<u>Vector Analysis: Previous Year Questions and Solve</u> Year-2020

4.(a)

Forces \mathbf{F}_1 , \mathbf{F}_2 ,..., \mathbf{F}_6 act on an object P as shown in Fig. 1-10(a). Find the force that is needed to prevent P from moving.

Solution

Since the order of addition of vectors is immaterial, we may start with any vector, say \mathbf{F}_1 . To \mathbf{F}_1 add \mathbf{F}_2 , then \mathbf{F}_3 , and so on as pictured in Fig. 1-10(b). The vector drawn from the initial point of \mathbf{F}_1 to the terminal point of \mathbf{F}_6 is the resultant \mathbf{R} , that is, $\mathbf{R} = \mathbf{F}_1 + \mathbf{F}_2 + \cdots + \mathbf{F}_6$.

The force needed to prevent P from moving is $-\mathbf{R}$, sometimes called the *equilibrant*.

4.(b)

). Prove that $A \cdot (B \times C) = B \cdot (C \times A) = C \cdot (A \times B)$.

Solution

By Problem 2.37,
$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix}$$
.

By a theorem of determinants which states that interchange of two rows of a determinant changes its sign, we have

$$\begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix} = - \begin{vmatrix} B_1 & B_2 & B_3 \\ A_1 & A_2 & A_3 \\ C_1 & C_2 & C_3 \end{vmatrix} = \begin{vmatrix} B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \\ A_1 & A_2 & A_3 \end{vmatrix} = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A})$$

$$\begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix} = - \begin{vmatrix} C_1 & C_2 & C_3 \\ B_1 & B_2 & B_3 \\ A_1 & A_2 & A_3 \end{vmatrix} = \begin{vmatrix} C_1 & C_2 & C_3 \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix} = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$$

4.(c)

Prove:
$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{B} \times \mathbf{C}) \times (\mathbf{C} \times \mathbf{A}) = (\mathbf{A} \cdot \mathbf{B} \times \mathbf{C})^2$$
.

Solution

By Problem 2.47(a),
$$\mathbf{X} \times (\mathbf{C} \times \mathbf{A}) = \mathbf{C}(\mathbf{X} \cdot \mathbf{A}) - \mathbf{A}(\mathbf{X} \cdot \mathbf{C})$$
. Let $\mathbf{X} = \mathbf{B} \times \mathbf{C}$; then
$$(\mathbf{B} \times \mathbf{C}) \times (\mathbf{C} \times \mathbf{A}) = \mathbf{C}(\mathbf{B} \times \mathbf{C} \cdot \mathbf{A}) - \mathbf{A}(\mathbf{B} \times \mathbf{C} \cdot \mathbf{C})$$
$$= \mathbf{C}(\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}) - \mathbf{A}(\mathbf{B} \cdot \mathbf{C} \times \mathbf{C})$$
$$= \mathbf{C}(\mathbf{A} \cdot \mathbf{B} \times \mathbf{C})$$

Thus

$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{B} \times \mathbf{C}) \times (\mathbf{C} \times \mathbf{A}) = (\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}(\mathbf{A} \cdot \mathbf{B} \times \mathbf{C})$$
$$= (\mathbf{A} \times \mathbf{B} \cdot \mathbf{C})(\mathbf{A} \cdot \mathbf{B} \times \mathbf{C})$$
$$= (\mathbf{A} \cdot \mathbf{B} \times \mathbf{C})^{2}$$

A particle moves so that its position vector is given by $\mathbf{r} = \cos \omega t \mathbf{i} + \sin \omega t \mathbf{j}$ where ω is a constant. Show that (a) the velocity \mathbf{v} of the particle is perpendicular to \mathbf{r} , (b) the acceleration \mathbf{a} is directed toward the origin and has magnitude proportional to the distance from the origin, (c) $\mathbf{r} \times \mathbf{v} = \mathbf{a}$ constant vector.

Solution

(a)
$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = -\omega \sin \omega t \mathbf{i} + \omega \cos \omega t \mathbf{j}$$
. Then

$$\mathbf{r} \cdot \mathbf{v} = [\cos \omega t \mathbf{i} + \sin \omega t \mathbf{j}] \cdot [-\omega \sin \omega t \mathbf{i} + \omega \cos \omega t \mathbf{j}]$$
$$= (\cos \omega t)(-\omega \sin \omega t) + (\sin \omega t)(\omega \cos \omega t) = 0$$

and \mathbf{r} and \mathbf{v} are perpendicular.

(b)
$$\frac{d^2 \mathbf{r}}{dt^2} = \frac{d\mathbf{v}}{dt} = -\omega^2 \cos \omega t \mathbf{i} - \omega^2 \sin \omega t \mathbf{j}$$
$$= -\omega^2 [\cos \omega t \mathbf{i} + \sin \omega t \mathbf{j}] = -\omega^2 \mathbf{r}$$

Then the acceleration is opposite to the direction of \mathbf{r} , that is, it is directed toward the origin. Its magnitude is proportional to $|\mathbf{r}|$, which is the distance from the origin.

(c)
$$\mathbf{r} \times \mathbf{v} = [\cos \omega t \mathbf{i} + \sin \omega t \mathbf{j}] \times [-\omega \sin \omega t \mathbf{i} + \omega \cos \omega t \mathbf{j}]$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos \omega t & \sin \omega t & 0 \\ -\omega \sin \omega t & \omega \cos \omega t & 0 \end{vmatrix}$$

$$= \omega (\cos^2 \omega t + \sin^2 \omega t) \mathbf{k}$$

$$= \omega \mathbf{k}, \text{ a constant vector.}$$

Physically, the motion is that of a particle moving on the circumference of a circle with constant angular speed ω . The acceleration, directed toward the center of the circle, is the *centripetal acceleration*.

5.(b)

Suppose **A** has constant magnitude. Show that $A \cdot dA/dt = 0$ and that **A** and dA/dt are perpendicular provided $|dA/dt| \neq 0$.

Solution

Since A has constant magnitude, $A \cdot A = \text{constant}$

Then
$$\frac{d}{dt}(\mathbf{A} \cdot \mathbf{A}) = \mathbf{A} \cdot \frac{d\mathbf{A}}{dt} + \frac{d\mathbf{A}}{dt} \cdot \mathbf{A} = 2\mathbf{A} \cdot \frac{d\mathbf{A}}{dt} = 0.$$
Thus $\mathbf{A} \cdot \frac{d\mathbf{A}}{dt} = 0$ and \mathbf{A} is perpendicular to $\frac{d\mathbf{A}}{dt}$ provided $\left| \frac{d\mathbf{A}}{dt} \right| \neq 0.$

6.(a)

Let $\phi = x^2yz - 4xyz^2$. Find the directional derivative of ϕ at P(1, 3, 1) in the direction of $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$.

Solution

First find $\nabla \phi = (2xyz - 4yz^2)\mathbf{i} + (x^2z - 4xz^2)\mathbf{j} + (x^2y - 8xyz)\mathbf{k}$. Then $\nabla \phi(1, 3, 1) = -6\mathbf{i} - 3\mathbf{j} - 21\mathbf{k}$. The unit vector in the direction of $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ is

$$\mathbf{a} = \frac{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}{\sqrt{(2)^2 + (-1)^2 + (-2)^2}} = \frac{2}{3}\mathbf{i} - \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}.$$

Thus the required directional derivative is

$$\nabla \phi(1, 3, 1) \cdot \mathbf{a} = (-6\mathbf{i} - 3\mathbf{j} - 21\mathbf{k}) \cdot (\frac{2}{3}\mathbf{i} - \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}) = -4 + 1 + 14 = 11.$$

6.(b) Divergence:

Suppose $V(x, y, z) = V_1 \mathbf{i} + V_2 \mathbf{j} + V_3 \mathbf{k}$ is defined and differentiable at each point (x, y, z) in a region of space. (That is, **V** defines a differentiable vector field.) Then the *divergence* of **V**, written $\nabla \cdot \mathbf{V}$ or div **V** is defined as follows:

$$\nabla \cdot \mathbf{V} = \left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}\right) \cdot (V_1\mathbf{i} + V_2\mathbf{j} + V_3\mathbf{k})$$
$$= \frac{\partial V_1}{\partial x} + \frac{\partial V_2}{\partial y} + \frac{\partial V_3}{\partial z}$$

Given $\phi = 6x^3y^2z$. (a) Find $\nabla \cdot \nabla \phi$ (or div grad ϕ).

(b) Show that $\nabla \cdot \nabla \phi = \nabla^2 \phi$ where $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ denotes the Laplacian operator.

Solution

(a)
$$\nabla \phi = \frac{\partial}{\partial x} (6x^3y^2z)\mathbf{i} + \frac{\partial}{\partial y} (6x^3y^2z)\mathbf{j} + \frac{\partial}{\partial z} (6x^3y^2z)\mathbf{k} = 18x^2y^2z\mathbf{i} + 12x^3yz\mathbf{j} + 6x^3y^2\mathbf{k}.$$
Then
$$\nabla \cdot \nabla \phi = \left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}\right) \cdot (18x^2y^2z\mathbf{i} + 12x^3yz\mathbf{j} + 6x^3y^2\mathbf{k})$$

$$= \frac{\partial}{\partial x} (18x^2y^2z) + \frac{\partial}{\partial y} (12x^3yz) + \frac{\partial}{\partial z} (6x^3y^2) = 36xy^2z + 12x^3z.$$

6.(c) Curl:

Suppose $V(x, y, z) = V_1 \mathbf{i} + V_2 \mathbf{j} + V_3 \mathbf{k}$ is a differentiable vector field. Then the *curl* or *rotation* of V, written $\nabla \times V$, curl V or rot V, is defined as follows:

 $\nabla \times \mathbf{V} = \left(\frac{\partial}{\partial \mathbf{r}}\mathbf{i} + \frac{\partial}{\partial \mathbf{v}}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}\right) \times (V_1\mathbf{i} + V_2\mathbf{j} + V_3\mathbf{k})$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ V_1 & V_2 & V_3 \end{vmatrix}$$

$$= \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} | \mathbf{i} - \left| \frac{\partial}{\partial x} & \frac{\partial}{\partial z} | \mathbf{j} + \left| \frac{\partial}{\partial x} & \frac{\partial}{\partial y} | \mathbf{k} \right|$$

$$= \left(\frac{\partial V_3}{\partial y} - \frac{\partial V_2}{\partial z} \right) \mathbf{i} + \left(\frac{\partial V_1}{\partial z} - \frac{\partial V_3}{\partial x} \right) \mathbf{j} + \left(\frac{\partial V_2}{\partial x} - \frac{\partial V_1}{\partial y} \right) \mathbf{k}$$

$$= \nabla \cdot \left[\frac{\mathbf{i}}{\partial x} & \frac{\mathbf{j}}{\partial y} & \frac{\partial}{\partial z} \\ A_1 & A_2 & A_3 \end{vmatrix}$$

$$= \nabla \cdot \left[\left(\frac{\partial A_3}{\partial y} - \frac{\partial A_2}{\partial z} \right) \mathbf{i} + \left(\frac{\partial A_1}{\partial z} - \frac{\partial A_3}{\partial x} \right) \mathbf{j} + \left(\frac{\partial A_2}{\partial x} - \frac{\partial A_1}{\partial y} \right) \mathbf{k} \right]$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial A_3}{\partial y} - \frac{\partial A_2}{\partial z} \right) + \frac{\partial}{\partial y} \left(\frac{\partial A_1}{\partial z} - \frac{\partial A_3}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{\partial A_2}{\partial x} - \frac{\partial A_1}{\partial y} \right)$$

