1 Introduction

1.1 Overview

1.1.1 On General Machine Learning

ML has seen a huge (exponential) increase in academic interest since 2000. It is categorized as follows:

- 1. Supervised and unsupervised Learning (SL/UL): Only involves generalization \improx Differs in whether there is labelling
- 2. Imitation Learning (IL): behaviour cloning, assuming input demonstrations of GOOD policies
- 3. Reinforcement Learning (RL): model-based learning (i.e. given reward info, states reached and actions taken)

1.1.2 On Reinforcement Learning

RL refers to Sequential decision making to make good decisions under uncertainty.

Steps of RL

RL involves the following four steps:

- 1. **Optimization**: Find optimal decisions yielding best/very good outcomes (e.g. minimum distance inter-city route).
- 2. **Delayed consequences**: Plan and reason long term ramifications (e.g. saving for retirement), through temporal credit assignment (i.e. identifying which past actions led to current rewards?).
- 3. **Exploration**: Learn/ explore by making decisions (that impacts/ reinforces what we learn about from rewards, e.g. riding and falling from a bike).
- 4. **Generalization**: Policy maps (= compresses) past experience to action.

Why not always choose the best-known action in decision making?

New actions might lead to even better rewards (exploration-exploitation trade-off).

Example: Trying a new restaurant vs. Going to favorite one?

1.1.3 Course Flow

- High-level learning goals: Understand theoretical and empirical approaches for evaluating reinforcement learning algorithm quality
- \bullet Flow: First explore MDP \implies model-free (policy evaluation and control) \implies function approximation \implies policy search + exploration

1.2 Basic Layout of RL

RL algorithms involve State, actions, reward model and dynamics model:

- RL aims to select sequence of actions to maximize E[future reward],
- hence involves balancing immediate and long term rewards.

Example: Choose sequence of web advertisement to maximize view time

Mathematical Formulation of RL algorithms

For each time t, a reinforcement learning agent (A) that interacts with the world (W) would...

- 1. A takes action a_t ,
- 2. W updates a_t , emits observation o_t and reward r_t
- 3. A receives history h_t containing a_i , o_i , r_i for all time i, cumulative history is called state s_t .

In such sequential dynamic programming problems of RL, we have the following considerations:

- 1. **States**: Is the state Markov? Is the world partially observable?
- 2. **Dynamics**: Are dynamics deterministic or stochastic?
- 3. Horizon of effect: is future states taken into account?

1.2.1 States: Markov Assumption

In many cases, we have the Markov assumption:

Markov Assumption: Definition

The future is independent of past given present (i.e. state is a sufficient statistic of history):

$$P(s_{t+1}|s_t, a_t) = P(s_{t+1}|h_t, a_t)$$

1.2.2 Dynamics: Model, Policy, Value Function

RL Algos must contain ≥ 1 of Model, Policy, Value Function:

Model

A MDP (Markov Decision Process) contains

- 1. Transitional dynamics model, predicting next agent state $P(s_{t+1} = s' | s_t = s, a_t = a)$
- 2. Reward model, predicting immediate reward $r(s_t = s | a_t = a) = E[r_t | s_t = s, a_t = a]$

Why Markov?

- Simple, as long as history is in part of state (in practice, assume $s_t = o_t$)
- s_t affects computational complexity, data required and result performance.

Why do we start with MDP?

Structured framework to model decision-making in uncertain environments.

⇒ Easier to apply RL algorithms, defining states, actions, rewards, and transitions.

Policy

Policy (denoted by π) determines how actions are chosen (i.e. $\pi : SBA$). It can be

- 1. **Determinstic**: $\pi(s) = a$, or
- 2. Stochastic: $\pi(a|s) = P(a_t = a|s_t = s)$

Value Function

Value function (denoted by V^{π}) discounts sum of future rewards under policy π , to quantify goodness of states/ actions:

$$V^{\pi}(s_t = s) = \mathbb{E}_{\pi} \left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | s_t = s \right]$$

Discounting Factor Considerations

Discount factor γ weighs immediate vs future rewards:

- $\gamma = 0$: only cares about immediate;
- $\gamma = 1$: possible for finite episode length.
- To prevent infinite returns, conveniently set γ ; 1.

1.3 Agent and Feedback: MRP

RL agents can be either

- 1. Model-based: explicit model, may (not) have policy and value functions;
- 2. Model-free: no model, but value and/or polict functions must be explicit.

Learning Mechanisms

Given a model of world (dynamics and reward), of finite set of states and actions.

Two actions for the RL agent include:

- 1. Evaluation: Estimate/ predict expected rewards given policy.
- 2. Control: find the best policy via optimization.

Now consider the learning algorithm under Markov Chain (Markov Process):

- Markov processes involve sequences of random states with Markov property They are defined by (finite) set of states S and transition model P, specifying $P(s_{t+1} = s' | s_t = s)$
- In a transition model, there is no reward, hence no actions are defined. For finite (N) states, express P as $N \times N$ matrix.
- To bridge the stochasticity in quantifying rewards/ value, Markov Reward Processes (MRP) and Markov Decision Processes (MDP) are used.

1.3.1 Markov Reward Processes (MRP)

MRP includes the reward into consideration.

- It requires states **S**, transition model $\mathbf{P}_{n \times n}$, reward $R(s_t = s)$, and discount factor $\gamma \in [0, 1]$.
- With H steps in each episode (can be infinite), the return

$$G_t = r_t + \gamma r_{t+1} + \dots + \gamma^{H-1} r_{t+H-1}$$

• Define the state value $V(s) = E[G_t|S_t = s] = R(s) + \gamma \sum_{i=1}^{n} \mathbb{P}(s'|s)V(s').$

The first term is the immediate reward; the second term is the discounted sum of future rewards.

Obviously we are interested in computing the value of a MRP. There are two methods:

Analytical and Iterative Solutions of MRP

Method 1 (Matrix inverse) involves writing in matrix-vector forms:

- If the number of states n is finite, rewards \mathbf{R} is a vector.
- Express V(s) in the MRP using a matrix equation

$$\mathbf{V}_{n\times 1} = \mathbf{R}_{n\times 1} + \gamma \mathbf{P}_{n\times n} \mathbf{V}_{n\times 1}$$

• Rearranging, the solution $\mathbf{V} = (\mathbf{I} - \gamma \mathbf{P})^{-1} \mathbf{R}$. Direct solve takes around $O(n^3)$ time.

Method 2 (Iterative Solution) involves looping until convergence:

- Dynamic programming by initializing $V_0(s) = 0$ for all s
- For each iteration k, and all states $s \in S$: $V_k(s) = R(s) + \gamma \sum_{s' \in S} \mathbb{P}(s'|s) V_{k-1}(s')$
- Each iteration takes $O(n^2)$ time (because n = |S|).

Why $I - \gamma P$ is Invertible?

With $\gamma < 1$ (ensuring convergence), and the fact that **P** is stochastic (rows sum to 1):

- The eigenvalues of P are at most 1.
- When scaled by $\gamma < 1$, largest eigenvalue $\lambda_1 < \gamma = 1$. This ensures $\mathbf{I} - \gamma \mathbf{P}$ is full rank (diagonally dominant).

2 How to make good decisions given MDP?

2.1 Solving MDP by reducing to MRP

MDP as MRP Expansion

• MRP(S, P, R, γ) + Actions A = MDP(S, A, P, R, γ)

Example: Consider a robot vacuum moving around a room:

- $-\,$ Only models probabilities of movement without considering actions: MRP
- Includes actions like 'turn left' or 'move forward: MDP
- MDP(S, A, P, R, γ) + Policy $\pi(a|s) = \text{MRP}(S, P^{\pi}, R^{\pi}, \gamma)$ Use same technique of computing MRP to evaluate MDP policy!
- Various settings of MDPs:
 - 1. Single-state: Bandits
 - 2. Continuous states: Optimal control
 - 3. If state is history: Partially observable MDPs (POMDPs)

We can solve MDP as an MRP as follows:

Solving MDP Iteratively

For k=1 till convergence, for any $s \in S$, the state value function V is iterated with:

$$V_k(s) = \sum_{a} \pi(a|s)[r(s|a) + \gamma \sum_{s' \in S} P(s'|s, a) V_{k-1}^{\pi}(s')] \qquad \text{where } s' \in S$$

This is called a Bellman backup equation.

- Current value at kth iteration is obtained by summing the policy probabilities varying state s, weighted by the value (current reward + future rewards discounted by one step).
- For deterministic $\pi(s)$, i.e. $P(\pi(s)|s) = 1$, the formula reduces to

$$V_k(s) = r(s|\pi(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

Where does Bellman Equation arise?

It arises naturally when breaking down long-term decision problems (by recursion) into smaller subproblems, as in policy evaluation.

2.2 How to find the optimal policy under MDP?

- Given |A| distinct options for each of the |S| states, there are a total of $|A|^{|S|}$ deterministic policies possible.
- Optimal policy may NOT be unique (but is deterministic and stationary (does not depend on time step) for MDP in infinite horizon!), but there exists a **unique optimal value function**.
- Such optimal policy can be found by "controlling", i.e. optimizing $\pi(s) = \arg\min_{s} V_{\pi}(s)$

Why is such optimal policy deterministic?

- Randomness in an MDP comes from state transitions, not from the policy itself.
- Given enough iterations, an optimal policy learns best action in every state *implies* randomness is unnecessary.

There are primarily **THREE methods** in finding the optimal policy under MDP:

2.2.1 Policy iteration (PI)

PI is more efficient than enumeration. Its process is as follows:

PI Process

- (1) **Initialization**: Initialize $\pi_0(s)$ randomly for all states s.
- (2) Check L1 Norm in Loop: Iterate when i == 0 OR ||π_i π_{i-1}||₁ > 0,
 i.e. if policy changes for any state.
 Each time, compute V_π(i) (policy evaluation), and π_{i+1} (policy improvement) to iterate new i

But why does PI guarantee generating better policies?

• Define the **state action value** (Q-function):

$$Q_{\pi}(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_{\pi}(s')$$

It differs from V_{π} that action a is taken in addition to following the policy.

• Then for new policy π_{i+1} ,

$$\pi_{i+1}(s) = \underset{a}{\arg\min} Q^{\pi_i} \pi(s, a) \forall s \in S$$

is a deterministic quantity.

• To improve the state-action value by varying a,

$$\max_{a} Q^{\pi_i}(s, a) \ge Q^{\pi_i}(s, \pi_i(s)) = R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_i(s)) V^{\pi_i}(s') = V^{\pi_i}(s)$$

This is more rigorously defined as follows:

Monotonic Improvement in Policy

Definition: $V^{\pi_1} \ge V^{\pi_2}$ if $V^{\pi_1}(s) \ge V^{\pi_2}(s)$ for all states s. (Strict inequality $V^{\pi_{i+1}} > V^{\pi_i}$ if π_i is suboptimal.)

Implication: By taking $\pi_{i+1}(s)$ for one action and following π_{i+1} forever, expected sum of rewards is at least as good as always following π_i . Since we always pick a better action, policies never get worse!

Regarding change (and iteration) of policies in PI

- If policy doesn't change, it cannot be changed anymore.
- There is a maximum number of policy iterations (since a finite number of options for each finite state).

Why state action value is defined?

- \bullet It evaluates the expected return taking action a a first, then act optimally afterward.
- Instead of storing V(s), store Q(s, a) to directly optimize actions.

2.2.2 Value iteration (VI)

The idea is to maintain **optimal value** of starting in state s, if finite number of steps k left in episode.

