

Library (→)

For Python Programming Language

Objetivo libreria

Proporcionar a cualquier usuario de Python, una librería con funciones que faciliten su trabajo de programación, reduciendo la cantidad de código que requieren para obtener unos resultados excelentes.

Miguel Batalla Manager Proyecto

La biblioteca contiene funciones agrupadas en:

- Exploratory Data Analysis
- Vizualization
- Feature Engineering & Machine Learning models

Index -->

Exploratory Data Analysis

VisualizeME

Machine Learning

Production

Exploratory Data Analysis

Into the wild!

Objetivo de Exploratory Data Analysis

Nuestro objetivo es automatizar y reducir las acciones repetitivas y tediosas que siempre ocurren durante un EDA

Jorge <u>Arra</u>nz

Isabella

*Funciones Img

Funcion 1: Resize Image

Funcion 2: Reduce Image

Funcioin 3: Process Color

Funcion 4: Reduce Color Palettte

Funciones Imágenes

Funciones:

• Resize Image

Input: directory path

Output: Resized images list

• Reduce Image

Input: Image, height

Output: The reduced image

• Process Color

Input: cannel value, bins

Output: Processed value

Reduce Color Palette

Input: Image, bins

Output: Image

Funcion 1: Math Expectation

Funcion 2: DF Overview

Funcion 3: Outlier Removal

Funcion 4: Datetime

Funcion 5: Missing Data

Funcion 6: Standarize Numbers

Funciones Datos

Funciones:

Math Expectation

Input: df, columns

Output: df with new ME column

DF Overview

Input: df

Output: df with overview

Outlier Removal

Input: df, columns

Output: df

Datetime

Input: df, column

Output: df

Coordinates

Input: lat, long

Output: lat, long

• Missing data

Input: df, columns

Output: df

Standarize numbers

Input: list of numbers to standarize

Output: The reduced image

Your favorite graphics!

Objetivo de Visualización

Obtener gráficos complejos de forma sencilla, incluyendo tablas con métricas descriptivas que complementen lo que visualmente se ve

Equipo Visualización

Natalia Fernández

Oscar Olaechea

Funciones

1. VisualizeME palettes and colors

When working on:

Exploratory Data Analysis

2. VisualizeME and describe Violinbox

3. VisualizeME and describe barplot

4. VisualizeME Figure Words

5. VisualizeME Bagel look top

6. VisualizeME Select graph

Feature Engineering & development of Machine Learning Models

7. VisualizeME and describe Spidey

8. VisualizeME c Matrix

9. VisualizeME scores models

1. VisualizeME palettes and colors

Parámetros entrada (2):

- selection = 'palettes'
- quantity colors= 8

Return (1):

• Image palettes Seaborn /
 Image colors Seaborn

2. VisualizeME and describe Violinbox

Parámetros entrada (5):

- dataframe
- categ_var
- numeric_var
- palette= 'tab10'
- save= True

Return (2):

- Graph Violin & Boxplot
- Table with metrics

	0	1	2	3	4	5	6	7	8	9
Metrics										
Upper limit	2.82	1.21	1.85	1.72	2.63	2.11	3.34	2.24	3.47	3.40
Q3	0.69	-0.92	-0.28	-0.41	0.50	-0.02	1.21	0.11	1.34	1.27
Median	0.30	-1.38	-0.73	-0.79	-0.02	-0.47	0.82	-0.28	0.95	0.95
Q1	0.04	-1.76	-1.05	-1.25	-0.34	-0.86	0.50	-0.54	0.63	0.66
Lower limit	-2.09	-3.89	-3.18	-3.38	-2.47	-2.99	-1.63	-2.67	-1.50	-1.47

3. VisualizeME and describe barplot

Parámetros entrada (5):

- dataframe
- categ_var
- numeric_var
- palette= 'tab10'
- save= True

Return (2):

- Graph Barplot
- Table with metrics

	ceratopsian	armoured dinosaur	euornithopod	large theropod	small theropod	sauropod
Metrics						
Number of records	28	32	59	60	61	69
Mean length	3.92	5.31	5.67	7.61	1.92	14.77
Standard Deviation length	2.61	1.92	3.38	3.16	1.04	7.76

4. VisualizeME Figure Words

Parámetros entrada (9):

- Dataframe
- categ_var
- shape= 'seahorse
- cmap= 'tab10'
- contour=
 'steelblue'

