Answers to selected problems

Chapter 1

```
1. a) The set of integers between -\pi and \pi.
```

c) The empty set.

3. Answer for both: the interior and boundary of the triangle with vertices at (0,0), (2,0) and (2,4).

5. a)
$$-4 < x < 2$$
 b) $x < -5$ or $x > 1$ c) $-1 < x < -1/3$ d) $x > 0$

a) F b) F c) T d) T e) F

6. c) From (a) we have $x^2 + \frac{1}{x^2} \ge 2$ with equality if and only if $x = \pm 1$.

8. Hint:
$$(x^2 + y^2)^2 > 4x^2y^2$$
.

10. a)
$$-\sqrt{5} \le x \le \sqrt{5}$$
; $0 \le y \le \sqrt{5}$
b) $x \le -\sqrt{5}$ or $x \ge \sqrt{5}$; $y \ge 0$

c)
$$x \leq \sqrt{3}$$
 of $x \geq \sqrt{3}$

$$\mathrm{d}) \quad [1,\infty); \ [0,\infty)$$

e)
$$(1, \infty)$$
; $(0, \infty)$

f)
$$\{x \in \mathbb{R} : 2n\pi \le x \le (2n+1)\pi; n \in \mathbb{Z}\}; [0, 1]$$

g) The union of the intervals $\left[-\frac{7\pi}{6} + 2k\pi, \frac{\pi}{6} + 2k\pi\right]$ where $k \in \mathbb{Z}$; $0 \le y \le \sqrt{3}$

h)
$$\{x \in \mathbb{R} : x \neq (2n+1)\pi/2, n \text{ an integer}\}; [1, \infty)$$

i) \mathbb{R} ; $[-1, \infty)$

11. a) 22 b)
$$x^2 + 10x + 22$$
 c) 6 d) $x^2 + 2$

12. a)
$$x-1+1/\sqrt{x-1}$$
 b) $\sqrt{x-1}$ c) $(x-1)^{3/2}$ d) $(1/\sqrt{x-1})-1$

16.
$$[4, 13]$$

17.
$$x = 1, 7$$

236 CHAPTER 3

18. a) If $p(x) = a_0 + a_1 x + \dots + a_n x^n$ then $p(q(x)) = a_0 + a_1 q(x) + a_2 (q(x))^2 + \dots + a_n (q(x))^n$. Products and sums of polynomials are again polynomials.

b) Yes.

Chapter 2

1. a) 1 b) 2 c) 0

d) Doesn't exist $(\to \infty)$. e) 5 f) Doesn't exist.

2. a) 0 b) 0

4. b) 0

5. a) 1 b) M = 10 (best possible) c) $M = 1/\sqrt{\epsilon}$ will do.

6. a) 4 b) 0 c) 0 d) 0 e) 0

7. a) Not necessarily, as the information given indicates only that the inequality holds for a subset of (ϵ^{-1}, ∞) .

b) Yes. In fact one can prove that $\lim_{x\to\infty} g(x) = 5$ from the definition of the limit by taking M to be $\frac{1}{\epsilon}$.

8. a) 50 metres per second b) $5 \ln 50 \approx 19.56$ seconds after leaving the plane.

9. a) Yes. If limit of f(x) as $x \to \infty$ does not exist and $f(x) \neq 0$, then $\lim_{x \to \infty} (f(x) - f(x)) = 0$ and $\lim_{x \to \infty} (f(x)/f(x)) = 1$.

b) Yes, since g(x) = (f(x) + g(x)) - f(x).

c) No, as in (b).

d) No. For example if f(x) = 0 for all x and $\lim_{x \to \infty} g(x)$ does not exist, we have $\lim_{x \to \infty} (f(x)g(x)) = 0$.

10. a) 10 b) 4 c) 3 d) -1/9

11. a) -1 b) 1 c) No

12. a) Doesn't exist. b) Doesn't exist. c) Doesn't exist. d) Doesn't exist.

13. a) 0 b) 0

14. a) $|CB| = \theta$, $|CA| = \sin \theta$, $|DB| = \tan \theta$.

15. Neither the left-hand nor right-hand limits exist due to wild oscillatory behaviour.

- 1. b) Yes
- a) Continuous everywhere. b) Continuous everywhere except at $\pi/2$.
- 3. k = 8
- 5. Use the intermediate value theorem.
- b) Yes c) No d) Yes 9. a) Yes

- 2. a) $5(4x^3 + 21x^6)$ b) $(4x^3 2)(4x^2 + 2x + 4) + (x^4 2x)(8x + 2)$ c) $(16y y^4)/(y^3 + 8)^2$ d) $(2x^2 4)/(x^2 4)^{1/2}$ e) $-4/(t^2 4)^{3/2}$ f) $3\cos 3y + 12\cos 2y\sin 2y$

 - e) $-4/(t^2-4)^{3/2}$ g) $(4x^3-x^4)e^{-x}$ h) $x \ln(x^3 + 1) + 3x^2(x^2 + 1)/2(x^3 + 1)$
 - i) $\sec^2 x$ j) $-\tan x$
- a) 0 b) 0 c) f'(0) = 03.
- a) i) $x \neq 0$ ii) all x b) i) all x ii) all x
 - c) i) $x \neq -2$ ii) $x \neq -2$
- 7. 2pf'(a)
- 8. a) $x + 17\pi + \cos 2x$ b) $1 2\sin 2x$ c) $2 x^2 + \cos 2(2 x^2)$ d) $1 2\sin 2(2 x^2)$ e) $-2x(1 2\sin 2(2 x^2))$
- a) $\frac{dy}{dx} = \frac{3x^2 y}{x 3y^2}$ b) $\frac{dy}{dx} = (y 4x\sqrt{xy})/(4y\sqrt{xy} x)$
- 11. y = 2
- 12. a) (i) b = 0 (ii) a = 1, b = 0
 - b) (i) b = 1 (ii) a = 2, b = 1.
- 13. a = 1, b = 0
- 14. a) $f(8.01) \approx f(8) = 2$
 - b) i) y = (x-8)/12 + 2
 - ii) $f(8.01) \approx (8.01 8)/12 + 2 = 2 + \frac{1}{1200}$
 - c) The approximation in (b) is much better.
- 15. $\sqrt{3} \, ar/2$
- 16. 7/8

- 17. a) $\frac{1}{8\pi}$ b) $\frac{32000\pi}{81}$ cm³
- 18. a) $\frac{dh}{dt} = \frac{2}{125\pi}$ when h = 50.

- 1. $\sqrt{\frac{7}{3}}$ b) $\frac{1}{2}$
- 5. b) 0
- a) By the Mean Value Theorem, for some c with 16 < c < 17, $\sqrt{17} \sqrt{16} = \frac{1}{2\sqrt{c}} < \frac{1}{2\sqrt{16}} = \frac{1}{2\sqrt{c}}$ 0.125.
 - b) 0.008
 - c) 2×10^{-6} .
- 8. -1, 1 and 4 are stationary points; 4 is a local minimum point; -1 is a local maximum point.
- 9. No
- 10.
- a) 11, -61 b) 3, -253 c) 27/256, -750 d) 250, -54 e) 2, 0

- 11. (12/13, 18/13)
- 12. $p'_n(x) = p_{n-1}(x)$, and if $p_{n-1}(x) = 0$ then $p_n(x) = x^n/n!$. These hints are all you need!
- 13. a) $(400)/(4+\pi)$, $100\pi/(4+\pi)$ b) 0,100
- 14. The greatest distance is a + 2; the least distance is $\begin{cases} \sqrt{1 a^2/3} & \text{if } 0 \le a \le 3/2 \\ |a 2| & \text{if } a > 3/2. \end{cases}$
- 15. $a = \frac{\pi}{2}, x = \frac{3\pi}{4}, \frac{7\pi}{4}; a = \frac{3\pi}{2}, x = \frac{\pi}{4}, \frac{5\pi}{4}$. The Maple commands with(plots): animate(plot,[cos(a) + 2*cos(2*x) + cos(4*x-a), x=0...2*Pi], a=0...2*Pi);

should confirm your answers.

- 17. Three real zeros
- a) $f(t) = -\cos t + t^2/2 + 3$ 18.

- 19.
 - a) 0 b) 8/3
- 20.
- a) $\frac{1}{3}$ b) $\frac{m}{n}$ c) -1 d) $-\frac{1}{2}$ e) $\frac{1}{4}$ f) $\frac{1}{3}$

- 21.

- a) $\rightarrow 0$ b) $\rightarrow \infty$ c) $\rightarrow 0$ d) $\rightarrow 1$ e) $\rightarrow 1$ f) $\rightarrow \frac{3}{2}$
- 22. Combine the two fractions and apply l'Hôpital twice only. You will need to simplify the quotient obtained after the first application of l'Hôpital. Maple can confirm your answer.

23.
$$(a,b) = (-\sqrt{2}, \sqrt{2})$$
 or $(\sqrt{2}, -\sqrt{2})$

- 26. a) -1/2
 - b) a = -1/2, b = 1
- 27. c) a = b = 0

2. a)
$$f^{-1}(x) = \frac{1}{3}(x-1)$$

b)
$$g^{-1}(x) = -\sqrt{x-1}$$
, $\operatorname{Dom}(g^{-1}) = [1, \infty)$, $\operatorname{Range}(g^{-1}) = (-\infty, 0]$, $(g^{-1})'(x) = \frac{-1}{2\sqrt{x-1}}$

- 4. b) 1/3
- b) The restriction of f to $(-\infty, -1]$ has an inverse with domain $(-\infty, 3]$, 5. the restriction of f to [-1,1] has an inverse with domain [-1,3], and the restriction of f to $[1, \infty)$ has an inverse with domain $[-1, \infty)$.
- 6. a) No b) Yes
- a) The graph is symmetric about $x = -\frac{1}{2}$, which surely gives a local maximum of f(x). There will be four (maximal) intervals where f will have an inverse. Try this exercise on Maple. The commands plot, diff and solve should suffice.
 - b) f is one-to-one; $f^{-1}(x) = x^{1/17} 1$ is not differentiable when x = 0.
 - c) I can be one of four intervals.
- a) $\pi/3$

