	Казански	й (приволя	кский) фед	церальн	ный ун	иверсит	гет	
Институ	т вычисли	тельной ма	атематики	и инфо	ормаци	ионных	техноле	огий

В.С. Кугураков, Р.К. Самитов, Р.Б. Ахтямов, В.Р. Байрашева

Практикум работы на ЭВМ.

Задание 3. Представление данных и методы разработки алгоритмов.

Кугураков Владимир Сергеевич Самитов Ринат Касимович Ахтямов Рауф Баграмович Байрашева Венера Рустамовна

Практикум работы на ЭВМ. Задание 3. Представление данных и методы разработки алгоритмов. Казань: К(П)ФУ. 2013. - 36 с.

Пособие предназначено для студентов, обучающихся по специальности «Прикладная математика и информатика» и направлению «Информационные технологии», а также для преподавателей, ведущих практические занятия по информатике, алгоритмическим языкам и программированию.

Компьютерная верстка и дизайн обложки: Ахтямова Светлана Станиславовна.

1 Типовые задачи

1.1 Моделирование автомата

Автоматом \Re называется некоторое устройство, которое математически описывается тремя множествами X, Y, S и диаграммой D работ $X := \{x_1, x_2, \dots, x_n\}$ – множество входных символов;

 $Y = \{y_1, y_2, \dots, y_m\}$ – множество выходных символов;

 $S = \{s_1, s_2, \dots, s_k\}$ – множество состояний.

Диаграмма строится так. Рисуется K кружков и внутри каждого из них помещается по символу из множества S. Из каждого кружка выводится n стрелок, которые доводятся до кружков (стрелка может выйти из кружка и зайти в него же, две стрелки могут соединять одну и ту же пару кружков). Около каждой стрелки пишется пара символов a/b, где $a \in X$ и $b \in Y$, с единственным условием: разные стрелки, выходящие из одного (любого) кружка, помечаются парами с разными символами из X. Таким образом, $\Re = \{X, Y, S, D\}$.

Работа автомата складывается из *тактов* (номер такта обозначается буквой t, t = 1, 2, 3, ...). На каждом такте на вход автомата подается один из входных символов: на первом такте символ $a_1 \in X$, на втором — $a_2 \in X$ и т.д. Последовательность входных символов $a_1, a_2, ..., a_r$ называется *входным словом* и обозначается через A. В ответ на входное слово автомат вырабатывает (на своем выходе) последовательность $b_1, b_2, ..., b_r$ символов из Y, т.е. образуется *выходное слово*, обозначаемое через B.

Выходное слово образуется так. Перед первым тактом автомат устанавливается в состоянии $c_0 \in S$. В общем случае — перед тактом t автомат оказался в состоянии $c_{t-1} \in S$. Тогда в диаграмме находится кружок с символом c_{t-1} и выходящая из него стрелка с парой, содержащей символ a_t . Второй символ из пары — это и есть выходной символ b_t , а к следующему (t+1) — му такту автомат оказывается в том состоянии $(c_t \in S)$, к которому приводит эта стрелка.

 $\it 3adahue$. Построить программу, моделирующую работу конкретного автомата \Re и решающую для этого автомата задачу $\it M$.

Исходные данные

I. Автомат \Re :

a)
$$X = \{0, 1\}, Y = \{*, +, -\}, S = \{s_1, s_2, s_3, s_4, s_5\}$$

б)
$$X = \{+, -\}, Y = \{0, 1, 2, 3, 4\}, S = \{s_1, s_2, s_3, s_4, s_5, s_6\}$$

B)
$$X = {\alpha, \beta, \gamma}, Y = {1, 4, 7}, S = {s_1, s_2, s_3}$$

$$\Gamma$$
) $X = \{\alpha, \beta\}, Y = \{\mu, \nu, \pi, \rho, \sigma\}, S = \{s_1, s_2, s_3, s_4\}$

д)
$$X = \{0, 1, 2, 3\}$$
, $Y = \{\alpha, \beta\}$, $S = \{s_1, s_2, s_3\}$

e)
$$X = \{*, +, -\}, Y = \{\phi, \psi\}, S = \{s_1, s_2, s_3, s_4\}$$

- II. $3a\partial a va M$. При заданном начальном состоянии $c_0 \in S$ и заданном входном слове A длины r определить:
 - а) количество символа y_1 в выходном слове B;
 - б) количество «подслов» вида $y_1 y_2 y_2$ в выходном слове B;
- в) сколько раз автомат, работая, окажется в состоянии S_1 и выдаст на выходе при этом символ y_1 ;
- г) выдаст ли автомат на выходе символ y_1 в такты t=10, 20, 30 (т.е. будет ли $b_{10}=y_1\vee b_{20}=y_1\vee b_{30}=y_1$);
- д) максимальную длину подслов B, состоящих только из символа y_1 (т.е. максимальную длину повторения символа y_1);
- е) тот такт, на котором автомат впервые окажется в состоянии S_2 , и выдаст при этом на выходе символ y_2 ;
- ж) окажется ли автомат в своей работе хотя бы по одному разу в каждом из своих состояний и в выходном слове будут ли представлены все символы из у;
- з) сколько раз каждый из символов множества y окажется в выходном слове B .
 - 1.2. Моделирование машины Тьюринга.

Всякая машина Тьюринга М состоит из:

- ячейки с бесконечным в обе стороны числом разрядов ..., x_{-2} , x_{-1} , x_0 , x_1 , x_2 , ... В каждом разряде может быть записан один из n символов множества $A=a_0,a_1,\ldots,a_{n-1}$, причем символ a_0 называется пустым $(n\geq 2)$;

- устройство, которое в каждый момент времени обозревает один из разрядов ячейки, а само может находиться в состояниях $\{q_0, q_1, \ldots, q_{m-1}\} = Q$; состояние q_0 называется «стоп-состояние»;
- программы работы это таблица из n строк и m—1 столбцов. Строки соответствуют символам из множества A , столбцы символам из Q; в каждой клетке помещен один из символов A, один из символов Q и одна из букв Π, Π, H .

Машина предназначена для переработки информации в ячейке. Переработка совершается тактами, номер такта обозначается буквой t ($t=1,2,3,\ldots$). Перед первым тактом устройство устанавливается в состояние q_1 на обозревание разряда x_0 , а начальная информация записывается в ячейку так, что в разрядах x_0, x_1, \ldots, x_k – не пустые символы, в остальных разрядах – пустой символ a_0 .

В общем случае – если перед тактом t устройство оказалось в состоянии $q \in Q$ и обозревает разряд x_l , то работа одного такта сводится к следующему:

- если $q = q_0$, то машина останавливается и информация в ячейке считается результатом работы машины;
- если $q \neq q_0$, то берется символ a из разряда x_l и находится клетка в программе, соответствующая символу a и состоянию q, в этой клетке три символа (a', q', R);
- в разряд x_l помещается символ a' (вместо a); устройство переходит в состояние q' и начинает обозревать разряд x_{l+1} , если $R = \Pi$, или x_l , если R = H.

По завершении такта t машина автоматически переходит к выполнению действий такта t+1.

Задание. Построить программу, моделирующую работу конкретной машины Тьюринга М и решающую для этой машины задачу Г. В каждой задаче рассматривать работу машины в течение не более заданного числа Т тактов.

Исходные данные

I. Машина Тьюринга M (всюду $a_0 = \Lambda$ и $s_0 = !$):

a)
$$A = \{\Lambda, 0, 1, *\}$$
 6) $A = \{\Lambda, +, -, \times\}$

\circ				,	١.
$Q = {}$. 1	Ω_1	α_{2}	α_2	ļ
\mathbf{z} –	٠,	$q_1,$	92,	43	J

	q_1	q_2	q_3
Λ	$\Lambda q_1\Pi$	$\Lambda q_1\Pi$	$1q_2H$
0	$0q_1\Pi$	*q ₃ Л	$\Lambda q_2 \mathrm{H}$
1	$\Lambda q_3\Pi$	$1q_2$ Л	$1q_3\Pi$
*	Λ!Η	*q2Л	$*q_3\Pi$

B)
$$A = \{\Lambda, 0, 1, 2, 3, *\}$$

 $Q = \{1, q_1, q_2\}$

	q_1	q_2
Λ	1!H	$*q_1\Pi$
*	$*q_1$ Л	$\Lambda q_1 \Pi$
0	$1q_2H$	$1q_1$ Л
1	$2 q_1 H$	$0q_2\Pi$
2	3!H	$1q_2\Pi$
3	$0q_1$ Л	$0q_1$ Л

д)
$$A = \{\Lambda, \varphi, \psi\}$$

 $Q = \{!, q_1, q_2, q_3, q_4, q_5\}$

	q_1	q_2	q_3	q_4	q_5
Λ	$\phi q_5 \Pi$	$\varphi q_4 \mathrm{H}$	$\psi q_5 H$	$\psi q_1 \Pi$	Λq_1 Л
φ	$\psi q_2 H$	$\phi q_2\Pi$	$\varphi q_3\Pi$	ψq_4 Л	φ!Η
Ψ	$\psi q_3 H$	$\psi q_2\Pi$	$\psi q_3\Pi$	фq4Л	$\varphi q_2 H$

