Metric Spaces Notes

Leon Lee February 12, 2024

Contents

1	Inti	roduction to Metric Spaces
	1.1	Defining a Metric
	1.2	Examples of Metric Spaces
		1.2.5 Proof of the euclidean triangle inequality
		1.2.9 L space
	1.3	Real Vector Spaces
		1.3.2 Normalising l 1
		1.3.3 Space l-2
	1.4	Generalising metric space features

1 Introduction to Metric Spaces

1.1 Defining a Metric

Metric is another name for distance. A **Metric Space** is a set equipped with a metric. A standard example is \mathbb{R} with the standard metric

$$d(x,y) = |x - y|$$

We will now formally define what it means to have a metric

Theorem 1.1.1: Definition of a Metric

Let X be a non-empty set. A function $d: X \times X \to \mathbb{R}$ is called a **metric** iff for all $x, y, z \in X$,

- $d(x,y) \ge 0$ and $d(x,y) = 0 \iff x = y$
- d(x,y) = d(y,x)
- $d(x,y) \le d(x,z) + d(z,y)$ (Triangle Inequality)

A non-empty set X equipped with a metric d is called a **metric space**

1.2 Examples of Metric Spaces

We can construct a metric space using the **Absolute value** equipped with the standard triangle inequality

Example 1.2.1: The Real Line

Let $X = \mathbb{R}$. Define our metric $x: X \times X \to \mathbb{R}$ by

$$d(x,y) = |x - y|$$

The first two properties are fairly trivial. The third property follows using the regular triangle inequality

$$d(x,y) = |x-y| = |(x-z) + (z-y)| \le |x-z| + |z-y| = d(x,z) + d(z,y)$$

Remark: This can be extended not just in \mathbb{R}^2 , but to all \mathbb{R}^n . By induction,

$$|x_1 + \cdots + x_N| < |x_1| + \cdots + |x_N|$$

If $\sum_{n=1}^{\infty} x_n$ converges absolutely, let $N \to +\infty$ to see that

$$\left| \sum_{n=1}^{\infty} x_n \right| \le \sum_{n=1}^{\infty} |x_n|$$

A second example is the **Euclidean Plane**. The metric is defined using the **inner product** and the **norm**.

Definition 1.2.2: Inner Product

The inner product is defined as

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2$$

Properties of the inner product: For all vectors $x, y, z \in \mathbb{R}^2$ and all real scalars $a, b, y, z \in \mathbb{R}^2$

- $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \iff x = 0$
- $\langle x, y \rangle = \langle y, x \rangle$
- $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$

Remark: This is basically a formalisation of the dot product

Definition 1.2.3: Norm

The **norm** is defined as:

$$||x||_2 = \langle x, x \rangle^{1/2} = \sqrt{x_1^2 + x_2^2}$$

Properties of the norm: For all $x, y \in \mathbb{R}^2$, $a \in \mathbb{R}$

- $||x||_2 \ge 0$ and $||x||_2 = 0 \iff x = 0$
- $||ax||_2 = |a|||x||_2$
- $||x + y||_2 \le ||x||_2 + ||y||_2$ (triangle inequality)

Remark: This is a formalisation of the "length of a vector" With these two properties, we can now define the **Euclidean Metric**

Example 1.2.4: Euclidean Metric

For all $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$, define

$$d_2(x,y) = ||x - y||_2 = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

Remark: Derivation of the triangle inequality is basically the same as Example 1.2.1.

$$d_2(x,y) = \|x - y\|_2 = \|(x - z) + (z - y)\|_2 \le \|x - z\|_2 + \|z - y\|_2 = d_2(x,z) + d_2(z,y)$$

1.2.5 Proof of the euclidean triangle inequality

W.T.S:

$$||x + y||_2 \le ||x||_2 + ||y||_2$$

Proof: Square both sides

LHS² =
$$\langle x + y, x + y \rangle$$
 RHS² = $||x||_2^2 + ||y||_2^2 + 2||x||_2||y||_2$
= $\langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle$
= $||x||_2^2 + 2\langle x, y \rangle + ||y||_2^2$

Discarding the equal terms, we get

$$\begin{aligned} \|x\|_{2}^{2} + 2\langle x, y \rangle + \|y\|_{2}^{2} &\leq \|x\|_{2}^{2} + \|y\|_{2}^{2} + 2\|x\|_{2}\|y\|_{2} \\ &\langle x, y \rangle \leq \|x\|_{2}\|y\|_{2} \end{aligned}$$
i.e. $x_{1}y_{1} + x_{2}y_{2} \leq \sqrt{x_{1}^{2} + x_{2}^{2}}\sqrt{y_{1}^{2} + y_{2}^{2}}$

This is the Cauchy-Schwarz Inequality. Various ways to prove this (watch lecture 1)

Example 1.2.6: Complex Plane

Let $X = \mathbb{C}$, $d : \mathbb{C} \times \mathbb{C} \to \mathbb{R}$

$$d(z, w) = |z - w|$$

If $z = a + ib, w = c + id, a, b, c, d \in \mathbb{R}$, then

$$z - w = (a - c) + i(b - d)$$

therefore,

$$d(z, w) = \sqrt{(a-c)^2 + (b-d)^2}$$

Definition 1.2.7: n-dimensional Euclidean space

Let
$$X = \mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_1, x_2, \dots, x_n \in \mathbb{R}\}$$

For $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n)$ in \mathbb{R}^n , define

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$
 (inner product)

Properties of *n***-inner product**: For all vectors $x, y, z \in \mathbb{R}^n$ and all real scalars a, b,

- $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \iff x = 0$
- $\langle x, y \rangle = \langle y, x \rangle$
- $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$

For $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ define

$$||x||_2 = \langle x, x \rangle^{1/2} = \sqrt{x_1^2 + x_2^2 + \dots + c_n^2}$$
(norm)

