|  | 108 235<br>ASSIFIE      | DOWN<br>MAR | i-Look II | NG INTE | LOGAN E<br>RFEROME<br>R | LECTRO-<br>TER STU  | JDY II. | CS LAB<br>VOLUME<br>-TR-80- | F19    | NDB00K<br>628-77                          | F/6<br>OF RE-<br>-C-0203<br>NL | -ETC(U) |     |
|--|-------------------------|-------------|-----------|---------|-------------------------|---------------------|---------|-----------------------------|--------|-------------------------------------------|--------------------------------|---------|-----|
|  | 0F<br>AD A<br>106 2 3 5 |             |           |         |                         |                     |         |                             |        |                                           |                                |         |     |
|  |                         |             |           |         |                         | - 14<br>- 14<br>- 1 |         |                             |        |                                           |                                | ÷,      |     |
|  | Ş:n≠ <del>T</del>       |             |           |         |                         |                     | - ₩!    |                             |        | <b></b>                                   |                                |         | , · |
|  |                         |             |           |         | ratingle)<br>is better  |                     |         | 7 .                         |        |                                           |                                |         |     |
|  |                         |             |           |         |                         | **                  |         |                             | w line |                                           |                                |         |     |
|  |                         |             |           |         |                         |                     |         |                             |        | END<br>DATE<br>FILMED<br>OI - 182<br>DTIC |                                |         |     |



AFGL-TR-80-0237

10

DOWN-LOOKING INTERFEROMETER STUDY II

VOLUME II: HANDBOOK OF RESULTS

80

ALEXANDER S. ZACHOR

UTAH STATE UNIVERSITY LOGAN, UTAH 84322

**MARCH 1980** 

SCIENTIFIC REPORT NO. 3



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE HANSCOM AFB, MASSACHUSETTS 01731

81 12 08 296

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

| REPORT DOCUMENTATION PAGE                                                                              | READ INSTRUCTIONS BEFORE COMPLETING FORM                       |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|                                                                                                        | 3. RECIPIENT'S CATALOG NUMBER                                  |
| AFGL-TR-80-0237 AD-A108 235                                                                            |                                                                |
| 4. TITLE (and Subtitle)                                                                                | 5. TYPE OF REPORT & PERIOD COVERED                             |
| DOWN-LOOKING INTERFEROMETER STUDY II                                                                   | Scientific Report No. 3                                        |
| VOLUME II: HANDBOOK OF RESULTS                                                                         | 6. PERFORMING ORG. REPORT NUMBER                               |
|                                                                                                        | <u> </u>                                                       |
| 7. AUTHOR(a)                                                                                           | B. CONTRACT OR GRANT NUMBER(s)                                 |
| Alexander S. Zachor                                                                                    | F19628-77-C-0203                                               |
|                                                                                                        |                                                                |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                            | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |
| Atmospheric Radiation Consultants, Inc. 59 High Street                                                 | 62101F                                                         |
| Acton, Massachusetts 01720                                                                             | 767010AB                                                       |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                | 12. REPORT DATE                                                |
| Air Force Geophysics Laboratory (OPR)                                                                  | March 1980                                                     |
| Hanscom AFB, Massachusetts 01731                                                                       | 13. NUMBER OF PAGES                                            |
| Monitor/Dean F. Kimball/OPR 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) | 15. SECURITY CLASS. (of this report)                           |
| Electro-Dynamics Laboratories                                                                          | Unclassified                                                   |
| Utah State University                                                                                  |                                                                |
| Logan, Utah 84322                                                                                      | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                     |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                            | <u> </u>                                                       |
| Approved for public release; distribution                                                              | unlimited.                                                     |
| Approved for public research, and the second                                                           | White deline provide                                           |
|                                                                                                        |                                                                |
|                                                                                                        |                                                                |
| 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from                     | m Report)                                                      |
|                                                                                                        |                                                                |
|                                                                                                        |                                                                |
|                                                                                                        |                                                                |
| 18. SUPPLEMENTARY NOTES                                                                                |                                                                |
|                                                                                                        |                                                                |
|                                                                                                        |                                                                |
|                                                                                                        |                                                                |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)                     |                                                                |
| Atmospheric transmission, interferometer spectromet                                                    | ers, spectral correlation                                      |
| techniques, minor contaminant species detection.                                                       |                                                                |
|                                                                                                        |                                                                |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)                      |                                                                |
| 1.                                                                                                     |                                                                |
| This volume is a handbook of results for the Down-I Study II (AFGL-TR-80-0236). Three pages of data as |                                                                |
| format for each candidate detection band.                                                              | e presented                                                    |
|                                                                                                        |                                                                |

| SECURITY CLASSIFICATION OF THE PAGE | (When Date Entered) |
|-------------------------------------|---------------------|
| ,                                   |                     |
|                                     |                     |
|                                     |                     |
|                                     |                     |
|                                     |                     |
|                                     |                     |
|                                     |                     |
|                                     | }                   |
| Ì                                   |                     |
|                                     |                     |
|                                     |                     |
|                                     |                     |
| i e                                 |                     |
|                                     |                     |
| t                                   |                     |
| 1                                   |                     |
|                                     |                     |
| }                                   |                     |
| 1                                   |                     |
|                                     |                     |
|                                     |                     |
| 1                                   |                     |
|                                     |                     |
|                                     |                     |
|                                     | i                   |
| İ                                   |                     |
|                                     |                     |
|                                     |                     |
|                                     |                     |
|                                     |                     |
|                                     |                     |
|                                     |                     |
|                                     |                     |
| i                                   |                     |
|                                     |                     |
|                                     |                     |
|                                     |                     |
|                                     |                     |
|                                     |                     |
| }                                   |                     |
| 1                                   |                     |
|                                     |                     |
| 1                                   |                     |
| 1                                   |                     |
| }                                   |                     |
| 1                                   |                     |
|                                     |                     |

## PREFACE

This handbook of results for the Down-Looking Interferometer Study II is described and summarized in Section 1 of Volume I. Three pages of data are presented for each candidate detection band in a standard format. The following index gives the number of the first page for each band.

| Molecule<br>(Transition)                     | Detection Band (cm <sup>-1</sup> ) | Page                                     |
|----------------------------------------------|------------------------------------|------------------------------------------|
| с <sub>2</sub> н <sub>4</sub> о <sub>2</sub> | 880-1000                           | 3                                        |
| сн <sub>4</sub> (v <sub>3</sub> )            | 3000-3025                          | 6                                        |
| (v <sub>4</sub> )                            | 1295-1310                          | 9                                        |
| CH31                                         | 790-990                            | 12                                       |
| co(1-0)                                      | 2130-2185                          | 15                                       |
| CO <sub>2</sub> (blue spike)                 | 2375-2400                          | 18                                       |
| DF                                           | 2500-2700                          | 21                                       |
|                                              | 2700-2900                          | Accession For                            |
|                                              | 2900-3000                          | 27 NTIS GRAAI                            |
| HBr                                          | 2450-2650                          | DTIC TAS [] Unannounced [] Juntification |
| HC1                                          | 2500-2700                          | 33 <sub>By</sub>                         |
|                                              | 2700-2900                          | 36 Distribution/                         |
|                                              | 2900-3000                          | 39                                       |
| HF                                           | 3240-3440                          | 42 A                                     |
| н                                            | 2100-2200                          | 45                                       |
| HNO3 (2 vg)                                  | 887.5-902.5                        | 48                                       |

| Molecule<br>(Transition)                           | Detection Band (cm <sup>-1</sup> ) | Page |
|----------------------------------------------------|------------------------------------|------|
| NH <sub>3</sub> (ν <sub>2</sub> )                  | 915-970                            | 51   |
| N <sub>2</sub> 0(2 v <sub>1</sub> )                | 2525-2590                          | 54   |
| (v <sub>3</sub> )                                  | 2160-2210                          | 57   |
| (v <sub>1</sub> )                                  | 1250-1320                          | 60   |
| $N0_2(v_1 + v_3)$                                  | 2850-2935                          | 63   |
| (v <sub>2</sub> )                                  | 710-795                            | 66   |
| so <sub>2</sub> (v <sub>1</sub> + v <sub>3</sub> ) | 2450-2525                          | 69   |
| (v <sub>1</sub> )                                  | 1090-1210                          | 72   |





