Mediciones y Errores

¿Qué hacemos cuando medimos?

Figura 1: Comparar con una magnitud patrón.

Expresamos los resultados de mediciones con números y unidades: ## y [unidades]

Cuadro 1: Conversiones		
múltiplos y fracciones		
1 Kg =	1000 g =	$10^3\mathrm{g}$
1 mm =	$\frac{1}{1000}$ m =	$10^{-3}~\mathrm{m}$

10 ⁿ	Prefijo	Símbolo	Equivalencia decimal
10 ¹⁸	exa	Е	1 000 000 000 000 000 000
10 ¹⁵	peta	Р	1 000 000 000 000 000
10 ¹²	tera	Т	1 000 000 000 000
10 ⁹	giga	G	1 000 000 000
10 ⁶	mega	М	1 000 000
10 ³	kilo	k	1 000
10 ²	hecto	h	100
10 ¹	deca	da	10
10 ⁰	4	-	1

10 ⁿ	Prefijo	Símbolo	Equivalencia decimal
10 ⁰	-	-	1
10 ⁻¹	deci	d	0,1
10 ⁻²	centi	С	0,01
10 ⁻³	mili	m	0,001
10 ⁻⁶	micro	μ	0,000 001
10 -9	nano	n	0,000 000 001
10 ⁻¹²	pico	р	0,000 000 000 001

Figura 2: Equivalencias prefijos del Sistema Internacional.

Magnitudes físicas y unidades derivadas del sistema internacional (SI)		
Magnitud	Unidad	Símbolo
Área (S)	metro cuadrado	m ²
Volumen (V)	metro cúbico	m ³
Densidad (d, ρ)	kilogramo por metro cúbico	kg/m ³
Velocidad (v)	metro por segundo	m/s
Aceleración (a)	metro por segundo cuadrado	m/s ²
Fuerza (F)	Newton	N
Presión (P)	Pascal	Pa
Energía (E)	Julio	J
Trabajo (W)	Julio	J
Potencia (P)	Watio	W
Carga eléctrica (q)	Culombio	С
Resistencia eléctrica (R)	Ohmio	Ω
Voltaje (V)	Voltio	V

Figura 3: Sistema Internacional.

Prefijo		Eggtor que multiplica
Nombre	Símbolo	Factor que multiplica
mega	М	106 = 1000000
kilo	k	10 ³ = 1000
hecto	h	10 ² = 100
deca	da	101 = 10
deci	d	10-1 = 0.1
centi	С	10-2 = 0.01
mili	m	10 ⁻³ = 0.001
micro	μ	10-6 = 0.000001

Figura 4: Definiciones de Unidades y sus fracciones.

Cuadro 2: Minutos a segundos

Minutos a segundos		
1 min =	60 s	
3 min =	x ?	
X=	$\frac{3min*60s}{1min} = 180s$	

Si tenemos la información de una velocidad de 56m/s, ¿Cuántos Km/h representa? Para responder esto debemos saber que 1 hora equivale a 3600 segundos y 1 Km a 1000 m. ¿Pero 1 segundo a cuántas horas equivale?

Cuadro 3: segundos a horas		
1 h =	3600 s	
x h ? =	1 s	
X=	$\frac{1\cancel{s}*1h}{3600\cancel{s}} = \frac{1}{3600}h$	

Es decir que 1 segundo representa una fracción 1/3600 de hora. Y correspondientemente 1 metro equivale a la fracción 1/1000 Km.

$$56\frac{\mathsf{m}}{\mathsf{s}} = 56\frac{\frac{1}{1000}\mathsf{Km}}{\frac{1}{2600}\mathsf{h}} = 56\frac{3600}{1000}\frac{\mathsf{Km}}{\mathsf{h}} = 201,6\frac{\mathsf{Km}}{\mathsf{h}}$$

Mediciones e incertidumbre

si realizamos una medición con precisión de 1mm

$$x = (3 \pm 1)mm \Rightarrow x \in (2,4)mm$$

si la precisión fuera de $0.01 \mathrm{mm}$

$$\Delta x = 0.01mm \Rightarrow x \in (2.99, 3.01)mm$$

Cuadro 4: Definimos distintos Errores

Error Absoluto: $\Delta x = 0.01mm$

Error Relativo: $\frac{\Delta x}{x} = \frac{0.01mm}{3.00mm}$

Error Porcentual: $\frac{\Delta x}{x} * 100 = \frac{0.01mm*100}{3.00mm}$

Cifras significativas

Son las cifras que verdaderamente dan información de la medición.

