Introduction to statistical inference 2

Lauri Mehtätalo University of Eastern Finland School of Computing

April 22, 2018

Contents

1	Reca	ap from "Introduction to statistical inference 1"	1
	1.1	Random variable	1
	1.2	Transformations of random variable	2
	1.3	Expected values	3
	1.4	Variance	3
	1.5	Bivariate random variables	3
	1.6	Independence	4
	1.7	Covariance	4
	1.8	Random vectors	5
	1.9	Computing using expected values and variances	7
2	Ran	dom samples	9

IV CONTENTS

Chapter 1

Recap from "Introduction to statistical inference 1"

1.1 Random variable

• Random variable is a function from sample space S of an experiment to sample space of the random variable X, which is set of real numbers.

$$X: \mathcal{S} \to \mathcal{X}$$

- The sample space is a set of all possible values random variable can get.
- \mathcal{X} can be
 - an interval of real axis (continuous random variable).

$$\mathcal{X} = [0, 10), \ \mathcal{X} = [0, 10], \ \mathcal{X} = (0, 10)$$

- An uncountable set of integers (discrete random variable)

$$\mathcal{X} = \{0, 1, 2, \ldots\}$$

- A countable set of integers or real numbers (discrete random variable)

$$\mathcal{X} = \{0, 1\}, \ \mathcal{X} = \{0, 0.5, 1\}, \ \mathcal{X} = \{0, 1, \dots, 10\}$$

• Probabilities associated with each value of X are defined by the cumulative distribution function (cdf for short).

$$F_X(x) = P(X \le x)$$
, where $-\infty < x < \infty$

Note: $F_X(x)$ is a step function if X is discrete.

Note: $F_X(x)$ is a continuous function if X is continuous.

- $F_X(x)$ or F(x) is cdf, if
 - 1) $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$
 - 2) F(x) is non-decreasing
 - 3) F(x) is right-continuous
- Cdf is useful in calculation of any probabilities; for example

$$P(a < X \le b) = F(b) - F(a)$$

Note: Be careful with < and \le when working with discreate random variables.

• The probability density function (pdf for short) is defined for continuous random variable as

$$f_X(x) = F'(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}, -\infty < x < \infty$$

and

$$\int_{-\infty}^{x} f_X(t) \, \mathrm{d}t = F_X(x)$$

• The probability mass function (pmf for short) is defined for discrete random variables as

$$f_X(x) = P(X = x)$$

$$F_X(x) = \sum_{k=1}^{x} f_X(k)$$

1.2 Transformations of random variable

- Consider a monotonic function $g: \mathcal{X} \to \mathcal{Y}$
- Y = g(X) is also a random variable; function g is called an transformation (muunnos).
- If g(x) is a increasing function of x, then

$$F_Y(y) = F_X(g^{-1}(y))$$

• If g(x) is a decreasing function of x, then

$$F_Y(y) = 1 - F_X(g^{-1}(y))$$

 \bullet The pdf of continuous Y is

$$f_Y(y) = F_Y'(y)$$

1.3 Expected values

$$E(X) = \mu_X = \begin{cases} \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x & \text{if } X \text{ is continuous} \\ \sum_{x \in \mathcal{X}} x f(x) & \text{if } X \text{ is discrete} \end{cases}$$

$$E(g(X)) = \begin{cases} \int_{-\infty}^{\infty} g(x) f(x) \, \mathrm{d}x & \text{if } X \text{ is continuous} \\ \sum_{x \in \mathcal{X}} g(x) f(x) & \text{if } X \text{ is discrete} \end{cases}$$

1.4 Variance

$$\begin{split} \sigma_X^2 &= Var(X) &= E(X - \mu_X)^2 \\ &= E(X^2 - 2X\mu_X + \mu_X^2) \\ &= E(X^2) - E(2X\mu_X) + E(\mu_X^2) \\ &= E(X^2) - 2\mu_X \underbrace{E(X)}_{\mu_X} + E(\mu_X^2) \\ &= E(X^2) - \mu_X^2 \\ &= E(X^2) - \mu_X^2 \\ sd(X) &= \sqrt{Var(X)} = \sigma_X \end{split}$$

1.5 Bivariate random variables

• For two discrete random variables, the joint pmf is defined as

$$f_{X,Y}(x,y) = P(X=x,Y=y)$$

• For two continuous random variables, we define the joint pdf $f_{X,Y}(x,y)$ as

$$P((X,Y) \in A) = \iint_A f(x,y) dx dy$$

• The expected value for transformation $g(X,Y): \mathbb{R}^2 \to \mathbb{R}$ (for example, g(X,Y)=XY or $g(X,Y)=\frac{X}{V}$) is

$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

if (X, Y) is continuous, and

$$E(g(X,Y)) = \sum_{x,y \in \mathbb{R}^2} g(x,y) f(x,y)$$

if (X, Y) is discrete.

• The marginal pmf / pdf for X are

$$f_X(x) = \sum_{y \in \mathbb{R}} f_{X,Y}(x,y)$$
 (pmf)
 $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y$ (pdf)

and correspondingly for Y.

