

Bab 8 Integral

- ☑ 8.1 Integral sebagai Anti Turunan
- **☑** 8.2 Rumus dan Sifat-sifat Integral
- **☑** 8.3 Integral Dengan Substitusi
- **☑** 8.4 Luas Sebagai Limit
- **☑** 8.5 Hampiran Numerik Untuk Luas
 - 8.6 Integral Tertentu
 - 8.7 Integral tertentu sebagai Luasan
 - 8.8 Integral Teretentu Dengan Substitusi

Daryono, Matematika 1: Bab 8 Integral

MATEMATIKA ITS

8.1 Integral sebagai anti turunan

Pengertian Integral

Pada bab sebelumnya telah dipelajari turunan dari y = f(x), perhatikan contoh dibawah ini:

1.
$$y = x^3 \to \frac{dy}{dx} = 3x^2$$

2.
$$y = x^3 + 5 \rightarrow \frac{dy}{dx} = 3x^2$$

3.
$$y = x^3 - 2 \rightarrow \frac{dy}{dx} = 3x^2$$

Untuk mendapatkan y = f(x) dilakukan pengintegralan dari $\frac{dy}{dx} = f'(x)$ yang dinyatakan sebagai berikut:

$$y = \int 3x^2 dx = x^3 + c$$
, $c = \text{konstanta}$

1.
$$c = 0$$
 didapat: $y = x^3$

2.
$$c = 5$$
 didapat: $y = x^3 + 5$

3.
$$c = -2$$
 didapat: $y = x^3 - 2$

Daryono, Matematika 1: Bab 8 Integral

Secara umum, hasil integral selalu diberi tambahan nilai c untuk mewakili nilai konstanta dari y = f(x)

Dari contoh, pengertian integral adalah anti turunan artinya turunan dari y = f(x)

yaitu
$$\frac{dy}{dx} = f'(x)$$
. Untuk mendapatkan kembali $y = f(x)$, hasil turunan fungsi

yaitu:
$$\frac{dy}{dx} = f'(x)$$
 di integral

Jadi:

Jika
$$y = f(x) \to \frac{dy}{dx} = f'(x)$$
, maka $y = \int f'(x) dx = f(x) + c$
 $y = f(x) \to \frac{dy}{dx} = f'(x)$; $dy = f'(x) dx$; $\int dy = \int f'(x) dx \to y + c_1 = f(x) + c_2$
 $y = f(x) + c$; $c = c_2 - c_1$

Daryono, Matematika 1: Bab 8 Integral

Grafik Integral

Hasil
$$y = \int 3x^2 dx = x^3 + c$$
,

Grafik integral digambarkan dengan mengganti nilai c,

$$\checkmark c = 0, y = x^3$$

$$\checkmark c = 2, y = x^3 + 2$$
 grafik $y = x^3$ digeser **keatas** sejauh 2

$$\checkmark c = -2, y = x^3 - 2$$
 grafik $y = x^3$ digeser **kebawah** sejauh 2

Pada Gambar grafik

- \triangleright Kurva warna merah adalah grafik dari $y = x^3$
- \triangleright Kurva warna biru adalah grafik dari $y = x^3 + 2$
- \triangleright Kurva warna hijau adalah grafik dari $y = x^3 2$

Daryono, Matematika 1: Bab 8 Integral

Б

8.2 Rumus dan Siat-Sifat Integral

Rumus Integral

$$\int ax^n dx = \frac{a}{n+1}x^{n+1} + c, \qquad n \neq -1$$

Bagaimana jika n = 0,

$$\int ax^0 dx = \int a dx = \frac{a}{0+1}x^{0+1} + c = ax + c$$

Bagaimana jika n = -1, jika digunakan rumus maka terjadi pembagian oleh bilangan 0 tidak boleh, untuk masalah ini akan dipelajari pada Matematika 2

Contoh 1

a.
$$\int 2x^5 dx = \frac{2}{5+1}x^{5+1} + c = \frac{1}{3}x^6 + c$$

b.
$$\int 3\sqrt{x} \, dx = \int 3x^{1/2} = \frac{3}{1+1/2} x^{\frac{1}{2}+1} + c = \frac{2}{3} x^{\frac{3}{2}} + c$$

c.
$$\int \frac{2}{x^3} dx = \int 2x^{-3} dx = \frac{2}{-3+1}x^{-3+1} + c = -x^{-2} + c = -\frac{1}{x^2} + c$$