ж)
$$A = \{\Lambda, \mu, \nu, \rho, \sigma \}$$

 $Q = \{!, q_1, q_2, q_3, q_4\}$

	q_1	q_2	q_3	q_4
Λ	μq_1 Л	$\Lambda q_2\Pi$	Λq_3 Л	$ u q_4$ Л
μ	$ u q_2 \Pi$	$ ho q_1$ Л	$νq_2Π$	$\nu q_1 \Pi$
ν	р q_3 Л	$ ho q_4$ Л	$\mu q_4\Pi$	ρ!Π
ρ	σq_4 Л	$\rho q_3\Pi$	$\sigma q_1 H$	σq_2 Л
σ	$\mu q_4\Pi$	σ!Η	$\mu q_1 H$	$\Lambda q_3 \mathrm{H}$

$$Q = \{!, q_1, q_2, q_3, q_4\}$$

	q_1	q_2	q_3	q_4
Λ	$\Lambda q_1\Pi$	$\Lambda q_1\Pi$	$+q_2H$	$\Lambda !\Pi$
+	$-q_3\Pi$	$+q_2\Pi$	$+q_3\Pi$	+q ₄ H
_	$-q_1\Pi$	$-q_1\Pi$	+q ₂ H	$+q_4\Pi$
×	$\times q_3H$	$\times q_2$ Л	$\times q_3\Pi$	$\Lambda q_4 \mathrm{H}$

$$\Gamma$$
) $A = {\Lambda, \alpha, \beta, \gamma, \delta}$
 $Q = {!, q_1, q_2, q_3}$

	q_1	q_2	q_3
Λ	$lpha q_2$ Л	δ!Η	$lpha q_2$ Л
α	$\alpha q_1\Pi$	αq_2 Л	βq_3 Л
β	$eta q_1\Pi$	$eta q_2$ Л	$\gamma q_{ m 1H}$
γ	$\delta q_1\Pi$	$\alpha q_3 H$	$\delta q_1\Pi$
δ	$\gamma q_1\Pi$	$eta q_3$ Л	Λ!Π

e)
$$A = \{\Lambda, +, -, \times\}$$

$$Q = \{!, q_1, q_2, q_3\}$$

	q_1	q_2	q_3
Λ	$+q_1\Pi$	$\times q_2$ Л	$-q_3\Pi$
_	$\times q_2\Pi$	$\Lambda q_1 \mathrm{H}$	$-q_3$ Л
×	+q ₃ H	$+q_2\Pi$	$-q_2$ Л
+	$-q_2$ Л	$\times q_2\Pi$	Λ!H

3)
$$A = \{\Lambda, 0, 1, 2, +, -\}$$

$$Q = \{!, q_1, q_2, q_3\}$$

	q_1	q_2	q_3
Λ	$0q_2$ Л	$1q_3\Pi$	$-q_1\Pi$
0	$1q_2\Pi$	$2q_2\Pi$	$-q_2$ Л
1	$2q_3\Pi$	$+q_2\Pi$	$+q_{2}\Pi$
2	$+q_3\Pi$	$2q_1\Pi$	$+q_1\Pi$
+	$-q_3$ Л	$0q_1$ Л	$\Lambda q_3 \mathrm{H}$
_	Λ!H	$0q_1$ Л	Λ!Η

- II. Задача Γ. При заданной начальной информации в ячейке машины определить, моделируя ее работу в течение не более Т тактов:
 - а) сколько раз устройство оказывалось в состоянии q_1 ;
 - б) сколько раз устройство находилось в каждом из своих состояний;
- в) сколько разрядов ячейки было использовано машиной при своей работе (сколько ячеек обозревалось устройством);
- г) количество разрядов ячейки, содержащих не пустой символ, по окончании работы машины;
- д) окажется ли устройство во время работы машины в каждом из своих состояний;
- е) какие символы окажутся в разряде x_0 после 10-го, 20-го, 30-го такта (если машина ранее не остановится);
- ж) сколько раз выбиралась клетка таблицы, соответствующая символу a_1 и состоянию q_2 ;
- 3) сколько поворотов совершило устройство (поворот это изменение направления движения устройства вдоль ячейки).

Примечание. В любой задаче Γ ответ должен сопровождаться тем, закончила ли работу машина в состоянии «стоп» или ее работа оборвана на такте Γ .

1.3 Моделирование программ в операторных машинах.

Вычислительная машина имеет одну ячейку памяти x, в которой может храниться любой элемент информационного множества $A = \{a_1, a_2, a_3, \dots, a_n\}$. Над содержимым ячейки можно производить преобразования из множества $F = \{f_1, \dots, f_n\}$ и проверять логические условия из множества $P = \{p_1, \dots, p_m\}$, так что F и P можно назвать системой команд машины.

Задается множество программ R в такой машине с описанием их выполнения.

Задание. Составить программу для ЭВМ, которая способна ввести запись любой программы $\Pi \in R$ в конкретной операторной машине, ввести исходную информацию $a \in A$ и выполнить все операции согласно программе A. Составленная программа должна печатать либо результат вычисления $b = \Pi(a)$, если программа заканчивает свою работу, либо сообщение о «Зацикливании» программы Π .

Исходные данные

I. Определение машины:

a)
$$A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}; F = \{f_1, f_2, f_3\}; P = \{p_1, p_2\}.$$

Операторы и условия задаются таблично

a	0	1	2	3	4	5	6	7	8	9
$f_1(a)$	1	0	3	2	6	9	7	8	5	4
$f_2(a)$	5	2	6	1	7	3	9	4	8	0
$f_3(a)$	2	3	4	7	8	9	1	5	6	9
$p_1(a)$	и	Л	и	и	Л	Л	Л	и	и	Л
$p_2(a)$	Л	и	и	Л	Л	Л	Л	Л	и	и

$$δ$$
) $A = {0, 1, ∧, ∨, ≡, ¬, (,)}; $F = {f_1, f_2}; P = {p_1, p_2, p_3}.$$

Операторы и логические условия задаются таблично.

а	0	1	^	V	=	7	()
$f_1(a)$	1	V	=	7	(0)	^
$f_2(a)$	()	0	1	=	^	V	7
$p_1(a)$	и	и	Л	Л	Л	Л	Л	Л
$p_2(a)$	Л	Л	Л	Л	Л	Л	и	и
$p_3(a)$	Л	Л	и	и	и	и	Л	Л

B)
$$A = \{+, -, *, =, /, [,]\}; F = \{f_1, f_2, f_3\}; P = \{p_1, p_2\}.$$

Операторы и логические условия задаются таблично

а	+	_	*	=	/	[]
$f_1(a)$	_	*	/	+	[]	=
$f_2(a)$	*	*	[[[_	_
$f_3(a)$	/	/	/	/	_	_	_
$p_1(a)$	и	и	и	и	и	Л	Л
$p_2(a)$	и	и	Л	Л	Л	и	и

$$f_2(a) = \begin{cases} a-1, \text{ если } a \ge -98, \\ 99, \text{ если } a = -99; \end{cases} \qquad p_2(a) = \begin{cases} u, \text{ если } a > 0, \\ \pi, \text{ если } a \le 0; \end{cases}$$

$$f_3(a) = \begin{cases} 0, \text{ если } a = 0, \\ 1, \text{ если } a \ne 0; \end{cases} \qquad p_3(a) = \begin{cases} u, \text{ если } 10 \le a \le 40, \\ \pi, \text{ в остальных случаях.} \end{cases}$$

д)
$$A = \{0, 1, 2, 3, \dots, 999, 1000\}; F = \{f_1, f_2, f_3, f_4\}; P = \{p_1, p_2\}.$$

$$f_1(a) = \begin{cases} a, \text{ если } a > 500, \\ 2a, \text{ если } a \le 500; \end{cases} \qquad p_1(a) = \begin{cases} u, \text{ если } a = 1000, \\ \pi, \text{ если } a \ne 1000; \end{cases}$$

$$f_2(a) = \begin{cases} a+2, \text{ если } a \leq 998, \\ 0, \text{ если } a = 999 \text{ или } 1000; \end{cases} \quad p_2(a) = \begin{cases} u, \text{ если } a \text{ четно и} \\ \text{больше 250}, \\ \pi, \text{ в остальных случаях;} \end{cases}$$

$$f_3(a) \equiv 1, \ f_4(a) \equiv 500.$$

е) $A=[0,\,1]$, т.е. все реальные числа из сегмента $[0,\,1]$; $F=\{f_1,\,f_2,\,f_3,f_4\}$; $P=\{p_1,\,p_2\}.$

$$f_{1}(a) = |\sin(1 + a^{2})|;$$

$$f_{2}(a) = \frac{1 + a^{2}}{1 + a^{2} + a^{4}};$$

$$f_{3}(a) = \sqrt{a};$$

$$f_{4}(a) = e^{-a};$$

$$p_{1}(a) = \begin{cases} u, & \text{если } a \leq 0.5, \\ \pi, & \text{если } a > 0.5; \end{cases}$$

$$p_{2}(a) = \begin{cases} u, & \text{если } a = 0.75, \\ \pi, & \text{если } a \neq 0.75, \end{cases}$$

ж) $A=[-1,\,1]$, т.е. все реальные числа a такие, что $-1\leq a\leq 1$; $F=\{f_1,\,f_2,\,f_3\};$ $P=\{p_1,p_2,p_3\}.$

$$f_1(a) = \cos{(a-1)}; \qquad p_1(a) = \begin{cases} u, \text{ если } a < 0, \\ \pi, \text{ если } a \ge 0; \end{cases}$$

$$f_2(a) = 0,5\ln{(a+2)}; \qquad p_2(a) = \begin{cases} u, \text{ если } |a| = 1, \\ \pi, \text{ если } |a| \ne 1; \end{cases}$$

$$f_3(a) = |a|; \qquad p_3(a) = \begin{cases} u, \text{ если } a \ne 0, \\ \pi, \text{ если } a = 0. \end{cases}$$

- II. Определение множества R программ.
- а) Всякая программа П множества R задается совокупностью из L команд $(L \ge 1)$ с номерами $i, 1 \le i \le L$. Команда задается либо тройкой < i, f, l >, где $f \in F$ и $0 \le l \le L$, либо четверкой < i, f, l, k >, где $p \in P, 0 \le l \le L$, $0 \le k \le L$. Выполнение программы определяется так. Перед началом выполнения в ячейку машины записывается элемент $a \in A$ и первой выполняется команда с номером i = 1. В общем случае, в ячейке элемент $b \in A$, и выполнению подлежит команда с номером j, тогда:
- если j = 0, то программа останавливается и b считается результатом ее работы;
- если $j \neq 0$ и команда с этим номером $\langle j, f, l \rangle$, то в ячейке записывается новый элемент b' = f(b) и следующей выполняется команда с номеромсhи $j \neq 0$ и команда с этим номером $\langle j, p, l, k \rangle$, то в ячейке сохраняется тот же элемент b; проверяется условие p: если p(b) = u, то следующей выполняется команда с номером l, если p(b) = n команда с номеромевидно, в машинах a a программа зацикливается тогда и только тогда, когда она не остановилась после выполнения a0 команд. В машинах a1 полагать, что программа зацикливается, если она не остановилась после выполнения a2 команд. В машинах a3 полагать a4 команд. В машинах a6 команд (a6 задается).
- б) Всякая программа П множества R задается совокупностью из L команд $(L \ge 1)$ с номерами $i, 1 \le i \le L$. Команда это либо пара < i, f>, где $f \in F$, либо тройка < i, p, l>, где $p \in P$ и $0 \le l \le L$. Выполнение программы определяется так. Перед началом выполнения в ячейку записывается элемент $a \in A$ и первой выполняется команда с номером i = 1. В общем случае, пусть в ячейке оказался элемент $b \in A$ и выполняется команда с номером i, тогда:
- если j=0 или j=L+1, то программа прекращает выполнение и b считается результатом ее работы;
- если $j \neq 0$ и команда < j, f>, то в ячейку засылается новый элемент b' = f(b) и следующей выполняется команда с номером j+1;
- если $j \neq 0$ и команда < i, p, l >, то в ячейке элемент сохраняется и проверяется условие p: при p(b) = u следующей выполняется команда с номером l; при p(b) = n с номером j + 1.

Зацикливание в машинах а) — е) происходит тогда, когда программа не остановилась после выполнения $L \cdot k$ команд. В машинах ж) — з) полагать, что зацикливание происходит в случае отсутствия остановки до выполнения $L \cdot \sigma$ команд (σ задается).

- в) Всякая программа П множества R задается совокупностью из L команд $(L \ge 1)$ с номерами i, $1 \le i \le L$. Команда это < i, p, f, l, g, k >, где $p \in P$, f, $g \in F$, $0 \le l$, $k \le L$. Выполнение программы определяется так. Перед началом выполнения в ячейку записывается элемент $a \in A$ и первой выполняется команда с номером i = 1. В общем случае, пусть в ячейке оказался элемент $b \in A$ и выполняется команда с номером i, тогда:
- если i=0, то программа останавливается и b считается результатом ее работы;
- если $i \neq 0$, то проверяется условие p: если p(b) = u, то в ячейку записывается элемент b' = f(b) и следующей выполняется команда с номером l; если p(b) = n, то в ячейку записывается элемент b'' = g(b) и следующей выполняется команда с номером k.

Если после выполнения $L\cdot k$ команд программа не остановилась, это значит, что она зациклилась (машины а) – е)); в машинах ж) – з) считать зацикливание программы в случае отсутствия остановки до выполнения $L\cdot \sigma$ команд (σ задается).

г) Всякая программа Π множества R и стрелок \downarrow^i, \uparrow_i , причем стрелка вверх ставится только после символа $p \in P$. Например,

$$\downarrow^1 p_1 \uparrow_2 f_1 f_2 f_1 p_2 \uparrow_1 f_2 \downarrow^2$$

Выполнение программы определяется так. Сначала в ячейку засылается элемент $a \in A$ и к нему применяется первый символ программы. В общем случае — пусть в ячейке находится элемент $b \in A$, к которому следует применить символ h_i , тогда:

- если h_j это стрелка, то делается переход к следующему символу с сохранением в ячейке элемента b ;
- если h_j это $f \in F$, ячейку записывается новый элемент b' = f(b) и делается переход к следующему символу;
- если h_j это $p \in P$, то в ячейке сохраняется элемент b и проверяется условие p(b): если p(b) = u, то совершается переход к стрелке \downarrow^k

(при стрелке \uparrow_k , стоящей после $h_j = P$), если же $p(b) = \pi$, то делается переход к символу, стоящему вслед за стрелкой \uparrow_k .

Программа завершается тогда, когда происходит переход за ее последний символ. Считается, что программа зациклилась, если она не остановилась после выполнения σ операторов (σ задается).

- д) Всякая программа $\Pi \in R$ задается граф-схемой. Граф-схема это совокупность вершин и соединяющих их стрелок, в которой:
- одна вершина не имеет входящих в нее стрелок (начальная вершина)
 и имеет только одну выходящую;
- одна вершина не имеет выходящих из нее стрелок (конечная вершина);
- из любой другой вершины выходит либо одна стрелка (такой вершине приписывается оператор $f \in F$), либо две стрелки одна со знаком "+", другая со знаком "–" (такой вершине приписывается предикат $p \in P$).

Выполнение программы. С исходным элементом $a \in A$ начинается движение по стрелке из начальной вершины. В общем случае, пусть идет движение по стрелке с элементом $b \in A$. Если стрелка заходит в вершину с приписанным оператором $f \in F$, то с элементом b' = f(b) происходит движение по стрелке, выходящей из этой вершины. Если же заходит в вершину с приписанным предикатом $p \in P$, то проверяется условие p(b): если p(b) = u, то дальнейшее движение происходит с тем же элементом b по стрелке с "+", выходящей из этой вершины; если $p(b) = \pi$, то движение с b продолжается по стрелке с "-". Если с некоторым элементом $c \in A$ происходит движение по стрелке, заходящей в концевую вершину, то на этом выполнение программы заканчивается и считается результатом выполнения программы. Считать программу зацикленной, если при ее выполнении пройдено σ вершин и концевая вершина не достигнута.

1.4 Построение экстремальной части графа.

Графом называется совокупность точек (вершин) $A = \{a_1, ..., a_n\}$ и соединяющих их линий (ребер) $V = \{v_1, v_2, ..., v_m\}$. Не обязательно, чтобы в графе каждая пара точек соединялась линией. Пусть D – некоторое свойство подмножеств множества A (или множества D); тогда подмножество W называется D-экстремальным (минимальным или максимальным), если W

удовлетворяет свойству D и никакое подмножество $W'(W' \subset W, W' \supset W)$ не удовлетворяет свойству D.

 $\it 3adahue.$ Составить программу для выделения $\it D$ - экстремального подмножества в заданном графе согласно указанному алгоритму его выделения. $\it Ucxodhue\ dahhue$

І. Граф, задаваемый вершинами и ребрами:

а) $A=\{1,\,2,\,3,\,4,\,\dots,\,13,\,14,\,16\}$, т.е. граф состоит из n=16 вершин, обозначенных целыми числами от 1 до 16; $V=\{(1,\,10),\,(2,\,13),\,(3,\,13),\,(3,\,14),\,(4,\,5),\,(4,\,7),\,(4,\,14),\,(4,\,15),\,(5,\,6),\,(6,\,7),\,(7,\,15),\,(7,\,16),\,(8,\,16),\,(8,\,9),\,(10,\,11),\,(10,\,12),\,(11,\,12),\,(12,\,13),\,(14,\,15),\,(14,\,16),\,(15,\,16)\}$, т.е. в графе m=21 ребро, каждое ребро обозначается парой вершин $V_i=(a,\,b)$.

6)
$$A = \{a_1, a_2, \dots, a_{12}\};$$

 $V = \{(a_1, a_{10}), (a_1, a_3), (a_1, a_{12}), (a_2, a_3), (a_3, a_{10}), (a_4, a_{10}), (a_4, a_{12}),$
 $(a_5, a_6), (a_5, a_8), (a_5, a_9), (a_6, a_8), (a_6, a_9), (a_7, a_8), (a_8, a_9), (a_{10}, a_{11}),$
 $(a_{10}, a_{12})\},$

т.е. граф состоит из 12 вершин и 16 ребер.

B)
$$A = \{\gamma_1, \gamma_2, \gamma_3, \dots, \gamma_{14}\};$$

 $V = \{(\gamma_1, \gamma_2), (\gamma_1, \gamma_4), (\gamma_2, \gamma_4), (\gamma_3, \gamma_4), (\gamma_5, \gamma_6), (\gamma_5, \gamma_9), (\gamma_5, \gamma_{11}), (\gamma_5, \gamma_{13}),$
 $(\gamma_6, \gamma_{13}), (\gamma_7, \gamma_8), (\gamma_8, \gamma_{14}), (\gamma_9, \gamma_{10}), (\gamma_9, \gamma_{14}), (\gamma_{10}, \gamma_{12}), (\gamma_{10}, \gamma_{14}),$
 $(\gamma_{11}, \gamma_{12}), (\gamma_{12}, \gamma_{14}), (\gamma_{13}, \gamma_{14})\},$

т.е. граф состоит из 14 вершин и 18 ребер.

$$\Gamma) A = \{E_{1}, E_{2}, E_{3}, \dots, E_{15}\};
V = \{(E_{1}, E_{6}), (E_{2}, E_{7}), (E_{3}, E_{8}), (E_{4}, E_{9}), (E_{5}, E_{10}), (E_{6}, E_{7}), (E_{7}, E_{8}), (E_{8}, E_{9}), (E_{9}, E_{10}), (E_{10}, E_{6}), (E_{6}, E_{11}), (E_{7}, E_{12}), (E_{8}, E_{13}), (E_{9}, E_{14}), (E_{10}, E_{15}), (E_{11}, E_{13}), (E_{12}, E_{14}), (E_{13}, E_{15}), (E_{14}, E_{11}), (E_{15}, E_{12})\},$$

т.е. граф состоит из 15 вершин и 20 ребер.

- д) Произвольный граф из n=13 вершин и m=25 ребер, вводимый в программу.
 - II. Свойство D подмножеств W:
- а) Свойство «опорности» подмножества вершин $W \subseteq A$: для всякой вершины $a \in A \backslash W$ найдется вершина $x \in W$ такая, что a и x соединены в графе ребром, т.е. $(a, x) \in V$.

Алгоритм построения минимального опорного подмножества состоит в выполнении n шагов:

- i ый шаг) Пусть уже построено множество W_{i-1} (при i=1 множество $W_0=A$). Проверяется, удовлетворяет ли вершина a_i условиям:
- 1^{0}) в графе нет ребер, соединяющих вершину a_{i} с вершинами множества W_{i-1} ;
- 2^{0}) в $A \setminus W_{i-1}$ имеется такая вершина y, что в графе есть ребро (a_{i}, y) и нет других ребер между y и вершинами из W_{i-1} .

