Econometrics 1 Applied Econometrics with R

Lecture 7: Review of Statistics (2) and Linear Regression

黄嘉平

中国经济特区研究中心 讲师

办公室: 文科楼1726

E-mail: huangjp@szu.edu.cn

Tel: (0755) 2695 0548

Office hour: Mon./Tue. 13:00-14:00

Hypothesis testing of population means

- Practice the command t.test in hypothesis testing.
- A sample of data:

```
1.95, 0.31, 0.47, 1.54, 1.64, 2.99, 0.53, 1.21, 0.83, 1.45, 3.46, 2.23, 1.17, 1.16, 0.36, 1.76, 0.19, 0.43, 1.78, 1.56
```

Test the hypothesis

$$H_0: E(Y) = 1$$
 $H_1: E(Y) \neq 1$

(t-statistic, standard error, p-value)

Hypothesis testing of population means

- The sample is generated from an F distribution with d.f. = (3, 6)
- Search "F distribution" in wikipedia, and find the theoretical mean and variance of $F_{m,n}$.
- Redo your hypothesis testing with these new information. Compare the p-values obtained from t.test, large-sample formulas with unknown/known population variance. What have you learned?

p-value for large samples

The p-value when the population mean is unknown

$$p$$
-value = $2\Phi\left(-\left|\frac{\overline{Y}^{act} - \mu_{Y,0}}{s_Y/\sqrt{n}}\right|\right) = 2\Phi\left(-\left|\frac{\overline{Y}^{act} - \mu_{Y,0}}{SE(\overline{Y})}\right|\right)$

The p-value when the population mean is known

$$p\text{-value} = \Pr_{H_0} \left[\left| \frac{\overline{Y} - \mu_{Y,0}}{\sigma_Y / \sqrt{n}} \right| > \left| \frac{\overline{Y}^{act} - \mu_{Y,0}}{\sigma_Y / \sqrt{n}} \right| \right]$$
$$= 2\Phi \left(- \left| \frac{\overline{Y}^{act} - \mu_{Y,0}}{\sigma_Y / \sqrt{n}} \right| \right)$$

```
y < -c(1.95, 0.31, 0.47, 1.54, 1.64,
       2.99, 0.53, 1.21, 0.83, 1.45,
       3.46, 2.23, 1.17, 1.16, 0.36,
       1.76, 0.19, 0.43, 1.78, 1.56)
mu0 < -1
ty <- t.test(y, mu = mu0)
# theoretical moments for F distribution with d.f. = (3,6)
d1 < -3
d2 < -6
pmean < - d2 / (d2 - 2)
pvar < -2 * d2^2 * (d1 + d2 - 2) / (d1 * (d2 - 2)^2 * (d2 - 4))
# p-values under large sample assumption
estimate <- mean(y)</pre>
se <- sd(y) / sqrt(length(y))</pre>
tstat <- (estimate - mu0) / se
pvalue un <- 2*pnorm(- abs(tstat))</pre>
pvalue kn <- 2*pnorm(- abs((estimate - mu0) /</pre>
                        sqrt(pvar / length(y)))
```

A summary

- Sample size = 20. Sample estimate is 1.351.
- Population distribution is not normal, and population variance is known.
- t.test (which use Student t distribution for t-statistic and assume the population distribution is normal) gives p-value = 0.0920
- Large-sample formulas with unknown (known)
 population variance gives p-value = 0.0759 (0.4933)

Econometrics is the *science* and *art* of using economic theory and statistical techniques to analyze economic data.

Typical questions considered by econometricians

- Does reducing class size improve elementary school education?
- Is there racial discrimination in the market for home loans?
- How much do cigarette taxes reduce smoking?
- What will the rate of inflation be next year?

Sources and types of data

- Sources
 - Experimental data versus observational data
- Types
 - Cross-sectional data
 - Time series data
 - Panel data (longitudinal data)

Cross-sectional data

TABLE 1.1	A Cross-Section	al Data Set on	Wages and Oth	er Individual Ch	aracteristics
obsno	wage	educ	exper	female	married
1	3.10	11	2	1	0
2	3.24	12	22	1	1
3	3.00	11	2	0	0
4	6.00	8	44	0	1
5	5.30	12	7	0	1
•	•	•	•	•	•
	•	•	•	•	•
•	•	•	•	•	•
525	11.56	16	5	0	1
526	3.50	14	5	1	0

Time series data

TABLE 1.3	Minimum Wa	ge, Unemploym	ent, and Relate	ed Data for Puer	to Rico
obsno	year	avgmin	avgcov	prunemp	prgnp
1	1950	0.20	20.1	15.4	878.7
2	1951	0.21	20.7	16.0	925.0
3	1952	0.23	22.6	14.8	1015.9
	•	•	•	•	•
•	•	•	•	•	•
	•	•	•	•	•
37	1986	3.35	58.1	18.9	4281.6
38	1987	3.35	58.2	16.8	4496.7

Panel data

TABLE 1.5 A Two-Year Panel Data Set on City Crime Statistics							
obsno	city	year	murders	population	unem	police	
1	1	1986	5	350000	8.7	440	
2	1	1990	8	359200	7.2	471	
3	2	1986	2	64300	5.4	75	
4	2	1990	1	65100	5.5	75	
•	•	•	•	•	•	•	
•	•	•	•	•	•	•	
•	•	•	•	•	•	•	
297	149	1986	10	260700	9.6	286	
298	149	1990	6	245000	9.8	334	
299	150	1986	25	543000	4.3	520	
300	150	1990	32	546200	5.2	493	

Linear regression

A test score data in California

- · The file caschool.xlsx
- The California Standardized Testing and Reporting (STAR) dataset (1998-1999).
- Average test scores on 420 districts in California.
- · For details, see californiatestscores.docx

- "testscr": the average test score (of reading and math)
- "str": the student-teacher ratio (No. of student / No. of teachers)

The linear regression model

The linear regression model with one regressor

independent variable / regressor

The linear regression model

The linear regression model with one regressor

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

population regression line / population regression function

TestScore = $\beta_0 + \beta_1 \times \text{ClassSize} + \text{other factors}$

Estimating the coefficients

- \overline{Y} is an estimator of the population mean.
- Similarly, we need estimators of the coefficients β_0 and β_1 .
- The ordinary least squares (OLS) estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are the ones that minimize

$$\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i)^2$$

How to determine the sample regression line $\hat{\beta}_0 + \hat{\beta}_1 X$?

Practice

- Import data from caschool.xlsx
- Take str as the independent variable (X) and testscr as the dependent variable (Y).
- Calculate the OLS estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ using local grid search.
 - 1. Specify a set of possible values for (b_0, b_1)
 - 2. For each possible (b_0, b_1) , compare $\sum_{i=1}^{\infty} (Y_i b_0 b_1 X_i)^2$

The OLS estimators

The OLS estimators of the slope and the intercept are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{s_{XY}}{s_X^2}$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

- The OLS predicted value: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
- The residuals: $\hat{u}_i = Y_i \hat{Y}_i$

A measure of fit

- The R^2 the fraction of the sample variance of Y_i explained by X_i .
- Recall that $Y_i = \hat{Y}_i + \hat{u}_i$

$$R^2 = \frac{\sum_{i=1}^n (\hat{Y}_i - \overline{Y})^2}{\sum_{i=1}^n (Y_i - \overline{Y})^2} = \frac{ESS}{TSS} \quad \text{(explained sum of squares)}$$

$$= 1 - \frac{\sum_{i=1}^n \hat{u}_i^2}{\sum_{i=1}^n (Y_i - \overline{Y})^2} = 1 - \frac{SSR}{TSS} \quad \text{(sum of squared residuals)}$$

How to read R^2

- R² measures how well the OLS regression line fits the data.
- The value of R^2 ranges between 0 and 1. A high R^2 indicates that the regressor (X_i) is good at predicting Y_i , while a low R^2 indicates that the regressor (X_i) is not very good at predicting Y_i .
- A low R^2 does **not** imply that this regression is either "good" or "bad", it **does** tell us that other important factors influence the dependent variable.

Practice

- Use the formula to recalculate the OLS estimates of coefficients in testscr and str regression model.
- Calculate the R² of this model, and give an explanation of your result.

The least squares assumptions

For the linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + u_i, \quad i = 1, \dots, n$$

it is assumed that:

1. The error term u_i has conditional mean zero given X_i :

$$E(u_i \mid X_i) = 0$$

- 2. (X_i, Y_i) , i = 1, ..., n, are i.i.d. draws from their joint distribution; and
- 3. Large outliers are unlikely: X_i and Y_i have nonzero finite fourth moments.

Implication of $E(u_i \mid X_i) = 0$

Linear regression is sensitive to outliers

References

1. Stock, J. H. and Watson, M. M., *Introduction to Econometrics*, 3rd Edition, Pearson, 2012.