

How To Select its Parents in the Tangle

Vidal Attias, Quentin Bramas

NETYS 2019, Marrakech, June, 21st

bramas@unistra.fr

Introduction

Blockchain:

The Tangle (IOTA)

The Tangle (IOTA)

Each transaction is a small block that references two previous ones

The Tangle (IOTA)

Each transaction is a small block that references two previous ones

The Tangle (IOTA)

Each transaction is a small block that references two previous ones

You come up with a DAG (Directed Acyclic Graph)

The Tangle (IOTA)

Each transaction is a small block that references two previous ones

You come up with a DAG (Directed Acyclic Graph)

You're only limited by bandwidth and storage

The Tangle (IOTA)

Each transaction is a small block that reference two previous ones

The Tangle (IOTA)

Each transaction is a small block that reference two previous ones

The Tangle (IOTA)

Each transaction is a small block that reference two previous ones

A new site and its parents should not create conflicts.

The Tangle (IOTA)

How to read a value?

The Tangle (IOTA)

How to read a value?

If you take a tip, you can order transactions and do the same as in a blockchain

The Tangle (IOTA)

How to read a value?

What if tips are conflicting?

A new site cannot confirm conflicting sites

The Tangle (IOTA)

The Tangle (IOTA)

Tip Selection Algorithm (TSA):

- so we know how to read values
- so we know where to extend the Tangle

The Tangle (IOTA)

Tip Selection Algorithm (TSA):

- so we know how to read values
- so we know where to extend the Tangle

In Bitcoin, we read values from, and we try to extend, the longest chain. If you don't follow this, you'll lose money.

The Tangle (IOTA)

The Tangle (IOTA)

Should be chosen with higher probability

The Tangle (IOTA)

Compute cumulative weight to each site

The Tangle (IOTA)

Compute cumulative weight to each site

The Tangle (IOTA)

The Tangle (IOTA)

Compute cumulative weight to each site Perform a random walk

Transition function:

$$P(A \longrightarrow B) = \frac{\int (\Delta_{A,B})}{\int (\Delta_{A,C}) + \int (\Delta_{A,C})}$$

The Tangle (IOTA)

Compute cumulative weight to each site Perform a random walk

Transition function:

$$P(A \longrightarrow B) = \frac{\int (\Delta_{A,B})}{\int (\Delta_{A,C}) + \int (\Delta_{A,C})}$$

MCMC

The Tangle (IOTA)

Compute cumulative weight to each site Perform a random walk

Transition function:

$$P(A \longrightarrow B) = \frac{\int (\Delta_{A,B})}{\int (\Delta_{A,C}) + \int (\Delta_{A,C})}$$

MCMC

LMCMC

$$w(n) = 1 + \sum_{c \in children} w(c)$$

Real cumulative weight

Random Walk

Random Walk

Random Walk

Double Spending Attack

▶ Alice sends 10 IOTA to Bob for a sandwich

- ▶ Alice sends 10 IOTA to Bob for a sandwich
- ▶ Bob waits to see the transaction in the Tangle

- ▶ Alice sends 10 IOTA to Bob for a sandwich
- ▶ Bob waits to see the transaction in the Tangle
- ▶ Bob gives Alice the sandwich

- ▶ Alice sends 10 IOTA to Bob for a sandwich
- ▶ Bob waits to see the transaction in the Tangle
- ▶ Bob gives Alice the sandwich
- ▶ Alice generates a lots of transactions so that her first transaction is discarded

- ▶ Alice sends 10 IOTA to Bob for a sandwich
- ▶ Bob waits to see the transaction in the Tangle
- ▶ Bob gives Alice the sandwich
- ▶ Alice generates a lots of transactions so that her first transaction is discarded
- ▶ Alice eats the sandwich

Number of tips

How many tips are left behind?

How many tips over the time?

Tips over time

Tips over time

The parasite chain attack

The parasite chain attack

How many red site so that:

Against MCMC

Against MCMC

Against MCMC

Resistance to parasite chain

Complexity

Future Work

We defined a good tip selection algorithms

Future Work

We defined a good tip selection algorithms

Future Work

Even better tip selection algorithms

We defined a good tip selection algorithms

Future Work

Even better tip selection algorithms

Thank you for your attention!