PhD Research Diary

Mayank Keoliya

Started: March 28, 2025

Last Updated: March 28, 2025

Contents

1	Res	Research Overview 2							
	1.1	Research Objectives							
2	Literature Review 3								
	2.1	AI in Healthcare: Overview							
	2.2	Sepsis Prediction Landscape							
		2.2.1 Current Challenges							
		2.2.2 Key Methodological Approaches							
	2.3	Systematic Review Insights							
	2.4	Emerging Research Directions							
3	Res	earch Meetings and Collaborations 5							
	3.1	Advisor Meetings							
		3.1.1 Meeting Log Template							
	3.2	Collaboration Network							
	3.3	Research Alignment							
4	Res	earch Experiments 7							
	4.1	Experimental Framework							
		4.1.1 Research Focus Areas							
	4.2	Experiment Tracking Template							
	4.3	Preliminary Experimental Directions							
5	Car	eer Development 9							
	5.1	Research Grants and Funding							
	5.2	Professional Development							
	5.3	Career Trajectory							
	5.4	Logistics							
	5.5	Skills							
	5.6	People							
		5.6.1 Academia							
		5.6.2 Industry							
	5.7	Conferences							
	5.8	Papers							
		5.8.1 Survey							
		5.8.2 XAI							
		5.8.3 Foundation Models							

Research Overview

1.1 Research Objectives

- **Primary Research Question:** How can AI improve diagnostic accuracy in health-care?
- Key Research Domains:
 - 1. Medical image analysis using deep learning
 - 2. Predictive risk assessment models
 - 3. Ethical AI in healthcare applications
- Anticipated Contributions:
 - Develop novel AI algorithms for medical diagnostics
 - Improve interpretability of medical AI systems
 - Address potential bias in healthcare AI

Literature Review

2.1 AI in Healthcare: Overview

The field of Artificial Intelligence in healthcare is rapidly evolving, with significant advances in:

- Predictive diagnostic models [1]
- Multimodal data integration
- Explainable AI techniques

2.2 Sepsis Prediction Landscape

2.2.1 Current Challenges

- Limited external validation of existing models
- Small sample sizes in most studies
- Lack of multimodal approach

2.2.2 Key Methodological Approaches

- 1. Classical Machine Learning Models
- 2. Deep Learning Architectures
- 3. Transformer-based Models

2.3 Systematic Review Insights

Several systematic reviews highlight critical aspects of sepsis prediction:

- Time to treatment significantly impacts mortality
- Machine learning shows promise in early detection
- Current models require substantial improvement in generalizability

2.4 Emerging Research Directions

- Multimodal Explanation Techniques
- Time-series Explanation Methods
- Concept-based Interpretability

Continuously update with latest research findings

Research Meetings and Collaborations

3.1 Advisor Meetings

3.1.1 Meeting Log Template

Date	Add specific meeting dates
Attendees	[Advisor Name(s), Collaborators]
Key Discus-	
sions	• Research direction refinement
	• Methodology challenges
	• Publication strategy
Action Items	
	Literature review update
	• Experiment design
	Manuscript preparation

3.2 Collaboration Network

- Clinical Collaborators:
 - Penn Medicine
 - Clinicians specializing in sepsis research
- Interdisciplinary Connections:
 - Machine Learning Researchers
 - Clinical Informaticists

3.3 Research Alignment

Key research objectives discussed with advisors:

- 1. Develop trustworthy AI models for critical healthcare applications
- 2. Enable multimodal reasoning across clinical data sources
- 3. Ensure model explainability for high-stakes decisions

Update with specific meeting details and outcomes

Research Experiments

4.1 Experimental Framework

4.1.1 Research Focus Areas

- Early Sepsis Detection
- Multimodal AI Explanations
- Treatment Recommendation Systems

4.2 Experiment Tracking Template

Experiment ID	
	Assign unique identifier
Hypothesis	Developing explainable AI models improves clinical decision-
	making
Methodology	
	Multimodal data integration
	• Transformer-based architectures
	• Concept-based explanations
Data Sources	
	• Electronic Health Records
	• Time-series clinical data
	Multi-modal patient information
Key Metrics	
	Model accuracy
	• Explanation faithfulness
	Clinical utility

4.3 Preliminary Experimental Directions

- 1. Develop novel explanation frameworks
- 2. Create multimodal reasoning mechanisms
- 3. Validate model performance across diverse clinical contexts

