Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	27 October 2022
Team ID	PNT2022TMID01368
Project Name	Natural disasters intensity analysis and classification using artificial intelligence
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming that.	2	Low	Priyatharshini
Sprint-1		USN-2	As a user, I will receive confirmation email once I have registered for the application.	3	High	Annapoorani
Sprint-1	Login	USN-3	As a user, I adapt to logging into the system with credentials.	2	Low	Ranjani
Sprint-1	Designati on of Region	USN-4	As a user, I can collect the dataset and select the region of interest to be monitored and analyzed.	5	Medium	Priyanka
Sprint-1	Analysis of required phenomenon	USN-5	As a user, I can regulate certain factors influencing the action and report on past event analysis.	4	High	Priyatharshini
Sprint-1	Algorithm selection	USN-6	As a user, I can choose the required algorithm for specific analysis.	4	Medium	Annapoorani
Sprint-1	Training and Testing	USN-7	As a user, I can train and test the model using the algorithm.	4	High	Ranjani
Sprint-1	Detection and analysis of data	USN-8	As a user, I can detect and visualize the data effectively.	4	High	Priyanka

Sprint 2	Create and configure IBMcloud services	USN-9	As a user I need to enrolL the cloud registration	3	Medium	Priyatharshini
Sprint 2		USN-10	As a user, I will create IBM cloud Account Watson AI platformby accessing cloud account	7	High	Annapoorani
Sprint 2		USN-11	After creating node get device type and id	1	Low	Ranjani
Sprint 2		USN-12	Simulate the node created	3	Medium	Priyanka
Sprint 3	Create a database in Cloud DB	USN-13	Launch the cloud DB andcreate database to store the location data	4	High	Priyatharshini
Sprint 3	Develop the Python script	USN-14	Install the python software	2	Low	Annapoorani
Sprint 3		USN-15	Develop the python flask topublish details to IBM AI platform	6	High	Ranjani
Sprint 3		USN-16	Integrate the device ID , authentication token in python flask	2	Low	Priyanka
Sprint 3		USN-17	Develop the python code for publishing the location (latitude & longitude) to IBM AI platform	8	High	Priyatharshini
Sprint 4	Create the Web application using node Red	USN-18	As a user, I can buildwith the web application.	5	High	Annapoorani
Sprint 4		USN-19	Connect the IBM AI platform and get the location and store the data in the cloud	2	Medium	Ranjani
Sprint 4		USN-20	Create the multilayered deep convolution neural network mode that tells the intensity of disaster a	8	High	Annapoorani

Sprint 4	USN-21	Send the notification is the webcam to capture the video frame	4	High	Priyatharshini
		to capture the video frame			

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	31 Oct 2022	20	31 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Average velocity=Sprint duration / velocity=20/6=3

Sprint	Total Story Points	Duration	Average Velocity		
Sprint-1	28	6	4.6		
Sprint-2	14	6	2.3		
Sprint-3	22	6	3.6		
Sprint-4	19	6	3.1		
Total Sprint	83	24	3.4		

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

Sprint-1:

Sprint-2:

Sprint-3:

Sprint-4:

RoadMap:

Back Log:

Sprint-1:

Sprint-2:

_

Sprint-3:

Sprint-4:

Board:

