Examenul de bacalaureat național 2015 Proba E. c) Matematică *M tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$m_a = \frac{10 - 2\sqrt{5} + 2\sqrt{5}}{2} =$	3 p
	$=\frac{10}{2}=5$	2p
2.	$f(x) = 0 \Leftrightarrow x^2 - 4x + 3 = 0$	3 p
	$x_1 = 1$ și $x_2 = 3$	2p
3.	$\log_5 \frac{2x-1}{3} = 0 \Leftrightarrow \frac{2x-1}{3} = 1$	3p
	x=2 care verifică ecuația	2p
4.	Sunt 4 numere de o cifră multipli ai lui 3, deci sunt 4 cazuri favorabile	2p
	Sunt 10 numere de o cifră, deci sunt 10 cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{10} = \frac{2}{5}$	2p
5.	M mijlocul segmentului $AB \Rightarrow x_M = \frac{2+6}{2} = 4$	3p
	$y_M = 4$	2p
6.	$\cos a = \frac{4}{5}, \ \cos b = \frac{5}{13}$	2p
	$\sin(a+b) = \frac{3}{5} \cdot \frac{5}{13} + \frac{12}{13} \cdot \frac{4}{5} = \frac{63}{65}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	2 2	
1,	$\det A = \begin{vmatrix} 2 & -2 \\ 1 & -1 \end{vmatrix} = -2 + 2 =$	3р
		•
	=0	2p
b)	(2 -2)	
	$A \cdot A = \begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix}$	3p
	p=1	2p
	4	2 p
c)	$A+B=\begin{pmatrix} 2 & b-2 \\ b+1 & -1 \end{pmatrix} \Rightarrow \det(A+B)=-b^2+b$	2p
	$A+B=\begin{pmatrix} b+1 & -1 \end{pmatrix} \rightarrow \det(A+B)=-b^{-1}+b^{-1}$	2p
	$\begin{pmatrix} 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \end{pmatrix}$	
	$\det(A+B) = 0 \Leftrightarrow b = 0 \text{ sau } b = 1 \Leftrightarrow B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ sau } B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	3 p
2.a)	$1 \circ 2015 = -1 \cdot 2015 + 1 + 2015 =$	3 p
	=1	2p

b)	$x \circ y = -x(y-1) + (y-1) + 1 =$	3 p
	=-(x-1)(y-1)+1, pentru orice numere reale x și y	2p
c)	$(3^x-1)(5^x-1)=0$	2p
	x = 0	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{3x}{x^2 + 1} =$	2p
	$=\frac{3\cdot 1}{1^2+1}=\frac{3}{2}$	3 p
b)	$f'(x) = \frac{3(x^2+1)-3x\cdot 2x}{(x^2+1)^2} =$	2p
	$= \frac{3-3x^2}{\left(x^2+1\right)^2} = -\frac{3(x-1)(x+1)}{\left(x^2+1\right)^2}, \ x \in \mathbb{R}$	3 p
c)	$f'(x) = 0 \Leftrightarrow x_1 = -1 \text{ si } x_2 = 1$	2p
	$f'(x) \le 0$ pentru orice $x \in (-\infty, -1] \Rightarrow f$ este descrescătoare pe $(-\infty, -1]$	1p
	$f'(x) \ge 0$ pentru orice $x \in [-1,1] \Rightarrow f$ este crescătoare pe $[-1,1]$	1p
	$f'(x) \le 0$ pentru orice $x \in [1, +\infty) \Rightarrow f$ este descrescătoare pe $[1, +\infty)$	1p
2.a)	$\int_{-1}^{1} x^5 dx = \frac{x^6}{6} \left \frac{1}{-1} \right =$	3p
	$=\frac{1}{6}-\frac{1}{6}=0$	2p
b)	$= \frac{1}{6} - \frac{1}{6} = 0$ $\int_{0}^{1} xe^{x} dx = xe^{x} \Big _{0}^{1} - \int_{0}^{1} e^{x} dx =$	3 p
	=e-0-e+1=1	2p
c)	$g(x) = \frac{(x^5 + x) - x}{x^3} = x^2 \Rightarrow V = \pi \int_1^2 x^4 dx = \pi \frac{x^5}{5} \Big _1^2 =$	3 p
	$=\frac{31}{5}\pi$	2p