```
Dhruv Singal
349-01
1.a) Worst case complexity of Selection Sort.
 problem size = n < # elements in data[].
 basic operation = key comparison
 worst case = # of basic operations doesn't depend on late []
 total # comparisons = ?
         count comparisons inside out
         i=0, j=1.....n-1 => n-1 key comparisons
         i=1, j=2 ....n-1 → n-2 .
         i=2, j=3....n-1 → n-3 .
        i=n-2, j=n-1 · · · · · n-1 → ·1
    sum of AP: \(\frac{n}{2}(2\alpha+(h-1)d) = \(\frac{n-1}{2}(2+(n-1-1)1)\)
           = \underline{n(n-1)} = \theta(n^2)
1.6) Worst case complexity of insertion sort
    problem size n + # of elements in data[]
    basic operation - key comparison
   worst case = the array data [] is presorted in the reverse order
              # basic operations inside out:
                      n-1 times through outer loop
                      summation based on i.
   # comparisons: inside out:
                i= 1 # composisons: 1
```

i goes from 1 to n-1.

i total # comparisons: $1+2+3+\cdots$ n-1

= $n(\underline{n-1})$ comparisons.

= $O(n^2)$ in the worst case

1.c: worst case complexity of merge sort problem size: # items in datall array

basic operation: key comparison.

worst case: data entries are interleaved ascending, n is a power of two

total number of comparisons = ?

M(n) = # comparisons to mergesort n-items in worst

$$M(n) = M(\frac{n}{2}) + M(\frac{n}{2}) + n = 2 M(\frac{n}{2}) + n$$

$$= 2 (2M(\frac{n}{4}) + \frac{n}{2}) + n = 4M(\frac{n}{4}) + 2n.$$

$$= 8M(\frac{n}{2}) + 3n$$

$$= 2^{n}M(1) + n\log_{1}n = n\log_{2}n : M(1) = 0$$

:. # total comparisons = nlog_n

:. time complexity in worst case = o(nlogn)

2. Table 1

Number of Elements	Selection Sort		
	sorted	revsorted	random
10	45	45	45
1000	499500	499500	499500
2000	1999000	1999000	1999000
3000	4498500	4498500	4498500
4000	7998000	7998000	7998000

Table 2

Number of Elements	Insertion Sort		
	sorted	revsorted	random
10	9	45	21
1000	999	499450	251582
2000	1999	1998795	1016590
3000	2999	4498052	2269084
4000	3999	7997251	3958487

Table 3

Number of Elements	Merge Sort		
	sorted	revsorted	random
10	5	5	9
1000	500	500	995
2000	1003	1000	1998
3000	1500	1500	2998
4000	2000	2000	3999

3. The numbers in the table agree with the theoretical analysis. I wasn't able to verify the worst case scenario for the merged sort but looking at multiple runs of merge sort on random data, the maximum number of comparisons I saw approached the theoretical limit of nlog2n. For insertion and selection sort, the worst case total number of key comparisons exactly matched the theoretical analysis.