

4190.308: Computer Architecture Final Exam. (Fall 2020)

11:00 – 12:15, December 14, 2020.		Instructor: Jin-So	oo Kim
Curley ID	Q0 (5)	Q4 (50)	
Student ID:	Q1 (30)	Q5 (10)	
Name:(sign)	Q2 (30)	Q6 (40)	
Nickname:	Q3 (55)	Q7 (40)	
(Will be used to post your exam score)	, ,		
0. Which of the following statement is true (i.e., not a fA. Computers at low utilization use little power.	fallacy)? (5 points)		
B. Designing for performance and designing for ene	rgy efficiency are relat	ed goals.	
C. More powerful instructions mean higher perform	nance.		
D. The importance of commercial binary compatibil	ity means successful in	nstruction sets don't change.	
E. Pipelining ideas can be implemented independen	at of technology.		
1. Fill in the blank with a <u>single</u> English word. (5 point	ts each)		
(1) Datacenter managers often care about increasing	() or	bandwidth - the total amount of	of work
done in a given time.			
(2) The efficiency of the () affects both	the instruction count a	and average cycles per instructio	n, since
it determines the translation of the source language in	structions into comput	er instructions.	
(3) Logic components that contain state are also called (inputs and the contents of the internal state.	(), bec	ause their outputs depend on bo	oth their
(4) One approach is to lookup the address of the instru	uction to see if the con	ditional branch was taken the la	ast time
this instruction was executed, and, if so, to begin fetch	ing new instructions fr	om the same place as the last tin	ne. This
technique is called () branch prediction	on.		
(5) () miss is a cache miss that occurs	because the cache, eve	n with full associativity, cannot	contain
all the blocks needed to satisfy the request.			
(6) The segment of the stack containing a procedure	e's saved registers and	l local variables is called a pro	ocedure
() or activation record.			

2. The following table shows the instruction type breakdown of an application (program A) executed on a non-pipelined 1GHz processor. Answer the following questions.

Program The number of instructions executed					СРІ		
	Tiogram	Arithmetic	Load/Store	Branch	Arithmetic	Load/Store	Branch
	A	4000	4000	2000	1	3	2

1)	1) What is the average CPI for the instruction mix of program A? (5 points)	

CPI:			
\ .I I.			

(2) What is the total CPU time to execute the program A? (5 points)

Total CPU time:	(us)

(3) We have obtained a new program B by compiling the same application with an optimizing compiler. The number of instructions executed has been changed as shown in the right table. How much is the program B faster than the original program A? (5 points)

Риодиат	The number	of instruction	s executed
Program	Arithmetic	Load/Store	Branch
В	5000	3000	1000

Program B is _____ times faster than Program A.

(4) The next-generation CPU operates at 2GHz, but it has increased the CPI as shown in the right table. How much does the program B run faster than the program A on the new 2GHz non-pipelined processor? (5 points)

CPI (at 2GHz)				
Arithmetic Load/Store Branch				
1	4	3		

Program B runs _____ times faster than Program A on the new 2GHz processor.

(5) We are about to design a new processor which has the faster clock frequency than 2GHz. However, we find that the <u>CPI of arithmetic operations should be increased from 1 to 2</u> to increase the clock frequency beyond 2GHz as shown in the right table. What should be the clock

CPI (> 2GHz)				
Arithmetic Load/Store Branch				
2	4	3		

frequency of the new processor to double the performance of <u>program B</u> compared to the case with 2GHz processor? (10 points)

Program B runs two times faster on _____GHz processor than Program B on 2GHz processor.

