CORRIGÉ CCP PSI 2002 MATH 1

PROBLÈME 1

P.1/ La série $\sum_{n\geq 0}u_n(x)$ est géométrique de raison e^{-x} donc convergente si et seulement si $-1< e^{-x}<1 \ . \ \text{D'où} \ \boxed{D=\mathbb{R}^{+*}}.$

La série $\sum_{n\geq 0} v_n(x)$ est à termes strictement positifs et $\frac{v_{n+1}(x)}{v_n(x)} = \frac{n+1}{n} e^{-x} \xrightarrow{n\to+\infty} e^{-x}$

donc la règle de d'Alembert donne sa convergence si x>0 et sa divergence si x<0. De plus $v_n(0)=n$, il y a donc divergence grossière pour x=0. D'où $D'=\mathbb{R}^{+*}$.

P.2/
$$g(x) = \sum_{n=0}^{+\infty} (e^{-x})^n = \frac{1}{1 - e^{-x}}.$$

- **P.3**/ Donnons-nous $\varepsilon \in (0, +\infty)$.
 - Chaque u_n est de classe \mathcal{C}^1 et $u'_n = -v_n$.
 - $\sum_{n\geq 0} u_n$ converge simplement sur $[\varepsilon, +\infty[$.
 - $\forall x \in [\varepsilon, +\infty[, 0 \le |-v_n(x)| = v_n(x) \le v_n(\varepsilon)$, ce qui donne la convergence normale donc uniforme de la série $\sum_{n \ge 0} u_n' = \sum_{n \ge 0} -v_n$ sur $[\varepsilon, +\infty[$.

Le théorème de dérivation terme à terme des séries de fonctions s'applique : g est de classe \mathcal{C}^1 sur $[\varepsilon, +\infty[$ et g'=-h.

Ceci pour tout $\varepsilon>0$. Donc g est de classe \mathfrak{C}^1 sur $]0,+\infty[$ et $\,g'=-h\,.$

D'où
$$h(x) = -\left[\frac{-e^{-x}}{(1 - e^{-x})^2}\right] = \frac{e^{-x}}{(1 - e^{-x})^2}.$$

- 1/ Une étude de \mathcal{A}
- 1.1/ $t \mapsto e^{-xt}t$ est continue sur \mathbb{R}^+ et $te^{-xt} = o_{t \to +\infty}\left(\frac{1}{t^2}\right)$ donc $t \mapsto e^{-xt}t$ est intégrable sur \mathbb{R}^+ .

Une intégration par parties donne :

$$\int_0^M t e^{-xt} dt = \left[t \frac{e^{-xt}}{-x} \right]_0^M + \frac{1}{x} \int_0^M e^{-xt} dt = -M \frac{e^{-xM}}{x} + \frac{1}{x^2} \left(1 - e^{-xM} \right) \xrightarrow{M \to +\infty} \frac{1}{x^2}$$
 Donc
$$F_0(x) = \frac{1}{x^2}.$$

1.2/ φ_x est continue par morceaux sur \mathbb{R}^+ et $\forall t \in \mathbb{R}^+$, $|\varphi_x(t)| \leq te^{-xt}$. D'après 1.1/ φ_x est intégrable sur \mathbb{R}^+ .

1.3.1/ On a
$$\forall x \in I$$
, $|F(x)| = |\int_{\mathbb{R}^+} e^{-xt} f(t) dt | \leq \int_{\mathbb{R}^+} e^{-xt} |f(t)| dt \leq F_0(x) = \frac{1}{x^2}$.
Donc $|xF(x)| \leq \frac{1}{x}$ et donc $xF(x) \xrightarrow{x \to +\infty} 0$.

