

SIM808_Hardware Design_V1.02

Document Title	SIM808_Hardware_Design_V1.02
Version	1.02
Date	2015-03-20
Status	Release
Document Control ID	SIM808_Hardware Design

General Notes

SIMCom offers this information as a service to its customers, to support application and engineering efforts that use the products designed by SIMCom. The information provided is based upon requirements specifically provided to SIMCom by the customers. SIMCom has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this product designed by SIMCom within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information which is the property of SIMCom Limited, copying of this document and giving it to others and the using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights reserved in the event of grant of a patent or the registration of a utility model or design. All specification supplied herein are subject to change without notice at any time.

Copyright © Shanghai SIMCom Wireless Solutions Ltd. 2015

Contents

C	ontents		3
V	ersion F	listory	10
1	Intro	duction	11
2	SIMS	08 Overview	11
_	2.1	SIM808 Key Features	
	2.2	Operating Modes	
	2.3	SIM808 Functional Diagram	16
_		SIM808 Functional Diagram	10
3		nge Information	17
	3.1	Pin out Diagram	
	3.2	Pin Description	
	3.3	Package Dimensions	20
4	Appli	cation Interface	22
	4.1	Power Supply	
	4.1.1	Power Supply Pin	23
	4.1.2	Monitoring Power Supply	24
	4.2	Power on/down SIM808	24
	4.2.1	Power on SIM808	24
	4.2.2	Power down SIM808	26
	4.2.3	Reset Function Power Saving Mode	27
	4.3	Power Saving Mode	28
	4.3.1	Functionality Mode	
	4.3.2	Sleep Mode (AT+CSCLK=1)	
	4.3.3	Wake Up SIM808 from Sleep Mode (AT+CSCLK=1)	
	4.4	Charging Interface	30
	4.4.1	Battery Pack Characteristics	
	4.4.2	Recommended Battery Pack	
	4.4.3	Implemented Charging Technique	
	4.4.4	Operating Modes during Charging	
	4.4.5	Charger Requirements	
	(RTC Backup	
	4.6	Serial Port and USB Interface	
	4.6.1	Function of Serial Port	
	4.6.2	Serial Port	
	4.6.3	USB Interface	
	4.6.4	Software Upgrade and Debug	
	4.7	RI Behaviors	
	4.8	Audio Interfaces	
	4.8.1	Speaker Interface Configuration	
	4.8.2	Microphone Interfaces Configuration	
	4.8.3	Audio Electronic Characteristics	
	4.8.4	TDD	
	4.9	SIM Card Interface	42

4.9.1	SIM Card Application	42
4.9.2	2 SIM Card Design Consideration	43
4.9.3	B Design Considerations for SIM Card Holder	43
4.10	PCM Interface	
4.10	.1 PCM Multiplex Function	46
4.10	•	
4.10		
4.10	* *	
4.11	Keypad Interface	
4.12	I2C Bus	
4.13	General Purpose Input/Output (GPIO)	
4.14	ADC	
4.15	PWM	' '
4.16	Network Status Indication	52
4.17	Operating Status Indication	
4.18	RF Synchronization Signal	
4.19	Bluetooth	
4.20	GPS	54
4.20		54
4.20	2.2 GPS Operating Modes	55
4.20		55
4.21	Antenna Interface	55
4.21		55
4.21		50
4.21		57
	3 Layout	57
	3 Layout	59
5.1	Pin Assignment	
5.2	Principle of PCB Layout	
	1 Antenna Interface	
5.2.2		
5.2.3		
5.2.4		
5.2.5		
5.3	Recommended PCB Layout	60
6 Elec	etrical, Reliability and Radio Characteristics	61
6.1	Absolute Maximum Ratings	
6.2	Recommended Operating Conditions	
6.3	Digital Interface Characteristics	
6.4	SIM Card Interface Characteristics	
6.5	SIM VDD Characteristics.	
6.6	VDD EXT Characteristics	
6.7	VRTC Characteristics	
6.8	Current Consumption (VBAT = 4V, GPS engine is powered down)	
6.9	Electro-Static Discharge	
6.10	Radio Characteristics	
6.10		
6.10	•	
6.10	•	
0	r	

7 Ma	anufacturing	67
7.1	Top and Bottom View of SIM808	
7.2	Typical Solder Reflow Profile	67
7.3	The Moisture Sensitivity Level	68
7.4	Baking Requirements	68
Appen	ndix	69
I.	Related Documents	69
II.	Multiplexing Function	70
III.	Terms and Abbreviations	71
	Safety Caution	

Table Index

TABLE 1: SIM808 GSM/GPRS ENGINE KEY FEATURES	11
TABLE 2: GPS ENGINE PERFORMANCE	
TABLE 3: BT ENGINE PERFORMANCE	13
TABLE 4: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTERFACI	Ξ14
TABLE 5: OVERVIEW OF OPERATING MODES	15
TABLE 6: PIN DESCRIPTION	18
TABLE 7: RECOMMENDED ZENER DIODE	22
TABLE 8: ELECTRONIC CHARACTERISTIC OF THE RESET PIN	
TABLE 9: THE CURRENT CONSUMPTION OF FUNCTION MODES (AT+CSCLK=1)	29
TABLE 10: SPECIFICATION OF RECOMMENDED BATTERY PACK	30
TABLE 11: SERIAL PORT AND USB PIN DEFINITION	
TABLE 12: SERIAL PORT CHARACTERISTICS	
TABLE 13: SERIAL PORT CHARACTERISTICS	
TABLE 14: RI BEHAVIORS	
TABLE 15: AUDIO INTERFACE DEFINITION	
TABLE 16: MICROPHONE INPUT CHARACTERISTICS	41
TABLE 17: AUDIO OUTPUT CHARACTERISTICS	
TABLE 18: SIM PIN DEFINITION	
TABLE 19: PIN DESCRIPTION (MOLEX SIM CARD HOLDER)	44
TABLE 20: PIN DESCRIPTION (AMPHENOL SIM CARD HOLDER)	
TABLE 21: PCM PIN DEFINITION	
TABLE 22: PCM PIN SPECIFICATION	46
TABLE 23: PCM MULTIPLEX FUNCTION	46
TABLE 24: PIN DEFINITION OF THE KEYPAD INTERFACE	
TABLE 25: KEYPAD MULTIPLEX FUNCTION	
TABLE 26: PIN DEFINITION OF THE I2C	
TABLE 27: I2C MULTIPLEX FUNCTION	50
TABLE 28: PIN DEFINITION OF THE GPIO	
TABLE 29: PIN DEFINITION OF THE ADC	
TABLE 30: ADC SPECIFICATION	
TABLE 31: PIN DEFINITION OF THE PWM	
TABLE 32: BUZZER OUTPUT CHARACTERISTICS	
TABLE 33: PWM MULTIPLEX FUNCTION	
TABLE 33: PWW MOLHPLEA FUNCTIONTABLE 34: PIN DEFINITION OF THE NETLIGHT	
TABLE 35: STATUS OF THE NETLIGHT PIN	
TABLE 36; PIN DEFINITION OF THE STATUS	
TABLE 37: DEFINITION OF THE STATUSTABLE 37: DEFINITION OF THE RF_SYNC PIN	
TABLE 38: AT COMMANDS FOR GPS FUNCTION	
TABLE 39: ABSOLUTE MAXIMUM RATINGSTABLE 40: RECOMMENDED OPERATING CONDITIONS	
TABLE 41: DIGITAL INTERFACE CHARACTERISTICS	
TABLE 42: SIM CARD INTERFACE CHARACTERISTICS	
TABLE 43: SIM_VDD CHARACTERISTICS	
TABLE 44: VDD_EXT CHARACTERISTICS	
TABLE 45: VRTC CHARACTERISTICS	
TABLE 46: GSM CURRENT CONSUMPTION*	
TABLE 47: THE ESD CHARACTERISTICS (TEMPERATURE: 25°C, HUMIDITY: 45 %) SIM808 Hardware Design V1.02 6	64 2015.04.09

TABLE 48: SIM808 GSM 900 AND GSM 850 CONDUCTED RF OUTPUT POWER	64
TABLE 49: SIM808 DCS 1800 AND PCS 1900 CONDUCTED RF OUTPUT POWER	65
TABLE 50: SIM808 CONDUCTED RF RECEIVE SENSITIVITY	65
TABLE 51: SIM808 OPERATING FREQUENCIES	66
TABLE 52: MOISTURE CLASSIFICATION LEVEL AND FLOOR LIFE	68
TABLE 53: BAKING REQUIREMENTS	68
TABLE 54: RELATED DOCUMENTS	69
TABLE 55: MULTIPLEXING FUNCTION	70
TABLE 56: TERMS AND ABBREVIATIONS	71
TABLE 57: SAFETY CAUTION	73

