

BMI270 Legacy FeaturesApplication Note

Application Note - Legacy Features

Document revision 1.0

Document release date August 2021

Document number BST-BMI270-AN002-01

Document valid for 0 273 017 008

Notes Data and descriptions in this document are subject to change without

notice. Product photos and pictures are for illustration purposes only

and may differ from the real product appearance

Index of Contents

1.	Introduction	6
	1.1. Legacy Features	6
2.	Quick Start Guide	7
	2.1. Note about using BMI270	7
	2.2. First application setup examples algorithms:	7
3.	Functional Description	11
	3.1. System Configurations	11
	3.2. Block Diagram	11
	3.3. Power-On-Reset (POR) and Device Initialization	12
	3.4. FIFO	13
	3.5. General Interrupt Pin Configuration	
	Interrupt Pin Mapping	
	3.6. Advanced Features	
	Anymotion Detection	17
	Nomotion Detection	19
	Flat Detection	21
	High-g Detection	26
	Low-g (Freefall) Detection	28
	Orientation Detection	29
	Tap Detection	
	Significant Motion Detection	
	Step counter / Step Detector	
	Activity and Activity Change Recognition	39
4.	Register Description	40
	4.1. General Remarks	40

4.2.	Register	Мар	41
	1	Register (0x00) CHIP_ID	46
	2	Register (0x02) ERR_REG	46
	3	Register (0x03) STATUS	47
	4	Register (0x04) DATA_0	47
	5	Register (0x05) DATA_1	47
	6	Register (0x06) DATA_2	48
	7	Register (0x07) DATA_3	48
	8	Register (0x08) DATA_4	48
	9	Register (0x09) DATA_5	48
	10	Register (0x0A) DATA_6	49
	11	Register (0x0B) DATA_7	49
	12	Register (0x0C) DATA_8	49
	13	Register (0x0D) DATA_9	49
	14	Register (0x0E) DATA_10	50
	15	Register (0x0F) DATA_11	50
	16	Register (0x10) DATA_12	50
	17	Register (0x11) DATA_13	50
	18	Register (0x12) DATA_14	51
	19	Register (0x13) DATA_15	51
	20	Register (0x14) DATA_16	51
	21	Register (0x15) DATA_17	51
	22	Register (0x16) DATA_18	52
	23	Register (0x17) DATA_19	52
	24	Register (0x18) SENSORTIME_0	52
	25	Register (0x19) SENSORTIME_1	52
	26	Register (0x1A) SENSORTIME_2	53
	27	Register (0x1B) EVENT	53
	28	Register (0x1C) INT_STATUS_0	54
	29	Register (0x1D) INT_STATUS_1	54
	30	Register (0x1E) SC_OUT_0	54
	31	Register (0x1F) SC_OUT_1	55

32	Register (0x20) ORIENT_ACT	55
33	Register (0x21) INTERNAL_STATUS	56
34	Register (0x22) TEMPERATURE_0	57
35	Register (0x23) TEMPERATURE_1	57
36	Register (0x24) FIFO_LENGTH_0	58
37	Register (0x25) FIFO_LENGTH_1	58
38	Register (0x26) FIFO_DATA	58
39	Register (0x2F) FEAT_PAGE	59
40	Register (0x30) FEATURES[16]	59
41	Register (0x40) ACC_CONF	73
42	Register (0x41) ACC_RANGE	74
43	Register (0x42) GYR_CONF	75
44	Register (0x43) GYR_RANGE	76
45	Register (0x44) AUX_CONF	77
46	Register (0x45) FIFO_DOWNS	78
47	Register (0x46) FIFO_WTM_0	78
48	Register (0x47) FIFO_WTM_1	79
49	Register (0x48) FIFO_CONFIG_0	79
50	Register (0x49) FIFO_CONFIG_1	80
51	Register (0x4A) SATURATION	81
52	Register (0x4B) AUX_DEV_ID	81
53	Register (0x4C) AUX_IF_CONF	82
54	Register (0x4D) AUX_RD_ADDR	82
55	Register (0x4E) AUX_WR_ADDR	83
56	Register (0x4F) AUX_WR_DATA	83
57	Register (0x52) ERR_REG_MSK	83
58	Register (0x53) INT1_IO_CTRL	84
59	Register (0x54) INT2_IO_CTRL	84
60	Register (0x55) INT_LATCH	85
61	Register (0x56) INT1_MAP_FEAT	85
62	Register (0x57) INT2_MAP_FEAT	85
63	Register (0x58) INT_MAP_DATA	86

6.	Document His	story and Modification	97
	5.3. Application	on examples and hints	96
	5.2. Product	use	96
	5.1. Engineer	ring samples	96
5.	Legal disclain	ner	96
	86	Register (0x7E) CMD	95
	85	Register (0x7D) PWR_CTRL	94
	84	Register (0x7C) PWR_CONF	94
	83	Register (0x77) OFFSET_6	93
	82	Register (0x76) OFFSET_5	93
	81	Register (0x75) OFFSET_4	
	80	Register (0x74) OFFSET_3	
	79	Register (0x73) OFFSET_2	
	78	Register (0x72) OFFSET_1	
	77	Register (0x71) OFFSET_0	
	75 76	Register (0x70) NV_CONF	
	74 75	Register (0x6E) GYR_SELF_TEST_AXES	
	73 74	Register (0x6C) DRV Register (0x6D) ACC_SELF_TEST	
	72 73	Register (0x6B) IF_CONF	
	71	Register (0x6A) NVM_CONF	
	70 	Register (0x69) GYR_CRT_CONF	
	69	Register (0x68) AUX_IF_TRIM	
	68	Register (0x5F) INTERNAL_ERROR	
	67	Register (0x5E) INIT_DATA	
	66	Register (0x5C) INIT_ADDR_1	87
	65	Register (0x5B) INIT_ADDR_0	86
	64	Register (0x59) INIT_CTRL	86

1. Introduction

BMI270 is a low power IMU optimized for wearable applications. The IMU combines precise acceleration and angular rate measurement with intelligent on-chip motion-triggered interrupt features. The 6-axis sensor combines a 16-bit triaxial gyroscope and a 16-bit triaxial accelerometer in a compact $2.5 \times 3.0 \times 0.8 \text{ mm}$ 3 LGA package

BMI270 is a member of Bosch Sensortec's BMI260 family of IMUs, targeting fast and accurate inertial sensing in wearable applications. BMI270 features Bosch's automotive-proven gyroscope technology with an improved accelerometer. Significant improvements in BMI270 include, but are not restricted to, the overall accelerometer performance, i.e. an extremely low zero-*g* offset and sensitivity error, low temperature drifts, robustness over PCB strain and a low noise density.

BMI270 features the industry's first self-calibrating gyroscope using motionless CRT (Component Re-Trimming) functionality to compensate MEMS typical soldering drifts, ensuring post-soldering sensitivity errors down to \pm 0.4%.

BMI270 includes intuitive gesture, context and activity recognition with an integrated plug-and-play step counter/detector, which is optimized for accurate step counting in wrist-worn devices. The IMU is also well suited for other types of wearable devices, such as hearables, smart clothes, smart shoes, smart glasses and ankle bands.

BMI270 is available in application-specific versions: gesture and context & activity. The 'gesture' version includes flick in/out, arm up/down, and wrist tilt features. The 'context and activity' version has advanced features for recognizing context activity and activity change, for example standing, walking and log car parking by detecting the activity change. In case none of the features are needed but FIFO size is critical, there is a Max FIFO configuration.

BMI270 'legacy' version includes low-power features available in the legacy IMU, BMI160 that is currently NRND. Note that BMI270 is p2p compatible with BMI160.

1.1. Legacy Features

This application note describes the configuration of BMI270 that offers all low-power features as in the legacy IMU, BMI160. This Application Note is targeted towards users transitioning from BMI160 (currently NRND) to BMI270 and require features/interrupts available in BMI160.

For complete details regarding BMI270 specifications (e.g. pin-out, power modes, self-test, temperature sensor, Sensor Time, FIFO), Digital interfaces (primary/secondary), landing pattern, HSMI and sensor API refer the following:

https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi270.html

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi270-ds000.pdf

https://github.com/BoschSensortec/BMI270-Sensor-API

2. Quick Start Guide

The purpose of this section is to help developers who want to start working with BMI270 by giving some basic hands-on application examples to get started.

2.1. Note about using BMI270

The communication between application processor and BMI270 will happen either over I2C or SPI interface.

Each register read operation includes dummy bytes:

- I2C: 0
- SPI: 1

For simplicity the dummy bytes are not shown in the examples below.

Before starting the test, BMI270 has to be properly connected to the master (AP) and powered up. The device is configured for advance power save mode after POR or soft reset. For details on the interface operation in advanced power save mode, see the description of Register PWR CONF.adv power save For more information about the interfaces, see BMI270 data sheet

2.2. First application setup examples algorithms:

After correct power up by setting the correct voltage to the appropriate external pins, BMI270 enters automatically into the Power On Reset (POR) sequence. In order to properly use BMI270, certain steps from host processor front are needed. The most typical operations will be explained in the following application examples in form of flow diagrams.

1. Testing communication and initializing BMI270

a. Reading chip id CHIP_ID (0x24) (checking correct communication). The interface is coming up configured for I2C, the initial dummy read configures it to SPI.

b. Performing initialization sequence¹

Modifications reserved | Data subject to change without notice

 $^{^1\ {\}it The\ bmi270_config_file\ in\ https://github.com/BoschSensortec/BMI270-Sensor-API/blob/master/bmi270_legacy.c}$

c. Checking the correct initialization status

Note: To configure BMI270 in Low-power mode / Normal mode / Performance mode refer BMI270 data sheet

3. Functional Description

3.1. System Configurations

BMI270 has 14 external I/F pins and supports SPI and I2C protocols on its primary interface to the host system. BMI270 supports on its secondary interface (I2C master) an auxiliary sensor configuration (e.g. a magnetometer) configuration. Both configurations work independent of the configuration (SPI/I2C) of the primary interface. If the secondary I/F is configured as AUX I/F, the sensor data of the IMU and the AUX sensor are synchronized.

3.2. Block Diagram

BMI270

For details regarding Supply Voltage, see BMI270 data sheet

3.3. Power-On-Reset (POR) and Device Initialization

During POR the voltages VDD/VDDIO are ramped to their respective target values. After reaching the target supply voltages, all registers are accessible after a delay of 450 µs.

After every POR or soft reset, the IMU remains in suspend mode. To get ready for operation the device must be initialized through the following procedure:

- Disable advanced power save mode: PWR_CONF.adv_power_save =0b0
- Wait for 450 μs (or 12 LSB of SENSORTIME 0)
- Write <u>INIT_CTRL.init_ctrl</u> = 0x00 to prepare config load
- Upload configuration file
 - Burst write 8 KB of initialization data to Register <u>INIT_DATA</u> (start with byte 0 of initialization data)
 - The configuration file is available on GitHub: https://github.com/BoschSensortec/BMI270-Sensor-API/blob/master/bmi270_legacy.c

Optionally: Burst read configuration file from Register INIT_DATA and check correctness by comparing it to the data written to the register in the previous step.

- Write <u>INIT_CTRL.init_ctrl</u> = 0x01 to complete config load.
 Note: This operation must not be performed more than once after POR or soft reset.
- Wait until Register INTERNAL_STATUS.message contains the value 0b0001. This will happen after at most 20 ms.

After the initialization sequence is completed, the power mode of the device is automatically set to "Configuration mode". Now it is possible to switch to other power modes and the device is ready for operation as required and described in the following sections.

For details regarding switching to power modes, Sensor Data (Accel/Gyro and data processing in different modes) and possible filter settings, see BMI270 data sheet

3.4. **FIFO**

BMI270 supports the following FIFO operating modes:

- · Streaming mode: overwrites oldest data on FIFO full condition
- FIFO mode: discards newest data on FIFO full condition

The FIFO size is 2 KB and supports the following interrupts:

- FIFO full interrupt
- FIFO watermark interrupt

FIFO is enabled for accelerometer data with <u>FIFO_CONFIG_1.fifo_acc_en</u>=0b1, for gyroscope data with <u>FIFO_CONFIG_1.fifo_gyr_en</u>=0b1, and auxiliary interface (e.g. magnetometer) data with <u>FIFO_CONFIG_1.fifo_aux_en=0b1</u> (0b0=disabled).

The FIFO may be used in all power modes of BMI270. For further details on FIFO refer Chapter 4.7 of BMI270 data sheet

Bit	7	6	5	4	3	2	1	0
Content	fh_mode<	1:0>	fh_parm<	3:0>			reserved	

FIFO header contains information on fh_mode and fh_param as shown by bit-field definition.

3.5. General Interrupt Pin Configuration

Electrical Interrupt Pin Behavior

Both interrupt pins PIN1 and PIN2 can be configured to show the desired electrical behavior. Interrupt pins can be enabled in INT1_IO_CTRL.output_en and INT2_IO_CTRL.output_en. The characteristic of the output driver of the interrupt pins may be configured with bits INT1_IO_CTRL.od and INT1_IO_CTRL.od and <a hr

The electrical behavior of the Interrupt pins, whenever an interrupt is triggered, can be configured as either "active-high" or "active-low" via INT1 IO CTRL.IVI or INT2 IO CTRL.IVI.

Both interrupt pins can be configured as input pins via INT1_IO_CTRL.input_en and INT1_INT2_IO_CTRL.input_en. This is necessary when FIFO tag feature is used (see Section FIFO synchronization with external interrupts" in BMI270 datasheet). If both are enabled, the input (e.g. marking FIFO) is driven by the interrupt output.

BMI270 supports edge and level triggered interrupt inputs, this can be configured through FIFO_CONFIG1.fifo_tag_int1_en and FIFO_CONFIG1.fifo_tag_int2_en.

BMI270 supports non-latched and latched interrupts modes for data ready, FIFO watermark, FIFO full, error, and the advanced feature interrupts. The mode is selected by INT_LATCH.int_latch. Non-latched interrupts are designed for systems using edge triggered interrupts, latched interrupts are designed for systems using level-triggered interrupts.

In latched mode an asserted interrupt status in INT_STATUS_0 (advanced feature interrupts) or INT_STATUS_1 (data ready, FIFO and error interrupts) and the selected pin are reset if the corresponding status register is read. If the interrupt activation condition still holds when the interrupt is reset, the interrupt status and pin are asserted again. If more than one interrupt pin is used in latched mode, all interrupts in INT_STATUS_0 should be mapped to one interrupt pin and all interrupts in INT_STATUS_1 should be mapped to the other interrupt pin. If just one interrupt pin is used all interrupts may be mapped to this interrupt pin.

In the non-latched mode the selected pin are reset as soon as the activation condition is not valid anymore. The interrupt status bits are active until read by the host.

Interrupt Pin Mapping

The data ready, FIFO watermark, FIFO full, error, and the advanced feature interrupts are mapped to the external INT1 or INT2 pins by setting the corresponding bits in the Registers INT MAP DATA, INT1 MAP FEAT and INT2 MAP FEAT. To unmap these interrupts, the corresponding bits must be reset.

Once an interrupt triggered the output pin, the host can derive the source of the interrupt of the corresponding status bit in the Register: INT_STATUS_0 and INT_STATUS_1.

