第2章 数制与编码

王冬青 济事楼410 同济大学软件学院

- 2.1 进位记数制与数制转换
- 2.2 带符号数的表示方法
- 2.3 数的定点表示与浮点表示
- 2.4 常用的其他编码

2.1 进位记数制与数制转换

- 2.1.1 进位记数制及其表示
- 1. 进位记数制:按进位方式实现记数的一种规则,简称进位制。
 - ▶ 数码d_i:每位的数码值。
 - ▶ 基数R:表示某种进位制所具有的数字符号的个数。
 - ▶ 位权Ri:表示某种进位制的数中不同位置上数字的单位数值。

例如:十进制数: 235.67

二进制数: 110101.001

2. 两种表示方法

对于任意一个R进制数N:

▶ 并列表示法

(N)
$$_{R} = (r_{n-1}r_{n-2}...r_{1}r_{0}.r_{-1}r_{-2}...r_{-m})_{R}$$

> 按权展开式(多项式表示法)

(N)
$$_{R} = r_{n-1}R^{n-1} + r_{n-2}R^{n-2} + ... + r_{1}R^{1} + r_{0}R^{0} + r_{-1}R^{-1} + r_{-2}R^{-2} + ... + r_{-m}R^{-m}$$

$$= \sum_{i=-m}^{n-1} r_i R^i$$

n: 整数的位数 m: 小数的位数 R: 基数

 r_i : R进制中各个数字符号,即有 $r_i \in \{0, 1, 2, ..., R-1\}$

3. 十进制(D)

- ▶ 基数: 10
- ▶ 10个数字符号: 0、1、2、3、4、5、6、7、8、9
- ▶ 运算规律: 逢十进一,即:9+1=10。

4. 二进制(B)

- ▶ 基数: 2
- ▶ 两个数字符号: 0、1
- ▶ 运算规律: 逢二进一,即: 1+1=(10)₂。

进位计数制与数制转换

4. 二进制(续)

- > 特点
 - □ 只有0和1两个数码
 - 任何具有两个稳定状态的元件都可以用来表示一位 二进制数。
 - □ 运算规则简单
 - 加法规则: 0+0=0, 0+1=1+0=1, 1+1=10
 - 减法规则: 0-0=0, 0-1=1(向高位借位)

- 乘法规则: $0\times0=0$, $0\times1=1\times0=0$, $1\times1=1$
- 除法规则: 0÷1=0, 1÷1=1

5. 八进制(O)

- ▶ 基数:8
- ▶ 八个数字符号: 0、1、2、3、4、5、6、7
- ▶ 运算规律: 逢八进一, 即: 7+1=(10)₈。

6. 十六进制(H)

- ▶ 基数: 16
- ➤ 16个数字符号: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- ▶ 运算规律: 逢十六进一,即: 15+1=(10)₁₆。

编程语言中常见表示方式:

- 1. 十进制整数:直接写出数字;
- 2. 十六进制整数: 以₀x或₀X开头,包含数字0-9以及字母A-F或a-f。
- 3. 二进制整数:以0b或0B开头,只包含0和1。
- 4. 八进制整数:以0开头,只包含0-7。

进位计数制与数制转换

不
同
基
数
的
进
位
制
数

R=10	R=2	R=8	R=16
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
. 6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14

- 2.1.2 数制转换
- 1. 直接转换法
 - > 二进制数与八进制数之间的转换
 - 八进制 0 1 2 3 4 5 6 7
 - 二进制 000 001 010 011 100 101 110 111
 - 二进制数 —— 八进制数
 - □ 整数部分与小数部分同时进行转换
 - □ 以小数点为中心,分别向左、向右,每3位分一组 (不足3位补0) $2^3 = 8$
 - □ 把每一组二进制数转换成八进制数

例1 将二进制数11010.1101转换为八进制数。

- □ 整数部分与小数部分同时进行转换
- 型八进制数中的每一位数分别转换成3位的二进制数例2 将八进制数357.6转换为二进制数。

- > 二进制数与十六进制数之间的转换
 - □ 转换方法类似
 - □ 24=16,4位二进制数与一位十六进制数

```
十六进制 0 1 2 3 4 5 6 7 8 9 A B C D E F 二进制 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110
```

例3 将二进制数1010110110.110111转换为十六进制数。

```
0010 1011 0110 . 1101 1100
2 B 6 . D C
所以 (1010110110.110111) <sub>2</sub>= (2B6.DC) <sub>16</sub>
```

例4 将十六进制数5D.6E转换为二进制数。

5 D . 6 E
0101 1101 . 0110 1110

所以 (5D.6E) ₁₆= (1011101. 0110111) ₂

2. 多项式替代法

- ightharpoonup 任意两个 α 、 β 进制数之间的转换
- 方法: 先将α进制的数在α进制中按权展开,然后替代成相应β进制中的数,最后在β进制中计算即可得β进制的数。

例5 将二进制数1101.101转换成十进制数。

先把二进制数的并列表示法展开成多项式表示法,则有

$$(1101.101)_{2}=[1\times (10)_{11}+1\times (10)_{10}+0\times (10)_{1}+$$

$$1 \times (10) \ ^{0}+1 \times (10) \ ^{-1}+0 \times (10) \ ^{-10}+1 \times (10) \ ^{-11}]_{2}$$

再把等式右边的二进制数替代成十进制数,则得

$$(1101.101)_{2} = [1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}]_{10}$$

在十进制中计算等式右边之值,得

$$(1101.101)_{2} = (8+4+1+0.5+0.125)_{10} = (13.625)_{10}$$

这种方法用于α进制→十进制较方便。

3. 基数乘 / 除法(重点)

- ▶ 基数乘 / 除法分为基数乘法和基数除法两种。
 - 对于整数的转换,采用基数除法;
 - □ 对于小数的转换,采用基数乘法。

▶基数除法(除2取余法)

- **□** 先将α进制的整数在α进制中连续除以 β ,求得各次余数(k_i)_α;
- 然后将各余数替代成β进制中相应的数字符号(k_i,)_β。
- 最后按照并列表示法列出即得β进制的整数。

例7 将十进制整数25转换为二进制数,即(25) $_{10}$ = (?) $_{2}$

$$2 \ 25$$
 余数 低位 $2 \ 12$ $1=k_0$ $2 \ 6$ $0=k_1$ $2 \ 3$ $0=k_2$ $2 \ 1 \ 1=k_3$ 高位

所以,转换结果为(25)₁₀=(11001)₂

进位计数制与数制转换

例8 (785)
$$_{10}$$
 = (?) $_{8}$

8 $_{1}$ 8 $_{8}$ 8 $_{12}$ 8 $_{12}$ 2 $_{8}$ $_{1}$ 4 $_{0}$ 1 高位

所以 (785) $_{10}$ = (1421) $_{8}$

例9 (687) $_{10}$ = (?) $_{16}$

16 $_{16}$ 687 $_{16}$ 余数 低位

16 $_{16}$ 2 15 $_{16}$ $_{16}$ 2 $_{10}$ $_{10}$ = (A) $_{16}$, (2) $_{10}$ = (2) $_{16}$ 所以 (687) $_{10}$ = (2AF) $_{16}$

