Student Information

Full Name : Yusuf Sami Lök

Id Number: 2521748

Answer 1

a) False. Since the real numbers are uncountably infinite, and we can create countably infinite string from a finite alphabet, it is not possible to represent.

b) False. Although some languages can be finitely representable, there are a lot of languages that are infinite, and can not finitely representable.

c)True.

$$bba \in \mathcal{L} = a^*b^*a^*b^*$$

. The first a^* creates empty string, the first b^* creates bb, the second a^* creates a, and the last b^* creates empty string.

d) False. a^+ can create more than one a as a substring, and also b^+ can create more than one b as a substring, so ab may not be prefix of a string.

Answer 2

a) We let $M = (K, \Sigma, \delta, s, F)$, where

 $K: \{q_0, q_1, q_2, q_3\},\$

 $\Sigma:\{a,b\},$

 $s:q_0,$

 $F: \{q_0, q_1, q_2\},\$

and δ is the function tabulated below.

q	σ	$\delta(q,\sigma)$
q_0	\overline{a}	q_1
q_0	b	q_0
q_1	a	q_1
q_1	b	q_2
q_2	a	q_3
q_2	b	q_0
q_3	a	q_3
q_3	b	q_3

b) If M is given the input abbaabab, its initial configuration is (qo, abbaabab).

$$(q_o, abbaabab) \vdash_M (q_1, bbaabab)$$

$$\vdash_M (q_2, baabab)$$

$$\vdash_M (q_0, aabab)$$

$$\vdash_M (q_1, abab)$$

$$\vdash_M (q_1, bab)$$

$$\vdash_M (q_2, ab)$$

$$\vdash_M (q_3, b)$$

$$\vdash_M (q_3, e)$$

Since q_3 is not in the F final states set, DFA doesn't accept the input.

Answer 3

The first 3 steps are correct.

- 4) The Theorem 2.2.1 in the book states that the set of final states of M' will consist of all those subsets of K that contain **at least** one final state of M, **not only** the states $q \in F$. Therefore, step 4 is false.
- 5) There is an error in the output part of the function definition. The function returns the set whose elements are precisely those states p in K for which there exists a $q \in Q$ and $(q, a, p) \in \Delta$, but also the set includes the empty closure of every $p \in K$. Therefore, the set is the union of the empty closures of those states $p \in K$ for which there exists a $q \in Q$ and $(q, a, p) \in \Delta$.