Properties of *n***-norm**: For $x, y \in \mathbb{R}^n$, $a \in \mathbb{R}$,

- $||x||_2 \ge 0$ and $||x||_2 = 0 \iff x = 0$
- $||ax||_2 = |a|||x||_2$
- $||x + y||_2 \le ||x||_2 + ||y||_2$ (triangle inequality)

Example 1.2.8: Metric in *n*-dim euclidean space

For $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$ in \mathbb{R}^n , define

$$d_2(x,y) = ||x - y||_2$$

= $\sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$

Triangle inequality, cauchy schwarz, yadda yadda same as 2-dim case

1.2.9 L space

For two sequences $x=(x_1,\ldots,x_n,\ldots),\,y=(y_1,\ldots,y_n,\ldots)$ of real numbers we wish to define

$$d_1(x,y) = \sum_{n=0}^{\infty} |x_n - y_n|$$

We need this series to converge - in particular when $y=(0,\ldots,0,\ldots)$, we need the series $\sum_{n=1}^{\infty}|x_n|$ to converge

Definition 1.2.10: l space

We denote by ℓ^1 the set of real sequences $(x_n)_{n\in\mathbb{N}}$ for which the series $\sum_{n=1}^{\infty}|x_n|$ converges.

If $x, y \in \ell^1$ i.e. if $\sum_{n=1}^{\infty} |x_n|$ and $\sum_{n=1}^{\infty} |y_n|$ converge, then $\sum_{n=1}^{\infty} |x_n - y_n|$ converges, because for all n,

$$|x_n - y_n| \le |x_n| + y_n$$

For $x=(x_1,\ldots,x_n,\ldots)$ in ℓ^1 , we may now define

$$||x||_1 = \sum_{n=1}^{\infty} |x_n|$$

For $x = (x_1, \ldots, x_n, \ldots)$, $y = (y_1, \ldots, y_n, \ldots)$ in ℓ^1 we may now define

$$d_1(x,y) = ||x - y||_1 = \sum_{n=1}^{\infty} |x_n - y_n|$$

1.3 Real Vector Spaces

Definition 1.3.1: Real Vector Spaces

A real vector space is a set X with two operations, addition(+) and scalar multiplication \cdot , with the following properties: for all $x, y, z \in X$, $a, b \in \mathbb{R}$, we have $x + y, a \cdot x \in X$, and

- x + y = y + x
- x + (y + z) = (x + y) + z
- There is an element of X denoted by 0 such that, for all x, 0 + x = x + 0 = x
- For every $x \in X$ there exists an element of X denoted by -x such that x + (-x) = (-x) + x = 0
- $a \cdot (x+y) = a \cdot x + a \cdot y$
- $(a+b) \cdot x = a \cdot x + b \cdot x$
- $a \cdot (b \cdot x) = (ab) \cdot X$
- $1 \cdot x = x$

(we usually write ax instead of x)

1.3.2 Normalising l 1

Properties: For all sequences $x,y\in\ell^1$ and all real scalars a,

- $||x||_1 \ge 0$ and $||x||_1 = 0 \iff x = 0$
- $||ax||_1 = |a|||x||_1$
- $||x+y||_1 \le ||x||_1 + ||y||_1$

1.3.3 Space l-2

We denote by ℓ^2 the set of real sequences $(x_1, \ldots, x_n, \ldots)$ such that the seriese $\sum_{n=1}^{\infty} |x_n|^2$ converges For $x = (x_1, \ldots, x_n, \ldots) \in \ell^2$, $y = (y_1, \ldots, y_n, \ldots) \in \ell^2$ we define

•
$$\langle x, y \rangle = \sum_{n=1}^{\infty} x_n y_n$$
 (inner product)

•
$$||x||_2 = \left(\sum_{n=1}^{\infty} |x_n|^2\right)^{1/2}$$
 (norm)

•
$$d_2(x,y) = ||x-y||_2 = \left(\sum_{n=1}^{\infty} |x_n - y_n|^2\right)^{1/2}$$
 (Metric)

Theorem 1.3.4: 4

 ℓ^2 is a real vector space proof icba

more stuff on ℓ^2 - typical properties watch video 1

1.4 Generalising metric space features

Definition 1.4.1: Normed Vector Spaces

A normed vector space (or normed linear space or normed space) is a real vector space X equipped with a norm, i.e. a function that assigns to every vector $x \in X$ a real number ||x|| so that, for all vectors x and y in X and all real scalars a,

- $||x|| \ge 0$ and $||x|| = 0 \iff x = 0$
- ||ax|| = |a|||x||
- $||x + y|| \le ||x|| + ||y||$

If $(X, \|\cdot\|)$ is a normed vector space then

$$d(x,y) = ||x - y||$$

defines a metric in X

Definition 1.4.2: Inner Product Spaces

Let X a be a real vector space. An *inner product* on X is a function that assigns to every pair $(x, y) \in X \times X$ a real number denoted by $\langle x, y \rangle$ and has the following properties

- $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \iff x = 0$
- $\langle x, y \rangle = \langle y, x \rangle$
- $ax + by, z = a\langle x, z \rangle + b\langle y, z \rangle$

A real inner product space is a real vector space equipped with an inner product. If $\|\cdot,\cdot\|$ is an inner product on X, then

$$||x|| = \sqrt{\langle x, x \rangle}$$

defines a norm and

$$d(x,y) = ||x - y||$$

defines a metric

Example 1.4.3: Discrete metric

Let X be a non-empty set. Define $d: X \times X \to \mathbb{R}$ by

$$d(x,y) = \begin{cases} 0, & x = y \\ 1, x \neq y \end{cases}$$

Example of metric space without norm or inner prod