

Mark Scheme (Results)

October 2022

Pearson Edexcel International Advanced Level in Mechanics M2 (WME02)

Paper 01

		(6)	
-		4	
	$k = \frac{23}{20}$ (1.15)	A1	Correct answer only
	(2+12k+2+8k=27)	DM1	Dependent on the two preceding M marks
	Form and solve equation in k	DM1	Use their \overline{y} and $\overline{x} + 2\overline{y} = 3$
	$2m \times 5 + 3m \times (-3) + 4m \times k = 9m \times \overline{y}$ $\left(\overline{y} = \frac{1+4k}{9}\right)$	A1	Correct unsimplified equation. Allow if <i>m</i> missing throughout.
(0)	IVI(y axis)	IVII	Might be seen as part of a vector equation in (a). It does not score any marks until referred to in part (b). Condone if <i>m</i> missing throughout.
(b)	M(y axis)	M1	Need all terms. Dimensionally consistent.
	$2m \times (-2) + 3m \times 2 + 4m \times 3k = 9m \times \overline{x}$ $\overline{x} = \frac{2+12k}{9} *$	A1*	Obtain given result
(a)			Condone if <i>m</i> missing throughout. Accept as part of a vector equation
Q 1	Mark Scheme M(x axis)	Marks M1	Marking guidance Need all terms. Dimensionally consistent.

Q	Mark Scheme	Marks	Marking guidance
2	Use of $P = Fv$	M1	Seen or implied e.g. $F = \frac{15000}{16} (= 937.5)$ Condone 15 in place of 15000 or extra zeros on 15000
	Equation of motion	M1	Need all terms. Condone sign errors and sin / cos confusion. Dimensionally consistent.
	$F + 900g\sin\theta - 400 = 900a$	A1	Unsimplified equation in <i>P</i> or their <i>F</i> with at most one error
	$\frac{15000}{16} + 900g \times \frac{1}{12} - 400 = 900a$	A1	Correct unsimplified equation with F and $\sin \theta$ substituted
	$a = 1.41 (1.4) (\text{m s}^{-2})$	A1	3sf or 2sf
		(5)	

Q	Mark Scheme	Marks	Marking guidance
3.	Use of $\mathbf{I} = m\mathbf{v} - m\mathbf{u}$	M1	Accept equivalent e.g. I + <i>m</i> u = <i>m</i> v . Dimensionally correct and must be using subtraction (but could be the wrong way round). The use of 7 in place of the velocity in the impulse momentum equation is M0 unless they recover. See below
	$0.2(\mathbf{v} - 4\mathbf{i} + 3\mathbf{j}) = \lambda(\mathbf{i} + \mathbf{j})$ $((x-4)\mathbf{i} + (y+3)\mathbf{j} = 5\lambda\mathbf{i} + 5\lambda\mathbf{j})$	A1	Correct unsimplified vector equation or pair of separate equations for the i and j components. Condone column vectors with i and j included in the components.
	Use of Pythagoras for the speed	M1	Correct use of Pythagoras and 49 for their speed
	$x^2 + y^2 = 49$	A1	Correct unsimplified equation for their x , y
	Form quadratic in x , y or λ and solve for λ	DM1	Dependent on both previous M marks. $x^2 + (x 7)^2 = 49$ or $(y + 7)^2 + (y + 2)^2 + (y +$
	$\lambda = \frac{3}{5}$ or $\lambda = -\frac{4}{5}$	A1	Or equivalent
** ** ** ** ** ** ** ** **	Special case: Candidates who use 7 as a vector can score a maximum of M1A0M1A0 for $1.4^2 = +(\lambda \ 0.8)^2 + -(\lambda \ 0.6)^2$ or equivalent DM1A0 for forming and solving a quadratic in λ .	(6)	This maximum of 3 marks is only available for those candidates who "recover". So, if all you see is $\lambda \lambda \mathbf{i} + = -\mathbf{j}$ 1.4 0.2 4(i -3 j) they score M0M0M0 If they recover to go on to form a "sensible" equation using Pythagoras then they can score the first 2 M marks, and potentially the third M1 as well.
