Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

1 de marzo de 2025

Agenda

- El Campo gravitacional: problema de dos cuerpos (otra vez)
- Flujo del campo gravitacional
- Securita de la consida de l
- 4 El problema inverso
- El problema de Kepler
- 6 Las cónicas
- Orbitas, excentricidades y energías
- Las Leyes de Kepler
 - Segunda Ley de Kepler
 - Tercera Ley de Kepler
- Recapitulando
- 🔟 Para la discusión

El Campo gravitacional: problema de dos cuerpos

• El módulo de la fuerza gravitacional entre dos partículas con masas m_1 y m_2 , separadas por una distancia r es $f(r) = -G \frac{m_1 m_2}{r^2}$, donde G es la constante universal gravitacional.

El Campo gravitacional: problema de dos cuerpos

- El módulo de la fuerza gravitacional entre dos partículas con masas m_1 y m_2 , separadas por una distancia r es $f(r) = -G\frac{m_1m_2}{r^2}$, donde G es la constante universal gravitacional.
- La fuerza gravitacional que una partícula de masa m_1 ejerce sobre otra partícula de masa m_2 es $\mathbf{F}(\mathbf{r}) = -\nabla V(r) = -G \frac{m_1 m_2}{r^2} \hat{\mathbf{r}}$, con $V(r) = -G \frac{m_1 m_2}{r}$

El Campo gravitacional: problema de dos cuerpos

- El módulo de la fuerza gravitacional entre dos partículas con masas m_1 y m_2 , separadas por una distancia r es $f(r) = -G\frac{m_1m_2}{r^2}$, donde Ges la constante universal gravitacional.
- La fuerza gravitacional que una partícula de masa m_1 ejerce sobre otra partícula de masa m_2 es $\mathbf{F}(\mathbf{r}) = -\nabla V(r) = -G \frac{m_1 m_2}{r^2} \hat{\mathbf{r}}$, con $V(r) = -G \frac{m_1 m_2}{r}$
- Entonces la intensidad del campo gravitacional de m_1 en la posición $\bf r$ sobre la partícula m_2 es $mathbfg(\mathbf{r}) \equiv \frac{\mathbf{F}(\mathbf{r})}{m_2} = -\frac{Gm_1}{r^2}\hat{\mathbf{r}}$, donde definimos el potencial gravitacional $\varphi(\mathbf{r})$ producido por m_1 como $\varphi(\mathbf{r}) \equiv \frac{V(r)}{m_2} = -\frac{Gm_1}{r}$

$$arphi(\mathbf{r}) \equiv rac{V(r)}{m_2} = -rac{Gm_1}{r}$$

• Consideremos una partícula de masa *m* dentro de una superficie arbitraria y cerrada *S* que contiene un volumen V.

 Consideremos una partícula de masa m dentro de una superficie arbitraria y cerrada S que contiene un volumen V.

• El flujo del campo gravitacional a través de la superficie S es $\Phi = \oint_S \mathbf{g} \cdot d\mathbf{A} = -Gm \oint_S \frac{1}{r^2} dA \, \hat{\mathbf{r}} \cdot \hat{\mathbf{n}}$ donde g se evalúa sobre S y $d\mathbf{A} = dA \, \hat{\mathbf{n}}$ es el diferencial de área de S con un vector normal unitario $\hat{\mathbf{n}}$.

• Consideremos una partícula de masa *m* dentro de una superficie arbitraria y cerrada *S* que contiene un volumen V.

- El flujo del campo gravitacional a través de la superficie S es $\Phi = \oint_S \mathbf{g} \cdot d\mathbf{A} = -Gm \oint_S \frac{1}{r^2} dA \, \hat{\mathbf{r}} \cdot \hat{\mathbf{n}}$ donde g se evalúa sobre S y $d\mathbf{A} = dA \, \hat{\mathbf{n}}$ es el diferencial de área de S con un vector normal unitario $\hat{\mathbf{n}}$.
- Entonces, $\oint_S \mathbf{g} \cdot d\mathbf{A} = -Gm \oint_S d\Omega = -4\pi Gm$ con $d\Omega = \frac{dA\cos\theta}{r^2} = \frac{dA\hat{\mathbf{n}}\cdot\hat{\mathbf{r}}}{r^2}$ el diferencial de ángulo sólido, con origen en m encierra un área $dA\cos\theta$ a la distancia r

 Consideremos una partícula de masa m dentro de una superficie arbitraria y cerrada S que contiene un volumen V.

