Optimization Methods (CS1.404), Spring 2024 Lecture 21

Naresh Manwani

Machine Learning Lab, IIIT-H

April 6th, 2024

General Nonlinear Constrained Optimization Problems

Consider the optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
s.t. $h_j(\mathbf{x}) \le 0, j = 1...I$

$$e_j(\mathbf{x}) = 0; i = 1...m$$

where $f(\mathbf{x}), h_1(\mathbf{x}), \dots, h_l(\mathbf{x}), e_1(\mathbf{x}), \dots, e_m(\mathbf{x})$ are smooth functions over \mathbb{R}^n .

- Let $\mathcal{X} = \{ \mathbf{x} \in \mathbb{R}^n \mid h_i(\mathbf{x}) \le 0, \ j = 1 \dots l; \ e_i(\mathbf{x}) = 0; \ i = 1 \dots m \}$ be the feasible set.
- Let $\mathbf{x}^* \in \mathcal{X}$ and $\mathcal{A}(\mathbf{x}^*)$ denote set of active constraints at \mathbf{x}^* . Then, $\mathcal{A}(\mathbf{x}^*) = I(\mathbf{x}^*) \cup \{1, \dots, m\}$, where $I(\mathbf{x}^*) = \{ j \in \{1, \dots, l\} \mid h_i(\mathbf{x}^*) = 0 \}.$

Naresh Manwani OM April 6th, 2024

Regular Point for General Constraint Problems

Definition

A point $\mathbf{x}^* \in \mathcal{X}$ is said to be a regular point, if the gradient vectors $\nabla h_j(\mathbf{x}^*)$, $j \in I(\mathbf{x}^*)$ and $\nabla e_i(\mathbf{x}^*)$, $i \in \{1, \dots, m\}$ are linearly independent, where $I(\mathbf{x}^*) = \{j \in \{1, \dots, l\} \mid h_j(\mathbf{x}^*) = 0\}$. Which means,

$$\sum_{j \in I(\mathbf{x}^*)} \lambda_j \nabla h_j(\mathbf{x}^*) + \sum_{i=1}^m \mu_i \nabla e_i(\mathbf{x}^*) = \mathbf{0}$$

only if $\lambda_j = 0$, $j \in I(\mathbf{x}^*)$ and $\mu_i = 0$, $i = 1 \dots m$.

KKT Necessary Conditions of First Order

Theorem

Consider the optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

$$s.t. \ h_j(\mathbf{x}) \le 0, \ j = 1...I$$

$$e_j(\mathbf{x}) = 0; \ i = 1...m$$

where $f(\mathbf{x})$, $h_1(\mathbf{x}), \dots, h_l(\mathbf{x})$, $e_1(\mathbf{x}), \dots, e_m(\mathbf{x})$ are smooth functions over \mathbb{R}^n . If $\mathbf{x}^* \in \mathcal{X}$ is a local minimum and a regular point, then there exist unique vectors $\boldsymbol{\lambda}^* = [\lambda_1^* \dots \lambda_l^*]^\top \in \mathbb{R}^l_+$ and $\boldsymbol{\mu}^* = [\mu_1^* \dots \mu_m^*]^\top \in \mathbb{R}^m$, such that

$$\nabla f(\mathbf{x}^*) + \sum_{j=1}^{I} \lambda_j^* \nabla h_j(\mathbf{x}^*) + \sum_{i=1}^{m} \mu_i^* \nabla e_i(\mathbf{x}^*) = \mathbf{0}$$
$$\lambda_j^* h_j(\mathbf{x}^*) = 0, \ j = 1 \dots I$$
$$h_j(\mathbf{x}^*) \leq 0, \ j = 1 \dots I$$
$$e_i(\mathbf{x}^*) = 0, \ i = 1 \dots m$$

KKT Point: A point $(\mathbf{x}^* \in \mathcal{X}, \boldsymbol{\lambda} \in \mathbb{R}^l_+, \boldsymbol{\mu} \in \mathbb{R}^m)$ satisfying above conditions is called KKT point.

