CAP4770/5771 Introduction to Data Science Fall 2016

University of Florida, CISE Department Prof. Daisy Zhe Wang

Logistics

- Lab 4 grades and keys released
- Lab 5 material released last Friday, due this Thursday 11:59pm
 - -JAVA + AWS/EMR
- Lab 5 in class this Wed.
 - Extra prep: AWS, EMR setup and tutorial
- NIST DSE Introduction + QA this Friday
- No office hour this Wed.

Distributed/Parallel Computing

Distributed Files Systems

Map-Reduce Programming Model

Text Processing, Classification and NLP

Basic Text Processing
Classification
Information Extraction

- Information Extraction (IE)
 - Extracting existing facts from unstructured or loosely structured text into a structured form (e.g., KBP)
- Information Retrieval (IR)
 - Finding documents relevant to a user query (e.g., Search)
- Named Entity Recognition (NER)
 - Discovery of groups of textual mentions that belong to certain semantic class (e.g., PER, ORG)
- Natural Language Processing (NLP)
 - Computational methods for text processing based on linguistically sound principles
 - Clinical NLP NLP for the clinical narrative
 - Biomedical NLP NLP for the clinical narrative and biomedical literature

Problems that can be solved by NLP Techniques

- Mostly Solved
 - Spam filtering, POS tagging, NER
 - IR, spelling correction
- Making Good Progress
 - Sentiment analysis, IE (relations, events)
 - WSD, Parsing, MT, coreference
- Still Hard
 - QA, Dialog
 - Paraphrase, summarization

Main classes of NLP techniques

 Basic Text Processing: Segmentation, Normalization, POS Tagging...

 Classification: Bag of Words, Ngrams Model, Naïve Bayes...

 Information Extraction: Named Entity Recognition, Relation Extraction, Event Extraction...

```
I saw the nurse with the doctor.

w1 w2 w3 w4 w5 w6 w7

pronoun verb article noun prep article noun
```

Mr. Smith feels dizzy and has a cold sweat.

Classification: Example

- Effectiveness of medication:
 - Classes: High, Moderate, Low

"I feel much better after taking the medicine for 1 month with more energy and less pain...

"I do not feel any better after taking the medicine. I have stopped using it...

"I feel a little better with the medication and I will try it a little longer to see...

Information Extraction: Example

- "Tamoxifen 20 mg po daily started on March 1, 2005."
 - Drug (with predefined schema/attributes)
 - Text: Tamoxifen
 - Associated code: C0351245
 - Strength: 20 mg
 - Start date: March 1, 2005
 - End date: null
 - Dosage: 1.0
 - Frequency: 1.0
 - Frequency unit: daily
 - Duration: null
 - Route: Enteral Oral
 - Form: null
 - Status: current
 - Change Status: no change
 - Certainty: null

NLP methods

- Rule-based
 - Regular Expression Pattern matching (e.g., "\b(lipitor|Lipitor)\b")
 - Dictionaries (e.g., drug names, ICD10 codes)
- Statistical Machine Learning
 - HMM: Hidden Markov Models
 - Linear-CRF: Linear-Chain Conditional Random Fields
 - Viterbi algorithms
- Hybrid

- NLP Tasks and Techniques
 - Regular Expression
 - Normalization, POS, NER, etc.
 - Sequence Labeling

Regular expressions

- A formal language for specifying text strings
- How can we search for any of these?
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks

Regular Expressions: Disjunctions

Letters inside square brackets []

Pattern	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

Ranges [A-Z]

Pattern	Matches	
[A-Z]	An upper case letter	Drenched Blossoms
[a-z]	A lower case letter	my beans were impatient
[0-9]	A single digit	Chapter 1: Down the Rabbit Hole

Regular Expressions: Negation in Disjunction

- Negations [^Ss]
 - Carat means negation only when first in []

Pattern	Matches	
[^A-Z]	Not an upper case letter	O <u>v</u> fn pripetchik
[^Ss]	Neither 'S' nor 's'	<pre>I have no exquisite reason</pre>
[^e^]	Neither e nor ^	Look here
a^b	The pattern a carat b	Look up <u>a^b</u> now

Regular Expressions: More Disjunction

- Woodchucks is another name for groundhog!
- The pipe | for disjunction

Pattern	Matches
groundhog woodchuck	
yours mine	yours
a b c	= [abc]
[gG]roundhog [Ww]oodchuck	

Photo D. Fletcher

Wildcards in Regular Expressions:

?

