Introdução Machine Learning

Sobre Mim

Daniela Ap. Pires Gomes

Pós Graduada em Big Data

Graduada em Analista De Sistemas

Apaixonada por Tecnologia

Adoro Viajar

O Exterminador do futuro

O Homem Bicentenário

"Machine Learning (ML) é a ciência (e a arte)da programação de computadores para que eles possam aprender com os dados"

"Machine Learning é sobre extrair conhecimento dos dados"

Como extrair conhecimento dos dados?

Utilizando alguns tipos de algoritmos que podem ser classificados como supervisionados e não supervisionados

Aprendizado Supervisionado

- •O conjunto de dados já possui um rótulo(label). Portanto, temos o conhecimento da saída correta.
- Os problemas de aprendizado Supervisionado são classificados como Regressão e Classificação
- · Exemplo de algoritmos:
 - -Regressão Linear
 - -Regressão Logística
 - -Árvores de Decisão
 - -KNN

·Ex: Classificação de Spam

Aprendizado Não Supervisionado

- •O conjunto de dados já possui **não** um rótulo (label). Portanto, temos muito pouco ou nenhum conhecimento de como o resultado vai se apresentar.
- Os problemas de aprendizado Não Supervisionado são Clusterização, regras de associação, visualização e redução de dimensão
- Exemplo de algoritmos:
- -Clusterização : K=means, Cluster hierárquicos
- -Regras de Associação: Apriori
- -Redução de Dimensão : Análise de componentes principais

•Ex: Clusterização

Processo de Machine Learning

CRISP-DM é a abreviação de Cross **Industry Standard Process for Data** Mining - Processo genérico de análise de dados que pode ser aplicado em diversos área(financeiras. comerciais, industriais. Além disso é independente de ferramenta.

Análise Exploratória de Dados (AED)

"A análise exploratória de dados busca informações para estabelecer alguma forma de regularidade, padrão ou ainda um modelo presente nas observações"

Tipos de Dados

Conhecer o tipo de dado ao qual vamos trabalhar é importante pois nos ajuda a determinar o tipo de análise ou modelo que vamos utilizar e o tipo de visualização que usaremos para esse dados

Medidas de Tendência Central

Moda

- Em um conjunto de dados é o valor que aparece com maior frequência
- Pode ser classificada com *Unimodal* (uma moda), bimodal (duas modas), multimodal (várias modas) e Amodal (nenhuma moda)

Mediana

- Em um conjunto de dados ordenados é o ponto que divide os dados no meio
- Se o número de elementos for par, então a mediana é a média dos dois valores centrais. Soma os dois valores centrais e divide o resultado por 2: (a + b)/2.
- Se o número de elementos for ímpar, então a mediana é o valor central.

Média

 Média Aritmética Simples - Soma das observações divida pela quantidade delas

relunescapitemetermetramour

Medidas de Dispersão

Amplitude

 Em um conjunto de dados é a diferença entre o menor e o maior valor observado no conjunto de dados

Vâriancia

· É a media dos quadrados dos desvios

Desvio Padrão

- Determina o quão distante as observações em um conjunto de dados se encontram da média.
- · Quanto mais próximo o valor está de zero mais uniforme são os dados

rel-mestesitemetemethereswww

1	2	4
Zi	2i-M	(xi-12)2
6	6-5=1	12 = 1
2	2-5=-3	$(-3)^2 = 9$
8	8-5 = 3	3° = 9
5	5-5=0	02 = O
4	4-5=-1	$(-1)^2 = 1$
SOMA	3 0	(5) 20

 $Var = \frac{20}{5} = 4$

1) pe é a média aritmética dos valores de entrada:

$$A = \frac{6+2+8+5+4}{5} = 5$$

- 2) Subtraia M de cada valor
- 3) Se a soma der zero, BELEZA!
- (4) Eleve as diferenços ao quadrado
- 5 VARIÂNCIA é a média aritmética da 3º coluna; DESVIO-PADRÃO é a naiz quadrada da variância!

D.P. = $\sqrt{4} = 2$

Outliers

- •Outlier é qualquer valor que esteja muito distante dos outros valores em um conjunto de dados.
- ·Um outlier não significa que o dado está errado ou é inválido
- ·Quando um outlier é resultante de dados ruins , a média aritmética pode ser mal estimada
- De qualquer modo os outliers devem ser identificados, removidos, porém devem ser melhor investigados.
- ·Uma maneira de identificar outliers e utilizando o Boxplot

Identificando outliers

Desafios Machine Learning

Escassez de especialistas

Qualidade dos dados

Ética

Privacidade

Segurança - Restrições e acesso aos dados

Mudança do Midset Organizacional

Correlação

O objetivo da Correlação é descrever a associação entre duas variáveis, isto é, desejamos saber o grau de dependência entre elas.

Lembrando que correlação não significa causalidade

Correlação - Diagrama de Dispersão

Uma forma de de visualizarmos a correlação de duas variáveis quantitativas é utilizando o diagrama de dispersão.

Coeficiente de Correlação de Pearson

O coeficiente de correlação de Pearson (r) de Pearson mede o grau da correlação linear(forte ou fraca e a direção (positiva ou negativa) entre duas variáveis quantitativas.

Os valores do coeficiente (r) assumem valores entre -1 e 1. Se r= 1 ou r= -1 dizemos que é uma correlação perfeita positiva ou negativa respectivamente. Se r= 0 não existe correlação linear entre as variáveis.

Correlação	Valor de r
Positiva Perfeita	+ 1
Positiva Forte	+ 0,75
Positiva Média	+ 0,50
Positiva Fraca	+ 025
Inexistente	0
Negativa Fraca	- 0,25
Negativa Média	- 0,50
Negativa Forte	- 0,75
Negativa Perfeita	- 1

Coeficiente de Correlação de Pearson

fonte: https://caetreinamentos.com.br/blog/ferramentas/aprenda-a-montar-um-diagrama-de-dispersao-com-o-excel/

Regressão Linear

A análise de regressão linear gera uma equação matemática que descreva o relacionamento entre uma ou mais variáveis independente e a variável dependente.

Utiliza dados históricos para prever dados futuros.

Regressão Linear Simples

Regressão linear simples (MRLS) - define a relação linear entre uma variável dependente com uma variável independente.

Variável dependente - é aquela que está sendo explicada. Variáveis Independentes - é usada para explicar a variação na variável dependente

Regressão Linear Simples

Y: Variável explicada (dependente); representa o que o modelo tentará prever;

α: É uma constante, que representa a interceptação da reta com o eixo vertical;

β: Representa a inclinação (coeficiente angular) em relação à variável explicativa (independente);

ε:Representa todos os fatores residuais mais os possíveis erros de medição.

MRLS- Método dos Mínimos Quadrados

É uma técnica de otimização matemática que procura encontrar o melhor ajuste para um conjunto de dados tentando minimizar a soma dos quadrados das diferenças entre o valor estimado e os dados observados (tais diferenças são chamadas resíduos)

Método utilizado para obter a reta que melhor se ajusta ao conjunto de dados que estamos estudando

MRLS- Avaliando o Modelo

- Teste F de Significância global: afirma se ao menos uma variável do meu modelo está relacionada com a variável alvo. Para isso, o valor-p desta estatística precisa ser menor que 0.05
- Teste de Significância individuais ou p-values dos coeficientes: diz o quanto das variáveis preditoras explicam a variável alvo. A métrica padrão é o p-value ser menor que 0.05.
- **Coeficiente R**²: uma medida descritiva da qualidade do ajuste obtido. É um valor entre 0 e 1. Quanto mais próximo de 1, melhor.

Regressão Linear - Exemplos de Utilização

Variável dependente	Variável independente
Nota da Prova	Tempo de Estudo
Satisfação Cliente	Qualidade do produto, tempo de entrega
Investimento em Marketing	Quantidade de vendas
Salário	Anos de estudo, tempo de experiência
Câncer de pulmão	Ser fumante ou Não

Links Úteis

- •http://www.portalaction.com.br/estatistica-basica/estatisticas-descritivashttp://www.portalaction.com.br/estatistica-basica/estatisticas-descritivashttp://www.portalaction.com.br/estatistica-basica/estatisticas-descritivashttp://www.portalaction.com.br/estatistica-basica/estatisticas-descritivashttp://www.portalaction.com.br/estatistica-basica/estatisticas-descritivashttp://www.portalaction.com.br/estatistica-basica/estatisticas-descritivashttp://www.portalaction.com.br/estatistica-basica/estatisticas-descritivashttp://www.portalaction.com.br/estatistica-basica/estatisticas-descritivashttp://www.portalaction.com.br/estatistica-basica/estatisticas-descritivashttp://www.portalaction.com.br/estatistica-basica/estatisticas-descritivashttp://www.portalaction.com.br/estatistica-basica/estatisticas-descritivashttp://www.portalaction.com.br/estatistica-basica/estatisticas-descritivashttp://www.portalaction.com.br/estatisticas-descritivasht
- •https://operdata.com.br/blog/desvio-padrao-e-erro-padrao/
- •https://pt.khanacademy.org/math/probability/data-distributions-a1/summarizing-spread-distributions/a/introduction-to--standard-deviation

http://ecologia.ib.usp.br/bie5782/doku.php?id=bie5782:02 tutoriais:tutorial2:start

Obrigada!!!

daniela-ap-p-gomes-56580924

daniela.dapg@yahoo.com.br

