

CSE 311L(Database Management System)

LAB-Week O1(Part A)

Objectives:

After completing this lesson, you should be able to do the following:

- Create database tables
- Describe the data types that can be used when specifying column definition
- ► Table naming rules & Fields Datatypes

Table Naming Rules

Table names and column names:

- ▶ Must begin with a letter
- ► Must be 1–30 characters long
- ► Must contain only A–Z, a–z, 0–9, _, \$, and #
- ▶ Must not duplicate the name of another object
- owned by the same user
- ▶ Must not be an Oracle server reserved word

Data Types:

Data type	Description
VARCHAR2(LEN)	Variable length char. Values up to width length. Maximum width is 4000 chars.
CHAR(LEN)	Fixed length char. Values of width length. Default width is 1. Maximum length is 200.
NUMBER	Floating point with precision of 38 significant digits.
NUMBER (Precision, Scale)	Precision represents Maximum significant digits allowed, which may not exceed 38. Scale is the number of decimal places on the right of the decimal point.

DATE	Date values in the range 1-1-4712 B.C to 31-12-4712 AD.
LONG	Variable length char. Values up to 2 GB. Only one LONG col. is allowed per table. You cannot use LONG datatype in functions, Where clause and sub queries.
RAW AND LONG RAW	Equivalent to VARCHAR2 and LONG respectively, used for storing digital sound or graphics images.
CLOB, BLOB, NCLOB	Used to store large char. And binary Objects .Each can accommodate upto 4 GB.
BFILE	Stores a pointer to an external file.
TIMESTAMP	It is an extension of Date datatype. It stores year, month, day, hour, minute and second values

CREATE TABLE Statement

CREATE TABLE

Specifies a new base relation by giving it a name, and specifying each of its attributes and their data types

Syntax of CREATE Command:

CREATE TABLE (*<*Attribute *A*1*> <*Data Type *D*1*>* [*<* Constarints>], *<*Attribute *A*2*> <*Data Type *D*2*>* [*<* Constarints>],

.

<Attribute *A*n> <Data Type *D*n> [< Constarints>], [<integrity-constraint1>, <integrity-constraint k>]);

- A constraint NOT NULL may be specified on an attribute A constraint NOT NULL may be specified on an attribute Example: CREATE TABLE DEPARTMENT (
DNAME VARCHAR(10) NOT NULL,
DNUMBER INTEGER NOT NULL,
MGRSSN CHAR(9), MGRSTARTDATE CHAR(9));

Integrity Constraints Description

An integrity constraint is a declarative method of defining a rule for a column of a table. Oracle supports the following integrity constraints:

- o NOTNULL constraints for the rules associated with nulls in a column
- o UNIQUE key constraints for the rule associated with unique column values
- o PRIMARYKEY constraints for the rule associated with primary identification values
- o FOREIGNKEY constraints for the rules associated with referential integrity. Oracle supports the use of FOREIGNKEY integrity constraints to define the referential integrity actions, including:
 - Update & delete no action
 - Delete CASCADE
 - Delete SET NULL
- o CHECK constraints for complex integrity rules

Referential Integrity Constraints

Different tables in a relational database can be related by common columns, and the rules that govern the relationship of the columns must be maintained. Referential integrity rules guarantee that these relationships are preserved.

The following terms are associated with referential integrity constraints.

Term	Definition
	The column or set of columns
	included in the definition of the
Foreign key	referential integrity constraint that

	reference a referenced key
	The unique key or primary key of
	the same or different table that is
Referenced key	referenced by a foreign key.
Dependent or child table	The table that includes the foreign
	key. Therefore, it is the table that is
	dependent on the values present in
	the referenced unique or primary
	key
Referenced or parent table	The table that is referenced by the
	child table's foreign key. It is this
	table's referenced key that
	determines whether specific
	inserts or updates are allowed in the
	child table

Specifying the unique, primary key attributes, secondary keys, and referential integrity constraints (foreign keys).

Ex: CREATE TABLE DEPT (
DNAME VARCHAR(10) NOT
NULL, DNUMBER INTEGER
NOT NULL, MGRSSN
CHAR(9), MGRSTARTDATE
CHAR(9), PRIMARY KEY
(DNUMBER), UNIQUE
(DNAME),
FOREIGN KEY (MGRSSN) REFERENCES EMP(SSN));

We can specify RESTRICT, CASCADE, SET NULL or SET DEFAULT on referential integrity constraints (foreign keys)

Ex: CREATE TABLE DEPT (
DNAME VARCHAR(10) NOT
NULL, DNUMBER INTEGER
NOT NULL,
MGRSSN CHAR(9), MGRSTARTDATE
CHAR(9), PRIMARY KEY (DNUMBER),
UNIQUE (DNAME),

FOREIGN KEY (MGRSSN) REFERENCES EMP ON DELETE SET DEFAULT ON UPDATE CASCADE);

Activity 01:

Write SQL statement for create the 'Emps' table: (company2. Schema) (You will be given demo of the code. Just follow it and ask questions, if there is any)

Name	Null?	Туре
EMPLOYEE_ID	NOT NULL	NUMBER(6)
FIRST_NAME		VARCHAR2(20)
LAST_NAME	NOT NULL	VARCHAR2(25)
EMAIL	NOT NULL	VARCHAR2(25)
PHONE_NUMBER		VARCHAR2(20)
HIRE_DATE	NOT NULL	DATE
JOB_ID	NOT NULL	VARCHAR2(10)
SALARY		NUMBER(8,2)
COMMISSION_PCT		NUMBER(2,2)
MANAGER_ID		NUMBER(6)
DEPARTMENT_ID		NUMBER(4)

Answer:

CREATE TABLE Emps (

Employee_Id NUMBER(6) PRIMARY KEY,

First_Name VARCHAR2(20),

Last_Name VARCHAR2(25) NOT NULL,

Email VARCHAR2(25) NOT NULL,

Phone_Number VARCHAR2(15),

Hire_Date DATE NOT NULL,

Job_Id VARCHAR2(10) NOT NULL,

Salary NUMBER(8,2),

Commission_pct NUMBER(2,2),

Manager_id NUMBER(6),

Department_Id NUMBER(4));

Syntax Column_Constraint: [constraint name]{[NOT] NULL| {UNIQUE | PRIMARY KEY}|

REFERENCES table [(column)]| CHECK (condition)}

Ex:SQL>create table subjects(subdesc varchar(20) constraint const_name NOT NULL..); Ex2:SQL>create table subjects(subdesc varchar(10) constraint subject_pk PRIMARY

KEY);

Syntax Table_Constraint: [constraint name]{{UNIUQE | PRIMARY KEY} (**Col, [, col]...**)|

FOREIGN KEY (Col, [, Col}...) REFERENCES table [(Col {, Col]...)| CHECK (condition)}

Ex1: SQL>Create table studmarks (...,constraint studmarks_chk Check(stdate<=enddate));

Ex2: syntax for table constraint

SQL> Create table studmars (sno number (5), constraint studmarks_fk FOREIGN KEY (sno) references students (sno));

DROP TABLE

- Used to remove a relation (base table) and its definition.
- The relation can no longer be used in queries, updates, or any other commands since its description no longer exists

Example: DROP TABLE DEPENDENT;

ALTER TABLE:

• Used to add an attribute to/from one of the base relations drop constraint -- The new attribute will have NULLs in all the tuples of the relation right after the command is executed; hence, the NOT NULL constraint is *not allowed* for such an attribute.

Example: ALTER TABLE EMPLOYEE ADD JOB VARCHAR2 (12);

• The database users must still enter a value for the new attribute JOB for each EMPLOYEE tuple. This can be done using the UPDATE command.

DROP A COLUMN (AN ATTRIBUTE)

ALTER TABLE COMPANY.EMPLOYEE DROP ADDRESS CASCADE; All
constraints and views that reference the column are dropped automatically, along with the
column. ALTER TABLE COMPANY.EMPLOYEE DROP ADDRESS RESTRICT;
Successful if no views or constraints reference the column. ALTER TABLE
COMPANY.DEPARTMENT ALTER MGRSSN DROP DEFAULT:

CSE 311L(Database Management System)

LAB-Week 01(Part B)

Objectives:

After completing this lesson, you should be able to do the following:

- Insert rows into the created table
- Create Department Table
- Execute a basic SELECT statement

The INSERT Statement Syntax

```
INSERT INTO table [(column [, column...])]
VALUES (value [, value...]);
```

Activity 01:

Write SQL statement for create the 'Depts' table:

Name	Null?	Туре
DEPARTMENT_ID	NOT NULL	NUMBER(4)
DEPARTMENT_NAME	NOT NULL	VARCHAR2(30)
MANAGER_ID		NUMBER(6)
LOCATION_ID		NUMBER(4)

Answer:

CREATE TABLE Depts(
Department_id NUMBER(4) PRIMARY KEY,
Department_Name VARCHAR2(30) NOT NULL,
Manager_id NUMBER(6),
Location_id NUMBER(4));

Activity 02:

Write SQL statement for INSERT two employees' data into the employees table you create earlier.

