微程序设计 ——以Tec 8 为例

数学与计算机科学学院 林嘉雯 ljw@fzu.edu.cn

微程序设计流程总结:

- 1. 确定机器的指令系统
- 2. 确定数据通路结构
- 3. 分析每条指令,画出整个指令系统的CPU周期流程图
- 4. 列明每条微指令对应发出的微命令
- 5. 确定微指令的格式(包括微命令、微地址形成方式)
- 6. 给每条微指令分配好在CM中的存储单元地址
- 7. 根据4和微命令格式确定操作控制字段;根据6和微地址形成方式确定顺序控制字段

TEC-8 的指令系统——用户指令

名称	助记符	功能	指令格式				
			IR7 IR6 IR5 IR4	IR3 IR2 IR	1 IRO		
加法	ADD Rd, Rs	Rd+Rs→Rd	0 0 0 1	Rdl RdO Rs	1 RsO		
减法	SUB Rd, Rs	Rd-Rs→Rd	0 0 1 0	Rdl RdO Rs	1 RsO		
逻辑与	AND Rd, Rs	Rd & Rs→Rd	0 0 1 1	Rdl RdO Rs	1 RsO		
加 1	INC Rd	Rd+1→Rd	0 1 0 0	Rdl RdO ×	×		
取数	LD Rd, [Rs]	[Rs] →Rd	0 1 0 1	Rdl RdO Rs	1 RsO		
存数	ST Rs, [Rd]	Rs→[Rd]	0 1 1 0	Rdl RdO Rs	1 RsO		
C条件转移	JC addr	若C=1,则	0 1 1 1	offset			
		@+offset→PC					
Z条件转移	JZ addr	若Z=1,则	1 0 0 0	offset			
		@+offset→PC					
无条件转移	JMP [Rd]	Rd→PC	1 0 0 1	Rdl RdO ×	×		
输出	OUT Rs	Rs→DBUS	1 0 1 0	× × RS	1 RSO		
中断返回	IRET	返回断点	1 0 1 1	\times \times \times	×		
关中断	DI	禁止中断	1 1 0 0	\times \times \times	×		
开中断	EI	允许中断	1 1 0 1	\times \times	×		
停机	STOP	暂停执行	1 1 1 0	\times \times \times	×		

TEC-8模型计算机框图 INS7-INSO M ABUS SO D7L-D0L D7R-D0R 51 MBUS LDC_ ALU 双端口RAM MEMW 53 LDZ _ CIN T2 T3. A端口 B端口 A7L-A0L A7R-AOR B7-B0 AR7-ARO PC7-PC0 RSO T R_D0 4选1 4选1 RS1 RD1 CLR# 选择器B CLR# 选择器A PCADD LAR LRO LPC RD1 AR PC ARINC LR1 PCINC **T3** RDO T3 LR2 47 LR3 DB IRS RO LR3 IRE LRO LR2 DRW DRW DRW DRW R2 LIAR T3 T3 LIR IABUS IAR IR T3 DBUS PC7-PC0 控制信号 SBUS SWD 控制转换 控制信号切换电路 RD1 RSO 数据开关 A组控制信号 B组控制信号 SD7—SD0 SELCTL 2选1选择器 微程序控制器 硬连线控制器 SEL3-SEL0 W3-W1 时序发生器 IR7—IR4 IR3-IR0 **IRBUS** SHORT DING swc-swa

ADD Rd,Rs

Rd+Rs→Rd

LIR, PCINC

MS3S2S1S0CIN=010011 ABUS,DRW,LDZ,LDC

INTDI,LIAR,SEL1/0=00, STOP

SBUS,LPC

下条指令取指

LD Rd, [Rs] \rightarrow Rd

(PC) →IBUS→IR 取指 $PC+1 \rightarrow PC$ 执行 (Rs)→AR (AR)→Rd 公共 操作

LIR, PCINC

MS3S2S1S0CIN=110100 ABUS,LAR

MBUS, DRW

JC addr

若C=1,则PC+@offset→PC

OUT Rs

(Rs)→DBUS

取指

(PC) →IBUS→IR
PC+1 → PC

执行
(Rs)→DBUS

公共
操作

LIR, PCINC

MS3S2S1S0CIN=110100 ABUS

TEC-8微指令格式

- •操作控制字段29位,采用直接表示法编码
- 顺序字段11位(其中判别字段5位,后继地址6位NuA5-NuA0),采用断定方式形成微地址

微地址转移逻辑有多个输入信号:

SWC、SWB、SWA,用来决定控制台指令微程序的分支;——P0测试

IR7-I~IR4-I是机器指令的操作码字段; ———P1测试

C-I,运算器进位信号; ——P2测试

Z-I, 是结果为零标志位; ——P3测试

INT是中断请求申请信号; ——P4测试

CLR#	P4P3P2P1P0	Т3	uA5	uA4	uA3	uA2	uA1	uA0
0	XXXXX	X	0	0	0	0	0	0
1	0 0 0 0 0	\downarrow	NuA5	NuA4	NuA3	NuA2	NuA1	NuA0
1	0 0 0 0 1	 	NuA5	NuA4	SWC	SWB	SWA	NuA0
1	0 0 0 1 0	 	NuA5	NuA4	IR7-I	IR6-I	IR5-I	IR4-I
1	0 0 1 0 0	 	NuA5	NuA4	NuA3	NuA2	NuA1	С
1	0 1 0 0 0	 	NuA5	NuA4	NuA3	NuA2	NuA1	Z
1	1 0 0 0 0	 	NuA5	INT	NuA3	NuA2	NuA1	NuAO

微地址转移逻辑的逻辑表达式

- NuA5-T=NuA5
- NuA4-T=NuA4 or (P4 and INT)
- NuA3-T=NuA3 or (P1 and IR7) or (P0 and SWC)
- NuA2-T=NuA2 or (P1 and IR6) or (P0 and SWB)
- NuA1-T=NuA1 or (P1 and IR5) or (P0 and SWA)
- NuA0-T=NuA0 or (P1 and IR4) or (P2 and C-I) or (P3 and Z-I)

000 用户指令流程图 取指 INT=0 P4 INT=1 11 01 INTDI LIR PCINC LIAR P1 SEL1 = 0 SELO = 0STOP 14 **SBUS** LPC P1 根据IR7-IR4分支 1001 1100 1101 1110 1010 1011 **JMP** OUT IRET DI EI STP 29 2A **2B** 2C 2D 2E M M **IABUS** STOP INTDI INTEN S=1111 S=1010 LPC P4 **ABUS ABUS** P4 LPC P4 P4

微程序设计

ADD Rd,Rs

