

ThoughtSpot Data Integration Guide

Release 7.0

March, 2021

© COPYRIGHT 2015, 2020 THOUGHTSPOT, INC. ALL RIGHTS RESERVED.

910 Hermosa Court, Sunnyvale, California 94085

This document may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior consent in writing from ThoughtSpot, Inc.

All rights reserved. The ThoughtSpot products and related documentation are protected by U.S. and international copyright and intellectual property laws. ThoughtSpot and the ThoughtSpot logo are trademarks of ThoughtSpot, Inc. in the United States and certain other jurisdictions. ThoughtSpot, Inc. also uses numerous other registered and unregistered trademarks to identify its goods and services worldwide. All other marks used herein are the trademarks of their respective owners, and ThoughtSpot, Inc. claims no ownership in such marks.

Every effort was made to ensure the accuracy of this document. However, ThoughtSpot, Inc., makes no warranties with respect to this document and disclaims any implied warranties of merchantability and fitness for a particular purpose. ThoughtSpot, Inc. shall not be liable for any error or for incidental or consequential damages in connection with the furnishing, performance, or use of this document or examples herein. The information in this document is subject to change without notice.

Table of Contents

Introduction to Data Integration	2
JDBC and ODBC setup prerequisites	4
ODBC driver client	
ODBC driver overview	5
ODBC on Windows	
Install the ODBC driver on Windows	9
Configure multiple connections on Windows1	9
Deploy SSL with ODBC on Windows2	4
Set up the ODBC driver for SSIS3	1
Install the ODBC driver on Linux4	2
Best Practices for Using ODBC	3
JDBC driver client	
JDBC driver overview5	4
Use the JDBC driver	6
Set up the JDBC driver for Pentaho	2
Troubleshooting	
Troubleshooting Data Integrations7	6
Enable ODBC logs7	7
Enable JDBC logs8	3
Schema not found error with ODBC8	4
How to improve throughput8	6
ODBC tracing on Windows8	7
Reference	
Supported SQL commands8	9
Connection configuration	6

Introduction to Data Integration

This guide explains how to integrate ThoughtSpot with other data sources for loading data. It also includes information on installing and using the ThoughtSpot clients (ODBC, JDBC, and more).

ThoughtSpot Clients

ThoughtSpot provides certified clients to help you load data easily from your ETL tool or another database. These include ODBC and JDBC drivers.

You can obtain the ThoughtSpot client downloads from the Help Center. Always use the version of the ThoughtSpot clients that corresponds with the version of ThoughtSpot that you are running. When upgrading, make sure to upgrade your clients as well.

▲ Important: The ETL tool must add a data transformation step if the source column data type does not exactly match the target's, ThoughtSpot's, column data type. The driver does not do any implicit conversions.

Methods for loading data

There are several ways to load data into ThoughtSpot, depending on your goals and where the data is located. Always consider your requirements for recurring loads when planning how best to bring the data into ThoughtSpot.

Here are the options, with information on where to find the documentation for each method:

Method	Description
ThoughtSpot Loader (tsload)	ThoughtSpot Loader is a command line tool to load CSV files into an existing database schema in ThoughtSpot. This is the fastest way to load extremely large amounts of data, and it can be run in parallel. You can also use this method to script recurring loads. See the ThoughtSpot Administrator Guide for details.

Method	Description
User Data Import	Users can upload a spreadsheet through the web interface with User Data Import. This is useful for giving everyone easy access to loading small amounts of their own data. See the ThoughtSpot Administrator Guide for details.
ODBC [See page 5]	ThoughtSpot provides an ODBC (Open Database Connectivity) driver to enable transferring data from your ETL tool into ThoughtSpot.
JDBC [See page 54]	ThoughtSpot provides a JDBC (Java Database Connectivity) driver to enable transferring data from your ETL tool into ThoughtSpot.
Microsoft SSIS (SQL Server Integration Services) [See page 31]	You can use the ODBC driver to connect to SSIS and import data into ThoughtSpot. Basic instructions are included in this guide.
Connect to Pentaho [See page 62]	You can use the JDBC driver to connect to Pentaho and import data into ThoughtSpot. Basic instructions are included in this guide.

Where to go next

- Server-side prerequisites for using JDBC/ODBC to import data [See page 4]
 You must follow setup prerequisites for importing data using JDBC/ODBC.
- About the ODBC Driver [See page 5]

You can use the ThoughtSpot ODBC driver to bring data into ThoughtSpot from your ETL tool or database.

About the JDBC Driver [See page 54]

Java Database Connectivity (JDBC) is a Java standard API that allows applications to interact with databases in a standard manner. ThoughtSpot has JDBC support through a JDBC driver that we provide.

JDBC and ODBC setup prerequisites

Before you can use JDBC or ODBC to import data into ThoughtSpot, you must do the following serverside configuration:

1. Open up the ThoughtSpot firewall to allow incoming requests to Simba server.

```
tscli firewall open-ports --ports 12345
```

2. Confirm that the simba_server process is up. Output of the command below should contain exactly one line, as shown below.

```
ps -ef | grep simba_server | grep -v grep
admin 26679 25672 0 Jul13 ? 00:01:49 simba_se
rver_main --logbufsecs=0
```

For assistance, contact ThoughtSpot Support.

Overview of the ODBC Driver

Summary: Use the ODBC driver to bring data in from your ETL tool or database.

ThoughtSpot comes packaged with an ODBC (Open Database Connectivity) driver, so that you can transfer data between ThoughtSpot and other databases. Basic knowledge of ODBC data source administration is helpful when setting up ODBC.

Supported operating systems for the ODBC driver are:

- · Microsoft Windows 32-bit
- · Microsoft Windows 64-bit
- · Linux 32-bit
- · Linux 64-bit

Version compatibility and connection parameters

To ensure compatibility, always use the ODBC driver with the same version number as the ThoughtSpot instance to which you are connecting. You can make a secure ODBC connection to the ThoughtSpot database by configuring a user and password combination with the driver. For detailed information about connection parameters, see the ODBC and JDBC configuration properties [See page 96]

Supported Data Types

The ODBC driver supports these data types:

- INT
- BIGINT
- BOOLEAN
- DOUBLE
- FLOAT
- DATE
- TIME
- TIMESTAMP
- DATETIME

- CHAR
- VARCHAR

Source and target data compatibility

By default, ThoughtSpot takes a permissive approach to data type compatibility between source and target data in ODBC. In this mode, ThoughtSpot assumes that the incoming data matches exactly with the target data types and loads the table as is.

Alternatively, you can explicitly require that ThoughtSpot match the source data types exactly and, if it can't find a match, it returns an error and the data load fails. In this mode, for example, if the target ThoughtSpot data type for a column is INT, the source data type for that column must be INT in order for the data load to succeed.

By toggling *strict* and *permissive* true and false options, you can configure settings along a scale of behavior between the permissive, automatic approach and the strictness of the "must match" approach.

Strictness

		Strictness	
		true	false
Permissiveness	true	Data types are inferred and automatically converted. ThoughtSpot returns an error in cases where the data conversion is not possible. Data load fails in its entirety if any data contains mismatches. You must correct the problem in the source data and try the load again.	Data types are inferred and automatically converted. No error is thrown even if source and target data types don't match. Data load continues even when the source and target data types don't match. This means your data load may contain data types that you do not intend or that are not helpful. You are responsible for checking and validating the data in this case.

false The source and target data

types must match. If any data contains mismatches, ThoughtSpot returns an error to the client a data load fails in its entirety. You must correct the problem in the source data and try the load again.

No data types are inferred and conversion does not check for matches. This is the most permissive configuration.

This is the strictest configuration.

Your customer support engineer can assist you in configuring custom ODBC behavior. Regardless of the configuration you choose, you must validate that the results of data loading as they appear in ThoughtSpot are what you require.

Data type conversion matrix

The following table describes the conversion matrix between SQL data types and ThoughtSpot data types.

Source SQL Data Types	BOOL	INT	BIGINT	DOUBLE	FLOAT	CHAR	DATE	TIME	DATETIME
SQL_BIT	Υ	Υ	Υ	Υ	Υ	Υ	-	-	_
SQL_TINYINT	Υ	Υ	Υ	Υ	Υ	Υ	-	-	-
SQL_SMALLINT	Υ	Υ	Υ	Υ	Υ	Υ	-	-	_
SQL_INTEGER	Υ	Υ	Υ	Υ	Υ	Υ	-	-	_
SQL_BIGINT	Υ	Υ	Υ	Υ	Υ	Υ	-	-	_
SQL_CHAR	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
SQL_VARCHAR	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
SQL_LONGVARCHAR	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
SQL_BINARY	-	-	-	-	-	Υ	-	-	-
SQL_VARBINARY	_	_	-	_	_	Υ	_	-	_
SQL_LONGVARBINARY	-	-	-	_	-	Υ	-	-	-

Source SQL Data Types	BOOL	INT	BIGINT	DOUBLE	FLOAT	CHAR	DATE	TIME	DATETIME
SQL_DOUBLE	Υ	Υ	Υ	Υ	Υ	Υ	_	-	-
SQL_REAL	Υ	Υ	Υ	Υ	Υ	Υ	-	-	-
SQL_FLOAT	Υ	Υ	Υ	Υ	Υ	Υ	_	-	_
SQL_NUMERIC	Υ	Υ	Υ	Υ	Υ	Υ	-	-	-
SQL_GUID	-	-	-	-	-	Υ	-	-	-
SQL_INTERVAL_MINUTE_TO_SECOND	-	-	-	-	-	Υ	-	-	-
SQL_INTERVAL_HOUR_TO_SECOND	-	-	-	_	-	Υ	-	-	-
SQL_INTERVAL_HOUR_TO_MINUTE	-	-	-	-	-	Υ	-	-	-
SQL_INTERVAL_DAY_TO_SECOND	-	-	-	-	-	Υ	-	-	-
SQL_INTERVAL_DAY_TO_MINUTE	-	-	-	-	-	Υ	-	-	-
SQL_INTERVAL_DAY_TO_HOUR	-	-	-	-	-	Υ	-	-	-
SQL_INTERVAL_YEAR	-	Υ	Υ	-	-	Υ	-	-	_
SQL_INTERVAL_MONTH	-	Υ	Υ	-	-	Υ	-	-	-
SQL_INTERVAL_DAY	-	Υ	Υ	-	-	Υ	-	-	-
SQL_INTERVAL_HOUR	-	Υ	Υ	-	-	Υ	-	-	-
SQL_INTERVAL_MINUTE	-	Υ	Υ	-	-	Υ	-	-	-
SQL_INTERVAL_SECOND	-	Υ	Υ	-	-	Υ	-	-	-
SQL_TYPE_TIME	-	-	-	-	-	Υ	-	Υ	Υ
SQL_TYPE_DATE	-	-	-	-	-	Υ	Υ	-	Υ
SQL_TYPE_TIMESTAMP	-	-	-	-	-	Υ	Υ	Υ	Υ

If a conversion is not possible, an error is returned to the client to indicate conversion failure. The ETL tool must add a data transformation step if the source column data type does not exactly match the target's ThoughtSpot column data type. The driver does not do any implicit conversions.

Install the ODBC driver on Windows

Summary: Use this procedure to obtain the Microsoft Windows ODBC driver and install it.

ThoughtSpot's ODBC connection relies on the SimbaEngine X SDK (https://www.simba.com/products/SEN/doc/Client-Server_user_guide/content/clientserver/configuringsimbaclientodbc/simbaclientodbcunix.htm) to connect through ODBC or JDBC to ThoughtSpot's remote data stores. The instructions on this page explain how to configure the Simba ODBC driver on a Windows workstation.

Make sure you have read the overview material in the ODBC driver overview [See page 5]. This workstation is the same machine where you plan to run your ETL activities.

Prerequisites

These instructions include directions to use the ssh command. Make sure your Windows workstation is equipped with a tool such as Putty (https://www.putty.org/) for making ssh connections to your ThoughtSpot server.

The ODBC driver for Windows requires Visual C++ Redistributable for Visual Studio 2013. You are prompted to install it during installation of the driver if it isn't already installed.

To check if this Microsoft tool is already installed, search for it on your workstation.

If it isn't installed, make sure you download and install it (https://www.microsoft.com/en-us/download/details.aspx?id=40784) before continuing.

Check the ThoughtSpot IP and the simba_server status

Before you begin, you need to know the IP address or DNS name of the server you intend to connect your server to.

- 1. SSH as admin or the thoughtspot user to your ThoughtSpot node.
- 2. Verify the node IP(s).

```
$ tscli node ls
172.18.231.17
172.18.231.18
```

- 3. Make a note of each IP; there may be more than one.
- Configure the ThoughtSpot firewall to allow connections from your ETL client, by running the following command on any ThoughtSpot node: tscli firewall open-ports --ports 12345
- 5. Exit or close the shell.

Download the driver

On the workstation where you want to connect from, do the following:

- 1. Navigate to the **Downloads** [See page 0] page.
- 2. Download the ODBC Driver for Windows.
- 3. Unzip the file you downloaded at a convenient location on your workstation.

4. Take a moment to examine the contents of the new directory.

There are two different Windows ODBC installers included in the file you downloaded.

- ThoughtSpotODBC (x86).msi for Windows 32-bit
- · ThoughtSpotODBC (x64).msi for Windows 64-bit

Install the driver and supporting software

The installation process installs the Simba driver and adds the ODBC Administrator software to your workstation. You use this software to configure the driver.

- 1. Launch the installer for your version of Windows.
- 2. Click Next to continue.

3. Accept the End User License Agreement (EULA), and click Next.

4. Specify the destination folder where the driver will be installed.

5. Enter the ThoughtSpot server details, and click Next.

- For Server(s), provide a comma separated list of the IP addresses of each node on the ThoughtSpot instance.
- For Database, optionally specify the database to use. If you skip this entry, you
 must provide the database each time you connect using ODBC.

- 6. Confirm that the install can begin by clicking Install.
- 7. You may see a security warning.

8. Click Yes to continue.

A confirmation message appears when the installation is complete.

9. Click Finish.

Configure the driver and test your connection

After installation completes, use the ODBC Administrator to configure the ODBC connection on your Windows workstation. For example, you may want to add a default schema or change the server IP address or the default database.

It is recommended to add a default schema. If you don't specify a default schema, you must supply it every time you use the ODBC driver.

At this point, you can test your ODBC connection to ThoughtSpot. It is important to recall that the username/password you use belongs to a ThoughtSpot application user. Typically, this user is a user with data management or administrative privileges on the application.

- Before trying the ODBC connection, confirm a username/password that can log in to the ThoughtSpot applications.
- 2. Click the **Data** tab, and confirm the user's privileges.
- 3. Return to your workstation.
- 4. Locate and open the **ODBC Data Source Administrator (64-bit)** application.

5. Click the System DSN tab.

6. Select ThoughtSpot and click Configure...

- 7. Click Options...
- 8. Ensure you have the following **Custom Property** values set:

Custom Property	Value
SCHEMA	falcon_default_schema is the default
UID	The username of a user with data management privilege.
PWD	The password for the username you specify.

You don't have to use the ThoughtSpot default schema. You can specify your own. We recommend that you define a default schema. Otherwise, you must supply a schema every time you use the ODBC driver. Moreover, without a schema (or if the schema is not present), the ODBC driver returns an error that states that the schema could not be found.

Similarly, adding the UID and PWD properties are not required. If you don't add them, you are prompted to supply them each time you connect.

When you are done, your options should look similar to the following:

- 9. When you are done, click **OK** to save your new properties.
- 10. Click **Test Connection** to test your database connection.

- 11. Click Cancel to close the DSN Configuration dialog.
- 12. Click **OK** to close the **Client Configuration Dialog** the dialog.
- 13. Click **OK** to close the **ODBC Data Source Administrator (64-bit)** application.

Now, you are ready to begin using the connection you've configured.

Related information

- Enable ODBC logs [See page 77].
- Configure multiple connections on Windows [See page 19].

Configure multiple connections on Windows

Summary: You can add multiple ODBC data sources.

Use this procedure if you want to add an additional data source after creating a single source succeeds [See page 9]. The main reason for needing to set up multiple ThoughtSpot ODBC data sources is that you have a production cluster and a test or development cluster.

1. Locate and open the ODBC Data Source Administrator (64-bit) application.

- 2. Click the System DSN tab.
- 3. Select Add.

The system lists the available drivers.

4. Choose the ThoughtSpot ODBC Driver and click Finish.

The system displays the Client Configuration Dialog dialog.

5. Enter the your data source configuration.

Configuration Property	Value
Data Source Name	The name you want to call the data source.
Description	A description of the data source.
Server IP	A list of the IP addresses for each node, separated by commas.
Server Port	12345
Idle Timeout	Time in seconds after which an idle ODBC connection times out.
Login Timeout	Time in seconds after which a login request times out.
Query Timeout	Time in seconds after which a query times out.

6. Configure custom properties by clicking **Options**.

The system displays the **Options** dialog.

7. Add these properties using the **Add** to enter an option and click **OK** after to save an option.

Option	Value
DATABASE	The default database to connect to.
SCHEMA	The default schema to connect to. Use falcon_de-fault_schema if you aren't sure.
CONNECTIONTIMEOUT	Optional. Seconds before an idle connection times out.

The key must be defined exactly as it appear here, using all capital letters. You can find other supported properties in ODBC and JDBC configuration properties [See page 96].

8. When you are done, click **OK** to save your new configuration.

9. Click **Test Connection** to test your database connection.

If your test connection fails, enable ODBC logging [See page 77] to troubleshoot.