INSERT ALL

INTO Emps VALUES(100, 'Steven', 'King', 'SKING', '515.123.4567', '17-JUN-2006', 'AD_PRESS',24000, NULL, NULL, 90) INTO Emps VALUES(101, 'Neena', 'Kochar', 'NKOCHAR', '515.123.4568', '21-SEP-2008', 'AD_VP',17000, NULL, 100, 90)

```
INTO Emps VALUES(102, 'Lex','De Haan', 'DEHAAN','515.123.4569', '13-JAN-2009', 'AD_VP',17000, NULL, 100, 90)
```

INTO Emps VALUES(103, 'Alexander', 'Hunold', 'AHUNOLD', '590.423.4567', '03-JAN-2008', 'IT_PROG', 9000, NULL, 102, 60)

INTO Emps VALUES(104, 'Bruce', 'Ernst', 'BERNST', '590.423.4568', '21-MAY-2009', 'IT_PROG', 6000, NULL, 103, 60)

INTO Emps VALUES(107, 'Diana', 'Lorentz', 'DLORENTZ', '590.423.5567', '07-FEB-2008', 'IT_PROG', 4200, NULL, 103, 60)

INTO Emps VALUES(124, 'Kevin', 'Mourgos', 'KMORGOS', '650.123.5234', '16-NOV-2012', 'ST_MAN', 5800, NULL, 100, 50)

INTO Emps VALUES(141, 'Treena', 'Rajs', 'RRAJS', '650.121.5234', '17-OCT-2004', 'ST_CLERK', 3500, NULL, 124, 50)

INTO Emps VALUES(142, 'Curtis', 'Davies', 'CDAVIES', '121.123.5234', '29-JAN-2007', 'ST_CLERK', 3100, NULL, 124, 50)

INTO Emps VALUES(143, 'Randall', 'Matos', 'RMATOS', '121.123.5234', '15-MAR-2008', 'ST_CLERK', 2600, NULL, 124, 50)

INTO Emps VALUES(144, 'Peter', 'Vargas', 'PVARGAS', '121.123.5234', '09-JUL-2008', 'ST_CLERK', 2500, NULL, 124, 50)

INTO Emps VALUES(149, 'Eleni', 'Zlotkey', 'EZLOTKEY', '44.1344.429018', '29-JAN-2014', 'SA_MAN', 10500, .2, 100, 80)

INTO Emps VALUES(174, 'Ellen', 'Abel', 'EABEL', '44.1644.429017', '11-MAY-2004', 'SA_REP', 11000, .3, 149, 80)

INTO Emps VALUES(176, 'Jnathon', 'Taylor', 'JTAILOR', '44.1644.429021', '24-MAR-2008', 'SA_MAN', 8600, .2, 149, 80)

INTO Emps VALUES(178, 'Kimberely', 'Grant', 'KGRANT', '44.1644.429023', '24-MAY-2009', 'SA_MAN', 7000, .15, 149, NULL)

INTO Emps VALUES(200, 'Jennifer', 'Whalem', 'JWHALEN', '515.123.4444', '17-SEP-2003', 'ADD_ASST', 4400, NULL, 101, 10)

INTO Emps VALUES(201, 'Michael', 'Hartstein', 'MHARSTEIN', '515.123.5555', '17-FEB-2008', 'MK_MAN', 13000, NULL, 100, 20)

INTO Emps VALUES(202, 'Pat', 'Fay', 'PFAY', '603.123.6666', '17-AUG-2010', 'MK_REP', 6000, NULL, 201, 20)

INTO Emps VALUES(205, 'Shelley','Higgins', 'SHIGGINS','515.123.8050', '07-JUN-2007', 'AC_MGR',12000,NULL, 101, 110)

INTO Emps VALUES(206, 'William', 'Gietz', 'WGIETZ', '515.123.8181', '07-JUN-2007', 'AC_ACCOUNT', 8300, NULL, 205, 110)

SELECT * FROM dual;

Activity 03:

Write SQL statement for INSERT two Departments' data into the Departments table you just created.

INSERT ALL

INTO Depts VALUES(10, 'Administration',200,1700)

INTO Depts VALUES(20, 'Marketing',201,1800)

INTO Depts VALUES(50, 'Shipping',124,1500)

INTO Depts VALUES(60, 'IT',103,1400)

INTO Depts VALUES(80, 'Sales',149,2500)

INTO Depts VALUES(90, 'Executive',100,1700)

INTO Depts VALUES(110, 'Accounting',205,1700)

INTO Depts VALUES(190, 'Contracting', NULL, 1700)

SELECT * FROM dual;