Positive comb. of proi.

Victor Kaftal

University of Cincinnati

U. Virginia November 18, 2014

Joint work with

Ping W. Ng (University of Louisiana) Shuang Zhang (University of Cincinnati)

Outline

Questions

- Questions
- 2 Linear combinations of projections
- Openitive linear combinations of projections (PCP)
- Infinite sums of projections
- Finite sums of projections & open questions

Questions

• For which C*-algebras are all elements linear combinations of projections? If not all, which are?

• For which C*-algebras are all elements linear combinations of

- projections? If not all, which are?
- If the elements are positive, can the coefficients be chosen to be positive? PCP: positive combinations of projections.

 $b = \sum_{1}^{n} \lambda_{j} p_{j}$, $\lambda_{j} > 0$ where p_{j} are projections not necessarily mutually orthogonal.

- For which C*-algebras are all elements linear combinations of projections? If not all, which are?
- If the elements are positive, can the coefficients be chosen to be positive? PCP: positive combinations of projections.

 $b = \sum_{1}^{n} \lambda_{j} p_{j}$, $\lambda_{j} > 0$ where p_{j} are projections not necessarily mutually orthogonal.

The questions that started us on this project were:

- Which positive elements are infinite sums of projections? (Converging in the strict topology in a multiplier algebra or in the strong topology in a von Neumann algebra.) This question originated in frame theory (Dykema, Larson & all, 2004) It is now solved in B(H).
- Which positive elements are finite sums of projections? Still open in B(H).

Finite sums of projections

Which W*-algebras are the span of their projections?

B(H):

Questions

- Fillmore, 1967 (n=257), then progress via link to commutators:
- Pearcy & Topping, 1967 (n=16),
- Matsumoto, 1984 (n=10)

- B(H):
 - Fillmore, 1967 (n=257), then progress via link to commutators:
 - Pearcy & Topping, 1967 (n=16),
 - Matsumoto, 1984 (n=10)
- All W*-algebras with the exception of finite type I algebras with infinite dimensional center (e.g., $\bigoplus_{1}^{\infty} M_n(\mathbb{C})$ or algebras having such a direct summand. (Pearcy &Topping (1967), Fack & de La Harpe (1980), Goldstein & Paszkiewicz (1992))

Universal constants

Definition

A C*-algebra \mathcal{A} has universal constants V, N if for every $b=b^*\in\mathcal{A}$.

$$b = \sum_{1}^{N} \alpha_{j} p_{j}$$
 and $\sum_{1}^{N} |\alpha_{j}| \leq V \|b\|$

with $\alpha_i \in \mathbb{R}$ and $p_i \in \mathcal{A}$ projections.

Universal constants for a W*-algebra M

- M properly infinite, N=6, V=8
- M type II_1 . N = 12. V = 14
- M direct sum of m matrix algebras: N = m + 4, V = m + 4.

These universal constants are quite useful. E.g., Fong&Murphy's proof that positive invertible in B(H) are positive combinations of projections.

• Purely infinite unital simple C*-algebras.

- Purely infinite unital simple C*-algebras.
- Unital simple finite real rank zero algebras with a unique tracial state satisfying the property of strict comparison of projections: $\tau(p) < \tau(q) \Rightarrow p \lesssim q$ (Murray-von Neumann subequivalence);

Infinite sums of projections

- Purely infinite unital simple C*-algebras.
- Unital simple finite real rank zero algebras with a unique tracial state satisfying the property of strict comparison of projections: $\tau(p) < \tau(q) \Rightarrow p \lesssim q$ (Murray-von Neumann subequivalence);
- Unital simple AF-algebras, AT-algebras, or AH-algebras (with bounded dimension growth) with real rank zero and with $|\partial_e(T(A))| < \infty$.: The collection of the tracial states T(A) is convex and compact (in the w*-topology), $\partial_e(T(A))$ is the collection of the extreme points of T(A).

All the above results due mainly to Marcoux, 1998-2010 based on earlier work of Fack and Thompsen.

