

Exercice 1 - Mouvement RT - RSG **

B2-14

C1-05

 \mathcal{R}_0 .

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \ell_2 \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point *I*. De plus :

- G₁ désigne le centre d'inertie de 1 tel que AG₁ = -l i₁, on note m₁ la masse de 1;
 G₂ = B désigne le centre d'inertie de 2, on note m₂ la masse de 2.

Un ressort exerce une action mécanique entre les points A et B.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à

Corrigé voir 1.

Exercice 2 - Mouvement RT - RSG **

B2-14

Pas de corrigé pour cet exercice. C1-05

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point *I*. De plus :

- G₁ désigne le centre d'inertie de 1 tel que AG₁ = -l i₁, on note m₁ la masse de 1;
 G₂ = B désigne le centre d'inertie de 2, on note m₂ la masse de 2.

Un moteur exerce un couple entre les pièces 1 et 2.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à \mathcal{R}_0 .

Corrigé voir 2.