

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEM140900484302

Email: ee.shenzhen@sgs.com Page: 1 of 49

FCC REPORT

Application No: SZEM1409004843RF(SGS SH No.:SHEM1408001950RF)

Applicant: Shanghai IGOO Smartlamp Technology Co.,Ltd

Manufacturer: Shanghai Grandar Light Art& Technology Co.,Ltd

Factory: Shanghai Grandar Light Art& Technology Co.,Ltd

Product Name: Smartlamp Control

Model No.(EUT): IGOO 1

FCC ID: 2ACWVIGOO1SC

Standards: 47 CFR Part 15, Subpart C (2013)

Date of Receipt: 2014-09-03

Date of Test: 2014-09-10 to 2014-09-18

Date of Issue: 2014-10-11

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM140900484302

Page: 2 of 49

2 Version

Revision Record						
Version Chapter Date Modifier Remark						
00		2014-10-11		Original		

Authorized for issue by:		
Tested By	Chris-3hong	2014-09-18
	(Chris Zhong)/Project Engineer	Date
Prepared By	Sade Luo.	2014-10-11
	(Sade Luo) /Clerk	Date
Checked By	Emen-Li	2014-10-14
	(Emen Li) /Reviewer	Date

Report No.: SZEM140900484302

Page: 3 of 49

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2009	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2009	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	KDB558074 D01 v03r02	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	KDB558074 D01 v03r02	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	KDB558074 D01 v03r02	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	KDB558074 D01 v03r02	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	KDB558074 D01 v03r02	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS

Report No.: SZEM140900484302

Page: 4 of 49

4 Contents

			Page
1	CC	OVER PAGE	1
2	VE	ERSION	2
3	TE	EST SUMMARY	3
4	C	ONTENTS	4
5	GI	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	8
	5.7	DEVIATION FROM STANDARDS	8
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	8
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	EQUIPMENT LIST	9
6	TE	EST RESULTS AND MEASUREMENT DATA	11
	6.1	ANTENNA REQUIREMENT	11
	6.2	CONDUCTED EMISSIONS	12
	6.3	CONDUCTED PEAK OUTPUT POWER	16
	6.4	6DB OCCUPY BANDWIDTH	19
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	Spurious RF Conducted Emissions	
	6.8	RADIATED SPURIOUS EMISSION	
		8.1 Radiated Emission below 1GHz	
		8.2 Transmitter Emission above 1GHz	
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	40-49

Report No.: SZEM140900484302

Page: 5 of 49

5 General Information

5.1 Client Information

Applicant:	Shanghai IGOO Smartlamp Technology Co.,Ltd				
Address of Applicant:	Floor 11, Building 90, #1122 North Qinzhou Rd., Shanghai, P.R.China 200233				
Manufacturer:	Shanghai Grandar Light Art& Technology Co.,Ltd				
Address of Manufacturer:	Floor 11, Building 90, #1122 North Qinzhou Rd., Shanghai, P.R.China 200233				
Factory:	Shanghai Grandar Light Art& Technology Co.,Ltd				
Address of Factory:	Factory 6, No.466 Chengjian Road, Minhang District, Shanghai P.R.China				

5.2 General Description of EUT

<u> </u>	
Product Name:	Smartlamp Control
Model No.:	IGOO 1
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.0
	This test report is for BLE mode
Modulation Type:	GFSK
Number of Channel:	40
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Portable production
EUT Function:	IGOO Smartlamp
Test Power Grade:	7 (manufacturer declare)
Test Software of EUT:	*#*#3646633#*#* (manufacturer declare)
Antenna Type:	Integral
Antenna Gain:	-4dBi
AC Adapter:	MODEL:C-P17
	INPUT: 100-240V 50/60Hz 0.3A
	OUTPUT:DC 5.0V 1000mA
Battery:	MODEL:I01C01Ba01
	Maximum Charging Voltage:4.2V3.7V 2500mAh 9.25Wh
	Rechargeable Lithium-polaymer Battery
USB Cable:	100cm(Unshielded)

Report No.: SZEM140900484302

Page: 6 of 49

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2440MHz
The Highest channel	2480MHz

Report No.: SZEM140900484302

Page: 7 of 49

5.3 Test Environment

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	53 % RH		
Atmospheric Pressure:	1005mbar		

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab, No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

SGS

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEM140900484302

Page: 8 of 49

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber, Full-anechoic Chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197, G-416, T-1153 and C-2383 respectively.

• FCC - Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM140900484302

Page: 9 of 49

5.10 Equipment List

RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2015-06-10
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2015-05-16
3	EMI Test software	AUDIX	E3	SEL0050	N/A
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2014-10-24
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2014-10-24
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2014-10-24
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2015-05-16
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2014-10-24
9	Coaxial cable	SGS	N/A	SEL0027	2015-05-29
10	Coaxial cable	SGS	N/A	SEL0189	2015-05-29
11	Coaxial cable	SGS	N/A	SEL0121	2015-05-29
12	Coaxial cable	SGS	N/A	SEL0178	2015-05-29
13	Band filter	Amindeon	82346	SEL0094	2015-05-16
14	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2014-10-24
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2015-05-16
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2014-10-24
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2015-06-04

Report No.: SZEM140900484302

Page: 10 of 49

	RF connected test					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24	
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2014-10-24	
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2014-10-24	
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-29	
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-29	
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-16	
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-05-16	
8	Band filter	amideon	82346	SEL0094	2015-05-16	
9	POWER METER	R&S	NRVS	SEL0144	2014-10-24	
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2015-05-16	
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2014-10-24	

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM140900484302

Page: 11 of 49

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CF

47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is-4dBi.

Report No.: SZEM140900484302

Page: 12 of 49

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2009					
Test Frequency Range:	150kHz to 30MHz					
Limit:	Fragueney range (MHz)	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithn	n of the frequency.		•		
Test Procedure:	 The mains terminal disturb The EUT was connected to Impedance Stabilization Not impedance. The power call connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single Life exceeded. The tabletop EUT was place ground reference plane. An placed on the horizontal ground reference plane. An extra transfer of the EUT shall be 0.4 m for vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated extra transfer or the EUT and transfer or	* Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of				

Report No.: SZEM140900484302

Page: 13 of 49

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

Report No.: SZEM140900484302

Page: 14 of 49

Site : Shielding Room

Condition : 47 CFR PART15C QP CE LINE

Job No. : 4843RF Mode : BLE TX mode

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18249	0.02	9.70	22.08	31.80	54.37	-22.57	Average
2	0.18249	0.02	9.70	29.03	38.75	64.37	-25.62	QP
3	0.24293	0.02	9.70	32.80	42.52	62.00	-19.48	QP
4	0.24293	0.02	9.70	22.14	31.86	52.00	-20.14	Average
5 @	0.53782	0.01	9.80	20.86	30.67	46.00	-15.33	Average
6	0.53782	0.01	9.80	28.67	38.48	56.00	-17.52	QP
7	1.396	0.02	9.80	17.45	27.27	46.00	-18.73	Average
8	1.396	0.02	9.80	24.53	34.35	56.00	-21.65	QP
9	5.867	0.01	9.90	25.82	35.73	60.00	-24.27	QP
10	5.867	0.01	9.90	17.45	27.36	50.00	-22.64	Average
11	16.486	0.02	10.10	27.54	37.66	60.00	-22.34	QP
12	16.486	0.02	10.10	16.89	27.01	50.00	-22.99	Average

Report No.: SZEM140900484302

Page: 15 of 49

Neutral line:

Site : Shielding Room

Condition : 47 CFR PART15C QP CE NEUTRAL

Job No. : 4843RF Mode : BLE TX mode

	Freq	Cable Loss	LISN Factor	Read Level		Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.17961	0.02	9.70	34.64	44.36	64.50	-20.15	QP
2	0.17961	0.02	9.70	22.21	31.93	54.50	-22.57	Average
3	0.30348	0.01	9.71	18.92	28.64	50.15	-21.51	Average
4	0.30348	0.01	9.71	31.50	41.22	60.15	-18.93	QP
5	0.54355	0.01	9.80	17.43	27.24	46.00	-18.76	Average
6	0.54355	0.01	9.80	26.80	36.61	56.00	-19.39	QP
7	1.456	0.02	9.80	26.13	35.95	56.00	-20.05	QP
8	1.456	0.02	9.80	16.94	26.76	46.00	-19.24	Average
9	11.870	0.01	10.00	28.91	38.92	60.00	-21.08	QP
10	11.870	0.01	10.00	20.66	30.67	50.00	-19.33	Average
11	17.661	0.02	10.06	31.88	41.95	60.00	-18.05	QP
12	17.661	0.02	10.06	20.35	30.43	50.00	-19.57	Average

Report No.: SZEM140900484302

Page: 16 of 49

6.3 Conducted Peak Output Power

Measurement Data

GFSK mode								
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result					
Lowest	1.39	30.00	Pass					
Middle	1.85	30.00	Pass					
Highest	1.90	30.00	Pass					

Report No.: SZEM140900484302

Page: 17 of 49

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

Report No.: SZEM140900484302

Page: 18 of 49

Test mode: GFSK Test channel: Highest

Report No.: SZEM140900484302

Page: 19 of 49

6.4 6dB Occupy Bandwidth

Measurement Data

Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	0.688	≥500	Pass
Middle	0.697	≥500	Pass
Highest	0.697	≥500	Pass

Report No.: SZEM140900484302

Page: 20 of 49

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

Report No.: SZEM140900484302

Page: 21 of 49

Test mode: GFSK Test channel: Highest

Report No.: SZEM140900484302

Page: 22 of 49

6.5 Power Spectral Density

Measurement Data

GFSK mode							
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result				
Lowest	-0.28	≤8.00	Pass				
Middle	0.18	≤8.00	Pass				
Highest	0.25	≤8.00	Pass				

Report No.: SZEM140900484302

Page: 23 of 49

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

Report No.: SZEM140900484302

Page: 24 of 49

Test mode: GFSK Test channel: Highest

Report No.: SZEM140900484302

Page: 25 of 49

6.6 Band-edge for RF Conducted Emissions

Report No.: SZEM140900484302

Page: 26 of 49

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Highest

Report No.: SZEM140900484302

Page: 27 of 49

6.7 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	KDB558074 D01 v03r02					
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
	Remark:					
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test Mode:	Non-hopping transmitting with GFSK modulation					
Instruments Used:	Refer to section 5.10 for details					
Test Results:	Pass					

Report No.: SZEM140900484302

Page: 28 of 49

Test mode: GFSK Test channel: Lowest

Report No.: SZEM140900484302

Page: 29 of 49

Report No.: SZEM140900484302

Page: 30 of 49

Test mode: GFSK Test channel: Middle

Report No.: SZEM140900484302

Page: 31 of 49

Report No.: SZEM140900484302

Page: 32 of 49

Test mode: GFSK Test channel: Highest

Report No.: SZEM140900484302

Page: 33 of 49

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report.

Report No.: SZEM140900484302

Page: 34 of 49

6.8 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2009								
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency Detector RBW VBW Remar								
	0.009MHz-0.090MH	Peak	10kHz	<u>-</u>	30kHz	Peak			
	0.009MHz-0.090MH	Average	10kHz	<u> </u>	30kHz	Average			
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	<u> </u>	30kHz	Quasi-peak		
	0.110MHz-0.490MH	Z	Peak	10kHz	7	30kHz	Peak		
	0.110MHz-0.490MH	Z	Average	10kHz	<u> </u>	30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	<u> </u>	30kHz	Quasi-peak		
	30MHz-1GHz		Quasi-peak	100 kH	z	300kHz	Quasi-peak		
	Above 1GHz		Peak	1MHz	:	3MHz	Peak		
	Above 10112		Peak	1MHz		10Hz	Average		
Limit:	Frequency	Frequency Field st (microvo		Limit (dBuV/m)		Remark	Measuremen distance (m)		
	0.009MHz-0.490MHz	2	400/F(kHz)	-		-	300		
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	=		30		
	1.705MHz-30MHz		30	-		-	30		
	30MHz-88MHz		100	40.0	Qı	uasi-peak	3		
	88MHz-216MHz		150	43.5	Qı	uasi-peak	3		
	216MHz-960MHz		200	46.0	Qı	uasi-peak	3		
	960MHz-1GHz		500	54.0	Quasi-peak		3		
	Above 1GHz		500	54.0	Average		3		
	Note: 15.35(b), Unless otherwise specified, the limit of frequency emissions is 20dB above the maximum permitted ave limit applicable to the equipment under test. This peak limit applicable radiated by the device.								
Test Setup:	Figure 1. Above 1 GHz								
Test Procedure:	a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.								

