

A Level · Edexcel · Maths

3.2 Circles

3.2.1 Equation of a Circle / 3.2.2 Finding the Centre & Radius / 3.2.3 Bisection of Chords / 3.2.4 Angle in a Semicircle / 3.2.5 Radius & Tangent

Total Marks	/172
Very Hard (8 questions)	/54
Hard (8 questions)	/45
Medium (8 questions)	/43
Easy (8 questions)	/30

Scan here to return to the course or visit savemyexams.com

Easy Questions

1 Write down the equations of the circles with the following centres and radii

Centre: (0,0) Radius: r = 4, (i)

Centre: (3, -4) Radius: r = 2, (ii)

(iii) Centre: (-5, 0) Radius: r = 5.

(3 marks)

2 Write down the centre and the radius for each of the following circles

(i)
$$x^2 + y^2 = 5^2$$
,

(i)
$$x^2 + y^2 = 5^2$$
,
(ii) $(x+3)^2 + (y-2)^2 = 49$,

(iii)
$$x^2 + (y+4)^2 = 144$$
.

(3 marks)

3 On separate diagrams sketch the circles with the following equations

(i)
$$x^2 + y^2 = 9$$

(ii)
$$(x-4)^2 + (y-3)^2 = 4^2$$

- Complete the square of $x^2 + 4x$. **4 (a)** (i)
 - Complete the square of $y^2 6y$. (ii)

(2 marks)

- Use your answers to part (a) to show that the equation $x^2 + y^2 + 4x 6y + 4 = 0$ **(b)** (i) can be written in the form $(x+2)^2 + (y-3)^2 = 9$.
 - Hence, write down the centre and the radius of the circle with equation (ii) $x^2 + y^2 + 4x - 6y + 4 = 0$.

(4 marks)

5 The line segment connecting the two points (1, 0) and (9, 4) is the diameter of a circle.

Find the centre and radius of the circle.

(4 marks)

6 Determine if the circles with equations

$$(x+4)^2 + y^2 = 9$$
 and $(x-2)^2 + y^2 = 9$

intersect once, twice or not at all. Fully explain your answer.

(3 ı	ma	rks
------	----	-----

7 On a sketch show how a circle and a line can either have 0, 1 or 2 intersections.

(2 marks)

8 The line with equation y = x - 1 intersects the circle with equation $(x-5)^2 + (y-4)^2 = 18$ at two distinct points. Find the coordinates of the two points of intersection.

(5 marks)

Medium Questions

1 A circle has centre (6, -5) and goes through the point (1, 7). Find the equation of the

2 (a) Show that $x^2 + y^2 + 2x - 6y + 9 = 0$ can be written in the form $(x - a)^2 + (y - b)^2 = r^2$, where a, b and r are integers to be found.

(2 marks)

(b) Hence write down the centre and radius of the circle with equation $x^2 + y^2 + 2x - 6y + 9 = 0$.

(2 marks)

- 3 The line x + y = -7 meets the circle with equation $(x 1)^2 + (y 2)^2 = 50$.
 - (i) Show that the line and circle meet at one point only.
 - Find the coordinates of the point of intersection. (ii)

(4 marks)

4 The line 7x + y = -6 intersects the circle $(x-2)^2 + (y-5)^2 = 25$ at the points A and B. Find the coordinates of A and B.

5 (a)	A circle $\it C$ has centre (-4, 1) and passes through the point $\it P$ (0, 3).
	Find an equation for the circle $\it C$.
	(4 marks
(b)	Find an equation for the tangent to the circle at P .
(6)	Time an equation for the tangent to the circle at 1.
	(3 marks

6 (a) The points A(3, 5), B(5, 3) and C(9, 7) lie on a circle.

Show that triangle ABC is a right-angle triangle.

(2 marks)

(b) Explain why the line segment AC must be the diameter of the circle.

(1 mark)

(c) Hence find the equation of the circle.

(4 marks)

7 C_2 Circles C_1 , C_2 and C_3 all have their centres on the x-axis.

Circle C_1 has equation $(x+7)^2 + y^2 = 4$.

Circle C_3 has equation $x^2 + y^2 - 10x + 16 = 0$.

Circles $\,C_1^{}\,$ and $\,C_2^{}\,$ touch at point A , and circles $\,C_2^{}\,$ and $\,C_3^{}\,$ touch at point B .

Find the coordinates of the centre of circle $\,C_{\!_{2}}.\,$

(6 marks)

8 (a) A circle has equation $x^2 + y^2 - 12x + 14y = -68$.

The lines \boldsymbol{I}_1 and \boldsymbol{I}_2 are both tangents to the circle, and they intersect at the origin.

