Organización de Computadoras 2012

Clase 3

Temas de clase

- Circuitos Lógicos Combinacionales
- Circuitos Lógicos Secuenciales

Circuitos Combinacionales o Combinatorios

- Responden a los valores lógicos en las entradas, la salida está determinada exclusivamente por los valores de las entradas en ese instante.
- Si cambia la entrada, cambia la salida.
- Los valores pasados de las entradas no influyen en los valores de las salidas.

Puertas lógicas en un chip

Multiplexor de 8 entradas •74151

Ejemplo 1

Según valor de entradas A, B y C $F=D_x$

Para cada combinación de las entradas A, B y C sólo UNA de las salidas D_x vale '1'

Decodificador 3 a 8

Si todos los bits A_i son iguales a los B_i la salida es '1'

Comparador de 4 bits

Desplazador de 1 bit

Según el valor de la entrada C se 'correrán' un lugar a derecha o izquierda.

1 bit de ALU

Ejemplo 5

Según F₁F₀ será la función que se realizará sobre A y B.

Respuesta temporal

Suponemos que los retardos de compuerta ∆t son iguales

Circuitos Secuenciales

- Las salidas dependen tanto de las entradas como del estado interno del circuito.
 - ¿Qué es el estado interno del circuito?
- Tienen la característica de "almacenar" valores lógicos internamente.
- Estos valores se almacenan aunque las entradas no estén.

¿Cómo se almacena un valor lógico?

- La salida es también entrada
- ➤ En ningún circuito combinatorio una salida transportaba información hacia la entrada
- ▶La ecuación lógica

$$M=M+P$$

Supongamos que
$$P=0$$
 y $M=0$
 $M=M+P=0+0=0$

¿Cómo se ...?(3)

$$M = M + P = 1 + 1 = 1$$

¿Cómo se ...?(4)

►Ahora P=0

$$M = M + P = 1 + 0 = 1$$

➤ Una vez que la salida M toma el valor 1 no hay forma de volver a 0

¿Cómo se ...?(5)

Ahora
$$P=1$$
 y $B=0$, $M=1$

$$M=(M+P).B$$

¿Cómo se ...?(6)

➤ Si ahora P=0 y B=0, M=1. Nada cambia.

¿Cómo se ...?(7)

 \triangleright Si ahora P=0 y B=1, M=0.

¿Cómo se ...?(8)

- \triangleright Si ahora P=0 y B=0, M=0.
- P puede cambiar y se reflejará en M

¿Cómo se ...?(9)

¿Cómo se ...?(10)

Finalmente queda así

FLIP-FLOP SR

S	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	Prohibido

FLIP-FLOP SR(2)

- ➤ Aparece la salida Q_{n+1}
- \triangleright Q_n= salida anterior
- >S = Set = poner a 1
- ightharpoonup R = Reset = poner a 0
- > Las salidas Q y Q son complementarias

FLIP-FLOP SR(3)

Supongamos S y R = 0 y Q = 0

FLIP-FLOP SR(4)

- Supongamos S y R = 0 y Q = 1
 - ❖Por lo que "recuerda" cual era el estado anterior.

FLIP-FLOP SR(5)

❖Si ahora S=1 y R=0

- ➤ Se puede construir con un flip-flop una memoria de 1 bit.
- Se llama biestable porque el circuito posee sólo 2 estados posibles de funcionamiento, se queda en cada uno de ellos, salvo que las entradas provoquen un cambio.

Secuenciales - Clasificación

- Según la manera en que las salidas respondan a las señales lógicas presentes en la entrada, los biestables se clasifican en:
 - SR
 - J-K
 - D
 - T

Secuenciales – Clasificación(2)

- Respecto del instante en que pueden cambiar dichas salidas, pueden ser:
 - Asincrónicos: cuando en la entrada se establece una combinación, las salidas cambiarán
 - Sincrónicos: la presencia de una entrada especial, determina "cuando" cambian las salidas acorde a las entradas

Reloj: "señal especial"

- El orden en que ocurren los sucesos es importante.
- A veces los sucesos deben ocurrir simultaneamente.
- Reloj: es una señal de tiempo precisa que determina cuando se producen eventos.

Reloj (Clock) (CLK)

Cada tiempo T, la señal se repite

Flip-Flop SR sincrónico

> S y R son las entradas que tendrán efecto cuando CK tome el valor 1.

Tabla de comportamiento: SR sincrónico

(CK	S	R	Q{n+1}
	1	0	0	Q _n
	1	0	1	0
	1	1	0	1
	1	1	1	Prohibido
	0	X	X	Q_n

Flip-Flop D

En el FF SR hay que aplicar 2 entradas diferentes para cambiar de estado.

➤ El FF D permite aplicar una sola entrada para cambiar la salida.

Flip-Flop D

Flip Flop J-K

La salida Q cambiará de 0 a 1 o 1 a 0 en cada pulso de la entrada T.

Recordando un bit

- Con una señal (CK) se copia el valor de D en Q
- Sin esa señal, el valor de Q permanece igual

Puedo recordar un Bit

CK	D	Q
0	0	q
0	1	q
1	0	0
1	1	1

Recordando n bits

Si CK actúa sobre n bits simultáneamente

Registro n bits

Chip con 8 FF-D (74LS374)

Selección y operaciones

Registro con desplazamiento

	Control		Function .
ı	ø,	00	
ı	0	0	Mootenge
	0	4	Shitlet
	4	0	Sist dg ist
	1	4	Parallel (cad

Contador módulo 8

Un Registro

Varios Registros

mayor información ...

- Operaciones Lógicas
 - Apunte 3 de Cátedra
- Circuitos Secuenciales
 - Apunte 5 de Cátedra
- Apéndice A: Lógica digital (A.3., A.4.)
 - Stallings, W., 5º Edición.