Chapter 9

Ethan Mahintorabi

April 23, 2018

9.A

(i)

To show that the function $\varphi: R \to R/I$ given by $r \mapsto r + I$ is in general a ring homomorphism we must show that $\varphi(n+m) = \varphi(n) + \varphi(m)$ and $\varphi(nm) = \varphi(n) \cdot \varphi(m)$, indeed for $n, m \in R$

$$\begin{split} \varphi(n+m) &= (n+m) + I & \text{By defintion of } \varphi \\ &= (n+I) + (m+I) & \text{By defintion of addition in } R/I \\ &= \varphi(n) + \varphi(m) & \text{By defintion of } \varphi \end{split}$$

and

$$\varphi(nm) = (nm) + I$$
By defintion of φ

$$= (n+I) \cdot (m+I)$$
By defintion of multiplication in R/I

$$= \varphi(n) \cdot \varphi(m)$$
By defintion of φ .

Thus, we have shown that quotient rings are generally ring homomorphisms. It was also shown in Example 9.10 that the ring homomorphism is surjective.

(ii)

To show that the natural inclusion map $\iota: R \to S$ given by $s \mapsto s$ is a ring homomorphism we must show that $\iota(n+m) = \iota(n) + \iota(m)$ for $n, m \in S$. Indeed,

$$\iota(n+m)=(n+m)$$
 By defintion of ι
= $(n)+(m)$ By defintion of subring addition in R
= $\iota(n)+\iota(m)$ By defintion of ι ,

and

$$\iota(nm) = (nm)$$
 By defintion of ι
 $= (n) \cdot (m)$ By defintion of subring multiplication in R
 $= \iota(n) \cdot \iota(m)$ By defintion of ι .

Thus, we have shown that the natural inclusion map of a subring is in general a ring homomorphism. It was also shown in Example 9.11 that this homomorphism is injective.

(iii)

The function $\varphi : \mathbb{Z} \to \mathbb{Z}$ given by $n \mapsto 3n$ is not a ring homomorphism because it violates the property that $\varphi(nm) = \varphi(n)\varphi(m)$ with $n, m \in \mathbb{Z}$. Specifically,

$$\varphi(2 \cdot 3) = 3 \cdot (2 \cdot 3)$$
$$= 3 \cdot (6)$$
$$= 18$$

and with the other definition of φ ,

$$\varphi(2) \cdot \varphi(3) = 3(2) \cdot 3(3)$$
$$= 6 \cdot 9$$
$$= 54.$$

This violates the multiplication property of ring homomorphisms thus, it cannot be a ring homomorphism.

(9.B)

(i)

The function $\varphi: \mathbb{Z} \to 3\mathbb{Z}$ given by $n \mapsto 3n$ is not a homomorphism because the condition that $\varphi(nm) = \varphi(n)\varphi(m)$ does not hold for the case n = 2, m = 3, and indeed

$$\varphi(2 \cdot 3) = 3 \cdot (2 \cdot 3)$$
$$= 3 \cdot (6)$$
$$= 18$$

and with the other definition of φ ,

$$\varphi(2) \cdot \varphi(3) = 3(2) \cdot 3(3)$$
$$= 6 \cdot 9$$
$$= 54.$$

Since the property does not hold it cannot be a ring homomorphism.

(ii)

The function $\varphi: 2\mathbb{Z} \to 3\mathbb{Z}$ given by $2n \mapsto 3n$ is not a homomorphism because the condition that $\varphi(nm) = \varphi(n)\varphi(m)$ does not hold for the case n = 2, m = 4, and indeed

$$\varphi(2 \cdot 4) = \varphi(8)$$
$$= 3 \cdot 4$$
$$= 12$$

and with the other definition of φ ,

$$\varphi(2) \cdot \varphi(4) = 3(1) \cdot 3(2)$$
$$= 3 \cdot 6$$
$$= 18.$$

Since the property does not hold it cannot be a ring homomorphism.