

Teoria dos Grafos e Computabilidade

— Preliminary concepts —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory - IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Teoria dos Grafos e Computabilidade

— Motivation —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory - IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Porque estudar grafos?

- Arcabouço matemático com aplicação em diversas áreas do conhecimento
- Utilizados na definição e/ou resolução de problemas
- ► Estudar grafos é mais uma forma de solucionar problemas computáveis
- ► Os estudos teóricos em grafos buscam o desenvolvimento de algoritmos mais eficientes.
- Abstração matemática que representa situações reais através de um diagrama.

Porque estudar grafos?

- Arcabouço matemático com aplicação em diversas áreas do conhecimento
- ▶ Utilizados na definição e/ou resolução de problemas
- Estudar grafos é mais uma forma de solucionar problemas computáveis
- ► Os estudos teóricos em grafos buscam o desenvolvimento de algoritmos mais eficientes.
- Abstração matemática que representa situações reais através de um diagrama.

Áreas de conhecimento

Genética, química, pesquisa operacional, telecomunicações, engenharia elétrica, redes de computadores, conexão de vôos aéreos, restrições de precedência, fluxo de programas, dentre outros

Motivação – Pontes de Königsberg

Pontes de Königsberg O rio Pregel divide o centro da cidade de Königsberg (Prússia no século XVII, atual Kaliningrado, Rússia) em quatro regiões. Essas regiões são ligadas por um complexo de sete (7) pontes, conforme mostra a figura. Discutia-se nas ruas da cidade a possibilidade de atravessar todas as pontes, voltando ao lugar de onde se saiu, sem repetir alguma. Havia-se tornado uma lenda popular a possibilidade da façanha quando Euler, em 1736, provou que não existia caminho que possibilitasse tais restrições.

Motivação – Pontes de Königsberg

- ► Resolvido em 1736 por Leonhard Euler
- ► Necessário um modelo para representar o problema
- ► Abstração de detalhes irrelevantes:
 - ► Área de cada ilha
 - ► Formato de cada ilha
 - ► Tipo da ponte, etc.

Motivação – Pontes de Königsberg

- ► Resolvido em 1736 por Leonhard Euler
- ► Necessário um modelo para representar o problema
- ► Abstração de detalhes irrelevantes:
 - ► Área de cada ilha
 - ► Formato de cada ilha
 - ► Tipo da ponte, etc.
- ► Euler generalizou o problema por meio de um modelo de grafos

Problemas das 3 casas

É possível conectar os 3 serviços às 3 casas sem haver cruzamento de tubulação?

Colorir um mapa

Quantas cores são necessárias para colorir o mapa do Brasil, sendo que estados adjacentes não podem ter a mesma cor?

Caminho mínimo

De forma a reduzir seus custos operacionais, uma empresa de transporte de cargas deseja oferecer aos motoristas de sua frota um mecanismo que os auxilie a selecionar o melhor caminho (o de menor distância) entre quaisquer duas cidades por ela servidas, de forma a que sejam minimizados os custos de transporte.

Questions?

Preliminary concepts

Motivation –

Teoria dos Grafos e Computabilidade

Graph definition —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory - IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Grafo coleção de vértices e arestas

Vértices objeto simples que pode ter nomes e outros atributos

Arestas conexão entre dois vértices

Grafo coleção de vértices e arestas

Vértices objeto simples que pode ter nomes e outros atributos

Arestas conexão entre dois vértices

Grafo coleção de vértices e arestas

Vértices objeto simples que pode ter nomes e outros atributos

Arestas conexão entre dois vértices

Grafo coleção de vértices e arestas

Vértices objeto simples que pode ter nomes e outros atributos

Arestas conexão entre dois vértices

Um grafo G = (V, E) em que V é o conjunto de vértices e E o conjunto de arestas de forma que

Grafo coleção de vértices e arestas

Vértices objeto simples que pode ter nomes e outros atributos

Arestas conexão entre dois vértices

Um grafo G = (V, E) em que V é o conjunto de vértices e E o conjunto de arestas de forma que

