

Knowledge Graphs

Lecture 6: Advanced Knowledge Graph Applications

- 6.1 The Graph in Knowledge Graphs
- 6.2 Knowledge Graph Embeddings
- 6.3 Knowledge Graph Completion
- 6.4 Knowledge Graph Mappings and Alignment
- 6.5 Semantic Search
- 6.6 Exploratory Search and Recommender Systems

6. Advanced Knowledge Graph Applications / 6.3 Knowledge Graph Completion

How complete are Knowledge Graphs?

 Check whether all Climatologists in DBpedia are labelled as such also in wikidata

6. Advanced Knowledge Graph Applications / 6.3 Knowledge Graph Completion

How complete are Knowledge Graphs?

Check whether all Climatologists in DBpedia are labelled as such also in Wikidata

Knowledge

```
1 PREFIX dct: <a href="http://purl.org/dc/terms/">http://purl.org/dc/terms/>
          2 PREFIX dbc: <a href="http://dbpedia.org/resource/Category">http://dbpedia.org/resource/Category</a>;>
          4 SELECT DISTINCT ?wditem ?wditemLabel WHERE {
                  SERVICE <a href="http://dbpedia.org/spargl">http://dbpedia.org/spargl</a> {
                       ?item dct:subject dbc:Climatologists ;
                               owl:sameAs ?wditem FILTER regex (?wditem, "wikidata.org") .
                  SERVICE <a href="https://query.wikidata.org/sparql">SERVICE <a href="https://query.wikidata.org/sparql">https://query.wikidata.org/sparql</a> {
                    ?wditem wdt:P106 ?occupation FILTER NOT EXISTS {?wditem wdt:P106 wd:Q1113838 }.
                    ?wditem rdfs:label ?wditemLabel FILTER (LANG(?wditemLabel)="en") .
                                                                                                 15 Climatologists are missing
 Timeline - 0
wditem
                                                                                                    wditemLabel
Q wd:Q670496
                                                                                                     Veerabhadran Ramanathan
Q wd:Q6610163
                                                                                                     list of climate scientists
Q wd:Q1348480
                                                                                                     Henrik Svensmark
Q wd:Q6396209
                                                                                                     Kevin E. Trenberth
Q wd:Q4714955
                                                                                                     Aleksander Kosiba
Q wd:Q462297
                                                                                                     Atsumu Ohmura
Q wd:Q16256092
                                                                                                     T. N. Krishnamurti
Q wd:Q112648
                                                                                                     Rudolf Ferdinand Spitaler
Q wd:Q7282186
                                                                                                     Rafael L. Bras
```


Legend

SPARQL query

Knowledge Graph Refinement

- As a model of the real world or a part of it, knowledge graphs cannot reasonably reach full coverage, i.e., contain information about each and every entity in the universe.
- It is unlikely, in particular if heuristic methods are applied for knowledge graph construction, that the knowledge graph is fully correct.
- To address those shortcomings, various methods for Knowledge Graph
 Refinement have been proposed, as e.g.
 - Deduplicating entity nodes (entity resolution)
 - Collective reasoning (probabilistic soft logic)
 - Link prediction or Knowledge Graph Completion
 - Dealing with missing values
 - Anything that improves an existing knowledge graph

Completion vs. Error Detection

Knowledge Graph Completion:

Adding missing knowledge to the Knowledge Graph

E.g. adding a triple:

<JosephFourier, occupation, Physicist>

• Error Detection:

Identifying wrong information in the Knowledge Graph

E.g. finding inconsistencies:

<JosephFourier, isA, Human>

<JosephFourier, isA, FictionalCharacter>

Knowledge Graph Completion

- A promising approach for Knowledge Graph Completion is
 - to embed Knowledge Graphs into latent spaces (via Knowledge Graph Embeddings) and
 - make inferences by learning and operating on latent representations.
- Such embedding models, however, do not make use of any rules during inference and hence have limited accuracy.
- E.g. predict that in wikidata the following fact may be complemented:

(AtsumoOmuhura occupation Climatologist) wd:Q462297 wdt:P106 wd:Q1113838 .

Tail Prediction

6. Advanced Knowledge Graph Applications / 6.3 Knowledge Graph Completion

Link Prediction

	Task	Example	Result
Link Prediction	Triple Classification	(JosephFourier, occupation, physicist)?	(yes, 95%)
	Tail Prediction	(JosephFourier, occupation, ?)	(1, physicist, 0.95), (2, chemist, 0.93)
	Head Prediction	(?, occupation, physicist)	(1, AlbertEinstein, 0.91) (2, StephenHawking, 0.90)
	Relation Prediction	(JosephFourier, ?, physicist)	(1, occupation, 0.95)
	Entity Classification (Type Prediction)	(JosephFourier, isA, ?)	(1, Person, 0.99) (2, Human, 0.99),

Type Prediction

 Predicting a type or class for an entity given some characteristics of the entity is a very common problem in machine learning, known as classification.

<JosephFourier, isA, ?>

- Supervised Learning Approach:
 - Type Prediction can be addressed via a classification model based on labeled training data,
 - typically the set of entities in a Knowledge Graph which have types attached.

Type Prediction

Multi-Class Prediction:

 In Knowledge Graphs usually there are more than two types/classes of entities to distinguish
 E.g. Classes Physicists, Chemists, Climatologists, etc.

Single-Label Classification:

Only one type/class can be assigned per entity

```
E.g.: <JosephFourier, isA, Person>
```

Multi-Label Classification:

 In Knowledge Graphs some entities might allow for the assignment of more than one type

Methods for Knowledge Graph Link Prediction

- Use Translational Embeddings
 - Unsupervised methods, e.g. TransE, use z_s + z_p to predict z_o
 - Supervised Methods for prediction based on embedding vectors

Knowledge Graphs

6.3 Knowledge Graph Completion

Picture References:

- [1] John P. McCrae, The Linked Open Data Cloud, [CC-BY-4.0] https://lod-cloud.net/
- [2] Tabula terrae Nouae Zemblae in qua fretum sinusq Waigats item ord littorialis Tartariae atq Russiae, ad urgem usq Kildeinam, Authore Gerhardo De Veer. 1601,

https://commons.wikimedia.org/wiki/File:1601 De Bry and de Veer Map of Nova Zembla and the Northeast Passage - Geographicus - NovaZembla-debry-1601.jpg