

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

Deep Learning

Día 2

EXPOSITOR: Ing. Giorgio Morales Luna

Junio 2018

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.1.6. Creación de modelos en Keras

Se realiza a través de la clase "Model" o "Sequential" de Keras

Métodos:

- Compile
- Fit
- Evaluate
- Predict
- Train_on_batch / Test_on_batch / Predict_on_batch
- Fit_generator / Evaluate_generator / Predict_ generator
- Get_layer

```
from keras.models import Model
from keras.layers import Input, Dense

Model

a = Input(shape=(32,))
b = Dense(32)(a)
model = Model(inputs=a, outputs=b)

from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential([
    Dense(32, input_shape=(784,)),
    Activation('relu'),
    Dense(10),
    Activation('softmax'),
])
```


Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.1.6. Creación de modelos en Keras

Compile

Antes de entrenar un modelo, se necesita configurar el proceso de aprendizaje. Recibe tres principales argumentos:

- Optimizador: Un string con el método de optimización a usar. Ejm: SGD, Adam, etc. (https://keras.io/optimizers/)
- Función de costo: Es el objetivo que se tratará de minimizar durante el entrenamiento. Ejm: Binary crossentropy, categorical crossentropy, etc. https://keras.io/losses/
- Métricas: Se debe especificar la lista de métricas que se calcularán para evaluar la performancedel entrenamiento. Ejm: Accuracy, MSE, IoU, Precision, loss, etc.

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.1.6. Creación de modelos en Keras

Fit

Inicia el entrenamiento de un modelo (https://keras.io/models/sequential/#fit). Recibe los siguientes parámetros:

- X : Numpy array que contiene la data de entrenamiento
- Y : Numpy array del target (label).
- Batch_size: Número de muestras usadas para actualizar el gradiente. Default: 32
- Epochs: Número de épocas usadas para entrenar el modelo.
- Valdiation Split: Float entre 0 y 1 que determinan la fracción de X a ser usada como datos de validación.
- Shuffle: Si es True, reordenará aleatoriamente los datos de entrenamiento al comenzar una época.

Train the model, iterating on the data in batches of 32 samples model.fit(data, labels, epochs=10, batch size=32)

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.1.6. Creación de modelos en Keras

Evaluate

Calcula el valor del costo y las métricas elegidas del modelo en modo de test.

Predict

Devuelve las predicciones para las muestras de entrada dadas.

```
predict(x, batch\_size=None, verbose=0, steps=None, callbacks=None)
```


Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.1.6. Creación de modelos en Keras

Día_2/CreateModel.py

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.1.7. CNN Example (DeepSat)

Sat-6: Dataset de imágenes aéreas RGB-NIR del Estado de California.

https://csc.lsu.edu/~saikat/deepsat/

https://drive.google.com/uc?id=0B0Fef71_vt3PUkZ4YVZ5WWNvZWs&export=download

Características:

- Tamaño de patch: 28 x 28 x 4.
- Muestras de entrenamiento: 324,000.
- Muestras de test: 81,000.
- Clases: Barren land, trees, grassland, roads, buildings and water bodies.

Sample images from the SAT-4 and SAT-6 datasets

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.1.7. CNN Example (DeepSat)

Día_2/EntrenamientoDeepSat1.py

- CONV 3 x 3: Convolución con filtros de 3 x 3.
- BN: Batch Normalization.
- MAXPOOL 2 x2: Maxpooling con filstros de 2 x 2.
- **s**: Stride. Ejm: s = 1 -> s = (1,1)
- **S**: padding 'same'. V: padding 'valid'.
- Todas las activaciones son 'relu', expecto la de la salida: 'softmax'

Para transformar la salida 2D a 1D se usa la función Flatten antes de la Fully Connected:

```
# output layer
x = Flatten()(x)
x = Dense(128, activation=
```


Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.1.7. CNN Example (DeepSat)

Resultado

Label: trees Result: trees

Label: trees Result: trees

bel: grassland Result: grassland

Label: trees Result: trees

Label: road Result: road

Label: water Result: water

Label: grassland Result: grassland

Label: road Result: road

Label: grassland Result: grassland

Label: trees Result: trees

Label: water Result: water

Label: trees Result: trees

Label: water Result: water

Label: barren Result: barren

Label: trees Result: trees

Label: water Result: water

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.1.7. CNN Example (DeepSat)

Resultado

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2. Classic Networks

¿Por qué estudiarlas?

