MATH 2130 – Tutorial Problem Solutions, Thu Mar 29

Applications of Double Integrals

Example. Use polar coordinates to find the second moment of area of a disk of radius R about a line tangent to the disk.

Solution. Choose xy-axes so that the center of the disk is at the origin. Then the disk is given by $x^2 + y^2 \le R^2$. By rotating about the origin if necessary, assume that the equation of the tangent line is x = -R.

The perpendicular distance between the line x = -R and any point (x, y) within the disk is x + R. Therefore the second moment of area about the line is

$$I = \iint_{disk} (x+R)^2 dA.$$

Now we convert to polar coordinates. The disk lies within $0 \le \theta \le 2\pi$ and $0 \le r \le R$. In polar coordinates, $x = r \cos \theta$, so

$$(x+R)^2 = (r\cos\theta + R)^2 = r^2\cos^2\theta + 2Rr\cos\theta + R^2.$$

Thus

$$I = \int_0^{2\pi} \int_0^R (r^2 \cos^2 \theta + 2Rr \cos \theta + R^2) r \, dr \, d\theta$$

= $\int_0^{2\pi} \int_0^R r^3 \cos^2 \theta \, dr \, d\theta + 2R \int_0^{2\pi} \int_0^R r^2 \cos \theta \, dr \, d\theta$
+ $R^2 \int_0^{2\pi} \int_0^R r \, dr \, d\theta$.

The third term in the sum is

$$R^{2} \int_{0}^{2\pi} \int_{0}^{R} r \, dr \, d\theta = R^{2} \int_{0}^{2\pi} \frac{1}{2} R^{2} \, d\theta = \pi R^{2}.$$

The second term is

$$2R \int_0^{2\pi} \int_0^R r^2 \cos \theta \, dr \, d\theta = 2R \int_0^R r^2 \int_0^{2\pi} \cos \theta \, d\theta \, dr = 0,$$

since $\int_0^{2\pi} \cos\theta \, d\theta = 0$. Lastly, the first term is

$$\int_0^{2\pi} \int_0^R r^3 \cos^2 \theta \, dr \, d\theta = \int_0^{2\pi} \frac{1}{4} R^4 \cos^2 \theta \, d\theta$$
$$= \frac{1}{4} R^4 \int_0^{2\pi} \frac{\cos 2\theta + 1}{2} \, d\theta$$
$$= \frac{\pi}{4} R^4.$$

Thus the second moment of area is

$$I = \pi R^4 + \frac{\pi}{4}R^4 = \frac{5\pi}{4}R^4.$$

This integral can also be performed in Cartesian coordinates, but one of the terms requires a trig substitution.

Example. Find the area enclosed by the curve $r = 1 + \cos \theta$. Then find its centroid.

Solution. If $r = 1 + \cos \theta$, then r takes values between 0 and 2.

- The positive x-axis corresponds to $\theta = 0$, in which case r = 2. Therefore the point (x = 2, y = 0) is on the curve.
- The positive y-axis corresponds to $\theta = \frac{\pi}{2}$, in which case r = 1. Similarly, the negative y-axis corresponds to $\theta = \frac{3\pi}{2}$, in which case r = 1. Therefore the points $(x = 0, y = \pm 1)$ are on the curve.
- The negative x-axis corresponds to $\theta = \pi$, in which case r = 0. Therefore the point (0,0) is on the curve.

When these points are connected, they form a closed curve that bends inward to create a cusp at the origin. This is the region R whose area we are asked to find.

The region lies within $0 \le \theta \le 2\pi$. At each value of θ , $0 \le r \le 1 + \cos \theta$. Thus the area of the region is

$$A = \iint_{R} dA$$

$$= \int_{0}^{2\pi} \int_{0}^{1+\cos\theta} r \, dr \, d\theta$$

$$= \int_{0}^{2\pi} \frac{1}{2} (1+\cos\theta)^{2} \, d\theta$$

$$= \frac{1}{2} \int_{0}^{2\pi} (1+2\cos\theta+\cos^{2}\theta) \, d\theta$$

$$= \frac{1}{2} (2\pi+0+\pi)$$

$$= \frac{3\pi}{2}.$$

We could also say, by symmetry, that the total area is twice the area lying within $0 \le \theta \le \pi$.

The centroid is the center of mass in the special case where the density of the region is 1 everywhere. Therefore the centroid is the point $(\overline{x}, \overline{y})$ where

$$\overline{x} = \frac{1}{A} \iint_R x \, dA, \quad \overline{y} = \frac{1}{A} \iint_R y \, dA.$$

Since the region is symmetric about the x-axis, its centroid must lie on the x-axis: that is, $\overline{y} = 0$.

