МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №7

по дисциплине «Операционные системы»

Тема: Построение модуля оверлейной структуры

Студент гр. 9381	 Колованов Р.А
Преподаватель	Ефремов М.А.

Санкт-Петербург

Цель работы.

Исследование возможности построения загрузочного модуля оверлейной структуры.

Функции и структуры данных.

Разработанная программа использует следующие функции и структуры данных:

Название процедуры	Предназначение процедуры
LOAD_AND_RUN_MO	Подготавливает параметры для загрузки и
DULE	загружает оверлейный модуль при помощи
	функции 4Bh прерывания 21h, после чего запускает
	его.
SET_PATH_STRING	Формирует и записывает в строку РАТН путь до
	вызываемого загрузочного модуля.
CHECK_AND_PRINT_E	Выводит сообщение ошибке и завершает
RROR	программу в случае, если при выполнении функции
	прерывания 21h происходит ошибка.
FREE_MEMORY	Очищает неиспользуемую программой память при
	помощи функции 4Ah прерывания 21h.
PRINT	Вызывает функцию вывода строки на экран
	(функция 09h прерывания 21h).

Ход работы.

Для начала был написан текст исходного EXE модуля lab7.asm. Далее при помощи транслятора MASM.EXE и компоновщика LINK.EXE был скомпилирован EXE модуль lab7.exe с генерацией файла листинга и карты памяти, после чего была осуществлена отладка. Программа выполняет следующие функции:

• Освобождает память для загрузки оверлеев;

- Читает размер файла оверлея и запрашивает объем памяти, достаточный для его загрузки;
- Файл оверлейного сегмента загружается и выполняется.
- Освобождается память, отведенная для оверлейного сегмента.
- Затем аналогично загружается и выполняется второй оверлей.

В качестве вызываемых программ были написаны и скомпилированы overlay1.asm и overlay2.asm, которые выводят сегментный адрес сегмента, в который они загружены.

Далее программа была протестирована. Для начала программа запускалась в каталоге с разработанными модулями. Результаты работы программы:

```
D:\>lab?
Freeing up memory...
Starting the first overlay...
Overlay module 1. Segment address: 0293
Starting the second overlay...
Overlay module 2. Segment address: 0293
D:\>
```

Далее модули были перемещены в директорию *FOLDER*, после чего программа ЛР7 была запущена оттуда. Результаты работы программы:

```
D:\FOLDER>lab7
Freeing up memory...
Starting the first overlay...
Overlay module 1. Segment address: 0293
Starting the second overlay...
Overlay module 2. Segment address: 0293
D:\FOLDER>
```

Далее модуль OVERLAY2.OVL был удален из директории, после чего программа ЛР7 была запущена заново. Результаты работы программы:

```
D:\FOLDER>lab7
Freeing up memory...
Starting the first overlay...
Overlay module 1. Segment address: 0293
Starting the second overlay...
Unknown error!
D:\FOLDER>
```

Результаты исследования проблем.

1. Как должна быть устроена программа, если в качестве оверлейного сегмента использовать .СОМ модуль?

При передаче управления оверлейному сегменту необходимо учитывать, что в начале сегмента располагается блок PSP размером 256 байт и только после него начинается код.

Заключение.

Была исследована возможность построения загрузочного модуля оверлейной структуры.