10. előadás

FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 2.

Nevezetes határértékek 2.

6. Hatványsor összegfüggvényének a határértéke. Tegyük fel, hogy a $\sum \alpha_n(x-a)^n$ hatványsor R konvergenciasugara pozitív. Jelölje

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x - a)^n \quad (x \in K_R(a))$$

az összegfüggvényét. Ekkor $\forall b \in K_R(a)$ pontban létezik a $\lim_{x \to b} f(x)$ határérték, és

$$\lim_{x \to b} f(x) = f(b) = \sum_{n=0}^{+\infty} \alpha_n (b-a)^n.$$

Bizonyítás. Először azt igazoljuk, hogy

(*) ha
$$r \in (0,R) \implies a \sum_{n=1}^{\infty} n \alpha_n r^{n-1}$$
 sor abszolút konvergens.

Legyen $\varrho \in (r,R)$. Ekkor a $\sum_{n=0}^{\infty} \alpha_n \, \varrho^n$ sor abszolút konvergens (ti. a $\sum_{n=0}^{\infty} \alpha_n \, (x-a)^n$ sor az $x=a+\varrho$ helyen abszolút konvergens), tehát $\lim_{n\to +\infty} \left(\alpha_n \, \varrho^n\right)=0$. Ezért az $\left(\alpha_n \, \varrho^n\right)$ sorozat korlátos, azaz

$$\exists M > 0: |\alpha_n \varrho^n| \le M \implies |\alpha_n| \le \frac{M}{\varrho^n} \quad (\forall n \in \mathbb{N}^+) \implies |n \alpha_n r^{n-1}| = \frac{1}{r} n |\alpha_n| r^n \le \frac{M}{r} \cdot n \left(\frac{r}{\varrho}\right)^n \quad (\forall n \in \mathbb{N}^+).$$

Mivel $\lim_{n\to +\infty} \sqrt[n]{\frac{M}{r} \cdot n \cdot \left(\frac{r}{\varrho}\right)^n} = \frac{r}{\varrho} < 1$, ezért a gyökkritérium szerint a $\sum_{n=1} n \left(\frac{r}{\varrho}\right)^n$ végtelen sor konvergens. A majoráns kritérium alapján a $\sum_{n=1} n \, \alpha_n \, r^{n-1}$ sor abszolút konvergens. A (*) állítást tehát bebizonyítottuk. Legyen $C := \sum_{n=1}^{+\infty} n \, |\alpha_n| \, r^{n-1} < +\infty$.

Vegyünk most egy tetszőleges $b \in K_R(a)$ pontot. Válasszuk meg r-et úgy, hogy $0 \le |b-a| < r < R$. Ekkor $\forall x \in K_r(a)$ helyen a következő becslések érvényesek:

$$\left| f(x) - f(b) \right| = \left| \sum_{n=0}^{+\infty} \alpha_n \cdot \left((x-a)^n - (b-a)^n \right) \right| \le$$

$$\leq \sum_{n=0}^{+\infty} |\alpha_n| \cdot |x-b| \cdot \left(|x-a|^{n-1} + |x-a|^{n-2} \cdot |b-a| + \dots + |b-a|^{n-1} \right) \leq \\
\leq \left(|x-a|, |b-a| < r \right) \leq |x-b| \cdot \sum_{n=1}^{+\infty} |\alpha_n| \cdot n \, r^{n-1} = C \cdot |x-b|.$$

Így

$$|f(x) - f(b)| \le C \cdot |x - b| \quad (x \in K_r(a)).$$

Ebből – például az átviteli elv alapján – az állítás már következik. ■

7. Az exp, a sin és a cos függvény végesben vett határértéke. Az exp, sin, cos függvényeknek minden $a \in \mathbb{R}$ pontban van határértéke, és azok egyenlők az a-ban vett helyettesítési értékekkel:

$$\lim_{x \to a} e^x = e^a, \qquad \lim_{x \to a} \sin x = \sin a, \qquad \lim_{x \to a} \cos x = \cos a.$$

8. Az exp függvény határértéke $(\pm \infty)$ -ben. Az exp függvénynek van határértéke $(\pm \infty)$ -ben, és

$$\lim_{x \to +\infty} e^x = +\infty, \qquad \lim_{x \to -\infty} e^x = 0.$$

Bizonyítás. Mivel

$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots > x \quad (0 \le x \in \mathbb{R})$$

és $\lim_{x \to +\infty} x = +\infty$, ezért $\lim_{x \to +\infty} e^x = +\infty$.