- El flujo del campo gravitacional a través de la superficie S es $\Phi = \oint_S \mathbf{g} \cdot d\mathbf{A} = -Gm \oint_S \frac{1}{r^2} dA \, \hat{\mathbf{r}} \cdot \hat{\mathbf{n}}$ donde g se evalúa sobre S y $d\mathbf{A} = dA \, \hat{\mathbf{n}}$ es el diferencial de área de S con un vector normal unitario $\hat{\mathbf{n}}$.
- Entonces, $\oint_S \mathbf{g} \cdot d\mathbf{A} = -Gm \oint_S d\Omega = -4\pi Gm$ con $d\Omega = \frac{dA\cos\theta}{r^2} = \frac{dA\hat{\mathbf{n}}\cdot\hat{\mathbf{r}}}{r^2}$ el diferencial de ángulo sólido, con origen en m encierra un área $dA\cos\theta$ a la distancia r
- El flujo del campo gravitacional a través de S es proporcional a la masa de la partícula encerrada por S, independientemente de la ubicación de la partícula dentro de la superficie S.

• El flujo total para un sistema de partículas con masas $m_i, i=1,\ldots,N$, encerradas por la superficie S, es $\oint_S \mathbf{g} \cdot d\mathbf{A} = -4\pi G \sum_{i=1}^N m_i = -4\pi G M_{\mathrm{enc}}$ donde M_{enc} es la masa total encerrada por S.

- El flujo total para un sistema de partículas con masas $m_i, i=1,\ldots,N$, encerradas por la superficie S, es $\oint_S \mathbf{g} \cdot d\mathbf{A} = -4\pi G \sum_{i=1}^N m_i = -4\pi G M_{\mathrm{enc}}$ donde M_{enc} es la masa total encerrada por S.
- El teorema de la divergencia para el campo ${\bf g}$ nos dice $\oint_{\cal S} {\bf g} \cdot d{\bf A} = \int_{\cal V} \nabla \cdot {\bf g} d \; {\cal V} = -4\pi {\cal G} \int_{\cal V} \rho d \; {\cal V}$ donde $M_{\rm enc} = \int_{\cal V} \rho d \; {\cal V}$

- El flujo total para un sistema de partículas con masas $m_i, i=1,\ldots,N$, encerradas por la superficie S, es $\oint_S \mathbf{g} \cdot d\mathbf{A} = -4\pi G \sum_{i=1}^N m_i = -4\pi G M_{\mathrm{enc}}$ donde M_{enc} es la masa total encerrada por S.
- El teorema de la divergencia para el campo ${\bf g}$ nos dice $\oint_{\cal S} {\bf g} \cdot d{\bf A} = \int_{\rm V} \nabla \cdot {\bf g} d \; {
 m V} = -4\pi {\cal G} \int_{\rm V} \rho d \; {
 m V}$ donde $M_{\rm enc} = \int_{\rm V} \rho d \; {
 m V}$
- Puesto que el volumen V es arbitrario tendremos $\nabla \cdot \mathbf{g} = -4\pi G \rho$

- El flujo total para un sistema de partículas con masas $m_i, i=1,\ldots,N$, encerradas por la superficie S, es $\oint_S \mathbf{g} \cdot d\mathbf{A} = -4\pi G \sum_{i=1}^N m_i = -4\pi G M_{\mathrm{enc}}$ donde M_{enc} es la masa total encerrada por S.
- El teorema de la divergencia para el campo ${\bf g}$ nos dice $\oint_{\cal S} {\bf g} \cdot d{\bf A} = \int_{\rm V} \nabla \cdot {\bf g} d \; {
 m V} = -4\pi {\cal G} \int_{\rm V} \rho d \; {
 m V}$ donde $M_{\rm enc} = \int_{\rm V} \rho d \; {
 m V}$
- ullet Puesto que el volumen V es arbitrario tendremos $abla \cdot {f g} = -4\pi G
 ho$
- Que se traduce en la ecuación de Poisson $abla^2 \varphi = 4\pi G
 ho$

• Consideremos el problema inverso: dada una órbita $r(\theta)$, determinar el potencial V(r), o la fuerza central f(r), que causa ésta órbita.

- Consideremos el problema inverso: dada una órbita $r(\theta)$, determinar el potencial V(r), o la fuerza central f(r), que causa ésta órbita.
- La ecuación de movimiento para r(t) es $\mu \ddot{r} \frac{L^2}{\mu r^3} = -\frac{\partial V}{\partial r}$

- Consideremos el problema inverso: dada una órbita $r(\theta)$, determinar el potencial V(r), o la fuerza central f(r), que causa ésta órbita.
- La ecuación de movimiento para r(t) es $\mu \ddot{r} \frac{L^2}{\mu r^3} = -\frac{\partial V}{\partial r}$
- La derivada temporal de r(t) se puede expresar, usando $\dot{\theta} = \frac{L}{\mu r^2}$, como $\dot{r} = \frac{dr}{dt} = \frac{dr}{d\theta} \frac{d\theta}{dt} = \frac{L}{\mu r^2} \frac{dr}{d\theta}$

- Consideremos el problema inverso: dada una órbita $r(\theta)$, determinar el potencial V(r), o la fuerza central f(r), que causa ésta órbita.
- La ecuación de movimiento para r(t) es $\mu \ddot{r} \frac{L^2}{\mu r^3} = -\frac{\partial V}{\partial r}$
- La derivada temporal de r(t) se puede expresar, usando $\dot{\theta} = \frac{L}{\mu r^2}$, como $\dot{r} = \frac{dr}{dt} = \frac{dr}{d\theta} \frac{d\theta}{dt} = \frac{L}{\mu r^2} \frac{dr}{d\theta}$
- ullet En general, la derivada temporal se puede escribir como $rac{d}{dt}=rac{L}{\mu r^2}rac{d}{d heta}$

- Consideremos el problema inverso: dada una órbita $r(\theta)$, determinar el potencial V(r), o la fuerza central f(r), que causa ésta órbita.
- La ecuación de movimiento para r(t) es $\mu \ddot{r} \frac{L^2}{\mu r^3} = -\frac{\partial V}{\partial r}$
- La derivada temporal de r(t) se puede expresar, usando $\dot{\theta} = \frac{L}{\mu r^2}$, como $\dot{r} = \frac{dr}{dt} = \frac{dr}{d\theta} \frac{d\theta}{dt} = \frac{L}{\mu r^2} \frac{dr}{d\theta}$
- En general, la derivada temporal se puede escribir como $\frac{d}{dt} = \frac{L}{\mu r^2} \frac{d}{d\theta}$
- Con lo cual $\ddot{r} = \frac{d}{dt} \left(\frac{dr}{dt} \right) = \frac{d}{dt} \left(\frac{L}{\mu r^2} \frac{dr}{d\theta} \right) = \frac{L}{\mu r^2} \frac{d}{d\theta} \left(\frac{L}{\mu r^2} \frac{dr}{d\theta} \right)$

- Consideremos el problema inverso: dada una órbita $r(\theta)$, determinar el potencial V(r), o la fuerza central f(r), que causa ésta órbita.
- La ecuación de movimiento para r(t) es $\mu \ddot{r} \frac{L^2}{\mu r^3} = -\frac{\partial V}{\partial r}$
- La derivada temporal de r(t) se puede expresar, usando $\dot{\theta} = \frac{L}{\mu r^2}$, como $\dot{r} = \frac{dr}{dt} = \frac{dr}{d\theta} \frac{d\theta}{dt} = \frac{L}{\mu r^2} \frac{dr}{d\theta}$
- En general, la derivada temporal se puede escribir como $\frac{d}{dt} = \frac{L}{\mu r^2} \frac{d}{d\theta}$
- Con lo cual $\ddot{r} = \frac{d}{dt} \left(\frac{dr}{dt} \right) = \frac{d}{dt} \left(\frac{L}{\mu r^2} \frac{dr}{d\theta} \right) = \frac{L}{\mu r^2} \frac{d}{d\theta} \left(\frac{L}{\mu r^2} \frac{dr}{d\theta} \right)$
- Es decir $\frac{1}{r^2} \frac{d}{d\theta} \left(\frac{1}{\mu r^2} \frac{dr}{d\theta} \right) \frac{L^2}{\mu r^3} = -\frac{\partial V}{\partial r}$

