

1 **FUEL CELL VOLTAGE MONITORING SYSTEM**

2

3 COPYRIGHT NOTICE AND AUTHORIZATION

4

5 This patent document contains material which is subject to copyright
6 protection.

7

8 © Copyright 2003. Analytic Energy Systems, LLC. All rights reserved.

9

10 With respect to this material which is subject to copyright protection,
11 the owner, Analytic Energy Systems, LLC, has no objection to the facsimile
12 reproduction by any one of the patent disclosure, as it appears in the
13 Patent and Trademark Office patent files or records of any country, but
14 otherwise reserves all rights whatsoever.

15

16 FIELD OF THE INVENTION

17

18 The invention relates to measuring cell voltages of a fuel cell or battery cell
19 stack.

20

21 BACKGROUND OF THE INVENTION

22

23 A fuel cell is an electrochemical device that converts chemical energy
24 produced by a reaction directly into electrical energy. For example, one type
25 of fuel cell includes a proton exchange membrane (PEM), a membrane that
26 may permit only protons to pass between an anode and a cathode of the fuel
27 cell. At the anode, diatomic hydrogen (a fuel) is oxidized to produce hydrogen
28 protons that pass through the PEM. The electrons produced by this oxidation
29 travel through circuitry that is external to the fuel cell to form an electrical
30 current. At the cathode, oxygen is reduced and reacts with the hydrogen

1 protons to form water. The anodic and cathodic reactions are described by the
2 following equations:

3

5

7

8 See, for example, U.S. Patent No. 5,272,017. Because a single fuel cell
9 typically produces a relatively small voltage (around 1 volt, for example),
10 several fuel cells may be formed out of an arrangement called a fuel cell stack
11 to produce a higher voltage. The fuel cell stack may include plates (graphite
12 composite or metal plates, as examples) that are stacked one on top of the
13 other, and each plate may be associated with more than one fuel cell of the
14 stack. The plates may be made from a graphite composite material and
15 include various channels and orifices to, as examples, route the reactants and
16 products through the fuel cell stack. Several PEMs (each one being
17 associated with a particular fuel cell) may be dispersed throughout the stack
18 between the anodes and cathodes of the different fuel cells.

19

20 The health of a fuel cell stack may be determined by monitoring the individual
21 different terminal voltages (herein called cell voltages) of the fuel cells. In this
22 manner, a particular cell voltage may vary under load conditions and cell
23 health over a range from -1 volt to +1 volt. The fuel cell stack typically may
24 include a large number of fuel cells, and thus, common mode voltages
25 (voltages with respect to a common voltage (ground)) of the terminals of the
26 fuel cells 16 may be quite large (i.e., some of the voltages of the terminals
27 may be near 100 volts, for example). Unfortunately, semiconductor devices
28 that may be used to measure the cell voltages typically are incapable of
29 receiving high common mode voltages (voltages over approximately 18 volts,
30 for example).

31

32 For example, referring to FIG. 1, in a fuel cell system 1, a fuel cell voltage
33 monitoring system 5 may be used to measure the differential voltages across

1 fuel cells 10 (fuel cells 10₁ 10₂ . . . 10_n, as examples) of a fuel cell stack 11.
2 The stack 11 forms an overall stack voltage called V_{STACK}. Because the fuel
3 cells 10₁ to 10_n are serially coupled together, the common mode voltage of a
4 particular cell 10 becomes progressively greater the farther the cell 10 is away
5 from the ground connection. For example, the cell voltages of the terminals 15
6 and 16 may have relatively low common mode voltages, as the voltages of
7 the terminals 15 and 16 are formed from one fuel cell 10₁ and two fuel cells
8 10₁ and 10₂, respectively. However, farther from the ground connection, a cell
9 terminal 95 has a much higher common mode voltage.

10

11 Various parameters have to be monitored to ensure proper fuel cell stack
12 operation. One of these parameters is the voltage across each fuel cell in the
13 fuel cell stack hereinafter referred to as cell voltage. Therefore, differential
14 voltage measurement is required at the two terminals (i.e., anode and
15 cathode) of each fuel cell in the fuel cell stack. A particular cell voltage may
16 vary under load conditions and cell health over a range from -1 volt to +1 volt
17 (Note: a battery cell voltage range may be much larger, e.g., +/-300 volts).

18

19 However, since fuel cells are connected in series, and typically in large
20 number, the common mode voltages (voltages with respect to a common
21 voltage (i.e., ground)) at some terminals will be too high for most currently
22 available semiconductor measuring device to directly measure. For example,
23 for a fuel cell stack consisting of 100 cells with each cell voltage at 0.95 volts,
24 the actual voltage on the negative terminal (cathode) of the top cell will be
25 94.05 volts (i.e., 0.95*100-0.95). As discussed above, the voltage exceeds
26 the maximum allowable input voltage of differential amplifiers commonly used
27 for measuring voltage.

28

29 Various efforts have been made to overcome this problem. One method for
30 monitoring high cell voltages is disclosed by U.S. Patent No. 5,914,606 which
31 teaches monitoring battery cell voltage with the aid of voltage dividers. The
32 voltage dividers are connected to measurement points on a stack of cells. The

1 voltage dividers reduce the voltage at each measurement point so that each
2 voltage is low enough to be an input to a conventional differential amplifier.

3

4 When the voltage dividers are "closely matched", the output of the differential
5 amplifier is directly proportional to the differential voltage between the pair of
6 points at which the voltage dividers are connected. Hence the differential
7 voltage between those two points can be determined. By selecting the "ratio"
8 of each voltage divider, the system can be used to measure differential
9 voltages in the presence of different common-mode voltages.

10

11 In this manner, the voltage monitoring circuit may use the circuitry to indicate
12 a scaled down version of a particular cell voltage and then derive an indication
13 of the actual cell voltage by upscaling the scaled down value by the
14 appropriate amount. For example, the circuitry may scale down the voltages
15 by a factor of 10. Therefore, for this example, the circuitry may receive a
16 voltage of 100 volts and provide a corresponding voltage of 10 volts to a
17 semiconductor that is used to measure the cell voltage, for example. The
18 '606 patent, however, used discrete components, i.e., discrete voltage
19 dividers, a switch between a single differential amplifier and multiple cells, and
20 a non-integral power supply. These elements result in a high-production cost
21 voltage monitor that is not easily packaged and installed and various cell
22 stack configurations.

23

24 Another system for monitoring high voltages was disclosed in U.S. Patent
25 No. 5,712,568. The '568 patent teaches the use of an optical isolation
26 technique to separate the voltage measurement process. Unfortunately, this
27 method is both costly and difficult to implement. U.S. Patent No. 6,140,820
28 also disclosed a voltage monitoring system that used isolation methods
29 incorporating a multiplexer and differential inputs. However, this voltage
30 monitoring system also suffers from impedance mismatch and reduced
31 accuracy.

1 The above methods do not provide a simple and cost-efficient system for
2 monitoring cell voltage. As fuel cell stacks become larger and more complex,
3 there is an increasing need for simple and accurate cell voltage measurement
4 systems. It would be desirable to have a system for monitoring fuel cell stack
5 voltages as high as +/-270 volts that is accurate, inexpensive, and avoids the
6 shortcomings of known systems. This invention provides such a solution.

7

8 SUMMARY OF THE INVENTION

9

10 The invention includes, in one embodiment, a system for monitoring a plurality
11 of cell voltages of an electrochemical device for a plurality of cells connected
12 in series, the system including: a plurality of connecting pins for removable
13 connection across the plurality of cells; a plurality of differential amplifiers,
14 each differential amplifier having a plurality of laser wafer trimmed resistors
15 providing matching, so that common mode signals are rejected, while
16 differential input signals are amplified, each differential amplifier having
17 two inputs and one output, where the inputs are each connected to the
18 plurality of connecting pins; a switching network having a plurality of inputs
19 and one output, the inputs of the switching network connected to the outputs
20 of the differential amplifiers; not more than one analog to digital converter
21 per 16 cells having an input connected to the output of the switching network
22 and adapted to provide digital values indicative of the voltages measured by
23 the plurality of differential amplifiers; and a power supply to supply regulated
24 power to at least one electrical circuit consisting of the differential amplifiers,
25 switching network, and mixtures thereof, where the power supply derives its
26 power from the plurality of cells.

