第五章 平面向量及解三角形(基础卷)

一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符 合题目要求的.)

1. 已知向量 $\overset{\mathtt{r}}{a}=(3,1),\overset{\mathtt{l}}{b}=(1,x)$, 且 $\overset{\mathtt{r}}{a}\perp\overset{\mathtt{l}}{b}$, 那么x的值是 (

B. $-\frac{1}{3}$

C. 3

D. -3

2. 记 VABC 的内角 A,B,C 的对边分别为 a,b,c ,若 a=b=4c ,则 $\frac{\sin A}{\sin B+\sin C}=$ (

D. 2

3. 向量 $\vec{a} = (1,2)$, $\vec{b} = (-2,1)$, 则 $\left| 2\vec{a} + \vec{b} \right| = ($

B. $\sqrt{5}$

C. 3

4. 在VABC中, $AB\cdot AC=0$,AB=1,AC=2,且角A的平分线AD交BC于D,则AD=(

A. $\frac{2}{3} \frac{\text{UM}}{AB} + \frac{1}{3} \frac{\text{UM}}{AC}$

B. $\frac{2}{5} \frac{\text{UM}}{AB} + \frac{3}{5} \frac{\text{UM}}{AC}$

C. $\frac{1}{3} \frac{\text{cut}}{AB} + \frac{2}{3} \frac{\text{cut}}{AC}$

D. $\frac{3}{5} \frac{\text{UM}}{AB} + \frac{2}{5} \frac{\text{UM}}{AC}$

5. VABC中,内角A,B,C所对的边分别为a,b,c,若 $a^2+c^2-b^2=\sqrt{3}ac$,则 ΘB 的大小为(

B. $\frac{\pi}{3}$ C. $\frac{\pi}{6}$ $\frac{5\pi}{6}$ D. $\frac{\pi}{3}$ $\frac{2\pi}{3}$

6. 在VABC中,已知BC=6,A=30°,B=120°,则VABC的面积等于(

B. 18

C. $9\sqrt{3}$ D. $18\sqrt{3}$

7. 在VABC中,已知 $\sin C = 2\sin(B+C)\cos B$,那么VABC一定是(

A. 等腰直角三角形 B. 等腰三角形

C. 直角三角形

8. 如图,在VABC中, $AN = \frac{1}{3}NC$,P是BN上的一点,若 $AP = \frac{3}{11}AB + mAC$,则实数m的值为(

二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.

全部选对的得5分,部分选对的得2分,有选错的得0分.)

9. 已知单位向量a,b的夹角为 120° ,则以下说法正确的是(

A.
$$|a + b| =$$

A.
$$| \overset{\mathbf{r}}{a} + \overset{\mathbf{i}}{b} | = 1$$
 B. $(\overset{\mathbf{r}}{a} + 2\overset{\mathbf{i}}{b}) \perp \overset{\mathbf{r}}{a}$

C.
$$\cos\langle \stackrel{\mathsf{r}}{a} - \stackrel{\mathsf{r}}{b}, \stackrel{\mathsf{r}}{b} \rangle = \frac{\sqrt{3}}{2}$$

C.
$$\cos\langle a^r - b^r, b^r \rangle = \frac{\sqrt{3}}{2}$$
 D. $a^r + 2b^r = 5$ 可以作为平面内的一组基底

- **10**. $\triangle ABC$ 的内角 A, B, C的对边分别为 a, b, c, 则下列命题正确的是(
- A. 若 $A=30^{\circ}$, a=3, b=4, 则 $\triangle ABC$ 有两解
- B. 若 $\begin{pmatrix} AB 3AC \end{pmatrix} \perp CB$, 则角 A 最大值为 30°
- C. 若 $a^2 + b^2 > c^2$,则 $\triangle ABC$ 为锐角三角形