Если удовлетворяет хотя бы одному из них, то полагается $W_i = W_{i-1}$; в противном случае W_i получается из W_{i-1} выбрасыванием вершины a_i .

После выполнения n шагов множество W_n искомое.

б) Свойство «независимости» подмножества $W \subseteq A$: никакие две вершины из W не соединены в графе ребром.

Алгоритм построения максимального независимого подмножества состоит в выполнении не более n шагов. На первом шаге выбирается вершина a_1 и включается в W, в графе помечаются a_1 и все те вершины, которые соединены с ней ребрами. На i-ом шаге проверяется, имеются ли в графе непомеченные вершины. Если нет, то процесс построения W закончен. В противном случае выбирается непомеченная вершина x_k (с минимальным номером), включается в W, помечаются в графе a_k и все вершины, которые соединены с ней ребром. После этого делается переход к (i+1)в)мувойсуво «независимости» подмножества $W \subseteq V$: никакие два ребра из W не имеют в графе общей вершины.

Алгоритм построения максимального независимого подмножества состоит в выполнении не более m шагов. На первом шаге выбирается ребро V_1 и включается в W, в графе помечаются V_1 и все те ребра, которые имеют общую вершину с V_1 . На i-м шаге проверяется, имеются ли в графе не помеченные ребра. Если нет, то процесс построения W закончен. В противном случае выбирается непомеченное ребро V_k и все ребра, имеющие с ним общие вершины. После этого делается переход к (i+1)-му шагу.

г) Свойство «покрываемости» подмножества $W \subseteq V$: любая вершина графа является концом хотя бы одного ребра из W.

Алгоритм построения минимального покрывающего подмножества состоит из m шагов. На i-ом шаге из W_{i-1} строится W (при i=1 $W_0=V$): если ребро $V_i=(a_s,\,a_q)$ соединяет вершины a_s и a_q и в W_{i-1} есть другие ребра с концами и в вершине a_s , и в вершине a_q , то w_i получается из w_{i-1}

удалением ребра V_i ; в противном случае $W_i = W_{i-1}$. искомым множеством будет W_m .

д) Свойство «покрываемости» подмножества $W\subseteq A$: любое ребро графа имеет концом некоторую вершину из W .

Алгоритм построения минимального покрывающего подмножества состоит из n шагов. На i-ом шаге из W_{i-1} строится W_i (при i=1 $W_0=A$): если для вершины a_i найдется такое ребро (a_i,b) , что $b\notin W_{i-1}$, то $W_i=W_{i-1}$; в противном случае W_i получается из W_{i-1} выбрасыванием вершины a_i . Искомым будет W_n .

е) Свойство «полноты» подмножества $W \subseteq A$: любая пара различных вершин из W соединена в графе ребром.

Программа должна построить полное подмножество, исходя из двух концевых вершин некоторого ребра (номер ребра вводится): $V_j = (a, b)$. Алгоритм построения полного максимального подмножества W, содержащего вершины a и b, состоит в выполнении шагов. Пусть до i-го шага построено W_{i-1} (при i=1 $W_0=\{a,b\}$). Если находится в $A \setminus W_{i-1}$ такая вершина X, что в графе есть ребра между X и всякой вершиной из W_{i-1} , то W_{i-1} получается из W_i добавлением вершины X (и переход к следующему шагу); в противном случае W_{i-1} — искомое (и алгоритм заканчивается).

III. Упорядочивание вершин и ребер. Перед началом выполнения алгоритма множество вершин (в задачах Па, б, д, е) или множество ребер (в задачах Пв, г) следует упорядочить согласно следующему правилу. Обозначим через $\varphi(a)$ количество ребер, имеющих концом вершину a; через $\psi(v)$ количество ребер, имеющих концевую вершину с ребром v.

Порядок вершин (их нумерация) должен быть таким, чтобы для всякого $i=1,2,\ldots,n-1$:

a)
$$\varphi(a_i) \le \varphi(a_{i+1})$$

либо

$$\emptyset) \varphi(a_i) \ge \varphi(a_{i+1})$$

Порядок ребер (их нумерация) должен быть таким, чтобы для всякого $j=1,2,\ldots,m-1$:

a)
$$\psi(v_i) \ge \psi(v_{i+1})$$

либо

б)
$$\psi(v_i) \le \psi(v_{i+1})$$

1.5 Поиск путей в схеме дорог.

Под схемой дорог понимается совокупность пунктов x_1, x_2, \ldots, x_n и дорог между некоторыми из них. Каждой дороге, обозначаемой (x_i, x_j) , соответствует число $\mu(x_i, x_j)$, называемое расстоянием между пунктами x_i и x_j . Путем в схеме дорог между пунктами X и Y называется цепочка дорог $P_{x,y} = \{(x, a_1), (a_1, a_2), \ldots, (a_{k-1}, y)\}$, в которой дорога из схемы встречается не более одного раза. Длиною пути p считается число k, а расстояние пути — величина $\mu(P_{x,y}) = \Sigma(a_i, a_{i+1})$, если $x = a_0$ и $y = a_k$. Считается, что если между пунктами X, Y, Z имеются дороги, то

$$\mu(x, y) \le \mu(x, z) + \mu(z, y).$$

Задание. Составить программу, которая в заданной схеме дорог находит путь требуемого вида.

Исходные данные

I. Схема дорог.

п25

п30

п29

Расстояния между пунктами выбираются самостоятельно.

- II. Задачи по выбору путей.
- а) По заданным (произвольно) двум пунктам X и Y (названия пунктов вводятся в программу) найти путь $P_{x,y}$ с минимальным расстоянием.

Алгоритм решения задачи. Пусть z — максимальное расстояние между пунктами; приписываем пункту X индекс-число 0, остальным пунктам — число $n\cdot z$. Совокупность этих индексов обозначим через $M_0(x_i)$ и введем строку $T_0(x_i)=\Lambda$, сопоставляющую каждому пункту пустой символ $(i=1,\,2,\,\ldots,\,n)$. На j-м шаге алгоритма из $M_{j-1}(x_i)$ и $T_{j-1}(x_i)$ строятся новые строки $M_j(x_i)$ и $T_j(x_i)$, $i=1,\,\ldots,\,n$: если в схеме дорог есть пара пунктов u и v такая, что $\mu(u,v) < M_{j-1}(u) - M_{j-1}(v)$, то

$$M_{j}(x_{i}) = \begin{cases} M_{j-1}(u) + \mu(u,v), & \text{если } x_{i} = v, \\ M_{j-1}(x_{i}), & \text{если } x_{i} \neq v; \end{cases}$$

$$T_j(x_i) = egin{cases} u, & \text{если } x_i = v, \ T_{j-1}(x_i), & \text{если } x_i
eq v \end{cases}$$

(и переход к следующему шагу); если же пары пунктов u и v нет, то алгоритм заканчивается. Пусть $M(x_i)$ и $T(x_i)$ — строки, полученные на последнем шаге алгоритма. Тогда M(y) — расстояние требуемого пути, а пункты этого пути y, T(y), T(T(y)), T(T(y)), ... X.

б) По заданным (произвольно) двум пунктам X и Y (названия пунктов вводятся в программу) найти путь $P_{x,y}$ минимальной длины и определить его расстояние.

Алгоритм решения задачи. Отнесем пункт X к ярусу 0. На i-ом шаге алгоритма всякий пункт a относится к ярусу i, если он еще не отнесен ни к какому ярусу и имеется дорога, связывающая его с пунктом яруса i-1; алгоритм прекращается, как только пункт становится отнесенным к некоторому ярусу. Ярус пункта y и будет требуемой длиной пути. Используя ярусы пунктов, найти затем некоторый путь и его расстояние.

в) По заданному пункту X определить все те пункты y, для которых $D\pi(P_{x,y}) = \max(\min(P_{x,a}))$, где минимум берется по всем путям из X в a.

Найти некоторый путь из X в один из x этих пунктов и вычислить его расстояние.

Алгоритм решения задачи. Припишем пункту X ранг 0. На i-шаге алгоритма определяется, имеются ли в схеме дорого пункты без рангов. Если имеются, то ранг i присваивается всем тем пунктам, которые до этого не имели ранга, но связываются дорогой с пунктом ранга i-1 (переход к следующему шагу). Если не имеются, то алгоритм прекращается и искомым будут все пункты максимального ранга. Используя ранги, построить некоторый путь из X в один из пунктов максимального яруса.

г) Путь, содержащий все дороги схемы, называется эйлеровым.

Алгоритм построения эйлерова пути. Выбирается любой пункт X и строится какой-нибудь путь из X в x. Если он оказался эйлеровым, то алгоритм закончен. В противном случае из схемы убираются те дороги (но не пункты), которые оказались в построенном пути. В оставшейся схеме выбирается один из пунктов y (построенного ранее пути), из которого есть дорога. Из него строится какой-нибудь путь, заканчивающийся в нем — и этот путь «вкладывается» в ранее построенный. Этот процесс продолжается до тех пор, пока не будет построен требуемый путь, либо не окажется пути из пункта в него же.

Примечание. Эйлеров путь имеется в пунктах 1a) и 1г) и его нет в схемах 1б) и 1в).

д) Для произвольно заданного пункта X найти все пути длины 3, начинающиеся в X, и вычислить расстояние каждого из них.

Алгоритм построения. Все пути из X длины 1 – это просто дороги, исходящие из X. Все пункты, к которым ведут дороги, назовем пунктами первого шага. Затем из каждого пункта первого шага по исходящим из них дорогам придем к пунктам второго шага – построив все пути длины 2. Затем из пунктов второго шага по исходящим из них дорогам придем к пунктам третьего шага, построив все пути длины 3. Заметим, что один и тот же пункт может оказаться пунктом и первого, и второго, и третьего шага.

- е) Для произвольно заданного пункта X определить тот путь, который получается, если из него двигаться по дорогам, выбирая в каждом пункте нехоженую дорогу с минимальным расстоянием.
- x) Для произвольно заданного пункта X определить тот путь, который получится, если начать из X двигаться по дорогам, выбирая в каждом пункте самую длинную нехоженую дорогу.