- e) 4/5

- b) 2/5 c) $-\pi/3$ d) $\pi/3$ f) $3/\sqrt{34}$ g) $\pi/3$ h) $\pi-x$
- 11. a) $-2/\sqrt{1-4x^2}$ b) $1/(2\sqrt{x-x^2})$ c) $2/(4x^2-12x+10)$
- 12. Differentiate; $-1 \le x \le 1$; $\pi/2$.
- b) $f(x) = \pi/2$ when x > 0 and $f(x) = -\pi/2$ when x < 0. 13.
- b) The derivative of the inverse is $-1/x\sqrt{x^2-1}$ when x>1.
- 16. $a = \pi/2, b = 0$
- a) $24\pi \text{ km/min}$ b) $104\pi/3 \text{ km/min}$
- 18. $\sqrt{48}$ metres

- 1. [-1,5], [0,3], upper half of circle.
- a) period $2\pi/3$, odd
- b) period 3π , neither
- c) not periodic, even
- d) period $\pi/3$, odd
- e) period π , even
- f) 2π
- 3. odd, even, neither, odd, odd, even.
- 4. The asymptotes are
- a) x = 3, y = x + 2 b) x = -1, y = x 1 c) x = -3, x = 2, y = x 1.
- 6. a) $x \ge 3$, $-\frac{1}{3} < x \le \frac{1}{3}$ b) $x = -\frac{1}{3}, x = -3, y = 1$ c) $(1, -\frac{1}{4}), (-1, -4)$ d) Domain: $x \ne 3, -\frac{1}{3}$, Range: $(-\infty, -4], [-\frac{1}{4}, \infty)$.

- 7. a) $\frac{x^2}{16} + \frac{y^2}{25} = 1$, ellipse b) $\frac{x^2}{9} \frac{y^2}{4} = 1$, hyperbola c) $y = x^{2/3}$ d) spiral

- 8. a) ii) (2,0)
- iii) -1
- b) ii) (5,0), (-1,0) iii) $4t^3/3$
- c) ii) (1,0), (-1,0) iii) $-\cot t$
- 9. a) 3x 27y + 52 = 0 b) $\frac{1}{9}$
- 10. a) $y = 3x^{\frac{2}{3}}$.
- b) Hint: the length of one particular arc of the larger circle equals the length of one arc on 11. the smaller circle.
 - d) $x^{2/3} + y^{2/3} = 1$
- 12. a) $\mathbf{p}(t) = \mathbf{a} + t(\mathbf{b} \mathbf{a}), \mathbf{p}(0) = \mathbf{a}, \mathbf{p}(1) = \mathbf{b}$ b) $y = 4 x, \mathbf{q}(1/2)$ is the coordinate vector for the midpoint of B and C c) $p_0(t) = (1 t)^2, p_1(t) = 2t(1 t), p_2(t) = t^2$
- a) (3,0)13.
- b) $(-3\sqrt{3}, -3)$ c) $(\sqrt{2}, -\sqrt{2})$

- 14. a) $(3, \pi)$
- b) $(\sqrt{2}, -3\pi/4)$ c) $(4, 2\pi/3)$ e) $(4, 5\pi/6)$ f) $(4, -5\pi/6)$

- d) $(1, \pi/2)$

- a) Circle, centre (0,0), radius 4 15.
 - b) A ray in the second quadrant
 - c) A spiral of Archimedes
- 16. a) Circle, centre (0,3), radius 3
 - b) Circle, centre (1,0), radius 1

17. The following sketches are a guide to shape only.

19.
$$\frac{(x-2)^2}{9} + \frac{y^2}{5} = 1$$

1. a) i)
$$\overline{S}_{\mathcal{P}_n}(f) = \underline{S}_{\mathcal{P}_n}(f) = 1$$

ii) $\underline{S}_{\mathcal{P}_n}(f) = \frac{1}{2} \left(1 - \frac{1}{n}\right)$, $\overline{S}_{\mathcal{P}_n}(f) = \frac{1}{2} \left(1 + \frac{1}{n}\right)$
iii) $\underline{S}_{\mathcal{P}_n}(f) = \frac{1}{6} \left(1 - \frac{1}{n}\right) \left(2 - \frac{1}{n}\right)$, $\overline{S}_{\mathcal{P}_n}(f) = \frac{1}{6} \left(1 + \frac{1}{n}\right) \left(2 + \frac{1}{n}\right)$
v) $\overline{S}_{\mathcal{P}_n}(f) = 1$, $\underline{S}_{\mathcal{P}_n}(f) = 0$
b) i) 1 ii) $\frac{1}{2}$ iii) $\frac{1}{3}$ iv) $\frac{1}{4}$ (v) Not Riemann integrable

- a) $\sqrt{1365} = 36.95$ b) $\sqrt{1690.9} = 41.12$ and the lower bound is $\sqrt{1078.9} = 32.85$
- 4. 4.5
- a) 82.4 b) 10
- 6. $f(x) = \frac{1}{x^2 + x \perp 1}$
- 7. $\frac{1}{x}$ is not differentiable on all of [-1, 1] so the FTC doesn't apply.
- a) Draw a picture! b) $5\pi/12 \sqrt{3}/2$
- 10. F is continuous everywhere, but not differentiable at the integers.
- a) $\sin x^2$ b) $3x^2 \sin x^6$ c) $-3x^2 \sin x^6$ d) $3x^2 \sin x^6 \sin x^2$
- 13. $-(5-4x)^5$
- 14. biii) $\frac{\pi}{6}$.
- 15. a) $\frac{1}{2}e^{x^2} + C$ b) $-2\cos\sqrt{x} + C$ c) 15/4 d) $4\sqrt{2}a^{9/2}/9$ e) 1/4 f) $(2\sqrt{2}-1)/3$
- 16. a) $2\sqrt{x} 2\ln(1+\sqrt{x}) + C$ b) $\frac{1}{25} \left(\frac{1}{21}(5x-1)^{21} + \frac{1}{20}(5x-1)^{20}\right) + C$ c) $x/(x+1)^2 + C$ d) $4 10\ln(7/5)$

