Introduction to Machine Learning

Neural Networks

Mingchen Gao

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA mgao8@buffalo.edu Slides adapted from Varun Chandola

Outline

Extending Perceptrons

Multi Layered Perceptrons

Generalizing to Multiple Labels

An Example of a Multilayer Neural Network

Properties of Sigmoid Function

Motivation for Using Non-linear Surfaces

Feed Forward Neural Networks

Backpropagation

Derivation of the Backpropagation Rules

Final Algorithm

Wrapping up Neural Networks

Bias Variance Tradeoff

Extending Perceptrons

- Questions?
 - ► How to learn non-linear surfaces?
 - ▶ How to generalize to multiple outputs, numeric output?

Anatomy of a Sigmoid Unit (r)

Generalizing to Multiple Labels

- Distinguishing between multiple categories
- Solution: Add another layer Multi Layer Neural Networks

Mingchen Gao CSE 4/574 5 / 24

Generalizing to Multiple Labels

- Distinguishing between multiple categories
- Solution: Add another layer Multi Layer Neural Networks

What Threshold Unit to Use?

- ► Linear Unit
- ► Perceptron Unit

What Threshold Unit to Use?

- ► Linear Unit
- ► Perceptron Unit
- Sigmoid Unit
 - Smooth, differentiable threshold function

$$\sigma(\textit{net}) = \frac{1}{1 + e^{-\textit{net}}}$$

► Non-linear output

Properties of Sigmoid Function

Motivation for Using Non-linear Surfaces

Feed Forward Neural Networks - Architecture

Feed Forward Neural Networks

- → d + 1 input nodes (including bias)
- ▶ *m* hidden nodes
- ▶ *k* output nodes

- ▶ At hidden nodes: $\mathbf{w_j}$, $1 \le j \le m$, $\mathbf{w_j} \in \mathbb{R}^{d+1}$
 - At output nodes: $\mathbf{w_l}, 1 \leq l \leq k$, $\mathbf{w_l} \in \mathbb{R}^{m+1}$

Learning Weights of the Multi-layer Network

- Assume that the network structure is predetermined (number of hidden nodes and interconnections)
- ▶ Objective function for *N* training examples:

$$J = \sum_{i=1}^{N} J_i = \frac{1}{2} \sum_{i=1}^{N} \sum_{l=1}^{k} (y_{il} - o_{il})^2$$

- \triangleright y_{il} Target value associated with I^{th} class for input (\mathbf{x}_i)
- $y_{il} = 1$ when k is true class for \mathbf{x}_i , and 0 otherwise
- ightharpoonup oil Predicted output value at I^{th} output node for \mathbf{x}_i

What are we learning?

Weight vectors for all output and hidden nodes that minimize J

The Backpropagation Algorithm

- 1. Initialize all weights to small values
- 2. For each training example, $\langle \mathbf{x}, \mathbf{y} \rangle$:
 - 2.1 Propagate input forward through the network
 - 2.2 **Propagate errors backward** through the network

Backpropagation Algorithm - Continued

Gradient Descent

- Move in the opposite direction of the gradient of the objective function
- \triangleright $-\eta \nabla J$

$$\nabla J = \sum_{i=1}^{N} \nabla J_i$$

- What is the gradient computed with respect to?
 - ► Weights *m* at hidden nodes and *k* at output nodes
 - $\mathbf{w}_i \ (j=1\ldots m)$
 - $\mathbf{w}_l \ (l=1\ldots k)$
- $\blacktriangleright \mathbf{w}_j \leftarrow \mathbf{w}_j \eta \frac{\partial J}{\partial \mathbf{w}_j} = \mathbf{w}_j \eta \sum_{i=1}^N \frac{\partial J_i}{\partial \mathbf{w}_j}$
- $\mathbf{v}_I \leftarrow \mathbf{w}_I \eta \frac{\partial J}{\partial \mathbf{w}_I} = \mathbf{w}_I \eta \sum_{i=1}^N \frac{\partial J}{\partial \mathbf{w}_i}$

$$\nabla J_i = \begin{bmatrix} \frac{\partial J_i}{\partial \mathbf{w}_1} \\ \frac{\partial J_i}{\partial \mathbf{w}_2} \\ \vdots \\ \frac{\partial J_i}{\partial \mathbf{w}_{m+k}} \end{bmatrix}$$

Anatomy of a Sigmoid Unit (r)

- ▶ Need to compute $\frac{\partial J_i}{\partial w_m}$
- ▶ Update rule for the q^{th} entry in the r^{th} weight vector:

$$w_{rq} \leftarrow w_{rq} - \eta \frac{\partial J}{\partial w_{rq}} = w_{rq} - \eta \sum_{i=1}^{N} \frac{\partial J_i}{\partial w_{rq}}$$

Mingchen Gao CSE 4/574 14 / 24

Derivation of the Backpropagation Rules

Assume that we only one training example, i.e., $i = 1, J = J_i$. Dropping the subscript *i* from here onwards.

- Consider any weight w_{ra}
- Let u_{ra} be the q^{th} element of the input vector coming in to the r^{th} unit.

