EP 0 554 917 A2

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to a digital signal processor capable of efficiently carrying out the arithmetic or interruption processing mainly of successive signals at a high speed through a small number of steps.

Description of the Prior Art

10

Fig. 1 is a block diagram showing the constitution of DSSP1 (Digital Speech Signal Processor 1), namely, an exemplary conventional digital signal processor, "A High-speed VLSI Signal Processor with Normalizing Floating-point Systems", the proceedings of the annual communication Symposium of the Institute of Electronics and Communication Engineers of Japan (IECEJ), 1986, Japan.

Shown in Fig. 1 are program counter (PC) 1 internally provided with a stack for instruction address control, an instruction mask ROM 2 storing microinstructions, an instruction register (IR0) 3 for receiving one microinstruction provided by the instruction mask ROM 2 or one external microinstruction every machine cycle, an instruction register (IR1) 4 for receiving only the bit field requiring decoding included in a microinstruction given to the instruction register (IRO) 3, an instruction decoder 5 for decoding the microinstruction given to the instruction register (IR1) 4, a program bus (P-Bus) 6 for distributing microinstructions to the functional units, a register (BI) 7 which receives immediate data (18-bit width) included in a microinstruction provided on the program bus (P-Bus) 6 and applies the same to a data bus (D-Bus) 8 (18-bit width) for internally transferring data obtained by operation, a register (AM) 9 which receives an address mode instruction of data memory through the program bus (P-Bus) 6, a register (AD) 10 (4w x 16-bit width) for holding address pointer information for generating an indirect address, a page register (PR) 11 (3-bit width) which specifies the page in an external data memory, an address computation unit (AAU) 12 (9-bit width) capable of simultaneously generating three addresses at the maximum, an address register (AR0) 13, an address register (AR1) 14, an address register (AR2) 15, an address selector (RAS) 16, a loop counter (LC) 17, a status register (SR) 18 for indicating the operating mode and status of the processor, a DMA control unit 19 for controlling the direct data transfer between serial I/O ports (SIO/1, SO0/1) 32 and an external data memory, an address register (AR) 20 for holding addresses of 12-bit width to be given to an external data memory, a dual port internal data memory (20-RAM) 21 of 512w x 18 bits capacity capable of simultaneous read and write of two data, a register (DP0) 22 for holding input data of operand, a register (DP1) 23 for holding input data of operator, a multiplier (FMPL) 24 for multiplying the floating point of 12E6 bit format, a register (P) 25 for holding the results of operation of the multiplier (FMPL) 24, a selector 26, a selector 27, a floating-point arithmetic logical operation unit 28 mainly for carrying out the floating-point operation of 12E6 bit format, accumulators (ACC0 to ACC 3) 29 of 4w x 18 bits for holding and accumulating the outputs of the floating-point arithmetic logical operation unit (FALU) 28, a data register (DR) 30 connected to the data bus (D-Bus) 8 to temporarily hold data to be read from and to be written in an external data memory, a read/write control circuit (R/W Cont) 31 for reading data from and writing data in an external data memory, serial I/O ports (SI0/1, SO0/1) 32 for full-duplex twochannel data transfer with external devices, an interrupt control circuit (Int Cont) 33, an external data memory bus control circuit (Bus Cont) 34, a clock control circuit (CLK Cont) 35 for controlling internal timing, and a selector 36.

Fig. 2 is a time chart of assistance in explaining the microinstruction execution sequence of the digital signal processor DSSP1 shown in Fig. 1. Shown in Fig. 2 are cycle timing 40 consisting of four phases of clocks, fetch stage timing 41 showing stages of the address output of the program counter (PC) 1 and the microinstruction input of the instruction register (IR0) 3, decode stage timing 42 of decoding the input microinstruction of the instruction register (IR1) 4 by the instruction decoder 5, timing 43 of updating the address computation unit 12 in the decode stage, timing 44 of operation of the floating-point multiplier (FMPL) 24, timing 45 of operation of the floating-point arithmetic logical operation unit (FALU) 28, timing 46 of transferring data through the data bus (D-Bus) 8 between the registers, and timing 47 of reading data from and writing data in the external data memory through the data register (DR) 30.

Referring to Fig. 3 showing the respective constructions of microinstructions of 32-bit width per word representing four groups of microinstructions of the digital signal processor DSSP1 of Fig. 1, indicated at 50 is a sequence instruction for controlling instruction processing steps, at 51 is a mode instruction for initializing and setting modes of the status register (SR) 17, the address computation unit (AAU) 12 and the DMA control unit 19, at 52 is an operation instruction mainly for controlling the operation of the floating-point

arithmetic logical operation unit (FALU) 28 and parallel data transfer accompanying the operation of the floating-point arithmetic logical operation unit (FALU) 28, and at 53 is a load instruction for loading immediate data on an optional register or a data memory.

The operation of the digital data processor (DSSP1) will be described hereinafter, in which the components will be denoted by the abbreviated designation shown in the foregoing description.

First the general mode of operation will be described with reference to Fig. 1. In this digital signal processor DSSP1, the P-Bus 6 and the D-Bus 8 are provided individually. The application of the microinstruction to the IRO 3, the transfer of the microinstruction through the P-Bus 6, the decoding of the microinstruction by the instruction decoder 5, and execution of the instruction by the D-Bus 8, the FMPL 24 and the FALU 28 are carried out in parallel through a pipeline process. The D-Bus 8 and all the execution units including the 2P-RAM 21 are of register-base, namely, all the inputs and outputs are connected to the registers. In the timing of access to the registers, outputs are provided at the leading edge of the machine cycle and the outputs are set in the registers at the trailing edge of the machine cycle. The contents of data actually processed is not the contents of data set in the register by the same microinstruction, but the contents of data set in the register by the preceding microinstruction. Such a mode of operation is called as delayed operation. The interior of the arithmetic unit is partitioned into sections by the registers to enable the parallel operation of the sections. For example, the FMPL 24 continually executes the floating-point multiplication once every machine cycle. In applying data to the FMPL 20, the data is set in the DP0 22 and DP1 23 by the preceding microinstruction, and the contents of the P 25 is fetched by the succeeding or later microinstruction to obtain the results of multiplication. While the contents of the P 25 is being fetched, the data is held by the DP0 22, DP1 23 and the P 25. Accordingly, one multiplication operation formerly requiring three microinstructions for data input, multiplication and data output can be carried out by one microinstruction when the process is executed continuously.

In this DSSP1, the FMPL 24 and the FALU 28 are connected by the P 25. The FALU is able to accumulate the contents of the P25 in the ACC0 29 to the ACC3 29 to execute one term of product-sum operation which is often used in filtering and the butterfly operation of fast Fourier transform (FFT) in one machine cycle similarly to one pair of a multiplier and accumulator shown in "Packing a signal processor onto a single digital board", Louis Schirm, Electronics, Dec. 20, 1979. For example, the product-sum is calculated by using an expression:

$$\sum_{i=1}^{N} = (a_i \times b_i)$$

35

55

30

where N is an integer not less than 1 (one), and a_i and b_i are input data. In this processor, three microinstructions for applying data to the DP0 22 and DP1 23, for executing multiplication by the FMPL 24 and for accumulating the results of multiplication set in the P 26 by the FALU 28 in the ACC0 to ACC3 to obtain one term of the product-sum. Naturally, when the operation is carried out continuously, one term of the product-sum can be obtained for one microinstruction. Thus, to obtain one term of the product-sum for one microinstruction, two input data corresponding to the input data ai and bi must be given respectively to the DP0 22 and the DP1 23 every one microinstruction. Accordingly, the 2P-RAM 21 is enabled to supply the two input data, and a bus is provided to transfer the data read from the 20-RAM 21 directly to the DP0 22 and DP1 23 without using the D-Bus 8 to avoid bus contention in the D-Bus 8. The AAU 12 has output means for selectively providing two address data among address data of 9-bit width provided through the ARO 12, AR1 14 and AR2 15 mainly to address the input data of the 2P-RAM 21. The AAU 12 is able to specify three addresses simultaneously at the maximum only in generating addresses for the two input data given thereto from the 2P-RAM 21, and an address for one output data given through the DR 30 and the AR 20 to the external data memory. Each addressing is so-called indirect addressing system using an address pointer internally set in the AAU 12. The ARO 13 is susceptible to increment, modulo, bit reverse, repeat, increment base address and updating of increment, while the AR1 14 and the AR 15 are susceptible only to simple increment. The AAU 12 is able to perform address operation only in a 9-bit natural binary system. In specifying a 12-bit address in the external data memory, three bits for specifying a memory page are added to the nine bits to specify twelve bits.

On the other hand, since the FMPL 24 and the FALU 28 execute operation in a normalized floating-point system of 12E6, all the data for the 2P-RAM 21, the DP0 22, the DP1 23, the ACC0 29 through ACC3 29, the DR 30, the D-Bus 8 and BI 7 are of 18-bit width, and hence the FALU 28 needs a special operation

BEST AVAILABLE COPY

Europäisches Patentamt
European Patent Office
Office européen des brevets

(1) Publication number:

0 554 917 A2

(2)

EUROPEAN PATENT APPLICATION

(2) Application number: 93104194.1

(a) Int. Cl.5: G06F 9/26, G06F 15/78

② Date of filing: 01.06.88

This application was filed on 16 - 03 - 1993 as a divisional application to the application mentioned under INID code 60.

Priority: 05.06.87 JP 140872/87
 27.07.87 JP 186858/87
 06.08.87 JP 197009/87
 29.10.87 JP 273763/87
 30.10.87 JP 274810/87

25.11.87 JP 296611/87 25.11.87 JP 296612/87 15.12.87 JP 316553/87

- Date of publication of application:
- (a) Publication number of the earlier application in accordance with Art.76 EPC: 0 293 851
- Designated Contracting States:
 DE FR GB IT NL SE

11.08.93 Bulletin 93/32

- ② Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA 2-3, Marunouchi 2-chome Chiyoda-ku Tokyo 100(JP)
- ② Inventor: Murakami, Tokumichi, c/o MITSUBISHI DENKI K.K. Communication Sys. Dev. Lab., 1-1, Ofuna 5-chome

Kamakura-shi, Kanagawa(JP)

Inventor: Kamizawa, Koh, c/o MITSUBISHI

DENKI K.K.

Communication Sys. Dev. Lab., 1-1, Ofuna

5-chome

Kamakura-shi, Kanagawa(JP)

Inventor: Katoh, Yoshiaki, c/o MITSUBISHI

DENKI K.K.

Communication Sys. Dev. Lab., 1-1, Ofuna

5-chome

Kamakura-shi, Kanagawa(JP)

Inventor: Ohira, Hideo, c/o MITSUBISHI DENKI

K.K.

Communication Sys. Dev. Lab., 1-1, Ofuna

5-chome

Kamakura-shi, Kanagawa(JP)

Inventor: Kameyama, Masatoshi, c/o

MITSUBISHI DENKI K.K.

Info. Sys. and Elec. Dev. Lab., 1-1, Ofuna

5-chome

Kamakura-shi, Kanagawa(JP)

Inventor: Kinjo, Naoto, c/o MITSUBISHI DENKI

K.K.

Communication Sys. Dev. Lab., 1-1, Ofuna

5-chome

Kamakura-shi, Kanagawa(JP)

Representative: Eisenführ, Speiser & Partner Martinistrasse 24 W-2800 Bremen 1 (DE)

a susceptions recognized to

- (9) Digital signal processor.
- A digital signal processor of a simple circuit configuration capable of implementing arithmetic processes and interruption processes efficiently in a reduced number of steps at a high processing speed. The digital signal processor comprises instruction execution pipeline stages including a stage in which data is read from a data memory and the data is applied to an arithmetic unit; an arithmetic unit for the execution stage, including a barrel shifter, a multiplier and an arithmetic and logic unit, a normalizing barrel shifter, a round-off/accumulation adder, internal data memories and a DMA transfer bus for a write/accumulation stage, an address generating unit capable of parallel and two-dimensional generation of two inputs one output data memory addresses and a DMA control unit for controlling the two-dimensional data transfer through a DMA bus between the internal data memories and an external data memory for an instruction execution stage.

EP 0 554 917 A2

Fig.38

and the property of the second

EP 0 554 917 A2

mode for calculating a special address initial value. Accordingly, the data representing the result of operation stored in the ARO 13, the AR1 14, the AR2 15, the AR 20 and the ACCO 29 through the ACC3 29 are not compatible with those data.

The DMA control unit 19 controls, independently of the microinstruction, full-duplex 2-channel data transfer between the serial I/O ports SIO/1 32 and SOO/1 32, and the external data memories through the D-Bus 8 and the AR 20 and DR 30. Therefore it is possible that the microinstruction operation controlled by the instruction decoder 5 and the internal resource contend with each other.

To avoid the contention, the instruction decoder 5 is held inoperative for six machine cycles for every word to interrupt operation according to the microinstruction in transferring data by the DMA control unit 19.

After all, the DSSP1 is capable of performing the following operations in parallel within one microinstruction in executing microinstructions.

- (1) The 9-bit address operation of three kinds at the maximum by the AAU 12.
- (2) The floating-point multiplication of 12E6 by the FMPL24.
- (3) The floating-point operation of 12E6 by the FALU 28.
- (4) Data transfer through the D-Bus 8 and the DR 30 between the external memories.
- (5) DMA data transfer through the full-duplex 2-channel serial I/O ports SI0/1 32 and SO0/1 32, D-Bus 8 and the DR 30 between the external memories.

The microinstruction execution timing of the DSSP1 will be described with reference to Fig. 2. The machine cycle 40 of the DSSP1 is divided into four phases of timing P0 through P3. The nominal machine cycle time is as high as 50 nsec. Accordingly, it is practically difficult to accomplish three operations, namely, reading a microinstruction from the instruction mask ROM 2, decoding the microinstruction by the instruction decoder 5 and execution of the instruction by the internal resources such as the FMPL 24 and the FALU 28, within one machine cycle. Accordingly, the three operations are divided into stages for each machine cycle to form a three-stage pipeline to enable high-speed operation. The following operations are performed in the stages of the three-stage pipeline.

(1) Fetch stage 41:

15

A microinstruction address is provided by the PC 1, a microinstruction is read from the instruction mask ROM 2 and the microinstruction is set in the IRO 3.

(2) Decode stage 42 and 43:

The microinstruction is transferred from the IRO 3 to the IR1 4, the microinstruction is decoded by the instruction decoder 5, the program control mode is set, the microinstruction is transferred from the IRO 3 to the P-Bus 6, and address operation of the AAU 12 through the AM 9 and the AD 10.

(3) Execution stage 44, 45, 46 and 47:

Operation of data by the FMPL 24 and FALU 28, data transfer through the D-Bus 8, and access to the external data memories through the AR 20 and the DR 30.

Thus, the DSSP1 needs three machine cycles to execute one microinstruction. This processor executes one microinstruction equivalently by the pipeline method. Accordingly, the actual execution of the microinstruction is delayed by two machine cycles from the read of the microinstruction from the instruction mask ROM 2. To avoid the timing contention between the internal resources, the internal buses are divided into the P-Bus 6 and the D-Bus 8, and the instruction mask ROM 2 and the 2P-RAM 21 are separated. However, since a branch instruction is executed actually in the decode stage [article (2)], the microinstruction being set in the IRO 3 is executed in the decode stage. That is, an instruction succeeding a branch instruction is executed unconditionally. To avoid such unconditional execution of instructions, the DSSP/1 changes the instruction succeeding the branch instruction automatically into a no-operation instruction (NOP) during the execution of the branch instruction. Such a function is aimed at simplifying microinstruction description, however, one machine cycle is wasted in the branching operation and two machine cycles are wasted in indirect branching operations even if the succeeding instruction is executed when the sequence of instruction description is arranged properly and hence loss of machine cycles can be avoided. However, the DSSP1 is unable to avoid the loss of machine cycles.

The microinstruction set of the DSSP1 will be described hereinafter with reference to Fig. 3. A microinstruction set includes only four instructions, namely, a sequence instruction, a mode instruction, an

EP 0 554 917 A2

operation instruction and a load instruction.

The sequence instruction controls the PC 1 for loop and subroutine call. The mode instruction initializes and sets the modes of the AAU 12, the selector 16, the LC 17, the SR 18 and the DMA control unit 19. The load instruction is used for loading immediate data of 18-bit width on the registers connected to the D-Bus 8 through the BI 7. The objective resources of the foregoing three microinstructions are fixed depending on instruction operation. On the other hand, as regards the operation instruction, all the internal resources capable of parallel operation must be specified directly. Accordingly, the bit length of the instructions is dependent on the bit length of the operation instruction. The DSSP1 uses horizontal microinstructions of 32bit width. The FMPL 24 is free to run and no instruction is given thereto directly. The operation of the FALU 28 is specified directly by an instruction. For example, operations of the FALU 28 is controlled by the following instructions.

- (1) Absolute value instruction: X
- (2) Signum function instruction: Sign (Y)-X
- (3) Addition instruction: X + Y
- (4) Subtraction instruction: X Y
- (5) Maximum value instruction: MAX (X, Y)
- (6) Minimum value instruction: MIN (X, Y)
- (7) Fixed-to-floating translation instruction: FLT (X)
- (8) Floating-to-fixed translation instruction: FIX (X)
- (9) Shift instruction: R1, L1 to L8
- (10) Logic instruction: AND, OR, EOR, NOT
- (11) Mantissa addition instruction: X_M + Y_M
- (12) Characteristic subtraction instruction: X_E Y_E

However, it is a problem in the DSSP1 that the operation of the DSSP1 is based on floating-point operation, while the DSSP1 carries out logic and address operations on the basis of fixed-point operation. As mentioned above, the floating-point operation and the fixed-point operation are not compatible with each other. In addressing in the memory, for example, on the basis of the results of operation, the instruction (8) must be executed by the FALU 28. Furthermore, since floating-point data is not handled in general data input and output operation, the instruction (7) or the instruction (8) must be executed for every data input or output operation to translate the data.

Another problem in the DSSP1 is that bits are always truncated in normalizing floating-point data entailing errors in operation, because the accuracy of operation of the signal processor is limited. However, when floating-point data is normalized only by truncating bits, the absolute value of the results of operation is always smaller than the true value and hence the distribution of the errors is not random. The errors can be regarded as negligibly small by increasing the operation word length. However, since the ordinary signal processor is required to operate at a high speed, increase in the operation word length is limited.

Such a problem cannot be ignored particularly in image signal processing in which interframe processing is performed by an IIR digital filter (recursive digital filter), and the DSSP1 must round the results of operation by a logical operation instruction or the like. Furthermore, in a general signal processing algorithm, in most cases, the accuracy of operation is regulated specifically for every unit process, and hence the accuracy of operation does not necessarily coincide with the operation word length of the signal processor. In such a case, the format of the operation data is converted repeatedly by the FALU 28 for every unit process.

It is a further problem in the DSSP1 that operation capable of high-speed processing is limited only to product-sum operation. Such a limitation to the mode of operation is not a problem for FFT and FIR filters. However, the recent signal processing algorithm requires for operation to determine the degree of approximation of vectors \vec{A} and \vec{B} , i.e., distance calculation, such as expressed by the following expressions to be carried out at a high processing speed.

50

15

20

BEST AVAILABLE COPY

CLIPPEDIMAGE= JP401037124A

PAT-NO: JP401037124A

DOCUMENT-IDENTIFIER: JP 01037124 A

TITLE: PULSE WIDTH MODULATING SIGNAL GENERATOR

PUBN-DATE: February 7, 1989

INVENTOR-INFORMATION:

NAME KUBO, KENJI WATANABE, MASAHIKO OMAE, TSUTOMU HANEI, HIROYUKI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

HITACHI LTD

N/A

APPL-NO: JP62192570

APPL-DATE: August 3, 1987

INT-CL_(IPC): H03M001/82; H03K007/10

US-CL-CURRENT: 375/238,375/238

ABSTRACT:

PURPOSE: To generate a PWM signal of high resolution without

using a high

frequency clock neither a long bit length counter by subjecting

the resolution

of a PWM signal generating means of low resolution to pulse

width modulation

furthermore in the period of PWM command data generation.

CONSTITUTION: The clock pulse from a clock pulse generator 1 is counted by a counter 2, and the counted value of the counter 2 and PWM command data D<SB>1</SB> are compared with each other by a digital comparator 3. Output pulses of the counter 2 are counted by a counter 4, and the counted value of the counter 4 and PWM command data D<SB>2</SB> are compared with each other by a digital comparator 5. Outputs of these digital comparators 3 and 5 are processed by a NOR gate 7 and a D type flip flop 6, and a PWM signal where the resolution of the PWM signal outputted from the digital comparator 3 is enhanced is outputted.

COPYRIGHT: (C)1989,JPO&Japio

19日本国特許庁(JP)

⑩特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭64-37124

@Int_Cl_1

識別記号

庁内整理番号

❸公開 昭和64年(1989)2月7日

H 03 M 1/82 H 03 K 7/10 6832-5 J 7328-5 J

審査請求 未請求 発明の数 1 (全8頁)

69発明の名称

パルス幅変調信号発生装置

②特 顖 昭62-192570

②出 願 昭62(1987)8月3日

砂発明者 久保

謙 二

茨城県日立市久慈町4026番地 株式会社日立製作所日立研

究所内

切発 明 者 渡 辺

正彦

茨城県日立市久慈町4026番地 株式会社日立製作所日立研

究所内

砂発明者 大前

カ

茨城県日立市久慈町4026番地 株式会社日立製作所日立研

究所内

@発明者 羽根井 博幸

千葉県習志野市東習志野7丁目1番1号 株式会社日立製

作所習志野工場内

⑪出 願 人 株式会社日立製作所

東京都千代田区神田駿河台4丁目6番地

〔従来の技術〕

19代理人 弁理士武 顕次郎

外1名

明相を自

1. 発明の名称 パルス幅変調信号発生装置

2. 特許請求の範囲

- 1. 第1のパルス幅変調指令データに対応したパルス幅出を持つ第1のパルス幅変調信号を発生する第1のパルス幅変調信号発生手段と、第2のパルス幅変調指令データに対応したパルス幅 比を持ち、前記第1のパルス幅変調信号を発生する第 1. 第1のパルス幅変調信号発生手段と、第2 のパルス幅変調信号を発生する第 2. のパルス幅変調信号を発生する第 2. のパルス幅変調信号に応じて、前記第1の パルス幅変調信号のパルス幅比を変化させるこ とを特徴とするパルス幅変調信号発生装置。
- 2. 前記第2のパルス幅変調信号の周期を、パルス幅変調指令データの指令周期と同期させることを特徴とする特許請求の範囲第1項記載のパルス幅変調信号発生装置。
- 3. 発明の詳細な説明

(産業上の利用分野)

本発明は、デイジタルデータをパルス幅変調(Pulse Width Moduration、以下PWMという)信号に変換する装置に係り、特に、簡単な回路構成で高分解能のPWM信号を得ることを可能としたパルス幅変調信号発生装置に関する。

マイクロプロセツサ等を用いるディジタル制御技術にないて、その制御出力をアナログ値に変更を出力を変換として、DA(Digital to Analog)換器を用いる方法と、関御出力を変換したのPWM信号に変換したのPWM信号に変換したのPWM信号に透過知られて使いる方法との方法の方法として信号を明かる方法とと等の特徴をや駆動トルクの指令方式に用いる方法として適している。

このようなPWM回路としては、高分解能のク

ロックパルスをカウンタで計数し、その計数値と 制御出力データとをディジタル比較器で比較する ことにより、パルス幅を決定する方法が用いられ る。このとき、クロックパルスの周波数を「cs、 制御出力データの分解を1 / Nc、 PWM信号 の周波数を「a とすると、

「・=「cx/Nc
の関係が成立する。いま、「cx=20MHz、
「・-20KHzとすると、Nc=10000ななる。すなわち、この例では、制御出力データの分解能は、1/1000であり、符号付きとしてる。
PWM信号の周波数「・は、制御出力の応答のしたないことになる。
PWM信号の周波数「・は、制御出力ののためにといるの方には、クロックバルスの周波数「cxをは、制御のために用いるカウンタ等の動作速度のにより、使用可能なクロックバルスの周波数「cx にも上限がある。

と、該第1のPWM信号発生手段のPWM信号の 発生周期より長い周期でPWMを行う第2のPW M信号発生手段とを備え、この第2のPWM信号 に応じて第1のPWM信号のパルス幅比を、第2 のPWM信号発生手段からの第2のPWM信号の 分解能だけ変化させるようにすることにより達成 される。

(作用)

第1のPWM信号発生手段は、PWM指令データの分解能より低い分解能で置子化された第1のPWM信号を発生する。これに対し、第2のPWM信号発生手段は、量子化データの刺象を第1のPWM信号発生手段の第1のPWM信号の同期の数倍の周期でPWM変調する。この第2のPWM信号発生手段による第2のPWM信号として利用される。第1のPWM信号発生手段からの第1のPWM信号に基づいて、そのバルストリーの第2のPWM信号に基づいて、そのバルストリーの第2のPWM信号に基づいて、そのバルストリーの第2のPWM信号に基づいて、そのバルストリーの第2のPWM信号に基づいて、そのバルストールの第1のPWM信号に基づいて、そのバルストールの第2のPWM信号に基づいて、そのバルストールの第2のPWM信号に基づいて、これにより、

クロックパルスの周波数 fcxを高くすることなく、PWM信号による制御出力データの高分解能化を図るための従来技術として、例えば、特別昭60-190029号公報等に記載された技術が知られている。この種従来技術は、分解能の異なるPWM回路を組合わせて使用することにより、等価的に高分解能のPWM信号による制御出力データを得るものである。

(発明が解決しようとする問題点)

前記従来技術は、クロツクバルスの周波数「czを高くすることなく、PWM信号の分解能を高くすることができるという利点を有するが、2つのPWM回路を組合わせて用いるため、回路構成が複雑となるという問題点があつた。

本発明の目的は、簡単で安価な回路構成で高分解能のPWM信号を発生することが可能なパルス 観変調信号発生装置を提供することにある。

(問題点を解決するための手段)

本発明によれば、前記目的は、所望の周波数のPWM信号を発生する第1のPWM信号発生手段

第2のPWM信号発生手段からの第2のPWM信号発生手段からの第2のPWM信号の第2のPWM信号の第一個的なパルス幅比は、前述の2つのPWM信号の分解能の積として制御されることになり、高い分解能のPWM信号の開助である。この場合、PWM信号の周期であり、第1のPWM信号発生手段による簡別であり、WM信号を発生手段による第1のPWM信号を発生することができる。

(実施例)

以下、本発明によるパルス幅変調信号発生装置の一実施例を図面により詳細に説明する。

第1図は本発明の一実施例の構成図、第2図はその動作を説明する液形図である。第1図において、1はクロツクバルス発生器、2.4はカウンタ、3.5はデイジタル比較器、6はD型フリップ、7はNORゲートである。

本発明によるパルス幅変調信号発生装置の一実

施例は、第1図に示すように、クロツクパルス発 生器1と、該クロツクパルス発生器1からのクロ ツクパルスを一定周期で計数するカウンタ2と、 該カウンタ2の計数値と設定される第1のPWM 指令データD、とを比較するデイジタル比較器3 とより成る第1のPWM信号発生手段、カウンタ 2の出力パルスを計数し所定の周期毎にその計数 値がリセツトされるカウンタ4と、該カウンタ4 の計数値と設定される第2のPWM指令データD。 とを比較するデイジタル比較器 5 とより成る第 2 のPWM信号発生手段、第1のPWM信号発生手 段から出力されるPWM信号に対し、クロツクパ ルスl周期分の遅延を挿入するD型フリツプフロ ツブ、及び遅延排入の有無を、第2のPWM信号 発生手段から出力される第2のPWM信号によつ て制御するNORゲート7により構成される。

次に、第1図に示すパルス幅変調信号発生装置 の動作を第2図(A)~第2図(F)に示す動作 波形図を参照して説明する。

カウンタ2は、クロツクパルス発生器1からの

第2図(A)に示すようなクロックバルスCLKを計数する。その計数値C,は、第2図(B)に示すように変化する。カウンタ2の計数周期T,は、図示パルス幅変調信号発生装置からのPWM信号によつて制御される被制御装置に必要とされるPWM信号の発生周期に設定される。いま、カウンタ2が、クロックバルスCLKを0からN。一1まで計数したとき、カウンタ2の計数周期Tiになるとすれば、これらとクロックバルス周期Tiになるとすれば、これらとクロックバルス周期Tiになるとすれば、これらとクロックバルス周期Timとの関係は、次式で表わされる。

 $T_{i} = N_{i} \cdot T_{cx} \qquad \dots (1)$

ディジタル比較器3は、このカウンタ2の計数値で、と第1のPWM指令データD」とを比較し、第2図(C)に示すような第1のPWM信号S」を発生する。この第1のPWM信号S」の周波数(、は、カウンタ2の計数周波数1/T」と等しく、その分解能は、1/N」である。この第1のPWM信号S」の分解能は、必要とされる分解能より低い分解能でよく、第1のPWM指令データの」は、必要とする分解能を有する指令データの

例えば上位複数ピツトが用いられる。

一方、カウンタ4は、カウンタ2の1周期毎のパルスを計数し、その計数値C。は、第2図(D)に示すように変化する。カウンタ4の計数周期下は、PWM指令データの変更クイミング周期に設定される。カウンタ4が、その計数値を0からN。-1まで変化したとき、カウンタ4の計数周期下。になるとすれば、計数周期下。は、

TューNェ・TューN」・Nュ・Tcェールはという。
と表わされる。ディジタル比較器 5 は、このカウンタ4の計数値 Cェ と第 2 の P W M 指令データ Dェを比較し、第 2 図(B)に示すような第 2 の P W M 信号 Sェを発生する。この第 2 の P W M 信号 Sェは、周期 Tェの期間の平均として 1 / Nェの分解能を有し、第 1 の P W M 信号 S この場合の第 2 の P W M 信号として用いられる。この場合の第 2 の P W M 信号として用いられる。この場合の第 2 の P W M 信号として用いられる。この場合の第 2 の P W M 信号で一クの例えば下位の複数ピットが用いられる。すなわち、第 1 図に示す P W M 信号発生装置

に与えられるトータル的な高分解能のPWM指令データは、必要とする分解能より低い、予め設定された分解能のPWM信号を与えるための第1のPWM指令データD, と、この第1のPWM指令データD,によつて得られる第1のPWM信号を高分解能化するための剰余データとしての第2のPWM指令データD。とに分離されて、ディジタル比較器3,5に与えられる。

D型フリップフロップ 6 は、周波数(・の第1のPWM信号S・の立下り時点を1クロックパルス周期Tcmだけ遅延させるために用いられる第1型フリップフロップ 6 のD 端子に入力される第1のPWM信号S・の信号レベルとして上り時点フリップフロップ 6 にラッチベルとして出れるクロックでにラッチベルとして出れるが、第1のPWM信号S・が・1・レベルスは、のPWM信号S・が・1・レベルにフリスのたとき、第1のPWM信号S・は、D型フロップのP端子にも接続されている。

第1のPWM信号S, の立下り時点を1クロツ クパルス周期だけ遅延させるため、NORゲート 7とD型フリツプフロツブ6のC端子を用い、1 クロツクパルス遅延の制御を第2のPWM信号Sェ で行うことにより、第1のPWM信号SLの分解 能は、第2のPWM信号Sェの周期でさらに高分 解能化される。いま、第2のPWM信号S.の出 力が『1 "のとき、NORゲート7の出力は"0" となり、D型フリツブフロツブ6のC端子のクリ ア機能が働かず、第1のPWM信号Siは、その 立下りが1クロツク遅延されてD型フリツブフロ ツブ6のQ嫡子より出力される。一方、第2のP W M 信号 S . の出力が ° 0 ° のとき、第 1 の P W M信号S. が『0 でとなれば、NORゲート7の 出力は、直ちに"1"となつて、D型フリツプフ ロップ6のC端子のクリア機能が働くため、第1 のPWM偕号S;は、その立下りが1クロツク遅 延されることなく、そのままD型フリップフロツ プ6のQ端子より出力される。このように、第2 のPWM信号Sェの信号により、第1のPWM信 号S.のパルス幅を1クロックパルス周期だけ変調することにより、周期T.の平均として、第1のPWM信号S.の分解能を更に1/N.だけ高分解能化することが可能である。この高分解能化されたPWM信号S.は、D型フリップフロップ6のQ嫡子から第2図(P)に示すように得られる。

いま、第1のPWM信号S。の分解能を1/N。、 第2のPWM信号S。の分解能を1/N。とする と、最終的に得られるPWM信号S。の分解能!/ N。は、次式で表わされる。

f cx = N: · f; = 5 M H z となり、また、第2のPWM信号の分解能1/N:

1/N_s-T_s/T_s-1/20 となる。周期T_s(-1_{ms}) の期間のPWM信号S_s の平均的な分解能1/N_cは、

1/Nc=1/(N1・N2)×1/5000
となり、クロックパルス周波数が5MH1とそれはり、クロックパルス周波数が5MH1とそれはと高い周波数ではないにきる。しかも、このPWM信号Saを高周波数1。は、20KH2と元を20をH2とのPWM信号Saをアナロのアンフラの場合は、である。となって、1KH2程度に設定ましたアナロのの得りをできる。ことなりは、アナロの平均にのとい、減関サインというでは、1KH2程度に会にしたアナロののである。ことにより間に、カケできる。ことには「H2」に信号情報は、充分に伝送可能である。

前述したように、第1図、第2図により説明した本発明の実施例によれば、高い周波数のクロツ

クパルスを用いなくても、比較的高い周波数のPWM信号を高分解能に制御できるので、モータ等のデイジタル制御における速度指令回路、電流指令回路等を安価な回路で実現でき、その回路構成も低分解能のカウンタを組合わせて実現でき、回路構成を簡略化できる。

第3図は本発明の第2の実施例の構成図、第4 図はその動作を説明する波形図である。第3図に おいて、8はマイクロプロセツサ、9はダウンカ ウンタ、10はフリツブフロツブであり、他の符 号は第1図の場合と同一である。

第3回に示す第2の実施例は、第1回に示すカウンタ4に代り、ダウンカウンタ9が備えられた点、及びマイクロブロセツサ8、フリツブフロツブ10が追加された点で、第1回に示す実施例の構成と相違するが、その他の構成は同一である。

マイクロプロセツサ8は、第4図(A)に示す 周期T。の制御資質周期を持ち、この制御資質周 期のタイミング毎に、第1図の実施例の場合と同 一の第1及び第2のPWM指令信号D.,D. を発 生する。第1の指令信号により第1のPWM信号S、を発生するクロツクバルス発生器1、カウンク2、ディジタル比較器3より成る第1のPWM信号発生手段は、第1図の場合と全く同様に動作する。このときのカウンタ2の動作と第1のPWM信号S、が第4図(B)、(C)に示されており、これは、第2図(B)、(C)の場合と同一である。

グウンカウンク9には、マイクロアロセッサ8から制御演算周期毎に第2のPWM指令デークD。がプリセットされ、ダウンカウンタ9は、その後カウンタ2の計数周期毎に、プリセットされた指令データのダウンカウントを行い、アプローは、マットでは、アリップである。このがウンカウンタ9の計数の様子が第4回、マットでは、アーは、アーは、安全のPWM指令データD。に基づいた第2のPWM指令データD。に基づいた第2のPWM指令データD。に基づいた第2のPWM指令データD。に基づいた第2のPWM指令データD。に基づいた第2のPWM指令データD。に基づいた第2のPWM指令データD。に基づいた第2のPWM

M信号S、を得ることができる。このときのPW M信号S、の分解能1/N。は、第1の実施例の 場合と同様に、

 $1/N_c = 1/(N_1 \cdot N_2)$

である。ここで、1/N」は第1のPWM信号の分解能、1/N」は制御演算周期T。内の第1のPWM信号数の逆数、すなわち、第2のPWM信号S」の分解能である。また、第1のPWM信号S」の周期をT」とすれば、

 $1/N_2 = T_1/T_c$

となる。従つて、例えば、T。 - les、「」 - l/T, = 20 KHzとすれば、N: - 20 となる。第3 図に示す本発明の実施例は、第1 図に示す実施例の場合と同様に、第1の PW M信号S,の周期T。 (-T;)の期間における平均的な分解能を更に20倍とすることができる。

前述した本発明の第2の実施例によれば、第2のPWM信号S2の周期をマイクロプロセツサ8のPWM指令データ発生周期Tcに同期させることができるので、第2のPWM信号S2の周期T2

WM信号S: を第4図(E)に示すように出力する。すなわち、第3図に示す本発明の第2の実施例は、ダウンカウンタ9とフリツブフロツブ10とにより第2のPWM信号発生手段が構成されている。

D型フリップフロップ 6 と N O R ゲート 7 とによる回路が、第 2 の P W M 信号 S 。に基づいて、第 1 の P W M 信号 S 。に対し、1 クロックバルスの遅延を与える制御を実行し、第 1 の P W M 信号 S 。を高分解能化した P W M 信号 S 。を出力することは、第 1 図により説明した場合と全く同様であり、その出力の P W M 信号 S 。が第 4 図 (P) に示されている。

この第2の実施例は、第4図の動作波形から明らかなように、第2のPWM信号S。の周期T。と、マイクロプロセツサ8のPWM指令周期、すなわち制御資算周期T。とが一致しており、この1 演算周期内の第1のPWM信号S。を、第2のPWM信号S。でパルス幅変調することにより、この1 演算周期内で平均的に高分解能化したPW

をPWM指令データ発生周期Tcまで長くすることができ、これにより、N: =Tc/T:の値を 大きくすることができるので、PWM信号S:を より高分解能の信号にすることができる。

第5図は本発明の第3の実施例を示す構成図、 第6図はその動作を説明する波形図である。第5 図における符号は、第3図の場合と同一である。

第5図に示す本発明の第3の実施例は、ダウンカウンク9のボロー信号をマイクロプロセツサ8に対する割込信号として用いるものであり、第3図に示すD型フリップフロップ6、NORゲート7及びフリップフロップ10の機能をマイクロプロセツサ8に行わせるように構成されている。第6図(A)、(B)、(C)、(E)に示すこの実施例の動作波形は、第4図(A)、(B)、(C)、(F)に示す動造信号1NTは、ダウンカウンタ9がアンダーフローしたときのボロー信号である。

この実施例におけるマイクロプロセツサ8は、 ダウンカウンタ9のボロー信号による割込信号!

特開昭64-37124 (6)

NTにより、第1のPWM信号に対する第1の指令データD:を変化させて設定することにより、 前述した第1.第2の実施例において、ハードウエアにより行つていた、第1のPWM信号の立下 り時の1クロックパルスの遅延制御を、ソフトウエア処理で実行するものである。

すなわち、マイクロプロセツサ8は、マイクロプロセツサ8の指令周期下。毎に第1及で第2のPWM指令アータD...D. を演算出力する。このとき、第1のPWM指令データの設定値(第5図のBのPWM指令データの設定値(は、第1のPWM指令データの設定を使した値を用いて、第3のPWM指令データD. をそのまなりのPWM指令データD. をそのまなりのPWM指令データD. をそのまなりのPWM指令データD. をそのまなりのPWM指令データD. をそのまなりのPWM指令データD. をそのまなりのアンカウンタ9が設定値D. をのボロー信号を出力すると、そのボローにでは、としてマイクロプロセツサ8に対し、マイクロプロセツサ8に対し、マイクロフロセツサ8に、この割込信号INTが与えるのでは、この割込信号INTが与えるのでは、この割込信号INTが与えるのでは、この割込信号に対して、マイクロサ8に、この割込信号INTが与えるのでは、この割込信号INTが与えるのでは、この割込信号INTが与えるのでは、この割込信号では、このでは、アールを表しまする。アールを表し、ア

ロプロセツサ8の制御演算周期すなわち指令周期 T。内で高分解能化されたPWM信号S、を直接 出力する。 前述した本発明の第3の実施例によれば、遅延 回路をハードクエアで構成する必要がなく、より 簡単な回路構成で、高分解能のPWM信号を発生

ると、第1のPWM指令信号を最初の設定値から

1 だけ波算した値、すなわち D。 として再設定す

る。これにより、デイジタル比較器3は、マイク

前述の第1~第3の本発明の実施例は、PWM 信号発生回路をデイジタル比較器により構成しているが、本発明におけるPWM信号発生回路は、 このような回路構成に限定される必要はなく、例 えば、カウンタを用いた構成のもの等、どのよう な回路構成のものであつてもよい。

(発明の効果)

することができる。

以上説明したように、本発明によれば、比較的低分解能のPWM信号発生手段の分解能を、PW M指令データ発生周期内で更にパルス幅変調する

ことにより、高い岡波数のクロックバルスや長い といり、高い岡波数のクロックバルスの 数で高分解能のPWM信号を発生することが可能 となる。このため、本発明によれば、そ一夕路の ディジタルサーボ系等を用いた組録を行うです。 PWM信号による指令が不可欠とができる。に PWM信号に装置を提供することができる。に 特に適した装置を提供することができる。に 本発明は、回路構成が簡単であるため、、ト のサーボ系等のような多軸のサーボアンプに対す る速度や る速度や る速度や

4. 図面の簡単な説明

第1図は本発明の一実施例の構成図、第2図は その動作を説明する波形図、第3図は本発明の第 2の実施例の構成図、第4図はその動作を説明す る波形図、第5図は本発明の第3の実施例の構成 図、第6図はその動作を説明する波形図である。

1 ·······クロツクパルス発生器、2. 4 ·······カウンタ、3. 5 ·······デイジタル比較器、6 ······ D型フリツブフロツブ、7 ······ NORゲート、8 ······

マイクロプロセツサ、9ダウンカウンタ、10フリップフロップ。

代理人 弁理士 武 顕次郎 (外1名)

特開昭64-37124 (フ)

- 1 クロックバルス発生器
- 2 カウンタ

- 2 カンノ 3 元ジタル比較器 4 カウンタ 5 元ジタル比較器 6 D型フリ・ブフロ・ブ 7 NOR ゲート

魠

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: ___

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)