Daryono, Matematika 1: Bab 8 Integral

■ Sifat – sifat integral

1.
$$\int kf(x) dx = k \int f(x) dx$$
; $k = \text{konstanta}$

2.
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

3.
$$\int [f(x) - g(x)] dx = \int f(x) dx - \int g(x) dx$$

$$\int [f(x) \times g(x)] dx = \int f(x) dx \times \int g(x) dx$$

$$\int \frac{f(x)}{g(x)} dx = \int f(x) dx \times \int g(x) dx$$

$$\int \frac{f(x)}{g(x)} dx = \int f(x) dx \times \int g(x) dx$$

$$\int \frac{f(x)}{g(x)} dx = \int f(x) dx \times \int g(x) dx$$

$$\int \frac{f(x)}{g(x)} dx = \int f(x) dx \times \int g(x) dx$$

Contoh 2

$$\begin{split} \int \left(2x^4 - \frac{2}{\sqrt{x}} + \frac{1}{x^2}\right) dx &= \int 2x^4 dx - \int 2x^{-\frac{1}{2}} dx + \int x^{-2} dx \\ &= \frac{2}{4+1} x^{4+1} + c_1 - \frac{2}{-\frac{1}{2}+1} x^{-\frac{1}{2}+1} + c_2 + \frac{1}{-2+1} x^{-2+1} + c_3 \\ &= \frac{2}{5} x^5 - 4x^{\frac{1}{2}} - x^{-1} + c \; ; \; c = c_1 + c_2 + c_3 \end{split}$$

Daryono, Matematika 1: Bab 8 Integral

Rumus Integral Trigonometri

Rumus integral trigonometri dicari dengan menggunakan turunan fungsi trigometri sebagai berikut:

1.
$$y = \sin x \rightarrow \frac{dy}{dx} = \cos x$$
; $\int \cos x \, dx = \sin x + c$

2.
$$y = \cos x \rightarrow \frac{dy}{dx} = -\sin x$$
; $\int \sin x \, dx = -\cos x + c$

3.
$$y = \tan x \rightarrow \frac{dy}{dx} = \sec^2 x$$
; $\int \sec^2 x \, dx = \tan x + c$

4.
$$y = \cot x \rightarrow \frac{dy}{dx} = -\csc^2 x$$
; $\int \csc^2 x \, dx = -\cot x + c$

5.
$$y = \sec x \rightarrow \frac{dy}{dx} = \tan x \sec x$$
; $\int \tan x \sec x \, dx = \sec x + c$

6.
$$y = \csc x \rightarrow \frac{dy}{dx} = -\cot x \csc x$$
; $\int \cot x \csc x \, dx = -\csc x + c$

Daryono, Matematika 1: Bab 8 Integral

8

Contoh 3

- a. $\int \sin x \csc x \, dx = \int \sin x \frac{1}{\sin x} dx = \int 1 \, dx = x + c$
- b. $\int \tan t \cos t \, dt = \int \frac{\sin t}{\cos t} \cos t \, dt = \int \sin t \, dt = -\cos t + c$
- c. $\int \tan^2 \theta \, d\theta = \int (\sec^2 \theta 1) \, d\theta = \int \sec^2 \theta \, d\theta \int d\theta = \tan \theta \theta + c$
- d. $\int \tan t \cot t \ dt = \int \frac{\sin t}{\cos t} \frac{\cos t}{\sin t} dt = \int dt = t + c$
- e. $\int \frac{\tan \theta}{\cos \theta} d\theta = \int \tan \theta \sec \theta d\theta = \sec \theta + c$

Daryono, Matematika 1: Bab 8 Integral

q

8.3 Integral Dengan Substitusi

Integral dengan substitusi menyederhanakan bentuk integral, pemisalan diambil bagian yang membuat integral sulit setelah pemisalan disubstitusikan integral menjadi mudah dengan menggunakan rumus dasar.

Contoh 4

$$\int \cos(5x) dx =$$

Tidak dalam bentuk rumus dasar $\int \sin x \, dx$, untuk itu dibuat bentuk dasar dengan pemisalan yang mengarah kebentuk dasar

Misal:
$$t = 5x$$
; $dt = 5 dx$

Teknik substitusi,

pada soal dx diganti 5 $dx \frac{1}{5}$ dengan tujuan akan diganti dengan dt

$$\int \cos 5x dx = \int \cos(5x) \, 5 \, dx \, \frac{1}{5} = \frac{1}{5} \int \cos t \, dt = \frac{1}{5} \sin t + c = \frac{1}{5} \sin(5x) + c$$

Daryono, Matematika 1: Bab 8 Integral

Contoh 5.

$$\int x\sqrt{4-x^2}\ dx =$$

Bentuk yang membuat integral sulit adalah nilai didalam akar, maka:

Misal:
$$u = 4 - x^2$$
; $du = -2x dx$

Teknik substitusi:

Pada soal x dx diganti $-2 x dx \left(-\frac{1}{2}\right)$ dengan tujuan akan diganti dengan du

$$\int x\sqrt{4-x^2} \, dx = \int \sqrt{4-x^2}(-2x \, dx) \left(-\frac{1}{2}\right) = -\frac{1}{2} \int u^{\frac{1}{2}} \, du = -\frac{1}{2} \frac{2}{3} u^{\frac{3}{2}} + c$$
$$= -\frac{1}{3} (4-x^2)^{\frac{3}{2}} + c = -\frac{1}{3} (4-x^2) \sqrt{4-x^2} + c$$

Daryono, Matematika 1: Bab 8 Integral

11

Contoh 6.

$$\int \cos^3 \theta \sin \theta \ d\theta =$$

Bentuk yang membuat integral sulit adalah bentuk $\cos^3 \theta$, maka:

Misal:
$$t = \cos \theta$$
; $dt = -\sin \theta d\theta$

Teknik substitusi

Pada soal $\sin \theta \ d\theta$ diganti $-\sin \theta \ d\theta (-1)$ dengan tujuan akan diganti dengan dt

$$\int \cos^3 \theta \sin \theta \ d\theta = \int \cos^3 \theta \ (-\sin \theta \ d\theta)(-1) = - \int t^3 \ dt$$

$$= -\frac{1}{4}t^4 + c = -\frac{1}{4}\cos^4\theta + c$$

$$y = -\frac{1}{4}\cos^4\theta + c \rightarrow \frac{dy}{d\theta} = -\frac{1}{4}(4\cos^3\theta)(-\sin\theta) = \cos^3\theta \sin\theta$$

Daryono, Matematika 1: Bab 8 Integral

Contoh yang salah.

$$\int \cos^3 \theta \sin \theta \ d\theta =$$

Bentuk yang membuat integral sulit adalah bentuk $\cos^3 \theta$, maka:

Misal:

$$t = \cos \theta$$
; $dt = -\sin \theta \ d\theta \rightarrow d\theta = \frac{dt}{-\sin \theta}$

Teknik substitusi

$$\int \cos^3 \theta \sin \theta \ d\theta = \int \cos^3 \theta \sin \theta \frac{dt}{-\sin \theta} = -\int t^3 dt$$

$$\frac{Peubah \ dalam \ integral \ hanya \ boleh \ satu \ peubah}{-\cot \theta}$$

Daryono, Matematika 1: Bab 8 Integral

13

Contoh 7.

$$\int \frac{x^3}{\sqrt{9-x^2}} \ dx =$$

Bentuk yang membuat integral sulit adalah nilai didalam akar, maka:

Misal:
$$u = 9 - x^2$$
; $du = -2x dx$

Teknik substitusi:

Pada soal $x\ dx$ diganti $-2\ xdx\left(-\frac{1}{2}\right)$ dengan tujuan akan diganti dengan du

$$\int \frac{x^3}{\sqrt{9-x^2}} \, dx = \int \frac{x^2(-2x \, dx)\left(-\frac{1}{2}\right)}{\sqrt{9-x^2}} = -\frac{1}{2} \int \frac{x^2 \, du}{\sqrt{u}} \, (salah)$$

Mengapa?

