IE613: Online Machine Learning

Jan-Apr 2018

Lecture 16: Mirror Descent

Lecturer: M. K. Hanawal Scribes: Shubham Uttam

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

16.1 Recap

In the last class we saw the Online gradient descent algorithm

Algorithm 1 Online Gradient Descent

- 1: Start with $w_1 \in \mathcal{K} \subset \mathbb{R}^d$
- 2: for rounds t-1,...,T do
- 3: player plays w_t
- 4: environment plays w_t
- 5: $w_{t+1} \leftarrow Proj_k[w_t \eta_t \bigtriangledown c_t(w_t)]$

Note that here the set K is closed and bounded and the cost function c_t is strongly convex and continuously differentiable. When c_t is convex but not continuously differentiable then we get online sub-gradient descent algorithm by making some changes in the update statement.

Algorithm 2 Online Sub-Gradient Descent

- 1: Start with $w_1 \in \mathcal{K} \subset \mathbb{R}^d$
- 2: for rounds t-1,...,T do
- 3: player plays w_t
- 4: environment plays w_t
- 5: $w_{t+1} \leftarrow Proj_k[w_t \eta_t \ \nabla c_t(w_t)]$

16.2 Some basics of Linear Algebra

Definition 16.1 Field: A field F is a set with two operations addition and multiplication,

$$+: F \times F \to F \ and .: F \times F \to F$$

which obey the following axioms:

- (F,+) is an **abelian group** under addition:
- (1) Addition is associative. That is for every x, y and $z \in F$,

$$(x + y) + z = x + (y + z).$$

16-2 Lecture 16: Mirror Descent

(2) There is an identity element under addition. This element is often denoted $0 \in F$ and for every element $x \in F$,

$$0 + x = x + 0 = x$$
.

(3) Every element has an additive inverse. That is given $x \in F$, there is an element $-x \in F$ and

$$x + (-x) = x - x = 0$$

(4) Addition is commutative. That is given x and $y \in F$,

$$x + y = y + x$$
.

- Let $F^*=F-\{0\}$. Then $(F^*,.)$ is an abelian group under multiplication:
- (1) Multiplication is associative. That is for every x, y and $z \in F$,

$$(x.y).z = x.(y.z)$$

(2) There is an identity element under multiplication. This element is often denoted $1 \in F$ and for every element $x \in F$,

$$1.x = x.1 = x$$

(3) Every element has an multiplicative inverse. That is given $x \in F$, there is an element $x^{-1} \in F$ and

$$x.x^{-1} = x^{-1}.x = 0$$

(4) multiplication is commutative. That is given x and $y \in F$,

$$x.y = y.x$$

• addition and multiplication are compatible, i.e. F satisfies the distributive law. that is given x, y and $z \in F$,

$$x.(y+z) = x.y + x.z$$

Definition 16.2 Vector Space: A vector space over a field F is a set V together with two operations, vector addition and vector multiplication that satisfy the eight axioms: Let $u,v,w \in V$ and $a,b \in F$

• Associativity of addition:

$$u + (v + w) = (u + v) + w$$

• Commutativity of addition:

$$u + v = v + u$$

- Identity element of addition: there exists an element $0 \in V$, called zero vector, such that v+0 = v for all $v \in V$
- Inverse elements of addition: For every $v \in V$, there exists an element $v \in V$, called the additive inverse of v, such that v + (-v) = 0
- Compatibility of scalar multiplication with field multiplication:

$$a(bv) = (ab)v$$

- Identity element of scalar multiplication: 1v=v, where 1 denotes the multiplicative identity in F.
- Distributivity of scalar multiplication with respect to vector addition:

$$a(u+v) = au + av$$

16-3

• Distributivity of scalar multiplication with respect to field addition:

$$(a+b)v = av + bv$$

Definition 16.3 Inner Product Space: An inner product space is a vector space V over the field F together with an inner product, i.e., with a map

$$\langle \cdot, \cdot \rangle : V \times V \to F$$

that satisfies the following three axioms for all vectors $x,y,z \in V$ and all scalars $a \in F$:

• Conjugate symmetry:

$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

• Linearity in the first argument:

$$< ax, y >= a < x, y >$$

 $< x + y, z > = < x, z > + < y, z >$

• Positive-definiteness:

$$\langle x, x \rangle \ge 0$$

 $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

Definition 16.4 Complete Space: A metric space M is called complete (or a Cauchy space) if every Cauchy sequence of points in M has a limit that is also in M or, alternatively, if every Cauchy sequence in M converges in M.

