EXHIBIT 9

(12) United States Patent

Falster

(10) Patent No.:

US 6,342,725 B2

(45) Date of Patent:

Jan. 29, 2002

SILICON ON INSULATOR STRUCTURE HAVING A LOW DEFECT DENSITY HANDLER WAFER AND PROCESS FOR THE PREPARATION THEREOF

(75) Inventor: Robert J. Falster, London (GB)

Assignee: MEMC Electronic Materials, Inc., St. Peters, MI (US)

Subject to any disclaimer, the term of this (*) Notice: patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/737,715

(22) Filed: Dec. 15, 2000

Related U.S. Application Data

- Continuation of application No. 09/387,288, filed on Aug. 31, 1999, now Pat. No. 6,236,104. Provisional application No. 60/098,902, filed on Sep. 2,
- (60)

(51)	Int. Cl. ⁷	H01L 29/06; H01L 27/01
` '		H01L 27/12; H01L 31/0392

- (52) U.S. Cl. 257/618; 257/347; 257/617
- 257/913, 617

References Cited (56)

U.S. PATENT DOCUMENTS

4,314,595 A	2/1982	Yamamoto et al
4,376,657 A	3/1983	Nagasawa et al.
4,437,922 A	3/1984	Bishoff et al.
4,505,759 A	3/1985	O'Mara
4,548,654 A	10/1985	Tobin
4,851,358 A	7/1989	Huber
4,868,133 A	9/1989	Huber
4,981,549 A	1/1991	Yamashita et al.
5,189,500 A	2/1993	Kusunoki
5,264,189 A		Yamashita et al.
5,327,007 A	7/1994	Imura et al.

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

DE	3905626 A1	8/1989
DE	4323964 A1	1/1994
DE	4414947 A1	8/1995
DE	19806045 A1	8/1998
EP	0503816 B1	9/1992
Li	ODODOTO IN	711776

(List continued on next page.)

OTHER PUBLICATIONS

Eidenzon, A.M., et al., "Defect-free Silicon Crystals Grown by The Czochralski Technique", Inorganic Materials, vol. 33, No. 3 (1977) pp. 219-225.

Eidenzon, A.M., et al., "Influence of Growth Rate on Swirl Defects in Large Dislocation-Free Crystals of Silicon Grown by the Czochralski Method", Sov. Phys. Crystallogr., vol. 30, No. 5 (1985) pp. 576-580, American Institute of Physics.

(List continued on next page.)

Primary Examiner-Ngân V. Ngô (74) Attorney, Agent, or Firm-Senniger, Powers, Leavitt & Roedel

ABSTRACT (57)

The present invention relates to a process for the preparation of a silicon on insulator wafer. The process including implanting oxygen in a single crystal silicon wafer having an axially symmetric region in which there is a predominant intrinsic point defect which is substantially free of agglomerated intrinsic point defects. Additionally, the present invention relates to a silicon on insulator ("SOI") structure in which the device layer and the handle wafer each have an axially symmetric region which is substantially free of agglomerated intrinsic point defects. Additionally, the present invention is directed to such a SOI structure in which the handle wafer is capable of forming an ideal, non-uniform depth distribution of oxygen precipitates upon being subjected to the heat treatment cycles of essentially any arbitrary electronic device manufacturing process.

