ĐỀ KHỞI ĐỘNG 05

Câu 1: Trong không gian Oxyz, cho mặt cầu $(S):(x-3)^2+(y+2)^2+(z-1)^2=16$. Tọa độ tâm I và bán kính R của (S) là

A.
$$I(3;-2;1), R=4$$
.

B.
$$I(-3;2;-1), R=4.$$

B.
$$I(-3;2;-1), R=4$$
. **C.** $I(-3;2;-1), R=16$. **D.** $I(3;-2;1), R=16$.

D.
$$I(3:-2:1)$$
, $R=16$.

Câu 2: Tiệm cận ngang của đồ thị hàm số $y = \frac{4-3x}{x-2}$ là đường thẳng có phương trình

A.
$$y = 4$$
.

B.
$$y = -3$$
.

C.
$$x = 2$$
.

D.
$$y = \frac{3}{2}$$
.

Câu 3: Cho hàm số y = f(x) có bảng biến thiên như sau:

x	$-\infty$		-1		2		$+\infty$
f'(x)		+	0	_	0	+	
f(x)		/	√ 3 √			/	_ _ ∞

Giá trị cực đại của hàm số đã cho là

Câu 4: Cho khối chóp có diện tích đáy bằng $6a^2$ và chiều cao bằng 4a. Thể tích của khối chóp đã cho bằng

A.
$$8a^2$$
.

B.
$$12a^3$$
.

C.
$$8a^3$$
.

D.
$$24a^3$$
.

Câu 5: Trên khoảng $(0; +\infty)$, đạo hàm của hàm số $y = x^e$ là :

$$\mathbf{A.} \ \ y' = ex^e$$

B.
$$y' = \frac{1}{e} x^{e-1}$$
 C. $y' = x^{e-1}$

C.
$$y' = x^{e-1}$$

D.
$$y' = ex^{e-1}$$

Câu 6: Một tổ có 12 học sinh. Số cách chọn hai học sinh của tổ đó để trực nhật là

Câu 7: Hàm số nào có đồ thị như đường cong trong hình vẽ dưới đây?

A.
$$y = \frac{x-3}{x-1}$$

B.
$$y = x^4 - 3x^2 + 2$$

C.
$$y = x^3 - 3x + 2$$
 D. $y = -x^3 + 3x^2 + 1$

D.
$$y = -x^3 + 3x^2 + 1$$

Câu 8: Cho khối lập phương có cạnh bằng $\sqrt{2}$. Thể tích của khối lập phương đã cho bằng

A.
$$2\sqrt{2}$$

B.
$$3\sqrt{2}$$

C.
$$\frac{2\sqrt{2}}{3}$$

D.
$$4\sqrt{2}$$

Câu 9: Nếu $\int_{2}^{5} f(x) dx = -2 \text{ và } \int_{2}^{5} g(x) dx = 3 \text{ thì } \int_{2}^{5} [3f(x) + 5g(x)] dx \text{ bằng}$

- **A.** 21.
- **C.** 15.
- **D.** 9.

Câu 10: Tập xác định của hàm số $y = (5-x)^{\frac{2}{3}}$ là

A.
$$(-\infty; 5)$$
. **B.** $(5; +\infty)$. **C.** \mathbb{R} .

B.
$$(5;+\infty)$$
.

C.
$$\mathbb{R}$$
.

D.
$$\mathbb{R}\setminus\{5\}$$

Câu 11: Cho đồ thị hàm số $y = ax^4 + bx^2 + c$ có đồ thị là đường cong trong hình bên.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

B.
$$(-\infty;1)$$
.

$$C. (-1;1).$$

D.
$$(1; +\infty)$$
.

$$\mathbf{C.}(-2;6;-9).$$

D.
$$(-2;4;-1)$$
.

Câu 13: Cho khối chóp có diện tích đáy B = 3 và chiều cao h = 2. Thể tích của khối chóp đã cho bằng.

Câu 14: Tọa độ tâm đối xứng của đồ thị hàm số $y = \frac{3x+2}{2-x}$ là

$$\mathbf{A.}\left(2;\frac{3}{2}\right).$$

B.
$$(-3;2)$$
.

D.
$$(2;-3)$$
.

Câu 15: Tìm tập xác định D của hàm số $y = (x^2 + x - 2)^{\frac{1}{3}}$.

A.
$$D = (-\infty; -2) \cup (1; +\infty)$$
.

B.
$$D = \mathbb{R} \setminus \{-2; 1\}$$
.

$$\mathbf{C}$$
. $D = \mathbb{R}$.

