Arun Sharma Quantitative Aptitude pdf free Download

Download

Different Link

Download

Quantitative Aptitude Tips & Tricks

Finding number of Factors

To find the number of factors of a given number, express the number as a product of powers of prime numbers.

In this case, 48 can be written as 16 * 3 = (24 * 3)Now, increment the power of each of the prime numbers by 1 and multiply the result.

In this case it will be (4 + 1)*(1 + 1) = 5 * 2 = 10 (the power of 2 is 4 and the power of 3 is 1)

Therefore, there will 10 factors including 1 and 48.

Excluding, these two numbers, you will have 10 - 2 = 8 factors.

Sum of n natural numbers

- -> The sum of first n natural numbers = n (n+1)/2
- -> The sum of squares of first n natural numbers is n

```
(n+1)(2n+1)/6
```

- -> The sum of first n even numbers= n (n+1)
- -> The sum of first n odd numbers= n^2

Finding Squares of numbers

To find the squares of numbers near numbers of which squares are known

```
To find 41^2 , Add 40+41 to 1600 = 1681
To find 59^2 , Subtract 60^2 - (60+59) = 3481
```

Finding number of Positive Roots

```
If an equation (i:e f(x)=0) contains all positive coefficient of any powers of x, it has no positive roots then. Eg: x^4+3x^2+2x+6=0 has no positive roots .
```

Finding number of Imaginary Roots

For an equation f(x)=0 , the maximum number of positive roots it can

have is the number of sign changes in f(x); and the maximum number of

negative roots it can have is the number of sign changes in f(-x) .

Hence the remaining are the minimum number of imaginary roots of the

equation(Since we also know that the index of the maximum power of \boldsymbol{x} is

the number of roots of an equation.)

Reciprocal Roots

The equation whose roots are the reciprocal of the roots of the equation ax^2+bx+c is cx^2+bx+a

Roots

Roots of $x^2+x+1=0$ are 1,w,w² where $1+w+w^2=0$ and $w^3=1$ **Finding Sum of the roots**For a cubic equation $ax^3+bx^2+cx+d=0$ sum of the roots = -b/a sum of the product of the roots taken two at a time = c/a product of the roots = -d/a For a biquadratic equation $ax^4+bx^3+cx^2+dx+e=0$ sum of the roots = -b/a sum of the product of the roots taken three at a time = c/a sum of the product of the roots taken two at a time = -d/a product of the roots

Maximum/Minimum

= e/a

-> If for two numbers x+y=k(=constant), then their PRODUCT is MAXIMUM if x=y(=k/2). The maximum product is then $(k^2)/4$ -> If for two numbers x*y=k(=constant), then their SUM is MINIMUM if x=y(=root(k)). The minimum sum is then 2*root(k).

Inequalties

-> x + y >= x+y (stands for absolute value or modulus) (Useful in solving some inequations) -> a+b=a+b if a*b>=0 else a+b >= a+b -> 2<= $(1+1/n)^n <=3$ -> $(1+x)^n \sim (1+nx)$ if x<< When you multiply each side of the inequality by -1, you have to reverse the direction of the inequality.

Product Vs HCF-LCM

Product of any two numbers = Product of their HCF and LCM . Hence product of two numbers = LCM of the numbers if they are prime to each other

AM GM HM

For any 2 numbers a>b a>AM>GM>HM>b (where AM, GM ,HM stand for arithmetic, geometric , harmonic menasa respectively)

(GM)^2 = AM * HM

Sum of Exterior Angles

For any regular polygon , the sum of the exterior angles is equal to

360 degrees hence measure of any external angle is equal to 360/n. (

where n is the number of sides)

For any regular polygon , the sum of interior angles =(n-2)180 degrees

So measure of one angle in

Square—=90

Pentagon—=108

Hexagon-=120

Heptagon-=128.5

Octagon—=135

Nonagon-=140

Decagon—=144

Problems on clocks

Problems on clocks can be tackled as assuming two runners going round

a circle , one 12 times as fast as the other . That is , the minute

hand describes 6 degrees /minute the hour hand describes 1/2 degrees

/minute . Thus the minute hand describes 5(1/2) degrees more than the

hour hand per minute .

The hour and the minute hand meet each other after every 65(5/11)

minutes after being together at midnight. (This can be derived from the

above) .

Co-ordinates

Given the coordinates (a,b) (c,d) (e,f) (g,h) of a parallelogram , the coordinates of the meeting point of the diagonals can be found out by solving for [(a+e)/2,(b+f)/2] = [(c+g)/2,(d+h)/2]

Ratio

```
If a1/b1 = a2/b2 = a3/b3 = \dots, then each ratio is equal to  (k1*a1+ k2*a2+k3*a3+\dots) \ / \ (k1*b1+ k2*b2+k3*b3+\dots) \ ,  which is also equal to  (a1+a2+a3+\dots) \ / \ (b1+b2+b3+\dots)
```

Finding multiples

 $x^n - a^n = (x-a)(x^n-1) + x^n-2) + \dots + a^n-1)$ Very useful for finding multiples .For example (17-14=3 will be a multiple of 17^3 – 14^3)

Exponents

$$e^x = 1 + (x)/1! + (x^2)/2! + (x^3)/3! + \dots to infinity 2$$

- -> In a GP the product of any two terms equidistant from a term is always constant .
- -> The sum of an infinite GP = a/(1-r) , where a and r are resp. the first term and common ratio of the GP .

Mixtures

If Q be the volume of a vessel q qty of a mixture of water and wine

be removed each time from a mixture \boldsymbol{n} be the number of times this

operation be done and A be the final qty of wine in the mixture then ,

$$A/Q = (1-q/Q)^n$$

Some Pythagorean triplets:

```
3,4,5—-(3<sup>2</sup>=4+5)

5,12,13—(5<sup>2</sup>=12+13)

7,24,25—(7<sup>2</sup>=24+25)

8,15,17—(8<sup>2</sup> / 2 = 15+17 )

9,40,41—(9<sup>2</sup>=40+41)

11,60,61—-(11<sup>2</sup>=60+61)

12,35,37—-(12<sup>2</sup> / 2 = 35+37)

16,63,65—-(16<sup>2</sup> /2 = 63+65)

20,21,29—-(EXCEPTION)
```

Appolonius theorem

Appolonius theorem could be applied to the 4 triangles formed in a parallelogram.

Function

Any function of the type y=f(x)=(ax-b)/(bx-a) is always of the form x=f(y).

Finding Squares

To find the squares of numbers from 50 to 59 For $5X^2$, use the formulae $(5X)^2 = 5^2 + X / X^2$ Eg ; $(55^2) = 25+5 /25 = 3025$

$$(56)^2 = 25 + 6/36 = 3136$$

$$(59)^2 = 25+9/81 = 3481$$

Successive Discounts

Formula for successive discounts

$$a+b+(ab/100)$$

This is used for succesive discounts types of sums.like 1999 population increses by 10% and then in 2000 by 5% so the

```
population in 2000 now is 10+5+(50/100)=+15.5\% more that was in 1999 and if there is a decrease then it will be preceded by a -ve sign and likewise. Rules of Logarithms:

-> loga(M)=y if and only if M=ay

-> loga(MN)=loga(M)+loga(N)

-> loga(M/N)=loga(M)-loga(N)

-> loga(Mp)=p*loga(M)

-> loga(1)=0-> loga(ap)=p

-> log(1+x) = x - (x^2)/2 + (x^3)/3 - (x^4)/4 ......to infinity [ Note the alternating sign . .Also note that the ogarithm is with respect to base e ]
```

Vedic maths

<u>Download</u> or <u>Download</u>