Table of Contents

The functions used for this part can all be found in this script	1
This is one of our first attempts at making a linear dynamical model	1
where we plugged in a starting percentage for each letter (Susceptible	1
Infected, recover, Deceased) and a rate at which they change as time	
passes on.	
Here we have a different attempt where we introduce the ability to	
become reinfected	

The functions used for this part can all be found in this script

This is one of our first attempts at making a linear dynamical model

where we plugged in a starting percentage for each letter (Susceptible

, Infected, recover, Deceased) and a rate at which they change as time passes on.

```
end
plot(changeSIRD');
title('Simulation of Dynamical Model (No reinfections)')
legend('Susceptible','Infected','Recovered','Deceased');
xlabel("Time in Weeks");
ylabel("Fraction of Population");
% This is the graph of what our simulation gave us based on the parameters
% and initial conditions.
```


Here we have a different attempt where we introduce the ability to

become reinfected

```
changeMatrix=[0.85 0.1 0 0;
    0.15 0.75 0.05 0;
    0 0.1 0.95 0;
    0 0.05 0 1];
newSIRD=[1;0;0;0];
change2=changeMatrix*newSIRD;
changeSIRD2=[];
changeSIRD2=cat(2,changeSIRD2,change2);
```

```
for i = 1:99
    change2=changeMatrix*change2; %%use the current change vector to get new
    change vector
        changeSIRD2=cat(2,changeSIRD2,change2); %%Concatenate change vector to
    empty array
end

figure;
plot(changeSIRD2');
title('Simulation of dynamical model (Reinfections Allowed)')
legend('Susceptible','Infected','Recovered','Deceased');
xlabel("Time in Weeks");
ylabel("Fraction of Population");

% When it is possible to become reinfected with a new disease (or same one)
% then the number of deaths as time goes on increases exponentially and
% eventually everyone dies no matter what.
```


Published with MATLAB® R2022a