

# SAAS: uma Solução de Autenticação para Aplicativos de Smartphones

**Rafael Fernandes** 

## SESC-RS





### SESC-RS

Problema: O QR Code é estático. Apenas o CPF do usuário acrescido a dois zero ao final.









#### **Alice**

Professora da UNIPAMPA





#### **Alice**

Professora da UNIPAMPA



#### **Benedito**

Porteiro da UNIPAMPA



#### **Alice**



#### **Benedito**



#### **Alice**

Professora da UNIPAMPA





#### **Benedito**

Porteiro da UNIPAMPA



#### **Alice**

Professora da UNIPAMPA





#### **Alice**

Professora da UNIPAMPA



### Cláudio (!Schepke)

Novo Porteiro da UNIPAMPA



#### **Alice**





#### **Alice**

Professora da UNIPAMPA







### Diego

Atacante (assistente)



### Diego

Atacante (assistente)



#### Diego

Atacante (assistente)







#### **Alice**





#### **Alice**





#### **Alice**

Professora da UNIPAMPA



Problema: engenharia social

### Cláudio (!Schepke)

Novo Porteiro da UNIPAMPA



## **Problemas?**















# Problemas?











**Tecnologias** 

**Algoritmos similares** 

**SAAS** 

**Considerações Finais** 

Cronograma

### Autenticação por Múltiplos Fatores

O que é autenticação digital?

Fatores de Autenticação

### O que é autenticação digital?



### O que é autenticação digital?



### Autenticação por Múltiplos Fatores

O que é autenticação digital?

Fatores de Autenticação

### Fatores de autenticação

#### **Conhecimento**



### Fatores de autenticação

#### Conhecimento



#### **Posse**



### Fatores de autenticação

#### **Conhecimento**



#### **Posse**



#### Identidade / Biometria



### Autenticação por Múltiplos Fatores

O que é autenticação digital?

Fatores de Autenticação









**Tecnologias** 

**Algoritmos similares** 

SAAS

**Considerações Finais** 

Cronograma

## Algoritmos similares



"OTP-Based Two-Factor Authentication Using Mobile Phones"

### Problemas em aberto

- Utilização de funções hash antigas como SHA-1 e MD5
- PKE depende da confiança das certificadoras
- Utilização de fatores de posse (smart cards)
- Custo de envio de SMS e cartas para enviar chaves e códigos

**Tecnologias** 

**Algoritmos similares** 

**SAAS** 

**Considerações Finais** 

Cronograma

## Principais características da SAAS

- Proposta de protocolos de identificação e autenticação genéricos
  - Uso canais out-of-band no processo de identificação
- Geração códigos únicos

## Protocolo de identificação

Identificar usuários

- Vincular acesso de usuário do aplicativo ao dispositivo
- Gerar chave mestra

## Protocolo de identificação - Diagrama 1/3



## Protocolo de identificação - Diagrama 2/3



## Protocolo de identificação - Diagrama 3/3



## Protocolo de identificação - Algoritmo

| 1. Cliente $\stackrel{\text{TLS}}{\longleftrightarrow}$ Servidor      | Conexão com verificação do certificado do Servidor                                                                                               |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Servidor $\rightarrow$ Cliente                                     | [CODE_TLS, $code_1$ ]                                                                                                                            |
| 3. Servidor $\rightarrow$ Cliente                                     | [CODE_SMS, $code_2$ ]                                                                                                                            |
| 4. Servidor → Cliente                                                 | [CODE_EMAIL, $code_3$ ]                                                                                                                          |
| 5. Cliente, Servidor                                                  | $K_{T1} \leftarrow \text{H}(tls\_session\_key  code_1  code_2  code_3)$                                                                          |
| 6. Cliente → Servidor                                                 | [SEND, nonce, $E_{K_{T_1}}$ (imei, $app\_rand1$ )], $HMAC_{K_{T_1}}$                                                                             |
| 7. Cliente, Servidor                                                  | $K_{T2} \leftarrow \text{H}(imei  app\_rand1  K_{T1})$                                                                                           |
| 8. Servidor → Cliente                                                 | [SEND, nonce, $E_{K_{T2}}(server\_rand)$ ], $HMAC_{K_{T2}}$                                                                                      |
| 9. Cliente, Servidor                                                  | $K_m \leftarrow H(K_{T1}  K_{T2}  imei  app\_rand1  server\_rand)$                                                                               |
| 10. Cliente → Servidor                                                | [V_MKEY, nonce, $E_{K_m}(app\_rand2)$ ], $HMAC_{K_m}$                                                                                            |
| 11. Servidor → Cliente                                                | [V_MKEY, nonce, $E_{K_m}(app\_rand2 + 1)$ ], $HMAC_{K_m}$                                                                                        |
| <ul><li>9. Cliente, Servidor</li><li>10. Cliente → Servidor</li></ul> | $K_m \leftarrow \text{H}(K_{T1}  K_{T2}  imei  app\_rand1  server\_rand)$<br>[V_MKEY, nonce, $\text{E}_{K_m}(app\_rand2)$ ], $\text{HMAC}_{K_m}$ |

## Protocolo de autenticação

O que é?

Como funciona?

Quais são as vantagens?

## O que é?

- Esquema de autenticação simples
- Gerador de códigos únicos
- Protocolo genérico

## Protocolo de autenticação

O que é?

Como funciona?

Quais são as vantagens?

#### **Como funciona?**

- Códigos de autenticação (OTAC):
  - $\circ$   $K_c$  é a chave inicial  $(K_c = H(K_m))$
  - Primeiro código OTAC = K<sub>c</sub>
  - Próximos códigos OTAC = H<sup>N</sup>(OTAC)
  - Utilizados como chave para HMAC
- Índices:
  - Diferença entre índices (iA iS)
  - Sincroniza OTAC
  - Verifica autenticidade OTAC

## Como funciona?



#### **Como funciona?**

- Ciclos de atualizações:
  - o Índices incrementados a cada troca de mensagens
  - Índices incrementados ao solicitar novo QR Code (aplicações móveis)
  - Índices incrementados a cada 60 segundos (aplicações móveis)
  - Código OTAC e índices sincronizados a cada troca de mensagens

## Protocolo de autenticação

O que é?

Como funciona?

Quais são as vantagens?

## Quais são as vantagens?

- Não utiliza senhas estáticas
- Códigos dinâmicos
- Não há necessidade de transmitir os códigos de autenticação
- Garante Perfect Forward Secrecy
- Pode ser aplicado em casos de usos variados

## Caso de uso 2: gerenciamento de chaves

#### **Alice**



#### **Benedito**



## Protocolo aplicado ao gerenciamento de chaves

#### **Alice**

Professora da UNIPAMPA



#### **Benedito**

Porteiro da UNIPAMPA





## Caso de uso 2: gerenciamento de chaves - Diagrama



## Caso de uso 2: gerenciamento de chaves - Algoritmo

Usuário Abre o aplicativo da carteirinha digital de identificação
Usuário QR Code = [AUTH, nome, tipo, foto, iA], HMAC
Porteiro Lê o QR Code
Porteiro OTAC ←H<sup>iA-iS</sup>(OTAC)
Porteiro Verifica HMAC utilizando o OTAC como chave
Porteiro Confere as informações do usuário (nome, tipo, foto, etc.)

## Caso de uso 3: acesso em catracas digitais



### Caso de uso 3: acesso em catracas digitais - Diagrama



## Caso de uso 3: acesso em catracas digitais - Algoritmo

Usuário Abre o aplicativo da carteirinha digital de identificação
Usuário QR Code = [id, iA], HMAC
Usuário Aproxima o QR Code do leitor da catraca
Catraca Lê o QR Code
Catraca Atualiza o OTAC ←H<sup>iA-iS</sup>(OTAC)
Catraca Verifica HMAC utilizando o OTAC como chave

**Tecnologias** 

**Algoritmos similares** 

**SAAS** 

**Considerações Finais** 

Cronograma

## Considerações finais

Protocolos genéricos

Independência de protocolos

Aplicação prática



# **Obrigado!**

Contato: faelsfernandes@gmail.com



## SAAS: uma Solução de Autenticação para Aplicativos de Smartphones

**Rafael Fernandes**