Фамилия, имя и номер группы (печатными буквами):	Задача	1	2	3	4	5
	Балл					

Информация о контрольной работе

- 1. Эту работу (листы) нельзя открывать до объявления преподавателем о начале контрольной работы. В противном случае оценка за работу будет обнулена.
- 2. На контрольной работе можно пользоваться простым калькулятором, ручками, линейкой и карандашом. Кроме того, можно использовать один лист А4, содержащий (по обеим сторонам) любую информацию, написанную от руки (самим студентом).
- 3. Контрольная выполняется индивидуально. Общение или взаимодействие с кем-либо или чемлибо (за исключением обозначенных выше разрешенных предметов) помимо преподавателей и ассистентов по курсу приведет к обнулению оценки за работу. Кроме того, нельзя иметь при себе электронные средства коммуникации, включая телефон, электронные часы и наушники.
- 4. Продолжительность контрольной работы составляет 150 минут (2 часа, 30 минут). После объявления об окончании времени конторольной работы необходимо прекратить вносить какие-либо правки в работу. В противном случае оценка за работу будет обнулена.
- 5. Досрочно покидать аудиторию можно лишь в течение первых 135 минут контрольной.
- 6. По окончанию работы необходимо дождаться, пока преподаватели соберут **все** работы в аудитории и пересчитают их количество, сопоставив с числом находящихся в аудитории студентов.
- 7. Необходимо иметь с собой студенческий пропуск, который позволит преподавателям и ассистентам идентифицировать вашу личность.
- 8. Условия из предыдущих пунктов не распространяются на условия из последующих, если в тексте задачи или пункта непосредственно не указано иное.
- 9. Таблица стандартного нормального распределения расположена на странице, следующей за текстом задания.
- 10. Писать ответы можно как на передней, так и на задней частях листа.

- 1. Дана выборка $X = (X_1, ..., X_5)$ и ее реализация x = (2, 1, 1, 0, 1). Используя статистику, включающую все наблюдения в выборке¹, найдите реализацию:
 - а) Пятого выборочного начального момента. (2 балла)
 - б) Скорректированной (исправленной) выборочной дисперсии. (2 балла)
 - в) Выборочной функции распределения. (3 балла)
 - г) Несмещенной оценки вероятности $P(2>X_2>0)$. Предварительно покажите, что используемая вами оценка будет несмещенной. (3 балла)
 - д) Несмещенной оценки вероятности $P((X_1-1)X_2>0)$. Предварительно покажите, что используемая вами оценка будет несмещенной. **(5 баллов)**

а) Реализация пятого начального выборочного момента имеет вид:

$$\overline{X}_{5}^{5}(x) = \frac{2^{5} + 1^{5} + 1^{5} + 0^{5} + 1^{5}}{5} = 7$$

б) Сперва найдем реализацию выборочного среднего:

$$\overline{X}_5(x) = \frac{2+1+1+0+1}{5} = 1$$

Пользуясь полученным результатом запишем реализацию скорректированной выборочной дисперсии:

$$\hat{\sigma}_n^2(x) = \frac{(2-1)^2 + (1-1)^2 + (1-1)^2 + (0-1)^2 + (1-1)^2}{5-1} = 0.5$$

в) Запишем реализацию выборочной функции распределения:

$$\hat{F}_5(t) = egin{cases} 0 ext{, если } t < 0 \ 0.2 ext{, если } 0 \leq t < 1 \ 0.8 ext{, если } 1 \leq t < 2 \ 1 ext{, если } t \geq 2 \end{cases}$$

г) Запишем оценку и ее распределение:

$$\hat{P}(2 > X_2 > 0) = \frac{1}{5} \sum_{i=1}^{5} I(2 > X_i > 0) \sim \frac{1}{5} B(5, P(2 > X_2 > 0))$$

Пользуясь распределением оценки покажем ее несмещенность:

$$E\left(\hat{P}(2 > X_2 > 0)\right) = \frac{1}{5} \times (5 \times P(2 > X_2 > 0)) = P(2 > X_2 > 0)$$

Найдем реализацию данной оценки:

$$\hat{P}(2 > X_2 > 0)(x) = \frac{1}{5}(0 + 1 + 1 + 0 + 1) = 0.6$$

¹Например, для получения несмещенной оценки некоторой вероятности может быть достаточно одного наблюдения. Однако, по условию задачи требуется задействовать все наблюдения в выборке (по аналогии с тем, как это делалось на лекциях и семинарах), что повысит эффективность соответствующих оценок.

