Week 4

CS106R

Sabri **Eyuboglu** & Geoffrey **Angus**

Writing Functions with Objects

Functions receive objects

age = input int("How old are you?")

Functions return objects

Functions receive objects

cap = capitalize string("hello")

Functions return objects

How do we write functions that: receive objects and return objects?

Example: Pythagoras 2.0

IMPORTANT IDEA

Every function has its own variables

Variables cannot exist across functions

Scope

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

/ariables	Objects

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one:
```

Memory

/ariables	Objects

CS106R

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two:
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

vicilioi y	
Variables	Objects
side_1	3.0 float
side_2	4.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

Variables	Objects
side_1 a	3.0 float
side_2 b	4.0
	25.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + L*b*
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Entex side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

· · · · · · · · · · · · · · · · · · ·	
Variables	Objects
side_1 a	3.0 float
side_2 b	4.0
	25.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

vicilioiy	
Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
	25.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
c_squared	25.0 float
C	5.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Variables	Objects
side_1 a	3.0 float
side_2 b	4.0 float
c_squared	25.0 float
C	5.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```

vielliol y	
Variables	Objects
side_1	3.0 float
side_2 b	4.0 float
c_squared	25.0 float
C	5.0 float

Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
```


Code

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c

def main():
    side_1 = input_float("Enter side one:")
    side_2 = input_float("Enter side two:")
    hypotenuse = compute_pythag(side_1, side_2)
    print(hypotenuse)
```

Output

```
Enter side one: 3
Enter side two: 4
5.0
```

Variables	Objects
side_1	3.0 float
side_2	4.0 float
	25.0 float
hypotenuse	5.0 float

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c
```

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c
```

Parameters

These are just variables

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c
```

```
hyp = compute pythag(side 1, side 2)
           is like...
         a = side 1
         b = side 2
def compute pythag(a, b):
  c squared = a*a + b*b
  c = square root(c squared)
  return c
```

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c
```

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c
```

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c
```

```
def compute_pythag(a, b):
    c_squared = a*a + b*b
    c = square_root(c_squared)
    return c
```

Return

The object the function gives back

Today's Exercises

Calculator

Conversion

Bilheteria

Today's Exercises

Calculator

Conversion

Bilheteria