Structured Peer-to-peer Systems: Fundamentals of Hierarchical Organization, Routing, Scaling, and Security

Dmitry Korzun, Andrei Gurtov

Structured Peer-to-Peer Systems

Fundamentals of Hierarchical Organization, Routing, Scaling, and Security

June 30, 2012

Springer

To my parents Antonina and Zhorzh. DK

To my daughters Julia and Sofia, and wife Anastasia. AG

Contents

Part I Introduction

1	Teri	minology, Problems, and Design Issues
	1.1	Introduction
	1.2	Mathematical preliminaries
	1.3	Distributed hash tables
	1.4	Heterogeneity and hierarchy
		1.4.1 Consistent hashing and uniform partitioning
		1.4.2 Inaccuracy of the homogeneity assumption
		1.4.3 Arrangement models
	1.5	Local knowledge and network structure
		1.5.1 Local knowledge size vs. routing performance
		1.5.2 System operation quality
	Refe	erences
2	Elet	DHT Routing Topologies
_	2.1	
	2.1	
	2.2	
	2.2	6
		2.2.1 Chord
		2.2.2 Kademlia
		2.2.3 Accordion
	2.3	PRR trees
		2.3.1 Pastry
		2.3.2 Tapestry
		2.3.3 Bamboo
	2.4	Tree
		2.4.1 Trie
		2.4.2 Balanced tree
	2.5	De Bruijn and Kautz graphs
		2.5.1 De Bruijn graphs

vi Contents

		2.5.2	Kautz graph	38
	2.6	Butter	fly	38
	2.7		nop	40
	2.8		ary	40
	Refe		·····	41
Par	t II I	Local St	trategies	
3	Hier	archica	al Neighbor Maintenance	47
	3.1		uction	47
	3.2		world networks and progressive routing	48
		3.2.1	Long-range neighbors	49
		3.2.2	Case study: Symphony	50
		3.2.3	Path-based hierarchies	52
	3.3	Routin	ng in greedy DHTs and de Bruijn graphs	55
		3.3.1	Conventional greedy DHTs	55
		3.3.2	Chord-like DHTs	57
		3.3.3	De Bruijn graphs	59
	3.4		ation to global hierarchy	60
		3.4.1	Kleinberg tree-based model	60
		3.4.2	Proximity-based selection	61
		3.4.3	Other criteria for local adaptation	65
	3.5	Global	l routing and lookup structure	66
		3.5.1	NoN-routing	66
		3.5.2	Distributed trie	67
		3.5.3	Cyclic routing	67
	3.6	Routin	ng with large routing tables	68
		3.6.1	Designs with large routing tables	69
		3.6.2	Maintenance traffic overhead	69
		3.6.3	Routing table consistency	70
	3.7	Local	routing and replication	73
		3.7.1	Source-aware replication	73
		3.7.2	Even replication	75
		3.7.3	Destination-aware replication	77
		3.7.4	Maintenance overhead	81
	3.8	Summ	ary	82
	Refe	rences		82
4	Ada	ptable (Overlay Network Topology	87
	4.1		uction	87
	4.2		ID specialization	88
		4.2.1	Viceroy	89
		4.2.2	Ulysses	90
		4.2.3	Cycloid	91
		424	Pannilon	92

Contents vii

		4.2.5 Censorship Resistant Network (CRN)	
		4.2.6 Mariposa	
	4.3	Specialized node ID management	
		4.3.1 ID assignment	
		4.3.2 Grouping node IDs	
		4.3.3 ID reassignment	
	4.4	Distributing resources among nodes	
	4.5	Resource semantics	99
	4.6	Non-uniform resource distribution	
	4.7	Topology evolution	
	4.8	Summary	
	Refe	rences	106
5	Clus	stering	111
	5.1	Introduction	
	5.2	Clustering principle	113
	5.3	Cluster-oriented overlay topologies	
		5.3.1 Virtual nodes	
		5.3.2 Proximity-based clusters	
		5.3.3 False clustering	
	5.4	Cluster-oriented search queries	
		5.4.1 Semantic clustering	
		5.4.2 Interest-based clusters	
	5.5	Summary	128
	Refe	rences	
_	T	al Dankin a	122
6		al Ranking	
	6.1	Introduction	
	6.2	Local ranking problem	
		6.2.1 Rank-based operational decision-making	
		6.2.2 Node ranks in BT-exchange	
	()	6.2.3 Local ranks: nodes and resources	
	6.3	Linear ranking model	
		6.3.1 Linear resource ranks	
		6.3.2 Reduction to linear programming	
	<i>c</i> 1	6.3.3 Rank existence	
	6.4	Comparison with other resource exchange models	
		6.4.1 Allocation of common resource	
		6.4.2 BT systems	
		6.4.3 Plant-like systems	
	<i></i>	6.4.4 Network games and market pricing	
	6.5	Summary	
C		rences	
Sun	nmary	y of Part II	165

