50 Int - C12 B 22 D 7/10 B 22 C 1/00 60日本分類 11 A 221 11 A 21 11 B 05

19日本国特許庁

(D特 杵 出 願 公告

昭50-20545

許 40公告 昭和50年(1975)7月16日

庁内整理番号 6567-42

発明の数 1 (全 3 頁)

1

(別溶融金属の鋳造に使用するための熟絶縁体

@特 昭 4 4 - 5 2 5 4 3 ØЖ 昭44(1969)7月4日

国3032019/68

600菜明者 マイケル・ロバート・エンドレツ

アメリカ合衆国オハイオ州44142

7ピー・シエルドン・ロード 21458

ロバート・リチヤード・ドズリラ

アメリカ合衆国オハイオ州44131 ドライブ 500

の出 願 人 フオセコ・インターナショナル・ リミテツド

イギリス国パーミンガムフ・ニチ エルス・ロング・エイカー 2 8 5 20 ダーを含む水性スラリをつくり次いでこのスラリ

の代 理 人 弁理士 湯浅恭三 外2名

発明の詳細な説明

同

本発明は溶融金属の鋳造技術に関するものであ り、更に詳しくは鋳物場における金属鋳物の製造 25 こうしてスラリは金網におしつけられて液体が金 に用いるための熱絶縁体に関するものであつて、 後者に関連して以下詳細な説明を行なう。しかし この熱絶縁体は鋼インゴツトの製造にも使用でき ٥.

場合押湯金属、即ちフィーダーヘッド、ライザー 及び型の類似の部分内の金属、が余り速やかに固 化しないことを保証するのが大切であり、その理 由はもし速く固化しすぎると冷却及び固化の際の の供給が妨げられそして得られる鋳物が亀裂や空 洞のような欠陥を含むおそれがあるからである。

従つてフィーダーヘッド、ライザー及び型の類似 の部分にヘッド金属からの熱損失を防ぐ障壁とし て作用する組成物、例えば熱絶繰組成物又は溶融 金属の熱で無かれた時に発熱的に反応しそれによ ◎1968年7月4日◎イギリス 5 つてヘッド金属に確実に熱を供給する成分を含む

組成物、でライニングを施すことが行なわれる。 近年粒状又は粉末状の耐火性熱熱緩材料、有機 繊維材料及びパインダー材料から成るライニング 組成物がこの目的のためにつくられている。さま クリーブランド・アパートメント 10 ざまの有機繊維材料が用いられたが、経済性の点 から紙パイプのようなもともと安価な有機繊維材 料か又は原物の合成機維材料が好都合であること が見出された。このような組成物中に小さい割合

の耐火性繊維材料、例えば石棉、スラグウール、 セプン・ヒルス・ロング・リツン·I5 ミネラルウール、を含めることも提案されている。 問題の組成物は最も有効であるためには実質上 均一な性質のものでなければならず従って普通に 用いられた方法は粒状叉は粉末状の耐火物、有機 繊維材料、必要に応じ耐火性繊維材料及びパイン

> から液体を絞り出して適当な形状のものを、例え ば固体成分のスリーブ、をつくることであり、こ れを乾燥し好ましくは火力で加熱すると剛件機浩 となり、パインダーは他の成分とともに結合する。

網を通して絞り出されたので金網を通過したい固

体成分のボデーが金綿表面上につくり出される。 パインダーはととに記載の目的のために耐火物 材料の成形体の製造に使用するためのそれ自体は 溶融金属を型の中へ鋳込んで金属鋳物をつくる 30 公知の何らかの材料、例えば珪酸ナトリウムのよ うな無機パインダー又は天然ガム例えばデキスト リン又は穀紛例えば小麦紛又は合成樹脂材料、好 ましくは尿素ーホルムアルデヒド、フエノールホ

ルムアルデヒド又はフラン樹脂のような熱硬化性 鋳造金属の本体の収縮を補償するための溶融金属 35 樹脂、のような有機パインダー、とすることがで

前記のような処方の組成物は広く用いられてお

The south William T. Library . . .

りそして多くの利点を有するが、これらは高融点 金属を扱う時に使用するのに十分な程高度の耐火 件を常に右することは限らない。更にその熱絶縁 性は必ずしも所望される程良好であるとは限らな

本発明の目的はヘツド、ライザー及び金属鋳造 用の型の類似の部分のライニングに使用できそし て改善された性質を有する新規な組成物を提供する るととである。

40~80%の耐火物充填材及び0.5~10%の パインダー材料から成り、該鐵維材料が全部無機 繊維材料であるか又はその重量の40%までの有 機繊維材料を含みそして該耐火物充填材がその全 部叉は一部が珪藻土、発泡アルミナ、中空シリカ 15 微小球、煆焼したライスハスク (rice husk)及 びポゾラナ (発泡アルミノシリケート) から選ば れる軽量充塊剤から成る、上記のようなライニン グの製造に用いるに適する組成物が与えられる。

スラリを形成させそしてそれから水を絞り出して 固体成分のボデーを所望の形状に沈着させること から成る上記のように使用するに適する形状の要 素の製造方法を提供する。

形した要素のそして好ましくは上記の方法によっ てつくられたもののライニングを形成させること から成るフィーダーヘッド、ライザー又は金属鋳 造用の型の類似の部分のライニング法を提供する。 本祭明の組成物の範囲内で溶鋼に用いるに十分 30

な程耐火性があり、(その軽量性及び比較的高価 た無機機維材料の実質的な割合を比較的安価な有 機繊維材料でおきかえられるという事実により) 経済的に製造されそして高い熱絶縁能力を有する 組成物が与えられる。

