Mateusz Stawicki, 333274, grupa 2c, środa 16:15, projekt 1, zadanie 56

Treść zadania:

Aproksymacja średniokwadratowa ciągła w przestrzeni $L^2_w(-\infty,\infty)$ dla $w(x)=e^{-x^2}$ w bazie wielomianów Hermite'a. Całkowanie 10-punktową kwadraturą Gaussa-Hermite'a. Tablicowanie funkcji, przybliżenia i błędu w m punktach przedziału [-a,a] oraz obliczenie błędu średniokwadratowego w tych punktach.

Wzory rekurencyjne dla wielomianów Hermite'a

Wielomiany Hermite'a są zdefiniowane w przestrzeni $L_w^2(-\infty,\infty)$ z wagą $w(x)=e^{-x^2}$.

Wzór rekurencyjny:

$$H_0(x) = 1,$$

 $H_1(x) = 2x,$
 $H_k(x) = 2xH_{k-1}(x) - 2(k-1)H_{k-2}(x), \quad k = 2, 3, ...$

Ortogonalność:

$$\langle H_i, H_j \rangle = \int_{-\infty}^{\infty} H_i(x) H_j(x) e^{-x^2} dx = \begin{cases} 0, & i \neq j, \\ \sqrt{\pi} 2^i i!, & i = j. \end{cases}$$

Zadanie Aproksymacji

Niech $D \subset V$ będzie podprzestrzenią liniową skończenie wymiarową przestrzeni V o wymiarze m.

Zadaniem aproksymacji elementu $f \in V$ względem podprzestrzeni D jest wyznaczenie takiego elementu $f^* \in D$, że:

$$||f - f^*|| = \inf_{g \in D} ||f - g||.$$

Element f^* nazywany jest **elementem optymalnym** dla f.

Konstrukcja elementu optymalnego

Element $f^* \in D$ jest elementem optymalnym dla $f \in V$ względem podprzestrzeni D wtedy i tylko wtedy, gdy:

$$\langle f^* - f, g \rangle = 0$$
 dla każdego $g \in D$.

Powyższe równanie wykorzystałem do konstrukcji elementu optymalnego f^* . Niech układ g_1, \ldots, g_m będzie bazą przestrzeni D. Wówczas równanie jest równoważne równaniom:

$$\langle f^* - f, g_i \rangle = 0, \quad i = 1, \ldots, m.$$

Przekształcenia równań

Przedstawiając f^* w postaci kombinacji liniowej funkcji bazowych:

$$f^* = \sum_{j=1}^m \alpha_j g_j,$$

możemy zapisać równania jako:

$$\left\langle \sum_{j=1}^m \alpha_j g_j - f, g_i \right\rangle = 0, \quad i = 1, \ldots, m.$$

Teraz, korzystając z własności iloczynu skalarnego, możemy przekształcić lewą stronę równania:

$$\left\langle \sum_{j=1}^{m} \alpha_j g_j - f, g_i \right\rangle = \sum_{j=1}^{m} \alpha_j \langle g_j, g_i \rangle - \langle f, g_i \rangle.$$

Otrzymaliśmy układ równań liniowych:

$$\sum_{i=1}^{m} \alpha_{j} \langle g_{j}, g_{i} \rangle = \langle f, g_{i} \rangle, \quad i = 1, \dots, m.$$

Rozwiązanie przy użyciu znormalizowanej bazy

Łatwo zauważyć, że jeśli $g_1,g_2,...,g_m$ jest znormalizowaną bazą, to wyznaczenie elementu optymalnego jest proste.

W takim przypadku macierz współczynników można wyznaczyć jako:

$$\alpha_j = \langle f, g_j \rangle, \quad \mathsf{dla} \ j = 1, \dots, m,$$

a element optymalny f^* ma postać:

$$f^* = \sum_{j=1}^m \langle f, g_j \rangle g_j.$$

Iloczyn skalarny

Iloczyn skalarny w przestrzeni $L^2_w(-\infty,\infty)$ jest zdefiniowany jako:

$$\langle f, g \rangle = \int_{-\infty}^{\infty} w(x) f(x) g(x) dx,$$

gdzie $w(x) = e^{-x^2}$ jest funkcją wagową.

