Hydrodynamic Properties of the Unitary Fermi Gas

Eric Wolf, Huan Q Bui, Parth B Patel, Zhenjie Yan,

Biswaroop Mukherjee, Carsten Robens, Richard Fletcher, Martin Zwierlein

MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139

Unitary Fermi Gas in a Box Potential

Unitary Fermi Gas

- Relevant to systems ranging from neutron stars to high- T_c superconductors
- Unitary Fermi gas is scale-invarian 💆
- Realize unitarity with $|1\rangle |3\rangle$ Feshbach resonance in $^6{\rm Li}$
- ullet Evaporatively cool spin mixture to below T_F

Box Potential [1]

- Hollow blue-detuned beams realize (quasi) flat potential
- Reduces influence of trap averaging & targets smaller range of densities
- Momentum imaging possible via residual axial harmonic trap

Density Response – First Sound [2]

First Sound

- Density oscillations: in-phase oscillation of normal and superfluid phase
- Excite by shaking box walls
- Image density waves in-situ extract wavevector k for a given ω to get c
- Speed of sound in scale-invariant system given by system energy

Resonant Modes and Dissipation

- Sound speed constrained by scale invariance, but dissipation is not
- Hydrodynamics predicts damping rate $\Gamma \propto k^2$, with proportionality constant D_s , the sound diffusivity
- D_s depends on shear viscosity and thermal conductivity
- Measure damping vs. k using width of resonant box modes extract D_s

Temperature Response – Second Sound [3]

Second Sound

- Temperature oscillations: out-of-phase oscillations of normal and superfluid phase
- Excite oscillations by imprinting high-frequency sound waves to locally heat the gas
- Measure temperature locally using RF spectroscopy
- Second sound arises at temperatures below the superfluid transition temperature
- Damping rate of second sound gives thermal conductivity

Hydrodynamics – Transport Properties

Hydrodynamic Quantities

- Hydrodynamic quantities above T_c : shear viscosity η and thermal conductivity κ
- Bulk viscosity vanishes for scale-invariant systems; below T_c , superfluidity density is conserved **Results**
- First sound dissipation given by κ and η ; second sound dissipation by κ and c_P
- * Your Perwith Properties and second sound give η and κ above T_c and theory
- Thermal conductivity differs strongly from theory predictions near T_c
- Prandtl number $\frac{c_P\eta}{\kappa}$, ratio of momentum to thermal diffusivity, remains close to typical 2/3 value for gases

Red diamond [5], green line [6], pink line [7], cyan line [8], orange line [9]

References

- [1] B. Mukherjee et al., *PRL* 2017[2] P.B. Patel et al., *Science* 2020
- [3] Z. Yan et al., in preparation
- [4] M.J.H. Ku et al., *Science* 2012
- [5] L. Baird et al., *PRL* 2019
- [6] B. Frank et al., *Phys Rev Research* 2020
- [7] J. A. Joseph et al., *PRL* 2015
- [8] M. Bluhm et al., *PRL* 2017 [9] T. Enss et al., *Annals of Physics* 2011

Funding

AFOSR-MURI, National Science Foundation, Office of Naval Research, Vannevar Bush Faculty Fellowship