

Logic and Computer Design Fundamentals Chapter 3 – Combinational

Part 2 – Combinational Logic

Logic Design

Asst.Prof.Dr. Preecha Tangworakitthaworn
Semester 2/2023

Overview

- Part 2 Combinational Logic
 - Decoding using Decoders
 - Implementing Combinational Functions with Decoders
 - Encoding using Encoders
 - Selecting using Multiplexers
 - Implementing Combinational Functions with Multiplexers

Decoding

- Decoding the conversion of an n-bit input code to an *m*-bit output code with $n \le m \le 2^n$ such that each valid code word produces a unique output code
- Circuits that perform decoding are called decoders
- Here, functional blocks for decoding are
 - called *n*-to-*m* line decoders, where $m \leq 2^n$, and
 - generate 2^n (or fewer) minterms for the n input variables

Decoder Examples

1-to-2-Line DecoderA

A	D ₀	υ ₁	
0	1	0	
1	0	1	

2-to-4-Line Decoder

\mathbf{A}_1	\mathbf{A}_0	\mathbf{D}_0	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1
(a)					

Note that the 2-4-line made up of 2 1-to-2-line decoders and 4 AND gates.

Decoder Expansion - Example 1

- 3-to-8-line decoder
 - Number of output ANDs = 8
 - Number of inputs to decoders driving output ANDs = 3
 - Closest possible split to equal
 - 2-to-4-line decoder
 - 1-to-2-line decoder
 - 2-to-4-line decoder
 - Number of output ANDs = 4
 - Number of inputs to decoders driving output ANDs = 2
 - Closest possible split to equal
 - Two 1-to-2-line decoders
- See next slide for result

Decoder Expansion - Example 1

Output Solution

Encoding

- Encoding the opposite of decoding the conversion of an m-bit input code to a n-bit output code with $n \le m \le 2^n$ such that each valid code word produces a unique output code
- Circuits that perform encoding are called encoders
- An encoder has 2^n (or fewer) input lines and n output lines which generate the binary code corresponding to the input values

Encoder Example

- A decimal-to-BCD encoder
 - Inputs: 9 bits corresponding to decimal digits 1 through 9, $(D_1, ..., D_9)$
 - Outputs: 4 bits with BCD codes
 - Function: If input bit D_i is a 1, then the output (A_3, A_2, A_1, A_0) is the BCD code for i,
- The truth table could be formed, but alternatively, the equations for each of the four outputs can be obtained directly.

Decimal-to-BCD encoder

Input *m*: 9 bits
(0 is not applicable for the function)
Why??

Output n: 4 bits

Encoder Example (continued)

- Input D_i is a term in equation A_j if bit A_j is 1 in the binary value for i.
- Equations:

$$A_3 = D_8 + D_9$$

$$A_2 = D_4 + D_5 + D_6 + D_7$$

$$A_1 = D_2 + D_3 + D_6 + D_7$$

$$A_0 = D_1 + D_3 + D_5 + D_7 + D_9$$

How to draw Truth table??

Decimal-to-BCD encoder

Output Solution

Multiplexers

- A multiplexer selects information from an input line and directs the information to an output line.
- A typical multiplexer has n control inputs $(S_{n-1}, ..., S_0)$ called selection inputs, 2^n information inputs $(I_2^n_{-1}, ..., I_0)$, and one output Y.

2-to-1-Line Multiplexer

- Since $2 = 2^1$, n = 1
- The single selection variable S has two values:
 - S = 0 selects input I_0
 - S = 1 selects input I_1
- The equation:

$$\mathbf{Y} = \overline{\mathbf{S}}\mathbf{I}_0 + \mathbf{S}\mathbf{I}_1$$

2-to-1-Line Multiplexer (continued)

- Note the regions of the multiplexer circuit shown:
 - 1-to-2-line Decoder
 - 2 Enabling circuits
 - 2-input OR gate
- To obtain a basis for multiplexer expansion, we combine the Enabling circuits and OR gate into a 2 × 2 AND-OR circuit:
 - 1-to-2-line decoder
 - 2×2 AND-OR
- In general, for an 2^n -to-1-line multiplexer:
 - n-to- 2^n -line decoder
 - $2^n \times 2$ AND-OR

Example: 4-to-1-line Multiplexer

■ 2-to-2²-line decoder

 2 2 × 2 AND-OR

