Índice

1.	Filtros
2	Súperestructura de R

1. Filtros

Sea I un conjunto no vacío.

Definición 1.1: Un filtro \mathcal{F} sobre I es un conjunto no vacío de subconjuntos de I, con las siguiente propiedades:

- (i) $\varnothing \not\in \mathcal{F}$
- (ii) $A \in \mathcal{F} \land B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$
- (iii) $A \in \mathcal{F} \land A \subseteq B \Rightarrow B \in \mathcal{F}$

La letra \mathcal{F} denotará un filtro sobre I, a menos que se especifique otra cosa.

Definición 1.2 (Relación de orden): Se dice que un filtro \mathcal{F}_1 es más fino que un filtro \mathcal{F}_2 cuando $\mathcal{F}_2 \subseteq \mathcal{F}_1$.

Definición 1.3: Sea \mathscr{F} el conjunto de filtros sobre I. Un ultrafiltro, es un elemento maximal de \mathscr{F} . Por definición de la relación de orden, esto es, no está contenido propiamente en algún otro filtro de \mathscr{F} .

La letra ${\mathcal U}$ denotará un ultrafiltro sobre I, a menos que se especifique otra cosa.

Teorema 1.1 (caracterizaciones de los ultrafiltros): Un filtro ℋ es un ultrafiltro sii

- (i) $(\forall A \mid A \in I : A \in \mathcal{U} \not\equiv I A \in \mathcal{U})$
- (ii) Si una unión finita está en \mathcal{U} , entonces al menos uno de los conjuntos que compone dicha unión, también está en \mathcal{U} . Esto es, si para un $n \in \mathbb{N}$ hay una colección $\{A_0, \ldots, A_n\}$ tal que $\bigcup_{k=0}^n A_k \in \mathcal{U}$, entonces, $(\exists k \mid k \leq n : A_k \in \mathcal{U})$

Demostraci'on

(i) Sea $\mathcal U$ un filtro que cumple la propiedad a demostrar. Se va a suponer que $\mathcal U$ no es un ultrafiltro. Así, por definición, existe un filtro $\mathcal U_2$ más fino que $\mathcal U$.

$$\mathcal{U}_2 - \mathcal{U} \neq \varnothing$$

$$\equiv$$

$$(\exists A \mid: A \in \mathcal{U}_2 - \mathcal{U})$$

$$\equiv \langle A \text{ no est\'a en } \mathcal{U}, \text{ y } \mathcal{U} \text{ cumple la propiedad mencionada } \rangle$$

$$(\exists A \mid A \in \mathcal{U}_2 - \mathcal{U} : I - A \in \mathcal{U})$$

$$\Rightarrow \quad \langle \ \mathcal{U} \subseteq \mathcal{U}_2 \ \rangle$$

$$(\exists A \mid A \in \mathcal{U}_2 - \mathcal{U} \ : \ I - A \in \mathcal{U}_2)$$

$$\equiv$$

$$(\exists A \mid A \notin \mathcal{U} \ : \ I - A \in \mathcal{U}_2 \land A \in \mathcal{U}_2)$$

$$\Rightarrow \quad \langle \text{ Definición de filtro, intersección finita} \ \rangle$$

$$(\exists A \mid A \notin \mathcal{U} \ : \ \varnothing \in \mathcal{U}_2)$$

Esto último es una contradicción con otra de las propiedades en la definición de un filtro. En consecuencia, la suposición de que $\mathcal U$ no es ultrafiltro es incorrecta.

(ii) Esta caracterización se va a demostrar usando la anterior. Para mostrar su definición de caracterización, se mostrará la equivalencia que tiene con (i).

Para toda la primera demostación, se considerará un $n \in \mathbb{N}$ y una colección con el mismo nombre que la mencionada en la enunciación de la caracterización.

Por una parte, suponiendo que $\bigcup_{k=0}^n A_k \in \mathscr{U} \wedge (\forall k \mid k \leq n : A_k \notin \mathscr{U})$. Por (i), se tiene entonces

$$\bigcap_{k=1}^{n} (I - A_k) \notin \mathcal{U} \wedge (\forall k \mid k \le n : I - A_k \in \mathcal{U})$$

Se puede ver que hay una contradicción, pues la intersección de todos los A_k debe pertenecer a \mathcal{U} , pues esta es una intersección finita. Así, (i) \Rightarrow (ii).

Por otro lado. Sean $F \notin \mathcal{U}$, $A_1 = F$ y $A_2 = I - F$. Como $\bigcup_{k=1}^{2} A_i = I$, $I \in \mathcal{U}$, entonces al menos uno de los A_k debe estar en \mathcal{U} . por definición de filtro, se tiene que no pueden ser ambos al tiempo, y por (ii), tampoco puede ser que ninguno esté. Así, (ii) \Rightarrow (i)

Nota: \mathscr{U} es un ultrafiltro sii, agregarle otro subconjunto implica que $\varnothing \in \mathscr{U}$

Definición 1.4: Un filtro \mathcal{F} es llamado δ-incompleto cuando existe una colección $\{F_n\}_{n\in\mathbb{N}}$ en I, tal que para todo n, $F_n \in \mathcal{F}$ y $\bigcap_{n\in\mathbb{N}} F_n \notin \mathcal{F}$. Un filtro \mathcal{F} es llamado δ-completo cuando no es δ-incompleto.

Definición 1.5: Un filtro \mathcal{F} es llamado libre cuando $\bigcap \mathcal{F} = \varnothing$

Teorema 1.2: (i) Un ultrafiltro \mathscr{U} sobre I es δ -incompleto sii existe una partición contable de I (I_n) tal que,

para todo $n, I_n \notin \mathcal{U}$

(ii) Todo ultrafiltro δ -incompleto es libre

$Demostraci\'{o}n$

(i) Sea $\{F_n\}_{n\in\mathbb{J}}$ una colección de subconjuntos de I que cumpla en \mathscr{U} la definición de δ -incompleto. Como \mathscr{U} es un ultrafiltro, se tiene entonces que, para todo $n\in\mathbb{J},\ I-F_n\not\in\mathscr{U}$. Por definción de filtro, tampoco puede estar en \mathscr{U} alguno de sus subconjuntos. Así mismo, como la colección de los F_n cumple la definición de δ -incompleto, se tiene que $\bigcup_{n\in\mathbb{J}}(I-F_n)\in\mathscr{U}$.

Sea B_n una colección de subconjuntos de I definida por $B_k = \bigcup_{n=1}^k (I - F_k)$ Sea I_n una colección de subconjuntos de I definida por

$$\left\{
\begin{aligned}
I_0 &= \bigcap_{k \in \mathbb{J}} F_k \\
I_{n+1} &= B_{n+1} - B_n
\end{aligned}
\right\}$$

Se va a mostrar que la colección $\{I_n\}_{n\in\mathbb{N}}$ es una partición de I, de la cual, para todo n, $I_n\notin\mathcal{U}$ De entrada se tiene que $I_0\notin\mathcal{U}$, por definición de δ -incompleto. Por otro lado, hace falta hallar de forma más explícita qué es I_n para un $n\geq 1$.

$$I_1 = I - F_1$$

$$I_2 = ((I - F_1) \cup (I - F_2)) - (I - F_1)$$

$$I_3 = ((I - F_1) \cup (I - F_2) \cup (I - F_3)) - ((I - F_1) \cup (I - F_2))$$

$$\vdots \qquad \vdots$$

Se puede ver inmediatamente que $I_1 \notin \mathcal{U}$. También se tiene que, para un par de subconjuntos de I, A y B: $A - B = A \cup (I - B)$ y $I - (A \cup B) = (I - A) \cap (I - B)$. Una vez aclarado esto:

$$I_{n+1} = B_{n+1} - B_{n}$$

$$= \bigcup_{k=1}^{n+1} (I - F_{k}) - \bigcup_{k=1}^{n} (I - F_{k})$$

$$= \bigcup_{k=1}^{n} (I - F_{k+1}) \cup \bigcup_{k=1}^{n} (I - F_{k}) \cap \left(I - \bigcup_{k=1}^{n} (I - F_{k})\right)$$

$$= \bigcup_{k=1}^{n} (I - F_{k+1}) \cap \left(I - \bigcup_{k=1}^{n} (I - F_{k})\right) \cup \left(\bigcup_{k=1}^{n} (I - F_{k}) \cap \left(I - \bigcup_{k=1}^{n} (I - F_{k})\right)\right)$$

$$= \bigcup_{k=1}^{n} (I - F_{k+1}) \cap \left(I - \bigcup_{k=1}^{n} (I - F_{k})\right) \cap \left(I - \bigcup_{k=1}^{n} (I - F_{k})\right)$$

$$= \bigcup_{k=1}^{n} (I - F_{k+1}) \cap \bigcap_{k=1}^{n} F_{k}$$

Se puede ver que, para todo $n \in \mathbb{J}$, $I_n \subseteq (I - F_n)$, lo que, por definición de filtro, y el hecho de que $I - F_n \notin \mathcal{U}$, implica que $I_n \notin \mathcal{U}$.