次に組成物の個別の成分について述べると、耐 火性充填剤は単独又は他の粒状又は粉末状非炭素 質耐火性充填材、例えば粉末シリカ、繊糖石、シ ヤモツト、アルミナ又は何らかの耐火性シリケー 成るい耐火性充塡材のグレインの大きさは広い節 囲で変えることができるが325BSSメツシユ を通過する材料が特に満足できることが見出され た。

本発明の組成物中に含まれる繊維材料は、その 重量の少くとも60%の程度までが珪酸カルシウ ム、荘酔アルミニウム又は(一層好ましくは)ア ルミノシリケート繊維、石棉、スラグウール、岩 5 棉、ミネラルウール又は金属繊維のような無機機 維から成る。

有機機維材料が存在する場合、それは例えば木 材パルブ(紙パルプ)又は木粉とすることができ るが所望によりより大きい繊維材料、例えば棉屑、 本発明によれば、20~50重量多の繊維材料、10ほろ又は合成ステーブルファイバー層、例えばナ イロン、ポリエステル又はアクリロニトリル繊維、 が使用できる。より長い繊維材料は最終的な組成 物の強度の増加に一層有効となる傾向を示すこと が明らかであろう。

パインダー材料は上記の目的のための成形した 要素の製造に使用するためのそれ自身は公知の何 らかの材料、例えば珪酸ナトリウム、ガム、穀粉 又は熱硬化性樹脂、とすることができる。熱硬化 性樹脂を使用するのが好ましくそして一般にフェ 本発明は更に上に定義した組成物の成分の水性 20 ノールーホルムアルデヒド及び尿素-ホルムアル デヒド樹脂の組合せが最も適当であることが見出 された。

所望により本発明の組成物でつくつた成形した 要素は金属の浸透に対する要素の抵抗を増すため 本発明は更に上記の組成物から成る一以上の成 25 に例えばジルコン粉末から成るドレツシングから 沈着したコンパクトな耐火セラミツク材料の表面 被覆を与えることができる。

> 次に実施例について本発明の説明を行なう。 実施例 1

水性スラリは水90重量部及び次の成分から成 る組成物10重量部から成る: 珠藻土 (-325BSSメツシユ) 50重量化

紙繊維 10重量% ミネラルウール 3 0 重量% フエノールーポルムアルデヒド樹脂 8 重量%

尿素ーホルムアルデヒド樹脂 2 重量% このスラリをコンパクトなスラブとしてその固 体成分を沈着させるために金網の上で脱水させ、 とのスラブを乾燥しそして180°Cの炉の中に3 ト、と組合わせた前記の軽量充塊剤の一以上から 40~4時間滑いた。こうしてつくつたスラブは13.0 AFS単位の通気度、65psiの横方向強度及び 0.318/CCの密度を有することが見出された。 こうしてつくり、1575℃で銹鋼用の砂型の フィーダーヘッドのライニングに用いたスラブは

溶融した金属のブローイングを牛ずることなく優 れた熱絶縁を与えることが見出された。

実施例 2

荘藻土の代りに同一重量の煆焼したライスハス クを用いた点を除いて実施例1の方法を繰返した。5 は、本発明において見い出した一定の低密度充填 このスラブの通気度は極めて高く、横方向強度は 7 5psiでありそして密度は 0.3 7 8 / CC であ

フィーダーヘッドの性能は実施例1の材料のそ れと同様であつた。

実施例 3

荘藤十の代りに同一重量の 焼したポゾラナを 用いた点を除いて実施例1の方法を繰返した。こ のスラブの通気度は極めて高く、横方向強度は った。

フィーダーヘッドの性能は実施例1の材料のそ れと同様であつた。

比較例

無機鐵維材料 50重量% 耐火件充堆材 45重量係

パインダー材料 5 重量多 上記耐火性充塡材の全部をシリカ粉とした場合、25 ラナ (発泡アルミノシリケート)から選ばれる、 波ホツトトツブスラブの密度は約0.75g/CC であつた。

一方、上記耐火性充填材のうち40.5重量をシ リカ粉とし、残りの4.5 重量%を珪藻土または仮

前記シリカ粉のわずか10重量易だけをそれらの

焼したライスハスクから選んだ場合、すなわち、30 図引用文献

低密度充填材で置き換えただけで、得られるホツ トトツブスラグの密度はわずか 0.48/CCにま で低下した。

このように、密度が驚く程低下するということ 材の差しい効果にもとずくものである。

本発明を金属鉱造用の型を特に引用して説明し てきたが、この組成物はインゴツト型のヘッドの ライニング用又はこのような型に取付けたヘツド 10 ポツクスのライニング用にも使用できることを理

ライザースリーブ及び類似の成形物中の炭素又 は炭素質充爆材(例えばコークダスト)の存在は 鋳鋼の場合望ましくないことが観察される。炭素 7 Opsiでありそして密度は 0.3 5 8 / CCであ 15 の存在は金属鋳物の最終的な組成物及び性質に影 郷を与える。

の特許請求の節囲

解すべきである。

(3)

20~50重量%の機維材料、40~80重 量多の耐火物充填材及び 0.5~10重量多のバイ 次の組成を有するホツトトツブスラブを調製し 20 ンダー材料から成り、該繊維材料は全部が無機繊 維材料であるか又はその重量の40%までの有機 繊維材料を含みそして該耐火物材料は少なくとも その10重量必までが珪藻土、発泡アルミナ、中 空シリカ微小球、慢 焼したライスハスク及びポゾ 高温のトツプライニング及び類似物の製造に用い るのに適する組成物。