

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/528,508	10/11/2005	Teruya Maeda	450100-04781	4361
7590 William S Frommer Frommer Lawrence & Haug 745 Fifth Avenue New York, NY 10151		03/26/2007	EXAMINER HU, RUI MENG	
			ART UNIT 2618	PAPER NUMBER
SHORTENED STATUTORY PERIOD OF RESPONSE		MAIL DATE	DELIVERY MODE	
3 MONTHS		03/26/2007	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS from the mailing date of this communication.

Office Action Summary	Application No.	Applicant(s)	
	10/528,508	MAEDA, TERUYA	
	Examiner	Art Unit	
	RuiMeng Hu	2618	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 11 October 2005.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-21 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-21 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 03/18/2005 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date 03/18/2005.
- 4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date. _____.
 5) Notice of Informal Patent Application
 6) Other: _____.

DETAILED ACTION

Preliminary Amendment

1. The present Office Action is based upon the original patent application filed on 10/11/2005 as modified by the preliminary amendment filed on 03/18/2005. **Claims 1-21** are now pending in the present application.

Priority

2. Receipt is acknowledged of papers submitted under 35 U.S.C. 119(a)-(d), which papers have been placed of record in the file.

Information Disclosure Statement

3. The information disclosure statements (IDS) submitted on 03/18/2005 has been considered by the examiner and made of record in the application file.

Claim Rejections - 35 USC § 102

4. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

5. **Claims 1-21** are rejected under 35 U.S.C. 102(b) as being anticipated by **Yokogawa et al. (JP 2000-232458)**.

Consider **claim 1**, Yokogawa et al. clearly disclose a system for making wireless communication processing between a wireless base station (the key station) and an arbitrary wireless terminal apparatus (child offices 2a-2c), said system comprising: a

wireless communication apparatus for a base station (the key station), the apparatus including a plurality of antenna bodies each having a directional pattern in a predetermined direction (paragraph 0030, each antenna unit has directivity of 30 degrees, which associated with the field (service area)); and a wireless terminal apparatus, to become a communication target (child offices 2a-2c), that is capable of making wireless communication with said wireless communication apparatus (the key station) for the base station (paragraph 0004, the key station holding many child offices 2a-2c), wherein said wireless communication apparatus for the base station performs: identification processing of the communication-targeted wireless terminal apparatus (child offices 2a-2c) located within a communication area of each of the directional patterns of said antenna bodies regularly or irregularly (paragraph 0008, child offices 2a-2c concerned exist in the subordinate (field which can be communicated) of a directional antenna); storage processing of a correspondence relationship between said communication-targeted wireless terminal apparatus (child offices 2a-2c) and each of said antenna bodies (paragraph 9, drawing 9, stored table stores each child office's ID and its assigned antenna); and at the time of making wireless communication, selection processing of the antenna body which corresponds to the pertinent wireless terminal apparatus based on the storage processing (paragraph 0012, data communication to the child offices 2a-2c using the already managed (stored) antenna (sector unit) about the child offices 2a-2c).

Consider **claim 2, as applied to claim 1 above**, Yokogawa et al. clearly disclose wherein said wireless communication apparatus for the base station at least comprises:

a plurality of antenna bodies each having a directional pattern in a predetermined direction (paragraph 0030, each antenna unit has directivity of 30 degrees, which associated with the field (service area)); and a controller for allowing identifying the communication-targeted wireless terminal apparatus (child offices 2a-2c) located within the communication area (the subordinate or field of service area) created by each of the directional patterns of said antenna bodies (paragraph 0030), and recognizing the correspondence relationship between the pertinent communication-targeted wireless terminal apparatus (child offices 2a-2c) and each of said antenna bodies (paragraph 0009, drawing 9), wherein said controller performs: at the time of making wireless communication, selection processing of the antenna body which corresponds to the pertinent wireless terminal apparatus (child offices 2a-2c), and communication processing with the wireless terminal apparatus (child offices 2a-2c) located within the communication area created by the pertinent directional pattern, using said selected antenna body (drawing 9, paragraph 0012, data communication to the child offices 2a-2c using the already managed (stored) antenna (sector unit) about the child offices 2a-2c).

Consider **claim 3, as applied to claim 1 above**, Yokogawa et al. clearly disclose wherein said communication-targeted wireless terminal apparatus (child offices 2a-2c) is located within the communication area created by the predetermined directional pattern of said wireless communication apparatus (the key station) for the base station (paragraph 0008), or said communication-targeted wireless terminal apparatus (child

offices 2a-2c) moves between the communication areas of these pertinent directional patterns (paragraph 0019).

