Построение карты связности функциональных групп в задаче декодирования сигналов головного мозга

Вареник Наталия

Московский физико-технический институт Физтех-школа прикладной математики и информатики Кафедра интеллектуальных систем

Научный руководитель: д.ф.-м.н. В.В. Стрижов

Москва, 2021

Графовое представление сигналов

Задача: Построить модель анализа активности головного мозга, учитывающую пространственную структуру сигналов.

Проблема: Основные решения с использованием сверточных моделей определены в канально-временном домене, не содержащем информацию о пространственном расположении и связи электродов.

Обработка сигналов сверточной моделью.

Решение: Предлагается рассмотреть графовое представление сигналов для учета функциональных взаимосвязей различных частей мозга в пространстве.

Исследуются методы построения карты связности электродов для ее последующего использования графовой моделью.

Основные работы

Детерминированные методы оценки связи сигналов

• Sakkalis V., Tsiaras V., Tollis I. Graph Analysis and Visualization for Brain Function Characterization Using EEG Data. // Journal of Healthcare Engineering, 2010

Моделирование последовательностей с пространственной структурой

- Seo Y., Defferrard M., Vandergheynst P., Bresson X. Structured Sequence Modeling with Graph Convolutional Recurrent Networks. // Neural Information Processing, 2018
- Ruiz, L., Gama, F., & Ribeiro, A. Gated Graph Recurrent Neural Networks. // IEEE Transactions on Signal Processing, 2020

Оптимизационный метод оценки связи сигналов

 Gao, X., Hu, W., Guo, Z. Exploring Structure-Adaptive Graph Learning for Robust Semi-Supervised Classification. // IEEE International Conference on Nultimedia and Expo, 2020

Постановка задачи

Построение карты связности

 $\mathbf{X}_m \in \mathbb{R}^{N \times E}$, $m \in \overline{1, M}$ - исходный сигнал, N - количество отсчетов времени, E - количество электродов, M - количество примеров в выборке \mathbf{X} . Дополнительно известна матрица координат электродов $\mathbf{Z} \in \mathbb{R}^{E \times 3}$.

Рассмотрим граф $\mathcal{G}_m=(\mathcal{V}_m,\mathcal{E}_m)$, в котором \mathcal{V}_m есть множество электродов, а множество ребер \mathcal{E}_m и их веса определяются из матрицы смежности $\mathbf{A}_{\mathbf{X}_m,\mathbf{Z}}$. Требуется построить функцию:

$$f_{\mathcal{A}}: (X_m, Z) \rightarrow A_{X_m, Z}$$

Построение графовой структуры сигнала.

Постановка задачи

Классификация сигнала

Данные сигналов: $\mathbf{X} = \{\mathbf{X}_m\}_{m=1}^M, \ \mathbf{X}_m = \{\mathbf{x}_t\}_{t \in T}, \ \mathbf{x}_t \in \mathbb{R}^F, \ T = \{t_n\}_{n=1}^N, \ t_n \in \mathbb{R},$ где N - количество отсчетов времени, E - количество электродов, M - количество объектов.

Координаты электродов: $\mathbf{Z} = \{\mathbf{z}_j\}_{j=1}^E$, $\mathbf{z}_j \in \mathbb{R}^3$.

Целевая переменная: $\mathbf{y} = \{y_m\}_{m=1}^M$, $y_m \in \{1, \dots C\}$, C - количество классов.

Рассматривается класс графовых рекуррентных нейронный сетей:

$$g_{\theta}: (X, A_{X,Z}) \rightarrow y.$$

Функция ошибки - кросс-энтропия:

$$\mathcal{L} = -\frac{1}{M} \sum_{m=1}^{M} \left[\sum_{c=0}^{C} y_m^c \log(p_m^c) \right]$$

 $p_m^c = g_{ heta}(\mathbf{X}_m, \mathbf{A}_{\mathbf{X}_m, \mathbf{Z}})$ - вероятность класса c для \mathbf{X}_m с матрицей смежности $\mathbf{A}_{\mathbf{X}_m, \mathbf{Z}}$.

Оптимизационная задача:

$$\hat{\theta} = \arg\max_{\theta} \mathcal{L}(\theta, \mathbf{X}, \mathbf{A}_{\mathbf{X}, \mathbf{Z}}).$$

Внешние критерии качества: точность.

Оценка матрицы смежности: базовые методы

Рассмотрим произвольную пару электродов $\mathbf{z}_i, \mathbf{z}_j$ с сигналами $\mathbf{x}_i, \mathbf{x}_j.$

• Евклидово расстояние:

$$d_{ij} = \exp\Big(rac{-||\mathbf{z}_i - \mathbf{z}_j||_2^2}{2\sigma^2}\Big), a_{ij} = egin{cases} d_{ij}, & ext{если } d_{ij} \geq
ho_d \ 0, & ext{иначе.} \end{cases}$$

• Корреляция Пирсона:

$$r_{ij} = rac{\sum\limits_{n=1}^{N} (x_i(t_n) - \overline{\mathbf{x}}_i)(x_j(t_n) - \overline{\mathbf{x}}_j)}{\sqrt{\sum\limits_{n=1}^{N} (x_i(t_n) - \overline{\mathbf{x}}_i)^2 \sum\limits_{n=1}^{N} (x_j(t_n) - \overline{\mathbf{x}}_j)^2}}, a_{ij} = egin{cases} r_{ij}, & ext{если } r_{ij} \geq
ho_r \ 0, & ext{иначе}. \end{cases}$$

• Когерентность:

$$\gamma_{\mathbf{x}_i\mathbf{x}_j}(f) = rac{|S_{\mathbf{x}_i\mathbf{x}_j}(f)|^2}{S_{\mathbf{x}_i\mathbf{x}_i}(f)S_{\mathbf{x}_j\mathbf{x}_j}(f)}, a_{ij} = egin{cases} \gamma_{\mathbf{x}_i\mathbf{x}_j}, & \text{если } \gamma_{\mathbf{x}_i\mathbf{x}_j} \geq
ho_{\gamma} \\ 0, & \text{иначе.} \end{cases},$$
 где

$$S_{\mathbf{x}_i \mathbf{x}_i}(f) = \int\limits_{-\infty}^{\infty} R_{\mathbf{x}_i \mathbf{x}_i}(\tau) e^{-i2\pi f \tau} d\tau, \ S_{\mathbf{x}_i \mathbf{x}_j}(f) = \int\limits_{-\infty}^{\infty} R_{\mathbf{x}_i \mathbf{x}_j}(\tau) e^{-i2\pi f \tau} d\tau$$

- авто и кросс-спектральная функции плотности, $R_{\mathbf{x}_i\mathbf{x}_j}(au)$ - функция корреляции.

Частично направленная когерентность

Пусть набор временных рядов $\mathbf{x}(t) = [x_1(t), \dots, x_E(t)]^T$ адекватно описывается векторной регрессионной моделью порядка p:

$$\mathbf{x}(t) = \sum_{k=1}^{
ho} \mathbf{W}_k \mathbf{x}(t-k) + \mathbf{b}(t),$$
 где

$$\mathbf{W}_k = \begin{bmatrix} w_{11}(k) & \dots & w_{1E}(k) \\ \vdots & \ddots & \vdots \\ w_{E1}(k) & \dots & w_{EE}(k) \end{bmatrix}$$
 — матрица авторегрессионных коэффициентов,

 $\mathbf{b}(t) = \begin{bmatrix} b_1(t) & \dots & b_E(t) \end{bmatrix}^T \sim N(\mathbf{0}, \Sigma_{\mathbf{b}}).$

Коэффициенты $w_{ij}(k)$ отображают влияние $x_j(t-k)$ на $x_i(t)$.

$$\mathbf{W}(\lambda) = \sum_{k=1}^p \mathbf{W}_k \mathrm{e}^{-i2\pi\lambda k}$$
 — преобразование Фурье матрицы коэффициентов.

