BORO Analysis Tools

C-FORS Summer School in Foundational Ontology (C-FORS 2025)

23 May 2025, University of Oslo, Norway

Chris Partridge
Andrew Mitchell
Oscar Xiberta Soto
Diego Alberto Zabala Betancur
Jonathan Eyre

Schedule

Morning Sessions		
	9:00 - 9:05	Session 0 – Introduction
	9:05 - 9:45	Session 1 – Context
	10:00 - 10:45	Session 2 – BORO Ontology
	11:00 - 12:00	Session 3 – Analysis Tools
Afternoon Sessions	11:00 - 12:00	Session 3 – Analysis Tools
Afternoon Sessions	11:00 - 12:00 1:15 - 3:30	Session 3 – Analysis Tools Session 1 – Practical Examples

Reference

- Overview
- LOAD: Structured Data Table Migration
 - BORO Top Level Tables
- - Support Tools
 - Space Time Maps
 - Ontological Euler Diagrams
 - BORO UML
 - BORO eXcel Table (Manual) Pipeline
 - BORO KNIME Data Pipeline
- Project planning

Reference

- To provide some 'practice' with ontologization interoperability pipelines
 - by recreating the first stage of an ontologization interoperability pipeline
 - With (simple) examples
 - directly experience some of the challenges (in an attenuated form)
- Probably significantly more 'practice' needed before one becomes expert

Two practical problems

Practical problems

lump of clay

ISO Countries

The focus this afternoon will be on the first problem. If you manage to finish the first problem, the second problem is available.

Six BORO Summer School tools

Abbreviation	Name	Stage
SDTM	Structured Data Table Migration	LOAD
STM	Space Time Maps	EVOLVE
OED	Ontological Euler Diagrams	EVOLVE
BUML	BORO UML	EVOLVE
BXTP	BORO eXcel Table (Manual) Pipeline	EVOLVE
BKnDP	BORO KNIME Data Pipeline	EVOLVE

NB: This is a list developed for the Summer School. There is a large range of evolving tools, which we have selected from. Note also, our default language/tool is Python not KNIME. KNIME has been selected for its no-code credentials – making it more appropriate here.

LOAD: Structured Data Table Migration

Principle: shift (data) structure left

- A goal of the bCLEARer pipeline process is to shift left, as far a possible, the move to structured data
 - enable us to work with machines talking to machines as soon as possible
- If one starts with unstructured text
 - one needs to structure it
 - with the minimum intervention
 - preserving as much of the explicit structure as possible
- A good first step is a shift to simple tables
 - the simplicity of their structure helps to keep the structuring clear
- One goal of Load is to ensure one is working with structured data

Structured data table migration

unstructured text

structured data table

Base data table structure

Base table composition structure

base table composition structure

data type	structure type	table structure element	description
data item	table	row	composed of cells organised by column
data column	table	column	composed of cells organised by row - has a single column heading cell.
data cell	table	cell	the intersection of columns and rows - has content

2025 BORO Solutions

Extended data table structure

2025 BORO Solutions

Lump of clay - starting point

- We start with unstructured text:
 - "There is a lump of clay that, at time t1, is used to make an aesthetically valuable statue. At time t2, the statue is destroyed. At time t3, the same lump of clay is reshaped to make a different statue. This statue is aesthetically valuable too."

- NOTE: We do this here
 - and provide you with the results for the practical example.

"There is a lump of clay that, at time t1, is used to make an aesthetically valuable statue. At time t2,

the statue is destroyed.

At time t3,

the same lump of clay is reshaped to make a different statue.

This statue is aesthetically valuable too."

"There is a lump of clay that, at time t1, is used to make an aesthetically valuable statue.

At time t2, the statue is destroyed. At time t3, the same lump of clay is reshaped to make a different statue.

This statue is aesthetically valuable too."

"There is a lump of clay that, at time t1, is used to make an aesthetically valuable statue.

At time t2, the statue is destroyed.

At time t3, the same lump of clay is reshaped to make a different statue.

This statue is aesthetically valuable too."

"There is a lump of clay that, at time t1, is used to make an aesthetically valuable statue. At time t2, the statue is destroyed.

At time t3, the same lump of clay is reshaped to make a different statue.

This statue is aesthetically valuable too."