17.
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{t^2 - 1}{\sqrt{2}t} \right)$$
 for $t \neq 0$

18. a)
$$\frac{4e^5+1}{25}$$

 $\begin{array}{lll} 18. & \text{a)} & \frac{4e^5+1}{25} & \text{b)} & x^2\sin x + 2x\cos x - 2\sin x + C \\ & \text{c)} & x(\ln(x)-1) + C & \text{d)} & \frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1 \\ & \text{e)} & \frac{7e^8+1}{64} & \text{f)} & \frac{\pi}{2} \\ & \text{g)} & \frac{e^x}{2}(\cos x + \sin x) & \text{h)} & x\tan^{-1}x - \ln\sqrt{1+x^2} + C \\ & \text{i)} & \frac{\sqrt{2}}{2} + \frac{1}{2}\ln(1+\sqrt{2}) & \end{array}$

c)
$$x(\ln(x) - 1) + C$$

e)
$$\frac{7e^8+1}{64}$$

g)
$$\frac{e^x}{2}(\cos x + \sin x)$$

i)
$$\frac{\sqrt{2}}{2} + \frac{1}{2} \ln(1 + \sqrt{2})$$

a) 1/5 b) diverges c) $\pi/4$ d) 0 e) 2 f) diverges

f) diverges

a) 0 b) ln 2 c) No

a) convergent b) divergent c) divergent

a) convergent b) divergent c) convergent

25.
$$s < 0$$

26.
$$p > 1$$

27. The integral converges whenever 2a - b > 1.

c) $\operatorname{Li}'(x) = \frac{1}{\ln x} > 0$ so Li is an increasing function; $\operatorname{Li}(2) = 0$.

d)
$$\operatorname{Li}(10^6) \ge \frac{10^6 - 2}{6 \ln 10}$$
.

e)
$$\frac{\pi(10^6)}{x} \gtrsim 0.07238$$
.

29. a)
$$\frac{2}{\sqrt{\pi}}e^{-x^2}$$

d) (i)
$$0.749 < \text{erf}(1) < 0.928$$
 (iii) $1/e$ (iv) 1.344

(iii)
$$1/\epsilon$$

Chapter 9

- a) A partition into 7 equal parts will suffice

c)
$$\frac{1}{(\ln(\ln x))(\ln x)x}$$

3. a) $3x^2/2(x^3+1)$ b) e^x for x>0, $-e^{-x}$ for x<0 c) $\frac{1}{(\ln(\ln x))(\ln x)x}$ d) $5x^4$ (where $x>-6^{1/5}$)

4. a)
$$\frac{1}{2}\ln(1+e^{2x})$$
 b) $-e^{1/x}$ c) $3^x/\ln 3$ d) $\frac{e^{\sqrt{x}}}{4}$ e) $\frac{(\ln x)^2}{2}$ f) $\ln|\sin x|$

c)
$$3^x / \ln 3$$

e)
$$\frac{(\ln x)^2}{2}$$

8. a)
$$3^x \ln 3$$

b)
$$\left(\frac{x^3-3}{x^2+1}\right)^{1/5} \left(\frac{3x^2}{5(x^3-3)} - \frac{2x}{5(1+x^2)}\right)$$

c)
$$(\sin x)^{\sin x} \cos x (1 + \ln(\sin x))$$

c)
$$(\sin x)^{\sin x} \cos x (1 + \ln(\sin x))$$
 d) $\cos(x^{\sin x}) x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x}\right)$

c) 1 d)
$$e^2$$
 e) 1
h) 0 i) 0

f) 1

g)
$$e^a$$

Chapter 10

2. a)
$$\operatorname{sech}^2 x$$
 b) $-\operatorname{sech} x \tanh x$ c) $-\operatorname{cosech}^2 x$

b)
$$-\operatorname{sech} x \tanh x$$

c)
$$-\operatorname{cosech}^2 x$$

3. a)
$$6x \cosh(3x^2)$$
 b) $\frac{-\sinh(1/x)}{x^2}$ c) $\frac{1}{2} + \frac{1}{2x^2}$

b)
$$\frac{-\sinh(1/x)}{x^2}$$

c)
$$\frac{1}{2} + \frac{1}{2x^2}$$

a) $\sinh 2x = 2 \cosh x \sinh x$; $\cosh 2x = \cosh^2 x + \sinh^2 x$

b) $\frac{1}{4}(\frac{1}{3}\cosh 3x - 3\cosh x)$ or $\frac{1}{3}\cosh^3 x - \cosh x$

