WHAT IS CLAIMED IS:

1	1.) A method for determining temperature of a transducer of an ultrasonic hand piece;
2	comprising the steps of:
3	determining a shunt capacitance of the transducer;
4	calculating the temperature of the transducer based on the shunt capacitance
5	of the transducer; and
6	_ providing a warning to a user of the hand piece if one of the temperature of
Ē	the transducer and a rate of change of the temperature is excessive.
V.	
	2. The method of claim 1, wherein said determining step comprising the steps of:
2	applying an ultrasonic drive signal to the transducer across a pre-defined
5	frequency range;
4	measuring shunt capacitances of the transducer at frequencies across the
5	predefined frequency range;
6	comparing the measured shunt capacitances;
7	determining whether any measured shunt capacitance varies by more than
8	a predetermined value for all measured shunt capacitances; and
9	averaging the measured shunt capacitances and calculating the transducer
0	temperature.

2

1	3. The method of claim 2, further comprising the step of.
2	filtering the measured shunt capacitances.
1	4. The method of claim 3, wherein said filtering comprises the steps of:
2	discarding invalid measured shunt capacitance values which vary by greater
3	than the predetermined value; and
4	determining whether a number of remaining measured shunt capacitance
5	values is greater than a pre-defined number; and
6	returning to the step of measuring shunt capacitances of the transducer, if
7	the number of remaining measured shunt capacitance values is less than the
8 .	pre-defined number.
	5. The method of claim 4, wherein the pre-defined number is 3.
H	6. The method of claim 2, wherein the predefined frequency range is from approximately
2	34 kHz to 44 kHz.

23

non-resonant frequencies are located in the predefined frequency range.

7. The method of claim 2, wherein the pre-defined frequency range is set such that

1

2

3

4

5

6

1

2

- 8. The method of claim 2, wherein said measuring step comprises the step of: measuring shunt capacitances at several different frequencies within and spaced along the predefined frequency range.
- 9. The method of claim 8, wherein the shunt capacitances are measured at five different frequencies.
 - 10. The method of claim 2, wherein the pre-determined value is approximately 10 percent.
 - 11. The method of claim 2, wherein the calculation is performed in accordance with the relationship:

$$\Delta C_0 = C_s - C_0,$$

where C_s is the capacitance at an off-resonance frequency which is stored in memory and C_0 is the shunt capacitance.

- 12. The method of claim 1, wherein said determining step comprises the steps of:
 applying an ultrasonic drive signal to the transducer across a pre-defined
 frequency range;
- measuring the hand piece impedance;
- determining whether the hand piece phase difference is less than a predetermined value;

/	measuring the hand piece impedance a pre-established number of times;
8	computing a hand piece average shunt capacitance;
9	incrementing the drive signal by a set frequency value;
10	determining whether one of the drive frequency is greater than a pre-set
11	frequency and a number of impedance measurements is less than a pre-defined
12	number; and
13	computing an average shunt capacitance value at each drive frequency.

13. The method of claim 12, further comprising the step of:

incrementing the drive signal by the set frequency value, if the absolute value of the hand piece phase difference is greater than the predetermined value; and

returning to the step of measuring the hand piece impedance.

- 14. The method of claim 13, wherein the set frequency value is 25 Hz and the predetermined value is 89.5°.
- 1 15. The method of claim 12, wherein the predefined frequency range is from 2 approximately 34 kHz to 44 kHz.

performing a calculation to determine whether the hand piece is within

- acceptable temperature limits; and

- 5
- 1
- 2
- 2004IV

2

3

- 3
- providing a warning, if the transducer temperature is not within acceptable

limits.

- - 17. The method of claim 16, wherein the calculation is performed in accordance with the relationship:

$$\Delta C_0 = C_s - C_0,$$

where C_s is the capacitance at an off-resonance frequency which is stored in memory and C_0 is the shunt capacitance.

