Unsupervised Task Discovery in Multi-Task Acoustic Modeling

Josh Meyer*

* University of Arizona

Abstract

- Multi-Task Learning works (esp. in low-resource)
- ► However, tasks are hard to make
- ► Better to discover tasks automatically
- Experiment with k-means on MFCCs
- Initial results

Figure 1: Multi-Task Learning Architecture

1. Background

- Multi-Task Learning in Acoustic Modeling
 - Multilingual
 - new language == new task
 - Monolingual
 - new linguistic encoding == new task
 - Monophones vs. Triphones

Figure 2: Label Correspondance of Decision Tree / DNN

2. Alignment

- ► Feature Extraction
 - ▶ 13 PLP features, 25ms Hamming windows, 10ms shift, 16 frame left-context & 12 frame right-context, CMVN
- GMM Alignment
 - Monophones: 1,000 Gaussians, 25 iterations EM // Triphones: 2,000 leaves & 5,000 Gaussians, 25 iterations EM

Figure 3: GMM-aligned training examples

3. Clustering

- k-means Clustering
 - A set number of clusters is discovered via TensorFlow's standard k-means clustering.

Figure 4: k-means clustered training examples

4. Mapping Triphone States \rightarrow Clusters

- ightharpoonup Mapping triphone states ightharpoonup k-means clusters
 - ▶ All training examples aligned to triphone state are mapped to most common k-means cluster.

Figure 5: GMM-aligned training examples

5. DNN Training

- DNN Acoustic model training
 - ▶ 11 hidden layers, *ReLU* activations
 - ▷ 5-epochs
- ho $\alpha_{initial} = 0.0015 \rightarrow \alpha_{final} = 0.00015$
- ▶ Each task has penultimate + ultimate output layer

6. Cluster Contents

- ► 1024 clusters in TF
- ▶ 672 leaves in Kaldi
- ▶ 185 new labels after mapping
- ▶ 123 / 185 are interpretable
- ▶ 101 of new labels contain mixed phonemes
- ▶ 39 / 101 contained either only vowels or only consonants
- ▶ 84 of new labels contain one phoneme
 - ▶ 9 / 84 contained more than one triphone of phoneme

Table 1: Discovered intelligible Phoneme Clusters

Vowels		Consonants		
a j	a u	k r	g n m	
ао	a ih	kр	s sh ch	
e j	e ih	r ng	tksp	
e y	o u	d ch	m ng	
u ih y	u ih	t k	t k h	
i e y	o ih	d z	tks	
a e oe j ih	j ih	Ιz	t ch d	
a ih o u y		nр	t k zh b	
			t g b s sh z zh	

7. Training Trends

- Training Accuracy
 - Fewer clusters in AUX == bigger influence on MAIN
- Validation Accuracy
 - \triangleright Fewer clusters in AUX == bigger influence on MAIN

8. Testing Setup

- \triangleright k-folds cross-validation (k == 6)
 - > 511 utterances for train
 - ▶ 100 utterances for test

9. Results: Traditional Weighting Scheme

- $\blacktriangleright \mathsf{Loss} = ((1 \alpha) * \mathit{MAIN} + \alpha * \mathit{AUX})$
- ► WER not better than Baseline

Table 2: WER% for Traditional Weighting Scheme

	$\alpha = 0.1$	$\alpha = 0.2$	$\alpha = 0.3$
Single Task Baseline		$57.10 \ \pm 3.25$	
+ 256 k-means cluster targets	$57.71 \ \pm 1.59$	$57.27 \ \pm 1.60$	$57.89 \ \pm 1.29$
+ 1024 k-means cluster targets	57.74 ± 3.17	57.08 ±2.62	$57.77 \ \pm 0.79$
+ 4096 k-means cluster targets	57.13 ± 2.45	$57.76 \ \pm 1.61$	$57.72 \pm\! 0.64$

10. Results: Simple Weighting Scheme

- \blacktriangleright Loss = $(MAIN + \alpha * AUX)$
- WER better than Traditional Loss
- ► WER marginally better than Baseline (in some cases)

Table 3: WER% for Simple Weighting Scheme

	$\alpha = 0.1$	$\alpha = 0.2$	$\alpha = 0.3$
Single Task Baseline		57.10 ± 3.25	
+ 256 k-means cluster targets	$57.28 \ \pm 2.09$	$57.92\ \pm1.78$	$56.96 \pm .70$
+ 1024 k-means cluster targets	$57.58 \ \pm 2.68$	$\textbf{56.86} \pm 1.11$	$57.19\ \pm1.31$
+ 4096 k-means cluster targets	$57.78 \ \pm 2.36$	$57.51\ \pm 2.65$	57.03 ±1.48

11. Acknowledgements

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1746060). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.