# Deployment Of AI Group-C Final Report

# **Price Optimization for Retail Industry**

#### Our Team:

| Student Name       | Student ID |
|--------------------|------------|
|                    |            |
| Abhishek Pandey    | 500227770  |
|                    |            |
| Ram Krishna Dhakal | 500228601  |
|                    |            |
| Bibek Khadka       | 500216129  |
|                    |            |
|                    |            |

| Govind Ram Gupta Belde | 500228074 |  |
|------------------------|-----------|--|
|                        |           |  |
|                        |           |  |
|                        |           |  |
|                        |           |  |
| Kamalpreet Kaur        | 500227884 |  |
|                        |           |  |

Detailed Report on AI Project for Price Optimization in the Retail Industry (Maven Toy Store)

## **Project Overview**

The objective of this project is to optimize pricing strategies in the retail toy industry using machine learning techniques. The project leverages the Maven Toy Store dataset to build a decision tree-based machine learning model for predicting Maximum increase in Profit a retailer can make and deployed the solution using modern DevOps tools such as Jenkins, Docker, and Git. Additionally, a user-friendly interface has been developed to visualize the model's predictions and performance.

#### **Dataset**

- Dataset Source: Maven Toy Store Dataset
- Description:
  - Contains historical sales data of toys, including features such as toy categories, pricing, seasonal trends, customer demographics, and sales volumes.
  - o Includes over 800,000 records with fields such as:
    - Toy ID
    - Product Category
    - Product name
    - Product price
    - Product cost

- Store name
- Store city
- No.of units

### **Data Preprocessing**

#### 1. Cleaning:

- a. Removed duplicate records.
- b. Handled missing values using mean/median imputation for numerical columns and mode imputation for categorical columns.

#### 2. Feature Engineering:

- a. Created new features such as "Product price" and "Profit"
- b. One-hot encoded categorical variables such as "Category" and "Season."
- c. Merge sales with products data on 'Product\_ID'
- d. Merge the result with stores data on 'Store\_ID'
- e. Remove dollar signs and convert 'Product\_Cost' and 'Product\_Price' to numeric
- f. Convert 'Date' to datetime and extract year, month

#### 3. Splitting:

a. Dataset split into training (80%) and testing (20%) sets.

#### 4. Evaluation Metrics:

- a. Random Forest Mean Squared Error: 0.6435769340355606
- b. Random Forest R-squared: 0.05284726033696985



From the above picture we can see that the model predicted an increase in 8 dollars for the above product is possible considering the market scenario.

# **Machine Learning Model**

- Model Type: Decision Tree
- Reason for Selection:
  - o Handles categorical and numerical data effectively.
  - o Captures non-linear relationships between pricing and sales volume.
  - o Provides interpretable results for business stakeholders.
- Model Training:
  - Hyperparameter tuning performed using grid search to optimize parameters
  - Created a function to calculate Profit for a given price
  - Created a Dataframe to maintain the feature names
  - Plotted the profits for the different product categories using random forest regressor.

# **Deployment Pipeline**

#### 1. Version Control with Git:

- · Repository hosted on GitHub.
- Contains structured directories for:
  - o Data: Raw and processed data.
  - o Models: Saved decision tree models.
  - Scripts: Python scripts for preprocessing, training, and prediction.
  - UI: Source code for the user interface.
  - Jenkins: for CI/CD pipelines
  - o Docker: To automate the setup



Git link: https://github.com/rkdhakal/Retail-Industry-Project

#### 2. Continuous Integration/Deployment with Jenkins:

- Automated pipeline setup using Jenkins to:
  - o Fetch the latest code from Git.
  - o Run unit tests to ensure code quality.
  - o Build the Docker container containing the ML model and dependencies.
  - o Deploy the container to a staging environment for validation.





From the above pictures we can see the Jenkins is set up and running.



After running this is how it looks like.

#### 3. Containerization with Docker:

- Created a Dockerfile to package the application.
- Image contains:
  - Preprocessed data pipeline.
  - o Decision tree model.
  - o Flask application for the user interface.
- Pushed the Docker image to DockerHub for easy access.

We have setup the docker.



Deployed to staging



#### Deployed to production is successful



```
vboxuser@ram:-$ ^C
vboxuser@ram:-$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
Vboxuser@ram:-$ sudo systemctl restart jenkins
[sudo] password for vboxuser:
vboxuser@ram:-$ sudo systemctl restart docker
vboxuser@ram:-$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

697c4d56720c retail-pricing-system
vboxuser@ram:-$ sudo systemctl restart jenkins
[sudo] password for vboxuser:
Sorry, try again.
[sudo] password for vboxuser:
Sorry, try again.
[sudo] password for vboxuser:
Sorry, try again.
[sudo] password for vboxuser:
Sorry try again.
[sudo] password for vboxuser:
Soudo password for vb
```

#### **User Interface**

- Framework Used: Flask (Python-based web framework).
- Key Features:
  - Input Panel: Allows users to input toy attributes such as category, base price, and seasonal index to predict optimal price.
  - Output Panel:
    - Displays the predicted price.
    - Showcases the impact of discounts and seasonal factors.
  - O Visualization:
    - Line charts showing actual vs. predicted sales.
    - Heatmaps depicting the relationship between price and sales volume.



# **Key Challenges and Solutions**

#### 1. Data Quality:

- a. Challenge: Missing values and outliers in sales data.
- b. Solution: Implemented robust cleaning and outlier detection mechanisms.

#### 2. Model Interpretability:

- a. Challenge: Business stakeholders required easy-to-understand results.
- b. Solution: Selected decision tree models for their inherent interpretability and provided feature importance visualizations.

#### 3. Deployment Complexity:

- a. Challenge: Coordinating CI/CD and containerization workflows.
- b. Solution: Streamlined the pipeline using Jenkins' declarative pipeline scripts and Docker.

Errors we faced while working in this project:

Java Error



#### Docker Permission issue:



Solution for docker permission issue:

```
# Create a non-root user with Docker permissions
RUN groupadd -f docker && \
    useradd -r -m -s /bin/bash -G docker dockeruser || echo "User already exists"

# Allow the user to use sudo without a password
RUN echo "dockeruser ALL=(ALL) NOPASSWD:ALL" >> /etc/sudoers

# Set the environment variable for Docker CLI
ENV DOCKER_HOST=unix:///var/run/docker.sock
```

#### Jenkins Issue:



Solution to jenkins issue:

```
pipeline {
    agent {
        docker {
            image 'docker:24.0.7'
            args '--privileged -v /var/run/docker.sock:/var/run/docker.sock -v $WORKSPACE/.docker:/root/.docker'
      }
    }
    environment {
        DOCKER_IMAGE = "retail-price-optimizer"
        REPO_URL = "https://github.com/rkdhakal/Retail-Industry-Project"
        DOCKER_CONFIG = "$WORKSPACE/.docker"
    }
}
```

#### **Conclusion and Future Work**

The project successfully demonstrates the application of AI to optimize pricing strategies in a retail toy store. The integration of machine learning with modern DevOps tools ensures a robust and scalable solution.

#### Future Enhancements:

- 1. Integrate additional features such as competitor pricing and inventory levels.
- 2. Enhance the user interface with predictive analytics dashboards.
- 3. Explore advanced ML models (e.g., ensemble methods) for improved accuracy.
- 4. Implement real-time data pipelines for dynamic price optimization.