- Consideremos el problema inverso: dada una órbita $r(\theta)$, determinar el potencial V(r), o la fuerza central f(r), que causa ésta órbita.
- La ecuación de movimiento para r(t) es $\mu \ddot{r} \frac{L^2}{\mu r^3} = -\frac{\partial V}{\partial r}$
- La derivada temporal de r(t) se puede expresar, usando $\dot{\theta} = \frac{L}{\mu r^2}$, como $\dot{r} = \frac{dr}{dt} = \frac{dr}{d\theta} \frac{d\theta}{dt} = \frac{L}{\mu r^2} \frac{dr}{d\theta}$
- ullet En general, la derivada temporal se puede escribir como $rac{d}{dt}=rac{L}{\mu r^2}rac{d}{d heta}$
- Con lo cual $\ddot{r} = \frac{d}{dt} \left(\frac{dr}{dt} \right) = \frac{d}{dt} \left(\frac{L}{\mu r^2} \frac{dr}{d\theta} \right) = \frac{L}{\mu r^2} \frac{d}{d\theta} \left(\frac{L}{\mu r^2} \frac{dr}{d\theta} \right)$
- Es decir $\frac{1}{r^2} \frac{d}{d\theta} \left(\frac{1}{\mu r^2} \frac{dr}{d\theta} \right) \frac{L^2}{\mu r^3} = -\frac{\partial V}{\partial r}$
- Si u=1/r, tenemos $\frac{L^2}{\mu}u^2\frac{d}{d\theta}\left(\frac{du}{d\theta}\right)+\frac{L^2}{\mu}u^3=-u^2\frac{\partial V}{\partial u}$

- Consideremos el problema inverso: dada una órbita $r(\theta)$, determinar el potencial V(r), o la fuerza central f(r), que causa ésta órbita.
- La ecuación de movimiento para r(t) es $\mu \ddot{r} \frac{L^2}{\mu r^3} = -\frac{\partial V}{\partial r}$
- La derivada temporal de r(t) se puede expresar, usando $\dot{\theta} = \frac{L}{\mu r^2}$, como $\dot{r} = \frac{dr}{dt} = \frac{dr}{d\theta} \frac{d\theta}{dt} = \frac{L}{\mu r^2} \frac{dr}{d\theta}$
- ullet En general, la derivada temporal se puede escribir como $rac{d}{dt}=rac{L}{\mu r^2}rac{d}{d heta}$
- Con lo cual $\ddot{r} = \frac{d}{dt} \left(\frac{dr}{dt} \right) = \frac{d}{dt} \left(\frac{L}{\mu r^2} \frac{dr}{d\theta} \right) = \frac{L}{\mu r^2} \frac{d}{d\theta} \left(\frac{L}{\mu r^2} \frac{dr}{d\theta} \right)$
- Es decir $\frac{1}{r^2} \frac{d}{d\theta} \left(\frac{1}{\mu r^2} \frac{dr}{d\theta} \right) \frac{L^2}{\mu r^3} = -\frac{\partial V}{\partial r}$
- Si u=1/r, tenemos $rac{L^2}{\mu}u^2rac{d}{d heta}\left(rac{du}{d heta}
 ight)+rac{L^2}{\mu}u^3=-u^2rac{\partial V}{\partial u}$
- es decir, $\frac{L^2}{\mu} \left[\frac{d^2 u}{d\theta^2} + u \right] = -\frac{\partial V}{\partial u}$

