Name: Huan Q. Bui

Course: 8.321 - Quantum Theory I

Problem set: #3

1.

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

(a) To show that AB commute, we simply compute their commutator:

$$[A,B] = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 3 \\ 0 & 0 & 0 \\ 3 & 0 & 3 \end{pmatrix} - \begin{pmatrix} 3 & 0 & 3 \\ 0 & 0 & 0 \\ 3 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

So, A and B commute.

(b) Notice that rank(A) = 1. So A must have eigenvalue of zero with multiplicity of two. The other eigenvalue is 2 by inspection, where the corresponding eigenvector is $(1,0,1)^{T}$. The other two 0-eigenvectors must span the subspace orthogonal to $(1,0,1)^{T}$. We may choose $(0,1,0)^{T}$ and $(-1,0,1)^{T}$.

To find the eigenvalues of *B* we may use the traditional method of characteristic polynomials.

$$0 = \det(B - \lambda \mathbb{I}) = -6 - \lambda + 4\lambda^2 - \lambda^3 \implies 0 = (\lambda - 3)(\lambda - 2)(\lambda + 1).$$

The corresponding eigenvectors are

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix} \vec{x}_1 = 3\vec{x}_1 \implies \vec{x}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix} \vec{x}_2 = 2\vec{x}_2 \implies \vec{x}_2 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix} \vec{x}_3 = -1\vec{x}_3 \implies \vec{x}_3 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$

(c) It is clear that $(1,0,1)^{\top}$ is a simultaneous eigenvector of A and B. Also notice that the eigenvectors \vec{x}_2 and \vec{x}_3 of B are orthogonal to each other and to $(1,0,1)^{\top}$. This means \vec{x}_2 and \vec{x}_3 span the subspace associated with the eigenvalue zero for A. Thus, \vec{x}_2 , \vec{x}_3 are eigenvectors of A and it suffices to normalize \vec{x}_1 , \vec{x}_2 , \vec{x}_3 to form a unitary matrix:

$$U = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{3} & -1/\sqrt{6} \\ 0 & -1/\sqrt{3} & 2/\sqrt{6} \\ 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \end{pmatrix}$$

Simultaneous diagonalization of *A* and *B*:

$$U^{\dagger}AU = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$U^{\dagger}BU = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

as desired.

2. N spin-1/2 particles in

$$\mathcal{H} = \mathcal{H}_2^{(1)} \otimes \mathcal{H}_2^{(2)} \otimes \cdots \otimes \mathcal{H}_2^{(n)}.$$

where each $\mathcal{H}_{2}^{(i)}$ is two-dimensional.

- (a) The dimension of \mathcal{H} is 2^n .
- (b) $S_z = S_z^{(1)} + S_z^{(2)} + \dots + S_z^{(n)}$. There are $\binom{n}{i}$ product (eigen)states with i particles in $|\uparrow\rangle$ and (n-i) particles in $|\downarrow\rangle$. For the product state with i particles in $|\uparrow\rangle$, the corresponding eigenvalue is

$$\lambda = \frac{\hbar}{2}i - \frac{\hbar}{2}(n-i) = \frac{\hbar}{2}(2i-n), \qquad i = 0, 1, 2, \dots, n$$

So, the spectrum of S_z is

$$\sigma(S_z) = \left\{ \frac{n\hbar}{2}, \frac{(n-2)\hbar}{2}, \dots, \frac{-(n-2)\hbar}{2}, \frac{-n\hbar}{2} \right\}$$

There are n + 1 distinct eigenvalues. The multiplicity of each λ_i is $\binom{n}{i}$ where λ_i is the eigenvalue associated with the product state with i spins in $|\uparrow\rangle$.

As a sanity check, the sum of the multiplicities must be 2^n . This is the case here due to a well-known combinatorial relation:

$$\sum_{i=0}^{n} \binom{n}{i} = (1+1)^n = 2^n.$$

- (c) $I = \mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)} + \mathbf{S}^{(2)} \cdot \mathbf{S}^{(3)} + \dots + \mathbf{S}^{(N-1)} \cdot \mathbf{S}^{(N)} + \mathbf{S}^{(N)} \cdot \mathbf{S}^{(1)}$. We claim that $[I, S_z] = 0$ and shall prove this by induction.
- (d)

3.