To find \overline{x} , we must evaluate

$$\iint_{R} x \, dA = \int_{0}^{2\pi} \int_{0}^{1+\cos\theta} r \cos\theta r \, dr \, d\theta$$
$$= \int_{0}^{2\pi} \frac{1}{3} (1+\cos\theta)^{3} \cos\theta \, d\theta$$
$$= \frac{1}{3} \int_{0}^{2\pi} \left(\cos\theta + 3\cos^{2}\theta + 3\cos^{3}\theta + \cos^{4}\theta\right) \, d\theta.$$

The terms containing an odd power of $\cos \theta$ must vanish. The remaining terms are

$$\frac{1}{3} \int_0^{2\pi} 3\cos^2\theta \, d\theta = \pi,$$

and

$$\frac{1}{3} \int_0^{2\pi} \cos^4 \theta \, d\theta = \frac{1}{3} \int_0^{2\pi} \left(\frac{\cos 2\theta + 1}{2} \right)^2 \, d\theta$$
$$= \frac{1}{12} \int_0^{2\pi} \left(1 + 2\cos 2\theta + \cos^2 2\theta \right) \, d\theta$$
$$= \frac{\pi}{6} + \frac{1}{12} \int_0^{2\pi} \left(\frac{1 + \cos 4\theta}{2} \right) \, d\theta$$
$$= \frac{\pi}{6} + \frac{\pi}{12} = \frac{\pi}{4}.$$

Therefore

$$\overline{x} = \frac{1}{A} \left(\pi + \frac{\pi}{4} \right) = \frac{2}{3\pi} \frac{5\pi}{4} = \frac{5}{6}.$$

Triple Integrals

Example. Set up a triple iterated integral for the integral of a continuous function f(x, y, z) over the volume bounded by the surfaces $2z = x^2 + y^2$ and $2x = y^2 + z^2$.

Solution. (This will not make much sense unless you sketch the diagrams.) The surface $2z = x^2 + y^2$ is a paraboloid opening in the +z-direction, and the surface $2x = y^2 + z^2$ is a paraboloid opening in the +x-direction. The volume they enclose has $x \ge 0$ and $z \ge 0$, and is symmetric under $y \mapsto -y$.

Let's try different values of y. If y = 0, then in the xz-plane we have the parabolas $2z = x^2$ (absolute minimum z = 0) and $2x = z^2$ (absolute minimum x = 0). They intersect at the points (0,0) and (2,2).

If y > 0, the parabolas in the xz-plane become $2z = x^2 + y^2$ (absolute minimum $z = \frac{1}{2}y^2$) and $2x = z^2 + y^2$ (absolute minimum $x = \frac{1}{2}y^2$). That is, as y increases, the parabolas move further apart. Eventually, when y is large enough, they will not intersect at all. That value of y is a boundary for the volume.

To find the maximum value of y, we solve the system $2z = x^2 + y^2$, $2x = z^2 + y^2$ for x and z, viewing y as a constant. Subtracting one equation from the other and rearranging yields

$$z^2 + 2z = x^2 + 2x.$$

Adding 1 to both sides lets us complete the square:

$$(z+1)^2 = (x+1)^2,$$

which implies that z + 1 = x + 1 or z + 1 = -(x + 1). That is, z = x or z = -x - 2. Substitute z = x into the first equation:

$$x^2 - 2x + y^2 = 0,$$

which has roots

$$x = \frac{2 \pm \sqrt{4 - 4y^2}}{2} = 1 \pm \sqrt{1 - y^2}.$$

A root exists as long as $y^2 \le 1$. Thus $-1 \le y \le 1$.

Now substitute z = -x - 2 into the first equation:

$$x^2 + 2x + y^2 + 4 = 0,$$

which has roots

$$x = \frac{-2 \pm \sqrt{4 - 4(y^2 + 4)}}{2} = -1 \pm \sqrt{-y^2 - 3}.$$

These are not real numbers for any values of y.

Conclusion: when $-1 \le y \le 1$, the points of intersection between the parabolas occur at $x = z = 1 + \sqrt{1 - y^2}$ and $x = z = 1 - \sqrt{1 - y^2}$.

Fix a value of y, $-1 \le y \le 1$. Then $1 - \sqrt{1 - y^2} \le x \le 1 + \sqrt{1 - y^2}$. At each value of x, z is bounded below by the upward-opening parabola, and bounded above by the rightward-opening parabola. That is, $\frac{1}{2}(x^2 + y^2) \le z \le \sqrt{2x - y^2}$. Finally, a triple iterated integral over this volume is

$$\int_{-1}^{1} \int_{1-\sqrt{1-y^2}}^{1+\sqrt{1-y^2}} \int_{(x^2+y^2)/2}^{\sqrt{2x-y^2}} f(x,y,z) \, dz \, dx \, dy.$$