Mivel
$$e^{-x} = \frac{1}{e^x} \ (\forall x \in \mathbb{R})$$
, ezért

$$\lim_{x\to -\infty} e^x = \lim_{x\to -\infty} \frac{1}{e^{-x}} = \text{ (az } y = -x \text{ helyettesítéssel)} = \lim_{y\to +\infty} \frac{1}{e^y} = \frac{1}{+\infty} = 0.$$

9. $A = \frac{\sin x}{x}$ $(x \in \mathbb{R} \setminus \{0\})$ függvénynek a 0 pontban van határértéke, és

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Bizonyítás. A definíció szerint

$$\sin x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \quad (x \in \mathbb{R}).$$

Ezért

$$\frac{\sin x}{x} = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n+1)!} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots \quad (x \in \mathbb{R} \setminus \{0\}).$$

A hányadoskritérium alkalmazásával könnyű megmutatni, hogy a jobb oldalon szereplő hatványsor az egész \mathbb{R} -en konvergens, így a $\boxed{\mathbf{6}}$ állítás szerint a 0 pontban van határértéke, és az egyenlő a helyettesítési értékkel, azaz

$$\lim_{x \to 0} \left(1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots \right) = 1.$$

Ebből az állítás már következik.

10. Monoton függvények határértéke.

Először emlékeztetünk függvények monotonitásainak a fogalmaira. Legyen $f \in \mathbb{R} \to \mathbb{R}$, és tegyük fel, hogy $\emptyset \neq H \subset \mathcal{D}_f$. Az f függvény

• monoton növekedő H-n (jelben $f \nearrow H$ -n), ha

$$\forall x_1, x_2 \in H, x_1 < x_2 \text{ esetén } f(x_1) \le f(x_2);$$

• szigorúan monoton növekedő H-n (jelben $f \uparrow H$ -n), ha

$$\forall x_1, x_2 \in H, x_1 < x_2 \text{ eset\'en } f(x_1) < f(x_2);$$

• monoton csökkenő H-n (jelben $f \searrow H$ -n), ha

$$\forall x_1, x_2 \in H, x_1 < x_2 \text{ eset\'en } f(x_1) > f(x_2);$$

• szigorúan monoton csökkenő H-n (jelben $f \downarrow H$ -n), ha

$$\forall x_1, x_2 \in H, x_1 < x_2 \text{ eset\'en } f(x_1) > f(x_2).$$

Az f függvény **monoton** H- \mathbf{n} , ha a fenti esetek valamelyike áll fenn.

Megjegyzés. A $\mathcal{D}_f = \mathbb{N}$ speciális esetben visszakapjuk a monoton sorozatok korábbi definícióit.

<u>**Tétel.**</u> Legyen $(\alpha, \beta) \subset \mathbb{R}$ tetszőleges (korlátos vagy nem korlátos) nyílt intervallum. Ha az f függvény monoton (α, β) -n, akkor f-nek $\forall a \in (\alpha, \beta)$ pontban létezik a jobb oldali, illetve a bal oldali határértéke.

(a) Ha $f \nearrow (\alpha, \beta)$ -n, akkor

$$\lim_{a \to 0} f = \inf \left\{ f(x) \mid x \in (\alpha, \beta), \ x > a \right\},$$

$$\lim_{a \to 0} f = \sup \left\{ f(x) \mid x \in (\alpha, \beta), \ x < a \right\}.$$

(b) $Ha\ f\ \searrow\ (\alpha,\beta)$ -n, akkor

$$\lim_{a \to 0} f = \sup \{ f(x) \mid x \in (\alpha, \beta), \ x > a \},$$

$$\lim_{a \to 0} f = \inf \{ f(x) \mid x \in (\alpha, \beta), \ x < a \}.$$

Bizonyítás. Tegyük fel, hogy $f \nearrow (\alpha, \beta)$ -n. A jobb oldali határértékre vonatkozó állítást igazoljuk.

Legyen $m:=\inf\big\{f(x)\ \big|\ x\in(\alpha,\beta),\ x>a\big\}$. Világos, hogy $m\in\mathbb{R}$. Az infimum definíciójából következik, hogy

(i)
$$m \le f(x) \ \forall \ x \in (\alpha, \beta), \ x > a;$$

(ii) $\forall \varepsilon > 0$ -hoz $\exists x_1 \in (\alpha, \beta), \ x_1 > a: \ f(x_1) < m + \varepsilon.$

Így $m \leq f(x_1) \leq m + \varepsilon$. Mivel $f \nearrow (\alpha, \beta)$ -n, ezért

$$m \le f(x) \le f(x_1) < m + \varepsilon \ \forall \ x \in (a, x_1)$$
 pontban.

A $\delta := x_1 - a > 0$ választással tehát azt mutattuk meg, hogy

$$\forall \varepsilon > 0$$
-hoz $\exists \delta > 0$, $\forall x \in (\alpha, \beta)$, $a < x < a + \delta$: $\underbrace{0 \le f(x) - m < \varepsilon}_{f(x) \in K_{\varepsilon}(m)}$.

Ez pedig azt jelenti, hogy f-nek a-ban van jobb oldali határértéke, és az m-mel egyenlő, azaz

$$\lim_{a \to 0} f = m = \inf \left\{ f(x) \mid x \in (\alpha, \beta), \ x > a \right\}.$$

A tétel többi állítása hasonlóan bizonyítható. ■

 $\underline{\mathbf{Megjegyz\acute{e}s.}}$ Ha $+\infty\in\mathcal{D}_f',$ akkor létezik a $\lim_{x\to+\infty}f$ határérték, és

$$\lim_{r \to +\infty} f = \sup \mathcal{R}_f.$$

Ha $-\infty \in \mathcal{D}_f',$ akkor létezik a $\lim_{r \to -\infty} f$ határérték, és

$$\lim_{x \to -\infty} f = \inf \mathcal{R}_f.$$

FÜGGVÉNYEK FOLYTONOSSÁGA

A "folytonos" kifejezést a mindennapi életben is gyakran használjuk. Most arról lesz szó, hogy valós-valós függvényekre a szemléletünk alapján adódó ezzel kapcsolatos tulajdonságot hogyan lehet matematikai szempontból precíz formában megfogalmazni.

A folytonosság fogalmának a motivációja

Tegyük fel, hogy egy képlettel megadott $f: \mathbb{R} \to \mathbb{R}$ függvény helyettesítési értékét akarjuk kiszámítani egy adott $a \in \mathcal{D}_f$ pontban. Előfordulhat, hogy a-nak csak közelítő értékeivel számolhatunk. Ez a helzet például akkor, ha a értékeit mérés segítségével határozzuk meg, tehát a-nak csak a műszerek pontosságától függően jobb vagy rosszabb x közelítő értékeit ismerjük. A mért x értékből kiszámítva f(x)-et azt reméljük, hogy ha a-t jó közelítéssel, vagyis kis hibával

adtuk meg (azaz x közel van a-hoz; jelben $x \sim a$), akkor f(a) értékét is jó közelítéssel fogjuk megkapni f(x)-ből (azaz f(x) közel lesz f(a)-hoz; jelben $f(x) \sim f(a)$). Ezekben az esetekben tehát feltételezzük azt, hogy $f(x) \sim f(a)$, ha x elég közel van a-hoz. Valós-valós függvénynek ezt a tulajdonságát nevezzük **pontbeli folytonosságnak**.

Tekintsük például a következő két egyszerű függvényt:

Látható, hogy az f függvény olyan, hogy ha $x \sim a$, akkor $f(x) \sim f(a)$. Ugyanezt nem mondhatjuk el a g függvényről. Akármilyen x számot veszünk, amely közel van a-hoz és $x \neq 2$, akkor a g(x) függvényértékek nincsenek közel a g(a) függvényértékhez. Azt fogjuk mondani, hogy az f függvény folytonos az a=2 pontban, a g függvény pedig nem folytonos az a=2 pontban.

Figyeljük meg, hogy hasonló problémával találkoztunk már függvények **végesben vett véges határérték** fogalmának a definíciójánál.

A folytonosság fogalma

A pontbeli folytonosság

1. definíció. Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvény folytonos az $a \in \mathcal{D}_f$ pontban, ha

$$\forall \varepsilon > 0 \text{-}hoz \ \exists \delta > 0, \ \forall x \in \mathcal{D}_f, \ |x - a| < \delta : \ |f(x) - f(a)| < \varepsilon.$$

 $Jel\"{o}l\acute{e}s: f \in C\{a\}.$

Megjegyzések

- 1. Függvény pontbeli folytonosságát csak az **értelmezési tartományának** a pontjaiban értelmezzük!
- 2. Figyeljük meg, hogy a definíció az f függvénynek valóban azt a tulajdonságát fejezi ki matematikai szempontból precíz módon, hogy ha " $x \sim a \implies f(x) \sim f(a)$ ".

A definícióból rögtön következik, hogy ha $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \mathcal{D}_f$, akkor

$$f \notin C\{a\} \iff \exists \varepsilon > 0, \ \forall \delta > 0 \text{-hoz} \ \exists x \in \mathcal{D}_f, \ |x - a| < \delta : \ |f(x) - f(a)| \ge \varepsilon.$$

Nézzünk néhány példát!

1. példa. Ha

$$f(x) := x \quad (x \in \mathbb{R}) \quad \text{\'es} \quad a := 2,$$

 $akkor f \in C\{2\}.$

Valóban: $\forall \varepsilon > 0$ valós számhoz a $\delta := \varepsilon$ alkalmas választás, mert

$$\forall x \in \mathbb{R}, |x-2| < \delta \text{ eset\'en } |f(x) - f(2)| = |x-2| < \varepsilon.$$

2. példa. Ha

$$g(x) = \begin{cases} 1, & ha \ x \in (-\infty, 2) \\ 2, & ha \ x = 2 \\ 3, & ha \ x > 2 \end{cases}$$
 és $a := 2$,

 $akkor\ g \notin C\{2\}.$

Valóban: Legyen például $\varepsilon = \frac{1}{2}$. Ekkor $\forall \delta > 0$ valós számhoz van olyan $x \in \mathbb{R}$, például $x := 2 + \frac{\delta}{2}$, amelyre ugyan $|x - 2| < \delta$, de $|g(x) - g(2)| = |3 - 2| > \frac{1}{2} = \varepsilon$. Ez pedig azt jelenti, hogy a g függvény nem folytonos az a = 2 pontban, azaz $g \notin C\{2\}$.

Figyeljük meg, hogy mi a különbség a pontbeli folytonosság és a hozzá nagyon hasonló végesben vett véges határérték között! A folytonosságnál megköveteljük azt, hogy $a \in \mathcal{D}_f$ legyen (az értelmezési tartományon kívüli pontokban nem beszélhetünk folytonosságról). A határértéket viszont az $a \in \mathcal{D}_f'$ pontokban értelmeztük. A két fogalom közötti kapcsolatról csak azokban a pontokban lehet szó, amelyekre $a \in \mathcal{D}_f \cap \mathcal{D}_f'$. Tegyük fel, hogy $a \in \mathcal{D}_f$, de $a \notin \mathcal{D}_f'$. Ez azt jelenti, hogy van olyan r > 0, hogy

$$K_r(a) \cap \mathcal{D}_f = \{a\}.$$

Az ilyen a pontokat az értelmezési tartomány **izolált pontjainak** nevezzük. A folytonosság definíciójából rögtön következik, hogy ekkor $f \in C\{a\}$, hiszen tetszőleges $\varepsilon > 0$ mellett minden $0 < \delta \le r$ megfelelő.

