Reading report of $Principles\ of\ Mathematical$ $Analysis\ \hbox{-Part\ I}$

 $002~\mathrm{gxl}$

November 6, 2020

Chapter 1

The Real and Complex Number Systems

1.1 Notes

The chapter 1 mainly talks about The real number system, R.

1.1.1 Why we need R

The rational number system is inadequate for many purposes , both as a field (Dedekind principle) and as an ordered set (the least-upper-bound property). And we can proof that ${\bf R}$ is perfectly matched.

1.1.2 Basic property of R

Theorems there seems to OBVIOUS to proof, but some of them are interesting.

Proposition 1. The following statements are true in every ordered field.

(a) If x > 0 then -x < 0, and vice versa.

Proof(a)

If
$$x > 0$$
 then $0 = -x + x > -x + 0$, so that $-x < 0$. If $x < 0$ then $0 = -x + x < -x + 0$, so that $-x > 0$. This proves (a).

Theorem 1. If $x \in \mathbf{R}$, $y \in \mathbf{R}$, and x > 0, and there is a positive integer n such that

Proof (Tool:the least-upper-bound property)

Let $A = \{nx | n \in \mathbb{N}^*\}$. If Theorem were false, then y would be an upper bound of A. Put $\alpha = \sup A$. Since x > 0, then $\alpha - x$ is not an upper bound of A. Hence $\alpha - x < mx$ for some $mx \in A$. But then $\alpha < (m+1)x \in A$, which is impossible.

1.1.3 The fields that contains R as a subfield

1.2 Exercises

Proof 1. If r + x were rational, x = (r + x) - r is also rational, which is contradictory. The similar argument holds for rx.

Proof 2. If there existed a rational number $x=\frac{m}{n}$, gcd(m,n)=1. and $x^2=12$. Then we can get $m^2=12n^2=3\times 4n^2$. Hence m is divided by 3, and m^2 is divided by 9. Thus q is also divided by 3, which is contradictory.

Proof 3. For (a), if $x \neq 0$ and xy = xz, then

$$y = 1 \times y = \frac{x}{x} \times y = \frac{xy}{x}$$
$$= \frac{xz}{x} = \frac{x}{x} \times z = z$$

The similar argument holds for (b)(c)(d).

Proof 4. Assuming one element $x \in E$, it follows from the definition that $\alpha < x < \beta$

Proof 5. For each $x \in A$, $sup A \ge x$, thus for each $-x \in B$, $-sup A \le x$, which proves $-\sup A = \inf B$.

Proof 6. (a) Let $\beta = (b^m)^{\frac{1}{n}}$, then

$$\beta^{nq} = b^{mq} = b^{np}$$
Thus $\beta^q = b^p$, $\beta = (b^p)^{\frac{1}{q}}$

(b) Assuming
$$r=\frac{m}{n}$$
 and $s=\frac{p}{q}$, then
$$b^{r+s}=b^{\frac{mq+np}{nq}}=(b^{mq})^{\frac{1}{nq}}(b^{np})^{\frac{1}{nq}}=b^rb^s$$

$$b^{r+s} = b^{\frac{mq+np}{nq}} = (b^{mq})^{\frac{1}{nq}} (b^{np})^{\frac{1}{nq}} = b^r b^s$$

(c)For each $x \le r$, $b^x \le b^r$

Hence for each $b^x \in B(r)$, $b^r \ge b^x$, which proves

$$b^r = supB(r)$$

$$(d) \forall r, s \in \mathbf{Q}$$
, and $r \le x, s \le y$
$$b^r b^s = b^{r+s} \le \sup B(x+y) = b^{x+y}$$

(e)

Proof 7.
$$(a)b^n - 1 = (b-1)\sum_{i=1}^n b^i \ge n(b-1)$$
. $(b)Just \ let \ b \ in \ (a) \ become \ b^{\frac{1}{n}}$. $(c)Use \ (b)$

- (e) To see this, apply part(c) with $t = \frac{b^w}{y}$.
- (f)Obviously $b^x \leq y$. If $b^x < y$, according to (d), $b^{x+\frac{1}{n}} < y$ for sufficiently large n. Then $x + \frac{1}{n} \in A$,which is contradictory. Hence $b^x = y$.
- (g)Assume that x > y,

$$b^x = b^y b^{x-y} > b^y$$

•

Proof 8. Assuming **C** were a ordered field, if i > 0, then $i^2 = -1 > 0$, which is contradictory.

Proof 9. (i)In this definition, it is obvious that if $x \in \mathbf{C}$ and $y \in \mathbf{C}$, then one and only one of the statements

$$x < y,$$
 $x = y,$ $y < x$

is true.

(ii) If $x, y, z \in \mathbf{C}$ and assuming x < y, y < z, then

$$1.Re(x) < Re(y) < Re(z)$$
 $\Rightarrow x < z$

$$2.Re(x) = Re(y) < Re(z)$$
 or $Re(x) < Re(y) = Re(z)$ $\Rightarrow x < z$

$$3.Re(x) = Re(y) = Re(z)$$
 and $Im(x) < Im(y) < Im(z)$ $\Rightarrow x < z$

which proves x < z.

Proof 10.

$$z^{2} = a^{2} - b^{2} + 2abi$$
$$= u + \sqrt{|w|^{2} - u^{2}}i$$
$$= u + |v|i$$

$$\overline{z}^2 = a^2 - b^2 - 2abi$$
$$= u - \sqrt{|w|^2 - u^2}i$$
$$= u - |v|i$$

Proof 11. Let $w_{\theta} = cos\theta + isin\theta$, and $0 \le \theta \le 2\pi$. It is clear that $|w\theta| = 1$ and that $\forall \theta_1, \theta_2$, if $\theta_1 \ne \theta_2$, then $w_{\theta_1} \ne w_{\theta_2}$.

1.If |z| = 0, then r = 0. w is obviously not unique. 2.If $|z| \neq 0$, let $tan\theta = \frac{Im(z)}{Re(z)}$ and $z = |z|w\theta$. They are both unique.

Proof 12. We give a proof by induction. The inequality holds obviously for n=2. Assume that the inequality holds for n=m-1, for n=m,

$$|z_1 + \dots + z_{n-1} + z_n| \le |z_1 + \dots + z_{n-1}| + |z_n| \le |z_1| + \dots + |z_{n-1}| + |z_n|$$

Proof 13. Let |x| > |y| , then the propositon equals to

$$|x| \le |x - y| + |y|$$

According to Proof 12, it is clear to prove.

Proof 14.

$$|1+z|^{2} + |1-z|^{2} = (1+z)(1+\overline{z}) + (1-z)(1-\overline{z})$$

$$= 2+z+\overline{z}+2-z-\overline{z}$$

$$= 4$$

Proof 15. The equality holds when (a_1, a_2, \dots, a_n) and (b_1, b_2, \dots, b_n) are proportional.

Proof 16. Let
$$x(0,0,...,0), y(d,0,...,0)$$
.
(a) every z like $(\frac{d}{2}, z_2, ..., z_k), z_2^2 + \cdots + z_k^2 = r^2 - \frac{r^2}{4}$.
(b) The only z is $(\frac{d}{2}, 0, ..., 0)$.
(c) $\forall z \in \mathbf{R}^k, |z - x| + |z - y| \ge |x - y| > 2r$.

Proof 17.

$$|x + y|^{2} + |x - y|^{2} = \sum_{i=1}^{n} [(x_{i} + y_{i})^{2} + (x_{i} - y_{i})^{2}]$$
$$= \sum_{i=1}^{n} (x_{i}^{2} + y_{i}^{2})$$
$$= 2|x|^{2} + 2|y|^{2}$$

Geometrical interpretation: In a parallelogram, the square sum of a pair of adjacent sides equals to half the square sum of two diagonals.

Proof 18. This is certainly false when k=1. If k=2, $x \cdot y = 0 \Rightarrow x_1x_2 + y_1y_2 = 0$. Let $y_1 = 1$, and $y_2 = x_1x_2$. Obviously $y \neq 0$. The similar argument holds if k > 2.