D. 若
$$AP = \lambda \begin{pmatrix} \mathbf{uur} & \mathbf{uur} \\ AB & AC \\ \mathbf{uur} & \mathbf{uur} \\ AB \end{pmatrix}$$
,则直线 AP 必过 $\triangle ABC$ 内心

11. 在
$$\triangle ABC$$
中, $\cos B = \frac{2\sqrt{2}}{3}$, $AC = 2$, $AB = k$,则(

- A. $\triangle ABC$ 外接圆面积为定值,且定值为 9π B. $\triangle ABC$ 的面积有最大值,最大值为 $3+2\sqrt{2}$
- C. 若 $k = 3\sqrt{3}$,则 $C = 60^{\circ}$

- D. 当且仅当 $0 < k \le 2$ 或k = 6时, $\triangle ABC$ 有一解
- 12. 在VABC中,角A、B、C的对边分别为a、b、c, D、E分别是AC、BC上的点,AE与BD交于O,且满
- 足: $AB \cdot BC = BC \cdot CA = CA \cdot AB$, CD = 2DA , AB + AC = 2AE , |AB| = 1 ,则下列说法正确的是(
- A. $AC \cdot BD = 0$

B. OA + OE = 0

- $\begin{vmatrix} \mathbf{UN} & \mathbf{UN} & \mathbf{UN} \\ OA + OB + OC \end{vmatrix} = \frac{\sqrt{3}}{4}$
- D. ED与 BA 的夹角的余弦值为 $\frac{7}{12}$

三、填空题: (本题共 4 小题,每小题 5 分,共 20 分,其中第 16 题第一空 2 分,第二空 3 分.)

- 13. 已知向量 $\stackrel{\Gamma}{a}=(1,2)$, $\stackrel{I}{b}=(2,\lambda)$,且 $\stackrel{I}{a}$ 与 $\stackrel{I}{b}$ 的夹角为锐角,则实数 λ 的取值范围是_
- 14. 赵爽是我国古代数学家,大约在公元 222 年,他为《周髀算经》一书作序时,介绍了"赵爽弦图"一一由四个全 等的直角三角形与一个小正方形拼成的一个大正方形,如图 1 所示.类比"赵爽弦图",可构造如图 2 所示的图形,它 是由 3 个全等的三角形与中间一个小等边三角形拼成的一个大等边三角形.在 $\mathsf{V}ABC$ 中,若 AF=2 , FD=4 ,则 AB=

图 1

图 2

- 15. 沈阳二中北校区坐落于风景优美的辉山景区,景区内的一泓碧水蜿蜒形成了一个"秀"字,故称"秀湖". 湖畔有 秀湖阁(A)和临秀亭(B)两个标志性景点,如图. 若为测量隔湖相望的 $A \setminus B$ 两地之间的距离,某同学任意选定了 与A、B不共线的C处,构成VABC,以下是测量数据的不同方案:
- ①测量 $\angle A$ 、AC、BC;
- ②测量∠A、ĐB、BC;

- ③测量 $\angle C$ 、AC、BC;

其中一定能唯一确定A、B两地之间的距离的所有方案的序号是

16. $\forall AOB$ 中,OA = a ,OB = b , $\angle AOB = \frac{2}{3}\pi$,OA = OB = 1 . 若 m = (3-k)a + kb ,n = (2-k)a + kb . 若 k = 2 ,则 m 与 n 的夹角为_______ ; 当 m 与 n 夹角最大时, $k = ______$.

四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)

- 17. 已知向量 $\overset{1}{a}$ = (1,2), $\overset{1}{b}$ = (-1,4),
- (1)若(ka+2b)//(a-3b), 求 k 的值;
- (2)若 $\left(ka^{\dagger}+2b^{\dagger}\right)\perp\left(a^{\dagger}-3b^{\dagger}\right)$, 求 k 的值.

18. 已知 VABC 的三个角 A , B , C 的对边分别是 a , b , c ,而且满足 $\frac{a^2 \sin B \sin C}{\sin A} = \frac{\sqrt{3} \left(a^2 + b^2 - c^2\right)}{2}$.