(44)10转化为二进制数

$$2$$
 | 44 | 余数 | 低位 $2 \overline{)}$ | 22 | $22 \overline{)}$ | $0=K_0$ | $0=K_1$ | $0=K_1$ | $0=K_2$ | $0=K_3$ | $0=K_4$ | $0 \overline{)}$ | $0=K_4$ | $0 \overline{)}$ | $0=K_5$ | 高位

(58)10转化为二进数制

$$2$$
 | 58 | 余数 | 低位 29 ······· $0=K_0$ | $1=K_1$ | 7 ······ $0=K_2$ | $1=K_3$ | $1=K_4$ | 0 ······ $1=K_5$ | 高位

所以: $(44)_{10} = (101100)_2$

所以: (58)₁₀=(111010)₂

▶基数乘法(乘2取整法)

- □ 先将α进制的小数在α进制中连续乘以β求得各次乘积的整数部分(k_i) α;
- 然后将各整数替代成β进制中相应的数字符号 (k_i) _β;
- 」 最后按照并列表示法列出即得β进制的小数。

进位计数制与数制转换

例10 将十进制小数0.6875转换为二进制数。

0.6875 将上述过程写成简单算式如下: 整数 \times 2 1.3750 ······ 1=k₋₁ 高位 0.3750 所以, 转换结果为 \times 2 0.7500 $\cdots 0 = k_{-2}$ $(0.6875)_{10} = (0.1011)_{2}$ 0.7500 \times 2 $(0.32)_{10} = (?)_{2}$ 1.5000 $\cdots 1 = k_{-3}$ 0.5000 \times 2 注意: 进制转换不会改变有理数特性 低位 $\cdots 1 = k_{-4}$ 1.0000

(0.375)10转化为二进制数

所以: $(0.375)_{10} = (0.011)_2$

进位计数制与数制转换

利用基数乘/除法可以将一个十进制混合小数很 方便地转换为任何β进制的数。只要将整数部分和 纯小数部分按上述规则分别进行转换,然后将所 得的数组合起来即可。

小数部分

- 2.1 进位记数制与数制转换
- 2.2 带符号数的表示方法
- 2.3 数的定点表示与浮点表示
- 2.4 常用的其他编码

2.2 带符号数的表示方法

- 1. 机器数与真值
 - 机器数:用二进制编码表示的数据。
 - 真值:与机器数对应的实际数据。
- 2. 机器数包括两种
 - ▶ 无符号数:没有符号的整数,如地址、编号等。
 - □ 例如 (10010110)₂表示: 96H (十进制数150)
 - □ 字长为n位的无符号数的表示范围: $0\sim2^{n}-1$
 - > 带符号的数

- ➢ 符号"+"和"一"的表示
 - □ "0": 正号"+"
 - □ "1": 负号"一"
 - □ 用机器数的最高位表示符号位
- ▶ 带符号的机器数表示方法:原码、补码和反码

带符号数的表示方法

2. 2. 1 原码表示法

1. 原码的定义

设 X: 二进制数,数值部分的位数为n。

 \rightarrow 当 $X = \pm 0.X_1 X_2 ... X_n$ (纯小数)

$$[X]_{\mathbb{R}} = \begin{cases} X & 0 \le X < 1 \\ 1 - X = 1 + |X| & -1 < X \le 0 \end{cases}$$

 \rightarrow 当 $X = \pm X_1 X_2 \dots X_n$ (纯整数)

$$[X]_{\text{F}} = \begin{cases} X & 0 \leq X < 2^{n} \\ 2^{n} - X = 2^{n} + |X| & -2^{n} < X \leq 0 \end{cases}$$

带符号数的表示方法

例12 已知 n=4,求X的原码[X]_原。

2. 原码的特点

- ▶ 原码表示直观、易懂,与真值的转换容易。
- ▶ 真值0有两种不同的表示形式

$$[+0]_{\mathbb{R}} = 000...0$$
 $[-0]_{\mathbb{R}} = 100...0$

用原码实现乘、除运算的规则很简单,但实现加减运算比较复杂。

2. 2. 2 补码表示法

1. 模&同余

▶ 模: 指一个计量器的容量,可用M表示。

例如:大家所熟悉的钟表,是以12为计数循环的,

模M=12

- 一个4位的二进制计数器,计数范围为 $0\sim15$, 模M=16
- ▶ 同余: 指两整数A和B除以同一正整数M, 所得余数相同。这时称A和B对M同余, 即A和B在以M为模时是相等的, 可写成:

 $A=B \pmod{M}$ 或 A=B+kM (k为整数)

1. 例如钟表:模M=12,故3点和15点、5点和17点是同余的, 它们可以写作:

$$3\equiv 15\pmod{12}$$
, $5\equiv 17\pmod{12}$
 $15=3+12$, $5=17-12$

▶ 将减法运算转化成加法运算

假设当前时针停在7点,现在要将时针调到5点,可以有两种方法实现:

- (1) 将时针倒拨2格(2小时): 7-2=5 做减法
- (2) 将时针正拨10格(10小时): 7+10=17 ≡ 5(mod 12) 做加法 从上可得: 7-2 ≡ 7+10(mod 12)
 - -2与10对模12互补,也可以说-2的补码是10(以12为模)。

带符号数的表示方法

1. 例: 9-5=9+ (-5) ≡ 9+ (12-5) =9+7≡4 (mod 12)
7为-5的补码

例:
$$65-25=65+(-25) \equiv 65+(100-25)$$

= $65+75 \equiv 40 \pmod{100}$
75为-25的补码

2. 补码的定义

设 X: 二进制数,数值部分的位数为n。

➤ 当X=±0.X₁X₂...X_n (纯小数)

$$[X]_{\text{th}} = \begin{cases} X & 0 \leqslant X < 1 \\ 2 + X = 2 - |X| & -1 \leqslant X \leqslant 0 \end{cases} \pmod{2}$$

带符号数的表示方法

 \rightarrow 当 $X = \pm X_1 X_2 \dots X_n$ (纯整数)

$$[X]_{n} = \begin{cases} X & 0 \leq X < 2^{n} \\ 2^{n+1} + X = 2^{n+1} - |X| & -2^{n} \leq X \leq 0 \end{cases} \pmod{2^{n+1}}$$

