Zadání

- 1. Změřte vibrace (zrychlení) na ložiskových podporách fyzikálního modelu turbíny v závislosti na otáčkách.
- 2. Ze změřené závislosti určete kritické otáčky.
- 3. Stanovte maximum zrychlení při kritických otáčkách a činitel jakosti rezonance

Teoretický úvod

V teoretickém úvodu stručně popište následující témata, celková délka teoretického úvodu by neměla přesáhnout dvě strany. Nekopírujte! Neopisujte!

- Kritické otáčky
- Vlastní kmity hřídelí
- Jakost rezonanční křivky

Schéma úlohy

Postup měření

- 1. Připevněte akcelerometr k měřenému objektu (opoře ložiska A).
- 2. Připojte jej k měřícímu zesilovači. Na zesilovači nastavte vhodné zesílení a připojte jej k souřadnicovému zapisovači (osa y).
- 3. K zapisovači dále připojte tachodynamo (osa x) a nastavte vhodné rozsahy obou os.
- 4. Vložte papír a regulátory klidové polohy narýsujte na papír osy, potom nastavte zapisovač do počátku vámi zvolených souřadnic.

5. Zapněte motor a za pomoci otáčkoměru postupně nastavte 1000, 2000, 3000 ot·min⁻¹, přičemž při každé z těchto hodnot udělejte značku na ose x.

Kritické otáčky překonejte co nejrychleji!

6. Po dosažení 3000 ot·min⁻¹ spust'te pero zapisovače a vypněte napájení motoru. Ze získané grafické závislosti a=f(n) stanovte a_{max}, n₀ a Q.

Použité přístroje

Přístroj	Тур	Sériové/inv. číslo
Přípravek – model turbíny		
Souřadnicový zapisovač		
Akcelerometr		
Měřicí zesilovač		
Otáčkoměr		

Závěr

Zhodnoť te provedené měření, naměřené hodnoty činitele jakosti a chování přípravku při různých otáčkách.

Naměřené hodnoty

Jméno studenta:

Měřítko X [mV/cm]

Měřítko Y [mV/cm]

Měřítko X [ot./cm]

Měřítko Y $[m \cdot s^{-2}/cm]$

$$a_{MAX} =$$

$$a_{fh,\,fd} = \frac{1}{\sqrt{2}} \cdot a_{MAX} =$$

	f _d	f _{res}	f _h
n [ot∙min ⁻¹]			
f [Hz]			
a [m.s ⁻²]			

$$B_3 = f_h - f_d =$$

$$Q = \frac{f_{res}}{B_3} =$$

Podmínky měření

Teplota:

Relativní vlhkost:

Atmosférický tlak:

Datum a podpis cvičícího: