Свойства и типы нечетких бинарных отношений

Снопов П.М.

2020

1. Определите, какие из перечисленных ниже нечетких бинарных отношений симметричны, антисимметричны, совеСршенно антисимметричны, рефлексивны, транзитивны:

R_1	a	b	c	d	е
a	0	1	1	1	1
b	0	0	0.9	0.7	0.3
c	0	0	0	0.7	0.3
d	0	0	0	0	0.3
е	0	0	0	0	0

	R_2	a	b	c	d	e
	a	0	0.3	1	0	0.5
Ī	b	0.3	0.2	0	0.8	0.1
ĺ	c	1	0	0	0.2	1
	d	0	0.8	0.2	1	0.4
	e	0.5	0.1	1	0.4	0.4

R_3	a	b	С	d	e
a	1	0.5	0.5	0	0.7
b	0	1	0.7	0	0
С	0	1	1	0	0
d	0	0.3	0.3	1	0
е	1	0.5	0.5	0	1

R_4	a	b	c	d	e	
a	0	0	0.3	0.2	0	
b	0.6	1	0.8	1	0.2	
c	0.2	0	1	0.8	0.3	
d	0	0	0	1	0	
е	1	0	0.2	0.6	0	

Peшение. Построим таблицу, в которой укажем, какие отношения обладают вышеобозначенными свойствами. Обозначим за C – симметричность, AC – антисимметричность, CAC – совершенно антисимметричность, P – рефлексивность и T – транзитивность:

	R_1	R_2	R_3	R_4
С		+		
AC	+		+	+
CAC	+			
Р			+	
Т	+		+	

2. Найдите максминное транзитивное замыкание любых двух отношений из 1 задания.

Peшение. Найдем транзитивные замыкания первого и четвертого отношений:

\hat{R}_1	a	b	c	d	e
a	0	1	1	1	1
b	0	0	0.9	0.7	0.3
С	0	0	0	0.7	0.3
d	0	0	0	0	0.3
е	0	0	0	0	0

R_4	a	b	c	d	e
a	0.3	0.0	0.3	0.3	0.3
b	0.6	1.0	0.8	1.0	0.3
С	0.3	0.0	1.0	0.8	0.3
d	0.0	0.0	0.0	1.0	0.0
е	1.0	0.0	0.3	0.6	0.3

Так как R_1 транзитивно, то $\hat{R}_1=R_1$

3. Докажите, что нечеткое отношение R, представленное ниже, является предпорядком:

R	a	b	c	d	e	f
a	1	0.7	0.2	0	0.8	1
b	0	1	0.2	0	0	0
С	0	0.5	1	0	0	0
d	0	0.1	0.1	1	0.1	0.1
e	0	0	0	0	1	0.8
f	0	0	0	0	0.8	1

 $Peшение.\ R$ — предпорядок, если R рефлексивно и транзитивно. Очевидно, R рефлексивно. Также R транзитивно:

$R \circ R$	a	b	С	d	e	f
a	1.0	0.7	0.2	0.0	0.8	1.0
b	0.0	1.0	0.2	0.0	0.0	0.0
С	0.0	0.5	1.0	0.0	0.0	0.0
d	0.0	0.1	0.1	1.0	0.1	0.1
е	0.0	0.0	0.0	0.0	1.0	0.8
f	0.0	0.0	0.0	0.0	0.8	1.0

Значит R – предпорядок

4. Является ли следующее отношение подобием?

R	a	b	С	d	е	f
a	1	0.1	0.1	0	0	0.5
b	0.1	1	0.6	0	0	0.1
c	0.1	0.6	1	0	0	0.1
d	0	0	0	1	0.3	0
е	0	0	0	0.3	1	0
f	0.5	0.1	0.1	0	0	1

Peшение. Отношение R является отношением подобия(отношением эквивалентности), если оно рефлексивно, симметрично и транзитивно. Очевидно, R рефлексивно и симметрично. Проверим транзитивность:

$R \circ R$	a	b	С	d	е	f
a	1.0	0.1	0.1	0.0	0.0	0.5
b	0.1	1.0	0.6	0.0	0.0	0.1
c	0.1	0.6	1.0	0.0	0.0	0.1
d	0.0	0.0	0.0	1.0	0.3	0.0
е	0.0	0.0	0.0	0.3	1.0	0.0
f	0.5	0.1	0.1	0.0	0.0	1.0

Значит, R — отношение эквивалентности.