In [1]: # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

Out[2]:		date	BEN	СО	EBE	MXY	NМНС	NO_2	NOx	ОХҮ	O_3	PM
	0	2003- 03-01 01:00:00	NaN	1.72	NaN	NaN	NaN	73.900002	316.299988	NaN	10.550000	55.2099
	1	2003- 03-01 01:00:00	NaN	1.45	NaN	NaN	0.26	72.110001	250.000000	0.73	6.720000	52.3899
	2	2003- 03-01 01:00:00	NaN	1.57	NaN	NaN	NaN	80.559998	224.199997	NaN	21.049999	63.2400
	3	2003- 03-01 01:00:00	NaN	2.45	NaN	NaN	NaN	78.370003	450.399994	NaN	4.220000	67.8399
	4	2003- 03-01 01:00:00	NaN	3.26	NaN	NaN	NaN	96.250000	479.100006	NaN	8.460000	95.7799
	243979	2003- 10-01 00:00:00	0.20	0.16	2.01	3.17	0.02	31.799999	32.299999	1.68	34.049999	7.3800
	243980	2003- 10-01 00:00:00	0.32	0.08	0.36	0.72	NaN	10.450000	14.760000	1.00	34.610001	7.4000
	243981	2003- 10-01 00:00:00	NaN	NaN	NaN	NaN	0.07	34.639999	50.810001	NaN	32.160000	16.8300
	243982	2003- 10-01 00:00:00	NaN	NaN	NaN	NaN	0.07	32.580002	41.020000	NaN	NaN	13.5700
	243983	2003- 10-01 00:00:00	1.00	0.29	2.15	6.41	0.07	37.150002	56.849998	2.28	21.480000	12.3500

243984 rows × 16 columns

In [3]: data.head(10)

_		
/ N:	 	
UЛ	 וכו	Ι.
-	 	٠,

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	ı
0	2003- 03-01 01:00:00	NaN	1.72	NaN	NaN	NaN	73.900002	316.299988	NaN	10.550000	55.209999	1
1	2003- 03-01 01:00:00	NaN	1.45	NaN	NaN	0.26	72.110001	250.000000	0.73	6.720000	52.389999	1
2	2003- 03-01 01:00:00	NaN	1.57	NaN	NaN	NaN	80.559998	224.199997	NaN	21.049999	63.240002	1
3	2003- 03-01 01:00:00	NaN	2.45	NaN	NaN	NaN	78.370003	450.399994	NaN	4.220000	67.839996	1
4	2003- 03-01 01:00:00	NaN	3.26	NaN	NaN	NaN	96.250000	479.100006	NaN	8.460000	95.779999	1
5	2003- 03-01 01:00:00	8.41	1.94	9.83	21.49	0.45	90.300003	384.899994	9.48	9.950000	95.150002	-
6	2003- 03-01 01:00:00	NaN	1.38	NaN	NaN	0.29	89.580002	230.000000	NaN	7.200000	54.000000	1
7	2003- 03-01 01:00:00	NaN	1.58	NaN	NaN	0.30	93.639999	334.600006	NaN	4.190000	26.620001	1
8	2003- 03-01 01:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1
9	2003- 03-01 01:00:00	NaN	1.92	NaN	NaN	NaN	71.839996	181.399994	NaN	5.330000	39.360001	1

In [4]: data.tail(20)