- Para entender intuitivamente la estructura y combinación de bloques de las redes neuronales convolucionales más efectivas.
- Las CNN suelen ser multipropósito.
 Una red que detecta gatos y perros puede ser adaptada para detectar carros y bicicletas.

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.713	0.901	138,357,544	23
VGG19	549 MB	0.713	0.900	143,667,240	26
ResNet50	98 MB	0.749	0.921	25,636,712	-
ResNet101	171 MB	0.764	0.928	44,707,176	-
ResNet152	232 MB	0.766	0.931	60,419,944	-
ResNet50V2	98 MB	0.760	0.930	25,613,800	-
ResNet101V2	171 MB	0.772	0.938	44,675,560	-
ResNet152V2	232 MB	0.780	0.942	60,380,648	-
ResNeXt50	96 MB	0.777	0.938	25,097,128	-
ResNeXt101	170 MB	0.787	0.943	44,315,560	-
InceptionV3	92 MB	0.779	0.937	23,851,784	159
InceptionResNetV2	215 MB	0.803	0.953	55,873,736	572
MobileNet	16 MB	0.704	0.895	4,253,864	88
MobileNetV2	14 MB	0.713	0.901	3,538,984	88
DenseNet121	33 MB	0.750	0.923	8,062,504	121
DenseNet169	57 MB	0.762	0.932	14,307,880	169
DenseNet201	80 MB	0.773	0.936	20,242,984	201
NASNetMobile	23 MB	0.744	0.919	5,326,716	-
NASNetLarge	343 MB	0.825	0.960	88,949,818	-

The top-1 and top-5 accuracy refers to the model's performance on the ImageNet validation dataset.

https://keras.io/applications/

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2. Classic Networks

Imagenet Large Scale Visual Recognition Challenge (ILSVRC)

- Imagenet es el dataset más extenso, conformado por más de 14 millones de imágenes manualmente anotadas y más de 20,000 categorías.
- Ha sido diseñado para ser usado en la investigación de reconocimiento visual de objetos.
- Debido a la gran variedad de escenarios, se suelen usar modelos pre-entrenados en Imagenet para obtener resultados más robustos.

Geological formation, formation

(geology) the geological features of the earth

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.1. AlexNet

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.1. AlexNet

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.1. AlexNet

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.1. AlexNet

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.1. AlexNet

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.1. AlexNet

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.1. AlexNet

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.1. AlexNet

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.1. AlexNet

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.1. AlexNet

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.1. AlexNet

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.1. AlexNet

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.1. AlexNet

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.1. AlexNet

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

~60 Millones de parámetros

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

MAX-POOL = 2x2, s=2

https://arxiv.org/pdf/1409.1556.pdf

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

MAX-POOL = 2x2, s=2

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

MAX-POOL = 2x2, s=2

https://arxiv.org/pdf/1409.1556.pdf

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

https://arxiv.org/pdf/1409.1556.pdf

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

https://arxiv.org/pdf/1409.1556.pdf

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.2. VGG - 16

Sólo usa CONV con filtros de 3x3, s=1, same

$$MAX-POOL = 2x2, s=2$$

https://arxiv.org/pdf/1409.1556.pdf

~138 Millones de parámetros

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.3. ResNets

Problema: Vanishing/Exploding Gradients

$$y = W_1 W_2 W_3 W_4 W_5 \dots W_L x$$

Si W > 1: Exploding

Si W < 1: Vanishing

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.3. ResNets

Problema: Vanishing/Exploding Gradients

$$y = W_1 W_2 W_3 W_4 W_5 \dots W_L x$$

Si
$$W > 1$$
: Exploding $y = 1.5^L x$

Si
$$W < 1$$
: Vanishing $y = 0.5^L x$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.3. ResNets