- Consideremos el problema inverso: dada una órbita $r(\theta)$, determinar el potencial V(r), o la fuerza central f(r), que causa ésta órbita.
- La ecuación de movimiento para r(t) es $\mu\ddot{r}-\frac{L^2}{\mu r^3}=-\frac{\partial V}{\partial r}$
- La derivada temporal de r(t) se puede expresar, usando $\dot{\theta} = \frac{L}{\mu r^2}$, como $\dot{r} = \frac{dr}{dt} = \frac{dr}{d\theta} \frac{d\theta}{dt} = \frac{L}{\mu r^2} \frac{dr}{d\theta}$
- ullet En general, la derivada temporal se puede escribir como $rac{d}{dt}=rac{L}{\mu r^2}rac{d}{d heta}$
- Con lo cual $\ddot{r} = \frac{d}{dt} \left(\frac{dr}{dt} \right) = \frac{d}{dt} \left(\frac{L}{\mu r^2} \frac{dr}{d\theta} \right) = \frac{L}{\mu r^2} \frac{d}{d\theta} \left(\frac{L}{\mu r^2} \frac{dr}{d\theta} \right)$
- Es decir $\frac{1}{r^2} \frac{d}{d\theta} \left(\frac{1}{\mu r^2} \frac{dr}{d\theta} \right) \frac{L^2}{\mu r^3} = -\frac{\partial V}{\partial r}$
- Si u=1/r, tenemos $\frac{L^2}{\mu}u^2\frac{d}{d\theta}\left(\frac{du}{d\theta}\right)+\frac{L^2}{\mu}u^3=-u^2\frac{\partial V}{\partial u}$
- es decir, $\frac{L^2}{\mu}\left[\frac{d^2u}{d\theta^2}+u\right]=-\frac{\partial V}{\partial u}$
- Constituye la ecuación diferencial de la órbita para $r(\theta) = 1/u(\theta)$ en términos del potencial V(r) = V(1/u). Se conoce como la ecuación de Binet.

• El problema de Kepler se refiere al cálculo de la órbita de una partícula sobre la cual actúa fuerza gravitacional $f(r) = -\frac{k}{r^2}$, con $k = Gm_1m_2$.

- El problema de Kepler se refiere al cálculo de la órbita de una partícula sobre la cual actúa fuerza gravitacional $f(r) = -\frac{k}{r^2}$, con $k = Gm_1m_2$.
- La órbita $r(\theta)$ correspondiente la fuerza gravitacional puede ser determinada a partir de la ecuación de Binet $\frac{L^2}{\mu}\left(\frac{d^2u}{d\theta^2}+u\right)=-\frac{\partial V}{\partial u}$

- El problema de Kepler se refiere al cálculo de la órbita de una partícula sobre la cual actúa fuerza gravitacional $f(r) = -\frac{k}{r^2}$, con $k = Gm_1m_2$.
- La órbita $r(\theta)$ correspondiente la fuerza gravitacional puede ser determinada a partir de la ecuación de Binet $\frac{L^2}{\mu}\left(\frac{d^2u}{d\theta^2}+u\right)=-\frac{\partial V}{\partial u}$
- Como el potencial gravitacional es $V(r)=-\frac{k}{r}=-ku$, obtenemos $\frac{d^2u}{d\theta^2}+u=k\frac{\mu}{L^2}$. Una ecuación diferencial ordinaria inhomogénea de segundo orden

- El problema de Kepler se refiere al cálculo de la órbita de una partícula sobre la cual actúa fuerza gravitacional $f(r) = -\frac{k}{r^2}$, con $k = Gm_1m_2$.
- La órbita $r(\theta)$ correspondiente la fuerza gravitacional puede ser determinada a partir de la ecuación de Binet $\frac{L^2}{\mu}\left(\frac{d^2u}{d\theta^2}+u\right)=-\frac{\partial V}{\partial u}$
- Como el potencial gravitacional es $V(r)=-\frac{k}{r}=-ku$, obtenemos $\frac{d^2u}{d\theta^2}+u=k\frac{\mu}{L^2}$. Una ecuación diferencial ordinaria inhomogénea de segundo orden
- La solución de la ecuación homogénea es $u_h'' + u_h = 0 \Rightarrow u_h = A\cos(\theta \theta_0)$ con A y θ_0 constantes