Proof

• Let x^* be a regular local minimizer of f on the set $\{x \in \mathbb{R}^n \mid h_i(x) \le 0, \ j = 1 \dots I; \ e_i(x) = 0, \ i = 1 \dots m\}.$ Then, x^* is also a regular minimizer of f on the set $\hat{S} = \{ \mathbf{x} \in \mathbb{R}^n \mid h_i(\mathbf{x}) \le 0, \ j \in I(\mathbf{x}^*); \ e_i(\mathbf{x}) = 0, \ i = 1 \dots m \}, \ \text{where}$ $I(\mathbf{x}^*) = \{j \in \{1, \dots, l\} \mid h_i(\mathbf{x}^*) = 0\}$. Note that the latter set only contains equality constraints. Therefore, from Lagrange's theorem, there exist vectors $\boldsymbol{\lambda}^* \in \mathbb{R}^I$ and $\boldsymbol{\mu}^* \in \mathbb{R}^m$ such that

$$abla f(\mathbf{x}^*) + \sum_{j=1}^{l} \lambda_j^*
abla h_j(\mathbf{x}^*) + \sum_{i=1}^{m} \mu_i^*
abla e_i(\mathbf{x}^*) = \mathbf{0}$$

where for all $j \notin I(\mathbf{x}^*)$, we have $\lambda_i^* = 0$. To complete the proof, we have to show that for all $j \in I(\mathbf{x}^*)$, we have $\lambda_i^* \geq 0$.

- We prove it by contradiction. Suppose that there exists a $p \in I(\mathbf{x}^*)$ such that $\lambda_n^* < 0$.
- Let $\hat{S} = \{ \mathbf{x} \in \mathbb{R}^n \mid h_i(\mathbf{x}) = 0, \ j \in I(\mathbf{x}^*), \ j \neq p; \ e_i(\mathbf{x}) = 0, \ i = 1 \dots m \}$ be the surface of active equality constraints except h_p .
- let $\hat{T}(\mathbf{x}^*) = \{ \mathbf{y} \in \mathbb{R}^n \mid \nabla h_i(\mathbf{x})^\top \mathbf{y} = 0, \ j \in I(\mathbf{x}^*), \ j \neq p; \ \nabla e_i(\mathbf{x})^\top \mathbf{y} = 0, \ i = 1 \dots m \}$ be the tangent space corresponding to \hat{S} .

4 中 × 4 御 × 4 差 × 4 差)

Naresh Manwani April 6th, 2024

Proof-Continue

- By regularity of \mathbf{x}^* , we claim that there exists $\mathbf{y} \in \hat{\mathcal{T}}(\mathbf{x}^*)$ such that $\nabla h_p(\mathbf{x}^*)^{\top}\mathbf{y} \neq 0.$
 - To see this, suppose that for all $\mathbf{y} \in \hat{T}(\mathbf{x}^*)$, $\nabla h_p(\mathbf{x}^*)^{\top} \mathbf{y} = 0$. This means that, $\nabla h_n(\mathbf{x}^*) \in \hat{T}(\mathbf{x}^*)^{\perp}$. This implies that $\nabla h_p(\mathbf{x}^*) \in \text{span}[\nabla h_i(\mathbf{x}^*), j \in I(\mathbf{x}^*), j \neq p, \nabla e_i(\mathbf{x}^*), i = 1, \dots, m].$
 - But, this contradicts the fact that x* is a regular point.
- Without loss of generality, we assume that we have y such that $\nabla h_p(\mathbf{x}^*)^{\top} \mathbf{y} < 0$.
- Consider the Lagrange condition, rewritten as

$$\nabla f(\mathbf{x}^*) + \sum_{j \neq p} \lambda_j^* \nabla h_j(\mathbf{x}^*) + \lambda_p^* \nabla h_p(\mathbf{x}^*) + \sum_{i=1}^m \mu_i^* \nabla e_i(\mathbf{x}^*) = \mathbf{0}$$

We take inner product with y on both sides and get

$$\nabla f(\mathbf{x}^*)^{\top} \mathbf{y} = -\lambda_p^* \nabla h_p(\mathbf{x}^*)^{\top} \mathbf{y}$$

ullet Because, we have assumed that $abla h_p(\mathbf{x}^*)^{ op}\mathbf{y} < 0$ and $\lambda_p^* < 0$, we have $\nabla f(\mathbf{x}^*)^{\top}\mathbf{v} < 0.$

Naresh Manwani OM April 6th, 2024

< □ ト < 圖 ト < 重 ト < 重)

Proof - Continue

• Because $\mathbf{y} \in \hat{T}(\mathbf{x}^*)$, we can find a differentiable curve $\{\mathbf{x}(t) \mid t \in (a,b)\}$ on \hat{S} such that there exist $t^* \in (a, b)$ with $x(t^*) = x^*$ and $x'(t^*) = y$. Now,

$$\frac{d}{dt}f(\mathbf{x}(t^*)) = \nabla f(\mathbf{x}^*)^{\top}\mathbf{y} < 0.$$

