Multivariate Statistics

HOME WORK # 1

Deadline: 12:00, November 2, 2019

Problem 1. Given the data matrix

$$\mathbf{X} = \begin{bmatrix} 3 & 4 \\ 6 & -2 \\ 3 & 1 \end{bmatrix}$$

- (a) Graph the scatter plot in p=2 dimensions, and locate the sample mean on your diagram.
- (b) Sketch the n=3-space representation of the data, and plot the deviation vectors $y_1 \overline{x}_1 1$ and $y_2 \overline{x}_2 1$.
- (c) Sketch the deviation vectors in (b) emanating from the origin. Calculate their lengths and the cosine of the angle between them. Relate these quantities to \mathbf{S}_n and \mathbf{R} .

Problem 2. Calculate the generalized sample variance |S| for the data matrix X in Problem 1.

Problem 3. Let **X** be $N_3(\mu, \Sigma)$ with $\mu' = [2, -3, 1]$ and

$$\Sigma = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$

Find the distribution of $3X_1 - 2X_2 + X_3$.

Problem 4. Let **X** be distributed as $N_3(\mu, \Sigma)$, where $\mu' = [1, -1, 2]$ and

$$\Sigma = \begin{bmatrix} 4 & 0 & -1 \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

Which of the following variables are independent? Explain.

- (a) X_1 and X_2
- (b) X_1 and X_3
- (c) X_2 and X_3

 $(d)(X_1, X_3) \text{ and } X_2$

(e)
$$X_1$$
 and $X_1 + 3X_2 - 2X_3$

Problem 5. Let X_1, X_2, X_3 and X_4 be independent $N_p(\mu, \Sigma)$ random vectors.

(a) Find the marginal distributions for each of the random vectors

$$\mathbf{V}_1 = \frac{1}{4}\mathbf{X}_1 - \frac{1}{4}\mathbf{X}_2 + \frac{1}{4}\mathbf{X}_3 - \frac{1}{4}\mathbf{X}_4$$

and

$$\mathbf{V}_2 = \frac{1}{4}\mathbf{X}_1 + \frac{1}{4}\mathbf{X}_2 - \frac{1}{4}\mathbf{X}_3 - \frac{1}{4}\mathbf{X}_4$$

(b) Find the joint density of the random vectors \mathbf{V}_1 and \mathbf{V}_2 defined in (a).