Capítulo 11 | Regressão linear simples e correlação

11.1 Introdução à regressão linear

Uma forma razoável de relação entre a resposta Y e o regressor x é a relação linear

$$Y = \alpha + \beta x$$

onde, é claro, α é o intercepto e β é a inclinação. A relação está ilustrada na Figura 11.1.

11.2 O modelo de regressão linear simples

Modelo de regressão linear simples

A resposta Y está relacionada com a variável independente x por meio da equação

$$Y = \alpha + \beta x + \epsilon$$
.

Nesse caso, α e β são os parâmetros desconhecidos de inclinação e de intercepto, respectivamente, e ϵ é uma variável aleatória assumida como sendo distribuída com $E(\epsilon) = 0$ e $Var(\epsilon) = \sigma^2$. A quantidade σ^2 é freqüentemente chamada de variância do erro ou variância residual.

Figura 11.2 Dados hipotéticos (x, y) dispersos ao redor da reta de regressão real, para n = 5.

	Tabela 11.1 Medidas dos sólidos	s e demanda de oxigênio químio	0
Redução de sólidos, x (%)	Demanda de oxigê- nio químico, y (%)	Redução de sólidos, x (%)	Demanda de oxigê- nio químico, y (%)
3	5	36	34
7	11	37	36
11	21	38	38
15	16	39	37
18	16	39	36
27	28	39	45
29	27	40	39
30	25	41	41
30	35	42	40
31	30	42	44
31	40	43	37
32	32	44	44
33	34	45	46
33	32	46	46
34	34	47	49
36	37	50	51
36	38		

Figura 11.4 Observações individuais em torno da reta de regressão real.

11.3 Mínimos quadrados e o modelo ajustado

Resíduo: Erro no ajuste

Dado um conjunto de dados de regressão $[(x_i, y_i); i = 1, 2, ..., n]$ e um modelo ajustado, $\hat{y}_i = a + bx_i$, o *i-*ésimo resíduo e_i é dado por

$$e_i = y_i - \hat{y}_i, \quad i = 1, 2, ..., n.$$

Figura 11.5 Comparação de ϵ_i com o resíduo, ϵ_i .

Estimando os coeficientes de regressão

Dada a amostra $\{(x_i, y_i); i = 1, 2, ..., n_i\}$, as estimativas de mínimos quadrados, $a \in b$, dos coeficientes de regressão $\alpha \in \beta$ são calculadas das fórmulas

$$b = \frac{n \sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

e

$$a = \frac{\sum_{i=1}^{n} y_i - b \sum_{i=1}^{n} x_i}{n} = \bar{y} - b\bar{x}.$$

11.4 Propriedades dos estimadores de mínimos quadrados

Teorema 11.1

Uma estimativa não-viciada de σ^2 é

$$s^{2} = \frac{SQE}{n-2} = \sum_{i=1}^{n} \frac{(y_{i} - \hat{y}_{i})^{2}}{n-2} = \frac{S_{yy} - bS_{xy}}{n-2}.$$

11.5 Inferências sobre os coeficientes de regressão

Intervalo de confiança para eta

Um intervalo de confiança de $100(1-\alpha)\%$ para o parâmetro β da reta de regressão $\mu_{Y|x_0} = \alpha + \beta x$ é

$$b-t_{\alpha/2}\frac{s}{\sqrt{S_{xx}}}<\beta< b+t_{\alpha/2}\frac{s}{\sqrt{S_{xx}}},$$

```
Regression Analysis: COD versus Per Red
The regression equation is COD = 3,83 + 0,904
  Per Red
Predictor Coef SE Coef
                                     Ρ
                    1,768 2,17 0,038
Constant
            3,830
Per Red 0,90364 0,05012 18,03 0,000
S = 3,22954 R-Sq = 91,3% R-Sq(adj) = 91,0%
Analysis of Variance
               DF
Source
                       SS
                              MS
                                       F
                1 3390,6 3390,6 325,08 0,000
Regression
Residual Error 31
                    323,3
                            10,4
Total
                   3713,9
               32
```

Figura 11.7 Impressão *Minitab* do teste t para os dados do Exemplo 11.1.

Figura 11.9 A hipótese H_0 : $\beta = 0$ é rejeitada.

