1. Fie funcția $f:[1,\infty)\to\mathbb{R}$, $f(x)=\int_1^x t(1-\ln^2 t)dt$. Aflați abscisa punctului de maxim local. (9 pct.) a) e; b) $2\sqrt{e}$; c) $\sqrt[3]{e^2}$; d) $\frac{1}{e}$; e) \sqrt{e} ; f) e^2 .

Soluţie. Avem $f'(x) = x(1 - \ln^2 x)$, deci, pentru $x \in [1, \infty)$, $f'(x) = 0 \Leftrightarrow x(1 - \ln^2 x) = 0 \Leftrightarrow x = e$. Tabloul de semne al funcției f' este

x	1		e		∞
f'(x)	1	+	0	_	$-\infty$
f(x)	0	7	$(e^2-1)/4$	\searrow	$-\infty$

deci punctul de maxim căutat este x = e. ⓐ

- 2. Să se determine numărul real m astfel încât $\begin{vmatrix} m & 6 \\ 1 & 2 \end{vmatrix} = 0$. (9 pct.)
 - a) m = 1; b) m = 3; c) m = 2; d) m = 5; e) m = 0; f) m = 4.

Soluţie. Avem
$$\begin{bmatrix} m & 6 \\ 1 & 2 \end{bmatrix} = 0 \Leftrightarrow 2m - 6 = 0 \Leftrightarrow m = 3$$
.

- 3. Să se determine numărul natural n astfel încât 4, $\frac{n+8}{2}$ și 8 să fie trei termeni consecutivi ai unei progresii aritmetice. (9 pct.)
 - a) n = 4; b) n = 1; c) n = 2; d) n = 3; e) n = 0; f) n = 6.

Soluție. Termenul din mijloc este semisuma celorlalți doi, deci $\frac{n+8}{2} = \frac{4+8}{2} \Leftrightarrow n+8 = 12 \Leftrightarrow n=4$.

- 4. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x + x^2$. Atunci f'(0) este: (9 pct.)
 - a) 4; b) 1; c) -1; d) 3; e) 0; f) 2.

Soluție. Prin derivare obținem $f'(x) = e^x + 2x$, deci $f'(0) = e^0 + 2 \cdot 0 = 1$.

- 5. Să se rezolve în \mathbb{R} inecuația 3x-1>x+3. (9 pct.)
 - a) x < 1; b) x < -2; c) x > 2; d) x > 3; e) x < 2; f) x < 3.

Soluție. Inecuația se rescrie $2x > 4 \Leftrightarrow x > 2$.

- 6. Multimea soluțiilor reale ale ecuației $x^2 6x + 8 = 0$ este: (9 pct.)
 - a) $\{-1,3\}$; b) $\{1,5\}$; c) \emptyset ; d) $\{1\}$; e) $\{-4,-2\}$; f) $\{2,4\}$.

Soluţie. Avem
$$x^2 - 6x + 8 = 0 \Leftrightarrow x \in \left\{\frac{6 \pm \sqrt{36 - 32}}{2}\right\} \Leftrightarrow x \in \left\{\frac{6 \pm 2}{2}\right\} \Leftrightarrow x \in \left\{2, 4\right\}$$
.

- 7. Pe mulțimea \mathbb{Z} a numerelor întregi se definește legea de compoziție $x \circ y = xy 5x 5y + 30$. Atunci suma elementelor simetrizabile în raport cu legea de compoziție " \circ " este: (9 pct.)
 - a) 10; b) 9; c) 6; d) 0; e) 5; f) 8.

Soluție. Elementul neutru $e \in \mathbb{Z}$ satisface pentru orice $x \in \mathbb{Z}$ egalitățile $x \circ e = e \circ x = x$. Dar observăm că legea este comntativă, $x \circ y = y \circ x$, $\forall x, y \in \mathbb{Z}$ și deci avem $x \circ e = x$, $\forall x \in \mathbb{Z}$. Obținem $x \circ e = x \Leftrightarrow (x-5)(e-6) = 0$, $\forall x \in \mathbb{Z}$, de unde e = 6. Un element $x \in \mathbb{Z}$ admite simetricul $x' \in \mathbb{Z}$, d.n.d. $x \circ x' = e$, deci $xx' - 5x - 5x' + 30 = 6 \Leftrightarrow x' = \frac{5x-24}{x-5} = 5 + \frac{1}{x-5} \in \mathbb{Z}$, de unde $(x-5)|1 \Leftrightarrow x-5 \in \{\pm 1\} \Leftrightarrow x \in \{4,6\}$. Pentru aceste două valori obținem respectiv $x' \in \{4,6\}$ iar suma căutată este 4+6=10. ⓐ

- 8. Să se rezolve în mulțimea numerelor reale ecuația $\sqrt{x+3}-1=x$. (9 pct.)
 - a) x = 3; b) $x \in \emptyset$; c) x = -5; d) $x \in \{-1, 2\}$; e) x = 0; f) x = 1.

Soluție. Condiția de existență a radicalului se rescrie $x+3 \ge 0 \Leftrightarrow x \ge -3$, iar din pozitivitatea radicalului obținem $x+1 \ge 0 \Leftrightarrow x \ge -1$. Reținem deci condiția $x \ge -1$. Prelucrând și ridicând la pătrat ecuația, obținem $\sqrt{x+3}-1=x \Leftrightarrow \sqrt{x+3}=x+1 \Rightarrow x+3=(x+1)^2 \Leftrightarrow x^2+x-2=0 \Leftrightarrow x \in \{-2,1\}$, dintre cele două valori convenind doar soluția x=1. (f)

- 9. Fie $M = \{1, 2, 3, ..., 999\}$. Să se determine numărul elementelor mulțmii M care conțin cifra 9 cel puțin o dată: (9 pct.)
 - a) 271; b) 243; c) 270; d) 274; e) 275; f) 272.

Soluție. Toate elementele lui M sunt numerele nenule de forma \overline{xyz} unde $x,y,z\in\{0,\dots,9\}$ (unde în enunț nu s-au scris explicit "trailing zeros", zerourile care preced partea semnificativă a numărului). Deci M conține 10^3-1 elemente. Elementele din M care nu conțin cifra g sunt numerele nenule de forma \overline{xyz} unde $x,y,z\in\{0,\dots,8\}$. Deci acestea din urmă sunt în număr de 9^3-1 . Elementele căutate sunt deci în număr de $(10^3-1)-(9^3-1)=(10-9)\cdot(10^2+10\cdot 9+9^2)=100+90+81=271$. ⓐ

Altfel. Elementele care conțin cel putin o dată cifra 9 sunt de forma xyz cu $x, y, z \in \{0, \dots, 9\}$ și se împart în următoarele categorii disjuncte:

- (i) pot avea doar o cifră de 9 (cu trei variante de așezare a cifrei 9, pe celelalte două poziții fiind cifre din plaja $\{0, \ldots, 8\}$) $\rightsquigarrow 3 \cdot (9 \cdot 9)$ variante;
- (ii) pot avea exact 2 cifre de 9 (cu trei variante de așezare a celor două cifre de 9, a treia cifră fiind din plaja $\{0,\ldots,8\}$) $\rightsquigarrow 3\cdot 9$ variante;
- (iii) pot avea toate trei cifrele egale cu 9 → o singură variantă (numărul 999).

Obținem $3 \cdot 81 + 27 + 1 = 271$ variante de numere cu 3 cifre, în care cifra 9 apare cel puțin o dată. (a)

- 10. Se consideră ecuația $3^{x^2+1} = 9$. Atunci soluțiile acesteia sunt: (9 pct.)
 - a) $-1 ext{ si } 1; ext{ b) } 2 ext{ si } 3; ext{ c) } -2 ext{ si } 2; ext{ d)} -\sqrt{2} ext{ si } \sqrt{2}; ext{ e) } 0; ext{ f) } 0 ext{ si } 5.$

Soluţie. Ecuaţia se rescrie $3^{x^2+1}=3^2$ şi logaritmând în baza 3, obţinem $x^2+1=2 \Leftrightarrow x^2-1=0 \Leftrightarrow (x-1)(x+1)=0 \Leftrightarrow x \in \{-1,1\}$. (a)