PRACTICAL OPTIMIZATION ALGORITHMS

徐翔

数学科学学院 浙江大学

Dec 23, 2021

第十讲: 线性规划 - 单纯形法 (LINEAR

PROGRAMMING - THE SIMPLEX METHOD)

简介(Introduction)

• 一般形式:

$$\min_{x} c^T x \tag{10.1}$$

$$s.t. Ax = b, (10.2)$$

$$x \ge 0. \tag{10.3}$$

其中 $c, x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ 。

• 一般形式:

$$\min_{x} c^{T} x \tag{10.1}$$

$$s.t. Ax = b, (10.2)$$

$$x \ge 0. \tag{10.3}$$

其中 $c, x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ 。

• 例如 $\min c^T x$, subject to $Ax \leq b$ 可以转化为

 $\min c^T x$, subject to $Ax + z = b, z \ge 0$.

• 一般形式:

$$\min_{x} c^T x \tag{10.1}$$

$$s.t. Ax = b, (10.2)$$

$$x \ge 0. \tag{10.3}$$

其中 $c, x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ 。

- 例如 $\min c^T x$, subject to $Ax \leq b$ 可以转化为 $\min c^T x, \text{ subject to } Ax + z = b, z \geq 0.$
- 把上面的x分裂成正部和负部: $x = x^+ x^-$, 其中 $x^+ = \max(x, 0)$, $x^- = \max(-x, 0)$.

$$\min \left[\begin{array}{c} c \\ -c \\ 0 \end{array} \right]^T \left[\begin{array}{c} x^+ \\ x^- \\ z \end{array} \right], \text{subject to } [A \ -A \ I] \left[\begin{array}{c} x^+ \\ x^- \\ z \end{array} \right] = b; \left[\begin{array}{c} x^+ \\ x^- \\ z \end{array} \right] \geq 0$$

• 一般形式:

$$\min_{x} c^{T} x \tag{10.1}$$

$$s.t. Ax = b, (10.2)$$

$$x \ge 0. \tag{10.3}$$

其中 $c, x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ 。

- 例如 $\min c^T x$, subject to $Ax \leq b$ 可以转化为 $\min c^T x, \text{ subject to } Ax + z = b, z > 0.$
- 把上面的x分裂成正部和负部: $x = x^+ x^-$, 其中 $x^+ = \max(x, 0)$, $x^- = \max(-x, 0)$.

$$\min \left[\begin{array}{c} c \\ -c \\ 0 \end{array} \right]^T \left[\begin{array}{c} x^+ \\ x^- \\ z \end{array} \right], \text{subject to } [A \ -A \ I] \left[\begin{array}{c} x^+ \\ x^- \\ z \end{array} \right] = b; \left[\begin{array}{c} x^+ \\ x^- \\ z \end{array} \right] \geq 0$$

• 如果是Ax > b, 则可以使用 Ax - y = b, y > 0

• 构造拉格朗日函数

$$\mathcal{L}(x; \lambda, s) = c^T x - \lambda^T (Ax - b) - s^T x$$

• 构造拉格朗日函数

$$\mathcal{L}(x; \lambda, s) = c^T x - \lambda^T (Ax - b) - s^T x$$

• 由KKT条件可以得到

$$A^{T}\lambda + s = c, \ Ax = b,$$

 $x \ge 0, \ s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

• 构造拉格朗日函数

$$\mathcal{L}(x; \lambda, s) = c^T x - \lambda^T (Ax - b) - s^T x$$

• 由KKT条件可以得到

$$A^{T}\lambda + s = c, Ax = b,$$

 $x \ge 0, s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

• 最后一个条件通常写成 $x^T s = 0$ (由于 $s_i > 0$, $x_i > 0$).

• 构造拉格朗日函数

$$\mathcal{L}(x; \lambda, s) = c^{T} x - \lambda^{T} (Ax - b) - s^{T} x$$

• 由KKT条件可以得到

$$A^{T}\lambda + s = c, Ax = b,$$

 $x \ge 0, s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

- 最后一个条件通常写成 $x^T s = 0$ (由于 $s_i > 0, x_i > 0$).
- 设(x*; λ*, s*)代表解,则

$$c^T x^* = (A^T \lambda^* + s^*)^T x^* = (Ax^*)^T \lambda^* = b^T \lambda^*$$

即所有满足KKT条件的 $(x;\lambda,s)$ 使得主问题和对偶问题的目标函数值相等.

• 构造拉格朗日函数

$$\mathcal{L}(x; \lambda, s) = c^{T} x - \lambda^{T} (Ax - b) - s^{T} x$$

• 由KKT条件可以得到

$$A^{T}\lambda + s = c, \ Ax = b,$$

 $x \ge 0, \ s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

- 最后一个条件通常写成 $x^T s = 0$ (由于 $s_i > 0, x_i > 0$).
- 设(x*; λ*, s*)代表解,则

$$c^T x^* = (A^T \lambda^* + s^*)^T x^* = (Ax^*)^T \lambda^* = b^T \lambda^*$$

即所有满足KKT条件的 $(x; \lambda, s)$ 使得主问题和对偶问题的目标函数值相等.

• 可以证明 x^* 是全局最优解. 设 \bar{x} 是可行点 $A\bar{x}=b$, $\bar{x}\geq 0$ 则

$$c^T \bar{x} = (A\lambda^* + s^*)^T \bar{x} = b^T \lambda^* + \bar{x}^T s^* \ge b^T \lambda^* = c^T x^*$$

• 对偶问题为:

 $\max b^T \lambda$, subject to $A^T \lambda \leq c$.

对偶问题为:

$$\max b^T \lambda$$
, subject to $A^T \lambda \leq c$.

 \bullet 引入"松弛"变量s

$$\max b^T \lambda$$
, subject to $A^T \lambda + s = c, s \ge 0$

• 对偶问题为:

$$\max b^T \lambda$$
, subject to $A^T \lambda \leq c$.

 \bullet 引入"松弛"变量s

$$\max b^T \lambda$$
, subject to $A^T \lambda + s = c, s \ge 0$

• 主问题-对偶问题之间的关系: $\min -b^T \lambda$, subject to $c-A^T \lambda \geq 0$.

• 对偶问题为:

$$\max b^T \lambda$$
, subject to $A^T \lambda \leq c$.

● 引入"松弛"变量s

$$\max b^T \lambda$$
, subject to $A^T \lambda + s = c, s \ge 0$

- 主问题-对偶问题之间的关系: $\min -b^T \lambda$, subject to $c-A^T \lambda \geq 0$.
- 记x是上述问题的拉格朗日乘子, $\bar{\mathcal{L}}(\lambda;x) = -b^T \lambda x^T (c A^T \lambda)$

• 对偶问题为:

$$\max b^T \lambda$$
, subject to $A^T \lambda \leq c$.

