北京邮电大学 网络空间安全学院

软件概要设计报告

项目: <u>基于 DNS 流量分析的僵尸网络检测工具</u>

组员: ______王硕、彭致远、李懿飞、王晨旭

2020年11月6日

目录

1	引言	3
	1.1 背景	3
	1.2 编写目的	
	1.3 项目及范围	
	1.4 读者对象和阅读建议	
	1.5 定义、术语和缩略语	
2	系统设计概述	5
	2.1 限制和约束	5
	2.2 设计原则和设计要求	5
	2.3 系统模块划分	6
	2.3.1 系统模型	6
	2.3.2 系统模块划分	6
3	功能模块设计	7
	3.1 DNS 数据包捕获模块	7
	3.2 PCAP 文件解析模块	8
	3.3 DNS 指纹生成模块	8
	3.4 机器学习特征分析模块	9
	3.5 机器学习分类模块	9
	3.6 辅助输出模块	10
4	界面设计	10
5	软件环境设计	10
	5.1 开发环境	10
	5.2 运行环境	11
6	安全设计	11
	6.1 系统备份设计	11
	6.2 系统容错设计	11

1 引言

1.1 背景

DNS 隐蔽通道,是隐蔽信道的一种,通过将其他协议封装在 DNS 协议中传输建立通信。因为在我们的网络世界中 DNS 是一个必不可少的服务,所以大部分防火墙和入侵检测设备很少会过滤 DNS 流量,这就给 DNS 作为一种隐蔽信道提供了条件,从而可以利用它实现诸如远程控制,文件传输等操作,现在越来越多的研究证明 DNS 隐蔽通道也经常在僵尸网络和 APT 攻击中扮演着重要的角色。

企业网络经常面临网络攻击者窃取有价值和敏感数据的威胁。复杂的攻击者越来越多地利用 DNS 通道来泄露数据,以及维护恶意软件的隧道 C&C(命令和控制)通信。这是因为 DNS 对于几乎所有应用程序来说都是如此重要的服务,从本地计算机到 Internet 的任何通信(不包括基于静态 IP 的通信)都依赖于 DNS 服务,限制 DNS 通信可能会导致合法远程服务的断开,因此,企业防火墙通常配置为允许 UDP 端口 53(由 DNS 使用)上的所有数据包,即 DNS 流量通常允许通过企业防火墙而无需深度检查或状态维护。从攻击者的角度来看,这使得 DNS 协议成为数据泄露地隐蔽通信通道。

DNS 这种穿透防火墙的能力为攻击者提供了一个隐蔽的通道,尽管是低速通道,通过将其他协议(例如,SSH, FTP) 隧道传输到命令和控制中心,可以通过该通道泄露私有数据并保持与恶意软件的通信。现代恶意软件和网络攻击在很大程度上依赖于 DNS 服务,使其活动可靠且难以跟踪。

本项目为一种基于 DNS 流量分析的僵尸网络检测工具,提取 DNS 流量的特征,通过机器学习将流量分为恶意流量和正常流量。在 DNS 特征的提取上,利用机器学习的特征分析,筛选出重要的一些特征,过滤掉不重要的特征,通过模型的调参、完善,生成一个准确率很高的分类器。

本工具能够通过网络中的数据流量,检测出一个网络中的僵尸主机。工具应具有文件检测和实时检测的功能,并提供友好的用户交互与完善的输入输出系统。该工具应能够部署在网络边界上,有效地检测通过 DNS 隐蔽信道传递信息的主机,区分出正常主机与感染了病毒的僵尸主机,检测准确率较现有的检测工具高,误报、漏报率低,时长尽可能短,能够记录僵尸主机的活动、行为,留下检测记录。

1.2 编写目的

本概要设计说明书是基于需求说明书编写。目的在于在需求分析的基础上,结合文献调阅资料与实际情况,规定软件、硬件、技术选择,设计系统总体系统架构、总体功能模块以及各个子模块。为之后系统的详细设计以及程序编写、测试提供指导说明。

