Alex Valentino

Assignment 1 problem 5

Now, suppose $g: B \to C$ is a 1-1 function. For each of the following two statements, prove the statement or give a counterexample.

- 1. For any two functions $h_1: A \to B$ and $h_2: A \to B$ if $g \circ h_1 = g \circ h_2$ then $h_1 = h_2$.
 - Proof: By definition $b_1, b_2 \in B, g(b_1) = g(b_2) \implies b_1 = b_2$. Therefore given that $g \circ h_1 = g \circ h_2$, then $h_1 = h_2$.
- 2. For any two functions $f_1: C \to D$ and $f_2: C \to D$ if $f_1 \circ g = f_2 \circ g$ then $f_1 = f_2$.
 - Counterexample: Let $f_1: \mathbb{Z} \to \mathbb{Z}$, $f_1(x) = sin(\frac{\pi}{2}x)$, $f_2: \mathbb{Z} \to \mathbb{Z}$, $f_2(x) = 0$, $g: \mathbb{Z} \to \mathbb{Z}$, g(x) = 2x. While $sin(\pi x) = 0$ for all $x \in \mathbb{Z}$, here $sin(\frac{\pi}{2}) = 1 \neq 0$.