Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) EXAMINATION - SUMMER 2022

Subject Code:2160704 Date:06/06/2022

Subject Name: Theory of Computation

Time:10:30 AM TO 01:00 PM

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS

Q.1 Define Equivalence Relation. (a)

03

04

- **(b)** Define one-to-one function. Justify whether the function $f: R \rightarrow R^+$ defined by $f(n)=n^2$ is bijection or not.
- Draw Finite Automata to accept following over input alphabets $\Sigma = \{0, 1\}$ 07
 - 1. The language accepting strings not containing '00'.
 - 2. The language accepting even number of 0's and odd numbers of 1's
- Define FA , NFA , NFA- Λ . 0.2 (a)

- 03
- **(b)** 04 Find a regular expression of following subsets of $\{0, 1\}^*$
 - 1. The language of all strings that contain odd number of 1's
 - 2. The language of all strings with next to last symbol 0.
- **07** (c) Write Principle of Mathematical Induction. Prove that for every $n \ge 0$, 0+1+2+3+.....+n = n(n+1)/2

OR

(c) **07** Let M1 and M2 be the FAs pictured in Figure, recognizing languages L1 and L2 respectively.

Draw FAs recognizing the following languages.

- a. L1 U L2'
- b. L2 L1
- **Q.3** Explain ambiguous grammar with example. (a)

03 04

07

- **(b)** Define Moore machine and Design it to generate 1's complement of binary number...
- Define Context Free Grammar. Find context-free grammar for the language: (c)
 - a. $L = \{a^{i}b^{j}c^{k} | j=i+k\}$
 - b. $L = \{ x \in \{0,1\} * \mid n0(x) = n1(x) \}.$

- Q.3 (a) Explain how to Convert moore machine to mealy machine
- 03
- (b) Using subset construction method Convert NFA- Λ to NFA for following figure.

(c) Find minimum state FA for following figure.

07

- Q.4 (a) State the pumping lemma for Context Free Language. 03
 - (b) Using kleene's Theorem Draw NFA- Λ for ((01)*10 + (00)*)*
 - (c) Define PDA. Convert the CFG with following productions into its equivalent PDA.

 $S \rightarrow [S] | SS | ^$

OR

- Q.4 (a) Write a short note on Universal Turing Machine. 03
 - (b) Using pumping lemma prove that the language palindrome is not regular 04
 - (c) Given the context-free grammar G, find a CFG G' in Chomsky Normal Form.
 - $S \rightarrow 0A0 \mid 1B1 \mid BB$,
 - $A \rightarrow 0B \mid C$
 - $B \rightarrow S1 \mid A$
 - $C \rightarrow 01 \mid \Lambda$
- Q.5 (a) Define Turing Machine.
 - (b) Design a PDA to accept $L = \{xcx^r \mid x \in (a,b)^*\}.$
 - (c) Develop a Turing Machine to accept palindromes over {a,b}*

ÓΡ

- Q.5 (a) Write a short note on Halting problem.
 - **(b)** Design a PDA to accept $L = \{ X / N_a(X) = N_b(X), X \in \{a,b\}^* \}$ **04**
 - (c) Develop a Turing Machine to accept the language $L = \{WW / W \in \{a,b\}^*\}$

03