Lump of clay - structured data tables - proto time

a_collect - Example - lump of clay - stage 1 - proto time.xlsx

Lump of clay - structured data tables - dataise time

a_collect - Example - lump of clay - stage 1 - proto time.xlsx

a_collect - Example - lump of clay - stage 2 - dataise time.xlsx

ISO Countries

Already structured data (table)

glish short name ghanistan pania geria	French short name Afghanistan (l') Albanie (l')	Alpha-2 code AF AL	e Alpha-3 code N AFG	lumeric 4
pania geria	Albanie (l')			4
geria		ΔΙ		
	A1 = 4 = 1 = 111	AL	ALB	8
	Algérie (l')	DZ	DZA	12
nerican Samoa	Samoa américaines (les)	AS	ASM	16
dorra	Andorre (l')	AD	AND	20
gola	Angola (l')	AO	AGO	24
guilla	Anguilla	Al	AIA	660
tarctica	Antarctique (l')	AQ	ATA	10
tigua and Barbuda	Antigua-et-Barbuda	AG	ATG	28
gentina	Argentine (l')	AR	ARG	32
menia	Arménie (l')	AM	ARM	51
uba	Aruba	AW	ABW	533
stralia	Australie (l')	AU	AUS	36
stria	Autriche (l')	AT	AUT	40
erbaijan	Azerbaïdjan (l')	AZ	AZE	31
hamas (the)	Bahamas (les)	BS	BHS	44
	nenia uba stralia stria erbaijan namas (the)	nenia Arménie (l') nba Aruba stralia Australie (l') stria Autriche (l') erbaijan Azerbaïdjan (l')	nenia Arménie (l') AM aba Aruba AW stralia Australie (l') AU stria Autriche (l') AT erbaijan Azerbaïdjan (l') AZ hamas (the) Bahamas (les) BS	Arménie (l') AM ARM ARM Aruba Aruba Australie (l') AU AUS Atria Autriche (l') AT AUT Azerbaïdjan (l') Azerbaïdjan (les) Bahamas (les) BBS BHS

a_collect - Example - ISO 3166 - Part 1 -- Country code.xlsx

BORO top level tables

- The top level needs to be introduced to the pipeline
- Various ways of doing this
- Mere, we add it in directly at LOAD
 - this is done for you in the starter pack
- We add a simplified table version
 - suitable for the worked examples

BORO top level tables - pure

table_names	column_1_names	column_2_names	column_3_names	column_4_names
Sets	bie_ids	names		
Individuals	bie_ids	names		
Tuples	bie_ids			
elements-sets	bie_ids	element_bie_ids	set_bie_ids	
parts-wholes	bie_ids	part_bie_ids	whole_bie_ids	
sub-super-sets	bie_ids	sub_set_bie_ids	super_set_bie_ids	
tuple-places	bie_ids	placing_bie_ids	placed_bie_ids	place_numbers

BORO top level tables - pragmatic

table_names	column_1_names	column_2_names	column_3_names	column_4_names
Sets	bie_ids	names		
Individuals	bie_ids	names		
Tuples	bie_ids	place1_bie_ids	place2_bie_ids	place3_bie_ids
grounding-relation- places	bie_ids	relation-place- type_names	placing_bie_ids	placed_bie_ids
elements-sets	bie_ids	element_bie_ids	set_bie_ids	
parts-wholes	bie_ids	part_bie_ids	whole_bie_ids	
sub-super-sets	bie_ids	sub_set_bie_ids	super_set_bie_ids	

- Same process stages for both practical problems
- Broadly,
 - there is
 - a support process that 'designs' the pipeline
 - this has human aspects
 - a primary process that IS the pipeline
 - this is a 'pure' machine process
 - the process is executable, repeatable and inspectable
- Hopefully,
 - building the primary process will help you experience the practice on ontologising a pipeline

EVOLVE - practical problem process

Four BORO Summer School support tools

Abbreviation	Name
STM	Space Time Maps
OED	Ontological Euler Diagrams
BUML	BORO UML
BXTP	BORO eXcel Table (Manual) Pipeline

These Summer School 'tools' are part of a much wider, richer toolkit They are useful pedagogical devices

As often, with practices, once one gains competence with these, one deploys them in innovative radically different ways

Practical problem process

- STMs Focus on Individuals
 - other BORO objects are constructed from (grounded in) Individuals
- STMs are an intuitive way of visualising the mereology of Individuals
 - in particular the overlap and part hood relations
- As Individuals (in BORO) have a mereological extensional criteria of identity
 - the 'extensional' two-dimensional surface of a page (or screen) has sufficiently similar characteristics to represent 'directly' (visually) the mereology
 - humans find this a useful tool

