

2E102 - Source d'énergie électrique et capteurs

ER2 du 15 novembre 2018, 1 heure. Sans document ni calculatrice.

Pour les questions à choix multiple (QCM) : deux points pour une réponse juste, moins un demi-point pour une réponse fausse, zéro point en l'absence de réponse. Une réponse au plus autorisée par question (sinon moins un demi-point à la question). Pour les questions ouvertes, pas de point retirés en cas de mauvaise réponse.

S.I. : unité du système international.

N° étudiant :
Prénom: Olivier
Nom: Dabrunfait

Partie C

QCM (sur 30 points)
Effet Peltier (8 points) $1 = (T)^2 \times \frac{5}{m} \times \frac{m}{k} \times \frac{1}{k} \Rightarrow (T)^2$
Q1. L'efficacité d'un matériau (semi-conducteur, métal) en conversion d'énergie par effet thermoélectrique est caractérisée par une grandeur Z_T (sans dimension) appelée facteur de mérite du matériau :
$Z_{\rm T} = \Pi^2 \sigma / \kappa T \equiv S_{\rm T}^2 T \sigma / \kappa$
où Π est le coefficient de Peltier et S_T le pouvoir thermoélectrique du matériau, T la température, σ la conductivité électrique et κ la conductivité thermique (en $Wm^{-1}K^{-1}$). L'unité en $S.I.$ de Π est \Box A \Box W/m \Box W
Q2. Un hôpital souhaite s'équiper d'une plaque de refroidissement nécessaire pour des examens de tissus biologiques. Pour cela, il dispose d'un module thermoélectrique Peltier dont les caractéristiques sont données sur la figure 1 ainsi que d'une source de tension réglable 0-20V avec un courant maximum de 1,2A. La face côté radiateur est à température ambiante supposée égale à 30°C. La plaque de refroidissement doit être à 5°C et la puissance thermique maximale absorbée par le module d'au moins 5W.
Q2a. Il faut alimenter le module sous une tension de : 🗆 12V 🗆 16V 💢 4V 🗆 8V
Q2b. La puissance thermique maximale absorbée par le module sera d'environ : □ 18W □ 24W ★6W □ 12W
Q2c. La puissance électrique consommée par le module sera d'environ : □ 9,6W □ 12W
Effet piézoélectrique (2 points) $4V \times 12A$
Q3. Qu'est-ce que l'effet piézoélectrique direct ? des paires électrons-trous se créent dans un matériau soumis à des photons d'énergie élevée;
 ★ le matériau contraint mécaniquement se polarise électriquement; □ une chaleur se dégage à la jonction entre deux matériaux de nature différente; □ une tension apparaît aux bornes d'un matériau dont les deux extrémités sont à des températures différentes.

Eolien (8 points)	
Q4. Soient les courbes de la figure 2 relatives à l'éolienne étudiée par la suite.	
Q4a. Qu'est-ce que le coefficient de performance d'une éolienne ? non, ce n'est X Le rapport entre l'énergie électrique produite pour une vitesse de vent donnée et l'énergie électrique produite en fonctionnement nominal. □ Le rapport entre la vitesse du rotor et la vitesse du vent, pour une vitesse de vent donnée. ▼ Le rapport entre la puissance électrique produite et la puissance du vent disponible en amont de l'éolienne, pour une vitesse de vent donnée. □ Le coefficient donné par la limite de Betz pour une vitesse de vent donnée. □ Le coefficient donné par la limite de Betz pour une vitesse de vent donnée. □ Le coefficient donné par la limite de Betz pour une vitesse du vent reste constante et vaut Q4b. Supposons que l'éolienne est sur un site où la vitesse du vent reste constante et vaut 15m/s. L'énergie électrique foùrnie par cette éolienne en un an vaut environ □ 20 MWh X 20 GWh □ 720 MJ □ 720 GJ	35 NS VL
En fait, la vitesse du vent varie. Sa distribution (modélisée) est donnée sur la figure 3.	
Q4c. Comment calculer le nombre de jours par an pendant lesquels l'éolienne fournit une puissance supérieure à 2 kW ? 2000kW Intégrer la courbe du coefficient de performance (fig.2) de 4,5 à 12,5 m/s et multiplier par	
365. □ Intégrer la courbe de densité de probabilité (fig.3) de 4,5 à 12,5 m/s et multiplier par 365. □ Intégrer la courbe de puissance (fig.2) de 12,5 à 25 m/s et multiplier par 365. ✓ Intégrer la courbe de densité de probabilité (fig.3) de 12,5 à 25 m/s et multiplier par 365.	
Q4d. Avec cette distribution de vent (figure 3), le facteur de charge de cette éolienne vaut 0,25 (25%). L'éolienne fournit donc en un an environ :	
Capteur: généralités (6 points)	
Q5. Soit une chaîne de mesure d'éclairement. La courbe d'étalonnage a été établie à 20°C. La température est une grandeur d'influence de cette chaîne linéaire. Vous faites une mesure par minute pendant 6 heures, la température est alors constante et vaut 30°C. Si vous ne prenez pas en compte cette variation de température, vous allez faire des erreurs dites □ aléatoires □ de finesse 🏋 systématiques □ de rapidité	
Q6. Soit une chaîne de mesure dont le mesurande m et la grandeur électrique U (une tension) sont liés par une équation différentielle du premier ordre. Si $m(t)$ est un échelon (par exemple 0 pour $t < 0$ et 3 S.I. pour $t > 0$), la tension U a donc l'allure de la courbe présentée sur la figure $4: U$ met un certain temps pour arriver à sa valeur correcte (ici $2V$).	
Q6a. m(t) est maintenant un signal créneau de fréquence $f = 1/T$: $m = 0$ de 0 à $T/2$ et $m = 3$ S.I. de $T/2$ à T , etc. Quelle condition sur f préconisez-vous pour que la chaîne de mesure de m(t) fonctionne ? $\Box f > 1$ Hz $\Box f < 1$ Hz $\swarrow f < 100$ mHz $\Box f > 10$ Hz	
コリfact ラネシのpour que U atteigne 2V ヨアン10s ヨ 多人100mHz	

	coupure f_c de la chaîne de mesure. Quelle erreur allez-vous commettre si vous supposez, à tort, que $f << f_c$? \Box 95% \Box 71% \Box 05% X 29% $G = G$ $G $
F= R	Capteur d'éclairement (2 points) mais on a Anax = 0,71 Anax
Il fant	Q7. Soit le circuit de la figure 5 où la caractéristique de la photodiode est donnée sur la figure 6. Comment choisir R_{LOAD} et E pour que $V_D = -1,2V$ à 0 mW/cm² et $V_D = -0,4V$ à 2mW/cm^2 ? $\square R_{LOAD} = 4k\Omega, E = -1,2V \square R_{LOAD} = 4k\Omega, E = 1,2V$ $\square R_{LOAD} = 8k\Omega, E = 1,2V \square R_{LOAD} = 8k\Omega, E = -1,2V$ Capteur de température (4 points) $\square R_{LOAD} = R$
droite p	Label PLOAD = $4k\Omega$, $E = 1,2V$ $R_{LOAD} = 4k\Omega$, $E = 1,2V$ $R_{LOAD} = 8k\Omega$, $E = 1,2V$ $R_{LOAD} = 8k\Omega$, $E = -1,2V$ $R_{LOAD} = 8k\Omega$, $E = -1,2V$ $R_{LOAD} = 8k\Omega$, $E = -1,2V$
9 6000	Capteur de température (4 points) Son Son V / 6 Q8. Un thermocouple (TC) de type E (caractéristique présentée aux le Constitute présente présente de la constitute prése
DTI=15VI	Q8. Un thermocouple (TC) de type E (caractéristique présentée sur la figure 7) a ses deux extrémités à 600°C. La tension à ses bornes vaut 16 mV. Quelle est la différence de température (en valeur absolue) entre la jonction et les extrémités ? \[\int \left[\frac{1}{80} \int \frac{1}{90} \infty \infty \left[\frac{1}{80} \infty \frac{1}{90} \infty \left[\frac{1}{90}
)	$9. Soit la thermistance de la figure 8 (RPt100 = 170\Omega à 200°C). On mesure à l'ohmmètre sa$
	resistance avec upo incortitudo do 110 ct V.L. V. co. L. and c.
Partie qu	300°C $= \pm 106$ ($+ 6.35$ $+ \circ$ C) $= \pm 0.1$ °C $= \pm 1$ °C $= 1$ °C
	Capteur de température (8 points) $\Rightarrow 5 + \frac{\pm 1.52}{0.352} \sim 3^{\circ} < 0.00$ O10. Pour déterminer une température la sircuit de la figure 0 et la $\frac{1}{2}$
• (Q10. Pour déterminer une température, le circuit de la figure 9 est proposé où R est une thermistance et où le générateur et l'ampèremètre sont supposés parfaits.
(F	Q10a. Du point de vue de l'emballement thermique, il est mieux que R soit une CTN ou une Pt100 ? (Justifiez brièvement.)
6	SICTN:
	PJCTN = EZ => TP => RD => PJP emballemon
	C. Ot Inn:
	PPK100 = EZ 3 TP 3 RP 3 PS D 3TD per de Nochent
	3 PK100 meilleure.

