The University Interscholastic League Number Sense Test • HS District 1 • 2016

			Final		
Contestant's Number			2nd		
			1st		
Read directions carefully before beginning test		UNFOLD THIS SHEET L TOLD TO BEGIN		Score	Initials
Directions: Do not turn this page until the p80 problems. Solve accurately and quickly as SOLVED MENTALLY. Make no calcula each problem. Problems marked with a (*) five percent of the exact answer will be score	many as you can intions with paper and require approximation	n the order in which they appear. A d pencil. Write only the answer i ate integral answers; any answer to	ALL PROBLEM in the space provi	S ARE T ided at the	O BE end of
The person conducting this contest should	d explain these dir	ections to the contestants.			
	STOP	WAIT FOR SIGNAL!			
(1) 356 + 817 =		(19) CDLIV =	(A	Arabic nu	meral)
(2) 815 — 324 =		*(20) 42116 ÷ 595 =			
(3) 325 × 7 =		(21) The multiplicative in	verse of 1.333.	is	
(4) 1947 ÷ 3 =		$(22) 25^2 + 75^2 = \underline{\hspace{1cm}}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Mary Mary Mary Mary Mary Mary Mary Mary
(5) $76\% = $ (pr	oper fraction)	$(23) \ 3 - 2 - 4 + 1 - 6 $	5 =		
(6) 0.444 = % (m	ixed number)	(24) Let $x = -4$. Find $3x$	— 2.		
(7) $8 + 15 - 20 \times 16 \div (6 - 8) =$		(25) The sum of three con largest of the three is			
$(8) \ 2\frac{5}{8} - \frac{5}{6} = $		(26) 0.2333 =	()	proper fr	action)
(9) $18^2 =$		(27) Let $\frac{4x}{5} = \frac{2}{3}$. Find x.			
*(10) 247 + 2126 — 1014 + 4756 =		$(28) \ 2\frac{2}{5} \times 1\frac{3}{4} = \underline{\hspace{1cm}}$	((mixed nı	umber)
$(11) 11^3 = \underline{}$		(29) 24% of 433 $\frac{1}{3}$ =			
(12) The arithmetic mean of 20, 16, and	is 17				
(13) 81547 ÷ 9 has a remainder of		*(30) 32126 ÷ 15 =			
(14) 21% of 21 =	(decimal)	(31) 235 × 111 =			
(15) Which is larger, $\frac{5}{6}$ or 0.83?		(32) If $6x - 4 = 2$, then $x = 4$	— 8 =		
$(16) \ 2\frac{2}{7} + 3\frac{1}{4} = \underline{\hspace{1cm}} (n$	nixed number)	(33) The set A = {A,U,S,T proper subsets?			
(17) 1 quart + 2 pint + 3 cup =	_ fluid ounces	$(34) \ \ 21 \times \frac{23}{25} = \underline{\hspace{1cm}}$	(mixed nu	ımber)
(18) If 12★'s cost \$20.20 then 3★'s cost	\$			1	

