# II – Gas-Liquid Mass Transfer in Biological Systems



- **II.1 Introduction**
- II.2 Gas-Liquid Mass Transfer Process Modeling
- **II.3 Rate of Oxygen Consumption**
- II.4 Gas-Liquid Mass Transfer in Systems Without Mechanical Agitation
- II.5 Mass transfer in mechanical agitation systems



#### In Nature:





#### In Nature:





#### Importance of the study of mass transfer in biological systems:

- Nutrients supplied in high concentrations and high solubility
- Oxygen has low solubility (7 mg/l)



Example: consumption of O<sub>2</sub> by S. cerevisiae

$$C_6 H_{12} O_6 + \underbrace{3.95 O_2} + 0.327 NH_4 \rightarrow 1.914 CN_{0.171} H_{0.45} + 4.086 CO_2 + 4.86 H_2O_3$$



#### Oxygen requirements in some processes and by certain microorganisms:

| Microorganism/process   | Rate of consumption (mg O <sub>2</sub> / g cel h) |  |
|-------------------------|---------------------------------------------------|--|
| Microrganism:           |                                                   |  |
| Aspergillus niger       | 96                                                |  |
| Penicillium chrysogenum | 124                                               |  |
| S. cerevisae            | 256                                               |  |
| Process:                |                                                   |  |
| Streptomicina           | 134                                               |  |
| Oxitetraciclina         | 237                                               |  |
| Penicilina              | 64                                                |  |
| Levedura                | 86                                                |  |



#### 1. RATIONALE FOR CONSIDERING OXYGEN TRANSFER

- LOW SOLUBILITY (CAPACITY) IN AQUEOUS BROTH
- OXYGEN REQUIRED IN ALL AEROBIC PROCESSES
- MEASUREABLE (D.O. PROBE)
- TRANSPORT IS PASSIVE (NOT ACTIVE TRANSPORT)
- SHOULD CONSIDER OTHER NUTRIENT TRANSPORT COULD ALSO BE IMPORTANT (OILS, ORGANIC NITROGEN)



#### 2. TIME SCALE FOR OXYGEN DEPLETION

- YEAST ( $\mu = 0.2 \text{ h}^{-1}$ )
- CELL DENSITY = 15 g/L
- DISSOLVED OXYGEN: FULLY SATURATED = 7 mg O<sub>2</sub>/L
- Yx/o = 1 mgX/mgO2
- OXYGEN CONSUMPTION RATE = 0.8 mg O<sub>2</sub>/L-sec
- TIME FOR TOTAL DEPLETION  $\theta = \frac{7.0}{0.80} = 8.7 \text{ seconds}$



### **Effect of solutes on solubility**

| Concentration | Oxygen solubility (kg m <sup>-3</sup> ) |                       |                       |
|---------------|-----------------------------------------|-----------------------|-----------------------|
| (M)           | HCl                                     | 1/2 H2SO4             | NaCl                  |
| )             | 4.14×10 <sup>-2</sup>                   | 4.14×10 <sup>-2</sup> | 4.14×10 <sup>-2</sup> |
| ).5           | $3.87 \times 10^{-2}$                   | $3.77 \times 10^{-2}$ | $3.43 \times 10^{-2}$ |
| 1.0           | $3.75 \times 10^{-2}$                   | $3.60 \times 10^{-2}$ | $2.91 \times 10^{-2}$ |
| 2.0           | $3.50 \times 10^{-2}$                   | $3.28 \times 10^{-2}$ | $2.07 \times 10^{-2}$ |



### **Effect of solutes on solubility**

| Sugar   |     | Concentration<br>(gmol per kg H <sub>2</sub> O) | Temperature<br>(°C)   | Oxygen solubility<br>(kg m <sup>-3</sup> ) |
|---------|-----|-------------------------------------------------|-----------------------|--------------------------------------------|
| Glucose |     | 0                                               | 20                    | $4.50 \times 10^{-2}$                      |
| Cideose | 0.7 | 20                                              | $3.81 \times 10^{-2}$ |                                            |
|         | 1.5 | 20                                              | $3.18 \times 10^{-2}$ |                                            |
|         | 3.0 | 20                                              | $2.54 \times 10^{-2}$ |                                            |
| Sucrose |     | 0                                               | 15                    | $4.95 \times 10^{-2}$                      |
|         | 0.4 | 15                                              | $4.25 \times 10^{-2}$ |                                            |
|         |     | 0.9                                             | 15                    | $3.47 \times 10^{-2}$                      |
|         | 1.2 | 15                                              | $3.08 \times 10^{-2}$ |                                            |



#### **Gas-liquid contacting modes**









Rising single bubble

Bubble swarms

Sparged air lift

Trickling filter counter current



#### **Gas-liquid contacting modes**







Batch liquid, continuous air

Continuous liquid and air

Stirred tank with baffles



#### **Gas-liquid contacting modes**



Multiple propeler











#### **Steps involved in O2 transport in biological systems:**



Figure 8.1 Schematic diagram of steps involved in transport of oxygen from a gas bubble to inside cell.

When cells are dispersed in the liquid and the medium is well stirred



the greatest resistance is the one from step 3



Gas-liquid mass transfer is normally modeled by the double-film theory:



CLi - conc. at the liquid film interface

Cgi - conc. in the gaseous film near the interface



In dilute aqueous solutions (in the case of microbial cultivation), the relationship between concentrations at the gas-liquid interface is given by Henry's Law:

$$C_{Li} \times M = C_{gi}$$

M – equilibrium constant

CLi - conc. at the liquid film interface

Cgi - conc. in the gaseous film near the interface

Oxygen transfer rates in the gaseous film and in the liquid film:

$$N_{ag} = k_g (C_g - C_{gi})$$

$$N_{aL} = k_L (C_{Li} - C_L)$$

$$N_{aL} = k_L (C_{Li} - \frac{C_L}{C_L})$$

$$N_{ag}$$
 and  $N_{aL}$  = oxygen flux (mol cm<sup>-2</sup> s <sup>-1</sup>)

 $k_{\sigma}$  - mass transfer coefficient in the gaseous film

k<sub>1</sub> – mass transfer coefficient in liquid film

 $C_g$  - concentration of oxygen in the gas

 $C_{I}$  - oxygen concentration in the liquid



Due to the difficulty in directly measuring interfacial oxygen concentrations, only the global flux is considered:

$$N_a = K_L (C_L^* - C_L)$$
 with:  $M C_L^* = C_g$ 

 $C_L^*$  gas concentration in the liquid phase in equilibrium with the phase gaseous  $\rightarrow$  saturation concentration.

K<sub>L</sub> – global mass transfer coeficiente (cm s<sup>-1</sup>)

 $N_a$  – global flux of  $O_2$  (mol cm<sup>-2</sup> s<sup>-1</sup>)

In steady state:

$$N_a = N_{ag} = N_{aL}$$



Global resistance = resistance at liquid film + resistance at gaseous film

$$\frac{1}{K_L} = \frac{1}{k_L} + \frac{1}{M k_g}$$

For oxygen and carbon dioxide:

- M is greater than 1

- $\longrightarrow$   $K_L = k_L$
- $k_g$  is typically greater than  $k_L$

The oxygen transfer rate  $(Q_{O2})$  is given by:

$$Q_{02} = flux \times \frac{\text{interface area}}{\text{reactor liquid volume}} = K_L(C_L^* - C_L) \frac{A}{V}$$

$$Q_{O2} = \text{mol } O_2/\text{cm}^3\text{s}$$

V= Volume of reactor (cm<sup>3</sup>)

a' = interface área per unit of volume (cm<sup>-1</sup>)

 $K_L$  a' = volumetric mass transfer coefficient



$$Q_{O2} = K_L a' (C^* - C_L)$$

$$C_L = 0 \Rightarrow Q_{O2 \text{ max}} = K_L \text{ a' } C^*$$

$$r_{02} = V_{02}.X = \frac{1}{Y_{x/02}}.\mu.X$$

$$\mu = \frac{\mu_{\text{max}}C_L}{k_{02} + C_L}.X$$

$$\mu = \frac{\mu_{\text{max}}C_L}{k_{02} + C_L}.X$$

$$r_{O2} = \frac{1}{Y_{x/o2}} \cdot \frac{\mu_{max} C_L}{k_{O2} + C_L} \cdot X$$

$$\mu = \frac{\mu_{\text{max}} C_L}{k_{O_2} + C_L}$$

Maximum rate:

$$r_{O2} = \frac{1}{Y_{x/o2}} \cdot \mu_{max} \cdot X$$



In steady state: 
$$r_{02} = Q_{02}$$

(the oxygen consumption rate,  $r_{O2}$ , is equal to the oxygen transfer rate,  $Q_{O2}$ )

$$K_L a'(C_L^* - C_L) = \frac{1}{Y_{X/O_2}} \mu x$$

• Kinetic limitation:

$$K_L a' C_L^* > \frac{1}{Y_{X/O_a}} \mu_{\text{max}} x$$

• Limitation by mass transfer:

$$K_L a' C_L^* < \frac{1}{Y_{X/O_2}} \mu_{\text{max}} x$$



• Calculation of C<sub>L</sub>:

If 
$$C_L \ll C_L^*$$
 
$$x_{\text{max}} = \frac{K_L a' C_L^*}{\mu} \times Y_{X/O_2}$$

If 
$$C_L >>$$
 critical value of  $O_2$  concentration  $\Box$  There is no Limitation (does not depend on  $O_2$ )

The critical value varies between 0.003 - 0.05 mmol /l or between 0.1 - 10% of the solubility value

It depends on:

- cell type
- growth phase
- substrate type
- type of process



#### Type of cells:

# TYPICAL CRITICAL DISSOLVED OXYGEN CONCENTRATION (Low

**Density Cultures**)

| ORGANISM       | CRITICAL DISSOLVED<br>OXYGEN (% Air<br>Saturation) |
|----------------|----------------------------------------------------|
| E. coli        | 3.4%                                               |
| S. marcescens  | 6.3%                                               |
| S. cerevisiae  | 1.9%                                               |
| P. chrysogenum | 9.1%                                               |
| A. niger       | 8.3%                                               |

Table 8.2 Typical values of  $c_{\rm O_2,\,cr}$  in the presence of substrate<sup>†</sup>

| Organism                  | Temp, °C | c <sub>O2,cr</sub> ,<br>mmol/L |
|---------------------------|----------|--------------------------------|
| Azotobacter vinelandii    | 30       | 0.018-0.049                    |
| E. coli                   | 37.8     | 0.0082                         |
|                           | 15       | 0.0031                         |
| Serratia marcescens       | 31       | ~0.015                         |
| Pseudomonas denitrificans | 30       | ~0.009                         |
| Yeast                     | 34.8     | 0.0046                         |
|                           | 20       | 0.0037                         |
| Penicillium chrysogenum   | 24       | ~0.022                         |
|                           | 30       | ~0.009                         |
| Aspergillus oryzae        | 30       | ~0.020                         |

<sup>&</sup>lt;sup>†</sup> Summurized by R. K. Finn, p. 81 in N. Blake-brough (ed.), Biochemical and Biological Engineering Science, vol. 1, Academic Press, Inc., New York, 1967.



#### Growth phase:



Figure 8.5 Oxygen utilization rate in batch culture of Myrothecium verrucaria [Reprinted from R. T. Darby and D. R. Goddard, Am. J. Bot., vol. 37, p. 379 (1950).]



#### Type of substrate:

rate of substrate consumption O<sub>2</sub> (mmol/l h) (ex: glucose is at higher rate)

- For more reduced compounds Higher oxygen consumption (ex: parafines and methane)
- The consumption of O2 in fermentations with hydrocarbons is 2.5 to 3 times higher than that consumed with carbohydrates.



