Machine learning to interprete lithologies from geophysical logs

Himanshu Bhardwaj

Description of Logs:

- 1. GR: Natural Gamma Ray log (API)
- 2. DPHI: Density porosity
- 3. NPHI: Neutron porosity
- 4. PEF: Photoelectric factor (barns/sec)

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
df = pd.read_csv('DataSet.csv')
df.head()
```

Out[2]:

	GR	NPHI	DPHI	PEF	PICK	TRUE
0	18.4445	0.1263	0.0973	2.5341	7	7
1	18.4814	0.1138	0.0882	2.5683	7	7
2	17.9632	0.1100	0.0890	2.5396	7	7
3	16.0150	0.1213	0.1170	2.3682	7	7
4	14.6361	0.1112	0.1520	2.1106	10	10

In [3]:

```
df['LithCode'] = df['TRUE']
df=df.drop(['PICK','TRUE'], axis=1)
df.head()
```

Out[3]:

	GR	NPHI	DPHI	PEF	LithCode
0	18.4445	0.1263	0.0973	2.5341	7
1	18.4814	0.1138	0.0882	2.5683	7
2	17.9632	0.1100	0.0890	2.5396	7
3	16.0150	0.1213	0.1170	2.3682	7
4	14.6361	0.1112	0.1520	2.1106	10

In [4]:

```
import csv
input_file = csv.DictReader(open("Lithology.csv"))
```

In [5]:

```
import csv
with open('Lithology.csv') as f:
    d = dict(filter(None, csv.reader(f)))
print(d)
```

```
{'1': 'Unkown', '2': 'Halite', '3': 'Gypsum', '4': 'Dolomite', '5': 'Dolomitic Limestone', '6': 'Cherty Dolomitic Limestone', '7': 'Cherty Dolomite', '8': 'Limestone', '9': 'Cherty Limestone', '10': 'Chert', '11': 'Shale', '12': 'Sand Stone', '13': 'Ironstone', '14': 'Coal'}
```

In [6]:

```
df['Lithology'] = df['LithCode'].apply(lambda x: d[str(x)])
df.head()
```

Out[6]:

	GR	NPHI	DPHI	PEF	LithCode	Lithology	
0	18.4445	0.1263	0.0973	2.5341	7	Cherty Dolomite	
1	18.4814	0.1138	0.0882	2.5683	7	Cherty Dolomite	
2	17.9632	0.1100	0.0890	2.5396	7	Cherty Dolomite	
3	16.0150	0.1213	0.1170	2.3682	7	Cherty Dolomite	
4	14.6361	0.1112	0.1520	2.1106	10	Chert	

In [7]:

sns.pairplot(df.drop('LithCode',axis=1), hue='Lithology')

Out[7]:

<seaborn.axisgrid.PairGrid at 0x1ececea5c48>

In [8]:

```
plt.figure(figsize=(8,10))
sns.boxplot(y=df['Lithology'], x=df['GR'], orient="h")
```

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x1ecedd9d648>

In [9]:

```
plt.figure(figsize=(8,10))
sns.boxplot(y=df['Lithology'], x=df['NPHI'], orient="h")
```

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x1ecee2cf248>

In [10]:

```
plt.figure(figsize=(8,10))
sns.boxplot(y=df['Lithology'], x=df['DPHI'], orient="h")
```

Out[10]:

<matplotlib.axes._subplots.AxesSubplot at 0x1ecedadfe48>

In [11]:

```
plt.figure(figsize=(8,10))
sns.boxplot(y=df['Lithology'], x=df['PEF'], orient="h")
```

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x1ecee6947c8>

In [12]:

df.head()

Out[12]:

	GR	NPHI	DPHI	PEF	LithCode	Lithology
0	18.4445	0.1263	0.0973	2.5341	7	Cherty Dolomite
1	18.4814	0.1138	0.0882	2.5683	7	Cherty Dolomite
2	17.9632	0.1100	0.0890	2.5396	7	Cherty Dolomite
3	16.0150	0.1213	0.1170	2.3682	7	Cherty Dolomite
4	14.6361	0.1112	0.1520	2.1106	10	Chert

In [13]:

```
dt = df[['GR', 'NPHI', 'DPHI', 'PEF']]
cor_dt = dt.corr()
```

In [14]:

```
plt.figure(figsize=(9,7))
sns.heatmap(cor_dt, label=True)
```

Out[14]:

<matplotlib.axes._subplots.AxesSubplot at 0x1ecee9c7688>

In [15]:

```
dt['LithCode'] = df['LithCode']
```

C:\Users\DELL\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy """Entry point for launching an IPython kernel.

In [16]:

dt.head()

Out[16]:

	GR	NPHI	DPHI	PEF	LithCode
0	18.4445	0.1263	0.0973	2.5341	7
1	18.4814	0.1138	0.0882	2.5683	7
2	17.9632	0.1100	0.0890	2.5396	7
3	16.0150	0.1213	0.1170	2.3682	7
4	14.6361	0.1112	0.1520	2.1106	10

In [17]:

from sklearn.preprocessing import StandardScaler

In [18]:

```
features = dt.drop('LithCode', axis=1)
targets = dt['LithCode']
```

In [19]:

```
scaler = StandardScaler()
std_features = scaler.fit_transform(features)
```

```
X_features = pd.DataFrame(data=std_features, columns=features.columns)
X_features.head()
Out[20]:
        GR
                NPHI
                         DPHI
                                   PEF
 0 -0.597337 -0.247507 -0.090083 -0.765823
 1 -0.596353 -0.352919 -0.160980 -0.734030
 2 -0.610163 -0.384965 -0.154747 -0.760710
 3 -0.662079 -0.289672 0.063398 -0.920046
   -0.698824 -0.374845 0.336080 -1.159514
In [21]:
from sklearn.model_selection import train_test_split
In [22]:
X_train, X_test, y_train, y_test = train_test_split(X_features, targets, train_size=0.7, random_state=122)
In [23]:
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
(3500, 4)
(3500,)
(1500, 4)
(1500,)
In [24]:
X_features.describe()
Out[24]:
                           NPHI
                                        DPHI
                                                     PEF
 count 5.000000e+03
                    5.000000e+03
                                 5.000000e+03
                                              5.000000e+03
 mean -2.953193e-17
                    -2.857714e-17
                                 5.556111e-17
                                              -3.763656e-17
  std 1.000100e+00
                    1.000100e+00
                                 1.000100e+00
                                              1.000100e+00
  min -9.148307e-01 -1.502337e+00 -3.500164e+00 -2.934056e+00
      -6.621496e-01
                   -7.172247e-01
                                 -5.162455e-01
                                              -8.135351e-01
  50% -5.595014e-01
                   -3.031646e-01
                                 -2.770646e-01
                                              4.238435e-02
  75%
      2.707103e-01
                    8.211644e-01
                                 3.563364e-01
                                              6.836093e-01
  max 2.204341e+00
                   3.671306e+00
                                 3.984563e+00
                                              6.069262e+00
In [25]:
import Machine_Learning as ML
In [26]:
models = ML.Models_ret()
```

Model fitting with regularized logistic regresseion, LDA, KNN, Gradient Boost, ADA boost, Random forest, Decision tree classifier and corresponding confusion matrix

```
models_fit = ML.fit_model(models, X_train, y_train, X_test, y_test)
```

In [27]:

In [20]:

```
C:\Users\DELL\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:940: ConvergenceWarning:
lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
 extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
C:\Users\DELL\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:940: ConvergenceWarning:
lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
C:\Users\DELL\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:940: ConvergenceWarning:
lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
 extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
 extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
C:\Users\DELL\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:940: ConvergenceWarning:
lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
 extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
                                 350
      32 0 0 0 0 0
   2
                                 300
   3
      101e+0Q
   4
      0 104e+02
                                 250
   5
          0 0 0 0 0 0
   6
            0 51 0
                                 200
  7
          0 0 0 47 0 0 0
  8
                                 150
  9
              0 0 0 71 0
                 0 0 60 0 0
  10
                                 100
  11
```

e+00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Predicted label

13 14 50