or
$$\frac{1}{3} \cosh^3 x - \cosh x$$

b)
$$\frac{1}{12}$$

a)
$$\frac{\sinh 4x}{4}$$
 b) $\frac{1}{12}$ c) $(2x + \sinh 2x)/4$ d) $2 \cosh \sqrt{x}$

d)
$$2 \cosh \sqrt{x}$$

8. 5/4, 3, 5/12

11. a)
$$2/\sqrt{1+4x^2}$$

a)
$$2/\sqrt{1+4x^2}$$
 b) $\frac{1}{1-x^2}$ for $|x| > 1$ c) $\sec x$

c)
$$\sec x$$

12. a)
$$\frac{1}{2} \sinh^{-1} 2x$$

12. a)
$$\frac{1}{2} \sinh^{-1} 2x$$
 b) $\tanh^{-1} \frac{1}{2} = \frac{1}{2} \ln 3$ c) $\sinh^{-1} \left(\frac{x+2}{3}\right)$

c)
$$\sinh^{-1}\left(\frac{x+2}{3}\right)$$

PAST CLASS TESTS

In the years up to 2007 there were 3 calculus class tests per session. From semester 1 2008 there will be only 2 calculus class tests per semester so the pre-2008 tests included here do not have the same coverage of material as the class tests for 2008 and onwards. The Information booklet for MATH1131/1141 lists the material available for examination in the current schedule of class tests. Also there have been some changes to the syllabus for 2008 and onwards and some parts of the questions in the following pre-2008 class tests are no longer examinable. Thus the following pre-2008 tests should only be taken as a guide to the level of difficulty to be expected in class test questions for 2008 and onwards.

Sample class tests from 2008 and onwards are included after all the pre-2008 class tests and these tests correspond to the current syllabus and class test schedule. However, the content of the class tests is specified in the Information booklet for MATH1131/1141.

The following selection of past class tests can be used as a guide to the degree of difficulty of calculus class tests. Due to variations in the timing of the mid-semester breaks the material examined in each class test can vary from semester to semester and from year to year.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131 Mathematics 1A Calculus S1 2008 TEST 1 VERSION 5a

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcula	ator is NOT permitted in this te	st
QUESTIONS (Time allow	ved: 20 minutes)	
1. (2 marks) Solve $ 2 - 3x \le 1$.		
2. (2 marks)		
Find the (maxima	d) domain and the range of the functi	$f(x) = \frac{1}{\sqrt{3-x}}.$
3. (2 marks)		
Sketch the graph q	$y = x^2 - 3x - 10$, and hence sketch th	ne graph $y = \frac{1}{x^2 - 3x - 10}$.
4. (2 marks)		
For $f(x) = \frac{ x^2 - x }{ x - x }$ $x \to a^-$ and as $x \to a^-$	$\frac{9}{3}$ and $a = 3$, discuss the limiting be $a \to a$.	chaviour of $f(x)$ as $x \to a^+$, as
5. (2 marks)		
Determine the lim	uiting behaviour of $f(x) = 2x + 3x^2 + 2x^2 + 2$	$\frac{e^{-x}}{8x}$ as $x \to \infty$.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131 Mathematics 1A Calculus S2 2008 TEST 1 VERSION 2b

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcu	lator is NOT permitted in this test	t
QUESTIONS (Time allo	wed: 20 minutes)	
1. (2 marks)		
Let $f(x) = x^2 + (g \circ f)(x)$.	$+4$, and $g(x) = \frac{1}{\sqrt{x+1}}$. Give the exp	plicit forms of $(f \circ g)(x)$ and
2. (2 marks)		
Find the limiting	g value of $f(x) = \frac{x^2 - 5x + 6}{2x^2 - 5x + 2}$ as $x \text{ tend}$	ls to 2.
3. (2 marks)		
For $f(x) = \frac{ x^2 - x }{x}$ as $x \to a^-$ and a	$\frac{4x+3}{x-1}$ and $a=1$, discuss the limiting $a=1$ and $a=1$, $a=1$	behaviour of $f(x)$ as $x \to a^+$,
4. (2 marks) Solve $ 2 - 3x \le$	1.	
5. (2 marks)		

Find the (maximal) domain and the range of the function $f(x) = \ln(x^2 - 5)$.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Calculus S1 2009 TEST 1 VERSION 8a

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calculator	r is NOT permitted in this test	
QUESTIONS (Time allowed:	20 minutes)	
1. (2 marks)		
Sketch the graph $y =$	$\sqrt{x+2}$, and hence sketch the graph	$y = \frac{1}{\sqrt{x+2}}.$
2. (2 marks) Solve $ 3x + 2 \ge 1$.		
3. (2 marks)		
Find the (maximal) d	domain and range of the function $f(x)$	$= \frac{1}{\sqrt{9-x^2}}.$
4. (2 marks)	m 2 2 4	
Determine the limiting	ng behaviour of $f(x) = \frac{e^{-x} + 3x^2 - 2}{4x^2 + 3x + \sin x}$	$\frac{2}{x}$ as $x \to \infty$.
5. (2 marks)		
	and $a = 2$, discuss the limiting behave	viour of $f(x)$ as $x \to a^+$, as
$x \to a^-$ and as $x \to a$	i. •	

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131 Mathematics 1A Calculus S1 2009 TEST 1 VERSION 6a

