LIOUVILLE'S THEOREM QUESTIONS AND SOLUTIONS

QUESTIONS

Exercise 6.6 for convenience. State Liouville's Theorem.

- (i) The function f is analytic in the complex plane and $|f(z)| \ge 1$ for all $z \in \mathbb{C}$. Show that f is constant.
- **(ii) The function f is analytic in the complex plane and Re(f(z)) > 1 in \mathbb{C} . Prove that f is constant in \mathbb{C} .

An extra Liouville's Theorem question. The function f is analytic in $\mathbb C$ and |f(z)+1|<|f(z)| for all $z\in\mathbb C$. Show that f is constant.

SOLUTIONS

Solution to Exercise 6.6. <u>Liouville's Theorem</u> A function which is analytic and bounded in the complex plane is a constant.

- (i) Since $|f(z)| \ge 1$ we see that $f(z) \ne 0$ in the complex plane. Write $g = \frac{1}{f}$. Then g is analytic in the complex plane since f is non-zero and analytic in $\mathbb C$ and $|g(z)| \le 1$, i.e. g is analytic and bounded in $\mathbb C$. By Liouville's Theorem g is a constant. This constant is not zero as f(z) is defined for all z. Hence $f = \frac{1}{g}$ is also constant.
- (ii) We use the standard notation f(z) = u(x,y) + iv(x,y) where u and v are real valued. Now we are given that $\operatorname{Re} f(z) \geq 1$ and so $|f(z)|^2 = u^2 + v^2 \geq 1$ i.e $|f(z)| \geq 1$ for all $z \in \mathbb{C}$. It follows from part (i) that f is constant.

Solution to the extra question. Since

$$0 \le |f(z) + 1| < |f(z)|,$$

we see that f(z) is never zero on \mathbb{C} .

Hence $\frac{f(z)+1}{f(z)}$ is analytic in $\mathbb C$ and $\left|\frac{f(z)+1}{f(z)}\right|<1$ for all z.

By Liouville's Theorem $\frac{f(z)+1}{f(z)} = k$, where the constant k < 1.

Hence

$$f(z) = \frac{1}{1-k}.$$

1