TU WIEN	Institut für Energiesysteme und elektrische Antriebe	Ao.Prof.i.R Dr. Herbert Müller
Gußhausstraße 25	Energieversorgung Vertiefung	Tel.: 58801
A- 1040 Wien	370.023	DW. 370119

WIRTSCHAFTLICHKEIT VON KRAFTWERKEN

(Ausbauplanung)

$$2F(x,u) \Rightarrow Rin$$

$$\frac{38F!}{3x} = 0 \qquad M \leq S_{5600}$$

$$M - S_{acc} \leq 0$$

$$L = 2F + 2(M - S_{600})$$

$$3f \stackrel{!}{=} 0 \qquad SL\stackrel{!}{=} 0$$

Mü

Optimales (least-cost) Ausbauplanungsmix für ein Planungsjahr

$$K = \sum_{i=1}^{n} \left(f_i P_i + v_i P_i T_{m_i} \right) \implies Min$$

$$E_i$$

$$N.B.: \sum_{i=1}^{n} P_i \geq P_{spite}$$

Merit Order: Spilzen-last-Kh

$$V_1 \le V_2 \le ... \le V_i \le ... \le V_n$$

 $(f_1 > f_2 > ... > f_i > ... > f_n)$
Grund-
last-KW

$$P_{D1} = 0 \qquad P_{Di} = \sum_{j=1}^{i-1} P_{j}$$

$$P_{spi} \neq_{e} (= P_{Dn+1})$$

$$E_{i} = \int_{P_{Di}} T(P_{D}) \cdot dP_{D}$$

$$P_{Di}$$

$$E = \sum_{i} E_{i}$$

$$\frac{1 east-cost-Polygon:}{\frac{\partial K}{\partial P_i}} = f_i + V_i T_{m_i} \quad \left(= k_p = \frac{K}{P}\right)$$

Lagrange-Fkt.: allg.
$$L = 2F + \lambda \cdot NB$$

$$L = K + \lambda \left(P_{spite} - \sum_{i=1}^{n} P_i\right) - \sum_{n} \mu_i P_i$$

$$\frac{\partial L}{\partial P_i} = f_i + v_i T_{m_i} - \lambda - \mu_i \stackrel{!}{=} 0 \quad i=1...n$$

Kuhn-Tucker-Bedingungen
$$\lambda \cdot (P_{spitze} - \sum_{i=1}^{n} P_i) = 0$$

$$\mu_i \cdot P_i = 0$$

für positive Kapazidaten in der Lösung $\rightarrow \mu_i = 0$ und mit Gleichheit bzgl. λ est für aufeinanderfolgende Einheiten im least-cost-Polygon

f: + $v_i T_{-} = f_{i+1} + v_{i+1} T_{-}$ gleiche Funnich

$$T = \frac{f_i - f_{i+1}}{V_{i+1} - V_i}$$

Princip gleider Januar hos kn JR = fi + v. Tm. (Inv. hier and Sperificher Kolen. K) zusätzliche Nebenbedinpungen:

KW mit Energie bedingung :

für bereits existierende (und abgeschriebene) KW:

$$\Rightarrow f_{x} = \emptyset$$

erweiterte Lagrange-Fkt.

$$\overline{L} = L + \mathcal{Y}(P_j T_{mj} - E_{j \max}) + \mathcal{E}_{x}(P_x - P_{x \max})$$

Kuhn-Tucker-Bedingungen 8; (E; - E; max) = 0

$$\mathcal{E}_{X}\cdot(P_{X}-P_{max})=0$$

für Energie bedingung bei KW j

(> Dualvariable 8;)

Drehen der k-heraden $\left(\frac{\partial K_i}{\partial P_i}\right)$ Gerade von Austieg v; and Anstieg v; +8; so dars Ej = Ejgeg

Mit existierendem KWx dazu: (Annahme abgeschrieben > fx = 0)

"ineffizientes" Px < Pxmax

Ex positiv

Er. negativ Anon: werm on Share-holders nasolere Americation generaled (5 kleinere Atritreibedanner = größeres ox) minde dies ein Anhelen des Fickerten teils endsprechen! AK = \(\Sigma \Delta \in \). Teild man dies ouf alle Einheiten auf, so beden tet ober ein Hinaufrücken des beest-cool-Polygons um Dkp; = \(\Delta K / \subsete P; \) i=1...n Bezüglich theoretischer Grundlagen und heranzuziehender Formeln wird auf die Vorlesungsunterlagen zur Vorlesung verwiesen.