д) Рассмотрим следующую оценку:

$$\hat{P}((X_1 - 1)X_2 > 0) = \frac{1}{5 \times 4} \sum_{i=1}^{5} \sum_{j \neq i} I((X_i - 1)X_j > 0)$$

Обратим внимание, что:

$$I((X_i-1)X_j>1) \sim Ber(P((X_1-1)X_2>0))$$
, где $i\neq j$

Отсюда получаем несмещенность оценки:

$$E\left(\hat{P}((X_1 - 1)X_2 > 0)\right) = \frac{1}{5 \times 4} \sum_{i=1}^{5} \sum_{j \neq i} E\left(I((X_i - 1)X_j > 1)\right) =$$

$$= \frac{1}{20} \sum_{i=1}^{5} \sum_{j \neq i} P((X_1 - 1)X_2 > 0) =$$

$$= \frac{1}{20} \times 20P((X_1 - 1)X_2 > 0) = P((X_1 - 1)X_2 > 0)$$

Поиск реализации соответствующей оценки является достаточно громоздкой с вычислительной точки зрения задачей, поэтому рассмотрим более простую, но все же схожую и несмещенную, а также использующую все наблюдения в выборке оценку:

$$\hat{P}((X_1 - 1)X_2 > 0) = \frac{1}{5 - 1} \left(I((X_1 - 1)X_2 > 0) + \dots + I((X_4 - 1)X_5 > 0) \right)$$

Реализация данной оценки примет вид:

$$\hat{P}((X_1 - 1)X_2 > 0)(x) = (1 + 0 + 0 + 0) = 0.25$$

Проверка в R:

```
n <- 1000000
x <- rlogis(n, 2, 0.5)
est <- 0
# пункт 5
mean(((x[-n] - 1) * x[-1]) > 0)
(1 - plogis(1, 2, 0.5)) * (1 - plogis(0, 2, 0.5)) +
plogis(1, 2, 0.5) * plogis(0, 2, 0.5)
```

2. Имеется последовательность случайных величин $X_1, X_2, ...,$ такая, что:

$$f_{X_n}(x) = egin{cases} (1-k_n)e^{-(1-k_n)x}, \ ext{если} \ x \geq 0 \ 0, \ ext{в противном случае} \end{cases}$$

Определите:

- а) К чему сходится по распределению данная последовательность, если $k_n = \frac{1}{n}$. (5 баллов)
- б) К чему сходится по распределению данная последовательность, если $k_n=1-n.$ (5 баллов)

в) К чему сходится по распределению последовательность $X_1\sqrt{(X_2+1)}, X_3\sqrt{(X_4+1)}, ...,$ если (5 баллов):

$$k_n = egin{cases} rac{1}{n}, \ ext{ecли} \ n \ ext{heчетноe} \ 1-n, \ ext{ecли} \ n \ ext{четноe} \end{cases}$$

Решение

а) Покажем, что в данном случае последовательность сходится по распределению к экспоненциальному распределению с параметром $\lambda=1$. Для этого, сперва, запишем функцию распределения элемента последовательности. Для этого достаточно заметить, что при любом k_n распределение является экспоненциальным, либо напрямую проинтегрировать, получая при x>0:

$$F_{X_n}(x) = \int_0^x (1 - k_n)e^{-(1 - k_n)t} dt = -e^{-(1 - k_n)t}|_0^x = 1 - e^{-(1 - k_n)x}$$

