초어핵인자억제유전자(Ciikb) cDNA의 배렬특성

윤금성, 장성훈

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《기초과학부문들을 발전시켜야 나라의 과학기술수준을 빨리 높일수 있고 인민경제 여러 분야에서 나서는 과학기술적문제들을 원만히 풀수 있으며 과학기술을 주체성있게 발전시켜나갈수 있습니다.》(《김정일선집》 중보판 제10권 485폐지)

유전자의 배렬특성을 밝히는것은 해당 유전자의 기능을 깊이있게 해명하고 실천에 도입하는데 필요한 기초자료를 마련하는데서 큰 의의를 가진다. 우리는 초어의 선천성면역조절에서 중요한 역할을 하는 $i\kappa b$ 유전자의 cDNA배렬에 대한 연구를 하였다.

재료와 방법

1) Ciikb cDNA 전 배렬의 증폭

Ciikb유전자증폭에 리용된 프라이머들은 표와 같다.

SMART cDNA의 합성방법[1]을 리용하여 초어의 두신으로부터 mRNA를 분리한 다음 설명서에 따라 cDNA 전 배렬을 얻어내였다.

10R1(역방향) TCCATGTTTAACAGCACCACC 21 (중국 10IR1(역방향) GGATGATGGCAAGGTGAAGATAC 23 10OR1(역방향) CATTCTGACACTGTTTGATGATCTG 25 10IF1(정방향) GACCCAGGACACCAATCCCTC 21	기/bp 즉부위)	
10IR1(역방향) GGATGATGGCAAGGTGAAGATAC 23 10OR1(역방향) CATTCTGACACTGTTTGATGATCTG 25 10IF1(정방향) GACCCAGGACACCAATCCCTC 21	212	
10OR1(역방향) CATTCTGACACTGTTTGATGATCTG 25 10IF1(정방향) GACCCAGGACACCAATCCCTC 21	·上배렬)	
10OR1(역방향) CATTCTGACACTGTTTGATGATCTG 25 10IF1(정방향) GACCCAGGACACCAATCCCTC 21	5'-말단	
3'-		
100F1(정방향) GGAGGTTTCGTCTGATGATGACTG 24	աերև	
	3'-말단	
Iκb-IF(정방향) GGCAGATGTAAACGCAAAG 19	160	
iκb-IR(역방향) GCCGAAGGTCAGGTGGT 17 (학	날현)	
SMART II(TM)(정방향) AAGCAGTGGTATCAACGCAGAGTACGCGGG 30 5'-	말단	
CDSIII(역방향) AAGCAGTGGTATCAACGCAGAGTAC(T)30V N 57 3'-	말단	

표. $Cii\kappa b$ 유전자증폭에 리용된 프라이머

2) 배렬분석결과의 처리

DNA배렬은 Vector NTI와 DNA star, Cromas프로그람으로 분석하였다.

단백질배렬은 Expasy로, 단백질의 도메인령역은 SMART, TMHMM프로그람으로 분석하였다.

결과 및 론의

SMART cDNA합성방법을 리용하여 5'-비번역배렬과 열린읽기를, 3'-비번역배렬, 폴리A를 포함한 1 407bp의 *Ciiκb*유전자cDNA배렬을 얻어냈다.(결과는 생략) 완성된 *Ciiκb*

cDNA배렬에서 5'-비번역배렬의 크기는 99bp이고 열린읽기틀(ORF)의 크기는 933bp이며 3'-비번역배렬의 크기는 375bp이다.(그림 1)

- 5 5 5 5 5											60 120									
aca		cat	tyc	. cya	.ccg	cya	cac	. cgc	.yay	cyt	cyc	yac	M	D	V	H	R.	A.	A.	7
ATA	ATG	AAC	TAT	'ATG	GAT	TGT	'AA'I	GTT	'GAT	GAA	ATG	GAT	ACG	AAA	AAC	AGG	SAAA	.GTG	CAA	180
I	M	N	Y	M	D	С	N	v	D	E	M	D	T	K	N	R	K	v	Q	27
CAC	TGC	GAG	GAT	'CGC	GTC	GAT	AGC	GGC	GTG	GAC	TCG	СТА	AAG	GAG	GAT	'GAG	TAT	AGG	AAA	240
Н	С	E	D	R	V	D	s	G	V	D	s	L	K	E	D	E	Y	R	K	47
ATT	GTG	GAG	GAA	ATG	GAG	AGT	TTG	ACT	TTG	CCA	AAC	CCA	AGT	GCA.	AAT	'CCA	AAG	GGG	ATG	300
I	V	E	E	M	E	s	L	T	L	P	N	P	s	A	N	P	K	G	M	67
TGT	GAA	CCT	TGG	ACG	CAA	GTC	ACT	GAG	GAT	GGA	GAC	ACG	TAT	CTT	CAC	CTT	'GCC	ATC	ATC	360
С	E	P	W	T	Q	V	T	E	D	G	D	T	Y	L	H	L	A	I	I	87
CAC	GAG	GCG	GAA	GAT	'TAT	GCC	ATC	CAG	ATC	ATC.	AAA	CAG	TGT	CAG.	AAT	'GAC	CCA	TTC	TTG	420
H	E	A	E	D	Y	A	I	Q	I	I	K	Q	С	Q	N	D	P	F	L	107
AAC	AGA	.CAG	AAC	AAC	CAA	AGA	CAG	ACT	'GCA	.CTG	CAT	CTC	GCC	GTC.	ATC	ACA	GAA	.CAG	CCA	480
N	R	Q	N	N	Q	R	Q	T	A	L	H	L	A	V	I	T	E	Q	P	127
CAC	ATG	GTG	GAC	AGG	CTG	CTA	AAG	GCC	GGC	TGT	GAT	CCC	CGG	CTG	GTC	GAT	'CAA	AGT	GGA	540
H	M	V	D	R	L	L	K	A	G	С	D	P	R	L	V	D	Q	s	G	147
AAC	ACG	GCC	CTC	CAC	ATC	GCC	TGC	AAA	AGA	.GGG	TCG	CTA	GCT	TGC	TTC	TCA	GTA	.CTC	ACT	600
N	T	A	L	H	I	A	С	K	R	G	s	L	A	С	F	S	V	L	T	167
CAG	ATT	CAG	ACT	'CAG	CAT	CTG	CGC	TCC	ATT	CTC.	ACC	TTC	CCA	AAC	TAC	AGC	GGA	CAT.	ACG	660
Q	I	Q	T	Q	H	L	R	s	I	L	T	F	P	N	Y	s	G	H	T	187
TGT	CTC	CAC	ATA	GCA	GCC	ATT	CAC	AAT	'TAC	CTC	TCA	ATG	GTG	GAG.	AGT	'CTG	GTC	CAG	CTT	720
С	L	H	I	A	A	I	H	N	Y	L	s	M	V	E	s	L	V	Q	L	207
	GCA	GAT		AAC	GCA	AAG	GAG	CAA		AGT								GCC		780
G	A	D	V	N	A	K	E	Q	С	S	G	R	T	s	L	H	L	A	V	227
GAC	CTG	CAG	AAC	CTG	GAA	CTG	GTG	CAC	TTG	CTC	ATT	GCT	TTG	GGT	GCT	'GAT	'GTC	AAC	AGT	840
D	L	Q	N	L	E	L	V	H	L	L	I	A	L	G	A	D	V	N	s	247
CTT	ACC	_	GGT		_	-		_	-	CTG.		TTC			CAG	AAC	AGC	GAG	_	900
L	T	Y	G	G	Y	T	P	Y	H	L	T	F	G	R	Q	N	S	E	I	267
CAG	AGG	CAG	CTT	'TTC	AAC	CGG	ACG	GCC	CAA	.GAG	CTG	AGG	GCG	ATG	CCA	GAG	AGC	GAG	TCG	960
Q	R	Q	L	F	N	R	T	A	Q	E	L	R	A	M	P	E	S	E	s	287
GAG	GAG	AGC	GAC	GAG	GAG	GTT	TCG	TCT	GAT	GAT	GAC	TGT	ATG	TAT	GAC	GAC	ATC	CAG	TTC	1020
E	E	s	D	E	E	V	S	S	D	D	D	С	M	Y	D	D	I	Q	F	307
			TAG	tct	ggc	tat	cag	gac	aac	att	gcc	cat	aat	cca	aag	cag	caa	agg	ctg	1080
С	G	R	-																	311
_		_				_	_	_	_	gta		_							_	1140
	-			_			_	-	-	CCC			_	_					_	1200
		_	-	-		-				tta				_	_		_			1260
gaa	aat	atg	tat	att	ttg	tga	ata	tag	aga	tat	att	ttt	a ta	ttt	gta	aat	aac	tca	aat	1320
gaa	aca	ctt	gtc	aat	aat	gtt	tat	att	cta	tat	att	gca	ctg	tga	aaa	t at	ttt	tta	cat	1380
caa	aaa	aaa	aaa	aaa	aaa	aaa	aaa	aaa												1407

그림 1. $Cii\kappa b$ 유전자의 핵산과 아미노산배렬 번역개시코돈(ATG), 종결코돈(TAG)은 강조체로, 배렬의 불안정성을 보여주는 attttta배렬도 강조체로 표시하였다.

이 유전자에 의하여 암호화되는 단백질은 310개의 아미노산으로 되여있다. 3'-비번역 배렬에는 mRNA배렬의 불안정성을 보여주는 2개의 attttta배렬들이 있다. 선행연구[2]에 의하면 이 배렬은 mRNA가 빠른 속도로 분해되게 하는 기능을 수행한다. BlastP분석에 의하면 번역된 배렬은 이미 밝혀진 IkB단백질들과 상동성이 매우 높았다. 특히 Blastp분석에 의

하면 이 유전자는 줄말고기의 IκB단백질과 상동성(93.6%)이 제일 높았다. 그리하여 이 유전자의 이름을 초어에 있는 iκb유전자의 상동유전자라는 의미에서 Ciiκb유전자로 명명하였다.

SMART와 TMHMM프로그람으로 도메인구조를 분석한데 의하면 *Ciikb*유전자에 의하여 암호화되는 단백질은 6개의 안키린도메인(ANK)을 가지고있다.(그림 2)

정상상태에서 IκB단백질은 NF-κB와 결합되여 불활성화상태에 있다가 신호통로가 활성화되면 IKK 복합체에 의하여 분해되며 이 과정에 활성화된 NF-κB가 핵속에 들어가 면역반응, 염증반응을 비 롯한 여러가지 응답을 일으킨다. 다시말하여 IκB

그림 2. 초어의 핵인자(IkB)의 도메인구조

는 NF-ĸB신호통로를 활성화시키는데서 매우 중요한 작용을 하는 단백질이다.[3]

Ciiκb유전자의 배렬과 구조에 대한 연구결과들은 물고기류에서도 포유동물과 마찬가지로 iκb유전자가 신호통로를 통하여 선천성면역반응을 조절하는 기능을 수행할수 있다는것을 보여준다.

맺 는 말

Сіікb cDNA의 전배렬크기는 1 407bp이고 5'-비번역배렬과 열린읽기를, 3'-비번역배렬의 크기는 각각 99, 933, 474bp이며 310개의 아미노산을 암호화한다.

Ciiκb유전자에 의하여 암호화되는 단백질은 6개의 ANK도메인을 가지고있다.

참 고 문 헌

- [1] J. R. Sambrook; Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, 11 ~25, 2001.
- [2] F. Arenzana-Seisdedos et al.; J. Cell Sci., 10, 369, 2015.
- [3] S. Holger et al.; Diabetes, 55, 2993, 2016.

주체107(2018)년 7월 5일 원고접수

The cDNA Sequence Characteristics of Ciikb Gene from Grass Carp, Ctenopharyngodon idella

Yun Kum Song, Jang Song Hun

The full length of the *Ciikb* cDNA is 1 407 nucleotides(nt). The 5'-untranslated region(UTR) is 99nt and open reading frame is 933nt. The 3'-UTR is 474nt including a poly A tail. 310 amino acid polypeptides are encoded by this gene. The protein encoded by *Ciikb* gene has six ANK domains.

Key words: grass carp, Ctenopharyngodon idella, iκb, gene sequence