● 引入"松弛"变量s

$$\max b^T \lambda$$
, subject to $A^T \lambda + s = c, s \ge 0$

- 主问题-对偶问题之间的关系: 该KKT条件是对偶问题的充分条件 $\min -b^T \lambda$, subject to $c-A^T \lambda \geq 0$.
- 记x是上述问题的拉格朗日乘子, $\bar{\mathcal{L}}(\lambda;x) = -b^T \lambda x^T (c A^T \lambda)$
- KKT条件为: $\nabla_{\lambda}\bar{\mathcal{L}}(\lambda;x) = Ax b = 0 \ , A\lambda \leq c,$ $x \geq 0, \qquad x_i(c A\lambda)_i = 0.$ 记 $s = c A\lambda$, 上述KKT条件与主问

• 对偶问题为:

$$\max b^T \lambda$$
, subject to $A^T \lambda \leq c$.

● 引入"松弛"变量s

$$\max b^T \lambda$$
, subject to $A^T \lambda + s = c, s \ge 0$

- 主问题-对偶问题之间的关系: 该KKT条件是对偶问题的充分条件 $\min -b^T \lambda$, subject to $c-A^T \lambda \geq 0$. 假设 x^* , λ^* 满足KKT条件, $\overline{\lambda}$ 满足对偶
- 记x是上述问题的拉格朗日乘子, 问题约束条件,则 $\bar{\mathcal{L}}(\lambda;x) = -b^T \lambda x^T (c A^T \lambda)$
- KKT条件为: $\nabla_{\lambda}\bar{\mathcal{L}}(\lambda;x) = Ax b = 0 \ , A\lambda \leq c,$ $x \geq 0, \qquad x_i(c A\lambda)_i = 0.$ 记 $s = c A\lambda$, 上述KKT条件与主问 题KKT条件完全一致

• 对偶问题为.

$$\max b^T \lambda$$
, subject to $A^T \lambda \leq c$.

• 引入"松弛"变量s

$$\max b^T \lambda$$
, subject to $A^T \lambda + s = c, s \ge 0$

问题约束条件,则

- 主问题-对偶问题之间的关系。 该KKT条件是对偶问题的充分条件 $\min \ -b^T \lambda$, subject to $c-A^T \lambda \geq 0$. 假设 x^*, λ^* 满足KKT条件, $\overline{\lambda}$ 满足对偶
- 记x是上述问题的拉格朗日乘子。 $\bar{\mathcal{L}}(\lambda;x) = -b^T\lambda - x^T(c - A^T\lambda)$
- $\nabla_{\lambda} \mathcal{L}(\lambda; x) = Ax b = 0$, $A\lambda < c$, x > 0, $x_i(c - A\lambda)_i = 0$. 记 $s = c - A\lambda$. 上述KKT条件与主问

题KKT条件完全一致

$$b^{T}\bar{\lambda} = (Ax^{*})^{T}\bar{\lambda}$$
$$= (x^{*})^{T}(A\bar{\lambda} - c) + c^{T}x^{*}$$
$$< c^{T}x^{*} = b^{T}\lambda^{*}$$

KKT条件为:

• 对偶问题为.

$$\max b^T \lambda$$
, subject to $A^T \lambda \leq c$.

• 引入"松弛"变量s

$$\max b^T \lambda$$
, subject to $A^T \lambda + s = c, s \ge 0$

- 主问题-对偶问题之间的关系。
- 记x是上述问题的拉格朗日乘子。 $\bar{\mathcal{L}}(\lambda;x) = -b^T\lambda - x^T(c - A^T\lambda)$
- KKT条件为: $\nabla_{\lambda} \mathcal{L}(\lambda; x) = Ax - b = 0$, $A\lambda < c$, x > 0, $x_i(c - A\lambda)_i = 0$. 记 $s = c - A\lambda$. 上述KKT条件与主问 题KKT条件完全一致。

该KKT条件是对偶问题的充分条件 $\min \ -b^T \lambda$, subject to $c-A^T \lambda \geq 0$. 假设 x^*, λ^* 满足KKT条件, $\overline{\lambda}$ 满足对偶 问题约束条件,则

$$b^{T}\overline{\lambda} = (Ax^{*})^{T}\overline{\lambda}$$
$$= (x^{*})^{T}(A\overline{\lambda} - c) + c^{T}x^{*}$$
$$\leq c^{T}x^{*} = b^{T}\lambda^{*}$$

因此, λ^* 是对偶问题的解,

定理:强对偶

以下两种情况只有一种出现:

- 如果主问题(或对偶问题)有一个有限解,那么对偶问题(或主问题)也有一个有限解,且两个问题的目标函数值相等。
- ② 如果主问题(或对偶问题)的目标函数值无界,则对偶问题(或主问题)的可 行域是空集。

Proof.

● ●

定理:强对偶

以下两种情况只有一种出现:

- 如果主问题(或对偶问题)有一个有限解,那么对偶问题(或主问题)也有一个有限解,且两个问题的目标函数值相等。
- ②如果主问题(或对偶问题)的目标函数值无界,则对偶问题(或主问题)的可行域是空集。

- 🕕 略
- ② 如果主问题无界, 则存在一列 x_k , 满足 $c^T x_k \to -\infty$, $Ax_k = b$, $x_k \ge 0$.

定理:强对偶

以下两种情况只有一种出现:

- 如果主问题(或对偶问题)有一个有限解,那么对偶问题(或主问题)也有一个有限解,且两个问题的目标函数值相等。
- ②如果主问题(或对偶问题)的目标函数值无界,则对偶问题(或主问题)的可行域是空集。

- 🕕 略
- ② 如果主问题无界, 则存在一列 x_k , 满足 $c^Tx_k \to -\infty$, $Ax_k = b$, $x_k \ge 0$. 如果对偶问题是可行的, 即至少存在一个 $\bar{\lambda}$, 满足 $A\bar{\lambda} \le c$.

定理:强对偶

以下两种情况只有一种出现:

- 如果主问题(或对偶问题)有一个有限解,那么对偶问题(或主问题)也有一个有限解,且两个问题的目标函数值相等。
- ② 如果主问题(或对偶问题)的目标函数值无界,则对偶问题(或主问题)的可 行域是空集。

- 🕕 略
- ② 如果主问题无界, 则存在一列 x_k , 满足 $c^Tx_k \to -\infty$, $Ax_k = b$, $x_k \ge 0$. 如果对偶问题是可行的, 即至少存在一个 $\bar{\lambda}$, 满足 $A\bar{\lambda} \le c$. 再根据 $x_k > 0$, 可以得到 $\bar{\lambda}^T Ax_k < c^Tx_k$.

定理:强对偶

以下两种情况只有一种出现:

- 如果主问题(或对偶问题)有一个有限解,那么对偶问题(或主问题)也有一个有限解,且两个问题的目标函数值相等。
- ② 如果主问题(或对偶问题)的目标函数值无界,则对偶问题(或主问题)的可 行域是空集。

- 🕕 略
- ② 如果主问题无界,则存在一列 x_k ,满足 $c^Tx_k \to -\infty$, $Ax_k = b$, $x_k \ge 0$. 如果对偶问题是可行的,即至少存在一个 $\bar{\lambda}$,满足 $A\bar{\lambda} \le c$. 再根据 $x_k \ge 0$,可以得到 $\bar{\lambda}^TAx_k \le c^Tx_k$. 可以推出 $\bar{\lambda}^Tb = \bar{\lambda}^TAx_k \le c^Tx_k \to -\infty$. 这产生了矛盾.

假设A是行满秩的,并且 $A \in R^{m \times n}$.

