Devoir Maison Théorie des valeurs extremes

Gabriel Singer

Dans ce document vous trouverez la partie théorique de l'exercice 1.3.

Puisque MDA et MDA^\prime sont équivalentes il suffit de montrer :

Si $((a_n)_n, (b_n)_n) \in \mathbb{R}^{\mathbb{N}_{\star}} \times \mathbb{R}^{\mathbb{N}}$ sont telles que

$$\forall x \in \mathbb{R} \quad \lim_{n \to \infty} |F^n(a_n x + b_n) - G(x)| = 0 \tag{1}$$

alors

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |F^n(a_n. + b_n) - G(.)| = 0$$
 (2)

Supposons (1) vraie et posons pour tout $n \ge 0$, $\phi_n := F^n(a_n + b_n)$.

Soit $n \in \mathbb{N}$, puisque F est une fonction de répartition elle est croissante et puisque $a_n > 0$ on a en déduit que ϕ_n est croissante. De plus, par le théorème des trois types du cours on connait l'expression de G ce qui montre que G est également croissante.

L'idée c'est de majorer $|\phi_n(x) - G(x)|$ indépendament de x à l'aide d'une partition de \mathbb{R} .

Par continuité de G sur \mathbb{R} il existe une partition de \mathbb{R} , vérifiant la propriété :

$$\forall \varepsilon > 0 \quad \forall i \in \mathbb{N}^* \quad x_{i-1}(\varepsilon) < x_i(\varepsilon) \implies G(x_i(\varepsilon)) - G(x_{i-1}(\varepsilon)) \le \varepsilon.$$
 (3)

Dans ce qui suit on omet de noter le ε pour ne pas alour dir les notations.

Soit $x \in \mathbb{R}$ soit $\varepsilon > 0$ et $n \ge 0$ alors il existe $i \in \mathbb{N}^*$ tel que $x_{i-1} < x < x_i$ donc par croissance de G on a

$$G(x_{i-1}) - \phi_n(x) \le G(x) - \phi_n(x) \le G(x_i) - \phi_n(x)$$

et par croissance de ϕ_n on a

$$G(x_{i-1}) - \phi_n(x_i) \le G(x) - \phi_n(x) \le G(x_i) - \phi_n(x_{i-1}).$$

Puis par (3):

$$G(x_{i-1}) - \phi_n(x_i) = G(x_{i-1}) - G(x_i) + G(x_i) - \phi_n(x_i)$$

 $\geq G(x_i) - \phi_n(x_i) - \varepsilon$

donc

$$G(x_i) - \phi_n(x_i) - \varepsilon \le G(x) - \phi_n(x) \le G(x_{i-1}) - \phi_n(x_{i-1}) + \varepsilon \tag{4}$$

Posant $m_n(\varepsilon) = \max_{1 \le i \le n} G(x_i) - \phi_n(x_i)$.

Finalement,

$$\sup_{x \in \mathbb{R}} |G(x) - \phi_n(x)| \le \max m_{n-1}(\varepsilon) + \varepsilon, m_n(\varepsilon) + \varepsilon \tag{5}$$

Puisque la convergence de ϕ_n vers G est simple on a que

$$\lim_{n\to\infty} m_n(\varepsilon) = 0.$$

donc à partir d'un certain rang $N_0 > 0$ on a

$$\forall n \ge N_0 \quad \sup_{x \in \mathbb{R}} |G(x) - \phi_n(x)| \le 2\varepsilon.$$

Ce qui conclut la preuve.