- back_color =
 'white'
- height= 18
- width = 20
- save= True

Figure words disponibles:

'seahorse'

Return (1):

Graph Figure Words

4. VisualizeME Figure Words

Figure words disponibles:

'hashtag'

5. VisualizeME Bagel look top

Parámetros entrada (6):

- Dataframe
- categ_var
- top=0
- cmap = 'tab10'
- circle=True
- save=True

Return (2):

- Graph Bagel
- Table with metrics

DISTRIBUCIÓN DE LIVED_IN

	lived_in	Pesos(%)
USA	78	25.24%
China	48	15.53%
Mongolia	46	14.89%
Argentina	26	8.41%
United Kingdom	21	6.8%
Canada	14	4.53%
Germany	8	2.59%
Niger	6	1.94%
Australia	6	1.94%
Tanzania	5	1.62%
South Africa	5	1.62%
Spain	5	1.62%
India	4	1.29%
France	4	1.29%
Brazil	4	1.29%
Madagascar	3	0.97%
Zimbabwe	3	0.97%
Morocco	3	0.97%
Kazakhstan	2	0.65%
Japan	2	0.65%
Russia	2	0.65%
Romania	2	0.65%
Egypt	2	0.65%
Uzbekistan	2	0.65%
Antarctica	1	0.32%
North Africa	1	0.32%

5. VisualizeME select graph

Obtener tu gráfico a la carta según tu necesidad.

PASO 1: ¿Cuántas variables quieres utilizar en tu gráfico? (1, 2 o 3)

PASO 2: ¿De qué tipo son tus variables? (categóricas o numéricas)

PASO 3: ¿Qué gráfico prefieres utilizar? (Ejemplos)

Return (1):

Función que debe llamar para generar su gráfico

Opciones gráficos:

- COUNTPLOT
- PIE
- BOXPLOT
- VIOLINPLOT
- BARPLOT
- SCATTERPLOT
- LINE PLOT
- HISTPLOT
- DENSIDAD

5. VisualizeME select graph

J. W. F.

Ejemplos gráficos obtenidos:

7. VisualizeME and describe Spidey

Parámetros entrada (6):

- Dataframe
- save= True

Return (2):

- Polar graph
- Table with means of variables

	1
	Means
popularity	-2.282667e-16
acousticness	-8.157494e-17
danceability	3.989301e-17
duration_ms	1.284447e-16
energy	2.772832e-17
strumentalness	2.153865e-16
liveness	3.406111e-16
loudness	-1.663699e-16
mode	1.016109e-16
speechiness	1.985706e-17
tempo	-5.431173e-16
valence	-2.736159e-16
key_DO#	-4.382864e-18
key_FA	5.814003e-17
key_FA#	3.577848e-19
key_LA	4.239750e-17
key_LA#	9.624411e-17
key_MI	2.003595e-17
key_RE	6.797911e-17
key_RE#	4.651202e-17
key_SI	2.683386e-17
key_SOL	1.087666e-16
kev SOL#	6.511683e-17

8. VisualizeME c Matrix

Parámetros entrada (9):

- y_true,
- y_pred,
- title='',
- categories=[],
- rotate=False,

- cmap='',
- cbar=True,
- metrics=True,
- save=True

Return (2):

- Confusion Matrix
- Table with scores

	TRUE LABEL VS. PREDICTED LABEL
Accuracy: (TP + TN) / TOTAL	0.6179066835
Precision: TP / (TP + FP)	0.5944444444
Recall: TP / (TP + FN)	0.5768194070
F1: harmonic mean (accuracy, recall)	0.5854993160
ROC AUC	0.6154239215

_		RECALL	F1-SCORE	SUPPORT
0	0.86	0.74	0.80	3995
1	0.87	0.85	0.86	3989
2	0.87	0.80	0.83	3951
3	0.88	0.91	0.90	3852
4	0.82	0.80	0.81	4011
5	0.83	0.82	0.83	3975
6	0.82	0.86	0.84	3984
7	0.82	0.79	0.80	3999
8	0.85	0.81	0.83	3976
ACCURACY	-	-	0.83	39719
MACRO AVG.	0.83	0.83	0.83	39719
WEIGHTED AVG.	0.83	0.83	0.83	39719

9. VisualizeME scores models

Parámetros entrada (5):

