FLAVOR MIXING IN THE B-MESON SYSTEM AS A PROBE FOR DECOHERENCE

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

PHYSICS AND ASTRONOMY

DECEMBER 2020

By

Jeff Schueler

Thesis Committee:

Sven Vahsen, Chairperson Jason Kumar Jelena Maricic Thomas E. Browder Peter Sadowski

Keywords: B-meson decays, Decoherence, Belle, KEK

Copyright © 2020 by Jeff Schueler

To Bill Fagerbakke,

whose declaration of "That's Mr. Doctor Professor Patrick to you!" lit a fire in me that could only be extinguished by the bureaucracy of academia.

ACKNOWLEDGMENTS

I want to "thank" my committee, without whose ridiculous demands, I would have graduated so, so, very much faster.

ABSTRACT

Theses have elements. Isn't that nice?

TABLE OF CONTENTS

Acknowledgments	iv
Abstract	ī
List of Tables	vi
List of Figures	vii
1 Introduction	
2 Modeling decoherence	2
2.1 An open $B\bar{B}$ system	2
2.2 Bibliography Citations	4
3 Conclusion	Ę
3.1 Widgets	Ę
3.1.1 Sub-Widgets	Ę
Bibliography	8

LIST OF TABLES

LIST OF FIGURES

CHAPTER 1 INTRODUCTION

CHAPTER 2 MODELING DECOHERENCE

2.1 An open $B\bar{B}$ system

In this section, we follow the work of ref [8] to come up with a parametrization of mixing induced flavor asymmetry parameter that includes contributions of decoherence.

$$\mathcal{O}_f = \begin{pmatrix} |A_f|^2 & A_f^* \bar{A}_f & 0\\ A_f \bar{A}_f^* & |\bar{A}_f|^2 & 0\\ 0 & 0 & 0 \end{pmatrix}, \tag{2.1}$$

where $A_f \equiv A(B^0 \to f)$ and $\bar{A}_f \equiv A(\bar{B}^0 \to f)$.

$$\rho_{\pm}(t) = \frac{1}{2}e^{-\Gamma_d t} \begin{pmatrix} a_{ch} \pm e^{\lambda t} a_c & -a_{sh} \mp i e^{-\lambda t} a_s & 0\\ -a_{sh} \pm i e^{-\lambda t} a_s & a_{ch} \mp e^{-\lambda t} a_c & 0\\ 0 & 0 & 2(e^{\Gamma_d t} - a_{ch}) \end{pmatrix}, \tag{2.2}$$

where $\rho_+(t)$ and $\rho_-(t)$ correspond to B^0 and \bar{B}^0 , respectively. With this construction, the probability of a B^0 or \bar{B}^0 decaying into state f at time t is computed as

$$P_{f\pm}(t) = \text{Tr}(\mathcal{O}_f \rho_{\pm}), \tag{2.3}$$

with P_+ corresponding to an initial B^0 and P_- , an initial \bar{B}^0 . An observable

$$A_f = \frac{P_-(t) - P_+(t)}{P_-(t) + P_+(t)} \tag{2.4}$$

can be defined, and when $f = J/\psi K_S$, this observable represents CP violating asymmetry used to determine $\sin(2\phi_1)$ in [6]. To show this, we compute the probabilities in 2.4 using 2.1, 2.2 and 2.3. Doing this, we find

$$P_{J/\psi K_S \pm}(t) = \frac{1}{2} e^{-\Gamma_d t} \left(|A_f|^2 (a_{ch} \pm e^{-\lambda t} a_c) + |\bar{A}_f|^2 (a_{ch} \mp e^{-\lambda t} a_c) - A_f^* \bar{A}_f (a_{sh} \mp i e^{-\lambda t} a_s) - A_f \bar{A}_f^* (a_{sh} \pm i e^{-\lambda t} a_s) \right); \quad f = J/\psi K_S.$$
 (2.5)

Factoring out $|A_f|^2 = A_f A_f^*$ from both the numerator and denominator of 2.4 and defining $z \equiv A(\bar{B}^0 \to J/\psi K_S)/A(B^0 \to J/\psi K_S)$, we obtain

$$\mathcal{A}_{J/\Psi K_S}(t,\lambda) = \frac{2(|z|^2 - 1)a_c - 2iza_s + 2iz^*a_s}{2(|z|^2 + 1)a_{ch} - 2za_{sh} - 2z^*a_{sh}} e^{-\lambda t}$$

$$= \frac{(|z|^2 - 1)a_c + 2\operatorname{Im}(z)a_s}{(|z|^2 + 1)a_{ch} - 2\operatorname{Re}(z)a_{sh}} e^{-\lambda t}$$

