Compilers Parsing bottom-up

LEIC

FEUP-FCUP

2022

This lecture

Parsers LR

LR(0)

Parsing SLR(1)

Conflicts

Extras

Compiler

This lecture

Parsers LR

LR(0)

Parsing SLR(1)

Conflicts

Extras

Parsing bottom-up

- ► Last lecture LL(1) (Left-right parse, Leftmost derivation, 1-symbol lookahead)
- ▶ Problem: rewrite a grammar to be LL(1)
- ▶ Parsing LR (Left-right parse, Rightmost derivation)
- ► Features:
 - ► Parsers *LR* are more general
 - Easier to rewrite a grammar to be LR than LL
 - ► *LR* parsing deals easier with ambiguity: define operators *priorities* and *associativity* without the need to rewrite the grammar

Parsing LR

Stack automata:

- ► Terminal symbols: (input)
- ► A stack of symbols (terminals and not terminals)
- Initially the stack is empty
- ► In each step choose::

Shift push the next symbol to the stack;

Reduce Choose a rule of the form $X \to \gamma$ such that γ are on the top of the stack; remove those symbols and push X.

Parsing LR

Stack automata:

- ► Terminal symbols: (input)
- ► A stack of symbols (terminals and not terminals)
- Initially the stack is empty
- ► In each step choose::

```
Shift push the next symbol to the stack; 
Reduce Choose a rule of the form X \to \gamma such that \gamma are on the top of the stack; remove those symbols and push X.
```

Add:

- ▶ An initial symbol S' and an end symbol \$;
- ▶ a new rule $S' \rightarrow S$ \$

$$S' \rightarrow S$$
\$ $S \rightarrow (S)S \mid \varepsilon$

LR parsing step by step:

pilha	input	ação
ε	()\$	shift
()\$	reduce $\mathcal{S} ightarrow arepsilon$
(5)\$	shift
<i>(S)</i>	\$	$reduce\; \mathcal{S} \to \varepsilon$
<i>(S)S</i>	\$	reduce $S \rightarrow (S)S$
5	\$	accept

Reading back the sequence of actions we have the derivation:

$$S \Rightarrow (S)S \Rightarrow (S) \Rightarrow ()$$

Examplo 2

Expressions:

$$E' \rightarrow E \$$$
 $E \rightarrow E + n \mid n$

pilha	input	ação
ε	n+n\$	shift
n	+n\$	$reduce\; E \to \mathtt{n}$
Ε	+n\$	shift
E+	n\$	shift
E + n	\$	$reduce\; E \to E + \mathtt{n}$
Ε	\$	accept

The corresponding derivation:

$$E \Rightarrow E+n \Rightarrow n+n$$

LR Automata

The LR automata chooses the next action:

- using the stack configuration (not only the top of the stack)
- ► the next input symbols (look-ahead)

LR Automata

The LR automata chooses the next action:

- using the stack configuration (not only the top of the stack)
- ► the next input symbols (look-ahead)
- Let us use integers to represent the states of the automata (stack configurations)
- ▶ The automata changes state when we push or pop symbols into (or from) the stack
- ► These actions are described by the LR parsing table

LR *parsing* table

- ► Lines: states (integers)
- Columns:symbols (terminals or non-terminals)
- ► Entries: actions

```
shift q push a token and go to state q reduce k let X \to \alpha_1 \dots \alpha_n be rule number k:
```

- 1. pop $\alpha_n, \ldots, \alpha_1$ (i.e. the right hand side symbols)
- 2. go back to the state on the top of the new stack and push X;
- 3. lookup in the table for the state "go q" for the entry X in this state;
- 4. go to *q*

```
go q go to q (after a reduce reduce)
accept accepts the input
```

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				а		
1 2 3			r1	r1		
3	s3	s4	r3 r3	r3	g5	g2
4		s4	r3	r3		g6
5			s7			
6			r4	r4		
7			r2	r2		

(0)
$$T' \rightarrow T$$
\$

$$\begin{array}{ccc}
(1) & T \to R \\
(2) & T \to aTa
\end{array}$$

(2)
$$T \rightarrow aTc$$

(3)
$$R \rightarrow \varepsilon$$

(4)
$$R \rightarrow bR$$

	а	b	С	\$	Т	R				
0	s3	s4	r3	r3	g1	g2				
1				а					(0)	T' o T'
2			r1	r1					(1)	T o F
3	s3	s4	r3	r3	g5	g2			(2)	T o a
4		s4	r3	r3		g6			(3)	$R \to \varepsilon$
5			s7						(4)	R o b
6			r4	r4						
7			r2	r2						

Some transitions:

▶ in state 0, with next symbol *a*, *shift* and changes to state 3;

	а	b	С	\$	Т	R					
0	s3	s4	r3	r3	g1	g2	•				
1				а						(0)	T' ightarrow
2			r1	r1						(1)	T o I
3	s3	s4	r3	r3	g5	g2				(2)	T ightarrow a
4		s4	r3	r3		g6				(3)	$R o \varepsilon$
5			s7							(4)	R o t
6			r4	r4						. ,	
7			r2	r2							

Some transitions:

- in state 0, with next symbol a, shift and changes to state 3;
- ▶ in state 3, with next symbol c, reduce using rule 3 $(R \rightarrow \varepsilon)$;

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				а		
2			r1	r1		
3	s3	s4	r3	r3	g5	g2
4		s4	r3	r3		g6
5			s7			
6			r4	r4		
7			r2	r2		

Some transitions:

- ▶ in state 0, with next symbol *a*, *shift* and changes to state 3;
- ▶ in state 3, with next symbol c, reduce using rule 3 $(R \rightarrow \varepsilon)$;
- ▶ in state 0, after reduce $T \rightarrow \dots$ go to state 1;

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				a		
2			r1	r1		
3	s3	s4	r3	r3	g5	g2
4		s4	r3	r3		g6
5			s7			
6			r4	r4		
7			r2	r2		

Some transitions:

- ▶ in state 0, with next symbol *a*, *shift* and changes to state 3;
- ▶ in state 3, with next symbol c, reduce using rule 3 $(R \rightarrow \varepsilon)$;
- ▶ in state 0, after reduce $T \rightarrow \dots$ go to state 1;
- ▶ in state 1, with next symbol \$ (accept) the input.

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				а		
2			r1	r1		
3	s3	s4	r3	r3	g5	g2
4		s4	r3	r3		g6
5			s7			
6			r4	r4		
7			r2	r2		

state	stack	input	action	
0	ε	aabbbcc\$		

- (0) $T' \rightarrow T$ \$
- (1) $T \rightarrow R$
- (2) $T \rightarrow aTc$
- (3) $R \rightarrow \varepsilon$
- (4) $R \rightarrow bR$

	a	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				а		
2			r1	r1		
3	s3	s4	r3	r3	g5	g2
4		s4	r3	r3		g6
5			s7			
6			r4	r4		
7			r2	r2		

state	stack	input	action
0	ε	aabbbcc\$	shift 3
3	2	abbbcc\$	

- (0) $T' \rightarrow T$ \$
- (1) $T \rightarrow R$
- (2) $T \rightarrow aTc$
- (3) $R \rightarrow \varepsilon$
- (4) $R \rightarrow bR$

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				а		
2			r1 r3 r3	r1		
3	s3	s4 s4	r3	r3	g5	g2 g6
4		s4	r3	r3		g6
5			s7			
6			r4 r2	r4		
7			r2	r2		

state	stack	input	action
0	ε	aabbbcc\$	shift 3
3	а	abbbcc\$	shift 3
3	aa	bbbcc\$	

- (0) $T' \rightarrow T$ \$
- (1) $T \rightarrow R$
- (2) $T \rightarrow aTc$
- (3) $R \rightarrow \varepsilon$
- (4) $R \rightarrow bR$

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				а		
1 2 3			r1	r1		
3	s3	s4 s4	r1 r3 r3	r3	g5	g2 g6
4 5		s4	r3	r3		g6
			s7			
6			r4	r4 r2		
7			r2	r2		

state	stack	input	action	
0	ε	aabbbcc\$	shift 3	
3	а	abbbcc\$	shift 3	
3	aa	bbbcc\$	shift 4	
4	aab	bbcc\$		

- (0) $T' \rightarrow T$ \$
- (1) $T \rightarrow R$
- (2) $T \rightarrow aTc$
- (3) $R \rightarrow \varepsilon$
- (4) $R \rightarrow bR$

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				a		
1 2 3			r1	r1		
3	s3	s4 s4	r1 r3 r3	r1 r3 r3	g5	g2 g6
4		s4	r3	r3		g6
5			s7			
6			r4	r4		
7			r2	r2		

state	stack	input	action	
0	ε	aabbbcc\$	shift 3	
3	a	abbbcc\$	shift 3	
3	aa	bbbcc\$	shift 4	
4	aab	bbcc\$	shift 4	
4 aabb		bcc\$		

- (0) $T' \rightarrow T$ \$
- (1) $T \rightarrow R$
- (2) $T \rightarrow aTc$
- (3) $R \rightarrow \varepsilon$
- (4) $R \rightarrow bR$

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				a		
2			r1	r1		
2	s3	s4	r1 r3 r3	r1 r3	g5	g2 g6
4		s4	r3	r3		g6
5			s7			
6			r4	r4		
7			r2	r2		

state	stack	input	action	
0	ε	aabbbcc\$	shift 3	
3	a	abbbcc\$	shift 3	
3	aa	bbbcc\$	shift 4	
4	aab	bbcc\$	shift 4	
4	aabb	bcc\$	shift 4	
4	aabbb	cc\$		

- (0) $T' \rightarrow T$ \$
- (1) $T \rightarrow R$
- (2) $T \rightarrow aTc$
- (3) $R \rightarrow \varepsilon$
- (4) $R \rightarrow bR$

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				a		
2			r1 r3 r3	r1		
3 4	s3	s4	r3	r3 r3	g5	g2 g6
4		s4	r3	r3		g6
5			s7			
6			r4	r4		
7			r2	r2		
7			r2	r2		

state	stack	input	action
0	ε	aabbbcc\$	shift 3
3	a	abbbcc\$	shift 3
3	aa	bbbcc\$	shift 4
4	aab	bbcc\$	shift 4
4	aabb	bcc\$	shift 4
4	aabbb	cc\$	reduce $R o \varepsilon$; go 6
6	aabbbR	cc\$	

- (0) $T' \rightarrow T$ \$
- (1) $T \rightarrow R$
- (2) $T \rightarrow aTc$
- (3) $R \rightarrow \varepsilon$
- (4) $R \rightarrow bR$

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				a		
2			r1	r1		
3	s3	s4	r3 r3	r3	g5	g2 g6
4		s4	r3	r3		g6
5			s7			
6			r4	r4		
7			r2	r2		
	•					

state	stack	input	action
0	ε	aabbbcc\$	shift 3
3	a	abbbcc\$	shift 3
3	aa	bbbcc\$	shift 4
4	aab	bbcc\$	shift 4
4	aabb	bcc\$	shift 4
4	aabbb	cc\$	reduce $R ightarrow arepsilon$; go 6
6	aabbbR	cc\$	reduce $R \rightarrow bR$; go 6
6	aabbR	cc\$	

- (0) $T' \rightarrow T$ \$
- (1) $T \rightarrow R$
- (2) $T \rightarrow aTc$
- (3) $R \rightarrow \varepsilon$
- (4) $R \rightarrow bR$

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				a		
1 2 3			r1	r1		
3	s3	s4	r1 r3 r3	r3	g5	g2 g6
4		s4	r3	r3		g6
5			s7			
6			r4	r4		
7			r2	r2		
	•				•	

state	stack	input	action
0	ε	aabbbcc\$	shift 3
3	a	abbbcc\$	shift 3
3	aa	bbbcc\$	shift 4
4	aab	bbcc\$	shift 4
4	aabb	bcc\$	shift 4
4	aabbb	cc\$	reduce $R ightarrow arepsilon$; go 6
6	aabbbR	cc\$	reduce $R \rightarrow bR$; go 6
6	aabbR	cc\$	reduce $R \rightarrow bR$; go 6
6	aabR	cc\$	

- (0) $T' \rightarrow T$ \$
- (1) $T \rightarrow R$
- (2) $T \rightarrow aTc$
- (3) $R \rightarrow \varepsilon$
- (4) $R \rightarrow bR$

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				а		
2			r1	r1		
3	s3	s4	r1 r3 r3	r3	g5	g2 g6
4		s4	r3	r3		g6
5			s7			
6			r4	r4		
7			r2	r2		
	•				•	

((0))	T'	\rightarrow	Τ	9

- $(1) \quad T \to R$
- (2) $T \rightarrow aTc$
- (3) $R \rightarrow \varepsilon$
- (4) $R \rightarrow bR$

state	stack	input	action
0	ε	aabbbcc\$	shift 3
3	а	abbbcc\$	shift 3
3	aa	bbbcc\$	shift 4
4	aab	bbcc\$	shift 4
4	aabb	bcc\$	shift 4
4	aabbb	cc\$	reduce $R ightarrow arepsilon$; go 6
6	aabbbR	cc\$	reduce $R o bR$; go 6
6	aabbR	cc\$	reduce $R \rightarrow bR$; go 6
6	aabR	cc\$	reduce $R \rightarrow bR$; go 2
2	aaR	cc\$	

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				a		
2			r1	r1		
3	s3	s4	r1 r3 r3	r3	g5	g2
4		s4	r3	r3		g6
5			s7			
6			r4 r2	r4		
7			r2	r2		
	•				•	

- (0) $T' \rightarrow T$ \$
- (1) $T \rightarrow R$
- (2) $T \rightarrow aTc$
- (3) $R \rightarrow \varepsilon$
- (4) $R \rightarrow bR$

state	stack	input	action
0	ε	aabbbcc\$	shift 3
3	а	abbbcc\$	shift 3
3	aa	bbbcc\$	shift 4
4	aab	bbcc\$	shift 4
4	aabb	bcc\$	shift 4
4	aabbb	cc\$	reduce $R ightarrow arepsilon$; go 6
6	aabbbR	cc\$	reduce $R o bR$; go 6
6	aabbR	cc\$	reduce $R o bR$; go 6
6	aabR	cc\$	reduce $R o bR$; go 2
2	aaR	cc\$	reduce $T \to R$; go 5
5	ааТ	cc\$	

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				a		
2			r1 r3 r3	r1		
3	s3	s4	r3	r3	g5	g2 g6
4		s4	r3	r3		g6
5			s7			
6			r4	r4		
7			r2	r2		

- (0) $T' \rightarrow T$ \$
- (1) $T \rightarrow R$
- (2) $T \rightarrow aTc$
- (3) $R \rightarrow \varepsilon$
- (4) $R \rightarrow bR$

state	stack	input	action
0	ε	aabbbcc\$	shift 3
3	a	abbbcc\$	shift 3
3	aa	bbbcc\$	shift 4
4	aab	bbcc\$	shift 4
4	aabb	bcc\$	shift 4
4	aabbb	cc\$	reduce $R ightarrow arepsilon$; go 6
6	aabbbR	cc\$	reduce $R o bR$; go 6
6	aabbR	cc\$	reduce $R o bR$; go 6
6	aabR	cc\$	reduce $R o bR$; go 2
2	aaR	cc\$	reduce $T \rightarrow R$; go 5
5	aaT	cc\$	shift 7
7	aaTc	c \$	

а	b	С	\$	Т	R
s3	s4	r3	r3	g1	g2
			a		
		r1	r1		
s3	s4	r3	r3	g5	g2 g6
	s4	r3	r3		g6
		s7			
		r4	r4		
		r2	r2		
			s3 s4 r3 r1 s3 s4 r3 s4 r3 s4 r3	s3 s4 r3 r3 c c a r1 r1 s3 s4 r3 r3 s4 r3 r3 s7 r4	s3 s4 r3 r3 g1 a a r1 r1 r1 s3 s4 r3 r3 g5 s4 r3 r3 g5 s4 r3 r3 g5 r4 r4 r4

- (0) $T' \rightarrow T$ \$
- (1) $T \rightarrow R$
- (2) $T \rightarrow aTc$
- (3) $R \rightarrow \varepsilon$
- (4) $R \rightarrow bR$

state	stack	input	action
0	ε	aabbbcc\$	shift 3
3	a	abbbcc\$	shift 3
3	aa	bbbcc\$	shift 4
4	aab	bbcc\$	shift 4
4	aabb	bcc\$	shift 4
4	aabbb	cc\$	reduce $R ightarrow arepsilon$; go 6
6	aabbbR	cc\$	reduce $R o bR$; go 6
6	aabbR	cc\$	reduce $R o bR$; go 6
6	aabR	cc\$	reduce $R o bR$; go 2
2	aaR	cc\$	reduce $T \to R$; go 5
5	aaT	cc\$	shift 7
7	aaTc	c\$	reduce $T \rightarrow aTc$; go 5
5	аТ	c\$	

	а	b	С	\$	Т	R
0	s3	s4	r3	r3	g1	g2
1				а		
2			r1	r1		
3	s3	s4	r1 r3 r3	r3	g5	g2
4		s4	r3	r3		g6
5			s7			
6			r4	r4		
7			r2	r2		
	•					

- (0) $T' \rightarrow T$ \$
- (1) $T \rightarrow R$
- (2) $T \rightarrow aTc$
- (3) $R \rightarrow \varepsilon$
- (4) $R \rightarrow bR$

state	stack	input	action
0	ε	aabbbcc\$	shift 3
3	a	abbbcc\$	shift 3
3	aa	bbbcc\$	shift 4
4	aab	bbcc\$	shift 4
4	aabb	bcc\$	shift 4
4	aabbb	cc\$	reduce $R ightarrow arepsilon$; go 6
6	aabbbR	cc\$	reduce $R o bR$; go 6
6	aabbR	cc\$	reduce $R o bR$; go 6
6	aabR	cc\$	reduce $R \rightarrow bR$; go 2
2	aaR	cc\$	reduce $T \rightarrow R$; go 5
5	aaT	cc\$	shift 7
7	aaTc	c\$	reduce $T \rightarrow aTc$; go 5
5	аТ	c\$	shift 7
7	аТс	\$	

	а	b	С	\$	Ιт	R	state	stack	input	action
_							0	ε	aabbbcc\$	shift 3
0	s3	s4	r3	r3	g1	g2	3	a	abbbcc\$	shift 3
1				а			3	aa	bbbcc\$	shift 4
2			r1	r1			4	aab	bbcc\$	shift 4
3	s3	s4	r3	r3	g5	g2	4	aabb	bcc\$	shift 4
4		s4	r3	r3		g6	4	aabbb	cc\$	reduce $R o \varepsilon$; go 6
5			s7	4			6	aabbbR	cc\$	reduce $R \rightarrow bR$; go 6
6 7			r4	r4			6	aabbR	cc\$	reduce $R o bR$; go 6
′			r2	r2			6	aabR	cc\$	reduce $R o bR$; go 2
(0)		\rightarrow	T ¢				2	aaR	cc\$	reduce $T o R$; go 5
(0)		\rightarrow F					5	aaT	cc\$	shift 7
(1)							7	aaTc	c \$	reduce $T \rightarrow aTc$; go 5
(2) $T \rightarrow aTc$							5	аT	c \$	shift 7
$\begin{array}{ll} \textbf{(3)} & R \rightarrow \varepsilon \\ \textbf{(4)} & R \rightarrow bR \end{array}$							7	aTc	\$	reduce $T \rightarrow aTc$; go 1
(4)	ι κ	$\rightarrow D$	υN				1	Т	\$	<□ > <∄ > < 분 >

	а	b	С	\$	ΙΤ	R	state	stack	input	action
0	s3	s4	r3	r3	~1		0	ε	aabbbcc\$	shift 3
	53	54	13		g1	g2	3	a	abbbcc\$	shift 3
1			1	a			3	aa	bbbcc\$	shift 4
2	-2	- 1	r1	r1	~E	~?	4	aab	bbcc\$	shift 4
	s3	s4	r3	r3	g5	g2	4	aabb	bcc\$	shift 4
4		s4	r3	r3		g6	4	aabbb	cc\$	reduce $R ightarrow arepsilon$; go 6
5			s7	1			6	aabbbR	cc\$	reduce $R o bR$; go 6
6 7			r4 2	r4			6	aabbR	cc\$	reduce $R o bR$; go 6
1			r2	r2			6	aabR	cc\$	reduce $R o bR$; go 2
(0)	· -	$^{\prime} ightarrow$	T ¢				2	aaR	cc\$	reduce $T o R$; go 5
(0)							5	aaT	cc\$	shift 7
(1)	,	$\rightarrow F$					7	aaTc	c \$	reduce $T \rightarrow aTc$; go 5
(2)		$\rightarrow a$					5	аT	с\$	shift 7
$\begin{array}{ccc} \text{(3)} & R \rightarrow \varepsilon \\ \text{(4)} & R \rightarrow bR \end{array}$							7	аТс	\$	reduce $T o aTc$; go 1
							1	Т	\$	accept

LR parsing algorithm

```
stack= empty; push(0, stack); next=getToken()
loop
   case table[top(stack),next] of
     shift s: push(s, stack); next=getToken()
    reduce p: let X = left-hand-side of production p
                   n = length(right-hand-side of production p)
               pop n elements of stack:
               lookup table[top(stack),X] and find "go s":
               push(s.stack)
              terminate with sucess
    accept:
     empty:
            report error
```

LR parsing algorithm (cont.)

- ▶ In each step the algorithm uses the table to choose the action
- It is sufficient to store the sates in the stack
 - each state represents a configuration of symbols in the stack
 - it is not necessary to store the symbols
- ► The difficult part is building the parsing table
- ▶ We build the table from the grammar (we dont need the *input*)

Building the parsing table

► Choose actions using the stack and the next tokens (*look-ahead*):

```
LR(0) (0 look-ahead symbols)
LR(1) 1 look-ahead symbol
LR(k) k look-ahead symbols
```

- LR(0) is not enough powerful to parse programming languages
- ▶ LR(k) with $k \ge 2$ requires huge tables
- ightharpoonup LR(1) is suficent to parse programming languages

This lecture

Parsers LR

LR(0)

Parsing SLR(1)

Conflicts

Extras

LR(0) items

- Items are with an extra symbol (the position) (dot)
- Automata states are sets of items

Example: the grammar on the left has 3 rules corresponding to 9 items (on the right hand side).

$$S' \rightarrow S$$
\$ $S \rightarrow (S) S$ $S \rightarrow \varepsilon$

```
S' \to .S \$

S' \to S .\$

S' \to S \$.

S \to .(S) S

S \to (.S) S

S \to (S) .S

S \to (S) .S

S \to (S) .S

S \to (S) .S.
```

LR(0) items (cont.)

- Items represent an intermediate state
- ightharpoonup Examplo: S o (S).S
 - ▶ top of the stack: (S)
 - ▶ the automata already recognized (S) and continues with S

$$A \rightarrow \beta.\gamma$$

means that eta on the top of the stack and the automata may continue with γ

- $ightharpoonup A
 ightharpoonup .\gamma$ is the initial item: start with γ
- ▶ $A \rightarrow \gamma$. is a complete item: γ is on the top of the stack and we recognize A (reduce)

Transitions

- States are items
- For each item transitions using terminal and non-terminal symbols
- Examples:

- A transition using a terminal symbol occurs after a shift
- ► A transition using a non-terminal symbol occurs after a reduce

Transitions- ε

► For each item with next non-terminal symbol *B*

$$A \rightarrow \alpha.B\gamma$$

add transitions- ε for every initial items of B

$$B \rightarrow .\beta$$

Exemplo:

Initial state

Initial state: initial item

(S' is the new non-terminal added to the grammar)

- ► This automata does not have final states
- Accept occurs when we shift the end of input symbol \$
 (corresponding to an action in the parsing table)

Deterministic LR automata

- **D**ue to transitions- ε the automata is non-deterministic (NFA)
- Let us transform it into a deterministic automata (DFA)
- ► DFA states are now sets of items

Example: DFA automata

Building the LR(0) table

		tokens	non-terminals
states{	0		
	1		• • •
	:		
	n		

- States of the DFA are numbered
- ► Transitions with a terminal symbol: shift
- ► Transitions with a non-terminal symbol: go
- ▶ For each state with a complete item ($A \rightarrow \gamma$.): reduce
- ▶ For state $\{S' \rightarrow S.\$\}$ with next symbol \$: accept

The grammar LR(0) if each entry has at most one action.

	()	\$ S
0			
1			
2			
1 2 3 4 5			
4			
5			

► Transitions using tokens (shift)

- ► Transitions using tokens (shift)
- ► Transições using non-terminal symbols (goto)

- ► Transitions using tokens (shift)
- ► Transições using non-terminal symbols (goto)
- ► Complete items (reduce) and shift using \$ (accept)

- ► Transitions using tokens (shift)
- ► Transições using non-terminal symbols (goto)
- ► Complete items (reduce) and shift using \$ (accept)
- ▶ There are shift/reduce conflits, thus this grammar is not LR(0)

Exercise 1

Show that the following grammar is LR(0)

$$A \rightarrow (A)$$
 | a

building the automata and parsing table.

This lecture

Parsers LR

LR(0)

Parsing SLR(1)

Conflicts

Extras

LR(0) limitations

- ► LR(0) uses only information in the stack to choose the reduce actions
- ► Several times this generates shift-reduce conflits
- ► We now will use also the next token (*look-ahead*)
- ► A simple extension of LR(0): SLR(1) (Simple Left-right parse, Rightmost derivation 1 symbol look-ahead)

SLR(1) parsing

- ► The *parsing* algorithm is the same
- ▶ Build the automata as in the LR(0) case
- ▶ Building the *parsing* table:
 - ▶ add *shift goto* as for *LR*(0);
 - ▶ add *reduce* actions for rules $A \rightarrow \gamma$. only in columns for tokes in FOLLOW(A)

	()	\$	S
0	s2			g1
1			а	
2	s2			g3
3		s4		
4	s2			g5
5				

► Same transitions for tokens (shift) and non-terminals symbols (goto)

	()	\$	S	
0	s2	r2	r2	g1	$0 S'\to S\$$
1			а		$1 S \rightarrow (S)S$
2	s2	r2 s4 r2	r2	g3	2 $S o arepsilon$
3		s4			
4	s2	r2	r2	g5	$FOLLOW(S) = \{I, I\}$
5		r1	r1		

- ► Same transitions for tokens (shift) and non-terminals symbols (goto)
- ► Complete items (reduce) use *look-ahead*
- ▶ There are no conflicts *shift* and *reduce* the grammar is SLR(1).

Exercise

Build the transition automata and the parsing table and show that the following grammar:

$$\begin{split} T &\to R \\ T &\to aTc \\ R &\to \varepsilon \\ R &\to bR \end{split}$$

is SLR(1).

(the table must not have conflicts)

This lecture

Parsers LR

LR(0)

Parsing SLR(1)

Conflicts

Extras

Conflicts

- ▶ When a table entry has more that one action we say that there is a conflict
- Conflicts mean that there several possible choices: shift/reduce: shift and reduce in the same state reduce/reduce: more than one reduce in the same state
- How to solve conflicts:
 - rewrite the grammar (if it is ambiguous)
 - define precedence and priority of tokens
 - choose shift instead of reduce (by default)

Example: "Dangling else"

$$S o ext{if cond then } S ext{ else } S \ S o ext{if cond then } S \ S o ext{skip}$$

This grammar is ambiguous. The following sentence:

if cond then if cond then skip else skip

has two derivation trees:

if cond then
$$\{if cond then skip else skip\}$$
 (1)

Example: "Dangling else" (cont.)

Building the SLR(1) automata we get the following state:

$$S o ext{if cond then } S$$
 . $S o ext{if cond then } S$. else S

When the next *token* is else we may:

- shift
- ▶ reduce (because FOLLOW(S) = {else,\$})

Thus, there is a shift/reduce conflict.

If we choose *shift* we get the usual tree:

if cond then {if cond then skip else skip}
used in programming languages (Pascal, C, Java, etc.)

Exercise 2

For the following grammar:

$$E \rightarrow E + E \mid E * E \mid$$
 num

Show that it is ambiguous and has shift-reduce conflicts in SLR(1).

This lecture

Parsers LR

LR(0)

Parsing SLR(1)

Conflicts

Extras

LR(1) and LALR(1) Parsing

- ► SLR(1) is not enough powerful to parse programming languages
- ightharpoonup LR(1) is a generalization of SLR(1) which solves these problems
- ▶ However: LR(1) produces larger automata compared with SLR(1)
- ▶ Bottom-up parser generators use a simplified version of LR(1): LALR(1) Look-ahead LR(1)
- ▶ Diferences between SLR(1), LR(1) e LALR(1) are quite technical
- ▶ The general principal is the same: use lookahead information

LR(1)

- LR(0) states represent only the right-hand side of grammar rules
- ► LR(1): states also use the *look-ahead* symbol

Items LR(1)

- items are now pairs:
 - **productions with one position** in the right-hand side (i.e. *LR*(0) items);
 - ► and a terminal symbol (token) (look-ahead)

$$(\underbrace{A \to \alpha.\beta}_{\text{item } LR(0)}, \underbrace{a}_{\text{look-ahead}})$$

- As before: automata states are sets of items
- ▶ When the automata is on an item:

$$(A \rightarrow \alpha.\beta, a)$$

the sequence α is on the top of the stack and rest is derivable from βa

Items LR(1) (cont.)

Transitions:

Transitions- ε :

$$(A \to \alpha.B\gamma, a) \xrightarrow{\varepsilon} (B \to .\beta, b)$$

When B is a non-terminal and for every rule $B \to \beta$ and $b \in \mathsf{FIRST}(\gamma a)$.

LR(1) Automata

- ightharpoonup Actions shift and go as for LR(0) and SLR(1)
- lacktriangle Add *reduce* actions $A \to \alpha$ when the state has a complete item

$$(A \rightarrow \alpha., a)$$

and the next token is a.