▶ If $A \in \mathbb{R}^{m \times n}$, then it as m rows and n columns

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_j & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

- ▶ If $A \in \mathbb{R}^{m \times n}$, then it as m rows and n columns
- ▶ The j^{th} column vector is denoted \mathbf{a}_i

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_j & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

- ▶ If $A \in \mathbb{R}^{m \times n}$, then it as m rows and n columns
- ▶ The j^{th} column vector is denoted \mathbf{a}_i
- ▶ There are *n* column vectors, where each \mathbf{a}_i is in \mathbb{R}^m

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_j & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

- ▶ If $A \in \mathbb{R}^{m \times n}$, then it as m rows and n columns
- ▶ The j^{th} column vector is denoted \mathbf{a}_i
- ▶ There are *n* column vectors, where each \mathbf{a}_i is in \mathbb{R}^m
- ▶ The entry in the i^{th} row and j^{th} column, is called a_{ij} .

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_j & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

- ▶ If $A \in \mathbb{R}^{m \times n}$, then it as m rows and n columns
- ▶ The j^{th} column vector is denoted \mathbf{a}_j
- ▶ There are *n* column vectors, where each \mathbf{a}_i is in \mathbb{R}^m
- ▶ The entry in the i^{th} row and j^{th} column, is called a_{ij} .

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_j & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

- ▶ If $A \in \mathbb{R}^{m \times n}$, then it as m rows and n columns
- ▶ The j^{th} column vector is denoted \mathbf{a}_i
- ▶ There are *n* column vectors, where each \mathbf{a}_i is in \mathbb{R}^m
- ▶ The entry in the i^{th} row and j^{th} column, is called a_{ij} .

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_j & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

- ▶ If $A \in \mathbb{R}^{m \times n}$, then it as m rows and n columns
- ▶ The j^{th} column vector is denoted \mathbf{a}_i
- ▶ There are *n* column vectors, where each \mathbf{a}_i is in \mathbb{R}^m
- ▶ The entry in the i^{th} row and j^{th} column, is called a_{ij} .
- ▶ We always list the row index first then the column

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_j & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

- ▶ If $A \in \mathbb{R}^{m \times n}$, then it as m rows and n columns
- ▶ The j^{th} column vector is denoted \mathbf{a}_i
- ▶ There are *n* column vectors, where each \mathbf{a}_i is in \mathbb{R}^m
- ▶ The entry in the i^{th} row and j^{th} column, is called a_{ij} .
- ▶ We always list the row index first then the column
- ▶ Note that in Python indexing starts at 0 while we use 1 here

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_j & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

 \triangleright Zero Matrix: A matrix with entries all equal to 0. Sometimes denoted $0_{m \times n}$

$$0_{2\times3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- \triangleright Zero Matrix: A matrix with entries all equal to 0. Sometimes denoted $0_{m\times n}$
- ► Square Matrix: A matrix with the same number of rows and columns. (m=n)

$$0_{2\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 5 & 1 \\ 0 & 1 & 4 \end{bmatrix}$$

- \triangleright Zero Matrix: A matrix with entries all equal to 0. Sometimes denoted $0_{m\times n}$
- ▶ Square Matrix: A matrix with the same number of rows and columns. (m=n)
- **Diagonal Elements**: Elements with the same row and column index. (a_{ii})

$$0_{2\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 5 & 1 \\ 0 & 1 & 4 \end{bmatrix}$$

- \triangleright Zero Matrix: A matrix with entries all equal to 0. Sometimes denoted $0_{m \times n}$
- ▶ Square Matrix: A matrix with the same number of rows and columns. (m=n)
- Diagonal Elements: Elements with the same row and column index. (aii)
- Diagonal Matrix: A matrix with all elements NOT on the diagonal equal to 0

$$0_{2\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 5 & 1 \\ 0 & 1 & 4 \end{bmatrix} \qquad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

- \triangleright Zero Matrix: A matrix with entries all equal to 0. Sometimes denoted $0_{m\times n}$
- ▶ Square Matrix: A matrix with the same number of rows and columns. (m=n)
- \triangleright Diagonal Elements: Elements with the same row and column index. (a_{ii})
- ▶ Diagonal Matrix: A matrix with all elements NOT on the diagonal equal to 0
- ▶ Identity Matrix: A diagonal matrix with ones on the diagonal. If there are n rows and columns, then we use I_n

$$0_{2\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 5 & 1 \\ 0 & 1 & 4 \end{bmatrix} \qquad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- \triangleright Zero Matrix: A matrix with entries all equal to 0. Sometimes denoted $0_{m\times n}$
- ▶ Square Matrix: A matrix with the same number of rows and columns. (m=n)
- ▶ Diagonal Elements: Elements with the same row and column index. (aii)
- Diagonal Matrix: A matrix with all elements NOT on the diagonal equal to 0
- ldentity Matrix: A diagonal matrix with ones on the diagonal. If there are n rows and columns, then we use I_n
- **Symmetric Matrix**: A matrix satisfying $a_{ii} = a_{ii}$ for all valid i, j.

$$0_{2\times3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 5 & 1 \\ 0 & 1 & 4 \end{bmatrix} \qquad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 8 \\ 3 & 8 & 7 \end{bmatrix}$$

- \triangleright Zero Matrix: A matrix with entries all equal to 0. Sometimes denoted $0_{m\times n}$
- ▶ Square Matrix: A matrix with the same number of rows and columns. (m=n)
- Diagonal Elements: Elements with the same row and column index. (aii)
- Diagonal Matrix: A matrix with all elements NOT on the diagonal equal to 0
- ldentity Matrix: A diagonal matrix with ones on the diagonal. If there are n rows and columns, then we use I_n
- Symmetric Matrix: A matrix satisfying $a_{ij} = a_{ji}$ for all valid i, j. (So, it must also be square!)

$$0_{2\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 5 & 1 \\ 0 & 1 & 4 \end{bmatrix} \qquad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 8 \\ 3 & 8 & 7 \end{bmatrix}$$

Let $A,B\in\mathbb{R}^{m\times n}$ (same size and shape!). The sum, C=A+B is defined as $c_{ij}=a_{ij}+b_{ij}$

▶ Let $A, B \in \mathbb{R}^{m \times n}$ (same size and shape!). The sum, C = A + B is defined as

$$c_{ij} = a_{ij} + b_{ij}$$

▶ Let $A \in \mathbb{R}^{m \times n}$ and r be a scalar. The scalar multiple, C = rA is defined as

$$c_{ij} = r \cdot a_{ij}$$

▶ Let $A, B \in \mathbb{R}^{m \times n}$ (same size and shape!). The sum, C = A + B is defined as

$$c_{ij} = a_{ij} + b_{ij}$$

Let $A \in \mathbb{R}^{m \times n}$ and r be a scalar. The scalar multiple, C = rA is defined as

$$c_{ij} = r \cdot a_{ij}$$

▶ Two matrices, $A \in \mathbb{R}^{m_1 \times n_1}$ and $B \in \mathbb{R}^{m_2 \times n_2}$ are equal if 1. $m_1 = m_2$

▶ Let $A, B \in \mathbb{R}^{m \times n}$ (same size and shape!). The sum, C = A + B is defined as

$$c_{ij} = a_{ij} + b_{ij}$$

Let $A \in \mathbb{R}^{m \times n}$ and r be a scalar. The scalar multiple, C = rA is defined as

$$c_{ij} = r \cdot a_{ij}$$

- ▶ Two matrices, $A \in \mathbb{R}^{m_1 \times n_1}$ and $B \in \mathbb{R}^{m_2 \times n_2}$ are equal if
 - 1. $m_1 = m_2$
 - 2. $n_1 = n_2$ and