- 10. Click Cancel to close the DSN Configuration dialog.
- 11. Click **OK** to close the **Client Configuration Dialog** the dialog.
- 12. Click OK to close the ODBC Data Source Administrator (64-bit) application

Deploy SSL with ODBC on Windows

Summary: Enable SSL for an ODBC connection.

You can configure a secure ODBC connection between your ThoughtSpot cluster and a remote Windows Machine. This article explains the SSL resources and ODBC configuration options you need to enable SSL for an ODBC connection.

Prerequisites

Before configuring SSL over the ThoughtSpot ODBC connection, make sure that your system administrator has created and configured your network's Certificate Authority. Additionally, the system administrator should have available both the proper Private Key and Server Certificate.

Configure the ThoughtSpot cluster nodes

▲ Important: Portions of this procedure require that you work with your ThoughtSpot Customer Service or Support Engineer.

The SimbaServer Configuration Properties reference (https://www.simba.com/products/SEN/doc/Client-Server_user_guide/content/clientserver/configuringsimbaserver/configurationoptions.htm) includes full details on SSL Configuration Properties (https://www.simba.com/products/SEN/doc/Client-Server_user_guide/content/clientserver/configuringsimbaserver/configurationoptions.htm#SSL_Server).

Before you change your ODBC configuration, decide on a path where you will store the Private Key and Server Certificate, for example, you could decide to use /home/admin/Simba_SSL/ as the path.

Then, do the following on every ThoughtSpot node in your cluster.

- 1. Create the path on the node.
- 2. Copy the SSL certificate and private key to this path.
- Edit the node's /etc/thoughtspot/simba.ini file (Simba server configuration) with your favorite editor.
- 4. Add the following lines:

SslCertfile=/home/admin/Simba_SSL/Server-Certificate.pe
m

SslKeyfile=/home/admin/Simba_SSL/Private-Key.pem
UseSsl=Required

5. Restart the Simba service.

You must work with your ThoughtSpot Customer Success or Support Engineer to do this.

Deploy the certificate on your windows workstation

Please note that the SSL settings on the server and client are interdependent.

The SimbaClient for ODBC Configuration Properties (https://www.simba.com/products/SEN/doc/Client-Server_user_guide/content/clientserver/configuringsimbaclientodbc/
simbaclientodbcconfigurationoptions.htm) reference describes how to set parameters on the client to use SSL (scroll down to useSsl section at the end). The Simba documentation also provides a chart showing configuration properties for SSL (https://www.simba.com/products/SEN/doc/Client-Server_user_guide/content/clientserver/configuringssl/configcombinations.htm) where you can see how different combinations of SSL settings on client and server will behave. For example:

- Setting both server and client to UseSsl=Enabled provides the ability for clients to connect with or without SSL.
- Setting both server and client to UseSsl=Required requires that all clients use SSL.
- Note: Note that the SSL and certificate parameters can be set through the pre-defined options on the options dialog, but customers have reported that these are not always reliable. In the following procedure, we recommend using custom properties to define these settings (either preemptively, or as a solution if the ODBC connection over SSL does not work with the pre-defined options). There is no harm in setting both. Example settings are: UseSSL = Required and SslCACertfile = C:\ODBC-SSL\CA.pem

On the workstation you want to use for your ODBC connection, specify the level of SSL you want to use on the client along with the path to the CA certificate, and then test the connection.

1. Save the CA certificate to a secure location on the workstation disk.

C:\ODBC-SSL\CA.pem is an example of a full path to such a location.

- 2. Open your ThoughtSpot ODBC connection configuration dialog.
- 3. Click Options.
- 4. Check the **Require SSL** option and/or add SSL as a custom property.

5. Enter the location of the CA certificate in the SSL Certificate File field and/or add the CA certificate as a custom property. Be sure to provide the full path to the certificate ({certificate_directory}\{CA_certificate}.pem).

- 6. When you are done, click **OK** to save your new properties.
- 7. Click **Test Connection** to test your database connection.

- 8. Click Cancel to close the configuration dialog.
- 9. Click **OK** to close the **Client Configuration Dialog** the dialog.
- 10. Click OK to close the ODBC Data Source Administrator (64-bit) application.

Set up the ODBC Driver for SSIS

Summary: Use SSIS to set up the ODBC Driver.

Microsoft SSIS (SQL Server Integration Services) is a data integration and workflow applications platform you can use to connect to ThoughtSpot. The platform is a component of the Microsoft SQL Server database software.

You can use a SSIS connection to perform data migration tasks. Its data warehousing tool is useful for data ETL (extraction, transformation, and loading). The SSIS Import/Export Wizard creates packages that transfers data with no transformations. It can move data from a variety of source types to a variety of destination types, including text files and other SQL Server instances.

Use SSIS to set up the ODBC Driver by creating a connection manager. This manager connects an OLE DB Source and the ODBC Destination.

Prerequisites

On Windows 64-bit, you have to install both the 32-bit and 64-bit ThoughtSpot ODBC drivers. In addition, they must be named the same, such as ThoughtSpot. By default they are named ThoughtSpot-32 and ThoughtSpot-64. This is required because the 64-bit SSIS shows a list of 32-bit ODBC drivers when you configure an ODBC target. However, it executes the 64-bit driver. If the drivers aren't named the same, then you can get an error stating the driver doesn't exist.

Set up the driver

To set up the ODBC driver using SSIS:

- 1. Open your SQL Server visual development tool that is based on Microsoft Visual Studio.
- 2. Select OLE DB Source, and click New.

Where ODBC provides access only to relational databases, OLE DB provides access to data regardless of its format or location.

3. Add the server by name from the machine accessible list.

4. Enter the authentication information: db name, user name, password, and test connection.

You can add the UID and password by clicking on Options.

- 5. Click **File** and select **New**, then **Project**.
- 6. Select the Integration Services tab under Installed > Templates > Business Intelligence.
- 7. Enter a name in the Name field and click OK.

Select the SSIS Toolbox tab on the left hand side of the platform, and drag and drop Data
 Flow Task to the main window.

9. Double click the **Data Flow Task** icon when it appears in the center of the page.

10. Navigate back to the SSIS Toolbox tab. You now want to create sources and destinations.

Create sources and destinations

- 1. Under Other Sources, find OLE DB Source and drag and drop it to the main window.
- Double click the OLE DB Source icon when it appears in the center of the page to open the OLE DB Source Editor.
- 3. Select a new OLE DB connection manager by clicking New.
- 4. In the Configure OLE DB Connection Manager window, select your **Data connection** and click **OK**.

If you do not see your data connection, you will have to create a new one in the Connection Manager by clicking **New**.

5. Back in the OLE DB Source Editor, select the Name of the table or the view, and click OK.

6. Select the table, and see what columns are in it.

In this example, a single column, c1, is selected.

Configure the ODBC Data Source Administrator

The ODBC Data Source Administrator has to be configured to connect to ThoughtSpot and bring the table in.

- 1. Search for and open your ODBC Data Sources (32-bit) program.
- 2. Click the **System DSN** tab and select **ThoughtSpot_32**.
- 3. Click Configure.

4. In the Client Configuration Dialog, enter the Server IP and Server Port.

Enter any node IP that has Simba server running on it. In **Secondary Servers**, you must specify all node IPs, because ThoughtSpot must resolve to the server Simba runs on, and that server can change after an upgrade. Enter one server IP per line. The line return serves as a separator. Comma separated values are not supported.

 Click **OK** twice to close the Client Configuration Dialog and the ODBC Data Source Administrator.

Create a file to take the feed

Now that you have set up your source, create the empty table in ThoughtSpot to take this feed. SSIS does not allow you to create the table in ThoughtSpot. You have to do this first in TQL. In Pentaho, it will create the table in ThoughtSpot, but not in SSIS.

Create the ODBC Destination. Use the one you created and named in the ODBC Data Source Administrator.

- In the SSIS Toolbox tab, under Other Destinations, drag and drop ODBC Destination to the main window.
- 2. Drag the **blue arrow** to connect the OLE DB Source icon to the ODBC Destination icon.
- 3. Double click the **ODBC Destination** icon.

4. Use ODBC Destination to set the **Batch size** for the connection in the Connection Manager tab. You can set the size to be up to 10,000.

If the load fails, the entire batch will be lost, and you will have to start that load over again.

Set the Transaction Size to match the total number of rows that are expected to be loaded in the load cycle.

Your transaction size can be quite large—even spanning a million rows. However, too many small batches can leave the cluster in a rough state. This is because each batch acts as a separate transaction and creates a separate commit. Too many of these will slow down our system since each transaction creates a "data version" in our system. In Pentaho, the transaction size setting is called Commit Size.

- 6. Set the **Transaction Option** attribute of the Data Flow Task to **Supported**.
- 7. In the Mappings tab, validate the mapping or change it.

You can have different column names in each database if you map them. Of course, they must be of the same or compatible datatype.

8. Start the import job by clicking the **Start** button.

You should see an animation indicating that the data is transferring over. When the import is complete, the number of successfully transferred rows is displayed.

