Monoidal push-pull for local systems

Angus Rush

June 15, 2021

Contents

1	Background 1.1 Scaled simplicial sets	1 1
2	The non-monoidal construction	3
3	The base fibration	5
4	The triple structures	8
	4.1 The triple structure on finite pointed sets	8
	4.2 The triple structure on infinity-categories	8
	4.3 The triple structure on the twisted arrow category	8

1 Background

1.1 Scaled simplicial sets

Note: This is basically a summary of the parts of The Goodwillie Calculus that we're gonna need.

Definition 1.1.1. A *scaled simplicial set* is a pair $(X, A_X) = \overline{X}$, where X is a simplicial set, and $A \subseteq X_2$ is a set of 2-simplices of X which contains every degenerate simplex. A simplex belonging to A is known as *thin*. A morphism of scaled simplicial sets is a morphism of the underlying simplicial sets which takes thin simplices to thin simplices.

We will need the following facts about scaled simplicial sets.

1. For any category \mathcal{C} enriched in marked simplicial sets, we can build a scaled simplicial set $N_{sc}(\mathcal{C}) = (N(\mathcal{C}), T)$, the **scaled nerve** of \mathcal{C} , whose underlying simplicial set $N(\mathcal{C})$ is the simplicial nerve of \mathcal{C} . The scaling T is defined in the following way. Let $\sigma \colon \Delta^2 \to N(\mathcal{C})$ be any 2-simplex. This corresponds to a diagram

in \mathcal{C} , together with a 1-simplex $\alpha_{\sigma} \colon \Delta^{1} \to \operatorname{Map}_{\mathcal{C}}(X, Z)$ corresponding to a map $gf \to h$. We will then define σ to be thin if and only if α_{σ} is marked in $\operatorname{Map}_{\mathcal{C}}(X, Z)$.

- 2. The functor N_{sc} admits a left adjoint $\mathfrak{C}^{sc} \colon \operatorname{Set}_{\Delta}^{sc} \to \operatorname{Cat}_{\Delta}^+$, the *scaled rigidification*, such that for any scaled simplicial set \overline{X} with underlying simplicial set X, the underlying simplicially enriched category of $\mathfrak{C}^{sc}(\overline{X})$ is simply $\mathfrak{C}(X)$, the rigidification of X. The scaling on $\mathfrak{C}^{sc}(X)$ also admits a relatively simple description.
- 3. A map of scaled simplicial sets $\overline{X} \to \overline{Y}$ is said to be a *bicategorical equivalence* if the map $F \colon \mathfrak{C}^{\mathrm{sc}}(X) \to \mathfrak{C}^{\mathrm{sc}}(Y)$ is a weak equivalence of $\operatorname{Set}_{\Delta}$ -enriched categories; that is, if for all objects x, x' of $\mathfrak{C}^{\mathrm{sc}}(\overline{X})$, the map

$$\operatorname{Hom}_{\mathfrak{C}^{\operatorname{sc}}(\overline{X})}(x,x') \to \operatorname{Hom}_{\mathfrak{C}^{\operatorname{sc}}(\overline{Y})}(F(x),F(x'))$$

is a weak equivalence of marked simplicial sets, and if for all $y \in \mathfrak{C}^{\mathrm{sc}}(\overline{Y})$, there exists some $x \in \mathfrak{C}^{\mathrm{sc}}(\overline{X})$ such that F(x) and y are isomorphic in the homotopy category $h\mathfrak{C}^{\mathrm{sc}}(\overline{Y})$.

4. There is a left proper, combinatorial model structure on $\mathsf{Set}^\mathsf{sc}_\Delta$, whose cofibrations are monomorphisms, and whose weak equivalences are bicategorical fibrations. This gives a Quillen equivalence

$$\mathfrak{C}^{sc}: \mathbb{S}et^{sc}_{\Lambda} \leftrightarrow \mathbb{C}at^{+}_{\Lambda}: N_{sc}.$$

- 5. An ∞ -bicategory is a fibrant object with respect to this model structure. In particular, for any fibrant object $\mathcal{C} \in \operatorname{Cat}_{\Delta}^+$ (i.e. any quasicategory-enriched category with equvialences marked), $N_{sc}(\mathcal{C})$ is an ∞ -bicategory.
- 6. The category of scaled simplicial sets has a natural simplicial enrichment as follows: For any two scaled simplicial sets \overline{X} and \overline{Y} , we define

$$\operatorname{Map^{sc}}(\overline{X}, \overline{Y})_n = \operatorname{Hom}(\overline{X} \times \Delta_{\sharp}^n, \overline{Y}),$$

where Δ^n_{\sharp} is the scaled simplicial set (Δ^n, Δ^n_2) . For \overline{Y} an ∞ -bicategory, Map^{sc} $(\overline{X}, \overline{Y})$ is a quasicategory. Taking the core gives a Kan complex.