- Purely infinite unital simple C*-algebras.
- Unital simple finite real rank zero algebras with a unique tracial state satisfying the property of strict comparison of projections: $\tau(p) < \tau(q) \Rightarrow p \lesssim q$ (Murray-von Neumann subequivalence);
- Unital simple AF-algebras, AT-algebras, or AH-algebras (with bounded dimension growth) with real rank zero and with $|\partial_e(T(A))| < \infty$.: The collection of the tracial states T(A) is convex and compact (in the w*-topology), $\partial_e(T(A))$ is the collection of the extreme points of T(A).

All the above results due mainly to Marcoux, 1998-2010 based on earlier work of Fack and Thompsen.

More C*-algebras that are the span of their projections

The following includes all the finite algebras studied by Marcoux:

Theorem (2014)

A unital simple separable finite C^* -algebra A with real rank zero, stable rank one, strict comparison of projections is the linear span of its projections if and only if $|\partial_{e}(T(A))| < \infty$.

The key steps are

- elements in the kernel of all traces are sums of commutators. (this holds also when $|\partial_{e}(T(A))| = \infty$.)
- commutators are linear combinations of projections (by Marcoux this holds under very general conditions)
- every element can be decomposed as a linear combination of projections plus an element in the kernel of all traces (this requires $|\partial_{e}(\mathsf{T}(\mathcal{A}))| < \infty$.)

Infinite sums of projections

C*-algebras that are not the span of their projections

Already mentioned:

- W*-algebras with finite type I direct summand with infinite dimensional center
- C*-algebras as in previous slide but with $|\partial_e(T(A))| = \infty$.

C*-algebras that are not the span of their projections

Already mentioned:

- W*-algebras with finite type I direct summand with infinite dimensional center
- C*-algebras as in previous slide but with $|\partial_e(T(A))| = \infty$.

What else?

• Some nonunital algebras, e.g. \mathcal{K} ($\mathcal{K} = \mathcal{K}(H)$): linear combinations of projections must have finite rank.

Theorem (in press)

Let \mathcal{A} finite as previous slide and with $|\partial_{e}(T(\mathcal{A}))| < \infty$. Then $b \in \mathcal{A} \otimes \mathcal{K}$ is a linear combination of projections in $\mathcal{A} \otimes \mathcal{K}$ if and only if $\tau(R_b) < \infty \ \forall \tau \in T(\mathcal{A}) \ (R_b \ range \ projection \ of \ b.)$

Positive combinations of projections in B(H)

- If $b \in B(H)_+ \setminus K$ then b is PCP (Fillmore, 1969).
- $\mathcal{K}_+ \ni b = \sum_{1}^{n} \lambda_j p_j$ with $\lambda_j > 0 \implies b$ has finite rank. $b \ge 0$ has finite rank $\implies b$ is PCP. (Both are obvious)
- If $b \in B(H)_+ \setminus \mathcal{K}$ then b is PCP. (Fong&Murphy, 1985).

In summary,

Theorem (Fong&Murphy, 1985)

 $b \in B(H)_+$ is PCP if and only if either $b \in B(H)_+ \setminus \mathcal{K}$ or b has finite rank.

Finite sums of projections

- If $b \in B(H)_+ \setminus \mathcal{K}$ then b is PCP (Fillmore, 1969).
- $\mathcal{K}_+ \ni b = \sum_{i=1}^n \lambda_i p_i$ with $\lambda_i > 0 \implies b$ has finite rank. $b \ge 0$ has finite rank $\Rightarrow b$ is PCP. (Both are obvious)
- If $b \in B(H)_+ \setminus \mathcal{K}$ then b is PCP. (Fong&Murphy, 1985).

In summary,

Theorem (Fong&Murph<u>y, 1985)</u>

 $b \in B(H)_+$ is PCP if and only if either $b \in B(H)_+ \setminus \mathcal{K}$ or b has finite rank.

Surprisingly, not much was known for other C*-algebras or even W*-algebras.

