Optimal two-stage sampling for mean estimation in multilevel populations when cluster size is informative

Francesco Innocenti, Math Candel, Frans Tan, & Gerard van Breukelen

Department of Methodology and Statistics Care and Public Health Research Institute Maastricht University

13th International Multilevel Conference April 12-13, 2022

Outline

- Motivating example
- Definitions of population means
- Sampling from a multilevel population
- Unbiased estimation
- Optimal design
- Relative efficiency
- Maximin design
- Sample size calculation for cross-population comparisons
- Application
- Guidelines
- Future research

Motivating example

Average alcohol consumption among adolescents:

- Adolescents clustered in schools
- Schools vary in # of enrolled students
- Adolescents' alcohol consumption can be related to school size (McNeely et al. [2002]; Resnick et al. [1997]; Thompson et al. [2006])

General framework:

- Two-level population
- Cluster size variation
- Informative cluster size (Nevalainen et al. [2014];
 Seaman et al. [2014])

General framework

The outcome variable Y_{ij} is quantitative

$$y_{ij} = \beta_0 + u_j + \epsilon_{ij} \tag{1}$$

$$\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^2\right), \ u_j \perp \epsilon_{ij}.$$

Informative cluster size (N_j) :

$$u_j = \gamma \left(N_j - \theta_N \right) + v_j, \tag{2}$$

$$v_j \sim N\left(0, \sigma_v^2\right), \ v_j \perp N_j$$

 $\gamma = Informativeness parameter$

 $\theta_N = \text{Population mean of cluster size}$

Definitions of population means

The average of all individual outcomes:

 $\mu = Expected$ outcome for an individual randomly sampled from the population ignoring cluster membership

The average of all cluster-specific means:

 $\beta_0 = Expected outcome for the average individual from the average cluster$

$$\mu = \beta_0 + \gamma \theta_N \tau_N^2 \tag{3}$$

 $\gamma = Informativeness parameter$

 $\theta_N = {\sf Population}$ mean of cluster size

 $au_N = ext{Population coefficient of variation of cluster size}$

Sampling from a multilevel population (1/2)

Population

Simple Random Sampling (SRS) Two-Stage Sampling (TSS)

Sampling from a multilevel population (2/2)

- K=# of clusters in the population, k=# of clusters in the sample, $N_j=$ cluster j size in the population, n or $n_j=\#$ of individuals sampled per cluster, $N_{pop}=$ population size
- TSS1 requires prior knowledge of the whole cluster size distribution
- Sampling fraction is assumed to be negligible at each sampling stage

Unbiased estimation of μ

Informative cluster size

SRS and TSS1:
$$\hat{\mu} = \sum_{j=1}^k \frac{\bar{y}_j}{k}$$
, $\bar{y}_j = \text{cluster } j \text{ mean, } k = \# \text{ of clusters}$

TSS2 and TSS3:
$$\hat{\mu} = \frac{\sum_{j=1}^{k} N_j \bar{y}_j}{\sum_{j=1}^{k} N_j} \Leftarrow \frac{\text{only asymptotically unbiased!}}{\sum_{j=1}^{k} N_j}$$

For a given total sample size:

$$V_{SRS}(\hat{\mu}) \leq V_{TSS1}(\hat{\mu}) \underbrace{\leq} V_{TSS2}(\hat{\mu}) \leq V_{TSS3}(\hat{\mu})$$

TSS1 is the most efficient TSS for many cluster size distributions

- Non-informative cluster size (i.e. $\mu = \beta_0$)
 - SRS, TSS1, and TSS3: $\hat{\mu} = \sum_{j=1}^{k} \frac{y_j}{k}$
 - $\blacksquare \ \, \mathsf{TSS2:} \ \, \hat{\mu} = \frac{\sum_{j=1}^k V(\bar{y}_j)^{-1} \bar{y}_j}{\sum_{j=1}^k V\bar{y}_j)^{-1}}, \ \, V(\bar{y}_j) \ \, \mathsf{variance} \ \, \mathsf{of} \ \, \mathsf{cluster} \, \, j \ \, \mathsf{mean}$
 - For a given total sample size:

Maastricht University

Optimal design (1/3)

 To maximize power and precision, is it better to sample more clusters or more individuals per cluster?

Optimal design (OD) = # of clusters (k) and # of individuals per cluster (n) that minimize $V(\hat{\mu})$ subject to $C = k(c_2 + c_1 n)$

C =budget for sampling and measuring

 $c_2 =$ (average) cost for sampling a cluster

 $c_1 = \mbox{(average)}$ cost for sampling an individual from a sampled cluster

ullet OD maximizes power and precision for a fixed budget C, or minimizes the budget C for the required power or precision level

Maastricht University

Optimal design (2/3)

- Optimal # of clusters: $k^* = \frac{C}{c_1(c_r + n^*)}$
- $c_r = \frac{c_2}{c_1}$ cluster-to-individual cost ratio
- $\rho = \frac{\sigma_v^2}{\sigma_v^2 + \sigma_\epsilon^2}$ intraclass correlation coefficient (ICC)
- $\psi = \frac{corr(u,N)^2}{1-corr(u,N)^2}$ cluster size informativeness

School size distribution in Italy | Mean=403 | Cyv-0.912 | E256 | Cyv

Optimal design (3/3)

Given the research budget
 C, the OD is robust against
 misspecification of cluster
 size informativeness ψ

$$rac{V\left(\hat{\mu}
ight) \, \mathrm{under} \, \, \mathrm{OD} \, \, \mathrm{for} \, \, \psi > 0}{V\left(\hat{\mu}
ight) \, \mathrm{under} \, \, \mathrm{OD} \, \, \mathrm{for} \, \, \psi = 0} pprox 2$$

- Given the desired power level and effect size, the required budget C for the OD is sensitive to misspecification of ψ
- Required C for TSS1 <Required C for TSS2 <Required C for TSS3

- c_r = cluster-to-individual cost ratio
- ψ = cluster size informativeness

ho = ICC

Maastricht University

Relative efficiency for a given budget

- Relative efficiency of OD_1 versus OD_2 : $RE = \frac{V_{OD_2}(\hat{\mu})}{V_{OD_1}(\hat{\mu})}$
- Informative cluster size
 - RE depends on cluster size distribution
 - TSS1 is the most efficient TSS for many cluster size distributions
 - TSS3 is always the least efficient TSS
- Non-informative cluster size
 - TSS1 and TSS3 are equally efficient and outperform TSS2

- c_r = cluster-to-individual cost ratio
- $\psi = \text{cluster size informativeness}$

Maastricht University

Maximin design (1/2)

- Local optimality problem: OD depends on prior knowledge of ICC (ρ) , cluster size informativeness (ψ) , coefficient of variation (τ_N) , skewness (ζ_N) , and kurtosis (η_N) of the cluster size distribution
- A solution ⇒ Maximin approach (Van Breukelen and Candel [2018]):
 - ① Define parameter space (e.g. $\rho \in [0, 0.10]$)
 - 2 Define design space (i.e. set of all candidate desgins (n, k))
 - **3** For each design (n, k), find those values of ρ , ψ , τ_N , ζ_N , and η_N that minimize efficiency $V(\hat{\mu})^{-1}$
 - **1** Choose n and k that **maximize** the **minimum efficiency** $V(\hat{\mu})^{-1}$ as determined in step 3

Maximin design (2/2)

- Maximin design = OD for the worst-case scenario of the unknown ICC (ρ), cluster size informativeness (ψ), coefficient of variation (τ_N), skewness (ζ_N) , and kurtosis (η_N) of the cluster size distribution
 - Maximin TSS1 = Optimal TSS1 for the largest plausible values of ρ and ψ
 - Maximin TSS2 and TSS3 = Optimal TSS2/TSS3 for the largest plausible values of ρ , ψ , η_N , ζ_N , and τ_N if largest $\tau_N \leq 1$
 - ✓ If largest $\tau_N > 1$, the worst-case values for τ_N and ζ_N are obtained via a numerical evaluation (R function)
 - ✓ It depends on some approximations used to derive $V(\hat{\mu})$, which are accurate (bias $\leq 5\%$) only if $k \geq 20$ clusters are sampled ($k \geq 100$ if η_N and ζ_N are extreme) \Rightarrow sample 10% more clusters
- Advantages:
 - Simple to implement
 - By maximizing the minimum efficiency over the parameter space, it is robust against misspecification of the unknown parameters

Sample size calculation for cross-population comparisons (1/2)

- Examples:
 - European School Survey Project on Alcohol and Other Drugs: Comparing substance use among 15-16-year-old students across 35 European countries
 - Programme for International Student Assessment: Comparing proficiency in reading, mathematics, and science among 15-year-old students
- For a fixed separate budget per population, the optimal/maximin design per population is obtained as explained previously
- The design can be further optimized by constraining the total budget and finding the optimal/maximin budget split between populations ⇒ formalized in a procedure (implemented in R) to make sample size calculation for sampling with TSS1 in two populations

Sample size calculation for cross-population comparisons (2/2)

- Example: H_0 : $\mu_F = \mu_I$ versus H_1 : $\mu_F \neq \mu_I$ where e.g. and
- **1** Specify sampling costs (c_1, c_2) per population, largest realistic ρ and ψ values, smallest relevant standardized difference d, $\frac{\sigma_{y,F}}{\sigma_{y,F}} \in \left[\frac{1}{a}, q\right]$, power level and Type I error rate
- ② Compute the maximum allowable $V(\hat{\mu}_F \hat{\mu}_I)$ to guarantee the desired power
- **3** Compute the maximin n_E^{MD} and n_I^{MD}
- Compute the maximin budget split $\frac{C_F}{C_-}$
- Compute the total budget C by equating the maximum variance for the maximin design with $V(\hat{\mu}_F - \hat{\mu}_I)$ as computed in step 2
- **©** Compute the separate budget per population using C and $\frac{C_F}{C}$
- O Compute the maximin k_F^{MD} and k_I^{MD}

Application (1/3)

 Example: to estimate and compare the average alcohol consumption among adolescents in France and Italy

$$\Rightarrow H_0$$
: $\mu_F = \mu_I$ versus H_1 : $\mu_F \neq \mu_I$

- Inputs for sample size calculation procedure:
 - Coefficient of variation and skewness of cluster size distribution per country
 - Sampling costs per country:

:
$$c_1 = 10$$
 and $c_2 = 200$

: $c_1 \in \{10, 20\}$ and $c_2 \in [200, 500]$

- Largest realistic ICC: $\rho = 0.10$
- Largest realistic cluster size informativeness: $\psi = 0.35$
- Range for the ratio of the outcome SDs: $\frac{\sigma_{y,F}}{\sigma_{y,I}} \in \left[\frac{1}{3},3\right]$
- Effect size d = 0.5, power = 90%, and $\alpha = 0.05$

Application (2/3)

Budget to detect d=0.5, power level 90%, Type I error rate $\alpha=0.05$

 $c_2 = cost$ for sampling a cluster

 $c_1 = \cos t$ for sampling an individual

$$\rho = ICC$$

 ψ = cluster size informativeness

 $c_1 \in \{10, 20\}$ and $c_2 \in [200, 500]$

c.=20

Application (3/3)

 $c_2 = \cos t$ for sampling a cluster

 $c_1 = \text{cost for sampling}$ an individual

$$\rho = ICC$$

 $\psi = \text{cluster size}$ informativeness

$$= \triangle : c_1 = 10 \text{ and } c_2 = 200$$

 $= \square : c_1 \in \{10, 20\}$ and $c_2 \in [200, 500]$

Guidelines

Parameter	Range of plausible values
ICC (ρ)	[0, 0.10] in health and medical research (Adams et al. [2004]; Eldridge et al. [2004])
	[0, 0.25] in educational research (Hedges and Hedberg [2007]; Shackleton et al. [2016])
Informativeness parameter (ψ)	[0,0.35] wich corresponds to a correlation of $[-0.51,+0.51]$
CV of cluster size (τ_N)	[0, 1]
Skewness of cluster size (ζ_N)	[0.5, 2]
Kurtosis of cluster size (η_N)	[3, 15]

Future research

- Binary outcome variables
- Three-level populations
- Extension to non-linear effect of cluster size
- Multipurpose surveys

Thank you for your attention!

References

- Adams, G., Gulliford, M. C., Ukoumunne, O. C., Eldridge, S., Chinn, S., and Campbell, M. J. (2004). Patterns of intracluster correlation from primary care research to inform study design and analysis. *Journal of Clinical Epidemiology*, 57:785–794.
- DGCASIS (2018). Studenti per anno di corso e fascia di etá: scuola statale. Technical report, Direzione generale per i contratti, gli acquisti e per i sistemi informativi e la statistica.
- Eldridge, S. M., Ashby, D., Feder, G. S.and Rudnicka, A. R., and Ukoumunne, O. C. (2004). Lessons for cluster randomized trials in the twenty-first century: a systematic review of trials in primary care. *Clinical Trials*, 1:80–90.
- Hedges, L. V. and Hedberg, E. C. (2007). Intraclass correlation values for planning group-randomized trials in education. Educational Evaluation and Policy Analysis, 29:60–87.
- Innocenti, F., Candel, M. J. J. M., Tan, F. E. S., and van Breukelen, G. J. P. (2019). Relative efficiencies of two-stage sampling schemes for mean estimation in multilevel populations when cluster size is informative. *Statistics in Medicine*, 38:1817–1834.
- Innocenti, F., Candel, M. J. J. M., Tan, F. E. S., and van Breukelen, G. J. P. (2021). Optimal two-stage sampling for mean estimation in multilevel populations when cluster size is informative. *Statistical Methods in Medical Research*, 30:357–375.
- McNeely, C., Nonnemaker, J., and Blum, R. (2002). Promoting school connectedness: Evidence from the national longitudinal study of adolescent health. *Journal of School Health*, 72:138–146.
- MENJVA (2015). L'Éducation nationale publie les effectifs des établissements scolaires. Technical report, Ministère de l'Éducation nationale, de la Jeunesse et de la Vie associative.
- Nevalainen, J., Datta, S., and Oja, H. (2014). Inference on the marginal distribution of clustered data with informative cluster size. Statistical Papers. 55:71–92.
- Resnick, M. D., Bearman, P. S., Blum, R. W., and et al. (1997). Protecting adolescents from harm: Findings from the national longitudinal study on adolescent health. *Journal of the American Medical Association*, 278:823–832.
- Salt, K. (2017). Patients registered at a gp practice. october 2017; special topic-practice list size comparison. Technical report, Health and Social Care Information Centre.
- Seaman, S., Pavlou, M., and Copas, A. (2014). Review of methods for handling confounding by cluster and informative cluster size in clustered data. Statistics in Medicine, 33:5371–5387.
- Shackleton, N., Hale, D., Bonell, C., and Viner, R. M. (2016). Intraclass correlation values for adolescent health outcomes in secondary schools in 21 european countries. SSM Population Health, 2:217–225.
- Thompson, D., Iachan, R., Overpeck, M., and et al. (2006). School connectedness in the health behavior in school-aged children study: The role of student, school, and school neighborhood connectedness. *Journal of School Health*, 76:379–386.
- Van Breukelen, G. J. P. and Candel, M. J. J. M. (2018). Efficient design of cluster randomized trials with treatment-dependent costs and treatment-dependent unknown variances. Statistics in Medicine, 37:3027–3046.