D.
$$D = (-\infty; -2] \cup [1; +\infty)$$
.

Câu 16: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x}{-1} = \frac{y-4}{2} = \frac{z-3}{3}$.

Hỏi trong các vecto sau, đâu **không phải** là vecto chỉ phương của d?

A.
$$\overrightarrow{u_2} = (3; -6; -9)$$
. **B.** $\overrightarrow{u_4} = (-2; 4; 3)$. **C.** $\overrightarrow{u_3} = (1; -2; -3)$. **D.** $\overrightarrow{u_1} = (-1; 2; 3)$.

B.
$$\overrightarrow{u_4} = (-2;4;3)$$

C.
$$\overrightarrow{u_3} = (1; -2; -3)$$

D.
$$\overrightarrow{u_1} = (-1; 2; 3)$$

Câu 17: Cho hàm số $f(x) = \frac{1}{2x+1}$. Khẳng định nào dưới đây đúng?

A.
$$\int f(x)dx = \ln |2x+1| + C$$
.

B.
$$\int f(x)dx = 2\ln|2x+1| + C$$
.

C.
$$\int f(x)dx = \frac{1}{2}\ln(2x+1) + C.$$
 D. $\int f(x)dx = \frac{1}{2}\ln|2x+1| + C.$

D.
$$\int f(x)dx = \frac{1}{2}\ln|2x+1| + C.$$

Câu 18: Cho hàm số y = f(x) có bảng biến thiên như sau:

х	- ∞	-	1	0		1		+ ∞
y'	-	+ () –	0	+	0	_	
у	- ∞ /		1	\ 3,	/	≯ ⁴ \		− ∞

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

A.
$$(-\infty;-1)$$

B.
$$(-1;1)$$

$$C. (-1;0)$$

D.
$$(1; +\infty)$$

Câu 19: Trong không gian Oxyz, góc giữa hai mặt phẳng (P): x+y-z-11=0 và (Q): 2x+2y-2z+7=0bằng

$$A.0^{0}$$
.

$$B.90^{\circ}$$
.

$$\mathbf{C.}180^{\circ}.$$

Câu 20: Trong không gian Oxyz, cho đường thẳng $d: \frac{x-1}{1} = \frac{y}{-2} = \frac{z+1}{2}$. Điểm nào dưới đây thuộc d?

- **A.** E(-1;0;1)

- **B.** N(1;0;-1) **C.** F(1;-2;2) **D.** M(-1;2;-2)

Câu 21: Cho hàm số y = f(x) có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục tung là

B. (0;1)

- **C.** (1;0)
- **D.** (0;-1)

Câu 22: Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thi hàm số đã cho là:

A.2

- **B.**0
- C.(2;-1)
- $\mathbf{D}.(-1;2)$

Câu 23: Cho hàm số y = f(x) có đạo hàm $f'(x) = (x-2)^3 (1-x)$ với mọi $x \in \mathbb{R}$. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

- A.(1;2)

Câu 24: Nếu $\int_{1}^{3} [2f'(x)+1]dx = 8-2f(1)$ thì f(3) bằng

Câu 25: Tiệm cận ngang của đồ thị hàm số $y = \frac{2x+4}{x-1}$ là đường thẳng

- **A.** x = 2
- **B.** x = 1
- **C.** v = 2
- **D.** y = 1

Câu 26: Với mọi a,b thỏa mãn $\log_2(2a) - 3\log_2 b = 2$, khẳng định nào dưới đây đúng?

- **A.** $a = 2b^3$
- **B.** 2a = 3b + 4
- **C.** a = 3b + 2
- **D.** $a = b^3$

Câu 27: Lớp 12A có 45 học sinh, trong đó có 30 học sinh nam và 15 học sinh nữ. Có bao nhiều cách chọn 3 bạn nam và 2 bạn nữ đại diện cho lớp đi nghe tư vấn tuyển sinh đại học?

- **A.** 4165.
- **B.** 425300.
- **C.** 426300.
- **D.** 5165.

Câu 28: Cho cấp số nhân (u_n) với $u_2 = 3$ và $u_5 = -192$. Công bội của cấp số nhân đã cho bằng

- **A.** 4.
- **C.** 16.
- **D.** −12.

Câu 29: Nếu $\int_{2}^{6} f(x) dx = 10$ thì $\int_{1}^{3} f(2x) dx$ bằng

- **A.** 20.
- **C.** 5.

Câu 30: Cho lăng trụ tam giác đều ABC.A'B'C' có độ dài cạnh đáy bằng 4, đô dài canh bên bằng 6 (tham khảo hình vẽ bên). Góc giữa hai mặt phẳng (A'BC) và (ABC) bằng

- **A.** 60°.
- **B.** 90°.
- **C.** 30°.
- **D.** 45°.