- STMs are typically used as a first stage of analysis, where in the second stage these are translated into a BORO model
- STMs provide an easy way to visualise 4D elements in a domain
 - and as such are a useful way to start understanding them
- The STM visualisation aims to abstract the individuals to their mereological essentials
- Too time consuming to draw for the whole domain
 - so, collect representative examples of important 'typical' mereological relations
 - these are candidates for STMs

- BORO is an extensional ontology
 - the criterion of identity for Individuals is mereological (spatio-temporal) extension
 - or more colloquially four-dimensional (4D)

Van Inwagen's space-time diagrams

Not that usual, but STMs appear in various places.

In this case, not quite the same, less focus on exact mereology.

Van Inwagen, P. (1990). Four-Dimensional Objects. Noûs, 24(2), 245.

Three components of an STM Individual

The Gergonne five possible extensional relations

The Gergonne relations give the five possible ways in which two objects can simply share extension

coincident	contained	overlap	contains	disjoint
"if and only if every a is a b and every b is an a"	"if and only if every a is a b and not every b is an a"	"if and only if it is not the case that either every a is a b or every b is an a or no a is a b"	"if and only if every b is an a and not every a is a b"	"if and only if no a is a b"
		ab		

Based upon: J. A. Faris - The Gergonne Relations - The Journal of Symbolic Logic, Vol. 20, No. 3 (Sep., 1955), pp. 207-231 based upon: J. D. Gergonne, Essai de dialectique rationelle, Annales des mathematiques pures et appliquees, Vol. 7, (1817).

How to recognise STMs

- Clues to look for
 - space axis along the left side of the page
 - time axis across the bottom of the page
 - reference frame contained within the axes
 - Individual rectangles (shapes) in the reference frame

Lore ipsum

Patterns: overlap

Figure 8.14: Car tyre change space-time map

From Business Objects: Re-engineering for Reuse

- The 2D reference frame picks out the relevant fragment of the 4D domain
- The domain's objects are shown as boxes
 - a box's boundary represents the Individual's real boundary
 - boxes' containment, overlap, etc. show the mereological relationships between Individuals
 - a box's name helps to further identify the Individual

Practical problem process

Euler not Venn diagrams

V E N N

E U L E R

A Venn diagrams show all combinations (even impossible ones).

https://xkcd.com/2721/

Types in a BORO foundational ontology

- Sets' identity relations
 - from an ontological perspective, these will exist simpliciter
 - from an epistemic perspective, we may or may not know whether these exist
 - an ontological picture should not contain epistemological elements
 - to handle this issue, for the topic of the Euler diagram
 - we make a set identity relation omniscience assumption
 - in other words, all the identity relations between sets are known
- With this assumption, it makes sense to adopt
 - the 'Existential Import Convention'
 - where adding a region to the Euler diagram implies that it exists
 - in other words, it has members

Sets in a BORO foundational ontology

- In BOROs' extensional ontology
 - given a Set's identity is grounded in its members
 - then the way in which two Sets' identity can be related are broadly
 - with the same members are identical
 - with different members are not identical
 - that share members are partially identical
 - with no members in common are disjoint

Three basic extensional set patterns – for two sets

There are only three ways two sets can be 'identity' related

Figure 10.15 - Pattern for classes
From Business Objects: Re-engineering for Reuse

Three components of an Euler set

Example simple order type OEDs

Type ascending

OED powerset pattern: two member types

Multiple order patterns: OED powerset pattern

Practical problem process

- BUML is the BORO variant of UML
- We use UML notation to visualise BORO ontological structure
 - UML classes
 - UML generalizations, dependencies, n-ary associations and associations
- In addition, we make use of stereotypes, for various purposes, e.g., to indicate the ontological category of the represented objects
- All of these are used with a specific sense, which sometimes may deviate from the UML conventions. The BUML sense is defined by the underlying constructional semantics
- We use Enterprise Architect to draw diagrams, but other software options are available

Use of UML classes

We use UML classes to represent sets, e.g., sets of Countries.

Use of UML classes

«PowerSets»
Individuals PowerSet

Sometimes, sets contain higher-order objects, like tuples.

Stereotype <<pre><<pre>category of the represented objects,
But we do not expect you to follow this convention in your work study.

Sets may also contain sets.

