Notes perso : Géométrie algébrique

Table des matières

1	Les	définitions
	1.1	Définition topologique
	1.2	Définition par les corps de fonctions
	1.3	À rajouter : codimension, voir notes sur la partiel
	1.4	Et donc?
2	Équ	ations
	2.1	Hypersurfaces
		2.1.1 Cas affine
		2.1.2. C : 1)
		2.1.2 Cas integre
	2.2	2.1.2 Cas intègre

. . .

TABLE DES MATIÈRES

Chapitre 1

Les définitions

1.1 Définition topologique

Concrètement pour $X = \bigcup_{i=1}^n X_i$ une variété algébrique décomposée en composantes irréductibles :

$$\dim(X) = \max(\dim(X_i)) = \sup_{U \subset X \ ouvert} \dim(U)$$

et pour une variété irréductible c'est le sup des longueurs de chaines

$$Y_0 \subsetneq Y_1 \subsetneq \ldots \subsetneq Y_d = X$$

1.2 Définition par les corps de fonctions

Ducoup dans le cas intègre, les restrictions du faisceau sont injectives et le faisceau est approximable par les ouverts principaux affines! En particulier

$$k(X) \simeq k(U)$$

et

$$k(X) \simeq Frac(\mathcal{O}_X(U_0))$$

pour un affine ouvert $U_0\subset X$ quel conque. On peut montrer que

$$dim(X) = degtr_k k(X)$$

et c'est bien défini:

1. Si on prends deux familles algébriquement indépendantes et K algébriques sur les deux, on peut montrer qu'elles ont la même cardinalité.

- 2. On peut se réduire au cas affine.
- 3. On conclut par l'injection de Noether dans A(X) qui fixe la dimension en passant au corps de fractions!

1.3 À rajouter : codimension, voir notes sur la partiel

1.4 Et donc?

Bon tout ça montre qu'on peut tjr se ramener au cas affine, ouvert qui nous arrange. Lesquels ? (je pense à l'exemple des équations locales qui utilise des ouverts particuliers)

Chapitre 2

Équations

2.1 Hypersurfaces

2.1.1 Cas affine

Essentiellement, y'a cette suite d'arguments :

- 1. La dimension est invariante par extension d'anneaux entiers. (Y'a pas mal d'algèbre là dedans, j'en parlerai ailleurs)
- 2. Par Noether si $F \in k[T_1, \ldots, T_n] k$ alors

$$\dim k[T_1, \dots, T_n]/(F) = \dim k[T_1, \dots, T_{n-1}]$$

- 3. Ensuite $\dim k[T_1, \ldots, T_n] = n$ par récurrence et l'argument d'avant (faut faire un tout petit peu attention).
- 4. Automatiquement, si $F \in k[T_1, ..., T_n]$ alors $\dim(Z(F)) = n 1$.

2.1.2 Cas intègre

Ça c'était le cas affine, maintenant le cas intègre : Étant donné $f \in \mathcal{O}_X(X)$ on a

$$\dim(Z(f)) = \dim(X) - 1$$

La preuve consiste à dire

1. $\dim(U) = \dim(X)$ en utilisant $k(U) \simeq k(X)$ d'où on se ramène au cas affine.

2. On à une injection entière finie

$$k[T_1,\ldots,T_n]/fA\cap k[T_1,\ldots,T_n]\hookrightarrow A(X)/fA(X)$$

où $fA \cap k[T_1, \dots, T_n]$ c'est juste en identifiant avec l'image.

3. Puis on a

$$fA \cap k[T_1, \dots, T_n] \subset \sqrt{N_{k(X)/k(\mathbb{A}^n)}(f)} \subset \sqrt{fA \cap k[T_1, \dots, T_n]}$$

et on conclut par Noether.

Remarque 1. Les anneaux de polynômes sont factoriels donc intégralement clos. D'où la norme fonctionne bien là.

Remarque 2. Je sais vraiment pas si on est obligés d'utiliser $k(U) \simeq k(X)$ mdr. À méditer. Si $F_1 \cap U \subsetneq F_2 \cap U$ et U dense dans X, alors $\bar{F}_1 = \bar{F}_2$ implique F_1 dense dans F_2 d'où Y sont égaux dans Y car fermés ?

2.2 Nombre d'équations d'un fermé (à finir)

Tout irréductible affine Z de dimension s dans \mathbb{A}^n est une composante d'un

$$Z \subseteq Z(f_1,\ldots,f_{n-s})$$

dont toutes les composantes ont dimension s.

À l'inverse

$$Z(f_1,\ldots,f_s)\subset \mathbb{A}^n(k)$$

est de dimension $\geq n - s$.

2.2.1 Dimension des fibres

On en déduit que si $f: X \to Y$ est dominant alors

$$\dim(f^{-1}(y)) \ge \dim(X) - \dim(Y)$$

parce que $f^{-1}(y) \subseteq Z(f_*\mathfrak{m}_y)$ et \mathfrak{m}_y est défini par $\dim(Y)$ équations !