The Returns to Tailoring: Evidence from AI in the Classroom

Jaime Polanco-Jiménez^{1,2} Kristof De Witte^{1,3}

¹Leuven Economics of Education Research, KU Leuven, Belgium ²Pontificia Universidad Javeriana, Colombia ³UNU-Merit, Maastricht University, The Netherlands

July 30, 2025

Preliminary Draft - Please Do Not Circulate or Cite Without Permission

- Introduction
- Context and Framework
- 3 Data and Experimental Design
- 4 Empirical Strategy
- Results
- 6 Conclusion

- Introduction
- Context and Framework
- 3 Data and Experimental Design
- Empirical Strategy
- Results
- 6 Conclusion

This Paper in a Nutshell

Research Question

How does the **design of an AI tool** affect student learning? Specifically, what are the returns to deeply **tailoring** an AI chatbot to a specific curriculum versus using a **generic** AI tool?

Motivation

- Financial literacy is crucial for economic well-being, but knowledge gaps are wide and consequential (Lusardi2014).
- School systems face persistent teacher shortages and need effective, scalable educational technology (Pressley, 2021; Sutcher et al., 2019).
- The value of curriculum-tailoring for modern AI tools has not been causally tested.

How We Answer This

- Large-scale RCT with N=2,440 Belgian secondary students.
- We compare three groups within classrooms:
 - Control: Traditional instruction.
 - ► **T1 (Generic AI):** Instruction + general-knowledge AI chatbot.
 - ► T2 (Tailored AI): Instruction + curriculum-specific adaptive AI chatbot.

A Preview of Key Findings

Tailoring is the critical ingredient for success.

Engagement:

- Tailored AI \uparrow module completion by 10 pp.
- Generic AI ↓ module completion by 5 pp.

Durable Learning (LATE):

 For students induced to finish by the Tailored AI, knowledge retention two months later ↑ by 0.36 SD.

Learning (ITT):

 Offering the Tailored AI robustly ↑ immediate test scores by 0.036 SD.

Mechanisms:

- Tailored AI ↑ student self-confidence.
- Generic AI ↓ student self-confidence.

Our Contributions to the Literature

- First causal estimates on the returns to tailoring AI in education.
 - By directly comparing a generic and a tailored tool, we show that deep curricular integration is a key determinant of effectiveness.
 - This provides a crucial insight as one-size-fits-all Al platforms (e.g., ChatGPT) become ubiquitous.
- Broadens the set of outcomes for evaluating EdTech.
 - We document effects on learning efficiency and long-term knowledge retention, addressing the common "fade-out" problem of interventions.
- Provides evidence on the mechanisms driving effects.
 - The tailored Al's success is mediated not just through instruction, but through its ability to foster student engagement (completion) and self-confidence.

- Introduction
- Context and Framework
- Oata and Experimental Design
- 4 Empirical Strategy
- Results
- 6 Conclusion

Context: Financial Education in Flanders, Belgium

The Setting: A compelling environment to study educational interventions.

- Mandated Curriculum: A 2019 reform made financial literacy a key cross-curricular competence for all secondary students.
- The Paradox: Flemish students rank high on PISA financial literacy assessments on average, but this masks a severe achievement gap linked to socioeconomic status (SES).
 - Performance gap between high/low SES students is 104 score points (vs. 87 OECD avg.).
 - A student's SES explains 16.8% of the variance in financial literacy performance (vs. 11.6% OECD avg.) (OECD2023).
- Implementation Challenges:
 - Taught by non-specialists, creating demand for high-quality, standardized resources.
 - Significant student heterogeneity across academic tracks, requiring differentiation.

The Policy Tension

Can a single AI tool provide both **standardized quality** and **personalized instruction** to solve this?

Conceptual Framework and Related Literature

Educational Production Function

- Simply increasing instructional time often has small returns (Hanushek, 2003).
- The quality and efficiency of that time are the primary drivers of learning.
- Many educational interventions suffer from effect fade-out over time (Lortie-Forgues2019).

Educational Technology (EdTech)

- Evidence is mixed; replacing teachers with standard online formats can have null or negative impacts (Cacault et al., 2021; Figlio et al., 2013).
- A seminal study shows causally that ICT effectiveness depends critically on its integration with the local curriculum (Goolsbee2006).

Al in Education

- Meta-analyses confirm AI tools can have positive effects (Wang & Zhao, 2024).
- Our key question: Does the Goolsbee2006 finding on curricular integration still hold? Is a generic AI sufficient, or is deep tailoring necessary to unlock its potential?