• This means, there exists $\delta > 0$ such that for all $t \in (t^*, t^* + \delta]$, we have

$$f(\mathbf{x}(t)) < f(\mathbf{x}(t^*)) = f(\mathbf{x}^*)$$

- On the other hand, $\frac{d}{dt}h_p(\mathbf{x}(t^*)) = \nabla h_p(\mathbf{x}^*)^{\top}\mathbf{y} < 0$ and for some $\epsilon > 0$ and all $t \in [t^* + t^* + \epsilon]$, we have that $h_p(\mathbf{x}(t)) < 0$.
- Therefore, for all $t \in (t^*, t^* + \min(\delta, \epsilon)]$, we have that $h_p(\mathbf{x}(t)) \leq 0$ and $f(\mathbf{x}(t)) < f(\mathbf{x}(t^*)) = f(\mathbf{x}^*).$
- Because the points $\mathbf{x}(t), t \in (t^*, t^* + \min(\delta, \epsilon)]$ are in \hat{S} , they are feasible points with lower objective function values than x*.
- This contradicts the assumption that x* is a local minimizer, and hence the proof is completed.

Naresh Manwani OM April 6th, 2024

4 中 × 4 御 × 4 差 × 4 差)

Necessity and Sufficiency of KKT Conditions for Convex Optimization Problem Under Slater's Condition

Theorem

Consider the convex optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})
s.t. h_j(\mathbf{x}) \le 0, j = 1...l
e_j(\mathbf{x}) = 0; i = 1...m$$

where

• $f(\mathbf{x}), h_1(\mathbf{x}), \dots, h_l(\mathbf{x})$ are smooth convex functions over \mathbb{R}^n .

$$\bullet$$
 $e_i(\mathbf{x}) = \mathbf{a}_i^{\top} \mathbf{x} - b_i, i = 1 \dots m$

Let $\mathcal{X} = \{\mathbf{x} \in \mathbb{R}^n \mid h_j(\mathbf{x}) \leq 0, \ j=1\dots I; \ e_i(\mathbf{x}) = 0; \ i=1\dots m\}$ be the feasible set and it satisfies Slater's Condition. Then first order KKT conditions are necessary and sufficient for a global minima of convex optimization problem above.

Interpretation of Lagrange Multipliers

- Consider the problem min f(x) such that $h_j(x) \leq 0, j = 1...I$.
- Let $\mathcal{X} = \{\mathbf{x} \in \mathbb{R}^n \mid h_j(\mathbf{x}) \leq 0, \ j = 1 \dots l\}$ be the feasible set.
- Let \mathbf{x}^* be a local minimum and a regular point. Thus, using KKT conditions, $\nabla f(\mathbf{x}^*) + \sum_{j=1}^l \lambda_j^* \nabla h_j(\mathbf{x}^*) = \mathbf{0}$ for some $[\lambda_1 \ \lambda_2 \ \dots \ \lambda_l] \in \mathbb{R}_+^l$.
- Let h_p for some p ∈ I(x*) is perturbed slightly so that I(x*) does not change.
 Given ε > 0, the perturbed constraint is as follows:

$$h_p(\mathbf{x}) \leq \epsilon \|\nabla h_p(\mathbf{x}^*)\|.$$

Consider the new optimization problem as follows.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
s.t. $h_j(\mathbf{x}) \le 0, \ j = 1 \dots I; \ j \ne p$

$$h_p(\mathbf{x}) \le \epsilon \|\nabla h_p(\mathbf{x}^*)\|$$

- Let \mathbf{x}_{ϵ}^* be a local minima of the new problem.
- Note that we have assumed that $I(\mathbf{x}_{\epsilon}^*) = I(\mathbf{x}^*)$.

<ロト <回ト < 重ト < 重

Interpretation of Lagrange Multipliers-Continue

- For the constraint $h_p(\mathbf{x})$, we have $h_p(\mathbf{x}^*_\epsilon) h_p(\mathbf{x}^*) = \epsilon \|\nabla h_p(\mathbf{x}^*)\|$. Using first order Taylor series approximation at \mathbf{x}^* , we get $h_p(\mathbf{x}^*_\epsilon) h_p(\mathbf{x}^*) \approx \nabla h_p(\mathbf{x}^*)^T(\mathbf{x}^*_\epsilon \mathbf{x}^*)$. This gives, $\nabla h_p(\mathbf{x}^*)^T(\mathbf{x}^*_\epsilon \mathbf{x}^*) \approx \epsilon \|\nabla h_p(\mathbf{x}^*)\|$.
- For other constraints h_j , $j \neq p$, we have $h_j(\mathbf{x}^*_{\epsilon}) h_j(\mathbf{x}^*) = 0$. Thus, we can get $\nabla h_j(\mathbf{x}^*)^T(\mathbf{x}^*_{\epsilon} \mathbf{x}^*) \approx 0$, $j \neq p$.
- Change in the function value:

$$f(\mathbf{x}_{\epsilon}^*) - f(\mathbf{x}^*) \approx \nabla f(\mathbf{x}^*)^T (\mathbf{x}_{\epsilon}^* - \mathbf{x}^*)$$

$$= -\sum_{j=1}^{l} \lambda_j^* \nabla h_j (\mathbf{x}^*)^T (\mathbf{x}_{\epsilon}^* - \mathbf{x}^*)$$

$$= -\epsilon \lambda_p^* ||\nabla h_p (\mathbf{x}^*)||$$

• Dividing by ϵ on both sides and taking limit $\epsilon \to 0$, we get

$$\lim_{\epsilon \to 0} \frac{f(\mathbf{x}_{\epsilon}^*) - f(\mathbf{x}^*)}{\epsilon} \approx -\lambda_p^* \|\nabla h_p(\mathbf{x}^*)\|$$

$$\Rightarrow \frac{\partial f}{\partial \epsilon} \propto -\lambda_p^*$$

• Thus, λ_p^* captures the rate of change of function f with respect to the perturbation ϵ in the p^{th} constraint $h_p(\mathbf{x})$.

<ロト <部ト < 注 ト < 注 ト

Constraint Classification

Strongly Active Constraint

A constraint is strongly active if it belongs to $\mathcal{A}(\mathbf{x}^*)$ and it has

- strictly positive Lagrange multiplier for inequality constraint $(\lambda_j > 0)$.
- strictly nonzero Lagrange multiplier for equality constraint $(\mu_i \neq 0)$.

Weakly Active Constraint

A constraint is weakly active at if it belongs to $\mathcal{A}(\mathbf{x}^*)$ and it has a zero-valued Lagrange multiplier $(\lambda_i = 0 \text{ or } \mu_i = 0)$.

Inactive Constraint

An inequality constraint is inactive active at if it does not belongs to $\mathcal{A}(\mathbf{x}^*)$. Thus, it has a zero-valued Lagrange multiplier $(\lambda_i = 0)$.

Weakly Active and Inactive Constraints do not participate!

<ロト <部ト < 重ト < 重

Example: Constraint Classification

Consider Optimization Problem as follows.

$$\begin{aligned} & \min_{(x_1,x_2) \in \mathbb{R}^2} \ \ \, x_1^2 + x_2^2 \\ & s.t. \ \ \, h_1(x_1,x_2) = x_1 + x_2 - 3 \geq 0 \qquad \text{(strongly active)} \\ & \quad \, h_2(x_1,x_2) = x_1 - 1.5 \geq 0 \qquad \text{(weakly active)} \\ & \quad \, h_3(x_1,x_2) = -x_1^2 - 4x_2^2 + 5 \geq 0 \qquad \text{(inactive)} \end{aligned}$$

The solution is unchanged even if constraints h_2 and h_3 are removed.

Second Order Necessary Conditions

Theorem

Let \mathbf{x}^* be a local minimum of the optimization problem described below.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
s.t. $h_j(\mathbf{x}) \le 0, j = 1...l$

$$e_i(\mathbf{x}) = 0; i = 1...m$$

where $f(\mathbf{x}) \in \mathbb{C}^2(\mathbb{R}^n)$, $h_i \in \mathbb{C}^2(\mathbb{R}^n)$, $j = 1 \dots I$ and $e_i \in \mathbb{C}^2(\mathbb{R}^n)$, $i = 1 \dots m$. Suppose that \mathbf{x}^* is regular, which means $\nabla h_i(\mathbf{x}^*)$, $j \in I(\mathbf{x}^*)$ and $\nabla e_i(\mathbf{x}^*)$, $i \in \{1, \dots, m\}$ are linearly independent, where $I(\mathbf{x}^*) = \{j \in \{1, \dots, l\} \mid h_i(\mathbf{x}^*) = 0\}.$

1 Then there exist $\lambda^* = [\lambda_1^* \dots \lambda_l^*]^\top \in \mathbb{R}_+^l$ and $\mu^* = [\mu_1^* \dots \mu_m^*]^\top \in \mathbb{R}^m$, such that

$$abla f(\mathbf{x}^*) + \sum_{j=1}^{I} \lambda_j^* \nabla h_j(\mathbf{x}^*) + \sum_{i=1}^{m} \mu_i^* \nabla e_i(\mathbf{x}^*) = \mathbf{0}$$
 $\lambda_i^* h_i(\mathbf{x}^*) = 0, \ j = 1 \dots I$

2 and $\mathbf{y}^{\top} [\nabla^2 f(\mathbf{x}^*) + \sum_{i=1}^{I} \lambda_i^* \nabla h_i^2(\mathbf{x}^*) + \sum_{i=1}^{m} \mu_i^* \nabla e_i^2(\mathbf{x}^*)] \mathbf{y} \ge 0$ for all $\mathbf{y} \in \hat{T}(\mathbf{x}^*)$ where

$$\hat{T}(\mathbf{x}^*) = \{ \mathbf{y} \in \mathbb{R}^n \mid \nabla h_i(\mathbf{x}^*)^\top \mathbf{y} = 0, \ j \in I(\mathbf{x}^*); \ \nabla e_i(\mathbf{x}^*)^\top \mathbf{y} = 0, \ i = 1 \dots m \}.$$

ОМ Naresh Manwani

Second Order Sufficiency Conditions

Theorem

Consider the optimization problem described below.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

$$s.t. \ h_j(\mathbf{x}) \le 0, \ j = 1...l$$

$$e_i(\mathbf{x}) = 0; \ i = 1...m$$

where $f(\mathbf{x}) \in \mathbb{C}^2(\mathbb{R}^n)$, $h_j \in \mathbb{C}^2(\mathbb{R}^n)$, $j = 1 \dots l$ and $e_i \in \mathbb{C}^2(\mathbb{R}^n)$, $i = 1 \dots m$. Suppose there exist a feasible point \mathbf{x}^* , $\mathbf{\lambda}^* = [\lambda_1 \ \lambda_2 \ \dots \ \lambda_l]^\top \in \mathbb{R}^l$, and $\boldsymbol{\mu} = [\mu_1 \ \mu_2 \ \dots \ \mu_m]^\top \in \mathbb{R}^m$, such that

1 $\lambda_{j}h_{j}(\mathbf{x}^{*}) = 0, \ j = 1...I$ and

$$\nabla f(\mathbf{x}^*) + \sum_{j=1}^{l} \lambda_j \nabla h_j(\mathbf{x}^*) + \sum_{i=1}^{m} \mu_i \nabla e_i(\mathbf{x}^*) = \mathbf{0}$$

2 Also, for all $\mathbf{y} \in \tilde{T}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*), \ \mathbf{y} \neq \mathbf{0}$, we have $\mathbf{y}^\top \nabla^2 \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) \mathbf{y} > 0$. where

$$\tilde{T}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \{\mathbf{y} \in \mathbb{R}^n \mid \nabla h_j(\mathbf{x}^*)^\top \mathbf{y} = 0, \ j \in \hat{I}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*); \ \nabla e_j(\mathbf{x}^*)^\top \mathbf{y} = 0, \ i = 1 \dots m\}.$$

for
$$\hat{l}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \{ j \in \{1, \dots, l\} \mid h_i(\mathbf{x}^*) = 0, \lambda_i^* > 0 \}.$$

Then x* is a local minimizer.

Naresh Manwani OM April 6th, 2024

Example 1

Consider the problem

min
$$(x_1 - 1)^2 + x_2 - 2$$

 $h(x_1, x_2) = x_2 - x_1 - 1 = 0$
 $g(x_1, x_2) = x_1 + x_2 - 2 \le 0$

- For all $(x_1, x_2) \in \mathbb{R}^2$, we have $\nabla h(x_1, x_2) = [-1 \ 1]^\top$ and $\nabla g(x_1, x_2) = [1 \ 1]^\top$.
- Thus, $\nabla h(x_1, x_2)$ and $\nabla g(x_1, x_2)$ are linearly independent and hence all feasible points are regular.
- $\nabla f(x_1, x_2) = [2(x_1 1) \ 1]^{\top}$.
- KKT conditions are as follows.

$$\nabla f(x_1, x_2) + \lambda \nabla g(x_1, x_2) + \mu \nabla h(x_1, x_2) = [2x_1 - 2 - \mu + \lambda, 1 + \mu + \lambda]^{\top} = [0, 0]^{\top}$$

$$\lambda (x_1 + x_2 - 2) = 0$$

$$\lambda \ge 0$$

$$x_2 - x_1 - 1 = 0$$

$$x_1 + x_2 - 2 \le 0$$

• To find points that satisfy above conditions, we analyse two cases: (a) $\lambda>0$, (b) $\lambda=0$.

