

Greedy Search - Codiciosa

Path: 5 -> 0 -> E -> 6

Búsqueda en A* (tree search) | Reglas

- Conocido como búsqueda A*
- Este algoritmo combina la búsqueda de costo uniforme y greedy search
- En esta búsqueda, la heurística es la suma del costo basado en costo uniforme, denotado por g (x), y el costo en búsqueda codiciosa(greedy search), denotado por h (x). El costo sumado se denota por f (x).

f(x) = g(x) + h(x)

Una búsqueda * * es óptima solo cuando para todos los nodos, el costo directo de un nodo h
 (x) subestima el costo real h * (x) para alcanzar la meta. Esta propiedad de * heurística se llama admisibilidad.

$$0 \leqslant h(x) \leqslant h^*(x)$$

- f(n) puede llamarse el costo estimado de la solución más barata, pasando por n.
- Es posible demostrar que esta estrategia es completa y óptima, dada una restricción de h.
- La restricción es escoger una función h que nunca sobreestime el costo que implica alcanzar la meta.

Búsqueda en A* (graph search) | Reglas

- No expanda el mismo nodo mas de una vez
- Heurístico. La búsqueda de gráficos es óptima solo cuando el costo hacia adelante entre dos nodos sucesivos A y B, dado por h (A) h (B), es menor o igual al costo hacia atrás entre esos dos nodos g (A -> B). Esta propiedad de la búsqueda de gráficos heurística se llama consistencia.

$$h(A) - h(B) \le g(A \to B)$$

A*: "Una búsqueda de estrellas".

• Generalmente mejora el rendimiento al estimar la heurística para minimizar el costo del siguiente nodo visitado.

A* (tree search)

Nodo inicial S y nodo final G

H(X)	G(X)	F(X)
7	0	7
9	3	12
5	2	7
4	2 + 1 = 3	7
3	2 + 4 = 6	9
2	3 + 2 = 5	7
3	3 + 1 = 4	7
0	5 + 4 = 9	9
0	4 + 3 = 7	7
	7 9 5 4 3	7 0 9 3 5 2 4 2+1=3 3 2+4=6 2 3+2=5 3 3+1=4

Path: S-> D-> B-> E-> (

Cost:

Resolver

• Nodo inicial 1 y nodo meta 5

Resolver

• Nodo inicial 1 y nodo meta 5

Front	Explorados
1(11)	()
2(12), 3(11)	1
4(7), 2(12)	1,3
5(25), 2(12)	1,3
4(7)	1,2,4
5(9)	1,2,4,5

Coto: 9

Ejercicio 5

Aplicar el algoritmo de Gaqueda A* para la Figura y determinar el camino óptimo con el objetivo de asistir desde punto J (Inicio) hasta el punto Q (Final).

Letra	Heurística
J	0
K	3
L	9
М	14
N	5
Ñ	4
0	7
P	1
Q	0

Longitud del camino: 3

Nodos no expandidos: 1 (L)

Costeo del camino: 25

B) # nodos no expandidos: 1 → L

C) Camino objetivo : J -M - O -Q

D) Longitud camino: 3

E) Coste de camino : 25 → acumulas costes y le añades la heurística final

Definición de heurísticas: diseño de conjeturas informadas

- A menudo descrito como una *regla empírica*, una *heurística* es una regla o conjunto de reglas utilizadas para evaluar un estado. Puede usarse para definir criterios que un estado debe satisfacer o medir el desempeño de un estado específico.
- Una heurística puede interpretarse como una suposición elegante en términos sociales y debe verse más como una guía que como una verdad científica con respecto al problema que se está resolviendo