Интенсивность информационного потока из канала ј в канал і:

$$\pi_{i \leftarrow j}(\lambda) = \frac{\frac{1}{\sigma_i} |\overline{\mathbf{W}}_{ij}(\lambda)|}{\sqrt{\sum_{m=1}^{p} \frac{1}{\sigma_m^2} \overline{\mathbf{W}}_{mj}(\lambda) \overline{\mathbf{W}}_{mj}^H(\lambda)}}, \pi_{ij} = \frac{1}{2} (\pi_{i \leftarrow j} + \pi_{j \leftarrow i}),$$

$$\overline{\mathbf{W}}(\lambda) = \mathbf{I} - \mathbf{W}(\lambda), \ \sigma_i^2 -$$
 дисперсия $b_i(t)$.

Мера синхронизации фаз (Phase Locking Value)

Две динамические системы могут иметь синхронизацию фаз, даже если их амплитуды независимы. Синхронизация фаз понимается как:

$$|\phi_{xi}(t) - \phi_{xj}(t)| = const.$$

Аналитическое представление сигнала:

$$H(t) = x(t) + i\tilde{x}(t)$$
, где

$$ilde{x}(t)=rac{1}{\pi}v.p.\int\limits_{-\infty}^{\infty}rac{x(t')}{t-t'}dt'$$
 — преобразование Гильберта сигнала $x(t).$

Фаза аналитического сигнала определяется как:

$$\phi(t) = \arctan\left(\frac{\tilde{x}(t)}{x(t)}\right).$$

Таким образом, для двух сигналов $x_i(t)$, $x_j(t)$ равной продолжительности с фазами $\phi_{x_i}(t)$, $\phi_{x_j}(t)$ мера PLV задается уравнением:

$$PLV_{x_ix_j} = \left| \frac{1}{N} \sum_{n=0}^{N-1} \exp(i(\phi_{x_i}(n\Delta t) - \phi_{x_j}(n\Delta t))) \right|$$

где Δt - шаг по времени, а N - количество наблюдений сигнала.

Модель GConvLSTM

Спектральная свертка ChebConv

Графовый сигнал $\mathbf{x}\in\mathbb{R}^{n imes d}$ сворачивается с ядром $g_{m{ heta}}(\mathbf{\Lambda})=diag(m{ heta}),\ m{ heta}\in\mathbb{R}^n$ - вектор Фурье коэффициентов:

$$\mathbf{y} = g_{\theta} *_{G} \mathbf{x} = g_{\theta}(\mathbf{L})\mathbf{x} = g_{\theta}(\mathbf{U}\Lambda\mathbf{U}^{T})\mathbf{x} = \mathbf{U}g_{\theta}(\Lambda)\mathbf{U}^{T}\mathbf{x} \in \mathbb{R}^{n \times d},$$

 $\mathbf{U} \in \mathbb{R}^{n imes n}$, $\mathbf{\Lambda} \in \mathbb{R}^{n imes n}$ - матрицы собственных векторов и значений Лапласиана

$$\mathsf{L} = \mathsf{I} - \mathsf{D}^{-1/2} \mathsf{A} \mathsf{D}^{-1/2}, \; \mathsf{D} = \mathit{diag}(\mathit{d}_{ii}), \;$$
где $\mathit{d}_{ii} = \sum_{j} \mathsf{A}_{ij}$

Параметризация полиномами Чебышева степени K-1:

$$g_{m{ heta}}(m{\Lambda}) = \sum_{k=0}^{K-1} heta_k T_k(m{ ilde{\Lambda}}), \; m{ ilde{\Lambda}} = 2m{\Lambda}/\lambda_{max} - \mathbf{I}$$

Модель GConvLSTM

- $\mathbf{x}_t^{GCN} = ChebConv(\mathbf{x}_t)$
- $\mathbf{i}_t = \sigma(\mathbf{W}_{xi}\mathbf{x}_t^{CNN} + \mathbf{W}_{hi}\mathbf{h}_{t-1} + \mathbf{w}_{ci} \odot \mathbf{c}_{t-1} + \mathbf{b}_i),$
- $\mathbf{f}_t = \sigma(\mathbf{W}_{xf}\mathbf{x}_t^{CNN} + \mathbf{W}_{hf}\mathbf{h}_{t-1} + \mathbf{w}_{cf} \odot \mathbf{c}_{t-1} + \mathbf{b}_f),$
- $\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \tanh(\mathbf{W}_{xc} \mathbf{x}_t^{CNN} + \mathbf{W}_{hc} \mathbf{h}_{t-1} + \mathbf{b}_c),$
- $ullet \mathbf{o}_t = \sigma(\mathbf{W}_{xo}\mathbf{x}_t^{CNN} + \mathbf{W}_{ho}\mathbf{h}_{t-1} + \mathbf{w}_{co}\odot\mathbf{c}_t + \mathbf{b}_o),$
- $\mathbf{h}_t = \mathbf{o}_t \odot tanh(\mathbf{c}_t)$.

