Discriminant Analysis

1 / 21

In the previous segment, we started investing Fisher's approach to discrimination.

The starting point was an $n \times p$ data matrix $\mathbf{X} = (X_{ij})$, where for each $i \in \{1, ..., n\}$ and $j \in \{1, ..., p\}$,

 X_{ij} = value of the *j*th variable for the *i*th individual.

For each group $k \in \{1, \dots, q\}$, we also have at our disposal

- \checkmark I_k , the set of individuals in group k,
- \checkmark $n_k = |I_k|$, the size (or cardinality) of I_k ,

so that
$$n_1 + \cdots + n_q = n$$
.

Fisher's Approach (1–2)

2 / 21

The purpose is to find a function $f: \mathbb{R}^p \to \mathbb{R}$ which can be used to compute a score

$$f(X_1,\ldots,X_p)\in\mathbb{R},$$

for each observation (X_1, \ldots, X_p) . This score can then be used to determine the groups via a partition of \mathbb{R} .

Fisher's discriminant function is defined, for each $\mathbf{X} \in \mathbb{R}^p$, by

$$f(\mathbf{X}) = \mathbf{a}^{\top}(\mathbf{X} - \bar{\mathbf{X}}),$$

where $\bar{\mathbf{X}} = (\bar{X}_1, \dots, \bar{X}_q)$ is the vector of variable means and \mathbf{a} is a normed eigenvector corresponding to the largest eigenvalue of $\mathbf{S}^{-1}\mathbf{B}$.

Fisher's Approach (2–2)

3 / 21

Here, $\mathbf{S} = (s_{ii'})$ is a $p \times p$ matrix with entries

$$s_{jj'} = \sum_{i=1}^{n} (X_{ij} - \bar{X}_j) (X_{ij'} - \bar{X}_{j'}),$$

which gives the total sums of squares, and $\mathbf{B} = (b_{jj'})$ has entries

$$b_{jj'} = \sum_{k=1}^{q} n_k (\bar{X}_{kj} - \bar{X}_j) (\bar{X}_{kj'} - \bar{X}_{j'}),$$

i.e., the sums of squares between groups. The scores $Y_i = \mathbf{a}^\top (\mathbf{X}_i - \bar{\mathbf{X}})$ then maximize the ratio "between variance / within variance."

Small Example (1–3)

4 / 21

Small Example (2–3)

5 / 21

Poor linear combination of X_1 and X_2

Small Example (3–3)

Optimal linear combination of X_1 and X_2

C. Genest Winter 2021 6 / 21

Discriminating Power (1–2)

The matrix $S^{-1/2}BS^{-1/2}$ is symmetric and positive definite.

Therefore, its eigenvalues are all real and positive.

Moreover, one has $\mathbf{S}^{-1}\mathbf{B}\mathbf{a} = \lambda \mathbf{a}$ by definition of \mathbf{a} .

Consequently,

$$\mathbf{B}\mathbf{a} = \lambda \mathbf{S}\mathbf{a} \quad \Rightarrow \quad \mathbf{a}^{\mathsf{T}}\mathbf{B}\mathbf{a} = \lambda \mathbf{a}^{\mathsf{T}}\mathbf{S}\mathbf{a} \quad \Rightarrow \quad \lambda = \frac{\mathbf{a}^{\mathsf{T}}\mathbf{B}\mathbf{a}}{\mathbf{a}^{\mathsf{T}}\mathbf{S}\mathbf{a}},$$

and hence $\lambda \in [0,1]$.

Discriminating Power (2–2)

8 / 21

The eigenvalue λ measures the discriminating power of f.

Limiting case 1:

$$\lambda = 1 \quad \Rightarrow \quad \mathbf{a}^{\mathsf{T}} \mathbf{B} \mathbf{a} = \mathbf{a}^{\mathsf{T}} \mathbf{S} \mathbf{a},$$

i.e., 100% of the variability is between the groups, 0% within the groups.

Limiting case 2:

$$\lambda = 0 \quad \Rightarrow \quad \mathbf{a}^{\mathsf{T}} \mathbf{B} \mathbf{a} = 0.$$

i.e., 100% of the variability is within the groups, 0% between the groups.

Discriminating Function and Classification

9 / 21

Once the discriminating function f has been defined, one can compute the average score of each group, given by

$$m_k = \mathbf{a}^{\top} \left(\bar{X}_{k1}, \dots, \bar{X}_{kp} \right)^{\top},$$

where \bar{X}_{kj} denotes the mean of the *j*th variable taken over the individuals belonging to the *k*th group.

To classify a new observation $\mathbf{X}_0 \in \mathbb{R}^p$, one then proceeds as follows:

- Compute the score $f(\mathbf{X}_0) = \mathbf{a}^{\top} \mathbf{X}_0$.
- ② Assign X_0 to the group k_0 such that

$$|\mathbf{a}^{\top} \mathbf{X}_{0} - m_{k_{0}}| = \min_{k \in \{1, \dots, q\}} |\mathbf{a}^{\top} \mathbf{X}_{0} - m_{k}|.$$

Classification Errors

In applying the rule to the sample X_1, \dots, X_n from which it was constructed, one can estimate the misclassification error rate with the confusion matrix:

	Classification			
Real Group	Group 1	Group 2		Group q
Group 1 Group 2	<i>p</i> ₁₁ <i>p</i> ₂₁	p ₁₂ p ₂₂		р _{1 q} р _{2 q}
:	:	:		: :
Group <i>q</i>	p_{q1}	p_{q2}		p_{qq}

C. Genest Winter 2021 10 / 21

Case of Two Groups

11 / 21

When there are only two groups, the eigenvector a defining the discriminant function is given by

$$\mathbf{a} = \mathbf{S}^{-1}\mathbf{C} = \sqrt{n_1 n_2/n}\,\mathbf{S}^{-1}(\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2),$$

where $\tilde{\mathbf{x}}_1$ and $\tilde{\mathbf{x}}_2$ denoting the $p \times 1$ means of the two groups.

To prove this claim, first use the fact that $\mathbf{B} = \mathbf{CC}^{\top}$ (as shown at the end of this set) and check that $\mathbf{S}^{-1}\mathbf{Ba} = \xi \mathbf{a}$ for some $\xi > 0$. Indeed, upon substitution, one finds

$$\begin{split} \mathbf{S}^{-1}\mathbf{B}\mathbf{a} &= \mathbf{S}^{-1}\mathbf{C}\mathbf{C}^{\top}\mathbf{a} = (\mathbf{S}^{-1}\mathbf{C}\mathbf{C}^{\top})\mathbf{S}^{-1}\mathbf{C} \\ &= \mathbf{S}^{-1}\mathbf{C}(\mathbf{C}^{\top}\mathbf{S}^{-1}\mathbf{C}) = \xi\mathbf{S}^{-1}\mathbf{C} = \xi\mathbf{a}, \end{split}$$

with $\xi = \mathbf{C}^{\mathsf{T}} \mathbf{S}^{-1} \mathbf{C}$. Again, see the end of this set of slides for more detail.

Decision Rule

12 / 21

Suppose that

$$m_1 = \mathbf{a}^{\top} \tilde{\mathbf{x}}_1 > \mathbf{a}^{\top} \tilde{\mathbf{x}}_2 = m_2.$$

An observation is then classified in the first group if

$$\mathbf{a}^{\top}\mathbf{x} > \bar{m} = (m_1 + m_2)/2 = \mathbf{a}^{\top}(\tilde{\mathbf{x}}_1 + \tilde{\mathbf{x}}_2)/2.$$

This happens if and only if

$$(\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2)^{\top} \mathbf{S}^{-1} \mathbf{x} > (\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2)^{\top} \mathbf{S}^{-1} (\tilde{\mathbf{x}}_1 + \tilde{\mathbf{x}}_2)/2.$$

Note: As the factor $\sqrt{n_1n_2/n}$ appears on both sides of the inequality, it need not be mentioned.

Example (1–5)

In-depth psychiatric exams were carried out on 49 elderly men. Based on the results, each one of them was classified as

- ✓ in good mental health (Group I) or
- ✓ senile (Group II).

The same subjects took four simple tests that are cheap and quick:

	Group I	Group II
Test	$(n_1 = 37)$	$(n_2 = 12)$
Arithmetic	11.49	8.50
Drawings	7.97	4.75
Information	12.57	8.75
Similitudes	9.57	5.33

C. Genest Winter 2021 13 / 21

Example (2-5)

Estimation of Σ

In this study, it was found that

$$\frac{\mathbf{S}}{n} = \begin{pmatrix} 11.2553 & 9.4042 & 7.1489 & 3.3830 \\ & 13.5318 & 7.3830 & 2.5532 \\ & & 11.5744 & 2.6170 \\ & & 5.8085 \end{pmatrix}$$

Estimation of Σ^{-1}

Using the R command solve(), one gets

$$n\mathbf{S}^{-1} = \begin{pmatrix} .25907 & -0.13577 & -0.05878 & -0.064730\\ & 0.18645 & -0.03833 & 0.01438\\ & & 0.15098 & -0.01694\\ & & & 0.21117 \end{pmatrix}$$

C. Genest Winter 2021 14 / 21

Example (3–5)

A simple calculation yields

$$\mathbf{C}^* = \mathbf{\tilde{x}}_1 - \mathbf{\tilde{x}}_2 = (3.82, 4.24, 2.99, 3.22)^{\top}.$$

Accordingly,

$$\mathbf{C} = \sqrt{\frac{37 \times 12}{49}} \; \mathbf{C}^*.$$

By definition, $\mathbf{a} = \mathbf{S}^{-1}\mathbf{C}$, but one can also use

$$\mathbf{a} = n \, \mathbf{S}^{-1} \mathbf{C}^*,$$

given that the scores are always used for comparisons only. For this reason, the discriminant rule is only defined up to a linear transformation.