- 1.3.2/ Donnons-nous $\varepsilon \in]0,+\infty[$.
 - $g:(x,t)\mapsto e^{-xt}f(t)$ est continue sur $[\varepsilon,+\infty[\times\mathbb{R}^+]$ et on a la domination $\forall (x,t) \in [\varepsilon, +\infty[\times \mathbb{R}^+, |e^{-xt}f(t)| \le e^{-\varepsilon t} |f(t)| = \varphi_{\varepsilon}(t)$

par l'application φ_{ε} qui est continue et intégrable sur \mathbb{R}^+ d'après 1.1/

g admet une dérivée partielle première par rapport à x qui est $(x,t)\mapsto \frac{\partial g}{\partial x}(x,t)=-te^{-xt}f(t)$, cette application est continue sur $[\varepsilon,+\infty[\times\mathbb{R}^+]]$ et vérifie la domination

$$\forall (x,t) \in [\varepsilon, +\infty[\times \mathbb{R}^+, | -te^{-xt}f(t) | \le t^2e^{-\varepsilon t}.$$

L'application dominante $t\mapsto t^2e^{-\varepsilon t}$ est continue sur \mathbb{R}^+ et intégrable sur \mathbb{R}^+ puisque

$$t^2 e^{-\varepsilon t} = o_{t \to +\infty} \left(\frac{1}{t^2} \right).$$

On déduit du théorème de dérivation des intégrales dépendant d'un paramètre que F est de classe \mathcal{C}^1 sur l'intervalle $[\varepsilon, +\infty[$ et que $\forall x \in [\varepsilon, +\infty[$, $F'(x) = -\int_0^{+\infty} t f(t) e^{-xt} dt$. Ceci pour tout $\varepsilon > 0$. Donc F est de classe \mathcal{C}^1 sur l'intervalle I.

- 2/ Exemple 1 : fonction partie entière
- $f_1 = E$ est continue par morceaux sur \mathbb{R}^+ , à valeurs dans \mathbb{R} . De plus $\forall t \in \mathbb{R}^+, \quad 0 \le \mathrm{E}(t) \le t$ ce qui établit que $f_1 \in \mathcal{A}$

$$\begin{aligned} \textbf{2.1}/ \qquad F_1(x) &= \int_0^{+\infty} e^{-xt} \, \mathbf{E}(t) dt = \lim_{N \to +\infty} \int_0^{N+1} e^{-xt} \, \mathbf{E}(t) dt \, . \quad \text{Or} : \\ &\int_0^{N+1} e^{-xt} \, \mathbf{E}(t) dt = \sum_{n=0}^N \int_n^{n+1} e^{-xt} \, \mathbf{E}(t) dt = \sum_{n=0}^N \int_n^{n+1} e^{-xt} n dt = \sum_{n=0}^N \left[n \, \frac{e^{-xt}}{-x} \right]_n^{n+1} \\ &= \sum_{n=0}^N n \, \frac{e^{-(n+1)x} - e^{-nx}}{-x} = \frac{1 - e^{-x}}{x} \sum_{n=0}^N n e^{-nx} \\ &\text{On en déduit} \quad \forall x \in I, \quad F_1(x) = \frac{1 - e^{-x}}{x} h(x) = \frac{e^{-x}}{x(1 - e^{-x})}. \end{aligned}$$

3/ Un deuxième exemple

 f_2 est continue sur chaque intervalle $\,]n,n+1[\,$ avec $\,n\,$ entier naturel et admet en chaque **3.1**/ point n une limite finie à gauche et une limite finie à droite (à droite seulement si n=0) : $\lim_{\substack{t < \\ t \to n}} f_2(t) = (n-1) + (n-(n-1))^2 = n \text{ , et } \lim_{\substack{t > \\ t \to n}} f_2(t) = n + 0 = n \text{ .}$

On constate donc que ces limites sont égales, ce qui établit que f_2 est continue sur \mathbb{R}^+ .

De plus
$$0 \le t - E(t) < 1$$
 donc $0 \le (t - E(t))^2 \le t - E(t)$ et donc $0 \le f_2(t) \le E(t) + (t - E(t)) = t$.