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calculate	or is NOT permitted in this test	t
QUESTIONS (Time allowed	: 20 minutes)	
1. (2 marks)		
Solve $\frac{1}{x+1} \le -\frac{1}{2}$.		
2. (2 marks)		
Find the (maximal)	domain and the range of the function	on $f(x) = \sqrt{2 - e^{-x}}$.
3. (2 marks)		
Let f(x) = 3x + 4,	and $g(x) = \frac{1}{\sqrt{x-2}}$. Give the exp	plicit forms of $(f \circ g)(x)$ and
$(g \circ f)(x).$	$\sqrt{x-2}$	
4. (2 marks)		
Find the limiting val	tue of $f(x) = \frac{2x^2 - x - 6}{3x^2 - 2x - 8}$ as x tends	ls to 2.
5. (2 marks)		
For $f(x) = \frac{ x^2 + 3x }{x - 3}$	$\frac{-18 }{3}$ and $a = 3$, discuss the limiting	behaviour of $f(x)$ as $x \to a^+$,
as $x \to a^-$ and as $x \to a^-$	$\rightarrow a$.	

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131 Mathematics 1A Calculus S2 2009 TEST 1 VERSION 1a

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcula	tor is NOT permitted in this test	
QUESTIONS (Time allowed	ed: 20 minutes)	
1. (2 marks)		
Sketch the set of p	oints in the (x, y) plane satisfying $0 < x$	< 3y and 0 < y < 2.
2. (2 marks)		
Solve $\left \frac{3x+1}{2} \right \le 2$		
3. (2 marks)		
Find the (maximal) domain and the range of the function ;	$f(x) = \frac{1}{\sqrt{x-1}}.$
4. (2 marks)		
For $f(x) = \frac{ x^2 - 4 }{3 - a}$ as $x \to a^-$ and as $x \to a^-$	$\frac{ x+3 }{ x }$ and $a=3$, discuss the limiting be $x \to a$.	haviour of $f(x)$ as $x \to a^+$,
5. (2 marks)		
Consider the funct		
	$f(x) = -\cos x$	
	$\pi/2, \pi/2$). Determine whether f attains ons for your answer.	a maximum value on the

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/MATH1141 Calculus S1 2010 TEST 1 VERSION 7b

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calculat	tor is NOT permitted in this te	st
QUESTIONS (Time allowe	d: 20 minutes)	
1. (2 marks)		
Sketch the graph y	$=\sqrt{x-1}$, and hence sketch the gra	$ph y = \frac{1}{\sqrt{x-1}}.$
2. (2 marks)		
For $f(x) = \frac{ x^2 + x }{x - a}$ as $x \to a^-$ and as $x \to a^-$	$\frac{ a-2 }{1}$ and $a=1$, discuss the limiting $a \to a$.	behaviour of $f(x)$ as $x \to a^+$,
3. (2 marks) Let $p(x) = x^3 - 3x^2$ a root between -2	$x^2 - 4x + 2$. Use the Intermediate Value and 0.	ue Theorem to show that p has
4. (2 marks) Solve $\frac{1}{x+1} > -\frac{1}{2}$.		
5. (2 marks)		

Find the (maximal) domain and the range of the function $f(x) = \sqrt{3+x}$.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131 Mathematics 1A Calculus S1 2008 TEST 2 VERSION 8a

Student's	Family Name	Initials	Student Number
Tutorial C	Code	Tutor's Name	Mark
Note: The	e use of a calcula	or is NOT permitted in this tes	t
QUESTIC	ONS (Time allowe	d: 20 minutes)	
1.	(2 marks)		
	Show that the func- intervals $[0,1]$ and	tion f given by $f(x) = x^3 - 2x^2 - 3x^2 - 3x^2$	x + 3 has a zero in each of the
2.	(2 marks)		
	Using the definition	of the derivative, show that if $f(x) =$	$-2x^2 + x$ then $f'(x) = -4x + 1$.
3.	(2 marks)		
		ectangle is decreasing at the rate of 2 the rate of 4 cm per second. Find $W=10$ cm.	- · · · · · · · · · · · · · · · · · · ·
4.	(2 marks)		
		lue Theorem. Find a point which s m for $f(x) = x^3 - 2x^2 + 5$ on the int	
5.	(2 marks)		
	Find $\lim_{x\to 0} \frac{x\sin x}{1-\cos x}$.		

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131 Mathematics 1A Calculus S2 2008 TEST 2 VERSION 4b

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcu	lator is NOT permitted in this test	
QUESTIONS (Time allo	owed: 20 minutes)	
1. (2 marks)		
	Value Theorem and find a point which satisforem for $f(x) = \sqrt{x-1}$ on the interval [1, 3]	
2. (2 marks) Find $\lim_{x\to 0} \frac{1-\cos x^2}{x^2}$	$\frac{3x}{x}$.	
3. (2 marks)		
Show that the function intervals $[-2, -1]$	inction f given by $f(x) = x^3 - 3x^2 - 2x + 1$] and [1,2].	5 has a zero in each of the
4. (2 marks)		
Using the definit	ion of the derivative, show that if $f(x) = -$	x^3 then $f'(x) = -3x^2$.
5. (2 marks)		
Find the equation	on of the line tangent to $x^2 + y^3 - x^2y = 1$ a	at $(1,1)$.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131 Mathematics 1A Calculus S1 2009 TEST 2 VERSION 8b

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcu	lator is NOT permitted in this test	
QUESTIONS (Time allo	owed: 20 minutes)	
1. (2 marks)		
	the Mean Value Theorem. Find a point white ue Theorem for $f(x) = x^3 - x^2 + 3$ on the in	
2. (2 marks)		
Find $\lim_{x \to 1} \frac{3x^3 - 5}{x^2}$	$\frac{5x^2 + x + 1}{-2x + 1}.$	
3. (2 marks)		
Determine the va	values of x at which the function	
	$f(x) = \begin{cases} x^3 & \text{for } x < 1\\ (x-1)^3 + 2 & \text{for } x \ge 1 \end{cases}$	
	$\int (x)^{-1} (x-1)^3 + 2$ for $x \ge 1$	

is continuous. Give reasons for your answer.

4. (2 marks)

Using the definition of the derivative, show that if $f(x) = -x^3$ then $f'(x) = -3x^2$.

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/1141 Calculus S1 2009

TEST 2 VERSION 1a

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcul	lator is NOT permitted in this test	
QUESTIONS (Time allo	wed: 20 minutes)	
1. (2 marks) The function	$f(x) = \frac{x-2}{x^2 - 3x + 2}$	
is not defined for at 2.	x = 2. Find a value to be given to $f(2)$	that will make f continuous
2. (3 marks) Determine all rea	al values of a and b such that the function	ı
	$f(x) = \begin{cases} ax + b & \text{for } x \le 1\\ \tan\frac{\pi x}{4} & \text{for } 1 < x < 2 \end{cases}$	2
is differentiable a	t x = 1.	
	2x. ons for your answer, find all critical points solute maximum and absolute minimum	
4. (2 marks) Find $\lim_{x \to 1} \frac{2x^4 - 3}{(x - 1)^2}$	$\frac{x^3+x}{1)^2}.$	

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131 Mathematics 1A Calculus S2 2009 TEST 2 VERSION 3a

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcu	lator is NOT permitted in this test	
QUESTIONS (Time allo	owed: 20 minutes)	
1. (2 marks)		
Find the equation	n of the line tangent to $x + \ln x = y + 2 \ln x$	y at (1,1).
2. (2 marks)		
pulled away from	th 3 metres is leaning against a vertical waln the wall at the rate of 0.5 metres per second down the wall when the foot is 1 metre a purds.)	ond. How fast is the top o
3. (2 marks)		
	ne Mean Value Theorem and find a point who are Theorem for $f(x) = \sqrt{x-1}$ on the inter-	
4. (3 marks)		
` ,	$(1)^{2/3}$. ons for your answer, find all critical points isolute maximum and absolute minimum variables.	
interval.		
5. (1 mark)		
Find $\lim_{x\to 0} \frac{\tan x}{x}$.		

UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131/MATH1141 Calculus S1 2010 TEST 1 VERSION 2a

This sheet must be filled in and stapled to the front of your answers

Student's Family Name	Initials	Student Number
Tutorial Code	Tutor's Name	Mark
Note: The use of a calcul	lator is NOT permitted in this test	
QUESTIONS (Time allow	wed: 20 minutes)	
1. (3 marks)		
Determine all rea	d values of a and b such that the function	
	$f(x) = \begin{cases} ae^x + b & \text{for } x < 0, \\ \sin x & \text{for } x \ge 0 \end{cases}$	
is differentiable a	t x = 0.	
2. (1 mark)		
Find $\lim_{x \to 0} \frac{\tan x}{e^{3x} - 1}$		
3. (2 marks)		
Find the equation	n of the line tangent to $x^3 + y^3 - x - y^2 =$	0 at (1,1).
4. (3 marks)		
	nany real numbers satisfy the equation x^3 –naming any theorems you use. (Hint: find tion.)	
5. (1 mark)		

Differentiate $\tan^{-1}(4x+1)$.

INDEX 259

Index

absolute maximum point, 57	continuous functions, 21		
absolute maximum value, 57	and limits, 40		
absolute minimum point, 57	combination of, 51		
absolute minimum value, 57	piecewise, 162		
absolute value, 7	critical point, 95		
answers, 235	cubic, 13		
antiderivative, 100	curve of fastest descent, 138		
antidifferentiation, 100, 173	cusp point, 147		
area, 153	cycloid, 138		
absolute, 164	J /		
signed, 164	decreasing function, 91		
under the graph of f , 160	definite integral, see integral(s), definite		
unsigned, 164	derivative(s), 65, 67		
astroid, 151	definition of, 67		
asymptote, 128	difference of squares identities, 221		
oblique, 128	difference quotient, 67		
vertical, 128	differentiability, 75		
	and continuity, 75		
Barrow, Isaac, 153	local extrema, 79		
Bernoulli, Jakob, 138, 215	differentiable, 74		
Bernoulli, Johann, 138, 215	at a point, 67		
Bolzano, 34	local approximation, 77		
bounded function, 59	· · · · · · · · · · · · · · · · · ·		
brachistochrone, 138	maximum point, 79		
	mean value theorem, 85		
Cartesian coordinate, 140	minimum point, 79		
catenary, 215, 229	twice, 93		
chain rule, 70, 78	differential calculus, 1		
change of variables formula, 177, 178	differential equation, 100		
circle, 20, 136	differentiation, 69		
closed interval, 3	chain rule, 70		
codomain, 9	product rule, 72		
composition (of functions), 12	quotient rule, 70		
conic sections, 20	discontinuity, 21		
contains, 3	distance, 7		
continuity, 40, 75	domain, 9		
and differentiability, 75	maximal, 10		
at an end point, 54	natural, 10		
everywhere, 41	dominant term analysis, 186, 189		
on an interval, 53, 54	double-angle formulae, 221		
continuous, 74	dummy variable, 167		

