

Discover User-App Interactions & Solutions to Reducing the Initial User-CPU Latency

Thy Nguyen Milon Chakkalakal Pranav Thaenraj

Advisors: Jamel Tayeb, Bijan Arbab, Sruti Sahani, Oumaima Makhlouk, Praveen Polasam, Chansik Im

Abstract

- Data loading icons signal an unpleasant user-wait experience
- To mitigate the initial latency, we analyze user-app interaction data collected by *Intel's Telemetry*, make predictions on said data using EDA, HMM, & LSTM/RNN, then propose solutions

Methodology of Data Collection

- We apply Intel® Software Development Kit and System Usage Report framework to anonymously gather data usage from multiple devices
- We develop 4 input libraries, esp. Foreground Window IL, using **C** and **Event-Driven** programming knowledge

Exploratory Data Analysis

Methodology of Predictive Tasks

Hidden Markov Model (HMM)

- Problem Statement: Predict the likelihood of using an app given the former sequence of application usage
- Basic Idea: Utilize conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- A1 Markov Chain: Only the <u>current</u> state q_{i-1} plays the most crucial role in predicting the future in the sequence
 - $P(q_i = a | q_1 q_2 \dots q_{i-1}) = P(q_i = a | q_{i-1})$
- A2 Output Independence: The probability of observing an event o_i only relies on the state q_i that <u>directly</u> produced o_i

• Metrics: Preds==True if within top n probabilities of the app

Recurrent Neural Network (LSTM/RNN)

• Problem Statement: Predict the (total) time usage of an app/tab/recorded process using the past time-series data

- Feature Engineering:
- 1. Hourly split daily usage into 24 cols (labeled 0 23)
- 2. Lookback 3-5 time steps from the current timestamp
- 3. One-hot-encoding (process names); Min-Max scaler
- Experiments: Train/Test: 80/20, no shuffle; Keras
- Metrics: TP/TN/FP/FN; Preds==True if w/in 1 sec of real vals

Predictive Results

LSTM Performance on Chrome

Other Models	Design (N=nodes)	Eval Bins	Performance
Vanilla LSTM > Split Hourly > OH(Process Names)	Input RNN (64N) Hidden Dense (4N) Output Dense (1N)	[0, 0.01] (0.01, 0.02] (0.02, 0.2] (0.2, max]	TP = 691, TN = 0 FP = 65, FN = 0 ACC \approx 91.4%
Stacked LSTM > Split Hourly > OH(Process Names)	Input LSTM (16N) Hidden LSTM (32N) Hidden Dense (64N) Output Dense (1N)	[0, 0.01] (0.01, 0.02] (0.02, 0.2] (0.2, max]	TP = 467, TN = 52 FP = 13, FN = 224 ACC \approx 68.65%

Conclusions

- We should collect data <u>continuously</u> and <u>consistently</u> to achieve high accuracies in detecting patterns of user behaviors
- We wish to incorporate data collected using **Desktop Mapper IL** and check if it helps improve our predictions
- The analysis/predictive results allow the inference of daily app sequence and time usage
- We can develop a script to process background tasks and utilize **Scheduler** to open the next app 2-3 mins beforehand