Advanced Encryption Standard (AES)

- 1. Efectes de les funcions elementals:
 - (a) Canviem la funció ByteSub per la identitat, i.e. ByteSub(x)=x.

Sigui M_i igual a M excepte en el bit i; M_j igual a M excepte en el bit j; M_{ij} és igual a M excepte en els bits i, j; C_i el resultat de xifrar M_i amb la clau K; C_j el resultat de xifrar M_j amb la clau K:

M=	15	33	7e	b3	7	15	33	7e	b3]	15	33	7e	93	$M_{ij} =$	15	33	7e	93
	97	1c	6d	ea	M_i	97	1c	6d	ea	M_i	97	1c	6d	ea		_ 97	1c	6d	ea
	c4	c2	1b	3b	11/11	c4	82	1b	3b		c4	c2	1b	3b		c4	82	1b	3b
	ef	8b	2e	95		ef	8b	2e	95		ef	8b	2e	95		ef	8b	2e	95
ſ	ae	99	2e	5c		ae	99	6e	5c	5c	ae	99	2e	5a	C_{ij}	ae	99	6e	5a
C =	29	c0	ab	16		29	00	ab	16		29	c0	a3	16		29	00	a3	16
	8d	74	01	a2	$C_i =$	0d	74	01	a2	$C_j =$	8d	7 f	01	a2		0d	7 f	01	a2
	91	19	99	2e	ĺ	91	19	99	6e		9e	19	99	26		9e	19	99	6e

Feu un programa per comprobar que $C = C_i \oplus C_j \oplus C_{ij}$ per qualsevol i, j, i que això no pasa si agafen la funció **ByteSub** original.

C=	2a	9a	7c	9c	$C_i =$	67	84	1b	ac	$C_j =$	0e	95	9c	0d	$C_{ij} =$	55	d1	61	74
	56	9f	36	76		22	43	bd	e7		ee	98	3f	f2		ef	62	72	0e
	e1	34	6e	ec		73	52	ed	5c		81	0a	b5	e2		bb	e1	ea	9d
	4e	63	c8	60		82	ff	1d	b3		2e	13	59	d4		d5	d0	b7	ea

Noteu que si M = 0, llavors M_i és el missatge que té tot de 0's excepte un 1 a la posició i i si sabem el valor de C, C_i i C_j llavors podem calcular fàcilment C_{ij} correponent al missatge que té tot de 0's excepte a les posicions i i j.

Doneu una forma senzilla de calcular el criptograma correponent al missatge que té tot de 0's excepte a les posicions i, j, k i l.

- (b) Canviem la funció **ShiftRows** per la identitat. Quins efectes té aquest canvi al xifrar un bloc? (Xifreu diferents M i els corresponents M_i amb la mateixa clau K i compareu C amb C_i .)
- (c) Canviem la funció **MixColumns** per la identitat. Quins efectes té aquest canvi al xifrar un bloc? (Xifreu diferents M i els corresponents M_i amb la mateixa clau K i compareu C amb C_i .)
- 2. Propagació de canvis: Amb un missatge M de 128 bits i una clau K de 128 bits qualssevol feu una estadística dels bits que canvien a la sortida quan modifiqueu un bit de M:
 - (a) histograma del nombre total de bits que canvien amb cada modificació,
 - (b) histograma de les posicions que canvien amb cada modificació.

Feu el mateix si modifiqueu un bit de K.

Referències

Federal Information Processing Standards Publication (FIPS) 197: Advanced Encryption Standard (AES) http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf