分布式计算

邱怡轩

今天的主题

- ADMM 算法 (三)
- 致性优化问题
- 共享优化问题

通用框架

- "通用"的分布式计算框架
 - 一致性优化 (Consensus)
 - 共享优化 (Sharing)

一致性优化问题

优化问题

考虑一个可分的优化问题

minimize
$$f(x) = \sum_{i=1}^{N} f_i(x)$$

 $x \in \mathbb{R}^n$, $f_i(x)$ 是凸函数

- 注意 x 指的是抽象的参数,不是数据
- •数据通常包括在 f_i 中

一致性问题

■ 转换成 ADMM 形式

- Minimize $\sum_{i=1}^{N} f_i(\mathbf{x_i})$
- Subject to $x_i z = 0$, i = 1, ..., N

- 注意,此时需要被优化的参数包括 $z, x_1, ..., x_N$,共 (N + 1)n 个
- 全局一致性问题: 所有局部变量相等

一致性问题

- Minimize $\sum_{i=1}^{N} f_i(\mathbf{x_i})$
- Subject to $x_i z = 0$, i = 1, ..., N

- 假设我们有 N 台机器
- 那么每台机器可以独立地计算 $\min_{x_i} f_i(x_i)$
- 但还有额外的约束 $x_1 = x_2 = \cdots = x_N$
- 因此机器之间需要交换信息

迭代算法

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT}(x_i - z^k) + (\rho/2) ||x_i - z^k||_2^2 \right)$$

$$z^{k+1} := \frac{1}{N} \sum_{i=1}^{N} \left(x_i^{k+1} + (1/\rho) y_i^k \right)$$

$$y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - z^{k+1}).$$

迭代算法

- 可以证明, $z^k = \bar{x}^k$
- $\bar{x}^k \in x_1^k, ..., x_N^k$ 的平均
- 算法可以进一步化简

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT} (x_i - \overline{x}^k) + (\rho/2) \|x_i - \overline{x}^k\|_2^2 \right)$$
$$y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - \overline{x}^{k+1}).$$

音义

minimize
$$f(x) = \sum_{i=1}^{N} f_i(x)$$
,

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT} (x_i - \overline{x}^k) + (\rho/2) \|x_i - \overline{x}^k\|_2^2 \right)$$
$$y_i^{k+1} := y_i^k + \rho (x_i^{k+1} - \overline{x}^{k+1}).$$

- 许多统计和机器学习模型都可以写成这种 形式(似然函数平均)
- \blacksquare 每个 x_i^k 的更新是完全并行的 (Map)
- \bar{x}^k 负责收集每个分块的信息 (Reduce)

minimize $f(x) = \sum_{i=1}^{N} f_i(x),$ $x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT}(x_i - \overline{x}^k) + (\rho/2) ||x_i - \overline{x}^k||_2^2 \right)$

$$y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - \overline{x}^{k+1}).$$

意义

minimize
$$f(x) = \sum_{i=1}^{N} f_i(x),$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT} (x_i - \overline{x}^k) + (\rho/2) ||x_i - \overline{x}^k||_2^2 \right)$$

$$y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - \overline{x}^{k+1}).$$

数据分块1

minimize
$$f(x) = \sum_{i=1}^{N} f_i(x),$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT} (x_i - \overline{x}^k) + (\rho/2) ||x_i - \overline{x}^k||_2^2 \right)$$

$$y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - \overline{x}^{k+1}).$$

 $\left|\begin{array}{c} \overset{\circ}{\downarrow} \\ \overset{\circ}{\downarrow} \overset{\circ}{\downarrow} \overset{\circ}{\downarrow} \\ \overset{\circ}{\downarrow} \overset{\circ}{\downarrow} \overset{\circ}{\downarrow} \end{array}\right| \, \bar{\chi}^{(0)}$

minimize
$$f(x) = \sum_{i=1}^{N} f_i(x),$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT} (x_i - \overline{x}^k) + (\rho/2) \|x_i - \overline{x}^k\|_2^2 \right)$$

$$y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - \overline{x}^{k+1}).$$

同步参数

minimize
$$f(x) = \sum_{i=1}^{N} f_i(x)$$
,

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT} (x_i - \overline{x}^k) + (\rho/2) ||x_i - \overline{x}^k||_2^2 \right)$$
$$y_i^{k+1} := y_i^k + \rho (x_i^{k+1} - \overline{x}^{k+1}).$$

