

Vorlesung Computational Intelligence:

Teil 3: Künstliche Neuronale Netze

Ralf Mikut, Wilfried Jakob, Markus Reischl

Karlsruher Institut für Technologie, Institut für Automation und angewandte Informatik E-Mail: ralf.mikut@kit.edu, wilfried.jakob@kit.edu

jeden Donnerstag 14:00-15:30 Uhr, Nusselt-Hörsaal

Gliederung

- 3 Künstliche Neuronale Netze
- 3.1 Vom Biologischen zum Künstlichen Neuronalen Netz
- 3.2 Struktur
- 3.3 Lernverfahren
- 3.4 Multi-Layer-Perceptron-Netze (MLP-Netze)
- 3.5 Radial-Basis-Funktions-Netze (RBF-Netze)
- 3.6 Kohonen-Karten
- 3.7 Deep Learning & Convolutional Neural Networks
- 3.8 Kommentare

Biologische Neuronale Netze

Biologische Neuronale Netze bestehen aus vielen Neuronen:

• Biene: 10⁶ Neuronen, je ca. 10³ Verbindungen zu Nachbarzellen

• Mensch: $10^{10} \dots 10^{12}$ Neuronen,

je ca. 10⁴ Verbindungen zu Nachbarzellen

- Funktionsweise des Zusammenwirkens nur teilweise verstanden, viele laufende Arbeiten und Projekte (u.a. Human Brain Project der EU, >1 Mrd €):
 - Wie sehen die anatomischen Strukturen in einem Hirn im Detail wirklich aus (Elektronenmikroskopie)?
 - Was passiert funktionell? Bestimmung z.B. durch
 - Funktionelle Magnetresonanztomographie als indirekte Messung der Durchblutung beim Menschen/bei Tieren
 - elektrisches Kontaktieren einzelner Nervenzellen
 - Lichtscheibenmikroskopie bei genetisch modifizierten Tieren mit Beispielvideo aus [Ahrens 2013])

Problem: räumliche und/oder zeitliche Auflösung

– Wie kann man die Vorgänge simulieren?

Biologische Nervenzelle

- Dendriten
 (Eingänge) in
 räumlicher Nähe zu
 Synapsen anderer
 Neuronen
- komplizierte elektrochemische Zusammenhänge
- im Hirn und Rückenmark
- Axone von
 Motoneuronen
 koppeln an Muskeln
 an (extrem lang!)

Bildquelle: Wikipedia

Biologische Aktionspotenziale

- Ausgang (Axon): Spikes (Feuern) nach dem Ja-Nein-Prinzip
- links: Feuern eines Neurons (Spike)
- je stärker die Aktivierung, desto häufiger treten Spikes auf
- rechts: Aktivierung eines Motoneurons nach optischem Reiz in nachfolgenden Versuchen beim Affen

Bildquelle: Wikipedia

Fetz, E.; Perlmutter, S.; Prut, Y.; Seki, K. & Votaw, S. Roles of Primate Spinal Interneurons in Preparation and Execution of Voluntary Hand Movement *Brain Research Reviews*, **2002**, *40*, 53-65

Messung mit Elektroneurographie (ENG)

Beispiel für ENG-Zeitreihen

Merkmale

Hodgkin-Huxley-Modell (biologisch realistisch)

Internal State Variable: V_m

Output: Last Spike Time (Spike Events)

Verschaltung von "biologischen" Neuronen

Schematische Darstellungen zweier Neuronen (Gray's Anatomy of the Human Body von 1918, Zelle aus dem Kleinhirn):

- a Axon
 (Ausgang des Neurons)
- d Dendriten (Eingänge)
- b Synapsen (Kopplung des Ausgangs mit anderen Neuronen bzw. Muskeln)

Analyse von Biologischen Neuronalen Netzen

- Aufnahme mit Lichtscheibenmikroskopie beim Zebrabärbling, siehe Videos in [Ahrens13]
- Genetische Modifikation zum Messen von Calcium; einzelne Zellen sichtbar
- Räumliche Auflösung im Mikrometerbereich
- Zeitliche Auflösung 0.7 Hz bei Aufnahme des gesamten Hirns
- Videos ohne externe Reize, weitere Arbeiten für Schwimmbewegungen usw. in [Freeman14]

