Particle spectrograph

Wave operator and propagator

	$\sigma_{2^{+}lphaeta}^{\!\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1}$ † $^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

_	$\omega_{0^+}^{\sharp 1}$	$f_{0+}^{\#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^{+}}^{\#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0^{+}}^{#1}$ †	$i\sqrt{2}kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	-t ₁

#1 0 ⁻				
0	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0	
Э	<u> </u>	,		
)	$\frac{\sqrt{2}}{\sqrt{2}}$	$k^2 t_1$	0	
t_1	0	0	<u>t</u> 1 2	

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0+}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_1^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1}^{\#1}{}^{\alpha\beta} + i k \sigma_{1}^{\#2}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{ \delta} -$	
	$6 i k^X \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6\bar{\imath}k^{X}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{\beta\delta\alpha}-$	
	2 $\eta^{lphaeta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta} au_{\chi}^{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon} \delta = 0$	
Total constraints/gau	ge generators:	16

_	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1+\alpha\beta}^{\#1}$	$\omega_1^{\#}$	$\frac{1}{\alpha}$	$\omega_{1^{-}\alpha}^{$ #2}	$f_{1-\alpha}^{\#1}$	$f_{1\alpha}^{#2}$						
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	C)	0	0	0	$\sigma_{0}^{\#1}$	0	0	0	$-\frac{1}{t_1}$	
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	C)	0	0	0	$\tau_{0}^{\#2}$	0	0	0	0	
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	C)	0	0	0	$ au_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$\frac{1}{6}$ (6 $k^2 r_5$ +	$+t_1+4t_3$)	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	0	$\frac{1}{3}$ $ik(t_1 - 2t_3)$	Ţ	$-\frac{i}{(1+2)}$				
$\omega_{1}^{#2} + \alpha$	0	0	0	<u>t</u> 1-2	2 <i>t</i> ₃ √2	<u>t1+t3</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0	
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	C)	0	0	0	0	(1+2				
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}\bar{i}k(t)$	$(1 - 2t_3)$	$-\frac{1}{3}i\sqrt{2}k(t_1+t_3)$	3) 0	$\frac{2}{3}k^2(t_1+t_3)$		$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ \dagger	
	$\sigma_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#2}$	αβ	$ au_{1}^{\#1}{}_{lphaeta}$		$\sigma_{1-lpha}^{\sharp 1}$		$\sigma_{1^{-}\alpha}^{\#2}$	$\tau_{1-\alpha}^{\#1}$			$ au_1^{\#2}$ α		
$\sigma_{1}^{\sharp 1} \dagger^{lphaeta}$	0	$-\frac{\sqrt{2}}{t_1+k}$	$\frac{\overline{2}}{2}_{t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$		0		0	0			0		
$\sigma_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5}{(1+k^2)^2}$	$\frac{5+t_1}{2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$		0		0	0			0		
$\tau_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3r_5)}{(1+k^2)^2}$	$\frac{5-kt_1}{2t_1^2}$	$\frac{-2 k^4 r_5 + k^2 t_1}{(1+k^2)^2 t_1^2}$		0		0	0			0		
$\sigma_1^{\!\scriptscriptstyle \# 1}\! +^lpha$	0	0		0		$2(t_1+t_3)$ +2 $k^2r_5(t_1+t_3)$	$-\frac{1}{(1+2k^2)^2}$	$\sqrt{2} (t_1-2t_3)$ $(3t_1t_3+2k^2r_5(t_1+t_3))$	0	- (1+2	2 i (k ²) (3 t ₁	k (t ₁ -2 . t ₃ +2	t ₃) k ² r ₅ (t ₁ +t ₃	3))
$\sigma_1^{\#2} \dagger^{\alpha}$	0	0		0		$\frac{\sqrt{2} (t_1 - 2t_3)}{t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$	$\frac{1}{(1+2k^2)}$	$\frac{6 k^2 r_5 + t_1 + 4 t_3}{2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$	0	$\frac{i}{(1+2k)}$	$\sqrt{2} k (6)$ $(2)^2 (3t_1)$	$t^2 r_5 + t_3 + 2$	$\frac{t_1 + 4t_3}{k^2 r_5 (t_1 + t_3)}$	3))
$\tau_1^{\#1} \dagger^{\alpha}$	0	0		0		0		0	0			0		
$\tau_{1}^{#2} +^{\alpha}$	0	0		0		$\frac{i k (t_1 - 2t_3)}{1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$		$\frac{2 k(6k^2r_5+t_1+4t_3)}{(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	(1+2 k	2 k ² (6 k ² ,2) ² (3 t ₁	$\frac{1}{r_5+t}$	1+4 <i>t</i> 3) k ² r5 (t1+t3	3))

Quadratic (free) action $S == \iiint (\frac{1}{6} (2 \ \omega^{\alpha_{l}} (t_{1} \ \omega_{r}^{\theta} - 2 t_{3} \ \omega_{r}^{K}) + 6 \ f^{\alpha \beta} \ t_{\alpha \beta} + 6 \ \omega^{\alpha \beta \chi} - 4 t_{1} \ \omega_{r}^{\theta} \ \partial_{r} f^{\alpha_{l}} + 8 t_{3} \ \omega_{\alpha}^{K} \ \partial_{r} f^{\alpha_{l}} + 4 t_{1} \ \omega_{r}^{\theta} \ \partial_{r} f^{\alpha_{l}} - 2 t_{1} \partial_{r} f^{\theta} \ \partial_{r} f^{\alpha_{l}} + 4 t_{3} \partial_{r} f^{K} \ \partial_{r} f^{\alpha_{l}} - 2 t_{1} \partial_{r} f^{\theta} \partial_{r} f^{\alpha_{l}} + 4 t_{3} \partial_{r} f^{K} \partial_{r} f^{\alpha_{l}} - 2 t_{1} \partial_{r} f^{\theta} \partial_{r} f^{\alpha_{l}} + 4 t_{1} \partial_{r} f^{\alpha_{l}} \partial_{\theta} f^{\alpha_{l}} + 3 t_{1} \partial_{\theta} f^{\alpha_{l}} \partial_{\theta} f^{\alpha_{l}} \partial_{\theta} f^{\alpha_{l}} + 4 t_{1} \partial_{r} f^{\alpha_{l}} \partial_{\theta} f^{\alpha_{l}} \partial_{\theta} f^{\alpha_{l}} \partial_{\theta} f^{\alpha_{l}} + 4 t_{1} \partial_{r} f^{\alpha_{l}} \partial_{\theta} f^{\alpha_$

Massive and massless spectra

Massive particle					
Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$				
Polarisations:	3				
Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$				
Spin:	1				
Parity:	Odd				

Unitarity conditions

 $r_5 < 0 \&\& (t_1 < 0 \&\& 0 < t_3 < -t_1) || (t_1 > 0 \&\& (t_3 < -t_1) || t_3 > 0))$