Berechnungsbeispiel

Für ein zu versorgendes Gebiet, dessen (erwarteter) Verbrauch durch die in Bild 1 gegebene Jahres-Belastungsdauerlinie charakterisiert wird, ist - vereinfacht auf Basis der Jahresdauerlinie - ein optimales Produktionsmodell zu erstellen.

Aus den möglichen Kraftwerkserrichtungsvarianten, mit den im folgenden angeführten Kennwerten, sind die Ausbaumaßnahmen so zu wählen, daß sich jener Kraftwerksmix zur Bedarfsdeckung im Grund-, Mittel-(Trapez-) und Spitzenlastbereich ergibt, der - bei einer optimalen Aufteilung nach der Annuitätenmethode - die günstigsten Stromgestehungskosten aufweist.

Bei den Kraftwerkskenngrößen ist näherungsweise davon auszugehen, daß der Eigenbedarf bereits im angegebenen Kraftwerks-Wirkungsgrad berücksichtigt ist und sich auch die leistungsspezifischen Kostenfaktoren auf die abgegebene Netto-Leistung beziehen. Bei der Einsatzaufteilung braucht weiters vereinfachend die Minimalleistungsgrenze bei den thermischen Kraftwerken nicht beachtet zu werden. Für die dynamische Kostenvergleichsrechnung nach der Annuitätsmethode ist ein Zinsfuß von 7,5 % sowie eine jährliche Kostensteigerungsrate von 2,5 % anzunehmen.

$$p = 7,5 % r = 2,5 %$$

Also

$$q = 1,075$$
 $s = 1,025$

$$q - s = 0,05$$
 $\frac{1}{q - s} = 20$ $\frac{s}{q} = 0,9534883$

Einschub: Formelzusammenstellung

Abzinsungs-(Barwert-)Faktor

$$\beta_{-k} = \frac{q^n - s^n}{(q-s)q^n} = \frac{1}{q-s} \left[1 - \left(\frac{s}{q} \right)^n \right]$$

Annuitätsfaktor

$$\alpha = \frac{1}{\beta_{-k}} = \frac{q - s}{1 - (s/q)^n}$$

leistungsspezifische Jahreskosten (Annuität)

$$k_{p} = \frac{K}{P_{a}} = a \cdot \alpha + c + (b + d) \cdot T_{m}$$

$$f \qquad v \cdot T_{m}$$
fixe bewegliche Kosten

jährliche Kosten

$$K = k_p \cdot P_a = f \cdot P_a + v \cdot \underbrace{P_a \cdot T_m}_{E}$$

Einsatzaufteilung zwischen zwei Kraftwerkstypen mit unterschiedlichen Kostencharakteristiken:

Punkt der Kostengleichheit:

Kostengleichheit:
$$k_{p1} = k_{p2}$$

$$f_1 + v_1 \cdot T_= = f_2 + v_2 \cdot T_=$$

$$T_= = \frac{f_2 - f_1}{v_1 - v_2}$$

Für die Ermittlung der Kostencharakteristiken bei thermischen Kraftwerken:

spezifische Kosten der Primärenergie ("Brennstoffkosten")

$$b = \frac{1}{\eta} \cdot 3.6 \cdot \frac{1}{H_{u}} \cdot k_{B}$$

$$= \frac{1}{\eta} \cdot 3.6 \cdot \frac{1}{\eta} \cdot 3.6 \cdot \frac{1}{\eta} \cdot k_{B}$$

$$= \frac{1}{\eta} \cdot 3.6 \cdot \frac{1}{\eta} \cdot 3.6 \cdot$$

Abschätzformel für die Leistungsabgabe hydraulischer Kraftwerke:

$$P \approx 8 \cdot h \cdot Q$$
 Faktor 8 beinhaltet näherungsweise η_{ges} inkl. Eigenbedarf kW $m m^3/s$

für Speicher-Kraftwerk:

jährlich nutzbare Zuflußmenge bestimmt (neben Größe des Speicherbeckens) jährliches Arbeitsvermögen

$$Q = Q \cdot 8760 \cdot 3600 \rightarrow P \approx 8 \cdot h \cdot \frac{Q}{8760 \cdot 3600}$$

$$E = P \cdot T \approx 8 \cdot h \cdot \frac{Q}{8760 \cdot 3600} \cdot 8760$$

$$kWh/a \quad kW \quad h/a \quad m$$

$$E \approx 8 \cdot h \cdot \frac{1}{3,6} \cdot Q$$

$$MWh/a \quad m \quad Mio m^3/a$$

Vorgegebene Kennwerte der zur Wahl stehenden Kraftwerkstypen

Thermische Kraftwerke siehe Tabelle 1

je nach Vorgabe:

Wichtige Zahlenwerte Umrechnungsfaktoren für Energieeinheiten

Einheit	MJ	kWh	kg SKE	kg ÖE	Mcal
1 MJ	1	0,278	0,034	0,024	0,239
1 kWh	3,6	1	0,123	0,0859	0,86
1 kg SKE	29,31	8,14	1	0,7	7,0
1 kg ÖE	41,91	11,63	1,43	1	10,01
1 Mcal	4,187	1,163	0,143	0,1	1

MJ = Megajoule	Berechnung von Vielfachen und Tellen der Einheiten nach DIN 1301
kWh = Kilowattstunde	da Deka = 10 ¹ d Dezi = 10 ⁻¹
kg SKE = Kilogramm Steinkohleeinheit	h Hekto = 10 ² c Centi = 10 ⁻² k Kilo = 10 ³ m Milli = 10 ⁻³
kg ÖE = Kilogramm	M Mega = 10^6 µ Mikro = 10^{-6}
Öleinheit	G Giga = 10^9 n Nano = 10^{-9}
Mcal = Megakalorie	T Tera = 10^{12} p Piko = 10^{-12} P Peta = 10^{15} f Femto = 10^{-15}
1 Barrel = 159 Liter	E Exa = 10^{18} a Atto = 10^{-18}

Heizwerte und CO₂-Emissionen von fossilen Energieträgern

Energieträger	unterer Heizwert	CO ₂ -Emissionen (bezogen auf den Heizwert)
Steinkohle	8,14 kWh/kg	0,350 kg/kWh
Braunkohle roh	2,68 kWh/kg	0,410 kg/kWh
Braunkohlebriketts	5,35 kWh/kg	0,380 kg/kWh
Koks	7,50 kWh/kg	0,420 kg/kWh
Heizöl schwer	10,61 kWh/l	0,290 kg/kWh
Ofenheizöl	10,08 kWh/l	0,312 kg/kWh
Erdgas	10,00 kWh/m³	0,200 kg/kWh

Impressum: Eigentümer, Herausgeber und Verleger: Österreichischer Biomasse-Verband, Franz Josefs Kai 13, A-1010 Wien

General Conversion Factors for Energy

To:	TJ	Gcal	Mtoe	MBtu	GWh
From:	multiply by:				
ΤJ	ı	238.8	2.388 x 10 ⁻⁵	947.8	0.2778
Gcal	4.1868 x 10 ⁻³	T	10-7	3.968	1.163 x 10 ⁻³
Mtoe	4.1868 x 10 ⁴	10'	I	3.968 x 10'	11630
MBtu	1.0551 x 10 ⁻¹	0.252	2.52 x 10 ⁴	L	2.931 x 10 ⁴
GWh	3.6	860	8.6 x 10 ⁻⁵	3412	1

Conversion Factors for Mass

To:	kg	t	lt	st	lb
From:	multiply by:				
kilogram (kg)	ı	0.001	9.84 x 104	1,102 x 10-3	2.2046
tonne (t)	1000	I	0.984	1.1023	2204.6
long ton (lt)	1016	1.016	ı	1.120	2240.0
short ton (st)	907.2	0.9072	0.893		2000.0
pound (lb)	0.454	4.54 x 10 ⁻⁴	4.46 x 10 ⁴	5.0 x 10 ⁻¹	I

Conversion Factors for Volume

To:	gal U.S.	gal U.K.	ьы	ft³	- 1	m,
From:	multiply i	by:				
U.S. Gallon (gal)	- 1	0.8327	0.02381	0.1337	3.785	0.0038
U.K. Galion (gal)	1.201	1	0.02859	0.1605	4.546	0.0045
Barrel (bbl)	42.0	34.97	L	5.615	159.0	0.159
Cubic foot (ft')	7.48	6.229	0.1781	1	28.3	0.0283
Litre (I)	0.2642	0.220	0.0063	0.0353	ŧ	100.0
Cubic metre (m')	264.2	220.0	6.289	35.3147	1000.0	1

aus Buch: K. HEUCK u. K.-D. DETTMANN: Elektrische Energieversorgung Verlag VIEWEG, 2002 (5. Aufl.)