3.6. Advanced Features

Global Configuration

The configuration of the interrupt feature engine is described in the Registers <u>FEATURES</u>. These registers are partitioned into several pages, the page valid for the next read or write to the Registers <u>FEATURES</u> is selected by the Register <u>FEAT_PAGE.page</u>. Writes to a <u>FEATURES</u> register must be 16-bit word oriented, i.e. writes should start at an even address (2m) and the last byte written should be at an odd address (2n+1), where 0x30<=2m<=2n<0x3F. If the write start address is less than 0x30 the write may start at any address (see example 4 below), if the end address is greater than 0x3F, it may stop at any address (see example 5 below).

- For register writes which stop at an even SPI address (2n), the data at the odd SPI address (2n+1) are undefined (see Example 2, 3 below)
- For writes which start at an odd SPI address (2m+1), the data at the even address (2m) are undefined. (see Example 3 below)

Ex. 1) Write 4 bytes starting at address 0x30

Ex. 2) Write 3 bytes starting at address 0x30

Ex. 3) Write 2 bytes starting at address 0x31

0x30	Valid Data
0x31	Valid Data
0x32	Valid Data
0x33	Valid Data

0x30	Valid Data
0x31	Valid Data
0x32	Valid Data
0x33	Undefined

0x30	Undefined
0x31	Valid Data
0x32	Valid Data
0x33	Undefined

Ex. 4) Write 9 bytes starting at address 0x29

0x29	Valid Data
0x2A	Valid Data
0x2E	Valid Data
0x2F	Valid Data
0x30	Valid Data
0x31	Valid Data

Ex. 5) Write 5 bytes starting at address 0x3E

Valid Data
Valid Data
Valid Data
Valid Data
Valid Data

Make sure the sensor is initialized properly before the feature configuration is performed (see description in section 3.3.)

Some features generate interrupts. <u>INT1_MAP_FEAT</u> and <u>INT2_MAP_FEAT</u> configure these features. <u>INT_STATUS_0</u> reports the interrupt source.

In order to minimize the power consumption or to enable always-on motion sensing, all advanced features (algorithms) rely on accelerometer data samples.

Minimum Bandwidth Settings

If the filter performance of the accelerometer is configured to high performance

(ACC_CONF.acc_filter_perf is 0b1), the features operate at highest performance independent of the ODR and the bandwidth set by the host.

If the filter performance of the accelerometer is configured to low power (<u>ACC_CONF.acc_filter_perf</u> is 0b0), the feature performance is depending on the ODR and the averaging factor (<u>ACC_CONF.acc_bwp</u>) set by the host:

- 1. Tap Detection, HighG detection the ODR must be set to minimum 200 Hz
- 2. The other Features, the ODR must be set to minimum 50 Hz

If the device configuration does not meet the minimum requirements, the corresponding flag in the Register INTERNAL STATUS is set, if one of the advanced features is enabled. In this case the features are still evaluated, the same number of samples are evaluated, but they are sampled at the lower rate.

Error Interrupts

The device supports an error interrupt, which triggers if the device cannot be recovered without a soft reset or a POR. This error interrupt is enabled through INT_MAP_DATA. The interrupt status is available in INT_STATUS 1.err int. After restarting a device reinitialization must be done.

Axis remapping for interrupt features

If the coordinate system of the end device differs from the sensor coordinate system, the sensor axis must be remapped to use the orientation dependent features (e.g. orientation interrupt, flat interrupt) properly.

Axis remapping register allows the host to freely map individual axis to the coordinate system of the used platform. Individual axis can be mapped to any other defined axis. The sign value of the axis can be also configured. For example x axis can be mapped to -x axis, +y axis, -y axis, +z axis or -z axis. Similarly, other axes also have their own combinations.

Invalid remappings are signaled through the register INTERNAL_STATUS.axes_remap_error if an advanced feature is enabled.

Note:

The axis remapping applies only to the data fetched into the features. The <u>DATA_0</u> to <u>DATA_13</u> registers and FIFO are not affected and should be remapped accordingly on the driver level.

Configuration settings:

- 1. GEN_SET_1.map_x_axis describes which axis shall be mapped to x axis.
- 2. GEN SET 1.map x axis sign describes whether the mapped axis shall be inverted or not to be inverted.
- 3. GEN_SET_1.map_y_axis describes which axis shall be mapped to y axis.
- 4. GEN SET 1.map y axis sign describes whether the mapped axis shall be inverted or not to be inverted.
- 5. GEN SET 1.map z axis describes which axis shall be mapped to z axis.
- 6. GEN SET 1.map z axis sign describes whether the mapped axis shall be inverted or not to be inverted.

Anymotion Detection

The anymotion detection uses the slope between two acceleration signals to detect changes in motion. The interrupt is configured by setting enable flag ANYMO_2.enable along with at least one of the following flags: ANYMO 1.select x, ANYMO 1.select y, and ANYMO 1.select z respectively for each axis.

It generates an interrupt when the absolute value of the slope (the difference between two accelerations) exceeds the preset ANYMO_2.threshold for a certain number of consecutive data points ANYMO_1.duration.

The slope (difference) is being computed between the current acceleration sample and the reference sample. The reference sample is updated while the anymotion is detected; basically this means the reference is the last state when sensor detected Anymotion.

The interrupt generated will be reset as soon as the slope value falls below the threshold.

Configuration settings

- 1. ANYMO_2.enable enable the feature.
- 2. ANYMO 1.duration the number of consecutive data points for which the threshold condition must be respected, for interrupt assertion.
- 3. ANYMO_2.threshold the slope threshold.
- 4. ANYMO 1.select x select the feature for x axis
 5. ANYMO 1.select y select the feature for y axis
- 6. $ANYMO_1.select_z$ select the feature for z axis

Figure 1: Any-motion detection

Nomotion Detection

The interrupt is configured by setting enable flag <u>NOMO_2.enable</u> along with at least one of the following flags: <u>NOMO_1.select_x</u>, <u>NOMO_1.select_y</u>, and <u>NOMO_1.select_z</u> respectively for each axis.

Nomotion Detection interrupt is generated when the slope on all selected axis remains smaller than a programmable NOMO_2.threshold for a programmable time. The signals and timings relevant to the nomotion interrupt functionality are depicted in the figure below.

Register <u>NOMO_1.duration</u> defines the number of consecutive slope data points of the selected axis which must exceed the threshold for an interrupt to be asserted.

Configuration settings

- 1. NOMO_2.enable enable the feature.
- 2. <u>NOMO_1.duration</u> the number of consecutive data points for which the threshold condition must be respected, for interrupt assertion.
- 3. NOMO_2.threshold the slope threshold.
- 4. NOMO_1.select_x select the feature for x axis
- 5. NOMO 1.select y select the feature for y axis
- 6. NOMO 1.select z select the feature for z axis

Figure 2: No-motion detection

Flat Detection

This interrupt detects Flat orientation. This interrupt triggers when the device gets close to horizontal position. This is expressed by the angle which the Z axis is making with gravitational acceleration.

```
The condition for activating the interrupt is: \Theta*acc_z*acc_z-Hysteresis > acc_x*acc_x+acc_y*acc_y
```

The condition to deactivate the interrupt is:

O*acc_z * acc_z + Hysteresis < acc_x * acc_x + acc_y * acc_y

If either of the inequalities is not respected then the interrupt keeps the previous value. If other than +2/-2g range is selected, acceleration values are saturated before Flat computation.

Figure 3: Flat Orientation Angles

Before the interrupt is actually changed (set or reset), the device must remain in this state for a certain period (e.g. <u>FLAT_2.hold_time</u> = 25 is equivalent to 25 samples recorded at 50Hz = 0.5 seconds).

Θ Angle

The threshold angle for detecting Flat state is expressed in 64*(tan(angle)^2). Some important values of <u>FLAT 1.theta</u> are depicted in the next table.

Θ numeric value	Angle (degrees)
0	0.0
1	7.1
2	10.0
5	15.6
8	19.5
14	25.1
22	30.4
33	35.7
45	40.0
63	44.8

Table 1: Flat Θ correspondence in degrees

Figure 4: O angle

Hysteresis

The Flat detection Θ angle has an associated Hysteresis.

Figure 5: Hysteresis and Θ angle

The value of the <u>FLAT 2.hysteresis</u> is set according to the following graphic, with values between 0 and 63, which corresponds to hysteresis angle between 0 and 5 degrees. In the following graphic, 4 usual cases are depicted: 0, 1, 2.5 and 5 degrees.

The hysteresis is symmetric, used for both going into and out of Flat state. For the default value of 9, the actual interval around the Θ 20 degrees is +/-2.5 degrees; so a 5 degree interval is used for total Hysteresis filtering.

Figure 6: Hysteresis and Θ angle

Blocking mode

It is possible to block the Flat detection change. The Flat detection interrupt blocking feature is configurable via the <u>FLAT 1.blocking</u> and has the following meaning:

Blocking	Conditions
00	Interrupt blocking is disabled
01	acceleration of any axis > 1.5g
10	acceleration of any axis > 1.5g OR Slope>0.2g
11	Interrupt blocking is disabled

Table 2: Flat detection blocking

Configuration settings

- 1. <u>FLAT_1.enable</u> indicates if this feature is enabled or not.
- 2. FLAT_1.theta coded value of angle with horizontal; θ = 64 * (tan(angle)^2); default value is 8, equivalent to 20 degrees angle.
- 3. FLAT_2.hysteresis the Θ angle hysteresis.
- 4. FLAT 1.blocking sets the blocking mode.
- 5. FLAT 2.hold time holds the duration for which the condition has to be respected.

High-g Detection

This interrupt is enabled by setting enable flag HI_G_2.enable along with at least one axis.

The interrupt is asserted if the absolute value of acceleration data of at least one enabled axis exceeds the programmed <u>HI G 1.threshold</u> and the sign of the value does not change for a minimum <u>HI G 3.duration</u>.

The interrupt condition is cleared when the absolute value of acceleration data of all selected axes falls below the $\underline{\text{HI G_1.threshold}}$ minus the $\underline{\text{HI G_2.hysteresis}}$ or if the sign of the acceleration value changes.

If any device axis is parallel to the gravitational vector, then that axis will report ±1g as output. In this case, it is recommended to have (*threshold - hysteresis*) greater than 1g. If (*threshold - hysteresis*) is less than 1g then after high-g interrupt is triggered, the interrupt will not get cleared if anyone axis is parallel to the gravitational vector since that axis will already be at 1g.

The X, Y and Z axes are enabled with the <u>HI G 2.select x</u>, <u>HI G 2.select y</u>, and <u>HI G 2.select z</u> respectively. When the high-g interrupt is triggered, the signals of the axis that has triggered the interrupt (first_x, first_y, first_z) and the motion direction (sign) are set.

Configuration settings

- HI G 3.duration the duration in 200 Hz samples (5ms) for which the threshold has to be exceeded.
- 2. <u>HI_G_2.hysteresis</u> the detection hysteresis.
- 3. HI G 2.select x select the feature for x axis
- 4. HI G 2.select y select the feature for y axis
- 5. <u>HI_G_2.select_z</u> select the feature for z axis
- 6. HI_G_2.enable enable the feature
- 7. HI G 1.threshold the detection threshold.

Output

- 1. High g output is packed only in FEATURE page as shown in below,
- 2. high_g_detect_x bit 3, this is set if high-g was detected on x axis
- 3. high g detect y bit 4, this is set if high-g was detected on y axis
- 4. high_g_detect_z bit 5, this is set if high-g was detected on z axis
- 5. high_g_detect_sign bit 6, this reflects the sign of the acceleration for which the high-g was detected; 1 negative, 0 positive.

The output of the features are provided via the ORIENT_HI G_OUT registers. The outputs are updated whenever a new event triggered, e.g. for the high g interrupt the axes information is only updated when then high g event condition is satisfied. This avoids that the feature output is gone, when the host is late reading it.

Scale: In X axis, 1 sample = 5ms

Figure 7: High G detection

Low-g (Freefall) Detection

For freefall detection, the absolute values of the acceleration data of all axes are observed. The vector length of all accelerations, $sqrt(acc_x^2 + acc_y^2 + acc_z^2)$, is compared with the <u>LO G 1.threshold</u>.

The interrupt will be generated when the acceleration is smaller than threshold for some minimum number of samples (<u>LO_G_3.duration</u>). The interrupt is reset when the acceleration is above the Threshold + Hysteresis value.

Configuration settings

- 1. <u>LO_G_1.threshold</u> the detection threshold.
- 2. LO G 2.hysteresis the detection hysteresis.
- 3. LO_G 3.duration the duration in 50 Hz samples (20ms) for which the threshold has to be exceeded.
- 4. LO G 2.enable indicates if this feature is enabled or not.

Figure 8: Low G detection

Orientation Detection

The orientation recognition feature informs on an orientation change of the sensor with respect to the gravitational field vector g. There are the orientations face up/face down and orthogonal to that portrait upright, landscape left, portrait downside, and landscape right. The interrupt for face up/face down may be enabled separately through ORIENT_1.ud_en.

The sensor orientation is defined by the angles φ (phi) and θ (theta). φ is the rotation around the stationary z axis, θ is the rotation around the stationary y axis (before φ rotation).

Figure 9: Definition of coordinate system with respect to pin 1 marker

The measured acceleration vector components look as follows:

- (1) $acc_x = 1g \cdot sin\theta \cdot cos\phi$
- (2) $acc_y = -1g \cdot sin\theta \cdot sin\phi$
- (3) $acc_z = 1g \cdot cos\theta$
- (2) / (1) \rightarrow acc_y/acc_x = $-\tan\varphi$

Figure 10: Angle-to-Orientation Mapping

Note that the sensor measures the direction of the force which needs to be applied to keep the sensor at rest (i.e. opposite direction than g itself).

Figure 11: Looking at phone device from frontside/portrait upright ($\phi = 90^{\circ}$, $\theta = 270^{\circ}$)

The orientation value is stored in the output register. There are three orientation calculation modes: symmetrical, high-asymmetrical and low-asymmetrical. The mode is selected by the register ORIENT_1.mode as follows:

ORIENT_1.mode	Orientation mode
00	Symmetrical
01	High asymmetrical
10	Low asymmetrical
11	Symmetrical

Table 3: Orientation Mode: Symmetrical or Asymmetrical

The output has the following meanings depending on the switching mode:

Orient	Name	Angle	Condition
x01	landscape left	315°<φ<45°	acc_y/acc_x <1 && acc_x≥0
x11	landscape right	135°<φ<225°	acc_y/acc_x <1 && acc_x<0
x10	portrait upside down	45°<φ<135°	acc_y/acc_x ≥1 && acc_y<0
x00	portrait upright	225°<φ<315°	acc_y/acc_x ≥1 && acc_y≥0

Table 4: Symmetrical mode

Orient	Name	Angle	Condition
x01	landscape left	297°<φ<63°	acc_y/acc_x <2 && acc_x≥0
x11	landscape right	117°<φ<243°	acc_y/acc_x <2 && acc_x<0
x10	portrait upside down	63°<φ<117°	acc_y/acc_x ≥2 && acc_y<0
x00	portrait upright	243°<φ<297°	acc_y/acc_x ≥2 && acc_y≥0

Table 5: High asymmetrical mode

Orient	Name	Angle	Condition
x01	landscape left	333°<φ<27°	acc_y/acc_x <0.5 && acc_x≥0
x11	landscape right	153°<φ<207°	acc_y/acc_x <0.5 && acc_x<0
x10	portrait upside down	27°<φ<153°	acc_y/acc_x ≥0.5 && acc_y<0
x00	portrait upright	207°<φ<333°	acc_y/acc_x ≥0.5 && acc_y≥0

Table 6: Low asymmetrical mode

For upside or downside orientation, the respective bit of output has the definition:

ORIENT_HI_G_OUT.faceup_down/ ORIENT_ACT.faceup_down	acc_z
value 0 = upside	$(270^{\circ} < \theta < 90^{\circ}) \rightarrow acc_z >= 0$
value 1 = downside	$(90^{\circ} < \theta < 270^{\circ}) \rightarrow acc_{z} < 0$

Table 7: Upside/Downside definition

Both portrait/landscape and upside/downside recognition use a <u>ORIENT_2.hysteresis</u>. The hysteresis for portrait/landscape detection is configurable and applies to all conditions as described in the tables below.

orient	Name	Angle	Condition
x01	landscape left	315°+hy <φ< 45°-hy	acc_y < acc_x -hyst && acc_x≥0
x11	landscape right	135°+hy <φ< 225°-hy	acc_y < acc_x -hyst && acc_x<0
x10	portrait upside down	45°+hy <φ< 135°-hy	acc_y > acc_x +hyst && acc_y<0
x00	portrait upright	225°+hy <φ< 315°-hy	acc_y > acc_x +hyst && acc_y≥0

Table 8: Symmetrical mode

Figure 12: Hysteresis in symmetrical mode

orient	Name	Angle	Condition
x01	landscape left	297°+hy <φ<63°-hy	acc_y <2*(acc_x -hyst) && acc_x≥0
x11	landscape right	117°+hy <φ<243°-hy	acc_y <2*(acc_x -hyst) && acc_x<0
x10	portrait upside down	63°+hy <φ<117°-hy	acc_y >2* acc_x +hyst && acc_y<0
x00	portrait upright	243°+hy <φ<297°-hy	acc_y >2* acc_x +hyst && acc_y≥0

Table 9: High asymmetrical mode

Figure 13: Hysteresis in high asymmetrical mode

orient	Name	Angle	Condition
x01	landscape left	333°+hy <φ<27°-hy	acc_y <(acc_x -hyst)/2 && acc_x≥0
x11	landscape right	153°+hy <φ<207°-hy	acc_y <(acc_x -hyst)/2 && acc_x<0
x10	portrait upside down	27°+hy <φ<153°-hy	acc_y > acc_x /2+hyst && acc_y<0
x00	portrait upright	207°+hy <φ<333°-hy	acc_y > acc_x /2+hyst && acc_y≥0

Table 10: Low asymmetrical mode

Figure 14: Hysteresis in low asymmetrical mode

The hysteresis for upside/downside detection is fixed to 11.5° which is ~200 mg.

0	rient	Name	Angle	Condition
	0xx	upside	281.5°<Θ<78.5°	acc_z>200mg (acc_z >200mg and acc_z≥0)
	1xx	downside	101.5°<φ<258°	acc_z<-200mg (acc_z >200mg and acc_z<0)

Table 1 Upside/downside hysteresis

Blocking mode

The orientation blocking mode feature may be used to avoid undesired orientation changes detection interrupts, e.g. if the device is nearly flat or in motion. The configuration of the blocking mode is performed in the ORIENT_1.blocking register:

Blocking	Conditions		
00	Interrupt blocking is disabled		
01	Interrupt blocked if device close to the horizontal position (θ_f lat) OR acceleration of any axis > 1.5g		
10	Interrupt blocked if device close to the horizontal position (θ_flat) OR acceleration of any axis > 1.5g OR slope>0.2g		
11	Interrupt blocked if device close to the horizontal position (θ_flat) OR acceleration of any axis > 1.5g OR slope > 0.4g OR another change within 100ms		

Table 2: Orientation blocking

If the 100ms interrupt blocking is enabled (blocking mode '11'), to trigger the interrupt, the detected orientation has to remain the same (stable) until the timer expires (for ~100ms).

The timer starts to count when orientation changes between two consecutive samples. If the orientation changes while timer is still counting, the timer is restarted. The θ blocking (phone close to the horizontal position) is defined by inequality presented in Flat Detection section. If other than +2/-2g range is selected, acceleration values are saturated before flat detection for blocking modes.

Configuration settings

- 1. ORIENT 1.mode used for setting which of the following modes are being used: symmetrical, high or low asymmetrical
- 2. ORIENT 1.blocking used for setting the blocking mode.
- 3. ORIENT 1.theta coded value of the threshold angle with horizontal used in Blocking modes; θ = 64 * (tan(angle)^2.
- 4. ORIENT 2.hysteresis acceleration hysteresis for Orientation detection.
 5. ORIENT 1.enable indicates if this feature is enabled or not.
- 6. ORIENT 1.ud en face upside/downside enable, in addition to landscape/portrait detection.

Orientation output

There are 3 bits:

- 1. Bit 2 (ORIENT_HI_G_OUT.faceup_down or ORIENT_ACT.faceup_down) reflects the face-up (value 0), respectively face-down (value 1), only if ud_en is enabled.
- 2. Bit 0-1 (ORIENT HI G OUT.portrait landscape or ORIENT ACT.portrait landscape) have the value:
 - 1. portrait_upright = 0
 - 2. landscape left = 1
 - 3. portrait upside down = 2
 - 4. landscape right = 3

Tap Detection

The gesture "Tap", "Double Tap", or "Triple Tap" selected in <u>TAP 1</u> can be used to trigger an interrupt event. The tap is triggered by the acceleration along the axis configured in <u>TAP 6.axis sel</u> (default z axis). Using the register <u>TAP 2.tap sens thres</u> the sensitivity can be customized from 0 (high sensitive) to 7 (low sensitive).

Configuration settings

- 1. TAP_1.single_tap_en Enable the detection of single-tap gesture.
- 2. TAP 1.double tap en Enable the detection of double-tap gesture.
- 3. TAP_1.triple_tap_en Enable the detection of triple-tap gesture.
- 4. <u>TAP 1.data reg en</u> By enabling this bit, accel data according to the user defined accel configuration is taken for tap detector feature (ODR must be set to 200Hz for the use of tap detector feature). When this bit is disabled, 200Hz unfiltered accel data is used for tap detector feature.
- TAP 2.tap sens thres Scaling factor of additional threshold increment for detection of positive and negative peak of a tap. Default value = 3, Recommended range = 0 to 15. Resolution of each LSB of scaling factor in terms of filtered acceleration signal magnitude is 78.125 mg.
- 6. <u>TAP 3.max gest dur</u> Maximum duration after the first tap within which the second and/or third tap have to be performed for being detected as double-tap or triple-tap. Default value = 80 (400 ms), Resolution = 5 ms, Recommended range = 250 to 1000 ms.
- 7. TAP 4.quite time after gest Minimum quite time between the two gesture detection. Default value = 80 (400 ms), Resolution = 5 ms, Recommended range = 250 to 500 ms
- 8. <u>TAP 5.wait for timeout</u> Wait for the duration set by <u>TAP 3.max gest dur</u> after the first tap and report the tap-gesture based on number of taps detected. Default value = 0 (disabled). Allowed values = 0 / 1 (disabled / enabled).
- 9. TAP 6.axis sel Selection of axis from 3D-acceleration signal vector for tap detection. Default value = 2 (z-axis). Other supported values 0 (x-axis) and 1 (y-axis). Any other selection leads to usage of default value.

Output

Once the tap interrupt is triggered, the corresponding status shall be referred from ORIENT_ACT.s tap_out, ORIENT_ACT.d tap_out and ORIENT_ACT.t tap_out.

Significant Motion Detection

The significant motion interrupt implements the interrupt required for motion detection in Android 4.3 and greater: https://source.android.com/devices/sensors/sensor-types.html#significant motion.

A significant motion is a motion due to a change in the user location.

Examples of such significant motions are walking or biking, sitting in a moving car, coach or train, etc. Examples of situations that does typically not trigger significant motion include phone in pocket and person is stationary or phone is at rest on a table which is in normal office use.

Configuration settings

- 1. SIGMO 2.enable indicates if this feature is enabled or not.
- 2. <u>SIGMO_1.block_size</u> Defines the duration after which the significant motion interrupt is triggered. It is expressed in 50 Hz samples (20 ms). Default value is 0xFA=5sec.

Step counter / Step Detector

The Step Counter implements the function required for step counting in Android 4.4 and greater: https://source.android.com/devices/sensors/sensor-types.html#step counter.

The Step Detector implements the function required for step counting in Android 4.4 and greater: https://source.android.com/devices/sensors/sensor-types.html#step_detector.

The stepcounter algorithm is designed for smartphone usecases² and optimized on high accuracy, while step detector is optimized on low latency. Each can be enabled independently, but the step detector interrupt output is mutually exclusive with the step counter watermark interrupt.

Configuration settings

- 1. <u>SC 1.watermark level</u> Watermark level; the Step-counter will trigger output every time this number of steps are counted. Holds implicitly a 20x factor, so the range is 0 to 1023 (without the implicit factor), with resolution of 20 steps. If 0, the Step Counter watermark is disabled. If Step Detector is enabled, the watermark interrupt is disabled (as being mutually exclusive).
- 2. <u>SC 1.reset_counter</u> flag to reset the counted steps. Resets the step count value, if any one of step counter, step detector or activity feature is enabled.
- 3. <u>SC_1.en_counter</u> indicates if the step counter feature is enabled or not.
- 4. SC_1.en_detector indicates if the step detector feature is enabled or not.

The step counter accumulates the steps detected by the step detector interrupt, and makes available the 32 bit current step counter value in the following 4 registers, each holding 8 bit: SC OUT 0 1.byte 0 (LSB), SC OUT 0 1.byte 1, SC OUT 2 3.byte 2, and SC OUT 2 3.byte 3 (MSB).

By enabling the <u>SC_1.reset_counter</u> flag, the accumulated step number value is reset. Afterwards, the value of this flag is automatically reset and counting is restarted. Accumulated step count value can be reset when any one of step counter, step detector or activity feature is enabled.

² For wearable use-case optimized stepcounter refer to the one in BMI270 datasheet

Step Counter

The watermark option can be useful if the host needs to receive an interrupt every time a certain number of steps occured. If <u>SC 1.watermark level</u> is set to 10 (holding an implicit factor of 20x), every 200 steps are counted an interrupt will be raised on <u>INT STATUS 0.step counter out</u>. As the steps are buffered internally, the output may be triggered between 200-210 steps. The exact number of steps recorded is available in the registers <u>SC OUT 0 1.byte 0</u>, <u>SC OUT 0 1.byte 1</u>, <u>SC OUT 2 3.byte 2</u>, and <u>SC OUT 2 3.byte 3</u>. When the watermark level is reached, the corresponding interrupt bit is asserted <u>INT STATUS 0.step</u> counter out.

Step Detector

If <u>SC_1.en_detector</u> is set, an interrupt is triggered for every step detected. So, every time a new step is detected, it asserts the corresponding interrupt output <u>INT_STATUS_0.step_counter_out</u>. In this case, the Step Detector feature is optimized on low latency, so when a step is detected, it is immediately signaled. Due to this functionality, there are situations when sum of the detected steps is different than the step counting value.

Step Counter result publication

Step counter results are available in (4 bytes counter value)

SC_OUT_0_1.byte_0, SC_OUT_0_1.byte_1, SC_OUT_2_3.byte_2, and SC_OUT_2_3.byte_3

and in (2 bytes counter value)

SC OUT 0.byte 0 and SC OUT 1.byte 1

The 4 byte counter value is only accessible if the device is not in low power or suspend mode.

Activity and Activity Change Recognition

The device can detect simple³ user activities (unknown, still, walking, running) and can send an interrupt if those are changed, e.g. from walking to running or vice versus. The interrupt is shared with step detector/step counter watermark interrupts and can be configured independently of all other interrupts to any of the interrupt lines.

- 1. The device reports changes for following activity changes by an interrupt
 - 1. Still 0
 - 2. Walking 1
 - 3. Running -2
 - 4. Unknown 3
- 2. Activity interrupt will be triggered only when there is change in status
- 3. ACT OUT.act out reports the activity status

During power on, activity will be unknown (0x03) and the device receives an activity change interrupt once activity is enabled, and a new activity detected. When activity is disabled, status will be changed to unknown.

Configuration settings

1. SC1_1.en_activity - indicates if the activity feature is enabled or not

_

³ A sophisticated activity recognition engine is implemented in BMI270 Context version for wearable use-cases

4. Register Description

4.1. General Remarks

This section contains register definitions. REG[x]<y> denotes bit y in byte x in register REG. Val(Name) is the value contained in the register interpreted as non-negative binary number. When writing to reserved bits, '0' should be written if not stated different.

For most of the registers auto address increment applies for, with the exception of the registers below, which trap the address:

- FIFO DATA
- INIT DATA

Register read from a burst read must remain consistent. In order to ensure this, when a read starts in one register of a group, the registers in this group are shadowed:

• STATUS, DATA x, SENSORTIME x, TEMPERATURE x, FIFO LENGTH x

The registers listed below are clear-on-read:

- ERR REG
- STATUS.drdy_acc (cleared when DATA_9.acc_x_15_8 is read),
- STATUS.drdy gyr (cleared when DATA 15.gyr x 15 8 is read)
- <u>STATUS.drdy_aux</u> (cleared when <u>DATA_1.aux_x_15_8</u> is read)
- EVENT
- INT STATUS 0
- INT_STATUS_1

The register clearance happens, when bit 0 of the corresponding register is read.

4.2. Register Map

	read/write		rea	ıd only		write o	only		reserved	
		•								
Registe					Corre	sponding to BN	/II270L_image.tl	bin version 4.0,	register map v	ersion 4.0
r	Registe	Default	_	_	_	_	_	_	_	_
Addres	r Name	Value	7	6	5	4	3	2	1	0
s										
0x7E	<u>CMD</u>	0x00				cr	nd I			
0x7D	PWR_C TRL	0x00		rese	rved		temp_en	acc_en	gyr_en	aux_en
0x7C	PWR C	0x03			reserved			fup_en	fifo_self _wake_ up	adv_po wer_sav e
0x7B	-	-				rese	erved			
	-	-				rese	erved			
0x78	-	-			I	rese	erved			
0x77	<u>OFFSET</u> <u>6</u>	0x00	gyr_gain _en	gyr_off_ en	gyr_usr_o	off_z_9_8	gyr_usr_o	off_y_9_8	gyr_usr_o	off_x_9_8
0x76	OFFSET 5	0x00				gyr_usr_	off_z_7_0			
0x75	OFFSET 4	0x00				gyr_usr_	off_y_7_0			
0x74	OFFSET 3	0x00				gyr_usr_	off_x_7_0			
0x73	OFFSET 2	0x00				off_a	acc_z			
0x72	OFFSET 1	0x00				off_a	acc_y			
0x71	OFFSET 0	0x00				off_a	acc_x			
0x70	NV_CO NF	0x00		rese	erved		acc_off_ en	i2c_wdt_ en	i2c_wdt_ sel	spi_en
0x6F	-	-				rese	rved			
0x6E	GYR_S ELF_TE ST_AXE S	0x00		rese	erved		gyr_axis _z_ok	gyr_axis _y_ok	gyr_axis _x_ok	gyr_st_a xes_don e
0x6D	ACC_S ELF_TE ST	0x00		reserved I test a I test si I reserved I						acc_self _test_en
0x6C	DRV	0xFF	io_pad_i 2c_b2	io_pad_i						
0x6B	IF_CON F	0x00	rese							spi3
0x6A	NVM_C ONF	0x00			rese	rved			nvm_pro g_en	reserved

0x69	GYR C RT CO NF	0x00		rese	erved		rdy_for_ dl	crt_runni ng	rese	rved
0x68	AUX IF TRIM	0x01		reserved asda_p						pupsel
0x67	-	=		reserved						
	-	-		reserved						
0x60	-	-		reserved						
0x5F	INTERN AL_ERR OR	0x00		reserved		feat_eng _disable d	reserved	int_err_2	int_err_1	reserved
0x5E	INIT_DA TA	0x00				da	ıta			
0x5D	-	-		reserved						
0x5C	INIT_AD DR_1	0x00				base_	_11_4			
0x5B	INIT_AD DR_0	0x00		reserved base_0_3						
0x5A	-	-		reserved						
0x59	INIT_CT RL	0x00				init_	_ctrl			
0x58	INT_MA P_DATA	0x00	err_int2	drdy_int	fwm_int	ffull_int2	err_int1	drdy_int 1	fwm_int	ffull_int1
0x57	INT2 M AP FEA T	0x00	orientati on_out	any_mot ion_out	no_moti on_out	flat_out	tap_out	high_low _g_out	step_co unter_ou t	sig_moti on_out
0x56	INT1 M AP_FEA T	0x00	orientati on_out	any_mot ion_out	no_moti on_out	flat_out	tap_out	high_low _g_out	step_co unter_ou t	sig_moti on_out
0x55	INT_LAT CH	0x00				reserved				int_latch
0x54	INT2_IO _CTRL	0x00		reserved		input_en	output_e n	od	lvl	reserved
0x53	INT1_IO _CTRL	0x00		reserved		input_en	output_e n	od	lvl	reserved
0x52	ERR R EG MS <u>K</u>	0x00	aux_err	fifo_err	reserved		intern	al_err		fatal_err
0x51	-	-				rese	rved			
0x50	-	-		reserved						
0x4F	AUX W R DATA	0x02		write_data						
0x4E	AUX W R ADD R	0x4C		write_addr						
0x4D	AUX R D ADD R	0x42				read_	_addr			

0x4C	AUX IF CONF	0x83	aux_ma nual_en	aux_fcu _write_e n	rese	rved	man_ro	d_burst	aux_rc	I_burst	
0x4B	AUX D EV ID	0x20		i2c_device_addr						reserved	
0x4A	SATUR ATION	0x00	rese	reserved gyr_z gyr_y			gyr_x	acc_z	acc_y	acc_x	
0x49	FIFO_C ONFIG 1	0x10	fifo_gyr_ en				fifo_tag_	_int2_en	fifo_tag	fifo_tag_int1_en	
0x48	FIFO_C ONFIG_ 0	0x02			rese	rved			fifo_time _en	fifo_stop _on_full	
0x47	FIFO_W TM_1	0x02		reserved			fifo_v	vater_mark_	12_8		
0x46	FIFO_W TM_0	0x00				fifo_water_	_mark_7_0				
0x45	FIFO_D OWNS	0x88	acc_fifo _filt_dat a	_filt_dat					yr_fifo_dowr	ıs	
0x44	AUX_C ONF	0x46		aux_offset aux_odr					_odr		
0x43	GYR_R ANGE	0x00		rese	rved		ois_rang e		gyr_range		
0x42	GYR_C ONF	0xA9	gyr_filter _perf	gyr_nois e_perf	gyr_	bwp		gyr_	r_odr		
0x41	ACC_R ANGE	0x02			rese	rved			acc_ı	ange	
0x40	ACC_C ONF	0xA8	acc_filte r_perf		acc_bwp			acc	_odr		
0x3F	FEATUR ES[15]	0x00									
		-				features	s_in_out				
0x30	FEATUR ES[0]	0x00									
0x2F	FEAT_P AGE	0x00			reserved				page		
0x2E	-	-				rese	rved				
	-	-				rese	rved				
0x27	-	-				rese	rved				
0x26	FIFO_D ATA	0x00		fifo_data							
0x25	FIFO_L ENGTH _1	0x00	reserved fifo_byte_counter_13_8								
0x24	FIFO L ENGTH 0	0x00		fifo_byte_counter_7_0							

0x23	TEMPE RATUR E_1	0x80				tmp_dat	ta_15_8			
0x22	TEMPE RATUR E 0	0×00		tmp_data_7_0						
0x21	INTERN AL STA TUS	0x00	odr_high _error	odr_50h z_error	axes_re map_err or	Reserve d	message			
0x20	ORIENT _ACT	0x00	t_tap_ou	d_tap_o ut	s_tap_o ut	act_	t_out faceup_ portrait_landscape			
0x1F	SC_OU T_1	0x00				byte	e_1			
0x1E	<u>SC OU</u> <u>T 0</u>	0x00				byte	e_0			
0x1D	INT_ST ATUS_1	0x00	acc_drd y_int	gyr_drdy _int	aux_drd y_int	rese	rved	err_int	fwm_int	ffull_int
0x1C	INT_ST ATUS_0	0x00	orientati on_out	any_mot ion_out	no_moti on_out	flat_out	tap_out	high_low _g_out	step_co unter_ou t	sig_moti on_out
0x1B	EVENT	0x01		reserved			error_code		reserved	por_dete cted
0x1A	SENSO RTIME	0x00				sensor_tir	me_23_16			
0x19	SENSO RTIME_ 1	0×00				sensor_ti	me_15_8			
0x18	SENSO RTIME 0	0x00				sensor_t	ime_7_0			
0x17	DATA_1 9	0x00				gyr_z	_15_8			
0x16	DATA_1 <u>8</u>	0x00				gyr_z	:_7_0			
0x15	<u>DATA_1</u> <u>7</u>	0x00				gyr_y	_15_8			
0x14	DATA_1 6	0x00				gyr_y	·_7_0			
0x13	<u>DATA_1</u> <u>5</u>	0x00				gyr_x	_15_8			
0x12	<u>DATA_1</u> <u>4</u>	0x00		gyr_x_7_0						
0x11	DATA 1 3	0x00		acc_z_15_8						
0x10	<u>DATA_1</u> <u>2</u>	0x00		acc_z_7_0						
0x0F	<u>DATA_1</u> <u>1</u>	0x00				acc_y	_15_8			

0x0E	<u>DATA_1</u> <u>0</u>	0x00				acc_y	y_7_0			
0x0D	DATA_9	0x00		acc_x_15_8						
0x0C	DATA_8	0x00				acc_>	x_7_0			
0x0B	DATA_7	0x00				aux_r	_15_8			
0x0A	DATA_6	0x00				aux_	r_7_0			
0x09	DATA_5	0x00				aux_z	_15_8			
0x08	DATA_4	0x00				aux_z	z_7_0			
0x07	DATA_3	0x00				aux_y	_15_8			
0x06	DATA_2	0x00				aux_ <u>y</u>	y_7_0			
0x05	DATA_1	0x00				aux_x	_15_8			
0x04	DATA_0	0x00				aux_x	x_7_0			
0x03	STATUS	0x10	drdy_ac c	drdy_gyr	drdy_au x	cmd_rdy	reserved	aux_bus y	rese	rved
0x02	ERR_R EG	0x00	aux_err	aux_err fifo_err reserved internal_err fatal_err						
0x01	-	-	reserved							
0x00	CHIP_ID	0x24				chip	o_id			

FEATURES Pages

Register Address	Register Name	Page 0	Page 1	Page 2	Page 3
0x30	FEATURES[0,1]	SC_OUT_0_1	Reserved	ORIENT 1	FLAT_1
0x32	FEATURES[2,3]	SC_OUT_2_3	G_TRIG_1	ORIENT_2	FLAT_2
0x34	FEATURES[4,5]	ACT_OUT	GEN_SET_1	<u>HI_G_1</u>	SIGMO_1
0x36	FEATURES[6,7]	ORIENT_HI_G_OUT	ANYMO_1	<u>HI_G_2</u>	Reserved
0x38	FEATURES[8,9]	GYR GAIN STATU S	ANYMO 2	HI G 3	Reserved
0x3A	FEATURES[10,11]	Reserved	NOMO_1	<u>LO_G_1</u>	Reserved
0x3C	<u>FEATURES[12,13]</u>	GYR_CAS	NOMO_2	<u>LO G 2</u>	<u>Reserved</u>
0x3E	FEATURES[14,15]	Reserved	Reserved	LO_G_3	SIGMO_2

FEATURES Pages

Register Address	Register Name	Page 4	Page 5	Page 6	Page 7
0x30	FEATURES[0,1]	<u>SC_1</u>	<u>TAP_1</u>	<u>TAP_5</u>	Reserved
0x32	FEATURES[2,3]	<u>SC_2</u>	Reserved	Reserved	Reserved
0x34	FEATURES[4,5]	GYR_GAIN_UPD_1	TAP_2	TAP_6	Reserved
0x36	FEATURES[6,7]	GYR_GAIN_UPD_2	TAP_3	Reserved	Reserved
0x38	FEATURES[8,9]	GYR_GAIN_UPD_3	Reserved	Reserved	Reserved
0x3A	FEATURES[10,11]	Reserved	Reserved	Reserved	Reserved
0x3C	FEATURES[12,13]	Reserved	Reserved	Reserved	Reserved
0x3E	FEATURES[14,15]	Reserved	TAP_4	Reserved	Reserved

1 Register (0x00) CHIP_ID

DESCRIPTION: Chip identification code

RESET: 0x24

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x00		CHIP_ID		0x24	
	70	chip_id	Chip identification code	0x24	R

2 Register (0x02) ERR_REG

DESCRIPTION: Reports sensor error conditions

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x02		ERR_REG		0x00	
	0	fatal_err	Fatal Error, chip is not in operational state (Boot-, power-system). This flag will be reset only by power-on-reset or softreset.	0x0	R
	41	internal_err	Internal error, please contact your Bosch Sensortec regional support team.	0x0	R
	6	fifo_err	Error when a frame is read in streaming mode (so skipping is not possible) and fifo is overfilled (with virtual and/or regular frames). This flag will be reset when read.	0x0	R
	7	aux_err	Error in I2C-Master detected. This flag will be reset when read.	0x0	R

3 Register (0x03) STATUS

DESCRIPTION: Sensor status flags

RESET: 0x10

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x03		STATUS		0x10	
	2	aux_busy	'1'('0') indicate a (no) Auxiliary sensor interface operation is ongoing triggered via AUX_RD_ADDR, AUX_WR_ADDR or from FCU.	0x0	R
	4	cmd_rdy	CMD decoder status. '0' -> Command in progress '1' -> Command decoder is ready to accept a new command	0x1	R
	5	drdy_aux	Data ready for Auxiliary sensor. It gets reset, when one Auxiliary sensor DATA register is read out	0x0	R
	6	drdy_gyr	Data ready for Gyroscope. It gets reset, when one Gyroscope DATA register is read out	0x0	R
	7	drdy_acc	Data ready for Accelerometer. It gets reset, when one Accelerometer DATA register is read out	0x0	R

4 Register (0x04) DATA_0

DESCRIPTION: AUX_X(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x04		DATA_0		0x00	
	70	aux_x_7_0	copy of register Val(AUX_IF[1]) in Auxiliary sensor register map.	0x0	R

5 Register (0x05) DATA_1

DESCRIPTION: AUX_X(MSB)

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x05		DATA_1		0x00	
	70	aux_x_15_8	copy of register Val(AUX_IF[1])+1 in Auxiliary	0x0	R
			sensor register map		

6 Register (0x06) DATA_2

DESCRIPTION: AUX_Y(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x06		DATA_2		0x00	
	70	aux_y_7_0	copy of register Val(AUX_IF[1])+2 in Auxiliary sensor register map	0x0	R

7 Register (0x07) DATA_3

DESCRIPTION: AUX_Y(MSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x07		DATA_3		0x00	
	70	aux_y_15_8	copy of register Val(AUX_IF[1])+3 in Auxiliary	0x0	R
			sensor register map		

8 Register (0x08) DATA_4

DESCRIPTION: AUX_Z(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x08		DATA_4		0x00	
	70	aux_z_7_0	copy of register Val(AUX_IF[1])+4 in Auxiliary	0x0	R
			sensor register map		

9 Register (0x09) DATA_5

DESCRIPTION: AUX_Z(MSB)

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x09		DATA_5		0x00	
	70	aux_z_15_8	copy of register Val(AUX_IF[1])+5 in Auxiliary sensor register map	0x0	R

10 Register (0x0A) DATA_6

DESCRIPTION: AUX_R(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x0A		DATA_6		0x00	
	70	aux_r_7_0	copy of register Val(AUX_IF[1])+6 in Auxiliary	0x0	R
			sensor register map		

11 Register (0x0B) DATA_7

DESCRIPTION: AUX_R(MSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x0B		DATA_7		0x00	
	70	aux_r_15_8	copy of register Val(AUX_IF[1])+7 in Auxiliary	0x0	R
			sensor register map		

12 Register (0x0C) DATA_8

DESCRIPTION: ACC_X(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x0C		DATA_8		0x00	
	70	acc_x_7_0		0x0	R

13 Register (0x0D) DATA_9

DESCRIPTION: ACC_X(MSB)

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x0D		DATA_9		0x00	
	70	acc_x_15_8		0x0	R

14 Register (0x0E) DATA_10

DESCRIPTION: ACC_Y(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x0E		DATA_10		0x00	
	70	acc_y_7_0		0x0	R

15 Register (0x0F) DATA_11

DESCRIPTION: ACC_Y(MSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x0F		DATA_11		0x00	
	70	acc_y_15_8		0x0	R

Register (0x10) DATA_12

DESCRIPTION: ACC_Z(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x10		DATA_12		0x00	
	70	acc_z_7_0		0x0	R

17 Register (0x11) DATA_13

DESCRIPTION: ACC_Z(MSB)

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x11		DATA_13		0x00	
	70	acc_z_15_8		0x0	R

Register (0x12) DATA_14

DESCRIPTION: GYR_X(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x12		DATA_14		0x00	
	70	gyr_x_7_0		0x0	R

19 Register (0x13) DATA_15

DESCRIPTION: GYR_X(MSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x13		DATA_15		0x00	
	70	gyr_x_15_8		0x0	R

20 Register (0x14) DATA_16

DESCRIPTION: GYR_Y(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x14		DATA_16		0x00	
	70	gyr_y_7_0		0x0	R

21 Register (0x15) DATA_17

DESCRIPTION: GYR_Y(MSB)

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x15		DATA_17		0x00	
	70	gyr_y_15_8		0x0	R

22 Register (0x16) DATA_18

DESCRIPTION: GYR_Z(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x16		DATA_18		0x00	
	70	gyr_z_7_0		0x0	R

23 Register (0x17) DATA_19

DESCRIPTION: GYR_Z(MSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x17		DATA_19		0x00	
	70	gyr_z_15_8		0x0	R

24 Register (0x18) SENSORTIME_0

DESCRIPTION: Sensor time <7:0>

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x18		SENSORTIME_0		0x00	
	70	sensor_time_7_0	Sensor time <7:0>	0x0	R

25 Register (0x19) SENSORTIME_1

DESCRIPTION: Sensor time <15:8>

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x19		SENSORTIME_1		0x00	
	70	sensor_time_15_8	Sensor time <15:8>.	0x0	R

26 Register (0x1A) SENSORTIME_2

DESCRIPTION: Sensor time <23:16>

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x1A		SENSORTIME_2		0x00	
	70	sensor_time_23_16	Sensor time <23:16> The sensor time is a 24 bit counter available in suspend, low power, and normal mode. The value of the SENSORTIME register is shadowed, when it is read in a burst read with the data register at the beginning of the operation and the shadowed value is returned. When the fifo is read the register is shadowed, whenever a new frame is read. The resolution of the sensor_time is 39.0625 us, and it is synchrounous to ODR. The register wraps if it reaches 0xFFFFFF.	0x0	R

27 Register (0x1B) EVENT

DESCRIPTION: Sensor event flags. Will be cleared on read when bit 0 is sent out over the bus.

