基於圖像處理技術的螺紋幾何參數測量...

新機器視覺 2022-03-30 16:45

收錄於話題

#圖像處理 11 #機器視覺 17

點擊下方**卡片**,關注"**新機器視覺**"公眾號

重磅乾貨,第一時間送達

新機器視覺

機器視覺前沿技術及應用 207篇原創內容

公眾號

轉自: 智能緊固件及緊固工具

導讀

作者: 楊雲濤1 關貞珍2(1. 河北工業職業技術大學;2. 陸軍工程大學石家莊校區)

來源:《計量與測試技術》2022年1月

摘要: 針對螺紋幾何參數測量過程中,傳統人工測量效率低、儀器昂貴、耗時費力、偶伴有人 為誤差等不足。本研究採用非接觸測量的方法,利用計算機視覺的圖像處理技術,通過系統標 定、圖像採集、圖像預處理、邊緣檢測、幾何參數計算等步驟,實現了對螺紋幾何參數的自動 測量。通過大量實驗證明,該系統具有快捷高效、數據可靠、易於操作、替代傳統人工操作的 優點,有效提高了批量工件檢測的自動化水平,具有重要的研究意義和實用價值。

0 引言

螺紋件是機械製造業中重要的緊固、連接和傳動組件之一,是一種互換性和標準化程度要求很高的機械零件,在生產製造過程中,合格檢驗是一項至關重要的工作。 [1] 然而,傳統的螺紋參數測量主要以人工測量為主,耗時費力,且偶伴有人為誤差,不能滿足工業化生產快速發展的迫切要求。機器視覺技術是隨著計算機技術發展起來的新型學科, [2 - 4] 快速高效、精準科學、應用廣泛,本研究將計算機圖像處理技術應用於螺紋參數的測量,從技術方法和測量原理上,徹底改變傳統螺紋參數的測量模式,最終實現高效便捷、準確可靠、非接觸自動化測量的目的。

1 測量系統工作原理

測量系統的基本工作原理是利用相機對螺紋工件進行拍照,將獲得的螺紋圖像輸入到計算機中進行灰度化、圖像增強、邊緣檢測等圖像處理, [5 - 7] 得出被測工件的中徑、螺距、牙型角三種參數。系統硬件組成如圖1 所示。相機採用SONY 品牌的DSC - TX100 型號,採集的圖像參數尺寸: (3648 × 2736) mm; 寬度: 3648 像素; 高度: 2736 像素; 水平分辨率: 72dpi; 垂直分辨率: 72dpi。

图1 系统硬件组成

軟件系統以Matlab 為開發平台,將採集的彩色圖像灰度化、二維化處理,提取螺紋邊沿圖像的幾何特徵點,計算幾何特徵參數。

2 系統測量的步驟方法

測量按照測量系統標定、[8] 採集螺紋照片圖像、軟件對圖像預處理、螺紋邊緣檢測、提 出邊緣圖像特徵點、計算螺紋幾何參數的步驟進行。

2. 1 系統標定

系統採集的螺紋圖像以像素圖的形式存儲於計算機中,像素圖是以像素點為單位,由大量像素點有序組合而成的圖像,若根據像素點計算出螺紋的參數尺寸,需要有一個類似刻度尺的參照標準,所以,在採集螺紋圖像時,需要同時採集一個預先知道具體尺寸的標準量塊,根據量塊長度的像素點數量,計算出單位像素點代表的實際尺寸,進而得到螺紋圖像像素和實際尺寸之間的對應關係。因此,在系統採集圖像前,需要對量塊及螺紋進行尺寸標定。本系統中的標準量塊標稱長度為40mm。同時,為了增強螺紋工件與背景的對比度,採用純白色擋板作為圖像採集的背景,如圖2所示。

图 2 系统标定

2.2 圖像採集與存儲

在用相機採集螺紋工件和量塊的圖像時,應注意光源的選取,在大量實驗中發現,自然光條件下,螺紋件表面容易形成鏡面反射,出現若干條明亮的光線,對圖像的後續處理產生較大的干擾,有條件的實驗室,可採用平行光照明,會取得較好的實驗圖像。本研究選擇在遮光的室內對螺紋件進行拍照,調整固定光源和相機拍攝的角度,從而獲得較為理想的螺紋圖像,並將圖像存儲於計算機中,如圖3所示。

图 3 采集的螺纹图像

2.3 圖像預處理

圖像獲取後,需要根據採集的圖像進行參數檢測前的處理,包括圖像灰度化處理、濾波、邊 緣檢測、線性擬合等。

(1) 灰度化處理

相機採集的圖像是彩色的,即三維圖像,每個像素的顏色有 R、G、B 三個分量決定,而每

個分量有255 個值可取,這樣一個像素點可以有1600 多萬(255*255*255)的顏色變化範圍。在matlab 軟件中,處理這麼龐大的數據非常不便。而灰度圖像是 R、G、B 三個分量相同的一種特殊的圖像,其一個像素點的變化範圍為255 種,如果將採集的彩色圖像轉變成灰度圖像,可以大大降低後續圖像處理的計算量,而灰度圖像的描述同樣能夠反映整幅彩色圖像的整體和局部特徵,以及色度和亮度等級的分佈。所以,需要先將採集的彩色圖像轉換為灰色圖像,亦稱為圖像的灰度化處理。

