TT0: Term Test 0

ON MARKUS

Timed Assessment

You may start this timed assessment after: Monday, January 25, 2021, 09:00:00 AM

You must start this timed assessment before: Monday, January 25, 2021, 09:00:00 PM

This timed assessment is not available yet.

Duration: 0 hours, 15 minutes

Late submission policy

- A deduction of 0.0% will be applied every 0.25 hours up to 0.25 hours after the assignment is due.
- Thereafter, a deduction of 1.0% will be applied every 0.01666666666666667 hours up to a maximum of 0.0833333333333333 hours.

lmdn. Smdhs. EX: D= { all strings over {a,bc}} P(x,y): x, y have same first character"
where x, y ∈ D) _ > not a quantifier def fun (x: int): y, yx, P(xy) Hx, Hy, P(x,y) HxED, HyED, P(x,y) Jequivalent $\forall x, y \in D, P(x, y)$ ∃x,y ∈ D, P(x,y) equivalent ∃y, x ∈ D, P(x,y)

The (1) $\forall x \in D, \exists y \in D, P(x,y)$ ·value of of can change depending on x

"for all strings, there is some string that,
starts with the same first character" D - - - $\frac{\chi}{y}$ - $\frac{\chi}{y}$ - - - - - - pick y = x(2) $\exists y \in D$, $\forall x \in D$, P(x,y) False value of y must be chosen indendently from a some strong has some first char as every stury" P(E,E) is Time (vacuously)

y= abc X Working with definitions predicate body Def: divides n if $n = d \cdot k$ for some $k \in \mathbb{Z}$ where $d, n \in \mathbb{Z}$ — domain Notation: d'n denotes "d divides n" 3/27 = True because 27=3.9 equivalently; disadivisor of n n is a multiple of d

EX1: Write a predicate expression that means: "every integer that divides 10, also divides 100". $\forall x \in \mathbb{Z}$, $x | 10 \Rightarrow x | 100$ standard way to say for all integers that divide 10" $D = \left\{ x \in \mathbb{Z} \mid x \mid 10 \right\}$ $\forall x \in D, x \mid 100$ correct but not standard and requires introducing many subsets when untiple values.

$$1) \forall x \in \mathbb{Z}_{1} \times |10 \wedge x| 100$$

(2) $\forall x \in \mathbb{Z}_{0} \times 100 \Rightarrow \times 100$

① Z: ... -3 -2 -1 0 12 3 ····
x / -? v x ②世:-5 ** ** -2 1 0 1 2 ····

Expanding definitions $\forall x \in \mathbb{Z}, x | 10 \Rightarrow x | 100$ equivalent to:

equivalent to: $\forall x \in \mathcal{Z}, \ x \in \mathcal{Z}, \ (\exists k_1 \in \mathcal{Z}, 10 = x \cdot k_1) \Rightarrow (\exists k_2 \in \mathcal{Z}, 100 = x \cdot k_2)$

Challenge:
Define predicate Prime(x), where x=Z+