Câu 31: Hàm số $F(x) = e^{2024x} + x^{2024}$ là một nguyên hàm của hàm số nào dưới đây?

- **A.** $f_4(x) = 2024(e^{2024x} + x^{2023})$.
- **B.** $f_3(x) = e^{2024x} + 2024$.
- **C.** $f_1(x) = e^{2024x} + 2024x^{2023}$.
- **D.** $f_2(x) = \frac{1}{2024} e^{2024x} + \frac{x^{2025}}{2025} + C.$

Câu 32: Giá trị nhỏ nhất của hàm số $f(x) = \frac{1}{4}x^4 - \frac{9}{2}x^2 + 3$ trên đoạn [-4;2] bằng

- **A.** $-\frac{69}{4}$.
- **C.** −11.

Câu 33: Trong không gian Oxyz, mặt cầu có tâm I(-3;4;-2) và tiếp xúc với mặt phẳng (Oyz) có phương trình là

- **A.** $(x+3)^2 + (y-4)^2 + (z+2)^2 = 9$. **B.** $(x-3)^2 + (y+4)^2 + (z-2)^2 = 3$.

- C. $(x+3)^2 + (y-4)^2 + (z+2)^2 = 3$. D. $(x-3)^2 + (y+4)^2 + (z-2)^2 = 9$.

Câu 34: Với a,b là hai số thực dương lớn hơn 1. Khi đó $\log_{a^2b}(a^4b^3)$ bằng

- **A.** $\frac{4+3\log_a b}{2-\log_a b}$. **B.** $\frac{4+\log_a b}{2+3\log_a b}$. **C.** $\frac{4+3\log_a b}{2+\log_a b}$. **D.** $\frac{4-3\log_a b}{2+\log_a b}$.

Câu 35: Cho hàm số $y = f(x) = ax^3 + bx^2 + cx + d (a \ne 0)$ có đồ thị là đường cong trong hình bên. Tập các giá trị thực của tham số mđể phương trình 3f(x)-m=0 có ít nhất hai nghiệm là

- **A.** (-2;2).
- **B.** [-2;2].
- **C.** [-6;6].
- **D.** (-6;6).

Câu 36: Cho a và b là hai số thực dương lớn hơn 1 và thỏa mãn $\log_a^2(a^3b) + 2\log_a(ab^2) - 35 = 0$.

Tổng các giá trị $\log_a b$ thỏa mãn các điều kiện đã cho bằng

- **A.** -2.
- **B.** 2.

- **C.** 10.
- $\mathbf{D}_{\bullet} 10$.

Câu 37: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a, BC = 4a, SA vuông góc với mặt phẳng đáy và SA = 2a. Gọi M là trung điểm cạnh SC. Khoảng cách từ M đến mặt phẳng (SBD) bằng

- **A.** $\frac{2a}{2}$.
- **B.** 3*a*.
- C. $\frac{3a}{2}$.
- **D.** $\frac{4a}{2}$.

Câu 38: Có 20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên 6 chiếc thẻ. Xác suất để trong 6 chiếc thẻ chọn ra có ít nhất một chiếc thẻ có số chia hết cho 6 bằng

- **A.** $\frac{194}{285}$.
- **B.** $\frac{192}{285}$.
- C. $\frac{195}{285}$.
- **D.** $\frac{186}{285}$

Câu 39: Trong không gian Oxyz, cho ba điểm A(3;2;1), B(1;-4;2) và C(5;-2;3). Mặt phẳng đi qua C, trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình là

A.
$$3x + 2y + z - 14 = 0$$
. **B.** $2x + 6y - z + 5 = 0$. **C.** $2x + y + 2z - 14 = 0$. **D.** $x + 3y - 2z + 7 = 0$.

Câu 40: Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2024; 2024] sao cho ứng với mỗi m, hàm số $y = 2x^2 + (m+1)x + \ln(x+2)$ đồng biến trên khoảng $(-2; +\infty)$?

Câu 41: Cho (H) là hình phẳng được giới hạn bởi parabol $y = x^2 - 3x$ và đường thẳng y = x (tham khảo hình vẽ bên). Thể tích khối tròn xoay được tạo bởi khi quay (H) quanh trục hoành là $\frac{a\pi}{b}$ với a,b là các số nguyên dương, $\frac{a}{b}$ tối giản. Giá trị của 18a - 300b bằng

B.
$$-2024$$
.

Câu 42: Có bao nhiều số nguyên x thỏa mãn $\log_2 \frac{x^2 - 4}{125} \le \log_5 \frac{x^2 - 4}{9}$?

