CS 473: Fundamental Algorithms, Spring 2011

DFS in Directed Graphs, Strong Connected Components, DAGs

Lecture 2 January 20, 2011

Sariel (UIUC) CS473 1 Spring 2011 1

Strong Connected Components (SCCs)

Algorithmic Problem

Find all SCCs of a given directed graph.

Previous lecture: saw an $O(n \cdot (n + m))$ time algorithm.

This lecture: O(n + m) time algorithm.

Sariel (UIUC) CS473 2 Spring 2011 2 / 4

Graph of SCCs

Figure: Graph G

Figure: Graph of SCCs GSCC

Meta-graph of SCCs

Let $S_1, S_2, \dots S_k$ be the SCCs of G. The graph of SCCs is $G^{\rm SCC}$

- Vertices are $S_1, S_2, \dots S_k$
- There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.

Sariel (UIUC) CS473 3 Spring 2011 3 / 48

Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC} .

Proof.

Exercise.

SCCs and DAGs

Proposition

For any graph **G**, the graph **G**^{SCC} has no directed cycle.

Proof.

If $\mathbf{G}^{\mathrm{SCC}}$ has a cycle $\mathbf{S}_1,\mathbf{S}_2,\ldots,\mathbf{S}_k$ then $\mathbf{S}_1\cup\mathbf{S}_2\cup\cdots\cup\mathbf{S}_k$ is an SCC in \mathbf{G} . Formal details: exercise.

Sariel (UIUC) CS473 5 Spring 2011 5 / 48

SCCs and DAGs

Proposition

For any graph **G**, the graph **G**^{SCC} has no directed cycle.

Proof.

If $\mathbf{G}^{\mathrm{SCC}}$ has a cycle $\mathbf{S}_1,\mathbf{S}_2,\ldots,\mathbf{S}_k$ then $\mathbf{S}_1\cup\mathbf{S}_2\cup\cdots\cup\mathbf{S}_k$ is an SCC in \mathbf{G} . Formal details: exercise.

Sariel (UIUC) CS473 5 Spring 2011 5 / 48

Part I

Directed Acyclic Graphs

Sariel (UIUC) CS473 6 Spring 2011 6 / 48

Directed Acyclic Graphs

Definition

A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.

Sariel (UIUC) CS473 7 Spring 2011 7 / 48

Sources and Sinks

Definition

- A vertex **u** is a **source** if it has no in-coming edges.
- A vertex **u** is a **sink** if it has no out-going edges.

Sariel (UIUC) CS473 8 Spring 2011 8 / 4

- Every DAG G has at least one source and at least one sink.
- If **G** is a DAG if and only if **G**^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

Sariel (UIUC) CS473 9 Spring 2011 9 / 48

- Every DAG G has at least one source and at least one sink.
- If **G** is a DAG if and only if **G**^{rev} is a DAG.
- **G** is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

Sariel (UIUC) CS473 9 Spring 2011 9 / 48

- Every DAG G has at least one source and at least one sink.
- If **G** is a DAG if and only if **G**^{rev} is a DAG.
- **G** is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise

- Every DAG G has at least one source and at least one sink.
- If **G** is a DAG if and only if **G**^{rev} is a DAG.
- **G** is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise

- Every DAG G has at least one source and at least one sink.
- If **G** is a DAG if and only if **G**^{rev} is a DAG.
- **G** is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

Sariel (UIUC) CS473 9 Spring 2011 9 / 48

Topological Ordering/Sorting

Figure: Topological Ordering of **G**

Definition

A topological ordering/topological sorting of G = (V, E) is an ordering < on V such that if $(u, v) \in E$ then u < v.

Sariel (UIUC) CS473 10 Spring 2011 10 / 48

Lemma

A directed graph **G** can be topologically ordered iff it is a DAG.

Sariel (UIUC) CS473 11 Spring 2011 11 / 48

Lemma

A directed graph **G** can be topologically ordered iff it is a DAG.

Proof.

Only if: Suppose **G** is not a DAG and has a topological ordering <.

G has a cycle $C = u_1, u_2, \ldots, u_k, u_1$.

Then $\mathbf{u_1} < \mathbf{u_2} < \ldots < \mathbf{u_k} < \mathbf{u_1}!$ A contradiction.

Spring 2011

11 / 48

Lemma

A directed graph **G** can be topologically ordered iff it is a DAG.

Proof.

If: Consider the following algorithm:

- Pick a source **u**, output it.
- Remove u and all edges out of u.
- Repeat until graph is empty.
- Exercise: prove this gives an ordering.

n)

Exercise: show above algorithm can be implemented in O(m + n) time.

Output: 1 2 3 4

Sariel (UIUC) CS473 12 Spring 2011 12 / 48

Note: A DAG **G** may have many different topological sorts.

Question: What is a \overline{DAG} with the most number of distinct topological sorts for a given number \mathbf{n} of vertices?

n singletons 1. Grackings.

Question: What is a DAG with the least number of distinct topological sorts for a given number **n** of vertices?

1 linked list 2 ordering

Sariel (UIUC) CS473 14 Spring 2011 14 / 48

Using DFS...

... to check for Acylicity and compute Topological Ordering

Question

Given **G**, is it a DAG? If it is, generate a topological sort.

DFS based algorithm

- Compute **DFS(G)**
- If there is a back edge then **G** is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in **DFS(G)**.

Proposition

If **G** is a DAG and post(v) > post(u), then (\mathbf{u}, \mathbf{v}) is not in **G**.

Sariel (UIUC) CS473 15 Spring 2011 15 / 48

Using DFS...

.. to check for Acylicity and compute Topological Ordering

Question

Given **G**, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge then **G** is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in **DFS(G)**.

Proposition

If **G** is a DAG and post(v) > post(u), then (\mathbf{u}, \mathbf{v}) is not in **G**.

Sariel (UIUC) CS473 15 Spring 2011 15 / 48

Using DFS...

.. to check for Acylicity and compute Topological Ordering

Question

Given **G**, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge then **G** is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in **DFS(G)**.

Proposition

If **G** is a DAG and post(v) > post(u), then (\mathbf{u}, \mathbf{v}) is not in **G**.

Sariel (UIUC) CS473 15 Spring 2011 15 / 48

Example

Sariel (UIUC) CS473 16 Spring 2011 16 / 48

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in **DFS(G)**.

Proof.

If: (\mathbf{u}, \mathbf{v}) is a back edge implies there is a cycle \mathbf{C} consisting of the path from \mathbf{v} to \mathbf{u} in \mathbf{DFS} search tree and the edge (\mathbf{u}, \mathbf{v}) .

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v_1$. Let v_i be first node in C visited in DFS.

All other nodes in ${\bf C}$ are descendents of ${\bf v_i}$ since they are reachable from ${\bf v_i}$.

Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge.

40 140 15 15 15 10 10

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in **DFS(G)**.

Proof.

If: (\mathbf{u}, \mathbf{v}) is a back edge implies there is a cycle \mathbf{C} consisting of the path from \mathbf{v} to \mathbf{u} in \mathbf{DFS} search tree and the edge (\mathbf{u}, \mathbf{v}) .

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v_1$. Let v_i be first node in C visited in DFS.

All other nodes in ${\bf C}$ are descendents of ${\bf v_i}$ since they are reachable from ${\bf v_i}$.

Therefore, $(\mathbf{v}_{i-1}, \mathbf{v}_i)$ (or $(\mathbf{v}_k, \mathbf{v}_1)$ if i = 1) is a back edge.

Sariel (UIUC) CS473 17 Spring 2011 17 / 48

Proposition

If **G** is a DAG and post(v) > post(u), then (\mathbf{u}, \mathbf{v}) is not in **G**.

Proof.

Assume post(v) > post(u) and (u, v) is an edge in **G**. We derive a contradiction. One of two cases holds from **DFS** property.

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
 Implies that (u, v) is a back edge but a DAG has no back edges!
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
 This cannot happen since v would be explored from u.

18 / 48

Spring 2011

Sariel (UIUC) CS473 18

DAGs and Partial Orders

Definition

A partially ordered set is a set S along with a binary relation \leq such that \prec is

- (i) reflexive $(a \leq a \text{ for all } a \in V)$,
- (ii) anti-symmetric ($\mathbf{a} \leq \mathbf{b}$ and $\mathbf{a} \neq \mathbf{b}$ implies $\mathbf{b} \preceq \mathbf{a}$), and
- (iii) transitive ($\mathbf{a} \leq \mathbf{b}$ and $\mathbf{b} \leq \mathbf{c}$ implies $\mathbf{a} \leq \mathbf{c}$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A *finite* partially ordered set is equivalent to a DAG.

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.

4 □ > 4 個 > 4 필 > 4 필 > 4 필 > 4 필 > 4 필 > 4 및

Sariel (UIUC) CS473 19 Spring 2011 19 / 48

DAGs and Partial Orders

Definition

A partially ordered set is a set S along with a binary relation \leq such that \prec is

- (i) reflexive $(a \leq a \text{ for all } a \in V)$,
- (ii) anti-symmetric ($\mathbf{a} \leq \mathbf{b}$ and $\mathbf{a} \neq \mathbf{b}$ implies $\mathbf{b} \leq \mathbf{a}$), and
- (iii) transitive ($\mathbf{a} \leq \mathbf{b}$ and $\mathbf{b} \leq \mathbf{c}$ implies $\mathbf{a} \leq \mathbf{c}$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A *finite* partially ordered set is equivalent to a DAG.

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.

DAGs and Partial Orders

Definition

A partially ordered set is a set S along with a binary relation \leq such that \prec is

- (i) reflexive $(a \leq a \text{ for all } a \in V)$,
- (ii) anti-symmetric ($\mathbf{a} \leq \mathbf{b}$ and $\mathbf{a} \neq \mathbf{b}$ implies $\mathbf{b} \preceq \mathbf{a}$), and
- (iii) transitive ($\mathbf{a} \leq \mathbf{b}$ and $\mathbf{b} \leq \mathbf{c}$ implies $\mathbf{a} \leq \mathbf{c}$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A *finite* partially ordered set is equivalent to a DAG.

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.

Sariel (UIUC) CS473 19 Spring 2011 19 / 48

Part II

Linear time algorithm for finding all strong connected components of a directed graph

Sariel (UIUC) CS473 20 Spring 2011 20 / 48

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

```
For each vertex \mathbf{u} \in V do find SCC(G, \mathbf{u}) the strong component containing \mathbf{u} as follows: Obtain \mathrm{rch}(G, \mathbf{u}) using DFS(G, \mathbf{u}) Obtain \mathrm{rch}(G^{\mathrm{rev}}, \mathbf{u}) using DFS(G^{\mathrm{rev}}, \mathbf{u}) Output SCC(G, \mathbf{u}) = \mathrm{rch}(G, \mathbf{u}) \cap \mathrm{rch}(G^{\mathrm{rev}}, \mathbf{u})
```

Running time: O(n(n + m))

Is there an O(n + m) time algorithm?

Sariel (UIUC) CS473 21 Spring 2011 21 / 48

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

```
For each vertex \mathbf{u} \in V do find SCC(G, \mathbf{u}) the strong component containing \mathbf{u} as follows: Obtain \mathrm{rch}(G, \mathbf{u}) using DFS(G, \mathbf{u}) Obtain \mathrm{rch}(G^{\mathrm{rev}}, \mathbf{u}) using DFS(G^{\mathrm{rev}}, \mathbf{u}) Output SCC(G, \mathbf{u}) = \mathrm{rch}(G, \mathbf{u}) \cap \mathrm{rch}(G^{\mathrm{rev}}, \mathbf{u})
```

Running time: O(n(n + m))

Is there an O(n + m) time algorithm?

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

```
For each vertex \mathbf{u} \in V do find SCC(G, \mathbf{u}) the strong component containing \mathbf{u} as follows: Obtain \mathrm{rch}(G, \mathbf{u}) using DFS(G, \mathbf{u}) Obtain \mathrm{rch}(G^{\mathrm{rev}}, \mathbf{u}) using DFS(G^{\mathrm{rev}}, \mathbf{u}) Output SCC(G, \mathbf{u}) = \mathrm{rch}(G, \mathbf{u}) \cap \mathrm{rch}(G^{\mathrm{rev}}, \mathbf{u})
```

Running time: O(n(n + m))

Is there an O(n + m) time algorithm?

←□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

Sariel (UIUC) CS473 21 Spring 2011 21 / 48

Structure of a Directed Graph

Figure: Graph G

Figure: Graph of SCCs GSCC

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.

Sariel (UIUC) CS473 22 Spring 2011 22 / 48

Linear-time Algorithm for SCC s: Ideas

Exploit structure of meta-graph.

Algorithm

- Let **u** be a vertex in a sink SCC of **G**^{SCC}
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)
- DFS(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n + m)!

How do we find a vertex in the sink SCC of GSCC?

Can we obtain an *implicit* topological sort of **G**^{SCC} without computing **G**^{SCC}?

Answer: **DFS(G)** gives some information!

Sariel (UIUC) CS473 24 Spring 2011 24 / 48

How do we find a vertex in the sink SCC of **G**^{SCC}?

Can we obtain an *implicit* topological sort of **G**^{SCC} without computing **G**^{SCC}?

Answer: **DFS(G)** gives some information!

Sariel (UIUC) CS473 24 Spring 2011 24 / 48

How do we find a vertex in the sink SCC of **G**^{SCC}?

Can we obtain an *implicit* topological sort of **G**^{SCC} without computing **G**^{SCC}?

Answer: **DFS(G)** gives some information!

Sariel (UIUC) CS473 24 Spring 2011 24 / 48

Post-visit times of SCCs

Definition

Given **G** and a SCC **S** of **G**, define $post(S) = max_{u \in S} post(u)$ where post numbers are with respect to some **DFS(G)**.

An Example

Figure: Graph G

Sariel (UIUC)

Figure: Graph with pre-post times for DFS (A); black edges in tree

Spring 2011

26 / 48

Figure: **G**SCC with post times

CS473

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let \mathbf{u} be first vertex in $\mathbf{S} \cup \mathbf{S}'$ that is visited.

- If u ∈ S then all of S' will be explored before DFS(u)
 completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If **S** and **S'** are SCCs in **G** and (**S**, **S'**) is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, post(u) > post(u').

GSCC and post-visit times

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let \mathbf{u} be first vertex in $\mathbf{S} \cup \mathbf{S}'$ that is visited.

- If $u \in S$ then all of S' will be explored before DFS(u)
- If $u \in S'$ then all of S' will be explored before any of S.

in G^{SCC} then for every $u \in S$ and $u' \in S'$, post(u) > post(u').

GSCC and post-visit times

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let \mathbf{u} be first vertex in $\mathbf{S} \cup \mathbf{S}'$ that is visited.

- If $u \in S$ then all of S' will be explored before DFS(u) completes.
- If $u \in S'$ then all of S' will be explored before any of S.

in G^{SCC} then for every $u \in S$ and $u' \in S'$, post(u) > post(u').

Sariel (UIUC) CS473 Spring 2011 27 / 48

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let **u** be first vertex in $S \cup S'$ that is visited.

- If u ∈ S then all of S' will be explored before DFS(u)
 completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, post(u) > post(u').

4 □ ▶ 4 ∰ ▶ 4 를 ▶ 4 를 ▶ 9 Q (°

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let **u** be first vertex in $S \cup S'$ that is visited.

- If u ∈ S then all of S' will be explored before DFS(u)
 completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, post(u) > post(u').

4 □ ▶ 4 ∰ ▶ 4 를 ▶ 4 를 ▶ 9 Q (°

Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let **u** be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before DFS(u) completes.
- If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If **S** and **S'** are SCCs in **G** and (**S**, **S'**) is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, post(u) > post(u').

Sariel (UIUC) CS473 27 Spring 2011 27 / 48

Topological ordering of GSCC

Corollary

Ordering SCCs in decreasing order of post(S) gives a topological ordering of $G^{\rm SCC}$

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So..

DFS(G) gives some information on topological ordering of **G**^{SCC}!

Topological ordering of GSCC

Corollary

Ordering SCCs in decreasing order of post(S) gives a topological ordering of $G^{\rm SCC}$

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So...

DFS(G) gives some information on topological ordering of **G**^{SCC}!

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 900

An Example

Figure: Graph G

Figure: Graph with pre-post times for **DFS** (A); black edges in tree

Figure: **G**^{SCC} with post times

Sariel (UIUC) CS473 29 Spring 2011 29 / 48

Linear-time Algorithm for SCC s: Ideas

Exploit structure of meta-graph.

Algorithm

- Let **u** be a vertex in a sink SCC of **G**^{SCC}
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)
- DFS(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n + m)!

How do we find a vertex in the sink SCC of **G**^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC} ?

Answer: **DFS(G)** gives some information!

How do we find a vertex in the sink SCC of **G**^{SCC}?

Can we obtain an *implicit* topological sort of **G**^{SCC} without computing **G**^{SCC}?

Answer: **DFS(G)** gives some information!

How do we find a vertex in the sink SCC of **G**^{SCC}?

Can we obtain an *implicit* topological sort of **G**^{SCC} without computing **G**^{SCC}?

Answer: **DFS(G)** gives some information!

Finding Sources

Proposition

The vertex \mathbf{u} with the highest post visit time belongs to a source SCC in $\mathbf{G}^{\mathrm{SCC}}$

Proof.

- post(SCC(u)) = post(u)
- Thus, post(SCC(u)) is highest and will be output first in topological ordering of G^{SCC}.

Finding Sources

Proposition

The vertex ${\bf u}$ with the highest post visit time belongs to a source SCC in ${\bf G}^{\rm SCC}$

Proof.

- post(SCC(u)) = post(u)
- Thus, post(SCC(u)) is highest and will be output first in topological ordering of GSCC.

Finding Sinks

Proposition

The vertex \mathbf{u} with highest post visit time in $\mathsf{DFS}(\mathsf{G}^{\mathrm{rev}})$ belongs to a sink SCC of \mathbf{G} .

Proof.

- ullet u belongs to source SCC of G^{rev}
- Since graph of SCCs of G^{rev} is the reverse of G^{SCC}, SCC(u) is sink SCC of G.

Finding Sinks

Proposition

The vertex \mathbf{u} with highest post visit time in $\mathsf{DFS}(\mathsf{G}^{\mathrm{rev}})$ belongs to a sink SCC of \mathbf{G} .

Proof.

- u belongs to source SCC of Grev
- Since graph of SCCs of Grev is the reverse of GSCC, SCC(u) is sink SCC of G.