1.3 项目及范围

● 项目名称:基于 DNS 流量分析的僵尸网络检测工具

● 项目成员:北京邮电大学网络空间安全学院"网络安全分析实践"课程开发小组

◆ 王硕 (组长): 2018213641

◆ 彭致远: 2018213646 ◆ 李懿飞: 2018213632 ◆ 王晨旭: 2018213636

● 系统范围: 具有 python2.7.9 环境的 Windows 系统计算机

● 用户: 无限制

● 实现项目的计算机网络: 校园网

本设计文档适用于基于 DNS 流量分析的僵尸网络检测工具项目进行系统分析、详细设计以及编码实现

1.4 读者对象和阅读建议

本说明书的预期读者为系统设计人员、软件开发人员、软件测试人员和项目评审人员。 其中系统设计人员、软件开发人员、软件测试人员为小组内部成员, 软件评审人员为课程老师或助教。

1.5 定义、术语和缩略语

序号	术语或缩写	解释
	DNS	域名系统服务协议,是一种分布式网络目录服务,主
1		要用于域名与 IP 地址的相互转换,以及控制因特网
		的电子邮件的发送
2	DNS 特征	用来衡量主机进行 DNS 通信过程的行为
	DNS 指纹	根据特征工程,提取主机 DNS 通信特征,对主机行
3		为进行了多维度标识
	Botnet	僵尸网络,是指采用一种或多种传播手段,将大量主
4		机感染 bot 程序(僵尸程序)病毒,从而在控制者和
		被感染主机之间所形成的一个可一对多控制的网络
5	僵尸主机	本文表示处于僵尸网络中的主机
	域/域名	域名(英语:Domain Name),是由一串用点分隔的
6		名字组成的 Internet 上某一台计算机或计算机组的名
		称,用于在数据传输时对计算机的定位标识
7	MX 记录	邮件交换记录 (MX record)是域名系统(DNS)中的
7		一种资源记录类型,用于指定负责处理发往收件人域

		名的邮件服务器。
	PTR 记录	PTR 记录,是电子邮件系统中的邮件交换记录的一
0		种;另一种邮件交换记录是 A 记录(在 IPv4 协议中)
8		或 AAAA 记录(在 IPv6 协议中)。PTR 记录常被用于
		反向地址解析。
9	TLD	top level domain,顶级域名
10	SLD	second level domain,二级域名
44	DGA 域名	dga 是一种算法,作用生成随机数的。用 dga 算法生
11		成的域名,这种域名通常硬编码在恶意软件中。

2 系统设计概述

2.1 限制和约束

受小组成员知识水平和调研结果,现列出在项目开发过程中需要准守的一些标准和规则如下:

1) 开发期限: 2020年12月4日前完成

2) 硬件限制: 小组内成员设备对本项目的功能和要求没有问题

3)编程语言: Python、HTML4)界面语言: 尽量使用英文

5) DNS 解析工具: Python 的 dpkt 包

6) 开发工具: PyCharm2020.2.3

2.2 设计原则和设计要求

为提高小组合作效率,保证分工独立、软件的易用性、稳定性较高,本项目考虑如下设计原则和要求:

- 1) 命名规则: 下划线分割小写字母的方式命名,如 find_abnormal_hosts(),或者以"骆驼命名法",为以大写字母开头的英文单词的组合,如 dnsQueryCount
- 2) 模块独立性原则:每个模块有单独的输出,也可以被其他模块调用执行。
- 3) 系统容错率高: 对用户输入、外界因素等做检查, 防止程序出错。
- 4) 软件高效: 优化程序的算法, 降低时间复杂度, 提高程序执行效率。
- 5) 用户友好性: 提高交互性。

2.3 系统模块划分

2.3.1 系统模型

本工具的系统功能图如下所示:

2.3.2 系统模块划分

根据系统功能图,可以将本项目划分为六个模块,分别为:

- 1) DNS 数据包捕获模块
- 2) PCAP 文件解析模块
- 3) DNS 指纹生成模块
- 4) 机器学习特征分析模块
- 5) 机器学习分类模块
- 6) 辅助输出模块

3 功能模块设计

3.1 DNS 数据包捕获模块

本模块的功能为获取 DNS 数据包。

一方面用于机器学习,包括获取正常的数据包和恶意的数据包。正常的数据包可以从公开流量数据集中获取,异常的数据包考虑构建一套 DNS 数据制造和收集的自动化框架,涵盖几种常见的 DNS 隧道工具(iodine/ozymandns/dns2tcp/dnscat2/Cobalt Strike)。

另一方面用于实时检测中的 DNS 数据包的抓包、过滤、切片。

3.2 PCAP 文件解析模块

本模块主要功能为解析 pcap 文件,根据每一条请求/响应数据包,进行统计,为 DNS 特征挖掘做准备。

3.3 DNS 指纹生成模块

本模块的主要功能为进行 DNS 特征的提取,保存为 CSV 文件。

3.4 机器学习特征分析模块

本模块的功能主要为通过机器学习,生成一个准确度最高的模型,用于分类网络中的 DNS 流量,包括对特征重要度的分析、特征的选择、模型参数的调整等

3.5 机器学习分类模块

本模块的主要功能为利用机器学习的结果,以生成好的特征值文件作为输入,输出分类好的僵尸主机或正常主机。

3.6 辅助输出模块

本模块主要是辅助模块,是与用户交互的界面,询问/帮助用户如何使用程序、处理检测的结果。

4 界面设计

界面最好是以图形化界面的形式展示, 但是考虑到时间问题, 可以采用命令行的方式进行交互, 但是要注意以下几点:

- 1) 命令行界面应当友好, 即提示语句排列清楚, 输入人性化
- 2) 对于软件运行过程中会有实时输出,避免卡顿/运行不容易区分
- 3) 对于用户错误输入,应当能够检测,并有所提示,然后为用户提供再次输入的机会

5 软件环境设计

5.1 开发环境

程序开发阶段需要进行网络数据包捕获、测试机器学习、文件分析等,考虑到时间和小组成员条件等因素,故对开发环境有一定的要求如下:

1) 操作系统: Windows 10 / MAC

2) Python 环境: python2.7.9

3) 开发工具: PyCharm、office-Excel、notepad++等

4) 联网要求: 需要能连接互联网

5) 虚拟机要求: 至少两台虚拟机,系统为: kali linux2020, Ubuntu18

6) 其他工具: wireshark、浏览器等

5.2 运行环境

程序运行时会利用事先机器学习训练好的模型,不需要有过高的系统要求或配置要求,故对程序运行环境(测试环境)有下列要求:

1) 操作系统: Windows 7 及以上 / MAC / Linux 均可

2) Python 环境: python2.7.9

3) 运行工具: PyCharm / 命令行均可

4) 联网要求: 需要能连接互联网

6 安全设计

6.1 系统备份设计

为防止因硬件、软件原因导致的程序异常中断而造成数据丢失, 因对数据具有备份以及 及时保存措施, 包括

- 1) 实时检测的网络通信数据包
- 2) 文件检测的数据包文件备份
- 3) 已提取的特征值输出到文件保存备份
- 4) 机器学习结果保存下来备份
- 5) 异常检测结果实时保存输出到文件进行备份

6.2 系统容错设计

为提高系统容错能力,防止由于网络数据包复杂、用户输入不合法、检测文件异常等问题,开发程序时应注意以下内容

- 1) 用户的错误命令输入,应当有所检查,并给予用户提示
- 2) 当用户没有将网络数据包文件放置到正常存储目录时,应该有所检查,并给予用户提示
- 3) 当用户通过抓包的方式获取网络数据包,但是网络出现问题时,应当有所检查,并给予用户提示
- 4) 当用户误删项目中的一些输出、输入文件夹、实时检测备份文件时,应当有所检查、 并重新生成这些文件。