You can validate the import using TQL or from the **Data** screen.

Install the ODBC Driver on Linux

Summary: Use this procedure to obtain the Linux ODBC driver and install it.

ThoughtSpot's ODBC connection relies on the SimbaEngine X SDK (https://www.simba.com/products/SEN/doc/Client-Server_user_guide/content/clientserver/configuringsimbaclientodbc/simbaclientodbcunix.htm) to connect through ODBC or JDBC to ThoughtSpot's remote data stores. The instructions on this page explain how to configure the Simba ODBC driver on a Linux workstation.

Make sure you have read the overview material in the ODBC driver overview [See page 5]. This workstation is the same machine where you plan to run your ETL activities.

Check the ThoughtSpot IP and the simba_server status

Before you begin, you need to know the IP address or DNS name of the server you intend to connect your server to.

- 1. SSH as admin or the thoughtspot user to your ThoughtSpot node.
- 2. Verify the node IP(s).

```
$ tscli node ls
172.18.231.17
172.18.231.18
```

- 3. Make a note of each IP; there may be more than one.
- Configure the ThoughtSpot firewall to allow connections from your ETL client, by running the following command on any ThoughtSpot node: tscli firewall open-ports --ports 12345
- 5. Exit or close the shell.

Install the Simba client

On your workstation, where you want to connect from, do the following to get the ODBC driver:

- 1. Open a browser on your workstation.
- 2. Navigate to the **Downloads** [See page 0] page.
- 3. Click ODBC Driver for Linux to download the driver.
- 4. Open a terminal on your workstation.
- 5. Change directory to the location where you downloaded the file.
- 6. Optionally, move the file to a permanent location on your machine.

When you expand the downloaded file it will create a directory in the location.

7. Unzip the zip file:

8. Extract the contents of the tar file.

This extracts a subdirectory called linux into the current directory.

9. Take a moment to examine the contents of the new directory.

The structure contains a Simba client library, supporting libraries and setup files for two different architectures. It also continues error messages for multiple languages.

```
- Bin
     — Linux x86
       └─ libSimbaClient.so
      - Linux x8664
        └─ libSimbaClient.so
  ErrorMessages
     — de-DE
        <u></u> ...
      - en-US
        — CSCommonMessages.xml
         — ClientMessages.xml
         — JNIDSIMessages.xml
         ODBCMessages.xml
          SQLEngineMessages.xml
        ServerMessages.xml
      – es–ES
      – fr–FR
      – it-IT
     — ja-JP
  - Lib
    ─ Linux_x86
        libcrypto.so
         — libcrypto.so.1.0.0
         — ...
      – Linux x8664
        <u>├</u> ...
  - Setup
    .simba.javaquickstart.ini
     - .simba.javaultralight.ini
     simba.quickstart.ini
     .simba.ultralight.ini
     - .simbaclient.ini
     simbaserver.javaquickstart.ini
     simbaserver.javaultralight.ini
     — .simbaserver.quickstart.ini
     simbaserver.ultralight.ini
     — odbc.ini
     — odbcinst.ini
14 directories, 92 files
```

The linux/Setup directory contains the key ODBC configuration files and sample Simba client configurations you can use later in this procedure.

 You must know your workstation architecture to continue, confirm your workstation's architecture.

You can use the arch or the uname command or both.

```
$ arch
    x86_64
$ uname -a
    Linux nebula-docs-production-4vfnv 4.4.108-1.el7.elre
po.x86_64 #1 SMP Mon Dec 25 09:55:39 EST 2017 x86_64 x8
6_64 x86_64 GNU/Linux
```

In previous examples, the workstation is a 64 bit workstation. Your workstation may be 32-bit. You can use this architecture information in the procedures that follow.

(Optional) Install unixODBC tools for testing

The procedures on this page rely on the unixODBC tools to test your configuration and connection. If you are experienced with ODBC and want to skip this, you can. Simply substitute your preferred mechanism in the subsequent procedures where references are made to the unixODBC tools.

- Warning: Your ThoughtSpot installation contains a version of the unixODBC tools. These tools are incompatible with CentOS. Do not use these tools if you are performing this procedure on your ThoughtSpot server.
 - 1. Search for the unixODBC tools on your system.

The yum package manager searches for software already installed or available on your system or from the configured repositories. Depending on your workstation configuration, you may need to use the sudo command with your workstation.

```
$ yum search unixODBC
* updates: repos-lax.psychz.net
======== N/S matched: unixODB
opensips-unixodbc.x86 64: OpenSIPS unixODBC Storage sup
port
unixODBC-devel.i686 : Development files for programs whi
ch will use the unixODBC library
unixODBC-devel.x86_64 : Development files for programs w
hich will use the unixODBC library
erlang-odbc.x86_64 : A library for unix0DBC support in E
rlang
freeradius-unixODBC.x86_64 : Unix ODBC support for freer
adius
unixODBC.i686 : A complete ODBC driver manager for Linux
unixODBC.x86_64 : A complete ODBC driver manager for Lin
ux
```

Make note of the correct package to install for your architecture.

2. Install the appropriate package for your architecture.

In this case the command installs the tools for a 64-bit architecture. A 32-bit package needs the unix0DBC.i686 package.

```
[admin@nebula-docs-odbc-test-cxmrn ~]$ yum install unix
ODBC.x86 64
Loaded plugins: fastestmirror, ovl
Loading mirror speeds from cached hostfile
 * base: mirror.linuxfix.com
 * elrepo: repos.lax-noc.com
 * epel: mirror.hmc.edu
 * extras: centos-distro.cavecreek.net
 * rpmforge: mirror.lstn.net
 * updates: repos-lax.psychz.net
Resolving Dependencies
--> Running transaction check
 ---> Package unixODBC.x86 64 0:2.3.1-11.el7 will be ins
talled
 . . .
 Complete!
```

3. Verify the files were installed.

```
$ ls /usr/bin/isql
/usr/bin/isql
$ ls /usr/bin/odbcinst
/usr/bin/odbcinst
```

Set up your environment

In this section, you set parameters in your workstation to support your ODBC connection.

1. Copy the library for your architecture from the Lib directory on your Linux machine.

Library	Architecture
/linux/Lib/Linux_x86	32-bit
/linux/Lib/Linux_x8664	64-bit

2. Add the location's path to the LD_LIBRARY_PATH environment variable.

For example if your architecture is 64-bit and you keep the library in your home directory:

3. Use the echo command to verify the path was added correctly.

4. Copy the odbc.ini file to the /etc directory.

If you have trouble making the copy, use the sudo command to make the move.

5. Copy the odbcinst.ini file to the /etc directory.

```
$ cp ~/linux/Setup/odbcinst.ini /etc
```

6. Copy the hidden .simba.quickstart.ini file to the /etc directory, renaming it in the process to simbaclient.ini.

```
$ cp ~/linux/Setup/.simba.quickstart.ini /etc/simbacli
ent.ini
```

7. Update your environment with the ODBCSYSINI and ODBCINI variables.

```
$ export ODBCSYSINI=/etc/
$ export ODBCINI=/etc/odbc.ini
```

8. Use the /usr/bin/odbcinst command to confirm your settings:

Edit the /etc/simbaclient.ini file

When you are ready, follow this procedure to configure the driver.

1. Edit the /etc/simbaclient.ini file with your favorite editor. 2.

Change the ErrorMessagesPath property to point to the location where you unzipped the client.

```
[Driver]
ErrorMessagesPath=<path_to_error_messages_directory>
```

- 3. Comment out the # Generic ODBCInstLib value.
- 4. Uncomment the ODBCInstLib property.

When you are done, your file looks like the following:

```
# Generic ODBCInstLib
# iODBC
#ODBCInstLib=libiodbcinst.so

# SimbaDM / unixODBC
ODBCInstLib=libodbcinst.so
```

5. Save and close the /etc/simbaclient.ini file.

Edit the odbcinst.ini file

The odbcinst.ini file is a registry and configuration file for ODBC drivers. Depending on your workstation architecture, you configure the 32-bit or 64-bit driver.

- 1. Open the file /etc/odbcinst.ini in your favorite editor.
- 2. Comment out the driver that you don't need.

For example, if you are using 64-bit, comment out 32-bit.

3. Edit the Driver line so that it contains the path to the file libSimbaClient.so

Use the path where you copied the library files. For example, for the 64-bit ODBC driver:

[ThoughtSpot(x64)]

APILevel = 1 ConnectFunctions = YYY

Description = ThoughtSpot 64bit ODBC driver
Driver = /home/admin/linux/Bin/Linux_x866

4/libSimbaClient.so

DriverODBCVer = 03.52 SQLLevel = 1

4. Make sure the remaining driver is named ThoughtSpot without any special characters.

When you are done, you should see something similar to the following:

#[ThoughtSpot]

#APILevel = 1 #ConnectFunctions = YYY

#Description = ThoughtSpot 32bit ODBC driver
#Driver = /usr/local/scaligent/toolchain/l
ocal/simba/odbc/linux/Bin/Linux_x86/libSimbaClient.so

#DriverODBCVer = 03.80
#SQLLevel = 1

[ThoughtSpot]

APILevel = 1 ConnectFunctions = YYY

Description = ThoughtSpot 64bit ODBC driver
Driver = /home/admin/linux/Bin/Linux_x866

4/libSimbaClient.so

DriverODBCVer = 03.80 SQLLevel = 1

5. Save and close the /etc/odbcinst.ini file.

Edit the odbc.ini file

The odbc.ini file is a registry and configuration file for ODBC DSNs (Data Source Names). This file relies on the drivers registered in the /etc/odbcinst.ini file. Depending on your workstation architecture, you configure the 32-bit or 64-bit driver.

1. Open the file /etc/odbc.ini in the editor of your choice.

2. Comment out the configuration that you don't need.

For example, if you are using 64-bit, comment out 32-bit.

- 3. Locate the Description section for the type of Linux you are using (32-bit or 64-bit).
- 4. Locate the line that begins with ServerList.
- Replace 127.0.0.1 with a comma separated list of the IP addresses of each node on the ThoughtSpot instance.

The syntax for the ServerList is:

```
ServerList = <node1_IP> 12345, <node2_IP> 12345 [, <nod e3_IP> 12345, ...]
```

If you need to obtain the IP addresses of the ThoughtSpot cluster nodes, run the command tscli node ls from a Linux shell on a ThoughtSpot appliance.

6. Do not edit the port number, leave it as 12345.

When you are done, your entry will look similar to the following (this example is for the 64-bit ODBC driver):

```
[ThoughtSpot]
Description = ThoughtSpot 64-bit ODBC Driver
Driver = ThoughtSpot
ServerList = 172.18.231.17 12345
Locale = en-US
ErrorMessagesPath = /home/admin/linux/ErrorMessages
UseSsl = 0
#SSLCertFile = # Set the SSL certificate file path. Th
e certificate file can be obtained by extracting the SD
K tarball
#LogLevel = 0 # Set log level to enable debug logging
#LogPath = # Set the debug log files path
DATABASE = # Set the default database to connect to
SCHEMA = # Set the default schema to connect to
```

7. Save and close the odbc.ini file.

Test your ODBC connection

At this point, you can test your ODBC connection to ThoughtSpot. It is important to recall that the username/password you use belongs to a ThoughtSpot application user. Typically, this user is a user with data management or administrative privileges on the application.

- Before trying the ODBC connection, make sure you can use this username/password to login into the ThoughtSpot application.
- 2. Confirm the user's privileges by going to the **Data** tab.
- 3. Go back to your workstation's terminal shell.
- 4. Use the /usr/bin/isql and confirm you can connect.

Specify the ThoughtSpot DSN:

Now, you are ready to begin using the connection you've configured.

Best Practices for Using ODBC

Summary: To successfully use ODBC, following these best practices is recommended.

When developing tools that use the ODBC driver, use these best practices:

- When setting up ODBC for the first time, begin by using the ThoughtSpot tsload for the
 initial data loads. This allows you to do more in-depth troubleshooting on any initial loading
 issues. After initial loads work properly, switch to ODBC to perform incremental loads.
- You should create the parameterized SQL statement outside of ODBC. Using this method, the SQL statement can be sent to ThoughtSpot in batches by the ODBC driver, so you only have to update the memory itself. ETL tools have this implemented already (end users shouldn't have to actually write the INSERT statement). But as a developer, you may be writing code that leverages the ODBC driver, so this tip can help you write your SQL for the best performance with the driver.
- Data can be loaded into a table through multiple parallel connections. You can achieve this by splitting the input data into multiple parts. Then, load those individual parts through multiple parallel connections. You can use parallel loading even while loading to a single table or multiple tables at the same time.
- When doing an incremental data load, note that the same UPSERT behavior that occurs in TQL also occurs. This means that if you import a row whose primary key matches an existing row, the existing row will be updated with the new values.

Related information

- Enable ODBC logs [See page 77]
- · Introduction to loading and managing data [See page 0]
- Loading and constraints [See page 0]

JDBC Driver Overview

Summary: Use JDBC to interact with databases in a standard manner.

Java Database Connectivity (JDBC) is a Java standard API that allows applications to interact with databases in a standard manner. ThoughtSpot has JDBC support through a JDBC driver that we provide.

Connector type

There are different types of JDBC connectors. Driver types categorize the technology used to connect to the database. The ThoughtSpot JDBC drive is a type 4 connector. It uses Java to implement a networking protocol for communicating with ThoughtSpot.

This driver is Java driver. There is no client installation or configuration.

When to use JDBC

JDBC can be used whenever you want to connect to ThoughtSpot to insert data programmatically from a Java program or application. You should begin by using the ThoughtSpot Loader for initial data loads and then use JDBC for incremental loads. This is because the ThoughtSpot Loader is generally faster than JDBC. Information on using the ThoughtSpot Loader is available in the ThoughtSpot Administrator Guide.

Version Compatibility

To ensure compatibility, always use the JDBC driver with the same version number as the ThoughtSpot instance to which you are connecting.

Performance Considerations

These are some general recommendations for maximizing the performance of JDBC:

· Insert in batches rather than doing single inserts at a time using the

- ${\tt PreparedStatement::} add {\tt Batch()} \ \ and \ \ {\tt PreparedStatement::} execute {\tt Batch} \ \ commands.$
- If you need to upload a lot of data, consider running multiple connections with batch inserts in parallel.

10 Note: The ETL tool must add a data transformation step if the source column data type does not exactly match the target's, ThoughtSpot's, column data type. The driver does not do any implicit conversions.

Use the JDBC Driver

Summary: How to configure the JDBC driver.

ThoughtSpot's ODBC connection relies on the SimbaEngine X SDK (https://www.simba.com/products/SEN/doc/Client-Server_user_guide/content/clientserver/configuringsimbaclientodbc/simbaclientodbcunix.htm) to connect through ODBC or JDBC to ThoughtSpot's remote data stores. The instructions on this page explain how to configure the JDBC driver.

The ThoughtSpot JDBC driver is supplied by a .jar file you install on a workstation. This workstation is the same machine where you plan to run your ETL activities.

JDBC configuration parameters

Information	Description
Driver name	com.simba.client.core.jdbc4.SCJDBC4Driver
Server IP ad- dress	The ThoughtSpot appliance URL or IP address.
Simba port	The simba port, which is 12345 by default.
Database name	This is not the machine login username. The ThoughtSpot Database name to connect to.
username	The name of a ThoughtSpot user with administrator permissions.
password	The password of a ThoughtSpot application user. This is not the machine or SSH userpassword.

For more JDBC configuration options, see also:

- JDBC properties reference [See page 96] in this ThoughtSpot documentation
- SimbaClient for JDBC Configuration Properties reference (https://www.simba.com/products/ SEN/doc/Client-Server_user_guide/content/clientserver/configuringsimbaclientjdbc/ simbaclient_jdbcconfigurationoptions.htm)

Check the ThoughtSpot IP and the simba_server status

Before you begin, you need to know the IP address or DNS name of the server you intend to connect your server to.

- 1. SSH as admin or the thoughtspot user to your ThoughtSpot node.
- 2. Verify the node IP(s).

```
$ tscli node ls
172.18.231.17
172.18.231.18
```

- 3. Make a note of each IP; there may be more than one.
- Configure the ThoughtSpot firewall to allow connections from your ETL client, by running the following command on any ThoughtSpot node: tscli firewall open-ports --ports 12345
- 5. Exit or close the shell.

Install the driver

The JDBC driver is a .jar packaged application. To use the package, you download it, install it

- 1. Log in to the local machine where you want to install the JDBC driver.
- 2. Click Here [See page 0] to download the JDBC driver.
- 3. Click **JDBC Driver** to download the file thoughtspot_jdbc<version>.jar.
- 4. Move the driver to the desired directory on your local machine.
- 5. Add the downloaded JDBC driver to your Java class path on the local machine.

Write your application

Using JDBC with ThoughtSpot is the same as using any other JDBC driver with any other database. You must provide the connection information, create a connection, execute statements, and close the connection.

Specify each of the nodes in the cluster in the connection string, as shown. This enables high availability for JDBC connections. To find out the nodes in the cluster, you can run the command tscli node ls from the Linux shell on the ThoughtSpot instance.