Numeryczne obliczanie iloczynu skalarnego

Do obliczania wartości iloczynu skalarnego $\langle f,g \rangle$ zastosowałem 10-punktową kwadraturę Gaussa-Hermite'a:

$$\int_{-\infty}^{\infty} w(x)f(x)g(x) dx \approx \sum_{k=1}^{10} A_k f(x_k)g(x_k),$$

gdzie:

- ► x_k to węzły kwadratury Gaussa-Hermite'a,
- A_k to odpowiadające im współczynniki kwadratury,
- w(x) jest automatycznie uwzględniona w konstrukcji kwadratury.

Test działania funkcji hermitnorm

Wyznaczyłem analitycznie pierwsze 7 wielomianów ortogonalnych Hermite'a, które znormalizowałem podczas obliczeń przeprowadzonych w Wolframalpha. Następnie porównałem uzyskiwane wartości obliczane przez funkcję hermitnorm oraz analitycznie.

$$H_0(x) = 1,$$

$$H_1(x) = 2x,$$

$$H_2(x) = 4x^2 - 2,$$

$$H_3(x) = 8x^3 - 12x,$$

$$H_4(x) = 16x^4 - 48x^2 + 12,$$

$$H_5(x) = 32x^5 - 160x^3 + 120x,$$

$$H_6(x) = 64x^6 - 480x^4 + 720x^2 - 120,$$

$$H_7(x) = 128x^7 - 1344x^5 + 3360x^3 - 1680x.$$

Test działania funkcji calka

Wyznaczyłem analitycznie kilka wartości całek, na przykład:

$$\int_{-\infty}^{\infty} x^4 e^{-x^2} dx \quad \text{oraz} \quad \int_{-\infty}^{\infty} \sin(x) e^{-x^2} dx.$$

Następnie porównałem uzyskiwane wartości obliczane przez funkcję calka oraz wartości analityczne.

Test działania funkcji głównej

Wyznaczyłem analitycznie współczynniki aproksymacji α_j zgodnie ze wzorem:

$$\alpha_j = \langle f, g_j \rangle,$$

Testowałem aproksymację dla funkcji na przykład:

 $f(x) = x^3$:

$$[0, 3\sqrt[4]{\pi}/(2\sqrt{2}), 0, \sqrt{3}/2 \cdot \sqrt[4]{\pi}]$$

 $f(x) = \cos(x):$

$$[\sqrt[4]{\pi/e}, 0, -\sqrt[4]{\pi/e}/(2\sqrt{2}), 0, \sqrt[4]{\pi/e}/(8\sqrt{6}), 0]$$

Porównałem wyniki zwracane przez funkcję główną z wyznaczonymi analitycznie.

Test numeryczny

Funkcja: $f(x) = x^2$

Zależność błędu średniokwadratowego od N i parametru a.

Ν	а	Błąd średniokwadratowy
1	10	2.96e-01
2	10	5.27e-17
5	10	5.44e-17
17	10	2.10e-16
18	10	7.48e-03
20	10	3.37e-02

Tabela: Zależność błędu średniokwadratowego dla $f(x) = x^2$.

Test numeryczny

Funkcja: $f(x) = x^9$

Zależność błędu średniokwadratowego od N i parametru a.

Ν	а	Błąd średniokwadratowy
8	5	1.14e+01
9	5	1.19e-13
10	5	1.19e-13
11	5	1.05e+01
15	5	3.17e+01
22	5	6.54e+01

Tabela: Zależność błędu średniokwadratowego dla $f(x) = x^9$.

Test numeryczny

Funkcja: f(x) = cos(x)

Zależność błędu średniokwadratowego od N i parametru a.

Ν	а	Błąd średniokwadratowy
1	pi/2	1.67e-01
2	pi/2	1.90e-02
5	pi/2	1.46e-03
6	pi/2	9.62e-05
8	pi/2	5.04e-06

Tabela: Zależność błędu średniokwadratowego dla f(x) = cos(x).

Bibliografia

- ▶ Notatki do wykładu Metody Numeryczne 2 Iwona Wróbel
- Metody numeryczne Zenon Fortuna, Bohdan Macukow, Janusz Wąsowski