Table 1 Detection Parameters for  $\mathsf{C_2H_4O_2}$  880-1000 cm  $^{-1}$  region

| QUANTITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYMBOL, VALUE                                | UNITS                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------|
| DETECTION BAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 880-1000                                     | l-no                                                             |
| Approximate wavelength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.6                                         | E                                                                |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v$ = 0.80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M = 150                                      |                                                                  |
| BAND PHOTON RADIANCE (scene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.00 × 10 <sup>16</sup>                      | ph/seccm <sup>2</sup> sr                                         |
| Maximum of contrast $\tau_{\sigma_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}_{\mathbf{Q}}}}}}}}}}$                                                                                                                                   | $CMAX = 8.38 \times 10^{-20}$                | cm²/molec                                                        |
| Mean contrast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mu' = 5.50 \times 10^{-20}$                | cm²/molec                                                        |
| STANDARD DEVIATION OF CONTRAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $a^2 = 1.69 \times 10^{-20}$                 | cm²/molec                                                        |
| * Photon flux density on detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                  |
| from scene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $1.4 \times 10^{15}$                         | phot/seccm <sup>2</sup>                                          |
| * from internal sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5 × 10 <sup>15</sup>                       | phot/sec cm <sup>2</sup>                                         |
| * TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $J = 2.9 \times 10^{15}$                     | phot/sec cm <sup>2</sup>                                         |
| * BLIP Dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $4.2 \times 10^{11}$                         | cm /Hz/W                                                         |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | min t <sub>d</sub> = 6.54 × 10 <sup>-4</sup> | Sec                                                              |
| * CORRESPONDING BASELINE NESR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(NESR)_0 = 2.5 \times 10^{-7}$              | W/cm <sup>2</sup> sr cm <sup>-1</sup>                            |
| * MINIMUM DETECTABLE QUANTITY D (see figure) "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | min $0 = 2.0 - 7.0 \times 10^{12}$           | $(molec/cm^2)(W/cm^2 srcm^{-1})$                                 |
| G M - >tm - xtm - | 107 7                                        | (mc) ac/cm <sup>2</sup> ) (W/cm <sup>2</sup> er cm <sup>-1</sup> |











Table 2 Detection Parameters for  $\mathrm{CH}_{l_{\mathrm{L}}}$   $\mathrm{v}_{\mathrm{J}}$  band

| Approximate wavelength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QUANTITY                          | SYMBOL, VALUE                           | UNITS                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|-------------------------------------------------------------------|
| 3.3 $M = 250$ $CMAX = 1.14 \times 10^{-20}$ $u' = 1.84 \times 10^{-21}$ $a' = 2.71 \times 10^{-21}$ $a' = 2.71 \times 10^{-11}$ $J = 2.1 \times 10^{11}$ $J = 2.1 \times 10^{13}$ $min \ t_d = 7.79$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DETECTION BAND                    | 3000-3025                               | cm l-                                                             |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Approximate wavelength            | 3.3                                     | E                                                                 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | . M = 250                               |                                                                   |
| $c_{MAX} = 1.14 \times 10^{-20}$ $c_{L}' = 1.84 \times 10^{-21}$ $c_{C} = 2.71 \times 10^{-21}$ $c_{C} = 2.71 \times 10^{-10}$ $c_{C} = 2.71 \times 10^{10}$ $c_{C} = 2.5 - 8.0 \times 10^{10}$ $c_{C} = 1.6 \times 10^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BAND PHOTON RADIANCE (scene)      | $2.57 \times 10^{12}$                   | ph/seccm <sup>2</sup> sr                                          |
| $ \begin{array}{llll}  & \mu' = 1.84 \times 10^{-21} \\  & \sigma' = 2.71 \times 10^{-21} \\  & \sigma' = 2.71 \times 10^{-21} \\  & \vdots  | Maximum of contrast $	au_{V}^{A}$ | . $CMAX = 1.14 \times 10^{-20}$         | cm <sup>2</sup> /molec                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean contrast                     | $\mu' = 1.84 \times 10^{-21}$           | cm <sup>2</sup> /molec                                            |
| 5.9 × 10 <sup>10</sup> 1.5 × 10 <sup>11</sup> 1.5 × 10 <sup>11</sup> 1.3 × 10 <sup>13</sup> 1.3 × 10 <sup>13</sup> 1.3 × 10 <sup>10</sup> 1.3 × 10 <sup>10</sup> 1.3 × 10 <sup>10</sup> 1.3 × 10 <sup>10</sup> 1.5 × 10 <sup>10</sup> 1.6 × 10 <sup>10</sup> 1.7 × 10 <sup>10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STANDARD DEVIATION OF CONTRAST    | $\sigma = 2.71 \times 10^{-21}$         | cm²/molec                                                         |
| 5.9 × 10 <sup>10</sup> $J = 2.1 \times 10^{11}$ $J = 2.1 \times 10^{11}$ $J = 2.7 \times 10^{10}$ $J = 2.7 \times 10^{10}$ $J = 2.7 \times 10^{10}$ $J = 2.5 \times 10^{10}$ $J = 2.5 \times 10^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | * Photon flux density on detector | 1                                       |                                                                   |
| 1.5 × 10 <sup>11</sup> 1.5 × 10 <sup>11</sup> 1.3 × 10 <sup>13</sup> 1.5 × 10 <sup>10</sup> 1.6 × 10 <sup>10</sup> 1.5 × 10 <sup>10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | * from scene                      | . 5.9 × 10 <sup>10</sup>                | phot/sec cm <sup>2</sup>                                          |
| $J = 2.1 \times 10^{11}$ $I.3 \times 10^{13}$ $I.6 \times 10^{10}$ $I.6 \times 10^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | . 1.5 × 10 <sup>11</sup>                | phot/sec cm <sup>2</sup>                                          |
| min $t_d = 7.79$<br>(NESR) $_0 = 6.0 \times 10^{-10}$<br>min $_0 = 2.5 - 8.0 \times 10^{10}$<br>$_{0p} = 1.6 \times 10^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | $3 = 2.1 \times 10^{11}$                | phot/sec cm <sup>2</sup>                                          |
| min $t_d = 7.79$<br>(NESR) $_0 = 6.0 \times 10^{-10}$<br>min $_0 = 2.5 - 8.0 \times 10^{10}$<br>$_{0_D}$ = 1.6 × $_{10}$ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * BLIP D*                         | . 1.3 × 10 <sup>13</sup>                | cm /Hz/W                                                          |
| (NESR) $_{0} = 6.0 \times 10^{-10}$<br>min $_{0} = 2.5 - 8.0 \times 10^{10}$<br>$\sigma_{D}$ = 1.6 × 10 <sup>10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P PERFORMANCE                     | . min t <sub>d</sub> = 7.79             | sec                                                               |
| min $0 = 2.5 - 8.0 \times 10^{10}$<br>$\sigma_{D}$ = $1.6 \times 10^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                 | $(NESR)_0 = 6.0 \times 10^{-10}$        | W/cm <sup>2</sup> sr cm <sup>-1</sup>                             |
| $\sigma_{\rm D}$ = 1.6 × 10 $^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                 | . min $0 = 2.5 - 8.0 \times 10^{10}$    | (molec/cm <sup>2</sup> ) (W/cm <sup>2</sup> sr cm <sup>-1</sup> ) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * UNCERTAINTY IN D                | · σ <sub>0</sub> ·=1.6×10 <sup>10</sup> | (molec/cm <sup>2</sup> ) (W/cm <sup>2</sup> sr cm <sup>-1</sup> ) |