假设A是行满秩的,并且 $A \in R^{m \times n}$.

定义:基本可行点(Basic feasible point)

假设A是行满秩的,并且 $A \in R^{m \times n}$.

定义:基本可行点(Basic feasible point)

x是基本可行点,当且仅当

假设A是行满秩的,并且 $A \in R^{m \times n}$.

定义:基本可行点(Basic feasible point)

x是基本可行点, 当且仅当

• 存在某个指标子集 $B \subset \{1, \dots, n\}, |B| = m.$

假设A是行满秩的,并且 $A \in R^{m \times n}$.

定义:基本可行点(Basic feasible point)

x是基本可行点, 当且仅当

- 存在某个指标子集 $B \subset \{1, \dots, n\}, |B| = m.$
- 如果 $i \notin \mathcal{B}$, $x_i = 0$. (即 $i \in \mathcal{B}$, x_i 不活跃).

假设A是行满秩的,并且 $A \in R^{m \times n}$.

定义:基本可行点(Basic feasible point)

x是基本可行点, 当且仅当

- 存在某个指标子集 $B \subset \{1, \dots, n\}, |B| = m$.
- 如果 $i \notin \mathcal{B}$, $x_i = 0$. (即 $i \in \mathcal{B}$, x_i 不活跃).
- 如果B是非奇异的. 这里B是由B构成的 $m \times m$ 矩阵, $B = [A_i]_{i \in B}$, 其中 A_i 是A的第i列.

这里B通常被称为基矩阵(basis matrix), B被称为基(basis)

假设A是行满秩的,并且 $A \in R^{m \times n}$.

定义:基本可行点(Basic feasible point)

x是基本可行点, 当且仅当

- 存在某个指标子集 $B \subset \{1, \dots, n\}, |B| = m.$
- 如果 $i \notin \mathcal{B}$, $x_i = 0$. (即 $i \in \mathcal{B}$, x_i 不活跃).
- 如果B是非奇异的. 这里B是由B构成的 $m \times m$ 矩阵, $B = [A_i]_{i \in B}$, 其中 A_i 是A的第i列.

这里B通常被称为基矩阵(basis matrix), B被称为基(basis)

单纯形方法的基本策略:只需要检查基本可行点就可以收敛到最优解.

定理:

● 如果主问题可行域非空,则至少存在一个基本可行点.

定理:

- 如果主问题可行域非空,则至少存在一个基本可行点.
- ② 如果主问题存在解,则至少存在一个解是基本可行点.

定理:

- 如果主问题可行域非空,则至少存在一个基本可行点.
- ② 如果主问题存在解,则至少存在一个解是基本可行点.
- ◎ 如果主问题是可行并且有界,则至少存在一个最优解.

对于线性约束条件,可行域是多 面体

定理:

- 如果主问题可行域非空,则至少存在一个基本可行点.
- ② 如果主问题存在解,则至少存在一个解是基本可行点.
- ❸ 如果主问题是可行并且有界,则至少存在一个最优解.

- 对于线性约束条件,可行域是多面体
- 多面体的顶点就是基本可行点.(几 何形式与代数表达式的对应关系)

定理

所有的基本可行点都是可行域 $\mathcal{F} = \{x | Ax = b, x \geq 0\}$ 的顶点,反之亦然.

Proof.

• " \rightarrow ". 设x是基本可行点, 即存在B, s.t. $B = [A_i]_{i \in \mathcal{B}}$ 非奇异.

Proof.

• "→". 设x是基本可行点, 即存在B, s.t. $B = [A_i]_{i \in B}$ 非奇异. 不妨设 $B = 1, 2, \cdots, m$, 则 $x_{m+1}, \cdots, x_n = 0$.

Proof.

• "→". 设x是基本可行点, 即存在B, s.t. $B = [A_i]_{i \in \mathcal{B}}$ 非奇异. 不妨设 $B = 1, 2, \cdots, m$, 则 $x_{m+1}, \cdots, x_n = 0$. 记 $x_B = (x_1, \cdots, x_m)$.

Proof.

• "→". 设x是基本可行点,即存在B, s.t. $B = [A_i]_{i \in B}$ 非奇异.不妨设 $B = 1, 2, \cdots, m$,则 $x_{m+1}, \cdots, x_n = 0$.记 $x_B = (x_1, \cdots, x_m)$.假设x不是可行域的顶点,即x可以由另外两个可行点线性组合,即存在 $y, z \in \mathcal{F}$ 且 $y \neq x, z \neq x$, s.t., $x = \alpha y + (1 - \alpha)z, \alpha > 0$.

Proof.

• "→". 设x是基本可行点,即存在B, s.t. $B = [A_i]_{i \in B}$ 非奇异.不妨设 $B = 1, 2, \cdots, m$,则 $x_{m+1}, \cdots, x_n = 0$. 记 $x_B = (x_1, \cdots, x_m)$. 假设x不是可行域的顶点,即x可以由另外两个可行点线性组合,即存在 $y, z \in \mathcal{F}$ 且 $y \neq x, z \neq x$, s.t., $x = \alpha y + (1 - \alpha)z, \alpha > 0$. 可以定义 $y_B = (y_1, \cdots, y_m), z_B = (z_1, \cdots, z_m)$. 显然由于Ax = Ay = Az = b能推出 $Bx_B = By_B = Bz_B = b$.

Proof.

• "→". 设x是基本可行点,即存在B, s.t. $B=[A_i]_{i\in B}$ 非奇异.不妨设 $B=1,2,\cdots,m$,则 $x_{m+1},\cdots,x_n=0$.记 $x_B=(x_1,\cdots,x_m)$.假设x不是可行域的顶点,即x可以由另外两个可行点线性组合,即存在 $y,z\in \mathfrak{F}$ 且 $y\neq x,z\neq x$, s.t., $x=\alpha y+(1-\alpha)z,\alpha>0$.可以定义 $y_B=(y_1,\cdots,y_m)$, $z_B=(z_1,\cdots,z_m)$.显然由于Ax=Ay=Az=b能推出 $Bx_B=By_B=Bz_B=b$.由于B可逆, $x_B=y_B=z_B$,进而可以得到x=y=z.产生矛盾.

Proof.

- "→". 设x是基本可行点,即存在B, s.t. $B=[A_i]_{i\in B}$ 非奇异.不妨设 $B=1,2,\cdots,m$,则 $x_{m+1},\cdots,x_n=0$.记 $x_B=(x_1,\cdots,x_m)$.假设x不是可行域的顶点,即x可以由另外两个可行点线性组合,即存在 $y,z\in \mathfrak{F}$ 且 $y\neq x,z\neq x$, s.t., $x=\alpha y+(1-\alpha)z,\alpha>0$.可以定义 $y_B=(y_1,\cdots,y_m)$, $z_B=(z_1,\cdots,z_m)$.显然由于Ax=Ay=Az=b能推出 $Bx_B=By_B=Bz_B=b$.由于B可逆, $x_B=y_B=z_B$,进而可以得到x=y=z.产生矛盾.
- "←". 设x是顶点, 其中的非零分量是 x_1, \dots, x_p .

Proof.

