2021 - PHY 981 - Homework set 14 (due Apr 25)

- 1. link to lecture notes link to nushellx.zip link to toi.zip link to mingw-w64.zip
- 2. Read Chapters 35-36.
- 3. For ^{20}Ne in the $(0d_{5/2},1s_{1/2})$ model space the proton OBTD for $\mathbf{0}_1^+$ to $\mathbf{2}_1^+$ are 0.376 for $0\mathbf{d}_{5/2}\text{-}0\mathbf{d}_{5/2}$ 0.351 for $1\mathbf{s}_{1/2}\text{-}0\mathbf{d}_{5/2}$ 0.309 for $0\mathbf{d}_{5/2}\text{-}1\mathbf{s}_{0/2}$

What is the B(E2) using $e_p = 1.5$ and $e_n = 0.5$? Use $\hbar\omega = 14$ MeV.

- 4. How does the result of the previous problem compare with that obtained in the full sd model space with the USDB Hamiltonian and $e_p = 1.5$ and $e_n = 0.5$?
- 5. How does these results for $^{20}\mathrm{Ne}$ compare to experiment.
- 6. Calcualte the gamma-decay scheme for 21 Ne in the sd model space and the USDB Hamiltonian for J=1/2 to 9/2.
- 7. How to the calculated lifetimes of the first 5 levels compare to experiment?