第八章 假设检验

第一节 假设检验的基本概念 第二节 单个正态总体的假设检验

- × 第三节 两个正态总体的假设检验
- × 第四节 分布拟合检验简介

第八章 假设检验

第一节 假设检验的基本概念

- 假设检验的基本思想和依据
- 假设检验的两类错误
- 假设检验的具体做法
- 假设检验的步骤

一. 假设检验的基本思想

设总体X的分布中含有未知参数 θ

检验假设: H_0 : $\theta = \theta_0$ 其中 θ_0 是某个已知常数

抽取容量为n的样本 X_1, X_2, \ldots, X_n ,

得到的样本值: x_1, x_2, \ldots, x_n ,

构造统计量: $g(X_1, X_2, ..., X_n)$,

得到观测值: $g(x_1, x_2, \ldots, x_n)$,

对假设 H_0 进行检验,判断 H_0 是否成立,

从而确定是接受 H_0 还是拒绝 H_0

二. 假设检验的两类错误

- 1. 第一类错误 (弃真): 如果 H_0 是正确的,但却被错误地否定了。
- 2. 第二类错误 (取伪): 如果 H_0 是不正确的,但却被错误地接受了。

若设 犯两类错误的概率分别为:

$$P\{拒绝H_0|H_0为真\}=\alpha$$

$$P\{$$
接受 $H_0|H_0$ 不真 $\}=\beta$

则显著性水平 α 为犯第一类错误的概率。

主: 两类错误是互相关联的, 当样本容量 n 固定时, 一类错误概率的减少必导致另一类错误概率的增加。

要同时降低两类错误的概率 α , β , 则需要增加 样本容量 n

在实际问题中,通常的做法是:

先对犯第一类错误(弃真)的概率加以控制,再考虑使犯第二类错误(取伪)的概率尽可能的小。

引例

饮料灌装质量抽检

在正常情况下,饮料某车间使用灌装机生产的饮料容量 服从N(500,1),某天计量检验人员随机抽取10瓶。算得平

均容量499.3毫升,问这天机器是否正常。在实际问题中,

解:设: X ——这天灌装的饮料容量

$$X \sim N(\mu, 1)$$

$$H_0: \mu = \mu_0 = 500$$
 小路正常

小器正常 称 H_0 为原假设(零假设),

$$H_1: \mu \neq \mu_0$$

机器故障 称 H_1 为备择假设(对立假设).

用样本(值)回答: 接受 H_0 ,还是拒绝 H_0 ?

由偏差 $|\bar{X}-\mu_0|$ 来判断 H_0 是否成立.

$$|\bar{X} - \mu_0|$$
 较小 —— 认为 H_0 成立;

$$\bar{X} - \mu_0$$
 较大 —— 认为 H_0 不成立

往往把不轻易

否定的命题作

为原假设.

解决的方法: 显著性水平 α 检验统计量为:

$$\alpha = P\{拒绝H_0 | H_0 为 真\}$$

$$= P\{\left|\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}\right| > k\} \implies k = z_{\alpha/2}$$

故取拒绝域
$$C$$
为: $|U| > z_{\alpha/2}$ 即 $\left(-\infty, -z_{\frac{\alpha}{2}}\right) \cup \left(z_{\frac{\alpha}{2}}, \infty\right)$

引例

饮料灌装质量抽检

在正常情况下, 饮料某车间使用灌装机生产的饮料容量 服从N(500,1), 某天计量检验人员随机抽取10瓶, 算得平均容量499.3毫升, 问这天机器是否正常? 给定 $\alpha=0.05$,

解: $H_0: \mu = \mu_0 = 500$, $H_1: \mu \neq \mu_0$

故拒绝 H, 即这天机器工作不正常.