Intervalo de confiança para lpha

Um intervalo de confiança de $100(1-\alpha)\%$ para o parâmetro α da reta de regressão $\mu_{Y|x_0} = \alpha + \beta x$ é

$$\alpha - t_{\alpha/2} \frac{s\sqrt{\sum_{i=1}^{n} x_i^2}}{\sqrt{nS_{xx}}} < \alpha < \alpha + t_{\alpha/2} \frac{s\sqrt{\sum_{i=1}^{n} x_i^2}}{\sqrt{nS_{xx}}},$$

Figura 11.10 Gráficos mostrando um ajuste muito bom e um ajuste pobre.

11.6 Predição

Intervalo de confiança para $\mu_{Y|X_0}$

Um intervalo de confiança de $100(1-\alpha)\%$ para a resposta média $\mu_{Y|x_0}$ é

$$\hat{y_0} - t_{\alpha/2} s \sqrt{\frac{1}{n}} + \frac{(x_0 - \bar{x})^2}{S_{xx}} < \mu_{Y|x_0} <$$

$$\hat{y_0} + t_{\alpha/2} s \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}},$$

Intervalo de predição para y_n

Um intervalo de predição de $100(1 - \alpha)\%$ para uma única resposta y_0 é dado por

$$\hat{y}_0 - t_{\alpha/2} s \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}} < y_0 <$$

$$\hat{y}_0 + t_{\alpha/2} s \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}},$$

Figura 11.12 Intervalos de confiança e de predição para os dados da demanda de oxigênio químico; as faixas internas indicam os limites de confiança para as respostas médias e as faixas externas indicam os limites de predição para as respostas futuras.

	R	oot M	ISE		1,487	94 R-Sc	quare	0,9509		
	D	epend	dent Mea	n	21,500	000 Adj	R-Sq	0,9447		
				Param	neter Es	timates				
]	Parame	ter	Standar	d			
	Variable	:	DF	Estim	ate	Erro	r t	Value	Pr > t	
	Intercep	t	1	44,78	018	1,9291	9	23,21	< 0,0001	L
	WT		1	-0,00	686	0,0005513	3	-12,44	< 0,000	1
MODEL	WT	MPG	Predi	ct	LMean	UMean	I	Lpred	Upred	Residual
GMC	4520	15	13,77	20	11,9752	15,568	8	9,8988	17,6451	1,22804
Geo	2065	29	30,61	38	28,6063	32,621	.3 2	6,6385	34,5891	-1,61381
Honda	2440	31	28,04	12	26,4143	29,668	1 2	4,2439	31,8386	2,95877
Hyundai	2290	28	29,07	03	27,2967	30,843	8 2	5,2078	32,9327	-1,07026
Infinit	3195	23	22,86	18	21,7478	23,975	8 1	9,2543	26,4693	0,13825
Isuzu	3480	21	20,90	66	19,8160	21,997	2 1	7,3062	24,5069	0,09341
Jeep	4090	15	16,72	19	15,3213	18,122	4 1	3,0158	20,4279	-1,72185
Land	4535	13	13,66	91	11,8570	15,481	1	9,7888	17,5493	-0,66905
Lexus	3390	22	21,52	40	20,4390	22,609	1 1	7,9253	25,1227	0,47599
Lincoln	3930	18	17,81	95	16,5379	19,101	1 1	4,1568	21,4822	0,18051

Figura 11.13 Impressão SAS para o Exercício 11.29.

11.8 Abordagem da análise de variância

Tabela 11.2	Análise	de	variância	nara	testar B	= 0
iabeia i i.Z	Allalist	uС	variantia	para	iosiai p	_ 0

	Soma dos quadrados		•	f calculado
Regressão	SQR	1	SQR	$\frac{SQR}{s^2}$
Erro	SQE	n-2	$s^2 = \frac{SQE}{n-2}$	
Total	SQT	n-1	•	

11.9 Teste da linearidade da regressão: dados com observações repetidas

	The regre	ession equ	ation is (COD = 3,83 + 0,	904 Per_R	ed
	Predictor	r Coef	SE Coef	T P	_	
	Constant	3,830	1,768	2,17 0,038		
	Per Re	d 0,90364	0,05012	18,03 0,000		
	S = 3,2295	4 R-Sq =	91,3%	R=Sq(adj) = 91	,0%	
		Analy	sis of Va	riance		
	Source	DF	SS	MS F	P	
	Regressio	on 1	3390,6	3390,6 325,08	0,000	
	Residual	Error 31	323,3	10,4		
	Total	32	3713,9			
Obs	Per Red	COD	Fit	SE Fit	Residual	St Resid
1	3,0	5,000	6,541	1,627	-1,541	-0,55
2	36,0	34,000	36,361	0,576	-2,361	-0,74
3	7,0	11,000	10,155	1,440	0,845	0,29
4	37,0	36,000	37,264	0,590	-1,264	-0,40
5	11,0	21,000	13,770	1,258	7,230	2,43
6	38,0	38,000	38,168	0,607	-0,168	-0,05
7	15,0	16,000	17,384	1,082	-1,384	-0,45
8	39,0	37,000	39,072	0,627	-2,072	-0,65
9	18,0	16,000	20,095	0,957	-4,095	-1,33
10	39,0	36,000	39,072	0,627	-3,072	-0,97
11	27,0	28,000	28,228	0,649	-0,228	-0,07
12	39,0	45,000	39,072	0,627	5,928	1,87
13	29,0	27,000	30,035	0,605	-3,035	-0,96
14	40,0	39,000	39,975	0,651	-0,975	-0,31
15	30,0	25,000	30,939	0,588	-5,939	-1,87
16	41,0	41,000	40,879	0,678	0,121	0,04
17	30,0	35,000	30,939	0,588	4,061	1,28
18	42,0	40,000	41,783	0,707	-1,783	-0,57
19	31,0	30,000	31,843	0,575	-1,843	-0,58
20	42,0	44,000	41,783	0,707	2,217	0,70
21	31,0	40,000	31,843	0,575	8,157	2,57
22	43.0	37,000	42,686	0,738	-5,686	-1.81
23	32,0	32,000	32,746	0,567	-0,746	-0,23
24	44.0	44,000	43,590	0,772	0,410	0,13
25	33.0	34,000	33,650	0,563	0,350	0.11
26	45.0	46,000	44,494	0,807	1,506	0,48
27	33,0	32,000	33,650	0,563	-1.650	-0,52
28	46,0	46,000	45,397	- ,	0,603	0,19
29	34,0	34,000	34,554	0,563	-0,554	-0,17
30	47,0	49,000	46,301	0,881	2,699	0,87
31	36,0	37,000	36,361	0,576	0,639	0,20
3.2	50,0	51,000	49,012	1,002	1,988	0,65
3.3	36,0	38,000	36,361	0,576	1,639	0,52

Figura 11.14 Impressão Minitab da regressão linear simples para os dados sobre a demanda de oxigênio químico; parte l.