Type of process:



a) Biological oxidation:

 $C_6 H_{12} O_6 + \frac{1}{2} O_2 \rightarrow biomass + C_6 H_{12} O_7$  (gluconic acid)

b) Chemical oxidation:

 $C_6 H_{12} O_7 + \frac{1}{2} O_2 \rightarrow C_6 H_{10} O_7 + H_2 O$ (ac. 5-cetogluconic)

In a) oxygen is used for: biomass and product (gluconic acid)

In b) oxygen is used as reagent (oxidant)  $\rightarrow$  biotransformation



#### Cálculo do KLa' - Método dinâmico

$$\frac{dO_2}{dt} = K_L a'(C * -CL)$$

$$\Leftrightarrow$$
 dO<sub>2</sub> = K<sub>L</sub>a'(C \* -CL) dt

$$\Leftrightarrow \int \frac{1}{(C*-CL)} dO_2 = K_L a' \int dt$$

$$\Leftrightarrow \ln(C * -CL) = K_L a't + cte$$





#### Cálculo do KLa' – Método dinâmico





### **Determination of K**<sub>L</sub>

the mass transfer coefficient -  $K_{L}$  - varies with: - fluid properties

- flow conditions

- physical system geometry

#### **Dimensionless Numbers:**

 $\square$  Sherwood number (Sh) allows to calculate  $K_L$ 

☐ Grashof number (Gr) is the ratio of gravitational and viscous forces

☐ Schmidt number (Sc) gives a measure of the properties of the fluid

☐ Reynolds Number (Re) gives a measure of the physical properties of the

fluid and the fluid velocity



Sherwood number

$$Sh = \frac{K_L.D_p}{D_{O2}}$$

D<sub>p</sub> – bubble diameter

 $D_{02}$  – oxygen diffusivity

Sh = 
$$0.42 \cdot \sqrt[3]{Gr} \cdot \sqrt{Sc}$$

Grashof Schmidt number number

$$Gr = \frac{D_p^3 \cdot \rho_L \cdot \Delta \rho \cdot g}{\mu_L^2}$$

$$Sc = \frac{\mu_L}{\rho_L \cdot D_{O2}}$$

$$\rho_L$$
 — density of the liquid

$$\Delta \rho = \rho_L - \rho_G$$

g – gravitational acceleration

 $\mu_{L}-\text{viscosity}$  of the liquid



#### Reynolds Number (Re)



•gives a measure of the physical properties of the fluid and the fluid velocity.

Determines the regime  $Re < 2300 \ (\pm \ 10^3)$  laminar regime of the fluid  $Re > 10^4$  turbulent regime

Re between  $10^3$  e  $10^4$  transition regime



#### Reynolds Number (Re)





turbulent regime



#### Reynolds Number (Re)

- Correlations for dispersed bubbles ("single bubbles")
  - a) for small Reynolds number (Re << 1)



$$Sh = \frac{K_L D_P}{D_{O_2}} = 1.01 \left( \frac{V_t D_P}{D_{O_2}} \right)^{\frac{1}{3}}$$

$$Pe = Peclet number$$

$$Sh = 0.39 (Gr)^{\frac{1}{3}} (Sc)^{\frac{1}{3}} = 0.39 (Ra)^{\frac{1}{3}}$$

Ra = nº Rayleigh

 $V_t$  = particle terminal velocity (gas bubble)

$$V_t = \frac{D_P^2 \Delta \rho g}{18 \mu_I}$$

Stokes equation



#### Reynolds Number (Re)

- Correlations for dispersed bubbles ("single bubbles")
  - b) for <u>high</u> Reynolds number (Re >> 1)



$$Sh = 2.0 + 0.6 \,\mathrm{Re}^{\frac{1}{2}} \, Sc^{\frac{1}{3}}$$

$$Sh = 2.0 + 0.6 \operatorname{Re}^{\frac{1}{2}} Sc^{\frac{1}{3}}$$

$$Sh = 2.0 + 0.6 \left(\frac{D_P^3 \rho \Delta \rho g}{18 \mu_L^2}\right)^{\frac{1}{2}} (Sc)^{\frac{1}{3}}$$
Gr



#### Reynolds Number (Re)

\*Correlations for bubbles clusters ("bubbles swarms")



Critical bubble diameter - Dc = 2.5 mm

i) 
$$D < D_C$$

Small bubbles

i) 
$$D > D_C$$

Large bubbles

i) Correlations for Small Bubbles : D < 2.5 mm

$$Sh = 2.0 + 0.31Ra^{\frac{1}{3}}$$

$$Sh = 2.0 + 0.31Gr^{\frac{1}{3}}Sc^{\frac{1}{3}}$$

For 
$$\Delta \rho = 0$$

Sh = 2 (minimum value)



#### Reynolds Number (Re)

\*Correlations for bubbles clusters ("bubbles swarms")



#### ii) Correlations for large Bubbles : D > 2.5 mm

$$Sh = 0.42Gr^{\frac{1}{3}}Sc^{\frac{1}{2}}$$

Comparison between i) and ii):

i) 
$$Sh = f(Sc^{1/3})$$

ii) 
$$Sh = f(Sc^{1/2})$$

It implies a change of hydrodynamic regime



Changing the shape of bubbles



Spherical shape for small bubbles semi-spherical shape for large bubbles



#### **Determination of the interfacial area and "Hold-Up"**

The interfacial area per volume unit (a') is defined by :



 $V_L$  – Liquid volume of the reactor

n – Number of dispersor orifices

Fo – Gas flow per orifice

tb – Residence time of bubbles in the reactor

D – diameter of the bubble



#### <u>Determination of the interfacial area and "Hold-Up"</u>

The **interfacial area per volume unit** (a') is defined by :

$$a' = \frac{1}{V_L} n Fotb \frac{6}{D}$$

 $V_L$  – Liquid volume of the reactor n = Number of U

n – Number of dispersor orifices

Fo – Gas flow per orifice

tb – Residence time of bubbles in the reactor

"Hold-up" is defined as:

$$H = \frac{\text{Gas Volume}}{\text{Gas volume} + \textit{liquid} \text{ volume}}$$

can be calculated by:

$$a = H \frac{6}{D}$$

a - interfacial area per unit of total volume (gas volume and liquid volume)

relationship between a and a' is given by:

$$a'(1-H) = a$$



#### <u>Determination of the interfacial area and "Hold-Up"</u>

**Residence time of bubbles** (tb) is given by:

$$t_b = \int_o^{hr} \frac{dz}{u_b(z)} = \frac{h_r}{v_t}$$

h<sub>r</sub> – reactor height v<sub>t</sub> – terminal velocity

The particle **terminal velocity**  $(v_t)$  can be calculated by:

Stokes Law 
$$v_t = \frac{D^2 \Delta \rho g}{18 \mu c}$$

Valid for small bubbles and small Reynolds numbers

$$v_t = 0.711(gD)^{\frac{1}{2}} = 22.26(D)^{\frac{1}{2}}$$

Valid for large bubbles in Newtonian fluids



### Factors influencing K<sub>L</sub>a'

- K<sub>L</sub>
- Diffusivity of the gas in the liquid
- Surfactants that affect interfacial properties
- Liquid rheology
- Bubble size
- Liquid flow regime
- a′
- Bubble size: mechanical stress
  - use of surfactants
- Terminal velocity of bubbles
- "Hold-up"



### Factors influencing K<sub>L</sub>a'

#### Adition of surfactants – antifoams:

- $\Rightarrow$  Decreases surface free energy  $\Rightarrow$   $\sigma$  is lower
  - $\Rightarrow$  D is smaller
  - ⇒ greater liquid gas interfacial area
- $\Rightarrow$  Interface gas-liquid  $\Rightarrow$  increases the resistance

more rigid

to transport



### K<sub>L</sub>a´ values in industrial fermenters

The mass transfer rate is affected by physical and chemical factors that influence  $K_L$ , a' and  $(C^*_L - C_L)$ 

In industrial fermenters the  $K_L$  values vary:

$$3 - 4 \times 10^{-4} \text{ m/s}$$
 for bubbles > 2-3 mm

$$1 \times 10^{-4} \text{ m/s}$$
 for bubbles  $< 2 \text{ mm}$ 

To improve mass transfer rate, a' is the key parameter.

In industrial fermenters the value of  $K_L a$  is :  $0.02 - 0.25 s^{-1}$ .



- i) agitation causes a decrease in the size of the bubble
  - $\Rightarrow$  a' increases  $\Rightarrow$  mass transfer increases (if there is no coalescence of bubbles)
- ii) stirring leads to a homogeneous dispersion of different phases (solid-liquid)
- iii) agitation leads to a decrease in the size of the mycelium/fungus and cell aggregates ⇒ lower diffusion resistance inside

(Agitation can cause loss of enzymatic activity (enzyme damage), morphological change)

- iv) Agitation is particularly useful in viscous systems (improves the degree of mixing in the fermentation medium).
- v) Agitation increases heat transfer rates dissipation of heat generated by biological reaction and mechanical work.