[Ahrens13] Ahrens, M. B.; Orger, M. B.; Robson, D. N.; Li, J. M. & Keller, P. J.: Whole-brain Functional Imaging at Cellular Resolution using Light-Sheet Microscopy. *Nature Methods, Nature Publishing Group,* **2013**, *10*, 413-420 [Freemann14] Freeman, J.; Vladimirov, N. et al.: Mapping Brain Activity at Scale with Cluster Computing. *Nature Methods, Nature Publishing Group,* **2014**, *11*, 941-950

Brain Computer Interfaces

University of Pittsburgh

University of Stanford

University of Pittsburgh

- + Visionär
- Kein Benefit im Vergleich zu herkömmlichen Steuerungen
- Geringe Akzeptanz (Operation, Kosmetik)
- Entzündungen
- Keine stabile Steuerung sichergestellt

Gliederung

3 Künstliche Neuronale Netze
3.1 Vom Biologischen zum Künstlichen Neuronalen Netz
3.2 Struktur
3.3 Lernverfahren
3.4 Multi-Layer-Perceptron-Netze (MLP-Netze)
3.5 Radial-Basis-Funktions-Netze (RBF-Netze)
3.6 Kohonen-Karten

Deep Learning & Convolutional Neural Networks

3.7

3.8

Kommentare

Künstliche Neuronale Netze

- Extreme Vereinfachung biologischer neuronaler Netze!
- Typisches künstliches neuronales Netz:
 - weniger Neuronen, meist 10...1000
 - Verzicht auf die Modellierung von Spikes
- Nutzung:
 - Lernen und Verallgemeinern anhand von Beispielen
 - Erkennen und Vervollständigen komplizierter Muster
 - Verständnis biologischer neuronaler Netze durch Simulation und Analyse (nicht in dieser Vorlesung)

Künstliche Neuronale Netze

- Definition: Künstliche Neuronale Netze (KNN) sind stark vereinfachte technische Realisierungen zur Modellierung der Informationsverarbeitung im Gehirn und im Nervensystem.
- Kennzeichen sind lernfähige, dezentrale, parallele Strukturen aus einfachen Elementen (Prozesseinheiten (PE) bzw. Neuronen)
- Begriffe in dieser Vorlesung orientieren sich an VDI/VDE-Richtlinie 3550 Blatt 1 Computational Intelligence - Künstliche Neuronale Netze in der Automatisierungstechnik - Begriffe und Definitionen
- engl. Artificial Neural Networks (ANN)

Geschichte Neuronaler Netze

Quelle: https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

Parallelentwicklungen:

- RBF-Netze (M.J.D. Powell, D. Broomhead, D. Lowe, ab 1987/88)
- Kohonen-Karten bzw. Self-Organizing Maps (T. Kohonen, ab 1982)

Aufbau eines typischen "künstlichen" Neurons

- Wie beim biologischen Neuron:
 - mehrere Eingänge
 - Eingänge wirken unterschiedlich auf das Neuron (hemmend, stimulierend)
 - interner Zustand (Potenzial)
 - ein Ausgang
- Bezeichner:
 - − Eingangsgrößen x_i, i=1,...,s
 - Gewichte w_i zur Beschreibung der skalaren Kopplungsstärke der i-ten Eingangsgröße zum Neuron
 - Zustand z des Neurons (skalar!)
 - Aktivierungsfunktion f(z)
 - Ausgangsgröße y des Neurons
- kompliziertere Strukturen existieren, sind aber nicht sehr gebräuchlich

Bestimmung des Zustands

- dient zum Zusammenfassen der Eingänge eines Neurons
- bestimmt, ob ein Neuron für eine bestimmte Eingangskonstellation "zuständig" (aktiviert) wird oder nicht, z.T. auch mit der Möglichkeit von Hemmungen (negative Gewichte von w_i)

Beispiele:

$$z(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \cdot \mathbf{x} + w_0$$
 (gewichtete Summe mit Absolutterm) $z(\mathbf{x}, \mathbf{w}) = e^{-w_0 \cdot (\mathbf{x} - \mathbf{w})^T (\mathbf{x} - \mathbf{w})}$ (RBF: Radiale Basisfunktion) $z(\mathbf{x}, \mathbf{w}) = e^{-d^2(\mathbf{x}, \mathbf{w})}$ (beliebige Distanz) $z(\mathbf{x}) = \operatorname{argmax}_i x_i$ (Wettbewerbslernen).

