Minimum Edit Distance

How similar are two strings?

- Spell correction
 - The user typed "graffe"
 Which is closest?
 - graf
 - graft
 - grail
 - giraffe

- Computational Biology
 - Align two sequences of nucleotides

```
AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC
```

Resulting alignment:

```
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```

Also for Machine Translation, Information Extraction, Speech Recognition

Edit Distance

The minimum edit distance between two strings is the minimum number of edits

- Insertion
- Deletion
- Substitution

needed to transform one to other.

Two strings and their alignment

Minimum edit distance

If each operation has cost of 1
Distance between these is 5
If substitutions cost is 2 (Levenshtein)
Distance between them is 8

MED app1: Alignment in Computational Biology

Given a sequence of bases

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

An alignment:

```
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```

Given two sequences, align each letter to a letter or gap

MED app2: In NLP

Evaluating Machine Translation and speech recognition
 R Spokesman confirms senior government adviser was shot!
 H Spokesman said the senior adviser was shot dead!
 S I

· Named Entity Extraction and Entity Coreference

MED computation

```
For two strings
• X of length n
• Y of length m

D(i,j): \text{ the edit distance between } X[1..i] \text{ and } Y[1..j]
X[1..i]: \text{ the first } i \text{ characters of } X \text{ and } Y[1..j]: \text{ the first } j \text{ characters of } Y
```

- The edit distance between X and Y is thus D(n,m)
- Dynamic programming: A tabular computation of D(n,m)

MED computation

Initialization

$$D(i,0) = i$$

 $D(0,j) = j$

Recurrence Relation:

```
For each i = 1...M
                    ach j = 1...N
D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ 0; & \text{if } X(i) = Y(j) \end{cases}
             For each j = 1...N
```

Termination:

```
D(N,M) is distance
```

Edit distance table

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

Edit distance table

N	9																
0	8																
I	7	D(i	$-D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \end{cases}$														
Т	6	D(1).	$D(i,j-1) + 1$ $D(i-1,j-1) + 2; \text{ if } S_1(i) \neq S_2(j)$														
N	5																
Е	4		,														
Т	3																
N	2																
I	1	*															
#	0	1	2	3	4	5	6	7	8	9							
	#	Е	Χ	Е	С	U	Т	Ι	0	N							

Edit distance table

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
Ι	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

Computing alignments

Edit distance isn't sufficient: we often need to align each ch aracter of the two strings to each other.

- · We do this by keeping a "backtrace".
- · Every time we enter a cell, remember where we came from.
 - When we reach the end, trace back the path from the upper right corner to read off the alignment

MED with BACKTRACE

n	9	↓ 8	∠ 9	∠←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓9	/8	
0	8	↓ 7	∠←↓ 8	∠←↓ 9	∠ ← ↓ 10	∠←↓ 11	↓ 10	↓9	∠8	← 9	
i	7	↓6	∠←↓ 7	∠←↓ 8	∠ ←↓9	∠ ← ↓ 10	↓9	/8	← 9	← 10	
t	6	↓ 5	∠←↓ 6	∠←↓ 7	∠ ←↓8	∠ ← ↓9	∠8	← 9	← 10	← ↓ 11	
n	5	↓ 4	∠←↓ 5	∠←↓ 6	∠←↓ 7	/ ←↓8	/ ←↓9	∠←↓ 10	∠←↓ 11	∕↓ 10	
e	4	∠3	← 4	∠ ← 5	← 6	← 7	<i>←</i> ↓ 8	∠←↓ 9	∠←↓ 10	↓9	
t	3	∠ 4	∠ ← ↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	∠7	←↓ 8	∠ ←↓9	↓8	
n	2	∠ ←↓3	∠ 4	∠ ←↓ 5	∠←↓ 6	∠ ← ↓7	∠ ←↓8	↓ 7	∠ ←↓8	Z7	
i	1	∠←↓ 2	∠ ← ↓3	∠ 4	∠ ←↓ 5	∠ ←↓ 6	∠←↓ 7			← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

MED+BACKTRACE

Base conditions:

$$D(i,0) = i$$

$$D(0,j) = j$$

Termination:

D(i,0) = i D(0,j) = j D(N,M) is distance

Recurrence Relation:

For each
$$i = 1...M$$

For each $j = 1...N$

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i,j-1) + 1 & \text{insertion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) & \text{substitution} \end{cases}$$

$$ptr(i,j) = \begin{cases} LEFT & \text{insertion} \\ DOWN & \text{deletion} \\ DIAG & \text{substitution} \end{cases}$$

Distance Matrix

Every non-decreasing path

from (0,0) to (M, N)

corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

Performance

• Time:

O(nm)

• Space:

O(nm)

Backtrace

O(n+m)

Weighted MED

Some errors are more frequent than others.

Confusion matrix for spelling errors

sub[X, Y] = Substitution of X (incorrect) for Y (correct) X Y (correct)																										
	a	b	c	d	e	f	g	h	i	j	k	1	m	n	0	p	q	r	S	t	u	v	w	х	у	Z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
c	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
c	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
P	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
S	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
x	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
y	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
Z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Weighted MED

Initialization:

```
D(0,0) = 0

D(i,0) = D(i-1,0) + del[x(i)];  1 < i \le N

D(0,j) = D(0,j-1) + ins[y(j)];  1 < j \le M
```

Recurrence Relation:

$$D(i,j) = \min \begin{cases} D(i-1,j) + del[x(i)] \\ D(i,j-1) + ins[y(j)] \\ D(i-1,j-1) + sub[x(i),y(j)] \end{cases}$$

Termination:

```
D(N,M) is distance
```