SMS Spam Detection for Connect 5G Networks

Revolution Consulting's Machine Learning Solution

Presented by:
Michael Teixeira \$4133975

02/10/2024

Introduction to Connect5G's Challenge

Overview of Connect₅G Networks:

 Operates in Australia, Singapore, and the UK; known for premium customer experience.

Business Problem:

 Growing customer complaints about spam messages; leading to customer churn.

Need for a Solution:

 Connect5G needs an automatic, accurate spam detection service to retain customers.

Post Office: Your parcel has been redirected to your local Post Office branch due to an unpaid shipping fee. To reschedule a delivery please visit: https://postoffice-redelivery

Objective of the Project

Key Objective:

 Build and evaluate machine learning models to classify SMS as spam or ham.

Client's Requirements:

• Emphasize importance of the the average prediction time per sample, for real-time classification.

Deliverables:

 Train and compare two machine learning models: K-Nearest Neighbors (KNN) and Decision Tree.

Data Overview

Dataset Composition

Total messages: 5,351

Spam messages: 704 (13.2%)

Ham messages: 4,647 (86.8%)

Is the Dataset Balanced?

 The dataset shows a significant imbalance between spam and ham messages, with ham messages being the majority class.

Solution:

Applied SMOTE (Synthetic Minority Over-sampling Technique).

Preprocessing

Data Preprocessing:

Used **Count Vectorizer** to convert text messages into numerical features.

- · Lowercasing.
- Tokenization.
- Removal of stopwords.

Model Training and Hyperparameter Tuning

Model Selection:

K-Nearest Neighbors (KNN) and Decision Tree.

Hyperparameter Tuning:

Used GridSearchCV for both models to optimize parameters:

Model	Parameter	Values	
KNN	n_neighbors 1, 3, 5, 9, 11		
	р	1, 2	
Decision Tree	min_samples_split	2, 3, 5	
	min_samples_leaf	5, 10, 20, 50, 100	
	max_depth	2, 3, 5, 10, 20	

Handling Imbalanced Data:

 Trained models with and without SMOTE to compare the effects on performance.

Confusion Matrix

Metrics for Evaluation:

- Accuracy: Percentage of correctly predicted instances.
- Balanced Accuracy: Accounts for class imbalance in evaluation.
- Training Time: Time taken to fit the model.
- Prediction Time: Average time taken for model predictions.

KNN:

Decision Tree

Model	Accuracy	Balanced Accuracy	Training Time	Prediction Time
KNN	0.95	0.824	0.001	6.22e-05
KNN with SMOTE	0.943	0.917	0.001	1.76e-04
Decision Tree	0.966	0.894	0.045	9.22e-07
Decision Tree with SMOTE	<mark>0.95</mark>	0.852	0.049	1.05e-06

- **Decision Tree** showed higher accuracy, and excelled in faster prediction times.
- Training time is slightly longer, but this doesn't significantly impact model performance.

Decision Tree with SMOTE

Conclusion & Recommendation

After applying SMOTE, the model introduces more errors compared to the basic Decision Tree.

However, considering real-time performance and the imbalanced nature of spam detection, **Decision Tree with SMOTE** is better suited for production because it provides a more balanced approach to detecting both spam and ham in dynamic environments.

Thank You!

