Linear Regression

Simple Linear Regression

Example

- Impact of weather on event attendance
- Correlated? Predictable?

Sunshine (hours)	1.9	2.5	3.2	3.8	4.7	5.5	5.9	7.2
Concert attendance (100s)	22	33	30	42	38	49	42	55

Simple Linear Regression

- Regression
 - Dependent variable is numeric
- Linear
 - Fit a line
 - Line : Coefficients
- Optimization
 - Many possible lines
 - Criteria : Minimize error
- Error
 - Sum of squared residuals

Linear Regression: Math

- Linear Regression
 - Dependent variable is numeric
 - Fit a line

- More than 2 data points → Over-specified problem
- Criteria: Minimize error (sum of squared residuals)

$$y \approx \beta_0 + \beta_1 x$$
 $y = \beta_0 + \beta_1 x + \epsilon$
 $\epsilon \sim N(0, \sigma^2)$

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

- Optimization problem
 - min RSS Solve (using calculus)
 - Find coefficients (line) which minimizes the Residual Sum of Squares
- Use estimated coefficients ("model") to make predictions

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$\hat{\beta_0} = \bar{y} - \hat{\beta_1} \bar{x}$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Linear Regression: Intuition

$$y = \beta_0 + \beta_1 x + \epsilon$$
$$\epsilon \sim N(0, \sigma^2)$$

http://reliawiki.org/index.php/Simple_Linear_Regression_Analysis

How good is your line?

- Among all possible lines, LR selects one that minimize the RSS
 - Is this good enough?
 - Visual comparison
 - Quantification

How good is your line? : Quantify.

- How good is your line / fit / model?
 - What would be the best line?
 - RSS = 0 : Not always possible : over-specified problem 2 variables, n data points
- Goodness of line = RSS?
 - Depends on the units of y
 - What is big? What is small?
 - Interpretability? Model comparison?
- Coefficient of Determination R-sq (R²)
 - Intuition: P(Y|X) should have low variance
 - $TSS = \sum (y_i \bar{y})^2$
 - $ESS = \sum (\hat{y}_i \bar{y})^2$
 - $RSS = \sum (y_i \hat{y}_i)^2$
 - TSS = ESS + RSS
 - $R^2 = \frac{ESS}{TSS} = \frac{TSS RSS}{TSS} = 1 \frac{RSS}{TSS}$
 - = Square of the pearson correlation (for simple LR)

$$1 = \frac{ESS}{TSS} + \frac{RSS}{TSS} = \frac{\sum (\hat{\mathbf{Y}}_i - \bar{\mathbf{Y}})^2}{\sum (\mathbf{Y}_i - \bar{\mathbf{Y}})^2} + \frac{\sum (\mathbf{Y}_i - \hat{\mathbf{Y}}_i)^2}{\sum (\mathbf{Y}_i - \bar{\mathbf{Y}})^2}$$

Coefficient of Determination: Correlation

- Coefficient of Determination R-sq (R²)
 - $1 \frac{SSE}{SST} = R^2$
 - = Square of the pearson correlation (for simple LR)

$$r = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i} (x_i - \overline{x})^2} \sqrt{\sum_{i} (y_i - \overline{y})^2}}$$

Positive Correlation

positive correlation

Negative Correlation

LR: Statistics?

Data: Sample or Population

- Different lines for different samples of the data
 - Estimated parameters depend on the data set

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \qquad \hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{x}$$

- Prediction (Model)
 - For a given x, predict y: use given (sample) data to establish a relationship
 - For a given x, predict y : use given (sample) data to build a model
 - Use given (sample) data to build a model which can be applied on population (future data points)
 - A regression line provides a point estimate from a sample.

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x$$

- Estimated parameters
 - Are sample statistics
 - Are random variables
 - Will create a sampling distribution

Inferential Statistics on model parameters

- Sampling Distribution of model parameters
 - Standard Error (s.d. of the sampling distribution) $SE(\hat{\beta_1}) = \sqrt{\frac{\sigma^2}{\sum\limits_{i=1}^n (x_i \bar{x})^2}}$ $SE(\hat{\beta_0}) = \sqrt{\sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum\limits_{i=1}^n (x_i \bar{x})^2}\right)}$
- Variance of the population
 - Unknown
 - Estimate (Residual Standard Error)
 - Assume large enough sample
- Confidence Interval
 - In which the true (population) parameters lie

$$\hat{\sigma}^2 = RSE = \sqrt{\frac{RSS}{(n-2)}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2}{n-2}}$$

95% C.I. :
$$\hat{\beta}_1 \pm 2SE(\hat{\beta}_1)$$

95% C.I. : $\hat{\beta}_0 \pm 2SE(\hat{\beta}_0)$

Example (cont'd)

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-4.154014573	2.447784673	-1.697050651	0.102104456	-9.195321476	0.88729233
Big Mac Price (\$)	3.547427488	0.689658599	5.143744297	2.57053E-05	2.127049014	4.967805962

95% C.I. : $\hat{\beta}_1 \pm 2SE(\hat{\beta}_1)$ 95% C.I. : $\hat{\beta}_0 \pm 2SE(\hat{\beta}_0)$

13

Praphul Chandra

