GEOMETRY OF k-FUNCTORS

1. Introduction

In these notes we provide functorial approach to algebraic geometry. Our aim is to show that functorial and geometrical techniques are interrelated in a very efficient way.

Throughout these notes k is a fixed commutative ring and \mathbf{Alg}_k denote the category of commutative k-algebras. If A, B are k-algebras, then we denote by $\mathrm{Mor}_k(A,B)$ the set of all morphisms $A \to B$ of k-algebras. Similarly if X, Y are k-schemes (i.e. schemes together with morphism to $\mathrm{Spec}\,k$), then we denote by $\mathrm{Mor}_k(X,Y)$ the set of all morphisms $X \to Y$ of k-schemes (morphisms of schemes that preserve structure morphisms to $\mathrm{Spec}\,k$).

2. k-functors

Definition 2.1. The category $Fun(Alg_k, Set)$ of copresheaves on Alg_k is called *the category of k-functors*.

If $\mathfrak X$ and $\mathfrak Y$ are k-functors, then we denote by $\mathrm{Mor}_k(\mathfrak X,\mathfrak Y)$ the class of morphisms $\mathfrak X \to \mathfrak Y$ of k-functors. If $\sigma:\mathfrak X \to \mathfrak Y$ is a morphism of k-functors, then for every k-algebra A we denote by σ^A the corresponding component of σ .

Let $\mathfrak X$ and $\mathfrak Y$ be A-functors for some k-algebra A. Then we denote by $\operatorname{Mor}_A(\mathfrak X,\mathfrak Y)$ the class of morphisms of A-functors $\mathfrak X \to \mathfrak Y$. For every A-algebra B and a morphism $\sigma: \mathfrak X \to \mathfrak Y$ of A-functors we denote by $\mathfrak X_B$, $\mathfrak Y_B$, σ_B the restrictions $\mathfrak X_{|\mathbf{Alg}_B}$, $\mathfrak Y_{|\mathbf{Alg}_B}$, $\sigma_{|\mathbf{Alg}_B}$ of these entities to the category of B-algebras.

Fact 2.2. Let \mathfrak{X} and \mathfrak{Y} be k-functors. Assume that A is a k-algebra, B is an A-algebra, C is an B-algebra. Then the composition of maps of classes

$$\operatorname{Mor}_{A}\left(\mathfrak{X}_{A},\mathfrak{Y}_{A}\right)\xrightarrow{\sigma\mapsto\sigma_{B}}\operatorname{Mor}_{B}\left(\mathfrak{X}_{B},\mathfrak{Y}_{B}\right)\xrightarrow{\sigma\mapsto\sigma_{C}}\operatorname{Mor}_{C}\left(\mathfrak{X}_{C},\mathfrak{Y}_{C}\right)$$

equals

$$\operatorname{Mor}_{A}(\mathfrak{X}_{A},\mathfrak{Y}_{A}) \xrightarrow{\sigma \mapsto \sigma_{C}} \operatorname{Mor}_{C}(\mathfrak{X}_{C},\mathfrak{Y}_{C})$$

Proof. Left to the reader.

Definition 2.3. Let \mathfrak{X} and \mathfrak{Y} be k-functors and suppose that for every k-algebra A the class $\operatorname{Mor}_A(\mathfrak{X}_A,\mathfrak{Y}_A)$ is a set. We define

$$\mathcal{M}$$
or _{k} $(\mathfrak{X},\mathfrak{Y})(A) = \operatorname{Mor}_{A}(\mathfrak{X}_{A},\mathfrak{Y}_{A})$

for every k-algebra A. This is a k-functor. Indeed, for every k-algebra A and A-algebra B we can compose a morphism $\sigma: \mathfrak{X}_A \to \mathfrak{Y}_A$ of k-functors with the forgetful functor $\mathbf{Alg}_B \to \mathbf{Alg}_A$. This induces a map

$$\mathcal{M}$$
or_k $(\mathfrak{X},\mathfrak{Y})(A) \ni \sigma \mapsto \sigma_B \in \mathcal{M}$ or_k $(\mathfrak{X},\mathfrak{Y})(B)$

and according to Fact 2.2 these maps make \mathcal{M} or $_k(\mathfrak{X},\mathfrak{Y})$ a k-functor. The k-functor \mathcal{M} or $_{\mathcal{C}}(\mathfrak{X},\mathfrak{Y})$ is called a hom k-functor of \mathfrak{X} and \mathfrak{Y} .

1

3. ZARISKI LOCAL k-FUNCTORS AND ZARISKI SHEAVES

In this part we use the notion of a Grothendieck topology on a category. For this notion we refer the reader to [Mon19b].

Definition 3.1. Let $\{f_i : X_i \to X\}_{i \in I}$ be a family of morphisms of k-schemes. We say that $\{f_i\}_{i \in I}$ is a *Zariski covering of X* if the following conditions are satisfied.

- (1) For every $i \in I$ morphism f_i is an open immersion of schemes.
- (2) Morphism $\coprod_{i \in I} X_i \to X$ induced by $\{f_i\}_{i \in I}$ is surjective.

The collection of all Zariski coverings on \mathbf{Sch}_k is a Grothendieck pretopology.

Definition 3.2. We call the Grothendieck topology generated by the pretopology consisting of Zariski coverings on \mathbf{Sch}_k the Zariski topology on \mathbf{Sch}_k . A presheaf on \mathbf{Sch}_k that is a sheaf with respect to Zariski topology on \mathbf{Sch}_k is called a Zariski sheaf.

Let \mathfrak{X} be a presheaf on the category of k-schemes. Recall that by [Mon19b, Theorem 3.5] \mathfrak{X} is a Zariski sheaf if and only if for every k-scheme X and for every Zariski covering $\{f_i : X_i \to X\}$ of X the diagram

$$\mathfrak{X}(X) \xrightarrow{(\mathfrak{X}(f_i))_{i \in I}} \prod_{i \in I} \mathfrak{X}(X_i) \xrightarrow{(\mathfrak{X}(f'_{ij}) \cdot pr_i)_{(i,j)}} \prod_{(i,j) \in I \times I} \mathfrak{X}(X_i \times_X X_j)$$

is a kernel of a pair of arrows, where for every $(i,j) \in I \times I$ morphisms f'_{ij} and f''_{ij} form a cartesian square

$$X_{i} \times_{X} X_{j} \xrightarrow{f''_{ij}} X_{j}$$

$$\downarrow^{f_{ij}} \qquad \downarrow^{f_{j}} X_{i} \xrightarrow{f_{i}} X$$

Now we repeat this definitions for *k*-algebras and *k*-functors.

Definition 3.3. Let $\{f_i : A \to A_i\}_{i \in I}$ be a family of morphisms of k-algebras. We say that $\{f_i\}_{i \in I}$ is a *Zariski covering of A* if the following conditions are satisfied.

- (1) For every $i \in I$ morphism Spec f_i is an open immersion of schemes.
- (2) Morphism $\coprod_{i \in I} \operatorname{Spec} A_i \to \operatorname{Spec} A$ induced by $\left\{ \operatorname{Spec} f_i \right\}_{i \in I}$ is surjective.

The collection of all Zariski coverings on \mathbf{Alg}_k induces on its opposite category \mathbf{Aff}_k of affine k-schemes a Grothendieck pretopology.

Definition 3.4. We call the Grothendieck topology generated by the pretopology consisting of Zariski coverings on \mathbf{Aff}_k the Zariski topology on \mathbf{Aff}_k . A k-functor that is a sheaf with respect to Zariski topology on \mathbf{Aff}_k is called a Zariski local k-functor.

Let \mathfrak{X} be a k-functor. Again by [Mon19b, Theorem 3.5] \mathfrak{X} is a Zariski local k-functor if and only if for every k-algebra A and for every Zariski covering $\{f_i : A \to A_i\}$ of A the diagram

$$\mathfrak{X}(A) \xrightarrow{(\mathfrak{X}(f_i))_{i \in I}} \prod_{i \in I} \mathfrak{X}(A_i) \xrightarrow{(\mathfrak{X}(f'_{ij}) \cdot pr_i)_{(i,j)}} \prod_{(i,j) \in I \times I} \mathfrak{X}(A_i \otimes_A A_j)$$

is a kernel of a pair of arrows, where for every $(i, j) \in I \times I$ morphisms f'_{ij} and f''_{ij} form a cocartesian square

$$A \xrightarrow{f_{j}} A_{j}$$

$$\downarrow f_{ji}$$

$$A_{i} \xrightarrow{f'_{ij}} A_{i} \otimes_{A} A_{j}$$

Now we state the main result of this section.

Theorem 3.5. Let

$$\widehat{\mathbf{Sch}_k} \longrightarrow$$
 the category of *k*-functors

be the restriction of presheaves on \mathbf{Sch}_k to copresheaves on \mathbf{Alg}_k (k-functors) induced by the contravariant functor $\mathrm{Spec}: \mathbf{Alg}_k \to \mathbf{Sch}_k$. Then it induces an equivalence of categories between Zariski sheaves on \mathbf{Sch}_k and Zariski local k-functors.

Proof. Note that \mathbf{Aff}_k with Zariski topology is a dense subsite ([Mon19b, definition 4.4]) of \mathbf{Sch}_k with Zariski topology. Hence the result is a special case of a more general theorem [Mon19b, Theorem 4.6].

4. Schemes and their functors of points

Let X be a k-scheme. We define a k-functor \mathfrak{P}_X by formula

$$\mathfrak{P}_X(A) = \operatorname{Mor}_k(\operatorname{Spec} A, X)$$

That is \mathfrak{P}_X is the restriction of the presheaf on \mathbf{Sch}_k represented by X to the category \mathbf{Alg}_k along the functor $\mathrm{Spec}: \mathbf{Alg}_k \to \mathbf{Sch}_k$. Next if $f: X \to Y$ is a morphism of k-schemes, then \mathfrak{P}_f is the restriction of a morphism of presheaves on \mathbf{Sch}_k represented by f to the category of k-algebras along $\mathrm{Spec}: \mathbf{Alg}_k \to \mathbf{Sch}_k$. Thus we have a functor

$$\mathbf{Sch}_k \xrightarrow{\mathfrak{P}}$$
 the category of *k*-functors

V

Fact 4.1. Functor

$$\mathbf{Sch}_k \xrightarrow{\quad \mathfrak{P} \quad} \mathbf{the \ category \ of} \ k\text{-functors}$$

is full, faithful and its image consists of Zariski local k-functors. Moreover, \$\Pi\$ preserves limits.

Proof. Note that the presheaf h_X on \mathbf{Sch}_k represented by X is a Zariski sheaf. Indeed, this just rephrases standard fact that morphism of schemes can be glued in Zariski topology. Next according to Theorem 3.5 the functor $\mathrm{Spec}: \mathbf{Alg}_k \to \mathbf{Sch}_k$ induces an equivalence between the category of Zariski sheaves and the category of local Zariski k-functors. Thus \mathfrak{P}_X is a local Zariski k-functor and \mathfrak{P} it is full and faithful. Note that Yoneda embedding $h: \mathbf{Sch}_k \to \overline{\mathbf{Sch}_k}$ and the functor

$$\widehat{\mathbf{Sch}_k} \xrightarrow{\text{induced by Spec}} \text{the category of } k\text{-functors}$$

preserve limits. Thus their composition ${\mathfrak P}$ also preserves limits.

Definition 4.2. Let *X* be a *k*-scheme. Then \mathfrak{P}_X is called *the k-functor of points of X*.

Finally note that for every k-algebra A we have an identification $\mathfrak{P}_{\operatorname{Spec} A} = \operatorname{Hom}_k(A, -)$ and this identification is natural with respect to A. In other words $\mathfrak{P} \cdot \operatorname{Spec}$ is the (co)Yoneda embedding of Alg_k into the category of k-functors.

Suppose now that A is a k-algebra and $\mathfrak{a} \subseteq A$ is an ideal. Then we define $V(\mathfrak{a}) = \operatorname{Spec} A/\mathfrak{a}$ as a closed subscheme $\operatorname{Spec} A$ induced by the quotient morphism $A \to A/\mathfrak{a}$. We define an open subscheme $D(\mathfrak{a}) = \operatorname{Spec} A \setminus V(\mathfrak{a})$ of $\operatorname{Spec} A$.

Definition 4.3. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a morphism of k-functors. Assume that for every k-algebra A and every morphism $\tau: \mathfrak{P}_{\operatorname{Spec} A} \to \mathfrak{Y}$ of k-functors there exist an ideal \mathfrak{a} in A and a morphism $\tau': \mathfrak{P}_{D(\mathfrak{a})} \to \mathfrak{X}$ of k-functors such that the square

$$\mathfrak{P}_{D(\mathfrak{a})} \xrightarrow{\tau'} \mathfrak{X} \\
\downarrow^{\sigma} \\
\mathfrak{P}_{\text{Spec } A} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian. Then σ is an open immersion of k-functors.

Fact 4.4. *The class of open immersions of k-functors is closed under base change and composition.*

Proof. Left to the reader.

Definition 4.5. Let \mathfrak{X} be a k-functor and $\{\sigma_i : \mathfrak{X}_i \to \mathfrak{X}\}_{i \in I}$ be a family of open immersions. Then for every k-algebra A and $x \in \mathfrak{X}(A)$ we have a family of ideals $\{\mathfrak{a}_i\}_{i \in I}$ defined by cartesian squares

$$\mathfrak{P}_{D(\mathfrak{a}_i)} \xrightarrow{\tau'} \mathfrak{X}_i \\
\downarrow \sigma_i \\
\mathfrak{P}_{\operatorname{Spec} A} \xrightarrow{\tau} \mathfrak{X}$$

in which bottom vertical morphism $\tau: \mathfrak{P}_{\operatorname{Spec} A} \to \mathfrak{X}$ corresponds to x. We say that $\{\sigma_i\}_{i\in I}$ is an open cover of \mathfrak{X} if for every k-algebra A and $x \in \mathfrak{X}(A)$ we have

$$\operatorname{Spec} A = \bigcup_{i \in I} D(\mathfrak{a}_i)$$

or in other words $A = \sum_{i \in I} \mathfrak{a}_i$.

Theorem 4.6. Let \mathfrak{X} be a k-functor. Then the following are equivalent.

- (i) \mathfrak{X} is isomorphic with functor of points of some k-scheme.
- (ii) $\mathfrak X$ is a Zariski local k-functor and there exists an open cover $\{\sigma_i:\mathfrak P_{X_i}\to\mathfrak X\}_{i\in I}$ of k-functors for some family $\{X_i\}_{i\in I}$ of k-schemes.
- (iii) \mathfrak{X} is a Zariski local k-functor and there exists an open cover $\{\sigma_i : \mathfrak{P}_{\operatorname{Spec} A_i} \to \mathfrak{X}\}_{i \in I}$ of k-functors for some family $\{A_i\}_{i \in I}$ of k-algebras.

The proof depends on two lemmas. Check [Mon19b, Definition 7.1] for the notion of a locally surjective morphism.

Lemma 4.6.1. Let $f: X \to Y$ be a morphism of k-schemes. Suppose that f is surjective morphism and an open immersion locally on X. Then \mathfrak{P}_f is a locally surjective morphism of Zariski local k-functors.

Proof of the lemma. Let A be a k-algebra and $g: \operatorname{Spec} A \to Y$ be a morphism of k-schemes. Since f is surjective and an open immersion locally on X, there exist a Zariski cover $\{f_i: A \to A_i\}_{i \in I}$ and a family $\{g_i: \operatorname{Spec} A_i \to X\}_{i \in I}$ of morphisms of k-schemes such that $f \cdot g_i = g \cdot \operatorname{Spec} f_i$ for every $i \in I$.

This implies that $\mathfrak{P}_f(g_i) = \mathfrak{P}_Y(f_i)(g)$ for every $i \in I$. Thus \mathfrak{P}_f is a locally surjective morphism of Zariski local k-functors.

Lemma 4.6.2. Let $X = \coprod_{i \in I} X_i$, $R = \coprod_{i,j \in I} R_{ij}$ be disjoint sums of k-schemes and let $p,q: R \to X$ be morphisms of k-schemes such that the following conditions are satisfied.

- **(1)** For any $i, j \in I$ morphism $p_{|R_{ij}}$ induces an open immersion $R_{ij} \hookrightarrow X_i$ and morphism $q_{|R_{ij}}$ induces an open immersion $R_{ij} \hookrightarrow X_j$.
- **(2)** For every $i \in I$ morphisms $p_{|R_{ii}}$ and $q_{|R_{ii}}$ are equal and induce an isomorphisms $R_{ii} \to X_i$.
- **(3)** Triple (R, p, q) is an equivalence relation on X in the category of k-schemes.

Then there exist a k-scheme Y and a morphism $f: X \to Y$ of k-schemes such that

$$\mathfrak{P}_R \xrightarrow{\mathfrak{P}_p} \mathfrak{P}_X \xrightarrow{\mathfrak{P}_f} \mathfrak{P}_Y$$

is a cokernel of a pair $(\mathfrak{P}_p, \mathfrak{P}_q)$ in the category of Zariski local k-functors.

Proof of the lemma. Let

$$R \xrightarrow{p} X \xrightarrow{f} Y$$

be a cokernel in the category of ringed spaces. It exists according to [Mon19c, Remark 2.3]. Moreover, [Mon19c, Theorem 3.2] states that for every $i \in I$ subset $f(X_i)$ is open in Y and we have an isomorphism of ringed spaces $X_i \cong f(X_i)$ induced by f. Therefore, Y is a k-scheme and $f: X \to Y$ is a morphism of k-schemes.

Now we verify that \mathfrak{P}_f is the quotient in the category of Zariski local k-functors. For this note that we proved above that f is open immersion of k-schemes locally on X and it is surjective. Thus by Lemma 4.6.1 we derive that \mathfrak{P}_f is a locally surjective morphism of Zariski local k-functors. Therefore ([Mon19b, Theorem 7.3]), it suffices to show that the square

$$\begin{array}{ccc}
\mathfrak{P}_R & \xrightarrow{\mathfrak{P}_q} & \mathfrak{P}_X \\
\mathfrak{P}_p & & & \downarrow \mathfrak{P}_f \\
\mathfrak{P}_X & \xrightarrow{\mathfrak{P}_f} & & \mathfrak{P}_Y
\end{array}$$

is cartesian. Since \mathfrak{P} preserves limits (Fact 4.1), we derive that it suffices to check that

$$\begin{array}{ccc}
R & \xrightarrow{q} & X \\
\downarrow p & & \downarrow f \\
X & \xrightarrow{f} & Y
\end{array}$$

is cartesian square of k-schemes. By [Mon19c, Remark 2.3] we have $R_{ij} = X_i \times_Y X_j$ for every $i, j \in I$ and hence

$$X \times_Y X = \left(\coprod_{i \in I} X_i\right) \times_Y \left(\coprod_{i \in I} X_i\right) = \coprod_{i,j \in I} \left(X_i \times_Y X_j\right) = \coprod_{i,j \in I} R_{ij} = R$$

Thus the result follows.

Proof of the theorem. If (i) holds, then we may assume that $\mathfrak{X} = \mathfrak{P}_Y$ for some k-scheme Y. Fact 4.1 states that \mathfrak{P}_Y is a Zariski local k-functor and clearly $1_{\mathfrak{P}_Y} : \mathfrak{P}_Y \to \mathfrak{P}_Y$ is an open cover. Thus (i) \Rightarrow (ii).

Every functor of points of a k-scheme admits open cover by functors of points of affine k-schemes. Indeed, it suffices to take open affine subschemes that cover given k-scheme and apply \mathfrak{P} . This implies that every open cover of a k-functor \mathfrak{X} by functors of points of k-schemes admits refinement by open cover of functors of points of affine k-schemes. Therefore, implication (ii) \Rightarrow (iii) holds.

Suppose that a k-functor $\mathfrak X$ is Zariski local and $\{\sigma_i: \mathfrak P_{\operatorname{Spec} A_i} \to \mathfrak X\}_{i \in I}$ is an open cover of $\mathfrak X$. Note that for every $i,j \in I$ there exist a k-scheme R_{ij} and open immersions $p_{ij}: R_{ij} \to \operatorname{Spec} A_i$, $q_{ij}: R_{ij} \to \operatorname{Spec} A_j$ such that the square

$$\mathfrak{P}_{R_{ij}} \xrightarrow{\mathfrak{P}_{q_{ij}}} \mathfrak{P}_{\operatorname{Spec} A_j}$$
 $\mathfrak{P}_{p_{ij}} \downarrow \qquad \qquad \downarrow \sigma_i$
 $\mathfrak{P}_{\operatorname{Spec} A_i} \xrightarrow{\sigma_i} \mathfrak{X}$

is cartesian. Consider k-scheme $X = \coprod_{i \in I} \operatorname{Spec} A_i$ and morphism $\sigma : \mathfrak{P}_X \to \mathfrak{X}$ induced by $\{\sigma_i\}_{i \in I}$. Moreover, consider k-scheme $R = \coprod_{i,j \in I} R_{ij}$ and morphisms $p,q:R \to X$ induced by $\{p_{ij}\}_{i,j \in I}$ and $\{q_{ij}\}_{i,j \in I}$, respectively. Note that the square

$$\begin{array}{ccc}
\mathfrak{P}_R & \xrightarrow{\mathfrak{P}_q} & \mathfrak{P}_X \\
\mathfrak{P}_p & & \downarrow^{\sigma} \\
\mathfrak{P}_X & \xrightarrow{\sigma} & \mathfrak{X}
\end{array}$$

is cartesian and hence $(\mathfrak{P}_R, \mathfrak{P}_p, \mathfrak{P}_q)$ is an equivalence relation. By Lemma 4.6.2 there exist a k-scheme Y and a morphism $f: X \to Y$ such that

$$\mathfrak{P}_R \xrightarrow{\mathfrak{P}_p} \mathfrak{P}_X \xrightarrow{\mathfrak{P}_f} \mathfrak{P}_Y$$

is a cokernel of $(\mathfrak{P}_p, \mathfrak{P}_q)$. Moreover, σ is locally surjective morphism of Zariski local k-functors and hence also

$$\mathfrak{P}_R \xrightarrow{\mathfrak{P}_p} \mathfrak{P}_X \xrightarrow{\sigma} \mathfrak{X}$$

is a cokernel of $(\mathfrak{P}_p, \mathfrak{P}_q)$. Thus \mathfrak{P}_Y is isomorphic with \mathfrak{X} . This proves (iii) \Rightarrow (i).

Proposition 4.7. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a monomorphism of k-functors and \mathfrak{Y} be a Zariski local k-functor. Assume that for every k-algebra A and every morphism $\tau: \mathfrak{P}_{\operatorname{Spec} A} \to \mathfrak{Y}$ of k-functors there exist a Zariski local k-functor \mathfrak{Z} that fits into a cartesian square

Then \mathfrak{X} is a Zariski local k-functor.

Proof. Suppose that A is a k-algebra and S is a covering sieve on A with respect to Zariski topology. Recall that by [Mon19b, page 2] we may consider S as a subcopresheaf of $\mathfrak{P}_{\operatorname{Spec} A}$. Suppose that $\tau: \mathfrak{P}_{\operatorname{Spec} A} \to \mathfrak{Y}$ and $m: S \to \mathfrak{X}$ are morphisms of k-functors such that $\sigma \cdot m$ is equal to the composition of $S \hookrightarrow \mathfrak{P}_{\operatorname{Spec} A}$ with τ . Next there exists a Zariski local k-functor \mathfrak{Z} that fits into a cartesian square

of *k*-functors. By universal property of cartesian squares there exists a unique morphism $n: S \to \mathfrak{Z}$ of *k*-functors such that the diagram

is commutative. Since $\mathfrak Z$ is Zariski local, there exists a morphism $\rho: \mathfrak P_{\operatorname{Spec} A} \to \mathfrak Z$ such that $\rho_{|S} = n$. Then $(\tau' \cdot \rho)_{|S} = \tau' \cdot n = m$ and hence matching family m admits an amalgamation. Since σ is a monomorphism, this suffices to prove that $\mathfrak X$ is a Zariski local k-functor.

5. Representable morphisms of k-functors

Definition 5.1. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a morphism of k-functors. Assume that for every k-algebra A and every morphism $\tau: \mathfrak{P}_{\operatorname{Spec} A} \to \mathfrak{Y}$ of k-functors there exist a k-scheme X, a morphism $f: X \to \operatorname{Spec} A$ and a morphism $\tau': \mathfrak{P}_X \to \mathfrak{X}$ of k-functors such that the square

$$\mathfrak{P}_{X} \xrightarrow{\tau'} \mathfrak{X} \\
\mathfrak{P}_{f} \downarrow \qquad \qquad \downarrow^{\sigma} \\
\mathfrak{P}_{\operatorname{Spec} A} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian. Then σ is a representable morphism of k-functors.

Fact 5.2. *The class of representable morphisms of k-functors is closed under base change and composition.*

Proof. Left to the reader.

Proposition 5.3. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a representable morphism of Zariski local k-functors. Fix a k-scheme Y and a morphism $\tau: \mathfrak{P}_Y \to \mathfrak{Y}$. Then there exist a k-scheme X, a morphism $f: X \to Y$ and a morphism $\tau': \mathfrak{P}_X \to \mathfrak{X}$ such that the square

$$\mathfrak{P}_{X} \xrightarrow{\tau'} \mathfrak{X}$$

$$\mathfrak{P}_{f} \downarrow \qquad \qquad \downarrow \sigma$$

$$\mathfrak{P}_{Y} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian.

Proof. Let

$$3 \xrightarrow{\tau'} \mathfrak{X}$$

$$\downarrow^{\sigma}$$

$$\mathfrak{P}_{\gamma} \longrightarrow \mathfrak{Y}$$

be a cartesian square. According to [Mon19b, Theorem 2.12] k-functor \mathfrak{J} is Zariski local. Suppose that $\{f_i : \operatorname{Spec} A_i \to Y\}_{i \in I}$ is an open cover of Y. Then $\{\mathfrak{P}_{f_i} : \mathfrak{P}_{\operatorname{Spec} A_i} \to \mathfrak{P}_Y\}_{i \in I}$ is an open cover of \mathfrak{P}_Y and hence its base change $\{\tau_i : \mathfrak{Z}_i \to \mathfrak{Z}\}_{i \in I}$ is an open cover of \mathfrak{Z} . Since σ is representable, we deduce that \mathfrak{Z}_i is a functor of points of some k-scheme for $i \in I$. Now by Theorem 4.6 we derive that there exists a k-scheme X such that \mathfrak{Z} is isomorphic with \mathfrak{P}_X . This proves the result.

Definition 5.4. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a morphism of k-functors. Assume that for every k-algebra A and every morphism $\tau: \mathfrak{P}_{\operatorname{Spec}_A} \to \mathfrak{Y}$ of k-functors there exist an ideal \mathfrak{a} in A and morphism $\tau': \mathfrak{P}_{V(\mathfrak{a})} \to \mathfrak{X}$ such that the square

$$\mathfrak{P}_{V(\mathfrak{a})} = \mathfrak{P}_{\operatorname{Spec} A/\mathfrak{a}} \xrightarrow{\tau'} \mathfrak{X}$$

$$\mathfrak{P}_{\operatorname{Spec} A} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian, where $q: A \to A/\mathfrak{a}$ is the quotient map. Then σ is a closed immersion of k-functors.

Fact 5.5. The class of closed immersions of k-functors is closed under base change and composition.

Proposition 5.6. Let $\sigma: \mathfrak{X} \to \mathfrak{Y}$ be a closed (open) immersion of k-functors. Fix a k-scheme Y and a morphism $\tau: \mathfrak{P}_Y \to \mathfrak{Y}$. Then there exist a k-scheme X, a closed (open) immersion $f: X \to Y$ of schemes and a morphism $\tau': \mathfrak{P}_X \to \mathfrak{X}$ of k-functors such that the square

$$\mathfrak{P}_{X} \xrightarrow{\tau'} \mathfrak{X} \\
\mathfrak{P}_{f} \downarrow \qquad \qquad \downarrow^{\sigma} \\
\mathfrak{P}_{Y} \longrightarrow \mathfrak{Y}$$

is cartesian.

Proof. According to Fact 5.5 (Fact 4.4) pullback $\mathfrak{X} \times_{\mathfrak{Y}} \mathfrak{P}_Y \to \mathfrak{P}_Y$ of σ along τ is a closed (open) immersion of k-functors. Since \mathfrak{P}_Y is a Zariski local k-functor by Fact 4.1 and closed (open) immersions are monomorphisms, we derive by Proposition 4.7 that a fiber-product $\mathfrak{X} \times_{\mathfrak{Y}} \mathfrak{P}_Y$ of σ and τ is a Zariski local k-functor. Since closed (open) immersions of k-functors are representable, we deduce by Proposition 5.3 that there exists a k-scheme X, a morphism $f: X \to Y$ of k-schemes and a morphism $\tau': \mathfrak{P}_X \to \mathfrak{X}$ of k-functors such that the square

$$\mathfrak{X} \times_{\mathfrak{Y}} \mathfrak{P}_{Y} \cong \mathfrak{P}_{X} \xrightarrow{\tau'} \mathfrak{X} \downarrow_{\sigma} \downarrow_{\sigma}$$

$$\mathfrak{P}_{Y} \xrightarrow{\tau} \mathfrak{Y}$$

is cartesian and \mathfrak{P}_f is a closed (open) immersion of k-functors. Since the functor

$$\widehat{\mathbf{Sch}_k} \xrightarrow{\mathfrak{P}}$$
 the category of *k*-functors

preserves finite limits, it follows that for every open affine subset V of Y we have a cartesian square

$$\mathfrak{P}_{f^{-1}(V)} \longleftrightarrow \mathfrak{P}_{X} \\
\mathfrak{P}_{f_{V}} \downarrow \qquad \qquad \downarrow \mathfrak{P}_{f}$$

$$\mathfrak{P}_{V} \longleftrightarrow \mathfrak{P}_{V}$$

where $f_V: f^{-1}(V) \to V$ is the restriction of f. Next as \mathfrak{P}_f is a closed (open) immersion and V is affine, we derive that f_V is a closed (open) immersion of schemes. Since this holds for every affine open subset V of Y, we deduce that f is a closed (open) immersion.

The next result is frequently used in the theory of algebraic spaces.

Proposition 5.7. Let $\mathfrak Y$ be a k-functor such that the diagonal $\mathfrak Y \to \mathfrak Y \times \mathfrak Y$ is representable. Then every morphism $\sigma:\mathfrak X \to \mathfrak Y$ of k-functors is representable.

Proof. Fix a morphism of k-functors $\sigma: \mathfrak{X} \to \mathfrak{Y}$. Let Y be a k-scheme and let $\tau: \mathfrak{P}_Y \to \mathfrak{Y}$ be a morphism of k-functors. Consider the cartesian square

$$3 \xrightarrow{\tau'} \mathfrak{X} \\
\downarrow^{\sigma} \\
\mathfrak{P}_{\Upsilon} \xrightarrow{\tau} \mathfrak{Y}$$

Then there exists a cartesian square

Since the diagonal of $\mathfrak Y$ is representable, we derive that $\mathfrak Z$ is isomorphic with functor of points of some k-scheme. This finishes the proof.

6. CLOSED IMMERSIONS AND HOM k-FUNCTORS

Definition 6.1. Let X be a k-scheme. Suppose that there exists an open affine cover $X = \bigcup_{i \in I} X_i$ such that k-algebra $\Gamma(X_i, \mathcal{O}_{X_i})$ is free as a k-module. Then we say that X is a locally free k-scheme.

Next theorem is the main result of this section.

Theorem 6.2. Let $j: \mathfrak{Y}' \to \mathfrak{Y}$ be a closed immersion of k-functors and X be a locally free k-scheme. Suppose that classes $\operatorname{Mor}_A((\mathfrak{P}_X)_A, \mathfrak{Y}_A)$ are sets for every k-algebra A. Then classes $\operatorname{Mor}_A((\mathfrak{P}_X)_A, \mathfrak{Y}'_A)$ are sets for every k-algebra A and the morphism

$$\mathcal{M}$$
or _{k} $(1_{\mathfrak{P}_X}, j) : \mathcal{M}$ or _{k} $(\mathfrak{P}_X, \mathfrak{Y}') \to \mathcal{M}$ or _{k} $(\mathfrak{P}_X, \mathfrak{Y})$

is a closed immersion of k-functors.

It is useful to isolate crucial steps in the argument. For this we proceed by proving some lemmas.

Lemma 6.2.1. Suppose that A is a commutative ring. Let $j: \mathfrak{Y}' \to \mathfrak{Y}$ be a closed immersion of A-functors and X be an affine A-scheme such that $\Gamma(X, \mathcal{O}_X)$ is a free A-module. Assume that $\tau: \mathfrak{P}_X \to \mathfrak{Y}$ is a morphism of A-functors. Then there exists an ideal $\mathfrak{a} \subseteq A$ such that for every A-algebra B the restriction τ_B factors through j_B if and only if the structure morphism $f: A \to B$ of B satisfies $\mathfrak{a} \subseteq \ker(f)$.

Proof of the lemma. Since j is a closed immersion of A-functors and X is affine k-scheme there exists an affine A-scheme X', a closed immersion $j': X' \to X$ of schemes and a cartesian square

of A-functors. Next let B be an A-algebra with the structure morphism $f:A\to B$. Then τ_B factors through j_B if and only if the projection Spec $B\times_{\operatorname{Spec} A}X\to X$ induced by f factors through X'. Let A[X] be the A-algebra of global regular functions on X and let $\mathfrak J$ be an ideal in A[X] such that $A[X]/\mathfrak J=A[X']$ is the A-algebra of global regular functions of X'. With this notation we derive that the projection $\operatorname{Spec} B\times_{\operatorname{Spec} A}X\to X$ induced by f factors through X' if and only if the morphism $A[X]\to B\otimes_A A[X]$ induced by f sends every element of $\mathfrak J$ to zero. Since A[X] is a free A-module, we write $A[X]=A^{\oplus I}$ for some index set f. Then the morphism f is just f is just f is just f induced by f is just f is just f is just f is just f is the projection on f is f if and only if f if f is just f is just f is the projection on f is the projection on f is component. Pick f is f and consider the commutative diagram

$$A^{\oplus I} \xrightarrow{f^{\oplus I}} B^{\oplus I}$$

$$pr_i^A \downarrow \qquad \qquad \downarrow pr_i^B$$

$$A \xrightarrow{f} B$$

In the diagram pr_i^A is the projection on i-th component. Diagram implies that $\left(pr_i^B \cdot f^{\oplus I}\right)(\mathfrak{J}) = \text{for every } i \in I$ if and only if $\left(f \cdot pr_i^A\right)(\mathfrak{J}) = 0$ for every $i \in I$. This is equivalent with the condition that $f(\mathfrak{a}) = 0$ for ideal \mathfrak{a} in A generated by $\sum_{i \in I} pr_i^A(\mathfrak{J})$. Thus the lemma is proved.

Lemma 6.2.2. Suppose that A is a commutative ring. Let $j: \mathfrak{Y}' \to \mathfrak{Y}$ be a closed immersion of A-functors and X be an A-scheme with open cover

$$X = \bigcup_{i \in I} X_i$$

Assume that $\tau: \mathfrak{P}_X \to \mathfrak{Y}$ is a morphism of A-functors. Fix an A-algebra B. Then τ_B factors through j_B if and only if $(\tau_{|\mathfrak{P}_X})_p$ factors through j_B for every $i \in I$.

Proof of the lemma. If τ_B factors through j_B , then also $\left(\tau_{|\mathfrak{P}_{X_i}}\right)_B$ factors through j_B for every $i \in I$. It suffices to prove the converse. So suppose that $\left(\tau_{|\mathfrak{P}_{X_i}}\right)_B$ factors through j_B for every $i \in I$. Since j is a closed immersion of A-functors and X is an A-scheme, Proposition 5.6 implies that there exists a cartesian square

$$\begin{array}{ccc}
\mathfrak{P}_{X'} & \longrightarrow \mathfrak{Y}' \\
\mathfrak{P}_{j'} \downarrow & & \downarrow_{j} \\
\mathfrak{P}_{X} & \longrightarrow \mathfrak{Y}
\end{array}$$

where $j': X' \to X$ is a closed immersion of A-schemes. For each $i \in I$ let $j'_i: j'^{-1}(X_i) \to X_i$ be the restriction of j'. We have the induced cartesian square

$$\mathfrak{P}_{j'-1}(X_i) \longrightarrow \mathfrak{Y}' \\
\mathfrak{P}_{j'_i} \downarrow \qquad \qquad \downarrow_j \\
\mathfrak{P}_{X_i} \xrightarrow{\tau_{\mid \mathfrak{P}_{X_i}}} \mathfrak{Y}$$

Now $\left(\tau_{\mid \mathfrak{P}_{X_i}}\right)_B$ factors through j_B . This implies that $(\mathfrak{P}_{j_i'})_B$ admits a section for every $i \in I$. Then $(\mathfrak{P}_{j_i'})_B$ is an isomorphism for every $i \in I$. Thus $j_i' \times_{\operatorname{Spec} A} 1_{\operatorname{Spec} B}$ is an isomorphism for every $i \in I$ and hence $j' \times_{\operatorname{Spec} A} 1_{\operatorname{Spec} B}$ is an isomorphism of B-schemes. This means that τ_B factors through j_B .

Proof of the theorem. Let A be a k-algebra. The restriction functor $(-)_{|\mathbf{Alg}_A} = (-)_A$ preserves all closed immersions. Thus j_A is a closed immersion of A-functors and hence we derive that $j_A: \mathfrak{Y}_A' \to \mathfrak{Y}_A$ is a monomorphism of A-functors. Thus we have an injective map of classes

$$\operatorname{Mor}_{A}\left(1_{(\mathfrak{P}_{X})_{A}}, j_{A}\right) : \operatorname{Mor}_{A}\left((\mathfrak{P}_{X})_{A}, \mathfrak{P}'_{A}\right) \hookrightarrow \operatorname{Mor}_{A}\left((\mathfrak{P}_{X})_{A}, \mathfrak{P}_{A}\right)$$

Hence if $\operatorname{Mor}_A((\mathfrak{P}_X)_A, \mathfrak{P}_A)$ is a set, then $\operatorname{Mor}_A((\mathfrak{P}_X)_A, \mathfrak{P}'_A)$ is a set. All these facts imply that both internal homs

$$\mathcal{M}$$
or _{k} ($\mathfrak{P}_X, \mathfrak{Y}'$), \mathcal{M} or _{k} ($\mathfrak{P}_X, \mathfrak{Y}$)

exist and morphism $\mathcal{M}\mathrm{or}_k(1_{\mathfrak{P}_X},j)$ of k-functors is a monomorphism. Our task is to prove that it is a closed immersion. For this consider a k-algebra A and a morphism $\sigma:\mathfrak{P}_{\operatorname{Spec} A}\to\mathcal{M}\mathrm{or}_k(\mathfrak{P}_X,\mathfrak{P})$ of k-functors that sends 1_A to some morphism $\tau:(\mathfrak{P}_X)_A\to\mathfrak{P}_A$ of A-functors. Consider a cartesian square

$$\mathfrak{U} \xrightarrow{} \mathcal{M}or_{k} (\mathfrak{P}_{X}, \mathfrak{Y}') \\
\downarrow \qquad \qquad \downarrow \mathcal{M}or_{k} (1_{\mathfrak{P}_{X}, j}) \\
\mathfrak{P}_{Spec A} \xrightarrow{} \mathcal{M}or_{k} (\mathfrak{P}_{X}, \mathfrak{Y})$$

Since $\mathcal{M}\mathrm{or}_k\left(1_{\mathfrak{P}_X},j\right)$ is a monomorphism, we may consider \mathfrak{U} as a k-subfunctor of $\mathfrak{P}_{\operatorname{Spec} A}$. For every k-algebra B subset $\mathfrak{U}(B) \subseteq \operatorname{Mor}_k(A,B) = \operatorname{Mor}_k(\operatorname{Spec} B,\operatorname{Spec} A)$ consists of A-algebras B with structure morphisms $f:A\to B$ such that τ_B factors through $j_B:\mathfrak{Y}_B'\to\mathfrak{Y}_B$. Since X is a locally free k-scheme, we deduce that $(\mathfrak{P}_X)_A$ is a functor of points of a locally free A-scheme

$$\operatorname{Spec} A \times_{\operatorname{Spec} k} X$$

Pick an open affine cover $\bigcup_{i \in I} X_i$ of this A-scheme such that $\Gamma(X_i, \mathcal{O}_X)$ is a free A-module. Now Lemma 6.2.2 implies that τ_B factors through j_B if and only if $(\tau_{|X_i})_B$ factors through j_B for every $i \in I$. Next by Lemma 6.2.1 we deduce that $(\tau_{|X_i})_B$ factors through j_B for given $i \in I$ if and only if $f(\mathfrak{a}_i) = 0$ for some ideal $\mathfrak{a}_i \subseteq A$ independent of f. Thus \mathfrak{U} consists of all morphisms $f: A \to B$ of k-algebras such that $f(\mathfrak{a}) = 0$ where $\mathfrak{a} = \sum_{i \in I} \mathfrak{a}_i$. Therefore, $\mathfrak{U} \hookrightarrow \mathfrak{P}_{\operatorname{Spec} A}$ is isomorphic with $\mathfrak{P}_{V(\mathfrak{a})} = \mathfrak{P}_{\operatorname{Spec} A/\mathfrak{a}} \hookrightarrow \mathfrak{P}_{\operatorname{Spec} A}$ induced by the quotient map $A \to A/\mathfrak{a}$ and hence $\operatorname{Mor}_k(1_{\mathfrak{P}_X}, j)$ is a closed immersion of k-functors.

7. Example: Grassmannians

In this section we use representability results to prove the existence of grassmannian k-scheme. We start by recalling the notion of quotient.

Definition 7.1. Let C be a category and let X be an object of C. Suppose that $f_1: X \twoheadrightarrow X_1$ and $f_2: X \twoheadrightarrow X_2$ are epimorphisms in C. We say that f_1 and f_2 are equivalent if there exists a commutative triangle

$$X_1 \xrightarrow{\cong} X_2$$

$$f_1 \xrightarrow{X} f_2$$

in C in which horizontal arrow is an isomorphism. Class of epimorphisms with domain in X which are equivalent with respect to the relation above is called *a quotient of* X.

Example 7.2. Let V be a k-module and let n be a positive integer. We define

$$Grass_{V,n}(A) = \begin{cases} Quotients \text{ of } A \otimes_k V \text{ represented by epimorphisms} \\ \text{with codomains that are projective } A\text{-modules of rank } n \end{cases}$$

for k-algebra A. Note that if $f: A \to B$ is a morphism of k-algebras (making B into an A-algebra), then the functor $B \otimes_A (-)$ induces the canonical map

$$Grass_{V,n}(f): Grass_{V,n}(A) \rightarrow Grass_{V,n}(B)$$

This makes $Grass_{V,n}$ into a k-functor.

Theorem 7.3. Let V be a k-module and let n be a positive integer. Then the k-functor $Grass_{V,n}$ is representable.

We start with the following general result.

Lemma 7.3.1. Let X be a locally ringed space and $\phi: \mathcal{P} \to Q$ be a morphism of \mathcal{O}_X -modules such that \mathcal{P} is of finite type and Q is locally free of finite type. Then we have

$$\{x \in X \mid 1_{k(x)} \otimes_{\mathcal{O}_{X,x}} \phi_x \text{ is an isomorphism of vector spaces over } k(x)\} =$$

$$= \{x \in X \mid \phi_x \text{ is an isomorphism of } \mathcal{O}_{X,x}\text{-modules}\}$$

and the set above is open.

Proof of the lemma. Suppose that $\mathcal{K} = \ker(\phi)$, $\mathcal{L} = \operatorname{coker}(\phi)$. Note first that \mathcal{L} is of finitely type \mathcal{O}_X -module as the homomorphic image of Q. Fix a point x in X such that $1_{k(x)} \otimes_{\mathcal{O}_{X,x}} \phi_X$ is an isomorphisms of k(x) vector spaces. This implies that $k(x) \otimes_{\mathcal{O}_{X,x}} \mathcal{L}_x = 0$ and hence by Nakayama lemma we derive that $\mathcal{L}_x = 0$. Thus we have a short exact sequence

$$0 \longrightarrow \mathcal{K}_x \longrightarrow \mathcal{P}_x \xrightarrow{\phi_x} Q_x \longrightarrow 0$$

Facts that Q_x is finitely presented and \mathcal{P}_x is finitely generated over $\mathcal{O}_{X,x}$ imply that \mathcal{K}_x is finitely generated over $\mathcal{O}_{X,x}$. Since Q_x is free, we derive that the sequence above is split exact. Therefore, also the sequence

$$0 \longrightarrow k(x) \otimes_{\mathcal{O}_{X,x}} \mathcal{K}_x \longrightarrow k(x) \otimes_{\mathcal{O}_{X,x}} \mathcal{P}_x \xrightarrow{1_{k(x)} \otimes_{\mathcal{O}_{X,x}} \phi_x} k(x) \otimes_{\mathcal{O}_{X,x}} Q_x \longrightarrow 0$$

is exact and hence $k(x) \otimes_{\mathcal{O}_{X,x}} \mathcal{K}_x = 0$. Nakayama lemma implies that $\mathcal{K}_x = 0$. Thus we derive that $1_{k(x)} \otimes_{\mathcal{O}_{X,x}} \phi_x$ is an isomorphisms of k(x) vector spaces if and only if ϕ_x is an isomorphisms of $\mathcal{O}_{X,x}$ -modules. In other words

$$\{x \in X \mid 1_{k(x)} \otimes_{\mathcal{O}_{X,x}} \phi_x \text{ is an isomorphism of vector spaces over } k(x)\} =$$

$$= \{x \in X \mid \phi_x \text{ is an isomorphism of } \mathcal{O}_{X,x}\text{-modules}\}$$

Note that

 $\{x \in X \mid \phi_x \text{ is an isomorphism of } \mathcal{O}_{X,x}\text{-modules}\} \subseteq \{x \in X \mid \phi_x \text{ is an epimorphism of } \mathcal{O}_{X,x}\text{-modules}\}$ and

$$\{x \in X \mid \phi_x \text{ is an epimorphism of } \mathcal{O}_{X,x}\text{-modules}\} = X \setminus \text{supp}(\mathcal{L})$$

Since \mathcal{L} is finitely generated, we derive that $\operatorname{supp}(\mathcal{L})$ is closed and $X \setminus \operatorname{supp}(\mathcal{L})$. Now there is a short exact sequence

$$0 \longrightarrow \mathcal{K}_{|X \setminus \text{supp}(\mathcal{L})} \longrightarrow \mathcal{P}_{|X \setminus \text{supp}(\mathcal{L})} \stackrel{\phi_{|X \setminus \text{supp}(\mathcal{L})}}{\longrightarrow} Q_{|X \setminus \text{supp}(\mathcal{L})} \longrightarrow 0$$

It follows that $\mathcal{K}_{|X \setminus supp(\mathcal{L})}$ is finite type \mathcal{O}_X -module. Thus

$$\{x \in X \mid \phi_x \text{ is an isomorphism of } \mathcal{O}_{X,x}\text{-modules}\} = (X \setminus \text{supp}(\mathcal{L})) \setminus \text{supp}(\mathcal{K}_{\mid X \setminus \text{supp}(\mathcal{L})})$$
 is open.

Next result is a useful consequence of the previous lemma.

Lemma 7.3.2. Let (A, \mathfrak{m}, L) be a commutative local ring and let n be a positive integer. Suppose that $\phi: A^{\oplus I} \twoheadrightarrow A^{\oplus n}$ is an epimorphism of free A-modules, where I is some set. Then there exists a subset J of I with $\operatorname{\mathbf{card}}(J) = n$ such that $\phi \cdot u_I$ is an isomorphism, where $u_I: A^{\oplus I} \hookrightarrow A^{\oplus I}$ is the canonical injection.

Proof of the lemma. Let $\{e_i\}_{i\in I}$ be the canonical basis of $L^{\oplus I}$. Then $\{(1_L\otimes_A\phi)(e_i)\}_{i\in I}$ spans $L^{\oplus n}$. Hence there exists $J\subseteq I$ such that $\mathbf{card}(J)=n$ and $\{(1_L\otimes_A\phi)(e_i)\}_{j\in J}$ is a basis of $L^{\oplus n}$. Thus $1_L\otimes_A(\phi\cdot u_J)$ is an isomorphism of L-vector spaces. By Lemma 7.3.1 we derive that $1_L\otimes_A(\phi\cdot u_J)$ is an isomorphism of L-vector spaces if and only if $\phi\cdot u_J$ is an isomorphism of L-modules. Therefore, L is an isomorphism of L-modules.

We need the following construction.

Example 7.4. Let $V = k^{\oplus I}$ be a free k-module, where I is some (possibly infinite) set, and let n be a positive integer. Pick a subset $J \subseteq I$ with n-elements. Then we have the canonical injection $u_I : k^{\oplus J} \hookrightarrow k^{\oplus I}$. Now we define a k-subfunctor $Grass_{V,I}$ of $Grass_{V,n}$ by formula

$$\operatorname{Grass}_V^J(A) = \left\{ \begin{aligned} \operatorname{Elements} & \text{ of } \operatorname{Grass}_{V,n}(A) \text{ which are represented by epimorphisms } \phi: A \otimes_k V \to U \\ & \text{ such that the composition } \phi \cdot \left(1_A \otimes_k u_J \right) \text{ is an isomorphism} \end{aligned} \right\}$$

for every *k*-algebra.

Next we prove certain partial results.

Lemma 7.4.1. Let $V = k^{\oplus I}$ be a free k-module, where I is a set, and let n be a positive integer. Then

$$\left\{\operatorname{Grass}_{V}^{J} \hookrightarrow \operatorname{Grass}_{V,n}\right\}_{J \subseteq I, \operatorname{\mathbf{card}}(J)=n}$$

is an open cover of $Grass_{V,n}$.

Proof of the lemma. Let A be a k-algebra. Consider a morphism $\tau: \mathfrak{P}_{\operatorname{Spec} A} \to \operatorname{Grass}_{V,n}$ that corresponds to some quotient of $A \otimes_k V$ that is represented by an epimorphism $\phi: A \otimes_k V \to U$ of A-modules with projective A-module U of rank n. Let J be a subset of I with $\operatorname{\mathbf{card}}(J) = n$. Consider a cartesian square

$$\begin{array}{ccc}
\mathfrak{X}_{J} & \longrightarrow \operatorname{Grass}_{V}^{J} \\
\downarrow & & \downarrow \\
\mathfrak{P}_{\operatorname{Spec} A} & \longrightarrow \operatorname{Grass}_{V,n}
\end{array}$$

Pick a k-algebra B and a morphism $f:A\to B$ of k-algebras. Note that f makes B into an A-algebra. We have identifications

$$f \in \operatorname{Hom}_k(A, B) = \operatorname{Mor}_k(\operatorname{Spec} B, \operatorname{Spec} A) = \mathfrak{P}_{\operatorname{Spec} A}(B)$$

Then $f \in \mathfrak{X}_J(B)$ if and only if $(1_B \otimes_A \phi) \cdot (1_B \otimes_k u_J)$ is an isomorphism of B-modules. Thus by Lemma 7.3.1 we deduce that $f \in \mathfrak{X}_J(B)$ if and only if $\operatorname{Spec} f : \operatorname{Spec} B \to \operatorname{Spec} A$ factors through an open subscheme

$$W_{J} = \left\{ \mathfrak{q} \in \operatorname{Spec} A \, \middle| \, \left(\phi \cdot \left(1_{A} \otimes_{k} u_{J} \right) \right)_{\mathfrak{q}} \text{ is an isomorphism of } A_{\mathfrak{q}} \text{-modules} \right\} = \\ = \left\{ \mathfrak{q} \in \operatorname{Spec} A \, \middle| \, k(\mathfrak{q}) \otimes_{A_{\mathfrak{q}}} \left(\phi \cdot \left(1_{A} \otimes_{k} u_{J} \right) \right)_{\mathfrak{q}} \text{ is an isomorphism of } k(\mathfrak{q}) \text{-vector spaces} \right\}$$

This implies that $\mathfrak{X}_J \hookrightarrow \mathfrak{P}_{\operatorname{Spec} A}$ is isomorphic to an open immersion $\mathfrak{P}_{W_J} \hookrightarrow \mathfrak{P}_{\operatorname{Spec} A}$. Moreover, note that for every \mathfrak{q} we have $U_{\mathfrak{q}}$ is free $A_{\mathfrak{q}}$ -module of rank n. Hence by Lemma 7.3.2

there exists $J \subseteq I$ with $\mathbf{card}(J) = n$ such that $\phi_{\mathfrak{q}} \cdot (A \otimes_k u_J)_{\mathfrak{q}}$ is an isomorphism of $A_{\mathfrak{q}}$ -modules. Thus

$$\operatorname{Spec} A = \bigcup_{J \subseteq I, \operatorname{card}(J) = n} W_J$$

This finishes the proof.

Lemma 7.4.2. Let $V = k^{\oplus I}$ be a free k-module, where I is a set, and let n be a positive integer. Fix a subset J of I such that $\mathbf{card}(J) = n$. Then Grass_V^J is representable by a scheme $\mathsf{Spec}\,k[x_{ji} \mid i \in I \setminus J, 1 \le j \le n]$.

Proof of the lemma. Let $\{e_i\}_{i\in I}$ be the canonical basis of $k^{\oplus I}$ and let $\{f_j\}_{j=1}^n$ be the canonical basis of $k^{\oplus n}$. Fix a k-algebra A. Suppose that $\phi:A^{\oplus I} \twoheadrightarrow A^{\oplus n}$ represents element of $Grass_{V,n}(A)$. Then ϕ can be encoded as a matrix $M_{\phi} = [a_{ji}]_{1 \le j \le n, \, i \in I}$ with entries in A such that

$$\phi(e_i) = \sum_{i=1}^n a_{ji} f_j$$

Note that $\phi_1, \phi_2 : A^{\oplus I} \twoheadrightarrow A^{\oplus n}$ represent the same element of $\operatorname{Grass}_{V,n}(A)$ if and only if there exists $n \times n$ invertible matrix M with entries in A such that $M \cdot M_{\phi_1} = M_{\phi_2}$. Thus for every quotient in $\operatorname{Grass}_V^I(A)$ there exists a unique representative $\phi : A^{\oplus I} \twoheadrightarrow A^{\oplus n}$ such that $M_{\phi} = [a_{ji}]_{1 \le j \le n, i \in I}$ and $[a_{ji}]_{1 \le j \le n, i \in I}$ is the identity matrix. Therefore, we have an identification

$$\operatorname{Grass}_{V}^{J}(A) = \left\{ [a_{ji}]_{1 \leq j \leq n, i \in I} \middle| a_{ji} \in A \text{ and } [a_{ji}]_{1 \leq j \leq n, i \in J} \text{ is the identity matrix} \right\}$$

This identification is natural in A. Hence the k-functor $Grass_V^J$ is representable by a k-scheme $Spec k[x_{ji} | i \in I \setminus J, 1 \le j \le n]$.

Lemma 7.4.3. Let $\theta: V \to W$ be a k-modules and let n be a positive integer. Then the morphism of k-functors $Grass_{\theta,n}$

REFERENCES

[ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[Mon19a] Monygham. Categories of presheaves. github repository: "Monygham/Pedo-mellon-a-minno", 2019.

[Mon19b] Monygham. Categories of sheaves. github repository: "Monygham/Pedo-mellon-a-minno", 2019.

[Mon19c] Monygham. Locally ringed spaces. github repository: "Monygham/Pedo-mellon-a-minno", 2019.