# Physiological Effects WS 2016/17

related lectures:

Applied and Virtual Acoustics (Winter Term) Advanced Psychoacoustics (Summer Term)





### **Block Diagram of a Perceptual Audio Encoder**



Source: Brandenburg, "Vorlesung: Dig. Audiosignalverarbeitung"







#### **Structure of the Human Ear**



#### **Structure of the Human Ear (1)**

**Ossicles** archways concentrates the sound waves cochlea with ear canal ✓organ of Corti ear drum eustachische tube outer ear middle inner ear ear

Quelle: Ars Auditus; http://www.dasp.uni-wuppertal.de/index.php?id=57, 2010





#### **Structure of the Human Ear (2)**

- eardrum transforms sound wave into vibrations
- ossicular bones transfer the mechanical vibrations to the cochlea
- cochlear structure induces traveling waves along the length of the basilar membrane
- neural receptors connected along the length of the basilar membrane
  - convert these traveling into chemical and electrical signals





Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

#### Structure of the Human Ear - Cochlea



Quelle: Cochlee, http://www.cochlee.org, 2010

- blue arrow **■** oval window
- yellow arrow

  round window

#### left picture:

- cochlea of a 5 month old fetus,
  - spiral-shaped, fluid-filled structure
  - contains the coiled basilar



Quelle: Ars Auditus; http://www.dasp.uni-wuppertal.de/index.php?id=57, 2010





#### Structure of the Human Ear - Organ of Corti



Quelle: Cochlee, http://www.cochlee.org, 2010

- organ of corti of a guinea pig
- white bar =  $20 \mu m$

**<b><puter hair cells** 

inner hair cells

#### pumping OHC



Quelle: David C. Mountain, Boston University, 146th ASA Meeting

-  $\sim$  3500 IHC and  $\sim$ 12000 OHC at humans

Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de

 hair cells convert fluid motion into el. impulses in auditory nerve





# Preprocessing of Sound in the Peripheral System

- frequency selectivity of the basilar membrane
- traveling wave envelopes occur in response to an acoustic tone complex containing e.g. sinusoids of 400 Hz, 1600 Hz and 6400 Hz
- peak responses for each sinusoid are localized along the membrane surface, with each peak occurring at a particular distance from the oval window (cochlear "input")



Source: Yuli You "Audio Coding Theory and Applications"







## **Preprocessing of Sound in the Peripheral System**

frequency selectivity of the basilar membrane (simulation)









# Preprocessing of Sound in the Peripheral System

- frequency selectivity of the basilar membrane (simulation)







### Information Processing in the Auditory System

- basilar membrane as a filter bank
- bank of highly overlapping bandpass filters
- the magnitude responses are asymmetric and nonlinear (level dependent)
- non-uniform bandwidth, and the bandwidths increase with increasing frequency



Prof. Dr.-Ing. K. Brandenburg, bdg@idmt.fraunhofer.de Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de



