1 BASIC LOGIC

1 Basic Logic

1. truth value:

P	Q	$P \wedge \neg P$	$P \vee \neg P$	$(P \lor Q) \Rightarrow (P \land Q)$	$(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$
Т	Т	F	Т	Τ	T
F	Т	F	Т	F	F
Т	F	F	Т	F	Т
F	F	F	Т	Τ	Т

1

Table 1: truth value table

2. (1)
$$Q \land \neg Q = F, P \Rightarrow (Q \land \neg Q) = \neg P \lor F = \neg P$$

(2) $(P \land \neg Q) \Rightarrow Q = \neg P \lor Q \lor Q = \neg P \lor Q = P \Rightarrow Q$

3.
$$(1)P \land Q \Rightarrow R$$

 $(2)Q \Rightarrow P$
 $(3)P \Leftarrow Q$

- 4. We denote that "bear is smart" as P, "bear is lazy" as Q, then "bear is not smart" can be denoted as $\neg P$. We have $(P \land Q \lor (\neg P)) \land P$, it's equivalent to $P \land Q$, then Q must be true.
- 6. We denote "At door 1,2,3" as P,Q,R, one of them is true, while we can get another information: one of $\neg P, \neg Q, Q$ is true. Due to "not Q then $\neg Q$ ", we can infer that $\neg P$ is false. (We can confirm while Q = R = false, it can satisfies the requirements of the question) so the treasure is behind the Door 1!
- 7. We denote ... can leads to the capital as P, Q, R, then $P \wedge (R \Rightarrow Q) = (\neg P) \wedge (\neg R) = P \wedge (\neg Q)$ =False. Combine the first and the third formula $P \wedge (\neg R \vee Q \vee \neg Q) = P$ =False, then from the second $\neg R$ =False. We are not sure about the stone path ,but we are sure that the dirt path can lead to capital.
- 8. Denote "a+1 == 0" as P, b+1 == 0 as Q, then $ab+a+b \neq -1 = (a+1)(b+1) == 0 = \neg P \land \neg Q$
- 9. (1) Use the proof by contradiction. Not losing generality , we assume that a=1,

4 Ordering

1.
$$\frac{7}{13} < \frac{6}{11}$$

4 ORDERING 2

2. If
$$ab < 0$$
, $a^2 + b^2 > 0 > ab$. If $ab \ge 0$, $a^2 + b^2 \ge 2ab \ge ab$. Thus, $a^2 + b^2 \ge ab$.

3. Let c=1000000001, then $a=(c+1)^2, b=(c-7)(c+7), a-b=2c+50>0$. So a>b.

4.
$$\frac{2+\sqrt{3}}{2-\sqrt{3}} = 7 + 4\sqrt{3}$$

- 5. (1) $x \in]-8,2[$
 - $(2) \ x \in \frac{2}{3}, 6$
 - $(3) \ x \in]-2,4[$

6.
$$x \in [-2, \frac{3+\sqrt{13}}{2}]$$

- 7. (1) 0.
 - (2) -1.
 - (3) No.

8.

$$A^{\mathbf{u}} = \{x \in \mathbb{R} | \sqrt{2} \le x\}, A^{\mathbf{l}} = \{x \in \mathbb{R} | -\sqrt{2} \ge x\}$$

$$\sup A = \sqrt{2}, \inf A = -\sqrt{2}$$

$$B^{\mathbf{u}} = \{x \in \mathbb{R} | x \ge 1\}, B^{\mathbf{l}} = \{x \in \mathbb{R} | x \le 0\}$$

$$\sup B = 1, \inf B = 0$$

- 9. 2.
- 10. Cauchy's inequality. n^2
- 11. (1) (a) reflexive: $A \subseteq A$
 - (b) transitive $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$
 - (c) antisymmetric $A \subseteq B \land B \subseteq A \Rightarrow A = B$
 - (2) Denote $\bigcup_{i \in I} A_i$ as A $\forall i \in I, A_i \subseteq A$, so $A \in (A_i)_{i \in I}^{\mathrm{u}}. \forall B \in (A_i)_{i \in I}^{\mathrm{u}}, \forall i \in I, A_i \subseteq B$, so $A \subseteq B$, $A = \min(A_i)_{i \in I}^{\mathrm{u}}, \sup(A_i)_{i \in I} = A$. Similarly, $\inf(A_i)_{i \in I} = \bigcap_{i \in I} A_i$
- 12. The following is about induction, we skip it.
- 22. (1) (a) reflexive: $\forall n \in \mathbb{N}, n | n$
 - (b) transitive: If a|b,b|c, where $(a,b,c) \in \mathbb{N}^3$, then $\exists (m,n) \in \mathbb{N}^2$ such that b=am,c=nb, so c=(nm)a, which leads to a|c.
 - (c) antisymmetric:Let $a = mb, b = na, (m, n) \in \mathbb{N}^2$ Then 1 = mn, m = n = 1.Hence a = b

Therefore $(\mathbb{N}, |)$ is a partially ordered set.