(2) 圖像濾波

採集圖像時,由於受環境等因素的影響,會在圖像中出現許多噪聲,影響後續圖像處理及參數的讀取。因此,在圖像預處理過程中,應對採集的圖像進行濾波處理。目前,圖像濾波技術有多種,[9]形態濾波技術以幾何學為基礎對圖像進行分析,將結構元素輸入圖像,從而創造與輸入圖像同等大小的輸出圖像,具有較好的優越性。因此,研究採用形態濾波方法進行圖像濾波處理。

膨脹和腐蝕是形態濾波最重要的運算。膨脹是對像素增加;腐蝕是對圖像中的目標去除。增加或去除取決於結構元素的大小和形狀。

結構元素是膨脹和腐蝕的基本組成部分,用於測試輸入圖像。研究採用Strel 函數創建一個 圓形的結構元素對象。

SE = strel('ball',
$$R$$
, H , N)

其作用是創建一個非平面的結構元素(實際是一個橢圓)。在x - y 平面內半徑是R, 高度是H(R 為一個非負整數, H 必須為一個實數, N 為非負偶數, 默認值為8)。

(3) 像素尺寸計算

為了能夠方便計算出採集螺紋圖像的尺寸,首先根據量塊的實際尺寸及像素值計算出單個像素值的尺寸,如圖4 所示,在量塊標稱長度方向上選取A、B 兩點。其中A、B 兩點的橫坐標相等,即:

$$X_a = X_b = 177$$

此時A、B 兩點對應的縱坐標分別為: Ya = 404, Yb = 739。因此, 40mm 量塊長度對應的像素值為:

$$Y_b - Y_a = 739 - 404 = 335$$

由此,可得採集圖像預處理後,每一像素值對應的實際長度為0.1194mm。

图 4 预处理后图像

2. 4 邊緣檢測

基本思想是先檢測圖像中的邊緣點,再按照某種策略將邊緣點連接成輪廓,從而構成分割區域。 [10 - 11] 邊緣檢測包含兩個內容: 一是用邊緣算子提取邊緣點集; 二是在邊緣點集中去除某些邊緣點,填充一些邊緣點,再將得到的邊緣點集連接成線。常用的檢測算子有微分算子、Log 算子和Canny 算子。本研究採用的是Canny 算子,Canny 算子的梯度是用高斯濾波器的導數計算,邊緣檢測的方法是尋找圖像梯度的局部極大值。Canny 方法是使用兩個閾值分別檢測強邊緣和弱邊緣,而且僅當強邊緣與弱邊緣相連時,弱邊緣才會包含在輸出中,此方法不易受到噪聲的干擾,能夠檢測到弱邊緣。

2.5 幾何參數計算

螺紋的幾何參數計算,需要在圖像上尋找特徵點或輪廓。

(1) 螺紋中徑測量

設用最小二乘法擬合得到的螺紋軸心線為OO', 在螺紋左側輪廓線上做OO'的平行線L, 如圖5 所示。

图 5 最小二乘法拟合螺纹中径

設L與螺紋左輪廓的交點分別為A、B...F點。此時螺紋左輪廓有一系列離散的點列組成。由

螺紋中徑定義知: 當IAB = ICD = ... = IEF時, 直線L 為螺紋的一條中徑線。同理, 可得螺紋的另一條中徑線L', 直線L 與L'之間的距離為螺紋的中徑d2的大小, 即:

$$d_2 = |L - L'|$$

(2) 螺紋中徑測量

設螺紋螺距為P,由螺距定義知,當IAB = IBC = ... = IEF時,螺距P = IAB + IBC = ... = IDE + IEF,在實際測量中,各交點間的線段長度不能完全取得相等,只能在li相差最小時,測得P為被測螺紋的螺距測量值。

(3) 螺紋牙型角測量

測量螺紋的牙型角時,需要得出經過螺紋牙型輪廓的兩條直線的斜率,再根據反三角函數關係求出螺紋的牙型角。如圖6 所示,由於採集的圖像經過前期的處理後,螺紋牙邊緣圖像由一些離散的像素點組成,因此,需要對離散點進行直線擬合後再進行計算,研究採用最小二乘法進行直線擬合,取表達式y(x) = kx + b 作為它的擬合直線,可以求得1 個牙型2 個邊緣的斜率分別為k1 和k2,最後利用反正切函數求出螺紋牙型角 α 。

图 6 螺纹牙型角测量

3 測量實驗

根據上述方法步驟,在實驗室內進行實驗,測量螺紋工件的中徑、螺距、牙型角、牙型半角。為了提高測量精度,每個螺紋幾何參數均測量5次,然後取其平均值作為測量結果,如表1所示。

表 1 图像处理参数测量结果

参数	第1次	第2次	第3次	第4次	第5次	平均值
中径值 像素值	195	194	194	194	193	194

螺距 像素值	32. 405	33. 467	31. 879	33. 251	31. 896	32. 5796
牙型角	61°08′	61°30′	61°52′	62°08′	62°22′	61°48′
牙型半角	30°34′	30°45′	30°56′	31°04′	31°11′	30°54′

根據量塊的像素值與其標稱長度的比例關係, 計算得出螺紋中徑的平均值為23. 1636mm, 螺紋螺距的平均值為3.89mm。牙型角值為61°48′, 牙型半角值為30°54′。

4 測量誤差分析

為了驗證本研究算法的精度,運用小型工具顯微鏡人工測量的方法,對同一螺紋工件進行幾何參數測量,並將人工測量結果與表1圖像處理方法測得的參數進行對比,結果如表2所示。

参数 中径 螺距 牙型半角 牙型角 30°28′ 人工测量 22, 43 mm 3. 08mm 60°56′ 系统测量 23.1636mm 3.89mm 61°48′ 30°54′ 0. 7336mm 0. 81 mm 52′ 26′ 误差

表 2 螺纹参数测量结果误差对比分析

由表2 可知,雖然系統測量與人工測量結果存在一定的誤差,但整體來看,誤差很小,基本 能夠滿足實際測量的需要。同時,基於圖像處理技術的螺紋幾何參數測量方法大大提高了測量 效率,驗證了系統測量的可靠性和優越性。

5 結論

本研究採用非接觸測量的方法,利用計算機視覺的圖像處理技術,通過系統標定、圖像採集、圖像預處理、邊緣檢測、幾何參數計算等步驟,實現了對螺紋幾何參數的自動測量,並通過大量實驗證明,該系統能夠快捷高效地完成螺紋工件幾何參數的測量,數據可靠、易於操作,有效提高了批量工件檢測的自動化水平,具有重要的研究前景和實用價值。

參考文獻:

- [1] 劉小紅,巫小斌.圓錐外螺紋基準面中徑值測量方法的探討 [J].計量與測試技術, 2021,48(06):91~100.
- [2] JING M. Measurement method of screw thread geometric error based on machine vision [J] . Measurement and Control, 2018, $51(7 8) : 304 \sim 310$.
- [3] 孔盛傑, 黃翔, 週蒯, 等. 基於機器視覺的齒形結構齒頂圓檢測方法 [J]. 儀器儀表學報, 2021, 42(04): 247 ~ 255.
- [4] 支珊, 趙文珍, 段振雲, 等. 視覺測量齒輪定位偏心對齒距測量精度的影響 [J]. 儀器儀表學報, 2019, (02): 205 ~ 212.
- [5] 顧梅花,王苗苗,李立瑤,等.彩色圖像多尺度融合灰度化算法 [J].計算機工程與應用,2021,57(04):209~215.
- [6] 沈正福, 汪惠芬, 袁堂曉. 基於機器視覺的尺寸檢測智能工位設計 [J]. 計算機測量與控制, 2021, 29(07): 91~105.
- [7] 宋栓軍,王啟宇,賈秀海,等.基於斜齒輪端面與側面圖像處理的螺旋角測量方法 [J]. 西安工程大學學報,2021,35(03):81~85.
- [8] 雷霆, 胡平, 曾博才, 等. 基於圖像處理技術的鋼直尺測量系統設計 [J]. 計量與測試技術, 2018, 45(12): 51 ~ 53.
- [9] 朱偉傑,朱洪軍,伍祥,等.基於相關濾波技術的目標跟踪方法綜述 [J].信息工程大學學報,2019,20(06):684~688.
- [10] GARDINER B, COLEMAN S, SCOTNEY B. Multiscale edge detection using a finite element framework for hex agonal pixel based images [J] . IEEE Transactions on Image Processing, 2016, 25(04): 1849 ~ 1861.
- [11] 孔明, 徐志玲, 徐勇, 等. 實際邊緣輪廓下的螺栓綜合尺寸質量檢測 [J]. 計量學報, 2021, 42(06): 724 ~ 730.

本文僅做學術分享, 如有侵權, 請聯繫刪文。

-THE END-

走进新机器视觉 · 拥抱机器视觉新时代

新机器视觉 — 机器视觉领域服务平台 媒体论坛/智库咨询/投资孵化/技术服务

商务合作: 投稿咨询:

产品采购:

长按扫描右侧二维码关注"新机器视觉"公众号

收錄於話題#圖像處理 11

_ く上一篇·圖像分割算法原理及工作流程

喜歡此内容的人還喜歡

單個GPU無法訓練GPT-3,但有了這個,你能調優超參數了

機器之心

×

單張GPU搞定GPT-3超參數! 先訓練小模型, 再"一鍵遷移" | 已開源

量子位

喜大普奔! CMU上海交大等在ICRA22 舉辦新賽事: 變化環境下室外單目深度估計

計算機視覺life

