Centermask 复现分析及总结

1. 数据集

COCO-Person 类别, 训练集共有 64115 张图片 257253 个人体实例, 验证集共有 2693 张图片 10777 个人体实例。

样本分布:大约 41% 的小目标 (area<32×32), 34% 的中等目标 (32×32 < area <96×96), 和 24% 的大目标 (area>96×96)

2. 网络结构

训练采用网络结构为: centermask-lite-V-19-eSE-slim-dw-FPN-ms-4x.pth <其中: slim 代表通道减半, dw 代表使用深度可分离卷积,基于 VoVNet2>

3. 实验结果分析

ORecall

Average Recall	(AR) @[IoU=0.50:0.95	area= small	maxDets=100] = 0.331
Average Recall	(AR) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.551
Average Recall	(AR) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.672

结论:根据不同目标尺寸大小的召回率对比情况,可知检测器对于小目标的检测效果还是不好。

2AP

```
[07/01 08:34:11 d2. evaluation.testing]: copypaste: Task: bbox
[07/01 08:34:11 d2. evaluation.testing]: copypaste: AP, AP50, AP75, APs, APm, AP1
[07/01 08:34:11 d2. evaluation.testing]: copypaste: 50. 4554, 78. 9691, 53. 3882, 32. 6193, 56. 5379, 69. 3345
[07/01 08:34:11 d2. evaluation.testing]: copypaste: Task: segm
[07/01 08:34:11 d2. evaluation.testing]: copypaste: AP, AP50, AP75, APs, APm, AP1
[07/01 08:34:11 d2. evaluation.testing]: copypaste: 42. 4175, 75. 0290, 42. 9795, 22. 9157, 47. 2288, 62. 4050
```

Backbone	Params.	APmask	AP_S^{mask}	${\sf AP}_M^{\sf mask}$	AP^{mask}_L	APbox	AP^box_S	AP_M^{box}	AP_L^{box}	Time (ms)
MobileNetV2 [31]	28.7M	29.5	12.0	31.4	43.8	32.6	17.8	35.2	43.2	56
VoVNetV2-19 [19]	37.6M	32.2	14.1	34.8	48.1	35.9	20.8	39.2	47.6	59

结论: APmask 为 42. 4%, APbox 为 50. 4%, 其中 AP50 可以达到 75. 0%, 与论文中的结果(APbox: 35. 9%, APmask: 32. 2%)相比,单独训练 Person 这一类别明显高于其 80 个类别的平均,从而证明,只要针对 Person 类别去训练优化,肯定会有较好的结果。

3FPS

```
Inference done 2643/2693, 0.0260 \text{ s} / \text{img}, ETA=0:00:02
Total inference time: 0:01:52.923636 (0.042010 s / img per device, on 1 devices)
Total inference pure compute time: 0:01:10 (0.026043 s / img per device, on 1 devices)
```

结论:可以达到实时性要求

4. Badcase

5. Good

总结:整体而言,CenterMask 在速度与精度上都有了很大的提升,但通过分析 Badcase,发现对于密集型多目标(>5/6)分割效果较差,而同样的问题在 TensorMask 中得到了解决,后续的工作可以多一方面这样的思考。基于 centermask 可以有更多的尝试。

附: TensorMask 分割图

Figure 1. Selected output of *TensorMask*, our proposed framework