

UNIVERSIDAD AUTÓNOMA DE ENTRE RÍOS Facultad de Ciencia y Tecnología

Licenciatura en Sistemas de Información

FUNCIONES POLINOMIALES

JTP: Prof. Gustavo Demaria

FUNCIONES POLINOMIALES

Se llama así a las funciones donde la variable x se eleva a una *potencia entera no negativa*.

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0,$$

- ✓ Las constantes a_n , a_{n-1} ... a_0 se denominan coeficienntes
- \checkmark El número a_n se denominan coeficiennte principal
- ✓ El número a₀se denomina término constante o independiente

grado
$$5\downarrow$$

$$f(x) = 3x^{5} - 4x^{3} - 3x + 8$$

$$\uparrow \qquad \uparrow$$
coeficiente principal término constante

FUNCIONES POLINOMIALES

$$f(x) = a,$$

$$f(x) = ax + b,$$

$$f(x) = ax^2 + bx + c,$$

$$f(x) = ax^3 + bx^2 + cx + d,$$

función constante, función lineal, función cuadrática, función cúbica.

$$f(x) = ax^3 + bx^2 + cx + d,$$

función cúbica.

La función constante f(x) = 0 se denomina **polinomio cero**.

GRÁFICAS DE FUNCIONES POLINOMIALES

¿Cuál es la forma de la gráfica de una función polinomial de grado mayor o igual a tres?

El grado de la función es PAR

El coeficiente principal es POSITIVO

El coeficiente principal es NEGATIVO

El grado de la función es IMPAR

El coeficiente principal es POSITIVO

El coeficiente principal es NEGATIVO

b) n par

La gráfica de una función polinomial de grado n≥3 puede tener varias formas posibles

En términos aproximados, el comportamiento final de cualquier función f es simplemente la forma en que f se comporta para valores muy grandes de |x|

a) n par

SIMETRÍA RESPECTO AL EJE Y O AL ORIGEN

FUNCIÓN IMPAR

(Simétrica al origen) f(x) = -f(x)

FUNCIÓN PAR

(Simétrica al eje y) f(x) = f(-x) **SIN PARIDAD**

SIMETRÍA RESPECTO AL EJE Y O AL ORIGEN

Simetría de las funciones polinomiales Resulta fácil identificar por inspección las funciones polinomiales cuyas gráficas poseen **simetría** con respecto al eje y o al origen. La palabras par e impar tienen un significado especial para las funciones polinomiales. Las condiciones f(-x) = f(x) y f(-x) = -f(x) se cumplen para funciones polinomiales donde todas las potencias de x son enteros pares y enteros impares, respectivamente. Por ejemplo,

Una función como $f(x) = 3x^6 - x^4 + 6$ es una función par porque todas las potencias son enteros pares; el término constante 6 es en realidad $6x^0$, y 0 es un entero no negativo par.

INTERSECCIONES CON LOS EJES DE COORDENADAS

Intersección con el eje y : La gráfica de toda función polinomial f pasa por el eje y puesto que x =0 está en el dominio de la función

(b) $y = x^4 - 3x^2 + x$

(c) $y = 3x^3 - 25x^3 + 60x$

(a) $y = x^2 - x + 1$

INTERSECCIONES CON LOS EJES DE COORDENADAS

Intersección con el eje x: las intersecciones con el eje x, corresponden a los ceros reales del polinomio de la función, es decir cuando P(x)=0

Ejemplo 1

$$y = x^3 - 9x$$

Para encontrar las intersecciones con el eje x, debemos factorizar el polinomio, e igualar a cero

$$x^{3} - 9x = 0$$

$$x(x^{2} - 9) = 0$$

$$x(x - 3)(x + 3) = 0$$

 $x_1 = 0$

$$x_2 = 3$$

$$x_3 = -3$$

Tres raíces reales distintas o ceros simples

Raíces reales distintas o ceros simples

$$y = (1 - x)(x + 1)^2$$

Para encontrar las intersecciones con el eje x, debemos hacer y=0

$$(1-x)(x+1)^2=0$$

$$(1-x)=0$$

$$(x+1)^2=0$$

$$x_1 = 1$$

$$x_2 = x_3 = -1$$

Raíz real simple

2 Raíces reales iguales o ceros dobles

 $y = (1-x)(x+1)^2$

Raíz doble

(multiplicidad

par)

Raíz simple

$$y = -(x+4)(x-2)^3$$

Para encontrar las intersecciones con el eje x, debemos hacer y=0

$$-(x+4)=0$$

$$(x-2)^3=0$$

$$x_1 = -4$$

$$x_2 = x_3 = x_4 = 2$$

Raíz real simple

3 Raíces reales iguales o ceros triples

Raíz simple

Raíz triple (multiplicidad impar)

INTERSECCIONES CON LOS EJES DE COORDENADAS- Resumen

Si x=c es un cero simple, la gráfica atraviesa el eje x Si x=c es un cero de multiplicidad par, la gráfica rebota en el eje x Si x=c es un cero de multiplicidad impar, la gráfica atraviesa pero cambia la concavidad

EJERCICIO 1

En los problemas 43-48, relacione la gráfica dada con una de las funciones polinomiales en a)-f).

a)
$$f(x) = x^2(x-1)^2$$

c)
$$f(x) = x^3(x-1)^3$$

e)
$$f(x) = -x^2(x-1)$$

b)
$$f(x) = -x^3(x-1)$$

d)
$$f(x) = -x(x-1)^3$$

e)
$$f(x) = -x^2(x-1)$$
 f) $f(x) = x^3(x-1)^2$

47.

FIGURA 2.3.26 Gráfica para el problema 47

48.

FIGURA 2.3.27 Gráfica para el problema 48

28

43.

FIGURA 2.3.22 Gráfica para el problema 43

45.

FIGURA 2.3.24 Gráfica para el problema 45

FIGURA 2.3.23 Gráfica para el problema 44

FIGURA 2.3.25 Gráfica para el problema 46

EJERCICIO 2

Trace una gráfica aproximada de las siguientes funciones polinomiales.

a)
$$y = x^3 - 4x$$

b)
$$y = x^2(x-2)^2$$

c)
$$y = (2 - x)(x + 2)(x + 1)$$

SOLUCIONES

Ejercicio 1

43) f 44) c 45) e 46) a 47) b

48) d

Ejercicio 2

Mo dejes que las mentes pequeñas te convenzan alientoenfrases blogspot.com alientoenfrases. de que tus sueños Alientoentrases. blogspot.com son demasiado ograndes.