Se consideran ecuaciones de la forma

y' = f(y) obien $\dot{x} = f(x)$

asociadas naturalmente a sistemas dinámicos autónomos La idea de la "línea fase" o "plano fase 1-dimensional" es graficar af y de alli deducir intervalos donde la solución crece, decrece o permanece fija

Un punto X* que cumple f(X*) = 0 se llama punto estacionario o punto de equilibrio del sistema dinámico x=f(x)

Si lim xlt) = x* para una solución xlt) t→∞ con duto inicial Xo cerca de x*, se dice que el punto estacionario x* es estable

De no ser así, se dice que es inestable Podemos ahora exhibir ejemplos de esta técnica auxiliados de un importante teorema

Considérese el sistema dinámico autónomo x=f(x) conf de clase C1. Sea x* punto estacionario del sistema, tal que f'(x*) +0. Entonces x^* es estable \iff $f'(x^*) < 0$

Ejemplos

2) Este ejemplo mostrarà que si f'(x*)=0 en un punto estacionario, nada se puede concluir can toda certeza $\ddot{\chi} = (\chi - 2)^2$

En este caso se tiene la linea fase:

$$f(x) = 2(x-2)$$

$$\dot{\chi} = \chi^2(1-\chi)$$

Puntos estacionarios: $x_1^* = 0$, $x_2^* = 1$

$$f'(x) = 2x - 3x^2$$
, $f'(x_1^*) = 0$, $f'(x_2^*) = 2 - 6 < 0$

En los últimos ejemplos hay un punto estacionario donde f'(x*)=0 y el punto no es estable

4
$$\dot{x} = (x^{3}(x-1))$$
 $f(x) = x^{3}(x-1) = 0$
 $f(x) = 4x^{3} - 3x^{2}$ $(x^{*}) = 0$ $f(x) = x^{3}(x-1) = 0$
 $f(x) = 4x^{3} - 3x^{2}$ $f(x^{*}) = 4 - 3 > 0$

En este caso $x_i^*=1$ no es estable y $f(x_i^*)=0$ De los ejemplos 3 y 4 concluimos que si $f'(x^*)=0$ entonces no tenemos certeza del tipo de punto (estable) se tiene

Coloquialmente hablando se puede hablar de puntos atractores y repulsores

Puntos estacionarios:
$$y_j^* = \frac{\pi}{2} + j\pi = \frac{2\pi j + \pi}{2} = \frac{(2j+1)\pi}{2}$$

Alhora sólo veremos en la línea fase las flechas $j \in \mathbb{Z}$ y una línea que representa si $f'(x^*)>0$ o $f'(x^*)<0$

En este caso el diagrama de soluciones
debe mostrar puntos estacionarios que alternan
entre estables y no estables
35/2 1-

ESTABLE

TO INESTABLE

TO THE STABLE

TO THE STABLE