

MODELOS ATÓMICOS | 4.º ESO EJERCICIOS

ALBA LÓPEZ VALENZUELA

...... Modelos atómicos y partículas subatómicas

- 1. ¿Cuántos electrones son necesarios para conseguir una carga de -1 C? *Dato:* $q_e = -1.6 \times 10^{-19}$ C.
- 2. ¿Cuántos electrones son necesarios para conseguir una masa de 1 kg? Datos: $m_{\rm e} = 9.11 \times 10^{-31}$ kg.
- 3. ¿Cuántos electrones son necesarios para conseguir la misma masa que la de un protón? *Datos:* $m_{\rm e} = 9.11 \times 10^{-31}$ kg, $m_{\rm p} = 1.6726 \times 10^{-27}$ kg.
- 4. Teniendo en cuenta que el tamaño medio de un átomo ronda los 10^{-10} m, calcula el número de átomos que se deben colocar en línea recta para conseguir una longitud de 1 cm.
- 5. ¿Cuáles de las siguientes afirmaciones se corresponden con el modelo atómico de Thomson?
 - (a) El átomo está constituido por un núcleo con carga positiva y los electrones giran alrededor de él.
 - (b) El átomo es una esfera rígida cargada positivamente.
 - (c) El átomo es una esfera rígida cuya carga neta es nula.
 - (d) Consiste en una *nube* esférica cargada positivamente en la que se encuentran incrustados los electrones.
- 6. Un átomo de hierro está constituido por 26 protones, 30 neutrones y 26 electrones. Indica cuál de las siguientes afirmaciones está de acuerdo con el modelo atómico propuesto por Rutherford:
 - (a) Los 26 protones y los 30 neutrones están en el núcleo mientras que los 26 electrones giran alrededor del núcleo.
 - (b) Los 26 electrones y los 30 neutrones están en el núcleo, mientras que los 26 protones giran alrededor del mismo.
 - (c) Los 26 protones y los 30 neutrones están en el núcleo, mientras que los 26 electrones se encuentran pegados a él en reposo.
 - (d) El átomo de hierro es una esfera maciza en la cual los protones, electrones y neutrones forman un todo compacto como un pastel.
- 7. De acuerdo con el modelo atómico de Bohr, indica si los siguientes enunciados son verdaderos o falsos, justificando tu respuesta:
 - (a) En el átomo existe un núcleo central, eléctricamente neutro, en el que se encuentran los protones y los neutrones.
 - (b) La mayor parte de la masa del átomo se concentra en el núcleo.
 - (c) Los electrones de la corteza se localizan girando en órbitas elípticas alrededor del núcleo.
 - (d) Aunque un electrón se encuentre en un cierto nivel de energía, puede pasar a otros niveles.
 - (e) Cuando un electrón transita desde un nivel inferior a otro superior libera energía.
- 8. Si el electrón del átomo de hidrógeno transita desde el nivel 1 hasta el nivel 3, ¿ha emitido o absorbido energía?
- 9. Un átomo que posee 46 neutrones en el núcleo y 36 electrones en la corteza tiene un número másico A = 81. Indica cuántos protones tiene y cuáles son su número atómico y su carga. Con la ayuda de una tabla periódica, indica de qué elemento se trata.
- 10. Responde a las siguientes preguntas sobre los iones:
 - (a) ¿Qué tipos de iones hay?
 - (b) Si un átomo tiene más protones que electrones, ¿qué tipo de ion es?
 - (c) Un átomo que tiene 5 electrones y 3 protones, ¿qué carga eléctrica tiene?
 - (d) ¿Qué indica la carga de un ion?
 - (e) Cuando un átomo se convierte en un catión o en un anión, ¿cómo varía su número atómico? ¿y su número másico?

11. Completa:

Ejemplo. Li $-1e^- \longrightarrow Li^+$

a)
$$F + 1 e^- \longrightarrow$$

c) O +
$$\longrightarrow$$
 O²⁻

d) Fe
$$-3e^- \longrightarrow$$

e)
$$Na^+ + 1e^- \longrightarrow$$

f)
$$Na^+ - 1e^- \longrightarrow$$

Εl	Li	pierde	un e	electrón	v se	transforma	en Li	+
		piciac	uii (y 3C	transionina		

El O gana ___ electrones y se transforma en
$$O^{2-}$$
.

