

# Face Recognition(Isometry Invariant) using GMDS

GENERALIZED MULTI-DIMENSIONAL SCALING

#### **Abstract**

The face recognition method we use, has 12 models, 3 for each person, and a probe is passed into the system, to look for the best match and also decide which person this probe belongs to.

We perform expression invariant three dimensional face matching, using a method which captures the distinction of the model and the probe intrinsic properties associated with the metric structure of the surface, while ignoring the extrinsic properties that describe the way the surface is immersed into the ambient space and that often change while the surface bends.

Our results show a clear distinction between the faces (is accurate), and performs well (is computationally efficient)

## Face Recognition Method

The face recognition method using is Generalized Multi-Dimensional Scaling Algorithm. It measures the minimum possible distortion when trying to isometrically embed one surface into another. By using GMDS, we can handle full as well as partial surface matching; this ability is one advantage over a straightforward use of the GH distance. A crucial part of the GMDS problem is the computation of geodesic distances. GMDS uses the "fast marching method" (FMM), which computes geodesic distances on surfaces by solving the eikonal equation on general triangulated meshes.

Other methods that can perform isometric invariant surface matching include MDS(Multi-Dimensional Scaling) Algorithm, but this produces inappropriate results for Partial surface Matching.

One of the earliest attempts of isometry-invariant surface matching is the classical "iterative closest point" (ICP) algorithm (2). It addresses a particular case of the partial matching problem where only rigid (Euclidean) isometries are allowed. An efficient method for the construction of near-isometry-invariant representations of surfaces [called "canonical forms" (CFs)] based on Euclidean embeddings was presented in ref. 3, as a generalization of ref. 4. This approach used a multidimensional scaling (MDS) algorithm (5). MDS is closely related to dimensionality reduction (6, 7) and can be performed in a computationally efficient manner. Euclidean embeddings are used in theoretical computer science for representing metric spaces usually arising from geometry of graphs (8).

The geodesic distances  $d_{\mathcal{Q}}(q_i,q_j)$ , between the fixed sample points of the models( $\mathcal{Q}$ ) can be precomputed using Fast Marching method , however the co-ordinates( $\mathbf{u}_i$ ) representing  $\psi(q_i)$  on  $\mathcal{S}$  (the probe) change during the iterations of the numerical minimization algorithm. Thus, the distances  $d_{\mathcal{S}}(\mathbf{u}_i,\mathbf{u}_j)$  have to be reevaluated at every iteration. This computation is critical for the GMDS.

The 4k mesh points are used for our data and probe.

Our approach favorably compares with previous attempts to perform isometry-invariant surface matching. First, our PE distance naturally allows for isometry-invariant matching of partially missing surfaces. Secondly, the properties of our distance and its computation are completely deterministic. Thirdly, GMDS used for the PE distance computation is a continuous optimization problem and can be solved very efficiently by using standard optimization methods.

#### Performance Evaluation Method

The input value (the probe file), is taken into the face recognition system, and compared with the existing datasets. The stress values are then calculated between the probe and each model (one-by-one) and compared.

We plot 12 graphs for each of the twelve models denoting the stress levels between each pair. The plots clearly show the results, distinguishing the faces belonging to the same person, from different ones.

The below graphs shows the stress value of the input face vs. the dataset, the faces with low stress are more similar to the input face, which shows the level of isometric invariance of the algorithm to the faces.



















These are the 12 results for 12 comparisons(one-by-one) of faces with the dataset.

#### **Experimental Results**

#### Face 1 1 vs Models

The following figures show the final stress values between face  $1_1$  and the models represented by appending the row and column entry: (Maximum stress between face1 and probe  $\sim$ 11)

| Final Stress(f) | 1          | 2        | 3        |
|-----------------|------------|----------|----------|
| Face 1_         | 7.5125e-29 | 6.07268  | 10.7074  |
| Face 2_         | 33.1987    | 192.6678 | 96.5027  |
| Face 3_         | 87.4409    | 95.9419  | 83.0556  |
| Face 4_         | 209.5504   | 123.1524 | 105.4298 |

As expected the final stress values are really low for the faces belonging to the same person, and Face 1\_1 matches the most to face1\_1, Face2\_2, and Face3\_3, out of off the faces.

## Face 1\_2 vs Models

The following figures show the final stress values between face  $1_2$  and the models represented by appending the row and column entry: (Maximum stress between face1 and probe  $\sim$ 11.5)

| Final Stress(f) | 1        | 2          | 3        |
|-----------------|----------|------------|----------|
| Face 1_         | 7.4149   | 1.0340e-29 | 11.3749  |
| Face 2_         | 44.8896  | 116.1668   | 36.3176  |
| Face 3_         | 115.0986 | 104.4673   | 94.5973  |
| Face 4_         | 171.4107 | 109.2993   | 121.0722 |

Again, we can see here that Face1\_2 matches best with the faces belonging to person 1 (Face1\_1, Face1\_2, Face1\_3), and can be clearly distinguished based on stress levels.

#### Face 1 3 vs Models

The table shows the final stress values between Face1\_3 and all the 12 models: (Maximum stress between face1 and probe ~11)

| Final Stress(f) | 1        | 2        | 3          |
|-----------------|----------|----------|------------|
| Face 1_         | 9.9346   | 10.9989  | 1.3603e-28 |
| Face 2_         | 146.2932 | 104.5626 | 216.0896   |
| Face 3_         | 80.6462  | 103.9473 | 71.7712    |
| Face 4_         | 206.2760 | 78.5174  | 79.7574    |

Hence we can again clearly conclude that the face matches best with the faces of person 1.

