- Please skim over the papers below and complete this google form to rate your interest in each paper before 11:59 pm EDT on September 8.
- Reminder: You will give a full presentation of a paper in 30-35 mins followed up with 5-10 Q&A. During Q&A, each presenter will prepare two quiz questions. The audience who gives the correct answer to each quiz question will get +0.5 bonus point. Otherwise, the presenter will reserve the bonus point.
- These assignments will be made based on your preferences.
- You can also complete the google form now if you are currently on the waitlist but wish to enroll. You will not be assigned any presentation until you are enrolled.

Review and Survey Papers

- [arXiv 2022] <u>Diffusion Models: A Comprehensive Survey of Methods and Applications</u>
- [arXiv 2022] Diffusion Models for Medical Image Analysis: A Comprehensive Survey
- [arXiv 2022] <u>Understanding Diffusion Models: A Unified Perspective</u>
- [Nature Med 2022] Multimodal biomedical Al
- [Nature 2023] Foundation models for generalist medical artificial intelligence
- [Nature 2023] Scientific discovery in the age of artificial intelligence
- [Nature 2023] Computational approaches streamlining drug discovery
- [Cell Reports Med 2023] <u>Integration of artificial intelligence in lung cancer: Rise of the machine</u>
- [Cell 2023] From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment
- [Machine Intelligence Research 2023] VLP: A Survey on Vision-language Pre-training
- [Nature MI 2023] Multimodal learning with graphs
- [MedIA 2023] <u>Transformers in medical imaging: A survey</u>
- [arXiv 2023] <u>A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT</u>
- [arXiv 2023] On the Opportunities and Risks of Foundation Models
- [arXiv 2023] <u>BeyondPixels: A Comprehensive Review of the Evolution of Neural</u> Radiance Fields
- [arXiv 2023] <u>Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond</u>
- [arXiv 2023] On the Challenges and Perspectives of Foundation Models for Medical Image Analysis

Implicit Neural Representation Learning

View synthesis and reconstruction

[NeurIPS 2019] <u>Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations</u>

- 2. [ECCV 2020] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
- [NeurIPS 2020] <u>Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains</u>
- 4. [NeurIPS 2020] Implicit Neural Representations with Periodic Activation Functions
- 5. [CVPR 2021] pixelNeRF: Neural Radiance Fields from One or Few Images
- 6. [ICCV 2021] Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields
- 7. [CVPR 2022] NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images
- 8. [CVPR 2023] <u>AligNeRF: High-Fidelity Neural Radiance Fields via Alignment-Aware</u> Training

Fast optimization

- [CVPR 2021] <u>Learned Initializations for Optimizing Coordinate-Based Neural</u> Representations
- 10. [CVPR 2022] <u>Direct Voxel Grid Optimization: Super-fast Convergence for Radiance</u> Fields Reconstruction

Large-scale scene representation

- 11. [CVPR 2022] Block-NeRF: Scalable Large Scene Neural View Synthesis
- 12. [CVPR 2022] Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs
- 13. [CVPR 2022] Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
- [ICLR 2023] Switch-NeRF: Learning Scene Decomposition with Mixture of Experts for Large-scale Neural Radiance Fields

Image editing

- 15. [CVPR 2022] <u>CLIP-NeRF: Text-and-Image Driven Manipulation of Neural Radiance Fields</u>
- 16. [CVPR 2023] Semantic-driven Image-based NeRF Editing with Prior-guided Editing Field

Biomedical applications

- 17. [ICLR 2020] Reconstructing continuous distributions of 3D protein structure from cryo-EM images
- 18. [ICCV 2021] <u>Dynamic CT Reconstruction from Limited Views with Implicit Neural Representations and Parametric Motion Fields</u>
- 19. [TNNLS 2022] NeRP: Implicit Neural Representation Learning with Prior Embedding for Sparsely Sampled Image Reconstruction
- 20. [WACV 2023] PINER: Prior-Informed Implicit Neural Representation Learning for Test-Time Adaptation in Sparse-View CT Reconstruction

Generative Diffusion Models

- 21. [NeurIPS 2020] Denoising Diffusion Probabilistic Models
- 22. [ICLR 2021] Denoising Diffusion Implicit Models
- 23. [ICLR 2021] Score-Based Generative Modeling through Stochastic Differential Equations
- 24. [NeurIPS 2021] Maximum Likelihood Training of Score-Based Diffusion Models
- 25. [NeurIPS 2022] Elucidating the Design Space of Diffusion-Based Generative Models
- 26. [ICLR 2022] Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
- 27. [ICLR 2023] Understanding DDPM Latent Codes Through Optimal Transport
- 28. [ICML 2023] Consistency Models
- 29. [ICML 2023] SinFusion: Training Diffusion Models on a Single Image or Video
- 30. [arXiv 2023] Patch Diffusion: Faster and More Data-Efficient Training of Diffusion Models