Table 4 Detection Parameters for  ${
m CH_3}1$  790-990 cm  $^{-1}$  region

| QUANTITY                                                | SYMBOL, VALUE                               | UNITS                             |
|---------------------------------------------------------|---------------------------------------------|-----------------------------------|
| DETECTION BAND                                          | 790-990                                     | - J                               |
| Approximate wavelength                                  | 11.2                                        | Ę                                 |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v$ = 0.10)      | M = 2000                                    |                                   |
| BAND PHOTON RADIANCE (scene)                            | 1.14 × 10 <sup>17</sup>                     | ph/seccm <sup>2</sup> sr          |
| Maximum of contrast $\tau_{\nu}{}^{\alpha}{}_{g_{\nu}}$ | CMAX = $3.62 \times 10^{-20}$               | cm <sup>2</sup> /molec            |
| Mean contrast                                           | $\mu' = 4.82 \times 10^{-21}$               | cm <sup>2</sup> /molec            |
| STANDARD DEVIATION OF CONTRAST                          | $\sigma' = 4.40 \times 10^{-21}$            | cm <sup>2</sup> /molec            |
| * Photon flux density on detector                       | 1                                           |                                   |
| * from scene                                            | 2.6 × 10 <sup>15</sup>                      | phot/sec cm <sup>2</sup>          |
| * from internal sources                                 | 2.7 × 10 <sup>15</sup>                      | phot/sec cm <sup>2</sup>          |
| * TOTAL                                                 | J = 5.3 × 10 <sup>15</sup>                  | phot/sec cm <sup>2</sup>          |
| * BLIP DX                                               | 2.9 × 10 <sup>11</sup>                      | cm /Hz/W                          |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE                | min $t_d = 3.63 \times 10^{-3}$             | sec                               |
| * CORRESPONDING BASELINE NESR                           | $(NESR)_0 = 1.23 \times 10^{-6}$            | W/cm²srcm²l                       |
| * MINIMUM DETECTABLE QUANTITY D (see figure) .          | min D = 1.0 - 3.5 $\times$ 10 <sup>13</sup> | $(molec/cm^2)(W/cm^2 sr cm^{-1})$ |
| * UNCERTAINTY IN 0                                      | $\sigma_{D'} = 5.96 \times 10^{12}$         | $(molec/cm^2)(W/cm^2 sr cm^{-1})$ |







Table 5 Detection Parameters for CO 1-0 band

| SYMBOL                                                                        | SYMBOL, VALUE                             | UNITS                                                             |
|-------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------|
| DETECTION BAND                                                                | 2130-2185                                 | cm -1                                                             |
| Approximate wavelength                                                        | 4.7                                       | Ę                                                                 |
| rs (for av = 0.10)                                                            | M = 550                                   | ¢                                                                 |
| ene)                                                                          | 3.66 × 10 <sup>14</sup>                   | ph/sec cm <sup>2</sup> sr                                         |
| • • • • • • • • • • • • • • • • • • • •                                       | $CMAX = 2.01 \times 10^{-19}$             | cm <sup>2</sup> /molec                                            |
|                                                                               | $\mu^{\prime} = 2.09 \times 10^{-20}$     | cm <sup>2</sup> /molec                                            |
| OF CONTRAST                                                                   | $\sigma' = 3.64 \times 10^{-20}$          | cm²/molec                                                         |
| + bhatan flux density on detector                                             |                                           |                                                                   |
|                                                                               | 8.3 × 10 <sup>12</sup>                    | phot/sec cm                                                       |
| * from internal sources                                                       | 1.0 × 10 <sup>13</sup>                    | phot/sec cm <sup>2</sup>                                          |
|                                                                               | $J = 1.9 \times 10^{13}$                  | phot/seccm <sup>2</sup>                                           |
| * BLIP 0,                                                                     | 1.9 × 10 <sup>12</sup>                    | cm /Hz/W                                                          |
| CAN TIME FOR BL                                                               | min t <sub>d</sub> = 0.833                | , ec.                                                             |
| * CORRESPONDING BASELINE MESR                                                 | $(3)_0 = 1.2 \times 10^{-8}$              | W/cm <sup>2</sup> sr cm <sup>-1</sup>                             |
| * MINIMUM DETECTABLE QUANTITY D (see figure) min D = $3.0-8.5 \times 10^{10}$ | $0 = 3.0 - 8.5 \times 10^{10}$            | (molec/cm <sup>2</sup> ) (W/cm <sup>2</sup> sr cm <sup>-1</sup> ) |
| * UNCERTAINTY IN D                                                            | $\sigma_{\rm D}$ = 1.8 × 10 <sup>10</sup> | (molec/cm <sup>-</sup> )(W/cm <sup>-</sup> srcm )                 |







Table 6 Detection Parameters for  ${
m CO}_2$  2375-2400 cm $^{-1}$  region

| QUANTITY                                   | SYMBOL, VALUE                                 | UNITS                                                             |
|--------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------|
| DETECTION BAND                             | 2375-2400                                     | cm. 1                                                             |
| Approximate wavelength                     | 4.19                                          | En                                                                |
| * NO. OF SPECTRAL ELEMENTS (for Av = 0.10) | . м = 250                                     |                                                                   |
| BAND PHOTON RADIANCE (scene)               | $2.75 \times 10^{13}$                         | ph/sec cm <sup>2</sup> sr                                         |
| Maximum of contrast todgo                  | . $CMAX = **2.71 \times 10^{-20}$             | cm <sup>2</sup> /molec                                            |
| Mean contrast                              | $\mu' = *9.72 \times 10^{-22}$                | cm <sup>2</sup> /molec                                            |
| STANDARD DEVIATION OF CONTRAST             | $\sigma' = **_4.80 \times 10^{-21}$           | cm <sup>2</sup> /molec                                            |
| * Photon flux density on detector          | ı                                             |                                                                   |
| * from scene                               | 6.3 × 10 <sup>11</sup>                        | phot/sec cm <sup>2</sup>                                          |
| * from internal sources                    | 1.9 × 10 <sup>12</sup>                        | phot/sec cm <sup>2</sup>                                          |
| * TOTAL                                    | $J = 2.5 \times 10^{12}$                      | phot/seccm <sup>2</sup>                                           |
| * BLIP D*                                  | $4.7 \times 10^{12}$                          | cm /Hz/V                                                          |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE   | min t <sub>d</sub> = 2.24                     | sec                                                               |
|                                            | $(NESR)_0 = 3.1 \times 10^{-9}$               | W/cm <sup>2</sup> sr cm <sup>-1</sup>                             |
| re)                                        | min D = **1.0-2.5 x 10 <sup>11</sup>          | (molec/cm <sup>2</sup> ) (W/cm <sup>2</sup> sr cm <sup>-1</sup> ) |
| * UNCERTAINTY IN D                         | . ° <sub>0</sub> ′ = **5.7 × 10 <sup>10</sup> | $(molec/cm^2)(W/cm^2srcm^{-1})$                                   |

Assumes  $CO_2$  temperature =  $850^{\circ}$ K.







Table 7 Detection Parameters for DF  $2500-2700~{
m cm}^{-1}$  region

| QUANTITY                                           | SYMBOL, VALUE                                                            | UNITS                                                                                                   |
|----------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| DETECTION BAND                                     | 2500-2700                                                                | -1<br>cm                                                                                                |
| Approximate wavelength                             | 3.85                                                                     | wa                                                                                                      |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v$ = 0.10) | . M = 2000                                                               |                                                                                                         |
| BAND PHOTON RADIANCE (scene)                       | 2.81 × 10 <sup>14</sup>                                                  | ph/sec cm <sup>2</sup> sr                                                                               |
| Maximum of contrast Tudon                          | $CMAX = 2.62 \times 10^{-19}$                                            | cm²/molec                                                                                               |
| Mean contrast                                      | $\mu' = 2.86 \times 10^{-22}$                                            | cm²/molec                                                                                               |
| STANDARD DEVIATION OF CONTRAST                     | $\sigma' = 6.38 \times 10^{-21}$                                         | cm²/molec                                                                                               |
| * Photon flux density on detector                  | ì                                                                        |                                                                                                         |
| * from scene                                       | $6.4 \times 10^{12}$                                                     | phot/sec cm <sup>2</sup>                                                                                |
| * from internal sources                            | $6.8 \times 10^{12}$                                                     | $phot/seccm^2$                                                                                          |
| * TOTAL                                            | , J= 1.3 × 10 <sup>13</sup>                                              | phot/sec cm <sup>2</sup>                                                                                |
| * BLIP 0,                                          | . 1.9 × 10 <sup>12</sup>                                                 | cm √Hz/W                                                                                                |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE           | min t <sub>d</sub> = 1.02                                                | 295                                                                                                     |
| SR                                                 | $(NESR)_0 = 1.1 \times 10^{-8}$ re) min D = 0.8 - 2.3 × 10 <sup>11</sup> | W/cm <sup>2</sup> sr cm <sup>-1</sup> (molec/cm <sup>2</sup> ) (W/cm <sup>2</sup> sr cm <sup>-1</sup> ) |
| * UNCERTAINTY IN D                                 | $\sigma_{0'} = 5.6 \times 10^{10}$                                       | (molec/cm <sup>£</sup> )(W/cm <sup>£</sup> srcm <sup>-1</sup> )                                         |







Table 8 Detection Parameters for DF  $2700-2900 \text{ cm}^{-1}$  region

| QUANTITY                                           | SYMBOL, VALUE                                                | UNITS                             |
|----------------------------------------------------|--------------------------------------------------------------|-----------------------------------|
| DETECTION BAND                                     | 2700-2900                                                    | -1<br>cm                          |
| Approximate wavelength                             | 3.57                                                         | <b>L</b> I                        |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v$ = 0.10) | M = 2000                                                     |                                   |
| BAND PHOTON RADIANCE (scene)                       | $1.23 \times 10^{14}$                                        | ph/seccm <sup>2</sup> sr          |
| Maximum of contrast $	au_{v}{}_{qv}$               | $CMAX = 1.66 \times 10^{-18}$                                | cm <sup>2</sup> /molec            |
| Mean contrast                                      | $\mu' = 1.45 \times 10^{-20}$                                | cm <sup>2</sup> /molec            |
| STANDARD DEVIATION OF CONTRAST                     | $\sigma^* = 9.39 \times 10^{-20}$                            | cm <sup>2</sup> /molec            |
| * Photon flux density on detector                  |                                                              |                                   |
| * from scene                                       | 2.8 × 10 <sup>12</sup>                                       | phot/sec cm <sup>2</sup>          |
| * from internal sources                            | $3.0 \times 10^{12}$                                         | phot/sec cm <sup>2</sup>          |
| * TOTAL                                            | $J = 5.8 \times 10^{12}$                                     | phot/sec cm <sup>2</sup>          |
| * BLIP DA                                          | 2.7 × 10 <sup>12</sup>                                       | cm /Hz/W                          |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE           | min t <sub>d</sub> = 1.53                                    | sec                               |
| * CORRESPONDING BASELINE NESR                      | $(NESR)_0 = 6.6 \times 10^{-9}$                              | W/cm²srcm²ì                       |
| * MINIMUM DETECTABLE QUANTITY D (see figure)       | TY D (see figure) min D = 3.0 - 9.0 $\times$ 10 <sup>9</sup> | (molec/cm2)(W/cm2 sr cm-1)        |
| * UNCERTAINTY IN D                                 | $\sigma_0 = 2.2 \times 10^9$                                 | $(molec/cm^2)(W/cm^2 sr cm^{-1})$ |
|                                                    | •                                                            |                                   |







Table 9 Detection Parameters for DF 2900-3000 cm<sup>-1</sup> region

| QUANTITY                                           | SYMBOL, VALUE                      | UNITS                                 |
|----------------------------------------------------|------------------------------------|---------------------------------------|
| DETECTION BAND                                     | 2900-3000                          | - l - cm                              |
| Approximate wavelength                             | 3.39                               | E J                                   |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v$ = 0.10) | 0001 = M                           |                                       |
| BAND PHOTON RADIANCE (scene)                       | $2.56 \times 10^{13}$              | ph/seccm <sup>2</sup> sr              |
| Maximum of contrast $\tau_{\alpha g_{\nu}}$        | $CMAX = 2.39 \times 10^{-19}$      | cm <sup>2</sup> /molec                |
| Mean contrast                                      | $u = 4.34 \times 10^{-21}$         | cm²/molec                             |
| STANDARD DEVIATION OF CONTRAST                     | $\sigma = 1.80 \times 10^{-20}$    | cm²/molec                             |
| * Photon flux density on detector                  |                                    |                                       |
| * from scene                                       | 5.8 × 10 <sup>11</sup>             | phot/sec cm <sup>2</sup>              |
| * from internal sources                            | 8.0 × 10 <sup>11</sup>             | phot/sec cm <sup>2</sup>              |
| * TOTAL                                            | $J = 1.4 \times 10^{12}$           | phot/sec cm <sup>2</sup>              |
| * BLIP D.*                                         | 5.2 × 10 <sup>12</sup>             | cm /Hz/W                              |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE           | min t <sub>d</sub> = 3.09          | sec                                   |
| * CORRESPONDING BASELINE NESR                      | $(NESR)_0 = 2.4 \times 10^{-9}$    | W/cm <sup>2</sup> sr cm <sup>-1</sup> |
| * MINIMUM DETECTABLE QUANTITY D (see figure) .     | min D = $1.0 - 2.3 \times 10^{10}$ | $(molec/cm^2)(W/cm^2 sr cm^{-1})$     |
| * UNCERTAINTY IN D                                 | $0. \times 8.5 = 5.8 \times 10^9$  | (molec/cm2)(W/cm2 sr cm-1)            |







Table 10 Detection Parameters for HBr  $2450-2650~\mathrm{cm}^{-1}$  region

| QUANTITY                                     | SYMBOL, VALUE                        | UNITS                                 |
|----------------------------------------------|--------------------------------------|---------------------------------------|
| DETECTION BAND                               | 2450-2650                            | - J                                   |
| Approximate wavelength                       | 3.9                                  | Ea                                    |
| * NO. OF SPECTRAL ELEMENTS (for AV = 0.10)   | M = 2000                             |                                       |
| BAND PHOTON RADIANCE (scene)                 | 3.39 × 10 <sup>14</sup>              | ph/sec cm <sup>2</sup> sr             |
| Maximum of contrast tydy                     | $CMAX = 2.48 \times 10^{-19}$        | cm <sup>2</sup> /molec                |
| Mean contrast                                | $\mu' = 4.19 \times 10^{-21}$        | cm <sup>2</sup> /molec                |
| STANDARD DEVIATION OF CONTRAST               | $\sigma' = 2.10 \times 10^{-20}$     | cm <sup>2</sup> /molec                |
| * Photon flux density on detector            |                                      |                                       |
| * from scene                                 | 7.7 × 10 <sup>12</sup>               | phot/sec cm <sup>2</sup>              |
| * from internal sources                      | 8.2 × 10 <sup>12</sup>               | phot/sec cm <sup>2</sup>              |
| * TOTAL                                      | $J = 1.6 \times 10^{13}$             | phot/sec cm <sup>2</sup>              |
| * BLIP D*                                    | 1.8 × 10 <sup>12</sup>               | cm /Hz/W                              |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE     | min t <sub>d</sub> = 0.930           | Sec                                   |
| * CORRESPONDING BASELINE NESR                | $(NESR)_0 = 1.3 \times 10^{-8}$      | W/cm <sup>2</sup> sr cm <sup>-1</sup> |
| * MINIMUM DETECTABLE QUANTITY D (see figure) | . min D = $3.0 - 8.0 \times 10^{10}$ | $(molec/cm^2)(W/cm^2 sr cm^{-1})$     |
| * UNCERTAINTY IN D                           | $\sigma_0 = 1.9 \times 10^{10}$      | $(molec/cm^2)(W/cm^2 sr cm^{-1})$     |







