Exercise sheet for Algebraic Topology II Week 16

Lennart Meier

May 23, 2019

Exercise 1. Let A be a finitely generated¹ abelian group such that $Hom(A, \mathbb{Z}) = 0$ and $Ext(A, \mathbb{Z}) = 0$. Deduce that A = 0.

Exercise 2. Let $u \in H^n(K(\mathbb{Z},n);\mathbb{Z}_{(p)})$ be the fundamental class and denote by $\Lambda(u)$ the polynomial ring (over $\mathbb{Z}_{(p)}$) on u if n is even and the exterior algebra (over $\mathbb{Z}_{(p)}$) if n is odd. Then $\Lambda(u) \to H^*(K(\mathbb{Z},n);\mathbb{Z}_{(p)})$ is an isomorphism for *<2p+n-1 and $H^{2p+n-1}(K(\mathbb{Z},n);\mathbb{Z}_{(p)})\cong \mathbb{Z}/p$ if $n \geq 3$.

¹The statement will be also true without finiteness hypothesis, but harder. The case $A = \mathbb{Q}$ might be instructive.