Lecture 36 Power Series

Dr. Mahesha Narayana

Intended learning Outcomes

At the end of this lecture, student will be able to:

- Analyze various power series
- Evaluate the radius of convergence of power series

Topics

- Power series
- Convergence of power series
- Divergence of power series
- Region of convergence
- Radius of convergence
- Properties of power series

Power Series

A power series in powers of $z - z_0$ is a series of the form

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n = a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + \dots$$

where z is a complex variable, a_0 , a_1 , a_2 , ... are complex constants (may be real) called the coefficients of the power series and z_0 is a complex constant called the centre of the series

If $z_0 = 0$ then the power series takes the form

$$\sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + a_2 z^2 + \dots$$

Convergence of Power Series

Let

$$p(z) = \sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + a_2 z^2 + \dots$$

be a power series, whose coefficients are complex numbers.

If p(z) converges at $z = z_0$, then p(z) converges absolutely for all z in the circle $|z| < |z_0|$.

Divergence of Power Series

If the power series

$$p(z) = \sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + a_2 z^2 + \dots$$

diverges at $z = z_1$, then p(z) diverges whenever $|z| > |z_1|$.

→ Re

, Im

Region of Convergence

For any power series

$$\sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + a_2 z^2 + \dots$$

there exists a radius R, such that

- 1. the power series converges if |z-c| < R,
- 2. the power series diverges if |z-c| > R.

The region of convergence of a power series has the shape of a disc. The radius is called the radius of convergence.

Special Cases

1. Convergence Everywhere

The power series may converges for all values of z then we say it is convergent everywhere. In this case $R = \infty$. The whole complex plane is the region of convergence.

2. Convergence only at Origin

The power series converges only at the origin z = 0. In this case R = 0. The region of convergence contains a single point.

3. Existence Uncertain Region

Let the power series converges for some complex number z_0 and diverges for some complex number z_1 . Then we must have $|z_0| \le |z_1|$.

If $|z_0| = |z_1|$, then the results follows immediately. If $|z_0| < |z_1|$, there is an annulus of uncertainty $|z_0| < z < |z_1|$.

Pick a complex number z' such that $|z'| = (|z_0| + |z_1|) / 2$. If the power series converges at z', then the area of convergence can be enlarged to |z| < |z'|. If the power series diverges at z', then the area of divergence can be enlarged to |z| > |z'|. In any case, we shrink the annulus of uncertainty.

If we repeat this argument infinitely many times, the difference between $|z_0|$ and $|z_1|$ can be made arbitrarily small. This will give the desired radius of convergence.

4. Convergence on the boundary

On the circle of convergence |z - c| = R, a power series may or may not converges.

For example, All three series $\sum z^n$, $\sum z^n/n$ and $\sum z^n/n^2$ have the same radius of convergence R=1. But

2. $\sum z^n/n$ diverges at z=1 and converges at z=-1,

Radius of Convergence in terms of the Coefficients of the Power Series

Define $L = \lim_{n \to \infty} |a_{n+1}/a_n|$ with respect to a power series $\sum a_n z^n$ then we have the following situations:

- 1. If L = 0 then $R = \infty$, that is, the power series $\sum a_n z^n$ converges for all z.
- 2. If $L \neq 0$ (hence L > 0), then

$$R = 1/L = \lim_{n \to \infty} |a_n / a_{n+1}|$$

3. If *L* does not exist, i.e., $|a_{n+1}/a_n| \to \infty$ then R = 0, which means that the power series $\sum a_n z^n$ converges for all z = 0.

Three properties for power series

- A power series can be differentiated term by term within the region of convergence.
- A power series can be integrated term by term within the region of convergence
- The order of summing the terms in a power series does not matter. We can re-arrange the order of summation freely for power series.

All of these properties are not true for series in general.

Session Summary

A power series is of the form

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots$$

where z_0 is the centre of the series. This series converges for $|z-z_0| < R$ and diverges $|z-z_0| > R$, where R is the **radius of convergence**.

The radius of convergence can be obtained from

$$R = \frac{1}{L} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$