Recognition of Multi-Fonts Character in Early-Modern Printed Books

Contents

- Introduction
- Multi-fonts character recognition
 - Feature extraction from character images
 - Learning method for feature
- Experiments
 - Improvement of pre-process
- Conclusions and future work

Introduction

• The Digital Library from the Meiji Era

(Supported by the National Diet Library in Japan)

Digital archive: Books published in the Meiji and Taisho eras
 1868-1926

The digital data are opened at the project Web site ▼ 印刷/保存 書誌情報 拳 近代デジタルライブラリー Search box 「このデータベースについて」や「資料あれこれ」などの内容を拡充しました。 PORTAを通じて近代デジタルライブラリーの書誌データをダウンロードできるようになりました。 JPEG2000の画像を見るためにはブラグイン(JuGeMuPlaver ver45) All Rights Reserved(c)National Diet Library 2002-2009 Data Viewer Top page

Development of an OCR for multi-fonts character in early-modern printed books

Flow of OCR

Flow of our OCR Pre-process

Flow of our OCR

Feature Extraction

PDC Feature

Scanning from 8 directions

Direction contributivity is calculated from the scanned lengths

Reflecting the direction and the connectivity of character-lines

PDC Feature

Base image

Reflecting the complexity of character-lines

Scanning-line

1st depth
2nd depth
3rd depth

Direction contributivity

Direction contributivity

Direction contributivity

Deeper level's

are not $0 \rightarrow$ Complex character-lines are $0 \rightarrow$ Simple character-lines

1st depth

2nd depth

3rd depth

Black dot: Direction contributivity is not 0

PDC Feature

• PDC feature vector: Direction contributivities set

Dimension number=

Direction(8)*Resolution(16)*Depth(3)*Element(4)=1536

Flow of our OCR Recognition

Experiments

- Experimental sample data
 - Character images obtained from "The Digital Library from the Meiji era"
 - Target characters :

Class no.	No.1	No.2	No.3	No.4	No.5
Character	行		人	生	+
Number of samples	102	103	134	100	100

Class no.	No.6	No.7	8.o <i>N</i>	No.9	No.10
Character	來	小\	中	年	彼
Number of samples	135	100	209	153	100

Examples of Sample Images

Monochrome or 256-grayscale

Experiments Description(1/2)

Conversion of character images to feature vectors

- Pre-process
 - 1. Binarization Threshold: 128
 - 2. Noise Reduction Median filter (Filter size : 3×3)
 - 3. Normalization Removing margin and scaling to 128×128
- Extraction of PDC features
 - Vector dimension: 1536

Experiments Description(2/2)

Learning and evaluation of a recognition model

- Learning recognition model with training samples to SVM
 - Used SVM: LIB-SVM
 - Parameters of SVM: Tweaked by grid search
- Evaluation of the recognition model by using test samples

Result of Recognition Model Evaluation

*We have shown this result at

73th Mathematical Modeling and Problem Solving (MPS) in March, 2009.

• Recognition rate: 97.8%

		The number of		Recognition
Class	Character	test samples	Error	rate[%]
1	行	52	0	100.0
2		53	1	98.1
3	人	84	1	98.8
4	生	50	0	100.0
5	+	50	1	98.0
6	来	85	1	98.8
7	小	50	0	100.0
8	中	159	12	92.5
9	年	103	0	100.0
10	彼	50	0	100.0

cf. Recognition rate by neural network(NN) · · 77.6%

Computation time · · SVM: NN= 1 : 7.76

Recognition Error in Result

• Some images are not recognized because of ...

Diminishable by an improvement of pre-process

Improvement of Pre-process

- Pre-process
 - 1. Binarization
 - Threshold:t=128 Discriminant Analysis
 - 2. First noise reduction
 - Median filter, Filter size: 3×3
 - 3. Normalization
 - 4. Second noise reduction
 - Based on estimated width of character-line
 - 4. Normalization

Noise Reduction based on Estimation of Character-line Width

Target image

The largest component *X*

• Estimation of line width by using the largest connected component *X*

 lp_n : Length of the shortest connected line pass through pixel p_n $(p_n \subset X)$

Estimated width of character-line: b=median value of lpn

Elimination of connected component whose area is smaller than $\frac{b^2}{2}$

Noise Reduction based on Estimation of Character-line Width

• Estimation of line width by using the largest connected component *X*

 lp_n : Length of the shortest connected line pass through pixel p_n ($p_n \subset X$)

Estimated width of character-line: b=median value of lpn

• Elimination of connected components whose area are smaller than $\frac{b^2}{}$

Noise Reduction based on Estimation of Character-line Width

Target image

• Estimation of line width by using the largest connected component *X*

 lp_n : Length of the shortest connected line pass through pixel p_n $(p_n \subset X)$

Estimated width of character-line: b=median value of lpn

• Elimination of connected components whose area are smaller than $\frac{b^2}{}$

Result of Improved Pre-process Adoption

• Recognition rate $97.8\% \rightarrow 99.0\%$

		The number of	Previous result	New no	
		unknown	Recog	nition	
Class	Character	input data	rate	e[%]	Error
1	行	52	100.0%	100.0%	0
2	=	53	98.1%	98.1%	1
3	人	84	98.8%	100.0%	0
4	生	50	100.0%	100.0%	0
5	+	50	98.0%	100.0%	0
6	来	85	98.8%	100.0%	0
7	/]\	50	100.0%	100.0%	0
8	中	159	92.5%	96.9%	5
9	年	103	100.0%	99.0%	1
10	彼	50	100.0%	100.0%	0

Discussion

Case: better recognition(Error→Correct)

Previous pre-process Improved pre-process

Discussion Case: unchanged(Error→Error)

Discussion

Case: worse recognition (Correct→Error)

Previous <i>Correct</i>	Improved <i>Error</i>		essed images Improved
4		年 年 年 年 年 年 年 年 年 年 年	年 年 年 年 年 年 年 年 年 年 年
1 1		中中中中中中中中中中中中中中中	中中中中 中中中中 中中中中

Training samples with lack of line are reduced Recognition rate of data with lack of line becomes low

Conclusions and Future work

- Recognition of multi-fonts character in Early-Modern Printed Books
 - Proposal of our method which uses PDC feature and SVM
 - Experimentations of applying our method
 - The results show high recognition rate
 - Improvement of noise reduction leads higher recognition rate
 - Recognized 10 kinds of character at 99 % accuracy
- Future works
 - Dealing lots of character kinds
 - Recognition of similar form characters
 - Automation of extracting character area

Thank you for your attention!