A TWO-STEP APPROACH TO HALLUCINATING FACES: GLOBAL PARAMETRIC MODEL AND LOCAL NONPARAMETRIC MODEL MODEL

Ce Liu Heung-Yeung Shum Chang-Shui Zhang

By 吴昊东

AUTHOR

Ce Liu

Researcher

Microsoft Research New England

Research Affiliate

Computer Science and Artificial Intelligence Laboratory (CSAIL)

Massachusetts Institute of Technology

Adjunct Assistant Professor Computer Science Department, Boston University

Homepage:

http://research.microsoft.com/en-us/um/people/celiu/ (Microsoft) http://people.csail.mit.edu/celiu/ (MIT)

FACE HALLUCINATION

- Face super-resolution (FSR)
- Face sketch-photo synthesis (FSPS) techniques

Fig. 1 Diagram of face hallucination

FACE SUPER-RESOLUTION

- Reconstruction-based
 - Input images alone
- Learning-based
 - Learn by other HR & LR pairs of images (or only HR images)

CONSTRAINTS

- Sanity constraint. The result must be very close to the input image when <u>smoothed and down-sampled</u>.
- Global constraint. The result must have common characteristics of a human face, *e.g.* eyes, mouth and nose, symmetry, etc.
- Local constraint. The result must have <u>specific</u> <u>characteristics</u> of this face image with <u>photorealistic local features</u>.

CONSTRAINTS

- Sanity constraint
 - Easily satisfied
- Global constraint
 - Without -> noisy
- Local constraint
 - Without -> too smooth, close to average face

TWO-STEP APPROACH

- Title:
 - A Two-Step Approach to Hallucinating Faces:
 Global Parametric Model and Local Nonparametric Model
- Global + Local

BAYESIAN FORMULATION

- Smoothing and down-sampling
 - The same as averaging pooling*

$$I_L(m,n) = \frac{1}{s^2} \sum_{i=0}^{s-1} \sum_{j=0}^{s-1} I_H(sm+i, sn+j)$$
 (3)

• If $I_L \& I_H$ are vectors,

$$I_L = AI_H \tag{4}$$

• Reverse it!

BAYESIAN FORMULATION

o maximum a posteriori (MAP) criterion

$$p(I_H|I_L) = \frac{p(I_L|I_H)p(I_H)}{p(I_L)}.$$

$$I_H^* = \arg\max_{I_H} p(I_L|I_H)p(I_H).$$
 (5)

GLOBAL AND LOCAL MODELING OF FACE

• Global + Local

$$I_H = I_H^l + I_H^g. (6)$$

• Since I_L is the low-frequency part of I_H

$$AI_H^g = AI_H, \ AI_H^l = 0.$$
 (7)

$$p(I_H) = p(I_H^l, I_H^g) = p(I_H^l | I_H^g) p(I_H^g).$$
 (8)

• Regard $p(I_L|I_H)$ as soft constraint to I_H

$$p(I_L|I_H) = \frac{1}{Z} \exp\{-\|AI_H - I_L\|^2/\lambda\},\tag{9}$$

$$p(I_L|I_H) = \frac{1}{Z} \exp\{-\|AI_H^g - I_L\|^2/\lambda\} = p(I_L|I_H^g). \quad (10)$$

TARGET

THE METHOD

• Decouple high-resolution face image to two parts

 $I_H^* = \text{arg max } p(I_L | I_H) p(I_H)$

 I_H —high resolution face image I_H^g —global face I_H^l —local face

Two-step Bayesian inference

 I_L

- = arg max $p(I_L | I_H^g) p(I_H^g) p(I_H^l | I_H^g)$

 $= \arg\max p(I_L | I_H^g, I_H^l) p(I_H^g, I_H^l)$

1. Inferring global face

 $I_H^{g^*}$ = arg max $p(I_L | I_H^g) p(I_H^g)$

2. Inferring local face

 $\overline{I_H^{l^*}} = \arg\max p(I_H^l \mid I_H^{g^*})$

Finally adding them $together I_H^{l*} + I_H^{g*}$

Figure 2. The function of Markov network in our model. (a) is the training process and (b) the hallucinating process. (1): smooth and down-sampling. (2): MAP inference to get the optimal global face I_H^{g*} . The Markov network finds the optimal local feature image I_H^{l*} by energy minimization.

GLOBAL MODELING

• Apply PCA to training face image $\{I_H^{(i)}\}_{i=1}^k$

$$I_H^g = BX + \mu, X = B^T (I_H - \mu),$$

$$p(I_L | I_H^g) p(I_H^g) \qquad p(I_L | X) p(X)$$

$$(12)$$

$$p(X) = \frac{1}{Z'} \exp\{-X^T \Lambda^{-1} X\},\tag{13}$$

$$p(I_L|X) = \frac{1}{Z} \exp\{-\|A(BX + \mu) - I_L\|^2/\lambda\}.$$
 (14)

GLOBAL MODELING

maximize $p(I_L|X)p(X)$

$$I_H^{g*} = BX^* + \mu$$

- \circ I_H^{g*} is very close to human face with some smoothness
- \circ Calculate quickly using input I_L

- Patch-based nonparametric Markov network
- Square patch size: $w \times w \& h$ overlap
- \vec{v} means (i,j)
- $\circ \Delta_{x}$ means (1,0)
- $\bullet \Delta_{v}$ means (0,1)

Figure 3. Illustration of the patch-based Markov network.