Figure Index

FIGURE 1: SIM808 FUNCTIONAL DIAGRAM	16
FIGURE 2: SIM808 PIN OUT DIAGRAM (TOP VIEW)	17
FIGURE 3: DIMENSIONS OF SIM808 (UNIT: MM)	
FIGURE 4: RECOMMENDED PCB FOOTPRINT OUTLINE (UNIT: MM)	21
FIGURE 5: REFERENCE CIRCUIT OF THE VBAT INPUT	
FIGURE 6: REFERENCE CIRCUIT OF THE LDO POWER SUPPLY	
FIGURE 7: REFERENCE CIRCUIT OF THE DC-DC POWER SUPPLY	
FIGURE 8: VBAT VOLTAGE DROP DURING TRANSMIT BURST	
FIGURE 9: THE MINIMAL VBAT VOLTAGE REQUIREMENT AT VBAT DROP	
FIGURE 10: POWERED ON/DOWN MODULE USING TRANSISTOR	24
FIGURE 11:POWERED ON/DOWN MODULE USING BUTTON	
FIGURE 12: TIMING OF POWER ON MODULE	
FIGURE 13: TIMING OF POWER ON MODULE	26
FIGURE 14: TIMING OF POWER OFF SIM808 BY PWRKEY	
FIGURE 15: RESET CIRCUIT	28
FIGURE 16: RESET TIMING SEQUENCE	29
FIGURE 17: SIM808 WITH BATTERY CHARGER AND PACK CONNECTION	
FIGURE 18: RTC SUPPLY FROM CAPACITOR	33
FIGURE 19: RTC SUPPLY FROM NON-CHARGEABLE BATTERY	33
FIGURE 20: RTC SUPPLY FROM RECHARGEABLE BATTERY	
FIGURE 21: CONNECTION OF THE SERIAL PORT	
FIGURE 22: LEVEL CONVERTING BY RESISTOR	
FIGURE 23: ISOLATION CIRCUIT BY DIODES	
FIGURE 24: TX LEVEL CONVERTING BY TRANSISTOR	
FIGURE 25: RX LEVEL CONVERTING BY TRANSISTOR	
FIGURE 26: USB REFERENCE CIRCUIT	
FIGURE 27: RI BEHAVIOUR OF VOICE CALLING AS A RECEIVER	
FIGURE 28: RI BEHAVIOUR OF DATA CALLING AS A RECEIVER	
FIGURE 29: RI BEHAVIOUR OF URC OR RECEIVE SMS	
FIGURE 30: RI BEHAVIOUR AS A CALLER	
FIGURE 31: SPEAKER REFERENCE CIRCUIT	
FIGURE 32 : SPEAKER WITH AMPLIFIER REFERENCE CIRCUIT	
FIGURE 32: SFEARER WITH AMFLIFIER REFERENCE CIRCUIT	
FIGURE 34: REFERENCE CIRCUIT OF THE 8-PIN SIM CARD HOLDER	
FIGURE 35: REFERENCE CIRCUIT OF THE 6-PIN SIM CARD HOLDER	
FIGURE 36: MOLEX 91228 SIM CARD HOLDER	
FIGURE 37: AMPHENOL C707 10M006 512 2 SIM CARD HOLDER	
FIGURE 37: AMPHENOL C707 TUMO06 512 2 SIM CARD HOLDERFIGURE 38: PCM REFERENCE CIRCUIT	
FIGURE 39: LCD REFERENCE CIRCUIT	
FIGURE 40: SD REFERENCE CIRCUIT	
FIGURE 41: TRADITIONAL KEYPAD REFERENCE CIRCUIT.	
FIGURE 42: ENHANCE THE ESD PERFORMANCE OF KEYPAD CIRCUIT	
FIGURE 43: GPIO TIMING SEQUENCES	
FIGURE 44: REFERENCE CIRCUIT OF PWM DRIVE BUZZER	
FIGURE 45: REFERENCE CIRCUIT OF NETLIGHT	
FIGURE 46: RF_SYNC SIGNAL DURING TRANSMIT BURST	
FIGURE 47: GSM ANTENNA MATCHING CIRCUIT SIM808 Hardware Design V1 02 8 2015 04 09	

FIGURE 48: GSM SIMPLE ANTENNA MATCHING CIRCUIT	57
FIGURE 49: BLUETOOTH ANTENNA MATCHING CIRCUIT	57
FIGURE 50: GPS PASSIVE ANTENNA MATCHING CIRCUIT	58
FIGURE 51: GPS ACTIVE ANTENNA MATCHING CIRCUIT	58
FIGURE 52: PCB LAYOUT PINOUT EXAMPLE	60
FIGURE 53: TOP AND BOTTOM VIEW OF SIM808	67
FIGURE 54: TYPICAL SOLDER REFLOW PROFILE	67

Version History

Date	Version	Description of change	Author
2014-03-27	1.00	Origin	ShengWu.Sun Xuegang.Wang
2014-09-09	1.01	Normalize the pin name, Add Appendix Multiplexing Function Add BT Performance	Xiujing.xiao Lili.teng
2015-04-09	1.02	Update the GPIO Multiplexing function, Add related information about the Multiplexing of SD card	Xiuyu.zhang Hailin.yang

1 Introduction

This document describes SIM808 hardware interface in great detail. This document can help user to quickly understand SIM808 interface specifications, electrical and mechanical details. With the help of this document and other SIM808 application notes, user guide, users can use SIM808 to design various applications quickly.

2 SIM808 Overview

Designed for global market, SIM808 is integrated with a high performance GSM/GPRS engine, a GPS engine and a BT engine. SIM808 is a quad-band GSM/GPRS module that works on frequencies GSM 850MHz, EGSM 900MHz, DCS 1800MHz and PCS 1900MHz. SIM808 features GPRS multi-slot class 12/ class 10 (optional) and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4. The GPS solution offers best-in-class acquisition and tracing sensitivity, Time-To-First-Fix (TTFF) and accuracy.

With a tiny configuration of 24*24*2.6mm, SIM808 can meet almost all space requirements in users' applications, such as M2M, smart phone, PDA, tracker and other mobile devices.

SIM808 has 68 SMT pads, which provide all hardware interfaces between the module and customers' boards.

