template

November 17, 2023

1 League of Legends Positions Impact Analysis

Name(s): Ahmed Mostafa and Ethan Vo

Website Link: https://ahmostafa147.github.io/dsc80-project/

1.0.1 Which player position, when achieving more kills than their counterpart on the opposing team, has the greatest impact on boosting the overall win rate?

1.1 Code

```
[1]: import pandas as pd
import numpy as np
import os

import plotly.express as px
pd.options.plotting.backend = 'plotly'
```

1.1.1 Cleaning and EDA

We extracted the columns gameid, side, position, and kills from the League of Legends DataFrame as they are relevant to our proposed question. We cleaned the data by removing the rows that contain information about the team. We did this by removing the rows that had "team" value in the position column. We then added a new column to the DataFrame that identifies each row as whether it belongs to a position that had more kills than its counterpart in the opposing team.

1.1.2 Univariate Charts

In order to increase our awareness of the data we have, we produced an interactive pie chart using plotly that represents the percentage of players who had more kills and won vs players who had

more kills but won. This visualization is helpful to give us insight of what to expect from our proportions that represents the impact of having more kills. As we can see, 79.4% of the players who had more kills won. This gives us insight about what our proportions would look like per position. It makes us expect that having more kills should have a big impact on your chances of winning.

This histogram shows the distribution of kills counts per position for winning vs losing players. ...

1.1.3 Bivariate Chart

```
)
fig2.show()
```

Interesting Aggregates

```
[7]: pivot_table = lol_data[['result', 'kills', 'position']].groupby(["result", \( \triangle \) 'position']).mean().reset_index().pivot_table(index="result", \( \triangle \) columns="position", values="kills")
pivot_table
```

```
[7]: position bot jng mid sup top result
0 2.723914 1.801244 2.271909 0.582250 1.703583
1 6.277571 3.468065 4.851560 1.016524 3.512904
```

1.1.4 Assessment of Missingness

observed_pivot_table

[8]:	•	False	True
	league		
	AL	0.018911	0.000000
	CBLOL	0.026454	0.000000
	CBLOLA	0.027110	0.000000
	CDF	0.007433	0.000000
	CT	0.004700	0.000000
	DDH	0.009401	0.000000
	EBL	0.017381	0.000000
	EL	0.004482	0.000000
	EM	0.029624	0.000000
	EPL	0.009401	0.000000
	ESLOL	0.033013	0.000000
	GL	0.009729	0.000000
	GLL	0.017927	0.000000
	HC	0.015413	0.000000
	HM	0.017709	0.000000
	IC	0.007324	0.000000
	LAS	0.027547	0.000000
	LCK	0.053236	0.000000
	LCKC	0.055203	0.000000
	LCO	0.015304	0.000000
	LCS	0.028859	0.000000
	LDL	0.000000	0.527094
	LEC	0.031373	0.000000
	LFL	0.026454	0.000000
	LFL2	0.027219	0.000000
	LHE	0.006449	0.000000
	LJL	0.028203	0.000000
	LJLA	0.010057	0.000000
	LLA	0.020988	0.000000
	LMF	0.009401	0.000000
	LPL	0.000000	0.464901
	LPLOL	0.017490	0.000000
	LRN	0.012680	0.000000
	LRS	0.013008	0.000000
	LVP SL	0.026891	0.000000
	MSI	0.008308	0.000000
	NACL	0.094775	0.000000
	NEXO	0.018474	0.000000
	NLC	0.017162	0.000000
	PCS	0.032029	0.000000
	PGN	0.021972	0.000000
	PRM	0.026454	0.000000
	SL (LATAM)	0.009838	0.000000

```
TCL 0.019676 0.000000
UL 0.026782 0.000000
VCS 0.035308 0.000000
VL 0.009620 0.000000
WLDs 0.013227 0.008005
```

1.1.5 Permutation Testing (killsat15 column depends on league)

```
[9]: n_repetitions = 500
shuffled = lol_data[["killsat15", "league"]]
shuffled = shuffled.assign(missing = shuffled["killsat15"].isna())

tvds = []
for _ in range(n_repetitions):

    shuffled['league'] = np.random.permutation(shuffled['league'])

# Computing and storing the TVD.
pivoted = (
    shuffled
        .pivot_table(index='league', columns='missing', aggfunc='size')
        .apply(lambda x: x / x.sum())
    )
    pivoted.fillna(0, inplace=True)
    tvd = pivoted.diff(axis=1).iloc[:, -1].abs().sum() / 2
    tvds.append(tvd)
```

P-value: 0.0

1.1.6 Permutation Testing (killsat15 column doesn't depend on side)

```
.apply(lambda x: x / x.sum())
          )
      missing_assessment_pivoted.fillna(0, inplace=True)
      observed_tvd2 = missing assessment_pivoted.diff(axis=1).iloc[:, -1].abs().sum()__
       \hookrightarrow 2
      fig3 = missing assessment pivoted.plot(kind='bar', title='Side by Missingness,

→of Killsat15 Values', barmode='group')
      fig3.show()
      missing_assessment_pivoted
[11]: missing False True
      side
      Blue
                 0.5
                        0.5
      Red
                 0.5
                        0.5
[12]: n_repetitions = 500
      shuffled = lol_data[["side", "killsat15"]]
      shuffled = shuffled.assign(missing = shuffled["killsat15"].isna())
      tvds = []
      for _ in range(n_repetitions):
          shuffled['side'] = np.random.permutation(shuffled['side'])
          # Computing and storing the TVD.
          pivoted = (
              shuffled
              .pivot_table(index='side', columns='missing', aggfunc='size')
              .apply(lambda x: x / x.sum())
          )
          pivoted.fillna(0, inplace=True)
          tvd = pivoted.diff(axis=1).iloc[:, -1].abs().sum() / 2
          tvds.append(tvd)
[13]: fig4 = px.histogram(pd.DataFrame(tvds), histnorm='probability',
                         title='Empirical Distribution of the TVD')
      fig4.add_vline(x=observed_tvd2, line_color='red')
      fig4.add_annotation(text=f'<span style="color:red">Observed TVD =
       →{round(observed_tvd2, 4)}</span>',
                         x=0.05, showarrow=False, y=0.15)
      pval = np.mean(np.array(tvds) >= observed_tvd2)
      fig4.show()
      pval
```

[13]: 1.0

1.1.7 Hypothesis Testing

- **Null Hypothesis**: The proportion of **support** position winning and having higher kills is equal to the proportion of support position winning and having less kills.
- Alternative Hypothesis: The proportion of support position winning and having higher kills is less than the proportion of support position winning and having less kills.

P-value: 0