Finalement $f_2 \in \mathcal{A}$

La continuité de f_2 donne selon 1.3.2/ que F_2 est de classe \mathcal{C}^1 sur l'intervalle I3.2/

3.3/ De plus pour tout
$$x$$
 de I , $F_2'(x) = -\int_0^{+\infty} t f_2(t) e^{-xt} dt \le 0$ car $f_2 \ge 0$.

Donc F_2 décroît sur I

On a vu également que $xF_2(x) \xrightarrow{x \to +\infty} 0$ et donc $F_2(x) \xrightarrow{x \to +\infty} 0$

L'axe des abscisses est donc asymptote à la courbe.

Enfin on a $\forall t \in \mathbb{R}^+, \quad f_2(t) \geq t-1$ qui donne

$$F_2(x) \geq \int_0^{+\infty} e^{-xt} (t-1) dt = \frac{1}{x^2} - \frac{1}{x} \underset{0}{\sim} \frac{1}{x^2} \quad \text{d'où} \quad \boxed{F_2(x) \xrightarrow[x \to 0]{} + \infty}.$$

L'axe des ordonnées est donc asymptote à la courbe.

$$\begin{split} F_2(x) &= \sum_{n=0}^{+\infty} \int_n^{n+1} e^{-xt} \left(n + (t-n)^2 \right) dt \\ &= \sum_{n=0}^{+\infty} \left[\left[\frac{e^{-xt}}{-x} \left(n + (t-n)^2 \right) \right]_n^{n+1} - \int_n^{n+1} \frac{e^{-xt}}{-x} 2(t-n) dt \right] \\ &= \sum_{n=0}^{+\infty} \left[\left[\frac{v_n(x) - v_{n+1}(x)}{x} \right] - \int_n^{n+1} \frac{e^{-xt}}{-x} 2(t-n) dt \right] \\ &= \frac{v_0(x)}{x} + \frac{2}{x} F_0(x) - \frac{2}{x} F_1(x) = 0 + \frac{2}{x^3} - \frac{2 e^{-x}}{x^2 (1 - e^{-x})} \\ \hline F_2(x) &= \frac{2 - 2 e^{-x} - 2 x e^{-x}}{x^3 (1 - e^{-x})} \end{split}.$$

PROBLÈME 2

Partie I : étude de &

$$\begin{aligned} \mathbf{I.1}/ \qquad G^2 &= H^2 = 0 \;, \;\; GH = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad HG = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}. \\ G &\in \mathcal{E}_1, \quad H &\in \mathcal{E}_1, \quad GH \not\in \mathcal{E}_1 \quad \text{donc} \quad \boxed{\mathcal{E}_1 \text{ n'est pas stable pour la multiplication} \\ \end{aligned}$$

 $\text{\textbf{I.2/}} \qquad \text{Les colonnes de la matrice } A_1(a_1,a_2) = \begin{pmatrix} 0 & b_1 \\ a_1 & 0 \end{pmatrix} \text{ sont orthogonales. Pour qu'elles soient }$ unitaires il faut et il suffit que $a_1 = \pm 1, \quad b_1 = \pm 1$. Donc

$$\boxed{ \boldsymbol{\varepsilon_{\scriptscriptstyle{1}}} \cap \mathcal{O}_{\scriptscriptstyle{2}} = \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\} }.$$

Les matrices Δ envisagées s'écrivent $\Delta = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}$.

On calcule alors $U\Delta = \begin{pmatrix} 0 & \varepsilon_2 d_2 \\ \varepsilon_1 d_1 & 0 \end{pmatrix}$.

