Exploiting Imprecise Information Sources in Sequential Decision Making Problems under Uncertainty

N.Drougard

under D.Dubois, J-L.Farges and F.Teichteil-Königsbuch supervision
doctoral school: EDSYS institution: ISAE-SUPAERO
laboratory: ONERA-The French Aerospace Lab

retour sur innovation

Autonomous robotics

Onera, System Control & Flight Dynamics Department Control Engineering, Artificial intelligence, Cognitive Sciences

context

Autonomous robotics

Onera, System Control & Flight Dynamics Department

Control Engineering, Artificial intelligence, Cognitive Sciences

- autonomy and human factors
- decision making, planning
- experimental/industrial applications: UAVs, exploration robots, human-machine interaction

context

context

 π -modeling advancements in π -POMDP solver & factorization hybrid model conclusion

Context

context

Partially Observable Markov Decision Processes (POMDPs)

St

a_t

 π -modeling advancements in π -POMDP solver & factorization hybrid model conclusion

Context

context

context

context

context

context

context

context

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$
- **reward** function $r(s, a) \in \mathbb{R}$

context

belief state, strategy, criterion

POMDP: $\langle S, A, \mathcal{O}, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$
- **reward** function $r(s, a) \in \mathbb{R}$

belief state: $b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$

 π -modeling

belief state, strategy, criterion

POMDP: $\langle S, A, \mathcal{O}, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$
- **reward** function $r(s, a) \in \mathbb{R}$

belief state:
$$b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$$

probabilistic belief update

 b_t T,O

hybrid model

Context

belief state, strategy, criterion

 π -modeling

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' \mid s', a)$
- **reward** function $r(s, a) \in \mathbb{R}$

belief state:
$$b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$$

probabilistic belief update

belief state, strategy, criterion

 π -modeling

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$
- **reward** function $r(s, a) \in \mathbb{R}$

belief state:
$$b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$$

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' | s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' | s', a)$
- **reward** function $r(s, a) \in \mathbb{R}$

belief state:
$$b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$$

context

belief state, strategy, criterion

POMDP: $\langle S, A, O, T, O, r, \gamma \rangle$ (Smallwood et al. 1973)

- **transition** function $T(s, a, s') = \mathbf{p}(s' \mid s, a)$
- **observation** function $O(s', a, o') = \mathbf{p}(o' \mid s', a)$
- **reward** function $r(s, a) \in \mathbb{R}$

belief state:
$$b_t(s) = \mathbb{P}(s_t = s | a_0, o_1, ..., a_{t-1}, o_t)$$

probabilistic belief update

$$b_t$$
 observation O_{t+1} fixed

strategy $d_t: b_t \mapsto a_t \in \mathcal{A}$

maximizing $\mathbb{E}_{s_0\sim b_0}\left[\sum_{t=0}^{+\infty} \gamma^t \cdot r\Big(s_t,\delta(b_t)\Big)
ight]$, $0<\gamma<1$

Flaws of the POMDP model POMDPs in practice

optimal strategy computation PSPACE-hard
 (Papadimitriou et al., 1987)

probabilities are imprecisely known in practice

prior ignorance semantic/management?

context

practical issues: Complexity, Vision and Initial Belief

 POMDP optimal strategy computation undecidable in infinite horizon (Madani et al. 1999)

solver & factorization

context

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- → optimality for "small" or "structured" POMDPs
- $\rightarrow \mathsf{approximate}\ \mathsf{computations}$

context

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- → optimality for "small" or "structured" POMDPs
- ightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning

context

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- → optimality for "small" or "structured" POMDPs
- \rightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- \rightarrow unknown environments: image variability of the datasets?

 π -modeling advancements in π -POMDP solver & factorization hybrid model conclusion

Context

context

practical issues: Complexity, Vision and Initial Belief

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- → optimality for "small" or "structured" POMDPs
- ightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- ightarrow unknown environments: image variability of the datasets?

Lack of prior information on the system state: initial belief state b_0

 π -modeling advancements in π -POMDP solver & factorization hybrid model conclusion

Context

context

- POMDP optimal strategy computation undecidable in infinite horizon (*Madani et al. 1999*)
- → optimality for "small" or "structured" POMDPs
- ightarrow approximate computations
 - Imprecise model, e.g. vision from statistical learning
- ightarrow unknown environments: image variability of the datasets?

- Lack of prior information on the system state: initial belief state b_0
- \rightarrow uniform probability distribution \neq ignorance!