 $\bar{x}^{(0)}$

minimize
$$f(x) = \sum_{i=1}^{N} f_i(x),$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT} (x_i - \overline{x}^k) + (\rho/2) ||x_i - \overline{x}^k||_2^2 \right)$$

$$y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - \overline{x}^{k+1}).$$

minimize
$$f(x) = \sum_{i=1}^{N} f_i(x),$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT} (x_i - \overline{x}^k) + (\rho/2) \|x_i - \overline{x}^k\|_2^2 \right)$$

$$y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - \overline{x}^{k+1}).$$

主机

同步参数

minimize
$$f(x) = \sum_{i=1}^{N} f_i(x),$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT}(x_i - \overline{x}^k) + (\rho/2) ||x_i - \overline{x}^k||_2^2 \right)$$

$$y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - \overline{x}^{k+1}).$$

minimize
$$f(x) = \sum_{i=1}^{N} f_i(x)$$
,

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT} (x_i - \overline{x}^k) + (\rho/2) ||x_i - \overline{x}^k||_2^2 \right)$$
$$y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - \overline{x}^{k+1}).$$

 $\left|\begin{array}{c} 101010 \\ 101010 \\ 101010 \end{array}\right| \, \bar{\chi}^{(1)}$

minimize
$$f(x) = \sum_{i=1}^{N} f_i(x),$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT}(x_i - \overline{x}^k) + (\rho/2) ||x_i - \overline{x}^k||_2^2 \right)$$

$$y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - \overline{x}^{k+1}).$$

例: 线性回归

minimize
$$f(x) = \sum_{i=1}^{N} f_i(x)$$
,

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT} (x_i - \overline{x}^k) + (\rho/2) \|x_i - \overline{x}^k\|_2^2 \right)$$
$$y_i^{k+1} := y_i^k + \rho (x_i^{k+1} - \overline{x}^{k+1}).$$

- 如果原问题是最小二乘回归
- 将数据按观测切为 N 块
- 那么每个 f_i 就是每个分块上的损失函数
- 每个分块上各自求解一个线性方程组

正则项

- 有时我们需要对参数加入全局的正则项
- 优化问题

minimize
$$f(x) = g(x) + \sum_{i=1}^{N} f_i(x)$$

 \bullet $f_i(x)$, g(x) 是凸函数

■ 例: Lasso

$$\min_{x} \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_1$$

正则项

■ 优化问题

minimize
$$f(x) = g(x) + \sum_{i=1}^{N} f_i(x)$$

- 转换成 ADMM 形式
- Minimize $g(z) + \sum_{i=1}^{N} f_i(\mathbf{x_i})$
- Subject to $x_i z = 0$, i = 1, ..., N

迭代算法

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT}(x_i - z^k) + (\rho/2) \|x_i - z^k\|_2^2 \right)$$

$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(g(z) + \sum_{i=1}^{N} (-y_i^{kT}z + (\rho/2) \|x_i^{k+1} - z\|_2^2) \right)$$

$$y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - z^{k+1}).$$

简化形式

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \| x_i - z^k + u_i^k \|_2^2 \right)$$

$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(g(z) + (N\rho/2) \| z - \overline{x}^{k+1} - \overline{u}^k \|_2^2 \right)$$

$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}.$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \| x_i - z^k + u_i^k \|_2^2 \right)$$

$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(g(z) + (N\rho/2) \| z - \overline{x}^{k+1} - \overline{u}^k \|_2^2 \right)$$

$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}.$$

数据分块1

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \|x_i - z^k + u_i^k\|_2^2 \right)$$

$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(g(z) + (N\rho/2) \|z - \overline{x}^{k+1} - \overline{u}^k\|_2^2 \right)$$

