Training a simple Perceptron

Taken from "Fundamentals of Neural Networks" by L. Fausett.

Step 0. Initialize weights and bias.

(For simplicity, set weights and bias to zero.)

Set learning rate α (0 < $\alpha \le 1$).

(For simplicity, α can be set to 1.)

Step 1. While stopping condition is false, do Steps 2-6.

Step 2. For each training pair s:t, do Steps 3-5.

Step 3. Set activations of input units:

$$\chi_i = S_i$$
.

Step 4. Compute response of output unit:

$$y_in = b + \sum_i x_i w_i ;$$

$$y = \begin{cases} 1 & \text{if } y = in \ge 0 \\ -1 & \text{if } y = in < 0 \end{cases}$$

Step 5. Update weights and bias if an error occurred for this pattern.

If
$$y \neq t$$
,
 $w_i(\text{new}) = w_i(\text{old}) + \alpha t x_i$
 $b(\text{new}) = b(\text{old}) + \alpha t$
else
 $w_i(\text{new}) = w_i(\text{old})$
 $b(\text{new}) = b(\text{old})$

Step 6. Test stopping condition:

If no weights changed in Step 2, stop; else, continue.