Richtwerte für spezifische Investitionskosten wichtiger Betriebsmittel

Transformator (110 kV / 10 kV)	12 EUR/kVA
Feld einer SF ₆ -Schaltanlage (110 kV, 50 MVA)	500 000 EUR
Freileitung (110 kV, 240/40-Al/St, Donaumast)	250 000 EUR/km
PVC-Kabel (0,4 kV, $4 \times 150 \text{ mm}^2$)	5 EUR/m
VPE-Kabel (10 kV, $3 \times 185 \text{ mm}^2$)	20 EUR/m
Kabelverlegungskosten unterhalb von Straßen in 0,8 m Tiefe	50 EUR/m

Richtwerte für spezifische Investitionskosten wichtiger Kraftwerksarten

Kernkraftwerk	3000 EUR/kW
Braunkohlekraftwerk	1200 EUR/kW
Steinkohlekraftwerk	1100 EUR/kW
Gasturbinen-Anlage	200 EUR/kW
GuD-Kraftwerk	500 EUR/kW
Laufwasserkraftwerk (50 MW)	3000 EUR/kW
Windenergie-Anlage	1000 EUR/kW
Solarthermisches Kraftwerk	4400 EUR/kW
Photovoltaische Anlage	8500 EUR/kW

Richtwerte für spezifische Gesamtkosten wichtiger Kraftwerksarten

Kernkraftwerk		0,06 EUR/kWh
Kohlekraftwerk	Inlandskohle	0,09 EUR/kWh
Romerianweik	Importkohle	0,06 EUR/kWh
Gasturbinen-Anl	age	0,05 EUR/kWh
GuD-Kraftwerk		0,04 EUR/kWh
Laufwasserkraftw	verk (50 MW)	0,07 EUR/kWh
Windenergie-Anl	age	0,10 EUR/kWh
Solarthermisches	Kraftwerk	0,33 EUR/kWh
Photovoltaische	Anlage	1,05 EUR/kWh

Die genannten Gestehungskosten ergeben sich aus den Gesamtkosten pro Jahr bezogen auf die abgegebene Energie.

Elektrische Wirkungsgrade wichtiger Kraftwerksarten

Strompreise

Beispiel für einen Sondervertrag (Stand 2002):

Leistungspreis		134 EUR/kW
	erste 3 GWh	0,068 EUR/kWh
Arbeitspreis HT	weitere 3 GWh	0,063 EUR/kWh
Trocuspieis III	weitere 3 GWh	0,058 EUR/kWh
	darüber	0,055 EUR/kWh
	erste 1,5 GWh	0,036 EUR/kWh
Arbeitspreis NT	weitere 1,5 GWh	0,033 EUR/kWh
Attochapters IV I	weitere 1,5 GWh	0,031 EUR/kWh
	darüber	0,029 EUR/kWh
Blindstromarbeits	nreis	0,013 EUR/kvar
bei $\cos \varphi < 0.9$ in	-	für Blindanteil, der 50 %
	A GROLF	der Wirkarbeit übersteigt

Preise einschließlich Netznutzungsentgelt

HT: Hochlast-Zeit NT: Niedriglast-Zeit

 $\cos\varphi\colon \mathrm{durchschnittlicher}$ Leistungsfaktor

₩ Ke	Kenngröße	Steinkohle KW	Braunkohle KW	Kombi-GuD (Erdgas) KW	Gasturbinen-KW (Ölgefeuert)
Ф	spezifische Anlagenkosten	1.100,	1.600,	850,	400,
υ	leistungsabhängige jährl.Betriebskosten	55,	94,	26,	12,
п	Nutzungsdauer (Abschreibungsdauer) (Jahre)	2 0	20	20	Bau 30 *) Masch. 15
И	Wirkungsgrad in %	43	41	57	34
п	Heizwert in MJ/Mengen- einheit	29,3 MJ/kg	12,0 MJ/kg	38,0 MJ/m³	38,2 MJ/l
자 B	Brennstoffpreis in G /Mengen- einheit	0,090 e/kg	0,023 e/kg	0,211 e/m³	0,191 e/l
Ф	arbeitsabhängige in e/kWh Betriebskosten	0,0035	0,005	0,0025	0,002

