A. El Ouni A. Khaldi C. Samir A. Wohrer

TD4 – Lois de probabilités discrètes usuelles

Exercice 1.

On place un hamster dans une cage. Il se trouve face à 5 portillons dont un seul lui permet de sortir de la cage. A chaque essai infructueux, on le replace à l'endroit initial.

- 1. En supposant que le hamster ne soit pas doué d'apprentissage et qu'il choisisse donc de façon équiprobable entre les 5 solutions à chaque nouvel essai, déterminer la probabilité des évènements :
 - a) le hamster sort au premier essai,
 - b) le hamster sort au troisième essai,
 - c) le hamster sort au septième essai.
- 2. Le hamster mémorise maintenant les essais infructueux et choisit de façon équiprobable entre les portillons qu'il n'a pas encore essayés. On désigne par X la variable aléatoire égale au nombre d'essais effectués.
 - a) Quelles valeurs peut prendre X? Déterminer sa loi de probabilité.
 - b) Déterminer l'espérance mathématique E(X) et interpréter le résultat.
 - c) Déterminer la variance V(X).

Exercice 2.

On suppose que la probabilité pour qu'une personne soit allergique à un médicament donné est égale à 10^{-3} . On s'intéresse à un échantillon de 1000 personnes. On appelle X la variable aléatoire dont la valeur est le nombre de personnes allergiques dans l'échantillon.

- 1. Déterminer, en la justifiant, la loi de probabilité de X, puis les valeurs E(X) et V(X).
- 2. En utilisant une approximation que l'on justifiera, calculer les probabilités des évènements suivants :
 - a) Il y a exactement deux personnes allergiques dans l'échantillon.
 - b) Il y a au moins deux personnes allergiques dans l'échantillon.
 - c) Calculer et interpréter les valeurs de E(X) et V(X).

Exercice 3.

On s'intéresse à un bureau de poste, un mardi aux alentours de 11 heures du matin. À cette heure-ci, les arrivées des clients au guichet sont totalement aléatoires, avec en moyenne un client toutes les deux minutes. On s'intéresse à la variable aléatoire X: nombre de clients entrés dans l'agence entre 10h et 10h10.

- 1. Parmi les trois lois suivantes : Poisson / uniforme / binômiale, laquelle faut-il utiliser pour modéliser la variable X? Justifiez votre réponse.
- 2. Que vaut E(X)? Déduisez-en la valeur du paramètre à utiliser dans la loi de X.

3. Calculez la probabilité qu'il rentre strictement moins de trois clients dans l'agence entre 10h et 10h10.

Exercice 4.

Pour chacune des variables aléatoires suivantes, dites quelle loi pourrait être utilisée pour la modéliser : uniforme, géométrique, binômiale, Poisson, aucune des 4?

- 1. Le nombre d'insectes tapés pendant un trajet en voiture.
- 2. Le nombre de minutes avant de taper le premier insecte pendant un trajet en voiture.
- 3. La valeur du "numéro chance" au tirage du loto de samedi prochain.
- 4. Le plus grand nombre qui sortira dans le tirage du loto de samedi prochain.
- 5. Le nombre de jours de couvaison d'un œuf de poule.
- 6. Le nombre d'années avant la désintégration d'un atome de carbone 14.
- 7. Le nombre de malades du Covid parmi 100 personnes choisies au hasard.
- 8. Le nombre de malades du Covid parmi une classe de maternelle de 23 élèves.
- 9. Le nombre de malades du Covid détectés par un laboratoire d'analyses, une matinée au hasard.
- 10. Dans un centre d'appels de démarchage téléphonique :
 - (a) Le nombre d'appels à effectuer avant de trouver une personne qui reste en ligne.
 - (b) Le nombre d'appels à effectuer avant de vendre 5 produits.

Exercice 5 (mathématiques de la loi de Poisson).

- 1. Soit X une variable aléatoire distribuée suivant une loi de Poisson de paramètre λ . Rappelez la formule pour les nombres $p_k = P(X = k)$.
- 2. On admettra la formule suivante pour la fonction exponentielle :

$$\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

Déduisez-en que la loi de Poisson est bien normalisée, c'est-à-dire que la somme des probabilités p_k fait bien 1.

- 3. Rappelez la définition générale de E(X), et prouvez que pour une loi de Poisson, $E(X) = \lambda$.
- 4. Prouvez que pour une loi de Poisson, $E(X^2) = \lambda^2 + \lambda$. (*Indice*: utilisez le fait que $k^2 = k(k-1) + k$.) Déduisez-en la valeur de Var(X).
- 5. Soient deux variables aléatoires indépendantes $X \sim \text{Pois}(\lambda)$ et $Y \sim \text{Pois}(\theta)$. Soit la variable aléatoire Z = X + Y.
 - (a) Montrez que Z suit encore une loi de Poisson, dont vous préciserez le paramètre.
 - (b) Fournissez une interprétation intuitive de ce résultat.