- เดิมจริง และสามารถไปสู่ขั้นตอน Phase II ได้
- \diamond หากไม่สามารถทำให้ W=0 ได้ (เช่น W>0 เสมอ) แสดงว่าปัญหานี้ไม่มี feasible solution (infeasible problem) ไม่จำเป็นต้องดำเนินการต่อ
- 3. เมื่อได้ W=0 แล้ว (กำจัดตัวแปรจำลองหมดแล้ว) เราจะดำเนินการต่อในขั้นที่สอง (Phase II) โดยกลับไปใช้ ฟังก์ชันวัตถุประสงค์จริงของปัญหาเดิม และเริ่มทำ Simplex method ตามปกติจนได้คำตอบสุดท้าย สรุปได้ว่าในกรณีที่ 2 นี้ การใช้ตัวแปรจำลอง (Artificial variable) และวิธีการ Simplex Phase I จะช่วยให้เราสามารถเริ่ม ต้นแก้ปัญหาการกำหนดการเชิงเส้นได้ แม้ว่าเงื่อนไขของปัญหาจะทำให้จุดกำเนิดไม่สามารถเป็น basic feasible solution ตั้งต้นได้ก็ตาม

ตัวอย่าง 1.3.8

ใช้วิธี simplex หาผลเฉลยของกำหนดการเชิงเส้น

$$\max \quad 4x + 5y$$
 subject to
$$x \geq 0, \quad y \geq 0$$

$$-3x + 5y \geq 4$$

$$x + 2y \leq 8$$

วิธีทำ:

ขั้นที่ 1: ปรับสมการให้อยู่ในรูปมาตรฐาน

- \diamond เนื่องจาก (0,0) **ไม่**สอดคล้องเงื่อนไข $-3x+5y\geq 4$ (แทนค่าแล้วได้ $0\geq 4$ ซึ่งเป็นเท็จ) เป็น จริง ดังนั้นจึงต้องเติมตัวแปรส่วนเกินและตัวแปรจำลอง ได้เป็น $-3x+5y-s_1+a_1=4$ โดยที่ $s_1,a_1\geq 0$ โดยที่ให้ a_1 เป็นตัวแปรฐาน และ $x,y,s_1=0$ ในขั้นตั้งต้น
- \diamond เนื่องจาก (0,0) สอดคล้องเงื่อนไข $3x+2y\leq 8$ (แทนค่าแล้วได้ $0\leq 8$ ซึ่งเป็นจริง) ดังนั้น จึงเติมตัวแปรส่วนขาดเข้าไปเท่านั้น ได้เป็น $x+2y+s_2=8$ โดยที่ให้ s_2 เป็นตัวแปรฐานและ x,y=0

และเนื่องจากว่ามีตัวแปรจำลอง จึงต้องตั้งฟังก์ชันจุดประสงค์ชั่วคราวมให้เป็นการหาค่าต่ำสุดของผลรวม ตัวแปรจำลอง กล่าวคือ $\min a_1$ แต่เนื่องจากเรากำลังจะทำ simplex จึงต้องปรับปัญหาให้เป็นการหาค่า สูงสุดด้วยการคูณ -1 เข้าไปได้เป็น $\max W = -a_1$ จึงได้ปัญหา Phase 1 ออกมาเป็น

$$\max \quad W = -a_1$$
 subject to
$$x,y,s_1,s_2,a_1 \geq 0$$

$$-3x+5y-s_1+a_1=4$$

$$x+2y+s_2=8$$

ข**ั้นที่ 2:** ตั้งตารางซิมเพล็กซ์ของตัวแปรจำลอง ได้เป็น

Pivot	x	y	s_1	s_2	a_1	RHS
a_1	-3	5	-1	0	1	4
s_2	1	2	0	1	0	8
W	0	0	0	0	1	0

และทำการกำจัดตัวแปรจำลองออกจากจุดประสงค์ (การเอาตัวแปรอื่นมาพิจารณา) เพื่อให้คอลัมน์ a_1 มี แถวของ a_1 เป็น 1 เพียงคนเดียว (เป็น pivot element ที่ตำแหน่งอื่นเป็น 0 ล้วน) ซึ่งทำได้โดยดำเนินการ ตามแถว (-1) $R_1+R_3\to R_3$ จะได้สมาชิกในแถวที่ R_3 ใหม่คำนวณได้ดังนี้

- \diamond คอลัมน์ x: (-1)(-3) + 0 = 3
- \diamond คอลัมน์ y: (-1)(5) + 0 = -5
- \diamond คอลัมน์ s_1 : (-1)(-1)+0=1
- \diamond คอลัมน์ s_2 : (-1)(0) + 0 = 0
- \diamond คอลัมน์ a_1 : (-1)(1)+1=0
- \diamond คอลัมน์ RHS: (-1)(4) + 0 = -4

จึงได้ตารางซิมเพล็กซ์ตั้งต้นดังนี้ (ถ้าในข้อสอบถามหาตารางตั้งต้น ต้องตอบตารางนี้ เพราะำคอลัมน์ a_1 ในตารางก่อนหน้ายังไม่อยู่ในรูปแบบ Pivot column)

