UNIVERSIDAD AUSTRAL DE CHILE

FACULTAD DE CIENCIAS DE LA INGENIERÍA

INGENIERÍA CIVIL ELECTRÓNICA

ELEP 233 - VISIÓN ARTIFICIAL Y REDES NEURONALES

DESARROLLO DE TAREA N3

PROFESOR:

Gustavo Schleyer.

INTEGRANTES:

Ángel Andrade Jorge Palavecino.

Índice general

Pregunta 1						 					 															3
Pregunta 2						 					 											 				4
Pregunta 3						 					 											 				4
Pregunta 4						 					 											 				6
Pregunta 5						 					 											 				7
Pregunta 6						 					 											 				8

El presente documento desarrolla la tarea 4 del ramo ELEL233. El repositorio en GitHub de la actividad puede encontrarse en https://github.com/Atrabilis/UACH/tree/main/Trabajos/Vision%20artificial/Tarea% 204.

Las imágenes originales utilizadas para el desarrollo de la tarea fueron las siguientes:

Figura 1: Imágenes de prueba utilizadas en el trabajo.

Pregunta 1

El objetivo de este apartado es codificar cada uno de los objetos de la imagen 1a utilizando código spline. Los resultados son los siguientes:

Figura 2: codificación utilizando código spline

La matriz de parámetros para el triangulo es:

$$\begin{bmatrix} 0.0 & 322.0 & 53.0 & 176.0 \\ -1.8 & 417.0 & 53.0 & 114.0 \\ 1.8 & 5.0 & 114.0 & 176.0 \end{bmatrix}$$

La matriz de parámetros para el rectángulo es:

$$\begin{bmatrix} -0.523 & 98.0 & 13.0 & 158.0 \\ -0.523 & 207.0 & 57.0 & 202.0 \\ 1.93 & 67.0 & 13.0 & 57.0 \\ 1.93 & -291.0 & 158.0 & 202.0 \end{bmatrix}$$

La matriz de parámetros para el cuadrado rotado es:


```
\begin{bmatrix} 5,000e-01 & 6,000e+00 & 3,790e+02 & 4,650e+02 \\ 5,000e-01 & 1,140e+02 & 3,360e+02 & 4,220e+02 \\ -1,990e+00 & 9,500e+02 & 3,360e+02 & 3,790e+02 \\ -1,990e+00 & 1,165e+03 & 4,220e+02 & 4,650e+02 \end{bmatrix}
```

No se muestran los parámetros de la elipse debido a que la ecuación utilizada para representarla no es polinómica.

Pregunta 2

El objetivo de este apartado es codificar cada uno de los objetos de la imagen "objetos.jpg" utilizando código cadena y luego crear una nueva imagen en donde los objetos son generados a partir del código cadena obtenido anteriormente.

Los resultados son los siguientes:

Figura 3: código cadena implementado para codificar objetos

Pregunta 3

El objetivo de este apartado es elegir uno de los objetos de la imagen 1b y crear un programa en Python que, utilizando el código cadena, le permita al usuario mover el objeto en 4 direcciones. Los resultados son los siguientes:

Figura 4: Código cadena utilizado para seguir los contornos de un objeto y moverlo

Pregunta 4

El objetivo de este apartado es codificar la imagen 1b utilizando codificación Run Length, los resultados son los siguientes:

Figura 5: Código cadena utilizado para seguir los contornos de un objeto y moverlo

Los resultados son idénticos a lo utilizado con código cadena, esto se debe a que los bordes leídos son los mismos, solo que la técnica de codificación cambia.

Pregunta 5

El objetivo de este apartado es elegir uno de los objetos de la imagen 1b y crear un programa en Python que, utilizando la código Run Length, le permita al usuario mover el objeto en 4 direcciones. Los resultados son los siguientes:

Figura 6: Código Run Length utilizado para seguir los contornos de un objeto y moverlo

Pregunta 6

A continuación se muestra un cuadro comparativo entre las 3 codificaciones.

	Spline	Run-Length (RLE)	Codificación de Cadenas (Chain Coding)
Descripción	Representación suave y con-	Almacena el valor de píxel y su	Utiliza una secuencia de direc-
	tinua de los datos.	longitud de ejecución.	ciones de vecinos.
Aplicación	Curvas y contornos suaves.	Imágenes con áreas repetitivas	Formas con bordes bien defini-
		o regiones uniformes.	dos y estructura jerárquica.
Precisión	Alta fidelidad en la recons-	Pérdida de precisión debido a la	Pérdida de precisión debido a la
	trucción de la forma original.	compresión de datos.	simplificación del contorno.
Eficiencia	Puede requerir más espacio	Eficiente en términos de alma-	Eficiente en términos de alma-
	de almacenamiento debido a	cenamiento debido a la compre-	cenamiento debido a la repre-
	la representación continua.	sión de datos.	sentación de direcciones de ve-
			cinos.
Compresión	No está diseñada específica-	Ofrece una compresión efectiva	Ofrece cierta compresión al re-
	mente para compresión de	para imágenes con áreas repe-	presentar el contorno con direc-
	datos.	titivas.	ciones de vecinos.
Complejidad	Requiere cálculos y algorit-	Algoritmo simple y fácil de im-	Algoritmo relativamente simple
	mos complejos para la repre-	plementar.	y fácil de implementar.
	sentación suave.		
Reconstrucción	Permite una reconstrucción	Reconstrucción precisa del con-	Reconstrucción aproximada del
	precisa de la forma original.	torno original, aunque con me-	contorno original debido a la
		nor detalle.	simplificación.
Aplicaciones	Gráficos, animación, mode-	Compresión de imágenes,	Reconocimiento de patrones,
	lado 3D.	transmisión de datos eficiente.	seguimiento de contornos.

Cuadro 1: Comparación de las codificaciones: Spline, Run-Length (RLE) y Codificación de Cadenas (Chain Coding)

Dependiendo de la imagen a procesar uno u otro método puede ser mas adecuado, por ejemplo, para 1a el código Spline puede interpretar con mayor facilidad los bordes. Sin embargo, su implementación es engorrosa y compleja. El código Run length y el codigo Cadena son adecuados para 1a en este caso en especifico, aunque si una imagen posee multiples objetos seria eficiente el uso de Run Length.