27

28 In an alternate embodiment, the invention includes a system for monitoring a
29 plurality of cell voltages of a fuel cell stack or battery bank having a plurality of
30 cells connected in series, the system including: a plurality of connecting pins
31 for removable connection across the plurality of cells, the plurality of cells
32 having a cumulative maximum voltage of at least about 225 volts; a plurality of
33 differential amplifiers, each differential amplifier having a plurality of laser

1 wafer trimmed resistors providing matching, so that common mode signals
2 are rejected, while differential input signals are amplified, where the
3 differential amplifiers each produce an output such that the voltage of a cell
4 being measured is determined with an error of about 0.02 percent or less,
5 each differential amplifier having two inputs and one output, where the inputs
6 are each connected to the plurality of connecting pins, a switching network
7 having a plurality of inputs and one output, the inputs of the switching network
8 connected to the outputs of the differential amplifiers; not more than
9 one analog to digital converter per 16 cells having an input connected to the
10 output of the switching network and adapted to provide digital values
11 indicative of the voltages measured by the plurality of differential amplifiers; a
12 power supply to supply regulated power to at least one electrical circuit
13 consisting of the voltage dividers, differential amplifiers, switching network,
14 and mixtures thereof, where the power supply derives its power from the
15 plurality of cells; and a single housing, where each system component is
16 housed therein.

17

18 In an alternate embodiment, the invention includes, a system for monitoring a
19 plurality of cell voltages of a fuel cell stack having a plurality of cells
20 connected in series, the system including: a plurality of connecting pins for
21 removable connection across the plurality of cells, the plurality of cells having
22 a cumulative maximum voltage of at least about 250 volts; a plurality of
23 differential amplifiers, each differential amplifier having a plurality of laser
24 wafer trimmed resistors providing matching, so that common mode signals
25 are rejected, while differential input signals are amplified, where each
26 differential amplifier is adapted to reject a common-mode voltage of at
27 least +/-270 volts, where the differential amplifiers each produce an output
28 such that the voltage of a cell being measured is determined with a gain
29 nonlinearity error of about 3 parts per million or less, each differential amplifier
30 having two inputs and one output, where the inputs are each connected to the
31 plurality of connecting pins; a switching network having a plurality of inputs
32 and one output, the inputs of the switching network connected to the outputs
33 of the differential amplifiers; not more than one analog to digital converter

1 per 16 cells having an input connected to the output of the switching network
2 and adapted to provide digital values indicative of the voltages measured by
3 the plurality of differential amplifiers; a power supply to supply regulated
4 power to at least one electrical circuit consisting of the voltage dividers,
5 differential amplifiers, switching network, and mixtures thereof, where the
6 power supply derives its power from the plurality of cells; and-a single
7 housing, where each system component is housed therein.

8

9 In an alternate embodiment, the invention includes a method for monitoring a
10 plurality of cell voltages of an electrochemical device for a plurality of cells
11 connected in series and having output terminals, the method including the
12 steps of: connecting the voltages from the terminals of each cell to the inputs
13 of a differential amplifier, each differential amplifier having a plurality of laser
14 wafer trimmed resistors providing matching, so that common mode signals
15 are rejected, while differential input signals are amplified, each differential
16 amplifier having two inputs and one output; rejecting the common-mode
17 voltage from the voltages at the terminal of each cell, in the differential
18 amplifier, to give the voltage differential between the two terminals; converting
19 the voltage differential from analog to digital values; and powering the
20 differential amplifier with a power supply to supply regulated power, where the
21 power supply derives its power from the plurality of cells.

22

BRIEF DESCRIPTION OF THE DRAWINGS

24

25 FIG. 1 is a schematic diagram of a fuel cell voltage monitoring system of the
26 prior art.

27

28 FIG. 2 is a schematic diagram of a fuel cell voltage monitoring system
29 according to an embodiment of the invention.

30

31 FIG. 3 is a more detailed schematic diagram of a portion of the fuel cell
32 voltage monitoring system of FIG. 2 according to an embodiment of the
33 invention.

1 FIG. 4 is a schematic diagram of a fuel cell voltage monitoring system having
2 multiple modules according to an embodiment of the invention.

3

4 DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

5

6 The system consists, in one embodiment, of the following components:
7 Spring Probes or connecting pins, laser-wafer trimmed resistive voltage
8 dividers, differential amplifiers, electronic switches, analog to digital converter,
9 power supply, and computer/controller. Optionally, the analog to digital
10 converter and computer/controller are separate components from the
11 inventions but are used in conjunction with the invention in a preferred mode
12 of deployment. Optionally, the laser wafer-trimmed resistors are integral with,
13 or with the housing of, the differential amplifiers.

14

15 The invention is applicable for monitoring both fuel cell stack or battery cell
16 stack voltages. In the following description, the reference to fuel cells will
17 generally be understood to be equally applicable to battery cells, with
18 exceptions such as fuel cell voltages having lower maximum voltages than
19 battery cell voltages. Referring to FIG. 2, an embodiment 1 of a cell voltage
20 monitoring circuit in accordance with the invention includes a plurality of
21 differential amplifiers 205 coupled to a fuel cell stack 11 for monitoring
22 cell voltages of the fuel cell stack 11. The plurality of differential amplifiers 205
23 are used wherein each differential amplifier has a high common-mode
24 rejection ratio. Each differential amplifier preferably is also highly linear. Each
25 amplifier may have a gain of substantially unity.

26

27 Each amplifier should also be able to reject as high a voltage as possible at
28 each input, but at least sufficient to reject the common mode voltage for the
29 cell stack in question, preferably at least 270 volts. However, the input
30 differential is limited by the power supply voltage as is commonly known in the
31 art. Accordingly, the input differential may be limited to a range of +/-18 volts.
32 The plurality of differential amplifiers 205 used in the fuel cell voltage
33 monitoring system 1 may be chosen from any commercially available

1 differential amplifier having a high common-mode rejection ratio. These
2 differential amplifiers can function with a common-mode voltage of up to
3 270 volts and can therefore be connected directly to the cathode and anode of
4 a fuel cell from the fuel cell stack 11 as shown in FIGS. 1 and 2.

5

6 Coupling leads C₁ through C₁₆ provide the coupling between the 2 inputs of
7 each differential amplifier and the anode and cathode of each cell as shown in
8 more detail in FIG. 1. The invention is not limited to a system with the
9 16 couplings, and thus 16 cells, shown in this embodiment. The invention
10 includes larger cell stacks such as 256 cells, 512 cells, or 1024 cells or other
11 numbers as shall be possible with future cell technology. In one embodiment,
12 the cell stack being monitored by the invention has a maximum stack voltage
13 of +/-300 volts.

14

15 Preferably, the differential amplifiers produce voltage output for the cell being
16 measured of less than about 0.02 percent error and/or a gain nonlinearity
17 error of not more than about 3 parts per million. The output of each differential
18 amplifier, from the plurality of differential amplifiers 205, is then connected to
19 the inputs A₁ through A₁₆ of the switching network 215. As mentioned above,
20 the invention is not limited to the 16 coupling leads shown in this embodiment,
21 but instead the number would correspond to the number of differential
22 amplifiers which in turn corresponds to the number of cells in the cell stack 11.

