Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

Решение задачи о преобразовании булевой функции

Задача. Представив функцию $f(\tilde{x}^n)$ формулой над множеством связок $\{\&,-\}$, преобразовать затем полученную формулу в полином Жегалкина функции $f(\tilde{x}^n)$ (используя эквивалентности $\overline{A} = A \oplus 1$, $A \cdot (B \oplus C) = A \cdot B \oplus A \cdot C$, $A \cdot A = A$, $A \cdot 1 = A$, $A \oplus A = 0$, $A \oplus 0 = A$):

$$f(\tilde{x}^3) = (x_1 \lor x_2) \cdot (x_2 \mid x_3)$$

Решение. Преобразуем функцию к формуле над множеством связок $\{\&, -\}$: $f(\tilde{x}^3) = (x_1 \lor x_2) \cdot (x_2 \mid x_3) = (x_1 \lor x_2) \cdot (\overline{x_2} \lor \overline{x_3}) = (\overline{\overline{x_1} \lor x_2}) \cdot (\overline{x_2} \lor \overline{x_3}).$

Теперь перейдем к полиному Жегалкина:

$$f(\tilde{x}^3) = (\overline{x_1 \cdot x_2}) \cdot (\overline{x_2 \cdot x_3}) = (\overline{x_1 \oplus 1}) \cdot (x_2 \oplus 1) \cdot (x_2 x_3 \oplus 1) =$$

$$= ((x_1 \oplus 1) \cdot (x_2 \oplus 1) \oplus 1) \cdot (x_2 x_3 \oplus 1) =$$

$$= (((x_1 \oplus 1) \cdot x_2 \oplus (x_1 \oplus 1) \cdot 1) \oplus 1) \cdot (x_2 x_3 \oplus 1) =$$

$$= ((x_1 x_2 \oplus x_2 \oplus x_1 \oplus 1) \oplus 1) \cdot (x_2 x_3 \oplus 1) =$$

$$= (x_1 x_2 \oplus x_2 \oplus x_1 \oplus 1 \oplus 1) \cdot (x_2 x_3 \oplus 1) =$$

$$= (x_1 x_2 \oplus x_2 \oplus x_1 \oplus 1 \oplus 1) \cdot (x_2 x_3 \oplus 1) =$$

$$= (x_1 x_2 \oplus x_2 \oplus x_1) \cdot (x_2 x_3 \oplus 1) =$$

$$= (x_1 x_2 \cdot (x_2 x_3 \oplus 1) \oplus x_2 \cdot (x_2 x_3 \oplus 1) \oplus x_1 \cdot (x_2 x_3 \oplus 1)) =$$

$$= (x_1 x_2 \cdot (x_2 x_3 \oplus 1) \oplus x_2 \cdot (x_2 x_3 \oplus 1) \oplus x_1 \cdot (x_2 x_3 \oplus 1)) =$$

$$= (x_1 x_2 x_2 x_3 \oplus x_1 x_2 \oplus x_2 x_2 x_3 \oplus x_2 \oplus x_1 x_2 x_3 \oplus x_1) =$$

$$= x_1 x_2 x_3 \oplus x_1 x_2 \oplus x_2 x_3 \oplus x_2 \oplus x_1 x_2 x_3 \oplus x_1 =$$

$$= x_1 x_2 \oplus x_2 \oplus x_3 \oplus x_2 \oplus x_1.$$