- 18. The method of claim 12, wherein the pre-established number is 10 percent.
- 19. The method of claim 12, wherein the average shunt capacitance is computed in accordance with the relationship:

$$C_0 = \frac{1}{2\pi f \left| Z_{HP} \right|},$$

where f is the drive frequency of the generator, and Z_{HP} is the hand piece impedance. 4

18

19

1	20. The method of claim 12, wherein the pre-set frequency is 44.5 kHz and the
2	pre-defined number is 100.
1	21. The method of claim 1, wherein said determining step comprises the steps of:
2	applying an ultrasonic drive signal to the hand piece/blade across a
3	pre-defined frequency range;
4	measuring a first hand piece shunt capacitance when a user first activates
5	the hand piece/blade;
6	measuring a second hand piece/blade shunt capacitance when the surgeon
£	deactivates the hand piece/blade;
8.J	calculating a time difference between when the hand piece/blade is activated
	and deactivated using a time when the first measured hand piece/blade shunt
	capacitance is obtained and a time when the second measured hand piece/blade
	shunt capacitance is obtained;
124	computing a rate of change value of the hand piece/blade shunt capacitance
13	using the calculated time difference;
14	determining whether the rate of change value of the hand piece/blade shunt
15	capacitance is greater than a predetermined threshold above a value stored in
16	memory; and

providing a warning to the user, if the rate of change value of the hand piece/blade shunt capacitance is greater than the predetermined threshold above the value stored in memory.

	22.	The	method	of	claim	21,	wherein	the	predefined	frequency	range	is	fron
<u>_</u>													
approx	ximatel	ly 34	kHz to 4	4 kl	Iz.								

- 23. The method of claim 21, wherein said computing step comprises the step of:

 dividing a difference between the first measured hand piece/blade shunt
 capacitance and the second measured hand piece/blade shunt capacitance by a
 difference in time between when the first measured hand piece/blade shunt
 capacitance is obtained and when the second measured hand piece/blade shunt
 capacitance is obtained.
- 24. The method of claim 21, wherein the predetermined threshold is a shunt capacitance rate of change value stored in memory.
 - 25. The method of claim 24, wherein the predetermined threshold is 120 pF/min.
 - 26. The method of claim 1, wherein said determining step comprises the steps of: applying an ultrasonic drive signal to the transducer across a pre-defined frequency range;

measuring the hand piece impedance at fixed frequency intervals to obtain a measured impedance at each frequency interval;

performing a curve fit based on each measured impedance at each frequency interval to obtain a curve fit equation;

1

1

2

13

14

solving the curve fit equation at equally spaced frequency values to obtain

a group of distinct impedance values;

calculating a shunt capacitance based on each distinct impedance value;

discarding a maximum and a minimum calculated shunt capacitance value

to obtain a residual group of shunt capacitances; and

averaging the residual group of shunt capacitances to obtain a final shunt capacitance value of the hand piece.

27. The method of claim 26, wherein the curve fit is performed in accordance with the relationship:

$$Z_{HP} = af_0^2 + bf_0 + c ,$$

where a, b and c are constants which are calculated via the curve fit and f_0 is a fixed frequency at which the hand piece impedance is measured.

- 28. The method of claim 22, wherein the pre-defined frequency range is from approximately 34.5 kHz to 44.5 kHz.
 - 29. The method of claim 26, wherein the fixed frequency interval is 50 Hz.
- 30. The method of claim 26, wherein the shunt capacitance is calculated in accordance with the relationship:

$$C_0 = -(1/f_0) * (Z_{HP}^2 - 1/R_p^2)^{1/2} - (C_{v1} * C_{v2})/(C_{v1} + C_{v2}) + 1/(f_0^2 * L_t) - C_c - C_{pcb},$$

- where C_o is the shunt capacitance, f_0 is a fixed frequency at which the hand piece impedance is measured, Z_{HP} is the hand piece impedance at the fixed frequency f_0 , R_p is a value of a limiting resistor, C_{v1} and C_{v2} are values of voltage dividing capacitors, L_t is a value stored in memory of the generator which represents a transducer tuning inductor, C_c is a capacitance of a hand piece cable and C_{pcb} is a contribution of capacitance from a printed circuit board in the generator.
- 31. The method of claim 26, wherein the group of distinct impedance values comprises eleven impedance values.
- 32. The method of claim 26, wherein the equally spaced frequency values are spaced apart at 1000 Hz intervals.