12. Completa, para los elementos neutros, la siguiente tabla:

Isótopo	Z	A	p ⁺	n	e ⁻	Isótopo	Z	A	p ⁺	n	e ⁻
¹⁶ ₈ O						1 ₁ H					
¹¹ ₅ B						N	7			7	
Al	13			14		Fe		56	26		
Ne	10	20				Mg	12			12	
³² S					16	₁₁ Na				12	
Cl			17	18		Ne			12	10	

13.	Realiza una ta	abla indicando el núm	ero atómico, el núme	ero másico, la carga, e	el tipo de ion y el núr	nero de protones, neu-
trones y electrones de las siguientes especies químicas cargadas:						
	a) ${}^{16}_{8}\text{O}^{2-}$	b) ${}_{28}^{58}$ Ni $^{3+}$	c) $_{30}^{64}$ Zn ²⁺	d) $_{33}^{75}$ As ³⁻	e) ¹¹⁴ ₄₈ Cd ⁺	f) ${}^{202}_{80}$ Hg ²⁺

a)
$${}^{16}_{0}$$
O²

b)
$${}_{28}^{58}$$
Ni 3

c)
$$_{30}^{64}$$
Zn²⁺

d)
$$^{75}_{22}$$
As³⁻

f)
$$^{202}_{80}$$
Hg $^{2+}$

14. El potasio y el calcio tienen números atómicos consecutivos: 19 y 20. Elige las afirmaciones que pueden deducirse de esta información:

- (a) El potasio tiene 19 protones en su núcleo y el calcio tiene 20.
- (b) El potasio tiene 19 neutrones en su núcleo, y el calcio, 20.
- (c) El potasio tiene 19 electrones girando alrededor de su núcleo, y el calcio, 20.
- (d) Los dos elementos tienen propiedades químicas semejantes.
- (e) Los dos elementos pertenecen al mismo grupo del sistema periódico.
- (f) Los dos elementos pueden combinarse fácilmente entre sí para formar un compuesto químico.
- (g) La masa atómica del potasio es 19 u, y la del calcio, 20 u.

15. Las siguientes frases son incorrectas. Encuentra los errores y corrígelas para que sean verdaderas.

- (a) Un átomo de escandio que ha perdido 3 electrones se ha convertido en un anión Sc³⁻.
- (b) Al ganar 2 electrones, un átomo ha pasado de tener un número atómico Z=4 a un número atómico de Z=6.
- (c) La representación simbólica de un átomo de magnesio con 12 protones, 12 neutrones y 10 electrones es $^{12}_{24}{\rm Mg}^{2+}$.

16. Indica en qué se transforma:

- (a) Un átomo de ¹⁹₉F pierde un electrón.
- (d) Un átomo de ¹⁵₇N gana un protón.
- (b) Un átomo de ${}^{12}_{6}$ C gana dos neutrones.
- (e) Un átomo de ${}_{7}^{15}$ N pierde dos neutrones.

(c) Un ion de ⁵⁶₂₆Fe³⁺ gana un electrón.

(f) Un átomo de ¹⁵₇N gana dos protones y cuatro neutrones.

17. Elige la respuesta adecuada. Un cuerpo es neutro cuando:

- (a) No tiene cargas eléctricas.
- (b) Tiene el mismo número de protones que de neutrones.

- (d) Tiene el mismo número de protones que de electrones.
- 18. Responde si las siguientes afirmaciones son verdaderas o falsas:
 - (a) Un cuerpo se carga positivamente si gana protones, y negativamente si gana electrones.
 - (b) Un cuerpo se carga positivamente si pierde electrones, y negativamente si los gana.
 - (c) Todos los cuerpos tienen electrones y protones. Por tanto, todos los cuerpos están cargados.
 - (d) Un cuerpo neutro tiene tantos protones como electrones.
- 19. Indica cuántos electrones puede albergar un átomo como máximo en el nivel 3.
- 20. En la siguiente figura están representadas las cortezas electrónicas de tres elementos. De cada uno de ellos indica:
 - (a) El número atómico.
 - (b) El número de electrones en cada nivel, precisando si están completos o no.
 - (c) Teniendo en cuenta sus números atómicos, ¿cuál de ellos es un ion? Escribe su símbolo. Na (Z = 11), Br (Z = 35), O (Z = 8).

.....Isótopos.....

- 21. Definición de isótopo. Pon algún ejemplo.
- 22. Dado el átomo ⁶⁰₂₇Co:
 - (a) Determina cuántos protones y neutrones tiene en el núcleo.
 - (b) Escribe la representación de un isótopo suyo.
- 23. Si el número másico es la suma de los protones y neutrones del núcleo, ¿por qué en la tabla periódica las masas atómicas no son números enteros?
- 24. El uranio se presenta en forma de tres isótopos:

$$^{234}_{92}$$
U (0.0057%); $^{235}_{92}$ U (0.72%); $^{238}_{92}$ U (99.27%)

- (a) ¿En qué se diferencian estos isótopos?
- (b) ¿Cuál es la masa atómica del uranio natural?

Solución: 237.97 u

25. Se conocen dos isótopos de la plata. El isótopo ¹⁰⁷/₄₇Ag aparece en la naturaleza en una proporción del 56 %. Sabiendo que la masa atómica de la plata es 107.88 u. ¿Cuál es el número másico del otro isótopo?

Solución: 109 u

26. [Grado en Enología, UNEX] El peso atómico del Ga es 69.72 u. Los dos isótopos de dicho elemento que se encuentran en la naturaleza tienen las siguientes masas: ⁶⁹Ga = 68.9257 u; ⁷¹Ga = 70.9249 u. Determine el porcentaje de cada uno de los isótopos.

Solución: 40 % y 60 %