Tabelle 1: Kennwerte für thermische Kraftwerke

*) Anmerkung zu Gasturbinen-Kraftwerk(en):
Die Anlagenkosten entfallen zu 70 % auf den baulichen Teil, zu
30 % auf die maschinellen Einrichtungen:

$$A_{\text{Bau}} = 0.7 \cdot A$$
 $A_{\text{Masch.}} = 0.3 \cdot A$

Für den baulichen Teil ist dabei von einer Nutzungsdauer (Abschreibungsdauer) von 30 Jahren auszugehen, für die maschinellen Teile von 15 Jahren.

Hydraulische Kraftwerke:

Es steht ein Flußlauf zum Ausbau zur Verfügung, dessen Regelwasserführung durch die Durchfluß-Dauerlinie für das Regeljahr laut Bild 3 gegeben ist.

Die verfügbare Flußstrecke kann günstig in zwei Stufen zu je 25 m Fallhöhe und ausgelegt für eine zweckmäßigste Ausbauwasserführung von Q_a = 750 m³/s (vgl. Bild 3) ausgebaut werden.

Dabei ergeben sich spezifische Anlagenkosten von a = 3.500,-- e/kW und pro Jahr spezifische leistungsabhängige Betriebskosten von c = 70,-- e/kWa. Die spezifischen Kostenanteile für Primärenergie

und arbeitsabhängigen Betriebskosten sind näherungsweise zu vernachlässigen: $b \approx d \approx 0$.

Die zu erwartende Nutzungsdauer (Abschreibungsdauer) wäre mit n = 50 Jahren anzusetzen.

Speicher-Kraftwerk ("Hochdruck")

Für die Errichtung einer Speicher-Kraftwerksanlage, mit einer (mittleren) Fallhöhe von h = 250 m, steht ein Wassereinzugsgebiet mit einem jährlich nutzbaren (Regel-)Zufluß von Q_j = 610 Mio m³/a zur Verfügung. Aus betrieblichen Gründen - etwa, um eine schnelle Minuten-Reserve in ausreichender Höhe bereitstellen zu können - wäre bei der gegebenen Verbrauchsstruktur, mit einer erwarteten Lastspitze von P_{max} = 1500 MW, eine Leistung des Speicher-Kraftwerks von rund 150 MW wünschenswert.

Beim Ausbau wäre zu rechnen mit spezifischen Anlagekosten von a = 2.900,-- e/kW und leistungsabhängigen Jahresbetriebskosten von c = 85,-- e/kWa. Die arbeitsabhängigen Kostenanteile wären näherungsweise null: b \approx d \approx 0.

Die Anlage wäre in n = 50 Jahren abzuschreiben.

Fremdbezug (langfristiger Liefervertrag mit Verbundpartner)

Leistungspreis
$$k_p = 173,50$$
 ϵ/kW (= f)

Arbeitspreis
$$k_w = 0.0255$$
 C/kWh (= v)

Auswertung

Ermittlung der Kostencharakteristiken lt. Annuitätenmethode (leistungsspezifische Jahreskosten)

Tabelle 2

Vv	aftwerkstyp	α	a•α	$f = a\alpha + c$	b	v=b+d
KI	ircwerkscyp	1/a	e/kWa	e/kWa	€/kWh	e/kWh
t	Steinkohle	0,0814	89,54	144,54	0,0257	0,0292
h	Braunkohle	0,0814	130,24	224,24	0,0168	0,0218
e r m	Kombi-GuD (Erdgas)	0,0814	69,19	95,19	0,0351	0,0376
	Gasturbine (ölgef.)	0, 0754	30,16	42,16	0,0529	0,0549
h	Lauf-KW	0,0551	192,85	262,85	≈ 0	≈ 0
y d	Speicher-KW	0,0551	159,79	244,79	≈ 0	≈ 0
F	remdbezug	-	ana	173,50	-	0,0255

