Inteligência Artificial – Engenharia da computação

Alunos: Guilherme Korol e Matheus Storck

Prof.: Silvia Moraes

T3 – Atividade com Lógica Fuzzy

1. Descrição da aplicação

A aplicação escolhida tem como objetivo demonstrar a capacidade da lógica Fuzzy no desenvolvimento de controladores para otimização de processos cervejeiros.

Dentre os diversos fatores envolvidos no processo de fabricação de uma cerveja, a temperatura é a variável que se deseja maior precisão, pois exerce um grande efeito na velocidade da fermentação e no sabor do produto final. Portanto, deseja-se controlar a temperatura de modo que fique sempre em um determinado valor, no caso do artigo escolhido, 16°C (Cerveja Guinness Nigeria Plc).

2. Sistema Fuzzy

a. Dados de entrada/saída

O valor de temperatura (T0) é obtido através de sensores e serve como dado de entrada para o controlador Fuzzy. Este dado é então comparado com o valor desejado (Tx) e o controlador opera de modo a reduzir a diferença entre eles.

O dado de saída do controlador é a tensão que deve ser aplicada a um motor de forma que esta abra ou feche uma válvula, a qual é responsável por liberar o aditivo de resfriamento para o recipiente em que a mistura se encontra.

b. Variáveis e valores linguísticos

As variáveis linguísticas utilizadas são temp_error, temp_error_dot e output_voltage, indicando a diferença entre T0 e Tx, a variação de mudança de temperatura e a tensão necessária para ativação do motor, respectivamente.

Os valores linguísticos da variável output_voltage são Zero, Small, Middle e Large, enquanto os valores linguísticos das variáveis temp error e temp error dot são:

- (N) Negativo, quando Tx < T0
- (Z) Zero, quando Tx = T0
- (P) Positivo, quando Tx > T0

A partir da definição das variáveis e valores linguísticos, o artigo informa as funções de pertinência, conforme Figura 1. 2 e 3:

Figura 1 – Função de pertinência de temp_error

Figura 2 - Função de pertinência de temp_error_dot

Figura 3 - Função de pertinência de output_voltage

c. Regras Fuzzy utilizadas

Através da matriz de regras disponibilizada no artigo (Figura 4), foi possível extrair o seguinte conjunto de regras:

Output =		Temperature error (°C)			
output voltage		N	Z	P	
Temperature	N	Zero	Zero	Zero	
error. dot (°C/S)	Z	Zero	Zero	Small	
	P	Small	Middle	Large	

Figura 4 - A matriz de regras

3. Exemplo de funcionamento

Considerando que a diferença entre Tx e T0 seja igual a 1 (temp_error) e variação da mudança seja de -0,5 (temp_error_dot), qual a tensão de saída necessária para deixar a temperatura em 16°C?

a. Fuzzyfication

Inicialmente, verifica-se os valores da função de pertinência para cada variável linguística, conforme Tabela 1:

	N(u)	(u4)/(-24)	caso -4 <= u <= -2	
		(0 - u)/(02)	caso -2 < u <= 0	
		0	caso -4 > u > 0	
_				
temp_error	Z(u)	(u2)/(02)	caso -2 <= u <= 0	
		(2 - u)/(2 - 0)	caso 0 < u <= 2	
em		0	caso -2 > u > 2	
-				
	P(u)	(u - 0)/(2 - 0)	caso 0 <= u <= 2	
		(4 - u)/(4 - 2)	caso 2 < u <= 4	
		0	caso 0 > u > 4	

		(u1)/(-0.51)	caso -1 <= u <= -0.5			
N(u)		(0 - u)/(00.5)	caso -0.5 < u <= 0			
		0	caso -0.5 > u > 0			
dot						
z(n)		(u0.5)/(00.5)	caso -0.5 <= u <= 0			
		(0.5 - u)/(0.5 - 0)	caso 0 < u <= 0.5			
		0	caso -0.5 > u > 0.5			
ten						
P(u)		(u - 0)/(0.5 - 0)	caso 0 <= u <= 0.5			
		(1 - u)/(1 - 0.5)	caso 0.5 < u <= 1			
		0	caso 0 > u > 1			

Tabela 1 - Descrição das funções de pertinência que regem o problema

Através das funções de pertinência, podemos realizar o processo de fuzzyfication, o qual transforma os valores de entrada (crisp) em valores difusos, conforme Tabela 2:

temp_error	temp_error_dot		
N(1) = 0	N(-0.5) = (-0.5+1)/(-0.5+1) = 1		
Z(1) = (2-1)/(2-0) = 0.5	Z(-0.5) = (-0.5+0.5)/(0+0.5) = 0		
P(1) = (1-0)/(2-0) = 0.5	P(-0.5) = 0		

Tabela 2 –Fuzzyfication

b. Inferencia

Após realizado a fuzzyfication, é realizada a inferência dos valores difusos nas regras previamente estabelecidas utilizando a definição de Mamdani. O resultado é dado na Tabela 3:

Regra	Inferência	Resultado	Saída	Resultado
R1	MIN(0,1)	0	zero	
R2	MIN(0,0)	0	zero	MAX(0,0,0) = 0
R3	MIN(0,0)	0	zero	
R4	MIN(0.5,1)	0.5	zero	
R5	MIN(0.5,0)	0	zero	MAX(0.5,0,0) = 0
R6	MIN(0.5,0)	0	small	
R7	MIN(0.5,1)	0.5	small	
R8	MIN(0.5,0)	0	medium	MAX(0.5,0,0) = 0
R9	MIN(0.5,0)	0	large	

Tabela 3 - Inferência nas regras R1 à R9

c. Defuzzyfication

Para o processo de Defuzzyficação, foi escolhido o método do centroide e 21 valores distintos para Z. Os valores obtidos, assim como o resultado final, são expressos na Tabela 4:

	Small	Medium	Large	U(Z) * Z	U(Z)
0	0	0	0	0	0
0.5	0	0	0	0	0
1	0	0	0	0	0
1.5	0	0	0	0	0
2	0	0	0	0	0
2.5	0	0	0	0	0
3	0	0	0	0	0
3.5	0	0	0	0	0
4	0	0.5	0	2	0.5
4.5	0	0.5	0	2.25	0.5
5	0	0.5	0	2.5	0.5
5.5	0	0.5	0	2.75	0.5
6	0	0.5	0	3	0.5
6.5	0	0.5	0	3.25	0.5
7	0	0	0.5	3.5	0.5
7.5	0	0	0.5	3.75	0.5
8	0	0	0.5	4	0.5
8.5	0	0	0.5	4.25	0.5
9	0	0	0.5	4.5	0.5
9.5	0	0	0.5	4.75	0.5
10	0	0	0	0	0

Centroid: 6.75 VOLTS

4. Referências

OSOFISAN, Philip Babatunde. Optimization of the Fermentation Process in a Brewery with a Fuzzy Logic Controller. Disponível em: http://ljs.academicdirect.org/A11/079_092.htm Acesso em: 26 de Maio de 2018