- Application of Artificial Intelligence that focuses of generating models using data and learning from it

- Supervised Learning
 - You train the machine using data which is already labeled with the correct answer
 - The algorithm learns from labeled training data and predicts outcomes for unforeseen data

- Supervised Learning
 - You train the machine using data which is already labeled with the correct answer
 - The algorithm learns from labeled training data and predicts outcomes for unforeseen data
- Unsupervised Learning
 - Machine finds patterns or discovers information on its own. Data is not labeled
 - Ability to cluster data with hidden features

Supervised Learning

- Regression
 - Predicts a single output value using training data

Supervised Learning

- Regression
 - Predicts a single output value using training data
- Classification
 - Group the output inside a class or category

- Model the probability of an event occuring depending on the values of independent variables

- Model the probability of an event occuring depending on the values of independent variables
- Estimate the probability that an event occurs for some observations versus the probability that the event does not occur

- Model the probability of an event occuring depending on the values of independent variables
- Estimate the probability that an event occurs for some observations versus the probability that the event does not occur
- Predict the effect of variables on some binary or multiclass response

- Model the probability of an event occuring depending on the values of independent variables
- Estimate the probability that an event occurs for some observations versus the probability that the event does not occur
- Predict the effect of variables on some binary or multiclass response
- Classify observations by estimating the probability that an observation is in a particular category

- Model the probability of an event occuring depending on the values of independent variables
- Estimate the probability that an event occurs for some observations versus the probability that the event does not occur
- **Predict** the effect of variables on some binary or multiclass response
- Classify observations by estimating the probability that an observation is in a particular category

		Log	ishi	C	R	290	es	sia	?		7				:		: :	
hours	passed?										1-					-	*	
3	0																	
8	1	did	I	þas	s t	he	cla	ass'	· ·	: :				ho	w	2		-
2	0	This	bec	emel	a		las	sifi	cad	ien				: :				
	P(y; depensione			7	P	vak	ab	ilit	4	th	al-	a	9	ju	س			
	P(y:	=	z;	9)	- 1	la	iver	A S	sw 1	e 7	κ,	au	d				: :	
	some	bara	nete	No	θ.	0									•			

$$P(y_i = 1 \mid x : \theta) = \theta^T \overline{x}$$
 $B^T = [\theta_0, \theta_1, \dots], \overline{x} = [1, x_0, \dots]$

A linear model will not work here

A linear regression model could predict probabilities beyond 0 or 1 which is not possible.

So our hypothesis function becomes:

 $h(x) = \sigma(\theta^T \overline{x}) = \frac{1}{1 + e^{-\theta^T \overline{x}}}$

where $\sigma = \text{sigmoid function}$

So, for
$$\Delta$$
 data point 1:

$$P(y_i = 1 \mid x_i : \theta) = \frac{1}{1 + e^{-\theta T x}}$$
and
$$P(y_i = 0 \mid x_i : \theta) = 1 - h(x)$$
Combining them together:

$$P(y_i \mid x_i : \theta) = h(x_i) (1 - h(x_i)) \xrightarrow{\text{Bernoulli}} P(y_i \mid x_i : \theta) = h(x_i) (1 - h(x_i)) \xrightarrow{\text{Distribution}} P(x_i \mid x_i : \theta) = \prod_{i=1}^{m} h(x_i)^{(i-h(x_i))}$$

$$L(\theta) = P(x \mid x_i : \theta) = \prod_{i=1}^{m} h(x_i)^{(i-h(x_i))}$$

$$L(\theta) = \text{likelihood function for } \theta$$

```
L(0) represents now plansible the model (0 parameters) is given all of my data points.
   How to find optimal & paramel
  But it is hard to maximize this function with lots of probabilities multiplied.
```

$$f(\theta) = \sum_{i=1}^{m} y_i \log \left(\sigma(\theta^T \bar{x}_i)\right) + (1-y_i) \log \left(\sigma(\theta^T \bar{x}_i)\right)$$
Since we want to maximize this function, and not minimize, we will do gradient ascent. First find derivative:

for 1 data point;
$$\frac{\partial f(\theta)}{\partial \theta} = \frac{y}{\sigma(\theta^T \bar{x})} \left(\frac{\partial \sigma(\theta^T \bar{x})}{\partial \theta} + \frac{1-y_i}{\sigma(\theta^T \bar{x})} - \frac{\partial \sigma(\theta^T \bar{x})}{\partial \theta}\right)$$

$$\left[\log(x) = \frac{1}{x}\right] \left[\text{chain rule}\right]$$
Note that:
$$\frac{\partial \sigma(\theta^T \bar{x})}{\partial \theta} = \frac{\partial \sigma(\theta^T \bar{x})}{\partial \theta}$$

$$\frac{\partial \sigma(\theta^T \bar{x})}{\partial \theta} = \frac{\partial \sigma(\theta^T \bar{x})}{\partial \theta} =$$

$$\frac{\partial f(\theta)}{\partial \theta} = y - \sigma(\theta^{T} \times) \times$$

$$= (y - h(\times)) \times$$

$$\theta^{+} = \theta^{-} + \alpha \frac{\partial f(\theta)}{\partial \theta}$$

$$\theta^{+} = \text{new } \theta \text{ values}$$

$$\theta^{-} = \text{old } \theta \text{ values}$$

$$\alpha = \text{step size / learning rate}$$

Confusion Matrix

Actual Values

		Positive (1)	Negative (0)				
Predicted Values	Positive (1)	TP	FP				
	Negative (0)	FN	TN				

Actual Values

TRUE POSITIVE FALSE POSITIVE **Predicted Values** You're pregnant You're pregnant FALSE NEGATIVE TRUE NEGATIVE 0 You're not pregnant You're not pregnant TYPE 2 ERBOR

Actual Values

FALSE POSITIVE Predicted Values You're pregnant You're pregnant FALSE NEGATIVE TRUE NEGATIVE You're not pregnant You're not pregnant

TRUE POSITIVE

TYPE 2 ERE

TRUE POSITIVE (TP)

You predicted positive and it's true

TRUE NEGATIVE (TN)

You predicted negative and it's true

FALSE POSITIVE (FP)

You predicted positive and it's false

FALSE NEGATIVE(FN)

You predicted negative and it's false

Confusion Matrix (Measures)

- 1. Recall = TP/(TP+FN)
 - a. Out of all the positive classes, how much we predicted correctly. Should be as high as possible

Confusion Matrix (Measures)

- 1. Recall = TP/(TP+FN)
 - a. Out of all the positive classes, how much we predicted correctly. Should be as high as possible
- 2. Precision = TP/(TP + FP)
 - a. Out of all the positive classes we have predicted correctly, how many are actually positive

Confusion Matrix (Measures)

- 1. Recall = TP/(TP+FN)
 - a. Out of all the positive classes, how much we predicted correctly. Should be as high as possible
- 2. Precision = TP/(TP + FP)
 - a. Out of all the positive classes we have predicted correctly, how many are actually positive
- 3. Accuracy = (TP+TN) / Total
 - a. Out of all classes, how much did we predict correctly