

Visualising Code_Saturne using pyvista and Python

Matthew Falcone

University of Sheffield, UK

8 May 2024

Contents

Introduction

Data produced by Code_Saturne

Paraview

VTK: Visualization Toolkit

Pyvista

Examples

Discussion: Paraview or Pyvista?

What post-processing data does Code Saturne produce?

Data produced by Code Saturne

- Monitoring points:
 - monitoring/*.csv or monitoring/*.dat files.
 - Comes from probes specified in the input file or through user subroutine
 - Easy to process in Matlab or Python
- Surface or volume data
 - By default, boundary faces and interior cells are outputted with associated arrays
 - Boundary temperature, v^+ , etc.
 - Velocity, pressure, etc.
 - By default saved in the Ensight Gold file format.
 - postprocessing/*.case
 - Others are available: MED. CGNS etc.
- In this presentation, we focus on processing the .case files.

What post-processing data does Code_Saturne produce?

Data produced by

Data produced by Code_Saturne Paraview

Visualiz Toolkit Pyvista

Example

Discussion Paraview of Pyvista?

- Monitoring points:
 - monitoring/*.csv or monitoring/*.dat files.
 - Comes from probes specified in the input file or through user subroutine
 - Easy to process in Matlab or Python
- Surface or volume data
 - By default, boundary faces and interior cells are outputted with associated arrays
 - Boundary temperature, y^+ , etc.
 - Velocity, pressure, etc.
 - By default saved in the Ensight Gold file format.
 - postprocessing/*.case
 - Others are available: MED. CGNS etc.
- In this presentation, we focus on processing the .case files.

What post-processing data does Code Saturne produce?

Data produced by

Code Saturne

- Monitoring points:
 - monitoring/*.csv or monitoring/*.dat files.
 - Comes from probes specified in the input file or through user subroutine
 - Easy to process in Matlab or Python
- Surface or volume data
 - By default, boundary faces and interior cells are outputted with associated arrays
 - Boundary temperature, v^+ , etc.
 - Velocity, pressure, etc.
 - By default saved in the Ensight Gold file format.
 - postprocessing/*.case
 - Others are available: MED. CGNS etc.
- In this presentation, we focus on processing the .case files.

Code Saturne

Paraview

- The .case files are usually visualised using paraview
- Widely-used visualisation package with a lot of functionality
 - GUI
 - Server-client mode: pvserver
 - Run on HPC with MPI, visualise on local machine
 - See ARCHER2 documentation.
 - In-situ visualisation with Catalyst
 - Python scripting (pvpython or pvbatch)
 - 'Start trace'

Introduction

Data produced by Code_Saturne

Paraview VTK: Visualizati

Pyvist

Example

Discussion Paraview of Pyvista?

_ . . .

- The .case files are usually visualised using paraview
- Widely-used visualisation package with a lot of functionality
 - GUI
 - Server-client mode: pvserver
 - Run on HPC with MPI, visualise on local machine
 - See ARCHER2 documentation
 - In-situ visualisation with Catalyst
 - Python scripting (pvpython or pvbatch)
 - 'Start trace'

Introduction

Data produced by Code_Saturne

Paraview VTK: Visualizatio

Pyvist

Example

Discussion Paraview of Psyvista?

y vista:

- The .case files are usually visualised using paraview
- Widely-used visualisation package with a lot of functionality
 - GUI
 - Server-client mode: pvserver
 - Run on HPC with MPI, visualise on local machine
 - See ARCHER2 documentation
 - In-situ visualisation with Catalyst
 - Python scripting (pvpython or pvbatch)
 - 'Start trace'

Introduction

Data produced by Code_Saturne

VTK: Visualizati

Pyvista

Example

Discussion Paraview of Pyvista?

- The .case files are usually visualised using paraview
- Widely-used visualisation package with a lot of functionality
 - GUI
 - Server-client mode: pvserver
 - Run on HPC with MPI, visualise on local machine
 - See ARCHER2 documentation
 - In-situ visualisation with Catalyst
 - Python scripting (pvpython or pvbatch)
 - 'Start trace'

Introduction

Data produced by Code_Saturne

VTK: Visualization

ryvista

схаттріе

Discussion Paraview of Pyvista?

- Paraview and Pyvista are based on the VTK.
- C++ library with interfaces for python and other languages.
- Python wrapper of VTK is nearly identical to the C++ functions and classes.
 - Very clunky
- Paraview's python scripting also inherits some of that clunkiness.
- My view is that where possible post-processing should be scripted
 - Easier to re-produce similar plots for different cases or papers.
 - Easier to make high-quality plots-they can be iteratively improved.
- The easier the scripting is, the better!

Introduction

Data produced by Code_Saturne

VTK: Visualization Toolkit

Example

Discussion

Paraview of Pyvista?

- Paraview and Pyvista are based on the VTK.
- C++ library with interfaces for python and other languages.
- Python wrapper of VTK is nearly identical to the C++ functions and classes.
 - Very clunky
- Paraview's python scripting also inherits some of that clunkiness.
- My view is that where possible post-processing should be scripted
 - Easier to re-produce similar plots for different cases or papers.
 - Easier to make high-quality plots-they can be iteratively improved.
- The easier the scripting is, the better!

Data produced by Code_Saturne
Paraview

VTK: Visualization Toolkit

Example

Discussion Paraview of

- Paraview and Pyvista are based on the VTK.
- C++ library with interfaces for python and other languages.
- Python wrapper of VTK is nearly identical to the C++ functions and classes.
 - Very clunky
- Paraview's python scripting also inherits some of that clunkiness.
- My view is that where possible post-processing should be scripted
 - Easier to re-produce similar plots for different cases or papers.
 - Easier to make high-quality plots-they can be iteratively improved.
- The easier the scripting is, the better!

ntroduction
Data produced by
Code_Saturne
Paraview
VTK:
Visualization
Toolkit

Example

Discussion Paraview of Pyvista?

Pyvista?

- Paraview and Pyvista are based on the VTK.
- C++ library with interfaces for python and other languages.
- Python wrapper of VTK is nearly identical to the C++ functions and classes.
 - Very clunky
- Paraview's python scripting also inherits some of that clunkiness.
- My view is that where possible post-processing should be scripted
 - Easier to re-produce similar plots for different cases or papers.
 - Easier to make high-quality plots-they can be iteratively improved.
- The easier the scripting is, the better!

ntroduction
Data produced by
Code_Saturne
Paraview
VTK:
Visualization
Toolkit

Example

Discussion Paraview of Pyvista?

. . .

- Paraview and Pyvista are based on the VTK.
- C++ library with interfaces for python and other languages.
- Python wrapper of VTK is nearly identical to the C++ functions and classes.
 - Very clunky
- Paraview's python scripting also inherits some of that clunkiness.
- My view is that where possible post-processing should be scripted
 - Easier to re-produce similar plots for different cases or papers.
 - Easier to make high-quality plots-they can be iteratively improved.
- The easier the scripting is, the better!

Code Saturne

Pvvista

- Lightweight, 'pythonic' wrapper for VTK.
- Inherits from the VTK python classes but makes them more user friendly.
 - Fully compatible with VTK base classes.
 - Much lower learning curve.
- Much of the 'filters' you find in Paraview are in pyvista
 - Both are based on VTK
 - For example:
 - 'Cell data to point data' in Paraview
 - obj.cell_data_to_point_data() or obj.ctp()
- Pyvista has easy access to the underlying data.

Code Saturne

Pvvista

- Lightweight, 'pythonic' wrapper for VTK.
- Inherits from the VTK python classes but makes them more user friendly.
 - Fully compatible with VTK base classes.
 - Much lower learning curve.
- Much of the 'filters' you find in Paraview are in pyvista
 - Both are based on VTK
 - For example:
 - 'Cell data to point data' in Paraview
 - obj.cell_data_to_point_data() or obj.ctp()
- Pyvista has easy access to the underlying data.

Data produced by Code_Saturne Paraview VTK:

Pyvista

схаттріе

Discussion Paraview of Pyvista?

- Lightweight, 'pythonic' wrapper for VTK.
- Inherits from the VTK python classes but makes them more user friendly.
 - Fully compatible with VTK base classes.
 - Much lower learning curve.
- Much of the 'filters' you find in Paraview are in pyvista
 - Both are based on VTK.
 - For example:
 - 'Cell data to point data' in Paraview
 - obj.cell_data_to_point_data() or obj.ctp()
- Pyvista has easy access to the underlying data.

ntroduction

Data produced by
Code_Saturne

Paraview

VTK:
Visualization

Pyvista

LXample

Paraview of Pyvista?

. . .

- Lightweight, 'pythonic' wrapper for VTK.
- Inherits from the VTK python classes but makes them more user friendly.
 - Fully compatible with VTK base classes.
 - Much lower learning curve.
- Much of the 'filters' you find in Paraview are in pyvista
 - Both are based on VTK.
 - For example:
 - 'Cell data to point data' in Paraview
 - obj.cell_data_to_point_data() or obj.ctp()
- Pyvista has easy access to the underlying data.

Introduction

Examples

Discussion: Paraview o Pyvista?

- Look at a simple pipe flow case
 - First, Paraview...
- Example Jupyter notebooks (*.ipynb files) using JupyterLab.
 - You could use Jupyter with Visual Studio Code too
- Examples:
 - reading_cs.ipynb: Reading and plotting .case file
 - common_filters.ipynb: Q vortex identification criterion and λ_2 , contour filter
 - statistics.ipynb: Computing TKE, $k = \overline{u_i' u_i'}/2$
- Optional ones:
 - nice_figures.ipynb: Combining with matplotlib to produce multiple subplots
 - spatial_averaging.ipynb: averaging pipe in θ .

Introduction

Examples

Discussion: Paraview o Pyvista?

- Look at a simple pipe flow case
 - First, Paraview...
- Example Jupyter notebooks (*.ipynb files) using JupyterLab.
 - You could use Jupyter with Visual Studio Code too
- Examples:
 - reading_cs.ipynb: Reading and plotting .case file
 - common_filters.ipynb: Q vortex identification criterion and λ_2 , contour filter
 - statistics.ipynb: Computing TKE, $k = u'_i u'_i / 2$
- Optional ones:
 - nice_figures.ipynb: Combining with matplotlib to produce multiple subplots
 - spatial_averaging.ipynb: averaging pipe in θ .

Introduction

Examples

Discussion: Paraview o Pyvista?

- Look at a simple pipe flow case
 - First, Paraview...
- Example Jupyter notebooks (*.ipynb files) using JupyterLab.
 - You could use Jupyter with Visual Studio Code too
- Examples:
 - reading_cs.ipynb: Reading and plotting .case file
 - common_filters.ipynb: Q vortex identification criterion and λ_2 , contour filter
 - statistics.ipynb: Computing TKE, $k = \overline{u_i' u_i'}/2$
- Optional ones:
 - nice_figures.ipynb: Combining with matplotlib to produce multiple subplots
 - spatial_averaging.ipynb: averaging pipe in θ .

Introduction

Examples

Discussion: Paraview o Pyvista?

- Look at a simple pipe flow case
 - First, Paraview...
- Example Jupyter notebooks (*.ipynb files) using JupyterLab.
 - You could use Jupyter with Visual Studio Code too
- Examples:
 - reading_cs.ipynb: Reading and plotting .case file
 - common_filters.ipynb: Q vortex identification criterion and λ_2 , contour filter
 - statistics.ipynb: Computing TKE, $k = \overline{u_i' u_i'}/2$
- Optional ones:
 - nice_figures.ipynb: Combining with matplotlib to produce multiple subplots
 - spatial_averaging.ipynb: averaging pipe in θ .

Using Paraview or Pyvista?

Introduction

Examples

Discussion: Paraview or Pyvista?

Conclusion

Paraview

- For having an initial look at data.
 - Nice to have a GUI
- Very large unstructured mesh
 - $N_{cell} \gg 100M$
 - MPI on HPC perhaps with server-client mode

Pyvista

- Up to reasonably large unstructured meshes $N_{cell} < 100M$.
- Produces publication quality plots easily
- Pyvista can be run multithreaded using OpenMP, but it isn't trivial
 - Build VTK from source!
 - I have a script!
 - You could use Apptainer/Singularity

Conclusions

Introduction

Examples

Paraview o

- I have introduced pyvista for use with Code_Saturne
 - \bullet Can be used with other formats compatible with VTK
 - *.xdmf (CHAPSim or Incompact3D), *.foam (OpenFoam).
- Shown some brief examples of how to use it
- Given my opinion of where to use it compared with Paraview