Estruturas Algébricas

Lista 2

- 1) Seja $f: A \to B$ um homomorfismo de anéis. Mostre que
 - a) f é injetor se, e somente se, $f^{-1}(0) = \{0\}$;
 - b) se a é invertível, então f(a) é invertível. Qual é o inverso de f(a)?
- 2) Sejam Aum anel, Kum corpo e $f\colon K\to A$ um homomorfismo de anéis. Mostre que
 - a) f é injetor;
 - b) f(K) é um corpo.
- 3) Mostre que a relação \leq definida em \mathbb{Z} é uma relação de ordem.
- 4) Demonstre a compatibilidade da relação de ordem em \mathbb{Z} com as operações de adição e de multiplicação.
- 5) Sejam A um anel ordenado e $a, b, c \in A$. Mostre que
 - a) se a > 0, então -a < 0;
 - b) se $a \le b$ e $c \le 0$, então $ac \ge bc$.
- 6) Seja A um anel totalmente ordenado. Mostre que
 - (a) $a^2 \ge 0$ para todo $a \in A$;
 - (b) 1 > 0 e -1 < 0.
 - (c) |a| = 1 se, e somente se, a = 1 ou a = -1.
- 7) Seja A um domínio totalmente ordenado com uma relação de ordem \leq e K seu corpo de frações. Mostre que todo elemento de K se escreve na forma $\frac{a}{b}$, com b>0. Supondo que todos os elementos de K sejam escritos dessa forma, mostre que a relação

$$\frac{a}{b} \le \frac{c}{d} \iff ad \le bc$$

define uma relação de ordem total em K.

- 8) Prove por indução que
 - a) $1+3+5+\cdots+(2n-1)=n^2, \forall n \in \mathbb{N};$
 - b) $n! \geq 3^n$ para todo número natural $n \geq 7$
- 9) Seja A um anel e $h: \mathbb{Z} \to A$ uma função tal que h(a+b) = h(a) + h(b), para todos $a, b \in \mathbb{Z}$. Mostre que
 - a) h(0) = 0;
 - b) h(n) = nh(1), para todo $n \in \mathbb{N}$;
 - c) h(-n) = -h(n), para todo $n \in \mathbb{Z}$.
 - d) Conclua que h(n) = nh(1), para todo $n \in \mathbb{Z}$.

Portanto, basta supor que h(a+b) = h(a) + h(b) para todos $a, b \in A$ e que h(1) = 1, para que h seja o homomorfismo característico de A.

10) (Desigualdade de Bernoulli) Seja A um domínio ordenado e seja $c \in A$ tal que $c \ge -1$. Mostre que, para todo $n \in \mathbb{N}$, vale a seguinte desigualdade:

$$(1+c)^n \ge 1 + nc.$$

11) Neste exercício você vai provar que o Princípio de Indução Matemática implica o Princípio da Boa Ordem, seguindo o roteiro abaixo:

Note que o Princípio da Boa ordem pode ser formulado como segue:

Dado $a \in \mathbb{Z}$, todo subconjunto T do conjunto $S = \{k \in \mathbb{Z}; \ a \leq k\}$ possui um menor elemento.

Suponha por absurdo que algum subconjunto T não vazio de S não possua um menor elemento.

Você vai provar que $S \setminus T = S$, logo T é vazio, uma contradição.

Defina o conjunto $I_n = \{k \in \mathbb{Z}; \ a \leq k \leq n\} \subset S$ e considere a sentença aberta em S

$$P(n): I_n \subset S \setminus T.$$

a) Note que $a \notin T$, pois seria o menor elemento de T, logo $I_a = \{a\} \subset S \setminus T$. Portanto, P(a) é verdade.

b) Suponha que P(n) seja verdade, você vai provar que P(n+1) é verdade: Se P(n) é verdade, então $I_n \subset S \setminus T$. Se $n+1 \in T$, como nenhum elemento de I_n está em T, teríamos que n+1 seria o menor elemento de T, contradição. Portanto, $P(n+1): I_{n+1} \subset S \setminus T$.

Pelo Princípio de Indução Matemática, teríamos para todo $n \in S$, que $I_n \subset S \setminus T$, o que mostraria que $S = S \setminus T$; ou seja, $T = \emptyset$ (contradição).