CLAIMS

What is claimed is:

1	1.	A field effect transistor comprising:
2		a substrate having source and drain regions;
3		a gate insulator above said substrate;
4		a notch-shaped gate conductor above said gate insulator, said notch-shaped
5	gate co	onductor comprising at least two layered sections, including an upper layer
6	and a l	ower layer,
7		wherein said layered sections comprise at least two different materials, one
8	of whi	ch comprises silicon-germanium, and
9		wherein said lower layer has a higher etch rate than said upper layer.
: : :		,
1	2.	The field effect transistor according to claim 1, wherein said upper layer
2	compri	ises polysilicon-germanium and said lower layer is selected from a group
3	consist	ting of amorphous silicon and polysilicon.
1	3.	The field effect transistor in claim 2, wherein said amorphous silicon and
2	polysil	icon are devoid of germanium.

8

9

1

2

3

4

1

2

4. The field effect transistor according to claim 1, wherein said lower layer
and said upper layer comprise polysilicon-germanium (poly-SiGe) having
concentrations of germanium that increase along a depth of said upper layer
section and said lower layer section.

- 5. The field effect transistor according to claim 4, wherein an increase in said concentrations of germanium is directly proportional to a depth between a bottom of said lower layer and a top of said upper layer.
- 6. The field effect transistor in claim 1, wherein said upper layer and said lower layer comprise materials capable of being simultaneously etched.
- 7. A field effect transistor comprising:
 - a substrate having source and drain regions;
 - a gate insulator above said substrate;
- a notch-shaped gate conductor above said gate insulator, said notch-shaped gate conductor comprising at least two layered sections, including an upper layer and a lower layer,
- wherein said upper layer comprises polysilicon and said lower layer comprises amorphous silicon, and
- wherein said lower layer has a higher etch rate than said upper layer.

	1		
	2		
	1		
	2		
T L	1		
W	2		
=======================================	3		
Ť.	4		
	5		
	6		
	7		

9

10

1

2

8.	The field effect transistor according to claim 7, wherein said upper layer
section	comprises polysilicon-germanium.

- 9. The field effect transistor in claim 8, wherein said amorphous silicon is devoid of germanium.
 - 10. The field effect transistor in claim 7, wherein said upper layer and said lower layer comprise materials capable of being simultaneously etched.
- 11. A method for making a field effect transistor having a notch-shaped gate conductor, said method comprising:

forming a gate insulator above a substrate;

depositing a gate conductor material over said gate insulator, wherein said gate conductor material comprises at least two layered sections, including an upper layer and a lower layer, said layered sections comprising at least two different materials, one of which comprises silicon-germanium, and said lower layer having a higher etch rate than said upper layer;

etching said gate conductor material through a mask to define a notchshaped gate conductor;

doping said notch-shaped gate conductor and said substrate, to make said notch-shaped gate conductor conductive, and to form source and drain regions in said substrate.

- 12. The method in claim 11, wherein said upper layer comprises polysilicongermanium and said lower layer is selected from a group consisting of amorphous silicon and polysilicon.
- 13. The method in claim 12, wherein said amorphous silicon and polysilicon are devoid of germanium.
- 14. The method in claim 11, wherein said lower layer and said upper layer comprise polysilicon-germanium (poly-SiGe) having concentrations of germanium that increase along a depth of said upper layer section and said lower layer section.
- 15. The method in claim 14, wherein an increase in said concentrations of germanium is directly proportional to a depth between a bottom of said lower layer and a top of said upper layer.

material	2		
17. A	1		
conducto	2		
f	3		
d	4		
gate con	5		
upper lay	5 6		
layer cor	© © 7 ≟ 8		
than said	<u></u> 8		
e	₩ ₩ 9		
shaped g	1 0,		
d	T-1		
notch-sh	10 11 12		
said subs	13		
18. T	1		

1

16.	The method in claim	11, wherein	said etchin	ig of said gat	te conductor
materia	al comprises a single	etching proce	ess.		

- 17. A method for making a field effect transistor having a notch-shaped gate conductor, said method comprising:
 - forming a gate insulator above a substrate;

depositing a gate conductor material over said gate insulator, wherein said gate conductor material comprises at least two layered sections, including an upper layer and a lower layer, said upper layer comprising polysilicon, said lower layer comprising amorphous silicon, and said lower layer having a higher etch rate than said upper layer;

etching said gate conductor material through a mask to define a notchshaped gate conductor; and

doping said notch-shaped gate conductor and said substrate, to make said notch-shaped gate conductor conductive, and to form source and drain regions in said substrate.

18. The method in claim 17, wherein said upper layer section comprises polysilicon-germanium.

- 1 19. The method in claim 18, wherein said amorphous silicon is devoid of 2 germanium.
- 1 20. The method in claim 17, wherein said etching of said gate conductor
- 2 material comprises a single etching process.