Predicting Covid rates in Toronto Neighborhoods using Linear Regression

Alexei Marcilio GBC

- Data from Toronto's open data portal
- * Two files combined, covid rates and Census Data
- * Over 2,300 potential features

Rates Vary

Covid Rates of Toronto Neighborhoods vs Percent of certain Races

Covid Rates of Toronto Neighborhoods vs Percent of Demographic Factors

index	Rate per 100,000 people	Category	Characteristic
Col_1269	0.744447	Visible minority	Black
Col_1105	0.741047	Immigration and citizenship	Jamaica
Col_1377	0.731488	Ethnic origin	Jamaican
Col_329	0.727007	Language	Niger-Congo languages
Col_1855	0.726108	Labour	9 Occupations in manufacturing and utilities
Col_105	0.690762	Families, households and marital status	3 or more children
Col_1049	0.684972	Income	In the third decile
Col_1635	0.677412	Education	Bachelor's degree
Col_1907	0.666669	Journey to work	Between 12 p.m. and 4:59 a.m.
Col_1594	0.629968	Housing	2 household maintainers

Choosing factors

Let's look at the results of the model. The R^2 value is 0.43. It's lower than simply using one predictor.

The R-squared value is: 43.47

The Root MSE is: 330.03675517892543 The Intercept is: 1212.2741827886584

The R-squared value is: 56.82

The Root MSE is: 432.34644674183556

The Intercept is: 1031.6761147565676

0	1	2	3	4	5	6
	coef	std err	t	P> t	[0.025]	0.975]
Black%	34.9662	11.486	3.044	0.003	12.228	57.704
ManufactJob	132.2317	38.480	3.436	0.001	56.057	208.406
BachelorDegree	7.6066	8.356	0.910	0.364	-8.934	24.147
WorkNights	95.0617	28.633	3.320	0.001	38.379	151.744
BothMaintHouse	-16.7414	16.746	-1.000	0.319	-49.892	16.409

The p-values indicate that there are potentially two features that do not contribute to the model. Let's remove one at a time and check the results. Here's the values after one predictor is removed.

0	1	2	3	4	5	6
	coef	std err	t	P> t	[0.025]	0.975]
Black%	33.9600	11.425	2.972	0.004	11.345	56.575
ManufactJob	122.1344	36.821	3.317	0.001	49.249	195.019
WorkNights	94.1754	28.597	3.293	0.001	37.570	150.781
BothMaintHouse	-3.8738	8.974	-0.432	0.667	-21.637	13.890

0	1	2	3	4	5	6
	coef	std err	t	P> t	[0.025]	0.975]
Black%	36.0324	10.333	3.487	0.001	15.580	56.484
ManufactJob	126.8286	35.063	3.617	0.000	57.429	196.228
WorkNights	83.0461	12.330	6.735	0.000	58.641	107.452

Now all our features are significant. Let's check the \mathbb{R}^2 value and the MSE of the new model.

The R-squared value is: 60.52

The Root MSE is: 413.42407505558594

The Intercept is: 1038.1824194302878

- Linear Model is a good choice
- More study would be interesting
- * Rate = 1038 + 157.7 * Black% + 140.8 * ManufactJob + 170.1 * WorkNights
- * Racial Differences underlying health, dense neighborhoods, lower % can work at home

Percent of those with Bachelor Degrees in Toronto Neighborhoods vs. Covid Rate per 100,000

