Q

Main page Contents Featured content Current events Random article Donate to Wikipedia Wikipedia store

Interaction

Help **About Wikipedia** Community portal Recent changes Contact page

Tools

What links here Related changes Upload file Special pages Permanent link Page information Wikidata item Cite this page

Print/export

한국어

Italiano

中文

Create a book Download as PDF Printable version

Languages العربية Deutsch Español Français

≭A 4 more

Edit links

Confusion matrix

Article

Talk

From Wikipedia, the free encyclopedia

In the field of machine learning and specifically the problem of statistical classification, a confusion matrix, also known as an error matrix,^[4] is a specific table layout that allows visualization of the performance of an algorithm, typically a supervised learning one (in unsupervised learning it is usually called a matching matrix). Each row of the matrix represents the instances in a predicted class while each column represents the instances in an actual class (or vice versa). [2] The name stems from the fact that it makes it easy to see if the system is confusing two classes (i.e. commonly mislabeling one as another).

It is a special kind of contingency table, with two dimensions ("actual" and "predicted"), and identical sets of "classes" in both dimensions (each combination of dimension and class is a variable in the contingency table).

Contents [hide]

- 1 Example
- 2 Table of confusion
- 3 References
- 4 External links

Example [edit]

If a classification system has been trained to distinguish between cats, dogs and rabbits, a confusion matrix will summarize the results of testing the algorithm for further inspection. Assuming a sample of 27 animals — 8 cats, 6 dogs, and 13 rabbits, the resulting confusion matrix could look like the table below:

		A	Actual class		
		Cat	Dog	Rabbit	(
Predicted	Cat	5	2	0	
	Dog	3	3	2	į
Pre	Rabbit	0	1	11	(

In this confusion matrix, of the 8 actual cats, the system predicted that three were dogs, and of the six dogs, it predicted that one was a rabbit and two were cats. We can see from the matrix that the system in question has trouble distinguishing between cats and dogs, but can make the distinction between rabbits and other types of animals pretty well. All correct predictions are located in the diagonal of the table (highlighted in bold), so it is easy to visually inspect the table for prediction errors, as they will be represented by values outside the diagonal.

Table of confusion [edit]

In predictive analytics, a table of confusion (sometimes also called a confusion matrix), is a table with two rows and two columns that reports the number of false positives, false negatives, true positives, and true negatives. This allows more detailed analysis than mere proportion of correct classifications (accuracy). Accuracy is not a reliable metric for the real performance of a classifier, because it will yield misleading results if the data set is unbalanced (that is, when the numbers of observations in different classes vary greatly). For example, if there were 95 cats and only 5 dogs in the data, a particular classifier might classify all the observations as cats. The overall accuracy would be 95%, but in more detail the classifier would have a 100% recognition rate (sensitivity) for the cat class but a 0% recognition rate for the dog class. F1 score is even more unreliable in such cases, and here would yield over 97.4%, whereas informedness removes such bias and yields 0 as the probability of an informed decision for any form of guessing (here always guessing cat).

Assuming the confusion matrix above, its corresponding table of confusion, for the cat class, would be:

		Actual class		
		Cat	Non-cat	
redicted	Cat	5 True Positives	2 False Positives	
Predicte class	Non-cat	3 False Negatives	17 True Negatives	

The final table of confusion would contain the average values for all classes combined.

Let us define an experiment from **P** positive instances and **N** negative instances for some condition. The four outcomes can be formulated in a 2×2 confusion matrix, as follows:

Terminology and derivations from a confusion matrix

condition positive (P)

