402               | AIILI   | 41 -14                      | 37.30              | -09.07           | INA          | -54            | Fass         |

| NVHT | BLE             | 2402 | Ant1 | 74 -87.5          | 79.10   | -68.94 | NA     | -36 | Pass |
|------|-----------------|------|------|-------------------|---------|--------|--------|-----|------|
| NVHT | 1M<br>BLE<br>1M | 2402 | Ant1 | 87.5 -118         | 89.05   | -68.90 | NA     | -54 | Pass |
| NVHT | BLE<br>1M       | 2402 | Ant1 | 118 -174          | 161.60  | -68.28 | NA     | -36 | Pass |
| NVHT | BLE<br>1M       | 2402 | Ant1 | 174 -230          | 195.10  | -67.89 | NA     | -54 | Pass |
| NVHT | BLE<br>1M       | 2402 | Ant1 | 230 -470          | 320.85  | -67.30 | NA     | -36 | Pass |
| NVHT | BLE<br>1M       | 2402 | Ant1 | 470 -694          | 625.10  | -66.80 | NA     | -54 | Pass |
| NVHT | BLE<br>1M       | 2402 | Ant1 | 694 -1000         | 920.50  | -65.66 | NA     | -36 | Pass |
| NVHT | BLE<br>1M       | 2402 | Ant1 | 1000 -2398        | 2397.50 | -48.99 | NA     | -30 | Pass |
| NVHT | BLE<br>1M       | 2402 | Ant1 | 2485.5 -<br>12750 | 4804.50 | -43.46 | NA     | -30 | Pass |
| NVNT | BLE<br>2M       | 2402 | Ant1 | 30 -47            | 36.30   | -69.29 | NA     | -36 | Pass |
| NVNT | BLE<br>2M       | 2402 | Ant1 | 47 -74            | 53.90   | -68.85 | NA     | -54 | Pass |
| NVNT | BLE<br>2M       | 2402 | Ant1 | 74 -87.5          | 87.25   | -69.70 | NA     | -36 | Pass |
| NVNT | BLE<br>2M       | 2402 | Ant1 | 87.5 -118         | 107.20  | -68.78 | NA     | -54 | Pass |
| NVNT | BLE<br>2M       | 2402 | Ant1 | 118 -174          | 139.70  | -67.75 | NA     | -36 | Pass |
| NVNT | BLE<br>2M       | 2402 | Ant1 | 174 -230          | 180.80  | -67.88 | NA     | -54 | Pass |
| NVNT | BLE<br>2M       | 2402 | Ant1 | 230 -470          | 408.30  | -67.24 | NA     | -36 | Pass |
| NVNT | BLE<br>2M       | 2402 | Ant1 | 470 -694          | 647.60  | -66.74 | NA     | -54 | Pass |
| NVNT | BLE<br>2M       | 2402 | Ant1 | 694 -1000         | 724.15  | -65.92 | NA     | -36 | Pass |
| NVNT | BLE<br>2M       | 2402 | Ant1 | 1000 -2396        | 2395.00 | -30.21 | -33.64 | -30 | Pass |
| NVNT | BLE<br>2M       | 2402 | Ant1 | 2487.5 -<br>12750 | 4803.00 | -32.84 | -33.66 | -30 | Pass |
| NVNT | BLE<br>2M       | 2440 | Ant1 | 30 -47            | 31.90   | -68.99 | NA     | -36 | Pass |
| NVNT | BLE<br>2M       | 2440 | Ant1 | 47 -74            | 60.45   | -69.31 | NA     | -54 | Pass |
| NVNT | BLE<br>2M       | 2440 | Ant1 | 74 -87.5          | 76.60   | -68.88 | NA     | -36 | Pass |
| NVNT | BLE<br>2M       | 2440 | Ant1 | 87.5 -118         | 106.95  | -68.31 | NA     | -54 | Pass |
| NVNT | BLE<br>2M       | 2440 | Ant1 | 118 -174          | 163.85  | -68.26 | NA     | -36 | Pass |
| NVNT | BLE<br>2M       | 2440 | Ant1 | 174 -230          | 191.55  | -66.60 | NA     | -54 | Pass |
| NVNT | BLE<br>2M       | 2440 | Ant1 | 230 -470          | 435.05  | -67.50 | NA     | -36 | Pass |
| NVNT | BLE<br>2M       | 2440 | Ant1 | 470 -694          | 664.05  | -66.23 | NA     | -54 | Pass |
| NVNT | BLE<br>2M       | 2440 | Ant1 | 694 -1000         | 888.20  | -65.59 | NA     | -36 | Pass |
| NVNT | BLE<br>2M       | 2440 | Ant1 | 1000 -2396        | 2395.50 | -45.54 | NA     | -30 | Pass |
| NVNT | BLE<br>2M       | 2440 | Ant1 | 2487.5 -<br>12750 | 4879.00 | -34.33 | -60.49 | -30 | Pass |
| NVNT | BLE<br>2M       | 2480 | Ant1 | 30 -47            | 39.60   | -69.18 | NA     | -36 | Pass |
| NVNT | BLE<br>2M       | 2480 | Ant1 | 47 -74            | 49.15   | -69.47 | NA     | -54 | Pass |
| NVNT | BLE<br>2M       | 2480 | Ant1 | 74 -87.5          | 85.25   | -68.42 | NA     | -36 | Pass |
| NVNT | BLE<br>2M       | 2480 | Ant1 | 87.5 -118         | 92.45   | -68.77 | NA     | -54 | Pass |
| NVNT | BLE<br>2M       | 2480 | Ant1 | 118 -174          | 152.05  | -68.14 | NA     | -36 | Pass |
| NVNT | BLE<br>2M       | 2480 | Ant1 | 174 -230          | 186.30  | -67.25 | NA     | -54 | Pass |
| L    |                 | 1    | -1   | 1                 |         | 1      |        | 1   |      |