*

+

Pattern	Matches	
colou?r	Optional previous char	<u>color</u> <u>colour</u>
oo*h!	0 or more of previous char	oh! ooh! oooh!
o+h!	1 or more of previous char	oh! ooh! oooh!
baa+		baa baaa baaaa
beg.n		begin begun began

Stephen C Kleene

Kleene *, Kleene +

Anchors in Regular Expressions: ^ \$

Pattern	Matches
^[A-Z]	Palo Alto
^[^A-Za- z]	1 "Hello"
\.\$	The end.
.\$	The end? The end!

 Find me all instances of the word "the" in a text.

```
the Misses capitalized examples [tT]\,he \\ Incorrectly \, returns \, other \\ or \, theology \\ [^a-zA-Z] [tT]\,he [^a-zA-Z]
```

- The process we just went through was based on fixing two kinds of errors
 - Matching strings that we should not have matched (there, then, other)
 - False positives (Type I)
 - Not matching things that we should have matched (The)
 - False negatives (Type II)

- In NLP/ML we are always dealing with these kinds of errors.
- Reducing the error rate for an application almost always involves both:
 - Increasing accuracy or precision (minimizing false positives)
 - Increasing coverage or recall (minimizing false negatives).

Regular Expression vs. Machine Learning in NLP

- Regular expressions play a surprisingly large role
 - Sophisticated sequences of regular expressions are often the first model for any text processing text
- For many hard tasks, we use machine learning classifiers
 - But regular expressions are used as features in the classifiers
 - Can be very useful in capturing generalizations

Basic Text Processing: Text Normalization

- Every NLP task needs to do text normalization:
 - Segmenting/tokenizing words in running text
 - 2. Normalizing word formats (e.g., lemmatization, stemming)
 - 3. Segmenting sentences in running text
 - 1. Regular Expression
 - 2. Classifier (e.g., decision tree)

Basic Text Processing: POS Tagging and Chunking

- UPenn Treebank POS: noun, verb, adjective, adverb, pronoun, preposition, conjunction
 - https://www.ling.upenn.edu/courses/Fall_2 003/ling001/penn_treebank_pos.html
- Regular Expression and Dictionary Based POS Tagging
- Machine Learning Sequence Models (e.g., CRF, HMM)

Information Extraction and Named Entity Recognition

Introducing the tasks:

Getting simple structured information out of text

Information Extraction

- Information extraction (IE) systems
 - Find and understand limited relevant parts of texts
 - Gather information from many pieces of text
 - Produce a structured representation of relevant information:
 - relations (in the database sense), a.k.a.,
 - a knowledge base
 - Goals:
 - 1. Organize information so that it is useful to people
 - Put information in a semantically precise form that allows further inferences to be made by computer algorithms

Information Extraction (IE)

- IE systems extract clear, factual information
 - Roughly: Who did what to whom when?
- E.g.,
 - Gathering earnings, profits, board members, headquarters, etc. from company reports
 - The headquarters of BHP Billiton Limited, and the global headquarters of the combined BHP Billiton Group, are located in Melbourne, Australia.
 - headquarters("BHP Biliton Limited", "Melbourne, Australia")
 - Learn drug-gene-product interactions from medical research literature

6 cTakes object templates with their attributes

Medication CEM template

associatedCode Change_status Conditional

Dosage Duration

End date

Form

Frequency

Generic

Negation_indicator

Route

Start_date

Strength Subject

Uncertainty indicator

Procedure CEM template

associatedCode

Body_laterality

Body_location

Body side

Conditional

Device

End date

Generic

Method

Negation_indicator

Relative_temporal_context

Start_date

Subject

Uncertainty_indicator

Sign/Symptom CEM template

Alleviating_factor associatedCode

Body laterality

Body location

Body_side

Conditional

Course

Duration

End_time

Exacerbating factor

Generic

Negation_indicator

Relative temporal context

Severity

Start_time

Subject

Uncertainty_indicator

Lab CEI/I template

, Abnormal_interpretation

associatedCode

Conditional

Delta_flag

Estimated_flag

Generic

Lab value

Negation_indicator

Ordinal interpretation

Reference_range_narrative

Subject

Uncertainty_indicator

Disease/Disorder CEM template

Alleviating factor

Associated_sign_or_symptom

associatedCode

Body_laterality

Body_location

Body_side

Conditional

Course

Duration

End time

Exacerbating_factor

Generic

Negation indicator

Relative temporal context

Severity

Start time

Subject

Uncertainty indicator

Anatomical Site CEM template

associatedCode

Body_laterality

Body_site

Conditional

Generic

Negation_indicator

Subject

Uncertainty indicator

Low-level information extraction

 Is now available – and I think popular – in applications like Apple or Google mail, and web indexing

The Los Altos Robotics Board of Directors is having a potluck dinner Friday

January 6, 2012

Create New iCal Event...

