# Assignment 2

# Benjamin Jakubowski

September 24, 2015

## 1. SPIDER ON A WALL

#### A. Position of Spider on Wall

Let  $F_{X,Y}(x,y)$  be the pdf. Then, since the spider spends twice as much time under the painting than it does on the rest of the wall,

$$\int_{y=6}^{8} \int_{x=4}^{6} f_{X,Y}(x,y) dx dy = 2/3$$

The spider is equally likely to be anywhere under the painting, so  $f_{X,Y}(x,y) = c$  and

$$\int_{y=6}^{8} \int_{x=4}^{6} f_{X,Y}(x,y) dxdy = 2/3$$
$$\int_{y=6}^{8} \int_{x=4}^{6} c dxdy = 2/3$$
$$\int_{y=6}^{8} 2c dy = 2/3$$
$$4c = 2/3$$

Thus c = 1/6. Now let S be the region of the wall not under the painting. Note  $Area_S = 96$ , and

$$\int_{\{(x,y)\in S\}} f_{X,Y}(x,y) \mathrm{d}x \mathrm{d}y = 1/3$$

Since the spider is equally likely to be anywhere in S,

$$\int_{\{(x,y)\in S\}} f_{X,Y}(x,y) dxdy = 1/3$$

$$\int_{\{(x,y)\in S\}} k dxdy = 1/3$$

$$k \int_{\{(x,y)\in S\}} 1 dxdy = 1/3$$

$$k * Area_S = 1/3$$

$$k * 96 = 1/3$$

So k = 1/288. Thus, (with S defined as above),

$$f_{X,Y}(x,y) = \begin{cases} 1/6 & \text{if } 4 \le x \le 6, 6 \le y \le 8 \\ 1/288 & \text{if } (x,y) \in S \\ 0 & \text{otherwise} \end{cases}$$

#### B. HEIGHT OF SPIDER ON WALL

The pdf of the height is just the marginal pdf  $f_Y(y)$ ,

$$f_Y(y) = \int_{x=-\infty}^{\infty} f_{X,Y}(x,y) dx$$
$$= \int_0^{10} f_{X,Y}(x,y) dx$$

since  $f_{X,Y}(x,y) = 0$  for 0 < x, 10 < x. Then, for  $0 \le y < 6$ ,

$$f_Y(y) = \int_0^{10} f_{X,Y}(x,y) dx = \int_0^{10} 1/288 dx = 10/288$$

For  $6 \le y \le 8$ ,

$$\begin{split} f_Y(y) &= \int_0^{10} f_{X,Y}(x,y) \mathrm{d}x \\ &= \int_0^4 f_{X,Y}(x,y) \mathrm{d}x + \int_4^6 f_{X,Y}(x,y) \mathrm{d}x + \int_6^{10} f_{X,Y}(x,y) \mathrm{d}x \\ &= \int_0^4 1/288 \mathrm{d}x + \int_4^6 1/6 \mathrm{d}x + \int_6^{10} 1/288 \mathrm{d}x \\ &= 4/288 + 2/6 + 4/288 = 104/288 \end{split}$$

For  $8 < y \le 10$ ,

$$f_Y(y) = \int_0^{10} f_{X,Y}(x,y) dx = \int_0^{10} 1/288 dx = 10/288$$

Thus,

$$f_Y(y) = \begin{cases} 10/288 & \text{if } 0 \le y < 6\\ 104/288 & \text{if } 6 \le y \le 8\\ 10/288 & \text{if } 8 < y \le 10 \end{cases}$$

This pdf is plotted below<sup>1</sup>:

<sup>&</sup>lt;sup>1</sup>This plot was generated using code adapted from "Graphing in L⁴TEXusing PGF and TikZ" by Lauderdale and Gluck



#### C. CDF OF HEIGHT, GIVEN SPIDER IS VISIBLE

Recall the set S is the visible area of the wall, and that  $P((x,y) \in S) = 1/3$ . The conditional cdf of the height Y, given we see the spider (i.e.  $Y \in S$ ), is given by:

$$f_{Y|Y \in S}(u) = \frac{\int_{y=0}^{u} \int_{\{x|(x,y) \in S\}} f_{X,Y}(x,y) dxdy}{P((x,y) \in S)} = \frac{\int_{y=0}^{u} \int_{\{x|(x,y) \in S\}} f_{X,Y}(x,y) dxdy}{1/3}$$

