

LESSON 08: Model-capacity, Under/over-fitting, Generalization

CARSTEN EIE FRIGAARD

SPRING 2022

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E" — Mitchell (1997)

L08: Model-capacity, Under/over-fitting, Generalization

Agenda

- ► Resumé af GD og NN's.
- Model Capacity,
- Under/over-fitting,

Exercise: L08/capacity_under_overfitting.ipynb [OPTIONAL]

Generalization Error.

Exercise: L08/generalization_error.ipynb

RESUMÉ: GD

The numerically Gradient decent [GD] method is based on the gradient vector

$$\nabla_{\mathbf{w}}J(\mathbf{w})$$

for the gradient oprator

$$\nabla_{\mathbf{w}} = \left[\frac{\partial}{\partial w_1}, \frac{\partial}{\partial w_2}, \dots, \frac{\partial}{\partial w_m}\right]^{\top}$$

The algoritmn for updating via steps reads

$$\mathbf{w}^{(\mathsf{next \, step})} = \mathbf{w} - \eta
abla_{\mathbf{w}} J(\mathbf{w})$$

with η being the step size.

RESUMÉ: Training Deep Neural Networks

NOTE: NN: Neural net, GD: Gradient Descent, BPROP: Back Propagation

Backpropagation (BProp)

Training MLPs

NOTE: [https://sebastianraschka.com/images/faq/visual-backpropagation/backpropagation.png

RESUMÉ: Training Deep Neural Networks

Equation 4-6. Gradient vector of the cost function

$$\nabla_{\boldsymbol{\theta}} \operatorname{MSE}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial}{\partial \theta_0} \operatorname{MSE}(\boldsymbol{\theta}) \\ \frac{\partial}{\partial \theta_1} \operatorname{MSE}(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_n} \operatorname{MSE}(\boldsymbol{\theta}) \end{pmatrix} = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

Notice that this formula involves calculation set X, at each Gradient Descent step! This i called Batch Gradient Descent: it uses the w data at every step (actually, Full Gradient D be a better name). As a result it is terribly sle be a better fiame). As a result it is terribly sit Figure 11-1. Logistic activation function saturation ing sets (but we will see much faster Gradient Descent algorithms

shortly). However, Gradient Descent scales we's features; training a Linear Regression model dreds of thousands of features is much fa Descent than using the Normal Equation or SV

Once you have the gradient vector, which points uphill, ju tion to go downhill. This means subtracting $\nabla_{\theta} MSE(\theta)$ learning rate n comes into play:6 multiply the gradient v size of the downhill step (Equation 4-7).

Figure 11-2. Leaky ReLU

Equation 4-7. Gradient Descent step

$$\theta^{(\text{next step})} = \theta - \eta \nabla_{\theta} MSE(\theta)$$

$$\mathbf{w}^{(\mathsf{next})} = \mathbf{w} - \eta
abla_{\mathbf{w}} J(\mathbf{w})$$

MODEL CAPACITY

Model capacity

Exercise: capacity_under_overfitting.ipynb

Dummy and Paradox classifier: capacity fixed \sim 0, cannot generalize at all!

Linear regression for a polynomial model: $capacity \sim degree of the polynomial, x^n$

Neural Network model: $capacity \propto number of neurons/layers$

Homo sabiens ("modern humans"): $capacity \propto the IQ$ 'score' function?

⇒ Capacity can be hard to express as a quantity for some models, but you need to choose..

⇒ how to choose the **optimal** capacity?

UNDER- AND OVERFITTING

Under- and overfitting

Exercise: capacity_under_overfitting.ipynb

Polynomial linear reg. fit for underlying model: cos(x)

- capacity of model too low,
- overfitting: capacity to high.

 \Longrightarrow how to choose the **optimal** capacity?

GENERALIZATION ERROR

All generalizations are false, including this one.

(Mark Twain)

Generalization Error

Exercise: generalization_error.ipynb

RMSE-capacity plot for lin. reg. with polynomial features

Inspecting the plots from the exercise (.ipynb) and [DL], extracting the concepts:

- training/generalization error,
- generalization gab,
- underfit/overfit zone,
- optimal capacity (best-model, early stop),
- (and the two axes: x/capacity, y/error.)

Generalization Error

Definition of ML:

"A computer program is said to learn from experience \boldsymbol{E} with respect to some class of tasks \boldsymbol{T} and performance measure \boldsymbol{P} , if its performance at tasks in \boldsymbol{T} , as measured by \boldsymbol{P} , improves with experience \boldsymbol{E} ."

- Mitchell (1997).

Generalization Error

Exercise: generalization_error.ipynb

NOTE: three methods/plots:

- i) via learning curves as in [HOML],
- ii) via an error-capacity plot as in [GITHOML] and [DL],
- iii) via an error-epoch plot as in [GITHOML].

