Divisibility and Euclidean Algorithm

Let a and b be integers such that $b \neq 0$. The a is divisible by b, denoted $b \mid a$, if and only if there exists integer k such that a = bk. In this case, b divides a.

Example 4.6. The integer 24 is divisible by 4 since 24 can be written as 4(6).

Example 4.7. Let $a \in \mathbb{Z}$ such that $a \neq 0$. Then $a^2 \mid a^5$ since $a^5 = a^2(a^3)$.

Theorem 4.8. Let $a, b \in \mathbb{Z}$ with $a \neq 0$. If $a \mid b$, then $a \mid (-b)$ and $(-a) \mid b$.

Proof. Suppose that $a \mid b$. By definition, there is an integer k such than b = ak. Hence b = a(-1)(-k). Dividing by side by -1 gives -b = a(-k). Therefore $a \mid -b$.

Now suppose $a \mid b$. Then for some integer k it is the case that b = ak. Hence b = (-a)(-k). Therefore $b \mid -a$.

Theorem 4.9. For every integer n, $3|(n^3-n)$.

First note that $n^3 - n = n(n^2 - 1) = n(n-1)(n+1)$. Since n-1, n, and n+1 are consecutive integers 3 must divide one of them.

Proof. By the Division Algorithm, n = 3q + r where $0 \le r < 3$. Hence $r \in \{0, 1, 2\}$. If r = 0 then we are done. If r = 1 then n - 1 = 3q. This shows that $3 \mid n - 1$. Similarly if r = 2, then n + 1 = 3q which shows that $3 \mid n + 1$.

Problem 4.10. Suppose a, b, and c are integers such that $c \mid a$ and $c \mid b$. Show that $c \mid (ax + yb)$ for any integers x and y.

Let $a, b \in \mathbb{Z}$ with $b \neq 0$ The greatest common divisor, denoted by gcd(a, b), is the largest common divisor of a and b.

Problem 4.11. What is the greatest common divisor of 4 and 16?

Example 4.12. The greatest common divisor of 4 and 16 is 4, since $4 \mid 4$, $4 \mid 16$, and if $c \mid 4$ and $c \mid 16$ then $c \leq 4$. Hence gcd(4, 16) = 4.

Problem 4.13. What is the greatest common divisor of 70 and 42?

Theorem 4.14. Euclidean Algorithm Let a and b be natural numbers with b < a. To find the greatest common divisor of a and b, write

$$a = q_1 b + r_1 \qquad with \qquad 0 < r_1 < b$$

then $b = q_2r_1 + r_2$ and repeat until $r_{k+1} = 0$. Then $r_k = \gcd(a, b)$.

Note that the Euclidean Algorithm uses the Division Algorithm.

Example 4.15. Find gcd(630, 196). Using the Euclidean Algorithm we get

$$630 = 3(196) + 42$$

$$196 = 4(42) + 28$$

$$42 = 1(28) + 14$$

$$28 = 2(14) + 0.$$

Problem 4.16. Use the Euclidean Algorithm to find the greatest common divisor of 70 and 42.

If the greatest common divisor of a and b is 1, then a and b are relatively prime.