# Adversarial Attacks on ImageNet Classifiers: Jailbreaking Deep Models with FGSM, PGD, and Patch Attacks

## Ali Aslanbayli, Farid Taghiyev

New York University
Tandon School of Engineering
https://github.com/ftaghiyev/Jailbreaking-Deep-Models

#### **Abstract**

This report investigates adversarial attacks on deep image classifiers, focusing on ResNet-34 and DenseNet-121 models trained on ImageNet-1K. We implement and evaluate Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), and localized patch attacks to degrade model accuracy under strict  $L_{\infty}$  and patch constraints. Our experiments demonstrate dramatic drops in top-1 and top-5 accuracy, and highlight the transferability of adversarial examples across model architectures. We discuss methodology, results, and lessons learned, providing code and visualizations for reproducibility.

#### Introduction

Deep neural networks have achieved remarkable success in image classification, yet remain vulnerable to adversarial attacks: small, carefully crafted perturbations to input images that cause misclassification. In this project, we systematically attack a ResNet-34 classifier trained on ImageNet-1K, generating adversarial examples under  $L_{\infty}$  and patch constraints, and evaluate the transferability of these attacks to DenseNet-121. Our goal is to degrade model performance while keeping perturbations imperceptible.

# Methodology

#### **Dataset and Preprocessing**

We use a provided subset of ImageNet-1K containing 500 test images from 100 classes. Images are normalized using standard ImageNet mean and std, and loaded with Py-Torch's ImageFolder. Class labels are mapped using the provided labels\_list.json file.

#### **Baseline Evaluation**

We evaluate the pretrained ResNet-34 model on the test set, reporting top-1 and top-5 accuracy as baselines. For transferability experiments, we also use DenseNet-121.

#### **Adversarial Attack Methods**

**FGSM** ( $L_{\infty}$  attack): We implement the Fast Gradient Sign Method, perturbing each pixel by at most  $\varepsilon = 0.02$  in nor-

Copyright © 2024, New York University, Tandon School of Engineering (www.engineering.nyu.edu). All rights reserved.

malized space:

$$x' = x + \varepsilon \cdot \operatorname{sign}(\nabla_x L)$$

where L is the cross-entropy loss.

**PGD** ( $L_{\infty}$  multi-step): Projected Gradient Descent iteratively applies FGSM with step size  $\alpha=0.01$  for 20 steps, projecting onto the  $\varepsilon$ -ball.

**Patch Attack:** We perturb only a random  $32 \times 32$  patch per image, with a larger  $\varepsilon = 0.5$ , using random noise within the patch.

### **Evaluation Metrics**

For each attack, we save the adversarial images, verify  $L_{\infty}$  constraint, and report top-1 and top-5 accuracy on both ResNet-34 and DenseNet-121. Visualizations compare original and adversarial predictions for representative samples.

#### **Results**

#### **Baseline Performance**

- **ResNet-34:** Top-1: 76.00%, Top-5: 94.20%
- **DenseNet-121:** Top-1: 74.80%, Top-5: 93.60%

**FGSM** Attack ( $\varepsilon = 0.02$ )

- **ResNet-34:** Top-1: 2.00%, Top-5: 4.80%
- **DenseNet-121:** Top-1: 3.40%, Top-5: 6.00%
- Visualization: can be found at Fig. 1

FGSM reduces accuracy by over 70 percentage points, with adversarial images visually indistinguishable from originals.

**PGD** Attack ( $\varepsilon = 0.02$ , 20 steps)

- ResNet-34: Top-1: 1.80%, Top-5: 3.40%
- **DenseNet-121:** Top-1: 3.00%, Top-5: 4.80%
- Visualization: can be found at Fig. 2

PGD further degrades performance, confirming the effectiveness of multi-step attacks.

Patch Attack (32  $\times$  32,  $\varepsilon$  = 0.5)

- **ResNet-34:** Top-1: 3.80%, Top-5: 5.40%
- **DenseNet-121:** Top-1: 3.80%, Top-5: 6.40%
- Visualization: can be found at Fig. 3

Despite being restricted to a small patch, accuracy drops sharply, especially with a larger  $\varepsilon$ 



Adversarial

Figure 1: FGSM attack Original (left) and adversarial (right) images with model predictions.



Figure 2: PGD attack Original (left) and adversarial (right) images with model predictions.

#### **Transferability**

Original

Adversarial examples generated for ResNet-34 also transfer to DenseNet-121, with both models exhibiting significant accuracy drops across all attack types as can be seen in Table 1.

Original True: 401 Pred: 819



Original True: 401 Pred: 401



Adversarial True: 401 Pred: 819



Adversarial True: 401 Pred: 401



Figure 3: Patch attack Original (left) and adversarial (right) images with model predictions.

|          | ResNet-34 |       | DenseNet-121 |       |
|----------|-----------|-------|--------------|-------|
| Attack   | Top-1     | Top-5 | Top-1        | Top-5 |
| Original | 76.0      | 94.2  | 74.8         | 93.6  |
| FGSM     | 2.0       | 4.8   | 3.4          | 6.0   |
| PGD      | 1.8       | 3.4   | 3.0          | 4.8   |
| Patch    | 3.8       | 5.4   | 3.8          | 6.4   |

Table 1: Top-1 and Top-5 accuracy (%) for each attack and model.

## **Summary Table**

# Discussion

## **Lessons Learned:**

- Even simple attacks like FGSM can catastrophically degrade classifier performance.
- Multi-step PGD attacks are more effective, but the marginal gain over FGSM is small for this  $\varepsilon$ .
- Patch attacks can be highly effective if the perturbation budget is increased.
- Adversarial examples are highly transferable between architectures, raising concerns for real-world robustness.

**Mitigation:** Potential defenses include adversarial training, input preprocessing, and robust model architectures. However, no defense is foolproof against adaptive attackers.

#### Conclusion

We demonstrated that state-of-the-art image classifiers are highly vulnerable to adversarial attacks, even under strict constraints. Our codebase provides reproducible implementations and visualizations. Future work includes evaluating targeted attacks and exploring defenses.