Propositional Logic

Tian-Li Yu

Taiwan Evolutionary Intelligence Laboratory (TEIL)

Department of Electrical Engineering

National Taiwan University

tianliyu@ntu.edu.tw

Readings: AIMA 7.1~7.5

Outline

- 1 Logical Agents
- 2 Propositional Logic
- Inference
- Resolution and CNF
- Forward Chaining
- **6** Backward Chaining

Generic Knowledge-Based Agent

- Knowledge base is a set of sentences in a formal language.
- Declarative approach to develop an agent: Tell it what it needs to know.

KB-AGENT(percept)

- 1 Tell(KB, Make-Percept-Sentence(percept, t))
- 2 action = Ask(KB, Make-Action-Query(t))
- 3 Tell(KB, Make-Action-Sentence(action, t))
- $4 \quad t = t + 1$
- 5 return action

Wumpus World (PEAS)

- Performance measure: gold +1000, death -1000, -1 per move, and -10 for using the arrow.
- Environment: 4×4 grid. Agent starts at [1,1], facing right. One gold and one wumpus are uniformly randomly located. Any square can be a pit with probability of 0.2.
 - Actuators: FORWARD, TURNLEFT, TURNRIGHT, GRAB, SHOOT (only one arrow, going straight until it kills the wumpus or hits the wall), CLIMB (only works at [1,1]).
 - Sensors: STENCH when adjacent to the wumpus. Breeze when adjacent to a pit. GLITTER when reaching the gold. Bump when walking into a wall. SCREAM when the wumpus dies.

- The agent sometimes needs to decide to go home empty-handed or risk for the gold.
 - This environment does not guarantee the agent can always get the gold.
 - If at [1,1] the agent receives BREEZE, the agent does not know which direction to FORWARD is fatal and which is safe (can be both fatal).
 - With a probability of about 21%, the gold is in a pit, or surrounded by pits.
- The agent's initial KB contains the rules.
- It also knows it's in [1,1], and it's a safe square (marked OK).

2,3	3,3	4,3
2,2	3,2	4,2
2,1 OK	3,1	4,1
	2,2	2,2 3,2 2,1 3,1

A	= Agent
В	= Breeze
G	= Glitter, Gold
OK	= Safe square
P	= Pit
S	= Stench
\mathbf{v}	= Visited
W	= Wumpus

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
ок			
1,1	2,1 A	3,1 P?	4,1
v	В		
OK	OK		

1st step

- Percept: NONE.
- ullet \rightarrow [1,2] and [2,1] are OK.
- Action: FORWARD.

2nd step

- Percept: Breeze.
- ullet \rightarrow [2,2] or [3,1] are pits.
- ullet \rightarrow go back to [1,1] then [1,2].
- Action: TurnLeft, TurnLeft, Forward, TurnRight, Forward.

1,4	2,4	3,4	4,4
1,3 w!	2,3	3,3	4,3
1,2A S	2,2 OK	3,2	4,2
OK	OK		
1,1	2,1 B	3,1 P!	4,1
v	v		
OK	OK		

A	= Agent
В	= Breeze
G	= Glitter, Goi
oĸ	= Safe squar
P	= Pit
S	= Stench

= Wumpus

1,4	2,4 P?	3,4	4,4
^{1,3} w!	2,3 A S G B	3,3 P?	4,3
1,2 s	2,2	3,2	4,2
v	v		
OK	OK		
1,1	2,1 B	3,1 P!	4,1
v	v		
OK	OK		

3rd step

- Percept: STENCH.
- \bullet \rightarrow [2,2]: OK; [1,3]: wumpus.
- \bullet \rightarrow Kill wumpus; go to [2, 2].
- Action: SHOOT, TURNRIGHT, FORWARD.

