

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) «МАИ»

Кафедра 308 «Информационные технологии»

Дипломная работа

«Разработка системы мониторинга состояния ЛА (Integrated System Health Management) на основе методов интеллектуального анализа данных (Data Mining)»

Выполнил: студент гр. 03-617 Панченко Владимир Владимирович

Руководитель: к.т.н., доцент каф. 308 Пискунов Вячеслав Алексеевич

Введение в предметную область

Методы контроля состояния систем

Традиционные

- интенсивная работа множества экспертов;
- глубокое знание предметной области и специфики задачи;
- сложность и большой размер построенных моделей, что затрудняет работу в режиме реального времени.

Основанные на интеллектуальном анализе данных

- минимальное участие экспертов;
- не требуют знания предметной области и устройства системы;
- компактность построенных моделей и лёгкость их интерпретации;
- позволяют извлекать знания из накопленных архивных данных.

Цели и задачи

- Разработать метод мониторинга состояния ЛА по данным телеметрии на основе методов интеллектуального анализа данных.
- Реализовать программную систему для ПЭВМ, использующую данный метод.

Требования к системе

Система должна:

- строить модель объекта контроля только на основе телеметрии при различных режимах его работы, без априорных данных о предметной области, его назначении, составе, конструкции;
- обладать способностью классифицировать аномалии в работе объекта контроля;
- в случае, если текущее поведение объекта контроля не было представлено в обучающей выборке, давать оператору численную характеристику отклонения от номинальных режимов;

- обрабатывать большие массивы входных данных (несколько десятков тысяч точек) за конечное время;
- учитывать как непрерывные, так и дискретные параметры;
- не иметь ограничений на закон распределения входных данных;
- быть устойчивой к аномалиям в обучающей выборке;
- быть устойчивой к отсутствию значений каких-либо параметров во входных данных;
- определять состояние объекта контроля в режиме реального времени.

Обзор существующих методов

- Orca
- GritBot (C4.5)
- Модель гауссовых смесей (GMM)
- Динамические байесовские сети (DBN)
- Одноклассовый метод опорных векторов (SVM)
- Inductive Monitoring System (IMS)

Сравнение существующих методов

Критерий / Метод	Orca	GritBot	GMM	DBN	SVM	IMS
Построение модели системы без априорных данных о предметной области, назначении системы, её составе, конструкции	+	+	±	+	-	+
Классификация аномалий	_	_	_	+	_	_
Численная характеристика аномалии	+	-	_	_	+	+
Обработка больших выборок за конечное время	±	-	±	+	+	+
Работа с дискретными параметрами	+	+	-	±	_	-
Отсутствие ограничений на закон распределения входных данных	+	+	-	±	+	+
Устойчивость к аномалиям в обучающей выборке	+	+	_	-	-	-
Устойчивость к отсутствию значений параметров во входных данных	+	+	_	_	_	+
Работа в режиме реального времени	-	-	+	+	+	+

Предложенный метод

- Шаг 1. Конвертация и нормализация данных.
- Шаг 2. Поиск аномалий в обучающих выборках.
- Шаг 3. Фильтрация аномалий в обучающих выборках.
- Шаг 4. Обучение.
- Шаг 5. Мониторинг.

Предложенный метод

Входные данные:

- Данные телеметрии для каждого режима работы объекта контроля;
- Пороговое значение ε ;
- Весовые коэффициенты параметров (опционально).

Выходные данные:

- Текущий режим работы объекта контроля;
- Если поведение объекта контроля аномально, ближайший режим и численная характеристика отклонения от него.

Метрика пространства:

$$d(x, y, \Omega) = \sqrt{\sum_{i=1}^{p} \left[\omega_i \left(a_i^{(x)} - a_i^{(y)} \right)^2 \right]} + \sum_{j=1}^{q} \left[\begin{cases} 0, & b_j^{(x)} = b_j^{(y)}, \\ \omega_{j+p}, & b_j^{(x)} \neq b_j^{(y)} \end{cases} \right]$$

Конвертация и нормализация данных

$$\hat{x} = \frac{x - \min(X)}{\max(X) - \min(X)}, x \in X \quad - \text{минимаксная нормализация}$$

$$\hat{x} = rac{x - ar{x}}{\sigma_x}$$
 — нормализация с помощью СКО

До:

Время		Состояние клапана	Температура		Скорость потока
16:30:00	2857.2	Открыт	49.8	0.21	1.5

После:

Поиск аномалий

Алгоритм Orca:

- рандомизация входных данных
- вложенные циклы
- правило отсечения

Принцип ближайшего соседа:

Фильтрация аномалий

Фильтр по правилу трёх сигм:

$$\forall o \in 0 : score(o) > M[o] + 3\sigma$$

Пороговый фильтр:

$$\forall o \in 0 : score(o) - \min 0 > \rho$$

Разностный фильтр:

$$\forall o_i, o_j \in O, i > j: score(o_i) - score(o_j) > \Delta \rightarrow o_1 \dots o_i$$

Обучение

Фунцкии расстояния между точкой и кластером

До ближайшей точки кластера

Пример кластера

	a_1	a_2	a_3	a_4	b_1
Верхняя граница	0.91	0.38	0.85	0.64	_
Нижняя граница	0.45	0.45	0.55	0.14	_
Допустимые значения	_	_	_	_	1

Обучение

Блок-схема алгоритма обучения

Обучение

Модель объекта контроля

Мониторинг

Блок-схема алгоритма мониторинга

Программная реализация

Программная реализация разработана на языке программирования C# 5.0 с использованием платформы .NET 4.5.

Ключевые особенности:

- Модульность: каждый модуль можно использовать отдельно, в том числе в составе других систем.
- Объектно-ориентированный дизайн: простота расширения системы (возможность добавления новых источников данных, типов фильтров, метрик пространства и т.д.)
- UNIX-тип приложения: лёгкость интеграции (поддержка текстовых потоков, настройка через параметры запуска)

Тестирование системы проводилось на основе реальных данных телеметрии гиросилового комплекса управления МКС. В качестве объекта контроля был взят один из гиродинов.

Четыре режима работы (два штатных и два нештатных):

- номинальный;
- гиродин выключен из комплекса;
- утечка смазки;
- нестабильность крепления.

Формат данных телеметрии:

Параметр	Описание	Единица измерения
Т	Дата и время измерения	дд/чч:мм:сс
S	Состояние (используется/выключен из комплекса)	_
ω	Скорость вращения ротора	об/мин
I	Ток, потребляемый двигателем ротора	А
a	Вибрация	g $\mathrm{M/c^2}$
t_b	Температура на креплении ротора	°C
t_h	Температура на датчике скорости вращения	°C

Обучающие выборки: скорость вращения ротора

Обучающие выборки: потребляемый мотором ротора ток

Обучающие выборки: вибрация

Обучающие выборки: температура на креплении ротора

Обучающие выборки: температура на датчике крепления ротора

Результаты работы системы: найденные аномалии и база кластеров для номинального режима работы

Результаты работы системы: базы кластеров для остальных режимов

Результаты работы системы: режим мониторинга

```
C:\WINDOWS\system32\cmd.exe
C:4.
Enter record, or press enter to quit.
now; IN USE; 6605; 0.42; 0.012; 34.9; 29
Current regime: Nominal
now; DISABLED; 0; 0; 0; 23; 19
Current regime: Disabled
now; IN USE; 6500; 0.4; 0.013; 34.9; 29
Current regime: Retainer instability
now; IN USE; 6590; 0.55; 0.015; 37; 29
Current regime: Lubrication starvation
now; IN USE; 6500; 0.6; 0.02; 42; 31
Anomaly behavior detected (closest regime: Lubrication starvation, distance: 0.1
8402).
now; IN USE; 6601; 0.42; 0.012; 24; 10
Anomaly behavior detected (closest regime: Nominal, distance: 0.89186).
now; DISABLED; 6600; 0.42; 0.01; 19; 7
Anomaly behavior detected (closest regime: Disabled, distance: 1.10614).
```

Результаты

- Произведён анализ существующих алгоритмов выявления аномалий без учителя, выделены их достоинства и недостатки.
- Разработан метод диагностики состояния ЛА и его программная реализация, позвляющая строить модель произвольной системы для последующего контроля её состояния только на основе данных телеметрии при различных режимах её работы. Метод не требует априорных знаний о предметной области, назначении системы, её составе, конструкции.
- Программная реализация метода обладает способностью обучаться на больших массивах исходных данных, учитывает как дискретные, так и непрерывные параметры, устойчива к аномалиями в обучающих выборках и может осуществлять контроль даже при отсутствии некоторых параметров в измерениях.
- Разработанное ПО обладает достаточным быстродействием для работы в режиме реального времени.

В результате разработки все требования задания были полностью удовлетворены.

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) «МАИ»

Кафедра 308 «Информационные технологии»

Спасибо за внимание!

Дипломная работа

«Разработка системы мониторинга состояния ЛА (Integrated System Health Management) на основе методов интеллектуального анализа данных (Data Mining)»

Выполнил: студент гр. 03-617 Панченко Владимир Владимирович

Руководитель: к.т.н., доцент каф. 308 Пискунов Вячеслав Алексеевич

Москва, 2013 год