- (1)求角C的值;
- (2)若a=2, b=5, 边AB上的中点为D, 求CD的长度.
- 19. 已知平面向量a, b满足: |a|=4, |b|=3, $(2a-3b)\cdot(2a+b)=61$.
- (1)求 $_{a}^{1}$ 与 $_{b}^{1}$ 的夹角 θ ;
- (2)求向量 $\frac{1}{a}$ 在向量2a + b上的投影.

20. 如图,在平面四边形 ABCD 中, $\angle BAD = \frac{5\pi}{6}$, $\angle ADC = \frac{\pi}{3}$, $AC = 5\sqrt{3}$, CD = 5 .

- (1)求∠BAC的值;
- (2)若 $AB = 3\sqrt{3}$, 求 $\triangle ABC$ 的边 BC上高的大小.
- 21. 已知两个不共线的向量a, b的夹角为 θ , 且 $\left|a\right|=3$, $\left|b\right|=1$.
- (1)若a-2b与a+4b垂直,求 $\tan \theta$;
- (2)若 $\theta = \frac{\pi}{6}$,求 $\left|xa + b\right|$ 的最小值及对应的x的值,并指出此时向量a = xa + b的位置关系.

- 22. 己知向量 $\overset{\Gamma}{a} = (\sqrt{3}\sin x, \cos x)$, $\overset{1}{b} = (1,1)$,函数 $f(x) = \overset{\Gamma}{a} \cdot \overset{1}{b}$.
- (1)求函数f(x)在 $[0,\pi]$ 上的值域;
- (2)若VABC的内角A、B、C所对的边分别为a、b、c,且f(A)=2,a=1,求VABC的周长的取值范围.

第五章 平面向量及解三角形(中档卷)

一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)

1. 设非零向量 $\stackrel{\Gamma}{a}$, $\stackrel{\iota}{b}$ 满足 $\left|\stackrel{\Gamma}{a} + \stackrel{\iota}{b}\right| = \left|\stackrel{\Gamma}{a} - \stackrel{\iota}{b}\right|$, 则 ()

A. $\begin{vmatrix} \mathbf{r} \\ a \end{vmatrix} = \begin{vmatrix} \mathbf{l} \\ b \end{vmatrix}$

B. $a \perp b$

c. a^r/b

D. $\begin{vmatrix} \mathbf{r} \\ a \end{vmatrix} > \begin{vmatrix} \mathbf{l} \\ b \end{vmatrix}$

3. 在 $\triangle ABC$ 中," $\sin^2 A + \sin^2 B > \sin^2 C$ "是" $\triangle ABC$ 是锐角三角形"的(

A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分也不必要条件

4. 滕王阁,位于江西省南昌市西北部沿江路赣江东岸,始建于唐朝永徽四年,因唐代诗人王勃诗句"落霞与孤鹜齐飞,秋水共长天一色"而流芳后世. 如图,小明同学为测量滕王阁的高度,在滕王阁的正东方向找到一座建筑物 AB,高为12m,在它们的地面上的点 M (B, M, D 三点共线)测得楼顶 A,滕王阁顶部 C 的仰角分别为15°和60°,在楼顶 A 处测得阁顶部 C 的仰角为30°,则小明估算滕王阁的高度为()(精确到1m)

- A. 42m
- B. 45m
- C. 51m
- D. 57m

6. 如图,在VABC中,已知 $\angle B = 45^{\circ}$, $D \in BC$ 边上的一点,AD = 5, AC = 7, DC = 3,则 AB 的长为 ()

- A. $5\sqrt{3}$
- B. $5\sqrt{6}$
- C. $\frac{5\sqrt{3}}{2}$
- D. $\frac{5\sqrt{6}}{2}$

7. 在VABC中,已知 $CA \cdot CB = -\frac{15}{2}$, $|CA + CB| = \sqrt{19}$,CA 在CB 方向上的投影为 $-\frac{5}{2}$,P 为线段 AB 上的一点,且

- A. $\frac{15}{4}$
- B. 4
- C. 8
- D. $2\sqrt{15}$

8. 在VABC中,角 A, B, C的对边分别是 a, b, c, 若 $c = 3b \sin A$, 则 $\frac{(a+b)^2}{ab}$ 的取值范围是 (

A. [3,5] B. [4,6] C. $[4,2+\sqrt{13}]$ D. $[4,2+\sqrt{15}]$

二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.

全部选对的得5分,部分选对的得2分,有选错的得0分.)

9. 己知向量 $\overset{1}{a} = (1, \sin \theta), \overset{1}{b} = (\cos \theta, \sqrt{2}),$ 则下列命题正确的是(

A. 存在 θ , 使得 a^{\prime}/b^{\prime}

B. $ext{ } ext{ }$

C. 对任意 θ ,都有 $|a|\neq |b|$

D. $\stackrel{1}{=}\stackrel{1}{a}\cdot\stackrel{1}{b}=-\sqrt{3}$ $\stackrel{1}{=}\stackrel{1}{=}\stackrel{1}{\sqrt{2}}$

10. 已知VABC中,角A, B, C所对的边分别为a, b, c, 下列条件中,能使VABC的形状唯一确定的有(

A. $a = 2, b = 3, \angle C = 60^{\circ}$

B. $a = 1, b = \sqrt{2}, \angle A = 30^{\circ}$

C. $a = 1, \angle B = 30^{\circ}, \angle C = 45^{\circ}$

D. $a = 3, b = 2, \angle A = 30^{\circ}$

11. 如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼 的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学 中的矛盾对立统一规律,其平面图形记为图乙中的正八边形 ABCDEFGH , 其中 OA = 2 ,则(

Z

A. $\sqrt{2OB} + OE + OG = 0$

B. $OA \cdot OD = -2\sqrt{2}$

C. $\begin{vmatrix} uu \\ AH + EH \end{vmatrix} = 4$

D. $\left| \frac{du}{AH} + \frac{du}{GH} \right| = 4 + 2\sqrt{2}$

12. 在VABC中,角A, B, C所对的边分别为a, b, c, 且(a+b): (a+c): (b+c)=9:10:11, 则下列结论正确的 是(

A. $\sin A : \sin B : \sin C = 3 : 4 : 5$

- **B. V***ABC* 是锐角三角形
- C. VABC 的最大内角是最小内角的 2 倍 D. 若 c=6,则VABC 外接圆半径为 $\frac{8\sqrt{7}}{7}$

三、填空题: (本题共 4 小题,每小题 5 分,共 20 分,其中第 16 题第一空 2 分,第二空 3 分.)

13. 已知向量 $_{a}^{l}$, $_{b}^{l}$ 不共线,若向量 $_{p}^{l}$ = $_{a}^{l}$ + $_{3}^{l}$ $_{m}^{l}$ 与向量 $_{q}^{l}$ = $_{b}^{l}$ + 3 $_{m}^{l}$ 共线,则 $_{m}^{m}$ 的值为______.

14. 已知 $\begin{vmatrix} \mathbf{r} \\ a \end{vmatrix} = \sqrt{2}$, $\begin{vmatrix} \mathbf{b} \\ b \end{vmatrix} = 1$, $\begin{vmatrix} \mathbf{a} \\ a \end{vmatrix} = b$ 的夹角为45°,若向量 $\left(2a - \lambda b\right) = \left(\lambda a - 3b\right)$ 的夹角是锐角,则实数入的取值范围 是: _____.

15. 在VABC中,若 $b^2 \sin^2 C + c^2 \sin^2 B = 2bc \cos B \cos C$,则VABC是

16. 在 VABC 中,角 A,B,C 所对的边分别是 a,b,c,已知 $\frac{2\sin A - \sin C}{\sin C} = \frac{a^2 + b^2 - c^2}{a^2 + c^2 - b^2}$,则 $\sin^2 A + \sin^2 C$ 的最大值

四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)

- 17. 己知向量 $\overset{\mathbf{r}}{a} = \left(\frac{1}{2}, \frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x\right)$ 和向量 $\overset{\mathbf{i}}{b} = \left(1, f(x)\right), \;\; \stackrel{\mathbf{r}}{\mathbf{L}} \overset{\mathbf{r}}{a} / / \overset{\mathbf{i}}{b} \; .$
- (1) 求函数 f(x) 的最小正周期和最大值;
- (2) 已知 $\triangle ABC$ 的三个内角分别为 A,B,C ,若有 $f\left(A-\frac{\pi}{3}\right)=\sqrt{3}$, $BC=\sqrt{7}$, $\sin B=\frac{\sqrt{21}}{7}$, 求 AC 的长度.

- 18. 在 ΔABC 中,若边a,b,c对应的角分别为A,B,C,且 $c=\sqrt{3}a\sin C-c\cos A$.
- (1)求角 A 的大小;
- (2)若c=3,b=1, BD=2DC, 求AD的长度.

- 20. 已知VABC的内角 A, B, C的对边分别为 a, b, c, 且 $a\sin(A+B-C)=c\sin(B+C)$.
- (1)求角 C 的值;
- (2)若 2a+b=6,且VABC的面积为 $\sqrt{3}$,求VABC的周长.

- 21. 己知函数 $f(x) = \stackrel{\mathsf{r}}{a} \cdot \stackrel{\mathsf{i}}{b} 1$,其中 $\stackrel{\mathsf{i}}{a} = (\sin 2x, 2\cos x)$, $\stackrel{\mathsf{i}}{b} = (\sqrt{3}, \cos x)(x \in \mathbf{R})$.
- (1) 求 f(x) 的单调增区间;

(2)在VABC中,角A、B、C的对边分别为a、b、c,若 $f\left(\frac{B}{4}\right)=\sqrt{3}$, $b^2=ac$,求 $\frac{1}{\tan A}+\frac{1}{\tan C}$ 的值.

- 22. 在① $2b\sin C = \sqrt{3}c\cos B + c\sin B$,② $\frac{\cos B}{\cos C} = \frac{b}{2a-c}$ 两个条件中任选一个,补充在下面的问题中,并解答该问题.在VABC中,内角 A、 B、 C 所对的边分别是 a 、 b 、 c ,且______.

 (1)求角 B ;
- (2)若 $a+c=\sqrt{3}$,点D是AC的中点,求线段BD的取值范围.

第五章 平面向量及解三角形(提高卷)

一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)

1. 已知向量a = (m,3), b = (1,m), 若a = b反向共线, 则 $a - \sqrt{3}b$ 的值为 ()

- A. 0
- B. 48
- c. $4\sqrt{3}$
- D. $3\sqrt{6}$

3. 在 $\triangle ABC$ 中,内角 A, B, C 所对的边分别为 a, b, c, 且 $b\sin B + c\sin C = \frac{4}{3}a\sin A$,则 $\frac{\sin A \tan A}{\sin B \sin C}$ 的值为(

- A. 4
- B. 5
- C. 6
- D. 7

4. 翠浪塔,位于赣州市章江西岸杨梅渡公园山顶上,与赣州古城的风水塔——玉虹塔相呼应. 塔名源于北宋大文豪苏东坡吟咏赣州的诗句"山为翠浪涌,水作玉虹流",该塔规划设计为仿宋塔建筑风格,塔体八面. 一研学小组在李老师的带领下到该塔参观,这时李老师(身高约 1.7 米)站在一个地方(脚底与塔底在同一平面)面朝塔顶,仰角约为 45°;当他水平后退 50 米后再次观测塔顶,仰角约为 30°,据此李老师问:同学们,翠浪塔高度大约为()

米? (参考数据: $\sqrt{3} \approx 1.732$)

- A. 68
- B. 70
- C. 72
- D. 74

5. 在凸四边形 ABCD 中 AB = AD = 2 , AB = AD = 4 , 则以下结论正确的是() AB = AD = 1 , 则以下结论正确的是(

A. $S_{ABCD} > \sqrt{3}$

B. 四边形 ABCD 为菱形

C. $\angle BAD = \frac{\pi}{3}$

D. 四边形 *ABCD* 为平行四边形

6. 设 e_1 , e_2 是平面内两个不共线的向量, $AB = (a-1)e_1 + e_2$, $AC = 2be_1 - e_2$ a > 0, b > 0, 若 A, B, C 三点共线,则 $\frac{2}{a} + \frac{1}{b}$ 的最小值是(

- A. 8
- B. 6
- C. 4
- D. 2

7. 已知锐角VABC,其外接圆半径为2, $C = \frac{\pi}{3}$,AB边上的高的取值范围为().

- A. (0,3]
- B. (0,3)
- c. (2,3]
- D. (2,3)

8. 小强计划制作一个三角形,使得它的三条边中线的长度分别为 1, $\sqrt{7}$, $\sqrt{7}$,则(

- A. 能制作一个锐角三角形
- B. 能制作一个直角三角形
- C. 能制作一个钝角三角形
- D. 不能制作这样的三角形

二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.

全部选对的得5分,部分选对的得2分,有选错的得0分.)

9. 已知向量a = (3,-1), b = (1,-2), 则下列结论中正确的是(

A.
$$a \cdot b = 5$$

B.
$$\left| a - b \right| = \sqrt{5}$$

C.
$$\langle a,b \rangle = \frac{\pi}{4}$$

D.
$$a // b$$

11. "圆幂定理"是平面几何中关于圆的一个重要定理,它包含三个结论,其中一个是相交弦定理:圆内的两条相交 弦,被交点分成的两条线段长的积相等.如图,已知圆 O 的半径为 2,点 P 是圆 O 内的定点,且 $OP = \sqrt{2}$,弦 AC、 BD均过点P,则下列说法正确的是(

A. PA·PC 为定值

- B. *OA*·*OC* 的取值范围是[-2,0]
- C. 当 $AC \perp BD$ 时, $AB \cdot CD$ 为定值
- D. |AC|·|BD| 的最大值为 12
- 12. 在 $\triangle ABC$ 中,AB = AC = 3,BC = 4,O为 $\triangle ABC$ 内的一点,设 $AO = \lambda AB + \mu AC$,则下列说法正确的是(
- A. 若 O 为 $\triangle ABC$ 的重心,则 $\lambda + \mu = \frac{2}{3}$ B. 若 O 为 $\triangle ABC$ 的内心,则 $\lambda + \mu = \frac{2}{5}$
- C. 若 O 为 $\triangle ABC$ 的外心,则 $\lambda + \mu = \frac{9}{10}$ D. 若 O 为 $\triangle ABC$ 的垂心,则 $\lambda + \mu = \frac{1}{5}$

三、填空题: (本题共 4 小题,每小题 5 分,共 20 分,其中第 16 题第一空 2 分,第二空 3 分.)

13. 已知点 A(-2,-1) , B(3,4) , C(-1,1) , D(3,3) , 则向量 CD 在向量 AB 方向上的投影向量为 .

14. 已知VABC的三个角 A, B, C的对边分别为 a, b, c, 则能使 $\frac{\cos A}{\cos B} = \frac{b}{a}$ 成立的一组 A, B 的值是______.

15. 已知向量a, b, c_i (i=1,2), 其中 $\begin{vmatrix} r \\ a \end{vmatrix} = \frac{1}{2}$, $\begin{vmatrix} r \\ b \end{vmatrix} = 1$, $\begin{vmatrix} r \\ a \cdot b \end{vmatrix} = \frac{1}{8}$ 且 $c_i = a + t_i a_0$ 其中 $\begin{vmatrix} u \\ a_0 = \frac{r}{|a|} \end{vmatrix}$ 设 $c_i - b$ 与-b 的夹角为 θ_i ,

若对于任意 t_1 , $t_2 > 0$, 总有 $k > |\cos \theta_1 - \cos \theta_2|$, 则k的最小值为

16. 已知在 $\triangle ABC$ 中,AD是 $\angle BAC$ 的角平分线,与BC交于点D,M是AD的中点,延长BM交AC于点H,|AD|=|CD|,

$$\tan \angle DAC = \frac{1}{2}$$
, $\lim \frac{|AC|}{|AD|} = \underline{\qquad}$, $\frac{|AH|}{|AC|} = \underline{\qquad}$.

四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、 证明过程或演算步骤.)

17. 在 VABC 中,角 A, B, C 所对的边分别是 a, b, c,且 $c^2 = a^2 + b^2 - ab$,

(1)若
$$\tan A - \tan B = \frac{\sqrt{3}}{3} (1 + \tan A \cdot \tan B)$$
,求角 B.

(2)设 $\dot{m} = (\sin A, 1)$, $\dot{n} = (3, \cos 2A)$, 试求 $\dot{m} \cdot \dot{n}$ 的最大值.

18. 在① $\cos 2A = \cos \left(B + C \right)$, ② $a \sin C = \sqrt{3} c \cos A$ 这两个条件中任选一个作为已知条件,然后解答问题.

在VABC中, 角 A, B, C的对边分别为 a, b, c, _____.

(1)求角 A;

(2)若b=2, c=4, 求VABC的 BC边上的中线 AD 的长.

19. 在三角形 ABC中,角 A, B, C 的对边分别为 a, b, c, 且 $2S = -\sqrt{3}BA \cdot BC$,作 $AB \perp AD$,使得四边形 ABCD 满足 $\angle ACD = \frac{\pi}{3}$, $AD = \sqrt{3}$,

(1)求 $\angle B$;

(2)设 $\angle BAC = \theta$, $BC = f(\theta)$, 求函数 $f(\theta)$ 的值域.

20. 在VABC中,角 A, B, C 所对的边分别为 a, b, c. 在① $b\cos A + a\cos B = 2c\cos C$,② (a+b+c)(a+b-c)=3ab,

③ $\cos 2C + \cos C = 0$ 中任选一个,

(1)求角 C的大小;

(2)若c=2,求VABC周长的最大值.

21. 如图, 某城市有一条(MO)从正西方通过市中心O后转向东偏北 60°方向(ON)的公路, 为了缓解城市交通压力, 现准备修建一条绕城高速公路L,并在MO,NO上分别设置两个出口A,B,B在A的东偏北 θ 的方向(A,B两点之间的高速路可近似看成直线段),由于A,B之间相距较远,计划在A,B之间设置一个服务区P.

(1)若P在O的正北方向且OP = 2km, 求A, B到市中心O的距离和最小时 $\tan \theta$ 的值;

(2)若 B 到市中心O 的距离为10km,此时 P 设在 $\angle AOB$ 的平分线与 AB 的交点位置,且满足 $OP^2 + BP^2 \ge 11OP \cdot BP$,则求 A 到市中心O 的距离最大时 $\tan \theta$ 的值.

22. 在VABC中,角 A, B, C的对边分别是 a, b, c, 满足 $b\sin A = a\sin\left(B + \frac{\pi}{3}\right)$

(1)设a=3, c=2, 过B作BD垂直AC于点D, 点E为线段BD的中点,求 $BE \cdot EA$ 的值;

(2)若VABC为锐角三角形,c=2,求VABC面积的取值范围.