MFAN: Multi-modal Feature-enhanced Attention Networks for Rumor Detection

Jiaqi Zheng¹, Xi Zhang^{1*}, Sanchuan Guo¹, Quan Wang¹,
Wenyu Zang² and Yongdong Zhang^{3,1}

¹Key Laboratory of Trustworthy Distributed Computing and Service (MoE),
Beijing University of Posts and Telecommunications, China

²China Electronics Corporation

³University of Science and Technology of China

{zjq1, zhangx, guosc, wangquan}@bupt.edu.cn, wenyuzang@sina.com, zhyd73@ustc.edu.cn

IJCAI'22 (International Joint Conference on Artificial Intelligence) 220825 Chia-Chun Ho

Outline of MFAN

Introduction

Methodology

Experiments

Conclusion

Comments

Fake News Detection

- With the rapid development of social media, rumors cam quickly spread over these platforms.
 - It lead to significant negative impacts on society.
 - The rumor blaming 5G for the coronavirus pandemic had led to arson attacks on more than 70 cell phone towers in the UK in 2020.
- Due to the large amounts of user-generated content every day.
 - It's desirable to automatically identify rumors to minimize the harmful impacts.

Existing Approaches

- Traditional rumor detection models mainly rely on extracting textual features.
 - Either with traditional learning models such as decision trees or DNN-based models such as RNNs & CNN.
- With the prevalent of multimedia, spreaders utilize visual content together with textual content to attract more attention and get rapid dissemination.
 - Fuse textual and visual features based on DNN to produce multimodal post representations, which have shown better performance than solely using the textual data.
- However, one common limitation of these studies is that they didn't consider the graphical social contexts simultaneously.

Limitations (1/2)

- The existing graph-based detectors suffer from several limitations:
 - The quality of node representation learning depends highly on reliable links.
 - Due to the privacy issue or data crawling constraint, the available social graph data is very likely to lack some important links among entities.
 - Therefore, it is necessary to complement latent links on the social graph to achieve a more accurate detection.

Limitations (2/2)

- The existing graph-based detectors suffer from several limitations:
 - There may be various latent relations between adjacent nodes on a graph.
 - While the conventional neighborhood aggregation procedure of GNN may not be able to differentiate their effects on the representation of a target node, leading to inferior performance.
 - How to effectively integrate the learned social graph features with other modality features is less explored in existing studies.

Introduction MFAN

- Propose the Multi-modal Feature-enhanced Attention Network for FND.
 - First attempt to jointly model textual, visual and social graph features in one framework.
 - Improve the multi-modal fusing mechanism by considering the cross-modal semantic alignment.
 - Specifically, a self-supervised loss is introduced to align the source post representations learned from two
 distinct views. (textual-visual, social graph view)
 - On the one hand, propose to infer potential links between nodes in the social graph to alleviate the incomplete link issue.
 - On the other hand, utilize a signed attention mechanism to capture both positive and negative neighborhood correlations to achieve better node representations.

Contributions

- Propose a multi-modal feature-enhanced attention network for FND.
 - Effectively combine textual, visual, and social graph features in one unified framework.
- Introduce a self-supervised loss to align the source post representations in different views to achieve better multi-modal fusion.
- Improve the social graph feature learning by enhancing both the graph topology and neighborhood aggregation procedure.

Multi-modal Feature-enhanced Attention Networks (MFAN)

Textual & Visual Feature Extractor

Inferring Hidden Links

• Correlation between two nodes:
$$\beta_{ij} = \frac{x_i \cdot x_j}{\|x_i\| \|x_j\|}$$

$$e_{ij} = \begin{cases} 0, & \text{if } \beta_{ij} < 0.5 \\ 1, & \text{otherwise} \end{cases}$$

$$a_{ij}' = \begin{cases} 0, & \text{if } e_{ij} = 0 \text{ and } a_{ij} = 0 \\ 1, & \text{otherwise} \end{cases}$$

Capturing Multi-aspect Neighborhood Relations

- Aim to capture the social graph structure information with GAT.
- Different from conventional GAT, introduce the signed attention mechanism.
 - To capture the positive and negative correlations between neighboring nodes to obtain better graph features.
 - Start from vanilla GAT and then propose signed attention based GAT to capture the multi-aspect correlations.