Por la definición de B_n , para todo $n \in \mathbb{J}$, $B_n \subseteq B_{n+1}$. Esto garantiza que para todo $n, m \in \mathbb{J} \land n \neq m$, $I_n \cup I_m = \emptyset$.

Falta resolver con I_0 y verificar que la unión de todos, en efecto, sea I. Esto se puede hacer en un mismo paso, calculando la unión de todos los I_n desde n=1. Pero esta unión resulta ser la misma que la unión de todos los $I-F_n$. Así,

$$\bigcup_{n\in\mathbb{J}} I_n = \bigcup_{n\in\mathbb{J}} (I - F_n)$$

Con esta expresión, se puede ver que, I_0 , es precisamente el complemento en I de esta unión. Con lo que se concluye que la colección $\{I_n\}_{n\in\mathbb{N}}$ es una partición de I tal que, para todo $n\in\mathbb{N},\ I_n\not\in\mathscr{U}$.

En el otro sentio, con ultrafiltro $\mathscr U$ sobre I y una partición contable de I, $\{I_n\}_{n\in\mathbb N}$ tal como se define en el enunciado. Se tiene entonces que, para todo $n\in\mathbb N$, $I-I_n\in\mathscr U$. Por lo que se define $F_n=I-I_n$.

solo hace falta ver que la intersección de todos los F_n no esté en $\mathcal U.$

$$\bigcap_{n \in \mathbb{N}} F_n$$

$$= \bigcap_{n \in \mathbb{N}} (I - I_n)$$

$$= I - \bigcup_{n \in \mathbb{N}} I_n$$

$$= I - I$$

$$= \emptyset$$

$$\not\in$$

$$\mathscr{U}$$

Así, se concluye la demostración de esta caracterización de los ultrafiltros δ -incompletos.

(ii) Este segundo teorema, resulta ser consecuencia inmediata del anterior. Por esta razón, para un ultrafiltro δ -incompleto, se cuenta con una partición contrable $\{I_n\}_{n\in\mathbb{N}}$ que cumple la definición del enunciado.

Lo primero es explorar el significado de $\bigcap \mathcal{U} = \varnothing$

$$\bigcap \mathcal{U} = \emptyset$$

$$\exists$$

$$\neg \bigcap \mathcal{U} \neq \emptyset$$

$$\exists$$

$$\neg \left(\exists x \mid : x \in \bigcap \mathcal{U}\right)$$

$$\exists$$

$$\neg \left(\exists x \mid : (\forall F \mid F \in \mathcal{U} : x \in F)\right)$$

$$(\forall x \mid : (\exists F \mid F \in \mathscr{U} : x \notin F))$$

Ya con esta proposición, es más claro lo que hace falta demostrar. Por generalización:

$$x \in I$$

$$\equiv$$

$$(\exists n \mid n \in \mathbb{N} : x \in I_n \land I_n \notin \mathscr{U})$$

$$\equiv$$

$$(\exists n \mid n \in \mathbb{N} : x \notin I - I_n \land (I - I_n) \in \mathscr{U})$$

Así, queda demostrado el teorema (ii).

Junto con el lema de Zorn y la caracterización de los ultrafiltros δ -incompletos, se puede demostrar que en cualquier conjunto infinito, existen dichos ultrafiltros.

2. Súperestructura de R

La idea en esta súperestructura, es poder agrupar todas las relaciones posibles entre número reales. Debido a la definición de las n-uplas de forma recursiva:

$$(a) = a$$
$$(a,b) = \{\{a\}, \{a,b\}\}$$
$$(a_1, \dots, a_n, a_{n+1}) = ((a_1, \dots, a_n), a_{n+1})$$

y el hecho de que, $(a,b) \in A \times B \Rightarrow (a,b) \in \mathscr{P}(\mathscr{P}(A \cup B))$, se puede lograr definir un conjunto el cual junte todas las n-uplas de números reales.

