# Pole grawitacyjne 5/15

Andrzej Kapanowski http://users.uj.edu.pl/~ufkapano/

WFAIS, Uniwersytet Jagielloński w Krakowie

2019

### Wprowadzenie

- Oddziaływanie grawitacyjne jest jednym z czterech podstawowych oddziaływań w przyrodzie. Wszystkie ciała obdarzone masą oddziaływują grawitacyjnie.
- Siły związane z tym oddziaływaniem nazywamy siłami ciążenia lub siłami grawitacji.
- Przejawy sił grawitacji: ruchy planet, galaktyk we Wszechświecie; przypływy i odpływy oceanów (wpływ Księżyca); czarne dziury.

### Prawo grawitacji

#### Prawo powszechnego ciążenia (Newton 1687)

Między dwoma punktami materialnymi działa siła wzajemnego przyciągania wprost proporcjonalna do iloczynu mas tych punktów i odwrotnie proporcjonalna do kwadratu odległości między nimi.

$$F_{g} = G \frac{m_{A} m_{B}}{r_{AB}^{2}}, \tag{1}$$

gdzie  $G = 6.67 \cdot 10^{-11} N \cdot m^2 / kg^2$  jest stałą grawitacji.

W zapisie wektorowym

$$\vec{F}_{AB} = -G \frac{m_A m_B}{r_{AB}^2} \frac{\vec{r}_{AB}}{r_{AB}}.$$
 (2)



## Zasada superpozycji

- Rozważmy zbiór punktów materialnych. Szukamy wypadkowej siły grawitacji działającej na wybrany punkt materiany z tego zbioru.
- Zasada superpozycji mówi ogólnie, że łączne działanie pewnego czynnika jest sumą przyczynków od poszczególnych jego źródeł. W przypadku sił grawitacji należy znaleźć sumę wektorową sił grawitacji z jakimi działają pozostałe punkty materialne na wybrany punkt materialny.

### Zasada superpozycji

- Można udowodnić, że ciało w kształcie jednorodnej powłoki kulistej przyciąga punkt materialny znajdujący się na zewnątrz powłoki tak, jak gdyby cała masa powłoki była skupiona w jej środku. Jeżeli punkt materialny znajduje się wewnątrz powłoki, to siły grawitacyjne działające na ten punkt równoważą się.
- Jeżeli dwa ciała mają kształt kulisty, a ich gęstości są stałe lub zależą tylko od odległości od środków tych ciał, to wzór na prawo powszechnego ciążenia pozostaje słuszny.

# Grawitacja w pobliżu powierzchni Ziemi

• Załóżmy, że Ziemia jest jednorodną kulą o masie  $M_z$  i promieniu  $R_z$ . Z prawa grawitacji wynika, że Ziemia przyciąga ciało o masie m znajdujące się przy jej powierzchni siłą

$$F_{g} = G \frac{mM_{z}}{R_{z}^{2}}. (3)$$

• Z drugiej zasady dynamiki Newtona wiemy, że  $F_g=mg$   $(g=9.8m/s^2)$ . Z porównania obu wzorów dostajemy

$$g = G \frac{M_z}{R_z^2}. (4)$$

 Należy zauważyć, że m w prawie grawitacji, to masa grawitacyjna (ciężka), a m w drugiej zasadzie dynamiki to masa bezwładna. Wszystkie znane doświadczenia potwierdzają równość obu mas.

### Grawitacja w pobliżu powierzchni Ziemi

• Oszacowanie masy Ziemi,  $R_z = 6.37 \cdot 10^6 m$ ,

$$M_z = \frac{gR_z^2}{G} = 5.98 \cdot 10^{24} kg.$$
 (5)

Oszacowanie średniej gęstości Ziemi,

$$\rho_z = \frac{M_z}{V_z} = \frac{M_z}{(4/3)\pi R_z^3} = 5.52 \cdot 10^3 \, \text{kg/m}^3. \tag{6}$$

Przeciętna gęstość minerałów tworzących skorupę ziemską wynosi  $2.83 \cdot 10^3 kg/m^3$ . Wnioskujemy, że najcięższe minerały skupione są w pobliżu środka Ziemi. Ziemia nie jest jednorodna.



### Grawitacja w pobliżu powierzchni Ziemi

- Ziemia nie jest kulista. Promień Ziemi na równiku jest o 21 km większy od jej promienia na biegunie. Wniosek: ciążenie ziemskie zależy od szerokości geograficznej.
- Ziemia obraca się. Okres obrotu Ziemi wokół jej osi wynosi  $T_z=24h$ . Przyspieszenie dośrodkowe na równiku wynosi

$$a_n = \omega^2 R_z = (2\pi/T_z)^2 R_z = 0.034 m/s^2.$$
 (7)

W układzie nieinercjalnym związanym z powierzchnią Ziemi siła grawitacyjna działająca na ciało jest pomniejszana o wartość  $ma_n$ .

• Uwaga:  $v = \omega R_z = 463 m/s = 1668 km/h$ .



### Grawitacja wewnątrz Ziemi

- Załóżmy, że Ziemia jest jednorodną kulą o masie  $M_z$  i promieniu  $R_z$ . Szukamy wypadkowej siły grawitacyjnej działającej na punkt materialny o masie m położony w odległości r od środka Ziemi, przy czym  $0 < r < R_z$ .
- Z prawa grawitacji wnioskujemy, że na punkt materialny wpływa tylko masa zawarta w kuli o promieniu r,

$$M(r) = (4/3)\pi r^3 \rho_z = M_z (r/R_z)^3,$$
 (8)

$$F_g(r) = -G\frac{M(r)m}{r^2} = -\frac{GM_z mr}{R_z^3}.$$
 (9)

W rzeczywistości Ziemia nie jest jednorodna i przy przemieszczaniu punktu materialnego od powierzchni do środka Ziemi siła działająca na punkt początkowo rośnie, osiąga maksimum na pewnej głębokości, a dopiero potem maleje.

### Energia potencjalna grawitacyjna

 Siły grawitacyjne są siłami zachowawczymi. Siła grawitacyjna działająca pomiędzy masami m i M, znajdującymi się w odległości r, wynosi

$$F_{g}(r) = -G\frac{Mm}{r^2}. (10)$$

 Obliczamy pracę wykonaną przeciwko sile grawitacyjnej, przy przemieszczaniu masy m,

$$W = -\int_{r_1}^{r_2} F_g(r) dr = GMm \int_{r_1}^{r_2} \frac{dr}{r^2} = -\frac{GMm}{r_2} + \frac{GMm}{r_1}.$$
(11)

• Oznaczmy  $E_p(r) = -GMm/r$ ,  $W = E_p(r_2) - E_p(r_1)$ .



### Energia potencjalna grawitacyjna

- Przy definicji  $E_p$  zastosowaliśmy konwencję, że energia potencjalna grawitacyjna wynosi zero tam, gdzie znikają siły grawitacyjne  $(r = \infty)$ .
- Znajomość energii potencjalnej pozwala znaleźć siłę zachowawczą

$$F_{g}(r) = -\frac{dE_{p}(r)}{dr} = -\frac{d}{dr}\left(-\frac{GMm}{r}\right) = -\frac{GMm}{r^{2}}.$$
 (12)

### Energia potencjalna grawitacyjna



### Prędkość ucieczki

- Prędkość ucieczki (druga prędkość kosmiczna v<sub>II</sub>) ciała niebieskiego jest to minimalna pozioma prędkość początkowa (startowa) jaką musi mieć obiekt, aby mógł opuścić pole grawitacyjne danego ciała niebieskiego.
- Z zasady zachowania energii mechanicznej mamy

$$0 = E_k + E_p(R) = \frac{mv_{II}^2}{2} - \frac{GMm}{R}, \qquad (13)$$

$$v_{II} = \sqrt{2GM/R}. (14)$$

 Przykładowe wartości drugiej prędkości kosmicznej: dla Ziemi 11.2km/s, dla Księżyca Ziemi 2.38km/s, dla Słońca 618km/s.



### Prędkość ucieczki

- Planety obracają się wokół własnej osi, co można wykorzystać do zmniejszenia prędkości startowej rakiety, jeżeli rakieta będzie wystrzeliwana z obszarów okołorównikowych. Z tego powodu wszystkie kosmodromy na Ziemi lokowane są na małych szerokościach geograficznych. Europa leży daleko od równika, dlatego Europejska Agencja Kosmiczna (ESA) wystrzeliwuje swoje rakiety z terytorium Gujany Francuskiej.
- W praktyce prędkość startowa rakiety powinna być większa niż prędkość ucieczki lub powinno się dostarczać dodatkową energię w trakcie ruchu pozwalającą na pokonanie oporów materii.
- Polska przystąpiła do ESA w 2012 roku.



