Foundations of Machine Learning

Brett Bernstein

August 22, 2018

Conditional Probability Models: Concept Check

Conditional Probability Models

MLE Learning Objectives

- Define the likelihood of an estimate of a probability distribution for some data \mathcal{D} .
- Define a parameteric model, and some common parameteric families.
- Define the MLE for some parameter θ of a probability model.
- Be able to find the MLE using first order conditions on the log-likelihood.

Conditional Probability Models

- Describe the basic structure of a linear probabilistic model, in terms of (i) a parameter θ of the probablistic model, (ii) a linear score function, (iii) a transfer function (kin to a "response function" or "inverse link" function, though we've relaxed requirements on the parameter theta).
- Explain how we can use MLE to choose w, the weight vector in our linear function (in (ii) above).
- Give common transfer functions for (i) bernoulli, (ii) poisson, (iii) gaussian, and (iv) categorical distributions. Explain why these common transfer functions make sense (in terms of their codomains).
- Explain the equivalence of EMR and MLE for negative log-likelihood loss.

MLE/Conditional Probability Model Concept Check Question

1. In each of the following, assume X_1, \ldots, X_n are an i.i.d. sample from the given distribution.

- (a) Compute the MLE for p assuming each $X_i \sim \text{Geom}(p)$ with PMF $f_X(k) = (1 p)^{k-1}p$ for $k \in \mathbb{Z}_{>1}$.
- (b) Compute the MLE for λ assuming each $X_i \sim \text{Exp}(\lambda)$ with PDF $f_X(x) = \lambda e^{-\lambda x}$.
- 2. We want to fit a regression model where $Y|X=x\sim \mathrm{Unif}([0,e^{w^Tx}])$ for some $w\in\mathbb{R}^d$. Given i.i.d. data points $(X_1,Y_1),\ldots,(X_n,Y_n)\in\mathbb{R}^d\times\mathbb{R}$, give a convex optimization problem that finds the MLE for w.
- 3. Explain why softmax is related to computing the maximum of a list of values.
- 4. Suppose x has a Poisson distribution with unknown mean θ :

$$p(x|\theta) = \frac{\theta^x}{r!} \exp(-\theta), \qquad x = 0, 1, \dots$$

Let the prior for θ be a gamma distribution:

$$p(\theta|\alpha,\beta) = \frac{\beta^{\alpha}\theta^{\alpha-1}}{\Gamma(\alpha)} \exp(-\beta\theta), \quad \theta > 0$$

where Γ is the gamma function. Show that, given an observation x, the posterior $p(\theta|x,\alpha,\beta)$ is a gamma distribution with updated parameters $(\alpha',\beta')=(\alpha+x,\beta+1)$. What does this tell you about the Poisson and gamma distributions?