▶ $E = \{(u, v) \mid u, v \in V\}$ – grafo direcionado

Grafo coleção de vértices e arestas

Vértices objeto simples que pode ter nomes e outros atributos

Arestas conexão entre dois vértices

Um grafo G = (V, E) em que V é o conjunto de vértices e E o conjunto de arestas de forma que

- ► $E = \{(u, v) \mid u, v \in V\}$ grafo direcionado
- ▶ $E = \{\{u, v\} \mid u, v \in V\}$ grafo não-direcionado

Modelagem de grafo

- ▶ No problema das casas
 - Vértices são casas e serviços
 - Arestas são as tubulações entre casas e serviços
- No problema da coloração de mapas
 - Vértices são estados
 - ► Arestas relacionam estados vizinhos
- ▶ No problema do caminho mais curto
 - Vértices são as cidades
 - Arestas são as ligações entre as cidades

Problemas interessantes

Problema das 4 cores

Qual a quantidade mínima de cores para colorir um mapa de tal forma que países fronteiriços possuam cores diferentes? Apresenta-se um exemplo em que 3 cores não são suficientes. Uma prova de que 5 cores é suficiente foi formulada. Conjecturou-se então que 4 cores seriam suficientes. Esta questão ficou em aberto até 1976 quando Appel e Haken provaram para 4 cores

Problema do ciclo Hamiltoniano (Hamilton 1859)

Existem n cidades. Cada par de cidades pode ser adjacente ou não arbitrariamente. Partindo de uma cidade qualquer, o problema consiste em determinar um trajeto que passe exatamente uma vez em cada cidade e retorne ao ponto de partida.

Um grafo direcionado é um par G=(V,E), em que V é um conjunto finito e E é uma relação binária em V.

Um grafo direcionado é um par G=(V,E), em que V é um conjunto finito e E é uma relação binária em V.

Um grafo não direcionado é um par G=(V,E) em que o conjunto de arestas E consiste em pares de vértices não orientados. A aresta (v_i, v_j) e (v_j, v_i) são consideradas a mesma aresta.

Questions?

Preliminary concepts

Graph definition –

Teoria dos Grafos e Computabilidade

— Terminology —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Image and Multimedia Data Science Laboratory - IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Loop

uma aresta associada ao par de vértices (v_i, v_i)

Loop

uma aresta associada ao par de vértices (v_i, v_i)

Arestas paralelas

quando mais de uma aresta está associada ao mesmo par de vértices

Loop

uma aresta associada ao par de vértices (v_i, v_i)

Arestas paralelas

quando mais de uma aresta está associada ao mesmo par de vértices

Grafo simples

um grafo que não possui loops e nem arestas paralelas

Loop

uma aresta associada ao par de vértices (v_i, v_i)

Arestas paralelas

quando mais de uma aresta está associada ao mesmo par de vértices

Grafo simples

um grafo que não possui loops e nem arestas paralelas

Vértices adjacentes

Dois vértices são ditos adjacentes se eles são pontos finais de uma mesma aresta

Grafo não direcionado

▶ grau d(v) - número de arestas que incidem em v.

Grafo direcionado

- ▶ grau de entrada d⁻(v)número de arestas que chegam em v
- ▶ grau de saída d⁺(v)número de arestas que saem em v

Grafo não direcionado

▶ grau d(v) - número de arestas que incidem em v.

Grafo direcionado

- ▶ grau de entrada d⁻(v)número de arestas que chegam em v
- ▶ grau de saída d⁺(v)número de arestas que saem em v

Grafo não direcionado

▶ grau d(v) - número de arestas que incidem em v.

Grafo direcionado

- ▶ grau de entrada d⁻(v)número de arestas que chegam em v
- ▶ grau de saída d⁺(v)número de arestas que saem em v

Grafo não direcionado

▶ grau d(v) - número de arestas que incidem em v.

Grafo direcionado

- ▶ grau de entrada d⁻(v)número de arestas que chegam em v
- ▶ grau de saída d⁺(v)número de arestas que saem em v

Grafo não direcionado

▶ grau d(v) - número de arestas que incidem em v.

Grafo direcionado

- ▶ grau de entrada d⁻(v)número de arestas que chegam em v
- ▶ grau de saída d⁺(v)número de arestas que saem em v

Grafo não direcionado

▶ grau d(v) - número de arestas que incidem em v.

Grafo direcionado

- ▶ grau de entrada d⁻(v)número de arestas que chegam em v
- ▶ grau de saída d⁺(v)número de arestas que saem em v

Um laço conta duas vezes para o grau de um vértice

Seqüência de graus

Escrever o grau de todos os vértices em ordem não-decrescente

▶ Duas arestas não paralelas são adjacentes se elas são incidentes a um vértice comum

▶ Duas arestas não paralelas são adjacentes se elas são incidentes a um vértice comum

▶ Quando um vértice v é o vértice final de alguma aresta e = uv, é dito que e é **incidente** em v a partir de u

 Duas arestas não paralelas são adjacentes se elas são incidentes a um vértice comum

Quando um vértice v é o vértice final de alguma aresta e = uv, é dito que e é incidente em v a partir de u

Um grafo no qual todos os vértices possuem o mesmo grau é chamado de grafo regular.

► Um vértice com nenhuma aresta incidente é chamado de vértice isolado.

► Um vértice com nenhuma aresta incidente é chamado de vértice isolado.

► Um vértice com grau 1 é chamado de vértice pendente

Um vértice com nenhuma aresta incidente é chamado de vértice isolado.

► Um vértice com grau 1 é chamado de vértice pendente

► Um grafo sem nenhuma aresta é chamado de **grafo nulo**. Todos os vértices em um grafo nulo são vértices isolados

Grafos valorado e rotulado

Um grafo G=(V,A) é dito ser rotulado em vértices (ou arestas) quando a cada vértice (ou aresta) estiver associado um rótulo

Grafos valorado e rotulado

Um grafo G=(V,A) é dito ser rotulado em vértices (ou arestas) quando a cada vértice (ou aresta) estiver associado um rótulo

PAA PDI

GRAFOS

Um grafo G=(V,A) é dito ser valorado quando existe uma ou mais funções relacionando V e/ou A com um conjunto de números.

Um grafo G=(V,E) é completo se para cada par de vértices v_i e v_j existe uma aresta entre v_i e v_j . Em um grafo completo quaisquer dois vértices distintos são adjacentes (K_n)

Um grafo G=(V,E) é completo se para cada par de vértices v_i e v_j existe uma aresta entre v_i e v_j . Em um grafo completo quaisquer dois vértices distintos são adjacentes (K_n)

1

1

Seja K_n um grafo completo com n vértices. O número de arestas de um grafo completo é :

$$|E| = \frac{(n-1) \times n}{2}$$

Walk A walk in G = (V, E) is a finite non-null sequence $W = v_0 e_1 v_1 e_2 \dots e_k v_k$ terms are alternately vertices and edges, such that, for $1 \le i \le k$, the ends of e_i are v_{i-1} and v_i . We say that W is a walk from v_0 (origin) to v_k (terminus).

Walk A walk in G = (V, E) is a finite non-null sequence $W = v_0 e_1 v_1 e_2 \dots e_k v_k$ terms are alternately vertices and edges, such that, for $1 \le i \le k$, the ends of e_i are v_{i-1} and v_i . We say that W is a walk from v_0 (origin) to v_k (terminus).

walk

5a2f3f2g3h4b2

5a2f3f2g3h4b2

Walk A walk in G = (V, E) is a finite non-null sequence $W = v_0 e_1 v_1 e_2 \dots e_k v_k$ terms are alternately vertices and edges, such that, for $1 \le i \le k$, the ends of e_i are v_{i-1} and v_i . We say that W is a walk from v_0 (origin) to v_k (terminus).