Report No.: SZEM140900484302

Page: 35 of 49

	The FUT and a continue of the state of				
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.				
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.				
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.				
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.				
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.				
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)				
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.				
	i. Repeat above procedures until all frequencies measured was complete.				
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode, Charge +Transmitting mode.				
Final Test Mode:	Pretest the EUT at Transmitting mode and Charge +Transmitting mode, found the Charge +Transmitting mode which it is worse case Only the worst case is recorded in the report.				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				

Report No.: SZEM140900484302

Page: 36 of 49

6.8.1 Radiated Emission below 1GHz 30MHz~1GHz (QP) Test mode: AC Charge+Transmitting Vertical

Condition: FCC PART 15C 3m 3142C Vertical

Job No. : 4843RF

Mode : BLE AC charge TX mode

Freq							Over Limit
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
30.00	0.60	15.20	27.36	45.35	33.79	40.00	-6.21
47.66	0.76	9.22	27.30	50.55	33.23	40.00	-6.77
93.77	1.14	8.85	27.21	52.06	34.84	43.50	-8.66
285.98	1.84	13.30	26.44	51.46	40.16	46.00	-5.84
689.56	2.88	21.52	27.43	43.23	40.20	46.00	-5.80
755.39	3.07	21.77	27.35	43.23	40.72	46.00	-5.28
	MHz 30.00 47.66 93.77 285.98 689.56	Freq Loss MHz dB 30.00 0.60 47.66 0.76 93.77 1.14 285.98 1.84 689.56 2.88	Freq Loss Factor MHz dB dB/m 30.00 0.60 15.20 47.66 0.76 9.22 93.77 1.14 8.85 285.98 1.84 13.30 689.56 2.88 21.52	Freq Loss Factor Factor MHz dB dB/m dB 30.00 0.60 15.20 27.36 47.66 0.76 9.22 27.30 93.77 1.14 8.85 27.21 285.98 1.84 13.30 26.44 689.56 2.88 21.52 27.43	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 30.00 0.60 15.20 27.36 45.35 47.66 0.76 9.22 27.30 50.55 93.77 1.14 8.85 27.21 52.06 285.98 1.84 13.30 26.44 51.46 689.56 2.88 21.52 27.43 43.23	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 30.00 0.60 15.20 27.36 45.35 33.79 47.66 0.76 9.22 27.30 50.55 33.23 93.77 1.14 8.85 27.21 52.06 34.84 285.98 1.84 13.30 26.44 51.46 40.16 689.56 2.88 21.52 27.43 43.23 40.20	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m 30.00 0.60 15.20 27.36 45.35 33.79 40.00 47.66 0.76 9.22 27.30 50.55 33.23 40.00 93.77 1.14 8.85 27.21 52.06 34.84 43.50 285.98 1.84 13.30 26.44 51.46 40.16 46.00 689.56 2.88 21.52 27.43 43.23 40.20 46.00

Report No.: SZEM140900484302

Page: 37 of 49

Test mode:	AC Charge+Transmitting	Horizontal
------------	------------------------	------------

Data: 31

Condition: FCC PART 15C 3m 3142C Horizontal

Job No. : 4843RF

Mode : BLE AC charge TX mode

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	88.03	1.10	8.51	27.22	52.23	34.62	43.50	-8.88
2	230.10	1.57	11.67	26.59	49.15	35.80	46.00	-10.20
3	419.11	2.28	16.38	27.25	49.28	40.69	46.00	-5.31
4	719.20	2.96	21.60	27.39	38.61	35.78	46.00	-10.22
5	842.13	3.38	22.40	27.06	40.69	39.41	46.00	-6.59
6	948.76	3.65	23.30	26.54	38.03	38.44	46.00	-7.56

