Content Outline (Unit-4)

- Flow Control
 - Stop and Wait Flow Control
 - Sliding Window Flow Control
- Error Control
 - Automatic Repeat Request (ARQ)
 - Stop and wait ARQ
 - Go-back-N ARQ
 - Selective repeat ARQ

Flow Control and Error Control

Model of Frame Transmission

losses and errors

Flow Control

- Flow control refers to a set of procedures used to restrict the amount of data that the sender can send before waiting for acknowledgment.
- Ensuring the sending entity does not overwhelm the receiving entity
 - Preventing buffer overflow
- Influenced by:
 - Transmission time
 - Time taken to emit all bits into medium
 - Propagation time
 - Time for a bit to traverse the link

Stop and Wait Flow Control

- Source transmits frame
- Destination receives frame and replies with acknowledgement (ACK)
- Source waits for ACK before sending next frame
- Destination can stop flow by not sending ACK
- Works well for a few large frames

Stop and Wait Link Utilization

- Link Utilization (Normalized Throughput)
 - Definition: the fraction of time the channel is used to transmit useful data bits
 - Mathematically if T_D seconds is the amount of time the channel transmits useful data bits out of a total of T seconds examined

$$U = \frac{T_D}{T}$$

Stop and Wait Link Utilization

- For Stop and Wait flow control:
 - $T_D = t_{\text{frame}}$ (frame transmission time)
 - $T = 2 t_{\text{prop}} + t_{\text{frame}}$
- Link Utilization:

$$U = \frac{T_D}{T} = \frac{t_{frame}}{t_{frame} + 2t_{prop}}$$
$$= \frac{1}{1 + 2a}$$

Assume ACK is short and hence the transmission time of ACK is neglected

where

$$a = \frac{\text{Propagation Time}}{\text{Transmission Time}} = \frac{t_{prop}}{t_{frame}}$$

Stop and Wait Link Utilization

Sliding Window Flow Control

- Key ideas:
- Allow multiple frames to be in transit
- Receiver has a buffer of storing *W* frames
- Transmitter can send up to *W* frames without *ACK*
- Each frame is numbered
- *ACK* includes the sequence number of the next frame expected
- Sequence number bounded by size of field (k)
 - Frames are numbered modulo 2^k

Sliding Window Flow Control

- For full-duplex transmission, when a data frame arrives, receiver DLL (Data Link Layer) waits until its NL (Network Layer) passes it the next packet.
- At any instant, sender maintains a list of consecutive *Sequence Numbers* (*SNs*) corresponding to frames that are allowed to send. These frames are said to fall within the sending window.
- Receiver maintains receiving window corresponding to frames it is allowed to accept.

Sliding Window Diagram

(a) Sender's perspective

Example of Sliding Window

• For error-free sliding window flow control, the throughput on the line depends on both the window size W and the value of a.

- For convenience, transmission time = 1 propagation time = a
- **Consider** a full duplex point-to-point line:
 - The sender begins to transmit at time t = 0, then the ACK for the first frame reaches it at t = 2a+1. (Ignore the transmission time of the ACK frame)

Case 1: $W \ge 2a + 1$

The acknowledgement for frame 1 reaches A before A has exhausted its window. Thus A can transmit continuously with no pause and **utilization is 1**.

Case 2: W < 2a + 1

• A exhausts its window at t = W and cannot send additional frames until t = 2a+1. Hence

Utilization = W/(2a+1)

• Link utilization as a function of *a*:

$$U = \begin{cases} 1 & W \ge 2a + 1 \\ \frac{W}{2a+1} & W < 2a+1 \end{cases}$$

$$a = \frac{\text{Propagation Time}}{\text{Transmission Time}} = \frac{t_{prop}}{t_{frame}}$$

Sliding Window Enhancements

- Receiver can acknowledge frames without permitting further transmission (Receive Not Ready)
- Must send a normal acknowledge to resume
- For full-duplex, use piggybacking
 - If no data to send, use acknowledgement frame
 - If data but no acknowledgement to send, send last acknowledgement number again, or have ACK valid flag (TCP)

Error Control

- Detection and correction of errors
 - Lost frames: a frame fails to arrive at the other side
 - Damaged frames: frame arrives but some of the bits are in error

Automatic Repeat Request (ARQ)

- A collective name for error control mechanisms.
- Effect of ARQ is to turn an unreliable data link into a reliable one
- ARQ automatic retransmit the frame(s) if ACK doesn't come back within a fixed period of time
- Different versions of ARQ are:
 - stop-and-wait
 - go-back-N
 - selective-repeat (selective-reject / selective-retransmission)

- The source transmits a single frame, must wait for *ACK*
- Two sorts of errors could occur:
 - If received frame damaged, discard it
 - Transmitter has a timer.
 - If no *ACK* and the timer timeout, retransmit
 - If *ACK* damaged, transmitter will not recognize it
 - Transmitter will retransmit after timeout
 - Receiver gets two copies of frame
 - Use ACK0 and ACK1

Legend

- Start the timer.
- (V) Stop the timer.
- Restart a time-out timer.

Notes:

A lost frame means either lost or corrupted.

A lost ACK means either lost or corrupted.

• Normal Operation:

• Lost frame:

Note: The sender needs to maintain a copy of a transmitted frame until ACK is received.

23

• Lost ACK:

• Delayed ACK:

• Numbered acknowledgments are needed if an acknowledgment is delayed and the next frame is lost.

25

Piggybacking

• The data in one direction is piggybacked with the acknowledgment in the other direction.

Example: Stop and Wait ARQ

27

Performance of Stop-and-Wait ARQ

 $Utilization = \frac{\text{Time for transmitter to emit a single frame}}{\text{Total time that line is engaged in the transmission of a single frame}}$

• For Error Free

$$U = \frac{1}{1 + 2a}$$

With Error

$$U = \frac{1}{N_r(1+2a)}$$

where N_r is the expected number of transmissions of a frame

- Let P be the probability that a single frame is in error.
- Assume that ACKs and NAKs are never in error, the probability that it will take exactly k attempts to transmit a frame successfully is $P^{k-1}(1-P)$

$$N_r = \text{E}(\text{transmissions}) = \sum_{i=1}^{\infty} (i \times P_r[i \text{ transmissions}])$$
$$= \sum_{i=1}^{\infty} (iP^{i-1}(1-P)) = \frac{1}{1-P}$$

The Utilization for Stop and Wait ARQ is

$$U = \frac{1 - P}{1 + 2a}$$

Go-Back-N ARQ

- Based on sliding window flow control
 - Sender sends up to W frames before worrying about acknowledgements
 - It keeps a copy of these frames
- If no error, ACK will be sent as usual with next frame expected
- If error, reply with rejection
 - destination will discard that frame and all future frames until frame in error is received correctly
 - transmitter must go back and retransmit that frame and all subsequent frames
- Frames are numbered sequentially
 - Use m bits to identify the sequence number of each frame
 - If m is 3, the sequence numbers are 0 to 7

Go Back N - Handling

- Damaged frame
 - error in frame *i* so receiver discards frame *i*
 - Receiver will either
 - do nothing and wait until the transmitter times out
 - send a **Reject(i)** signal to the transmitter
 - Transmitter retransmits frames from *i*

Go Back N - Handling

Lost frame

- frame *i* is lost and either
- transmitter sends i+1 and receiver gets frame i+1 out of sequence and discards frame i+1. Receiver will either
 - do nothing and wait until the transmitter times out
 - send a Reject(i) signal to the transmitter
- transmitter then retransmits frames from *i*

Sender Sliding Window

Hold the outstanding frames until they are acknowledged

a. Send window before sliding

b. Send window after sliding

Receiver Sliding Window

• Look for a specific frame to arrive

a. Receive window

b. Window after sliding

Example 1: Go-Back-N ARQ

35

Example 2: Go-Back-N ARQ

Window Size of Go-Back-N ARQ

• In Go-Back-N ARQ, the size of the send window must be less than 2^m ; the size of the receiver window is always 1.

37

Performance of Go-Back-N ARQ

• In this case, each error generates a requirement to retransmit *K* frames rather than just one frame. Thus

 $N_r = \text{E[number of transmitted frames to successfully transmit one frame]}$

$$= \sum_{i=1}^{\infty} f(i)P^{i-1}(1-P)$$

where f(i) is the total number of frames transmitted if the original frame must be transmitted i times:

$$f(i) = (i-1)K + 1$$

Performance of Go-Back-N ARQ

$$N_{r} = (1 - K) \sum_{i=1}^{\infty} P^{i-1} (1 - P) + K \sum_{i=1}^{\infty} i P^{i-1} (1 - P)$$

$$= 1 - K + \frac{K}{1 - P}$$

$$= \frac{1 - P + KP}{1 - P}$$

Also, we have

$$K = \begin{cases} 2a+1 & W \ge 2a+1 \\ W & W < 2a+1 \end{cases}$$

Performance of Go-Back-N ARQ

• The utilization for Go-Back-N ARQ is

$$U = \begin{cases} \frac{1}{N_r} & W \ge 2a + 1\\ \frac{W}{N_r(2a+1)} & W < 2a + 1 \end{cases}$$

$$= \begin{cases} \frac{1-P}{1+2aP} & W \ge 2a + 1\\ \frac{W(1-P)}{(2a+1)(1-P+WP)} & W < 2a + 1 \end{cases}$$

Selective-Repeat ARQ

- Also called selective retransmission or selective reject ARQ
- Main ideas:
 - Only resend the corrupted data
 - Allow the receiver to keep track of the received frame
 - Introduce a negative acknowledgment (NAK) that reports the sequence number of a damaged frame
- More efficient: minimizes the amount of retransmission
- Receiver must maintain a large enough buffer
- More complex logic in transmitter to send a frame out of sequence

Sender Sliding Window

Receiver Sliding Window

Look for a specific frame to arrive

Example 1: Selective-Repeat ARQ

Window Size of Selective Repeat ARQ

• In Selective Repeat ARQ, the size of the sender and receiver window must be at most one-half of 2^m.

a. Window size = 2^{m-1}

b. Window size $> 2^{m-1}$

Performance of Selective-Reject ARQ

• The utilization for error-free sliding-window protocol is:

$$U = \begin{cases} 1 & W \ge 2a + 1 \\ \frac{W}{2a+1} & W < 2a+1 \end{cases}$$

• The utilization for Selective-Repeat ARQ is

$$U = \begin{cases} \frac{1}{N_r} & W \ge 2a + 1\\ \frac{W}{N_r(2a+1)} & W < 2a + 1 \end{cases}$$
$$= \begin{cases} \frac{1-P}{W(1-P)} & W \ge 2a + 1\\ \frac{W}{(2a+1)} & W < 2a + 1 \end{cases}$$

Performance of ARQ

Reading

- B. A. Forouzan, "Data Communications and Networking," 5th Edition, McGraw-Hill 2013 (Chapters 11 and 23)
- William Stallings, "Data and Computer Communications," 10th Edition, Pearson 2015 (Chapter 7)