Вычислительный эксперимент

Цели:

- Построить матрицы связей электродов предложенными методами,
- Оценить качество работы пространственно-временной модели на основе полученных оценок матрицы.

Данные: Выборка SEED по распознаванию эмоций. Эксперимент проводился в 3 сессии на группе из 15 человек. В качестве стимулов использовались отрывки видеоклипов, вызывающие определенные эмоциональные отклики (позитивный, негативный или нейтральный). EEG сигнал измерялся 62 каналами, расположенными по системе 10-20 с частотой сэмплирования 200 Hz.

Признаки: дифференциальная энтропия в 5 частотных диапазонах delta (1-3Hz), theta (4-7Hz), alpha (8-13Hz), beta (14-30Hz), gamma (31-50Hz):

$$h(X) = -\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \log\Big(\frac{1}{\sqrt{2\pi\sigma^2}} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}}\Big) dx,$$
 $X \in \mathcal{N}(\mu,\sigma^2)$ - временной ряд.

Результаты оценки матрицы связности

Результаты декодирования сигналов

Модель	Точность	Потери
LSTM	0.865 ± 0.013	0.278 ± 0.018
GConvLSTM (dist)	0.892 ± 0.012	0.226 ± 0.011
GConvLSTM (pcor)	0.918 ± 0.010	0.207 ± 0.017
GConvLSTM (coh)	0.898 ± 0.010	0.214 ± 0.018
GConvLSTM (pdc)	0.900 ± 0.007	0.213 ± 0.012
GConvLSTM (plv)	0.930 ± 0.011	0.185 ± 0.012

Сравнение LSTM и GConvLSTM

Разница наилучшей матрицы смежности с базовой и соответствующие электроды

Планы: МАР оценка матрицы смежности

МАР оценка матрицы смежности.

Имея графовый сигнал ${\bf x}$ требуется найти оптимальную матрицу смежности:

$$\tilde{\mathbf{A}}_{MAP}(\mathbf{x}) = \arg\max_{\hat{\mathbf{A}}} f(\mathbf{x}|\hat{\mathbf{A}})g(\hat{\mathbf{A}}),$$

 $f(\mathbf{X}|\hat{\mathbf{A}})$ - функция правдоподобия, $g(\hat{\mathbf{A}})$ - априорное распределение. Априорное распределение.

- ullet Симметричность $\hat{f A}^T = \hat{f A};$
- ullet Нормализованность $\hat{f A}{f 1}={f 1};$
- Отсутствие петель $tr(\hat{\mathbf{A}}) = 0$;
- Разреженность.

$$g(\hat{\mathbf{A}}) = \exp(-\lambda_1 ||\hat{\mathbf{A}}||_1 - \lambda_2 ||\hat{\mathbf{A}}^T - \hat{\mathbf{A}}||_F^2 - \lambda_3 ||\hat{\mathbf{A}}\mathbf{1} - \mathbf{1}||_F^2 - \lambda_4 |tr(tr(\hat{\mathbf{A}}))|^2).$$

Функция правдоподобия.

Свойство гладкости сигнала по отношению к графу. Минимизация такой функции способствует построению подходящей топологии графа к структурным предположениям о данных:

$$f(\mathbf{x}|\hat{\mathbf{A}}) = \exp(-\lambda_0 tr(\mathbf{x}^T \mathbf{L} \mathbf{x})) = \exp(-\lambda_0 tr(\mathbf{x}^T (\mathbf{I} - \hat{\mathbf{A}}) \mathbf{x}))$$