Types of Instructions in 8085

1. Arithmetic instructions in 8085 microprocessors

Arithmetic Instructions are the instructions which perform basic arithmetic operations such as addition, subtraction and a few more. In 8085 microprocessor, the destination operand is generally the accumulator. In 8085 microprocessor, the destination operand is generally the accumulator.

Following is the table showing the list of arithmetic instructions:

In the table,
R stands for register
M stands for memory
Mc stands for memory contents
r.p. stands for register pair

OPCODE	OPERAND	EXPLANATION	EXAMPLE
ADD	R	A = A + R	ADD B
ADD	M	A = A + Mc	ADD 2050
ADI	8-bit data	A = A + 8-bit data	ADI 50
ADC	R	A = A + R + prev. carry	ADC B
ADC	M	A = A + Mc + prev. carry	ADC 2050
ACI	8-bit data	A = A + 8-bit data + prev. carry	ACI 50
SUB	R	A = A - R	SUB B
SUB	M	A = A - Mc	SUB 2050
SUI	8-bit data	A = A - 8-bit data	SUI 50

OPCODE	OPERAND	EXPLANATION	EXAMPLE
SBB	R	A = A - R - prev. carry	SBB B
SBB	M	A = A - Mc -prev. carry	SBB 2050
SBI	8-bit data	A = A - 8-bit data – prev. carry	SBI 50
INR	R	R = R + 1	INR B
INR	M	M = Mc + 1	INR 2050
INX	r.p.	r.p. = r.p. + 1	INX H
DCR	R	R = R - 1	DCR B
DCR	M	$\mathbf{M} = \mathbf{M}\mathbf{c} - 1$	DCR 2050
DCX	r.p.	r.p. = r.p 1	DCX H
DAD	r.p.	HL = HL + r.p.	DAD H

2. Logical instructions in 8085 microprocessor

Logical instructions are the instructions which perform basic logical operations such as AND, OR, etc. In 8085 microprocessor, the destination operand is always the accumulator. Here logical operation works on a bitwise level.

Following is the table showing the list of logical instructions:

OPCODE	OPERAND	DESTINATION	EXAMPLE
ANA	R	A = A AND R	ANA B
			ANA
ANA	M	A = A AND Mc	2050
ANI	8-bit data	A = A AND 8-bit data	ANI 50
ORA	R	A = A OR R	ORA B
ORA	M	A = A OR Mc	ORA 2050
ORI	8-bit data	A = A OR 8-bit data	ORI 50
XRA	R	A = A XOR R	XRA B
XRA	M	A = A XOR Mc	XRA 2050
XRI	8-bit data	A = A XOR 8-bit data	XRI 50
СМА	none	A = 1's compliment of A	CMA
		Compares R with A and triggers the	
CMP	R	flag register	CMP B

OPCODE	OPERAND	DESTINATION	EXAMPLE
		Compares Mc with A and triggers	
CMP	M	the flag register	CMP 2050
		Compares 8-bit data with A and	
СРІ	8-bit data	triggers the flag register	CPI 50
		Rotate accumulator right without	
RRC	none	carry	RRC
		Rotate accumulator left without	
RLC	none	carry	RLC
RAR	none	Rotate accumulator right with carry	RAR
RAL	none	Rotate accumulator left with carry	RAR
CMC	none	Compliments the carry flag	CMC
STC	none	Sets the carry flag	STC

In the table,
R stands for register
M stands for memory
Mc stands for memory contents

3. Data transfer instructions in 8085 microprocessor

Data tranfer instructions are the instructions which transfers data in the microprocessor. They are also called copy instructions.

Following is the table showing the list of logical instructions:

OPCODE	OPERAND	EXPLANATION	EXAMPLE
MOV	Rd, Rs	Rd = Rs	MOV A, B
			MOV A,
MOV	Rd, M	Rd = Mc	2050
			MOV 2050,
MOV	M, Rs	M = Rs	A
MVI	Rd, 8-bit data	Rd = 8-bit data	MVI A, 50
			MVI 2050,
MVI	M, 8-bit data	M = 8-bit data	50
LDA	16-bit address	A = contents at address	LDA 2050
STA	16-bit address	contents at address = A	STA 2050
		directly loads at H & L	
LHLD	16-bit address	registers	LHLD 2050
		directly stores from H & L	
SHLD	16-bit address	registers	SHLD 2050

OPCODE	OPERAND	EXPLANATION	EXAMPLE
	r.p., 16-bit	loads the specified register	
LXI	data	pair with data	LXI H, 3050
		indirectly loads at the	
LDAX	r.p.	accumulator A	LDAX H
		indirectly stores from the	
STAX	16-bit address	accumulator A	STAX 2050
		exchanges H with D, and L	
XCHG	none	with E	XCHG
PUSH	r.p.	pushes r.p. to the stack	PUSH H
POP	r.p.	pops the stack to r.p.	POP H
	8-bit port	inputs contents of the specified	
IN	address	port to A	IN 15
	8-bit port	outputs contents of A to the	
OUT	address	specified port	OUT 15

In the table, R stands for register M stands for memory r.p. stands for register pair

Branching instructions in 8085 microprocessor

Branching instructions refer to the act of switching execution to a different instruction sequence as a result of executing a branch instruction.

The three types of branching instructions are:

1. Jump (unconditional and conditional)

Jump Instructions – The jump instruction transfers the program sequence to the memory address given in the operand based on the specified flag. Jump instructions are 2 types: Unconditional Jump Instructions and Conditional Jump Instructions.

(a) Unconditional Jump Instructions: Transfers the program sequence to the described memory address.

OPCODE	OPERAND	EXPLANATION	EXAMPLE
JMP	address	Jumps to the address	JMP 2050

2. **(b) Conditional Jump Instructions:** Transfers the program sequence to the described memory address only if the condition in satisfied.

OPCODE	OPERAND	EXPLANATION	EXAMPLE
JC	address	Jumps to the address if carry flag is 1	JC 2050
JNC	address	Jumps to the address if carry flag is 0	JNC 2050
JZ	address	Jumps to the address if zero flag is 1	JZ 2050
JNZ	address	Jumps to the address if zero flag is 0	JNZ 2050

OPCODE	OPERAND	EXPLANATION	EXAMPLE
JPE	address	Jumps to the address if parity flag is 1	JPE 2050
ЈРО	address	Jumps to the address if parity flag is 0	JPO 2050
JM	address	Jumps to the address if sign flag is 1	JM 2050
JP	address	Jumps to the address if sign flag 0	JP 2050

Addressing modes in 8085 microprocessor

Types of addressing modes -

In 8085 microprocessor there are 5 types of addressing modes:

1. Immediate Addressing Mode –

In immediate addressing mode the source operand is always data. If the data is 8-bit, then the instruction will be of 2 bytes, if the data is of 16-bit then the instruction will be of 3 bytes.

Examples:

MVI B 45 (move the data 45H immediately to register B) LXI H 3050 (load the H-L pair with the operand 3050H immediately) JMP address (jump to the operand address immediately)

2. Register Addressing Mode –

In register addressing mode, the data to be operated is available inside the register(s) and register(s) is(are) operands. Therefore, the operation is performed within various registers of the microprocessor.

Examples:

MOV A, B (move the contents of register B to register A)

ADD B (add contents of registers A and B and store the result in register A)

INR A (increment the contents of register A by one)

3. Direct Addressing Mode –

In direct addressing mode, the data to be operated is available inside a memory location and that memory location is directly specified as an operand. The operand is directly available in the instruction itself.

Examples:

LDA 2050 (load the contents of memory location into accumulator A) LHLD address (load contents of 16-bit memory location into H-L register pair)

IN 35 (read the data from port whose address is 01)

4. Register Indirect Addressing Mode –

In register indirect addressing mode, the data to be operated is available inside a memory location and that memory location is indirectly specified by a register pair.

Examples:

MOV A, M (move the contents of the memory location pointed by the H-L pair to the accumulator)

LDAX B (move contents of B-C register to the accumulator)

LXIH 9570 (load immediate the H-L pair with the address of the location 9570)

5. Implied/Implicit Addressing Mode –

In implied/implicit addressing mode the operand is hidden and the data to be operated is available in the instruction itself.

Examples:

CMA (finds and stores the 1's complement of the contains of accumulator A in A)

RRC (rotate accumulator A right by one bit)

RLC (rotate accumulator A left by one bit)