แผนการสอนประจำบทที่ 9 โครงสร้างและยูเนียน

หัวข้อสำคัญ

- 1. ความแตกต่างระหว่างข้อมูลอาร์เรย์และโครงสร้างชนิดของอาร์เรย์
- 2. ชนิดข้อมูลแบบโครงสร้าง (Structure) และการจองพื้นที่ในหน่วยความจำ
- 3. ชนิดข้อมูลแบบยูเนียน (Unions) และการจองพื้นที่ในหน่วยความจำ
- 4. การใช้งานตัวแปรชนิดโครงสร้าง
- อาร์เรย์ของโครงสร้าง

วัตถุประสงค์เชิงพฤติกรรม

- 1. ผู้เรียนสามารถอธิบายชนิดข้อมูลแบบโครงสร้างได้
- 2. ผู้เรียนสามารถบอกความแตกต่างระหว่างข้อมูลอาร์เรย์และโครงสร้างชนิดของอาร์เรย์ได้
- 3. ผู้เรียนสามารถเขียนโปรแกรมจองพื้นที่หน่วยความจำและใช้งานตัวแปรชนิดยูเนียนได้

วิธีการสอนและกิจกรรมการเรียนการสอน

- 1. การบรรยาย
- 2. การทำแบบฝึกหัด

สื่อที่ใช้ประกอบการสอน

- 1. เอกสารประกอบการสอน
- 2. เครื่องคอมพิวเตอร์

การวัดและประเมินผล

- 1. สังเกตจากความสนใจของผู้เรียน
- 2. ประเมินจากการตอบคำถามของผู้เรียนและกิจกรรมในชั้นเรียน
- 3. การทำแบบฝึกหัดท้ายบท

บทที่ 9

โครงสร้างและยูเนียน

9.1. ความแตกต่างระหว่างชนิดข้อมูลอาร์เรย์และโครงสร้าง

อาร์เรย์ (array) เก็บข้อมูลจำนวนมากๆได้ เข้าถึงข้อมูลแต่ละตัวได้โดยง่าย ข้อจำกัด : ข้อมูลเหล่านั้น ต้องเป็นชนิดเดียวกันเท่านั้น

int point[5]

ข้อมูลแบบโครงสร้าง (Structure) ข้อมูลแต่ละตัวในกลุ่มสามารถมีชนิดต่างกันก็ได้ เช่น ข้อมูลผล การเรียนของนิสิตแต่ละคน เทียบเท่ากับระเบียน (Record) ในภาษาอื่น

```
struct student {
      char stdName[20];
      int age;
      float grade;
}
```

9.2 ชนิดข้อมูลแบบโครงสร้าง (Structure)

ตัวอย่างการข้อมูลที่สามารถใช้การประกาศตัวแปรแบบโครงสร้าง ดังภาพ 9.1

ภาพ 9.1 ตัวอย่างการข้อมูลที่สามารถใช้การประกาศตัวแปรโครงสร้าง

9.3 ชนิดข้อมูลแบบโครงสร้าง (Structure)

โครงสร้าง (Structure) คือ ข้อมูลที่นำเอาข้อมูลที่มีประเภทข้อมูลชนิดพื้นฐานที่แตกต่างกันแต่มี ความสัมพันธ์กันมารวมกันเป็นโครงสร้างข้อมูลชนิดใหม่ เช่น การเก็บข้อมูลนิสิต (student) จะต้องประกอบไป ด้วยข้อมูลรหัสนิสิต, ชื่อ (name),นามสกุล (surname), สาขาวิชา (major), คณะ (faculty) ตัวแปรโครงสร้างและ การประกาศชนิดข้อมูลของสมาชิกภายในโครงสร้างแสดงดังภาพ 9.2

student0	student1	student2
char name[20];	char name[20];	char name[20];
char surname[30]	char surname[30]	char surname[30]
float gpa;	float gpa;	float gpa;
int age;	int age;	int age;

ภาพ 9.2 ตัวอย่างการตัวแปรโครงสร้างและชนิดข้อมูลของสมาชิก

9.4 การจองพื้นที่ในหน่วยความจำ

ตัวแปรชนิดโครงสร้างจะจองขนาดพื้นที่ในหน่วยความจำขึ้นอยู่กับกับชนิดข้อมูลของสมาชิกภายในตัว แปรสร้าง ซึ่งอ้างอิงจากโปรแกรม DEV C version 5.11 มีข้อมูลชนิดจำนวนเต็มและจำนวนจริงจองพื้นที่ 4 ไบต์ และตัวแปรชนิดอักขระจองพื้นที่ 1 ไบต์ จากการประกาศตัวแปรชนิดโครงสร้างชื่อ new_student คอมไพลเลอร์จะ จองพื้นที่ในหน่อยความแสดงดังภาพ 9.3

ภาพ 9.3 จำลองการจองพื้นที่ในหน่วยความจำของตัวแปร new_student

9.5 การใช้งานตัวแปรชนิดโครงสร้าง

9.5.1 การกำหนดโครงสร้างตัวแปรชนิดโครงสร้าง

ก่อนจะสร้างตัวแปรชนิดโครงสร้างมาใช้งานได้นั้น ต้องกำหนดโครงสร้างข้อมูลสำหรับตัวแปรนั้นก่อน ดังนี้

รูปแบบการประกาศตัวแปร Pointer	ตัวอย่าง
รูปแบบที่ 1	struct student {
struct ชื่อของโครงสร้างที่จะสร้าง {	int stu_id;
ชนิดข้อมูลพื้นฐาน ชื่อตัวแปร;	char stu_name[20];
ชนิดข้อมูลพื้นฐาน ชื่อตัวแปร;	char stu_surname[20];
	char stu_major[20];
ชนิดข้อมูลพื้นฐาน ชื่อตัวแปร;	char stu_faculty[20];
};	};
รูปแบบที่ 2	typedef struct {
typedef struct {	int stu_id;
ชนิดข้อมูลพื้นฐาน ชื่อตัวแปร;	char stu_name[20];
ชนิดข้อมูลพื้นฐาน ชื่อตัวแปร;	char stu_surname[20];
	char stu_major[20];
ชนิดข้อมูลพื้นฐาน ชื่อตัวแปร;	char stu_faculty[20];
} ชื่อของโครงสร้างที่จะสร้าง;	} STUDENT;

9.5.2 การสร้างตัวแปรชนิดโครงสร้าง

เมื่อกำหนดโครงสร้างข้อมูลให้กับตัวแปรตามต้องการแล้ว ต่อไปคือขั้นตอนการสร้างตัวแปรจาก โครงสร้างที่ได้กำหนดไว้ โดยมีรูปแบบดังนี้

```
กำหนดโครงสร้างในรูปแบบที่ 1 (struct) struct ชนิดของข้อมูลชนิดโครงสร้าง ชื่อตัวแปร; เช่น struct student stu1, stu2;
```

```
กำหนดโครงสร้างในรูปแบบที่ 2 (typedef struct) ชนิดของข้อมูลชนิดโครงสร้าง ชื่อตัวแปร; เช่น
STUDENT stu1, stu2;
```

9.5.3 การกำหนดค่าเริ่มต้นให้กับตัวแปรชนิดโครงสร้าง

การกำหนดค่าเริ่มต้นให้ตัวแปรชนิดโครงสร้างมีรูปแบบคล้ายกับการการกำหนดค่าเริ่มต้นกับอาร์เรย์กำหนดค่าไว้ ภายใน { } และแยกค่าของแต่ละสมาชิกด้วยเครื่องหมาย , (comma) เช่น

กำหนดโครงสร้างในรูปแบบที่ 1 (struct)

struct student stu = {101, "Alice", "Wonderland", "CS", "Science"};

กำหนดโครงสร้างในรูปแบบที่ 2 (typedef struct)

STUDENT stu = {101, "Thomas", "Edison", "IT", "Science"};

