

NHD-0108CZ-RN-GBW-33V

Character Liquid Crystal Display Module

NHD- Newhaven Display 0108- 1 Line x 8 Characters

CZ- Model
R- Reflective
N- No Backlight
G- STN Positive, Gray
B- 6:00 Optimal View
W- Wide Temperature
33V- 3.3V Power Supply

RoHS Compliant

Newhaven Display International, Inc.

2661 Galvin Ct. Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

www.newhavendisplay.com

nhtech@newhavendisplay.com

nhsales@newhavendisplay.com

Document Revision History

Revision	Date	Description	Changed by
0	1/31/12	3.3V Liquid Crystal Panel Implemented	SB
1	2/2/18	Mechanical, Electrical & Optical Characteristics Updated	SB

Functions and Features

- 1 line x 8 characters
- Built-in controller (ST7066U)
- +3.3V power supply
- 1/8 duty, 1/4 bias
- RoHS compliant

Pin Description and Wiring Diagram

Pin No.	Symbol	External Connection	Function Description
1	V_{SS}	Power Supply	Ground
2	V_{DD}	Power Supply	Supply Voltage for Logic (+3.3V)
3	V_0	Adj. Power Supply	Supply Voltage for Contrast (approx. 0.1V)
4	RS	MPU	Register Select signal. RS=0: Command, RS=1: Data
5	R/W	MPU	Read/Write select signal, R/W=1: Read R/W: =0: Write
6	Е	MPU	Operation Enable signal. Falling edge triggered.
7-10	DB4 – DB7	MPU	Four high order bi-directional three-state data bus lines.
11-14	DB0 – DB3	MPU	Four low order bi-directional three-state data bus lines. These
			four are not used during 4-bit operation.
Α	NC	-	No Connect
K	NC	-	No Connect

Recommended LCD connector: 2.54mm pitch pins **Backlight connector:** --- **Mates with:** ---

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	T _{OP}	Absolute Max	-20	-	+70	°C
Storage Temperature Range	T _{ST}	Absolute Max	-30	-	+80	°C
Supply Voltage	V _{DD}	-	3.1	3.3	3.5	V
Supply Current	I _{DD}	V _{DD} = 5.0V	0.5	1.0	2.5	mA
Supply for LCD (contrast)	V_{LCD}	$T_{OP} = 25^{\circ}C$	3.1	3.3	3.5	V
"H" Level input	V _{IH}	-	0.7 * V _{DD}	-	V_{DD}	V
"L" Level input	V _{IL}	-	Vss	-	0.6	٧
"H" Level output	V _{OH}	-	0.75 * V _{DD}	-	V_{DD}	V
"L" Level output	Vol	-	Vss	-	0.2 * V _{DD}	V

Optical Characteristics

	lte	m	Symbol	Condition	Min.	Тур.	Max.	Unit
0	Тор		φΥ+		-	40	-	۰
Optimal Viewing Angles	Bott	om	φΥ-	CD > 3	-	60	-	۰
	Left		θХ-	CR ≥ 2	-	60	-	۰
Angles	Righ	t	θХ+		-	60	-	۰
Contrast Rat	io		CR	-	2	5	-	-
Desmanas T	'i.ma o	Rise	T _R	T - 25°C	-	150	250	ms
Response Tir	ime	Fall	T _F	$T_{OP} = 25^{\circ}C$	-	200	300	ms

Controller Information

Built-in ST7066U controller.

Please download specification at http://www.newhavendisplay.com/app notes/ST7066U.pdf

DDRAM Address

Location	1	2	3	4	5	6	7	8
Address (Hex)	00	01	02	03	04	05	06	07

Table of Commands

				Ins	tructi	ion co	ode					Execution
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	time (fosc= 270 KHZ
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC	1.52ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM Address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52ms
Entry mode Set	0	0	0	0	0	0	0	1	I/D	SH	Sets cursor move direction and specifies display shift. These parameters are performed during data write and read.	37μs
Display ON/ OFF control	0	0	0	0	0	0	1	D	С	В	D=1: Entire display on C=1: Cursor on B=1: Blinking cursor on	37µs
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	-	-	Sets cursor moving and display shift control bit, and the direction without changing DDRAM data.	37µs
Function set	0	0	0	0	1	DL	N	F	-	-	DL: Interface data is 8/4 bits N: Number of lines is 2/1 F: Font size is 5x11/5x8	37µs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	37µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	37µs
Read busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0s
Write data To Address	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	37µs
Read data From RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	37µs

Timing Characteristics

Writing data from MPU to ST7066U

	Write Mod	e (Writing data from Mi	PU to ST7066	SU)		
Tc	Enable Cycle Time	Pin E	1200	6E8		ns
T _{PW}	Enable Pulse Width	Pin E	460	528		ns
T_R, T_F	Enable Rise/Fall Time	Pin E	- 1	-	25	ns
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	173		ns
TAH	Address Hold Time	Pins: RS,RW,E	10	\$23	220	ns
T _{DSW}	Data Setup Time	Pins: DB0 - DB7	80	:=51		ns
TH	Data Hold Time	Pins: DB0 - DB7	10		170	ns

