

ЛЕКЦИЯ 7. ТЕКСТУРНЫЙ АНАЛИЗ

Обработка аудиовизуальной информации. Бакалавры, 6 семестр. Магистры, 9 семестр

Демидов Д.В.

План лекции

- □ Матрица пространственной смежности.
- □ Сегментация текстурных изображений.
- Структурные методы описания, обработки и распознавания изображений.
- Язык описания изображений PDL.
- Методы улучшения изображений.
 - Методы улучшения изображений с помощью оператора.
 - □ Автоматические методы улучшения изображений.
- Степенные и логарифмические преобразования передаточной функции яркости.

Текстура объекта

Виды текстур Задачи анализа

Понятие текстуры

 Текстура – значимая характеристика объекта при его идентификации, различении, классификации, распознавании.

Примеры текстур естественного происхождения

Примеры регулярных текстур

Примеры фрактальных текстур

Задачи анализа текстурных изображений

- Выбор и формирование признаков, описывающих текстурные различия;
- □ Выделение и сегментация текстурных областей
 - разбиение изображения на области с постоянной текстурой, в которых значения текстурных признаков относительно постоянны;
- Классификация текстурных областей
 - Отнесение области к какому-либо классу, например, «лес», «озеро», «поле»;
- □ Идентификация объекта по текстуре

Методы сегментации текстур

Анализ областей

- Методы на основе областей пытаются найти группы или кластеры пикселов с похожими текстурными свойствами
- Морозов А.Д. Введение в теорию фракталов / М.: Современная математика, 2002. – 57 с.

Анализ границ

- Методы на основе границ пытаются обнаружить края текстур между пикселами, которым соответствуют различные текстурные распределения.
- □ Шапиро Л., Дж. Стокман. Компьютерное зрение / М.: БИНОМ, 2006. 752 с.

Методы анализа областей

- □ На статистических признаках
- На структурных признаках
- На фрактальных признаках
- На спектральных признаках
- □ Комбинированные

Текстурные признаки

Матрица пространственной смежности (матрица Харалика)

Матрица длин серий

Матрица NGLDM

Матрица пространственной смежности

- Матрица пространственной смежности (матрица Харалика, Co-occurrence matrix)
 - М,N размер текстуры;
 - L число градаций яркостей
 - P(i,j) которой равен количеству соседств пикселей с двумя яркостями і и j.

Нормализованная матрица пространственной смежности

□ Нормализованная матрица пространственной смежности (НМПС) - матрица, элемент N(i,i) которой равен относительному количеству соседств пикселей с яркостью і с пикселями с яркостью j.

$$N(i,j) = \frac{1}{K}P(i,j)$$
 $K = \sum_{i=1}^{L} \sum_{j=1}^{L} P(i,j)$

 НМПС обеспечивает инвариантность текстурных признаков к повороту, сдвигу и масштабированию.

Варианты расположения смежных элементов матрицы Харалика

- Соседство может определяться поразному с помощью параметров:
 - Расстояние между пикселями d
 - Направлением (углом между пикселями) ф
- Например

$$\square$$
 d=1, φ = {0,90,180,270}

$$\square$$
 d=1, φ = {45,135,225,315}

$$\square$$
 d=2, φ = {0,90,180,270}

$$\square$$
 d=2, φ = {45,135,225,315}

$$\square$$
 d=3, φ = {0,90,180,270}

$$\square$$
 d=3, φ = {45,135,225,315}

Пример формирования матрицы пространственной смежности

- Рассмотрим матрицу 4x5
 - 8 градаций яркости
 - \Box d=1, ϕ = 0
 - □ Всего К=4х(5-1)= 16 соседств

Оценка общего числа соседств К

Для одного соседа справа (или слева):

$$K = (W - 1) * H = WH - H$$

□ Для одного соседа снизу (или сверху):

$$K = W * (H - 1) = WH - W$$

□ Для двух соседей справа и снизу:

$$K = (WH - H) + (WH - W) = 2WH - W - H$$

□ Для четырёх соседей слева, сверху, справа, снизу:

$$K = 4WH - 2W - 2H$$

Визуализация матрицы Харалика

Поверхность металла в 1000-кратном увеличении

Визуализированная в оттенках серого матрица Харалика

Визуализация матрицы Харалика

Деформированная сталь в 1000-кратном увеличении

Матрица Харалика для деформированной стали

Агат

Амазонит

Маховый агат

Пейзажная яшма

Статистические признаки

- □ Энергия
- □ Момент инерции
- □ Максимальная вероятность
- Локальная однородность
- Энтропия
- След нормализованной матрицы пространственной смежности
- □ Среднее значение яркости
- Корреляция значений яркости изображения

Энергия (второй угловой момент)

 Энергия (ASM) – показатель "однотонности" изображения

$$ASM = \sum_{i} \sum_{j} P^{2}(i, j)$$

 Чем более однотонное изображение, тем большее значение принимает энергия.

Контрастность (момент инерции)

□ Контрастность (CON) – момент инерции матрицы смежности относительно главной диагонали, где P(i, j) – элемент массы, а разность (i – j) – расстояние элемента от главной диагонали.

$$CON = \sum_{i} \sum_{j} (i - j)^{2} P(i, j)$$

Максимальная вероятность

 Максимальная вероятность (MPR) соседств пикселей с яркостями і и і, которые встречаются наиболее часто в данном изображении.

$$MPR = \max_{i} \max_{j} P(i, j)$$

Локальная однородность

- □ Локальная однородность (LUN, гомогенность) показатель "однородности" изображения математическое ожидание величины, обратной к квадрату разности яркостей соседствующих пикселей;
- сумма вероятностей всех соседств, взятых с весами обратно пропорциональными разности яркости пикселей в соседствах.

$$LUN = \sum_{i} \sum_{j} \frac{P(i, j)}{1 + (i - j)^{2}}$$

Энтропия

 □ Энтропия (ENT) – "мера беспорядочности" распределения яркостей изображения.

$$ENT = -\sum_{i} \sum_{j} P(i, j) \log_{2} P(i, j)$$

След матрицы

След матрицы пространственной смежности
 (TR) – сумма главной диагонали

$$TR = \sum_{i} P(i, i)$$

Среднее значение серого AV

Вспомогательные векторы:

$$P_{J}(i) = \sum_{j} P(i, j)$$

$$P_{I}(j) = \sum_{j} P(i, j)$$

■ Мат.ожидания серого по Ј и по I:

$$AV = \mu_I = \mu_J = \sum_i i \cdot P_J(i) = \sum_j j \cdot P_I(j)$$

 \Box Дисперсия серого по J и по I: $\sigma_J^2 = \sum_i \left(i - \mu_J\right)^2 P_J\left(i\right)$ $\sigma_I^2 = \sum_i \left(j - \mu_I\right)^2 P_I\left(j\right)$

Корреляция значений яркости

 Корреляция значений яркости изображения (CORR):

$$CORR = \frac{\sum_{i} \sum_{j} ij \cdot P(i, j) - \mu_{I} \mu_{J}}{\sigma_{I} \sigma_{J}}$$

$$CORR = \frac{1}{\sigma^2} \sum_{i} \sum_{j} (i - \mu) (j - \mu) P(i, j)$$

32 Матрица длин серий

Длины серий (run lengths)

- Серия максимальная связная совокупность вытянутых в прямую линию пикселей одинаковой яркости.
- Характеристики серии:
 - Яркость а: от 1 до *L*, где *L* число возможных значений яркости;
 - □ Длина r: от 2 до *Nr,* где *Nr* число возможных длин серий;
 - Направление обычно по вертикали, горизонтали и диагоналям.
- Матрица длин серий:
 - Размерность L x Nr;
 - \square $B(\alpha,r)$ количество серий длиной r и яркостью α по всем направлениям;

Примеры серий

- 3 вертикальных, 3 горизонтальных, 6 диагональных серии:
 - 2 тёмные серии длиной 2 и яркостью 66;
 - 6 светлых серий длиной 2 и яркостью 89;
 - 2 тёмные серии длиной 3 и яркостью 66;
 - □ 3 светлые серии длиной 3 и яркостью 89.

B(a, r)	66	89
2	2	6
3	2	3

Матрица длин серий (Gray level run length matrix)

- М,N размер текстуры;
- □ К общее число серий в текстуре:

$$K = \sum_{a=1}^{L} \sum_{r=1}^{Nr} B(a,r)$$

Доля изображения в сериях, процент серий:

$$\frac{K}{\sum_{a=1}^{L} \sum_{r=1}^{Nr} r \cdot B(a,r)} = \frac{K}{M \cdot N}$$

Текстурные признаки на основе длин серий

- Short run emphasis inverse moments
 (Выразительность коротких серий):
- Long run emphasis moments
 (Выразительность длинных серий):
- □ Gray-level nonuniformity (Единообразие уровня серого, неоднородность яркости):
- Run length nonuniformity (Единообразие длин, неоднородность длин серий):

$$\frac{1}{K} \sum_{n=1}^{L} \sum_{r=1}^{Nr} \frac{1}{r^2} B(a,r)$$

$$\frac{1}{K} \sum_{a=1}^{L} \sum_{r=1}^{Nr} r^2 B(a,r)$$

$$\frac{1}{K} \sum_{a=1}^{L} \left(\sum_{r=1}^{Nr} B(a,r) \right)^{2}$$

$$\frac{1}{K} \sum_{r=1}^{Nr} \left(\sum_{a=1}^{L} B(a,r) \right)^{2}$$

матрица NGLDM

Neighboring gray-level dependence matrix (NGLDM)

- Q(i,j) подсчёт числа отклонений яркости. По смыслу похожа на гистограмму.
- □ Размерность матрицы $N_g \times N_r$, где N_g число градаций яркости, а N_r возможное число соседей пикселя.
- □ Для дискретной функции яркости f(i,i) матрица Q (для положительных целых d, a) строится путём подсчёта количества случаев различия каждого элемента f(i,i) с его соседями <= a на расстоянии d.</p>
- □ Например, Q для (d = 1, a = 0)

$$\begin{bmatrix} 1 & 1 & 2 & 3 & 1 \\ 0 & 1 & 1 & 2 & 2 \\ 0 & 0 & 2 & 2 & 1 \\ 3 & 3 & 2 & 2 & 1 \\ 0 & 0 & 2 & 0 & 1 \end{bmatrix}$$

Что почитать

- https://www.lifexsoft.org/index.php/resources/19texture/radiomic-features/67-neighborhood-greylevel-different-matrix-ngldm
- https://stackoverflow.com/questions/25019840/neigh
 boring-gray-level-dependence-matrix-ngldm-in-matlab
- https://www.google.com/url?sa=i&url=https%3A%2F %2Fwww.nature.com%2Farticles%2Fs41598-018-31806-
 - 7&psig=AOvVaw3tD0XpVe4UwUwFIZIPf5vX&ust=158 4304698293000&source=images&cd=vfe&ved=0CAl QiRxqFwoTCJieuorqmugCFQAAAAAAAAAABAD

Сводная таблица признаков

Image Feature Basis	Features		
Histogram	Max, Total Lesion Glycolysis, Mean, Min, Volume, Skewness, Kurtosis, Energy, Entropy, Standard Deviation		
First order features	Mean, Median, Coefficient of Variation, Skewness, Kurtosis, Energy, Entropy, Variance		
Co-occurrence matrix (матрица Харалика)	1 //		
Gray level run length (матрица серий)	Small Run Emphasis, Long Run Emphasis, Gray-Level Nonuniformity, Run Length Nonuniformity, Run Percentage, Low Gray-Level Emphasis, High Gray-Level Emphasis, Short Run Low Gray-Level Emphasis, Short Run High Gray-Level Emphasis, Long Run Low Gray-Level Emphasis, Long Run High Gray-Level Emphasis		
Neighboring gray level	Small Number Emphasis, Large Number Emphasis, Number Nonuniformity, Second Moment, Entropy-NGL		
Neighborhood grey tone difference matrix	Coarseness, Contrast-NGL, Busyness		

Классификация в пространстве текстурных признаков

- □ Пример системы координат для визуализации:
 - Ось X: значения признака «локальная однородность» для компоненты Y цветового пространства XYZ
 - Ось Ү: значения признака «момент инерции» для компоненты В цветового пространства LAB (положение цвета в диапазоне от синего до желтого).
 - Для получения XYZ из RGB читать тут:
 http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
 - Возможно, понадобится гамма-коррекция

Пример результата анализа

- Изображение лесного ландшафта и результат его автоматического текстурного анализа
 - большие цифры номера фаз кедровников,
 - 6 чередование участков кедровников шестой фазы и сосняков,
 - \Box C сосняки,
 - светло-серый оттенок луговая пойма реки и болота

Что почитать

- Шитова О.В., Пухляк А.Н., Дроб Е.Н. Анализ методов сегментации текстурных областей изображений в системах обработки изображений // Научные ведомости, 2014 № 8 (179). Выпуск 30/1, с. 182-188
- В. П. Фраленко. Методы текстурного анализа изображений, обработка данных дистанционного зондирования // ПРОГРАММНЫЕ СИСТЕМЫ: ТЕОРИЯ И ПРИЛОЖЕНИЯ № 4(22), 2014, с. 19–39
- Способ распознавания изображения текстуры клеток http://www.findpatent.ru/patent/238/2385494.html
- □ Денис Перевалов Анализ текстур
 https://ru.scribd.com/doc/115002510/opencv-%D0%90-%D0%BD-%D0%B0-%D0%BB-%D0%B8-%D0%B7-%D1%82-%D0%B5-%D0%BA-%D1%81-%D1%82-%D1%83-%D1%80
- □ Троицкий А.К. Визуализация текстурных характеристик изображений на базе матрицы Харалика [http://sv-journal.org/2016-3/04/ru/index.php?lang=ru]
- https://cyberleninka.ru/article/n/raspoznavanie-izobrazheniy-na-osnove-teksturnyh-priznakov-haralika-i-iskusstvennyh-neyronnyh-setey
- □ https://www.nature.com/articles/s41598-017-08764-7/tables/5
- https://stackoverflow.com/questions/25019840/neighboring-gray-level-dependence-matrix-ngldm-in-matlab

Фрактальные методы анализа

Фрактальные методы анализа

- Фрактальные методы анализа текстурных областей изображений основаны на том, что текстура представляет собой фрактал – структуру, состоящая из частей, которые в каком-то смысле подобны целому.
- Многие кривые и поверхности статистически самоподобны, то есть каждая часть может считаться изображением целого в уменьшенном виде.
- Основной особенностью фрактальных характеристик является то, что изображения искусственных и природных объектов имеют сильно различающиеся фрактальные размерности.
- Для сегментации используются характеристики, по которым вычисляется размер фрактала.

Множество Мандельброта

Оценка размера фрактала

- Производится оценка логарифма некоторой характеристики яркостного компонента f (Li) изображения для серии размеров шагов si .
- Строится линейная выборочная регрессия логарифма f (Li) от логарифма шага:

 - \square Где y = log[f(L)], x = log s
- По значениям, полученным при изменении шага в диапазоне допустимых значений,
- Оцениваются коэффициенты Ө₀ и Ө₁, минимизирующие средний квадрат отклонения

$$\hat{\boldsymbol{\theta}} = \begin{bmatrix} \hat{\boldsymbol{\theta}}_{0} \\ \hat{\boldsymbol{\theta}}_{1} \end{bmatrix} = \begin{bmatrix} \left(\sum x_{i}^{2} \sum y_{k} - \sum x_{i} \sum x_{k} y_{k}\right) / \left(N \sum x_{i}^{2} - \left(\sum x_{i}\right)^{2}\right) \\ \left(N \sum x_{i} y_{i} - \sum x_{i} \sum y_{k}\right) / \left(N \sum x_{i}^{2} - \left(\sum x_{i}\right)^{2}\right) \end{bmatrix}$$

Подходы к анализу текстур

- Методы, основанные на вычислении матрицы Харалика [Харалик Р.М. Статистический и структурный подходы к описанию текстур. ТИИЭР. 1979. Т. 67. № 5. С. 98-120.].
- Методы, описывающие текстуры длинами серий [Ковалев В.А. Анализ текстуры трехмерных медицинских изображений.
 Минск: Белорусская наука. 2008. 263 с.].
- Методы, использующие измерение пространственной частоты [Гонсалес Р., Вудс Р. Цифровая обработка изображений. Москва: Техносфера. 2005. 1072 с.].
- Методы, основанные на вычислении количества перепадов на единицу площади изображения [Мицель А.А., Колодникова Н.В., Протасов К.Т. Непараметрический алгоритм текстурного анализа аэрокосмических снимков. Известия Томского политехнического университета. 2005. Т. 308. № 1. С. 65-70.].

структурные методы. Язык PDL

Структурные методы анализа

- Структурные методы анализа текстурных областей изображений основаны на том, что текстура состоит из регулярно или почти регулярно повторяющейся совокупности хорошо разделяемых примитивов (микротекстуры), которые расположены согласно некоторому правилу размещения и иерархически объединяются в пространственные упорядоченные структуры (макротекстуры).
- Под структурным описанием понимают текстуру как множество примитивных текстелов, расположенных в некотором регулярном или повторяющемся порядке.
- Для описания текстуры структурными методами необходимо определить примитивы и правила их объединения.
 Структурные методы хорошо подходят для анализа регулярных текстур, состоящих из простых регулярных примитивов.

Структурные методы анализа(2)

- Как только элементы текстуры идентифицированы, возможно применение двух основных подходов к анализу текстуры.
- При первом подходе вычисляют статистические признаки извлеченных элементов текстуры и используют их как элементарные текстурные признаки.
- При втором подходе необходимо выделить принцип расположения примитивов, который описывает текстуру. Последний подход может включать в себя геометрический или синтаксические методы анализа текстуры, например анализ диаграмм полигонов Вороного.

Picture Description Language

 Основная идея: строго специфицировать алгебру описания произвольных графических изображений на основе конечного множества графических примитивов и грамматики, порождающей (распознающей) все нужные изображения и только их.

Примитивы

- □ **Примитивы** терминальные символы грамматики описания изображений выбираются в зависимости от предметной области.
- Любой терминал определяется как объект с двумя выделенными точками точкой начала (tail) и точкой конца (head).
- Любое изображение может быть представлено графом его примитивов, каждый из которых задается своим списком атрибутов:
- PRIMITIVECLASS = (<NAME>, <спецификация tail>, <спецификация head>, <атрибут-1>, <атрибут-2>, ...<атрибут-N>)
- Допускается использование «пустых» (невидимых) примитивов, которые могут использоваться для связи отдельных фрагментов изображения или спецификации геометрических отношений между ними.
- Примитив λ (null point): хвост (tail) и голова (head) совпадают. Этот примитив представляет в графе помеченный узел (node).

Синтаксис языка PDL

- □ Правила грамматики:
 - $\square S \rightarrow p \mid (S \Theta S) \mid (\sim S) \mid (\neg S) \mid T(\omega) S \mid S\iota$
 - □ Θ → + | × | | * | ~
 - р примитивы
 - □ {+, ×, -, *} бинарные операторы конкатенации
 - $□ {\sim, \neg, T(\omega)}$ унарные операторы
 - □ ι пометки в графе.

Операторы PDL

- Все бинарные операторы конкатенации определяются следующим образом:
 - □ Tail ((S1 θ S2)) = Tail (S1)
 - Head ((S1 θ S2)) = Head (S2)
 - □ Где θ ∈ {+, ×, *, ~}
- □ Унарные операторы:
 - Т(ω) используется для аффинных преобразований примитивов и/или классов примитивов;
 - « ι » для присваивания меток объектам в графе изображения.

Семантика PDL

№	Оператор	Семантика оператора		
1.	$(S_1 + S_2)$	th th s_2 t	s ₂)	
2.	(S ₁ ×S ₂)	th th t	h S ₁ ×S ₂)	
3.	(S ₁ - S ₂)	th th (S1	- s ₂)	
4.	(S ₁ * S ₂)	th t_sh (5	S ₁ * S ₂)	
5.	$(S_1 \sim S_2)$	\equiv (S ₁ + (~S ₂)) для бинарного оператора «~»		
6.	(∼ S₂)	Tail ((~ S)) = Head (S)		
		$\mathbf{Head}\ ((\sim S)) = \mathbf{Tail}\ (S)$		
7.	(¬S)	$Head(\neg S) = Head(S)$		
		$Tail(\neg S) = Tail(S)$		

Эквивалентность структур в PDL

- Эквивалентность структур \$1 и \$2 определяется следующим образом:
 - S1 слабо эквивалентен S2 (S1 ≡w S2), если существует изоморфизм между графами S1 и S2 такой, что их соответствующие дуги имеют одинаковые имена.
 - □ S1 эквивалентен S2 (S1 ≡ S2), если
 - S1 ≡w S2 и дополнительно
 - Tail(S1) = Tail (S2) и
 - Head(\$1) = Head (\$2).

Алгебраические свойства операторов в PDL

- Ассоциативность бинарных операторов
 - \square ((S1 + S2) + S3) \equiv (S1 + (S2 + S3))
 - $((S1 \times S2) \times S3) \equiv (S1 \times (S2 \times S3))$
 - \square ((S1 S2) S3) \equiv (S1 (S2 S3))
 - \square ((S1 * S2) * S3) \equiv (S1 * (S2 * S3))
- Коммутативность оператора *
 - \Box (S1 * S2) \equiv (S2 *S1)
- □ Слабая коммутативность операторов × и
 - \square (S1×S2) \equiv w (S2×S1)
 - \square (S1 S2) \equiv w (S2 SI)

Алгебраические свойства операторов в PDL (2)

- Стандартные правила булевой алгебры для оператора ~
 - \square (~(S1 + S2)) \equiv ((~ S2) + (~S1))
 - $(\sim (S1 * S2)) \equiv ((-S2) * (\sim S1))$
- □ Правило де Моргана для оператора ~ по отношению к операторам × и –
 - $(\sim (S1 \times S2)) \equiv ((\sim S2) (\sim S1))$
 - \square (~(S1 S2)) \equiv ((- S2) \times (~S1))
- Правила преобразования «пустых» примитивов
 - \Box (S θ λ) \equiv (λ θ S), $\theta \in \{+, \times, -, *\}$
 - \square (S φ λ) \equiv S, $\varphi \in \{+, \times, -\}$
 - \square (\sim λ) $\equiv \lambda$
 - \square $(\lambda \Theta \lambda) = \lambda$

Примеры описаний на PDL

- Определим 6 терминальных символов (примитивов)
 - □ p1, p2, p3, p4, p5, p6:

- «Дом с круглой крышей»:
 - □ $H \rightarrow ((p6 * p3) * ((p4 + p3) + p5))$
- «Дом с треугольной крышей»:
 - \blacksquare H \rightarrow (((p1 + p2) * p3) * ((p4 + p3) + p5)))
- Класс «дом»:
 - \Box H \rightarrow (R * B)
 - \square R \rightarrow R1 | R2
 - □ R1 \rightarrow ((p₁ + p₂) * p₃)

Общая схема распознавания изображений, описанных на PDL

- Блок формирования терминальных PDL-цепочек обеспечивает символьное представление изображений. В зависимости от типа грамматики распознавания изображений этот блок реализуется конечным автоматом, МП-автоматом или распознавателем расширенных сетей переходов Вудса.
- В случае успешного распознавания формируется дерево грамматического разбора входной PDL-строки.

Что почитать

- Alan Shaw A Formal Picture Description Scheme as a Basis // Information and control 14, 9-52 (1969)
- Хорошевский В. Ф. Об одном методе семантической интерпретации паттернов данных на основе структурного подхода: препринт WP7/2012/08 [Текст] / В. Ф. Хорошевский; НИУ «Высшая школа экономики».
 - М.: Изд. дом Высшей школы экономики, 2012.

Спектральные методы анализа

TODO

Спектральные признаки

- Спектральные меры текстур основаны на спектре Фурье, который идеально подходит для описания направленности присутствующих в изображении периодических и квазипериодических двумерных структур.
- Спектральная текстура характеризуется наличием частичной информации о непроизводных элементах, в частности, об их размерах, которая интерпретируется в терминах пространственной частоты.
- Размер зерна текстуры пропорционален пространственному периоду. Поэтому:
 - Область крупнозернистой текстуры должна давать спектр Фурье, энергия которого сосредоточена на низких пространственных частотах.
 - Для областей мелкозернистой текстуры энергия спектра концентрируется на высоких пространственных частотах.