MINI PROJECT 1 Data Analysis and Visualization

Group Members Name

- 1. Dinesh Subramanian
- 2. S.Aishwarya
- 3. Vinod A

1. Read the dataset 'pokemon.csv'. [1 mark]

Out[85]:

	#	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation
0	1	Bulbasaur	Grass	Poison	318	45	49	49	65	65	45	,
1	2	Ivysaur	Grass	Poison	405	60	62	63	80	80	60	
2	3	Venusaur	Grass	Poison	525	80	82	83	100	100	80	•
3	3	VenusaurMega Venusaur	Grass	Poison	625	80	100	123	122	120	80	
4	4	Charmander	Fire	NaN	309	39	52	43	60	50	65	
795	719	Diancie	Rock	Fairy	600	50	100	150	100	150	50	(
796	719	DiancieMega Diancie	Rock	Fairy	700	50	160	110	160	110	110	ť
797	720	HoopaHoopa Confined	Psychic	Ghost	600	80	110	60	150	130	70	ť
798	720	HoopaHoopa Unbound	Psychic	Dark	680	80	160	60	170	130	80	ť
799	721	Volcanion	Fire	Water	600	80	110	120	130	90	70	(

800 rows × 13 columns

2.List the columns in the dataframe. [2 marks]

3.Drop the column '#'. [1 mark]

Out[87]:

	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Le
0	Bulbasaur	Grass	Poison	318	45	49	49	65	65	45	1	
1	lvysaur	Grass	Poison	405	60	62	63	80	80	60	1	
2	Venusaur	Grass	Poison	525	80	82	83	100	100	80	1	
3	VenusaurMega Venusaur	Grass	Poison	625	80	100	123	122	120	80	1	
4	Charmander	Fire	NaN	309	39	52	43	60	50	65	1	
	•••											
795	Diancie	Rock	Fairy	600	50	100	150	100	150	50	6	
796	DiancieMega Diancie	Rock	Fairy	700	50	160	110	160	110	110	6	
797	HoopaHoopa Confined	Psychic	Ghost	600	80	110	60	150	130	70	6	
798	HoopaHoopa Unbound	Psychic	Dark	680	80	160	60	170	130	80	6	
799	Volcanion	Fire	Water	600	80	110	120	130	90	70	6	

800 rows × 12 columns

4. Check if the dataset has null values. [2 marks]

```
In [88]:
           1 # to check with respect to each data
           2 df.isnull()
           3
           4 # to check the number of null values present in each column
           5
             df.isnull().sum()
           7
             # to check the number of null values present in dataset
             total_number = df.isnull().sum().sum()
           8
           9
          10 # therefore
          11
          12 if (total_number != 0):
                 print( "The dataset have",total_number,"null values")
          13
          14 else:
          15
                 print("The dataset doesn't have null values")
```

The dataset have 386 null values

5.Drop the records with null values. [2 marks]

```
In [89]:
           1 df = df.dropna()
           2 df
```

Out[89]:

	Name	Type 1	Type 2	Total	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Leí
0	Bulbasaur	Grass	Poison	318	45	49	49	65	65	45	1	
1	lvysaur	Grass	Poison	405	60	62	63	80	80	60	1	
2	Venusaur	Grass	Poison	525	80	82	83	100	100	80	1	
3	VenusaurMega Venusaur	Grass	Poison	625	80	100	123	122	120	80	1	
6	Charizard	Fire	Flying	534	78	84	78	109	85	100	1	
	•••											
795	Diancie	Rock	Fairy	600	50	100	150	100	150	50	6	
796	DiancieMega Diancie	Rock	Fairy	700	50	160	110	160	110	110	6	
797	HoopaHoopa Confined	Psychic	Ghost	600	80	110	60	150	130	70	6	
798	HoopaHoopa Unbound	Psychic	Dark	680	80	160	60	170	130	80	6	
799	Volcanion	Fire	Water	600	80	110	120	130	90	70	6	
414 rows × 12 columns												

6. Find the most frequent type of pokemon in Type 1 and Type 2. [2 marks]

```
In [90]:
           1 df[['Type 1','Type 2']].mode()
Out[90]:
             Type 1 Type 2
             Water Flying
```

7. Find the mean defense value and attack value of the pokemons. [2 marks]

```
In [91]:
           1 df[['Attack', 'Defense']].mean()
Out[91]: Attack
                     83.173913
         Defense
                     79.676329
         dtype: float64
```

8. What is the maximum 'total' of the pokemons? List the pokemons with top 5 total. [2 marks]

9.How skewed are the features 'Sp. Def' and 'Sp. Atk'? Write down your inference of the same. [4 marks]

```
In [93]:
              fig = plt.subplots(figsize=(10,5))
              plt.subplot(1, 2, 1)
           3
             sns.distplot(df['Sp. Atk'])
           5 plt.subplot(1, 2, 2)
           6 sns.distplot(df['Sp. Def'])
           7
              plt.show()
              print ("Shew Values for \nSp.Atck :",df['Sp. Atk'].skew(),"\nSp.Def :",df['S
           9
             print("Inference : As part of plots we can figure out that the 'Sp. Atk' and
          10
                                                      0.014
             0.014
                                                      0.012
             0.012
                                                      0.010
             0.010
                                                      0.008
            0.008
```


Shew Values for

Sp.Atck: 0.6531678282717396 Sp.Def: 0.7653450163443561

Inference: As part of plots we can figure out that the 'Sp. Atk' and 'Sp. Def' are been postive skewed. Therefore, mean > median > mode.

10.Plot a histogram for the feature 'Speed'. What are your inferences from the same? [2 marks]

```
In [94]: 1 plt.hist(x = df['Speed'])
    plt.xlabel('Speed')
    3 plt.ylabel('No of Pokemons')
    4 plt.show()
    5 print("Inference : ")
    6 print("Least number of Pokemons have the top speed between 140-160")
    7 print("Max Number of Pokemons have the speed comes under the top speed between
```


Inference : Least number of Pokemons have the top speed between 140-160 Max Number of Pokemons have the speed comes under the top speed between 75-80

In []:

1