Reg. No

B.Tech/M.Tech(Integrated) DEGREE EXAMINATION, DECEMBER 2023

Third Semester

21CSC201J - DATA STRUCTURES AND ALGORITHMS

(For the candidates admitted during the academic year 2022-2023 onwards)

TA.T		*		
100	n	*	α	=

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

ii. Pa	art - B and Part - C should be answered in a	nswer booklet.				
Tim	e: 3 Hours		N	Iax.	Mark	s: 75
PART - A (20 × 1 = 20 Marks Answer all Questions		*		Mark	s BL	CC
1.	We can certainly get a conclusion about asymptotic analysis.	t an algorithm's scenario from	l	1	1	1
	(A) best case	(B) best case, average case, and worst case				
	(C) worst case	(D) average case				
2.	If 'p' is declared as integer pointer, then, a assignment (A) p = &a[0]		; ;	1	1	1
	(C) p = &a[0]	(B) $p++$ (D) $p == a[0]$				
3.	Which of the following is the correct decla (A) struct node*{int data;node *link;}			1	2	1
	(C) struct node {int data;node *link;}	(D) struct {int struct node } node* data; *link;				
4.	How do you initialize an array in C? (A) int arr[3] = (1,2,3); (C) int arr[3] = {1,2,3};	(B) int $arr(3) = \{1,2,3\};$ (D) int $arr(3) = \{1,2,3\};$	•	1	1 -	1
5.	Which of the following c code is used to cr (A) ptr=(NODE*)malloc(sizeof(NODE)); (C) ptr=(NODE*)malloc(sizeof(NODE*));	(B) ptr=(NODE*)malloc(NODE);		1	2	2
6.	Which of the following is a practical example (A) A browser cookie file	ple of a doubly linked list? (B) A quest in a game that lets users retry stages.		1	1	2
	(C) A game in which the player runs forward.	(D) A first-in-first out scheduling system.				4.
7.	Polynomial addition can be implement structures?	ed using which of the following data	Ĺ	1	1	2
	(A) Linked List (C) Stacks	(B) Trees (D) Priority Queue				
8.	In a Circular linked list organization, inser of	tion of a record involves the modification		1	1	2
	(A) No pointer (C) 2 pointer	(B) 1 pointer (D) 3 pointer				

9.	The following sequence of operations is (40),POP,PUSH (30),PUSH(40),POP,POP,I value popped out is:	performed on stack: PUSH (30), PUSH POP, PUSH (40), POP. The sequence of the	1	3	3
	(A) 40,30,40,30,40 (C) 40,40,30,40,30	(B) 30,40,40,30,40 (D) 40,40,30,30,40			ť
10.	stack	nost value but will not delete it from the	1 ×	1	3
	(A) Peek (C) Pop	(B) Push (D) Enqueue	ya ya Alikata	enell Enelle Enelle	
11.	A circular queue is implemented using ar with 0, front is 6, and rear is 9. The insertic index.	n array of size 10. The array index starts on of next element takes place at the array		2	. 3
	(A) 0 (C) 9	(B) 7 (D) 10			
12.	Which is the most appropriate data structur (A) queue (C) tree	e for reversing a word? (B) stack (D) graph	í	2	3
13.	In Binary tree traversing first visit the root is called		1	1	4
	(A) Inorder (C) Postorder	(B) Preorder (D) Levelorder	, s , s	52	
14.	What is the formula used in quadratic prob (A) Hash key = key mod table size	oing? (B) Hash key=(hash(x)+F(i)) mod table size	1	1	4
	(C) Hash key=(hash(x)+F(i^2)) mod table size	$(D) H(x) = x \mod 17$	2 \$	2	
15.	Find the postorder traversal of the binary t	ree shown below	1	2	4
	P touth				
	R				
	S T U V	tem a miner in particular de properties de la constitue de la			
	\mathbf{w}	rom productivo la la manga de			
	(A) P Q R S T U V W X (C) S W T Q X U V R P	(B) WRSQPVTUX (D) STWUXVQRP	i v		
16.	Select the correct definition for balancing to (A) Difference between left subtree and right subtree (C) Difference between root and degree	factor of a tree (B) Difference between leaf node and non-leaf node (D) Difference between height and	1	1	4

17.	Select the indegree and outdegree of a node E	for the given graph.	d Hea	av [*] , 103	٠,
	A B E			a u	
			,	. *	
	(A) Indegree 1 and Outdegree 1 (F	B) Indegree 2 and Outdegree 2	+0		
.1	(C) Indegree: 0, Outdegree: 2 (I	D) Indegree: 1, Outdegree: 3			
18.		backtracks, and then explores another	1	2	5
19.		graph with 'n' vertices have? B) (n*(n+1))/2 D) 2n	-1 m	2	5
20.		visit before some other places. What nat? B) Breadth First Search	1	2	5
	(C) Topological Sorting (I	D) Dijkstra's Shortest path algorithm			
			Mark	s BL	CC
	(C) Topological Sorting PART - B ($4 \times 10 = 40$ Marker any 4 Questi	Marks)	Mark	s BL	CC
21.	PART - B $(4 \times 10 = 40)$	Marks) ions	Mark	as BL	1
21.	PART - B $(4 \times 10 = 40)$ Answer any 4 Questi	Marks) ions			
	PART - B (4 × 10 = 40 In Answer any 4 Questions) a) Find the tight bound of running time of a consider a goods train, which initially a compartments are linked with engines one by be attached or detached with the engine or in both	Marks) ions ubic function. $f(n) = 2n^3 + 3n + 6$; $g(n) =$ has an engine as a header. Later one in series. The compartments can	10		
	 PART - B (4 × 10 = 40 If Answer any 4 Questions) a) Find the tight bound of running time of a consider a goods train, which initially compartments are linked with engines one by 	Marks) ions ubic function. $f(n) = 2n^3 + 3n + 6$; $g(n) =$ has an engine as a header. Later one in series. The compartments can	10		
22.	PART - B (4 × 10 = 40 In Answer any 4 Question a) Find the tight bound of running time of a consider a goods train, which initially compartments are linked with engines one by be attached or detached with the engine or in both the following operations in the goods train 1. Attaching a compartment with the engine	Marks) ions ubic function. $f(n) = 2n^3 + 3n + 6$; $g(n) = 2n^3 + 6$; $g(n)$	10		
22.	PART - B (4 × 10 = 40 II) Answer any 4 Question a) Find the tight bound of running time of a consider a goods train, which initially compartments are linked with engines one by be attached or detached with the engine or in both the following operations in the goods train 1. Attaching a compartment with the engine 2. Detaching a compartment from the engine Sunil wants to rearrange his expression. He is operator comes between variables. He wants operators. Help him to convert the expression.	Marks) ions ubic function. $f(n) = 2n^3 + 3n + 6$; $g(n) = 2n^3 + 2n + 6$; g	10	3	2

PART - C (1 × 15 = 15 Marks) Answer any 1 Questions

Marks BL CO

5

2

- 27. Consider a data structure with the elements 22,32,44,51,65,71,80 which are stored in adjacent memory locations. The element 44 needs to be deleted first and after that you want to insert the data element 92 at the 4th position. Write the appropriate pseudo code to perform the aforementioned operations and provide a pictorial representation of it.
- 15 5 5
- 28. Harish plans to have a small library at his home. He has lot of books and he wants to assign a unique number to each book. This unique number helps him in identifying the position of the books on the bookshelf. The size of the bookshelf is 10. Help him to place the books in the bookshelf without any collision. The entries are 69,08,39,48,15,77,19 and discuss the collision avoidance strategies.