- y true
- Models (dictionary format)
- bin multi classifier=True
- pallete='tab10'

Return (1):

Graphs barplot comparing scores

from different models

Machine Learning

Where the magic
Is made

Objetivo de Machine Learning

El objetivo principal de la parte de Machine Learning es acelerar la toma de decisiones sobre el modelo a implementar

Equipo Machine Learning

Daniel Vivas Manager ML

Ana Genua

Fernando Bielza

* Funciones

- 1. PREPROCESSING:
- División train/test
- Preparación dataset

- 2. REGRESORES:
- Regresión lineal
- Regresión polinómica

- 3. CLASIFICADORES:
- Regresión Logística
- RandomForest
- SVC
- KNN

- 4. SCORING:
- Métricas regresores
- Métricas clasificadores

1. PREPARACIÓN DATOS

Funciones:

Divide

Input: dataset

Output: X, y

• prepare_data

Input: dataset

Output: list of train/test sets

División X y

Balanceado

RandomUnderSampler / SMOTE

División train/test

Estandarización

StandardScaler / MinMaxScaler

2. REGRESORES

Funciones:

- Regresión lineal
- Regresión polinómica

```
(LinearRegression().
                  LINEARREGRESSION (test data) LINREG-ELASTICNET (test data)
Score (R2 coef.)
                                  0.8451346685
                                                                 0.3519941476
MAE
                              82607.7586206897
                                                            178295.4869109947
MAPE
                                  1.1955603448
                                                                 1.6743753560
MSE
                         7840057409.3341283798
                                                       32805296277.8287010193
RMSE
                              88544.0986702904
                                                            181122.3240736180)
```

Input: X_train, X_test, y_train, y_test, regular_type

Output: model, metrics

Regularización

3. CLASIFICADORES

Funciones:

- Regresión logística
- RandomForest
- svc
- KHH

Input: X_train, X_test, y_train, y_test

Output: model, metrics, grid

```
Fitting 10 folds for each of 24 candidates, totalling 240 fits
(GridSearchCV(cv=10, estimator=LogisticRegression(), n jobs=-1,
              param grid={'C': array([0.1, 0.6, 1.1, 1.6, 2.1, 2.6, 3.1, 3.6]),
                          'penalty': ['12'],
                          'solver': ['liblinear', 'newton-cg', 'lbfgs']},
              scoring='accuracy', verbose=1),
                        LOGISTICREGRESSION (test data)
 Accuracy (TP + TN/TT)
                                          0.9600000000
 Precision (TP/TP + FP)
                                          0.9602742212
 Recall (TP/TP + FN)
                                          0.9600000000
 F1 (har_mean Ac, Re)
                                          0.9600404040.
 GridSearchCV(cv=10, estimator=LogisticRegression(), n jobs=-1,
              param grid={'C': array([0.1, 0.6, 1.1, 1.6, 2.1, 2.6, 3.1, 3.6]),
                          'penalty': ['12'],
                          'solver': ['liblinear', 'newton-cg', 'lbfgs']},
              scoring='accuracy', verbose=1))
```


Producción

Make it come true!

Objetivo de Producción

Creación /instalación del package

Equipo Producción

Federico Ruiz

Erik Urresta

1. Crear una cuenta Gmail

2. Crear una cuenta https://pypi.org/

Usar la cuenta de Gmail al registrarnos en https://pypi.org/

3. Git clone del repo

4. Configuración del archivo de contrucción, setup.py

```
) sublime setup.py
    import setuptools
   with open("README.md", "r", encoding="utf-8") as fh:
    long_description = fh.read()
                                                                                                 thorreznou/
    setuptools.setup(
                                                                                                                      setup.pv
                                                                                                                      LICENSE
     long description=long description,
                                                                                                                      README.md
     long_description_content_type="text/markdown".
url = 'https://github.com/erfederuiz/thorreznou'
                                                                                                                  ▶ src/
       "License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
                                                                                                                                   thorreznou/
     packages=setuptools.find packages(where="src");
                                                                                                                                                               init_.py
                                                                                                                                                           EDA.py
                                                                                                                                                          ML.py
                                                                                                                                                           VIZ.py
```

5. Configurar el archivo ___init___.py

```
thorreznou/
        setup.py
        LICENSE
        README.md
        src/
                                       from thorreznou.VIZ import *
             thorreznou/
                                       from thorreznou.ML import *
                      __init__.py
                                       from thorreznou.EDA import *
                      EDA.py
                      ML.py
                      VIZ.py
```


6. Generación local del package

```
) python setup.py sdist
running sdist
running egg_info
writing src/Thorreznou.egg-info/PKG-INFO
writing dependency_links to src/Thorreznou.egg-info/dependency_links.txt
writing requirements to src/Thorreznou.egg-info/requires.txt
writing top-level names to src/Thorreznou.egg-info/top_level.txt
reading manifest file 'src/Thorreznou.egg-info/SOURCES.txt'
adding license file 'LICENSE'
writing manifest file 'src/Thorreznou.egg-info/SOURCES.txt'
running check
creating Thorreznou-0.1.1
creating Thorreznou-0.1.1/src
creating Thorreznou-0.1.1/src/Thorreznou.egg-info
creating Thorreznou-0.1.1/src/dsft1121
copying files to Thorreznou-0.1.1...
copying LICENSE -> Thorreznou-0.1.1
copying README.md -> Thorreznou-0.1.1
copying setup.py -> Thorreznou-0.1.1
copying src/Thorreznou.egg-info/PKG-INFO -> Thorreznou-0.1.1/src/Thorreznou.egg-info
copying src/Thorreznou.egg-info/SOURCES.txt -> Thorreznou-0.1.1/src/Thorreznou.egg-info
copying src/Thorreznou.eag-info/dependency links.txt -> Thorreznou-0.1.1/src/Thorreznou.eag-info
copying src/Thorreznou.egg-info/requires.txt -> Thorreznou-0.1.1/src/Thorreznou.egg-info
copying src/Thorreznou.egg-info/top_level.txt -> Thorreznou-0.1.1/src/Thorreznou.egg-info
copying src/dsft1121/EDA.py -> Thorreznou-0.1.1/src/dsft1121
copying src/dsft1121/ML.py -> Thorreznou-0.1.1/src/dsft1121
copying src/dsft1121/VIZ.py -> Thorreznou-0.1.1/src/dsft1121
copying src/dsft1121/__init__.py -> Thorreznou-0.1.1/src/dsft1121
copying src/dsft1121/tests_eda.py -> Thorreznou-0.1.1/src/dsft1121
Writing Thorreznou-0.1.1/setup.cfg
Creating tar archive
removing 'Thorreznou-0.1.1' (and everything under it)
```

```
thorreznou/
L____ setup.py
L___ LICENSE
L__ README.md
L___ dist/
L___src/
L___thorreznou/
L___ init_.py
L__ EDA.py
L__ ML.py
L__ VIZ.py
```

El directorio dist no existe hasta ejecutar python setup.py sdist !!

| 25.5k/25.5k [00:00<00:00, 28.4kB/s]

7. Publicación del package en PyPI

```
> python3 -m pip install --upgrade twine
```

```
) twine upload dist/*
Uploading distributions to https://upload.pypi.org/legacy/
Enter your username: admin_thorreznou
Enter your password:
Uploading Thorreznou-0.1.1.tar.gz
100%
```

View at: https://pypi.org/project/Thorreznou/0.1.1/

8. Comprobación de la subida a PyPI

9. Instalación del package en nuestro Python

PS C:\Users\javie\Nueva carpeta\github\5-Productivization\1-Flask\3-Heroku> pip install Thorreznou Collecting Thorreznou

Downloading Thorreznou-0.1.2.tar.gz (22 kB) Preparing metadata (setup.py) ... done

Stored in directory; c:\users\javie\appdata\iocai\pip\cacne\wne Successfully built Thorreznou Installing collected packages: Thorreznou Successfully installed Thorreznou-0.1.2

PS C:\Users\iavie\Wwww.carpeta\github\S-Productivization\1-Flask\3-Herokup pip install Thorreznou

Downloading Thorreznou-0.1.2.tar.gz (22 k8)
Preparing metadata (setup.py) ... done

Requirement already satisfied: pandas in c:\users\javie\anaconda\lib\site-packages (from Thorreznou) (1.4.0) Requirement already satisfied: sklearn in c:\users\javie\anaconda\lib\site-packages (from Thorreznou) (0.0) Requirement already satisfied: seaborn in c:\users\javie\anaconda\lib\site-packages (from Thorreznou) (0.11.1) Requirement already satisfied: matplotlib in c:\users\parie\under\ Requirement already satisfied: wordcloud in c:\users\javie\anaconda\lib\site-packages (from Thorreznou) (1.8.1) Requirement already satisfied: pillow in c:\users\javle\anaconda\lib\site-packages (from Thorreznou) (8.2.0)

Requirement already satisfied: Imblearn in c:\users\javie\appdata\roaming\python\python38\site-packages (from Thorreznou) (0.0) Requirement already satisfied: opency-python in c:\users\javie\anaconda\lib\site-packages (from Thorreznou) (4.5.5.62) Requirement already satisfied: imbalanced-learn in c:\users\javie\appdata\roaming\python\python38\site-packages (from imblearn->thorreznou) (0.9.0)

Requirement already satisfied: backcall in c:\users\javie\anaconda\lib\site-packages (from Ipython->Thorreznou) (0.2.0) Requirement already satisfied: colorama in c:\users\javie\anaconda\lib\site-packages (from Ipython->Thorreznou) (0.4.4) Requirement already satisfied: pickleshare in c:\users\javie\anaconda\lib\site-packages (from Ipython->Thorreznou) (0.7.5) Requirement already satisfied: traitlets>-4.2 in c:\users\javie\unaconda\lib\site-packages (from Ipython->Thorrezrou) (5.0.5)
Requirement already satisfied: decorator in c:\users\javie\unaconda\lib\site-packages (from Ipython->Thorrezrou) (5.0.6)

Requirement already satisfied: pygments in c:\users\javie\anaconda\lib\site-packages (from Ipython->Thorneznou) (2.8.1) Requirement already satisfied: setuptools>-18.5 in c:\users\javie\anaconda\lib\site-packages (from Ipython->thorrezmou) (52.0.8.post20210125) Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in c:\users\javie\anaconda\lib\site-packages (from Ipython->Thorreznou) (3.0.

Requirement already satisfied: cycler>=0.10 in c:\users\javle\anaconda\lib\site-packages (from matplotlib>>Thorreznou) (0.10.0)
Requirement already satisfied: cycler>=0.10 in c:\users\javle\anaconda\lib\site-packages (from matplotlib>>Thorreznou) (2.4.7

Requirement already satisfied: Edusolwev-1.0.1 in c:lusers|swie|anomodallb\site-package: (from matplo:lb\siterrazon) (1.3.1)
Requirement already satisfied: pytz-2000.1 in c:lusers|swie|anomodallb\site-package: (from matplo:lb\siterrazon) (2011.)
Requirement already satisfied: pytz-2000.1 in c:lusers|swie|anomodallb\siterrazon|sylventos|sylvento Requirement already satisfied: parso(0.8.0,>=0.7.0 in c:\users\javie\unaconda\lib\site-packages (from jedi>=0.16->Ipython->Thorreznou) (0.7.0)
Requirement already satisfied: wouldth in c:\users\javie\unaconda\lib\site-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->Ipython->Thorreznou)

Requirement already satisfied: inython-genetils in c:\users\jutelanaconda\lib\site-packages (from traitlets>-4.2-lipython->Thornezmon) (0.2.0)
Requirement aiready satisfied: threadpoolets>-2.0.0 in c:\users\jutelanaconda\lib\site-packages (from inhalacond-lown->inhiben->-hiben-Building wheels for collected packages: Thorrezmou

Building wheel for Thorreznou (setup.py) ... done
Created wheel for Thorreznou: filename-Thorreznou-0.1.2-py3-none-any.shl size-34269 shu256-e1165bbc7479f6b63c3dec6b393c81152c2726ac8272181d5c43bad7bd170f4b

Stored in directory: c:\users\javie\appdata\local\pip\cache\uheels\38\4a\9d\b9f657ie5f63e8bfccff57be41be88318314a2c8362da5aa8a Installing collected packages: Thorreznou

Successfully installed Thorreznou-0.1.2

PS C:\Users\iavie\Nueva carpeta\github\5-Productivization\1-Flask\3-Heroku>

10. Uso del package instalado

¡Gracias!

Thorreznou Library

Puedes visitar la libraría aquí:

https://pypi.org/project/Thorreznou/

https://github.com/erfederuiz/thorreznou

Y tras usarla irte a descansar y no quedarte así:

