

Education

University of Washington, Seattle, USA

Research Visitor at Paul G. Allen School of Computer Science

Tsinghua University, Beijing, China

Undergraduate at Special Pilot Class in Computer Science (Yao class)

 \bullet Major: Computer Science and Technology

• Minor: Chinese Language and Literature

Sept. 2021 - Present

Feb. 2024 – Present

GPA 3.93/4.00

GPA 4.00/4.00

Publications

(* indicates equal contribution.)

[4] Ruizhe Shi, Yifang Chen, Yushi Hu, Alisa Liu, Hannaneh Hajishirzi, Noah A. Smith, Simon S. Du.

Decoding-Time Language Model Alignment with Multiple Objectives.

ICML Workshop on Theoretical Foundations of Foundation Models, 2024.

[3] Chenhao Lu, Ruizhe Shi*, Yuyao Liu*, Kaizhe Hu, Simon S. Du, Huazhe Xu.

Rethinking Transformers in Solving POMDPs.

International Conference on Machine Learning, 2024.

[2] Ruizhe Shi*, Yuyao Liu*, Yanjie Ze, Simon S. Du, Huazhe Xu.

Unleashing the Power of Pre-trained Language Models for Offline Reinforcement Learning.

International Conference on Learning Representations, 2024.

[1] Yanjie Ze, Yuyao Liu*, Ruizhe Shi*, Jiaxin Qin, Zhecheng Yuan, Jiashun Wang, Huazhe Xu.

H-InDex: Visual Reinforcement Learning with Hand-Informed Representations for Dexterous Manipulation.

Annual Conference on Neural Information Processing Systems, 2023.

Research Experience

DPO Theory

Supervised by Prof. Simon S. Du

May 2024 - Present

CSE, University of Washington

CSE, University of Washington

Multi-Objective Language Model Alignment

Supervised by Prof. Simon S. Du

Dec. 2023 – May 2024

• We propose a training-free, simple yet effective decoding-time algorithm for multi-objective alignment of language models, with optimality guarantees. Under review.

 We exploit a common form among a family of f-divergence regularized alignment approaches (such as PPO, DPO, and their variants) to identify a closed-form solution by Legendre transform, and derive an efficient decoding strategy.
Theoretically, we show why existing approaches can be sub-optimal even in natural settings and obtain optimality guarantees for our method.

Representation Theory of Transformer for Reinforcement Learning

Supervised by Prof. Huazhe Xu

Nov. 2023 - Jan. 2024

IIIS, Tsinghua University

- We challenge the common wisdom and prove theoretically and empirically that Transformers are not suitable for Partially Observable RL, while advocating Linear RNN as a promising alternative. Second-authored work accepted by ICML 2024.
- We establish that regular languages, which Transformers struggle to model, are reducible to POMDPs. This poses a significant challenge for Transformers in learning POMDP-specific inductive biases, due to their lack of inherent recurrence found in other models like RNNs, with empirical results highlighting the sub-optimal performance of the Transformer and considerable strength of LRU.

Tuning Language Model for Offline Reinforcement Learning

Supervised by Prof. Huazhe Xu

June 2023 - Sept. 2023

IIIS, Tsinghua University

- We leverage the power of pre-trained Language Models for low-level motion control in offline reinforcement learning. First-authored work accepted by ICLR 2024.
- We demonstrate the superiority of LaMo over DT-based and value-based offline RL algorithms. Specifically, we find that LaMo could successfully handle the challenging low-data regime while DT could not. This highlights the great potential of our cross-domain pre-training for sequential modeling.

Visual Representation for Reinforcement Learning

Mar. 2023 - May 2023

Supervised by Prof. Huazhe Xu

IIIS, Tsinghua University

- We propose H-InDex, a hand-informed visual representation for dexterous manipulation with reinforcement learning. Second-authored work accepted by **NeurIPS 2023.**
- We show the effectiveness of our framework on 12 challenging visual dexterous manipulation tasks, comparing with recent strong foundation models such as VC-1. Our study has offered valuable insights into the application of pre-trained models for dexterous manipulation, by exploring the direct application of a 3D human hand pose estimation model

Awards & Honors

Jiang Nanxiang Scholarship

Nov. 2023

Tsinghua University

top scholarship; 1 student per major

China National Endeavor Scholarship

Oct. 2022

Beijing Education Bureau

1 student per major

Xue Tang Scholarship of Tsinghua University

Oct. 2021 - Present

Tsinghua University

First Prize in College Student Mathematics Competition

Oct. 2022

Chinese Mathematical Society

First Prize in National High School's Mathematics Competition of China

Oct. 2020

Chinese Mathematical Society

top 20

Service

Conference Reviewer

NeurIPS 2024

Online

Workshop Program Committee

Oct. 2023

FMDM 2023 at NeurIPS [link]

Online

Drop-in Tutoring for STEM Courses

 ${\bf Oct.~~2022-Present}$

Tsinghua University

Beijing, China

I have 157 hours of officially recorded volunteering work.

Selected Courses

Mathematics and Theory: Calculus (\mathbf{A}^+) , Linear Algebra (\mathbf{A}) , Abstract Algebra (\mathbf{A}) , Introduction to Complex Analysis (\mathbf{A}) , Probability and Statistics (\mathbf{A}) , Basic Topology $(\mathbf{93})$, Introduction to Optimization (\mathbf{A}) , Theory of Computation (\mathbf{A}) , Physics of Information (\mathbf{A}) ;

Programming and AI: Introduction to Programming in $C/C++(A^+)$, Intelligent Unmanned System (A^+) , Type-safe Modern System Practice (A), Machine Learning (A), Artificial Intelligence: Principles and Techniques (A), Natural Language Processing (A).

Technical Skills

Programming Skills: Python, C/C++, LATEX, Bash, Scala, Matlab.

Language Skills: Chinese Mandarin (native), English (CET-6, TOEFL 104 [R30/L26/S23/W25]).