Formy Kwadratowe, Określoność i Kryterium Sylvestera

Gabriel Tyszka

20 czerwca 2025

Spis treści

3	Kryterium Sylvestera	2
2	Określoność formy kwadratowej	1
1	Czym jest forma kwadratowa?	1

1 Czym jest forma kwadratowa?

Forma kwadratowa to specyficzny rodzaj funkcji h, która odwzorowuje wektor x z przestrzeni \mathbb{R}^n (np. trójwymiarowy wektor $[x_1, x_2, x_3]^T$) na pojedynczą wartość rzeczywistą (skalar).

Definicja 1: Funkcja $h: \mathbb{R}^n \to \mathbb{R}$ jest nazywana formą kwadratową, jeśli można ją przedstawić w postaci $h(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, gdzie A jest rzeczywistą macierzą symetryczną o wymiarach $n \times n$. Macierz A jest nazywana macierzą formy kwadratowej h.

Równoważnie, wzór na formę kwadratową można wyrazić w postaci sumy:

$$h(x_1, ..., x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

Kluczowa cecha: Z powyższej definicji wynika, że wszystkie człony w wyrażeniu formy kwadratowej muszą być **stopnia drugiego** (kwadratowe). Oznacza to, że każdy składnik musi być iloczynem dwóch zmiennych (np. x_1x_2) lub zmiennej podniesionej do kwadratu (np. x_1^2).

Przykłady form kwadratowych:

- $h_1(x_1, x_2, x_3) = -x_1^2 + 2x_1x_2 + x_2^2 4x_2x_3$
- $h_2(x_1, x_2, x_3, x_4) = -x_1^2 + 2x_1x_2 + x_2^2 4x_2x_3$

Przykłady funkcji, które NIE są formami kwadratowymi:

- $g_1(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2$: Nie jest formą kwadratową ze względu na obecność terminu liniowego x_2 (stopnia pierwszego).
- $g_2(x_1, x_2) = x_1^2 + x_2^2 + 1$: Nie jest formą kwadratową ze względu na obecność stałego terminu +1 (stopnia zerowego).

2 Określoność formy kwadratowej

W klasie wszystkich form kwadratowych szczególną rolę odgrywają formy określone. Określoność formy kwadratowej $h(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ opisuje znak wartości, jaką forma przyjmuje dla niezerowych wektorów \mathbf{x} .

Definicje rodzajów określoności:

- Dodatnio określona: jeżeli $\mathbf{x}^T A \mathbf{x} > 0$ dla wszystkich $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}.$
- Ujemnie określona: jeżeli $\mathbf{x}^T A \mathbf{x} < 0$ dla wszystkich $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$.
- Dodatnio półokreślona: jeżeli $\mathbf{x}^T A \mathbf{x} \geq 0$ dla wszystkich $\mathbf{x} \in \mathbb{R}^n$.
- Ujemnie półokreślona: jeżeli $\mathbf{x}^T A \mathbf{x} \leq 0$ dla wszystkich $\mathbf{x} \in \mathbb{R}^n$.

• Nieokreślona: jeżeli nie zachodzi żaden z poprzednich warunków. Oznacza to, że forma przyjmuje zarówno wartości dodatnie, jak i ujemne (lub zero, ale nie spełnia warunków półokreśloności dla wszystkich x) [3].

Przykłady form kwadratowych:

• Forma nieokreślona:

$$h_1(x_1, x_2, x_3) = -x_1^2 + 2x_1x_2 + x_2^2 - 4x_2x_3$$

ponieważ

$$h_1(1,0,0) = -1$$
 (wartość ujemna), $h_1(0,1,0) = 1$ (wartość dodatnia)

• Forma dodatnio określona:

$$h(x_1, x_2) = x_1^2 + 2x_2^2$$

ponieważ $h(x_1, x_2) > 0$ dla każdego $(x_1, x_2) \neq (0, 0)$

• Forma ujemnie określona:

$$g(x_1, x_2) = -x_1^2 - 2x_2^2$$

ponieważ $g(x_1, x_2) < 0$ dla każdego $(x_1, x_2) \neq (0, 0)$

3 Kryterium Sylvestera

Kryterium Sylvestera jest jedną z najczęściej stosowanych metod badania określoności form kwadratowych. Opiera się na znakach minorów wiodących (wyznaczników głównych) macierzy A formy kwadratowej.

Niech $A = A^T \in \mathbb{R}^{n \times n}$ będzie macierzą symetryczną formy kwadratowej $h(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Minory wiodące D_j to wyznaczniki podmacierzy uzyskanych przez wzięcie pierwszych j wierszy i pierwszych j kolumn macierzy A.

$$D_j = \begin{vmatrix} a_{11} & \cdots & a_{1j} \\ \vdots & \ddots & \vdots \\ a_{j1} & \cdots & a_{jj} \end{vmatrix}$$

Warunki określoności według Kryterium Sylvestera:

- 1. **Dodatnio określona:** Forma kwadratowa h jest dodatnio określona wtedy i tylko wtedy, gdy wszystkie jej minory wiodące są dodatnie: $D_j > 0$ dla j = 1, ..., n.
- 2. **Ujemnie określona:** Forma kwadratowa h jest ujemnie określona wtedy i tylko wtedy, gdy minory wiodące naprzemiennie zmieniają znak, zaczynając od ujemnego: $(-1)^j D_j > 0$ dla $j = 1, \ldots, n$. Oznacza to, że $D_1 < 0$, $D_2 > 0$, $D_3 < 0$ itd.