▶ Let $A, B \in \mathbb{R}^{m \times n}$ (same size and shape!). The sum, C = A + B is defined as

$$c_{ij} = a_{ij} + b_{ij}$$

Let $A \in \mathbb{R}^{m \times n}$ and r be a scalar. The scalar multiple, C = rA is defined as

$$c_{ij} = r \cdot a_{ij}$$

- ▶ Two matrices, $A \in \mathbb{R}^{m_1 \times n_1}$ and $B \in \mathbb{R}^{m_2 \times n_2}$ are equal if
 - 1. $m_1 = m_2$
 - 2. $n_1 = n_2$ and
 - 3. $a_{ij} = b_{ij}$ for all i, j.

▶ Let $A, B \in \mathbb{R}^{m \times n}$ (same size and shape!). The sum, C = A + B is defined as

$$c_{ij} = a_{ij} + b_{ij}$$

Let $A \in \mathbb{R}^{m \times n}$ and r be a scalar. The scalar multiple, C = rA is defined as

$$c_{ij} = r \cdot a_{ij}$$

- ▶ Two matrices, $A \in \mathbb{R}^{m_1 \times n_1}$ and $B \in \mathbb{R}^{m_2 \times n_2}$ are equal if
 - 1. $m_1 = m_2$
 - 2. $n_1 = n_2$ and
 - 3. $a_{ij} = b_{ij}$ for all i, j.

Example

Let
$$A = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 2 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 4 & 2 \end{bmatrix}$. Compute $2A - B$.

For each of the following properties, let $A,B,C\in\mathbb{R}^{m imes n}$, and r,s be scalars

1. A + B = B + A

- 1. A + B = B + A
- 2. (A + B) + C = A + (B + C)

- 1. A + B = B + A
- 2. (A + B) + C = A + (B + C)
- 3. $A + 0_{m \times n} = A$

$$1. \ A+B=B+A$$

$$4. \ r(A+B) = rA + rB$$

2.
$$(A + B) + C = A + (B + C)$$

$$3. A + 0_{m \times n} = A$$

1.
$$A + B = B + A$$

$$4. \ \ r(A+B)=rA+rB$$

2.
$$(A + B) + C = A + (B + C)$$

$$5. (r+s)A = rA + sA$$

3.
$$A + 0_{m \times n} = A$$

1.
$$A + B = B + A$$

2.
$$(A+B)+C=A+(B+C)$$

3.
$$A + 0_{m \times n} = A$$

4.
$$r(A + B) = rA + rB$$

$$5. (r+s)A = rA + sA$$

6.
$$(r)sA = (rs)A$$

The Transpose

Definition

Let $A \in \mathbb{R}^{m \times n}$. The transpose of A, denoted $A^{\top} \in \mathbb{R}^{n \times m}$ is the matrix with columns formed from rows of A. IE:

$$a_{ij}^{\top}=a_{ji}$$

for all valid i, j.

The Transpose

Definition

Let $A \in \mathbb{R}^{m \times n}$. The transpose of A, denoted $A^{\top} \in \mathbb{R}^{n \times m}$ is the matrix with columns formed from rows of A. IE:

$$a_{ij}^{\top}=a_{ji}$$

for all valid i, j.

Example

Give the transpose of

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & -5 & -6 \end{bmatrix}$$

The Transpose

Definition

Let $A \in \mathbb{R}^{m \times n}$. The transpose of A, denoted $A^{\top} \in \mathbb{R}^{n \times m}$ is the matrix with columns formed from rows of A. IE:

$$a_{ij}^{\top}=a_{ji}$$

for all valid i, j.

Example

Give the transpose of

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & -5 & -6 \end{bmatrix}$$

$$A^{\top} = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix}$$

Definition

Composition of Linear Transformations: Let $T: \mathbb{R}^m \to \mathbb{R}^p$ and $S: \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations defined by

$$T(\mathbf{y}) = A\mathbf{y}$$
 and $S(\mathbf{x}) = B\mathbf{x}$

Definition

Composition of Linear Transformations: Let $T: \mathbb{R}^m \to \mathbb{R}^p$ and $S: \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations defined by

$$T(\mathbf{y}) = A\mathbf{y}$$
 and $S(\mathbf{x}) = B\mathbf{x}$

then we define the composition of T and S to be

$$(T \circ S)(\mathbf{x}) = T(S(\mathbf{x}))$$

Definition

Composition of Linear Transformations: Let $T: \mathbb{R}^m \to \mathbb{R}^p$ and $S: \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations defined by

$$T(\mathbf{y}) = A\mathbf{y}$$
 and $S(\mathbf{x}) = B\mathbf{x}$

then we define the composition of T and S to be

$$(T \circ S)(\mathbf{x}) = T(S(\mathbf{x})) = A(B\mathbf{x})$$

Definition

Composition of Linear Transformations: Let $T: \mathbb{R}^m \to \mathbb{R}^p$ and $S: \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations defined by

$$T(\mathbf{y}) = A\mathbf{y}$$
 and $S(\mathbf{x}) = B\mathbf{x}$

then we define the composition of T and S to be

$$(T \circ S)(\mathbf{x}) = T(S(\mathbf{x})) = A(B\mathbf{x}) = AB\mathbf{x}$$

Definition

Composition of Linear Transformations: Let $T: \mathbb{R}^m \to \mathbb{R}^p$ and $S: \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations defined by

$$T(\mathbf{y}) = A\mathbf{y}$$
 and $S(\mathbf{x}) = B\mathbf{x}$

then we define the composition of T and S to be

$$(T \circ S)(\mathbf{x}) = T(S(\mathbf{x})) = A(B\mathbf{x}) = AB\mathbf{x}$$

Note: AB is only defined with A has the same number of rows as B has columns

Matrix Multiplication

Definition

Matrix Product: Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. We define the product of two matrices C = AB to be the matrix such that for all $\mathbf{x} \in \mathbb{R}^p$ such that $C\mathbf{x} = A(B\mathbf{x})$.

Definition

Matrix Product: Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. We define the product of two matrices C = AB to be the matrix such that for all $\mathbf{x} \in \mathbb{R}^p$ such that $C\mathbf{x} = A(B\mathbf{x})$.

There are 3 main ways to compute the matrix product, AB.

Definition

Matrix Product: Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. We define the product of two matrices C = AB to be the matrix such that for all $\mathbf{x} \in \mathbb{R}^p$ such that $C\mathbf{x} = A(B\mathbf{x})$.

There are 3 main ways to compute the matrix product, AB.

1. Column-wise

Definition

Matrix Product: Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. We define the product of two matrices C = AB to be the matrix such that for all $\mathbf{x} \in \mathbb{R}^p$ such that $C\mathbf{x} = A(B\mathbf{x})$.

There are 3 main ways to compute the matrix product, AB.

- 1. Column-wise
- 2. Component-wise

Definition

Matrix Product: Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. We define the product of two matrices C = AB to be the matrix such that for all $\mathbf{x} \in \mathbb{R}^p$ such that $C\mathbf{x} = A(B\mathbf{x})$.

There are 3 main ways to compute the matrix product, AB.

- 1. Column-wise
- 2. Component-wise
- 3. Sums of other matrices

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Then we define the matrix product as:

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$$

where $\mathbf{b}_k \in \mathbb{R}^n$ are the columns of B.

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Then we define the matrix product as:

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$$

where $\mathbf{b}_k \in \mathbb{R}^n$ are the columns of B.

Let
$$A = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Then

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Then we define the matrix product as:

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$$

where $\mathbf{b}_k \in \mathbb{R}^n$ are the columns of B.

Let
$$A = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Then

$$C = AB = \begin{bmatrix} \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} & \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} \end{bmatrix}$$

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Then we define the matrix product as:

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$$

where $\mathbf{b}_k \in \mathbb{R}^n$ are the columns of B.

Let
$$A = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Then

$$C = AB = \begin{bmatrix} \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \\ 0 \end{bmatrix}$$

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Then we define the matrix product as:

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$$

where $\mathbf{b}_k \in \mathbb{R}^n$ are the columns of B.

Let
$$A = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Then

$$C = AB = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} -2 & -15 \\ -1 & -18 \\ 0 & -21 \end{bmatrix}$$

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Then we define the matrix product as the matrix C = AB where for all i, j:

$$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}$$

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Then we define the matrix product as the matrix C = AB where for all i, j:

$$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}$$

Let
$$A = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Then

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Then we define the matrix product as the matrix C = AB where for all i, j:

$$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}$$

Let
$$A = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Then

$$C = AB = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{bmatrix}$$

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Then we define the matrix product as the matrix C = AB where for all i, j:

$$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}$$

Let
$$A = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Then

$$C = AB = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{bmatrix} = \begin{bmatrix} 1 \cdot 2 + -4 \cdot 1 & 1 \cdot 1 + -4 \cdot 4 \\ 2 \cdot 2 + -5 \cdot 1 & 2 \cdot 1 + -5 \cdot 4 \\ 3 \cdot 2 + -6 \cdot 1 & 3 \cdot 1 + -6 \cdot 4 \end{bmatrix}$$

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Then we define the matrix product as the matrix C = AB where for all i, j:

$$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}$$

Let
$$A = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Then

$$C = AB = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{bmatrix} = \begin{bmatrix} 1 \cdot 2 + -4 \cdot 1 & 1 \cdot 1 + -4 \cdot 4 \\ 2 \cdot 2 + -5 \cdot 1 & 2 \cdot 1 + -5 \cdot 4 \\ 3 \cdot 2 + -6 \cdot 1 & 3 \cdot 1 + -6 \cdot 4 \end{bmatrix} = \begin{bmatrix} -2 & -15 \\ -1 & -18 \\ 0 & -21 \end{bmatrix}$$

Matrix Multiplication Method 3 (Sums of other matrices)

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Then we define the matrix product as:

$$AB = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} \mathbf{b}_1^{\top} \\ \vdots \\ \mathbf{b}_n^{\top} \end{bmatrix} = \mathbf{a}_1 \mathbf{b}_1^{\top} + \dots + \mathbf{a}_n \mathbf{b}_n^{\top}$$

where $\mathbf{a}_i \in \mathbb{R}^{m \times 1}$ are the columns of A and $\mathbf{b}_j^{\top} \in \mathbb{R}^{1 \times p}$ are the rows of B (columns of B^{\top} !)

Matrix Multiplication Method 3 (Sums of other matrices)

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$. Then we define the matrix product as:

$$AB = \begin{bmatrix} \mathbf{a}_1 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} \mathbf{b}_1^{\top} \\ \vdots \\ \mathbf{b}_n^{\top} \end{bmatrix} = \mathbf{a}_1 \mathbf{b}_1^{\top} + \dots + \mathbf{a}_n \mathbf{b}_n^{\top}$$

where $\mathbf{a}_i \in \mathbb{R}^{m \times 1}$ are the columns of A and $\mathbf{b}_i^{\top} \in \mathbb{R}^{1 \times p}$ are the rows of B (columns of B^{\top} !)

Let
$$A = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Then

Let
$$A = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Then

$$C = AB = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix} + \begin{bmatrix} -4 \\ -5 \\ -6 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Then

$$C = AB = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix} + \begin{bmatrix} -4 \\ -5 \\ -6 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Then

$$C = AB = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix} + \begin{bmatrix} -4 \\ -5 \\ -6 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \\ 6 & 3 \end{bmatrix} + \begin{bmatrix} -4 & -16 \\ -5 & -20 \\ -6 & -24 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 1 & -4 \\ 2 & -5 \\ 3 & -6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$. Then

$$C = AB = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix} + \begin{bmatrix} -4 \\ -5 \\ -6 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \\ 6 & 3 \end{bmatrix} + \begin{bmatrix} -4 & -16 \\ -5 & -20 \\ -6 & -24 \end{bmatrix} = \begin{bmatrix} -2 & -15 \\ -1 & -18 \\ 0 & -21 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

1. For which matrices is addition with A defined?

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

- 1. For which matrices is addition with A defined?
- 2. For which matrices is addition with B defined?

