Systemy komputerowe w sterowaniu i pomiarach (SKPS) Instrukcja do laboratorium 5 i 6

dr hab. inż. Wojciech Zabołotny, mgr inż. Dawid Seredyński, mgr. inż. Michał Kruszewski Ostatnia aktualizacja: 11.05.2022

Cel laboratorium

Zadanie domowe

Przed laboratorium 5
Przed laboratorium 6

Tematy do wyboru

Ogólna struktura systemu

Praca na zajęciach

Materialy

Cel laboratorium

Na laboratorium 5 rozpoczynamy mały projekt, który jest kontynuowany w ramach pracy domowej oraz na laboratorium 6.

Celem projektu jest realizacja systemu na bazie OpenWRT i Raspberry Pi, w którym występują:

- pomiary odczytów z czujnika
- pomiary czasu
- sterowanie urządzeniem
- przesyłanie danych między RPi i urządzeniami
- przesyłanie danych między RPi i komputerem PC (host)
- wizualizacja danych w czasie rzeczywistym na komputerze PC

Praca ma formę małego projektu, który jest realizowany na laboratorium 5 i 6, oraz w domu.

Laboratorium 5 i 6 jest za 14 punktów, w tym:

- 2 praca domowa przed laboratorium 5
- 4 praca domowa przed laboratorium 6
- 8 praca na zajęciach

Zadanie domowe

Przed laboratorium 5

Wybranie tematu i opracowanie projektu systemu (schemat, opis działania). Opracowanie szkieletu pakietu OpenWRT, zbudowanie go dla qemu i uruchomienie na qemu.

Przed laboratorium 6

Opracowanie interfejsu graficznego działającego na komputerze PC (host), który na bieżąco wizualizuje dane otrzymane z systemu OpenWRT działającego na qemu (należy napisać program dla OpenWRT, generujący syntetyczne dane, działający w qemu).

Tematy do wyboru

Proszę wybrać jeden temat z listy:

- 1. Zdany oscyloskop 4-kanałowy
- 2. Lidar na bazie czujnika odległości ToF i serwomechanizmu
- 3. Termiczny układ naprowadzania rakiety: 2 serwomechanizmy + kamera termowizyjna
- 4. Estymacja położenia rakiety na podstawie akcelerometru i żyroskopu + filtr Kalmana
- 5. Zdalny czujnik (albo efektor), z wykorzystaniem 2 modułów radiowych (podłączone do jednego RPi dwa programy działające na RPi komunikują się ze sobą radiowo, poprzez odpowiednie moduły sprzętowe, przy czym jeden z nich dokonuje także odczytów z jakiegoś czujnika lub steruje jakimś efektorem).

Każdy z powyższych tematów wymaga wizualizacji w czasie rzeczywistym danych sensorycznych, na komputerze PC.

Można ustalić z prowadzącym inny temat, o zakresie zbliżonym do ww. tematów.

Ogólna struktura systemu

Ogólna struktura systemu jest przedstawiona na rysunku poniżej. Należy ją dostosować do konkretnego projektu.

Praca na zajęciach

Praca na zajęciach powinna być skupiona na obsłudze urządzeń zewnętrznych, gdyż są one dostępne tylko w trakcie zajęć. Pozostałe elementy, m.in. szkielet pakietu OpenWRT, program do wizualizacji, powinny być tworzone w ramach pracy domowej.

Materialy

- 1. Slajdy z wykładów
- 2. Instrukcje i dokumentacje z poprzednich laboratoriów
- 3. Opis niektórych dostępnych urządzeń (udostępniony na Moodle)