- "→". 设x是基本可行点,即存在B, s.t. $B=[A_i]_{i\in B}$ 非奇异.不妨设 $B=1,2,\cdots,m$,则 $x_{m+1},\cdots,x_n=0$.记 $x_B=(x_1,\cdots,x_m)$.假设x不是可行域的顶点,即x可以由另外两个可行点线性组合,即存在 $y,z\in \mathfrak{F}$ 且 $y\neq x,z\neq x$, s.t., $x=\alpha y+(1-\alpha)z,\alpha>0$.可以定义 $y_B=(y_1,\cdots,y_m)$, $z_B=(z_1,\cdots,z_m)$.显然由于Ax=Ay=Az=b能推出 $Bx_B=By_B=Bz_B=b$.由于B可逆, $x_B=y_B=z_B$,进而可以得到x=y=z.产生矛盾.
- "←". 设x是顶点, 其中的非零分量是 x_1, \cdots, x_p . 假设对应的列向量 A_1, \cdots, A_p 是线性相关的, 即 $A_p = \sum_{j=1}^{p-1} z_j A_j$, 可以构造一个扰动的向量 $x(\varepsilon) = x + \varepsilon z = x + \varepsilon (z_1, z_2, \cdots, z_{p-1}, -1, 0, \cdots, 0)$, 当 ε 很小时,可以得出 $Ax(\varepsilon) = b, x \geq 0$, i.e., $x(\varepsilon) \in \mathcal{F}$.

Proof.

• "→". 设x是基本可行点,即存在B, s.t. $B = [A_i]_{i \in B}$ 非奇异.不妨设 $B = 1, 2, \cdots, m$,则 $x_{m+1}, \cdots, x_n = 0$.记 $x_B = (x_1, \cdots, x_m)$.假设x不是可行域的顶点,即x可以由另外两个可行点线性组合,即存在 $y, z \in \mathcal{F}$ 且 $y \neq x, z \neq x$, s.t., $x = \alpha y + (1 - \alpha)z, \alpha > 0$.可以定义 $y_B = (y_1, \cdots, y_m), z_B = (z_1, \cdots, z_m)$.显然由于Ax = Ay = Az = b能推出 $Bx_B = By_B = Bz_B = b$.由于B可逆, $x_B = y_B = z_B$,进而可以得到x = y = z.产生矛盾.

• "←". 设x是顶点, 其中的非零分量是 x_1, \dots, x_n . 假设对应的列向

量 A_1,\cdots,A_p 是线性相关的,即 $A_p=\sum_{j=1}^{p-1}z_jA_j$,可以构造一个扰动的向量 $x(\varepsilon)=x+\varepsilon z=x+\varepsilon(z_1,z_2,\cdots,z_{p-1},-1,0,\cdots,0)$,当 ε 很小时,可以得出 $Ax(\varepsilon)=b,x\geq0$,i.e., $x(\varepsilon)\in\mathcal{F}$. 这样我们可以取某个 ε 使得 $x(\varepsilon)$ 和 $x(-\varepsilon)$ 都是可行的. 显然x(0)是落在这两点的连线上的. 即x不是顶点

Proof.

- "→". 设x是基本可行点,即存在B, s.t. $B = [A_i]_{i \in B}$ 非奇异.不妨设 $B = 1, 2, \cdots, m$,则 $x_{m+1}, \cdots, x_n = 0$.记 $x_B = (x_1, \cdots, x_m)$.假设x不是可行域的顶点,即x可以由另外两个可行点线性组合,即存在 $y, z \in \mathcal{F}$ 且 $y \neq x, z \neq x$, s.t., $x = \alpha y + (1 \alpha)z, \alpha > 0$.可以定义 $y_B = (y_1, \cdots, y_m), z_B = (z_1, \cdots, z_m)$.显然由于Ax = Ay = Az = b能推出 $Bx_B = By_B = Bz_B = b$.由于B可逆, $x_B = y_B = z_B$,进而可以得到x = y = z.产生矛盾.
- " \leftarrow ". 设x是顶点, 其中的非零分量是 x_1,\cdots,x_p . 假设对应的列向量 A_1,\cdots,A_p 是线性相关的, 即 $A_p=\sum_{j=1}^{p-1}z_jA_j$, 可以构造一个扰动的向量 $x(\varepsilon)=x+\varepsilon z=x+\varepsilon(z_1,z_2,\cdots,z_{p-1},-1,0,\cdots,0)$, 当 ε 很小时, 可以得出 $Ax(\varepsilon)=b,x\geq0$, i.e., $x(\varepsilon)\in\mathcal{F}$. 这样我们可以取某个 $\hat{\varepsilon}$ 使得 $x(\hat{\varepsilon})$ 和 $x(-\hat{\varepsilon})$ 都是可行的. 显然x(0)是落在这两点的连线上的, 即x不是顶点所以, 如果x是顶点, A_1,\cdots,A_p 一定线性无关. 如果p=m, 那么就已经证明了结果.

Proof.

- "→". 设x是基本可行点,即存在B, s.t. $B = [A_i]_{i \in B}$ 非奇异.不妨设 $B = 1, 2, \cdots, m$,则 $x_{m+1}, \cdots, x_n = 0$. 记 $x_B = (x_1, \cdots, x_m)$.假设x不是可行域的顶点,即x可以由另外两个可行点线性组合,即存在 $y, z \in \mathcal{F}$ 且 $y \neq x, z \neq x$, s.t., $x = \alpha y + (1 \alpha)z, \alpha > 0$.可以定义 $y_B = (y_1, \cdots, y_m), z_B = (z_1, \cdots, z_m)$. 显然由于Ax = Ay = Az = b能推出 $Bx_B = By_B = Bz_B = b$.由于B可逆, $x_B = y_B = z_B$,进而可以得到x = y = z.产生矛盾.
- " \leftarrow ". 设x是顶点, 其中的非零分量是 x_1, \cdots, x_p . 假设对应的列向量 A_1, \cdots, A_p 是线性相关的, 即 $A_p = \sum_{j=1}^{p-1} z_j A_j$, 可以构造一个扰动的向量 $x(\varepsilon) = x + \varepsilon z = x + \varepsilon (z_1, z_2, \cdots, z_{p-1}, -1, 0, \cdots, 0)$, 当 ε 很小时,可以得出 $Ax(\varepsilon) = b, x \geq 0$, i.e., $x(\varepsilon) \in \mathcal{F}$. 这样我们可以取某个 ε 使得 $x(\varepsilon)$ 和 $x(-\varepsilon)$ 都是可行的. 显然x(0)是落在这两点的连线上的,即x不是顶点所以,如果x是顶点, A_1, \cdots, A_p 一定线性无关. 如果p = m,那么就已经证明了结果. 如果p < m,由于A是行满秩的,我们可以继续从剩下的n p个中挑选m p个 A_i 加入到 A_1, \cdots, A_n ,组成B,证毕.

• 单纯形方法是迭代法, 从一个顶点到另一个顶点.

- 单纯形方法是迭代法, 从一个顶点到另一个顶点.
- 绝大多数迭代步,目标函数值都在降低(除非是无界问题)

- 单纯形方法是迭代法, 从一个顶点到另一个顶点.
- 绝大多数迭代步,目标函数值都在降低 (除非是无界问题)
- 迭代步中,最主要是确定如何更新B,每一步迭代都需要加入一个新的指标q,去除一个指标p.

- 单纯形方法是迭代法, 从一个顶点到另一个顶点.
- 绝大多数迭代步,目标函数值都在降低(除非是无界问题)
- 迭代步中,最主要是确定如何更新B,每一步迭代都需要加入一个新的指标q,去除一个指标p.
- 可以从KKT条件中得到一些启发.

$$A^{T}\lambda + s = c, Ax = b,$$

 $x \ge 0, s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

• 定义非基本指标集合
$$\mathbb{N} = \{1, \cdots, n\} \setminus \mathbb{B}$$

$$A^{T}\lambda + s = c, \ Ax = b,$$

 $x \ge 0, \ s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

$$A^{T}\lambda + s = c, Ax = b,$$

 $x \ge 0, s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

- 定义非基本指标集合 $\mathcal{N} = \{1, \dots, n\} \setminus \mathcal{B}$
- 定义相应的 $x_B = [x_i]_{i \in \mathcal{B}}, x_N = [x_i]_{i \in \mathcal{N}}, s_B,$ $s_N, \lambda_B, \lambda_N, c_B, c_N.$

$$A^{T}\lambda + s = c, Ax = b,$$

 $x \ge 0, s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

- 定义非基本指标集合 N = {1,···,n} \ B
- 定义相应的 $x_B = [x_i]_{i \in \mathcal{B}}, x_N = [x_i]_{i \in \mathcal{N}}, s_B, s_N, \lambda_B, \lambda_N, c_B, c_N.$
- 根据 $Ax=Bx_B+Nx_N=b$,而 $x_N=0$,所以 $x_B=B^{-1}b\geq 0$

$$A^{T}\lambda + s = c, Ax = b,$$

 $x \ge 0, s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

- 定义非基本指标集合 N = {1,···,n} \ B
- 定义相应的 $x_B = [x_i]_{i \in \mathcal{B}}, x_N = [x_i]_{i \in \mathcal{N}}, s_B, s_N, \lambda_B, \lambda_N, c_B, c_N.$
- 根据 $Ax = Bx_B + Nx_N = b$,而 $x_N = 0$,所以 $x_B = B^{-1}b \ge 0$
- 根据互补性条件 $s_B=0$, 再根据 $[B\ N]^T\lambda+[s_B;\ s_N]=[c_B;\ c_N]$, 得 到 $\lambda=B^{-T}c_B,\ N^T\lambda+s_N=c_N.$ 即可以得到 $s_N=c_N-(B^{-1}N)^Tc_B$

$$A^{T}\lambda + s = c, \ Ax = b,$$

 $x \ge 0, \ s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

- 定义非基本指标集合 N = {1,···,n} \ B
- 定义相应的 $x_B = [x_i]_{i \in \mathcal{B}}, x_N = [x_i]_{i \in \mathcal{N}}, s_B, s_N, \lambda_B, \lambda_N, c_B, c_N.$
- 根据 $Ax = Bx_B + Nx_N = b$,而 $x_N = 0$,所以 $x_B = B^{-1}b \ge 0$
- 根据互补性条件 $s_B = 0$, 再根据 $[B\ N]^T \lambda + [s_B;\ s_N] = [c_B;\ c_N]$, 得 到 $\lambda = B^{-T}c_B$, $N^T \lambda + s_N = c_N$. 即可以得到 $s_N = c_N (B^{-1}N)^T c_B$
- 到目前为止, KKT条件中仅有 $s \ge 0$ 没有强制满足.

$$A^{T}\lambda + s = c, \ Ax = b,$$

 $x \ge 0, \ s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

- 定义非基本指标集合 $\mathcal{N} = \{1, \dots, n\} \setminus \mathcal{B}$
- 定义相应的 $x_B = [x_i]_{i \in \mathcal{B}}, x_N = [x_i]_{i \in \mathcal{N}}, s_B, s_N, \lambda_B, \lambda_N, c_B, c_N.$
- 根据 $Ax = Bx_B + Nx_N = b$,而 $x_N = 0$,所以 $x_B = B^{-1}b \ge 0$
- 根据互补性条件 $s_B = 0$, 再根据 $[B\ N]^T \lambda + [s_B;\ s_N] = [c_B;\ c_N]$, 得 到 $\lambda = B^{-T}c_B$, $N^T \lambda + s_N = c_N$. 即可以得到 $s_N = c_N (B^{-1}N)^T c_B$
- 到目前为止, KKT条件中仅有 $s \ge 0$ 没有强制满足. 如果上式计算中 $s_q < 0$, 说明可以把相应的 x_q 从0变为正的并保持x仍是可行的,对应的目标函数值 c^Tx 可以降低.

$$A^{T}\lambda + s = c, \ Ax = b,$$

 $x \ge 0, \ s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

- 定义非基本指标集合 $\mathcal{N} = \{1, \dots, n\} \setminus \mathcal{B}$
- 定义相应的 $x_B = [x_i]_{i \in \mathcal{B}}, x_N = [x_i]_{i \in \mathcal{N}}, s_B, s_N, \lambda_B, \lambda_N, c_B, c_N.$
- 根据 $Ax = Bx_B + Nx_N = b$,而 $x_N = 0$,所以 $x_B = B^{-1}b \ge 0$
- 根据互补性条件 $s_B = 0$, 再根据 $[B\ N]^T \lambda + [s_B;\ s_N] = [c_B;\ c_N]$, 得 到 $\lambda = B^{-T}c_B$, $N^T \lambda + s_N = c_N$. 即可以得到 $s_N = c_N (B^{-1}N)^T c_B$
- 到目前为止, KKT条件中仅有 $s \geq 0$ 没有强制满足. 如果上式计算中 $s_q < 0$, 说明可以把相应的 x_q 从0变为正的并保持x仍是可行的,对应的目标函数值 c^Tx 可以降低.
- 假设更新 x_q 后的x记为 x^+ ,由于在 $N\setminus\{q\}$ 中的分量都没发生变化,这些 $x_i^+=0$,那么B中 x_B^+ 应该满足 $Ax^+=Bx_B^++A_qx_q^+=b=Bx_B$,即 $x_B^+=x_B-B^{-1}A_qx_q^+$

$$A^{T}\lambda + s = c, \ Ax = b,$$

 $x \ge 0, \ s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

- 定义非基本指标集合 $\mathcal{N} = \{1, \dots, n\} \setminus \mathcal{B}$
- 定义相应的 $x_B = [x_i]_{i \in \mathcal{B}}, x_N = [x_i]_{i \in \mathcal{N}}, s_B, s_N, \lambda_B, \lambda_N, c_B, c_N.$
- 根据 $Ax = Bx_B + Nx_N = b$,而 $x_N = 0$,所以 $x_B = B^{-1}b \ge 0$
- 根据互补性条件 $s_B = 0$, 再根据 $[B\ N]^T \lambda + [s_B;\ s_N] = [c_B;\ c_N]$, 得 到 $\lambda = B^{-T}c_B$, $N^T \lambda + s_N = c_N$. 即可以得到 $s_N = c_N (B^{-1}N)^T c_B$
- 到目前为止, KKT条件中仅有 $s \ge 0$ 没有强制满足. 如果上式计算中 $s_q < 0$, 说明可以把相应的 x_q 从0变为正的并保持x仍是可行的,对应的目标函数值 c^Tx 可以降低.
- 假设更新 x_q 后的x记为 x^+ ,由于在 $N\setminus\{q\}$ 中的分量都没发生变化,这些 $x_i^+=0$,那么B中 x_B^+ 应该满足 $Ax^+=Bx_B^++A_qx_q^+=b=Bx_B$,即 $x_B^+=x_B-B^{-1}A_qx_q^+$
- 我们来计算新的目标函数值 $c^Tx^+ = c_B^Tx_B^+ + c_qx_q^+ = c_B^Tx_B c_B^TB^{-1}A_qx_q^+ + c_qx_q^+$,

$$A^{T}\lambda + s = c, \ Ax = b,$$

 $x \ge 0, \ s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

- 定义非基本指标集合 $\mathcal{N} = \{1, \dots, n\} \setminus \mathcal{B}$
- 定义相应的 $x_B = [x_i]_{i \in \mathcal{B}}, x_N = [x_i]_{i \in \mathcal{N}}, s_B, s_N, \lambda_B, \lambda_N, c_B, c_N.$
- 根据 $Ax = Bx_B + Nx_N = b$,而 $x_N = 0$,所以 $x_B = B^{-1}b \ge 0$
- 根据互补性条件 $s_B = 0$, 再根据 $[B\ N]^T \lambda + [s_B;\ s_N] = [c_B;\ c_N]$, 得 到 $\lambda = B^{-T}c_B$, $N^T \lambda + s_N = c_N$. 即可以得到 $s_N = c_N (B^{-1}N)^T c_B$
- 到目前为止, KKT条件中仅有 $s \geq 0$ 没有强制满足. 如果上式计算中 $s_q < 0$, 说明可以把相应的 x_q 从0变为正的并保持x仍是可行的,对应的目标函数值 c^Tx 可以降低.
- 假设更新 x_q 后的x记为 x^+ ,由于在 $N\setminus\{q\}$ 中的分量都没发生变化,这些 $x_i^+=0$,那么B中 x_B^+ 应该满足 $Ax^+=Bx_B^++A_qx_q^+=b=Bx_B$,即 $x_B^+=x_B-B^{-1}A_qx_q^+$
- 我们来计算新的目标函数值 $c^Tx^+=c_B^Tx_B^++c_qx_q^+=c_B^Tx_B-c_B^TB^{-1}A_qx_q^++c_qx_q^+$, $-c_B^TB^{-1}A_qx_q^+=(c_q-s_q)x_q^+$

$$A^{T}\lambda + s = c, Ax = b,$$

 $x \ge 0, s \ge 0,$
 $x_{i}s_{i} = 0, i = 1, 2, \dots, n.$

- 定义非基本指标集合 N = {1,···,n} \ B
- 定义相应的 $x_B = [x_i]_{i \in \mathcal{B}}, x_N = [x_i]_{i \in \mathcal{N}}, s_B, s_N, \lambda_B, \lambda_N, c_B, c_N.$
- 根据 $Ax = Bx_B + Nx_N = b$,而 $x_N = 0$,所以 $x_B = B^{-1}b \ge 0$
- 根据互补性条件 $s_B = 0$, 再根据 $[B\ N]^T \lambda + [s_B;\ s_N] = [c_B;\ c_N]$, 得 到 $\lambda = B^{-T}c_B$, $N^T \lambda + s_N = c_N$. 即可以得到 $s_N = c_N (B^{-1}N)^T c_B$
- 到目前为止, KKT条件中仅有 $s \ge 0$ 没有强制满足. 如果上式计算中 $s_q < 0$, 说明可以把相应的 x_q 从0变为正的并保持x仍是可行的,对应的目标函数值 c^Tx 可以降低.
- 假设更新 x_q 后的x记为 x^+ ,由于在 $N\setminus\{q\}$ 中的分量都没发生变化,这些 $x_i^+=0$,那么B中 x_B^+ 应该满足 $Ax^+=Bx_B^++A_qx_q^+=b=Bx_B$,即 $x_B^+=x_B-B^{-1}A_qx_q^+$
- 我们来计算新的目标函数值 $c^Tx^+ = c_B^Tx_B^+ + c_qx_q^+ = c_B^Tx_B c_B^TB^{-1}A_qx_q^+ + c_qx_q^+, -c_B^TB^{-1}A_qx_q^+ = (c_q s_q)x_q^+$
- 最终得到 $c^T x^+ = c_B^T x_B (c_q s_q) x_q^+ + c_q x_q^+ = c^T x + s_q x_q^+$.

• 原则上可以一直增大 x_q 直到碰到下一个顶点, 即某个 $x_p^+=0$, $p\in\mathcal{B}$. 将p移入 \mathbb{N} 中.

- 原则上可以一直增大 x_q 直到碰到下一个顶点, 即某个 x_p^+ = 0, $p \in \mathcal{B}$. 将p移入N中.
- 或者如果可以一直增大xq到无穷大而不碰到下一个顶点,那说明原问题无界.

- 原则上可以一直增大 x_q 直到碰到下一个顶点, 即某个 $x_p^+=0$, $p\in\mathcal{B}$. 将p移入 \mathbb{N} 中
- 或者如果可以一直增大x_q到无穷大而 不碰到下一个顶点, 那说明原问题无界.

- 原则上可以一直增大 x_q 直到碰到下一个顶点, 即某个 $x_p^+=0$, $p \in \mathcal{B}$. 将p移入 \mathbb{N} 中.
- 或者如果可以一直增大 x_q 到无穷大而不碰到下一个顶点, 那说明原问题无界.

定理

对于非退化的有界线性规划问题,使用单纯形方法可以在有限步之内终止.

单步单纯形方法

给定B, N, $x_B = B^{-1}b \ge 0$, $x_N = 0$;

单步单纯形方法

给定B, \mathcal{N} , $x_B = B^{-1}b \ge 0$, $x_N = 0$; 求解 $B^T \lambda = c_B$,

单步单纯形方法

给定
$$B$$
, N , $x_B = B^{-1}b \ge 0$, $x_N = 0$; 求解 $B^T\lambda = c_B$, 计算 $s_N = c_N - N^T\lambda$;

单步单纯形方法

给定
$$\mathcal{B}$$
, \mathcal{N} , $x_B = B^{-1}b \geq 0$, $x_N = 0$;
求解 $B^T\lambda = c_B$,
计算 $s_N = c_N - N^T\lambda$;
if $s_N \geq 0$
stop;(找到了最优点)

单步单纯形方法

给定
$$B$$
, N , $x_B = B^{-1}b \ge 0$, $x_N = 0$; 求解 $B^T\lambda = c_B$, 计算 $s_N = c_N - N^T\lambda$; if $s_N \ge 0$ stop;(找到了最优点)

else

选择
$$q \in \mathcal{N}$$
 with $s_q < 0$,

单步单纯形方法

给定
$$\mathbb{B}$$
, \mathbb{N} , $x_B = B^{-1}b \geq 0$, $x_N = 0$;
求解 $B^T \lambda = c_B$,
计算 $s_N = c_N - N^T \lambda$;
if $s_N \geq 0$
stop;(找到了最优点)
else
选择 $q \in \mathbb{N}$ with $s_q < 0$,
计算 $Bd = A_q$;

单步单纯形方法

if d < 0

给定
$$\mathbb{B}$$
, \mathbb{N} , $x_B = B^{-1}b \geq 0$, $x_N = 0$;
求解 $B^T \lambda = c_B$,
计算 $s_N = c_N - N^T \lambda$;
if $s_N \geq 0$
stop;(找到了最优点)
else
选择 $q \in \mathbb{N}$ with $s_q < 0$,
计算 $Bd = A_q$;

单步单纯形方法

给定
$$\mathcal{B}$$
, \mathcal{N} , $x_B = B^{-1}b \geq 0$, $x_N = 0$;
求解 $B^T\lambda = c_B$,
计算 $s_N = c_N - N^T\lambda$;
if $s_N \geq 0$
stop;(找到了最优点)
else
选择 $q \in \mathcal{N}$ with $s_q < 0$,
计算 $Bd = A_q$;
if $d \leq 0$
stop; (问题无界)
else
计算 $x_q^+ = \min_{i|d_i \geq 0} \frac{(x_B)_i}{d_i}$, 记录最小的指标为 p ;

单步单纯形方法

给定
$$\mathcal{B}$$
, \mathcal{N} , $x_B = B^{-1}b \geq 0$, $x_N = 0$; 求解 $B^T \lambda = c_B$, 计算 $s_N = c_N - N^T \lambda$; if $s_N \geq 0$ stop;(找到了最优点) else 选择 $q \in \mathcal{N}$ with $s_q < 0$, 计算 $Bd = A_q$; if $d \leq 0$ stop; (问题 无界) else 计算 $x_q^+ = \min_{i|d_i>0} \frac{(x_B)_i}{d_i}$, 记录最小的指标为 p ; 更新 $x_B^+ = x_B - dx_q^+$, $x_N^+ = (0, \cdots, 0, x_q^+, 0, \cdots, 0)^T$;

单步单纯形方法

```
给定B. N. x_R = B^{-1}b > 0, x_N = 0;
求解B^T\lambda = c_P.
计算s_N = c_N - N^T \lambda:
if s_N > 0
      stop;(找到了最优点)
else
       选择q \in \mathbb{N} with s_q < 0,
      计算Bd = A_a;
      if d < 0
             stop: (问题无界)
      else
      计算x_q^+ = \min_{i|d_i>0} \frac{(x_B)_i}{d_i}, 记录最小的指标为p;

\mathfrak{D} \hat{\mathbf{x}}_{B}^{+} = x_{B} - dx_{a}^{+}, \ x_{N}^{+} = (0, \cdots, 0, x_{a}^{+}, 0, \cdots, 0)^{T};

      把q加入B,p移除B.
      end(if)
```

end(if)

考虑如下问题

min
$$-4x_1 - 2x_2$$

s.t. $x_1 + x_2 + x_3 = 5$;
 $2x_1 + \frac{1}{2}x_2 + x_4 = 8$,
 $x \ge 0$.

考虑如下问题

$$\min -4x_1 - 2x_2$$
s.t. $x_1 + x_2 + x_3 = 5$;
$$2x_1 + \frac{1}{2}x_2 + x_4 = 8$$
,
$$x \ge 0$$
.

• 选取初始的 $B = \{3,4\}$, 可以得到B = I,,

$$x_B = \left[\begin{array}{c} 5 \\ 8 \end{array} \right], \lambda = \left[\begin{array}{c} 0 \\ 0 \end{array} \right], s_N = \left[\begin{array}{c} -3 \\ -2 \end{array} \right]$$

考虑如下问题

min
$$-4x_1 - 2x_2$$

s.t. $x_1 + x_2 + x_3 = 5$;
 $2x_1 + \frac{1}{2}x_2 + x_4 = 8$,
 $x \ge 0$.

• 选取初始的 $B = \{3,4\}$, 可以得到B = I,,

$$x_B = \left[\begin{array}{c} 5 \\ 8 \end{array} \right], \lambda = \left[\begin{array}{c} 0 \\ 0 \end{array} \right], s_N = \left[\begin{array}{c} -3 \\ -2 \end{array} \right]$$

• 计算目标函数值 $c^Tx=0$. 选取q=1, $A_q=[1,2]^T$, 计算 $Bd=A_q$ 得到 $d=[1,2]^T$.

考虑如下问题

$$\min -4x_1 - 2x_2$$
s.t. $x_1 + x_2 + x_3 = 5$;
$$2x_1 + \frac{1}{2}x_2 + x_4 = 8$$
,
$$x \ge 0$$
.

• 选取初始的 $B = \{3,4\}$, 可以得到B = I,,

$$x_B = \left[\begin{array}{c} 5 \\ 8 \end{array} \right], \lambda = \left[\begin{array}{c} 0 \\ 0 \end{array} \right], s_N = \left[\begin{array}{c} -3 \\ -2 \end{array} \right]$$

- 计算目标函数值 $c^T x = 0$. 选取q = 1, $A_q = [1, 2]^T$, 计算 $Bd = A_q$ 得到 $d = [1, 2]^T$.
- 计算 $x_4^+ = \min_{i|d_i>0} \frac{(x_B)_i}{d_i} = 4$, 对应的指标 是4. 即可以更新B = $\{3,1\}$, $\mathcal{N} = \{4,2\}$

考虑如下问题

$$\min -4x_1 - 2x_2$$
s.t. $x_1 + x_2 + x_3 = 5;$

$$2x_1 + \frac{1}{2}x_2 + x_4 = 8,$$

$$x \ge 0.$$

• 经计算得到

$$x_B = \left[\begin{array}{c} 1 \\ 4 \end{array}\right], \lambda = \left[\begin{array}{c} 0 \\ -\frac{3}{2} \end{array}\right], s_N = \left[\begin{array}{c} \frac{3}{2} \\ -\frac{5}{4} \end{array}\right]$$

• 选取初始的 $B = \{3,4\}$, 可以得到B = I,,

$$x_B = \left[\begin{array}{c} 5 \\ 8 \end{array} \right], \lambda = \left[\begin{array}{c} 0 \\ 0 \end{array} \right], s_N = \left[\begin{array}{c} -3 \\ -2 \end{array} \right]$$

- 计算目标函数值 $c^Tx=0$. 选取q=1, $A_q=[1,2]^T$, 计算 $Bd=A_q$ 得到 $d=[1,2]^T$.
- 计算 $x_4^+ = \min_{i|d_i>0} \frac{(x_B)_i}{d_i} = 4$, 对应的指标 是4. 即可以更新 $B = \{3,1\}$, $\mathcal{N} = \{4,2\}$

考虑如下问题

$$\min -4x_1 - 2x_2$$
s.t. $x_1 + x_2 + x_3 = 5$;
$$2x_1 + \frac{1}{2}x_2 + x_4 = 8$$
,
$$x \ge 0$$
.

• 选取初始的 $B = \{3,4\}$, 可以得到B = I,,

$$x_B = \left[\begin{array}{c} 5 \\ 8 \end{array} \right], \lambda = \left[\begin{array}{c} 0 \\ 0 \end{array} \right], s_N = \left[\begin{array}{c} -3 \\ -2 \end{array} \right]$$

- 计算目标函数值 $c^Tx=0$. 选取q=1, $A_q=[1,2]^T$, 计算 $Bd=A_q$ 得到 $d=[1,2]^T$.
- 计算 $x_4^+ = \min_{i|d_i>0} \frac{(x_B)_i}{d_i} = 4$, 对应的指标 是4. 即可以更新 $B = \{3,1\}$, $\mathcal{N} = \{4,2\}$

• 经计算得到

$$x_B = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \lambda = \begin{bmatrix} 0 \\ -\frac{3}{2} \end{bmatrix}, s_N = \begin{bmatrix} \frac{3}{2} \\ -\frac{5}{4} \end{bmatrix}$$

• 计算目标函数值 $c^Tx=-12$. 选取q=2, $A_2=[1,\frac{1}{2}]^T$, 计算 $Bd=A_q$ 得 到 $d=[\frac{3}{2},-\frac{1}{2}]^T$.

考虑如下问题

$$\min -4x_1 - 2x_2$$
s.t. $x_1 + x_2 + x_3 = 5;$

$$2x_1 + \frac{1}{2}x_2 + x_4 = 8,$$
 $x \ge 0.$

• 选取初始的 $B = \{3,4\}$, 可以得到B = I,,

$$x_B = \left[\begin{array}{c} 5 \\ 8 \end{array} \right], \lambda = \left[\begin{array}{c} 0 \\ 0 \end{array} \right], s_N = \left[\begin{array}{c} -3 \\ -2 \end{array} \right]$$

- 计算目标函数值 $c^Tx=0$. 选取q=1, $A_q=[1,2]^T$, 计算 $Bd=A_q$ 得到 $d=[1,2]^T$.
- 计算 $x_4^+ = \min_{i|d_i>0} \frac{(x_B)_i}{d_i} = 4$, 对应的指标 是4. 即可以更新 $B = \{3,1\}$, $\mathcal{N} = \{4,2\}$

• 经计算得到

$$x_B = \left[egin{array}{c} 1 \\ 4 \end{array}
ight], \lambda = \left[egin{array}{c} 0 \\ -rac{3}{2} \end{array}
ight], s_N = \left[egin{array}{c} rac{3}{2} \\ -rac{5}{4} \end{array}
ight]$$

- 计算目标函数值 $c^Tx=-12$. 选取q=2, $A_2=[1,\frac{1}{2}]^T$, 计算 $Bd=A_q$ 得 到 $d=[\frac{3}{2},-\frac{1}{2}]^T$.
- 计算 $x_2^+ = \min_{i|d_i>0} \frac{(x_B)_i}{d_i} = \frac{4}{3}$, 对应的指标是2. 即可以更新 $B = \{2,1\}$, $\mathcal{N} = \{4,3\}$

考虑如下问题

$$\min -4x_1 - 2x_2$$
s.t. $x_1 + x_2 + x_3 = 5;$

$$2x_1 + \frac{1}{2}x_2 + x_4 = 8,$$
 $x \ge 0.$

• 选取初始的 $B = \{3,4\}$, 可以得到 $B = I_{,1}$

$$x_B = \left[\begin{array}{c} 5 \\ 8 \end{array} \right], \lambda = \left[\begin{array}{c} 0 \\ 0 \end{array} \right], s_N = \left[\begin{array}{c} -3 \\ -2 \end{array} \right]$$

- 计算目标函数值 $c^T x = 0$. 选取q = 1, $A_a = [1, 2]^T$, 计算 $Bd = A_a$ 得到 $d = [1, 2]^T$.
- 计算 $x_4^+ = \min_{i|d_i>0} \frac{(x_B)_i}{d_i} = 4$, 对应的指标 是4. 即可以更新 $B = \{3, 1\}, N = \{4, 2\}$

经计算得到

$$x_B = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \lambda = \begin{bmatrix} 0 \\ -\frac{3}{2} \end{bmatrix}, s_N = \begin{bmatrix} \frac{3}{2} \\ -\frac{5}{4} \end{bmatrix}$$

- 计算目标函数值 $c^T x = -12$. 选取q = 2. $A_2 = [1, \frac{1}{2}]^T$, $\text{\text{tip}} Bd = A_a$ 到 $d = \left[\frac{3}{9}, -\frac{1}{9}\right]^T$.
- 计算 $x_2^+ = \min_{i|d_i>0} \frac{(x_B)_i}{d_i} = \frac{4}{3}$, 对应的指 标是2. 即可以更新 $B = \{2,1\}, N = \{4,3\}$
- 第三次迭代计算得到 $x_B = (x_2, x_1)^T =$ $(\frac{4}{2},\frac{11}{2})^T$, $\lambda = (-\frac{5}{3}, -\frac{2}{3})^T$, $s_N = (\frac{7}{3}, \frac{5}{3})^T$.

考虑如下问题

$$\min -4x_1 - 2x_2$$
s.t. $x_1 + x_2 + x_3 = 5;$

$$2x_1 + \frac{1}{2}x_2 + x_4 = 8,$$
 $x \ge 0.$

• 选取初始的 $B = \{3,4\}$, 可以得到B = I,,

$$x_B = \left[\begin{array}{c} 5 \\ 8 \end{array} \right], \lambda = \left[\begin{array}{c} 0 \\ 0 \end{array} \right], s_N = \left[\begin{array}{c} -3 \\ -2 \end{array} \right]$$

- 计算目标函数值 $c^Tx=0$. 选取q=1, $A_q=[1,2]^T$, 计算 $Bd=A_q$ 得到 $d=[1,2]^T$.
- 计算 $x_4^+ = \min_{i|d_i>0} \frac{(x_B)_i}{d_i} = 4$, 对应的指标 是4. 即可以更新 $B = \{3,1\}$, $N = \{4,2\}$

• 经计算得到

$$x_B = \left[\begin{array}{c} 1 \\ 4 \end{array} \right], \lambda = \left[\begin{array}{c} 0 \\ -\frac{3}{2} \end{array} \right], s_N = \left[\begin{array}{c} \frac{3}{2} \\ -\frac{5}{4} \end{array} \right]$$

- 计算目标函数值 $c^Tx=-12$. 选取q=2, $A_2=[1,\frac{1}{2}]^T$, 计算 $Bd=A_q$ 得 到 $d=[\frac{3}{2},-\frac{1}{2}]^T$.
- 计算 $x_2^+ = \min_{i|d_i>0} \frac{(x_B)_i}{d_i} = \frac{4}{3}$,对应的指标是2. 即可以更新 $B = \{2,1\}$, $\mathcal{N} = \{4,3\}$
- 第三次迭代计算得到 $x_B = (x_2, x_1)^T = \left(\frac{4}{3}, \frac{11}{3}\right)^T,$ $\lambda = \left(-\frac{5}{3}, -\frac{2}{3}\right)^T,$ $s_N = \left(\frac{7}{3}, \frac{5}{3}\right)^T.$
- 此时目标函数值 $c^T x = -\frac{41}{3}$.

THANKS FOR YOUR ATTENTION