Sets

Lesson 3

Named Sets

We'll use the following names for subsets of real numbers:

 \mathbf{R} = the set of real numbers,

 \mathbb{R} = the set of real numbers for handwritten text,

$$\mathbf{R}_{>0} = \{ x \in \mathbf{R} \mid x > 0 \},\,$$

 $\mathbf{R}_{\neq 0} = \{x \in \mathbf{R} \mid x \neq 0\}, \text{ (and similarly for other subscripts)}$

 $\mathbf{Z} = \mathsf{the} \; \mathsf{set} \; \mathsf{of} \; \mathsf{integers},$

 $\mathbb{Z} =$ the set of integers for handwritten text,

 \mathbf{Q} = the set of rational numbers,

 $\mathbb{Q} =$ the set of rational numbers for handwritten text,

 $\emptyset = A$ set with no members, that is the empty set

Set Operators

Definition

Let A and B be sets. Define the set *union*, intersection, and difference

$$A \cap B = \{x \mid (x \in A) \land (x \in B)\},\$$

$$A \cup B = \{x \mid (x \in A) \lor (x \in B)\},\$$

$$A \setminus B = \{x \mid (x \in A) \land (x \notin B)\},\$$

respectively.

3

Set (an) example

Example

We have

```
\{6, 107\} \cap \{28, 107\} = \{107\},\
\{6, 107\} \cup \{28, 107\} = \{6, 28, 107\},\
\{6, 107\} \setminus \{28, 107\} = \{6\},\
\{28, 107\} \setminus \{6, 107\} = \{28\}.
```

- lacktriangle The last two examples show that in general $A \setminus B \neq B \setminus A$.
- ▼ The set difference is so much like real number subtraction, sometimes the symbol "-" is used instead of \.

Set predicates

Definition

Let A and B be sets. Define

$$A \subset B \equiv (\forall x \in A)(x \in B),$$

 $A = B \equiv (A \subset B) \land (B \subset A).$

Specializing $A\subset B$ to $A=\varnothing$ gives

$$[\varnothing\subset B]\equiv (\forall x\in\varnothing)(x\in B)\equiv {\sf true}.$$

We've shown that:

Proposition

Thus for all sets A and for any empty set \varnothing , we have $\varnothing \subset A$.

5

Set equality

To show that sets A and B are equal, we almost always prove that $A\subset B$ and $B\subset A$. If a proposition has the form

Proposition

If H_1, H_2, \ldots , and H_n , then A = B.

where $H_1, H_2, \dots H_n$ is the hypothesis, a template for proving the theorem is

Proof

Suppose $x \in A$. We'll show that $x \in B$. Since $x \in A, H_1, H_2, \ldots$ and H_n , we have \ldots ; therefore $x \in B$.

Suppose $x \in B$. We'll show that $x \in A$. Since $x \in B, H_1, H_2, \ldots$ and H_n , we have \ldots ; therefore $x \in A$.

① Notice how in the first case we append $x \in A$ to the hypothesis; and in the second case, we append $x \in B$.

Establish notation

Proposition

The set union is associative.

Proof

Let A, B, and C be sets. We'll show that $A \cup (B \cup C) = (A \cup B) \cup C$. Our proof uses the fact that the disjunction is associative; we have

- The statement of the proposition doesn't introduce notation, so the proof must do so.
- Alternatively, we can show that $A \cup (B \cup C) \subset (A \cup B) \cup C$ and $(A \cup B) \cup C) \subset A \cup (B \cup C)$.

7

Alternative proofs

Proof

Let A,B, and C be sets. We'll show that $A\cup (B\cup C)=(A\cup B)\cup C$. We have

$$\begin{aligned} x \in A \cup (B \cup C) &\implies (x \in A) \vee (x \in B \cup C), \\ &\implies (x \in A) \vee ((x \in B) \vee (x \in C)), \\ &\implies ((x \in A) \vee (x \in B)) \vee (x \in C), \\ &\implies x \in (A \cup B) \cup C. \end{aligned}$$

Similarly, we can show that $x \in (A \cup B) \cup C \implies x \in A \cup (B \cup C)$.

The uniqueness of emptiness

Proposition

There is at most one empty set.

Proof

Let O and O' be empty sets. Since O is empty, we have $O \subset O'$. Similarly since O' is empty, we have $O' \subset O$. We have shown that $O \subset O'$ and $O' \subset O$; therefore O = O'.

- With impunity, we can now refer to **the** empty set.
- ② A clumsy way to proof this is by contradiction. The proof assumes that there are empty sets O and O', but $O \neq O'$.

Conflation

Question: True or false: $\emptyset = \{\emptyset\}$.

Answer: It's false. The set $\{\varnothing\}$ is a set that has (exactly) one member, namely its member is the empty set. But the empty set has no members, so $\varnothing \neq \{\varnothing\}$

We can write this as

Counterexample ($\varnothing = \{\varnothing\}$)

We have $\emptyset \in \{\emptyset\}$, but $\emptyset \notin \emptyset$; therefore $\emptyset \neq \{\emptyset\}$.

A counterexample is a proof of the negation of some statement. Usually to be considered a counter example, the proof examines one particular case.

A unique template

If a proposition has the form

Proposition

If H_1, H_2, \ldots , and H_n , there is at most one object X.

A template for its proof is

Proof

Let X and X' be such objects. Since H_1, H_2, \ldots , and H_n , we have \ldots ; therefore X = X'.

• When X and X' are real numbers, we might prove X=X' by showing that both $X \leq X'$ and $X' \leq X$ are true. Together, these inequalities prove that X=X'.

Generalized unions

Let I be a set. And suppose that every member of I is a set. Since every member of I is a set, we can find the union of all of its members. We define

$$\underset{x \in I}{\cup} x = \{ a \mid (\exists x \in I) (a \in x) \}.$$

In this context, we say that the set I is an index set.

Example

Define $I = \{\{1,2\},\{107\}\}$. Then I is a set and each member of I is a set. We have

Finite unions

Proposition

Let A_1,A_2,\ldots,A_n be sets. Define an index set I by $I=\{A_1,A_2,\ldots,A_n\}$. Then

$$\bigcup_{x \in I} x = A_1 \cup A_2 \cup \dots \cup A_n.$$

- **1** The set union is associative and commutative, so the meaning of $A_1 \cup A_2 \cup \cdots \cup A_n$ unambiguous.
- 2 An index set neededn't be finite.

Nonfinite unions

Example

The index set needn't be finite—here is an example. For $x \in \mathbf{R}$, define $I = \{(-\infty, x) \mid x \in \mathbf{R}\}$. Our index set is a set of open intervals. We claim that

$$\underset{x \in I}{\cup} x = \mathbf{R}.$$

Proof

Suppose $a\in \underset{x\in I}{\cup} x$. We'll show that $a\in \mathbf{R}$. Since $a\in \underset{x\in I}{\cup} x$, there is $z\in I$ such that $a\in z$. But $z\subset \mathbf{R}$, so $a\in \mathbf{R}$; we've shown that $\ \cup x\subset \mathbf{R}$.

Suppose $a \in \mathbf{R}$. We'll show that $a \in \bigcup_{x \in I} x$. We have $a \in (-\infty, a+1)$.

Further $(-\infty, a+1) \in I$; therefore $a \in \bigcup_{x \in I} x$.

- **1** Notice that $a \notin (-\infty, a)$. But it is true that $a \in (-\infty, a+1)$.
- 2 It's also true that $a \in (-\infty, a + 107 \pi^2)$.

Generalized intersections

Let I be a set. And suppose that every member of I is a set. Since every member of I is a set, we can find the union of all of its members. We define

$$\underset{x \in I}{\cap} x = \{ a \mid (\forall x \in I) (a \in x) \}.$$

Example

Define $I = \{\{1,2\},\{107\}\}$. Then I is a set and each member of I is a set. We have

Finite intersections

Proposition

Let A_1,A_2,\ldots,A_n be sets. Define an index set I by $I=\{A_1,A_2,\ldots,A_n\}$. Then

$$\bigcap_{x \in I} x = A_1 \cap A_2 \cap \dots \cap A_n.$$

- **①** The set intersection is associative and commutative, so the meaning of $A_1 \cap A_2 \cap \cdots \cap A_n$ unambiguous.
- 2 An index set needn't be finite.

Nonfinite intersections

Example

For $x\in {\bf R}$, define $I=\{(-\infty,x)\mid x\in {\bf R}\}$. Our index set is a set of open intervals. We claim that

$$\bigcap_{x \in I} x = \varnothing.$$

Proof

We'll prove this using contradiction. Suppose $\bigcap\limits_{x\in I}x$ has at least one member; say $a\in\bigcap\limits_{x\in I}x$. We have

$$(\forall x \in \mathbf{R})(a \in (-\infty, x)).$$

In particular, we have $a\in (-\infty,a)$. But $a\in (-\infty,a)$ is false; therefore $\underset{x\in I}{\cap} x$ cannot have a member, so $\underset{x\in I}{\cap} x$ is the empty set.