Consider **claim 4, as applied to claim 1 above**, Yokogawa et al. clearly disclose wherein said wireless communication apparatus for the base station comprises storing means (stored table) for storing antenna selection information indicative of the correspondence relationship between said communication-targeted wireless terminal apparatus (child offices 2a-2c) and each of said antenna bodies (paragraph 0009, drawing 9).

Consider **claim 5, as applied to claim 4 above**, Yokogawa et al. clearly disclose wherein said wireless communication apparatus performs a memory control over said storing means to update said antenna selection information (paragraph 0053).

Consider **claim 6, as applied to claim 1 above**, Yokogawa et al. clearly disclose wherein said wireless communication apparatus regularly or irregularly transmits data (confirmation-of-receipt signal) for confirming that said communication-targeted wireless terminal apparatus (child offices 2a-2c) is present in the communication area to the wireless terminal apparatus (paragraph 0022).

Consider **claim 7, as applied to claim 1 above**, Yokogawa et al. clearly disclose wherein said wireless communication apparatus for the base station comprises at least two antenna bodies having different directional patterns from each other (paragraph 0030), and wherein said wireless communication apparatus (key station) transmits a reference signal to the communication-targeted wireless terminal apparatus (child offices 2a-2c) within the communication area created by the pertinent directional pattern

from both of said antenna bodies alternately (paragraphs 0022, 0023, consider a child office travels between communication areas created by the pertinent directional pattern, and the stored table (drawing 9) gets reset, different antenna units would be used).

Consider **claim 8, as applied to claim 1 above**, Yokogawa et al. clearly disclose wherein said wireless communication apparatus for the base station perform scan processing of inputs of said antenna bodies (paragraph 0007, detecting for demand signals from child offices, to establish a communication) and waits for receiving data, except for the time of making the wireless transmission (data transferring, drawing 8, paragraph 0005), and wherein said wireless communication apparatus (key station) for the base station receives the data using the antenna body that receives the strongest radio wave from said communication-targeted wireless terminal apparatus (paragraph 12, using the already managed antenna unit (desired antenna unit) about the child offices 2a-2c).

Consider **claim 9**, Yokogawa et al. clearly disclose a wireless communication apparatus (the key station) for arbitrarily making wireless communication with a wireless terminal apparatus (child offices 2a-2c), to become a communication target, said apparatus comprising (paragraph 0007): a plurality of antenna bodies each having a directional pattern in a predetermined direction (paragraph 0030, each antenna unit has directivity of 30 degrees, which associated with the field (service area)); and a controller (paragraph 0008, the key station) for allowing identifying a communication-targeted wireless terminal apparatus (child offices 2a-2c) located within a communication area created by each of the directional patterns of said antenna bodies, and recognizing a

correspondence relationship between the pertinent communication-targeted wireless terminal apparatus (child offices 2a-2c) and each of said antenna bodies (paragraph 0009, drawing 9), wherein said controller performs: at the time of making wireless communication, selection processing of the antenna body which corresponds to the pertinent wireless terminal apparatus (each of child offices 2a-2c associating with a directional antenna according to the stored table (drawing 9)); and communication processing with the wireless terminal apparatus located within the pertinent directivity using said selected antenna body (paragraph 0012, data communication to the child offices 2a-2c using the already managed (stored) antenna (sector unit) about the child offices 2a-2c).

Consider claim 10, as applied to claim 9 above, Yokogawa et al. clearly disclose storing means for storing antenna selection information indicative of the correspondence relationship between said communication-targeted wireless terminal apparatus (child offices 2a-2c) and each of said antenna bodies (paragraph 0009, drawing 9).

Consider claim 11, as applied to claim 10 above, Yokogawa et al. clearly disclose wherein said controller performs a memory control over said storing means to update said antenna selection information (paragraph 0053).

Consider claim 12, as applied to claim 9 above, Yokogawa et al. clearly disclose wherein said controller regularly or irregularly transmits data for confirming that said communication targeted wireless terminal apparatus is present in the communication area to the wireless terminal apparatus (paragraph 0022).

Consider **claim 13, as applied to claim 9 above**, Yokogawa et al. clearly disclose comprising said antenna bodies of at least two having different directional patterns from each other (paragraph 0030), wherein the controller allows transmitting a reference signal to the communication-targeted wireless terminal apparatus (child offices 2a-2c) within the pertinent directivity from both of said antenna bodies alternately (paragraphs 0022, 0023, consider a child office travels between communication areas created by the pertinent directional pattern, and the stored table (drawing 9) gets reset, different antenna units would be used).

Consider **claim 14, as applied to claim 9 above**, Yokogawa et al. clearly disclose wherein said controller performs scan processing of inputs of said antenna bodies (paragraph 0007, detecting for demand signals from child offices, to establish a communication) and waits for receiving data, except for the time of making the wireless transmission (data transferring, drawing 8, paragraph 0005), and wherein the controller (the key station) receives the data using the antenna body that receives the strongest radio wave (the most desired antenna) from said communication-targeted wireless terminal apparatus (paragraph 12, using the already managed antenna unit (desired antenna unit) about the child offices 2a-2c).

Consider **claim 15**, Yokogawa et al. clearly disclose a method for arbitrarily making wireless communication with a wireless terminal apparatus (child offices 2a-2c), to become a communication-target, said method comprising the steps of: providing a plurality of antenna bodies each having a directional pattern in a predetermined direction to a wireless communication apparatus (the key station) for a base station

Art Unit: 2618

(paragraph 0030, each antenna unit has directivity of 30 degrees, which associated with the field (service area)), and preparing the communication-targeted wireless terminal apparatus (child offices 2a-2c) which is capable of wireless communication within a communication area (field of service area or subordinate) created by the arbitrary directional pattern; in said wireless communication apparatus (the key station) for the base station, regularly or irregularly identifying the communication-targeted wireless terminal apparatus located within a communication area created by each of the directional patterns of said antenna bodies (paragraph 0008); storing a correspondence relationship between said identified communication-targeted wireless terminal apparatus (child offices 2a-2c) and each of said antenna bodies (paragraph 0009, drawing 9); at the time of making wireless communication, selecting the antenna body which corresponds to the pertinent wireless terminal apparatus (according to the stored table drawing 9, each of child offices 2a-2c associating with a desired antenna); and performing communication processing with the wireless terminal apparatus located within the pertinent directivity using said selected antenna body (paragraph 0012, data communication to the child offices 2a-2c using the already managed (stored) antenna (sector unit) about the child offices 2a-2c).

Consider **claim 16, as applied to claim 15 above**, Yokogawa et al. clearly disclose the steps of locating (paragraphs 0007, 0008) said communication-targeted wireless terminal apparatus (child offices 2a-2c) within the communication area (field of service area or subordinate) created by the predetermined directional pattern of said wireless communication apparatus for a base station (paragraph 0030), or allowing said

communication-targeted wireless terminal apparatus (child offices 2a-2c) to move between the communication areas (subordinates) created by these directional patterns (paragraph 0019).

Consider **claim 17, as applied to claim 15 above**, Yokogawa et al. clearly disclose the step of creating antenna selection information indicative of the correspondence relationship between said communication-targeted wireless terminal apparatus (child offices 2a-2c) and each of said antenna bodies (paragraph 0009, drawing 9).

Consider **claim 18, as applied to claim 17 above**, Yokogawa et al. clearly disclose the step of updating said antenna selection information (paragraph 0053).

Consider **claim 19, as applied to claim 15 above**, Yokogawa et al. clearly disclose the step of regularly or irregularly transmitting data for confirming that said communication-targeted wireless terminal apparatus is present in the communication area to the wireless terminal apparatus (paragraph 0022).

Consider **claim 20, as applied to claim 15 above**, Yokogawa et al. clearly disclose the steps of: providing said antenna bodies of at least two having different directivities from each other (paragraph 0030); and transmitting a reference signal through both of said antenna bodies to the communication-targeted wireless terminal apparatus (child offices 2a-2c) within the pertinent directivity alternately (paragraphs 0022, 0023, consider a child office travels between communication areas created by the pertinent directional pattern, and the stored table (drawing 9) gets reset, different antenna units would be used).

Consider claim 21, as applied to claim 15 above, Yokogawa et al. clearly disclose the steps of: except for the time of making the wireless transmission, performing scan processing of inputs of said antenna bodies (paragraph 0007, detecting for demand signals from child offices, to establish a communication) and waiting for receiving data (data transferring, drawing 8, paragraph 0005); and receiving the data using the antenna body that receives the strongest radio wave (most desired antenna) from said communication-targeted wireless terminal apparatus (paragraph 0012, using the already managed antenna unit (desired antenna unit) about the child offices 2a-2c).

Conclusion

6. Any response to this Office Action should be **faxed to (571) 273-8300 or mailed to:** Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Hand-delivered responses should be brought to

Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 22314

7. Any inquiry concerning this communication or earlier communications from the examiner should be directed to RuiMeng Hu whose telephone number is 571-270-1105. The examiner can normally be reached on Monday - Thursday, 8:00 a.m. - 5:00 p.m., EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Edan Orgad can be reached on 571-272-7884. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

RuiMeng Hu
R.H./rh
October 23, 2006

EDAN ORGAD
PATENT EXAMINER/TELECOMM.

Edan Orgad 10/26/06