Examen final

Consignes:

- ullet Vous disposez de ullet ullet pour répondre aux ullet ullet questions suivantes.
- Calculatrice non programmable peu utile, mais autorisée.
- Un formulaire sur les transformées de Fourier et Laplace est fourni en annexe.
- Soyez clairs et précis et dans vos réponses et justifications.
- Et surtout exprimez-vous sur les sujets proposés pour démontrer votre compréhension des concepts!

Exercice 1

a) Établir la propriété donnant le comportement de la tranformée de Fourier sous dilatation :

$$\widehat{x(at)} = \frac{1}{a}\,\widehat{x}(\frac{f}{a}), \qquad a > 0.$$

$$\widehat{x(at)} = \int_{-\infty}^{+\infty} x(at) e^{-2\pi j f t} dt$$

$$= \int_{-\infty}^{+\infty} x(u) e^{-2\pi j f \frac{u}{a}} \frac{du}{a}$$

$$= \frac{1}{a} \int_{-\infty}^{+\infty} x(u) e^{-2\pi j \frac{f}{a} u} du$$

$$= \frac{1}{a} \widehat{x(\frac{f}{a})}$$

b) Calculer la convolution d'un signal x(t) avec une onde pure de fréquence f_0 :

$$x(t) * e^{2\pi j f_0 t}.$$

Dans le domaine temporel:

$$x(t) * e^{2\pi j f_0 t} = \int_{-\infty}^{+\infty} x(u) e^{2\pi j f_0 (t-u)} du = e^{2\pi j f_0 t} \int_{-\infty}^{+\infty} x(u) e^{-2\pi j f_0 u} du = e^{2\pi j f_0 t} \cdot \widehat{x}(f_0)$$

Ou dans le domaine fréquentiel :

$$\mathscr{F}(x(t) * e^{2\pi j f_0 t}) = \widehat{x}(f) \cdot \delta(f - f_0) = \widehat{x}(f_0) \cdot \delta(f - f_0)$$

d'où par transformée inverse

$$x(t) * e^{2\pi j f_0 t} = \widehat{x}(f_0) \cdot e^{2\pi j f_0 t}.$$

c) Calculer, pour T>0 et $N\in\mathbb{N}$, la transformée de Fourier de la fonction

$$D_N(t) = 1 + 2\sum_{n=1}^{N} \cos(2\pi \frac{n}{T}t)$$

et en déduire le sens à donner (en tant que signal) à $\lim_{N\to\infty} D_N$.

Puisque

$$\cos(2\pi f_0 t) = \frac{e^{2\pi j f_0 t} + e^{-2\pi j f_0 t}}{2},$$

on se rappelle que

$$\mathscr{F}(\cos(2\pi f_0 t)) = \frac{\delta(f - f_0) + \delta(f + f_0)}{2}.$$

Par linéarité on a donc

$$\widehat{D_N}(f) = 1 + 2\sum_{n=1}^{N} \frac{\delta(f - \frac{n}{T}) + \delta(f + \frac{n}{T})}{2} = \sum_{n=-N}^{N} \delta(f - \frac{n}{T})$$

d'où

$$\lim_{N \to \infty} \widehat{D_N}(f) = \sum_{n = -\infty}^{+\infty} \delta(f - \frac{n}{T}) = \coprod_{\frac{1}{T}} (f)$$

et on conclut donc que

$$\lim_{N \to \infty} D_N(t) = T \coprod_T (f).$$

d) Donner la représentation en série de Fourier du signal 2-périodique x(t) représenté ci-dessous.

Le signal x(t) étant 2-périodique :

$$x(t-2) = x(t)$$

on sait que sa transformée est un spectre de raies :

$$\widehat{x}(f) = \sum_{n = -\infty}^{+\infty} c_n \, \delta(f - \frac{n}{2}),$$

d'où par transformée inverse la représentation de $\boldsymbol{x}(t)$ en série de Fourier

$$x(t) = \sum_{n = -\infty}^{+\infty} c_n e^{\pi j n t}.$$

On peut expliciter les coefficients de Fourier c_n par calcul explicite, pour $n \neq 0$ (en calculant à part $c_0 = \frac{1}{2}$)

$$c_n = \frac{1}{2} \int_{-1}^{+1} x(t) e^{\pi j n t} dt = \frac{e^{\pi j n t}}{2\pi j n} \Big|_{-\frac{1}{2}}^{+\frac{1}{2}} = \frac{1}{\pi n} \sin\left(\frac{n\pi}{2}\right) = \begin{cases} 0 & n \neq 0 \text{ pair} \\ \frac{(-1)^k}{\pi (2k+1)} & n = 2k+1 \text{ impair} \end{cases}$$

