EGZAMIN Z MATEMATYKI DYSKRETNEJ LUTY 2008, PIERWSZY TERMIN, CZĘŚĆ A, CZAS: 120 MIN. Pary zadań 1,2 oraz 3,4 powinny być rozwiązane na osobnych kartkach

Zadanie 1

Pokaż, że $2008|a^{251} - a$ dla dowolnego naturalnego a.

Zadanie 2 Oblicz

$$\sum_{A,B\subseteq X} |A\cup B|,$$

gdzie sumowanie odbywa się po wszystkich podzbiorach n elementowego zbioru X.

Zadanie 3

Oblicz (np. z zasady włączeń i wyłączeń) liczbę rozwiązań równania

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 123$$

spełniających warunek $1 \le x_i \le 40$.

Zadanie 4

Napisz funkcję tworzącą ciągu a_n wyrażającego liczbę pokryć prostokąta $3\times n$ kostkami "domina" 1×3 .

POWODZENIA!

EGZAMIN Z MATEMATYKI DYSKRETNEJ LUTY 2008, PIERWSZY TERMIN, CZĘŚĆ B, CZAS: 120 MIN. Pary zadań 5,6 oraz 7,8 powinny być rozwiązane na osobnych kartkach

Zadanie 5

Rozważmy permutację n elementową σ . Mówimy, że i jest w tej permutacji widoczne, jeśli $\forall j > i \ \sigma(j) < \sigma(i)$ lub $\forall j < i \ \sigma(j) < \sigma(i)$. Losujemy jednostajnie permutację σ . Jaka jest oczekiwana liczba pozycji widocznych?

Zadanie 6

Pokaż, że graf 3-regularny unikalnie 3-krawędziowo kolorowalny ma cykl Hamiltona.

Zadanie 7

Wykaż, że regularny spójny graf dwudzielny stopnia większego niż 1 nie posiada mostu.

Zadanie 8

Pokrycie wierzchołkowe G to zbiór W takich wierzchołków, że każda krawędź G ma (przynajmniej) jeden z końców w W. Podaj wielomianową redukcję problemu istnienia kliki rozmiaru k w grafie G do problemu istnienia pokrycia wierzchołkowego rozmiaru k' w grafie G'.

POWODZENIA!