What is claimed is:

An Actinium-225 complex comprising a functionalized
 polyazamacrocyclic chelant compound of the formula I, hereinbelow:

$$G \xrightarrow{Q} N \xrightarrow{T} Q$$

10 wherein:

T is

15

20

25

G is independently hydrogen or

$$L \xrightarrow{\begin{pmatrix} X \\ - \\ C \\ - \\ Y \end{pmatrix}_m} (CH_2)_n - \overset{Q^1}{\underset{H}{\overset{}{\smile}}} (CH_2)_r - \cdots$$

each Q is independently hydrogen, $(CHR^5)_pCO_2R$ or $(CHR^5)_pPO_3R^6R^7$ or

$$L \xrightarrow{\begin{pmatrix} X \\ -C \\ Y \end{pmatrix}_m} (CH_2)_n \xrightarrow{Q^1} (CH_2)_r \xrightarrow{\qquad \qquad } H$$

 Q^1 is hydrogen, $(CHR^5)_wCO_2R$ or $(CHR^5)_wPO_3R^6R^7$; each R is independently hydrogen, benzyl or C_1-C_4 alkyl; R^6 and R^7 are independently H, C_1-C_6 alkyl or $(C_1-C_2$ alkyl)phenyl;

each R^5 is independently hydrogen; $C_1 - C_4$ alkyl or $(C_1 - C_2 \text{ alkyl})$ phenyl;

with the proviso that at least two of the sum of Q and Q^1 must be other than hydrogen;

A is CH, N, C-Br, C-Cl, C-SO₃H, C-OR⁸, C-OR⁹N⁺-R¹⁰X⁻, or

$$C-C\equiv C$$

Z and Z^1 independently are CH, N, C-SO₃H, N⁺-R¹⁰X⁻, C-CH₂-OR⁸ or C-C(O)-R¹¹;

 R^8 is H, $C_1 - C_5$ alkyl, benzyl, or benzyl substituted with at least one R^{12} ;

 R^9 is C_1-C_{16} alkylamino;

10 R^{10} is C_1 - C_{16} alkyl, benzyl, or benzyl substituted with at least one R^{12} ;

 R^{11} is $-O-(C_1-C_3 \text{ alkyl})$, OH or NHR^{13} ;

 \mbox{R}^{12} is H, $\mbox{NO}_2,$ $\mbox{NH}_2,$ isothiocyanato, semicarbazido, thiosemicarbazido, maleimido, bromoacetamido or

carboxyl;

 R^{13} is C_1-C_5 alkyl;

X and Y are each independently hydrogen or may be taken with an adjacent X and Y to form an additional carbon-carbon bond;

20 n is 0 or 1;

30

m is an integer from 0 to 10 inclusive;

p is 1 or 2;

r is 0 or 1;

w is 0 or 1;

with the proviso that n is only 1 when X and/or Y form an additional carbon-carbon bond, and the sum of r and w is 0 or 1;

L is a linker/spacer group covalently bonded to, and replaces one hydrogen atom of one of the carbon atoms to which it is joined, said linker/spacer group being represented by the formula

5

10

30

$$R^1$$
 (Cyc) CH_2)

wherein:

s is an integer of 0 or 1;

t is an integer of 0 to 20 inclusive;

R¹ is H or an electrophilic or nucleophilic moiety which allows for covalent attachment to a biological carrier, or synthetic linker which can be attached to a biological carrier, or precursor thereof; and Cyc represents a cyclic aliphatic moiety, aromatic moiety, aliphatic heterocyclic moiety, or aromatic heterocyclic moiety, each of said moieties optionally

substituted with one or more groups which do not

interfere with binding to a biological carrier;
with the proviso that when R¹ is H, the linkage to the biological carrier is through one of Q or Q¹; and with the proviso that when R¹ is other than H, at least one of Q and Q¹ must be (CHR⁵)_pPO₃R⁶R⁷; and with further proviso that when Q is (CHR⁵)_pCO₂R, Q¹ is (CHR⁵)_wCO₂R, R is H, R⁵ is H, and R¹ is H, then the sum of m, n, p, r,

s, t, and w is greater than 1;

or pharmaceutically acceptable salt thereof; complexed with $^{225}\mbox{Ac.}$

- 25 2. A conjugate comprising the complex of Claim 1 covalently attached to a biological carrier.
 - 3. The conjugate according to Claim 2 wherein the biological carrier is a protein, antibody, antibody fragment, hormone, peptide, growth factor, antigen or hapten.

5

- 4. The complex of Claim 1 wherein R^1 is H, NO_2 , NH_2 , isothiocyanato, semicarbazido, thiosemicarbazido, maleimido, bromoacetamido or carboxyl.
- 5. The complex according to Claim 1 wherein the functionalized chelant is a compound of formula II

II

10 wherein:

each Q is independently hydrogen, $(CHR^5)_pCO_2R$ or $(CHR^5)_pPO_3R^6R^7$ or

$$L \xrightarrow{\begin{pmatrix} X \\ - \\ C \end{pmatrix}}_{m} (CH_2)_n - \overset{Q^1}{\underset{H}{\overset{}{\smile}}}_{-} (CH_2)_r - \cdots$$

 Q^1 is hydrogen, $(CHR^5)_wCO_2R$ or $(CHR^5)_wPO_3R^6R^7$;

each R is independently hydrogen, benzyl or C_1-C_4 alkyl; R^6 and R^7 are independently H, C_1-C_6 alkyl or $(C_1-C_2$ alkyl)phenyl;

each R^5 is independently hydrogen; C_1-C_4 alkyl or $(C_1-C_2 \text{ alkyl})$ phenyl;

with the proviso that at least two of the sum of Q and \mathbb{Q}^1 must be other than hydrogen;