 $©2018\,$ School of Mathematics and Statistics, UNSW Sydney

260 INDEX

e, 205	hyperbolic sine, 216
elementary functions, 18	sum and difference formulae, 221
elements (of set), 2	
ellipse, 20, 136	improper integral
endpoints	p-integrals, 184
critical points, 95	convergence of, 183
endpoints of intervals, 3	indeterminate form(s), 31, 102, 211
equations	inequalities, 4
solutions, 97	and absolute value, 7
erf, 200	triangle inequality, 7
error bounds, 90	inequality, 4
error function, 200	infinity, symbol for, 3
even function, 128	injective, 111
exp, 206	integers, 2
exponential function, 208	integral calculus, 1, 153
exponential function, 200	integral(s), 161
fastest growing term, 30	definite
function(s), 1, 9	limits of, 161
composition of, 12, 70	improper
decreasing, 91	p-integrals, 182
error function, 200	comparison test, 186
even, 128	convergence of, 182
exponential, 207	limit comparison test, 189
implicitly defined, 19	indefinite, 175
	over (a, ∞) , 183
increasing, 91	Riemann sum, 158, 160
inverse function, 113	table of, 228
limit at infinity, 33	
local approximation, 77	integrand, 161
natural logarithm, 203	integration, 159
odd, 128	and differentiation, 173
quadratic, 13	by parts, 180
range of, 10	by substitution, 176
rational, 14	constant of, 175
real-valued, 9	dummy variable, 167
sine integral, 192	intermediate value theorem, 55
value of, 9	number of solutions, 98
fundamental theorem of calculus, 1, 191	intervals, 3
first fundamental theorem, 168	closed, 3
second fundamental theorem, 171	open, 3
	inverse function(s), 113
Galileo, 138, 215	hyperbolic functions, 223 inverses of, 223
horizontal line test, 112	restriction, 115
horizontal point of inflexion, 92	trigonometric functions, 117, 118
Huygens, Christiaan, 215	irrational numbers, 2
hyperbola, 20, 136, 218	
hyperbolic functions, 219	l'Hôpital's rule, 102, 211
double-angle formulae, 221	l'Hôpital, Guillaume, 138
hyperbolic cosine, 216	least upper bound property, 55, 57
	* * * * / /

T	M	\mathbf{F}	\mathbf{v}

III DEX	
Lebesgue, Henri, 153, 164	polar coordinate, 140
left-hand limits, 39	polar curves, 142
Leibniz, Gottfried, 1, 138, 153, 215	polynomial, 13
Leonard Euler, 205	coefficients of, 13
limit(s), 1, 27	degree of, 13
at infinity, 33	leading coefficient, 13
composition of function, 42	polynomial division, 130
left-hand, 39	primitive, 100
of continuous functions, 40	product rule, 72
,	product rule, 72
of the form $\lim_{x\to\infty} f(x)$, 27	quadratic function, 13
pinching theorem, 37, 43	quartic, 13
right-hand, 39	quintic, 13
two-sided, 39	•
ln, 203	radians, 14
logarithmic functions, 208	range of a function, 10
logarithms, 202	rates of change, 78
	rational function, 14
maximum	rational numbers, 2, 55
global, 95	real numbers, 2, 55
local, 79, 93	Riemann integrable, 161
second derivative test, 93	Riemann integral, 159
maximum-minimum theorem, 56, 57	area under the graph, 159
mean value theorem, 85, 86	basic properties of, 165
members (of set), 2	Riemann sum
minimum	upper, 158, 160
global, 95	Riemann sums, 173, 191
local, 93	lower, 158, 160
second derivative test, 93	Riemann, Bernhard, 153
,	right-hand limits, 39
natural domain, 10	Rolle's theorem, 87
natural logarithm, 205, 225	Trone is theorem, or
natural numbers, 2	secant, 64
Newton, Isaac, 1, 138, 153	second derivative, 92, 94
, , , ,	set(s), 2
oblique asymptote, 128	sine integral, 192
odd function, 128	stationary point, 80
one-to-one correspondence, 110, 111	classification of, 91
one-to-one function, 111	subset, 3
open interval, 3	sum and difference formulae, 221
,	54III 6II4 4III615II66 161III4I46, 22 1
parabola(s), 20, 136	tangent to a curve, 65
parametric curves, 132	triangle inequality, 7
conic sections, 135	trigonometric functions, 14
parameter, 134	inverse functions, 118
parametrisation, 134	
polar curves, 142	vertical asymptotes, 128
partition, 156, 159	Woi anatara 24
piecewise continuous, 162	Weierstrass, 34
pinching theorem, 29, 37, 43	Zeno of Elea, 34
pinching meorem, 29, 31, 43	20110 01 11000, 01