Supplement to "Averages of Unlabeled Networks: Geometric Characterization and Asymptotic Behavior", by Kolaczyk, Lin, Rosenberg, Walters, and Xu

Supplement A

In this Supplement we work out the space of unlabeled networks \mathcal{U}_3 with three vertices in detail (Example 2.2), sketch the proof of Theorem 2.3, and prove results about the topology of \mathcal{U}_d .

1. Example 2.2: The quotient space \mathcal{U}_3 of unlabeled graphs on three vertices. Denote the equivalence class of a point in \mathcal{U}_3 by [x,y,z]. Each equivalence class in $\mathcal{O}_3^{\neq 0}/\mathcal{G}_3$ contains six points. In general, the number of elements in an equivalence class [x,y,z] equals $|\Sigma_3|/|\Sigma_3^{[x,y,z]}|=6/\Sigma_3^{[x,y,z]}|$, where $\Sigma_3^{[x,y,z]}|=\{\sigma\in\Sigma_3:\sigma\cdot(x,y,z)=(x,y,z)\}$ is the stabilizer subgroup of (x,y,z).

We now analyze the gluings on the boundary of \mathcal{O}_3 . First, the three coordinate quadrants $\{(0,y,z):y,z\geq 0\}$, etc. forming part of the boundary of $\mathcal{O}_3^{\neq 0}$ get glued under the action of Σ_3 . For example, $(12)\cdot(0,5,7)=(5,0,7)$ and $(13)\cdot(0,5,7)=(7,5,0)$. Each coordinate plane gets further glued, e.g., (0,5,7) gets glued to (0,7,5). This further gluing (in this case by the subgroup $\{\mathrm{Id},(23)\}\subset\Sigma_3$) acts freely on $(\alpha$ of) the set of graphs $\{(y,z):y,z\geq 0,y\neq z\}$ and fixes the diagonal line $\{y=z\}$. This is because $(23)\cdot(y,z)=(z,y)$. Thus the quotient space of the three coordinate quadrants is homeomorphic to one quadrant which is then folded along its diagonal to create a closed pie wedge. This wedge is a stratified 2-manifold: it contains an open, dense set which is a 2-manifold, the two edges (minus the origin) which are 1-manifolds, and the origin as a 0-manifold.

This pie wedge is glued onto the 3-manifold $\mathcal{O}_3^{\neq 0}/\mathcal{G}_3$ as follows: given $[x_i, y, z]$ with $x_i \to 0$, we declare the limit point of this sequence to be [0, y, z]. We make the similar definition if $y_i \to 0$ or $z_i \to 0$. This is clearly well defined. We make a similar definition if $[x_i, y_i, z]$ has $x_i, y_i \to 0$, etc. and if $[x_i, y_i, z_i]$ has $x_i, y_i, z_i \to 0$.

From now on, for expository reasons, we drop the automatic conditions $x \geq 0, y \geq 0, z \geq 0$ from description of subsets of \mathcal{O}_3 .

Similarly, the three planes $\{(x,y,z): x=y\}$, $\{x=z\}$, $\{y=z\}$ get glued together (e.g., $(123)\cdot(5,5,7)=(7,5,5)$). Note that e.g. |[x,x,z]|=3 if $x\neq z$ and |[x,x,x]|=1. For example (5,5,7) is glued to (5,7,5), (7,5,5). These three planes intersect at the line $\{(x,x,x)\}$. Thinking of the three planes as troughs with edge $\{x=y=z\}$, the three troughs are glued together. The two sides of a trough are not glued to each other, but are glued to sides of

two other troughs. As above, $[x_i, y_i, z]$ has limit point/is glued to [x, x, z] if $x_i, y_i \to x$, etc. In particular, if $x_i, y_i \to 0$, this is consistent with the previous gluing.

The final quotient \mathcal{O}_D/Σ_3 is a stratified 3-manifold:

- The dense 3-dimensional piece is $\mathcal{O}_3^{\neq 0}/\Sigma_3$, which is topologically a 3-ball.
- With increasingly terse notation, the 2d strata are

(i)
$$\{[x, y, z] : x = 0, y \neq z; y, z \neq 0\} = \{[x, y, z] : y = 0, x \neq z\}$$

= $\{[x, y, z] : z = 0, x \neq y\};$

(ii)
$$\{x = y, z > x\} = \{y = z, x > y\} = \{x = z, y > x\};$$

(iii)
$$\{x = y, 0 < z < x\} = \{y = z, 0 < x < y\}, \{x = z, 0 < y < x\}.$$

- The 1d strata are
 - (i) $\{x = 0, y = z \neq 0\} = \{y = 0, x = z \neq 0\} = \{z = 0, x = y \neq 0\};$
 - (ii) $\{x = y = 0, z > 0\} = \{x = z = 0, y > 0\}$ = $\{y = z = 0, x > 0\}$;
 - (iii) $\{x = y = z > 0\}.$
- The 0d stratum is $\{[0,0,0]\}$.

The point [0,2,2] in the 1d stratum can be perturbed into a 2d stratum point $[\epsilon,2,2]$ or $[0,2,2+\epsilon]$ or into a 3d stratum point $[\epsilon,2+\delta,2+\mu]$. This agrees with the fact that the 1d stratum $\{x=0,y=z\}$ glues both to a trough (a 2d stratum) and to an open wedge in a coordinate plane, and that this 1d stratum also glues to the big cell.

2. Proof of Theorem 2.3.

THEOREM 2.3. The space of unlabeled graphs $\mathcal{U}_d = \mathcal{G}/\Sigma_d = \mathcal{O}_D/\Sigma_d$ is a stratified space.

PROOF. We just sketch the proof, since this result is not used in the paper. We don't need the technical definition of a stratified space, just a general understanding that \mathcal{U}_d consists of a sequence of n-dimensional manifolds with boundary, $n=1,\ldots,D$, with n-dimensional strata glued coherently to (n+1) (or higher) dimensional strata. The big open cell of dimension D is $\mathcal{O}_D^{\neq 0}/\Sigma_d$. Lower strata are characterized by the number of zero entries and the number of equal nonzero entries. More precisely, say the weight vector $\vec{x} \in \mathcal{O}_D$ has k zeros and $s_1 > 1$ entries equal to $w_1 \neq 0, \ldots, s_t$ entries equal to $w_t \neq 0$, with all w_i distinct. Then $[\vec{x}] \in \mathcal{U}_d$ belongs to a stratum of dimension

$$D - k - \sum_{i=1}^{t} s_i.$$

A higher dimensional stratum S has a lower dimensional stratum S' as part of ∂S if a sequence of points in S converges to a point in S'. This can occur either by an entry in this sequence going to zero, or by entries in this sequence going to a common positive limit.

3. The topology of \mathcal{U}_d . In this section we show that \mathcal{U}_d is contractible (an easy result), and that a natural slice of \mathcal{U}_d is also contractible.

LEMMA 3.1. U_d is contractible.

This is an easy consequence of the contractibility of a cone, in this case the fundamental domain F.

PROOF. Take $[x] \in \mathcal{U}_d$ and a representative $x \in F$. Take the line segment $x_t := tx + (1-t)\vec{0}, t \in [0,1]$. If $x' = \sigma \cdot x \in F$ is another representative of [x], then

$$(3.1) \ (\sigma \cdot x)_t = t\sigma \cdot x + (1-t)\vec{0} = t\sigma \cdot x + (1-t)\sigma \cdot \vec{0} = \sigma \cdot (tx + (1-t)\vec{0}) = \sigma \cdot x_t,$$

since σ acts via a linear transformation. (Note the trivial but crucial fact that $\sigma \cdot \vec{0} = \vec{0}$.) Thus the contraction $[x]_t := t[x] + (1-t)[\vec{0}]$ is well defined in \mathcal{U}_d .

Every graph except the graph with no edges can be scaled to a graph whose edge lengths sum to one. This says that $\mathcal{U}'_d := \mathcal{U}_d \setminus \{[\vec{0}]\}$ deformation retracts onto the slice $S = \{[x]: x_1 + \ldots + x_D = 1\}$: there is a continuous map $F: [0,1] \times \mathcal{U}'_d \to \mathcal{U}'_d: F(0,[x]) = [x], F(1,[x]) \in S, F(t,[s]) = [s]$ for all $[x] \in \mathcal{U}'_d, [s] \in S$. Note that the slice condition $\sum x_i = 1$ is independent of the representative of [x], as is the scaling of [x] to an element of the slice.

Thus all the topology of \mathcal{U}_d is contained in \mathcal{U}'_d .

LEMMA 3.2. \mathcal{U}'_d and the slice S are contractible.

This is not as obvious as the previous lemma, as S is a polygonal cross-section in F with complicated gluings on its boundary.

PROOF. First, it suffices to show that S is contractible. For if S is contractible to a point $[x_0] \in S$ and we pick $[x] \in \mathcal{U}'_d$, then the path that scales [x] to $[x'] \in S$ and then contracts [x'] to $[x_0]$ gives a contraction of \mathcal{U}'_d to $[x_0]$.

The contractibility of S: The complete graph with edge weights all equal to 1/D has its equivalence class $[x_0]$ in S. For $[x] \in S$, take a representative x and the line segment $x_t := tx + (1-t)x_0$. As in $(\ref{eq:seminous})$, this descends to a well-defined path $[x]_t = t[x] + (1-t)[x_0]$ precisely because $\sigma \cdot x_0 = x_0$ for all σ . Thus S contracts to $[x_0]$.