$$sena + senb = 2 \cdot sen\frac{a+b}{2} \cdot cos\frac{a-b}{2}$$

$$sena - senb = 2 \cdot cos\frac{a+b}{2} \cdot sen\frac{a-b}{2}$$

$$cosa + cosb = 2 \cdot cos\frac{a+b}{2} \cdot cos\frac{a-b}{2}$$

$$cosa - cosb = -2 \cdot sen\frac{a+b}{2} \cdot sen\frac{a-b}{2}$$

$$tga + tgb = \frac{sen(a+b)}{cosa \cdot cosb}$$

$$tga - tgb = \frac{sen(a-b)}{cosa \cdot cosb}$$

$$tg(a+b) = \frac{tga + tgb}{1 - tga \cdot tgb}$$

$$tg(a-b) = \frac{tga - tgb}{1 + tga \cdot tgb}$$

(D1)
$$[f(x) + g(x)]' = f'(x) + g'(x)$$
.

(D2)
$$[kf(x)]' = kf'(x)$$
.

(D3)
$$[f(x) g(x)]' = f'(x) g(x) + f(x) g'(x)$$
.

(D4)
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) g(x) - f(x) g'(x)}{[g(x)]^2}$$
.

Seja
$$f(x) = x^2 + 1$$
. Calcule

$$a)f'(1)$$
 $b)f'(0)$ $c)f'(x)$

Seja f(x) = 2x. Pensando geometricamente, qual o valor que você espera para f'(p)? Calcule f'(p).

Seja
$$f(x) = 3x + 2$$
. Calcule

$$a) f'(2) = b) f'(0) = c) f'(x)$$

Determine a equação da reta tangente em (p, f(p)) sendo dados

$$a) f(x) = x^2 e p = 2$$

$$(b) f(x) = \frac{1}{x} e p = 2$$

$$c) f(x) = \sqrt{x} e p = 9$$

$$c) f(x) = \sqrt{x} e p = 9$$
 $d) f(x) = x^2 - x e p = 1$

Calcule f'(x).

$$a) f(x) = x^2 + x$$

$$b) f(x) = 3x - 1$$

$$c)f(x) = x^3$$

$$d)f(x) = \frac{1}{x}$$

$$e) f(x) = 5x$$

$$f(x) = 10$$

$$g)f(x) = \frac{x}{x+1}$$

$$h)f(x) = \frac{1}{x^2}$$

Seja $f(x) = \operatorname{sen} x$. Calcule.

$$a)f'(x)$$
 $b)f'\left(\frac{\pi}{4}\right)$

Determine a equação da reta tangente ao gráfico de $f(x) = \sin x$ no ponto de abscissa 0.

Seja $f(x) = \cos x$. Calcule.

$$a)f'(x)$$
 $b)f'(0)$

$$c)f'\left(\frac{\pi}{3}\right)$$
 $d)f'\left(-\frac{\pi}{4}\right)$

Calcule f'(x) sendo

$$a) f(x) = \operatorname{tg} x$$
 $b) f(x) = \operatorname{sec} x$

Determine a equação da reta tangente ao gráfico de $f(x) = \operatorname{tg} x$ no ponto de abscissa 0.

Seja $f(x) = \cot x$. Calcule.

$$a)f'(x)$$
 $b)f'\left(\frac{\pi}{4}\right)$

Seja $g(x) = \csc x$. Calcule.

a)
$$g'(x)$$
 b) $g'\left(\frac{\pi}{4}\right)$

Calcule f'(x).

$$a)f(x) = 3x^2 + 5$$

a)
$$f(x) = 3x^3 + 3$$

c) $f(x) = 3x^3 - 2x^2 + 4$

$$e)f(x) = 5 + 3x^{-2}$$

$$g(f(x)) = 3x + \frac{1}{x}$$

$$i)f(x) = \frac{2}{3}x^3 + \frac{1}{4}x^2$$

$$I(f(x)) = 2x + \frac{1}{x} + \frac{1}{x^2}$$

$$b)f(x) = x^3 + x^2 + 1$$

$$d) f(x) = 3x + \sqrt{x}$$

$$f(x) = 2\sqrt[3]{x}$$

$$h)f(x)=\frac{4}{x}+\frac{5}{x^2}$$

$$j)f(x) = \sqrt[3]{x} + \sqrt{x}$$

$$m) f(x) = 6x^3 + \sqrt[3]{x}$$

 $n) f(x) = 5x^4 + bx^3 + cx^2 + k$, onde b, c e k são constantes.

Seja $g(x) = x^3 + \frac{1}{x}$. Determine a equação da reta tangente ao gráfico de g no ponto (1, g(1)).

Calcule F'(x) onde F(x) é igual a

a)
$$\frac{x}{x^2+1}$$

c)
$$\frac{3x^2+3}{5x-3}$$

$$e) \, 5x + \frac{x}{x-1}$$

$$g) \frac{\sqrt[3]{x} + x}{\sqrt{x}}$$

b)
$$\frac{x^2-1}{x+1}$$

$$d) \ \frac{\sqrt{x}}{x+1}$$

f)
$$\sqrt{x} + \frac{3}{x^3 + 2}$$

h)
$$\frac{x + \sqrt[4]{x}}{x^2 + 3}$$