viii Contents

Part III Beyond The Local Knowledge

7	Hie	archical DHT Architectures	
	7.1	Introduction	171
	7.2	Conceptual models	
		7.2.1 Network hierarchy models	173
		7.2.2 Layering principle	179
		7.2.3 Network hierarchical architectures	181
	7.3	Hierarchical DHT taxonomy	189
		7.3.1 Disjointed hierarchical architectures	
		7.3.2 Nested hierarchical architectures	205
	7.4	Performance models	217
		7.4.1 Local state cost	
		7.4.2 Routing cost	
		7.4.3 Network traffic cost	219
	7.5	Summary	220
	Refe	rences	
8	Cyc	ic Routing	227
	8.1	Introduction	
	8.2	Problem domain	
	8.3	The Cyclic Routing algorithm	
		8.3.1 Cycle transitions	
		8.3.2 Dependable routing and path length upper bounds	
		8.3.3 Constructing cycles	
		8.3.4 Finding the most efficient cycle	233
		8.3.5 Maintaining cycles	234
	8.4	Simulation results	235
		8.4.1 Chord and CR-Chord implementations	235
		8.4.2 Simulation setup	236
		8.4.3 CR-Chord vs. Chord	236
	8.5	Discussion on advanced capabilities	239
		8.5.1 Global and local routing	240
		8.5.2 Cyclic vs. acyclic paths	240
		8.5.3 Multi-path routing	241
		8.5.4 Security	242
	8.6	Summary	242
	Refe	rences	243
9	Dio	hantine Routing	
	9.1	Introduction	
	9.2	Mathematical background	
		9.2.1 Commutative context-free grammars	
		9.2.2 Nonnegative linear Diophantine equations	
	9.3	Routing Grammar	250

Contents ix

		9.3.1 Routing and forwarding
		9.3.2 Forwarding options as grammar rules
	9.4	A Diophantine model of routes
		9.4.1 Routes and grammar derivations
		9.4.2 Routes and ANLDE system solutions
		9.4.3 Path structure
	9.5	Applications and discussion
		9.5.1 Workload and utilization
		9.5.2 Connectivity
		9.5.3 Performance
		9.5.4 Comparisons
		9.5.5 Computational complexity
	9.6	Summary
	Refe	rences
10		ctural Ranking
		Introduction
	10.2	P2P ranking
		10.2.1 P2P selection problems
		10.2.2 PageRank algorithm
		10.2.3 EigenTrust algorithm
	10.3	Cyclic ranking
		10.3.1 Local cyclic structure
		10.3.2 Relation of routing and ranking
		10.3.3 Neighbor selection and malicious nodes
		10.3.4 Resource exchange
		Summary
_		rences
Sun	ımary	y of Part III
Par	t IV	Applications
11	CD-	Chord
11		Introduction
		Background and motivation
	11.2	11.2.1 DHT routing
		11.2.2 Chord
		11.2.3 Attacks by dropping lookups
		11.2.4 Cyclic Routing (CR)
	11 2	Integration of Cyclic Routing (CR)
	11.4	Simulation methodology
		11.4.1 Attack model
		11.4.3 Churn model
		11.4.4 Success and failure types

x Contents

	11.5 Analysis of lookup availability	. 306
	11.5.1 Basic facts	
	11.5.2 Variations	
	11.5.3 Analysis of cycles	
	11.6 Related work, comparison, and discussion	
	11.7 Summary	
	References	
12	Indirection Infrastructures	. 325
	12.1 Introduction	. 325
	12.2 Background	. 326
	12.2.1 Host Identity Protocol (HIP)	. 326
	12.2.2 Internet Indirection Infrastructure (i3)	. 32′
	12.2.3 Host Identity Indirection Infrastructure (<i>Hi</i> 3)	. 32′
	12.3 Control plane	. 328
	12.3.1 Request types	. 329
	12.3.2 Transmission and processing costs	
	12.3.3 Latency estimates	. 333
	12.4 Workload model	
	12.4.1 General workload pattern	
	12.4.2 Workload scenarios	
	12.5 Scalability analysis	. 339
	12.5.1 The utilization/latency trade-off	
	12.5.2 Scalability problems	
	12.6 Summary	
	References	. 343
13	Commercial Applications	
	13.1 OpenDHT	
	13.2 Google's BigTable	
	13.3 Amazon's Dynamo	
	13.4 Facebook's Cassandra	
	13.5 LinkedIn Voldemort	
	13.6 Amazon's S3 and SimpleDB	
	13.7 BitTorrent	
	13.8 Summary	
	References	
Sur	nmary of Part IV	.357
Abl	breviations	. 358