	$0.2(3\mathbf{i} - 4\mathbf{j}) \qquad \theta \qquad (\gamma\sqrt{2})$ (1) Form vector triangle	M1	Dimensionally correct. Allow incorrect
			configuration
	Correct triangle and correct lengths Use scalar product to find cosine of angle	A1 M1	In speeds or momentum but not a mixture Or equivalent method
	$\cos\theta = -\frac{1}{5\sqrt{2}}$	A1	Allow ±
	Form equation in λ $(2\lambda^2 + .4\lambda - 0.96 = 0)$	DM1	e.g. by use of cosine rule Dependent on the first 2 M marks
	$\lambda = \frac{3}{5}$ or $\lambda = -\frac{4}{5}$	A1	Or equivalent
		(6)	

Q	Mark Scheme	Marks	Marking guidance
4 (a)	$\lambda^2 + 2\lambda - 3 = 0 \left(= (\lambda + 3)(\lambda - 1) \right)$	M1	Set j component = 0 and solve for λ
	$\Rightarrow \lambda = 1$	A1	Only. Seen or implied. Accept $t = 1$
	$\Rightarrow \lambda = 1$ Use $\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	M1	Attempt derivative of both components with respect to <i>t</i> . Powers going down. Condone errors in dealing with the signs / indices for the square root. The answer must be a vector.
	$= \frac{-1}{2\sqrt{5-t}}\mathbf{i} + (2t+2)\mathbf{j}$ $= -\frac{1}{4}\mathbf{i} + 4\mathbf{j}$	A1	Any equivalent form
	$= -\frac{1}{4}\mathbf{i} + 4\mathbf{j}$	A1	Only. Any equivalent form. ISW if they go on to find the magnitude.
		5	
4 (b)	Use $\mathbf{s} = \int \mathbf{v} \mathrm{d}t$	M1	Attempt integral of both components. (M0 if they have assumed that one component is zero) Powers going up. Condone errors in dealing with the signs / indices for the square root.
	$\mathbf{s} = \left(-\frac{2}{3}\left(5-t\right)^{\frac{3}{2}}\left(+A\right)\right)\mathbf{i} + \left(\frac{1}{3}t^3 + t^2 - 3t\left(+B\right)\right)\mathbf{j}$	A1 A1	Unsimplified expression with error in at most one term Correct unsimplified expression. Allow with no constant(s) of integration
	Use $t = 1$, $\mathbf{s} = -2\mathbf{i} + \mathbf{j}$	DM1	Use of initial condition to find constant(s) of integration. Dependent on the previous M1.
	$\mathbf{s} = \left(-\frac{2}{3}(5-T)^{\frac{3}{2}} + \frac{10}{3}\right)\mathbf{i} + \left(\frac{1}{3}T^3 + T^2 - 3T + \frac{8}{3}\right)\mathbf{j}$	A1	Any equivalent form for the position vector
		5	
		(10)	

Q	Mark Scheme	Marks	Marking guidance
	$A \longrightarrow H$ $A \longrightarrow B$ A		
5 (a)	$AD = \sqrt{(2a)^2 + (5a)^2} = \sqrt{29}a *$	B1*	Correct use of Pythagoras to show given answer from correct working (need <i>a</i> on both sides)
_		1	5: 11
(b)	$M(A): W \times 4a \cos \theta = N \times 5a$	M1	Dimensionally correct equation in <i>a</i> . Allow if <i>a</i> cancelled. Condone sin/cos confusion
	$W \times 4a \times \frac{5}{\sqrt{29}} = N \times 5a$	A1	Correct unsimplified equation. Allow with $\cos \theta$. NB: $5a = \sqrt{29}a\cos\theta$
	$N = \frac{4}{\sqrt{29}}W *$	A1*	Obtain given answer from correct working
5 (c)	The candidates need to form sufficient equations to solve for <i>k</i> independent equations. Allow M1A1 for the first equation seen there are more than 2 equations, award the marks for the equations they stop after forming the equations, allow the marks for the left that the stop after forming the equations.	n, and M1 ions used	A1 for the second equation. If to solve for k and $\tan \alpha$. If
	Resolve vertically	M1	Requires all relevant terms. Condone sin / cos confusion
	$V + N\cos\theta = W \qquad \left(V = \frac{9}{29}W\right)$ or $kW\sin\alpha + N\cos\theta = W$	A1	Correct unsimplified equation. Need not substitute for trig.
	Resolve horizontally	M1	Requires all relevant terms. Condone consistent sin / cos confusion
	$H = N \sin \theta \left(= \frac{8}{29}W \right) \text{ or } kW \cos \alpha = N \sin \theta \left(= \frac{8}{29}W \right)$	A1	Correct unsimplified equation. Need not substitute for trig.
	Possible alternative equation for M1A1 using M(C): $aW \cos \theta + 5aH \sin \theta = 5aV \cos \theta$		
	or $aW \cos \theta = kW \times 5a \sin(\alpha - \theta)$ Use Pythagoras to obtain k : $k^2 = \left(\frac{9}{29}\right)^2 + \left(\frac{8}{29}\right)^2$	DM1	Correct use of perpendicular components. Dependent on the first 2 M marks

	$k = \frac{\sqrt{145}}{29} = \sqrt{\frac{5}{29}}$	A1	Correct only. Any equivalent exact form (ISW but 0.415 with no exact answer seen is A0)
	Use trig to obtain $\tan \alpha$	DM1	Dependent on the first 2 M marks
	$\tan \alpha = \frac{9}{8}$	A1	Correct only. Must be a simplified number. Do not accept answer including <i>W</i>
		8	
5 (c) alt	Resolve parallel to rod	M1	Requires all relevant terms. Condone sin / cos confusion
	$F = W \sin \theta \left(= \frac{2}{\sqrt{29}} W \right)$	A1	Correct unsimplified equation. Need not substitute for trig.
	Resolve perpendicular to rod	M1	Requires all relevant terms. Condone consistent sin / cos confusion
	$E + N = W \cos \theta \left(E = \frac{1}{\sqrt{29}} W \right)$	A1	Correct unsimplified equation. Need not substitute for trig.
	Possible alternative equation for M1A1 using M(C): $aW \cos \theta + 5aH \sin \theta = 5aV \cos \theta$		
	or $aW\cos\theta = kW \times 5a\sin(\alpha - \theta)$		
	Use Pythagoras to obtain <i>k</i>	M1	Correct use of Pythagoras
	$k = \frac{1}{\sqrt{29}}\sqrt{1+4} = \sqrt{\frac{5}{29}}$	A1	Correct only
	Use trig to obtain $\tan \alpha$: $\tan (\alpha - \theta) = \frac{1}{2} = \frac{\tan \alpha - \frac{2}{5}}{1 + \frac{2}{5} \tan \alpha}$	DM1	Use of trig to obtain expression in $\tan \alpha$
	$\tan \alpha = \frac{9}{8}$	A1	Correct only
		8	
		(12)	

Q	Mark Scheme	Marks	Marking guidance
6 (a)	M(PV)	M1	Allow use of a parallel axis. Terms dimensionally consistent. Could be seen as part of a vector equation. Condone error(s) in distance(s).
