MATH50003 Numerical Analysis

III.4 Orthogonal and Unitary Matrices

Dr Sheehan Olver

Part III

Numerical Linear Algebra

Sgrowe

- 1. Structured matrices such as banded
- 2. LU and PLU factorisations for solving linear systems
- 3. Cholesky factorisation for symmetric positive definite
- 4. Orthogonal matrices such as Householder reflections
- 5. QR factorisation for solving least squares

LU factorisation:

$$A = LU$$

PLU factorisation:

$$A = P^{\mathsf{T}}LU$$

Cholesky factorisation:

$$A = LL^{T}$$

E (wxn where m > h

QR factorisation:

Motivation: least squares

For rectangular systems, find vector that matches "closest"

Given rectangular $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, find $x \in \mathbb{R}^n$ such that

$$Ax \approx b$$

(an't solve
$$A \stackrel{>}{\times} = \stackrel{>}{b}$$
 unless $\stackrel{>}{b}$ is in colspan (A).

by minimising

Definition 17 (orthogonal/unitary matrix). A square real matrix is *orthogonal* if its inverse is its transpose:

$$O(n) = \{ Q \in \mathbb{R}^{n \times n} : Q^{\top}Q = I \}$$

A square complex matrix is *unitary* if its inverse is its adjoint:

Here the adjoint is the same as the conjugate-transpose: $Q^* := \bar{Q}^\top$.

Note
$$O(n) \subset V(n)$$
.

both $O(n) \& V(n)$ groups.

En is $Q_1, Q_2 \in O(n)$ then $Q_1 Q_2 \in O(n)$ since $(Q_1 Q_2)^T (Q_1 Q_2) = Q_1^T Q_1^T Q_1 Q_2 = I$.

Idea: write $Q \in O(n)$ as a product $Q = Q_1 Q_2 - Q_m$

where Que are rotations or reflections

Properties of orthogonal/unitary matrices

1) Norn-preservation: QEU(n) & 2 EC" then

2) eigenvals have abs value 1 (are on complex circle)

$$Q \stackrel{>}{\sim} = \lambda \stackrel{>}{\times} \Rightarrow |\lambda| = |$$

(3) $Q \in O(n) \Rightarrow det Q = \pm 1$

4

III.3.1 Rotations

Rotations in \mathbb{R}^2 correspond to 2×2 orthogonal matrices

Definition 18 (Special Orthogonal and Rotations). Special Orthogonal Matrices are

$$SO(n) := \{ Q \in O(n) | \det Q = 1 \}$$

And (simple) rotations are SO(2).

Definition 19 (two-arg arctan). The two-argument arctan function gives the angle θ through the point $[a, b]^{\top}$, i.e.,

$$\sqrt{a^2 + b^2} \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}.$$

It can be defined in terms of the standard arctan as follows:

$$\operatorname{atan}(b,a) := \begin{cases} \operatorname{atan} \frac{b}{a} & a > 0 \\ \operatorname{atan} \frac{b}{a} + \pi & a < 0 \text{ and } b > 0 \\ \operatorname{atan} \frac{b}{a} - \pi & a < 0 \text{ and } b < 0 \end{cases}$$

$$\frac{\pi/2}{-\pi/2} \qquad a = 0 \text{ and } b > 0$$

$$-\pi/2 \qquad a = 0 \text{ and } b < 0$$

Eq.

atom
$$(6, \alpha) = \text{atom}(-13, -1)$$

$$= \text{atom}(3 - \pi)$$

$$= \frac{\pi}{3} - \pi = -\frac{2\pi}{3}$$

Proposition 7 (simple rotation). A 2×2 rotation matrix through angle θ is

$$Q_{\theta} := \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

We have $Q \in SO(2)$ if and only if $Q = Q_{\theta}$ for some $\theta \in \mathbb{R}$.

Proof
$$Q_{\theta} \in SO(2)$$
 Write $C, S = cos \theta, sin \theta$,

 $\zeta 0$

Write
$$C_{,S} = \cos \theta, \sin \theta$$

$$Q_{\Theta} = \begin{bmatrix} c & -5 \\ 5 & c \end{bmatrix}$$

Then
$$Q_{\Theta}^{T} Q_{\Theta} = \begin{bmatrix} c & 5 \\ -5 & c \end{bmatrix} \begin{bmatrix} c & -5 \\ 5 & c \end{bmatrix} \begin{bmatrix} c^{2} + c^{2} \\ 5 & c \end{bmatrix}$$

$$= T$$

$$Q \in SO(2) \Rightarrow \exists \theta \in Q_{\Theta}$$

$$Q = \begin{bmatrix} \overline{a}_1 & \overline{a}_2 \end{bmatrix} = \begin{bmatrix} c & | t \\ 5 & | d \end{bmatrix}$$

Me Know

$$\begin{bmatrix}
\vec{q}_1 & \vec{q}_1 & \vec{q}_2 \\
\vec{q}_2 & \vec{q}_1 & \vec{q}_2
\end{bmatrix}$$

$$+1=$$
 det $Q=$ $cd-st=$ $\frac{1}{C}(d+s^{2})$

$$\Rightarrow \vec{q}_2 = \begin{bmatrix} -5 \\ c \end{bmatrix}$$

ie, $c = cos \theta$, $s = sin \theta$ for $\theta = atan(s, c)$.

Proposition 8 (rotation of a vector). The matrix

No trigh,

$$Q = \frac{1}{\sqrt{a^2 + b^2}} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

is a rotation matrix $(Q \in SO(2))$ satisfying

$$Q \begin{bmatrix} a \\ b \end{bmatrix} = \sqrt{a^2 + b^2} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\overrightarrow{\aleph} \qquad \qquad || \overrightarrow{\aleph} || \overrightarrow{\varrho} |$$

$$Q^{T}Q = \frac{1}{\alpha^{2}+b^{2}} \left[\begin{array}{c} \alpha & -b \\ b & \alpha \end{array} \right] \left[\begin{array}{c} \alpha & b \\ -b & \alpha \end{array} \right] = \left[\begin{array}{c} \alpha^{2} + b^{2} \\ \alpha^{2} + b^{2} \end{array} \right] \left[\begin{array}{c} \alpha^{2} + b^{2} \\ \alpha^{2} + b^{2} \end{array} \right]$$

&

$$Q \left[\begin{array}{c} a \\ b \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ b \end{array} \right] \left[\begin{array}{c} a \\ b \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}{c} a \\ c \end{array} \right] = \frac{1}{\sqrt{a^2 + b^2}} \left[\begin{array}$$

Example 15 (rotating a vector).

$$\overrightarrow{X} = \begin{bmatrix} -1 \\ -13 \end{bmatrix} = : \begin{bmatrix} a \\ b \end{bmatrix}$$

Lots of trig?
$$Q:=\frac{1}{\sqrt{1+3}}\begin{bmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix}$$

_

$$Q\left[-\frac{1}{\sqrt{3}}\right] = \frac{1}{2}\left[\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}}\right] \left[\frac{1}{\sqrt{3}}\right] = \left[\frac{2}{\sqrt{3}}\right]$$

III.4.2 Reflections

Every unit vector corresponds to a reflection, which is unitary

Definition 20 (reflection matrix). Given a <u>unit vector</u> $\mathbf{v} \in \mathbb{C}^n$ (satisfying $\|\mathbf{v}\| = 1$), define the corresponding reflection matrix as:

Properties

Q:=
$$V = I - 2vv^*$$

Cymnetry

 $V = (I - Lvv^*)^* = I - 2vv^* = Q$

Unitary

 $V = (I - Lvv^*)^* = I - 2vv^*$
 $V = Q^*Q = Q^2 = (I - 2vv^*)(I - 2vv^*)$
 $V = I - V^* + V^*(v^*v^*)^* = I$
 $V = V - 2v^*(v^*v^*) = -V$

ie vis an eigenvector of Q w/ ev -1.

$$W:= 2 + = \{ \vec{w} \in C_n : \vec{w} \neq \vec{v} = 0 \}$$

For all REW

$$Q_{V} = V - 2 \sqrt{V_{V}} = 0$$

$$\frac{1}{2}$$

$$\frac{1$$

$$\Rightarrow$$
 Q $\notin \int O(n)$.

Example 16 (reflection through 2-vector).

Householder reflections

Reflect to the x-axis

Householder reflections

Reflect to the x-axis (2 ways)

Definition 21 (Householder reflection, real case). For a given vector $\mathbf{x} \in \mathbb{R}^n$, define the Householder reflection

$$Q_{m{x}}^{\pm,\mathrm{H}} := Q_{m{w}}$$

for $\boldsymbol{y} = \mp \|\boldsymbol{x}\|\boldsymbol{e}_1 + \boldsymbol{x}$ and $\boldsymbol{w} = \frac{\boldsymbol{y}}{\|\boldsymbol{y}\|}$. The default choice in sign is:

$$Q_{m{x}}^{\mathrm{H}} := Q_{m{x}}^{-\mathrm{sign}(x_1),\mathrm{H}}.$$

Definition 22 (Householder reflection, complex case). For a given vector $\boldsymbol{x} \in \mathbb{C}^n$, define the Householder reflection as

$$Q_{m{x}}^{
m H}:=Q_{m{w}}$$

for $\boldsymbol{y} = \operatorname{csign}(x_1) \|\boldsymbol{x}\| \boldsymbol{e}_1 + \boldsymbol{x}$ and $\boldsymbol{w} = \frac{\boldsymbol{y}}{\|\boldsymbol{y}\|}$, for $\operatorname{csign}(z) = e^{i \operatorname{arg} z}$.

Lemma 6 (Householder reflection maps to axis, complex case). For $\mathbf{x} \in \mathbb{C}^n$,

$$Q_{\boldsymbol{x}}^{\mathrm{H}}\boldsymbol{x} = -\mathrm{csign}(x_1) \|\boldsymbol{x}\| \boldsymbol{e}_1$$