RESET: 0x01

Address	Bit	Name	Descrip	tion		Reset	Access
0x1B		EVENT			0x01		
	0	por_detected	'1' after o	device power up or a	0x1	R	
	42	error_code	Error cod	des for persistent er	rors	0x0	R
			Value	Name	Description		
			0x00	no_error	no error is		
					reported		
			0x01	acc_err	error in Register		
					ACC_CONF		
			0x02	gyr_err	error in Register		
					GYR_CONF		
			0x03	acc_and_gyr_err	error in		
					Registers		
					ACC_GYR &		
					GYR_CONF		

28 Register (0x1C) INT_STATUS_0

DESCRIPTION: Interrupt/Feature Status. Will be cleared on read.

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x1C		INT_STATUS_0		0x00	
	0	sig_motion_out	Sigmotion output.	0x0	R
	1	step_counter_out	Step-counter watermark or Step-detector output or Step activity output	0x0	R
	2	high_low_g_out	High-g and Low-g detection output	0x0	R
	3	tap_out	Tap output	0x0	R
	4	flat_out	Flat output	0x0	R
	5	no_motion_out	No motion detection output	0x0	R
	6	any_motion_out	Any motion detection output	0x0	R
	7	orientation_out	Orientation output	0x0	R

29 Register (0x1D) INT_STATUS_1

DESCRIPTION: Interrupt Status 1. Will be cleared on read when bit 0 is sent out over the bus.

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x1D		INT_STATUS_1		0x00	
	0	ffull_int	FIFO Full Interrupt	0x0	R
	1	fwm_int	FIFO Watermark Interrupt	0x0	R
	2	err_int	ERROR Interrupt	0x0	R
	5	aux_drdy_int	Auxiliary Data Ready Interrupt	0x0	R
	6	gyr_drdy_int	Gyroscope Data Ready Interrupt	0x0	R
	7	acc_drdy_int	Accelerometer Data Ready Interrupt	0x0	R

30 Register (0x1E) SC_OUT_0

DESCRIPTION: Step counting value byte-0

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x1E		SC_OUT_0		0x00	
	70	byte_0	Step counting value byte-0 (least significant byte)	0x0	R

31 Register (0x1F) SC_OUT_1

DESCRIPTION: Step counting value byte-1

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x1F		SC_OUT_1		0x00	
	70	byte_1	Step counting value byte-1	0x0	R

32 Register (0x20) ORIENT_ACT

DESCRIPTION: Orientation and activity detection output

RESET: 0x00

Addres s	Bit	Name	Descrip	tion			Rese t	Acces s
0x20		ORIENT_ACT					0x00	
	1	portrait_landsca pe	feature.	value of the o Value after o . Portrait upr	device init		0x0	R
			Valu	Name		Descriptio		
			е			n		
			0x00	portrait_upi	right	Portrait upright orientation		
			0x01	landscape_	left	Landscape left orientation		
			0x02	portrait_up:	side_do	Portrait		
				wn		upside		
						down		
			0x03	landscape_	right	orientation Landscape		
			0.000	ianascape_	.iigiit	right		
						orientation		
	2	faceup_down	orientati after dev Value 0x00	vice initializa Name face_up	d_en is er tion is 0b0 Descri Face u	nabled). Value 0 i.e. Face up ption p orientation	0x0	R
			0x01	face_down	Face d orienta			
	4	act_out	-	alue of the	=		0x0	R
	3		0b11 i.e.	Value after o . unknown a	ctivity			
			Value	Name	Descript			
			0x00	still	User stat	tionary		

		0x01	walking	User walking		
		0x02	running	User running		
		0x03	unknown	Unknown state		
5	s_tap_out	Single ta	ap detected		0x0	F
6	d_tap_out	Double t	tap detected		0x0	F
7	t_tap_out	Triple ta	p detected		0x0	F

33 Register (0x21) INTERNAL_STATUS

DESCRIPTION: Error bits and message indicating internal status

RESET: 0x00

Addres s	Bit	Name	Descrip	otion		Rese t	Acces s
0x21		INTERNAL_STATU S				0x00	
	3	message	Internal Valu e	Status Message Name	Description	0x0	R
			0x00	not_init	ASIC is not initialized		
			0x01	init_ok	ASIC initialized		
			0x02	init_err	Initialization error		
			0x03	drv_err	Invalid driver		
			0x04	sns_stop	Sensor stopped		
			0x05	nvm_error	Internal error while accessing NVM		
			0x06	start_up_erro r	Internal error while accessing NVM and Initialization error		
			0x07	compat_error	Compatibilit y error		
	4	Reserved	Reserve	ed		0x0	R
	5	axes_remap_error	must be separate	et axes remappin mapped to excluse e axes i.e. they of I to same axes.	usively	0x0	R

6	odr_50hz_error	The minimum bandwidth conditions are not respected for the features which require 50 Hz data.	0x0	R
7	odr_high_error	The minimum bandwidth conditions are not respected for the features which require 200 Hz data.	0x0	R

34 Register (0x22) TEMPERATURE_0

DESCRIPTION: Temperature LSB; The temperature is disabled when all sensors are in suspend. The output word of the 16-bit temperature sensor is valid if the Gyroscope is in normal mode, i.e. gyr_pmu_status=1. The resolution is 1/2^9 K/LSB. The absolute accuracy of the temperature is in the order of:

0x7FFF -> 87-1/2^9 °C

0x0000 -> 23°C

0x8001 -> -41+1/2^9 °C

0x8000 -> invalid

If the Gyroscope is in normal mode (see register PMU_STATUS), the temperature is updated every 10 ms (+-12%), if the gyroscope is in standby mode or fast-power up mode, the temperature is updated ever 1.28 s aligned with bit 15 of the register SENSORTIME.

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x22		TEMPERATURE_0		0x00	
	70	tmp_data_7_0	Temperature value.	0x0	R

35 Register (0x23) TEMPERATURE_1

DESCRIPTION: Contains the MSBs of temperature sensor value

RESET: 0x80

Address	Bit	Name	Description	Reset	Access
0x23		TEMPERATURE_1		0x80	
	70	tmp_data_15_8	Temperature LSBs.	0x80	R

Register (0x24) FIFO_LENGTH_0

DESCRIPTION: FIFO byte count register (LSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x24		FIFO_LENGTH_0		0x00	
	70	fifo_byte_counter_7_0	Current fill level of FIFO buffer This includes the skip frame for a full fifo. An empty FIFO corresponds to	0x0	R
			0x000. The byte counter may be reset by reading out all frames from the FIFO buffer or when the FIFO is reset through the register CMD. The		
			byte counter is updated each time a complete frame was read or written.		

37 Register (0x25) FIFO_LENGTH_1

DESCRIPTION: FIFO byte count register (MSB)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x25		FIFO_LENGTH_1		0x00	
	50	fifo_byte_counter_13_8	FIFO byte counter bits 138	0x0	R

38 Register (0x26) FIFO_DATA

DESCRIPTION: FIFO data output register

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x26		FIFO_DATA		0x00	
	70	fifo_data	FIFO read data, for burst read (8 bits). Data format depends on the setting of register FIFO_CONFIG. The FIFO data are organized in frames. The new data flag is preserved. Read burst access must be used, the address will not increment when the read burst reads at the address of FIFO_DATA. When a frame is only partially read out it is retransmitted including the header at the next readout.	0x0	R

39 Register (0x2F) FEAT_PAGE

DESCRIPTION: Page number for feature configuration and output registers

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x2F		FEAT_PAGE		0x00	
	20	page	Map 16 feature registers to one of the 8	0x0	RW
			feature pages		

40 Register (0x30) FEATURES[16]

DESCRIPTION: Input registers for feature configuration. Output registers for feature results.

RESET: 0x00

Page 0

Addres s	Bit	Name	Description	Reset	Acces s
step_cou	nter_ou	itput			
0x30		SC_OUT_0_1	Describes lower word of step counter	0x000 0	
	70	byte_0	Value of step counter byte 0	0x0	R
	15 8	byte_1	Value of step counter byte 1	0x0	R
0x32		SC_OUT_2_3	Describes higher word of step counter	0x000 0	
	70	byte_2	Value of step counter byte 2	0x0	R
	15 8	byte_3	Value of step counter byte 3	0x0	R
activity_c	utput				
0x34		ACT_OUT	Describes activity output	0x000 0	
	10	act_out	Output value of the activity detection feature. Value after device initialization is 0b11 i.e. unknown activity Value Name Description 0x00 still User stationary 0x01 walking User walking 0x02 running User running 0x03 unknown Unknown state	0x0	R
orientatio	n and	high_g_output			
0x36		ORIENT_HI_G_O UT	Describes orientation and high_g output	0x000 0	

	10	portrait_landscape	Output value of the orientation detection feature. Value after device initialization is 0b00 i.e. portrait upright Valu Name Descripti e on 0x00 portrait_upright Portrait upright orientation 0x01 landscape_left Landscap e left orientation 0x02 portrait_upside_do wn 0x03 landscape_right Landscap e right orientation	0x0	R
	2	faceup_down	Output value of face down face up orientation (only if ud_en is enabled). Value after device initialization is 0b0 i.e. face up Value Name Description 0x00 face_up Face up orientation 0x01 face_down Face down orientation	0x0	R
	3	high_g_detect_x	High-g was detected on X-axis	0x0	R
	4	high g detect y	High-g was detected on Y-axis	0x0	R
	5	high g detect z	High-g was detected on Z-axis	0x0	R
	6	high_g_detect_sig	Axis direction for which the high-g was detected. 1 for negative axis, 0 for positive axis.	0x0	R
gyr_gain_	_status				
0x38		GYR_GAIN_STAT US	Describes the saturation status for the gyroscope gain update and G_TRIGGER command status	0x000 0	
	0	sat_x	This bit will be 1 if the updated gain results to saturated value based on the ratio provided for x axis, otherwise it will be 0	0x0	R
	1	sat_y	This bit will be 1 if the updated gain results to saturated value based on the ratio provided for y axis, otherwise it will be 0	0x0	R
	2	sat_z	This bit will be 1 if the updated gain results to saturated value based on the ratio provided for z axis, otherwise it will be 0	0x0	R

	53	g_trig_status	commar	_	rigger G_TRIGGER are updated at the ion. Description Command is valid. Selected feature has been executed and output of feature has been updated.	0x0	R
			0x01	precon_err	Command is aborted. Precondition to start the feature was not completed.		
			0x02	dl_err	Command is aborted. Unsuccessful download of 2kB configuration stream.		
			0x03	abort_err	Command is aborted either by host via the block bit or due to motion detection.		
Reserved	b						
0x3A		Reserved	Reserve	d		0x000 0	
	15 0	Reserved	Reserve	ed		0x0	R
gyr_post	proc						
0x3C		GYR_CAS	processi			0x000 0	
	60	factor_zx	Factor to performa	•	nize the gyroscope	0x0	R
D							
Reserved	נ	Danasa	D	4		0. 000	
0x3E		Reserved	Reserve			0x000 0	
	8	Reserved	Reserve			0x0	R
	9	Reserved	Reserve			0x0	R
	10	Reserved	Reserve			0x0	R
	11	Reserved	Reserve			0x0	R
	12	Reserved	Reserve			0x0	R
	13	Reserved	Reserve	d		0x0	R

14	Reserved	Reserved	0x0	R
15	Reserved	Reserved	0x0	R

Page 1

Address	Bit	Name	Descrip	tion		Reset	Access
general_s							
0x30		Reserved	Reserve	d		0x0000	
	150	Reserved	Reserve	d		0x0	R
0x32		G_TRIG_1	Configuration for features triggered by G_TRIGGER command.			0x0000	
	70	max_burst_len	words to stream of Range is means to	odownload of G_TRIG of to 255. hat maxim	ite length in 16-bits I 2kB configuration GER feature. E.g. value = 20 um burst-write words or 40 bytes.	0x0	RW
	8	select	Select fe		should be	0x0	RW
			Value 0x00	Name gyr_bist	Description Gyroscope builtin self-test will		
			0x01	crt	be executed CRT will be executed		
	9	block	Block fe		next G_TRIGGER	0x0	RW
			Value 0x00	Name unblock	Description Do not block further G_TRIGGER commands		
			0x01	block	With the next G_TRIGGER command, the ongoing selected feature will be aborted OR if a feature is not ongoing then the G_TRIGGER command will be ignored		
0x34		GEN_SET_1	Describe features	es configur	ration of general	0x0088	
	10	map_x_axis	Map the	x axis to c	lesired axis	0x0	RW

		Value	Name	Description		
		0x00	x_axis	Map to x-axis		
		0x01	y_axis	Map to y-axis		
		0x02	z_axis	Map to z-axis		
		0x03	reserved	Map to x-axis		
2	map_x_axis_sign	Map the one.	x axis sign	to the desired	0x0	RW
		Value 0x00 0x01	Name not_invert invert	to not invert the x axis Set this bit to invert the x		
				axis		
43	map_y_axis	Map the Value 0x00 0x01 0x02 0x03	y axis to do Name x_axis y_axis z_axis reserved	Description Map to x-axis Map to y-axis Map to z-axis Map to y-axis	0x1	RW
5	map_y_axis_sign	Map the	y axis sign	to the desired one	0x0	RW
		Value 0x00	Name not_invert	Description Clear this bit to not invert the y axis		
		0x01	invert	Set this bit to invert the y axis		
76	map_z_axis	Map the	z axis to de	esired axis	0x2	RW
		Value	Name	Description		
		0x00	x_axis	Map to x-axis		
		0x01	y_axis	Map to y-axis		
		0x02	z_axis	Map to z-axis		
		0x03	reserved	Map to z-axis		
8	map_z_axis_sign	Map the	z axis sign	to the desired one	0x0	RW
		Value	Name	Description		
		0x00	not_invert	Clear this bit to not invert the z axis		
		0x01	invert	Set this bit to invert the z axis		
9	gyr_self_off	Describe behavior		offset correction	0x0	RW
		Value 0x00	disable	Description Disable self offset correction. Host should update		

	10	nvm_prog_prep	the gyroscop offset registe 0x01 enable Enable self of correction. Gyroscope of register will be updated by the device. Host should not update the gyroscope of registers. Prepares the system for NVM	r. iffset iffset ne	RW
		b. 08_b. 0b	programming	0/10	
any_motic	n				
0x36		ANYMO_1	Any-motion detection general configuration flags - part 1	0xE005	
	120	duration	Defines the number of consecut data points for which the thresho condition must be respected, for interrupt assertion. It is expressed in 50 Hz samples ms). Range is 0 to 163sec. Defavalue is 5=100ms.	old s (20	RW
	13	select_x	Selects the feature on a per-axis basis	0x1	RW
	14	select_y	Selects the feature on a per-axis basis	0x1	RW
	15	select_z	Selects the feature on a per-axis basis	0x1	RW
0x38		ANYMO_2	Any-motion detection general configuration flags - part 2	0x38AA	
	100	threshold	Slope threshold value for any-m detection. Range is 0 to 1g. Defevalue is 0xAA = 83mg.		RW
	1411	Reserved	Reserved	0x7	R
	15	enable	Enables the feature	0x0	RW
no_motion 0x3A		NOMO_1	No-motion detection general configuration flags - part 1	0xE005	
	120	duration	Defines the number of consecut data points for which the thresho condition must be respected, for interrupt assertion.	old	RW

			It is expressed in 50 Hz samples (20 ms). Range is 0 to 163sec. Default value is 5=100ms.		
	13	select_x	Selects the feature on a per-axis basis	0x1	RW
	14	select_y	Selects the feature on a per-axis basis	0x1	RW
	15	select_z	Selects the feature on a per-axis basis	0x1	RW
0x3C		NOMO_2	No-motion detection general configuration flags - part 2	0x3090	
	100	threshold	Slope threshold value for no-motion detection. Range is 0 to 1g. Default value is 0x90 = 70mg.	0x90	RW
	1411	Reserved	Reserved	0x6	R
	15	enable	Enables the feature	0x0	RW
Reserved					
0x3E		Reserved	Reserved	0x0000	
	150	Reserved	Reserved	0x0	RW

Page 2

Address	Bit	Name	Description	Reset	Access
Orientatio	n				
0x30		ORIENT_1	Orientation general configuration flags	0x0A30	
	0	enable	Enables the feature	0x0	RW
	1	ud_en	Enables upside/down detection, if set to 1	0x0	RW
	32	mode	Sets the mode: symmetrical (values 0 or 3), high asymmetrical (value 1) or low asymmetrical (value 2).	0x0	RW
	54	blocking	Sets the blocking mode. If blocking is set, no Orientation interrupt will be triggered. Default value is 3 – the most restrictive blocking mode.	0x3	RW
	116	theta	Coded value of the threshold angle with horizontal used in Blocking modes; theta = 64 * (tan(angle)^2); default value is 40, equivalent to 38 degrees angle.	0x28	RW
0x32		ORIENT_2	Acceleration hysteresis	0x4080	
	100	hysteresis	Acceleration hysteresis for orientation detection. Default value is 128 = 0.0625g. Range is 0 to 1g.	0x80	RW

	1411	Reserved	Reserved	0x8	R
high_g					
0x34		HI_G_1	The acceleration threshold above which the high_g motion is signaled.	0x2710	
	140	threshold	Threshold value for high_g feature. Range is 0 to 16g. Default value is 10000 = 4.9g.	0x2710	RW
0x36		HI_G_2	Enable flags and hysteresis configuration	0x73E8	
	110	hysteresis	Hysteresis value for high_g feature. Range is 0 to 2g. Default value is 1000 = 0.49g.	0x3E8	RW
	12	select_x	Selects the feature on a per-axis basis	0x1	RW
	13	select_y	Selects the feature on a per-axis basis	0x1	RW
	14	select_z	Selects the feature on a per-axis basis	0x1	RW
	15	enable	Enables the feature	0x0	RW
0x38		HI_G_3	Output configuration and duration interval	0x3004	
	110	duration	Duration in 200 Hz samples (5 msec) for which the threshold has to be exceeded. Range is 0 to 20 sec. Default value is 4 = 20 msec.	0x4	RW
	1512	Reserved	Reserved	0x3	R
low_g					
0x3A		LO_G_1	The acceleration threshold below which the low_g motion is signaled.	0x0200	
	140	threshold	Threshold value for low-g feature. Range is 0 to 1g. Default value is 512 = 0.25g.	0x200	RW
0x3C		LO_G_2	Enable flag and hysteresis configuration	0x0100	
	110	hysteresis	Hysteresis value for low_g feature. Range is 0 to 0.5g. Default value is 256 = 0.125g.	0x100	RW
	12	enable	Enables the feature	0x0	RW
0x3E		LO_G_3	Output configuration and duration interval	0x3000	
	110	duration	Duration in 50 Hz samples (20 msec) for which the threshold has to be exceeded. Range is 0 to 82 sec. Default value is 0 = 0 ms.	0x0	RW
	1512	Reserved	Reserved	0x3	R

Page 3

Address	Bit	Name	Description	Reset	Access
flat		Tullio .	2000.1940.1	HODGE	7.0000
0x30		FLAT_1	Flat detection enable, output and theta angle configuration	0x0B10	
	0	enable	Enables the feature	0x0	RW
	61	theta	Sets the theta angle, used for detecting flat position. Theta = 64 * (tan(angle)^2); default value is 8, equivalent to 20 degrees angle.	0x8	RW
	87	blocking	Sets the blocking mode. If blocking is set, no Flat interrupt will be triggered. Default value is 2 – the most restrictive blocking mode.	0x2	RW
	129	Reserved	Reserved	0x5	R
0x32		FLAT_2	Hysteresis and hold time	0x0809	
	50	hysteresis	Hysteresis for Theta Flat detection. The coding is presented in the Flat Description section. Default value is 9 = 2.5 degrees, corresponding to the default Theta angle of 20 degrees.	0x9	RW
	136	hold_time	Holds the duration (expressed in 50Hz samples number) for which the condition has to be respected; default value is 32 = 640 msec. Range is 0 to 5.1 sec.	0x20	RW
sig_motion	n				
0x34		SIGMO_1	Block size	0x00FA	
	150	block_size	Defines the duration after which the significant motion interrupt is triggered. It is expressed in 50 Hz samples (20 ms). Default value is 0xFA=5sec.	0xFA	RW
0x36		Reserved	Reserved	0x0096	
	150	Reserved	Reserved	0x96	RW
0x38		Reserved	Reserved	0x094B	
	150	Reserved	Reserved	0x94B	RW
0x3A		Reserved	Reserved	0x0011	
	150	Reserved	Reserved	0x11	RW
0x3C		Reserved	Reserved	0x0011	
	150	Reserved	Reserved	0x11	RW
0x3E		SIGMO_2	Significant motion setting	0x0002	
	0	enable	Enables the feature	0x0	RW
	41	Reserved	Reserved	0x1	R

Page 4

Address	Bit	Name	Description	Reset	Access
step_coun					
0x30		SC_1	Step counter and step detector settings	0x0000	
	90	watermark_level	Watermark level; the Step-counter will trigger output every time this number of steps are counted. Holds implicitly a 20x factor, so the range is 0 to 20460, with resolution of 20 steps. If 0, the output is disabled.	0x0	RW
	10	reset_counter	Step count value can be reset only when any one of features mentioned in this register is enabled.	0x0	RW
	11	en_detector	Enables the Step Detector.	0x0	RW
	12	en_counter	Enables the Step Counter.	0x0	RW
	13	en_activity	Enables the activity detection(Running, Walking, Stationary, Unknown)	0x0	RW
0x32		SC_2	Step counter and step detector settings	0x0722	
	30	Reserved	Reserved	0x2	R
	74	Reserved	Reserved	0x2	R
	158	step_buffer_size	Step counter buffer size	0x7	RW
gyr_gain_	update				
0x34		GYR_GAIN_UPD_1	$\omega rx/\omega mx$ for which the gain needs to be updated.	0x0000	
	100	ratio_x	gain update value for x-axis. Fixed point representation is Q(1,10) with range from 1±0.25. For example, value of 0.75 shall be represented in 11bits as 0x300 and 1.25 shall be represented in 11bits as 0x500	0x0	RW
0x36		GYR_GAIN_UPD_2	$\omega ry/\omega my$ for which the gain needs to be updated.	0×0000	
	100	ratio_y	gain update value for y-axis. Fixed point representation is Q(1,10) with range from 1±0.25. For example, value of 0.75 shall be represented in 11bits as 0x300 and 1.25 shall be represented in 11bits as 0x500	0x0	RW
0x38		GYR_GAIN_UPD_3	$\omega rz/\omega mz$ for which the gain needs to be updated.	0x0000	

	100	ratio_z	gain update value for z-axis. Fixed point representation is Q(1,10) with range from 1±0.25. For example, value of 0.75 shall be represented in 11bits as 0x300 and 1.25 shall be represented in 11bits as 0x500	0x0	RW
	11	enable	Enable the gyroscope gain update by writing a value 1 to it. Once the gain update is completed, the device will clear the bit.	0x0	RW
Reserved					
0x3A		Reserved	Reserved	0x0000	
	150	Reserved	Reserved	0x0	RW
0x3C		Reserved	Reserved	0x0000	
	150	Reserved	Reserved	0x0	RW
0x3E		Reserved	Reserved	0x0000	
	150	Reserved	Reserved	0x0	RW

Page 5

Address	Bit	Name	Description	Reset	Access		
tap							
0x30		TAP_1	Tap detector general configuration flags	0x0040			
	0	single_tap_en	Single tap detection is enabled		RW		
	1	double_tap_en		0x0	RW		
	2	triple_tap_en	Triple tap detection is enabled	0x0	RW		
	3	data_reg_en	By enabling this bit, accel data according to the user defined accel configuration is taken for tap detector feature (ODR must be set to 200Hz for the use of tap detector feature). When this bit is disabled, 200Hz unfiltered accel data is used for tap detector feature.	0x0	RW		
	74	Reserved	Reserved	0x4	R		
	158	reserved	Reserved	0x0	RW		
0x32		Reserved	Configurations for tap detector - Part 1	0x0006			
	150	Reserved	Reserved	0x6	RW		
0x34		TAP_2	Configurations for tap detector - Part 2	0x0009			
	150	tap_sens_thres	Configures detection sensitivity by a Scaling factor of additional threshold increment for detection of	0x9	RW		

			positive and negative peak of a tap. Default value = 9, Recommended range = 0 to 15. Resolution of each LSB of scaling factor in terms of filtered acceleration signal magnitude is 78.125 mg.		
0x36		TAP_3	Configurations for tap detector - Part 3	0x0082	
	150	max_gest_dur	Maximum duration after the first tap within which the second and/or third tap have to be performed for being detected as double-tap or triple-tap. Default value = 130 (650 ms), Resolution = 5 ms, Recommended range = 250 to 1000 ms.	0x82	RW
0x38		Reserved	Configurations for tap detector - Part 4	0x0006	
	150	Reserved	Reserved	0x6	RW
0x3A		Reserved	Configurations for tap detector - Part 5	0x0006	
	150	Reserved	Reserved	0x6	RW
0x3C		Reserved	Configurations for tap detector - Part 6	8000x0	
	150	Reserved	Reserved	0x8	RW
0x3E		TAP_4	Configurations for tap detector - Part 7	0x0050	
	150	quite_time_after_gest	Minimum quite time between the two gesture detection. Default value = 80 (400 ms), Resolution = 5 ms, Recommended range = 250 to 500 ms.	0x50	RW

Page 6

Address	Bit	Name	Descrip	tion		Reset	Access
tap							
0x30		TAP_5	Configurations for tap detector - Part 8			0x0000	
	150	wait_for_timeout	max_ges detected feature v immedia This can detected max_ges (disable)	ling, the feast_duration I tap-gestur will report the Itely after it I lead to mu I tap-gestur st_duration d). Allowed I d / enabled	0x0	RW	
0x32		Reserved	Configurations for tap detector - Part 9			0x044C	
	150	Reserved	Reserve	d	0x44C	RW	
0x34		TAP_6	Configurations for tap detector - Part 10			0x0002	
	10 axis_sel		Selection of axis from 3D-acceleration signal vector for tap detection. Default value = 2 (z-axis). Other supported values 0 (x-axis) and 1 (y-axis). Any other selection leads to usage of default value Value Name Description 0x00 x-axis Use x-axis for tap			0x2	RW
			0x01 0x02 0x03	y-axis z-axis reserved	detection Use y-axis for tap detection Use z-axis for tap detection Use z-axis for tap detection		
	152	Reserved	Reserve	d		0x0	RW
0x36		Reserved	Configurations for tap detector - Part 11		0x0003		
	150	Reserved	Reserved			0x3	RW
0x38		Reserved	Configur	ations for t	ap detector - Part 12	0x0000	
	150	Reserved	Reserve	d		0x0	RW
Reserved							
0x3A		Reserved	Reserve			0x0000	
	150	Reserved	Reserved		0x0	RW	
0x3C		Reserved	Reserve			0x0000	
	150	Reserved	Reserve			0x0	RW
0x3E		Reserved	Reserved			0x0000	
	150	Reserved	Reserved			0x0	RW

Page 7

Address	Bit	Name	Description	Reset	Access		
Reserved Reserved							
0x30		Reserved	Reserved	0x0000			
	150	Reserved	Reserved	0x0	RW		
0x32		Reserved	Reserved	0x0000			
	150	Reserved	Reserved	0x0	RW		
0x34		Reserved	Reserved	0x0000			
	150	Reserved	Reserved	0x0	RW		
0x36		Reserved	Reserved	0x0000			
	150	Reserved	Reserved	0x0	RW		
0x38		Reserved	Reserved	0x0000			
	150	Reserved	Reserved	0x0	RW		
0x3A		Reserved	Reserved	0x0000			
	150	Reserved	Reserved	0x0	RW		
0x3C		Reserved	Reserved	0x0000			
	150	Reserved	Reserved	0x0	RW		
0x3E		Reserved	Reserved	0x0000			
	150	Reserved	Reserved	0x0	RW		

41 Register (0x40) ACC_CONF

DESCRIPTION: Sets the output data rate, the bandwidth, and the read mode of the acceleration

sensor

RESET: 0xA8

Address	Bit	Name	Descrip	tion		Reset	Access
0x40		ACC_CONF				0xA8	
	30	acc_odr	indepen	dent of the p	out data rate is ower mode setting for	0x8	RW
			the sens		D		
			Value 0x00	Name reserved	Description Reserved		
			0x00	odr_0p78	25/32		
			0x01	odr_1p5	25/16		
			0x03	odr_3p1	25/8		
			0x04	odr_6p25	25/4		
			0x05	odr_12p5	25/2		
			0x06	odr_25	25		
			0x07	odr_50	50		
			0x08	odr_100	100		
			0x09	odr_200	200		
			0x0a	odr_400	400		
			0x0b	odr_800	800		
			0x0c	odr_1k6	1600		
			0x0d	odr_3k2	Reserved		
			0x0e	odr_6k4	Reserved		
			0x0f	odr_12k8	Reserved		
	64	acc_bwp		-	r determines filter	0x2	RW
			_		t_perf=1) and averaging		
					ode (acc_filt_perf=0)		
			Value	Name	Description		
			0x00	osr4_avg1	acc_filt_perf = 1 -> OSR4 mode;		
					acc_filt_perf = 0 ->		
					no averaging		
			0x01	osr2_avg2	acc_filt_perf = 1 ->		
			OXOI	0312_4182	OSR2 mode;		
					acc_filt_perf = 0 ->		
					average 2 samples		
			0x02	norm_avg4	•		
					normal mode;		
					acc_filt_perf = 0 ->		
					average 4 samples		
			0x03	cic_avg8	acc_filt_perf = 1 ->		
					CIC mode;		
					acc_filt_perf = 0 ->		
					average 8 samples		
			0x04	res_avg16	acc_filt_perf = 1 ->		
					Reserved;		

		0x05	res_ave	₃ 32	acc_filt_perf = 0 -> average 16 samples acc_filt_perf = 1 -> Reserved; acc_filt_perf = 0 ->		
		0x06	res_ave	g64	average 32 samples acc_filt_perf = 1 -> Reserved; acc_filt_perf = 0 ->		
		0x07	res_avg	g128	average 64 samples		
7	City C	0.1.1			samples	0.4	DIA
7	acc_filter_perf	wode: Value 0x00 0x01	Name ulp hp	Desc	oription er optimized ormance opt.	0x1	RW

42 Register (0x41) ACC_RANGE

DESCRIPTION: Selection of the Accelerometer g-range

RESET: 0x02

Address	Bit	Name	Descrip	tion		Reset	Access
0x41		ACC_RANGE				0x02	
	10	acc_range	Accelero	ometer g-rang	0x2	RW	
			Value	Name	Description		
			0x00	range_2g	+/-2g		
			0x01	range_4g	+/-4g		
			0x02	range_8g	+/-8g		
			0x03	range_16g	+/-16g		

43 Register (0x42) GYR_CONF

DESCRIPTION: Sets the output data rate and the bandwidth of the Gyroscope in the sensor RESET: 0xA9

Address	Bit	Name	Descrip	tion		Reset	Access
0x42		GYR_CONF				0xA9	
	30	gyr_odr	ODR in	Hz		0x9	RW
			Value	Name	Description		
			0x00	reserved	Reserved		
			0x01	odr_0p78	Reserved		
			0x02	odr_1p5	Reserved		
			0x03	odr_3p1	Reserved		
			0x04	odr_6p25	Reserved		
			0x05	odr_12p5	Reserved		
			0x06	odr_25	25		
			0x07	odr_50	50		
			0x08	odr_100	100		
			0x09	odr_200	200		
			0x0a	odr_400	400		
			0x0b	odr_800	800		
			0x0c	odr_1k6	1600		
			0x0d	odr_3k2	3200		
			0x0e	odr_6k4	Reserved		
			0x0f	odr_12k8	Reserved		
	54	gyr_bwp	The Gyr	oscope bar	ndwidth coefficient	0x2	RW
			defines t	the 3 dB cu	toff frequency of the low		
			-	er for the se	ensor data		
			Value		escription		
			0x00		SR4 mode		
			0x01		SR2 mode		
			0x02	norm n	ormal mode		
			0x03	res re	eserved		
	6	gyr_noise_perf	Select n	oise perforr	mance:	0x0	RW
			Value	Name D	escription		
			0x00	•	ower optimized		
			0x01	hp p	erformance opt.		
	7	gyr_filter_perf	Select g	-	ter performance mode:	0x1	RW
			Value		escription		
			0x00		ower optimized		
			0x01	hp p	erformance opt.		

44 Register (0x43) GYR_RANGE

DESCRIPTION: Defines the Gyroscope angular rate measurement range

RESET: 0x00

Address	Bit	Name	Descrip	tion		Reset	Access
0x43		GYR_RANGE				0x00	
	20	gyr_range		e, Resolution: ta and DATA re	applies to filtered egisters.	0x0	RW
			Value	Name	Description		
			0x00	range_2000	·		
			001	1000	LSB/dps		
			0x01	range_1000	+/-1000dps, 32.8 LSB/dps		
			0x02	range_500	+/-500dps, 65.6		
					LSB/dps		
			0x03	range_250	+/-250dps, 131.2		
			0x04	range_125	LSB/dps +/-125dps, 262.4		
				0 _	LSB/dps		
	3	ois_range		e, Resolution: ta and OIS dat	applies to pre-filtered	0x0	RW
			Value	Name	Description		
			0x00	range_250	+/-250dps, 131.2 LSB/dps		
			0x01	range_2000	+/-2000dps, 16.4 LSB/dps		

45 Register (0x44) AUX_CONF

DESCRIPTION: Sets the output data rate of the Auxiliary sensor interface

RESET: 0x46

Address	Bit	Name	Descrip	tion		Reset	Access
0x44		AUX_CONF				0x46	
0x44	30	AUX_CONF aux_odr	attached is independent the sense addition configure the AUX Value 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0a 0x0b 0x0c	I to the Auxiliandent of the or. The output of setting the the Auxiliant of the end of t	Description Reserved 25/32 25/16 25/8 25/4 25/2 25 50 100 200 400 800 Reserved	0x46 0x6	RW
			0x0d	odr_3k2	Reserved		
			0x0e odr_6k4 Reserved 0x0f odr_12k8 Reserved				
	74	aux_offset	zero, the	eadout offse e offset is ma issued imm	0x4	RW	

46 Register (0x45) FIFO_DOWNS

DESCRIPTION: Configure Gyroscope and Accelerometer downsampling rates for FIFO

RESET: 0x88

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x45		FIFO_DOWNS		0x88	
	20	gyr_fifo_downs	Downsampling for Gyroscope (2**downs_gyro)	0x0	RW
	3 gyr_fifo_filt_c		selects filtered or unfiltered Gyroscope data for fifo Value Name Description 0x00 unfiltered Unfiltered data 0x01 filtered Filtered data	0x1	RW
	64	acc_fifo_downs	Downsampling for Accelerometer (2**downs_accel)	0x0	RW
	7	acc_fifo_filt_data	selects filtered or unfiltered Accelerometer data for fifo Value Name Description 0x00 unfiltered Unfiltered data 0x01 filtered Filtered data	0x1	RW

47 Register (0x46) FIFO_WTM_0

DESCRIPTION: FIFO Watermark level LSB

RESET: 0x00

Addres	Bit	Name	Description	Rese	Acces
s				t	s
0x46		FIFO_WTM_0		0x00	
	7 0	fifo_water_mark_7 _0	Trigger an interrupt when FIFO contains fifo_water_mark_7_0+fifo_water_mark_12_8*256 bytes	0x0	RW

48 Register (0x47) FIFO_WTM_1

DESCRIPTION: FIFO Watermark level MSB and frame content configuration

RESET: 0x02

DEFINITION (Go to register map):

Addres s	Bit	Name	Description	Rese t	Acces
0x47		FIFO_WTM_1		0x02	
	4 0	fifo_water_mark_1 2_8	Trigger an interrupt when FIFO contains fifo_water_mark_7_0+fifo_water_mark_12 _8*256 bytes	0x2	RW

49 Register (0x48) FIFO_CONFIG_0

DESCRIPTION: FIFO frame content configuration

RESET: 0x02

Address	Bit	Name	Descrip	tion		Reset	Access
0x48		FIFO_CONFIG_0				0x02	
	0	fifo_stop_on_full	Stop writing is full.	ting samp	les into FIFO when FIFO	0x0	RW
			Value	Name	Description		
			0x00	disable	do not stop writing to FIFO when full		
			0x01	enable	Stop writing into FIFO when full.		
	1	fifo_time_en	Return s data fran		e frame after the last valid	0x1	RW
			Value	Name	Description		
			0x00	disable	do not return sensortime frame		
			0x01	enable	return sensortime frame		

Register (0x49) FIFO_CONFIG_1

DESCRIPTION: FIFO frame content configuration

RESET: 0x10

Address	Bit	Name	Descrip	tion		Reset	Access
0x49		FIFO_CONFIG_1				0x10	
	10	fifo_tag_int1_en	FIFO int	errupt 1 ta	g enable	0x0	RW
			Value	Name	Description		
			0x00	int_edge	enable tag on rising		
					edge of int pin		
			0x01	int_level	enable tag on level		
			0x02	acc_sat	value of int pin enable tag on		
			0.02	acc_sat	saturation of		
					accelerometer data		
			0x03	gyr_sat	enable tag on		
					saturation of		
					gyroscope data		
	32	fifo_tag_int2_en		errupt 2 ta	~	0x0	RW
			Value	Name	Description		
			0x00	int_edge	enable tag on rising edge of int pin		
			0x01	int_level	enable tag on level		
			OXOI		value of int pin		
			0x02	acc_sat	enable tag on		
					saturation of		
					accelerometer data		
			0x03	gyr_sat	enable tag on		
					saturation of gyroscope data		
	4	fifo_header_en	EIEO fra	me heade	0x1	RW	
	4	mo_neader_en	Value	Name	Description	OXI	1144
			0x00	disable	no header is stored		
					(output data rate of		
					all enabled sensors		
					need to be identical)		
			0x01	enable	header is stored		
	5	fifo_aux_en	Store Au	ıxiliary ser	nsor data in FIFO (all 3	0x0	RW
			Value	Name	Description		
			0x00	disable	no Auxiliary sensor		
			0.01	onable	data is stored		
			0x01	enable	Auxiliary sensor data is stored		
	6	fifo_acc_en	Store Ac	celeromet	ter data in FIFO (all 3	0x0	RW
			axes)				

		Value 0x00 0x01	Name disable enable	Description no Accelerometer data is stored Accelerometer data is stored		
7	fifo_gyr_en	Store Gy Value 0x00	Name	data in FIFO (all 3 axes) Description no Gyroscope data is stored Gyroscope data is stored	0x0	RW

Figure 10 Register (0x4A) SATURATION

DESCRIPTION: Contains the information if one of the raw data samples used to generate current filtered data sample has been saturated (reached 0x8001 or 0x7FFF). The register is updated synchronous to the corresponding data registers in DATA_0..19.

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x4A		SATURATION		0x00	
	0	acc_x	ACC X-axis raw data saturation flag.	0x0	R
	1	acc_y	ACC Y-axis raw data saturation flag. 0x		R
	2	acc_z	ACC Z-axis raw data saturation flag.	0x0	R
	3	gyr_x	GYR X-axis raw data saturation flag.	0x0	R
	4 gyr_y GYR Y-axis raw data saturation flag.		0x0	R	
	5	gyr_z	GYR Z-axis raw data saturation flag.	0x0	R

52 Register (0x4B) AUX_DEV_ID

DESCRIPTION: Auxiliary interface device_id

RESET: 0x20

Address	Bit	Name	Description	Reset	Access
0x4B		AUX_DEV_ID		0x20	
	71	i2c_device_addr	I2C device address of Auxiliary sensor	0x10	RW

Register (0x4C) AUX_IF_CONF

DESCRIPTION: Auxiliary interface configuration register

RESET: 0x83

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x4C		AUX_IF_CONF		0x83	
	10	aux_rd_burst	Burst data length (1,2,6,8 byte) Value Name Description 0x00 BL1 Burst length 1 0x01 BL2 Burst length 2 0x02 BL6 Burst length 6 0x03 BL8 Burst length 8	0x3	RW
	32	man_rd_burst	Manual burst data length (1,2,6,8 byte) Value Name Description 0x00 BL1 Burst length 1 0x01 BL2 Burst length 2 0x02 BL6 Burst length 6 0x03 BL8 Burst length 8	0×0	RW
	6	aux_fcu_write_en	enables FCU write command on AUX IF for auxiliary sensors that need a trigger.	0x0	RW
	7	aux_manual_en	switches auxiliary interface between automatic and manual mode. In manual mode all read and write operations on auxiliary interface must be triggered manually; in automatic mode (aux_manual_en = "0") FCU triggers read and write operations periodically (as programmed by user).	0x1	RW

Register (0x4D) AUX_RD_ADDR

DESCRIPTION: Auxiliary interface read address

RESET: 0x42

Address	Bit	Name	Description	Reset	Access
0x4D		AUX_RD_ADDR		0x42	
	70	read_addr	Address to read. In manual mode it triggers the read operation.	0x42	RW

Register (0x4E) AUX_WR_ADDR

DESCRIPTION: Auxiliary interface write address

RESET: 0x4C

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x4E		AUX_WR_ADDR		0x4C	
	70	write_addr	Address to write. In manual mode it	0x4C	RW
			triggers the write operation.		

Register (0x4F) AUX_WR_DATA

DESCRIPTION: Auxiliary interface write data

RESET: 0x02

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x4F		AUX_WR_DATA		0x02	
	70 write data		Data to write	0x2	RW

57 Register (0x52) ERR_REG_MSK

DESCRIPTION: Defines which error flag will trigger the error interrupt once enabled

'1' - use to generate the error interrupt

'0' - do not use to generate error interrupt

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x52		ERR_REG_MSK		0x00	
	0	fatal_err	Use fatal error to generate the error interrupt.	0x0	RW
	41	internal_err	Use internal error to generate the error interrupt	0x0	RW
	6	fifo_err	Use fifo error to generate the error interrupt.	0x0	RW
	7	aux_err	Use aux interface error to generate the error interrupt.	0x0	RW

58 Register (0x53) INT1_IO_CTRL

DESCRIPTION: Configure the electrical behavior of the interrupt pin INT1

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x53		INT1_IO_CTRL		0x00	
	1	Ivl	Configure output level of INT1 pin Value Name Description 0x00 active_low active low 0x01 active_high active high	0x0	RW
	2	od	Configure output behaviour of INT1 pin Value Name Description 0x00 push_pull push-pull 0x01 open_drain open drain	0x0	RW
	3	output_en	Output enable for INT1 pin Value Name Description 0x00 off Output disabled 0x01 on Output enabled	0x0	RW
	4	input_en	Input enable for INT1 pin Value Name Description 0x00 off Input disabled 0x01 on Input enabled	0x0	RW

59 Register (0x54) INT2_IO_CTRL

DESCRIPTION: Configure the electrical behavior of the interrupt pin INT2

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x54		INT2_IO_CTRL		0x00	
	1	IvI	Configure level of INT2 pin Value Name Description 0x00 active_low active low 0x01 active_high active high	0x0	RW
	2	od	Configure output behaviour of INT2 pin Value Name Description 0x00 push_pull push-pull 0x01 open_drain open drain	0x0	RW
	3	output_en	Output enable for INT2 pin Value Name Description 0x00 off Output disabled 0x01 on Output enabled	0x0	RW
	4	input_en	Input enable for INT2 pin Value Name Description 0x00 off Input disabled 0x01 on Input enabled	0x0	RW

60 Register (0x55) INT_LATCH

DESCRIPTION: Configure interrupt latch modes

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Descrip	tion		Reset	Access
0x55		INT_LATCH				0x00	
	0	int_latch	Latched	/non-latched i	nterrupt modes	0x0	RW
			Value	Name	Description		
			0x00	none	non latched		
			0x01	permanent	permanent latched		

Register (0x56) INT1_MAP_FEAT

DESCRIPTION: Interrupt/Feature mapping on INT1

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x56		INT1_MAP_FEAT		0x00	
	0	sig_motion_out	Sigmotion output.	0x0	RW
	1	step_counter_out	Step-counter watermark or Step-detector output or Step activity output	0x0	RW
	2	high_low_g_out	High-g and Low-g detection output	0x0	RW
	3	tap_out	Tap output	0x0	RW
	4	flat_out	Flat output	0x0	RW
	5	no_motion_out	No motion detection output	0x0	RW
	6	any_motion_out	Any motion detection output	0x0	RW
	7	orientation_out	Orientation output	0x0	RW

62 Register (0x57) INT2_MAP_FEAT

DESCRIPTION: Interrupt/Feature mapping on INT2

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x57		INT2_MAP_FEAT		0x00	
	0	sig_motion_out	Sigmotion output.	0x0	RW
	1	step_counter_out	Step-counter watermark or Step-detector output or Step activity output	0x0	RW
	2	high_low_g_out	High-g and Low-g detection output	0x0	RW
	3	tap_out	Tap output	0x0	RW
	4	flat_out	Flat output	0x0	RW
	5	no_motion_out	No motion detection output	0x0	RW
	6	any_motion_out	Any motion detection output	0x0	RW
	7	orientation_out	Orientation output	0x0	RW

Register (0x58) INT_MAP_DATA

DESCRIPTION: Data Interrupt mapping for both INT pins

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x58		INT_MAP_DATA		0x00	
	0	ffull_int1	FIFO Full interrupt mapped to INT1	0x0	RW
	1	fwm_int1	FIFO Watermark interrupt mapped to INT1	0x0	RW
	2	drdy_int1	Data Ready interrupt mapped to INT1	0x0	RW
	3	err_int1	Error interrupt mapped to INT1	0x0	RW
	4	ffull_int2	FIFO Full interrupt mapped to INT2	0x0	RW
	5	fwm_int2	FIFO Watermark interrupt mapped to INT2	0x0	RW
	6	drdy_int2	Data Ready interrupt mapped to INT2	0x0	RW
	7	err_int2	Error interrupt mapped to INT2	0x0	RW

Register (0x59) INIT_CTRL

DESCRIPTION: Start initialization

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x59		INIT_CTRL		0x00	
	70	init_ctrl	Start initialization	0x0	RW

65 Register (0x5B) INIT_ADDR_0

DESCRIPTION: Base address of the initialization data. Increment by burst write length in bytes/2 after each burst write operation. Please ignore, if your host supports to load the initialization data in a single 8kB burst write operation.

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x5B		INIT_ADDR_0		0x00	
	30	base_0_3	Bits 0 to 3 of the base address for initialization data.	0x0	RW

Register (0x5C) INIT_ADDR_1

DESCRIPTION: Base address of the initialization data. Increment by burst write length in bytes/2 after each burst write operation. Please ignore, if your host supports to load the initialization data in a single 8kB burst write operation.

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x5C		INIT_ADDR_1		0x00	
	70	base_11_4	Bits 4 to 11 of the base address for	0x0	RW
			initialization data.		

67 Register (0x5E) INIT_DATA

DESCRIPTION: Initialization register

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x5E		INIT_DATA		0x00	
	70	data	Register for initialization data	0x0	RW

Register (0x5F) INTERNAL_ERROR

DESCRIPTION: Internal error flags. Value of all reserved bits should be ignored.

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x5F		INTERNAL_ERROR		0x00	
	1	int_err_1	Internal error flag - long processing time, processing halted	0x0	R
	2	int_err_2	Internal error flag - fatal error, processing halted	0x0	R
	4	feat_eng_disabled	Feature engine has been disabled by host during sensor operation	0x0	R

69 Register (0x68) AUX_IF_TRIM

DESCRIPTION: Auxiliary interface trim register (NVM backed)

RESET: 0x01

DEFINITION (Go to register map):

Address	Bit	Name	Descrip	tion		Reset	Access
0x68		AUX_IF_TRIM				0x01	
	10	asda_pupsel	Pullup c	onfiguration for	ASDA	0x1	RW
			Value	Name	Description		
			0x00	pup_res_off	Pullup off		
			0x01	pup_res_40k	Pullup 40k		
			0x02	pup_res_10k	Pullup 10k		
			0x03	pup_res_2k	Pullup 2k		

70 Register (0x69) GYR_CRT_CONF

DESCRIPTION: Component Retrimming for Gyroscope

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x69		GYR_CRT_CONF		0x00	
	2	crt_running	Indicates that CRT is currently running. If CRT completed, check CRT_STATUS register for the completion status Value Name Description 0x00 disabled disabled 0x01 enabled enabled	0x0	RW
	3	rdy_for_dl	pacemaker bit for downloading the CRT data Value Name Description 0x00 ongoing ongoing or not started 0x01 complete complete	0x0	R

71 Register (0x6A) NVM_CONF

DESCRIPTION: NVM Configuration

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Descrip	tion		Reset	Access
0x6A		NVM_CONF				0x00	
	1	nvm_prog_en	Enable I	NVM prog	ramming.	0x0	RW
			Value	Name	Description		
			0x00	disable	disable		
			0x01	enable	enable		

72 Register (0x6B) IF_CONF

DESCRIPTION: Serial interface settings

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x6B		IF_CONF		0x00	
	0	spi3	Configure SPI Interface Mode for primary interface Value Name Description 0x00 spi4 SPI 4-wire mode 0x01 spi3 SPI 3-wire mode	0x0	RW
	1	spi3_ois	Configure SPI Interface Mode for OIS interface (if enabled) Value Name Description 0x00 spi4 SPI 4-wire mode 0x01 spi3 SPI 3-wire mode	0x0	RW
	4	ois_en	Interface configuration - OIS enable bit. It has lower priority than aux_en.	0x0	RW
	5 aux_en		Interface configuration - AUX enable bit. It has higher priority than ois_en.	0x0	RW

73 Register (0x6C) DRV

DESCRIPTION: Drive strength control register (NVM backed)

RESET: 0xFF

Address	Bit	Name	Description	Reset	Access
0x6C		DRV		0xFF	
	20	io_pad_drv1	Output pad drive strength setting.	0x7	RW
	3	io_pad_i2c_b1	Output pad drive strength setting.	0x1	RW
	64	io_pad_drv2	Output pad drive strength setting.	0x7	RW
	7	io_pad_i2c_b2	Output pad drive strength setting.	0x1	RW

74 Register (0x6D) ACC_SELF_TEST

DESCRIPTION: Settings for the accelerometer self-test configuration and trigger

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description Reso	et Access
0x6D		ACC_SELF_TEST	0x00	
	0	acc_self_test_en	Enable accelerometer self-test 0x0 Value Name Description 0x00 disabled disabled 0x01 enabled enabled	RW
	2	acc_self_test_sign	valueNameDescription0x00negativenegative0x01positivepositive	RW
	3	acc_self_test_amp	select amplitude of the selftest deflection:0x0ValueNameDescription0x00lowlow0x01highhigh	RW

75 Register (0x6E) GYR_SELF_TEST_AXES

DESCRIPTION: Settings for the gyroscope AXES self-test configuration and trigger

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x6E		GYR_SELF_TEST_AXES		0x00	
	0	gyr_st_axes_done	STATUS: functional test of detection channels finished.	0x0	R
	1	gyr_axis_x_ok	status of gyro X-axis self test	0x0	R
	2	gyr_axis_y_ok	status of gyro Y-axis self test	0x0	R
	3	gyr_axis_z_ok	status of gyro Z-axis self test	0x0	R

76 Register (0x70) NV_CONF

DESCRIPTION: NVM backed configuration bits.

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x70		NV_CONF		0x00	
	0	spi_en	disable the I2C and enable SPI for the primary interface, when it is in autoconfig mode Value Name Description 0x00 disabled I2C enabled 0x01 enabled I2C disabled	0x0	RW
	2	i2c_wdt_sel	Select timer period for I2C Watchdog Value Name Description 0x00 short I2C watchdog timeout after 1.25 ms 0x01 long I2C watchdog timeout after 40 ms	0×0	RW
		i2c_wdt_en	I2C Watchdog at the SDA pin in I2C interface mode Value Name Description 0x00 Disable Disable I2C watchdog 0x01 Enable Enable I2C watchdog	0x0	RW
	3	acc_off_en	Add the offset defined in the off_acc_[xyz] OFFSET register to filtered and unfiltered Accelerometer data Value Name Description 0x00 disabled Disabled 0x01 enabled Enabled	0x0	RW

77 Register (0x71) OFFSET_0

DESCRIPTION: Offset compensation for Accelerometer X-axis (NVM backed)

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x71		OFFSET_0		0x00	
	70	off_acc_x	Accelerometer offset compensation (X-axis).	0x0	RW

78 Register (0x72) OFFSET_1

DESCRIPTION: Offset compensation for Accelerometer Y-axis (NVM backed)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x72		OFFSET_1		0x00	
	70	off_acc_y	Accelerometer offset compensation (Y-axis).	0x0	RW

79 Register (0x73) OFFSET_2

DESCRIPTION: Offset compensation for Accelerometer Z-axis (NVM backed)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x73		OFFSET_2		0x00	
	70	off_acc_z	Accelerometer offset compensation (Z-axis).	0x0	RW

80 Register (0x74) OFFSET_3

DESCRIPTION: Offset compensation for Gyroscope X-axis (NVM backed)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x74		OFFSET_3		0x00	
	70	gyr usr off x 7 0	Gyroscope offset compensation (X-axis).	0x0	RW

Register (0x75) OFFSET_4

DESCRIPTION: Offset compensation for Gyroscope Y-axis (NVM backed)

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x75		OFFSET_4		0x00	
	70	gyr_usr_off_y_7_0	Gyroscope offset compensation (Y-axis).	0x0	RW

Register (0x76) OFFSET_5

DESCRIPTION: Offset compensation for Gyroscope Z-axis (NVM backed)

RESET: 0x00

DEFINITION (Go to register map):

Address	Bit	Name	Description	Reset	Access
0x76		OFFSET_5		0x00	
	70	gyr_usr_off_z_7_0	Gyroscope offset compensation (Z-axis).	0x0	RW

83 Register (0x77) OFFSET_6

DESCRIPTION: Offset compensation (MSBs gyroscope, enables) (NVM backed)

RESET: 0x00

Address	Bit	Name	Description	Reset	Access
0x77	OFFSET_6			0x00	
	10	gyr_usr_off_x_9_8	Gyroscope offset compensation (X-axis).	0x0	RW
	32	gyr_usr_off_y_9_8	Gyroscope offset compensation (Y-axis).	0x0	RW
	54	gyr_usr_off_z_9_8	Gyroscope offset compensation (Z-axis).	0x0	RW
	6	gyr_off_en	Add the offset defined in the gyr_usr_off_[xyz] OFFSET register to filtered and unfiltered Gyroscope data Value Name Description 0x00 disabled Disabled 0x01 enabled Enabled	0×0	RW
	7	gyr_gain_en	Compensate the gain as described in section "Sensitivity Error Compensation". Value Name Description 0x00 disabled Disabled 0x01 enabled Enabled	0x0	RW

84 Register (0x7C) PWR_CONF

DESCRIPTION: Power mode configuration register

RESET: 0x03

DEFINITION (Go to register map):

Address	Bit	Name	Descrip	tion		Reset	Access
0x7C		PWR_CONF				0x03	
	0	adv_power_save	Advance Value 0x00	Name	Description Advanced power save disabled. Advanced power mode enabled.	0x1	RW
	1	fifo_self_wake_up	Value 0x00 0x01	ad disable Name fsw_off fsw_on	d in low power mode Description FIFO read disabled in low power mode FIFO read enabled in low power mode after FIFO interrupt is fired	0x1	RW
	2	fup_en	Fast pov Value 0x00	ver up ena Name fup_off fup_on	Able Description Fast power up disabled Fast power up enabled	0x0	RW

85 Register (0x7D) PWR_CTRL

DESCRIPTION: Power mode control register

RESET: 0x00

Address	Bit	Name	Descrip	tion		Reset	Access
0x7D		PWR_CTRL				0x00	
	0	aux_en				0x0	RW
			Value	Name	Description		
			0x00	aux_off	Disables the Auxiliary		
					sensor.		
			0x01	aux_on	Enables the Auxiliary		
					sensor.		
	1	gyr_en				0x0	RW
			Value	Name	Description		
			0x00	gyr_off	Disables the Gyroscope.		
			0x01	gyr_on	Enables the Gyroscope.		
	2	acc_en				0x0	RW

		Value 0x00 0x01	_	Description Disables the Accelerometer. Enables the Accelerometer.		
3	temp_en				0x0	RW
		Value	Name	Description		
		0x00	temp_off	Disables the Temperature		
				sensor.		
		0x01	temp_on	Enables the Temperature		
				sensor.		

86 Register (0x7E) CMD

DESCRIPTION: Command Register

RESET: 0x00

Address	Bit	Name	Descrip	tion		Reset	Access
0x7E		CMD				0x00	
	70	cmd	Available commands (Note: Register will always return 0x00 as read result):			0x0	W
			Value	Name	Description Trigger special gyre		
			0x02	g_trigger	Trigger special gyro operations.		
			0x03	usr_gain	Applies new gyro gain value.		
			0xa0	nvm_prog	Writes the NVM backed registers into NVM		
			0xb0	fifo_flush	Clears FIFO content		
			0xb6	softreset	Triggers a reset, all user configuration settings are overwritten with their default state		

5. Legal disclaimer

5.1. Engineering samples

Engineering Samples are marked with an asterisk (*), (E) or (e). Samples may vary from the valid technical specifications of the product series contained in this data sheet. They are therefore not intended or fit for resale to third parties or for use in end products. Their sole purpose is internal client testing. The testing of an engineering sample may in no way replace the testing of a product series. Bosch Sensortec assumes no liability for the use of engineering samples. The Purchaser shall indemnify Bosch Sensortec from all claims arising from the use of engineering samples.

5.2. Product use

Bosch Sensortec products are developed for the consumer goods industry. They may only be used within the parameters of this product data sheet. They are not fit for use in life-sustaining or safety-critical systems. Safety-critical systems are those for which a malfunction is expected to lead to bodily harm, death or severe property damage. In addition, they shall not be used directly or indirectly for military purposes (including but not limited to nuclear, chemical or biological proliferation of weapons or development of missile technology), nuclear power, deep sea or space applications (including but not limited to satellite technology).

Bosch Sensortec products are released on the basis of the legal and normative requirements relevant to the Bosch Sensortec product for use in the following geographical target market: BE, BG, DK, DE, EE, FI, FR, GR, IE, IT, HR, LV, LT, LU, MT, NL, AT, PL, PT, RO, SE, SK, SI, ES, CZ, HU, CY, US, CN, JP, KR, TW. If you need further information or have further requirements, please contact your local sales contact.

The resale and/or use of Bosch Sensortec products are at the purchaser's own risk and his own responsibility. The examination of fitness for the intended use is the sole responsibility of the purchaser.

The purchaser shall indemnify Bosch Sensortec from all third party claims arising from any product use not covered by the parameters of this product data sheet or not approved by Bosch Sensortec and reimburse Bosch Sensortec for all costs in connection with such claims.

The purchaser accepts the responsibility to monitor the market for the purchased products, particularly with regard to product safety, and to inform Bosch Sensortec without delay of all safety-critical incidents.

5.3. Application examples and hints

With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Bosch Sensortec hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights or copyrights of any third party. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. They are provided for illustrative purposes only and no evaluation regarding infringement of intellectual property rights or copyrights or regarding functionality, performance or error has been made.

6. Document History and Modification

Rev. No	Chapter	Description of modification/changes	Date
1.0		Document creation	Aug 2021

Bosch Sensortec GmbH

Gerhard-Kindler-Straße 9 72770 Reutlingen / Germany

contact@bosch-sensortec.com www.bosch-sensortec.com

Modifications reserved Specifications subject to change without notice Document number: BST-BMI270-AN002-01 Revision_1.0_082021