

32031 Feedback Quiz, 2022/23, Week 05: The dual code

Open-book. 10–15 minutes. Not for credit. To be marked in class.

- The inner product $\underline{x} \cdot y$ of vectors $\underline{x}, y \in \mathbb{F}_q^n$ is defined as $\underline{x} \cdot y = \sum_{i=1}^n x_i y_i$.
- If $C \subseteq \mathbb{F}_q^n$ is a linear code, the dual code C^{\perp} is $\{\underline{v} \in \mathbb{F}_q^n : \underline{v} \cdot \underline{c} = 0 \text{ for all } \underline{c} \in C\}$ (that is: C^{\perp} consists of all vectors orthogonal to C).
- By a theorem from the course, $\dim C^{\perp} = n \dim C$.
- A generator matrix H for C^{\perp} is called a *check matrix* for C. By a theorem from the course, $C = \{\underline{c} \in \mathbb{F}_q^n : \underline{c}H^T = \underline{0}\}.$
- Recall: ISBN10 = $\{\underline{x} \in \mathbb{F}_{11}^{10} : 1x_1 + 2x_2 + 3x_3 + \dots + 10x_{10} = 0 \text{ in } \mathbb{F}_{11} \}.$

Question 1 (warm-up) The dimension of the ISBN-10 code is:

 $\bigcirc 0 \quad \bigcirc 1 \quad \bigcirc 2 \quad \bigcirc 3 \quad \bigcirc 4 \quad \bigcirc 5 \quad \bigcirc 6 \quad \bigcirc 7 \quad \bigcirc 8 \quad \bigcirc 9 \quad \bigcirc 10 \quad \bigcirc 11$

Question 2 You can see from the definition of ISBN10 that the vector $\underline{v} = 123456789X$ belongs to (ISBN10)^{\perp}. Does \underline{v} belong to ISBN10?

Yes No

Question 3 • From Question 1 you can hopefully conclude that $\dim(ISBN10)^{\perp} = 1$. Use this fact and the vector \underline{v} from Question 2 to write down a vector $w \in (ISBN10)^{\perp}$ where the sixth symbol is 5:

 $\underline{w} =$ $\boxed{ }$ $\boxed{ }$

Question 4 • (correcting an erasure in an ISBN) Recover the missing symbol in an ISBN:

0198 38030

CORRECTED

32031 Feedback Quiz, 2022/23, Week 05: The dual code

Open-book. 10-15 minutes. Not for credit. To be marked in class.

- The inner product $\underline{x} \cdot y$ of vectors $\underline{x}, y \in \mathbb{F}_q^n$ is defined as $\underline{x} \cdot y = \sum_{i=1}^n x_i y_i$.
- If $C \subseteq \mathbb{F}_q^n$ is a linear code, the dual code C^{\perp} is $\{\underline{v} \in \mathbb{F}_q^n : \underline{v} \cdot \underline{c} = 0 \text{ for all } \underline{c} \in C\}$ (that is: C^{\perp} consists of all vectors orthogonal to C).
- By a theorem from the course, $\dim C^{\perp} = n \dim C$.
- A generator matrix H for C^{\perp} is called a *check matrix* for C. By a theorem from the course, $C = \{\underline{c} \in \mathbb{F}_q^n : \underline{c}H^T = \underline{0}\}.$
- Recall: ISBN10 = $\{\underline{x} \in \mathbb{F}_{11}^{10} : 1x_1 + 2x_2 + 3x_3 + \dots + 10x_{10} = 0 \text{ in } \mathbb{F}_{11} \}.$

Question 1 (warm-up) The dimension of the ISBN-10 code is:

 $\bigcirc 0$ $\bigcirc 1$ $\bigcirc 2$ $\bigcirc 3$ $\bigcirc 4$ $\bigcirc 5$ $\bigcirc 6$ $\bigcirc 7$ $\bigcirc 8$ $\bigotimes 9$ $\bigcirc 10$ $\bigcirc 11$

Explanation: The first 9 symbols $x_1, ..., x_9$ of an ISBN codevector are arbitrary elements of $\mathbb{F}_1 1$, and the last symbol x_{10} is uniquely determined by $x_1, ..., x_9$ according to the formula $x_{10} = 1x_1 + 2x_2 + \cdots + 9x_9$, to make sure that the checksum is 0. Hence the code consists of $11^9 \times 1$ codevectors, and $k = \log_{11}(11^9) = 9$.

Question 2 You can see from the definition of ISBN10 that the vector $\underline{v} = 123456789X$ belongs to (ISBN10) $^{\perp}$. Does \underline{v} belong to ISBN10?

X Yes No

Explanation: We need to check if $\underline{v} \cdot \underline{v} = 0$ in \mathbb{F}_{11} . This amounts to calculating $1 \times 1 + 2 \times 2 + \cdots + 10 \times 10$ modulo 11. One can use brute force, e.g., 1^2 is 1 in \mathbb{F}_{11} , $2^2 = 4$, $3^2 = 9$, $4^2 = 5$, $5^2 = 3$, 1 + 4 + 9 + 5 + 3 = 22 = 0, and $6^2 + 7^2 + 8^2 + 9^2 + 10^2 = (-5)^2 + (-4)^2 + (-3)^2 + (-2)^2 + (-1)^2$ gives the same result, 0. One can also use the formula $1^2 + 2^2 + \cdots + k^2 = k(k+1)(2k+1)/6$ which for k = 10 gives 10(11)(21)/6 which is a multiple of 11

Question 3 From Question 1 you can hopefully conclude that $\dim(ISBN10)^{\perp} = 1$. Use this fact and the vector \underline{v} from Question 2 to write down a vector $w \in (ISBN10)^{\perp}$ where the sixth symbol is 5:

w = |X| 9 |8| 7 |6| 5 |4| 3 |2| 1

CORRECTED

Explanation: Since the code $(ISBN10)^{\perp}$ is one-dimensional, and $\underline{v} = 123456789X$ is a non-zero vector which belongs to $(ISBN10)^{\perp}$, every vector in $(ISBN10)^{\perp}$ must be proportional to \underline{v} . So $\underline{w} = \lambda \underline{v}$ for some $\lambda \in \mathbb{F}_{11}$. In particular, $5 = \lambda \times 6$ in \mathbb{F}_{11} . It follows that $\lambda = -1$ and so $\underline{w} = -\underline{v}$, as shown above.

Question 4 . (correcting an erasure in an ISBN) Recover the missing symbol in an ISBN:

Explanation: Note: Different valid ISBNs appear in different versions of this question. They should all be ISBNs of real books — check yours!

Calculate the checksum: 1(0) + 2(1) + 3(9) + 4(8) + 5(?) + 6(3) + 7(8) + 8(0) + 9(3) + 10(0) = 162 + 5? which is 8 + 5? in \mathbf{F}_{11} . So 5? = 3 in \mathbf{F}_{11} . Trial and error gives ? = 5: indeed, $5 \times 5 = 3$ in \mathbf{F}_{11} .