Trail A trail is a walk in G = (V, E) if the edges of W are distinct.

walk

Walk A walk in G = (V, E) is a finite non-null sequence $W = v_0 e_1 v_1 e_2 \dots e_k v_k$ terms are alternately vertices and edges, such that, for $1 \le i \le k$, the ends of e_i are v_{i-1} and v_i . We say that W is a walk from v_0 (origin) to v_k (terminus).

Trail A trail is a walk in G = (V, E) if the edges of W are distinct.

Walk A walk in G = (V, E) is a finite non-null sequence $W = v_0 e_1 v_1 e_2 \dots e_k v_k$ terms are alternately vertices and edges, such that, for $1 \le i \le k$, the ends of e_i are v_{i-1} and v_i . We say that W is a walk from v_0 (origin) to v_k (terminus).

Trail A trail is a walk in G = (V, E) if the edges of W are distinct.

Path A path is a trail in G = (V, E) if the vertices of W are distinct.

Walk A walk in G = (V, E) is a finite non-null sequence $W = v_0 e_1 v_1 e_2 \dots e_k v_k$ terms are alternately vertices and edges, such that, for $1 \le i \le k$, the ends of e_i are v_{i-1} and v_i . We say that W is a walk from v_0 (origin) to v_k (terminus).

C

Trail A trail is a walk in G = (V, E) if the edges of W are distinct.

Path A path is a trail in G = (V, E) if the vertices of W are distinct.

Walk A walk in G = (V, E) is a finite non-null sequence $W = v_0 e_1 v_1 e_2 \dots e_k v_k$ terms are alternately vertices and edges, such that, for $1 \le i \le k$, the ends of e_i are v_{i-1} and v_i . We say that W is a walk from v_0 (origin) to v_k (terminus).

C

Trail A trail is a walk in G = (V, E) if the edges of W are distinct.

Path A path is a trail in G = (V, E) if the vertices of W are distinct.

Cycle A cycle is a closed path – origin and terminus are the same.

Walk A walk in G = (V, E) is a finite non-null sequence $W = v_0 e_1 v_1 e_2 \dots e_k v_k$ terms are alternately vertices and edges, such that, for $1 \le i \le k$, the ends of e_i are v_{i-1} and v_i . We say that W is a walk from v_0 (origin) to v_k (terminus).

Trail A trail is a walk in G = (V, E) if the edges of W are distinct.

Path A path is a trail in G = (V, E) if the vertices of W are distinct.

Cycle A cycle is a closed path – origin and terminus are the same.

Grafo conexo – existe pelo menos um caminho entre todos os pares

de vértices

Grafo conexo – existe pelo menos um caminho entre todos os pares

Um grafo é dito ser bipartido quando seu conjunto de vértices V puder ser particionado em dois subconjuntos V_1 e V_2 , tais que toda aresta de G une um vértice de V_1 a outro de V_2 .

Grafo conexo – existe pelo menos um caminho entre todos os pares

Um grafo é dito ser bipartido quando seu conjunto de vértices V puder ser particionado em dois subconjuntos V_1 e V_2 , tais que toda aresta de G une um vértice de V_1 a outro de V_2 .

Grafo bipartido completo

Um grafo é dito ser bipartido completo quando seu conjunto de vértices V puder ser particionado em dois subconjuntos V_1 e V_2 , tais que toda aresta de G une um vértice de V_1 a outro de V_2 , e que todo vértice de V_1 é adjacente a todo vértice de V_2 .

Grafo bipartido completo

Um grafo é dito ser bipartido completo quando seu conjunto de vértices V puder ser particionado em dois subconjuntos V_1 e V_2 , tais que toda aresta de G une um vértice de V_1 a outro de V_2 , e que todo vértice de V_1 é adjacente a todo vértice de V_2 .

Seja K_{mn} um grafo bipartido completo com n vértices em V_1 e m vértices em V_2 . O número de arestas de um grafo bipartido completo é: $|E| = n \times m$

Propriedade de grau

O número de arestas incidentes a um vértice v_i é chamado de grau, $d(v_i)$, do vértice i. A soma dos graus de todos os vértices de um grafo G é duas vezes o número de arestas de G, e portanto é par .

$$\sum_{i=1}^n d(v_i) = 2e$$

Propriedade de grau

O número de arestas incidentes a um vértice v_i é chamado de grau, $d(v_i)$, do vértice i. A soma dos graus de todos os vértices de um grafo G é duas vezes o número de arestas de G, e portanto é par .

$$\sum_{i=1}^n d(v_i) = 2e$$

Teorema O número de vértices de grau ímpar em um grafo é par

$$\sum_{i=1}^{n} d(v_i) = \sum_{d(v_j)par} d(v_j) + \sum_{d(v_k)impar} d(v_k)$$

Seja
$$G_1=(V_1,A_1)$$
 e $G_2=(V_2,A_2)$ dois grafos. O grafo $G=G_1\ \cup\ G_2$

que representa a união de dois grafos , é formado pelo grafo com conjunto de vértices $V_1 \cup V_2$ e conjunto de arestas $E_1 \cup E_2$.

Seja
$$G_1=(V_1,A_1)$$
 e $G_2=(V_2,A_2)$ dois grafos. O grafo $G=G_1\ \cup\ G_2$

que representa a união de dois grafos , é formado pelo grafo com conjunto de vértices $V_1 \cup V_2$ e conjunto de arestas $E_1 \cup E_2$.

Seja
$$G_1=(V_1,A_1)$$
 e $G_2=(V_2,A_2)$ dois grafos. O grafo $G=G_1+G_2$

que representa a soma de dois grafos , é formado por $G_1 \cup G_2$ e de arestas ligando cada vértice de V_1 a V_2

Seja
$$G_1=(V_1,A_1)$$
 e $G_2=(V_2,A_2)$ dois grafos. O grafo

$$G = G_1 + G_2$$

que representa a soma de dois grafos , é formado por $G_1 \cup G_2$ e de arestas ligando cada vértice de V_1 a V_2

Propriedades de soma e união

- ▶ Podem ser aplicadas a qualquer número finito de grafos
- ► São operações associativas
- São operações comutativas

Propriedades de soma e união

- ► Podem ser aplicadas a qualquer número finito de grafos
- ► São operações associativas
- ► São operações comutativas

Exemplo 1

Defina soma e união para grafos direcionados . As propriedades de associação e comutação são mantidas?

Remoção de aresta e de vértice

Se e é uma aresta de um grafo G, denota-se G-e o grafo obtido de G pela remoção da aresta e. Se E é um conjunto de arestas em G, denota-se G-E ao grafo obtido pela remoção das arestas em E.

Remoção de aresta e de vértice

Se e é uma aresta de um grafo G, denota-se G-e o grafo obtido de G pela remoção da aresta e. Se E é um conjunto de arestas em G, denota-se G-E ao grafo obtido pela remoção das arestas em E.

Se v é um vértice de um grafo G denota-se por G-v o grafo obtido de G pela remoção do vértice v conjuntamente com as arestas incidentes a v. Denota-se G-S ao grafo obtido pela remoção dos vértices em S, sendo S um conjunto qualquer de vértices de G.

Remoção de aresta e de vértice

Se e é uma aresta de um grafo G, denota-se G-e o grafo obtido de G pela remoção da aresta e. Se E é um conjunto de arestas em G, denota-se G-E ao grafo obtido pela remoção das arestas em E.

Se v é um vértice de um grafo G denota-se por G-v o grafo obtido de G pela remoção do vértice v conjuntamente com as arestas incidentes a v. Denota-se G-S ao grafo obtido pela remoção dos vértices em S, sendo S um conjunto qualquer de vértices de G.

Denota-se por G/e o grafo obtido pela contração da aresta e. Remova e=(v,w) de G e una suas extremidades v e w de tal forma que o vértice resultante seja incidente às arestas originalmente incidentes a v e w.

Questions?

Preliminary concepts

Terminology –