MODEL#	EFFECT #	MARKS
1. Augustus	ORIENTATION-BASED 1. Near-Silhouette Abstraction and Backlighting (pp. 3 - 5)	/3
2. Armadillo	ORIENTATION-BASED 2. Plastic and Metal Highlights (pp. 7 - 9)	/3
3. Venus	DEPTH-BASED (BONUS) 3. Toon Shading with Level of Abstraction (LOA) (pp. 11 - 13)	/3
4. Carburetor	ORIENTATION-BASED 1. Near-Silhouette Abstraction and Backlighting (p 15) 2. Plastic and Metal Highlights (p. 16)	/2
	DEPTH-BASED (BONUS) 3. Toon Shading with LOA (p. 17)	/1
5. Terrain	DEPTH-BASED (BONUS) 4. Aerial Perspective with LOA (pp 19 - 20)	/2

TOTAL	/8	BONUS	/6
-------	----	-------	----

MODEL # (PLY format)	EFFECT #	TEXTURE # (PPM format)		
1. Augustus	ORIENTATION-BASED 1. Near-Silhouette Abstraction and Backlighting $D = (N.V)^r$	1. fig-10b	2. fig-10c	3. fig-10d
Marks (0 = it does not work; 1 = it works)		/1	/1	/1

• N and V are the unit normal and view vector, respectively

User-defined Parameter:

• $r \ge 0$ controls the magnitude of the effect.

 $D = (N.V)^r$

MODEL #1: Augustus / EFFECT #1: Near-Silhouette Abstraction and Backlighting / TEXTURE #1: fig-10b Three result images, same V, with different values for parameter 'r'

r = 0.0422213

r = 1.61866

r = 553.294

 $D = (N.V)^r$

r = 1.24313

r = 15.9608

 $D = (N.V)^r$

MODEL #1: Augustus / EFFECT #1: Near-Silhouette Abstraction and Backlighting / TEXTURE #3: fig-10d Three result images, same V, with different values for parameter 'r'

r = 0.0422213

r = 2.33087

r = 7.97381

MODEL # (PLY format)	EFFECT #	TEXTURE # (PPM format)		
2. Armadillo	ORIENTATION-BASED 2. Plastic and Metal Highlights $D = (V.R)^S$	4. fig-11b	5. fig-11c	6. fig-11d
Marks (0 = it does not work; 1 = it works)		/1	/1	/1

• **V** is the view vector and **R** is the light reflection vector at the current surface location

User-defined Parameter:

• $s \ge 1$ is the "shininess" coefficient set by the user to control the magnitude of the effect.

 $D = (V.R)^{s}$

MODEL #2: Armadillo / EFFECT #2: Plastic and Metal Highlights / TEXTURE #4: fig-11b Three result images, same V, one light source, with different values for parameter 's'

s = 1

s = 6

 $D = (V.R)^s$

MODEL #2: Armadillo / EFFECT #2: Plastic and Metal Highlights / TEXTURE #5: fig-11c Three result images, same V, one light source, with different values for parameter 's'

s = 1

s = 4

 $D = (V.R)^s$

MODEL #2: Armadillo / EFFECT #2: Plastic and Metal Highlights / TEXTURE #6: fig-11d Three result images, same V, one light source, with different values for parameter 's'

s = 1

s = 4

MODEL # (PLY format)	EFFECT #		TEXTURE # (PPM format)	
3. Venus	DEPTH-BASED (BONUS) 3. Toon Shading with Level of Abstraction (LOA) $D = 1 - \log_r \left(\frac{Z}{Z_{min}}\right)$	7. fig-7b	8. fig-7c	9. fig-7d
	Marks (BONUS) (0 = it does not work; 1 = it works)	/1	/1	/1

User-defined Parameters:

- z_{min} is the distance at which the detail starts decreasing
- r > 1 is the scale factor that defines the coarsest detail (greatest abstraction)

 $D = 1 - \log_r \left(\frac{Z}{Z_{min}}\right)$

MODEL #3: Venus / EFFECT #3: Toon Shading with Level of Abstraction (LOA) / TEXTURE #7: fig-7b
Three result images, with different values for parameter 'r' and 'zmin', as in Fig 7b (Barla et al. 2006)

r = 10.033

z_min = 594.99

r = 11.0008 z_min = 1233.<u>9</u>1

 $D = 1 - \log_r \left(\frac{Z}{Z_{min}}\right)$

MODEL #3: Venus / EFFECT #3: Toon Shading with Level of Abstraction (LOA) / TEXTURE #8: fig-7c Three result images, with different values for parameter 'r' and 'zmin', as in Fig 7c (Barla et al. 2006)

r = 8.09735

z_min = 211.635

 $D = 1 - \log_r \left(\frac{Z}{Z_{min}}\right)$

MODEL #3: Venus / EFFECT #3: Toon Shading with Level of Abstraction (LOA) / TEXTURE #9: fig-7d Three result images, with different values for parameter 'r' and 'zmin', as in Fig 7d (Barla et al. 2006)

r = 1.61303

z_min = 1233.91

r = 1.93564

z_min = 914.453

MODEL # (PLY format)	EFFECT #	TEXTURE # (PPM format)	MARKS (0 = it does not work; 1 = it works)
5. Carburetor	ORIENTATION-BASED 1. Near-Silhouette Abstraction and Backlighting $D = (N.V)^r$	1. fig-10b	/1
	ORIENTATION-BASED 2. Plastic and Metal Highlights $D = (V.R)^S$	5. fig-11c	/1
	DEPTH-BASED (BONUS) 3. Toon Shading with LOA $D = 1 - \log_r \left(\frac{Z}{Z_{min}}\right)$	9. fig-7d	/1

 $D = (N.V)^r$

MODEL #4: Carburetor / EFFECT #1: Near-Silhouette Abstraction and Backlighting / TEXTURE #1: fig-10b

Three result images, same V, with different values for parameter 'r'

r = 0.0138351

r = 0.0856631

r = 35.1378

 $D = (V.R)^s$

MODEL #4: Carburetor / EFFECT #2: Plastic and Metal Highlights / TEXTURE #5: fig-11c Three result images, same V, one light source, with different values for parameter 's'

s = 1

s = 2

 $D = 1 - \log_r \left(\frac{z}{z_{min}}\right)$

MODEL #4: Carburetor / EFFECT #3: Toon Shading with Level of Abstraction (LOA) / TEXTURE #9: fig-7d Three result images, with different values for parameter 'r' and 'zmin', as in Fig 7d (Barla et al. 2006)

r = 8.07799

z_min = 184.93

r = 8.35654

z_min = 67.65<u>0</u>8

MODEL # (PLY format)	EFFECT #4	TEXTURE # (PPM format)	MARKS (BONUS) (0 = it does not work; 1 = it works)
6. Terrain	DEPTH-BASED (BONUS) 4. Aerial Perspective w/ LOA $D = 1 - \log_r \left(\frac{Z}{Z_{min}}\right)$	10. fig-9b	/1
		11. fig-9f	/1

$$D = 1 - \log_r \left(\frac{z}{z_{min}}\right)$$

MODEL #5: Terrain / EFFECT #3: Aerial Perspective w/ LOA / TEXTURE #10: fig-9b

Four result images, with different values for parameter 'r' and 'zmin'

z_min = 1431.9

$$D = 1 - \log_r \left(\frac{Z}{Z_{min}}\right)$$

MODEL #5: Terrain / EFFECT #3: Aerial Perspective w/ LOA / TEXTURE #11: fig-9f

Four result images, with different values for parameter 'r' and 'zmin'

