Interior-point methods

Release 1.0.0

Victor Barbarich, Adelina Tsoi

CONTENTS:

1	inner_point	1
2	algorithms module	2
Pv	ython Module Index	3

CHAPTER ONE

INNER_POINT

ALGORITHMS MODULE

gradient(f, x, delta_x=1e-08)

Returns the gradient of the function at a specific point x

A two-point finite difference formula that approximates the derivative

$$\frac{\partial f}{\partial x} \approx \frac{f(x+h) - f(x-h)}{2h} \tag{2.1}$$

Gradient

$$\nabla f = \left[\frac{\partial f}{\partial x_1} \ \frac{\partial f}{\partial x_2} \ \dots \ \frac{\partial f}{\partial x_n} \right]^\top$$
 (2.2)

Parameters

- **f** (Callable[[numpy.ndarray], numbers.Real]) function which depends on n variables from x
- **x** (numpy.ndarray) n dimensional array
- **delta_x** (numbers.Real) precision of two-point formula above (delta x = h)

Returns

Return type numpy.ndarray

 $jacobian(f_vector, x, delta_x=1e-08)$

Returns the Jacobian matrix of a sequence of m functions from f vector by n variables from x.

$$\nabla f = \left[\frac{\partial f}{\partial x_1} \frac{\partial f}{\partial x_2} \dots \frac{\partial f}{\partial x_n} \right]^{\top}$$
 (2.3)

Parameters

- **f_vector** (Sequence[Callable[[numpy.ndarray], numbers.Real]]) a flat sequence, list or tuple or other containing m functions
- x (numpy.ndarray) an n-dimensional array. The specific point at which we will calculate
 the Jacobian
- **delta_x** (*numbers.Real*) precision of gradient

Returns the Jacobian matrix according to the above formula. Matrix n x m

Return type numpy.ndarray

PYTHON MODULE INDEX

i

Inner_point.algorithms, 2

INDEX

\spxentrygradient()\spxextrain module In-

 $ner_point.algorithms, 2$

\spxentryInner_point.algorithms \spxentrymodule, 2

\spxentryjacobian()\spxextrain module In-

ner_point.algorithms, 2

\spxentrymodule \spxentryInner_point.algorithms, 2