PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

9. Commutativity and centers

- **Exercise 9.1.** Show that $\{\cdot,\cdot\}_{t,c} = t\{\cdot,\cdot\}$, where $\{\cdot,\cdot\}$ is the standard bracket on $S(V)^{\Gamma}$.
- Exercise 9.2. Prove the commutativity theorem in the case when V is not necessarily symplectically irreducible.
- **Exercise 9.3.** Let \mathcal{A} be a $\mathbb{Z}_{\geq 0}$ -filtered algebra. If gr \mathcal{A} is finitely generated, then so is \mathcal{A} .
- **Problem 9.1.** Let $p \in P_0$. Equip Z_p with a filtration restricted from H_p . Show that $\operatorname{gr} Z_p = S(V)^{\Gamma}$. Deduce that H_p is a finitely generated module over Z_p .
- **Problem 9.2.** Now let $p \notin P_0$. Show that the center of H_p coincides with \mathbb{C} as follows:
 - (1) Let z lie in the center of H_p . Show that $\operatorname{gr} z \in \operatorname{gr} H_p = S(V) \# \Gamma$ actually lies in $S(V)^{\Gamma}$.
 - (2) Show that gr z lies in the Poisson center of $S(V)^{\Gamma}$, meaning that $\{\operatorname{gr} z, S(V)^{\Gamma}\}=0$.
 - (3) Show that the Poisson center of $S(V)^{\Gamma}$ coincides with \mathbb{C} .
- **Problem 9.3.** In this problem we are going to equip Z_c with a structure of a Poisson algebra. Fix c and consider $H_{t,c}$ as an algebra over $\mathbb{C}[t]$ by making t an independent variable.
 - (1) Let $a, b \in Z_c$. Lift $a, b \in H_c = H_{t,c}/(t)$ to elements $\tilde{a}, \tilde{b} \in H_{t,c}$. Show that $[\tilde{a}, \tilde{b}] \in tH_{t,c}$ and that the element $\frac{1}{t}[\tilde{a}, \tilde{b}]$ modulo t depends only on a, b and lies in Z_c . Let $\{a, b\}$ be that element. Show that $\{\cdot, \cdot\}$ is the Poisson bracket.
 - be that element. Show that {·,·} is the Poisson bracket.
 (2) Show that {Z_c^{≤i}, Z_c^{≤j}} ⊂ Z_c^{i+j-2}. Show that the induced bracket on gr Z_c = S(V)^Γ is a nonzero multiple of the standard bracket. Can you identify the scalar factor?
- **Problem 9.4.** Show that the scheme C_p is irreducible and normal (and, well, Cohen-Macaulay and Gorenstein, if you know what these words mean).
- **Problem 9.5.** Show that if C_p is smooth, then H_pe is a locally free H_p -module.
- **Problem 9.6.** Let \mathcal{A} be a filtered algebra. Show that if $\operatorname{gr} \mathcal{A}$ has finite global dimension, then \mathcal{A} does.
- **Problem 9.7.** Prove that if C_p is smooth, then p is spherical (we deal here with $p \in P_0$).