

<u>Gameboard</u>

Chemistry **Foundations** Stoichiometry

Essential Pre-Uni Chemistry B3.1

Essential Pre-Uni Chemistry B3.1

RTP = room temperature and pressure.

Any gas occupies $24\,\mathrm{dm^3}$ per mole at RTP.

Avogadro's number, $N_{
m A}=6.02\, imes\,10^{23}\,{
m mol}^{-1}.$

(a) Part A

Calculate the volume occupied by $4.0\,\mathrm{moles}$ of gas at RTP.

(b) Part B

Calculate the volume occupied by $0.030\,\mathrm{moles}$ of gas at RTP.

(c) Part C

Calculate the volume occupied by $5.0 imes 10^{18}$ atoms of helium gas at RTP.

Part D (d)

Calculate the volume occupied by $1.2 \, imes \, 10^{24}$ molecules of ozone at RTP.

Part E (e)
Calculate the volume occupied by $8.0\mathrm{g}$ of O_2 at RTP.
Part F (f)
Calculate the volume occupied by $1.1\mathrm{kg}$ of carbon dioxide at RTP.

<u>Home</u> <u>Gameboard</u>

Chemistry

Foundations Stoichiometry

Essential Pre-Uni Chemistry B3.2

Essential Pre-Uni Chemistry B3.2

RTP = room temperature and pressure.

Any gas occupies $24\,\mathrm{dm^3}$ per mole at RTP.

Avogadro's number, $N_{
m A}=6.02\, imes\,10^{23}.$

Part A (a)

Calculate the amount of gas (at RTP) in $4.8\,\mathrm{dm^3}$.

Part B (b)

Calculate the amount of gas (at RTP) in $12\,\mathrm{m}^3$.

Part C (c)

Calculate the amount of gas (at RTP) in $400\,\mathrm{cm}^3$. Give your answer to 2 significant figures.

Part D (d)

Calculate the amount of gas (at RTP) in $18\,\mathrm{ml}$.

<u>Gameboard</u>

Chemistry

Foundations

Stoichiometry

Essential Pre-Uni Chemistry B3.3

Essential Pre-Uni Chemistry B3.3

RTP = room temperature and pressure.

Any gas occupies $24\,\mathrm{dm^3}$ per mole at RTP.

Avogadro's number, $N_{
m A}=6.02\, imes\,10^{23}$.

Part A (a)

Calculate the number of molecules of gas (at RTP) in $36\,\mathrm{dm^3}.$

Part B (b)

Calculate the number of molecules of gas (at RTP) in $300\,\mathrm{cm^3}$. Give your answer to 2 significant figures.

Gameboard:

STEM SMART Chemistry Week 14

<u>Gameboard</u>

Chemistry

Foundations Stoichiometry

Essential Pre-Uni Chemistry B3.4

Essential Pre-Uni Chemistry B3.4

RTP = room temperature and pressure.

Any gas occupies $24\,\mathrm{dm^3}$ per mole at RTP.

Avogadro's number, $N_{
m A}=6.02\, imes\,10^{23}$.

Part A (a)

Calculate the number of **atoms** (at RTP) in $60\,\mathrm{cm}^3$ of argon.

Part B (b)

Calculate the number of **atoms** (at RTP) in $1.2\,\mathrm{dm}^3$ of N_2 .

Part C (c)

Calculate the number of **atoms** (at RTP) in $8.0\,\mathrm{m}^3$ of carbon dioxide.

Part D (d)

Calculate the number of atoms (at RTP) in $420\,\mathrm{cm}^3$ of ethene. Give your answer to 2 significant figures.

Gameboard:

STEM SMART Chemistry Week 14

Gameboard

Chemistry

Foundations

Stoichiometry

Essential Pre-Uni Chemistry B3.5

Essential Pre-Uni Chemistry B3.5

RTP = room temperature and pressure.

Any gas occupies $24\,\mathrm{dm^3}$ per mole at RTP.

Avogadro's number, $N_{
m A}=6.02\, imes\,10^{23}.$

Part A (a)

Calculate the mass of $1.0\,\mathrm{m}^3$ of neon at RTP.

Part B (b)

Calculate the mass of $20 \, \mathrm{cm}^3$ of $(\mathrm{CH_3})_2\mathrm{O}$ at RTP.

Part C (c)

Calculate the the mass of $420\,\mathrm{cm}^3$ of ammonia at RTP. Give your answer to 2 significant figures.

Gameboard:

STEM SMART Chemistry Week 14

<u>Gameboard</u>

Chemistry

Foundations

Stoichiometry

Essential Pre-Uni Chemistry B5.2

Essential Pre-Uni Chemistry B5.2

Gameboard:

STEM SMART Chemistry Week 14

Home Gameboard

Chemistry

Foundations

Stoichiometry

Essential Pre-Uni Chemistry B6.3

Essential Pre-Uni Chemistry B6.3

Consider the equation for each reaction and hence calculate the amount of acid required for complete reaction in each of the following cases.

Part C (c)

 $24\,\mathrm{g~CuO}$ reacting with HNO_3 . Give your answer to 2 significant figures.

Part D (d)

 $5.6\,\mathrm{g}$ Fe reacting with HCl. Give your answer to 2 significant figures.

Part E (e)	
$14.8\mathrm{g}$ of calcium hydroxide reacting with $\mathrm{H_2SO_4}.$ Give your answer to 3 significant figure	S.
Part F (f)	
$10\mathrm{g}$ of magnesium oxide reacting with nitric acid. Give your answer to 2 significant figure	es.
Gameboard: STEM SMART Chemistry Week 14	

Home Gameboard Chemistry Physical Energetics Essential Pre-Uni Chemistry F1.7

Essential Pre-Uni Chemistry F1.7

Specific heat capacity of water $=4.18\,\mathrm{J\,g^{-1}\,K^{-1}}$.

 $25.0\,\mathrm{cm^3}$ of sulfuric acid at $1.00\,\mathrm{mol\,dm^{-3}}$ and $19.10\,^\circ\mathrm{C}$ is placed in an insulated polystyrene cup. When $25.0\,\mathrm{cm^3}$ of sodium hydroxide at $2.00\,\mathrm{mol\,dm^{-3}}$ and $19.10\,^\circ\mathrm{C}$ is added, the temperature rises to $32.45\,^\circ\mathrm{C}$.

Assuming that no heat is lost, that the specific heat capacity of water may be used, and that the solutions have a density of $1.00\,\mathrm{g\,cm^{-3}}$ at $19.10\,\mathrm{^{\circ}C}$, find the enthalpy change of the reaction per mole of water produced by neutralisation.

Gameboard:

STEM SMART Chemistry Week 14

<u>Home</u> <u>Gameboard</u> Chemistry Foundations Stoichiometry Step and Overall Yield

Step and Overall Yield

A synthesis from phenol (C_6H_6O) to give **G** ($C_8H_8O_2$) was carried out as shown below.

Figure 1: Three-step synthesis starting from phenol.

Part A Overall yield

 $47.0\,\mathrm{g}$ of phenol (C_6H_6O) gave $44.5\,\mathrm{g}$ of the final product **G** ($C_8H_8O_2$). What is the overall percentage yield of **G** from phenol? Give your answer to the nearest integer.

Part B Step II yield

The yield for step I, for the conversion of phenol to \mathbf{E} ($C_8H_8O_2$), was $75\,\%$, and the yield for the hydrolysis of \mathbf{F} ($C_{10}H_{10}O_3$) to \mathbf{G} ($C_8H_8O_2$) in step III was $100\,\%$. What is the percentage yield for step II? Give your answer to the nearest integer.

<u>Home</u> <u>Gameboard</u> Chemistry Foundations Stoichiometry Compounds TBC

Compounds TBC

When calcium oxide is heated with carbon, an ionic compound, **D**, containing 62.5% of calcium and 37.5% of carbon (by mass), is formed. Under similar conditions, aluminium metal and carbon produce compound **E** which contains 75% of aluminium and 25% of carbon.

When treated with cold water:

- compound **D** produces a gaseous hydrocarbon **F** containing 92.3% of carbon
- compound **E** produces another gaseous hydrocarbon **G** containing 75% of carbon

• compound E produces another gaseous hydrocarbon & containing 75% of carbon
Part A D
Determine the empirical formula of compound D .
Part B E
Determine the empirical formula of compound E .

Part C F

Determine the empirical formula of compound ${\bf F}$.

Determine the empirical formula of compound **G**.

Part E Reaction to form D

Write a balanced equation for the reaction of calcium oxide with carbon, using the empirical formula for **D** you have previously deduced.

$$CaO +$$
 $C \longrightarrow$ $+ CO$

Items:

Part F Reaction to form E

Write a balanced equation for the reaction of aluminium metal and carbon to form **E** (do not include state symbols).

Part G Reaction of E with water

Assuming the empirical formula you deduced for **G** is also its molecular formula, write a balanced equation for the reaction when compound **E** is treated with water.

$$\mathsf{E} + egin{bmatrix} \mathsf{H}_2\mathrm{O} \longrightarrow egin{bmatrix} \mathsf{Al}(\mathrm{OH})_3 + egin{bmatrix} \mathsf{G} \end{aligned}$$

Items:

Adapted with permission from UCLES, A Level Chemistry, November 1990, Special Paper, Question 5