Table 11 Detection Parameters for HCl  $2500-2700~{
m cm}^{-1}$  region

|                                                                | SYMBOL, VALUE                   | UNITS                                                             |
|----------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------|
| GUANITITY STAND                                                | 2500-2700                       | cm -1                                                             |
| Approximate wavelength                                         | 3.85                            | พา                                                                |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v = 0.10$ )            | M = 2000                        | 2                                                                 |
| BAND PHOTON RADIANCE (scene)                                   | 2.81 × 10 <sup>14</sup>         | ph/sec cm si                                                      |
| Maximum of contrast $	au_{oldsymbol{arphi}}^{oldsymbol{lpha}}$ | $CMAX = 7.11 \times 10^{-2}$    | cm /molec                                                         |
| Mean contrast                                                  | $u' = 1.16 \times 10^{-21}$     | cm <sup>2</sup> /molec                                            |
| STANDARD DEVIATION OF CONTRAST                                 |                                 |                                                                   |
| * Photon flux density on detector                              | 2                               | 2                                                                 |
| * from scene                                                   | 6.4 × 10' <sup>2</sup>          | phot/sec cm                                                       |
| * from internal sources                                        | 6.8 × 10 <sup>2</sup>           | phot/sec.cm                                                       |
| * TOTAL                                                        | $J = 1.3 \times 10^{13}$        | phot/sec ciii                                                     |
| * BLIP D                                                       | 1.9 × 6.1                       |                                                                   |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE                       | min t <sub>d</sub> = 1.02       | sec                                                               |
| * CORRESPONDING BASELINE NESR                                  | $(NESR)_0 = 1.1 \times 10^{-3}$ | (molec/rm <sup>2</sup> ) (W/cm <sup>2</sup> sr cm <sup>-1</sup> ) |
| * MINIMUM DETECTABLE QUANTITY D (see figure)                   | . min D = 3.0 - 9.0 × 10        | (molec/cm <sup>2</sup> ) (W/cm <sup>2</sup> sr cm <sup>-1</sup> ) |
| * UNCERTAINTY IN D                                             | σ <sub>0</sub> , = 2.5 × 10     |                                                                   |







Table 12 Detection Parameters for HCl 2700-2900 cm region

| QUANTITY                                                                            | SYMBOL, VALUE                       | UNITS                                                             |
|-------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------|
| DETECTION BAND                                                                      | 2700-2900                           | cm -1                                                             |
| Approximate wavelength                                                              | 3.57                                | wi                                                                |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v$ = 0.10)                                  | M = 2000                            |                                                                   |
| BAND PHOTON RADIANCE (scene)                                                        | 1.23 × 10 <sup>14</sup>             | ph/sec cm <sup>2</sup> sr                                         |
| Maximum of contrast $\tau_{\nu}^{\alpha}$ g $_{\nu}$                                | $CMAX = 1.30 \times 10^{-18}$       | cm²/molec                                                         |
| Mean contrast                                                                       | $\mu' = 9.28 \times 10^{-21}$       | cm <sup>2</sup> /molec                                            |
| STANDARD DEVIATION OF CONTRAST                                                      | $\sigma' = 6.77 \times 10^{-20}$    | cm <sup>2</sup> /molec                                            |
| * Photon flux density on detector                                                   |                                     |                                                                   |
| * from scene                                                                        | $2.8 \times 10^{12}$                | phot/sec cm <sup>2</sup>                                          |
| * from internal sources                                                             | $3.0 \times 10^{12}$                | phot/sec cm <sup>2</sup>                                          |
| * TOTAL                                                                             | $J = 5.8 \times 10^{12}$            | phot/sec cm <sup>2</sup>                                          |
| * BLIP D*                                                                           | $2.7 \times 10^{12}$                | cm /Hz/W                                                          |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE m                                          | min t <sub>d</sub> = 1.53           | sec                                                               |
| * CORRESPONDING BASELINE NESR                                                       | $(NESR)_0 = 6.6 \times 10^{-9}$     | W/cm <sup>2</sup> sr cm <sup>-1</sup>                             |
| * MINIMUM DETECTABLE QUANTITY D (see figure) min D = 0.5 - 1.25 $\times$ 10 $^{10}$ | min $0 = 0.5 - 1.25 \times 10^{10}$ | $(molec/cm^2)(W/cm^2 sr cm^{-1})$                                 |
| * UNCERTAINTY IN D $\sigma_{D^-}$ = 3.1 × 10 $^9$                                   | $\sigma_{D} = 3.1 \times 10^{9}$    | (molec/cm <sup>2</sup> ) (W/cm <sup>2</sup> sr cm <sup>-1</sup> ) |
|                                                                                     |                                     |                                                                   |







Table 13 Detection Parameters for HC1 2900-3000 cm<sup>-1</sup> region

| DETECTION BAND                                                               | STABOL, WALGE                          |                                                                   |
|------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------|
|                                                                              | 2900-3000                              | - n                                                               |
| Approximate wavelength                                                       | 3.39                                   | En                                                                |
| * NO. OF SPECTRAL ELEMENTS (for AV = 0.10)                                   | #<br>*                                 |                                                                   |
| BAND PHOTON RADIANCE (scene)                                                 | 2.56 × 10 <sup>13</sup>                | ph/sec cm <sup>2</sup> sr                                         |
| Maximum of contrast $t_{ij} \alpha_{ij}$                                     | $CMAX = 1.64 \times 10^{-18}$          | cm²/molec                                                         |
| Mean contrast                                                                | $$ $u' = 1.64 \times 10^{-20}$         | cm <sup>2</sup> /molec                                            |
| STANDARD DEVIATION OF CONTRAST                                               | $\sigma' = 9.81 \times 10^{-20}$       | cm²/molec                                                         |
| * Photon flux density on detector                                            |                                        |                                                                   |
| * from scene                                                                 | 5.8 × 10 <sup>11</sup>                 | phot/sec cm <sup>2</sup>                                          |
|                                                                              | 8.0 × 10 <sup>11</sup>                 | phot/seccm <sup>2</sup>                                           |
| * T0TAL                                                                      | $3 = 1.4 \times 10^{12}$               | phot/sec cm <sup>2</sup>                                          |
| * BLIP D*                                                                    | 5.2 × 10 <sup>12</sup>                 | cm VHZ/W                                                          |
| * MINIMIN SCAN TIME FOR BLIP PERFORMANCE .                                   | min t <sub>3</sub> = 3.09              | Sec                                                               |
| # CORPERSONDING BASELINE NESR                                                | •                                      | W/cm <sup>2</sup> sr cm <sup>-1</sup>                             |
| * MINIMUM DETECTABLE QUANTITY D (see figure) min D = $2.0 - 4.5 \times 10^9$ | e) min D = 2.0 - 4.5 × 10 <sup>9</sup> | (molec/cm <sup>2</sup> ) (W/cm <sup>2</sup> sr cm <sup>-1</sup> ) |
| * UNCERTAINTY IN D                                                           | $\sigma_0 \sim 1.1 \times 10^9$        | (molec/cm <sup>2</sup> ) (W/cm <sup>2</sup> sr cm <sup>-1</sup> ) |



HF 3240-3440 cm<sup>-1</sup> region



Table 14 Detection Parameters for HF 3240-3440 cm<sup>-1</sup> region

| QUANTITY                                           | SYMBOL, VALUE                        |                                                                   |
|----------------------------------------------------|--------------------------------------|-------------------------------------------------------------------|
| DETECTION BAND                                     | 3240-3440                            | cm <sup>-</sup> 1                                                 |
| Approximate wavelength                             | 3.0                                  | <b>w</b> n                                                        |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v$ = 0.10) | M = 2000                             |                                                                   |
| BAND PHOTON RADIANCE (scene)                       | 5.46 × 10 <sup>12</sup>              | ph/seccm <sup>2</sup> sr                                          |
| Maximum of contrast $\tau_{\nu}\alpha_{g\nu}$      | $CMAX = 9.62 \times 10^{-23}$        | cm <sup>2</sup> /molec                                            |
| Mean contrast                                      | $\mu' = 5.70 \times 10^{-26}$        | cm <sup>2</sup> /molec                                            |
| STANDARD DEVIATION OF CONTRAST                     | $\sigma' = 1.72 \times 10^{-24}$     | cm <sup>2</sup> /molec                                            |
| * Photon flux density on detector                  |                                      |                                                                   |
| from scene                                         | 1.2 × 10 <sup>11</sup>               | phot/sec cm <sup>2</sup>                                          |
| from internal sources                              | $3.2 \times 10^{11}$                 | phot/sec cm <sup>2</sup>                                          |
| * T0TAL                                            | $J = 4.5 \times 10^{11}$             | phot/sec cm <sup>2</sup>                                          |
| * BLIP D*                                          | 8.0 × 10 <sup>12</sup>               | cm /Hz/W                                                          |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE           | min t <sub>d</sub> = 5.52            | Sec                                                               |
| * CORRESPONDING BASELINE NESR                      | $(NESR)_0 = 1.2 \times 10^{-9}$      | W/cm2 sr cm-1                                                     |
| * MINIMUM DETECTABLE QUANTITY D (see figure)       | . min $D = 3.0 - 9.0 \times 10^{13}$ | $(molec/cm^2)(W/cm^2 srcm^{-1})$                                  |
| * UNCERTAINTY IN D                                 | $a = 2.1 \times 10^{13}$             | (molec/cm <sup>2</sup> ) (W/cm <sup>2</sup> sr cm <sup>-1</sup> ) |