$$= \frac{\partial^2 A_3}{\partial x \partial y} - \frac{\partial^2 A_2}{\partial x \partial z} + \frac{\partial^2 A_1}{\partial y \partial z} - \frac{\partial^2 A_3}{\partial y \partial x} + \frac{\partial^2 A_2}{\partial z \partial x} - \frac{\partial^2 A_1}{\partial z \partial y} = 0$$

assuming that A has continuous second partial derivatives.

Note the similarity between the above results and the results $(\mathbf{C} \times \mathbf{C}m) = (\mathbf{C} \times \mathbf{C})m = \mathbf{0}$, where m is a scalar and $\mathbf{C} \cdot (\mathbf{C} \times \mathbf{A}) = (\mathbf{C} \times \mathbf{C}) \cdot \mathbf{A} = \mathbf{0}$.

Year-2021

2.(a) Dot Product:

The dot or scalar product of two vectors **A** and **B**, denoted by $\mathbf{A} \cdot \mathbf{B}$ (read: **A** dot **B**), is defined as the product of the magnitudes of **A** and **B** and the cosine of the angle θ between them. In symbols,

$$\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta, \quad 0 \le \theta \le \pi$$

Cross Product:

The cross product of vectors **A** and **B** is a vector $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ (read: **A** cross **B**) defined as follows. The magnitude of $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ is equal to the product of the magnitudes of **A** and **B** and the sine of the angle θ between them. The direction of $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ is perpendicular to the plane of **A** and **B** so that **A**, **B**, and **C** form a right-handed system. In symbols,

$$\mathbf{A} \times \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \sin \theta \mathbf{u} \qquad 0 \le \theta \le \pi$$

where \mathbf{u} is a unit vector indicating the direction of $\mathbf{A} \times \mathbf{B}$. [Thus \mathbf{A} , \mathbf{B} , and \mathbf{u} form a right-handed system.]

Solution

Since $\mathbf{PQ} = \mathbf{B} - \mathbf{r}$ is perpendicular to \mathbf{A} , we have $(\mathbf{B} - \mathbf{r}) \cdot \mathbf{A} = 0$ or $\mathbf{r} \cdot \mathbf{A} = \mathbf{B} \cdot \mathbf{A}$ is the required equation of the plane in vector form. In rectangular form this becomes

$$(x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) \cdot (2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}) = (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) \cdot (2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k})$$

or

$$2x - 3y + 6z = 2 - 6 + 18 = 14$$

2.(b)

Show that the absolute value of the triple product $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$ is the volume of a parallelepiped with sides \mathbf{A} , \mathbf{B} , and \mathbf{C} .

Solution

Let **n** be a unit normal to a parallelogram I, having the direction of $\mathbf{B} \times \mathbf{C}$, and let h be the height of the terminal point of \mathbf{A} above the parallelogram I. [See Fig. 2-16.]

Volume of parallelepiped = (height
$$h$$
)(area of parallelogram I)
= $(\mathbf{A} \cdot \mathbf{n})(|\mathbf{B} \times \mathbf{C}|)$
= $\mathbf{A} \cdot \{|\mathbf{B} \times \mathbf{C}|\mathbf{n}\} = \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$

If **A**, **B**, and **C** do not form a right-handed system, $\mathbf{A} \cdot \mathbf{n} < 0$ and the volume = $|\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})|$.

2.(c)

A particle moves along the curve $x = 2t^2$, $y = t^2 - 4t$, z = -t - 5 where t is the time. Find the components of its velocity and acceleration at time t = 1 in the direction $\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$.