## Face 2\_1 vs Models (Maximum stress between face2 and probe ~54)

| Final Stress(f:2_1) | 1                   | 2        | 3        |
|---------------------|---------------------|----------|----------|
| Face_1              | 153.4353            | 148.4855 | 158.5732 |
| Face_2              | <mark>2.9081</mark> | 53.9625  | 40.5393  |
| Face_3              | 124.3283            | 167.3298 | 155.0979 |
| Face_4              | 141.3575            | 134.1656 | 199.8248 |

# Face 2\_2 vs Models (Maximum stress between face2 and probe ~71.3)

| Final Stress(f:2_2) | 1        | 2        | 3        |
|---------------------|----------|----------|----------|
| Face_1              | 168.0773 | 234.5768 | 405.4089 |
| Face_2              | 71.2594  | 8.6434   | 26.9066  |
| Face_3              | 234.3049 | 175.4894 | 198.5038 |
| Face_4              | 121.6856 | 107.8792 | 171.5984 |

## Face 2\_3 vs Models (Maximum stress between face2 and probe ~1.4)

| Final Stress(f:2_3) | 1       | 2        | 3        |
|---------------------|---------|----------|----------|
| Face_1              | 16.7542 | 213.4743 | 221.3043 |
| Face_2              | 35.6563 | 22.8768  | 1.3570   |
| Face_3              | 91.2647 | 138.3442 | 143.5655 |
| Face_4              | 99.1405 | 82.3222  | 201.4976 |

## Face 3\_1 and 3\_2 vs Models (Maximum stress between face3 and probe ~19.4, ~ 17.4 resp.)

| Final Stress(f:3_1) | 1                   | 2        | 3       |
|---------------------|---------------------|----------|---------|
| Face_1              | 116.4675            | 120.0195 | 93.1911 |
| Face_2              | 162.0727            | 139.5881 | 83.8418 |
| Face_3              | <mark>4.6416</mark> | 19.3626  | 6.9007  |
| Face_4              | 108.8204            | 127.3322 | 35.7880 |

| Final Stress(f: 3_2) | 1        | 2        | 3        |
|----------------------|----------|----------|----------|
| Face 1_              | 148.3541 | 158.0237 | 114.9666 |
| Face 2_              | 228.8330 | 267.5252 | 148.9455 |

| Face 3_ | 17.3301  | <mark>1.7287</mark> | 17.0759 |
|---------|----------|---------------------|---------|
| Face 4_ | 109.9715 | 40.2915             | 57.8296 |

## Face 3\_3 vs Models (Maximum stress between face3 and probe ~23.26)

| Final Stress(f: 3_3) | 1        | 2        | 3                   |
|----------------------|----------|----------|---------------------|
| Face 1_              | 106.8522 | 107.1008 | 80.5768             |
| Face 2_              | 124.0488 | 292.4827 | 218.4633            |
| Face 3_              | 6.9419   | 23.2611  | <mark>6.4462</mark> |
| Face 4_              | 304.3276 | 24.1091  | 36.7689             |

## Face 4\_1 vs Models (Maximum stress between face4 and probe ~125.9)

| Final Stress(f: 4_1) | 1        | 2        | 3        |
|----------------------|----------|----------|----------|
| Face 1_              | 128.0934 | 132.4526 | 310.7897 |
| Face 2_              | 141.5271 | 110.5242 | 154.4562 |
| Face 3_              | 30.5185  | 135.3957 | 106.3895 |
| Face 4_              | 1.4960   | 10.2389  | 125.8838 |

## Face 4\_2 vs Models (Maximum stress between face4 and probe ~10.3)

| Final Stress(f: 4_2) | 1        | 2        | 3       |
|----------------------|----------|----------|---------|
| Face 1_              | 123.1523 | 109.2992 | 78.5173 |
| Face 2_              | 134.1656 | 107.8792 | 82.3222 |
| Face 3_              | 27.3322  | 40.2915  | 24.1090 |
| Face 4_              | 10.2389  | 0        | 0       |

## Face 4\_3 vs Models (Maximum stress between face2 and probe ~54)

| Final Stress(f: 4_3) | 1        | 2        | 3       |
|----------------------|----------|----------|---------|
| Face 1_              | 123.1523 | 109.2992 | 78.5173 |
| Face 2_              | 134.1656 | 107.8792 | 82.3222 |
| Face 3_              | 27.33222 | 40.2915  | 24.1090 |
| Face 4_              | 10.2389  | 0        | 0       |

### **Conclusion & Contribution**

Hence, we conclude that the face recognition system works well for majority of the cases with the Generalized Multi Dimensional Scaling Method. If we had the complete facial data points, then we expect the results to be more accurate.

We both have contributed equally to the project, including discussions, code executions, report writing.

#### References

- 1. Bronstein, A. M., Bronstein, M. M. & Kimmel, R. (2005) Int. J. Computer Vision 64, 5–30.
- 2. Zhang, Z. Y. (1994) Int. J. Computer Vision 13, 119–152.
- 3. Elad, A. & Kimmel, R. (2003) IEEE Trans. PAMI 25, 1285–1295.
- 4. Schwartz, E. L. Shaw, A. & Wolfson, E. (1989) IEEE Trans. PAMI 11, 1005–1008.
- 5. Borg, I. & Groenen, P. (1997) Modern Multidimensional Scaling: Theory and Applications (Springer, Berlin).
- 6. Roweis, S. T. & Saul, L.K. (2000) Science 290, 2323–2326. [PubMed]
- 7. Donoho, D. & Grimes, C. (2003) Proc. Natl. Acad. Sci. USA 100, 5591–5596. [PMC free article][PubMed]
- 8. Linial, N., London, E. & Rabinovich, Y. (1995) Combinatorica 15, 333–344.