Edit View history

Read

the number of real positive cases in the data

Search Wikipedia

condition negative (N)

the number of real negative cases in the data

true positive (TP)

egv. with hit

true negative (TN)

eqv. with correct rejection

false positive (FP)

eqv. with false alarm, Type I error

false negative (FN)

eqv. with miss, Type II error

sensitivity, recall, hit rate, or true positive rate (TPR)

$$ext{TPR} = rac{ ext{TP}}{P} = rac{ ext{TP}}{ ext{TP} + ext{FN}} = 1 - ext{FNR}$$

specificity, selectivity or true negative rate (TNR)

$$ext{TNR} = rac{ ext{TN}}{N} = rac{ ext{TN}}{ ext{TN} + ext{FP}} = 1 - ext{FPR}$$

precision or positive predictive value (PPV)

$$PPV = \frac{TP}{TP + FP} = 1 - FDR$$

negative predictive value (NPV)

$$NPV = \frac{TN}{TN + FN} = 1 - FOR$$

miss rate or false negative rate (FNR)

$$ext{FNR} = rac{ ext{FN}}{P} = rac{ ext{FN}}{ ext{FN} + ext{TP}} = 1 - ext{TPR}$$
 fall-out or false positive rate (FPR)

$$ext{FPR} = rac{ ext{FP}}{N} = rac{ ext{FP}}{ ext{FP} + ext{TN}} = 1 - ext{TNR}$$
 false discovery rate (FDR)

$$ext{FDR} = rac{ ext{FP}}{ ext{FP} + ext{TP}} = 1 - ext{PPV}$$
 false omission rate (FOR)

$$ext{FOR} = rac{ ext{FN}}{ ext{FN + TN}} = 1 - ext{NPV}$$

accuracy (ACC)

$$ext{ACC} = rac{ ext{TP} + ext{TN}}{P + N} = rac{ ext{TP} + ext{TN}}{ ext{TP} + ext{TN} + ext{FP} + ext{FN}}$$

F1 score

is the harmonic mean of precision and sensitivity

$$F_1 = 2 \cdot rac{ ext{PPV} \cdot ext{TPR}}{ ext{PPV} + ext{TPR}} = rac{2 ext{TP}}{2 ext{TP} + ext{FP} + ext{FN}}$$

Matthews correlation coefficient (MCC)

$$ext{MCC} = rac{ ext{TP} imes ext{TN} - ext{FP} imes ext{FN}}{\sqrt{(ext{TP} + ext{FP})(ext{TP} + ext{FN})(ext{TN} + ext{FP})(ext{TN} + ext{FN})}}$$

Informedness or Bookmaker Informedness (BM)

$$BM = TPR + TNR - 1$$

Markedness (MK)

$$MK = PPV + NPV - 1$$

Sources: Fawcett (2006), Powers (2011), and Ting (2011) [1] [2] [3]

	True condition				
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\sum \text{Total population}} = \frac{\sum \text{Condition positive}}{\sum \text{Total population}}$	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Predicted condition positive}}$	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative
	True positive rate (TPR), Recall, Sensitivity, probability of detection = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$ False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds F ₁ score =	
			Specificity (SPC), Selectivity, True negative rate $(TNR) = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$	ratio (DOR) = $\frac{LR+}{LR-}$ 2 · $\frac{Precision \cdot Recall}{Precision + Recall}$

References [edit]

- 1. * Fawcett, Tom (2006). "An Introduction to ROC Analysis" 🔊 (PDF). Pattern Recognition Letters. 27 (8): 861–874. doi:10.1016/j.patrec.2005.10.010 🗗.
- 2. ^ a b Powers, David M W (2011). "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation" [1] (PDF). Journal of Machine Learning Technologies. 2 (1): 37–63.
- 3. ^ Ting, Kai Ming (2011). Encyclopedia of machine learning d. Springer. ISBN 978-0-387-30164-8.
- 4. * Stehman, Stephen V. (1997). "Selecting and interpreting measures of thematic classification accuracy". Remote Sensing of Environment. 62 (1): 77–89. doi:10.1016/S0034-4257(97)00083-7 &.

External links [edit]

- Theory about the confusion matrix
- GM-RKB Confusion Matrix concept page函

Categories: Machine learning | Statistical classification

This page was last edited on 4 February 2019, at 11:29 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a nonprofit organization.