TRAVERSING

OBJECTIVE

- · To conduct traversing in a given plot and take various details by total station and theodolite
- · To be familiar with using procedures of total station and theodolite and concept of latitude and departure.

INSTRUMENTS AND ACCESSORIES

- 1) Total station -1
- 2) Tripod stand ______
- 3) Prism pole -2
- 4) staff -1 5) plumb-bob -1
- 6) Measuring tape (30m)-1
- 7) Pegs -10
- 8) Hammer ______
- 9) Prism 2 10) Ranging rod 1

THEORY

A traverse is a type of survey in which a number of connected straight lines from a framework where directions and lengths of survey lines are measured with the help of angle measuring instruments, viz. compass, theodolite EDM, etc.

Importance of tracersing

- 1. To establish control points for:
 - (i) mapping
 - (ii) photographic work
 - (iii) alignment of road, canal, bridges, etc.
- 2. To ascertain the co-ordinates of reference points with respect to national and international grid system.

Types of trancerse

1. Open traicerse:

A traverse which originates from position which is known or unknown but terminates to the point whose position is not known.

2. closed traicerse:

When a traverse originates from a known position and also terminates to the known position is closed traverse

3. Link traicerse

It is a type of traverse where lines may start and end at different points (geometrically open but analytically closed) but both points are required to have I high degree of positional accuracy. It can be made to join two points of major traverse for inner or order detailing.

ABCDEA → Major traverse

AFGC → Link traverse

Field Work in Traversing

A. Reconnaissance and selection of stations.

Recommaissance (Recci) is an overall view and planning made in order to perform a survey. Following criteria influence the selection of stations.

- (1) location should be such that the working from whole to part can be applied.
- (2) Lengths of traverse legs mut be made longer to reduce contening errors.
- B. fixing stations marks and signals
 Usually station marks and signals are fixed on raised surface so that the intervisibility is better and pin point observation is possible.
- c Angular observation and linear Measurement
 The relative direction and longth of the lines of traverse are
 determined by measuring the engles between the successive
 lines and lengths by using tapk or EDM. A closed traverse
 may our clockwise or anticlockwise.
- D. Booking field measurement

When booking field measurements, a separate theodolite book is used to record angles and a field book for locating details and linear measurements.

E. Picking up details:

It is better not to concentrate on picking up details in important traverse except essential items that can be picked upt by offsets.

F. Traxerse computation

In order to perform traverse computation, the calculation of coordinates of the individual stations and control points is very much essential. From a raw data, ordained from field, the computation is carried out in the following sequential order:

- W. Performing independent checks of field observations
- (2) computation of all traverse angles and the use of (2n-4)×90° formula to check the sum of internal angles and apply correction.
- (3) Use of bearing and traverse length to calculate latitude and departure of stations
- (4) If \(\) Introduction and \(\) \(\) departure are not equal to 0 in \(\) a closed travers, then \(\) \(\) = error in latitude \(\) \(
 - And, closing error (e) = $\sqrt{(\Delta L)^2 + (\Delta d)^2}$ The direction is given by $= tan0 = \Delta L$
- (5) To balance the consecutive co-ordinates, we use the Booditch's rule:

correction in latitude = length of traverse leg x (-se)

correction in departure = length of traverse (eg x (- Ad)

Eventually, by applying the corrections in coordinates, we transfer the gar coordinates to the stations and plot on a grid sheet on a suitable scale. We need to plot the traverse at the centre of the sheet.

R.S. 3.467 Bar A

Pulchowk Campus institute of Engineering Tribhuvan University

Department of Civil Engineering Survey Instruction Committee

Group No:

Recorder: Observer:

Bearing:

Weather: Date:

Temperature:

Major Traverse by Total Station Horizontal Angle Observation Sheet

		1 1				-		1		1	1		1	-	-	-	-	+	-	-		1		
				Target Hit	(m)																			
				Vertical	Dist /m/	EDM					-					-			-					
	Weather:	Temperature : Date :	Mademated	Distance (m)	EDM	17.865		38.848		24,286		19,862		613-K21		24.080		CA.045	The second secon	43.670				
			-	=	U)	1		23				04				3,				41				
	-	TRAVERSE by TOTAL STATION EDM mode Hz. Angle Observation & Distance measurement Street	rement Sheet	ngle et 1 &	E			58				14		1	-	645				6				
RING	1			Mean of Set 1 &	P			84 5				226				88				121				
ng k, Lafity GINEE nittee	1	ION	-	T	in	1 85	16		385	64	×		42.5	3.2	54		7.5	35	96		35			
ulchowk VIL ENC	1 × 11 ×	ance		Mean - II	8	1			5	13	13		12	64	85		63	6	6		6			
Institute of Engineering Central Campus, Puddowk, Laitpur DEPARTMENT OF CIVIL ENGINEERING Survey Instruction Committee	TAL	& Dist	& Dist			Me	P	178	178		58	226	126		226	88	88		88	121	191		121	
Institutal Car TMEN Survey	T. In	vation	tion		S	2	60	\$	25	8	=	64	43	g	∞	8	20	8	8	32	95			
Cen	I LO	bsen	serva	Set - II	E	38	85	34	34	8	8	27	13	8	8	64	20 67	8	8	02 Tag	Ø			
	AVER	ngle	Horizontal Angle Observation		p	219	£\$	302	122	96	230	316	136	96	230	138	258	200	23	112	3/			
	TD	Hz. A	al Ang	-	07	64 43	32		1	88	"		24.5	49 40	71 05		63	25	28		18:5			
	L		rizont	Mean - I	E	-	55		53	14	14		7	69	5		64	छ	8		8			
	1	11	Ho		P	178	78		58	226	226	1	226	88	88	-	88	121	121	-	121			
				7	m s	25 62	39 02	34 39	4 33	0	38	38	#	0	96	97	8	0	62	35	38			
				Set-1	-	-		-	2 34	0	8	14	14	0	53	65	8	0	2	10	10			
13b			4.4	0	F	123	K 309	212	X 32	0	180		46	0	661	00	893	0	661	121	301	-		
			01 ps	oldo	s	12	1		-	7 7	R	1 0	X	7	×	1	d	1	X	7	X			
Obsurver	Recorder:	nstrument	Trial.	10 14	+	7	10	2	-	7	a	7	1	00		72		+		1				
	Re	1 1	one l	s isn	1	1	4	+		1	77				+	-	1	7	OX	1	-			

LEG PRECISION CHECK DISTANCE MEASUREMENT BY TOTAL STATION

Leg	Forward Distance (m) @	Backward Distance (m) 3	Dicerepancy (m)	Mean (m)	Precision = 15/15				
	MAJOR TRAVERSE								
1-2	52.660	\$2,640	0.020	52.650	1; 2632.5				
2-3	45.444	45.460	0.016	45.452	1: 2840.75				
3-4	\$1.561	51.559	0.002	51.560	1:25780				
4-5	30.848	30.862	0014	30.855	1:2203.9				
5-6	35.553	35, 563	0.010	35.558	1: 3555.8				
6-7	28.215	28 231	0.016	28.223	1:1769				
7-8	50.255	80.265	0.010	50.260	11,5026				
8-9	51,160	51.166	0.006	51.163	1:8527				
LINK TRAVERSE									
8-L1	48.632	43,631	0.001	43.632	1: 43631				
L1-L2	24.288	24.296	0.008	24.292	1: 3036				
L2 4	17.862	17.865	0.003	17.864	1:5954				

From Table,

Total toop distance of major traverse = 345.721m

Required precision was 1 in 2000

HORIZONTAL ANGLE CORRECTION

Bearing of 2-CP = 248°55'34" : Bearing of CP-2 = 68°55'34"

Inst. At	Sight.	Hz. Angle	correction	Corrected Angle	FB	BB
2	CP	1370 2912"	-	-	248°55'34"	68"55'34"
-: CP	2	"			68°55′34"	2485534"
2	3	¥123 128°32'51"	8"	128° 32'55"	26°24'46"	206°24′46″
3	4.	77° 39' 40"	5"	27°39'45"	284°04'31"	104004131"
4	5	212°34'35"	8"	212°34′43"	316°39'15"	13603915"
5	6	145°17'/5"	8"	145°17'23"	281° 56′ 38″	101° 56'38"
6	7	138°20'30"	8"	138"20"38"	248°17'15"	60° 17' 15"
7	8	95° 27'56"	8"	95°28'04"	155° 45'20"	335°45'20"
8	T	156°12'19"	811	156°12'25"	131° 57' 44"	3110 57 44"
1	2	125°53'55"	8"	12505403"	77°51'47"	259°51′47′′

Observed sum of Hz. Angle = 1079° S8'59"

Theoretical sum = $(2n-4) \times 90^{\circ} = 1080^{\circ}$ 60'00"

Error = 1079° S8'59" - 1080° 60'00"

= -0° 01 01"

Note: FB of leg = BB of previous leg + inducted angle.

44 1404. 789m 55 七七 155 121 782 240 318 89 SD. 245 52.660 \$1.182 38.850 28.217 30.824 19 00 4 01 d CP 4 M 20104.789m 16030.858 200-06001 10056-124 10052, 234 16141.824 10031.621 10162.059 10191 829 16169,789 1042.059 COORDINATE (m) m = 20188.057 20149.221 20108.002 20/19.066 20172.279 26194.698 20159 950 20104.789 20119.060 10104. 789 m 51.486 20.280 - 21,154 38,061 - 34,781 Dep (+ -) Corrected (m) TRAVERSE COMPUTATION SHEET -34.219 069-04 19.530 850111 418 sum+ LHS Bun+ DEPARTMENT OF CIVIL SOUTH Coordinate of Refer 610.0 810.0 Dep (++) 110.0 0.000 F10.0 9/0.0 0.018 Correction Lat (+-) 600.0--0.00 -0.009 -0.006 -0.605 -0.686 -0.010 809.0 -Leg 39.689m #0P-2-3 = 159°29/9" sum+ sum- 0-118 20.638 20.214 - 50.012 -21.165 - 24. 572 28.044 Dep (+ -) Consecutive 13.989 7.360 40.698 45.837 34.210 11.068 Lat (+ -) 49 44 935 E 55 34 12 100 15 24 Bearing (WCB) 415 048 89 281 181 26 Bearing 248°55'34" notials 4 N 6 9 17 00 N 39.680 45.422 Distance 51,163 345. 691 \$1.560 52.645 20 A3 SAMPLE 28.223 ine/Leg 42 10 7 60 4 t 01 100 0 3 2 N M 40 00 1+

90

Closing $\sqrt{(n)^2+(e)^2}$ error = $\sqrt{(n)^2+(e)^2}$ = $\sqrt{0.063^2+0.118^2}$ = 0.134

Precision = Total-Selection regularities = $\frac{346.691}{0.134} \approx 2.560 > 2.000$

GALE'S TABLE FOR LINK TRAVERSE

-	T	~ 1	-	m I	~			
com	Basting	10052.279	10035.6001	1601	10112.059			
Com.	Northing	10142.221	290.4200	20161-232	20172-279			
-	Easting	1652,277	18095.568	326,46001	856-11101	10112.059	0.024 - 0.102	-0.024 0.102
	Northing	20192-221	140.42102	20162.248	20172,303	20172-923 (10171-059)	0.024	-0.024
	Departure	43.291 20142.221 1053.277 20143.281 10059.277	2,358 20127.071 1008.568 20127.063 (0095.601	14,032	-21,165		À	tion
	Latitude (m)	(m) -5.150		11.05\$	22.424	But, the correct N/E of station 4 is:	Total Error	Total correction
Mean	Distance	43.597	24,292	17.864	30.654	But, to		Total
Cumul. Cornected Mean	con. Bearing Distrace (m) m m m m m m m m m m m m m m m m m m	051.2- 43.594 "30 '45' 36	5,3411311	51. 46'06"	1,51,62,912			
Cumul.	com.		- 2'15"	-4,30"	- 6'44"			
	Bearing	,00 lth 96	5 36 32"	51, 20,38,	316° 45'59"	316° 39 15"	0,06144"	-0.0644"
H	At To Angle	100 ith 96 TT 8 tx TT 8	\$8,4931" 5°36'32" - 2'18" 5°34'17" 24,292 5-544	** LL L2 4 51° 50° 35" - 4' 30" 51° 46' 06" 17.864 11.055 14,032 20161.248 10097,926 20161.232 1991. 993	422 4 S 816 45 59" - 6'44" 816" 39'15" 80.654 22.424 - 21.165 20,425 1011.958 20142.23 10112.059	But the correct bearing of 45 is	Total Error	Total Correction
Trick. Sight. Hz.	200	17	11 12	2	N	the c	Total	tal Con
Inch.	At	00	17	727	4	Butbear		Total

Final	36° 47' 60"	5° 39'08"	510 51118"
Final Leg Distuncem	43,630	24.287	17.885
leg	8-17	11-17	12-4

CONCLUSION

the traverse was conducted successfully in the given plot. We have been familiar with the handling and operation of total station. Various concepts such as latitude, departure, northing, easting, etc have become clearer through this practical field work. And, the traverse was plotted in the scale 1:200 after applying analytic Bowditch correction.

建铁镍铁 对在外还可有。但在日本特别的特殊的。斯林·特。在新疆特别