- El problema de Kepler se refiere al cálculo de la órbita de una partícula sobre la cual actúa fuerza gravitacional $f(r) = -\frac{k}{r^2}$, con $k = Gm_1m_2$.
- La órbita $r(\theta)$ correspondiente la fuerza gravitacional puede ser determinada a partir de la ecuación de Binet $\frac{L^2}{\mu}\left(\frac{d^2u}{d\theta^2}+u\right)=-\frac{\partial V}{\partial u}$
- Como el potencial gravitacional es $V(r)=-\frac{k}{r}=-ku$, obtenemos $\frac{d^2u}{d\theta^2}+u=k\frac{\mu}{L^2}$. Una ecuación diferencial ordinaria inhomogénea de segundo orden
- La solución de la ecuación homogénea es $u_h'' + u_h = 0 \Rightarrow u_h = A\cos(\theta \theta_0)$ con A y θ_0 constantes
- Una solución particular de la inhomogénea es $u_p = k \frac{\mu}{L^2}$.

- El problema de Kepler se refiere al cálculo de la órbita de una partícula sobre la cual actúa fuerza gravitacional $f(r) = -\frac{k}{r^2}$, con $k = Gm_1m_2$.
- La órbita $r(\theta)$ correspondiente la fuerza gravitacional puede ser determinada a partir de la ecuación de Binet $\frac{L^2}{\mu}\left(\frac{d^2u}{d\theta^2}+u\right)=-\frac{\partial V}{\partial u}$
- Como el potencial gravitacional es $V(r)=-\frac{k}{r}=-ku$, obtenemos $\frac{d^2u}{d\theta^2}+u=k\frac{\mu}{L^2}$. Una ecuación diferencial ordinaria inhomogénea de segundo orden
- La solución de la ecuación homogénea es $u_h'' + u_h = 0 \Rightarrow u_h = A\cos\left(\theta \theta_0\right)$ con A y θ_0 constantes
- ullet Una solución particular de la inhomogénea es $u_p=krac{\mu}{L^2}.$
- la solución general $u(\theta) = u_h + u_p$ es $u(\theta) = \frac{k\mu}{L^2} + A\cos(\theta \theta_0) \Rightarrow \frac{1}{r} = \frac{k\mu}{L^2} [1 + e\cos(\theta \theta_0)]$, y e const.

• La forma general de la ecuación es una cónica con el origen en uno de los focos $\frac{q}{r}=1+e\cos\theta\Leftrightarrow \frac{1}{r}=\frac{\mu k}{L^2}\left(1+\sqrt{1+\frac{2EL^2}{\mu k^2}}\cos\theta\right)$, para $\theta_0=0$ para t=0

- La forma general de la ecuación es una cónica con el origen en uno de los focos $\frac{q}{r}=1+e\cos\theta\Leftrightarrow \frac{1}{r}=\frac{\mu k}{L^2}\left(1+\sqrt{1+\frac{2EL^2}{\mu k^2}}\cos\theta\right)$, para $\theta_0=0$ para t=0
- El movimiento de la partícula con masa reducida μ en el potencial V=-k/r sigue la trayectoria de una sección cónica

- La forma general de la ecuación es una cónica con el origen en uno de los focos $\frac{q}{r}=1+e\cos\theta\Leftrightarrow \frac{1}{r}=\frac{\mu k}{L^2}\left(1+\sqrt{1+\frac{2EL^2}{\mu k^2}}\cos\theta\right)$, para $\theta_0=0$ para t=0
- El movimiento de la partícula con masa reducida μ en el potencial V=-k/r sigue la trayectoria de una sección cónica
- El tipo de cónica (circunferencia, elipse, parábola o hipérbola)
 depende del valor de la excentricidad e, i.e. de la energía total E.

- La forma general de la ecuación es una cónica con el origen en uno de los focos $\frac{q}{r}=1+e\cos\theta\Leftrightarrow \frac{1}{r}=\frac{\mu k}{L^2}\left(1+\sqrt{1+\frac{2EL^2}{\mu k^2}}\cos\theta\right)$, para $\theta_0=0$ para t=0
- El movimiento de la partícula con masa reducida μ en el potencial V=-k/r sigue la trayectoria de una sección cónica
- El tipo de cónica (circunferencia, elipse, parábola o hipérbola)
 depende del valor de la excentricidad e, i.e. de la energía total E.
- ullet La excentricidad de la órbita es $e=\sqrt{1+rac{2EL^2}{\mu k^2}}$

- La forma general de la ecuación es una cónica con el origen en uno de los focos $\frac{q}{r}=1+e\cos\theta\Leftrightarrow \frac{1}{r}=\frac{\mu k}{L^2}\left(1+\sqrt{1+\frac{2EL^2}{\mu k^2}}\cos\theta\right)$, para $\theta_0=0$ para t=0
- El movimiento de la partícula con masa reducida μ en el potencial V=-k/r sigue la trayectoria de una sección cónica
- El tipo de cónica (circunferencia, elipse, parábola o hipérbola)
 depende del valor de la excentricidad e, i.e. de la energía total E.
- ullet La excentricidad de la órbita es $e=\sqrt{1+rac{2EL^2}{\mu k^2}}$
- El latus q es $r\left(\frac{\pi}{2}\right) \equiv q = \frac{L^2}{\mu k}$ y el $r_{\mathsf{min}} = r(0) = \frac{q}{1+\mathsf{e}}$

Orbitas, excentricidades y energías

• El movimiento radial en el problema de Kepler ocurre para un potencial efectivo $V_{\rm ef}(r)=-rac{k}{r}+rac{L^2}{2\mu r^2}$

Las Leyes de Kepler

• **Primera Ley**: los planetas describen órbitas elípticas alrededor del Sol, el cual se encuentra en uno de los focos de la elipse. **Forma** funcional del potencial gravitacional $V(r) = -\frac{k}{r}$.

Las Leyes de Kepler

- **Primera Ley**: los planetas describen órbitas elípticas alrededor del Sol, el cual se encuentra en uno de los focos de la elipse. **Forma** funcional del potencial gravitacional $V(r) = -\frac{k}{r}$.
- Segunda Ley: el área barrida por unidad tiempo por el radio vector que va desde el Sol al planeta es constante: $\dot{A}=$ cte. Existencia de un potencial central V(r) y de la conservación de L.

Las Leyes de Kepler

- **Primera Ley**: los planetas describen órbitas elípticas alrededor del Sol, el cual se encuentra en uno de los focos de la elipse. **Forma** funcional del potencial gravitacional $V(r) = -\frac{k}{r}$.
- Segunda Ley: el área barrida por unidad tiempo por el radio vector que va desde el Sol al planeta es constante: $\dot{A}=$ cte. Existencia de un potencial central V(r) y de la conservación de L.
- Tercera Ley: el cuadrado del período del movimiento es proporcional al cubo del semieje mayor de la órbita, para todos los planetas: $T_p^2 \propto a^3$. Forma funcional del potencial gravitacional $V(r) = -\frac{k}{r}$ y conservación de L .

2da Ley: Velocidad aerolar constante

• Un potencial central V(r) implica la conservación del momento angular $L = \mu r^2 \dot{\theta} = \text{constant}$

2da Ley: Velocidad aerolar constante

• Un potencial central V(r) implica la conservación del momento angular $L = \mu r^2 \dot{\theta} = \text{constant}$

• El diferencial de área barrida por el radio vector ${\bf r}$ en un tiempo infinitesimal dt es $dA=\frac{1}{2}(rd\theta)r=\frac{1}{2}r^2d\theta$, entonces $\frac{dA}{dt}=\frac{1}{2}r^2\frac{d\theta}{dt}=\frac{1}{2}r^2\dot{\theta}$ es el área barrida por unidad de tiempo

2da Ley: Velocidad aerolar constante

• Un potencial central V(r) implica la conservación del momento angular $L = \mu r^2 \dot{\theta} = \text{constant}$

- El diferencial de área barrida por el radio vector ${\bf r}$ en un tiempo infinitesimal dt es $dA=\frac{1}{2}(rd\theta)r=\frac{1}{2}r^2d\theta$, entonces $\frac{dA}{dt}=\frac{1}{2}r^2\frac{d\theta}{dt}=\frac{1}{2}r^2\dot{\theta}$ es el área barrida por unidad de tiempo
- Claramente $\frac{dA}{dt} = \frac{1}{2}r^2\left(\frac{L}{\mu r^2}\right) = \frac{L}{2\mu} = \text{const}$

• Si la órbita es finita, $r \in [r_{\min}, r_{\max}]$, el área total A encerrada por la órbita barrida por el radio \mathbf{r} en tiempo igual al período del movimiento T_p , es $A = \frac{1}{2\mu} \int_0^{T_p} dt = \frac{1}{2\mu} T_p$

- Si la órbita es finita, $r \in [r_{\min}, r_{\max}]$, el área total A encerrada por la órbita barrida por el radio \mathbf{r} en un tiempo igual al período del movimiento T_p , es $A = \frac{1}{2\mu} \int_0^{T_p} dt = \frac{1}{2\mu} T_p$
- Si la órbita es una elipse en el potencial V(r) = -k/r, el área encerrada elipse $A = \pi ab$, donde a, semieje mayor, y b semieje menor

- Si la órbita es finita, $r \in [r_{\min}, r_{\max}]$, el área total A encerrada por la órbita barrida por el radio \mathbf{r} en un tiempo igual al período del movimiento T_p , es $A = \frac{1}{2\mu} \int_0^{T_p} dt = \frac{1}{2\mu} T_p$
- Si la órbita es una elipse en el potencial V(r) = -k/r, el área encerrada elipse $A = \pi ab$, donde a, semieje mayor, y b semieje menor
- ullet Tercera Ley de Kepler en su forma exacta es $T_{
 ho}=2\pi\sqrt{rac{\mu {
 m a}^3}{k}}$

- Si la órbita es finita, $r \in [r_{\min}, r_{\max}]$, el área total A encerrada por la órbita barrida por el radio ${\bf r}$ en un tiempo igual al período del movimiento T_p , es $A = \frac{1}{2\mu} \int_0^{T_p} dt = \frac{1}{2\mu} T_p$
- Si la órbita es una elipse en el potencial V(r) = -k/r, el área encerrada elipse $A = \pi ab$, donde a, semieje mayor, y b semieje menor
- ullet Tercera Ley de Kepler en su forma exacta es $T_p=2\pi\sqrt{rac{\mu {\sf a}^3}{k}}$
- M_S es la masa del Sol en el foco, y m del planeta en una órbita elíptica. Entonces $m/M_S \ll 1$ y despreciando términos de orden cuadrático en m/M_S , la masa reducida correspondiente al sistema Sol-planeta se puede expresar como

$$\mu = \frac{mM_S}{M_S + m} = m\left(1 + \frac{m}{M_S}\right)^{-1} = m\left(1 - \frac{m}{M_S} + \cdots\right) \approx m$$

- Si la órbita es finita, $r \in [r_{\min}, r_{\max}]$, el área total A encerrada por la órbita barrida por el radio \mathbf{r} en un tiempo igual al período del movimiento T_p , es $A = \frac{1}{2u} \int_0^{T_p} dt = \frac{1}{2u} T_p$
- Si la órbita es una elipse en el potencial V(r) = -k/r, el área encerrada elipse $A = \pi ab$, donde a, semieje mayor, y b semieje menor
- ullet Tercera Ley de Kepler en su forma exacta es $T_p=2\pi\sqrt{rac{\mu {\it a}^3}{k}}$
- M_S es la masa del Sol en el foco, y m del planeta en una órbita elíptica. Entonces $m/M_S \ll 1$ y despreciando términos de orden cuadrático en m/M_S , la masa reducida correspondiente al sistema Sol-planeta se puede expresar como

$$\mu = \frac{mM_S}{M_S + m} = m\left(1 + \frac{m}{M_S}\right)^{-1} = m\left(1 - \frac{m}{M_S} + \cdots\right) \approx m$$

• Usando $k=GM_Sm$ tendremos $T_p^2 pprox rac{4\pi^2}{GM_S}a^3 \Rightarrow T_p^2 \propto a^3$

Recapitulando

Para la discusión

