Nel <u>Reinforcement Learning</u> gli MDP sono una formalizzazione della **sequential decision making**, dove le azioni influenzano non solo la *reward* immediata ma anche gli stati e quindi, attraverso questi le reward future.

Negli MDP viene stimato il valore q*(a,s) di ogni azione a in ogni stato s.

Gli MDP sono pensati per essere un semplice inquadramento del problema di imparare nel RL: essi descrivono un ambiente per il RL dove lo stato corrente caratterizza il processo.

"Dato il presente il futuro è indipendente dal passato."

Uno stato
$$S_t$$
 è di Markov **SSE** $\mathbf{P}[S_{t+1}|S_t] = \mathbf{P}[S_{t+1}|S_1,\ldots,S_t]$

State Transition Matrix

Per uno stato di Markov s e uno stato successore s' la probabilità di *transizione di stato* è definita da:

$$P_{ss'} = \mathbf{P}[S_{t+1} = s' | S_t = s]$$

La matrice di transizione \mathbf{P} definisce la probabilità di transizione da tutti gli stati s ad ogni successore s'.

$$\mathbf{P} = from egin{bmatrix} \mathbf{P}_{11} & \dots & \mathbf{P}_{1n} \ dots & & & \ \mathbf{P}_{n1} & \dots & \mathbf{P}_{nn} \end{bmatrix}$$

Ogni riga della matrice ha somma 1.

Markov Process

Un processo di Markov è un processo randomico senza memoria ovvero una sequenza di stati random s1, s2, s3 aventi la proprietà di Markov.

Una Processo di Markov o Markov Chain è una tupla <S,P>, dove:

- Sè un insieme finito di stati
- P è una matrice della probabilità di transizione di stato

$$P_{ss'} = \mathbf{P}[S_{t+1} = s' | S_t = s]$$

Markov Reward Process

Si tratta di una Markov Chain con i valori, nello specifico:

Un **Markov Reward Process** è una tupla <S,P,R, γ > dove:

- S è un insieme di stati
- P è una State Transition Matrix
- R è una funzione di *Reward*, $R_s = \mathbf{E}[R_{t+1}|S_t = s]$
- γ è un discount factor

Return value

Il valore di ritorno G_t è la total discounted reward dal time-step t. La reward viene applicata quando si esce dallo stato, indipendentemente dalla decisione che si prende (guarda <u>esempio sotto</u>)

$$G_t = R_{t+1} + \gamma R_{t+2} + \cdots = \sum_{k=0}^\infty \gamma^k R_{t+k+1}$$

- Il discount factor $\gamma \in [0,1]$ è il valore attuale delle rewards future.
- Il valore del reward che viene ricevuta, ovvero R, dopo k+1 step è $\gamma^k R$
- Abbiamo due reward: immediate reward e delayed reward
 - γ vicina a 0 ci da una valutazione "miope" o "short-sighted"
 - γ vicina a 1 invece ci da una valutazione "longimirante" o "far-sighted"

Why the discount?

- · Per evitare cicli infiniti nelle Markov chain
- L'incertezza potrebbe non essere correttamente rappresentata
- Se la *reward* è finanziaria allora l'*immediate reward* potrebbe essere molto più rilevante della *delayed reward*
- Esseri umani e animali preferiscono la immediate reward
- È possibile utilizzare $\gamma=1$ se tutte le sequenze terminano

The Value function

La **state value function** V_s di un $\underline{\mathit{MRP}}$ è il $\mathit{ritorno}$ atteso a partire da uno stato s

$$v_s = \mathbf{E}[G_t|S_t = s]$$

Un esempio: (nota che la reward in rosso viene ottenuta prendendo qualsiasi arco uscente)

■ Sample returns for Student MRP:

Starting from $S_1 = C1$ with $\gamma = \frac{1}{2}$

$$G_1 = R_2 + \gamma R_3 + \dots + \gamma^{T-2} R_T$$

FB FB FB C1 C2 C3 Pub C2 Sleep

C1 C2 C3 Pass Sleep
$$v_1 = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 10 * \frac{1}{8} = -2.25$$
C1 FB FB C1 C2 Sleep
$$v_1 = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16} = -3.125$$
C1 C2 C3 Pub C2 C3 Pass Sleep
$$v_1 = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 1 * \frac{1}{8} - 2 * \frac{1}{16} \dots = -3.41$$
C1 FB FB C1 C2 C3 Pub C1 ...
$$v_1 = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16} \dots = -3.20$$

Altro esempio:

Nell'esempio sopra notare che i valori in rosso indicano il valore calcolato della *value* function.

Come vengono calcolati i valori?

Equazione di Bellman

Data uno stato s_t la reward attesa si calcola utilizzando l'**Equazione di Bellman**:

$$v_s = \mathbf{E}[G_t | S_t = s] = R_{s_t} + \left[P^1_{s_t} \cdot (\gamma \cdot v^1_{s_{t+1}})
ight] + \left[P^2_{s_t} \cdot (\gamma \cdot v^2_{s_{t+1}})
ight] + \dots + \left[P^n_{s_t} \cdot (\gamma \cdot v^n_{s_{t+1}})
ight]$$

Dove $P_{s_t}^i$ è la probabilità di prendere l'azione i—esima nello stato s_t e $V_{s_{t+1}}^i$ è la value function calcolata allo stato raggiungibile prendendo la direzione i—esima.

I valori vengono calcolati a partire dall'ultimo stato (ovvero quello con reward 10) e poi andando a ritroso.

Infatti, sopra
$$-5 = 0, 5 \cdot [-2+0, 9 \cdot 0, 9] - 0, 5 \cdot [-2+0, 9 \cdot -7, 6]$$

L'Equazione di Bellman ha anche la forma matriciale:

$$\begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} \mathcal{R}_1 \\ \vdots \\ \mathcal{R}_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

Risolvere l'equazione di Bellman

- The Bellman equation is a linear equation
- It can be solved directly:

$$v = \mathcal{R} + \gamma \mathcal{P} v$$
$$(I - \gamma \mathcal{P}) v = \mathcal{R}$$
$$v = (I - \gamma \mathcal{P})^{-1} \mathcal{R}$$

- Computational complexity is O(n³) for n states
- Direct solution only possible for small MRPs
- There are many iterative methods for large MRPs, e.g.
 - Dynamic programming
 - Monte-Carlo evaluation
 - Temporal-Difference learning

Markov Decision Process

Un MDP è un Markov Reward Process con le decisioni.

Definition

A Markov Reward Process is a tuple (S, A, P, R, γ)

- S is a (finite) set of states
- A is a finite set of actions
- P is a state transition probability matrix, $P_{ss'}^{a} = \mathbb{P} \left[S_{t+1} = s' \mid S_{t} = s, A_{t} = a \right]$
- R is a reward function,
 R_c^a = E [R_{t+1} | S_t = s, A_t=a]
- y is a discount factor, $y \in [0, 1]$

One matrix for each action

Policy

Una policy π è una distribuzione sulle azioni avendo noti gli stati.

$$\pi(a|s) = \mathbf{P}[A_t = a|S_t = s]$$

- La policy definisce il comportamento di un agent.
- Le policy nell'MDP dipendono dallo stato corrente e non dalla azioni passate
- Le policy sono indipendenti dal tempo.

Le Value Function in MDP

• **Definizione**: La state-value function $v_\pi(s)$ di un MDP è il ritorno atteso a partire da uno stato s e seguendo la policy π

$$v_{\pi}(s) = \mathbf{E}_{\pi}[G_t|S_t = s] = \mathbf{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

• **Definizione**: La action-value function $q_{\pi}(a|s)$ è il ritorno atteso a partire da uno stato s, prendendo l'azione a e seguendo la policy π .

$$q_{\pi}(s,a) = [G_t|S_t = s, A_t = a] = \mathbf{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1})|S_t = s, A_t = a]$$

Bellman Expectation Equation for v_π

$$v_\pi(s) = \sum_{a \in A} \pi(a|s) q_\pi(s,a)$$

Bellman Expectation Equation for q_π

$$q_\pi(s,a) = R^a_s + \gamma \sum_{s' \in S} P^a_{ss'} v_\pi(s')$$

Bellman Expectation Equation for V^{π}

The

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a)$$

Bellman Expectation Equation for Q^{π}

$$q_{\pi}(s,a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s')$$

Example: Gridworld

Nell'esempio sotto le percentuali sulle frecce rappresentano la probabilità di andare in quella direzione. L'operazione da fare è rappresentare la griglia con un diagramma a stati.

Nota che la probabilità di rimanere nello stesso stato è data dalla somma delle probabilità presenti lungo le direzioni che non portano ad altre caselle, esempio: in A se vado in alto o a sx non vado da nessuna parte quindi resto in A se sommo le due

Example: Gridworld

How to find the optimal policy?

La policy

La **optimal state-value function** $v_{\ast}(s)$ è la value function massimale fra tutte le policy.

$$v_*(s) = \max_\pi v_\pi(s)$$

La **optimal action-value function** $q_{\ast}(s,a)$ è la action-value function massimale fra tutte le policy.

$$q_*(s,a) = \max_{\pi} \, q_{\pi}(s,a)$$

Optimal policy

Define a partial ordering over policies

$$\pi \geq \pi'$$
 if $V_{\pi}(s) \geq V_{\pi'}(s)$, $\forall s$

Theorem

For any Markov Decision Process

- There exists an optimal policy $\pi*$ that is better than or equal to all other policies, $\pi* \geq \pi, \forall \pi$
- All optimal policies achieve the optimal value function, $V_{\pi_*}(s) \geq V_*(s)$
- All optimal policies achieve the optimal action-value function, $q_{\pi_*}(s,a) \geq q_*(s,a)$

Finding an optimal policy

■ An optimal policy can be found by maximising over q*(s,a)

$$\pi_*(a|s) = \left\{egin{array}{ll} 1 & ext{if } a = rgmax \ q_*(s,a) \ & a \in \mathcal{A} \ 0 & otherwise \end{array}
ight.$$

- There is always a deterministic optimal policy for any MDP
- If we know a*(s,a), we immediately have the optimal policy

Come otteniamo il valore q_* ?

Bellman optimality equation for v_{st}

$$v_*(s) = \max_a \, q_*(s,a)$$

Bellman optimality equation for q_*

$$q_*(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_*(s')$$

Q-Learning

Può essere di due tipi:

- On-policy learning: "Learn on the job"
- Off-policy learning: "Impara dall'esperienza di qualcun'altro"

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathbb{S}^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S' $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$

 $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$ $S \leftarrow S'$

until S is terminal

Q-Learning Control Algorithm

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left(R + \gamma \max_{a'} Q(S', a') - Q(S, A)\right)$$

■ Q-learning control converges to the optimal action-value function, $Q(s, a) \rightarrow q*(s, a)$

Example

$$\gamma = 0.9$$
, $\alpha = 0.5$, $r = 0$ for non-terminal states

$$Q(s_1, right) = Q(s_1, right) + \alpha \left(r + \gamma \max_{a'} Q(s_2, a') - Q(s_1, right) \right)$$

$$= 73 + 0.5(0 + 0.9 \max \{66,81,100\} - 73)$$

$$= 73 + 0.5(17)$$

$$= 81.5$$

$$Q(C,Wait) = (1-\alpha)Q(C,Wait) + \alpha[R + \gamma \max_{a} \, Q(B,a)]$$