- 7. With this,
- 8. We will denote the simplicially enriched category whose objects are ∞ -bicategories, with mapping spaces as above by \mathbf{Bicat}_{∞} . We then define $\mathbb{C}\mathrm{at}_{(\infty,2)} = N(\mathbf{Bicat}_{\infty})$. This is a quasicategory.

We will need multiple notions of the quasicategory of $(\infty, 2)$ -categories.

- The model category Set^{sc}_Δ of scaled simplicial sets, whose cofibrations are precisely the monomorphisms.
- The weak equivalences are bicategorical equivalences,

2 The non-monoidal construction

Let $\mathcal C$ be a category admitting small colimits. We consider the pullback

$$\begin{array}{ccc} LS(\mathcal{C}) & \longrightarrow & Tw(\mathcal{C}at_{\infty}) \\ \downarrow & & \downarrow & \\ \mathcal{C}at_{\infty} \times \{\mathcal{C}\} & \longrightarrow & \mathcal{C}at_{\infty} \times \mathcal{C}at_{\infty}^{op} \end{array}.$$

A general morphism in $LS(\mathcal{C})$ is of the form

$$\begin{array}{ccc}
\mathcal{D} & \xrightarrow{\alpha} & \mathcal{D}' \\
\downarrow F \downarrow & = \eta \Rightarrow & \downarrow F' \\
\mathcal{C} & = & \mathcal{C}
\end{array}$$

This is r-cartesian if and only if η is a natural isomorphism $F \Rightarrow F' \circ \alpha$; that is, if the above square (weakly) commutes. We will denote a weakly commuting square via

$$\begin{array}{ccc}
\mathcal{D} & \xrightarrow{\alpha} & \mathcal{D}' \\
\downarrow^{F'} & & \downarrow^{F'} \\
\mathcal{C} & & & \mathcal{C}
\end{array}$$

The functor $r: LS(\mathcal{C}) \to \mathcal{C}at_{\infty}$ thus classifies the functor

$$\mathfrak{C}at^{op}_{\infty} \to \mathfrak{C}at_{\infty}; \qquad \mathfrak{D} \mapsto \operatorname{Fun}(\mathfrak{D}, \mathfrak{C}),$$

which sends a functor $f \colon \mathcal{D} \to \mathcal{D}'$ to the pullback

$$f^* : \operatorname{Fun}(\mathcal{D}', \mathcal{C}) \to \operatorname{Fun}(\mathcal{D}, \mathcal{C}).$$

Under the assumption that \mathcal{C} admits colimits, each of these functors admit a left adjoint $f_!$ given by left Kan extension. The map r is thus a bicartesian fibration with cocartesian morphisms given by morphisms

$$\begin{array}{ccc}
\mathcal{D} & \xrightarrow{\alpha} & \mathcal{D}' \\
F \downarrow & = \eta \Rightarrow & \downarrow \operatorname{Lan}_{\alpha} F \\
\mathcal{C} & = & \mathcal{C}
\end{array}$$

We define a triple structure $(\mathfrak{Q},\mathfrak{Q}_{\dagger},\mathfrak{Q}^{\dagger})$ on $LS(\mathfrak{C})$ as follows.

- Q = LS(C).
- $Q_{\dagger} = LS(\mathcal{C}).$
- Q^{\dagger} consists only of cartesian morphisms.

This corresponds to spans of the form

$$\begin{array}{cccc}
\mathcal{D}' & \longleftarrow & \mathcal{D} & \longrightarrow & \mathcal{D}'' \\
\downarrow & \circlearrowleft & \downarrow & \Longrightarrow & \downarrow \\
\mathcal{C} & \longleftarrow & \mathcal{C} & \longleftarrow & \mathcal{C}
\end{array}$$

Proposition 2.0.1. The triple $(Q, Q_{\dagger}, Q^{\dagger})$ is adequate.

To do this, we need to prove:

Lemma 2.0.2. Let $\mathbb C$ be an ∞ -bicategory such that the underlying quasicategory $\mathcal C$ has pullbacks and pushouts. Consider a square

$$\begin{array}{ccc}
C_1 & \longrightarrow & C_2 \\
\downarrow a & & \downarrow b \\
C_3 & \longrightarrow & C_4
\end{array}$$

in $Tw(\mathbb{C})$ corresponding to a twisted cube

in \mathbb{C} , where the top face is pullback and the bottom face is pushout. Note that the top and bottom faces of any such diagram in $Tw(\mathbb{C})$ belong to \mathbb{C} , and hence must weakly commute, by definition of $Tw(\mathbb{C})$.

