Open-source 5G RAN - srsRAN

Open 5G Forum - Fall 2021

17 November 2021

Software Radio Systems, Ltd www.srs.io

(SRSLTE

(SRSRAN

Objectives

Most trusted open-source software for mobile wireless networks

How to get it?

https://github.com/srsran

How to use it?

How to use it?

* » srsRAN 21.04 Documentation

C Edit on GitHub

srsRAN 21.04 Documentation

srsRAN is a free and open-source 4G and 5G software radio suite.

Featuring both UE and eNodeB/gNodeB applications, srsRAN can be used with third-party core network solutions to build complete end-to-end mobile wireless networks. For more information, see www.srsran.com.

The srsRAN suite currently includes:

- srsUE: a full-stack 4G and 5G NSA UE application (5G SA coming 2022)
- · srsENB: a full-stack 4G eNodeB and 5G NSA gNodeB application
- srsGNB: a full-stack 5G SA gNodeB application (coming 2022)
- · srsEPC: a light-weight 4G EPC implementation with MME, HSS and S/P-GW

All srsRAN software runs in linux with off-the-shelf compute and radio hardware.

A reflection on the history of cellular security research and the security outlook of 5G

Published on June 26, 2019

About 10 years ago, I started working on mobile and cellular security research. While most of my work in the early days leveraged costly network testing equipment and a neat lab setup, I also experimented with a number of open-source implementations of the LTE (Long Term Evolution) PHY layer, which were critical for the work on protocol-aware jamming back in 2011. Everything changed in 2012, though. On December 31st 2011 the first commit for openLTE had been uploaded and for the very first time, there was an open-source implementation of the LTE stack aiming to go beyond the PHY layer. Just a couple of years later, by 2013/2014, after outstanding progress in the development of openLTE, I was in the lab able to test LTE IMSI-catching, taking advantage of unprotected *AttachReject* messages and tracking devices via mapping MSISDN (i.e. phone numbers) to TMSI to C-RNTI.

"Currently srsLTE is by far the best and most widely used – both in academia and industry – tool for LTE security research"

Security

> Home > GSMA Coordinated Vulnerability Disclosure (CVD) Programme

GSMA Coordinated Vulnerability Disclosure (CVD) Programme

GSMA Mobile Security Hall of Fame

CVD-2017	0007	Altaf Shaik	Technical University of Berlin and Kaitiaki Labs https://www.isti.tu-berlin.de/security_in_telecommunications
CVD-2017	0007	Ravishankar Borgaonkar	SINTEF Digital and Kaitiaki Labs https://www.sintef.no/en/cyber-security/#/
CVD-2018	0008	David Rupprecht Katharina Kohls Christina Pöpper Thorsten Holz	Ruhr University Bochum and New York University Abu Dhabi https://www.alter-attack.net
CVD-2018	00011	Loic Ferreira	Orange Labs / IRISA http://crypto.rd.francetelecom.com/people/Ferreira
CVD-2018	00011	Gildas Avoine	INSA Rennes / IRISA http://avoine.net
CVD-2018	0012	David Basin Jannik Dreier Lucca Hirschi Sasa Radomirović Ralf Sasse Vincent Stettler	ETH Zurich, Université de Lorraine CNRS, Inria, University of Dundee https://arxiv.org/abs/1806.10360
CVD-2018	0013	Merlin Chlosta David Rupprecht Thorsten Holz	Ruhr University Bochum, Germany Paper, Talk
CVD-2018	0013	Christina Pöpper	NYU Abu Dhabi, United Arab Emirates Paper, Talk
CVD-2018	0014	Elisa Bertino	Purdue University https://www.cs.purdue.edu/homes/bertino/
CVD-2018	0014	Omar Chowdhury	University of Iowa http://homepage.dn/ms.ulowa.edu/-comarhalder/
CVD-2018	0014	Mitziu Echeverria	University of lowe
CVD-2018	0014	Syed Rafiul Hussain	Purdue University https://relentless-warrior.github.to/
CVD-2018	0014	Ninghui Li	Purdue University https://www.cs.purdue.edu/homes/ninghul/
CVD-2019	0018	Altaf Shaik	Technical University of Berlin https://www.istitu-berlin.de/security_in_telecommunications
CVD-2019	0018	Ravishankar Borgaonkar	SINTEF Digital https://www.sintef.no/erv/all-employees/employee/?empid=7616
CVD-2019	0024	David Rupprecht Christina Pöpper Thorsten Holz	Ruhr University Bochum, Germany and New York University Abu Dhabi
CVD-2019	0026	Cathal Mc Dald	AdaptiveMobile Security https://www.adaptivemobile.com
CVD-2019	0029	Syed Rafiul Hussain Mitziu Echeverria Imitiaz Karim Omar Chowdhury Elisa Bertino	Purdue University University of Jowa Purdue University University of Jowa Purdue University
CVD-2019	0030	David Rupprecht Katharina Kohls Thorsten Holz	Ruhr University Bochum
CVD-2019	0030	Christina Pöpper	NYU Abu Dhabi

Security

> Home > GSMA Coordinated Vulnerability Disclosure (CVD) Programme

GSMA Coordinated Vulnerability Disclosure (CVD) Programme

GSMA Mobile Security Hall of Fame

CVD-2017	0007	Altaf Shalk	Technical University of Berlin and Kaitiaki Labs https://www.isti.tu-berlin.de/security_in_telecommunications
CVD-2017	0007	Ravishankar Borgaonkar	SINTEF Digital and Kaitlaki Labs https://www.sintef.no/en/cyber-security/#/
CVD-2018	0008	David Rupprecht Katherins Kohls Christina Pöpper Thorsten Holz	Ruhr University Bochum and New York University Abu Dhabi https://www.alter-attack.net
CVD-2018	00011	Loic Ferreira	Orange Labs / IRISA http://crypto.rd.francetelecom.com/people/Ferreira
CVD-2018	00011	Gildas Avoine	INSA Rennes / IRISA http://avoine.net
CVD-2018	0012	Devid Basin Jannik Dreier Lucca Hirschil Sasa Radomirović Ralf Sasse Vincent Stettler	ETH Zurich, Université de Lorraine CNRS, Inria, University of Dundee https://arxiv.org/abs/1806.10360
CVD-2018	0013	Merlin Chlosta David Rupprecht Thorsten Holz	Ruhr University Bochum, Germany Paper, Talk
CVD-2018	0013	Christina Pöpper	NYU Abu Dhabi, United Arab Emirates Paper, Talk
CVD-2018	0014	Elisa Bertino	Purdue University https://www.cs.purdue.edu/homes/bertino/
CVD-2018	0014	Omer Chowdhury	University of Iowa http://homepage.dh/ms.ulowa.edu/-comarhalder/
CVD-2018	0014	Mitziu Echeverria	University of lowe
CVD-2018	0014	Syed Rafiul Hussain	Purdue University https://relentless-warrior.github.io/
CVD-2018	0014	Ninghul Li	Purdue University https://www.cs.purdue.edu/homes/ninghul/
CVD-2019	0018	Altaf Shaik	Technical University of Berlin https://www.istitu-berlin.de/security_in_telecommunications
CVD-2019	0018	Ravishankar Borgaonkar	SINTEF Digital https://www.sintef.no/en/ell-employees/employee/?empid=76ii
CVD-2019	0024	David Rupprecht Christina Pöpper Thorsten Holz	Ruhr University Bochum, Germany and New York University Abu Dhabi
CVD-2019	0026	Cathal Mc Daid	AdaptiveMobile Security https://www.adaptivemobile.com
CVD-2019	0029	Syed Rafiul Husseln Mitziu Echeverria Imtiaz Karim Omar Chowdhury Elisa Bertino	Purdue University University of Iowa Purdue University University of Iowa Purdue University
CVD-2019	0030	David Rupprecht Katharina Kohls Thorsten Holz	Ruhr University Bochum
CVD-2019	0030	Christina Pöpper	NYU Abu Dhabi

Who maintains it?

Private company founded in 2012

Office locations in Ireland and Spain

Global customer base

22 Full-Time Employees

• 100% SDR Engineering

• 100% Organic growth

How is it funded?

• Open-source under AGPL

OR

Commercial source-code license

How is it funded?

Roadmap?

Found Cell: Mode=FDD, PCI=1, PRB=50, Ports=1, CF0=0.1 KHz Found PLMN: Id=00101, TAC=7 Random Access Transmission: seq=17, tti=8494, ra-rnti=0x5 RRC Connected Random Access Complete. c-rnti=0x3d, ta=3 Network attach successful. IP: 192,168,4,2 Amarisoft Network (Amarisoft) 20/4/2021 23:32:40 TZ:105 RRC NR reconfiguration successful. Random Access Transmission: prach_occasion=0, preamble_index=0, ra-rnti=0x7f, tti=8979 c-rnti=0x4601, ta=23 Random Access Complete. rat pci rsrp pl cfo | mcs snr iter brate bler ta_us | mcs buff brate bler -52 13 12 | 19 40 0.5 15k 7.3 | 16 0.0 10k 4% 500 881m 2 31 1.0 0.0 0.0 | 17 4 0.0 6.0k 0% -49 -4.8 28 0.5 1.4k 7.3 | lte 40 0.0 0.0 0% 500 27 1.3k 28 nr 3 0 -5.9 35 1.0 0.0 | 0.0 148k 0% 1.4k lte 1 -58 16 -3.7 28 40 0.5 7.3 | 0 0.0 0.0 0% 500 3 0 -7.7 27 35 1.0 1.3k 0% 0.0 | 28 148k 0% nr 0.0 1.4k -61 19 428m 28 40 0.5 0% 7.3 | Θ 0.0 0.0 0% lte 500 2.2 | 27 30 1.4 67k 28 4 0 0.0 | 28 143k 0% lte 1 -61 19 -507m | 28 40 0.5 1.4k 7.3 | 0 0.0 0.0 0% 500 4 0 924m 27 24 1.9 18M 0.0 | 28 0.0 3.7k 0% lte -61 19 3.8 28 40 0.5 1.4k 7.3 | 0.0 0.0 nr 500 4 0 3.5 27 24 1.9 18M 0% 0.0 | 0.0 0.0 0% lte -61 19 3.8 28 40 0.5 1.4k 0% 7.3 | 0.0 0.0 0% 500 3.1 27 24 1.9 18M 0.0 0.0 0.0 0%

21.10 - 5G NSA eNodeB

21.10 - 5G NSA eNodeB

■ Confirming connection

5G NSA COTS UE

1 Tip

Operating a private 5G NSA network on cellular frequency bands may be tightly regulated in your jurisdiction. Seek the approval of your telecommunications regulator before doing so.

Introduction

This application note shows how to create your own 5G NSA network using srsENB, srsEPC and a 5G capable COTS UE. There are two options for network setup when connecting a COTS UE: The network can be left as is, and the UE can communicate locally within the network, or the EPC can be connected to the internet through the P-GW, allowing the UE to access the internet for webbrowsing, email etc.

Network & Hardware Overview

Simplified network architecture

Setting up a 5G NSA network and connecting a 5G COTS UE requires the following:

- · PC with a Linux based OS, with srsRAN installed and built
- · A dual channel RF-frontend with independent RF chains
- A 5G NSA-capable UE
- USIM/ SIM card (This must be a test card or a programmable card, with known keys)

21.10 - 5G NSA eNodeB

STSENB If a successful connection is made, a RACH message should be seen followed by a USER <ID> connected message where "<ID>" is the RNTI assigned to the UE: ### STOP CONNECTED MESSAGE WHERE " ### STOP CONNECTED MESSAGE WHERE WHERE MESSAGE WHERE MESSAGE WHERE WHERE MESSAGE WHERE WHERE MESSAGE WHERE WHERE MESSAGE WHERE WHERE WHERE MESSAGE WHERE WHERE WHERE WHERE MESSAGE WHERE W

21.10 - End-to-end with virtual radio

21.10 - End-to-end with virtual radio

Network & Hardware Overview

For this application note we will be using ZeroMQ in place of physical RF hardware. A detailed outline of how to install and use ZMQ with srsRAN can be found here. This app note will assume prior knowledge of use of ZMQ with srsRAN.

- · srsUE running in a seperate network namespace
- · srsENB configured so that both an LTE eNB, and an NSA gNB cell are created at run time
- · srsEPC with the UE included in the list of subscribers

Home

Brendan edited this page 27 days ago · 7 revisions

CoreScope Wiki

Welcome to the CoreScope wiki!

CoreScope combines gNodeB and UE components without any radio transmission. It behaves like a UE and exposes an IP interface, but to the core network side, connecting directly to the AMF and UPF via the gNodeB.

The aim of the project is to connect the existing components of the UE and gNodeB, to provide a convenient tool for testing 5G Core setups without the hassle of setting up a RAN infrastructure.

Checkout the following documentation sections to get started with CoreScope:

- · Read about how to install CoreScope here
- · See examples of how to configure CoreScope here
- · Supported features can be found here
- · Learn about using CoreScope and its APIs here

Control Plane

Control Plane

Control Plane

User Plane

User Plane

User Plane

Thank you

info@srs.io

