Analysis notebook

A notebook with some exercises

Joseph Mehdiyev

Preface

About the Book

Book's source

How to use the Book

and other data science purposes, I used python library $\mathbf{pytorch}$ and related libraries. I use Neovim/Vim for Python.

Contents

1	Rea	l Numbers									3
	1.1	Axiom of Completeness,	Infimum :	and Supremum	 						3

Chapter 1

Real Numbers

1.1 Axiom of Completeness, Infimum and Supremum

Definition 1.1.1. A set $A \subseteq R$ is **bounded above** if $\exists b \in R$ s.t $a \leq b \ \forall a \in A$. The number b is the **upper bound of A**. We denote set of upper bounds of A as A^u . Similarly, we define lower bounds and the set as A^{ℓ} .

Definition 1.1.2 (supremum). A upper bound a of a set S is called supremum if,

$$a = \min A^u$$

Mathematically we show the notation as $a = \sup S$. In Similar fashion, we define $b = \inf S$ for lower bounds.

Axiom of Completeness (AoC). Every non-empty subsets of \mathbb{R} that is bounded above have supremum. The Axiom also deduces the existence of infimum in a similar fashion. **Questions:** Can infinity be supremum? Does this axiom imply existence of infimum.

Lemma 1.1.1 (**Epsilon Definition of supremum**). $s \in \mathbb{R}$ is a supremum of a set $A \subseteq \mathbb{R}$ iff

$$\forall \ \epsilon > 0 \ \exists \ a \in A \mid s - \epsilon < a$$

Proof sketch. The both ways of the lemma can be proven by definition of the supremum. That is, lemma 1.1.1 and definition 1.1.2 are equivalent.

We use similar lemma for infimum.

Proposition 1.1.1 (Maximum and Supremum). If maximum of $A \neq \{\emptyset\} \subseteq \mathbb{R}$ exists, then

$$\max A = \sup A$$

Proof. Denote $s = \sup A$ and $m = \max A$. By definition, $s = \min A^u$ and $m = A^u \cap A$. The result is an immediate consequence of the definitions of maximum and supremum.

m is a proper supremum, since $\forall x \in A$ we have $x \leq m$, and since also $m \in A$, $t = \sup A < m$ is impossible.

Similarly, we have $\min A = \inf A$.

Proposition 1.1.2 (Uniqueness of Supremum). Supremum and Infimum are unique.

Proof. For the sake of the contradiction, assume there exists two supremum s_1, s_2 . Then by

definition of supremum, we have

$$s_1 \ge s_2 \ \land \ s_2 \ge s_1 \Rightarrow s_1 = s_2$$

Infimum follows the similar proof.

Proposition 1.1.3 (Existence of Infimum). AoC implies the existence of infimum for $A \subseteq \mathbb{R}$ such that $A^{\ell} \neq \emptyset$,

$$\inf A = -\sup(-A)$$

Proof. Since $A^l \neq \emptyset$, it follows that

$$\exists x \in A^{\ell} \mid x \le a$$

Then.

$$-x \ge -a \Rightarrow -x \in (-A)^u \ne \emptyset$$

By AoC, $\sup(-A)$ exists. Rest is trivial.

Proposition 1.1.4 (Operations on Supremum). The supremum holds these properties,

$$\sup(A+B) = \sup(A) + \sup(B) \tag{1.1}$$

$$\sup(A \cdot B) = \sup(A) \cdot \sup(B) \tag{1.2}$$

if
$$c \ge 0$$
,
$$\sup(cA) = c \sup(A) \tag{1.3}$$

if
$$c \le 0$$
,
$$\sup(cA) = c\inf(A) \tag{1.4}$$

Proof. These properties directly follow from the epsilon definition of the supremum. That is, $\forall \epsilon_a, \epsilon_b, \exists a, b \in A, B \text{ such that,}$

$$\sup(A) - a < \epsilon_a \wedge \sup(B) - b < \epsilon_b$$

adding these equations to each other, we have

$$\sup(A) + \sup(B) - (a+b) < \epsilon_a + \epsilon_b \tag{1.5}$$

Note that $(a+b) \in A+B$, and let $\epsilon_a + \epsilon_b = \epsilon_{a+b}$. Also we know that,

$$\forall \epsilon_c \exists c \in A + B \mid \sup(A + B) - c < \epsilon_c \tag{1.6}$$

but 1.5 and 1.6 both are valid, hence the conclusion.

We can similarly prove other propositions, even for inf.

References

1. https://math.colorado.edu/~nita/12_Axiom_of_Completeness.pdf