KH収縮期における近接連星形成の可能性

Kenji Eric Sadanari (Konan U.) Hajime Susa (Konan U.)

VFTS 352 (Credit: ESO/L. Calçada)

連星の統計的性質

星は単星よりも連星系を好む傾向になる

- ・大質量星ほど連星率が高い (80%以上)
- ・大質量星ほど近接連星の割合が高い
- ・質量比 1 の連星の割合が高い(twin binary)

接触連星の観測

massive contact binary $(M_{tot} > 10 M_{\odot})$

接触(近接)連星

観測数: 数百個以上

・質量比: q = 0.1 - 1

軌道周期P=0.3-6.6 day

→X-ray binary, type lb/c SN, GW

・MS初期段階の接触連星が多く存在

4 Myr

 $40~M_{\odot}$

 $30~M_{\odot}$

 $10~M_{\odot}$

Menon + 21

10

 $20~M_{\odot}$

20

連星形成シナリオ

降着期における最接近距離

✔原始星半径の進化

$$t_{\rm KH} = \frac{GM_{\star}^2}{RL_{\star}}, \quad t_{\rm acc} = \frac{M_{\star}}{\dot{M}} \quad \begin{array}{c} {\rm radiation} \\ (L_{\star}) & \\ \end{array}$$

$$t_{\rm KH} > t_{\rm acc} : R \uparrow$$

$$t_{\rm KH} < t_{\rm acc} : R \downarrow$$

(Kelvin-Helmholtz収縮)

✓合体条件

- ・連星間距離a が、1.8 Rよりも接近すると合体 (Kirihara+23)
 - \rightarrow KH収縮前の接近可能最小距離 $a > a_{\min} \sim 2R_{\max} \sim$ 数100 R_{\odot}
 - \rightarrow 接触/近接連星($a < 10~R_{\odot}$)は**KH収縮後**に 形成されるはず

KH収縮時のfissionシナリオ

fission仮説(Lebovitz 1974, 1984)

KH収縮に伴う回転強度 β (= $E_{\rm rot}/|E_{\rm grav}|$)の上昇により、最終的に星が二つに分裂

 $\beta_{\rm rot} \propto \rho^{1/3}$ (角運動量保存+質量保存)

Eriguchi + 1982, 天文月報 江里口1982

先行研究:自己重力回転球の数値計算

・ポリトロープガスを仮定

$$P = \kappa \rho^{\gamma}, \quad \gamma = 5/3$$

 $\rightarrow \kappa$ を減少させることで、ガス球を収縮させる

$$\kappa(t) = \kappa_0 (1 - t/(4P_{\text{rot}}))$$

ダンベル構造の出現

冷やし続ければ、分裂するかも?

しかしながら、分解能不足により、長時間計算できなかった

本研究の目的

自己重力回転球(星)を冷やし続けた時、星構造はどのように変化するのか?

3D流体計算(バロトロピック)

- AMR(Adaptive Mesh Refinement) code
- ・自己重力+(磁気)流体
- ・バロトロピックEoSを仮定

$$P = \kappa(t)\rho^{\gamma}, \gamma = 5/3 \ (\rho > \rho_{\text{surf}})$$

$$P = nk_bT_o$$
, $T_o = 10^3$ K ($\rho < \rho_{\text{surf}}$)

- ・冷却による星の収縮
 - ー 星内部のエントロピーの時間変化(収縮)

 $\log \kappa$ (エントロピー)

Step 1

自己重力回転球を作る

Step2

星内部のエントロピー(κ)を減少させる

→星の収縮を模擬

(Matsumoto 2007)

(' plane=', 'xy')

-0.4

-0.2

Fission_acc_KH_tacc01、step=0、time[yr]=0.0 21 0.4 0.2 が水圧平衡なガス球 (Lane-Emden eq.) 0.0 で 0.0 のの 0.0 が水圧平衡なガス球 0.0 のの 0.0 のの 0.0 で 0.0 のの 0.0 で 0.0 のの 0.0 で 0.0 のの 0.0 で 0.0 で

0.2

0.4

冷却によるガス球の収縮

$$t_{\rm ff} < t_{\rm cool} < t_{\rm rot}$$

(' plane=', 'xy')
Fission acc KH tacc001, step=33444, time[yr]=4.9026

二つに分裂

冷却によるガス球の収縮

 $t_{\rm cool} > t_{rot}$

1.ダンベル構造とバー構造の振動

2.スパイラルアームによる質量放出

- ・質量放出により安定化
 - →fissionによる分裂を阻止
- ・円盤構造を形成

議論:KH収縮時の連星形成の可能性

[質量放出による円盤形成と分裂]

原始星からのmass loss & mass accretionによって

mass accretionによって 円盤が分裂する可能性

[連星系におけるKH収縮]

バロトロピック計算の問題点

星内部の冷却の仕方(KH収縮)が非現実的 -> 星内部のエントロピーを一様に減少

星の構造と冷却の仕方が整合的ではない。

$$\overrightarrow{F}_{\text{diff}} = \frac{4acT^3}{3\kappa\rho} \nabla T \propto T^4$$

星内部のエネルギー輸送を解いたシミュレーションが必要

Summary

fissionによる近接(接触)連星形成の可能性を3D流体シミュレーションを用いて検証。

Result

- ・エントロピー($\kappa(t)$)を時間と共に減少させる。
- —> 先行研究と同様に、bar構造とダンベル構造を振動しながら、 収縮していく。
- —> spiral armによる質量放出で安定化し、分裂しない。
- ―> しかしながら、冷却の仕方が星構造と非整合で現実的でない。

Future work

- ・エネルギ-輸送を考慮した simulation ($\overrightarrow{F}_{\text{diff}} = \frac{4acT^3}{3\kappa\rho}$ $\nabla T \propto T^4$)
 - → 拡散近似のもと星内部のエネルギーを外側に輸送し、KH収縮を模擬