

Aprendizagem de Máquina

Algoritmos de Previsão Aplicados ao Vestibular da FATEC Mauá: Um Estudo de Séries Temporais

Adriano Barros
Brendon Gomes
Elias Barbosa
Rafael Goncalves

Prof. Bruno Zolotarev

Objetivo Geral

Analisar dados históricos de inscrições no vestibular da FATEC Mauá para desenvolver modelos de previsão que estimem o número de candidatos nos próximos certames, usando séries temporais e aprendizado de máquina.

Objetivos Específicos

- . Coleta de dados (Web Scraping C# (selenium))
- ·Tratamento de dados (python e excel)
- Aplicação dos modelos de previsão Holt-Winters, ARIMA e Prophet aos dados históricos.

Coleta de Dados

Realizada durante todo o período de divulgação da lista de inscritos Fatec Mauá, desde 2007 até 2025 (1º semestre).

Desenvolvida uma automação em C# .NET Framework com Selenium,, que executa web scraping, extraindo as demandas de vestibulares e exportando os dados em formato CSV.

Web Scraping

Esse visual não tem suporte para exportação.

Normalização de Dados

Padronização dos dados

- Excel
- Python (no próprio script)

Padronização dos nomes

- Períodos (Noite / Noturno)
- Períodos (Manhã / Tarde Diurno)
- Nomes dos cursos

Organização Temporal

- Por semestres (1° e 2° semestre), devido a particularidade de cada um.

А		В	С		
Ano	•	Semest 🔻	Curso	NomeCurso	
	2025	1	Polímeros	Polímeros	
	2024	1	Polímeros	Polímeros	
	2023	1	Polímeros	Polímeros	
	2022	1	Polímeros	Polímeros	
	2021	1	Desenvolvimento de Produtos Plásticos	Polímeros	
	2021 1		Polímeros	Polímeros	
	2020 1		Polímeros	Polímeros	
	2019 1		Desenvolvimento de Produtos Plásticos	Polímeros	
	2019	1	Polímeros	Polímeros	
	2018	1	Polímeros	Polímeros	
	2017 1		Polímeros	Polímeros	
	2016		Polímeros	Polímeros	
	2015	1	Polímeros	Polímeros	
	2014	1	Polímeros	Polímeros	
	2013	1	Polímeros	Polímeros	
	2012	1	Polímeros	Polímeros	
	2011	1	Polímeros	Polímeros	
	2010	1	Polímeros (Produção de Materiais Plásticos)	Polímeros	
	2009	1	Produção de Materiais Plásticos	Polímeros	
	2008	1	Produção de Materiais Plásticos	Polímeros	
	2007	1	Produção de Materiais Plásticos	Polímeros	

```
[ ] import pandas as pd
     import re
    def carregar_e_normalizar_fatec(path="fatec_demanda_data.csv"):
         # Carregar o arquivo
         df = pd.read_csv(path, sep=",")
         # Normalizar nomes das colunas
        df.columns = df.columns.str.strip().str.lower()
         # Normalizar textos
        df["curso"] = df["curso"].str.strip().str.lower()
        df["periodo"] = df["periodo"].str.strip().str.lower()
        df["fatec"] = df["fatec"].str.strip().str.lower()
        # Corrigir nomes de períodos
        df["periodo"] = df["periodo"].replace({
             "noturno": "noite",
             "matutino": "manhã"
        # Padronizar os cursos conforme as regras
        def normalizar_curso(c):
            if "logística" in c:
                return "logística"
            if re.search(r"polímero|plástic", c):
                return "polímeros"
            if "informática" in c:
                return "informática para negócios"
             return c
        df["curso"] = df["curso"].apply(normalizar_curso)
        # Normalizar tipos numéricos
        for col in ["ano", "semestre", "inscritos", "vagas", "demanda"]:
            if col in df.columns:
                df[col] = pd.to_numeric(df[col], errors="coerce")
        return df
```

Dados Tratados

Algoritmos Utilizados

Holt-Winters

Usa médias ponderadas

Peso maior aos dados mais recentes.

Considera:

Tendencia

Sazonalidade

Nível (valor médio atual)

Atualiza os 3 componemtes a cada novo dado

Mais usado para séries com padrão sazonal claro e dados mais estáveis

Prophet

Desenvolvido pelo Facebook, Baseado em modelo aditivo que separa a série em:

Tendência (que pode ser linear ou logística),

Sazonalidade,

Feriados e eventos especiais.

Ajusta parâmetros automaticamente, lida bem com sazonalidade.

Robusto a dados faltantes e mudanças repentinas.

ARIMA

AutoRegressive (AR): valor atual depende dos anteriores.

Integrated (I): diferencia dados para tirar tendências.

Moving Average (MA): usa média dos erros passados

Indicado para séries que precisam eliminar tendências ou sazonalidades.

Flexível, mas precisa escolher bem os parâmetros

Análise de Tendência

Previsões utilizando Holt-Winters

Previsões utilizando Prophet

Previsões utilizando ARIMA

Tabela de Comparações

SemestrePeríodo■ 1° Sem□ Diurno□ 2° Sem□ EAD■ Noturno

Ano Semestre	Curso	Turma	Inscritos	Qtd Prophet	% Prophet	Qtd Holt	% Holt	Qtd Arima	% Arima
2024 1° Sem	Desenvolvimento de Software	Noturno	439	248	-43,5%	247	-43,7%	434	-1,1%
2024 1° Sem	Fabricação Mecânica	Noturno	113	127	12,4%	122	8,0%	57	-49,6%
2024 1° Sem	Informática para Negócios	Noturno	115	135	17,4%	134	16,5%	96	-16,5%
2024 1° Sem	Logística	Noturno	190	248	30,5%	248	30,5%	186	-2,1%
2024 1° Sem	Polímeros	Noturno	68	54	-20,6%	36	-47,1%	98	44,1%
2025 1° Sem	Desenvolvimento de Software	Noturno	282	431	52,8%	180	-36,2%	294	4,3%
2025 1° Sem	Fabricação Mecânica	Noturno	97	101	4,1%	106	9,3%	55	-43,3%
2025 1° Sem	Informática para Negócios	Noturno	105	118	12,4%	121	15,2%	78	-25,7%
2025 1° Sem	Logística	Noturno	120	241	100,8%	240	100,0%	223	85,8%
2025 1° Sem	Polímeros	Noturno	42	19	-54,8%	17	-59,5%	89	111,9%

Análises Gerais

Em 2020 e 2021, a pandemia e o ensino remoto impulsionaram inscrições, sobretudo em Informática (manhã), Logística e Gestão EAD.

EAD apresentou boa adesão, talvez seja o momento de ampliar o investimento. (diversificação de cursos).

Fabricação Mecânica apresenta variações acentuadas, indica possível influência de fatores externos (mercado de trabalho, sazonalidade)

Análises dos Modelos

Holt mostrou tendencia de suavizar os dados, útil para séries lineares, mas comprometeu a precisão em variações acentuadas.

Prophet foi consistente em cenários alteração gradual, mas teve dificuldade em variações bruscas.

ARIMA em alguns casos se aproximou muito dos valores reais, mas a baixo volume de dados comprometeu o resultado final.

Em alguns casos os modelos divergiram fortemente entre si, pode ser usado um modelo de ensemble (combinação de previsões)

Conclusão

Os 3 modelos (Prophet, Holt e ARIMA) apresentaram diferenças significativas, indicando necessidade de ajustes e calibração.

Sugere-se revisar os parâmetros e considerar abordagens combinadas para aumentar a precisão das previsões.

Análises