• The conditional pmf / pdf are both defined as

$$f(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$
 (for both discrete and continuous random variables) and correspondingly for $x \mid y$.

1.6 Independence

• Random variables are said to be independent $(X \perp\!\!\!\perp Y)$ if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

• For independent random variables, conditional distribution $y \mid x$ is

$$f(y \mid x) = f_y(y)$$

regardless of the value of x.

1.7 Covariance

ullet Covariance measures the linear association between two random variables X and Y

$$\begin{split} cov(X,Y) &= E((X-\mu_X)(Y-\mu_Y)) \\ &= E(XY) - \mu_X \mu_Y \\ cov(X,Y) &= cov(Y,X) \\ corr(X,Y) &= \rho_{XY} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} \qquad \text{where } -1 \leq \rho_{XY} \leq 1 \end{split}$$

Note: cov(X, X) = Var(X)

Note: If $X \perp\!\!\!\perp Y$, then cov(X,Y) = 0, but if cov(X,Y) = 0, it does not mean X and Y are necessarily independent.

5

1.8 Random vectors

• Random vectors generalize the bivariate random variables to a *n*-variate case.

$$m{X} = egin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$
 where $X_i, \ i=1,2,\ldots,n$ are scalar random variables

• If x is a continuous random vector, then

$$P(\boldsymbol{X} \in A) = \int \cdots \int_A f(\boldsymbol{x}) dx_1 \dots dx_n \quad f : \mathbb{R}^2 \to \mathbb{R}$$

where f(x) is a joint pdf.

• If x is a discrete random vector, then

$$P(X \in A) = \sum ... \sum f(x)$$

where f(x) is a joint pmf.

• Let g(x) be a transformation $g: \mathbb{R}^2 \to \mathbb{R}$. Then, the expected value is

$$E(g(\boldsymbol{X})) = \begin{cases} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_n & \text{if } \boldsymbol{X} \text{ is continuous} \\ \sum \dots \sum_{\boldsymbol{X} \in \mathbb{R}^2} g(\boldsymbol{x}) f(\boldsymbol{x}) & \text{if } \boldsymbol{X} \text{ is discrete} \end{cases}$$

• Let us partition the n-variate random vector X as follows:

$$m{X} = egin{pmatrix} m{X}_1 \\ m{X}_2 \end{pmatrix}$$

where X_1 has length k and X_2 has length n-k.

ullet The joint pdf of X can be written as

$$f(\boldsymbol{x}) = f(\boldsymbol{x}_1, \boldsymbol{x}_2)$$

• The marginal density of X_1 is

$$f(m{x}_1) = \int\limits_{\mathbb{R}^{n-k}} f(m{x}_1, m{x}_2) \, \mathrm{d}m{x}_2 \quad ext{if } m{X} ext{ is continuous}$$
 $f(m{x}_1) = \sum\limits_{\mathbb{R}^{n-k}} f(m{x}_1, m{x}_2) \qquad \quad ext{if } m{X} ext{ is discrete}$

where $f(x_1)$ is a k-variate pdf/pmf.

• The conditional pdf/pmf for $X_2 \mid X_1$ is

$$f(\boldsymbol{X}_2 \mid \boldsymbol{X}_1) = \frac{f(\boldsymbol{X}_1, \boldsymbol{X}_2)}{f(\boldsymbol{X}_2)}$$

• Expected value of random vectors is defined as vector

$$E(oldsymbol{x}) = egin{bmatrix} E(X_1) \ E(X_2) \ dots \ E(X_n) \end{bmatrix} = egin{bmatrix} E(X_1) \ E(X_2) \end{bmatrix} = egin{bmatrix} oldsymbol{\mu}_1 \ \mu_2 \end{bmatrix}$$

• The variance of a random vector is $n \times n$ symmetric matrix called variance-covariance matrix.

$$Var(\mathbf{x})_{n \times n} = \begin{bmatrix} Var(X_1) & cov(X_1, X_2) & cov(X_1, X_3) & \dots & cov(X_1, X_n) \\ cov(X_2, X_1) & Var(X_2) & cov(X_2, X_3) & \dots & cov(X_2, X_n) \\ cov(X_3, X_1) & cov(X_3, X_2) & Var(X_3) & \dots & cov(X_3, X_n) \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ cov(X_n, X_1) & cov(X_n, X_2) & cov(X_n, X_3) & \dots & Var(X_n) \end{bmatrix}$$

$$= \begin{bmatrix} Var(\mathbf{x}_1)_{k \times k} & cov(\mathbf{x}_1, \mathbf{x}_2')_{k \times (n-k)} \\ cov(\mathbf{x}_2, \mathbf{x}_1')_{(n-k) \times k} & Var(\mathbf{x}_2)_{(n-k) \times (n-k)} \end{bmatrix}$$

