1.

$\mathbf{a})$

Abbildung 1: Cross correlation function of r_1 and r_2 for $\omega=\pi.$

Abbildung 2: Cross correlation function of r_1 and r_2 for $\omega=10\pi$.

Abbildung 3: Cross correlation function of r_1 and r_2 for $\omega = 50\pi$.

Both, $sin(x)^2$ and $cos(x)^2$ are symmetric (with regards to t=0) hence the cross correlation function has to be symmetric.

For $\omega >> r_0$ the frequency of the cross correlation function increases until it cannot be distinguished from c(t) = 0.

b)

Choosing $r_3(t) = r_0 * cos(\omega * (t - 0.3))^2$ (the function in a) has a peak at 0.5s, so moving r_2 0.3s to the right gives the desired result) gives a peak at t = 200ms:

Abbildung 4: Cross correlation function of r_1 and r_3 for $\omega=\pi.$

2.

a)

Abbildung 5: A parent train with frequency 60Hz (in black) and its child train (in red) with p = 0.1.

The rate of the child train is given by $r_{parent}*p.$

b)

Abbildung 6: Cross correlation function with p=0.7 and no jitter.

Abbildung 7: Cross correlation function with p=0.7 and $\sigma^2=0.02s, \mu=0s.$

Abbildung 8: Cross correlation function with p=0.7 and $\sigma^2=0.5s, \mu=0s.$

Abbildung 9: Cross correlation function with p=0.7 and $\sigma^2=0s, \mu=0.10s.$

Abbilding 10: Cross correlation function with p=0.7 and $\sigma^2=0.02s, \mu=0.10s$.

c) If we choose similar to the $\sigma^2=0s, \mu=0.10s$ case in a) μ to be -0.2s we can move the peak to the right:

Abbildung 11: Cross correlation function of r_1 with p=0.5 and $\sigma^2=0s, \mu=-0.2s$.

Increasing ω has the same effect as in 1c):

Abbildung 12: Cross correlation function of r_1 with $p=0.5,\,\sigma^2=0s,\mu=-0.2s$ and $\omega=50\pi$.