```
300
   4
                                    250
   5
            0 49 0 0
   6
                                    200
   7
             0 0 46 0
               0 103e+02 0
                                    150
   9
  10
                                    100
  11
  12
                                    50
  13
  14
                                    0
     1 2 3 4 5 6 7 8 9 10 11 12 13 14
              Predicted label
In [28]:
from sklearn.ensemble import VotingClassifier
from sklearn.metrics import plot_confusion_matrix
In [29]:
voting_clf = VotingClassifier(estimators=models_fit, voting='soft')
voting_clf.fit(X_train, y_train)
C:\Users\DELL\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:940: ConvergenceWarning:
lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
VotingClassifier(estimators=[['LR',
                               LogisticRegression(C=5.0, class_weight=None,
                                                   dual=False, fit_intercept=True,
                                                   intercept_scaling=1,
                                                   l1_ratio=None, max_iter=100,
                                                   multi_class='auto',
                                                   n_jobs=None, penalty='l2',
                                                   random_state=None,
                                                   solver='lbfgs', tol=0.0001,
                                                   verbose=0, warm_start=False)],
                              ['LDA',
                               LinearDiscriminantAnalysis(n_components=None,
                                                           priors=None,
                                                           shrinkage=None...
                               DecisionTreeClassifier(ccp_alpha=0.0,
                                                       class_weight=None,
                                                       criterion='gini',
                                                       max_depth=None,
                                                       max_features=None,
                                                       max_leaf_nodes=None,
                                                       min_impurity_decrease=0.0,
                                                       min_impurity_split=None,
                                                       min_samples_leaf=1,
                                                       min_samples_split=2,
                                                       min_weight_fraction_leaf=0.0,
                                                       presort='deprecated',
                                                       random_state=None,
                                                       splitter='best')]],
                 flatten_transform=True, n_jobs=None, voting='soft',
                 weights=None)
```

The confusion matrix of voting classifier to get best classifications

```
In [30]:
plt.figure(figsize=(12.8))
```

```
plt.figure(figsize=(12,8))
plot_confusion_matrix(voting_clf, X_test,y_test)
plt.show()
```

<Figure size 864x576 with 0 Axes>

Using the model to interprete Geophysical logs

```
In [31]:
```

```
df = pd.read_csv('GPH.csv')
df.head()
```

Out[31]:

	DEPT	MNOR	MINV	NPHS	NPHL	NPHI	NPHD	RHOB	QN	QF		RT30	RT20	RT10	RT	RMUD
0	1510.0	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25		16.0478	4.9457	3.3305	1999.9999	0.7480
1	1510.5	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25		18.5982	5.8843	3.9779	1999.9999	0.7493
2	1511.0	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25		18.9170	6.0046	4.0613	1999.9999	0.7462
3	1511.5	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25		17.3583	5.5102	3.7269	1999.9999	0.7506
4	1512.0	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25		15.9935	5.0936	3.4468	1999.9999	0.7484
5 r	5 rows x 30 columns															

In [32]:

```
dt = df[['DEPT','GR','NPHI','DPHI','PE']]
dt = dt[dt != -999.25].dropna()
dt['Depth'] = dt['DEPT']
dt = dt.drop('DEPT', axis=1)
dt.head()
```

Out[32]:

	GR	NPHI	DPHI	PE	Depth
3370	74.7029	0.0420	0.1074	4.7732	3195.0
3371	72.7194	0.0371	0.0875	4.7937	3195.5
3372	69.7554	0.0371	0.0756	4.8635	3196.0
3373	74.6137	0.0465	0.0722	4.8484	3196.5
3374	75.5497	0.0658	0.0789	4.7579	3197.0

