ÖVEGES JÓZSEF Fizikaverseny

II. forduló 2018. március 26. VII. osztály

JAVÍTÓKULCS

I. feladat

1) $\rho_{1} = 270 \text{ dag/L} = 2700 \text{ kg/m}^{3}; \ \rho_{2} = 600 \text{ mg/mL} = 600 \text{ kg/m}^{3}; \ \rho_{3} = 2,7 \text{ g/cm}^{3} = 2700 \text{ kg/m}^{3} \qquad 3 \text{ p} \\ \rho_{2} < \rho_{1} = \rho_{3} \qquad \qquad 1 \text{ p}$

2)

-	
a) Az erők helyes ábrázolása.	1 p
b) Két erő helyes összeadása paralelogramma szabállyal.	1 p
\overrightarrow{F}_2 és \overrightarrow{F}_{23} által közrezárt szög 60°	1 p
OAB háromszög egyenlő oldalú.	1 p
$(\overrightarrow{F}_{23}) = (\overrightarrow{F}_1) = (\overrightarrow{F}_2) = (\overrightarrow{F}_3)$	1 p
$\overrightarrow{F}_1 + \overrightarrow{F}_2 + \overrightarrow{F}_3 = 0$	1 p

II. feladat

Út-idő táblázat és grafikon (4 p)

a) $t = 12 h, d = 3 km$	3 p
b) $t' = d/v_3$; $t' = \frac{1}{4}h = 15$ min; $t_{to} = t + \Delta t + t' = 12$ h 45 min	3 p

III. feladat

a) Erők ábrázolása.	2 p
b) $l_1 + l_2 = L$; $l_1 = \frac{2}{3}l_2 \rightarrow l_1 = 2 m$, $l_2 = 3 m$	1 p
$G_1 = l_1 \text{ ag} = 480 N$, $G_2 = l_2 \text{ ag} = 720 N$	1 p
	1 p
$G_{\text{veder}} = m_{\text{veder}} \cdot g = 20 N$	1 n
$G_{\text{viz}} = V \cdot \rho \cdot g = 100 N$	1 p
$G_{x} = m_{x} g = 600 N$	1 p
$\frac{l_1}{2}G_1 + \left(l_1 - \frac{x}{2}\right)G_x = \frac{l_2}{2}G_2 + l_2m_0g + l_2G_{veder} + l_2G_{viz} - l_2F$	2 p
F = 40 N	1 p