HI 2100-2200 cm<sup>-1</sup> region



Table 15 Detection Parameters for HI 2100-2200 cm region

| QUANTITY                                             | SYMBOL, VALUE                             | UNITS                                 |
|------------------------------------------------------|-------------------------------------------|---------------------------------------|
| DETECTION BAND                                       | 2100-2200                                 | r_ u                                  |
| Approximate wavelength                               | 4.65                                      | Ę                                     |
| * NO. OF SPECTRAL ELEMENTS (for AV = 0.10)           | M = 1000                                  |                                       |
| BAND PHOTON RADIANCE (scene)                         | 6.19 × 10 <sup>14</sup>                   | ph/seccm <sup>2</sup> sr              |
| Maximum of contrast $\tau_{\nu}^{\alpha}$ q $_{\nu}$ | $CMAX = 2.13 \times 10^{-21}$             | cm <sup>2</sup> /molec                |
| Mean contrast                                        | $\mu' = 1.17 \times 10^{-23}$             | cm <sup>2</sup> /molec                |
| STANDARD DEVIATION OF CONTRAST                       | $\sigma' = 9.51 \times 10^{-23}$          | cm <sup>2</sup> /molec                |
| * Photon flux density on detector                    | ,                                         |                                       |
| * from scene                                         | 1.4 × 10 <sup>13</sup>                    | phot/sec cm <sup>2</sup>              |
| * from internal sources                              | $2.0 \times 10^{13}$                      | $phot/seccm^2$                        |
| * TOTAL                                              | $J = 3.4 \times 10^{13}$                  | phot/sec cm <sup>2</sup>              |
| * BLIP D*                                            | 1.4 × 10 <sup>12</sup>                    | cm /Hz/W                              |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE             | min t <sub>d</sub> = 0.629                | Sec                                   |
| * CORRESPONDING BASELINE NESR                        | $(NESR)_0 = 1.9 \times 10^{-8}$           | W/cm <sup>2</sup> sr cm <sup>-1</sup> |
| * MINIMUM DETECTABLE QUANTITY D (see figure)         | min $0 = 1.5 - 3.5 \times 10^{13}$        | $(molec/cm^2)(W/cm^2 sr cm^{-1})$     |
| * UNCERTAINTY IN D                                   | $\sigma_{\rm D}$ = 8.9 × 10 <sup>12</sup> | $(molec/cm^2)(W/cm^2 sr cm^{-1})$     |



HNO<sub>3</sub> 2 v<sub>9</sub> band



Table 16 Detection Parameters for HNO $_3$   $2 v_9$  band

| QUANTITY                                            | SYMBOL, VALUE                                                  | UNITS                                                |
|-----------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|
| DETECTION BAND                                      | . 887.5-902.5                                                  | cm <sup>-</sup> 1                                    |
| Approximate wavelength                              | 11.2                                                           | <b>G</b> I                                           |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v = 0.10$ ) | . M = 150                                                      |                                                      |
| BAND PHOTON RADIANCE (scene)                        | 8.61 × 10 <sup>15</sup>                                        | ph/sec cm <sup>2</sup> sr                            |
| Maximum of contrast $\tau_{\alpha}\alpha_{\alpha}$  | 0.00000000000000000000000000000000000                          | cm²/molec                                            |
| Mean contrast                                       | $\mu' = 5.38 \times 10^{-20}$                                  | cm <sup>2</sup> /molec                               |
| STANDARD DEVIATION OF CONTRAST                      | $6.98 \times 10^{-20}$                                         | cm²/molec                                            |
| * Photon flux density on detector                   | 1                                                              |                                                      |
| * from scene                                        | 2.0 × 10 <sup>14</sup>                                         | phot/sec cm <sup>2</sup>                             |
| * from internal sources                             | 2.1 × 10 <sup>14</sup>                                         | phot/sec cm <sup>2</sup>                             |
| * TOTAL                                             | $J = 4.1 \times 10^{14}$                                       | phot/seccm <sup>2</sup>                              |
| * BLIP D*                                           | 1.2 × 10 <sup>12</sup>                                         | cm MZ/W                                              |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE            | min $t_d = 1.82 \times 10^{-2}$                                | sec                                                  |
|                                                     | $(NESR)_0 = 1.4 \times 10^{-7}$                                | W/cm <sup>2</sup> sr cm <sup>-</sup>                 |
| * MINIMUM DETECTABLE QUANTITY D (see figure)        | ITY D (see figure) min D = 3.0 - 8.0 $\times$ 10 <sup>11</sup> | (molec/cm <sup>2</sup> ) (W/cm <sup>2</sup> sr cm ') |
| * UNCERTAINTY IN D                                  | $\sigma_0 = 1.8 \times 10^{-1}$                                | (molec/cm <sup>-</sup> /(W/cm srcm /                 |







Table 17 Detection Parameters for NH  $_3$   $^{\rm V}_2$  band

|                                                         | זוחטר, יחבטר                                 | SILIS                                                           |
|---------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|
| DETECTION BAND                                          | 915-970                                      | -1<br>cm                                                        |
| Approximate wavelength                                  | 10.7                                         | wn                                                              |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v = 0.10$ ) M = | M = 550                                      |                                                                 |
| BAND PHOTON RADIANCE (scene)                            | 2.75 × 10 <sup>16</sup>                      | ph/sec cm <sup>2</sup> sr                                       |
| Maximum of contrast $	au_{\alpha q_0}$ CMAX =           | $CMAX = 9.90 \times 10^{-19}$                | cm <sup>2</sup> /molec                                          |
|                                                         | $\mu^{-} = 6.78 \times 10^{-20}$             | cm <sup>2</sup> /molec                                          |
| STANDARD DEVIATION OF CONTRAST                          | $a^2 = 1.30 \times 10^{-19}$                 | cm²/molec                                                       |
| * Photon flux density on detector                       |                                              |                                                                 |
| * from scene                                            | 6.3 × 10 14                                  | phot/sec cm <sup>2</sup>                                        |
| * from internal sources                                 | $6.9 \times 10^{14}$                         | phot/sec cm <sup>2</sup>                                        |
| * TOTAL                                                 | $J = 1.3 \times 10^{15}$                     | phot/sec cm <sup>2</sup>                                        |
| * BLIP D.*                                              | 6.2 × 10 <sup>11</sup>                       | cm /Hz/W                                                        |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE min td "       | min $t_d = 7.46 \times 10^{-3}$              | Sec                                                             |
| * CORRESPONDING BASELINE NESR                           | (NESR) $_0 = 4.1 \times 10^{-7}$             | W/cm <sup>2</sup> sr cm <sup>-1</sup>                           |
| * MINIMUM DETECTABLE QUANTITY D (see figure) min D =    | . min D = 4.5 - 7.3 × 10 <sup>11</sup>       | (molec/cm <sup>2</sup> ) (W/cm <sup>2</sup> sr cm <sup>-1</sup> |
| * UNCERTAINTY IN D                                      | $\sigma_{\rm p}$ , = 1.69 × 10 <sup>11</sup> | $(molec/cm^2)(W/cm^2srcm^{-1})$                                 |







Table 18 Detection Parameters for  ${\rm N_20}$   $2\,{\rm v_1}$  band

| QUANTITY                                             | SYMBOL, VALUE                             | UNITS                                 |
|------------------------------------------------------|-------------------------------------------|---------------------------------------|
| DETECTION BAND                                       | 2525-2590                                 | - l - cm                              |
| Approximate wavelength                               | 4.0                                       | Ę                                     |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v$ = 0.10)   | м = 650                                   |                                       |
| BAND PHOTON RADIANCE (scene)                         | 1.04 × 10 <sup>14</sup>                   | ph/sec cm <sup>2</sup> sr             |
| Maximum of contrast $\tau_{\nu}{}^{\alpha}{}_{g\nu}$ | $CMAX = 3.51 \times 10^{-20}$             | cm <sup>2</sup> /molec                |
| Mean contrast                                        | $\mu^* = 1.32 \times 10^{-20}$            | cm <sup>2</sup> /molec                |
| STANDARD DEVIATION OF CONTRAST                       | $a^2 = 8.95 \times 10^{-21}$              | cm <sup>2</sup> /molec                |
| * Photon flux density on detector                    |                                           |                                       |
| * from scene                                         | $2.4 \times 10^{12}$                      | phot/seccm <sup>2</sup>               |
| * from internal sources                              | $2.5 \times 10^{12}$                      | phot/sec cm <sup>2</sup>              |
| * T0TAL                                              | $J = 4.9 \times 10^{12}$                  | phot/sec cm <sup>2</sup>              |
| * BLIP D*                                            | 3.1 × 10 <sup>12</sup>                    | cm /HZ/W                              |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE mi          | min t <sub>d</sub> = 1.63                 | sec                                   |
| * CORRESPONDING BASELINE NESR                        | $(NESR)_0 = 5.4 \times 10^{-9}$           | W/cm <sup>2</sup> sr cm <sup>-1</sup> |
| * MINIMUM DETECTABLE QUANTITY D (see figure) m       | min $0 = 0.5 - 1.4 \times 10^{11}$        | $(molec/cm^2)(W/cm^2 sr cm^{-1})$     |
| * UNCERTAINTY IN D                                   | $\sigma_{\rm D}$ = 1.9 × 10 <sup>10</sup> | $(molec/cm^2)(W/cm^2 srcm^{-1})$      |
|                                                      |                                           |                                       |



 $N_2O v_3$  band



Table 19 Detection Parameters for  $N_20$   $v_3$  band

| YTITANIO                                           | SYMBOL, VALUE                                     | UNITS                     |
|----------------------------------------------------|---------------------------------------------------|---------------------------|
| DETECTION BAND                                     | 2160-2210                                         | cm - 1                    |
| Approximate wavelength                             | . 4.5                                             | шn                        |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v$ = 0.10) | . M ≈ 500                                         | 6                         |
| BAND PHOTON RADIANCE (scene)                       | $2.23 \times 10^{14}$                             | ph/sec cm sr              |
| Maximum of contrast togo                           | $CMAX = 8.93 \times 10^{-20}$                     | cm/molec<br>2/            |
| Mean contrast                                      | $\mu = 3.73 \times 10^{-3}$                       | cm /molec                 |
| STANDARD DEVIATION OF CONTRAST                     | . o' = 2.59 × 10 = .                              |                           |
| * Photon flux density on detector                  | ;                                                 | c                         |
| * from scene                                       | $5.1 \times 10^{12}$                              | phot/sec cm <sup>2</sup>  |
| * from internal sources                            | $8.5 \times 10^{12}$                              | phot/sec cm <sup>2</sup>  |
| * TOTAL                                            | $0 = 1.4 \times 10^{15}$                          | phot/sec cm_              |
| * BLIP D                                           | . 2.2 × 10 <sup>12</sup>                          | cm /Hz/W                  |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE           | min t <sub>d</sub> = 0.978                        | sec                       |
| * CORRESPONDING BASELINE NESR                      | $(NESR)_0 = 9.9 \times 10^{-9}$                   | W/cmf sr cm ' 2'21        |
| * MINIMUM DETECTABLE QUANTITY D (see figure)       | ITY D (see figure) $\dots$ min D = 0.3 - 1.0 × 10 | (molec/cm ) (w/cm sr cm / |
| * UNCERTAINTY IN D                                 | . 01 × 4.1 = 'Qp .                                | (molec/cm / w/cm st cm)   |



N<sub>2</sub>0 v, band



Table 20 Detection Parameters for  $N_2\theta - v_1$  band

| QUANTITY                                           | SYMBOL, VALUE                             | UNITS                                 |
|----------------------------------------------------|-------------------------------------------|---------------------------------------|
| DETECTION BAND                                     | 1250-1320                                 | - l                                   |
| Approximate wavelength                             | 7.8                                       | mı                                    |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v$ = 0.10) | М = 700                                   |                                       |
| BAND PHOTON RADIANCE (scene)                       | 6.62 × 10 <sup>15</sup>                   | ph/seccm <sup>2</sup> sr              |
| Maximum of contrast $\tau_{\rm u}$ ชุง             | $CMAX = 2.84 \times 10^{-20}$             | cm <sup>2</sup> /molec                |
| Mean contrast                                      | $\mu^* = 3.40 \times 10^{-21}$            | cm <sup>2</sup> /molec                |
| STANDARD DEVIATION OF CONTRAST                     | $\sigma' = 5.50 \times 10^{-21}$          | cm <sup>2</sup> /molec                |
| * Photon flux density on detector                  |                                           |                                       |
| * from scene                                       | 1.5 × 10 <sup>14</sup>                    | phot/sec cm <sup>2</sup>              |
| * from internal sources                            | $3.1 \times 10^{14}$                      | phot/sec cm <sup>2</sup>              |
| * TOTAL                                            | $J = 4.6 \times 10^{14}$                  | phot/sec cm <sup>2</sup>              |
| * BLIP D*                                          | 7.7 × 10 <sup>11</sup>                    | cm /Hz/W                              |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE m         | min $t_d = 1.27 \times 10^{-2}$           | Sec.                                  |
| * CORRESPONDING BASELINE NESR                      | $(NESR)_0 = 2.5 \times 10^{-7}$           | W/cm <sup>2</sup> sr cm <sup>-1</sup> |
| * MINIMUM DETECTABLE QUANTITY D (see figure)       | min $D = 0.4 - 1.0 \times 10^{13}$        | $(molec/cm^2)(W/cm^2 sr cm^{-1})$     |
| * UNCERTAINTY IN D                                 | $\sigma_{\rm D}$ = 2.1 × 10 <sup>12</sup> | $(molec/cm^2)(W/cm^2 sr cm^{-1})$     |
|                                                    | •                                         |                                       |







Table 21 Detection Parameters for NO  $_2$   $v_1 \pm v_3$  band

| SY                                                                                                                                                             | SYMBOL, VALUE                                                    | UNITS                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|
| DETECTION BAND                                                                                                                                                 | 2850-2935                                                        | cm 1                                                                             |
| Approximate wavelength                                                                                                                                         | 3.44                                                             | wn                                                                               |
| * NO. OF SPECTRAL ELEMENTS (for av = 0.10)                                                                                                                     | M = 850                                                          |                                                                                  |
| BAND PHOTON RADIANCE (scene)                                                                                                                                   | 3.41 × 10 <sup>13</sup>                                          | ph/sec cm <sup>2</sup> sr                                                        |
| Maximum of contrast t, a,                                                                                                                                      | $CMAX = 1.10 \times 10^{-19}$                                    | cm <sup>2</sup> /molec                                                           |
| Ve an contrast.                                                                                                                                                | $\mu^* = 2.28 \times 10^{-20}$                                   | cm <sup>2</sup> /molec                                                           |
| 10N OF COM                                                                                                                                                     | $a^2 = 1.99 \times 10^{-20}$                                     | cm²/molec                                                                        |
| * Photon flux density on detector                                                                                                                              |                                                                  |                                                                                  |
| * from scene                                                                                                                                                   | 7.8 × 10 <sup>11</sup>                                           | phot/sec cm                                                                      |
| * from internal sources                                                                                                                                        | 8.5 × 10 <sup>11</sup>                                           | phot/sec cm <sup>2</sup>                                                         |
| * T0TAL                                                                                                                                                        | $J = 1.6 \times 10^{12}$                                         | phot/sec cm <sup>2</sup>                                                         |
| * BLIP 0                                                                                                                                                       | 4.8 × 10 <sup>12</sup>                                           | cm /Hz/W                                                                         |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE min t <sub>d</sub> = 2.84                                                                                             | min t <sub>d</sub> = 2.84                                        | sec                                                                              |
| * CORRESPONDING BASELINE NESR $(\overline{\rm NESR})_0 = 2.7 \times 10^{-9}$ * MINIMUM DETECTABLE QUANTITY D (see figure) min D = 1.0 - 2.5 $\times$ $10^{10}$ | $(NESR)_0 = 2.7 \times 10^{-9}$<br>min D = 1.0 - 2.5 × $10^{10}$ | W/cm <sup>2</sup> sr cm  <br>(molec/cm <sup>2</sup> ) (W/cm sr cm <sup>1</sup> ) |
| * UNCERTAINTY IN D                                                                                                                                             | $a_{D_1} = 4.3 \times 10^9$                                      | (molec/cm <sup>2</sup> )(W/cm <sup>2</sup> sr cm <sup>-1</sup> )                 |
|                                                                                                                                                                |                                                                  |                                                                                  |







