Properties of Regular Expressions

Let R and S be regular expressions over a finite alphabet Σ .

- 1. Associativity w.r.t \cup : $(R \cup S) \cup T = R \cup (S \cup T)$
- 2. Identity w.r.t. \cup : $R \cup \emptyset = R$.
- 3. Commutativity w.r.t. \cup : $R \cup S = S \cup R$.
- 4. Idempotence w.r.t. \cup : $R \cup R = R$.
- 5. Associativity w.r.t \circ : $(R \circ S) \circ T = R \circ (S \circ T)$
- 6. Identity w.r.t \circ : $R \circ \epsilon = R$.
- 7. Nullity w.r.t. \circ : $R \circ \emptyset = \emptyset$.
- 8. Distributivity:

(a)
$$R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$$
.

(b)
$$(R \cup S) \circ T = (R \circ T) \cup (S \circ T)$$
.

9.
$$(R^*)^* = R^*$$
.

$$10.~\emptyset^*~=~\epsilon$$

11.
$$\epsilon^* = \epsilon$$

DFA to Regular Expressions (Ref: "Automata and Complexity" by Dexter Kozen)

- Let $M = (Q, \Sigma, \delta, s, F)$ be a DFA.
- Let $p, q \in Q$ and $X \subseteq Q$.
- Let R_{pq}^X denote a regular expression for the set of strings w over Σ such that:
 - there is a path from p to q in M with label w, and
 - all *intermediate* states along this path are from the set X.
- The union over all final states $f \in F$ of R_{sf}^Q represents L(M): $L(M) = \bigcup_{f \in F} R_{sf}^Q$.
- Construct R_{pq}^X using induction on X.
 - Basis: $X = \emptyset$.
 - * Let $p \neq q$.
 - * If no transition from p to q in M:

$$R_{pq}^{\emptyset} = \emptyset$$

* If a_1, \dots, a_k are the symbols in Σ from which there are transitions from p to q in M:

$$R_{pq}^{\emptyset} = a_1 \cup a_2 \cup \cdots \cup a_k$$

- * Let p = q.
- * If no transition from p to q in M:

$$R_{pq}^{\emptyset} = \epsilon$$

* If a_1, \dots, a_k are the symbols in Σ from which there are transitions from p to q in M:

$$R_{pq}^{\emptyset} = a_1 \cup a_2 \cup \cdots \cup a_k \cup \epsilon$$

DFA to Regular Expressions (continued)

- Induction: $X \neq \emptyset$.
 - * Let P be any path in M from p to q with all intermediate states in X.
 - * Let $r \in X$.
 - * Either P does not visit r. Then,

$$R_{pq}^{X} = R_{pq}^{X - \{r\}}$$

- * Or P visits r at least once. In this case, P can be split into the following pieces:
 - · The first piece is from p to r without visiting r, the middle pieces go from r to r without visiting r in between, and the last piece goes from r to q without visiting r. Then,

$$R_{pq}^{X} = R_{pr}^{X - \{r\}} \circ (R_{rr}^{X - \{r\}})^{*} \circ R_{rq}^{X - \{r\}}$$

* So, the resulting expression is:

$$R_{pq}^{X} = R_{pq}^{X - \{r\}} \cup (R_{pr}^{X - \{r\}} \circ (R_{rr}^{X - \{r\}})^{*} \circ R_{rq}^{X - \{r\}})$$

- A bottom-up algorithm:
 - Let |Q|=n. Let the states in Q be $\{1,2,\cdots n\}$.
 - The basis case is as above.
 - Assume that R_{pq}^X has been constructed for $X = \{1, 2, \cdots, k-1\}$.
 - To construct R_{pq}^X for $X = \{1, 2, \cdots, k\}$.
 - Choose r in the above proof to be the state k.
 - Then, for all $1 \leq i, j \leq n$, we have

$$R_{ij}^{X} = R_{ij}^{X - \{k\}} \cup (R_{ik}^{X - \{k\}} \circ (R_{kk}^{X - \{k\}})^{*} \circ R_{kj}^{X - \{k\}}).$$