

Spanning Tree Protocol (STP)

Chien-Chao Tseng

NYCU CS 1-1

Redundancy at OSI Layers 1 and 2

- Multiple cabled paths between switches provide physical redundancy
 - ➤ Improves reliability and availability of networks
 - Alternate physical paths for data to traverse the network
 - ➤ Possible to access network resources, despite path disruption

Source: Cisco

Ethernet Frame Structure

Preamble Dest. Source Address Type Data (Payload) CRC

10 Transport
Application
Data

Network

Data Link

- Preamble: 7 bytes, to synchronize receiver, sender clock rates, 10101010
 - Start Frame Delimiter (SFD): One byte, 10101011
- Mac Addresses: 6 bytes, Flat
- Type: indicates higher layer protocol
 - Mostly IP, but others possible (e.g., Novell IPX, AppleTalk):
 - 0x0800: IPv4, 0x0806: ARP
- CRC: checked at receiver, frame dropped if error detected
- Behavior of an adapter on receiving a frame with
 - Matching Destination Address, Broadcast Address (e.g., ARP packet),
 or Participating Multicast Address
 - passes data in the frame to the Network Layer protocol
 - Otherwise, discards frame

Switch Table and Self-Learning

Each switch has a switch table

MAC Addr	Interface	TTL

- Table entry:
 - MAC Address of Host, Interface to Reach Host, Time Stamp
 - Looks like a routing table
- How does switch create and maintain table entries?
- MAC Learning

Self-learning which hosts can be reached through which interfaces

- When switch receives a frame, it
 - Learns location (port) of sender (incoming LAN segment)
 - Records Sender-MAC/Port pair in switch table

Flooding, Forwarding and Self-learning (MAC Learning)

MAC Addr

Interface

TTL

* Assume switch table is initially empty

1) A→C:

Destination C location unknown

- Flood
- MAC Learning
 - Update switch table

MAC Addr	Interface	TTL
Α	1	60

Dest: C

Source: A

2) $C \rightarrow A$:

Destination A location known

- Unicast (Selectively send on just one link)
- MAC Learning
 - Update switch table

MAC Addr	Interface	TTL
A	1	60
C	3	60

Frame Filtering/Forwarding Algorithm

```
Algorithm: when a switch receives frame
                                                                    Skip
1. records incoming link, MAC address of sending host
2. indexes switch table using MAC destination address
3. if entry found for destination
   then {
        if destination on segment from which frame arrived
           then drop frame
           else forward frame on interface indicated by entry
   else flood /* forward on all interfaces except arriving
              interface */
Note: Spanning Tree Protocol (STP, later in class)
https://www.youtube.com/watch?v=japdEY1UKe4, Step by Step, by CertBros
```

NYCU CS

Logical Layer 2 Loops

- Physical redundant paths may cause logical Layer 2 loops
 - Due to switch MAC learning and forwarding (flooding) process
- Recall: How switches react to
 - Broadcast messages or
 - Unicast messages with unknown addresses

SW A

- > Forward frame out of every port, except the one that receives it
- **■** Three primary issues:
 - 1. Broadcast Storm
 - 2. MAC Database (address table) Instability
 - 3. Multiple-frame transmission
 - **➤** Solution: Spanning Tree Protocol (STP)
- Reference: https://www.youtube.com/watch?v=japdEY1UKe4
 - Spanning Tree Protocol Explained | Step by Step, by CertBros

Primary Issues of Layer 2 Loops

1. Broadcast storm—

Each switch may flood broadcasts endlessly, (if without some loop-avoidance process.)

2. MAC Database (Address Table) Instability—
Copies of the same frame being received on different ports of the switch.
(MAC learning)

3. Multiple-frame Transmission—

Multiple copies of unicast frames may be delivered to destination stations.