Out[4]:		date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM10
	243964	2003- 10-01 00:00:00	NaN	0.63	NaN	NaN	NaN	49.740002	73.010002	NaN	15.310000	14.97
	243965	2003- 10-01 00:00:00	NaN	0.10	NaN	NaN	NaN	30.700001	38.430000	NaN	20.980000	4.83
	243966	2003- 10-01 00:00:00	NaN	0.16	NaN	NaN	0.12	43.160000	75.720001	NaN	24.850000	10.05
	243967	2003- 10-01 00:00:00	NaN	0.38	NaN	NaN	NaN	47.040001	88.839996	NaN	12.540000	11.60
	243968	2003- 10-01 00:00:00	NaN	0.14	NaN	NaN	0.15	23.430000	26.389999	NaN	27.730000	15.70
	243969	2003- 10-01 00:00:00	NaN	0.12	NaN	NaN	NaN	27.170000	30.570000	NaN	23.020000	10.48
	243970	2003- 10-01 00:00:00	0.68	0.43	1.12	NaN	0.00	55.169998	100.900002	NaN	14.590000	15.84
	243971	2003- 10-01 00:00:00	NaN	0.01	NaN	NaN	NaN	30.930000	39.430000	NaN	23.280001	13.31
	243972	2003- 10-01 00:00:00	NaN	0.24	NaN	NaN	NaN	36.599998	39.680000	NaN	24.700001	25.02
	243973	2003- 10-01 00:00:00	NaN	0.01	NaN	NaN	0.03	22.209999	25.650000	NaN	18.570000	7.78
	243974	2003- 10-01 00:00:00	NaN	0.28	NaN	NaN	NaN	23.790001	29.990000	NaN	25.540001	10.48
	243975	2003- 10-01 00:00:00	NaN	0.22	NaN	NaN	NaN	23.730000	27.709999	NaN	24.360001	10.31
	243976	2003- 10-01 00:00:00	NaN	0.15	NaN	NaN	NaN	37.270000	55.000000	NaN	20.980000	13.80
	243977	2003- 10-01 00:00:00	0.20	0.03	NaN	NaN	NaN	36.580002	43.090000	NaN	17.129999	7.61
	243978	2003- 10-01 00:00:00	NaN	0.24	NaN	NaN	0.06	25.129999	28.129999	NaN	30.660000	8.05
	243979	2003- 10-01 00:00:00	0.20	0.16	2.01	3.17	0.02	31.799999	32.299999	1.68	34.049999	7.38
	243980	2003- 10-01 00:00:00	0.32	0.08	0.36	0.72	NaN	10.450000	14.760000	1.00	34.610001	7.40

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10
243981	2003- 10-01 00:00:00	NaN	NaN	NaN	NaN	0.07	34.639999	50.810001	NaN	32.160000	16.83
243982	2003- 10-01 00:00:00	NaN	NaN	NaN	NaN	0.07	32.580002	41.020000	NaN	NaN	13.57
243983	2003- 10-01 00:00:00	1.00	0.29	2.15	6.41	0.07	37.150002	56.849998	2.28	21.480000	12.35

In [5]: data.describe()

_				
\cap	ud	- 1		
v	uч	- 1	ر	١.

	BEN	СО	EBE	MXY	NMHC	NO_2	
count	69745.000000	225340.000000	61244.000000	42045.000000	111951.000000	242625.000000	2
mean	2.106316	0.702223	2.448503	5.352770	0.153325	58.383284	
std	2.386797	0.610948	3.061722	5.955294	0.145561	31.566000	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.700000	0.340000	0.890000	1.650000	0.070000	34.709999	
50%	1.420000	0.540000	1.650000	3.580000	0.110000	54.779999	
75%	2.650000	0.860000	3.010000	6.830000	0.190000	77.019997	
max	66.389999	12.860000	162.199997	177.600006	4.360000	386.500000	
4			_				

In [6]: np.shape(data)

Out[6]: (243984, 16)

In [7]: np.size(data)

Out[7]: 3903744

In [8]: data.isna()

\cap	иd	ΗI	Γs	2 7	
U	u	_	L۷	ر ر	٠

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PXY	SO_2
0	False	True	False	True	True	True	False	False	True	False	False	True	False
1	False	True	False	True	True	False	False	False	False	False	False	True	False
2	False	True	False	True	True	True	False	False	True	False	False	True	False
3	False	True	False	True	True	True	False	False	True	False	False	True	False
4	False	True	False	True	True	True	False	False	True	False	False	True	False
243979	False												
243980	False	False	False	False	False	True	False						
243981	False	True	True	True	True	False	False	False	True	False	False	True	False
243982	False	True	True	True	True	False	False	False	True	True	False	True	False
243983	False												

243984 rows × 16 columns

In [9]: data.dropna()

F	O_3	OXY	NOx	NO_2	NMHC	MXY	EBE	СО	BEN	date	
95.15	9.950000	9.48	384.899994	90.300003	0.45	21.49	9.83	1.94	8.41	2003- 03-01 01:00:00	5
53.00	6.540000	3.37	173.300003	54.250000	0.18	7.08	3.43	1.27	3.46	2003- 03-01 01:00:00	23
63.84	6.690000	3.68	281.100006	75.459999	0.33	10.88	5.75	1.79	6.39	2003- 03-01 01:00:00	27
58.88	9.900000	11.00	277.200012	83.309998	0.35	24.73	10.63	1.47	7.42	2003- 03-01 02:00:00	33
47.59	6.380000	3.41	166.300003	42.209999	0.19	7.08	3.20	1.29	3.62	2003- 03-01 02:00:00	51
7.52	18.280001	3.11	77.709999	46.290001	0.09	9.38	3.07	0.41	1.75	2003- 09-30 23:00:00	243955
10.24	10.900000	0.89	133.100006	61.240002	0.11	10.86	3.88	0.60	2.35	2003- 10-01 00:00:00	243957
25.68	12.940000	5.52	131.300003	36.529999	0.05	10.88	4.53	0.82	2.97	2003- 10-01 00:00:00	243961
7.38	34.049999	1.68	32.299999	31.799999	0.02	3.17	2.01	0.16	0.20	2003- 10-01 00:00:00	243979
12.35	21.480000	2.28	56.849998	37.150002	0.07	6.41	2.15	0.29	1.00	2003- 10-01 00:00:00	243983
								าร	colum	ows × 16 c	33010 rc
										lumns	data.co

In [11]: sd=data[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]

In [12]: dd=sd.head(20) dd

Out[12]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx
0	NaN	1.72	NaN	NaN	NaN	73.900002	316.299988
1	NaN	1.45	NaN	NaN	0.26	72.110001	250.000000
2	NaN	1.57	NaN	NaN	NaN	80.559998	224.199997
3	NaN	2.45	NaN	NaN	NaN	78.370003	450.399994
4	NaN	3.26	NaN	NaN	NaN	96.250000	479.100006
5	8.41	1.94	9.83	21.49	0.45	90.300003	384.899994
6	NaN	1.38	NaN	NaN	0.29	89.580002	230.000000
7	NaN	1.58	NaN	NaN	0.30	93.639999	334.600006
8	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9	NaN	1.92	NaN	NaN	NaN	71.839996	181.399994
10	NaN	1.33	NaN	NaN	0.31	87.919998	273.399994
11	NaN	2.18	NaN	NaN	NaN	89.849998	320.799988
12	NaN	1.14	NaN	NaN	0.25	73.870003	159.600006
13	NaN	4.68	NaN	NaN	NaN	42.189999	377.000000
14	6.97	1.44	10.27	NaN	0.47	91.010002	259.500000
15	NaN	1.25	NaN	NaN	NaN	70.570000	198.500000
16	NaN	1.64	NaN	NaN	NaN	45.470001	202.800003
17	NaN	1.85	NaN	NaN	0.59	94.510002	279.100006
18	NaN	1.74	NaN	NaN	NaN	62.259998	331.000000
19	NaN	1.54	NaN	NaN	NaN	73.239998	232.899994

In [13]: dd.plot.bar()

Out[13]: <AxesSubplot:>


```
In [14]: dd.plot.bar(color='r')
```

Out[14]: <AxesSubplot:>


```
In [15]: dd.plot.scatter(x='CO',y='NO_2')
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='NO_2'>


```
In [16]: dd.plot.pie(y='NO_2')
```

Out[16]: <AxesSubplot:ylabel='NO_2'>

Out[17]: <AxesSubplot:>


```
In [18]: dd.plot.hist()
```

Out[18]: <AxesSubplot:ylabel='Frequency'>

In [19]: dd.plot.line()

Out[19]: <AxesSubplot:>


```
In [20]: dd.plot.area()
```

Out[20]: <AxesSubplot:>

In [21]: dd.plot.bar()

Out[21]: <AxesSubplot:>

In [22]: sns.pairplot(dd)

Out[22]: <seaborn.axisgrid.PairGrid at 0x227cdd74250>


```
In [23]: sns.distplot(dd['NO_2'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[23]: <AxesSubplot:xlabel='NO_2', ylabel='Density'>


```
In [24]: ds=data.fillna(20)
```

In [25]: ssd=ds.head(20)

In [26]: sd1=ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]

In [27]: sns.heatmap(ssd.corr())

Out[27]: <AxesSubplot:>

LinearRegression()

```
In [28]: x= ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]
         y=ssd['station']
In [29]: from sklearn .model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [30]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[30]: LinearRegression()
In [31]: print(lr.intercept_)
         28079133.537731484
         coeff= pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [32]:
         coeff
Out[32]:
                 Co-efficient
            BEN
                   -2.594413
             CO
                  45.277506
            EBE
                   3.421176
            MXY
                  -5.269043
          NMHC
                  -1.418602
           NO_2
                  -0.608823
            NOx
                  -0.151573
```

```
In [33]: | prediction = lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[33]: <matplotlib.collections.PathCollection at 0x227d3f6f640>
              +2.8079e7
           800
           600
           400
           200
             0
                                         25
                 10
                         15
                                 20
                                                30
                                                        35
                                                     +2.8079e7
In [34]: print(lr.score(x_test,y_test))
          -1669.7043953503141
In [35]: |lr.score(x_test,y_test)
Out[35]: -1669.7043953503141
In [36]: |lr.score(x_train,y_train)
Out[36]: 0.6565880695333406
```

Ridge, Lasso

```
In [37]: from sklearn.linear_model import Ridge,Lasso
In [38]: dr=Ridge(alpha=10)
    dr.fit(x_train,y_train)
Out[38]: Ridge(alpha=10)
In [39]: dr.score(x_test,y_test)
Out[39]: -12.087957480924334
In [40]: dr.score(x_train,y_train)
Out[40]: 0.1689670989626525
```

```
In [41]: | la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[41]: Lasso(alpha=10)
In [42]: |la.score(x_test,y_test)
Out[42]: -0.3910425400763189
In [43]: |la.score(x_train,y_train)
Out[43]: 0.0578739310630606
         ElasticNet
In [44]: from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[44]: ElasticNet()
In [45]: |print(en.coef_)
         [ 0.13089663 3.25747742 0.65099835 -0.
                                                       -0.25047284 -0.09191952
          -0.03271323]
In [46]: print(en.intercept )
         28079016.943015482
In [47]: | prediction=en.predict(x_test)
In [48]: |print(en.score(x_test,y_test))
         -13.538946679247568
         LogisticRegression()
In [49]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
```

In [50]: from sklearn.linear_model import LogisticRegression

```
In [51]: feature_matrix = ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]
         target_vector=ssd['station']
In [52]: feature_matrix.shape
Out[52]: (20, 7)
In [53]: target_vector.shape
Out[53]: (20,)
In [54]: from sklearn.preprocessing import StandardScaler
In [55]: fs=StandardScaler().fit_transform(feature_matrix)
In [56]: logr= LogisticRegression()
         logr.fit(fs,target_vector)
Out[56]: LogisticRegression()
In [57]: observation =[[1.2,2.3,3.3,4.3,5.3,6.3,7.3]]
In [58]: | prediction=logr.predict(observation)
         print(prediction)
         [28079039]
In [59]: logr.classes
Out[59]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                28079017, 28079018, 28079019, 28079035, 28079036, 28079038,
                28079039, 28079040], dtype=int64)
In [60]: logr.predict_proba(observation)[0][0]
Out[60]: 9.156433725894692e-05
```

RandomForestClassifier()

```
In [61]: ged=data[['BEN','CO','EBE','MXY','NMHC','NO_2','NOx','OXY','O_3','PM10','PXY',
In [62]: d=ged.fillna(20)
```

```
In [63]: dg=d.head(100)
In [64]: x=dg[['BEN','CO','EBE','MXY','NMHC','NO 2','NOX','OXY','O 3','PM10','PXY','SO 2
         y=dg['station']
In [65]:
         print(len(x))
         print(len(y))
         100
         100
In [66]: from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(x,y,train size=0.70)
In [67]: | from sklearn.ensemble import RandomForestClassifier
         rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[67]: RandomForestClassifier()
In [68]: paramets = {'max_depth':[1,2,3,4,5,6,7],
                       'min_samples_leaf':[5,10,15,20,25,30,35],
                        'n estimators':[10,20,30,40,50,60,70]}
In [69]: from sklearn.model selection import GridSearchCV
         grid_search= GridSearchCV(estimator = rfc,param_grid=paramets,cv=2,scoring="ac
         grid_search.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_split.py:
         666: UserWarning: The least populated class in y has only 1 members, which is
         less than n splits=2.
           warnings.warn(("The least populated class in y has only %d"
Out[69]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5, 6, 7],
                                   'min_samples_leaf': [5, 10, 15, 20, 25, 30, 35],
                                   'n estimators': [10, 20, 30, 40, 50, 60, 70]},
                      scoring='accuracy')
In [70]: grid_search.best_score_
Out[70]: 0.4
In [71]: | rfc_best=grid_search.best_estimator_
```

```
plt.figure(figsize=(50,40))
        plot_tree(rfc_best.estimators_[5],filled=True)
Out[72]: [Text(930.0, 1956.96, 'X[2] <= 15.335\ngini = 0.947\nsamples = 42\nvalue =</pre>
        [2, 4, 4, 0, 5, 1, 0, 2, 2, 1, 5, 7, 3, 4 \land 4, 2, 3, 0, 0, 1, 3, 3, 1, 2,
        3, 3, 1]'),
        Text(620.0, 1522.080000000000, 'gini = 0.568\nsamples = 6\nvalue = [0, 0,
        0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0\n0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        1]'),
        Text(1240.0, 1522.0800000000002, 'X[4] \le 0.315 \setminus i = 0.94 \setminus i = 36 \setminus i
        1, 2, 3, 3, 0]'),
        Text(620.0, 1087.2, 'X[5] \le 73.8 \cdot i = 0.781 \cdot samples = 10 \cdot i = 0,
        0]'),
        Text(310.0, 652.3200000000002, 'gini = 0.667\nsamples = 5\nvalue = [0, 0, 0, 0]
        Text(930.0, 652.3200000000002, 'gini = 0.408 \nsamples = 5 \nvalue = [0, 0, 0, 0]
        Text(1860.0, 1087.2, X[11] \le 14.6 = 0.918 = 26 = 26 = [2, ]
        4, 4, 0, 0, 1, 0, 0, 2, 1, 0, 7, 3, 4\n4, 4, 2, 0, 0, 0, 1, 0, 0, 1, 2, 3, 0,
        0]'),
        Text(1550.0, 652.3200000000002, 'gini = 0.734\nsamples = 8\nvalue = [0, 0,
        2, 0, 0, 0, 0, 0, 0, 0, 0, 7, 3, 1 n 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
        0]'),
        Text(2170.0, 652.3200000000000, 'X[9] <= 44.24 \ngini = 0.908 \nsamples = 18 \n
        value = [2, 4, 2, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 3\n2, 4, 2, 0, 0, 0, 0, 0, 0, 0,
        1, 2, 3, 0, 0]'),
        Text(1860.0, 217.4400000000005, 'gini = 0.792\nsamples = 7\nvalue = [0, 4, ]
        1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0\n0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0,
        0]'),
        Text(2480.0, 217.4400000000005, 'gini = 0.844\nsamples = 11\nvalue = [2, 0, 1]
        1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3\n2, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0,
        0]')]
```

In [72]: from sklearn.tree import plot tree

Conclusion : ElasticNet() 28079016.943015482 HIGH RANGE

In []:	
---------	--