Complex Networks 2025

Final Presentation Analysis of the European Air Transport Multiplex Network

Authors:

Marc Ballestero Ribó Arnau Jutglar Puig

Friday, April 25th, 2025

Task 2 Complex Networks Analysis

Summary

Network Description

- We have been working with the Air Transportation Multiplex Dataset.
 - Airline routes among European airports, where each of the 37 edge types represents **routes** by a different airline.
 - Undirected, unweighted, multiplex network.

Network Description

- Data Selection:
 - **Lufthansa:** traditional, <u>hub-and-spoke</u> airline.
 - Air France: traditional, <u>hub-and-spoke</u> airline.
 - **Ryanair:** low-cost, <u>point-to-point</u> airline.

• Whole European Network: collapse of all airlines network.

1 Network Description

- Data Selection:
 - Lufthansa: <u>hub-and-spoke</u>.
 - Air France: <u>hub-and-spoke</u>.
 - Ryanair: point-to-point.
 - Whole European Network.

In the plots, we can already see some interesting insights...

Goal: confirm them quantitatively

Mesoscale Analysis: Communities

We have computed node communities for each of the networks using the following algorithms:

- Greedy Modularity Maximization.
- Louvain Algorithm.
- Girvan-Newman Algorithm.
 - Keep computing communities until a maximum of 15 is reached

Dynamic Analysis: Random Walks

We have simulated **random walks** on the network (1000 walkers, 10000 steps) and studied:

- Number of transits in each node.
- Number of walkers at the end of the simulation in each node

+

 Correlation of the previous parameters with centrality measures.

Dynamic Analysis: Synchronization

Synchronization

Setting the scenario:

- Airports need to exchange information by opening a channel.
- They open it at every hour and can freely choose when (within such hour).
- The hour position is the phase.
- They have no internal tendency to change their phase. Their natural frequency is $\omega = 0$.
- They can't reach a straight global agreement.
- They update their phase by looking at their difference with their neighbors. Not just this but following a Kuramoto model.

$$\dot{ heta_i} = K \sum_{j=1}^N A_{i,j} \sin(heta_j - heta_i)$$

Dynamic Analysis: Synchronization

Multilayer network

- The airlines network naturally follows a multilayer structure.
- Each layer is an airlines network.
- The layers can be connected by connecting the nodes corresponding to the same cities.
- This visualization can be useful to:
 - See which cities are operated by both companies.
 - See which paths can you take to travel from a city operated only by airline A to one operated only by airline B (if you want to avoid the hubs).

A network of networks

Multilayer network

- The visualization is visually appealing.
- With so many nodes, it is difficult to interpret.

Complex Networks 2025

Task 1
Microscale and Macroscale Analysis

Thanks for your Attention!

Authors: Marc Ballestero Ribó Arnau Jutglar Puig

Friday, March 25th, 2024