Capturing Multi-aspect Neighborhood Relations

Node n_i

Its neighbor node set $\mathcal{N}_i = \{n_1', n_2', \cdots, n_{|\mathcal{N}_i|}'\}$ Attention weights $\mathcal{E}_i = \{e_{i1}', e_{i2}', \cdots, e_{i|\mathcal{N}_i|}'\}$

- First calculate the set of attention weights \mathscr{E}_i between n_i and each node in \mathscr{N}_i by
 - $e'_{ij} = \text{LeakyReLU}(\hat{a}[Wx_i||Wx'_j])$
- Existing GATs ignore the negative correlations, to address this issue, design the signed attention based GAT, namely Signed GAT.

Methodology Signed GAT

Node n_i Its neighbor node set $\mathcal{N}_i = \{n_1', n_2', \cdots, n_{|\mathcal{N}_i|}'\}$ Attention weights $\mathscr{E}_i = \{e_{i1}', e_{i2}', \cdots, e_{i|\mathcal{N}_i|}'\}$

- It uses signed attention to involve both the positive and negative relationships between nodes.
- Specifically, for n_i , denote the inversion of the attention weights \mathscr{E}_i as $\widetilde{\mathscr{E}}_i' = -\mathscr{E}_i$.
- Then calculate the normalized weights for both \mathscr{E}_i &t $\tilde{\mathscr{E}}_i$ with the softmax function.

$$\mathcal{E}'_i = \operatorname{softmax}(\mathcal{E}_i)$$

$$\tilde{\mathcal{E}}_i' = \operatorname{softmax}(\tilde{\mathcal{E}}_i)$$

Methodology Signed GAT

Node n_i Its neighbor node set $\mathcal{N}_i = \{n_1', n_2', \cdots, n_{|\mathcal{N}_i|}'\}$

Attention weights $\mathcal{E}_i = \{e'_{i1}, e'_{i2}, \cdots, e'_{i|\mathcal{N}_i|}\}$

- In order to capture both positive and negative relations between nodes.
 - Utilize the \mathscr{E}_i' & $-\tilde{\mathscr{E}}_i'$ to obtain the weighted sum of the neighbor nodes' features.
 - Then concatenate the two vectors together and pass it through a full connected layer to obtain the final node feature.
- For instance, the node feature of n_i can be obtained by

Methodology Graph Feature Extractor

- Firstly, enhance the original social graph by augmenting the inferred potential edges, and initialize three types of nodes in the graph.
 - Post, comment nodes
 - Use their sexual features as the initial embeddings.
 - User nodes
 - Use the average of their post and comment embeddings as the initial embeddings to reflect the user characteristics.

Methodology Graph Feature Extractor

- Then use Signed GAT to extract graph structure features from the enhanced social graph.
- For each node, update its embedding and obtain the updated node embedding matrix.
- Then a multi-head attention mechanism is adopted to capture features from different perspectives.
- Concatenate the updated node embeddings of each head together as overall graph feature:

•
$$\hat{G} = \prod_{h=1}^{H} \sigma(\hat{X}_h)$$

Cross-modal Co-attention Mechanism

Intra-modal feature representation

$$Z_t^i = (\|_{h=1}^H \operatorname{softmax}(\frac{Q_t^i K_t^i}{\sqrt{d}}) V_t^i) W_t^O$$

•
$$Q_t^i = R_t^i W_t^Q, K_t^i = R_t^i W_t^K, V_t^i = R_t^i W_t^V$$

Cross-modal enhanced feature

$$Z_{vt}^{i} = (\|_{h=1}^{H} \operatorname{softmax}(\frac{Q_{v}^{i} K_{t}^{i}}{\sqrt{d}}) V_{t}^{i}) W_{vt}^{O}$$

•
$$Q_v^i = Z_v^i W_v^Q, K_t^i = Z_t^i W_t^K, V_t^i = Z_t^i W_t^V$$

Multi-modal Alignment

 Enforcing the enhanced textual feature of the post close to its enhanced graphical features in order to refine the representations learned in each modality.

$$Z_g^{i'} = W_g' Z_g^i$$
 $Z_t^{i'} = W_t' Z_{vt}^i$

• Then narrow the distance between $Z_g^{i'}$ and $Z_t^{i'}$ with the MSE loss for modal alignment:

$$\mathcal{L}_{align} = \frac{1}{n} \sum_{i=1}^{n} (Z_g^{i'} - Z_t^{i'})^2$$

Fusing the Above Multi-modal Features

- Again perform the aforementioned cross-modal co-attention mechanism among each pair of the three modal features.
- Finally get six cross-modal enhanced features then concatenate them:
 - $Z^i = \operatorname{concat}(\tilde{Z^i_{tv}}, \tilde{Z^i_{vt}}, \tilde{Z^i_{gt}}, \tilde{Z^i_{tg}}, \tilde{Z^i_{gv}}, \tilde{Z^i_{vg}})$

