ブラックボックス構成と その限界

安永 憲司(金沢大学)

暗号理論

- ■情報の秘匿性・正当性等を保証する技術の基礎理論
 - 秘匿性:公開鍵暗号、鍵共有、ゼロ知識証明
 - 正当性:電子署名、メッセージ認証、相手認証
 - その他:一方向性関数、擬似乱数生成器、 擬似ランダム関数

- P ≠ NP の先の世界
 - 一方向性関数の存在性を仮定した上で議論

暗号技術の帰着関係

- 「技術 A → 技術 B」
 技術 A を実現する任意の方法が与えられれば、 技術 B を実現可能
 - 「B の安全性を A の安全性に帰着させる」 という

帰着の例(OWP + hardcore → PRG)

- OWP f とその hardcore predicate h に対し、G(x) = (f(x), h(x)) は PRG である
- ■証明
 - PRG G の安全性を破る PPT A を仮定
 - Aは i bit まで与えられ、i+1 bit 目が予測可能
 - G の最初 n bit は置換であり一様分布
 → A は n+1 bit 目を予測
 - Aが n+1 bit 目を予測できることはhが hardcore であることに反する(証明終)

PRG の安全性を hardcore の安全性に帰着

ブラックボックス帰着

- 各技術の中身(実現方法)を見ずに 帰着関係を示すこと
 - 暗号技術の入出力と安全性が分かれば十分

■ 暗号理論の帰着の多くはブラックボックス

- ブラックボックス帰着の限界 [IR89]
 - OWF → Key Agreement (KA)

2つの意味のブラックボックス

例. OWF → KA

- 1. 構成方法がブラックボックス:
 - 任意の OWF f が与えられたとき、 f の中身を見ずに、KA を構成
 - 限界に関する研究 [IR89, Rud92, Sim98, GKM+00, Fis02, RTV04, HR04, DOP05, GGK+05, BCFW09, FLR+10, FS12, HMS12]

2つの意味のブラックボックス

例. OWF → KA

- 2. 安全性証明(帰着)がブラックボックス:
 - KA を破る敵対者 A が与えられたとき、A の中身を見ずに、OWF を破る敵対者を構成
 - 限界に関する研究 [BV98, Cor02, Bro05, PV05, BMV08, HRS09, FS10, Pas11, GW11, DHT12, Pas13, Wic13]

Impagliazzo, Rudich (STOC '89)

定理

以下のオラクル Π が存在: Π で相対化されて OWP は存在するが、KA は存在しない

定義 (相対化されて存在)

技術 P が Π で相対化されて存在

⇔ PPT M に対し、f = M^Π が P を実現し、
任意の PPT A に対し、A^{Π,f} は f を破れない

□ で相対化された世界でも存在する

定義 (相対化帰着)

技術 P から Q への相対化帰着が存在

- ⇔ 任意のオラクル Γ に対して、
 - □で相対化されてQが存在するならば、
 - Πで相対化されて P も存在

□で相対化された世界でも帰着が成り立つ

定義 (fully black-box (BB) 帰着)

技術 P から Q への fully-BB 帰着が存在

- ⇔ PPT G, S が存在し
 - 1. Q の任意の実現方法 f に対して、Gf は P を実現
 - 2. Q の任意の実現方法 f, 任意の A に対して、(G^f, A) で P を破る → (f, S^{A,f}) で Q を破る

(f, A) で P を破る ⇔ f という P の実現方法に対して A がその安全性を破る

命題 (fully-BB 帰着 → 相対化帰着)

技術 P から Q への fully-BB 帰着が存在するとき、P から Q への相対化帰着が存在

直観的には、fully-BB は任意のオラクルアクセスを許しても成立するため

証明:

- ・Pから Qへの相対化帰着が存在しないと仮定→ ∃ Π s.t. Π で相対化されて Q は存在し P は存在しない
- ・fully-BB 帰着の存在から PPT G, S が存在
- ・G の性質より、 Q の任意の実現方法 f = M[□] に対し、G^f は P を実現するが、 P は存在しないため、∃ PPT A s.t. (G^f, A^{□,f}) で P を破る
- A' = A^{Π,f} の存在と S の性質より、(f, S^{A', f}) で Q を破る
 → Q が Π で相対化されて存在することに矛盾(証明終)

Impagliazzo, Rudich (STOC '89)(再掲)

定理

以下のオラクル Π が存在: Π で相対化されて OWP は存在するが、KA は存在しない (Π は PSPACE + ランダム関数)

系

KA から OWP への fully-BB 帰着は存在しない

暗号技術の帰着関係

fully-BB or 相対化帰着では不可

ブラックボックスでない帰着方法とは?

- Karp 帰着(NP 完全性等)を利用した構成法
 - Cook-Levin の NP 完全性証明では、 TM の状態をブール関数で表現
 - 任意の NP に対するゼロ知識証明 [GMW91] では、 NP 完全性を利用するため、TM のコードが必要
- Barak (FOCS '01) のテクニック
 - 敵対者のコードを利用
 - ブラックボックスによる限界を回避
- ■回路を利用した構成方法
 - Randomized Encoding [AlK04,06] では NC¹ 回路で実現された暗号技術を NC⁰ に変換
 - 完全準同型暗号の構成法

BB 帰着不可能性に関する研究

- BB 帰着による効率の限界
 - BB 構成アルゴリズムのクエリ下界 [GGKT05]
 - OWP → PRG, UOWHF, Signature; TDP → PKE
 - BB 帰着アルゴリズムのクエリ下界 [Lu09]
 - weak OWF → strong OWF; OWF → PRG

- ■メタ帰着による不可能性
 - 「BB 帰着の存在 → 安全性仮定の否定」
 - 安全性仮定に対して議論可能

参考文献

- [IR89] R. Impagliazzo and S. Rudich: Limits on the provable consequences of one-way permutations. STOC 1989.
- [GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, Luca Trevisan: Bounds on the Efficiency of Generic Cryptographic Constructions. SIAM J. Comput. (2005)
- [Lu09] Chi-Jen Lu: On the Security Loss in Cryptographic Reductions. EUROCRYPT 2009.
- [BCPT13] Eleanor Birrell, Kai-Min Chung, Rafael Pass, Sidharth Telang: Randomness-Dependent Message Security. TCC 2013
- [RTV04] Omer Reingold, Luca Trevisan, Salil P. Vadhan: Notions of Reducibility between Cryptographic Primitives. TCC 2004.
- [BBF13] Paul Baecher, Christina Brzuska, Marc Fischlin. Notions of Black-Box Reductions, Revisited. Asiacrypt 2013.