```
In [33]:
dt = dt[['Depth', 'GR','NPHI','DPHI','PE']]
dt.head()
Out[33]:
               GR
                   NPHI
                         DPHI
                                 PΕ
      Depth
3370 3195.0 74.7029 0.0420
                        0.1074 4.7732
3371 3195.5 72.7194 0.0371
                        0.0875 4.7937
3372 3196.0 69.7554 0.0371
                        0.0756 4.8635
3373 3196.5 74.6137 0.0465 0.0722 4.8484
3374 3197.0 75.5497 0.0658 0.0789 4.7579
In [34]:
dt.index = dt['Depth']
In [35]:
import hemi_welllogs as hb
<matplotlib.colors.ListedColormap object at 0x000001ECF3D0F708>
Blocking the geophysical logs
In [36]:
ddf = hb.block_df(dt)
In [37]:
ddf[3200:3400].plot(subplots=True, figsize=(12,10), grid=True)
Out[37]:
array([<matplotlib.axes._subplots.AxesSubplot object at 0x000001ECF3F8FF08>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x000001ECF43C8208>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x000001ECF43FC508>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x000001ECF442DB88>],
      dtype=object)
                                                                                      GR
100
 50
                                                                                     NPHI
 0.1
 0.0
                                                                                     DPHI
 0.1
 0.0
```

3275

3300

Depth

3325

3350

3375

3400

3250

3200

3225

```
ddf.tail()
Out[38]:
                GR
                      NPHI
                              DPHI
                                        PΕ
     Depth
 5014.526870 53.808508 0.128009 0.055633 4.125405
 5014.542048 53.808508 0.128009 0.055633 4.125405
 5014.545328 53.808508 0.128009 0.055633 4.125405
 5014.595846 53.808508 0.128009 0.055633 4.125405
 5014.646365 53.808508 0.128009 0.055633 4.125405
In [39]:
scale = StandardScaler()
features = scale.fit_transform(ddf)
features
Out[39]:
array([[-0.02565548,\ -1.21609564,\ -0.49924943,\ \ 1.48724866],
       [-0.02565548, -1.21609564, -0.49924943, 1.48724866],
       [-0.02565548, -1.21609564, -0.49924943, 1.48724866],
       [-0.5260154, -0.28514321, -0.79436105, 0.61228787],
       [-0.5260154, -0.28514321, -0.79436105, 0.61228787],
       [-0.5260154 , -0.28514321, -0.79436105, 0.61228787]])
In [40]:
interpretation = voting_clf.predict(features)
In [41]:
interpretation
Out[41]:
array([8, 8, 8, ..., 5, 5], dtype=int64)
In [42]:
ddf_interpret = ddf
ddf_interpret['Lith_pred'] = interpretation
ddf_interpret.head()
Out[42]:
                     NPHI
                GR
                              DPHI
                                       PE Lith_pred
     Depth
```

8

8

8

8

8

In [38]:

3195.000000 76.160038 0.03624 0.071991 4.763356

3195.037941 76.160038 0.03624 0.071991 4.763356

3195.049475 76.160038 0.03624 0.071991 4.763356

3195.075883 76.160038 0.03624 0.071991 4.763356

3195.098951 76.160038 0.03624 0.071991 4.763356

```
In [43]:
```

```
ddf['Lithology'] = ddf['Lith_pred'].apply(lambda x: d[str(x)])
ddf.head()
```

Out[43]:

	GR	NPHI	DPHI	PE	Lith_pred	Lithology
Depth						
3195.000000	76.160038	0.03624	0.071991	4.763356	8	Limestone
3195.037941	76.160038	0.03624	0.071991	4.763356	8	Limestone
3195.049475	76.160038	0.03624	0.071991	4.763356	8	Limestone
3195.075883	76.160038	0.03624	0.071991	4.763356	8	Limestone
3195.098951	76.160038	0.03624	0.071991	4.763356	8	Limestone

In [44]:

ddf[3370:3400]

Out[44]:

	GR	NPHI	DPHI	PE	Lith_pred	Lithology
Depth						
3370.000789	48.885117	0.07428	0.063861	4.403666	8	Limestone
3370.034124	48.885117	0.07428	0.063861	4.403666	8	Limestone
3370.038385	48.885117	0.07428	0.063861	4.403666	8	Limestone
3370.049409	48.885117	0.07428	0.063861	4.403666	8	Limestone
3370.077483	48.885117	0.07428	0.063861	4.403666	8	Limestone
3399.950661	34.923290	0.03349	0.032480	4.885684	3	Gypsum
3399.950833	44.316527	0.03349	0.032480	4.885684	3	Gypsum
3399.951212	44.316527	0.03349	0.032480	4.885684	3	Gypsum
3399.973109	44.316527	0.03349	0.032480	4.885684	3	Gypsum
3399.991659	44.316527	0.03349	0.032480	4.885684	3	Gypsum

2561 rows × 6 columns

In [45]:

