Q1. Consider the equation $x^2 - 2x - n = 0$, where $n \in \mathbb{N}$ and $n \in [5,100]$. The total number of different values of n so that the given equation has integral roots is

Q2. If $\pi < 0 < \pi$, the equation $(\cos 3\theta + 1)x^2 + (2\cos 2\theta - 1)x + (1 - 2\cos \theta) = 0$ has more than

- 2 roots for
- (a) No value of θ
- (b) One value of θ
- (c) Two values of θ
- (d) Infinite values of θ

Q3. If α, β are the roots of the equation $2x^2 + 4x - 5 = 0$, the equation whose roots are

$$\frac{1}{2\alpha-3}$$
 and $\frac{1}{2\beta-3}$ is

(a)
$$x^2 + 10x - 11 = 0$$

(b)
$$11x^2 + 10x + 1 = 0$$

(c)
$$x^2 + 10x + 11 = 0$$

(d)
$$11x^2 - 10x + 1 = 0$$

Q4. The number of natural number n for which the equation (x-8)x = x(n-10) has no real solution is equal to

- (a) 2
- (b) 3
- (c) 4 mathons
- (d) 5

Q5. The value of a for which the sum of cubes of the roots of equation

$$x^2 - ax + (2a - 3) = 0 \forall a \in \left[\frac{1}{2}, 4\right]$$
 attains its minimum value

- (a) greater than 4
- (b) less than 2

- (c) Greater than $\frac{3}{2}$
- (d) less than $\frac{1}{2}$
- **Q6.** If $\frac{\alpha+5i}{2}$ is a root of the equation $2x^2-6x+k=0$ then the value of $\frac{k}{10}$ is $(\alpha,k\in R)$
- **Q7.** If α and β are the roots of the quadratic equation, $x^2 + x \sin \theta 2 \sin \theta = 0, \theta \in \left(0, \frac{\pi}{2}\right)$,

then $\frac{\alpha^{12} + \beta^{12}}{(\alpha^{-12} + \beta^{-12})(\alpha - \beta)^{24}}$ is equal to:

- (a) $\frac{2^{12} \text{athongo}}{(\sin \theta 8)^6}$ /// mathongo /// mathongo /// mathongo ///
- (b) $\frac{2^6}{(\sin\theta+8)^{12}}$ methongo /// methongo
- (c) $\frac{2^{12}}{(\sin \theta + 8)^{12}}$ mathongo /// mathongo /// mathongo /// mathongo ///
- (d) $\frac{2^{12}}{(\sin \theta 4)^{12}}$ // mathong // mathong //
- **Q8.** If for a positive integer n, the quadratic equation

 $x(x+1)+(x+1)(x+2)+\cdots+(x+(\overline{n-1})(x+n)=10n$ has 2 consecutive integral solutions then n is equal to

- (a) 12
- (b) 9
- (c) 10
- (d) 11 mathongo ///. mathongo ///. mathongo ///. mathongo
- **Q9.** If α and β are roots of the equation, $x^2 4\sqrt{2}kx + 2e^{4\ln k} 1 = 0$ for some k, and $\alpha^2 + \beta^2 = 66$, then $\alpha^3 + \beta^3$ is equal to
- (a) $248\sqrt{2}$
- (b) $280\sqrt{2}$
- (c) $-32\sqrt{2}$

(d) $-280\sqrt{2}$