Predictions of pH change due to anaerobic digestion

Sasha D. Hafner

26 June, 2023

Overview

This file uses a speciation model from https://github.com/sashahafner/NH3-RTM (v1.0, https://github.com/sashahafner/NH3-RTM/releases/tag/v1.0) to predict effects of differences in animal slurry chemical composition on pH.

Prep

Load all functions.

```
source('NH3_mods.R')
```

Use eqSpec to calculate equilibrium speciation.

1. Raw pig slurry

```
Define composition.
totp1 <- c(H. = 0.0, NH3 = 0.208, H2CO3 = 0.112, K. = 0.0, Na. = 0.0, Cl. = 0.0, HAc = 0.21)
Calculate pH.
eqp1 <- eqSpec(tot = totp1, temp.c = 18, of = 'all')
-eqp1$1.a[1]
##
         Η.
## 5.554241
pH is 5.6, much lower than obs. Adjust with KOH.
eqp2 <- eqSpec(tot = totp1, temp.c = 18, pH = 6.87, adjpH = 'KOH', of = 'all')
totp2 <- eqp2$tot
totp2
##
                       NH3
                                  H2C03
                                                                         Cl.
            Η.
                                                             Na.
## -0.09265512 0.20800000 0.11200000 0.09265512 0.00000000 0.00000000
##
           HAc
  0.21000000
```

[1] 0.5331638

eqp2\$p.C02

That's a lot of KOH.

Check CO2 partial pressure for fun.

Try reducing VFA instead.

```
eqp3 <- eqSpec(tot = totp1, temp.c = 18, pH = 6.87, adjpH = 'HAc', of = 'all')
totp3 <- eqp3$tot
totp3</pre>
```

H. NH3 H2CO3 K. Na. Cl. HAC ## 0.000000 0.208000 0.112000 0.000000 0.000000 0.000000 0.117785 That's plausible.

2. Raw cattle slurry

```
Define composition.
```

```
totc1 <- c(H. = 0.0, NH3 = 0.149, H2CO3 = 0.129, K. = 0.0, Na. = 0.0, Cl. = 0.0, HAc = 0.193)
Calculate pH.
eqc1 <- eqSpec(tot = totc1, temp.c = 18, of = 'all')
-eqc1$1.a[1]
##
         Η.
## 5.055505
pH is 5.1, even lower than obs was for pig. Adjust with KOH.
eqc2 <- eqSpec(tot = totc1, temp.c = 18, pH = 6.82, adjpH = 'KOH', of = 'all')
totc2 <- eqc2$tot
totc2
##
                      NH3
                               H2C03
                                                                    Cl.
                                                                               HAc
                                                        Na.
## -0.1459859 0.1490000 0.1290000 0.1459859 0.0000000 0.0000000 0.1930000
That's a ton of KOH. Try reducing VFA instead.
eqc3 <- eqSpec(tot = totc1, temp.c = 18, pH = 6.82, adjpH = 'HAc', of = 'all')
totc3 <- eqc3$tot
totc3
                               H2C03
                     NH3
                                              Κ.
                                                        Na.
                                                                    Cl.
                                                                               HAc
## 0.00000000 0.14900000 0.12900000 0.00000000 0.00000000 0.00000000 0.04812209
That's plausible.
```

3. Digestate

Define composition. 1/10th as much TIC.

```
totd1 \leftarrow c(H. = 0.0, NH3 = 0.297, H2C03 = 0.191, K. = 0.0, Na. = 0.0, Cl. = 0.0, HAc = 0.019)
```

Calculate pH.

```
eqd1 <- eqSpec(tot = totd1, temp.c = 18, of = 'all')
-eqd1$1.a[1]</pre>
```

H. ## 9.103265

pH 9.1. Clearly these differences in composition are more than enough to explain the differences in pH.

4. Removing VFA from raw slurry

What effect does removing VFA have? First pig.

```
totp4 <- totp3
totp4['HAc'] \leftarrow 0
totp4
           NH3 H2CO3
                                     Cl.
                         Κ.
                               Na.
## 0.000 0.208 0.112 0.000 0.000 0.000 0.000
eqr1 <- eqSpec(tot = totp4, temp.c = 18, of = 'all')
-eqr1$1.a[1]
##
         Η.
## 9.379774
Plenty.
Then cattle.
totc4 <- totc3
totc4['HAc'] <- 0
totc4
##
           NH3 H2CO3
                         Κ.
                               Na.
                                     Cl.
## 0.000 0.149 0.129 0.000 0.000 0.000 0.000
eqr2 <- eqSpec(tot = totc4, temp.c = 18, of = 'all')
-eqr2$1.a[1]
##
## 8.672005
```

Conclusions

Plenty of effect here too.

- 1. We cannot completely explain observed pH values of raw slurry or digestate, but this isn't too worrying because we don't have complete information on composition.
- 2. Observed differences in VFA and TAN in raw vs. digested slurry are more than enough to explain the observed pH difference.
- 3. Simply removing raw slurry VFA is enough to explain the observed pH differences.