Thus

$$f_{Y|Y \in S}(u) = \begin{cases} \frac{\int_0^u f_Y(y) dy}{1/3} & \text{if } 0 \le u < 6 \\ \frac{\int_0^6 f_Y(y) dy + \int_6^u \int_0^4 f_{X,Y}(x,y) dx dy + \int_6^u \int_6^{10} f_{X,Y}(x,y) dx dy}{1/3} & \text{if } 6 \le u \le 8 \\ \frac{\int_0^6 f_Y(y) dy + \int_6^8 \int_0^4 f_{X,Y}(x,y) dx dy + \int_6^8 \int_6^{10} f_{X,Y}(x,y) dx dy + \int_8^u f_Y(y) dy}{1/3} & \text{if } 8 < u \le 10 \end{cases}$$

Evaluating these integrals yields

$$f_{Y|Y \in S}(u) = \begin{cases} \frac{10/288u}{96/288} = 10/96u & \text{if } 0 \le u < 6 \\ \frac{60/288 + 4/288(u - 6) + 4/288(u - 6)}{1/3} = \frac{8/288u + 12/288}{96/288} = 8/96u + 12/96 & \text{if } 6 \le u \le 8 \\ \frac{76/288 + 10/288(u - 8)}{96/288} = 10/96u - 4/96 & \text{if } 8 < u \le 10 \end{cases}$$

This conditional cdf is plotted below:



## 2. Pizza Delivery

#### A. WAIT TIME- PAT OR ROBBIE GET CALLED

Let  $X_P, X_R \sim Exp(\lambda)$  model the wait time until Pat and Robbie get calls, respectively. Then the wait time until one of them gets a call is  $Z = \min\{X_P, X_R\}$ . Then,

$$F_Z(z) = P(Z \le z) = 1 - P(z < Z)$$
  
= 1 - P(z < X<sub>P</sub>, z < X<sub>R</sub>)

Now, let's assume  $X_R$  and  $X_P$  are independent. This is a reasonable assumption if the market is large. At the lower limit for market size, imagine there is only a single customer who wants one pizza. Then, if they call Pat, they don't call Robbie (and vice versa), so obviously  $X_R$  and  $X_P$  are not independent. On the other hand, if the market is large and customers act independently of each other,  $X_R$  and  $X_P$  can reasonably be assumed to be independent. Then

$$F_{Z} = 1 - P(z < X_{P}, z < X_{R})$$

$$= 1 - P(z < X_{P})P(z < X_{R})$$

$$= 1 - (1 - F_{X_{P}}(z))(1 - F_{X_{R}}(z))$$

$$= 1 - (1 - F_{X_{P}}(z) - F_{X_{R}}(z) + F_{X_{P}}(z)F_{X_{R}}(z))$$

$$= F_{X_{P}}(z) + F_{X_{R}}(z) - F_{X_{P}}(z)F_{X_{R}}(z)$$

$$= (1 - e^{-\lambda z}) + (1 - e^{-\lambda z}) - (1 - e^{-\lambda z})(1 - e^{-\lambda z})$$

$$= 1 - e^{-2\lambda z}$$

Thus,  $Z \sim Exp(2\lambda)$ . This makes intuitive sense- if you expect calls to come into each store at a rate of  $\lambda$ , then you expect the combined rate of calls into both stores to be  $2\lambda$ .

#### B. WAIT TIME- PAT AND ROBBIE GET CALLED

The distribution of the time until both Pat and Robbie have received a call is modeled by  $W = \max\{X_R, X_P\}$ . Thus,

$$\begin{split} F_W(W) &= P(W \leq w) \\ &= P(X_P \leq w, X_R \leq w) \\ &= P(X_P \leq w) P(X_R \leq w) \text{ (again assuming independence)} \\ &= F_{X_P}(w) F_{X_R}(w) \\ &= 1 - 2e^{-\lambda w} + e^{-2\lambda w} \end{split}$$

#### C. Comparing distributions

Color-coded plots of the CDFs (with  $\lambda = 1$ ) are given below, with red for  $F_X(t)$ , blue for  $F_Z(t)$ , and green for  $F_W(t)$ .



These results make sense, when you observe the functions are ordered over all 0 < t. Specifically,  $F_Z(t) > F_X(t) > F_W(t)$ . That's expected since, during any time interval (0,t), the event {Pat gets a call  $\cup$  Robbie gets a call}  $\supseteq$  {Pat gets a call} and "Robbie").

## 3. Cars

### A. PROOF OF EQUATION (1)

To start, recall  $P(\Omega) = 1$ . Now let  $X \sim B(n, 0.5)$ . Then,

$$\sum_{k=0}^{n} \binom{n}{k} (1/2)^k (1/2)^{n-k} = 1$$

$$\sum_{k=0}^{n} \binom{n}{k} (1/2)^n = 1$$

$$(1/2)^n \sum_{k=0}^{n} \binom{n}{k} = 1$$

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

#### B. PMF OF THE COMBINED TOTAL NUMBER OF MECHANICAL PROBLEMS

Let  $X_1, X_2$  be IID poisson RVs, with parameter  $\lambda$ , modeling the number of mechanical failures in your car and your sister's car, respectively.

Then  $Y = X_1 + X_2$  is the total number of mechanical failures. Then

$$P(Y = y) = P(X_1 + X_2 = y)$$

$$= \sum_{x_2=0}^{y} P(X_1 = y - x_2 | X_2 = x_2) P(X_2 = x_2)$$

$$= \sum_{x_2=0}^{y} P(X_1 = y - x_2) P(X_2 = x_2) \text{ (by independence)}$$

$$= \sum_{x_2=0}^{y} \frac{\lambda^{y-x_2}}{(y - x_2)!} e^{-\lambda} \frac{\lambda^{x_2}}{(x_2)!} e^{-\lambda}$$

$$= \sum_{x_2=0}^{y} \frac{y!}{x_2!(y - x_2)!} \lambda^y e^{-2\lambda} \frac{1}{y!}$$

$$= \lambda^y e^{-2\lambda} \frac{1}{y!} \sum_{x_2=0}^{y} \frac{y!}{x_2!(y - x_2)!} = \lambda^y e^{-2\lambda} \frac{1}{y!} \sum_{x_2=0}^{y} \binom{y}{x_2}$$

$$= \lambda^y e^{-2\lambda} \frac{1}{y!} 2^y$$

$$= \frac{(2\lambda)^y}{y!} e^{-2\lambda}$$

Thus,  $Y \sim Pois(2\lambda)$ . Again, this makes intuitive sense- the Poisson distribution models the number of events occurring in a time interval, given a known rate  $\lambda$ . If we're adding two IID Poisson RVs, we'd expect this rate to double, but the underlying generating process to be otherwise unchanged.

# 4. Race

## A. JOINT PDF OF THE POSITIONS OF MARY AND HANNAH

First, let  $M \sim U(0, 10)$  and  $H \sim U(0, 10)$  represent the locations of Mary and Hannah respectively. Since M and H are IID,  $f_{M,H}(m,h) = f_M(m)f_H(h)$ . Thus

$$f_{M,H}(m,h) = \begin{cases} \frac{1}{10-0} \frac{1}{10-0} = \frac{1}{100} & \text{if } 0 \le H \le 10, 0 \le M \le 10\\ 0 & \text{otherwise} \end{cases}$$

This joint PDF is shown below (in section B). The boxed area represents  $F_{M,H}(m,h)$  while the blue area represents the area in which  $D \le d = 3$  (defined and discussed below).

## B. Shading area corresponding to $P(D \le d)$

First, let D represent the distance between Mary and Hannah. To illustrate the area corresponding to  $D \leq d$ , let's let d = 3. The corresponding area is shaded blue in the plot below.



## C. FINDING THE PDF $F_D(d)$

First, notice the area in  $[0, 10] \times [0, 10]$  not covered by  $D \leq d$  is  $(10 - d)^2$ . Thus,

$$F_D(d) = P(D \le d) = 1 - P(D > d) = 1 - 1/100 * (10 - d)^2$$

Thus

$$f_D(d) = F'_D(d) = 1/5 - 1/50d$$

This CDF is plotted below:



Again, as a side note, observe this PDF makes intuitive sense- given M and H are IID uniform, it makes sense  $f_D(d)$  has a maximum at d = 0.

## 5. Cheating at coin flips

## A. PROBABILITY OF HEADS/TAILS

First, let  $X \sim \text{Bernouilli}(P)$  model the outcome of the coin flip. Let

$$X = \begin{cases} 1 & \text{if heads} \\ 0 & \text{if tails} \end{cases}$$

Then

$$P_X(x) = \begin{cases} (1-P) & \text{for } x = 0 \\ P & \text{for } x = 1 \end{cases}$$

Since we suspect but do not know that the coin is biased, P is itself a U(0.5, 1) random variable. This is reasonable- if the coin is biased, we can assume it is biased in Marvin's favor (so  $0.5 \le P$ ), and (obviously)  $P \le 1$ . The probability the coin flip is heads under this model is:

$$P(X = 1) = \int_{0.5}^{1} P(X = 1|P = p) f_{P}(p) dp$$

$$= \int_{0.5}^{1} p \cdot f_{P}(p) dp$$

$$= \int_{0.5}^{1} 2p dp = p^{2} \Big|_{p=0.5}^{1} = 1 - 0.25 = 0.75$$

Thus, under this model, the probability of heads is 0.75 and the probability of tails is 0.25. As a side note, this again makes intuitive sense- X is essentially an indicator variable, so P(X=1) is just the expected value E[P]=0.75.

#### B. UPDATING OUR MODEL

We will use Bayes rule to update our model. If the coin flip is heads (X = 1), then

$$f_{P|X}(p|1) = \frac{P(X=1|P=p) \cdot f_P(p)}{\int_{0.5}^1 P(X=1|P=p) \cdot f_P(p) dp}$$

Recall  $f_P(p) = 2$  for  $0.5 \le p \le 1$ ,  $\int_{0.5}^1 P(X = 1 | P = p) \cdot f_P(p) dp = 0.75$ , and P(X = 1 | P = p) = p. Thus, substitution yields

$$f_{P|X}(p|1) = \frac{p \cdot 2}{0.75} = 8/3p$$

Next, if the coin flip is tails, (X = 0), then

$$f_{P|X}(p|0) = \frac{P(X = 0|P = p) \cdot f_P(p)}{\int_{0.5}^1 P(X = 0|P = p) \cdot f_P(p) dp}$$
$$= \frac{(1 - p) \cdot 2}{0.25}$$
$$= 8(1 - p)$$

Thus, the conditional PDF  $f_{P|X}(p|x)$  is

$$f_{P|X}(p|x) = \begin{cases} 8/3p & \text{for } x = 1 \text{ (flip 1 is heads)} \\ 8(1-p) & \text{for } x = 0 \text{ (flip 1 is tails)} \end{cases}$$

Below are color-coded plots of these posterior PDFs, and the prior PDF  $f_P(p)$ , with red for  $f_P(p)$ , blue for  $f_{P|X}(p|1)$ , and green for  $f_{P|X}(p|0)$ .



These posterior PDFs make sense. If our first flip returns a head, then we become more confident the coin is in fact biased. On the other hand, if our first flip returns a tail, then we are less confident the coin is biased. To see this more clearly, we can consider the expected value of the two posterior distributions:

$$E[P|X=0] = \int_{0.5}^{1} p \cdot 8(1-p) dp = 2/3 = 0.\overline{6}$$
$$E[P|X=1] = \int_{0.5}^{1} p \cdot 8/3p dp = 7/9 = 0.\overline{7}$$

Recall the our prior expectation E[P] = 0.75. Thus, if the first flip is a tails, we revise our expected value for the bias downwards considerably. On the other hand, if the first flip is a heads, we revise our expected value for the bias up only slightly. This is also visible in the plots of the PDFs- the change in the slope of the PDF if tails is much greater than the change in the slope if heads.