5

5.1

We have $M = (Q, \Sigma, \delta)$ and $\pi = \{H_i\}_{i \in I}$ a admissible partion of Q. If M is complete then for all $i \in I$ and for all $a \in \Sigma$ there exists **exactly one** partion such that for $j \in I$ $H_i\delta_a \subseteq H_j$. By definition of π (Lemma 3.48) there exists **at least one** $j \in I$ with $H_i\delta_a \subseteq H_j$. Notice $H_i\delta_a \neq \emptyset$ because M is complete.

We show that there only exists **exactly one** $j \in I$. Suppose there exists $j, k \in I$ with $H_i \delta_a \subseteq H_{j,k}$ for all $a \in \Sigma$ and $j \neq k$. We choose an arbitray $q \in H_i$ then the following must hold:

$$q\delta_a = q_j \in H_j$$
$$q\delta_a = q_k \in H_k$$

Notice $q_j \neq q_k$ because $H_j \cap H_k = \emptyset$. This is a contraction because $q\delta_a$ is not right unique anymore.

5.2

We do a case distinction.

 $\pi = \{Q\}$: Notice we have only one equivalence class $H_1 = Q$. Hence, all states are related by the admissible relation R. Thus, $(q, q') \in R | \forall q, q' \in Q$ and also $(qs, q's) \in R$ for all $s \in S$ with $qs, q's \neq \emptyset$. Therefore $H_1s = H_1$ for all $s \in S$. $\pi = [q] | \forall q \in Q$:

- cases for only one admissible partition and for |Q| admissible partitions
- one equivalence class $\pi = H_1 \implies |qS| = 1$:
 - all states are related, $(q, q') \in R | \forall q, q' \in Q$
 - $-q \in H_1$ for all $q \in Q$ and therefore $Q = H_1 = [q]_R$
 - $H_1 s = H_1$
 - -qs=q' for all $q,q'\in H_1$

- suppose $q' \notin H_i$, thus $q \notin Q$ and therefore not included in the transformation semigroup
- |Q| equivalence classes $\implies qS = Q$:
 - |Q| equivalence classes implies each state has own equivalence classes, $R = \{(q_i,q_i)|i\in[|Q|\}$
 - -qs=q for all $q\in Q$ and $s\in S$ with $q\in H_i, i\in [|Q|]$
 - suppose qs=q' with $q\neq q'$ then $(q,q')\in R$ which contradicts first statement
- **5.3**
- **5.4**