Przykład: Dla formy kwadratowej $h(x_1, x_2, x_3) = 3x_1^2 + 2x_1x_2 + x_2^2 - 2x_1x_3 + 2x_3^2$ mamy macierz A:

$$A = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

2

Minory wiodące wynoszą:

• $D_1 = 3 > 0$

•
$$D_2 = \begin{vmatrix} 3 & 1 \\ 1 & 1 \end{vmatrix} = 3 \cdot 1 - 1 \cdot 1 = 2 > 0$$

•
$$D_3 = \begin{vmatrix} 3 & 1 & -1 \\ 1 & 1 & 0 \\ -1 & 0 & 2 \end{vmatrix} = 3(1 \cdot 2 - 0 \cdot 0) - 1(1 \cdot 2 - 0 \cdot (-1)) + (-1)(1 \cdot 0 - 1 \cdot (-1)) = 3(2) - 1(2) - 1(1) = 6 - 2 - 1 = 3 > 0$$

Ponieważ wszystkie $D_i > 0$, forma h jest dodatnio określona.

Twierdzenie Forma kwadratowa $h(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, gdzie $A = A^T \in \mathbb{R}^{n \times n}$, jest:

1. **dodatnio półokreślona** wtedy i tylko wtedy, gdy wszystkie minory główne macierzy A są nieujemne, tj.

$$\begin{vmatrix} a_{i_1 i_1} & a_{i_1 i_2} & \cdots & a_{i_1 i_p} \\ a_{i_2 i_1} & a_{i_2 i_2} & \cdots & a_{i_2 i_p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i_n i_1} & a_{i_n i_2} & \cdots & a_{i_n i_n} \end{vmatrix} \ge 0,$$

dla $1 \le i_1 < \ldots < i_p \le n, \ 1 \le p \le n$

2. **ujemnie półokreślona** wtedy i tylko wtedy, gdy

$$(-1)^{p}\begin{vmatrix} a_{i_{1}i_{1}} & a_{i_{1}i_{2}} & \cdots & a_{i_{1}i_{p}} \\ a_{i_{2}i_{1}} & a_{i_{2}i_{2}} & \cdots & a_{i_{2}i_{p}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i_{p}i_{1}} & a_{i_{p}i_{2}} & \cdots & a_{i_{p}i_{p}} \end{vmatrix} \geq 0,$$

dla $1 \le i_1 < \ldots < i_p \le n, \ 1 \le p \le n.$

Przykład Dla formy kwadratowej $h(x_1, x_2, x_3) = -x_1^2 - 2x_1x_2 + 2x_1x_3 - 2x_2^2 - 2x_3^2$ mamy macierz A:

$$A = \begin{bmatrix} -1 & -1 & 1\\ -1 & -2 & 0\\ 1 & 0 & -2 \end{bmatrix}$$

Badamy jej minory główne:

- Trzy minory główne stopnia jeden (elementy na przekątnej): $a_{11} = -1$ $a_{22} = -2$ $a_{33} = -2$
- Trzy minory główne stopnia dwa: $\begin{vmatrix} -1 & -1 \\ -1 & -2 \end{vmatrix} = (-1)(-2) (-1)(-1) = 2 1 = 1 > 0$ $\begin{vmatrix} -2 & 0 \\ 0 & -2 \end{vmatrix} = (-2)(-2) 0 \cdot 0 = 4 0 = 4 > 0 \begin{vmatrix} -1 & 1 \\ 1 & -2 \end{vmatrix} = (-1)(-2) 1 \cdot 1 = 2 1 = 1 > 0$
- Jeden minor główny stopnia trzy (wyznacznik całej macierzy) [8]: $\begin{vmatrix} -1 & -1 & 1 \\ -1 & -2 & 0 \\ 1 & 0 & -2 \end{vmatrix} = -1((-2)(-2) 0 \cdot 0) (-1)((-1)(-2) 0 \cdot 1) + 1((-1) \cdot 0 (-2) \cdot 1) = -1(4) + 1(2) + 1(2) = -4 + 2 + 2 = 0$ [8]

Zauważmy, że dla p=1 (minory stopnia jeden) $(-1)^1 \cdot$ (minor główny) ≥ 0 daje nam $-(-1) \geq 0$, $-(-2) \geq 0$, $-(-2) \geq 0$, co jest spełnione $(1 \geq 0, 2 \geq 0, 2 \geq 0)$. Dla p=2 (minory stopnia dwa) $(-1)^2 \cdot$ (minor główny) ≥ 0 daje nam $1 \cdot 1 \geq 0$, $1 \cdot 4 \geq 0$, $1 \cdot 1 \geq 0$, co jest spełnione. Dla p=3 (minor stopnia trzy) $(-1)^3 \cdot$ (minor główny) ≥ 0 daje nam $-1 \cdot 0 \geq 0$, co jest spełnione. Z twierdzenia wynika, że forma kwadratowa h jest ujemnie półokreślona.

3