F11T3A2

Sei
$$D := \{(t, x) \in \mathbb{R}^2 : t^2 + x^2 < \}$$
 und $f : D \to \mathbb{R}, (t, x) \mapsto \sqrt{1 - t^2 - x^2}$. Zeige:

a) Das Anfangswertproblem

$$\dot{x} = f(t, x), x(0) = 0$$

hat eine eindeutig bestimmte maximale Lösung $\varphi:]a,b[\to \mathbb{R} \text{ mit } -\infty < a < 0 <$ $b < \infty$.

- b) Die Grenzwerte $\varphi(a) := \lim_{t \searrow a} \varphi(t)$ und $\varphi(b) := \lim_{t \nearrow b} \varphi(t)$ existieren in \mathbb{R} .
- c) Es gilt -a = b, $b^2 + (\varphi(b))^2 = 1$ und $\frac{1}{\sqrt{2}} < b < 1$.

Zu a):

D ist offen und zusammenhängend (z.B. als offene Kreisscheibe).

 $f \in C^1(D)$, daher hat $\dot{x} = f(t,x)$, x(0) = 0 eine eindeutige maximale Lösung $\varphi:]a, b[\to \mathbb{R} \text{ mit } a < 0 < b.$

$$\operatorname{Da} \Gamma(\varphi) = \{(t, \varphi(t)) : t \in]a, b[\} \subseteq D \subseteq]-1, 1[^2 \text{ folgt } -1 \le a \text{ und } b \le 1.$$

Zu b):

(Bild 1)

$$\varphi'(t) = f(\underbrace{t, \varphi(t)}_{\in D \text{ für alle } t \in]a,b[}) > 0 \text{ für alle } t \in]a,b[.$$

 φ ist auf [a, b] (streng) monoton steigend.

 φ ist beschränkt (denn aus $\Gamma(\varphi) \subseteq D \Rightarrow \varphi(t) \in]-1,1[$ für alle $t \in]a,b[)$

$$\varphi(a) := \lim_{t \searrow a} \varphi(t) = \inf_{t \in]a,b[} \varphi(t) \quad \text{und} \quad \varphi(b) := \lim_{t \nearrow b} \varphi(t) = \sup_{t \in [a,b[} \varphi(t)$$

existieren als Grenzwerte von monoton steigenden beschränktem φ .

Zu c):

 φ hat bei b das Randverhalten einer maximalen Lösung, da $b < \infty$ und $\varphi(b) :=$ $\lim_{t\nearrow b}\varphi(t)\in\mathbb{R}. \text{ Bleibt nur }\lim_{t\nearrow b}\operatorname{dist}(t,\varphi(t),\partial D)\stackrel{!}{=}0$

$$\Rightarrow (b,\varphi(b)) \in \overline{D} \text{ und sogar } \underbrace{(b,\varphi(b))}_{\Rightarrow b^2 + (\varphi(b))^2 = 1} \in \partial D \text{ (denn sonst lässt sich die Lösung in }$$

 $(b, \varphi(b)) \in D$ fortsetzen!)

Betrachte
$$\lambda:]-b, b[\to \mathbb{R}, t \mapsto \begin{cases} \varphi(t) & \text{für } t \ge 0 \\ -\varphi(-t) & \text{für } t < 0 \end{cases}$$

$$\lambda'(t) = \begin{cases} \varphi'(t) & \text{für } t > 0\\ \varphi'(-t) & \text{für } t < 0\\ 1 & \text{für } t = 0 \end{cases}$$

$$\lambda'(0) = \lim_{t \to 0, \ t \neq 0} \frac{\lambda(t) - \lambda(0)}{t} = \lim_{t \to 0} \frac{\varphi(t)}{t} = \varphi'(0) = 1$$

$$\lambda'(t) = \begin{cases} \sqrt{1 - t^2 - (\varphi(t))^2} & t \ge 0\\ \sqrt{1 - t^2 - (\varphi(-t))^2} & t < 0 \end{cases} = \sqrt{1 - t^2 - (\lambda(t))^2}$$

 $\Rightarrow \lambda \text{ löst } x' = f(t, x), x(0) = 0.$

Da φ bei b das Randverhalten einer maximalen Lösung besitzt, hat dies auch λ bei b und $-b \Rightarrow \lambda$ ist die maximale Lösung zu $x' = f(t, x), \ x(0) = 0, \ d.h. \ \lambda = \varphi$ und a = -b.

$$\varphi(t) = \underbrace{\varphi(0)}_{=0} + \int_0^t \varphi'(s)ds = \int_0^t \underbrace{\sqrt{1 - s^2 - (\varphi(s))^2}}_{\in]0,1[\text{ für } s \neq 0} ds \in]0,t[\text{ für alle } t \in]0,b[$$

$$\Rightarrow \{(t, \varphi(t)) : t \in]0, b[\} \subseteq \{(t, x) \in \mathbb{R}^2 : t > 0, x < t\} \cap D$$

Da $(b, \varphi(b)) \in \partial D$ ist $b \in]\frac{1}{\sqrt{2}}, 1[$