Spin state

The result of measuring spin is either $+\frac{1}{2}\hbar$ or $-\frac{1}{2}\hbar$.

Let χ be the following spin state.

$$\chi = \begin{pmatrix} \frac{1}{3} - \frac{2}{3}i \\ \frac{2}{3} \end{pmatrix}$$

For spin state χ and all three axes, find the probabilities of measuring $\pm \frac{1}{2}\hbar$.

These are the eigenstates for spin.

$$|x_{+}\rangle = \frac{1}{\sqrt{2}}(1,1)$$
 $|y_{+}\rangle = \frac{1}{\sqrt{2}}(1,i)$ $|z_{+}\rangle = (1,0)$ $|x_{-}\rangle = \frac{1}{\sqrt{2}}(1,-1)$ $|y_{-}\rangle = \frac{1}{\sqrt{2}}(1,-i)$ $|z_{-}\rangle = (0,1)$

For the x direction we have

$$\Pr\left(S_x = +\frac{\hbar}{2}\right) = |\langle x_+ | \chi \rangle|^2 = \frac{13}{18}, \quad \Pr\left(S_x = -\frac{\hbar}{2}\right) = |\langle x_- | \chi \rangle|^2 = \frac{5}{18}$$

For the y direction we have

$$\Pr\left(S_y = +\frac{\hbar}{2}\right) = |\langle y_+ | \chi \rangle|^2 = \frac{17}{18}, \quad \Pr\left(S_y = -\frac{\hbar}{2}\right) = |\langle y_- | \chi \rangle|^2 = \frac{1}{18}$$

For the z direction we have

$$\Pr\left(S_z = +\frac{\hbar}{2}\right) = |\langle z_+ | \chi \rangle|^2 = \frac{5}{9}, \quad \Pr\left(S_z = -\frac{\hbar}{2}\right) = |\langle z_- | \chi \rangle|^2 = \frac{4}{9}$$

Find $\langle S_x \rangle$, $\langle S_y \rangle$, and $\langle S_z \rangle$.

$$\langle x \rangle = \langle \chi | \sigma_x | \chi \rangle = \frac{4}{9}, \qquad \langle S_x \rangle = \frac{\hbar}{2} \langle x \rangle = \frac{2}{9} \hbar$$

$$\langle y \rangle = \langle \chi | \sigma_y | \chi \rangle = \frac{8}{9}, \qquad \langle S_y \rangle = \frac{\hbar}{2} \langle y \rangle = \frac{4}{9} \hbar$$

$$\langle z \rangle = \langle \chi | \sigma_z | \chi \rangle = \frac{1}{9}, \qquad \langle S_z \rangle = \frac{\hbar}{2} \langle z \rangle = \frac{1}{18} \hbar$$