Image generation and editing

- 31. [JMLR 2022] Cascaded Diffusion Models for High Fidelity Image Generation
- 32. [arXiv 2022] Hierarchical Text-Conditional Image Generation with CLIP Latents
- 33. [ICML 2022] GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
- 34. [NeurIPS 2022] Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
- 35. [ICLR 2022] SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations
- 36. [ICCV 2023] FreeDoM: Training-Free Energy-Guided Conditional Diffusion Model
- 37. [ICLR 2023] DreamFusion: Text-to-3D using 2D Diffusion

Inverse problem solving

- 38. [ICLR 2022] Solving Inverse Problems in Medical Imaging with Score-Based Generative Models
- 39. [CVPR 2022] <u>Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction</u>
- 40. [NeurIPS 2022] Improving Diffusion Models for Inverse Problems using Manifold Constraints
- 41. [NeurIPS 2022] Denoising Diffusion Restoration Models
- 42. [NeurlPS 2022] Diffusion Models as Plug-and-Play Priors
- 43. [ICLR 2023] <u>Diffusion Posterior Sampling for General Noisy Inverse Problems</u>
- 44. [ICLR 2023] Pseudoinverse-Guided Diffusion Models for Inverse Problems
- 45. [ICLR 2023] Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model
- 46. [ICML 2023] Loss-Guided Diffusion Models for Plug-and-Play Controllable Generation
- 47. [ICML 2023] <u>GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse</u>
 <u>Problems with Denoising Diffusion Restoration</u>
- 48. [CVPR 2023] Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models
- 49. [CVPR 2023] <u>Parallel Diffusion Models of Operator and Image for Blind Inverse</u>
 <u>Problems</u>

- 50. [arXiv 2023] Fast Diffusion Sampler for Inverse Problems by Geometric Decomposition
- 51. [arXiv 2023] Direct Diffusion Bridge using Data Consistency for Inverse Problems

Latent diffusion

- 52. [NeurIPS 2021] Score-based Generative Modeling in Latent Space
- 53. [CVPR 2022] High-Resolution Image Synthesis with Latent Diffusion Models
- 54. [NeurIPS 2022] LION: Latent Point Diffusion Models for 3D Shape Generation
- 55. [arXiv 2022] RoentGen: Vision-Language Foundation Model for Chest X-ray Generation
- 56. [arXiv 2023] Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency
- 57. [arXiv 2023] Solving Linear Inverse Problems Provably via Posterior Sampling with Latent Diffusion Models
- 58. [arXiv 2023] Versatile Diffusion: Text, Images and Variations All in One Diffusion Model

Diffusion Schrödinger Bridge

- 59. [NeurIPS 2021] <u>Diffusion Schrödinger Bridge with Applications to Score-Based</u>
 <u>Generative Modeling</u>
- 60. [ICML 2023] <u>I2SB: Image-to-Image Schrodinger Bridge</u>
- 61. [ICLR 2023] Dual Diffusion Implicit Bridges for Image-to-Image Translation
- 62. [arXiv 2023] Diffusion Schrödinger Bridge Matching

Image-to-image translation

- 63. [NeurIPS 2022] <u>EGSDE: Unpaired Image-to-Image Translation via Energy-Guided</u> Stochastic Differential Equations
- 64. [arXiv 2023] <u>Unpaired Image-to-Image Translation via Neural Schrödinger Bridge</u>

Object detection

65. [ICCV 2023] DiffusionDet: Diffusion Model for Object Detection

Video diffusion

- 66. [NeurIPS 2022] Video Diffusion Models
- 67. [NeurIPS 2022] Flexible Diffusion Modeling of Long Videos
- 68. [arXiv 2022] Neural Cell Video Synthesis via Optical-Flow Diffusion
- 69. [CVPR 2023] Executing your Commands via Motion Diffusion in Latent Space
- 70. [CVPR 2023] Video Probabilistic Diffusion Models in Projected Latent Space
- 71. [arXiv 2023] LaMD: Latent Motion Diffusion for Video Generation
- 72. [arXiv 2023] MagicVideo: Efficient Video Generation With Latent Diffusion Models

Fast solver

- 73. [ICLR 2022] <u>Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models</u>
- 74. [Neurips 2022] <u>DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps</u>
- 75. [Neurips 2022] GENIE: Higher-Order Denoising Diffusion Solvers
- 76. [arXiv 2023] <u>DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic</u>
 Models