Karena didalam integral ada 2 peubah x dan u

Daryono, Matematika 1: Bab 8 Integral

Apabila disubstitusikan, masih ada peubah x^2 (tidak bisa menjadi peubah u) untuk itu pemisalan: $u = 9 - x^2$ diubah: $x^2 = 9 - u$

$$\int \frac{x^3}{\sqrt{9-x^2}} dx = \int \frac{x^2(-2x \, dx) \left(-\frac{1}{2}\right)}{\sqrt{9-x^2}} = -\frac{1}{2} \int \frac{(9-u) \, du}{\sqrt{u}}$$

$$= -\frac{1}{2} \int (9-u) u^{-\frac{1}{2}} du = -\frac{1}{2} \int (9u^{-1/2} - u^{1/2}) \, du$$

$$= -\frac{1}{2} \left(9.2 \, u^{\frac{1}{2}} - \frac{2}{3} u^{\frac{3}{2}}\right) + c = \frac{1}{3} u^{\frac{3}{2}} - 9u^{\frac{1}{2}} + c$$

$$= \frac{1}{2} (9-x^2)^{\frac{3}{2}} - 9\sqrt{9-x^2} + c$$

Daryono, Matematika 1: Bab 8 Integral

15

Langkah yang sering dilakukan dan SALAH

$$\int x\sqrt{4-x^2}dx =$$

Misal:

$$u = 4 - x^{2}; du = -2xdx \to dx = \frac{du}{-2x}$$
$$\int x\sqrt{4 - x^{2}} dx = \int x\sqrt{4 - x^{2}} \frac{du}{-2x} = -\frac{1}{2} \int u^{1/2} du$$

SALAH, Mengapa?

Karena peubah x dan u jadi satu dalam integral, seharusnya hanya satu peubah

Daryono, Matematika 1: Bab 8 Integral

Seharusnya gunakan teknik cara mengubah sebagai berikut:

$$\int x\sqrt{4-x^2}dx =$$

Misal:

$$u = 4 - x^2$$
; $du = -2x dx$

$$\int x\sqrt{4-x^2} \, dx = \int \sqrt{4-x^2} \, x \, dx = \int \sqrt{4-x^2} (-2x) \, dx \left(-\frac{1}{2}\right)$$

$$= -\frac{1}{2} \int u^{1/2} \, du$$

$$= -\frac{1}{2} \left(\frac{2}{3} u^{3/2}\right) + c$$

$$= -\frac{1}{3} \left(\sqrt{4-x^2}\right)^{3/2} + c$$

Daryono, Matematika 1: Bab 8 Integral

17

Langkah yang sering dilakukan dan SALAH

$$\int \sin^2 3t \cos 3t \ dt =$$

Misal:

$$u = \sin 3t \; ; \; du = 3\cos 3t \, dt \to dt = \frac{du}{3\cos 3t}$$
$$\int \sin^2 3t \cos 3t \, dt = \int \sin^2 3t \cos 3t \, \frac{du}{\cos 3t} = -\frac{1}{2} \int u^{1/2} du$$

SALAH, Mengapa?

Karena peubah *t* dan *u* jadi satu dalam integral, seharusnya hanya satu peubah

Daryono, Matematika 1: Bab 8 Integral

MATEMATIKA ITS

Seharusnya gunakan teknik cara mengubah sebagai berikut:

$$\int \sin^2 3t \cos 3t \ dt =$$

Misal:

$$u = \sin 3t$$
; $du = 3\cos 3t \, dt \to \cos 3t \, dt = 3\cos 3t \, dt \left(\frac{1}{3}\right)$

$$\int \sin^2 3t \cos 3t \, dt = \int \sin^2 3t \, 3\cos 3t \, dt \, \frac{1}{3}$$

$$= \frac{1}{3} \int u^2 du$$

$$= \frac{1}{3} \left(\frac{1}{3}u^3\right) + c = \frac{1}{9}\sin^3 3t + c$$

Daryono, Matematika 1: Bab 8 Integral

10

MATEMATIKA ITS

8.4 Luas Sebagai Limit

Perhatikan berikut:

Luas bidang datar dibawah kurva y = f(x) dengan $a \le x \le b$ dibagi n pias (Gambar 1).

