La diffraction

I. Diffraction.

1) Diffraction d'une onde progressive sinusoïdale.

Soit une onde plane périodique rencontrant un obstacle ou une ouverture. (cuve a ondes)

Cas n°1 : L'ouverture est de grande taille par rapport à la longueur d'onde (λ négligeable par rapport à a).

Cas n°2 L'ouverture est de petite taille par rapport à la longueur d'onde (λ non négligeable par rapport à a).

Dans le cas n°2, l'onde change de direction et de comportement sans changement de sa longueur d'onde: elle est <u>diffractée.</u>

Le phénomène mis en évidence s'appelle : <u>la diffraction</u>.

<u>Définition</u>: La diffraction est une propriété des ondes qui se manifeste par un étalement des directions de propagation de l'onde, lorsque celle-ci rencontre une ouverture ou un obstacle.

2) Conditions d'observations

La diffraction est observée lorsque la dimension de l'ouverture a ou de l'obstacle est du même ordre de grandeur, ou inférieure, à la longueur d'onde λ .

Remarque: *Plus l'ouverture est petite, plus le phénomène de diffraction est marqué.

*Dans le cas des ondes lumineuses, le phénomène est encore apparent avec des ouvertures ou des obstacles de dimensions d'ordre de grandeur <u>jusqu'à 100 fois plus</u> grandes que la longueur d'onde.

II. Diffraction des ondes lumineuses par une fente

Si on place une fente fine sur le trajet d'un faisceau de lumière on observe des franges de diffraction:

Dans le cas de la diffraction d'une onde lumineuse monochromatique de longueur d'onde λ , par une fente de largeur a (ou un fil de diamètre a), l'écart angulaire de diffraction θ a pour expression:

 $\theta = \frac{\lambda}{a}$

 $si \rightarrow \theta$: écart angulaire (rad)

λ: longueur d'onde dans le vide (m)

a: largeur de la fente (m)

Remarque: On pourra vérifier en TP que

$$L=2\lambda \frac{D}{a}$$

Dans le cas d'une ouverture circulaire, on observe une tache d'Airy

Alors
$$\theta = 1,22 \frac{\lambda}{a}$$

Exemple de tache d'Airy simulée par ordinateur

11 Identifier un phénomène

Sur le trajet d'un faisceau laser, on interpose des trous de diamètres différents.

• Déterminer dans quel cas le diamètre du trou est le plus petit.

13 Exploiter une photo

Un laser vert a une longueur d'onde $\lambda = 532$ nm. Une fente de largeur a est placée sur le trajet du faisceau lumineux produit par le laser. Un écran est placé à la distance D=2,00 m de la fente. La photo obtenue est proposée ci-contre.

DONNÉE La largeur de la tache centrale de diffraction est donnée par la relation $L = \frac{2\lambda D}{a}$.

- a. Déterminer la largeur de la tache centrale avec le plus de précision possible.
- b. Déterminer la largeur de la fente.

36 * Pointeur laser

APP Rechercher et organiser l'information RÉA Effectuer des procédures courantes (calculs) VAL Faire preuve d'esprit critique

Un pointeur laser est utilisé dans le montage suivant : une fente verticale, de largeur a très petite, est placée sur le trajet du faisceau et un écran est situé à la distance D de la fente.

Plusieurs expériences dont les résultats sont réunis dans le tableau ci-dessous sont réalisées.

Expérience	λ de la source	Largeur de la fente	Distance à l'écran	Largeur de la tache centrale
1	λ_1	a	D	$L_1 = 3,4 \text{ cm}$
2	$\lambda_2 = 405 \text{ nm}$	a	D	$L_2 = 2,1 \text{ cm}$
3	λ ₂ = 405 nm	$a_3 = \frac{a}{2}$	D	$L_3 = 2L_2$
4	λ ₂ = 405 nm	a	$D_4 = \frac{D}{2}$	$L_4 = \frac{L_2}{2}$

Trois expressions de la largeur L de la tache centrale sont proposées :

$$L = 2\lambda aD$$
 (1) $L = \frac{2\lambda}{Da}$ (2) $L = \frac{2\lambda D}{a}$ (3)

- a. À partir des expériences, éliminer deux des trois expressions.
- **b.** Vérifier par une analyse dimensionnelle que celle retenue est pertinente.
- **c.** Établir une relation entre λ_1 , λ_2 , L_1 et L_2 .
- **d.** Calculer la valeur de la longueur d'onde λ_1 .

ritère de Rayleigh

PRIER ANALYSER-RAISONNER RÉALISER

Actuellement, l'observation de détails d'un objet céleste avec un télescope terrestre est principalement limitée par le diamètre D de l'objectif du télescope qui collecte la lumière provenant de cet objet.

La première planète extrasolaire dont on a pu faire une image par observation directe dans le proche infrarouge s'appelle 2M1207b. Cette exoplanète orbite à une distance estimée à 55 unités astronomiques (ua) autour de l'étoile 2M1207a, située à 230 années-lumière (al) de la Terre.

DOC. 1 Traversée de la lumière par une ouverture circulaire

L'angle θ (exprimé en radian) vérifie la relation $\theta = 1,22 \frac{\lambda}{D}$ où λ est la longueur d'onde du faisceau incident et D le diamètre de l'ouverture.

DOC. 2 Couple étoile-planète

Des rayons lumineux issus d'un couple étoile-planète, passant par l'ouverture circulaire d'un télescope terrestre sont représentés ci-contre:

- α est l'angle entre les rayons issus de l'étoile et ceux issus de la planète.
- α est assez petit pour que l'on puisse confondre α en radian à tan α.

DONNÉE 1 Critère de Rayleigh

Un télescope permet de distinguer deux objets, à condition que l'écart angulaire α entre ces deux objets (DOC. 2) soit supérieur ou égal à l'angle θ (DOC. 1).

 $\alpha \ge \theta$: on peut distinguer les objets.

 $\alpha < \theta$: on ne peut pas distinguer les objets.

DONNÉE 2

- Unité astronomique:
- $1 \text{ ua} = 1.496 \times 10^{11} \text{ m}$.
- Année de lumière :
- $1 \text{ al} = 9.461 \times 10^{15} \text{ m}$

Questions

- Identifier le phénomène physique caractérisé par l'angle θ (DOC. 1) et la propriété de la lumière qui permet d'expliquer ce phénomène.
- En prenant soin de présenter correctement la démarche et de porter un regard critique sur le résultat, déterminer le diamètre D du télescope terrestre permettant de distinguer la planète 2M1207b de l'étoile 2M1207a. La longueur d'onde des rayons lumineux provenant des deux objets célestes a pour valeur $\lambda = 2.0 \mu m$.
- Citer une conséquence concrète du phénomène identifié en 1., autre que la limite de l'observation des astres en astronomie.