COSC 290 Discrete Structures

Lecture 4: Propositional Logic

Prof. Michael Hay Wednesday, Sep. 6, 2017

Colgate University

CS Connections: logic-based AI agents

Plan for today

- 1. CS Connections: logic-based AI agents
- 2. Logic and Entailment
- 3. Propositional Logic

Wumpus World

Performance measure

- · gold +1000, death -1000
- · -1 per step, -10 for using the arrow

Environment

- Squares adjacent to wumpus are smelly
 - · Squares adjacent to pit are breezy
 - · Glitter when gold is in the same square
 - Shooting kills wumpus if you are facing it.
 - · Shooting uses up the only arrow
 - · Grabbing picks up gold if in same square
- · Releasing drops the gold in same square

Actuators

 Left turn, Right turn, Forward, Grab, Release, Shoot

Sensors

Breeze, Glitter, Smell
Credit: slides adapted from Russell & Novieg, Al: A Modern Approach

Exploring a wumpus world

Credit: slides adopted from Russell & Norvig, At: A Modern Approach

Exploring a wumpus world

Credit: slides adapted from Russell & Norvig, At: A Modern Approach

Exploring a wumpus world

Exploring a wumpus world

Exploring a wumpus world

Credit: slides adapted from Russell & Norvig, At: A Modern Approach

Exploring a wumpus world

Exploring a wumpus world

Credit: slides adapted from Russell & Norvig, At: A Modern Approach

Exploring a wumpus world

Some tight spots

Breeze in (1, 2) and (2, 1) => no safe actions

Smell in (1, 1) => cannot move.

However, there's hope: shoot straight ahead.

- · If wumpus was there, it's now dead, so it's safe.
- · If wumpus wasn't there, it's safe.

Credit: slides adapted from Russell & Norvig, At: A Modern Approach

Logic in a general

A formal logic is a language for representing information such that conclusions can be drawn.

Syntax

Syntax defines what sentences are permissible in the language.

Semantics

Semantics defines the "meaning" of sentences. It defines the rules for determining the truth of a sentence with respect to each possible world.

Example: arithmetic

- Syntax: x + y = 4 is a sentence; x4 + y = is not.
- Semantics: x + y = 4 is true in a world x is 2 and y is 2, but false in a world x is 2 and y is 3.

Logic and Entailment

Entailment

Entailment means that one thing follows from another:

$$KB \models \alpha$$

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true.

Ex: the KB containing "the Patriots won" entails "Either the Patriots won or the Packers won."

Ex: the KB containing rules of algebra and the fact x+y=4 entails y=4-x.

Models

A model is a mathematical abstraction that represents a possible world. A model contains the relevant information to evaluate the truth or falsehood of any sentence.

Model m satisfies sentence α if α is true in m.

 $M(\alpha)$ set of all models that satisfy α .

 $KB \models \alpha \text{ if and only if } M(KB) \subseteq M(\alpha).$

Credit: slides adapted from Russell & Norvig, At: A Modern Approach

Entailment in the wumpus world

Entailment: Given our knowledge base (rules of wumpus world plus info shown in figure), can we determine...

- ... that [1,2] is safe?
- ... that [2, 2] is safe?

Models in the wumpus world

Situation after... detecting nothing in [1,1], moving right, breeze in [2,1]

?s ? ?

Consider possible models for ?s assuming only pits.

3 Boolean choices \implies 8 possible models

Credit: slides adopted from Russell & Norvig, At: A Modern Approach

Wumpus models

Wumpus models

KB = wumpus-world rules + observations

Credit: slides adapted from Russell & Norvig, At: A Modern Approach

Wumpus models

KB = wumpus-world rules + observations

 α_2 = "[2,2] is safe", KB $\not\models \alpha_2$.

KB = wumpus-world rules + observations

 α_1 = "[1,2] is safe", KB $\models \alpha_1$, proved by model checking.

Credit: slides adapted from Russell & Norvig, Al: A Modern Approach

Poll

20

Assume you are in a 4 x 4 wumpus world.

You observe a breeze [1,2] and a breeze in [2,1]. Your knowledge base KB consists of these facts plus the wumpus-world rules.

Consider the sentence α_3 = "[2,2] has a pit." Does KB $\models \alpha_3$?

- A) Yes, the models where $\alpha_{\rm 3}$ is true, the KB is also true.
- B) Yes, the models where KB is true, the $\alpha_{\rm 3}$ is also true.
- C) No, there are models where $\alpha_{\rm 3}$ is true but KB is not.
- D) No, there are models where KB is true but $\alpha_{\rm 3}$ is not.
- E) We don't have enough information.

Inference

An inference algorithm is a procedure that takes KB and α and attempts to prove that α follows from KB or conclude that it does not.

Analogy: consequences of KB are a haystack; α is a needle.