При исходя из неотрицательного носителя получаем $F_{X_n}(x)=0$ при x<0. Теперь покажем сходимость по распределению:

$$\lim_{n\to\infty}F_{X_n}(x)=\lim_{n\to\infty}1-e^{-(1-k_n)x}=\lim_{n\to\infty}1-e^{-(1-\frac{1}{n})x}=1-e^{-x},$$
 при х \geq 0
$$\lim_{n\to\infty}F_{X_n}(x)=\lim_{n\to\infty}0=0,$$
 при $x<0$

б) Данная последовательность сходится по вероятности (следовательно и по распределению, поскольку в данном случае речь идет о сходимости к константе) к нулю, поскольку при любом $\varepsilon > 0$ выполняется:

$$\lim_{n \to \infty} P(|X_n - 0| > \varepsilon) = \lim_{n \to \infty} P(X_n > \varepsilon) = \lim_{n \to \infty} e^{-(1 - (1 - n))x} = \lim_{n \to \infty} e^{-nx} = 0$$

в) Обозначим через $Y_1 = X_1, Y_2 = X_3, \dots$ последовательность, состоящую из нечетных элементов изначальной последовательности. Из доказанных выше результатов следует, что:

$$Y_n \xrightarrow{d} EXP(1)$$

Теперь рассмотрим последовательность $W_1 = \sqrt{X_2+1}, W_2 = \sqrt{X_4+1}, ...,$ образованную из четных элементов изначальной последовательности. Поскольку она образована за счет использования непрерывной функции, то применима теорема Манна-Вальда, вследствие которой:

$$W_n \xrightarrow{p} \sqrt{(0+1)} = 1$$

Поскольку $Y_n \xrightarrow{d} EXP(1)$ и $W_n \xrightarrow{d} 1$, то по теореме Слуцкого получаем:

$$Y_n W_n \xrightarrow{d} 1 \times EXP(1) = EXP(1)$$

Поверка в R:

3. Каждый день Лаврентий и ученый кот играют в баскетбол. Каждый из них бросает мяч в корзину до первого (своего) промаха. При каждом броске независимо ни от каких факторов Лаврентий забрасывает мяч в корзину с вероятностью 0.6, а ученый кот – с вероятностью 0.8. При помощи центральной предельной теоремы рассчитайте, приблизительно, вероятность, с которой по результатам 100 игр:

- а) Лаврентий забросит более 130 мячей. (10 баллов)
- б) Ученый кот забросит хотя бы на 200 мячей больше, чем Лаврентий. (10 баллов)
- в) Число заброшенных Лаврентием мячей окажется по крайней мере в 2.48 раз больше, чем число игр, в которых он забросил хотя бы один мяч. **(10 баллов)**

а) Обозначим через $X_i \sim Geom(0.4)$ и $Y_i \sim Geom(0.2)$ число бросков, совершенных Лаврентием и ученым котом соответственно в i-й игре, где $i \in \{1,...,100\}$.

Пользуясь независимостью результатов между играми, а также их одинаковой распределенностью применим ЦПТ:

$$E(X_i) = \frac{1 - 0.4}{0.4} = 1.5 \qquad E(Y_i) = \frac{1 - 0.2}{0.2} = 4$$

$$Var(X_i) = \frac{1 - 0.4}{0.4^2} = 3.75 \qquad Var(Y_i) = \frac{1 - 0.2}{0.2^2} = 20$$

$$\sum_{i=1}^{100} X_i \dot{\sim} \mathcal{N} (150, 375) \qquad \sum_{i=1}^{100} Y_i \dot{\sim} \mathcal{N} (400, 2000)$$

Приблизительное значение искомой вероятности составит:

$$P\left(\sum_{i=1}^{100} X_i > 130\right) = 1 - P\left(\sum_{i=1}^{100} X_i \le 130\right) \approx 1 - \Phi\left(\frac{130 - 150}{\sqrt{375}}\right) \approx 0.85$$

