## **AUTO**

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.0a [May-20-2017]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 100 compute nodes are available.

Program started at Sat Aug 12 15:05:04 2017

Program finished at Sat Aug 12 16:07:46 2017 [Runtime:0000:01:02:42]



### **Options**

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 1565496655

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

\* = migration free to vary, Thetas are on diagonal

1

d = row population split off column population, D = split and then migration

Population

1 Romanshorn 0 \*

Order of parameters:

1  $\Theta_1$  <displayed>

Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy:

Bayesian inference

-Population size estimation: Exponential Distribution

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Metropolis sampling
Divergence Metropolis sampling
Divergence Spread Metropolis sampling
Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Prior Minimum MeanMaximum Delta Bins UpdateFreq
1 Theta -11 Uniform 0.000000 0.050 0.100 0.010 1500 0.20000

[-1 -1 means priors were set globally]

Markov chain settings: Long chain

Number of chains1Recorded steps [a]50000Increment (record every x step [b]200Number of concurrent chains (replicates) [c]2

Visited (sampled) parameter values [a\*b\*c] 20000000

Number of discard trees per chain (burn-in) 10000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

1000000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: infile.0.4

Haplotyping is turned on:

Output file: outfile\_0.4\_0.5

Posterior distribution raw histogram file: bayesfile

Raw data from the MCMC run: bayesallfile\_0.4\_0.5

Print data:

Print genealogies [only some for some data type]:

# Data summary

Data file: infile.0.4
Datatype: Sequence data
Number of loci: 100

| Mutationmodel: |  |
|----------------|--|
|----------------|--|

| Mutation           | model: |               |                          |  |
|--------------------|--------|---------------|--------------------------|--|
| Locus Sublocus Mut |        | Mutationmodel | Mutationmodel parameters |  |
| 1                  | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 2                  | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 3                  | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 4                  | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 5                  | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 6                  | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 7                  | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 8                  | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 9                  | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 10                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 11                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 12                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 13                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 14                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 15                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 16                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 17                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 18                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 19                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 20                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 21                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 22                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 23                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 24                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 25                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 26                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 27                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 28                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 29                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 30                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 31                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 32                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 33                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 34                 | 1      | Jukes-Cantor  | [Basefreq: =0.25]        |  |

| 35 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
|----|---|--------------|-------------------|
| 36 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 37 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 38 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 39 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 40 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 41 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 42 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 43 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 44 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 45 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 46 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 47 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 48 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 49 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 50 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 51 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 52 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 53 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 54 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 55 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 56 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 57 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 58 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 59 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 60 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 61 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 62 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 63 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 64 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 65 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 66 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 67 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 68 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 69 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 70 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 71 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 72 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 73 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 74 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 75 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 76 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 77 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 78 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 79 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
|    |   |              |                   |

|           |       |              |                   | AUTO 5 |
|-----------|-------|--------------|-------------------|--------|
| 80        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 81        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 82        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 83        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 84        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 85        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 86        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 87        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 88        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 89        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 90        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 91        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 92        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 93        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 94        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 95        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 96        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 97        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 98        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 99        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 100       | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
|           |       |              |                   |        |
| Sites per | locus |              |                   |        |
| Locus     |       | Sites        |                   |        |
| 1         | 1     | 0000         |                   |        |

| Locus | Sites |
|-------|-------|
| 1     | 10000 |
| 2     | 10000 |
| 3     | 10000 |
| 4     | 10000 |
| 5     | 10000 |
| 6     | 10000 |
| 7     | 10000 |
| 8     | 10000 |
| 9     | 10000 |
| 10    | 10000 |
| 11    | 10000 |
| 12    | 10000 |
| 13    | 10000 |
| 14    | 10000 |
| 15    | 10000 |
| 16    | 10000 |
| 17    | 10000 |
| 18    | 10000 |
| 19    | 10000 |
| 20    | 10000 |

| 21 | 10000 |  |
|----|-------|--|
| 22 | 10000 |  |
| 23 | 10000 |  |
| 24 | 10000 |  |
| 25 | 10000 |  |
| 26 | 10000 |  |
| 27 | 10000 |  |
| 28 | 10000 |  |
| 29 | 10000 |  |
| 30 | 10000 |  |
| 31 | 10000 |  |
| 32 | 10000 |  |
| 33 | 10000 |  |
| 34 | 10000 |  |
| 35 | 10000 |  |
| 36 | 10000 |  |
| 37 | 10000 |  |
| 38 | 10000 |  |
| 39 | 10000 |  |
| 40 | 10000 |  |
| 41 | 10000 |  |
| 42 | 10000 |  |
| 43 | 10000 |  |
| 44 | 10000 |  |
| 45 | 10000 |  |
| 46 | 10000 |  |
| 47 | 10000 |  |
| 48 | 10000 |  |
| 49 | 10000 |  |
| 50 | 10000 |  |
| 51 | 10000 |  |
| 52 | 10000 |  |
| 53 | 10000 |  |
| 54 | 10000 |  |
| 55 | 10000 |  |
| 56 | 10000 |  |
| 57 | 10000 |  |
| 58 | 10000 |  |
| 59 | 10000 |  |
| 60 | 10000 |  |
| 61 | 10000 |  |
| 62 | 10000 |  |
| 63 | 10000 |  |
| 64 | 10000 |  |
| 65 | 10000 |  |
|    |       |  |

| 66      | 10000                  |                |             |            |  |
|---------|------------------------|----------------|-------------|------------|--|
| 67      | 10000                  |                |             |            |  |
| 68      | 10000                  |                |             |            |  |
| 69      | 10000                  |                |             |            |  |
| 70      | 10000                  |                |             |            |  |
| 71      | 10000                  |                |             |            |  |
| 72      | 10000                  |                |             |            |  |
| 73      | 10000                  |                |             |            |  |
| 74      | 10000                  |                |             |            |  |
| 75      | 10000                  |                |             |            |  |
| 76      | 10000                  |                |             |            |  |
| 77      | 10000                  |                |             |            |  |
| 78      | 10000                  |                |             |            |  |
| 79      | 10000                  |                |             |            |  |
| 80      | 10000                  |                |             |            |  |
| 81      | 10000                  |                |             |            |  |
| 82      | 10000                  |                |             |            |  |
| 83      | 10000                  |                |             |            |  |
| 84      | 10000                  |                |             |            |  |
| 85      | 10000                  |                |             |            |  |
| 86      | 10000                  |                |             |            |  |
| 87      | 10000                  |                |             |            |  |
| 88      | 10000                  |                |             |            |  |
| 89      | 10000                  |                |             |            |  |
| 90      | 10000                  |                |             |            |  |
| 91      | 10000                  |                |             |            |  |
| 92      | 10000                  |                |             |            |  |
| 93      | 10000                  |                |             |            |  |
| 94      | 10000                  |                |             |            |  |
| 95      | 10000                  |                |             |            |  |
| 96      | 10000                  |                |             |            |  |
| 97      | 10000                  |                |             |            |  |
| 98      | 10000                  |                |             |            |  |
| 99      | 10000                  |                |             |            |  |
| 100     | 10000                  |                |             |            |  |
|         |                        |                |             |            |  |
|         | e variation and probab |                |             |            |  |
| Locus S | Sublocus Region type   | Rate of change | Probability | Patch size |  |
| 1       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 2       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 3       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 4       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 5       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 6       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
|         |                        |                |             |            |  |

| 7  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|----|---|---|-------|-------|-------|--|
| 8  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 9  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 10 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 11 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 12 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 13 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 14 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 15 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 16 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 17 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 18 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 19 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 20 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 21 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 22 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 23 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 24 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 25 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 26 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 27 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 28 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 29 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 30 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 31 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 32 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 33 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 34 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 35 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 36 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 37 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 38 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 39 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 40 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 41 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 42 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 43 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 44 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 45 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 46 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 47 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 48 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 49 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 50 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 51 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |

| 52 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|----|---|---|-------|-------|-------|--|
| 53 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 54 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 55 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 56 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 57 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 58 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 59 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 60 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 61 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 62 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 63 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 64 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 65 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 66 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 67 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 68 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 69 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 70 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 71 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 72 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 73 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 74 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 75 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 76 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 77 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 78 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 79 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 80 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 81 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 82 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 83 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 84 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 85 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 86 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 87 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 88 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 89 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 90 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 91 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 92 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 93 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 94 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 95 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 96 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|    |   |   |       |       |       |  |

| 97         | 1           | 1 | 1.000 | 1.000 | 1.000          |             |
|------------|-------------|---|-------|-------|----------------|-------------|
| 98         | 1           | 1 | 1.000 | 1.000 | 1.000          |             |
| 99         | 1           | 1 | 1.000 | 1.000 | 1.000          |             |
| 100        | 1           | 1 | 1.000 | 1.000 | 1.000          |             |
| Population |             | · |       | 11000 | Locus          | Gene copies |
|            | nshorn_0    |   |       |       | 1              | 10          |
| - Tromai   | .0.1.0111_0 |   |       |       | 2              | 10          |
|            |             |   |       |       | 3              | 10          |
|            |             |   |       |       | 4              | 10          |
|            |             |   |       |       | 5              | 10          |
|            |             |   |       |       | 6              | 10          |
|            |             |   |       |       | 7              | 10          |
|            |             |   |       |       | 8              | 10          |
|            |             |   |       |       | 9              | 10          |
|            |             |   |       |       | 10             | 10          |
|            |             |   |       |       | 11             | 10          |
|            |             |   |       |       | 12             | 10          |
|            |             |   |       |       | 13             | 10          |
|            |             |   |       |       | 14             | 10          |
|            |             |   |       |       | 15             | 10          |
|            |             |   |       |       | 16             | 10          |
|            |             |   |       |       | 17             | 10          |
|            |             |   |       |       | 18             | 10          |
|            |             |   |       |       | 19             | 10          |
|            |             |   |       |       | 20             | 10          |
|            |             |   |       |       | 21             | 10          |
|            |             |   |       |       | 22             | 10          |
|            |             |   |       |       | 23             | 10          |
|            |             |   |       |       | 24             | 10          |
|            |             |   |       |       | 25             | 10          |
|            |             |   |       |       | 26             | 10          |
|            |             |   |       |       | 27             | 10          |
|            |             |   |       |       | 28             | 10          |
|            |             |   |       |       | 29             | 10          |
|            |             |   |       |       | 30             | 10          |
|            |             |   |       |       | 31             | 10          |
|            |             |   |       |       | 32             | 10          |
|            |             |   |       |       | 33             | 10          |
|            |             |   |       |       | 34             | 10          |
|            |             |   |       |       | 35             | 10          |
|            |             |   |       |       | 36             | 10          |
|            |             |   |       |       | 37             | 10          |
|            |             |   |       |       | 38             | 10          |
|            |             |   |       |       | 39             | 10          |
|            |             |   |       |       | 40             | 10          |
|            |             |   |       |       | · <del>·</del> | -           |

| 41 | 10 |
|----|----|
| 42 | 10 |
| 43 | 10 |
| 44 |    |
| 45 |    |
| 46 |    |
| 47 |    |
| 48 |    |
| 49 |    |
| 50 |    |
| 51 |    |
| 52 |    |
| 53 |    |
| 54 |    |
| 55 |    |
| 56 |    |
| 57 |    |
| 58 |    |
| 59 |    |
| 60 |    |
| 61 |    |
|    |    |
| 62 |    |
| 63 |    |
| 64 |    |
| 65 |    |
| 66 |    |
| 67 |    |
| 68 |    |
| 69 |    |
| 70 |    |
| 71 |    |
| 72 |    |
| 73 |    |
| 74 |    |
| 75 |    |
| 76 |    |
| 77 |    |
| 78 |    |
| 79 |    |
| 80 |    |
| 81 |    |
| 82 |    |
| 83 |    |
| 84 |    |
| 85 | 10 |
|    |    |

|                          | 86  | 10 |  |
|--------------------------|-----|----|--|
|                          | 87  | 10 |  |
|                          | 88  | 10 |  |
|                          | 89  | 10 |  |
|                          | 90  | 10 |  |
|                          | 91  | 10 |  |
|                          | 92  | 10 |  |
|                          | 93  | 10 |  |
|                          | 94  | 10 |  |
|                          | 95  | 10 |  |
|                          | 96  | 10 |  |
|                          | 97  | 10 |  |
|                          |     |    |  |
|                          | 98  | 10 |  |
|                          | 99  | 10 |  |
|                          | 100 | 10 |  |
| Total of all populations | 1   | 10 |  |
|                          | 2   | 10 |  |
|                          | 3   | 10 |  |
|                          | 4   | 10 |  |
|                          | 5   | 10 |  |
|                          | 6   | 10 |  |
|                          | 7   | 10 |  |
|                          | 8   | 10 |  |
|                          | 9   | 10 |  |
|                          | 10  | 10 |  |
|                          | 11  | 10 |  |
|                          | 12  | 10 |  |
|                          | 13  | 10 |  |
|                          | 14  | 10 |  |
|                          | 15  | 10 |  |
|                          | 16  | 10 |  |
|                          | 17  | 10 |  |
|                          | 18  | 10 |  |
|                          | 19  | 10 |  |
|                          | 20  | 10 |  |
|                          | 21  | 10 |  |
|                          | 22  | 10 |  |
|                          | 23  | 10 |  |
|                          |     |    |  |
|                          | 24  | 10 |  |
|                          | 25  | 10 |  |
|                          | 26  | 10 |  |
|                          | 27  | 10 |  |
|                          | 28  | 10 |  |
|                          | 29  | 10 |  |
|                          | 30  | 10 |  |
|                          |     |    |  |

| 31 | 10 |
|----|----|
| 32 | 10 |
| 33 | 10 |
| 34 | 10 |
| 35 | 10 |
| 36 | 10 |
| 37 | 10 |
| 38 | 10 |
| 39 | 10 |
| 40 | 10 |
| 41 | 10 |
| 42 | 10 |
| 43 | 10 |
| 44 | 10 |
| 45 | 10 |
| 46 | 10 |
| 47 | 10 |
| 48 | 10 |
| 49 | 10 |
| 50 | 10 |
| 51 | 10 |
| 52 | 10 |
| 53 | 10 |
| 54 | 10 |
| 55 | 10 |
| 56 | 10 |
| 57 | 10 |
| 58 | 10 |
| 59 | 10 |
| 60 | 10 |
| 61 | 10 |
| 62 | 10 |
| 63 | 10 |
| 64 | 10 |
| 65 | 10 |
| 66 | 10 |
| 67 | 10 |
| 68 | 10 |
| 69 | 10 |
| 70 | 10 |
| 71 | 10 |
| 72 | 10 |
| 73 | 10 |
| 74 | 10 |
| 75 | 10 |
|    |    |

|   | 76  | 10 |
|---|-----|----|
|   | 77  | 10 |
|   | 78  | 10 |
|   | 79  | 10 |
|   | 80  | 10 |
|   | 81  | 10 |
|   | 82  | 10 |
|   | 83  | 10 |
|   | 84  | 10 |
|   | 85  | 10 |
|   | 86  | 10 |
|   | 87  | 10 |
|   | 88  | 10 |
|   | 89  | 10 |
|   | 90  | 10 |
|   | 91  | 10 |
|   |     |    |
|   | 92  | 10 |
|   | 93  | 10 |
|   | 94  | 10 |
|   | 95  | 10 |
|   | 96  | 10 |
|   | 97  | 10 |
|   | 98  | 10 |
|   | 99  | 10 |
| 1 | 100 | 10 |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |

# Bayesian Analysis: Posterior distribution table

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 1     | $\Theta_1$ | 0.01593 | 0.02827 | 0.03503 | 0.04280 | 0.05013 | 0.03383 | 0.04659 |
| 2     | $\Theta_1$ | 0.02047 | 0.03607 | 0.04523 | 0.04847 | 0.05080 | 0.03777 | 0.05512 |
| 3     | $\Theta_1$ | 0.01647 | 0.02713 | 0.03297 | 0.04260 | 0.05000 | 0.03363 | 0.04606 |
| 4     | $\Theta_1$ | 0.01647 | 0.02720 | 0.03710 | 0.04247 | 0.05007 | 0.03370 | 0.04610 |
| 5     | $\Theta_1$ | 0.01640 | 0.02753 | 0.03430 | 0.04240 | 0.05007 | 0.03370 | 0.04592 |
| 6     | $\Theta_1$ | 0.01580 | 0.02740 | 0.03343 | 0.04220 | 0.05027 | 0.03377 | 0.04611 |
| 7     | $\Theta_1$ | 0.01780 | 0.03007 | 0.03823 | 0.04693 | 0.05033 | 0.03523 | 0.04929 |
| 8     | $\Theta_1$ | 0.02413 | 0.04107 | 0.04763 | 0.04907 | 0.05127 | 0.04123 | 0.06966 |
| 9     | $\Theta_1$ | 0.02307 | 0.03907 | 0.04750 | 0.04907 | 0.05113 | 0.04030 | 0.06402 |
| 10    | $\Theta_1$ | 0.01647 | 0.02647 | 0.03317 | 0.04413 | 0.05000 | 0.03377 | 0.04616 |
| 11    | $\Theta_1$ | 0.01653 | 0.02747 | 0.03597 | 0.04273 | 0.05000 | 0.03363 | 0.04577 |
| 12    | $\Theta_1$ | 0.02187 | 0.03780 | 0.04750 | 0.04893 | 0.05100 | 0.03930 | 0.06210 |
| 13    | $\Theta_1$ | 0.01820 | 0.03213 | 0.03977 | 0.04700 | 0.05047 | 0.03570 | 0.05017 |
| 14    | $\Theta_1$ | 0.01847 | 0.02913 | 0.03897 | 0.04840 | 0.05047 | 0.03583 | 0.05062 |
| 15    | $\Theta_1$ | 0.01653 | 0.02827 | 0.03210 | 0.04133 | 0.05000 | 0.03370 | 0.04605 |
| 16    | $\Theta_1$ | 0.01640 | 0.02760 | 0.03383 | 0.04240 | 0.05007 | 0.03377 | 0.04637 |
| 17    | $\Theta_1$ | 0.01647 | 0.02867 | 0.03270 | 0.04113 | 0.05007 | 0.03377 | 0.04619 |
| 18    | $\Theta_1$ | 0.01793 | 0.03260 | 0.03870 | 0.04707 | 0.05040 | 0.03537 | 0.04970 |
|       |            |         |         |         |         |         |         |         |

| 19 | $\Theta_1$ | 0.02100 | 0.03680 | 0.04603 | 0.04867 | 0.05087 | 0.03810 | 0.05601 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 20 | $\Theta_1$ | 0.01640 | 0.02773 | 0.03343 | 0.04207 | 0.05007 | 0.03370 | 0.04612 |
| 21 | $\Theta_1$ | 0.01633 | 0.02620 | 0.03243 | 0.04400 | 0.05000 | 0.03357 | 0.04603 |
| 22 | $\Theta_1$ | 0.02020 | 0.03713 | 0.04750 | 0.04833 | 0.05073 | 0.03750 | 0.05480 |
| 23 | $\Theta_1$ | 0.01647 | 0.02800 | 0.03463 | 0.04240 | 0.05013 | 0.03377 | 0.04621 |
| 24 | $\Theta_1$ | 0.01640 | 0.02813 | 0.03550 | 0.04360 | 0.05007 | 0.03383 | 0.04612 |
| 25 | $\Theta_1$ | 0.01647 | 0.02787 | 0.03690 | 0.04427 | 0.05007 | 0.03383 | 0.04642 |
| 26 | $\Theta_1$ | 0.01580 | 0.02800 | 0.03577 | 0.04307 | 0.05027 | 0.03383 | 0.04620 |
| 27 | $\Theta_1$ | 0.01653 | 0.02833 | 0.03557 | 0.04280 | 0.05007 | 0.03383 | 0.04599 |
| 28 | $\Theta_1$ | 0.01647 | 0.02793 | 0.03443 | 0.04260 | 0.05007 | 0.03377 | 0.04610 |
| 29 | $\Theta_1$ | 0.01627 | 0.02687 | 0.03570 | 0.04173 | 0.05007 | 0.03363 | 0.04616 |
| 30 | $\Theta_1$ | 0.01747 | 0.03127 | 0.04150 | 0.04580 | 0.05047 | 0.03530 | 0.04951 |
| 31 | $\Theta_1$ | 0.01580 | 0.02813 | 0.03383 | 0.04260 | 0.05027 | 0.03383 | 0.04596 |
| 32 | $\Theta_1$ | 0.01600 | 0.02813 | 0.03243 | 0.04320 | 0.05013 | 0.03370 | 0.04592 |
| 33 | $\Theta_1$ | 0.01647 | 0.02760 | 0.03490 | 0.04340 | 0.05007 | 0.03377 | 0.04615 |
| 34 | $\Theta_1$ | 0.01647 | 0.02807 | 0.03650 | 0.04227 | 0.05007 | 0.03377 | 0.04610 |
| 35 | $\Theta_1$ | 0.01640 | 0.02760 | 0.03443 | 0.04300 | 0.05013 | 0.03377 | 0.04598 |
| 36 | $\Theta_1$ | 0.01933 | 0.03507 | 0.04543 | 0.04813 | 0.05053 | 0.03670 | 0.05285 |
| 37 | $\Theta_1$ | 0.01960 | 0.03587 | 0.04443 | 0.04820 | 0.05067 | 0.03690 | 0.05314 |
| 38 | $\Theta_1$ | 0.01600 | 0.02753 | 0.03437 | 0.04447 | 0.05020 | 0.03383 | 0.04593 |
| 39 | $\Theta_1$ | 0.01647 | 0.02733 | 0.03603 | 0.04160 | 0.05000 | 0.03363 | 0.04599 |
| 40 | $\Theta_1$ | 0.01640 | 0.02720 | 0.03417 | 0.04400 | 0.05007 | 0.03370 | 0.04596 |
| 41 | $\Theta_1$ | 0.01600 | 0.02753 | 0.03437 | 0.04227 | 0.05020 | 0.03377 | 0.04612 |