Ou, pour ceux qui n'aiment pas refaire sans cesse les mêmes calculs, on peut exprimer les coefficients en termes de la transformée du motif :

$$c_n = \frac{1}{2}\widehat{m}\left(\frac{n}{2}\right) = \frac{1}{2}\widehat{\Pi}_1\left(\frac{n}{2}\right) = \frac{1}{2}\operatorname{sinc}\left(\frac{n\pi}{2}\right)$$

et on obtient bien le même résultat. Si on veut on peut regrouper les termes dans la série de Fourier :

$$x(t) = \frac{1}{2} + \frac{1}{\pi} \sum_{k=-\infty}^{+\infty} \frac{(-1)^k}{(2k+1)} e^{\pi j(2k+1)t} = \frac{1}{2} + \frac{2}{\pi} \sum_{k=0}^{+\infty} \frac{\cos(2k+1)\pi t}{2k+1}$$

(cas particulier de la série du TP4 avec T=2 et $\theta=\frac{1}{2}$).

Exercice 2

a) Par calcul direct, obtenir la transformée de Laplace de $h(t) = H(t) \, e^{-\lambda t}$.

Fastoche:

$$\mathcal{L}(h) = \int_0^{+\infty} e^{-\lambda t} e^{-pt} dt = \int_0^{+\infty} e^{-(p+\lambda)t} dt = -\frac{e^{-(p+\lambda)}}{p+\lambda} \Big|_0^{+\infty} = -\left(0 - \frac{1}{p+\lambda}\right) = \frac{1}{p+\lambda}$$

à condition que $Re(p + \lambda) > 0$.

b) Soit x(t) et y(t) deux signaux causaux pour lesquels

$$y'(t) + \lambda y(t) = x(t).$$

Expliquer pourquoi on peut alors affirmer que y(t) = x(t) * h(t).

(Tout d'abord on peut se convaincre que les conditions initiales sont cohérentes, la convolution de signaux causaux l'étant également.)

Dans le domaine opérationnel :

$$pY(p) + \lambda Y(p) = X(p)$$

d'où

$$Y(p) = \frac{1}{p+\lambda} \cdot X(p) \sqsubset h(t) * x(t).$$

Dans le domaine temporel : on peut tout d'abord se convaincre que h(t) est solution de l'équation différentielle avec membre de droite $\delta(t)$:

$$h'(t) = H'(t) e^{-\lambda t} - \lambda H(t) e^{-\lambda t} = \delta(t) e^{-\lambda t} - \lambda H(t) e^{-\lambda t} = \delta(t) - \lambda h(t)$$

et que, de là

$$(x*h)' + \lambda(x*h) = x*h' + \lambda x*h = x*(h' + \lambda h) = x*\delta = x.$$

Dit autrement : l'opérateur qui à x associe y la solution causale de $y' + \lambda y = x$ est un filtre, donc sa sortie sur une entrée x quelconque est la convolution de x avec la réponse impulsionnelle h.

c) En supposant que $\lambda > 0$: montrer que la transformée de Fourier de $h(t) = H(t) e^{-\lambda t}$ est de la forme

$$\frac{1}{\lambda + 2\pi j f}$$

puis en déduire la transformée de $e^{-\lambda|t|}$ donnée dans le formulaire.

Pour la première affirmation, soit on refait le calcul de la transformée de Fourier (direct), soit on raisonne sur le fait que si $\lambda > 0$ la transformée de Laplace est définie dans tout le demi-plan complexe droit et on la restreignant à l'axe imaginaire $(p=2\pi jf)$ on obtient directement la transformée de Fourier.

Autre approche : passer l'équation différentielle $h' + \lambda h = \delta$ dans le domaine fréquentiel et arriver à la même conclusion.

Ensuite, en remarquant que $e^{-\lambda|t|} = h(t) + h(-t)$ (du moins presque partout) on obtient sa transformée de Fourier

$$\widehat{h}(f) + \widehat{h}(-f) = \frac{1}{\lambda + 2\pi j f} + \frac{1}{\lambda - 2\pi j f} = \frac{2\lambda}{\lambda^2 + 4\pi^2 f^2}.$$

d) Expliquer comment on peut utiliser ce qui précède pour déterminer la transformée de Fourier de $\frac{1}{1+t^2}$.

Par transformée de Fourier inverse (toutes les fonctions étant paires), on sait par la question précédente que la transformée de Fourier de

$$\frac{\lambda}{\lambda^2 + 4\pi^2 t^2}$$
 est $e^{-\lambda|f|}$.

Il suit que la transformée de Fourier de

$$\frac{1}{1+t^2} = 2\pi \cdot \frac{2\pi}{4\pi^2 + 4\pi^2 t^2} \quad \text{est} \quad 2\pi e^{-2\pi|f|}.$$

Exercice 3

a) Soit x(t) un signal discret, de la forme

$$x(t) = \sum_{n = -\infty}^{+\infty} x_n \, \delta(t - nT).$$

Montrer que $e^{\frac{2\pi jt}{T}} \cdot x(t) = x(t)$ et en déduire que son spectre est $\frac{1}{T}$ -périodique.

$$e^{\frac{2\pi jt}{T}} \cdot x(t) = e^{\frac{2\pi jt}{T}} \sum_{n=-\infty}^{+\infty} x_n \, \delta(t-nT) = \sum_{n=-\infty}^{+\infty} x_n \, \underbrace{e^{\frac{2\pi jnT}{T}}}_{1} \, \delta(t-nT) = x(t)$$

ce qui, dans le domaine fréquentiel, se traduit par

$$\widehat{x}(f - \frac{1}{T}) = \widehat{x}(f).$$

b) Cas particulier : lorsque $x_n=1$ pour tout n, on obtient le peigne de Dirac \coprod_T .

Expliciter ce que signifie alors l'écriture $g(t) \cdot \coprod_T (t)$ lorsque g(t) est une fonction.

$$g(t) \cdot \coprod_{T} (t) = g(t) \cdot \sum_{n = -\infty}^{+\infty} \delta(t - nT) = \sum_{n = -\infty}^{+\infty} g(t) \cdot \delta(t - nT) = \sum_{n = -\infty}^{+\infty} g(nT) \, \delta(t - nT)$$

puisque $g(t) \cdot \delta(t - t_0) = g(t_0) \cdot \delta(t - t_0)$; on obtient donc un signal discret correspondant à une version échantillonnée de g(t).

c) Déterminer le spectre \hat{x} de x lorsque $x_n = (-1)^n$.

Première approche : exprimer x(t) comme

$$x(t) = \coprod_{2T}(t) - \coprod_{2T}(t - T)$$

pour obtenir

$$\widehat{x}(f) = (1 - e^{-2\pi j f T}) \frac{1}{2T} \coprod_{\frac{1}{2T}} (f) = \frac{1}{2T} \sum_{n = -\infty}^{+\infty} (1 - e^{-\pi j n}) \, \delta(f - \frac{n}{2T}) = \frac{1}{T} \sum_{n \text{ impair}} \delta(f - \frac{n}{2T})$$

Autre approche : si on remarque que $x(t) = e^{\pi j \frac{t}{T}} \coprod_{T} (t)$, on peut directement dire que

$$\widehat{x}(f) = \frac{1}{T} \coprod_{\frac{1}{T}} (f - \frac{1}{2T}),$$

ce qui revient au même.

d) Montrer dans ce dernier cas que $x(t) * \operatorname{sinc}(\frac{\pi t}{T}) = \cos(\frac{\pi t}{T})$.

Côté temporel:

$$x(t) * \operatorname{sinc}(\frac{\pi t}{T}) = \sum_{n = -\infty}^{+\infty} (-1)^n \operatorname{sinc} \frac{\pi}{T} (t - nT),$$

ce qui ne nous aide a priori pas beaucoup.

Par contre du côté fréquentiel :

$$\widehat{x}(f) \cdot T \, \Pi_{\frac{1}{T}}(f) = \left(\delta(f - \frac{1}{2T}) + \delta(f + \frac{1}{2T}) \right) \cdot \Pi_{\frac{1}{T}}(f) = \frac{\delta(f - \frac{1}{2T}) + \delta(f + \frac{1}{2T})}{2}$$

d'où $x(t) = \cos(\frac{\pi t}{T})$ – et non $e^{\frac{\pi t}{T}}$ qui rajoute une partie imaginaire superflue comme annoncé, désolé!

