Intro to Compositional Data

Alise Ponsero

DS meeting – January 2025

This workshop

Why microbiome data is compositional data?

What is the issue with dealing with compositional data?

What are log-ratio transform approaches?

How to use compositional data analysis methods with microbiome data?

This workshop

Why microbiome data is compositional data?

What is the issue with dealing with compositional data?

What are log-ratio transform approaches?

How to use compositional data analysis methods with microbiome data?

Microbial population in the ecosystem

- Microbial population in the ecosystem
- Sample

- Microbial population in the ecosystem
- Sample
- DNA/RNA extraction

- Microbial population in the ecosystem
- Sample
- DNA/RNA extraction
- Sequencing library

- Microbial population in the ecosystem
- Sample
- DNA/RNA extraction
- Sequencing library
- Reads from sequencer

What does it mean to have a "zero" count?

	Sample 1	Sample 2
Taxa 1	156	762
Taxa 2	350	241
Taxa 3	67	0

Essential zero = Taxa 3 is absent from the ecosystem

Count Zero = Taxa 3 is present in the ecosystem but was missed by the sampling or sequencing

Microbiome data is inherently compositional

Absolute counts are not biologically informative

Microbiome data is inherently compositional

	Sample 1	Sample 2
Taxa 1	156	762
Taxa 2	350	241
Taxa 3	67	0
sum	573	1003

	Sample 1	Sample 2
Taxa 1	0.27	0.76
Taxa 2	0.61	0.24
Taxa 3	0.12	0
sum	1	1

Microbiome data is inherently compositional

	Sample 1	Sample 2
Taxa 1	156	762
Taxa 2	350	241
Taxa 3	67	0
sum	573	1003

This workshop

Why microbiome data is compositional data?

What is the issue with dealing with compositional data?

What are log-ratio transform approaches?

How to use compositional data analysis methods with microbiome data?

The issue with compositional data

What is the true population composition?

Relative abundances carry no meaning for the absolute abundance of a specific component

The issue with compositional data

One change in abundance will drive abundance changes in another species violates assumptions of independence

The issue with compositional data

"Beware of attempts to interpret correlations between ratios whose numerators and denominators contain common parts."

Pearson 1896

Microbiome data is compositional

Analyzing relative data as if they were absolute can yield erroneous results for several common techniques

- Statistical models that assume independence between features are flawed because of the mutual dependency between components
- Distances between samples are misleading and erratically sensitive to the arbitrary inclusion or exclusion of components
- Components can appear definitively correlated even when they are statistically independent

This workshop

Why microbiome data is compositional data?

What is the issue with dealing with compositional data?

What are log-ratio transform approaches?

How to use compositional data analysis methods with microbiome data?

The starting point for any COmpositional DAta analyses is a ratio transformation of the data...

Ratio transformations

capture the relationships between the features in the dataset

$$\frac{Taxa1}{Taxa2} = \frac{2500}{1200} = 2.083$$

The starting point for any COmpositional DAta analyses is a ratio transformation of the data...

Ratio transformations

- capture the relationships between the features in the dataset
- ratios are the same whether the data are counts or proportions.

$$\frac{Taxa1}{Taxa2} = \frac{0.6098}{0.29268} = 2.083$$

The starting point for any COmpositional DAta analyses is a ratio transformation of the data...

Ratio transformations

- capture the relationships between the features in the dataset
- ratios are the same whether the data are counts or proportions

$$\frac{Taxa1}{Taxa2} = \frac{0.6757}{0.3243} = 2.083$$

The starting point for any COmpositional DAta analyses is a ratio transformation of the data...

Ratio transformations

- capture the relationships between the features in the dataset
- ratios are the same whether the data are counts or proportions

logarithm of ratios (log-ratios)

- makes the data symmetric and linearly related
- places the data in a log-ratio coordinate space

Additive Log Ratio

Feature 3 is a reference that can be "sacrificed" to transform the other counts.

alr (sample) =
$$\left[\log \frac{feature\ 1}{feature\ 3}, \log \frac{feature\ 2}{feature\ 3}\right]$$

Centered Log Ratio

Instead of using a taxa as reference, we can use the **geometric mean** of the counts from the sample

clr (sample) =
$$\left[\log \frac{feature\ 1}{G(sample)},\ \log \frac{feature\ 2}{G(sample)},\ \log \frac{feature\ 3}{G(sample)}\right]$$