*) zusammengesetzter Annuitätsfaktor bei Gasturbinen-Kraftwerk (Bau + Masch.): $n_{Bau} = 30 \text{ a} \rightarrow \alpha_1 = 0,0658$ $n_{Masch.} = 15 \text{ a} \rightarrow \alpha_2 = 0,0979$ $a \cdot \alpha = 0,7 \cdot a \cdot \alpha_1 + 0,3 \cdot a \cdot \alpha_2 = a \cdot (0,7\alpha_1 + 0,3\alpha_2)$

bzw.
$$a \cdot \left[1 + 0.3 \cdot \left(\frac{s}{q}\right)^{15} \cdot \frac{1}{s}\right] \cdot \alpha_1$$

Grafische Darstellung der Ergebnisse lt. Tabelle 2 siehe Bild 4.

für Grundlastabdeckung:

Laufkraftwerk (2 Stufen) am günstigsten

Kapazität: bei Ausbauwassermenge Q_a : $2 \cdot 8 \cdot 25 \cdot 750 \cdot 10^{-3} = 2 \cdot 150 \text{ MW}$ bei Q_{100} : $2 \cdot 8 \cdot 25 \cdot 500 \cdot 10^{-3} = 2 \cdot 100 \text{ MW}$

ergibt mit Regelwasserführung (Bild 3) ein Jahresarbeitsvermögen von $E_{\rm LW}$ = 200.8760 + ½.100.(8760+2400) = 2 310 000 MWh

$$(T_m = 7700 h)$$

Jahreskosten $K_{LW} = 2.150.10^{3}.262,85 = 78,855 \text{ Mio } \in (0.034 \text{ e/kWh})$

nach Sortieren (entsprechend "merit order") $f_{BK} \ \buildrel = \ f_{FB} \ \buildrel = \ f_{GUD} \ \buildrel = \ f_{GT}$ $v_{BK} \ \buildrel = \ v_{FB} \ \buildrel = \ v_{GUD} \ \buildrel = \ v_{GT}$

Kostengleichheitspunkte für Einsatzaufteilung: vgl. Bild 4

Fremdbezug - Steinkohle $T_{=}=\frac{f_{FB}-f_{K}}{v_{K}-v_{FB}}=\frac{173,5-144,54}{0,0292-0,0255}=7827\ h$ Steinkohle - Erdgas $T_{=}=5875\ h$ Erdgas - Gasturbine $T_{=}=3065\ h$

Das Braunkohle-Kraftwerk scheidet als Alternative aus, da seine Kostencharakteristik in keinem Bereich eine niedrigere Lage gegenüber dem "least-cost"-Polygonzug hat!

Steigung der Dauerlinie: $|s| = \frac{1500 - 500}{8760} = 0,11415 \text{ MW/h}$

Fremdbezug vgl. Bild 5

 $P_{FBmax} = 606,50 - 214,67 = 391,83 MW$

$$P_{\text{FBmax}} = P_{7827} - P_{\text{LW},7827}$$

$$P_{7827} = 500 + (8760 - 7827) \cdot |s| = 606,50 \text{ MW}$$

$$Q_{\text{LW},7827} = 500 + (8760 - 7827) \cdot \frac{250}{8760 - 2400} = 500 + 36,67 = 536,67 \cdot \text{m}^3/\text{s}$$

$$P_{\text{LW},7827} = 2 \cdot 8 \cdot 25 \cdot 536,67 \cdot 10^{-3} = 214,67 \text{ MW}$$

$$\begin{split} E_{FB} &= 500 \cdot 8760 \, + \, (P_{\,7827} \, - \, 500) \cdot (8760 \, + \, 7827) \cdot \frac{1}{2} \, - \, E_{LW} \\ E_{FB} &= 2 \, 953 \, 257,70 \, \, \text{MWh} \\ \\ \text{gewählt:} \qquad \qquad P_{a\,,FB} \, = \, 400 \, \, \text{MW} \qquad \qquad (T_{m} \, = \, 7\,383,1 \, \, \text{h}) \\ \\ \text{Jahreskosten} \qquad K_{FB} \, = \, 69,4 \, + \, 75,308 \, = \, 144,708 \, \, \, \text{Mio } \in \\ \\ \qquad \qquad \qquad (0\,,049 \, \, \text{e/kWh}) \end{split}$$

