说明

- FUNC.py: 用到的所有公式都放在该文件下
- time_sequence.py: 会在其他函数中调用,生成一个时间序列,频率为月,并包含每个月儒略日数据

input_data_0

• ams_mon: 文件夹下为 AMS02 月平均的数据

• pam_mon: 文件夹下为 AMS02 月平均的数据

• ssn_smoorh: 太阳黑子数的数据

o ssn 13: 原始数据

o ssn_smooth: 1970-2020年的平滑数据

o ssn_smooth_plus: 1970-2026年的平滑数据

o ssn_smooth_plus_test: 1970-2026年 平滑去掉双峰结构的黑子数

• smooth.py: 平滑太阳黑子数 去掉双峰结构

ffm_Phi_1

- DATA.py: 计算PAMELA和AMS02每个数据点的 Φ_{ij} ,函数 pamela_all() 和 ams02_all() 返回每个数据点的 Φ 与误差
- $phi_sigle.py:$ 利用立场模型计算每个月的调制势 Φ ,这个调制势是不随能量变化的。
- output
 - o ams_Phi: ams02 每个能量点的调制势数据
 - o pam Phi: pamela 每个能量点的调制势数据
 - o ams_phi_err: ams02调制势误差
 - pam_phi_err: pamela调制势误差
 - o ams_phi_sig: ams02每个月的调制势 (不随能量变化)
 - o pam_phi_sig: pamela每个月的调制势 (不随能量变化)

double_two_2

- FIT_PAM.py: 获得双幂律参数 c,d,E_0 ,只用了PAMELA的数据,能量截断在20GeV左右,手动添加到 FUNC.py 中的 fit_obj_vary() 中
- FIT_PAM_AMS.py: 获得 c,d,E_0 ,利用PAMELA和AMS02的数据,能量截断在20GeV左右,手动添加到 FUNC.py 中的 fit_obj_vary() 中
- get_two_para.py: 得到随时间变化的双幂律参数 ϕ_0, b ,
- fill_two_para.py: 利用线性插值补充pamela和ams02缺失月份的 ϕ_0, b
- output
 - ams02_vary_2: ams02的 ϕ_0 , b 数据
 - o pamela_vary_2:pamela的 ϕ_0, b 数据
 - o ams02_mon_nan: ams02 缺失数据的的索引 (按时间顺序排列第40, 41组数据缺失)
 - pamela_mon_nan: pamela 缺失数据的的索引
 - \circ ams02_err_2/pamela_err_2: ams02和pamela所得 ϕ_0, b 的误差数据

- o fill_all
 - ams02_all/pamela_all: 线性插值补上缺失月份的 ϕ_0, b 数据
 - ams02_all_err/pamela_all_err: 线性插值补上缺失月份的 ϕ_0 , b 误差数据

corr_para_3

- corr.py: 计算 $\phi_0, b = SSN$ 的相关性系数
- output
 - o ams-coor-x5: ams02两个参数延迟月数于相关性系数的数据
 - o pam-coor-x12: pamela两个参数延迟月数于相关性系数的数据

sep_find_line_4

- input
 - o ams02_info:预处理的数据 按照A分段 A<0 黑子数延迟取12, A>0 黑子数延迟取0,变号部分采用 ReLu 函数进行平滑
 - o pamela_info:预处理的数据 按照A分段 A<0 黑子数延迟取12, A>0 黑子数延迟取0,变号部分采用 ReLu 函数进行平滑
- line_ssn_para.py : 找到 ϕ_0 , b 与 SSN 的线性关系,手动在 FUNC.py 文件件下添加函数 $ssn_phi()$, $ssn_b()$,利用该函数和SSN计算出 ϕ , b,记作 phi_c ,b_c,最后保存数据到output
- output
 - o ams_info/pam_info: 关于 ams02 和 pamela 的相关信息,包括 ϕ_0 , b, 延迟的月数,延迟后的太阳黑子数,计算出的phi_c,b_c

plot_flux_5

- plot_flux.py: 利用前面四个步骤的数据画出AMS02和 pamela 的通量数据
- output: ams02和pamela 的通量图

用到的第三方 python 包

- numpy
- pandas
- matplotlib
- scipy
- astropy