Qualitative Possibility Theory presentation - (max,min) "tropical" algebra

finite scale \mathcal{L}

 π -modeling

context

usually $\{0, \frac{1}{\nu}, \frac{2}{\nu}, \dots, 1\}$

events $e \subset \Omega$ (universe) **sorted** using possibility **degrees** $\pi(e) \in \mathcal{L}$ quantified with frequencies $p(e) \in [0,1]$ (probabilities) presentation - (max,min) "tropical" algebra

finite scale \mathcal{L}

 π -modeling

context

usually $\{0, \frac{1}{\nu}, \frac{2}{\nu}, \dots, 1\}$

events
$$e \subset \Omega$$
 (universe)

sorted using possibility **degrees** $\pi(e) \in \mathcal{L}$

$$\tau$$
cies $\mathbf{p}(e) \in [0, 1]$ (probabilities

quantified with frequencies $p(e) \in [0,1]$ (probabilities)

$$e_1 \neq e_2$$
, 2 events $\subset \Omega$

 $\blacksquare \pi(e_1) < \pi(e_2) \Leftrightarrow "e_1 \text{ is less plausible than } e_2"$

(context)

Qualitative Possibility Theory

Criteria from Sugeno integral

Probability /	Qualitative Possibility Theories
+	max
×	min
$\sum_{x} \mathbf{p}(x) = 1$	$\max_{x} \pi(x) = 1$
$X \in \mathbb{R}$	$X \in \mathcal{L}$
$\mathbb{P}ig(Aig) = 1 - \mathbb{P}ig(\overline{A}ig)$	$\mathcal{N}ig(Aig) = 1 - \Piig(\overline{A}ig) \; ext{(necessity)}$
	optimistic:
	$\mathbb{S}_{\Pi}[X] = \max_{x \in X} \min\{x, \pi(x)\}$
$\mathbb{E}[X] = \sum_{x} x \cdot \mathbf{p}(x)$	pessimistic:
	$\mathbb{S}_{\mathcal{N}}[X] = \min_{x \in X} \max\{x, 1 - \pi(x)\}$

Qualitative Possibility Theory qualitative possibilistic POMDP (π-POMDP)

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

 π -POMDP: $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}^{\pi}, \mathcal{O}^{\pi}, \rho \rangle$

Qualitative Possibility Theory qualitative possibilistic POMDP (π-POMDP)

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

$$\pi$$
-POMDP: $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, T^{\pi}, O^{\pi}, \rho \rangle$

- **transition** function $T^{\pi}(s, a, s') = \pi(s' | s, a) \in \mathcal{L}$
- **observation** function $O^{\pi}(s', a, o') = \pi(o' | s', a) \in \mathcal{L}$
- **preference** function $\rho: \mathcal{S} \times \mathcal{A} \to \mathcal{L}$

Qualitative Possibility Theory qualitative possibilistic POMDP (π-POMDP)

Sabbadin (UAI-98) introduces

the qualitative possibilistic POMDP

$$\pi$$
-POMDP: $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}^{\pi}, \mathcal{O}^{\pi}, \rho \rangle$

- **transition** function $T^{\pi}(s, a, s') = \pi(s' | s, a) \in \mathcal{L}$
- **observation** function $O^{\pi}(s', a, o') = \pi(o' | s', a) \in \mathcal{L}$
- **preference** function $\rho: \mathcal{S} \times \mathcal{A} \to \mathcal{L}$
- belief space trick: POMDP \rightarrow MDP with **infinite** space π -POMDP \rightarrow π -MDP with **finite** space
- problem becomes decidable

 π -modeling

Qualitative Possibility Theory qualitative possibilistic POMDP (π -POMDP)

Sabbadin (UAI-98) introduces

solver & factorization

the qualitative possibilistic POMDP

$$\pi$$
-POMDP: $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, \mathcal{T}^{\pi}, \mathcal{O}^{\pi}, \rho \rangle$

- **transition** function $T^{\pi}(s, a, s') = \pi(s' \mid s, a) \in \mathcal{L}$
- **observation** function $O^{\pi}(s', a, o') = \pi(o' \mid s', a) \in \mathcal{L}$
- **preference** function $\rho: \mathcal{S} \times \mathcal{A} \to \mathcal{L}$
- belief space trick: POMDP \rightarrow MDP with **infinite** space π -POMDP $\to \pi$ -MDP with **finite** space
- problem becomes decidable

 $\forall s \in \mathcal{S}, \ \pi(s) = 1 \Leftrightarrow \text{total ignorance about } s$ each state possible, none necessary

(context)

A possibilistic belief state finite belief space

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 \rightarrow *i.e.* **finite belief space**

 π -modeling

(context)

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 \rightarrow *i.e.* **finite belief space**

$$\beta_t(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

 π -modeling

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 \rightarrow *i.e.* **finite belief space**

$$\beta_t(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

$$T^{eta}_t$$
, O^{π}

 π -modeling

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 $\rightarrow \textit{i.e.}$ finite belief space

$$\beta_t(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

$$T^{\pi}, O^{\pi} \longrightarrow \pi(s', o' | \beta_t, a_t)$$

 π -modeling

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 \rightarrow *i.e.* **finite belief space**

$$\beta_t(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

$$T^{\pi}$$
, O^{π} π $(s', o' | \beta_t, a_t)$ observation ostation o_{t+1} fixed

 π -modeling

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \left\{ \text{ possibility distributions } \right\}: \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$
 \rightarrow *i.e.* **finite belief space**

$$\beta_t(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

$$\begin{array}{c|c}
\beta_t & & \\
T^{\pi}, O^{\pi} & & \pi\left(s', o' \mid \beta_t, a_t\right) & & observation \\
\hline
o_{t+1} & \text{fixed} & & & & & & & & & & & & & \\
\end{array}$$

 π -modeling

$$\Pi_{\mathcal{L}}^{\mathcal{S}} = \Big\{ \text{ possibility distributions } \Big\} : \ \#\Pi_{\mathcal{L}}^{\mathcal{S}} \sim \#\mathcal{L}^{\#\mathcal{S}} < +\infty$$

 \rightarrow *i.e.* finite belief space

$$\beta_t(s) = \pi (s_t = s \mid a_0, o_1, \dots, a_{t-1}, o_t)$$

possibilistic belief update

$$T^{\pi}, O^{\pi} \longrightarrow \pi(s', o' \mid \beta_t, a_t) \xrightarrow{\text{observation} \atop o_{t+1} \text{ fixed}} \circ b_{0,t+1}$$

■ Markovian update: only depends on o_{t+1} , a_t and b_t^{π}

(context)

Qualitative Possibility Theory:

→ simplification, imprecision/prior ignorance modeling

Overview

context

Qualitative Possibility Theory:

- → simplification, imprecision/prior ignorance modeling
 - context
 - 1 introductory example: qualitative possibilistic modeling
 - → human-machine interaction (HMI) with **Sergio Pizziol**
 - **2 advancements** in π -POMDP:
 - → mixed-observability & indefinite horizon
 - **3** simplifying computations:
 - → ADD-based solver & factorization
 - probabilistic-possibilistic (hybrid) approach
 - conclusion

Example: Human-Machine Interaction (HMI) joint work with Sergio Pizziol – Context

context

Example: Human-Machine Interaction (HMI) joint work with Sergio Pizziol – Context

Issue: incorrect human assessment of the machine state

→ accident risk

Example: Human-Machine Interaction (HMI) joint work with Sergio Pizziol – Context

context

Issue: incorrect human assessment of the machine state

ightarrow accident risk

Example: Human-Machine Interaction (HMI) joint work with Sergio Pizziol – Context

Issue: incorrect human assessment of the machine state

→ accident risk

π -POMDP without actions: π -Hidden Markov Process

- **system space** \mathcal{S} : set of human assessments \rightarrow **hidden**
- **observation space** \mathcal{O} : feedbacks/human manipulations

Machine with states A, B, C, ...

context

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Example: Human-Machine Interaction (HMI)

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

■ observation: machine feedback $o'_f \in \mathcal{O}$:

"human usually aware of feedbacks" $o \pi\left(s_B',o_f'\mid s_A\right)=1$ "but may lose a feedback" $o \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$

Example: Human-Machine Interaction (HMI)

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

■ observation: machine feedback $o'_f \in \mathcal{O}$:

"human usually aware of feedbacks" $o \pi\left(s_B',o_f'\mid s_A\right)=1$ "but may lose a feedback" $o \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$

■ observation: **human manipulation** $o'_m \in \mathcal{O}$:

"manipulation o_m' is normal under s_A " $\to \pi \left(s_B', o_m' \mid s_A\right) = 1$ "is abnormal" $\to \frac{1}{3}$

Example: Human-Machine Interaction (HMI)

Human error model from expert knowledge

Machine with states A, B, C, ...

state $s_A \in \mathcal{S}$: "human thinks machine state is A"

Machine state transition $A \rightarrow B$

■ observation: machine feedback $o'_f \in \mathcal{O}$:

"human usually aware of feedbacks" $o \pi\left(s_B',o_f'\mid s_A\right)=1$ "but may lose a feedback" $o \pi\left(s_A',o_f'\mid s_A\right)=\frac{2}{3}$

■ observation: **human manipulation** $o'_m \in \mathcal{O}$:

"manipulation o'_m is normal under
$$s_A$$
" $\to \pi \left(s_B', o_m' \mid s_A \right) = 1$
"is abnormal" $\to = \frac{1}{3}$

■ impossible cases: possibility degree 0

context

advancements in π -POMDP

 π -modeling

context

Qualitative Possibilistic Hidden Markov Process: π -HMP, detection & diagnosis tool for HMI (with Sergio Pizziol)

- **estimation** of the human assessment
 - ⇔ possibilistic belief state
- detection of human assessment errors + diagnosis
- validated with pilots on flight simulator missions

Applicability of the π -POMDPs advancements

- lack of proof of optimality in indefinite horizon settings
- criterion/proof

context

- curse of dimensionality:
 - ightarrow belief space size of a π -POMDP: exponential in $\#\mathcal{S}$
- in practice, part of $s \in \mathcal{S}$ is visible \Rightarrow complexity reduction