	$a \times 2ka^{2} + \left(2a + \frac{1}{2}ka\right)2ka^{2} = \overline{x} \times \left(2ka^{2} + 2ka^{2}\right)$	A1	Correct unsimplified equation
	$a \times 2ka^{2} + \left(2a + \frac{1}{2}ka\right)2ka^{2} = \overline{x} \times \left(2ka^{2} + 2ka^{2}\right)$ $2\overline{x} = a + 2a + \frac{1}{2}ka \implies \overline{x} = \frac{6+k}{4}a *$	A1*	Obtain given answer from correct working
		3	
6 (b)	M(PR)	M1	Allow use of a parallel axis. Terms dimensionally consistent. Could be seen as part of a vector equation in (a) but needs to be used here to score mark(s) in (b). Condone error(s) in distance(s). If working from <i>VU</i> they might assume that c of m of <i>QRST</i> lies on their axis. So long as they say that this is what they have done (e.g. in a table of values) this can score M1A0A0M1A1ftA0.
	$\frac{1}{2}ka \times 2ka^2 + a \times 2ka^2 = \overline{y} \times 4ka^2$	A1	Correct unsimplified equation
	$\frac{1}{2}ka \times 2ka^2 + a \times 2ka^2 = \overline{y} \times 4ka^2$ $\overline{y} = \frac{k+2}{4}a$	A1	Correct answer (\pm) seen or implied Accept distance from $VU = \pm \frac{3k-2}{4}a$ Or distance from TS = $\pm \frac{6-k}{4}a$
	Use angle to form equation in k	M1	Correct use of given ratio. Allow reciprocal
	$\frac{7}{15} = \frac{\overline{y}}{\overline{x}} = \frac{(k+2)a}{4} \times \frac{4}{(6+k)a}$	A1	Correct unsimplified equation using given \overline{x} and their \overline{y} e.g. $\frac{ka - \overline{y}_{VU}}{\overline{x}}$ or $\frac{2a - \overline{y}_{TS}}{\overline{x}}$
	$\Rightarrow k = \frac{3}{2} (=1.5)$	A1	Correct only
		6	
		(9)	

Q	Mark Scheme	Marks	Marking guidance
7			Check their diagram but remember that the
(a)	\longrightarrow 3 u \longrightarrow u		directions used in their equations might not
	$\begin{pmatrix} A \\ m \end{pmatrix} \qquad \begin{pmatrix} B \\ 2m \end{pmatrix}$		be consistent with the diagram. In this case,
			ignore their diagram.
	$v_A \longrightarrow v_B \longrightarrow$		
	$v_A \longrightarrow v_B \longrightarrow \frac{1}{3}v_B \longleftarrow$		
	Conservation of momentum		Need all terms. Dimensionally correct.
		M1	Condone sign errors. Condone <i>m</i> missing
			throughout or <i>g</i> present throughout.
	$3mu + 2mu = mv_A + 2mv_B \left(5u = v_A + 2v_B\right)$		Correct unsimplified equation. Allow with
	A B (A B)	A1	v_A negative
	Use of NEL	M1	Used the right way round. Condone sign
		M1	errors
	$v_{R} - v_{A} = e(3u - u)$ $(2ue = v_{R} - v_{A})$		Correct unsimplified equation. Allow with
	2 () (2,	A1	v_A negative. Signs consistent between the
			two equations.
	Solve for V_A or V_B	DM1	Dependent on two previous M marks
	Obtain $v_B = \frac{5+2e}{3}u$ *	A1*	Obtain given answer from correct working
	Obtain $v_A = \frac{5-4e}{3}u$	A1	Or aquivalent v. must be positive
	Obtain $V_A = \frac{1}{3}u$	AI	Or equivalent. V_A must be positive
		7	
7 (b)	Time for <i>B</i> to reach the wall $t_B = \frac{d}{2u}$	B1	Seen or implied. Allow $\frac{d \times 3}{(5+2e)u}$
	Speed of <i>B</i> after impact with wall $=\frac{2}{3}u$	B1	Seen or implied. Allow $\frac{1}{3} \left(\frac{5+2e}{3} \right)$
	Distance travelled by <i>A</i> before <i>B</i> hits the wall		1
		M1	Substitute $e = \frac{1}{2}$ and use their v_A and their
	$=u\times\frac{d}{2u}\left(=\frac{d}{2}\right)$	1111	t_b to find distance
	Time to close the gap	M1	Correct formula with their relevant speeds
		IVII	Correct formula with their felevant speeds
	$\frac{d}{2} = u \times t + \frac{2u}{3} \times t \left(= \frac{5ut}{3} \right) \left(t = \frac{3d}{10u} \right)$	A1	Correct unsimplified equation
	Total time $=$ $\frac{d}{2u} + \frac{3d}{10u} = \frac{8d}{10u} \left(= \frac{4d}{5u} \right)$	A1	ISW Any equivalent form
		6	
7(b)	In time T , A travels x metres $x = uT$		
alt	B travels d metres in t sec $\frac{1}{2}$		Equivalent statement
	d = 2ut First B1		
	B travels $d-x$ metres in t' sec d-x = 2ut'/3 Second B1 and first M1		Correct value implied and Distance travelled
	a-x = 2ut/3 Second B1 and first M1 t+t'=T		by B after it hits the wall
	(d + 3d - 3uT)/2u = T Second M1 and first A1		Correct formula for time and Correct
	T = 4d/5u Second A1		unsimplified equation
	1 id/ou Second A1	(12)	Correct answer
		(13)	

Name Scheme 8 Normal reaction between P and ramp (R) = 0.3 g cos α = $\left(0.3g \times \frac{24}{25} = 2.82\right)$ Work done against friction = $\frac{1}{5}R \times 15$ M1 Use of WD = $\mu R \times$ distance with their R = 8.47(8.5)(1) A1 3 sf or 2 sf 8 Work-energy equation M1 All terms required. Dimensionally correct. Condone sign errors. Follow their answer to (a) Correct unsimplified equation with at most one error. Correct unsimplified equation in t $U = 27.6$ (28) A1 3 sf or 2 sf 4 8 Time to ground: (c) -15 sin $\alpha = 7t - \frac{1}{2}gt^2$ A1ft $t = 1.88$ (1.9) (s) A1 3 sf or 2 sf A1 3 sf or 2 sf A1 3 sf or 2 sf A1 4 Vertical component of speed (d) Vertical component of speed $= \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ Correct use of trig: $\tan \theta$ ° = $\frac{\text{their vertical}}{24}$ M1 Or use energy to find the speed $\theta = 25.5$ (26) A1 3 sf or 2 sf A1 Reminder: The accuracy penalty for overspecified answers should be applied only once in any question (the first time seen). Similarly for the use of $g = 9.81$. If they make both of these errors they lose 2 A marks. The penalty applies to the final mark in any part. (14)		Moule Colomo	Maulia	Madding avidence
Normal reaction between P and ramp $(R) = 0.3g \cos \alpha = \left(0.3g \times \frac{24}{25} = 2.82\right)$ M1 Use of WD = $\mu R \times$ distance with their R = 8.47 (8.5) (J) A1 3 s for 2 sf Normal reaction between P and ramp P and ramp P use of P and P use of P	Q	Mark Scheme	Marks	Marking guidance
Work done against friction = $\frac{1}{5}R \times 15$		•	M1	Condone sin / cos confusion (implied by
8 (b) Work-energy equation $\frac{1}{2} \times 0.3U^2 = \frac{1}{2} \times 0.3 \times 25^2 + (a) + 0.3 \times g \times (15 \sin \alpha)$ All terms required. Dimensionally correct. Condone sign errors. Follow their answer to (a) Correct unsimplified equation with at most one error. Correct unsimplified equation $\frac{1}{2} \times 0.3U^2 = \frac{1}{2} \times 0.3 \times 25^2 + (a) + 0.3 \times g \times (15 \sin \alpha)$ All the most one error. Correct unsimplified equation $\frac{1}{2} \times 0.3U^2 = \frac{1}{2} \times 0.3 \times 25^2 + (a) + 0.3 \times g \times (15 \sin \alpha)$ All the most one error. Correct unsimplified equation $\frac{1}{2} \times 0.3U^2 = \frac{1}{2} \times 0.3 \times 25^2 + (a) + 0.3 \times g \times (15 \sin \alpha)$ All the most one error. Correct unsimplified equation $\frac{1}{2} \times 0.3U^2 = \frac{1}{2} \times 0.3 \times 25^2 + (a) + 0.3 \times g \times (15 \sin \alpha)$ Complete method using suvat to form an equation in the sum of the equation in the special form of the special form of $\frac{1}{2} \times 0.3U^2 = \frac{1}{2} \times 0.3 \times 25^2 + \frac{1}{2} \times 0.3 \times 25^2$ Alft Correct unsimplified equation in the special form of $\frac{1}{2} \times 0.3U^2 = \frac{1}{2} \times 0.3 \times 25^2 + \frac{1}{2} \times 0.3 \times 25^2$ Alft Correct unsimplified equation in the special form of $\frac{1}{2} \times 0.3U^2 = \frac{1}{2} \times 0.3U^2 = \frac$		Work done against friction = $\frac{1}{5}R \times 15$	M1	Use of WD = $\mu R \times$ distance with their R
8 (b)Work-energy equationM1All terms required. Dimensionally correct. Condone sign errors. $\frac{1}{2} \times 0.3U^2 = \frac{1}{2} \times 0.3 \times 25^2 + (a) + 0.3 \times g \times (15 \sin \alpha)$ A1ft A1ft A1ft A1ftCorrect unsimplified equation with at most one error. Correct unsimplified equation $U = 27.6 (28)$ A13 sf or 2 sf8 (c)Time to ground: (c)M1Complete method using suvat to form an equation in t $I = 1.88 (1.9) (s)$ A13 sf or 2 sfSolve tunsimplified equation in t $I = 1.88 (1.9) (s)$ A13 sf or 2 sfSolve tunsimplified equation in t $I = 1.88 (1.9) (s)$ A13 sf or 2 sfSolve tunsimplified equation in t $I = 1.88 (1.9) (s)$ A13 sf or 2 sfSolve tunsimplified equation in t $I = 1.88 (1.9) (s)$ A13 sf or 2 sfSolve tunsimplified equation in t $I = 1.88 (1.9) (s)$ A13 sf or 2 sfSolve tunsimplified equation in t $I = 1.88 (1.9) (s)$ A13 sf or 2 sfSolve tunsimplified equation in t $I = 1.88 (1.9) (s)$ A1Or use energy to find the speed $I = 1.88 (1.9) (s)$ A1Or use energy to find the speed $I = 1.88 (1.9) (s)$ A1 or cos $\theta = \frac{7\sqrt{67}}{5}$ $I = 1.88 (1.9) (s)$ A1 or cos $\theta = \frac{24}{16}$ $I = 1.88 (1.9) (s)$ A1 or cos $\theta = \frac{24}{16}$ $I = 1.88 (1.9) (s)$ A1 or cos $\theta = \frac{24}{16}$ $I = 1.88 (1.9) (s)$ A1 or cos $\theta = \frac{24}{16}$ $I = 1.88 (1.9) (s)$ A1 or cos $\theta = \frac{24}{16}$ $I = 1.88 (1.9) (s)$		=8.47(8.5)(J)		3 sf or 2 sf
(b) $\frac{1}{2} \times 0.3U^2 = \frac{1}{2} \times 0.3 \times 25^2 + (a) + 0.3 \times g \times (15 \sin \alpha)$ $\frac{1}{2} \times 0.3U^2 = \frac{1}{2} \times 0.3 \times 25^2 + (a) + 0.3 \times g \times (15 \sin \alpha)$ $U = 27.6 (28)$ A1			3	
$\frac{1}{2} \times 0.3U^2 = \frac{1}{2} \times 0.3 \times 25^2 + (a) + 0.3 \times g \times (15 \sin \alpha)$ A1ft A1ft A1ft Correct unsimplified equation with at most one error. Correct unsimplified equation A1		Work-energy equation	M1	correct. Condone sign errors.