例13 已知 n=4,求X的补码[X]_补。

解: ① X = +0.1101 $[X]_{*} = 0.1101$

② X = -0.1101 $[X]_{3} = 2 + X = 1.0011$

(4) X = -1101 $[X]_{3} = 2^5 + X = 100000 - 1101 = 10011$

带符号数的表示方法

3. 补码的特点

- ▶ 由真值求补码
 - □ 符号位: "0"表示正号"+", "1"表示负号"一"。
 - □ 数值部分
 - 正数:数值部分与真值形式相同
 - 负数:将真值的数值部分按位将"1"变为"0", "0"变为"1"(按位变反),且在最低位加1。

例如: X = -0.1101 X = -1101 Y = -1101

▶ 真值0的表示形式是唯一的

$$[+0]_{3|} = [-0]_{3|} = 000...00$$

- > 补码的加减运算规则简单
 - 符号位与数值位部分一样参加运算。
 - 运算后如有进位产生,则把这个进位舍去不要,相当 于舍去一个模。

$$[X+Y]_{\stackrel{?}{\uparrow}} = [X]_{\stackrel{?}{\uparrow}} + [Y]_{\stackrel{?}{\uparrow}}$$

 $[X-Y]_{\stackrel{?}{\uparrow}} = [X]_{\stackrel{?}{\uparrow}} + [-Y]_{\stackrel{?}{\uparrow}}$

▶ 已知[Y]_补, 求[—Y]_补。将[Y]_补按位变反,且在最低位加1。

带符号数的表示方法

> 数据表示范围

以1B(8位)的数据为例:

二进制	十进制(原码)	无符号数十进制	有符号十进制(补码)
0000 0000B:	+0	0	+0
0000 0001B:	+1	1	+1
0000 0010B:	+2	2	+2
0111 1111B:	+127	127	+127
1000 0000B:	-0	128	-128
1000 0001B:	-1	129	-127
1000 0010B:	-2	130	-126
1111 1111B:	-127	255	-1

n位表示无符号数范围: 0²n-1, 表示有符号数范围: -2ⁿ⁻¹2ⁿ⁻¹-1

▶ 原码、反码、补码的关系

正数的补码 = 原码 = 反码 负数的补码 = 绝对值反码 $+ 1 (2^n- pG)$

例15 已知①Y=+0.1101; ②Y=-0.1101; ③Y=+1101;

$$4 Y = -1101$$
. n=4;

求 $[Y]_{\lambda}$ 、 $[-Y]_{\lambda}$ 。

解: ① [Y]
$$_{*}$$
=0.1101 [—Y] $_{*}$ =1.0011

②
$$[Y]_{k} = 1.0011$$
 $[-Y]_{k} = 0.1101$

$$(3)[Y]_{\nmid h} = 01101 \qquad [-Y]_{\nmid h} = 10011$$

$$(4) [Y]_{\lambda} = 10011 \qquad [-Y]_{\lambda} = 01101$$

例16 假设数据位数是8位,求+124和-124的补码表示。

解: $124 = 127 - 3 = (111 1111 - 11)_2 = (111 1100)_2$ +124的补码为0111 1100 (7CH); -124的绝对值 (+124) 的反码为1000 0011,+1后为-124的补码: 1000 0100 (84H)

例17 假设数据位数是8位,求补码表示为1111 0110 (F6H)的数值。

解: 对补码求反码: 0000 1001

+1后: 0000 1010 → 十进制10

所求数值是-10。

2.2.3 反码表示法

1. 反码的定义

设 X: 二进制数,数值部分的位数为n。

➤ 当X=±0.X₁X₂...X_n (纯小数)

$$[X]_{\text{R}} = \begin{cases} X & 0 \leq X < 1 \\ 2 - 2^{-n} + X & -1 < X \leq 0 \end{cases} \pmod{(2 - 2^{-n})}$$

→ 当X=±X₁X₂...X_n (纯整数)

$$[X]_{\mathbb{R}} = \begin{cases} X & 0 \leq X < 2^{n} \\ 2^{n+1} - 1 + X & -2^{n} < X \leq 0 \end{cases}$$
 (mod $(2^{n+1} - 1)$)

例16已知①
$$X=+0.1101$$
; ② $X=-0.1101$;

$$3X=+1101; 4X=-1101. n=4;$$

求X的反码[X]_反。

解: ①
$$[X]_{\bar{p}} = 0.1101$$

②
$$[X]_{\text{k}} = 2 - 2^{-4} + X = 1.0010$$

③
$$[X]_{\cancel{\boxtimes}} = 01101$$

$$(4)$$
 $[X]_{\text{F}} = 2^5 - 1 + X = 100000 - 1 - 1101 = 10010$

2. 反码的特点

- ▶ 由真值求反码
 - □ 符号位: "0"表示正号"+", "1"表示负号"-"。
 - □ 数值部分
 - 正数:数值部分与真值形式相同
 - 负数:将真值的数值部分按位变反
- ▶ 真值0有两种不同的表示形式

$$[+0]_{\mathbb{K}} = 000...0$$
 $[-0]_{\mathbb{K}} = 111...1$

> 反码的加减运算比补码的复杂

带符号数的表示方法

3. 8位二进制整数的无符号数、原码、补码、反码表示的真值

二进制表示	无符号数	原码	补码	反码
0000 0000	0	+0	+0	+0
0000 0001	1	+1	+1	+1
•••	•••	•••	•••	•••
0111 1111	127	+127	+127	+127
1000 0000	128	-0	-128	-127
1000 0001	129	-1	-127	-126
•••	•••	•••	•••	•••
1111 1110	254	-126	-2	-1
1111 1111	255	-127	-1	-0

2.2.4 移码表示法

1. 移码的定义 (只讨论纯整数移码)

设 X: n位的二进制数 真值为 $+X_1X_2...X_n$ 或 $-X_1X_2...X_n$ 纯整数移码的定义: $[X]_{8}=2^n+X$ $-2^n \le X < 2^n$

- 2. 移码就是在真值的基础上加一常数(2n)
 - > 这个常数称为偏移值
 - ▶ 相当于X在数轴上向正方向偏移了若干单位

例17 已知①X=+1101; ②X=-1101; n=4; 求X的移码[X]_移。

解: ①
$$[X]_{8}=2^{4}+X=10000+1101=11101$$

② $[X]_{8}=2^{4}+X=10000-1101=00011$

3. 移码的特点

> 移码与补码的关系

移码与补码数值部分相同,符号位相反。

即只需将 $[X]_{\lambda}$ 的符号位变反,就得到 $[X]_{\delta}$ 。

当
$$0 \le X < 2^n$$
时, $[X]_{8} = [X]_{4} + 2^n$
当 $-2^n \le X < 0$ 时, $[X]_{8} = [X]_{4} - 2^n$

例: ① X=+1101; $[X]_{N}=01101$; $[X]_{8}=11101$

② X = -1101; $[X]_{3} = 10011$; $[X]_{8} = 00011$

- ▶ 移码表示法中,数的最高位(符号位):
 - □ 如果为"0",表示该数为负数;
 - □ 如果为"1",表示该数为正数。
- 采用移码的目的:为了能够从机器数的形式上直接判断两数真值的大小,便于浮点数运算中的对阶操作。

带符号数的表示方法

例如:两个浮点数相加

 $1.101x2^{-2} + 1.001x2^{2}$

指数用补码: 1110 < 0010?