Appendices

- Sampling variances
 - Equations
 - Simulation study
- Optimal design
 - Equations
 - ullet Robustness against misspecification of ψ
- 3 Relative efficiency for a fixed total sample size
 - Equations
 - Figures
- Relative efficiency for a fixed budget
 - Equations
 - Figures
- 5 Sample size calculation for cross-population comparisons
- 6 Examples of real cluster size distributions
- Model-based versus design-based inference

Sampling variances

SRS:

$$V\left(\hat{\mu}\right) = \frac{\sigma_y^2}{m} \left\{ 1 + \rho \psi \left[\tau_N \left(\zeta_N - \tau_N \right) + 1 \right] \right\}$$

TSS1:

$$V\left(\hat{\mu}\right) = \frac{\sigma_y^2}{nk} \left\{ 1 + \rho \left[(n-1) + n\psi \left(\tau_N \left(\zeta_N - \tau_N \right) + 1 \right) \right] \right\}$$

TSS2:

$$V\left(\hat{\mu}\right) \approx \frac{\sigma_{y}^{2}}{nk}\left\{1 + \rho\left[n\left(\left(\tau_{N}^{2} + 1\right) + \psi\left(\tau_{N}^{4} + \tau_{N}^{2}\left(\eta_{N} - 3\right) + 2\zeta_{N}\tau_{N}\left(1 - \tau_{N}^{2}\right) + 1\right)\right) - 1\right]\right\}$$

TSS3:

$$V\left(\hat{\mu}\right)\approx\frac{\sigma_{y}^{2}}{nk}\left\{\tau_{N}^{2}+1+\rho\left[\left(\tau_{N}^{2}+1\right)\left(n-1\right)+n\psi\left(\tau_{N}^{4}+\tau_{N}^{2}\left(\eta_{N}-3\right)+2\zeta_{N}\tau_{N}\left(1-\tau_{N}^{2}\right)+1\right)\right]\right\}$$

• $V(\hat{\mu})$ for TSS2 and TSS3 are derived using the **delta method** (see subsection 2) and are based on a large k approximation (i.e. k such that $\frac{\tau_N^2}{L} \approx 0$, $\frac{k-1}{L} \approx 1$, and $\frac{k-3}{L-1} \approx 1$)

Simulation study

 $V\left(\hat{\mu}\right)$ for TSS2 and TSS3 are based on the delta method, so their accuracy were evaluated through a simulation study:

- Sampling k=20 clusters guarantees nearly unbiased estimates of μ under TSS2 and TSS3
- Sampling k=20 clusters guarantees fair accuracy (i.e. relative bias $\leq 5\%$) of $V\left(\hat{\mu}\right)$ for TSS2 and TSS3 when $|corr\left(u,N\right)| \leq 0.75$, $\rho \leq 0.3$, and ζ_N and η_N are relatively close (say, ± 1.5) to those of the Normal distribution (i.e. $\zeta_N=0$ and $\eta_N=3$)
- For cluster size distributions with extreme skewness and kurtosis (e.g. $\zeta_N \geq 2$ and $\eta_N \geq 9$) at least k=100 clusters must be sampled to achieve a reasonable accuracy (i.e. bias $\leq 6\%$) of $V(\hat{\mu})$, for $|corr(u,N)| \leq 0.5$ and $\rho \leq 0.3$
- These lower-bounds for k (i.e. 20 and 100) guarantee the corresponding accuracy level across different values for n (at least for $2 \le n \le 100$) (Shackleton et al. [2016]: in the ESPAD study $k \in [36,531]$, median=123, and $\bar{n} \in [5.92,119.62]$, median=20.74)

Optimal designs (1/2)

SRS:

$$V\left(\hat{\mu}\right)^{*} = \frac{c_{srs}\sigma_{y}^{2}\left(1 + \rho\psi\left[\tau_{N}\left(\zeta_{N} - \tau_{N}\right) + 1\right]\right)}{C - c_{0}}$$

where c_{srs} is the average cost for sampling an individual directly from the population, and c_0 represents the extra-cost due to constructing the sampling frame for a SRS compared with the sampling frame for a TSS.

• TSS1:
$$n^* = \sqrt{c_r \left(\frac{1-\rho}{\rho}\right) \left(\frac{1}{1+\psi\left[\tau_N(\zeta_N-\tau_N)+1\right]}\right)}$$

$$V\left(\hat{\mu}\right)^{*} = \frac{c_{1}\sigma_{y}^{2}\left(\sqrt{c_{r}\rho\left(1+\psi\left[\tau_{N}\left(\zeta_{N}-\tau_{N}\right)+1\right]\right)}+\sqrt{1-\rho}\right)^{2}}{C}$$

Maastricht University

Optimal designs (2/2)

$$\bullet \ \, \mathsf{TSS2:} \ \, n^* = p^* \theta_N = \sqrt{c_r \left(\frac{1-\rho}{\rho}\right) \frac{1}{(\tau_N^2+1) + \psi \left[\tau_N^4 + \tau_N^2 (\eta_N - 3) + 2\zeta_N \tau_N (1-\tau_N^2) + 1\right]}}$$

$$V(\hat{\mu})^* = \frac{c_1 \sigma_y^2 \left(\sqrt{c_r \rho \left[\tau_N^2 + 1 + \psi \left(\tau_N^4 + \tau_N^2 (\eta_N - 3) + 2\zeta_N \tau_N \left(1 - \tau_N^2 \right) + 1 \right) \right]} + \sqrt{1 - \rho} \right)^2}{C}$$

• TSS3:
$$n^* = \sqrt{c_r \left(\frac{1-\rho}{\rho}\right) \frac{(\tau_N^2+1)}{(\tau_N^2+1) + \psi \left[\tau_N^4 + \tau_N^2 (\eta_N - 3) + 2\zeta_N \tau_N (1-\tau_N^2) + 1\right]}}$$

$$V\left(\hat{\mu}\right)^{*} = \frac{c_{1}\sigma_{y}^{2}\left(\sqrt{c_{r}\rho\left[\tau_{N}^{2}+1+\psi\left(\tau_{N}^{4}+\tau_{N}^{2}\left(\eta_{N}-3\right)+2\zeta_{N}\tau_{N}\left(1-\tau_{N}^{2}\right)+1\right)\right]}+\sqrt{(1-\rho)\left(\tau_{N}^{2}+1\right)}\right)^{2}}{C}$$

• optimal number of clusters for any TSS: $k^* = \frac{C}{c_1(c_r + n^*)}$

Maastricht University

Robustness of the optimal design against misspecification of $\boldsymbol{\psi}$

Assuming the general practice list size distribution in England, $\rho=0.05$, $c_r=10$, and $C/c_1=1000$

	TSS1		TSS2		TSS3	
	$\psi = 0$	$\psi = 1/3$	$\psi = 0$	$\psi = 1/3$	$\psi = 0$	$\psi = 1/3$
n*	13.78	10.74	11.65	7.01	13.78	8.30
k^*	42.04	48.22	46.2	58.79	42.04	54.65
$Var(\hat{\mu})/\sigma_{\nu}^2$ if $\psi = 1/3$	0.00360	0.00354	0.00595	0.00559	0.00690	0.00647
$\frac{Var(\hat{\mu} \psi=1/3)}{Var(\hat{\mu} \psi=0)}$	0.983		0.939		0.938	
	$\psi = 0$	$\psi = 1$	$\psi = 0$	$\psi = 1$	$\psi = 0$	$\psi = 1$
n*	13.78	8.04	11.65	4.65	13.78	5.50
k^*	42.04	55.44	46.2	68.27	42.04	64.52
$Var(\hat{\mu})/\sigma_{\nu}^{2}$ if $\psi=1$	0.00514	0.00478	0.01129	0.00944	0.01276	0.01057
$\frac{Var(\hat{\mu} \psi=1)}{Var(\hat{\mu} \psi=0)}$	0.930		0.836		0.828	

Relative efficiency for a fixed total sample size (1/4)

- $RE(TSS1 \ vs \ SRS) = \frac{\left(1 corr(u_j, N_j)^2\right) + corr(u_j, N_j)^2 \rho \left[\tau_N(\zeta_N \tau_N) + 1\right]}{\left(1 corr(u_j, N_j)^2\right) \left[1 + (n-1)\rho\right] + corr(u_j, N_j)^2 n \rho \left[\tau_N(\zeta_N \tau_N) + 1\right]}$
- \bullet RE (TSS2 vs SRS) =

$$\frac{\left(1 - corr(u_{j}, N_{j})^{2}\right) + corr(u_{j}, N_{j})^{2} \rho \left[\tau_{N}(\zeta_{N} - \tau_{N}) + 1\right]}{\left(1 - corr(u_{j}, N_{j})^{2}\right) \left[1 + \left(\bar{n}\left(\frac{k(\tau_{N}^{2} + 1)}{\tau_{N}^{2} + k}\right) - 1\right)\rho\right] + corr(u_{j}, N_{j})^{2}\bar{n}\rho\left[\left(\frac{k - 1}{k}\right)^{2}\tau_{N}^{2}\left(\eta_{N} - \frac{k - 3}{k - 1} + \tau_{N}(\tau_{N} - 2\zeta_{N})\right) + 2\left(\frac{k - 1}{k}\right)\tau_{N}(\zeta_{N} - \tau_{N}) + 1\right]}$$

• $RE(TSS3 \ vs \ SRS) =$

$$\frac{\left(1 - corr(u_{j}, N_{j})^{2}\right) + corr(u_{j}, N_{j})^{2} \rho \left[\tau_{N}(\zeta_{N} - \tau_{N}) + 1\right]}{\left(1 - corr(u_{j}, N_{j})^{2}\right) \left[\left(\frac{k(\tau_{N}^{2} + 1)}{\tau_{N}^{2} + k}\right) (1 + (n - 1)\rho)\right] + corr(u_{j}, N_{j})^{2} n \rho \left[\left(\frac{k - 1}{k}\right)^{2} \tau_{N}^{2} \left(\eta_{N} - \frac{k - 3}{k - 1} + \tau_{N}(\tau_{N} - 2\zeta_{N})\right) + 2\left(\frac{k - 1}{k}\right) \tau_{N}(\zeta_{N} - \tau_{N}) + 1\right]}$$

Relative efficiency for a fixed total sample size (2/4)

• $RE(TSS2 \ vs \ TSS1) =$

$$\frac{\left(1-corr(u_{j},N_{j})^{2}\right)\!\left[1+(n-1)\rho\right]+corr(u_{j},N_{j})^{2}n\rho\left[\left(\tau_{N}(\zeta_{N}-\tau_{N})+1\right)\right]}{\left(1-corr(u_{j},N_{j})^{2}\right)\!\left[1+\left(\bar{n}\!\left(\frac{k(\tau_{N}^{2}+1)}{\tau_{N}^{2}+k}\right)-1\right)\rho\right]+corr(u_{j},N_{j})^{2}\bar{n}\rho\left[\left(\frac{k-1}{k}\right)^{2}\tau_{N}^{2}\left(\eta_{N}-\frac{k-3}{k-1}+\tau_{N}(\tau_{N}-2\zeta_{N})\right)+2\left(\frac{k-1}{k}\right)\tau_{N}(\zeta_{N}-\tau_{N})+1\right]}$$

• $RE(TSS3 \ vs \ TSS1) =$

$$\frac{\left(1-corr(u_{j},N_{j})^{2}\right)\left[1+(n-1)\rho\right]+corr(u_{j},N_{j})^{2}n\rho\left[\tau_{N}(\zeta_{N}-\tau_{N})+1\right]}{\left(1-corr(u_{j},N_{j})^{2}\right)\left[\left(\frac{k(\tau_{N}^{2}+1)}{\tau_{N}^{2}+k}\right)\left(1+(n-1)\rho\right]+corr(u_{j},N_{j})^{2}n\rho\left[\left(\frac{k-1}{k}\right)^{2}\tau_{N}^{2}\left(\eta_{N}-\frac{k-3}{k-1}+\tau_{N}(\tau_{N}-2\zeta_{N})\right)+2\left(\frac{k-1}{k}\right)\tau_{N}(\zeta_{N}-\tau_{N})+1\right]}$$

• $RE(TSS3 \ vs \ TSS2) =$

$$\frac{\left(1 - corr(u_j, N_j)^2\right) \left[1 + \left(\bar{n}\left(\frac{k(\tau_N^2 + 1)}{\tau_N^2 + k}\right) - 1\right) \rho\right] + corr(u_j, N_j)^2 \bar{n} \rho\left[\left(\frac{k - 1}{k}\right)^2 \tau_N^2 \left(\eta_N - \frac{k - 3}{k - 1} + \tau_N(\tau_N - 2\zeta_N)\right) + 2\left(\frac{k - 1}{k}\right) \tau_N(\zeta_N - \tau_N) + 1\right]}{\left(1 - corr(u_j, N_j)^2\right) \left[\left(\frac{k(\tau_N^2 + 1)}{\tau_N^2 + k}\right) (1 + (n - 1)\rho)\right] + corr(u_j, N_j)^2 n \rho\left[\left(\frac{k - 1}{k}\right)^2 \tau_N^2 \left(\eta_N - \frac{k - 3}{k - 1} + \tau_N(\tau_N - 2\zeta_N)\right) + 2\left(\frac{k - 1}{k}\right) \tau_N(\zeta_N - \tau_N) + 1\right]}$$

• TSS1 is more efficient than TSS2 and TSS3 if one of the following conditions is met: the cluster size distribution is positively skewed with $\tau_N \in [0,\zeta_N]$, or is symmetric with $\tau_N \in [0,1]$ and

$$k \in \left[1, \ \frac{(2-\tau_N^2)+\sqrt{2-\tau_N^2}}{(1-\tau_N^2)}\right]$$
, or is Normal.

Maastricht University

Relative efficiency for a fixed total sample size (3/4)

Patient List Size N.