9.5.4 การอ้างถึงสมาชิกในตัวแปรชนิดโครงสร้าง

การอ้างถึงตัวแปรหรือสมาชิกแต่ละตัวในตัวแปรประเภท struct สามารถทำได้ด้วยใช้ เครื่องหมาย dot (.) ตามด้วยชื่อตัวแปรหรือสมาชิก โดยมีรูปแบบดังนี้

รูปแบบการอ้างถึงสมาชิกในตัวแปรชนิดโครงสร้าง	ตัวอย่าง
ชื่อตัวแปรชนิดโครงสร้าง. <mark>ชื่อตัวแปรสมาชิก</mark>	stu1.stu_id stu1.stu_surname

9.5.5 การกำหนดข้อมูลให้กับตัวแปรชนิดโครงสร้าง

การกำหนดค่าต้องกำหนดให้ถูกต้องตามชนิดข้อมูลของสมาชิก และใช้คำสั่ง printf เพื่อแสดงผลข้อ มูลค่าของสมาชิกของตัวแปรชนิดโครงสร้าง

ตัวอย่างการตัวแปรชนิดโครงสร้าง

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	
2. main()	
3. {	
4. typedef struct {	
5. int stu_id;	
6. char stu_name[20];	
7. char stu_surname[20];	
8. }STUDENT;	
9. STUDENT stu = {101, "Jirawan", "Charoensuk"};	
10. printf(" Student Information\n");	
11. printf("Student ID: %d\n", stu.stu_id);	
12. printf("Name: %s\n", stu.stu_name);	
13. printf("Surname: %s\n", stu.stu_surname);	
14. }	

9.5.6 การรับข้อมูลและแสดงผลข้อมูลของตัวแปรชนิดโครงสร้าง

ใช้คำสั่ง scanf และ printf เพื่อรับค่าและแสดงผลเหมือนตัวแปรทั่วไป และต้องกำหนดให้รูปแบบข้อมูล ให้สอดคล้องกับชนิดข้อมูลของสมาชิกแต่ละค่า

ตัวอย่างการรับและแสดงผลสมาชิกในตัวแปรชนิดโครงสร้าง

	โปรแกรม	
1.	#include <stdio.h></stdio.h>	
2.	main()	
3.	{	
4.	typedef struct {	
5.	int stu_id;	
6.	char stu_name[20];	
7.	char stu_surname[20];	
8.	}STUDENT;	

```
STUDENT stu;
10.
       printf("Enter student ID: ");
       scanf("%d", &stu.stu_id);
11.
       printf("Enter name: ");
12.
13.
       scanf("%s", &stu.stu_name);
14.
       printf("Enter surname: ");
15.
       scanf("%s", &stu.stu_surname);
16.
       printf("ID: %d, Name: %s, Surname: %s", stu.stu_id, stu.stu_name, stu.stu_surname);
17. }
                                                ผลลัพธ์
```

9.5.7 ตัวแปรชนิดโครงสร้างกับการใช้อาร์เรย์

การสร้างตัวแปรอาร์เรย์ของตัวแปรชนิดโครงสร้าง

```
mranis ใช้งาน
typedef struct {
    int stu_id;
    char stu_name[20];
    char stu_surname[20];
    char stu_major[20];
    char stu_faculty[20];
} STUDENT;
STUDENT stu[10];
```

stu[0]
stu_id
stu_name
stu_surname
stu_major
stu_faculty

stu[9]
stu_id
stu_name
stu_surname
stu_major
stu_faculty

9.6 อาร์เรย์ของโครงสร้าง

ตัวแปรชนิดอาร์เรย์โครงสร้างจะจองขนาดพื้นที่ในหน่วยความจำขึ้นอยู่กับกับชนิดข้อมูลของสมาชิก ภายในตัวแปรสร้างและจำนวนขนาดของอาร์เรย์ที่กำหนด จากการประกาศตัวแปรชนิดโครงสร้างชื่อ profile คอม ไพลเลอร์จะจองพื้นที่ในหน่อยความแสดงดังภาพ 9.4

```
struct profile {
    char name[20];
    int age;
    char grade;
} student[3];
```


ภาพที่ 9.4 จำลองการจองพื้นที่ในหน่วยความจำของตัวแปร profile

ตัวอย่างต่อไปนี้จะแสดงการใช้อาร์เรย์ของโครงสร้าง

```
#include <stdio.h>
main() {
   struct profile {
      char name[20];
      int age;
      char grade;
   };
   struct profile student[10];
}
```

9.6.1 การกำหนดค่าเริ่มต้นให้ข้อมูลอาร์เรย์ของโครงสร้าง

9.6.2 ตัวแปรชนิดโครงสร้างกับการใช้อาร์เรย์

```
โปรแกรม
1. #include <stdio.h>
2. main()
3. {
4.
      typedef struct {
5.
          int stu_id;
          char stu_name[20];
7.
          char stu_surname[20];
8.
      }STUDENT;
9.
      STUDENT stu[3];
10.
      int i;
```

```
11.
       for(i=0; i<=2;i++){
12.
             printf("Enter student ID: ");
13.
             scanf("%d", &stu[i].stu_id);
14.
             printf("Enter name: ");
15.
            scanf("%s", &stu[i].stu_name);
16.
             printf("Enter surname: ");
            scanf("%s", &stu[i].stu_surname);
17.
18.
             printf("Added !\n\n");
19.
      }
20.
      for(i=0; i<=2;i++){
21.
            printf("%d. ID: %d\tName: %s\tSurname: %s\n", i+1, stu[i].stu_id,
    stu[i].stu_name, stu[i].stu_surname);
22.
     }
23. }
```

ผลลัพธ์

9.7 ยูเนียน (Unions)

คือ การกำหนดรูปแบบชนิดข้อมูลขึ้นมาใหม่ คล้ายกับข้อมูลแบบโครงสร้าง เพียงแต่ตัวแปรย่อยภายในจะ ใช้พื้นที่ หน่วยความจำร่วมกัน ดังนั้นถ้ากลุ่มตัวแปรย่อยในยูเนียนแล้ว Compiler จะจัดสรรเนื้อที่ในหน่วยความจำ ให้เท่ากับข้อมูล (ตัวแปร) ที่มีขนาดใหญ่ที่สุด ขนาดของตัวแปรแบบยูเนียน จะเท่ากับขนาดของตัวแปรย่อยที่ใหญ่ ที่สุด ยูเนียนถูกใช้เมื่อต้องการเก็บข้อมูลเพียงค่าใดค่าหนึ่ง และไม่อยากประกาศตัวแปรเพิ่ม

ภาพที่ 9.5 จำลองการจองพื้นที่ในหน่วยความจำของตัวแปรชนิดอาร์เรย์ของยูเนียน

ความแตกต่างระหว่างโครงสร้างและยูเนียน

ตัวแปรชนิดอาร์เรย์โครงสร้างและยูเนียน จากการประกาศตัวแปรชนิดโครงสร้างและยูเนียนชื่อ employee คอม ไพลเลอร์จะจองพื่นที่ในหน่อยความแสดงดังภาพ 9.6

ภาพที่ 9.6 จำลองการจองพื้นที่ในหน่วยความจำของตัวแปรโครงสร้างและยูเนียน

ตัวอย่างการประกาศและการทำงานของตัวแปรโครงสร้างและยูเนียน

โปรแกรม 1. #include <stdio.h> 2. union u_employee 3. { char name[20]; 4. 5. float salary; 6. int workerNo; 7. } u_emp; 8. struct s_employee 9. { 10. char name[20]; 11. float salary; 12. int workerNo; 13. } s_emp; 14. main() 15. { printf("size of union = $%d\n$ ", sizeof(u_emp)); 16. printf("size of structure = %d", sizeof(s_emp)); 17. 18. } ผลลัพธ์

ณ เวลาหนึ่งๆ สามารถใช้ค่าในตัวแปรแบบยูเนียนได้เพียงตัวเดียวเท่านั้นค่าที่คงอยู่ คือ ค่าของ ตัวแปรสมาชิกที่ถูกใช้ครั้งล่าสุด เพราะตัวแปรสมาชิกเหล่านั้นจะใช้พื้นที่หน่วยความจำร่วมกัน

ตัวอย่างที่ 1 การประกาศและการทำงานของยูเนียน

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	
2. main()	
3. {	
4. union myunion {	
5. float i;	
6. float x;	
7. };	
8. union myunion myU1;	
9. myU1.i = 5;	
10. printf("%.2f\n", myU1.i);	
11. myU1.x = 3.5;	
12. printf("%.2f\n", myU1.x);	
13. printf("%.2f\n", myU1.i);	
14. printf("%.2f\n", myU1.x);	
15.	
16. }	

ตัวอย่างที่ 2 การประกาศและการทำงานของยูเนียน

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	
2. union u_employee	
3. {	
4. char name[20];	
5. float salary;	
6. int workerNo;	
7. } u_emp;	
8. main()	
9. {	
10. printf("Enter name:");	
11. scanf("%s", &u_emp.name);	
12. printf("Enter salary:");	
13. scanf("%f", &u_emp.salary);	
14. printf("\n*************\n");	
15. printf("Name :%s\n", u_emp.name);	
16. printf("Salary: %.2f", u_emp.salary);	
17. }	

คำถามท้ายบทที่ 9

- 1. จงบอกความแตกต่างระหว่างชนิดข้อมูลอาร์เรย์และชนิดข้อมูลโครงสร้าง
- 2. จงอธิบายความแตกต่างระหว่างชนิดข้อมูลโครงสร้างและยูเนียน
- 3. จงอธิบายความหมายของการประกาศตัวแปรดังต่อไปนี้

```
    struct hotel
    {
    char room[20];
    float price;
    int type;
    } Ahotel[20];
```

- 4. จงประกาศตัวแปรชนิดโครงสร้างเพื่อเก็บข้อมูลค่าน้ำ ค่าไฟ ค่าส่วนกลาง ของหอพักจำนวน 20 ห้อง
- 5. จงเขียนโปรแกรมรับข้อมูลหนังสืองจำนวน 3 เล่ม โดยมีข้อกำหนดดังนี้
 - 5.1) ข้อมูลหนังสือ 1 เล่มประกอบด้วย ชื่อหนังสือ, ชื่อผู้แต่ง, ราคา
 - 5.2) ให้ประกาศตัวแปรหนังสือเป็นข้อมูลชนิดโครงสร้าง
 - 5.3) สรุปและแสดงผลข้อมูลหนังสือแต่ละเล่ม
 - 5.4) คำนวณและแสดงชื่อหนังสือที่ราคาแพงที่สุด
- 6. จากการประกาศตัวแปรโครงสร้างด้านล่าง จงตอบคำถามดังต่อไปนี้

```
    struct test
    {
    int val[3];
    char arr[8];
    float salary;
    };
```

- 6.1) struct test มีการจองพื้นที่ในหน่วยความจำทั้งหมดกี่ bytes
- 6.2) จงเขียนคำสั่งเพื่อแสดงขนาดของการจองพื้นที่ในหน่วยจำของตัวแปร struct test
- 6.3) ถ้าเปลี่ยนชนิดข้อมูลจาก struct เป็น union ตัวแปร test มีการจองพื้นที่ในหน่วยความจำ ทั้งหมดกี่ bytes

7. จงหาผลลัพธ์จากโปรแกรมดังต่อไปนี้

โปรแกรม	ผลลัพธ์(แสดงผลลัพธ์ตามบรรทัดบนหน้า จอคอมพิวเตอร์)
1. # include <stdio.h></stdio.h>	
2. # include <string.h></string.h>	1
3. main()	
4. {	2
5. struct student	3
6. {	กำหนดให้เปลี่ยนชนิดข้อมูลของ student เป็น
7. int code;	unioun
8. char name[20];	<u>urnour</u>
9. float salary	1
10. };	2
11. struct student string1 = { 1,"steve", 100000 };	3
12. struct student string2 = string1;	J
13. printf("%s", string2.name);	
14. }	

8. จงหาผลลัพธ์จากโปรแกรมดังต่อไปนี้

โปรแกรม	ผลลัพธ์(แสดงผลลัพธ์ตามบรรทัดบนหน้า จอคอมพิวเตอร์)
1. #include <stdio.h></stdio.h>	
2. struct course	1
3. {	1
4. int courseno;	2
5. char coursename[25];	3
6. };	กำหนดให้เปลี่ยนชนิดข้อมูลของ course เป็น
7. main()	· ·
8. {	<u>unioun</u>
9. struct course c[] = { {102, "C"},	4
10. {103, "C++"},	5
11. {104, "Java"},	
12. {105, "Php"}	6
13. };	
14. printf("%d\n", c[1].courseno);	
15. printf("%s\n", (*(c+2)).coursename);	
16. }	

- 9. จงเขียนโปรแกรมคิดค่าสาธารณูปโภคห้องพักของหอพักแห่งหนึ่งจำนวน 3 ห้อง โดยมีข้อกำหนดดังนี้ กำหนดให้ประกาศตัวแปรค่าใช้จ่ายหอพักเป็นข้อมูลชนิดโครงสร้าง ค่าสาธารณูปโภค ประกอบด้วย
 - 1. ค่าไฟฟ้า คิดค่าบริการหน่วยละ 15 บาท
 - 2. ค่าน้ำ คิดค่าบริการหน่วยละ 30 บาท
 - 3. ค่าขยะ คิดค่าบริการเดือนละ 100 บาท
 - 4. ค่าบริการส่วนกลาง คิดค่าบริการเดือนละ 150 บาท

สรุปและแสดงผลค่าสาธารณูปโภคของแต่ห้อง คำนวณและแสดงผลหมายเลขห้องที่ใช้ไฟฟ้าและน้ำมากที่สุด

```
Room number 1
Enter number of electric: 10
Enter number of water: 1
Added !
Room number 2
Enter number of electric: 1
Enter number of water: 10
Added !
Room number 3
Enter number of electric: 2
Enter number of water: 2
Added !
```

10. จงหาผลลัพธ์จากโปรแกรมดังต่อไปนี้

โปรแกรม	ผลลัพธ์(แสดงผลลัพธ์ตามบรรทัดบนหน้า จอคอมพิวเตอร์)
17. #include <stdio.h></stdio.h>	<u>ผลลัพธ์ของโปรแกรม</u>
18. struct Distance {	<u>กำหนดให้รับค่าของตัวแปร</u>
19. int km;	d1.km เป็น 5 และ d1.meter เป็น 0
20. int meter;	d2.km เป็น 3 และ d2.meter เป็น 0
21. } d1, d2, result;	
22. int divmeter;	7
23. main() {	8
24. printf("Enter 1st distance\n");	
25. printf("Enter kilometer: ");	9
26. scanf("%d", &d1.km);	10
27. printf("Enter meter: ");	11
28. scanf("%d", &d1.meter);	12
29.	13
30. printf("Enter 2st distance\n");	14
31. printf("Enter kilometer: ");	กำหนดให้รับค่าของตัวแปร
32. scanf("%d", &d2.km);	 d1.km เป็น 5 และ d1.meter เป็น 0
33. printf("Enter meter: ");	d2.km เป็น 3 และ d2.meter เป็น 30
34. scanf("%d", &d2.meter);	dz.km เบน 3 และ dz.meter เบน 30
35.	
36. divmeter = ((d1.km - d2.km)*100) + (d1.meter-	1
d2.meter);	2
37. result.meter = divmeter%100;	3
38. result.km = divmeter/100;	4
39.	5
40. printf("Sum of distances = %d km and %d meter",	6
result.km, result.meter);	
41. }	7
	8