### **Type of Impellers**





#### **Type of Impellers**



### Rushton

radial flow for microbial applications



### Pitch-blade / marine

axial flow shear sensitive applications



### **Type of Impellers**

a) **Axial Flow Impellers** - Blades have a slope with the impeller



b) Radial Flow Impellers - Blades are parallel to agitator axis



- High agitation ratesn° blades > 4

- Low agitation rates2 or 4 blades

Impellers with blades



### **Type of Impellers**

| (C) RADIAL   |                               |                                |                      |               |                                     |
|--------------|-------------------------------|--------------------------------|----------------------|---------------|-------------------------------------|
| \$100.00 P   | Rushton Turbine<br>(RT)       | Straight Blade<br>(SB)         | Curved Blade<br>(CB) | R130 impeller | Curved Blade<br>with<br>Disc (CBWD) |
| (D) AXIAL    |                               |                                |                      |               | Disc (CBWD)                         |
| ( <b>D</b> ) | Rushton Turbine<br>45 (RT 45) | Pitched Blade<br>Turbine (PBT) | A320 impeller        | HE3 impeller  |                                     |



### **Type of Impellers**









### Reynolds number in relation to the fluid:

$$Re = \frac{\rho_L D v}{\mu_L}$$

 $\rho_L$  — density of the liquid

D – diameter

v – fluid velocity

 $\mu_L$  — viscosity of the liquid

### **Reynolds number in relation to the impeller:**

$$Re = \frac{\rho_L \; D_i^2 \; N_i}{\mu_L}$$

 $\rho_L$  — density of the liquid

 $D_i-impeler\ diameter$ 

N<sub>i</sub> – stirring rate

 $\mu_L - \text{viscosity}$  of the liquid



Agitation Power: Only Newtonian Fluids will be considered

Power number  $-P_{no}$ 

$$P_{no} = \frac{P}{N_i^3 D_i^5 \rho}$$

P = agitation power (W = Kg m<sup>2</sup>/s<sup>3</sup>)  
g = 9.81 m/s<sup>2</sup>  
Ni = stirring rate (s<sup>-1</sup>)  
Di = impeller diameter (m)  

$$\rho$$
 = density (Kg/m<sup>3</sup>)

turbulent regime: 
$$P_{\text{no}} = \frac{P}{N_i^3 D_i^5 \rho} \Rightarrow P = P_{\text{no}} N_i^3 D_i^5 \rho$$

independent of fluid viscosity and proportional to fluid density

$$P_{no} \propto \frac{1}{R} \Rightarrow P \propto N_i^2 D_i^3 \mu$$

independent of fluid density and is directly proportional to fluid viscosity



### > Agitation Power:





### **Power in aerated systems with stirring:**

In these systems the power requirements are lower than in non-aerated systems.

The decrease in power requirement depends on the aeration rate and the type of impeller.

The aeration velocity is characterized by the aeration number Na:

$$N_a = \frac{F_g / D_i^2}{N_i D_i} = \frac{F_g}{N_i D_i^3}$$

Fg – Volumetric gas flow rate

 $Fg/Di^2$  – surface flow rate



**Power with aeration:** for Newtonian Fluids

$$\frac{P_a}{P} = 0.10 \left(\frac{F_g}{N_i V}\right)^{-0.25} \left(\frac{N_i^2 D_i^4}{g w_i V^{2/3}}\right)^{-0.20}$$

P<sub>a</sub> – Power with aeration

P – Power without aeration

F<sub>g</sub> – Gas flow rate

N<sub>i</sub> – Agitator agitation speed

V – Liquid Volume

D<sub>i</sub> – Impeller diameter

g – Aceleration of gravity

w<sub>i</sub> – Agitator Blade Width

Power consumption per unit volume for Industrial fermenters is around 10 kW/m³ for small volumes (0.1 m³) and 1 – 2 kW/m³ for large volumes (100 m³).