- 3) Путник, не зная пути, собирается выйти из пункта X, чтобы достигнуть пункта y (названия этих пунктов вводятся в программу). Определить расстояние, которое он покроет в своем движении, если будет следовать следующим правилам. Перед началом движения для путника все дорого зеленые и все пункты новые, кроме пункта X, который $cmapы\ddot{u}$:
- если путник приходит в *новый* пункт a (по зеленой дороге), то но «перекрашивает» ее в желтый цвет и пункт «превращается» в *старый*. Начинает искать зеленую дорогу из пункта a (то же делает в пункте X): если находит, то двигается по ней; если не находит, то возвращается по только что пройденной дороге в предыдущий пункт, перекрашивая вторично дорогу из желтой в красную;
- если путник приходит в *старый* пункт по зеленой дороге, то по пути он перекрашивает ее в желтый цвет, затем возвращается по ней обратно в предыдущий пункт;
- если путник приходит в *старый* пункт b по желтой дороге, то он перекрашивает дорогу в красную; затем ищет из пункта b зеленую дорогу: если находит, то движется по ней; если не находит, то движется по (единственной) желтой дороге, исходящей из b.
- и) В схеме дорог каждый пункт связан дорогой с любым другим пунктом. Требуется построить такой путь, который проходит через каждый пункт, причем точно по одному разу. Алгоритм построения пути.

На первом шаге выбираются два пункта с самой короткой дорогой между ними, пусть ими будут пункты X_i и X_j . Затем выбирается пункт x_k так, чтобы $\mu(x_k, x_i) = \min \mu(x_l, x_i)$.

Образуется замкнутый путь

$$P_1 = \{(x_i, x_k), (x_k, x_j), (x_j, x_i)\}.$$

В общем случае, пусть к i -ому шагу алгоритма построен замкнутый путь P_{i-1} . Выбирается пункт $x_l \notin P_{i-1}$ такой, что $\mu(x_l, x_m) = \min \mu(y, z)$, где минимум берется по всем пунктам $y \notin P_{i-1}$ и всем пунктам $z \in P_{i-1}$. Новый путь P_i получается из P_{i-1} заменой дороги (x_m, x_l) из P_{i-1} на новые две (x_m, x_l) (x_l, x_r) . Число шагов алгоритма n-2. Программа должна вывести построенный путь и его расстояние.

к) Задача формулируется аналогично предыдущей. Отличие только в описании произвольного шага алгоритма (i-го шага с $i \ge 2$). Пусть к i -ому

шагу построен замкнутый путь P_{i-1} . Выбирается произвольный пункт $x_l \notin P_{i-1}$. Отыскивается такая дорога в пути P_{i-1} — дорога (x_s, x_r) , чтобы была минимальна величина $\mu(x_s, x_l) + \mu(x_l, x_r) - \mu(x_s, x_r)$, где минимум берется по всем дорогам из пути P_{i-1} . Строится новый путь P_i путем замены одной дороги (x_s, x_l) на пару дорог (x_s, x_l) (x_l, x_r) .

1.6 Формулы с двуместными операциями.

Для записи формул используются: символы двуместных операций $\Re = \{\alpha_1, \ldots, \alpha_n\}$, символы переменных и величин $X = \{x_1, \ldots, x_m\}$ и круглые скобки « (» и «) ». Формула определяется индуктивно (в определениях $\theta \in \Re$ и $a, b \in x$).

Определение 1 формулы в записи со скобками. Выражение вида (a) θ (b) называется формулой (элементарной); если A и B – формулы или символы из X, то выражение (A) θ (B) называется формулой.

Определение 2 формулы в бесскобочной записи. Выражение вида θab называется формулой (элементарной); если A и B — формулы или символы из X, то выражение θAB называется формулой.

Задание. Для заданной системы формул составить программу по решению одной из задач над их записями.

Исходные данные

- І. Система формул определяется символами:
- а) $\Re = \{+, -, \times, /\}$ знаки арифметических операций; $X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ цифры.
- б) $\Re = \{+, -, \times, /\}$ знаки арифметических операций; $X = \{x, y, z, t, u, v, w\}$ символы переменных.
- в) $\Re = \{\lor, \land, \supset, \equiv, \uparrow, \oplus\}$ знаки логических операций; $X = \{u, \pi\}$ символы логических величин.
- г) $\Re = \{\lor, \land, \supset, \equiv, \uparrow, \oplus\}$ знаки логических операций; $X = \{\alpha, \beta, \gamma, \delta, \epsilon, \mu, \nu, \lambda\}$ символы логических переменных.
- д) $\Re = \{f, g, h, \phi, \psi\}$ символы двуместных операций; $X = \{0, 1 p, q, r, s\}$ символы переменных и чисел.
- e) $\Re = \{F, G, H\}, X = \{f, g, h, 0, 3, 6, 9\}.$

- II. Задача над записями формул.
- а) Проверка на правильность записи формулы в записи со скобками. Программа вводит строку символов произвольной длины $\sigma_1, \ldots, \sigma_l$. Проверяет, содержит ли она символы только из \Re , X и скобки. Если есть иной символ, то сообщает об этом, прекращая дальнейшую проверку. Если других символов нет, то создает новую строку $\rho_1, \rho_2, \ldots, \rho_l$, в которой $\rho_i = 0$, если $\sigma_i = "("; \rho_i = 1, \text{ если } \sigma_i = ")"; <math>\rho_i = 2$, если $\sigma_i \in \Re$; $\rho_i = 3$, если $\sigma_i \in X$. Запись формулы будет правильной только тогда, когда строку $\rho_1, \rho_2, \ldots, \rho_l$ можно превратить в одну цифру 3 заменами в ней комбинаций 0312031 на 3.
- б) Проверка на правильность записи формулы в бесскобочной записи. Программа вводит строку символов произвольной длины $\sigma_1, \ldots, \sigma_l$. Если в ней есть символы, не входящие в \Re или X, то печатается сообщение и анализ прекращается. Если других символов нет, то создается строка $\rho_1, \rho_2, \ldots, \rho_l$, где $\rho_i = 0$, если $\sigma_i \in \Re$, $\rho_i = 1$, если $\sigma_i \in X$. Запись формулы будет правильной только тогда, когда эту строку можно превратить в цифру 1 заменами в ней комбинаций 011 на 1.
- в) Перевод формулы из записи со скобками в эквивалентную бесскобочную запись. Программа составляется в предположении, что вводимая строка символов представляет собой правильную запись формулы со скобками. В результате выполнения программы получается эквивалентная бесскобочная запись формулы, которая выводится на печать. Алгоритм перевода состоит в том, что в исходной строке символов отыскивается часть строки вида $(a_1,...,a_{l_1})\theta(b_1,...,b_{l_2})$, в которой $a_1,...,a_{l_1}$ $b_1,...,b_{l_2}$ не содержит скобок, и эта часть заменяется на $\theta a_1,...,a_{l_1}$ $b_1,...,b_{l_2}$. Формула превратится в искомую, когда в ней исчезнут все скобки.
- г) Перевод формулы из записи со скобками в эквивалентную бесскобочную запись. Программа вводит строку символов правильную запись формулы со скобками. Перевод формулы в бесскобочную запись производится согласно следующему алгоритму. На каждом шаге отыскивается первая слева такая операция θ , слева от которой число открывающих скобок равно числу закрывающих

$$c_1...c_{k_1}(a_1...a_{l_1})\theta(b_1...b_{l_2})d_{1...d_{k_2}}$$
,

где среди $c_1, ..., c_{k1}$ нет скобок, а среди $a_1, ..., a_{l1}$ они могут быть. Справа отыскивается такая скобка (между b_{l_2} и d_1), чтобы между θ и d_1 было одинаковое количество открывающих и закрывающих скобок. Тогда эта строка переводит в новую $c_1...c_{k_1}\theta\,a_1...a_{l_1}\,b_1...b_{l_2}\,d_1...d_{k_2}$.

Шаги алгоритма выполняются до тех пор, пока в строке не останется скобок. Полученная строка выводится на печать.

- д) Перевод формулы из бесскобочной записи в запись со скобками. Программа вводит строку символов правильную бесскобочную запись формулы. Алгоритм перевода основан на том, что всякая формула в бесскобочной записи содержит l символов из X и l-1 символов из \Re . Поэтому на первом шаге алгоритма в строке выделяются две части $\theta a_1...a_r$ $b_1...b_s$, где $r \ge 1$, $s \ge 1$, такие, чтобы строки $a_1...a_r$ и $b_1...b_s$ были строками формул; образуется новая строка $(a_1...a_r)$ θ $(b_1...b_s)$. На каждом следующем шаге отыскивается символ $\theta' \in \Re$, стоящий после скобки « (». Если такого символа нет, то алгоритм заканчивается, и программа выводит образованную запись со скобками. Если такой символ находится, то выделяется часть строки, начинающаяся с θ' , над которой выполняются те же операции, что на первом шаге.
- е) Перевод формулы из бесскобочной записи в запись со скобками. Вводится строка символов, представляющих правильную запись без скобок. Алгоритм перевода основан на том, что всякая формула в записи со скобками имеет одинаковое число открывающих и закрывающих скобок. На первом шаге все символы из X заключаются в круглые скобки. На каждом последующем отыскивается подстрока вида θ (a_1 ... a_l) (b_1 ... b_k), чтобы среди a_1 ... a_l (и среди b_1 ... b_k) было поровну скобок открывающих и закрывающих. Она заменяется на новую подстроку (a_1 ... a_l) θ (b_1 ... b_k). Алгоритм заканчивается, когда исходная строка превратится в новую начинающуюся со скобки « (», а не знака из \Re .
- 1.7 Алгоритм преобразования слов. Набор $A = \{a_1, a_2, \dots, a_k\}$ некоторых символов называется алфавитом, а сами символы a_1, \dots, a_n буквами. Последовательность букв называется словом в алфавите A. Множество всех возможных слов в A обозначается через A^* . Слово, не

содержащее ни одной буквы, называется пустым. Количество букв в слове называется его длиной $Д_{\pi}(P), P \in A^*$.

Если слово $P \in A^*$ можно представить в виде трех слов QRT, где Qили T может быть пустым, тогда говорят, что слово R входит в слово P, или слово P содержит подслово R. Если к тому же слово P нельзя представить в виде Q'RT' с условием Дл (Q') < Дл (Q), тогда говорят, что в представлении QRT = P слово R является первым вхождением в слово P.

Операция $R \rightarrow S$ преобразует слово P = QRT в слово u = QST. Мы говорим, что в слове P слово S заменяет первое вхождение слова R. Совокупность таких операций с указанием порядка их выполнения называется алгоритмом преобразования слов.

Задание. Составить программу, моделирующую работу заданного алгоритма преобразования слов и решающую при этом конкретную задачу E.

Исходные данные

I. Задание алгоритма.

а) Нормальные алгоритмы. Задана пронумерованная совокупность операций i) $R_i \to S_i$, i= 1, 2, ..., L, причем в некоторых из них после стрелки может стоять точка $R_i \to .S_i$ (такая операция называется заключительной).

Каждый шаг алгоритма состоит в следующем. Пусть на предыдущем шаге получено слово P (на первом шаге слово исходное). Отыскивается первая по порядку операция, левое слово которой входит в Р. Если такой операции нет, то алгоритм заканчивает работу и P является его результатом. Если есть, то правое слово из операции (S) подставляется в слово P вместо первого вхождения в него левого слова операции (R) – образуется новое слово P '. При этом, если операция заключительная, то алгоритм заканчивается и P' считается результатом; в противном случае к P'применяется следующий шаг алгоритма.

Примеры нормальных алгоритмов.

а1) алгоритм умножения

$$A = \{*, 1, \vee, ?\}$$

$$1)*11\rightarrow\vee^*1$$

$$2)*1 \rightarrow \vee$$

3)
$$1 \lor \rightarrow \lor 1$$
?

$$A = \{a, b, 0, 1, +, *\}$$

1)
$$+* \rightarrow \cdot$$

$$2) +a \rightarrow 0$$

$$3) + b \rightarrow 1$$

- 4) $?\lor \rightarrow \lor ?$
- 5) $?1 \to 1?$
- $6) \lor 1 \rightarrow \lor$
- $7) \lor ? \rightarrow ?$

- 4) $0a \rightarrow a0$
- 5) $0b \rightarrow b0$
- 6) $0* \to *a$
- 7) $1a \rightarrow a1$
- 8) $1b \rightarrow b1$
- 9) $1* \to *b$
- $10) \rightarrow +$
- а3) алгоритм удвоения слова
 - $A = \{\alpha, \beta, x, y, z, 1\}$
 - 1) $x \alpha \rightarrow \alpha x$
 - 2) $x\beta \rightarrow \beta x$
 - 3) $x1 \rightarrow 1\alpha$
 - 4) $y\alpha \rightarrow \alpha y$
 - 5) $y\beta \rightarrow \beta y$
 - 6) $y1 \rightarrow 1\beta$
 - 7) $z\alpha \rightarrow \alpha zx$
 - 8) $z\beta \rightarrow \beta zy$
 - 9) $z1 \rightarrow \cdot$

- 1) $\alpha 0 \rightarrow \alpha$
- 2) $\alpha 1 \rightarrow 11\beta$

a4) $A = \{0, 1, \alpha, \beta, \gamma, \delta, \epsilon\}$

- 3) $\beta 0 \rightarrow \gamma$
- 4) $\beta 1 \rightarrow 101\beta$
- 5) $\gamma 0 \rightarrow \delta 00$
- 6) $\gamma 1 \rightarrow \epsilon$
- 7) $\varepsilon \rightarrow \beta$
- 8) 1 \rightarrow 0 $\beta\alpha$

- a5) $A = \{1, 2, 3, a, b, c\}$
 - 1) 1 $a \rightarrow aa1$
 - 2) $1b \rightarrow b2$
 - 3) $2b \rightarrow b3$
 - 4) $2a \rightarrow ac2$
 - 5) $3a \rightarrow aac3$
 - 6) $3b \rightarrow \cdot 1$
 - $7) \rightarrow 1$

- a6) $A = \{a, \mu, \pi, \pi, *\}$
- 1) *лапа \rightarrow пал*
- 2) *ла \rightarrow *
- 3) $*п \to пила*$
- 4) * а \rightarrow пли*
- 5) $*\pi \rightarrow липа*$
- 6) $*\mu \rightarrow \cdot$
- $7) * \rightarrow \mu$
- $8) \rightarrow *$
- б) Обобщенные нормальные алгоритмы. Задана пронумерованная совокупность операций с числами i) $R_i \to S_i \alpha_i$, причем $i=1,\,2,\,...,\,L$ и $1 \le \alpha \le L+1$. На 1-ом шаге алгоритма к исходному слову применяется операция с номером 1. В общем случае пусть к слову Q применяется операция j на некотором шаге алгоритма. Это применение алгоритма

состоит в следующем: если R_i входит в Q, тогда первое вхождение слова R_i заменяется на S_i , получается новое слово Q', к которому на следующем шаге применяется операция с номером α_i ; если же R_i не входит в Q, тогда к Q (на следующем шаге) применяется операция с номером j + 1. Процесс обрывается, когда требуется выполнить операцию с номером L+1.

Примеры обобщенных нормальных алгоритмов.

$$\sigma$$
1) $A = \{a, b, 1, 2, 3\}$

- 1) \rightarrow 1, 2
- 2) $1a \rightarrow aa 1, 2$
- 3) $1b \rightarrow b$ 2, 4
- 4) $2b \rightarrow bb 2$, 4
- 5) $2a \to 3, 6$
- 6) $3ba \to 1, 3$
- 7) $3ba \rightarrow b1, 2$

$$\sigma$$
3) $A = \{1, +, x, \vee, \wedge, *\}$ σ 4) $A = \{0, 1, 2, 3, 4\}$

- 1) $111 \to 1 x, 5$
- $2) + \rightarrow x \lor \land^*, 4$
- 3) $+1 \to +$, 3
- $4) \lor^* \rightarrow .7$
- $5) \lor \land x \rightarrow \lor, 2$
- $6) x \rightarrow \vee +, 1$

$$\sigma 5$$
) $A = {\alpha, \beta, \gamma, +}$

- 1) $\alpha \rightarrow +, 1$
- 2) $\beta \rightarrow \alpha \beta$, 4
- 3) $\gamma \rightarrow \alpha \gamma$, 4
- 4) $\alpha + \rightarrow \gamma$, 3
- 5) β + $\rightarrow \gamma \gamma$, 8
- 6) $\gamma + \rightarrow \gamma \gamma + 1$
- 7) $\alpha \beta \gamma \rightarrow ++, 2$

$$σ2)$$
 $A = {0, 1, α, β, γ}$

- 1) $00 \rightarrow \alpha$, 3
- 2) $11 \rightarrow \beta$, 4
- 3) $\alpha 0 \rightarrow 0 \gamma \alpha$, 2
- 4) $\beta 1 \rightarrow 1 \gamma \alpha$, 1
- 5) $\gamma \rightarrow \alpha \alpha, 3$
- 6) $\alpha 1 \rightarrow \alpha \beta$, 3
- 7) 0 $\rightarrow \gamma$, 5

$$\sigma 4$$
) $A = \{0, 1, 2, 3, 4\}$

- 1) $0 \to 44, 2$
- 2) $13 \rightarrow 31, 1$
- 3) $111 \rightarrow 3.5$
- 4) $41 \rightarrow 000, 1$
- $5) 2 \rightarrow 4, 3$
- 6) 22 \rightarrow 2, 1

$$\sigma$$
6) $A = \{a, б, p, н\}$

- 1) $Ha \rightarrow HaHa$, 3
- 2) pa $\delta \rightarrow apa$, 4
- 3) б $a \rightarrow$ бaрaн, 1
- 4) $\delta pa \rightarrow pp, 5$
- 5) рана \rightarrow барабан, 2
- 6) $\delta ap \rightarrow a$, 1
- 7) p $\rightarrow ap6a, 4$
- 8) $a \rightarrow 6a + a + 6$

II. Задача Е, решаемая программой.

Программа вводит произвольное слово в алфавите A в качестве исходного для работы алгоритма и число N. В результате выполнения алгоритма получается результирующее слово (либо в момент останова алгоритма, либо после N шагов), которое программа выводит. Вместе со словом выводится величина M (через P_i обозначено слово, получающееся после i-го шага алгоритма):

- a) $M = \max Дл(P_i)$;
- б) $M = \max (x_1(P_i) + x_2(P_i) + x_3(P_i))$, где $x_j(P)$ количество вхождений буквы $a_i \in A$ в слово P;
 - в) M количество выполненных операций с номерами 1, 3, 4;
- г) M количество слов среди P, P_1 , P_2 , ..., P_n , в которые не входят буквы a_1 и a_4 ;
 - д) Дл $(P_{\scriptscriptstyle M})$ = max Дл (P_i) .
 - 1.8 Построение циклической структуры подстановки.

Подстановкой f называется отображение конечного множества $A = \{a_1, a_2, ..., a_n\}$ на себя, изображаемое либо с помощью выражения, либо двумя строчками

$$f = \begin{pmatrix} a_1 a_2 \dots a_n \\ a_{i_1} a_{i_2} \dots a_{i_n} \end{pmatrix}$$
, r.e. $f(a_m) = a_{i_m}$,

в которой все индексы $i_1,i_2,...,i_n$ различны, либо совокупностью циклов $f=(a_{j_1},...a_{j_r})...(a_{k_1},...,a_{k_{r_s}})$. В один цикл включаются элементы в следующем порядке $a_{j_1},a_{j_2}=f(a_{j_1}),a_{j_3}=f(a_{j_2}),...a_{j_r}=f(a_{j_{r-1}})$, причем

$$f(a_{j_r}) = a_{j_1}$$
. Например, если $f = \begin{pmatrix} a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6 \\ a_3 \ a_6 \ a_4 \ a_1 \ a_5 \ a_2 \end{pmatrix}$, то $f = (a_1, a_3, a_4) \ (a_2, a_6)$

 (a_5) . Числа r_1, r_2, \ldots, r_s называются циклической структурой подстановки f.

