OpenFly Telemetry ©

Inertial navigation board OFT001 v1

©2019 Jonas Bjurel

Licenses:

The official OpenFly Telemetry project(s) are all open source. The licensing may vary from GPL 2, GPL 3, Apache, or Creative Commons. As with most hardware projects – such as OFT001 v1 comes with the Creative Commons - CC BY 2.0 license.

Disclaimers:

The use of any HW, SW or instructions from the OpenFly Telemetry open source project, or any references to other art - is at your own risk. No warranties, or legal obligations shall be assumed from the creators – in any way. Flying model planes, drones or other remotely controlled vehicles always impose danger to the surroundings – make all necessary precautions to make sure that no one is in danger even in case the control of your model is lost for whatever reason.

Document Id: OFT001V1_DESC Rev: PA1 1
Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry ©

OpenFly Telemetry overview

OpenFly Telemetry is an open source project aiming to provide telemetry and navigation capabilities for model airplanes and drones through open source hardware and software. It uses various onboard sensor capabilities such as GPS, Accelerometers, Gyroscopes, Magnetometers, Pitot tubes, temperature sensors, battery voltage and current sensors, RPM sensors, etc. to provide the operator or algorithms with data for manual or automated corrective actions. The algorithms are some time autonomous and resides in the model, are sometimes on ground with the receiver or nearby connected devices or are sometimes even in distant clouds.

The OFT modules can also be placed in the module base of the transmitter to enrich the transmitter awareness, e.g. Position, direction and additional communication capabilities such as Bluetooth and WIFI.

Figure 1: OpenFly Telemetry basic idea

Document Id: OFT001V1_DESC Rev: PA1 2 Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry $^{\circ}$

OpenFly Telemetry (OFT) system description

OFT has two basic components: the Ada fruit ESP32 Huzzah feather processor board and the OFT system board. The ESP32 processor board obviously holds the software and algorithms for telemetry and navigation. The system board interfaces with the radio receiver and it's telemetry and servo busses. The system is modular, and you can compose your choice of capabilities by stacking various OFT boards on top of each other.

Figure 2: OpenFly Telemetry system view

OFT is based out of the Ada fruit ESP32 Huzzah feather processor board. This board hosts a ESP32 processor with two 32 bit general cores, 2 float processors and one ultra-low-power co-processor from Esperessif (https://www.espressif.com/). Furthermore, the ESP32 board provides wireless connectivity through Bluetooth and WIFI as well as ensuring continuous power supply through an optional 2S designated LIPO, which feeds the servos and the receiver- should the main supply drain.

The ESP32 mother board connects to several telemetry acquisition boards in a mother-daughter board/shield configurations.

Figure 3: Ada fruit ESP32 Huzzah feather board

Document Id: OFT001V1_DESC Rev: PA1 3 Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry $^{\circ}$

For the on-board use cases (as opposed to the TX bay use case), the bottom most shield in the stack holds the OFT System board. The system board has an FPGA that connects to the radio receiver through the S.PORT for telemetry data and the SBUS for servo output. The FPGA will allow the processor to mix in servo corrections from the processor, transmitting upstream telemetry data, as well as receiving upstream telemetry and servo information from the transmitter.

The system board interconnects with the radio control receiver through its S.PORT and SBUS.

Figure 4: Frsky XR4 2.4 GHz MIMO CDMA receiver with S.PORT- (telemetry) and SBUS (Servos) connections

Document Id: OFT001V1_DESC Rev: PA1 4
Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry ©

The OFT001 v1 Inertial navigation board

The OFT001 v1 Inertial navigation board captures navigational data, such as GPS positioning, 3D acceleration data, 3D Gyroscopic data, 3D Magnetic data, Barometric pressure, Temperature and Humidity. These data are provided to the ESP32 processor card (and any other shield cards) through I2C and RS232. These data will be filtered, processed and transferred by the ESP32 card and the OFT System card FPGA. It is still to be seen if we can/will implement a high-performance Inertial navigation fuse fixed point Kalman filter in the FPGA, or if it is better done in SW?

Figure 5: OFT001 v1 Inertial navigation card overview

The OFT001 v1 card has a L80-M39 GPS with a built-in patch antenna and an optional connector for an external 50 Ohm active antenna; an MP-9250 3D axis Accelerometer, Gyroscope and Magnetometer; and a BMP280 Barometric pressure- humidity- and temperature sensor. The communication with these sensors have been segmented so that the MPU runs on it's own high speed I²C channel allowing fast updates and possibly from a the OFT System card FPGA, the BMP280 on a shared I²C channel with many, while the GPS communication happens over an RS232 serial channel using the NMEA protocol.

There is one green LED indicator for GPS lock, one orange LED indictor for External GPS antenna use, and an RGB LED for generic system status indication driven from the ESP32 CPU board. There are also two push buttons: one which is connected to the overall system reset, and another multipurpose push button intended for system calibration activities.

It is important that OFT001 v1 sits on the top of the mother-daughter board stack (unless an external GPS antenna is used) to achieve a good GPS signal.

Cupper layers have been kept out from ESP32 Bluetooth and WIFI PCB antennas to not deteriorate signal strength.

Document Id: OFT001V1_DESC Rev: PA1 5
Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry ©

Figure 5: OFT001 v1 3D simulation – Front to the right

Figure 6: OFT001 v1 3D simulation – Front to the upper left

Figure 7: OFT001 v1 3D simulation – Back view

OFT001 v1 pin-out

OFT001 12 pin header (J2)	ESP32 HUUZZAH 12 pin header (JP3)	ESP32 silicon	Comments
1 - N/C	VBAT		
2 - N/C	EN		
3 - N/C	VBUS		
4 – RED LED	IO13_A12		Red system status led
5 – BLUE LED	IO12_A11		Blue system status led
6 – GREEN LED	IO27_A10		Green system status led
7 - N/C	IO33_A9		
8 - N/C	IO15_A8		
9 - N/C	IO32_A7		
10 - N/C	I14_A6		
11 - I2C_0_SCL_3V	SCL		Common non-critical I ² C
12 - I2C_0_SDA_3V	SDA		Common non-critical I ² C

OFT001 16 pin header (J3)	ESP32 HUUZZAH 16 pin header (JP1)	ESP32 silicon	Comments
1 – INT_0	IO21		Interrupt from MPU9250
2 - I2C_1_SDA_3V	IO17		Critical MPU I ² C
3 - I2C_1_SCL_3V	IO16		Critical MPU I ² C
4 - N/C	MISO		
5 - N/C	MOSI		
6 - N/C	SCK		
7 - CALIB	A5_IO4		System calibration button
8 -	A4_IO36		L8-M39 GPS UART (NMEA)
UART_1_CLIENT_RXD			
9 -	A3_I39		L8-M39 GPS UART (NMEA)
UART_1_CLIENT_TXD			
10 – N/C	A2_I34		
11 – N/C	A1_DAC1		
12 – N/C	A0_DAC2		
13 - GND	GND		
14 – N/C	N/C		
15 - +3.3V (VDD)	+3.3V		
16 - RESET	RESET		2-Way reset

OFT001 Ext GPS Ant. (J1)	Comments	
1 – AGND	External active GPS antenna ground with VDD DC applied for power feed	
2 – EXTANT	External active GPS antenna signal with +	

Document Id: OFT001V1_DESC Rev: PA1 7
Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry ©

OFT001 v1 addressing

I2CBus	Addr	Function	Comments
0	0x77 (0x76 ¹)	BME280	
1	0x68 (0x69 ²)	MPU9250	

- 1) Alternative address if NULL resistor R4 is mounted
- 2) Alternative address if NULL resistor R7 is mounted

