

Y POLITECNICO DI MILANO

Cognitive SLAM:

Knowledge-Based Simultaneous Localization and Mapping

Davide Tateo

Relatore: Andrea Bonarini

3 Ottobre 2014

Sommario

- 1. Il Problema
- 2. Stato dell'Arte
- 3. Struttura logica del sistema
- 4. Architettura del sistema
- 5. Risultati
- 6. Conclusioni

Problema:

- Localizzazzione di robot autonomi in complessi ambienti indoor
- Utilizzo della conoscenza di un esperto per estrarre informazione dall'ambiente

Obbiettivi:

- Estrazione di feature ad alto livello (oggetti)
- Tracking a lungo termine degli oggetti
- Localizzazzione basata su oggetti come landmark

Stato dell'Arte

Sensori:

- Sonar
- Laser
- Videocamere
- RGB-D
- IMU
- Magnetometro

Feature:

- Punti
- Linee

Algoritmi:

- EKF-SLAM
- FastSLAM

Struttura logica del sistema

- Sistema modulare
 - Reasoning
 - Individuazione degli oggetti
 - Riconoscimento degli oggetti
 - Tracking
 - Localizzazione
- Utilizzo di knowledge base
- Tracking a lungo termine feature
- Approccio Full-SLAM

- Utilizzo della logica fuzzy per affrontare incertezze
 - Incertezza sensori
 - Incertezza modello
- Classificazione degli oggetti tramite classificatore fuzzy ad albero
- Definizione di due linguaggi formali:
 - Classificatore (modello oggetti)
 - Knowledgebase (symbol grounding)
- Algoritmo di reasoning
 - Classificazione gerarchica
 - Relazioni tra gli oggetti

Individuazione e riconoscimento

Tracking e Mapping

Architettura del sistema

- Middleware: ROS Robot Operating System
 - Publish-Subscribe
 - Client-Server
 - Interfacce sensori
- Fusione Multisensoriale: ROAMFREE Robust Odometry Applying Multisensor Fusion to Reduce Estimation Errors
 - IMU, magnetometro
 - Track
 - Oggetti
- Analisi di immagine: OpenCV 2

Architettura del sistema

Risultati

10

Conclusioni