

CSE 473 Pattern Recognition

Template Matching

- Limit the search space
 - Search only in the area of [-p, p] X [-p, p] centered at (x, y)

- 2D Logarithmic search
 - Start with a rectangle of size [-p, p] X [-p, p]

- 2D Logarithmic search
 - Search only at 9 points separated by d_1

$$d_1 = 2^{k-1}$$
$$k = \lceil \log_2 p \rceil$$

- 2D Logarithmic search
 - Maximum found at dark red

- 2D Logarithmic search
 - Search in the rectangle of size [-p/4, p/4] X [-p/4, p/4]
 centered at dark red

- 2D Logarithmic search
 - Maximum found at green

- 2D Logarithmic search
 - Search in the rectangle of size [-p/8, p/8] X [-p/8, p/8]
 centered at green

- 2D Logarithmic search
 - Maximum found at purple

Complexity MN(8k+1)

$$k = \lceil \log_2 p \rceil$$

- Search the reference in the area of size [-p, p] X [-p, p] centered at (x, y)
- Let, reference be of size 16X16

reference

test

Level 0
Original reference and test image

Low pass Filter of Level 0

Level 0

Low pass Filter of Level 0

Sub-sampled by 2 Level 1

Hierarchical Search

Level 0

Level 1

Level 2

Hierarchical Search

Level 0 Level 1 Level 2

- Hierarchical Search
 - Start at Level 2 with the reference of size 4X4
 - Search in the rectangle [-p/4, p/4] [-p/4, p/4] centered at (x/4, y/4)

- Hierarchical Search
 - Start at Level 2 with the reference of size 4X4
 - Search in the rectangle [-p/4, p/4] [-p/4, p/4] centered at (x/4, y/4)

– Let optimal found at (x_1, y_1) with respect to (x/4, y/4).

- Hierarchical Search
 - At Level 1, with the reference of size 8X8
 - Search in the rectangle [-1, 1] X [-1, 1] centered at $(x/2 + 2x_1, y/2 + 2y_1)$

- Hierarchical Search
 - At Level 1, with the reference of size 8X8
 - Search in the rectangle [-1, 1] X [-1, 1] centered at $(x/2 + 2x_1, y/2 + 2y_1)$

– Let optimal found at (x_2, y_2) with respect to (x/2, y/2).

- Hierarchical Search
 - At Level 0, with the reference of size 16X16
 - Search in the rectangle [-1, 1] X [-1, 1] centered at $(x + 2x_2, y + 2y_2)$

- Hierarchical Search
 - At Level 0, with the reference of size 16X16
 - Search in the rectangle [-1, 1] X [-1, 1] centered at $(x + 2x_2, y + 2y_2)$

Location at this time is the final one

- Complexity of Hierarchical Search
 - 9 × No. of Decompositions +
 - Complexity at highest level

• Why is This?

- Test and reference patterns are seldom exact
- Rather, they are 'similar'
- In CBIR, query sketch significantly differs from the shapes in image DB

- The philosophy: Given a reference pattern r(i,j) known as prototype:
 - Deform the prototype to produce different variants. Deformation is described by the application of a parametric transform on r(i,j):

$$T_{\xi}[r(i,j)]$$

Match the test pattern with each of the deformed patterns

For different values of the parameter \(\frac{\xi}{2} \), the
goodness of fit with the test pattern is given by the
matching energy:

$$E_m(\underline{\xi})$$

• The goal is to chose $\underline{\xi}$ so that $E_m(\underline{\xi})$ is minimum

• However, the higher the deformation, ξ the higher the deviation from the prototype. This is quantified by a cost known as deformation energy:

$$E_d(\underline{\xi})$$

In deformable template matching,

compute
$$\underline{\xi}$$
 so that $\underline{\xi} : \min_{\underline{\xi}} \left[E_m(\underline{\xi}) + E_d(\underline{\xi}) \right]$

Thus target: small deformation and small matching energy

- The essential elements
 - A prototype of the reference
 - Transformation function
 - Matching Energy cost
 - Deformation Energy cost

- The prototype of the reference
 - Should be representable
 - Capture the mean shape characteristics of an object

- Transformation function
 - Any appropriate parametric operation
 - A suitable transformation is:

$$(x,y) \longrightarrow (x,y) + (D^{x}(x,y), D^{y}(x,y))$$

- Transformation function
 - Any appropriate parametric operation
 - A suitable transformation is:

$$(x,y) \longrightarrow (x,y) + (D^{x}(x,y), D^{y}(x,y))$$

where,

$$\begin{split} D^{x}(x,\,y) &= \sum_{m=1}^{M} \sum_{n=1}^{N} \xi_{mn}^{x} e_{mn}^{x}(x,\,y) & e_{mn}^{x}(x,\,y) = \alpha_{mn} \sin \pi n x \cos \pi m y \\ e_{mn}^{y}(x,\,y) &= \sum_{m=1}^{M} \sum_{n=1}^{N} \xi_{mn}^{y} e_{mn}^{y}(x,\,y) & \alpha_{mn} = \frac{1}{\pi^{2}(n^{2}+m^{2})} \end{split}$$

