Лекция 9

§ 5.6. Применение метода Гаусса к решению задач линейной алгебры

1.Вычисление решений системы уравнений с несколькими правыми частями. Довольно часто на практике встречается ситуация, когда нужно решить несколько систем линейных алгебраических уравнений

$$Ax = d_{(1)}, Ax = d_{(2)}, \dots, Ax = d_{(p)}$$
 (5.41)

с одной матрицей A и различными правыми частями $d_{(1)}, d_{(2)}, \ldots, d_{(p)}.$

Конечно, применяя метод Гаусса к каждой из систем (5.41) независимо от других, можно найти соответствующие решения $x_{(1)}$, $x_{(2)}$, ..., $x_{(p)}$, затратив примерно (2/3) pm^3 арифметических операций. Однако при одновременном решении систем (5.41) число операций можно существенно сократить. Как было отмечено выше, основные затраты в методе Гаусса связаны с преобразованием матрицы к треугольному виду. Преобразование же правой части производится параллельно и требует примерно m^2 арифметических операций. Если параллельно с приведением матрицы A к треугольному виду выполнить преобразование всех p правых частей по однотипным формулам, то на прямой ход будет затрачено примерно $(2/3)m^3 + pm^2$ операций. С учетом обратного хода, который в данном случае выполняется p раз, общие вычислительные затраты составят $(2/3)m^3 + 2pm^2$ операций.

2.Вычисление обратной матрицы. Вычисление обратной матрицы является довольно трудоемкой задачей, однако эта задача возникает не так часто, как это можно предполагать. К сожалению, зачастую обращение матрицы A производится с единственной целью вычислить по известному вектору b вектор x вида $x = A^{-1}b$ (т.е. найти решение системы Ax = b). Умножение матрицы A^{-1} на вектор b требует примерно $2m^2$ арифметических операций. Однако вычисление A^{-1} обходится (как будет показано ниже) примерно в $2m^3$ операций. Это означает, что на вычисление решения системы Ax = b по формуле $x = A^{-1}b$ будет затрачено примерно $2m^3 + 2m^2$ операций. В

данном случае вектор x можно найти в 3 раза быстрее методом Гаусса и вычисление обратной матрицы не требуется. Более того, вычисленное методом Гаусса решение окажется точнее, так как потребуется выполнение меньшего числа операций.

Может показаться выгодным предварительное вычисление обратной матрицы A^{-1} , если далее потребуется найти большое число векторов по формулам

$$x_{(1)} = A^{-1} d_{(1)}, x_{(2)} = A^{-1} d_{(2)}, ..., x_{(p)} = A^{-1} d_{(p)}.$$
 (5.42)

Однако суммарные затраты при таком подходе составят примерно $2m^3 + 2pm^2$ операций, в то время как при одновременном решении системы (5.41) методом Гаусса потребуется примерно $(2/3)m^3 + 2pm^2$ операций. Следовательно, и в этом случае вычисление A^{-1} нецелесообразно.

Довольно часто при решении различных задач средствами линейной алгебры возникают выражения типа

$$v = B^{-1}CA^{-1}WD^{-1}w. (5.43)$$

Если у исследователя нет достаточного опыта решения задач линейной алгебры на ЭВМ, то он может принять решение о необходимости вычислять матрицы B^{-1} , A^{-1} , D^{-1} с тем, чтобы действовать далее по формуле (5.43). Однако и в этом случае можно поступить иначе и найти вектор v с меньшими затратами. Решая систему Dx = w, найдем $x = D^{-1}w$. Затем вычислим y = Wx и, решая систему Az = y, найдем $z = A^{-1}y$. Наконец, вычислим u = Cz и, решая систему Bv = u, найдем $v = B^{-1}u$.

Итак, во многих случаях вычисление обратной матрицы не требуется. Однако это вовсе не означает, что нет ситуаций, когда вычисление матрицы A^{-1} необходимо и оправдано. В ряде технических приложений и статистических задач непосредственный интерес представляет анализ свойств именно обратной матрицы.

Покажем, как вычисление обратной матрицы можно свести к рассмотренной выше задаче решения системы уравнений с несколькими

правыми частями. Обозначим матрицу A^{-1} через V, ее столбцы через $v_1, v_2, \dots v_m$ и столбцы единичной матрицы через $e_1, e_2, \dots e_m$.

Согласно определению обратной матрицы верно равенство AV = E, эквивалентное совокупности равенств

$$Av_1 = e_1, Av_2 = e_2, ..., Av_m = e_m.$$
 (5.44)

Таким образом, столбцы матрицы $V = A^{-1}$ (а следовательно, и саму матрицу) можно найти, решая m систем уравнений с общей матрицей A. Для этого потребовалось бы примерно $(8/3) m^3$ арифметических операций, однако учет специального вида правых частей системы (5.44) позволяет вычислять матрицу A^{-1} примерно за $2m^3$ операций.

3. Вычисление определителя. Воспользуемся алгоритмом метода Гаусса с выбором главного элемента по столбцу и заметим, что искомый определитель и определитель полученной треугольной матрицы $A^{(m-1)}$ связаны равенством

$$\det A = (-1)^s \det A^{(m-1)},$$

где s - число потребовавшихся перестановок строк. Остается воспользоваться формулой (5.24) и тогда получим

$$\det \mathbf{A} = (-1)^s \ a_{11}^{(0)} a_{22}^{(1)} \dots a_{mm}^{(m-1)}, \tag{5.45}$$

где
$$a_{11}^{(0)} = a_{11}$$
.

Рассмотрим далее другие методы решения систем линейных уравнений для других типов матриц.

§ 5.7. Метод Холецкого (метод квадратных корней).

1.Описание метода. Пусть требуется решить систему линейных алгебраических уравнений

$$Ax = b \tag{5.46}$$

С симметричной положительно определенной матрицей **А.** Линейные системы такого типа часто встречаются различных приложениях — в задачах оптимизации, при решении уравнений математической физики и т.п. Для их решения применяется метод Холецкого (метод квадратных корней).

В основе метода лежит алгоритм построения специального LU- разложения матрицы A, в результате чего она приводится к виду

$$A = LL^{\mathsf{T}}. ag{5.47}$$

В разложении (5.47) нижняя треугольная матрица

$$L = \begin{bmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ l_{m1} & l_{m2} & \dots & l_{mm} \end{bmatrix}$$
 (5.48)

уже не обязательно должна иметь на главной диагонали единицы, как это было в методе Гаусса, а требуется только, чтобы диагональные элементы были положительными.

Если разложение (5.47) получено, то решение системы (5.46) сводится к последовательному решению двух систем с треугольными матрицами:

$$Ly = b, \quad L^{\mathrm{T}}x = y. \tag{5.49}$$

Для решения систем (5.49) требуется выполнение примерно $2m^2$ арифметических операций.

Найдем элементы матрицы L. Для этого вычислим элементы матрицы LL^{T} и приравняем их соответствующим элементам матрицы A. В результате получим систему уравнений

Решая систему (5.50), последовательно находим

Заметим, что для вычисления диагональных элементов используется операция извлечения квадратного корня. Поэтому метод Холецкого называют еще и методом квадратных корней. Доказано, что положительность соответствующих подкоренных выражений является следствием положительной определенности матрицы A.

2. Достоинства метода. Метод Холецкого обладает рядом ценных качеств, которые позволяют предпочесть его методу Гаусса, если требуется решить систему линейных алгебраических уравнений с симметричной и положительно определенной матрицей.

Как нетрудно подсчитать, число операций, выполняемых в ходе вычисления разложения (5.47) по формулам (5.51), равно примерно

 $m^3/3$. Учитывая, что для решения систем (5.49) требуется примерно $2m^2$ арифметических операций, убеждаемся, что при больших m метод Холецкого требует вдвое меньше вычислительных затрат по сравнению с методом Гаусса.

Безусловным достоинством метода Холецкого является также его гарантированная устойчивость.

§ 5.8. Метод прогонки

Рассмотрим *метод прогонки* – простой и эффективный алгоритм решения систем линейных алгебраических уравнений с трехдиагональными матрицами:

$$b_{1}x_{1} + c_{1}x_{2} = d_{1},$$

$$a_{2}x_{1} + b_{2}x_{2} + c_{2}x_{3} = d_{2},$$

$$\vdots$$

$$a_{i}x_{i-1} + b_{i}x_{i} + c_{i}x_{i+1} = d_{i}, (5.52)$$

$$\vdots$$

$$a_{m-1}x_{m-2} + b_{m-1}x_{m-1} + c_{m-1}x_{m} = d_{m-1},$$

$$a_{m}x_{m-1} + b_{m}x_{m} = d_{m}.$$

Системы такого вида часто возникают при решении различных задач математической физики, а также при решении других вычислительных задач (например, приближения функций сплайнами).

1.Вывод расчетных формул. Преобразуем первое уравнение системы (5.52) к виду

$$x_1 = \alpha_1 x_2 + \beta_1$$
, где $\alpha_1 = -c_1/b_1$, $\beta_1 = d_1/b_1$. (5.53)

Подставим полученное для x_1 выражение во второе уравнение системы:

$$a_2(\alpha_1x_2+\beta_1)+b_2x_2+c_2x_3=d_2.$$

Преобразуем это уравнение к виду

$$x_2 = \alpha_2 x_3 + \beta_2, \tag{5.54}$$

где $\alpha_2 = -c_2/(b_2 + a_2 \alpha_1)$, $\beta_2 = (d_2 - a_2 \beta_1)/(b_2 + a_2 \alpha_1)$. Выражение (5.54) подставляем в третье уравнение системы и т.д.

На i-м шаге этого процесса (1< i <m) i-е уравнение системы преобразуется к виду

$$\chi_i = \alpha_i \chi_{i+1} + \beta_i, \tag{5.55}$$

где
$$\alpha_i = -c_i/(b_i + a_i \alpha_{i-1})$$
, $\beta_i = (d_i - a_i \beta_{i-1})/(b_i + a_i \alpha_{i-1})$.

На m-м шаге подстановка в последнее уравнение выражения $x_{m-1} = \alpha_{m-1} x_m + \beta_{m-1}$ дает

$$a_m(\alpha_{m-1}x_m + \beta_{m-1}) + b_mx_m = d_m.$$

Отсюда можно определить значение x_m :

$$x_m = \beta_m = (d_m - a_m \beta_{m-1}) / (b_m + a_m \alpha_{m-1}).$$

Значения остальных неизвестных x_i для i=m-1, m-2, ..., 1 теперь легко вычисляются по формуле (5.55).

2. Алгоритм прогонки. Сделанные преобразования позволяют организовать вычисления метода прогонки в два этапа.

Прямой ход метода прогонки (прямая прогонка) состоит в вычислении прогоночных коэффициентов

$$\alpha_i \ (1 \le i < m)$$
 и $\beta_i \ (1 \le i \le m)$.

При i=1 коэффициенты вычисляются по формулам

$$\alpha_1 = -c_1/\gamma_1, \quad \beta_1 = d_1/\gamma_1, \quad \gamma_1 = b_1,$$
 (5.56)

а при i = 2, 3, ..., m - 1 – по рекуррентным формулам

$$\alpha_i = -c_i/\gamma_i$$
, $\beta_i = (d_i - a_i \beta_{i-1})/\gamma_i$, $\gamma_i = b_i + a_i \alpha_{i-1}$. (5.57)

При i=m прямая прогонка завершается вычислением

$$\beta_m = (d_m - a_m \beta_{m-1}) / \gamma_m , \ \gamma_m = b_m + a_m \alpha_{m-1}.$$
 (5.58)

Обратный ход метода прогонки (*обратная прогонка*) дает значения неизвестных. Сначала полагают $x_m = \beta_m$. Затем значения остальных неизвестных вычисляют по формуле

$$x_i = \alpha_i x_{i+1} + \beta_i, \quad i = m-1, m-2, ..., 1.$$
 (5.59)

Вычисления ведут в порядке убывания значений i от m-1 до 1.

3. Свойства метода прогонки. Непосредственный подсчет показывает, что для реализации вычислений по формулам (5.56) - (5.59) для систем уравнений с трехдиагональной матрицей требуется примерно 8 m арифметических операций, тогда как в методе Гаусса (для систем с заполненной матрицей) это число составляет примерно $(2/3)m^3$.

Приведем достаточные условия на коэффициенты системы (5.52), при выполнении которых вычисления по формулам прямой прогонки могут быть доведены до конца (ни один из знаменателей γ_i не обратится в нуль). В частности, это гарантирует существование и единственность решения (5.52). При выполнении тех же условий коэффициенты α_i при всех i удовлетворяют неравенству $|\alpha_i| \leq 1$, а следовательно, обратная прогонка по формуле (5.59) устойчива по входным данным.

Теорема 5.2. Пусть коэффициенты системы (5.52) удовлетворяют следующим условиям диагонального преобладания:

$$|b_k| \ge |a_k| + |c_k|, |b_k| > |a_k|$$
 (1\le k\le m). (5.60)

Тогда $\gamma_i \neq 0$ и $|\alpha_i| \leq 1$ для всех i = 1, 2, ..., m.

□ Теорема доказывается методом математической индукции ■