Numby continue

Reshupe

$$\begin{bmatrix} 1,2/3/4 \end{bmatrix}_{1\times4} \longrightarrow \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}_{2\times2}$$

$$\begin{bmatrix} --- \\ --- \end{bmatrix}_{3\times3}$$

Np. zeros & Np. ones

Nb.linspace

6 numbers equally shaced between [0,10] both inclusive.

Array Athiluses

- 1. Shape
- 2. ndim
- 3. Size

$$896 \Rightarrow 8999 \text{ legter}$$

$$00 \rightarrow 0$$

$$01 \rightarrow 1$$

$$100 \text{ Mehs} \rightarrow 100 \text{ MB}$$

$$11 \rightarrow 3$$

$$100/8$$

Changing Data Type

• (array).asType

Table 4-2. NumPy data types

Туре	Type Code	Description
int8, uint8	i1, u1	Signed and unsigned 8-bit (1 byte) integer types
int16, uint16	i2, u2	Signed and unsigned 16-bit integer types
int32, uint32	i4, u4	Signed and unsigned 32-bit integer types
int64, uint64	i8, u8	Signed and unsigned 32-bit integer types
float16	f2	Half-precision floating point
float32	f4 or f	Standard single-precision floating point. Compatible with C float
float64, float128	f8 or d	Standard double-precision floating point. Compatible with C double and Python float object

Str Mp. 148
gloat Mp. int 16
int Mp. 32
complex
hp. U8

Array Operations

Numpy Operation

$$Y = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$2Y = \begin{bmatrix} \frac{2x2}{2x1} & \frac{2x1}{2x2} \end{bmatrix} = \begin{bmatrix} \frac{4}{2} & \frac{2}{2} \\ \frac{2}{4} & \frac{4}{2} \end{bmatrix}$$