42 Claims, 35 Drawing Sheets

US 6,342,725 B2

Page 2

U.S. PATENT DOCUMENTS

5,401,669	Α	3/1995	Falster et al.
5,403,406	Α	4/1995	Falster et al.
5,436,175	A	7/1995	Nakato et al.
5,445,975	A	8/1995	Gardner et al.
5,474,020	Α	12/1995	Bell et al.
5,478,408	Α	12/1995	Mitani et al.
5,485,803	Α	1/1996	Habu
5,487,354	Α	1/1996	von Ammon et al.
5,502,010	A	3/1996	Nadahara et al.
5,502,331	Α	3/1996	Inoue et al.
5,534,294	A	7/1996	Kubota et al.
5,539,245	A	7/1996	Imura et al.
5,593,494	Α	1/1997	Falster
5,611,855	A	3/1997	Wijaranakula
5,659,192	Ą	8/1997	Sarma et al.
5,667,584	A	9/1997	Takano et al.
5,674,756	A	10/1997	Satoh et al.
5,704,973	A	1/1998	Sakurada et al.
5,728,211	A	3/1998	Takano et al.
5,738,942	A	4/1998	Kubota et al.
5,788,763	Α	8/1998	Hayashi et al.
5,939,770	Α	8/1999	Kageyama
5,944,889	A	8/1999	Park et al.
5,954,873	A	9/1999	Hourai et al.
5,968,262	A	10/1999	Saishouji et al.
5,968,264	Α	10/1999	Iida et al.
6,045,610	A	4/2000	Park et al.
6,236,104	B 1	* 5/2001	Falster 257/618

FOREIGN PATENT DOCUMENTS

EP	0504837 A2	9/1992
EP	0536958 A1	4/1993
EP	0716168 A1	6/1996
EP	0799913	12/1998
EP	0962556 A1	12/1999
GB	2182262	5/1986
JΡ	59119822	7/1984
JP	2180789	7/1990
JP	3-9078	2/1991
JP	4108682	4/1992
JР	5-155700 A	6/1993
JΡ	8-330316	5/1995
JΡ	7-201874 A	8/1995
JР	7321120	12/1995
JΡ	7335657	12/1995
JP	8045944	2/1996
JР	8/045945	2/1996
JP	8045947	2/1996
JP	8/268794	10/1996
JP	8-293589	11/1996
JΡ	9-199416	7/1997
JP	9/202690	8/1997
JP	9-326396	12/1997
JP	11-067781 A	3/1999
JР	11-150119	6/1999
JP	11-157995 A	6/1999
JР	11-180800 A	7/1999
JР	11-189495 A	7/1999
JP	11-199386 A	7/1999
JP	11-199387 A	7/1999
wo	WO 97/26393	7/1997
WO-	WO 98/38675	9/1998
wo	WO 98/45507	10/1998
wo	WO 98/45508	10/1998
wo	WO 98/45509	10/1998
wo	WO 98/45510	10/1998

OTHER PUBLICATIONS

Hourai, M., et al. "Growth Parameters Determining the Type of Grown-In Defects in Czockralski Silicon Crystals", Materials Science Forum, Vols. 196-201 (1995) pp. 1713-1718.

Park, J.G., et al., "Effect of Crystal Defects on Device Characteristics", Proceedings of the Symposium on Crystalline Defects and Contamination: Their Impact And Control In Device Manufacturing II, Proceed. vol. 97-22 (1997),

Puzanov, N.I. et al. "Modelling Microdefect Distribution In Dislocation-Free Si Crystals Grown From The Melt"; Journal of Crystal Growth 178 (1997) pp. 468-478.

Puzanov, N.I. et al. "Formation Of The Bands Of Anomalous Oxygen Precipitation In Czochralski-grown Si Crystals", Journal of Crystal Growth 137 (1994) pp. 642-652.

Puzanov, N.I. et al. "The Role Of Intrinsic Point Defects In The Formation Of Oxygen Precipitation Centers In Dislocation-Free Silicon"; Crystallography Reports; vol. 41; No. 1(1996) pp. 134-141.

Puzanov, N.I. et al. "Harmful Microdefects In The Seed -End Portion Of Large-Diameter Silicon Ingots", Inorganic Materials, vol. 33, No. 8 (1997) pp. 765-769.

Puzanov, N.I., et al., "Role of Vacancies in the Nucleation of Ringlike-patterned Oxidation-induced Stacking Faults in Melt-grown Silicon Crystals", Inorganic Materials, vol. 34, No. 4 (1998) pp. 307-314.

Abe, T., "Innovated Silicon Crystal Growth and Wafering Technologies" Electrochemical Society Proceedings, vol. 97, No. 3, pp. 123-133. (No Month).

Abe, T., et al., "Defect-Free Surfaces of Bulk Wafers by Combination of RTA and Crystal Growth Conditions" (publication information unknown) (No Month/No Year).