- Can cause unrecoverable errors
 - Many protocols expect to receive only a single copy of each transmission
- > Uses **STP** to prevent loops when using redundant switches

Spanning Tree Protocol – Overview

Objective:

to ensure "only one logical path between all destinations" on the network

Idea:

Intentionally blocking ports of redundant paths that could cause a loop

- User data is prevented from entering or leaving that port
- But Bridge Protocol Data Unit (BPDU) frames are allowed to pass through.
 - BPDU: control message used by STP
 - Encapsulated in an Ethernet frame
- Multiple physical paths still exist,
 - But disabled to prevent the loops from occurring
 - On a link or switch failure
 - STP recalculates the paths and unblocks the necessary ports
 - > Allow the redundant path to become active

Spanning Tree Algorithm (STA)

- IEEE 802.1D STP and Rapid STP (RSTP)
 use Spanning Tree Algorithm (STA) to determine which switch ports on a network must be put in Blocking State (to prevent loops)
- STA designates a single switch as the Root Bridge
 - Used as the reference point for all path calculations
- Root Ports (RPs): per-switch
 Ports on a switch with the best route to the Root Bridge (in terms of path cost.)
 - Selected on a per-switch basis
 - Root Bridge is the only bridge that does not have a Root Port.
- Designated Port (DP): per-link
 Port on a link (segment) with
 the best route to Root Bridge
 - Selected on a per-link basis

Bridge ID (BID)

- Bridge ID (BID): switch, 8 Bytes, divided into two parts
 - Bridge Priority: 2 Bytes originally,
 - automatically assigned, but configurable
 - value between 0 and 65,535, default is 32,768
 - Extended System ID (optional): borrowing 12 bits from original Bridge Priority
 - a VLAN ID or
 - a multiple spanning tree protocol (MSTP) instance ID
 - MAC Address: MAC address of sending switch Original Bridge Priority

Root Bridge Election

- BPDU: Bridge Protocol Data Unit
 Contains information necessary to configure and maintain spanning tree topology.
- Root Bridge Election
 - All switches participating in STP exchange BPDU frames,
 - BPDU carrying (sender) Bridge ID (BID), containing
 - Bridge Priority
 - Extended System ID (Optional)
 - MAC Address (of sending switch)
 - Switch with the lowest BID automatically becomes Root Bridge
- After Root Bridge elected
 BPDU originated from Root Bridge contains Root Bridge ID and Root Path Cost

Root Path Cost

- ✓ BPDU contains Root Path Cost
- When a switch receives a BPDU,
 it calculates the Internal Root Path Cost of the ingress port
 - Internal Root Path Cost = Root Path Cost (received) + port cost (ingress)
 - > Sum of individual port costs along the best path from the port to Root Bridge
- **Default port cost** defined by the port speed

Link Speed	Cost (Revised IEEE Specification)	Cost (Previous IEEE Specification)
10 Gb/s	2	1
1 Gb/s	4	1
100 Mb/s	19	10
10 Mb/s	100	100

NYCU CS

Designated Port and Non-Designated Port

Recall: Designated Ports (<u>Selected on a per-segment/link</u> basis)
 port with the <u>best route</u> to Root Bridge on a <u>link (segment)</u> RP

- 1) All ports on Root Bridge are Designated Ports
- 2) The other end of the Root Port is Designated Port.
- 3) For any other segment not including a Root Port,
 - Selected on a Per-segment Basis based on the Cost of BPDUs
 - Port with lower Internal Root Path Cost is Designated Port
 - The other end of Designated Port is Non-Designated Port
- Root Port and Designated Port in Forwarding State
- Non-Designated Port in Blocking State
 - Does not forward frames and discards frames received
 - Only listen to and process BPDUs (does not send BPDUs)
- Disabled Port: administratively shut down, (not in STP and not forwarding frames)

ted Port

ed Port

Segment not including

a Root Port

SW B

Root Bridge

RP

SW C

State Transition in STP

- When STP enabled, every port is in a Blocking State
 - Only listening to and processing BPDUs on its interfaces.
- Switch Ports in a blocking state at the election time

STP Modes

Several STP modes may exist in a switch

[1] Cisco IOS use PVST+ as default mode

Protocol	Standard	Resources Needed	Convergence	Tree Calculation
STP	802.1D	Low	Slow	All VLANs
PVST+ [1]	Cisco	High	Slow	Per VLAN
RSTP	802.1w	Medium	Fast	All VLANs
Rapid PVST+	Cisco	Very high	Fast	Per VLAN
MSTP	802.1s	Medium or high	Fast	Per Instance

PVSP: Per-VLAN Spanning Tree

RSTP: Rapid STP

Multiple Spanning Tree Protocol (MSTP)

NYCU CS 16