Biomedical applications

- 77. [NeurIPS 2021] <u>CSDI: Conditional Score-based Diffusion Models for Probabilistic Time</u>
 Series Imputation
- 78. [MICCAI 2022] <u>Diffusion Deformable Model for 4D Temporal Medical Image Generation</u>
- 79. [ICLR 2022] GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation
- 80. [ICML 2023] Geometric Latent Diffusion Models for 3D Molecule Generation
- 81. [MICCAI 2023] <u>Feature-Conditioned Cascaded Video Diffusion Models for Precise</u> Echocardiogram Synthesis
- 82. [arXiv 2023] Zero-shot-Learning Cross-Modality Data Translation Through Mutual Information Guided Stochastic Diffusion

Self-supervised learning

- 83. [ICML 2020] A Simple Framework for Contrastive Learning of Visual Representations
- 84. [NeurIPS 2020] <u>Bootstrap Your Own Latent A New Approach to Self-Supervised</u>
 <u>Learning</u>
- 85. [ICCV 2021] Emerging Properties in Self-Supervised Vision Transformers
- 86. [CVPR 2022] Masked Autoencoders Are Scalable Vision Learners
- 87. [ICLR 2022] BEIT: BERT Pre-Training of Image Transformers
- 88. [CVPR 2023] <u>Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture</u>
- 89. [IJCV 2023] Context Autoencoder for Self-Supervised Representation Learning

Biomedical applications

- 90. [CVPR 2023] Benchmarking Self-Supervised Learning on Diverse Pathology Datasets
- 91. [npj Digital Med 2023] <u>Self-supervised learning for medical image classification: a systematic review and implementation guidelines</u>

Multimodal learning

92. [AAAI 2021] SMIL: Multimodal Learning with Severely Missing Modality

- 93. [ICLR 2022] Domino: Discovering Systematic Errors with Cross-Modal Embeddings
- 94. [NeurIPS 2022] Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning
- 95. [ICLR 2023] Diagnosing and Rectifying Vision Models using Language
- 96. [CVPR 2023] <u>Multi-modal Learning with Missing Modality via Shared-Specific Feature</u>

 <u>Modelling</u>
- 97. [AISTATS 2023] <u>Understanding Multimodal Contrastive Learning and Incorporating Unpaired Data</u>

Vision language model

- 98. [ICML 2021] Learning Transferable Visual Models From Natural Language Supervision
- 99. [NeurIPS 2021] <u>Align before Fuse (ALBEF): Advancing Vision-language Understanding</u> with Contrastive Learning
- 100. [ICML 2022] <u>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</u>
- 101. [ICML 2022] OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework
- 102. [ICLR 2022] <u>SimVLM: Simple Visual Language Model Pretraining with Weak</u> Supervision
- 103. [NeurIPS 2022] <u>VLMo: Unified Vision-Language Pre-Training with Mixture-of-Modality-Experts</u>
- 104. [CVPR 2023] <u>Image as a Foreign Language: BEIT Pretraining for Vision and Vision-Language Tasks</u>
- 105. [ICML 2023] mPLUG-2: A Modularized Multi-modal Foundation Model Across Text, Image and Video
- 106. [TMLR 2023] GIT: A Generative Image-to-text Transformer for Vision and Language
- 107. [CVPR 2023] ImageBind: One Embedding Space To Bind Them All

Biomedical multimodal learning

- 108. [MLHC 2022] <u>Contrastive Learning of Medical Visual Representations from Paired Images and Text</u>
- 109. [ICCV 2021] GLoRIA: A Multimodal Global-Local Representation Learning Framework for Label-efficient Medical Image Recognition
- 110. [NeurlPS 2022] <u>Multi-Granularity Cross-modal Alignment for Generalized Medical Visual Representation Learning</u>
- 111. [EMNLP 2022] MedCLIP: Contrastive Learning from Unpaired Medical Images and Text
- 112. [ECCV 2022] Making the Most of Text Semantics to Improve Biomedical Vision–Language Processing
- 113. [CVPR 2023] <u>Learning to Exploit Temporal Structure for Biomedical</u> Vision–Language Processing
- 114. [CVPR 2023] <u>Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report Generation</u>

- [ICLR 2023] <u>Advancing Radiograph Representation Learning with Masked Record</u> <u>Modeling (MRM)</u>
- 116. [ICLR 2023] Medical Image Understanding with Pretrained Vision Language Models: A Comprehensive Study
- 117. [ICCV 2023] <u>CLIP-Driven Universal Model for Organ Segmentation and Tumor</u>
 Detection
- 118. [arXiv 2023] <u>Large-Scale Domain-Specific Pretraining for Biomedical Vision-Language Processing</u>
- 119. [Nature BME 2023] <u>A transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics</u>