Definition 16.5 Hilbert Space: A complete space with an inner product is called a Hilbert space.

Definition 16.6 Linear Functional: A map $f: V \to F$ over a vector space V over F is called a linear functional if $f(\alpha u + \beta v) = \alpha f(u) + \beta f(v)$, $\forall u, v \in V$, $\forall \alpha, \beta \in F$.

Definition 16.7 Dual Space: Let H be a Hilbert space. Then the set of all linear functional over H forms the dual space H^* .

Riesz Representation Theorem:

Let H be a Hilbert space, and let H^* be its dual space. If x is an element of H, then the function φ_x , for all y in H defined by:

$$\varphi_x(y) = \langle y, x \rangle$$

Theorem: The mapping $\phi: H \to H^*$ defined by $\phi(x) = \varphi_x$ is an isometric isomorphism, meaning that:

16-4 Lecture 16: Mirror Descent

- ϕ is bijective.
- The norm of x and φ_x agree: $||x|| = ||\phi(x)||$.
- ϕ is additive: $\phi(x_1 + x_2) = \phi(x_1) + \phi(x_2)$.
- If the base field is \mathbb{R} , then $\phi(\lambda x) = \lambda \phi(x)$ for all real numbers λ .
- If the base field is \mathbb{C} , then $\phi(\lambda x) = \bar{\lambda}\phi(x)$ for all complex numbers λ , where $\bar{\lambda}$ denotes the complex conjugation of λ .

Definition 16.8 Banach space: A Banach space is a vector space X over the field \mathbb{R} , or over the field \mathbb{C} , which is equipped with a norm and which is complete with respect to that norm, that is to say, for every Cauchy sequence $\{x_n\}$ in X, there exists an element x in X such that

$$\lim_{n \to \infty} x_n = x,$$

or equivalently:

$$\lim_{n \to \infty} ||x_n - x||_x = 0$$

If B is Banach space, then Riesz Representation theorem may not hold. If g is a linear functional on \mathbb{R}^d , then:

$$g(y) = y_1 g(e_1) + y_2 g(e_2) + \dots + y_d g(e_d)$$

where $y = y_1 e_1 + y_2 e_2 + + y_d e_d$ where $\{e_1, e_2,, e_d\}$ is the set of basis of \mathbb{R}^d .

16.3 Mirror Descent

Definition 16.9 Bregman Divergence: Let $f : \omega \to \mathbb{R}$ be a function that is strictly convex, continuously differentiable and defined on a closed convex set ω . Then the Bregman divergence is defined as:

$$B_f(x,y) := f(x) - f(y) - \langle \nabla f(y), x - y \rangle, \ \forall x, y \in \omega$$

That is, the difference between the value of f at x and the first order Taylor expansion of f around y evaluated at point x.

Examples of Bregman divergence

- Euclidean distance. Let $f(x) = \frac{1}{2}||x||^2$. Then Bregman divergence $B_f(x,y) = \frac{1}{2}||x-y||^2$
- Non Euclidean distance, Mahalanobis distance. We have $f(x) = \frac{1}{2}x^T Ax$, for some positive semidefinite matrix A. Then Bregman divergence is

$$B_f(x,y) = \frac{1}{2}(x-y)^T A(x-y)$$

• Kullback-Leibler divergence. We have $f(p) = \sum p_i \log p_i$. Then Bregman divergence is

$$B_f(p,q) = \sum p_i \log \frac{p_i}{q_i} - \sum p_i + \sum q_i$$

Lecture 16: Mirror Descent 16-5

Two components which we will use in mirror descent procedure:

- 1. Mirror function, ϕ It is a convex function defined as, $\phi: V \to V^*$ where V^* is the dual space of V.
- 2. Bregman projection

$$Proj_K(u) = \arg\min_{v \in K} B_f(v, u)$$

Definition 16.10 Fenchel-Legendre dual: A funtion $f: \mathcal{H} \to \mathbb{R}$, define $f^*: \mathcal{H}^* \to \mathbb{R}$ such that

$$f^*(u) = \sup_{x \in \mathcal{H}} \{ f(x) - \langle u, x \rangle \}$$

If function f is convex and differentiable, then $f^*(\nabla f(x)) = f(x) - \langle \nabla f(x), x \rangle$

Motivation of mirror descent procedure: If there is a case where $\nabla c_t(w_t) \notin K$, $(K \neq \mathbb{R}^d)$ then nothing can be said about $w_t - \eta_t \nabla c_t(w_t)$, so we conduct update in dual space instead of real space.

16.3.1 Online Mirror Descent Procedure

- \rightarrow Update in the dual space
- \rightarrow Take a mirror function, ϕ .
- \rightarrow Mirror Update: $\nabla \phi(\widetilde{w}_{t+1}) \leftarrow \nabla \phi(w_t) \eta_t \nabla c_t(w_t)$
- $\rightarrow w_{t+1} \leftarrow \operatorname{Bregman} Proj_K^{\phi}[\widetilde{w}_t]$

If we take $\phi(x) = \frac{1}{2}||x||^2$, then it becomes Online Descent Algorithm and if we take ϕ to be a negative entropy term in mirror update then algorithm we get is known as Online Exponential Gradient algorithm.

16.3.2 Regret of OMD

Let environment reveals a convex regret loss function as c_t in round t, then the regret for online mirror descent is given by:

$$Regret_{OMD}(u,T) = \sum_{t=1}^{T} c_t(w_t) - \sum_{t=1}^{T} c_t(u)$$

16-6 Lecture 16: Mirror Descent

16.3.3 Regret Bound for OMD

Consider
$$c_t(w_t) - c_t(u) \le \langle \nabla c_t(w_t), w_t - u \rangle$$
 (By convexcity of c_t)
$$= \frac{1}{n} \langle \nabla \phi(w_t) - \nabla \phi(\widetilde{w}_{t+1}), w_t - u \rangle \quad (\text{ since } \nabla \phi(\widetilde{w}_{t+1}) = \nabla \phi(w_t) - \eta \nabla \phi(w_t))$$

$$= \frac{1}{n} [B_{\phi}(u, w_t) - B_{\phi}(u, \widetilde{w}_{t+1}) + B_{\phi}(w_t, \widetilde{w}_{t+1})] \quad (\text{ using Bregman divergence})$$

$$= \frac{1}{n} [B_{\phi}(u, w_t) - B_{\phi}(w_{t+1}, \widetilde{w}_{t+1}) - B_{\phi}(u, w_{t+1}) + B_{\phi}(w_t, \widetilde{w}_{t+1})]$$

$$(\text{as } B_{\phi}(u, \widetilde{w}_{t+1}) = B_{\phi}(w_{t+1}, \widetilde{w}_{t+1}) + B_{\phi}(u, w_{t+1}))$$

Summing over T:

$$\begin{split} \sum_{t=1}^{T} (c_{t}(w_{t}) - c_{t}(u)) &\leq \frac{1}{n} \sum_{t=1}^{T} [B_{\phi}(u, w_{t}) - B_{\phi}(u, w_{t+1})] + \frac{1}{n} \sum_{t=1}^{T} [B_{\phi}(w_{t}, \widetilde{w}_{t+1}) - B_{\phi}(w_{t+1}, \widetilde{w}_{t+1})] \\ &= \frac{1}{n} [B_{\phi}(u, w_{1}) - B_{\phi}(u, w_{T+1})] + \frac{1}{n} \sum_{t=1}^{T} [B_{\phi}(w_{t}, \widetilde{w}_{t+1}) - B_{\phi}(w_{t+1}, \widetilde{w}_{t+1})] \\ &\leq \frac{1}{n} [B_{\phi}(u, w_{1})] + \frac{1}{n} \sum_{t=1}^{T} [B_{\phi}(w_{t}, \widetilde{w}_{t+1}) - B_{\phi}(w_{t+1}, \widetilde{w}_{t+1})] \\ & \text{(as for some convex } \phi, B_{\phi}(u, v) \geq 0) \end{split}$$

For $w_1: \phi(u) - \phi w_1 \le D^2$, $\forall u \in K$

$$B_{\phi}(u, w) = \phi(u) - \phi(w_1) - \langle \nabla \phi(w_1), u - w_1 \rangle \leq D^2$$
 (as $\langle \nabla \phi(w_1), u - w_1 \rangle \geq 0$)

Therefore we get:

$$\sum_{t=1}^{T} (c_t(w_t) - c_t(u)) \le \frac{1}{n} D^2 + \frac{1}{n} \sum_{t=1}^{T} [B_{\phi}(w_t, \widetilde{w}_{t+1}) - B_{\phi}(w_{t+1}, \widetilde{w}_{t+1})]$$

$$= \frac{1}{n} D^2 + \frac{1}{n} \sum_{t=1}^{T} [\phi(w_t) - \phi(w_{t+1}) - \langle \nabla \phi(\widetilde{w}_{t+1}), w_t - w_{t+1} \rangle]$$

Assumption: ϕ is strongly convex with modulus α

i.e.
$$\phi(y) \ge \phi(x) + \langle \nabla \phi(x), y - x \rangle + \frac{\alpha}{2} ||y - x||^2$$

Therefore,
$$\sum_{t=1}^{T} (c_t(w_t) - c_t(u)) \le \frac{1}{\eta} D^2 + \sum_{t=1}^{T} [\langle \nabla \phi(w_t), w_t - w_{t+1} \rangle - \frac{\alpha}{2} ||w_t - w_{t+1}||^2 - \langle \nabla \phi(\widetilde{w}_{t+1}), w_t - w_{t+1} \rangle]$$

Recall update step:

$$\nabla \phi(\widetilde{w}_{t+1}) = \nabla \phi(w_t) - \eta \nabla c_t(w_t)$$
$$\nabla \phi(w_t) - \nabla \phi(\widetilde{w}_{t+1}) = \eta \nabla c_t(w_t)$$

Therefore,
$$\sum_{t=1}^{T} (c_t(w_t) - c_t(u)) \leq \frac{1}{\eta} D^2 + \sum_{t=1}^{T} [\langle \nabla \phi(w_t) - \nabla \phi(\widetilde{w}_{t+1}), w_t - w_{t+1} \rangle - \frac{\alpha}{2} ||w_t - w_{t+1}||^2]$$

$$= \frac{1}{\eta} D^2 + \sum_{t=1}^{T} [\eta \langle \nabla c_t(w_t), w_t - w_{t+1} \rangle - \frac{\alpha}{2} ||w_t - w_{t+1}||^2]$$

$$= \frac{1}{\eta} D^2 + \sum_{t=1}^{T} [\langle \eta \nabla c_t(w_t), w_t - w_{t+1} \rangle - \frac{\alpha}{2} ||w_t - w_{t+1}||^2]$$

$$(16.1)$$

Lecture 16: Mirror Descent

Now by Cauchy Schwartz Inequality, we have:

$$|\langle x, y \rangle|^2 \le ||x|| \, ||y||$$

16-7

So then we have:

$$<\eta \nabla c_t(w_t), w_t - w_{t+1}> = \eta < \nabla c_t(w_t), w_t - w_{t+1}>$$

 $<\eta \nabla c_t(w_t), w_t - w_{t+1}> \le \eta ||\nabla c_t(w_t)|| ||w_t - w_{t+1}||$

Now as $|| \nabla c_t(w_t)||$ is bounded by G, we have

$$<\eta \nabla c_t(w_t), w_t - w_{t+1} > \le \eta G ||w_t - w_{t+1}||$$

So we have:

$$< \eta \bigtriangledown c_t(w_t), w_t - w_{t+1} > -\frac{\alpha}{2} ||w_t - w_{t+1}||^2 \le \frac{\eta^2 G^2}{2\alpha} + \frac{\alpha}{2} ||w_t - w_{t+1}||^2 - \eta G ||w_t - w_{t+1}||^2$$

$$= (\frac{\eta G}{\sqrt{2\alpha}} - \sqrt{\frac{\alpha}{2}} ||w_t - w_{t+1}||)^2$$

Therefore the regret bound we have is:

$$Reg = \sum_{t=1}^{T} (c_t(w_t) - c_t(u)) \le \frac{1}{\eta} D^2 + \sum_{t=1}^{T} \frac{\eta^2 G^2}{2\alpha} = \frac{1}{\eta} [D^2 + \frac{\eta^2 G^2 T}{2\alpha}]$$

16.4 Follow the Regularized Leader

Follow the regularized leader minimizes the loss of all past rounds plus a regularization term. The goal of the regularization term is to stabilize the solution. Formally, for a regularization function, $R: S \to \mathbb{R}$ we define the weight for any round t as:

$$w_t = arg \min_{w \in S} \sum_{i=1}^{t-1} f_i(w) + R(w)$$