The format for the connection is:

For example:

As shown, the DATABASE and SCHEMA parameters need to be in all caps. For the simba JDBC driver to work with Spark, the DATABASE and SCHEMA must be specified in the URL. They cannot be specified as a name/value pair as a map or property. For example:

```
val tssqldf1 = sparkSession.read.format("jdbc").options(Map("ur
l" ->
"jdbc:simba://10.84.78.181:12345;DATABASE=movieratings;SCHEMA=f
alcon_default_schema", "driver" ->
"com.simba.client.core.jdbc4.SCJDBC4Driver", "dbtable" -> "Movi
es", "user" ->
"tsadmin", "password" -> "admin")).load()
```

This InsertData.java example shows how to use ThoughtSpot with JDBC. This is an example of a reference JDBC application:

```
import java.sql.DriverManager;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
public class InsertData {
 // JDBC class to use.
 private static final String DB_DRIVER = "com.simba.client.cor"
e.jdbc4.SCJDBC4Driver";
 // jdbc_example should be an existing database.
 private static final String DB_CONNECTION = "jdbc:simba://19
2.168.2.129:12345;
    192.168.2.249:12345,192.168.2.247:12345;
    LoginTimeout=5;DATABASE=jdbc_example;SCHEMA=falcon_defaul
t_schema";
 private static final String TABLE_NAME = "jdbc_example";
  private static final String DB_USER = "<username>";
 private static final String DB_PASSWORD = "<password>";
 // Assuming everything in local directory use:
       javac InsertData.java
       java -cp .:thoughtspot jdbc4.jar InsertData
  public static void main(String[] argv) {
   try {
      insertRecordsIntoTable();
    catch (SQLException e) {
     System.out.println(e.getMessage());
   }
 }
  * Insert some records using batch updates.
  * Assumes a table exists: CREATE TABLE "jdbc_example" ( "t
ext" varchar(10) );
  */
 private static void insertRecordsIntoTable() throws SQLExcept
ion {
    System.out.println("Inserting records.");
    Connection dbConnection = getDBConnection();
```

```
PreparedStatement preparedStatement = null;
    String insertTableSQL = "INSERT INTO falcon default schem
a.jdbc_example (text) VALUES (?)";
    try {
     preparedStatement = dbConnection.prepareStatement(insertT
ableSQL);
     // Create multiple statements and add to a batch update.
      for (int cnt = 1; cnt <= 10; cnt++) {
        preparedStatement.setString(1, "some string " + cnt);
        preparedStatement.addBatch();
        System.out.println("Record " + cnt + " was added to th
e batch!");
      preparedStatement.executeBatch(); // For large numbers o
f records, recommend doing sets of executeBatch commands.
      System.out.println("Records committed");
   }
    catch (SQLException sqle) {
     sqle.printStackTrace();
    finally {
      if (preparedStatement != null) {
        preparedStatement.close();
     }
      if (dbConnection != null) {
        dbConnection.close();
     }
   }
  }
 /** Create a connection to the database. */
  private static Connection getDBConnection() {
    Connection dbConnection = null;
   try {
     Class.forName(DB_DRIVER);
   catch (ClassNotFoundException e) {
      System.out.println(e.getMessage());
   }
   try {
      dbConnection = DriverManager.getConnection(DB_CONNECTIO
```

```
N, DB_USER,DB_PASSWORD);
    return dbConnection;
}
catch (SQLException sqle) {
    System.out.println(sqle.getMessage());
}
return dbConnection;
}
```

Related Information

- Enable JDBC logs [See page 83]
- Connection configuration [See page 96]
- Supported SQL commands [See page 89]

Set up the JDBC driver for Pentaho

Summary: Use Pentaho to create a JDBC connection to ThoughtSpot.

You can use the Pentaho Data Integration (PDI) to create a JDBC connection. The Pentaho Data Integration (PDI) suite is a comprehensive data integration and business analytics platform. You can use it to create a JDBC connection to ThoughtSpot.

PDI consists of a core data integration (ETL) engine and GUI applications that allow you to define data integration jobs and transformations. Through Pentaho, we primarily use the JDBC driver to set up a connection. The process is not as complicated as with SSIS, and is much more lenient.

Community and enterprise editions of PDI are available. Using the community edition is sufficient, though you may use the enterprise edition, which is subscription based, and therefore contains extra features and provides technical support.

Use JDBC to connect to the ThoughtSpot Simba server from Pentaho. The connection will be made between a new ThoughtSpot Table Input and Output objects.

Check the ThoughtSpot IP and the simba_server status

Before you begin, you need to know the IP address or DNS name of the server you intend to connect your server to.

- 1. SSH as admin or the thoughtspot user to your ThoughtSpot node.
- 2. Verify the node IP(s).

```
$ tscli node ls
172.18.231.17
172.18.231.18
```

- 3. Make a note of each IP; there may be more than one.
- Configure the ThoughtSpot firewall to allow connections from your ETL client, by running the following command on any ThoughtSpot node: tscli firewall open-ports --ports

12345

5. Exit or close the shell.

Install the Simba drivers in the Pentaho directories

Before starting the Pentaho Data Integration (PDI) client and creating the connection, ensure that the Simba JDBC client libraries are present in the Pentaho client/server machines. This will ensure that the drivers picked up at runtime.

- Log in to the local machine where you have alredy installed the Pentaho Data Integration (PDI)
 client.
- 2. Click Here [See page 0] to download the JDBC driver.
- 3. Click **JDBC Driver** to download the file thoughtspot_jdbc<version>.jar.
- 4. Copy the thoughtspot_jdbc<version>.jar file to the following directories:
 - <Pentaho_install_dir>/server/data-integration-server/tomcat/webapps/ pentaho-di/WED-INF/lib/
 - <Pentaho_install_dir>/design-tools/data-integration/lib/
 - <Pentaho_install_dir>/server/data-integration-server/tomcat/lib/
 - <Pentaho_install_dir>/design-tools/data-integration/plugins/spoon/ agile-bi/lib/

Set up the driver

This section explains how to set up the JDBC driver using Pentaho. These instructions use Spoon, the graphical transformation and job designer associated with the PDI suite. It is also known as the Kettle project.

Create a transformation

Do the following on your ETL workstation with the Pentaho client:

1. Open the PDI client.

./spoon.sh &>/dev/null &

- 2. Right click View > Transformations tab.
- 3. Click New to create a new transformation.

- 4. Click Input under the Design tab to expand it.
- 5. Drag and drop **CSV File Input** to the **Transformation** window.

This opens a new CSV file.

- 6. Double-click the CSV File Input icon to open the CSV Input dialog .
- 7. Name the Step.
- 8. Click **Browse** next to the **Filename** field and provide the file you want to read from.
- 9. Click OK.

- 10. In the CSV Input dialog, click Get Fields.
- 11. Enter the number of lines you would like to sample in the Sample size dialog.

The default setting is 100.

1. Click **OK** when you are ready.

The tool reads the file and suggests the field name and type.

```
Here are the results of the document scan:

Result after acanning 5 lines.

Field nr. 1:
  Field name : id
  Field type : Integer

Field nr. 2:
  Field name : name
  Field type : String
  Maximum length : 1
  Minimum value : a
  Maximum value : e
  Nr of null values : 0
```

- 2. Click Preview to preview the data.
- 3. Enter the number of rows to preview in the Preview size dialog.

The default setting is 1000. Click \mathbf{OK} to start the transformation in preview.

4. Examine the preview data, then click **Close**.

You may want to verify that you are able to read the data using the SQL query from ThoughtSpot.

5. Click **OK** in the CSV Input dialog to confirm your CSV input settings.

Define the Output

- 1. Click **Design > Output**.
- 2. Drag and drop Table output to the Transformation window.

3. Double click the **Table output** icon to open the Table output dialog.

- 4. Enter a Step name.
- 5. Click **New** to create a new connection.

6. Enter or select the following information in the Database Connection dialog:

Custom
Driver
Class
Name

Ensure that there are no leading or trailing spaces.

User Name

A ThoughtSpot username. If you leave this empty, you are prompted for it at connection time. This user should have **Data Management** privileges on ThoughtSpot.

Password

The password for the **User Name**. If you leave this empty, you are prompted for it at connection time.

- 7. Click **Test** to test your database connection.
- 8. If you are able to make a successful connection to the ThoughtSpot Simba Server, click **OK**.

9. Click **OK** in the Database Connection dialog to create the new connection.

Import data

- 1. In the **Table output** dialog, select the connection you just created.
- 2. Click Browse next to the Target schema field and select your Target schema.
- 3. Click **OK** when you are done.
- 4. Connect the **Input CSV** icon to the **Table output** icon by clicking and dragging an arrow.
- 5. When prompted, choose **Main output of step**.

- 6. Double click the **Table output** icon to reopen the **Table output** dialog.
- 7. Enter a Target table name.
- 8. Click SQL.

9. In the Simple SQL editor dialog, click Execute.

The system processes and then displays the results of the SQL statements.

- 10. Close all open dialogs.
- 11. Click the **Play** button at the top of the **Transformation** window to execute the transformation.

12. Click Launch in the Execute a transformation dialog.

The system prompts you to save it if you have not already.

13. View the Execution Results.

Troubleshooting Data Integrations

Summary: Learn how to fix connection issues.

This section can help if you're having trouble creating a connection or need to find out more information about what is going on with ODBC or JDBC.