OFT001 v1 operating specifications

Operational conditions:

Parameter	Nom	Max	Min
Voltage	3.3 V	3.6 V	3.0 V
Current	30 mA +	120 mA +	-
Power dissipation	100 mW	400 mW	-
Ambient temp	-	85 degC	-40 degC

GPS antenna operational conditions:

The built in GPS patch antenna provides the following characteristics (probably not really true!?):

Document Id: OFT001V1_DESC Rev: PA1 8 Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry $^{\odot}$

Following external GPS antenna characteristics applies:

Parameter	Value
DC feed:	3.6V – 2.5V
DC current:	???</td
Center frequency:	1575.42MHz
Band width:	>5MHz
VSWR:	<2 (Typ.)
Polarization:	RHCP or Linear
Noise figure:	<1.5dB
Gain (antenna):	>-2dBi
Gain (embedded LNA):	20dB (Typ.)
Total gain:	>18dBi(Typ.)

OFT001 v1 schematics

Document Id: OFT001V1_DESC Rev: PA1 OpenFly Telemetry © Date: 2019-11-15 Author: Jonas Bjurel

OFT001 v1 - third party data sheets

L80-M39 GPS receiver:

http://docs-emea.rs-online.com/webdocs/147d/0900766b8147dbf2.pdf

BME280 Barometric pressure sensor:

https://ae-bst.resource.bosch.com/media/ tech/media/datasheets/BST-BME280-DS002.pdf

MPU9250 9-Axis Accelerometer, Gyroscope and Magenetometer:

http://43zrtwysvxb2gf29r5o0athu-wpengine.netdna-ssl.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf

TRI-color system status LED

https://docs.broadcom.com/docs/AV02-4194EN

GPS status LEDs

https://docs-emea.rs-online.com/webdocs/156b/0900766b8156b2c9.pdf

Document Id: OFT001V1_DESC Rev: PA1 10
Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry ©

OFT001 v1 PCB implementation

KICAD 5.1.4 has been used to develop the schematics and PCB design. It is targeted for a 4 layer FR4 1.6 mm PCB with a minimum of 6 mil inch track width- and spacing, and a tolerance of 10%. Minimum via drills is 0.3 mm.

PCB Stack-up

The PCB stack-up used is the one produced by PCBway (https://www.pcbway.com/orderonline.aspx)

4-layer PCB standard stackup

Figure 9: OFT001 v1 – 4-layer PCB stack-up

Front/top Signal Cupper layer

Figure 10: OFT001 v1 - Front/top Signal Cupper layer

Document Id: OFT001V1_DESC Rev: PA1 11 Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry $^{\circ}$

Back/bottom Signal CU layer

Figure 11: OFT001 v1 - Back/bottom Signal CU layer

Top/front embedded GND CU layer

Figure 12: OFT001 v1 - Top/front embedded GND CU layer

Document Id: OFT001V1_DESC Rev: PA1 12
Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry ©

Back/bottom embedded VDD/3.3V CU layer

Figure 13: OFT001 v1 - Back/bottom embedded VDD/3.3V CU layer

Front mask

Figure 14: OFT001 v1 - Front mask

Front paste

Figure 14: OFT001 v1 – Front paste

Back mask

Figure 15: OFT001 v1 – Back mask

Document Id: OFT001V1_DESC Rev: PA1 14
Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry ©

Front silk

Figure 16: OFT001 v1 – Front silk

Back silk

Figure 17: OFT001 v1 – Back silk

Document Id: OFT001V1_DESC Rev: PA1 15
Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry ©

Various user meta data layers

Figure 18: OFT001 v1 – Various user meta data layers

External GPS antenna Impedance matching

The external GPS antenna trace needs to be carefully impedance matched to 50 ohms in order to get the signal losses low and to avoid reflections. Based on PCBWay PCB substrate stack-up, the top cupper strip thickness (T) is estimated to be 35um (+/- 10%), the distance to next ground layer (H) is estimated to be 0.11 mm (+/- 10%), and the dielectric permittivity in between is estimated to be 4.5 F/m @ 1.5 GHz (I need to recalculate with 4.29 Nominal instead).

With the constraints of 6 mil inch strip widths/spacing we end up with a 0.2 mm (W) strip width, and a 6 mil/0.16 mm (S) horizontal spacing to earth - forming a coplanar wave guide with a ground plane, of roughly 2 mm length (L) matching the 50 Ohm antenna strip impedance.

Figure 19: OFT001 v1 – External GPS antenna layout

With this layout, it is expected that tolerances of non-impedance-controlled PCB manufacturing for this strip to stay in between 41-55.5 Ohms, and losses to be less than 10 mdB.

Since the 1.5Ghz GPS wavelength in cupper is roughly 2 dm (100 times the strip length), a few reflections due to impedance matching imperfections should not degrade the antenna signal significantly.

Document Id: OFT001V1_DESC Rev: PA1 16
Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry ©

Figure 20: OFT001 v1 – External GPS antenna layout – top CU layer

Figure 21: OFT001 v1 – External GPS antenna – Impedance calculations

Document Id: OFT001V1_DESC Rev: PA1 17
Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry ©

Appendix A – ESP32 Mother board reference

Figure 22: Ada fruit ESP32 Huzzah Feather board

Figure 23: Ada fruit ESP32 Huzzah Feather board schematics

Document Id: OFT001V1_DESC Rev: PA1 18
Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry ©

Appendix B – OFT001 v1 Build of material

ref	value5	footprint	datasheet	part	description
	Ext GPS antenna	Open_Telemetry:U.FL_Mole	http://www.molov.com/ndm_doss/sd/734	73412-	FO Ohms MCRE DCR Vertical lack
J1	connector	x_MCRF_73412- 0110 Vertical	http://www.molex.com/pdm_docs/sd/734 120110_sd.pdf	0110	50 Ohms, MCRF, PCB Vertical Jack Receptacle, SMT, 1.25mm Mounted Height
			http://docs-emea.rs-		, , , , , , , , , , , , , , , , , , , ,
			online.com/webdocs/147d/0900766b8147		
IC1	L80-M39	Open_Telemetry:L80-M39	dbf2.pdf	L80-M39	L80 GPS Module
			https://api.kemet.com/component- edge/download/datasheet/T491B106K016	T491B106 K016AT72	Tantalum Capacitors - Solid SMD 16V 10uF
C6	10uF	CAPPM3528X210N	AT7280.pdf	80	1311 10% ESR=20hms
			https://api.kemet.com/component-	T491B106	
			edge/download/datasheet/T491B106K016	K016AT72	Tantalum Capacitors - Solid SMD 16V 10uF
C7	10uF	CAPPM3528X210N	AT7280.pdf	80	1311 10% ESR=2ohms
			https://api.kemet.com/component- edge/download/datasheet/T491B106K016	T491B106 K016AT72	Tantalum Capacitors - Solid SMD 16V 10uF
C8	10uF	CAPPM3528X210N	AT7280.pdf	80	1311 10% ESR=20hms
			https://api.kemet.com/component-		
		Open_Telemetry:CAPC1608	edge/download/datasheet/C0603C103K4R	C0603C10	KEMET - C0603C103K4RACTU - CAP, 0.01F,
C3	10nF	X87N	ACTU.pdf	3K4RACTU	16V, 10%, X7R, 0603
R2	1k	Open_Telemetry:RESC0603 X26N	https://www.digikey.se/en/datasheets/yag eo/yageo-pyu-r_marking_2	RC0201JR- 071KL	YAGEO - RC0201JR-071KL - RES, THICK FILM, 1K, 5%, 0.5W, 0201, REEL
112	IN .	Open Telemetry:RESC0603	https://www.digikey.se/en/datasheets/yag	RC0201JR-	YAGEO - RC0201JR-071KL - RES, THICK FILM,
R6	1k	X26N	eo/yageo-pyu-r_marking_2	071KL	1K, 5%, 0.5W, 0201, REEL
		Open_Telemetry:RESC0603	http://www.yageo.com/documents/recent/	RC0201JR-	YAGEO - RC0201JR-07100KL - RES, THICK
R3	100k	X26N	PYu-RC0201_51_RoHS_L_8.pdf	07100KL	FILM, 100K, 5%, 0.5W, 0201
R5	100k	Open_Telemetry:RESC0603 X26N	http://www.yageo.com/documents/recent/ PYu-RC0201 51 RoHS L 8.pdf	RC0201JR- 07100KL	YAGEO - RC0201JR-07100KL - RES, THICK FILM, 100K, 5%, 0.5W, 0201
11.5	100K	ALUIN	http://www.yageo.com/documents/recent/	RC0201JR-	112.11, 100K, 370, 0.344, 0201
R8	10k	RESC0603X26N	PYu-RC0201_51_RoHS_L_8.pdf	0710KL	THICK FILM CHIP RESISTORS
		Open_Telemetry:RESC0603	http://www.yageo.com/documents/recent/	RC0201JR-	
R9	10k	X26N	PYu-RC0201_51_RoHS_L_8.pdf	0710KL	THICK FILM CHIP RESISTORS
R1	10k	Open_Telemetry:RESC0603 X26N	http://www.yageo.com/documents/recent/ PYu-RC0201_51_RoHS_L_8.pdf	RC0201JR- 0710KL	THICK FILM CHIP RESISTORS
IVI	IOK	AZOIN	https://api.kemet.com/component-	OFICIAL	THER TIEW CHIII RESISTORS
		Open_Telemetry:CAPC1608	edge/download/datasheet/C0603C103K4R	C0603C10	KEMET - C0603C103K4RACTU - CAP, 0.01F,
C4	10nF	X87N	ACTU.pdf	3K4RACTU	16V, 10%, X7R, 0603
		O T-I	https://seatsatlesset.com/detackset/UE	C0402C10	NAULISIA CARANTIA CARANTIA NALCO
C5	100nF	Open_Telemetry:CAPC1005 X55N	https://content.kemet.com/datasheets/KE M_C1002_X7R_SMD.pdf	4M8RACT U	Multilayer Ceramic Capacitors MLCC - SMD/SMT 10volts 0.1uF X7R 20%
CS	100111	7,5514	https://docs-emea.rs-	SML-	ROHM SML-D13DWT86A, SML 608 nm
