Série 23

1. Réduire à la forme canonique et représenter les coniques définies par les équations suivantes:

a)
$$4x^2 + 4xy + y^2 + 8x - 16y = 0$$
,

b)
$$x^2 - 2xy + y^2 + 2x + 2y + 1 = 0$$
.

c)
$$x^2 - 6xy + 9y^2 + 4x - 12y + 4 = 0$$
.

Si les coniques sont dégénérées, déterminer l'équation cartésienne des droites de dégénérescence.

2. Dans le plan muni du repère orthonormé $\mathcal{R} = (O, \vec{e}_1, \vec{e}_2)$, on définit la conique ${\cal C}$ par son équation cartésienne :

$$C: x^2 + 4xy + y^2 - 12x - 18y + 27 = 0.$$

- a) Déterminer l'équation réduite de $\mathcal C$ et le nouveau repère $\mathcal R'$ l'équation est réduite.
- b) Calculer, relativement au repère \mathcal{R} , les coordonnées d'un foyer de \mathcal{C} .
- 3. On considère la famille \mathcal{F} des coniques définie par l'équation

$$\mathcal{F}: x^2 + 2m xy + y^2 - 2x + 2y = 0, \quad m \in \mathbb{R}.$$

- a) Déterminer m de sorte que les coniques de \mathcal{F} soient dégénérées. Donner alors l'équation cartésienne des droites de dégénérescence.
- b) Déterminer en fonction de m le genre des coniques non dégénérées de \mathcal{F} .
- c) Déterminer l'équation cartésienne de l'axe et les coordonnées du sommet de la parabole non dégénérée de \mathcal{F} .
- d) La conique de \mathcal{F} définie par $m=\frac{1}{2}$ est une ellipse. Déterminer la longueur de son grand axe.
- 4. Soient A(4;0) et B(0;3) deux points donnés et s une sécante variable de pente $\frac{1}{2}$ qui coupe la droite AB en E et la droite OB en D.
 - a) Déterminer l'équation du lieu des points M, intersections de (OE) et (AD).
 - b) Déterminer la nature du lieu, donner les coordonnées du centre et les équations des asymptotes.

Réponses de la série 23

1. a) Parabole d'équation réduite :

$$\bar{y}^2 - \frac{8\sqrt{5}}{5} \; \bar{x} = 0 \, .$$

Axe d'équation : 2x + y = 0,

sommet: S(0,0).

b) Parabole d'équation réduite :

$$\bar{y}^2 - \sqrt{2}\,\bar{x} = 0.$$

Axe d'équation : x - y = 0,

sommet : $S(-\frac{1}{4}, -\frac{1}{4})$.

- c) Conique de genre parabole, dégénérée en deux droites confondues d'équation x-3y+2=0 .
- **2.** a) Equation réduite de C: $3\overline{x}^2 \overline{y}^2 6 = 0$.

Repère $\mathcal{R}' = (\Omega, \vec{u}_1, \vec{u}_2)$ avec $\Omega(4,1)$, $\vec{u}_1 = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $\vec{u}_2 = \frac{\sqrt{2}}{2} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

- b) Coordonnées des foyers : $F_1(6,3)$ et $F_2(2,-1)$.
- 3. a) m = -1, $d_1: x y 2 = 0$ et $d_2: x y = 0$.
 - b) $m \in]-1, 1[$: la conique est de genre ellipse.
 - $\bullet \ m=1$: la conique est une parabole non dégénérée.
 - $m \in]-\infty, -1[\cup]1, +\infty[$: la conique est de genre hyperbole.
 - c) Axe: x + y = 0, sommet: S(0, 0).
 - d) Longueur du grand axe : $2a = 4\sqrt{2}$.
- **4.** a) Equation du lieu: $3x^2 12xy 8y^2 12x + 24y = 0$,
 - b) Le lieu est une hyperbole de centre $~\Omega~(2~,~0)~$ et les pentes des asymptotes sont égales à $~-\frac{1}{4}~(3\pm\sqrt{15})$.