Suppose α is an equivalence. Then

3 The base fibration

The starting point of our construction is the functor

$$\mathfrak{Fin}_* \xrightarrow{\mathfrak{C}at_\infty^{\times}} \mathfrak{C}at_{(\infty,2)} \xrightarrow{Tw} \mathfrak{C}at_\infty$$

Note that this gives a monoidal category since $\mathbf{Tw}(\operatorname{Cat}_{\infty}^n) \cong \mathbf{Tw}(\operatorname{Cat}_{\infty})^n$.

We're not gonna worry too much about where the functor $T\mathbf{w}$ comes from, just keep notes about what properties we're using. The relative nerve of this functor is a Cartesian fibration $T\mathbf{w}(\operatorname{Cat}_{\infty})_{\otimes} \to \operatorname{Fin}^{\operatorname{op}}_*$ with the following description: an n-simplex σ corresponding to a diagram

$$\Delta^n \xrightarrow{\sigma} \mathbf{LS}(\operatorname{Cat}_{\infty})_{\otimes}$$

$$fin^{\operatorname{op}}_*$$

corresponds to the data of, for each subset $I \subseteq [n]$ having minimal element i, a map

$$\tau(I) \colon \Delta^I \to \mathbf{Tw}(\mathfrak{C}\mathrm{at}_\infty)^i$$

such that For nonempty subsets $I' \subseteq I \subseteq [n]$, the diagram

$$\Delta^{I'} \longrightarrow \mathbf{Tw}(\mathbf{Cat}_{\infty})^{i'}
\downarrow \qquad \qquad \downarrow
\Delta^{I} \longrightarrow \mathbf{Tw}(\mathbf{Cat}_{\infty})^{i}$$

Example 3.0.1. An object of $\mathbf{Tw}(\mathbb{C}at_{\infty})_{\otimes}$ lying over $\langle n \rangle$ corresponds to a collection of functors $\mathbb{C}_i \to \mathbb{D}_i$, $i \in \langle n \rangle^{\circ}$. We will denote this $\vec{\mathbb{C}} \to \vec{\mathbb{D}}$.

A morphism in $T\mathbf{w}(\operatorname{\mathfrak{C}at}_\infty)_\otimes$ lying over the active map $\langle 1 \rangle \leftarrow \langle 2 \rangle$ in $\operatorname{\mathfrak{F}in}^{\operatorname{op}_1}_*$ consists of

- A 'source' object $F \colon \mathcal{C} \to \mathcal{C}'$
- A pair of 'target' objects $G_i : \mathcal{D}_i \to \mathcal{D}'_i$, i = 1, 2.
- · A morphism

$$\begin{array}{ccc}
\mathbb{C} & \xrightarrow{\alpha} & \mathcal{D}_1 \times D_2 \\
\downarrow F \downarrow & = \eta \Rightarrow & \downarrow G_1 \times G_2 \\
\mathbb{C}' & \longleftarrow_{\beta} & \mathcal{D}'_1 \times \mathcal{D}'_2
\end{array}$$

where here we mean $\eta: F \Rightarrow \beta \circ G_1 \times G_2 \circ \alpha$.

Note that $Tw(\mathfrak{C}at_{\infty})_{\otimes}$ admits a map to $\widetilde{\mathfrak{C}at}_{\infty,\times}\times (\widetilde{\mathfrak{C}at}_{\infty}^{\times})^{op}$, where

- $\widetilde{\text{Cat}}_{\infty,\times}$ is the relative nerve (as a cartesian fibration) of the functor $\mathfrak{F}\text{in}_* \to \mathbb{C}\text{at}_\infty$ giving the cartesian monoidal structure on $\mathbb{C}\text{at}_\infty$
- $\widetilde{\operatorname{Cat}}_{\infty}^{\times}$ is the *cocartesian* relative nerve of the same.

Taking all this together gives a commuting triangle

where

Proposition 3.0.2. Everything in sight is a cartesian fibration.

Proposition 3.0.3. There is an equivalence $\mathfrak{C}at_{\infty,\times} \simeq \widetilde{\mathfrak{C}at}_{\infty,\times}$ which is homotopic to the identity on $\mathfrak{C}at_{\infty}$.

¹Here we mean the morphism in \mathfrak{Fin}^{op}_* corresponding to the active map $\langle 2 \rangle \rightarrow \langle 1 \rangle$ in \mathfrak{Fin}_* .

Proposition 3.0.4. We can express a monoidal ∞ -category as a functor $\mathfrak{F}in_* \to \widetilde{\mathfrak{C}at}_\infty^\times$.

Fix some monoidal ∞ -category \mathcal{C} which admits colimits, and such that the monoidal structure preserves colimits in each slot. We can thus define a functor

$$\operatorname{Cat}_{\infty,\times} \to \widetilde{\operatorname{Cat}}_{\infty,\times} \times (\widetilde{\operatorname{Cat}}_{\infty}^{\times})^{\operatorname{op}}$$

which is the equivalence on the first component, and given by the composition

$$\operatorname{\mathfrak{C}at}_{\infty,\times} \to \operatorname{\mathfrak{F}in}^{\operatorname{op}}_* \xrightarrow{\operatorname{\mathfrak{C}}} (\widetilde{\operatorname{\mathfrak{C}at}}_\infty^\times)^{\operatorname{op}}.$$

Forming the pullback

$$\begin{array}{ccc} LS(\mathcal{C})_{\otimes} & \longrightarrow & Tw(\mathcal{C}at_{\infty})_{\otimes} \\ \downarrow & & \downarrow \\ \mathcal{C}at_{\infty,\times} & \longrightarrow & \widetilde{\mathcal{C}at}_{\infty,\times} \times (\widetilde{\mathcal{C}at}_{\infty}^{\times})^{op} \end{array}$$

gives us a commutative triangle

Proposition 3.0.5. The map p is a cartesian fibration, and the p-cartesian morphisms in $Cat_{\infty,\times}$ are precisely those representing products.

Proposition 3.0.6. The maps q and r are cartesian fibrations, and a generic morphism

$$\vec{\mathcal{D}} \xrightarrow{\alpha} \vec{\mathcal{D}}'$$

$$F \downarrow = \eta \Rightarrow \qquad \downarrow G_1 \times G_2$$

$$\vec{\mathcal{C}} \xleftarrow{\otimes} \vec{\mathcal{C}}$$

in LS(C) is

- r-cartesian if η is an equivalence
- *q*-cartesian if α exhibits a product and η is an equivalence.

One sees immediately that r sends q-cartesian morphisms to p-cartesian morphisms, and has the sanity check that for any morphism f in $LS(\mathcal{C})_{\otimes}$ whose image in $\mathfrak{C}at_{\infty,\times}$ is p-cartesian, f is q-cartesian if and only if it is r-cartesian.

4 The triple structures

4.1 The triple structure on finite pointed sets

We're not gonna notationally distinguish between \mathcal{F}_{in_*} and $N\mathcal{F}_{in_*}$. Who has time for that these days?

We define a triple structure $(\mathfrak{F}, \mathfrak{F}_{\dagger}, \mathfrak{F}^{\dagger})$ on $\mathfrak{Fin}^{op}_*,$ where

- $\mathcal{F} = \mathcal{F}in_*^{op}$
- $\mathcal{F}_{\dagger} = (\mathcal{F}in_*^{op})^{\simeq}$
- $\mathcal{F}^{\dagger} = \mathcal{F}in_*^{op}$

Proposition 4.1.1. This is an adequate triple structure.

Proposition 4.1.2. There is a Joyal equivalence $\mathcal{F}in_* \to Span(\mathcal{F}, \mathcal{F}_{\dagger}, \mathcal{F}^{\dagger})$.

4.2 The triple structure on infinity-categories

We define a triple $(\mathcal{P}, \mathcal{P}_{\dagger}, \mathcal{P}^{\dagger})$ as follows.

- $\mathcal{P} = \mathcal{C}at_{\infty} \times$
- $\mathcal{P}_{\dagger} = \operatorname{Cat}_{\infty, \times} \times_{\operatorname{Fin}^{\operatorname{op}}_*} (\operatorname{Fin}^{\operatorname{op}}_*)^{\simeq}$
- $\mathcal{P}^{\dagger} = Cat_{\infty,\times}$

Proposition 4.2.1. The cartesian fibration $\mathfrak{C}at_{\infty,\times} \to \mathfrak{F}in_*^{op}$ admits relative pullbacks.

Proposition 4.2.2. This is an adequate triple structure.

4.3 The triple structure on the twisted arrow category

We define a triple $(\mathfrak{Q},\mathfrak{Q}_{\dagger},\mathfrak{Q}^{\dagger})$ as follows:

- $Q = LS(\mathcal{C})_{\otimes}$
- $Q_{\dagger} = LS(\mathcal{C})_{\otimes} \times_{\mathfrak{F}in^{op}_{*}} (\mathfrak{F}in^{op}_{*})^{\simeq}$
- Q^{\dagger} consists of the subcategory of LS(\mathfrak{C}) $_{\otimes}$ of r-cartesian morphisms.

These triple constructions correspond to spans of the following form.

$$\vec{D} \longleftarrow \vec{D}' \longrightarrow \vec{D}''$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$C^{n} \longrightarrow C^{m} \longleftarrow \stackrel{\simeq}{\longleftarrow} C^{m}$$

$$\langle n \rangle \longleftarrow \langle m \rangle \stackrel{\simeq}{\longrightarrow} \langle m \rangle$$