XCS224N Assignment #3: Dependency Parsing

In this assignment, you will build a neural dependency parser using PyTorch. You will implement and train the dependency parser.

1. Neural Transition-Based Dependency Parsing (21 points)

In this section, you'll be implementing a neural-network based dependency parser, with the goal of maximizing performance on the UAS (Unlabeled Attachemnt Score) metric.

Before you begin please install PyTorch 1.0.0 or above from https://pytorch.org/get-started/locally/ with the CUDA option set to None. Additionally run pip install tqdm to install the tqdm package – which produces progress bar visualizations throughout your training process.

A dependency parser analyzes the grammatical structure of a sentence, establishing relationships between head words, and words which modify those heads. Your implementation will be a transition-based parser, which incrementally builds up a parse one step at a time. At every step it maintains a partial parse, which is represented as follows:

- A stack of words that are currently being processed.
- A buffer of words yet to be processed.
- A list of dependencies predicted by the parser.

Initially, the stack only contains ROOT, the dependencies list is empty, and the buffer contains all words of the sentence in order. At each step, the parser applies a *transition* to the partial parse until its buffer is empty and the stack size is 1. The following transitions can be applied:

- SHIFT: removes the first word from the buffer and pushes it onto the stack.
- LEFT-ARC: marks the second (second most recently added) item on the stack as a dependent of the first item and removes the second item from the stack.
- RIGHT-ARC: marks the first (most recently added) item on the stack as a dependent of the second item and removes the first item from the stack.

On each step, your parser will decide among the three transitions using a neural network classifier.

Note: **Please** do not use external python modules which are not specified in the requirements.txt file. This will cause the autograder to fail.

- (a) (6 points) Implement the __init__ and parse_step functions in the PartialParse class in parser_transitions.py. This implements the transition mechanics your parser will use. You can run basic (non-exhaustive) tests by running python parser_transitions.py.
 - Note: You will find the parser_transitions.py file inside the utils folder
- (b) (6 points) Our network will predict which transition should be applied next to a partial parse. We could use it to parse a single sentence by applying predicted transitions until the parse is complete. However, neural networks run much more efficiently when making predictions about *batches* of data at a time (i.e., predicting the next transition for any different partial parses simultaneously). We can parse sentences in minibatches with the following algorithm.

Implement this algorithm in the minibatch_parse function in parser_transitions.py. You can run basic (non-exhaustive) tests by running python parser_transitions.py.

Note: You will need minibatch_parse to be correctly implemented to evaluate the model you will build in part (c). However, you do not need it to train the model, so you should be able to complete

Algorithm 1 Minibatch Dependency Parsing

Input: sentences, a list of sentences to be parsed and model, our model that makes parse decisions

Initialize partial_parses as a list of PartialParses, one for each sentence in sentences Initialize unfinished_parses as a shallow copy of partial_parses while unfinished_parses is not empty do

Take the first batch_size parses in unfinished_parses as a minibatch
Use the model to predict the next transition for each partial parse in the minibatch
Perform a parse step on each partial parse in the minibatch with its predicted transition

Remove the completed (empty buffer and stack of size 1) parses from unfinished_parses end while

Return: The dependencies for each (now completed) parse in partial_parses.

most of part (c) even if minibatch_parse is not implemented yet.

We are now going to train a neural network to predict, given the state of the stack, buffer, and dependencies, which transition should be applied next. First, the model extracts a feature vector representing the current state. We will be using the feature set presented in the original neural dependency parsing paper: A Fast and Accurate Dependency Parser using Neural Networks.¹ The function extracting these features has been implemented for you in utils/parser_utils.py. This feature vector consists of a list of tokens (e.g., the last word in the stack, first word in the buffer, dependent of the second-to-last word in the stack if there is one, etc.). They can be represented as a list of integers $[w_1, w_2, \ldots, w_m]$ where m is the number of features and each $0 \le w_i < |V|$ is the index of a token in the vocabulary (|V| is the vocabulary size). First our network looks up an embedding for each word and concatenates them into a single input vector:

$$\mathbf{x} = [\mathbf{E}_{w_1}, ..., \mathbf{E}_{w_m}] \in \mathbb{R}^{dm}$$

where $\mathbf{E} \in \mathbb{R}^{|V| \times d}$ is an embedding matrix with each row \mathbf{E}_w as the vector for a particular word w. We then compute our prediction as:

$$\mathbf{h} = \text{ReLU}(\mathbf{xW} + \mathbf{b}_1)$$

 $\mathbf{l} = \mathbf{hU} + \mathbf{b}_2$
 $\hat{\mathbf{y}} = \text{softmax}(l)$

where **h** is referred to as the hidden layer, **l** is referred to as the logits, $\hat{\mathbf{y}}$ is referred to as the predictions, and $\text{ReLU}(z) = \max(z, 0)$). We will train the model to minimize cross-entropy loss:

$$J(\theta) = CE(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{i=1}^{3} y_i \log \hat{y}_i$$

To compute the loss for the training set, we average this $J(\theta)$ across all training examples.

(c) (9 points) In parser_model.py you will find skeleton code to implement this simple neural network using PyTorch. Complete the __init__, embedding_lookup and forward functions to implement the model. Then complete the train_for_epoch function within the run.py file.

¹Chen and Manning, 2014, https://nlp.stanford.edu/pubs/emnlp2014-depparser.pdf

Finally execute python run.py to train your model and compute predictions on test data from Penn Treebank (annotated with Universal Dependencies). Make sure to turn off debug setting by setting debug=False in the main function of run.py.

Hints:

- When debugging, set debug=True in the main function of run.py. This will cause the code to run over a small subset of the data, so that training the model won't take as long. Make sure to set debug=False to run the full model once you are done debugging.
- When running with debug=True, you should be able to get a loss smaller than 0.2 and a UAS larger than 65 on the dev set (although in rare cases your results may be lower, there is some randomness when training).
- It should take about 1 hour to train the model on the entire the training dataset, i.e., when debug=False.
- When running with debug=False, you should be able to get a loss smaller than 0.08 on the train set and an Unlabeled Attachment Score larger than 87 on the dev set. For comparison, the model in the original neural dependency parsing paper gets 92.5 UAS. If you want, you can tweak the hyperparameters for your model (hidden layer size, hyperparameters for Adam, number of epochs, etc.) to improve the performance (but you are not required to do so).

Deliverables:

• Working implementation of the neural dependency parser in parser_model.py. (We'll look at and run this code for grading).

Submission Instructions

- 1. **Please** do not use external python modules which are not specified in the requirements.txt file. This will cause the autograder to fail.
- 2. Run the collect_submission.sh script to produce your assignment3.zip file.
- 3. Upload your assignment 3.zip file via the Gradescope link in the Assignment 3 block of your SCPD learning portal