

Figure 7-5. A single Decision Tree versus a bagging ensemble of 500 trees

Bootstrapping introduces a bit more diversity in the subsets that each predictor is trained on, so bagging ends up with a slightly higher bias than pasting, but this also means that predictors end up being less correlated so the ensemble's variance is reduced. Overall, bagging often results in better models, which explains why it is generally preferred. However, if you have spare time and CPU power you can use cross-validation to evaluate both bagging and pasting and select the one that works best.

Out-of-Bag Evaluation

With bagging, some instances may be sampled several times for any given predictor, while others may not be sampled at all. By default a BaggingClassifier samples m training instances with replacement (bootstrap=True), where m is the size of the training set. This means that only about 63% of the training instances are sampled on average for each predictor.⁶ The remaining 37% of the training instances that are not sampled are called *out-of-bag* (oob) instances. Note that they are not the same 37% for all predictors.

Since a predictor never sees the oob instances during training, it can be evaluated on these instances, without the need for a separate validation set or cross-validation. You can evaluate the ensemble itself by averaging out the oob evaluations of each predictor.

In Scikit-Learn, you can set oob_score=True when creating a BaggingClassifier to request an automatic oob evaluation after training. The following code demonstrates this. The resulting evaluation score is available through the oob_score_ variable:

```
>>> bag_clf = BaggingClassifier(
>>> DecisionTreeClassifier(), n_estimators=500,
>>> bootstrap=True, n_jobs=-1, oob_score=True)
```

⁶ As m grows, this ratio approaches $1 - \exp(-1) \approx 63.212\%$.

```
Download from finelybook www.finelybook.com
>>> bag_clf.fit(X_train, y_train)
>>> bag clf.oob score
0.9306666666666664
```

According to this oob evaluation, this BaggingClassifier is likely to achieve about 93.1% accuracy on the test set. Let's verify this:

```
>>> from sklearn.metrics import accuracy score
>>> y_pred = bag_clf.predict(X_test)
>>> accuracy_score(y_test, y_pred)
0.93600000000000005
```

We get 93.6% accuracy on the test set—close enough!

The oob decision function for each training instance is also available through the oob_decision_function_ variable. In this case (since the base estimator has a pre dict proba() method) the decision function returns the class probabilities for each training instance. For example, the oob evaluation estimates that the second training instance has a 60.6% probability of belonging to the positive class (and 39.4% of belonging to the positive class):

```
>>> bag_clf.oob_decision_function_
array([[0., 1.]
     [ 0.60588235, 0.39411765],
     [ 1. , 0.
     [ 1. , 0.
     [ 0.48958333, 0.51041667]])
```

Random Patches and Random Subspaces

The BaggingClassifier class supports sampling the features as well. This is controlled by two hyperparameters: max_features and bootstrap_features. They work the same way as max samples and bootstrap, but for feature sampling instead of instance sampling. Thus, each predictor will be trained on a random subset of the input features.

This is particularly useful when you are dealing with high-dimensional inputs (such as images). Sampling both training instances and features is called the Random Patches method. Keeping all training instances (i.e., bootstrap=False and max_sam ples=1.0) but sampling features (i.e., bootstrap_features=True and/or max_fea tures smaller than 1.0) is called the *Random Subspaces* method.8

^{7 &}quot;Ensembles on Random Patches," G. Louppe and P. Geurts (2012).

^{8 &}quot;The random subspace method for constructing decision forests," Tin Kam Ho (1998).