- · Entailment = needle in havstack
- · Inference = a procedure for finding it

We just performed inference by model checking. Enumerate all possible models and if α is true in all models where KB is true, then KB $\models \alpha$.

We will look at other inference algorithms – in particular, ones that can be applied to *propositional logic*.

22

Poll: what is a proposition?

Propositional logic is based around the concept of a proposition. Why isn't

"Where is does COSC 290 lab meet?"

considered a proposition?

- A) Because only "yes/no" questions can be propositions.
- B) Because questions can never be propositions.
- C) Because the answer changes over time (last semester it was held in a different room).
- D) More than one of the above / None of the above.

Propositional Logic

Proposition

A proposition is a sentence that is either true or false.

- 3+4=7
- · My middle name is Herbert or my dog's name is Rufus.
- · One of these three propositions is true.

These are not propositions:

- Questions: is 3 + 4 = 7?
- Imperatives: You should major in computer science.
- · Opinions: CS majors have more fun.

Syntax of propositional logic

A sentence in propositional logic must conform to the following

A sentence can consist of a single atomic proposition. Example: "The chair is red." Such propositions are represented using variables p. q. r. etc.

More complex sentences can be constructed from simpler sentences using logical connectives.

- If S is a sentence, ¬S is a sentence (negation)
- If S₁ and S₂ are sentences, S₁ ∧ S₂ is a sentence (conjunction)
- If S₁ and S₂ are sentences, S₁ ∨ S₂ is a sentence (disjunction)
- If S₁ and S₂ are sentences, S₁ ⇒ S₂ is a sentence (implication)
- If S₁ and S₂ are sentences, S₁ ⇔ S₂ is a sentence (iff)

25

Truth tables

A truth table can be used to compactly represent semantics of a connective.

Recall from reading: "exlusive or" which is denoted using symbol ...

р	q	p⊕q
Т	Т	?
T	F	?
F	Т	?
F	F	?

Example: "I'm either at the office or at home."

Semantics of propositional logic

Recall: the semantics defines the rules for determining the truth of a sentence.

A simple sentence consisting of a single atomic proposition p is either true or false.

For more complex sentences, the truth can be evaluated using these rules:

¬S	is true iff	S	is false		
$S_1 \wedge S_2$	is true iff	S ₁	is true and	S ₂	is true
$S_1 \vee S_2$	is true iff	S ₁	is true or	S ₂	is true
$S_1 \implies S_2$	is true iff	S ₁	is false or	S ₂	is true
$S_1 \iff S_2$	is true iff	$S_1 \implies S_2$	is true and	$S_2 \implies S_1$	is true

In propositional logic, a model is simply an assignment of truth values to the atomic variables

Truthiness of a sentence

Consider the sentence $(p \lor a) \implies r \land \neg a$.

How do we evaluate whether this sentence is true?

- Assign true/false values to atomic propositions p. q. r.
- 2. Apply recursive algorithm (on the sentence represented as a tree).

Poll: Wumpus world sentences

Let atomic propositions be denoted as follows:

- · p; denotes "there is a pit in [i, j]."
- · bii denote "there is a breeze in [i, j]."

Write this sentence in propositional logic: "There may be a pit in [1,2] or [2,2] and the wumpus is either in [2,1] or [3,1]."

A)
$$(p_{1,2} \lor p_{2,2}) \land (b_{2,1} \lor b_{3,1})$$

B) $(p_{1,2} \lor p_{2,2}) \land (b_{2,1} \oplus b_{3,1})$

B)
$$(p_{1,2} \lor p_{2,2}) \land (b_{2,1} \oplus b_{3,1})$$

C) $(p_{1,2} \land p_{2,2}) \lor (b_{2,1} \land b_{3,1})$

D)
$$(p_{1,2} \land p_{2,2}) \lor (b_{2,1} \land b_{3,1})$$

D)
$$(p_{1,2} \wedge p_{2,2}) \vee (b_{2,1} \wedge b_{3,1})$$

Poll: Wumpus world sentences

Let atomic propositions be denoted as follows:

- · p;; denotes "there is a pit in [i, j]."
- b_{ii} denote "there is a breeze in [i, i]."

Suppose we know that "pits cause breezes in adjacent cells." Which

of the following sentences could we add to our KB?

A)
$$p_{2,1} \implies (b_{1,1} \wedge b_{2,2} \wedge b_{3,1})$$

B) $b_{1,1} \implies (p_{1,2} \vee p_{2,1})$

C)
$$b_{1,1} \iff (p_{1,2} \lor p_{2,1})$$

 $(p_{1,2} \lor p_{2,1})$

29

E) None of the above unless we also know that
$$b_{\rm 1,1}$$
 is true or $p_{\rm 2,1}$ is true.

Bonus question: would you answer change if you also knew that pits were the sole causes of breezes?

30