

Constitutive Modelling

In Modified Cam Clay model. when the soil moves from overconsolidated state to the yield swiface, soil obeys elastic stress-strain relationship. However as shown in experimental tests, plastic strain can be observed. Thus, there is a need to modified this model.

- The important feature to capture is that: plastic strain occurs all the time & as soil is OC state is far away from NCL, E is small compared with E and when soil is state is near NCL, E is larger in 2.

Hashiguchi proposed a subloading surface in which E^{ρ} can be determined by the ratio of the size between subloading yield surface & Yield surface.

However, in real soil behavior (4) can be seen which & preconsolidation pressure: Pc, + Pc

Kikumoto # # proposed the state parameter.

Constitutive modelling

YNU

- . f is always = 0
- . Et always #0
- . Unloading ->
 elastic behavior
 only
- Reloading EP+0

$$v_0 = v_0^N - S_0 = N - \lambda \ln \frac{p_0}{p_a} - S_0$$

$$\mathcal{E}_{V} = -\frac{\Delta v}{v_{o}} = \frac{\lambda}{v_{o}} \ln \frac{P}{P_{o}} + \frac{S - P_{o}}{v_{o}}$$

$$\Rightarrow \mathcal{E}_{v}^{P} = \mathcal{E}_{v} - \mathcal{E}_{v}^{e} = \frac{\lambda - K}{v_{o}} \frac{P}{P} + \frac{S - S_{o}}{v_{o}}$$

Consistency Condition:

	Nationa,	
OHA		Mive
TOK		1/18
	YNU	

Constitutive modelling

Subloading Modified Cam Clay models	3
The evolution law of state variable 9: In constitutive model research, there are 2	
In constitutive model research, there are 2	
1110111 1012	
@ Find a reasonable variable	
@ Find its evolutional law	_
* Analysing process to find ds.	
@ When EP occurs, & I	_
$= 7 ds \sim - d\epsilon' $	
2) If we arrectly use	_
@ when ε^{p} occurs, $\xi \downarrow$ $\Rightarrow d\xi \sim -\ d\varepsilon^{p}\ $ @ If we directly use $d\xi = -\ d\varepsilon^{p}\ $ then $\xi \to 0$ $\Rightarrow not ok$	
37001 OK.	
3 We use a modyed version:	-
dg = - de' 3	
when & <0, very small => 08 70 Finally, 8 ->	C
$dS = -\ dE'\ S$ when $S < 0$, very small $\Rightarrow dS > 0$. Finally, $S \Rightarrow 0$. when $S > 0$, $V = dS < 0$. Finally $S \Rightarrow 0$)
& To control the rate of convergence to 0, we	
use one more variable "a"	
$dg = -a \ d\xi^p\ g$	
In practice, we use:	
$dg = -a \ de^{r}\ \cdot g \ g\ $	
	-