Latent-heating impact on tides in Middle and Upper Atmosphere Model MUAM

Contents

- Motivation & State of knowledge
- Basics
 - Latent heat
 - Tides
 - ENSO
- MUAM
- Comparison with/without LH
- Summary

Long-term mean precipitation by month, en.wikipedia.org

Motivation & State of knowledge

- DT (SDT) are excited mainly by absorption of water vapor (ozon) in the troposphere (stratosphere)
- Latent heat:
 - Forces nonmigrating tidal modes which propagate into upper atmosphere (Williams & Avery 1996)
 - Forcing mechanism for tides (Forbes et al. 1997, Zhang et al. 2006)
 - Variations most apparent at 80 and 150 km height with amplitude variations of 10 20 m/s and 5 -15 K for DT/SDT (Hagan et al. 2002)
 - Nonmigrating components can vary (Hagan et al. 2002)
- Solar heating and latent heat release contributions are comparable in production of atmospheric tides (Williams & Avery 1996)
- Variation of latent heat has a significant effect on tides (Hamilton 1981, Williams & Avery 1996, Forbes et al. 1997, Hagan et al. 2002)

Basics: Latent heat

- Heat of transformation consumed or released during the change of aggregate states
 - Heat of evaporation/condensation (liquid ↔ gas)
 - Heat of melting/freezing (solid
 → liquid)
 - Heat of deposition/sublimation (gas ↔ solid)

Basics: Latent heat

- Convective precipitation (in clouds under deep convection) is prevailing source of humidity in the tropical and subtropical troposphere
 - → Water vapor condensation/evaporation
 - → Main source of latent heat

Solar atmospheric tides

 Fourier analysis of black curve gives harmonic oscillations with periods of 24 h (DT), 12 h (SDT), 8 h (TDT), 6 h (QDT, not shown)

Basics: Atmospheric tides

- Important mechanism for transporting energy from the lower atmosphere into the upper atmosphere
- Density varies significantly with height → kinetic energy must be conserved → increasing amplitudes with height
- Atmospheric tides excited by:
 - Solar heating
 - (Gravity by moon/sun)
 - Non-linear interactions between tides/planetary waves
 - Latent heat

Solar atmospheric tides

- = Thermal tides by solar heating
- Migrating tides:
 - Propagate sun synchronous, westwards with the apparent motion of the sun
- Non-migrating tides:
 - Do not propagate sun synchronous
 - do not propagate horizontally
 - propagate eastwards
 - propagate westwards at a different speed to the sun
 - Generation:
 - differences in topography
 - land-sea contrast
 - surface interactions

El Niño/La Niña-Southern Oscillation ENSO

 Self-reinforcing warm/cold phase by anomalies of Walker circulation every 4 years

El Niño/La Niña-Temperature

Impacts of ENSO

- Wind (pressure gradients)
- Precipitation
- Temperature (air and water)
- → Global impacts by atmospheric teleconnections (planetary waves)

Middle and Upper Atmosphere Model MUAM

- · 3D mechanistic monlinear grid point model
- *- Lattitude resolution of 5° and longitude resolution of 5.625°
- 488-680 Altitude levels (here: 56)
- Vertical nesolution of $\pm 2 = 84.84$ mkm (0.4)=in.logarithmates regardless of the choice of altitude levels

$$x = -\ln \frac{p}{p_0}$$
$$z = -H \cdot \ln \frac{p}{p_0}$$

© Gouled Alefier Bracer Bress Bressure = 1000 ዝባዊን hPa Scale Stellenheight ក 7 km

MUAM: Data and Analyzing

- · Nucleging with reanalysis data provided by ERA
- Modern-Era Retrospective Analysis for Research and Applications (WERRA) calculates latent heating rates by empirical formula

$$J(z,\lambda,\phi) = J_Z(z)J_{\lambda\phi}(\lambda,\phi)$$

$$J_Z(z) = A \left\{ \exp\left[-\left(\frac{z - 6.5}{5.39}\right)^2\right] - 0.23 \exp\left(-\frac{z}{1.31}\right) \right\}$$

Jabser, vp) longitude duting in utilist fibrition of surtainitation prateinination reasonated near ground James in the properties of the state of th

Results: Temperature: El Niño

Temperature:

El Niño

Temperature:

El Niño

Temperature:

El Niño

Temperature comparison

• Variations of 5 - 15 K for DT/SDT (Hagan et al. 2002)?

Vertical wind: EL

Wind comparison

• Variations of 10 - 20 m/s for DT/SDT (Hagan et al. 2002)?

Phase of Temperature: El Niño

Phase of Temperature: El Niño

Phase of zonal wind: EL

Effect of LH on tides?

- Yes , but small effect
- Variations most apparent at 80 and 150 km height with amplitude variations of 10 - 20 m/s and 5 - 15 K for DT/SDT (Hagan et al. 2002)

Summary

- Amplitudes become smaller with smaller period of tide
- Latent heat increases values of amplitude of tides overall
 - Small effect in MUAM
 - Biggest differences alternate between DT/SDT/TDT/QDT
- Negletable phase changes
 - Tides remain, but with slighty higher amplitudes

References

- El Nino Infoseite zur Klimaanomalie im Pazifik, http://www.elnino.info/k1.php, Kapitel 1, Zugriff: 28.01.2021
- Forbes, J. M., Hagan, M. E., Zhang, X., & Hamilton, K. (1997, October). Upper atmosphere tidal oscillations due to latent heat release in the tropical troposphere. In Annales Geophysicae (Vol. 15, No. 9, pp. 1165-1175). Springer-Verlag.
- Gurubaran, S. Understanding Atmospheric Tides: Challenges to Middle Atmospheric Dynamicists.
- Hagan, M. E., & Forbes, J. M. (2002). Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. Journal of Geophysical Research: Atmospheres, 107(D24), ACL-6.
- Hagan, M. E., & Forbes, J. M. (2003). Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. Journal of Geophysical Research: Space Physics, 108(A2).
- Hamilton, K. (1981): "Latent heat release as a possible forcing mechanism for atmospheric tides"-volume 109. Monthly Weather Review. pages 3 17.
- Lilienthal, F.: Analysis of the Forcing Mechanisms of the Terdiurnal Solar Tide in the Middle Atmosphere, Dissertation, Universität Leipzig, 167, 2019.
- Long-term mean precipitation by month gif, https://en.wikipedia.org/wiki/Precipitation, Zugriff: 28.01.2021
- Stull, R. (2017): "Practical Meteorology: An Algebra-based Survey of Atmospheric Science" -version 1.02b. University of British Columbia. 940 pages.
- Williams, C. R., & Avery, S. K. (1996). Diurnal nonmigrating tidal oscillations forced by deep convective clouds. Journal of Geophysical Research: Atmospheres, 101(D2), 4079-4091.
- Zhang, X., Forbes, J. M., Hagan, M. E., Russell III, J. M., Palo, S. E., Mertens, C. J., & Mlynczak, M. G. (2006). Monthly tidal temperatures 20–120 km from TIMED/SABER. Journal of Geophysical Research: Space Physics, 111(A10).