Árboles de Adelson-Velskii y Landis (AVL)

- Desarrollado por los soviéticos Georgii Adelson-Velskii y Yevgeni Landis en 1962.
- También se llaman árboles simplemente equilibrados

 Para cualquier nodo del árbol se cumple que la diferencia de alturas entre el subárbol izquierdo y el subárbol derecho es menor o igual a uno en valor absoluto

- $|h_{lzq} h_{der}| <= 1$
 - h_{izq} \rightarrow altura del subárbol izquierdo
 - h_{der} \rightarrow altura del subárbol derecho

- ¿Altura mínima?
- ¿APE?
- ¿AVL?

- ¿Altura mínima?
- ¿APE?
- ¿AVL?

Resumiendo

- Todo árbol APE es de altura mínima y AVL
- No todo árbol AVL es de altura mínima
- No todo árbol de altura mínima es AVL

Árboles de Fibonacci

- Surgen como respuesta a la siguiente pregunta
 - Si un árbol AVL no tiene porque ser de altura mínima ¿cuál es su altura máxima?
 - ¿Cuánto difiere la altura máxima de la altura mínima?
- Los árboles de *Fibonacci* se construyen de la mejor manera posible para alcanzar la altura máxima respetando la condición AVL
- Dependiendo de la altura h tenemos:
 - Si h=0 \rightarrow árbol T₀ (vacío)
 - Si h=1 \rightarrow árbol T₁ (de un solo nodo)
 - Si h>1 \rightarrow árbol T_h (T_{h-1} , nodo, T_{h-2})

Fibonacci. Ejemplo

Resultados

- Cota para la altura máxima de un árbol de Fibonacci
 - $h_{MaxFib}(n) <= 1,44 \log_2 n$
- Rango de altura para un AVL
 - $h_{APE}(n) \leq h_{AVL}(n) \leq h_{MaxFib}(n)$
 - $\log_2 n \le h_{AVL}(n) \le 1,44 \log_2 n$
- Complejidad para las tres operacines
 - $O(log_2n) \le O(h_{AVL}(n)) \le O(1,44 log_2n)$

- Indica si un árbol AVL esta equilibrado o no
- Se calcula como la diferencia de alturas entre el subárbol derecho y el izquierdo
 - $BF_n = h_{der} h_{izq}$
- Situaciones posibles
 - $h_{izq} > h_{der} (BF_n = -1)$
 - $h_{izq} = h_{der} (BF_n = 0)$
 - $h_{izq} < h_{der} (BF_n = 1)$
- Desequilibrio si |BF_n | > 1

- Indica si un árbol AVL esta equilibrado o no
- Se calcula como la diferencia de alturas entre el subárbol derecho y el izquierdo
 - $BF_n = h_{der} h_{izq}$
- Situaciones posibles
 - $h_{izq} > h_{der} (BF_n = -1)$
 - $h_{izq} = h_{der} (BF_n = 0)$
 - $h_{izq} < h_{der} (BF_n = 1)$
- Desequilibrio si |BF_n | > 1

- Indica si un árbol AVL esta equilibrado o no
- Se calcula como la diferencia de alturas entre el subárbol derecho y el izquierdo

•
$$BF_n = h_{der} - h_{izq}$$

- Situaciones posibles
 - $h_{izq} > h_{der} (BF_n = -1)$
 - $h_{izq} = h_{der} (BF_n = 0)$
 - $h_{izq} < h_{der} (BF_n = 1)$
- Desequilibrio si |BF_n | > 1

- Indica si un árbol AVL esta equilibrado o no
- Se calcula como la diferencia de alturas entre el subárbol derecho y el izquierdo
 - $BF_n = h_{der} h_{izq}$
- Situaciones posibles
 - $h_{izq} > h_{der} (BF_n = -1)$
 - $h_{izq} = h_{der} (BF_n = 0)$
 - $h_{izq} < h_{der} (BF_n = 1)$
- Desequilibrio si |BF_n | > 1

La estructura de datos para definir un nodo

- Clase genérica que define un nodo de un árbol AVL con sus atributos y sus métodos
- Atributos que definen un nodo de un árbol
 - La **información** almacenada en el **nodo** que será de tipo genérico
 - La información sobre quien es su hijo izquierdo
 - La información sobre quien es su hijo derecho
 - El factor de balance del nodo
 - La **altura** del nodo
- Métodos. Todos aquellos necesarios para gestionar los atributos del nodo

La estructura de datos para definir un árbol

- Clase genérica de un árbol AVL con sus atributos y sus métodos
- Atributos que definen un árbol AVL
 - El nodo raíz del árbol
- Métodos básicos (recursividad)
 - Añadir → addNode
 - Buscar → findNode
 - Borrar → removeNode
 - Mostrar el árbol → toString
- Cualquier otro método que resulte útil

AVL. Añadir una clave a un árbol

- Si el árbol está vacío crea un nuevo nodo con la información nueva y termina
- Si la clave a insertar ya existe termina
- Método recursivo
 - Si la clave del nodo a insertar es menor que la clave del nodo actual entonces
 Si el subárbol izquierdo es null entonces
 crear un nodo con la clave y asignarlo por la izquierda
 Sino volver a llamar al método insertar recursivo pero esta vez con el subárbol izquierdo
 Si la clave del nodo a insertar es mayor que la clave del nodo actual entonces
 Si el subárbol derecho es null entonces
 crear un nodo con la clave y asignarlo por la derecha
 Sino volver a llamar al método insertar recursivo pero esta vez con el subárbol derecho
- ¿Complejidad del algoritmo?