Table 22 Detection Parameters for NO  $_2$   $\,\nu_2$  band

| QUANTITY                                                                         | SYMBOL, VALUE                                | UNITS                                 |
|----------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|
| DETECTION BAND                                                                   | 710-795                                      | - J                                   |
| Approximate wavelength                                                           | 13.3                                         | <b>E</b> A                            |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v$ = 0.10)                               | M = 850                                      |                                       |
| BAND PHOTON RADIANCE (scene)                                                     | $5.32 \times 10^{17}$                        | ph/sec cm <sup>2</sup> sr             |
| Maximum of contrast $	au_{\alpha}{}_{g_{V}}$                                     | $CMAX = 1.03 \times 10^{-19}$                | cm²/molec                             |
| Mean contrast                                                                    | $\mu' = 2.95 \times 10^{-21}$                | cm <sup>2</sup> /molec                |
| STANDARD DEVIATION OF CONTRAST                                                   | $\sigma' = 6.58 \times 10^{-21}$             | cm²/molec                             |
| * Photon flux density on detector                                                |                                              |                                       |
| * from scene                                                                     | 1.2 × 10 <sup>15</sup>                       | phot/sec cm <sup>2</sup>              |
| * from internal sources                                                          | 1.7 × 10 <sup>15</sup>                       | phot/sec cm <sup>2</sup>              |
| * T0TAL                                                                          | $J = 3.0 \times 10^{15}$                     | phot/sec cm <sup>2</sup>              |
| * BLIP D*                                                                        | 5.16 × 10 <sup>11</sup>                      | cm /Hz/V                              |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE                                         | min t <sub>d</sub> = 5.13 × 10 <sup>-3</sup> | Sec                                   |
| * CORRESPONDING BASELINE NESR $(NESR)_0 = 5.9 \times 10^{-7}$                    | $(NESR)_0 = 5.9 \times 10^{-7}$              | W/cm <sup>2</sup> sr cm <sup>-1</sup> |
| * MINIMUM DETECTABLE QUANTITY D (see figure) min D = 0.6-1.75 × 10 <sup>15</sup> | min $0 = 0.6 - 1.75 \times 10^{15}$          | $(molec/cm^2)(W/cm^2 sr cm^{-1})$     |
| * UNCERTAINTY IN D                                                               | $\sigma_{\mathbf{D}'} = 4.0 \times 10^{14}$  | (molec/cm2)(W/cm2 sr cm-1)            |



 $so_2 - v_1 + v_3$  band



Table 23 Detection Parameters for  ${\rm SO}_2 - {\rm v_1} + {\rm v_3}$  band

| QUANTITY                                                                                  | SYMBOL, VALUE                               | UNITS                                                             |
|-------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|
| DETECTION BAND                                                                            | 2450-2525                                   | cm - 1                                                            |
| Approximate wavelength                                                                    | 0.4                                         | wn                                                                |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v$ = 0.10)                                        | M = 750                                     |                                                                   |
| BAND PHOTON RADIANCE (scene)                                                              | 1.59 × 10 <sup>14</sup>                     | ph/sec cm <sup>2</sup> sr                                         |
| Maximum of contrast $\tau_{\nu}{}^{\alpha}{}_{g\nu}$                                      | $CMAX = 2.34 \times 10^{-20}$               | cm <sup>2</sup> /molec                                            |
| Mean contrast                                                                             | $$ $\mu' = 7.82 \times 10^{-21}$            | cm <sup>2</sup> /molec                                            |
| STANDARD DEVIATION OF CONTRAST                                                            | $\sigma = 6.08 \times 10^{-21}$             | cm <sup>2</sup> /molec                                            |
| * Photon flux density on detector                                                         | 1                                           |                                                                   |
| * from scene                                                                              | $3.6 \times 10^{12}$                        | phot/sec cm <sup>2</sup>                                          |
| * from internal sources                                                                   | 3.9 × 10 <sup>12</sup>                      | phot/sec cm <sup>2</sup>                                          |
| * T0TAL                                                                                   | $3 = 7.5 \times 10^{12}$                    | phot/sec cm <sup>2</sup>                                          |
| * BLIP D*                                                                                 | 2.6 × 10 <sup>12</sup>                      | cm /Hz/W                                                          |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE                                                  | min t <sub>d</sub> = 1.32                   | sec                                                               |
| * CORRESPONDING BASELINE NESR                                                             | $\dots \dots (NESR)_0 = 7.2 \times 10^{-9}$ | W/cm <sup>2</sup> sr cm <sup>-1</sup>                             |
| * MINIMUM DETECTABLE QUANTITY D (see figure) $\kappa$ in D = 0.9 - 2.5 $	imes$ 10 $^{11}$ | min D = 0.9-2.5 x 10 <sup>11</sup>          | (molec/cm <sup>2</sup> ) (W/cm <sup>2</sup> sr cm <sup>-1</sup> ) |
| * UNCERTAINTY IN D                                                                        | $\sigma_{\rm D} = 3.8 \times 10^{10}$       | (molec/cm <sup>2</sup> )(W/cm <sup>2</sup> sr cm <sup>-1</sup> )  |







Table 24 Detection Parameters for  $\mathrm{SO}_2$   $\,\,\mathrm{v}_1$  band

| QUANTITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SYMBOL, VALUE                                 | UNITS                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|
| DETECTION BAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1090-1210                                     | - 1<br>Cm                                                            |
| Approximate wavelength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.7                                           | En                                                                   |
| * NO. OF SPECTRAL ELEMENTS (for $\Delta v$ = 0.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M = 1200                                      |                                                                      |
| BAND PHOTON RADIANCE (scene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.18 × 10 <sup>16</sup>                       | ph/sec cm <sup>2</sup> sr                                            |
| Maximum of contrast $\tau_{\nu}\alpha_{q\nu}$ CMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $CMAX = 5.13 \times 10^{-20}$                 | cm <sup>2</sup> /molec                                               |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mu^* = 1.30 \times 10^{-20}$                | cm <sup>2</sup> /molec                                               |
| STANDARD DEVIATION OF CONTRAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sigma' = 9.61 \times 10^{-21}$              | cm <sup>2</sup> /molec                                               |
| * Photon flux density on detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                                                                      |
| * from scene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.3 × 10 <sup>14</sup>                        | phot/sec cm <sup>2</sup>                                             |
| * from internal sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $8.2 \times 10^{14}$                          | phot/sec cm <sup>2</sup>                                             |
| * TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J = 1.5 × 10 <sup>15</sup>                    | phot/sec cm <sup>2</sup>                                             |
| * BLIP DAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.7 × 10 <sup>11</sup>                        | cm /Hz/W                                                             |
| * MINIMUM SCAN TIME FOR BLIP PERFORMANCE min t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | min $t_d = 7.07 \times 10^{-3}$               | sec                                                                  |
| * CORRESPONDING BASELINE NESR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(NESR)_0 = 5.5 \times 10^{-7}$               | W/cm <sup>2</sup> sr cm <sup>-1</sup>                                |
| * MINIMUM DETECTABLE QUANTITY D (see figure) min D = $0.3 - 1.0 \times 10^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0 = 0.3 - 1.0 \times 10^{13}$                | $(molec/cm^2)(W/cm^2 sr cm^{-1})$                                    |
| # O N   A   N   O N   A   N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N   O N | $\frac{1}{2}$ = 1 $\frac{1}{4}$ $\frac{1}{2}$ | (m) 100 /cm <sup>2</sup> ) (11/cm <sup>2</sup> er cm <sup>-1</sup> ) |

