

Estrutura de Dados Avançada

Aula 04 – Grafos (cont.)

Engenharia da Computação Prof.º Philippe Leal philippeleal@yahoo.com.br

Representação de Grafos

Por diagrama:

- mais usual e mais fácil de visualização de aspectos topológicos;
- percepção de propriedades pode ser facilitada ou dificultada de acordo com o aspecto visual de um grafo;
 - não adequada para o computador.

Representações mais Usuais

Lista de Adjacência

Matriz de Adjacência

Matriz de Incidência

Lista de Adjacência

Lista de Adjacência

- Simples;
- Lista de listas de vértices;
- Cada lista: formada por um vértice e seus adjacentes;
- Adequada na representação de grafos esparsos;
- Ineficiente na busca de uma aresta no grafo;
- A lista associada a um vértice pode ser vazia.

Matriz de Adjacência

Seja G = (V, E), onde |V| = n

•
$$A = (a_{ij}), 1 \le i,j \le n$$

•
$$a_{ij} = \begin{cases} 1, \text{ se } \{i,j\} \in E \\ 0, \text{ caso contrário} \end{cases}$$

Matriz de Adjacência

	а	b	C	d	е
a	0	1	1	0	1
b	1	0	1	1	0
С	1	1	0	1	1
d	0	1	1	0	0
е	1	0	1	0	0

Matriz de Adjacência

Diagonal principal nula: grafos sem laços;

Matriz simétrica: grafo não-orientado;

• Número de 1's na matriz: 2m (grafo simples).

Matriz de Incidência

Seja G = (V, E), onde |V| = n e |E| = m

• B = (b_{kl}) , $1 \le k \le n$, $1 \le l \le m$

• $b_{kl} = \begin{cases} 1, \text{ se o v\'ertice k\'e incidente \`a aresta l} \\ 0, \text{ caso contr\'ario} \end{cases}$

Matriz de Incidência

{a,b} {a,c}{a,e} {b,c}{b,d}{c,d}{c,e}

a 1 1 1 0 0 0

Matriz de Incidência

• Matriz esparsa de dimensão n x m;

Exige muito espaço de armazenamento;

• Número de 1's na matriz = 2m.

Vantagens/Desvantagens

Em Tempo de Execução

	Matriz de Adjacência	Lista
Inserir Aresta	O(1)	O(1)
Remover Aresta	O(1)	O(Δ(G))
Verificar Adjacência (u e v são vizinhos)	O(1)	O(Δ(G))
Listar vizinhos de v	O(n)	O(Δ(G))

Vantagens/Desvantagens

Em Tempo de Execução

	Matriz de Adjacência	Lista
Inserir Aresta	O(1)	O(1)
Remover Aresta	O(1)	O(Δ(G))
Verificar Adjacência (u e v são vizinhos)	O(1)	O(Δ(G))
Listar vizinhos de v	O(n)	O(Δ(G))

Melhor estrutura? Depende do Problema!

Exercícios

- Considere o grafo G e construa:
 - sua lista de adjacência;
 - sua matriz A de adjacência;
 - sua matriz B de incidência.

 Faça primeiro esse exercício no papel. Em seguida, faça um algoritmo que leia o arquivo de entrada "Grafo.txt", que representa o grafo do exemplo, e construa as estruturas solicitadas no exercício, imprimindo-as na tela em seguida. Grafo.txt

Obs.: Para o algoritmo, considere que será utilizado qualquer grafo para testá-lo, não somente esse do exercício, considerando o formato apresentado do arquivo de entrada.

 Extraído do material da Prof^a Claudia Boeres da UFES.