Chiou, H.D., et al., "Gettering of Bonded Soi Layers", Proceedings of the International Symposium on Silicon-On -Insulator Technology and Devices, pp. 416-423.

Chiou, Hering-Der, "The Effects of Preheatings on Axial Oxygen Precipitation Uniformity in Czochralski Silicon Crystals", J. Electrochem. Soc., vol. 139, No. 6, Jun. 1992. de Kock, A.J.R., et al., "The Effect of Doping on the Formation of Swirl Defects in Dislocation-Free Czochralski-Grown Silicon Crystals", Journal of Crystal Growth, vol. 49, pp. 718-734, 1980.

Dornberger, E., et al., "The Dependence Ring Like Distributed Stacking FAults on the Axial Temperature Gradient of Growing Czochralski Dilicon Crystals", Electrochemical Society Proceedings, vol. 95-4, (May 1995) pp. 294-305. Dornberger, E., et al., "Simulation of Grown-In Voids in Czochralski Silicon Crystals", Electrochemical Society Proceedings, vol. 97, No. 22, pp. 40-49.

Dornberger, E., et al., "Simulation of Non-Uniform Grown-In Void Distributions in Czochralski Silicon Crystals", Electrochemical Society Proceedings, vol. 98, vol. 1, pp.

Dornberger, E., et al., "The Impact of Dwell Time Above 900° C During Crystal Growth on the Gate Oxide Integrity of Silicon Wafers", Electrochemical Society Proceedings, vol. 96, No. 13, pp. 140-151.

Falster, R., et al., "The Engineering of Silicon Wafer Material Properties Through Vacancy Concentration Profile Control and the Achievement of Ideal oxygen Precipitation Behavior", Mat. Res. Soc. Symp. Proc. vol. 510, pp. 27-35, 1998 (No Month).

US 6,342,725 B2

Page 3

Fasiter, R., et al., "Intrinsic Point-Defects and Reactions in the Growth of Large Silicon Crystals", Electrochemical Society Proceedings, vol. 98-1, pp. 468-489.

Hara, A., et al. "Enhancement of Oxygen Precipitation in Quenched Czochralski Silicon Crystals" Journal of Applied Phys. vol. 66 (1989) pp. 3958–3960 (Oct. 1989).

Hawkins, G.A., et al., Effect of Rapid Thermal Processing on Oxygen Precipitation in Silicon, Mat. Res. Soc. Symp. Proc., vol. 104, pp. 197–200, 1988.

Hawkins, G.A., et al., "The Effect of Rapid Thermal Annealing on the Precipitation of Oxygen in Silicon", J. Appl. Phys., vol. 65, No. 9, pp. 3644–3654, 1989.

Jacob, M., et al. "Influence of RTP on Vacancy Concentrations", Mat. Res. Soc. Symp. Proc. vol. 490, pp. 129-134, 1998. (No Month).

Jacob, et al., "Determination of Vacancy Concentrations in the Bulk of Silicon Wafers by Platinum Diffusion Experiments", J. Appl. Phys., vol. 82, No. 1 (1997), pp. 182–191. Kissinger, G., et al., "A Method for Studying the Grwon-In Defect Density Spectra in Czochralski Silicon Wafers", J. Electrochem. Soc., vol. 144, No. 4, pp. 1447–1456, 1997. Mulestagno, L., et al., "Gettering of Copper in Bonded Silicon Wafers", Electrochemical Society Proceedings, vol. 96, No. 3, pp. 176–182.

Nakamura, Kozo, et al., "Formation Process of Grown-In Defects in Czochralski Grown Silicon Crystals", Journal of Crystal Growth, vol. 180, pp. 61–72, 1997.

Pagani, M., et al. "Spatial variations on oxygen precipitation in silicon after high temperature rapid thermal annealing", Appl. Physl. Lett., vol. 70, No. 12, pp. 1572-1574, 1997. (Mar. 1997)

Shimura, F., "Semiconductor Silicon Crystal Technology" Academic Press, Inc., San Diego, CA (1989) pp. 360-377. (No Month).

