

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Estructuras de Datos

Clave:	Semestre:	Eje tem	Eje temático:			
1222	2	Progran	Programación			
Carácter	: Obligatoria		Horas Horas por semana		Total de Horas	
Tipo: Teórico-Práctica			Teoría:	Práctica:		
Tipo: Te	orico-Practica		3	6	semana Horas 9 144	144
Modalidad: Curso Duración del programa: Semestral			estral			

Asignatura con seriación obligatoria antecedente: Ninguna

Asignatura con seriación obligatoria subsecuente: Análisis de Algoritmos, Fundamentos de Bases de Datos; Computación Distribuida; Lenguajes de Programación

Asignatura con seriación indicativa antecedente: Estructuras Discretas; Introducción a Ciencias de la Computación

Asignatura con seriación indicativa subsecuente: Modelado y programación; Autómatas y Lenguajes Formales; Análisis de Algoritmos

Objetivos generales:

Comprender el papel fundamental que cumple la abstracción de datos en la elaboración de modelos correctos y completos para resolver problemas por medio de la computadora.

Conocer el panorama de las estructuras de datos más usuales, sus características y las diferentes maneras de instrumentarlas en un lenguaje de programación orientado a objetos.

Analizar la complejidad en tiempo y espacio de algoritmos elementales.

Conocer y aplicar los algoritmos más comunes de búsqueda y ordenamiento.

Conocer los elementos de criterio elementales para elaborar programas correctos y eficientes en función del contexto.

Índice te	mático		
ا ایم! ما م	Tomas	Horas	
Unidad	Temas	Teóricas	Prácticas
	Tipos de datos abstractos	4	9
II	Elementos de complejidad algorítmica	3	6
Ш	Elementos de corrección de algoritmos	2	3
IV	Arreglos	1	3
V	Recursión	4	8
VI	Listas	3	6
VII	Pilas	3	6
VIII	Colas	3	6
IX	Árboles	2	4
Х	Árboles binarios	3	6
ΧI	Árboles binarios de búsqueda	3	6
XII	Árboles de búsqueda balanceados	3	6
XIII	Funciones y tablas de dispersión (hash)	3	6
XIV	Heaps	2	3
XV	Algoritmos de ordenamiento	3	6
XVI	Algoritmos en gráficas	6	12
	Total de horas:	48	96
Suma total de horas: 144		14	

Contenido temático				
Unidad	Tema			
I Tipos de	datos abstractos			
I.1	Definición, especificación e instrumentación de tipos de dato abstractos (TDAs).			
1.2	Conceptos de clase, objeto y estructura de datos y su relación con TDA.			
1.3	Encapsulación, acoplamiento y cohesión.			
II Element	os de complejidad algorítmica			
II.1	Análisis asintótico, notación O().			
II.2	Recurrencias.			
II.3	Ejemplos de cálculo de complejidad.			
III Element	tos de corrección de algoritmos			
III.1	Pruebas basadas en invariantes.			
III.2	Pruebas basadas en las propiedades de un TDA.			
IV Arregios	5			
IV.1	Instrumentación de arreglos: polinomios de direccionamiento vectores de Iliffe.			
IV.2	Arreglos empacados.			
V Recursió	ón			
V.1	Estrategia divide y vencerás, solución de problemas mediante recursión.			
V.2	Búsqueda con retroceso mínimo ({backtrack}).			
VI Listas				
VI.1	TDA Lista, definición, alternativas de instrumentación.			
VI.2	Inserción, remoción y recuperación de elementos en una Lista.			

