

## Graph Based Pattern Recognition

Repetition of Chapter 1: Introduction

PD Dr. Kaspar Riesen



- Pattern recognition is a computer science discipline that aims at defining algorithms that automate and/or support the human process of perception and intelligence.
- Pattern recognition employs machine learning to learn models from data.



• We distinguish between supervised and unsupervised learning.





- The question how to represent the underlying data in a formal way is a key issue.
- We distinguish between statistical and structural representations.



• We observe complementary properties of both approaches:

|                        | Vectors | Graphs |
|------------------------|---------|--------|
| Representational Power | Low     | High   |
| Efficiency             | High    | Low    |



- The field of graph-based pattern recognition has a long tradition and can roughly be subdivided into three main eras:
  - First era: Graph matching and graph clustering
  - Second era: Graph kernels
  - Third era: Graph neural networks
- The present lecture is structured along these three eras (from Chapter 2 to 12).



 In graph based pattern recognition one distinguishes between graph-level as well as node- and edge-level tasks:





**Definition 2 (Graph)** Let  $L_V$  and  $L_E$  be finite or infinite label sets for nodes and edges, respectively. A graph g is a four-tuple  $g = (V, E, \mu, \nu)$ , where

- V is the finite set of nodes,
- $E \subseteq V \times V$  is the set of edges,
- $\mu: V \to L_V$  is the node labeling function, and
- $\nu: E \to L_E$  is the edge labeling function.

## u'







- A subgraph  $g_1$  is obtained from a graph  $g_2$  by removing some nodes and their incident (as well as possibly some additional) edges from  $g_2$ .
- For  $g_1$  to be an *induced* subgraph of  $g_2$ , some nodes including their incident edges are removed from  $g_2$  only, i.e. no additional edge removal is allowed.





| Symbol           | Meaning                            |
|------------------|------------------------------------|
| g                | Graph                              |
| V                | Set of nodes                       |
| E                | Set of edges                       |
| (u,v)            | Edge from source $u$ to target $v$ |
| $u \sim v$       | u and $v$ are adjacent             |
| $\mid  \mu,   u$ | Node and edge labeling function    |
| $L_V,L_E$        | Alphabets for node and edge labels |
| $\mathcal{G}$    | Graph domain                       |
| V                | Graph size                         |
| arepsilon        | empty node/edge                    |
| $\mathcal{N}(v)$ | Neighborhood of node $v$           |
| deg(v)           | Degree of node $v$                 |
| in(v)            | In-degree of node $v$              |
| out(v)           | Out-degree of node $v$             |
| $\delta(g)$      | Density of graph $g$               |







 A common approach to describe the edge structure of a graph is to define *structural matrices*:

UNIVERSITÄT



$$\mathbf{D} = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{L} = \begin{bmatrix} 3 & -1 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 \\ -1 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\mathbf{L} = \begin{bmatrix} 3 & -1 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 \\ -1 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & 1 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$