AVL. Añadir una clave a un árbol

- Diferencia con respecto a los árboles de búsqueda binarios
 - Hay que calcular el factor de balance y la altura de cada uno de los nodos que forman parte del camino de búsqueda para insertar
 - Esto se realiza al regresar de la recursividad
 - Si el |FB_n| >1 para algún nodo n entonces hay que reequilibrar

AVL. Equilibrado del árbol

- Para el nodo a tratar hay que actualizar
 - Factor de balance (BF)
 - La altura
- Si el BF del nodo tiene un valor de -2 → rotación izquierda
 - Si el BF del subárbol izquierdo del nodo tiene un valor de 1 -> rotación doble
 - En otro caso → rotación simple
- Si el BF del nodo tiene un valor de 2 -> rotación derecha
 - Si el BF del subárbol derecho del nodo tiene un valor de -1 -> rotación doble
 - En otro caso → rotación simple
- Al finalizar \rightarrow devolver el nodo actualizado

Añadir la clave 95

RSD sobre el nodo 75

Se utiliza un nodo auxiliar aux

Para cualquier nodo N

- aux = subárbol derecho del nodo N
- nodo N por la derecha = subárbol izquierdo de aux
- aux por la izquierda = nodo N

RSD sobre el nodo 75

Se utiliza un nodo auxiliar aux

Para cualquier nodo N

- aux = subárbol derecho del nodo N
- nodo N por la derecha = subárbol izquierdo de aux
- aux por la izquierda = nodo N

Añadir la clave 5

RSI sobre el nodo 25

Se utiliza un nodo auxiliar aux

Para cualquier nodo N

- aux = subárbol izquierdo del nodo N
- nodo N por la izquierda = subárbol derecho de aux
- aux por la derecha = nodo N

RSi sobre el nodo 75

Se utiliza un nodo auxiliar aux

Para cualquier nodo N

- aux = subárbol izquierdo del nodo N
- nodo N por la izquierdo = subárbol derecho de aux
- aux por la derecha = nodo N

AVL. Rotación Simple. Ejercicios

Ejercicio1

• Partiendo de un AVL vacío insertar la secuencia de claves: 7, 6, 5, 4, 3, 2, 1

• Ejercicio2

- Añadir 8, 9, 10
- ¿Cuál es la complejidad temporal de cada inserción?

Añadir la clave 26

RDD sobre el nodo 25

Se soluciona con dos rotaciones simples

Para cualquier nodo N

- RSI sobre el subárbol derecho de N
- RSD sobre el nodo N

RDD sobre el nodo 25

Se soluciona con dos rotaciones simples

Primera parte: RSI sobre el subárbol derecho de N

- aux = subárbol izquierdo del nodo N
- nodo N por la izquierdo = subárbol derecho de aux
- aux por la derecha = nodo N

RDD sobre el nodo 25

Se soluciona con dos rotaciones simples

Segunda parte: RSD sobre el nodo N

- aux = subárbol derecho del nodo N
- nodo N por la derecha = subárbol izquierdo de aux
- aux por la derecha = nodo N

Añadir la clave 65

RDI sobre el nodo 75

Se soluciona con dos rotaciones simples

Para cualquier nodo N

- RSD sobre el subárbol izquierdo de N
- RSI sobre el nodo N

RDD sobre el nodo 75

Se soluciona con dos rotaciones simples

Primera parte: RSD sobre el subárbol izquierdo de N

- aux = subárbol derecho del nodo N
- nodo N por la derecha = subárbol izquierdo de aux
- aux por la izquierda = nodo N

RDD sobre el nodo 75

Se soluciona con dos rotaciones simples

Segunda parte: RSI sobre el nodo N

- aux = subárbol izquierdo del nodo N
- nodo N por la izquierda = subárbol derecho de aux
- aux por la izquierda = nodo N

AVL. Rotación Doble. Ejercicios

Ejercicio1

• Partiendo de un AVL vacío insertar la secuencia de claves: 1, 2, 3, 4, 5, 6, 10, 11, 8, 7

• Ejercicio2

• Partiendo de un AVL vacío insertar la secuencia de claves: 5, 2, 10, 15, 12, 9, 7, 8, 6

• Ejercicio3

¿Cuál es la complejidad temporal de cada inserción?

AVL. Borrar una clave a un árbol

- Realizar el borrado como se hacía en los árboles BST
- Si ha cambiado al altura del árbol
 - Recalcular el FB al regresar de la recursividad (actualizando los BF de los nodos que forman parte del camino de búsqueda)
 - Si $|BF_n| > 1$ para algún n entonces reequilibrar (detectando caso)
- En el borrado, el reequilibrado no es puntual
 - El reequilibrado de un subárbol no garantiza el equilibrio del árbol
 - A diferencia de la inserción, en el borrado es preciso continuar reequilibrando siempre hasta la raíz del árbol

AVL. Borrado. Ejercicios

• Ejercicio1

• Partiendo del siguiente árbol AVL, borrar las siguientes claves: 1, 3, 4, 7, 11, 10

¿Cuál es la complejidad temporal de cada borrado?

AVL. Borrado. Ejercicios

• Ejercicio2

• Partiendo del siguiente árbol AVL, borrar las siguientes claves: 20, 4, 10, 9, 6, 3

¿Cuál es la complejidad temporal de cada borrado?

AVL – Eficiencia

- Caso peor
 - El reequilibrado en un AVL solo afecta al camino de búsqueda
 - Su longitud es del orden de log₂n
 - Log₂n <= Longitud del Camino de Búsqueda <= 1,44Log₂n

Resumiendo

MÉTODO	COMPLEJIDAD	
	APE	AVL
Insertar	O(n)	O(log ₂ n)
Buscar	O(log ₂ n)	O(log ₂ n)
Borrar	O(n)	O(log ₂ n)
Recorridos	O(n)	O(n)