"Zustand" ist für alle hier genannten Funktionen statisch

Aktivierungsfunktionen (1)

- Aktivierungsfunktion f (z) modelliert die Erregungsschwelle des biologischen Neurons
- Einfachste Aktivierungsfunktion ist Schwellwert, aber andere Funktionen werden häufiger genutzt:

(ReLu: Rectified Linear Unit)

(Lineare Aktivierungsfunktion)

(Tansig-Funktion)

(Sigmoid-Funktion)

 Bestimmung des Zustands und Aktivierungsfunktion k\u00f6nnen auch in einer Funktion zusammengefasst werden

Aktivierungsfunktionen (2)

Für einige Lernverfahren ist es wichtig, dass die Aktivierungsfunktion stetig nach z differenzierbar ist.

$$\frac{df}{dz} = 1 \qquad \text{(Lineare Aktivierungsfunktion)}$$

$$\frac{df}{dz} = 1 - f^2(z) \qquad \text{(Tansig-Funktion)}$$

$$\frac{df}{dz} = f(z) \cdot (1 - f(z)) \qquad \text{(Sigmoid-Funktion)}$$

- Sinnvoll:
 Tansig- oder Sigmoid-Funktion
 ("Weiche Schwellwerte")
- Logsig-Funktion ist Synonym zu Sigmoid-Funktion

Hauptunterschiede zum biologischen Neuron

- Ein- und Ausgangsgrößen sind keine Zeitreihen von Spikes, sondern statisch (Äquivalent: höhere Werte, wenn Neuron öfters "feuert")
- Zustand ist statisch, damit kein Zustand im Sinne einer Differenzialgleichung oder Differenzengleichung mehr
- Neuron hat folglich statisches Ein-Ausgangs-Verhalten

Verbindungsstrukturen (1)

Neuronen sind oftmals in Schichten strukturiert:

- Eingabeschicht: zugehörige Neuronen haben direkte Verbindungen aus der Umgebung in das Netz hinein
- Verdeckte Schicht (Synonym: verborgene Schicht, Hidden-Schicht):
 zugehörige Neuronen haben keine direkte Verbindung zur Umgebung
- Ausgabeschicht: zugehörige Neuronen haben direkte Verbindungen in Richtung der Umgebung

Verbindungsstrukturen (2)

• vorwärtsgerichtet (feedforward): Die Schichten werden in Vorwärtsrichtung miteinander verbunden. Die Information breitet sich von der Eingabeschicht durch die verdeckte(n) Schicht(en) aus und führt zum Ergebnis in der Ausgabeschicht.

• laterale Verbindungen: Innerhalb einer Schicht existieren Verbindungen zwischen den einzelnen Prozesseinheiten (PE).

 rückgekoppelt (feedback): Der Ausgang einer PE wird auf den eigenen Eingang zurückgeführt oder Ausgänge von PE werden über eine oder mehrere Schichten zurückgekoppelt

Verbindungsstrukturen (3)

Bemerkungen:

- Vorwärtsgerichtete Netze mit statischen Neuronen haben statisches Ein-Ausgangs-Verhalten.
- Laterale und rückgekoppelte Verbindungen führen oft zu zeitlichen Abhängigkeiten (meist als Zeitverzögerung um einen Abtastschritt), Netze werden dann als rekurrente Netze bezeichnet und haben dynamisches Ein-Ausgangs-Verhalten.
- Rückkopplungen sind sowohl im Netz als auch außerhalb des Netzes (Ausgangsgrößen koppeln auf Eingangsgrößen zurück) möglich!

Gliederung

3 Künstliche Neuronale Netze 3.1 Vom Biologischen zum Künstlichen Neuronalen Netz 3.2 Struktur 3.3 Lernverfahren 3.4 Multi-Layer-Perceptron-Netze (MLP-Netze) 3.5 Radial-Basis-Funktions-Netze (RBF-Netze) 3.6 Kohonen-Karten 3.7 Deep Learning & Convolutional Neural Networks 3.8 Kommentare

Entwurf & Anwendung

- Entwurf (Synonyme: Lernphase, Trainingsphase, Entwurfsphase)
 - Festlegung von Struktur und Parametern anhand eines Lerndatensatzes
 - Struktur wird oft manuell oder mit einem geeigneten Optimierungsverfahren (z.B. Evolutionäre Algorithmen) bestimmt
 - Parametersuche mit auf den Typ des Künstlichen Neuronalen Netzes zugeschnittenen Lerngesetzen
- Anwendung (Synonyme: Arbeitsphase, Anwendungsphase)
 - Künstliches Neuronales Netz bekommt unbekannte Eingangsgrößen und berechnet eine Ausgangsgröße
 - Struktur und Parameter werden dabei meist nicht mehr verändert
 - u.U. auch gelegentlicher neuer Entwurf (Adaption) während der Anwendung möglich, aber in der Praxis selten eingesetzt (riskant!)

