

Enriching continuous Lagrange finite element approximation spaces using neural networks

Michel Duprez¹, Emmanuel Franck², **Frédérique Lecourtier**¹ and Vanessa Lleras³

¹Project-Team MIMESIS, Inria, Strasbourg, France ²Project-Team MACARON, Inria, Strasbourg, France ³IMAG, University of Montpellier, Montpellier, France

Joint work with:

H. Barucq, F. Faucher, N. Victorion and V. Michel-Dansac.

Scientific context

Context: Create real-time digital twins of an organ (e.g. liver).

Objective : Develop an hybrid finite element / neural network method.

Complete ONLINE process : quick + accurate

Heated cavity test case

Stationary incompressible Navier-Stokes equations (with buoyancy and gravity)¹:

We consider $\Omega = [-1,1]^2$ a squared domain and ${\bf e}_{\rm y} = (0,1)$.

Find the velocity ${\it {f u}}=(u_1,u_2)$, the pressure p and the temperature ${\it T}$ such that

$$\begin{cases} (\textbf{\textit{u}}\cdot\nabla)\textbf{\textit{u}} + \nabla p - \mu\Delta \textbf{\textit{u}} - g(\beta T + 1)\textbf{\textit{e}}_{\textbf{\textit{y}}} = 0 & \text{in } \Omega \\ \nabla \cdot \textbf{\textit{u}} = 0 & \text{in } \Omega \\ \textbf{\textit{u}}\cdot\nabla T - k_{f}\Delta T = 0 & \text{in } \Omega \\ + \text{suitable BC} \end{cases} \tag{momentum} \tag{p}$$

with ${\it g}=9.81$ the gravity, ${\it \beta}=0.1$ the expansion coefficient, ${\it \mu}$ the viscosity and ${\it k_f}$ the thermal conductivity. [Coulaud et al., 2024]

¹The approach will be shown on this example, but can be extended to other test cases.

Heated cavity test case

Objective: Simulation on a range of parameters $\mu = (\mu, k_f) \in \mathcal{M} = [0.01, 0.1]^2$.

Stationary incompressible Navier-Stokes equations (with buoyancy and gravity):

We consider $\mathbf{x} = (\mathbf{x}, \mathbf{y}) \in \Omega$ and $\mathbf{e}_{\mathbf{y}} = (0, 1)$. Find $\mathbf{U} = (\mathbf{u}, \mathbf{p}, T) = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{p}, T)$ such that

$$\begin{cases} \textit{R}_{\textit{mom}}(\textit{U}; \textbf{x}, \boldsymbol{\mu}) = 0 & \text{in } \Omega & \text{(momentum)} \\ \textit{R}_{\textit{inc}}(\textit{U}; \textbf{x}, \boldsymbol{\mu}) = 0 & \text{in } \Omega & \text{(incompressibility)} \\ \textit{R}_{\textit{ener}}(\textit{U}; \textbf{x}, \boldsymbol{\mu}) = 0 & \text{in } \Omega & \text{(energy)} \\ + & \text{suitable BC} \end{cases}$$

with g=9.81 the gravity, $\beta=0.1$ the expansion coefficient, μ the viscosity and $k_{\rm f}$ the thermal conductivity. [Coulaud et al., 2024]

Heated cavity test case

Objective: Simulation on a range of parameters $\mu = (\mu, k_f) \in \mathcal{M} = [0.01, 0.1]^2$.

Stationary incompressible Navier-Stokes equations (with buoyancy and gravity):

We consider $\mathbf{x} = (x, y) \in \Omega$ and $\mathbf{e}_y = (0, 1)$.

Find ${\it \textbf{U}}=({\it \textbf{u}},{\it p},{\it T})=(u_1,u_2,{\it p},{\it T})$ such that

$$\begin{cases} \textit{R}_{\textit{mom}}(\textit{U}; \textbf{\textit{x}}, \boldsymbol{\mu}) = 0 \;\; \text{in} \; \Omega & \text{(momentum)} \\ \textit{R}_{\textit{inc}}(\textit{U}; \textbf{\textit{x}}, \boldsymbol{\mu}) = 0 \;\; \text{in} \; \Omega & \text{(incompressibility)} \\ \textit{R}_{\textit{ener}}(\textit{U}; \textbf{\textit{x}}, \boldsymbol{\mu}) = 0 \;\; \text{in} \; \Omega & \text{(energy)} \end{cases}$$

with ${\it g}=9.81$ the gravity, ${\it \beta}=0.1$ the expansion coefficient, ${\it \mu}$ the viscosity and ${\it k_f}$ the thermal conductivity. [Coulaud et al., 2024]

Boundary Conditions:

No-slip BC : $\emph{\textbf{u}}=0$ on $\partial\Omega$ Isothermal BC : $\emph{\textbf{T}}=1$ on the left wall ($\emph{\textbf{x}}=-1$)

 $\mathit{T} = -1$ on the right wall ($\mathit{x} = 1$)

Adiabatic BC : $\frac{\partial \mathcal{T}}{\partial n}=0$ on the top and bottom walls ($y=\pm 1$, denoted by Γ_{ad})

Evaluate quality of solutions

$$\pmb{\mu}^{(1)} = (0.1, 0.1)$$
 , $\pmb{\mu}^{(2)} = (0.05, 0.05)$ and $\pmb{\mu}^{(3)} = (0.01, 0.01)$

We evaluate the quality of solutions by comparing them to a reference solution.¹

 $^{^{1}}$ Computed on a over-refined mesh ($h=7.10^{-3}$) on a $\mathbb{P}_{3}^{2}\times\mathbb{P}_{2}\times\mathbb{P}_{3}$ continuous Lagrange FE space.

In the following, we are interested in three parameters (rising in complexity):

$$\mu^{(1)} = (0.1, 0.1)$$
, $\mu^{(2)} = (0.05, 0.05)$ and $\mu^{(3)} = (0.01, 0.01)$

We evaluate the quality of solutions by comparing them to a reference solution. 1

Reference solution - Rayleigh number : Ra = 1569.6

¹Computed on a over-refined mesh ($h=7.10^{-3}$) on a $\mathbb{P}_3^2\times\mathbb{P}_2\times\mathbb{P}_3$ continuous Lagrange FE space.

Evaluate quality of solutions

In the following, we are interested in three parameters (rising in complexity):

$$\boldsymbol{\mu}^{(1)} = (0.1, 0.1), \, \boldsymbol{\mu}^{(2)} = (0.05, 0.05) \text{ and } \boldsymbol{\mu}^{(3)} = (0.01, 0.01)$$

We evaluate the quality of solutions by comparing them to a reference solution.¹

Reference solution - Rayleigh number : $R\alpha = 6278.4$

 $^{^{1}}$ Computed on a over-refined mesh ($h=7.10^{-3}$) on a $\mathbb{P}_{3}^{2}\times\mathbb{P}_{2}\times\mathbb{P}_{3}$ continuous Lagrange FE space.

Evaluate quality of solutions

In the following, we are interested in three parameters (rising in complexity):

$$\boldsymbol{\mu}^{(1)} = (0.1, 0.1)$$
, $\boldsymbol{\mu}^{(2)} = (0.05, 0.05)$ and $\boldsymbol{\mu}^{(3)} = (0.01, 0.01)$

We evaluate the quality of solutions by comparing them to a reference solution.¹

Reference solution - Rayleigh number : $R\alpha = 156960$

 $^{^{1}}$ Computed on a over-refined mesh ($h=7.10^{-3}$) on a $\mathbb{P}_{3}^{2}\times\mathbb{P}_{2}\times\mathbb{P}_{3}$ continuous Lagrange FE space.

Parametric Physics-Informed Neural Network (PINN)

The PINN is parametrized by the μ parameter.

Neural Network considered

We consider a parametric NN with 4 inputs and 4 outputs, defined by

$$U_{\theta}(\mathbf{x}, \boldsymbol{\mu}) = (u_{1,\theta}, u_{2,\theta}, p_{\theta}, T_{\theta})(\mathbf{x}, \boldsymbol{\mu}).$$

The Dirichlet boundary conditions are imposed on the outputs of the MLP by a **post-processing** step. [Sukumar and Srivastava, 2022]

We consider two levelsets functions φ_1 and φ_2 , and the linear function ${\it g}$ defined by

$$\varphi_1({\bf x},{\bf y}) = ({\bf x}-1)({\bf x}+1)({\bf y}-1)({\bf y}+1),$$

$$\varphi_2({\bf x},{\bf y}) = ({\bf x}-1)({\bf x}+1) \quad \text{and} \quad {\bf g}({\bf x},{\bf y}) = 1-({\bf x}+1).$$

PINN training

Approximate the solution of (\mathcal{P}) **by a PINN :** Find the optimal weights θ^{\star} , such that

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \left(\underbrace{J_{inc}(\theta) + J_{mom}(\theta) + J_{ener}(\theta) + J_{ad}(\theta)}_{\theta} \right), \tag{\mathcal{P}_{θ}}$$

where the different cost functions¹ are defined by

adiabatic condition

$$J_{ad}(heta) = \int_{\mathcal{M}} \int_{\Gamma_{\mathrm{ad}}} ig| rac{\partial au_{ heta}(\mathbf{x}, oldsymbol{\mu})}{\partial n} ig|^2 d\mathbf{x} doldsymbol{\mu},$$

3 residual losses

$$J_{ullet}(heta) = \int_{\mathcal{M}} \int_{\Omega} \left| R_{ullet}(U_{ heta}(\mathbf{x}, oldsymbol{\mu}); \mathbf{x}, oldsymbol{\mu})
ight|^2 d\mathbf{x} doldsymbol{\mu},$$

with U_{θ} the parametric NN and \bullet the PDE considered (i.e. *inc*, *mom* or *ener*).

Network - MLP			
layers	40, 60, 60, 60, 40		
σ	sine		

Training (ADAM / LBFGs)				
lr	7e-3	$N_{ m col}$	40000	
n_{epochs}	10000	$N_{ m bc}$	30000	

¹Discretized by a random process using Monte-Carlo method.

Prediction on $\mu^{(1)} = (0.1, 0.1)$

ediction on $\mu^{(-)} \equiv (0.1, 0.1)$ $u_{1,\theta}$ $u_{2,\theta}$

Prediction:

$$L^2$$
 error : (relative)

$$2.98 \times 10^{-2}$$

$$3.17 \times 10^{-2}$$

$$3.90 \times 10^{-2}$$

The μ parameter is fixed in the FE resolution.

Discrete weak formulation

We consider a mixed finite element space $M_h = [V_h^0]^2 imes Q_h imes W_h$ and

with
$$W = \{ w \in H^1(\Omega), w|_{x=-1} = 1, w|_{x=1} = -1 \}.$$

Discrete weak formulation

We consider a mixed finite element space $M_h = [V_h^0]^2 imes Q_h imes W_h$ and

with $W = \{ w \in H^1(\Omega), w|_{x=-1} = 1, w|_{x=1} = -1 \}.$

where $M_b^0 = [V_b^0]^2 \times Q_b \times W_b^0$ with $W_b^0 \subset \{w \in H^1[\Omega], w|_{x=+1} = 0\}$.

$$\begin{aligned} \text{Weak problem : Find } U_h &= \left(\textbf{\textit{u}}_h, p_h, T_h \right) \in \textit{\textit{M}}_h \text{ s.t.,} \quad \forall \left(\textbf{\textit{v}}_h, q_h, \textit{\textit{w}}_h \right) \in \textit{\textit{M}}_h^0, \\ & \int_{\Omega} (\textbf{\textit{u}}_h \cdot \nabla) \textbf{\textit{u}}_h \cdot \textbf{\textit{v}}_h \, d\textbf{\textit{x}} + \mu \int_{\Omega} \nabla \textbf{\textit{u}}_h : \nabla \textbf{\textit{v}}_h \, d\textbf{\textit{x}} \\ & - \int_{\Omega} p_h \, \nabla \cdot \textbf{\textit{v}}_h \, d\textbf{\textit{x}} - g \int_{\Omega} (1 + \beta T_h) \textbf{\textit{e}}_y \cdot \textbf{\textit{v}}_h \, d\textbf{\textit{x}} = 0, \qquad \text{(momentum)} \\ & \int_{\Omega} q_h \, \nabla \cdot \textbf{\textit{u}}_h \, d\textbf{\textit{x}} + 10^{-4} \int_{\Omega} q_h \, p_h \, d\textbf{\textit{x}} = 0, \qquad \text{(incompressibility + pressure penalization)} \\ & \int_{\Omega} (\textbf{\textit{u}}_h \cdot \nabla T_h) \, \textit{\textit{w}}_h \, d\textbf{\textit{x}} + \int_{\Omega} k_f \nabla T_h \cdot \nabla \textit{\textit{w}}_h \, d\textbf{\textit{x}} = 0, \qquad \text{(energy)} \end{aligned}$$

LECOURTIER Frédérique

We consider the following three parameters:

$$\boldsymbol{\mu}^{(1)} = (0.1, 0.1), \ \boldsymbol{\mu}^{(2)} = (0.05, 0.05) \text{ and } \boldsymbol{\mu}^{(3)} = (0.01, 0.01).$$

Denoting N_h the dimension of M_h , we want to solve the non linear system:

$$F(\vec{U}_k) = 0$$

with $F: \mathbb{R}^{N_h} \to \mathbb{R}^{N_h}$ a non linear operator and $\vec{U}_k \in \mathbb{R}^{N_h}$ the unknown vector associated to the *k*-th parameter $\mu^{(k)}$ (k = 1, 2, 3). Appendix 1

Algorithm 1: Newton algorithm

Initialization step: set $\vec{U}_{k}^{(0)} = \vec{U}_{k}$ 0:

for $n \ge 0$ do

Solve the linear system $F(\vec{U}_{\iota}^{(n)}) + F'(\vec{U}_{\iota}^{(n)})\delta_{\iota}^{(n+1)} = 0$ for $\delta_{\iota}^{(n+1)}$; Update $\vec{U}_{t}^{(n+1)} = \vec{U}_{t}^{(n)} + \delta_{t}^{(n+1)}$:

end

Newton method

We consider the following three parameters:

$$\boldsymbol{\mu}^{(1)} = (0.1, 0.1), \ \boldsymbol{\mu}^{(2)} = (0.05, 0.05) \text{ and } \boldsymbol{\mu}^{(3)} = (0.01, 0.01).$$

Denoting N_h the dimension of M_h , we want to solve the non linear system:

$$F(\vec{U}_k) = 0$$

with $F: \mathbb{R}^{N_h} \to \mathbb{R}^{N_h}$ a non linear operator and $\vec{U}_k \in \mathbb{R}^{N_h}$ the unknown vector associated to the k-th parameter $\mu^{(k)}$ (k = 1, 2, 3). Appendix 1

Algorithm 1: Newton algorithm

Initialization step: set $\vec{U}_{k}^{(0)} = \vec{U}_{k}$ o: for n > 0 do

Solve the linear system $F(\vec{U}_{\iota}^{(n)}) + F'(\vec{U}_{\iota}^{(n)})\delta_{\iota}^{(n+1)} = 0$ for $\delta_{\iota}^{(n+1)}$; Update $\vec{U}_{t}^{(n+1)} = \vec{U}_{t}^{(n)} + \delta_{t}^{(n+1)}$:

end

How to initialize the Newton solver?

3 types of initialization

- · Natural:
- · PINN:
- · Continuation method:

3 types of initialization

 Natural: Using constant or linear function. Considering a fixed parameter with $k \in \{1, 2, 3\}$, we can use the following initialization:

$$\vec{U}_{k,0} = \left(\vec{0}, \vec{0}, \vec{0}, \vec{7}_0\right)$$

where for $i = 1, \ldots, \dim(W_h)$,

$$(\vec{T}_0)_i = g(\mathbf{x}^{(i)}) = 1 - (\mathbf{x}^{(i)} + 1)$$

with $\mathbf{x}^{(i)} = (\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$ the *i*-th dofs coordinates of W_h .

- · PINN:
- Continuation method:

- · Natural: Using constant or linear function.
- PINN: Using PINN prediction.

(UNet: [Odot et al., 2021]; FNO: [Aghili et al., 2025])

Considering a fixed parameter with $k \in \{1, 2, 3\}$, we can use the following initialization for $i = 1, \ldots, N_h$,

$$\left(\vec{U}_{k,0}\right)_i = U_{\theta}(\mathbf{x}^{(i)}, \boldsymbol{\mu}^{(k)})$$

with $\mathbf{x}^{(i)} = (x^{(i)}, y^{(i)})$ the *i*-th dofs coordinates of M_h and U_{θ} the PINN.

Continuation method :

- · Natural: Using constant or linear function.
- PINN: Using PINN prediction.

(UNet: [Odot et al., 2021]; FNO: [Aghili et al., 2025])

- **Continuation method**: Using a coarse FE solution of a simpler parameter.
 - We consider a fixed parameter with $k \in \{2, 3\}$.
 - We consider a coarse grid (16×16 grid) and compute the FE solution of (\mathcal{P}_h) for the parameter $\mu^{(k-1)}$.
 - We interpolate the coarse solution to the current mesh.
 - We use it as an initialization for the Newton method, i.e.

$$\vec{U}_{k,0} = (\vec{u}_{k-1}, \vec{v}_{k-1}, \vec{p}_{k-1}, \vec{T}_{k-1})$$

where \vec{u}_{k-1} , \vec{v}_{k-1} , \vec{p}_{k-1} and \vec{T}_{k-1} are the FE solutions for the parameter $\mu^{(k-1)}$.

Very simple linear test case
The heated cavity test case considered

Very simple linear test case

What is the purpose of enrichment?

Poisson problem (with Dirichlet BC): Find $u: \Omega \to \mathbb{R}$ such that

$$\begin{cases} -\Delta u = f, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$

Variational Problem : We consider V_h^0 a \mathbb{P}_k continuous Lagrange FE space ($k \geq 1$).

Find
$$u_h \in V_h^0$$
 such that, $\forall v_h \in V_h^0$, $a(u_h, v_h) = I(v_h)$, (\mathcal{P}_h)

with h the characteristic mesh size, a and b the associated bilinear and linear forms.

Modified Poisson problem : Find $C_{h,u}^+:\Omega\to\mathbb{R}$ such that

$$\begin{cases} -\Delta \textit{\textbf{C}}_{\textit{h},\textit{u}}^{+} = \textit{\textbf{f}} + \Delta \textit{\textbf{u}}_{\textit{\theta}}, & \text{in } \Omega, \\ \textit{\textbf{C}}_{\textit{h},\textit{u}}^{+} = 0, & \text{on } \partial \Omega, \end{cases}$$

with u_{θ} a PINN prediction.

Modified variational Problem:

Find
$$C_{h,u}^+ \in V_h^0$$
 such that, $\forall v_h \in V_h^0$, $a(C_{h,u}^+, v_h) = I(v_h) - a(u_\theta, v_h)$, (\mathcal{P}_h^+)

with the enriched trial space V_h^+ defined by

$$V_h^+ = \{ u_h^+ = u_\theta + C_{h,u}^+, \quad C_{h,u}^+ \in V_h^0 \}.$$

What is the purpose of enrichment?

Modified variational Problem:

Find
$$C_{h,u}^+ \in V_h^0$$
 such that, $\forall v_h \in V_h^0$, $a(C_{h,u}^+, v_h) = I(v_h) - a(u_\theta, v_h)$, (\mathcal{P}_h^+)

with the enriched trial space V_h^+ defined by

$$V_h^+ = \left\{ u_h^+ = u_\theta + C_{h,u}^+, \quad C_{h,u}^+ \in V_h^0 \right\}.$$

We hope that the modified problem will give the same results as the standard one on coarser meshes.

Convergence analysis

Theorem 1: Convergence analysis of the standard FEM [Ern and Guermond, 2004]

We denote $u_h \in V_h$ the solution of (\mathcal{P}_h) with V_h the standard trial space. Then,

$$|u-u_h|_{H^1}\leqslant C_{H^1} h^k |u|_{H^{k+1}},$$

$$||u-u_h||_{L^2} \leqslant C_{L^2} h^{k+1} |u|_{H^{k+1}}.$$

Theorem 2: Convergence analysis of the enriched FEM [F. Lecourtier et al., 2025]

We denote $u_h^+ \in V_h^+$ the solution of (\mathcal{P}_h^+) with V_h^+ the enriched trial space. Then.

$$|u-u_h^+|_{H^1} \leqslant \left| \frac{|u-u_\theta|_{H^{k+1}}}{|u|_{H^{k+1}}} \right| \left(C_{H^1} h^k |u|_{H^{k+1}} \right),$$

$$||u - u_h^+||_{L^2} \leqslant \frac{|u - u_\theta|_{H^{k+1}}}{|u|_{H^{k+1}}} \left(C_{L^2} h^{k+1} |u|_{H^{k+1}} \right).$$

Gains of the additive approach.

Enriched finite element method using PINN

The heated cavity test case considered

Considering the PINN prior $U_{\theta} = (\mathbf{u}_{\theta}, p_{\theta}, T_{\theta})$, we define the mixed finite element space additively enriched by the PINN as follows:

$$M_h^+ = \{U_h^+ = U_\theta + C_h^+, C_h^+ \in M_h^0\}$$

with
$$M_h^0 = [V_h^0]^2 \times Q_h \times W_h^0$$
, $U_h^+ = (\boldsymbol{u}_h^+, p_h^+, T_h^+) \in M_h^+$ and $C_h^+ = (\boldsymbol{c}_{h,\boldsymbol{u}}^+, C_{h,p}^+, C_{h,T}^+)$.

We can then define the three finite element subspaces of M_h^+ as follows:

$$\begin{aligned} \mathbf{V}_{h}^{+} &= \left\{ \mathbf{u}_{h}^{+} = \mathbf{u}_{\theta} + \mathbf{C}_{h,\mathbf{u}}^{+}, \ \mathbf{C}_{h,\mathbf{u}}^{+} \in [V_{h}^{0}]^{2} \right\}, \\ Q_{h}^{+} &= \left\{ \rho_{h}^{+} = \rho_{\theta} + C_{h,\rho}^{+}, \ C_{h,\rho}^{+} \in Q_{h} \right\}, \\ W_{h}^{+} &= \left\{ \mathcal{T}_{h}^{+} = \mathcal{T}_{\theta} + C_{h,T}^{+}, \ C_{h,T}^{+} \in W_{h}^{0} \right\}, \end{aligned}$$

where $\boldsymbol{C}_{h,\boldsymbol{u}'}^+$, $C_{h,p}^+$ and $C_{h,T}^+$ becomes the unknowns.

Weak formulation - Additive approach

Weak problem : Find
$$C_h^+ = (C_{h,u}^+, C_{h,p}^+, C_{h,T}^+) \in M_h^0$$
 s.t., $\forall (\mathbf{v}_h, q_h, w_h) \in M_h^0$,

$$\begin{split} \int_{\Omega} \left[(\mathbf{u}_{\theta} \cdot \nabla) \mathbf{u}_{\theta} + (\mathbf{u}_{\theta} \cdot \nabla) \mathbf{c}_{h,u}^{+} + (\mathbf{c}_{h,u}^{+} \cdot \nabla) \mathbf{u}_{\theta} + (\mathbf{c}_{h,u}^{+} \cdot \nabla) \mathbf{c}_{h,u}^{+} \right] \cdot \mathbf{v}_{h} \, d\mathbf{x} \\ &+ \mu \left(\int_{\Omega} \nabla \mathbf{u}_{\theta} : \nabla \mathbf{v}_{h} \, d\mathbf{x} + \int_{\Omega} \nabla \mathbf{c}_{h,u}^{+} : \nabla \mathbf{v}_{h} \, d\mathbf{x} \right) + \left(\int_{\Omega} \nabla p_{\theta} \cdot \mathbf{v}_{h} \, d\mathbf{x} - \int_{\Omega} \mathbf{c}_{h,p}^{+} \nabla \cdot \mathbf{v}_{h} \, d\mathbf{x} \right) \\ &- g \int_{\Omega} (1 + \beta (\mathbf{T}_{\theta} + \mathbf{c}_{h,T}^{+})) \mathbf{e}_{y} \cdot \mathbf{v}_{h} \, d\mathbf{x} = 0, \, (\text{momentum}) \\ \int_{\Omega} q_{h} \left[\nabla \cdot \mathbf{u}_{\theta} + \nabla \cdot \mathbf{c}_{h,u}^{+} \right] d\mathbf{x} + 10^{-4} \int_{\Omega} q_{h} \left(p_{\theta} + \mathbf{c}_{h,p}^{+} \right) d\mathbf{x} = 0, \, (\text{incompressibility + penal}) \\ \int_{\Omega} \left[\mathbf{u}_{\theta} \cdot \nabla \mathbf{T}_{\theta} + \mathbf{u}_{\theta} \cdot \nabla \mathbf{c}_{h,T}^{+} + \mathbf{c}_{h,u}^{+} \cdot \nabla \mathbf{T}_{\theta} + \mathbf{c}_{h,u}^{+} \cdot \nabla \mathbf{c}_{h,T}^{+} \right] \mathbf{w}_{h} \, d\mathbf{x} \\ &+ k_{f} \left(\int_{\Omega} \nabla \mathbf{T}_{\theta} \cdot \nabla \mathbf{w}_{h} \, d\mathbf{x} + \int_{\Omega} \nabla \mathbf{c}_{h,T}^{+} \cdot \nabla \mathbf{w}_{h} \, d\mathbf{x} \, \mathbf{w}_{h} \, d\mathbf{x} \right) = 0, \, (\text{energy}) \end{split}$$

with $U_{\theta} = (\mathbf{u}_{\theta}, p_{\theta}, T_{\theta})$ the PINN prior and some modified boundary conditions.

Newton method - Additive approach

We want to solve the non linear system:

$$F_{\theta}(\vec{c}) = 0$$

with $F_{\theta}: \mathbb{R}^{N_h} \to \mathbb{R}^{N_h}$ the non linear operator associated to the weak problem (\mathcal{P}_h^+) and $\vec{C} \in \mathbb{R}^{N_h}$ the correction vector (unknown).

Algorithm 2: Newton algorithm [Aghili et al., 2025]

Initialization step: set $\vec{c}^{(0)} = 0$;

for $n \geq 0$ do

Solve the linear system $F_{\theta}(\vec{C}^{(n)}) + F'_{\theta}(\vec{C}^{(n)})\delta^{(n+1)} = 0$ for $\delta^{(n+1)}$;

Update $ec{\textit{C}}^{(\textit{n}+1)} = ec{\textit{C}}^{(\textit{n})} + \delta^{(\textit{n}+1)}$;

end

Advantage compared to PINN initialization¹:

 u_{θ} is not required to live in the same discrete space as C_h^+ .

¹Taking U_{θ} and C_{b}^{+} in the same space, additive approach is exactly the same as the PINN initialization.

Numerical results

- Results obtained with a laptop GPU.
- The newton solver is the same for all methods (rtol= 10^{-10} , atol= 10^{-10} , max it= 30).
- Additive approach : we consider u_{θ} in a $\mathbb{P}^2_3 \times \mathbb{P}_2 \times \mathbb{P}_3$ continuous Lagrange FE space (defined on the current mesh).

Error estimates I

Error estimates I

Error estimates II

Error estimates II

LECOURTIER Frédérique

 N_{dofs} and execution time required to reach the same global L^2 relative error¹ e:

	Number of	Execution times				
e	Std/DPhy	\mathbf{Add}	Std	DPhy	Add	
$1 \cdot 10^{-3}$	6,031	2,044	0.32	0.16	0.16	
$1 \cdot 10^{-4}$	26,959	10,588	0.99	0.48	0.23	
$1\cdot 10^{-5}$	$121,\!156$	49,231	4.21	1.75	0.96	

¹Defined as the sum of the L^2 relatives errors on \boldsymbol{u} and T.

 $N_{
m dofs}$ and execution time required to reach the same global L^2 relative error 1 e:

	Number of Γ	Execution times				
\mathbf{e}	Std/Inc/DPhy	\mathbf{Add}	Std	Inc	DPhy	\mathbf{Add}
$1 \cdot 10^{-3}$	7,828	2,748	0.58	0.39	0.19	0.24
$1 \cdot 10^{-4}$	35,884	14,623	1.95	1.14	0.8	0.32
$1\cdot 10^{-5}$	167,583	70,303	9.39	4.16	3.4	1.59

¹Defined as the sum of the L^2 relatives errors on \boldsymbol{u} and T.

 $N_{\rm dofs}$ and execution time required to reach the same global L^2 relative error e:

	Number of DoFs			Execution times			
\mathbf{e}	Std	Inc/DPhy	Add	Std	Inc	DPhy	\mathbf{Add}
$1 \cdot 10^{-3}$	X	33,204	23,524	X	1.29	0.96	0.91
$1\cdot 10^{-4}$	X	150,339	108,931	X	4.76	4.67	3.65
$1\cdot 10^{-5}$	X	690,924	$502,\!156$	X	20.34	23.3	17.23

¹Defined as the sum of the L^2 relatives errors on \boldsymbol{u} and T.

Non parametric PINN¹ for $\mu^{(3)}$

¹We consider exactly the same architecture, but this time we train the PINN non-parametrically.

Error estimates on $\mu^{(3)}$

Numerical costs on $\mu^{(3)}$

 N_{dofs} and execution time required to reach the same global L^2 relative error e:

A modifier

Numerical costs on $\mu^{(3)}$

 N_{dofs} and execution time required to reach the same global L^2 relative error e:

	Number of DoFs			Execution times			
\mathbf{e}	Std	Inc/DPhy	Add	Std	Inc	DPhy	Add
$\overline{1\cdot 10^{-3}}$	X	33,204	23,524	X	1.29	0.96	0.91
$1 \cdot 10^{-4}$	X	150,339	108,931	X	4.76	4.67	3.65
$1 \cdot 10^{-5}$	X	690,924	$502,\!156$	X	20.34	23.3	17.23

A modifier

Numerical costs on $\mu^{(3)}$

 N_{dofs} and execution time required to reach the same global L^2 relative error e:

	Number of DoFs			Execution times			
\mathbf{e}	Std	Inc/DPhy	Add	Std	Inc	DPhy	Add
$\overline{1\cdot 10^{-3}}$	X	33,204	13,764	X	1.29	0.56	0.31
$1 \cdot 10^{-4}$	X	150,339	70,303	X	4.76	2.82	1.78
$1 \cdot 10^{-5}$	X	690,924	339,231	X	20.34	13.84	6.42

A modifier

Conclusion

TODO

Parler du papier en linéaire et dire que dans ce cadre on a des résultats théoriques de convergence.

References

- J. Aghili, E. Franck, R. Hild, V. Michel-Dansac, and V. Vigon. Accelerating the convergence of newton's method for nonlinear elliptic pdes using fourier neural operators. 2025.
- Guillaume Coulaud, Maxime Le, and Régis Duvigneau. Investigations on Physics-Informed Neural Networks for Aerodynamics, 2024.
- A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements. 2004.
- A. Odot, R. Haferssas, and S. Cotin. Deepphysics: a physics aware deep learning framework for real-time simulation, 2021.
- N. Sukumar and A. Srivastava. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks. 2022.
- F. Lecourtier, H. Barucq, M. Duprez, F. Faucher, E. Franck, V. Lleras, V. Michel-Dansac, and N. Victorion. Enriching continuous lagrange finite element approximation spaces using neural networks, 2025.

Appendix 1 : Finite element method (FEM)

A1 – Construction of the unknown vector

Considering $(\phi_i)_{i=1}^{N_u}$, $(\psi_j)_{j=1}^{N_p}$ and $(\eta_k)_{k=1}^{N_\tau}$ the basis functions of the finite element spaces V_h^0 , Q_h and W_h respectively, we can write the discrete solutions as:

$$\boldsymbol{u}_h(\boldsymbol{x}) = \sum_{i=1}^{N_u} \begin{pmatrix} u_i \\ v_i \end{pmatrix} \phi_i(\boldsymbol{x}), \quad \rho_h(\boldsymbol{x}) = \sum_{j=1}^{N_p} \rho_j \psi_j(\boldsymbol{x}) \quad \text{and} \quad T_h(\boldsymbol{x}) = \sum_{k=1}^{N_T} T_k \eta_k(\boldsymbol{x}),$$

with the unknown vectors for velocity, pressure and temperature defined by

$$\vec{u} = (u_i)_{i=1}^{N_u} \in \mathbb{R}^{N_u}, \quad \vec{v} = (v_i)_{i=1}^{N_u} \in \mathbb{R}^{N_u},$$

$$\vec{p} = (p_j)_{i=1}^{N_p} \in \mathbb{R}^{N_p} \text{ and } \vec{T} = (T_k)_{k=1}^{N_T} \in \mathbb{R}^{N_T}.$$

Considering $N_h = 2N_u + N_p + N_T$, we can define the global vector of unknowns as:

$$\vec{U} = (\vec{u}, \vec{v}, \vec{p}, \vec{T}) \in \mathbb{R}^{N_h}$$
.

and $F: \mathbb{R}^{N_h} \to \mathbb{R}^{N_h}$ the nonlinear operator associated to the weak formulation (\mathcal{P}_h).

Appendix 2 : DeepPhysics / Additive approach

A2 - ??