$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}.$$

数据分块1 x₁(0), u₁(0) 工作机1

初始化

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \| x_i - z^k + u_i^k \|_2^2 \right)$$
$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(g(z) + (N\rho/2) \| z - \overline{x}^{k+1} - \overline{u}^k \|_2^2 \right)$$
$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}.$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \|x_i - z^k + u_i^k\|_2^2 \right)$$
$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(g(z) + (N\rho/2) \|z - \overline{x}^{k+1} - \overline{u}^k\|_2^2 \right)$$
$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}.$$

101010

更新工作机 x

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \|x_i - z^k + u_i^k\|_2^2 \right)$$
$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(g(z) + (N\rho/2) \|z - \overline{x}^{k+1} - \overline{u}^k\|_2^2 \right)$$
$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}.$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \|x_i - z^k + u_i^k\|_2^2 \right)$$

$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(g(z) + (N\rho/2) \|z - \overline{x}^{k+1} - \overline{u}^k\|_2^2 \right)$$

$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}.$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \| x_i - z^k + u_i^k \|_2^2 \right)$$
$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(g(z) + (N\rho/2) \| z - \overline{x}^{k+1} - \overline{u}^k \|_2^2 \right)$$
$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}.$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \| x_i - z^k + u_i^k \|_2^2 \right)$$
$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(g(z) + (N\rho/2) \| z - \overline{x}^{k+1} - \overline{u}^k \|_2^2 \right)$$
$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}.$$

更新工作机 и

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \|x_i - z^k + u_i^k\|_2^2 \right)$$
$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(g(z) + (N\rho/2) \|z - \overline{x}^{k+1} - \overline{u}^k\|_2^2 \right)$$
$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}.$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \|x_i - z^k + u_i^k\|_2^2 \right)$$
$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(g(z) + (N\rho/2) \|z - \overline{x}^{k+1} - \overline{u}^k\|_2^2 \right)$$
$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}.$$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \|x_i - z^k + u_i^k\|_2^2 \right)$$

$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(g(z) + (N\rho/2) \|z - \overline{x}^{k+1} - \overline{u}^k\|_2^2 \right)$$

$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}.$$

例: Lasso

$$A = \begin{bmatrix} A_1 \\ \vdots \\ A_N \end{bmatrix}, \qquad b = \begin{bmatrix} b_1 \\ \vdots \\ b_N \end{bmatrix},$$

$$x_i^{k+1} := (A_i^T A_i + \rho I)^{-1} (A_i^T b_i + \rho (z^k - u_i^k))$$

$$z^{k+1} := S_{\lambda/\rho N} (\overline{x}^{k+1} + \overline{u}^k)$$

$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}$$

典型问题

损失函数

正则项

$$= \min_{x} \left[l(Ax - b) + r(x) \right]$$

- x: 参数向量
- *A*, *b*:数据矩阵/向量

- 按行切分
- 每个分块包含一部分观测
- 每个分块包含所有的变量

- $l(Ax b) = \sum_{i=1}^{N} l_i (Ax_i b_i)$
- Minimize $\sum_{i=1}^{N} l_i (Ax_i b_i) + r(z)$
- Subject to $x_i z = 0$, i = 1, ..., N

$$A = \left[egin{array}{c} A_1 \ dots \ A_N \end{array}
ight], \qquad b = \left[egin{array}{c} b_1 \ dots \ b_N \end{array}
ight],$$

•
$$l(Ax - b) = \sum_{i=1}^{N} l_i (Ax_i - b_i)$$

• Minimize
$$\sum_{i=1}^{N} l_i (Ax_i - b_i) + r(z)$$

• Subject to $x_i - z = 0$, i = 1, ..., N

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(l_i (A_i x_i - b_i) + (\rho/2) || x_i - z^k + u_i^k ||_2^2 \right)$$

$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(r(z) + (N\rho/2) || z - \overline{x}^{k+1} - \overline{u}^k ||_2^2 \right)$$

$$u_i^{k+1} := u_i^k + x_i^{k+1} - z^{k+1}.$$

共享优化问题

优化问题

- Minimize $\sum_{i=1}^{N} f_i(\mathbf{x_i}) + g(\sum_{i=1}^{N} \mathbf{x_i})$
- $\mathbf{x}_i \in \mathbf{R}^n$, i = 1, ..., N

共享问题

■ 转换成 ADMM 形式

- Minimize $\sum_{i=1}^{N} f_i(\mathbf{x_i}) + g(\sum_{i=1}^{N} \mathbf{z_i})$
- Subject to $x_i z_i = 0$, i = 1, ..., N

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \| x_i - z_i^k + u_i^k \|_2^2 \right)$$

$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(g(\sum_{i=1}^N z_i) + (\rho/2) \sum_{i=1}^N \| z_i - u_i^k - x_i^{k+1} \|_2^2 \right)$$

$$u_i^{k+1} := u_i^k + x_i^{k+1} - z_i^{k+1}.$$

■ 算法可以进一步化简

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \| x_i - x_i^k + \overline{x}^k - \overline{z}^k + u^k \|_2^2 \right)$$

$$\overline{z}^{k+1} := \underset{\overline{z}}{\operatorname{argmin}} \left(g(N\overline{z}) + (N\rho/2) \| \overline{z} - u^k - \overline{x}^{k+1} \|_2^2 \right)$$

$$u^{k+1} := u^k + \overline{x}^{k+1} - \overline{z}^{k+1}.$$

典型问题

损失函数

正则项

$$= \min_{x} \left[l(Ax - b) + r(x) \right]$$

- x: 参数向量
- *A*, *b*:数据矩阵/向量

- 按列切分
- 每个分块包含一部分变量
- 每个分块包含所有的观测

minimize
$$l\left(\sum_{i=1}^{N} A_i x_i - b\right) + \sum_{i=1}^{N} r_i(x_i).$$

minimize
$$l\left(\sum_{i=1}^{N} z_i - b\right) + \sum_{i=1}^{N} r_i(x_i)$$

subject to $A_i x_i - z_i = 0, \quad i = 1, \dots, N,$

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(r_i(x_i) + (\rho/2) \| A_i x_i - z_i^k + u_i^k \|_2^2 \right)$$

$$z^{k+1} := \underset{z}{\operatorname{argmin}} \left(l(\sum_{i=1}^N z_i - b) + \sum_{i=1}^N (\rho/2) \| A_i x_i^{k+1} - z_i^k + u_i^k \|_2^2 \right)$$

$$u_i^{k+1} := u_i^k + A_i x_i^{k+1} - z_i^{k+1}.$$

简化迭代算法

$$x_{i}^{k+1} := \underset{x_{i}}{\operatorname{argmin}} \left(r_{i}(x_{i}) + (\rho/2) \| A_{i}x_{i} - A_{i}x_{i}^{k} - \overline{z}^{k} + \overline{Ax}^{k} + u^{k} \|_{2}^{2} \right)$$

$$\overline{z}^{k+1} := \underset{\overline{z}}{\operatorname{argmin}} \left(l(N\overline{z} - b) + (N\rho/2) \| \overline{z} - \overline{Ax}^{k+1} - u^{k} \|_{2}^{2} \right)$$

$$u^{k+1} := u^{k} + \overline{Ax}^{k+1} - \overline{z}^{k+1}.$$

例: Lasso

$$A = A_1 A_2 \cdots A_N$$

$$X' = X_1 X_2 \cdots X_N$$

$$x_{i}^{k+1} := \underset{x_{i}}{\operatorname{argmin}} \left((\rho/2) \| A_{i}x_{i} - A_{i}x_{i}^{k} - \overline{z}^{k} + \overline{Ax}^{k} + u^{k} \|_{2}^{2} + \lambda \|x_{i}\|_{1} \right)$$

$$\overline{z}^{k+1} := \frac{1}{N+\rho} \left(b + \rho \overline{Ax}^{k+1} + \rho u^{k} \right)$$

$$u^{k+1} := u^{k} + \overline{Ax}^{k+1} - \overline{z}^{k+1}.$$

其他模型

- 稀疏 Logistic 回归
- 广义线性模型
- 广义可加模型
- 支持向量机
- •••••

扩展阅读

https://joegaotao.github.io/2014/02/11/admmstat-compute/