4

2. HỆ MẬT MÃ RSA

2. Thuật toán RSA

- Giai đoạn tạo khóa RSA
- Chọn ngẫu nhiên 2 số nguyên tố p, q khác nhau
- Tính: n = p * q và $\varphi(n) = (p-1) * (q-1)$
- Chọn số nguyên e sao cho: 1 < e < φ(n) và là số nguyên tố cùng nhau với φ(n), tức là: gcd(e, φ(n)) = 1
- Tính d theo công thức: $d = e^{-1} mod \varphi(n)$
- Xác định khóa:
 - Khóa công khai: $K_p = \{e, n\}$
 - Khóa bí mật: K_s = {d, n}

2. HỆ MẬT MÃ RSA

2. Thuật toán RSA

- Giai đoạn mã hóa RSA
- Thông điệp ban đầu M, sao cho: 0 < M < n
- Sử dụng khóa công khai K_p = {e, n} để tính thông điệp mã hóa C (ciphertext):

 $C = M^e mod n$

4

2. HỆ MẬT MÃ RSA

2. Thuật toán RSA

- > Giai đoạn giải mã RSA
- Dữ liệu cần giải mã: bản mã hóa C
- Sử dụng khóa bí mật K_s = {d, n} để tính lại thông điệp gốc M từ thông điệp đã mã hóa C:

$$M = C^d mod n$$

Ví dụ minh họa

2. HỆ MẬT MÃ RSA

2. Thuật toán RSA

• $Vi\ d\mu\ 2.1$: Cho hai số nguyên tố p,q và e có giá trị như sau: $p=11,\,q=17,\,e=7,\,M=88$

Tính khóa công khai, khóa bí mật?

Thực hiện mã hóa, giải mã?

Giai đoạn sinh khóa	Ví dụ:
Chọn p, q là 2 số nguyên tố khác nhau	Cho: p = 11, q = 17
Tính: $n = p * q$	n = p*q = 11*17 = 187
Tinh: $\varphi(n) = (p-1) * (q-1)$	$\varphi(n) = (p-1)*(q-1) = (11-1)*(17-1) = 160$
Chọn số nguyên e sao cho: $1 < e < \varphi(n)$ và $\gcd(e, \varphi(n)) = 1$	Cho: e = 7, thòa mãn: gcd (7, 160) = 1
Tính: $d = e^{-1} mod \varphi(n)$	$d = 7^{-1} mod \ 160 = 23$
Khóa công khai: $K_p = \{e, n\}$	$K_p = \{7, 187\}$
Khóa bí mật: $K_s = \{d, n\}$	$K_s = \{23, 187\}$

Giai đoạn mã hóa	Ví dụ:
Bàn rõ M, với M < n	M = 88
Bàn mã $C = M^e mod n$	$C = 88^7 mod \ 187 = 11$

Giai đoạn giải mã	Ví dụ:
Bản mã C	C=11
Bàn rõ $M = C^d mod n$	$M = 11^{23} mod \ 187 = 88$