Remarque : ici on remarque que $x(t) = \cos(\frac{\pi t}{T}) \cdot \coprod_T(t)$ donc on peut penser à x comme étant une discrétisation d'un cosinus par échantillonnage; on retrouve la fonction initiale par interpolation de Whittaker à partir des échantillons (voir TP3).

Produit de convolution

$$(x_1 * x_2)(t) = \int_{-\infty}^{+\infty} x_1(u) x_2(t-u) du = \int_{-\infty}^{+\infty} x_1(t-v) x_2(v) dv$$

Transformation de Laplace

domaine temporel	domaine opérationnel	remarque
x(t)	$X(p) = \int_0^{+\infty} x(t) e^{-pt} dt$	
x'(t)	$pX(p) - x(0^+)$	
$\int_0^t x(u) \mathrm{d}u$	$\frac{X(p)}{p}$	
tx(t)	-X'(p)	
$(-1)^n t^n x(t)$	$X^{(n)}(p)$	$(n \in \mathbb{N})$
$\frac{x(t)}{t}$	$\int_{p}^{+\infty} X(s) \mathrm{d}s$	
$e^{at}x(t)$	X(p-a)	$(a\in\mathbb{C})$
x(t-a)	$e^{-pa}X(p)$	$(a\geqslant 0)$
x(kt)	$\frac{1}{k}X\left(\frac{p}{k}\right)$	(k > 0)

Théorèmes des valeurs initiale et finale : Si les limites temporelles existent et sont finies, on a

$$\lim_{p \to +\infty} pX(p) = x(0^+) \qquad \text{et} \qquad \lim_{p \to 0} pX(p) = x(+\infty)$$

original causal	image	remarque
x(t)	X(p)	
1 ou $H(t)$	$\frac{1}{p}$	
t	$\frac{1}{p^2}$	
$\frac{t^n}{n!}$	$\frac{1}{p^{n+1}}$	
e^{at}	$\frac{1}{p-a}$	$(a \in \mathbb{C})$
$\cos(\omega t)$	$\frac{p}{p^2 + \omega^2}$ $\frac{\omega}{p^2 + \omega^2}$	
$\sin(\omega t)$	$\frac{\omega}{p^2 + \omega^2}$	
$\delta(t)$	1	

Coefficients de Fourier

$$c_n = \frac{1}{T} \int_a^{a+T} x(t) e^{-2\pi j n t/T} dt$$

Transformation de Fourier

domaine temporel	domaine fréquentiel
$x(t) = \int_{-\infty}^{+\infty} \widehat{x}(f) e^{2\pi j f t} df$	$\widehat{x}(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi j f t} dt$
$\lambda x_1(t) + \mu x_2(t)$	$\lambda \widehat{x_1}(f) + \mu \widehat{x_2}(f)$
x(-t)	$\widehat{x}(-f)$
$\overline{x(t)}$	$\overline{\widehat{x}(-f)}$
x(t-a)	$e^{-2\pi jaf}\widehat{x}(f)$
$e^{2\pi jat}x(t)$	$\widehat{x}(f-a)$
$\frac{\mathrm{d}x}{\mathrm{d}t}$	$2\pi jf\widehat{x}(f)$
$-2\pi jtx(t)$	$\frac{\mathrm{d}\widehat{x}}{\mathrm{d}f}$
$(x_1 * x_2)(t)$	$\widehat{x_1}(t)\widehat{x_2}(t)$
$x_1(t) x_2(t)$	$(\widehat{x_1}*\widehat{x_2})(f)$
$\Pi_a(t) = H\left(t + \frac{a}{2}\right) - H\left(t - \frac{a}{2}\right)$	$a \operatorname{sinc}(\pi a f)$
$e^{-\lambda t }, \lambda > 0$	$\frac{2\lambda}{\lambda^2 + 4\pi^2 f^2}$
e^{-t^2}	$\sqrt{\pi}e^{-\pi^2f^2}$
$\delta(t)$	1
1	$\delta(f)$
$\mathrm{III}_T(t)$	$\frac{1}{T} \coprod_{\frac{1}{T}} (f)$