Solution

Velocity =
$$\frac{d\mathbf{r}}{dt} = \frac{d}{dt}[(2t^2)\mathbf{i} + (t^2 - 4t)\mathbf{j} + (-t - 5)\mathbf{k}]$$

= $(4t)\mathbf{i} + (2t - 4)\mathbf{j} - \mathbf{k} = 4\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ at $t = 1$.
Unit vector in direction $\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ is $\frac{\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}}{\sqrt{(1)^2 + (-2)^2 + (2)^2}} = \frac{1}{3}\mathbf{i} - \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}$.

Then the component in the given direction is $(4\mathbf{i} - 2\mathbf{j} - \mathbf{k}) \cdot (\frac{1}{3}\mathbf{i} - \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}) = 2$

Acceleration =
$$\frac{d^2 \mathbf{r}}{dt^2} = \frac{d}{dt} \left(\frac{d\mathbf{r}}{dt} \right) = \frac{d}{dt} [(4t)\mathbf{i} + (2t - 4)\mathbf{j} - \mathbf{k}] = 4\mathbf{i} + 2\mathbf{j}$$
.

Then the component of the acceleration in the given direction is $(4\mathbf{i} + 2\mathbf{j}) \cdot (\frac{1}{3}\mathbf{i} - \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}) = 0$.

4.(a)

Let $\phi(x, y, z)$ be a scalar function defined and differentiable at each point (x, y, z) in a certain region of space. [That is, ϕ defines a differentiable scalar field.] Then the gradient of ϕ , written $\nabla \phi$ or grad ϕ is defined as follows:

$$\nabla \phi = \left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}\right)\phi = \frac{\partial \phi}{\partial x}\mathbf{i} + \frac{\partial \phi}{\partial y}\mathbf{j} + \frac{\partial \phi}{\partial z}\mathbf{k}$$

Note that $\nabla \phi$ defines a vector field.

Find the angle between the surfaces $z = x^2 + y^2$ and $z = \left(x - \frac{\sqrt{6}}{6}\right)^2 + \left(y - \frac{\sqrt{6}}{6}\right)^2$ at the point $P = \left(\frac{\sqrt{6}}{12}, \frac{\sqrt{6}}{12}, \frac{1}{12}\right)$.

Solution

The angle between the surfaces at the point is the angle between the normals to the surfaces at the point.

Let
$$\phi_1 = x^2 + y^2 - z$$
 and $\phi_2 = \left(x - \frac{\sqrt{6}}{6}\right)^2 + \left(y - \frac{\sqrt{6}}{6}\right)^2 - z$.

A normal to $z = x^2 + y^2$ is

$$\nabla \phi_1 = 2x\mathbf{i} + 2y\mathbf{j} - \mathbf{k}$$
 and $\nabla \phi_1(P) = \frac{\sqrt{6}}{6}\mathbf{i} + \frac{\sqrt{6}}{6}\mathbf{j} - \mathbf{k}$.

A normal to
$$z = \left(x - \frac{\sqrt{6}}{6}\right)^2 + \left(y - \frac{\sqrt{6}}{6}\right)^2$$
 is
$$\nabla \phi_2 = 2\left(x - \frac{\sqrt{6}}{6}\right)^2 \mathbf{i} + 2\left(y - \frac{\sqrt{6}}{6}\right)^2 \mathbf{j} - \mathbf{k} \quad \text{and} \quad \nabla \phi_2(P) = -\frac{\sqrt{6}}{6}\mathbf{i} - \frac{\sqrt{6}}{6}\mathbf{j} - \mathbf{k}.$$

Now $(\nabla \phi_1(P)) \cdot (\nabla \phi_2(P)) = |\nabla \phi_1(P)| |\nabla \phi_2(P)| \cos \theta$ where θ is the required angle.

