TRIGONOMÉTRIE

1. MESURES EN RADIANS D'UN ANGLE ORIENTÉ

Dans tout le chapitre, le plan \mathscr{P} est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

DÉFINITION

Soit I le point de coordonnées (1 ;0) et d la droite parallèle à l'axe des ordonnées passant par I.

A tout réel x on associe le point N de la droite d d'ordonnée x puis le point M obtenu en « enroulant » la droite d sur le cercle trigonométrique \mathcal{D} (voir figure ci-dessous).

On dit que x est une **mesure en radians** de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OM})$

Mesures d'un angle orienté

REMARQUE

• Une infinités de points de la droite d se superposent à M par enroulement (en faisant plusieurs tours). Chaque angle possède une infinité de mesures qui diffèrent entre elles d'un multiple de 2π . Si x est une mesure d'un angle, les autres mesures sont $x+2\pi$, $x+4\pi$, etc. et $x-2\pi$, $x-4\pi$, etc.

Ces différentes mesures s'écrivent $x + 2k\pi$ avec $k \in \mathbb{Z}$

• On note de la même façon (\vec{u}, \vec{v}) l'angle orienté de \vec{u} vers \vec{v} et la mesure en radians de cet angle.

PROPRIÉTÉ ET DÉFINITION (MESURE PRINCIPALE)

Tout angle orienté (\vec{u}, \vec{v}) possède une unique mesure dans l'intervalle $]-\pi;\pi]$.

Cette mesure s'appelle **la mesure principale** de l'angle (\vec{u}, \vec{v}) .

EXEMPLE

Soit un angle dont une mesure est $-\frac{5\pi}{2}$. Comme $-\frac{5\pi}{2} \notin]-\pi;\pi]$, ce n'est pas la mesure principale. Comme : $-\frac{5\pi}{2} = -\frac{\pi}{2} - \frac{4\pi}{2} = -\frac{\pi}{2} - 2\pi$ et $-\frac{\pi}{2} \in]-\pi;\pi]$, $-\frac{\pi}{2}$ est la mesure principale de cet angle.

MESURES D'ANGLES À CONNAITRE

Mesures d'angles remarquables

2. SINUS ET COSINUS - ÉQUATIONS TRIGONOMÉTRIQUES

DÉFINITION

Soit M un point du cercle trigonométrique et x une mesure de l'angle \widehat{IOM} .

On appelle **cosinus** de x, noté $\cos x$ l'abscisse du point M.

On appelle **sinus** de x, noté $\sin x$ l'ordonnée du point M

Sinus et cosinus

REMARQUES

Pour tout réel *x* :

- $-1 \leqslant \cos x \leqslant 1$
- $-1 \leqslant \sin x \leqslant 1$
- Comme M appartient au cercle trigonométrique, OM = 1 donc $OM^2 = 1 = 1$ donc : $\sin^2 x + \cos^2 x = 1$ ($\sin^2 x$ étant une écriture abrégée pour ($\sin x$)²)

VALEURS DE SINUS ET DE COSINUS À RETENIR

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	х	$-\frac{\pi}{6}$	$-\frac{\pi}{4}$	$-\frac{\pi}{3}$
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$\cos x$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	sin x	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$

PROPRIÉTÉS

Pour tout réel x:

- $\sin(-x) = -\sin(x)$
- $\cos(-x) = \cos(x)$
- $\sin(\pi + x) = -\sin(x)$
- $\cos(\pi + x) = -\cos(x)$

Angles x, -x et $\pi + x$

FORMULES D'ADDITION

Pour tous réels *a* et *b* :

- $\cos(a+b) = \cos(a)\cos(b) \sin(a)\sin(b)$
- $\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$

THÉORÈME

Soit a un réel fixé.

Les solutions de l'équation cos(x) = cos(a) sont les réels de la forme :

$$a + 2k\pi$$
 ou $-a + 2k\pi$ où k décrit \mathbb{Z}

EXEMPLE

On cherche à résoudre l'équation cos(x) = 0

On sait que $\cos\left(\frac{\pi}{2}\right) = 0$ ce qui fournit une solution de l'équation mais permet aussi d'écrire l'équation sous la forme $\cos(x) = \cos\left(\frac{\pi}{2}\right)$

D'après le théorème ci-dessus les solutions sont de la forme :

$$x = \frac{\pi}{2} + 2k\pi$$
 ou $x = -\frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$

THÉORÈME

Soit a un réel fixé.

Les solutions de l'équation $\sin(x) = \sin(a)$ sont les réels de la forme :

 $a + 2k\pi$ ou $\pi - a + 2k\pi$ où k décrit \mathbb{Z}