Trapezlastabdeckung:

Steinkohle-Kraftwerk

Erdgas-Kombikraftwerk (GuD)

$$P_G = \Delta T_{=} \cdot |s| = (5875 - 3065) \cdot |s| = 320,76 \text{ MW}$$
 $T_m = (5875 + 3065) \cdot \frac{1}{2} = 4470 \text{ h}$
 $E_G = P_G \cdot T_m = 1 433 797,2 \text{ MWh}$
 $P_{a,G} = 350 \text{ MW}$ $(T_m = 4097 \text{ h})$
 $K_G = 33,317 + 53,911 = 87,228 \text{ Mio } \in$ $(0,061 \text{ e/kWh})$

Bei den für die verbleibende *Spitzenlastabdeckung* einzusetzenden Alternativen – Gasturbine und hydraulisches Speicherkraftwerk – ist zu beachten, daß beim Speicherkraftwerk mit der jährlich nutzbaren Zuflußmenge von Q_j = 610 Mio m³/a eine einschränkende Nebenbedingung für das Arbeitsvermögen vorliegt:

$$P_{\text{Spitze}} = 3065 \cdot |s| = 349,87 \text{ MW}$$

 $E_{\text{Spitze}} = 349,87 \cdot 3065 \cdot \frac{1}{2} = 536 \cdot 175,4 \text{ MWh}$

Rein von den Gestehungskosten her wäre das Speicher-Kraftwerk nicht in den Ausbauplan aufzunehmen (über den ganzen Spitzenbereich ist im vorliegenden Fall die Gasturbine günstiger), doch wäre aus dem Titel "Bereitstellung von rascher Minutenreserve" oder "Bereitstellung von Regelenergie" und den daraus zu erzielenden Erlösen der Ausbau gerechtfertigt.

Speicher-Kraftwerk

$$E_{SP} = 8 \cdot h \cdot Q_{1}/3,6 = 8 \cdot 250 \cdot 610/3,6 = 338 888,89 MWh$$

Gasturbinen-Kraftwerk damit

$$E_{GT} = E_{Spitze} - E_{SP} = 197 286,5$$
 MWh

$$P_{GT}/T_{O} = |s|$$
 $E_{GT} = \frac{1}{2} \cdot P_{GT} \cdot T_{O} = \frac{1}{2} \cdot P_{GT}^{2} / |s|$
 $P_{GT} = \sqrt{2 \cdot |s| \cdot E_{GT}} = 212,23 \text{ MW}$

gewählt:
$$P_{a,GT} = 3.78 = 234 \text{ MW}$$
 $(T_m = 930 \text{ h})$

$$K_{GT} = 9,865 + 10,831 = 20,696 \text{ Mio } \tilde{e}$$
 (0,105 e/kWh)

Speicher-Kraftwerk

$$P_{SP} = P_{Spitze} - P_{GT} = 349,87 - 212,23 = 137,64 \text{ MW}$$
 paßt; gewählt: $P_{a,SP} = 150 \text{ MW}$ $(T_m = 2259,26 \text{ h})$ $K_{SP} = 36,718 \text{ Mio } \Theta$ $(0,108 \text{ G/kWh})$

Gesamt

$$E_{ges} = 8 760 000 \text{ MWh}$$
 $K_{ges} = 446,024 \text{ Mio } \Theta$ (0,051 G/kWh)

 $= 261,399 + 184,625 \text{ Mio } \Theta$

fixe variable

installierte ΣP_a : $P_{a,ges} = 1664 \text{ MW}$
(157,09 G/kWa) (0,021 G/kWh)

In Bild 5 ist die ermittelte Einsatzaufteilung der Gesamtaufbringung dargestellt.

VU

Energieversorgung, Vertiefung

<u>Übungsbeispiel</u> "Wirtschaftlichkeit"

Für ein zu versorgendes Gebiet, dessen (erwarteter) Verbrauch durch die in Bild 1 gegebene Jahres-Belastungsdauerlinie charakterisiert wird, ist - vereinfacht auf Basis der Jahresdauerlinie - ein optimales Produktionsmodell zu erstellen.

