

DES密码算法实验

主讲教师: 蒋琳

实验教师: 苏婷

实验目的

- > 理解对称密码体制的基本思想
- > 掌握 DES 算法的基本工作原理,理解混淆和扩散的概念
- > 编程实现DES密码加解密算法

实验环境

- ➤ 开发环境: CodeBlocks, Visual C++6.0 等
- > 密码算法实验系统

http://10.251.129.2/index/check.html

> 分组密码算法

- ◆ 将明文划分为n比特长的块 (DES为64位) ,每一块进行加密算法
- ◆分组密码的安全性主要依赖于密钥k
- ◆属于对称加密算法

> 初始置换

$$L_0R_0=IP(X)$$

轮函数(Feistel结构)

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$$

> 逆初始置换

$$Y = IP^{-1}(R_{16}L_{16})$$

▶ DES的加密算法具有可逆性,解密与加密算法相同, 所不同的是子密钥顺序使用相反,依次为:

$$k_{16}, k_{15}, \dots, k_1$$

> 初始置换

举例说明:明文X为16进制的字符串012345678ABCDEF,进行初始置换后分成左右两部分 L_0R_0

明	明文 (0123456789ABCDEF) ₁₆							
0	0	0	0	0	0	0	1	
0	0	1	0	0	0	1	1	
0	1	0	0	0	1	0	1	
0	1	1	0	0	1	1	1	
1	0	0	0	1	0	0	1	
1	0	1	0	1	0	1	1	
1	1	0	0	1	1	0	1	
1	1	1	0	1	1	1	1	

				Х	0			
	1	1	0	0	1	1	0	0
1	0	0	0	0	0	0	0	0
L ₀	1	1	0	0	1	1	0	0
	1	1	1	1	1	1	1	1
	1	1	1	1	0	0	0	0
D	1	0	1	0	1	0	1	0
R_0	1	1	1	1	0	0	0	0
	1	0	1	0	1	0	1	0

≻轮函数

◆ 扩展置换E, S盒代换, P盒置换

$$L_{i} = R_{i-1}$$

$$R_{i} = L_{i-1} \oplus f(R_{i-1}, K_{i})$$

◆ 扩展置换E, S盒代换, P盒置换

	1	1	1	1	0	0	0	0 0 0
0	1	0	1	0	1	0	1	0
κ_0	1	1	1	1	0	0	0	0
	1	0	1	0	1	0	1	0

32->48

	扩展置换E							
32	1	2	3	4	5			
4	5	6	7	8	9			
8	9	10	11	12	13			
12	13	14	15	16	17			
16	17	18	19	20	21			
20	21	22	23	24	25			
24	25	26	27	28	29			
28	29	30	31	32	1			

 $E(R_0)$

011110 100001 010101 010101 011110 100001 010101 010101

 K_1

 $E(R_0) \oplus K_1$

◆ 扩展置换E, S盒代换, P盒置换

$E(R_0) \oplus K_1$

011101其中中间四位1110为列,前后两位01为行

000010其中中间四位0001为列,前后两位00为行

行\列		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S1	0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
	1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
	2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
S2	0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
	1	3	13	4	7	15	2	8	15	12	0	1	10	6	9	11	5
	2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

 $S_1(011101) = 0011$

 $S_2(000010) = 0001$

◆ 扩展置换E, S盒代换, P盒置换

$S(E(R_0) \oplus K_1)$

0011 0001 0010 1100 0010 1110 0100 0110

P盒置换

$$f(R_{i-1}, K_i) = P(S(E(R_0) \oplus K_1))$$

 $P(S(E(R_0) \oplus K_1))$

00010000 00110010 01010010 11101110

> 轮函数

◆ 扩展置换E, S盒代换, P盒置换

$$L_{i} = R_{i-1}$$

$$R_{i} = L_{i-1} \oplus f(R_{i-1}, K_{i})$$

$$L_1 = R_0 = 11110000 10101010 11110000 10101010$$

$$R_1 = L_0 \oplus f(R_0, K_1)$$

= 11011100 00110010 10011110 00010001

 $f(R_{0},K_{1})$

00010000 00110010 01010010 11101110

依次类推,可以得出其它各轮运算结果。经过16轮迭代,最后一轮(第16轮)迭代输出结果的左右两部分为:

 R_{16} =01110010 00010011 01001111 10010011 L_{16} =10001111 01011110 00000011 10111100

> 逆初始置换

$$C = IP^{-1}(R_{16}L_{16})$$

	0	1	1	1	0	0	1	0	
D	0	0	0	1	0	0	1	1	
R ₁₆	0	1	0	0	1	1	1	1	
	1	0	0	1	0	0	1	1	
	1	0	0	0	1	1	1	1	
	0	1	0	1	1	1	1	0	
L ₁₆	0	0	0	0	0	0	1	1	

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

			(C			
1	0	0	1	1	1	0	1
1	1	1	1	1	1	0	1
1	0	1	0	0	1	1	0
1	0	1	0	0	1	1	0
0	1	1	1	0	0	1	1
0	1	0	0	0	0	1	0
0	1	1	0	0	1	0	0
1	0	0	0	0	0	1	1

> 生成子密钥Ki

置换PC_1,循环左移,置换PC_2

假设初始密钥为 K = (123DAB779F658067)₁₆

PC_1 LS_2 LS_2 $PC_2 \longrightarrow K_2$ LS_{16} DES 轮密钥 K_i 生成过程

C_0	D_0
0101010 0101010 0010101 1100001	1001110 1101110 1000010 1101011

说明: 64位的初始密钥, 其中有8位校验位, 经过PC_1的置换变为56位。 其中8, 16, 24, 32, 56, 64位没有替换, 直接作为校验位省去。

◆生成子密钥Ki: 置换PC 1, 循环左移, 置换PC 2

根据轮数的不同,循环左移的位数是不同的,其中1,2,9,16这几个轮次循环左移1位, 其他轮次循环左移2位。

◆生成子密钥Ki: 置换PC 1, 循环左移, 置换PC 2

置换PC_2将56位的转换位48位,去掉第9、18、22、25、35、38、43、54位,从56位

变成48位。

C ₁	D_1
1010100 1010100 0101011 1000010	0011101 1011101 0000101 1010111

 K_1

> 解密由同一算法实现

密文C作为输入,密钥逆序使用 (K₁₆...K₁),输出明文X。

例如:加密最后一轮输出 (R_{16} , L_{16})

$$L_{16} = R_{15}$$

$$R_{16} = L_{15} \oplus f(R_{15}, K_{16})$$

解密:输入 (R_{16,} L₁₆)

$$L_1' = L_{16} = R_{15}$$

$$R_1' = R_{16} \oplus f(R_{15}, K_{16}) = L_{15}$$

$$L_2' = R_1' = L_{15} = R_{14}$$

$$R_2' = R_{15} \oplus f(R_{14}, K_{15}) = L_{14}$$

实验内容

- 1、编写程序实现DES算法的加密和解密过程。(请用 demo.c中的IP置换矩阵、PC1、PC2、E盒、S盒、P盒以及IP-1)
- 2、由用户从文件或者终端中读入明文(或密文)和密钥,统一其中一个明文security;
- 3、过程中打印每一轮加密的结果(二进制或者16进制均可);
- 4、选取明文相差1位的情况,观察每轮密文的差异;

- 1、编写程序实现DES算法的加密和解密过程。(请用 demo.c中的IP置换矩阵、PC1、PC2、E盒、S盒、P盒以及IP-1)
- 2、由用户从文件或者终端中读入明文(或密文)和密钥,统一其中一个明文security;
- 3、过程中打印每一轮加密的结果(二进制或者16进制均可);
- 4、选取明文相差1位的情况,观察每轮密文的差异;

```
本程序是DES密码算法的加解密程序,加密请输入0,解密请输入1:0
请输入明文(长度为8的ASCII字符串): security
请输入密钥(长度为8的ASCII字符串): test1234
L[1] = 00ffa015, R[1] = badcd18f
L[2] = badcd18f, R[2] = aff1ce5d
L[3] = aff1ce5d, R[3] = 5039766b
L[4] = 5039766b, R[4] = dc0fb1a4
L[5] = dc0fb1a4, R[5] = 246f3b15
L[6] = 246f3b15, R[6] = 17418e02
L[7] = 17418e02, R[7] = 8934c64d
L[8] = 8934c64d, R[8] = abf3eb80
L[9] = abf3eb80, R[9] = d90b4897
L[10] = d90b4897, R[10] = 6e178633
L[11] = 6e178633, R[11] = bf42f3df
L[12] = bf42f3df, R[12] = 90c608c8
L[13] = 90c608c8, R[13] = 35d463be
L[14] = 35d463be, R[14] = 419126b7
L[15] = 419126b7, R[15] = 75b6c041
L[16] = 75b6c041, R[16] = 160f43f5
```

HWORLD PHYSICS HANDS AND ADMINISTRATION OF THE PHYSICS AND ADMINISTRATION

实验要求

> 根据密钥 (hitsz018) 生成对应的明文和密文, 并输出每一轮加密后的结果。

> 请将结果截图内容及源代码打包成一个压缩包上传到系统中, 命名格式如下:

测试结果: "学号 姓名 实验2 DES"

压缩包: "学号_姓名_实验2_DES"

▶ 提交要求: 11月10日24点之前 http://10.251.129.2/index/check.html;

谢谢