X and Y are each independently hydrogen or may be taken with an adjacent X and Y to form an additional carbon-carbon bond:

25 n is 0 or 1;

m is an integer from 0 to 10 inclusive;

5

10

p is 1 or 2;
r is 0 or 1;
w is 0 or 1;

with the proviso that n is only 1 when X and/or Y form an additional carbon-carbon bond, and the sum of r and w is 0 or 1;

L is a linker/spacer group covalently bonded to, and replaces one hydrogen atom of one of the carbon atoms to which it is joined, said linker/spacer group being represented by the formula

$$R^{1}$$
 Cyc
 S
 $(CH_{2})_{t}$

wherein:

s is an integer of 0 or 1; 15 t is an integer of 0 to 20 inclusive; R¹ is H or an electrophilic or nucleophilic moiety which allows for covalent attachment to a biological carrier, or synthetic linker which can be attached to a biological carrier, or precursor thereof; and 20 Cyc represents a cyclic aliphatic moiety, aromatic moiety, aliphatic heterocyclic moiety, or aromatic heterocyclic moiety, each of said moieties optionally substituted with one or more groups which do not interfere with binding to a biological carrier; 25 with the proviso that when R1 is H, the linkage to the biological carrier is through one of Q or Q^1 ; and with the proviso that when R1 is other than H, at least one of O and O^1 must be $(CHR^5)_pPO_3R^6R^7$; and with further proviso that when Q is $(CHR^5)_pCO_2R$, Q^1 is $(CHR^5)_wCO_2R$, R 30

is H, R^5 is H, and R^1 is H, then the sum of m, n, p, r, s, t, and w is greater than 1;

or pharmaceutically acceptable salt thereof.

6. The complex according to Claim 1 wherein the functionalized chelant is a compound of formula III

$$L \xrightarrow{\begin{pmatrix} X \\ C \\ Y \end{pmatrix}_m} (CH_2)_n \xrightarrow{Q^1} (CH_2)_r \xrightarrow{Q} N \xrightarrow{N} Q$$

III

10

20

5

wherein:

each Q is independently hydrogen, $(CHR^5)_pCO_2R$ or $(CHR^5)_pPO_3R^6R^7$ or

$$L \xrightarrow{\begin{pmatrix} X \\ C \\ Y \end{pmatrix}_m} (CH_2)_n \xrightarrow{Q^1} (CH_2)_r \xrightarrow{}$$

Q¹ is hydrogen, $(CHR^5)_wCO_2R$ or $(CHR^5)_wPO_3R^6R^7$; each R is independently hydrogen, benzyl or C_1-C_4 alkyl; R^6 and R^7 are independently H, C_1-C_6 alkyl or $(C_1-C_2$ alkyl) phenyl;

each R^5 is independently hydrogen; C_1-C_4 alkyl or $(C_1-C_2 \text{ alkyl})$ phenyl;

with the proviso that at least two of the sum of Q and \mathbf{Q}^1 must be other than hydrogen;

 ${\tt X}$ and ${\tt Y}$ are each independently hydrogen or may be taken with an adjacent ${\tt X}$ and ${\tt Y}$ to form an additional carbon-

carbon bond;

n is 0 or 1;

m is an integer from 0 to 10 inclusive;

5

10

p is 1 or 2;
r is 0 or 1;
w is 0 or 1;

with the proviso that n is only 1 when X and/or Y form an additional carbon-carbon bond, and the sum of r and w is 0 or 1:

L is a linker/spacer group covalently bonded to, and replaces one hydrogen atom of one of the carbon atoms to which it is joined, said linker/spacer group being represented by the formula

$$R^{1}$$
 Cyc
 S
 $(CH_{2})_{t}$

wherein:

s is an integer of 0 or 1; 15 t is an integer of 0 to 20 inclusive; R1 is H or an electrophilic or nucleophilic moiety which allows for covalent attachment to a biological carrier, or synthetic linker which can be attached to a biological carrier, or precursor thereof; and 20 Cyc represents a cyclic aliphatic moiety, aromatic moiety, aliphatic heterocyclic moiety, or aromatic heterocyclic moiety, each of said moieties optionally substituted with one or more groups which do not interfere with binding to a biological carrier; 25 with the proviso that when R1 is H, the linkage to the biological carrier is through one of Q or Q1; and with the proviso that when R¹ is other than H, at least one of Q and Q^1 must be $(CHR^5)_pPO_3R^6R^7$; and with further proviso that when Q is (CHR⁵)_pCO₂R, Q¹ is (CHR⁵)_wCO₂R, R 30

20

is H, R^5 is H, and R^1 is H, then the sum of m, n, p, r, s, t, and w is greater than 1;

or a pharmaceutically acceptable salt thereof.

- 7. A conjugate according to Claim 2 comprising the ²²⁵Ac

 complex of DOTA (1,4,7,10-tetraazacyclododecane
 1,4,7,10-tetraacetic acid) covalently attached via amide

 linkage to a biological carrier.
 - 8. A conjugate according to Claim 2 comprising the ²²⁵Ac complex of 2-(p-isothiocyanatobenzyl)-1,4,7,10-
- tetraazacyclododecane-1,4,7,10-tetraacetic acid covalently attached to a biological carrier.
 - 9. A pharmaceutical formulation comprising the ²²⁵Ac conjugate of Claim 2 and a pharmaceutically acceptable carrier.
- 15 10. The formulation of Claim 9 wherein the pharmaceutically acceptable carrier is a liquid.
 - 11. A method of therapeutic treatment of a mammal having cancer which comprises administering to said mammal a therapeutically effective amount of the formulation of Claim 9.