23

24 Preferably, the switching network 215 may be a multiplexer or the like. The
25 switching network 215, optionally, only allows the differential voltage
26 measured at two points on the fuel cell stack 11 to be accessed at any one
27 time. In other embodiments, there are multiple switches and/or the switch
28 permits monitoring of more than one cell at one time. The cell voltages may
29 also be monitored at a high speed so that measuring only one cell voltage at a
30 time is acceptable. The differential voltage measured at the two terminals on
31 the fuel cell stack 11 are then sent from the switching network 215 to the
32 Analog-to-Digital Converters ("ADCs") 220.

1 The ADCs 220 converts the measured analog voltages to digital values. In
2 practice, the ADC 220 may be a 16-bit ADC. Alternatively, an ADC with more
3 bits may be used to obtain more accurate digital values. Typical ADCs
4 commercially available presently have 16 channels. Thus, in a preferred
5 embodiment there is not more than one ADC for each 16 differential
6 amplifiers. After the analog to digital conversion, the digital values are sent to
7 the controller 230.

8

9 The controller 230 controls the function of the fuel cell voltage monitoring
10 system 11. In particular, the controller 230 controls the operation of the
11 switching network 215 via a switching network control line 235 and the ADCs
12 220 via an ADC control signal 240. The controller 230 controls the switching
13 network 215 to selectively receive the digital values for the cell voltage
14 measured at the two terminals of a specific fuel cell in the fuel cell stack 11..
15 Preferably, the controller 230 directs, via switch control line 235, the switching
16 network 215 to access the voltage measured across each fuel cell in the
17 fuel cell stack 11 in sequential order and reads the corresponding digital
18 values from the ADCs 220.

19

20 Alternatively, the measured voltage across any fuel cell can be accessed at
21 any time by appropriately programming the controller 230. The controller is
22 preferably a microprocessor but may also be another control device such as a
23 PLC or the like.

24

25 The controller 230 can also include a calculating means for converting the
26 digital values read from the ADCs 220 into a measured cell voltage.
27 Optionally, the calculating means is a separate component from the controller
28 or is incorporated into another component. Optionally, the controller 230 is
29 further connected to a computer, e.g., personal computer (not shown), via any
30 known or future developed input-output format, e.g., serial port, parallel port,
31 IEEE 1394 port, USB port, USB 2.0 port, or the like which can be used to
32 provide enhanced data processing to monitor fuel cell performance. Also, the
33 controller, optionally, includes a microprocessor, and/or is a stored-memory

1 computer, i.e., the control functions are governed by a software application
2 which is loaded in memory and processed on a general purpose
3 microprocessor.

4

5 The cell voltages allow a user to assess the overall condition of an individual
6 fuel cell. The cell voltages can be used to determine if there is water
7 accumulation in a cell, or if gases are mixing, etc. How often cell voltages are
8 measured is also important. Cell voltage measurement must be sufficiently
9 fast to report brief, transient conditions on the cells. It is preferred to perform a
10 measurement every 10 ms on every cell. The controller 230 may then
11 determine the actual cell voltage by up-scaling the end product by the
12 differential gain (i.e., the ideal scaling ratio) that is introduced by the laser
13 wafer trimmed resistors.

14

15 FIG. 3, depicts in greater detail, one embodiment of the differential amplifiers
16 205, shown in FIG. 2, and optionally integral laser-wafer trimmed resistors
17 310 and 315. By of example, couplings C₁₅ and C₁₆ to a single cell of the cell
18 stack 1 (shown in FIG. 1) are connected via laser-wafer trimmed resistors 310
19 and 315. The resistance of laser-wafer trimmed resistors 310 and 315 are
20 selected so as to obtain a sufficient scaling down of the voltage, including
21 common-mode voltages, across the coupled cell. For example, the voltage
22 may be scaled down to less than +/-18 volts as required for existing
23 differential amplifiers.

24

25 As shown in FIG. 3, coupling C₁₅ passes through laser-wafer trimmed
26 resistors 310 and 315 and then is split to couple with 2 differential amplifiers
27 350 and 355. This is because in a cell stack the cathode of one cell is coupled
28 to the anode of the connecting cell. Thus, except for the initial an terminal
29 cells in the stack, the each cell coupling will connect to one input each of
30 2 differential amplifiers. The outputs A₁₆ and A₁₅ of differential amplifiers 350
31 and 355 are passed via a switching network (not shown, see FIG. 2) to ADCs
32 (not shown, see FIG. 2).

1 FIG. 4 depicts an alternate embodiment of the invention whereby a plurality of
2 cell voltage monitor modules 430 are assembled to permit monitoring of a
3 variety of size cell stacks. Cell voltage monitor modules 430(1) through
4 430(16) are depicted where if each module contains 16 differential amplifiers
5 and associated voltage-divider circuits, would permit voltage monitoring of all
6 cells in a 256 cell stack. The invention is not limited to this number and any
7 variation, e.g., 5 or 100 modules, are within the scope of the invention.
8 Voltage monitor modules 430 are connected via a switching network (not
9 shown in this Figure, see FIG. 3) to ADCs 220. The ADCs are coupled to
10 controller 230.

11

12 The cell voltage monitoring system is preferably contained in a single housing.
13 This facilitates easy installation and allows for compact size and low-cost
14 production. Multiple cell voltage monitoring system modules (see FIG. 4,
15 element 430 and FIG. 2, element 1) may be installed separately on a cell
16 stack so that some or all of the cells are monitored, or the multiple cell voltage
17 monitoring system may be further contained in a single housing (see FIG. 4,
18 element 490) specific to the cell stack to be monitored.

19

20 Several other features are optionally part or used in conjunction with the
21 voltage monitoring system of the invention, the controller 230 may include a
22 program that is stored in a non-volatile memory of a controller, such as an
23 EEPROM or a flash memory, as just a few examples. In this manner, the
24 program, when executed by the controller 230, may cause the controller 230
25 to perform the functions described above. The controller 230 may also include
26 the ADCs 220 as integral components rather than using discrete ADCs 220 to
27 convert the analog output signal from the differential amplifiers 205.

28

29 In some embodiments, the memory may be an internal memory of the
30 controller 230, and in some embodiments, the memory 230 may be formed
31 from external memory chips that are coupled to the controller. The voltage
32 monitoring system 1 may also include a power supply 240 (FIG. 2) that
33 furnishes power derived from cell stack 11 to differential amplifiers 205 and

1 other components integral to the voltage monitoring system 1 such as
2 switching network 215 (FIG. 2) and ADCs 220. The power supply 240 may
3 receive power from power conditioning circuitry (not shown) that is associated
4 with the fuel cell stack 11. Alternatively, a computer may store a program that
5 may cause a microprocessor of the computer to, when executing the program,
6 perform the functions described above. Copies of the programs may be stored
7 on storage devices, such as CD-ROMs and floppy disk drives, as just a few
8 examples.

9

10 The invention includes the method of using the above-described cell voltage
11 monitoring system to monitor the cell voltages of individual cells in a cell
12 stack. This includes the method of installing such system, passing the
13 voltages from each cell to a differential amplifier after scale-down by a voltage
14 divider network having laser-wafer trimmed resistors, outputting a voltage
15 differential for each cell, passing the output via a switch to an ADC; converting
16 the output to a digital value, and passing the digital value to a controller,
17 computer, or calculating means for conversion into an actual voltage for the
18 cell. The invention also includes any use of such actual voltage information for
19 the maintenance and operation of a cell stack, e.g., bypassing a cell or
20 shutting down a cell stack if actual voltage information indicates abnormal cell
21 voltages.

22

23 While the invention has been disclosed with respect to a limited number of
24 embodiments, those skilled in the art, having the benefit of this disclosure, will
25 appreciate numerous modifications and variations therefrom. It is intended
26 that the appended claims cover all such modifications and variations as fall
27 within the true spirit and scope of the invention.