A definíciók alapján az is világos, hogy ha $a \in \mathcal{D}_f \cap \mathcal{D}_f'$, akkor az f függvény akkor és csak akkor folytonos a-ban, ha f-nek a-ban van határértéke, és az egyenlő az a-ban felvett f(a) függvényértékkel.

1. tétel. Legyen $f \in \mathbb{R} \to \mathbb{R}$.

 $\mathbf{1}^o \ \textit{Ha} \ a \in \mathcal{D}_f \ \textit{izolált pont} \quad \Longrightarrow \quad f \in C\{a\}.$

 2^o Ha $a \in \mathcal{D}_f \cap \mathcal{D}'_f$, akkor

$$f \in C\{a\} \iff \exists \lim_{a} f \text{ \'es } \lim_{a} f = f(a).$$

Szakadási helyek és osztályozásuk

2. definíciók. Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f$ és $f \notin C\{a\}$. Ekkor azt mondjuk, hogy az a pont az f függvény **szakadási helye** (vagy a-ban f-nek **szakadása van**). A szakadási helyeket a következőképpen osztályozzuk:

 $\mathbf{1}^{o}$ $Az \ a \in \mathcal{D}_{f}$ pont $az \ f$ függvény megszüntethető szakadási helye, ha

$$\exists \lim_{a} f \text{ v\'eges hat\'ar\'ert\'ek}, de \lim_{a} f \neq f(a).$$

 2^{o} $Az \ a \in \mathcal{D}_{f}$ pont az f függvény **elsőfajú szakadási helye** (vagy f-nek **ugrása van** a-ban), ha

$$\exists \lim_{a \to 0} f \quad \text{\'es} \quad \exists \lim_{a \to 0} f, \quad \text{\it ezek v\'egesek}, \quad de \quad \lim_{a \to 0} f \neq \lim_{a \to 0} f.$$

 3^o Ha a $\lim_{a\to 0} f$ és a $\lim_{a\to 0} f$ egyoldali határértékek közül legalább az egyik nem létezik, vagy létezik, de nem véges, akkor azt mondjuk, hogy f-nek **az** a **helyen másodfajú szakadása van**.

A "megszüntethető szakadás" elnevezés arra utal, hogy ebben az esetben az a pontban megváltoztatva a függvény értékét az f folytonossá tehető, ui. ekkor az

$$\widetilde{f}(x) := \begin{cases} f(x), & \text{ha } a \neq x \in \mathcal{D}_f \\ \lim_a f, & \text{ha } x = a \end{cases}$$

függvény már folytonos a-ban, hiszen $\widetilde{f}(a) = \lim_{a} f = \lim_{a} \widetilde{f}$.

3. példa.

$$f(x) := \begin{cases} x, & ha \ x \in \mathbb{R} \setminus \{0\} \\ -1, & ha \ x = 0 \end{cases}$$

 $f\ddot{u}ggv\acute{e}nynek~a~0~pontban~\textit{megsz\"{u}ntethet\'{o}}~\textit{szakad\'{a}sa}~\textit{van},~mert\lim_{0}f=0\neq f(0)=-1.$

4. példa. Az előjelfüggvénynek (vagyis a sign függvénynek) a 0 pont elsőfajú szakadási helye, mert

$$\lim_{0+0} \operatorname{sign} = 1 \neq \lim_{0-0} \operatorname{sign} = -1.$$

5. példa. Az

$$f(x) := \begin{cases} \frac{1}{x}, & ha \ x \in \mathbb{R} \setminus \{0\} \\ 1, & ha \ x = 0 \end{cases}$$

függvénynek a 0 pont **másodfajú szakadási helye**, mert az egyoldali határértékek bár léteznek $(\lim_{0\to 0} f = -\infty$ és $\lim_{0\to 0} f = +\infty)$, de ezek nem végesek.

7

Egyoldali folytonosság

- 3. definíciók. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \mathcal{D}_f$.
 - 1º Az f függvény jobbról folytonos az a pontban, ha

$$\forall \varepsilon > 0 \quad \exists \delta > 0, \quad \forall x \in \mathcal{D}_f, \ a \leq x < a + \delta \quad eset\'{e}n \quad |f(x) - f(a)| < \varepsilon.$$

2º Az f függvény balról folytonos az a pontban, ha

$$\forall \varepsilon > 0 \quad \exists \delta > 0, \quad \forall x \in \mathcal{D}_f, \ a - \delta < x \le a \quad eset\'{e}n \quad |f(x) - f(a)| < \varepsilon.$$

2. tétel. $f \in C\{a\} \iff ha \ f \ jobbról \ és \ balról \ is \ folytonos \ az \ a \in \mathcal{D}_f \ pontban.$

Halmazon folytonos függvények

4. definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $A \subset \mathcal{D}_f$. Az f függvény **folytonos** az A halmazon (jelben $f \in C(A)$), ha

$$\forall a \in A \ eset\'{e}n \ f_{|A} \in C\{a\},$$

ahol f_{\mid_A} jelöli az f
 függvény Ahalmazra való leszűkítését, vagyis az

$$f_{|A} \colon A \to \mathbb{R}, \quad f_{|A}(x) := f(x)$$

függvényt.

 ${\bf Vigy\'azat:}$ az "f folytonos A-n" nem~jelentiazt, hogy faz Ahalmaz minden pontjában folytonos. Például az

$$f(x) = \begin{cases} 1, & \text{ha } 0 \le x < 1 \\ 2, & \text{ha } 1 \le x \le 2 \end{cases}$$

függvény folytonos az [1,2] halmazon, de $f \notin C\{1\}$.

Folytonos függvények alaptulajdonságai

3. tétel: Előjeltartás. Tegyük fel, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvény folytonos az $a \in \mathcal{D}_f$ pontban és f(a) > 0. Ekkor

$$\exists K(a), hogy f(x) > 0 \quad \forall x \in \mathcal{D}_f \cap K(a) pontban,$$

azaz f(a) előjelét egy alkalmas K(a) környezetben felvett függvényértékek is öröklik.

Bizonyítás. Alkalmazzuk a folytonosság definícióját az $\varepsilon := f(a) > 0$ számmal. Ekkor $\exists \, \delta > 0$ szám, hogy

$$\forall x \in \mathcal{D}_f, |x - a| < \delta \text{ eset\'en } |f(x) - f(a)| < f(a),$$

azaz

$$-f(a) < f(x) - f(a) < f(a).$$

Ezzel bebizonyítottuk azt, hogy

$$0 < f(x) \ (< 2 f(a))$$
 ha $x \in \mathcal{D}_f$ és $|x - a| < \delta$.

- 4. tétel: Hatványsor összegfüggvényének folytonossága.
 - 1º Minden hatványsor összegfüggvénye folytonos a hatványsor teljes konvergenciahalmazán.
 - **2º** $Az \exp$, $a \sin \acute{e}s a \cos f \ddot{u} g g v \acute{e} n y minden <math>\mathbb{R}$ -beli pontban folytonos.

Bizonyítás.

- ${f 1}^o$ Jelölje a hatványsor konvergenciaközéppontját $a\in\mathbb{R}$, a konvergenciasugarát R ($0\le R\le +\infty$) és az összegfüggvényét f. Ha R=0, akkor az összegfüggvény folytonos, hiszen az értelmezési tartománya az egyetlen a (izolált) pontból álló halmaz. Ha $0< R\le +\infty$, akkor a hatványsor összegfüggvényének határértékére vonatkozó tétel, valamint az 1. tétel alapján f folytonos az (a-R,a+R) intervallumon. A $0< R< +\infty$ esetben az is bebizonyítható, hogy a hatványsor összegfüggvénye a **teljes** konvergenciahalmazon folytonos.
- 2^o A szóban forgó függvényeket az egész \mathbb{R} -en konvergens hatványsorok összegfüggvényeként értelmeztük, ezért az állítás 1^o közvetlen következménye.
- 5. tétel: Az algebrai műveletek és a folytonosság kapcsolata. Tegyük fel, hogy $f,g\in C\{a\}$. Ekkor a

$$\lambda f \ (\lambda \in \mathbb{R}), \quad f + g, \quad f \cdot g, \quad \frac{f}{g} \ (ha \ g(a) \neq 0)$$

függvények is folytonosak a-ban.

Bizonyítás. Ha F jelöli a szóban forgó függvények valamelyikét, és $a \in \mathcal{D}_F \cap \mathcal{D}'_F$, akkor az állítások a műveletek és a határérték kapcsolatára vonatkozó tétel, valamint a határérték és a

folytonosság kapcsolatát leíró tétel közvetlen következménye. Ha pedig $a \in \mathcal{D}_F \setminus \mathcal{D}_F'$, akkor (mint a \mathcal{D}_F izolált pontjában) az F automatikusan folytonos.

A fenti állítások az értelemeszerű módosításokkal halmazon folytonos függvényekre is érvényesek.

- **6. tétel.** A polinomok, a racionális törtfüggvények, valamint a hatványfüggvények az értelmezési tartományuk minden pontjában folytonosak.
- 7. tétel: A folytonosságra vonatkozó átviteli elv. Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$, és $a \in \mathcal{D}_f$. Ekkor

$$f \in C\{a\} \iff \forall (x_n) : \mathbb{N} \to \mathcal{D}_f, \lim_{n \to +\infty} x_n = a \ eset\'{e}n \ \lim_{n \to +\infty} f(x_n) = f(a).$$

Bizonyítás. A tétel a határértékre vonatkozó átviteli elv bizonyításához hasonlóan igazolható.

A összetett függvény folytonossága és határértéke

A függvények közötti kompozíció műveletére a folytonosság és a határérték esetén lényegesen különböző tételeket kell megfogalmaznunk. Kezdjük a folytonosság és a kompozíció kapcsolatával.

8. tétel: Az összetett függvény folytonossága. Tegyük fel, hogy $f,g \in \mathbb{R} \to \mathbb{R}$, $g \in C\{a\}$ és $f \in C\{g(a)\}$. Ekkor $f \circ g \in C\{a\}$, azaz az összetett függvény "örökli" a belső-és a külső függvény folytonosságát.

Bizonyítás. A feltételek szerint $g(a) \in \mathcal{D}_f$, ezért $\mathcal{R}_g \cap \mathcal{D}_f \neq \emptyset$, így valóban beszélhetünk az $f \circ g$ összetett függvényről és $a \in \mathcal{D}_{f \circ g}$ is igaz, mert $\mathcal{D}_{f \circ g} \subset \mathcal{D}_g$.

Legyen $(x_n): \mathbb{N} \to \mathcal{D}_{f \circ g} \subset \mathcal{D}_g$ egy olyan sorozat, amelyre $\lim (x_n) = a$. Ekkor g-re a 7. tételt alkalmazva azt kapjuk, hogy $\lim (g(x_n)) = g(a)$. Ugyanakkor $(g(x_n)): \mathbb{N} \to \mathcal{D}_f$, ezért f-re alkalmazva az átviteli elvet az adódik, hogy

$$\lim_{n \to +\infty} f(g(x_n)) = f(g(a)) = (f \circ g)(a).$$

Mivel ez utóbbi bármely $(x_n): \mathbb{N} \to \mathcal{D}_{f \circ g}$, $\lim (x_n) = a$ sorozat esetén igaz, ezért ismét az átviteli elvből következik, hogy $f \circ g \in C\{a\}$.

A következő példák azt mutatják, hogy az összetett függvényre általában nem "öröklődik" a külső függvény határértéke.

1. példa.

Ebben az esetben

$$\lim_{0} (f \circ g_1) = 2 \neq 0 = \lim_{1} f$$

2. példa.

Ebben az esetben

$$\exists \lim_{0} (f \circ g_2)$$

9. tétel: Az összetett függvény határértéke. Legyen $f, g \in \mathbb{R} \to \mathbb{R}$ két valós függvény, amire $R_g \subseteq D_f$ teljesül, és $a \in \overline{\mathbb{R}}$. Tegyük fel, hogy

$$a\in D_g',\ \exists \lim_a g=:b\in \overline{\mathbb{R}},\qquad \text{\'es}\qquad b\in D_f',\ \exists \lim_b f=:A\in \overline{\mathbb{R}}.$$

Ekkor

 $\mathbf{1}^o$ Ha $\mathbb{R} \ni b \in D_f$ és $f \in C\{b\}$, akkor az $f \circ g$ függvénynek van határértéke a-ban és

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(b),$$

azaz a kompozíció- és a határérték képzés sorrendje felcserélhető.

2º Ha $\exists K(a)$ környezet, hogy $\forall x \in (K(a) \setminus \{a\}) \cap D_g$: $g(x) \neq b$, akkor is létezik az $f \circ g$ függvénynek határértéke a-ban és

$$\lim_{x \to a} f(g(x)) = \lim_{y \to b} f(y) = A.$$

11

Bizonyítás. A határértékre vonatkozó átviteli elvet alkalmazzuk. A feltételek szerint $D_{f \circ g} = D_g$. Legyen $(x_n) : \mathbb{N} \to D_g \setminus \{a\}$ egy olyan sorozat, amire $\lim (x_n) = a$ teljesül. Jelölje $(y_n) : \mathbb{N} \to D_f$, $y_n := g(x_n)$, illetve $(z_n) : \mathbb{N} \to R_f$, $z_n := f(y_n) = f(g(x_n))$. Mivel $\lim_a g = b$, így az átviteli elv szerint $\lim (y_n) = \lim_{n \to +\infty} g(x_n) = b$.

 $\mathbf{1}^o\ b\in\mathbb{R},\ b\in D_f$ és $f\in C\{b\}$. A folytonosságra vonatkozó átviteli elv miatt minden b-hez tartó $\overline{D_f}$ -beli sorozat f-szerinti képsorozata f(b)-hez tart. Mivel $\lim (y_n) = b$, így $\lim (z_n) = \lim_{n\to +\infty} f(y_n) = f(b) = A$.

 $\mathbf{2}^{o}$ $\exists K(a)$ környezet, hogy $\forall x \in (K(a) \setminus \{a\}) \cap D_g : g(x) \neq b$. Mivel $\lim (x_n) = a$, így véges sok n index kivételével $x_n \in K(a)$, és ekkor $y_n = g(x_n) \neq b$. Ha csak ezeket a tagokat tartjuk meg, akkor az így kapott $(y'_n) : \mathbb{N} \to D_f \setminus \{b\}$ részsorozatra $\lim (y'_n) = \lim (y_n) = b$ teljesül. Mivel $\lim_{b} f = A$, így az átviteli elv szerint $\lim_{n \to +\infty} f(y'_n) = A$. De a $z'_n := f(y'_n)$ sorozatot a (z_n) sorozat véges sok tag elhagyásával kapjuk, ezért $\lim (z_n) = \lim (z'_n) = A$.

Mindkét esetben azt igazoltuk, hogy $\lim_{n\to +\infty} f(g(x_n)) = \lim_{n\to +\infty} (z_n) = A$, ahol $(x_n): \mathbb{N} \to D_g \setminus \{a\}$ tetszőleges olyan sorozat, amire $\lim_{n\to +\infty} (x_n) = a$ teljesül. Ezért az átviteli elv szerint

$$\lim_{a} f \circ g = A. \blacksquare$$

Az előző tétel eredménye

$$\lim_{x \to a} f(g(x)) = \lim_{y \to b} f(y) \quad (y = g(x) \to b, \text{ ha } x \to a)$$

módon is írható, ami úgy tekinthető, mint a $\lim_{x\to a} f(g(x))$ határértékben alkalmazott y=g(x) helyettesítés.