Obs	Fit	SE Fit	95% CI	95% PI
1	6,541	1,627	(3,223, 9,858)	(-0,834, 13,916)
2	36,361	0,576	(35,185, 37,537)	(29,670, 43,052)
3	10,155	1,440	(7,218, 13,092)	(2,943, 17,367)
4	37,264	0,590	(36,062, 38,467)	(30,569, 43,960)
5	13,770	1,258	(11,204, 16,335)	(6,701, 20,838)
6	38,168	0,607	(36,931, 39,405)	(31,466, 44,870)
7	17,384	1,082	(15,177, 19,592)	(10,438, 24,331)
8	39,072	0,627	(37,793, 40,351)	(32,362, 45,781)
9	20,095	0,957	(18,143, 22,047)	(13,225, 26,965)
10	39,072	0,627	(37,793, 40,351)	(32,362, 45,781)
11	28,228	0,649	(26,905, 29,551)	(21,510, 34,946)
12	39,072	0,627	(37,793, 40,351)	(32,362, 45,781)
13	30,035	0,605	(28,802, 31,269)	(23,334, 36,737)
14	39,975	0,651	(38,648, 41,303)	(33,256, 46,694)
15	30,939	0,588	(29,739, 32,139)	(24,244, 37,634)
16	40,879	0,678	(39,497, 42,261)	(34,149, 47,609)
17	30,939	0,588	(29,739, 32,139)	(24,244, 37,634)
18	41,783	0,707	(40,341, 43,224)	(35,040, 48,525)
19	31,843	0,575	(30,669, 33,016)	(25,152, 38,533)
20	41,783	0,707	(40,341, 43,224)	(35,040, 48,525)
21	31,843	0,575	(30,669, 33,016)	(25,152, 38,533)
22	42,686	0,738	(41,181, 44,192)	(35,930, 49,443)
23	32,746	0,567	(31,590, 33,902)	(26,059, 39,434)
24	43,590	0,772	(42,016, 45,164)	(36,818, 50,362)
25	33,650	0,563	(32,502, 34,797)	(26,964, 40,336)
26	44,494	0,807	(42,848, 46,139)	(37,704, 51,283)
27	33,650	0,563	(32,502, 34,797)	(26,964, 40,336)
28	45,397	0,843	(43,677, 47,117)	(38,590, 52,205)
29	34,554	0,563	(33,406, 35,701)	(27,868, 41,239)
30	46,301	0,881	(44,503, 48,099)	(39,473, 53,128)
31	36,361	0,576	(35,185, 37,537)	(29,670, 43,052)
32	49,012	1,002	(46,969, 51,055)	(42,115, 55,908)
33	36,361	0,576	(35,185, 37,537)	(29,670, 43,052)

Figura 11.15 Impressão Minitab para a regressão linear simples para os dados da demanda de oxigênio químico; parte II.

Cálculo da falta de ajuste na soma dos quadrados

1. Calcule a soma dos quadrados do erro puro

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2.$$

Essa soma dos quadrados tem n-k graus de liberdade associados a ela e a média quadrada resultante é o nosso estimador imparcial s^2 de σ^2 .

2. Subtraia a soma do erro puro dos quadrados da soma dos erros dos quadrados SQE e, com isso, obtenha a soma dos quadrados devida à falta de ajuste. Os graus de liberdade para a falta de ajuste também são obtidos simplesmente subtraindo-se (n-2) - (n-k) = k-2.

Tabela 11.3 Análise de variância para testar a linearidade da regressão					
Fonte de variação	Soma dos quadrados	Graus de liberdade	Quadrado médio	f calculado	
Erro de regressão	SQR SQE	$ \begin{array}{c} 1 \\ n-2 \end{array} $	SQR	SQR s ²	
Falta de ajuste Erro puro	$\begin{cases} SQE - SQE \text{ (puro)} \\ SQE \text{ (puro)} \end{cases}$	$\begin{cases} k-2\\ n-k \end{cases}$	$\frac{SQE - SQE \text{ (puro)}}{k-2}$ $s^2 = \frac{SQE \text{ (puro)}}{n-k}$	$\frac{SQE - SQE \text{ (puro)}}{s^2 (k-2)}$	
Total	SQT	n-1	_		

Figura 11.16 Modelo linear correto sem o componente da falta de ajuste.

Figura 11.17 Modelo linear incorreto com o componente da falta de ajuste.

Tabela 11.4 Dados para o Exemplo 11.8

y(%)	<i>x</i> (°C)	y(%)	$x(^{\circ}C)$
77,4	150	88,9	250
76,7	150	89,2	250
78,2	150	89,7	250
84,1	200	94,8	300
84,5	200	94,7	300
83,7	200	95,9	300

Tabela 11.5 Análise de variância dos dados de temperatura e rendimento						
Fonte da variação	Soma dos quadrados	Graus de liberdade	Quadrado médio	fcalculado	Valores P	
Regressão	590,2507	1	590,2507	1531,58	< 0,0001	
Erro	3,8660	10				
Falta de ajuste	J 1,2060	f 2	0,6030	1,81	0,2241	
Erro puro	2,6600) 8	0,3325			
Total	531,1167	11	_			

Dependent Variable: yield						
		Sum o	f			
Source	DF	Squares	Mean Square	F Value	Pr > F	
Model	3	510,4566667	170,1522222	511,74	<,0001	
Error	8	2,6600000	0,3325000			
Corrected Total	11	513,1166667				
R-Square	Co	eff Var Root	MSE yield Me	an		
0,994816	0	,666751 0,57	76628 86,483	33		
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
temperature	1	509,2506667	509,2506667	1531,58	<,0001	
LOF	2	1,2060000	0,6030000	1,81	0,2241	

Figura 11.18 Impressão SAS, mostrando a análise dos dados do Exemplo 11.8.

