

Initialize global_max_cos = -inf

Initialize curr_timeline_max_cos = -inf

Calculate the cosine similarity as follows: $a = cos_sim(G_1,1, G_a)$ $b = cos_sim(G_1,2, G_b)$

curr_timeline_max_cos =
max(curr_timeline_max_cos, a + b)

global_max_cos = -inf

curr_timeline_max_cos = previous cosine

Calculate the cosine similarity as follows: $a = cos_sim(G_1, 2, G_a)$ $b = cos_sim(G_1, 3, G_b)$

curr_timeline_max_cos =
max(curr_timeline_max_cos, a + b)

End of timeline 1:

global_max_cos = max(global_max_cos, curr_timeline_max_cos)

global_max_cos = max cosine of timeline 1

Initialize curr_timeline_max_cos = -inf

Calculate the cosine similarity as follows: $a = cos_sim(G_2,1, G_a)$ $b = cos_sim(G_2,2, G_b)$

curr_timeline_max_cos =
max(curr_timeline_max_cos, a + b)

Initialize global_max_cos = max cosine of timeline 1

curr_timeline_max_cos = previous cosine

Calculate the cosine similarity as follows: $a = cos_sim(G_2, 2, G_a)$ $b = cos_sim(G_2, 3, G_b)$

curr_timeline_max_cos =
max(curr_timeline_max_cos, a + b)

End of timeline 2:
global_max_cos =
max(global_max_cos, curr_timeline_max_cos)

The output of demo run will be the graph G_1,3 because the max cosine similarity happens with G_1,1 and G_1,2, and that the next graph is G_1,3.