б) Применим ЦПТ в отношении последовательности разниц заброшенных Лаврентием и ученым котом мячей $Y_i - X_i$:

$$E(Y_i - X_i) = 4 - 1.5 = 2.5$$

$$Var(Y_i - X_i) = 3.75 + 20 = 23.75$$

$$\sum_{i=1}^{100} (Y_i - X_i) \dot{\sim} \mathcal{N}(250, 2375)$$

Рассчитаем, приблизительно, искомую вероятность:

$$P\left(\sum_{i=1}^{100} Y_i - \sum_{i=1}^{100} X_i \ge 200\right) = P\left(\sum_{i=1}^{100} (Y_i - X_i) \ge 200\right) = 1 - P\left(\sum_{i=1}^{100} (Y_i - X_i) \le 199\right) \approx 1 - \Phi\left(\frac{199 - 250}{\sqrt{2375}}\right) \approx 0.85$$

в) Обозначим $Z_i = I(X_i > 0) \sim B(0.6)$, откуда:

$$E(X_i - 2.48Z_i) = 1.5 - 2.48 \times 0.6 = 0.012$$

$$E(X_i Z_i) = E(X_i) = 1.5$$

$$Cov(X_i Z_i) = E(X_i Z_i) - E(X_i)E(Z_i) = 1.5 - 1.5 \times 0.6 = 0.6$$

$$Var(X_i - 2.48Z_i) = Var(X_i) + 2.48^2 Var(Z_i) - 2 \times 2.48 \times Cov(X_i, Z_i) = 0.6$$

$$= 3.75 + 2.48^{2} \times (0.6 \times 0.4) - 2 \times 2.48 \times 0.6 \approx 2.25$$

$$\sum_{i=1}^{n} (X_{i} - 2.48Z_{i}) \dot{\sim} \mathcal{N} (1.2, 225)$$

Рассчитаем искомую вероятность:

$$P\left(\sum_{i=1}^{n} X_i \ge \sum_{i=1}^{n} 2.48Z_i\right) = P\left(\sum_{i=1}^{n} (X_i - 2.48Z_i) \ge 0\right) \approx 1 - \Phi\left(\frac{0 - 1.2}{\sqrt{225}}\right) \approx 0.532$$

Проверка в R:

```
n < -100
n.sim <- 100000
p1 < -0.4
p2 < -0.2
b1 \leftarrow rep(NA, n.sim)
b2 \leftarrow rep(NA, n.sim)
z1 \leftarrow rep(NA, n.sim)
for (i in 1:n.sim)
 x \leftarrow rgeom(n, p1)
 y \leftarrow rgeom(n, p2)
 z < -(x > 0)
 b1[i] \leftarrow sum(x)
 b2[i] <- sum(y)
 z1[i] \leftarrow sum(z)
 var(x - 2.48 * z)
# пункт 1
mean(b1 > 130)
1 - pnorm((130 - 150) / sqrt(375))
# пункт 2
mean(b2 >= (b1 + 200))
1 - pnorm((199 - 250) / sqrt(2375))
# пункт 3
mean(b1 >= (2.48 * z1))
1 - pnorm((0 - 1.2) / sqrt(225))
```

4. Имеется выборка из распределения со следующей функцией плотности:

$$f_{X_1}(t)=rac{1}{t\sqrt{2\pi}}e^{-rac{(\ln(t)-\mu)^2}{2}}$$
, где $t\in R$

Известно, что $E(X_1) = e^{\mu + 0.5}$.

- а) Оцените параметр μ при помощи метода максимального правдоподобия. (5 баллов)
- б) Запишите асимптотическую дисперсию найденной в предыдущем пункте ММП оценки. (5 баллов)

- в) Найдите асимптотическую дисперсию ММП оценки математического ожидания наблюдения. **(5 баллов)**
- г) По выборке из n=100 наблюдений рассчитайте, приблизительно, вероятность, с которой найденная вами ММП оценка математического ожидания отклонится (по абсолютному значению) от истинного значения более, чем на 0.1, если известно, что $\mu=0.5$. (5 баллов)

а) Запишем функцию правдоподобия:

$$L(\mu; x) = \prod_{i=1}^{n} \frac{1}{x_i \sqrt{2\pi}} e^{-\frac{(\ln(x_i) - \mu)^2}{2}}$$

Найдем логарифм функции правдоподобия:

$$\ln L(\mu; x) = -\frac{n}{2} \ln(2\pi) - \sum_{i=1}^{n} \ln(x_i) - \sum_{i=1}^{n} \frac{(\ln(x_i) - \mu)^2}{2}$$

Рассмотрим условия первого порядка:

$$\frac{d \ln L(\mu; x)}{d \mu} = \sum_{i=1}^{n} (\ln(x_i) - \mu) = 0$$

Решая соответствующее равенство получаем точку, подозреваемую на максимум:

$$\mu^* = \frac{1}{n} \sum_{i=1}^n \ln(x_i)$$

Убедимся, что мы нашли максимум, показав вогнутость функции правдоподобия:

$$\frac{d^2 \ln L(\mu; x)}{d^2 \mu} = -1 < 0$$

В результате получаем ММП оценку:

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \ln(X_i)$$

б) Сперва найдем информацию Фишера:

$$i(\mu) = -E\left(\frac{d^2 \ln L(\mu; X_1)}{d^2 \mu}\right) = -E(-1) = 1$$

С помощью нее рассчитаем асимптотическую дисперсию:

$$As.Var(\hat{\mu}_n) = \frac{1}{n}$$

в) Поскольку математическое ожидание в данном случае является функцией, монотонной по μ , то можно воспользоваться свойством инвариантности:

$$\hat{E}(X_1) = e^{\hat{\mu}_n + 0.5} = e^{0.5 + \frac{1}{n} \sum_{i=1}^n \ln(X_i)}$$

Так как ММП оценки являются асимптотически нормальными, то можно воспользоваться дельта методом:

$$E'(X_1) = e^{0.5 + \mu}$$

$$As.Var(\hat{E}(X_1)) = (e^{0.5+\mu})^2 \times \frac{1}{n} = \frac{e^{1+2\mu}}{n}$$

г) Поскольку $\mu = 0.5$, то:

$$E(X_1) = e^{0.5 + 0.5} = e$$

$$As.Var(\hat{E}(X_1)) = \frac{e^{1 + 2 \times 1}}{100} = \frac{e^3}{100}$$

$$\hat{E}(X_1) \sim \mathcal{N}\left(e, \frac{e^3}{100}\right)$$

В результате получаем:

$$P(|\hat{E}(X_1) - e| > 0.1) = P(-0.1 \le X_1 - e \le 0.1) \approx 2\Phi\left(\frac{0.1}{\sqrt{\frac{e^3}{100}}}\right) - 1 \approx 0.177$$

Проверка в R:

```
n < -10000
n.sim <- 1000
mu <- 0.5
sigma <- 1
mu.est <- rep(NA, n.sim)
exp.est <- rep(NA, n.sim)
exp.asvar <- rep(NA, n.sim)
mu.est.asvar <- 1 / n
for (i in 1:n.sim)
 x \leftarrow rlnorm(n = n, meanlog = mu, sdlog = sigma)
 mu.est[i] \leftarrow mean(log(x))
 \exp.est[i] \leftarrow exp(0.5 + mu.est[i])
 \exp.asvar[i] \leftarrow \exp(1 + 2 * mu.est[i]) / n
# пункт 1
mean(mu.est)
# пункт 2
var(mu.est)
mu.est.asvar
# пункт 3
var(exp.est)
exp.asvar[1]
```

5. Имеется выборка из распределения со следующей функцией плотности:

$$f_{X_1}(t)=egin{cases} rac{3t^2}{2 heta^3},$$
 при $t\in[- heta, heta] \ 0,$ в противном случае , где $heta>0$

- а) Найдите функцию плотности и математическое ожидание $|X_1|$. (2 балла)
- б) Найдите оценку параметра θ при помощи метода моментов. (2 балла)

- в) Рассчитайте эффективность любой оценки, найденной при помощи метода моментов. (3 балла)
 - **Подсказка:** рассмотрите новую выборку, состоящую из модулей наблюдений изначальной выборки.
- г) Найдите оценку параметра θ при помощи метода максимального правдоподобия. (3 балла)
- д) Рассчитайте информацию Фишера или обоснуйте, почему в данном случае она не определена. **(1 балл)**
- е) Проверьте, является ли найденная вами оценка несмещенной. Если нет, то попытайтесь скорректировать ее таким образом, чтобы она стала несмещенной. (3 балла)
- ж) Вычислите эффективность ММП оценки. (3 балла)
- з) Найдите оценку, которая будет более эффективна, чем ММП оценка. Покажите, что она действительно является более эффективной. (3 балла)

а) Найдем функцию распределения наблюдения при $t \in [-\theta, \theta]$:

$$F_{X_1}(t) = \int_{-\theta}^{x} \frac{3t^2}{2\theta^3} dt = \frac{\theta^3 + t^3}{2\theta^3}$$

С помощью полученного результат найдем распределение модуля наблюдения при $t \in [0,\theta]$:

$$F_{|X_1|}(t) = P(|X_1| \le t) = P(-t \le X_1 \le t) = F_{X_1}(t) - F_{X_1}(-t) =$$

$$= \frac{\theta^3 + t^3}{2\theta^3} - \frac{\theta^3 + (-t)^3}{2\theta^3} = \frac{t^3}{\theta^3}$$

Дифференцируя функцию распределения получаем функцию плотности:

$$f_{|X_1|}(t)=rac{dF_{|X_1|}(t)}{dt}=egin{cases} rac{3t^2}{ heta^3},$$
 если $t\in[0, heta]\ 0,$ в противном случае

Применяя полученную плотность найдем математическое ожидание:

$$E(|X_1|) = \int_0^\theta t \times \frac{3t^2}{\theta^3} dt = 0.75\theta$$

б) Воспользуемся вторым начальным моментом:

$$E(X_1^2) = \int_{-\theta}^{\theta} t^2 \times \frac{3t^2}{2\theta^3} dt = 0.6\theta^2$$

Отсюда следует, что:

$$\theta = \sqrt{\frac{5}{3}E(X_1^2)}$$

В результате получаем ММ оценку:

$$\hat{\theta}_n^{MM} = \sqrt{\frac{5}{3} \overline{X_n^2}}$$

в) Рассмотрим новую выборку, сформированную из старой за счет взятия модулей, то есть $|X_1|,...,|X_n|$. Для нахождения оценки воспользуемся первым начальным моментом:

$$E(|X_1|) = \int_{-\theta}^{\theta} |t| \times \frac{3t^2}{2\theta^3} dt = 0.75\theta \implies \hat{\theta}_n^{MM} = \frac{4}{3} \overline{|X_n|}$$

Обратим внимание, что найденная оценка является несмещенной:

$$E(\hat{\theta}_n^{MM}) = E\left(\frac{4}{3}|\overline{X_n}|\right) = \frac{4}{3} \times \frac{3}{4}\theta = \theta$$

Следовательно, эффективность рассматриваемой оценки совпадает с ее дисперсией:

$$E(X_1^2) = \int_{-\theta}^{\theta} t^2 \times \frac{3t^2}{2\theta^3} dt = 0.6\theta^2$$

$$Var((\hat{\theta}_n^{MM})^2) = Var\left(\left(\frac{4}{3}\right)^2 \overline{|X_n^2|}\right) = \frac{16}{9} \frac{Var(X_1^2)}{n} = \frac{16}{9} \frac{0.6\theta^2 - (0.75\theta)^2}{n} = \frac{\theta^2}{15n}$$

г) Обратим внимание, что если $\theta < \max(x_1,...,x_n)$ или $-\theta > \min(x_1,...,x_n)$, то функция правдоподобия обращается в ноль. Следовательно, следует максимизировать функцию правдоподобия при ограничениях $\theta \geq \max(x_1,...,x_n)$ и $-\theta \leq \min(x_1,...,x_n)$. Обратим вниманмие, что два обозначенных ограничения эквиваленты $\theta \geq \max(|x_1|,...,|x_n|)$. При данном ограничении функция правдоподобия принимает следующий вид:

$$\ln L(\theta; x) = \prod_{i=1}^{n} \frac{3x_i^2}{2\theta^3} = \left(\frac{3}{2}\right)^n \theta^{-3n} \prod_{i=1}^{n} x_i^2$$

Поскольку правдоподобие строго убывает по θ , то в силу наложенных ограничений получаем точку максимума $\theta^* = \max(|x_1|,...,|x_n|)$. В результате ММП оценка принимает вид:

$$\hat{\theta}_n = \max(|X_1|, ..., |X_n|)$$

- д) Поскольку в данном случае носитель распределения зависит от параметра, то информация Фишера не существует.
- е) Воспользуемся найденной ранее функцией распределения модуля наблюдения. Используя формулу для распределения максимальной порядковой статистики при $t \in [0, \theta]$ получаем:

$$F_{\hat{\theta}_n}(t) = F_{\max(|X_1|,\dots,|X_n|)}(t) = \left(F_{|X_1|}(t)\right)^n = \frac{t^{3n}}{\theta^{3n}}$$

Дифференцируя данный результат получаем, что при $t \in [-\theta, \theta]$ функция плотности примет вид:

$$f_{\hat{\theta}_n}(t) = \frac{t^{3n}}{\theta^{3n}} = \frac{3nt^{3n-1}}{\theta^{3n}}$$

Оценка является смещенной, поскольку:

$$E(\hat{\theta}_n) = \int_{0}^{\theta} t \times \frac{3nt^{3n-1}}{\theta^{3n}} dt = \frac{3n}{3n+1} \theta$$

Для того, чтобы нивелировать смещение, введем новую, несмещенную оценку:

$$\hat{\theta}^* = \frac{3n+1}{3n}\hat{\theta}_n = \frac{3n+1}{3n}\max(|X_1|, ..., |X_n|)$$

ж) Рассчитаем дисперсию ММП оценки:

$$E(\hat{\theta}_n^2) = \int_0^\theta t^2 \times \frac{3nt^{3n-1}}{\theta^{3n}} dt = \frac{3n}{3n+2} \theta^2$$
$$Var(\hat{\theta}_n) = \frac{3n}{3n+2} \theta^2 - \left(\frac{3n}{3n+1}\theta\right)^2 = \frac{3n}{(3n+1)^2 (3n+2)} \theta^2$$

В результате получаем эффективность:

$$MSE(\hat{\theta}_n) = \frac{3n}{(3n+1)^2(3n+2)}\theta^2 + \left(\frac{3n}{3n+1}\theta - \theta\right)^2 = \frac{2\theta^2}{9n^2 + 9n + 2}$$

з) Рассчитаем эффективность найденной ранее несмещенной оценки:

$$MSE(\hat{\theta}_n^*) = Var\left(\hat{\theta}_n^*\right) = Var\left(\frac{3n+1}{3n}\hat{\theta}_n\right) =$$

$$= \left(\frac{3n+1}{3n}\right)^2 \frac{3n}{(3n+1)^2(3n+2)}\theta^2 = \frac{\theta^2}{9n^2+6n}$$

Данная оценка более эффективна, чем ММП оценка, поскольку ее среднеквадратическое отклонение меньше при любом возможном значении параметра:

$$MSE(\hat{\theta}_n^*) - MSE(\hat{\theta}_n) = \frac{\theta^2}{9n^2 + 6n} - \frac{2\theta^2}{9n^2 + 9n + 2} = \frac{1 - 3n}{3n(3n + 1)(3n + 2)}\theta^2 < 0$$

		1 400111		74 P	o mopile	WIDITOI (, bacrb.	770101111			
$\parallel x$	0.00		0.02	0.03	_	0.05	0.06	0.07		0.09	
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	
0.4	0.6554	0.6591	0.6628	0.6664	0.67	0.6736	0.6772	0.6808	0.6844	0.6879	
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	I
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	I
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177	
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936	
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990	
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993	
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995	
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997	
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998	
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	