<u> Цель работы</u>: по заданным параметрам определить количество сигналов, привести аналитические выражения для всех сигналов из сигнального множества как функций времени, вычислить значения энергии всех сигналов и построить графики всех сигналов.

1. Исходные данные для 8 варианта КАМ.

$$f_0 = 1800 \, \Gamma$$
ц

$$V_{mod} = 1200$$
 Бод

$$V_{inf} = 7200 \, \text{G/c}$$

2. Расчет количества сигналов.

Модуляционная скорость V_{mod} определяется по формуле

$$V_{mod} = \frac{1}{T} = > T = \frac{1}{V_{mod}} = 0,00083$$

Информационная скорость при цифровой, или дискретной, передаче определяется по формуле

$$Vinf = \frac{\log_2 q}{T}$$

Количество сигналов рассчитывается по формуле

$$q = 2^{Vinf/Vmod} = 2^{7200/1200} = 64$$

3. Аналитические выражения для всех сигналов.

Сигналы квадратурной амплитудной модуляции задаются следующим образом

$$s_i(t) = \begin{cases} s_{i1} \sqrt{\frac{2}{T}} \cos(2\pi f_0 t) + s_{i2} \sqrt{\frac{2}{T}} \sin(2\pi f_0 t), & 0 < t < T \\ 0, & t \le 0, t \ge T \end{cases}$$

Это выражение можно преобразовать к виду

$$s_i(t) = egin{cases} \sqrt{rac{2E_i}{T}}\cos(2\pi f_0 t - heta_i)\,, & 0 < t < T \ 0, & ext{иначе} \end{cases}$$

Где
$$E_i = s_{i1}^2 + s_{i2}^2$$
, $\theta_i = arctg(\frac{s_{i2}}{s_{i1}})$.

Чтобы определить значения величин s_{i1} и s_{i2} , поставим в соответствие номеру сигнала $i=0,1\dots q-1$, пару целых $i_1,i_2=0,1\dots \sqrt{q}-1$, чтобы $i=i_1\sqrt{q}+i_2$.

Величины s_{i1} и s_{i2} определяются согласно равенствам

$$s_{i1} = A \left(1 - \frac{2i_1}{-1 + \sqrt{q}} \right)$$

$$s_{i2} = A(1 - \frac{2i_2}{-1 + \sqrt{q}})$$

Значения i_1, i_2 для сигнала i, а также значения s_{i1} и s_{i2} приведены ниже. Для удобства вычислений примем A=7.

Таблица 1 - Расчет коэффициентов сигналов

	: :	()
i	i_1, i_2	(s_{i1}, s_{i2})
0	0,0	(7,7)
1	0,1	(7,5)
2	0,2	(7,3)
3	0,3	(7,1)
4	0,4	(7,-1)
5	0,5	(7,-3)
6	0,6	(7,-5)
7	0,7	(7,-7)
8	1,0	(5,7)
9	1,1	(5,5)
10	1,2	(5,3)
11	1,3	(5,1)
12	1,4	(5,-1)
13	1,5	(5,-3)
14	1,6	(5,-5)
15	1,7	(5,-7)
16	2,0	(3,7)
17	2,1	(3,5)
18	2,2	(3,3)
19	2,3	(3,1)
20	2,4	(3,-1)
21	2,5	(3,-3)
22	2,6	(3,-5)
23	2,7	(3,-7)
24	3,0	(1,7)
25	3,1	(1,5)
26	3,2	(1,3)
27	3,3	(1,1)
28	3,4	(1,-1)
29	3,5	(1,-3)
30	3,6	(1,-5)
31	3,7	(1,-7)
32	4,0	(-1,7)
33	4,1	(-1,5)
34	4,2	(-1,3)
35	4,3	(-1,1)
	٦,٥	(-1,1)

36	4,4	(-1,-1)
37	4,5	(-1,-3)
38	4,6	(-1,-5)
39	4,7	(-1,-7)
40	5,0	(-3,7)
41	5,1	(-3,5)
42	5,2	(-3,3)
43	5,3	(-3,1)
44	5,4	(-3,-1)
45	5,5	(-3,-3)
46	5,6	(-3,-5)
47	5,7	(-3,-7)
48	6,0	(-5,7)
49	6,1	(-5,5)
50	6,2	(-5,3)
51	6,3	(-5,1)
52	6,4	(-5,-1)
53	6,5	(-5,-3)
54	6,6	(-5,-5)
55	6,7	(-5,-7)
56	7,0	(-7,7)
57	7,1	(-7,5)
58	7,2	(-7,3)
59	7,3	(-7,1)
60	7,4	(-7,-1)
61	7,5	(-7,-3)
62	7,6	(-7,-5)
63	7,7	(-7,-7)

Подставим посчитанные значения s_{i1} и s_{i2} для каждого сигнала:

$$s_0(t) = 7 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 7 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_1(t) = 7 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 5 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_2(t) = 7 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 3 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_3(t) = 7 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_4(t) = 7 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_5(t) = 7 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 3 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_6(t) = 7 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 5 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_7(t) = 7 * \sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) - 7 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_8(t) = 5 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 7 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_9(t) = 5 * \sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) + 5 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{10}(t) = 5 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 3 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{11}(t) = 5 * \sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) + \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{12}(t) = 5 * \sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) - \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{13}(t) = 5 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 3 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{14}(t) = 5 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 5 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{15}(t) = 5 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 7 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{16}(t) = 3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 7 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{17}(t) = 3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 5 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{18}(t) = 3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 3 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{19}(t) = 3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{20}(t) = 3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{21}(t) = 3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 3 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{22}(t) = 3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 5 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{23}(t) = 3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 7 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{24}(t) = \sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) + 7 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{25}(t) = \sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) + 5 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{26}(t) = \sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) + 3 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{27}(t) = \sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) + \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{28}(t) = \sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) - \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{29}(t) = \sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) - 3 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{30}(t) = \sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) - 5 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{31}(t) = \sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) - 7 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{32}(t) = -\sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) + 7 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{33}(t) = -\sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) + 5 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{34}(t) = -\sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) + 3 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{35}(t) = -\sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) + \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{36}(t) = -\sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) - \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{37}(t) = -\sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) - 3 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{38}(t) = -\sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) - 5 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{39}(t) = -\sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) - 7 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{40}(t) = -3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 7 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{41}(t) = -3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 5 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{42}(t) = -3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 3 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{43}(t) = -3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{44}(t) = -3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{45}(t) = -3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 3 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{46}(t) = -3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 5 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{47}(t) = -3 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 7 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{48}(t) = -5 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 7 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{49}(t) = -5 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 5 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{50}(t) = -5 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 3 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{51}(t) = -5 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{52}(t) = -5 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{53}(t) = -5 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 3 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{54}(t) = -5 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 5 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{55}(t) = -5 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 7 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{56}(t) = -7 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 7 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{57}(t) = -7 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + 5 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{58}(t) = -7 * \sqrt{\frac{2}{T}}\cos(2\pi * 1800 * t) + 3 * \sqrt{\frac{2}{T}}\sin(2\pi * 1800 * t)$$

$$s_{59}(t) = -7 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) + \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{60}(t) = -7 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{61}(t) = -7 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 3 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{62}(t) = -7 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 5 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

$$s_{63}(t) = -7 * \sqrt{\frac{2}{T}} \cos(2\pi * 1800 * t) - 7 * \sqrt{\frac{2}{T}} \sin(2\pi * 1800 * t)$$

4. Графики сигналов.

Графики полученных сигналов приведены ниже:

График 1 - Сигналы 1-8 (нумерация с левого верхнего угла)

График 2 - Сигналы 9-16 (нумерация с левого верхнего угла)

График 3 - Сигналы 17-24 (нумерация с левого верхнего угла)

График 4 - Сигналы 25-32 (нумерация с левого верхнего угла)

График 5 - Сигналы 33-40 (нумерация с левого верхнего угла)

График 6 - Сигналы 41-48 (нумерация с левого верхнего угла)

График 7 - Сигналы 49-56 (нумерация с левого верхнего угла)

График 8 - Сигналы 57-64 (нумерация с левого верхнего угла)

5. Расчет энергии сигналов.

Расчет энергии осуществляется согласно формуле:

$$E_i = s_{i1}^2 + s_{i2}^2$$

Докажем это:

$$\begin{split} E_i &= \int_0^T s_i^2 \, dt = \int_0^T s_{i1}^2 * \frac{2}{T} * \cos{(2\pi t f_0)^2} dt + \int_0^T s_{i2}^2 * \frac{2}{T} * \sin{(2\pi t f_0)^2} dt = \\ &= s_{i1}^2 \int_0^T \frac{2(1 + \cos{(4\pi t f_0)})}{2T} \, dt + s_{i2}^2 \int_0^T \frac{2(1 - \cos{(4\pi t f_0)})}{2T} \, dt = \\ &= s_{i1}^2 \int_0^T \frac{1 + \cos{(4\pi t f_0)}}{T} \, dt + s_{i2}^2 \int_0^T \frac{1 - \cos{(4\pi t f_0)}}{T} \, dt = \\ &= \frac{s_{i1}^2}{T} \left(t + \frac{\sin{(4\pi t f_0)}}{4\pi f_0} \right) + \frac{s_{i2}^2}{T} \left(t - \frac{\sin{(4\pi t f_0)}}{4\pi f_0} \right) \Big|_0^T = \\ &= \frac{s_{i1}^2 t}{T} + \frac{s_{i1}^2 \sin{(4\pi t f_0)}}{4\pi f_0 T} + \frac{s_{i2}^2 t}{T} - \frac{s_{i2}^2 \sin{(4\pi t f_0)}}{4\pi f_0 T} \Big|_0^T = \end{split}$$

$$= \frac{s_{i1}^2 T}{T} + \frac{s_{i1}^2 \sin(4\pi T f_0)}{4\pi f_0 T} + \frac{s_{i2}^2 T}{T} - \frac{s_{i2}^2 \sin(4\pi T f_0)}{4\pi f_0 T} = (s_{i1}^2 + s_{i2}^2) + \frac{\sin(4\pi T f_0)}{4\pi f_0 T} (s_{i1}^2 - s_{i2}^2)$$

$$= s_{i1}^2 + s_{i2}^2$$

Рассчитаем энергию каждого сигнала:
$$E_0 = s_{01}^2 + s_{02}^2 = 7^2 + 7^2 = 98$$

$$E_1 = s_{11}^2 + s_{12}^2 = 7^2 + 5^2 = 74$$

$$E_2 = s_{21}^2 + s_{22}^2 = 7^2 + 3^2 = 58$$

$$E_3 = s_{31}^2 + s_{32}^2 = 7^2 + 1^2 = 50$$

$$E_4 = s_{41}^2 + s_{42}^2 = 7^2 + (-1)^2 = 50$$

$$E_5 = s_{51}^2 + s_{52}^2 = 7^2 + (-3)^2 = 58$$

$$E_6 = s_{61}^2 + s_{62}^2 = 7^2 + (-7)^2 = 98$$

$$E_8 = s_{31}^2 + s_{32}^2 = 5^2 + 7^2 = 74$$

$$E_7 = s_{71}^2 + s_{72}^2 = 7^2 + (-7)^2 = 98$$

$$E_8 = s_{31}^2 + s_{32}^2 = 5^2 + 7^2 = 74$$

$$E_9 = s_{91}^2 + s_{92}^2 = 5^2 + 5^2 = 50$$

$$E_{10} = s_{101}^2 + s_{102}^2 = 5^2 + 3^2 = 34$$

$$E_{11} = s_{111}^2 + s_{112}^2 = 5^2 + 1^2 = 26$$

$$E_{12} = s_{121}^2 + s_{132}^2 = 5^2 + (-1)^2 = 26$$

$$E_{13} = s_{131}^2 + s_{132}^2 = 5^2 + (-5)^2 = 50$$

$$E_{14} = s_{141}^2 + s_{142}^2 = 5^2 + (-7)^2 = 74$$

$$E_{16} = s_{161}^2 + s_{162}^2 = 3^2 + 7^2 = 58$$

$$E_{17} = s_{171}^2 + s_{172}^2 = 3^2 + 5^2 = 34$$

$$E_{18} = s_{181}^2 + s_{182}^2 = 3^2 + 1^2 = 10$$

$$E_{20} = s_{201}^2 + s_{202}^2 = 3^2 + (-1)^2 = 10$$

$$E_{21} = s_{211}^2 + s_{212}^2 = 3^2 + (-5)^2 = 34$$

$$E_{22} = s_{221}^2 + s_{222}^2 = 3^2 + (-5)^2 = 34$$

$$E_{23} = s_{231}^2 + s_{232}^2 = 3^2 + (-5)^2 = 34$$

$$E_{24} = s_{241}^2 + s_{232}^2 = 3^2 + (-5)^2 = 34$$

$$E_{24} = s_{241}^2 + s_{232}^2 = 3^2 + (-5)^2 = 58$$

$$E_{24} = s_{241}^2 + s_{232}^2 = 3^2 + (-5)^2 = 58$$

 $E_{25} = s_{251}^2 + s_{252}^2 = 1^2 + 5^2 = 26$

 $E_{26} = s_{261}^2 + s_{262}^2 = 1^2 + 3^2 = 10$

$$E_{27} = s_{271}^2 + s_{272}^2 = 1^2 + 1^2 = 2$$

$$E_{28} = s_{281}^2 + s_{282}^2 = 1^2 + (-1)^2 = 2$$

$$E_{29} = s_{291}^2 + s_{292}^2 = 1^2 + (-3)^2 = 10$$

$$E_{30} = s_{301}^2 + s_{302}^2 = 1^2 + (-5)^2 = 26$$

$$E_{31} = s_{311}^2 + s_{312}^2 = 1^2 + (-7)^2 = 50$$

$$E_{32} = s_{321}^2 + s_{322}^2 = (-1)^2 + 7^2 = 50$$

$$E_{33} = s_{331}^2 + s_{332}^2 = (-1)^2 + 5^2 = 26$$

$$E_{34} = s_{341}^2 + s_{342}^2 = (-1)^2 + 3^2 = 10$$

$$E_{35} = s_{351}^2 + s_{352}^2 = (-1)^2 + 1^2 = 2$$

$$E_{36} = s_{361}^2 + s_{362}^2 = (-1)^2 + (-1)^2 = 2$$

$$E_{37} = s_{371}^2 + s_{372}^2 = (-1)^2 + (-3)^2 = 10$$

$$E_{38} = s_{381}^2 + s_{382}^2 = (-1)^2 + (-5)^2 = 26$$

$$E_{39} = s_{391}^2 + s_{392}^2 = (-1)^2 + (-7)^2 = 50$$

$$E_{40} = s_{401}^2 + s_{402}^2 = (-3)^2 + 7^2 = 58$$

$$E_{41} = s_{411}^2 + s_{412}^2 = (-3)^2 + 5^2 = 34$$

$$E_{42} = s_{421}^2 + s_{422}^2 = (-3)^2 + 3^2 = 18$$

$$E_{43} = s_{431}^2 + s_{432}^2 = (-3)^2 + 1^2 = 10$$

$$E_{44} = s_{441}^2 + s_{442}^2 = (-3)^2 + (-1)^2 = 10$$

$$E_{45} = s_{451}^2 + s_{452}^2 = (-3)^2 + (-3)^2 = 18$$

$$E_{46} = s_{461}^2 + s_{462}^2 = (-3)^2 + (-5)^2 = 34$$

$$E_{47} = s_{471}^2 + s_{472}^2 = (-3)^2 + (-7)^2 = 58$$

$$E_{48} = s_{481}^2 + s_{482}^2 = (-5)^2 + 7^2 = 74$$

$$E_{49} = s_{491}^2 + s_{492}^2 = (-5)^2 + 5^2 = 50$$

$$E_{50} = s_{501}^2 + s_{502}^2 = (-5)^2 + 3^2 = 34$$

$$E_{51} = S_{511}^2 + S_{512}^2 = (-5)^2 + 1^2 = 26$$

$$E_{52} = s_{521}^2 + s_{522}^2 = (-5)^2 + (-1)^2 = 26$$

$$E_{53} = s_{531}^2 + s_{532}^2 = (-5)^2 + (-3)^2 = 34$$

$$E_{54} = s_{541}^2 + s_{542}^2 = (-5)^2 + (-5)^2 = 50$$

$$E_{55} = s_{551}^2 + s_{552}^2 = (-5)^2 + (-7)^2 = 74$$

$$E_{56} = s_{561}^2 + s_{562}^2 = (-7)^2 + 7^2 = 98$$

$$E_{57} = s_{571}^2 + s_{572}^2 = (-7)^2 + 5^2 = 74$$

$$E_{58} = s_{581}^2 + s_{582}^2 = (-7)^2 + 3^2 = 58$$

$$E_{59} = s_{591}^2 + s_{592}^2 = (-7)^2 + 1^2 = 50$$

$$E_{60} = s_{601}^2 + s_{602}^2 = (-7)^2 + (-1)^2 = 50$$

$$E_{61} = s_{611}^2 + s_{612}^2 = (-7)^2 + (-3)^2 = 58$$

$$E_{62} = s_{621}^2 + s_{622}^2 = (-7)^2 + (-5)^2 = 74$$

$$E_{63} = s_{631}^2 + s_{632}^2 = (-7)^2 + (-7)^2 = 98$$

Экспериментальное значение энергии каждого сигнала рассчитывается по формуле:

$$E_i = \int_0^T s_i^2 dt$$

Вычислим минимальную и максимальную разницу экспериментальных и теоретических значений энергии сигналов:

$$\Delta_{min}E = -1.4211e - 14$$

$$\Delta_{max}E = 7.1054e - 15$$

Отсюда, можно сделать вывод о совпадении теоретических и экспериментальных значений с вероятностью ошибки, стремящейся к 0.

6. График энергии сигналов.

График энергии приведен ниже.

График 9 - Энергия сигналов

Вывод: в ходе выполнения лабораторной работы определила количество сигналов, привела аналитические выражения для всех сигналов из сигнального множества как функций

времени и построила графики всех сигналов. Провела анализ расчета энергии: вычислила теоретические и экспериментальные значения и сделала вывод о совпадении значений с вероятностью ошибки, стремящейся к 0.

Листинг программы:

```
Vmod = 1200;
Vinf = 7200;
f0 = 1800;
T = 1/V mod;
m = Vinf/Vmod;
q = pow2(m);
A = 7;
s = [7 \ 5 \ 3 \ 1 \ -1 \ -3 \ -5 \ -7];
step = T/100;
t = 0:step:T;
S = @(n) s(fix(n/8) + 1) *sqrt(2/T) *cos(2*pi*f0*t) + (s(mod(n,8)))
+ 1) * sqrt(2/T) * sin(2*pi*f0*t));
signals = zeros(q, (T/step) + 1);
E = zeros(1,q);
% вычисление сигналов
for n = 0:63
   signal = S(n);
   signals(n+1,:) = signal;
end
% графики сигналов
for n = 0:63
    figure (fix (n/8) + 1);
    subplot(2,4,mod(n,8) + 1);
    plot(t, signals(n+1,:));
    grid on;
end
% теоретическая энергия
for n = 0:63
   Ei = (s(fix(n/8) + 1)).^2 + (s(mod(n,8) + 1)).^2;
    E(n + 1) = Ei;
end
% экспериментальная энергия
Signals = @(n,t) s(fix(n/8) + 1)*sqrt(2/T)*cos(2*pi*f0*t)+
(s (mod(n, 8) + 1) * sqrt(2/T) * sin(2*pi*f0*t));
Eintegral = zeros(1,q);
for n = 1:64
  Eintegral(n) = integral(@(t) Signals(n-1, t).^2, 0, T);
end
% графики энергий
N = 1:64;
figure (10);
plot(N,Eintegral(1,:),'r');
hold on;
plot(N, E(1,:), 'o');
hold off;
grid on;
legend("experimental", "theoretical");
```