Et on a $A_1(a_1,b_1)=U\Delta$ si et seulement si $a_1=\varepsilon_1d_1$ et $a_2=\varepsilon_2d_2$, ou encore si et seulement si $d_1=\varepsilon_1a_1$ et $d_2=\varepsilon_2a_2$. D'où exactement

- I.4.1/ det $A = -a_1b_1 \neq 0$ donc A est inversible. De plus $A^{-1} = \begin{pmatrix} 0 & \frac{1}{b_1} \\ \frac{1}{a_1} & 0 \end{pmatrix} \in \mathcal{E}_1$.
- **I.4.2**/ Le polynôme caractéristique de A est $X^2 a_1 a_2$.
 - Si $a_1b_1<0$ alors A n'est pas diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ car elle n'a pas de valeur propre réelle.
 - Si $a_1b_1>0$ alors A est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ car elle admet 2 valeurs propres réelles distinctes : $\sqrt{a_1a_2}$, $-\sqrt{a_1a_2}$.
- $\textbf{I.4.3} / \quad \text{Si } a_1b_1 = 0 \ \text{le polynôme caractéristique de } A \text{ est } X^2 \text{, donc la seule valeur propre est 0. Alors } A \text{ est diagonalisable } \Leftrightarrow A \text{ est semblable à la matrice nulle }$

$$\Leftrightarrow A = 0$$

$$\Leftrightarrow a_1 = b_1 = 0.$$

- $\textbf{I.5.1}/\quad \det K = -xy \,, \, \det L = -zt \,. \, \text{Donc} \,\, xy \neq zt \quad \Rightarrow \quad \det K \neq \det L \quad \Rightarrow \,\, K \,\, \text{et} \,\, L \,\, \text{non semblables}.$
- **I.5.2**/ On suppose $xy = zt \neq 0$. Vérifions que K et L sont semblables.

La recherche d'une égalité $PKP^{-1} = L$ ou encore PK = LP d'inconnue une matrice

inversible
$$P=\begin{pmatrix}p_1&p_3\\p_2&p_4\end{pmatrix}$$
 conduit au système
$$\begin{cases} -tp_2+xp_3&=0\\yp_1&-tp_4=0\\zp_1&-xp_4=0\\yp_2-zp_3&=0 \end{cases}$$
 (on peut vérifier que $yp_2-zp_3=0$

le rang de ce système est égal à 2).

Une solution est par exemple $P = \begin{pmatrix} 0 & t \\ x & 0 \end{pmatrix}$ ou encore $P = \begin{pmatrix} x & 0 \\ 0 & z \end{pmatrix}$ qui sont bien inversibles. K et L sont semblables.

Partie II : étude de \mathcal{E}_n

II.1.1/
$$d_2 = 0$$

II.1.2/

$$d_n = \begin{vmatrix} 0 & b_1 & 0 & \cdots & 0 & 0 \\ a_1 & \ddots & \ddots & & \vdots & \vdots \\ 0 & & \ddots & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & 0 & b_{n-1} & 0 \\ 0 & \cdots & 0 & a_{n-1} & 0 & b_n \\ 0 & \cdots & 0 & 0 & a_n & 0 \end{vmatrix}$$

$$= -b_n \begin{vmatrix} 0 & b_1 & 0 & \cdots & 0 & 0 \\ a_1 & \ddots & \ddots & & \vdots & \vdots \\ 0 & & \ddots & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & 0 & b_{n-2} & 0 \\ 0 & \cdots & 0 & a_{n-2} & 0 & b_{n-1} \\ 0 & \cdots & 0 & 0 & 0 & a_n \end{vmatrix} \text{ (en développant par rapport à la dernière colonne)}$$

en développant par rapport à la dernière ligne).

- II.1.3/ En particulier pour $p \in \mathbb{N}^*$ on a : $d_{2p+2} = -a_{2p+2} \, b_{2p+2} \, d_{2p}$. Sachant que $d_2=0$ une récurrence immédiate donne : $\boxed{d_{2p}=0 \;\; \text{pour } p \in \mathbb{N}^*}.$
- II.1.4/ On a aussi pour $p \in \mathbb{N}^*$: $d_{2p+1} = -a_{2p+1} b_{2p+1} d_{2p-1}$. Donc $d_{2p+1} = d_1 \prod_{k=1}^{r} \left(-a_{2k+1} b_{2k+1} \right)$.
- Et comme $d_1 = -a_1b_1$ on obtient $d_{2p+1} = (-1)^{p+1} \prod_{k=0}^{p} \left(a_{2k+1}b_{2k+1}\right)$.