Isometric Log Ratio

We can also use ratio of sub-groups. e.g. phylogenetic relationship can be leveraged (phILR)

$$ilr (sample) = [B1, B2]$$

Log-ratio transformations are NOT normalizations

- Normalization: recast data in absolute terms
- Transformation: must be interpreted with respect of a chosen reference

Additive Log Ratio: log ratio of the counts and a component of reference

Centered Log Ratio: log ratio of the counts and the sample geometric mean

Isometric Log Ratio: series of sequential log-ratios between subgroups of features

Additive Log Ratio: log ratio of the counts and a reference

Centered Log Ratio: log ratio of the counts and the sample geometric mean

Isometric Log Ratio: series of sequential log-ratios between subgroups of features

Additive Log Ratio: log ratio of the counts and a reference

Centered Log Ratio: log ratio of the counts and the sample geometric mean

Isometric Log Ratio: series of sequential log-ratios between subgroups of features

How to handle Zero counts before a log-transform?

	Sample 1	Sample 2
Taxa 1	156	762
Taxa 2	350	241
Taxa 3	67	0

How to handle Zero counts before a log-transform?

	Sample 1	Sample 2
Taxa 1	156	762
Taxa 2	350	241

Solution 1: Remove all component with 1 or more zero counts

How to handle Zero counts before a log-transform?

	Sample 1	Sample 2
Taxa 1	156	762
Taxa 2	350	241
Taxa 3	67	1

Solution 1: Remove all component with 1 or more zero counts

Solution 2: Add a pseudo-count of 1 to all zero counts

How to handle Zero counts before a log-transform?

	Sample 1	Sample 2
Taxa 1	156	762
Taxa 2	350	241
Taxa 3	67	P(x)

Solution 1: Remove all component with 1 or more zero counts

Solution 2: Add a pseudo-count of 1 to all zero counts

Solution 3: Dealing with 0 count values as point estimates or as a probability distribution

This workshop

Why microbiome data is compositional data?

What is the issue with dealing with compositional data?

What are log-ratio transform approaches?

How to use compositional data analysis methods with microbiome data?

Distance matrix

	S1	S2	S3
S1	0		
S2	0.4	0	
S3	0.2	0.6	0

After a log-transfom, visualize samples similarities

What methods should we apply after a log ratio transform?

Euclidian
distance between log-transform
is called
"Aitchison distance"

	S1	S2	S3
S1	0		
S2	0.4	0	
S3	0.2	0.6	0

From Gloor et al. 2016

After a log-transform...

Operation	Standard method	Compositional method
Normalization & transformation	Rarefaction	ALR/CLR/ILR
Distance Ordination	BC, Unifrac, Jenson PCoA	Aitchison PCA
Multivariate comparison	PerMANOVA ANOSIM	PerMANOVA ANOSIM
Correlation	Pearson Spearman	SparCC SpiecEasi
Differential abundance	metagenomSeq DESeq	ALDEx2 ANCOM

Tools & useful links

Review articles

Review articles by Quinn et al. 2019, Lin and Peddada 2020, and Luz Calle 2019 give you a good recap of the reasons and methods behind compositional data analysis for microbiome data

Tutorial

This <u>excellent tutorial by Nicholas Ollberding</u> introduce statistical analysis of microbiome data and in particular the use of CLR transform

Books

If during this talk you developed a true passion for CoDa approaches, I can recommend these amazing books to go deeper:

- A Concise Guide to Compositional Data Analysis by J. Aitchison
- Analyzing Compositional Data with R by Boogaart and Tolosana-Delgado (2013)
- Applied Compositional Data Analysis by Filzmoser, Hron, and Templ (2018)

Tools & useful links

Compositions R package

Book outlining how to use the compositions R package by <u>Van den Boogaart and Tolosana-Delgado (2013)</u> is particularly helpful, although none of the examples are drawn from the biological literature.

Tools to deal with 0 counts

Methods of dealing with 0 count values as point estimates using the zCompositions R package (Palarea-Albaladejo and Martín-Fernández, 2015), and as a probability distribution using ALDEx2 available on Bioconductor.

PhILR

This introduction paper will give you an overview of what the PhILR R package allows and what it can reveal in your microbiome dataset