REPORT NO.: E01A23040015R00601 Page 50 of 60

| NVNT | BLE<br>2M | 2480 | Ant1 | 230 -470          | 317.60  | -67.51 | NA     | -36 | Pass |
|------|-----------|------|------|-------------------|---------|--------|--------|-----|------|
| NVNT | BLE<br>2M | 2480 | Ant1 | 470 -694          | 590.70  | -66.65 | NA     | -54 | Pass |
| NVNT | BLE<br>2M | 2480 | Ant1 | 694 -1000         | 855.00  | -66.23 | NA     | -36 | Pass |
| NVNT | BLE<br>2M | 2480 | Ant1 | 1000 -2396        | 2395.00 | -48.42 | NA     | -30 | Pass |
| NVNT | BLE<br>2M | 2480 | Ant1 | 2487.5 -<br>12750 | 2488.00 | -30.75 | -34.08 | -30 | Pass |









REPORT NO.: E01A23040015R00601 Page 55 of 60

#### **Receiver spurious emissions**

| Condition | Mode      | Frequency<br>(MHz) | Antenna | Range<br>(MHz) | Spur Freq<br>(MHz) | Peak<br>(dBm) | RMS<br>(dBm) | Limit<br>(dBm) | Verdict |
|-----------|-----------|--------------------|---------|----------------|--------------------|---------------|--------------|----------------|---------|
| NVNT      | BLE<br>1M | 2402               | Ant1    | 30 -1000       | 678.6              | -76.57        | NA           | -57            | Pass    |
| NVNT      | BLE<br>1M | 2402               | Ant1    | 1000 -12750    | 6961               | -59.31        | NA           | -47            | Pass    |
| NVNT      | BLE<br>1M | 2440               | Ant1    | 30 -1000       | 831.65             | -76.19        | NA           | -57            | Pass    |
| NVNT      | BLE<br>1M | 2440               | Ant1    | 1000 -12750    | 6942               | -59.10        | NA           | -47            | Pass    |
| NVNT      | BLE<br>1M | 2480               | Ant1    | 30 -1000       | 881.2              | -77.42        | NA           | -57            | Pass    |
| NVNT      | BLE<br>1M | 2480               | Ant1    | 1000 -12750    | 6949.5             | -58.54        | NA           | -47            | Pass    |
| NVNT      | BLE<br>2M | 2402               | Ant1    | 30 -1000       | 944.35             | -76.52        | NA           | -57            | Pass    |
| NVNT      | BLE<br>2M | 2402               | Ant1    | 1000 -12750    | 6978               | -59.19        | NA           | -47            | Pass    |
| NVNT      | BLE<br>2M | 2440               | Ant1    | 30 -1000       | 944.1              | -75.98        | NA           | -57            | Pass    |
| NVNT      | BLE<br>2M | 2440               | Ant1    | 1000 -12750    | 6997               | -58.79        | NA           | -47            | Pass    |
| NVNT      | BLE<br>2M | 2480               | Ant1    | 30 -1000       | 997.65             | -77.14        | NA           | -57            | Pass    |
| NVNT      | BLE<br>2M | 2480               | Ant1    | 1000 -12750    | 6937               | -59.58        | NA           | -47            | Pass    |







REPORT NO.: E01A23040015R00601 Page 59 of 60

# **Receiver Blocking**

| Condition | Mode | Frequency | Wanted | Blocking  | Blocking    | PER | Limit | Verdict |
|-----------|------|-----------|--------|-----------|-------------|-----|-------|---------|
|           |      | (MHz)     | Power  | Frequency | Power (dBm) | (%) | (%)   |         |
|           |      |           | (dBm)  | (MHz)     |             |     |       |         |
| NVNT      | BLE  | 2402      | -69    | 2380      | -34         | 1.2 | 10    | Pass    |
| NVNT      | BLE  | 2402      | -69    | 2504      | -34         | 1.3 | 10    | Pass    |
| NVNT      | BLE  | 2402      | -69    | 2300      | -34         | 0.8 | 10    | Pass    |
| NVNT      | BLE  | 2402      | -69    | 2584      | -34         | 1.4 | 10    | Pass    |
| NVNT      | BLE  | 2480      | -69    | 2380      | -34         | 0.6 | 10    | Pass    |
| NVNT      | BLE  | 2480      | -69    | 2504      | -34         | 1.1 | 10    | Pass    |
| NVNT      | BLE  | 2480      | -69    | 2300      | -34         | 1.1 | 10    | Pass    |
| NVNT      | BLE  | 2480      | -69    | 2584      | -34         | 0.9 | 10    | Pass    |

REPORT NO.: E01A23040015R00601 Page 60 of 60

| APPENDIX: | <b>PHOTOGRAP</b> | <b>HS OF T</b> | HE EUT |
|-----------|------------------|----------------|--------|
|-----------|------------------|----------------|--------|

Please refer to the test report: E01A23040015E00601.

**END OF REPORT**