 II.2.1/ Supposons $U = A_n(u,v) = \begin{pmatrix} 0 & v_1 & 0 \\ u_1 & \ddots & \ddots \\ & \ddots & \ddots & v_n \\ 0 & u_n & 0 \end{pmatrix}$ et $\Delta = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & \ddots & \ddots \\ & \ddots & \ddots & 0 \\ 0 & 0 & d_{n+1} \end{pmatrix}$.

$$\text{Alors} \quad U\Delta = \begin{pmatrix} 0 & v_1d_2 & & 0 \\ u_1d_1 & \ddots & \ddots & \\ & \ddots & \ddots & v_nd_{n+1} \\ 0 & & u_nd_n & 0 \end{pmatrix} \in \mathcal{E}_{\text{\tiny a}} \,.$$

De plus ${}^tAA = {}^t(U\Delta)(U\Delta) = {}^t\Delta{}^tUU\Delta = {}^t\Delta\Delta = \Delta^2$ qui est diagonale.

II.2.2/ $U \in \mathcal{E}_{2p} \Rightarrow \det U = 0$ d'après II.1.3/, ce qui empêche U d'être orthogonale. Autrement dit $\mathcal{E}_{2p} \cap \mathcal{O}_{2p+1}$ est vide !

II.2.3/ La réponse est non.

On peut par exemple observer qu'une matrice $U = \begin{pmatrix} 0 & v_1 & 0 & 0 \\ u_1 & 0 & v_2 & 0 \\ 0 & u_2 & 0 & v_3 \\ 0 & 0 & u_3 & 0 \end{pmatrix}$ est orthogonale si et seulement si elle est de la forme $U = \begin{pmatrix} 0 & \pm 1 & 0 & 0 \\ \pm 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \pm 1 \\ 0 & 0 & \pm 1 & 0 \end{pmatrix}$

seulement si elle est de la forme
$$U = \begin{pmatrix} 0 & \pm 1 & 0 & 0 \\ \pm 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \pm 1 \\ 0 & 0 & \pm 1 & 0 \end{pmatrix}$$

(écrire que la première et la quatrième colonnes sont unitaires, puis que la deuxième et la troisième lignes sont unitaires, enfin que la deuxième et la troisième colonnes sont unitaires).

$$\text{Alors si } \Delta = \begin{pmatrix} d_1 & 0 & 0 & 0 \\ 0 & d_2 & 0 & 0 \\ 0 & 0 & d_3 & 0 \\ 0 & 0 & 0 & d_4 \end{pmatrix} \text{ on a } U\Delta = \begin{pmatrix} 0 & \pm d_2 & 0 & 0 \\ \pm d_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \pm d_4 \\ 0 & 0 & \pm d_3 & 0 \end{pmatrix} \neq A_3 \left((1,3,5), (2,4,6) \right).$$

On pouvait aussi remarquer que si $A = A_3((1,3,5),(2,4,6))$, alors tAA n'est pas diagonale et conclure avec II.2.1/.

II.2.4.1/En écrivant que la première colonne est unitaire on obtient $a_1=\pm 1$, puis en écrivant que la deuxième ligne est unitaire : $b_2\,=\,0$.

En écrivant que la première ligne est unitaire on obtient $b_1=\pm 1$, puis en écrivant que la deuxième colonne est unitaire : $a_2\,=\,0$.

II.2.4.2/En utilisant le fait que les lignes et les colonnes sont unitaires on montre (par récurrence) que

$$\forall k \in [\![0,p]\!], \quad a_{2k+1} = \pm 1 \ \ \text{et} \quad b_{2k+1} = \pm 1 \quad \ \text{et} \quad \ \forall k \in [\![1,p]\!], \quad a_{2k} = 0 \ \ \text{et} \quad b_{2k} = 0 \ .$$

Réciproquement les matrices obtenues sont bien orthogonales.

On en déduit
$$\left[\operatorname{card}\left(\mathbb{S}_{2p+1}\cap\mathcal{O}_{2p+2}\right)=2^{2(p+1)}=4^{p+1}\right].$$

II.2.4.3/Effectuons le produit

En écrivant que cette matrice est diagonale on a en particulier $\forall j \in [\![1,n-1]\!], \quad a_jb_{j+1}=0$. Or det $A = (-1)^{p+1} \prod_{k=0}^{p} \left(a_{2k+1} b_{2k+1} \right) \neq 0$ donc les a_{2k+1} et les b_{2k+1} sont non nuls. On en

déduit que les a_{2k} et les b_{2k} sont nuls.

$$\Pi \text{ reste } A = \begin{pmatrix} 0 & b_1 & & & \\ a_1 & 0 & 0 & & & \\ & 0 & 0 & b_3 & & & \\ & & & a_3 & 0 & & \\ & & & & \ddots & & \\ & & & & \ddots & 0 & \\ & & & & & 0 & 0 & b_{2p+1} \\ & & & & & a_{2p+1} & 0 \end{pmatrix} \text{ quadrate rate is } a_{2p+1}$$

que l'on peut décomposer par exemple

- II.3.1/ A est symétrique réelle donc diagonalisable dans $\mathcal{M}_{n+1}(\mathbb{R})$. De plus $\sum_{i=1}^{n+1} \lambda_j = \operatorname{tr} A = 0$.
- II.3.2/ Raisonnons par l'absurde en supposant que φ soit un produit scalaire sur \mathbb{R}^{n+1} .

Soit λ une valeur propre de f_A et x un vecteur propre associé. Alors

$$\varphi(x,x) = \langle x \quad , \quad f_A(x) \rangle = \langle x \quad , \quad \lambda x \rangle = \lambda \mid\mid x \mid\mid^2 \quad \text{donc} \quad \lambda = \frac{\varphi(x,x)}{\mid\mid x \mid\mid^2} > 0 \; .$$

Cela empêcherait la somme des valeurs propres d'être nulle.

Conclusion:
$$\varphi$$
 n'est pas un produit scalaire sur \mathbb{R}^{n+1} .
II.4.1/ Si $A = \begin{pmatrix} 0 & b_1 \\ a_1 & 0 \end{pmatrix}$ alors $A^* = \begin{pmatrix} 0 & -b_1 \\ -a_1 & 0 \end{pmatrix} \in \mathcal{E}_1$.

 $\mathbf{II.4.2}/ \ \mathrm{Si} \ A \in \mathcal{O}_{n+1} \ \mathrm{alors} \ A^* = (\det A)A^{-1} = (\det A)^t A \ .$

Si de plus $A = A_n(a,b)$ on en déduit facilement que $A^* = A_n((\det A)b,(\det A)a)$.

Si
$$A \in \mathcal{E}_n \cap \mathcal{O}_{n+1}$$
 alors $A^* \in \mathcal{E}_n$

Si $A \in \mathcal{E}_n \cap \mathcal{O}_{n+1}$ alors $A^* \in \mathcal{E}_n$. (Comme det $A = \pm 1$ on aura même $A^* \in \mathcal{E}_n \cap \mathcal{O}_{n+1}$).

On pouvait aussi exploiter l'étude de $\delta_n \cap \mathcal{O}_{n+1}$ faite en II.2/.

II.4.3/ La réponse est non. En effet, soit un entier $n \geq 2$.

Le choix
$$a=(1,\ldots,1),\quad b=(0,\ldots,0)$$
 donne $A=\begin{pmatrix}0&0\\1&\ddots&\ddots\\&\ddots&\ddots&0\\&&1&0\end{pmatrix}$ et le dernier élément de la

première colonne de A^* est $(-1)^{n+2}$, donc $A^* \notin \mathcal{E}_n$.