3. The followings show both the C code and the generated 64-bit RISC-V assembly code for the recursive algorithm to find the Fibonacci number, fib(n) = fib(n-1) + fib(n-2) for $n \ge 2$ where fib(0) = fib(1) = 1. Answer the following questions.

```
long fib(long n)
{
   if (n <= 1)
     return 1;
   else
     return fib(n-1) + fib(n-2);
}</pre>
```

```
0000000080000000 <_start>:
    80000000:
                80020137
                             lui
                                     sp, 0x80020
    80000004:
                00300513
                             addi
                                     a0, x0, 4
    80000008:
                008000ef
                             call
                                    fib
    8000000c:
                00100073
                             ebreak
                                         # terminate program
0000000080000010 <fib>:
    80000010:
                00100793
                             addi
                                    a5, x0, 1
                                    a5, a0, L1 <80000020>
    80000014:
                00a7c663
                             blt
    80000018:
                00100513
                             addi
                                    a0, x0, 1
    8000001c:
                00008067
                             ret
L1: 80000020:
                fe810113
                             addi
                                     sp, sp, -24
    80000024:
                00113823
                             sd
                                     ra, 16(sp)
    80000028:
                00813423
                             sd
                                     s0, 8(sp)
    8000002c:
                00913023
                                    s1, 0(sp)
                             sd
    80000030:
                00050413
                             addi
                                     s0, a0, 0
    80000034:
                fff50513
                             addi
                                     a0, a0, -1
    80000038:
                fd9ff0ef
                             call
                                     fib
    8000003c:
                00050493
                             addi
                                     s1, a0, 0
                             addi
    80000040:
                ffe40513
                                     a0, s0, -2
    80000044:
                fcdff0ef
                             call
                                     fib
                00a48533
                             add
    80000048:
                                     a0, s1, a0
    8000004c:
                01013083
                             ld
                                     ra, 16(sp)
    80000050:
                00813403
                             ld
                                     s0, 8(sp)
    80000054:
                00013483
                             ld
                                     s1, 0(sp)
    80000058:
                01810113
                             addi
                                     sp, sp, 24
    8000005c:
                00008067
                             ret
```

- (1) How many times the instruction at the memory address 0x80000010 is executed? (5 points)
- (2) How many times the instruction at the memory address 0x80000018 is executed? (5 points)

(3) How many times the instruction at the memory address 0x80000058 is executed? (5 points)

(4) Consider a situation when the control reaches the address 0x80000018 for the first time as a result of the call to the function fib() with the argument 4. Let us assume that the value of the sp register when the CPU is about to execute the addi instruction at 0x80000018 is Z. What is the value of Z? Also, show the contents of the following memory locations. Assume that all the memory contents and registers are initialized to zero before running the program. Also note that the sp register was initialized to 0x80020000 at the beginning of the program. Write "UNKNOWN" if you don't have enough information for the value. (40 points)

		Stack memory
Value of Z:0x	Z ->	
	Z + 8 ->	
	Z + 16 ->	
	Z + 24 ->	
	Z + 32 ->	
Stack grows from high addresses towards	Z + 40 ->	
low addresses	Z + 48 ->	
	Z + 56 ->	
	Z + 64 ->	

RISC-V R	V6	4I Integer Instruc	tions	1b	I	Load Byte	$R[rd] = $ {56'bM[](7),M[R[rs1]+imm](7:0)}
				lbu	1	Load Byte Unsigned	$R[rd] = \{56'b0,M[R[rs1]+imm](7:0)\}$
				ld	I	Load Doubleword	R[rd] = M[R[rs1] + imm](63:0)
MNEMONIC	FMT	NAME	DESCRIPTION (in Verilog)	lh	I	Load Halfword	R[rd] =
add,addw	R	ADD (Word)	R[rd] = R[rs1] + R[rs2]				{48'bM[](15),M[R[rs1]+imm](15:0)}
addi,addiw	I	ADD Immediate (Word)	R[rd] = R[rs1] + imm	lhu	I	Load Halfword Unsigned	$R[rd] = \{48'b0,M[R[rs1]+imm](15:0)\}$
and	R	AND	R[rd] = R[rs1] & R[rs2]	lui	U	Load Upper Immediate	$R[rd] = \{32b'imm < 31>, imm, 12'b0\}$
andi	I	AND Immediate	R[rd] = R[rs1] & imm	1w	I	Load Word	R[rd] =
auipc	U	Add Upper Immediate to PC	$R[rd] = PC + \{imm, 12'b0\}$				{32'bM[](31),M[R[rs1]+imm](31:0)}
beq	SB	Branch EQual	if(R[rs1] = R[rs2)	1wu	I	Load Word Unsigned	$R[rd] = \{32'b0, M[R[rs1] + imm](31:0)\}$
			PC=PC+{imm,1b'0}	or	R	OR	$R[rd] = R[rs1] \mid R[rs2]$
bge	SB	Branch Greater than or Equal	if(R[rs1]>=R[rs2) PC=PC+{imm,1b'0}	ori	I	OR Immediate	$R[rd] = R[rs1] \mid imm$
bgeu	SB	Branch ≥ Unsigned	if(R[rs1]>=R[rs2)	da	S	Store Byte	M[R[rs1]+imm](7:0) = R[rs2](7:0)
C PERSONAL PROPERTY OF THE PERSON PROPERTY PROPERTY OF THE PERSON PROPERTY PROPERTY PROPERT			PC=PC+{imm,1b'0}	sd	S	Store Doubleword	M[R[rs1]+imm](63:0) = R[rs2](63:0)
blt	SB	Branch Less Than	$if(R[rs1] < R[rs2) PC = PC + \{imm, 1b'0\}$	sh	S	Store Halfword	M[R[rs1]+imm](15:0) = R[rs2](15:0)
bltu	SB	Branch Less Than Unsigned	$if(R[rs1] < R[rs2) PC = PC + \{imm, 1b'0\}$	sll,sllw	R	Shift Left (Word)	R[rd] = R[rs1] << R[rs2]
bne	SB	Branch Not Equal	if(R[rs1]!=R[rs2) PC=PC+{imm,1b'0}	slli,slliw	1	Shift Left Immediate (Word)	$R[rd] = R[rs1] \ll imm$
csrrc	I	Cont./Stat.RegRead&Clear	$R[rd] = CSR; CSR = CSR \& \sim R[rs1]$	slt	R	Set Less Than	R[rd] = (R[rs1] < R[rs2]) ? 1 : 0
csrrci	I	Cont./Stat.RegRead&Clear	$R[rd] = CSR;CSR = CSR \& \sim imm$	slti	I	Set Less Than Immediate	R[rd] = (R[rs1] < imm) ? 1 : 0
		Imm		sltiu	I	Set < Immediate Unsigned	R[rd] = (R[rs1] < imm) ? 1 : 0
csrrs	1	Cont./Stat.RegRead&Set	$R[rd] = CSR; CSR = CSR \mid R[rs1]$	sltu	R	Set Less Than Unsigned	R[rd] = (R[rs1] < R[rs2]) ? 1 : 0
csrrsi	1	Cont./Stat.RegRead&Set Imm	$R[rd] = CSR; CSR = CSR \mid imm$	sra, sraw	R	Shift Right Arithmetic (Word)	R[rd] = R[rs1] >> R[rs2]
CSTTW	I	Cont./Stat.RegRead&Write	R[rd] = CSR; CSR = R[rs1]	srai, sraiw	T	Shift Right Arith Imm	R[rd] = R[rs1] >> imm
csrrwi	I	Cont./Stat.Reg Read&Write Imm	R[rd] = CSR; CSR = imm	11.23		(Word)	
ebreak	I	Environment BREAK	Transfer control to debugger	srl,srlw	R	Shift Right (Word)	R[rd] = R[rs1] >> R[rs2]
ecall	I	Environment CALL	Transfer control to operating system	srli,srliw	1	Shift Right Immediate	R[rd] = R[rs1] >> imm
fence	I	Synch thread	Synchronizes threads	016/200 C 00002000		(Word)	AND ADDRESS OF THE AD
fence.i	I	Synch Instr & Data	Synchronizes writes to instruction	sub, subw	R	SUBtract (Word)	R[rd] = R[rs1] - R[rs2]
			stream	SW	S	Store Word	M[R[rs1]+imm](31:0) = R[rs2](31:0)
jal	UJ	Jump & Link	$R[rd] = PC+4; PC = PC + \{imm, 1b'0\}$	xor	R	XOR	$R[rd] = R[rs1] ^ R[rs2]$
jalr	I	Jump & Link Register	R[rd] = PC+4; $PC = R[rs1]+imm$	xori	I	XOR Immediate	$R[rd] = R[rs1] \land imm$

4. Suppose we have a 32-bit RISC-V processor with the following L1 data cache configuration. <u>Memory address is 32-bit long</u>. Answer the following questions.

Cache size (the amount of data that can be cached excluding valid bits and tag bits)	512 bytes
Cache block size	16 bytes
Cache associativity	4-way set associative
Cache replacement policy	LRU
Write policy	Write-back/Write-allocate

S	ets
S	ets

(2) What is the size of the tag field? (5 points)

		bi	ts

(3) We run the C code shown in the right on this processor. Fill in the table with the total number of load/store instructions executed and the total number of cache misses when we call the function f() with the matrices A, B, and C varying the value of n to 1, 2, 4, and 8. (40 points)

Assume the followings:

- (a) The only memory accesses are to the array **A**, **B**, and **C**.
- (b) **A**, **B**, and **C** are all 8 x 8 matrices of integers.
- (c) Array A starts at memory address 0x80010000.
- (d) Array ${f B}$ starts at memory address ${f 0x80014000}$.
- (e) Array **C** starts at memory address **0**x**80018000**.
- (f) In the inner loop, **b**[][] is read before **c**[][].
- (g) Cache is initially empty.
- (h) Virtual memory is not supported.
- (i) sizeof(int) == 4

int f(int a[8][8], int b[8][8], int c[8][8], int n)
int i, j, k, r;
<pre>for (i = 0; i < n; i++) { for (k = 0; k < n; k++) { r = a[i][k]; for (j = 0; j < n; j++) c[i][j] += r + b[k][j]; }</pre>
}

	Total number of load/store instructions executed	Total number of cache misses
f(A,B,C,1)		
f(A,B,C,2)		
f(A,B,C,4)		
f(A,B,C,8)		

- 5. Consider the following RISC-V assembly program. Assume that the CPU terminates the program when it meets the ebreak instruction.
- (1) What is the value of the a0 register when this program is terminated? (5 points)

(2) How many instructions are executed before the program is terminated (including the ebreak instruction)? (5 points)

_star	t:			
S1 :	addi	a0,	x0,	24
S2:	addi	a1,	x0,	6
S3:	jal	ra,	g	
S4:	ebreak			
g:				
S5 :	beq	a1,	a0,	L10
L3:				
S6:	bge	a1,	a0,	L4
S7:	sub	a0,	a0,	a1
S8:	bne	a1,	a0,	L3
S9:	jalr	x0,	0(r	a)
L10:				
S10:	jalr	x0,	0(r	a)
L4:				
S11:	sub	a1,	a1,	a0
S12:	bne	a1,	a0,	L3
S13:	jal	х0,	L10	

(For problems 6 – 7)

We consider the following pipelined implementations of the RISC-V processor. (Note that the stage names are simplified.)

Processor name	Mechanisms for data hazards	Mechanisms for control hazards	Remarks
SNUCOM-I 5-stage: F(IF)-D(ID)-E(EX)- M(MM)-W(WB)	Implemented.	 Branch outcome and the target address are calculated in E stage. Always-not-taken branch prediction is used (including jal and jalr) 	This processor behaves the same as the snurisc5 processor in Project #4.
SNUCOM-II 6-stage: F(IF)-D(ID)-R(RR)- E(EX)-M(MM)-W(WB)	 Data forwarding is fully implemented. The same register can 	 Branch outcome and the target address are calculated in E stage. Always-taken branch prediction is used (including jal instruction) jalr instruction is treated as in SNUCOM-I. 	This processor behaves the same as the snurisc6 processor in Project #4.

In the following questions 6 and 7, you need to simulate the execution until the program is terminated by the ebreak instruction. Assume that there is no cache miss during the execution. You should minimize the number of stalled cycles. For any cancelled or bubbled stage, mark it with "-".

How to mark the table: For each cycle, specify the instruction ($S1 \sim S13$ in the above box) fetched in that cycle in the leftmost column. If the entry (i, c) is marked with 'X', it represents that the instruction i has executed the 'X' stage of the pipeline in the cycle c. If an instruction is stalled for 1 cycle, then write the name of the stalled stage twice for current and next cycle. In a given cycle, the same stage should NOT appear more than once.

Example: S6: F D D E M W # instruction S6 is stalled for one cycles in the D stage

S6: F - - - # instruction S6 turns into bubble after the F stage

6. Complete the pipeline diagram below (instructions on the left, cycles on the top) when the program in Q5 is executed on the SNUCOM-I processor. (40 points)

	D I	E I	M	W						13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
F	F																																											
	+	\perp							+																																			
						-		+																																				
						-			+																																			

Inst.	1	2	3	4	5	6	7	7	8	9	10	11	1 12	2 1	13	14	15	16	17	18	19	20	21	. 2	2 2	3 2	24	25	26	27	28	29	30	3	1 3	2 3	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
																																																			<u> </u>
																																																			<u> </u>
								-					-																				-	-																	_
			1			-		-					+									-												-	-	+															
																																																			<u> </u>
																																																			<u> </u>
								-																																											<u> </u>

7. Complete the pipeline diagram below (instructions on the left, cycles on the top) when the program in Q5 is executed on the SNUCOM-II processor. (40 points)

Inst.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	2 23	24	1 25	26	5 27	7 2	8 2	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
S1	F	D	R	Е	M	W																																										
S2		F																																														
																																															<u> </u>	
																																															<u></u>	
																																															<u></u>	
																																															<u></u>	
																																															<u></u>	
																																															<u></u>	
																																															<u> </u>	
																																															<u></u>	
																																															<u></u>	
																																															<u></u>	

Inst.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
																																														<u> </u>	Ш
																																														<u> </u>	
																																														<u> </u>	
																																															$\vdash \vdash$
																																															$\vdash \vdash$
																																															\vdash
																																															\vdash
																																															H
																																															Ш
																																														<u> </u>	Ш
																											-																			<u> </u>	
																											-																			<u> </u>	
										-			-														-																			<u> </u>	$\vdash \vdash$
																																														<u> </u>	