Show This Date in iCal...

Copy

Create New iCal Event...

Show This Date in iCal...

Copy

Often seems to be based on regular expressions and name lists

Low-level information extraction

bhp billiton headquarters

Search

About 123,000 results (0.23 seconds)

Best guess for BHP Billiton Ltd. Headquarters is **Melbourne**, **London** Everything

Mentioned on at least 9 websites including wikipedia.org, bhpbilliton.com and

bhpbilliton.com - Feedback

Maps

News

Images

BHP Billiton - Wikipedia, the free encyclopedia

Videos en.wikipedia.org/wiki/BHP_Billiton

Merger of BHP & Billiton 2001 (creation of a DLC). Headquarters, Melbourne,

Australia (BHP Billiton Limited and BHP Billiton Group) London, United Kingdom ...

History - Corporate affairs - Operations - Accidents

Shopping

- A very important sub-task: find and classify names in text, for example:
 - The decision by the independent MP Andrew Wilkie to withdraw his support for the minority Labor government sounded dramatic but it should not further threaten its stability. When, after the 2010 election, Wilkie, Rob Oakeshott, Tony Windsor and the Greens agreed to support Labor, they gave just two guarantees: confidence and supply.

- A very important sub-task: find and classify names in text, for example:
 - The decision by the independent MP Andrew Wilkie to withdraw his support for the minority Labor government sounded dramatic but it should not further threaten its stability. When, after the 2010 election, Wilkie, Rob Oakeshott, Tony Windsor and the Greens agreed to support Labor, they gave just two guarantees: confidence and supply.

- A very important sub-task: find and classify names in text, for example:
 - The decision by the independent MP Andrew Wilkie to withdraw his support for the minority Labor government sounded dramatic but it should not further threaten its stability. When, after the 2010 election, Wilkie, Rob Oakeshott, Tony Windsor and the Greens agreed to support Labor, they gave just two guarantees: confidence and supply.

Person

Location

Organization

• The uses:

- Named entities can be indexed, linked off, etc.
- Sentiment can be attributed to companies or products
- A lot of IE relations are associations between named entities.
- For question answering, answers are often named entities.

Concretely:

- Many web pages tag various entities, with links to bio, wikipedia or topic pages, etc.
 - Reuters' OpenCalais, Evri, AlchemyAPI, Yahoo's Term Extraction, ...
- Apple/Google/Microsoft/... smart recognizers for document content

The Named Entity Recognition Task

- Task: Extract named entities in a text
- Sequence labeling: label each token with ORG/PER/.../O
- One way you could evaluate is per-token

```
Foreign
             ORG
Ministry
             ORG
                        Standard
spokesman
             \mathbf{O}
                        evaluation
             PER
Shen
                        is per entity,
Guofang
             PER
                        not per
told
                        token
Reuters
             ORG
```

Sequence Models for Named Entity Recognition

The ML sequence model approach to NFR

Training

- 1. Collect a set of representative training documents
- 2. Label each token for its entity class or other (O)
- 3. Design feature extractors appropriate to the text and classes
- 4. Train a sequence classifier to predict the labels from the data

Testing

- 1. Receive a set of testing documents
- 2. Run sequence model inference to label each token
- 3. Appropriately output the recognized entities
- 4. Evaluate precision/recall i.e., type I/II errors

Encoding classes for sequence labeling

IO encoding IOB encoding

Fred PER B-PER

showed O O

Sue PER B-PER

Mengqiu PER B-PER

Huang PER I-PER

's O O

new O O

painting O O

Features for sequence labeling

- Words
 - Current word: caps, regular expressions, digits, dictionaries, substrings
 - Previous/next word (context)
- Other kinds of inferred linguistic classification
 - Part-of-speech tags
- Label context
 - Previous (and perhaps next) label

Features: Word substrings

Features: Word shapes

Word Shapes

 Map words to simplified representation that encodes attributes such as length, capitalization, numerals, Greek letters, internal punctuation, etc.

Varicella-	Xx-
zoster	XXX
mRNA	xXXX
CPA1	XXXd