Devoir à la maison nº 13

EXERCICE 1.★

Soit E un \mathbb{R} -espace vectoriel de dimension $n \ge 2$.

- 1. Soit $f \in \mathcal{L}(E)$ tel que $f^{n-1} \neq 0$ et $f^n = 0$ où 0 désigne l'endomorphisme nul de E.
 - a. Montrer qu'il existe $x \in E$ tel que $f^{n-1}(x) \neq 0$.
 - **b.** Montrer que, pour un tel vecteur x, la famille $(f^{n-1}(x), f^{n-2}(x), \dots, f(x), x)$ est une base de E.

Dans toute la suite de l'exercice, f est un endomorphisme de E tel que $f^{n-1} \neq 0$ et $f^n = 0$ et x un vecteur de E tel que $f^{n-1}(x) \neq 0$.

- 2. Pour k un entier tel que $1 \le k \le n$, on pose $F_k = \text{vect}\left((f^{n-i}(x))_{1 \le i \le k}\right)$.
 - ${\bf a}.$ Déterminer la dimension de F_k .
 - **b.** Montrer que $F_k = \text{Ker}(f^k) = \text{Im}(f^{n-k})$.
 - c. Montrer que F_k est stable par f.
- 3. Soit F un sous-espace vectoriel stable par f. On suppose que F est de dimension k avec $1 \le k \le n-1$. On note \tilde{f} l'endomorphisme de F défini par : $\forall y \in F$, $\tilde{f}(y) = f(y)$.
 - a. Montrer qu'il existe un entier $\mathfrak{p}\geqslant 1$ tel que $\tilde{f}^{p-1}\neq \tilde{0}$ et $\tilde{f}^p=\tilde{0}$ où $\tilde{0}$ désigne l'endomorphisme nul de F.
 - **b.** Soit $y \in F$ tel que $\tilde{f}^{p-1}(y) \neq 0$. Que peut-on dire de la famille $(y, \tilde{f}(y), \dots, \tilde{f}^{p-1}(y))$? En déduire que $\tilde{f}^k = \tilde{0}$.
 - **c.** Montrer que $F = \text{Ker } f^k$.
 - d. Déterminer tous les sous-espaces vectoriels stables par f.
- $\textbf{4.} \ \, \text{On veut déterminer tous les endomorphismes } g \text{ de E qui commutent avec f, c'est-\`a-dire tels que f} \circ g = g \circ f.$
 - a. Soit g un endomorphisme de E. Montrer qu'il existe un unique n-uplet de nombres réels $(\alpha_0, \alpha_1, \dots, \alpha_{n-1})$ tel que :

$$g(x) = \alpha_0 x + \alpha_1 f(x) + \dots + \alpha_{n-1} f^{n-1}(x)$$

 \mathbf{b} . En déduire que si g commute avec f alors,

$$g = \alpha_0 \operatorname{Id}_E + \alpha_1 f + \dots + \alpha_{n-1} f^{n-1}$$

où $\alpha_0,\alpha_1,\dots,\alpha_{n-1}$ sont les réels définis à la question précédente.

c. Montrer que l'ensemble des endomorphismes qui commutent avec f est un sous-espace vectoriel de $\mathcal{L}(E)$ et préciser sa dimension.

EXERCICE 2.

Soit $\mathfrak u$ un endomorphisme de E, pour tout entier naturel $\mathfrak p$, on notera $I_{\mathfrak p}=\operatorname{Im}\mathfrak u^{\mathfrak p}$ et $K_{\mathfrak p}=\operatorname{Ker}\mathfrak u^{\mathfrak p}.$

- $\textbf{1.} \ \mathrm{Montrer} \ \mathrm{que} : \forall p \in \mathbb{N}, \quad K_p \subset K_{p+1} \ \mathrm{et} \ I_{p+1} \subset I_p.$
- 2. On suppose que E est de dimension finie et $\mathfrak u$ injectif. Déterminer $I_{\mathfrak p}$ et $K_{\mathfrak p}$ pour tout $\mathfrak p\in\mathbb N$.
- 3. On suppose que E est de dimension finie $n \in \mathbb{N}$.
 - $\mathbf{a.}\,$ Montrer qu'il existe un plus petit entier naturel $r\leqslant n$ tel que : $K_r=K_{r+1}$
 - $\mathbf{b.} \ \mathrm{Montrer} \ \mathrm{qu'alors} : I_r = I_{r+1} \ \mathrm{et} \ \mathrm{que} : \forall p \in \mathbb{N}, \quad K_r = K_{r+p} \ \mathrm{et} \ I_r = I_{r+p}.$
 - $\mathbf{c.}\ \mathrm{Montrer}\ \mathrm{que}: E = K_r \oplus I_r.$
- 4. Lorsque E n'est pas de dimension finie, existe-t-il un plus petit entier naturel r tel que $K_r = K_{r+1}$?

EXERCICE 3.

Soit E un \mathbb{R} -espace vectoriel de dimension finie \mathfrak{n} , avec $\mathfrak{n}\geqslant 2$. On rappelle que E* est l'ensemble des formes linéaires sur E.

- 1. Soit $\varphi \in E^*$ non nulle. Montrer que $Ker(\varphi)$ est un hyperplan de E.
- **2.** Soit H un hyperplan de E. Montrer qu'il existe $\varphi \in E^*$ telle que $H = Ker(\varphi)$.
- 3. Soient ϕ et ψ deux éléments non nuls de E^* tels que $\mathrm{Ker}(\phi) = \mathrm{Ker}(\psi)$. Montrer qu'il existe un réel non nul λ tel que $\psi = \lambda \phi$.
- 4. Soit H un hyperplan de E. Montrer que l'ensemble D(H) des éléments de E* dont le noyau contient H est un sous-espace vectoriel de E* dont on précisera la dimension.
- 5. On appelle transvection de E tout endomorphisme f de E possédant les deux propriétés suivantes :
 - \blacktriangleright Ker(f Id) est un hyperplan de E;
 - ▶ $\operatorname{Im}(f \operatorname{Id}) \subset \operatorname{Ker}(f \operatorname{Id})$.

On appelle $Ker(f - Id_E)$ la base de f et $Im(f - Id_E)$ la direction de f.

- a. Soit φ un élément non nul de E* et $\mathfrak u$ un vecteur non nul de Ker(φ). Pour tout vecteur $\mathfrak x$ de E, on pose $f(\mathfrak x) = \mathfrak x + \varphi(\mathfrak x)\mathfrak u$. Justifier l'existence de $\mathfrak u$ et montrer que $\mathfrak f$ est une transvection dont on précisera la base et la direction.
- **b.** Réciproquement, soit f une transvection de E. Montrer qu'il existe un élément non nul φ de E* et un vecteur $\mathfrak u$ non nul de $\operatorname{Ker}(\varphi)$ tels que $\mathfrak f(x)=x+\varphi(x)\mathfrak u$ pour tout $x\in E$.