Introduction to Logic

Problem 3.1 - Fitch System

Given $(p \Rightarrow \neg q)$ and $(\neg q \land p \Rightarrow r)$ and p, use the Fitch System to prove r.

Start from the given premises. Apply rules of inference by checking the lines you wish to use as premises and click the button for the desired rule of inference. Reiteration allows you to repeat an earlier item. To delete one or more lines from a proof, check the desired lines and click Delete. Whenever entering expressions, use Ascii characters only. Use \sim for \neg ; use & for \wedge ; use | for \vee ; use => for \Rightarrow ; and use <=> for \Leftrightarrow .

		Premise Premise Premise Implication Elimination: 1, 3 And Introduction: 4, 3 Implication Elimination: 2, 5
		Premise Premise Implication Elimination: 1, 3 And Introduction: 4, 3 Implication Elimination: 2, 5
		Premise Implication Elimination: 1, 3 And Introduction: 4, 3 Implication Elimination: 2, 5
		Implication Elimination: 1, 3 And Introduction: 4, 3 Implication Elimination: 2, 5
		And Introduction: 4, 3 Implication Elimination: 2, 5
		Implication Elimination: 2, 5
		Complete
		Complete
		Complete
remise	Negation Introduction	Implication Introduction
sumption	Negation Elimination	Implication Elimination
iteration	And Introduction	Biconditional Introduction
Delete	And Elimination	Biconditional Elimination
	Or Introduction	
	Or Elimination	
Rese	et Sh	ow XML
	Delete	Oelete And Elimination Or Introduction Or Elimination