1 Orthogonal projections to lines

Example 1. Suppose we are given two vectors \mathbf{u} and \mathbf{y} . The orthogonal projection of \mathbf{y} onto \mathbf{u} is the vector $\hat{\mathbf{y}}$ that is the "shadow" of \mathbf{y} cast down in the direction of \mathbf{u} .

To make this more rigorous, the picture below shows the essential ideas: starting with \mathbf{u} and \mathbf{y} , if we drop a line segment from the tip of \mathbf{y} perpendicular to \mathbf{u} then we get the projection $\hat{\mathbf{y}}$. The vector \mathbf{z} is the same as the perpendicular dotted line (just translated).

So, we have

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$$

where $\hat{\mathbf{y}}$ is some scalar multiple of \mathbf{u} , and \mathbf{z} and $\hat{\mathbf{y}}$ are orthogonal. Is there a nice formula for $\hat{\mathbf{y}}$ and \mathbf{z} depending only on the starting vectors (\mathbf{y} and \mathbf{u})? Yes!

Remark: The orthogonal projection of \mathbf{y} onto \mathbf{u} can be interpreted in the following equivalent way. Let $L = \text{span}\{\mathbf{u}\}$. That is, L is the line spanned by \mathbf{u} . Then $\hat{\mathbf{y}}$ is the point on the line L that is closest to $\hat{\mathbf{y}}$. Some people use the notation $\text{proj}_L(\mathbf{y})$ for this, so we have

$$\hat{\mathbf{y}} = \operatorname{proj}_L(\mathbf{y}).$$

Also, notice that since **z** is perpendicular to L, it must be in the orthogonal complement, L^{\perp} .

Example 2. Find a formula for $\hat{\mathbf{y}}$ from the example above.

Solution. From our picture we want $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ where $\hat{\mathbf{y}} = \alpha \mathbf{u}$ for some value of α . To determine the value of α we need, take the dot product of both sides of the equation with \mathbf{u} . Then

$$\mathbf{y} \cdot \mathbf{u} = \alpha \mathbf{u} \cdot \mathbf{u} + \mathbf{z} \cdot \mathbf{u}.$$

From the above, we also want \mathbf{z} to be perpendicular to \mathbf{u} so we must have $\mathbf{z} \cdot \mathbf{u} = 0$! Thus we can solve our equation for α :

$$\alpha = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}.$$

That is, we have determined a formula for the projection. The **orthogonal projection** of y onto the vector u is given by

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}.$$

Once we know $\hat{\mathbf{y}}$ then the orthogonal component is easy to compute:

$$\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}.$$

Take-away: Given vectors \mathbf{y} and \mathbf{u} , the projection of \mathbf{y} onto \mathbf{u} is the point on the line spanned by \mathbf{u} , called L, that is closest to \mathbf{y} . We have

$$\hat{\mathbf{y}} = \text{proj}_L(\mathbf{y}) = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u},$$

and the orthogonal component \mathbf{z} is $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

Example 3. Let $\mathbf{y} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ and $\mathbf{u} = \begin{pmatrix} 8 \\ 6 \end{pmatrix}$. Compute the orthogonal projection of \mathbf{y} onto \mathbf{u} . In addition, compute the distance from \mathbf{y} to the line spanned by \mathbf{u} .

Solution. From the formulas above, the orthogonal projection is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = \frac{30}{100} \mathbf{u} = \frac{3}{10} \begin{pmatrix} 8 \\ 6 \end{pmatrix} = \begin{pmatrix} 12/5 \\ 9/5 \end{pmatrix}.$$

The distance from \mathbf{y} to the line spanned by \mathbf{u} can be found by first finding the orthogonal vector

$$\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} - \begin{pmatrix} 12/5 \\ 9/5 \end{pmatrix} = \begin{pmatrix} 3/5 \\ -4/5 \end{pmatrix}.$$

The distance between y and the line spanned by u is simply the length of this vector z:

$$\|\mathbf{z}\| = \sqrt{(3/5)^2 + (-4/5)^2} = \sqrt{1} = 1.$$