11.10 Gráficos dos dados e transformações

Tabela 11.6 Algumas transformações úteis para linearização.

Forma funcional relacionando y a x	Transformação apropriada	Forma da regressão linear simples
Exponencial: $y = \alpha e^{\beta x}$	$y^* = \ln y$	Regresse y* contra x
Potência: $y = \alpha x^{\beta}$	$y^* = \log y; x^* = \log x$	Regresse y^* contra x^*
Recíproca: $y = \alpha + \beta(\frac{1}{x})$	$x^* = \frac{1}{x}$	Regresse y contra x^*
Função hiperbólica: $y = \frac{x}{\alpha + \beta x}$	$y^* = \frac{1}{y}; x^* = \frac{1}{x}$	Regresse y^* contra x^*

Tabela 11.7 Dados para o Exemplo 11.9						
V (cm ³)	50	60	70	90	100	
P (kg/cm ²)	64,7	51,3	40,5	25,9	7,8	

Figura 11.20 Dados de pressão e volume e a regressão ajustada.

Figura 11.22 Representação dos resíduos que mostram variância do erro heterogênea.

11.11 Estudo de caso de regressão linear simples

Tabela 11.8 Densidade e rigidez para os 30 compensados

Densidade,	Rigidez,	Densidade,	Rigidez,
\boldsymbol{x}	$\boldsymbol{\mathcal{Y}}$	\boldsymbol{x}	${\mathcal Y}$
9,50	14.814,00	8,40	17.502,00
9,80	14.007,00	11,00	19.443,00
8,30	7.573,00	9,90	14.191,00
8,60	9.714,00	6,40	8.076,00
7,00	5.304,00	8,20	10.728,00
17,40	43.243,00	15,00	25.319,00
15,20	28.028,00	16,40	41.792,00
16,70	49.499,00	15,40	25.312,00
15,00	26.222,00	14,50	22.148,00
14,80	26.751,00	13,60	18.036,00
25,60	96.305,00	23,40	104.170,00
24,40	72.594,00	23,30	49.512,00
19,50	32.207,00	21,20	48.218,00
22,80	70.453,00	21,70	47.661,00
19,80	38.138,00	21,30	53.045,00

Figura 11.23 Gráfico de dispersão dos dados da densidade da madeira.

Figura 11.24 Representação dos resíduos para os dados da densidade da madeira.

Figura 11.25 Gráfico de probabilidade normal de resíduos para os dados de densidade da madeira.

Figura 11.26 Gráfico residual do modelo que usa a transformação log para os dados de densidade da madeira.

Figura 11.27 Gráfico de probabilidade normal dos resíduos do modeloque usa a transformação log para os dados da densidade da madeira.

11.12 Correlação

Coeficiente de correlação

A medida ρ da associação linear entre duas variáveis X e Y é estimada pelo *coeficiente de correlação amostral r*, onde

$$r = b\sqrt{\frac{S_{xx}}{S_{yy}}} = \frac{S_{xy}}{\sqrt{S_{xx} S_{yy}}}.$$

Tabela 11.9 Dados de 29 pinheiros para o Exemplo 11.10						
Gravidade específica, x (g/cm ³)	Módulo de ruptura, y (kPa)	Gravidade específica, x (g/cm ³)	Módulo de ruptura, y (kPa)			
0,414	29.186	0,581	85.156			
0,383	29.266	0,557	69.571			
0,399	26.215	0,550	84.160			
0,402	30.162	0,531	73.466			
0,442	38.867	0,550	78.610			
0,422	37.831	0,556	67.657			
0,466	44.576	0,523	74.017			
0,500	46.097	0,602	87.291			
0,514	59.698	0,569	86.836			
0,530	67.705	0,544	82.540			
0,569	66.088	0,557	81.699			
0,558	78.486	0,530	82.096			
0,577	89.869	0,547	75.657			
0,572	77.369	0,585	80.490			
0,548	67.095					