Local Modeling

• Assume that the above network is a Markov network

$$p(I_H^l(\vec{v})|I_H^{l-}(\vec{v}),I_H^g) = p(I_H^l(\vec{v})|N_H^l(\vec{v}),I_H^g(\vec{v})),$$
(17)

• Suppose $p(I_H^l(\vec{v})|N_H^l(\vec{v}), I_H^g(\vec{v}))$ Gibbs distribution

$$p(I_H^l(\vec{v})|N_H^l(\vec{v}), I_H^g(\vec{v})) \propto \exp\{-E_G(I_H^l(\vec{v}), N_H^l(\vec{v}), I_H^g(\vec{v}))\}$$
 (18)

where $E_G(\cdot)$ is the Gibbs potential function to describe how likely a patch $I_H^l(\vec{v})$ connects to $I_H^g(\vec{v})$ and is surrounded by $N_H^l(\vec{v})$.

$$p(I_H^l(\vec{v})|N_H^l(\vec{v}), I_H^g(\vec{v})) \propto \exp\{-E_G(I_H^l(\vec{v}), N_H^l(\vec{v}), I_H^g(\vec{v}))\}$$
 (18)

 $N_H^l(\vec{v})$ and $I_H^g(\vec{v})$ independently.

$$E_{G}(I_{H}^{l}(\vec{v}), N_{H}^{l}(\vec{v}), I_{H}^{g}(\vec{v}))$$

$$= E_{G}^{int}(I_{H}^{l}(\vec{v}), N_{H}^{l}(\vec{v})) + E_{G}^{ext}(I_{H}^{l}(\vec{v}), I_{H}^{g}(\vec{v}))$$

$$\equiv E_{G}^{int}(\vec{v}) + E_{G}^{ext}(\vec{v})$$
(19)

- \bullet $E_G^{ext}(\vec{v})$
- Training pairs $\{I_H^{l(i)}(\vec{v}), I_H^{g(i)}(\vec{v})\}_{i=1}^k$

$$E_G^{ext}(\vec{v}) = \frac{1}{\lambda'} \sum_{i=1}^{k} \delta[I_H^l(\vec{v}) - I_H^{l(i)}(\vec{v})] d^2[I_H^g(\vec{v}), I_H^{g(i)}(\vec{v})], \quad (20)$$

 $d(\cdot)$ is the distance metric between two patches in I_H^g

• Laplacian image L_H^g of I_H^g

$$d^{2}[I_{H}^{g}(\vec{v}), I_{H}^{g(i)}(\vec{v})] = ||L_{H}^{g}(\vec{v}) - L_{H}^{g(i)}(\vec{v})||^{2}.$$
 (21)

 $\delta(\cdot)$ is the dirac function

 \bullet $E_G^{int}(\vec{v})$

$$E_G^{int}(\vec{v}) = \frac{1}{\lambda''} \sum_{\mathbf{u} \in S(\vec{v})} [I_H^l(\mathbf{u}) - N_H^l(\mathbf{u})]^2, \tag{22}$$

Total Energy

$$E_{MN} = \sum_{\vec{v}} (E_G^{int}(\vec{v}) + E_G^{ext}(\vec{v})).$$

$$p(I_H^l|I_H^{g*})$$

$$I_H^{l*} = \arg\min_{I_H^l} E_{MN}. \tag{24}$$

SIMULATED ANNEALING

MinimizeMarkovNetworkEnergy

```
Loop until T < \epsilon
Loop \ \vec{v} \ sequentially \ visiting \ all \ patches
compute \ the \ energy \ of \ each \ patch \ I_H^{l(i)}(\vec{v})
set \ I_H^l(\vec{v}) = I_H^{l(i)}(\vec{v}) \ with \ probability \ (25)
decrease \ T
I_H^{l*} = I_H^l
```

$$exp\{-(E_G^{int}(\vec{v}) + E_G^{ext}(\vec{v}))/T\},$$
 (25)

EXPERIMENTAL RESULTS

- Database
 - FERET data set
 - AR data set
 - Other collections
- Align the face image

EXPERIMENTAL RESULTS

Figure 4. The hallucination results. (a) is the low-resolution 24×32 input. (b) is the inferred global face I_H^{g*} from (a). (c) is the final result $I_H^* = I_H^{g*} + I_H^{l*}$. I_H^{l*} is inferred from I_H^{g*} by Markov network. (d) is the original high-resolution 96×128 image.

EXPERIMENTAL RESULTS

• Compete with other paper

(a) Input 24×32 (b) Our method (c) Cubic B-Spline (d) Hertzmann et al. (e) Baker et al. (f) Original 96×128

Figure 5. Comparison between our method and others.

CONCLUSION

- Combine global and local constrains
 - robustness and efficiency
- Why not complex model
 - the error can be compensated in the local model
- Patch-based nonparametric Markov network
 - Nonparametric -> accuracy
 - patch-based -> high efficiency
- Simulated Annealing
 - Similar to Gibbs sampling but converges more quickly
- Generalization -> Other super-resolution problem

THE END

THANK YOU! Q&A