# Experiment- 4

ARKA PRAMANICK, AE21B007
Department of Aerospace Engineering
IIT Madras
Basic Aerospace Engineering lab
Bourdon Gauge Caliberation

Instructor:
Professor Dr. Manikandan Mathur
19 October,2022

#### 1. Aim:

To verify how accurate is the pressure shown by the Bourdan's gauge.

### 2. Apparatus:

- Bourdon Pressure gauge:-This measures the apparent gauge pressure according to the deflection in the Bourdon's pressure tube.
- Weights:- Weights can be added in top of each other to increase the pressure in the Bourdon's gauge.
- Water:-Water is needed to carry the pressure across the plastic tube to the buordon pressure gauge.
- Holder of 0.5kg.

### 3. Theory:

Bourdon tube pressure gauges are used for the measurement of gauge pressures from 0.6...7,000 bar. They are classified as mechanical pressure instruments, and thus operate without any supply voltage.



Figure 1: Bourdon pressure gauge



Figure 2: Bourdon tube pressure gauge

### 4. Procedure:

- Read the pressure reading on the gauge before loading. This is the pressure due to the water column.
- Load the weights one by one. Take readings with 5 weights.
- We can obtain the pressure applied by each weight using the formula  $P_w = \frac{weight*g}{\frac{\pi D^2}{4}}$
- Now unload the weights one by one and take pressure readings at unloading.
- Perform this experiment 5 times.



Figure 3: Bourdon pressure gauge

### 5. Result:

### 5.1 Theoretical value of pressure

$$P = \frac{mg}{\frac{\pi D^2}{4}}$$
 D=17.67mm

| S.No. | mass (in kg) | Pressure,p(in kPa) |
|-------|--------------|--------------------|
| 1     | 0.5          | 20                 |
| 2     | 1.0          | 40                 |
| 3     | 1.5          | 60                 |
| 4     | 2.0          | 80                 |
| 5     | 2.5          | 100                |

Table 1: Theoretical data for corresponding mass and pressure

#### 5.2 Experimental value of pressure

| Mass(in kg) | P(in kPa)(loading)  | P(in kPa)(unloading) | Average P(loading) | Average P(unloading) | Average P |
|-------------|---------------------|----------------------|--------------------|----------------------|-----------|
| 0.5         | 20,25,25,25,25      | 25,25,25,25,25       | 24                 | 25                   | 24.5      |
| 1.0         | 40,45,40,40,45      | 40,40,40,40,40       | 42                 | 40                   | 41        |
| 1.5         | 60,60,60,60,60      | 60,60,60,60,65       | 60                 | 61                   | 60.5      |
| 2.0         | 80,85,85,85,85      | 85,85,85,85,85       | 84                 | 85                   | 84.5      |
| 2.5         | 100,100,100,100,100 | 100,100,100,100,100  | 100                | 100                  | 100       |

Table 2: Experimental data for corresponding mass and pressure

# 6. Graph:



Figure 4: Experimental pressure vs theoretical pressure while loading



Figure 5: Experimental pressure vs theoretical pressure while unloading



Figure 6: Average experimental pressure vs theoretical

### 7. Sources of error:

- Inaccurate reading due to parallax error
- Due to friction between piston and walls of tube
- Varriations in experimental conditions.
- Vibrations and overpressure.

# 8. Conclusion:

From experimental result I can conclude that the pressure measurement using a Bourdon Gauge is fairly accurate and advantageous for applications that allows an error of 10 percentage.

The instrument is also accurate since there is a very little variation between theoretical and experimental value.