CME2202 Data Organization & Management

Lecture #2: Data, Information, Knowledge, Wisdom (DIKW) Model

Asst.Prof.Dr. Özlem AKTAŞ

2023 Spring

Data, Information, Knowledge, Wisdom (DIKW) Model

- We frequently hear the words **Data, Information** and **Knowledge** used as if they are the same thing.
- Data represents unorganized and unprocessed facts.
 - Usually data is static in nature.
 - It can represent a set of discrete facts about events.
 - Data is a prerequisite to information.
 - An organization sometimes has to decide on the nature and volume of data that is required for creating the necessary information.

Information

- Information can be considered as an aggregation of data (processed data) which makes decision making easier.
- Information has usually got some meaning and purpose.

Knowledge

- By knowledge we mean human understanding of a subject matter that has been acquired through proper study and experience.
- Knowledge is usually based on learning, thinking, and proper understanding of the problem area.
- Knowledge is not information and information is not data.
- Data → Information → Knowledge

- Knowledge is derived from information in the same way information is derived from data.
- We can view it as an understanding of information based on its perceived importance or relevance to a problem area.
- It can be considered as the integration of human perceptive processes that helps them to draw meaningful conclusions.

understanding, integration, applied, reflected upon, actionable, accumulated, principles, patterns, decision-making process

+ meaning KNOWLEDGE

+ insight

idea, learning, notion, concept, synthesized, compared, thought-out, discussed

INFORMATION

organized, structured, categorized, useful, condensed, calculated

DATA

individual facts, figures, signals, measurements

+ context

Relationships Amongst Knowledge, Information, and Data

DEUCENG

Dept of Computer Engineering

Definitions

Data management

Information management

Knowledge management

Data

- Data are raw facts and figures that on their own have no meaning
- These can be any alphanumeric characters i.e. text, numbers, symbols

Data Examples

- Yes, Yes, No, Yes, No, Yes, No, Yes
- 42, 63, 96, 74, 56, 86
- 111192, 111234

 None of the above data sets have any meaning until they are given a CONTEXT and PROCESSED into a useable form

Data Into Information

- To achieve its aims the organisation will need to process data into information.
- Data needs to be turned into meaningful information and presented in its most useful format
- Data must be processed in a context in order to give it meaning

Information

 Data that has been processed within a context to give it meaning

OR

 Data that has been processed into a form that gives it meaning

Examples

- In the next 3 examples explain how the data could be processed to give it meaning
- What information can then be derived from the data?

Example #1

Example #2

Example 3

Knowledge

 Knowledge is the understanding of rules needed to interpret information

"...the capability of understanding the relationship between pieces of information and what to actually do with the information"

Knowledge

- Data and information deal with facts and figures
- Knowing what to do with them requires knowledge
- Knowledge = information + rules
- Rules tell us the likely effect of something
- For example: you are more likely to pass your A level IF you do your coursework and revise for your exam!

Knowledge Examples

- Using the 3 previous examples:
 - A Marketing Manager could use this information to decide whether or not to raise or lower price y
 - Jayne's teacher could analyse the results to determine whether it would be worth her re-sitting a module
 - Looking at the pattern of the customer's previous gas bills may identify that the figure is abnormally low and they are fiddling the gas meter!!!

Knowledge Workers

- Knowledge workers have specialist knowledge that makes them "experts"
 - Based on formal and informal rules they have learned through training and experience
- Examples include doctors, managers, librarians, scientists...

Expert Systems

- Because many rules are based on probabilities computers can be programmed with "subject knowledge" to mimic the role of experts
- One of the most common uses of expert systems is in medicine
 - The ONCOLOG system shown here analyses patient data to provide a reference for doctors, and help for the choice, prescription and follow-up of chemotherapy

Summary

Data – raw facts and figures

Information – data that has been processed (in a context) to give it meaning

Data Organization & Management

"Data is stored in files"

Data Structures vs File Structures

Both involve

Representation of Data

+

Operations for accessing data

- Difference:
 - Data structures deal with data in the main memory
 - File structures deal with the data in the secondary storage

Goal of the File structures

- Performance
 - Time
 - Minimize the number of hops in order to get desired information
 - Group related information so that we are likely to get everything we need with fewer hops.
 - Memory
 - Balance the memory size and the time
- How to improve performance
 - Use the right file structure
 - Understand the advantages disadvantages of alternative methods

Metrics used to measure efficiency and effectiveness of a File structure

- Time complexities,
- Space complexities,
- Simplicity,
- Reliability,
- Scalability,
- Pogrammability, and
- Maintainability.

Metrics used to measure efficiency and effectiveness of a File structure

- The file structures involve two domains: hardware and software.
 - Hardware physical characteristics of the storage medium.
 - Software data structures and algorithms to deal with these structures.
- Hardware + SW (data structures and algorithms) are used to predict the efficiency of file operations.

Basic File operations

- Search for a particular data in a file,
- Add a certain data item,
- Remove a certain item,
- Order the data items according to a certain criterion,
- Merge of files,
- Creation of new files from existing file(s).
- create, open, and close operations which have implications in the operating system.

Basic File Processing Operations

- Opening
- Closing
- Reading
- Writing
- Seeking
- Updating
- Compacting

Where do File System fits in Computer System?

File structures versus DBMS

- According to Alan Tharp, "file structures is used to process data in physical level, DBMS is used to manage data in a logical level"
- According to Raghu Ramakrishnan, "DBMS is a piece of software designed to make data maintenance easier, safer, and more reliable".
- Thus, file structure is a pre-requisite to DBMSs.

