1 K-Means and GMM

1.1 MOTIVATION

To perform classification using clustering using K-means and GMM

1.2 EXPERIMENTAL RESULTS

1.2.1 SYNTHETIC DATA

Figure 1: contour plots of the mixtures , k=20 and non diagonal covariance

k values vs accuracy for synthetic data					
K1(for class 1)	K2(for class 2)	Accuracy			
2	2	96.4			
2	10	99.1			
4	4	98.9			
4	10	99.4			
6	6	99.6			
6	10	99.9			
10	6	100			
10	10	100			

Figure 2: k=10 and non diagonal covariance on the left side and diagonal covariance on the right side

Figure 3: roc and det curves for k=10

Figure 4: k=4 and non diagonal covariance on the left side and diagonal covariance on the right side

Figure 5: roc and det curves for k=4

1.2.2 IMAGE DATA

The image is divided into 36 blocks of 23 dimensional vector each and every block is treated independently for training a class (i.e forest or coast etc) . and then for classification we use the joint probability to classify the given image into a class

Figure 6: roc and det curves for image data

1.3 INFERENCES

1) as we increase k value , or the number of iterations we get more classification accuracy

2)For a non diagonal covariance matrix , we get more accuracy than a diagonal matrix

2 DTW

2.1 MOTIVATION

Perform Dynamic time warping on Isolated spoken digit data set and hand written character data set.

2.2 Results

The ROC and DET for DTW when varying k(Top k best distances average is used as score) on spoken digit data set:

Figure 7

Confusion Matrix for all the ks was same:

	1	2	3	4	2	total % correct
1	12.0	0.0	ao	0.0	0.0	100.0
2	0.0	12.0	90	0.0	0.0	100.0
3	0.0	0.0	12.0	0.0	0,0	100.0
4	0.0	0.0	go.	12.0	0.0	100.0
5	10	0.0	0.0	0.0	11.0	яд осососососос
batal % correct	92.3076923076923	100.0	100,0	100.0	100.0	96.33333333333333

Figure 8: Confusion Matrix for DTW on spoken digits

Figure 9

The confusion matrices for $\mathbf{k}=3$ to 15 were all same:

	1	2	3	4	5	total % correct
1	20.0	0.0	0.0	0.0	0.0	100.0
2	0.0	19.0	1.0	0.0	0.0	95.0
3	0.0	1.0	19.0	0.0	0.0	95.0
4	0.0	0.0	0.0	20.0	0.0	100.0
5	0.0	0.0	0.0	0.0	20.0	100.0
total % correct	100.0	95.0	95.0	100.0	100.0	98.0

Figure 10

3 **HMM**

3.1 MOTIVATION

Train Discrete HMM on Isolated spoken digit data set and hand written character data set.

3.2 Results

The best performing model on spoken digits for HMM has symbol count = 20 and number of states = 3. Confusion Matrix of it is:

	1	2	3	4	5	total % correct
1	12.0	0.0	ao	0.0	0.0	100.0
2	0.0	12.0	0.0	0.0	0.0	100.0
3	0.0	0.0	12.0	0.0	0,0	100.0
4	0.0	90	9.0	12.0	0.0	100.0
5	0.0	10	0.0	0.0	11,0	я, осососососос
total % correct	100,0	92.3076923076923	100,0	100.0	100:0	96.3333333333333

Figure 11

The ROC and DET curve for it is:

Figure 12

The best performing model on handwritten digits was when symbols are 30 and k=3 with accuracy of 98. The confusion matrix for it is:

	.1	2	3	4	3	total % correct
1	20.0	0.0	ao	0.0	0.0	100.0
2	0.0	20.0	90	0.0	0.0	100.0
3	0.0	10	19.0	0.0	0,0	95.0
4	0.0	qo.	go.	20.0	0.0	100,0
5	0.0	10	0.0	0.0	19.0	95.0
total % correct	100,0	90.9090909090909	100,0	100.0	100.0	98.0

Figure 13

The ROC and DET curves for various model parameters: $\,$

Figure 14

4 Inferences

- 1)Both DTW and HMM performed well on the data sets with accuracy greater than 96 on all data sets.
- 2)DTW took higher time than HMM.
- 3) Feature Scaling was required for Handwritten Data because the characters were displaced in space.
- 4)The errors performed by DTW in handwritten data were in bha and cha which when manually checked was also difficult to differentiate.
- 5)HMM was highly dependent on seed values for accuracy.
- 6)Based on ROC curves DTW did really good on handwritten character more than spoken digits.