Corrigé exercice 121:

Partie A:

- 1. Pour tout x > 0, $g'(x) = \frac{-3}{x^2} \frac{1}{x} = \frac{-3 x}{x^2}$.
- 2. g'(x) est du signe de -3 x car $x^2 > 0$ donc g'(x) < 0 sur $]0; +\infty[$. g est donc strictement décroissante sur $]0; +\infty[$.
- 3. g(1) = 2 et $g(2) = 0.5 \ln(2) < 0$. De plus, g est continue et strictement décroissante sur $]0; +\infty[$ donc, d'après le corollaire du théorème des valeurs intermédiaires vu dans le chapitre 6, il existe un unique réel $\alpha \in]1; 2[$ tel que $g(\alpha) = 0$. À l'aide de la calculatrice on obtient $\alpha \approx 1.86$.

Partie B:

- 1. f est dérivable sur $]0; +\infty[$ en tant que produit de fonctions dérivables et, pour tout x>0, $f'(x)=-\ln(x)+\frac{-x+3}{x}=g(x)$.
- 2. Par stricte décroissance de g on déduit que f'(x) > 0 pour $x \in]0; \alpha[$ et f'(x) < 0 pour $x \in]\alpha; +\infty[$. Ainsi, f est croissante pour $x \in]0; \alpha[$ et décroissante pour $x \in]\alpha; +\infty[$.
- 3. La fonction h est définie sur $]0; +\infty[$ en tant que produit de fonction dérivables sur $]0; +\infty[$ et, pour tout réel x>0, $h'(x)=\frac{-3}{x}+2+2\ln(x)$. On est donc amené à étudier la fonction auxiliaire k définie sur $]0; +\infty[$ par $k(x)=\frac{-3}{x}+2+2\ln(x)$. Cette fonction est dérivable et, pour tout réel $x>0, \ k'(x)=\frac{3}{x^2}+\frac{2}{x}=\frac{3+2x}{x^2}$. Pour tout $x>0, \ k'(x)>0$ donc k est strictement croissante. De plus, $k(1)=-1, \ k(2)=0.5+2\ln(2)>0$ et k est continue sur $]0; +\infty[$ donc, d'après le corollaire du théorème des valeurs intermédiaires étudié dans le chapitre 6, il existe un unique réel $\alpha\in]1; 2[$ tel que $k(\alpha)=0$. On en déduit que h'(x)<0 pour $x\in]0; \alpha[$ et h'(x)>0 pour $x\in]\alpha; +\infty[$. Ainsi h est décroissante sur $]0; \alpha[$ et croissante sur $]\alpha; +\infty[$.