Reading data from ST7066U to MPU

	Read Mode (Reading Data from ST7066U to MPU)										
T _C	Enable Cycle Time	Pin E	1200			ns					
T_PW	Enable Pulse Width	Pin E	480	×=	7 -	ns					
T_R,T_F	Enable Rise/Fall Time	Pin E	45.	a=	25	ns					
T _{AS}	Address Setup Time	Pins: RS,RW,E	0	l co	l co	ns					
T _{AH}	Address Hold Time	Pins: RS,RW,E	10	·-		ns					
T _{DDR}	Data Setup Time	Pins: DB0 - DB7			320	ns					
Тн	Data Hold Time	Pins: DB0 - DB7	10	-	·=_	ns					

Built-in Font Table

67-64 63-60	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)													**		
0001	(2)															
0010	(3)															
0011	(4)		*												***	
0100	(5)															
0101	(6)															
0110	(7)															
0111	(8)															##
1000	(1)															
1001	(2)															
1010	(3)							×								
1011	(4)															
1100	(5)		•													
1101	(6)			••••			m									
1110	(7)															
1111	(8)														Ö	

Example Initialization Program

```
8-bit Initialization:
/************************
void command(char i)
    P1
        = i;
                             //put data on output Port
    DΙ
       = 0;
                             //D/I=LOW : send instruction
    RW = 0;
                             //R/W=LOW : Write
        = 1;
    E
    Delay(1);
                            //enable pulse width >= 300ns
                            //Clock enable: falling edge
void write(char i)
    Р1
        = i;
                             //put data on output Port
    D I = 1;
                             //D/I=HIGH : send data
    RW = 0;
                            //R/W=LOW : Write
        = 1;
    Delay(1);
                            //enable pulse width >= 300ns
       = 0;
                            //Clock enable: falling edge
void init()
    E
        = 0;
    Delay(100);
                             //Wait >40 msec after power is applied
                             //command 0x30 = Wake up
    command(0x30);
                             //must wait 5ms, busy flag not available
    Delay(30);
                            //command 0x30 = Wake up #2
    command(0x30);
                            //must wait 160us, busy flag not available
    Delay(10);
                            //command 0x30 = Wake up #3
    command(0x30);
    Delay(10);
                            //must wait 160us, busy flag not available
    command(0x38);
                            //Function set: 8-bit/2-line
    command(0x10);
                            //Set cursor
    command(0x0c);
                            //Display ON; Cursor ON
    command (0x06);
                            //Entry mode set
```

```
4-bit Initialization:
void command(char i)
    P1
        = i;
                             //put data on output Port
    D I = 0;
                             //D/I=LOW : send instruction
    RW = 0;
                            //R/W=LOW : Write
                           //Send upper 4 bits
    Nybble();
       = I << 4;
                            //Shift over by 4 bits
    i
        = i;
                            //put data on output Port
                            //Send upper 4 bits
    Nybble();
/**********************
void write(char i)
    P1
        = i;
                             //put data on output Port
    D I = 1;
                             //D/I=HIGH : send data
    RW = 0;
                             //R/W=LOW : Write
                            //Clock upper 4 bits
    Nybble();
    i = I << 4;
P1 = i;
                            //Shift over by 4 bits
                             //put data on output Port
    Nybble();
                             //Clock upper 4 bits
void Nybble()
    E = 1;
                             //enable pulse width >= 300ns
    Delay(1);
    E = 0;
                             //Clock enable: falling edge
void init()
{
       = 0;
= 0;
    Ρ1
    Р3
    Delay(100);
                             //Wait >40 msec after power is applied
    P1 = 0x30;
                             //put 0x30 on the output port
    Delay(30);
                             //must wait 5ms, busy flag not available
    Nybble();
                             //command 0x30 = Wake up
                             //must wait 160us, busy flag not available
    Delay(10);
                             //command 0x30 = Wake up #2
    Nybble();
                             //must wait 160us, busy flag not available
    Delay(10);
                             //command 0x30 = Wake up #3
    Nybble();
    Delay(10);
                             //can check busy flag now instead of delay
                            //put 0x20 on the output port
    P1 = 0x20;
                            //Function set: 4-bit interface
    Nybble();
                            //Function set: 4-bit/2-line
    command(0x28);
    command (0x10);
                             //Set cursor
                             //Display ON; Blinking cursor
    command (0x0F);
    command (0x06);
                             //Entry Mode set
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage	+80°C , 48hrs	2
	temperature for a long time.		
Low Temperature storage	Endurance test applying the low storage	-30°C , 48hrs	1,2
	temperature for a long time.		
High Temperature	Endurance test applying the electric stress	+70°C 48hrs	2
Operation	(voltage & current) and the high thermal		
	stress for a long time.		
Low Temperature	Endurance test applying the electric stress	-20°C , 48hrs	1,2
Operation	(voltage & current) and the low thermal		
	stress for a long time.		
High Temperature /	Endurance test applying the electric stress	+40°C, 90% RH, 48hrs	1,2
Humidity Operation	(voltage & current) and the high thermal		
	with high humidity stress for a long time.		
Thermal Shock resistance	Endurance test applying the electric stress	0°C,30min -> 25°C,5min ->	
	(voltage & current) during a cycle of low	50°C,30min = 1 cycle	
	and high thermal stress.	10 cycles	
Vibration test	Endurance test applying vibration to	10-55Hz , 15mm amplitude.	3
	simulate transportation and use.	60 sec in each of 3 directions	
		X,Y,Z	
		For 15 minutes	
Static electricity test	Endurance test applying electric static	VS=800V, RS=1.5kΩ, CS=100pF	
	discharge.	One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Newhaven Display:

NHD-0108CZ-RN-GBW-33V