ArcFace

Jiankang Deng Jia Guo Niannan Xue Stefanos Zafeiriou Imperial College London InsightFace FaceSof

20151739 공대현

Metric learning Method

Triplet Loss: Euclidean-distance-based loss

$$\mathcal{L} = y_{ij} \max (0, ||f(x_i) - f(x_j)||_2 - \epsilon^+) + (1 - y_{ij}) \max (0, \epsilon^- - ||f(x_i) - f(x_j)||_2)$$

If
$$x_i = x_j$$
, $y_{ij} = 1 \rightarrow \text{verification}$
If $x_i \neq x_j$, $y_{ij} = -1 \rightarrow \text{identification}$

FaceNet: Triplet Loss

$$||f(x_i^a) - f(x_i^p)||_2^2 + \alpha < -||f(x_i^a) - f(x_i^n)||_2^2$$

Minimizes the distance between an anchor and a positive sample of the same identity and maximizes the distance between the anchor and a negative sample of a different identity

단점: Training instability due to the selection of effective training samples

Softmax-BCE Loss

$$P_{i} = \frac{e^{W_{i}x}}{e^{W_{i}x} + e^{W_{i}x} + e^{W_{i}x}} = \frac{e^{W_{i}x}}{e^{W_{i}x} + e^{W_{i}x} + e^{W_{i}x}} = \frac{e^{W_{i}x}}{e^{W_{i}x} + e^{W_{i}x} + e^{W_{i}x}} = 0.8$$

$$P_3 = \frac{e^{W_2 x}}{e^{W_1 x} + e^{W_2 x} + e^{W_2 x}} = 0.15$$

$$|og_1| = |og_0.05| = -1.3$$
, $|og_2| = |og_0.8| = -0.0969$, $|og_3| = -0.8239$

Angular loss: Softmax → Revised Softmax → SphereFace
 → Cosface → ArcFace → Combined

Original Softmax Loss:

The most widely used classification loss function, softmax loss, is presented as follows:

$$L_{1} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{W_{0i}^{T} x_{i} + b_{y_{i}}}}{\sum_{j=1}^{n} e^{W_{j}^{T} x_{i} + b_{j}}}, \tag{1}$$

$$b = 0 , \\ x is normalized and rescaled to s , \\ W x = ||W|| \, ||x|| \, cos\theta ,$$

Revised Softmax Loss:

$$L_2 = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s \cos \theta_{y_i}}}{e^{s \cos \theta_{y_i}} + \sum_{j=1, j \neq y_i}^{n} e^{s \cos \theta_j}}.$$

- Angular loss: Softmax → Revised Softmax → SphereFace
 - → Cosface → ArcFace → Combined

Revised Softmax Loss:
$$L_2 = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s \cos \theta_{y_i}}}{e^{s \cos \theta_{y_i}} + \sum_{j=1, j \neq y_i}^{n} e^{s \cos \theta_j}}.$$

Decision boundary

$$\|\boldsymbol{x}\|(\cos\theta_1-\cos\theta_2)=0$$

$$cos\theta \rightarrow cos(m\theta)$$

A-Softmax (SphereFace):
$$L_{\text{ang}} = \frac{1}{N} \sum_{i} -\log \left(\frac{e^{\|\boldsymbol{x}_i\| \cos(m\theta_{y_i,i})}}{e^{\|\boldsymbol{x}_i\| \cos(m\theta_{y_i,i})} + \sum_{i \neq y_i} e^{\|\boldsymbol{x}_i\| \cos(\theta_{j,i})}} \right)$$

$\ \boldsymbol{x}\ (\cos m\theta_1 - \cos \theta_2) = 0$ for class 1
$\ \boldsymbol{x}\ (\cos\theta_1-\cos m\theta_2)=0$ for class 2

Dataset	Original	m=1	m=2	m=3	m=4
LFW	97.88	97.90	98.40	99.25	99.42
YTF	93.1	93.2	93.8	94.4	95.0

• Sphere Face □ Angular margin effect

Dataset	Original	m=1	m=2	m=3	m=4
LFW	97.88	97.90	98.40	99.25	99.42
YTF	93.1	93.2	93.8	94.4	95.0

Angular loss: Softmax → Revised Softmax → SphereFace

→ Cosface → ArcFace → Combined

A-Softmax (SphereFace):
$$L_{\text{ang}} = \frac{1}{N} \sum_{i} -\log \left(\frac{e^{\|\boldsymbol{x}_i\| \cos(m\theta_{y_i,i})}}{e^{\|\boldsymbol{x}_i\| \cos(m\theta_{y_i,i})} + \sum_{i \neq y_i} e^{\|\boldsymbol{x}_i\| \cos(\theta_{j,i})}} \right)$$

Decision boundary

 $\|\boldsymbol{x}\|(\cos m\theta_1 - \cos \theta_2) = 0$ for class 1 $|\boldsymbol{x}||(\cos\theta_1-\cos m\theta_2)=0$ for class 2

$$cos(m\theta) \rightarrow cos\theta - m$$

$$L_{lmc} = \frac{1}{N} \sum_{i} -\log \frac{e^{s(\cos(\theta_{y_i,i})-m)}}{e^{s(\cos(\theta_{y_i,i})-m)} + \sum_{j \neq y_i} e^{s\cos(\theta_{j,i})}}$$

$$C_1 : \cos(\theta_1) \ge \cos(\theta_2) + m,$$

$$C_2 : \cos(\theta_2) \ge \cos(\theta_1) + m.$$

$$C_1 : \cos(\theta_1) \ge \cos(\theta_2) + m,$$

 $C_2 : \cos(\theta_2) \ge \cos(\theta_1) + m.$

Angular loss: Softmax → Revised Softmax → SphereFace

→ Cosface → ArcFace → Combined

$$\mathsf{LMCL}(\mathsf{CosFace}): \qquad L_{lmc} = \frac{1}{N} \sum_{i} -\log \frac{e^{s(\cos(\theta_{y_i,i})-m)}}{e^{s(\cos(\theta_{y_i,i})-m)} + \sum_{j \neq y_i} e^{s\cos(\theta_{j,i})}}$$

$$\cos\theta - m \rightarrow \cos(\theta + m)$$

Additive Angular Margin Loss(ArcFace):
$$L_3 = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s(\cos(\theta_{y_i} + m))}}{e^{s(\cos(\theta_{y_i} + m))} + \sum_{j=1, j \neq y_i}^{n} e^{s\cos\theta_j}}.$$

Decision boundary

$$C_1 : \cos(\theta_1) \ge \cos(\theta_2) + m,$$

$$C_2 : \cos(\theta_2) \ge \cos(\theta_1) + m.$$

$$\hat{x}\left(\cos\left(\theta_1+m\right)-\cos\theta_2\right)=0$$

- Angular loss: Softmax → Revised Softmax → SphereFace
 - → Cosface → ArcFace → Combined

Decision boundary

Additive Angular Margin Loss(ArcFace):

$$L_{3} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s(\cos(\theta_{y_{i}} + m))}}{e^{s(\cos(\theta_{y_{i}} + m))} + \sum_{j=1, j \neq y_{i}}^{n} e^{s\cos\theta_{j}}} \cdot \left[\hat{x} \left(\cos(\theta_{1} + m) - \cos\theta_{2} \right) = 0 \right]$$

$$\hat{x}\left(\cos\left(\theta_1+m\right)-\cos\theta_2\right)=0$$

$$cos(\theta + m) \rightarrow cos(m_1\theta + m_2) - m_3$$

Combined margin :
$$L_4 = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s(\cos(m_1\theta_{y_i} + m_2) - m_3)}}{e^{s(\cos(m_1\theta_{y_i} + m_2) - m_3)} + \sum_{j=1, j \neq y_i}^{n} e^{s\cos\theta_j}}$$

ArcFace

•
$$L_3 = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{e^{s(\cos(\theta_{y_i} + m))}}{e^{s(\cos(\theta_{y_i} + m))} + \sum_{j=1, j \neq y_i}^{n} e^{s\cos\theta_j}}.$$

Algorithm 1 The Pseudo-code of ArcFace on MxNet

Input: Feature Scale s, Margin Parameter m in Eq. 3, Class Number n, Ground-Truth ID gt.

- 1. x = mx.symbol.L2Normalization (x, mode = 'instance')
- 2. W = mx.symbol.L2Normalization (W, mode = 'instance')
- 3. fc7 = mx.sym.FullyConnected (data = x, weight = W, no_bias = True, num_hidden = n)
- 4. original_target_logit = mx.sym.pick (fc7, gt, axis = 1)
- 5. theta = mx.sym.arccos (original_target_logit)
- 6. marginal_target_logit = mx.sym.cos (theta + m)
- 7. one_hot = $mx.sym.one_hot (gt, depth = n, on_value = 1.0, off_value = 0.0)$
- 8. fc7 = fc7 + mx.sym.broadcast_mul (one_hot, mx.sym.expand_dims (marginal_target_logit original_target_logit, 1))
- 9. fc7 = fc7 * s

Output: Class-wise affinity score fc7.

ArcFace

Result

Loss Functions	LFW	CFP-FP	AgeDB-30
ArcFace (0.4)	99.53	95.41	94.98
ArcFace (0.45)	99.46	95.47	94.93
ArcFace (0.5)	99.53	95.56	95.15
ArcFace (0.55)	99.41	95.32	95.05
SphereFace [15]	99.42	-	-
SphereFace (1.35)	99.11	94.38	91.70
CosFace [35]	99.33	_	-
CosFace (0.35)	99.51	95.44	94.56
CM1 (1, 0.3, 0.2)	99.48	95.12	94.38
CM2 (0.9, 0.4, 0.15)	99.50	95.24	94.86
Softmax	99.08	94.39	92.33
Norm-Softmax (NS)	98.56	89.79	88.72
NS+Intra	98.75	93.81	90.92
NS+Inter	98.68	90.67	89.50
NS+Intra+Inter	98.73	94.00	91.41
Triplet (0.35)	98.98	91.90	89.98
ArcFace+Intra	99.45	95.37	94.73
ArcFace+Inter	99.43	95.25	94.55
ArcFace+Intra+Inter	99.43	95.42	95.10
ArcFace+Triplet	99.50	95.51	94.40

ArcFace