#### Promień Schwarzschilda

 W klasycznej teorii grawitacji możemy rozważyć obiekt w takiej odległości od ciała niebieskiego, że prędkość ucieczki będzie równa prędkości światła v<sub>II</sub> = c. Tak określona odległość nazywa się promieniem Schwarzschilda

$$r_{schw} = \frac{2GM}{c^2}. (15)$$

- Przykładowe wartości r<sub>schw</sub>: dla Ziemi 9mm, dla Słońca 3km.
- Promień Schwarzschilda wiąże się z takimi pojęciami z Ogólnej Teorii Względności, jak horyzont zdarzeń, kolaps grawitacyjny masywnej gwiazdy, zakrzywienie czasoprzestrzeni, czarna dziura, itp.



### Pierwsza prędkość kosmiczna

- Pierwsza prędkość kosmiczna to najmniejsza pozioma prędkość, jaką należy nadać ciału względem przyciągającego je ciała niebieskiego, aby ciało to poruszało się po zamkniętej orbicie.
- Dla ciała niebieskiego o kształcie kuli, orbita będzie orbitą kołową o promieniu równym promieniowi planety.
- Podczas ruchu orbitalnego po orbicie kołowej siła grawitacji stanowi siłę dośrodkową, czyli

$$\frac{mv_l^2}{R} = \frac{GMm}{R^2}, \ v_l = \sqrt{GM/R}. \tag{16}$$

 Przykładowe wartości pierwszej prędkości kosmicznej: dla Ziemi 7.91km/s, dla Księżyca Ziemi 1.68km/s, dla Słońca 437km/s.

#### Pierwsze prawo Keplera

Każda planeta Układu Słonecznego porusza się wokół Słońca po elipsie, w której w jednym z ognisk jest Słońce.

W rzeczywistości orbity planet Układu Słonecznego (poza Merkurym) są bardzo bliskie okręgom.

Ogólnie ciała niebieskie poruszają się wokół środka masy układu po torach opisanych równaniem

$$r = \frac{p}{1 + e\cos\phi} \text{ (krzywe stożkowe)}, \tag{17}$$

gdzie p to parametr, a e to mimośród.





#### Drugie prawo Keplera

W równych odstępach czasu, promień wodzący planety poprowadzony od Słońca zakreśla równe pola.

Planeta porusza się po orbicie wolniej, gdy jest daleko od Słońca, a szybciej, gdy jest bliżej od niego.

Drugie prawo Keplera jest równoważne zasadzie zachowania momentu pędu.



#### Trzecie prawo Keplera

Stosunek kwadratu okresu obiegu planety wokół Słońca do sześcianu wielkiej półosi jej orbity (czyli średniej odległości od Słońca) jest stały dla wszystkich planet w Układzie Słonecznym.

Z drugiej zasady dynamiki dla orbity kołowej mamy

$$\frac{GM_Sm}{R^2} = m\omega^2 R, \ \omega = \frac{2\pi}{T},\tag{18}$$

$$\frac{T^2}{R^3} = \frac{4\pi^2}{GM_S} \ (M_S \text{ to masa Słońca}). \tag{19}$$



### Satelity

- Rozważmy satelitę obiegającego Ziemię po orbicie kołowej. Szukamy jego energii potencjalnej, kinetycznej i całkowitej.
- Z drugiej zasady dynamiki Newtona

$$\frac{GMm}{R^2} = \frac{mv^2}{R}. (20)$$

- Energia kinetyczna  $E_k = \frac{1}{2}mv^2 = \frac{GMm}{2R}$ .
- Energia potencjalna grawitacyjna  $E_p = -\frac{GMm}{R}$ .
- Energia całkowita  $E_c = E_k + E_p = -\frac{GMm}{2R}$ .



### Pole grawitacyjne

- Zamiast mówić o siłach grawitacyjnych, działających między punktami materialnymi, możemy opisywać oddziaływanie grawitacyjne za pomocą pola grawitacyjnego. Jeżeli oddziaływania zmieniają się w czasie, to jedynie opis polowy jest poprawny.
- Polem grawitacyjnym nazywamy zbiór tych właściwości przestrzeni, które są wywołane umieszczeniem w niej ciała o masie m. lnaczej można powiedzieć, że pole grawitacyjne jest to przestrzeń, w której na umieszczone w niej ciała działają siły grawitacyjne.
- Pole grawitacyjne istnieje obiektywnie, niezależnie od naszej świadomości. Jest ono jedną z form materii. Materia występuje w dwóch postaciach, jako substancja i jako pole.

### Natężenie pola grawitacyjnego

Miarą ilościową pola grawitacyjnego jest jego natężenie.
 Jest to wektor równy stosunkowi siły działającej na masę wprowadzoną do pola, do wartości tej masy.

$$\vec{K}_g = \frac{\vec{F}_g}{m}.$$
 (21)

ullet Jeżeli pole grawitacyjne wytwarza punktowa masa M, to

$$F_{g} = \frac{GMm}{r^{2}}, \ K_{g} = \frac{F_{g}}{m} = \frac{GM}{r^{2}}.$$
 (22)

- Natężenie pola grawitacyjnego ma wymiar przyspieszenia.
- Natężenie pola grawitacyjnego jest zwrócone ku masie, która je wytwarza.



### Potencjał pola grawitacyjnego

 Potencjał pola grawitacyjnego jest równy stosunkowi energii potencjalnej ciała w polu grawitacyjnym do jego masy,

$$V_g = \frac{E_p}{m}. (23)$$

ullet Jeżeli pole grawitacyjne wytwarza punktowa masa M, to

$$E_p = -\frac{GMm}{r}, \ V_g = \frac{E_p}{m} = -\frac{GM}{r}. \tag{24}$$

• Jeżeli pole grawitacyjne jest wytwarzane przez zbiór mas  $M_i$ , to potencjał grawitacyjny w punkcie  $\vec{r}$  wynosi

$$V_{g}(\vec{r}) = -\sum_{i} \frac{GM_{i}}{|\vec{r} - \vec{r}_{i}|}, \qquad (25)$$

gdzie  $\vec{r}_i$  oznaczają położenia mas  $M_i$  względem początku układu współrzędnych.

### Linie sił pola

- Dowolne pole można opisać poglądowo za pomocą linii sił pola lub powierzchni ekwipotencjalnych.
- Linie sił pola są to linie wskazujące kierunek wektora natężenia pola, tj. w każdym punkcie pola wektor natężenia jest styczny do linii sił. Zgodnie z konwencją, w obszarze zagęszczenia linii sił wartość natężenia pola jest większa.
- Pole jednorodne o stałym wektorze natężenia pola jest przedstawianie za pomocą zbioru prostych równoległych, równo od siebie oddalonych.

# Prezentacja pola



### Powierzchnie ekwipotencjalne

- Powierzchnię ekwipotencjalną tworzą punkty o jednakowym potencjale. Zwykle przedstawia się zbiór powierzchni odpowiadającym wartościom potencjału różniącym się o ustaloną wartość. Wtedy bliskość dwóch powierzchni ekwipotencjalnych mówi o dużych zmianach potencjału na jednostkę długości.
- Pole jednorodne o stałym wektorze natężenia pola jest przedstawianie za pomocą zbioru płaszczyzn równoległych, równo od siebie oddalonych.
- Linie sił pola są prostopadłe do powierzchni ekwipotencjalnych.



### Energia grawitacyjna

• Energia układu punktów materialnych

$$E_{g} = -\sum_{i < j} \frac{Gm_{i}m_{j}}{|\vec{r}_{i} - \vec{r}_{j}|} = -\frac{1}{2} \sum_{i \neq j} \frac{Gm_{i}m_{j}}{|\vec{r}_{i} - \vec{r}_{j}|}, \quad (26)$$

$$E_{g} = -\frac{1}{2} \sum_{i} m_{i} \sum_{j \neq i} \frac{Gm_{j}}{|\vec{r}_{i} - \vec{r}_{j}|} = \frac{1}{2} \sum_{i} m_{i} V_{g}(\vec{r}_{i}). \quad (27)$$

Energia grawitacyjna kuli (energia wiązania) [Januszajtis]

$$E_{g} = -\frac{3}{5} \frac{GM^{2}}{R}.$$
 (28)



### Energia grawitacyjna

• Gęstość energii pola grawitacyjnego

$$\rho_{g}(\vec{r}) = -\frac{K_{g}^{2}(\vec{r})}{8\pi G}.$$
 (29)

Gęstość energii dla kuli

$$\rho_{g} = -\frac{GM^{2}r^{2}}{8\pi R^{6}} \text{ dla } 0 < r < R, \tag{30}$$

$$\rho_{\mathsf{g}} = -\frac{GM^2}{8\pi r^4} \text{ dla } r > R. \tag{31}$$

## Organizmy żywe w polu grawitacyjnym

- Siła grawitacji określa udział kośćca w budowie organizmów wyższych oraz rozmiary organizmów.
- Organizmy posiadają specjalne narządy równowagi, aby utrzymać się w pionie.
- Organizm żywy reaguje na zmiany działającej siły ciężkości, a więc reaguje na stan przeciążenia i nieważkości. Człowiek w krótkim odcinku czasu (rzędu 10s) znosi przeciążenia dodatnie 6g i przeciążenia ujemne 3g. W stanie nieważkości zaobserwowano u kosmonautów zaburzenia w układzie krążeniu krwi, zaburzenia czynności układu hormonalnego, zanikanie mięśni i inne.