Lineare Algebra 2 — Lösung zu Übungsblatt 8

Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Abgabe: Do 25.06.2020 um 9:15 Uhr

28. Aufgabe: (6 *Punkte*, *Isomorphismen von Moduln*) Seien *R* ein Ring, *M* und *N* zwei *R*-Moduln und $f: M \to N$ ein *R*-Modulhomomorphismus. Man zeige, dass die folgenden Aussagen äquivalent sind:

- (i) *f* ist ein *R*-Modulisomorphismus.
- (ii) Für alle R-Moduln L ist die Abbildung

$$\operatorname{Hom}_R(L, M) \to \operatorname{Hom}_R(L, N)$$

 $g \mapsto f \circ g$

bijektiv.

Hinweis: Für die Implikation (ii) \Rightarrow (i) setze man in (ii) L = N und L = M ein.

Lösung:

(i) \Rightarrow (ii) Da f nach Voraussetzung ein Isomorphismus ist, exisitiert ein inverser R-Modulhomomorphismus $f^{-1} \colon N \to M$. Somit können wir für alle R-Moduln L die folgende Abbildung definieren:

$$\operatorname{Hom}_R(L,N) \to \operatorname{Hom}_R(L,M)$$

 $h \mapsto f^{-1} \circ h$

Diese Abbildung und die aus der Aufgabenstellung sind offensichtlich invers zueinander, woraus die Behauptung folgt.

(ii) \Rightarrow (i) Wir setzen L = N in der Abbildung der Aufgabenstellung. Damit erhalten wir die folgende Bijektion:

$$Φ: \operatorname{Hom}_R(N, M) \xrightarrow{\simeq} \operatorname{Hom}_R(N, N)$$

 $g \mapsto f \circ g$

Da $id_N \in Hom_R(N, N)$ folgt aus der Surjektivität, dass eine Abbildung $h \in Hom_R(N, M)$ existiert, sodass $f \circ h = id_N$.

Setzen wir analog L = M, so erhalten wir die Bijektion

$$\Psi \colon \operatorname{Hom}_{R}(M,M) \xrightarrow{\simeq} \operatorname{Hom}_{R}(M,N)$$
$$g \mapsto f \circ g$$

Sei nun h gewählt wie oben, dann ist $h \circ f \in \operatorname{Hom}_R(M, M)$. Außerdem wird $h \circ f$ unter Ψ auf $f \circ h \circ f$ id $h \circ f = f$ abgebildet. Jedoch gilt auch, dass $\Psi(\operatorname{id}_M) = f \circ \operatorname{id}_M = f$ und aus der Injektivität von Ψ folgt, dass $h \circ f = id_M$. Insgesamt erhalten wir, dass f ein R-Modulisomorphismus ist.

29. Aufgabe: (2+2+2 *Punkte, Elementare Tensorprodukte*) Man zeige:

- (a) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} = 0$.
- (b) $2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}$.

(c) $2 \otimes 1 = 0$ in $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$, aber $2 \otimes 1 \neq 0$ in $2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$.

Lösung:

- (a) Für reine Tensoren $a \otimes b$ in $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$ gilt $a \otimes b = (2 \cdot \frac{1}{2} \cdot a) \otimes b = \frac{a}{2} \otimes 2b = \frac{a}{2} \otimes 0 = 0$. Da jedes Element in $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$ eine Summe reiner Tensoren ist, folgt $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} = 0$.
- (b) Wir bemerken zunächst, dass die \mathbb{Z} -Modulhomomorphismen $f: \mathbb{Z} \longrightarrow 2\mathbb{Z}, b \mapsto 2b$ und $g: 2\mathbb{Z} \longrightarrow \mathbb{Z}, a \mapsto \frac{a}{2}$ invers zueinander sind, und damit g ein \mathbb{Z} -Modulisomorphismus ist. Nach Bem. 8.11 ist damit die induzierte Abbildung

$$g \otimes id : 2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}, \ a \otimes b \mapsto g(a) \otimes b = \frac{a}{2} \otimes b$$

ein Isomorphismus. Da nach Bem. 8.5 $h: \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z}, a \otimes b \mapsto ab$ ein Isomorphismus ist, erhalten wir als Komposition dieser Isomorphismen den gewünschten Isomorphismus $h \circ (g \otimes \mathrm{id}) : 2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z}$.

(c) In $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$ ist $2 \otimes 1 = 2 \cdot (1 \otimes 1) = 1 \otimes 2 = 1 \otimes 0 = 0$. Da die Abbildung $h \circ (g \otimes id)$ aus Aufgabenteil b) ein Isomorphismus ist und $h \circ (g \otimes id)(2 \otimes 1) = h(1 \otimes 1) = 1 \neq 0$ ist, folgt, dass auch $2 \otimes 1 \neq 0$ in $2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$ ist.

30. Aufgabe: (3+3 Punkte, Ideale und Tensorprodukte) Seien R ein Ring, $I \subseteq R$ ein Ideal und M ein R-Modul.

(a) Man zeige, dass es einen eindeutigen surjektiven R-Modulhomomorphismus

$$f: I \otimes_R M \to IM$$

mit $f(a \otimes m) = am$ für $a \in I$, $m \in M$ gibt.

(b) Man zeige anhand eines Gegenbeispiels, dass die Abbildung *f* aus Teil (a) im Allgemeinen kein *R*-Modulisomorphismus ist.

Hinweis: Man verwende Aufgabe 29 (b).

Lösung:

(a) Die Abbildung

$$I \times M \to IM$$
, $(a, m) \mapsto am$

ist offensichtlich *R*-bilinear. Aus der universellen Eigenschaft des Tensorprodukts folgt damit, dass es genau einen *R*-Modulhomomorphismus

$$f: I \otimes_R M \to IM$$

mit $f(a \otimes m) = am$ für $a \in I$, $m \in M$ gibt.

Um die Surjektivität einzusehen, wähle $x \in IM$, dann hat x die Gestalt $x = \sum_{i=1}^{n} a_i m_i$ für $a_i \in I$, $m_i \in M$ und $n \in \mathbb{N}$.

Sei nun $y = \sum_{i=1}^{n} a_i \otimes m_i \in I \otimes_R M$, dann ist

$$f(y) = f(\sum_{i=1}^{n} a_i \otimes \mathbf{m}_i) = \sum_{i=1}^{n} f(a_i \otimes \mathbf{m}_i) = \sum_{i=1}^{n} a_i m_i = x$$

Also ist y ein Urbild von x und f ist damit surjektiv.

(b) Wir wählen in der Notation des ersten Aufgabenteils $R = \mathbb{Z}$, $I = 2\mathbb{Z}$ und $M = \mathbb{Z}/2\mathbb{Z}$. Dann gilt einerseits

$$2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}$$

nach Aufgabe 26 (b). Andererseits ist in diesem Fall IM = 0, denn die Elemente von IM bestehen gerade aus endlichen Linearkombinationen von Produkten von Elementen aus $2\mathbb{Z}$ und $\mathbb{Z}/2\mathbb{Z}$, diese Produkte sind aber stets 0.

Somit erhalten wir mit dem ersten Aufgabenteil, dass f hier die Nullabbildung ist und da $\mathbb{Z}/2\mathbb{Z} \neq 0$ ist, ist sie nicht injektiv. Also können wir mit diesem Gegenbeispiel folgern, dass f im Allgemeinen kein R-Modulisomorphismus ist.

- **31. Aufgabe:** (2+2+2 *Punkte, Eigenwerte und Tensorpodukte)* Seien K ein Körper und V ein endlichdimensionaler K-Vektorraum. Seien $f,g \in \operatorname{End}_K(V)$ und sei $\lambda \in K$ ein Eigenwert von f und $\mu \in K$ ein Eigenwert von g.
 - (a) Seien $v, w \in V \setminus \{0\}$. Man zeige, dass $v \otimes w \neq 0$ in $V \otimes_K V$. **Hinweis:** Man zeige zunächst, dass es eine bilineare Abbildung $\beta \colon V \times V \to K$ gibt, sodass $\beta(v, w) \neq 0$.
 - (b) Man zeige, dass $\lambda \mu$ ein Eigenwert von $f \otimes g \in \operatorname{End}_K(V \otimes_K V)$ ist.
 - (c) Man zeige, dass $\lambda + \mu$ ein Eigenwert von $f \otimes id_V + id_V \otimes g \in End_K(V \otimes_K V)$ ist.

Lösung:

- (a) Da $v \neq 0$ ist, existiert ein $f_v \in V^* = \operatorname{Hom}_K(V,K)$, sodass $f_v(v) \neq 0$ ist. Analog existiert ein $f_w \in V^*$, sodass $f_w(w) \neq 0$ ist. Für die durch $\beta \colon V \times V \to K$, $(x,y) \mapsto f_v(x) f_w(y)$ definierte bilineare Abbildung gilt nun $\beta(v,w) = f_v(v) f_w(w) \neq 0$. Die universelle Eigenschaft des Tensorprodukts liefert damit eine lineare Abbildung $\varphi \colon V \otimes_K V \to K$, für die $\varphi(v \otimes w) = \beta(v,w) \neq 0$ gilt. Aus der Linearität von φ folgt damit $v \otimes w \neq 0$.
- (b) Seien $v \in V \setminus \{0\}$ beziehungsweise $w \in V \setminus \{0\}$ Eigenvektoren zu λ beziehungsweise μ . Da nach (a) $v \otimes w \neq 0$ ist und

$$(f \otimes g)(v \otimes w) = f(v) \otimes g(w) = \lambda v \otimes \mu w = \lambda \mu(v \otimes w)$$

gilt, ist $\lambda \mu$ ein Eigenwert von $f \otimes g$.

(c) Da $(f \otimes id_V + id_V \otimes g)(v \otimes w) = (f \otimes id_V)(v \otimes w) + (id_V \otimes g)(v \otimes w) = f(v) \otimes w + v \otimes g(w) = \lambda v \otimes w + v \otimes \mu w = (\lambda + \mu)v \otimes w \text{ und } v \otimes w \neq 0 \text{ ist, ist } \lambda + \mu \text{ ein Eigenwert von } f \otimes id_V + id_V \otimes g.$

Die Übungsblätter sowie weitere Informationen zur Vorlesung sind über MaMpf abrufbar.