Datasets

Following are the datasets and their specifications:-

Sno.	Dataset	Number of Subjects	Health Conditions	Activity	Position	Sampling Frequency	Recording Length
1	MIT-BIH	48	Arrhythmia	Ambulatory Recording	Chest	360 Hz	30 Min
2	PTB	290	Mixed	At rest	Chest and Limbs	200 Hz	2 Min
3	ECG-1D	90	Healthy	Sitting	Wrist	500 Hz	20 Seconds

N/W Architecture:

Experimentation Table - ECG Healthcare Biometrics

1. Closed-Set Matching

Dataset	Model	CRR (%)	EER (%)	FAR (%)	FRR (%)	DI
	State	e-of-the-art Matc	hing Protocols		<u> </u>	
	Proposed (SCNET + Transformer)	95.04	1.97	1.97	1.97	
	[1]	95.11	2.56	-	-	
ECG-1D	[8]	94.4	-	-	-	
	[6]	94.4	-	-	-	
	Proposed (SCNET + Transformer)	99.29	0.46	0.46	0.46	
MIT-BIH (70-3)	[2]	96.7	-	-	-	-
	[1]	99.08	1.37	-	-	-
PTB-100 - RANDOM + Avg.	Proposed (SCNET + Transformer)	99.82	0.03	0.03	0.03	
	[3]	99.49	-	-	-	
	[5]	99.40	-	-	-	
	Proposed (SCNET + Transformer)	99.72	0.05	0.05	0.05	
PTB-290	[4]	99.66				
	[7]	95.1				
	Hard Matching Prot	ocols (Baseline) -	Transfer Learni	ng (MIT 5050))	
ECG-1D	Proposed (SCNET + Transformer + Incremental Learning)	96.75	1.00	0.9978	1.002	
MIT-BIH (50-50)	Yet					
PTB-(113 Multi-Session	Proposed (SCNET + Transformer) [Inter-Session]	81.15	6.33	6.31	6.34	-0.07

2. Ablation Study for Different Modules in the Proposed Network

a. Vs

Model	CRR (%)	EER (%)	FAR (%)	FRR (%)	DI
CONVNET + Bi-LSTM	92.88	3.28	3.286	3.286	
CONVNET + Transformer	92.25	2.322	2.317	2.317	
SCNET + Bi-LSTM	94.59	2.42	2.416	2.424	
Proposed (SCNET + Transformer)	95.04	1.97	1.97	1.97	

b. Without

Model	CRR (%)	EER (%)	FAR (%)	FRR (%)	DI
w/o Transformer	93.96	2.42	2.42	2.42	-1.45
w/o SCNet	85.49	7.18	7.18	7.18	-0.95

3. Open Set Matching

Dataset	Model	CRR (%)	EER (%)	FAR (%)	FRR (%)	DI
ECG-1D	Proposed (SCNET + Transformer)	94.59	14.08	14.08	14.08	-1.17
	Proposed (SCNET + Transformer + Incremental Learning)	96.39	9.77	9.75	9.77	-1.50
MIT-BIH	Proposed (SCNET + Transformer)	94	12	12	12	
MIT-BIH (50-50)	Proposed (SCNET + Transformer)					
PTB-290	Proposed (SCNET + Transformer)	89				

4. Baseline - Cross Database

Training Datasets	Testing Dataset	Model	CRR (%)	EER (%)	FAR (%)	FRR (%)	DI
MIT- BIH + PTB-290	ECG-1D	Proposed (SCNET + Transformer)	89.68	7.02	7.02	7.12	-2.05
PTB-290 + ECG-1D (Server Down)	MIT-BIH	Proposed (SCNET + Transformer)	95				
ECG-1D + MIT-BIH (Server Down)	PTB-113	Proposed (SCNET + Transformer)	47				

Plots

- 1. ROC Plot for State-of-the-art testing protocols used in MIT(2), PTB(3), ECG-1D(2) ROC curves of the Hard strategies. (Dataset wise Plots)
- 2. ROC Plot for Ablation Study vs. (6 Curves in 1)
- 3. ROC Plot for Open Set Matching (3 Plots each with 2 Curves Dataset wise plotting).

References:

- [1] Salloum, R., & Kuo, C. C. J. (2017, March). ECG-based biometrics using recurrent neural networks. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2062-2066). IEEE.
- [2] K. A. Sidek, I. Khalil, and H. F. Jelinek, "Ecg biometric with abnormal cardiac conditions in remote monitoring system," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 44, no. 11, pp. 1498–1509,2014.
- [3] Labati, R. D., Muñoz, E., Piuri, V., Sassi, R., & Scotti, F. (2019). Deep-ECG: Convolutional neural networks for ECG biometric recognition. *Pattern Recognition Letters*, *126*, 78-85.
- [4] J. Wang , M. She , S. Nahavandi , A. Kouzani , Human identification from ECG sig- nals via sparse representation of local segments, IEEE Signal Process. Lett. 20 (2013) 937–940 .

- [5] W.-H. Jung , S.-G. Lee , Ecg identification based on non-fiducial feature extraction using window removal method, Appl. Sci. 7 (11) (2017) 1205 .
- [6] Di Wang, Yujuan Si, Weiyi Yang, Gong Zhang, and Tong Liu. A novel heart rate robust method for short-term electrocardiogram biometric identification. Applied Sciences, 9(1):201, 2019. 6
- [7] Abdeldayem, S. S., & Bourlai, T. (2019). A novel approach for ecg-based human identification using spectral correlation and deep learning. *IEEE Transactions on Biometrics, Behavior, and Identity Science*, 2(1), 1-14.
- [8] Hsu, P. Y., Hsu, P. H., & Liu, H. L. (2020). Fold electrocardiogram into a fingerprint. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops* (pp. 828-829).