Lagrangian density
$-rac{1}{3} t_1 \; \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$r_1 \partial_{,} \omega^{\kappa \lambda}_{\ \ \kappa} \partial^{\prime} \omega_{\lambda}^{\ \ \alpha}_{\ \ \ 3} r_1 \partial^{\beta} \omega^{\theta \alpha}_{\ \ \kappa} \partial_{\theta} \omega_{\alpha \beta}^{\ \ \ \kappa} - rac{2}{3} r_1 \partial_{\theta} \omega_{\alpha \beta}^{\ \ \ \kappa} \partial_{\kappa} \omega^{\alpha \beta \theta} +$
$\frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\theta\alpha\beta} - 3r_{1}\partial_{\alpha}\omega_{\lambda\theta}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} + 4r_{3}\partial_{\alpha}\omega_{\lambda\theta}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} +$
$3r_1\partial_\theta\omega_\lambda^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda}$ - $4r_3\partial_\theta\omega_\lambda^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda}$ + $r_1\partial_\alpha\omega_\lambda^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta}$ -
$2r_1\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - \frac{1}{2}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{2}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\ \theta} -$
$\frac{1}{2}t_{1}\partial^{\alpha}f^{\lambda}_{\ \ \kappa}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{3}t_{1}\ \omega_{\kappa\alpha}^{\ \ \alpha}\partial^{\kappa}f'_{\ \ \prime} + \frac{1}{3}t_{1}\ \omega_{\kappa\lambda}^{\ \ \lambda}\partial^{\kappa}f'_{\ \ \prime} + \frac{2}{3}t_{1}\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{\ \ \prime} -$
$rac{1}{3}t_{1}\partial_{\kappa}f^{\lambda}_{\ \ \lambda}\partial^{\kappa}f'_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\frac{1}{2}t_1\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\lambda\alpha} + \frac{1}{2}t_1\partial_{\kappa}f_{\theta}^{\lambda}\partial^{\kappa}f_{\theta}^{\theta} + \frac{1}{2}t_1\partial_{\kappa}f^{\lambda}_{\theta}\partial^{\kappa}f_{\theta}^{\theta} - \frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa} +$
$\frac{2}{3}r_{1}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}r_{1}\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}r_{1}\partial^{\beta}\omega_{\alpha}{}^{\alpha\lambda}\partial_{\lambda}\omega_{\alpha\beta}{}' +$
$rac{4}{3}r_{1}\partial^{eta}\omega_{\lambda}{}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}{}^{\prime}-4r_{3}\partial^{eta}\omega_{\lambda}{}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}{}^{\prime}+3r_{1}\partial_{lpha}\omega_{\lambda}{}^{lpha}\partial^{\lambda}\omega^{eta\kappa}_{a$
$4 r_3 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa} - 3 r_1 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa} + 4 r_3 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \kappa}$

	$\sigma_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#2}{}_{lphaeta}$	$\tau_{1}^{\#1}_{\alpha\beta}$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{lpha}$	$\tau_{1^{-}\alpha}^{\#1}$	${\mathfrak r}_{1}^{\#2}{}_{\alpha}$
$\sigma_{1}^{\#1} + \alpha \beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$o_1^{\#2} + \alpha \beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\tau_{1+}^{\#1} + \alpha \beta$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1} \dagger^{lpha}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$\frac{12ik}{(3+4k^2)^2t_1}$
$\sigma_{1}^{\#2} + ^{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$
$ au_{1}^{\#_1} +^{lpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} + ^{\alpha}$	0	0	0	$-\frac{12ik}{(3+4k^2)^2t_1}$	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$

f#2 f1- ~	η .	0	0	0	<i>ikt</i> 1 3	$\tfrac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_1^{#1}$	л т.	0	0	0	0	0	0	0
ω#2 ω1- ~	τα	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t1</u> 3	0	$-\frac{1}{3}$ i $\sqrt{2}$ kt_1
$\omega_{1}^{\#1}$		0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1
$f_{1+\alpha B}^{\#1}$	T αb	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1+\alpha e}^{#2} f$	T αb	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1+22}^{\#1}$	I ap	k² r ₁ - ^t 1	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
		$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} + \alpha$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\sharp 1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2^+}^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

Source constraints SO(3) irreps

SO(3) irreps	#
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0+}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#1\alpha} == 0$	3
$\tau_{1}^{\#1\alpha} == 0$	3
$\sigma_{1}^{\#1\alpha} = \sigma_{1}^{\#2\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	19

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	<i>-t</i> ₁
$f_{0}^{\#2}$	0	0	0	0
$f_{0}^{\#1}$	0	0	0	0
$\omega_{0}^{\#1}$	$6 k^2 (-r_1 + r_3)$	0	0	0
·	$\omega_{0}^{\#1} \uparrow$	$f_{0}^{\#1}$ †	$f_{0}^{\#2}$ †	$\omega_{0}^{\#1} \uparrow$

0	0	$k^2 r_1 + \frac{t_1}{2}$
$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
$\omega_{2}^{\#1} + ^{lphaeta}$	$f_{2}^{#1} + \alpha \beta$	$\omega_{2^{-}}^{#1} +^{\alpha \beta \chi}$
	$\frac{t_1}{2}$ $-\frac{\bar{l}}{2}$	$\frac{t_1}{2}$ $\frac{i k t_1}{\sqrt{2}}$

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$