4 ORDERING 3

- (2) Obvious.
- (3) $\forall n \in \mathbb{N}, 1 | n.1$ is the least element.
- (4) $\forall n \in \mathbb{N}, n | 0.0$ is the greatest element.
- (5) If there exists a $n \in \mathbb{N}$, $n \neq 0$, such that $\forall a \in A, a | n$, then $a \leq n$. That contradicts to A is infinite. Thus n can only be $0.\sup_{(\mathbb{N},\mathbb{I})} A = 0$
- (6) (a) $\forall a \in A, a | n, \text{where}, n = \prod_{x \in A} x, \text{so } n \in M(A).$
 - (b) Suppose $\exists n \in M(A), n_0 \nmid n$ we can write $n = dn_0 + r$, where $d, r \in \mathbb{N}, 0 < r < n_0$. Claim $r \in M(A)$: Take $x \in A$, since $n, n_0 \in M(A), \exists s, s_0 \in \mathbb{N}, xs = n, xs_0 = n_0$, then $xs = dxs_0 + r, x \mid r, \text{sor} \in M(A)$. That contradicts to the fact that n_0 is the least number in M(A).
 - (c) $\sup A = n_0$
- (7) (a) Let $x = \sum_{i=1}^k a_i n_i, y = \sum_{j=1}^t b_j m_j, \sum_{i=1}^k a_i n_i + \sum_{j=1}^t b_j m_j \in A\mathbb{Z}$.
 - (b) $\sum_{i=1}^{k} a_i(yn_i) \in A\mathbb{Z}$
 - (c) $\forall a \in A$, let $k = 1, a_1 = a, n_1 = 1$, we have $a \in A\mathbb{Z}.A \cap (\mathbb{N} \setminus \{0\}) \neq \emptyset$, hence, $(A\mathbb{Z}) \cap (\mathbb{N} \setminus \{0\}) \neq \emptyset$.
 - (d) $\{d\} \subseteq A\mathbb{Z}$.By (b), we have $d\mathbb{Z} \subseteq A\mathbb{Z}$.If $A\mathbb{Z} \nsubseteq d\mathbb{Z}$, then $\exists x = \sum a_i x_i \notin d\mathbb{Z}$, i.e. $d \nmid x$. Write x = dm + r, where $m, n \in \mathbb{N}, 0 < r < d.r = x dm = \sum a_i x_i + (-m)d \in A\mathbb{Z}$. But that's impossible. Hence $A\mathbb{Z} \subseteq d\mathbb{Z}$, $A\mathbb{Z} = d\mathbb{Z}$.
 - (e) By (d), $A\mathbb{Z} = d\mathbb{Z}$,by (c), $A \subseteq A\mathbb{Z} \Rightarrow A \subseteq d\mathbb{Z}$,i.e. $d|a, \forall a \in A \Rightarrow d$ is a lower bound of A. Take another lower bound d' of $A.d'|a, \forall a \in A \Rightarrow d|y, \forall y \in A\mathbb{Z} = d\mathbb{Z} \Rightarrow d'|d \Rightarrow d$ is the greatest lower bound of A.i.e.inf A = d.
- (8) If A is empty, it is easy to check gcd(A) = 0, lcm(A) = 1. Assume $A = \neq \emptyset$. If $A = \{0\}$, then easy to check gcd(A) = lcm(A) = 0. Set $A' = \{a \in A | a \neq 0\} \subseteq A, A' \neq \emptyset$. By (7)-(e), A' has infimum d. d is also the infimum of A. By (5), (6)-(c), A' has a supremum D.d is also the supremum of A.
- (9) $A = \{a, b\}$, by (7)-(d)(e), $A\mathbb{Z} = d\mathbb{Z} \Rightarrow d \in A\mathbb{Z} \Rightarrow \exists m, n \text{ such that } d = ma + nb \text{ (Bézout Lemma)}$
- (10) $\frac{ab}{\gcd(a,b)} = a \frac{b}{\gcd(a,b)} = b \frac{a}{\gcd(a,b)} \Rightarrow \frac{ab}{\gcd(a,b)}$ is an upper bound of $A = \{a,b\}$ under $(\mathbb{N},|)$. Since $\operatorname{lcm}(a,b)$ is the least upper bound of A, $\gcd(a,b)|\frac{ab}{\gcd(a,b)}$

$$a = \frac{ab}{\operatorname{lcm}(a, b)} \frac{\operatorname{lcm}(a, b)}{b}, b = \dots$$

4 ORDERING 4

 $\frac{ab}{\operatorname{lcm}(a,b)}$ is a lower bound of $A=\{a,\}$ under $(\mathbb{N},|), \operatorname{gcd}$ is the greatest \ldots $\frac{ab}{\operatorname{lcm}(a,b)}|\gcd(a,b), ab=\gcd(a,b)\operatorname{lcm}(a,b).$

23. (1) Obvious.

- (2) $\forall x \in \emptyset, P(x)$ is true. There is no non-empty set can be the subset of $\emptyset, (\emptyset, \underline{\in})$ is true.
- (3) (α, \leq) is a well-ordered set since it is a subset of $(\alpha \cup \{\alpha\}, \leq)$. $\forall x \in \alpha \cup \{\alpha\}$, if $x = \alpha, x \subseteq (\alpha \cup \{\alpha\})$; if $x \in \alpha, x \subseteq \alpha \subseteq (\alpha \cup \{\alpha\})$. So α is ordinal.
- (4) $\forall x \in \alpha, x \in \alpha, \forall A \subseteq \alpha, \min(A) \in \alpha \subseteq (\alpha \cup \{\alpha\}), \text{so } (\alpha \cup \{\alpha\}, \underline{\in}) \text{ is well ordered.} \forall x \in \alpha \cup \{\alpha\}, \text{if } x = \alpha, \alpha \subseteq \alpha \cup \{\alpha\}, \text{if } x \in \alpha, \text{since } \alpha \text{ is ordinal, } x \subseteq \alpha \subseteq \alpha \cup \{\alpha\}. \text{Thus } \alpha \cup \{\alpha\} \text{ is an ordinal.}$ Obviously,

$$\alpha \subseteq \bigcup_{x \in \alpha \cup \{\alpha\}} x$$

Conversely, $\forall y \in x, x \in \alpha \cup \{\alpha\}$, if $x = \alpha$, then $y \in \alpha$. If $x \in \alpha$, since α is ordinal, $y \in x \subseteq \alpha$, $y \in \alpha$. Hence,

$$\alpha \supseteq \bigcup_{x \in \alpha \cup \{\alpha\}} x$$

Therefore,

$$\alpha = \bigcup_{x \in \alpha \cup \{\alpha\}} x$$

(5)
$$\alpha = \bigcup_{x \in \alpha \cup \{\alpha\}} x = \bigcup_{x \in \beta \cup \{\beta\}} x = \beta$$

- (6) If $x = \alpha \lor y = \alpha$, easy. If $x, y \in \alpha$, since $(\alpha, \underline{\in})$ is well ordered, consider $\{x, y\} \subseteq \alpha, x \underline{\in} y \lor y \underline{\in} x$.
- (7) $\forall x \in \alpha, x \subseteq \alpha$, since $(\alpha, \underline{\in})$ is well ordered, $(x, \underline{\in})$ is well ordered. $\forall y \in x, z \in x$, by transitive $z \in x, y \subseteq x$. Therefore, all elements of α are ordinals.
- (8) Take $x \in \beta$, denote $X := \{ y \in \alpha | y \in x \}$. Take $y \in X$, since $y \in x \in \beta$, by transitivity, $y \in \beta$. If $y = \beta, \beta \in x \land x \in \beta$, contradicts to axiom of foundation. So $y \in \beta, X \subseteq \beta$.
- (9) If $\beta \in \alpha \cup \{\alpha\}$ and $\beta \neq \alpha, \beta \subseteq \alpha$.By (8), β is an initial segment of α . If β is an initial segment of α

24. (1) \Rightarrow :Let $\alpha = A \cup \{A\}$ for an ordinal A.By (4) of 23.

$$A = \bigcup_{x \in A \cup \{A\}} x = \bigcup_{x \in \alpha} x \subseteq \alpha$$

 \Leftarrow : Let $U = \bigcup_{x \in \alpha} x$, claim that $\alpha = U \cup \{U\}$ (to be continue to check)

- (2) -
- (3) N.T.S. $\forall x \in \emptyset \cup \{\emptyset\}, x \text{ is not a limit ordinal.} \Rightarrow x = \emptyset$, which is not a limit ordinal by definition.
- (4) $\alpha = n$ is a natural number $\Leftrightarrow \forall x \in \alpha \cup \{\alpha\}, x$ is not limit.N.T.S $\alpha + 1$ is not \mathbb{N} , i.e. $\forall x \in \alpha \cup \{\alpha\} \cup \{\alpha \cup \{\alpha\}\}, x$ is not limit.Whether $x \in \alpha \cup \{\alpha\}$ or $x = \alpha \cup \{\alpha\}$, it's right.
- (5) -
- (6) $\alpha = n$ natural number $. \forall x \in \alpha + 1, x$ is not limit. N.T.S $\forall y \in \alpha, \forall z \in y + 1, z$ is not limit. $z \in y + 1 \nsubseteq \alpha + 1 \Rightarrow z \in \alpha + 1 \Rightarrow z$ is not a limit ordinal.
- (7) -
- (8) -
- (9) f increasing $\Leftrightarrow \forall x_1, x_2 \in \mathbb{N}, f(x_1) \leq f(x_2)$. Prove by induction. Claim f(0) = 0. Pf.: If not ,then $f(0) \neq 0 \Rightarrow f(0) \geq 1$. By increasing, $\forall n > 0, f(n) \geq f(0) \geq 1$. $\forall n \in \mathbb{N}, f(n) \neq 0, f$ is not surjective. Claim: If $f(n) = n, \forall n \geq m$, then f(m+1) = m+1. Pf. $f(m+1) \geq f(m) = m$. If $f(m+a) = m = f(m) \Rightarrow f$ is not injective. If f(m+1) > m+1, then $\forall i > m+1, f(i) \geq f(m+1) > m+1$.

5 Group

- 1. It is communicative and associative.
- 2. It's communicative, but not associative.
- 3. (1) 1 + 3(x * y) = 1 + 3x + 3y + 9xy = (1 + 3x)(1 + 3y)
 - (2) Easy to prove it's communicative. (x*y)*z = x+y+z+3xy+3yz+3zx+9xyz, x,y,z are in the same position. Then it's associative.
 - (3) $\forall x \in \mathbb{R}, (x * 0) = (0 * x) = x$, so e = 0 is the neutral element in the semigroup.
 - (4) $\forall x \neq -\frac{1}{3}, y = -\frac{x}{1+3x}$ satisfies (x * y) = 0 = e.
- 4. (1) Easy. e = 0.

- (2) $\forall (x,y) \in \mathbb{R}^2_{>0}, \sqrt{x^2+y^2} > 0 = e$. So none of the non-zero element is invertible.
- 5. (1) Easy to check it is close.
 - (2) Composition of mapping is associative, so it's a semigroup.
 - (3) $\forall i \in \{1, 2, 3, 4\}, f_1 \circ f_i = f_i = f_i \circ f_1$. So it is a monoid.
 - (4) $\forall i \in \{1, 2, 3, 4\}, f_i \circ f_i = f_1$. So it is a group.
- 6. (1) $e = (1,0), (\frac{1}{a}, -\frac{x}{a})$ is the inverse of (a,x).
 - (2) Not communicative.
 - (3) Easy.
- 7. (1) Not close.
 - (2) Not close.
 - (3) e = 1 is the neutral element. $\forall (x, y) \in H^2$, let $x = \frac{q}{p}, y = \frac{t}{s}, \iota(y) = \frac{s}{t}$, then $x \cdot \iota(y) = \frac{qs}{pt} \in H$. So (H, \cdot) is a group.
 - (4) $\forall \sigma \in H, \sigma(x) = x \Rightarrow x = \sigma^{-1}(\sigma(x)) = \sigma^{-1}(x)$, so $\sigma^{-1} \in H$. Since we've known H is monoid, H is a group.
- 8. We denote $G := \{a + b\sqrt{2} \mid (a,b) \in \mathbb{Z}^2\}$. Take two elements $x = a + b\sqrt{2}, y = c + d\sqrt{2}$ from $G, x \cdot y = (ac + 2bd) + (ad + bc)\sqrt{2} \in G$. The neutral element e = 1 also in G, so it is a submonoid of (\mathbb{R}, \cdot) .
- 9. $\forall z \in \mu_n(\mathbb{C}), \iota(z) = z^{-1}. \ \forall (z_1, z_2) \in \mu_n(\mathbb{C})^2, (z_1 z_2^{-1})^n = z_1^n (z_2^n)^{-1} = 1,$ thus $z_1 \iota(z_2) \in \mu_n(\mathbb{C}).$ Therefore $\mu_n(\mathbb{C})$ is a subgroup of $(\mathbb{C}^{\times}, \cdot).$
- 10. (1) Neutral element e=1 is in $G:=\{x+y\sqrt{3}\mid x\in\mathbb{N},y\in\mathbb{Z},x^2-3y^2=1\}$. If $x+y\sqrt{3}$ is an element of G, then $(x+y\sqrt{3})(x-y\sqrt{3})=1$, since $x\geq 0, x+y\sqrt{3}$ and $x-y\sqrt{3}$ can not both be negative. Then they are both positive, so they are both in $\mathbb{R}_{>0}$. Moreover, They are inverse of each other. $(x+y\sqrt{3})(z-w\sqrt{3})=xz-3yw+(zy-xw)\sqrt{3}, x>\sqrt{3}y, z>\sqrt{3}w\Rightarrow xz-3yw>0$. So $xz-3yw\in\mathbb{N}$. $(x+y\sqrt{3})(z-w\sqrt{3})\in G$. Therefore, it is a subgroup of $(\mathbb{R}_{>0},\times)$.
 - (2) Easy.
 - (3) $\frac{97}{56} \sqrt{3} = \frac{1}{(97 + 56\sqrt{3})56}$
- 11. (1) $\forall (n,m) \in \mathbb{Z}^2, (-1)^n(-1)^m = (-1)^{n+m}.$
 - (2) Easy.
 - (3) Easy.

12. (1) Easy to check $e \in \operatorname{Stab}(x)$. $\forall g \in \operatorname{Stab}(x), x = (g^{-1}g)x = g^{-1}(gx) = g^{-1}x$. So $g^{-1} \in \operatorname{Stab}(x)$. Moreover, $\forall (g_1, g_2) \in \operatorname{Stab}(x)^2, g_1g_2^{-1}x = g_1x = x$, so $g_1g_2^{-1} \in \operatorname{Stab}(x)$. Therefore, $\operatorname{Stab}(x)$ is a subgroup of G.

- (2) Claim that: if $\exists g \in G$, $g \in g_1 \operatorname{Stab}(x) \land g \in g_2 \operatorname{Stab}(x)$, then $g_1 \operatorname{Stab}(x) = g_2 \operatorname{Stab}(x)$. Let $g = g_1 s_1 = g_2 s_2$, then $g_2 = g_1 s_1 \iota(s_2)$. Thus, for any $s \in \operatorname{Stab}(x), g_2 s = g_1 s_1 \iota(s_2) s \in g_1 \operatorname{Stab}(x)$. So $g_2 \operatorname{Stab}(x) \subseteq g_1 \operatorname{Stab}(x)$. resp. we have $g_2 \operatorname{Stab}(x) \supseteq g_1 \operatorname{Stab}(x)$. Hence $g_2 \operatorname{Stab}(x) = g_1 \operatorname{Stab}(x)$. If $g_1 s_1 = g_2 s_2, g_1 x = g_1 s_1 x = g_2 s_2 x = g_2 x$. Therefore, they map at the same $g_3 \cap g_1 \cap g_2 \cap g_2 \cap g_3 \cap g_3$
- (3) By definition, $\forall g \in G$, |Stab(x)| = |gStab(x)|. (Lagrange Theorem)
- 13. (1) 1.
 - (2) By definition, $n \in N(a)$. Hence, $\min(N(a)) \le n$.
 - (3) Let $p, q \leq \operatorname{ord}(a), 0 \leq p < q$. Suppose that $a^p = a^q$, then $e = a^{q-p}, (q-p) \in N(a), q-p < \operatorname{ord}(N(a))$, contradiction. Thus they are distinct.
 - (4) Let $f: (\mathbb{Z}, +) \to (G, *)$ be the homomorphism, f(1) = a, then $\forall n \in \mathbb{Z}, a * f(n) = f(n+1)$.
 - (a) Suppose $\langle a \rangle$ is finite. If $\forall n, m \in \mathbb{Z}, f(n) \neq f(m)$, then the image is not finite, contradiction. Take f(n) = f(m), n < m, then $a^{m-n} = 1$. Thus $\operatorname{ord}(a) \leq m n$ is finite.
 - (b) Suppose ord(a) is finite. Then $\forall n \in \mathbb{Z}, f(n + \operatorname{ord}(a)) = f(n) \in \{f(i) \mid i \in \mathbb{N}, 1 \le i \le \operatorname{ord}(a)\}$
 - (5) By (4)(b), $|\langle a \rangle| \le \operatorname{ord}(a)$. By (4)(a), $|\langle a \rangle| \ge \operatorname{ord}(a)$.
- 14. (1) By comm. law $(ab)^N = a^N b^N = e$, ab $\leq N$ is finite.
 - (2) -
 - (3) -
- 15. (1) We know that the composition of mapping is associative. And easy to check that in this case, the composition is closed. $e = \mathrm{Id}_E$, $f \circ f^{-1} = \mathrm{Id}_E$. Hence \mathcal{S}_E equipped with composition of mapping forms a group.
 - (2) $\sigma^0(x) = x$. $\phi_{\sigma}(n+m,x) = \sigma^{(n+m)}(x) = \sigma^n \circ \sigma^m(x) = \phi_{\sigma}(n,x) \circ \phi_{\sigma}(m,x)$. So ϕ_{σ} defines a left action of \mathbb{Z} on E.
 - (3) $\forall \sigma^n(x) \in \operatorname{Orb}_{\sigma}(x), \sigma(\sigma^n(x)) = \sigma \circ \sigma^n(x) = \sigma^{n+1}(x) \in \operatorname{Orb}_{\sigma}(x).$ Hence $\sigma(\operatorname{Orb}_{\sigma}(x)) \subseteq \operatorname{Orb}_{\sigma}(x).$
 - (4) We claim that x, y both in a same orbit is a equivalence relation. Reflexivity: $x \in \text{Orb}_{\sigma}(x) \Leftrightarrow x \in \text{Orb}_{\sigma}(x)$. Transitivity: $x \sim y \Rightarrow \exists n \in \mathbb{Z}, \sigma^n(x) = y, y \sim z \Rightarrow \exists m \in \mathbb{Z}, \sigma^m(y) = z$. Thus $\sigma^{n+m}(x) = z$

 $z, x \sim z$. Symmetry: $x \sim y \Rightarrow \exists n \in \mathbb{Z}, \sigma^n(x) = y, \sigma^{-n}(y) = x$. Hence $y \sim x$. Therefore, if $x \in O_i$, then $x \notin O_j, i \neq j$. So $\sigma_i(x) = \sigma(x), \sigma_j(x) = x, i \neq j$. $\forall x \in E, \sigma_1 \dots \sigma_n(x) = \sigma(x)$, hence $\sigma = \sigma_1 \dots \sigma_n$.

- 16. (1) By definition.
 - (2) Let n be the largest cardinal of its orbits and O be the orbit that has more than one element. Then for any element x in any other orbit, $\sigma(x) = x$. Moreover, $\forall m \in \mathbb{Z}, \sigma^m(x) = x$. While n is the order of σ on O, for any $x \in E$, $\sigma^n(x) = x$, n is the order of σ . This relation is NOT hold generally. If there exists two orbits O_1, O_2 , there cardinal are n, m and m > n > 1, $\gcd(n, m) = 1$, then for the element $x \in O_1$, $\sigma^m(x) \neq x$. So m is not the order of σ .
 - (3) For any $y \notin \text{Orb}(\mathbf{x}), \sigma(y) = y = \tau_{x_i, x_{i+1}}, i \in \{0, \dots, p-1\}.$

$$\tau_{x_i,x_{i+1}}(\tau_{x_{i+1},x_{i+2}}(\dots(x_i))) = \tau_{x_i,x_{i+1}}(x_i) = x_{i+1},$$

$$\tau_{x_1,x_2}(\dots(\tau_{x_{i-1},x_i}(x_{i+1}))) = x_{i+1}.$$

Hence, $\forall i \in \{0, \dots, p-1\}, \ \sigma(x_i) = \tau_{x_1, x_2} \dots \tau_{x_{p-2}, x_{p-1}}(x_i)$. Therefore,

$$\sigma = \tau_{x_1, x_2} \dots \tau_{x_{p-2}, x_{p-1}}.$$

(4) Take O_i from $\langle \sigma \rangle \backslash E$, let

$$\sigma_i(x) := \begin{cases} \sigma(x) & \text{if } x \in O_i \\ x & \text{if } x \notin O_i \end{cases}.$$

Similarly to (3), we can get $\sigma = \sigma_1 \dots \sigma_n$, where $n = \text{Card}[\langle \sigma \rangle \setminus E]$. Since σ_i is the composition of transpositions, any $\sigma \in \mathcal{S}_E$ can be written in the form of composition of transpositions.

17. Let $E = \{1, 2, ..., n\}, \forall \sigma \in \mathfrak{S}_E$,

$$\prod_{i \neq j \in E} [\sigma(i) - \sigma(j)] = \prod_{i \neq j \in E} (i - j)$$

$$\prod_{i \neq j \in E} (i-j)[(\sigma \circ \pi)(i) - (\sigma \circ \pi)(j)] = \prod_{i \neq j \in E} [\sigma(i) - \sigma(j)][\pi(i) - \pi(j)]$$

$$\prod_{i < j \in E} (i-j)[(\sigma \circ \pi)(i) - (\sigma \circ \pi)(j)] = \prod_{i < j \in E} [\sigma(i) - \sigma(j)][\pi(i) - \pi(j)]$$

$$\prod_{i < j \in E} \frac{\left[(\sigma \circ \pi)(i) - (\sigma \circ \pi)(j) \right]}{i - j} = \prod_{i < j \in E} \frac{\sigma(i) - \sigma(j)}{i - j} \prod_{i < j \in E} \frac{\pi(i) - \pi(j)}{i - j}$$

Hence, sgn is a homomorphism.

18. By 16. $\forall \sigma \in \mathfrak{S}_E$, it can be represented by the composition of transpositions τ_i , where,

$$\tau_i : E \longrightarrow E,$$

$$\tau_i(x) = \begin{cases} x &, x \in E \setminus \{i, \operatorname{mod}(i, n) + 1\} \\ \operatorname{mod}(x, n) + 1 &, x = i \\ \operatorname{mod}(x - 2, n) + 1 &, x = \operatorname{mod}(i, n) + 1 \end{cases}$$

Easy to check that $\tau_i \circ \tau_i = \mathrm{Id}_E$. So $\forall f$ be a homomorphism, $f(\tau_i) = 1$, $f(\tau_i) = \pm 1$. Then $\forall \sigma \in \mathfrak{S}_E, f(\sigma) = \pm 1$.

Remark. f = -1 corresponds to the sgn in 17.

6 Rings and Modules

- 1. (1) First, we check that it is a monoid. One has it is closed. For any $(x_1, x_2) \in \mathbb{Z}^2$, $(x_1, x_2) * (1, 0) = (x_1, x_2)$. So (1, 0) is the neutral element.
 - (2) Second, check that it is commutative. For any $(x_1, x_2), (y_1, y_2) \in \mathbb{Z}^2, (x_1, x_2) * (y_1, y_2) = (x_1y_1 + rx_2y_2, x_1y_2 + x_2y_1) = (y_1x_1 + ry_2x_2, y_1x_2 + y_2x_1) = (y_1, y_2) * (x_1, x_2).$
 - (3) Third, check that it is distributive. For any $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in \mathbb{Z}^3, (x_1, x_2) * ((y_1, y_2) + (z_1, z_2)) = (x_1(y_1 + z_1) + rx_2(y_2 + z_2), x_1(y_2 + z_2) + x_2(y_1 + z_1)) = (x_1, x_2) * (y_1, y_2) + (x_1, x_2) * (z_1, z_2).$
- 2. (1) Associativity is NOT valid in general.
 - (2) Just verify.
- 3. Let $e_i = (0, \dots, 1, \dots, 0)$
- 4. 5. Let

$$f: \mathbb{Q} \longrightarrow \mathbb{Q}$$

be a automorphism. Then

$$f(1) = 1.$$

For any $n \in \mathbb{N}$,

$$f(n) = f\left(\sum_{i=1}^{n} 1\right) = \sum_{i=1}^{n} f(1) = nf(1) = n.$$

$$0 = f(0) = f(n + (-n)) = f(n) + f(-n) = n + f(-n).$$

So,
$$f(-n) = -n$$
. Let $(n, m) \in \mathbb{Z}$,

$$f(n) = f(m)f(\frac{n}{m}),$$

$$f(\frac{n}{m}) = \frac{n}{m}.$$

Therefore, for any $x \in \mathbb{Q}$, f(x) = x, which means

$$f = \mathrm{Id}_{\mathbb{O}}.$$

5. 10.

(1)
$$\left(\sum_{n\in\mathbb{N}} a_n T^n\right) \dagger \left(\sum_{n\in\mathbb{N}} b_n T^n\right) = \sum_{n\in\mathbb{N}} (a_n + b_n) T^n$$

$$= \sum_{n\in\mathbb{N}} (b_n + a_n) T^n = \left(\sum_{n\in\mathbb{N}} b_n T^n\right) \dagger \left(\sum_{n\in\mathbb{N}} a_n T^n\right).$$

So † is a communitative composition law.

For any $\sum_{n\in\mathbb{N}} a_n T^n \in k[[T]],$

$$\left(\sum_{n\in\mathbb{N}} a_n T^n\right) \dagger \sum_{n\in\mathbb{N}} 0 T^n = \left(\sum_{n\in\mathbb{N}} a_n T^n\right).$$

So $\sum_{n\in\mathbb{N}} 0T^n$ is the neutral element of k[[T]]. For any $\sum_{n\in\mathbb{N}} a_n T^n \in k[[T]]$,

$$\left(\sum_{n\in\mathbb{N}} a_n T^n\right) \dagger \left(\sum_{n\in\mathbb{N}} -a_n T^n\right) = \sum_{n\in\mathbb{N}} 0 T^n,$$

$$\left(\sum_{n\in\mathbb{N}} -a_n T^n\right) \dagger \left(\sum_{n\in\mathbb{N}} a_n T^n\right) = \sum_{n\in\mathbb{N}} 0 T^n.$$

Therefore, k[T] equipped with † forms a communitative group.

(2) Note that, for any $\sum_{n\in\mathbb{N}} a_n T^n \in k[[T]],$

$$\left(\sum_{n\in\mathbb{N}}a_nT^n\right)*\sum_{n\in\mathbb{N}}\mathbb{1}T^n=\sum_{n\in\mathbb{N}}\left(\sum_{i=0}^na_i\mathbb{1}T^n\right)=\sum_{n\in\mathbb{N}}a_nT^n.$$

Hence $\sum_{n\in\mathbb{N}} eT^n$ is the neutral element of k[[T]]. One has

$$\sum_{i=0}^{n} a_i b_{n-i} = \sum_{t=n}^{0} a_{n-t} b_t = \sum_{t=0}^{n} b_t a_{n-t}.$$

Thus, * is communitative. Therefore, what given is a communitative monoid.

(3)
$$a_i = a\delta_{i,n}, b_i = b\delta_{i,m}.$$

$$(aT^n)(bT^m) = \sum_{k \in \mathbb{N}} \sum_{i=0}^k ab\delta_{i,n}\delta_{k-i,m}T^k = abT^{n+m}.$$

(4) We only need to check it's distributive.

$$\left(\sum_{n\in\mathbb{N}} a_n T^n\right) * \left[\left(\sum_{n\in\mathbb{N}} b_n T^n\right) \dagger \left(\sum_{n\in\mathbb{N}} c_n T^n\right)\right]$$

$$= \left(\sum_{n\in\mathbb{N}} \left(\sum_{i=0}^n a_i (b_{n-i} + c_{n-i})\right) T^n\right)$$

$$= \left(\sum_{n\in\mathbb{N}} \left(\sum_{i=0}^n a_i b_{n-i} T^n + \sum_{i=0}^n a_i c_{n-i} T^n\right)\right)$$

$$= \left(\sum_{n\in\mathbb{N}} \sum_{i=0}^n a_i b_{n-i} T^n\right) \dagger \left(\sum_{n\in\mathbb{N}} \sum_{i=0}^n a_i c_{n-i} T^n\right)$$

$$= \left(\sum_{n\in\mathbb{N}} a_n T^n\right) * \left(\sum_{n\in\mathbb{N}} b_n T^n\right) \dagger \left(\sum_{n\in\mathbb{N}} a_n T^n\right) * \left(\sum_{n\in\mathbb{N}} c_n T^n\right).$$

(5) (a) Suppose f is invertible, and $g = \sum_{n \in \mathbb{N}} b_n T^n$ be its inverse, then by (2), $(b_i)_{i \in \mathbb{N}}$ satisfies:

$$\sum_{i=0}^{n} a_i b_{n-i} = 1, \forall n \in \mathbb{N}.$$

Take n = 0, we obtain a_0 must be invertible.

(b) Suppose a_0 is invertible. For any $n \in \mathbb{N}$, let

$$b_{n+1} = \left(\mathbb{1} - \sum_{i=1}^{n+1} (a_i b_{n+1-i})\right) a_0^{-1},$$

then,

$$\sum_{i=0}^{n+1} (a_i b_{n+1-i}) = 1.$$

Hence $g = \sum_{n \in \mathbb{N}} b_n T^n$ is the inverse of f.

(6) Follow the algorithm in (5), we can easily get the result.

$$(1 - aT)^{-1} = \sum_{n \in \mathbb{N}} a^n T^n.$$

- (7) -
- (8) k is communitative. We claim that D is a homomorphism.

$$D(f_1) \dagger D(f_2) = \left(\sum_{n \in \mathbb{N}} (n+1) a_{1,(n+1)} T^n \right) \dagger \left(\sum_{n \in \mathbb{N}} (n+1) a_{2,(n+1)} T^n \right)$$
$$= \sum_{n \in \mathbb{N}} (n+1) (a_{1,(n+1)} + a_{2,(n+1)}) T^n$$
$$= D(f_1' \dagger f_2').$$

$$D\left(\sum_{n\in\mathbb{N}}0T^n\right) = \sum_{n\in\mathbb{N}}(n+1)0T^n = \sum_{n\in\mathbb{N}}0T^n.$$

Then we prove it is surjective. For any $f' = \sum_{n \in \mathbb{N}} b_n T^n$, let $a_n = b_{n-1}(n-1)^{-1}$, $n \neq 0$, $D[\sum_{n \in \mathbb{N}} a_n T^n] = f'$. Therefore D is a surjective k-linear mapping.

(9) Let $f = \sum_{n \in \mathbb{N}} a_n T^n \in \ker(D)$, then for any $n \in \mathbb{N}$, $a_{n+1} = 0$. Thus,

$$\ker(D) = k.$$

(10)
$$a_{n+1} = a_n(n+1)^{-1}.$$

$$a_n = a_0 \prod_{i=0} n(i+1)^{-1}.$$

$$f = \sum_{n \in \mathbb{N}} a_0 \prod_{i=0} n(i+1)^{-1} T^n, \ \forall a_0 \in k.$$

- 6. 15.
 - (1) (a) (i) \Rightarrow (ii): Let \bar{b} be the inverse of \bar{a} . If $\bar{a}\bar{c}=0$, then

$$0 = \bar{b}0 = \bar{b}(\bar{a}\bar{c}) = (\bar{b}\bar{a})\bar{c} = \bar{c}.$$

Hence \bar{a} is not a zero divisor.

(b) (ii) \Rightarrow (iii): We prove by contradiction. Assume $\gcd(a,n) = k, 1 < k < n$. Then

$$\bar{a}\frac{\bar{n}}{h}=0.$$

That is contradicts to the fact that \bar{a} is not a zero divisor.

(c) (iii) \Rightarrow (i):

(2) By (1) (i) \Rightarrow (iii), $(\mathbb{Z}/n\mathbb{Z})^{\times} \subseteq \{k \mid k \in [0, n-1], \gcd(k, n) = 1\}$. By (1) (iii) \Rightarrow (i), $\{k \mid k \in [0, n-1], \gcd(n, k) = 1\} \subseteq (\mathbb{Z}/n\mathbb{Z})^{\times}$. Hence $\{k \mid k \in [0, n-1], \gcd(n, k) = 1\} = (\mathbb{Z}/n\mathbb{Z})^{\times}$.

$$\phi(n) = \#\{k \mid k \in [0, n-1], \gcd(n, k) = 1\}.$$

(3) Suppose $\bar{\alpha}$ is invertible and let $\bar{\beta}$ be its inverse. Then,

$$\forall k \in \mathbb{N}, \bar{k} = k\bar{\beta}\bar{\alpha} = (k\beta)\bar{\alpha}.$$

So $\mathbb{Z}/n\mathbb{Z} = \{k\alpha\}_{k \in \mathbb{Z}}$.

Conversely, if $\mathbb{Z}/n\mathbb{Z} = \{k\alpha\}_{k\in\mathbb{Z}}$, then there exists $k \in \mathbb{Z}$ such that $\bar{k}\bar{\alpha} = 1$, which means \bar{k} is $\bar{\alpha}$'s inverse. Thus, $\bar{\alpha}$ is invertible.

- (4) -
- (5) $\{x \mid x = a^n, n \in \mathbb{Z}\}$ forms a subgroup of $(\mathbb{Z}/n\mathbb{Z})^{\times}$. By Lagrange theorem, its order is a divisor of n. So $\bar{a}^{\phi(n)} = 1, a^{\phi(n)} \equiv 1 \pmod{n}$.
- (6) There are $\frac{n}{p_i}$ elements in $\{k \in \mathbb{N}^* \mid k \leq n\}$ satisfies $\gcd(k, p_i) = p_i \neq 1$. So, there are $n(1 \frac{1}{p_i})$ elements in $\{k \in \mathbb{N}^* \mid k \leq n\}$ satisfies $\gcd(k, p_i) = 1$. By (4),

$$\phi(n) = n \prod_{i=1}^{k} (1 - \frac{1}{p_i}).$$

(7) By definition of prime number, for any $n \in \mathbb{N}^*$, n < p, gcd(n, p) = 1, so $\phi(p) = p - 1$. By (1), any element in $\mathbb{Z}/p\mathbb{Z}$ except 0 is invertible. For any $\bar{a}, \bar{b} \in \mathbb{Z}/p\mathbb{Z}, \bar{a}\bar{b} = \bar{a}\bar{b} = \bar{b}\bar{a}$. So $\mathbb{Z}/p\mathbb{Z}$ is commutative. Therefore $\mathbb{Z}/p\mathbb{Z}$ is a field.