Stereotype << PowerSets>> refers to the ontic category of the represented objects, But we do not expect you to follow this convention in your work study.

Use of UML classes

Also we use UML classes to represent Individuals.

Stereotype << Individuals>> shows the ontic category of the represented object, we do not expect you to follow this convention in your work study.

Use of UML dependencies

Dependency link shows element-sets (tuple).

Use of UML generalizations

Generalization link shows sub-super-sets (tuple).

Use of UML dependencies and generalizations

Parts-wholes - basic pattern

strict = proper (excl. identity)

Kingdom of England

Island of Great Britain

UML composition shows part-whole (tuple).

<<pre><<place1>> and <<place2>> association stereotypes show,
respectively, the whole and the part.

Parts-wholes - full pattern

class strict part-wholes Individuals parts-wholes «placeable sets» **Geopolitical Areas** strict parts-wholes Regions Countries «Individuals» England

parts-wholes includes identity tuples, e.g., <London, London>.

Kingdom of England

Island of Great Britain

strict parts-wholes is a **set** of tuples, so it can have supersets (and subsets).

<<pre><<part>> and <<whole>> association stereotypes show,
respectively, the whole and the part.

Temporal stages – basic pattern

UML composition shows the temporal-stages (tuple).

Temporal stages – full pattern

country strict temporal stages of is a **set** of tuples, so it can have supersets (and subsets)

Powerset pattern

set of geopolitical areas set of all subsets of set of geopolitical areas

dependency stereotype shows the set and its powerset

Powerset pattern – implicit tuples

Dependency shows implicit element-set (tuple).

BORO eXcel Table (Manual) Pipeline

Practical problem process

Micro transformation pipeline architecture

- Define by contrast
 - not a single monolithic structure
 - for example, a single complex transformation between two schemas
- Pipeline consists of a network of simple micro transformations
 - the micro transformations are:
 - algorithmic they can be coded
 - simple to allow for maximal inspectability
 - are repeatable
 - aim to be reusable
 - there is an 'art' to finding high levels of reusability

'Formal' transformation patterns

- Repeatable, reusable 'formal' patterns
 - can use same computer code
 - with enough work

LOAD – bie-ise identifier pattern

A column is added to the beginning of the table

- Its name is 'bie_ids'
- The cells uniquely identify the row of the table
 No changes are made to the other columns

Column split pattern

Note: the identifying bie_ids column is 'inherited' by both split tables.

The pattern of inheritance can be of two types.

- 1. Identifier preserving
- 2. Identifier introducing.

This is driven by the intuition of the intended identity.

Row split pattern

Typically:

- The column heading row is in ALL output tables.
 - The output tables all have the same format
- All rows are in one or other of the split tables.

Implicit foreign key bie-ise pattern – stage 1 – add bie_ids

Some columns will be foreign keys This needs to be made explicit Match the value in the Foreign table

Add bie id to new column

Implicit foreign key bie-ise pattern – stage 2 – remove original columns

Table-Column heading pushdown pattern

Tables and column headings can represent objects

Useful to have these as rows in the domain.

hie ids

CEWBZ7I653N6X

KK6N35KCUBI26

Practical problem process

- To attempt to automatically (using a machine/computer) transform the input into the designed output
 - acquire a feel for
 - the constraints upon these kinds of machine pipeline transformations
 - the nature of these kinds of machine pipeline transformations
- To attempt to build reusable micro transformations
 - acquire a feel for the reuse economics of transformation patterns

BORO KNIME Data Pipeline

- The 'BORO excel Table (Manual) Pipeline' should provide a sufficiently detailed specification of most of the micro transformations
 - the KNIME is an implementation of the specification
 - Developing the code to execute the transformation automatically should clarify the formal moves that need to be made

Knime top level – bCLEARer stages

Knime COLLECT – done

Knime LOAD – done

BKDP_lump_of_clay_pipeline_v006_DZa > [] b - load

Knime Evolve – work in here

Suggested project planning

- Remember everything is on GitHub
- Suggest you plan your 'project'
 - probably better to do a little of each task,
 - rather than just complete the first few
- Task order earlier tasks feed into later tasks
 - 1. STM
 - 2. OED
 - 3. BUML
 - 4. BXTP
 - 5. BKnDP
- Try to do at least 1, 2 and 4
 - if you can, try a little 5 (block out the last half hour to try)
- Remember task 5 has starter code

HHE HIND.