שאלות להגשה

- $K_p
 eq \mathbb{F}_p$ מכח של עבחר תבו p נבחר המקומית τ . לכל ראשוני p נבחר שדות, בתוספת סימן פונצקיה חד-מקומית τ . לכל ראשוני p על קבוצת ממציין p, ונתבונן בו כמבנה עבור p כאשר p מפורש כ-p. נבחר על-מסנן לא ראשי p על קבוצת הראשוניים, ונסמן ב-p את על המכפלה של p ביחס ל-p. הוכיחו שאין פולינום p(x) מעל p(x) מעל p(x) היא הוכיחו שאין פולינום p(x) היא תת-שדה אינסופי. מה קורה אם p(x) לכל p(x) לכל p(x) הוכיחו שהקבוצה p(x) הוכיחו שהקבוצה p(x) היא תת-שדה אינסופי. מה קורה אם p(x) לכל p(x)
- מודל אחר של התורה של \mathcal{N} ונניח ש- \mathcal{N} מודל אחר עבור התימה במורה עם עם נניח ש- \mathcal{N} מודל אחר של התורה של .2 (לאו דווקא עם שוויון) \mathcal{M}
 - $(\mathcal{N}$ של הוכיחו על N הוכיחו שקילות איחס שקילות של $=^{\mathcal{N}}$ הוכיחו (א)
- (ג) נניח ש- $\mathcal N$ מבנה עבור Σ בו היחס היחס השקילות הגדיר הכי עדין (כמו בסעיפים הקודמים). הוכיחו שיש מבנה $\mathcal N$ עם אותה תורה כמו $\mathcal N$, כך ש $\tilde{\mathcal N}$ הוא השוויון (*רמז*: נסחו והוכיחו טענה חזקה יותר, עבור נוסחאות)
- 3. נסמן ב-B את קבוצת הסדרות הממשיות החסומות (סדרה $x=(x_i)$ של ממשיים היא חסומה אם קיים ממשי מכן ב-B את קבוצת הסדרות הממשיות על-מסנן על הטבעיים. עבור סדרה ממשית ב $x=(x_i)$ ומספר $x=(x_i)$ ומספר של- $x=(x_i)$ אם לכל $x=(x_i)$ אם לכל $x=(x_i)$ ומצאת ב- $x=(x_i)$ נמצאת ב- $x=(x_i)$ ומספר של-גדיר של-גדיר של-גדיר אם לכל וואר ב- $x=(x_i)$ ומספר של-גדיר של-גדיר של-גדיר של-גדיר אם לכל וואר ב- $x=(x_i)$ ומספר של-גדיר של-גדיר של-גדיר ממשיים ממשי
 - $\lim_{\mathcal{F}} x = L$ יחיד כך יחיד ב- $x = (x_i)$ לכל סדרה לכל
 - $\lim_{\mathcal{F}} x = x_i$ אז $\{i\}$ אם שמכיל הראשי המסגן הוא המסגן הוא $\mathcal{F} = \mathcal{F}_i$ אם
- מתקיים $\epsilon>0$ כל שלכל a כלומר, נקודה x אינו ראשי, אז $\lim_{\mathcal{F}}x$ אז היא נקודת הצטברות של x (כלומר, נקודה x=L אונו אינסוף איברים בסדרה). בפרט, אם לx יש גבול אינסוף איברים בסדרה אינסוף איברים בסדרה).
 - (כאשר ב-B מחברים ומכפילים איבר-איבר) \mathbb{R}^{-1} הוגים מ-B חוגים איבר-איבר היא העתקה $x\mapsto \lim_{\mathcal{F}} x$
- אז קיים s(x), אז קיים s(x), אז קיים, כך שלכל חוגים, היא העתקה של היא א העתקה של $s:B\to\mathbb{R}$ היא נניח של אז קיים s(x) היא העתקה של היא אז קיים על-מסנן (בהכרח לא ראשי) כך ש-s(x) לכל און ל-מסנן (בהכרח לא ראשי) בי