Algorytmy Numeryczne — Zadanie 1

 ${\it Jakub~Ronkiewicz,~238155}$ ${\it Informatyka:~III~rok~sp.~Tester~programista~gr.~1}$

23 października 2017

Zadanie polegało na napisaniu programu obliczającego wartość funkcji $\sin(x)$ za pomocą trzech różnych metod:

- sumując elementy szeregu potęgowego od początku
- sumując elementy szeregu potęgowego od końca
- obliczając kolejny wyraz szeregu na podstawie poprzedniego

Wyniki moich funkcji porównuje do funkcji bibliotecznej. Do obliczenia funkcji sin(x) korzystałem z szeregu Taylora:

$$sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2 \cdot n + 1)!} \cdot x^{2 \cdot n + 1}$$

Sumowanie elementów szeregu potęgowego od początku

Błąd względny znacząco rośnie dopiero powyżej 90°.

Sumowanie elementów szeregu potęgowego od końca

Można zauważyć, że błędy w porównaniu z sumowaniem~od~początku są mniejsze dla argumentów do 90°. Powyżej 90° błędy są podobne.

Obliczając kolejny wyraz szeregu na podstawie poprzedniego

Błąd względny 3 metody dla argumentów do 110° oscyluje w podobnych granicach (rzędu 10^{-16}), dla większych argumentów błąd szybko rośnie.

Która metoda jest najlepsza?

Na wykresie pojawiają się tylko dwie metody, ponieważ wcześniej ustaliliśmy, że metoda sumowania od końca jest dokładniejsza niż metoda sumowania od początku. Dla argumentów do 90° obie metody mają bardzo podobne błędy, jednak dla większych argumentów 3 metoda jest wyraźnie dokładniejsza. Konkludując metodę obliczania kolejnego wyrazu szeregu na podstawie poprzednika można uznać za najdokładniejszą.