AMENDMENT UNDER 37 C.F.R. § 1.111 U.S. Application No.: 09/615,708

$$(X_1)(X_2)C = C$$

$$(Z_1)_m$$

$$(X)$$

$$(X_3)(X_2)C = C(X_1)$$

$$(Z_2)_m \qquad W' \qquad (XI)$$

$$(X_3)(X_2)C = C(X_1)$$

$$-W' - (Z_1)_n$$

$$(XII)$$

$$-\mathbf{W}'-\mathbf{A}_{1}$$

$$(\mathbf{Z}_{2})_{m}$$

$$(\mathbf{XIII})$$

AMENDMENT UNDER 37 C.F.R. § 1.111

U.S. Application No.: 09/615,708

wherein W' represents a divalent linking group, X_1 to X_3 , which may be the same or different, each represents a hydrogen atom, a halogen atom, a cyano group or $-(X_4)_p$ -R wherein R represents an alkyl group having from 1 to 20 carbon atoms, an aryl group having from 6 to 20 carbon atoms or an aralkyl group having from 7 to 20 carbon atoms, which may have a substituent, X_4 represents a single bond, CO_2 -, -CONH-, -O-, -CO-, an alkylene group having from 2 to 4 carbon atoms or $-SO_2$ -, p represents an integer of from 1 to 10, Z_1 and Z_2 , which may be the same or different, each represents an electron donating group, m and n represent an integer of from 0 to 2 and from 0 to 3, respectively, and when m is 2 or m and n each is 2 or 3, the Z_1 groups or the Z_2 groups may be the same or different, A_1 represents a divalent aromatic ring or heteroaromatic ring group having from 5 to 14 carbon atoms, which may have a substituent, and A_2 represents an aromatic ring or heteroaromatic ring group having from 5 to 14 carbon atoms, which may have a substituent.

AMENDMENT UNDER 37 C.F.R. § 1.111 U.S. Application No.: 09/615,708

J 1

19. (Amended) A bottom anti-reflective coating material composition as claimed in claim 18, wherein said polymer light absorbent contains from 2 to 50 wt% of a repeating structural unit represented by formula (XXVII) of claim 18 where B₁ is a group obtained by the reaction of a group represented by -CONHCH₂OH, -CONHCH₂OCH₃, -CH₂OCOCH₃, -C₆H₄(OH)CH₂OH, -C₆H₄(OH)CH₂OCH₃ or -CONHC(CH₃)₂CH₂COCH₃, with formalin.