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

- 1. For which matrices is addition with A defined?
- 2. For which matrices is addition with B defined?
- 3. For which matrices is addition with C defined?

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

- 1. For which matrices is addition with A defined?
- 2. For which matrices is addition with B defined?
- 3. For which matrices is addition with C defined?
- 4. For which matrices is multiplication with A defined?

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

- 1. For which matrices is addition with A defined?
- 2. For which matrices is addition with B defined?
- 3. For which matrices is addition with C defined?
- 4. For which matrices is multiplication with A defined?
- 5. For which matrices is multiplication with *B* defined?

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

- 1. For which matrices is addition with A defined?
- 2. For which matrices is addition with B defined?
- 3. For which matrices is addition with C defined?
- 4. For which matrices is multiplication with A defined?
- 5. For which matrices is multiplication with B defined?
- 6. For which matrices is multiplication with C defined?

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

Compute (if possible):

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

Compute (if possible):

1. AF

This is defined!

2. *FA*

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

Compute (if possible):

1. AF

2. FA

This is defined!

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

Compute (if possible):

1. AF

This is defined!

$$AF = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

2. *FA*

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

Compute (if possible):

1. AF

This is defined!

$$AF = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \end{bmatrix}$$

2. *FA*

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

Compute (if possible):

AF

This is defined!

FA

$$AF = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 12 \\ -1 & -4 \\ 1 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 4 & 6 \\ 2 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

Compute (if possible):

AF

This is defined!

2. *FA*

$$AF = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 12 \\ -1 & -4 \\ 1 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 4 & 6 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 12 \\ 3 & 2 \\ 3 & 7 \end{bmatrix}$$

Now You Try!

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

1. *BF*

2. *FB*

Now You Try!

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

1. BF

$$BF = \begin{bmatrix} 2 & 13 \\ 4 & 6 \end{bmatrix}$$

2. *FB*

Now You Try!

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E = \begin{bmatrix} 4 & 6 \\ 0 & 3 \\ 1 & 0 \end{bmatrix}, F = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

1. BF

$$BF = \begin{bmatrix} 2 & 13 \\ 4 & 6 \end{bmatrix}$$

2. FB

$$FB = \begin{bmatrix} 4 & 7 \\ 8 & 4 \end{bmatrix}$$

Let
$$A, B \in \mathbb{R}^{m \times n}$$
, $C \in \mathbb{R}^{n \times p}$, and r be a scalar.

1.
$$(A^{\top})^{\top} = A$$

Let
$$A, B \in \mathbb{R}^{m \times n}$$
, $C \in \mathbb{R}^{n \times p}$, and r be a scalar.

1.
$$(A^{\top})^{\top} = A$$

2.
$$(A + B)^{\top} = A^{\top} + B^{\top}$$

Let
$$A, B \in \mathbb{R}^{m \times n}$$
, $C \in \mathbb{R}^{n \times p}$, and r be a scalar.

1.
$$(A^{\top})^{\top} = A$$

2.
$$(A + B)^{\top} = A^{\top} + B^{\top}$$

3.
$$(rA)^{\top} = rA^{\top}$$

Let $A, B \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{n \times p}$, and r be a scalar.

1.
$$(A^{\top})^{\top} = A$$

2.
$$(A + B)^{\top} = A^{\top} + B^{\top}$$

3.
$$(rA)^{\top} = rA^{\top}$$

4.
$$(AB)^{\top} = B^{\top}A^{\top}$$