LED		Open_Telemetry:LEDC1608	online.com/webdocs/156b/0900766b8156	D13DWT8	Orange LED, 1608 (0603) Milky White SMD
1	EXT ANT	X65N	b2c9.pdf	6A	package
S1	RST	Open Telemetry:ATS2D1G	http://www.mouser.com/ds/2/60/ats- 1100738.pdf	ATS2D1G_ NC_LFS	Tactile Switches 1VA 32VDC 50mA On-(On) Sldr IP54
31	noi	Open_relementy.A132D1G	http://www.mouser.com/ds/2/60/ats-	ATS2D1G	Tactile Switches 1VA 32VDC 50mA On-(On)
S2	CALIB	Open Telemetry:ATS2D1G	1100738.pdf	NC_LFS	Sldr IP54
			https://api.kemet.com/component-		
		Open_Telemetry:CAPC1608	edge/download/datasheet/C0603C103K4R	C0603C10	KEMET - C0603C103K4RACTU - CAP, 0.01F,
C1	10nF	X87N	ACTU.pdf	3K4RACTU	16V, 10%, X7R, 0603
		Open Telemetry:CAPC1608	https://api.kemet.com/component- edge/download/datasheet/C0603C103K4R	C0603C10	KEMET - C0603C103K4RACTU - CAP, 0.01F,
C2	10nF	X87N	ACTU.pdf	3K4RACTU	16V, 10%, X7R, 0603
		Open_Telemetry:RESC0603	http://www.yageo.com/documents/recent/	RC0201JR-	
R15	10k	X26N	PYu-RC0201_51_RoHS_L_8.pdf	0710KL	THICK FILM CHIP RESISTORS
D1.C	101	Open_Telemetry:RESC0603	http://www.yageo.com/documents/recent/	RC0201JR-	THICK EILM CHIP PECISTORS
R16	10k	X26N Open Telemetry:RESC1005	PYu-RC0201_51_RoHS_L_8.pdf http://www.yageo.com/documents/recent/	0710KL RC0402JR-	THICK FILM CHIP RESISTORS
R10	62	X40N	PYu-RC0402_51_RoHS_L_6_r.pdf	0762RL	Thick Film Resistors - SMD 62 OHM 5%
	-	Open_Telemetry:RESC1005	http://www.yageo.com/documents/recent/	RC0402JR-	
R11	62	X40N	PYu-RC0402_51_RoHS_L_6_r.pdf	0762RL	Thick Film Resistors - SMD 62 OHM 5%
D	62	Open_Telemetry:RESC1005	http://www.yageo.com/documents/recent/	RC0402JR-	TI. I Ell. D
R12	62	X40N Open Telemetry:RESC1005	PYu-RC0402_51_RoHS_L_6_r.pdf	0762RL	Thick Film Resistors - SMD 62 OHM 5%
R13	62	Vpen_Telemetry:RESC1005	http://www.yageo.com/documents/recent/ PYu-RC0402 51 RoHS L 6 r.pdf	RC0402JR- 0762RL	Thick Film Resistors - SMD 62 OHM 5%
LED	.=	Open_Telemetry:SMLD15Y	http://www.rohm.com/web/global/datash	SML-	ROHM SML-D13FWT86, SML 566 nm Green
2	GPS LCK	WT86	eet/SML-D13FW/sml-d13x-e	D13FWT86	LED, 1608 (0603) Milky White SMD package
			http://www.yageo.com/documents/recent/	RC0201JR-	YAGEO (PHYCOMP) - RC0201JR-070RL - RES,
R4	NULL	RESC0603X26N	PYu-RC0201_51_RoHS_L_8.pdf	070RL	THICK FILM, OR, 5%, 0.05W, 0201
	NULL	RESC0603X26N	http://www.yageo.com/documents/recent/ PYu-RC0201 51 RoHS L 8.pdf	RC0201JR- 070RL	YAGEO (PHYCOMP) - RC0201JR-070RL - RES, THICK FILM, 0R, 5%, 0.05W, 0201
R7	IVOLL	NEGCOOOGAZON	1 14 NC0201_31_N0113_L_0.pu1		THICK FILINI, OIL, 3/0, U.U.JVV, UZUI
R7				CRCW040	
R7		Open_Telemetry:RESC1005	http://www.vishay.com/docs/20035/dcrcw	CRCW040 2130RJNE	

Document Id: OFT001V1_DESC Rev: PA1 19 Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry $^{\odot}$

Appendix C – OpenFly Telemetry repositories

OFT HW Repositories:

https://github.com/jonasbjurel/open_telemetry_HW

OFT SW Repositories:

https://github.com/jonasbjurel/open_telemetry

OFT SW Platform Repositories:

https://github.com/jonasbjurel/coreNoStopRTOS

3PP dependency Repositories:

ESPRESSIF FREERTOS ADAFRUIT ESP32

Appendix D – OpenFly Telemetry WIKI

TBD

Document Id: OFT001V1_DESC Rev: PA1 20
Date: 2019-11-15 Author: Jonas Bjurel OpenFly Telemetry ©