Se define entones la siguiente colección de conjuntos:

$$\left\{ \begin{aligned} \mathbb{R}_0 &= \mathbb{R} \\ \mathbb{R}_{n+1} &= \mathscr{P}\left(\bigcup_{k=0}^n \mathbb{R}_k\right) \right\} \end{aligned}$$

Definición 2.1: La súperestructura, denotada por $\widehat{\mathbb{R}}$, se definirá como:

$$\widehat{\mathbb{R}} = \bigcup_{n \ge 0} \mathbb{R}_n$$

Definición 2.2: Los elementos de $\widehat{\mathbb{R}}$ serán llamados *entidades*. De estas, los elementos de \mathbb{R} serán llamados *individuos*.

Ahora, se mostrarán algunas propiedades de las entidades. Estas servirán mucho más adelante para demostrar algunos teoremas a cerca de la construcción de los número híperreales.

Lema 2.1:

(i) $(\forall n, k \mid n, k \in \mathbb{J} \land n \ge k : \mathbb{R}_k \subseteq \mathbb{R}_n)$

(ii)
$$\left(\forall n \mid n \in \mathbb{J} : \bigcup_{k=0}^{n} \mathbb{R}_{k} = \mathbb{R}_{n} \right)$$

- (iii) $(\forall n, k \mid n, k \in \mathbb{N} \land k \le n : R_k \in R_n)$
- $(iv) (\forall n, x, y \mid n \in \mathbb{N} \land y \in \mathbb{R}_{n+1} \land x \in y : x \in \mathbb{R}_n)$

Demostraci'on

(i) Sean $n, k \in \mathbb{J}$ tales que $n \geq k$. Se mostrará la contenencia De \mathbb{R}_k en R_n tomando un elemento en \mathbb{R}_k y viendo que esto implica que esté en \mathbb{R}_n .

$$x \in \mathbb{R}_{k}$$

$$\equiv$$

$$x \in \mathscr{P}\left(\bigcup_{m=0}^{k-1} R_{m}\right)$$

$$\equiv$$

$$x \subseteq \bigcup_{m=0}^{k-1} R_{m}$$

$$\Rightarrow \langle A \subseteq B \Rightarrow A \subseteq B \cup C \rangle$$

$$x \subseteq \bigcup_{m=0}^{n} R_{m}$$

$$\equiv$$

$$x \in \mathscr{P}\left(\bigcup_{n=0}^{n} R_{n}\right)$$

 $\equiv x \in \mathbb{R}_n$

hola

(ii) La demostración se hará por inducción: Caso base:

$$\bigcup_{k=0}^{1} \mathbb{R}_k = \mathbb{R}_0 \cup \mathbb{R}_1 = \mathbb{R}_1$$

Paso inductivo: Suponiendo que, para $n \in \mathbb{J}$, se tiene la propiedad.

$$\bigcup_{k=0}^{n} \mathbb{R}_{k} = \mathbb{R}_{0} \cup \mathbb{R}_{n}$$

$$\Rightarrow \langle A = B \Rightarrow A \cup C = B \cup C \rangle$$

$$\bigcup_{k=0}^{n+1} \mathbb{R}_{k} = \mathbb{R}_{0} \cup \mathbb{R}_{n} \cup \mathbb{R}_{n+1}$$

$$\equiv \langle \text{Propiedad anterior}, A \subseteq B \equiv A \cup B = B \rangle$$

$$\bigcup_{k=0}^{n+1} \mathbb{R}_{k} = \mathbb{R}_{n+1}$$

(iii) Para $n=1,\,k$ debe ser 0. En este caso, se cumple la propiedad. Para $n\geq 1$, se tiene que

$$\mathbb{R}_k \in \mathbb{R}_{n+1}$$

$$\equiv$$

$$\mathbb{R}_k \in \mathscr{P}\left(\bigcup_{m=0}^n \mathbb{R}_m\right)$$

$$\equiv$$

$$\mathbb{R}_k \subseteq \bigcup_{m=0}^n \mathbb{R}_m$$

$$\equiv \langle \text{ Propiedad (ii) } \rangle$$

$$\mathbb{R}_k \subseteq \mathbb{R}_n$$

Esta última expresión, se puede ver por la propiedad (i), es cierta.

(iv) Sean $n \in \mathbb{N}, y \in \mathbb{R}_{n+1}, x \in y$

```
x \in y \land y \in \mathbb{R}_{n+1}
\equiv \langle (ii) \rangle
x \in y \land y \subseteq \mathbb{R}_n
\Rightarrow
x \in \mathbb{R}_n
(v)
```