SPIT HSBR 14

Chiodo Spit HSBR 14

in striscia sfusi in tubo cod. **053953** cod. **011390**

cod. **011391**

CAMPO D'APPLICAZIONE

Classe dell'acciaio di supporto (N/mm²)

CONTROLLO DELL'INFISSIONE

Spessore	H _{min}	H _{max}
acciaio di supporto	(mm)	(mm)
h <u>></u> 6 mm	5	10,5

DESCRIZIONE

Fissaggio su strutture in acciaio
lamiere profilate, per copertura e tamponatura
connettori a taglio per solai misti acciaio-calcestruzzo

CARATTERISTICHE

Stelo e testa in acciaio al carbonio

Resistenza ultima in trazione
 Resistenza ultima a snervament
 Durezza
 2.300 N/mm²
 1.600 N/mm²
 > 57 HRC

Zincatura galvanica di spessore minimo 10 µm

Rondella convessa in acciaio al carbonio

- Zincatura galvanica di spessore minimo 8 μm
- La rondella sagomata migliora l'aderenza della lamiera ed un comportamento elastico
- Il profilo arrotondato del bordo della rondella previene l'incisione od il taglio della lamiera, sia al momento dell'installazione, sia in esercizio

CHIODATRICI SPIT (v. schede tecniche specifiche)

- ► Spit P560, cod. 013891, con caricatore, per HSBR14 in striscia, per fissaggio lamiera profilata
- F Spit P560, cod. 014001, per tiro singolo, per HSBR14 sfusi, per fissaggio di connettori Tecnaria tipo Diapason®
- Spit P560, cod. 013891, con adattatore cod. 013994, per HSBR14 sfusi, per connettori Tecnaria tipo CTF
- Spit P525, cod. 010301, per chiodi HSBR14 in tubo, per fissaggio di lamiera profilata su piano orizzontale

SCELTA DELLA CARICA PROPULSIVA

SPIT HSBR 14

Acciaio di supporto

Resistenza minima secondo la classe S235, con spessore \geq 6 mm, secondo quanto specificato in pag. 1

RESISTENZE IN CONFORMITA' CON ETA n° 08/0040

Casi di fissaggio:

1 lamiera

3 lamiere sormontate

2 lamiere sormontate

4 lamiere sormontate

Spessore	Resistenza caratteristica [kN]		Resistenza di progetto [kN]		Resistenza raccomandata [kN]		Caso di fissaggio
singola lamiera (mm)	Taglio	Trazione	Taglio	Trazione	Taglio	Trazione	
, , ,	V_{Rk}	N _{Rk}	V_{Rd}	N_{Rd}	V_{Rec}	N _{Rec}	
0,63	4,2	5,3	3,4	4,2	2,2	2,8	A-B-C-D
0,75	5,8	6,6	4,6	5,3	3,1	3,5	A-B-C-D
0,88	7,7	7,7	6,2	6,2	4,1	4,1	A-B-C-D
1,00	8,6	8,2	6,9	6,6	4,6	4,4	A-B-C-D
1,13	9,1	9,1	7,3	7,3	4,9	4,9	Α
1,25	9,5	9,5	7,6	7,6	5,1	5,1	Α
1,50	10,0	10,1	8,0	8,1	5,3	5,4	Α
1,75	10,0	10,3	8,0	8,2	5,3	5,5	Α
2,00	10,0	10,4	8,0	8,3	5,3	5,5	Α
2,50	10,0	10,5	8,0	8,4	5,3	5,6	Α

 $V_{Rd} = V_{Rk} / \gamma_M$

La resistenza di progetto a taglio è calcolata applicando alla resistenza caratteristica il fattore di sicurezza γ_M = 1,25.

 $N_{Rd} = N_{Rk} \times \alpha_{cycl} / \gamma_M$

La resistenza di progetto in trazione è calcolata applicando alla resistenza caratteristica il fattore di sicurezza γ_M = 1,25 ed il fattore α_{cycl} = 1

La resistenza raccomandata è calcolata con il fattore γ_F = 1,5.

Le resistenze raccomandate N_{Rec} e V_{Rec} sono idonee per la verifica al vento secondo Eurocodice 1 con fattore γ_F = 1,5 per l'azione del vento ed il fattore γ_N = 1,25 per la resistenza del fissaggio.