

Universidade Federal de Santa Catarina Centro Tecnológico – CTC Departamento de Engenharia Elétrica

"EEL7020 – Sistemas Digitais"

Prof. Eduardo Augusto Bezerra

Eduardo.Bezerra@eel.ufsc.br

Florianópolis, março de 2013.

"Desenvolvimento de Sistemas Digitais com FPGAs"

Material utilizado no Lab 1:

- lab1_FPGAs.ppt
- DE2_introduction.pdf
- DE2_UserManual.pdf
- Capítulo 1 do livro texto

Roteiro da aula

- 1. Apresentação lab1_FPGAs.ppt Slides 1..14, 31..33, 55..58
- 2. Na pasta altera\DE2\DE2_user_manual DE2_introduction\
 - Arquivo DE2_introduction.pdf (aplicações da placa)
 - Arquivo DE2_UserManual.pdf (pinagem da placa)
- 3. Versão em PDF do capítulo 1 to livro texto disponível no site da disciplina
- 4. Seguir o tutorial <u>COMPLETO</u> descrito no livro texto, pois esse fluxo será utilizado em todas as aulas de laboratório do semestre.

Motivação – Indústria de Circuitos Integrados

INVERSOR CMOS

• Equação:

$$S = \overline{E}$$

Esquema Lógico

Esquema Elétrico CMOS

Motivação – Indústria de Circuitos Integrados

Obtido em http://www.amd.com

Motivação – Indústria de Circuitos Integrados

- •SiO₂, átomos de silício e oxigênio ligados por seus elétrons.
- •O₂ é retirado em laboratório, e os átomos de silício resultantes formam cristal de silício puro.
- Próximo ao zero absoluto, os elétrons de silício se ocupam apenas em manter a estrutura do cristal.
- Aumentando para temperatura ambiente, átomos de Si vibram o suficiente para gerar energia térmica possibilitando seus elétrons saltar para camada de condução.
- Cristal de Silício a ser "fatiado". Diâmetro varia de 10 a 30 cm.
- Wafers de silício (fatias) com espessura em torno de 1mm.

Tecnologia CMOS: fabricação

Processo de fotolitografia

Oxidação

- -Depósito de produto químico (se altera na presença de luz) na superfície do chip;
- -Com lente micro, luz altera regiões do material com produto químico;
- -Solvente remove regiões alteradas;
- -Regiões não atingidas pela luz permanecem, formando transistores;
- -Processo se repete, com outros produtos, formando também isoladores e conexões.

Remoção do revestimento foto-resistivo (ashing)

Outras etapas do processo

Girar, lavar, secar (spin, rinse, dry)

Revestimento

foto-resistivo

Ataque ácido

Exposição UV (stepper exposure)

Desenvolvimento foto-resistivo

Portas Lógicas Básicas e Tabela Verdade

$$\frac{A}{B}$$
 \longrightarrow $\frac{S}{S}$

OR

$$S = A \text{ or } B$$

$$\mathbf{S} = \mathbf{A} + \mathbf{B}$$

$$S = A \mid B$$

$$S = A$$
 and B

$$S = A \cdot B$$

$$S = A \& B$$

$$S = A xor B$$

$$S = A \wedge B$$

$$S = not A$$

$$S = \overline{A}$$

$$S = !A$$

Tarefa a ser realizada na aula prática

Tarefa a ser realizada na aula prática

- Utilizando a ferramenta Quartus II da Altera, criar um projeto de circuito digital (esquemático) com as 4 portas lógicas apresentadas no slide 8.
- Realizar a simulação das portas lógicas no Quartus II, e levantar a tabela verdade para cada uma das portas.
- O objetivo principal dessa aula prática é possibilitar que o aluno tenha um primeiro contato com as ferramentas de desenvolvimento a serem utilizadas durante o semestre.
- Seguir o tutorial existente na seção "Laboratory assignment" do capítulo 1 do livro texto.
- Um resumo desse tutorial está incluído nos slides a seguir.

Criar um novo projeto

Escolher a pasta e nome do projeto

Selecionar o dispositivo alvo (FPGA)

Configurar a ferramenta de simulação

Criar um novo diagrama de esquemático

Criar um novo diagrama de esquemático

Entrar com as portas lógicas

Realizar as conexões das portas lógicas

Entrar com os pinos de entrada e saída

Conectar os pinos de entrada e saída e as portas lógicas

Realizar a síntese do circuito (compile)

Configurar a ferramenta de simulação

Configurar a ferramenta de simulação

Executar o ModelSim (ferramenta de simulação)

Selecionar o módulo a ser simulado

Adicionar os sinais de interesse ao diagrama de formas de onda

- Fixar os sinais em '0' ou '1' utilizando o botão direito do mouse sobre o sinal desejado.
- Pressionar o botão Run indicado na figura.

Para A0 = '0' e B0 = '1', o resultado da simulação será 0 + 1 = 1 (S0), com vai-um = '0' (C0).

Resultado da simulação para todas as combinações de A0 e B0

Testar o circuito na placa com o FPGA Primeiro passo, associar os pinos do FPGA aos sinais de entrada e saída definidos no projeto (esquemático).

Pinagem a ser utilizada no projeto

 $N25 = SW(0) \qquad AE23 = LEDR(0)$

 $N26 = SW(1) \qquad AF23 = LEDR(1)$

A placa DE2 com o FPGA da Altera

1 - 9V DC Power Supply

Download do arquivo de configuração para o FPGA

