Training generative neural networks via Maximum Mean Discrepancy optimization

Information

Dziugaite G K, Roy D M, Ghahramani Z. Training generative neural networks via maximum mean

Aim

The authors consider training a deep neural network to generate samples from an unknown distribution given i.i.d. data.

Formulate Problem

Given an input Z drawn from some fixed noise distribution \mathcal{N} , then to find a function G, called generator, the distribution of the output G(Z) is close to the data's distribution P.

Work

Learning to sample as optimization

It is well known that, for any distribution P and any continuous distribution \mathcal{N} on sufficiently regular space \mathbb{X} and \mathbb{W} , respectively, there is a function $G: \mathbb{W} \to \mathbb{X}$, such that $G(W) \sim P$.

For a given family $\{G_{\theta}\}$ of functions $\mathbb{W} \to \mathbb{X}$, we can cast the problem of learning a generative model as an optimization

$$\arg\min_{\theta} \delta(P, G_{\theta}(\mathcal{N}))$$

where δ is some measure of discrepancy. In practice, we only have i.i.d. samples $X_1, X_2, ...$ from P, and so we optimize an empirical estimate of $\delta(P, G_{-}\{\theta\}(\mathcal{N}))$.

Maximum Mean Discrepancy (MMD)

The MMD between P and $G_{\theta}(\mathcal{N})$ over \mathcal{H} , given by

$$\delta_{MMD_{\mathcal{H}}}(P, G_{\theta}(\mathcal{N})) = \sup_{f \in \mathcal{F}} E[f(X)] - E[f(Y)]$$

where $X \sim P$ and $Y \sim G_{\theta}(\mathcal{N})$. Gretton et al. ¹ shows that it can be solved in closed form when \mathcal{H} is a reproducing kernel Hilbert space (RKHS).

Assume that X is a nonempty compact metric space and \mathcal{F} a class of functions $f: X \to \mathbb{R}$. Let p and q be Borel probability measures on X, and let X and Y be random variables with distribution p and q, respectively. The maximum mean discrepancy (MMD) between p and q is

$$\mathrm{MMD}(\mathcal{F},p,q) = \sup_{f \in \mathcal{F}} E[f(X)] - E[f(Y)]$$

¹ A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Scholkopf, "and A. Smola. "A Kernel Two-sample Test". In: J. Mach. Learn. Res. 13 (Mar. 2012), pp. 723–773.