Explain why the equations for l_1 and l_2 must each be in the form y = mx, where m is the gradient of the line.

(1 mark)

(b) Show that the gradients of \boldsymbol{I}_1 and \boldsymbol{I}_2 must be the solutions to the equation

$$19m^2 + 84m + 32 = 0$$
.

(c)	Hence find the equations o	f $I^{}_{ m l}$ and	d $I_{\!_{2}}$, giving your answers in the form y	= <i>mx</i>
				(2 marks)

Hard Questions

1 The points A(-3, 1) and B(3, -7) are the two endpoints of the diameter AB of a circle. Find the equation of the circle.

(5 marks)

2 (a) Show that $x^2 + y^2 + 5x - 2y - 5 = 0$ can be written in the form $(x - a)^2 + (y - b)^2 = r^2$, where a, b and r are constants to be found.

(2 marks)

(b) Hence write down the centre and radius of the circle with equation $x^2 + y^2 + 5x - 2y - 5 = 0$.

(2 marks)

- **3** The line y + 2x = 11 meets the circle with equation $x^2 + y^2 + 6x 14y = -38$.
 - (i) Show that the line and circle meet at one point only.
 - (ii) Find the coordinates of the point of intersection.

(4 marks)

4 The line x + 5y + 22 = 0 intersects the circle $x^2 + y^2 + 4x + 8y - 6 = 0$ at the points Aand B. Find the coordinates of A and B

5 (a)	A circle $\it C$ has centre (-2, 3) and passes through the point $\it P$ (6, -3).
	Find an equation for the circle $\it C$.
	(4 marks)
(b)	Find an equation for the tangent to the circle at <i>P</i> .
` ,	
	(3 marks)
	(5 marks)

6 (a)	The points $A(-3, 6)$, $B(5, -4)$ and $C(6, 5)$ lie on a circle.
	Show that $\angle ACB = 90^{\circ}$.

(2 marks)

(b) Deduce a geometrical property of the line segment *AB*.

(1 mark)

(c) Hence find the equation of the circle.

7 (a) Triangle ABC has vertices A(-8, 1), B(12, 16) and C(12, 1). A circle with equation $(x-7)^2 + (y-6)^2 = 25$ touches Triangle ABC at the three points P, Q and R, as shown in the diagram below:

Write down the coordinates of points R and Q.

(2 marks)

(b) Find the coordinates of point *P*.

(5 marks)

8 A circle has equation $x^2 + y^2 + 14x - 6y = -41$.

The lines $l_{\rm 1}$ and $l_{\rm 2}$ are both tangents to the circle, and they intersect at the point (0, 14).

Find the equations of l_1 and l_2 , giving your answers in the form y = mx + c.

(7 marks)

Very Hard Questions

1 The points A(2, -21) and B(-5, 3) are the two endpoints of the diameter AB of a circle. Find the equation of the circle in the form $ax^2 + ay^2 + bx + cy + d = 0$, where a, b, cand d are integers to be found.

(6 marks)

2 Find the centre and radius of the circle with equation $x^2 + y^2 + x - 3y + 2 = 0$.

(4 marks)

3 The line x + y = c intersects the circle $x^2 + y^2 - 6x + 10y - 16 = 0$ at exactly two points. Find the range of possible values of c.

(7 n	nar	ks)
------	-----	-----

4 The points A (-2, 3), B (0, 6) and C(k, -1) lie on a circle, where BC is the diameter of the circle.

Find the value of k.

(4 marks)

5 A circle C has equation $x^2 + y^2 - 10x - 4y + 19 = 0$. Point P lies on the circle, and the tangent to the circle at point P has a gradient of -3. Find the two possible sets of coordinates for point P.

(7 marks)

6 The points A(4, 6), B(7, 2) and C(12, 12) lie on a circle.

Find the equation of the circle.

(7 marks)

7 A circle has equation $x^2 + y^2 + 4x + 12y = -23$.

The lines ${\cal I}_1$ and ${\cal I}_2$ are both tangents to the circle, and they intersect at the point (5, 0).

Find the equations of I_1 and I_2 , giving your answers in the form y = mx + c.

(8 marks)

8 The diagram below shows circles $\,C_1^{}$ and $\,C_2^{}$ which intersect at the two points A and B. Circle C_1 has equation $x^2 + y^2 - 16x - 10y + 39 = 0$, and points A and B lie along the line with equation 3x - y = -1. Circle C_2 also passes through the point (-13, 2).

Find an equation of circle ${\cal C}_{\!_2}.$

(11 marks)