| _ocus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 42    | $\Theta_1$ | 0.01993 | 0.03627 | 0.04143 | 0.04793 | 0.05067 | 0.03710 | 0.05314 |
| 43    | $\Theta_1$ | 0.01640 | 0.02180 | 0.03323 | 0.04867 | 0.05007 | 0.03370 | 0.04592 |
| 44    | $\Theta_1$ | 0.01647 | 0.02807 | 0.03377 | 0.04180 | 0.05000 | 0.03377 | 0.04604 |
| 45    | $\Theta_1$ | 0.01513 | 0.02773 | 0.03443 | 0.04293 | 0.05040 | 0.03377 | 0.04602 |
| 46    | $\Theta_1$ | 0.01633 | 0.02633 | 0.03477 | 0.04453 | 0.05007 | 0.03377 | 0.04601 |
| 47    | $\Theta_1$ | 0.01653 | 0.02787 | 0.03423 | 0.04280 | 0.05000 | 0.03377 | 0.04623 |
| 48    | $\Theta_1$ | 0.01660 | 0.02867 | 0.03330 | 0.04100 | 0.05007 | 0.03383 | 0.04601 |
| 49    | $\Theta_1$ | 0.01627 | 0.02740 | 0.03577 | 0.04287 | 0.05007 | 0.03377 | 0.04599 |
| 50    | $\Theta_1$ | 0.01640 | 0.02587 | 0.03610 | 0.04587 | 0.04993 | 0.03370 | 0.04602 |
| 51    | $\Theta_1$ | 0.01920 | 0.03647 | 0.04430 | 0.04727 | 0.05053 | 0.03663 | 0.05278 |
| 52    | $\Theta_1$ | 0.01640 | 0.02687 | 0.03337 | 0.04387 | 0.05007 | 0.03377 | 0.04599 |
| 53    | $\Theta_1$ | 0.01660 | 0.02640 | 0.03470 | 0.04400 | 0.05007 | 0.03377 | 0.04612 |
| 54    | $\Theta_1$ | 0.01847 | 0.03440 | 0.04217 | 0.04787 | 0.05067 | 0.03643 | 0.05268 |
| 55    | $\Theta_1$ | 0.01660 | 0.02713 | 0.03350 | 0.04240 | 0.05000 | 0.03370 | 0.04598 |
| 56    | $\Theta_1$ | 0.02093 | 0.03633 | 0.04743 | 0.04867 | 0.05080 | 0.03797 | 0.05599 |
| 57    | $\Theta_1$ | 0.01647 | 0.02893 | 0.03163 | 0.04167 | 0.05007 | 0.03377 | 0.04621 |
| 58    | $\Theta_1$ | 0.02247 | 0.03893 | 0.04750 | 0.04893 | 0.05107 | 0.03963 | 0.06250 |
| 59    | $\Theta_1$ | 0.02160 | 0.03780 | 0.04750 | 0.04907 | 0.05107 | 0.03937 | 0.06052 |
| 60    | $\Theta_1$ | 0.01627 | 0.02753 | 0.03350 | 0.04207 | 0.05013 | 0.03357 | 0.04613 |
| 61    | $\Theta_1$ | 0.01807 | 0.03393 | 0.04297 | 0.04767 | 0.05053 | 0.03597 | 0.05104 |