Observation 1

Weight w_{rq} is connected to J through $net_r = \sum_i w_{rq} u_{rq}$.

$$\frac{\partial J}{\partial w_{rq}} = \frac{\partial J}{\partial net_r} \frac{\partial net_r}{\partial w_{rq}} = \frac{\partial J}{\partial net_r} u_{rq}$$

Analyzing Output Nodes

Observation 2

net_I for an **output node** is connected to J only through the output value of the node (or o_l)

$$\frac{\partial J}{\partial net_l} = \frac{\partial J}{\partial o_l} \frac{\partial o_l}{\partial net_l}$$

Analyzing Output Nodes

Observation 2

 net_I for an **output node** is connected to J only through the output value of the node (or o_I)

$$\frac{\partial J}{\partial net_I} = \frac{\partial J}{\partial o_I} \frac{\partial o_I}{\partial net_I}$$

Update Rule for Output Units

$$w_{lj} \leftarrow w_{lj} + \eta \delta_l u_{lj}$$

where $\delta_{I} = (y_{I} - o_{I})o_{I}(1 - o_{I}).$

▶ Question: What is u_{li} for the l^{th} output node?

Analyzing Hidden Nodes

Observation 3

net; for a **hidden node** is connected to J through all output nodes

$$\frac{\partial J}{\partial net_j} = \sum_{l=1}^{k} \frac{\partial J}{\partial net_l} \frac{\partial net_l}{\partial net_j}$$

Analyzing Hidden Nodes

Observation 3

 net_i for a **hidden node** is connected to J through all output nodes

$$\frac{\partial J}{\partial net_j} = \sum_{l=1}^{k} \frac{\partial J}{\partial net_l} \frac{\partial net_l}{\partial net_j}$$

Update Rule for Hidden Units

$$w_{jp} \leftarrow w_{jp} + \eta \delta_j u_{jp}$$

Analyzing Hidden Nodes

Observation 3

 net_i for a **hidden node** is connected to J through all output nodes

$$\frac{\partial J}{\partial net_j} = \sum_{l=1}^{k} \frac{\partial J}{\partial net_l} \frac{\partial net_l}{\partial net_j}$$

Update Rule for Hidden Units

$$w_{jp} \leftarrow w_{jp} + \eta \delta_j u_{jp}$$

$$\delta_j = o_j(1 - o_j) \sum_{l=1}^k \delta_l w_{lj}$$

$$\delta_I = (y_I - o_I)o_I(1 - o_I)$$

▶ Question: What is u_{jp} for the j^{th} hidden node?

Final Algorithm

- ▶ While not converged:
 - Move forward to compute outputs at hidden and output nodes
 - Move backward to propagate errors back
 - Compute δ errors at output nodes (δ_I)
 - Compute δ errors at hidden nodes (δ_i)
 - Update all weights according to weight update equations

Mingchen Gao

Conclusions about Neural Networks

- Error function contains many local minima
- ▶ No guarantee of convergence
 - ▶ Not a "big" issue in practical deployments
- ► Improving backpropagation

19 / 24

Mingchen Gao CSE 4/574

Conclusions about Neural Networks

- Error function contains many local minima
- ► No guarantee of convergence
 - ▶ Not a "big" issue in practical deployments
- Improving backpropagation
 - Adding momentum
 - Using stochastic gradient descent
 - Train multiple times using different initializations

Bias Variance Tradeoff

- ▶ Neural networks are universal function approximators
 - By making the model more complex (increasing number of hidden layers or m) one can lower the error
- ▶ Is the model with least training error the best model?

Bias Variance Tradeoff

- Neural networks are universal function approximators
 - By making the model more complex (increasing number of hidden layers or m) one can lower the error
- Is the model with least training error the best model?
 - ► The simple answer is no!
 - Risk of overfitting (chasing the data)
 - ▶ Overfitting ← High generalization error

High Variance - Low Bias

- "Chases the data"
- Very low training error
- Poor performance on unseen data

Low Variance - High Bias

- Less sensitive to training data
- ► Higher training error
- Better performance on unseen data

Getting the Right Balance

- ► General rule of thumb If two models are giving similar training error, choose the **simpler** model
- ▶ What is simple for a neural network?
- ▶ Low weights in the weight matrices?
 - ► Why?

Mingchen Gao CSE 4/574 21 / 24

Introducing Bias in Neural Network Training

- Penalize solutions in which the weights are high
- ► Can be done by introducing a penalty term in the objective function
 - Regularization

Regularization for Backpropagation

$$\widetilde{J} = J + \frac{\lambda}{2n} \left(\sum_{j=1}^{m} \sum_{i=1}^{d+1} (w_{ji}^{(1)})^2 + \sum_{l=1}^{k} \sum_{j=1}^{m+1} (w_{lj}^{(2)})^2 \right)$$

Other Extensions?

- Use a different loss function (why)?
 - Quadratic (Squared), Cross-entropy, Exponential, KL Divergence, etc.
- ▶ Use a different activation function (why)?
 - Sigmoid

$$f(z) = \frac{1}{1 + exp(-z)}$$

Tanh

$$f(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Rectified Linear Unit (ReLU)

$$f(z) = max(0, z)$$

References

Murphy Book Chapter 13