Sinno, T., et al., "On the Dynamics of the Oxidation-Induced Stacking-Fault Ring in as-grown Czochralski silicon crystals", Applied Physics Letters, vol. 70, No. 17, pp. 2250-2252, 1997.

Sinno, T., et al., "Point Defect Dynamics and the Oxidation-induced Stacking-Fault Ring in Czochralski-Grown Silicon Crystals", J. Electrochem. Soc., vol. 145, No. 1, pp. 302–318, 1998.

Tan, T. Y., "Point Defects, Diffusion Processes, and Swirl Defect Formation in Silicon", Appl. Phys. A., vol. 37, pp. 1–17, 1985.

Vanhellemont, J., et al., "Defects in As-Grown Silicon and Their Evolution During Heat Treatments", Materials Science Forum, Vols. 258-263, pp. 341-346, 1997.

Von Ammon et al. "The Dependence of Bulk Defects on the Axial Temperature Gradient of Silicon Crystals During Czochralski Growth" Journal of Crystal Growth, vol. 151 (1995) pp. 273–277.

Voronkov, "The Mechanism of Swirl Defects Formation in Silicon", Journal of Crystal Growth, vol. 59, pp. 625-643, 1982.

Voronkov, V., et al., "Behavior and Effects of Intrinsic Point Defects in the Growth of Large Silicon Crystals" Electrochemical Society Proceedings, vol. 97–22, (Aug. 1997), pp. 3–17.

Voronkov, V., et al., "Grown-in microdefects, residual vacancies and oxygen precipitation banks in Czochralski silicon" Journal of Crystal Growth, 304 (1999) pp. 462-474.

Winkler et al. "Improvement of the Gate Oxide Integrity by Modifying Crystal Pulling and its Impact on Device Failures" J. Electrochem. Soc., vol. 141, No. 5 (1994) pp. 1398–1401. (May 1994).

Zimmerman al. "Vacancy Concentration Wafer Mapping in Silicon" J. Crystal Growth, vol. 129 (1993) pp. 582-592. (No Month).

International Search Report for Application No. PCT/US 99/19958, filed Aug. 31, 1999, 11 pages.

* cited by examiner

Jan. 29, 2002

Sheet 1 of 35

Jan. 29, 2002

Sheet 2 of 35

U.S. Patent Jan. 29, 2002 Sheet 3 of 35

U.S. Patent Jan. 29, 2002

Sheet 4 of 35 US 6,342,725 B2

Jan. 29, 2002

Sheet 5 of 35

Jan. 29, 2002

Sheet 6 of 35

U.S. Patent Jan. 29, 2002

Sheet 7 of 35

Jan. 29, 2002

Sheet 8 of 35

U.S. Patent Jan. 29, 2002 Sheet 9 of 35 US 6,342,725 B2

Jan. 29, 2002

Sheet 10 of 35

FIG. 10 BMD DENSITY US. OXYGEN PARTIAL PRESSURE

Jan. 29, 2002

Sheet 11 of 35

FIG.11

U.S. Patent

Jan. 29, 2002

Sheet 12 of 35

FIG.13

FIG.14

Jan. 29, 2002

Sheet 13 of 35

Jan. 29, 2002

Sheet 14 of 35

FIG. 16

U.S. Patent

Jan. 29, 2002

Sheet 15 of 35

Jan. 29, 2002

Sheet 16 of 35

US 6,342,725 B2

F/G.18

U.S. Patent Jan. 29, 2002 Sheet 17 of 35 US 6,342,725 B2

Jan. 29, 2002

Sheet 18 of 35

US 6,342,725 B2

FIG. 20

Jan. 29, 2002

Sheet 19 of 35

Jan. 29, 2002

Sheet 20 of 35

Jan. 29, 2002

Sheet 21 of 35

FIG. 25

Jan. 29, 2002

Sheet 22 of 35

US 6,342,725 B2

VACANCY DOMINATED, 80

Jan. 29, 2002

Sheet 23 of 35

US 6,342,725 B2

FIG. 26B