Classification with Adversarial Training

- Feed the final multi-modal feature Z^i of post p_i into the fully connected layer to predict.
 - $\hat{y}_i = \operatorname{softmax}(W_c Z^i + b)$

•
$$\mathcal{L}_{classify} = -y \log(\hat{y}_i) - (1-y)\log(1-\hat{y}_i)$$

- Then final loss can be written as follows:
 - $\mathcal{L} = \lambda_c \mathcal{L}_{classify} + \lambda_a \mathcal{L}_{align}$

Experiments

Datasets

- Weibo
- PHEME
- Train : Valid : Test = 7:1:2

•
$$\mathcal{L} = \lambda_c \mathcal{L}_{classify} + \lambda_a \mathcal{L}_{align}$$

•
$$\lambda_c = 2.15, \, \lambda_a = 1.55$$

Statistic	Non-rumors	False Rumors	Images	Users	Comments
PHEME	1428	590	2018	894	7388
Weibo	877	590	1467	985	4534

Experiments

Baselines

- Textual & Visual features: EANN, MVAE, SAFE
- Textual only
 - QSAN: integrates the quantum-driven text encoding and a novel signed attention mechanism for false information detection.
- Social graphical features
 - EBGCN: rethinks the reliability of latent relations in the propagation structure by adopting a Bayesian approach.
 - GLAN: jointly encodes the local semantic and global structural information and applies a global-local attention network for rumor detection.

ExperimentsResult & Analysis

	PHEME				Weibo			
Method	Accuracy	Precision	Recall	F1 Score	Accuracy	Precision	Recall	F1 Score
EANN	77.13±0.96	71.39±1.07	70.07±2.19	70.44±1.69	80.96±2.26	80.19±2.37	79.68±2.46	79.87±2.40
MVAE	77.62±0.64	73.49±0.81	72.25±0.90	72.77±0.81	71.67±0.89	70.52±0.95	70.21±1.01	70.34±0.98
QSAN	75.13±1.19	69.97±2.03	65.80±1.72	66.87±1.70	71.01±1.81	71.02±0.95	67.54±3.27	67.58±3.59
SAFE	81.49±0.84	79.88±1.22	79.50±0.81	79.68±0.70	84.95±0.85	84.98±0.82	84.95±0.91	84.96±0.86
EBGCN	82.99±0.65	81.31±0.73	79.29±0.71	79.82±0.64	83.14±2.01	85.46±2.12	81.76±1.54	81.45±1.74
GLAN	83.32±1.64	81.25±2.06	77.13±3.26	78.51±2.68	82.44±2.02	82.45±2.26	80.86±1.71	81.26±1.93
MFAN	88.73±0.83	87.07±1.41	85.61±1.65	86.16±1.04	88.95±1.43	88.91±1.60	88.13±1.68	88.33±1.53

- For the methods that consider both textual and visual information.
 - SAFE outperforms other methods, indicating the importance of considering interactions between modalities.
- GLAN & EBGCN outperform most other methods.
 - Indicating that the social graph information is beneficial for rumor detection.
- MFAN significantly outperforms all the other approaches.
 - Demonstrating that considering visual, latent links, and modal alignment can further improve the performance.

ExperimentsAblation Analysis

Method		-w/o V	-w/o G	-w/o P	-w/o A	MFAN
PHEME	Acc.	85.66	86.29	86.91	87.12	88.73
	F1.	82.47	82.15	83.93	84.41	86.16
Weibo	Acc.	84.14	85.08	86.17	86.98	88.95
	F1.	83.88	84.48	85.44	86.42	88.33

Conclusion of MFAN

- Propose a multi-modal rumor detection framework.
- Incorporates three types of modalities. (text, image, and social graph)
- To improve the social graph feature learning, both the graph topology and neighborhood aggregation procedure are enhanced based on GAT.
- Proposed framework enables more effective multi-modal fusion by introducing cross-modal alignment.

Comments of MFAN

- Need network data to enhance performance.
- Utilized co-attention module.