检验统计量
$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$
 H_0 真时, $Z \sim N(0,1)$, H_0 的拒绝域 $C: |Z| \geq z_{\alpha/2} = z_{0.025} = 1.96$ $Z = \frac{499.3 - 500}{1/\sqrt{10}} = -2.21 \in C$,

例2. 设某异常区磁场强度 X 服从正态分布 $N(\mu,\sigma^2)$ 由以前观察知道 $\mu_0 = 56$, $\sigma_0 = 20$,现有一台新型号的仪器,用它对该区进行磁测,抽取了 **41**个点,其样本均值 $\overline{x} = 61.1$

问: 此仪器测出的结果是否符合要求?

解:第一步:

提出假设: H_0 : $\mu = \mu_0 = 56$ (符合要求)

 H_1 : $\mu \neq \mu_0 = 56$ (不符合要求)

第二步:

取检验统计量为: $U = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0,1)$

第一步: 提出假设: H_0 : $\mu = \mu_0 = 56$ H_1 : $\mu \neq \mu_0 = 56$

第二步: 取检验统计量为: $U = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0,1)$

第三步: 给定显著性水平 $\alpha = 0.05$ 求出拒绝域。

$$P\left\{\left|\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\right| > k\right\} = \alpha \longrightarrow C: \left|\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\right| > k = z_{\alpha/2} = 1.96$$

查正态分布表: $k = z_{\frac{0.05}{2}} = z_{0.025} = 1.96 \ (-\infty, -1.96) \cup (1.96, \infty)$

第四步: 计算出统计量U的实测值:

$$u = \left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| = \left| \frac{61.1 - 56}{20 / \sqrt{41}} \right| = 1.632 < 1.96$$

结论:这台仪器测出的结果是符合要求的。

故不拒绝 H_0 ,即接受 H_0

五. 假设检验的步骤

- 1. 根据实际问题要求,提出原假设 H_0 及备择假设 H_1
- 2. 假设H₀为真时,确定检验统计量及其分布
- 3. 按 P(拒绝 $H_0|H_0$ 为真 $)=\alpha$,求出拒绝域
- 4. 取样本,根据样本观察值确定接受 H_0 还是拒绝 H_0
- 5. 给出结论

第八章 假设检验

第二节 单个正态总体的假设检验

- 单个正态总体均值的检验
- 单个正态总体方差的检验

设总体 $X \sim N(\mu, \sigma^2)$

 X_1, X_2, \dots, X_n 是总体X的一个样本

 x_1, x_2, \dots, x_n 为样本值

待作

- 1. σ^2 已知时,对 μ 的检验
- 2. σ^2 未知时, 对 μ 的检验
- 3. 对 σ^2 的检验

. 单个正态总体 $N(\mu,\sigma^2)$ 均值 μ 的检验

 σ^2 已知,关于 μ 的检验(U检验)

检验统计量
$$U = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

 H_0 真时, $U \frown N(0,1)$

 $\boldsymbol{H_0}$

$$\mu = \mu_0$$

$$\mu \neq \mu_0 \ (\overline{X})$$

$$\left(-\infty,-z_{rac{lpha}{2}}
ight) igcup \left(z_{rac{lpha}{2}},+\infty
ight)$$

$$\mu \leq \mu_0$$

$$\mu = \mu_0$$

$$\mu > \mu_0$$
 (右)

$$(z_{\alpha},+\infty)$$

$$\mu \geq \mu_0$$

$$\mu = \mu_0$$

$$\mu < \mu_0$$
 (左)

$$(-\infty,-z_{\alpha})$$

例1. 已知某钢铁厂的铁水含碳量在正常情况下服从

正态分布 $N(4.55, 0.108^2)$, 现又测了5 炉铁水,

其含碳量分别为: 4.28, 4.4, 4.42, 4.35, 4.37

问: 当 σ ²没有改变时,现在生产是否正常? ($\alpha = 0.05$)

解: 5 炉铁水含碳量 $X \sim N(\mu, 0.108^2)$

假设: H_0 : $\mu = \mu_0 = 4.55$, H_1 : $\mu \neq \mu_0 = 4.55$ σ^2 已知,

取统计量:
$$U = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0,1)$$
 $P\{\left|\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}\right| > k\} = \alpha$

拒绝域:
$$\left(-\infty,-z_{\frac{\alpha}{2}}\right)\cup\left(z_{\frac{\alpha}{2}},+\infty\right)$$
 即 $\left(-\infty,-1.96\right)\cup\left(1.96,+\infty\right)$

计算观察值:

拒绝 H_0 , 可认为现在的生产是不正常的。

4

概率统计8

例2 在正常情况下,袋装糖的重量(公斤)服从

 $N(0.5, 0.015^2)$. 某天随机抽取9袋糖, 算得

平均重量为 $\bar{x} = 0.511$, 问这天机器是否正常? ($\alpha = 0.05$)

解 这天袋装糖的重量 $X \sim N(\mu, 0.015^2)$

假设: $H_0: \mu = \mu_0 = 0.5$ $H_1: \mu \neq \mu_0$

取统计量

$$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$

拒绝域: $\left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| > z_{\alpha/2} = 1.96$

即 $(-\infty, -1.96)$ $\cup (1.96, +\infty)$

X n = 9, $\bar{x} = 0.511$, $\sigma = 0.015$, $\mu_0 = 0.5$

算得
$$\left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| = 2.2 > 1.96$$
 故拒绝 H_0

即认为这天机 器工作不正常. 例3 某编织物强力指标 X 的均值 $\mu_0 = 21$ 公斤。 改进工艺后生产了一批编织物,今从中取 30 件,测得 $\bar{x} = 21.55$ 公斤。 假设强力 X 指标服从正态分布 $N(\mu, \sigma^2)$,且已知 $\sigma = 1.2$ 公斤问: 在显著性水平 $\alpha = 0.01$ 下,新生产编织物比过去的编织物强力是否有提高?

解: 提出假设: $H_0: \mu \le 21 \Leftrightarrow H_1: \mu > 21$

取统计量: $U = \frac{X-21}{\sigma/\sqrt{n}} \sim N(0,1)$ $z_{0.01} = 2.33$

拒绝域: $(z_{\alpha}, +\infty) = (2.33, +\infty)$ 或 $\frac{\overline{X} - 21}{\sigma/\sqrt{n}} > z_{\alpha} = 2.33$

计算观察值: u = 2.51 > 2.33

故拒绝H0,认为新生产编织物比过去强力有提高。

 $2 \sigma^2$ 未知时,对 μ 的检验—— t 检验法

检验统计量
$$T = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$$
 H_0 真时, $T \sim t(n-1)$

$\underline{\hspace{1cm}}_{0}$	\boldsymbol{H}_1	
$\mu = \mu_0$	$\mu \neq \mu_0 \ (\overline{XX})$	$\left(-\infty,-t_{\frac{\alpha}{2}}(n-1)\right) \cup \left(t_{\frac{\alpha}{2}}(n-1)\right)$
$\mu \leq \mu_0 \ \mu = \mu_0$	$\mu > \mu_0$ (右)	$(t_{\alpha}(n-1),+\infty)$
$\mu \ge \mu_0$ $\mu = \mu_0$	$\mu < \mu_0$ (左)	$\left(-\infty,-t_{\alpha}(n-1)\right)$

例4 设某次考试成绩服从正态分布. 现从中抽取36位 考生成绩, 算得平均成绩为66.5分, 标准差为15分. 问能否认为这次考试的平均成绩为70分? (α = 0.05)

 $egin{aligned}
km & ext{总体}X \longrightarrow ext{这次考试成绩} \\
& X \sim N \left(\mu, \sigma^2 \right) \qquad \sigma^2 \quad \text{未知}
\end{aligned}$

假设: H_0 : $\mu = \mu_0 = 70$ H_1 : $\mu \neq \mu_0 = 70$

检验统计量
$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} = \frac{\bar{X} - 70}{S/6}$$
 $\sim t(n-1) = t(35)$ 拒绝域 $\left| \frac{\bar{X} - 70}{S/6} \right| > t_{\alpha/2}(35)$

1

例4 设某次考试成绩服从正态分布. 现从中抽取36位 考生成绩, 算得平均成绩为66.5分, 标准差为15分.

问能否认为这次考试的平均成绩为70分? $(\alpha = 0.05)$

解

$$H_0$$
的拒绝域 $: t_{\underline{\alpha}}(35) = t_{0.025}(35) = 2.0301$

$$\left|\frac{\overline{X}-70}{S/6}\right| > t_{\alpha/2}(35)=2.0301$$
 或 $C=(-\infty, -2.0301)\cup(2.0301, +\infty)$

计算观察值:

异观条值:
又
$$\overline{x} = 66.5$$
, $s = 15$ $\longrightarrow t = \left| \frac{\overline{x} - 70}{\frac{s}{6}} \right| = 1.4 < 2.0301 \notin C$

所以接受 H_0 ,认为这次考试的平均成绩为70分.

例5 某库房要验收大批同类物质,根据以往的经验,这批物质每件的重量服从正态分布。按规定这批物质平均每件重量应为 100 公斤,今抽取10 件,测得其均值 $\bar{x} = 99.6$, $s^2 = 4.044$

问:能否接受这批物质? $(\alpha = 0.05)$

解: 这批物质每件重量 $X \sim N(\mu, \sigma^2)$

假设: $H_0: \mu = \mu_0 = 100$, $H_1: \mu \neq \mu_0 = 100$: σ^2 未知,

量:
$$\frac{1}{X} = \frac{1}{X - \mu_0} \sim t(n-1)$$

$$\frac{X}{S/\sqrt{n}} \sim t(n-1)$$

$$\frac{X}{S/\sqrt{n}} > t_{\alpha/2}(n-1) = 2.2622$$

计算观察值:
$$\left| \frac{\overline{x} - 100}{s / \sqrt{100}} \right| = \left| \frac{99.6 - 100}{\sqrt{4.044 / 100}} \right| = 0.629 < 2.2622$$

 \longrightarrow 接受 H_0 ,即可认为该库房应接受这批物质。

对 σ^2 的检验—— χ^2 检验法

检验统计量
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$$
 H_0 真时, $\chi^2 \sim \chi^2 (n-1)$

11 0			
σ^2	$=\sigma_0^2$		
σ^2	$=\sigma_0^2$		

$$\sigma^2 \neq \sigma_0^2 (XX)$$

$$\sigma^2 > \sigma_0^2$$
 (右)

$$=\sigma_0^2$$
 $\sigma^2 < \sigma_0^2$ (左)

$$\boldsymbol{C}$$

$$\sigma^{2} = \sigma_{0}^{2} \quad \sigma^{2} \neq \sigma_{0}^{2} \quad (XX) \quad \left(0, \chi_{1-\frac{\alpha}{2}}^{2}(n-1)\right) \cup \left(\chi_{\frac{\alpha}{2}}^{2}(n-1), +\infty\right)$$

$$\sigma^{2} = \sigma_{0}^{2} \quad \sigma^{2} > \sigma_{0}^{2} \quad (\Xi) \quad \left(\chi_{\alpha}^{2}(n-1), +\infty\right)$$

$$\sigma^{2} = \sigma_{0}^{2} \quad \sigma^{2} < \sigma_{0}^{2} \quad (\Xi) \quad \left(0, \chi_{1-\alpha}^{2}(n-1)\right)$$

$$\left(\chi_{\alpha}^{2}(n-1), +\infty\right)$$

$$\left(0, \chi_{1-\alpha}^2(n-1)\right)$$

例6.某厂生产的钢丝质量一贯比较稳定,今从产品中随机抽取10根,检查其折断力,得数据如下:578,572,570,568,572,570,570,572,590,584.钢丝折断力服从 $N(\mu,\sigma^2)$ 问:是否可接受钢丝折断力的方差为 64 ($\alpha=0.05$)

解:提出假设:
$$H_0$$
: $\sigma^2 = \sigma_0^2 = 64$, H_1 : $\sigma^2 \neq \sigma_0^2 = 64$ 取检验统计量: $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \sim \chi^2(n-1)$ 拒绝域: $\frac{(n-1)s^2}{\sigma_0^2} < \chi^2_{1-\alpha/2}(n-1)$ 或 $\frac{(n-1)s^2}{\sigma_0^2} > \chi^2_{\alpha/2}(n-1)$ 成 $\chi^2_{\alpha/2}(9) = \chi^2_{0.025} = 19.023$ $\chi^2_{1-\alpha/2}(9) = \chi^2_{0.975} = 2.7$ $\overline{x} = \frac{1}{10} \sum_{i=1}^{10} x_i = 574.6, (n-1)s^2 = \sum_{i=1}^{10} (x_i - \overline{x})^2 = 464.4$ $\chi^2(n-1) = \frac{(n-1)s^2}{\sigma_0^2} = \frac{464.4}{64} = 7.26$ \therefore $2.7 < 7.26 < 19.023$

接受 H_0 ,即可认为钢丝的折断力的方差为 64

某厂生产的某型号电池寿命X(小时)长期以来 服从 $N(\mu,5000)$. 现从一批这种电池中随机抽取26只, 测出其寿命的样本方差 $s^2 = 9200$. 能否由此认为这 种电池寿命的波动性较以往有显著变化? $(\alpha = 0.02)$ 解 这批电池的寿命. $X \sim N(\mu, \sigma^2)$ 提出假设: H_0 : $\sigma^2 = \sigma_0^2 = 5000$ H_1 : $\sigma^2 \neq \sigma_0^2$

取检验统计量:
$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2} = \frac{25S^2}{\sigma_0^2} \sim \chi^2(n-1) = \chi^2(25)$$

拒绝域: $\frac{(n-1)s^2}{\sigma_0^2} < \chi^2_{1-\alpha/2}(n-1)$ 或 $\frac{(n-1)s^2}{\sigma_0^2} > \chi^2_{\alpha/2}(n-1)$

小结

总体X, $X \sim N(\mu, \sigma^2)$, $X_1 X_2, \dots, X_n$ $x_1 x_2, \dots, x_n$ 对 μ, σ^2 进行假设检验 显著性水平 α ,

		· ·		
*	原假设 H_0	备择假设H1	检验统计量	★ 拒绝域
1) <i>μ</i> 的检验	$\mu = \mu_0$	$\mu \neq \mu_0$	$\overline{X} - \mu_0$	$\left(-\infty,-z_{lpha_{/2}}\right) \cup \left(z_{lpha_{/2}},+\infty\right)$
σ^2 为已知	$\mu \leq \mu_0$	$\mu > \mu_0$	$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$(z_{\alpha},+\infty)$
	$\mu \geq \mu_0$	$\mu < \mu_0$	~ N(0,1)	$(-\infty,-z_{\alpha})$
2) μ的检验	$\mu = \mu_0$	$\mu \neq \mu_0$	$T = \frac{\overline{X} - \mu_0}{S/_{-}}$	$-\infty, -t_{\alpha/2}(n-1)$ $\cup \left(t_{\alpha/2}(n-1), +\infty\right)$
σ^2 为未知	$\mu \leq \mu_0$	$\mu > \mu_0$	$\sqrt[3]{\sqrt{n}}$	$(t_{\alpha}(n-1),+\infty)$
	$\mu \geq \mu_0$	$\mu < \mu_0$	$\sim t(n-1)$	$\left(-\infty,-t_{\alpha}(n-1)\right)$
3)σ²的检验	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$\gamma = $	$\left(0,\chi_{1-\alpha/2}^2(n-1)\right) \cup \left(\chi_{\alpha/2}^2(n-1),+\infty\right)$
> = 1,4 1 -11 4-11		$\sigma^2 > \sigma_0^2$	σ_0^2	$\left(\chi_{\alpha}^{2}(n-1), +\infty\right)$
	$\sigma^{2} \leq \sigma_{0}^{2}$ $\sigma^{2} \geq \sigma_{0}^{2}$	$\sigma^2 < \sigma_0^2$	$\sim \chi^2(n-1)$	$\left(0, \chi_{1-\alpha}^2(n-1)\right)$