Lebar pias:
$$\Delta x = \frac{b-a}{n}$$

Luas bidang datar adalah :

$$L = L_1 + L_2 + \dots + L_n = \sum_{k=1}^{n} L_k$$

Ambil satu pias (Gambar 2) jika luas pias dianggap persegi panjang maka luas satu pias $L = p \times l$. Berkaitan dengan panjang (y) ada tiga jenis yaitu:

- Luas tepi kiri $L_1 = y_0 \Delta x$
- Luas tepi kanan $L_1 = y_1 \Delta x$
- Luas titik tengah $L_1 = y_1^* \Delta x$ dengan $y_1^* = \frac{y_1 + y_2}{2}$

Daryono, Matematika 1: Bab 8 Integral

Panjang dari:

- Titik ujung kiri $y_0 = f(x_0)$; $y_1 = f(x_1)$... $y_{n-1} = f(x_{n-1})$
- Titik ujung kanan $y_1 = f(x_1)$; $y_2 = f(x_2)$... $y_1 = f(x_n)$
- Titik tengah $y_1 = f(x_1^*)$; $y_2 = f(x_2^*)$... $y_1 = f(x_n^*)$; $x_k^* = \frac{1}{2}(x_{k-1} + x_k)$

Menetukan nilai x_i

Titik Tengah
$$x_k^* = \frac{1}{2}(x_{k-1} + x_k)$$
$$= a + \left(k - \frac{1}{2}\right) \Delta x$$

Untuk : $\Delta x = \frac{b-a}{n}$; $\Delta x \to 0, n \to +\infty$

Luas bidang datar adalah:

$$L = \lim_{\Delta x \to 0} \sum_{k=1}^{n} f(x_k^*) \, \Delta x \, \text{atau} \lim_{n \to +\infty} \sum_{k=1}^{n} f(x_k^*) \left(\frac{b-a}{n} \right)$$

Daryono, Matematika 1: Bab 8 Integral

Jumlah Deret

1.
$$\sum_{k=1}^{n} a = a + a + a + \dots + a = na$$
; $a = \text{konstanta}$

2.
$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + k = \frac{n(n+1)}{2}$$

3.
$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{n(n+1)(2n+1)}{6}$$

4.
$$\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + 3^3 + \dots + k^3 = \left[\frac{n(n+1)}{2} \right]^2$$

Daryono, Matematika 1: Bab 8 Integral

Contoh

Tentukan luas bidang datar y = 2x + 1 yang dibatasi oleh sumbu x, x = 1 dan x = 3 dengan menggunakan titik ujung kiri

Jawab

Bagi bidang datar sebanyak n pias

$$\Delta x = \frac{3-1}{n} = \frac{2}{n} \; ; \; \text{Titik ujung kiri} : x_k^* = x_{k-1} = a + (k-1)\Delta x = 1 + (k-1)\frac{2}{n} = 1 + \frac{2k}{n} - \frac{2}{n}$$

$$\sum_{k=1}^{n} (2x_k^* + 1)\Delta x = \sum_{k=1}^{n} \left(2\left(1 + \frac{2k}{n} - \frac{2}{n}\right) + 1\right)\frac{2}{n} = \sum_{k=1}^{n} \left(3 + \frac{4k}{n} - \frac{4}{n}\right)\frac{2}{n}$$

$$= \sum_{k=1}^{n} \left(\frac{6}{n} + \frac{8k}{n^2} - \frac{8}{n^2}\right) = 6 + \frac{8}{n^2} \frac{n(n+1)}{2} - \frac{8}{n^2} = 6 + 4 + \frac{4}{n^2} - \frac{8}{n^2} = 10 - \frac{4}{n^2}$$

$$L = \lim_{n \to +\infty} \sum_{k=1}^{n} f(x_k^*) \left(\frac{b-a}{n}\right) = \lim_{n \to +\infty} \left(10 - \frac{4}{n^2}\right) = 10$$

Daryono, Matematika 1: Bab 8 Integral

23

Contoh

Tentukan luas bidang datar $y = 3x^2 - 1$ yang dibatasi oleh sumbu x, x = 1 dan x = 2 dengan menggunakan titik ujung kanan

Jawab

Bagi bidang datar sebanyak n pias

$$\Delta x = \frac{2-1}{n} = \frac{1}{n} \text{ ; Titik ujung kanan } : x_k^* = x_k = a + k\Delta x = 1 + \frac{k}{n}$$

$$\sum_{k=1}^n (3(x_k^*)^2 - 1)\Delta x = \sum_{k=1}^n \left(3\left(1 + \frac{k}{n}\right)^2 - 1\right)\frac{1}{n} = \sum_{k=1}^n \left(3\left(1 + \frac{2k}{n} + \frac{k^2}{n^2}\right) - 1\right)\frac{1}{n}$$

$$= \sum_{k=1}^n \left(\left(3 + \frac{6k}{n} + \frac{3k^2}{n^2}\right) - 1\right)\frac{1}{n} = \frac{2}{n}\sum_{k=1}^n 1 + \frac{6}{n^2}\sum_{k=1}^n k + \frac{3}{n^3}\sum_{k=1}^n k^2$$

$$= \frac{2}{n} \cdot n + \frac{6}{n^2}\frac{n(n+1)}{2} + \frac{3}{n^3}\frac{n(n+1)(2n+1)}{6} = 2 + 3 + \frac{3}{n} + 1 + \frac{3}{2n} + \frac{1}{2n^2} = 6 + \frac{3}{2n} + \frac{1}{2n^2}$$

Daryono, Matematika 1: Bab 8 Integral

Luas bidang datar:

$$L = \lim_{n \to +\infty} \sum_{k=1}^{n} f(x_k^*) \left(\frac{b-a}{n} \right) = \lim_{n \to +\infty} \left(6 + \frac{3}{2n} + \frac{1}{2n^2} \right) = 6$$

Daryono, Matematika 1: Bab 8 Integral

25

8.5 Hampiran Numerik Untuk Luas

Pada luas sebagai limit $\Delta x \to 0$ atau $n \to +\infty$ yang penghitungannya rumit, apalagi untuk fungsi yang bukan polinomial tambah rumit. Metoda lain untuk menghitung luas dengan menggunakan pendekatan numerik yang hasil perhitungan merupakan pendekatan.

Metoda ini rumus yang digunakan sama dengan Luas sebagai limit bedanya adalah banyaknya pias terhingga, pengambilan besar Δx tidak harus sama

Daryono, Matematika 1: Bab 8 Integral

Contoh

Tentukan luas bidang datar $y = 3x^2 - 1$ yang dibatasi oleh sumbu x, x = 1 dan x = 2 dengan n = 10 menggunakan titik ujung kiri, kanan dan titik tengah

Jawab

 $\Delta x = \frac{2-1}{10} = 0.1$, buat tabel untuk ketiga metoda sebagai berikut:

Pias ke	1	2	3	4	5	6	7	8	9	10	11
x_i	1,0	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0
$f(x_i) = 3x^2 - 1$	2,0	2,63	3,32	4,07	4,88	5,75	6,68	7,67	8,72	9,83	11

Luas ujung kiri

$$L = \sum_{k=1}^{10} (3(x_k^*)^2 - 1)\Delta x = (2,00 + 2,63 + 3,32 + \dots + 9,83)(0,2) = (55,55)(0,1) = 5,555$$

Luas ujung kanan

$$L = \sum_{k=1}^{10} (3(x_k^*)^2 - 1)\Delta x = (2,00 + 2,63 + 3,32 + \dots + 9,83)(0,1) = (64,55)(0,1) = 6,455$$

Daryono, Matematika 1: Bab 8 Integral

2

Untuk Luas titik tengah:
$$\overline{x_i} = \frac{x_1 + x_{i+1}}{2}$$

Buat tabel sebagai berikut:

Pias ke	1	2	3	4	5	6	7	8	9	10
x_i	1,05	1,15	1,25	1,35	1,45	1,55	1,65	1,75	1,85	1,95
$f(x_i) = 2x_i + 1$	2,3075	2,9675	3,6875	4,4675	5,3075	6,2075	7,1675	8,1875	9,2675	10,4075

$$L = \sum_{k=1}^{10} (3(x_k^*)^2 - 1)\Delta x = (2,3075 + 2,9675 + \dots + 10,4075)(0,1) = (59,975)(0,1) = 5,9975$$

Daryono, Matematika 1: Bab 8 Integral

Analisis

Hasil eksak L = 6 (Metoda luasan sebagai limit)

 $y = 3x^2 - 1$ untuk x = 1 sampai dengan x = 2 adalah fungsi naik,

Luas bidang datar dianggap persegi panjang

- Metode ujung kiri hasil pendekatan < 6, panjang lebih pendek maka luas bidang datar kurang dari luas sebenarnya (Gambar 1)
- Metode ujung kanan hasil pendekatan > 6, ada daerah yang terhitung (Gambar 2)
- Metode titik tengah hasil pendekatan ≈ 6, ada yang kurang tapi ada yang lebih (Gambar 3)

Daryono, Matematika 1: Bab 8 Integral

20

Bersambung ... ke Integral tertentu

Daryono, Matematika 1: Bab 8 Integral