Politechnika Świętokrzyska w Kielcach Wydział Elektroniki, Automatyki i Informatyki

Laboratorium: IoT		
Ocena:	Data wykonania ćwiczenia: 03.11.2018	

GitHub

1. Zastosowanie i opis systemu kontroli wersji.

Git – rozproszony system kontroli wersji. Stworzył go Linus Torvalds jako narzędzie wspomagające rozwój jądra Linux. Git stanowi wolne oprogramowanie i został opublikowany na licencji GNU GPL w wersji 2.

Najważniejsze cechy:

- Dobre wsparcie dla rozgałęzionego procesu tworzenia oprogramowania: jest dostępnych kilka algorytmów łączenia zmian z dwóch gałęzi, a także możliwość dodawania własnych algorytmów,
- Praca off-line: każdy programista posiada własną kopię repozytorium, do której może zapisywać zmiany bez połączenia z siecią; następnie zmiany mogą być wymieniane między lokalnymi repozytoriami,
- Wsparcie dla istniejących protokołów sieciowych: dane można wymieniać przez HTTP(S), FTP, rsync, SSH,
- Efektywna praca z dużymi projektami: system Git według zapewnień Torvaldsa, a także według testów fundacji Mozilla, jest o rzędy wielkości szybszy niż niektóre konkurencyjne rozwiązania,
- Każda rewizja to obraz całego projektu: w przeciwieństwie do innych systemów kontroli
 wersji, Git nie zapamiętuje zmian między kolejnymi rewizjami, lecz kompletne obrazy. Z
 jednej strony wymaga to nieco więcej pracy, aby porównać dwie rewizje, z drugiej jednak
 pozwala np. na automatyczną obsługę zmian nazw plików.

GitHub – hostingowy serwis internetowy przeznaczony dla projektów programistycznych wykorzystujących system kontroli wersji Git. Stworzony został przy wykorzystaniu frameworka Ruby on Rails i języka Erlang. Serwis działa od kwietnia 2008 roku. W kwietniu 2011 ogłoszono, iż GitHub obsługuje 2 miliony repozytoriów. GitHub udostępnia darmowy hosting programów open source oraz płatne prywatne repozytoria. W czerwcu 2018 ogłoszono, iż serwis zostanie przejęty przez przedsiębiorstwo Microsoft za kwotę 7,5 miliarda dolarów.

2. Podstawowe komendy.

a) Inicjalizacja Gita w istniejącym katalogu

\$ git init

To polecenie stworzy nowy podkatalog o nazwie .git, zawierający wszystkie niezbędne pliki — szkielet repozytorium Gita.

b) Aby rozpocząć kontrolę wersji istniejących plików (w przeciwieństwie do pustego katalogu), najprawdopodobniej powinieneś rozpocząć ich śledzenie i utworzyć początkową rewizję.

Możesz tego dokonać kilkoma poleceniami add (dodaj) wybierając pojedyncze pliki, które chcesz śledzić, a następnie zatwierdzając zmiany poleceniem commit:

\$ git add *.c

\$ git add README

\$ git commit -m 'initial project version'

c) Klonowanie istniejącego repozytorium

\$ git clone git://github.com/nazwa/grit.git

d) Udostępnia możliwość dodania wybranych linii w zmodyfikowanym pliku do commita

\$ git add -p [nazwa pliku]

e) Dodaje opis do commita. Dobrym zwyczajem jest opisanie co ta zmiana wprowadza do kodu w zakresie funkcjonalnym

\$ git commit -m "[treść_commita]"

f) Ustawia konkretny adres zdalnego repozytorium jako główne repozytorium

\$ git add origin [adres repozytorium, np. https://github.com/username/moje-repozytorium.git]

g) Usuwa zmiany we wszystkich zmienionych plikach

\$ git checkout.

h) Zmienia aktywny branch na wybrany przez użytkownika

\$ git checkout [nazwa_brancha]

i) Pozostałe przydatne komendy

\$ git checkout [nazwa pliku]

Usuwa zmiany w wybranym pliku

\$ git checkout.

Usuwa zmiany we wszystkich zmienionych plikach

\$ git checkout -b [nazwa_brancha]

Tworzenie nowego brancha z aktywnego brancha i przełączenie się na niego

\$ git rebase master

Zaciągnięcie zmian z brancha głównego do brancha aktywnego

\$ git push origin :[nazwa_brancha]

Usunięcie zdalnego brancha

\$ git branch -d [nazwa_brancha]

Usuwanie brancha lokalnie. Nie można usungć w ten sposób aktywnego brancha

\$ git stash

Dodanie zmienonych plików do pamięci/stosu i usunięcie ich z aktywnego brancha

\$ git pull --rebase

Pobranie najnowszych zmian z aktywnego brancha zdalnego

\$ git stash pop

Przywrócenie zmodyfikowanych plików z pamięci/stosu

\$ git stash clear

Czyszczenie pamięci/stosu

\$ git remote prune origin

Pobranie aktualizacji o usuniętych branchach zdalnych

\$ git fetch --all

Pobranie listy zdalnych branchy

\$ git branch

Wyświetlenie listy lokalnych branchy

\$ git branch -r

Wyświetlenie listy zdalnych branchy

\$ git status

Wyświetlenie listy zmienionych plików

\$ git diff [nazwa_pliku]

Szczegółowe wyświetlenie zmian w wybranym pliku

Część obserwacyjna

1. Cel

Zapoznanie się IoT przy stosowaniu symulacji na Packet Tracer. Zapoznanie z systemem kontroli wersji Gti.

2. Zadanie i topologia.

Topologia, w której bateria ładowania jest za pomocą ogniwa fotowoltaicznego. Miernik zamieszczony na schemacie ma za zadanie zmierzenie ilości pobieranej energii. Bateria, miernik i panel słoneczny zostały razem połączone za pomocą przełącznika.

1. Zaobserwuj w jaki sposób bateria ładowana jest za pomocą ogniwa fotowoltaicznego.

Ogniwo fotowoltaiczne zamienia energię słoneczną na energię elektryczną i w taki sposób zasila on naszą baterię, do której później podłączone są diody LED. Wszystkie urządzenia mogą się ze sobą "komunikować" za pomocą switch'a.

2. Odłącz panel słoneczny i zaobserwuj działanie systemu przy pomocy PC.

Pod odłączeniu panelu słonecznego, układ nie ma skąd pobierać energii, bateria zostanie rozładowana co doprowadzi do tego, że LED'y przestaną świecić.

3. Opisz działanie urządzeń. Jakie możliwości rozbudowy posiada symulowany system?

Ogniwo fotowoltaiczne – pobiera energię i przekazuję ją pośrednio do baterii. Element półprzewodnikowy, w którym następuje przemiana (konwersja) energii promieniowania słonecznego (światła) w energię elektryczną w wyniku zjawiska fotowoltaicznego.

Bateria – energia do baterii dostarczają jest przez panel słoneczny, a sama bateria zasila diody LED

Diody LED – pobierają energie elektryczną z baterii, działanie żarówki LED opiera się na zasadzie rekombinacji nośników ładunku, polegającej na przejściu elektronów z wyższego poziomu energetycznego na niższy przy jednoczesnym zachowaniu przez nich pędu. Energia elektronów jest zamieniana na kwanty promieniowania elektromagnetycznego.

Miernik - przyrząd pozwalający określić wartość mierzonej wielkości (np. napięcia elektrycznego, ciśnienia, wilgotności) i przedstawiający ją zazwyczaj przy pomocy podziałki ze wskazówką lub wyświetlacza cyfrowego.

Symulowany system można rozbudowywać na wiele sposobów, dodając większą liczbę paneli słonecznych a także urządzeń, które mogą być przez nie zasilane.