Name, Vorname:

S2012

CvO Universität Oldenburg

Institut für Mathematik

Prof. Dr. Hannes Uecker

Nachklausur "Mathematische Modellierung", 26.7.2012

- Bearbeitungszeit: 110 Minuten
- Erlaubte Hilfsmittel: eigene Notizen im Umfang von maximal 10 Seiten (=5 beidseitig beschriebene Blätter) keine elektronischen Hilfsmittel wie Mobiltelephone oder Taschenrechner.

Aufgabe 1 10 Punkte. Betrachte die 1D Iteration $x_{n+1} = f_{\mu}(x_n)$ mit $f_{\mu}(x) = \frac{x^2}{1 + \mu x^2}$ für $x \in \mathbb{R}$ mit Parameter $\mu > 0$.

- a) In Abhängigkeit von $0 < \mu < 1$ bestimme man alle Fixpunkte. Insbesondere bestimme man μ_0 , sodaß für $\mu > \mu_0$ genau ein Fixpunkt und für $\mu < \mu_0$ genau drei Fixpunkte vorliegen. Welche Bifurkation findet bei μ_0 statt?
- b) Man bestimme die Stabilität aller Fixpunkte (am besten ohne Berechnung von f'_{μ} an den nichttrivialen Fixpunkten sondern durch Argumentation mit dem Verhalten von $f_{\mu}(x)$ für $x \to 0$ bzw $x \to \infty$).
- c) Für $\mu = 1/4$ und $x_0 = 1$ bzw $x_0 = 3$ bestimme man das Verhalten von x_n für $n \to \infty$ mittels graphischer Iteration (cobwebbing).

Lösung zu 1 a) $f_{\mu}(x) = x \Leftrightarrow x = 0$ oder $x = x_{\pm} = \frac{1}{2\mu} \pm \sqrt{\frac{1}{4\mu^2} - \frac{1}{\mu}}$, also 3 FP für $0 < \mu < 1/4$, 2 FP für $\mu = 1/4$, 1 FP (x = 0) für $\mu > 1/4$. Sattel–Knoten Bif. bei $\mu = 1/4$.

b) $f'_{\mu}(0) = 0$, also x = 0 stets stabil. Für $\mu = 1/4$ ist x = 2 instabil, für $0 < \mu < 1/4$ ist x_{-} instabil und x_{+} stabil. (Keine Rechnung mit f'_{μ} nötig, da notwendig $f'_{\mu}(x_{-}) > 1$ und $0 < f'_{\mu}(x_{+}) < 1$.

Aufgabe 2 8 Punkte. Man zeichne das Phasenporträt von

$$\ddot{x} = F'(x)$$
 mit $F(x) = -e^{-x}$.

Lösung zu 2 Energie $E = \frac{1}{2}\dot{x}^2 + e^{-x}$ (keine Extrema!)

Name, Vorname: 2

Aufgabe 3 8 Punkte. Man skizziere $f(x,y) = x^2 - y^2 e^{-y^2}$, bestimme alle Fixpunkte inklusive ihres Typs für das Gradientensystem

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x \\ y \end{pmatrix} = -\nabla f(x, y),$$

und skizziere das Phasenporträt.

Lösung zu 3 Links das Potential, rechts das Phasenporträt.

Aufgabe 4 14 Punkte. Betrachte

$$\dot{u} = u(v - u - u^2), \ \dot{v} = v(\alpha u - v), \ u, v \ge 0$$

mit Parameter $\alpha > 0$. Um welchen (groben) Kolmogorov Typ (PP), (C) oder (S) handelt es sich? Man skizziere die Phasenporträts (mit Nullklinen) für $\alpha = 1/2$ und für $\alpha = 2$.

Bonus, 4 Punkte. Wenn das System auf \mathbb{R}^2 betrachtet, welche Bifurkation findet dann bei $\alpha = 1$ statt? Man zeichne das Bifurkationsdiagramm. (z.B. u-Komponente der Fixpunkte über α).

Lösung zu 4 (S). Nichttriviale Nullklinen $v = u + u^2$ und $v = \alpha u$, nichttrivialer Schnittpunkt nur für $\alpha > 1$, dann klassische Symbiose mit stab. nichttr. FP.

Bonus. Stets 2 Fixpunkte (u, v) = (0, 0), stabil für $\alpha < 1$, und $(u, v) = (\alpha - 1, \alpha(\alpha - 1))$, stabil für $\alpha > 1$, also transkritische Bifurkation.

