The Hough Transform

CS 482, Prof. Stein Lecture 6E

Reading & Slide Credits

Readings:

- Szeliski: 4.2, 4.3

Slide Credits (from which many of these slides are either directly taken or adapted)

- <u>CMU Computer Vision Course</u> (Yannis Gkioulekas)

Lines can be difficult to find reliably

Noisy edge image Incomplete boundaries

Given: Many (x_i, y_i) pairs

Find: Parameters (m,c)

Minimize: Average square distance:

$$E = \sum_{i} \frac{(y_i - mx_i - c)^2}{N}$$

Given: Many (x_i, y_i) pairs

Find: Parameters (m,c)

Minimize: Average square distance:

$$E = \sum_{i} \frac{(y_i - mx_i - c)^2}{N}$$

Using:

$$\frac{\partial E}{\partial m} = 0$$
 & $\frac{\partial E}{\partial c} = 0$

Note: $\overline{y} = \frac{\sum_{i} y_{i}}{N}$ $\overline{x} = \frac{\sum_{i} x_{i}}{N}$

$$c = \overline{y} - m \overline{x}$$

$$m = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i} (x_i - \overline{x})^2}$$

Maybe we need to think about this problem differently...

Line Models Slope-Intercept Form

$$y=mx+b$$
Slope y-intercept

Line Models Double-Intercept Form

$$rac{x}{a} + rac{y}{b} = 1$$
 x-intercept y-intercept

Line Models Normal Form

$$x\cos\theta + y\sin\theta = \rho$$

The Hough Transform is a procedure for finding lines in an image

- Generic framework for detecting a parametric model
- Edges don't have to be connected
- Lines can be occluded
- Key idea: edges vote for the possible models

$$y = mx + b$$
 $\sqrt{y} = mx + b$
 \sqrt{y}
parameters

Image space

What if we have a point in image space? What does that become in line parameter space?

Image space

How do we pick the best-fitting line?

Line Detection by Hough Transform

Algorithm:

- 1. Quantize Parameter Space (m,c)
- 2.Create Accumulator Array A(m,c)
- 3.Set $A(m,c) = 0 \quad \forall m,c$
- 4. For each image edge (x_i, y_i) For each element in A(m,c)If (m,c) lies on the line: $c = -x_i m + y_i$ Increment A(m,c) = A(m,c) + 1
- 5. Find local maxima in A(m,c)

Usually, the Normal Form Parameterization is more robust

Use normal form:

$$x\cos\theta + y\sin\theta = \rho$$

Given points (x_i, y_i) find (ρ, θ)

Hough Space Sinusoid

$$0 \le \theta \le 2\pi$$

$$0 \le \rho \le \rho_{\text{max}}$$

(Finite Accumulator Array Size)

Hough Transform Examples

Hough Transform Examples

Hough Transform Examples

In practice, measurements are noisy

How might we handle noise?