5th step

- Percept: Stench, Glitter, Breeze.
- \rightarrow [2,4] or [3,3]: pits; [2,3]: gold.
- ullet ightarrow Get gold and go back.
- Action: Grab,

Logics

- Logics are formal languages.
- Syntax defines the sentence structures in the language.
- Semantics defines the meanings of sentences.
 - Semantics defines the truth of each sentence w.r.t. each possible world.
 - x + y = 4 is true in a world where x = 1 and y = 3.
- We use the term model in place of possible world.

Models

If a sentence α is true in model m,

- m satisfies α .
- m is a model of α .
- $m \in M(\alpha)$, where $M(\alpha)$ is the set of all models of α .

Entailment and Models

Entailment

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true, denoted as:

$$KB \models \alpha$$

- $(x + y = 4) \models (4 = x + y)$.
- $x = 0 \models xy = 0$.

Theorem: $\alpha \models \beta$ iff $M(\alpha) \subseteq M(\beta)$.

only if: $\forall m \in M(\alpha)$, β is true in $m \Leftrightarrow \forall m \in M(\alpha)$, $m \in M(\beta) \Leftrightarrow M(\alpha) \subseteq M(\beta)$ **if:** $\forall m \in M(\alpha)$, $m \in M(\beta) \Leftrightarrow \forall m$ where α is true, β is true $\Leftrightarrow \alpha \models \beta$.

Back to Wumpus World

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

- [1, 1] percepts NONE.
- [2, 1] percepts Breeze.
- The agent wants to know unexplored adjacent squares [1, 2], [2, 2], [3, 1] contains pits or not.

- The agent wants to know unexplored adjacent squares [1, 2], [2, 2], [3, 1] contains pits or not.
- $2^3 = 8$ possible models.
- Consider two sentences: α_1 : no pit in [1, 2]; α_2 : no pit in [2, 2].

• $KB \models \alpha_1$; $KB \not\models \alpha_2$.

Propositional Logic

- Proposition: a declarative sentence that is either true or false.
 - $\mathcal{P} = \mathcal{NP}$ is a proposition.
 - "How are you?" is not.
- Propositional logic usually does not consider time.
- If the truth of a proposition varies over time, we call it fluent.
 - "Today is Monday" is a fluent.
- Atomic propositions are minimum propositions.
- Literals are atomic propositions or their negations $(p \text{ or } \neg p)$.

Propositional Logic

- The following grammar in Backus-Naur form (BNF) for syntax.
- Truth tables for semantics.

```
Sentence \rightarrow AtomicSentence | ComplexSentence \\ AtomicSentence \rightarrow True | False | P | Q | R | \dots \\ ComplexSentence \rightarrow (Sentence) | [Sentence] \\ | \neg Sentence \\ | Sentence \wedge Sentence \\ | Sentence \vee Sentence \\ | Sentence \Rightarrow Senten
```

Inference by Enumeration

TT-ENTAILS(KB, α)

```
1 symbols = a list of the proposition symbols in KB and \alpha
2 return TT-CHECK-ALL(KB, \alpha, symbols, \{\})
```

$\overline{\mathrm{TT\text{-}Check-All}(\mathit{KB}, lpha, \mathit{symbols}, \mathit{model})}$

```
if EMPTY(symbols)
if PL-TRUE(KB, model)
return PL-TRUE(α, model)
else return TRUE

else

P = FIRST(symbols)
rest = REST(symbols)
return TT-CHECK-ALL(KB, α, rest, model ∪ {P = TRUE})
and TT-CHECK-ALL(KB, α, rest, model ∪ {P = FALSE})
```

Standard Logical Equivalences

• $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$.

$$(\alpha \land \beta) \equiv (\beta \land \alpha)$$

$$(\alpha \lor \beta) \equiv (\beta \lor \alpha)$$

$$((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$$

$$((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$$

$$\neg(\neg \alpha) \equiv \alpha$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$$

$$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$$

$$\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$$

$$\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$$

$$(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$$

$$(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$$

commutativity of \wedge commutativity of ∨ associativity of \land associativity of \(\times \) double-negation elimination contraposition implication elimination biconditional elimination De Morgan De Morgan distributivity of \land over \lor distributivity of \lor over \land

Validity and Satisfiability

• A sentence is valid if it is true in all models.

True.
$$A \vee \neg A$$

• Validity is connected to inference via the Deduction Theorem:

$$KB \models \alpha \text{ iff } (KB \Rightarrow \alpha) \text{ is valid.}$$

• A sentence is satisfiable if it is true in some model.

$$A \wedge B$$
, A

• A sentence is unsatisfiable if it is true in no model.

$$A \wedge \neg A$$

 Satisfiability is connected to inference via Reductio ad Absurdum (proof by contradiction):

$$KB \models \alpha$$
 iff $(KB \land \neg \alpha)$ is unsatisfiable.

Inference

• Inference i can derive α from KB, denoted as

$$KB \vdash_{i} \alpha$$

Soundness: i is sound if

$$(KB \vdash_i \alpha) \Rightarrow (KB \models \alpha)$$

• Completeness: *i* is complete if

$$(KB \models \alpha) \Rightarrow (KB \vdash_i \alpha)$$

- For KB consisting of only propositional logic or first-order logic (FOL), there exists a sound and complete inference procedure.
- FOL is expressive enough to express many things in the real world.

Simple Knowledge Base Using Propositional Logic

- $P_{x,y}$ is true there is a pit in [x, y].
- $W_{x,y}$ is true there is a wumpus in [x,y].
- $B_{x,y}$ is true if the agent perceives BREEZE in [x,y].
- $S_{x,y}$ is true if the agent perceives STENCH in [x,y].

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
OK			
1,1	2,1 A	3,1 P?	4,1
v	В		
OK	OK		

KB

- $R_1 : \neg P_{1,1}$.
- $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).$
- $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}).$
- $R_4 : \neg B_{1,1}$.
- \bullet $R_5: B_{2,1}$.

Inference of the Wumpus World

Biconditional elimination from R_2 .

- $R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}).$ And-elimination from R_6 .
- $R_7: (P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}$. Contrapositive from R_7 .
- $R_8: \neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1}).$ Modus Ponens from R_8 .
- $R_9: \neg (P_{1,2} \lor P_{2,1}).$ De Morgan's rule from $R_9.$
- $R_{10}: \neg P_{1,2} \wedge \neg P_{2,1}$.

Proof by Resolution

- Convert a sentence into conjunctive normal form (CNF).
 - Conjunction of disjunctions of literals clauses

 - $(A \lor \neg B) \land (B \lor \neg C \lor D)$

Resolution Inference Rule

$$\frac{\ell_1 \vee \cdots \vee \ell_k, \quad m_1 \vee \cdots \vee m_n}{\ell_1 \vee \cdots \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_k \vee m_1 \vee \cdots m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n},$$

where ℓ_i and m_i are complementary literals.

$$\bullet \ \frac{P_{1,1} \lor P_{3,1}, \quad \neg P_{1,1} \lor \neg P_{2,2}}{P_{3,1} \lor \neg P_{2,2}}$$

Conjunctive Normal Form (CNF) Conversion

$$B_{1.1} \Leftrightarrow P_{1.2} \vee P_{2.1}$$

● Eliminate ⇔ by bidirectional elimination:

$$(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

2 Eliminate \Rightarrow by $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$:

$$(\neg B_{1,1} \lor (P_{1,2} \lor P_{2,1})) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

⑤ "Move ¬ inwards" by double-negation elimination and De Morgan:

$$(\neg B_{1,1} \lor (P_{1,2} \lor P_{2,1})) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$$

4 Distribute ∨ over ∧ and "flatten":

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

Resolution Algorithm

• Proof by contradiction — showing $KB \land \neg \alpha$ is unsatisfiable.

```
PL-RESOLUTION(KB, \alpha)
```

```
clauses = the set of clauses in the CNF representation of KB \wedge \neg \alpha
    new = \phi
 3
     repeat
4
          for each pair of clauses C_i, C_i in clauses do
 5
               resolvents = PL-RESOLVE(C_i, C_i)
 6
               if resolvents contains the empty clause
                    return TRUE
8
               new = new \cup resolvents
          if new \subseteq clauses
10
               return FALSE
11
          clauses = clauses \cup new
```

Resolution Example

- $KB : B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$.
- KB(CNF): $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$.
- After we know (add into KB) $\neg B_{1,1}$, we'd like to assert $\alpha = \neg P_{1,2}$.
- PL-RESOLUTION resolves $KB \land \neg \alpha$ to the empty clause.

Resolution is Sound and Complete

- Soundness is not surprising since inference rules are sound (check the truth table).
- Resolution is also complete.
 - Resolution closure RC(S) of a set of clauses S: the set of all clauses derivable by resolution.
 - Final value of *clauses* in PL-RESOLUTION is *RC(S)*.
 - RC(S) is finite, and hence PL-RESOLUTION always terminates.

Ground Resolution Theorem

S is unsatisfiable $\Rightarrow RC(S)$ contains the empty clause.

Ground Resolution Theorem

Proof by Contrapositive.

RC(S) does not contains the empty set $\Rightarrow S$ is satisfiable.

If $\phi \notin RC(S)$, construct a model for S with suitable values for literals P_1, \ldots, P_k :

For i from 1 to k,

- If a clause in RC(S) contains $\neg P_i$ and all its other literals are FALSE, assign FALSE to P_i .
- Otherwise, assign TRUE to P_i .

For a clause in S to be close to FALSE, it must be either (FALSE $\vee \cdots$ FALSE $\vee P_i$) or (FALSE $\vee \cdots$ FALSE $\vee \neg P_i$).

However, our assignment will make the clause to be true. Therefore, such assignment is a model of S.

Horn and Definite Clauses

- The completeness of resolution is good.
- For many real-world applications, if we add some restrictions, more efficient inference can be achieved.
- Definite clause: a disjunction of literals where exactly one is positive.
- Horn clause: a disjunction of literals where at most one is positive.
- Horn clauses are closed under resolution:
 Resolving two Horn clauses yields a Horn clause.
- Another way to view Horn clauses:
 - True \Rightarrow symbol.
 - (Conjunction of symbols) ⇒ symbol.
- Deciding entailment with Horn clauses can be done in linear time!
 Forward and backward chaining.

Forward Chaining

• Resolution for Horn clauses (Modus Ponens):

$$\alpha_1, \cdots, \alpha_n, \quad (\alpha_1 \wedge \cdots \wedge \alpha_n) \Rightarrow \beta$$

- Main idea:
 - Counts the unknown premises in all clauses.
 - Decreases the count if a premise is known.
 - When a count becomes zero, the conclusion is added as a known fact.
 - Record the inferred symbols to avoid redundant work $(P \Rightarrow Q, Q \Rightarrow P)$.

Forward Chaining

PL-FC-Entails(KB, q)

```
count: number of symbols in c's premise.
agenda: a queue of symbols, initially known facts in KB.
    while agenda is not empty do
         p = Pop(agenda)
         if p == q
              return TRUE
         if inferred[p] == FALSE
              inferred[p] = TRUE
              for each clause c in KB where p is in c.premise
 8
                  decrement count[c]
                   if count[c] == 0
10
                       add c.conclusion to agenda
11
    return FALSE
```

Forward Chaining Example

• Fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found.

KB

 $P \Rightarrow Q$ $L \land M \Rightarrow P$ $B \land L \Rightarrow M$ $A \land P \Rightarrow L$ $A \land B \Rightarrow L$

Step 1

 $P\Rightarrow Q$ $L\wedge M\Rightarrow P$ $B\wedge L\Rightarrow M$ $A\wedge P\Rightarrow L$ $A\wedge B\Rightarrow L$ agenda:[A,B]

Step 2

 $\begin{array}{ccc} P \Rightarrow Q & 1 \\ L \wedge M \Rightarrow P & 2 \\ B \wedge L \Rightarrow M & 2 \\ A \wedge P \Rightarrow L & 1 \\ A \wedge B \Rightarrow L & 1 \\ agenda: [B] \end{array}$

Step 3

 $P \Rightarrow Q$ $L \land M \Rightarrow P$ $B \land L \Rightarrow M$ $A \land P \Rightarrow L$ $A \land B \Rightarrow L$ agenda: [L]

Forward Chaining Example

• Fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found.

Step 4

$$P \Rightarrow Q$$
 1
 $L \land M \Rightarrow P$ 1
 $B \land L \Rightarrow M$ 0
 $A \land P \Rightarrow L$ 1
 $A \land B \Rightarrow L$ 0
 $agenda: [M]$

Step 5

```
\begin{array}{ccc} P \Rightarrow Q & 1 \\ L \wedge M \Rightarrow P & 0 \\ B \wedge L \Rightarrow M & 0 \\ A \wedge P \Rightarrow L & 1 \\ A \wedge B \Rightarrow L & 0 \\ agenda: [P] \end{array}
```

Step 6

$$P \Rightarrow Q$$
 0
 $L \land M \Rightarrow P$ 0
 $B \land L \Rightarrow M$ 0
 $A \land P \Rightarrow L$ 0
 $A \land B \Rightarrow L$ 0
 $agenda: [Q, L]$

Completeness of Forward Chaining

- FC reaches a fixed point where no new inferences are possible.
- Consider a model *m* which assigns TRUE to every symbol inferred and FALSE to others.
- Every clause in *KB* is TRUE in *m*:

Proof.

- Suppose $\alpha_1 \wedge \cdots \wedge \alpha_k \Rightarrow \beta$ is FALSE in m.
- $\alpha_1 \wedge \cdots \wedge \alpha_k$ is TRUE and β is FALSE.
- FC has not reached a fixed point.
- $m \in M(KB)$ (m is a model of KB)
- If $KB \models q$, q is TRUE in m.
- Therefore, FC derives every atomic sentence that is entailed by KB.

32 / 40

Backward Chaining

- Work backward from Q.
- If Q is known, done.
- Otherwise, check it's premise P.
- Next step checks L and M.
- Identical to the AND-OR-GRAPH-SEARCH in the textbook.

Green ring: Checking. Green circle: Checked. Red circle: Facts.

Forward vs. Backward Chaining

- Both time complexities are linear to the size of KB.
- Forward chaining is data-driven.
- Backward chaining is goal-driven.
- In general, backward chaining is more appropriate for problem solving
 - Where's my key?
 - How to pass this course?
- Forward chaining may generate many conclusions irrelevant to the goal.
- In general, time complexity of backward chaining is much less than linear of the size of *KB*.

Pros and Cons of Propositional Logic

- Pro
 - Propositional logic is declarative: pieces of syntax correspond to facts.
 - Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases).
 - Propositional logic is compositional: Meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$.
 - Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Con
 - Propositional logic has very limited expressive power.
 Cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square.

Summary

- Knowledge base contains sentences in a knowledge representation language.
- A representation language is defined by its syntax and semantics, which defines the truth of each sentence in each model.
- α entails β if β is true in all models where α is true. Equivalent definitions: validity of $\alpha \Rightarrow \beta$; unsatisfiability of $\alpha \land \neg \beta$.
- Sound inferences derive only sentences that are entailed; complete inferences derive all sentences that are entailed.
- Resolution is sound and complete inference for propositional logics, where KB can be expressed by CNF.
- Forward and backward chaining are sound and complete for KB in Horn form (more restrict than propositional logics).