Entropy on manifold and differential of equation

Masaaki Yamaguchi

1 Global Differential Equation

Global area in integrate and differential of equation emerge with quantum of image function built on. Thurston conjugate of theorem come with these equation, and heat equation of entropy developed it' equation with. These equation of entropy is common function on zeta function, eight of differential structure is with fourth power, then gravity, strong boson, weak boson, and Maxwell theorem is common of entropy equation. Euler-Lagrange equation is same entropy with quantum of material equation. This spectrum focus is, eight of differential structure bind of two perceptive power. These more say, zeta function resolved is gravity and antigravity on non-catastrophe on D-brane emerge with same power of level in fourth of power. This quantum group of equation inspect with universe of space on imaginary and reality of Laplace equation.

It is possibility of function for these equation to emerge with entropy of fluctuation in equation on prime parammeter. These equation is built with non-commutative formula. And these equation is emerged with fundamental formula. These equation group resolved by Schrödinger, Heisenberg equation and D-brane. More spectrum focus is, resolved equation by zeta function bind with gravity, antigravity and Maxwell theorem. More resolved is strong boson and weak boson to unite with. These two of power integrate with three dimension on zeta function.

Imaginary equation with Fouier parameter become of non-entropy, which is common with antigravity of power. Integrate and differential equation on imaginary equation develop with rotation of quantum equation, curve of parameter become of minus. Non-general relativity of integral developed by monotonicity, and this equation is same energy on zeta function.

$$\pi(\chi, x) = i\pi(\chi, x) \circ f(x) - f(x) \circ \pi(\chi, x)$$

This equation is non-commutative equation on developed function. This function is

$$\int \frac{1}{(x \log x)} dx = i \int x \log x dx - \int \frac{1}{(x \log x)} dx$$

This equation resolved is

$$\int \int \frac{1}{(x \log x)^2} dx_m \ge \frac{1}{2}i$$

And this equation resolved by symmetry of formula

$$y = x$$

$$\int \int \frac{1}{(y\log y)^{\frac{1}{2}}} dy_m \ge \frac{1}{2}$$

This function common with zeta equation. This function is proof with Thurston conjugate theorem by Euler-Lagrange equation.

$$F_t^m \ge \int_M (R + \nabla_i \nabla_j f) e^{-f} dV$$

resolved is

$$F_t \ge \frac{2}{n}f^2$$

$$\frac{d}{df}F = \frac{2\int (R + \nabla_i \nabla_j f)^2}{-(R + \Delta f)} dm$$

These resolved is

$$\frac{d}{df}F_t = \frac{1}{4}g_{ij}^2$$

Euler-Lagrange equation is

$$f(r) = \frac{1}{2}m\frac{\sqrt{1+f'(r)}}{f(r)} - mgf(r)$$

$$m = 1, g = 1$$

$$f(r) = \frac{1}{4}|r|^2$$

Next resolved function is Laplace equation in imaginary and reality fo antigravity, gravity equation on zeta function.

$$\int \int \frac{1}{(x \log x)^2} dx_m + \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m = 0$$

This function developed with universe of space.

$$x^{\frac{1}{2}+iy} = e^{x \log x}$$

This equation also resolved of zeta function.

$$\frac{d}{df}F(v_{ij},h) = \int e^{-f}\left[-\Delta v + \nabla_i \nabla_j v_{ij} - R_{ij}v_{ij} - v_{ij}\nabla_i \nabla_j + 2 < \nabla f, \nabla h > +(R + \nabla f^2)(\frac{v}{2} - h)\right]$$

These equation is common with power of strong and weak boson, Maxwell theorem, and gravity, antigravity of function. This resolved is

$$\frac{d}{df}F = \frac{2\int (R + \nabla_i \nabla_j f)^2}{-(R + \Delta f)} dm$$

on zeta function resolved with

$$F \ge \frac{d}{df} \iint \frac{1}{(x \log x)^2} dx_m + \frac{d}{df} \iint \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m$$

2 Quantum Equation for Dimension of Symmetry

Quantum Equation architect with geometry structure of Global Differential Equation has zero with gravity and antigravity for eternal space, and this space emerge for burned of non expanded universe. Then this universe has Symmetry in dimension with that created of fourth Universe in one of geometry has six element quark and pair of structure belong for twelve element quark. These quarks emerge with eternal space of Non-Difinition System in Quantum Mechanism, in term of one dimension decided, or the other dimension non-decision. These system concerned of vector of norm depend for universe mention to eternal space. Mass existing in dimension emerge gravity, these paradox is in universe has mass around of light, in deposit of mass for our universe and the other dimension has gravity and antigravity, and covered with these element for non-gravity. Laplace equation decide with eight of structure for these element of power integrate for one of geometry. Higgs quark is quote algebra equation in Global Differential Equation of non-gravity element on zero dimension. These equation is mass of build on structure in mechanism system. This quote algebra equation have created of structure in mass with universe of existing things. These result means with why quantum system communicate with our universe be able to connect of.

$$\pi(\chi, x) = [i\pi(\chi, x), f(x)]$$

$$\int \int \frac{1}{(x \log x)^2} dx_m + \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m \ge 0$$

$$\Delta x \Delta p \ge \frac{1}{4}i$$

$$\frac{\delta g}{L^2} \sim \frac{G}{c^4} \frac{\delta E}{L^3}$$

$$\delta E \gtrsim \frac{\hbar}{T} \cong \frac{\hbar c}{L}$$

$$\delta g \gtrsim \frac{L_p^2}{L^2}$$

$$\sqrt{\frac{\hbar G}{c^3}} \cong 1.616 \times 10^{-33}$$

$$C = 0.5772156 \dots$$

$$F = \frac{d}{df} \int \int \frac{1}{(x \log x)^2} dx_m + \frac{d}{df} \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m$$

$$f_z = \int \left[\sqrt{\begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix}} \circ \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{pmatrix} \right] dx dy dz$$

$$F_t^m = \frac{1}{4} (g_{ij})^2$$

Quantum Group resolved with Laplace equation build in calculate on non-gravity element of based by non extention equation. This solved by these element in equation has belong to gravity is why universe have in no weight, and mass exist weight to space emerge of created with gravity, in which is reason by non-extension equation translate to variable and invariable element. These problem of included universe in no gravity, which is exist of mass on space of surrounding in universe. Those quesion resolve on zeta equation and Quantum Group of translate to vector equation. Non-extension equation selves has non-gravity, these result with universe first burn in D-brane created by solved with replace equation. Quote Algebra equation have created of structure in mass with universe of existing things.

These equation explain to those which included mass has gravity emerged, and universe has in surrounding to no weight. The other Dimension integrate with these universe of gravity to unite antigravity, so this universe has no weight. Higgs quark is mass of built on structure in mechanism system. These system belong to create on element. These element is based on existing of universe which has structure code, in theorem composed for universe to emerge of time with future and past. Universe first created in these time, this existing things already burned with space. Network Theorem is connected eight element of geometry structure which integrate with three dimension of structure. These structure compose in three manifold, zeta equation is this system of element. These resulted theorem resolved with quantum equation, so this mechanism impressed in universe of component. Strong and Weak boson is united to one, and Maxwell theorem is same system. Gravity and Antigravity has own element. General relativity theorem same united. These integrate with included Euler equation. These power of element is zeta equation. Then this twelve element of quarks has belong to this universe and the other dimension.

$$\Delta E = -2(T-t)|R_{ij} + \nabla_i \nabla_j f - \frac{1}{2(T-t)}g_{ij}|^2$$

Quote group classify equivalent class to own element of group.

$$A = BQ + R$$

$$[x] = A$$

$$dx^{n} = \sum_{k=0}^{\infty} x^{n} dx$$

$$R_{n} = \frac{n!}{(n-r)!} (x^{n})'$$

$$\beta(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1}$$

$$Z(T,X) = \exp(\sum_{m=1}^{\infty} \frac{(q^{k}T)^{m}}{m})$$

$$Z(T,X) = \frac{P_{1}(T)P_{3}(T) \dots P_{2n-1}}{P_{0}(T)P_{2}(T)P_{4}(T) \dots P_{2n}}$$

$$|v| = |\int (\pi r^{2} + \vec{r}) dx|^{2}$$

$$\Delta E = \int (\operatorname{div}(\operatorname{rot}E) \cdot e^{-ix \log x}) dx$$

$$(\nabla \phi)^{2} = \int tf(t) \frac{df(x)}{e^{-x}t^{x-1}} dx$$

$$(\nabla \phi)^{2} = \int tf(t)(\Gamma(t)df(x)) dx$$

$$(\nabla \phi)^{2} = \frac{1}{\Gamma(x+y)}$$

then these equation decide to class manifold with group. Differential group emerge with same element of equation, zero dimension conclude to emerge with all element. Constant has with imaginary of number on developed of zeta equation. Weil's Theorem resolved with zeta equation, these function merge to build in replace equation. Euler constant has with bind of imaginary number and variable number. These function is

$$C = \int \frac{1}{x^s} dx - \log x$$

Replace equation resolve on zeta function.

$$\int \int \frac{1}{(x\log x)^2} dx_m = \frac{1}{2}i$$

These function understood is become of imaginary number, which deal with delete line of equation on space of curve.

Euler number also has with imaginary of constant.