

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

Ayudantía 7 Álgebra Lineal

5 de mayo de 2022

Problema 1. Sean V, W espacios vectoriales sobre $K, U \leq V$. Probar que toda aplicación lineal $S: U \to W$ puede ser extendida a una aplicación lineal $T: \mathbf{V} \to \mathbf{W}$, es decir, T es lineal y T = S en \mathbf{U} .

Problema 2. Sea $T: \mathbf{V} \to \mathbf{V}$ aplicación lineal entre espacios vectoriales. Demuestre que

- 1. $T^2 = T \iff \operatorname{Im} T \subseteq \ker T$
- 2. $T^2 = T \Rightarrow V = \operatorname{Im} T \oplus \ker T$

Problema 3. Considere $V = \mathbb{C}[X]_3$ el espacio vectorial sobre \mathbb{C} de los polinomios con coeficientes complejos de grado ≤ 3 . Considere las siguientes aplicaciones definidas en dicho espacio:

$$u: \mathbf{V} \to \mathbf{V}, \quad P \mapsto P' + P'' + XP(0)$$

 $v: \mathbf{V} \to \mathbf{V}, \quad P \mapsto X^3P(0) - P'$

Con respecto a las aplicaciones definidas:

- 1. Pruebe que u, v son aplicaciones lineales.
- 2. Determine los kernel de u, v. Encuentre bases para dichos espacios.
- 3. Determine las imágenes de u, v. Encuentre bases.
- 4. Encuentre la aplicación inversa en caso de existir.

Definición 1. Sea V espacio vectorial y $T: \mathbf{V} \to \mathbf{V}$ lineal. Decimos que un subespacio $\mathbf{W} \leq \mathbf{V}$ es **invariante** bajo $T \operatorname{si} T(\mathbf{W}) \subseteq \mathbf{W}$.

Problema 4. Sea $T: \mathbf{V} \to \mathbf{V}$ lineal $\mathbf{v} \in \mathbf{V}$. Sea $\mathbf{W} = \mathrm{span}(\{\mathbf{v}, T(\mathbf{v}), T^2(\mathbf{v}), \ldots\})$ el subespacio generado por las potencias de \mathbf{v} bajo T.

- 1. Mostrar que W es invariante.
- 2. Probar que W es el subespacio invariante por T más pequeño que contiene a \mathbf{v} , es decir, si $\mathbf{x} \in \mathbf{U} \leq \mathbf{V}$ y $T(\mathbf{U}) \subseteq \mathbf{U}$ entonces $\mathbf{W} \leq \mathbf{U}$.

Problema 5. Sea $T: \mathbf{V} \to \mathbf{V}$ lineal.

- 1. Pruebe que $\ker T \in \operatorname{Im} T$ son invariantes bajo T.
- 2. Sea $\mathbf{W} \leq \mathbf{V}$ invariante bajo T tal que $V = \operatorname{Im} T \oplus \mathbf{W}$. Demostrar $\mathbf{W} \subseteq \ker T$.