L4. Python

UCLA Masters of Applied Economics
Fall 2018
Melody Y. Huang

From last time...

- We learned about NumPy and Pandas¹
 - Basis of data analysis objects
 - NumPy: Matrix representation of data
 - Pandas: data.frames in Python

Overview of Machine Learning

- Supervised Learning
 - We provide the computer with sample inputs and outputs, and the algorithm learns patterns that map the inputs to the outputs
 - Example: regression, trees, SVM, etc.

Overview of Machine Learning (cont.)

- Unsupervised Learning
 - We provide the computer with a bunch of data and the algorithm tries to detect some underlying structure – often can be used for feature engineering
 - Example: k-means clustering

Overview of Machine Learning (cont.)

- Other types:
 - Semi-supervised Learning
 - Active Learning
 - Reinforcement Learning

Supervised Learning

- Two main categories:
 - Classification
 - Y values are binary
 - Example: image recognition, marketing/clicks,
 - Regression
 - Y values take on values
 - Example: predicting stock market prices

Supervised Learning

Recall from econometrics:

$$Y = \beta X + \varepsilon$$

We generate predictions for Y using X:

$$\hat{Y} = \hat{\beta}X$$

• Therefore, to find the optimal values of β , we minimize the mean square error:

$$\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$\implies \min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (Y_i - \beta X_i)^2$$

- This is the same framework for which we want to think about supervised learning
- Different methods within supervised learning alter some component of this process by:
 - Unique transformations to make non-linear relationships linear
 - 2. Different means by which we can minimize error or maximize our predictive capabilities

- How do we assess how well our model is performing?
 - Training Set (~2/3)
 - 2. Validation (Testing) Set (~1/3)

We fit our model first on the training data, and then measure the error accumulated by using that model on the testing data.

Python has a very useful function for this called: train_test_split()

Why do we do this?

- Overfitting!
- It is easy to get a very high in-sample accuracy rate by simply increasing the complexity of our model!
- However, a very complex model will not generalize very well and provide limited predictive capabilities

sklearn

- Python houses most of their machine learning models under one package known as sklearn
- Pro's:
 - You can import pretty much everything!
 import [algorithm] from sklearn as algo
 model = algo.fit(X_train, Y_train)
 model.predict(X_test)
- Con's
 - Regression diagnostics are not always neatly packaged

Wine Example 🝷

Original Paper:

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.

Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4): 547-553

Summary of Data:

- Red and White variants of Portuguese "Vinho Verde" wine
- Physicochemical variables describing the wine (i.e., pH)
- Wine experts evaluated each wine tested and assigned it a score between 0 to 10 (denoted as "quality")

(Brief Digression)

Disclaimer:

Is it actually possible to evaluate wine "objectively"?

Can wine experts even discern the differences between expensive and cheap wines?

Questionable.

Melody Y. Huang

UCLA Masters of Applied Economics | Fall 2018

Example (cont.)

Digression aside, our goal is going to be:

- 1. Analyze the wine data set
- 2. Fit different classifiers to predict wine quality

Personal Suggestion:

For maximal empirical testing, try all the wines at home to see if your rankings converge with that of the classifiers.²

Example (cont.)

- We will use three different classifiers:
 - 1. Logistic Regression
 - Random Forest
 - Support Vector Machine