3

3

3

3

3

1. Complete the return parameters in the following code for the extneded Euclidian algorithm so that, on input integers $a > b \ge 0$ the algorithm returns the tuple $< d, \alpha, \beta >$ where d = GCD(a, b) and $a\alpha + b\beta = d, \alpha, \beta$ integers. You **must** justify your answer to get *any* credits.

 $< d, \alpha, \beta > Euclid(a, b)$

if (a = b) return(a, 1, 0) /* return(b, 0, 1); return(a, 0, 1); return(b, 1, 0) also works fine */

else if $(a < b) < d, \alpha, \beta > = Euclid(b,a)$; return $< d, \beta, \alpha >$

else if
$$(a > b)$$
 $\langle d, \alpha, \beta \rangle = Euclid(a - b, b)$; return $(d, \alpha, \beta - \alpha)$

The last part follows from $d = \alpha(a - b) + \beta b = \alpha a + (\beta - \alpha)b$.

2. How may numbers between 1 and 5000 (both inclusive) have GCD 4 with 5000? Don't blindly use a formula without justification. (You are allowed to assume the formula for $\phi(m)$ and that the number of integers between 1 and m which are co-prime to m is $\phi(m)$ for any positive integer m).

 $|\{1 \le i \le n | GCD(i,n) = d\}| = |\{i \le j \le \frac{n}{d} | GCD(j,\frac{n}{d}) = 1\}| = \phi(\frac{n}{d}). \text{ Here } n = 5000, d = 4. \text{ Thus solution is } \phi(1250).$

3. Consider the linear transformation T in $\mathbf{R^2}$ which maps [x,y] to [x+y,0]. Let $[a,0] \in \mathbf{R^2}$. What is the inverse image of (a,0)? (That is find the general solution to T[x,y]=[a,0]).

Nullspace(T)= $\{[x, -x] : x \in \mathbf{R}\}$. T[a, 0] = [a, 0]. Hence the general solution is the [a, 0]+Nullspace(T). That is $\{[a + x, -x] | x \in \mathbf{R}\}$.

4. Let p > 2 be a prime number. How many numbers in $\{0, 1, 2, ..., p-1\}$ satisfy the equation $x^2 - 1 = 0 \mod p$? Justify your answer.

 $x^2-1=0 \mod p$ if and only if $(x+1)(x-1)=0 \mod p$ if and only if p|(x+1) or p|(x-1) (if a prime divides a product, it must divide one of the factors). Since $x \in \{0,1,2,...,p-1\}$, we have $x \in \{1,p-1\}$. There are exactly two solutions as p>2.

5. Let p > 2, q > 2 be distinct prime numbers. How many numbers in $\{0, 1, 2, ..., pq - 1\}$ satisfy the equation $x^2 - 1 = 0$ mod pq? (Hint: Use previous question and the Chinese remainder theorem).

To solve $x^2-1=0$ in \mathbf{Z}_{pq} , from Chinese remainder theorem, it follows that it is sufficient to solve the equation in $\mathbf{Z}_p \times \mathbf{Z}_q$. $(a,b) \in \mathbf{Z}_p \times \mathbf{Z}_q$ is a solution to $x^2-1=0$ if and only if $(a^2,b^2)=1$. This requires $a^2=1$ in \mathbf{Z}_p as well as $b^2=1$ in \mathbf{Z}_q Thus $a \in \{1,p-1\}$ in \mathbf{Z}_p and $b \in \{1,q-1\}$ in \mathbf{Z}_q from the previous question. Thus there are four distinct solutions (1,q-1), (1,1), (p-1,1), (p-1,q-1). Note that the second and the last are the "standard solutions" 1 and -1 in \mathbf{Z}_{pq}

For example, if p = 3 and q = 4, in $\mathbf{Z}_{pq} = \mathbf{Z}_{12} = \mathbf{Z}_3 \times \mathbf{Z}_4$, the four solutions (1,3), (1,1), (2,1)(2,3) correspond to 7,1,5 and 11 respectively. All these solutions on squaring gives 1 modulo 12.