Câu 43: Trong không gian Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 - 2x - 4z - 7 = 0$, (P) là mặt phẳng thay đổi, chứa $d: \frac{x-1}{1} = \frac{y}{1} = \frac{z+1}{2}$ và cắt mặt cầu (S) theo thiết diện là đường tròn có bán kính r. Gọi r_1 và r_2 lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của r. Khẳng định nào sau đây đúng?

A.
$$\frac{r_1}{r_2} = \frac{2\sqrt{3}}{3}$$
. **B.** $\frac{r_1}{r_2} = \frac{2\sqrt{2}}{3}$. **C.** $\frac{r_1}{r_2} = \frac{\sqrt{2}}{3}$. **D.** $\frac{r_1}{r_2} = \frac{\sqrt{3}}{3}$.

B.
$$\frac{r_1}{r_2} = \frac{2\sqrt{2}}{3}$$

C.
$$\frac{r_1}{r_2} = \frac{\sqrt{2}}{3}$$

D.
$$\frac{r_1}{r_2} = \frac{\sqrt{3}}{3}$$
.

Câu 44: Cho hàm số y = f(x) có đạo hàm $f'(x) = (x-6)(x^2+2x-8), \forall x \in \mathbb{R}$. Có bao nhiều giá trị nguyên dương của tham số m để hàm số $g(x) = f(|x^3 + 3x^2 + 8x + 6| + m)$ có ít nhất 3 điểm cực trị?

A. 6.

B. 5.

C. 7.

D. 4.

Câu 45: Cho khối chóp S.ABCD có đáy ABCD là hình thoi cạnh a, $BCD = 120^{\circ}$, SA = SB = SD. Biết góc giữa hai mặt phẳng (SAB) và (ABCD) bằng 45°, thể tích của khối chóp S.ABCD bằng

A.
$$\frac{\sqrt{3}a^3}{24}$$
.

B.
$$\frac{a^3}{8}$$
.

C.
$$\frac{a^3}{4}$$
.

D.
$$\frac{\sqrt{3}a^3}{8}$$
.

Câu 46: Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Biết rằng $F(x) = x^2 f(x) - x^4 + 2x^2$ là một nguyên hàm của hàm số $(x^2 - 1) f'(x)$ và f(0) = -4. Diện tích hình phẳng giới hạn bởi các đường y = f(x) + 2 và y = f'(x) - 2

B.
$$\frac{4}{3}$$

$$\mathbf{C} \cdot \frac{1}{2}$$

D.
$$\frac{8}{3}$$

Câu 47: Có bao nhiêu giá trị nguyên y sao cho tồn tại số thực x thỏa mãn

$$\log_4\left(\sqrt{x^2 + 3^y} - x\right) \cdot \log_3\left(\sqrt{x^2 + 3^y} + x\right) = y^2 - 7y$$

A. 8

B. 9

C. 11

D. 10

Câu 48: Cho hàm số đa thức y = f(x) có f(0) = -1 và đồ thị hàm số f'(x)

như hình vẽ. Số điểm cực trị của hàm số y = f(|f(x)-3|) là

Câu 49: Trong không gian Oxyz, cho hai điểm A(10;6;-2), B(5;10;-9) và mặt phẳng $(\alpha):2x+2y+z-12=0$. Điểm M di động trên (α) sao cho MA,MB luôn tạo với (α) các góc bằng nhau. Biết rằng M luôn thuộc một đường tròn (ω) cố định. Hoành độ của tâm đường tròn (ω) bằng

B.
$$\frac{9}{2}$$

Câu 50: Cho hàm số $f(x) = x^3 - 3x$. Số hình vuông có bốn đỉnh nằm trên đồ thị hàm số y = f(x) là

A. 1

B. 3

C.2

D. 4

-----HÉT-----

Tài Liệu Ôn Thi Group

BẢNG ĐÁP ÁN

1.A	2.B	3.C	4.C	5.D	6.C	7.C	8.A	9.D	10.A
11.D	12.A	13.C	14.D	15.A	16.B	17.D	18.A	19.A	20.B
21.D	22.C	23.C	24.B	25.C	26.A	27.C	28.B	29.C	30.A
31.A	32.A	33.A	34.C	35.C	36.B	37.A	38.A	39.B	40.D
41.D	42.D	43.A	44.B	45.C	46.D	47.B	48.A	49.C	50.C

TAILE ON THE PARTY OF THE PARTY