```
Litho = ddf[['Lith_pred','Lithology']]
Litho['Depth'] = ddf.index
Litho.head()
```

C:\Users\DELL\Anaconda3\lib\site-packages\ipykernel_launcher.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

Out[45]:

	Lith_pred	Lithology	Depth
Depth			
3195.000000	8	Limestone	3195.000000
3195.037941	8	Limestone	3195.037941
3195.049475	8	Limestone	3195.049475
3195.075883	8	Limestone	3195.075883
3195.098951	8	Limestone	3195.098951

```
In [46]:
top = 0
bot = 0
width = 0
height = 0
Lithcode = 0
Lithology = 'a'
In [47]:
Litho_interpret = pd.DataFrame(columns=['top','bottom', 'width', 'height'])
In [48]:
top = Litho['Depth'].iloc[0]
nn = []
for i in range(len(Litho['Lith_pred'])-1):
    if(Litho.iloc[i+1,0]!=Litho.iloc[i,0]):
        bot = Litho.iloc[i,2]
        Lithcode = Litho.iloc[i,0]
        Lithology = Litho.iloc[i,1]
        height = bot-top
        width = 1
        nn.append([top, bot, width, height, Lithcode, Lithology])
        top = bot
Final interpretation
In [49]:
Litho_interpret = pd.DataFrame(nn, columns=['top','bottom', 'width', 'height','LithCode','Lithology'])
Litho_interpret.head()
Out[49]:
         top
                 bottom width
                               height LithCode
                                                     Lithology
0 3195.000000 3199.311941
                           1 4.311941
                                           8
                                                    Limestone
 1 3199.311941 3199.423373
                           1 0.111432
                                           9
                                               Cherty Limestone
 2 3199.423373 3199.683504
                           1 0.260131
                                           5 Dolomitic Limestone
 3 3199.683504 3200.414598
                                           9
                           1 0.731094
                                               Cherty Limestone
 4 3200.414598 3205.904068
                           1 5.489469
                                           3
                                                      Gypsum
In [50]:
from matplotlib.patches import Rectangle
In [51]:
dt['Depth'] = dt.index
ddf['Depth'] = ddf.index
In [52]:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
```

<matplotlib.colors.ListedColormap object at 0x0000001ECF46F0D08>

viridis = cm.get_cmap('viridis', 14)

print(viridis)

Interpretation and Geophysical logs plot with interpreted Lithologies

In [56]:

hb.plot_interpretation(dt,ddf,Litho_interpret,d)

In [57]:

ddf

Out[57]:

	GR	NPHI	DPHI	PE	Lith_pred	Lithology	Depth
Depth							
3195.000000	76.160038	0.036240	0.071991	4.763356	8	Limestone	3195.000000
3195.037941	76.160038	0.036240	0.071991	4.763356	8	Limestone	3195.037941
3195.049475	76.160038	0.036240	0.071991	4.763356	8	Limestone	3195.049475
3195.075883	76.160038	0.036240	0.071991	4.763356	8	Limestone	3195.075883
3195.098951	76.160038	0.036240	0.071991	4.763356	8	Limestone	3195.098951
5014.526870	53.808508	0.128009	0.055633	4.125405	5	Dolomitic Limestone	5014.526870
5014.542048	53.808508	0.128009	0.055633	4.125405	5	Dolomitic Limestone	5014.542048
5014.545328	53.808508	0.128009	0.055633	4.125405	5	Dolomitic Limestone	5014.545328
5014.595846	53.808508	0.128009	0.055633	4.125405	5	Dolomitic Limestone	5014.595846
5014.646365	53.808508	0.128009	0.055633	4.125405	5	Dolomitic Limestone	5014.646365

141477 rows × 7 columns

In []: