Université A. Mira-Bejaia Faculté des Sciences Exactes Département Informatique 1ème année RN

Année universitaire : 2020
Nom:
Prénom:
Graupa :

Durée : 1H

Examen de remplacement du module « Architecture1 »

EXERCICE 1: (10 POINTS)

1.

	Valeur correspondant en décimale
(100) ₆ =	
$(0,24)_6=$	
(BD) ₁₆ =	
(O,E) ₁₆ =	

	Valeur correspondant en Binaire
$(100)_{10}=$	
(10,01) ₈ =	
(CD,OA) ₁₆ =	
(3,5) ₃₂ =	
(10)5=	

- 2. Donnez la table de vérité de la fonction F suivante : F(x,y,z,t) = S(0,1,3,5,14,15)
- Donnez la forme canonique disjonctive de F.

EXERCICE 2: (10 POINTS)

Soit la fonction F(a,b,c) définie par la table de vérité suivante :

- A. Donner la fonction F(a,b,c) sous sa première forme canonique (disjonctive).
- B. Réaliser la fonction F(a,b,c) en se servant :
 - **1.** d'un MUX $8 \rightarrow 1$ et sans portes logiques.
 - **2.** d'un MUX $4\rightarrow 1$ et d'un inverseur (porte NON).
 - **3.** d'un minimum de portes logiques.
 - **4.** de deux décodeurs 2→4 et d'un minimum de portes logique.
- b c F(a,b,c)a 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0

5. d'un minimum de multiplexeurs $2 \rightarrow 1$ et sans utiliser de portes logiques.

Bon courage.