Distributed Deep Learning Inference On Resource-Constrained IoT Edge Clusters

Kamyar Mirzazad Barijough, Zhuoran Zhao, Andreas Gerstlauer

System-Level Architecture and Modeling (SLAM) Lab
Department of Electrical and Computer Engineering
The University of Texas at Austin

https://slam.ece.utexas.edu

Background

- Internet-of-Things (IoT)
 - Large scale data processing under real-time constraints
 - Deep learning techniques for IoT applications
 - Computationally and memory-intensive
- Cloud-based vs. fog/edge computing
 - Privacy
 - Unpredictable remote server and communication latency
 - Computational resources near the sources
 - Clusters of edge and gateway devices
- Distributed deep learning inference in IoT edge clusters
 - Efficient deployment on resource-constrained IoT devices
 - Provide real-time guarantees in wireless edge communication

Distributed Deep Learning on the Edge

Partition neural network into tasks

- Enable distributed execution
- Optimize memory and communication

Adapt to changing computational resources

- Dynamic task mapping and offloading
- Lightweight and low overhead middleware

Provide real-time guarantees

- Bound communication latency
- Distributed real-time scheduling

Related Work

- Cloud-assisted inference [Kang'17, Teerapittayanon'17]
 - Unpredictable cloud status and communication latency
 - Privacy issues and scalability
- Lightweight deep neural network models
 - Sparsification and pruning [Bhattacharya'16, Yao'17]
 - Compression [landola'16, Howard'17, Zhang'17]
 - Loss of accuracy and application-/scenario-dependent
- MoDNN [Mao'17]
 - Static partition and local distribution on mobile devices
 - MapReduce-like programming model in mobile cluster
 - Bulk-synchronous and lock-step fashion
 - Layer-by-layer synchronization
 - Limitation in scalability

Outline

✓ Introduction

- ✓ Background
- ✓ Related work

Fused Tile Partitioning (FTP)

- Input/output partitioning
- Layer fusion

DeepThings middleware

- Distributed work stealing
- Data reuse-aware work scheduling and distribution

- Real-time guarantees
- Real-time scheduling

Fused Tiled Partitioning

Convolutional operation

 Local connectivity between neurons of consecutive layers

Grid partitioning with boundary consideration

 Chain of multiple convolutional layers

- Large amount of intermediate data
- Boundary synchronization overhead per layer
- Layer fusion

Independent execution stacks

Outline

✓ Introduction

- ✓ Background
- ✓ Related work

✓ Fused Tile Partitioning (FTP)

- ✓ Input/output partitioning
- ✓ Layer fusion

DeepThings middleware

- Distributed work stealing
- Data reuse-aware work scheduling and distribution

- Real-time guarantees
- Real-time scheduling

DeepThings Overview

Generate independent tasks using FTP

Runtime system

- Edge: peer-to-peer work stealing
- Gateway: central coordination
- Collaborative inference

Fused Tile Partitioning CNN **Pre-trained CNN** Model **Parameters** Weights **Platform Fused Tile Constraints** Partitioning (FTP) **Data Frame** FTP Weights **Parameters Data Frame** Edge **Partitioner Device** CNN Local Framework Tasks Inference **Engine:** Stealing Caffe, **Runtime System** Register Darknet. Gateway Results **Device Task Results DeepThings Runtime**

Z. Zhao, K. Mirzazad and A. Gerstlauer, "DeepThings: Distributed Adaptive Deep Learning Inference on Resource-Constrained IoT Edge Clusters," CODES+ISSS, 2018.

Work Stealing Approach

- Message flow and data movement in DeepThings
 - Peer-to-peer input data migration
 - Idle device steals from busy device

Data Reuse Opportunities

- Redundancy in Fused Tile Partitioning
 - Duplicate overlapped data for independent sub-tasks
 - Overlapped data amplified through many fused layers
 - Possible data reuse to reduce computation

Data Reuse-Aware Work Scheduling

FTP partition scheduling

- Minimize the partition dependency
 - Scheduling tasks to be stolen in dependency order
 - Caching overlapped reuse data in gateway

Experimental Setup (1)

DeepThings framework

- Retargetable implementation in C
- Uses nnpack-accelerated Darknet as inference engine
- TCP/IP socket APIs
- Released in open-source form
 - https://github.com/SLAM-Lab/DeepThings

Experiment platform

Up to 6 Raspberry Pi 3B connected with WiFi

Deep learning application

- You Only Look Once (YOLO) object detector
 - First 16 layers (12 convolutional and 4 maxpool layers)
 - More than 49% of computation and 86.6% of memory footprint
- Multiple data sources
 - Emulate dynamic application scenarios

Experimental Setup (2)

DeepThings vs. MoDNN

- Work Sharing (WSH): Central data collection/coordination
- Work Stealing (WST): Peer-to-peer data transmission
- Data partitioning & synchronization
 - DeepThings (FTP): Overlapped data is duplicated/transmitted at input
 - MoDNN (BODP): Overlapped data is synchronized after every layer.

	DeepThings	MoDNN
Partition Method	Fused Tile Partitioning (FTP)	Biased One-Dimensional Partition (BODP)
Partition Dimensions	3x3 ~ 5x5	1x1 ~ 1x6
Distribution Method	Work Stealing (WST) Work Sharing (WSH)	Work Sharing (WSH)
Edge Node Number	1 ~ 6	

Memory Footprint

- Per device memory footprints of each layer
 - Memory reduction
 - Input/output feature map data is partitioned to save memory
 - Weight data is not partitioned and remains the same
 - Maximum memory usage reduction
 - 61% in 4-way BODP, 58% and 68% for FTP 3x3 and 5x5
 - Average memory footprint reduction per layer
 - 67% in 4-way BODP, 69% and 79% for FTP 3x3 and 5x5

Multiple data sources

Maximum Latency

Throughput

Outline

✓ Introduction

- ✓ Background
- ✓ Related work

✓ Fused Tile Partitioning (FTP)

- ✓ Input/output partitioning
- ✓ Layer fusion

✓ DeepThings middleware

- ✓ Distributed work stealing
- ✓ Data reuse-aware work scheduling and distribution

- Real-time guarantees
- Real-time scheduling

Real-time Guarantees

- No latency guarantee in open networks
 - Network delay distribution
 - Well-known problem in VoIP, live streaming
- Bound communication latency by enforcing timeouts
 - Discard late packets
 - Smaller the timeout, more data losses
 - Trade-off between latency (timeout) and quality (losses)
- Assign timeout to every network communication
 - Easy to derive from the total latency in two-node system
 - Not trivial for larger systems
 - Which losses are more important?

Real-time Scheduling

Differentiate between losses of nodes

- Represent the system as a dataflow with lossy communication
- Quality model for lossy dataflow's schedule
 - Assumptions: linearity, SNR metric

Formulate scheduling as an optimization problem

- Find schedule to maximize quality and satisfy latency constraint
- Quality/latency-aware scheduling

Improved trade-off between quality and latency

- Baseline: Uniform distribution of latency budget
- Explored for a two-layer digit classification neural net with given mapping

K. Mirzazad, Z. Zhao and A. Gerstlauer, "Quality/Latency-Aware Real-time Scheduling of Distributed Streaming IoT Applications," CODES+ISSS, 2019.

Summary & Conclusions

Fused Tile Partitioning (FTP)

- Scalable and flexible partitioning method
- Lightweight data synchronization
- Independently distributable tasks

DeepThings middleware

- Distributed work stealing
- Data reuse-aware work scheduling
- Open-source framework in C code

- Provide latency guarantees via timeouts
- Quality/latency-aware scheduling
- To be open-sourced soon!

Thank you! Any Questions?

References:

- [1] Z. Zhao, K. Mirzazad and A. Gerstlauer, "DeepThings: Distributed Adaptive Deep Learning Inference on Resource-Constrained IoT Edge Clusters," CODES+ISSS, 2018.
- [2] K. Mirzazad, Z. Zhao and A. Gerstlauer, "Quality/Latency-Aware Real-time Scheduling of Distributed Streaming IoT Applications," CODES+ISSS, 2019.
- [3] DeepThings on Github, https://github.com/SLAM-Lab/DeepThings
- [4] https://slam.ece.utexas.edu/projects/NoS.html