Activité exp 2 : rendement d'un moteur

Doc. 1 Quelques rappels

• L'énergie mécanique est la somme de l'énergie cinétique (liée à la vitesse) et de l'énergie potentielle de pesanteur (liée à la hauteur). Son expression est :

$$E_m = \frac{1}{2}m v^2 + mgh$$

où m est la masse de l'objet, ν sa vitesse, h l'altitude de son centre de gravité et g est l'intensité de la pesanteur.

• Le **rendement** η d'une chaîne énergétique est le rapport entre l'énergie cédée et l'énergie reçue.

C'est une valeur **sans unité**, toujours inférieure à 1 pour tenir compte des pertes.

▲ Le rendement du moteur électrique de ce téléphérique dépend-il du poids de ses passagers ?

Doc. 2 Expérience

- Réaliser le montage ci-contre alimentant un petit moteur électrique.
- On souhaite mesurer la tension U aux bornes du moteur, le courant I qui le traverse ainsi que le temps t mis par le moteur pour soulever la charge d'une hauteur h fixée à 1 m par exemple.
- Reproduire l'expérience en changeant la masse de la charge.
- Rassembler les mesures dans un tableau tel que celui ci-dessous.

Masse (g)	U (V)	I (A)	t (s)	h (m)	E _{élec} (J)	E _u (J)	η
10							
20							

- 1. Sachant que la puissance délivrée au moteur est $P=U\times I$, quelle est l'énergie apportée au moteur? **Exprimer le résultat** avec t(sec) et P(watt).
- 2. La relation pour calculer le rendement s'écrit : $\eta = \frac{\text{Énergie utile}}{\text{Énergie fournie}}$, Quelle est l'énergie utile? Quelle est l'énergie fournie?
- 3. Calculer le rendement du moteur η pour chaque masse puis recopier et compléter le tableau.
- 4. Tracer la courbe $\eta = f(m)$
- 5. Conclure, le rendement dépend il de la charge?