Q6b. Le mesurande est maintenant sinusoïdal de fréquence f égale à la fréquence de

La température est maintenant supposée comprise entre 0°C et 200°C.

Q10b. On choisit pour R, à tort ou à raison, la Pt100 dont la caractéristique est donnée sur la figure 8 ($R_{Pt100} = 170\Omega$ à 200°C). Comment fixer E pour que la puissance dissipée par effet Joule dans la thermistance soit au maximum de 40mW ? Quel type d'erreur cherche-t-on à limiter ainsi ? Quelles seront alors les valeurs minimale et maximale que prendra l'intensité électrique dans la Pt100 dans l'intervalle de température [0°C; 200°C] (formule littérale puis application numérique) ? Que vaudra la sensibilité S = dI/dT (I étant l'intensité lue à l'ampèremètre) à 0°C (formule littérale puis application numérique) ? (Justifiez l'ensemble brièvement.)

•
$$P_3 = E^2/R$$
 $P_5 = K \times R = R_{\text{min}} = 100 \text{ g}$
 $\Rightarrow E = \sqrt{166 \times 40.10^{-3}} \Rightarrow E = 2V$

• Event on finesse.

 $I = E/R$
 $I_{\text{max}} = 2V \Rightarrow I_{\text{max}} = 20 \text{ mf}$
 $I_{\text{loos}} = 2V \Rightarrow I_{\text{max}} = 20 \text{ mf}$
 $I_{\text{loos}} = 2V \Rightarrow I_{\text{max}} = 20 \text{ mg}$
 $I_{\text{max}} = 2V \Rightarrow I_{\text{max}} = 20 \text{ mg}$
 $I_{\text{max}} = 2V \Rightarrow I_{\text{max}} = 12 \text{ mg}$
 $I_{\text{max}} = 2V \Rightarrow I_{\text{max}} = 12 \text{ mg}$
 $I_{\text{max}} = 2V \Rightarrow I_{\text{max}} = 12 \text{ mg}$
 $I_{\text{max}} = 2V \Rightarrow I_{\text{max}} = 12 \text{ mg}$
 $I_{\text{max}} = I_{\text{max}} = I_{\textmax} = I_{\text{max}} = I_{\text{max}} = I_{\text{max}} = I_{\text{max}} = I_{\text{$

Fig.1. Diagramme fonctionnel de performance du module Peltier. Source : www.cui.com

A gauche - Fig.2. Courbes de puissance (en trait continu) et de coefficient de performance (en traits pointillés) de l'éolienne *Enercon* E70 en fonction de la vitesse du vent. <u>Source</u> : www.enercon.de/fr/home/

A droite - Fig.3. Fonction de distribution de la vitesse moyenne des vents sur le site considéré.

Fig.4. Mesurande m (en S.I.) et tension de sortie du capteur U (en volt) en fonction du temps.

Fig.5. Circuit avec photodiode.

Fig.6. $I_D(V_D)$ d'une photodiode pour différents éclairements.

Fig.7. Coefficients Seebeck (en $\mu V/^{\circ}C$).

Fig.9. Circuit de Q10.

Fig.8. Pt100 (NB : 170 Ω à 200°C).