Positive combinations of projections in B(H)

- If $b \in B(H)_+ \setminus \mathcal{K}$ then b is PCP (Fillmore, 1969).
- $\mathcal{K}_+ \ni b = \sum_{1}^n \lambda_i p_i$ with $\lambda_i > 0 \implies b$ has finite rank. $b \ge 0$ has finite rank $\Rightarrow b$ is PCP. (Both are obvious)
- If $b \in B(H)_+ \setminus \mathcal{K}$ then b is PCP. (Fong&Murphy, 1985).

In summary,

Theorem (Fong&Murphy, 1985)

 $b \in B(H)_+$ is PCP if and only if either $b \in B(H)_+ \setminus \mathcal{K}$ or b has finite rank.

Surprisingly, not much was known for other C*-algebras or even W*-algebras.

Yet, knowing about PCP is useful, e.g., it is the first step to obtain decomposition into sum of projections.

Positive combination of projections - the "easy" cases

Theorem (with H. Halpern, 2013)

The following positive elements in a W^* -algebra are PCP:

- Simple $(M_n(\mathbb{C}), \text{ type } II_1 \text{ or type } III \sigma\text{-finite factors})$: all.
- Type II_{∞} factors: iff either b is not in the Breuer ideal of compact operators or the range projection R_h is finite.
- "Small center" (finite direct sums of factors): same as above.
- "Large center": obstruction in terms of the central essential spectrum. (E.g., $\bigoplus \frac{1}{n} 1_n \in \bigoplus B(H_n)$ is not PCP.)

Positive combination of projections - the "easy" cases

Theorem (with H. Halpern, 2013)

The following positive elements in a W^* -algebra are PCP:

- Simple $(M_n(\mathbb{C})$, type II_1 or type III σ -finite factors): all.
- Type II_{∞} factors: iff either b is not in the Breuer ideal of compact operators or the range projection R_b is finite.
- "Small center" (finite direct sums of factors): same as above.
- "Large center": obstruction in terms of the central essential spectrum. (E.g., $\bigoplus \frac{1}{n} 1_n \in \bigoplus B(H_n)$ is not PCP.)

Theorem (2011)

Let A be a purely infinite simple σ -unital C^* -algebra. Then every positive element of A and of the multiplier algebra $\mathcal{M}(A)$ is a PCP.

Positive combination of projections - the "easy" cases

Theorem (with H. Halpern, 2013)

The following positive elements in a W^* -algebra are PCP:

- Simple $(M_n(\mathbb{C})$, type II_1 or type III σ -finite factors): all.
- Type II_{∞} factors: iff either b is not in the Breuer ideal of compact operators or the range projection R_b is finite.
- "Small center" (finite direct sums of factors): same as above.
- "Large center": obstruction in terms of the central essential spectrum. (E.g., $\bigoplus \frac{1}{n} 1_n \in \bigoplus B(H_n)$ is not PCP.)

Theorem (2011)

Let A be a purely infinite simple σ -unital C^* -algebra. Then every positive element of A and of the multiplier algebra $\mathcal{M}(A)$ is a PCP.

More on multiplier algebras

By Marcoux, $\mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ is the span of its projections. But more:

Theorem (in press)

Let A be unital simple separable C^* -algebra with real rank zero, stable rank one, strict comparison of projections and with $\partial_{e}(\mathsf{T}(\mathcal{A}))$ finite.

- If $P \in \mathcal{M}(A \otimes \mathcal{K})$ is a projection and $B \in P\mathcal{M}(A \otimes \mathcal{K})P$, then B is a linear combination of projections in $PM(A \otimes K)P$.
- If $\mathcal{M}(A \otimes \mathcal{K})$ has real rank zero, then $B \in \mathcal{M}(A \otimes \mathcal{K})_+$ is a *PCP* if and only if and only if $\tau(R_B) < \infty$ for every $\tau \in \mathsf{T}(\mathcal{A})$ for which $B \in I_{\tau} := \overline{\operatorname{span}}\{X \in \mathcal{M}(\mathcal{A} \otimes \mathcal{K})_{+} \mid \tau(X) < \infty\}.$

More on multiplier algebras

By Marcoux, $\mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ is the span of its projections. But more:

Theorem (in press)

Let A be unital simple separable C^* -algebra with real rank zero, stable rank one, strict comparison of projections and with $\partial_{e}(\mathsf{T}(\mathcal{A}))$ finite.

- If $P \in \mathcal{M}(A \otimes \mathcal{K})$ is a projection and $B \in P\mathcal{M}(A \otimes \mathcal{K})P$, then B is a linear combination of projections in $PM(A \otimes K)P$.
- If $\mathcal{M}(A \otimes \mathcal{K})$ has real rank zero, then $B \in \mathcal{M}(A \otimes \mathcal{K})_+$ is a *PCP* if and only if and only if $\tau(R_B) < \infty$ for every $\tau \in \mathsf{T}(\mathcal{A})$ for which $B \in I_{\tau} := \overline{span}\{X \in \mathcal{M}(A \otimes \mathcal{K})_{+} \mid \tau(X) < \infty\}.$

Real rank zero needed to use Brown's interpolation theorem. We recently removed the condition that $\mathcal{M}(\mathcal{A} \otimes \mathcal{K})$ has real rank zero by proving that $\mathcal{M}(A \otimes \mathcal{K})$ has strict comparison of positive elements.

Infinite sums of projections in B(H)

Theorem (Choi & Wu, 1994-2014)

If $b \in B(H)_+$ and $||b||_{ess} > 1$ then b is a sum of finitely many projections.

Theorem (Dykema, Larson & all, 2004)

If $b \in B(H)_+$ and $||b||_{ess} > 1$ then b is a sum of infinitely many rank-one projections.

Infinite sums of projections in B(H)

Theorem (Choi & Wu, 1994-2014)

If $b \in B(H)_+$ and $||b||_{ess} > 1$ then b is a sum of finitely many projections.

Theorem (Dykema, Larson & all, 2004)

If $b \in B(H)_+$ and $||b||_{ess} > 1$ then b is a sum of infinitely many rank-one projections.

Theorem (2009)

Let $b \in B(H)_+$, then b is a sum of projections iff either $\operatorname{Tr}\left((b-R_b)_+\right)=\infty$ or $\operatorname{Tr}((b-R_b)_+) - \operatorname{Tr}((b-R_b)_-) \in \mathbb{N} \cup \{0\}.$

Theorem (Choi & Wu, 1994-2014)

Infinite sums of projections in B(H)

If $b \in B(H)_+$ and $||b||_{ess} > 1$ then b is a sum of finitely many projections.

Theorem (Dykema, Larson & all, 2004)

If $b \in B(H)_+$ and $||b||_{ess} > 1$ then b is a sum of infinitely many rank-one projections.

Theorem (2009)

Let $b \in B(H)_+$, then b is a sum of projections iff either $\operatorname{Tr}\left((b-R_b)_+\right)=\infty$ or $\operatorname{Tr}((b-R_b)_+) - \operatorname{Tr}((b-R_b)_-) \in \mathbb{N} \cup \{0\}.$

Where does that integer come from?

Let $b = \sum_{1}^{\infty} p_i$ with $p_i = \xi_i \otimes \xi_i$ rank-one projections. $((\xi \otimes \eta)(\zeta) := (\zeta, \eta)\xi$ rank one operator, $\xi, \eta, \zeta \in H$). Let $\{\chi_i\}$ be an o.n. basis,

Positive comb. of proi.

$$heta = \sum_{j}^{\infty} \chi_{j} \otimes \xi_{j}$$
 frame transform, aka analysis operator $heta = wb^{1/2}$ polar decomposition, so $w^{*}w = R_{b}$ $\theta\theta^{*}$ Gram matrix of $\{\xi_{j}\}$

$$E(wbw^*) = E(\theta\theta^*) = 1$$
 and $b = (b - R_b)_+ - (b - R_b)_- + R_b$

```
Let b = \sum_{1}^{\infty} p_i with p_i = \xi_i \otimes \xi_i rank-one projections.
((\xi \otimes \eta)(\zeta) := (\zeta, \eta)\xi rank one operator, \xi, \eta, \zeta \in H).
Let \{\chi_i\} be an o.n. basis,
```

$$\theta = \sum_{j}^{\infty} \chi_{j} \otimes \xi_{j}$$
 frame transform, aka analysis operator $\theta = wb^{1/2}$ polar decomposition, so $w^{*}w = R_{b}$ $\theta\theta^{*}$ Gram matrix of $\{\xi_{i}\}$

$$E(wbw^*) = E(\theta\theta^*) = 1$$
 and $b = (b - R_b)_+ - (b - R_b)_- + R_b$
 $E(w((b - R_b)_+ - (b - R_b)_- + R_b)w^*) = E(1)$ and $wR_bw^* = ww^*$

The integer in the N&S condition

Let
$$b = \sum_{1}^{\infty} p_{j}$$
 with $p_{j} = \xi_{j} \otimes \xi_{j}$ rank-one projections. $((\xi \otimes \eta)(\zeta) := (\zeta, \eta)\xi$ rank one operator, $\xi, \eta, \zeta \in H$). Let $\{\chi_{j}\}$ be an o.n. basis,

$$heta = \sum_{j}^{\infty} \chi_{j} \otimes \xi_{j}$$
 frame transform, aka analysis operator $heta = wb^{1/2}$ polar decomposition, so $w^{*}w = R_{b}$ $\theta\theta^{*}$ Gram matrix of $\{\xi_{j}\}$

$$E(wbw^*) = E(\theta\theta^*) = 1$$
 and $b = (b - R_b)_+ - (b - R_b)_- + R_b$
 $E(w((b - R_b)_+ - (b - R_b)_- + R_b)w^*) = E(1)$ and $wR_bw^* = ww^*$
 $E(w((b - R_b)_+) = E(w((b - R_b)_-) + E(1 - ww^*)$

The integer in the N&S condition

Let
$$b = \sum_{1}^{\infty} p_{j}$$
 with $p_{j} = \xi_{j} \otimes \xi_{j}$ rank-one projections. $((\xi \otimes \eta)(\zeta) := (\zeta, \eta)\xi$ rank one operator, $\xi, \eta, \zeta \in H$). Let $\{\chi_{j}\}$ be an o.n. basis,

$$heta = \sum_{j}^{\infty} \chi_{j} \otimes \xi_{j}$$
 frame transform, aka analysis operator $heta = wb^{1/2}$ polar decomposition, so $w^{*}w = R_{b}$ $\theta\theta^{*}$ Gram matrix of $\{\xi_{j}\}$

$$\begin{split} E(wbw^*) &= E(\theta\theta^*) = 1 \quad \text{and} \quad b = (b - R_b)_+ - (b - R_b)_- + R_b \\ E\Big(w\big((b - R_b)_+ - (b - R_b)_- + R_b\big)w^*\Big) &= E(1) \text{ and } wR_bw^* = ww^* \\ E\big(w\big((b - R_b)_+\big) &= E\big(w\big((b - R_b)_-\big) + E(1 - ww^*) \\ \operatorname{Tr}\big((b - R_b)_+\big) &- \operatorname{Tr}\big((b - R_b)_-\big) &= \operatorname{Tr}(I - ww^*) = -\operatorname{ind}(w), \end{split}$$

The integer in the N&S condition

```
Let b = \sum_{1}^{\infty} p_i with p_i = \xi_i \otimes \xi_i rank-one projections.
((\xi \otimes \eta)(\zeta) := (\zeta, \eta)\xi rank one operator, \xi, \eta, \zeta \in H).
Let \{\chi_i\} be an o.n. basis,
```

$$\theta = \sum_{j}^{\infty} \chi_{j} \otimes \xi_{j}$$
 frame transform, aka analysis operator $\theta = wb^{1/2}$ polar decomposition, so $w^{*}w = R_{b}$ $\theta\theta^{*}$ Gram matrix of $\{\xi_{j}\}$