11994.380

9.31

38.69

38.70

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEM140900484302

Page: 38 of 49

6.8.2 Transmitter Emission above 1GHz **GFSK** Test channel: Lowest Remark: Peak Test mode: Cable Antenna Preamp Read Over Frequency Limit Line Level Loss Factor Factor Limit Polarization Level (MHz) (dBuV/m) (dBuV/m) (dB/m) (dB) (dB) (dBuV) (dB) 3316.617 4.66 32.56 38.66 43.51 42.07 74 -31.93 Vertical 74 4804.000 5.63 34.70 39.24 43.82 44.91 -29.09 Vertical 36.27 74 5986.509 6.63 39.19 44.15 47.86 -26.14 Vertical 7206.000 6.80 35.63 39.07 43.18 46.54 74 -27.46 Vertical 9608.000 8.94 37.33 37.93 43.00 51.34 74 -22.66 Vertical 38.89 38.83 52.78 74 -21.22 Vertical 12148.020 9.06 43.66 3249.760 4.69 32.38 38.63 44.54 42.98 74 -31.02 Horizontal 4804.000 5.63 34.70 39.24 44.27 45.36 74 -28.64 Horizontal 6.09 44.31 47.31 74 5895.771 36.10 39.19 -26.69 Horizontal 7206.000 6.80 35.63 39.07 43.73 47.09 74 -26.91 Horizontal 9608.000 8.94 37.33 37.93 42.07 50.41 74 -23.59 Horizontal

43.53

52.83

74

-21.17

Horizontal

Test mode:		GFSK	Tes	t channel:	Middle	Ren	nark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3333.545	4.66	32.61	38.67	43.80	42.40	74	-31.60	Vertical
4880.000	5.61	34.78	39.26	43.20	44.33	74	-29.67	Vertical
5986.509	6.63	36.27	39.19	45.31	49.02	74	-24.98	Vertical
7320.000	6.73	35.51	39.06	44.06	47.24	74	-26.76	Vertical
9760.000	8.84	37.80	37.84	42.78	51.58	74	-22.42	Vertical
11842.690	9.38	38.54	38.63	42.74	52.03	74	-21.97	Vertical
3291.385	4.67	32.50	38.65	44.00	42.52	74	-31.48	Horizontal
4880.000	5.61	34.78	39.26	43.88	45.01	74	-28.99	Horizontal
6109.670	6.51	36.18	39.17	44.56	48.08	74	-25.92	Horizontal
7320.000	6.73	35.51	39.06	44.80	47.98	74	-26.02	Horizontal
9760.000	8.84	37.80	37.84	41.96	50.76	74	-23.24	Horizontal
11963.890	9.33	38.66	38.68	44.31	53.62	74	-20.38	Horizontal

Report No.: SZEM140900484302

Page: 39 of 49

Test mode:		GFSK	Tes	t channel:	Highest	Rer	nark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3402.126	4.64	32.78	38.70	43.36	42.08	74	-31.92	Vertical
4960.000	5.60	34.86	39.29	43.42	44.59	74	-29.41	Vertical
6032.401	6.65	36.26	39.18	43.58	47.31	74	-26.69	Vertical
7440.000	6.72	35.43	39.05	43.30	46.40	74	-27.60	Vertical
9920.000	9.19	38.27	37.75	42.46	52.17	74	-21.83	Vertical
12086.330	9.17	38.81	38.77	43.43	52.64	74	-21.36	Vertical
3112.129	4.67	32.06	38.56	43.93	42.10	74	-31.90	Horizontal
4960.000	5.60	34.86	39.29	45.05	46.22	74	-27.78	Horizontal
6063.190	6.59	36.23	39.18	44.49	48.13	74	-25.87	Horizontal
7440.000	6.72	35.43	39.05	44.60	47.70	74	-26.30	Horizontal
9920.000	9.19	38.27	37.75	43.06	52.77	74	-21.23	Horizontal
11663.190	9.45	38.36	38.54	42.82	52.09	74	-21.91	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM140900484302

Page: 40 of 49

6.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 2009	ANSI C63.10 2009						
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chambe	r)					
Limit:	Frequency	Limit (dBuV/m @3m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak Value					
	88MHz-216MHz	43.5	Quasi-peak Value					
	216MHz-960MHz	46.0	Quasi-peak Value					
	960MHz-1GHz	54.0	Quasi-peak Value					
	Above 1GHz	54.0	Average Value					
	Above IGHZ	74.0	Peak Value					
Test Setup:								

Figure 1. 30MHz to 1GHz	Figure 2. Above 1 GHz
Test Procedure:	a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest
	channel

Report No.: SZEM140900484302

Page: 41 of 49

	 g. Test the EUT in the lowest channel , the Highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case. i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode, Charge +Transmitting mode
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worse case of GFSK modulation type. Pretest the EUT at Transmitting mode and Charge +Transmitting mode, found the Charge +Transmitting mode which it is worse case Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM140900484302

