Gittins indices for Bernoulli bandits

Beta priors become Beta posteriors

Fun fact:
$$1 + \gamma + \gamma^2 + ... = \frac{1}{1 - \gamma}$$

Gittins indeces from Gittins '11:

Table 8.7 Bernoulli reward process, index values, a = 0.9.

Table 6.7 Bernoum reward process, mack values, $u = 6.5$.											
	α	1	2	3	4	5	6	7	8	9	10
β											
1		.7029	.8001	.8452	.8723	.8905	.9039	.9141	.9221	.9287	.9342
2		.5001	.6346	.7072	.7539	.7869	.8115	.8307	.8461	.8588	.8695
3		.3796	.5163	.6010	.6579	.6996	.7318	.7573	.7782	.7956	.8103
4		.3021	.4342	.5184	.5809	.6276	.6642	.6940	.7187	.7396	.7573
5		.2488	.3720	.4561	.5179	.5676	.6071	.6395	.6666	.6899	.7101
6		.2103	.3245	.4058	.4677	.5168	.5581	.5923	.6212	.6461	.6677
7		.1815	.2871	.3647	.4257	.4748	.5156	.5510	.5811	.6071	.6300
8		.1591	.2569	.3308	.3900	.4387	.4795	.5144	.5454	.5723	.5960
9		.1413	.2323	.3025	.3595	.4073	.4479	.4828	.5134	.5409	.5652
10		.1269	.2116	.2784	.3332	.3799	.4200	.4548	.4853	.5125	.5373

Bellman's solution - brute force via backward recursion

optimal $R(\alpha_1, \beta_1, \alpha_2, \beta_2) = \max\{\frac{\alpha_1}{\alpha_1 + \beta_1} [1 + \gamma R(\alpha_1 + 1, \beta_1, \alpha_2, \beta_2)]$ value

$$\underset{\alpha_{1}+\beta_{1}}{\overset{\textit{win}}{\bigcap}} \bigcirc_{(1,1)}^{(6,5)} + \frac{\beta_{1}}{\alpha_{1}+\beta_{1}} [0 + \gamma R(\alpha_{1}, \beta_{1}+1, \alpha_{2}, \beta_{2})],$$

$$\frac{\alpha_2}{\alpha_2 + \beta_2} [1 + \gamma R(\alpha_1, \beta_1, \alpha_2 + 1, \beta_2)]$$

$$+\frac{\beta_2}{\alpha_2+\beta_2}[0+\gamma R(\alpha_1,\beta_1,\alpha_2,\beta_2+1)]\}$$
 $\frac{(N-1)!}{(2n)!(N-2n-1)!}$

Number of operations (N is horizon with n arms):

$$\frac{(N-1)!}{(2n)!(N-2n-1)!}$$

Full backward recursion is expensive for many arms

Gittins's solution – find a bribe for each arm that makes you indifferent to play