Now, an easy computation:

$$\begin{split} E(wbw^*) &= E(\theta\theta^*) = 1 \quad \text{and} \quad b = (b-R_b)_+ - (b-R_b)_- + R_b \\ E\Big(w\big((b-R_b)_+ - (b-R_b)_- + R_b\big)w^*\Big) &= E(1) \text{ and } wR_bw^* = ww^* \\ E\big(w\big((b-R_b)_+\big) &= E\big(w\big((b-R_b)_-\big) + E(1-ww^*) \\ \operatorname{Tr}\big((b-R_b)_+\big) - \operatorname{Tr}\big((b-R_b)_-\big) &= \operatorname{Tr}(I-ww^*) = -\operatorname{ind}(w), \\ \text{that is, the integer is the Fredholm index of the partial isometry } w. \end{split}$$

Infinite sums of projections

Infinite sums of projections in W*-factors

Theorem (2009)

Let M be a W^* -factor with separable predual (e.g., H is separable), let $b \in M_+$

- If M is type III, then b is a sum of projections iff either ||b|| > 1 or b is a projection.
- If M is type II and b is a sum of projections, then

$$\tau((b-R_b)_+) \geq \tau((b-R_b)_-).$$

The condition is also sufficient if $\tau((b-R_b)_+)=\infty$ or if b is diagonalizable (i.e., $b=\oplus_1^\infty \gamma_n p_n$.)

Finite sums of projections in W*-algebras: Suff condition

Theorem (2013)

Let M be a σ -finite factor. A sufficient condition for $b \in M_+$ to be a finite sum of projections is

- If M is of type I_{∞} : $||b||_{ess} > 1$ (usual essential norm)
- If M is of type II_{∞} : $||b||_{\text{ess}} > 1$ (essential norm relative to the Breuer ideal)
- If M is of type III: ||b|| > 1 (operator norm)
- If M is of type II_1 and b is diagonalizable: $\tau((b-R_b)_+) > \tau((b-R_b)_-)$.

Finite sums of projections in W*-algebras: Suff condition

Theorem (2013)

Let M be a σ -finite factor. A sufficient condition for $b \in M_+$ to be a finite sum of projections is

- If M is of type I_{∞} : $||b||_{ess} > 1$ (usual essential norm)
- If M is of type II_{∞} : $||b||_{ess} > 1$ (essential norm relative to the Breuer ideal)
- If M is of type III: ||b|| > 1 (operator norm)
- If M is of type II₁ and b is diagonalizable: $\tau((b-R_b)_+) > \tau((b-R_b)_-).$

But what if $||b||_{ess} = 1$?

Finite sums of projections in B(H): Nec condition

Choi&Wu's test case, 2014

$$b = 1 - k_1 \oplus 1 + k_2$$
 with $Tr(k_1) = Tr(k_2) < \infty$
They showed b can fail to be a finite sum of projections.

Why?

Theorem (with Halpern, 2013)

If b is a finite sum of projections, and $(I - b)_+ R_b \in K$ then $(I-b)_{-}R_b \in K$ and $(I-b)_{+}R_b$ and $(I-b)_{-}R_b$ generate the same (non-closed) ideal of B(H). The same holds in W*-algebras.

Question

Is the condition that k_1 and k_2 as above generate the same ideals sufficient for b to be a finite sum of projections?

Finite sums of proj in C*-algebras

Theorem (2012)

Questions

Let A be purely infinite simple C^* -algebra whose K_o is a torsion group (e.g., \mathcal{O}_n with $n < \infty$) and let $b \in \mathcal{A}_+$. Then b is a finite sum of projections if and only if either ||b|| > 1 or b is a projection. Question: Is the torsion of K_o necessary? What about \mathcal{O}_{∞} ?

Theorem (2011&2012)

Let A be a purely infinite simple unital C^* -algebra and $b \in \mathcal{M}(A \otimes \mathcal{K})_+ \setminus A \otimes \mathcal{K}$ not a projection.

Positive comb. of proi.

If b is a finite or infinite sum of proj then $||b||_{ess} \ge 1$ and ||b|| > 1.

If $||b||_{ess} > 1$ then b is a finite sum of projections.

If $||b||_{ess} = 1$ and ||b|| > 1 then b is an infinite sum of projections.

Question: can it be a finite sum of projections?

THANK YOU