RAPPELS (1)

Exercice 1 (propriétés des densités gaussiennes)

- 1. Soit X une gaussienne standard, calculer $\mathbb{E}(X^n)$ et $\mathbb{E}(|X|^n)$ pour tout $n \geq 0$.
- 2. Pour quels $z\in\mathbb{C}$ l'espérance $\mathbb{E}(e^{zX})$ a-t-elle un sens ? Donner son expression sur cet ensemble.
- 3. Rappeler l'expression générale de la fonction caractéristique et de la densité d'une loi normale multidimensionnelle.
- 4. Soit M une matrice. Donner la loi de MX où X est une gaussienne multidimensionnelle de moyenne μ et de variance Σ .
- 5. Deux variables gaussiennes de covariance nulle sont-elles toujours indépendantes?

Exercice 2 (conditionnement gaussien) Soit $X=(X_1,X_2)$ un vecteur gaussien, avec $X_1 \in \mathbb{R}^n, X_2 \in \mathbb{R}^m$. On note

$$\mathbb{E}(X) = \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \qquad \qquad \text{Var}(X) = \Sigma = \begin{bmatrix} \Sigma_{1,1} & \Sigma_{1,2} \\ \Sigma_{1,2}^\top & \Sigma_{2,2} \end{bmatrix}.$$

- 1. Trouver une matrice A telle que la v.a. $Z = X_1 + AX_2$ est indépendante de X_2 .
- 2. En déduire la loi de X_1 conditionnellement à X_2 .

Exercice 3 (résultats élémentaires autour de Borel-Cantelli)

- 1. (Borel-Cantelli) Soient (A_n) des événements tels que $\sum_n \mathbb{P}(A_n) < \infty$. On pose $A = \cap_n \cup_{m > n} A_m$. Montrer que $\mathbb{P}(A) = 0$. Que représente l'événement A?
- 2. (Cantelli-Borel) On suppose cette fois que les A_n sont mutuellement indépendants. Montrer que si $\sum_n \mathbb{P}(A_n) = \infty$ alors $\mathbb{P}(A) = 1$.
- 3. (LFGN-L4) Soit (X_n) une suite de variables aléatoires iid dans L^4 , supposées centrées. On pose $S_n = X_1 + \cdots + X_n$. Montrer que S_n/n converge presque sûrement vers 0.
- 4. Soient X_n des variables aléatoires indépendantes de loi $\mathcal{N}(0, \sigma_n^2)$.
- 5. (a) Montrer que si $X \sim \mathcal{N}(0,1)$ alors il existe une constante c telle que $\forall t > 0$,

$$c\frac{e^{-t^2/2}}{t} < \mathbb{P}(X > t) < \frac{e^{-t^2/2}}{t}.$$

(b) En déduire que ℙ-presque sûrement,

$$\limsup \frac{X_n}{\sigma_n \sqrt{2\log(n)}} = 1 \qquad \text{et} \qquad \liminf \frac{X_n}{\sigma_n \sqrt{2\log(n)}} = -1. \tag{1}$$

Exercice 4 (Intégration par partie gaussienne) Dans cet exercice on se place dans \mathbb{R}^d et on considère $f: \mathbb{R}^d \to \mathbb{R}$ une fonction \mathscr{C}^1 à support compact et $X = (X_1, \dots, X_d)$ un vecteur gaussien centré de matrice de covariance Σ .

1. Cas d=1: montrer que si f est une fonction réelle et que X est une gaussienne centrée de variance σ^2 , alors

$$\mathbb{E}(Xf(X)) = \sigma^2 \mathbb{E}(f'(X)).$$

Dans la suite de l'exercice, on prend $d \geq 2$.

- 2. On suppose dans un premier temps que Σ est une matrice diagonale. Que pouvez-vous dire des variables X_1, X_2, \ldots, X_d (loi, indépendance)?
- 3. Montrer que

$$\forall i, \ \mathbb{E}(X_i f(X)) = \Sigma_{ii} \mathbb{E}(\frac{\mathrm{d}f}{\mathrm{d}x_i}(X)).$$

4. En déduire que si Σ est une matrice diagonale, pour tout vecteur $v \in \mathbb{R}^d$,

$$\mathbb{E}(\langle v, X \rangle f(X)) = \mathbb{E}(\langle v, \Sigma \nabla f \rangle),$$

où on rappelle que ∇f est le vecteur $(\frac{\mathrm{d}f}{\mathrm{d}x_1},\dots\frac{\mathrm{d}f}{\mathrm{d}x_d})$.

5. On considère maintenant le cas général. Montrer que la formule de la question 4 est toujours valable.

Exercice 5 Donner une condition nécessaire et suffisante pour qu'une suite de variables aléatoires gaussiennes converge en loi.

Exercice 6 (Vrai ou Faux) Donner une preuve ou un contre exemple pour les énoncés suivants.

- 1. Soit X_n une suite de variables admettant des densités f_n , si X_n converge en loi vers X alors X admet une densité.
- 2. Si X_n est une suite de variables aléatoires telle que les fonctions de répartition F_{X_n} convergent simplement, alors X_n converge en loi.
- 3. Si X_n est une suite de variables aléatoires avec $X_n > 0$ p.s. et telle que X_n converge en loi vers X, alors X > 0 presque sûrement.
- 4. Si X_n est une suite de variables aléatoires avec $X_n \ge 0$ p.s. et telle que X_n converge en loi vers X, alors $X \ge 0$ presque sûrement.
- 5. Si X_n converge dans L^2 vers X et si f est une fonction continue, alors $f(X_n)$ converge dans L^2 vers f(X).
- 6. Si X_n converge dans L^2 vers X, alors $\mathbb{P}(X_n \in [0,1]) \to \mathbb{P}(X \in [0,1])$
- 7. Si X_n converge dans L^2 vers X, alors $\mathbb{E}(X_n) \to \mathbb{E}(X)$.
- 8. Le couple (X_n, Y_n) converge en loi vers (X, Y) si et seulement si X_n et Y_n convergent en loi.
- 9. Le couple (X_n, Y_n) converge L^2 vers (X, Y) si et seulement si X_n et Y_n convergent L^2 .