Tuple cryptanalysis of ARX with application to BLAKE and Skein

J.-Ph. Aumasson G. Leurent W. Meier F. Mendel N. Mouha R. C-W Phan Y. Sasaki P. Susil

Tuple cryptanalysis basics

Tuples vs. ARX

Application to Skein

Application to BLAKE

5 names for a similar attack strategy: square / saturation / integral / internal collision / multiset See Biryukov/Shamir, J. Crypt. 23(4), 2010 Exploit propagation of **multiset properties**

A multiset is a set with multiplicities, e.g.

$$\{0,0,2,3,3,3,3,6\} = \{3,6,2,0,3,3,0,3\}$$

= \{(0,2),(2,1),(3,4),(6,1)\}

Multiset cryptanalysis often uses 256-element byte multisets

Some multiset properties:

- **▶ C** (constant), e.g. {7,7,7,...,7,7}
- ► **P** (permutation), e.g. {0, 1, 2, ..., 254, 255}
- ► **E** (even multiplicities), e.g. {0, 0, 1, 1, ..., 127, 127}
- ► **A** (ADD-balanced), e.g. $\{x_0, x_1, \dots, x_{254}, -\sum_{i=0}^{254} x_i\}$
- ▶ **B** (XOR-balanced), e.g. $\{x_0, x_1, \dots, x_{254}, \bigoplus_{i=0}^{254} x_i\}$
- ► **F** (sums to 2^{w-1})

C and E preserved by arbitrary functions

P preserved by bijective functions

A(**B**) preserved by ADD-linear (XOR-linear) maps Etc.

Tuples = **ordered** multisets

$$(0,1,\ldots,254,255) \neq (255,254,\ldots,1,0)$$

Ordering makes a big difference in ARX analysis, because of binary operators $(+,\oplus)$ rather than unary S-boxes (à la SASAS)

Notations, for tuples $T = (T_0, \dots, T_{255})$ and $S = (S_0, \dots, S_{255})$:

- ► $\mathbf{C}(T) \Rightarrow \mathbf{B}(T)$
- $T + S = (T_0 + S_0, \dots, T_{255} + S_{255})$
- $ightharpoonup \mathbf{C}(T) \wedge \mathbf{P}(S) \Rightarrow \mathbf{P}(T+S)$

Tuple properties independent of the word size

⇒ properties of 8-bit reduced Skein extend to 64-bit version

$$\mathbf{C} + \mathbf{P} = \mathbf{P}$$
, e.g. $(2, 2, \dots, 2) + (0, 1, \dots, 255) = (2, 3, \dots, 255, 0, 1)$

 $P \gg n = P$

 $\mathbf{B} \gg n = \mathbf{B}$ (tuple elements XOR to zero)

 $\mathbf{A} \gg n \neq \mathbf{A}$ (due to carries, doesnt ADD to zero)

 $\mathbf{P} + \mathbf{P} = \mathbf{A}$: let T, S be \mathbf{P} tuples,

$$\sum_{i=0}^{255} (T_i + S_i) = \sum_{i=0}^{255} i + \sum_{i=0}^{255} i = 128 + 128 \equiv 0$$

Corollary: $\mathbf{P} + \mathbf{P} \neq \mathbf{P}$

Generalizes to 2^w -element tuples of w-bit elements...

Let *T* be a **P** tuple, and *S* st $S_i = -T_i$, i = 0, ..., 255:

$$\mathbf{E}(T \oplus S)$$

 $i \oplus (-i)$ occurs twice for all i's, thus no odd multiplicity

If T^0, T^1, \dots, T^{2n} are 2n + 1 tuples, then we have

$$\mathbf{P}\left(\sum_{i=0}^{2n} T^i\right)$$

because (2n+1) is coprime with 2^w (e.g. 256) and thus all $i \times (2n+1)$ are distinct

