Data Modeling using the the Entity-Relationship Model

Fundamental of Database System (Edition 7) Chapter 3

ER Model (only do Chen notation ... skip the min-max notation)

Figure 3.1 A simplified diagram to illustrate the Miniworld main phases of database design. **Database Design Process** REQUIREMENTS **COLLECTION AND ANALYSIS Functional Requirements Data Requirements FUNCTIONAL ANALYSIS** CONCEPTUAL DESIGN **High-Level Transaction** Conceptual Schema Specification (In a high-level data model) **DBMS-independent** LOGICAL DESIGN (DATA MODEL MAPPING) **DBMS-specific** Logical (Conceptual) Schema APPLICATION PROGRAM (In the data model of a specific DBMS) **DESIGN** PHYSICAL DESIGN **TRANSACTION** Internal Schema **IMPLEMENTATION Application Programs**

ER MODEL CONCEPTS

Entities

- specific objects in the mini-world with an independent existence
- E.g. EMPLOYEE John, Research DEPARTMENT

Attributes

- They are properties used to describe an entity.
- Each attribute has a data type
 - integer, string, subrange, enumerated type, ...
- Key attribute

Entities with the same basic attributes are grouped into an **Entity type.**

Types of Attributes

Simple

- Each entity has a single atomic value for the attribute.
- For example, SSN.

Composite

- The attribute is composed of several components.
 - Address(House#, Street, City, State, Zip, Country),
 - Name(FirstName, MiddleName, LastName).

Multivalued

- An entity may have multiple values for that attribute.
- For example: **PreviousDegrees** of a STUDENT.

EXAMPLE OF A COMPOSITE ATTRIBUTE

Figure 3.4A hierarchy of composite attributes.

Types of Attributes

- The composite and multi-valued attributes may be nested arbitrarily to any number of levels,
 - PreviousDegrees of a STUDENT is a composite multivalued attribute

{PreviousDegrees (College, Year, Degree, Field)}

- o Multiple Previous Degrees values can exist
- Each has four subcomponent attributes:
 - o College, Year, Degree, Field

ENTITY TYPE CAR WITH TWO KEYS AND A CORRESPONDING ENTITY SET

(a)

Figure 3.7

The CAR entity type with two key attributes, Registration and Vehicle_id. (a) ER diagram notation. (b) Entity set with three entities.

(b)

CAR
Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}

CAR₁

((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 (red, black))

CAR₂

((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

CAR₃

((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

:

Entity set is the current *state* of the entities that is stored in the database

7

INITIAL DESIGN OF ENTITY TYPES

Entity types in the COMPANY database: EMPLOYEE DEPARTMENT PROJECT DEPENDENT

REFINING THE INITIAL DESIGN BY INTRODUCING RELATIONSHIPS

Some aspects in the requirements will be represented as relationships

RELATIONSHIPS

A relationship relates two or more distinct entities with a specific meaning.

- For example, EMPLOYEE John works on the PX PROJECT,
- EMPLOYEE Franklin manages the Research DEPARTMENT.

Relationships of the same type are grouped into a relationship type.

Degree of a relationship type is the no of participating entity types.

• Both MANAGES and WORKS_ON are binary relationships. 10

Relationship instances of the WORKS_FOR N:1

Relationship instances of the M:N WORKS_ON

RELATIONSHIP TYPE VS. RELATIONSHIP SET

Relationship Type:

- Is the schema description of a relationship
- Identifies the relationship name and the participating entity types
- Also identifies certain relationship constraints

Relationship Set:

• The current *state* of a relationship type

ER DIAGRAM in Chen Notation

Recursive Relationship