VI.3	Variantes de lista: ligadura doble, circular, etc.				
VI.4	Complejidad de operaciones, iterador.				
VI.4	Aplicaciones.				
VII Pilas	Aplicaciones.				
VII.1	TDA Pila definición alternativas de instrumentación				
VII.1	TDA Pila, definición, alternativas de instrumentación.				
VII.2	Inserción, remoción y recuperación de elementos en una Pila.				
VIII Colas	Aplicaciones.				
VIII Colas	TDA Cola, definición, alternativas de instrumentación.				
VIII.1	Inserción, remoción y recuperación de elementos en una Cola.				
VIII.2	Aplicaciones.				
IX Árboles	•				
IX Arboles	Ţ				
X Árboles	Concepto de Árbol, conceptos relacionados, TDA, instrumentación y aplicaciones.				
X.1	Conceptos y cotas relacionadas con árboles binarios, TDA.				
X.2	Instrumentaciones de árboles binarios.				
X.3	Recorridos.				
X.4	Aplicaciones.				
	s binarios de búsqueda				
XI.1	Definición, propiedades y TDA.				
XI.2	Algoritmos de inserción, remoción y recuperación de elementos, complejidad.				
XI.3	Aplicaciones.				
	s de búsqueda balanceados				
XII.1	Motivación, definición, propiedades y TDA.				
XII.2	Árboles AVL, árboles rojinegros, definición, propiedades y TDA.				
XII.3	Algoritmos de inserción, remoción y recuperación de elementos conservando el balanceo.				
XII.4	Análisis de complejidad.				
XII.5	Aplicaciones.				
XIII Funcio	ones y tablas de dispersión (<i>hash</i>)				
XIII.1	Motivación, diseño de funciones de dispersión.				
XIII.2	Colisiones y su manejo.				
XIV Heaps	S				
XIV.1	Definición, propiedades y TDA.				
XIV.2	Algoritmos de inserción, remoción y recuperación de elementos.				
XIV.3	Análisis de complejidad.				
XIV.4	Aplicaciones.				
XV Algorit	mos de ordenamiento				
XV.1	Métodos elementales de complejidad cuadrática: inserción, selección, burbuja.				
XV.2	Métodos eficientes: Shellsort, Heapsort, Quicksort y Mergesort.				
XV.3	Análisis de complejidad.				
XVI Algori	tmos en gráficas				
XVI.1	Representación de gráficas, complejidad de espacio.				

XVI.2	Recorridos elementales: en amplitud (BFS) y a profundidad (DFS).
XVI.3	Rutas más cortas: algoritmo de Dijkstra y Floyd.
XVI.4	Árbol generador de peso mínimo, algoritmos de Prim y Kruskal.

Bibliografía básica:

- 1. Carrano, Frank M. y Janet J. Prichard, *Data Abstraction and Problem Solving with Java*, 2a ed., Addison Wesley, 2005.
- 2. Goldman Sally y Kenneth J. Goldman, *A Practical Guide to Data Structures and Algorithms Using Java*, Chapman & Hall CRC Press, 2007.
- 3. Skiena, Steven S., The Algorithm Design Manual, 2a ed. Springer, 2008.

Bibliografía complementaria:

- 1. Brass, Peter, Advanced Data Structures, Cambridge University Press, 2008.
- 2. Cormen, Thomas H., Charles E. Leiserson, Ronald R. Rivest y Clifford Stein, *Introduction to Algorithms*, 3a ed. MIT Press, 2009.
- 3. Gamma, Erich, Richard Helm, Ralph Johnson y John M. Vlissides, *Design Patterns: Elements of Reusable Object-Oriented Software*, Addison-Wesley Professional, 1994.
- 4. Preiss, Bruno R., *Data Structures and Algorithms with Object-Oriented Design Patterns in Java*, Wiley, 1999.

Sugerencias didácticas:		Métodos de evaluación:	
Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios Lecturas obligatorias Trabajo de investigación	(X) (X) (X) (X) ()	Exámenes parciales Examen final escrito Trabajos y tareas fuera del aula Exposición de seminarios por los alumnos Participación en clase Asistencia Seminario	(X) (X) (X) () ()
Prácticas de taller o laboratorio Prácticas de campo Otras:	(X) ()	Otras: Prácticas de laboratorio. Proyecto final o programación.	de

Perfil profesiográfico:

Egresado preferentemente de la Licenciatura en Ciencias de la Computación o Matemático con especialidad en Computación con amplia experiencia de programación. Es conveniente que posea estudios de posgrado en la disciplina. Con experiencia docente.