Mesure & Intégration

2022-2023: TD 1

Exercice 1 – *II-13* [1]. 1. Montrer que, pour tout a et b dans $]0, +\infty[$, on a :

$$\int_{\mathbb{R}_{+}} \frac{te^{-at}}{1 - e^{-bt}} d\lambda(t) = \sum_{n=0}^{+\infty} \frac{1}{(a+nb)^{2}}$$

où λ est la mesure de Lebesgue sur \mathbb{R}_+ .

2. Si *p* et *q* sont deux réels positifs, montrer que :

$$\int_{[0,1]} \frac{x^{p-1}}{1+x^q} d\lambda(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{p+nq}$$

où λ est la mesure de Lebesgue sur ([0,1], $\mathcal{B}([0,1])$). En déduire une expression de $\ln(2)$ et de $\frac{\pi}{4}$.

3. Pour $p \in]0,1[$, montrer que :

$$\int_{\mathbb{R}_+} \frac{x^{p-1}}{1+x} d\lambda(x) = \frac{1}{p} + \sum_{n=1}^{+\infty} \frac{(-1)^n 2p}{p^2 - n^2}$$

où λ est la mesure de Lebesgue sur \mathbb{R}_+ .

Exercice 2 – *II-16* [1]. 1. Soient $A \in \mathcal{B}(\mathbb{R})$ et $x \in \mathbb{R}$, montrer que $x + A = \{x + a, a \in A\} \in \mathcal{B}(\mathbb{R})$.

- 2. Soit λ la mesure de Borel sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Montrer que, pour tout $x \in \mathbb{R}$, l'application $\mu : A \in \mathcal{B}(\mathbb{R})) \mapsto \mu(A) = \lambda(x+A)$ est une mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. En déduire que, pour tout $x \in \mathbb{R}$ et tout borélien A de \mathbb{R} , $\lambda(x+A) = \lambda(A)$ (i.e λ est invariante par translation).
- 3. Montrer que si μ est une mesure positive sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ invariante par translation et telle que $\mu([0,1])=1$, alors $\mu([0,\frac{1}{n}]) \leq \frac{1}{n}$ pour tout $n \in \mathbb{N}^*$. Montrer que la mesure de Borel λ est la seule mesure positive sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ invariante par translation et telle que $\lambda([0,1])=1$.

Exercice 3 – *II-17* [1] : *Théorème de Steinhaus*. Soit A un compact de \mathbb{R} de mesure de Lebesgue $\lambda(A) > 0$. Pour tout $n \in \mathbb{N}^*$, on pose $U_n := \bigcup_{a \in A}]a - \frac{1}{n}, a + \frac{1}{n}[$.

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, $U_{n+1} \subseteq U_n$ et que $\cap_{n \ge 1} U_n = A$. En déduire qu'il existe $N \in \mathbb{N}^*$ tel que $\lambda(A) > \frac{2}{3}\lambda(U_N) > 0$.
- 2. Soit $z \in \mathbb{R}$ tel que $|z| < \frac{1}{N}$. On définit $A_Z := \{a z, a \in A\}$. En utilisant l'invariance de λ par translation, montrer que $\lambda(U_N \setminus (A \cap A_z)) < \frac{2}{3}\lambda(U_N)$. Prouver que $A \cap A_z \neq \emptyset$.
- 3. En utilisant 1) et 2), monter le théorème de Steinhaus : Si A est un compact de $\mathbb R$ de mesure de Lebesgue non nulle alors l'ensemble

$$A - A := \{x - y \in \mathbb{R}, \text{ où } (x, y) \in A^2\}$$

est un voisinage de 0.

Exercice 4 – IV-5 [1]. Déterminer, lorsqu'elle existe, la limite de chacune des expressions suivantes :

- 1. $\lim_{n} \int_{0}^{n} (\ln x) (1 \frac{x}{n})^{n} dx$. En déduire $\lim_{n} [\ln n (1 + \frac{1}{2} + \dots + \frac{1}{n})]$.
- 2. $\lim_{n} \int_{0}^{1} \frac{1+nx}{(1+x)^{2}} dx$.
- 3. $\lim_{n} \int_{0}^{+\infty} e^{-n \sin^2 x} f(x) dx$ où f est une fonction continue intégrable au sens de Lebesgue sur \mathbb{R} .
- 4. $\lim_{n} \int_{0}^{n} (1 \frac{x}{n})^{n} e^{\frac{x}{2}} dx$.

Exercice 5 – *IV-8* [1]. Soit $(\Omega, \mathcal{F}, \mu)$ un espace mesuré fini. Montrer que, si p et q sont deux réels de $[1, +\infty[$ avec p < q, alors $\mathcal{L}^{\infty} \subseteq \mathcal{L}^q \subseteq \mathcal{L}^p \subseteq \mathcal{L}^1$. Montrer par un exemple que l'hypothèse $\mu(\Omega) < +\infty$ est nécessaire. Toujours par des exemples, montrer qu'en général $\bigcap_{p \in [1, +\infty[} \mathcal{L}^p \neq \mathcal{L}^\infty]$ et que $\bigcup_{p \in]1, +\infty[} \mathcal{L}^p \neq \mathcal{L}^1$

Exercice 6 – *III-2* [2]. Soit $f : [a, b] \to \mathbb{R}$ une fonction positive et continue sur [a, b].

1. Montrer que

$$\lim_{n\to\infty} \left(\int_a^b f(t)^n dt \right)^{\frac{1}{n}} = M \quad \text{où} \quad M = \sup_{t\in [a,b]} f(t)$$

2. Soit $g : [a, b] \to \mathbb{R}$ une fonction continue prenant des valeurs strictement positive sur [a, b]. Montrer que

$$\lim_{n\to\infty} \left(\int_a^b f(t)^n g(t) dt \right)^{\frac{1}{n}} = M \quad \text{où} \quad M = \sup_{t\in[a,b]} f(t)$$

Exercice 7 – *III-4* [2]. Soient *E* un espace euclidien et $f : [a, b] \to E$ une fonction continue. On suppose que

$$\left\| \int_{a}^{b} f(t)dt \right\| = \int_{a}^{b} ||f(t)||dt$$

Montrer qu'il existe un vecteur $e \in E$ de norme 1 tel que $f(t) = ||f(t)|| \cdot e$. pour tout $t \in [a, b]$.

Références

- [1] J.-P. Ansel, "Exercices corrigés en théorie de la mesure et de l'intégration," 1995.
- [2] X. Gourdon, "Les maths en tête," 1994.