用移码: 1.101x2⁻²⁺⁸ + 1.001x2²⁺⁸

指数用移码: 0110 < 1010 easy

注意: 移码和补码仅第一位不同

- 2.1 进位记数制与数制转换
- 2.2 带符号数的表示方法
- 2.3 数的定点表示与浮点表示
- 2.4 常用的其他编码

2.3 数的定点表示与浮点表示

2. 3. 1 数的定点表示

- 1. 小数点的位置是固定不变的
 - 定点小数(纯小数): 把小数点固定在数值部分的最高位之前。
 - 定点整数(纯整数): 把小数点固定在数值部分的最低位之后。

- 2. 数值部分为n位的机器数的表示范围(不包含符号位)
 - ▶ 定点小数原码: (1-2-n) ~ (1-2-n)
 - ▶ 定点小数补码: -1~(1-2-n)

 - ▶ 定点整数补码: -2ⁿ~ (2ⁿ-1)
- 3. 定点表示缺陷: 数据表示范围受限,只能靠增加位数 来提高表示范围(昂贵的开销)。

- 2.3.2 数的浮点表示(二进制的科学计数法)
 - 小数点的位置不固定,视需要而浮动。
 - > 浮点数的一般表示形式

X=M×2^E 将数据表示范围和精度分开表示

其中:

- E: 阶码,用定点整数表示。阶码的值决定了数中小数点的实际位置。阶码的位数决定了数据表示的范围。
- M: 尾数或有效值,用定点小数表示。尾数的位数决定了数据表示的精度。(可以是规格化,也可以是非规格化)

阶码和尾数可以采用原码、补码、反码中任意一种编码方 法来表示,但阶码通常采用移码。

例如:

$$X=+0.01100101\times 2^{-101}$$
 阶码: -101 ; 尾数 $+0.01100101$ $Y=-0.11010011\times 2^{+110}$ 阶码: $+110$; 尾数 -0.11010011

▶ 用4部分来表示一个浮点数

数的定点表示与浮点表示

1. 规格化浮点数

用浮点表示法表示一个数时,表示形式不唯一。

例如
$$X = +0.01100101 \times 2^{-101}$$

 $X = +0.11001010 \times 2^{-110}$ (尾数左移(小数点右移), 阶码减1)

 $X = +0.001100101 \times 2^{-100}$ (尾数右移(小数点左移), 阶码加1)

- > 规格化浮点数
 - □ 当浮点数的基数为2时,如果其尾数M满足:

$$\frac{1}{2} \leq |M| < 1$$

则该浮点数为规格化浮点数。

□ 否则称其为非规格化浮点数。

数的定点表示与浮点表示

例18 分别将十进制数-54、 $+\frac{13}{128}$ 转换成规格化浮点数表示。 阶码用移码,尾数用补码。其浮点数格式如下所示:

1 位 M _f 1 位 E _f 4 位阶码 10 位尾数
--

其中Mf为数符,Ef为阶符。

2. 浮点数的表示范围

设 浮点数的阶码为m位,尾数为n位,数符和阶符各一位,则 浮点数的表示范围:

浮点数所能表示数的范围处于最大正数到最小正数、最大负数到最小负数之间。

最大正数=最大正尾数×2^{最大阶码}

最小正数=最小正尾数×2^{最小阶码}

最大负数=最大负尾数×2^{最小阶码}

最小负数=最小负尾数×2^{最大阶码}

IEEE754的单精度表示范围:

负数: -3.402823E+38 ~ -1.401298E-45

正数: +1.401298E-45 ~ +3.402823E+38

阶码采用<mark>移码</mark>,尾数采用<mark>补码</mark> 浮点表示所对应的最大正数、最小正数、最大负数、最小负数

典型数据	数符		浮点形式 阶码(m)	尾数(n)	真值
非规格化 最小正数	0	0	000	0001	$+2^{-n} \times 2^{-2^m}$
规格化 最小正数	0	0	000	1000	$+2^{-1} \times 2^{-2^m}$
最大正数	0	1	111	1111	$+(1-2^{-n})\times 2^{+(2^m-1)}$
规格化 最大负数	1	0	000	1111	$-2^{-n} \times 2^{-2^m}$
非规格化最大负数	1	0	000	0111	$-(2^{-1}+2^{-n})\times 2^{-2^m}$
最小负数	1	0	111	0000	$-1\times2^{+(2^m-1)}$

- ▶ 如果一个数超出了数的表示范围,则称为溢出。
 - 若该数处于最小正数和最大负数之间,称为下溢。
 - 若该数大于最大正数或小于最小负数,称为上溢。
- 尾数的位数决定了数据表示的精度,增加其位数可以增加有效数字的位数;而阶码的位数决定了数据表示的范围。

32位整型数据分布情况:

32位浮点数据分布情况:

浮点数精度带来的"困扰"

```
(gdb) print (1e20-1e20)+3.14
$6 = 3.14000000000000001
(gdb) print 1e20+(-1e20)+3.14
$7 = 3.1400000000000001
(gdb) print 1e20+(-1e20+3.14)
$8 = 0
```

第3次运算3.14相对于-1e20已经超出了它的精度表示范围(被忽略了) -- 大数吃小数

Prof. Kahan Prof. Emeritus UC Berkeley

1985年Intel邀请加州大学伯克利分校的 William Kahan教授来为8087 FPU设计浮点数格式;

Intel的浮点数格式设计完成地如此出色以致于IEEE决定采用非常接近的方案作为IEEE的标准

1989年Kahan教授获得图领奖

3. IEEE 754标准

➤ 每个浮点数由3部分组成 数符S 阶码E 尾数M

S	阶码 E	尾数 M
---	------	------

https://zhuanlan.zhihu.com/p/657886517 -- FP16, BF16

- 两种基本浮点格式单精度浮点格式双精度浮点格式
- 两种扩展浮点格式 扩展单精度浮点格式 扩展双精度浮点格式

IEEE 754 标准浮点数基本格式

基本格式	数符位数	阶码位数 (含 1 位符号位)	尾数位数	总位数
单精度浮点数	1	8	23	32
双精度浮点数	1	11	52	64
扩展单精度浮点数	1	≥11	31	≥43
扩展双精度浮点数	1	≥15	≥63	≥79

- > 以单精度浮点数格式为例
 - □ 数符S: 0表示正数,1表示负数。
 - □ 阶码E:由1位符号位和7位数值组成。 采用偏移值为127的移码,即:阶码=127+数值 数值=阶码-127
 - 规定阶码的取值范围为: 1~254
 - 阶码值0和255用于表示特殊数值
 - □ 尾数M: 23位,采用原码,规格化表示。

由于对于规格化数原码来说,其尾数的最左边一位必定为1(特殊值和非规格化数除外),所以可以把这个1丢掉,而把其后的23位放入尾数字段中。

IEEE754中的23位尾数实际上是表示了24位的有效数字。

➤ IEEE 754单精度浮点数的特征参数

特征参数	特征值	特征参数	特征值
符号位数	1	尾数位数	23
阶码位数	8	尾数个数	2 ²³
阶码偏移值	127	最大规格化数	2128
阶码取值范围 (移码)	1~254	最小规格化数	2-126
阶码取值范围 (真值)	-126~127	可表示十进制 数范围	10-38~1038
阶码个数	254	最小非规格化 数	2 ⁻¹⁴⁹ ≈10 ⁻⁴⁵

数的定点表示与浮点表示

- → + 19.5的单精度浮点数格式 (二进制表示为10011.1或1.00111×2⁴)
- ▶ 0、±∞和NaN(非数)几个特别值的表示

数值	符号(1位)	尾数(23位)	阶码(8位)
+19.5	0	001 1100 0000 0000 0000 0000	1000 0011
0	0	000 0000 0000 0000 0000 0000	0000 0000
±∞	0或1	000 0000 0000 0000 0000 0000	1111 1111
NaN	0或1	非0的任意值	1111 1111
非规格化数	0或1	非0的任意值	0000 0000

IEEE 754单精度浮点数示例:

int: 12345

float/double: $12345.0 = 1.1000000111001B*2^13$

阶码: (10001100)₂ = 140

指数: 140-127 = 13

尾数

double:0x40c81c8000000000

数的定点表示与浮点表示

IEEE 754单/双精度浮点数示例在x86平台验证:

12345.0的单精度浮点 0x4640e400

名称	值	类型
🧳 f	12345.0000000000000	double
🧳 a	0x00003039	int
⊒ ∮ р	0x0018ff18	double *
L 0	12345.000000000000	double

双精度 0x40c81c8000000000

注意是小端字节顺序

https://www.wolframalpha.com -- 进行数学计算

➤ C语言面试题 如何判断一个浮点数是不是等于0?

double x; if
$$(0.0 == x)$$
?

浮点数有时候存在误差修订问题。

- 2.1 进位记数制与数制转换
- 2.2 带符号数的表示方法
- 2.3 数的定点表示与浮点表示
- 2.4 常用的其他编码

2.4 常用的其他编码

2.4.1 十进制数的二进制编码

二一十进制编码:用若干位二进制代码来表示一位十进制数字符号的方法。

1. 8421 (BCD)码

- ▶ 最常用的一种二-十进制编码,它常简称为BCD 码。
- ▶ 将十进制的每个数字符号用4位二进制数表示, 各位的权从左到右分别为8、4、2、1。
- ightharpoonup 这样用二进制数的 $0000 \sim 1001$ 来分别表示十进制的 $0 \sim 9$ 。

▶主要特点

- 回 它是一种有权码。各位的权从左到右依次为8、4、2、1 设8421(BCD)码的各位为 $a_3a_2a_1a_0$,则它所代表的值为 $N=8a_3+4a_2+2a_1+1a_0$
- 编码简单直观,它与十进制数之间的转换只要直接按位进行就可。

例如

$$(91.76)_{10} = (\underline{1001} \ \underline{0001} . \underline{0111} \ \underline{0110})_{BCD}$$

 $(\underline{0110} \ \underline{0000} \ \underline{0001} . \ \underline{0010})_{BCD} = (601.2)_{10}$

2. 余3码

- ▶对应于同样的十进制数字,余3码比相应的BCD码 多出0011,所以叫余3码。
- ▶一个十进制数用余3码表示时,只要按位表示成余 3码即可。

例如

$$(90.61)_{10} = (1100\ 0011\ .\ 1001\ 0100)_{\$3}$$

- ▶特点
 - □ 它是一种对9的自补码。
 - 每一个余3码只要自身按位取反,便可得到其对 9之补码。

例如:

十进制数字5的余3码为1000,5对9之补是9-5=4,而4的余3码是0111,它正好是5的余3码1000按位取反而得。

- 两个余3码相加,所产生的进位相应于十进制数的进位,但所产生的和要进行修正后才是正确的余3码。
 - 如果没有进位,则和需要减3;如果发生了进位 ,则和需加3。

3. 2421码

- > 一种有权码
- ≥ 2421 码的权从左到右分别为2、4、2、1 设2421码中的各位为 $a_3 a_2 a_1 a_0$,则它所代表的值为

$$N = 2a_3 + 4a_2 + 2a_1 + 1a_0$$

常用的其他编码

十进制数	8421码	余3码	2421码	5421码
0	0000	0011	0000	0000
1	0001	0100	0001	0001
2	0010	0101	0010(1000)	0010
3	0011	0110	0011(1001)	0011
4	0100	0111	0100(1010)	0100
5	0101	1000	1011(0101)	0101(1000)
6	0110	1001	1100(0110)	0110(1001)
7	0111	1010	1101(0111)	0111(1010)
8	1000	1011	1110	1011
9	1001	1100	1111	1100
权	8421		2421	5421

2.4.2 字符代码

- 1. 对各种数字、字母和符号这些字符进行的编码叫做字符代码。
- 2. 在我国获得广泛使用的字符代码有两种
 - ▶五单位:用五位二进制数来表示不同的字符,它 是由电报用的电传打字机的电传码稍加修改而成 的。
 - ▶七单位:用七位二进制数来表示不同的字符。
 - □ 这是目前应用最广泛的一种字符代码。
- 3. 国际标准码ASCII码(俗称阿斯克码)

- > 是一种七单位代码
- ➤ 美国用于信息交换的标准代码(American Standard Code for Information Interchange)
- ▶ 128个字符
 - □ 26个大写的英文字母和26个小写的英文字母
 - □ 10个数字符号
 - □ 34个专用符号
 - □ 32个控制字符

常用的其他编码

表 1.5 部分 ASCII 码表

符号	7位 ASCII	八进制	十六进制	符 号	7位 ASCII	八进制	十六进制
A	100 0001	101	41	Y	101 1001	131	59
В	100 0010	102	42	Z	101 1010	132	5A
C	100 0011	103	43	0	011 0000	060	30
D	100 0100	104	44	1	011 0001	061	31
E	100 0101	105	45	2	011 0010	062	32
F	100 0110	106	46	3	011 0011	063	33
G	100 0111	107	47	4	011 0100	064	34
H	100 1000	110	48	5	011 0101	065	35
I	100 1001	111	49	6	011 0110	066	36
J	100 1010	112	4A	7	011 0111	067	37
K	100 1011	113	4B	8	011 1000	070	38
L	100 1100	114	4C	9	011 1001	071	39
M	100 1101	115	4D	空格	010 0000	040	20
N	100 1110	116	4E		010 1110	056	2E
О	100 1111	117	4F	(010 1000	050	28
P	101 0000	120	50	+	010 1011	053	2 B
Q	101 0001	121	51	\$	010 0100	044	24
R	101 0010	122	52	*	010 1010	052	2A
S	101 0011	123	53)	010 1001	051	29
T	101 0100	124	54	_	010 1101	055	2D
U	101 0101	125	55	/	010 1111	057	2 F
V	101 0110	126	56	,	010 1100	054	2C
W	101 0111	127	57	=	011 1101	075	3D
X	101 1000	130	58	<return></return>	000 1101	015	0D

常用的其他编码

4. 国家标准码为GB1988-80

低4位代码				高3位代码	马(b ₇ b ₆ b ₅)			
$(\mathbf{b_4}\mathbf{b_3}\mathbf{b_2}\mathbf{b_1})$	000	001	010	011	100	101	110	111
0000	NUL	TC_7	SP	0	<u>@</u>	P	``	p
0001	TC_1	DC_1	!	1	A	Q	a	q
0010	TC_2	DC_2	66	2	В	R	b	r
0011	TC_3	DC_3	#	3	C	S	c	S
0100	TC_4	DC_4	¥	4	D	T	d	t
0101	TC_5	TC_8	%	5	Е	U	e	u
0110	TC_6	TC_9	&	6	F	V	f	V
0111	BEL	TC_{10}	۲	7	G	\mathbf{W}	g	W
1000	FE_0	CAN	(8	Н	X	h	X
1001	FE_1	EM)	9	I	Y	i	y
1010	FE_2	SUB	*	:	J	Z	j	Z
1011	FE_3	ESC	+	• • •	K	[k	{
1100	FE_4	IS_4	,	<	L	\	1	
1101	FE_5	IS_3	-	=	M]	m	}
1110	SO	IS_2		>	N	^	n	~
1111	SI	IS_1	/	?	О		0	

2.4.3 可靠性编码

- 1. 格雷(Gray)码
 - ▶特点:从一个代码变为相邻的另一代码时,只有
 - 一位发生变化。
 - ▶一种典型的Gray码
 - > 一种无权码
 - ➤ Gray码与二进制码之间有简单的转换关系

设二进制码为: $B=B_n B_{n-1}...B_1 B_0$

其对应的Gray码为: $G=G_n G_{n-1}...G_1 G_0$

则有 $G_n = B_n$ $G_i = B_{i+1} \oplus B_i$

i=0, 1, ..., n-1

常用的其他编码

种典型的Gray码

十进制数	二进制码	典型的Gray码(16进制循环)
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

例如,把二进制码0111和1100转换成Gray码:

如果已知Gray码,也可以用类似方法求出对应的二进制码, 其方法如下:

$$B_n = G_n$$
 $B_i = B_{i+1} \oplus G_i$ (i

例如,把Gray码0100和1010转换成二进制码:

- ➤ Gray码可被用作二-十进制编码。
 - □ 十进制数的两种Gray码
 - □ 修改的Gray码又叫余3Gray码,它具有循环性,即十进制数的头尾两个数(0与9)的Gray码也只有一位不同,构成一个"循环"。
 - □ 所以Gray码有时也称循环码。

常用的其他编码

十进制数	典型Gray码	修改Gray码(10进制循环)
0	0000	0010
1	0001	0110
2	0011	0111
3	0010	0101
4	0110	0100
5	0111	1100
6	0101	1101
7	0100	1111
8	1100	1110
9	1101	1010

2. 奇偶校验码

- > 编码方法
 - □ 在n位有效信息位的最前面或最后面增加一位二进制校验位P,形成n+1位的奇偶校验码。
 - 如果n+1位的奇偶校验码中"1"的个数为奇数,则 称为奇校验。
 - 如果 "1"的个数为偶数,则称为偶检验。

例如: ① 8位二进制信息00101011

奇校验码: 00101011**1** 偶校验码: 00101011**0**

② 8位二进制信息00101010

奇校验码: 001010100 偶校验码: 001010101

设n位有效信息位: $X_nX_{n-1}...X_2X_1$

其后增加一位二进制校验位: P

那么它们之间的关系为:

奇校验: $P = X_n \oplus X_{n-1} \oplus \cdots \oplus X_2 \oplus X_1 \oplus 1$

偶校验: $P = X_n \oplus X_{n-1} \oplus \cdots \oplus X_2 \oplus X_1$

- > 奇偶校验码的校验方法
 - 如果奇校验码中"1"的个数为偶数,或者偶校验码中"1"的个数为奇数,则编码出错了。

□ 校验方程

奇校验:
$$E = \overline{X_n \oplus X_{n-1} \oplus \cdots \oplus X_2 \oplus X_1 \oplus P}$$

偶校验:
$$E = X_n \oplus X_{n-1} \oplus \cdots \oplus X_2 \oplus X_1 \oplus P$$

如果E=0,则编码正确;如果E=1,则编码出错。

□ 奇偶校验码只能发现一位或奇数个位出错,不能发现偶数个位同时出错。不能纠正错误。

3. 海明校验码

- > 实现原理
 - □ 在n位有效信息位中增加k位校验位,形成一个n+k位的编码;
 - □ 把编码中的每一位分配到k个奇偶校验组中;
 - 每一组只包含一位检验位,组内按照奇校验或偶校验的规则求出该组中的校验位。
- ➤ 在海明校验码中,有效信息位的位数n与校验位数k 满足如下关系:

$$2^{k}-1 \ge n+k$$

> 海明校验码中有效信息位数与校验位数的关系

n	最小k值	n	最小k值		
1~4 5~11 12~26	3 4 5	27~57 58~119	6 7		

(1) 校验码的编码方法

海明校验码的编码过程可分3个步骤进行。

第一步:确定有效信息位与校验位在编码中的位置;

□ 最终形成的n+k位海明校验码

$$H_{n+k}H_{n+k-1}...H_2H_1$$

各位的位号按从右到左的顺序

$$1, 2, ..., n+k$$

每个校验位 P_i 所在的位号: 2^{i-1} (i=1, 2,..., k)

有效信息位按原排列顺序依次安排在其它位置上

例如: 设7位有效信息位: X₇X₆X₅X₄X₃X₂X₁

n=7 校验位位数k=4

构成的海明校验码: 11位

4个校验位 $P_4P_3P_9P_1$ 应分别位于位号为 2^{i-1} 的位置上,i=1,

2, 3, 4, 即位号为20、21、22、23。

11位海明校验码的编码排列为:

位号: 11 10 9 8 7 6 5 4 3 2 1

编码: H₁₁ H₁₀ H₉ H₈ H₇ H₆ H₅ H₄ H₃ H₂ H₁

 X_7 X_6 X_5 P_4 X_4 X_3 X_2 P_3 X_1 P_2 P_1

第二步:将n+k位海明校验码中的每一位分到k个奇偶校验组中。

分组的方法如下:

- □ 将校验码中的每一位的位号M写成k位二进制数的形式: $M_{k-1}M_{k-2}...M_1M_0$
- 对于编码中的任何一位 \mathbf{H}_{M} ,依次按从右至左(即从低位到高位)的顺序查看其 $\mathbf{M}_{k-1}\mathbf{M}_{k-2}...\mathbf{M}_{1}\mathbf{M}_{0}$ 的每一位 \mathbf{M}_{j} (\mathbf{j} =0,1,... \mathbf{k} -1),若该位为"1",则将 \mathbf{H}_{M} 分到第 \mathbf{j} 组。

上面的例子共分为4组。

常用的其他编码

例:11位(7+4)海明校验码的分组结果

	位号	11	10	9	8	7	6	5	4	3	2	1
第一步	位号对应的 二进制数	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001
	编码	X_7	X_6	X_5	P ₄	X_4	X_3	$\mathbf{X_2}$	P_3	\mathbf{X}_{1}	P ₂	\mathbf{P}_{1}
	第0组	X ₇		X_5		X_4		X ₂		\mathbf{X}_{1}	0	P ₁) 1
第一	第1组	X ₇	X ₆			X_4	X ₃			X ₁	P ₂ 1	0
步	第2组					X ₄	X ₃	X ₂	P ₃		0	0
	第3组	X ₇	X ₆	X ₅	P ₄						0	0

常用的其他编码

第三步:根据分组结果,每一组按奇校验或偶校验求出校验位,形成海明校验码。

- □ 若采用奇校验,则每一组中"1"的个数为奇数;
- □ 若采用偶校验,则每一组中"1"的个数为偶数。

在上面的例子中:

采用奇校验

$$P_{1} = \overline{X_{7} \oplus X_{5} \oplus X_{4} \oplus X_{2} \oplus X_{1}}$$

$$P_{2} = \overline{X_{7} \oplus X_{6} \oplus X_{4} \oplus X_{3} \oplus X_{1}}$$

$$P_{3} = \overline{X_{4} \oplus X_{3} \oplus X_{2}}$$

$$P_{4} = \overline{X_{7} \oplus X_{6} \oplus X_{5}}$$

采用偶校验

$$P_{1} = X_{7} \oplus X_{5} \oplus X_{4} \oplus X_{2} \oplus X_{1}$$

$$P_{2} = X_{7} \oplus X_{6} \oplus X_{4} \oplus X_{3} \oplus X_{1}$$

$$P_{3} = X_{4} \oplus X_{3} \oplus X_{2}$$

$$P_{4} = X_{7} \oplus X_{6} \oplus X_{5}$$

例19 在上面的例子中,若7位有效信息位为

$$X_7X_6X_5X_4X_3X_2X_1 = 1001101$$

求其海明校验码。

解: 若采用奇校验,则:

$$P_{1} = \overline{X_{7} \oplus X_{5} \oplus X_{4} \oplus X_{2} \oplus X_{1}} = \overline{1 \oplus 0 \oplus 1 \oplus 0 \oplus 1} = 0$$

$$P_{2} = \overline{X_{7} \oplus X_{6} \oplus X_{4} \oplus X_{3} \oplus X_{1}} = \overline{1 \oplus 0 \oplus 1 \oplus 1 \oplus 1} = 1$$

$$P_{3} = \overline{X_{4} \oplus X_{3} \oplus X_{2}} = \overline{1 \oplus 1 \oplus 0} = 1$$

$$P_{4} = \overline{X_{7} \oplus X_{6} \oplus X_{5}} = \overline{1 \oplus 0 \oplus 0} = 0$$

将这些校验位与有效信息位一起排列,可得11位海明校验码为:

10001101110

若采用偶校验,则:

$$P_{1} = X_{7} \oplus X_{5} \oplus X_{4} \oplus X_{2} \oplus X_{1} = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 1$$

$$P_{2} = X_{7} \oplus X_{6} \oplus X_{4} \oplus X_{3} \oplus X_{1} = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 = 0$$

$$P_{3} = X_{4} \oplus X_{3} \oplus X_{2} = 1 \oplus 1 \oplus 0 = 0$$

$$P_{4} = X_{7} \oplus X_{6} \oplus X_{5} = 1 \oplus 0 \oplus 0 = 1$$

将这些校验位与有效信息位一起排列,可得11位海明校验码为:

10011100101

(2) 检验码的校验方法

- ▶ 校验的方法
 - □ 将n+k位海明校验码按编码时采用的方法,重新再分成k个组。
 - 奇校验:每一组中"1"的个数应该为奇数
 - 偶校验:每一组中"1"的个数应该为偶数
 - □ 如果不满足,则表示该校验码出错了。

> 具体实现

□ 在分成的k个组中,将每一组中所有的信息位异或起来,得到k位校验结果 $E_{k-1}E_{k-2}...E_1E_0$ 。

(指误字)

□ 若奇校验中

$$\overline{E_{k-1}}\overline{E_{k-2}}...\overline{E_1}\overline{E_0} = \mathbf{00...00}$$

或偶校验中

$$E_{k-1}E_{k-2}...E_1E_0 = 00...00$$

则该校验码正确,没有出错。

- □ 否则结果有错,这时候 $\mathbf{E_{k-1}E_{k-2}...E_1E_0}$ 代码所对应的十进制数就是校验码中出错信息位的位号。
- > 纠正方法

将出错信息位变反即可。

上面例子中的11位校验码进行校验:

$$E_0 = X_7 \oplus X_5 \oplus X_4 \oplus X_2 \oplus X_1 \oplus P_1$$

$$E_1 = X_7 \oplus X_6 \oplus X_4 \oplus X_3 \oplus X_1 \oplus P_2$$

$$E_2 = X_4 \oplus X_3 \oplus X_2 \oplus P_3$$

$$E_3 = X_7 \oplus X_6 \oplus X_5 \oplus P_4$$

例20 在例11中,采用奇校验的11位海明校验码应为: 10001101110。若接收到的代码为10001101110和10001111110,分别检验它们有无错误?若有,判别出错位置。

解: ① 若接收到的代码为10001101110,则得到检验结果为:

$$E_0 = X_7 \oplus X_5 \oplus X_4 \oplus X_2 \oplus X_1 \oplus P_1 = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = 1$$

$$E_1 = X_7 \oplus X_6 \oplus X_4 \oplus X_3 \oplus X_1 \oplus P_2 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$E_2 = X_4 \oplus X_3 \oplus X_2 \oplus P_3 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

$$E_3 = X_7 \oplus X_6 \oplus X_5 \oplus P_4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

因为 $\overline{E_3}\overline{E_2}\overline{E_1}\overline{E_0} = \mathbf{0000}$, 所以收到的海明校验码没有错。

② 若接收到的代码为10001111110,则得到检验结果为:

$$E_0 = X_7 \oplus X_5 \oplus X_4 \oplus X_2 \oplus X_1 \oplus P_1 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$E_1 = X_7 \oplus X_6 \oplus X_4 \oplus X_3 \oplus X_1 \oplus P_2 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$E_2 = X_4 \oplus X_3 \oplus X_2 \oplus P_3 = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 0$$

$$E_3 = X_7 \oplus X_6 \oplus X_5 \oplus P_4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

因为 $\overline{E_3}\overline{E_2}\overline{E_1}\overline{E_0} = 0101$,不为全"0",表示收到的校验码有错。

因为 $\overline{E_3}\overline{E_2}\overline{E_1}\overline{E_0}$ 为0101,指出是第5位信息出错,将第5位信息 (即 X_2) 变反,就得到正确的代码。

(3) 改进

- 上述海明校验码只能发现一位错误,并指出是哪一位错了。
- 在前面讲的海明校验码的基础上,再增加一位校验位,使得有效信息位的位数n与校验位数k满足如下关系:

$2^{k-1} \ge n + k$

- ▶ 称为扩展的海明校验码
- ▶ 能发现并纠正一位出错,还能发现两位出错,但 不能指出是哪两位。(n=7时,k最小取5)

4. 循环冗余校验码

- ➤ 简称CRC码 (Cyclic Redundancy Check)
- ➤ 在n位有效信息位后拼接k位校验位构成,通过数学 运算建立有效信息位与校验位之间的关系,形成一 个n+k位的代码。
- ▶ 常被称为(n+k, n)码

循环冗余校验码的格式

(1) 模2运算

以按位模2相加的四则运算,运算时不考虑进位 和借位。

▶ 模2加减:就是按位作异或运算,模2加与模2减的结果一样。运算规则为:

$$0\pm 0=0$$
 $0\pm 1=1\pm 0=1$ $1\pm 1=0$

例21 按模2加减规则,求1100+1010; 1010-0111; 1010+1010。

常用的其他编码

▶ 模2乘: 与一般二进制乘法唯一不同的就是最后按模2加求部分积之和。

例22 按模2乘规则,求1010×101。

解: 1010×101=100010

$$\begin{array}{r}
1010 \\
\times 101 \\
\hline
1010 \\
0000 \\
1010 \\
\hline
100010
\end{array}$$

$$\begin{array}{r}
101 \\
101 \\
101 \\
\hline
011 \\
000 \\
\hline
110 \\
111 \\
\hline
111
\end{array}$$

(a) 模2乘

(b) 模2除

▶ 模2除

- □ 每一次都是按模2减求余数。
- □ 若余数(初始为被除数)最高位为1,则商"1";
- □ 若余数最高位为0,则商"0"。
- □ 当余数的位数小于除数位数时,除法结束。

例23 按模2除规则, 求10010÷101。

解: 10010÷101=101 余数为11

(2) CRC的编码方法

设待编码的n位有效信息位: $C_nC_{n-1}...C_2C_1$

循环冗余校验码的编码步骤如下:

第一步:将n位有效信息位表示为多项式M(x)的形式:

$$M(x) = C_n x^{n-1} + C_{n-1} x^{n-2} + ... + C_2 x + C_1$$

例如: 8位有效信息位11010011可以表示为:

$$M(x) = x^7 + x^6 + x^4 + x + 1$$

第二步: 选择一个k+1位的生成多项式G(x), 然后按模 2除, 用 $M(x) \cdot x^k$ 除以G(x), 得到k位余数R(x)和商 Q(x)。

$$\frac{M(x) \bullet x^k}{G(x)} = Q(x) + \frac{R(x)}{G(x)}$$

第三步:得到的k位余数就是所求的校验位,将它拼接在n位有效信息位的后面,即得到n+k位的CRC码。

例24 选择生成多项式 $G(x)=x^3+x+1$,即为1011。将4位有效信息1100编码成7位CRC码。

解: $M(x) = x3 + x^2 = 1100$ $M(x) \cdot x^3 = x^6 + x^5 = 1100000$ (即1100左移3位) 模2除: $M(x) \cdot x^3 / G(x) = 1100000 / 1011 = 1110 + 010 / 1011$

即R(x)=010

得到7位的CRC码为: 1100010, 这种CRC码称为(7, 4)码。

(3)CRC的校验方法

将收到的CRC码用原来的生成多项式G(x)去除。

- ▶ 若得到的余数为0,则接收到的代码没有错;
- ➤ 若余数不为0,则表示接收到的代码中的某一位 出错了。
 - □ 不同的位出错,所对应的余数不同;
 - □ 根据余数判定是哪一位错了;
 - □ 将相应位变反就得正确的代码。
- > 对应于例2.12中的生成多项式 $G(x)=x^3+x+1$,下表列出了(7, 4)码的出错模式。

(7, 4) 码的出错模式(生成多项式G(x)=1011)

	D ₇	D ₆	D ₅	D ₄	\mathbf{D}_3	D ₂	\mathbf{D}_1	余数	出错位
正确码	1	1	0	0	0	1	0	000	无
	1	1	0	0	0	1	<u>1</u>	001	1
	1	1	0	0	0	<u>0</u>	0	010	2
错误码	1	1	0	0	<u>1</u>	1	0	100	3
旧灰吗	1	1	0	<u>1</u>	0	1	0	011	4
	1	1	<u>1</u>	0	0	1	0	110	5
	1	<u>0</u>	0	0	0	1	0	111	6
	<u>0</u>	1	0	0	0	1	0	101	7

从表中可以看出:如果得到的余数为100,则表示第 $3位D_3$ 错了;如果得到的余数为111,则表示第 $6位D_6$ 错了。

(4) CRC码的生成多项式

- > 生成多项式应满足下列要求
 - □ 任何一位出错都应使余数不为0;
 - □ 不同位出错应使余数不同;
 - □ 对余数继续作模2除法,应使余数循环。
- ▶ 有3种多项式成为标准而被广泛运用。

$$CRC_{12} = x^{12} + x^{11} + x^{3} + x^{2} + x + 1$$

$$CRC_{16} = x^{16} + x^{15} + x^{2} + 1$$

$$CRC_{CCITT} = x^{16} + x^{12} + x^{5} + 1$$

作业:

2.1-2.4 2.6 2.7

2.9-2.12

2.14 2.16