C. Genest Winter 2021 15 / 21

Example (4-5)

16 / 21

Computation of m_1 and m_2

In view of the previous computations, one has

$$m_1 = \mathbf{a}^{\top} \tilde{\mathbf{x}}_1 = 5.97$$
 and $m_2 = \mathbf{a}^{\top} \tilde{\mathbf{x}}_2 = 3.54$.

Therefore, an individual can be declared senile on the basis of the four cheap tests whenever

$$\mathbf{a}^{\top}\mathbf{x}<\mathbf{a}^{\top}\left(\frac{m_1+m_2}{2}\right)=4.755.$$

Example (5–5)

Summary

	Clinical Diagnosis		Total
	"OK"	"Senile"	
Classified as "OK"	29	4	33
Classified "Senile"	8	8	16
Total	37	12	49

Error rates

Global Rate	$12/49 \approx 24.5\%$
Rate Among the "OK"	$8/37 \approx 21.6\%$
Rate Among the "Seniles"	$4/12\approx 33.3\%$

C. Genest Winter 2021 17 / 21

Additional Mathematical Details

We saw that the overall variability can be decomposed as follows:

$$s_{jj'} = \sum_{k=1}^{q} \sum_{i \in I_k} (X_{ij} - \bar{X}_{kj})(X_{ij'} - \bar{X}_{kj'}) + \sum_{k=1}^{q} n_k (\bar{X}_{kj} - \bar{X}_{j})(\bar{X}_{kj'} - \bar{X}_{j'})$$

$$\equiv w_{jj'} + b_{jj'}.$$

When there are only two groups, one has simply

$$b_{jj'} = n_1(\bar{X}_{1j} - \bar{X}_j)(\bar{X}_{1j'} - \bar{X}_{j'}) + n_2(\bar{X}_{2j} - \bar{X}_j)(\bar{X}_{2j'} - \bar{X}_{j'}).$$

Moreover, for each $j \in \{1, \dots, q\}$, one can compute \bar{X}_i as follows:

$$\bar{X}_j = n_1 \bar{X}_{1j} / n + n_2 \bar{X}_{2j} / n$$

C. Genest Winter 2021 18 / 21

Reduced Form of the Matrix B

19 / 21

One then gets

$$b_{jj'} = \frac{n_1 n_2}{n} (\bar{X}_{1j} - \bar{X}_{2j}) (\bar{X}_{1j'} - \bar{X}_{2j'}).$$

It follows that $\mathbf{B} = \mathbf{C}\mathbf{C}^{\top}$, where

$$\mathbf{C} = \sqrt{\frac{n_1 n_2}{n}} (\bar{X}_{11} - \bar{X}_{21}, \dots, \bar{X}_{1p} - \bar{X}_{2p})^{\top}$$

$$\equiv \sqrt{\frac{n_1 n_2}{n}} (\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2).$$

Rank of the Matrix **B**

Given that **C** is a $p \times 1$ vector, one has the following relationship:

$$rank(\mathbf{B}) = rank(\mathbf{S}^{-1}\mathbf{B}) = 1.$$

Indeed, the rank of a matrix remains unchanged if it is multiplied by an invertible matrix (which is thus of full rank). The constant ξ is given by

$$\begin{aligned} \xi &= \operatorname{tr}(\mathbf{S}^{-1}\mathbf{B}) = \operatorname{tr}(\mathbf{S}^{-1}\mathbf{C}\mathbf{C}^{\top}) \\ &= \operatorname{tr}(\mathbf{C}^{\top}\mathbf{S}^{-1}\mathbf{C}) = \mathbf{C}^{\top}\mathbf{S}^{-1}\mathbf{C} \\ &= \frac{n_1 n_2}{n} (\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2)^{\top}\mathbf{S}^{-1} (\tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_2). \end{aligned}$$

C. Genest Winter 2021 20 / 21

Insight

When there are only two classification groups, discriminant analysis is really just multiple regression, with a few tweaks.

The dependent variable is a dichotomous, categorical variable (i.e., a categorical variable that can take on only two values).

The dependent variable is expressed as a dummy variable (having values of 0 or 1).

Observations are assigned to groups, based on whether the predicted score is closer to 0 or to 1.

The regression equation is called the discriminant function.

C. Genest Winter 2021 21 / 21