July 30, 2025

- Introduction
- Context and Framework
- 3 Data and Experimental Design
- Empirical Strategy
- Results
- 6 Conclusion

Experimental Design

- What: A large-scale Randomized Controlled Trial (RCT).
- When: January May 2024.
- Who: 2,440 students in 120 classrooms across 58 secondary schools in Flanders, Belgium.
- Topic: Belgian personal income tax system.
- Randomization: At the individual level within classrooms to non-parametrically control for teacher, classroom, and peer effects.

- Control (T0): Traditional learning path using standard materials.
- Generic AI (T1): Condensed instruction + AI chatbot with general tax knowledge (not specific to Belgium).
- Tailored AI (T2): AI chatbot specifically designed for the Flemish curriculum and Belgian tax code, providing adaptive feedback.

Data Collection and Key Outcomes

- Data collected via online surveys at three points in time:
 - ► Pre-test (t=0)
 - ▶ Post-test (t=1, immediately after intervention)
 - ► Follow-up test (t=2, two months later)
- We construct three primary, standardized outcome variables:
 - Gained Financial Literacy:

2 Learning Efficiency:

$${\sf Standardized}\left(\frac{{\sf Gained Financial Literacy}}{{\sf Time Spent on Module}}\right)$$

Sknowledge Retention:

Standardized (Follow-up Test Score at
$$t=2$$
)

 We also collect rich data on demographics, prior grades, and psychosocial scales (e.g., self-confidence, motivation).

A Key Finding: High and Differential Attrition

The central empirical challenge is that module completion is a key economic outcome that varies starkly across groups.

Figure: Experimental Design and Participant Flow

- Tailored AI (T2) was most engaging: 39.0% completion rate.
- Generic AI (T1) actively disengaged students: 23.1% completion rate.

• Control (T0): 29.4% completion rate.

A Key Finding: High and Differential Attrition

The central empirical challenge is that module completion is a key economic outcome that varies starkly across groups.

Figure: Experimental Design and Participant Flow

- Tailored AI (T2) was most engaging: 39.0% completion rate.
- Generic AI (T1) actively disengaged students: 23.1% completion rate.
- Control (T0): 29.4% completion rate.

Implication

Simple comparisons on the sample of completers would yield biased estimates. Our empirical strategy must account for this non-random selection.

Successful Randomization: Continuous Variables

We test for balance on the full randomized sample (N=2,440). The random assignment created statistically equivalent groups.

Variable	(1) Control Mean (SD)	(2) Generic AI Mean (SD)	(3) Tailored Al Mean (SD)	(4) p-val (T1-Ctrl)	(5) p-val (T2-Ctrl)
Pre-Intervention Outcomes					
Fin. Lit. Score (Pre)	0.349 (0.242)	0.337 (0.246)	0.343 (0.238)	0.451	0.723
Psychosocial Scales (1-5)					
Attitude/Motivation	2.866 (0.733)	2.829 (0.735)	2.796 (0.749)	0.315	0.108
Self-Confidence	2.683 (0.867)	2.686 (0.837)	2.693 (0.866)	0.932	0.814
Engagement/Commitment	2.548 (0.776)	2.491 (0.711)	2.507 (0.779)	0.127	0.301
Observations	799	870	771		

No statistically significant differences at baseline.

Successful Randomization: Categorical Variables

Balance also holds across all observable categorical characteristics.

Variable	Control (%)	Generic AI (%)	Tailored AI (%)	p-value $(\chi^2 \text{ test})$
Gender Female	50.45	48.41	47.00	0.695
School Type General (ASO) Technical (TSO)	68.03 29.30	65.82 31.65	64.27 32.00	0.635
Last Math Grade Over 70%	39.36	37.79	38.69	0.440
Language at home Dutch	83.43	83.27	81.10	0.634

Conclusion

The randomization was successful. Any differences we find post-treatment can be attributed to the causal effects of the interventions.

- Introduction
- Context and Framework
- Oata and Experimental Design
- 4 Empirical Strategy
- Results
- 6 Conclusion

Empirical Strategy: Addressing Attrition

Our primary challenge is the high and differential attrition. A naive comparison of completers is biased. We therefore use a multi-faceted approach.

