Introduction Digital Computing Homework 2 – Logic Gates and Waveforms

ructions: You have to show all work in order to receive full credit					
1. The number of ou	utput combinations	for a 6-input lo	ogic gate is:		
			rks with the following specifications: s, one at the <i>front</i> and one at the <i>back</i> of the room		
- The lamp is to	o be ON if both of	the switches are	ON.		
- The lamp is to	o be OFF if one of	the switches is	OFF.		
According to the desc	cription:				
a) Create a truth	table, with all pos	sible inputs cor	nbination, that represents the description above		
	table, with all pos	sible inputs cor	nbination, that represents the description above		
	-	•	nbination, that represents the description above		
In	put	Output	nbination, that represents the description above		
In	put	Output	nbination, that represents the description above		
In	put	Output	nbination, that represents the description above		
In	put	Output	nbination, that represents the description above		
Front switch	put Back switch	Output Lamp	nbination, that represents the description above est logic gate to perform the operation is:		

4. What is the truth table for an **NAND** gate is:

Truth Table 2-input NAND gate				
Inputs		Output		
A	В	Y		
0	0			
0	1			
1	0			
1	1			

5. Given the input A, find the output Y of the given gate:

6. Given the input A and B, find the output Y of the given gate:

$$A = 0100 \ 1011_2$$
 $B = 1110 \ 1101_2$
 $B = \frac{A}{B}$

$$A = 1010 \ 1100_2$$
 $B = 0110 \ 0101_2$
 $B = 0110 \ 0101_2$
 $B = 0110 \ 0101_2$

$$A = 1100 \ 1100_2$$
 $B = 1010 \ 0011_2$
A B Y B

$$A = 1010 \ 1100_2$$
 $B = 0110 \ 0101_2$
A B B

$$A = 0100 \ 1011_2$$

 $B = 1110 \ 1101_2$
A B Y = _____

$$A = 1010 \ 1100_2$$
 $B = 0110 \ 1101_2$
 $B = 0110 \ 1101_2$
 $A = 0.0000$
 $A = 0.00000$
 $A = 0.0000$
 $A = 0.0000$
 $A = 0.0000$
 $A = 0.0000$
 $A = 0.0$

7. Given the input waveform A and B, find the output Y of the given logic gate

8. Given the input waveform A, B, and C, find the output Y of the given logic gate

9. Given the input waveform A, B, and C, find the output Y of the given logic gate

