

EVENT PROBABILITIES

Why

If we have some outcomes and a distribution, we can construct a function which assigns probabilities to events.

Definition

The probability of an event is the sum of the probabilities of the outcomes in the event. The event probability function is the correspondence assigning events to their probabilities.

Notation

Let A be a set of outcomes and p a distribution on A. Let $B \subset A$ be an event. Let $\mathbf{P} : 2^A \to \mathbf{R}$ be the event probability function, which is defined by

$$\mathbf{P}(B) = \sum_{b \in B} p(b).$$

The event probability function \mathbf{P} depends on the outcomes A and the distribution p. We sometimes indicate this dependence by writing $\mathbf{P}_{A,p}$.

Properties

Proposition 1. Let P be the event probability function of the distribution $p: A \to [0, 1]$.

1.
$$P(B) \ge 0$$
 for all $B \subset A$

¹Future editions will include an account.

- 2. P(A) = 1, and $P(\emptyset) = 0$
- 3. $P(B \cup C) = P(B) + P(C) P(B \cap C)$ for $B, C \subset A$. In particular,
 - (a) if $B \cap C = \emptyset$, then $P(B \cup C) = P(B) + P(C)$.