Linear Time Algorithm

```
Do \mathsf{DFS}(\mathsf{G}^{\mathrm{rev}}) and sort vertices in decreasing post order. Mark all nodes as unvisited for each u in the computed order do if u is not visited then \mathsf{DFS}(u)
Let \mathsf{S}_u be the nodes reached by u
Output \mathsf{S}_u as a strong connected component Remove \mathsf{S}_u from \mathsf{G}
```

Analysis

Running time is O(n + m). (Exercise)

Figure: Graph G

Figure: **G**^{rev} with pre-post times Red edges not traversed in **DFS**

```
Order of second DFS: DFS(G) = \{G\}; DFS(H) = \{H\}; DFS(B) = \{B, E, F\}; DFS(A) = \{A, C, D\}.
```


Figure: Graph G

Figure: G^{rev} with pre-post times. Red edges not traversed in **DFS**

```
Order of second DFS: DFS(G) = \{G\}; DFS(H) = \{H\}; DFS(B) = \{B, E, F\}; DFS(A) = \{A, C, D\}.
```


Figure: Graph G

Figure: **G**^{rev} with pre-post times. Red edges not traversed in **DFS**

```
Order of second DFS: DFS(G) = \{G\}; DFS(H) = \{H\}; DFS(B) = \{B, E, F\}; DFS(A) = \{A, C, D\}.
```


Figure: Graph G

Figure: **G**^{rev} with pre-post times. Red edges not traversed in **DFS**

Figure: Graph G

Figure: **G**^{rev} with pre-post times. Red edges not traversed in **DFS**

Order of second DFS: DFS(G) =
$$\{G\}$$
; DFS(H) = $\{H\}$; DFS(B) = $\{B, E, F\}$; DFS(A) = $\{A, C, D\}$.

Figure: Graph G

Figure: **G**^{rev} with pre-post times. Red edges not traversed in **DFS**

Order of second DFS: DFS(G) =
$$\{G\}$$
; DFS(H) = $\{H\}$; DFS(B) = $\{B, E, F\}$; DFS(A) = $\{A, C, D\}$.

Figure: Graph G

Figure: **G**^{rev} with pre-post times. Red edges not traversed in **DFS**

Order of second DFS: DFS(G) =
$$\{G\}$$
; DFS(H) = $\{H\}$; DFS(B) = $\{B, E, F\}$; DFS(A) = $\{A, C, D\}$.

Obtaining the meta-graph from strong connected components

Exercise: Given all the strong connected components of a directed graph G = (V, E) show that the meta-graph $G^{\rm SCC}$ can be obtained in O(m + n) time.

- \bullet let $\boldsymbol{S}_1,\boldsymbol{S}_2,\ldots,\boldsymbol{S}_k$ be strong components in \boldsymbol{G}
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let $u_1, u_2, ..., u_k$ be such that post(u_i) = post(S_i) = max_{$v \in S_i$} post(v).
- Assume without loss of generality that $post(u_k) > post(u_{k-1}) \geq \ldots \geq post(u_1) \text{ (renumber otherwise)}. \text{ Then } S_k, S_{k-1}, \ldots, S_1 \text{ is a topological sort of meta-graph of } G^{rev} \text{ and hence } S_1, S_2, \ldots, S_k \text{ is a topological sort of the meta-graph of } G.$
- \mathbf{u}_k has highest post number and DFS (\mathbf{u}_k) will explore all of \mathbf{S}_k which is a sink component in \mathbf{G} .
- After S_k is removed u_{k-1} has highest post number and DFS (u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G S_k$. Formal proof by induction.

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let $u_1, u_2, ..., u_k$ be such that post(u_i) = post(S_i) = max_{$v \in S_i$} post(v).
- Assume without loss of generality that $post(u_k) > post(u_{k-1}) \geq \ldots \geq post(u_1) \text{ (renumber otherwise)}. \text{ Then } S_k, S_{k-1}, \ldots, S_1 \text{ is a topological sort of meta-graph of } G^{rev} \text{ and hence } S_1, S_2, \ldots, S_k \text{ is a topological sort of the meta-graph of } G.$
- \mathbf{u}_k has highest post number and DFS (\mathbf{u}_k) will explore all of \mathbf{S}_k which is a sink component in \mathbf{G} .
- After S_k is removed u_{k-1} has highest post number and DFS (u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G S_k$. Formal proof by induction.

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let $u_1, u_2, ..., u_k$ be such that post(u_i) = post(S_i) = max_{$v \in S_i$} post(v).
- Assume without loss of generality that $post(u_k) > post(u_{k-1}) \geq \ldots \geq post(u_1) \text{ (renumber otherwise)}. \text{ Then } S_k, S_{k-1}, \ldots, S_1 \text{ is a topological sort of meta-graph of } G^{rev} \text{ and hence } S_1, S_2, \ldots, S_k \text{ is a topological sort of the meta-graph of } G.$
- \mathbf{u}_k has highest post number and DFS (\mathbf{u}_k) will explore all of \mathbf{S}_k which is a sink component in \mathbf{G} .
- After S_k is removed u_{k-1} has highest post number and DFS (u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G S_k$. Formal proof by induction.

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let $u_1, u_2, ..., u_k$ be such that post(u_i) = post(S_i) = max_{$v \in S_i$} post(v).
- Assume without loss of generality that $\begin{array}{l} post(u_k) > post(u_{k-1}) \geq \ldots \geq post(u_1) \text{ (renumber otherwise)}. \text{ Then } S_k, S_{k-1}, \ldots, S_1 \text{ is a topological sort of meta-graph of } G^{rev} \text{ and hence } S_1, S_2, \ldots, S_k \text{ is a topological sort of the meta-graph of } G. \end{array}$
- \mathbf{u}_k has highest post number and DFS (\mathbf{u}_k) will explore all of \mathbf{S}_k which is a sink component in \mathbf{G} .
- After S_k is removed u_{k-1} has highest post number and DFS (u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G S_k$. Formal proof by induction.

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let $u_1, u_2, ..., u_k$ be such that post(u_i) = post(S_i) = max_{$v \in S_i$} post(v).
- \mathbf{u}_k has highest post number and DFS (\mathbf{u}_k) will explore all of \mathbf{S}_k which is a sink component in \mathbf{G} .
- After S_k is removed u_{k-1} has highest post number and DFS (u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G S_k$. Formal proof by induction.

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider DFG(G^{rev}) and let $u_1, u_2, ..., u_k$ be such that post(u_i) = post(S_i) = max_{$v \in S_i$} post(v).
- Assume without loss of generality that $\begin{array}{l} post(u_k) > post(u_{k-1}) \geq \ldots \geq post(u_1) \text{ (renumber otherwise)}. \text{ Then } S_k, S_{k-1}, \ldots, S_1 \text{ is a topological sort of meta-graph of } G^{rev} \text{ and hence } S_1, S_2, \ldots, S_k \text{ is a topological sort of the meta-graph of } G. \end{array}$
- \mathbf{u}_k has highest post number and DFS (\mathbf{u}_k) will explore all of \mathbf{S}_k which is a sink component in \mathbf{G} .
- After S_k is removed u_{k-1} has highest post number and DFS (u_{k-1}) will explore all of S_{k-1} which is a sink component in remaining graph $G S_k$. Formal proof by induction.

Part III

An Application to make

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them

An Example makefile

Sariel (UIUC) CS473 40 Spring 2011 40 / 48

makefile as a Digraph

Sariel (UIUC) CS473 41 Spring 2011 41 / 48

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

Sariel (UIUC) CS473 42 Spring 2011 42 / 48

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

Sariel (UIUC) CS473 42 Spring 2011 42 / 48

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information.
 Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information.
 Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information.
 Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified file in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information.
 Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information.
 Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

Take away Points

- Given a directed graph G, its SCCs and the associated acyclic meta-graph GSCC give a structural decomposition of G that should be kept in mind.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).

Sariel (UIUC) CS473 44 Spring 2011 44 / 49

Sariel (UIUC) CS473 45 Spring 2011 45 / 48

Sariel (UIUC) CS473 46 Spring 2011 46 / 4

Sariel (UIUC) CS473 48 Spring 2011 48 / 48