Applicability of the π -POMDPs advancements

- lack of proof of optimality in indefinite horizon settings
- criterion/proof

context

- **urse of dimensionality:**
 - ightarrow belief space size of a π -POMDP: exponential in $\#\mathcal{S}$
- in practice, part of $s \in \mathcal{S}$ is visible \Rightarrow complexity reduction

Applicability of the π -POMDPs advancements

- lack of proof of optimality in indefinite horizon settings
- criterion/proof

context

- curse of dimensionality:
 - ightarrow belief space size of a $\pi ext{-POMDP}$: exponential in $\#\mathcal{S}$
- in practice, part of $s \in \mathcal{S}$ is visible \Rightarrow complexity reduction

Indefinite Horizon, Mixed-Observability, Simulations contribution UAI 2013

conclusion

Proof of optimality under Indefinite Horizon criterion, DP scheme, optimal strategy

indefinite horizon criterion $\Psi: \mathcal{S} \to \mathcal{L}$ terminal pref. func.

solver & factorization

$$orall s \in \mathcal{S}$$
, maximizing $\mathbb{S}_{\Pi}\Big[\Psi(S_{\#\delta})\Big|S_0=s\Big]$

with respect to the strategy $\delta:(t,s)\mapsto a_t\in\mathcal{A}$.

context

conclusion

Proof of optimality under Indefinite Horizon criterion, DP scheme, optimal strategy

indefinite horizon criterion $\Psi: \mathcal{S} \to \mathcal{L}$ terminal pref. func.

$$\begin{split} \forall s \in \mathcal{S}, \text{ maximizing } \mathbb{S}_{\Pi} \Big[\Psi(S_{\#\delta}) \Big| S_0 &= s \Big] \\ &= \max_{(s_1, \dots, s_{\#\delta})} \min \left\{ \left. \min_{t=0}^{\#\delta - 1} \pi\Big(s_{t+1} \Big| s_t, \delta_t(s_t) \Big), \Psi(s_{\#\delta}) \right\} \end{split}$$

with respect to the strategy $\delta: (t, s) \mapsto a_t \in \mathcal{A}$.

hybrid model

Proof of optimality under Indefinite Horizon criterion, DP scheme, optimal strategy

indefinite horizon criterion $\Psi: \mathcal{S} \to \mathcal{L}$ terminal pref. func.

$$\begin{split} \forall s \in \mathcal{S}, \text{ maximizing } \mathbb{S}_{\Pi} \Big[\Psi(S_{\#\delta}) \Big| S_0 &= s \Big] \\ &= \max_{(s_1, \dots, s_{\#\delta})} \min \left\{ \min_{t=0}^{\#\delta - 1} \pi\Big(s_{t+1} \Big| s_t, \delta_t(s_t)\Big), \Psi(s_{\#\delta}) \right\} \end{split}$$

with respect to the strategy $\delta:(t,s)\mapsto a_t\in\mathcal{A}$.

Dynamic Programming scheme: # iterations < #S

- assumption: ∃ artificial "stay" action as in classical planning $/ \gamma$ counterpart
- criterion non decreasing with iterations

hybrid model

Proof of optimality under Indefinite Horizon criterion, DP scheme, optimal strategy

indefinite horizon criterion $\Psi: \mathcal{S} \to \mathcal{L}$ terminal pref. func.

$$\begin{split} \forall s \in \mathcal{S}, \text{ maximizing } \mathbb{S}_{\Pi} \Big[\Psi(S_{\#\delta}) \Big| S_0 &= s \Big] \\ &= \max_{(s_1, \dots, s_{\#\delta})} \min \left\{ \min_{t=0}^{\#\delta - 1} \pi\Big(s_{t+1} \Big| s_t, \delta_t(s_t)\Big), \Psi(s_{\#\delta}) \right\} \end{split}$$

with respect to the strategy $\delta:(t,s)\mapsto a_t\in\mathcal{A}$.

Dynamic Programming scheme: # iterations < #S

- assumption: ∃ artificial "stay" action as in classical planning $/ \gamma$ counterpart
- criterion non decreasing with iterations
- action update for states increasing the criterion
- **proof of optimality** of the resulting **stationary** strategy

context

hybrid model

graphical model of a π -MOMDP:

Mixed-Observability (*Ong et al., 2005*): $s \in \mathcal{S} = \mathcal{S}_v \times \mathcal{S}_h$ i.e. state s = visible component s_v & hidden component s_h **graphical model** of a π -MOMDP:

context

Mixed-Observability (Ong et al., 2005): $s \in S = S_v \times S_h$ i.e. state s = visible component s_v & hidden component s_h

■ belief states only over S_h (component s_v observed)

hybrid model

graphical model of a π -MOMDP:

Mixed-Observability (Ong et al., 2005): $s \in S = S_v \times S_h$ i.e. state s = visible component s_v & hidden component s_h

- belief states only over S_h (component s_v observed)
- $\blacksquare \to \pi$ -POMDP: belief space $\Pi_c^S \qquad \#\Pi_c^S \sim \#\mathcal{L}^{\#S}$
 - $\to \pi$ -MOMDP: computations on $\mathcal{X} = \mathcal{S}_{\nu} \times \Pi_{c}^{\mathcal{S}_{h}}$

 $\#\mathcal{X} \sim \#\mathcal{S}_{\mathsf{v}} \cdot \#\mathcal{L}^{\#\mathcal{S}_{\mathsf{h}}} \ll \#\Pi^{\mathcal{S}}_{\mathcal{L}}$

Experimental results

 π -MOMDP for robotics with imprecise probabilities

- **goal:** reach the object A = T1 or T2
- noisy observations of the location of the object A

Recognition mission: robot on a grid, targets T1 & T2

models: observation accuracy decreases with distance to target

Experimental results

 π -MOMDP for robotics with imprecise probabilities

- **goal:** reach the object A = T1 or T2
- noisy observations of the location of the object A

Recognition mission: robot on a grid, targets T1 & T2

models: observation accuracy decreases with distance to target real model: takes into account the error zone $(P_{bad} > \frac{1}{2})$

Experimental results

context

 π -MOMDP for robotics with imprecise probabilities

- **goal:** reach the object A = T1 or T2
- noisy observations of the location of the object A

Recognition mission: robot on a grid, targets T1 & T2

models: observation accuracy decreases with distance to target real model: takes into account the error zone $(P_{bad} > \frac{1}{2})$

Experimental results

context

 π -MOMDP for robotics with imprecise probabilities

- **goal:** reach the object *A*
- noisy observations of the

probabilistic model inappropriate when probabilities too imprecise

Recognition mission: robot on a grid, targets $T1\ \&\ T2$

models: observation accuracy decreases with distance to target real model: takes into account the error zone $(P_{bad} > \frac{1}{2})$

Factored π -MOMDP and computations with ADDs qualitative possibilistic models to reduce complexity

context

contribution (AAAI-14): factored π -MOMDP \Leftrightarrow state space $\mathcal{X} = \mathcal{S}_{\nu} \times \Pi_{\mathcal{L}}^{\mathcal{S}_h} = \text{Boolean variables } (X_1, \dots, X_n) + \text{independence assumptions } \Leftarrow \text{graphical model}$

Factored π -MOMDP and computations with ADDs

qualitative possibilistic models to reduce complexity

contribution (AAAI-14): factored π -MOMDP

 \Leftrightarrow state space $\mathcal{X} = \mathcal{S}_{v} \times \Pi_{\mathcal{L}}^{\mathcal{S}_{h}} =$ Boolean variables (X_{1}, \dots, X_{n}) + independence assumptions \Leftarrow graphical model

factorization: transition functions
 T_i^a = π (X_i' | parents(X_i'), a) stored as
 Algebraic Decision Diagrams (ADD)
 probabilistic case:
 SPUDD (Hoey et al., 1999)

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

context

- probabilistic model: + and × ⇒ new values created
 ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded, **ADDs smaller**.

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

context

- probabilistic model: + and × ⇒ new values created
 ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

■ factorization ⇒ each DP steps divided into n stages
→ smaller ADDs ⇒ faster computations

Simplify computations with π -MOMDPs Resulting π -MOMDP solver: PPUDD

context

- probabilistic model: + and × ⇒ new values created
 ⇒ number of ADDs leaves potentially huge
- possibilistic model: min and max \Rightarrow values $\in \mathcal{L}$ finite \Rightarrow number of leaves bounded, **ADDs smaller**.

PPUDD: Possibilistic Planning Using Decision Diagrams

- factorization ⇒ each DP steps divided into n stages
 → smaller ADDs ⇒ faster computations
- computations on trees: CU Decision Diagram Package.

Simplifying computations with π -MOMDPs

Natural factorization: belief independence

contribution (AAAI-14):

independent sensors, hidden states, $\ldots \Rightarrow$ graphical model

Simplifying computations with π -MOMDPs

Natural factorization: belief independence

contribution (AAAI-14):

context

independent sensors, hidden states, $... \Rightarrow$ graphical model

d-Separation
$$\Rightarrow$$
 $(s_v, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_1, \dots, \beta_l)$

Simplifying computations with π -MOMDPs

Natural factorization: belief independence

context

⊥⊥ assumptions on state & observation variables

- → belief variable factorization
- ightarrow additional computation savings

Simplify computations with π -MOMDPs Experiments – perfect sensing: Navigation problem

PPUDD vs SPUDD (Hoey et al., 1999)

Navigation benchmark: reach a goal – spots with accident risk M1 (resp. M2) optimistic (resp. pessimistic) criterion

 π -modeling advancements in π -POMDP (solver & factorization) hybrid model conclusion context

Simplify computations with π -MOMDPs

Experiments – perfect sensing: Navigation problem

PPUDD vs SPUDD (Hoey et al., 1999)

Navigation benchmark: reach a goal – spots with accident risk M1 (resp. M2) optimistic (resp. pessimistic) criterion

Performances, function of the problem index

reached goal frequency

higher is better

steps to reach the goal

lower is better

Simplify computations with π -MOMDPs

Experiments - perfect sensing: Navigation problem

computation time

max size of ADDs

lower is better

- PPUDD + M2 (pessimistic criterion)

 faster with same performances as SPUDD
- SPUDD only solves the first 5 instances
- verified intuition: ADDs are smaller

Simplify computations with π -MOMDPs

Experiments – imperfect sensing: RockSample problem

PPUDD vs APPL (*Kurniawati et al.*, 2008, solver MOMDP) symbolic HSVI (*Sim et al.*, 2008, solver POMDP)

RockSample benchmark: recognize and sample "good" rocks

Simplify computations with $\pi ext{-MOMDPs}$

Experiments – imperfect sensing: RockSample problem

PPUDD vs APPL (*Kurniawati et al.*, 2008, solver MOMDP) symbolic HSVI (*Sim et al.*, 2008, solver POMDP)

RockSample benchmark: recognize and sample "good" rocks

computation time:

lower is better

average of rewards

higher is better

approximate model + exact resolution solver can be
 better than exact model + approximate resolution solver

IPPC 2014 – ADD-based approaches: PPUDD vs symbolic LRTDP

PPUDD + BDD mask over reachable states.

average of rewards over simulations - higher is better

IPPC 2014 – ADD-based approaches: PPUDD vs symbolic LRTDP

average of rewards over simulations - higher is better

Qualitative possibilistic approach: benefits/drawbacks towards a hybrid POMDP

granulated belief space (discrete)

- ullet efficient problem **simplification** (PPUDD 2× better than LRTDP with ADDs)
- ignorance and imprecision modeling

Qualitative possibilistic approach: benefits/drawbacks towards a hybrid POMDP

- granulated belief space (discrete)
- lacktriangleright efficient problem **simplification** (PPUDD $2\times$ better than LRTDP with ADDs)
- ignorance and imprecision modeling
- ADD methods ~ state space search methods → winners of IPPC 2014: 2× better than PPUDD
- choice of the qualitative criterion (optimistic/pessimistic)
- preference → non additive degrees
 → same scale as possibility degrees (commensurability)
- coarse approximation of probabilistic model
 → no frequentist information

A hybrid model a probabilistic POMDP with possibilistic belief states

hybrid approach

- agent knowledge = possibilistic belief states
- probabilistic dynamics & quantitative rewards

A hybrid model

context

a probabilistic POMDP with possibilistic belief states

hybrid approach

- agent knowledge = possibilistic belief states
- probabilistic dynamics & quantitative rewards

Usefullness

- → heuristic for solving POMDPs: results in a standard (finite state space) MDP
- → problem with qualitative & quantitative uncertainty

(hybrid model)

Transitions and rewards

belief-based transition and reward functions

■ possibility distribution $\beta \to \text{probability distribution } \overline{\beta}$ using poss-prob tranformations (*Dubois et al.*, *FSS-92*)

Transition function on belief states

$$\Rightarrow \mathbf{p}\Big(\beta'\Big|\overline{\beta},a\Big) = \sum_{\substack{o' \text{ t.q.} \\ \textit{update}(\beta,a,o') = \beta'}} \mathbf{p}\left(o' \mid \overline{\beta},a\right)$$

Transitions and rewards

 π -modeling

belief-based transition and reward functions

possibility distribution $\beta \to \text{probability distribution } \beta$ using poss-prob tranformations (Dubois et al., FSS-92)

Transition function on belief states

$$\Rightarrow \mathbf{p}\Big(\beta'\Big|\overline{\beta},a\Big) = \sum_{\substack{o' \text{ t.q.} \\ \textit{update}(\beta,a,o') = \beta'}} \mathbf{p}\left(o' \mid \overline{\beta},a\right)$$

reward pessimistic according to β

Pessimistic Choquet Integral

$$r(\beta, a) = \sum_{i=1}^{\#\mathcal{L}-1} (I_i - I_{i+1}) \cdot \min_{\substack{s \in \mathcal{S} \text{ s.t.} \\ \beta(s) \geqslant I_i}} r(s, a)$$

translation from hybrid POMDP to MDP – **contribution (SUM-15)**:

input: a POMDP $\langle S, A, \mathcal{O}, T, O, r, \gamma \rangle$ output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$:

(hybrid model)

Resulting MDP

translation from hybrid POMDP to MDP – contribution (SUM-15):

input: a POMDP $\langle S, A, O, T, O, r, \gamma \rangle$ output: the MDP $\langle \tilde{\mathcal{S}}, \mathcal{A}, \tilde{\mathcal{T}}, \tilde{r}, \gamma \rangle$:

• state space $\tilde{S} = \Pi_{c}^{S}$, the set of the possibility distributions over ${\cal S}$

(hybrid model)

