Ch 6.3: Dimension Reduction

Lecture 18 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Weds, Oct 26, 2022

Announcements

Last time:

• Shrinkage: Ridge and Lasso

This lecture:

- PCA / PCR
- PLS

Announcements:

• Homework #6 due Friday

Section 1

Last time

Shrinkage

Find β to minimize

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

subject to:

Least Squares:

No constraints

Ridge:

$$\sum_{i=1}^{p} \beta_j^2 \le s$$

The Lasso:

$$\sum_{j=1}^p |eta_j| \leq s$$

Dr. Munch (MSU-CMSE

Weds, Oct 26, 2022

Section 2

Dimension Reduction

Linear transformation of predictors

Original Predictors:

$$X_1, \cdots, X_p$$

New Predictors:

$$Z_1,\cdots,X_M$$

$$Z_m = \sum_{j=1}^p \varphi_{jm} X_j$$

An example or two

Dr. Munch (MSU-CMSE)

The goal

- Find good φ 's
- Fit regression model on Z_i's using least squares

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \varepsilon_i$$

Section 3

PCA

An example dataset

Projection onto a line

```
https://www.desmos.com/calculator/cih7wy8oyg
```

r. Munch (MSU-CMSE) Weds, Oct 26, 2022

Projection onto first PC

$$Z_1 = 0.839 \cdot (pop - \overline{pop}) + 0.544 \cdot (ad - \overline{ad})$$

. Munch (MSU-CMSE) Weds, Oct 26, 2022

What does it mean to have the highest variance

Toy for learning PCA

```
https://www.desmos.com/calculator/qq14tyjz0z
```

Principal component scores

15 / 28

$$z_{i1} = 0.839 \cdot (\text{pop}_i - \overline{\text{pop}}) + 0.544 \cdot (\text{ad}_i - \overline{\text{ad}})$$

Pr. Munch (MSU-CMSE) Weds, Oct 26, 2022

Another view

The other principal components

Dr. Munch (MSU-CMSE) Weds, Oct 26, 2022

Do PCA with Penguins

Dr. Munch (MSU-CMSE) Weds, Oct 26, 2022

Section 4

Principal Components Regression

So you've found your PCA coefficients

Now what?

What are we assuming?

Doing better

Example with simulated data: n = 50 observations of p = 45 predictors Y is a function of 2 predictors

21 / 28

Dr. Munch (MSU-CMSE) Weds, Oct 26, 2022

Doing better

Example with simulated data: n = 50 observations of p = 45 predictors Y is a function of all predictors

. Munch (MSU-CMSE) Weds, Oct 26, 2022

Comparison to results on shrinkage

Y is a function of all predictors

Y is a function of 2 predictors

23 / 28

Munch (MSU-CMSE) Weds, Oct 26, 2022

Picking M

Properties of PCR

Dr. Munch (MSU-CMSE)

Do PCR with hitters data

Dr. Munch (MSU-CMSE)

TL;DR

PCA

- Unsupervised dimensionality reduction
- Choose component Z₁ in the direction of most variance using only X_i's information
- Choose Z₂ and beyond by the same method after "getting rid" of info in the directions already explained

PCR

- Do PCA on input data
- Do Linear Regression on chosen number of PCs.
- Warning: Lose interpretability of the coefficients.

Weds. Oct 26, 2022

Next time

10	М	Oct 3	Leave one out CV	5.1.1, 5.1.2	
11	W	Oct 5	k-fold CV	5.1.3	
12	F	Oct 7	More k-fold CV,	5.1.4-5	
13	М	Oct 10	k-fold CV for classification	5.1.5	HW #4 Due
14	W	Oct 12	Resampling methods: Bootstrap	5.2	
15	F	Oct 14	Subset selection	6.1	
16	М	Oct 17	Shrinkage: Ridge	6.2.1	HW #5 Due
17	W	Oct 19	Shrinkage: Lasso	6.2.2	
18	F	Oct 21	[No class, Dr Munch out of town]		
	М	Oct 24	No class - Fall break		
19	W	Oct 26	Dimension Reduction	6.3	
20	F	Oct 28	More dimension reduction; High dimensions	6.4	HW #6 Due
	М	Oct 31	Review		
	W	Nov 2	Midterm #2		