UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA LINEAL 520131 Listado 3 (Vectores en \mathbb{R}^3)

- 1. Encuentre un vector que tenga norma 3 y que sea perpendicular a (1, -4, 0) y (2, 0, -7).
- 2. Sean $\vec{u} = (0, 1, -1), \vec{v} = (0, 2, 1) \text{ y } \vec{w} = (-2, 1, 1).$

(En práctica)

- a) Calcule $2\vec{u} \cdot \vec{v}$, $-\vec{v} \times \vec{u}$, $\vec{u} \cdot (\vec{v} \times \vec{w})$.
- b) Encuentre un vector $\vec{x} \in \mathbb{R}^3$ (si existe) tal que,
 - i) sea perpendicular a \vec{u} y \vec{v} ,
 - ii) $||\vec{x} \vec{u}|| = ||\vec{x} \vec{v}|| \text{ y } ||\vec{x}|| = 1$,
 - iii) sea paralelo al vector $\vec{u} \vec{v}$ y perpendicular $\vec{a} \vec{w}$.
- 3. Sean $\vec{a} = (1, -1, \alpha)$ y $\vec{b} = (-2, -\alpha, 4)$ dos vectores en \mathbb{R}^3 con $\alpha \in \mathbb{R}$. Determine un valor de α (si existe) tal que: **(En práctica)**
 - i) \vec{a} es paralelo a \vec{b} ,
 - ii) \vec{a} es perpendicular a \vec{b} ,
 - iii) La proyección de \vec{b} sobre \vec{a} sea (-6, -12, 12).
- 4. Sean u = (-2, 1, -2) y v = (1, -2, 1) dos vectores en \mathbb{R}^3 . Encuentre un vector $\vec{w} = \vec{u} + \lambda \vec{v}$, $\lambda \in \mathbb{R}$, tal que $||\vec{w}||$ tenga el menor valor posible.
- 5. Determine el lugar geométrico de los vectores que forman un ángulo de 30 grados con el vector $(1,0,\sqrt{3})$. ¿Existe alguno de la forma $(\alpha,8,\sqrt{3}\alpha)$, con $\alpha \in \mathbb{R}$? Determinelo(s).
- 6. Determine un vector $\vec{x} = (x_1, x_2, x_3)$ tal que $||\vec{x}|| = 4$ y los ángulos directores con respecto a los ejes X y Z sean 30 y 45 grados respectivamente. (En práctica)
- 7. Sean \vec{a} , \vec{b} , $\vec{c} \in \mathbb{R}^3$ tal que \vec{b} y \vec{c} son perpendiculares y $\alpha \in \mathbb{R}$. Pruebe que si $\vec{a} \cdot \vec{b} \neq 0$, entonces $\vec{x} = \frac{\vec{a} \times \vec{c} + \alpha \vec{b}}{\vec{a} \cdot \vec{b}}$ satisface las ecuaciones: $\vec{x} \cdot \vec{a} = \alpha$ y $\vec{x} \times \vec{b} = \vec{c}$. (En práctica)
- 8. Sean $\vec{a}=(0,-1,2),\,\vec{b}=(2,0,3)$ y $\vec{c}=(-1,0,-2)$ tres vectores en $\mathbb{R}^3.$ Pruebe que:

$$(\vec{x}\cdot\vec{a}=0)\wedge(\vec{x}\cdot\vec{b}=0)\wedge(\vec{x}\cdot\vec{c}=0)\Rightarrow\vec{x}=(0,0,0).$$

- 9. Calcule el área del cuadrilatero cuyos vértices son los vectores: (9, 10, 1), (1, 3, 2), (2, 8, 6) y (31, 21, -10). (En práctica)
- 10. Determine el área del triángulo cuyo vértices son los puntos (1,0,-1), (2,-2,3) y (7,-2,4).
- 11. Sabiendo que $\vec{u} \cdot (\vec{v} \times \vec{w}) = 1$ determine:

(En práctica)

- a) $(\vec{v} \times \vec{w}) \cdot \vec{u}$.
- b) $\vec{w} \cdot (\vec{v} \times \vec{u})$.