0 5000 10000 15000

Relative efficiency for a fixed total sample size (4/4)

Relative efficiency for a fixed budget (1/6)

TSS1 vs SRS:

$$\frac{1+\rho\psi[\tau_N(\zeta_N-\tau_N)+1]}{\left(\sqrt{c_r\rho(1+\psi[\tau_N(\zeta_N-\tau_N)+1])}+\sqrt{1-\rho}\right)^2}\times \left(\frac{c_{srs}}{c_1}\right)\times \left(\frac{C}{C-c_0}\right)$$

which is ≤ 1 if $\zeta_N \geq \tau_N - \frac{1}{\tau_N w} - \frac{1}{\tau_N w}$ and $\left(\frac{c_{srs}}{c_s}\right) = \left(\frac{C}{C - c_s}\right) = 1$

$$\frac{\frac{1+\rho\psi[\tau_N(\zeta_N-\tau_N)+1]}{\left(\sqrt{c_r\rho[\tau_N^2+1+\psi(\tau_N^4+\tau_N^2(\eta_N-3)+2\zeta_N\tau_N(1-\tau_N^2)+1)]}+\sqrt{1-\rho}\right)^2}\times\left(\frac{c_{srs}}{c_1}\right)\times\left(\frac{C}{C-c_0}\right)}{\left(\sqrt{c_r\rho[\tau_N^2+1+\psi(\tau_N^4+\tau_N^2(\eta_N-3)+2\zeta_N\tau_N(1-\tau_N^2)+1)]}+\sqrt{1-\rho}\right)^2}\times\left(\frac{c_{srs}}{c_1}\right)\times\left(\frac{C}{C-c_0}\right)}$$
 which is ≤ 1 if $\zeta_N\leq \tau_N-\frac{1}{\tau_N}$ or $\zeta_N\geq \tau_N+\frac{1}{\tau_Nc_r}-\frac{1}{\tau_N}$ or

$$N_j \sim N\left(\theta_N, \sigma_N^2\right)$$
, and $\left(\frac{c_{srs}}{c_1}\right) = \left(\frac{C}{C - c_0}\right) = 1$

TSS3 vs SRS:

$$\frac{\frac{1+\rho\psi[\tau_{N}(\zeta_{N}-\tau_{N})+1]}{\left(\sqrt{c_{r}\rho[\tau_{N}^{2}+1+\psi(\tau_{N}^{4}+\tau_{N}^{2}(\eta_{N}-3)+2\zeta_{N}\tau_{N}(1-\tau_{N}^{2})+1)]}+\sqrt{(1-\rho)(\tau_{N}^{2}+1)}\right)^{2}}{\left(\frac{c_{srs}}{c_{1}}\right)\times\left(\frac{c_{srs}}{c_{1}}\right)\times\left(\frac{c}{C-c_{0}}\right)}$$

which is ≤ 1 if $\zeta_N \leq \tau_N - \frac{1}{\tau_N}$ or $\zeta_N \geq \tau_N + \frac{1}{\tau_N c_r} - \frac{1}{\tau_N}$ or $N_j \sim N\left(\theta_N, \sigma_N^2\right)$, and $\left(\frac{c_{srs}}{c_1}\right) = \left(\frac{C}{C - c_0}\right) = 1$

Relative efficiency for a fixed budget (2/6)

TSS2 vs TSS1:

$$\frac{\left(\sqrt{c_{r}\rho[1+\psi(\tau_{N}(\zeta_{N}-\tau_{N})+1)]}+\sqrt{1-\rho}\right)^{2}}{\left(\sqrt{c_{r}\rho[\tau_{N}^{2}+1+\psi(\tau_{N}^{4}+\tau_{N}^{2}(\eta_{N}-3)+2\zeta_{N}\tau_{N}(1-\tau_{N}^{2})+1)]}+\sqrt{1-\rho}\right)^{2}}$$

which is ≤ 1 if $\tau_N - \frac{1}{\tau_N} - \frac{1}{\tau_N \psi} \leq \zeta_N \leq \tau_N - \frac{1}{\tau_N}$ or $\zeta_N \geq \tau_N$ or $N_i \sim N \left(\theta_N, \sigma_N^2\right)$

TSS3 vs TSS1:

$$\frac{\left(\sqrt{c_{r}\rho[1+\psi(\tau_{N}(\zeta_{N}-\tau_{N})+1)]}+\sqrt{1-\rho}\right)^{2}}{\left(\sqrt{c_{r}\rho[\tau_{N}^{2}+1+\psi(\tau_{N}^{4}+\tau_{N}^{2}(\eta_{N}-3)+2\zeta_{N}\tau_{N}(1-\tau_{N}^{2})+1)]}+\sqrt{(1-\rho)(\tau_{N}^{2}+1)}\right)^{2}}$$

which is ≤ 1 if $\tau_N - \frac{1}{\tau_N} - \frac{1}{\tau_N \psi} \leq \zeta_N \leq \tau_N - \frac{1}{\tau_N}$ or $\zeta_N \geq \tau_N$ or $N_i \sim N\left(\theta_N, \sigma_N^2\right)$

• TŠS3 vs TSS2:

$$\frac{\left(\sqrt{c_r \rho \left[\tau_N^2 + 1 + \psi(\tau_N^4 + \tau_N^2(\eta_N - 3) + 2\zeta_N \tau_N(1 - \tau_N^2) + 1)\right]} + \sqrt{1 - \rho}\right)^2}{\left(\sqrt{c_r \rho \left[\tau_N^2 + 1 + \psi(\tau_N^4 + \tau_N^2(\eta_N - 3) + 2\zeta_N \tau_N(1 - \tau_N^2) + 1)\right]} + \sqrt{(1 - \rho)(\tau_N^2 + 1)}\right)^2} \le 1$$

Relative efficiency for a fixed budget (3/6)

Relative efficiency for a fixed budget (4/6)

Extra costs for SRS: $c_{SRS} = 4c_1$ and $c_0 = 20\%$

Relative efficiency for a fixed budget (5/6)

Relative efficiency for a fixed budget (6/6)

Sample size calculation for cross-population comparisons (1/2)

- $\begin{aligned} & \textbf{9} \text{ Specify } c_{1,F}, \ c_{1,I}, \ c_{2,F}, \ c_{2,I}, \ \rho \ (max), \ \psi \ (max), \ \min \left\{ \mu_F \mu_I \right\}, \\ & V_{max} \geq \sigma_{y,F}^2 + \sigma_{y,I}^2, \ \frac{\sigma_{y,F}}{\sigma_{y,I}} \in \left[\frac{1}{q}, q\right], \ \text{and} \ d = \sqrt{\frac{\mu_F \mu_I}{V_{max}/2}} \end{aligned}$
- ② Compute $V\left(\hat{\mu}_F \hat{\mu}_I\right) = \left(\frac{\mu_F \mu_I}{z_{1-\frac{\alpha}{2}} + z_{1-\gamma}}\right)^2$
- **3** Compute the maximin n_F^{MD} and n_I^{MD} (see subsection 1)
- **1** Compute the maximin budget split $\frac{C_F}{C_I}$ using h and $\left[\frac{1}{q},q\right]$ (see next slide)
- **©** Compute the total budget C by equating the maximum variance for the maximin design with $V\left(\hat{\mu}_F-\hat{\mu}_I\right)$ as computed in step 2
- $\textbf{ 0} \ \ \text{Using} \ C \ \ \text{from step 6 and} \ \frac{C_F}{C_I} \ \ \text{from step 5, compute} \ C_F \ \ \text{and} \ \ C_I$
- ${\color{red} \bullet}$ Compute the maximin k_F^{MD} and k_I^{MD} (see subsection 1)

Sample size calculation for cross-population comparisons (2/2)

$$h = \sqrt{\frac{g_F\left(\rho\left(max\right), \ \psi\left(max\right)\right)}{g_I\left(\rho\left(max\right), \ \psi\left(max\right)\right)}}$$

$$=\sqrt{\frac{c_{1,F}\left(\sqrt{c_{r,F}\rho_{F}\left(1+\psi_{F}\left[\tau_{N,F}\left(\zeta_{N,F}-\tau_{N,F}\right)+1\right]\right)+\sqrt{1-\rho_{F}}\right)^{2}}{c_{1,I}\left(\sqrt{c_{r,I}\rho_{I}\left(1+\psi_{I}\left[\tau_{N,I}\left(\zeta_{N,I}-\tau_{N,I}\right)+1\right]\right)}+\sqrt{1-\rho_{I}}\right)^{2}}}$$

Relation of h to q	Maximin budget split	Maximum variance for MD			
$\frac{1}{q} \le h \le q$	h^2	$\frac{g_I(\rho(max), \psi(max))V_{max}}{C} \times (1 + h^2)$			
h > q	hq	$\frac{g_I(\rho(max), \psi(max))V_{max}}{C} \times \frac{(hq+1)^2}{(q^2+1)}$			
$h < \frac{1}{2}$	<u>h</u>	$\frac{g_I(\rho(max), \psi(max))V_{max}}{\sqrt{(h+q)^2}} \times \frac{(h+q)^2}{\sqrt{(h+q)^2}}$			
q	q	$C (q^2+1)$			

Real cluster size distributions

Cluster Size distribution	θ_N	τ_N	ζ_N	η_N
GP List size distribution in England (Salt [2017])	7,986	0.633	2.12	14.549
High School size distribution in Italy (DGCASIS [2018])	403	0.912	1.256	4.315
$High\ School\ size\ distribution\ in\ France\ (MENJVA\ [2015])$	764	0.621	0.886	3.582
Lower Secondary School size distribution in Italy (DGCASIS [2018])	225	0.789	1.351	5.303
Lower Secondary School size distribution in France (MENJVA [2015])	493	0.387	0.63	5.47
Primary School size distribution in Italy (DGCASIS [2018])		0.761	1.451	5.740
Primary School size distribution in France (MENJVA [2015])	135	0.71	1.045	4.084

Model-based versus design-based inference (1/2)

Model-based approach:

- \bullet Y_{ij} is random
- Inference based on the stochastic model for Y_{ij}
- Advantage: It simplifies sample size planning and sampling schemes comparisons

Design-based approach:

- Y_{ij} is fixed but unknown. The inclusion indicator I_{ij} is random (i.e. $I_{ij} = 1$ with π_{ij} , and $I_{ij} = 0$ otherwise)
- Inference based on the distribution of I_{ij} over repeated sampling with a given sampling design
- Advantage: Robustness In the considered setting, the two approaches yield almost the same results (if the model assumptions are met) (Innocenti et al. [2019]):
 - same estimators of the population mean
 - approximately the same relative efficiencies (i.e. for k sufficiently large)

Model-based versus design-based inference (2/2)

