

### **NORTH SOUTH UNIVERSITY**

## Department of Electrical and Computer Engineering

Digital Logic Design (CSE 231)

Faculty – Dr Mohammad Monirujjaman Khan(KMM)

Section: 06

Group: 04

## **Project Part 2**

Circuit Diagram using Logisim (Sop, Pos. Nand, Nor)

| Name                  | ID         |
|-----------------------|------------|
| Towsif Muhtadi Khan   | 1911576642 |
| Khalid Bin Shafiq     | 1911342642 |
| Rafidul Islam         | 1912152642 |
| Rashiqur Rahman Rifat | 1911445652 |

# **CONTRIBUTION**

| Work done By                      | Topic                            |
|-----------------------------------|----------------------------------|
| Towsif Muhtadi Khan (Coordinator) | 1.Truth Table (CSE-231)          |
| Rafidul Islam                     | 2. Circuit Diagram (SOP)         |
| Rasiqur Rahman Rifat              | 3. Circuit Diagram( <b>POS</b> ) |
| Khalid Bin Shafiq                 | 6.Circuit diagram (NAND Gate)    |
| Towsif Muhtadi Khan               | 7.Circuit diagram (NOR Gate)     |

### **Circuit from Truth table:**







## Circuit diagram (SOP)

Applying SOP we got the following equations:

$$\mathbf{a} = \mathbf{B'+A'C'}, \ \mathbf{b} = \mathbf{A}, \ \mathbf{c} = \mathbf{B'C+AB}, \ \mathbf{d} = \mathbf{B'+A'C'}, \ \mathbf{e} = \mathbf{A'C'} + \mathbf{B'C'}$$
  
 $\mathbf{f} = \mathbf{A'B'} + \mathbf{A'C'}, \ \mathbf{g} = \mathbf{C+A'B+AB'}$ 







Figure: Circuit diagram (SOP)

#### Circuit diagram (POS)

Applying POS we got the following equations:

$$\mathbf{a} = (B'+C'), \ \mathbf{b} = A, \ \mathbf{c} = (B+C) \ (A+B'), \ \mathbf{d} = (A'+B')(B'+C'), \ \mathbf{e} = (A'+B')C', \ \mathbf{f} = A'(B'+C), \ \mathbf{g} = (A'+B') \ (A+B+C)$$











Figure: Circuit diagram (POS)

#### Circuit diagram (NAND Gate)

$$\mathbf{a} = \mathbf{B'+A'C'}, \ \mathbf{b} = \mathbf{A}, \ \mathbf{c} = \mathbf{B'C+AB}, \ \mathbf{d} = \mathbf{B'+A'C'}, \ \mathbf{e} = \mathbf{A'C'} + \mathbf{B'C'}$$
  
 $\mathbf{f} = \mathbf{A'B'} + \mathbf{A'C'}, \ \mathbf{g} = \mathbf{C+A'B+AB'}$ 

The circuit diagram using NAND gates will be:





Figure: Circuit diagram (NAND GATE)

#### Circuit diagram (NOR Gate)

$$\mathbf{a} = \mathbf{B'+A'C'}, \ \mathbf{b} = \mathbf{A}, \ \mathbf{c} = \mathbf{B'C+AB}, \ \mathbf{d} = \mathbf{B'+A'C'}, \ \mathbf{e} = \mathbf{A'C'} + \mathbf{B'C'}$$
  
 $\mathbf{f} = \mathbf{A'B'} + \mathbf{A'C'}, \ \mathbf{g} = \mathbf{C+A'B+AB'}$ 

The circuit diagram using NOR gates will be:









Figure: Circuit Diagram (Using NOR Gates)