Recommender Systems lecture 2: neighbourhood-based models

Alexey Grishanov

Moscow Institute of Physics and Technology

Spring 2023

Recap: taxonomy

image credit: https://thingsolver.com/introduction-to-recommender-systems

Collaborative filtering

Idea:

«Collaborative filters help people make choices based on the opinions of other people.»

[Paul Resnick et al. "Grouplens" 1994]

«Collaborative filtering simply means that people collaborate to help one another perform filtering by recording their reactions to documents they read. Such reactions may be that a document was particularly interesting (or particularly uninteresting).

These reactions, more generally called annotations, can be accessed by others' filters.»

[David Goldberg et al. "Tapesty" 1992]

Memory-based vs Model-based

- memory-based (neighbourhood-based, heuristic-based) algorithms make recommendations based on the entire collection of previously rated items by the users.
- model-based algorithms use the collection of ratings to learn a model which is then used to make recommendations.

 $image\ source:\ https://iopscience.iop.org/article/10.1088/1757-899X/1022/1/012057$

User-based vs Item-based

- a User-based: compute similarity between pairs of users based on thair past interactions with items
- b **Item-based:** compute similarity between pairs of **items** based on thair past interactions with users. The similarity between items is typically more stable than the similarity between the users.

Recap: problem statement

Given:

- $U = \{u_j | , j \in 1, \dots n_{users}\}$ set of users
- $I = \{i_j | , j \in 1, \dots n_{items}\}$ set of items.
- $R = ||r_{ui}||$ relation matrix of shape $n_{users} \times n_{items}$,

$$r_{ui} \in \left[egin{array}{ll} \mbox{typically } \{0,1\} - \mbox{implicit feedback} \ \mbox{typically } \{1,2,3,4,5\} - \mbox{explicit feedback} \ \end{array}
ight.$$

Possible tasks:

Rating prediction

 \bullet Predict unknown r_{ui} — regression or (multi-class) classification

Top-k ranking

• Rank top-k recommendations for users — item2user (course focus)

Neighbourhood-based recommendations

$$r_{ui} = \left[egin{array}{l} \operatorname{aggr} & r_{u'i} - \operatorname{user-based} \\ u' \in U_i \\ \operatorname{aggr} & r_{ui'} - \operatorname{item-based} \\ i' \in I_u \end{array}
ight.$$

Next we will focus on **item-based** (if not specified explicitly). Examples of the aggregation functions are:

$$r_{ui} = \frac{1}{N} \sum_{i' \in I_u} r_{ui'}$$

$$r_{ui} = k \sum_{i' \in I_u} sim(i, i') \times r_{ui'}$$

$$r_{ui} = \overline{r_i} + k \sum_{i' \in I} sim(i, i') \times (r_{ui'} - \overline{r_i}),$$

k serves as a normalization factor and usually used as $k = \frac{1}{\sum\limits_{i' \in I_u} |\text{sim}(i,i')|}$

Similarity weight computation

Possible variants for sim(i, j):

$$Cosine(i,j) = \frac{\sum_{u \in U_{ij}} r_{ui} \cdot r_{uj}}{\sqrt{\sum_{u \in U_{ij}} r_{ui}^{2}} \sqrt{\sum_{u \in U_{ij}} r_{uj}^{2}}}$$

$$PC(i,j) = \frac{\sum_{u \in U_{ij}} (r_{ui} - \bar{r}_{i})(r_{ui} - \bar{r}_{j})}{\sqrt{\sum_{u \in U_{ij}} (r_{ui} - \bar{r}_{i})^{2} \sum_{u \in U_{ij}} (r_{uj} - \bar{r}_{j})^{2}}}$$

For user-based (additional variants):

$$MSD(u,v) = \frac{|I_{uv}|}{\sum_{i \in I_{uv}} (r_{ui} - r_{vi})^2}; \quad SRC(u,v) = \frac{\sum_{i \in I_{uv}} (k_{ui} - \bar{k}_i)(k_{ui} - \bar{k}_j)}{\sqrt{\sum_{i \in I_{uv}} (k_{ui} - \bar{k}_i)^2 \sum_{i \in I_{uv}} (k_{uj} - \bar{k}_j)^2}},$$

where k_u is the average rank of items rated by u

Additional weighting (optional)

IDF, BM25, etc.

To reduce the influence of popular items in the similarity measure and to give more weight to less popular items that a more relevant to a particular user, one may use common weighting from NLP. For example reweight cosine similarity with IDF:

$$\lambda_{u} = \log \frac{|I|}{|I_{u}|}; \quad \textit{Cosine}(i, j) = \frac{\sum\limits_{u \in U_{ij}} \lambda_{u} r_{ui} \cdot r_{uj}}{\sqrt{\sum\limits_{u \in U_{ij}} \lambda_{u} r_{ui}^{2}} \sqrt{\sum\limits_{u \in U_{ij}} \lambda_{u} r_{uj}^{2}}}$$

Shrink coefficient

When weight is computed using only a few ratings, one may use shrinkage where a weak or biased estimator can be improved if it is "shrunk" toward a null-value (typical value for β is 100):

$$\mathsf{sim}'(i,j) = \frac{|U_{ij}|}{|U_{ii}| + \beta} \mathsf{sim}(i,j)$$

ItemKNN

$$r_{ui} = \frac{\sum\limits_{i' \in J} \mathsf{sim}(i, i') \times r_{ui'}}{\sum\limits_{i' \in J} \mathsf{sim}(i, i')},$$

where J — set of k most similar items.

Note

Consider $W \in \mathbb{R}^{|I| \times |I|}$ — item-item weight-matrix, $R_{u,.}$ refer to row u; $W_{.,i}$ — to column i.

 r_{ui} might also be computed using $R_{u,\cdot}$ and $W_{\cdot,i}$

Exercise

The UserKNN algorithm also exists. Derive its formulas.

SLIM: Sparse Linear Methods

 r_{ui} is calculated as a sparse aggregation of items that have been purchased/rated by u:

$$r_{ui} = R_{u,\cdot} \cdot W_{\cdot,i}$$

Optimization problem

Learning W for SLIM:

$$\label{eq:minimize} \begin{split} \min_{W} & \quad ||R-RW||_F^2 + \frac{\beta}{2}||W||_F^2 + \lambda ||W||_1 \\ \text{subject to} & \quad W \geq 0 \\ & \quad \text{diag}(W) = 0, \end{split}$$

where $||W||_1 = \sum_{i=1}^n \sum_{j=1}^n |w_{ij}|$ is the entry-wise l_1 -norm of W, and $||\cdot||_F$ is the matrix Frobenius norm.

EASE

 r_{ui} is calculated similar to SLIM:

$$r_{ui} = R_{u,\cdot} \cdot W_{\cdot,i}$$

Optimization problem

Learning W for EASE:

minimize
$$||R - RW||_F^2 + \lambda ||W||_F^2$$

subject to diag(W) = 0

- Square loss allows for a closed-form solution (next slide). Training with other loss functions, however, might result in improved ranking accuracy.
- The constraint of a zero diagonal, diag(W) = 0, is crucial for ranking accuracy (in contrast to $W \ge 0$).

EASE: closed-form solution derivation

We start by forming the Lagrangian:

$$L = ||R - RW||_F^2 + \lambda ||W||_F^2 + 2 \cdot \gamma^T \cdot \operatorname{diag}(W),$$

where $\gamma = (\gamma_1, \dots, \gamma_{|I|})^T$ — Lagrangian multipliers.

Next, set its derivative to zero, which yields the estimate of the weight matrix:

$$W = (R^T R + \lambda E)^{-1} (R^T R - \mathsf{diagMat}(\gamma))$$

Defining (for sufficiently large λ)

$$P = \left(R^T R + \lambda E\right)^{-1}$$

this can be substituted into the previous equation:

$$\begin{split} W &= \left(R^TR + \lambda E\right)^{-1} \left(R^TR - \mathsf{diagMat}(\gamma)\right) \\ &= P\left(P^{-1} - \lambda E - \mathsf{diagMat}(\gamma)\right) \\ &= E - P\left(\lambda E + \mathsf{diagMat}(\gamma)\right) \\ &= E - P \cdot \mathsf{diagMat}(\tilde{\gamma}), \text{ (where } \tilde{\gamma} = \lambda \vec{1} + \gamma) \end{split}$$

EASE: closed-form solution

$$0 = \mathsf{diag}(W) = \vec{1} - \mathsf{diag}(P) \odot ilde{\gamma}$$
 $\Rightarrow ilde{\gamma} = \vec{1}/\mathsf{diag}(P),$

where / — elementwise division.

Substituting into previous slide gives

$$W = E - P \cdot \mathsf{diagMat}(\vec{1}/\mathsf{diag}(P))$$

EASE closed-form solution

$$P = \left(R^T R + \lambda E\right)^{-1}$$

$$W_{ij} = egin{cases} 0, & \text{if } i = j \ -rac{
ho_{ij}}{
ho_{ii}}, & \text{otherwise} \end{cases}$$
 .

Literature

- F. Ricci, L. Rokach, B. Shapira. (2011). Recommender Systems Handbook.
- [David Goldberg et al. "Tapesty" 1992]
 D. Goldberg, D. Nichols, B. Oki, D. Terry (1992). Using
 Collaborative Filtering to Weave an Information Tapestry. Commun.
 ACM 35(12): 61-70 (1992)
- [Paul Resnick et al. "Grouplens" 1994] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl (1994). GroupLens: An Open Architecture for Collaborative Filtering of Netnews. Working Paper Series 165, MIT Center for Coordination Science.
- X. Ning and G. Karypis (2011). SLIM: Sparse Linear Methods for Top-N Recommender Systems, ICDM
- H. Steck (2019). Embarrassingly Shallow Autoencoders for Sparse Data, The World Wide Web Conference