- Deformation Energy cost
 - This should be minimum for no deformation, that is, for $\xi = 0$.
 - Alternately,

$$E_d(\xi) = \sum_{m} \sum_{n} ((\xi_{mn}^x)^2 + (\xi_{mn}^y)^2)$$

- Matching Energy cost
 - Captured as a function of point-to-point distance between reference and test pattern:

$$E_m(\xi, \theta, I) = \frac{1}{N_d} \sum_{i,j} (1 + \Phi(i, j))$$

Deformable Template Matching

- Matching Energy cost
 - Captured as a function of point-to-point distance between reference and test pattern:

$$E_m(\xi, \theta, I) = \frac{1}{N_d} \sum_{i,j} (1 + \Phi(i, j))$$

where,
$$\Phi(i,j) = -\exp\Bigl(-\rho(\delta_i^2 + \delta_j^2)^{1/2}\Bigr)$$

- (δ_i, δ_j) is the displacement of the (i, j) pixel of the deformed template from the nearest pixel of the test template
- ρ is a constant

- Recall context free classification
 - No relation exist among classes
 - No relation exists among objects (feature vectors)
 - A new object is classified to any class independent of the previous objects' classes

- In Context dependent classification, the class of a feature vector depends on
 - Its own value
 - Value of other feature vectors
 - Classes assigned to other vectors

- Application
 - Communication
 - Image Processing
 - Signal Processing

Solution for Context Dependent Classification

 Recall Bayesian formulation for context free classification

- Assign x to
$$\omega_i$$
 if $P(\omega_i | \underline{x}) > P(\omega_j | \underline{x}), \ \forall j \neq i$

 In context dependent classification, we cannot apply it directly because of interdependency of features and classes

Solution for Context Dependent Classification

 This interrelation demands the classification to be performed simultaneously for all available feature vectors

• we assume that the training vectors $\underline{x}_1, \underline{x}_2, ..., \underline{x}_N$ occur in sequence, one after the other and we will refer to them as **observations**

Context Dependent Bayesian Classifier

- Let $X : \{\underline{x}_1, \underline{x}_2, ..., \underline{x}_N\}$ be sequence of observations
- Let ω_i , i = 1, 2, ..., M be the available M classes
- Let Ω_i be a possible sequence of assigned classes, that is

$$\Omega_i:\omega_{i1}\;\omega_{i2}\;...\;\omega_{iN}$$
 where,
$$i_k\in\{1,2,\ldots,M\}\;\mathrm{for}\;k=1,2,\ldots,N$$

• There are M^N of Ω_i

Context Dependent Bayesian Classifier

• Now, given $X : \{\underline{x}_1, \underline{x}_2, ..., \underline{x}_N\}$ and $\Omega_i : \omega_{i1} \omega_{i2} ... \omega_{iN}$

Classify X to using the Bayesian rule

$$X \to \Omega_i$$
: $P(\Omega_i | X) > P(\Omega_j | X) \quad \forall i \neq j, \quad i, j = 1, 2, ..., M^N$

This is equivalent to classifying

 x_1 to class ω_{i_1} , x_2 to ω_{i_2} , and so on

Context Dependent Bayesian Classifier

The rule

$$P(\Omega_i | X) > P(\Omega_j | X) \ \forall i \neq j$$

can be simplified as

$$P(\Omega_t)p(X|\Omega_t) > P(\Omega_f)p(X|\Omega_f), \quad \forall i \neq j$$

$$P(\Omega_t)p(X|\Omega_t) > P(\Omega_t)p(X|\Omega_t), \quad \forall i \neq j$$

Markov Chain Models (for class dependence)

$$P(\omega_{i_{k}} | \omega_{i_{k-1}}, \omega_{i_{k-2}}, ..., \omega_{i_{1}}) = P(\omega_{i_{k}} | \omega_{i_{k-1}})$$

which means class dependence is limited to only within two successive classes

Markov Chain Models (for class dependence)

$$P(\omega_{i_k} | \omega_{i_{k-1}}, \omega_{i_{k-2}}, ..., \omega_{i_1}) = P(\omega_{i_k} | \omega_{i_{k-1}})$$

in other words,

observations $x_{k-1}, x_{k-2}, \ldots, x_1$ belong to classes $\omega_{i_{k-1}}, \omega_{i_{k-2}}, \ldots, \omega_{i_1}$

then observation x_k , at stage k, belonging to class ω_{i_k} depends on the class from which observation x_{k-1} , at stage k-1 has occurred

Markov Chain Models (for class dependence)

$$P(\omega_{i_k} | \omega_{i_{k-1}}, \omega_{i_{k-2}}, ..., \omega_{i_1}) = P(\omega_{i_k} | \omega_{i_{k-1}})$$

Therefore, we can write

$$P(\Omega_t) \equiv P(\omega_{t_1}, \omega_{t_2}, \dots, \omega_{t_N})$$

$$= P(\omega_{t_N}|\omega_{t_{N-1}},\ldots,\omega_{t_1})P(\omega_{t_{N-1}}|\omega_{t_{N-2}},\ldots,\omega_{t_1})\ldots P(\omega_{t_1})$$

Markov Chain Models (for class dependence)

$$P(\omega_{i_k} | \omega_{i_{k-1}}, \omega_{i_{k-2}}, ..., \omega_{i_1}) = P(\omega_{i_k} | \omega_{i_{k-1}})$$

Therefore, we can write

$$P(\Omega_t) \equiv P(\omega_{t_1}, \omega_{t_2}, \dots, \omega_{t_N})$$

= $P(\omega_{t_N} | \omega_{t_{N-1}}, \dots, \omega_{t_1}) P(\omega_{t_{N-1}} | \omega_{t_{N-2}}, \dots, \omega_{t_1}) \dots P(\omega_{t_1})$

We find,

$$P(\Omega_t) = P(\omega_{t_1}) \prod_{k=2}^{N} P(\omega_{t_k} | \omega_{t_{k-1}})$$

- Further assumption
 - $-\underline{x}_i$ statistically mutually independent

$$p(X|\Omega_i) = p(\underline{x}_1, \underline{x}_2, \underline{x}_3 \cdots, \underline{x}_N | \Omega_i)$$

$$= p(\underline{x}_1 | \Omega_i) p(\underline{x}_2 | \Omega_i) p(\underline{x}_3 | \Omega_i) \cdots p(\underline{x}_N | \Omega_i)$$

$$= \prod_{k=1}^N p(\underline{x}_k | \Omega_i)$$

- Further assumption
 - $-\underline{x}_i$ statistically mutually independent

$$p(X|\Omega_i) = p(\underline{x}_1, \underline{x}_2, \underline{x}_3 \cdots, \underline{x}_N | \Omega_i)$$

$$= p(\underline{x}_1 | \Omega_i) p(\underline{x}_2 | \Omega_i) p(\underline{x}_3 | \Omega_i) \cdots p(\underline{x}_N | \Omega_i)$$

$$= \prod_{k=1}^N p(\underline{x}_k | \Omega_i)$$

If the pdf in one class is independent of the others,
 then

$$p(\vec{x}_k \mid \Omega_i) = p(\vec{x}_k \mid \omega_{i1} \mid \omega_{i2} \dots \omega_{iN}) = p(\vec{x}_k \mid \omega_{ik})$$

- Further assumption
 - $-\underline{x}_i$ statistically mutually independent

$$\begin{aligned} p(X \middle| \Omega_i) &= p(\underline{x}_1, \underline{x}_2, \underline{x}_3 \cdots, \underline{x}_N \middle| \Omega_i) \\ &= p(\underline{x}_1 \middle| \Omega_i) p(\underline{x}_2 \middle| \Omega_i) p(\underline{x}_3 \middle| \Omega_i) \cdots p(\underline{x}_N \middle| \Omega_i) \\ &= \prod_{k=1}^N p(\underline{x}_k \middle| \Omega_i) \end{aligned}$$

The pdf in one class independent of the others, then

$$p(\vec{x}_k \mid \Omega_i) = p(\vec{x}_k \mid \omega_{i1} \mid \omega_{i2} \dots \mid \omega_{iN}) = p(\vec{x}_k \mid \omega_{ik})$$
 Finally,
$$p(X \mid \Omega_i) = \prod_{k=1}^N p(\underline{x}_k \mid \omega_{i_k})$$

 From the above, the Bayes rule is readily seen to be equivalent to:

$$P(\Omega_{i}|X) \quad (><) \quad P(\Omega_{j}|X)$$

$$P(\Omega_{i})p(X|\Omega_{i}) \quad (><) \quad P(\Omega_{j})p(X|\Omega_{j})$$

that is, it rests on

$$p(X|\Omega_{i})P(\Omega_{i}) = P(\omega_{i_{1}})p(\underline{x}_{1}|\omega_{i_{1}}).$$

$$\prod_{k=2}^{N} P(\omega_{i_{k}}|\omega_{i_{k-1}})p(\underline{x}_{k}|\omega_{i_{k}})$$

• To find the above maximum in brute-force task we need $O(NM^N)$ operations!!