Problem 34

In the following we will first proof a lemma and then the theorem.

Lemma 1.0.1. In a triangle-free graph G = (V, E) with |V| = n if there is a vertex $v \in V$ with deg(v) = a, then all the neighbours of v have at most a degree of n - a

Proof. Let $u \in V$ be any neighbour of v. u cannot be connected to nodes adjacent to v or we would have a triangle with u and v. So $deg(u) \leq |V - neighbourhood(v)| = n - deg(v) \leq n - a$. This line of argumentation can be used on all neighbours of v.

Theorem 1.1. For every triangle-free graph G = (V, E) with |V| = n the inequality $\sum_{v \in V} deg(v)^2 \leq \frac{n^3}{4}$ holds.

Proof. Let $v \in V$ be the vertex with the highest degree in G, deg(v) = a.

Using the lemma we know that for all $u \in neighbours(v) : deg(u) \le n-a$. Now we now that we have a vertices with maximum degree n-a and the rest n-a vertices have maximum degree a. This gives us the upper bound for the formula $\sum_{v \in V} deg(v)^2 \le a * (n-a)^2 + (n-a) * a^2$ with the parameter a. Now we can seek for the maximum of the function to get a precise upper bound $f(a) = a * (n-a)^2 + (n-a) * a^2 = a * n^2 - a^2 * n$. $f'(a) = n^2 - 2 * a * n = n(n-2a)$. So f has a maximum at $\frac{n}{2}$, so to achieve the maximum for $\sum_{v \in V} deg(v)^2$ it is best for all the vertices to have degree $\frac{n}{2}$. Now we easily get the upper bound $\sum_{v \in V} deg(v)^2 \le f(a) \le f(\frac{n}{2}) = \frac{n^3}{4}$.