X: unidentified/no property

+	Α	В	С	Е	F	Р
Α	A X A X F	Χ	Α	Χ	F	F
В	X	X	X	X	X	X
С	Α	X	X	Ε	F	Ρ
Ε	X	X	Ε	X	X	X
F	F	X	F	X	Α	Α
Ρ	F	X	Р	X	Α	Α

\oplus	Α	В	С	Ε	F	Р
Α	X	X	X B C B X P	X	X	X
В	X	В	В	В	X	В
C	X	В	С	Ε	X	Р
Ε	X	В	В	В	X	В
F	X	X	X	X	X	X
Р	X	В	Р	В	X	В

>>>	A	В	С	Ε	F	P
n	X	В	С	Ε	X	Р

Tuples vs.

$$\mathbf{MIX}: (x,y) \mapsto (x+y,(x+y) \oplus (y \ggg R))$$

Because a **P** tuples satisfies **B** (XOR-balance):

$$MIX(C, P) = (C + P, (C + P) \oplus (P \gg r)) = (P, P \oplus P) = (P, B)$$

$$\mathbf{A} \oplus \mathbf{P} = \mathbf{X}...$$

$$MIX(P,P) = (P + P, (P + P) \oplus (P \gg r)) = (A, X)$$

			С			
Α	AX	XX	AX XX CC EE FX PP	XX	FX	FX
В	XX	XX	XX	XX	XX	XX
С	AX	XX	CC	EB	FX	РΒ
Ε	XX	XX	EE	XX	XX	XX
F	FX	XX	FX	XX	AX	AX
Р	FX	XX	PP	XX	AX	AX

MIX^{-1}	Α	В	С	Е	F	Р
Α	XX	XX	XX XB	XX	XX	XX
В	XX	XB	XB	XB	XX	XB
С	XX	XB	CC	EE	XX	PP
E	XX	XB	ΧE	XX	XX	XB
F	XX	XX	XX	XX	XX	XX
Р	XX	XB	CC XE XX AP	XB	XX	XB

Direct extension of **MIX** transformation rules to Threefish rounds

Simple inside-out known-key distinguishers

Theory vs. practice:

0	XX	XX	PP	AP
1	CC	CC	PP	XX
2	CC	CC	ΑP	CC
3	CC	PC	CC	CC
4	PC	CC	CC	CP
5	CP	CB	PC	PC
6	XB	PB	PP	PX
7	XX	AX	XX	XX

0	BA	XX	PP	ΑP
1	CC	CC	PP	XX
2	CC	CC	BP	CC
3	CC	PC	CC	CC
4	PC	CC	CC	CP
5	CP	CB	PC	PC
6	FB	PP	PP	PX
7	EX	EX	XB	AB
8	XX	XX	FX	XX

Local analysis overlooks properties due to structural dependencies. . .

Threefish-1024:

0	XX	ΑP	PP	XX	XX	XX	PP	XX
1	CC	PP	XX	CC	CC	CC	AP	XX
2	CC	CC	CC	XX	CC	PP	CC	CC
3	CC	CC	AP	CC	CC	CC	CC	CC
4	CC	CC	CC	PC	CC	CC	CC	CC
5	CC	CC	PC	CC	CP	CC	CC	CC
6	CB	CC	CC	PC	CC	CC	CP	PC
7	FC	CB	PC	CP	CP	PC	PC	CX
8	FF	BP	PP	PX	PF	PF	XP	PF
9	AX	BB	XX	EX	AX	BB	BB	BX
10	XX	XX	XX	XX	XX	FX	XX	XX

Extension to chosen-key distinguisher

Exploit subkey difference cancellation, as in previous works 17 rounds attacked in 2⁶⁴

