Fault-tolerant formation control using energy tanks

Facci Matteo (1597454)
Galli Mattia (1753274)
Giunta Gaetano (1692966)
Sensolini Arrà Giuseppe (1661198)

Control of Multi-Robot Systems- A.Y. 2020-2021

Summary

- Introduction
- Brief overview on the theoretical aspects of formation control
 - Hamiltonian elements used to achieve such control
- Analysis of the passive reconfiguration strategy
 - Energy tanks
 - Split and join events
- Results and comments of our simulations
- Final considerations

Introduction

- Formation control: tries to achieve a geometrical shape for the network of agents
- Port-Hamiltonian systems theory: energy-based modeling framework
 - Systems as the interconnection of energy storing and energy dissipating components which exchange energy through power-ports
- Main goal of this work: implement a passivity-based reconfiguration strategy in case of faults of one agent
- Passivity will be preserved by exploiting the concept of energy tanks

Formation control of fully actuated systems

- Aim: achieve a prescribed geometrical shape for a network of agents using only local feedback controllers
- Controllers are all based on assigning virtual couplings between the agents
 - virtual spring + (optional) virtual damper
- Fully actuated agents: agents for which the number of inputs equals the degrees
 of freedom

The system

- Group of N agents, where each agent is modeled as a single point mass m_i moving in \mathbb{R}^n
- The position of agents i is denoted by $q_i \in \mathbb{R}^n$ and the corresponding momentum is defined as $p_i = m_i \dot{q}_i \in \mathbb{R}^n$
- Each agent has a control port (u_i, y_i) , and a resistive port (u_i^r, y_i^r)

System dynamics

• The dynamics for a single agent are given by:

$$\begin{cases}
\begin{pmatrix} \dot{q}_i \\ \dot{p}_i \end{pmatrix} = \begin{pmatrix} 0 & I_n \\ -I_n & -D_i{}^a(q_i, p_i) \end{pmatrix} \begin{pmatrix} \frac{\partial H_i{}^a}{\partial q_i}(q_i, p_i) \\ \frac{\partial H_i{}^a}{\partial p_i}(q_i, p_i) \end{pmatrix} + \begin{pmatrix} 0 \\ I_n \end{pmatrix} u_i + \begin{pmatrix} 0 \\ I_n \end{pmatrix} u_i{}^r \\
y_i = y_i{}^r = \frac{\partial H_i{}^a}{\partial p_i}(p_i)
\end{cases}$$

- $D_i^a(q_i, p_i)$ is the dissipation matrix, $H_i^a(q_i, p_i)$ is the Hamiltonian
- The Hamiltonian equals the kinetic energy associated to the movement of the mass: $H_i^a(p_i) = \frac{1}{2}p_i^TM_i^{-1}p_i$

System dynamics (2)

Then the dynamics for N agents are given by:

$$\begin{pmatrix} \dot{q} \\ \dot{p} \end{pmatrix} = \begin{pmatrix} 0 & I_{Nn} \\ -I_{Nn} & -D^a(q,p) \end{pmatrix} \begin{pmatrix} \frac{\partial H^a}{\partial q}(q,p) \\ \frac{\partial H^a}{\partial p}(q,p) \end{pmatrix} + \begin{pmatrix} 0 \\ I_{Nn} \end{pmatrix} u + \begin{pmatrix} 0 \\ I_{Nn} \end{pmatrix} u^r$$
$$y = y^r = \frac{\partial H^a}{\partial p}(p)$$

with Hamiltonian
$$H^a(p) = \sum_{i=1}^N H_i^a(q_i, p_i) = \frac{1}{2}p^T M^{-1}p$$

Tree graph

- Consider a network of N agents with the previous form (resistive port omitted for simplicity)
- Formation control is achieved by assigning virtual couplings in between the agents
- The interconnection topology amongst agents via virtual couplings is modeled by a tree graph
 - the N nodes of the graph correspond to the agents,
 while the E edges correspond to the virtual couplings

Formation control objective

- For each agent:
 - $-q_i \in \mathbb{R}^n$ denotes its position
 - $-p_i \in \mathbb{R}^n$ denotes the corresponding momentum.
 - $-z_j \in \mathbb{R}^n$ denotes the relative displacement for two agents interconnected by virtual coupling j
 - $-z_i^* \in \mathbb{R}^n$ denotes the desired relative displacement
- the formation control objective can be formally stated as

$$\begin{cases} p \to 0 \\ z \to z^* \end{cases} \quad \text{as} \quad t \to \infty$$

Virtual coupling

- Each virtual coupling consists of a virtual spring and damper in parallel
- The dynamics of such a spring-damper system are given by:

$$\dot{z_j} = v_j$$
 z_j is the spring elongation v_j is the input velocity $F_j = rac{\partial H_j{}^c}{\partial z_j} + D_j{}^c v_j$ F_j is the corresponding output force

• For each virtual coupling j, the Hamiltonian H_j^c equals the potential energy in the spring j

$$H_j^c(z_j) = \frac{1}{2}(z_j - z_j^*)^T K_j^c(z_j - z_j^*)$$

Virtual coupling (2)

• The dynamics of E virtual couplings are summarized as:

$$\dot{z} = v$$

$$F = \frac{\partial H^c}{\partial z} + D^c v$$

with Hamiltonian $H^{c}(z) = \sum_{i=1}^{E} H_{j}^{c}(z_{j}) = \frac{1}{2}(z - z^{*})^{T}K^{c}(z - z^{*})$

Closed-loop dynamics

 Let B denote the incidence matrix associated to the tree graph, then the coupling of agents on the nodes and virtual couplings at the edges is given by:

$$u = -(B \otimes I_n)F$$

$$v = -(B^T \otimes I_n)y$$

the closed-loop dynamics are given by

$$\begin{pmatrix} \dot{p} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} -(D^a(p) + BD^cB^T) & -B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} \frac{\partial H}{\partial p} \\ \frac{\partial H}{\partial z} \end{pmatrix}$$

with Hamiltonian

$$H(z,p) = \sum_{i=1}^{N} H_i^a(p_i) + \sum_{i=1}^{E} H_j^c(z_i) = \frac{1}{2} p^T M^{-1} p + \frac{1}{2} (z - z^*)^T K^c(z - z^*)$$

Control input

- The solutions of the closed-loop system converge to $p=0, z=z^{\ast}$, achieving the formation control objectives
- The control input for the agents is given by:

$$u = -(B \otimes I_n)K^c(z - z^*) - (B \otimes I_n)D^c(B^T \otimes I_n)M^{-1}p$$

- First term: virtual spring force → ensures that the formation control objectives are achieved
- Second term: virtual damping force → can be used to shape the transient response

Passivity of the system

• It is possible to prove that the system is **passive** with respect to the input/output pair (u, y)

$$\begin{split} \dot{H} &= \left(\frac{\partial H}{\partial p} \frac{\partial H}{\partial z}\right)^T \begin{pmatrix} \dot{p} \\ \dot{z} \end{pmatrix} \\ &= \frac{\partial H^T}{\partial p} \left(-D^a \frac{\partial H}{\partial p} - B \frac{\partial H}{\partial z}\right) + \frac{\partial H^T}{\partial z} B^T \frac{\partial H}{\partial p} \\ &= -\frac{\partial H^T}{\partial p} D^a \frac{\partial H}{\partial p} \le 0 \end{split}$$

Neighboring agents, split and join

• Let $d_{ij} = ||z_i - z_j||$, be the interdistance among two agents, they cannot be neighbors if $d_{ij} > D$.

$$\begin{cases} \sigma_{ij} = 0 & if \, d_{ij} > D \\ \sigma_{ij} = 1 & if \, d_{ij} < D \end{cases}$$

- The formation is dynamic \rightarrow the parameter σ_{ij} is time-varying
- Split event: it could happen that some agents disconnect due to lack of communication or simply because their interdistance grows
- **Join** event: it is possible that some agents get closer and their interdistance reduces below the threshold D, generating a new connection

Energy tanks and Energy Transfer control

• Necessary if
$$\Delta E = V(z_i - z_j) - V(z_{ij}^s) = V_{join} - V_{split} > 0$$

- **Energy tanks**
 - Keep track of the energy dissipated by each agent

 - Defined by $t_i \in \mathbb{R}$ Energy function $T_i = rac{t_i^2}{2}$
- Store back the energy dissipated $D_i = p_i^T M_i^{-T} D_i^a M_i^{-1} p_i$

Augmented dynamics and interagent storing action

Agent state

$$egin{cases} \dot{p}_i = F_i^a + F_i^e - D_i^a M^{-1} p_i \ \dot{t}_i = (1-eta_i)igg(lpha_irac{1}{t_i}D_i + \sum_{j=1,j
eq i}^N w_{ij}^T F_{ij}^aigg) + eta_i c_i \ y_i = igg(M_i^{-1} p_i igg) \ t_i \end{pmatrix}$$

Elastic element

$$egin{cases} \dot{z}_{ij} = v_{ij} - w_{ij}t_i + w_{ji}t_j \ F_{ij}^a = rac{\partial V(e_{ij})}{\partial e_{ij}} \end{cases}$$

*always referring to the general i-th agent

Energy flow

- $\dot{T}_i = lpha_i rac{1}{t_i} D_i + \sum_{i=1}^{\mathcal{N}} w_{ij}^T F_{ij}^a$ • α_i enables/disables the energy storing of D_i :
 - $lpha_i = egin{cases} 0, & ext{if} \ T_i \geq T_i \ 1, & ext{otherwise} \end{cases}$
- $\beta_i \in \{0,1\}$ (optional) switch from storage mode (0) to consensus mode (1)

- If
$$eta_i=1$$
, in order to obtain $\dot{T}_i=-\sum_{j\in\mathcal{N}_i}^{\mathcal{N}}(T_i-T_j)$: $c_i=-rac{1}{t_i}\sum_{j\in\mathcal{N}_i}^{\mathcal{N}}(T_i(t_i)-T_j(t_j))$

- w_{ij} input to allow for drawing ΔE from the tanks of the respective agents $w_{ij} = \gamma_{ij}(1-eta_i)t_iF^a_{ij}$
- γ_{ij} modulates the rate and direction of the energy flow

$$\begin{cases} \gamma_{ij} > 0 & \text{energy is extracted from elastic term and stored in tank} \\ \gamma_{ij} < 0 & \text{energy is extracted from tank and stored in the elastic term} \\ \gamma_{ij} = 0 & \text{agents } i \text{ and } j \text{ are not interconnected} \end{cases}$$

Passive join procedure

- 1. Agents i and j split \rightarrow the one with the lower ID stores z_{ij} in a local variable z_{ij}^{S} (state of the virtual spring at the split time)
 - If the two agents never split before, z_{ij}^s is initialized such that

$$V(z_{ij}^s) = \overline{V}(D) = \overline{V}_{ij}(\infty)$$

2. At the join moment, agent i computes the quantity

$$\Delta E = V(z_i - z_j) - V(z_{ij}^s)$$

- if $\Delta E \leq 0$, implement the join (and store ΔE back into the tanks)
- if $\Delta E>0$, extract ΔE from the tanks and then implement the join.

If it is not sufficient:

- Avoid join procedure
- Exploit the tanks of the rest of the fleet (if they contain enough energy) → Consensus mode

Consensus mode

- If the energy stored in the tanks of the two agents is not sufficient:
 - agent i asks the fleet to activate the β_i in order to switch to consensus mode
 - the consensus is run until the redistribution of the energy among the tanks is completed (total tank energy will remain unchanged)
 - After this redistribution, agents i and j check again if there is enough energy in the tanks for joining
- If the energy in the tanks is not yet sufficient:
 - it is necessary to act directly on the robots to refill the tanks, augmenting the damping

Procedure PassiveJoin

```
Data: x_i, x_j, x_{ij}^s, t_i, t_j

1 Compute \Delta E = V(x_i - x_j) - V(x_{ij}^s);

2 if \Delta E \leq 0 then

3 \subseteq Store\ (-\Delta E)/2 in the tank through input w_{ij};

else

4 if T_i(t_i) + T_j(t_j) < \Delta E + 2\varepsilon then

5 = Run\ a\ consensus\ on\ the\ tank\ variables;

6 if 2T_i(t_i) < \Delta E + 2\varepsilon then

7 = Dampen\ until\ T(t_i) + T(t_j) \geq \Delta E + 2\varepsilon;

8 = Extract\ \frac{T(t_i)}{T(t_i) + T(t_j)} \Delta E from the tank through input w_{ij};

9 = Join;
```

- Let us consider a 5-robots formation in a leaderfollower configuration
- The complete graph has 10 edges
- Robots are organized in a pentagon formation, with inner-edges e_6 and e_9 connected (in the initial configuration)

$$B^* = \begin{bmatrix} e_1^* & \dots & e_{10}^* \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 & -1 \end{bmatrix}$$

Fault tolerant control strategy → Reconfiguration in presence of a faulty agent

Initial graph

Fault tolerant control strategy → Reconfiguration in presence of a faulty agent

Fault tolerant control strategy → Reconfiguration in presence of a faulty agent


```
SplitProcedure(faulted_robot,B):
  faulted_edges = getEdges(faulted_robot,B);
For edge in faulted_edges:
    B(:,edge) = zeros(N,1);
End
Return B;
```


Matlab/Simulink implementation

Simulation settings

• Robots are assumed to be equal, their dynamic parameters are:

parameter	value	unit
m (robot mass)	1	Kg
μ (friction coeff.)	1	/
d_c (damping coeff.)	3	/
k_c (elastic coeff.)	5	/

- Initial conditions:
 - p(0) = zeros(15,1)
 - q(0) and z(0) constitute a pentagon inscribed in a circumference of radius r=5
 - t(0) = 5*ones(5,1)
- Desired edges: |z_des_i|=20 for i=1,...,5, |z_des_i|=32.36 for i=6,...,10

Simulation 1: setpoint regulation

- Setpoint regulation tasks:
 - build desired formation
 - proportional controller (leader)
 - PD controller (ensuring safe land fault agent)
 - setpoint [x y z θ] = $\left[0\ 0\ 0\ \frac{\pi}{2}\right]$
- Split at time:
 - 15 [sec]
- Settling time
 - 5 [sec]
- Expected results:
 - Energy drain from tanks
 - Passivity

Simulation 1: setpoint regulation

passivity

tanks

Simulation 2: trajectory tracking

- Trajectory tracking tasks:
 - helicoidal trajectory (green line)
 - proportional controller (leader)
 - PD controller (ensuring safe land fault agent)
- Split at time:
 - 25 [sec]
- Settling time
 - 5 [sec]
- Expected results:
 - Energy drain from tanks
 - Passivity

Simulation 2: trajectory tracking

passivity

tanks

Conclusion

The proposed fault tolerant control strategy over the 5-robots system works as expected:

- Reconfiguration through Split and Join procedures guarantee the expected results in the presented case (and also with different formations/faulty agent)
- Leader correctly track the reference signal
- Tanks dynamics behave as expected
- The overall multi-robot system remains passive

Thank you for your attention