Если заданы две подстановки f и g , то их произведением является новая подстановка $h = f \cdot g$, которая определяется как h(a) = g(f(a)) для всякого $a \in A$.

Задание. По двум заданным подстановкам f_0 и f_1 на множестве A и последовательности $\mu_1, \mu_2, \dots, \mu_q$ из нулей и единиц построить подстановку

 $h = f_{\mu_1} \cdot f_{\mu_2} \cdot ... \cdot f_{\mu_q}$, вычислить ее циклическую структуру и напечатать. Последовательность $\mu_1, \mu_2, \dots, \mu_q$ вводится в программу.

Исходные данные

I. Множество $A = \{1, 2, 3, 4, \dots, 18, 19, 20\}.$

Подстановки f_0 и f_1 задаются с помощью выражений.

a)
$$f_0(k) = \begin{cases} k+1, & \text{если } k < 20, \\ 1, & \text{если } k = 20; \end{cases}$$

$$f_1(k) = \begin{cases} 2k , & \text{если } 1 \le k \le 10, \\ 2k - 21, & \text{если } 11 \le k \le 20; \end{cases}$$

a)
$$f_0(k) = \begin{cases} k+1, & \text{если } k < 20, \\ 1, & \text{если } k = 20; \end{cases}$$
 $f_1(k) = \begin{cases} 2k, & \text{если } 1 \le k \le 10, \\ 2k-21, & \text{если } 11 \le k \le 20; \end{cases}$ 6) $f_0(k) = \begin{cases} k+5, & \text{если } 1 \le k \le 15, \\ k-15, & \text{если } 16 \le k \le 20; \end{cases}$ $f_1(k) = \begin{cases} k+1, & \text{если } k \text{ нечетно}, \\ k-1, & \text{если } k \text{ четно}; \end{cases}$

$$f_1(k) = \begin{cases} k+1, & \text{если } k \text{ нечетно,} \\ k-1, & \text{если } k \text{ четно;} \end{cases}$$

$$\mathbf{B}) \ f_0(k) = \begin{cases} k+1, \ \text{если} \ 1 \leq k \leq 10, \\ 1, \ \text{если} \ k = 11, \\ k, \ \text{если} \ 12 \leq k \leq 20; \end{cases} \qquad f_1(k) = \begin{cases} k-1, \ \text{если} \ 10 \leq k \leq 20, \\ 20, \ \text{если} \ k = 9, \\ k, \ \text{если} \ 1 \leq k \leq 8; \end{cases}$$

$$f_1(k) = \begin{cases} k - 1, & \text{если } 10 \le k \le 20, \\ 20, & \text{если } k = 9, \\ k, & \text{если } 1 \le k \le 8; \end{cases}$$

$$f_1(k) = \begin{cases} 20 - k , \text{ если } 1 \le k \le 19, \\ 20, \text{ если } k = 20; \end{cases}$$

д)
$$f_0(k) = \begin{cases} 20 - k, & \text{если } 1 \le k \le 19, \\ 20, & \text{если } k = 20; \end{cases}$$

$$f_1(k) = \begin{cases} k-1, & \text{если } 2 \le k \le 20, \\ 1, & \text{если } k = 20; \end{cases}$$

$$e) \ f_0(k) = \begin{cases} 4k \ , & \text{если } 1 \leq k \leq 5, \\ 4k - 22 \ , & \text{если } 6 \leq k \leq 10, \\ 4k - 43 \ , & \text{если } 11 \leq k \leq 15, \\ 4k - 61 \ , & \text{если } 16 \leq k \leq 20; \end{cases} \qquad f_1(k) = \begin{cases} k + 2 \ , & \text{если } 1 \leq k \leq 18, \\ 1 \ , & \text{если } k = 19, \\ 2 \ , & \text{если } k = 20; \end{cases}$$

$$f_1(k) = \begin{cases} k+2, & \text{если } 1 \le k \le 18, \\ 1, & \text{если } k = 19, \\ 2, & \text{если } k = 20; \end{cases}$$

$$f_1(k) = \begin{cases} k - 3, \text{ если } 4 \le k \le 20, \\ 18, & \text{ если } k = 3, \\ 19, & \text{ если } k = 2, \\ 20, & \text{ если } k = 1; \end{cases}$$

3)
$$f_0(k) = \begin{cases} 3k, & \text{если } 1 \leq k \leq 6, \\ 3k - 20, & \text{если } 7 \leq k \leq 12, \\ 3k - 40, & \text{если } 13 \leq k \leq 20; \end{cases}$$
 $f_1(k) = \begin{cases} k+1, & \text{если } k \text{ нечетно}, \\ k-1, & \text{если } k \text{ четно}. \end{cases}$

$$f_1(k) = \begin{cases} k+1, & \text{если } k \text{ нечетно,} \\ k-1, & \text{если } k \text{ четно.} \end{cases}$$

II. Множество $A = \{\alpha, \beta, \gamma, \delta, a, b, c, d, 0, 1, 2, 3, +, -, /, \times\}$

Подстановки f_0 и f_1 задаются строками: верхняя строка постоянна, поэтому приводится только нижняя

a)
$$\alpha \beta \gamma \delta a b c d 0 1 2 3 + - / \times f_0 = \beta a 3 - 0 \delta 1 \alpha 2 / + b \gamma \times d c$$
 $f_1 = a c \gamma \beta 0 + - \delta b \alpha 1 \times d / 2 3$
6) $f_0 = 0 a \times d \delta 1 \beta 2 + \alpha 3 / c - \gamma b$
 $f_1 = -a 3 + 0 b \alpha c \delta / 2 \times \gamma \alpha 1 \beta$
B) $f_0 = c / a b 2 1 d 3 \delta \alpha 0 + \beta \gamma - \times f_1 = \gamma c 0 \delta b \times - \alpha d 1 \beta + 2 3 a / \gamma$
 $f_1 = \alpha 3 c 2 \beta a + - 0 b \delta d \times 1 \gamma / \beta$
B) $f_0 = d + 3 c 1 \gamma a 2 / \times \beta 0 \delta \alpha - b$
 $f_1 = \alpha 3 c 2 \beta a + - 0 b \delta d \times 1 \gamma / \beta$
B) $f_0 = + c \delta / - \times \alpha \beta d a 3 0 1 \gamma b 2$
 $f_1 = 3 b + a / 2 \times \gamma 1 c - \alpha \delta 0 d \beta$
e) $f_0 = / 0 \times \beta \gamma a 1 \alpha 3 d + c b - 2 b$
 $f_1 = \beta \gamma \delta \alpha 1 2 3 0 d c a b - / \times + \beta$
 $f_1 = 0 1 2 3 \delta \gamma \beta \alpha - + / \times a b c d$
3) $f_0 = \gamma / \delta a 0 - + \alpha 2 3 \beta \alpha b \times c 1$
 $f_1 = a 1 b 0 c 3 d 2 \delta + \gamma / \alpha \times \beta - \beta$

III. Множество $A = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}\}.$ Подстановки f_0 и f_1 задаются совокупностью циклов

- a) $f_0 = (a_1, a_5, a_7, a_{15}, a_{11})(a_2, a_{13}, a_6, a_3, a_{10})(a_3, a_8, a_9, a_5, a_{14})$, $f_1 = (a_1, a_2, a_3)(a_4, a_8)(a_5, a_{15})(a_6)(a_7, a_{10})(a_9, a_{11})(a_{12}, a_{13}, a_{14})$;
- $f_0 = (a_1, a_6, a_2, a_{14})(a_3, a_{11}, a_8)(a_5)(a_4, a_7, a_{13}, a_{15}, a_{12})(a_9, a_{10}),$ $f_1 = (a_1, a_2, a_{11}, a_7, a_9, a_5, a_3, a_{15})(a_4, a_6, a_8, a_{10}, a_{12}, a_{13}, a_{14});$
- B) $f_0 = (a_1, a_{13}, a_4)(a_2, a_8, a_7, a_{14}, a_{15})(a_3, a_6, a_5, a_9)(a_{10})(a_{11})(a_{12}),$ $f_1 = (a_1, a_8, a_6, a_{10}, a_2, a_{12})(a_4, a_{11})(a_3)(a_5, a_{15}, a_{13})(a_7)(a_9, a_{14});$
- $f_0 = (a_1, a_8)(a_2, a_{14})(a_3, a_7, a_9)(a_4, a_{13}, a_{15}, a_5)(a_6)(a_{10}, a_{11})(a_{12}),$ $f_1 = (a_1, a_3, a_6)(a_8, a_{14}, a_{12})(a_9, a_4, a_{10}, a_{15}, a_5, a_2, a_7)(a_{11})(a_{13});$
- д) $f_0 = (a_1, a_{10}, a_{15}, a_2, a_{11}, a_4, a_3, a_9, a_8, a_7, a_{13}, a_{12}, a_5, a_6, a_{14}),$ $f_1 = (a_1)(a_2, a_4, a_6)(a_3, a_5)(a_7, a_8, a_9, a_{10})(a_{11})(a_{12}, a_{13})(a_{14}, a_{15});$

e)
$$f_0 = (a_1, a_{11}, a_8, a_4, a_5, a_{15})(a_2, a_7, a_{13}, a_6, a_3, a_{14}, a_{10})(a_{12}, a_9),$$

 $f_1 = (a_1)(a_2)(a_3, a_4)(a_5, a_6, a_7)(a_8, a_9, a_{10}, a_{11})(a_{12}, a_{13}, a_{14}, a_{15});$
 $\mathfrak{R}) f_0 = (a_1, a_2, a_3, a_4, a_5, a_6)(a_7, a_8, a_9)(a_{10}, a_{11})(a_{12}, a_{13}, a_{14}, a_{15}),$
 $f_1 = (a_1)(a_2, a_3)(a_4, a_5, a_{10}, a_8)(a_6, a_{11}, a_{15})(a_7, a_9, a_{12}, a_{13});$
 $f_0 = (a_1, a_2, a_3)(a_4, a_5, a_6)(a_7)(a_8, a_9)(a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}),$
 $f_1 = (a_1, a_5, a_7, a_{10}, a_{13}, a_{15})(a_2, a_8, a_{14})(a_3)(a_4)(a_6, a_9)(a_{11}, a_{12}).$

IV. Множество A состоит из 16 двоичных наборов длины 4, т.е. из наборов 0000, 0001, ..., 1111. Подстановка на A задается системой булевых функций: если $a_i = x_1 \ x_2 \ x_3 \ x_4$, то $f(a_i) = y_1 \ y_2 \ y_3 \ y_4$. В выражениях сумма берется по модулю 2 (операция отрицания эквивалентности), а произведение – как конъюнкция.

a)
$$f_0$$
: $y_1 = x_1 + x_2 \cdot x_3 \cdot x_4$ $y_2 = x_2 + x_3 \cdot x_4$ $y_2 = x_2 + x_3 \cdot x_4$ $y_2 = x_2 + x_3 \cdot x_4 + 1$ $y_3 = x_3 + x_4$ $y_4 = x_4 + 1$

b) f_0 : $y_1 = x_4 \oplus x_1 \cdot \overline{x_2} \cdot x_3 + x_2$ $y_2 = x_1$ $y_3 = x_2$ $y_4 = x_3$

b) f_0 : $y_1 = \overline{x_1}$ $y_1 = x_1 + \overline{x_2} \cdot \overline{x_3} \cdot \overline{x_4}$ $y_2 = x_2 + \overline{x_3} \cdot \overline{x_4}$ $y_3 = x_3 + \overline{x_4}$ $y_4 = \overline{x_4}$

c) f_1 : f_1 : f_2 : f_3 : f_4 : f_4 : f_4 : f_5 : f_5 : f_6 : f_7 :

1.9 Решение краевой задачи методом Монте-Карло.

Плоскость (x, y) делится сеткой с шагом h, и рассматриваются только точки сетки. Задается область с границей Γ . Точки границы обозначим через

 $(x_i, y_i), i = 1, 2, ..., n$. В этих точках задана функция f(x, y). Краевая задача формулируется так: определить значение функции u(x, y) во внутренней точке области (x^*, y^*) , которая удовлетворяет уравнению Лапласа $\Delta u = 0$ и принимает на границе Γ значения $u(x_i, y_i) = f(x_i, y_i)$.

Задача решается методом Монте-Карло. Из точки (x^*, y^*) организуется N блужданий по внутренним точкам области, (точкам сетки) до выхода на граничную точку. Пусть ϕ_i – количество блужданий с приходом в точку (x_i, y_i) границы Γ . Тогда искомое значение

$$u(x^*, y^*) = \frac{1}{N} \sum_{i=1}^{n} \varphi_i \cdot f(x_i, y_i).$$

3aдание. Составить программу для заданных h, Γ , f(x, y) и «способа блуждания», которая вводит координаты точки (x^*, y^*) и число N, вычисляет $u(x^*, y^*)$ и печатает это значение.

Исходные данные

I. Величина h, граница Γ .

a)
$$h = 0.1$$
,

$$\Gamma$$
 – эллипс $(x-1)^2 + 2y^2 = 1$;

б)
$$h = 0.1$$
,

 Γ – граница области $y^2 \ge x$, $0 \le y \le 1$;

B)
$$h = 0.2$$
,

Г – граница области, ограниченной

прямыми
$$y = 0$$
, $y = x$, $x + y = 4$;

$$\Gamma$$
) $h = 0,2,$

 Γ – граница области $y \ge x - 2$, $y \ge x + 2$

$$y \le \sqrt{2x - x^2} + 2$$
;

$$_{\rm I}$$
Д) $h = 1$,

 Γ – граница области $x \ge y^2$, $x \le 20 - y^2$, $y \ge 0$;

II. «Способ» блуждания. Из любой точки (x, y) области на шаге блуждания можно перейти:

- а) в одну из четырех соседних точек (x + h, y), (x h, y), (x, y + h), (x, y h);
- б) в одну из четырех соседних точек (x + h, y + h), (x h, y + h), (x + h, y h), (x h, y h);
- в) в одну из восьми соседних точек (x + h, y), (x + h, y h), (x + h, y + h), (x h, y), (x h, y h), (x h, y + h), (x, y h), (x, y + h);
- III. Способы выбора соседней точки при блуждании.
- а) Задается булевский массив $T_1, ..., T_{11}$. В начальный момент в него помещается любой набор булевских значений, кроме

$$T_1 = \ldots = T_{11} = false.$$

На каждом шаге блуждания производится преобразование элементов массива по закону

$$l_1$$
: = \lnot ($\Tau_9 \equiv \Tau_{11}$); l_2 : = \lnot ($\Tau_8 \equiv \Tau_{10}$; l_3 : = \lnot ($\Tau_7 \equiv \Tau_9$); $\Tau_{11} := \Tau_9$; $\Tau_{10} := \Tau_7$; . . .; $\Tau_4 := \Tau_1$; $\Tau_3 := l_1$; $\Tau_2 := l_2$; $\Tau_1 := l_3$.

Направление движения определяется после этого значениями элементов T_{10} , T_{11} (в случае II a, б) или T_{9} , T_{10} , T_{11} (случай II в). Новое блуждание из точки (x^*, y^*) начинается с тех значений массива T, которые оказались после окончания предыдущего блуждания.

б) Определим последовательность чисел z_0 , z_1 , z_2 , ... (когда число z_0 задано), которая образуется по закону

$$z_{i+1} = \{(z_i + 0.714983)^2 \cdot 1024\},\$$

- где $\{a\}$ обозначает дробную часть числа a. Каждое число последовательности лежит в пределах от 0 до 1. Отрезок (0, 1) делится на четыре (или восемь) равных частей и направление i-го шага блуждания определяется той частью, в которую попадает число z_i .
- в) Определим массив T_1 , ..., T_{12} , элементами которого служат целые числа 0 или 1 (в начальный момент в него помещается любой набор чисел). На каждом шаге блуждания производится преобразование массива: образуется целое число

$$t = \sum_{i=1}^{12} T_i \cdot 2^{i-1}$$
;

оно преобразуется в новое $u = 7t + 11 \pmod{4087}$, двоичное представление которого помещается в Т. Направление движения определяется содержимым элементов T_3 , T_7 (для II a, б) или T_2 , T_7 , T_{10} (для случая II в).

- 1.10 Программирование игр.
- 1^{0}) Составить программу, анализирующую шахматную позицию. Программа вводит произвольную позицию, которая содержит фигуры из заданного списка, и после анализа выдает на печать результат.

Исходные данные

I. Позиция содержит

- а) короля, ферзя, две ладьи и коня белых, короля и пешки черных;
- б) короля, ферзя, двух коней и слона белых, короля и пешки черных;
- в) короля, ферзя, ладью, коня и пешку белых; короля и пешки черных;
- г) короля, две ладьи, слона, две пешки белых; короля, пешки и ладью черных;
- д) короля, ладью, двух слонов, три пешки белых; короля, пешку, двух коней черных.
 - II. Анализ позиции состоит в том, чтобы выяснить
 - а) находится ли король черных под шахом;
 - б) объявлен ли в этой позиции мат черному королю;
 - в) могут ли белые одним ходом бить черную пешку.

2⁰) Составить программу, имитирующую игру в крестики и нолики игроков: умного и играющего наугад. Программа сообщает ход поединка и результат игры. Умный игрок не должен проигрывать партнеру.

Исходные данные

- I. Программа составляется для игры, в которой первый ход всегда делает
 - а) умный игрок,
 - б) играющий наугад.
- II. Играющий наугад выбирает поле случайно для установки в него своего значка (× или 0). Способ выбора поля аналогичен выбору соседней точки при блуждании в предыдущей задаче.
- 3⁰) Составить программу, имитирующую игру в «морской бой». Игра ведется в одну сторону: результатом игры является количество ударов, произведенных по уничтожению всех кораблей. Программа выводит всю последовательность ударов и общее количество. Игра должна вестись в «обычной манере»: при попадании в корабль стремиться его уничтожить; не бить в поля, прилегающие к сбитым кораблям; вести учет сбитым и т.д. Корабли только линейные и не касаются друг друга.

Исходные данные

- І. а) Поле игры 8×8. На поле 1 «трехпалубный», два «двухпалубных» и три «однопалубных» корабля.
- б) Поле игры 10×10. На поле 1 «четырехпалубный», 2 «трехпалубных», 3 «двухпалубных» и 4 «однопалубных» корабля.
- в) Поле игры 12×12. На поле 1 «пятипалубный», 2 «трехпалубных» и 5 «однопалубных» корабля.
- II. Способ выбора клетки поля для удара случайный (аналогично способу блуждания в предыдущей задаче).
- 4⁰) Составить программу поиска выхода из лабиринта. Лабиринт предполагается прямоугольным, т.е. совокупностью комнат с 4 стенами, некоторые из которых глухие, а некоторые с дверьми. Начальная ситуация «игрок» помещается в какую-нибудь комнату, затем он начинает ходить по лабиринту и искать выход «на волю».

Алгоритм поиска состоит в следующем. Игрок помечает те комнаты и двери, которые он проходит. Если он пришел в некоторую новую комнату, то он ее помечает и выбирает одну из дверей в другие комнаты: если таких дверей не находит, то возвращается обратно, «заколачивая» при этом пройденную дверь; если дверь есть, игрок помечает ее и идет через нее в соседнюю комнату (или «на волю»). Если игрок пришел в помеченную комнату, то он возвращается через только что пройденную дверь, «заколачивая» ее. После любого «заколачивания» игрок пытается найти «незаколоченную» и непомеченную дверь: если находит, то двигается через нее, помечая; если не находит, то через помеченную дверь возвращается, «заколачивая» пройденную второй раз дверь.