- $137 \text{ Km} \rightarrow \text{tiene 3 cifras significativas}$
- $2.91 \text{ mm} \rightarrow \text{tiene 3 cifras significativas}$
- $0.0543~{\rm m} \to {\rm tiene~3~cifras~significativas}$. Convendría expresar $5.43~{\rm cm}$. los ceros a la izquierda, no son significativos
- $64000 \pm 1 \rightarrow$ tiene 5 cifras significativas
- $(64000 \pm 1000) \ \mathrm{m} \rightarrow \mathrm{en}$ cambio tiene sólo 2 cifras significativas
- $0,\!4200\pm0,\!0001$ \to tiene 4 cifras significativas. Decir que medí $0,\!4200$ no es lo mismo que decir que medí $0,\!42.$
- Los errores se expresan con 1 cifra significativa. Y se redondea el valor a lo que dicta el error. 0.4231527 ± 0.012 está mal expresado.

El resultado debe expresarse como: 0.42 ± 0.01 .

Propagación de Errores

Al realizar mediciones indirectas, debo propagar esos errores. Si divido 1cm por 3 el resultado es 0.333333...cm. ¿Cuál es el error de ese resultado? Claramente no puedo dar los infinitos 3 como cifras significativas.

Propagación en producto y división

Dados $A\pm\Delta A$ y $B\pm\Delta B$ queremos calcular $C\pm\Delta C$, sabiendo que C=AB.

Resulta que:

$$\frac{\Delta C}{C} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$$

 \hookrightarrow el error absoluto para C será $\Delta C = C * \left(\frac{\Delta A}{A} + \frac{\Delta B}{B}\right)$.

Ejemplo

Cuadro 5: Propagación en el producto

$$A \pm \Delta A = (2,0 \pm 0,1)m/s$$

$$B \pm \Delta B = (3,0 \pm 0,1)s$$

$$C = A * B \qquad 2,0 * 3,0 \frac{ms}{s} = 6m$$

$$\frac{\Delta C}{C} = \frac{\Delta A}{A} + \frac{\Delta B}{B} \rightarrow \frac{\Delta C}{C} = \frac{0,1}{2} + \frac{0,1}{3} = 0,05 + 0,0333 = 0,08333$$

$$\frac{\Delta C}{C} = 0,08$$

$$\Delta C = 0,08 * 6m = 0.48m$$

$$\Delta C = 0,08 * 6m = 0,5m$$

$$C \pm \Delta C = (6,0 \pm 0,5)m/s$$

Propagación en suma y resta

En este caso el error del resultado se calcula sumando los errores absolutos de las magnitudes usadas en la cuenta.

Ejemplo:

Cuadro 6: Propagación en suma o resta

$A \pm \Delta A =$	$(6,251 \pm 0,001)m$	
$B \pm \Delta B =$	$(0.2 \pm 0.1)m$	
C = A + B	$6,\!451m$	
$\Delta C = \Delta A + \Delta B$	$\Delta C = 0.001 + 0.1 =$	0,1) $1 = 0,1$
$C \pm \Delta C =$	$(6.5 \pm 0.1)m$	

Atención: En la resta, No restar errores, se suman!!!

Histograma

Dada una colección de N mediciones, expresamos el mejor estimados y su variabilidad calculando el promedio y su dispersión cuadrática media

$$\bar{x} \pm \sigma$$

donde el promedio se calcula mediante:

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

mientras que la dispersión es:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}} \approx \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N}}$$

muchas veces, por simplicidad se divide por N en vez de N-1.

Histograma

Activar simulador

Dada una colección de mediciones calculamos el promedio y su dispersión cuadrática media

$$\bar{x} \pm \sigma$$

Un $68\,\%$ de los datos está comprendido en el intervalo entre $(\bar x-\sigma,\bar x+\sigma)$ Un $95\,\%$ de los datos está comprendido en el intervalo entre $(\bar x-2\sigma,\bar x+2\sigma)$ Un $99,7\,\%$ de los datos está comprendido en el intervalo entre $(\bar x-3\sigma,\bar x+3\sigma)$

El error cuadrático medio de la distribución de promedios es \sqrt{N} veces menor que σ Cuando realizamos un proceso de medición con N datos, expresamos el resultado como

$$\bar{x} \pm \frac{\sigma}{\sqrt{N}}$$

Esto representa que si midieramos nuevamente otro conjunto de N mediciones y calcularamos su promedio, éste formará parte del histograma de los promedios que tendrá una dispersión cuadrática media de $\frac{\sigma}{\sqrt{N}}$

Referencias

[1] A Maiztegui and J Gleiser. Mediciones de laboratorio. *publicación editada por los autores, Córdoba*, 2000.

Figura 5: Se va formando el Histograma. Figuras de Referencia [1].

Figura 6: Se va formando el Histograma. Figuras de Referencia [1].

Figura 7: Distribución de promedios realizados con conjuntos de N_i datos. Cuanto mayor el número de mediciones utilizadas para calcular los promedios, menor es el ancho de la distribución de promedios.