Page: 42 of 49

Test plot as follows:

Restricted bands around fundamental frequency							
Test mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Vertical	

Site : chamber

Condition: FCC PART C 247 PK 3m Vertical

Job No: : 4843RF

Mode: : 2402 BLE Bandedge

Freq	Aux Factor			Preamp Factor				
MHz	dB	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
2390.00								

Report No.: SZEM140900484302

Page: 43 of 49

	Test mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Horizontal
--	------------	------	---------------	--------	---------	------	------------

Site : chamber

Condition: FCC PART C 247 PK 3m Horizontal

Job No: : 4843RF

Mode: : 2402 BLE Bandedge

Aux Cable Ant Preamp Limit Read Loss Factor Factor Level Level Freq Factor Line Limit dBuV dBuV/m dBuV/m MHz dB dB/m 2390.00 0.00 3.36 32.35 38.46 45.41 42.66 74.00 -31.34 2 pp 2401.90 0.00 3.37 32.41 38.46 95.00 92.32 74.00 18.32

Report No.: SZEM140900484302

Page: 44 of 49

Test mode: GFSK	Test channel:	Lowest	Remark:	Average	Vertical
-----------------	---------------	--------	---------	---------	----------

Site : chamber

Condition: FCC PART C 247 AV 3m Vertical

Job No: : 4843RF

Mode: : 2402 BLE Bandedge

	-				Preamp				
	Freq	Factor	LOSS	Factor	Factor	revel	revel	Line	Limit
_	MHz	dB	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	2390.00								
Z pp	2402.09	0.00	3.37	32.41	30.40	01.15	/0.4/	34.00	24.4/

Report No.: SZEM140900484302

Page: 45 of 49

Test mode:	GFSK	Test channel:	Lowest	Remark:	Average	Horizontal
------------	------	---------------	--------	---------	---------	------------

Site : chamber

Condition: FCC PART C 247 AV 3m Horizontal

Job No: : 4843RF

1

Mode: : 2402 BLE Bandedge

				Preamp Factor				Freq	
dB	dBuV/m	dBuV/m	dBuV	dB	dB/m	dB	dB	MHz	_
								2390.00	pp

Report No.: SZEM140900484302

46 of 49 Page:

lest mode: GFSK lest channel: Highest Remark: Peak Vertical	Test mode:	GFSK	Test channel:	Highest	Remark:	Peak	Vertical
---	------------	------	---------------	---------	---------	------	----------

Data: 103

: chamber

Condition: FCC PART C 247 PK 3m Vertical

Job No: : 4843RF

Mode: : 2480 BLE Bandedge

				Preamp Factor			Aux Factor	Freq	
dB	dBuV/m	dBuV/m	dBuV	dB	dB/m	dB	dB	MHz	-
								2480.25 2483.50	1 pp

Report No.: SZEM140900484302

Page: 47 of 49

Test mode: GFSK Test channel: Highest Remark: Peak Horizontal

Site : chamber

Condition: FCC PART C 247 PK 3m Horizontal

Job No: : 4843RF

Mode: : 2480 BLE Bandedge

Aux Cable Ant Preamp Limit 0ver Read Freq Factor Loss Factor Factor Line Limit Level Level MHz dB dB dB/m dBuV dBuV/m dBuV/m 32.44 38.47 93.96 91.39 74.00 17.39 2479.76 0.00 3.46 2483.50 0.00 3.47 32.44 38.47 46.75 44.19 74.00 -29.81

Report No.: SZEM140900484302

48 of 49 Page:

٦	Γest mode:	GFSK	Test channel:	Highest	Remark:	Average	Vertical
---	------------	------	---------------	---------	---------	---------	----------

: chamber Site

Condition: FCC PART C 247 AV 3m Vertical

Job No: : 4843RF

Mode: : 2480 BLE Bandedge

	Freq				Preamp Factor				
-	MHz	dB	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp	2480.03 2483.50								

Report No.: SZEM140900484302

Page: 49 of 49

Site : chamber

Condition: FCC PART C 247 AV 3m Horizontal

Job No: : 4843RF

Mode: : 2480 BLE Bandedge

	Freq	Aux Factor			Preamp Factor				
-	MHz	dB	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp	2480.01 2483.50								

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor