CSE 559A: Computer Vision

Fall 2017: T-R: 11:30-1pm @ Lopata 101

Instructor: Ayan Chakrabarti (ayan@wustl.edu).
Staff: Abby Stylianou (abby@wustl.edu), Jarett Gross (jarett@wustl.edu)

http://www.cse.wustl.edu/~ayan/courses/cse559a/

Sep 14, 2017

ADMINISTRIVIA

•	Homework	posted (and u	pdated!)	. Make sure	you have	pset1V2.	zip
---	----------	----------	-------	----------	-------------	----------	----------	-----

• Recitation will be NEXT Friday (9/22).

• Regular office hours tomorrow (in J420).

- Let x be a scalar.
- $f(x; \theta)$ is some function of x, and some other parameters θ .
- $\min_{x} f(x; \theta)$ is the smallest value that f can take ...
 - For some fixed values of θ
 - By searching over all possible values of x
 - Is a function of θ
 - \blacksquare But not of x

$$f(x; a, b, c) = a(x - b)^2 + c$$

$$\min_{x} f(x; a, b, c) = a + c$$

- $arg min_x f(x; \theta)$ is the value of x for which f attains its minimum value.
- Same deal for max and arg max. $\max f = -(\min(-f))$.
- How do we find x?
- If $\frac{\partial f(x;\theta)}{\partial x} = 0$ at x = x', then x' is an extremum.
 - i.e., *local* minimum or local maximum.
 - Can find which by checking second derivative.

Minimum:
$$\frac{\partial^2 f(x;\theta)}{\partial x^2} > 0$$
; Maximum: $\frac{\partial^2 f(x;\theta)}{\partial x^2} < 0$

- $f(x; a, b, c) = ax^2 + bx + c$
- Only one minima or maxima at -b/2a
- Can see it also by rewriting as $a\left(x \frac{-b}{2a}\right)^2 + c \frac{b^2}{4a}$
- Minimum if a > 0, Maximum if a < 0

• Minimization over multiple variables

$$\arg\min_{x_1, x_2, x_3} f(x_1, x_2, x_3; \theta)$$

$$\arg\min_{x} f(x; \theta), \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

• Note that output of f, which you are minimizing, is still scalar valued (a single number).

• Generalization of derivative: gradient

$$\nabla_{x} f(x; \theta) = \begin{bmatrix} \frac{\partial f}{\partial x_{1}} \\ \frac{\partial f}{\partial x_{2}} \\ \frac{\partial f}{\partial x_{3}} \end{bmatrix}$$

• Also a vector of the same dimensions as x

$$\frac{\partial f}{\partial(\alpha x_1 + \beta x_2 + \gamma x_3)} = \left\langle \nabla_x f, \left[\alpha, \beta, \gamma\right]^T \right\rangle$$

- Derived by chain rule
- Tells us about gradient in any direction.
- $y = Ax \Rightarrow (\nabla_y f) = A(\nabla_x f)$
- If we say $(\nabla_x f) = 0$ at x, that means every element of the gradient vector is 0.
- And so, the derivative along all "directions" is 0. Then x is an extremum of f.

- Identities
 - $\nabla_x x^T Q x = (Q + Q^T) x = 2Q x$ (if Q is symmetric)
- Minima or Maxima or ...

- Minimum, maximum, saddle point: things become quickly complicated in high dimensions.
- Formally, you show Hessian is positive definite: $\nabla_x (\nabla_x f)^T$)

• $f(x; \theta)$ is a strictly convex function of x, if:

$$\frac{f(x_1;\theta) + f(x_2;\theta)}{2} < f\left(\frac{x_1 + x_2}{2};\theta\right), \ \forall x_1, x_2$$

ullet Then f has only one local extremum. It is a local minimum, and this is the global minimum.

Back to our setting:

$$f(x; Q, b, c) = x^T Q x - 2b^T x + c$$

- *Q* is a symmetric positive-definite matrix.
- Multi-variable Quadratic form.
- This is convex. Single extremum which is a minimum.
- Consider eigen-decomposition of $Q = V\Lambda V^T$.
 - Columns of *V* are eigen-vectors. *V* is unitary.
 - lacktriangledown Λ is diagonal, with eigen-values. All eigenvalues positive.
- $Q = V\Lambda V^T$, $x^T Q x = (Vx)^T \Lambda (Vx) = \sum_i \lambda_i (Vx)_i^2$
- Sum of quadratic terms with all coefficients (λ_i) positive

• Back to our setting:

$$f(x; Q, b, c) = x^T Q x - 2b^T x + c$$

Positive "semi" definite (Eigenvalues are non-negative)

• Back to our setting:

$$f(x; Q, b, c) = x^T Q x - 2b^T x + c$$

• Asssume *Q* is positive definite:

$$\nabla_x f = 0 \to 2Qx - 2b = 0 \to Qx = b$$

$$\bullet \ \ x = Q^{-1}b$$

General note on computing $Q^{-1}b$

- Never compute Q^{-1} , and then multiply by b.
 - Numerically unstable, more expensive.
- Call scipy.linalg.solve:
 - Cholesky / LDL Decomposition: $Q = LDL^T$
 - Always exists for a positive definite matrix. *L* is lower triangular.

■ Solve
$$Qx = b \rightarrow LDL^Tx = b \rightarrow Ly = b, L^Tx = D^{-1}y$$

$$\begin{bmatrix} a & 0 & 0 & 0 & \dots \\ q & c & 0 & 0 & \dots \\ d & e & f & 0 & \dots \\ \vdots & & & \vdots \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \end{bmatrix}$$

$$X = \arg\min_{X} \frac{1}{2\sigma^2} ||Y - X||^2 + R(X)$$
$$X = \arg\min_{X} X^T Q X - 2b^T X + c$$

•
$$R(X) = \lambda \sum_{n} (x[n] - 0.5)^2 = \lambda ||X - 0.5||^2$$

- $Q = \frac{1}{2\sigma^2}I + \lambda I$
- *Q* is therefore diagonal.
- Q^{-1} involves inverting elements along diagonal.
- Simple to compute $Q^{-1}b$.
 - Independent operation on each pixel / element of *b*.

$$X = \arg\min_{X} \frac{1}{2\sigma^2} ||Y - X||^2 + R(X)$$
$$X = \arg\min_{X} X^T Q X - 2b^T X + c$$

•
$$R(X) = \lambda \sum_{n} \left[||(G_x * x)[n]||^2 + ||(G_x * x)[n]||^2 \right]$$

•
$$R(X) = \lambda(\|A_{gx}X\|^2 + \|A_{gy}X\|^2)$$

• Using
$$||Y||^2 = Y^T Y$$
, $(AB)^T = B^T A^T$:

$$Q = \frac{1}{2\sigma^2}I + \lambda(A_{gx}^T A_{gx} + A_{gy}^T A_{gy})$$

■
$$b = \frac{1}{2\sigma^2} Y$$

- *Q* is HUGE and not diagonal.
- Can't even form Q, let alone call scipy.linalg.solve
- You could form 'sparse matrix', but we'll get to that later.

- Need to find $X = Q^{-1}b$ where
 - $Q = \frac{1}{2\sigma^2}I + \lambda(A_{gx}^T A_{gx} + A_{gy}^T A_{gy})$
 - $b = \frac{1}{2\sigma^2} Y$
- Can we diagonalize *Q*?
- ullet YES! Use the Fourier Transform / Fourier basis S
 - $\bullet A_{gx} = SD_{gx}S^*$
 - $A_{gx}^T A_{gx} = S|D_{gx}|^2 S^*$
 - $A_{gy}^T A_{gy} = S|D_{gy}|^2 S^*$
 - $I = SS^* = SIS^*$

$$|D_g|^2$$
 denotes $D_g^*D_g$.

• Need to find $X = Q^{-1}b$ where

$$Q = \frac{1}{2\sigma^2}I + \lambda(A_{gx}^T A_{gx} + A_{gy}^T A_{gy})$$

$$b = \frac{1}{2\sigma^2} Y$$

$$Q = S \left[\frac{1}{2\sigma^{2}} I + \lambda (|D_{gx}|^{2} + |D_{gy}|^{2}) \right] S^{*}$$
Diagonal
$$QX = b \to S^{*}X = \left[\frac{1}{2\sigma^{2}} I + \lambda (|D_{gx}|^{2} + |D_{gy}|^{2}) \right]^{-1} S^{*}b$$

$$F_{X}[u, v] = \left[\frac{1}{2\sigma^{2}} + \lambda (|F_{gx}[u, v]|^{2} + |F_{gy}[u, v]|^{2}) \right]^{-1} \frac{F_{Y}[u, v]}{2\sigma^{2}}$$

 $F_X[u,v] = \frac{F_Y[u,v]}{1 + 2\sigma^2 \lambda (|F_{\sigma x}[u,v]|^2 + |F_{\sigma y}[u,v]|^2)}$

Caveat: Assumes circular convolution

DE-BLURRING

$$X = \arg\min_{X} \frac{1}{2\sigma^{2}} \|Y - A_{k}X\|^{2} + \lambda \left(\|A_{gx}X\|^{2} + \|A_{gy}X\|^{2} \right)$$
$$X = \arg\min_{X} X^{T} QX - 2b^{T} X + c$$

- $\bullet \ \ b = \frac{1}{2\sigma^2} A_k^T Y$
- $\bullet \ \ Q = \frac{1}{2\sigma^2} A_k^T A_k + \lambda (A_{gx}^T A_{gx} + A_{gy}^T A_{gy})$
- Still diagonalizable by the Fourier Basis

$$Q = S \left[\frac{1}{2\sigma^2} |D_k|^2 + \lambda(|D_{gx}|^2 + |D_{gy}|^2) \right] S^*$$
Diagonal

$$QX = b \to S^*X = \left[\frac{1}{2\sigma^2} |D_k|^2 + \lambda(|D_{gx}|^2 + |D_{gy}|^2)\right]^{-1} S^*b$$

•
$$S^*A_k^TY = S^*(SD_KS^*)^*Y = D_K^*S^*Y$$

DE-BLURRING

$$X = \arg\min_{X} \frac{1}{2\sigma^{2}} \|Y - A_{k}X\|^{2} + \lambda \left(\|A_{gx}X\|^{2} + \|A_{gy}X\|^{2} \right)$$
$$X = \arg\min_{X} X^{T} QX - 2b^{T} X + c$$

$$F_X[u,v] = \frac{\bar{F}_k[u,v]F_Y[u,v]}{|F_k[u,v]|^2 + 2\sigma^2\lambda(|F_{gx}[u,v]|^2 + |F_{gy}[u,v]|^2)}$$

- When $\lambda = 0$, $F_X = F_Y/F_k$.
- But this is unstable since $F_k[u, v]$ can be 0 for some [u, v].
- We can see that the regularization term in the denominator dominates for u, v where $|F_k[u, v]|^2$ is low.
- This is called Wiener filtering.
- Again remember, assumes circular convolution.

GENERIC RESTORATION

$$X = \arg\min_{X} \sum_{n} w[n] \|Y[n] - (X * k)[n]\|^{2} + R(x)$$

$$X = \arg\min_{X} \|D_{\sqrt{w}}(Y - A_{k}X)\|^{2} + R(x)$$

$$X = \arg\min_{X} X^{T} (A_{k}^{T} D_{w} A_{k}) X - 2A_{k}^{T} D_{w} Y + R(x)$$

$$X = \arg\min_{X} X^{T} QX - 2b^{T} X + c$$

- ullet Now, Q is no longer diagonalized by the Fourier Basis
- No other choice but Cholesky?
- Q is hard to form, but we can compute Q v for any v very easily. $Q v = A_k^T D_w A_k + \lambda \left(A_{gx}^T A_{gx} + A_{gy}^T A_{gy} \right)$
 - This takes an "image" shaped vector and returns an image shaped vector.
 - Multiplication by A_k , A_{gx} , A_{gy} is convolution by corresponding kernels.
 - Multiply by D_w is a point-wise operation.
 - Multiply by A_k^T is convolution with flipped kernel.

CONJUGATE GRADIENT

- Generic algorithm for solving Qx = b for symmetric positive definite Q.
- Useful when you can multiply by Q but not 'form' it.

Basic Idea

- For a given set of vectors $\{p_1, p_2, \dots p_N\}$
 - that are same size as x
 - linearly independent
 - N = dimensionality of x
- We can write any $x = \sum_i \alpha_i p_i$
- If we also choose the vectors to be 'conjugate' such that $p_i^T Q p_j = 0$ for $i \neq j$:

$$Qx = b \to p_k^T Qx = p_k^T b \to \alpha_i p_k^T Q p_k = p_k^T b \to \alpha_i = \frac{p_k^T b}{p_k^T Q p_k}$$

CONJUGATE GRADIENT

Iterative Algorithm

- Begin with some guess x_0 for x (say all zeros)
- $k = 0, r_0 \leftarrow b Qx_0, p_0 \leftarrow r_0$
- Repeat

$$\bullet \alpha_k \leftarrow \frac{r_k^T r_k}{p_k^T Q p_k}$$

$$x_{k+1} = x_k + \alpha_k p_k$$

$$r_{k+1} = r_k - \alpha_k Q p_k$$

$$\bullet \beta_k = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}$$

$$p_{k+1} = r_{k+1} + \beta_k p_k$$

•
$$k = k + 1$$

Stop at some measure of convergence. Pre-conditioned variants. Additional reading: https://en.wikipedia.org/wiki/Conjugate_gradient_method

DE-BLURRING

What if we did not have a squared regularizer on gradients?

$$X = \arg\min_{X} \sum_{n} \|Y[n] - (X * k)[n]\|^{2} + \lambda \sum_{n} (\|(G_{x} * X)[n]\| + \|(G_{y} * X)[n]\|)$$

No longer a quadratic form. ($\|\cdot\|$ implies absolute value)

Variable splitting (Divide and Concur) Approach

$$X = \arg\min_{X} \min_{\{c_{x}[n], c_{y}[n]\}} \sum_{n} \|Y[n] - (X * k)[n]\|^{2} + \lambda \sum_{n} (\|c_{x}[n]\| + \|c_{y}[n]\|)$$

+
$$\beta \left[\sum_{n} ((G_x * X)[n] - c_x[n])^2 + ((G_y * X)[n] - c_y[n])^2 \right]$$

Equivalent when $\beta \to \infty$

DE-BLURRING

$$X = \arg\min_{X} \min_{\{c_x[n], c_y[n]\}} \sum_{n} \|Y[n] - (X * k)[n]\|^2 + \lambda \sum_{n} (\|c_x[n]\| + \|c_y[n]\|)$$

+
$$\beta \left[\sum_{n} ((G_x * X)[n] - c_x[n])^2 + ((G_y * X)[n] - c_y[n])^2 \right]$$

Iterative Approach

- Begin with some estimate of X, and a small value of β
- Alternate between
 - Minimizing wrt c_x , c_y keeping X constant. Pointwise.
 - Minimizing wrt X keeping c_x, c_y constant. Quadratic / Fourier diagonalized.
 - While increasing the value of β

Further Reading: Krishnan and Fergus. Fast Image Deconvolution using Hyper-Laplacian Priors, NIPS 2009. Also see the ADMM algorithm.

Remember, at each pixel:

$$X_r[n] = \int_{\lambda} L(\lambda, n) \Pi_r(\lambda) d\lambda$$

$$X_g[n] = \int_{\lambda} L(\lambda, n) \Pi_g(\lambda) d\lambda$$

$$X_b[n] = \int_{\lambda} L(\lambda, n) \Pi_b(\lambda) d\lambda$$

- $L(\lambda, n)$ is the light incident at n
 - We've folded in spatial sensitivity, quantum efficiency, ignored noise.
- Here Π_r, Π_g, Π_b are the wavelength-dependent transmissions of the camera's color filters.
 - Often called color matching functions.
- Assume these are RAW images (no post-processing).

Remember, at each pixel:

$$X_r[n] = \int_{\lambda} L(\lambda, n) \Pi_r(\lambda) d\lambda$$

$$X_g[n] = \int_{\lambda} L(\lambda, n) \Pi_g(\lambda) d\lambda$$

$$X_b[n] = \int_{\lambda} L(\lambda, n) \Pi_b(\lambda) d\lambda$$

Observations

- This is "projection" of a continuous valued function to three numbers.
 - Loss of information.
 - Metamerism: $L(\lambda)$ that have the same RGB values.

Remember, at each pixel:

$$X_r[n] = \int_{\lambda} L(\lambda, n) \Pi_r(\lambda) d\lambda$$

$$X_g[n] = \int_{\lambda} L(\lambda, n) \Pi_g(\lambda) d\lambda$$

$$X_b[n] = \int_{\lambda} L(\lambda, n) \Pi_b(\lambda) d\lambda$$

Observations

- Rationale: Models the human visual system.
 - We only have three kind of photoreceptors
 - The standard R,G,B filters "span" the same subspace as human observers.
 - Determined using psycho-physical experiments
 - o By the International Commission on Illumination (CIE) in 1931
 - Introduced the concept of primary colors
 - Defined the CIE standard observer

We can't distinguish between metamers either.

Remember, at each pixel:

$$X_r[n] = \int_{\lambda} L(\lambda, n) \Pi_r(\lambda) d\lambda$$

$$X_g[n] = \int_{\lambda} L(\lambda, n) \Pi_g(\lambda) d\lambda$$

$$X_b[n] = \int_{\lambda} L(\lambda, n) \Pi_b(\lambda) d\lambda$$

Observations

- $L(\lambda)$ is the spectrum of the light that reaches the camera.
 - This is a function of both the object surface, and the illumination
 - Lights can be of different colors
 - But human perception of color is very stable under changing illumination
 - "Color Constancy"
- Also means metamerism is illumination dependent
 Two objects could have identical RGB values under one light but not another.