Aus den möglichen Kraftwerkserrichtungsvarianten, mit den im folgenden angeführten Kennwerten, sind die Ausbaumaßnahmen so zu wählen, daß sich jener Kraftwerksmix zur Bedarfsdeckung im Grund-, Mittel-(Trapez-) und Spitzenlastbereich ergibt, der - bei einer optimalen Aufteilung nach der Annuitätenmethode - die günstigsten Stromgestehungskosten aufweist.

berücksichtigt ist und sich auch die leistungsspezifischen Kostenfaktoren auf die abgegebene Netto-Leistung beziehen. Bei der
Einsatzaufteilung braucht weiters vereinfachend die Minimalleistungsgrenze bei den thermischen Kraftwerken nicht beachtet zu
werden. Für die dynamische Kostenvergleichsrechnung nach der
Annuitätsmethode ist ein Zinsfuß von 7,0 % sowie eine jährliche
Kostensteigerungsrate von 2,0 % anzunehmen.

Vorgegebene Kennwerte der zur Wahl stehenden Kraftwerkstypen

Thermische Kraftwerke siehe Tabelle 1

*) Anmerkung zu Gasturbinen-Kraftwerk(en):
Die Anlagenkosten entfallen zu 60 % auf den baulichen Teil, zu
40 % auf die maschinellen Einrichtungen:

$$A_{\text{Bau}} = 0.6 \cdot A$$
 $A_{\text{Masch}} = 0.4 \cdot A$

Für den baulichen Teil ist dabei von einer Nutzungsdauer (Abschreibungsdauer) von 28 Jahren auszugehen, für die maschinellen Teile von 16 Jahren.

Neben dem Ausbau thermischer Kraftwerke besteht die Möglichkeit, zu folgenden Konditionen einen langfristigen Liefervertrag mit einem benachbarten Elektrizitätsversorgungsunternehmen abzuschließen:

Fremdbezug (langfristiger Liefervertrag mit Verbundpartner)

Leistungspreis
$$k_p = 145, -- e/kw$$

Arbeitspreis
$$k_w = 0.03 \text{ e/kWh}$$

			The second secon
Kenngröße	Braunkohle KW	Kombi-GuD (Erdgas) KW	Gasturbinen-KW (ölgefeuert)
spezifische a Anlagenkosten	1.700,	820,	4 50 ,
leistungsabhängige in E/kWa jährl.Betriebskosten	95,	25,	15,
Nutzungsdauer n (Abschreibungsdauer) (Jahre)	20	20	Bau 28 *) Masch. 16
η Wirkungsgrad	4.2	57,8	33,5
H _u Heizwert in MJ/Mengen- einheit	11,0 MJ/kg	37,5 MJ/m³	38,0 MJ/l
k _B Brennstoffpreis in e /Mengen-	0,020 e/kg	0,215 e/m³	0,205e/l
d arbeitsabhängige Betriebskosten	0,005	0,0023	0,002

Tabelle 1: Kennwerte für thermische Kraftwerke

Für die ermittelte optimale Einsatzaufteilung der Gesamtaufbringung, die in Bild 1 einzuzeichnen ist, sind - unter Bedachtnahme auf eine vorzuhaltende Leistungsreserve von etwa 10 % - die
erforderlichen Kraftwerksausbauleistungen bzw. die Anmeldeleistung
für einen allfälligen Fremdbezug anzugeben. Die daraus resultierenden jährlichen Gesamtkosten der Aufbringung sind zu bestimmen
und nach ihrem fixen (leistungsabhängigen) und variablen (arbeitsabhängigen) Anteil aufzuschlüsseln sowie die sich damit ergebenden
spezifischen Kosten auszuweisen.

Zusatzüberlegung: Wenn es der Wunsch privater Investoren (Aktieninhaber) nach möglichst kurzer Amortisationsdauer des eingesetzten
Kapitals erfordert z.Bsp. das Kombi-GuD-Kraftwerk rascher abzuschreiben – etwa in 10 statt in 20 Jahren – und diese Ressource
trotz des dadurch erhöhten Fixkostenabteils mit der oben ermittelten
Ausbauleistung realisiert werden soll, um welches Ausmaß müsste das
"least cost"-Polygon (infolge der Aufteilung der Fixkostenerhöhung
der GuD-Einheit auf alle Erzeugungsassets) fiktiv nach oben verschoben werden und welche Änderung ergibt sich für die Höhe der
spezifischen Kosten des gesamten Erzeugungssystems?