Pivot	x	y	s_1	s_2	a_1	RHS
a_1	-3	5	-1	0	1	4
s_2	1	2	0	1	0	8
W	3	-5	1	0	0	-4

หมายเหตุ 2: การหาแถว \overline{W} อีกแบบ

เราสามารถหาแถว W ได้แบบเร็วๆ โดยการนำสมการเงื่อนไขที่มีตัวแปรจำลองมาจัดรูปให้ตัวแปร จำลองอยู่ฝั่งหนึ่ง และตัวแปรที่เหลืออยู่อีกฝั่ง แล้วนำไปแทนค่าใน W เช่นในเงื่อนไขที่ 1 ของ ตัวอย่างนี้คือ $-3x+5y-s_1+a_1=4$ และจัดรูปได้เป็น $a_1=3x-5y+s_1+4$ แล้วนำไปแทนใน W จะได้

$$W = -a_1 = -(3x - 5y + s_1 + 4) = -3x + 5y - s_1 - 4$$

และย้ายข้างได้รูปแบบ $W+3x-5y+s_1=-4$ ทำให้เขียนสัมประสิทธิ์ได้เป็น

$$3 - 5 1 0 0 | -4$$

และทำกระบวนการ simplex ไปจนกว่าตัวแปรจำลองจะออกจากตัวแปรฐานทั้งหมด โดยจากตารางจะได้ ว่าต้องให้ y เป็นตัวแปรเข้าฐาน และเมื่อหาอัตราส่วนเพื่อเลือกตัวแปรขาออกจากฐานตามตารางด้านล่าง จะได้ว่าต้องใช้ a_2 ออกจากฐาน

Pivot	x	y	s_1	s_2	a_1	RHS	อัตราส่วน
a_1	-3	5	-1	0	1	4	4/5 = 0.8
s_2	1	2	0	1	0	8	8/2 = 4
W	3	-5	1	0	0	-4	

ดำเนินการตามแถวเพื่อเปลี่ยน pivot โดยใช้ $R_1/5$, (-2/5) $R_1+R_2 \to R_2$ และ (1) $R_1+R_3 \to R_3$ จะได้

Pivot	x	y	s_1	s_2	a_1	RHS
y	-3/5	1	-1/5	0	1/5	4/5
s_2	11/5	0	2/5	1	-2/5	32/5
W	0	0	0	0	1	0

ซึ่งตารางใหม่ไม่สามารถอัพเดต เพิ่ม เติมได้อีก แล้ว และ ตัวแปร จำลอง ถูก กำจัด ออก จาก ตัวแปร ฐานได้ ทั้งหมด และได้ W=0 จึงได้ว่าสามารถทำ simplex phase 2 ต่อได้โดยใช้ชุดสัมประสิทธิ์ที่ได้จาก phase 1

Pivot	x	y	s_1	s_2	RHS
y	-3/5	1	-1/5	0	4/5
s_2	11/5	0	2/5	1	32/5
z	-4	-5	0	0	0

หมายเหตุ 3: ความหมายของผลที่ได้จาก Phase 1

ผลที่ได้จากการทำ simplex phase 1 คือการพยายามหาจุดผลเฉลยตั้งต้น (basic feasible solution) ซึ่งจากเดิมเราสามารถเริ่มได้โดยง่ายที่จุด x=0,y=0 แต่ว่าในกรณีที่มีเงื่อนไขที่ ทำให้จุดดังกล่าวไม่สอดคล้อง (เช่นเงื่อนไข $-3x+5y\geq 4$) เราจึงจำเป็นต้องเพิ่มตัวแปรจำลอง เพื่อจำลองการเดินทางจากจุด (0,0) ไปที่จุดมุมตั้งต้นที่ใกล้ที่สุด ซึ่งจากตารางสุดท้ายที่ได้มาจาก phase 1 เราได้ระบบสมการ

$$-\frac{3}{5}x + y - \frac{1}{5}s_1 = \frac{4}{5}$$
$$\frac{11}{5}x + \frac{2}{5}s_1 + s_2 = \frac{32}{5}$$

โดยที่ $x=0,s_1=0$ (เพราะไม่ใช่ฐาน) ซึ่งเมื่อแก้ระบบสมการหาค่าตัวแปรฐาน จะได้ y=4/5 และ $s_2=32/5$ ซึ่งหมายถึง เราหาจุดผลเฉลยตั้งต้นได้เป็นจุด (x,y)=(0,4/5) และ ใช้ระบบของจุดนี้เพื่อไปแก้หาค่าสูงสุดของ Z ต่อได้

ขั้นที่ 3: ดำเนินการ simplex ได้ตามปกติ (ทิ้งไว้ให้เป็นแบบฝึกหัดเพิ่มเติมเพื่อทบทวนการดำเนินการ simplex)

phaphonteey@sau.ac.th 31