8 Time to ground: (c) M1 Complete method using suvat to form an equation in t Correct unsimplified equation in t ft their 4.2 A1ft Correct unsimplified equation in t ft their 4.2 $t = 1.88 (1.9) (s)$ A1 3 sf or 2 sf $\frac{5+\sqrt{67}}{7}$ is A0 8 Vertical component of speed (d) $= \pm (7 - (\text{their } t) \times 9.8) (\pm 11.459)$ or $0.15 \times 625 + .3 \times 9.8 \times \text{their } 4.2 = 0.15v^2$ A1ft ($v = 26.59$) condone $v = \frac{7\sqrt{67}}{5}$ Correct use of trig: $\tan \theta^\circ = \frac{\text{their vertical}}{24}$ M1 or $\cos \theta^\circ = \frac{24}{\text{their speed}}$ $\theta = 25.5(26)$ A1 3 sf or 2 sf A1 3 sf or 2 sf Reminder: The accuracy penalty for overspecified answers should be applied only once in any question (the first time seen). Similarly for the use of $g = 9.81$. If they make both of these errors they lose 2 A marks. The penalty applies to the final mark in any part.		$\frac{1}{2} \times 0.3U^2 = \frac{1}{2} \times 0.3 \times 25^2 + (a) + 0.3 \times g \times (15 \sin \alpha)$		Correct unsimplified equation with at most one error.
8 Time to ground: (c) M1 Complete method using suvat to form an equation in t -15 sin $\alpha = 7t - \frac{1}{2}gt^2$ A1ft Correct unsimplified equation in t ft their $\frac{1}{4.2}$ $t = 1.88 \ (1.9) \ (s)$ A1 3 sf or 2 sf $\frac{5 \cdot \sqrt{67}}{7}$ is A0 8 Vertical component of speed (d) $= \pm \left(7 - (\text{their } t) \times 9.8\right) \ (\pm 11.459)$ or $0.15 \times 625 + .3 \times 9.8 \times \text{their } 4.2 = 0.15v^2$ A1ft $(v = 26.59)$ condone $v = \frac{7\sqrt{67}}{5}$ Correct use of trig: $\tan \theta^\circ = \frac{\text{their vertical}}{24}$ M1 or $\cos \theta^\circ = \frac{24}{\text{their speed}}$ $\theta = 25.5 \ (26)$ A1 3 sf or 2 sf Reminder: The accuracy penalty for overspecified answers should be applied only once in any question (the first time seen). Similarly for the use of $g = 9.81$. If they make both of these errors they lose 2 A marks. The penalty applies to the final mark in any part.		U = 27.6 (28)	A1	3 sf or 2 sf
(c) $\frac{M1}{-15\sin\alpha = 7t - \frac{1}{2}gt^2}$ $A1ft$ $\frac{A1ft}{4.2}$ $t = 1.88 (1.9) (s)$ $A1 3 \text{ sf or } 2 \text{ sf } \frac{5+\sqrt{67}}{7} \text{ is A0}$ $\frac{3}{8} \text{Vertical component of speed}$ $\frac{3}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right$			4	
(c) $\frac{M1}{-15\sin\alpha = 7t - \frac{1}{2}gt^2}$ $A1ft$ $\frac{A1ft}{4.2}$ $t = 1.88 (1.9) (s)$ $A1 3 \text{ sf or } 2 \text{ sf } \frac{5+\sqrt{67}}{7} \text{ is A0}$ $\frac{3}{8} \text{Vertical component of speed}$ $\frac{3}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ $\frac{A1}{(d)} = \pm \left(7 - \left(\text{their } t\right) \times 9.8\right$				
All $t = 1.88 \ (1.9) \ (s)$ All $t = 1.88 \ (s)$		Time to ground:	M1	
8 Vertical component of speed (d) $= \pm \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \pm \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(\pm 11.459\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(4 - (\text{their } t) \times 9.8\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(4 - (\text{their } t) \times 9.8\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(4 - (\text{their } t) \times 9.8\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(7 - (\text{their } t) \times 9.8\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(7 - (\text{their } t) \times 9.8\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right) \ \left(7 - (\text{their } t) \times 9.8\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right)$ $= \frac{1}{2} \left(7 - (\text{their } t) \times 9.8\right)$ $= \frac{1}{2} \left(7 $		$-15\sin\alpha = 7t - \frac{1}{2}gt^2$	A1ft	