• The correlation matrix is defined as

$$corr(\boldsymbol{x})_{n \times n} = \begin{bmatrix} 1 & corr(X_1, X_2) & corr(X_1, X_3) & \dots & corr(X_1, X_n) \\ corr(X_2, X_1) & 1 & corr(X_2, X_3) & \dots & corr(X_2, X_n) \\ corr(X_3, X_1) & corr(X_3, X_2) & 1 & \dots & corr(X_3, X_n) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ corr(X_n, X_1) & corr(X_n, X_2) & corr(X_n, X_3) & \dots & 1 \end{bmatrix}$$

 \bullet If X has a n-variate normal distribution, then, with

$$E(x) = \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$
 and $Var(x)_{n \times n} = \Sigma = \begin{bmatrix} \Sigma_1 & \Sigma_{12} \\ \Sigma_{21} & \Sigma_2 \end{bmatrix}$

then $X_1 \mid X_2$ has a k-variate normal distribution with

$$E(X_1 \mid X_2) = \mu_1 + \Sigma_{12}\Sigma_2^{-1}(X_2 - \mu_2)$$

$$Var(X_1 \mid X_2) = \Sigma_1 - \Sigma_{12}\Sigma_2^{-1}\Sigma_{21}$$

Note: $Var(\boldsymbol{X}_1 \mid \boldsymbol{X}_2) \leq Var(\boldsymbol{X}_1)$

1.9 Computing using expected values and variances

Let a, b and c be constants, and let X, Y and Z be (scalar) random variables. The following rules hold regardless of the distribution of random variables X, Y and Z.

$$E(c) = c$$

$$E(cX) = cE(X)$$

$$E(X+Y) = E(X) + E(Y)$$

$$E(X+c) = E(X) + c$$

$$E(XY) = E(X)E(Y)$$
 Only if $X \perp \!\!\! \perp Y$.
$$E(g(X)) = g(E(X))$$
 Only in some special cases, like when $g(X)$ is a linear transformation.

$$\begin{split} Var(X+Y) &= Var(X) + Var(Y) + 2cov(X,Y) \\ Var(X-Y) &= Var(X) + Var(Y) - 2cov(X,Y) \\ Var(aX) &= a^2 \cdot Var(X) \\ cov(X,Y+Z) &= cov(X,Y) + cov(X,Z) \\ cov(aX,bY) &= ab \cdot cov(XY) \\ Var(X+a) &= Var(X) \\ cov(X+a,Y+b) &= cov(X,Y) \\ E(X) &= E_Y \left[E_{X|Y}(X\mid Y) \right] \\ Var(X) &= E_Y \left[Var_{X|Y}(X\mid Y) \right] + Var_Y \left[Var_{X|Y}(X\mid Y) \right] \end{split}$$

Let a and b be fixed vectors and X and Y random vectors so that the dimensions in the equations match.

$$\begin{split} E(\boldsymbol{a}'\boldsymbol{X}) &= \boldsymbol{a}'E(\boldsymbol{X}) \\ Var(\boldsymbol{a}'\boldsymbol{X}) &= \boldsymbol{a}'Var(\boldsymbol{X})\boldsymbol{a} \\ cov(\boldsymbol{a}'\boldsymbol{X},\boldsymbol{b}'\boldsymbol{Y}) &= \boldsymbol{a}'cov(\boldsymbol{X},\boldsymbol{Y})\boldsymbol{b} \end{split}$$
 Compare to $Var(aX) = a^2 \cdot Var(X) = a \cdot Var(X) \cdot a$

Note: These equations need to be remembered by hearth!

Chapter 2

Random samples

Definition 2.1. Random variables $X_1, ..., X_n$ are called random sample of size n from population f(x), if $X_1, ..., X_n$ are mutually independent random variables and the marginal pdf/pmf if each X_i is the same function f(x). Alternatively, $X_1, ..., X_n$ are called independent and identically distributed random variables (i.i.d.) with pdf/pmf f(x).

Note: Sample X_1, \ldots, X_n can also be denoted by X, where $X = \begin{bmatrix} X_1 & \ldots & X_n \end{bmatrix}^T$

• If follows from the mutual independence, of X_1, \ldots, X_n that the joint pdf or pmf of X is

$$f(x_1, \dots, x_2) = f(x_1)f(x_2)\dots f(x_n) = \prod_{i=1}^n f(x_i)$$

• All univariate marginal distributions $f(x_i)$ are the same by definition 2.1.

Example 2.1. Let X_1, \ldots, X_n be a random sample from $Exponential(\beta)$ population. X_i specifies the time until failure for n identical cellphones. The exponential pdf is

$$f(x_i) = \frac{1}{\beta} e^{-x_i/\beta}$$

The joint pdf pf the sample is

$$f(x_1, x_2, \dots, x_n \mid \beta) = \prod_{i=1}^n \frac{1}{\beta} e^{-x_i/\beta} = \frac{1}{\beta^n} e^{\frac{1}{\beta} \sum x_i}$$
 Recall: $a^b a^c = a^{b+c}$

What is the probability that all n cellphones last more than 2 years?