Soham Chatterjee

Email: sohamc@cmi.ac.in

Course: Quantum Information Theory

Assignment - 1

Roll: BMC202175 Date: January 31, 2024

Problem 1

Let \mathcal{X} be a finite set and p_X be a probability distribution or a probability mass function (PMF) on \mathcal{X} . The Shannon entropy of p_X is defined as

$$H(p_X) \triangleq -\sum_{x \in \mathcal{X}} p_X(x) \log p_X(x)$$

- 1. Prove $\log x \le x 1$ and $\log \frac{1}{x} \ge 1 x$ for all x > 0. 2. $\sum_{x \in \mathcal{X}} p_X(x) \log \frac{1}{p_X(x)} \le \log |\mathcal{X}|$
- 3. $H(X) + H(Y) \ge H(X,Y)$ where $H(X,Y) = H(p_{X,Y})$ is the entropy of a joint PMF, $H(X) = H(p_X)$ where p_X is marginal of $p_{X,Y}$

Solution:

1. We have $\log x = \int_1^x \frac{1}{t} dt$ and $x - 1 = \int_1^x dt$. Now for $x \ge 1$ for all $t \ge 1$ we have $1 \ge \frac{1}{t}$. Hence

$$\int_{1}^{x} \frac{1}{t} dt \le \int_{1}^{x} dt \iff \log x \le x - 1$$

For 0 < x < 1 we have t < 1 hence $\frac{1}{t} \ge 1$. Hence

$$\int_{x}^{1} \frac{1}{t} dt \ge \int_{x}^{1} dt \iff -\log x \ge 1 - x \iff x - 1 \ge \log x$$

Therefore $\forall x > 0$ we have $\log x \le x - 1$.

Now we have $\log x \le x - 1 \iff 1 - x \le -\log x \iff 1 - x \le \log \frac{1}{x}$.

2.

3.

Problem 2

Let $p_X(x)$ be a PMF on \mathcal{X} . For $n \in bbN$, $\delta > 0$, let

$$T_{\delta}^{n}(p_{X}) \triangleq \left\{ x^{n} \in \mathcal{X}^{n} \mid \left| \frac{N(a|x^{n})}{n} - p_{X}(a) \right| \leq \frac{\delta p_{X}(a)}{\log |\mathcal{X}|} \, \forall \, a \in \mathcal{X} \right\}$$

where $N(a|x^n) = \sum_{i=1}^n \mathbb{1}_{\{x_i = a\}}$ denotes the number of occurrences of a in the sequences $x_1 x_2 \cdots x_n$.

$$\sum_{x^n \notin T^n_{\delta}(p_X)} \prod_{i=1}^n p_X(x_i) \le \exp\left[-\frac{2n\delta^2 \eta_{p_X}^2}{(\log |\mathcal{X}|)^2}\right]$$

where
$$\eta_{p_X} = \min_{a \in \mathcal{X}} \{ p_X(a) \mid 0 < p_X(a) < 1 \}$$

2. Prove that

$$\left[1 - \exp\left(\frac{2n\delta^2\eta_{p_X}^2}{(\log|\mathcal{X}|)^2}\right)\right] \exp\left[n(H(p_X) - \delta)\right] \le |T_\delta^n(p_X)| \le \exp\left[n(H(p_X) + \delta)\right]$$

3. Prove that

$$x^n \in T^n_{\delta}(p_X) \implies \exp[-n(H(p_X) + \delta)] \le \prod_{i=1}^n p_X(x_i) \le \exp[-n(H(p_X) - \delta)]$$

Solution:

Definitions: Let $p_{X,Y}$ be a joint PMF on $\mathcal{X} \times \mathcal{Y}$ where \mathcal{X} , \mathcal{Y} are finite sets. (Essentially $p_{XY}(x,y) \geq 0$ and $\sum_{x \in \mathcal{X}} \sum_{y \in mcY} p_{XY}(x,y) = 1$). We define the marginal of p_{XY} on X as $p_X(x) \triangleq \sum_{y \in \mathcal{Y}} p_{XY}(x,y)$ for $x \in \mathcal{X}$ and

marginal of p_{XY} on Y as $p_Y(y) \triangleq \sum_{x \in \mathcal{X}} p_{XY}(x,y)$ for $y \in \mathcal{Y}$. or a pair $(x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n$ of sequences we define

 $N(a, b \mid x^n, y^n) = \sum_{i=1}^n \mathbb{1}_{\{(x_i, y_i) = (a, b)\}}$ as the number of occurances of (a, b) in (x^n, y^n) .

Next the joint typical set wrt p_{XY} is defined as

$$T^n_{\delta}(p_{XY}) \triangleq \left\{ (x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n \mid \left| \frac{N(a, b \mid x^n, y^n)}{n} - p_{XY}(a, b) \right| \leq \frac{\delta p_{XY}(a, b)}{\log |\mathcal{X}| |mcY|} \, \forall \, (a, b) \in \mathcal{X} \times \mathcal{Y} \right\}$$

Problem 3

- 1. Prove that if $p_{XY}(a,b) = 0$ for some $(a,b) \in \mathcal{X} \times \mathcal{Y}$ and $(x^n,y^n) \in T^n_{\delta}(p_{XY})$ then $N(a,b|p_{XY}) = 0$. In other words, a pair that probability does not occur in any typical pair of sequences.
- 2. Let $\eta_{p_{XY}} = \min_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \{ p_{XY}(x,y) \mid 0 < p_{XY}(a,b) < 1 \}$. Use the Hoeffding Inequality to prove that

$$\sum_{(x^n,y^n)\notin T^n_\delta(p_{XY})} p^n_{XY}(x^n,y^n) \le 2|\mathcal{X}||\mathcal{Y}| \exp\left[-\frac{2n\delta^2\eta^2_{p_{XY}}}{(\log|\mathcal{X}||\mathcal{Y}|)^2}\right]$$

Hoeffding Inequality: Let Z_1, \ldots, Z_m are independent and identically distributed random variables for which $P[a \le Z_i \le b] = 1$ for ever $1 \le i \le m$ and $\mu = \mathbb{E}[Z_i]$. Then for every $\epsilon > 0$

$$p\left[\left|\frac{1}{m}\sum_{i=1}^{m}Z_{i}-\mu\right|>\epsilon\right]\leq2\exp\left[-2m\frac{\epsilon^{2}}{(b-a)^{2}}\right]$$

3. For any $(x^n, y^n) \in T^n_{\delta}(p_{XY})$ prove that

$$2^{-n[H(p_{XY})+\delta]} \le p_{XY}^n(x^n, y^n) = \prod_{i=1}^n p_{XY}(x_i, y_i) \le 2^{-n[H(p_{XY})-\delta]}$$

4. Prove that

$$(1-\tilde{\delta})2^{n[H(p_{XY})-\delta]} \le |T_{\delta}^n(p_{XY})| \le 2^{n[H(p_{XY})+\delta]}$$

where
$$ilde{\delta} = 2|\mathcal{X}||\mathcal{Y}|\exp\left[rac{2n\delta^2\eta_{p_{XY}}^2}{(\log|\mathcal{X}||\mathcal{Y}|)^2}
ight]$$

5. Prove that $(x^n, y^n) \in T^n_{\delta}(p_{XY})$ then $x^n \in T^n_{\delta}(p_X)$ and $y^n \in T^n_{\delta}(p_Y)$.

Solution:

Definitions: Suppose p_{XY} is a probability distribution (probability mass function (PMF)) on $|mmcX \times \mathcal{Y}|$. We recall the condition distribution $p_{Y|X}(y|x) = \frac{p_{XY}(x,y)}{p_X(x)}$ and for a pair $(x^n,y^n)_1\mathcal{X}^n \times \mathcal{Y}^n$ of sequence $(x^n,y^n)_1\mathcal{X}^n \times \mathcal{Y}^n$ of sequence $p_{Y|X}^n(y^n|x^n) = \prod_{i=1}^n p_{Y|X}(y_i|x_i)$

We define

$$H(Y|X=x) \triangleq H(p_{XY}|X=x) = -\sum_{y \in \mathcal{Y}} p_{Y|X}(y|x) \log p_{Y|X}(y|x)$$

and

$$H(Y|X) = H(p_{Y|X}|p_X) \triangleq \sum_{x \in \mathcal{X}} p_X(x)h9Y|X = x)$$

For any $x^n \in \mathcal{X}^n$ define the conditional typical set of x^n as

$$T_{\delta}^{n}(p_{Y|X}) = \{ y^{n} \in \mathcal{Y}^{n} \mid (x^{n}, y^{n}) \in T_{\delta}^{n}(p_{XY}) \}$$

Problem 4

- 1. Prove that $\sum_{y \in \mathcal{Y}} p_{Y|X}(y|x) = 1$
- 2. Prove that H(Y|X) = H(X,Y) H(X) and $H(Y|X) \ge 0$
- 3. Prove that Verify that if $x^n \notin T^n_\delta(p_X)$ then $T^n_\delta(p_{XY}|x^n) = \phi$
- 4. Suppose $x^n \in T^n_{\delta}(p_X)$ and $y^n \in T^n_{\delta}(p_{XY}|x^n)$ prove that

$$2^{-n[H(Y|X)+2\delta]} \le p_{Y|X}^n(y^n|x^n) \le 2^{-n[H(Y|X)-2\delta]}$$

5. Prove that if $x^n \in T^n_{\delta}(p_X)$ then

$$\sum_{y^n \in T^n_{2\delta}(p_{XY}|x^n)} p^n_{Y|X}(y^n|x^n) \ge 1 - 2|\mathcal{X}||\mathcal{Y}| \exp\left[-\frac{2n\delta^2}{(\log|\mathcal{X}||\mathcal{Y}|)^2} \eta_{p_{Y|X}}\right]$$

where
$$\eta_{p_{Y|X}} = \min_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \left\{ p_{Y|X}(y|x) \mid 0 < p_{Y|X}(y|x) < 1 \right\}$$

6. Suppose $x^n \in T^n_{\delta}(p_X)$ then

$$(1-\tilde{\delta})2^{n[H(Y|X)-4\delta]} \le |T_{\delta}^n(p_{XY}|x^n)| \le 2^{n[H(Y|X)+4\delta]}$$

where
$$\tilde{\delta} = 2|\mathcal{X}||\mathcal{Y}|\exp\left[-\frac{2n\delta^2}{(\log|\mathcal{X}||\mathcal{Y}|)^2}\eta_{p_{Y|X}}\right]$$

Solution: