

OBJECTIVES OF TUTORIAL

- i. Understand basic statistics and create visualization to solve data analysis problems in various areas.
- ii. Apply statistical methodologies to model practical problems for solutions.
- iii. Apply the fundamental concepts of probability to solve problems related engineering field.
- iv. Apply statistical techniques on large data using R programming.

WHAT IS R?

- R is a language and environment for statistical computing and graphics.
- o It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS.
- A well-developed, simple and effective programming language which includes conditionals, loops, user-defined recursive functions and input and output facilities.

R FEATURES

- R provides a wide variety of statistical and graphical techniques.
- R is an integrated suite of software facilities for data manipulation, calculation and graphical display.
- It includes an effective data handling and storage facility.

RSTUDIO SCREEN

R COMMAND PROMPT

• Type your first program

#Sample R program

- o myString <- "Hello World!"</pre>
- o print (myString) OR
- o myString

OR

o cat (myString)

RSTUDIO SCREEN

RSTUDIO SCREEN

EXAMPLE

- x = 50
- y = 20
- \circ sum = x + y
- o diff = x y
- o product = x * y
- o div = x / y
- o print (sum)
- o print(diff)
- o print(product)
- o print(div)

DATATYPE OF VARIABLES

- o var x <- "Hello"
- o cat("The class of var_x is ",class(var_x),"\n")
- \circ var y <- 34.5
- o cat(" Now the class of var_y is ",class(var_y),"\n")

#Finding Variables

o print(ls())

RSTUDIO SCREEN

DATA TYPES

- The variables are assigned with R-Objects and the data type of the R-object becomes the data type of the variable.
- There are many types of R-objects.
- Vectors
- Lists
- Matrices
- o Arrays
- Factors
- o Data Frames

VECTORS

• When you want to create vector with more than one element, you should use **c()** function which means to combine the elements into a vector.

```
# Create a vector.
color <- c('red','green',"yellow")
print(color)

# Get the class of the vector.
print(class(color))</pre>
```

VARIABLES USAGE

- # Assignment using equal operator.
- \circ var.1 = c(0,1,2,3)
- # Assignment using leftward operator.
- var.2 <- c("learn","R")
- # Assignment using rightward operator.
- o c(TRUE,1) -> var.3 print(var.1)
- o cat ("var.1 is ", var.1,"\n")
- o cat ("var.2 is ", var.2 ,"\n")
- o cat ("var.3 is ", var.3,"\n")

EXAMPLES ON VECTORS

- \circ a=c(1,2,3,4)
- \circ b= a+5
- o print(b)
- o sqrt(a)
- \circ a <- c(1,2,3)
- \circ b < $\mathbf{c}(10,11,12,13)$
- o a+b
- \circ a = $\mathbf{c}(2,4,6,3,1,5)$
- ob = sort(a)
- o c = sort(a,decreasing =TRUE)

LISTS

• A list is a R-object which can contain many different types of elements inside it like vectors, functions.

```
# Create a list.
list1 <- list(c(2,5,3),21.3,"sin")
# Print the list.
print(list1)</pre>
```

MATRICES

• A matrix is a two-dimensional rectangular data set. It can be created using a vector input to the matrix function.

```
# Create a matrix.
M=matrix(c('a','a','b','c','b','a'),
nrow=2,ncol=3,byrow = TRUE)
print(M)
```

```
N=matrix(c('23','12','45,'67','90','55'),
nrow=3,ncol=2)
print(M)
```

ARRAYS

- While matrices are confined to two dimensions, arrays can be of any number of dimensions.
- The array function takes a dim attribute which creates the required number of dimension.
- Example below we create an array with two elements which are 3x3 matrices each.

```
# Create an array.
a <- array(c('green', 'yellow'), dim=c(3,3,2))
print(a)</pre>
```

FACTORS

- Factors are the r-objects which are created using a vector. It stores the vector along with the distinct values of the elements in the vector as labels.
- The labels are always character irrespective of whether it is numeric or character or boolean etc. in the input vector. They are useful in statistical modeling.
- Factors are created using the **factor()** function.
- The nlevels functions gives the count of levels.

EXAMPLE ON FACTORS

```
# Create a vector.
apple colors <-
 c('green', 'green', 'yellow', 'red', 'red', 'green')
# Create a factor object.
factor apple <- factor(apple colors)
# Print the factor.
print(factor_apple)
print(nlevels(factor apple))
```

DATA FRAMES

- Data frames are tabular data objects. Unlike a matrix in data frame, each column can contain different modes of data.
- The first column can be numeric while the second column can be character and third column can be logical. It is a list of vectors of equal length.
- oData Frames are created using the data.frame() function.

Create the data frame.

BMI <- data.frame(gender = c("Male", "Male", "Female"), height = c(152, 171.5, 165), weight = c(81,93, 78), Age = c(42,38,26)) print(BMI)

dat <- data.frame(id = letters[1:10], x = 1:10, y = 11:20) dat

OPERATORS

- An operator is a symbol that tells the compiler to perform specific mathematical or logical manipulations. R language is rich in built-in operators and provides following types of operators.
- Types of Operators
- Arithmetic Operators
- Relational Operators
- Logical Operators
- Assignment Operators
- Miscellaneous Operators

ARITHMETIC OPERATORS

Operat or	Description	Example
+	Adds two vectors	<pre>v <- c(2,5.5,6) t <- c(8, 3, 4) print(v+t) It produces following result: [1] 10.0 8.5 10.0</pre>
%%%	Give the remainder of the first vector with the second	<pre>v <- c(2,5.5,6) t <- c(8, 3, 4) print(v%%t) it produces following result: [1] 2.0 2.5 2.0</pre>
0/0/0/0	The result of division of first vector with second (quotient)	<pre>v <- c(2,5.5,6) t <- c(8, 3, 4) print(v%/%t) it produces following result: [1] 0 1 1</pre>
^	The first vector raised to the exponent of second vector	v <- c(2,5.5,6) t <- c(8, 3, 4) print(v^t) it produces following result: [1] 256.000 166.375 1296.000

RELATIONAL OPERATORS

Operator	Description	Example
>	Checks if each element of the first vector is greater than the corresponding element of the second vector.	<pre>v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v>t) It produces following result: [1] FALSE TRUE FALSE FALSE</pre>
==	Checks if each element of the first vector is equal to the corresponding element of the second vector.	<pre>v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v==t) it produces following result: [1] FALSE FALSE FALSE TRUE</pre>
!=	Checks if each element of the first vector is unequal to the corresponding element of the second vector.	<pre>v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v!=t) it produces following result: [1] TRUE TRUE TRUE FALSE</pre>

LOGICAL OPERATORS

Opera tor	Description	Example
&	It is called Element-wise Logical AND operator. It combines each element of the first vector with the corresponding element of the second vector and gives a output TRUE if both the elements are TRUE.	v <- c(3,1,TRUE,2+3i) t <- c(4,1,FALSE,2+3i) print(v&t) it produces following result: [1] TRUE TRUE FALSE TRUE
!	It is called Logical NOT operator. Takes each element of the vector and gives the opposite logical value.	v <- c(3,0,TRUE,2+2i) print(!v) it produces following result: [1] FALSE TRUE FALSE FALSE
&&	Called Logical AND operator. Takes first element of both the vectors and gives the TRUE only if both are TRUE.	<pre>v <- c(3,0,TRUE,2+2i) t <- c(1,3,TRUE,2+3i) print(v&&t) it produces following result: [1] TRUE</pre>

ASSIGNMENT OPERATORS

Operat or	Description	Example
<- or = or <<-	Called Left Assignment	v1 <- c(3,1,TRUE,2+3i) v2 <<- c(3,1,TRUE,2+3i) v3 = c(3,1,TRUE,2+3i) print(v1) print(v2) print(v3) it produces following result: [1] 3+0i 1+0i 1+0i 2+3i [1] 3+0i 1+0i 1+0i 2+3i [1] 3+0i 1+0i 1+0i 2+3i
-> or ->>	Called Right Assignment	c(3,1,TRUE,2+3i) -> v1 c(3,1,TRUE,2+3i) ->> v2 print(v1) print(v2) it produces following result: [1] 3+0i 1+0i 1+0i 2+3i [1] 3+0i 1+0i 1+0i 2+3i

MISCELLANEOUS OPERATORS

Operator	Description	Example
%in%	This operator is used to identify if an element belongs to a vector.	v1 <- 8 v2 <- 12 t <- 1:10 print(v1 %in% t) print(v2 %in% t) it produces following result: [1] TRUE [1] FALSE
%*%	This operator is used to multiply a matrix with its transpose.	M = matrix(c(2,6,5,1,10,4), nrow=2,ncol=3,byrow = TRUE) t = M %*%t(M) print(t) it produces following result: [,1] [,2] [1,] 65 82 [2,] 82 117

• https://www.coursera.org/learn/decision-making/lecture/K57sl/the-role-of-r

• https://www.rstudio.com/products/rstudio/