Tuples vs. BLAKE

ChaCha-inspired **G** core function:

$$a \leftarrow a+b+(m_{\sigma_r(2i)} \oplus c_{\sigma_r(2i+1)})$$

$$d \leftarrow (d \oplus a) \gg 16$$

$$c \leftarrow c+d$$

$$b \leftarrow (b \oplus c) \gg 12$$

$$a \leftarrow a+b+(m_{\sigma_r(2i+1)} \oplus c_{\sigma_r(2i)})$$

$$d \leftarrow (d \oplus a) \gg 8$$

$$c \leftarrow c+d$$

$$b \leftarrow (b \oplus c) \gg 7$$

A round applies **G** to the 4 columns then to the 4 diagonals of the 4×4 state

G tuples transformations:

$CCPC \mapsto CPPC \mapsto PXAP$:

$$a \leftarrow \mathbf{C} + \mathbf{C} + \mathbf{C} = \mathbf{C}$$

 $d \leftarrow (\mathbf{C} \oplus \mathbf{C}) \gg 16 = \mathbf{C}$
 $c \leftarrow \mathbf{P} + \mathbf{C} = \mathbf{P}$
 $b \leftarrow (\mathbf{C} \oplus \mathbf{P}) \gg 12 = \mathbf{P}$

$$a \leftarrow C + P + C = P$$

 $d \leftarrow (C \oplus P) \gg 16 = P$
 $c \leftarrow P + P = A$
 $b \leftarrow (P \oplus A) \gg 12 = X$

$$\begin{array}{l} \textbf{PCCC} \mapsto \textbf{PPPP} \mapsto \textbf{AXXX} \\ \textbf{CPCC} \mapsto \textbf{PPPP} \mapsto \textbf{AXXX} \\ \textbf{CCCP} \mapsto \textbf{CPPP} \mapsto \textbf{PXXB} \end{array}$$

Best choice of starting tuple is CCPC?

Best G^{-1} choice: PCCC \mapsto PCCP \mapsto PCPB

2.5-round inside-out known-key dist'er

Backwards: 1.5 round

$$\begin{pmatrix} X & E & X & X \\ X & X & P & X \\ A & X & X & A \\ B & X & X & X \end{pmatrix} \leftarrow \begin{pmatrix} A & P & A & A \\ B & P & C & B \\ P & B & F & C \\ P & P & X & F \end{pmatrix} \leftarrow \begin{pmatrix} C & C & A & C \\ C & C & C & B \\ P & C & C & C \\ C & P & C & C \end{pmatrix} \leftarrow \begin{pmatrix} C & C & C & C \\ C & C & C & C \\ P & C & C & C \\ C & C & C & C \end{pmatrix}$$

Forwards: 1 round

$$\begin{pmatrix} \textbf{C} & \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{P} & \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{C} & \textbf{C} & \textbf{C} & \textbf{C} \end{pmatrix} \rightarrow \begin{pmatrix} \textbf{P} & \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{X} & \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{A} & \textbf{C} & \textbf{C} & \textbf{C} \\ \textbf{P} & \textbf{C} & \textbf{C} & \textbf{C} \end{pmatrix} \rightarrow \begin{pmatrix} \textbf{A} & \textbf{P} & \textbf{X} & \textbf{X} \\ \textbf{X} & \textbf{X} & \textbf{X} & \textbf{X} \\ \textbf{X} & \textbf{X} & \textbf{X} & \textbf{X} \\ \textbf{B} & \textbf{X} & \textbf{X} & \textbf{X} \end{pmatrix}$$

Some X's may still have some detectable structure...

Recap:

- Tuple attacks extend integral et al. attacks
- Efficiently verifiable on word-reduced versions
- ► Correctness empir'y and analyt'y verifiable
- ► Efficient attacks (2⁶⁴ for Skein, 2³² for BLAKE)
- Only used as bananas, but potential key-recovery

Todo:

- ▶ Bit-level refinements (à la Z'aba et al. [FSE08])
- Verify/extend attacks on Skein and BLAKE
- ► Detect and trace more properties?

Tuple cryptanalysis of ARX with application to BLAKE and Skein

J.-Ph. Aumasson G. Leurent W. Meier F. Mendel N. Mouha R. C-W Phan Y. Sasaki P. Susil