(36) $37 \times 43 =$ (37) $36 \text{ base } 9 \text{ in base } 10 \text{ is}$ (38) The area of a square is 196 cm^2 . The perimeter of the square is 200 cm^2 . The perimeter of the square is 200 cm^2 . The perimeter of the square is 200 cm^2 . The perimeter of the square is 200 cm^2 . The perimeter of the square is 200 cm^2 . The perimeter of the square is 200 cm^2 . The perimeter of the square is 200 cm^2 . The perimeter of the square is 200 cm^2 . The square is 200 cm^2 . The square is 200 cm^2 . The leg opposite the 300 cm^2 angle in a right triangle is 300 cm^2 . The hypotenuse is 200 cm^2 . The product of the roots of $(200 \text{ cm}^2)^3 = 0$ is 200 cm^2 . The product of the roots of $(200 \text{ cm}^2)^3 = 0$ is 200 cm^2 . The product of the roots of $(200 \text{ cm}^2)^3 = 0$ is 200 cm^2 . The product of the roots of $(200 \text{ cm}^2)^3 = 0$ is 200 cm^2 . The product of the roots of $(200 \text{ cm}^2)^3 = 0$ is 200 cm^2 . The square is 200 cm^2 . The	(35) Truncate $\sqrt{7}$ to the tenths place.	$(58) \ \ 321 \times 326 = \underline{\hspace{1cm}}$
(37) 36 base 9 in base 10 is (38) The area of a square is 196 cm². The perimeter of the square is cm (39) $(25 + 35 \times 45) \div 6$ has a remainder of cm (39) $(25 + 35 \times 45) \div 6$ has a remainder of cm (41) $(27 \times 33 + 9) = (41) (27 \times 33 + 9) = (42)$ The leg opposite the 30° angle in a right triangle is 30 cm. The hypotenuse is cm (43) $28^2 + 78^2 = (44)$ Find the stope of the line through the points $(-2, -3)$ and $(5, -8)$. (45) The product of the roots of $(2x - 3)^3 = 0$ is (46) How many triangles meet at each vertex of a Platonic icosahedron? (47) $11104 \div 34 = (48)$ The sum of the integral values of x such that $3 + x - 2 \le 5$ is (49) $4\frac{3}{5} \div 3\frac{2}{3}$ (mixed number) (49) $4\frac{3}{5} \div 3\frac{2}{3}$ (mixed number) (51) The midpoint of the segment with endpoints $(-3, -2)$ and $(-8, 5)$ is $(x, y) \cdot x + y = (52)$ Let $4^4b^3 \times (ab)^{-2} \div a^{-1} = a^{mb}b^{n}$. $m + n = (53)$ Let $\frac{61}{41} = \frac{(x + 1)!}{x!}$. Find $x = (54)$ The odds of selecting a vowel from the letters in the word "fraction" is (75) $5 \div 9 + 14 + 23 + 37 + \dots + 157 + 254 = (56)$ The simple interest on \$4,590.00 at 4.5% for		$(59) \left(\frac{1}{2}\right)^2 \div \left(\frac{1}{12}\right)^2 \times \left(\frac{1}{24}\right)^2 =$
(38) The area of a square is 196 cm². The perimeter of the square is		(12) (21)
(39) $(25 + 35 \times 45) \div 6$ has a remainder of	(38) The area of a square is 196 cm ² . The perimeter of	(61) The sum of the reciprocals of all of the positive
(41) $27 \times 33 + 9 =$ (42) The leg opposite the 30° angle in a right triangle is 30 cm. The hypotenuse is		(62) Let $f(x) = 3x^2 + 1$ and $g(x) = 2x - 1$.
(41) $27 \times 33 + 9 =$ (42) The leg opposite the 30° angle in a right triangle is 30 cm. The hypotenuse is	*(40) $\sqrt{32126} = $	
30 cm. The hypotenuse is cm (64) If $\log_5(4x-3) = 2$ then $x^3 =$		f(x) = [x]. Find $\left[\pi + \frac{\sqrt{5}+1}{2}\right]$.
(44) Find the slope of the line through the points $(-2,-3)$ and $(5,-8)$. (45) The product of the roots of $(2x-3)^3=0$ is (46) How many triangles meet at each vertex of a Platonic icosahedron? (47) $1110_4 \div 3_4 =$ (48) The sum of the integral values of x such that $3+ x-2 \le 5$ is (49) $4\frac{3}{5} \div 3\frac{2}{3} =$ (51) The midpoint of the segment with endpoints $(-3,-2)$ and $(-8,5)$ is (x,y) . $x+y=$ (52) Let $4^4b^3 \times (ab)^{-2} \div a^{-1} = a^mb^n$. $m+n=$ (53) Let $\frac{4!}{4!} = \frac{(x+1)!}{x!}$. Find x. (54) The odds of selecting a vowel from the letters in the word "fraction" is (55) $6^{C4} \times 5^{C3} =$ (56) The sum of the coefficients of the x^3y term and the xy^3 term of $(x+y)^4$ is (66) Change 0.5333 base 6 to a base 10 fraction. (67) The sum of the positive integral divisors of 42 is $(68) (2\sin(\frac{5\pi}{6})\cos(\frac{5\pi}{6}))^2 =$ (68) $(2\sin(\frac{5\pi}{6})\cos(\frac{5\pi}{6}))^2 =$ (69) How many lines are determined by five points, to three of which are collinear? (70) $(3+10+17+24++52+59)^2 =$ (71) The first four digits of the decimal for $\frac{23}{333}$ is 0 . (72) The product of the 4^{40} triangular number and the 3^{40} pentagonal number is (73) Let $f(x) = 2x + 3$, then $f^{-1}(4) =$ (75) $(2-3i)(4-5i) = (a+bi)$. Find $(a+b)$. (76) $\int_{-2}^{2} (x-1) dx =$ (77) The smallest element of the domain of $y^2 = 9 - i$ is (78) Round $7\sqrt{7}$ to the nearest tenth. (79) The range of the function $y = 2x - 3$ is $y \ge 1$ is (79) The range of the function $y = 2x - 3$ is $y \ge 1$ is (79) The range of the function $y = 2x - 3$ is $y \ge 1$ is (79) The range of the function $y = 2x - 3$ is $y \ge 1$ in the simple interest on \$4,500.00 at 4.5% for	. ,	(64) If $\log_5(4x - 3) = 2$ then $x^3 =$
(45) The product of the roots of $(2x-3)^3=0$ is	$(43) 28^2 + 78^2 = \underline{\hspace{1cm}}$	(65) 9 ¹¹ ÷ 13 has a remainder of
(45) The product of the roots of $(2x-3)^3=0$ is (46) How many triangles meet at each vertex of a Platonic icosahedron? (47) $1110_4 \div 3_4 =$ (48) The sum of the integral values of x such that $3+ x-2 \le 5$ is (49) $4\frac{3}{5} \div 3\frac{2}{3} =$ (50) $6 \times 7^2 \times 8^3 =$ (51) The midpoint of the segment with endpoints $(-3, -2)$ and $(-8, 5)$ is (x, y) . $x + y =$ (52) Let $a^4b^3 \times (ab)^{-2} \div a^{-1} = a^mb^n$. $m + n =$ (53) Let $\frac{6!}{4!} = \frac{(x+1)!}{x!}$. Find x. (54) The odds of selecting a vowel from the letters in the word "fraction" is (55) $6C_4 \times 5C_3 =$ (56) The sum of the positive integral divisors of 42 is $(-8, 6)$ is $(-3, -2)$ and integral divisors of 42 is $(-8, 6)$ is $(-3, -2)$ and integral divisors of 42 is $(-8, 6)$ is $(-3, -2)$ and integral divisors of 42 is $(-8, 6)$ is $(-3, -2)$ and integral divisors of 42 is $(-8, 6)$ is $(-3, -2)$ and integral divisors of 42 is $(-8, 6)$ is $(-8, 6)$ cos $(-8, 6)$ low many lines are determined by five points, three of which are collinear? (70) $(3+10+17+24++52+59)^2 =$ (71) The first four digits of the decimal for $(-2, -2)$ is $(-3, -2)$ and $(-8, 5)$ is $(-3, -2)$ is $(-3, -2)$ in $(-8, 5)$ i		(66) Change 0.5333 base 6 to a base 10 fraction.
(46) How many triangles meet at each vertex of a Platonic icosahedron?		(67) The sum of the positive integral divisors of 42 is
three of which are collinear? (48) The sum of the integral values of x such that $3 + x-2 \le 5$ is	(46) How many triangles meet at each vertex of a	$(68) \left(2\sin(\frac{5\pi}{6})\cos(\frac{5\pi}{6})\right)^2 = \underline{\hspace{1cm}}$
(48) The sum of the integral values of x such that $3 + x-2 \le 5$ is		(69) How many lines are determined by five points, no three of which are collinear?
$ (49) 4\frac{3}{5} \div 3\frac{2}{3} = \qquad \qquad$		*(70) $(3+10+17+24++52+59)^2 =$
*(50) $6 \times 7^2 \times 8^3 =$		(71) The first four digits of the decimal for $\frac{23}{333}$ is 0
*(50) $6 \times 7^2 \times 8^3 =$ (51) The midpoint of the segment with endpoints $(-3, -2)$ and $(-8, 5)$ is (x, y) . $x + y =$ (52) Let $a^4b^3 \times (ab)^{-2} \div a^{-1} = a^mb^n$. $m + n =$ (53) Let $\frac{6!}{4!} = \frac{(x+1)!}{x!}$. Find x. (54) The odds of selecting a vowel from the letters in the word "fraction" is (55) $_6C_4 \times _5C_3 =$ (56) The sum of the coefficients of the x^3y term and the xy^3 term of $(x + y)^4$ is (73) Let $f(x) = 2x^3 + 3x^2 + 2x + 3$. Find $f''(-2) =$ (74) If $f(x) = \frac{2x + 3}{5}$, then $f^{-1}(4) =$ (75) $(2 - 3i)(4 - 5i) = (a + bi)$. Find $(a + b)$. (76) $\int_{-2}^{2} (x - 1) dx =$ (77) The smallest element of the domain of $y^2 = 9 - is$ (78) Round $7\sqrt{7}$ to the nearest tenth. (79) The range of the function $y = 2x - 3$ is $y \ge 1$. (80) The simple interest on \$4,500.00 at 4.5% for	5	(72) The product of the 4 th triangular number and the 3 rd pentagonal number is
(51) The midpoint of the segment with endpoints $(-3, -2)$ and $(-8, 5)$ is (x, y) . $x + y =$		(73) Let $f(x) = 2x^3 + 3x^2 + 2x + 3$, Find $f''(-2) =$
(52) Let $a^4b^3 \times (ab)^{-2} \div a^{-1} = a^mb^n$. $m + n =$		
(54) The odds of selecting a vowel from the letters in the word "fraction" is	(52) Let $a^4b^3 \times (ab)^{-2} \div a^{-1} = a^mb^n$. $m + n =$	(75) $(2-3i)(4-5i) = (a+bi)$. Find $(a+b)$.
(54) The odds of selecting a vowel from the letters in the word "fraction" is (77) The smallest element of the domain of $y^2 = 9 - is$ (78) Round $7\sqrt{7}$ to the nearest tenth (79) The range of the function $y = 2x - 3$ is $y \ge - is$ (80) The simple interest on \$4,500.00 at 4.5% for	(53) Let $\frac{6!}{4!} = \frac{(x+1)!}{x!}$. Find x.	(76) $\int_{-2}^{2} (x-1) dx =$
(55) ${}_{6}C_{4} \times {}_{5}C_{3} = $ (78) Round $7\sqrt{7}$ to the nearest tenth. (79) The range of the function $y = 2x - 3$ is $y \ge $ (57) $5 + 9 + 14 + 23 + 37 + + 157 + 254 = $ (80) The simple interest on \$4,500.00 at 4.5% for		(77) The smallest element of the domain of $y^2 = 9 - x^2$
(56) The sum of the coefficients of the x^3y term and the xy^3 term of $(x + y)^4$ is (79) The range of the function $y = 2x - 3$ is $y \ge _$ (57) $5 + 9 + 14 + 23 + 37 + + 157 + 254 = *(80)$ The simple interest on \$4,500.00 at 4.5% for	$(55) _{6}C_{4} \times {}_{5}C_{3} = $	
(57) $5+9+14+23+37++157+254=$ *(80) The simple interest on \$4,500.00 at 4.5% for		

University Interscholastic League - Number Sense Answer Key HS • District 1 • 2016 *number) x — y means an integer between x and y inclusive

NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(1) 1,173

(19) 454

(35) 2.6, $\frac{13}{5}$, $2\frac{3}{5}$

(58) 104,646

(2) 491

*(20) 68 - 74

(36) 1,591

 $(59) \frac{1}{144}$

(3) 2,275

(21) .75, $\frac{3}{4}$

(37) 33

*(60) 23,756 - 26,256

(4) 649

(22) 6,250

(38) 56

(61) $1\frac{4}{5}$

 $(5) \frac{19}{25}$

(23) 6

(39) 4

(62) 28

(6) $44\frac{2}{5}$

(24) - 14

*(40) 171 -- 188

(63) 4

(7) 183

(25) 45

(41) 900

(64) 343

(8) $1\frac{19}{24}$

(26) $\frac{7}{30}$

(42) 60

(65) 3

(9) 324

 $(27) \frac{5}{6}$

(43) 6,868

 $(66) \frac{14}{15}$

*(10) 5,810 -- 6,420

 $(28) 4\frac{1}{5}$

 $(44) - \frac{5}{7}$

(67) 96

(11) 1,331

(29) 104

(45) $\frac{27}{8}$, $3\frac{3}{8}$

(68) .75, $\frac{3}{4}$

(12) 15

*(30) 2,035 - 2,248

(46) 5

(69) 10

(13) 7

(31) 26,085

(47) 130

*(70) 73,949 — 81,733

(14) 4.41

(32) - 7

(48) 10

(71) 0690

 $(15) \frac{5}{6}$

(33) 63

(49) $1\frac{14}{55}$

(72) 120

(16) $5\frac{15}{28}$

 $(34) 19\frac{8}{25}$

*(50) 143,002 — 158,054

(73) - 18

(17) 88

(18) \$5.05

(51) - 4

(74) 8.5, $\frac{17}{2}$, $8\frac{1}{2}$

(52) 4

(75) - 29

(53) 29

(76) 4

 $(54) .6, \frac{3}{5}$

(77) - 3

(55) 150

(78) 18.5, $\frac{37}{2}$, 18 $\frac{1}{2}$

(56) 8

(79) - 3

*(80) 866 - 956

(57) 656