● 北京工业大学 2021—2021 学年第二学期

《概率论与数理统计》周末重修试卷(工、经)

考试说明:考试时间: 2021年5月16日;考试方式:闭卷。

承诺:本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分 条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试, 做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承i	若人:		_ •	学号:_			班号:				
注:	本试卷共 _	<u>二</u> 大	、题,共	_ <u>3</u> _页	,满分 1	.00分。					
卷 面 成 绩 汇 总 表 (阅卷教师填写)											
	题号	_	二(1)	二(2)	二(3)	二 (4)	二(5)	总成绩			
	满分	35	13	13	13	13	13				
	得分										
一、填空题(本大题共 6 个小题, 共 14 个空, 每空 2 分, 共 28 分)											
1、 设 A, B 是 两 个 随 机 事 件 , 已 知 $P(A) = 0.5, P(B) = 0.6, P(A \cup B) = 0.8$, 则											
$P(A\overline{B}) = \underline{\hspace{1cm}}, P(\overline{A} \cap \overline{B}) = \underline{\hspace{1cm}}, P(B - A) = \underline{\hspace{1cm}}$											
2,	甲、乙、丙三人独立地向同一目标各射击一次,他们击中目标的概率分别为 0.7,0.6										
	和 0.8,则目标被击中的概率为。										
3、	设连续型随机变量 X 的分布函数为 $F(x) = \begin{cases} a + be^{-0.5x^2}, & x \ge 0 \\ 0, & x < 0 \end{cases}$, 其中 $a = b$ 为常数,										
	则 <i>a</i> =										
4,	若随机变量 X_1, X_2 相互独立,且 $X_1 \sim N(3,2^2)$, $X_2 \sim N(1,1)$,令 $X = 2X_1 - 3X_2$,										
	则 $X \sim$										
	布函数, $\Phi(1) = 0.8413$, $\Phi(2) = 0.9772$ 。										
5、	设总体为 $[0, heta]$ 上的均匀分布,则 $ heta$ 的矩估计为 $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$										
6 、 若 X_1,X_2,\cdots,X_n $(n>2)$ 为抽自正态总体 $N(\mu,\sigma^2)$ 的随机样本,记 \overline{X} 和 S^2 分别为样											
本均值和样本方差,则 $\sqrt{n}(ar{X}-\mu)/\sigma^{\sim}$, $\sqrt{n}(ar{X}-\mu)/\sqrt{S^2}^{\sim}$,											
$(n-1)S^2/\sigma^2 \sim \underline{\hspace{1cm}}, E(S^2) = \underline{\hspace{1cm}}$											

二、计算题(本大题共 6 个小题, 每题 12 分, 共 72 分, 做题时须写出解题过程, 否则不能得分)

- 1、一批产品共20件,其中有5件是次品,其余为正品。现从这20件产品中不放回地任意抽取3次,每次只取1件,求下列事件的概率:
 - (1) 在第一、第二次取到正品的条件下,第三次取到次品;
 - (2) 第三次才取到次品:
 - (3) 第三次取到次品。
- 2、 设某地区每天的用电量 X (单位: 百万千瓦. 时) 是一个连续型随机变量, 概率密度函数 为

$$f(x) = 12x(1-x)^2, 0 < x < 1$$

假设该地区每天的供电量仅有80万千瓦.时,求该地区每天供电量不足的概率。若每天的供电量上升到90万千瓦.时,每天供电量不足的概率是多少?

- 3、设随机变量 $X\sim N(0,1)$,求下列随机变量Y的概率密度函数:
 - (1) Y = 2X; (2) $Y = e^{-X}$; (3) $Y = X^2$;
- 4、已知二维随机向量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} A, x^2 \le y \le x, \\ 0, \text{ 其它,} \end{cases}$$

- 求: (1)常数 A:
 - (2) 边缘密度函数 $f_{x}(x)$, $f_{y}(y)$;
 - (3) X与Y是否独立?

5、正态总体 $N(\mu, \sigma^2)$ 的概率密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$$

其中 μ , σ^2 为待估参数。

- 求: (1) μ , σ^2 的矩估计;
 - (2) μ , σ^2 的极大似然估计。
- 6、设甲、乙两煤矿所产的煤中含煤粉率分别为 $N(\mu_1,\sigma^2)$ 和 $N(\mu_2,\sigma^2)$,其中 σ^2 未知。为检验这两个煤矿的煤含煤粉率有无明显差异,从两矿中取样若干份,测试结果如下:甲矿(%):24.3,22.8,23.7,22.3,19.4,20.5; $\bar{x}=22.17$, $\sum_{i=1}^6 (x_i-\bar{x})^2=17.75$ 乙矿(%):15.7,16.9,20.2,16.7,19.8; $\bar{y}=17.86$, $\sum_{j=1}^5 (y_j-\bar{y})^2=16.17$ 试在显著性水平为 0.05 下,检验"含煤粉率无差异"这个假设。

附: t分布与 χ^2 分布表

$t_9(0.025) = 2.2622$	$t_9(0.05) = 1.8331$	$t_{10}(0.025) = 2.2281$	$t_{10}(0.05) = 1.8125$
$\chi_9^2(0.025) = 19.023$	$\chi_9^2(0.05) = 16.919$	$\chi_9^2(0.975) = 2.700$	$\chi_9^2(0.95) = 3.325$
$\chi_{10}^2(0.025) = 20.483$	$\chi_{10}^2(0.05) = 18.307$	$\chi_{10}^2(0.975) = 3.247$	$\chi_{10}^2(0.95) = 3.940$