Then, iterate to consider longer and longer episodes:

Bellman Operator

For a value function, the Bellman Operator B returns a new value that improves if possible:

$$BV(s) = \max_{a} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a)V(s') \right]$$

For a policy,

$$B^{\pi}V(s) = R^{\pi}(s) + \gamma \sum_{s' \in S} P^{\pi}(s'|s)V(s')$$

Example: Updating est. travel time in Google Maps as new traffic data arrives (i.e. iteratively refines value estimates).

How to "maintain optimal value"? Why does a disappear?

- Maintaining optimal value means ensuring that for every state, compute best expected return by considering all possible actions.
- As we only keep the highest value across actions, we remove a.
- We only care about values during iteration: Extract optimal policy by checking which action led to that value

VI Process

- (1) **Initialization**: k = 1, $V_0(s) = 0$ for all states s.
- (2) Check Norm in Loop: Loop until convergence (i.e. checking $L_{\infty} = ||V_{k+1} V_k||_{\infty} \le \epsilon$)

For each state s in S, iterate
$$V_{k+1}(s) = \max_{a} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_k(s') \right]$$

This iteration step is equivalently $V_{k+1} = BV_k^{\mathsf{L}}$

For the optimal policy for finite horizon H, iterate (loop) from i = 0: H (exclusive of H):

•
$$V_{k+1}(s) = \max_{a} \left[R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V_k(s') \right]$$

•
$$\pi_{k+1}(s) = \underset{a}{\operatorname{arg max}} \left[R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_k(s') \right]$$

But why does VI guarantee convergence?

• Quantify convergence with contraction operator O, satisfying

$$||OV - OV'||_n \le ||V - V'||_n$$
 for any L_n norm.

- Converges when $\gamma < 1$ OR ending up in terminal state with probability 1!
- VI converges to unique solution for discrete state and action spaces
- Policy evaluation = compute fixed point of B_{π} , by repeatedly applying operator until V stops changing, i.e.

$$V^{\pi} = B^{\pi}B^{\pi}\dots B^{\pi}V$$

What does "fixed point" here mean?

- Applying the operator doesn't change the result anymore.
- Signifies convergence (e.g. in PI, determine whether the policy should be updated).

Does the initialization of values in value iteration impact anything?

- It only affects convergence speed, but same final result.
- Because Bellman backup is a contraction mapping.

A brief summary of PI vs VI

Type	PI	VI	
To compute	Infinite horizon value	Optimal finite k -horizon value	
Use	Select another (better) policy	Find optimal policy, by incrementing time horizon	
Convergence	$\#$ Iterations \leq Enumeration of all deterministic policies,	Depends on discounting factor γ ,	
	i.e. of size $ A ^{ S }$	possible to exceed $ A ^{ S }$	

2.3 Monte Carlo (MC) Methods for MDP

Given dynamics and reward models, can do policy evaluation through DP.

$$V_k^{\pi}(s) = r(s|\pi(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

Here, V_k^{π} is an estimate of V^{π} , and the second part can be replaced by **bootstrapping** if dynamics/ reward models are unknown but deterministic: when there is no access to true MDP.

- MC follows policy π to generate sample trajectories and take expectation on sample return to approximate (estimate) $V^{\pi}(s)$.
- Rationale: Mean return converges to value (by LLN)

 Note: All trajectories may not be of the same length because of MDP.
- Requires episodic settings (terminal state/ finite horizon) to end episode
 Terminate episode before averaging.

Advantages of MC

- Weak assumption (No need Markov assumption/ knowing MDP dynamics and rewards)
- Sometimes preferred over DP for policy evaluation even with known dynamics model and reward. (Explain why?)

