Resolução de Problemas de Natureza Discreta

TEMA 02: RELAÇÕES

As relações são uma ferramenta fundamental na Matemática Discreta que ajudam a descrever e analisar as ligações entre objetos, conjuntos e estruturas.

Entender o conceito de relações é importante para entender muitos tópicos em Matemática, como grafos, álgebra booleana, lógica e teoria dos conjuntos.

Produto cartesiano de conjuntos

Dados dois objetos quaisquer a e b, podemos formar um novo objeto (a,b), chamado par ordenado a, b.

O adjetivo <u>ordenado</u> enfatiza aqui que a ordem pela qual os objetos a e b aparecem entre parênteses é essencial. Note que o par ordenado (a,b) não é o mesmo que o conjunto $\{a,b\}$.

Produto cartesiano de conjuntos

Definição: Sejam A e B dois conjuntos quaisquer. O conjunto de todos os pares ordenados (x, y), com $x \in A$ e $y \in B$, é chamado o produto cartesiano de A e B, e é denotado por $A \times B$.

$$A \times B = \{(x, y) | x \in A \land y \in B\}$$

Exemplo 1: Sejam $A = \{a, b, c\}$ e $B = \{1,2\}$. Encontre os produtos cartesianos $A \times B$ e $B \times A$.

Exemplo 2: Sejam A um conjunto qualquer. Encontre os produtos cartesianos $A \times \emptyset$ e $\emptyset \times A$.

Teorema: Sejam A, B e C três conjuntos quaisquer. Então

$$a. A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Demonstração:

Teorema: Sejam A, B e C três conjuntos quaisquer. Então b. $A \times (B \cup C) = (A \times B) \cup (A \times C)$

Demonstração:

Relações

Definição: Uma relação \mathcal{R} de A para B é um subconjunto do produto cartesiano $A \times B$.

Definição: Sejam A e B dois conjuntos, não necessariamente distintos, e seja \mathcal{R} uma relação de A para B. Então a relação inversa \mathcal{R}^{-1} da relação \mathcal{R} é a relação de B para A. Ou seja,

$$\mathcal{R}^{-1} = \{(b, a) | (a, b) \in \mathcal{R}\}$$

Exemplo 3: Sejam $A = \{a, b\}, B = \{x, y, z\}$, e seja $\mathcal{R} \subset A \times B$. Então:

$$\mathcal{R} =$$

$$\mathcal{R}^{-1}$$
=

Exemplo 4: Seja $\mathcal{R} = \{(x,y) \in \mathbb{N} \times \mathbb{N} | x \ divide \ y\}$. Então:

$$\mathcal{R}^{-1}$$
=

<u>Exemplo 5</u>: Seja A = $\{1,3,5\}$ e $B = \{3,5,7,9\}$. Escreva as relações:

$$\mathcal{R}_1 = \{(x, y) \in A \times B | y = x - 2\}$$

$$\mathcal{R}_1^{-1} =$$

$$\mathcal{R}_2 = \{(x, y) \in A \times B | y > x\}$$

$$\mathcal{R}_2^{-1} =$$

Definição: Seja \mathcal{R} uma relação de A para B. O domínio da relação \mathcal{R} , denotado por $Dom(\mathcal{R})$, é o conjunto de todos aqueles $a \in A$ tais que $(a,b) \in \mathcal{R}$ para algum $b \in B$; e a imagem de \mathcal{R} , denotada por $Im(\mathcal{R})$, é o conjunto de todos aqueles $b \in B$, tais que $(a,b) \in \mathcal{R}$ para algum $a \in A$.

$$Dom(\mathcal{R}) = \{a \in A | (a, b) \in \mathcal{R} \ para \ algum \ b \in B\}$$

$$Im(\mathcal{R}) = \{b \in B | (a, b) \in \mathcal{R} \ para \ algum \ a \in A\}$$

Nos exemplos anteriores qual é o domínio e a imagem?

Definição: Seja \mathcal{R} uma relação num conjunto X. Então:

- a. \mathcal{R} é reflexiva se e somente se $(x, x) \in \mathcal{R}$, $\forall x \in X$.
- b. \mathcal{R} é simétrica se e somente se $(x,y) \in \mathcal{R} \Rightarrow (y,x) \in \mathcal{R}$.
- c. \mathcal{R} é transitiva se e somente se $(x,y) \in \mathcal{R}$ $\land (y,z) \in \mathcal{R} \Rightarrow (x,z) \in \mathcal{R}$.
- d. \mathcal{R} é uma relação de equivalência se e somente se \mathcal{R} é reflexiva, simétrica e transitiva.
- e. \mathcal{R} é antirreflexiva se $(x, x) \notin \mathcal{R}$, $\forall x \in X$.
- f. \mathcal{R} é antissimétrica se $(x, y) \in \mathcal{R} \land (y, x) \in \mathcal{R} \Rightarrow x = y$.

LEMBRETE:

Reflexiva: Todo x está relacionado consigo mesmo.

Simétrica: Se x estiver relacionado com y, então y estará relacionado com x.

Transitiva: Se x estiver relacionado com y e y estiver relacionado com z, então x estará relacionado com z.

Antissimétrica: Se x estiver relacionado com y e y estiver relacionado com x, então x = y.

ATENÇÃO:

Relação Simétrica: Todos os pares têm inversos (ou são reflexivos).

Relação Antissimétrica: Se tem pares invertidos, eles são reflexivos.

Relação Não Simétrica: Pelo menos um par não tem inverso.

Relação Não Antissimétrica: Existem pares invertidos distintos (ex: (1,2) e (2,1)).

Observações:

- 1. Uma relação pode ser simétrica e antissimétrica.
- 2. Uma relação pode ser simétrica e não antissimétrica.
- 3. Uma relação pode ser não simétrica e antissimétrica.
- 4. Uma relação pode ser não simétrica e não antissimétrica.
- 5. Uma relação pode ser transitiva, mas não reflexiva.
- 6. Uma relação pode ser transitiva, mas não simétrica.
- 7. Portanto, enquanto algumas relações podem ter todas as três propriedades, a transitividade por si só não garante reflexividade ou simetria.

Exemplo 6: Seja $A = \{1, 2, 3, 4\}$ e $\mathcal{R} = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}.$

Exemplo 7: Seja $A = \{a, b, c, d\}$ e $\mathcal{R} = \{(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d)\}.$

Exemplo 8: Seja $A = \{1, 2, 3, 4, 5, 6\}$ e $\mathcal{R} = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 3), (3, 1), (2, 4), (4, 2), (3, 5), (5, 3)\}.$

Exemplo 9: Seja $A = \{1,2,3,4,5,6\}$ e $\mathcal{R} = \{(1,2), (2,3), (3,4), (4,5), (5,6)\}.$

Exemplo 10: Seja m um inteiro positivo qualquer fixado. A relação de congruência \equiv módulo m, no conjunto \mathbb{Z} dos número inteiros é definida por $x \equiv y \pmod{m}$ se e somente se x - y = km para algum $k \in \mathbb{Z}$. A relação de congruência é uma relação de equivalência em \mathbb{Z} .