Механико-математический факультет

Аналитическая геометрия, 1 семестр, 2 поток

Билеты

Содержание

1	Век	торные пространства и множества			
	1.1	Векторные пространства			
	1.2	Линейная комбинация векторов			
	1.3	Линейно зависимые и линейно независимые множества и системы векторов			
	1.4	Полные множества и системы векторов			
2	Баз	Базис и размерность векторного пространства			
	2.1	Базис векторного пространства. Конечномерное векторное пространство			
	2.2	Лемма о количестве векторов в ЛНЗ системе (аналог ОЛЛЗ)			
	2.3	Теорема о количестве векторов в базисе. Размерность векторного пространства.			
3	Koo	рдинаты в базисе			
4	Аффинные пространства				
	4.1	Аффинное пространство			
	4.2	Радиус-векторы и репер			
	4.3	Конечномерное аффинные пространства и их размерность			
5	Подпространства 1				
	5.1	Векторное подпространство			
	5.2	Аффиное подпространство			
	5.3	Прямая в аффинном пространстве			
6	Ска	лярное произведение			
U	6.1	Скалярное произведение			
	6.2	Евклидово векторное и точечно-евклидово аффинное пространство			
	6.3	Длина вектора и расстояния между точками			
	6.4	Выражение скалярного произведения через длины			
7	Hep	авенство Коши-Буняковского			
	7.1	Неравенство Коши-Буняковского			
	7.2	Величина угла и ортогональные векторы			
8	Пря	моугольная система координат			
	8.1^{-}	Ортонормированный базис и прямоугольная система координат			
	8.2	Выражение скалярного произведения через координаты векторов			
	8.3	Выражение для прямоугольной системы координат			
9	Про	ректирование			
10	таО	онормированный базис			
	_	Линейная независимость ортогональных векторов			
		Теорема о существовании ортонормированного базиса			
11	Ппа	мые и их уравнения			
11		Определения прямой и направляющего вектора			
		Уравнения прямой			
		Критерий уравнения прямой (нет в билете, важно)			
	TT.0	туритерии урабиения примои (пет в оилете, важно)			

12	Взаимное расположение прямых	17
	12.1 Случай общих уравнений	
	12.2 Случай параметрических уравнений	18
4.0		4 6
13	В Пучки прямых	18
	13.1 Определение пучка прямых	
	13.2 Уравнение собственного пучка прямых	
	13.3 Уравнение несобственного пучка прямых	19
11	Отрезки	20
14	14.1 Отрезки на плоскости	
	14.1 Отрезки на плоскости	20
15	б Полуплоскости	20
	15.1 Выпуклые множества	
	15.2 Полуплоскости как выпуклые множества	
16	З Углы между прямыми	21
	16.1 Определение угла	21
	16.2 Определение угла между двумя прямыми	21
	16.3 Угол между прямыми в прямоугольной системе координат	$2\overline{2}$
	16.4 Условие перпендикулярности. Нормаль	$2\overline{2}$
17	['] Расстояние от точки до прямой	23
	17.1 Определение расстояния между множествами точек	
	17.2 Расстояние от точки до прямой	23
10	Инсебратора и сертина помена Матрина порожа	2.4
10	В Преобразования координат векторов. Матрица перехода	2 4
19	Матрица Грама. Формула скалярного произведения.	24
20	Выражения матриц перехода	25
~ -		-
21	Критерий матрицы перехода	2 5
າາ	2 Преобразования координат точек	26
44	и преобразования координат точек	20
23	В Ортогональные матрицы	26
	23.1 Определение. Критерии ортогональности	
	23.2 Двумерный случай	
24	Ориентация векторных пространств	28
~~		2.0
25	б Ориентация пар векторов. Углы с учётом ориентации	29
	25 I ()рионтания на плоскости	29
	25.1 Ориентация на плоскости	~ -
	25.2 Угол от вектора до вектора	
	25.2 Угол от вектора до вектора	29
	25.2 Угол от вектора до вектора	29
26	25.2 Угол от вектора до вектора	29 30
26	25.2 Угол от вектора до вектора	29 30 30
26	25.2 Угол от вектора до вектора	29 30 30 30
26	25.2 Угол от вектора до вектора	29 30 30 30 31

27	Плоскость в пространстве	32
28	Взаимное расположение плоскостей 28.1 Взаимное расположение плоскостей	33
29	Пучки плоскостей 29.1 Определения 29.2 Собственные пучки 29.3 Несобственные пучки	34 34 35 35
30	Полупространства	36
31	Прямая в пространстве	36
32	Взаимное расположение плоскости и прямой	37
33	Взаимное расположение двух прямых	38
34	Плоскость в точечно-евклидовом пр-ве. 34.1 Нормаль к плоскости 34.2 Расстояние от точки до плоскости 34.3 Иные формулы расстояния (нет в б.)	38 38 39 39
35	Векторное, смешанное произведение. Объём 35.1 Векторное произведение	40 40 41 41
36	Объёмы в ортонормированном базисе	42
37	Векторное произведение и расстояния в ортонормированном базисе 37.1 Выражение векторного произведения	42 42 43
38	Линии второго порядка 38.1 Определения 38.2 Формы записи 38.3 Связь уравнений в разных системах координат	43 43 45 45
39	Канонические уравнения линий второго порядка 39.1 Собственные векторы и значения	46 46 47 50
40	Ортогональные инварианты 40.1 Основные инварианты 40.2 Классификация 40.3 Семиинвариант (нет в б., но полезно) 40.4 Полная классификация	50 50 51 52 53

41	Центр линии второго порядка	54
	41.1 Центр симметрии	54
	41.2 Уравнение центра	54
	41.3 Определение центра	56
42	Сопряжённые направления	57
	42.1 Определение	57
	42.2 Сопряжённые направления как базис	57
	42.3 Асимптотические направления	57
	42.4 Пересечения линии и прямой	57

Билет 1. Векторные пространства и множества

1.1 Векторные пространства

Геометрические векторы в математике являются **свободными векторами** - классами эквивалентности направленных отрезков по уже известному нам отношению эквивалентности векторов.

Определение. Векторным (линейным) пространством (над полем \mathbb{R}) называется множество V с введенными на нем бинарными операциями "+": $V \times V \to V$ и "*": $\mathbb{R} \times V \to V$, отвечающие следующим свойствам (аксиомам):

$$\forall \bar{a}, \bar{b}, \bar{c} \in V; \lambda, \mu \in \mathbb{R}:$$

- 1. $\bar{a} + \bar{b} = \bar{b} + \bar{a}$ (коммутативность сложения);
- 2. $(\bar{a} + \bar{b}) + \bar{c} = \bar{a} + (\bar{b} + \bar{c})$ (ассоциативность сложения);
- 3. $\exists \bar{0} \in V : \bar{a} + \bar{0} = \bar{0} + \bar{a} = \bar{a}$ (существует нейтральный элемент по сложению нулевой вектор);
- 4. $\exists (-\bar{a}) \in V: \bar{a} + (-\bar{a}) = (-\bar{a}) + \bar{a} = \bar{0}$ (существует противоположный элемент по сложению);
- 5. $\lambda(\mu \bar{a}) = (\lambda \mu) \bar{a}$ (ассоциативность умножения на числа);
- 6. $(\lambda + \mu)\bar{a} = \lambda \bar{a} + \mu \bar{a}$ (дистрибутивность по умножению);
- 7. $\lambda(\bar{a}+\bar{b})=\lambda\bar{a}+\lambda\bar{b}$ (дистрибутивность по сложению);
- 8. $1 * \bar{a} = \bar{a}$.

Примеры. Векторные пр-ва:

- $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^n$:
- Функции;
- Многочлены;
- Многочлены степени $\leq n$.

Замечание. Св-ва векторных пространств:

1. $\bar{0}$ единственный.

Пусть $\bar{0}_1, \bar{0}_2$ - нулевые векторы.

Тогда
$$\bar{0}_1 = \bar{0}_1 + \bar{0}_2 = \bar{0}_2$$
, ч.т.д.

 $2. -\bar{a}$ единственный.

Пусть $-\bar{a}_1, -\bar{a}_2$ - противоположные к \bar{a} векторы.

Тогда
$$-\bar{a}_1=-\bar{a}_1+\bar{0}=-\bar{a}_1+(\bar{a}+-\bar{a}_2)=(-\bar{a}_1+\bar{a})+(-\bar{a}_2)=\bar{0}+(-\bar{a}_2)=-\bar{a}_2$$
, ч.т.д.

3. $\lambda * \bar{0} = \bar{0}$.

$$\lambda*\bar{0} = \lambda*(\bar{0}+\bar{0}) = \lambda*\bar{0} + \lambda*\bar{0}$$

Прибавив к обеим частям вектор, противоположный к $\lambda*\bar{0}$, получим $\lambda*\bar{0}=\bar{0}$, ч.т.д.

4.
$$-(\lambda \bar{a}) = (-\lambda)\bar{a} = \lambda(-\bar{a}).$$

Нетрудно видеть, что все три вектора противоположны $\lambda \bar{a}$, а далее из п.2.

5.
$$-\bar{a} = -1 * \bar{a}$$

Следует из п.4.

6.
$$\lambda \bar{a}=\bar{0}\Leftrightarrow$$
 либо $\lambda=0$, либо $\bar{a}=\bar{0}$. Либо $\lambda=0$, либо $\lambda\neq0\Rightarrow\frac{1}{\lambda}*\lambda*\bar{a}=\frac{1}{\lambda}\bar{0}=\bar{0}\Rightarrow\bar{a}=\bar{0}$, ч.т.д.

1.2 Линейная комбинация векторов

Определение. Сумма вида $\lambda_1 \bar{x}_1 + ... + \lambda_n \bar{x}_n$ называется линейной комбинацией векторов $\bar{x}_1 ... \bar{x}_n$.

Определение. Если в линейной комбинации $\lambda_1 = ... = \lambda_n = 0$, то она называется тривиальной, а иначе - нетривиальной.

Определение. Если вектор \bar{x} равен линейной комбинации $\lambda_1 \bar{x}_1 + ... + \lambda_n \bar{x}_n$, то говорят, что он линейно выражается (раскладывается) через векторы $\bar{x}_1...\bar{x}_n$. (Сама линейная комбинация $\lambda_1 \bar{x}_1 + ... + \lambda_n \bar{x}_n$ называется выражением (разложением) вектора \bar{x} через $\bar{x}_1...\bar{x}_n$)

1.3 Линейно зависимые и линейно независимые множества и системы векторов

Определение. Упорядоченное множество векторов называется системой векторов. (В системе векторов элементы могут повторяться)

Определение. Множество векторов называется линейно зависимым, если существует равная нулю нетривиальная линейная комбинация векторов из этого множества. В противном случае оно называется линейно независимым.

Пример. Система из двух векторов \bar{a}, \bar{b} линейно зависима $\Leftrightarrow \bar{a} = \lambda \bar{b}$.

Замечание. Множество векторов линейно зависимо ⇔ один из векторов этого множества линейно выражается через некоторые другие векторы этого множества.

1.4 Полные множества и системы векторов

Определение. Множество (система) векторов из векторного пространства V называется полным (полной) в V, если любой вектор $\bar{x} \in V$ линейно выражается через векторы этого множества.

Замечание. $X \subset V$ полно в $V \Rightarrow \forall Y : X \subset Y$ полно в V.

Замечание. $X \subset V$ линейно независимо в $V \Rightarrow \forall Y \subset X$ линейно независимо в V.

Билет 2. Базис и размерность векторного пространства

2.1 Базис векторного пространства. Конечномерное векторное пространство.

Определение. Множество векторов E в векторном пространстве V называется базисом V, если E линейно независимо и полно в V.

Определение. Векторное пространство, в котором существует конечный (состоящий из конечного числа векторов) базис, называется конечномерным. В противном случае оно называется бесконечномерным.

2.2 Лемма о количестве векторов в ЛНЗ системе (аналог ОЛЛЗ)

Лемма. Если X - конечное полное множество из n векторов в векторном пространстве V и Y - линейно независимое множество векторов в V, то Y конечно и число векторов в $Y \leqslant n$.

Доказательство. (пер.) Произвольно занумеруем векторы в $X:(\bar{x}_1,...,\bar{x}_n)$. Будем по одному добавлять в эту систему векторы из Y и одновременно выкидывать векторы из X так, чтобы система оставалась полной.

Пусть за k шагов $(0 \leqslant k \leqslant n)$ мы добавили некоторые $\bar{y}_1,...,\bar{y}_k$ и выкинули какие-то k векторов из X - осталась система $(\bar{y}_1,...,\bar{y}_k,\bar{x}_{i_1},...,\bar{x}_{i_{n-k}})$. Возьмём \bar{y}_{k+1} из Y (если такого нет, то в $Y \leqslant n$ векторов, что нам и нужно), и добавим его в систему. Так как до этого система оставалась полной, \bar{y}_{k+1} выражается через $(\bar{y}_1,...,\bar{y}_k,\bar{x}_{i_1},...,\bar{x}_{i_{n-k}})$, причём какой-то \bar{x}_{i_j} входит в это разложение с коэффициентом, не равным нулю (иначе противоречие с линейной независимостью Y - \bar{y}_{k+1} выразился через $\bar{y}_1,...,\bar{y}_k$).

Тогда \bar{x}_{i_j} выражается через другие векторы системы и \bar{y}_{k+1} (в выражении \bar{y}_{k+1} перенесём всё, кроме \bar{x}_{i_j} в другую часть и разделим на коэффициент перед ним). А так как $(\bar{y}_1,...,\bar{y}_{k+1},\bar{x}_{i_1},...,\bar{x}_{i_{n-k}})$ - полная, эта же система без \bar{x}_{i_j} . очевидно, останется полной.

Пусть смогли проделать n таких шагов. Тогда имеем систему $(\bar{y}_1,...,\bar{y}_n)$. Если в Y есть ещё векторы, то они с одной стороны выражаются через векторы системы из её полноты, а с другой - не выражаются через них из линейной независимости Y. Противоречие, т.е. в Y не может оказаться больше n векторов, ч.т.д.

2.3 Теорема о количестве векторов в базисе. Размерность векторного пространства.

Теорема. Если в векторном пространстве есть конечный базис, то все базисы в нём конечны и содержат одинаковое количество векторов.

Доказательство. Пусть $\bar{e}_1,...,\bar{e}_n$ - конечный базис в V. Любой другой базис V линейно независим, т.е. по лемме содержит $k\leqslant n$ векторов, а с другой стороны полон, т.е. первый базис по лемме содержит $n\leqslant k$ векторов. Отсюда n=k, ч.т.д.

Определение. Количество векторов в любом базисе векторного пространства V называется размерностью V и обозначается dim V.

Примеры. $dim \ \bar{0} = 0, dim \ \pi (= dim \ \mathbb{R}^2) = 2, dim \ \mathbb{R}^3 = 3.$

Билет 3. Координаты в базисе

Teopema. В конечномерном векторном пространстве выражение любого вектора через базис определяется однозначно.

Доказательство. Если $\bar{x} = \lambda_1 \bar{e}_1 + ... + \lambda_n \bar{e}_n = \lambda_1' \bar{e}_1 + ... + \lambda_n' \bar{e}_n$, то $\bar{x} - \bar{x} = \bar{0} = (\lambda_1 - \lambda_1') \bar{e}_1 + ... + (\lambda_n - \lambda_n') \bar{e}_n$. Если эти два разложения различны, то равная

нулю линейная комбинация базисных векторов нетривиальна, что противоречит линейной независимости базиса. То есть двух различных разложений быть не может, ч.т.д.

Определение. Пусть V - конечномерное векторное пространство и $\bar{e}_1,...,\bar{e}_n$ - базис в нём. Коэффициенты $\lambda_1,...,\lambda_n$ в выражении любого вектора $x\in V$ через эти базисные векторы называются координатами вектора x в базисе $\bar{e}_1,...,\bar{e}_n$. (λ_k называется k-й координатой)

Замечание. Векторы в n-мерном векторном пространстве находятся во взаимно однозначном соответствии с упорядоченной строкой из n чисел из \mathbb{R} (например, векторы ассоциированного с евклидовой плоскостью векторного пространства соответствуют парам чисел) Таким образом можно задать операции сложения и умножения на число векторов плоскости через операции над числами, проводимыми покоординатно.

Билет 4. Аффинные пространства

4.1 Аффинное пространство

Элементы плоскости (как множества) - точки, а не векторы, поэтому для работы непосредственно с плоскостью необходимо ввести данное определение.

Определение. Аффинное пространство - тройка (X, V, +) (обычно обозначается \mathbb{A}), где X - множество (точек), V - векторное пространство, а "+" операция: $X \times V \to X$, для которых выполнены аксиомы:

- 1. $\forall A \in X, \forall \bar{a}, \bar{b} \in V : A + (\bar{a} + \bar{b}) = (A + \bar{a}) + \bar{b};$
- $2. \ \forall A \in X : A + \bar{0} = A;$
- 3. $\forall A, B \in X \; \exists ! \; \bar{a} \in V : A + \bar{a} = B$. Обозначается $\bar{a} = \overrightarrow{AB}$.

4.2 Радиус-векторы и репер

Если зафиксировать какую-нибудь точку $O \in X$, возникает взаимно однозначное соответствие между точками A и их радиус-векторами \overrightarrow{OA} .

Определение. Репер (система координат) в аффинном пространстве (X, V, +) - пара (O, E), где $O \in X$ и E - базис в V. Точка O называется началом координат (отсчёта). Координаты точки A в (O, E) - координаты её радиус-вектора \overrightarrow{OA} в базисе E.

Замечание. Для аффинного пространства верно:

1. Если
$$A=(x_1,...,x_n), \bar{a}=(y_1,...,y_n),$$
 то $A+\bar{a}=(x_1+y_1,...,x_n+y_n).$

2. Если
$$A = (a_1, ..., a_n), B = (b_1, ..., b_n),$$
 то $\overrightarrow{AB} = (b_1 - a_1, ..., b_n - a_n).$

(Следует из сложения векторов)

4.3 Конечномерное аффинные пространства и их размерность

Определение. Если $\mathbb{A} = (X, V, +)$ - аффинное пространство, то говорят, что V - векторное пространство, ассоциированное с \mathbb{A} .

Определение. \mathbb{A} называется конечномерным, если ассоциированное с ним V конечномерно. В этом случае $dim\mathbb{A}$ (размерность \mathbb{A}) равна dimV.

Теперь точки аффинного пространства аналогично векторам можно ассоциировать с наборами чисел. Однако для ассоциирования евклидовой плоскости и её аксиом с двумерным аффинным пространством, необходимы отвечающие аксиомам понятия прямой и расстояния.

Билет 5. Подпространства

5.1 Векторное подпространство

Определение. Векторным подпространством векторного пространства V называется непустое множество $V_1 \subset V$ такое. что $\forall \bar{x}, \bar{y} \in V_1 : \bar{x} + \bar{y} \in V_1, \lambda \bar{x} \in V_1 (\forall \lambda \in \mathbb{R}).$

Замечание. Определение эквивалентно следующему: множество $V_1 \subset V$ - векторное подпространство V, если V_1 является векторным пространством относительно операций + и *, определённых для V. (Доказательство осуществляется путём прямой проверки аксиом векторного пространства для V_1)

5.2 Аффинное подпространство

Введём несколько определений аффинного подпространства и докажем их эквивалентность.

Определение. Аффинным подпространством аффинного пространства $\mathbb{A} = (X, V, +)$ называется

- 1. его непустое подмножество вида $A+V_1=A+\bar a:\bar a\in V_1$, где V_1 векторное подпространство V и $A\in X$ точка:
- 2. тройка $(X_1 \subset X, V_1 \subset V, +_1)$, где V_1 векторное подпространство V и операция $+_1 = +$, для которой $\forall A, B \in X_1, \forall \bar{a} \in V_1 : A + \bar{a} \in X_1, \overrightarrow{AB} \in V_1;$
- 3. тройка $(X_1 \subset X, V_1 \subset V, +_1)$, где V_1 векторное подпространство V и операция $+_1 = +$, которая сама является аффинным пространством.

Утверждение. Приведённые определения эквивалентны.

Доказательство. Докажем следующие следствия:

- $\textcircled{1}\Rightarrow \textcircled{2}$ Пусть $P=A+\bar{a}, Q=A+\bar{b}$. Тогда $\overrightarrow{PQ}=\bar{b}-\bar{a}$ (в силу единственности такого вектора), т.е. $\overrightarrow{PQ}\in V_1$. Второе необходимое свойство 2 очевидно выполнено.
- $\textcircled{2}\Rightarrow \textcircled{1}$ Пусть X_1,V_1 удовлетворяют 2. Зафиксируем произвольную $A\in X_1$. $\forall B\in X_1$ имеем $B=A+\overrightarrow{AB}$, причём $A\in X_1,\overrightarrow{AB}\in V_1\Rightarrow B\in X_1$.

Эквивалентность $\textcircled{2}\Leftrightarrow \textcircled{3}$ очевидна из определения аффинного пространства.

5.3 Прямая в аффинном пространстве

Определение. Прямая в аффинном пространстве - его одномерное аффинное подпространство.

Плоскость (двумерная) в аффинном пространстве - его двумерное аффинное подпространство.

Определение. Единственный вектор в любом базисе векторного пространства, ассоциированного с одномерным аффинным пространством, называется направляющим вектором этого аффинного пространства.

Билет 6. Скалярное произведение

6.1 Скалярное произведение

Определение. Пусть V - векторное пространство. Скалярным произведением в V называется функция $(\ ,\):V\times V\to \mathbb{R}$ со свойствами:

- 1. $(\bar{x}, \bar{x}) \geqslant 0 \ \forall \bar{x} \in V$, причём $(\bar{x}, \bar{x}) = 0 \Leftrightarrow \bar{x} = \bar{0}$ (положительная определённость);
- 2. $(\bar{x}, \bar{y}) = (\bar{y}, \bar{x}) \forall \bar{x}, \bar{y} \in V$ (коммутативность);

3. $(\alpha \bar{x} + \beta \bar{y}, \bar{z}) = \alpha(\bar{x}, \bar{z}) + \beta(\bar{y}, \bar{z}) \, \forall \bar{x}, \bar{y}, \bar{z} \in V, \alpha, \beta \in \mathbb{R}$ (линейность по первому аргументу)

Из коммутативности выполнена и линейность по второму аргументу, т.е. скалярное произведение - билинейная функция.

6.2 Евклидово векторное и точечно-евклидово аффинное пространство

Определение. Конечномерное аффинное (векторное) пространство вместе со скалярным произведением называется точечно-евклидовым (евклидовым) пространством. Двумерное точечно-евклидово пространство называется евклидовой плоскостью.

6.3 Длина вектора и расстояния между точками

Определение. Длиной вектора называется величина $\sqrt{(\bar{x},\bar{x})}$.

Определение. Расстоянием (евклидовым) между точками $A, B \in \mathbb{A}$ называется длина вектора \overrightarrow{AB} . Будем обозначать d(A, B) как $|\overrightarrow{AB}|$.

6.4 Выражение скалярного произведения через длины

Замечание. Зная длины всех векторов, скалярное произведение можно восстановить по формуле $(\bar{x}, \bar{y}) = \frac{1}{2}(|\bar{x} + \bar{y}|^2 - |\bar{x}|^2 - |\bar{y}|^2)$. Это несложно проверить: $\frac{1}{2}(|\bar{x} + \bar{y}|^2 - |\bar{x}|^2 - |\bar{y}|^2) = \frac{1}{2}((\bar{x} + \bar{y}, \bar{x} + \bar{y}) - (\bar{x}, \bar{x}) - (\bar{y}, \bar{y})) = \frac{1}{2}(2(\bar{x}, \bar{y})) = (\bar{x}, \bar{y})$.

Билет 7. Неравенство Коши-Буняковского

7.1 Неравенство Коши-Буняковского

Теорема (Неравенство Коши-Буняковского). $\forall \bar{a}, \bar{b} \in V \ (\bar{a}, \bar{b}) \leqslant \sqrt{(\bar{a}, \bar{a})(\bar{b}, \bar{b})},$ причём равенство достигается только при $\bar{a} = \lambda \bar{b}$.

Доказательство. Рассмотрим выражение $(\bar{a}+t\bar{b},\bar{a}+t\bar{b})$. Оно равно нулю $\Leftrightarrow \bar{a}=-t\bar{b}$, т.е. может быть равно нулю не более чем при одном t. С другой стороны $(\bar{a}+t\bar{b},\bar{a}+t\bar{b})=(\bar{a},\bar{a})+2(\bar{a},\bar{b})t+(\bar{b},\bar{b})t^2$ - квадратный трёхчлен относительно t. Его дискриминант равен $4(\bar{a},\bar{b})^2-4(\bar{a},\bar{a})(\bar{b},\bar{b})$, а из первого рассуждения знаем, что дискриминант $\leqslant 0$, причём равенство достигается только в случае коллинеарности \bar{a} и \bar{b} . Отсюда $(\bar{a},\bar{b})\leqslant \sqrt{(\bar{a},\bar{a})(\bar{b},\bar{b})}$, ч.т.д.

7.2 Величина угла и ортогональные векторы

Определение. Величиной угла между ненулевыми векторами \bar{a}, \bar{b} называется число $\arccos \frac{(\bar{a},\bar{b})}{|\bar{a}||\bar{b}|}$ (из н. Коши-Буняковского $|\frac{(\bar{a},\bar{b})}{|\bar{a}||\bar{b}|}|\leqslant 1$).

Определение. Векторы \bar{a}, \bar{b} называются ортогональными (перпендикулярными), если $(\bar{a}, \bar{b}) = 0$.

Билет 8. Прямоугольная система координат

8.1 Ортонормированный базис и прямоугольная система координат

Определение. Базис векторного пространства V со скалярным произведением называется ортонормированным, если все его векторы попарно ортогональны и имеют длину 1.

Определение. Система координат в точечно-евклидовом пространстве называется прямоугольной, если её базис ортонормированный.

8.2 Выражение скалярного произведения через координаты векторов

Утверждение. В точечно-евклидовом пространстве верно следующее выражение скалярного произведения через координаты векторов: если в некотором

базисе
$$(\bar{e}_1,...,\bar{e}_n)$$
 $\bar{x}=\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}, \bar{y}=\begin{pmatrix}y_1\\\vdots\\y_n\end{pmatrix}$, то $(\bar{x},\bar{y})=\sum_{i=1}^nx_i\cdot\sum_{j=1}^ny_j(\bar{e}_i,\bar{e}_j)$.

Доказательство.
$$(\bar{x}, \bar{y}) = (x_1\bar{e}_1 + \dots + x_n\bar{e}_n, y_1\bar{e}_1 + \dots + y_n\bar{e}_n) = \sum_{i=1}^n (x_i\bar{e}_i, y_1\bar{e}_1 + \dots + y_n\bar{e}_n) = \sum_{i=1}^n x_i(\bar{e}_i, y_1\bar{e}_1 + \dots + y_n\bar{e}_n) = \sum_{i=1}^n x_i \cdot \sum_{j=1}^n y_j(\bar{e}_i, \bar{e}_j)$$

8.3 Выражение для прямоугольной системы координат

Замечание. В случае, когда базис ортонормированный, имеем $(e_i,e_j)=\delta_{ij}$ (здесь и далее используется символ Кронекера: $\delta_{ij}=\begin{cases} 0, i\neq j\\ 1, i=j \end{cases}$), т.е. $(\bar{x},\bar{y})=x_1y_1+...+x_ny_n$. То есть в прямоугольной системе координат длина вектора

вычисляется по формуле $|\bar{x}|=\sqrt{x_1^2+...+x_n^2}$, а расстояние между точками $P=(x_1,...,x_n), Q=(y_1,...,y_n)$ выражается как

$$|PQ| = |\overrightarrow{PQ}| = \sqrt{(y_1 - x_1)^2 + \dots + (y_n - x_n)^2}$$

Билет 9. Проектирование

Определение. Пусть задано два векторных подпространства V_1, V_2 векторного пространства V такие, что $V_1 \cap V_2 = \{\bar{0}\}$ и $V_1 + V_2 = V$ (обозначается $V = V_1 \oplus V_2$). Тогда сумма $\bar{x} = \bar{x}_1 + \bar{x}_2$, где $\bar{x} \in V, \bar{x}_1 \in V_1, \bar{x}_2 \in V_2$, определена единственно. (Следует, например, из того, что в любом базисе V каждый его вектор лежит либо в V_1 , либо в V_2 , тогда разложение в эту сумму соответствует единственному разложению по базису). Проекцией вектора $\bar{x} \in V$ на V_1 параллельно V_2 называется слагаемое \bar{x}_1 этой суммы.

Определение. Пусть задано два аффинных подпространства $\mathbb{A}_1 = (X_1, V_1, +)$, $\mathbb{A}_2 = (X_2, V_2, +)$ аффинного пространства $\mathbb{A} = (X, V, +)$ такие, что $V = V_1 \oplus V_2$. Проекция точки $P \in \mathbb{A}$ на \mathbb{A}_1 параллельно \mathbb{A}_2 - точка $P_1 = A_1 + \bar{v}$, где A_1 произвольная точка из X_1 , а \bar{v} - проекция $\overrightarrow{A_1P}$ на V_1 параллельно V_2 . (Очевидно, что от выбора A_1 расположение проеции не зависит)

Пример. Рассмотрим координаты точки евклидовой плоскости относительно прямоугольной системы координат.

Найдём проекцию точки A=(x,y) на прямую Oy параллельно прямой Ox. По определению это точка (назовём её A_y), равная $O+\bar{v}$, где \bar{v} - проекция \overrightarrow{OP} на векторное пространство прямой Oy параллельно Ox. $\overrightarrow{OP}=\{x,y\}=x\bar{e}_1+y\bar{e}_2$. Отсюда $\bar{v}=y\bar{e}_2=\{0,y\}$, то есть $A_y=(0,y)$. Аналогично $A_x=(x,0)$.

Билет 10. Ортонормированный базис

Определение смотри в пункте 8.1 Пусть $\mathbb{A}^n = (X, V^n, +)$ - n-мерное точечно-евклидово пространство.

10.1 Линейная независимость ортогональных векторов

Утверждение. В V^n любая линейно независимая система из n векторов образует базис.

 V^n , не выражающийся через векторы этой системы, т.е. этот вектор можно добавить в систему без потери линейной независимости. Но по лемме-аналогу ОЛЛЗ линейно независимая система в V^n не может иметь > n векторов. Противоречие, т.е. любая линейно независимая система из n векторов является полной, а значит и базисом, ч.т.д.

Утверждение. Если $\bar{e}_1,...,\bar{e}_n$ - попарно ортогональные ненулевые векторы в евклидовом пространстве, то $\bar{e}_1,...,\bar{e}_n$ линейно независимы.

Доказательство. Предположим противное. Пусть один из векторов (без ограничения общности \bar{e}_n) линейно выражается через остальные: $\bar{e}_n = \lambda_1 \bar{e}_1 + ... + \lambda_{n-1} \bar{e}_{n-1}$. Тогда запишем квадрат его длины: $|\bar{e}_n|^2 = (\bar{e}_n, \bar{e}_n) = (\bar{e}_n, \lambda_1 \bar{e}_1 + ... + \lambda_{n-1} \bar{e}_{n-1}) = \sum_{i=1}^{n-1} \lambda_i (\bar{e}_n, \bar{e}_i) = 0$ (т.к. \bar{e}_n ортогонален всем остальным векторам). Отсюда $|\bar{e}_n| = 0$, и притом \bar{e}_n ненулевой. Противоречие, т.е. никакой вектор системы не выражается через остальные, а значит система линейно независима. ч.т.д.

10.2 Теорема о существовании ортонормированного бази-

Теорема. В любом евклидовом пространстве существует ортонормированный базис.

 \mathcal{A} оказательство. (пер.) Индукция по n - размерности пространства:

База: n=1 - очевидно, что существует вектор длины 1, который составляет ортонормированный базис одномерного пространства;

Шаг: Пусть в любом n-мерном пространстве существует ортонормированный базис. Рассмотрим пространство V размерности n+1 и выберем базис какого-то n-мерного подпространства W (пусть $(\bar{e}_1,...,\bar{e}_n)$). Найдём вектор, ортогональный всем выбранным векторам. Так как базис W не полон в V, к нему можно добавить ещё один вектор $x \in V$ без потери линейной независимости \Rightarrow $(\bar{e}_1,...,\bar{e}_n,\bar{x})$ - базис в V (ЛНЗ система из n+1 векторов).

Теперь необходимо представить \bar{x} как следующую сумму: $\bar{x} = \lambda_1 \bar{e}_1 + ... + \lambda_n \bar{e}_n + \bar{e}_{n+1}$, где \bar{e}_{n+1} ортогонален $\bar{e}_1, ..., \bar{e}_n$. Тогда $\bar{e}_{n+1} = \bar{x} - \lambda_1 \bar{e}_1 - ... - \lambda_n \bar{e}_n$. Рассмотрим $(\bar{e}_{n+1}, \bar{e}_k) = (\bar{x} - \lambda_1 \bar{e}_1 - ... - \lambda_n \bar{e}_n, \bar{e}_k) = (\bar{x}, \bar{e}_k) - \lambda_1 (\bar{e}_1, \bar{e}_k) - ... - \lambda_n (\bar{e}_n, \bar{e}_k)$. Так как \bar{e}_k ортогонально всем этим векторам, кроме \bar{e}_k и \bar{x} , это выражение равно $(\bar{x}, \bar{e}_k) - \lambda_k (\bar{e}_k, \bar{e}_k)$. Отсюда при $\lambda_k = \frac{(\bar{x}, \bar{e}_k)}{(\bar{e}_k, \bar{e}_k)}$ векторы \bar{e}_{n+1} и \bar{e}_k ортогональны (зависит только от λ_k). Составив таким образом все $\lambda_1, ..., \lambda_n$, получим выражение

вектора \bar{e}_{n+1} , ортогонального всем векторам базиса W. Таким образом, векторы полученной системы $\bar{e}_1,...,\bar{e}_{n+1}$ попарно ортогональны (по предположению индукции) \Rightarrow линейно независимы \Rightarrow образуют базис в V. Разделив \bar{e}_{n+1} на его длину, получим, что все векторы базиса попарно ортогональны и имеют длину $1 \Rightarrow V$ имеет ортонормированный базис, ч.т.д.

Следствие. Любую систему ортогональных векторов длины 1 в векторном пространстве можно дополнить до ортонормированного базиса.

Билет 11. Прямые и их уравнения

11.1 Определения прямой и направляющего вектора

Смотри пункт 5.3

11.2 Уравнения прямой

Вывод формул (уравнения прямой). Пусть l - прямая на плоскости: $l = \{X: \overrightarrow{OX} = \overrightarrow{OM} + t\overline{v}\}$, где M - точка прямой, \overline{v} - её направляющий вектор. Если $M = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}, \overline{v} = \begin{pmatrix} a \\ b \end{pmatrix}$, то из совпадения координат совпадающих векторов \overrightarrow{OX} и $(\overrightarrow{OM} + t\overline{v})$ верно следующее: (параметрические уравнения прямой)

$$X \in l: \begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases}$$

Выразим t из первого уравнения и подставим во второе уравнение - получим каноническое уравнение прямой:

$$\boxed{\frac{x - x_0}{a} = \frac{y - y_0}{b}}$$

(Заметим, что данное выражение не определено при нулевых a или b, но очевидно, что они не равны нулю одновременно, а запись, где одна из дробей имеет знаменатель 0, иногда используется, поэтому здесь и далее случай равенства нулю знаменателя может не рассматриваться как отдельный и будет означать, что числитель должен равняться 0)

Если известно, что прямой принадлежат
$$M = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}, N = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
, то $\overrightarrow{MN} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$

 $\begin{pmatrix} x_1 - x_0 \\ y_1 - y_0 \end{pmatrix}$ - направляющий вектор, т.е. каноническое уравнение имеет вид

$$\boxed{\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0}}$$

(уравнение прямой по двум точкам).

Домножим каноническое уравнение прямой на знаменатели: $\frac{x-x_0}{a} = \frac{y-y_0}{b} \Rightarrow bx - bx_0 = ay - ay_0 \Rightarrow bx - ay + (ay_0 - bx_0) = 0$. Такое уравнение обычно называют общим уравнением прямой и записывают как

$$Ax + By + C = 0$$

Замечание. Для прямых в пространстве подобным образом выводятся параметрические и каноническое уравнения.

Замечание. Заметим также, что из итоговой формулы вывода общего уравнения $(bx - ay + (ay_0 - bx_0) = 0 \Rightarrow Ax + By + C = 0)$ следует, что для прямой Ax + By + C = 0 вектор (B, -A) (а соответственно и (-B, A)) является направляющим.

11.3 Критерий уравнения прямой (нет в билете, важно)

Утверждение. Ax + By + C = 0 является уравнением прямой $\Leftrightarrow A$ и B не равны нулю одновременно.

Доказательство.

- \Rightarrow Если Ax+By+C=0, то её направляющий вектор ненулевой, а значит вектор (-B,A) ненулевой, то есть одна из его координат $\neq 0$.
- \Leftarrow Пусть без ограничения общности $A \neq 0$. Тогда этому уравнению удовлетворяет точка $(x_0,y_0)=(-\frac{C}{A},0)$, а значит (нетрудно проверить) все удовлетворяющие ему точки имеют вид (x_0+Bt,y_0-At) , что соответствует прямой с такими параметрическими уравнениями.

Билет 12. Взаимное расположение прямых

12.1 Случай общих уравнений

Теорема. Прямые на плоскости параллельны (или совпадают) \Leftrightarrow их направляющие векторы пропорциональны.

Доказательство. Пусть $l_1:A_1x+B_1y+C_1=0; l_2:A_2x+B_2y+C_2=0$ - данные прямые. Рассмотрим систему уравнений, которой удовлетворяют координаты точек, принадлежащих обоим прямым: $\begin{cases} A_1x+B_1y=-C_1\\ A_2x+B_2y=-C_2 \end{cases}$

Из курса алгебры (форумла Крамера) известно, что система не является определённой $\Leftrightarrow det \begin{pmatrix} A_1 & B_1 \\ A_2 & B_2 \end{pmatrix} = 0$. Таким образом, прямые параллельны или совпадают \Leftrightarrow имеют 0 или бесконечно много общих точек $\Leftrightarrow A_1B_2 - A_2B_1 = 0 \Leftrightarrow \begin{pmatrix} A_1 \\ B_1 \end{pmatrix}$ пропорционален $\begin{pmatrix} A_2 \\ B_2 \end{pmatrix}$, ч.т.д.

Замечание. Из этого также видно, что прямые совпадают $\Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$.

12.2 Случай параметрических уравнений

Следствие. Прямые
$$l_1: \begin{cases} x=x_1+a_1t \\ y=y_1+b_1t \end{cases}$$
 ; $l_2: \begin{cases} x=x_2+a_2t \\ y=y_2+b_2t \end{cases}$ пересекаются

 $\Leftrightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$. Условие совпадения прямых также можно записать через параметрические уравнения (вектор $(x_2 - x_1 \ y_2 - y_1) = \lambda(a, b)$).

Из этого также следует, что через две различные точки проходит ровно одна прямая (все такие прямые совпадают).

Билет 13. Пучки прямых

13.1 Определение пучка прямых

Определение. Собственным пучком прямых называется множество всех прямых, проходящих через данную точку, называемую центром пучка.

Несобственным пучком прямых называется множество всех прямых, параллельных данной прямой.

13.2 Уравнение собственного пучка прямых

Теорема. Пусть прямые $l_1: A_1x + B_1y + C_1 = 0$ и $l_2: A_2x + B_2y + C_2 = 0$ задают собственный пучок (т.е. содержатся в нём и не совпадают). Тогда прямая l принадлежит пучку $\Leftrightarrow l$ задаётся уравнением $\lambda(A_1x + B_1y + C_1) + \mu(A_2x + B_2y + C_2) = 0$ (*) для некоторых $\lambda, \mu \in \mathbb{R}$.

Доказательство.

 \Leftarrow Пусть l задаётся уравнением (*). Тогда, подставив в уравнение l центр пучка (x_0,y_0) , получим $\lambda(0)+\mu(0)=0$ (т.к. центр удовлетворяет уравнениям l_1,l_2). \Rightarrow Пусть $(x_0,y_0)\in l$. Возьмём произвольную точку $(x_1,y_1)\in l, (x_1,y_1)\neq (x_0,y_0)$. Рассмотрим прямую вида (*) с $\lambda=-(A_2x_1+B_2y_1+C_2),\ \mu=(A_1x_1+B_1y_1+C_1):-(A_2x_1+B_2y_1+C_2)(A_1x+B_1y+C_1)+(A_1x_1+B_1y_1+C_1)(A_2x+B_2y+C_2)=0$. Заметим, что это уравнение действительно задаёт прямую: в противном случае необходимы условия $\lambda A_1+\mu A_2=\lambda B_1+\mu B_2=0$, но тогда (A_1,B_1) и (A_2,B_2) пропорциональны, а исходные прямые непараллельны. Такой прямой, очевидно, принадлежат точки (x_0,y_0) и (x_1,y_1) . Так как через две различные точки проходит ровно одна прямая, любая прямая из собственного пучка имеет вид (*), ч.т.д.

13.3 Уравнение несобственного пучка прямых

Теорема. Пусть прямые $l_1: A_1x + B_1y + C_1 = 0$ и $l_2: A_2x + B_2y + C_2 = 0$ задают несобственный пучок (т.е. содержатся в нём и не совпадают). Тогда прямая l принадлежит пучку $\Leftrightarrow l$ задаётся уравнением $\lambda(A_1x + B_1y + C_1) + \mu(A_2x + B_2y + C_2) = 0$ (*) для некоторых $\lambda, \mu \in \mathbb{R}$.

Доказательство.

 \Leftarrow Так как $l_1 \parallel l_2$, $\frac{A_1}{B_1} = \frac{A_2}{B_2}$. Тогда если l имеет вид (*), то $\frac{\lambda A_1 + \mu A_2}{A_1} = \lambda + \frac{\mu A_2}{A_1} = \lambda + \frac{\mu B_2}{B_1} = \frac{\lambda B_1 + \mu B_2}{B_1} \Rightarrow l \parallel l_1$.

 \Rightarrow Пусть l принадлежит пучку. Так как направляющие векторы l, l_1 и l_2 пропорциональны, можем домножить уравнения на числа так, что коэффициенты перед переменными станут равны: пусть $l_1: Ax+By+C_1=0;\ l_2=Ax+By+C_2=0;\ l=Ax+By+C_3=0.$

Тогда возьмём λ, μ из следующей системы (получена из равенства коэффици-

ентов
$$\lambda l_1 + \mu l_2$$
 и l):
$$\begin{cases} C_1 \lambda + C_2 \mu = C_3 \\ \lambda + \mu = 1 \end{cases} \Leftrightarrow \begin{cases} \lambda = \frac{C_3 - C_2}{C_1 - C_2} \\ \mu = \frac{C_1 - C_3}{C_1 - C_2} \end{cases} \quad (C_1 \neq C_2, \text{ иначе } l_1 \text{ и})$$

 l_2 совпадают). Очевидно, что для таких λ, μ уравнение l имеет вид (*) (проверяется несложной подстановкой), ч.т.д.

Билет 14. Отрезки

14.1 Отрезки на плоскости

Определение. Пусть l - прямая, $X_1(x_1,y_1), X_2(x_2,y_2) \in l$ и $X_1 \neq X_2$. Отрезком с концами X_1, X_2 на плоскости называется множество всех точек, лежащих между X_1 и X_2 (на прямой l). Обозначается $[X_1, X_2]$.

Вывод формулы (Уравнение отрезка). Пусть $X \in [X_1, X_2]$. Тогда знаем, что $\begin{cases} x = x_1 + t(x_2 - x_1) \\ y = y_1 + t(y_2 - y_1) \end{cases} (X \in l) \Rightarrow \begin{pmatrix} x - x_1 \\ y - y_1 \end{pmatrix} = t \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \end{pmatrix} \Rightarrow t \overrightarrow{X_1 X_2} = \overrightarrow{X_1 X} \Rightarrow \overrightarrow{X X_2} = (1 - t) \overrightarrow{X_1 X_2}. \text{ Отсюда видно, что } |\overrightarrow{X_1 X_1}| \text{ и } |\overrightarrow{X X_2}| < |\overrightarrow{X_1 X_2}| \Leftrightarrow t \in [0, 1]. \text{ Отсюда} \end{cases}$

$$X \in [X_1, X_2] \Leftrightarrow \begin{cases} x = x_1 + t(x_2 - x_1) \\ y = y_1 + t(y_2 - y_1) \\ t \in [0, 1] \end{cases}$$

Определение. Отрезком в произвольном аффинном пространстве называется множество точек $[X_1, X_2] = \{X_1 + t \overrightarrow{X_1 X_2}, t \in [0, 1]\}$

Билет 15. Полуплоскости

15.1 Выпуклые множества

Определение. Множество X в произвольном аффинном пространстве называется выпуклым, если $\forall X_1, X_2 \in X \ [X_1, X_2] \subset X$.

15.2 Полуплоскости как выпуклые множества

Определение. Пусть в аффинной системе координат l:Ax+By+C=0. Множества $\Pi_0^+=\{X(x,y):Ax+By+C\geqslant 0\}$ и $\Pi_0^-=\{X(x,y):Ax+By+C\leqslant 0\}$ называются замкнутыми полуплоскостями, а множества $\Pi^+=\{X(x,y):Ax+By+C>0\}$ и $\Pi^-=\{X(x,y):Ax+By+C< 0\}$ - открытыми полуплоскостями.

Теорема. Для любой прямой l:Ax+By+C=0 множества $\Pi_0^+,\Pi_0^-,\Pi^+,\Pi^-$ выпуклы.

Доказательство. Рассмотрим Π_0^+ (остальные аналогично).

Пусть $X_1(x_1,y_1), X_2(x_2,y_2) \in \Pi_0^+$. Знаем, что любая точка $X \in [X_1,X_2]$ имеет координаты $(tx_1+(1-t)x_2,ty_1+(1-t)y_2), 0 \leqslant t \leqslant 1$. Тогда:

$$\begin{cases} Ax_1 + By_1 + C \geqslant 0 \\ Ax_2 + By_2 + C \geqslant 0 \end{cases} \Rightarrow \begin{cases} tAx_1 + tBy_1 + tC \geqslant 0 \\ (1-t)Ax_2 + (1-t)By_2 + (1-t)C \geqslant 0 \end{cases} \Rightarrow A(tx_1 + (1-t)x_2) + B(ty_1 + (1-t)y_2) + C \geqslant 0 \Rightarrow X \in \Pi_0^+, \text{ ч.т.д.}$$

Билет 16. Углы между прямыми

16.1 Определение угла

Определение. Пусть l - прямая, $O \in l, \bar{v}$ - любой направляющий вектор l. Множества $l^+ = \{O + \lambda \bar{v}, \lambda \geqslant 0\}$ и $l^- = \{O + \lambda \bar{v}, \lambda \leqslant 0\}$ называются лучами, на которые O делит l.

Замечание. Если даны два луча с общим началом (обозначим их l_1^+, l_2^+), то они являются подмножествами однозначно определённых прямых l_1, l_2 , для которых можно выбрать направляющие векторы так, чтобы лучи соответствовали формуле из определения (назовём эти векторы \bar{v}_1, \bar{v}_2).

Определение. Углом на плоскости называется объединение двух лучей с общим началом. Величиной угла $l_1^+ \cup l_2^+$ называется величина угла между векторами \bar{v}_1, \bar{v}_2 , определёнными как в замечании. Говорят, что один угол меньше другого, если величина первого угла меньше величины второго.

Определение. Угол называется прямым, если его ведичина равна $\frac{\pi}{2}(\Leftrightarrow$ направляющие векторы лучей ортогональны). Угол называется развёрнутым, если его ведичина равна $\pi(\Leftrightarrow$ образующие угол лучи дополняют друг друга до прямой).

Замечание. В дальнейшем будем иногда называть углом величину угла. Также аналогичным образом можно говорить о величине угла между вектором и прямой

16.2 Определение угла между двумя прямыми

Определение. Углом между двумя прямыми называется наименьший из углов, образованных лучами с началом в их точке пересечения этих прямых и лежащих на этих прямых, если прямые пересекаются. Если прямые параллельны или совпадают, то угол между ними равен нулю. Обозначается $\angle(l_1l_2)$.

Определение. Прямые называются перпендикулярными, если угол между ними равен $\frac{\pi}{2}$.

Определение. Перпендикуляром, опущенным из данной точки на данную прямую, называется прямая, проходящая через точку и перпендикулярная прямой, либо отрезок этой прямой с концами в данной точке и точке пересечения прямой с данной.

16.3 Угол между прямыми в прямоугольной системе координат

Вывод формулы (Угол между прямыми в прямоугольной с.к.). Пусть $l_1: A_1x + B_1y + C_1 = 0, l_2: A_2x + B_2y + C_2 = 0$ - прямые в прямоугольной системе координат. Тогда их направляющие векторы равны $\begin{pmatrix} -B_1 \\ A_1 \end{pmatrix} = \bar{v}_1, \begin{pmatrix} -B_2 \\ A_2 \end{pmatrix} = \bar{v}_2.$ Отсюда (выражение скалярного произведения): $\cos \angle (l_1, l_2) = |\cos \angle (\bar{v}_1, \bar{v}_2)| \Rightarrow$

$$\cos \angle (l_1, l_2) = \frac{|A_1 A_2 + B_1 B_2|}{\sqrt{A_1^2 + B_1^2} \cdot \sqrt{A_2^2 + B_2^2}}$$

(модуль в косинусе, а соответственно и в числителе формулы, позволяет сразу взять меньший угол).

16.4 Условие перпендикулярности. Нормаль

Следствие. Прямые $l_1:A_1x+B_1y+C_1=0$ и $l_2:A_2x+B_2y+C_2=0$ перпендикулярны $\Leftrightarrow A_1A_2+B_1B_2=0$.

Определение. Нетрудно проверить, что в прямоугольной системе координат вектор $\bar{n} = \begin{pmatrix} A \\ B \end{pmatrix}$ перпендикулярен вектору $\begin{pmatrix} -B \\ A \end{pmatrix}$, а значит и прямой l:Ax+By+C=0. Вектор \bar{n} называется нормалью (нормальным вектором) прямой l (в прямоугольной с.к.)

Замечание. Любой вектор, коллинеарный нормали, также является нормалью, так как уравнения Ax+By+C=0 и $\lambda Ax+\lambda By+\lambda C=0$ задают одну и ту же прямую.

Билет 17. Расстояние от точки до прямой

17.1Определение расстояния между множествами точек

Определение. Пусть A, B - множества в точечно-евклидовом пространстве. Расстоянием от A до B называется число $\inf\{|XY|, X \in A, Y \in B\}$ Расстояние от точки до прямой определяется аналогично, когда $A = \{X\}$ (его часто обозначают d(X, l)).

Замечание. У множества из определения существует нижняя грань, т.к. оно является ограниченным снизу подмножеством действительных чисел (принцип полноты Вейерштрасса из курса математического анализа).

17.2Расстояние от точки до прямой

Теорема. Расстояние от точки до прямой равно длине перпендикуляра, опущенного из этой точки на прямую.

Доказательство. Пусть заданы l: Ax + By + C = 0 и X_0 - произвольные прямая и точка. Выберем на l произвольную точку X_1 . Проведём через X_0 прямую l' с направляющим вектором $\binom{A}{B}$ - она будет перпендикулярна l, а значит

имеет с ней единственную общую точку - назовём её X_2 . Имеем: $|\overrightarrow{X_1X_0}|^2 = (\overrightarrow{X_1X_0}, \overrightarrow{X_1X_0}) = (\overrightarrow{X_1X_2} + \overrightarrow{X_2X_0}, \overrightarrow{X_1X_2} + \overrightarrow{X_2X_0}) = |\overrightarrow{X_1X_2}|^2 + |\overrightarrow{X_2X_0}|^2 \geqslant |\overrightarrow{X_2X_0}|^2$. Отсюда $|\overrightarrow{X_2X_0}|^2$ - минимум всех расстояний между X и точкой прямой, т.е. он достигается в точке пересечения l и l', ч.т.д.

Замечание. Расстояние между двумя прямыми на плоскости $\neq 0 \Leftrightarrow$ они параллельны и не совпадают (у них нет общих точек). В этом случае расстояние между ними равно расстоянию от любой точки одной прямой до другой.

Вывод формулы (Расстояние от точки до прямой в прямоугольной с.к.). Пусть $X_0 = (x_0, y_0), l : Ax + By + C = 0$. Посчитаем $d(X_0, l)$. Проведём через X_0

перпендикуляр l' к прямой l. Направляющий вектор l' - $\binom{A}{B}$, то есть его параметрические уравнения - $\begin{cases} x=x_0+At \\ y=y_0+Bt \end{cases}$. Найдём t_1 , удовлетворяющее точке

пересечения: имеем $A(x_0 + At_1) + B(y_0 + Bt_1) + C = 0 \Rightarrow t_1 = -\frac{Ax_0 + By_0 + C}{A^2 + B^2}$. Отсюда точка пересечения X_1 имеет координаты $(x_0 + At_1, y_0 + Bt_1)$. Тогда

$$\overrightarrow{X_0X_1} = \begin{pmatrix} At_1 \\ Bt_1 \end{pmatrix} \Rightarrow |\overrightarrow{X_0X_1}|^2 = A^2t_1^2 + B^2t_1^2 = (A^2 + B^2)t_1^2 = \frac{(Ax_0 + By_0 + C)^2}{A^2 + B^2}$$
, а значит
$$d(X,l) = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

Билет 18. Преобразования координат векторов. Матрица перехода

Вывод формулы (Матрица перехода). Пусть $E = (\bar{e}_1, ..., \bar{e}_n)$ и $E' = (\bar{e}'_1, ..., \bar{e}'_n)$ - два базиса в одном и том же евклидовом пространстве V. Будем называть E старым базисом, а E' - новым. Получим формулу для координат в старом базисе вектора $\bar{x} \in V$, заданного в новом базисе координатами $(x'_1, ..., x'_n)$.

Итак, пусть в старом базисе \bar{x} имеет координаты $(x_1,...,x_n)$. Установим связь между базисами, выразив векторы нового базиса через старый: пусть

$$ar{e}'_i = c_{1i}ar{e}_1 + \ldots + c_{ni}ar{e}_n$$
, т.е. $ar{e}'_i = \begin{pmatrix} c_{1i} \\ \vdots \\ c_{ni} \end{pmatrix}$. Подставляя эти выражения, получим: $ar{x} = x'_1ar{e}'_1 + \ldots + x'_nar{e}'_n = x'_1(c_{11}ar{e}_1 + \ldots + c_{n1}ar{e}_n) + \ldots + x'_n(c_{1n}ar{e}_1 + \ldots + c_{nn}ar{e}_n) = (c_{11}x'_1 + \ldots + c_{1n}x'_n)ar{e}_1 + \ldots + (c_{n1}x'_1 + \ldots + c_{nn}x'_n)ar{e}_n \Rightarrow$ (из равенства координат)

$$\begin{pmatrix}
x_1 \\
\vdots \\
x_n
\end{pmatrix} = \begin{pmatrix}
c_{11} & \dots & c_{1n} \\
\vdots & & \vdots \\
c_{n1} & \dots & c_{nn}
\end{pmatrix} \begin{pmatrix}
x'_1 \\
\vdots \\
x'_n
\end{pmatrix} \Leftrightarrow \begin{pmatrix}
x_1 \\
\vdots \\
x_n
\end{pmatrix} = C \begin{pmatrix}
x'_1 \\
\vdots \\
x'_n
\end{pmatrix}$$

Определение. Такая матрица C называется матрицей перехода от базиса E к базису E'.

Замечание. Столбцы матрицы C являются координатами базисных векторов E' в базисе $E \Rightarrow$ столбцы C линейно независимы $\Rightarrow C$ невырожденная (из курса алгебры).

Билет 19. Матрица Грама. Формула скалярного произведения.

Вывод формулы. Рассмотрим также скалярное произведение векторов в слу-

чае, когда базис
$$E$$
 ортонормированный. Если $\bar{x}=\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}, \bar{y}=\begin{pmatrix}y_1\\\vdots\\y_n\end{pmatrix}$ (в ба-

висе
$$E$$
), имеем: $(\bar{x}, \bar{y}) = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x'_1 & \dots & x'_n \end{pmatrix} C^T C \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}$ (так

как
$$(x_1 \ldots x_n) = \begin{pmatrix} C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}^T$$
). Нетрудно видеть, что произведение матриц

$$C^TC$$
 имеет вид $G = \begin{pmatrix} (\bar{e}'_1, \bar{e}'_1) & \dots & (\bar{e}'_1, \bar{e}'_n) \\ \vdots & & \vdots \\ (\bar{e}'_n, \bar{e}'_1) & \dots & (\bar{e}'_n, \bar{e}'_n) \end{pmatrix}$ (строки C^T и столбцы C - коорди-

наты векторов базиса E' в базисе E)

Такая матрица называется матрицей Грама (матрицей скалярных произведений) для базиса E'. Так как матрица G не зависит от базиса E, получаем формулу для скалярного произведения в произвольном базисе:

$$(\bar{x}, \bar{y}) = \begin{pmatrix} x'_1 & \dots & x'_n \end{pmatrix} G \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}$$

Билет 20. Выражения матриц перехода

Следствие (1). Если C и C_1 - матрицы перехода от базиса E к E' и от E' к E'' соответственно, то матрица перехода от базиса E к E'' равна CC_1

Следствие (2). Если C - матрица перехода от базиса E к E', то матрица перехода от базиса E' к E равна C^{-1} .

Билет 21. Критерий матрицы перехода

Замечание. Пусть $\bar{e}_1,...,\bar{e}_n$ - базис векторного пространства V. Тогда векторы $\bar{x}_1,...,\bar{x}_n\in V$ линейно независимы \Leftrightarrow столбцы их координат линейно независимы. Это очевидно следует из представления линейной комбинации $\lambda_1\bar{x}_1+...+\lambda_n\bar{x}_n=0$ через координаты.

Теорема. Для произвольного данного базиса матрица C является матрицей перехода к некоторому другому базису $\Leftrightarrow \det C \neq 0$.

Доказательство. Следует из утверждения из курса алгебры о том, что матрица невырожденна \Leftrightarrow её столбцы линейно независимы (\Leftrightarrow векторы-столбцы образуют базис). □

Преобразования координат точек Билет 22.

Вывод формулы (Координаты точки при перемене с.к.). Пусть заданы два репера $O\bar{e}_1...\bar{e}_n$ и $O'\bar{e}'_1...\bar{e}'_n$. Для этого необходимо задать новый репер через

старый: пусть
$$C$$
 - матрица перехода от $\bar{e}_1,...,\bar{e}_n$ к $\bar{e}'_1...\bar{e}'_n$, а вектор $\overrightarrow{OO'}=\begin{pmatrix}x_{01}\\\vdots\\x_{0n}\end{pmatrix}$.

Пусть X - произвольная точка с координатами $(x_1,...,x_n)$ в старой системе

Пусть
$$X$$
 - произвольная точка с координатами $(x_1, ..., x_n)$ в старой системе координат и $(x_1', ..., x_n')$ в новой. Тогда $\overrightarrow{OX} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. Также $\overrightarrow{O'X} = \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}$ в

новой с.к. $\Rightarrow C \begin{pmatrix} x_1' \\ \vdots \\ x' \end{pmatrix}$ в старой. Осталось заметить, что $\overrightarrow{OX} = \overrightarrow{OO'} + \overrightarrow{O'X}$, а отсюда (через старую с.к.)

Выразим новые координаты, умножив слева на C^{-1} :

(отметим также, что
$$-C^{-1}\begin{pmatrix}x_{01}\\\vdots\\x_{0n}\end{pmatrix}$$
 - новые координаты вектора $O'O$)

Билет 23. Ортогональные матрицы

Определение. Критерии ортогональности 23.1

Определение. Матрица перехода от одного ортонормированного базиса к другому называется ортогональной.

Теорема. Для
$$C = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & & \vdots \\ c_{n1} & \dots & c_{nn} \end{pmatrix}$$
 следующие утверждения равносильны:

1. C - ортогональная;

2.
$$\sum_{k=1}^{n} c_{ki} c_{kj} = \delta_{ij}$$
 ("скалярное произведение"столбцов равно δ_{ij});

3.
$$\sum_{k=1}^{n} c_{ik}c_{jk} = \delta_{ij}$$
 ("скалярное произведение"строк равно δ_{ij});

4.
$$CC^{T} = E$$
;

5.
$$C^T C = E$$
;

6.
$$C^T = C^{-1}$$
:

Доказательство. (в конспекте указан "прямой подсчёт")

Для начала заметим равносильность утверждений (4), (5), (6): $(4) \Leftrightarrow (5)$ (получаются друг из друга транспонированием обоих частей равенства), а (6) равносильно им по определению обратной матрицы.

 $1 \Rightarrow 2$: Столбцы матрицы C - координаты векторов ортонормированного базиса E в другом ортонормированном базисе E'. Рассмотрим скалярное произведение (\bar{e}'_i, \bar{e}'_j) : с одной стороны оно равно $\sum_{k=1}^n c_{ki}c_{kj}$ (так как базис E ортонормирован, можем применять формулу с матрицей Γ рама, причём G = E из ортонормированности E_1), а с другой стороны - δ_{ij} (из ортонормированности E_1).

 $1 \Leftarrow 2$: Из 2 знаем, что векторы с координатами в столбцах попарно ортогональны и имеют длину 1 в базисе, в котором записаны эти координаты. Значит, применив такое преобразование к векторам ортонормированного базиса, получим также попарно ортогональные векторы длины 1, т.е. C - ортогональная.

 $(2) \Leftrightarrow (5)$: Оба условия равносильны тому, что элемент C^TC на позиции ij равен δ_{ij} .

Аналогично $(3) \Leftrightarrow (4)$.

$$\text{Итого } (1) \Leftrightarrow (2) \Leftrightarrow (5) \Leftrightarrow (6) \Leftrightarrow (4) \Leftrightarrow (3).$$

Следствие. Для ортогональной $C: |C^T| = |C|, \ |C^TC| = |E| = 1 \Rightarrow |C| = \pm 1$

Следствие. (Из определения ортогональной матрицы)

Произведение ортогональных матриц - ортогональная матрица.

Матрица, обратная ортогональной, ортогональна.

Двумерный случай 23.2

Вывод формулы. (Двумерный случай ортогональной матрицы)

$$C=egin{pmatrix} a & b \ c & d \end{pmatrix}$$
 ортогональна $\Rightarrow a^2+c^2=1 \Rightarrow \exists \varphi: a=\cos\varphi, c=\sin\varphi.$ Из теоремы $a^2+b^2=1,\ c^2+d^2=1 \Rightarrow b=\pm\sin\varphi,\ d=\pm\cos\varphi.$

Из ортогональности столбцов следует, что ab + cd = 0, поэтому остаются следующие случаи:

$$C = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}; \quad C = \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

т.е. для любой ортогональной C найдётся φ такой, что C имеет один из видов выше. Несложно также убедиться, что любая матрица такого вида ортогональна: первая производит поворот на угол φ , а вторая - поворот с отражением.

Билет 24. Ориентация векторных пространств

Определение. Два базиса в конечномерном векторном пространстве называются одинаково ориентированными (одноимёнными), если матрица перехода от одного базиса к другому имеет положительный определитель. В противном случае базисы называются противоположно ориентированными (разноимёнными).

Теорема. Отношение одноимённости является отношением эквивалентности на множестве базисов.

Доказательство. По определению отношения эквивалентности:

- ullet рефлексивность: матрица перехода от базиса в себя равна E, |E| = 1;
- симметричность: $C: E \to E' \Rightarrow C^{-1}: E' \to E$, причём $|CC^{-1}| = 1$, т.е. |C|и $|C^{-1}|$ одного знака;
- транзитивность: $C: E \to E', \ C': E' \to E'', C'': E \to E'' \Rightarrow C'' = CC',$ т.е. из одноимённостей E с E' и E' с E'' следует одноимённость E с E''.

Определение. Ориентацией векторного пространства, а также любого аффинного пространства, с которым оно ассоциировано, называется выбор любого из двух классов эквивалентности по отношению одноимённости и объявления базисов в нём положительными (а остальных - отрицательными).

(Достаточно выбрать один базис и объявить его положительным)

П

Билет 25. Ориентация пар векторов. Углы с учётом ориентации

25.1 Ориентация на плоскости

Пример. Ориентация на плоскости: Достаточно выбрать пару неколлинеарных векторов (базис), и объявить его положительным. Заметим, что пары \bar{a}, \bar{b} и \bar{b}, \bar{a} разноимённы ($C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$).

Посмотрим, когда пары \bar{a}, \bar{b} и \bar{a}, \bar{b}' одноимённые. Рассмотрим произвольную прямую l с направляющим вектором \bar{a} и любую точку $O \in l$. В репере $O\bar{a}\bar{b}$ уравнение l имеет вид y=0. Подставив в это уравнение координаты $\bar{b}=\begin{pmatrix} 0\\1 \end{pmatrix}$, получим 1.

Пусть $\bar{b}' = \lambda \bar{a} + \mu \bar{b} \Rightarrow$ матрица перехода между парами C равна $\begin{pmatrix} 1 & \lambda \\ 0 & \mu \end{pmatrix}$. $|C| > 0 \Leftrightarrow \mu > 0 \Leftrightarrow$ при подстановке координат \bar{b}' в уравнение l результат будет $> 0 \Leftrightarrow$ точки B, B' с радиус-векторами \bar{b}, \bar{b}' лежат в одной полуплоскости относительно l.

Получили критерий одноимённости пар \bar{a}, \bar{b} и \bar{a}, \bar{b}' : они одноимённы \Leftrightarrow точки, полученные прибавлением векторов \bar{b} и \bar{b}' к произвольной точке произвольной прямой с направляющим вектором \bar{a} , лежат относительно неё в одной полуплоскости.

25.2 Угол от вектора до вектора

Определение. Углом от вектора \bar{a} до вектора \bar{b} в ориентированном двумерном евклидовом пространстве называется угол между \bar{a} и \bar{b} , взятый со знаком плюс, если пара \bar{a},\bar{b} положительно ориентирована, и со знаком минус иначе.

25.3 $\,$ Угол от прямой до прямой

Определение. Положительным углом от \bar{a} до \bar{b} называется угол φ от \bar{a} до \bar{b} , если $\varphi>0$, и угол $2\pi+\varphi$, если $\varphi<0$.

Определение. Углом от прямой l_1 до прямой l_2 в ориентированном двумерном евклидовом пространстве называется наименьший положительный угол от направляющего вектора l_1 до направляющего вектора l_2 .

25.4 Угол наклона

Вывод формулы. (Известное ранее уравнение прямой. Угол наклона)

Пусть на плоскости задана прямоугольная система координат $O\bar{e}_1\bar{e}_2$ и в ней прямая l определена уравнением $y=kx+b \Leftrightarrow kx-y+b=0$. Прямая с направляющим вектором e_1 называется **осью абсцисс**, а угол от этой прямой до прямой l - **углом наклона** прямой l.

Подсчитаем угол наклона l. Направляющие векторы l имеют вид $\begin{pmatrix} \lambda \\ \lambda k \end{pmatrix}$, причём φ , очевидно, зависит только от знака λ (так как углы при $\lambda > 0$ и $\lambda < 0$ различаются на π). Угол от $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ до $\begin{pmatrix} \pm 1 \\ \pm k \end{pmatrix}$ равен углу от $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$ до $\begin{pmatrix} \mp 1 \\ \mp k \end{pmatrix}$, поэтому

выбирать наименьший можем только из положительных углов от вектора $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

- наименьшим, как нетрудно видеть, будет угол до $\begin{pmatrix} 1 \\ k \end{pmatrix}$ при k>0 и до $\begin{pmatrix} -1 \\ -k \end{pmatrix}$

иначе. Обозначив вектор $\binom{1}{k}$ за \bar{k} , имеем:

$$\cos \varphi = \cos \angle (\bar{e}_1, \bar{k}) = \frac{1}{\sqrt{1+k^2}} \Rightarrow \sin \angle (\bar{e}_1, \bar{k}) = \pm \frac{|k|}{\sqrt{1+k^2}} \Rightarrow \operatorname{tg} \varphi = \pm k$$

Заметим, что при k>0 необходимый угол должен иметь тангенс, больший нуля, а при k<0 - меньший нуля (очевидно из расположения соответствующих векторов в координатных четвертях). Отсюда видно, что вне зависимости от нужного нам вектора верно:

 $\operatorname{tg}\varphi=k$

Билет 26. Площади

26.1 Определение и следствия

Определение. Фигуры Φ_1, Φ_2 называются конгруэнтными, если \exists отображение $f: \Pi \to \Pi$, сохраняющее расстояния $(|f(A)f(B)| = |AB| \ \forall A, B)$ такое, что $f(\Phi_1) = \Phi_2$.

Определение. Площадь (мера) на евклидовой плоскости - численная величина (обозначается S_{Φ} , Φ - фигура), соответствующая следующим свойствам:

1. Площадь квадрата со стороной 1 равна 1;

- 2. Площади конгруэнтных фигур равны;
- 3. Если Φ_1, Φ_2 фигуры, $\exists S_{\Phi_1}, S_{\Phi_2}$ и $\Phi_1 \cap \Phi_2 = \emptyset$, то $\exists S_{\Phi_1 \cup \Phi_2} = S_{\Phi_1} + S_{\Phi_2}$;
- 4. Если Φ фигура и существуют такие последовательности фигур $\{\varphi_n\}_{n=1}^{\infty}$ и $\{\Phi_n\}_{n=1}^{\infty}$, что $\varphi_n \subset \varphi_{n+1} \subset \Phi \subset \Phi_{n+1} \subset \Phi n \ \forall n \geqslant 1$, причём $\lim_{n \to \infty} S_{\varphi_n}$ и $\lim_{n \to \infty} S_{\Phi_n}$ существуют и равны, то $S_{\Phi} = \lim_{n \to \infty} S_{\varphi_n} = \lim_{n \to \infty} S_{\Phi_n}$

Следствие. (Площади некоторых фигур:)

• Площадь отрезка равна 0.

Доказательство. Из предельного перехода (Площадь отрезка с длиной 1 равна 0, иначе площадь квадрата со стороной 1 не была бы конечной, а из этого можно получить длину любого отрезка).

• Площадь квадрата со стороной a равна a^2 .

Доказательство. Для $a=\frac{1}{n}$ разбиваем квадрат со стороной 1 на n^2 квадратиков, для $a\in\mathbb{Q}$ складываем квадрат со стороной $\frac{m}{n}$ из предыдущих, для $a\notin\mathbb{Q}$ приближаем квадрат сверху и снизу квадратами с рациональными сторонами и переходим к пределам (по 4 пункту определения). \square

ullet Площадь прямоугольника со сторонами a,b равна ab.

Доказательство. Рассмотрим квадрат со стороной a+b. Его можно разбить на квадрат со стороной a, квадрат со стороной b и два нужных нам прямоугольника. Отсюда $2S=(a+b)^2-a^2-b^2=2ab\Rightarrow S=ab$.

Отсюда также выводятся формулы площади параллелограмма (перестановкой треугольника из параллелограмма получается прямоугольник) и треугольника (как половины параллелограмма).

26.2 Площадь параллелограмма

Определение. Говорят, что параллелограмм натянут на векторы \bar{a}, \bar{b} , если для одной из вершин A параллелограмма точки $A+\bar{a}$ и $A+\bar{b}$ также являются его вершинами. Площадь параллелограмма, натянутого на векторы \bar{a}, \bar{b} , обозначается $S_{\bar{a},\bar{b}}$.

Вывод формулы. (Площадь параллелограмма в прямоугольной с.к.) Нам уже известно, что $S_{\bar{a},\bar{b}} = |\bar{a}||\bar{b}|\sin\varphi$ (из выражения высоты параллелограмма через угол). В прямоугольной системе координат:

$$S_{\bar{a},\bar{b}}^2 = |\bar{a}|^2 |\bar{b}|^2 \sin^2 \varphi = |\bar{a}|^2 |\bar{b}|^2 (1 - \cos^2 \varphi) = |\bar{a}|^2 |\bar{b}|^2 - (\bar{a},\bar{b})^2$$
 Если $\bar{a} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$, $\bar{b} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$, то $S_{\bar{a},\bar{b}}^2 = (x_1^2 + y_1^2)(x_2^2 + y_2^2) - (x_1x_2 + y_1y_2) = (x_1y_2 - x_2y_1)^2 \Rightarrow$
$$S_{\bar{a},\bar{b}} = |\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}|$$

При этом определитель $> 0 \Leftrightarrow \bar{a}, \bar{b}$ одноимённа с базисом.

26.3 Ориентированная площадь

Определение. Ориентированной площадью параллелограмма, натянутого на \bar{a}, \bar{b} , на ориентированной плоскости называется число, равное $S_{\bar{a},\bar{b}}$, если пара \bar{a}, \bar{b} положительно ориентирована, и $-S_{\bar{a},\bar{b}}$ иначе. Обозначается $\langle \bar{a}, \bar{b} \rangle$.

Следствие. В любом положительно ориентированном базисе $\langle \bar{a}, \bar{b} \rangle = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$

Утверждение. Свойства ориентированной площади:

1.
$$\langle \bar{a}, \bar{b} \rangle = -\langle \bar{b}, \bar{a} \rangle$$

2.
$$\langle \bar{\lambda a}, \bar{b} \rangle = \lambda \langle \bar{a}, \bar{b} \rangle = \langle \bar{a}, \bar{\lambda b} \rangle$$

3.
$$\langle \bar{a} + \bar{b}, \bar{c} \rangle = \langle \bar{a}, \bar{c} \rangle + \langle \bar{b}, \bar{c} \rangle$$

 $(\langle \bar{a}, \bar{b} + \bar{c} \rangle = \langle \bar{a}, \bar{b} \rangle + \langle \bar{a}, \bar{c} \rangle; \langle \bar{a} - \bar{b}, \bar{c} \rangle = \langle \bar{a}, \bar{c} \rangle - \langle \bar{b}, \bar{c} \rangle)$

Доказательство. Следует из свойств определителя.

Билет 27. Плоскость в пространстве

Определение. Плоскость в (трёхмерном) аффинном пространстве - его двумерное аффинное подпространство.

Вывод формулы (Уравнения плоскости). Плоскость π - это множество X_0+V^2 , где X_0 - точка и V^2 - двумерное векторное подпространство пространства V, ассоциированного с трёхмерным аффинным пространством. Так как dim $V^2=$

 $2\Rightarrow$ в нём есть базис $\bar{a},\bar{b}\Rightarrow\pi=\{X_0+u\bar{a}+v\bar{b}:u,v\in\mathbb{R}\}$. Такие векторы $ar{a}, ar{b}$ называются **направляющими векторами плоскости**. В произвольной

системе координат: если
$$X_0=(x_0,y_0,z_0), \bar{a}=\begin{pmatrix} a_1\\a_2\\a_3\end{pmatrix}, \bar{b}=\begin{pmatrix} b_1\\b_2\\b_3\end{pmatrix},$$
 то π - мн-во

точек с координатами: (параметрические уравнения плоскости

$$\begin{cases} x = x_0 + ua_1 + vb_1 \\ y = y_0 + ua_2 + vb_2 \\ z = z_0 + ua_3 + vb_3 \end{cases}$$

Векторы \bar{a}, \bar{b} называются направляющими векторами плоскости $\pi.$ Выражая параметры u, v, получим **общее уравнение плоскости**:

$$Ax + By + Cz + D = 0 \quad (|A| + |B| + |C| \neq 0)$$

Билет 28. Взаимное расположение плоскостей

Определение. Говорят, что вектор \bar{a} параллелен плоскости π (обозначается $\bar{a}\parallel\pi$), если он выражается через направляющие векторы этой плоскости (\Leftrightarrow через любой базис ассоциированного с плоскостью векторного пространства).

Замечание. Ясно, что $X \in \pi \Leftrightarrow \overrightarrow{X_0X} \parallel \pi$ (для любой $X_0 \in \pi$). То же верно и для любой отличной от X_0 точки плоскости: $X_1X = X_1X_0 + X_0X$, т.е. X_1X выражается через направляющие векторы $\Leftrightarrow \overrightarrow{X_0X}$ выражается через направляющие векторы.

28.1Взаимное расположение плоскостей

Вывод формулы. Рассмотрим две плоскости, заданные уравнениями $A_1x +$ $B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$. Эти плоскости пересе- $B_1y + C_1z + D_1 = 0$ и $A_2x + B_2y + C_2z + D_2 = 0$. Эти плоскости пересекаются $\Leftrightarrow \begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$ имеет решения. Матрица коэффициентов системы $A = \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix}$, а её расширенная матрица $(A|B) = \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix}$. По теореме Кронекера-Капелли из курса алгебры СЛУ совместна $\Leftrightarrow rkA = rk(A|B)$. Так как $1 \leqslant rkA \leqslant 2$, плоскости не пересекаются

циентов системы
$$A = \begin{pmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{pmatrix}$$
, а её расширенная матрица $(A|B) =$

 \Leftrightarrow строки A линейно зависимы (rkA=1), а строки (A|B) - нет. Таким образом, плоскости не пересекаются \Leftrightarrow

$$A_1: A_2 = B_1: B_2 = C_1: C_2 \neq D_1: D_2$$

Очевидно, плоскости совпадают ←

$$A_1: A_2 = B_1: B_2 = C_1: C_2 = D_1: D_2$$

Докажем, что плоскости совпадают только в этом случае. Пусть плоскости совпадают. Приведём матрицу (A|B) к ступенчатому виду: $\begin{pmatrix} A_1 & B_1 & C_1 & -D_1 \\ 0 & a_{22} & a_{23} & a_{24} \end{pmatrix}$ (хотя бы один из коэффициентов первой плоскости $\neq 0$, без ограничения общности - A_1). Так как плоскости совпадают, любая точка, принадлежащая первой плоскости, принадлежит и второй. Тогда для a_{24} из принадлежности плоскости $(-\frac{D_1}{A_1},0,0)$ следует $a_{24}=0$, для a_{22} аналогично при $B\neq 0$, а при B=0 из принадлежности точки $(-\frac{D_1}{A_1},1,0)$ (для a_{23} и C аналогично). Отсюда вторая строка ступенчатой матрицы нулевая, то есть строки (A|B) пропорциональны, а отсюда плоскости совпадают \Leftrightarrow

$$A_1: A_2 = B_1: B_2 = C_1: C_2 = D_1: D_2$$

Предположим, что плоскости пересекаются, но не совпадают. Тогда rkA=2. Из курса алгебры знаем, что решение такой системы имеет вид X_0+V^1 (частное решение $C\Pi Y$ + одномерное пространство решений $OC\Pi Y$). Таким образом:

Плоскости совпадают ⇔ их уравнения (со свободными коэффициентами) пропорциональны;

Плоскости параллельны ⇔ их уравнения пропорциональны, а свободные члены - нет;

Плоскости пересекаются и не совпадают (их уравнения не пропорциональны) \Leftrightarrow пересечением плоскостей является множество вида $X_0 + V^1$, где X_0 - точка и $V^1 = \{\lambda \bar{a} : \lambda \in \mathbb{R}\}$ (\bar{a} - решение ОСЛУ AX = 0), т.е. их пересечением является прямая.

Билет 29. Пучки плоскостей

29.1 Определения

Определение. Собственным пучком плоскостей называется множество всех плоскостей, проходящих через данную прямую, называемую центром пучка. Несобственным пучком плоскостей называется множество всех плоскостей, параллельных данной плоскости.

29.2 Собственные пучки

Теорема. Пусть плоскости $\pi_1: A_1x + B_1y + C_1z + D_1 = 0$ и $\pi_2: A_2x + B_2y + C_2z + D_2 = 0$ задают собственный пучок (т.е. содержатся в нём и не совпадают). Тогда плоскость π принадлежит пучку $\Leftrightarrow \pi$ задаётся уравнением $\lambda(A_1x + B_1y + C_1z + D_1) + \mu(A_2x + B_2y + C_2z + D_2) = 0$ (*) для некоторых $\lambda, \mu \in \mathbb{R}$.

Доказательство.

 \Leftarrow Пусть π задаётся уравнением (*). Тогда, подставив в уравнение π любую точку прямой - центра пучка (назовём её l), получим $\lambda(0) + \mu(0) = 0$ (т.к. центр удовлетворяет уравнениям π_1, π_2).

 \Rightarrow Пусть $l \subset \pi$. Возьмём произвольную точку $(x_1,y_1,z_1) \in \pi, (x_1,y_1,z_1) \notin l$. Рассмотрим плоскость вида (*) с $\lambda = -(A_2x_1 + B_2y_1 + C_2z_1 + D_2), \ \mu = (A_1x_1 + B_1y_1 + C_1z_1 + D_1) : -(A_2x_1 + B_2y_1 + C_2z_1 + D_2)(A_1x + B_1y + C_1z + D_1) + (A_1x_1 + B_1y_1 + C_1z_1 + D_1)(A_2x + B_2y + C_2z + D_2) = 0$. Заметим, что это уравнение действительно задаёт плоскость: в противном случае необходимы условия $\lambda A_1 + \mu A_2 = \lambda B_1 + \mu B_2 = \lambda C_1 + \mu C_2 = 0$, но тогда (A_1, B_1, C_1) и (A_2, B_2, C_2) пропорциональны, а исходные плоскости непараллельны. Такой плоскости, очевидно, принадлежат точки l и (x_1, y_1, z_1) . Так как через прямую и не лежащую на ней точку проходит ровно одна плоскость (она имеет вид $\{X_1 + \bar{v} = X_1 + \lambda \overline{X_1X_2} + \mu \overline{X_1X_3}\}$, где X_2, X_3 - произвольные точки на l), любая плоскость из собственного пучка имеет вид (*), ч.т.д.

29.3 Несобственные пучки

Теорема. Пусть плоскости $\pi_1: A_1x+B_1y+C_1z+D_1=0$ и $\pi_2: A_2x+B_2y+C_2z+D_2=0$ задают несобственный пучок (т.е. содержатся в нём и не совпадают). Тогда плоскость π принадлежит пучку $\Leftrightarrow \pi$ задаётся уравнением $\lambda(A_1x+B_1y+C_1z+D_1)+\mu(A_2x+B_2y+C_2z+D_2)=0$ (*) для некоторых $\lambda,\mu\in\mathbb{R}$.

Доказательство.

$$\Leftarrow$$
 Так как $\pi_1 \parallel \pi_2$, $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$. Тогда если π имеет вид $(*)$, то $\frac{\lambda A_1 + \mu A_2}{A_1} = \lambda + \frac{\mu A_2}{A_1} = \lambda + \frac{\mu B_2}{B_1} = \lambda + \frac{\mu B_2}{B_1} = \lambda + \frac{\mu B_2}{B_1} = \lambda + \frac{\mu C_2}{C_1} = \frac{\lambda C_1 + \mu C_2}{C_1} \Rightarrow \pi \parallel \pi_1$.

 \Rightarrow Пусть π принадлежит пучку. Так как уравнения π , π_1 и π_2 ; пропорциональны (без свободных коэффициентов), можем домножить их на числа так, что коэффициенты перед переменными станут равны: пусть $\pi_1: Ax + By + Cz + D'_1 = 0$; $\pi_2 = Ax + By + Cz + D'_2 = 0$; $\pi = Ax + By + Cz + D'_3 = 0$. Тогда возьмём

$$\lambda, \mu$$
 из следующей системы:
$$\begin{cases} D_1'\lambda + D_2'\mu = D_3' \\ \lambda + \mu = 1 \end{cases} \Leftrightarrow \begin{cases} \lambda = \frac{D_3' - D_2'}{D_1' - D_2'} \\ \mu = \frac{D_1' - D_3'}{D_1' - D_2'} \end{cases} (D_1' \neq D_2',$$

иначе π_1 и π_2 совпадают). Очевидно, что для таких λ, μ уравнение π имеет вид (*) (проверяется несложной подстановкой), ч.т.д.

Билет 30. Полупространства

Определение. Аналогично прямой на плоскости, каждая плоскость π в пространстве V^3 разбивает множество всех не принадлежащих ей точек пространства на два выпуклых подмножества $V_1, V_2 : V_1 \cup \pi \cup V_2 = V^3, V_1 \cap V_2 = V_1 \cap \pi = V_2 \cap \pi = \emptyset$. Такие подмножества называются полупространствами, ограниченными π и определяются однозначно с точностью до обозначения.

Также можем определить полупространства следующим образом: возьмём произвольную точку $X \notin \pi$ и скажем, что $V_1 = \{Y \in V^3 : [X,Y] \cap \pi = \varnothing\}$, а затем выберем $X' \notin \pi \cup V_1$ (такая точка всегда будет существовать) и определим $V_2 = \{Y' \in V^3 : [X',Y'] \cap \pi = \varnothing\}$.

Утверждение. Так определённые множества являются полупространствами и не зависят от выбора точек X, X'.

Доказательство. (Аналогично случаю прямой) Введём любую систему координат. Тогда полупространства $V^{\pm} = \{X(x,y,z) : Ax + By + Cz + D \geq 0\}$. Рассмотрим V^+ (остальные аналогично).

Пусть $X_1(x_1,y_1,z_1), X_2(x_2,y_2,z_2) \in V^+$. Знаем, что любая точка $X \in [X_1,X_2]$ имеет координаты $(tx_1+(1-t)x_2,ty_1+(1-t)y_2,tz_1+(1-t)z_2), 0 \leqslant t \leqslant 1$. Тогда:

$$\begin{cases} Ax_1 + By_1 + Cz_1 + D \geqslant 0 \\ Ax_2 + By_2 + Cz_2 + D \geqslant 0 \end{cases} \Rightarrow \begin{cases} tAx_1 + tBy_1 + tCz_1 + D \geqslant 0 \\ (1-t)(Ax_2 + By_2 + Cz_2 + D) \geqslant 0 \end{cases} \Rightarrow \\ A(tx_1 + (1-t)x_2) + B(ty_1 + (1-t)y_2) + C(tz_1 + (1-t)z_2) + D \geqslant 0 \Rightarrow X \in V^+. \end{cases}$$
 Таким образом, для $X_1, X_2 \in V^+$ $[X_1, X_2] \subset V^+$ из доказанной выше выпуклости, а для точек $X_1 \in V^+, X_2 \in V^-$ точку пересечения $[X_1, X_2]$ и π можно найти явно, но её существование очевидно.

Билет 31. Прямая в пространстве

Вывод формул. (Уравнения прямой) Пусть l - прямая в пространстве: $l = \{X_0 + t\bar{c}\}$, где X_0 - точка прямой, \bar{c} - её направляющий вектор. Если $X_0 = (c, c)$

$$\begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$
 , $\bar{v} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$, то координаты точек на прямой выражаются следующим

образом: (параметрические уравнения прямой)

$$X \in l: \begin{cases} x = x_0 + tc_1 \\ y = y_0 + tc_2 \\ z = z_0 + tc_3 \end{cases}$$

Выразим t из всех уравнений и приравняем - получим **каноническое уравнение прямой**:

$$\boxed{\frac{x - x_0}{c_1} = \frac{y - y_0}{c_2} = \frac{z - z_0}{c_3}}$$

Если известно, что прямой принадлежат $X_0=(x_0,y_0,z_0), X_1=(x_1,y_1,z_1),$ то $\overrightarrow{X_0X_1}=\begin{pmatrix} x_1-x_0\\y_1-y_0\\z_1-z_0 \end{pmatrix}$ - направляющий вектор, т.е. каноническое уравнение имеет

следующий вид (уравнение прямой по двум точкам)

$$\boxed{\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0}}$$

Следствие. Любая прямая является пересечением двух плоскостей. (Видно из канонического уравнения: например, плоскостей $\frac{x-x_0}{x_1-x_0}=\frac{y-y_0}{y_1-y_0}$ и $\frac{y-y_0}{y_1-y_0}=\frac{z-z_0}{z_1-z_0}$)

Билет 32. Взаимное расположение плоскости и прямой

Вывод формул. (Случаи расположения) Пусть $l = \{X_0 + t\bar{c} : t \in \mathbb{R}\}, \pi = \{X_1 + u\bar{a} + v\bar{b}\}$. Уже знаем, что для любых других точек прямой и плоскости верны те же выражения множеств точек.

Предположим, что прямая и плоскость пересекаются хотя бы в двух точках: пусть X_0, X_1 - их различные общие точки. Имеем $\overrightarrow{X_0X_1} = t_0\bar{c} = u_0\bar{a} + v_0\bar{b}$ (для некоторых $t_0 \neq 0, u_0, v_0$, из принадлежности точек и прямой, и плоскости). Отсюда \bar{c} выражается через $\bar{a}.\bar{b}$, а значит для любой $X \in l: X = X_0 + t\bar{c} = X_0 + t(\frac{u_0}{t_0}\bar{a} + \frac{v_0}{t_0}\bar{b}) \in \pi$. Таким образом,

 l,π имеют 2 точки пересечения $\Leftrightarrow l \subset \pi \Leftrightarrow l \cap \pi \neq \emptyset$, \bar{c} выражается через \bar{a},\bar{b} Заметим, что $X \in l \cap \pi \Leftrightarrow X = X_0 + t_0 \bar{c} = X_1 + u_0 \bar{a} + v_0 \bar{b} \Rightarrow \overrightarrow{X_0 X_1} = u_0 \bar{a} + v_0 \bar{b} - t_0 \bar{c}$. В случае некомпланарности \bar{a},\bar{b},\bar{c} вектор $\overrightarrow{X_0 X_1}$ выражается через них единственным образом, то есть точка пересечения есть и единственная, т.е.

l,π имеют одну т. пересечения $\Leftrightarrow \bar{a},\bar{b},\bar{c}$ линейно независимы

(В случае, если \bar{c} выражается через \bar{a}, \bar{b} : l, π имеют общую точку $\Rightarrow l \subset \pi$, поэтому т.пересечения одна только в этом случае)

Следствие. \bar{c} выражается через $\bar{a}, \bar{b} \Leftrightarrow$ либо $l \subset \pi$, либо $l \cap \pi = \varnothing$ (в этом случае говорят, что **прямая параллельна плоскости**) \bar{c} не выражается через $\bar{a}, \bar{b} \Leftrightarrow l \cap \pi$ - одна точка.

Билет 33. Взаимное расположение двух прямых

Определение. Прямые l_1, l_2 в пространстве называются параллельными, если они либо совпадают, либо лежат в одной плоскости и не пересекаются.

Определение. Прямые l_1, l_2 в пространстве скрещиваются, если они не пересекаются и не параллельны.

Замечание. Если прямые l_1, l_2 с направляющими векторами \bar{c}_1, \bar{c}_2 пересекаются в точке X_0 и не совпадают, то $\bar{c}_1 \not \mid \bar{c}_2$ и $l_1, l_2 \subset \pi = \{X_0 + u\bar{c}_1 + v\bar{c}_2 : u, v \in \mathbb{R}\}$. Отсюда прямые скрещиваются \Leftrightarrow они не лежат в одной плоскости.

Если направляющие векторы \bar{c}_1, \bar{c}_2 прямых l_1, l_2 коллинеарны, то прямые либо параллельны, либо совпадают.

Следствие. Прямые l_1, l_2 скрещиваются \Leftrightarrow они не пересекаются и $c_1 \not\parallel c_2$. $l_1 \parallel l_2 \Leftrightarrow c_1 \parallel c_2$ (иначе прямые либо скрещиваются, либо пересекаются).

Билет 34. Плоскость в точечно-евклидовом прве.

34.1 Нормаль к плоскости

Определение. Пусть $\pi:Ax+By+Cz+D=0$ в прямоугольной с.к. Вектор $\bar{n}=\begin{pmatrix}A\\B\\C\end{pmatrix}$ называется нормалью (нормальным вектором) к плоскости $\pi.$

Следствие. Вектор нормали \bar{n} к плоскости π ортогонален любому вектору из π .

Доказательство. Пусть $X_0 = (x_0, y_0, z_0), X_1 = (x_1, y_1, z_1), X_0, X_1 \in \pi \Rightarrow A(x_1 - x_0) + B(y_1 - y_0) + C(z_1 - z_0) = 0$ (вектор $\overline{X_0 X_1} \parallel \pi$). Данное выражение также

означает, что
$$\left(x_1 - x_0 \ y_1 - y_0 \ z_1 - z_0\right) \begin{pmatrix} A \\ B \\ C \end{pmatrix} = 0 \Rightarrow \bar{n} \perp \overrightarrow{X_0 X_1}.$$

Следствие. Зная вектор нормали, направляющие векторы плоскости можно найти как любые два неколлинеарных вектора, ортогональных нормали.

34.2 Расстояние от точки до плоскости

Вывод формулы. (Расстояние от точки до плоскости)

 $d(X_0,\pi)=\inf\{|\overrightarrow{X_0Y}|:Y\in\pi\}$. Из теоремы Пифагора (аналогично расстоянию от точки до прямой) следует, что это расстояние - длина отрезка перпендикуляра к π , проходящего через X_0 , заключённого между X_0 и π (только в прямоугольной с.к.!) Найдём это расстояние. Перпендикуляр к π через

точку X_0 имеет направляющий вектор $\begin{pmatrix} A \\ B \\ C \end{pmatrix}$ и проходит через (x_0,y_0,z_0) , т.е.

$$l: egin{cases} x=x_0+tA \ y=y_0+tB \end{cases}$$
 . Точка пересечения l и π : $z=z_0+tC$

$$A(x_0 + tA) + B(y_0 + tB) + C(z_0 + tC) + D = 0 \Rightarrow t = \frac{Ax_0 + By_0 + Cz_0 + D}{A^2 + B^2 + C^2},$$

квадрат расстояния от X_0 до неё равен $(tA)^2+(tB)^2+(tC)^2=(\frac{(Ax_0+By_0+Cz_0+D)^2}{A^2+B^2+C^2})$

$$\Rightarrow d(X_0, \pi) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

34.3 Иные формулы расстояния (нет в б.)

Величина расстояния от прямой l до плоскости π в пространстве имеет смысл только при $l \parallel \pi$. Пусть \bar{a} - направляющий вектор l и \bar{n} - нормаль к π . Проведём плоскость π' через l с направляющими векторами \bar{a}, \bar{n} . Тогда все перпендикуляры, опущенные из точки прямой l на π , будут лежать в π' . Кроме того, их основания будут лежать на $l' = \pi \cap \pi'$, а отсюда расстояния от всех точек l до π одинаковы. Поэтому расстояние от прямой до плоскости, параллельной ей, равно расстоянию от любой точки прямой до плоскости.

Вывод формулы. (Расстояние от точки до прямой)

Пусть в прямоугольной с.к. даны $X_1 = (x_1, y_1, z_1)$ - точка и l - прямая, прохо-

дящая через
$$X_0 = (x_0, y_0, z_0)$$
 с направляющим вектором $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

(ВОЗМОЖНО, ЗДЕСЬ БУДЕТ ЧЕРТЁЖ) $d(X_1,l) = |X_0X_1| \cdot \sin \varphi$ (угол между $\overrightarrow{X_0X_1}$ и $l) = |X_0X_1| \cdot \sqrt{1-\cos^2 \varphi} \Rightarrow$ $d(X_1, l)^2 =$ (после раскрытия скобок)

$$(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2 - \frac{(a(x_1 - x_0) + b(y_1 - y_0) + c(z_1 - z_0))^2}{a^2 + b^2 + c^2}$$

Вывод формулы. (Расстояние между скрещивающимися прямыми)

Пусть l_1, l_2 - скрещивающиеся прямые с направляющими векторами \bar{a}, \bar{b} соотв., $X_1 \in l_1, X_2 \in l_2$. Из уже известных нам соображений расстояние между X_1 и X_2 минимально в случае, если $\overrightarrow{X_1X_2} \perp l_1, l_2$.

Покажем существование таких X_1, X_2 : построим плоскость π через l_1 с направляющими векторами \bar{a}, \bar{b} и построим перпендикуляры из точек l_2 на π . Их основания лежат на некоторой прямой $l \parallel l_2$, причём $l_1 \not \parallel l$, потому что иначе $l_1 \parallel l_2$. Значит, существует точка пересечения l_1 и l, а следовательно существует перпендикуляр из точки l_2 на π , основание которого лежит на l_1 , т.е. этот перпендикуляр общий для l_1, l_2 .

Тогда для произвольных X_1, X_2 на прямых $d(l_1, l_2) = d(l_2, \pi)$ - длина перпендикуляра, опущенного на π из любой точки $l_2 =$ высота параллелепипеда, построенного на векторах $\bar{a}, \bar{b}, \overrightarrow{X_1X_2} \Rightarrow$

$$d(l_1, l_2) = \frac{V_{\bar{a}, \bar{b}, \overline{X_1 X_2}}}{S_{\bar{a}, \bar{b}}}$$

Осталось только получить формулы для объёма.

Билет 35. Векторное, смешанное произведение. Объём

35.1Векторное произведение

Определение. Векторным произведением неколлинеарных векторов \bar{a}, \bar{b} в ориентированном трёхмерном точечно-евклидовом пространстве называется вектор \bar{v} такой, что

1.
$$|\bar{v}| = S_{\bar{a},\bar{b}} = \langle \bar{a}, \bar{b} \rangle;$$

2.
$$\bar{v} \perp \bar{a}, \bar{v} \perp \bar{b}$$
;

3. Тройка $\bar{a}, \bar{b}, \bar{v}$ имеет положительную ориентацию.

Обозначается $[\bar{a}, b]$. Для $\bar{a} \parallel \bar{b} \quad [\bar{a}, \bar{b}] = 0.$

35.2Объём и ориентированный объём

Обычный объём определяется полностью аналогично площади на плоскости. Из свойств выводится, что объём параллелепипеда, натянутого на векторы $\bar{a}, \bar{b}, \bar{c}$ (т.е. для его вершины X_0 его вершинами также являются $X_0 + \bar{a}, X_0 + \bar{b}, X_0 + \bar{c}$), равен $\langle \bar{a}, \bar{b} \rangle \cdot h$, где $h = \bar{c} \cdot \sin \varphi$ - высота параллеленинеда φ - угол между \bar{c} и плоскостью $X_0+u\bar{a}+v\bar{b}$. Запишем φ как $\frac{\pi}{2}-\psi$, где ψ - угол между \bar{c} и нормалью к плоскости $X_0 + u\bar{a} + v\bar{b}$. Отсюда:

$$h = |\bar{c} \cdot \cos \psi| = \left| \frac{(\bar{c}, [\bar{a}, \bar{b}])}{|\bar{c}||[\bar{a}, \bar{b}]|} \cdot \bar{c} \right| = \frac{|(\bar{c}, [\bar{a}, \bar{b}])|}{|[\bar{a}, \bar{b}]|} = \frac{|(\bar{c}, [\bar{a}, \bar{b}])|}{\langle \bar{a}, \bar{b} \rangle} \Rightarrow V_{\bar{a}, \bar{b}, \bar{c}} = |([\bar{a}, \bar{b}], \bar{c})|$$

Определим ориентацию тройки $\bar{a}, \bar{b}, \bar{c}$: рассмотрим базис $\bar{a}, \bar{b}, \bar{n}$. В нём \bar{c} имеет ко-

ординаты
$$\begin{pmatrix} c_1 \\ c_2 \\ (\cos\psi)|\bar{c}| \end{pmatrix}$$
 $(c_1,c_2$ неважны), т.е. матрица перехода от этого базиса к

$$(\cos\psi)|\bar{c}|$$
/ $\bar{a}, \bar{b}, \bar{c}$ равна $\begin{pmatrix} 1 & 0 & c_1 \\ 0 & 1 & c_2 \\ 0 & 0 & (\cos\psi)|c| \end{pmatrix}$. Её определитель $> 0 \Leftrightarrow \cos\psi > 0 \Leftrightarrow ([\bar{a}, \bar{b}], \bar{c}) > 0$

0. Отсюда $([\bar{a},\bar{b}],\bar{c}) > 0 \Leftrightarrow$ тройка \bar{a},\bar{b},\bar{c} положительно ориентирована.

Определение. Ориентированным объёмом параллелепипеда, натянутого на векторы $\bar{a}, \bar{b}, \bar{c}$, называется число $\langle \bar{a}, \bar{b}, \bar{c} \rangle = ([\bar{a}, \bar{b}], \bar{c})$. Также это число называется смешанным произведением векторов $\bar{a}, \bar{b}, \bar{c}$.

Следствие. $V_{\bar{a},\bar{b},\bar{c}}=|\langle \bar{a},\bar{b},\bar{c}\rangle|;$ $\langle \bar{a}, \bar{b}, \bar{c} \rangle = V_{\bar{a}, \bar{b}, \bar{c}} \Leftrightarrow \bar{a}, \bar{b}, \bar{c}$ положительно ориентирована.

Свойства смешанного произведения

Утверждение. 1. $\langle \bar{a}, \bar{b}, \bar{c} \rangle = -\langle \bar{b}, \bar{a}, \bar{c} \rangle = -\langle \bar{a}, \bar{c}, \bar{b} \rangle = -\langle \bar{c}, \bar{b}, \bar{a} \rangle$ (очев);

2.
$$\langle \bar{a}, \bar{b}, \bar{c}_1 + \bar{c}_2 \rangle = \langle \bar{a}, \bar{b}, \bar{c}_1 \rangle + \langle \bar{a}, \bar{b}, \bar{c}_2 \rangle$$
;

3.
$$\langle \bar{a}, \bar{b}, \lambda \bar{c} \rangle = \lambda \langle \bar{a}, \bar{b}, \bar{c} \rangle$$
;

4.
$$\langle \bar{a}, \bar{b}_1 + \bar{b}_2, \bar{c} \rangle = \langle \bar{a}, \bar{b}_1, \bar{c} \rangle + \langle \bar{a}, \bar{b}_2, \bar{c} \rangle$$
;

5.
$$\langle \bar{a}, \lambda \bar{b}, \bar{c} \rangle = \lambda \langle \bar{a}, \bar{b}, \bar{c} \rangle$$
;

6.
$$\langle \bar{a}_1 + \bar{a}_2, \bar{b}, \bar{c} \rangle = \langle \bar{a}_1, \bar{b}, \bar{c} \rangle + \langle \bar{a}_2, \bar{b}, \bar{c} \rangle$$
;

7.
$$\langle \lambda \bar{a}, \bar{b}, \bar{c} \rangle = \lambda \langle \bar{a}, \bar{b}, \bar{c} \rangle$$
;

- 8. $\langle \bar{e}_1, \bar{e}_2, \bar{e}_3 \rangle = 1(\bar{e}_1, \bar{e}_2, \bar{e}_3$ ортонормированный базис)
- (1), (8) очев, (2), (3) из свойств скалярного произведения, (4) (7) получаются из (2), (3) с помощью (1).

Билет 36. Объёмы в ортонормированном базисе

Пусть $\bar{e}_1, \bar{e}_2, \bar{e}_3$ - ортонормированный положительно ориентированный базис. В курсе алгебры доказывается, что единственная функция от строк (столбцов) $\bar{a}=(a_1,a_2,a_3), \bar{b}=(b_1,b_2,b_3), \bar{c}=(c_1,c_2,c_3)$ со свойствами 1-8 (полилинейность, кососимметричность, единица в $\bar{e}_1,\bar{e}_2,\bar{e}_3$) - определитель матрицы

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \text{ (или } \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix})$$

Следовательно,
$$\langle \bar{a}, \bar{b}, \bar{c} \rangle = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
, $V_{\bar{a},\bar{b},\bar{c}} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ (модуль).

(далее в курсе приведено доказательство утверждения про определитель, более полное доказательство ищите в конспекте алгебры у Viacheslavik122333)

Билет 37. Векторное произведение и расстояния в ортонормированном базисе

37.1 Выражение векторного произведения

Вывод формулы. (Векторное произведение в прямоугольной с.к.) Знаем, что в ортонормированном базисе вектор \bar{x} имеет координаты

$$x = (\bar{x}, \bar{e}_1), y = (\bar{x}, \bar{e}_2), z = (\bar{x}, \bar{e}_3)$$

Вычислим:
$$([\bar{a}, \bar{b}], \bar{e}_1) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ 1 & 0 & 0 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}.$$

Аналогично $([\bar{a},\bar{b}],\bar{e}_2)=-\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix};$ $([\bar{a},\bar{b}],\bar{e}_3)=\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$ Данную формулу обычно записывают в виде определителя:

$$\begin{bmatrix}
 \bar{a}, \bar{b}\end{bmatrix} = \begin{vmatrix}
 \bar{e}_1 & \bar{e}_2 & \bar{e}_3 \\
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3
 \end{vmatrix}$$

(не является определителем по сути, но считается по той же формуле)

Замечание. Прямые $l_1=X_1+t\bar{a}, l_2=X_2+t\bar{b}$ скрещиваются \Leftrightarrow $\langle \overrightarrow{X_1X_2}, \bar{a}, \bar{b} \rangle \neq 0.$

37.2 Расстояния через векторное произведение

Расстояние от точки X_1 до прямой $l: X = X_0 + t\bar{a}$ - высота параллелограмма, натянутого на $\bar{a}, \overrightarrow{X_0X_1} = \frac{|S_{\bar{a},\overline{X_0X_1}}|}{|\bar{a}|} \Rightarrow$

$$d(X,l) = \frac{|[\overrightarrow{X_0 X_1}, \overline{a}]|}{|\overline{a}|}$$

Расстояние от точки X_1 до плоскости $\pi: X = X_0 + u\bar{a} + v\bar{b}$ - высота параллеленипеда, натянутого на $\bar{a}, \bar{b}, \overrightarrow{X_0X_1} = \frac{|V_{\bar{a},\bar{b},\overline{X_0X_1}}|}{[\bar{a},\bar{b}]} \Rightarrow$

$$d(X,\pi) = \frac{|\langle \overrightarrow{X_0 X_1}, \overline{a}, \overline{b} \rangle|}{|[\overline{a}, \overline{b}]|}$$

Расстояние между скрещивающимися прямыми $l_1 = X_1 + t\bar{a}, \ l_2 = X_2 + t\bar{b}$:

$$d(l_1, l_2) = \frac{|\langle \overrightarrow{X_1 X_2}, \overline{a}, \overline{b} \rangle|}{|[\overline{a}, \overline{b}]|}$$

(так как равно расстоянию от точки первой прямой до плоскости, параллельной первой прямой и проходящей через вторую)

Билет 38. Линии второго порядка

38.1 Определения

Далее рассматриваем аффинную систему координат на плоскости (как на аффинном или точечно-евклидовом пространстве).

Определение. Линией первого порядка называется множество точек $\{(x,y): Ax+By+C=0\}$, где A,B,C - вещественные числа и хотя бы одно из чисел A,B не равно нулю. Другими словами, это множество точек, координаты которых удовлетворяют фиксированному уравнению первой степени.

(Это прямая)

Определение. Линией второго порядка (кривой второго порядка) называется множество точек, координаты которых (в некоторой аффинной системе координат) удовлетворяют уравнению F(x,y)=0, где

$$F(x,y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{1}x + 2a_{2}y + a_{0}$$

где $a_{11}, a_{12}, a_{22}, a_1, a_2, a_0$ - некоторые фиксированные числа и хотя бы одно из чисел a_11, a_12, a_22 . Выражение для F(x,y) называется многочленом второй степени от переменных x,y. Уравнение F(x,y)=0 называется общим уравнением линии второго порядка.

Определение. Многочлен F(x,y) ставит в соответствие каждой паре чисел (x,y) некоторое вещественное число. С ним связано отображение $f:\pi\to\mathbb{R}$ (вместо пары чисел f сопоставляет точку плоскости с такими координатами в заданной с.к.) Отображение f называется квадратичным отображением, представленным многочленом F.

Замечание. Соответствие $F \leftrightarrow f$ взаимно однозначно.

(Каждая точка однозначно определяется своими координатами $\Rightarrow f$ однозначно определяется F; подставив в общую формулу для F(x,y) координаты шести различных точек, однозначно определим коэффициенты $\Rightarrow F$ однозначно определяется f).

Определение. Квадратичная часть $F_1(x,y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2$ многочлена F(x,y) называется его квадратичной формой.

Определение. Линия второго порядка в заданной системе координат однозначно определяется матрицей коэффициентов $A = \begin{pmatrix} a_{11} & a_{12} & a_1 \\ a_{12} & a_{22} & a_2 \\ a_1 & a_2 & a_0 \end{pmatrix}$. Она назы-

вается большой матрицей линии второго порядка.

Определение. Квадратичная форма линии второго порядка в заданной системе координат однозначно определяется матрицей коэффициентов $A_1 =$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$$
. Она называется малой матрицей линии второго порядка.

38.2 Формы записи

Имеют место равенства (несложно проверить):

$$F(x,y) = \begin{pmatrix} x & y & 1 \end{pmatrix} A \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}; \quad F_1(x,y) = \begin{pmatrix} x & y \end{pmatrix} A_1 \begin{pmatrix} x \\ y \end{pmatrix}$$

В прямоугольной системе координат на евклидовой плоскости также имеет место следующее равенство (из выражения скалярного произведения):

$$F(x,y) = \begin{pmatrix} x & y \end{pmatrix} A_1 \begin{pmatrix} x \\ y \end{pmatrix} + 2 \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + a_0$$

38.3 Связь уравнений в разных системах координат

Далее работаем в прямоугольной системе координат. Цель - избавиться от слагаемого с xy, т.е. перейти в такую прямоугольную систему координат, что A_1 в ней - диагональная.

(Для произвольных аффинных систем координат задача упрощения уравнения простая - можно выделить полный квадрат в квадратичной форме и заменой избавиться сначала от члена с xy, а затем и от линейных членов за исключением нескольких простых случаев)

Сначала будем изменять только базис. Пусть старая система координат задана репером $O\bar{e}_1\bar{e}_2$, новая - $O\bar{e}_1'\bar{e}_2'$ и C - матрица перехода от старого базиса к новому. Тогда старые координаты радиус-вектора точки X=(x,y) выражаются через новые (x',y') так:

$$\begin{pmatrix} x \\ y \end{pmatrix} = C \begin{pmatrix} x' \\ y' \end{pmatrix} \implies \begin{pmatrix} x & y \end{pmatrix} = \begin{pmatrix} x' & y' \end{pmatrix} C^T$$

Очевидно, многочлен линии второго порядка изменится, хоть линия и не меняется как множество точек. Назовём новый многочлен, полученный подстановкой новых координат в старый многочлен, F'. Тогда:

$$F'(x', y') = \begin{pmatrix} x' & y' \end{pmatrix} C^T \cdot A_1 \cdot C \begin{pmatrix} x' \\ y' \end{pmatrix} + 2 \begin{pmatrix} x' & y' \end{pmatrix} C^T \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + a_0 =$$

$$= \begin{pmatrix} x' & y' \end{pmatrix} \cdot A'_1 \cdot \begin{pmatrix} x' \\ y' \end{pmatrix} + 2 \begin{pmatrix} x' & y' \end{pmatrix} \begin{pmatrix} a'_1 \\ a'_2 \end{pmatrix} + a_0$$

где
$$A_1' = C^T A C$$
 и $\begin{pmatrix} a_1' \\ a_2' \end{pmatrix} = C^T \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$.

Далее прямой подсчет показывает, что большая матрица изменяется так:

$$A' = \begin{pmatrix} C & 0 \\ 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^T \cdot A \cdot \begin{pmatrix} C & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Теперь изменим ещё и начало координат. Тогда:

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = D \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}$$
, где $D = \begin{pmatrix} C & x_0 \\ y_0 \\ 0 & 0 & 1 \end{pmatrix}$

Подставляя в выражение F(x, y), получим:

$$F'(x,y) = \begin{pmatrix} x' & y' & 1 \end{pmatrix} D^T A D \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}$$
, r.e. $A' = D^T A D$.

Несложно проверить, что при такой замене также верно равенство $A_1' = C^T A C$.

Билет 39. Канонические уравнения линий второго порядка

39.1 Собственные векторы и значения

Итак, найдём необходимую матрицу C. Она должна являться матрицей перехода от одного ортонормированного базиса к другому, т.е. она по определению ортогональна. Таким образом, необходимо найти такие векторы \bar{e}_1', \bar{e}_2' (новый базис), что:

- 1. $\bar{e}'_1 \perp \bar{e}'_2$;
- 2. $|\bar{e}_1'| = |\bar{e}_2'| = 1$;
- 3. Если $\bar{e}_1' = \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix}$, $\bar{e}_2' = \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix}$, то матрица $\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$ искомая матрица C. Она уже будет ортогональной, т.е. достаточно условия, что $A_1' = C^T A_1 C$ диагональная (пусть равна $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$).

$$A_1' = C^{-1}A_1C \Leftrightarrow A_1C = CA_1' \Leftrightarrow A_1 \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \Leftrightarrow$$

$$\begin{cases} A_1 \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} = \lambda_1 \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} \\ A_1 \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix} = \lambda_2 \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix} \end{cases}, \text{ r.e. } A_1\bar{e}_1 = \lambda_1\bar{e}_1 \text{ if } A_1\bar{e}_2 = \lambda_2\bar{e}_2.$$

Найдём ненулевые \bar{x} , для которых существует λ : $A_1\bar{x}=\lambda\bar{x}$, т.е. $(A_1-\lambda E)\bar{x}=\bar{0}$. Это уравнение относительно \bar{x} имеет нетривиальное решение $\Leftrightarrow |A_1-\lambda E|=0$ (из курса алгебры). Это квадратное уравнение относительно λ (оно называется характеристическим многочленом линии второго порядка) :

$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{12} & a_{22} - \lambda \end{vmatrix} = 0 \Leftrightarrow \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}^2 = 0$$

$$\mathcal{D} = (a_{11} + a_{22})^2 - 4(a_{11}a_{22} - a_{12}^2) = (a_{11} - a_{22})^2 + 4a_{12}^2 \geqslant 0,$$

то есть уравнение всегда имеет решения.

Пусть λ_1, λ_2 - корни этого уравнения (возможно, совпадающие). Занумеруем их так: если они разных знаков, то λ_1 - положительный корень, а если одного знака, то λ_1 - меньший по модулю корень.

Из построения λ_1, λ_2 следует, что существуют \bar{a}, \bar{b} такие, что $A_1\bar{a}=\lambda_1\bar{a}, A_1\bar{b}=\lambda_2\bar{b}$ (они называются собственными векторами матрицы A_1 , соответствующими собственным значениям λ_1 и λ_2 соответственно)

39.2 Переход к канонической системе координат

Рассмотрим случаи:

1. $\lambda_1 \neq \lambda_2$.

Пусть $\bar{a}=\begin{pmatrix} a_1\\a_2\end{pmatrix}, \bar{b}=\begin{pmatrix} b_1\\b_2\end{pmatrix}$. Из того, что матрица A симметричная и изначальная система координат прямоугольная, получим:

$$\lambda_{1}(\bar{a}, \bar{b}) = (\lambda_{1}\bar{a}, \bar{b}) = (A_{1}\bar{a}, \bar{b}) = (A_{1}\begin{pmatrix} a_{1} \\ a_{2} \end{pmatrix})^{T} \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} = \begin{pmatrix} a_{1} & a_{2} \end{pmatrix} A_{1}^{T} \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} = \\ = \begin{pmatrix} a_{1} & a_{2} \end{pmatrix} A_{1} \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} = (\bar{a}, A_{1}\bar{b}) = (\bar{a}, \lambda_{2}\bar{b}) = \lambda_{2}(\bar{a}, \bar{b})$$

Притом $\lambda_1 \neq \lambda_2$, а значит $(\bar{a}, \bar{b}) = 0 \Leftrightarrow \bar{a} \perp \bar{b}$. Тогда система координат $O\bar{e}_1'\bar{e}_2'$, где $\bar{e}_1 = \frac{\bar{a}}{|\bar{a}|}, \bar{e}_2 = \pm \frac{\bar{b}}{|\bar{b}|}$ является прямоугольной, причём A_1' в ней - диагональная $(=\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix})$, что мы и хотели получить (можем выбрать знаки так, что ориентация положительна).

$$2. \lambda_1 = \lambda_2 \ (= \lambda).$$

Найдём \bar{a} такой, что $A_1\bar{a}=\lambda\bar{a}$. Возьмём ненулевой вектор \bar{b} , ортогональный \bar{a} . Пусть $\bar{a}=\begin{pmatrix} a_1\\a_2 \end{pmatrix}, \bar{b}=\begin{pmatrix} b_1\\b_2 \end{pmatrix}$. Тогда:

$$(\bar{a}, \bar{b}) = 0 \Rightarrow (A_1 \bar{a}, \bar{b}) = \lambda(\bar{a}, \bar{b}) = 0$$

С другой стороны,

$$(A_1\bar{a},\bar{b}) = \begin{pmatrix} a_1 & a_2 \end{pmatrix} A_1^T \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 \end{pmatrix} A_1 \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = (\bar{a},A_1\bar{b}) \Rightarrow \bar{a} \perp A_1\bar{b}$$

Отсюда $A_1 \bar{b}$ пропорционален \bar{b} , т.е. $A_1 \bar{b} = \lambda' \bar{b}$. А так как уже знаем, что такое уравнение имеет решение только при $\lambda' = \lambda$, получаем, что для любого $\bar{b} \perp \bar{a}$ верно $A_1 \bar{b} = \lambda \bar{b}$. Тогда подойдёт система координат $O\bar{e}_1' \bar{e}_2'$, где $\bar{e}_1 = \frac{\bar{a}}{|\bar{a}|}, \bar{e}_2 = \pm \frac{\bar{b}}{|\bar{b}|}$ (знак для положительной ориентации).

Итак, для любого случая нашли прямоугольную систему координат $O\bar{e}_1'\bar{e}_2'$, в которой уравнение линии имеет вид:

$$F'(x', y') = \lambda_1 x'^2 + \lambda_2 y'^2 + 2a_1' x' + 2a_2' y' + a_0 = 0$$

Вновь рассмотрим случаи:

1. $\lambda_1 \neq 0$

Тогда из нашей нумерации и $\lambda_2 \neq 0$. Можем выделить полные квадраты: $x'' = x' + \frac{a_1'}{\lambda_1}, y'' = y' + \frac{a_2'}{\lambda_2}$ и перейти к системе координат $O''\bar{e}_1'\bar{e}_2'$, где $O'' = (\frac{a_1'}{\lambda_1}, \frac{a_2'}{\lambda_2})$ в системе координат $O\bar{e}_1'\bar{e}_2'$. Получим уравнение:

$$\lambda_1(x' + \frac{a_1'}{\lambda_1})^2 + \lambda_2(y' + \frac{a_2'}{\lambda_2}) + a_0 - \frac{{a_1'}^2}{\lambda_1} - \frac{{a_2'}^2}{\lambda_2} = 0$$

то есть в новейших координатах уравнение имеет вид $\lambda_1 x''^2 + \lambda_2 y''^2 = C$. Если $\lambda_1 > 0, C > 0$, разделим на C и получим уравнение вида

$$\left[rac{x''^2}{a^2} \pm rac{y''^2}{b^2} = 1$$
 - эллипс (если +) или гипербола (если -) $\right]$

Если $\lambda_1>0, C<0$, посмотрим на λ_2 : Если $\lambda_2>0$, разделим на -C и получим

$$\frac{x''^2}{a^2} + \frac{y''^2}{b^2} = -1$$
 - пустое множество (уравнение мнимого эллипса)

Если $\lambda_2 < 0$, разделим на -C и ещё раз заменим координаты, поменяв местами x и y (также надо развернуть одну из осей, чтобы сохранить ориентацию, поэтому матрица перехода имеет вид $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$). Получим снова

$$\frac{x'''^2}{a^2} - \frac{y'''^2}{b^2} = 1$$
 - гипербола

Случаи с $\lambda_1 < 0, C \neq 0$ рассматриваются аналогично - либо гипербола, либо эллипс, либо мнимый эллипс.

Если C=0 и λ_1, λ_2 одного знака, то уравнение имеет вид (с точностью до домножения на -1):

$$\frac{x''^2}{a^2} + \frac{y''^2}{b^2} = 0$$
 - одна точка (пара мнимых пересекающихся прямых)

Если C = 0 и λ_1, λ_2 разных знаков, то уравнение имеет вид (с точностью до домножения на -1):

$$\frac{x''^2}{a^2} - \frac{y''^2}{b^2} = 0$$
 - пара пересекающихся прямых

2. $\lambda_1 = 0$. Тогда $\lambda_2 \neq 0$ (иначе уравнение не второго порядка).

$$F'(x', y') = \lambda_2 y'^2 + 2a_1'x' + 2a_2'y' + a_0 = 0$$

Если $a_1' \neq 0$, то выделением полного квадрата избавимся от члена с y и сдвигом по оси Ox избавимся от константы: $x'' = x' + \frac{a_0}{2a_1'} - \frac{{a_2'}^2}{2a_1'\lambda_2^2}$, $y'' = y' + \frac{a_2'}{\lambda_2}$. Получим уравнение $\lambda_2 y''^2 + 2a_1'x'' = 0$, т.е. $\lambda_2 y''^2 = -2a_1'x''$. Можем сделать λ_2 и a_1' разного знака: если одного, заменим x на -x и y на -y. Поделив на λ_2 , получим

$$y''^2 = 2px(p>0)$$
 - парабола

Если $a_1'=0$, то $F'(x',y')=\lambda_2 {y'}^2+2a_2'y'+a_0=0$, т.е. $\lambda_2 {y''}^2+C=0$. Поделив на λ_2 , получим один из следующих случаев:

$$y''^2 + a^2 = 0$$
 - пара мнимых параллельных прямых $y''^2 - a^2 = 0$ - пара параллельных прямых $y''^2 = 0$ - пара совпадающих прямых

39.3 Классификация линий второго порядка

Сформулируем то, что получили:

Теорема. (Классификация линий второго порядка)

Для любой линии второго порядка прямоугольная система координат (она называется канонической системой координат) такая, что в ней линия имеет один из следующих видов:

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (эллипс);

2.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$
 (мнимый эллипс);

3.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
 (пара мнимых пересекающихся прямых);

4.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 (гипербола);

5.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$
 (пара пересекающихся прямых);

6.
$$y^2 = 2px$$
 (парабола);

7.
$$y^2 - a^2 = 0$$
 (пара параллельных прямых);

8.
$$y^2 + a^2 = 0$$
 (пара мнимых параллельных прямых);

9.
$$y^2 = 0$$
 (пара совпадающих прямых).

Билет 40. Ортогональные инварианты

40.1 Основные инварианты

Пусть линия второго порядка задана в прямоугольной системе координат формулой $F(x,y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{1}x + 2a_{2}y + a_{0}$, A - её большая матрица,

 A_1 - малая матрица. При переходе к новой прямоугольной системе координат:

$$A' = D^T A D, D = \begin{pmatrix} C & x_0 \\ y_0 \\ 0 & 0 & 1 \end{pmatrix}; A'_1 = C^T A C$$

(С - матрица перехода, x_0, y_0 — новое начало отсчёта)

При таком преобразовании не меняются:

1.
$$\Delta = |A|$$
 (t.k. $|D| = |D^T| = |D^{-1}| = \pm 1$);

- 2. $\delta = |A_1|$ (аналогично);
- 3. $|A_1 \lambda E|$;
- 4. $S = a_{11} + a_{22}$. (нетрудно проверить)

Заметим, что инварианты изменяются при домножении уравнения на число, но не меняются знаки δ и $\Delta \cdot S$.

40.2 Классификация

Запишем большие матрицы канонических уравнений:

1.
$$\begin{pmatrix} \frac{1}{a^2} & 0 & 0 \\ 0 & \frac{1}{b^2} & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 (эллипс) - $\delta > 0, \Delta S < 0$;

2.
$$\begin{pmatrix} \frac{1}{a^2} & 0 & 0 \\ 0 & \frac{1}{b^2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (мнимый эллипс) - $\delta > 0, \Delta S > 0;$

3.
$$\begin{pmatrix} \frac{1}{a^2} & 0 & 0 \\ 0 & \frac{1}{b^2} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (пара мнимых пересекающихся прямых) - $\delta > 0, \Delta S = 0;$

4.
$$\begin{pmatrix} \frac{1}{a^2} & 0 & 0 \\ 0 & -\frac{1}{b^2} & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 (гипербола) - $\delta < 0, \Delta S \neq 0$;

5.
$$\begin{pmatrix} \frac{1}{a^2} & 0 & 0 \\ 0 & -\frac{1}{b^2} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (пара пересекающихся прямых) - $\delta < 0, \Delta S = 0;$

6.
$$\begin{pmatrix} 0 & 0 & -2p \\ 0 & 1 & 0 \\ -2p & 0 & 0 \end{pmatrix}$$
 (парабола) - $\delta = 0, \Delta S \neq 0;$

7.
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -a^2 \end{pmatrix}$$
 (пара параллельных прямых) - $\delta = \Delta = 0$;

8.
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & a^2 \end{pmatrix}$$
 (пара мнимых параллельных прямых) - $\delta = \Delta = 0$;

9.
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (пара совпадающих прямых) - $\delta = \Delta = 0$;

Итак, разберём случаи знаков ортогональных инвариантов:

- 1. $\delta \neq 0$ центральный случай (кривые 1-5): $\delta > 0 \Rightarrow$ либо эллипс ($\Delta S < 0$), либо мнимый эллипс ($\Delta S > 0$), либо пара мнимых пересекающихся прямых ($\Delta S = 0$); $\delta < 0 \Rightarrow$ либо гипербола ($\Delta \neq 0$), либо пара пересекающихся прямых ($\Delta = 0$);
- 2. $\delta=0$ параболический случай (кривые 6-9): $\Delta\neq0$ парабола; $\Delta=0$ кривые 7-9.

40.3 Семиинвариант (нет в б., но полезно)

Для последнего случая необходим семиинвариант: $K = \begin{vmatrix} a_{22} & a_2 \\ a_2 & a_0 \end{vmatrix} + \begin{vmatrix} a_{11} & a_1 \\ a_1 & a_0 \end{vmatrix}$.

Утверждение. K не изменяется при замене базиса (без сдвига)

Доказательство.

$$K = (a_{11} + a_{22})a_0 - a_1^2 - a_2^2 = S \cdot a_0 - |\bar{a}|^2$$

При переходе к новому ортонормированному базису a_0 не изменяется (очев.), S не изменяется (инвариант), а \bar{a} умножается на транспонированную матрицу перехода, которую можно представить в виде матрицы поворота на некоторый угол (см. Билет 23), т.е. $|\bar{a}|$ не изменяется.

Утверждение. В случае $\delta = \Delta = 0$ *K* не изменяется и при сдвиге.

Доказательство. Пусть уравнение кривой $a_{11}x^2+2a_{12}xy+a_{22}y^2+2a_1x+2a_2y+a_0$ задано в прямоугольной системе координат. Доказали, что существует прямоугольная система координат с тем же началом, в которой данная линия задаётся уравнением $\lambda_1 x'^2 + \lambda_2 y'^2 + a_1' x' + a_2' y' + a_0$, и притом K не изменяется при этом переходе. Из условия $\delta=0$ следует, что $\lambda_1\lambda_2=0$. Пусть $\lambda_1=0$ (в силу на-

шей нумерации). Тогда большая матрица имеет вид $\begin{pmatrix} 0 & 0 & a_1' \\ 0 & \lambda_2 & a_2' \\ a_1' & a_2' & a_0 \end{pmatrix}$. Из условия

 $\langle a_1 \ a_2 \ a_0 \rangle$ $\Delta=0$ имеем $\lambda_2 {a'_1}^2=0$. Причём знаем, что $\lambda_2\neq 0$ (иначе линия не является линией второго порядка), то есть $a'_1=0$. Тогда подстановкой получим, что $K=Sa_0-|\bar{a}|^2=\lambda_2 a_0-{a'_2}^2$. Заменим начало координат: $x'=x''+x_0, y'=y''+y_0$. Подставим в уравнение линии:

$$\lambda_{2}(y'' + y_{0})^{2} + 2a'_{2}(y'' + y_{0}) + a_{0} = \lambda_{2}y''^{2} + 2(\lambda_{2}y_{0} + a'_{2})y'' + \lambda_{2}y_{0}^{2} + 2a'_{2}y_{0} + a_{0} \Rightarrow$$

$$K' = \lambda_{2}(\lambda_{2}y_{0}^{2} + 2a'_{2}y_{0} + a_{0}) - (\lambda_{2}y_{0} + a'_{2})^{2} =$$

$$\lambda_{2}^{2}y_{0}^{2} + 2\lambda_{2}a'_{2}y_{0} + \lambda_{2}a_{0} - \lambda_{2}^{2}y_{0}^{2} + 2\lambda_{2}a'_{2}y_{0} + a'_{2}^{2} = \lambda_{2}a_{0} - a'_{2}^{2} = K$$

Отсюда K'=K, ч.т.д.

Тогда в случае $\delta = \Delta = 0$:

1.
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -a^2 \end{pmatrix}$$
 (пара параллельных прямых) - $K < 0$;

2.
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & a^2 \end{pmatrix}$$
 (пара мнимых параллельных прямых) - $K>0$;

3.
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (пара совпадающих прямых) - $K=0$;

40.4 Полная классификация

Отсюда получаем во-первых единственность канонического уравнения линии второго порядка (из инвариантности однозначно определяющих её величин), а также алгоритм определения линии по значениям инвариантов в её большой матрице:

$\delta \neq 0$					$\delta = 0$			
$\delta > 0$			$\delta \neq 0$		$\Delta \neq 0$	$\Delta = 0$		
$\Delta S < 0$	$\Delta S > 0$	$\Delta S = 0$	$\Delta \neq 0$	$\Delta = 0$		K < 0	K > 0	K = 0
эллипс	мн. эллипс	мн. ×	гипербола	×	парабола		мн.	совп.

Билет 41. Центр линии второго порядка

41.1 Центр симметрии

Определение. Точка X_1 называется симметричной точке X_2 относительно точки O, если O - середина отрезка $[X_1X_2]$

Определение. Точка O называется центром симметрии множества точек M (на плоскости), если для любой точки X из M точка, симметричная X относительно O, также принадлежит M.

41.2 Уравнение центра

Теорема. Пусть непустая линия второго порядка задана в некоторой системе координат (не обязательно прямоугольной) уравнением $a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{12}x + 2a_{22}y + a_{0} = 0$. Точка $O = (x_0, y_0)$ является центром симметрии этой линии \Leftrightarrow $\begin{cases} a_{11}x_0 + a_{12}y_0 + a_{1} = 0 \\ a_{12}x_0 + a_{22}y_0 + a_{2} = 0 \end{cases}$

Доказательство.

Лемма. Координаты точки $X(x_1,y_1)$ удовлетворяют или не удовлетворяют системе $\begin{cases} a_{11}x_0+a_{12}y_0+a_1=0\\ a_{12}x_0+a_{22}y_0+a_2=0 \end{cases}$ (*) независимо от того, в какой аффинной системе координат записано уравнение и координаты.

Доказательство.
$$(x_1,y_1)$$
 удовлетворяет $(*) \Rightarrow A \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \alpha \end{pmatrix}$, где $\alpha =$

 $a_1x_1 + a_2y_1 + a_0$. Тогда в другой системе координат, переход к которой задан мат-

рицей
$$D = \begin{pmatrix} C & x_0 \\ y_0 \\ 0 & 0 & 1 \end{pmatrix}$$
, имеем $\begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix} = D \begin{pmatrix} x_1' \\ y_1' \\ 1 \end{pmatrix}$; $A' = D^T A D \Rightarrow A' \begin{pmatrix} x_1' \\ y_1' \\ 1 \end{pmatrix} = 0$

$$D^TAD \begin{pmatrix} x_1' \\ y_1' \\ 1 \end{pmatrix} = D^TA \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix} = D^T \begin{pmatrix} 0 \\ 0 \\ \alpha \end{pmatrix} = \begin{pmatrix} C & 0 \\ 0 \\ x_0 & y_0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \alpha \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \alpha \end{pmatrix}.$$
 Остюда в

новой системе координат для координат точки X эта система уравнений также выполнена. \square

 \Rightarrow Сдвинем начало координат в точку $O: x = x' + x_0, y = y' + y_0$ и получим новое уравнение:

$$a'_{11}x'^2 + 2a'_{12}x'y' + a'_{22}y'^2 + 2a'_{1}x' + 2a'_{2}y' + a'_{0} = 0$$

Так как для этой системы координат точка (0,0) в этой системе координат является центром симметрии линии, если ей принадлежит точка (x_1,y_1') , то принадлежит и точка $(-x_1',-y_1')$. Подставим точку $(-x_1',-y_1')$:

$$a'_{11}x'^2 + 2a'_{12}x'y' + a'_{22}y'^2 - 2a'_{1}x' - 2a'_{2}y' + a'_{0} = 0$$

Вычитая это уравнение из уравнения для точки (x'_1, y'_1) , получим:

$$4(a_1'x' + a_2'y') = 0 \Rightarrow a_1'x' + a_2'y' = 0$$

для любой точки (x_1, y_1) линии. Получаем следующее:

Либо $a_1'=a_2'=0$ (тогда уравнение верно всегда), либо все точки линии удовлетворяют уравнению прямой $a_1'x'+a_2'y'=0$. (*)

При этом можем выразить a_1' и a_2' через коэффициенты старого уравнения -

получим
$$\begin{cases} a_1'=a_{11}x_0+a_{12}y_0+a_1\\ a_2'=a_{12}x_0+a_{22}y_0+a_2 \end{cases}$$
 . Из рассуждений выше либо $a_1'=a_2'=0,$

то есть теорема верна, либо все точки линии лежат на одной прямой - для непустых линий второго порядка это возможно только в случае точки (пара мнимых пересекающихся прямых) или совпадающих прямых, а у этих линий каждая точка является центром симметрии.

 \Leftarrow Сдвинем начало координат в точку $O: x = x' + x_0, y = y' + y_0$. В новой системе получим новое уравнение:

$$F'(x',y') = a_{11}x'^2 + 2a_{12}x'y' + a_{22}y'^2 + C_0 = 0$$

так как коэффициенты перед x', y' получаются равными нулю из системы. Очевидно, что это уравнение симметрично относительно начала координат. \square

Следствие. В центральном случае для непустой линии второго порядка (не мнимый эллипс) центр симметрии единственный.

Доказательство. Центральный случай $\Rightarrow \delta \neq 0 \Rightarrow$ система имеет единственное решение.

(Решение единственно и в случае мнимого эллипса, но у него нет действительных точек)

Отдельно рассмотрим случаи из утверждения (*). В первом случае имеем

$$A_1 = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}, A = \begin{pmatrix} a_{11} & a_{12} & 0 \\ a_{12} & a_{22} & 0 \\ 0 & 0 & a_0 \end{pmatrix}$$
. После перехода к базису канонической

системы координат получим уравнение вида $\lambda_1 x''^2 + \lambda_2 y''^2 + a_0 = 0$ - таким уравнением можно представить всё, кроме параболы. Справедливо и обратное утверждение: если линия задаётся уравнением вида $\lambda_1 x''^2 + \lambda_2 y''^2 + a_0 = 0$, то точка с координатами (0,0) в этой с.к. - её центр симметрии.

Во втором случае все точки линии второго порядка лежат на одной прямой. Покажем, когда такое возможно: $a_1'x' + a_2'y' = 0 \Leftrightarrow (a_1'x' + a_2'y')^2 = 0 \Leftrightarrow a_1'^2x'^2 + a_1'a_2'x'y' + a_2'^2y'^2 = 0$ - такое уравнение задаёт либо пару мнимых пересекающихся прямых, либо пару совпадающих прямых (либо пустое множество, для которого наши рассуждения о принадлежности всех точек одной прямой неприменимы, так что рассматриваем непустые линии) - то есть наша линия является либо точкой, либо прямой.

У любой линии второго порядка, кроме параболы, есть центр симметрии.

41.3 Определение центра

Итак, теперь можем определить центр линии второго порядка.

Определение. Точка $O(x_0,y_0)$ называется центром линии второго порядка $a_{11}x^2+2a_{12}xy+a_{22}y^2+2a_1x+2a_2y+a_0$, если её координаты удовлетворяют системе уравнений $\begin{cases} a_{11}x_0+a_{12}y_0+a_1=0\\ a_{12}x_0+a_{22}y_0+a_2=0 \end{cases}$

Замечание. Из доказанного выше: O - центр линии \Leftrightarrow уравнение линии симметрично относительно этой точки в любой с.к.

Для всех прямых, кроме параболы, центр канонической с.к. является её центром (несложно проверить).

Билет 42. Сопряжённые направления

42.1 Определение

Попробуем найти произвольный базис (не обязательно ортогональный), в котором матрица A_1 линии второго порядка станет диагональной. Пусть $e_1 = \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix}, e_2 = \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix}$ - координаты новых базисных векторов в старом базисе. Их новые координаты - $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ и $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Так как $A_1' = \begin{pmatrix} a_{11}' & a_{12}' \\ a_{12}' & a_{22}' \end{pmatrix}$ - диагональная, $a_{22}' = 0$. Выразим $a_{22}' : a_{22}' = \begin{pmatrix} 1 & 0 \end{pmatrix} A_1' \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

- 42.2 Сопряжённые направления как базис
- 42.3 Асимптотические направления
- 42.4 Пересечения линии и прямой

Мораль в том, что пупупу...