Example 1 - Case 1 ($\lambda > 0$)

• $\lambda > 0$ implies that $x_1 + x_2 - 2 = 0$. Thus, we are faced with a system of four linear equations.

$$2x_1 - 2 - \mu + \lambda = 0$$
$$1 + \mu + \lambda = 0$$
$$x_2 - x_1 - 1 = 0$$
$$x_1 + x_2 - 2 = 0$$

- Solving the above system of equations, we obtain $x_1 = \frac{1}{2}, x_2 = \frac{3}{2}, \lambda = 0, \mu = -1.$
- However, this is not a legitimate solution to KKT condition, because we obtain $\lambda = 0$, which contradicts the assumption that $\lambda > 0$.

ОМ

Example 1 - Case 2 ($\lambda = 0$)

• Assuming $\lambda = 0$, we are faced with a system of three linear equations.

$$2x_1 - 2 - \mu = 0$$
$$1 + \mu = 0$$
$$x_2 - x_1 - 1 = 0$$

And the solution must satisfy $x_1 + x_2 - 2 \le 0$.

- Solving the above system of equations, we obtain $x_1 = \frac{1}{2}, \ x_2 = \frac{3}{2}, \ \mu = -1.$
- Note that $(x_1^*, x_2^*) = \begin{bmatrix} \frac{1}{2}, \frac{3}{2} \end{bmatrix}^\top$ satisfy the constraint $x_1 + x_2 2 \le 0$.
- $(x_1^*, x_2^*) = \begin{bmatrix} \frac{1}{2}, \frac{3}{2} \end{bmatrix}^{\top}$ is a candidate for being a minimizer.
- We now verify that the point $(x_1^*, x_2^*) = [\frac{1}{2}, \frac{3}{2}]^\top$, $\lambda^* = 0$ and $\mu^* = -1$ satisfy the second order sufficient conditions.
- For this, we form the matrix

$$\nabla^{2} \mathcal{L}(x_{1}^{*}, x_{2}^{*}, \lambda^{*}, \mu^{*}) = \nabla^{2} f(x_{1}^{*}, x_{2}^{*}) + \lambda^{*} \nabla^{2} h(x_{1}^{*}, x_{2}^{*}) + \mu^{*} \nabla g(x_{1}^{*}, x_{2}^{*})$$

$$= \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

- We then find the subspace $\tilde{T}(x_1^*, x_2^*, \lambda^*, \mu^*) = \{ \mathbf{y} \mid \nabla h(x_1^*, x_2^*)^\top \mathbf{y} = 0 \}.$
- Note that $\lambda^*=0$, the active constraint $x_1+x_2=2$ does not enter into the computation of $\tilde{T}(x_1^*,x_2^*,\lambda^*,\mu^*)$.

4 中 × 4 御 × 4 差 × 4 差)

Example 1 - Case 2 ($\lambda = 0$)

- We have $\tilde{T}(x_1^*, x_2^*, \lambda^*, \mu^*) = \{ \mathbf{y} \mid [-1, 1]\mathbf{y} = 0 \} = \{ [a, a]^\top \mid a \in \mathbb{R} \}.$
- We then check for positive semi-definiteness of $\nabla^2 \mathcal{L}(x_1^*, x_2^*, \lambda^*, \mu^*)$ on $\hat{\mathcal{T}}(x_1^*, x_2^*, \lambda^*, \mu^*)$.
- $\bullet \ \ \text{We have } \mathbf{y}^\top \nabla^2 \mathcal{L}(\mathbf{x}_1^*, \mathbf{x}_2^*, \lambda^*, \mu^*) \mathbf{y} = [\mathbf{a}, \mathbf{a}] \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{a} \end{bmatrix} = 2 \mathbf{a}^2.$
- Thus, $\nabla^2 \mathcal{L}(x_1^*, x_2^*, \lambda^*, \mu^*)$ is positive definite on $\tilde{T}(x_1^*, x_2^*, \lambda^*, \mu^*)$.
- By second order sufficient conditions, we conclude that $(x_1^*, x_2^*) = [\frac{1}{2}, \frac{3}{2}]^\top$ is a strict local minimizer.

