四

西南交通大学(2019-2020)第(2)学期期中试卷

课程代码<u>6011310</u>课程名称<u>高等数学 II</u>考试时间<u>60 分钟</u>

题号	_	=	Ξ	总成绩
得分				

考试诚信承诺书

我郑重承诺:我愿意服从学校本次考试的安排,承认考试成绩的有效性,并已经认真阅读、了解了《西南交通大学考试考场管理办法》和《西南交通大学本科生考试违规处理办法》,我愿意在本次考试过程中严格服从监考教师的相关指令安排,诚信考试。如果在考试过程中违反相关规定,我愿意接受《西南交通大学本科生考试违规处理办法》的规定处理。您是否同意:

Ⅰ :A. 同意 B. 不同意

一. 判断题(10个小题,每题3分,共30分)

$$\mathbf{g}^{\mathbf{j}}$$
1. 设 $\mathbf{a} = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k}, \mathbf{b} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$,则这向量垂直 ()

:
$$\begin{bmatrix} 2 & \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & \mathbf{b} & \mathbf{a} & \mathbf{k} & \mathbf{j} & \mathbf{k} \end{bmatrix} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$$
 ,则与这向量都垂直的单位向量为土 $\frac{1}{|\mathbf{a}||\mathbf{b}|} (\mathbf{a} \times \mathbf{b})$ ()

4. 曲面
$$\frac{y^2}{b^2} + \frac{x^2 + z^2}{c^2} = 1$$
,可由椭圆 $\begin{cases} \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \\ x = 0 \end{cases}$ 绕 oz 轴旋转而成 $(x = 0)$

5.
$$u = f(x, y, z)$$
 在点 (x_0, y_0, z_0) 的偏导数存在且连续,则 $u = f(x, y, z)$ 在点 (x_0, y_0, z_0) 连续 ()

6. 曲线
$$\begin{cases} 2x^2 + y^2 + z^2 &= 16 \\ x^2 + z^2 &- y^2 &= 0 \end{cases}$$
 在 xoz 面上的投影曲线是椭圆 ()

7. 对给定的
$$\lambda$$
,平面 $3x-2y-z+1+\lambda(x+y-3z-2)=0$,必经过空间直线
$$\begin{cases} 3x-2y-z=-1\\ x+y-3z=2 \end{cases}$$

| 8. 曲线
$$\begin{cases} 2x^2 + y^2 + z^2 = 32 \\ y - \sqrt{7}z = 0 \end{cases}$$
 的参数方程为: $\begin{cases} x = 4\cos t \\ y = 2\sqrt{7}\sin t, (0 \le t \le 2\pi) \\ z = 2\sin t \end{cases}$

9. 由曲面
$$\Sigma_1$$
: $z = \sqrt{3 - x^2 - y^2}$, Σ_2 : $z = \sqrt{2(x^2 + y^2)}$ 围成的区域 V , 在 xoy 面上的投影区域是

卟

密封装订

班级

$$\begin{cases} x^2 + y^2 \le 1 \\ z = 0 \end{cases} \tag{}$$

10. 由曲面 Σ_1 : $z = \sqrt{3 - x^2 - y^2}$, Σ_2 : $z = \sqrt{2(x^2 + y^2)}$ 围成的区域 V, 被经过点 $(x_0, y_0, 0)$ 平行于 z 轴直线, 从下往上穿过该区域 V 时,与区域 V 边界的交点为: $\left(x_0, y_0, \sqrt{2(x_0^2 + y_0^2)}\right)$, $\left(x_0, y_0, \sqrt{3 - (x_0^2 + y_0^2)}\right)$, 这里 $x_0^2 + y_0^2 \le 1$

- 二 填空题(1-8个小题,每题4分,9,10小题,每空1分,共57分)
 - 1. 设 $\mathbf{a} = 3\mathbf{i} \mathbf{j} + \mathbf{k}, \mathbf{b} = -\mathbf{i} + 2\mathbf{j} \mathbf{k}$, 则 $\mathbf{a} \times \mathbf{b} =$ _____
 - 2. 函数 $u = \ln(x + \sqrt{y^2 + z^2})$ 在点 A(1, 0, 1) 处沿点 A 指向 B(3, 2, 2) 方向的方向导数为_____。
 - 3. 过点 (0,1,-1) 与直线 $\begin{cases} 3x-2y+z=-1\\ x+y-3z=2 \end{cases}$ 平行的直线方程为:_____
 - 4. 曲面 $z = x^2 + y^2 2$ 在点 (2,1,3) 处的切平面方程为_____.
 - 5. 曲线: $\begin{cases} x = 2\cos t \\ y = -2\sqrt{7}\sin t, (0 \le t \le 2\pi) \text{ ...} \text{在}(2,0,0) 处的切线方程为} \\ z = 2\sin t \end{cases}$
 - 6.设 z = f(u,v) 可微, $u = x^2 + y^2, v = x + y$,则 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$ 分别为______。
 - 7. 设 $z + e^{xz} + x y = 0$,则 dz =
 - 8. 设 $z = e^{xy} + x + y$,则此函数在(x, y) = (1, 1)这点沿方向______,函数值增加最快。
 - 9. $\iint_{x^2+y^2 \le 2x} f(x,y) dx dy = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) dy = \int_c^d dy \int_{\psi_1(y)}^{\psi_2(y)} f(x,y) dx = \int_a^\beta d\theta \int_{\rho_1(\theta)}^{\rho_2(\theta)} f(r\cos\theta) r \sin\theta dr dr$

 - $\rho_1(\theta) = \underline{\qquad}, \quad \rho_2(\theta) = \underline{\qquad}.$
 - 10.

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \iint_{\sigma} dx dy \int_{\varphi_{1}(x, y)}^{\varphi_{2}(x, y)} f(x, y, z) dz = \int_{a}^{b} dz \iint_{\sigma(z)} f(x, y, z) dx dy
= \int_{a}^{\beta} d\theta \int_{\varphi_{1}}^{\varphi_{2}} d\varphi \int_{\rho_{1}(\theta, \varphi)}^{\rho_{2}(\theta, \varphi)} f(r \sin\varphi \cos\theta, r \sin\varphi \sin\theta, r \cos\varphi) \cdot A \cdot dr$$

$$\alpha =$$
 ______, $\beta =$ ______, $\varphi_1 =$ _______, , $\varphi_2 =$ ______A=_____.

$$\rho_1(\theta,\varphi) = \underline{\hspace{1cm}}$$
, $\rho_2(\theta,\varphi) = \underline{\hspace{1cm}}$.

其中:
$$\Omega = \left\{ (x, y, z) \left| \frac{x^2}{4^2} + \frac{y^2}{3^2} + \frac{z^2}{2^2} \le 1 \right\} \right\}$$

三 计算题证明(13分)

- (1) 设 f(x,y) 有二阶连续偏导, 令 $g(t) = f(x_0 + t\cos\alpha, y_0 + t\sin\alpha)$, 计算 g'(0), g''(0) 这里 α 是任意常数. 并证明: 如果 g'(0) = 0, g''(0) < 0 时, (x_0, y_0) 是 f(x,y) 的极大值点.
 - (2) 设函数 $f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^{\frac{1}{2}}}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$ 在点 (0,0) 处.
 - ① 计算 $f_x(0,0), f_y(0,0),$
 - ② 证明 f(x,y) 在点(0,0) 处不可微;