| 62 | $\Theta_1$ | 0.01647 | 0.02727 | 0.03397 | 0.04247 | 0.05007 | 0.03377 | 0.04613 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 63 | $\Theta_1$ | 0.01647 | 0.02800 | 0.03183 | 0.04247 | 0.05007 | 0.03377 | 0.04623 |
| 64 | $\Theta_1$ | 0.01820 | 0.03313 | 0.03730 | 0.04713 | 0.05053 | 0.03590 | 0.05079 |
| 65 | $\Theta_1$ | 0.01620 | 0.02687 | 0.03697 | 0.04307 | 0.05013 | 0.03383 | 0.04622 |
| 66 | $\Theta_1$ | 0.02533 | 0.04013 | 0.04763 | 0.04947 | 0.05127 | 0.04150 | 0.06981 |
| 67 | $\Theta_1$ | 0.01847 | 0.03393 | 0.04010 | 0.04793 | 0.05060 | 0.03617 | 0.05102 |
| 68 | $\Theta_1$ | 0.01860 | 0.03353 | 0.03997 | 0.04620 | 0.05047 | 0.03583 | 0.05013 |
| 69 | $\Theta_1$ | 0.01640 | 0.02733 | 0.03330 | 0.04280 | 0.04993 | 0.03363 | 0.04589 |
| 70 | $\Theta_1$ | 0.01647 | 0.02740 | 0.03463 | 0.04387 | 0.05013 | 0.03383 | 0.04629 |
| 71 | $\Theta_1$ | 0.01647 | 0.02760 | 0.03357 | 0.04300 | 0.05007 | 0.03383 | 0.04613 |
| 72 | $\Theta_1$ | 0.01753 | 0.03113 | 0.03870 | 0.04520 | 0.05040 | 0.03523 | 0.04932 |
| 73 | $\Theta_1$ | 0.01993 | 0.03580 | 0.04703 | 0.04840 | 0.05087 | 0.03750 | 0.05510 |
| 74 | $\Theta_1$ | 0.01613 | 0.02740 | 0.03317 | 0.04280 | 0.05020 | 0.03383 | 0.04612 |
| 75 | $\Theta_1$ | 0.01900 | 0.02307 | 0.04203 | 0.04987 | 0.05060 | 0.03643 | 0.05160 |
| 76 | $\Theta_1$ | 0.01640 | 0.02627 | 0.03110 | 0.04467 | 0.05007 | 0.03370 | 0.04595 |
| 77 | $\Theta_1$ | 0.01953 | 0.03380 | 0.04197 | 0.04820 | 0.05060 | 0.03670 | 0.05218 |
| 78 | $\Theta_1$ | 0.01820 | 0.03293 | 0.03663 | 0.04513 | 0.05033 | 0.03543 | 0.04970 |
| 79 | $\Theta_1$ | 0.02007 | 0.03700 | 0.04750 | 0.04847 | 0.05080 | 0.03757 | 0.05617 |
| 80 | $\Theta_1$ | 0.01640 | 0.02540 | 0.03397 | 0.04607 | 0.05007 | 0.03383 | 0.04631 |
| 81 | $\Theta_1$ | 0.02160 | 0.03753 | 0.04663 | 0.04867 | 0.05087 | 0.03870 | 0.05807 |
| 82 | $\Theta_1$ | 0.01600 | 0.02587 | 0.03417 | 0.04480 | 0.05013 | 0.03377 | 0.04621 |
| 83 | $\Theta_1$ | 0.01860 | 0.03340 | 0.04037 | 0.04693 | 0.05047 | 0.03583 | 0.05043 |
| 84 | $\Theta_1$ | 0.01647 | 0.02553 | 0.03243 | 0.04573 | 0.05007 | 0.03370 | 0.04616 |

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 85    | $\Theta_1$ | 0.02300 | 0.03847 | 0.04750 | 0.04907 | 0.05107 | 0.03997 | 0.06276 |
| 86    | $\Theta_1$ | 0.01607 | 0.02727 | 0.03237 | 0.04327 | 0.05020 | 0.03383 | 0.04605 |
| 87    | $\Theta_1$ | 0.01633 | 0.02573 | 0.03277 | 0.04460 | 0.05007 | 0.03370 | 0.04616 |
| 88    | $\Theta_1$ | 0.02200 | 0.03793 | 0.04757 | 0.04913 | 0.05107 | 0.03943 | 0.06110 |
| 89    | $\Theta_1$ | 0.01640 | 0.02800 | 0.03730 | 0.04153 | 0.05007 | 0.03377 | 0.04604 |
| 90    | $\Theta_1$ | 0.01640 | 0.02867 | 0.03823 | 0.04107 | 0.05007 | 0.03377 | 0.04606 |
| 91    | $\Theta_1$ | 0.01393 | 0.02707 | 0.03603 | 0.04213 | 0.05073 | 0.03377 | 0.04637 |
| 92    | $\Theta_1$ | 0.02100 | 0.03680 | 0.04750 | 0.04867 | 0.05093 | 0.03843 | 0.05678 |
| 93    | $\Theta_1$ | 0.01380 | 0.02700 | 0.03343 | 0.04273 | 0.05080 | 0.03377 | 0.04632 |
| 94    | $\Theta_1$ | 0.02347 | 0.03920 | 0.04763 | 0.04933 | 0.05120 | 0.04057 | 0.06768 |
| 95    | $\Theta_1$ | 0.02133 | 0.03760 | 0.04483 | 0.04847 | 0.05080 | 0.03830 | 0.05646 |
| 96    | $\Theta_1$ | 0.01660 | 0.02853 | 0.03250 | 0.04193 | 0.05007 | 0.03383 | 0.04640 |
| 97    | $\Theta_1$ | 0.01760 | 0.03087 | 0.03683 | 0.04747 | 0.05053 | 0.03550 | 0.04933 |
| 98    | $\Theta_1$ | 0.02273 | 0.03847 | 0.04750 | 0.04913 | 0.05113 | 0.03997 | 0.06223 |
| 99    | $\Theta_1$ | 0.02253 | 0.03467 | 0.04757 | 0.04953 | 0.05100 | 0.03963 | 0.06202 |
| 100   | $\Theta_1$ | 0.01593 | 0.02767 | 0.03523 | 0.04173 | 0.05020 | 0.03383 | 0.04643 |
| All   | $\Theta_1$ | 0.03513 | 0.03740 | 0.03890 | 0.04053 | 0.04300 | 0.03910 | 0.03912 |
|       |            |         |         |         |         |         |         |         |

#### Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

| Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?          |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--|--|--|--|
| In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli,     |  |  |  |  |
| and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79. |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |
|                                                                                                             |  |  |  |  |

## Bayesian Analysis: Posterior distribution over all loci



### Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:  $BF = Exp[\ ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel)) \\ or \ as \ LBF = 2 \ (ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel))) \\ shows the \ support for \ thisModel]$ 

| _ocus | TI(1a)    | BTI(1b)   | SS(2)     | HS(3)     |
|-------|-----------|-----------|-----------|-----------|
| 1     | -13871.66 | -13727.56 | -13770.82 | -13864.52 |
| 2     | -14049.76 | -13853.24 | -13895.19 | -13980.85 |
| 3     | -13872.41 | -13728.25 | -13772.07 | -13865.14 |
| 4     | -13873.74 | -13729.47 | -13771.53 | -13867.46 |
| 5     | -13872.43 | -13728.21 | -13770.53 | -13864.90 |
| 6     | -13873.54 | -13729.25 | -13773.09 | -13865.90 |
| 7     | -13885.38 | -13741.12 | -13787.31 | -13877.52 |
| 8     | -14142.72 | -13974.05 | -14023.19 | -14106.10 |
| 9     | -13963.28 | -13809.56 | -13860.99 | -13945.15 |
| 10    | -13872.56 | -13728.65 | -13772.37 | -13865.18 |
| 11    | -13874.11 | -13730.07 | -13773.47 | -13866.63 |
| 12    | -26734.64 | -19687.66 | -18483.34 | -18564.46 |
| 13    | -13906.30 | -13752.35 | -13797.63 | -13886.89 |
| 14    | -13907.44 | -13753.89 | -13798.95 | -13888.70 |
| 15    | -13870.91 | -13726.91 | -13770.05 | -13863.44 |
| 16    | -13872.06 | -13727.95 | -13771.17 | -13864.37 |
| 17    | -13871.84 | -13727.86 | -13771.92 | -13864.68 |
| 18    | -13889.29 | -13743.51 | -13788.13 | -13879.68 |
| 19    | -14135.88 | -13911.05 | -13948.13 | -14034.34 |
| 20    | -13874.02 | -13729.68 | -13773.42 | -13866.31 |
| 21    | -13874.55 | -13730.25 | -13773.50 | -13866.95 |
| 22    | -13916.85 | -13765.89 | -13812.64 | -13901.05 |
| 23    | -13873.68 | -13729.65 | -13773.15 | -13866.29 |
| 24    | -13872.87 | -13728.72 | -13771.82 | -13864.99 |
| 25    | -13874.21 | -13730.01 | -13774.07 | -13866.67 |
| 26    | -13870.90 | -13726.67 | -13768.53 | -13863.55 |
| 27    | -13874.19 | -13730.10 | -13774.36 | -13866.56 |
| 28    | -13870.62 | -13726.62 | -13770.73 | -13863.24 |
| 29    | -13874.32 | -13730.17 | -13773.94 | -13866.75 |

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 15:05:04]

| 30 | -13890.29 | -13743.58 | -13787.45 | -13879.63 |
|----|-----------|-----------|-----------|-----------|
| 31 | -13874.14 | -13729.97 | -13773.14 | -13866.38 |
| 32 | -13874.04 | -13729.82 | -13773.31 | -13866.37 |
| 33 | -13871.97 | -13728.03 | -13771.10 | -13864.97 |
| 34 | -13873.79 | -13729.44 | -13772.90 | -13866.05 |
| 35 | -13872.97 | -13728.74 | -13772.67 | -13865.34 |
| 36 | -13904.17 | -13755.78 | -13801.43 | -13892.16 |
| 37 | -13905.10 | -13756.43 | -13802.79 | -13892.18 |
| 38 | -13872.95 | -13728.77 | -13771.73 | -13865.03 |
| 39 | -13873.62 | -13729.46 | -13772.27 | -13866.12 |
| 40 | -13873.88 | -13729.60 | -13773.54 | -13865.92 |
| 41 | -13873.53 | -13729.55 | -13773.50 | -13865.87 |
| 42 | -13941.98 | -13793.80 | -13842.56 | -13930.25 |
| 43 | -13873.02 | -13728.75 | -13771.96 | -13865.47 |
| 44 | -13873.39 | -13729.13 | -13772.37 | -13865.79 |
| 45 | -13873.21 | -13729.05 | -13772.97 | -13865.59 |
| 46 | -13873.72 | -13729.52 | -13772.78 | -13865.86 |
| 47 | -13873.89 | -13729.53 | -13770.92 | -13866.11 |
| 48 | -13873.27 | -13729.07 | -13772.37 | -13866.65 |
| 49 | -13873.77 | -13729.55 | -13773.43 | -13866.04 |
| 50 | -13873.82 | -13729.75 | -13772.15 | -13867.70 |
| 51 | -13901.49 | -13755.99 | -13802.31 | -13893.32 |
| 52 | -13870.25 | -13726.13 | -13770.29 | -13862.58 |
| 53 | -13874.22 | -13729.96 | -13774.10 | -13867.28 |
| 54 | -13896.78 | -13752.31 | -13799.96 | -13889.26 |
| 55 | -13874.18 | -13730.10 | -13774.07 | -13866.59 |
| 56 | -13930.75 | -13774.10 | -13820.49 | -13910.93 |
| 57 | -13872.88 | -13728.82 | -13772.57 | -13865.22 |
| 58 | -20962.39 | -19075.73 | -18860.29 | -18940.60 |
| 59 | -16063.95 | -14939.00 | -14818.39 | -14900.81 |
| 60 | -13870.73 | -13726.67 | -13769.11 | -13863.08 |
| 61 | -13892.26 | -13747.83 | -13793.49 | -13884.30 |
| 62 | -13874.13 | -13729.83 | -13772.55 | -13866.28 |
| 63 | -13874.08 | -13729.89 | -13773.81 | -13866.36 |
| 64 | -13898.17 | -13753.46 | -13799.37 | -13890.28 |
| 65 | -13873.24 | -13729.14 | -13772.34 | -13865.55 |
| 66 | -14033.84 | -13883.59 | -13937.61 | -14019.29 |
| 67 | -13914.85 | -13760.44 | -13805.24 | -13897.35 |
| 68 | -13905.92 | -13752.87 | -13797.76 | -13888.57 |
| 69 | -13869.01 | -13724.73 | -13768.64 | -13861.08 |
| 70 | -13873.69 | -13729.47 | -13773.08 | -13865.77 |
| 71 | -13872.36 | -13728.14 | -13771.37 | -13864.65 |
| 72 | -13886.46 | -13742.21 | -13787.85 | -13878.72 |
| 73 | -13915.39 | -13766.66 | -13812.62 | -13901.63 |
| 74 | -13872.31 | -13728.05 | -13771.69 | -13864.51 |
|    |           |           |           |           |

| 75  | -13929.13   | -13770.69   | -13815.91   | -13906.16   |
|-----|-------------|-------------|-------------|-------------|
| 76  | -13873.87   | -13729.78   | -13773.83   | -13866.37   |
| 77  | -13965.84   | -13792.83   | -13836.56   | -13924.32   |
| 78  | -13887.86   | -13740.99   | -13784.95   | -13876.90   |
| 79  | -13910.77   | -13765.80   | -13816.17   | -13902.58   |
| 80  | -13871.54   | -13727.25   | -13770.87   | -13863.56   |
| 81  | -13932.29   | -13779.93   | -13829.01   | -13914.58   |
| 82  | -13872.74   | -13728.59   | -13772.43   | -13865.59   |
| 83  | -13902.26   | -13751.68   | -13796.94   | -13887.04   |
| 84  | -13870.41   | -13726.31   | -13770.21   | -13863.14   |
| 85  | -14296.26   | -14046.03   | -14084.23   | -14165.95   |
| 86  | -13873.86   | -13729.71   | -13772.99   | -13866.04   |
| 87  | -13874.33   | -13730.11   | -13774.00   | -13866.53   |
| 88  | -13940.51   | -13792.36   | -13844.17   | -13928.10   |
| 89  | -13874.24   | -13729.96   | -13773.28   | -13867.13   |
| 90  | -13873.99   | -13729.78   | -13772.86   | -13866.16   |
| 91  | -13872.69   | -13728.40   | -13772.35   | -13864.91   |
| 92  | -13935.99   | -13781.22   | -13830.29   | -13916.25   |
| 93  | -13873.05   | -13728.87   | -13772.90   | -13865.45   |
| 94  | -14663.18   | -14395.38   | -14436.03   | -14514.71   |
| 95  | -14129.01   | -13926.47   | -13969.11   | -14053.90   |
| 96  | -13872.18   | -13727.95   | -13771.11   | -13864.41   |
| 97  | -13891.00   | -13743.29   | -13787.22   | -13878.96   |
| 98  | -14103.89   | -13913.17   | -13961.45   | -14043.00   |
| 99  | -20708.87   | -17142.77   | -16579.06   | -16660.24   |
| 100 | -13874.09   | -13729.96   | -13773.32   | -13866.64   |
| All | -1419905.05 | -1391771.28 | -1393924.77 | -1403007.55 |

- (1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures(1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!
- (2) SS: Steppingstone Sampling (Xie et al 2011)
  (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = 48.816989]

#### Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets. In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods,

Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

## Acceptance ratios for all parameters and the genealogies

| Parameter              | Accepted changes                             | Ratio              |
|------------------------|----------------------------------------------|--------------------|
| $\Theta_1$ Genealogies | 379373136/400006401<br>1015695374/1599993599 | 0.94842<br>0.63481 |

## MCMC-Autocorrelation and Effective MCMC Sample Size

| Parameter              | Autocorrelation    | Effective Sampe Size     |
|------------------------|--------------------|--------------------------|
| $\Theta_1$ Genealogies | 0.70043<br>0.06691 | 1761887.02<br>8768093.52 |

## Average temperatures during the run

#### 

4 0.00000

0.00000

3

Adaptive heating often fails, if the average temperatures are very close together try to rerun using static heating! If you want to compare models using marginal likelihoods then you MUST use static heating

#### Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla aged inspect the tables carefully and judge wether an action is required. For example, if you run a Rayesian

| inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou tes are estimated poorly because the data contains little or no information for that route. Increasing the range will  |
| not help in such situations, reducing number of parameters may help in such situations.                                                                                                                                           |
|                                                                                                                                                                                                                                   |
| No warning was recorded during the run                                                                                                                                                                                            |
| The Warning was resorted during the run                                                                                                                                                                                           |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                   |