$$\left(\frac{\sqrt{6}}{6}\mathbf{i} + \frac{\sqrt{6}}{6}\mathbf{j} - \mathbf{k}\right) \cdot \left(-\frac{\sqrt{6}}{6}\mathbf{i} - \frac{\sqrt{6}}{6}\mathbf{j} - \mathbf{k}\right) = \left|\frac{\sqrt{6}}{6}\mathbf{i} + \frac{\sqrt{6}}{6}\mathbf{j} - \mathbf{k}\right| - \frac{\sqrt{6}}{6}\mathbf{i} - \frac{\sqrt{6}}{6}\mathbf{j} - \mathbf{k}\left|\cos\theta\right|$$
$$-\frac{1}{6} - \frac{1}{6} + 1 = \sqrt{\frac{1}{6} + \frac{1}{6} + 1}\sqrt{\frac{1}{6} + \frac{1}{6} + 1}\cos\theta \quad \text{and} \quad \cos\theta = \frac{2/3}{4/3} = \frac{1}{2}.$$

Thus the acute angle is $\theta = \arccos\left(\frac{1}{2}\right) = 60^{\circ}$.

4.(b)

Let $\phi = x^2yz - 4xyz^2$. Find the directional derivative of ϕ at P(1, 3, 1) in the direction of $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$.

Solution

First find $\nabla \phi = (2xyz - 4yz^2)\mathbf{i} + (x^2z - 4xz^2)\mathbf{j} + (x^2y - 8xyz)\mathbf{k}$. Then $\nabla \phi(1, 3, 1) = -6\mathbf{i} - 3\mathbf{j} - 21\mathbf{k}$. The unit vector in the direction of $2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ is

$$\mathbf{a} = \frac{2\mathbf{i} - \mathbf{j} - 2\mathbf{k}}{\sqrt{(2)^2 + (-1)^2 + (-2)^2}} = \frac{2}{3}\mathbf{i} - \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}.$$

Thus the required directional derivative is

$$\nabla \phi(1, 3, 1) \cdot \mathbf{a} = (-6\mathbf{i} - 3\mathbf{j} - 21\mathbf{k}) \cdot (\frac{2}{3}\mathbf{i} - \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}) = -4 + 1 + 14 = 11.$$

4.(c) Divergence:

Suppose $V(x, y, z) = V_1 \mathbf{i} + V_2 \mathbf{j} + V_3 \mathbf{k}$ is defined and differentiable at each point (x, y, z) in a region of space. (That is, **V** defines a differentiable vector field.) Then the *divergence* of **V**, written $\nabla \cdot \mathbf{V}$ or div **V** is defined as follows:

$$\nabla \cdot \mathbf{V} = \left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}\right) \cdot (V_1\mathbf{i} + V_2\mathbf{j} + V_3\mathbf{k})$$
$$= \frac{\partial V_1}{\partial x} + \frac{\partial V_2}{\partial y} + \frac{\partial V_3}{\partial z}$$

Given $\phi = 6x^3y^2z$. (a) Find $\nabla \cdot \nabla \phi$ (or div grad ϕ).

(b) Show that $\nabla \cdot \nabla \phi = \nabla^2 \phi$ where $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ denotes the Laplacian operator.

Solution

(a)
$$\nabla \phi = \frac{\partial}{\partial x} (6x^3y^2z)\mathbf{i} + \frac{\partial}{\partial y} (6x^3y^2z)\mathbf{j} + \frac{\partial}{\partial z} (6x^3y^2z)\mathbf{k} = 18x^2y^2z\mathbf{i} + 12x^3yz\mathbf{j} + 6x^3y^2\mathbf{k}.$$
Then
$$\nabla \cdot \nabla \phi = \left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}\right) \cdot (18x^2y^2z\mathbf{i} + 12x^3yz\mathbf{j} + 6x^3y^2\mathbf{k})$$

$$= \frac{\partial}{\partial x} (18x^2y^2z) + \frac{\partial}{\partial y} (12x^3yz) + \frac{\partial}{\partial z} (6x^3y^2) = 36xy^2z + 12x^3z.$$