

X3-Class HiPerFET™ **Power MOSFET**

IXFK210N30X3 IXFX210N30X3

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ra	tings
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	300	V
V _{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	300	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _C = 25°C	210	Α
I _{L(RMS)}	External Lead Current Limit	160	Α
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	650	Α
I _A	T _C = 25°C	105	А
E _{AS}	$T_{c} = 25^{\circ}C$	3	J
dv/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, \ V_{_{\mathrm{DD}}} \leq V_{_{\mathrm{DSS}}}, \ T_{_{\mathrm{J}}} \leq 150^{\circ}\mathrm{C}$	50	V/ns
$\overline{\mathbf{P}_{D}}$	T _c = 25°C	1250	W
T _J		-55 +150	°C
T _{JM}		150	°C
T _{stg}		-55 + 150	°C
T _L	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
M_d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb
Weight	TO-264 PLUS247	10 6	g g

		teristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$	300			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 8mA$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$				μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$		4.3	5.5	mΩ

300V 210A $5.5 m\Omega$

G = Gate	D	=	Drain
S = Source	Tab	=	Drain

Features

- International Standard Packages
- Low $R_{DS(ON)}$ and Q_G Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- · Robotics and Servo Controls

Symbol	Symbol Test Conditions Char			acteristic Values		
$(T_{J} = 25^{\circ}C, L)$	Inless Otherwise Specified) Mi	in.	Тур.	Max		
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$ 84		140	S		
R _{Gi}	Gate Input Resistance		2	Ω		
C _{iss}			24.2	nF		
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		3.1	nF		
C _{rss}			7.7	pF		
	Effective Output Capacitance					
$\mathbf{C}_{o(er)}$	Energy related \(\mathbb{V}_{GS} = 0 \mathbb{V}		1100	pF		
C _{o(tr)}	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		4600	pF		
t _{d(on)}	Resistive Switching Times		38	ns		
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		40	ns		
t _{d(off)}	GC 20 200 2 220		210	ns		
t _r	$R_{_{\rm G}} = 1\Omega$ (External)		15	ns		
Q _{g(on)}			375	nC		
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		107	nC		
\mathbf{Q}_{gd}			100	nC		
R _{thJC}				0.10 °C/W		
R _{thCS}			0.15	°C/W		

Source-Drain Diode

SymbolTest ConditionsChara $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		cteristic Typ.	Values Max		
I _s	$V_{GS} = 0V$			210	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			840	Α
V _{SD}	$I_{\rm F} = 100 {\rm A}, \ V_{\rm GS} = 0 {\rm V}, \ {\rm Note} \ 1$			1.4	٧
$\left\{ egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight\}$	$I_F = 105A$, -di/dt = 100A/ μ s $V_R = 100V$		190 1.4 15		ns µC A

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

I_D - Amperes

1.0

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

- 1 Gate
- 2,4 Drain
- 3 Source

- NOTE: 1. This drawing will meet all dimensions requirement of JEDEC outline TO-247 AD (R-PSIP-F3) except screw mounting hole.

 2. Pin #2 is connected to the bottom heatsink (#4).

 - 3. Lead finish One of the following depending on the packaging plants. 3.1 Matte pure tin plating on the leads and back heatsink.3.2 Pb free solder dip on the leads and pre Ni plated back heatsink.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.