The correlation factor, B^2 , is calculated from the following equation:

$$B^{2} = \frac{1}{1 + 0.9 \left[\frac{b+h}{L(z_{r})} \right]^{0.63}}$$
 (5.3)

where

b: Width of the building in meters in the direction perpendicular to the wind flow.

h: Height of the building in m.

 $L(z_r)$: Turbulance length in meters at the reference height of $z_r = 0.6h$ (see Eq. 3.9).

The resonance factor R^2 is calculated from the following equation:

$$R^{2} = \frac{\check{\mathbf{s}}^{2}}{2\delta} \cdot S_{L}(z_{r}, f_{o}) \cdot R_{h}(\eta_{h}) \cdot R_{b}(\eta_{b})$$

$$(5.4)$$

where

 δ : Logarithmic decrement of the first-mode vibrations of the building.

 f_0 : Frequency of the first mode (in Hz).

 $S_L(z_r, f_0)$: Turbulance power spectral density function at z_r, f_0 (see Eq. 3.10).

 $R_h(\eta_h)$: Aerodynamic addmitance function in the vertical direction.

 $R_h(\eta_h)$: Aerodynamic addmitance function in the horizontal direction.

The logarithmic decrement δ can be calculated in terms of the damping ratio, ξ_0 , for the first mode as

$$\delta = \frac{2\check{\mathbf{s}} \, \xi_{0}}{\sqrt{1 - \xi_{0}^{2}}} \approx 2\check{\mathbf{s}} \, \xi_{0} \tag{5.5}$$

For buildings whose vibrations are dominated by the first mode, the aerodynamic admittance functions $R_h(\eta_h)$ and $R_b(\eta_b)$ can be approximated from the following equations: