Parallel Computing Practice Exam

Name: **Date:**
Section 1: Multiple Choice (1 point each)
1. Which of the following is NOT a primary challenge in parallel computing?a) Load balancingb) Data dependency
c) Increased processing speed
d) Communication overhead
Answer:
 2. What is Amdahl's Law used to calculate? a) The maximum speedup achievable by parallelizing a program b) The optimal number of processors for a given problem
c) The communication overhead in a parallel systemd) The memory bandwidth of a parallel system
Answer:
Section 2: Short Answer (3 points each)
3. Briefly explain the difference between shared memory and distributed memory parallel architectures. Include at least one advantage and one disadvantage of each.
Answer:
4. Describe two common techniques used for handling race conditions in parallel programs.
Answer:
Section 3: Problem Solving (5 points)
5. Consider the following task: Sorting a list of 1,000,000 integers. Describe how you would approach this problem using a parallel algorithm. Specifically:
* What parallel programming paradigm would you choose (e.g., shared memory, message passing)? Justify your choice.
 * What algorithm would you use for sorting? Explain why it is suitable for parallel processing. * Briefly outline the steps involved in parallelizing the algorithm. Consider load balancing and data distribution.
Answer:
Answer Key:
c) Increased processing speed
2. a) The maximum speedup achievable by parallelizing a program3. See expected answer below

Expected Answers:

4. See expected answer below5. See expected answer below

- **3. Shared Memory vs. Distributed Memory:**
- * **Shared Memory:** Processors share a common address space. Advantage: Easier programming model, simpler data sharing. Disadvantage: Scalability limitations, potential for memory contention.
- * **Distributed Memory:** Processors have their own private memory. Advantage: Better scalability, less memory contention. Disadvantage: More complex programming (message passing), more overhead for data communication.
- **4. Handling Race Conditions:**

Two common techniques are:

- * **Mutual Exclusion (Mutexes):** A lock that allows only one thread to access a shared resource at a time.
- * **Semaphores:** A more generalized synchronization primitive that allows for controlling access to a resource based on a counter.
- **5. Parallelizing Sorting:**
- * **Paradigm:** Shared memory would be suitable for this problem, as it simplifies data sharing between threads. However, for extremely large datasets, a distributed memory approach might be necessary. The choice depends on the available resources.
- * **Algorithm:** Merge Sort is a good choice for parallel sorting. It recursively divides the list into smaller sublists that can be sorted independently. This inherent divide-and-conquer nature maps well to parallel processing. Other algorithms like Quicksort can also be parallelized, but their performance can be less predictable due to potential load imbalances.
- * **Steps:**
- 1. Divide the list of integers into smaller sublists, one for each processor.
- 2. Each processor independently sorts its sublist using a sequential sorting algorithm (e.g., merge sort).
- 3. Merge the sorted sublists together using a parallel merge algorithm. This step may require communication between processors to exchange data.
- 4. Load balancing can be achieved by dynamically assigning sublists of roughly equal size to each processor.

This answer key provides a framework; variations in approach are possible and should be evaluated on their merits. The quality of the student's explanation and justification is key to awarding full points.