利用方向-能量重建探测 K-40 地球中微子

孙昊哲 清华大学工程物理系

地球中微子通量计算

2025.05.26

地球中微子通量计算

- 由模型给出不同格点的密度、元素含量
- 计算该格点放出中微子数
- 按照距离计算锦屏处的通量
- 振荡概率

$$d\phi(\vec{r})_e = \frac{X\lambda N_A}{\mu} n_v P_{ee}^{\oplus} \frac{A(\vec{r})\rho(\vec{r})}{4\pi |\vec{r} - \vec{d}|^2} dv,$$

- 锦屏位置
 - (28.15323° N, 101.7114° E, 海拔1500 m)

放射性核素分布

K40 NeutrinoRate

Th232 NeutrinoRate

Th232 NeutrinoFlux

U238 NeutrinoRate

地球中微子通量计算

Hunting the Potassium Geoneutrinos with Liquid Scintillator Cherenkov Neutrino Detectors

Zhe Wang^{a,b,*}, Shaomin Chen^{a,b}

^aDepartment of Engineering Physics, Tsinghua University, Beijing 100084, China ^bCenter for High Energy Physics, Tsinghua University, Beijing 100084, China

地球中微子通量 (无振荡)

Figure B.15: Predicted non-oscillating geo electron-antineutrino energy spectra on the Earth's surface.

中微子振荡

电子型(反)中微子存活概率 振荡周期~30km@1MeV

振荡前后中微子能谱

中微子IBD事例率 (未细化分网格)

Geo $\bar{\nu}_e$ (TNU)	Crust	Mantle	BSE
Th	10.6 ± 0.8	2.1 ± 0.5	12.7 ± 1.0
U	38.4 ± 6.6	8.3 ± 2.3	46.7 ± 6.7
Th + U	49.0 ± 7.3	10.4 ± 2.7	59.4 ± 7.6

	Curst	Mantle	Total
Th232	7.06	2.44	9.51
U238	26.21	9.98	36.19
Total	33.27	12.42	45.70

- 近点计算精度
 - 近点贡献较大
 - ·振荡周期~ 30km@1MeV
 - 1°~111km
 - 岩层厚度~20km

精细划分网格

• 靠近的网格贡献较多的事例数

- 对靠近的7°*7°网格更精细划分
 - 将每一块划分为1000块

中微子IBD事例率 (细化分网格)

TNU at Jinping.					
Geo $\bar{\nu}_e$ (TNU)	Crust	Mantle	BSE		
Th	10.6 ± 0.8	2.1 ± 0.5	12.7 ± 1.0		
U	38.4 ± 6.6	8.3 ± 2.3	46.7 ± 6.7		
Th + U	49.0 ± 7.3	10.4 ± 2.7	59.4 ± 7.6		

• 仍有~20%差异

• 再检查

	Curst	Mantle	Total
Th232	8.50(7.06)	2.49(2.44)	10.99(9.51)
U238	33.01(26.21)	10.18(9.98)	43.20(36.19)
Total	41.51(33.27)	12.67(12.42)	54.19(45.70)

反冲电子能谱

$$\frac{dN}{dT} = N_e \int [\sum_{\nu} \frac{d\sigma(E_{\nu}, T_e)}{dT_e} P_{e\nu}] F(E_{\nu}) dE_{\nu},$$

Hunting the Potassium Geoneutrinos with Liquid Scintillator Cherenkov Neutrino Detectors

Zhe Wang^{a,b,*}, Shaomin Chen^{a,b}

^aDepartment of Engineering Physics, Tsinghua University, Beijing 100084, China ^bCenter for High Energy Physics, Tsinghua University, Beijing 100084, China