Residual Block

$$a^{[l]} \longrightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{a^{[l+1]}} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow a^{[l+2]}$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.3. ResNets

Residual Block

$$a^{[l]} \longrightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{a^{[l+1]}} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow a^{[l+2]}$$

$$a^{[l]} \longrightarrow \text{Linear} \longrightarrow \text{ReLU} \longrightarrow a^{[l+1]} \longrightarrow \text{Linear} \longrightarrow \text{ReLU} \longrightarrow a^{[l+2]}$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.3. ResNets

Residual Block

$$a^{[l]} \longrightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{a^{[l+1]}} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow a^{[l+2]}$$

$$a^{[l]} \longrightarrow \text{Linear} \longrightarrow \text{ReLU} \longrightarrow a^{[l+1]} \longrightarrow \text{Linear} \longrightarrow \text{ReLU} \longrightarrow a^{[l+2]}$$

$$z^{[l+1]} = W^{[l+1]}a^{[l]} + b^{[l+1]} \quad a^{[l+1]} = g(z^{[l+1]}) \qquad \qquad z^{[l+2]} = W^{[l+2]}a^{[l+1]} + b^{[l+2]} \quad a^{[l+2]} = g(z^{[l+2]})$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.3. ResNets

$$z^{[l+1]} = W^{[l+1]}a^{[l]} + b^{[l+1]} \quad a^{[l+1]} = g(z^{[l+1]}) \qquad \qquad z^{[l+2]} = W^{[l+2]}a^{[l+1]} + b^{[l+2]} \quad a^{[l+2]} = g(z^{[l+2]})$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.3. ResNets

$$z^{[l+1]} = W^{[l+1]}a^{[l]} + b^{[l+1]} \quad a^{[l+1]} = g(z^{[l+1]}) \qquad \qquad z^{[l+2]} = W^{[l+2]}a^{[l+1]} + b^{[l+2]} \quad a^{[l+2]} = g(z^{[l+1]})$$

$$a^{[l+2]} = g(z^{[l+2]} + a^{[l]})$$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.3. ResNets

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.3. ResNets

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.3. ResNets

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.3. ResNets

Residual Network $x \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow a^{[l]}$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.3. ResNets

Residual Network

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.3. ResNets

Plain Network

Plain

34-layer residual Image pool, 12 and comv, 64, 72 and comv, 128 and comv

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.4. Network in Network (1x1 convolution)

2	3	7	4	6	2
6	6	9	8	7	4
3	4	8	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

6 x 6 x 1

*

2

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.4. Network in Network (1x1 convolution)

2	3	7	4	6	2
6	6	9	8	7	4
3	4	8	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.4. Network in Network (1x1 convolution)

2	3	7	4	6	2
6	6	9	8	7	4
3	4	8	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.4. Network in Network (1x1 convolution)

2	3	7	4	6	2
6	6	9	8	7	4
3	4	8	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.4. Network in Network (1x1 convolution)

2	3	7	4	6	2
6	6	9	8	7	4
3	4	8	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

			4	6	14	
*	2	=				

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.4. Network in Network (1x1 convolution)

г						
	2	3	7	4	6	2
	6	6	9	8	7	4
	3	4	8	3	8	9
	7	8	3	6	6	3
	4	2	1	8	3	4
	3	2	4	1	9	8

6 x 6 x 1

6 x 6 x 32

6 x 6 x #filtros

14

*

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.4. Network in Network (1x1 convolution)

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Inception block

Going Deeper with Convolutions

https://arxiv.org/abs/1409.4842

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Inception block

Going Deeper with Convolutions

https://arxiv.org/abs/1409.4842

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Inception block

Going Deeper with Convolutions

https://arxiv.org/abs/1409.4842

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Inception block

Going Deeper with Convolutions

https://arxiv.org/abs/1409.4842

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Inception block

Going Deeper with Convolutions

https://arxiv.org/abs/1409.4842

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Inception block

Going Deeper with Convolutions

https://arxiv.org/abs/1409.4842

28 x 28 x 256

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Computational cost

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Computational cost

#Operaciones por filtro = 5 x 5 x 192

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Computational cost

#Operaciones por filtro = $5 \times 5 \times 192$

#Operaciones en total = $(28 \times 28 \times 32) \times (5 \times 5 \times 192) \sim 120 \text{ M}$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Computational cost

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Computational cost

#Operaciones por filtro = $1 \times 1 \times 192$

#Operaciones en total = (28 x 28 x 16) x (1 x 1 x 192) ~ 2.4 M

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Computational cost

#Operaciones por filtro = $1 \times 1 \times 192$

#Operaciones en total = $(28 \times 28 \times 16) \times (1 \times 1 \times 192) \sim 2.4 \text{ M}$

#Operaciones por filtro = $5 \times 5 \times 16$

#Operaciones en total = $(28 \times 28 \times 32) \times (5 \times 5 \times 16) \sim 10 \text{ M}$

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Computational cost

#Operaciones por filtro = $1 \times 1 \times 192$

#Operaciones por filtro = $5 \times 5 \times 16$

#Operaciones en total = $(28 \times 28 \times 16) \times (1 \times 1 \times 192) \sim 2.4 \text{ M}$

#Operaciones en total = $(28 \times 28 \times 32) \times (5 \times 5 \times 16) \sim 10 \text{ M}$

~ 12.4 M << 120 M

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.5. Inception Network

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

(End-to-end Learning)

Reconocimiento de voz

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

(End-to-end Learning)

Reconocimiento de voz

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

(End-to-end Learning)

Reconocimiento de voz

Segmentación de imágenes médicas

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.6. U-NET

U-Net: Convolutional Networks for Biomedical Image Segmentation

https://arxiv.org/abs/1505.04597

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.6. U-NET

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.6. U-NET

Deep Residual U-NET

Fig. 1. Building blocks of neural networks. (a) Plain neural unit used in U-Net and (b) residual unit with identity mapping used in the proposed ResUnet.

Road Extraction by Deep Residual U-Net

https://arxiv.org/abs/1711.10684

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.6. U-NET

Deep Residual U-NET

Original

Ground truth

U-NET

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.7. Transfer Learning

Motivación

- Disponibilidad de grandes bases de datos. Ejm: CIFAR-10, Pascal, Imagenet, MS COCO.
- Entrenar una red en estos modelos puede tomar meses de diseño entrenamiento, además de herramientas computacionales (GPUs).
- Es posible reutilizar el "conocimiento" aprendido por dichos modelos (open source).

Imagenet

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.7. Transfer Learning

Ejemplo: Mask-RCNN

class names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball','kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']

Mask R-CNN for Object Detection and Segmentation https://github.com/matterport/Mask_RCNN

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.7. Transfer Learning

Ejemplo: Mask-RCNN

class names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball','kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']

Mask R-CNN for Object Detection and Segmentation https://github.com/matterport/Mask RCNN

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.7. Transfer Learning

Ejemplo: Mask-RCNN

Mask R-CNN for Object Detection and Segmentation

https://github.com/matterport/Mask_RCNN

LaneSegmentationNetwork

https://github.com/POSTECH-IMLAB/LaneSegmentationNetwork

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.7. Transfer Learning

"Freeze"
Trainable = False

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

Guardar en disco

Instituto Nacional de Investigación y Capacitación de Telecomunicaciones

3.2.7. Transfer Learning

Guardar en disco