Alternative notation

Sometimes we take the index set to be a subset of ${\bf R}$ and we denote the sets members by subscripts. Say $I\subset {\bf R}$ and A_x is a set for each $x\in I$. This notation is particlarly popular when $I={\bf Z}_{>0}$. For example

$$\bigcap_{k \in \mathbf{Z}_{>0}} A_k = \{ a \mid (\forall n \in \mathbf{Z}_{>0}) (a \in A_n) \}$$

And

$$\bigcup_{k \in \mathbf{Z}_{>0}} A_k = \{ a \mid (\exists n \in \mathbf{Z}_{>0}) (a \in A_n) \}$$

When the index set is uncountable, maybe it's just me, but definitions such as

$$A_x = (-\infty, x)$$
 for all $x \in \mathbf{R}$

are semi-bazaar looking. For such cases, I think it's more clear to define the index set to be a set of sets:

$$I = \{(-\infty, x) \mid x \in \mathbf{R}\}.$$

Functions

To define a function F with domain A and formula blob, we can write

$$F=x\in A\mapsto \mathsf{blob}.$$

In the rare cases that it's important to give the function a codomain, we can write

$$F = x \in A \mapsto \mathsf{blob} \in B$$
,

where $\operatorname{codomain}(F) = B$. Generically for a function F with domain A and codomain B, we say that F is a function from A to B.

Example

The notation

$$F = x \in [-1, 1] \mapsto 2x + 1$$

is our compact way of writing: Define F(x) = 2x + 1, for $-1 \le x \le 1$.

Function signature

The notation $F: A \rightarrow B$ means

- F is a function.
- \bigcirc dom(F) = A.
- \odot codomain(F) = B.

We'll say that $A \to B$ is the *signature* of a function. The signature of a function doesn't tell us its formula. It does tell us the domain of a function and it indicates what the outputs of the function can be.

Range

Definition

For any function, we define

$$\operatorname{range}(F) = \left\{ F(x) | x \in \operatorname{dom}(F) \right\}.$$

Thus range(F) is the set of all outputs.

Fact

Let F be a function. Then

$$[y \in \text{range}(F)] \equiv (\exists x \in \text{dom}(F)) (y = F(x)).$$

Example

Define $F = x \in [-1,1] \mapsto 2x + 1$. Then $\frac{3}{2} \in \operatorname{range}(F)$ because $\frac{1}{4} \in \operatorname{dom}(F)$ and $F(\frac{1}{4}) = \frac{3}{2}$.

Ontoness

The codomain of a function tells us something about its outputs, but remember that the range and the codomain of a function need not be the same. For all functions F, we have

range $F \subset \operatorname{codomain}(F)$.

Definition

A function is *onto* if its range and codomain are equal.

Example

Question: Is the sine function onto? **Answer** It is if its codomain is [-1,1]. But if its codomain is \mathbf{R} , then no it's not onto. There is no standard value for the codomain of the trigonometric functions, so the asking "Is the sine function onto?" is rubbish.

Equality

Definition

Functions F and G are equal dom(F) = dom(G) and for all $x \in dom(F)$, we have F(x) = G(x). Equivalently

$$(F=G)\equiv (\mathrm{dom}(F)=\mathrm{dom}(G))\wedge (\forall x\in \mathrm{dom}(F))(F(x)=G(x)).$$

• The definition of function equality does not involve the codomain of the function. Thus two functions can be equal, but have unequal codomains.

Example

The functions $F=x\in[-1,1]\mapsto x\in[-1,1]$ and $G=x\in[-1,1]\mapsto x\in\mathbf{R}$ are equal, but F is onto and G is not onto.

Thus ontoness isn't a property of a function.

Apply a function to a set

Definition

Let $F: A \to B$. For any subset A' of A define

$$F(A') = \{F(x) | x \in A'\}.$$

Equivalently, we have

$$y \in F(A') \equiv (\exists x \in A')(y = F(x)).$$

Proposition

For all functions F, we have $F(\operatorname{dom} F) = \operatorname{range}(F)$. Further $F(\emptyset) = \emptyset$.

Inverse image

Definition

Let $F: A \to B$. For any subset B' of B define

$$F^{-1}(B') = \{ x \in A | F(x) \in B \}.$$

Equivalently, we have

$$x \in F^{-1}(B') \equiv F(x) \in B.$$