Enhancing human navigation ability using an active wearable exoskeleton

^{1,2}Carlos Carrasquillo, ^{1,2}Aakash Bajpai, ¹Divya Iyengar, ¹Killian Collins, ^{1,2}Anirban Mazumdar, ^{1,2}Aaron Young

¹George W. Woodruff School of Mechanical Engineering ²Institute for Robotics and Intelligent Machines

Goal of This Project

How can we assist people in navigate safely when visibility is low?

How the Controller Works

exo on

Experiment

- N = 10
- 3h training day
- 7 conditions, 16 levels per condition

Start

3 obstacle danger levels, d^{a} (visually represented by radius)

exo off

Results

Collisions

Collisions were significantly reduced with exo in all visibilities

except clear.

Health Metric

Performance with exo on was significantly better in all visibilities except clear.

distance to obstacle *k*

Clear

End

References & Acknowledgements

ARTERIA

Decreased Visibility

Blind