Directed Acyclic Graphs (DAGs)

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Mathematics for Data Science 1 Week 11

- In a directed graph, a cycle must follow same direction
 - lacksquare 0 o 2 o 3 o 0 is a cycle
 - lacksquare $0 o 5 o 1 \leftarrow 0$ is not

- In a directed graph, a cycle must follow same direction
 - $lue{}$ 0 ightarrow 2 ightarrow 3 ightarrow 0 is a cycle
 - $0 \rightarrow 5 \rightarrow 1 \leftarrow 0$ is not
- DFS reveals different types of non-tree edges
 - Forward edges
 - Back edges
 - Cross edges

- In a directed graph, a cycle must follow same direction
 - $lue{}$ 0 ightarrow 2 ightarrow 3 ightarrow 0 is a cycle
 - lacksquare $0 o 5 o 1 \leftarrow 0$ is not
- DFS reveals different types of non-tree edges
 - Forward edges
 - Back edges
 - Cross edges
- Only back edges generate cycles
 - Classify non-tree edges using DFS numbering

- In a directed graph, a cycle must follow same direction
 - $lue{}$ 0 ightarrow 2 ightarrow 3 ightarrow 0 is a cycle
 - lacksquare $0 o 5 o 1 \leftarrow 0$ is not
- DFS reveals different types of non-tree edges
 - Forward edges
 - Back edges
 - Cross edges
- Only back edges generate cycles
 - Classify non-tree edges using DFS numbering
- Why bother about directed cycles?

■ Startup moving into new office space

- Startup moving into new office space
- Major tasks for completing the interiors
 - Lay floor tiles
 - Plaster the walls
 - Paint the walls
 - Lay conduits (pipes) for electrical wires
 - Do electrical wiring
 - Install electrical fittings
 - Lay telecom conduits
 - Do phone and network cabling

- Startup moving into new office space
- Major tasks for completing the interiors
 - Lay floor tiles
 - Plaster the walls
 - Paint the walls
 - Lay conduits (pipes) for electrical wires
 - Do electrical wiring
 - Install electrical fittings
 - Lay telecom conduits
 - Do phone and network cabling

Constraints on the sequence

- Startup moving into new office space
- Major tasks for completing the interiors
 - Lay floor tiles
 - Plaster the walls
 - Paint the walls
 - Lay conduits (pipes) for electrical wires
 - Do electrical wiring
 - Install electrical fittings
 - Lay telecom conduits
 - Do phone and network cabling

- Constraints on the sequence
 - Lay conduits before tiles and plastering

- Startup moving into new office space
- Major tasks for completing the interiors
 - Lay floor tiles
 - Plaster the walls
 - Paint the walls
 - Lay conduits (pipes) for electrical wires
 - Do electrical wiring
 - Install electrical fittings
 - Lay telecom conduits
 - Do phone and network cabling

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting

- Startup moving into new office space
- Major tasks for completing the interiors
 - Lay floor tiles
 - Plaster the walls
 - Paint the walls
 - Lay conduits (pipes) for electrical wires
 - Do electrical wiring
 - Install electrical fittings
 - Lay telecom conduits
 - Do phone and network cabling

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work

- Startup moving into new office space
- Major tasks for completing the interiors
 - Lay floor tiles
 - Plaster the walls
 - Paint the walls
 - Lay conduits (pipes) for electrical wires
 - Do electrical wiring
 - Install electrical fittings
 - Lay telecom conduits
 - Do phone and network cabling

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings

- Startup moving into new office space
- Major tasks for completing the interiors
 - Lay floor tiles
 - Plaster the walls
 - Paint the walls
 - Lay conduits (pipes) for electrical wires
 - Do electrical wiring
 - Install electrical fittings
 - Lay telecom conduits
 - Do phone and network cabling

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings
- Represent constraints as a directed graph
 - Vertices are tasks
 - Edge (t, u) if task t has to be completed before task u

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings
- Represent constraints as a directed graph
 - Vertices are tasks
 - Edge (t, u) if task t has to be completed before task u

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings
- Represent constraints as a directed graph
 - Vertices are tasks
 - Edge (t, u) if task t has to be completed before task u

Conduits (E) Conduits (T)

Tiling Plastering

Painting

Wiring (E) Cabling (T)

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings
- Represent constraints as a directed graph
 - Vertices are tasks
 - Edge (t, u) if task t has to be completed before task u

Painting

Wiring (E) Cabling (T)

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings
- Represent constraints as a directed graph
 - Vertices are tasks
 - Edge (t, u) if task t has to be completed before task u

Wiring (E) Cabling (T)

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings
- Represent constraints as a directed graph
 - Vertices are tasks
 - Edge (t, u) if task t has to be completed before task u

- Constraints on the sequence
 - Lay conduits before tiles and plastering
 - Lay tiles, plaster wall before painting
 - Finish painting before any cabling/wiring work
 - Electrical wiring before installing fittings
- Represent constraints as a directed graph
 - Vertices are tasks
 - Edge (t, u) if task t has to be completed before task u

Schedule the tasks respecting the dependencies

- Schedule the tasks respecting the dependencies
 - Conduits (E) Conduits (T) –
 Tiling Plastering Painting –
 Wiring (E) Cabling (T) –
 Fittings (E)

- Schedule the tasks respecting the dependencies
 - Conduits (E) Conduits (T) –
 Tiling Plastering Painting –
 Wiring (E) Cabling (T) –
 Fittings (E)
 - Conduits (T) Conduits (E) –
 Plastering Tiling Painting –
 Wiring (E) Fittings (E) –
 Cabling (T)

. . . .

- Schedule the tasks respecting the dependencies
 - Conduits (E) Conduits (T) –
 Tiling Plastering Painting –
 Wiring (E) Cabling (T) –
 Fittings (E)
 - Conduits (T) Conduits (E) –
 Plastering Tiling Painting –
 Wiring (E) Fittings (E) –
 Cabling (T)
 -
- How long will the work take?

- Formally, we have a directed acyclic graph (DAG)
- G = (V, E), a directed graph without directed cycles

- Formally, we have a directed acyclic graph (DAG)
- G = (V, E), a directed graph without directed cycles
- Find a schedule
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i,j) \in E$, iappears before j

- Formally, we have a directed acyclic graph (DAG)
- G = (V, E), a directed graph without directed cycles
- Find a schedule
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i, j) \in E$, iappears before j
 - Topological sorting

- Formally, we have a directed acyclic graph (DAG)
- G = (V, E), a directed graph without directed cycles
- Find a schedule
 - Enumerate $V = \{0, 1, ..., n-1\}$ such that for any $(i, j) \in E$, iappears before j
 - Topological sorting
- How long with the work take?
 - Find the longest path in the DAG

Summary

- Directed acyclic graphs are a natural way to represent dependencies
- Arise in many contexts
 - Pre-requisites between courses for completing a degree
 - Recipe for cooking
 - Construction projects
 -
- Problems to be solved on DAGS
 - Topological sorting
 - Longest paths