Logic Reminder

Agnès Beaudry

January 16, 2017

Contents

1	Introduction	1
2	Truth Values	1
3	"Or" and "And"	1
4	Negation	2
5	Conditionals	2
6	Quantifiers	4

1 Introduction

Mathematical language is very rigid and depends on simple logic. This document is designed as a quick reminder of the conventions and basic concepts.

2 Truth Values

Suppose that P is a statement. For example, P = "the dog is brown". Alternatively, we can have statements that depend on an input, like P(x) = "x is brown". Here, P(x) is a property of the input x. Then the truth value of P is true or false depending on whether the statement is correct or wrong. For example, if P = "the Sun never rises", then most likely, the truth value of P is false. If the statement P(x) depends on x, the truth value also depends on x. For example, $P(my \log x)$ could be true while P(x) is false.

3 "Or" and "And"

Now take P and Q any statements. We can make various sentences out of P and Q. For example,

$$P$$
 and Q

This sentence as a whole has a truth value, and this truth value depends on that of P and Q. In fact, the sentence is true only if

 \bullet *P* is true and *Q* is true

In any other case (for example, P is false and Q is true), the sentence itself is false.

Another example is

$$P \text{ or } Q$$

When is this sentence true? In math, "or" is not exclusive. This means, that there are three cases when this sentence can be true.

- ullet If P is true and Q is true.
- If P is true and Q is false.
- \bullet If P is false and Q is true.

I.e., you only need one of the two to be true, but they can also both be true.

4 Negation

Now, negating sentences, (determining there opposite), is extremely important. For example, (not P) is true exactly when P is false and (not P) is false exactly when P is true. But sometimes, we have more elaborate statements to negate.

For example, when is "P or Q" a false sentence? From what we saw above, there is only one way this can be false, i.e.,

 \bullet if P is false and Q is false

That is

not
$$(P \text{ or } Q) = (\text{not } P) \text{ and } (\text{not } Q)$$

Similarly, when is "P and Q" a false sentence? Well, when one of P and Q is false, so

not
$$(P \text{ and } Q) = (\text{not } P) \text{ or } (\text{not } Q).$$

5 Conditionals

Often, we make sentences such as

if P, then Q

This is the same as saying "P implies Q".

When is such a statement true? Well, the requirement is that, Q be true whenever P be true. So, the sentence is true when

- ullet P is true and Q is true
- \bullet P is false and Q is true
- \bullet P is false and Q is false

In the last two cases, since P is false, we ask for nothing! For example,

That's just always true. Whether I'm 10 or not, since 2 is just not odd! So, when is "if P, then Q" false then? Well, there's only one way for this to be false. That is, if

ullet P is true and Q is false

That is,

not (if
$$P$$
, then Q) = P and not Q

Exercise 5.1 (Contrapositive). Check that

if
$$P$$
, then $Q = \text{if (not } Q)$, then (not P)

This is called the *contrapositive*.

Another popular phrasing is

$$P$$
 if and only if Q

This sentence is true exactly when P and Q have the same truth value. That is, when

- \bullet *P* is true and *Q* is true
- \bullet P is false and Q is false

Therefore, we have

not
$$(P \text{ if and only if } Q) = (P \text{ and (not } Q)) \text{ or ((not } P) \text{ and } Q)$$

Exercise 5.2. Check that

$$P$$
 if and only if $Q = (\text{if } P \text{ then } Q)$ and (if Q then P)

and that

$$P$$
 if and only if $Q = (\text{not } P)$ if and only if $(\text{not } Q)$

6 Quantifiers

Finally, we turn to sentence P(x) that depend on the meaning of x. If we plug in a specific x, like x="my dog", then P(x) becomes a precise statement and we can go to the previous sections to discuss its truth value and how it behaves within sentences. However, we often makes statements like:

for all
$$x$$
, $P(x)$

or

there exists
$$x$$
 such that $P(x)$

When are such statements false? Well, "for all x, P(x)" is false if there is at least one x such that P(x) is false. In other words

not (for all
$$x$$
, $P(x)$) = there exists x such that (not $P(x)$)

Similarly, when is "there exists x such that P(x)" false? Well, exactly when all x make P(x) false. That is,

not (there exists x such that
$$P(x)$$
) = for all x, (not $P(x)$)