$$= \frac{(|z|^2 - 1)\cos(\Delta m_d t) + 2\operatorname{Im}(z)\sin(\Delta m_d t)}{(|z|^2 + 1)\cosh(\Delta \Gamma_d t/2) - 2\operatorname{Re}(z)\sinh(\Delta \Gamma_d t/2)} e^{-\lambda t}.$$
(2.6)

where we used the fact that the decay amplitudes are, in general, complex numbers, so $\text{Re}(z) = \frac{z+z^*}{2}$ and $\text{Im}(z) = \frac{z-z^*}{2i}$. We see that 2.6 is indeed the well-known mixing and decay-induced CP asymmetry expression with $\text{Im}(z) \approx \sin(2\phi_1)$ [6, 7], however it includes an additional decoherence term, $e^{-\lambda t}$, where we refer to λ as the decoherence parameter. We see that in the case of no decoherence ($\lambda = 0$), 2.6 is exactly the CP asymmetry expression described above.

In the case where a B^0 decays into a state that is inaccessible from a \bar{B}^0 decay, it follows that z=0 [10], which will lead us to an expression for the time dependent mixing asymmetry \mathcal{A}_{mix} . Indeed, if we consider 2.5 and set the final state to B^0 (or \bar{B}^0), we can compute flavor mixing probabilities. For example, if we were to compute $P_{B^0\to\bar{B}^0}(t)$, we set $A_f=0$ and $\bar{A}_f=1$ in 2.5, leading us to

$$P_{B^0 \to \bar{B}^0}(t) \sim \cosh(\Delta \Gamma_d t/2) - e^{-\lambda t} \cos(\Delta m_d t).$$
 (2.7)

Similarly, for the other mixing combinations, we would set $A_f = 0$ and $\bar{A}_f = 1$ for $P_{\bar{B}^0 \to \bar{B}^0}(t)$, and we would set $A_f = 1$ and $\bar{A}_f = 0$ for $P_{\bar{B}^0 \to B^0}(t)$ and $P_{B^0 \to B^0}(t)$, giving

$$P_{\bar{B}^0 \to \bar{B}^0}(t) \sim \cosh(\Delta \Gamma_d t/2) + e^{-\lambda t} \cos(\Delta m_d t)$$
 (2.8)

$$P_{B^0 \to B^0}(t) \sim \cosh(\Delta \Gamma_d t/2) + e^{-\lambda t} \cos(\Delta m_d t)$$
 (2.9)

$$P_{\bar{B}^0 \to B^0}(t) \sim \cosh(\Delta \Gamma_d t/2) - e^{-\lambda t} \cos(\Delta m_d t). \tag{2.10}$$

Now let's consider a $B\bar{B}$ produced from the hadronization of $e^+e^- \to \Upsilon(4S) \to b\bar{b}$, which is the mechanism for B production at Belle. Since the $\Upsilon(4S)$ is spin 1, it follows from conservation of angular momentum that the resulting $B\bar{B}$ pair will be in a coherent P-wave state, which means that at a certain time t_0 , nominally the decay time of the first B^0 in the $B\bar{B}$ pair, the flavor the decaying B must be the opposite of the flavor of the other B. This means the probability of observing opposite flavor $P_{B^0\bar{B}^0\to B^0\bar{B}^0}$ or same flavor pairs $P_{B^0\bar{B}^0\to B^0\bar{B}^0}$ or $\bar{B}^0\bar{B}^0$ is determined from the proper time difference between the decays of the two B's, $\Delta t \equiv t_1 - t_0$. With this knowledge at our disposal, we see from equations 2.7–2.10 that mixing (creation of same flavor pair) is the result of second B changing flavor and thus has a minus sign in its oscillation probability, whereas an unmixed (opposite flavor) pair has a plus sign in its oscillation probability. This means we can write

$$P_{B^0\bar{B}^0 \to B^0\bar{B}^0}(\Delta t) \sim \cosh(\Delta \Gamma_d \Delta t/2) + e^{-\lambda \Delta t} \cos(\Delta m_d \Delta t) = P_+(\Delta t)$$
 (2.11)

$$P_{B^0\bar{B}^0 \to B^0B^0 \text{ or } \bar{B}^0\bar{B}^0}(\Delta t) \sim \cosh(\Delta \Gamma_d \Delta t/2) - e^{-\lambda \Delta t} \cos(\Delta m_d \Delta t) = P_-(\Delta t). \tag{2.12}$$

Finally, we now define the time dependent mixing asymmetry, $A_{\text{mix}}(\Delta t)$ as

$$\mathcal{A}_{\text{mix}}(\Delta t) \equiv \frac{P_{+}(\Delta t) - P_{-}(\Delta t)}{P_{+}(\Delta t) + P_{-}(\Delta t)} = \frac{\cos(\Delta m_d \Delta t)}{\cosh(\Delta \Gamma_d \Delta t/2)} e^{-\lambda \Delta t}.$$
 (2.13)

Just like with 2.6, we see that we now have an expression for the time-dependent asymmetry which also manifestly depends on decoherence parameter λ .

2.2 Bibliography Citations

Citing references to your bibliography is easy [17] [44]. First you build a BibTeX file which contains the records for all of the works you wish to cite. This file ends with a ".bib" extension. Then in your body you use the "\cite" command with the label you gave to the record in question. The final steps are: run LaTeX once, run BibTeX, and then run LaTeX twice more. You should now have a bibliography that includes those citations.

CHAPTER 3 CONCLUSION

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

3.1 Widgets

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

3.1.1 Sub-Widgets

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

Sub-Sub-Widgets

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

Para-Widgets This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

Sub-Para-Widgets This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

This is going to be the chapter where I check the length of the page to make sure the bottom

margin works out all right. I hope you don't mind long annoying and useless paragraphs because you are sure to get a lot of them here!

BIBLIOGRAPHY

- [1] Experimental physics and industrial control system. Available at https://epics.anl.gov.
- [2] Pearson's Chi-Square Test Modifications for Comparison of Unweighted and Weighted Histograms and Two Weighted Histograms. PoS(ACAT)060.
- [3] Strategic accelerator design. Available at http://acc-physics.kek.jp/SAD/.
- [4] Giant dipole resonance neutron yields produced by electrons as a function of target material and thickness. *Health Phys*, 70:207 214, 1996.
- [5] K. Abe, Y. Hoshi, T. Nagamine, K. Neichi, K. Onodera, T. Takahashi, A. Yamaguchi, and H. Yuta. Neutron sensitivity of the endcap rpc modules in belle detector. *IEEE Transactions* on Nuclear Science, 50(4):831–835, 2003.
- [6] Kazuo Abe et al. Observation of large CP violation in the neutral B meson system. Phys. Rev. Lett., 87:091802, 2001.
- [7] Kazuo Abe et al. Improved measurement of CP-violation parameters sin 2phi(1) and —lambda—, B meson lifetimes, and B0 anti-B0 mixing parameter Delta m(d). *Phys. Rev. D*, 71:072003, 2005. [Erratum: Phys.Rev.D 71, 079903 (2005)].
- [8] Ashutosh Kumar Alok, Subhashish Banerjee, and S. Uma Sankar. Re-examining $\sin 2\beta$ and Δm_d from evolution of B_d^0 mesons with decoherence. *Phys. Lett. B*, 749:94–97, 2015.
- [9] T. Aushev, D.Z. Besson, K. Chilikin, R. Chistov, M. Danilov, P. Katrenko, R. Mizuk, G. Pakhlova, P. Pakhlov, V. Rusinov, and et al. A scintillator based endcap kl and muon detector for the belle ii experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 789:134?142, Jul 2015.
- [10] A. J. Bevan et al. The Physics of the B Factories. Eur. Phys. J. C, 74:3026, 2014.
- [11] Stephen Biagi. Magboltz-transport of electrons in gas mixtures. Available at https://magboltz.web.cern.ch/magboltz/.
- [12] Broglia R.A. Bortignon P.F., Bracco A. Giant Resonances, in: Contemporary Concepts in Physics, volume 10. CRC Press, 1998.
- [13] Belle II Collaboration. Belle II Coordinate System and Guideline of Belle II Numbering Scheme, 2011.

- [14] SuperB Collaboration. Superb: A high-luminosity asymmetric e+ e- super flavor factory. conceptual design report, 2007.
- [15] The ATLAS IBL collaboration. Prototype ATLAS IBL modules using the FE-i4a front-end readout chip. *Journal of Instrumentation*, 7(11):P11010–P11010, nov 2012.
- [16] The ATLAS IBL collaboration. Production and integration of the ATLAS insertable b-layer. Journal of Instrumentation, 13(05):T05008-T05008, may 2018.
- [17] The Belle II Collaboration. Belle II Technical Design Report. Technical Report arXiv:1011.0352. KEK REPORT 2010-1, Nov 2010. Comments: Edited by: Z. Doležal and S. Uno.
- [18] Samuel deJong. StudyThermalNeutronFluxfromSuperKEKBBelle II Commissioning Detector. PhD thesis. University of Victoria, https://dspace.library.uvic.ca//handle/1828/8203, 2017.
- [19] J. Allison et al. Geant4 developments and applications. *IEEE Transactions on Nuclear Science*, 53(1):270–278, 2006.
- [20] J. Allison et al. Recent developments in geant4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835:186 – 225, 2016.
- [21] S. Agostinelli et al. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250 303, 2003.
- [22] Berends F.A., et al. Complete lowest-order calculations for four-lepton final states in electron-positron collisions. *Nuclear Physics B*, 253:441–463, 1985.
- [23] Torben Ferber and Phillip Urquijo. Overview of the belle ii physics generators. Jun 2015.
- [24] Yoshihiro Funakoshi and Yukiyoshi Ohnishi. Highlights from SuperKEKB Commissioning Phase 1 and Plan for Phase 2. *ICFA Beam Dyn. Newslett.*, 72:11–19, 2017.
- [25] Michael Hedges. Performance and First Deployment of Novel 3D Nuclear Recoil Detectors. PhD thesis, University of Hawaii, http://hdl.handle.net/10125/62684, 12 2018.
- [26] Y. Hoshi, N. Kikuchi, T. Nagamine, K. Neichi, and A. Yamaguchi. Performance of the endcap rpc in the belle detector under high luminosity operation of the kekb accelerator. *Nuclear Physics B Proceedings Supplements*, 158:190 194, 2006. Proceedings of the 8th International Workshop on Resistive Plate Chambers and Related Detectors.

- [27] I. Jaegle et al. Compact, directional neutron detectors capable of high-resolution nuclear recoil imaging. Nucl. Instrum. Methods Phys. Res., A, 945:162296, Nov 2019.
- [28] J. Janssen and D.L. Pohl. pybar bonn atlas readout in python.
- [29] T. Kuhr, C. Pulvermacher, M. Ritter, T. Hauth, and N. Braun. The belle ii core software. Computing and Software for Big Science, 3, Nov 2018.
- [30] P. M. Lewis et al. First Measurements of Beam Backgrounds at SuperKEKB. Nucl. Instrum. Meth., A914:69–144, 2019.
- [31] Z. J. Liptak et al. Phase 2 forthcoming paper. 2021.
- [32] Chadwick M.B., et al. Endf/b-vii.1 nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data. *Nuclear Data Sheets*, 112(12):2887 2996, 2011. Special Issue on ENDF/B-VII.1 Library.
- [33] E. Mendoza and D. Cano-Ott. Update of the evaluated neutron cross section libraries for the geant4 code, June 2018.
- [34] A. Natochii et al. Phase 3 forthcoming paper. 2021.
- [35] A. Natochii, S.E. Vahsen, H. Nakayama, T. Ishibashi, and S. Terui. Improved simulation of beam backgrounds and collimation at SuperKEKB. 2021. Forthcoming publication.
- [36] David R. Nygren and Jay N. Marx. The time projection chamber. *Physics Today*, 31(10):46–53, 1978.
- [37] Yukiyoshi Ohnishi, et al. Accelerator design at SuperKEKB. Progress of Theoretical and Experimental Physics, 2013(3), 03 2013. 03A011.
- [38] Seokhee Park, Youngjoon Kwon, Mikihiko Nakao, Uehara Sadaharu, and Tomoyuki Konno. Environmental Monitoring for Belle II. In 21st IEEE Real Time Conference, 6 2018.
- [39] Ahlburg Patrick. Development of a FE-I4-based module for radiation monitoring with BEAST II during the commissioning phase of the Belle II detector. Master's thesis, Universität Bonn, 2016.
- [40] A. Piwinski. The touschek effect in strong focusing storage rings, 1999.
- [41] Kleiss R., et al. BBBREM—monte carlo simulation of radiative bhabha scattering in the very forward direction. *Computer Physics Communications*, 81(3):372–380, 1994.
- [42] Jadach S., et al. BHWIDE $1.00:\mathcal{O}(\alpha)$ yfs exponentiated monte carlo for bhabha scattering at wide angles for lep1/slc and lep2. *Physics Letters B*, 390(1-4):298-308, 1997.

- [43] Y. Suetsugu, K. Shibata, T. Ishibashi, K. Kanazawa, M. Shirai, S. Terui, and H. Hisamatsu. First commissioning of the superkekb vacuum system. *Phys. Rev. Accel. Beams*, 19:121001, Dec 2016.
- [44] N Toge. KEK B-factory Design Report. Technical Report KEK-Report-95-7, KEK, Tsukuba, 1995.
- [45] S.E. Vahsen et al. The directional dark matter detector (d3). *EAS Publications Series*, 53:43–50, 2012.
- [46] Sven Vahsen, M.T. Hedges, Igal Jaegle, S.J. Ross, I.S. Seong, Tom Thorpe, J. Yamaoka, J.A. Kadyk, and M. Garcia-Sciveres. 3-d tracking in a miniature time projection chamber. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment, 788, 03 2015.
- [47] Rob Veenhof and H. Schindler. Garfield++, 2018.
- [48] James F. Ziegler, M.D. Ziegler, and J.P. Biersack. Srim—the stopping and range of ions in matter (2010). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(11):1818 1823, 2010. 19th International Conference on Ion Beam Analysis.