Machine Learning 1

#Clustering Methods

kmeans clustering in R is done with the 'kmeans()' function. Here we make up some data to test and learn with. #rev command reverses the data set #cbind binds vectors by column. rbind binds them by rows

```
tmp \leftarrow c(rnorm(30, 3), rnorm(30, -3))
data <- cbind(x = tmp, y=rev(tmp))
plot(data)
```


Run 'kmeans()' set K to 2 nstrt 20. The thing with kmeans is you have to tell it how many clusters you want

```
km <- kmeans(data, centers = 2, nstart=20)</pre>
```

```
## K-means clustering with 2 clusters of sizes 30, 30
```

Cluster means:

```
##
         X
## 1 -3.252320 2.562103
## 2 2.562103 -3.252320
##
## Clustering vector:
 ## Within cluster sum of squares by cluster:
## [1] 58.88431 58.88431
  (between_SS / total_SS = 89.6 %)
## Available components:
##
## [1] "cluster"
               "centers"
                          "totss"
                                     "withinss"
                                                "tot.withinss"
## [6] "betweenss"
               "size"
                          "iter"
                                     "ifault"
```

Q. how many points are in each cluster?

km\$size

[1] 30 30

km\$size

[1] 30 30

Q. What 'component' of your result object details cluster assignment/membership?

km\$cluster

Q. What 'component' of your result object details cluster center?

km\$centers

```
## x y
## 1 -3.252320 2.562103
## 2 2.562103 -3.252320
```

Q. Plot x colored by the kmeans cluster assignment and add cluster centers as blue points? #cluster center

```
plot(data, col=km$cluster)
points(km$centers, col='blue', pch=15, cex=2)
```


#hclust - hierarchicial clustering We will use the "hclust()" function on the same data as before and see how this method works

```
hc <- hclust( dist(data))
hc

##
## Call:
## hclust(d = dist(data))
##
## Cluster method : complete
## Distance : euclidean
## Number of objects: 60

hclust has a plot method

plot(hc)</pre>
```

Cluster Dendrogram

dist(data) hclust (*, "complete")

To find our membership vector we need to "cut" the tree and for this we use the 'cutree()' function and tell it the height to cut at.

Cluster Dendrogram

dist(data) hclust (*, "complete")

abline

```
## function (a = NULL, b = NULL, h = NULL, v = NULL, reg = NULL,
##
       coef = NULL, untf = FALSE, ...)
## {
       int_abline <- function(a, b, h, v, untf, col = par("col"),</pre>
##
           lty = par("lty"), lwd = par("lwd"), ...) .External.graphics(C_abline,
##
           a, b, h, v, untf, col, lty, lwd, \ldots)
##
##
       if (!is.null(reg)) {
##
           if (!is.null(a))
##
                warning("'a' is overridden by 'reg'")
           a <- reg
##
##
##
       if (is.object(a) || is.list(a)) {
##
           p <- length(coefa <- as.vector(coef(a)))</pre>
           if (p > 2)
##
                warning(gettextf("only using the first two of %d regression coefficients",
##
##
                    p), domain = NA)
           islm <- inherits(a, "lm")</pre>
##
           noInt <- if (islm)</pre>
##
                !as.logical(attr(stats::terms(a), "intercept"))
##
##
           else p == 1
##
            if (noInt) {
                a <- 0
##
##
                b <- coefa[1L]
           }
##
```

```
else {
##
##
                a <- coefa[1L]
                b \leftarrow if (p >= 2)
##
##
                    coefa[2L]
##
                else 0
##
           }
##
       if (!is.null(coef)) {
##
##
            if (!is.null(a))
##
                warning("'a' and 'b' are overridden by 'coef'")
##
           a <- coef[1L]
           b <- coef[2L]
##
       }
##
       int_abline(a = a, b = b, h = h, v = v, untf = untf, ...)
##
##
       invisible()
## }
## <bytecode: 0x7fc15b0ba758>
## <environment: namespace:graphics>
```

We can also use 'cutree()' and state the number of k clusters we want...

```
grps <- cutree(hc, k=2)</pre>
```

plot(data, col=grps)

#princical component analysis (PCA)

PCA is a useful analysis method when you have lots of dimensions in your data...

##PCA of UK food data

Import the data from a CSV file

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)</pre>
```

How many row and cols?

```
dim(x)
```

```
## [1] 17 5
```

#remove first col as this is not a col just the rows but it is seeing it as a col

x[,1]

```
##
    [1] "Cheese"
                                "Carcass_meat "
                                                        "Other_meat "
                                "Fats_and_oils "
    [4] "Fish"
                                                        "Sugars"
##
                                "Fresh_Veg "
                                                        "Other_Veg "
##
   [7] "Fresh_potatoes "
                                                        "Fresh_fruit "
## [10] "Processed_potatoes " "Processed_Veg "
## [13] "Cereals "
                                "Beverages"
                                                        "Soft_drinks "
## [16] "Alcoholic_drinks "
                                "Confectionery "
rownames(x) \leftarrow x[,1]
x \leftarrow x[,-1]
```

##		England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
##	Cheese	105	103	103	66
##	Carcass_meat	245	227	242	267
##	Other_meat	685	803	750	586
##	Fish	147	160	122	93
##	Fats_and_oils	193	235	184	209
##	Sugars	156	175	147	139
##	Fresh_potatoes	720	874	566	1033
##	Fresh_Veg	253	265	171	143
##	Other_Veg	488	570	418	355
##	Processed_potatoes	198	203	220	187
##	Processed_Veg	360	365	337	334
##	Fresh_fruit	1102	1137	957	674
##	Cereals	1472	1582	1462	1494
##	Beverages	57	73	53	47
##	Soft_drinks	1374	1256	1572	1506
##	Alcoholic_drinks	375	475	458	135
##	Confectionery	54	64	62	41

#below is a better way to do this. above way - you will lose a col evertime you run it

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)
x</pre>
```

##		England	Wales	Scotland	N.Ireland
##	Cheese	105	103	103	66
##	Carcass_meat	245	227	242	267
##	Other_meat	685	803	750	586
##	Fish	147	160	122	93
##	Fats_and_oils	193	235	184	209
##	Sugars	156	175	147	139
##	Fresh_potatoes	720	874	566	1033
##	Fresh_Veg	253	265	171	143
##	Other_Veg	488	570	418	355
##	Processed_potatoes	198	203	220	187
##	Processed_Veg	360	365	337	334
##	Fresh_fruit	1102	1137	957	674
##	Cereals	1472	1582	1462	1494
##	Beverages	57	73	53	47
##	Soft_drinks	1374	1256	1572	1506
##	Alcoholic_drinks	375	475	458	135
##	Confectionery	54	64	62	41

barplot(as.matrix(x), col=rainbow(17))


```
mycols <- rainbow(nrow(x))
pairs(x, col=mycols, pch=16)</pre>
```


 $\#\#\mathrm{PCA}$ to the rescue

Here we will use the base R function for PCA, which is called 'prcomp()' First transpose the data with "t" because 'prcomp()' wants the the rows. It says this in the help page

t(x)

##		Cheese Car	rcaee n	102+	Other :	maat	Fich	Fate and	oile	Sugara
			.cass_n		-				-	0
##	England	105		245		685	147		193	156
##	Wales	103		227		803	160		235	175
##	Scotland	103		242		750	122		184	147
##	${\tt N.Ireland}$	66		267		586	93		209	139
##		Fresh_pota	toes	Fresh	n_Veg	Other	_Veg	Processed	l_potat	coes
##	England		720		253		488			198
##	Wales		874		265		570			203
##	Scotland		566		171		418			220
##	${\tt N.Ireland}$		1033		143		355			187
##		Processed_	Veg F	resh	_fruit	Cerea	als 1	Beverages	Soft_d	drinks
##	England		360		1102	:	1472	57		1374
##	Wales		365		1137	:	1582	73		1256
##	Scotland		337		957	:	1462	53		1572
##	${\tt N.Ireland}$		334		674	:	1494	47		1506
##		Alcoholic_	drinks	s Cor	nfection	nery				
##	England		37	7 5		54				
##	Wales		47	7 5		64				
##	Scotland		45	58		62				
##	${\tt N.Ireland}$		13	35		41				

```
prcomp(x)
## Standard deviations (1, .., p=4):
## [1] 919.13914 132.06254 88.58981 28.62021
##
## Rotation (n \times k) = (4 \times 4):
##
                   PC1
                               PC2
                                           PC3
                                                        PC4
## England 0.4901572 -0.2808420 0.07019969 0.82215915
## Wales
             0.4981704 -0.3475970 0.64010493 -0.47039166
## Scotland 0.5042356 -0.2482197 -0.76259165 -0.32029268
## N.Ireland 0.5072659 0.8594714 0.06157655 -0.01409337
pca <- prcomp( t(x))</pre>
summary(pca)
## Importance of components:
                                PC1
                                         PC2
                                                             PC4
##
                                                  PC3
## Standard deviation
                           324.1502 212.7478 73.87622 4.189e-14
## Proportion of Variance 0.6744
                                      0.2905 0.03503 0.000e+00
## Cumulative Proportion
                             0.6744
                                      0.9650 1.00000 1.000e+00
We want score plot (a.k.a PCA plot). Basically of PC1 vs PC2
attributes(pca)
## $names
## [1] "sdev"
                  "rotation" "center"
                                         "scale"
                                                     "x"
##
## $class
## [1] "prcomp"
We are after the pca$x component for this plot
plot(pca$x[,1:2])
text(pca$x[,1:2], labels = colnames(x))
```


We can also examine the PCA "loadings", which tell us how much original variables contribute to each new PCA. . .

barplot(pca\$rotation[,1], las=2)

RNASEQ

[1] 10

```
url2 <- "https://tinyurl.com/expression-CSV"</pre>
rna.data <- read.csv(url2, row.names=1)</pre>
head(rna.data)
                   wt3
                         wt4 wt5 ko1 ko2 ko3 ko4 ko5
## gene1
         439 458
                    408
                         429 420
                                  90
                                      88
                                          86
                                              90
## gene2
          219 200
                    204
                         210 187 427 423 434 433 426
## gene3 1006 989 1030 1017 973 252 237 238 226 210
                         856 760 849 856 835 885 894
## gene4
          783 792
                    829
          181 249
                    204
                         244 225 277 305 272 270 279
## gene5
## gene6
          460 502
                    491
                         491 493 612 594 577 618 638
nrow(rna.data)
## [1] 100
ncol(rna.data)
```

```
colnames(rna.data)
##
    [1] "wt1" "wt2" "wt3" "wt4" "wt5" "ko1" "ko2" "ko3" "ko4" "ko5"
pca.rna <- prcomp(t(rna.data), scale=TRUE)</pre>
summary(pca.rna)
## Importance of components:
                                             PC3
##
                             PC1
                                     PC2
                                                     PC4
                                                             PC5
                                                                      PC6
                                                                              PC7
                          9.6237 1.5198 1.05787 1.05203 0.88062 0.82545 0.80111
## Standard deviation
## Proportion of Variance 0.9262 0.0231 0.01119 0.01107 0.00775 0.00681 0.00642
## Cumulative Proportion 0.9262 0.9493 0.96045 0.97152 0.97928 0.98609 0.99251
##
                              PC8
                                       PC9
                                                PC10
## Standard deviation
                          0.62065 0.60342 3.348e-15
## Proportion of Variance 0.00385 0.00364 0.000e+00
## Cumulative Proportion 0.99636 1.00000 1.000e+00
```

#sumamry above shows that PC2 in the plot below is not as significant as PC1. i.e. it is the short line on the graph

```
plot(pca.rna$x[,1:2])
text(pca.rna$x[,1:2], labels = colnames(rna.data))
```

