PERANCANGAN DAN KARAKTERISASI ANTENA HORN MENGGUNAKAN BAHAN DASAR KALENG BEKAS DENGAN APERTURE BERBENTUK LINGKARAN

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

oleh:

ANINDYA HAYYA AMALIA F 6705181014

D3 TEKNOLOGI TELEKOMUNIKASI FAKULTAS ILMU TERAPAN UNIVERSITAS TELKOM 2020

Latar Belakang

Antena merupakan alat yang digunakan untuk memancarkan dan menerima gelombang elektromagnetik. Salah satu jenis antena yang ada saat ini adalah antena horn yaitu antena yang memiliki *gain* tinggi dan *bandwidth* yang lebar, biasanya digunakan untuk pemancar satelit. Disisi lain pembuatan antena horn memerlukan bahan metal yang harus dicetak sehingga proses pembuatannya menjadi lebih rumit.

Dengan memanfaatkan bahan yang tersedia dan mudah didapatkan yaitu kaleng bekas, antena horn dapat dirancang secara lebih mudah dan ramah lingkungan. Diketahui bahwa kaleng aluminium membutuhkan waktu sekitar 80 - 100 tahun untuk dapat terurai oleh alam, terlebih lagi apabila kaleng bekas yang dibuang bereaksi dengan udara luar dan menjadi berkarat, karat tersebut dapat masuk ke dalam tanah dan mengganggu kesuburan tanah. [11]

Setiap antena memiliki karakteristiknya masing-masing yang mungkin hanya cocok untuk kondisi tertentu. Oleh karena itu dalam penelitian ini dilakukan proses karakterisasi untuk dapat menentukan frekuensi dengan spesifikasi antena yang paling baik secara keseluruhan. Karakterisasi yang dilakukan dalam penelitian ini yaitu karakterisasi antena horn berbasis kaleng bekas.

Studi Literatur Penelitian Terkait

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	Rancang Bangun Antena Kaleng di Frekuensi 2.4 Ghz untuk Memperkuat Sinyal Wi-Fi [1]	2019	Perancangan antena dengan menggunakan bahan dasar kaleng bekas dengan Wi-Fi <i>usb adapter</i> untuk implementasi memperkuat sinyal Wi-Fi serta menambah gain. Membandingkan hasil pengujian sinyal Wi-Fi antara yang menggunakan Wi-Fi usb adapter tanpa cantenna dan Wi-Fi <i>us</i> b adapter menggunakan cantenna.
2.	2.45 GHz Wireless Power Transmitter with Dual - Polarization - Switching Cantenna for LED Accessories [2]	2019	Membuat pemancar daya nirkabel dengan cantenna dan dua LED aksesoris yang tertanam dalam kuku palsu. Hasil penelitian membuktikan bahwa daya yang dipancarkan sistem transmisi dapat membuat intensitas cahaya LED di kuku palsu berubah.
3.	5.8 GHz Cantenna Radar [3]	2019	Proyek yang mencakup seluruh proses rekayasa dalam merancang dan menerapkan sistem radar. Menggunakan antena kaleng sebagai penerima dan pemancar sistem radar. Cantena disini berperan sebagai antena yang dapat memancarkan kekuatan yang cukup besar dalam satu arah.
4.	Design and Simulation of Horn Antenna Using CST Software for GPR System [4]	2017	Membuat desain antena horn menggunakan software CST Studio Suite untuk aplikasi sistem GPR. Mendapatkan hasil yang cukup baik untuk bisa mendeteksi objek yang tekubur di dalam tanah berpasir seperti besi dan kayu.

5.	Analisis Dan Implementasi Antena Penerima Sinyal <i>Wi-Fi</i> Menggunakan Antena Wajan Bolic, Antena Kaleng dan Antena Omni [5]	2018	Penelitian ini fokus pada pembuatan dan perbandingan kinerja antara wajan bolic, antena kaleng dan antena omni yang beroperasi pada frekuensi 2,4 GHz untuk jaringan <i>wireless</i> LAN berdasarkan kekuatan sinyal yang diterima, tinggi tempat dan bahan antena yang akan dilihat pengaruhnya terhadap kekuatan sinyal terima. Metode pengujian yang dilakukan adalah dengan menggunakan <i>software</i> analisis <i>xirus Wi-Fi Inspector dan Netspot</i> .		
6.	Perancangan Jaringan Wireless Menggunakan Antena Kaleng Sebagai Penguat Sinyal [6]	2017	Penelitian ini memanfaatkan antena kaleng sebagai penguat sinyal jaringan wireless, yaitu dengan meningkatkan kecepatan dan daya pancar sinyal untuk jarak yang cukup jauh.		
7.	Design and implementation of Cantenna for Enhancing the Coverage Area of Wi-Fi Access Point [7]	2016	Penelitian ini membuat sebuah antena yang dapat memperluas jangkauan Wi Access Point yang dapat dibuat sendiri dengan harga yang terjangkau ya dengan kaleng bekas. Dalam implementasinya kekuatan sinyal menj berkurang beriringan dengan meningkatnya jarak antara antenna dan Wi access point.		
8.	Measuring Radar Signatures of a Simple Pendulum using Cantenna Radar [8]	2016	Melakukan pengukuran dan analisis mendalam mengenai kerja pendulum menggunakan cantenna radar. Hasil simulasi yang didapatkan kemudian dievaluasi menggunakan empat pendekatan yang berbeda: <i>Euler Method, Euler-Chromer Method, 2nd order Runge-kutta method, ODE-23 MATLAB</i> ® <i>solver</i> . Hasil akhir percobaan menunjukkan efek mikro-doppler dari pendulum sederhana yang direkam oleh radar.		

9.	Manually Designed Wi-Fi Cantenna and its Testing in Real-Time Environment [9]	2012	Membuat sebuah W-Fi booster atau yang biasa disebut dengan Wi-Fi signal amplifier yang dipasangkan router atau access point untuk meningkatkan kekuatan sinyal. Dengan memanfaatkan antena ini dapat meningkatkan kekuatan sinyal Wi-Fi yang memiliki jarak yang jauh.
10.	10. Enhancing the Cover Area of Wi-fi Access Point using Cantenna [10]		Menjelaskan bagaimana membuat sebuah cantenna untuk meningkatkan jangkauan Wi-Fi access point secara sederhana.
11.	Analisis Potensi Limbah Logam/Kaleng Studi Kasus di Wilayah Meruya Selatan, Jakarta Barat. [11]	2018	Dalam penelitan ini penulis mengemukakan banyaknya limbah kaleng dan potensi yang bisa dimanfaatkan dari limbah kaleng bekas.

Rancangan Sistem

Pada bab ini akan dijelaskan mengenai perancangan dan karakterisasi antena horn menggunakan bahan kaleng bekas dengan aperture lingkaran. Perancangan dan simulasi dilakukan menggunakan *software* CST *Studio Suite* 2020. Adapun model sistem yang telah dibuat dapat dilihat pada Gambar 1 dibawah ini.

Gambar 1. Model Sistem Perancangan Antenna Horn dengan Bahan Kaleng Bekas

Pada perancangan ini dilakukan simulasi dibanyak kondisi monopole yang berbeda yaitu perbedaan posisi dan tinggi monoploe dengan tujuan agar bisa mendapatkan spesifikasi yang paling baik dan kemudian akan dilakukan realisasi. Hasil simulasi yang akan dianalisis adalah frekuensi kerja, *gain, return loss*, dan VSWR.

Referensi

- [1] Teten Hakim and Andi Nurdianto, "Rancang Bangun Antena Kaleng Di Frekuensi 2.4 Ghz Untuk Memperkuat Sinyal Wi-Fi," in *Jurnal Ilmiah Elektrokrisna*, vol. 7, no. 3, Juni 2019.
- [2] Kosuke Yoshida, Norifumi Kashiyama, "2.45-GHz Wireless Power Transmitter with Dual-Polarization-Switching Cantenna for LED Accessories," in 2019 *IEEE Wireless Power Transfer Conference. Ritsumeikan University*, Kusatsu, Japan, 2019.
- [3] Htet Htet Yi and Ei Phyu Soe., "5.8GHz Cantenna Radar," in *International Journal of Scientific and Research Publication*, vol. 9, no. 3, ISSN. 2250-3153, Maret 2019.
- [4] Ariffuddin Joret, M S Sulong, M F L Abdullah, "Design and Simulation of Horn Antenna Using CST Software for GPR System," in *IOP Conf. Series: Journal of Physics: Conf. Series*, ISMAP 2017.
- [5] Syahid Ibrahim Alex Wijaya, and Hutrianto, "Analisis Dan Implementasi Antena Penerima Sinyal *Wi-Fi* Menggunakan Antena Wajan Bolic, Antena Kaleng dan Antena Omni," in *Bina Darma Conference on Computer Science*, Fakultas Ilmu Komputer, Fakultas Bina Darma. 2018.
- [6] Abdul Karim, "Perancangan Jaringan Wireless Menggunakan Antena Kaleng Sebagai Penguat Sinyal," in *Majalah Ilmiah INTI*, vol. 12, no. 2, ISSN. 2339-210X, Mei 2017.
- [7] R.Pradeepa and R.Santhiya, "Design and implementation of Cantenna for Enhancing the Coverage Area of Wi-Fi Access Point," in *International Journal of Modern Trends in Engineering and Science*, vol. 03, issue. 06, ISSN. 2348-3121. 2016.
- [8] Archit Harsh, "Measuring Radar Signatures of a Simple Pendulum using Cantenna Radar," in *International Journal of Computers and Technology*, vol. 15, no. 06, ISSN. 2277-3061. 2016.
- [9] Vrushali V Kadu, "Manually Designed Wi-Fi Cantenna and its Testing in Real-Time Environment," in *International Journal of Engineering Research and Development*, vol. 03, issue. 2, pp. 01-06. August 2012.
- [10] Devi, Reshma, and Vinodini, "Enhancing the Cover Area of Wi-fi Access Point using Cantenna," in *International Journal for Scientific Research & Development*, vol. 03, issue. 02, ISSN. 2321-0613. 2015.

[11] Rini Anggraini, Sagir Alva, Kurniawan, and Yuliarty. "Analisis Potensi Limbah Logam/Kaleng Studi Kasus di Wilayah Meruya Selatan, Jakarta Barat.," in *Jurnal Teknik Mesin*, vol. 07, no. 02, Juni 2018.

Form Kesediaan Membimbing Proyek Tingkat

Tanggal: 10 Desember 2020

Kami yang bertanda tangan dibawah in i:

CALON PEMBIMBING 1

Kode : RDL

Nama: Radial Anwar, S.Si., M.Sc., P.hD.

CALON PEMBIMBING 2

Kode : DNN

Nama : Dwi Andi Nurmantris, S.T.,M.T.

Menyatakan bersedia menjadi dosen p embimbing Proyek Tingkat bagi mahasiswa berikut,

NIM : 6705181014

Nama : Anindya Hayya Amalia Febrin

Prodi / Peminatan : D3 Teknologi Telekomunikasi

Calon Judul PA : Perancangan dan Karakterisasi Antena Horn menggunakan Bahan Dasar Kaleng

Bekas dengan Aperture BerbentukLingkaran

Dengan ini akan memenuhi segala hak dan kewajiban sebagai dosen pembimbing sesuai dengan Aturan Proyek Tingkat yang berlaku.

Calon Pembimbing 1

(Radial Anwar, S.Si., M.Sc., Ph.D.)

(<u>Dwi Andi Nurrantris, S.T.,M.T.</u>)

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari : http://dte.telkomuniversity.ac.id/panduan-proyek-akhir/
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom UniversityJl. Telekomunikasi No.1, Terusan Buah Batu
Bandung 40257
Indonesia

DAFTAR NILAI HASIL STUDI MAHASISWA

NIM (Nomor Induk

: 6705181014

Dosen Wali

: RMT / ROHMAT TULLOH

Mahasiswa) Nama

: ANINDYA HAYYA AMALIA FEBRIN

Program Studi : D3 Teknologi Telekomunikasi

Mata Kuliah yang Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
1	DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	А
1	HUH1A2	PENDIDIKAN AGAMA DAN ETIKA - ISLAM	RELIGIOUS EDUCATION AND ETHICS - ISLAM	2	А
1	DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	АВ
1	DUH1A2	LITERASI TIK	ICT LITERACY	2	А
1	DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	В
1	DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ
1	DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	АВ
1	DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	А
2	DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	AB
2	DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	AB
2	DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	ВС
2	HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	А
2	LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	AB
2	DMH1A2	OLAH RAGA	SPORT	2	AB
2	DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	АВ
2	DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	А
3	DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	АВ
	Jumlah SKS				
		Jamian Jiko		81	3.58

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
3	DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	ВС
3	DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	АВ
3	DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	АВ
3	DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	А
3	DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	АВ
3	DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	AB
4	DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	А
4	DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А
4	DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А
4	DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	АВ
4	DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	АВ
4	DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	AB
4	DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	А
4	DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	AB
Jumlah SKS					3.58

Mata Kuliah yang Belum Lulus

Semester	Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai
4	VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2	
4	UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2	
4	VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3	
5	UWI3E1	HEI	HEI	1	
5	VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2	
5	VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3	
5	UWI3A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	
	Jum	15			

Jumlah SKS	: 81 SKS		IPK: 3.58
Tingkat III	: 81 SKS	Belum Lulus	IPK : 3.58
Tingkat II	: 81 SKS	Belum Lulus	IPK : 3.58
Tingkat I	: 41 SKS	Belum Lulus	IPK: 3.59

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 10 Desember 2020 11:02:57 oleh ANINDYA HAYYA AMALIA FEBRIN