Notwendige Strukturentscheidungen

- Wahl der Eingangsgrößen eines Systems (Wieviele? Welche?)
- Wahl der Ausgangsgrößen eines Systems (Wieviele? Welche?)
- Verbindungsstruktur
- Anzahl verdeckter Schichten
- Anzahl der Neuronen in der verdeckten Schicht
- Art der Aktivierungsfunktion
- Funktion zur Bestimmung des Zustands

Eingabe- Verdeckte Ausgabeschicht Schicht schicht

Strukturentscheidungen bestimmen Typ des Neuronalen Netzes, z.B.

Multi-Layer-Perceptron (MLP):

feedforward, mindestens eine verdeckte Schicht, gewichtete Summe mit Absolutterm, Tansig- oder Sigmoid-Funktion als Aktivierungsfunktion, ...

Entwurf

- Festlegung Struktur:
 - Kompromiss zwischen Anpassungsfähigkeit an das Ziel (viele Parameter) und Generalisierungsfähigkeit bezüglich Störunterdrückung und gutem Approximationsverhalten (wenige Parameter):
 - zu einfach: Unteranpassung (Underfitting)
 - zu kompliziert: Überanpassung (Overfitting)
- Veränderung der Parameter (Gewichte) anhand des Lerndatensatzes und der Lerngesetze, meist ausgehend von zufälligen Startparametern
- Lerndatensatz:
 - Beispiele ("Datentupel"), die das Problem möglichst vollständig abdecken
 - N Datentupel mit bekannten Eingangsgrößen x[n], n=1,...,N
 - optional: N Datentupel mit bekannten Ausgangsgrößen y[n], n=1,...,N
 - Ein- und Ausgangsgrößen in der Regel reellwertig
- Lernziel (Gütekriterium):
 Abbruch wenn Lernziel erreicht oder keine Verbesserung mehr eintritt
- u.U. Test auf Güte mit zusätzlichem Testdatensatz
- Ergebnis: Struktur, Parameter

Typen von Lernverfahren

- Überwachtes Lernen ("Lernen mit Lehrer"):
 Ausgangsgröße für Lerndatensatz bekannt, z.B.
 - Backpropagation-Algorithmus
 - Levenberg-Marquardt-Algorithmus
- Reinforcement Learning:
 Qualitätsbewertung einer Ausgangsgröße (Lob/Tadel)
- Unüberwachtes oder Selbstorganisiertes Lernen ("Lernen ohne Lehrer"):
 Ausgangsgröße für Lerndatensatz unbekannt, z.B.
 - Hebb'sches Lernen
 - Lernverfahren für Kohonen-Karten
- Teilüberwachtes Lernen: Ausgangsgröße ist nur für einen Teil der Datentupel im Lerndatensatz bekannt

Selbstorganisiertes Lernen: Hebb'sche Regel

- Das erste Lerngesetz wurde 1949 von HEBB für das biologische Modell formuliert:
 - "Verbindungen zwischen Neuronen werden dann verstärkt werden, wenn die Neuronen gleichzeitig aktiv sind."
- mathematische Realisierung für jedes Gewicht w_{ij}, das von Neuron j zu Neuron i verbindet (Doppel-Index i,j jetzt notwendig, um beide Neuronen eindeutig zu adressieren):

$$w_{i,j}[k+1] = w_{i,j}[k] + \Delta w_{i,j}[k]$$
 mit
$$\Delta w_{i,j}[k] = f(y_i[k],y_j[k]), \text{ z. B. } \Delta w_{i,j}[k] = \rho \cdot y_i[k] \cdot y_j[k]$$
 Lernfaktor $\rho > 0$

- Anlehnung an biologische neuronale Netze
- "Lernen durch Verstärkung"
- keine Ausgangsgröße des Netzes im Lerndatensatz notwendig