Transformer and LLM

- 120. [NeurlPS 2020] Language Models are Few-Shot Learners
- 121. [arXiv 2022] Training language models to follow instructions with human feedback
- 122. [arXiv 2023] White-Box Transformers via Sparse Rate Reduction
- 123. [arXiv 2023] <u>Causal Reasoning and Large Language Models: Opening a New Frontier for Causality</u>

Parameter-efficient adaptation

124. [ICLR 2022] LoRA: Low-Rank Adaptation of Large Language Models

Biomedical I I M

- 125. [npj Digital Med 2022] A large language model for electronic health records
- 126. [Nature 2023] Large Language Models Encode Clinical Knowledge
- 127. [Nature 2023] <u>Health system-scale language models are all-purpose prediction</u> engines
- 128. [Nature Biotech 2023] <u>Large language models generate functional protein sequences across diverse families</u>
- 129. [Bioinformatics 2023] <u>BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining</u>
- 130. [arXiv 2023] PMC-LLaMA: Further Finetuning LLaMA on Medical Papers

Multimodal LLM

- 131. [NeurlPS 2022] Flamingo: a Visual Language Model for Few-Shot Learning
- 132. [ICML 2023] <u>Grounding Language Models to Images for Multimodal Inputs and Outputs</u>
- 133. [ICML 2023] <u>BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models</u>
- 134. [ICML 2023] PaLM-E: An Embodied Multimodal Language Model

- 135. [CVPR 2023] SMALLCAP: Lightweight Image Captioning Prompted with Retrieval Augmentation
- 136. [arXiv 2023] MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models
- 137. [arXiv 2023] Visual Instruction Tuning (LLaVA: Large Language and Vision Assistant)
- 138. [arXiv 2023] <u>InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning</u>
- 139. [arXiv 2023] <u>LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention</u>
- 140. [arXiv 2023] LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model
- 141. [arXiv 2023] InternGPT: Solving Vision-Centric Tasks by Interacting with ChatGPT Beyond Language

Biomedical multimodal LLM

- 142. [arXiv 2023] ChatCAD+: Towards a Universal and Reliable Interactive CAD using LLMs
- 143. [arXiv 2023] <u>SkinGPT-4: An Interactive Dermatology Diagnostic System with Visual</u> Large Language Model
- 144. [arXiv 2023] LLaVA-Med: Large Language and Vision Assistant for BioMedicine
- 145. [arXiv 2023] Multimodal LLMs for health grounded in individual-specific data
- 146. [arXiv 2023] <u>Towards a Visual-Language Foundation Model for Computational</u>
 Pathology
- 147. [arXiv 2023] Med-Flamingo: a Multimodal Medical Few-shot Learner
- 148. [arXiv 2023] Towards Generalist Biomedical Al

Vision Foundation Model

- 149. [arXiv 2023] Segment Anything
- 150. [arXiv 2023] Segment Everything Everywhere All at Once
- 151. [arXiv 2023] Personalize Segment Anything Model with One Shot

Biomedical applications

- 152. [arXiv 2023] Medical SAM Adapter: Adapting Segment Anything Model for Medical Image Segmentation
- 153. [arXiv 2023] <u>Segment Anything Model for Medical Image Analysis: an Experimental Study</u>
- 154. [arXiv 2023] Segment Anything Model for Medical Images?
- 155. [arXiv 2023] Customized Segment Anything Model for Medical Image Segmentation

Misc

- 156. [Nature Com 2022] <u>Federated learning enables big data for rare cancer boundary detection</u>
- 157. [FACCT 2022] Who Goes First? Influences of Human-Al Workflow on Decision Making in Clinical Imaging
- 158. [arXiv 2022] Plex: Towards Reliability using Pretrained Large Model Extensions
- 159. [Nature MI 2023] Extrapolating heterogeneous time-series gene expression data using Sagittarius
- 160. [Nature Com 2023] <u>Multilingual translation for zero-shot biomedical classification</u> using BioTranslator
- 161. [Nature Com 2023] <u>Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients</u>
- 162. [Nature Med 2023] A longitudinal circulating tumor DNA-based model associated with survival in metastatic non-small-cell lung cancer
- 163. [Nature Med 2023] <u>Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging</u>
- 164. [Nature Med 2023] A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories
- 165. [npj Digital Med 2023] <u>Solving the explainable AI conundrum by bridging clinicians'</u> needs and developers' goals
- 166. [npj Digital Med 2023] Physics-informed neural networks for modeling physiological time series for cuffless blood pressure estimation
- 167. [npj Digital Med 2023] <u>A foundational vision transformer improves diagnostic performance for electrocardiograms</u>
- 168. [Cell Reports Med 2023] <u>Development of an artificial intelligence-derived histologic</u> signature associated with adjuvant gemcitabine treatment outcomes in pancreatic cancer

Other papers you are interested in? Suggest them in the google form!