Resulting MDP

translation from hybrid POMDP to MDP – contribution (SUM-15):

input: a POMDP $\langle S, A, O, T, O, r, \gamma \rangle$ output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$:

- state space $\tilde{S} = \Pi_c^S$, the set of the possibility distributions over \mathcal{S}
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_c^S$, $\forall a \in A$, transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta'|\beta, a)$

Resulting MDP

context

translation from hybrid POMDP to MDP – contribution (SUM-15):

input: a POMDP $\langle S, A, O, T, O, r, \gamma \rangle$ output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$:

- state space $\tilde{S} = \Pi_c^S$, the set of the possibility distributions over \mathcal{S}
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_c^S$, $\forall a \in A$, transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta'|\beta, a)$
- reward $\tilde{r}(a,\beta) = \underline{Ch}(r(a,.))$,

(hybrid model)

Resulting MDP

translation from hybrid POMDP to MDP - contribution (SUM-15):

input: a POMDP $\langle S, A, \mathcal{O}, T, O, r, \gamma \rangle$ output: the MDP $\langle \tilde{S}, A, \tilde{T}, \tilde{r}, \gamma \rangle$:

- state space $\tilde{S} = \Pi_{\mathcal{L}}^{\mathcal{S}}$, the set of the possibility distributions over S
- $\forall \beta, \beta'$ possibilistic belief states $\in \Pi_{\mathcal{L}}^{\mathcal{S}}$, $\forall a \in \mathcal{A}$, transitions $\tilde{T}(\beta, a, \beta') = \mathbf{p}(\beta'|\beta, a)$
- reward $\tilde{r}(a,\beta) = \underline{Ch}(r(a,.))$,

criterion:
$$\mathbb{E}_{\beta_t \sim \tilde{T}} \left[\sum_{t=0}^{+\infty} \gamma^t \cdot \tilde{r} \left(\beta_t, d_t \right) \right]$$
.

3 classes of state variables - contribution (SUM-15)

variable: **visible** $s'_v \in \mathbb{S}_v$

inferred hidden $s_h' \in \mathbb{S}_h$

3 classes of state variables - contribution (SUM-15)

variable: visible $s'_v \in \mathbb{S}_v$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables - contribution (SUM-15)

variable: visible $s'_v \in \mathbb{S}_v$

$$s_{v}' \xrightarrow{s_{v}' = o_{v}'} o_{v}'$$

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables - contribution (SUM-15)

variable: **visible** $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

3 classes of state variables – contribution (SUM-15)

variable: visible $s'_v \in \mathbb{S}_v$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

context

3 classes of state variables - contribution (SUM-15)

variable: **visible** $s'_{\nu} \in \mathbb{S}_{\nu}$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s_h' \in \mathbb{S}_h$

$$\beta_{t+1}\Big(parents(o_i')\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

context

Belief variable factorization

3 classes of state variables - contribution (SUM-15)

variable: **visible** $s'_{\nu} \in \mathbb{S}_{\nu}$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s_h' \in \mathbb{S}_h$

$$eta_{t+1}\Big(extit{parents}(o_i')\Big) = eta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$
 $\propto^{\pi} \pi\Big(o_i', extit{parents}(o_i')\Big|eta_t, a\Big)$

3 classes of state variables - contribution (SUM-15)

variable: **visible** $s'_{\nu} \in \mathbb{S}_{\nu}$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

$$eta_{t+1}\Big(extit{parents}(o_i')\Big) = eta_{t+1}ig(s_h, s_h^a, s_h^b, s_h^cig)$$
 $\propto^{\pi} \pi\Big(o_i', extit{parents}(o_i')\Big|eta_t, a\Big)$

 $\wedge \mathcal{P}(o_i)$ may contain visible variables.

fully hidden
$$s'_f \in \mathbb{S}_f$$

context

Belief variable factorization

3 classes of state variables - contribution (SUM-15)

variable: **visible** $s'_{\nu} \in \mathbb{S}_{\nu}$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

$$eta_{t+1}\Big(extit{parents}(o_i')\Big) = eta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$
 $\propto^{\pi} \pi\Big(o_i', extit{parents}(o_i')\Big|eta_t, a\Big)$

 $\wedge \mathcal{P}(o_i)$ may contain visible variables.

 π -modeling

3 classes of state variables - contribution (SUM-15)

variable: **visible** $s'_{\nu} \in \mathbb{S}_{\nu}$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

inferred hidden $s'_h \in \mathbb{S}_h$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \Big(o_i', parents(o_i') \Big| \beta_t, a \Big)$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

$$S'_f \longrightarrow O'_i$$

$$\beta_{t+1}(s_f') = \pi(s_f' \mid \beta_t, a)$$

Belief variable factorization 3 classes of state variables - contribution (SUM-15)

variable: visible $s'_{\nu} \in \mathbb{S}_{\nu}$

⇔ deterministic belief variable

$$\beta_{t+1}(s'_v) = \mathbb{1}_{\{s'_v = o'_v\}}(s'_v)$$

(hybrid model)

inferred hidden $s'_h \in \mathbb{S}_h$

$$\beta_{t+1}\Big(parents(o'_i)\Big) = \beta_{t+1}(s_h, s_h^a, s_h^b, s_h^c)$$

$$\propto^{\pi} \pi \Big(o_i', \mathit{parents}(o_i') \Big| eta_t, \mathsf{a} \Big)$$

 $\wedge \mathcal{P}(o'_i)$ may contain visible variables.

fully hidden $s'_f \in \mathbb{S}_f$

 \rightarrow observations don't inform belief state on s'_f .

$$S_f$$

$$\beta_{t+1}(s_f') = \pi(s_f' \mid \beta_t, a)$$

context

bound over the global belief state

global belief state from marginal belief variables

advancements in π -POMDP

$$\beta_{t+1}(s'_1,\ldots,s'_n) = \pi(s'_1,\ldots,s'_n \mid a_0,o_1,\ldots,a_t,o_{t+1})$$

$$\leqslant \min \Biggl\{ \min_{s_j' \in \mathbb{S}_v} \Biggl[\mathbb{1}_{\left\{s_j' = o_j'\right\}} \Biggr], \min_{s_j' \in \mathbb{S}_f} \Biggl[\beta_{t+1}(s_j') \Biggr], \min_{o_i' \in \mathbb{O}_h} \Biggl[\beta_{t+1} \left(parents(o_i') \right) \Biggr] \Biggr\}$$

conclusion

global belief state from marginal belief variables

bound over the global belief state

$$\beta_{t+1}(s'_1,\ldots,s'_n) = \pi(s'_1,\ldots,s'_n | a_0,o_1,\ldots,a_t,o_{t+1})$$

$$\leqslant \min \Biggl\{ \min_{s_j' \in \mathbb{S}_v} \Biggl[\mathbb{1}_{\left\{s_j' = o_j'\right\}} \Biggr], \min_{s_j' \in \mathbb{S}_t} \Biggl[\beta_{t+1}(s_j') \Biggr], \min_{o_i' \in \mathbb{O}_h} \Biggl[\beta_{t+1} \left(parents(o_i') \right) \Biggr] \Biggr\}$$

- min of marginals = a less informative belief state
- computed using marginal belief states
 - → factorization & smaller state space

Conclusion contributions

context

 $\blacksquare \ \, \textbf{modeling efforts} \colon \to \mathsf{human\text{-}machine interaction}$

Conclusion contributions

- lacktriangledown modeling efforts: ightarrow human-machine interaction
- advancements: → mixed-observability modeling → indefinite horizon + optimality proof

Conclusion contributions

- lacktriangleright modeling efforts: ightarrow human-machine interaction
- advancements: → mixed-observability modeling → indefinite horizon + optimality proof
- simplifying computations: factorization work
 & PPUDD algorithm

Conclusion contributions

- modeling efforts: → human-machine interaction
- advancements: → mixed-observability modeling
 → indefinite horizon + optimality proof
- simplifying computations: factorization work
 & PPUDD algorithm
- **experimentations**: realistic problems
 - → robust recognition mission with possibilistic beliefs
 - ightarrow validation of the computation time reduction
 - → IPPC 2014

Conclusion contributions

- modeling efforts: → human-machine interaction
- advancements: → mixed-observability modeling
 → indefinite horizon + optimality proof
- simplifying computations: factorization work
 & PPUDD algorithm
- **experimentations**: realistic problems
 - ightarrow robust recognition mission with possibilistic beliefs
 - \rightarrow validation of the computation time reduction
 - \rightarrow IPPC 2014
- - → probabilities on possibilistic belief states pessimistic rewards (Choquet integral)
 - \rightarrow factored POMDP $\xrightarrow{\text{translation}}$ factored **finite** MPD

Conclusion perspectives

- refined criteria (Weng 2005, Dubois et al. 2005) \Rightarrow finer π -POMDP
- state space heuristic search for π -POMDPs
- combination with reinforcement learning

 π -modeling advancements in π -POMDP

- refined criteria (Weng 2005, Dubois et al. 2005) \Rightarrow finer π -POMDP
- state space heuristic search for π -POMDPs
- combination with reinforcement learning

hybrid work

- IPPC problems (factored POMDPs);
- tests of this approach:
 - **1 simplification:** π distributions definition?
 - 2 imprecision: robust in practice?

context

Thank you!

produced work:

- Qualitative Possibilistic Mixed-Observable MDPs, UAI-2013
- Structured Possibilistic Planning Using Decision Diagrams,
 AAAI-2014
- Planning in Partially Observable Domains with Fuzzy Epistemic States and Probabilistic Dynamics.
 SUM-2015
- Processus Décisionnels de Markov Possibilistes à Observabilité Mixte,

Revue d'Intelligence Artificielle (RIA french journal)

 A Possibilistic Estimation of Human Attentional Errors, submitted to IEEE-TFS journal