A*算法流程:

Step1: 算法初始化,构建栅格地图 GridNodeMap;

Step2: clear openlist,将起点加入 openlist;

Step3: 弹出最小的 f 值对应的点,记为 CurrentNode,同时将其放入 closelist;

Step4: 判断该点是否为目标点,如果是目标点,进行路径回溯,如果不是,对该点的 26 邻域节点进行获取

Step5: 对每个节点进行一些判断,如果该节点被占领或者已经在 closelist 中,返回 Step5;如果该节点是新节点,计算 f 值,放入 openlist,返回 Step5;如果该节点已经在 openlist 中,更新 f 值,并更新父节点,返回 Step5;直至该节点所有领域节点完成判断;

Step6:路径回溯。

运行结果

运行结果对比

	Indicators	Map1	Map2	Map3	Map4	Map5
Manhattan	Time	0.919951	0.103827	0.223348	0.116494	0.057070
	Node	833	80	119	68	26
Euclidean	Time	0.354259	2.736898	0.344121	0.6395779	0.214176
	Node	359	3296	390	501	192
Diagonal	Time	0.200031	0.199617	0.089643	0.113309	0.082365
	Node	114	91	57	76	30
Diagonal &	Time	0.058131	0.097786	0.062245	0.065430	0.058936
Tie Break	Node	23	23	25	36	24

(注:针对 Tie Break,我采用的是 true 和 false 来控制是否运行的,觉得不太合理,但结果又比较好,也没想清楚其它方法怎么实施,希望助教可以帮忙解惑)

遇到的问题和解决方法

- 1.一开始对代码的框架比较模糊,反复读代码基本明白了每个变量的含义以及每个函数的意义;
- 2. 对 multimap 这一容器不太了解,在网上阅读了一些博客和作业里提供的文档后有了进一步的学习
- 3.在进行 AstarGetSucc 函数编写时,把一个循环判断条件写成了小于-1,但是编译不报错,也可以运行,但重新修改起点后会报错,感觉这个结果非常的奇怪,个人认为是我选取的起点刚好在一个障碍物比较稀疏的环境中,碰巧让代码成果运行了。

下一步提升

完成 JPS 算法的补充,与 A*算法进行比较。