

Agenda

9	10/17	Midterm review	10/19	Midterm	
10	10/24	Gaussian elimination (2.1)	10/26	Pivoting (2.2)	HW4
11	10/31	Pivoting (2.2)	11/2	Structured system (2.3)	
12	11/7	Factorization (8.1)	11/9		
13	11/14	Iterative (8.4)	11/16		HW5
14	11/21	Fall break	11/23	Fall break	
15	11/28	Eigenvalue (8.2)	11/30	Power method (8.3)	
16	12/5	Topic TBD	12/8	Review	HW6
	12/12	2:00-4:45pm Final Exam			

Overview

Solving an algebraic linear system

$$Ax = b$$

for the unknown vector x, when the coefficient matrix A and the

right-hand side vector b are known.

Overview (cont'd)

- The system may or may hot have a solution, and if it has a solution, it may or may not be unique.
- Here we assume A is a square, invertible (nonsingular) matrix, so there exists a unique solution.
- In pure math, we get the solution

$$x^* = A^{-1}b$$

- But it is advisable to solve the system directly rather than explicitly computing the inverse.
- We will discuss two types of methods
 - Direct approach: Gaussian elimination
 - Iterative approach that generates $x_1, x_2, \dots \rightarrow x^*$

Example

$$\begin{cases}
6x_1 - 2x_2 + 2x_3 + 4x_4 = 16 \\
12x_1 - 8x_2 + 6x_3 + 10x_4 = 26 \\
3x_1 - 13x_2 + 9x_3 + 3x_4 = -19 \\
-6x_1 + 4x_2 + x_3 - 18x_4 = -34
\end{cases}$$

$$\begin{cases} 6x_1 - 2x_2 + 2x_3 + 4x_4 = 16 \\ - 4x_2 + 2x_3 + 2x_4 = -6 \\ - 12x_2 + 8x_3 + x_4 = -27 \\ 2x_2 + 3x_3 - 14x_4 = -18 \end{cases}$$

Remarks

- The first equation was not altered, which is called the pivot equation.
- Keep going

$$\begin{cases}
6x_1 - 2x_2 + 2x_3 + 4x_4 = 16 \\
- 4x_2 + 2x_3 + 2x_4 = -6 \\
2x_3 - 5x_4 = -9 \\
- 3x_4 = -3
\end{cases}$$

- The above system is said to be in the upper triangular form.
- All the linear systems are equivalent.

Gaussian Elimination

- We just completed the first phase called forward elimination.
- We now proceed with the second phase: back substitution.
- Starting from ...

$$\begin{cases} 6x_1 - 2x_2 + 2x_3 + 4x_4 = 16 \\ - 4x_2 + 2x_3 + 2x_4 = -6 \\ 2x_3 - 5x_4 = -9 \\ - 3x_4 = -3 \end{cases}$$

Generally

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & a_{i3} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ x_n \end{bmatrix}$$

multiplier

$$2 \le i \le n \qquad \begin{cases} a_{ij} \leftarrow a_{ij} - \left(\frac{a_{i1}}{a_{11}}\right) a_{1j} & (1 \le j \le n) \\ b_i \leftarrow b_i - \left(\frac{a_{i1}}{a_{11}}\right) b_1 \end{cases}$$

After the first step

Pivot element

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$\vdots \\ x_i \\ \vdots \\ x_n \end{bmatrix}$$

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$\vdots \\ b_i \\ \vdots \\ b_n \end{bmatrix}$$

$$3 \le i \le n$$

$$\begin{cases} a_{ij} \leftarrow a_{ij} - \left(\frac{a_{i2}}{a_{22}}\right) a_{2j} & (2 \le j \le n) \\ b_i \leftarrow b_i - \left(\frac{a_{i2}}{a_{22}}\right) b_2 \end{cases}$$

After the kth step

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{kk} & \cdots & a_{kj} & \cdots & a_{kn} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{jk} & \cdots & a_{jj} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nk} & \cdots & a_{nj} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_k \\ \vdots \\ x_k \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_k \\ \vdots \\ b_i \\ \vdots \\ b_n \end{bmatrix}$$

$$k+1 \le i \le n \qquad \begin{cases} a_{ij} \leftarrow a_{ij} - \left(\frac{a_{ik}}{a_{kk}}\right) a_{kj} & (k \le j \le n) \\ b_i \leftarrow b_i - \left(\frac{a_{ik}}{a_{kk}}\right) b_k \end{cases}$$

Forward elimination

MatLab pseudo-code

Back substitution

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + & a_{13}x_3 + \cdots & + a_{1n}x_n = b_1 \\ a_{22}x_2 + & a_{23}x_3 + \cdots & + a_{2n}x_n = b_2 \\ a_{33}x_3 + \cdots & + a_{3n}x_n = b_3 \end{cases}$$

$$\vdots$$

$$a_{n-1,n-1}x_{n-1} + a_{n-1,n}x_n = b_{n-1}$$

$$a_{nn}x_n = b_n$$

Here coefficients are not the original ones, but are the ones that have been altered by the elimination.

Mathematical analysis

LU factorization

Gaussian elimination transforms a matrix into the product of a unit lower triangular matrix and an upper triangular matrix, i.e.,

Pivoting

- Recall $a_{ij} \leftarrow a_{ij} \left(\frac{a_{ik}}{a_{kk}}\right) a_{kj}$
- We must expect all quantities to be infected with roundoff errors.
- The roundoff error in a_{kj} is multiplied by $\left(\frac{a_{ik}}{a_{kk}}\right)$.
- The small pivot elements would lead to large multipliers and to worse roundoff errors.
- Take-home message: Selecting a large value for pivoting every time (next lecture)

Error analysis

For a linear system Ax = b having the true solution x and a computed solution \tilde{x} , we define

• Error vector:

$$e = \tilde{x} - x$$

Residual vector:

$$r = A\tilde{x} - b$$

For two solutions, how do we evaluate which one is better?

Look at the residual vector: smaller the better!