The information contained here is very basic, and mostly about how to enable logs on the client side. If you need more detailed troubleshooting information or help, please contact ThoughtSpot Support.

• Enable ODBC Logs [See page 77]

If you need more information in order to troubleshoot ODBC connections, you can enable logging for ODBC.

Enable JDBC Logs [See page 83]

To enable logging for JDBC, add the logging parameters to the connect string. Logs are stored on ThoughtSpot.

· Schema not found error with ODBC [See page 84]

When connecting with ODBC, you need to specify both the database and schema to connect to. If no schema is supplied, you will get an error indicating that the schema could not be found.

How to improve throughput of the load [See page 86]

The transaction/commit size value can improve the throughput of the load when setting up the ODBC Driver.

· ODBC tracing on Windows [See page 87]

Using logs to aid in troubleshooting.

Enable ODBC Logs

Summary: Learn how to troubleshoot ODBC connections.

If you need more information in order to troubleshoot ODBC connections, you can enable logging for ODBC on the workstation you use for connecting to ThoughtSpot. There are two points where you can enable logging:

- · the workstation where you run your ETL activities
- · the server where the Simba service is running

On both workstation and servers, the verbosity of the log is controlled by the LogLevel property. This property can be one of the following:

- 0 or L0G_0FF : no logging occurs
- 1 or LOG_FATAL : only log fatal errors
- 2 or LOG_ERROR: log all errors
- 3 or LOG_WARNING : log all errors and warnings
- 4 or L0G_INF0 : log all errors, warnings, and informational messages
- 5 or LOG_DEBUG: log method entry and exit points and parameter values for debugging
- 6 or L0G_TRACE : log all method entry points

Larger values include the information from lessor values. For example, if you set 3 or LOG_WARNING, you log all warnings and all errors.

Enable ODBC logs on a Windows workstation

To enable ODBC logs on Windows:

- 1. Open the ODBC Data Source Administrator and select the System DSN tab.
- 2. Select your ThoughtSpot data source and click **Configure**.

3. In the Client Configuration Dialog, click Logging.

4. Choose a Log Level, depending on what level of verbosity you want to show in the logs.

5. For **Log Directory:**, type in the fully qualified path where you want the logs to be saved.

- Click **OK** to save your settings, and **OK** again, to dismiss the ODBC Data Source Administrator.
- 7. Run the ODBC load.
- 8. Locate the log file that was generated, and send it to ThoughtSpot Support with a description of the problem.

Enable ODBC logs on a Linux workstation

To enable logging on Linux, follow these instructions:

- 1. Navigate to the directory where you installed ODBC.
- 2. Open the odbc.ini file in a text editor.

This file is the registry and configuration file for ODBC.

- 3. Locate the LogLevel and LogPath properties.
- 4. Uncomment the properties.
- 5. Enter a value for the LogLevel the.

Acceptable values are from 1 to 6 with 6 being the most verbose.

6. Enter the fully qualified path for the LogPath values.

The log will be written here. Your file will look similar to the following: Example for Linux 64-bit:

```
[ThoughtSpot]

Description = ThoughtSpot 64-bit ODBC Driver

Driver = ThoughtSpot

ServerList = 172.18.231.17 12345

Locale = en-US

ErrorMessagesPath = /home/admin/linux/ErrorMessages

UseSsl = 0

#SSLCertFile = # Set the SSL certificate file path. The certificate file can be obtained by extracting the SDK t arball

LogLevel = 3 # Set log level to enable debug logging

LogPath = /home/admin/odbc-logs # Set the debug log file s path

DATABASE = # Set the default database to connect to

SCHEMA = # Set the default schema to connect to
```

- 7. Save and close the file.
- 8. To test the configuration, run the ODBC load and review the log files.

Control logs from the Simba server

You may want to collect logs from the Simba service. Do the following to procedure on every ThoughtSpot node running the Simba service.

- 1. SSH into the ThoughtSpot node.
- 2. Edit the /etc/thoughtspot/linux.ini file.

Note that this default DriverManagerEncoding of UT F-32 is for iODBC. unixODBC uses UTF-16 by default. ## If unixODBC was compiled with -DSQL_WCHART_CONVERT, then UTF-32 is the correct value. ## Execute 'odbc_config --cflags' to determine if you n eed UTF-32 or UTF-16 on unixODBC DriverManagerEncoding=UTF-32 DriverLocale=en-US ErrorMessagesPath=/usr/home/linux/ErrorMessages/ LogLevel=0 LogNamespace= LogPath=

3. Uncomment the LogLevel setting.

The LogLevel is the level of logging to capture (0-6).

4. Set LogPath to a directory to save the logs.

The LogPath is the fully qualified path where ThoughtSpot should write the logs.

5. Work with ThoughtSpot Support to restart the Simba serivce.

The node IP may change because of the restart. If this happens, repeat the entire procedure.

Enable JDBC Logs

Summary: Configure logging parameter strings.

To enable logging for JDBC, add the logging parameters to the connect string. Logs are stored on ThoughtSpot. Before enabling JDBC logging, you need:

- · The level of logging you want to capture.
- The path on the ThoughtSpot server where the logs will be written. Make sure the directory
 has the correct permissions so that the "admin" Linux user can write logs to it.

To enable JDBC logging:

1. When forming the connect string for JDBC, add these two parameter, separated by "&":

For example:

```
jdbc:simba://192.168.2.248:12345;SERVERS=192.168.2.24
9:12345,
   192.168.2.247:12345;Database=test;Schema=falcon_defaul
t_schema;**LogLevel=3;LogPath=/usr/local/scaligent/log
s**
```

The LogLevel is the level of logging to capture (0-6). The LogPath is the fully qualified path where logs will be written on ThoughtSpot.

- 2. Run the JDBC code that uses the connection you modified.
- 3. Check the LogPath directory for logs generated by JDBC.

Schema not found error with ODBC

Summary: Correct schema not found errors.

When connecting with ODBC, you need to specify both the DATABASE and SCHEMA parameters. This is true even if you do not use schema names in ThoughtSpot. If you don't supply a SCHEMA, you get an error indicating that the schema could not be found.

The default schema name in ThoughtSpot is falcon_default_schema. To set the SCHEMA on Windows, adding a custom property with the key SCHEMA and the value falcon_default_schema.

On Linux, you can edit the properties in the odbc.ini file for the driver you are using:

```
[ThoughtSpot]

Description = ThoughtSpot 64-bit ODBC Driver

Driver = ThoughtSpot

ServerList = 172.18.231.17 12345

Locale = en-US

ErrorMessagesPath = /home/admin/linux/ErrorMessages

UseSsl = 0

#SSLCertFile = # Set the SSL certificate file path. The certificate file can be obtained by extracting the SDK tarball

#LogLevel = 0 # Set log level to enable debug logging

#LogPath = # Set the debug log files path

DATABASE = # Set the default database to connect to

SCHEMA = # Set the default schema to connect to
```

Related information

- Configuring ODBC on Windows [See page 9]
- Configuring ODBC on LINUX [See page 42]
- ODBC and JDBC configuration properties [See page 96]

How to improve throughput

Summary: Adjusting the transaction size may correct poor performance and low throughput.

The transaction/commit size value can improve the throughput of the load when setting up the ODBC Driver.

Adjusting the transaction size may correct poor performance and low throughput issues. The transaction size should be set to match the total number of rows that are expected to be loaded in the load cycle. However, increasing this value even higher should help improve throughput of the load.

• Warning: A high transaction size may slow down the ThoughtSpot system.

This is where the transaction size field exists for SSIS. Clicking on the ODBC destination reveals the properties on the right hand side, where the **Transaction Size** can be found.

See Set up the ODBC Driver for SSIS [See page 31] for more details on setting the transaction size.

ODBC tracing on Windows

Summary: Using logs to aid in troubleshooting.

Windows shows ODBC specific tracing in the ODBC Data Source Administrator Tracing tab. You can start tracing there by clicking **Start Tracing Now**. This logs every ODBC call from this system, and prints the input and output for the call.

Although this is lower level information, it can still be helpful in troubleshooting. When you are not sure if it is our driver or the tool causing an issue, doing this trace will help narrow the inquiry.

If you start or stop tracing, make sure you do not have the SSIS client open. Close it, change the trace, and reopen.

Supported SQL commands

Summary: The ThoughtSpot connection drivers support a limited set of SQL commands.

The ODBC and JDBC drivers support a limited set of SQL commands. When developing software that uses a ThoughtSpot ODBC driver, use this reference of supported commands. This reference is intended for developers using other tools (ETL, etc.) to connect to ThoughtSpot through the ODBC or JDBC driver.

• Note: ThoughtSpot displays VARCHAR fields using lower case, regardless of what the original casing of your loaded data is.

Supported commands

These SQL commands are supported for ODBC and JDBC:

• CREATE TABLE

Creates a table with the specified column definitions and constraints. The table is replicated on each node.

```
CREATE TABLE country_dim (id_number int, country varch
ar, CONSTRAINT PRIMARY KEY (id_number));
```

CREATE DATABASE

Creates a database. For example:

```
CREATE DATABASE "fruit_database";
```

CREATE SCHEMA

Creates a schema within the current database. For example:

CREATE SCHEMA "fruit_schema";

• ALTER TABLE ADD|DROP|RENAME COLUMN <column>

Alters a table to add, drop, or rename a column.

When you add a column to an existing table, you must provide a default value to use for existing rows. For example:

ALTER TABLE "cart" ADD COLUMN "nickname" varchar(255) DEFAULT 'no nickname';

ALTER TABLE "cart" DROP COLUMN "nickname";

ALTER TABLE "sales" ADD CONSTRAINT PRIMARY KEY ("PO_nu mber");

ALTER TABLE DROP CONSTRAINT PRIMARY KEY;

Drops the primary key from a table.

Note that if you then add a new primary key, the same upsert behavior will be applied as with adding any primary key. This can result in data deletion, so make sure you understand how the upsert will affect your data ahead of time. For example:

ALTER TABLE "sales" DROP CONSTRAINT PRIMARY KEY;

ALTER TABLE "sales" ADD CONSTRAINT PRIMARY KEY ("PO_nu mber");

ALTER TABLE DROP [CONSTRAINT | RELATIONSHIP] <name>;

Drops the named foreign key or relationship between two tables. For example:

ALTER TABLE "sales_fact" DROP CONSTRAINT "FK_PO_number";

ALTER TABLE "fruit_dim" DROP RELATIONSHIP "REL_dates";

ALTER TABLE [SET DIMENSION | SET FACT [PARTITION BY HASH
 [(<shards>)] [KEY(<column>)]]]

Changes the partitioning on a table by doing one of:

- · re-sharding a sharded table
- · changing a replicated table to a sharded table
- · changing a sharded table to a replicated (unsharded) table

By default, ThoughtSpot does not shard dimension tables.

To change the partitioning on a table, or to change a dimension table to a sharded table, use ALTER TABLE...SET FACT PARTITION BY HASH...;

To make a sharded table into a dimension table (replicated on every node), use ALTER TABLE...SET DIMENSION; command.

Examples of this statement:

ALTER TABLE "sales_fact" SET FACT PARTITION BY HASH (96) KEY ("PO_number");

ALTER TABLE "fruit_dim" SET DIMENSION;

ALTER TABLE MODIFY COLUMN <column> <new_data_type>;

Changes the data type of a column. This can have implications on sharding and primary key behavior. See About data type conversion [See page 0]. For example: ALTER TABLE fact100 MODIFY COLUMN product_id int;

INSERT

Creates placeholders in the table to receive the data.

INSERT INTO TABLE country_dim (?, ?);

DELETE FROM

Deletes ALL rows from the specified table. Use the WHERE clause to specify only certain rows to be deleted. Example: You could remove all data for sales before a certain date to free up space in ThoughtSpot.

DELETE FROM country_dim;

SELECT <cols_or_expression> FROM <table_list> [WHERE <predicates>] [GROUP BY <expressions>]

Fetches the specified set of table data.

SELECT id_number, country FROM country_dim WHERE id_nu
mber > 200;

TRUNCATE TABLE

Removes all data from a table, but preserves its metadata, including all GUIDs, relationships, etc. This can be used to force a new schema for a table without losing the metadata.

However, this operation removes all existing data from the table and must be used with caution. You must reload the data following a TRUNCATE, or all dependent objects (worksheets and pinboards) in ThoughtSpot will become invalid. For example:

TRUNCATE TABLE "location";

• DROP DATABASE <database>

Drops a database and all of its schemas and tables. For example:

DROP DATABASE "fruit_database";

• DROP SCHEMA <schema>

Drops a schema within the current database, and drops all of the tables in the schema. For example:

DROP SCHEMA "fruit_schema";

DROP TABLE

Drops a table. For example:

DROP TABLE "location";

SHOW DATABASES

Lists all available databases.

Examples:

SHOW DATABASES;

• SHOW SCHEMAS

Lists all schemas within the current database. For example:

SHOW SCHEMAS;

SHOW TABLES

Lists all tables within the current database by schema. For example:

SHOW TABLES;

SHOW TABLE

Lists all the columns for a table. For example:

SHOW TABLE "locations";

SCRIPT SERVER

Generates the TQL schema for all tables in all databases on the server. For example:

SCRIPT SERVER;

SCRIPT DATABASE <database>

Generates the TQL schema for all tables in a database. For example:

SCRIPT DATABASE "fruit_database";

SCRIPT TABLE

Generates the TQL schema for a table. For example:

SCRIPT TABLE "vendor";

Connection configuration

Summary: Lists the properties you can set for ODBC or JDBC connections

This section lists the properties you can set for ODBC or JDBC connections.

Setting Properties for ODBC

Not all the parameters Simba accepts are supported by the ThoughtSpot ODBC clients, and ThoughtSpot has added some properties, which are listed separately here. All configuration properties use the type String (text).

You can set these properties on Windows by using the ODBC Administrator [See page 9] client. For Linux, the properties are located in three files, depending on the property type:

Property Type	Location
DSN	odbc.ini file
Driver	odbsinst.ini file
SimbaSetting Reader	simbaclient.ini file

Setting Properties for JDBC

For JDBC, these properties are passed as key value pairs in the connect string. For more information, see Use the JDBC Driver [See page 56].

Properties Reference

The following tables summarize the configuration properties.

Property	Туре	Description
DATABASE	DSN or Dri- ver	The default database to connect to.
SCHEMA	DSN or Dri- ver	The default schema to connect to.
Description	DSN	A brief, human-readable description of the DSN. This describes the DSN to users who are deciding which DSN to use.
Driver	DSN or Dri- ver	In the driver configuration location, Driver should contain the path to the driver binary. In the DSN configuration location, Driver could contain the path to the driver binary, or it could contain the driver entry in the registry.
IdleTimeout	DSN	The time to wait for a response from the server, in seconds. This property is optional, but SimbaClient will wait indefinitely for SimbaServer to respond to a request made to the server unless you specify a timeout period. Idle—Timeout specifies how many seconds that SimbaClient will wait before aborting the attempt and returning to the application with an error. This timeout corresponds to ODBC's CONNECTION_TIMEOUT property and is only used when more specific timeouts, such as QUERY_TIMEOUT or LOGIN_TIMEOUT aren't applicable.
Locale	DSN	The connection locale. If this value is set, it overrides the driver-wide locale. For example, the driver-wide locale could be $$ en-US $$. If the client would prefer $$ fr-CA $$, it can set the connection locale to $$ fr-CA $$.
		Values are composed of a 2-letter language code (in lower case), and an optional 2-letter country code (in upper case). If the country code is specified, it must be separated from the language code by a hyphen (-).
LoginTimeout	DSN	The timeout, in seconds, to wait for a response from the server when attempting to log in. A value of 0 means no timeout. The default value is 60.
QueryTimeout	DSN	The timeout, in seconds, to wait for a response from the server during Prepare, Execute, and ExecuteDirect. A value of 0 means no timeout. The default value is 60.
ServerList	DSN	A comma separated list of all servers (IP address and port number) to connect to. SimbaClient must be able to find SimbaServer on the network. This property enables server discovery. SimbaClient will try to make a network connection to the servers in the order specified until a connection is made.
LogLevel	SimbaSetting Reader	Controls the granularity of the messages and events that are logged. With this keyword, you can control the amount of log output by controlling the kinds of events that are logged. Possible values (case sensitive): • 0 or L0G_0FF: no logging occurs • 1 or L0G_FATAL: only log fatal errors • 2 or L0G_ERROR: log all errors • 3 or L0G_WARNING: log all errors and warnings • 4 or L0G_INF0: log all errors, warnings, and informational messages • 5 or L0G_DEBUG: log method entry and exit points and parameter values for debugging • 6 or L0G_TRACE: log all method entry points

Property	Туре	Description
LogPath SimbaSetting Reader	J	Specifies the directory where the log files are created. For example:
		LogPath=C:\Simba Technologies\Temp
	If this value is not set, the log files are written to the current working directory of the SimbaClient.	
LogFileSize	SimbaSetting Reader	The size of each log file, in bytes. The default values is 20971520 bytes. When the maximum size of the file is reached, a new file is created.
LogFileCount	SimbaSetting Reader	The number of log files to create. When the maximum number of log files has been created, the oldest file will be deleted and a new one created. The default value is 50.
username	UID	Part of a user username/password combination. This combination should correspond to a ThoughtSpot application user with permissions appropriate to your ETL requirements. Typically, this user is a user with data management or administrative privileges on the application.
password	Password	Part of a user username/password combination. This combination should correspond to a ThoughtSpot application user with permissions appropriate to your ETL requirements. Typically, this user is a user with data management or administrative privileges on the application.