RNN with LSTM for ABC Music Generation - Architecture and Hyperparameters

Model Architecture:

1. Embedding Layer

- o Converts integer-encoded characters to dense vector representations.
- Input Dimension: vocab_size
- Output Dimension: embedding dim = 256

2. LSTM Layer

- Long Short-Term Memory layer with 1024 units.
- o Parameters:
 - return_sequences=True: Required for stacked RNNs or sequence output.
 - stateful=True: Maintains state across batches for better sequence learning.
 - recurrent initializer='glorot uniform': Weight initializer.
 - recurrent activation='sigmoid': Activation for gates.

3. Dense Output Layer

- o Fully connected layer projecting the LSTM output to vocabulary size.
- Output Shape: (batch_size, sequence_length, vocab_size)

Loss Function:

- SparseCategoricalCrossentropy with from_logits=True.
- Measures how far the predicted token distribution is from the actual token.

Optimizer:

• Adam Optimizer

Learning Rate: 5e-3

Training Hyperparameters:

• Training Iterations: 3000

• Batch Size: 8

Sequence Length: 100Embedding Dimension: 256

RNN Units: 1024

Training Procedure:

- Use tf.GradientTape() to compute gradients of the loss with respect to trainable parameters.
- Apply gradients using the optimizer.
- Checkpoints are saved every 100 iterations.

Text Generation Function Modifications:

- Batch size is fixed to 1 for inference.
- Model state is reset using:

for layer in model.layers:

if hasattr(layer, 'reset_states'):

layer.reset_states()

• Predictions are sampled using a categorical distribution:

predicted_id = tf.random.categorical(tf.expand_dims(predictions, 0), num_samples=1)[-1, 0].numpy()

• Generated characters are appended to the output string using:

text_generated.append(idx2char[predicted_id])

Interesting Modifications:

- Used tqdm for tracking generation progress.
- Custom model builder with LSTM helper function.
- Integration with Comet ML (via experiment.log_metric) to track training progress.
- Periodic plotting of training loss during training for better monitoring.

Note: An InvalidArgumentError was encountered and resolved by ensuring that predictions passed to tf.random.categorical() are 2D matrices of shape [batch_size, vocab_size] using tf.expand_dims.