8 (d)Vertical component of speedM1Or use energy to find the speed $= \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \left(\pm 11.459\right)$ or $0.15 \times 625 + .3 \times 9.8 \times \text{their } 4.2 = 0.15v^2$ $\left(v = 26.59\right)$ $\text{condone } v = \frac{7\sqrt{67}}{5}$ $= \frac{7\sqrt{67}}{5}$ or $\cos \theta^\circ = \frac{24}{\text{their speed}}$ $\theta = 25.5(26)$ A13 sf or 2 sfReminder: The accuracy penalty for overspecified answers should be applied only once in any question (the first time seen). Similarly for the use of $g = 9.81$. If they make both of these errors they lose 2 A marks. The penalty applies to the final mark in any part.		t = 1.88 (1.9) (s)		3 sf or 2 sf $\frac{5+\sqrt{67}}{7}$ is A0
$= \pm \left(7 - \left(\text{their } t\right) \times 9.8\right) \ \left(\pm 11.459\right) $ or $0.15 \times 625 + .3 \times 9.8 \times \text{their } 4.2 = 0.15v^2$ $\left(v = 26.59\right) $ condone $v = \frac{7\sqrt{67}}{5}$ Correct use of trig: $\tan \theta^\circ = \frac{\text{their vertical}}{24} $ M1 or $\cos \theta^\circ = \frac{24}{\text{their speed}} $ $\theta = 25.5 \left(26\right) $ A1 3 sf or 2 sf $\theta = 25.5 \left(26\right) $ Reminder: The accuracy penalty for overspecified answers should be applied only once in any question (the first time seen). Similarly for the use of $g = 9.81$. If they make both of these errors they lose 2 A marks. The penalty applies to the final mark in any part.	-	Vertical component of speed		Or use energy to find the speed
$\theta = 25.5 (26)$ A1 3 sf or 2 sf Reminder: The accuracy penalty for overspecified answers should be applied only once in any question (the first time seen). Similarly for the use of $g = 9.81$. If they make both of these errors they lose 2 A marks. The penalty applies to the final mark in any part.		$=\pm (7 - (\text{their } t) \times 9.8) \ (\pm 11.459)$	A1ft	$0.15 \times 625 + .3 \times 9.8 \times \text{ their } 4.2 = 0.15v^{2}$ $(v = 26.59)$ $7\sqrt{67}$
Reminder: The accuracy penalty for overspecified answers should be applied only once in any question (the first time seen). Similarly for the use of $g = 9.81$. If they make both of these errors they lose 2 A marks. The penalty applies to the final mark in any part.		Correct use of trig: $\tan \theta^{\circ} = \frac{\text{their vertical}}{24}$	M1	or $\cos \theta^{\circ} =$
Reminder: The accuracy penalty for overspecified answers should be applied only once in any question (the first time seen). Similarly for the use of $g = 9.81$. If they make both of these errors they lose 2 A marks. The penalty applies to the final mark in any part.		$\theta = 25.5 \left(26\right)$	A1	3 sf or 2 sf
first time seen). Similarly for the use of $g = 9.81$. If they make both of these errors they lose 2 A marks. The penalty applies to the final mark in any part.			•	
		first time seen). Similarly for the use of $g = 9.81$. If they		
		promise to the man man many para	(14)	