Detailed experiment protocols to be developed

Career Development

5.1 Research Grants and Funding

- Current Grant:
 - Developing Trustworthy AI for Early Sepsis Detection
 - Lead PhD Student on Institutional Research Grant
- Potential Funding Opportunities:
 - NIH Research Grants
 - NSF Computing Innovations Fellowships
 - Institutional Research Support

5.2 Professional Development

- 1. Technical Skills Enhancement
 - Advanced Machine Learning Techniques
 - Clinical Informatics
 - Ethical AI Development
- 2. Soft Skills Development
 - Scientific Communication
 - Interdisciplinary Collaboration
 - Research Ethics

5.3 Career Trajectory

- Short-term Goals:
 - Complete PhD with impactful research
 - Publish in top-tier conferences/journals

- Develop industry and academic network

• Long-term Aspirations:

- Lead AI research in healthcare
- Bridge machine learning and clinical practice
- Contribute to ethical AI development

Regularly update career development plan

5.4 Logistics

[Logistics](Research/AI for Healthcare/Logistics.md)

5.5 Skills

Must read:

- https://arxiv.org/pdf/2409.10580
- http://proceedings.mlr.press/v119/rieger20a.html
- https://adelaidehsu.github.io/
- https://www.nature.com/articles/s42256-019-0048-x

Conferences:

- ML4H
- AAAI Symposium
- JAMA AI

5.6 People

5.6.1 Academia

Name	Institution	Field	
Emily Alsentzer			
Bin Yu	UCB	LITERALLY WHAT I DO	
Cynthia Rudin			
Peter Solovitz	MIT	Clinical Decision Making (CDM)	
John Guttag	MIT	Adverse-Event Prediction, Treatment Suggestion	
David Sontag	MIT		
Pranav Rajpurkar	Harvard	Foundation Models, Generalist MAI, GMAI	
Hima Lakkaraju	Harvard	XAI	
Zak Kohane	Harvard	CDM, genomic rare diseases	

Nigam Shah	Stanford	GreenButton, Atropos Health
Saurabh Gombar	Stanford	
Purvesh Khatri	Stanford	
Dokyoon Kim	Penn	Multiomics data
Suchi Saria	JHU	Bayesian startup
Su-in Lee	UWash	everything!
Anshul Kundaje	Stanford	Immunology
Sanmi Koyejo	UIUC	Google
Irene Y Chen	UCB	Equitable AI
Matthew Abraham	Princeton	MedARC
Zhi Huang	Penn	
Ahmed Alaa	UCB	

5.6.2 Industry

Institution	Name	Contacted?
Microsoft Health	Matthew Lungren	
	Chandan Singh	
	Hoifung Poon	Y
	Tristan Naumann	Y
Google Health	Stephen Pfohl	
	Mayank Daswani	
	Chirag Nagpal	
	Priya Gupta	
	Khaled Saab	
	Wei-Hung Weng	
	Ryutaro Tanno	
a16z	Julie Yoo	
a16z	Vijay Pande	
Layer Health	David Sontag	
Apple Health		
Genesis Therapeutics		
PictureHealthAI		
JoriAI		

5.7 Conferences

SAIL (https://sail.health/)

e AI for Healthcare (https://sites.google.com/view/imlh2023/home?authuser=1)

 $\rm ML4H~(https://ml4h.cc)$

5.8 Papers

5.8.1 Survey

Scoping Evaluation (https://www.medrxiv.org/content/10.1101/2023.09.12.23295381v1)

5.8.2 XAI

I for Chest X-rays (https://www.nature.com/articles/s42256-022-00536-x)

currence prediction (https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(23)00377-2/fulltext)

el for Heart Failure (https://arxiv.org/abs/2310.15472)

5.8.3 Foundation Models

Todels for Medicine (https://www.nature.com/articles/s41586-023-05881-4)

medical literature (https://www.medrxiv.org/cgi/content/short/2023.06.07.23291119v1)

NEJM Catalyst (https://catalyst.nejm.org/doi/full/10.1056/CAT.21.0224)

Bibliography

[1] E. Researcher, "Optimizing artificial intelligence in sepsis management: Opportunities in the present and looking closely to the future," *Artificial Intelligence in Medicine*, 2024.