Робот в лабиринте

Требуется дополнить схемы в прилагающемся файле lab.circ схемой управления роботом, передвигающимся по лабиринту размера 4х4.

Терминология

М[i,j] — так будем обозначать ячейку лабиринта в i-й строке и j-м столбце, нумерация с ноля. Флаг = сигнал ширины 1. Флаг поднят = сигнал имеет значение 1. Флаг опущен = сигнал имеет значение 0. Флаг поднимается = передний фронт сигнала. Флаг опускается = задний фронт сигнала.

Схема управления роботом

Порты

Входы:

- clk, ширина 1: тактовый.
- rst, ширина 1: асинхронный сброс.
- start, ширина 1: флаг выполнения действия.
- act, ширина 2: действие для выполнения
- Проходы лабиринта. Значение сигнала 1 означает, что в указанном месте расположен проход, 0 препятствие (стена, прохода нет). Проходы передаются через 7 шин, места перечисляются от старшего (левого) бита к младшему:
 - r1, ширина 3: проходы между M[0,0] и M[0,1], M[0,1] и M[0,2], M[0,2] и M[0,3].
 - r2, ширина 4: проходы между М[0,0] и М[1,0], М[0,1] и М[1,1], М[0,2] и М[1,2], М[0,3] и М[1,3].
 - r3, ширина 3: проходы между M[1,0] и M[1,1], M[1,1] и M[1,2], M[1,2] и M[1,3].
 - r4, ширина 4: проходы между М[1,0] и М[2,0], М[1,1] и М[2,1], М[1,2] и М[2,2], М[1,3] и М[2,3].
 - r5, ширина 3: проходы между M[2,0] и M[2,1], M[2,1] и M[2,2], M[2,2] и M[2,3].
 - r6, ширина 4: проходы между M[2,0] и M[3,0], M[2,1] и M[3,1], M[2,2] и M[3,2], M[2,3] и M[3,3].
 - r7, ширина 3: проходы между M[3,0] и M[3,1], M[3,1] и M[3,2], M[3,2] и M[3,3].

Выходы:

- row, ширина 2: ряд.
- со1, ширина 2: столбец.
- dir, ширина 2: направление.
- active, ширина 1: флаг активности робота.

Устройство

Флаг active после сброса опущен (робот неактивен). При поднятии флага start флаг активности тоже немедленно поднимается (теперь робот активен), после этого робот выполняет действие как описано ниже, и по завершении действия флаг active немедленно опускается (робот снова неактивен). При разработке и моделировании схемы следует считать, что во время выполнения действия флаг start опущен.

В остальном это синхронная схема, устроенная так.

Всевозможные направления робота:

- вверх (0) от второго ряда к первому;
- вниз (1) от первого ряда ко второму;
- \bullet вправо (2) от первого столбца ко второму;
- влево (3) от второго столбца к первому.

У робота всегда есть положение (ряд и столбец) и направление, непрерывно выводящиеся в выходы row, col и dir соответственно. После сброса робот устанавливается в правый нижний угол (ряд 3, столбец 3) и направлен вверх.

Если active(t) = 1 и робот не находится в режиме выполнения действия в этот момент, то он переходит в режим выполнения действия. После сброса робот не находится в режиме выполнения действия.

Находясь в режиме выполнения действия, робот делает следующее:
• Если act = 0, то поворачивается на 90 градусов по часовой стрелке

• Если act = 0, то поворачивается на 90 градусов по часовой стрелке (вправо) и немедленно выходит из режима выполнения действия. Действие завершено.

- Если act = 1, то поворачивается на 90 градусов против часовой стрелки (влево) и немедленно выходит из режима выполнения действия. Действие завершено.
- Если act = 2, то поворачивается на 180 градусов и немедленно выходит из режима выполнения действия. Действие завершено.
- Если act = 3, то робот движется вперёд до упора: если впереди по направлению dir есть проход, то он перемещается на одну ячейку вперёд и остаётся в режиме выполнения действия, а иначе остаётся на месте и немедленно выходит из режима выполнения действия, и во время выхода из режима действие завершается.