EM384: Analytical Methods for Engineering Management

Lesson 26: Site Selection Problems

Table of contents

1. Lesson Objectives

2. In Class Exercise

3. Conclusion

Lesson Objectives

Lesson Objectives

- Recognize a site selection problem given a transportation problem.
- Formulate and solve in Excel a site selection problem using binary decision variables.

In Class Exercise

Block 3 Challenge Problem

Formulate the min-cost network flow problem to the right as a site selection problem, with fixed costs $F_D = \$100$, $F_E = \$50$ and $F_H = \$75$. Then solve using Excel. Which sites are not in use?

Solution

Decision Variables:

 x_{ij} is the flow from node i to node j, $\forall i \in \{A, B, C, D\}, j \in \{C, D, E, H\}$ and $i \neq j$ y_D , y_E , y_H are binary decision variables where $y_i = 0$ means site i is not selected, and $Y_i = 1$ means site i is selected, $\forall i \in \{D, E, H\}$

Objective Function:

Minimize

$$Z = 2x_{AC} + x_{AD} + 10x_{BC} + 9x_{BD} + 10x_{CE} + 4x_{CH} + 4x_{DE} + 3x_{DH} + 100y_D + 50y_E + 75y_H$$

Constraints:

$$x_{AC} + x_{AD} = 50$$

$$x_{BC} + x_{BD} = 50$$

$$x_{CE} + x_{DE} \le 100y_E$$

$$x_{CH} + x_{DH} \le 100y_H$$

$$x_{AC} + x_{BC} = x_{CE} + x_{CH}$$

$$X_{AD} + X_{BD} = X_{DE} + X_{DH}$$

 $X_{AD} + X_{BD} \le 100y_D$
 $X_{DH} \le 25$
 $X_{AC}, X_{AD}, X_{BC}, X_{BD}, X_{CE}, X_{CH}, X_{DE}, X_{DH} \ge 0$
 $Y_D, Y_E, Y_H \in \{0, 1\}$

Conclusion

Next Class

Homework:

• Review Lessons Lessons 13 - 26

Next Lesson:

• WPR 2 (MH404), during the regular class period.