3 xy 平面に2つの円

$$C_0: x^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{4}, \quad C_1: (x - 1)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{1}{4}$$

をとり, C_2 を x 軸と C_0 , C_1 に接する円とする. さらに, $n=2,3,\cdots$ に対して C_{n+1} を x 軸と C_{n-1} , C_n に接する円で C_{n-2} とは異なるものとする. C_n の半径を r_n , C_n と x 軸の接点を $(x_n,0)$ として,

$$q_n = \frac{1}{\sqrt{2r_n}}, \quad p_n = q_n x_n$$

とおく.

- (1) q_n は整数であることを示せ.
- (2) p_n も整数で, p_n と q_n は互いに素であることを示せ.
- (3) α を $\alpha = \frac{1}{1+\alpha}$ を満たす正の数として,不等式

$$|x_{n+1} - \alpha| < \frac{2}{3}|x_n - \alpha|$$

を示し,極限 $\lim_{n\to\infty} x_n$ を求めよ.