- 1 Intent-to-Treat (ITT) on the Full Sample (N=2,440)
 - Measures the effect of being offered the tool. This is our main, policy-relevant estimate.
 - We estimate: $Y_i = \alpha + \delta_1 Z_{i,1} + \delta_2 Z_{i,2} + \mathbf{X}'_i \gamma + \mu_s + \eta_i$
 - ▶ To handle missing outcomes for attritors, our main specification makes a conservative assumption: **impute their knowledge gain as zero**. This provides a credible lower-bound estimate.

Empirical Strategy: Addressing Attrition

Our primary challenge is the high and differential attrition. A naive comparison of completers is biased. We therefore use a multi-faceted approach.

- Local Average Treatment Effect (LATE) via Instrumental Variables (IV)
 - Measures the effect of actually completing the intervention for the subpopulation of "compliers".
 - We use the initial random assignment (Z_i) as an instrument for treatment completion (T_i) .
 - ▶ This credibly estimates the Treatment-on-the-Treated effect without selection bias.

First Stage:
$$T_{is,k} = \pi_{0k} + \pi_{1k} Z_{is,1} + \pi_{2k} Z_{is,2} + \mathbf{X} is' \omega_k + \mu_s + \nu is, k \tag{1}$$

Second Stage:
$$Y_{is} = \beta_0 + \beta_1 \hat{T} is, 1 + \beta_2 \hat{T} is, 2 + \mathbf{X} is' \lambda + \mu_s + \eta is$$
 (2)

- Introduction
- Context and Framework
- 3 Data and Experimental Design
- Empirical Strategy
- Results
- 6 Conclusion

First-Order Effect: Al Assignment Drives Student Engagement

The first stage of our IV analysis confirms that treatment assignment powerfully predicts module completion.

Table: The Effect of Treatment Assignment on Module Completion (First Stage)

	(1)	(2)
Dependent Variable:	Completed Po	ost-Test $(0/1)$
Assigned to Generic AI (T1)	-0.0504***	-0.0447**
- , ,	(0.0058)	(0.0211)
Assigned to Tailored AI (T2)	0.0973***	0.0968***
	(0.0119)	(0.0217)
Control Group Mean	29.	4%
Observations	2,440	2,440
R-squared	0.045	0.018
Baseline Controls	Yes	No
School Fixed Effects	Yes	No

 $\textit{Notes:} \ \ \text{OLS} \ \ \text{estimates on the full randomized sample.} \ \ \text{Robust standard errors, clustered by school, are in parentheses.} \ \ **** \ p_i 0.01, *** \ p_i 0.05, ** \ p_i 0.1, *** \ p_i 0.05, ** \ p_i 0.1, *** \ p_i 0.1, ** \ p_i 0.1, *** \ p_i 0.1, ** \ p_i 0.1, *** \ p_i 0.1, *** \ p_i 0.1, ** \ p_i 0.1, *** \ p_i 0.1, ** \ p$

Key Takeaway

- Assignment to the Tailored AI increased the probability of completion by 9.7 percentage points.
- Assignment to the **Generic AI** decreased the probability of completion by **5.0** percentage points.

ITT: Modest but Robust Learning Gains from Tailored Al

Our main, conservative estimates use the full sample (N=2,440) and impute a gain of zero for all attritors. This provides a credible lower-bound for the population-level impact.

Table: Impact of AI Assignment on Learning Outcomes: ITT Estimates

	Full Sample (Zero-Imputed)			Completer Sample (for comparison)		
Dependent Var:	(1)	(2)	(3)	(4)	(5)	(6)
	Gain Score	Learning Eff.	Retention	Gain Score	Learning Eff.	Retention
Generic AI (T1)	-0.0024	0.0333***	-0.2835	0.0625***	0.2584***	0.2685
	(0.0064)	(0.0102)	(0.4970)	(0.0178)	(0.0555)	(0.2214) No
Tailored AI (T2)	0.0356***	0.0260	-0.0256	0.0127***	0.0465**	0.3872***
	(0.0062)	(0.0251)	(0.2640)	(0.0048)	(0.0182)	(0.0643)
Observations	2,440	2,440	2,440	616	616	141

outcomes are standardized. All regressions include baseline controls and school fixed effects. Robust standard errors clustered by school.

Main Finding (Column 1)

Offering the **tailored AI tool** led to a statistically significant increase in the immediate knowledge gain score of **0.036 standard deviations** (p < 0.01) across the entire student population.

• Potential Impact: For those who complete the module, the tailored AI leads to a massive, durable learning gain of 0.387 SD in knowledge retention (Column 6).

Mechanisms: Tailored Al Boosts Self-Confidence

On the sample of completers, we find a striking divergence in how the AI tools affected student self-perception.

Table: Effect of Al Assignment on Psychosocial Outcomes (Completer Sample)

(1)
ITT on Completers
-0.0889*
-0.0785***
-0.1347***
(0.0217)
0.1976***
(0.0413)
583-584

Notes: Dep. var. is the change in the psychosocial construct (1-5 scale). Full controls included.

A Key Mechanism

- The Tailored AI significantly ↑ student self-confidence by 0.20 points. The supportive, adaptive nature
 of the tool seems to empower students.
- ullet In sharp contrast, the **Generic AI** significantly ullet self-confidence by **0.13 points**. A poorly contextualized tool can be actively harmful.

Effect for Compliers (LATE): Tailored AI Fosters Durable Learning

The LATE estimates show the effect for students whose completion behavior was changed by the intervention offer.

Table: The Effect of Treatment Completion on Learning Outcomes (LATE Estimates)

Dependent Variable:	(1)	(2)	(3)
	Gained Score	Learning Eff.	Retention
	(SD)	(SD)	(SD)
LATE Estimates (2SLS) Completed Generic AI (T1)	0.1824***	0.2118***	0.2819
	(0.0392)	(0.0241)	(0.2344)
Completed Tailored AI (T2)	0.0607*	0.0618**	0.3583*
	(0.0275)	(0.0177)	(0.0901)
Observations	616	616	141
First-Stage F-statistic	> 1000	> 1000	> 1000

Notes: 2SLS estimates. Endogenous variables are completion indicators, instrumented with random assignment.

The Power of a Well-Designed Tool

For the students induced to complete the module by the Tailored Al's superior design, the intervention produced a significant and durable 0.36 standard deviation increase in knowledge retention two months later.

- Introduction
- Context and Framework
- 3 Data and Experimental Design
- Empirical Strategy
- Results
- 6 Conclusion

Conclusion: The Returns to Tailoring are High

Ourricular integration is the critical ingredient for effective educational AI.

- A curriculum-tailored chatbot significantly boosted student engagement, while a generic version actively harmed it.
- This initial behavioral response is the primary mechanism driving all subsequent learning outcomes.

Well-designed AI has significant and durable learning effects.

- \blacktriangleright We find a robust, population-level (ITT) increase in immediate learning of **0.036 SD**.
- ► For students on the margin of engagement (the compliers), the tailored AI had a much larger impact, increasing long-term knowledge retention by 0.36 SD.

Policy Takeaway: Be wary of "one-size-fits-all" AI.

- The promise of inexpensive, generic AI solutions may be illusory. To be effective, educational technology must first be used.
- Our results suggest deep curricular integration is essential to solve the first-order challenge of student engagement and unlock the technology's pedagogical potential.

References I

- Cacault, M. P., Hildebrand, C., Laurent-Lucchetti, J., & Pellizzari, M. (2021).Distance learning in higher education: Evidence from a randomized experiment. *Journal of the European Economic Association*, 19(4), 2322–2372. https://doi.org/10.1093/jeea/jvaa060
- Figlio, D., Rush, M., & Yin, L. (2013).ls it live or is it internet? experimental estimates of the effects of online instruction on student learning. *Journal of Labor Economics*, 31(4), 763–784. https://doi.org/10.1086/669930
- Hanushek, E. (2003). The failure of input-based schooling policies. *Economic Journal*, 113(485), F64–F98. https://EconPapers.repec.org/RePEc:ecj:econjl:v:113:y:2003:i:485:p:f64–f98
- Pressley, T. (2021). Factors contributing to teacher burnout during covid-19. *Educational Researcher*, 50(5), 325–327. https://doi.org/10.3102/0013189X211004683
- Sutcher, L., Darling-Hammond, L., & Carver-Thomas, D. (2019).Understanding teacher shortages: An analysis of teacher supply and demand in the united states. *Education Policy Analysis Archives*, 27(35). https://doi.org/10.14507/epaa.27.3626

References II

Wang, L., & Zhao, M. (2024). Can artificial intelligence technology promote the improvement of student learning outcomes?—meta analysis based on 50 experimental and quasi experimental studies [Working Paper].

Thank You

Questions?

jaime.polancojimenez@kuleuven.be kristof.dewitte@kuleuven.be