The process and variations of MC is as follows:

MC Process

- 1. **Initialize**: Number of samples N(s) = 0, grand total G(s) = 0 for each state $s \in S$.
- 2. Loop:
 - For each episode i, sample trajectories $(s_{i,1}, a_{i,1}, r_{i,1}), (s_{i,2}, a_{i,2}, r_{i,2}), \ldots, s_{i,t_i}$
 - Compute return value $G_{i,t}$ as return from time step t:

$$G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \dots + \gamma^{T_i - t} r_{i,T_i}$$

• Update state values for each time step t until end of episode i:

Increment # visits: N(s) = N(s) + 1

Increment total return: $G(s) = G(s) + G_{i,t}$

Update estimate $V^{\pi}(s) = G(s)/N(s)$

There are **Three variations** for MC:

Variations of MC

- (i) First-time MC: Increment N(s) for the first time visiting state s in episode i, i.e. N(s) = 1
- (ii) Every-time MC: Increment N(s) each time visiting state s in episode i
- (iii) Incremental MC: After obtaining the new return value $G_{i,t}$, rewrite the update from $V^{\pi}(s)$ to $V^{\pi}(s)'$:

$$V^{\pi}(s)' = \frac{G(s)'}{N(s)'} = \frac{G(s) + G_{i,t}}{N(s) + 1} = \frac{G(s)}{N(s) + 1} + \frac{G_{i,t}}{N(s) + 1}$$
$$= V^{\pi}(s) \times \frac{N(s)}{N(s) + 1} + \frac{G_{i,t}}{N(s) + 1}$$
$$= V^{\pi}(s) + \frac{1}{N(s) + 1} (G_{i,t} - V^{\pi}(s))$$
$$V^{\pi}(s)' = V^{\pi}(s) + \alpha (G_{i,t} - V^{\pi}(s))$$

The general form replaces the learning rate $\alpha = 1/[N(s) + 1]$ to other rates. Viewed from this perspective:

MC Type	Every Visit	First Visit	General in
α	$rac{1}{N(s_{i,t})}$	1 if $N(s) = 0$, 0 otherwise	V
Properties	Biased, but consistent and offers better MSE	Unbiased estimator of $V^{\pi}(s)$ by LLN	Rate larger than $1/N(s_{i,t})$ is

Q: What is an intuitive explanation to such every-visit "bias"? What does it mean by helpful in non-stationary domains?

2.4 Evaluating Policy Estimation Quality

We take theoretical and computational aspects for consideration:

- Theoretical: Statistical efficiency, consistency and empirical accuracy (MSE)
- Computation: Runtime and Memory Complexity

2.4.1 Bias and Variance

The empirical accuracy of learning models is quantified by Mean Squared Error (MSE):

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias(\hat{\theta})^2$$

- $\operatorname{Var}(\hat{\theta}) = \mathbb{E}_{x|\theta}[(\hat{\theta} \mathbb{E}[\hat{\theta}])^2]$
- Bias $(\hat{\theta})^2 = (\mathbb{E}_{x|\theta}[\hat{\theta}] \theta)^2$

Consistency quantifies how reliable an estimator is:

- If there are n data points of x, $\lim_{n\to\infty} \mathbb{P}(|\hat{\theta}_n \theta| > \epsilon) = 0$ for arbitrary ϵ .
- In other words, estimates (produced by the estimator) "converge" to the true parameter value.

An unbiased estimator may not be consistent. Two simple examples:

- The variance estimator $\frac{1}{n}\sum (y_i y_n)^2$ is biased but consistent.
- The data point X_1 as an estimator of μ for $N(\mu, \sigma^2)$ is unbiased but NOT consistent.

2.4.2 How does MC fare under those criteria?

(1) On Convergence: For MC, under varying learning rate α , incremental MC will converge to true value of policy, $V^{\pi}(s_j)$ if

1.
$$\sum_{n=1}^{\infty} \alpha_n(s_j) = \infty$$
, but

$$2. \sum_{n=1}^{\infty} \alpha_n^2(s_j) < \infty.$$

(2) On MSE: MC yields a high-variance estimator that takes a lot of data to reduce.