- Support 4*4keypads by default
- One full modem serial port(UART interface)
- One USB, which support debug and firmware upgrading.
- Audio channels which include a microphone input and a receiver output.
- One SIM card interface.
- Charging interface.
- Programmable general purpose input and output (GPIO).
- Support Bluetooth function.
- Support GPS function.
- Support two PWMs and two ADCs.
- PCM/SPI interface.

SIM808 is designed with power saving technique so that the current consumption is as low as 1.2mA in sleep mode (with GPS engine powered down).

SIM808 integrates TCP/IP protocol and extended TCP/IP AT commands which are very useful for data transfer applications. For details about TCP/IP applications, please refer to *document* [2].

2.1 SIM808 Key Features

Table 1: SIM808 GSM/GPRS engine key features

Feature	Implementation
Power supply	$3.4V \sim 4.4V$
Power saving	Typical power consumption in sleep mode is 1.07 mA (BS-PA-MFRMS=9)
Charging	Supports charging control for Li-ion battery

Frequency bands	 SIM808 Quad-band: GSM 850, EGSM 900, DCS 1800, PCS 1900. SIM808 can search the 4 frequency bands automatically. The frequency bands also can be set by AT command "AT+CBAND". For details, please refer to document [1]. Compliant to GSM Phase 2/2+ 	
Transmitting power	• Class 4 (2W) at GSM 850 and EGSM 900	
	• Class 1 (1W) at DCS 1800 and PCS 1900	
GPRS connectivity	• GPRS multi-slot class 12 (default)	
	● GPRS multi-slot class 1~12 (optional)	
Temperature range	• Normal operation: $-40^{\circ}\text{C} \sim +85^{\circ}\text{C}$	
remperature range	• Storage temperature $-45^{\circ}\text{C} \sim +90^{\circ}\text{C}$	
	GPRS data downlink transfer: max. 85.6 kbps	
	• GPRS data uplink transfer: max. 85.6 kbps	
	• Coding scheme: CS-1, CS-2, CS-3 and CS-4	
Data GPRS	PAP protocol for PPP connect	
	• Integrate the TCP/IP protocol.	
	Support Packet Broadcast Control Channel (PBCCH)	
	• CSD transmission rates: 2.4,4.8,9.6,14.4 kbps	
CSD	Support CSD transmission	
	**	
USSD	Unstructured Supplementary Services Data (USSD) support	
SMS	• MT, MO, CB, Text and PDU mode	
SIVIS	SMS storage: SIM card	
SIM interface	Support SIM card: 1.8V, 3V	
External antenna	Antenna pad	
	Speech codec modes:	
	• Half Rate (ETS 06.20)	
	• Full Rate (ETS 06.10)	
Audio features	 Enhanced Full Rate (ETS 06.50 / 06.60 / 06.80) 	
	Adaptive multi rate (AMR)	
	Echo Cancellation	
	Noise Suppression	
	Serial port:	
	• Full modem interface with status and control lines, unbalanced,	
	asynchronous.	
	• 1200bps to 460800bps.	
Serial port and	• Can be used for sending AT commands or transmitting data stream.	
USB interface	• Support RTS/CTS hardware handshake and software ON/OFF flow control.	
	 Multiplex ability according to GSM 07.10 Multiplexer Protocol. 	
	• Autobauding supports baud rate from 1200 bps to 115200bps.	
	USB interface:	
	Can be used for debugging and firmware upgrading.	
Phonebook management	Support phonebook types: SM, FD, LD, RC, ON, MC.	
SIM application toolkit	GSM 11.14 Release 99	
Real time clock	Support RTC	
Alarm function	Can be set by AT command	
Physical characteristics	Size: 24*24*2.6mm	
	~	

	Weight: 3.3g
Firmware upgrade	Firmware upgrading by serial port or USB interface(recommend to use USB).

Table 2: GPS engine Performance

Parameter	Description	Performance				
Parameter	Description	Min	Туре	Max	Unit	
Horizontal Position Accuracy ⁽¹⁾	Autonomous		<2.5		m	
Velocity	Without Aid		0.1		m/s	
Accuracy ⁽²⁾	DGPS		0.05		m/s	
Acceleration	Without Aid		0.1		m/s^2	
Accuracy	DGPS		0.05		m/s^2	
Timing Accuracy			10		nS	
Dynamic	Maximum Altitude			18000	m	
Performance	Maximum Velocity			515	m/s	
	Maximum Acceleration			4	G	
Time To First Fix ⁽³⁾	Hot start		1		S	
	Warm start		28		S	
	Cold start		30		S	
Sensitivity	Autonomous acquisition(cold start)		-148		dBm	
	Re-acquisition		-159		dBm	
	Tracking		-165		dBm	
Receiver	Channels		22/66			
	Update rate			5	Hz	
	Tracking L1, CA Code					
	Protocol support NMEA					
Power	Acquisition		42		mA	
consumption ⁽⁴⁾	Continuous tracking		24		mA	

^{(1) 50% 24}hr static, -130dBm

Table 3: BT engine Performance

Parameter	Condition	Performance					
T at afficted	Condition	Min	Type	Max	Unit		
Frequency Range		2402		2480	MHz		
Maximum Transmit Power			7		dBm		
Gain Step			4		dB		
Receiver Sensitivity	DH1 (BER<0.1%)		-91.4		dBm		

^{(2) 50%} at 30m/s

⁽³⁾ GPS signal level: -130dBm

⁽⁴⁾ Single Power supply 3.8V@-130dBm,GSM IDLE

	DH5 (BER<0.1%)	-91.4	dBm
EDR Receiver Sensitivity	2-DH5	-92	dBm
	3-DH5	-88	dBm

Table 4: Coding schemes and maximum net data rates over air interface

Coding scheme	1 timeslot	2 timeslot	4 timeslot	
CS-1	9.05kbps	18.1kbps	36.2kbps	
CS-2	13.4kbps	26.8kbps	53.6kbps	
CS-3	15.6kbps	31.2kbps	62.4kbps	
CS-4	21.4kbps	42.8kbps	85.6kbps	

2.2 Operating Modes

The table below summarizes the various operating modes of SIM808.

Table 5: Overview of operating modes

Mode	Function				
GSM/GPRS SLEEP		Module will automatically go into sleep mode if the conditions of sleep mode are enabling and there is no on air and no hardware interrupt (such as GPIO interrupt or data on serial port). In this case, the current consumption of module will reduce to the minimal level. In sleep mode, the module can still receive paging message and SMS.			
	GSM IDLE	Software is active. Module registered to the GSM network, and the module is ready to communicate.			
Normal operation	GSM TALK	Connection between two subscribers is in progress. In this case, the power consumption depends on network settings such as DTX off/on, FR/EFR/HR, hopping sequences, antenna.			
GPRS STANDBY GPRS DATA		Module is ready for GPRS data transfer, but no data is currently sent or received. In this case, power consumption depends on network settings and GPRS configuration.			
		There is GPRS data transfer (PPP or TCP or UDP) in progress. In this case, power consumption is related with network settings (e.g. power control level); uplink/downlink data rates and GPRS configuration (e.g. used multi-slot settings).			
	Charge	The mode support charge function (Default is not support).			
Power off	Normal power off by sending the AT command "AT+CPOWD=1" or using the PWRKEY. The power management unit shuts down the power supply for the baseband part of the module, and only the power supply for the RTC is remained. Software is not active. The serial port is not accessible. Power supply (connected to VBAT) remains applied.				
Minimum functionality mode	without removi	AT command "AT+CFUN" can be used to set the module to a minimum functionality mode without removing the power supply. In this mode, the RF part of the module will not work or the SIM card will not be accessible, or both RF part and SIM card will be closed, and the serial port is still accessible. The power consumption in this mode is lower than normal			

2.3 SIM808 Functional Diagram

The following figure shows a functional diagram of SIM808:

- PMU
- The GSM baseband engine
- The GPS engine
- The GSM Radio Frequency part
- The antenna interface
- The other interfaces

Figure 1: SIM808 functional diagram

3 Package Information

3.1 Pin out Diagram

Figure 2: SIM808 pin out diagram (Top view)

3.2 Pin Description

Table 6: Pin description

Pin name	Pin number	I/O	Description	Comment	
Power supply					
VBAT	4,5,6	I	SIM808 supplies 3 VBAT pins, and the power range is from 3.4V to 4.4V. Power supply should provide sufficient current so that the module can work normally; the peak current is nearly 2A.	Zener diode is Strongly recommended to anti surge on VBAT.	
VRTC	17	I/O	Power supply for RTC	It is recommended to connect VRTC to a backup battery or a capacitor (e.g. 4.7uF).	
VDD_EXT	7	О	2.8V power output	Keep floating if unused.	
GND	1,2,3,18,28,34 ,36,40,51,52,5 4,64,65,67,68		Ground	Recommend connecting 1,2,3pin to the power GND.	
Power on/off					
PWRKEY	8	I	PWRKEY should be pulled low at least 1 second and then released to power on/off the module.	Internally pulled up to VBAT.	
Audio interface					
MIC1P	19	Ī	Differential audio input		
MIC1N	20	1	Differential audio input	Keep floating if	
SPK1P	21	0	Differential audio output	unused.	
SPK1N	22	O	Differential audio output		
PCM interface					
PCM_OUT	48	O			
PCM_IN	47	I	PCM interface for audio	Keep floating if	
PCM_SYNC	45	O	PCIVI IIIterrace for audio	unused.	
PCM_CLK	46	I			
Keypad interface	e				
KBC3	59	I			
KBC2	60	I			
KBC1	61	I		V (1	
KBC0	62	I	Support 16 buttons (4*4) by default	Keep floating if unused. (COL0 can	
KBR3	55	O	Support to buttons (4.4) by default	not be pulled down).	
KBR2	56	O		-ot of pariod down).	
KBR1	57	O			
KBR0	58	O			
GPIO					

company or SIM Inch			Smart Mac	illile Siliart Decision	
GPIO19	43	I/O	Programmable general purpose input and		
GPIO17	44	I/O	output.		
Serial port		_			
DTR	9	I	Data terminal ready		
RI	10	О	Ring indicator		
DCD	11	О	Data carrier detect		
CTS	12	О	Clear to send	Keep floating if	
RTS	13	I	Request to send	unused.	
TXD	14	O	Transmit data		
RXD	15	I	Receive data		
USB interface					
VCHG	25	I		T	
USB_DP	26	I/O	Debug and firmware upgrading	Keep floating if unused.	
USB_DN	27	I/O		unuscu.	
ADC					
ADC0	23	T	101:4	Keep floating if	
ADC1	24	I	10 bit general analog to digital converter	unused.	
PWM		_			
PWM1	42	O	Pulse-width modulation, multiplex with GPIO2.	Keep floating if	
PWM2	41	O	Pulse-width modulation, multiplex with GPIO3.	unused.	
I2C					
SDA	38	I/O	I2C serial bus data	Internal pulled up to	
SCL	39	O	I2C serial bus clock	$2.8V$ via $4.7K\Omega$	
SIM interface					
SIM_VDD	29	О	Voltage supply for SIM card. Support 1.8V or 3V for SIM card	All signals of SIM interface should be	
SIM_DATA	30	I/O	SIM data input/output	protected against ESD	
SIM_CLK	31	O	SIM clock	with a TVS diode	
SIM_RST	32	O	SIM reset	array.	
SIM_DET	33	I	SIM card detection		
Antenna					
GSM_ANT	66	I/O	Connect GSM antenna	Impendence must be controlled to 50Ω .	
BT_ANT	53	I/O	Connect Bluetooth antenna	Impendence must be controlled to 50Ω .	
GPS_ANT	35	I	Connect GPS antenna	Impendence must be controlled to 50Ω .	
RF synchroniza	tion				
RF_SYNC	63	О	RF burst synchronous signal	Do not pull up	
Other signal					
RESET	16	I	Reset input(Active low)		
1PPS	37	I	Time Mark outputs timing pulse related to receiver time	If unused, keep open.	
CIMONO Handwans	D		10	2015 04 00	

NETLIGHT	50	O	Network status	Can not multiplex with
STATUS	49	O	Power on status	GPIO function.

3.3 Package Dimensions

Figure 3: Dimensions of SIM808 (Unit: mm)

Figure 4: Recommended PCB footprint outline (Unit: mm)

4 Application Interface

4.1 Power Supply

The power supply range of SIM808 is from 3.4V to 4.4V.Recommended voltage is 4.0V.The transmitting burst will cause voltage drop and the power supply must be able to provide sufficient current up to 2A. For the VBAT input, a decoupling capacitor (low ESR) such as a 100 µF is strongly recommended.

Increase the 33PF and 10PF capacitors can effectively eliminate the high frequency interference. A 5.1V/500mW Zener diode is strongly recommended, the diode can prevent chip from damaging by the voltage surge. These capacitors and Zener diode should be placed as close as possible to SIM808 VBAT pins.

Figure 5: Reference circuit of the VBAT input

Table 7: Recommended Zener diode

	Vendor	Part number	Power(watts)	Packages
1	On semi	MMSZ5231BT1G	500mW	SOD123
2	Prisemi	PZ3D4V2H	500mW	SOD323
3	Vishay	MMSZ4689-V	500mW	SOD123
4	Crownpo	CDZ55C5V1SM	500mW	0805

The following figure is the reference design of +5V input power supply. The designed output for the power supply is 4.1V, thus a linear regulator can be used.

Figure 6: Reference circuit of the LDO power supply

If there is a high drop-out between the input and the desired output (VBAT), a DC-DC power supply will be preferable because of its better efficiency especially with the 2A peak current in burst mode of the module. The following figure is the reference circuit.

Figure 7: Reference circuit of the DC-DC power supply

The single 3.7V Li-ion cell battery can be connected to SIM808 VBAT pins directly. But the Ni-Cd or Ni-MH battery must be used carefully, since their maximum voltage can rise over the absolute maximum voltage of the module and damage it.

Notes: The module do not support for charging Ni-Cd or Ni-MH battery.

When battery is used, the total impedance between battery and VBAT pins should be less than $150m\Omega$. The following figure shows the VBAT voltage drop at the maximum power transmit phase, and the test condition is as following:

VBAT=4.0V, A VBAT bypass capacitor C_A =100μF tantalum capacitor (ESR=0.7Ω), Another VBAT bypass capacitor C_B =1μF.

Figure 8: VBAT voltage drop during transmit burst

4.1.1 Power Supply Pin

There are 3 VBAT pins (Pin 4, 5, 6) used for power input, and Pin 1,2,3 should be connected to the power GND. VRTC pin is power supply of the RTC circuit in the module. VDD_EXT will output 2.8V when module is powered on and in normal operation.

When designing the power supply in user's application, pay special attention to power losses. Ensure that the input voltage never drop below 3.0V even when current consumption rises to 2A in the transmit burst. If the power voltage drops below 3.0V, the module may be shut down automatically. The PCB traces from the VBAT pins to the power supply must be wide enough (at least 80mil) to decrease voltage drops in the transmit burst. The power IC and the bypass capacitor should be placed to the module as close as possible.

Figure 9: The minimal VBAT voltage requirement at VBAT drop

4.1.2 Monitoring Power Supply

The AT command "AT+CBC" can be used to monitor the VBAT voltage. For detail, please refer to document [1].

4.2 Power on/off SIM808

4.2.1 Power on SIM808

SIM808 will be powered on in the following situations:

- Power on SIM808 using the PWRKEY pin.
- Power on SIM808 using the VCHG pin

4.2.1.1 Power on SIM808 Using the PWRKEY Pin

User can power on SIM808 by pulling down the PWRKEY pin for at least 1 second and release. This pin is already pulled up to VBAT in the module internal, so external pull up is not necessary. Reference circuit is shown as below.

Figure 10: Powered on/down module using transistor

Figure 11:Powered on/down module using button

The power on scenarios is illustrated as following figure.

Figure 12: Timing of power on module

When power on procedure is completed, SIM808 will send following URC to indicate that the module is ready to operate at fixed baud rate.

RDY

This URC does not appear until autobauding function is active.

Note: User can use AT command "AT+IPR=x" to set a fixed baud rate and save the configuration to non-volatile flash memory. After the configuration is saved as fixed baud rate, the Code "RDY" should be received from the serial port every time when SIM808 is powered on. For details, please refer to the chapter "AT+IPR" in document [1].

4.2.1.2 Power on the SIM808 using the VCHG Signal

The switched-off SIM808, of which VBAT pin voltage is greater than 3.4V, will be automatically turned on when a charger is connected to VCHG pin.

Figure 13: Timing of power on module

4.2.2 Power off SIM808

SIM808 will be powered off in the following situations:

- Normal power off procedure: power off SIM808 by the PWRKEY pin.
- Normal power off procedure: power off SIM808 by AT command "AT+CPOWD=1".
- Abnormal power off: over-voltage or under-voltage automatic power off.
- Abnormal power off: over-temperature or under-temperature automatic power off.

Note: The VCHG pin should not be charged, otherwise, the module will not be powered off.

4.2.2.1 Power off SIM808 by the PWRKEY Pin

User can power off SIM808 by pulling down the PWRKEY pin for at least 1 second and release. Please refer to the power on circuit. The power off scenario is illustrated in following figure.

Figure 14: Timing of power off SIM808 by PWRKEY

This procedure makes the module log off from the network and allows the software to enter into a secure state to save data before completely shut down.

Before the completion of the power off procedure, the module will send URC:

NORMAL POWER DOWN

At this moment, AT commands can not be executed any more, and only the RTC is still active. Power off mode can also be indicated by STATUS pin, which is at low level at this time.

4.2.2.2 Power off SIM808 by AT Command

SIM808 can be powered off by AT command "AT+CPOWD=1". This procedure makes the module log off from the network and allows the software to enter into a secure state to save data before completely shut down.

Before the completion of the power off procedure, the module will send URC:

NORMAL POWER DOWN

At this moment, AT commands can not be executed any more, and only the RTC is still active. Power off mode can also be indicated by STATUS pin, which is at low level at this time.

For detail about the AT command "AT+CPOWD", please refer to document [1]

4.2.2.3 Over-voltage or Under-voltage Power off

The module software monitors the VBAT voltage constantly

If the voltage \leq 3.5V, the following URC will be reported:

UNDER-VOLTAGE WARNNING

If the voltage \geq 4.3V, the following URC will be reported:

OVER-VOLTAGE WARNNING

If the voltage < 3.4V, the following URC will be reported, and the module will be automatically powered off.

UNDER-VOLTAGE POWER DOWN

If the voltage > 4.4V, the following URC will be reported, and the module will be automatically powered off.

OVER-VOLTAGE POWER DOWN

At this moment, AT commands can not be executed any more, and only the RTC is still active. Power off mode can also be indicated by STATUS pin, which is at low level at this time.

4.2.2.4 Over-temperature or Under-temperature Power off

The module will constantly monitor the temperature of the module,

If the temperature $\geq +80^{\circ}$ C, the following URC will be reported:

+CMTE: 1

If the temperature \leq -30°C, the following URC will be reported:

+*CMTE:-1*

If the temperature > +85 °C, the following URC will be reported, and the module will be automatically powered down.

+CMTE: 2

If the temperature < -40°C, the following URC will be reported, and the module will be automatically powered down.

+CMTE:-2

At this moment, AT commands can not be executed any more, and only the RTC is still active. Power off mode can also be indicated by STATUS pin, which is at low level at this time.

Note: Temperature detection is disabled by default, the AT command "AT+CMTE" could be used to read the temperature when the module is running. For details please refer to document [1].

4.2.3 Reset Function

SIM808 also has a RESET pin (pin 16) used to reset the module. This function is used as an emergency reset only when AT command "AT+CPOWD=1" and the PWRKEY pin has no effect. User can pull the RESET pin to ground, then the module will reset.

This pin is already isolated in the module, so the external isolation is not necessary. Following figure is internal circuit of the RESET pin.

Figure 15: Reset Circuit

The typical value of RESET pin high level is 1.8V, but with the isolated circuit inside, even for the 3V or 3.3V, customer could use MCU's GPIO to driver this pin directly. Resistor in serial the RESET signal could enhance the ESD performance but the value, which should not be too high, must be less than $100\,\Omega$. Otherwise the level of RESET could be lower than threshold value; RESET hardware parameters can refer to the following table.

Table 8: Electronic characteristic of the RESET Pin

Pin name	Symbol	Min	Тур	Max	Unit
	$ m V_{IH}$	1.2	1.8	3.3	V
RESET	$ m V_{IL}$	-	-	0.6	V
	$T_{ m pull\ down}$	105		-	mS

The reset scenarios are illustrated in the following figure.

Figure 16: Reset timing sequence

4.3 Power Saving Mode

SIM808 has two power saving modes: functionality mode and sleep mode. The AT command "AT+CSCLK=1" can be used to set SIM808 into sleep mode. The AT command "AT+CFUN=<fun>" can be used to set SIM808 into minimum function. When SIM808 is in sleep mode and minimum function mode, the current of module is the lowest.

Note: Customer must shut off the power supply of GPS, and then the AT commands about the power saving mode can be executed correctly, and the current consumption will be lower.

4.3.1 Functionality Mode

There are three functionality modes, which could be set by the AT command "AT+CFUN=<fun>". The command provides the choice of the functionality levels <fun>=0, 1, 4.

- AT+CFUN=0: minimum functionality.
- AT+CFUN=1: full functionality (default).
- AT+CFUN=4: flight mode (disable RF function).

Table 9: The current consumption of function modes (AT+CSCLK=1)

<fun></fun>	Current consumption(mA)
0	0.801
1	1.176 (BS-PA-MFRMS=5)
4	0.925

Minimum functionality mode minimizes the current consumption to the lowest level. If SIM808 is set to minimum functionality by "AT+CFUN=0", the RF function and SIM card function will be disabled. In this case, the serial port is still accessible, but all AT commands correlative with RF function and SIM card function will not be accessible.

For detailed information about the AT Command "AT+CFUN=<fun>", please refer to document [1].

4.3.2 Sleep Mode (AT+CSCLK=1)

When the GPS function is shut off, user can control SIM808 module to enter or exit the sleep mode (AT+CSCLK=1) by DTR signal. When DTR is in high level and without interrupt (on air and hardware such as GPIO interrupt or data in serial port), SIM808 will enter sleep mode automatically. In this mode, SIM808 can still receive paging or SMS from network but the serial port is not accessible.

Note: For SIM808, it requests to set AT command "AT+CSCLK=1" and ensure DTR at high level to enable the sleep mode; the default value is 0, which can not make the module to enter sleep mode. For more details please refer to document [1].

4.3.3 Wake Up SIM808 from Sleep Mode (AT+CSCLK=1)

When SIM808 is in sleep mode (AT+CSCLK=1), the following methods can wake up the module:

- Pull down DTR pin.
 The serial port will be active after DTR pin is pulled to low level for about 50ms.
- Receive a voice or data call from network.
- Receive a SMS from network.
- Receive external interrupt
- Charge VCHG pin

Note: After module has received incoming call or new SMS, serial port can report URC, but the serial port can not input AT command. Only after the DTR pin is pulled to low level for 50ms, the serial port can input AT command.

4.4 Charging Interface

SIM808 has integrated a charging circuit inside the module for Li-ion batteries charging control, which make it very convenient for user's applications that support battery charging. A common connection is shown in the following figure:

Figure 17: SIM808 with battery charger and pack connection

4.4.1 Battery Pack Characteristics

SIM808 has optimized the charging algorithm for the Li-ion battery that meets the characteristics listed below.

• The maximum charging voltage of the Li-ion battery pack is 4.2V and the recommended capacity is

1100mAh. The Battery packs with more than 1100 mAh capacity will take more time for charging.

- The battery pack should have a protection circuit to avoid overcharging, deep discharging and over-current, and the circuit should be insensitive to pulsed current.
- The internal resistance of the battery pack including protection circuit should be as low as possible. Its recommended value does not exceed $150 \text{m}\Omega$.
- The battery pack must be protected from reverse pole connection.

On the SIM808, the build-in circuit of the power management chipset monitors the supply voltage constantly. Once the Under-voltage is detected, the SIM808 will be powered off automatically.

4.4.2 Recommended Battery Pack

Following is the specification of recommended battery pack:

Table 10: Specification of recommended battery pack

Items	Description
Battery type	Li-ion
Manufacturer	Jiade Energy Technology
Normal voltage	3.7V
Capacity	NORMAL 1100mAh
Charge Voltage	4.200±0.050V
Max Charge Current	1.0C
Charge Method	CC / CV (Constant Current / Constant Voltage)
Max Discharge Current	1.0C (for continuous discharging mode)
Discharge Cut-off Voltage	3.0V/ cell
Internal resistance	Initial≤150mΩ

4.4.3 Implemented Charging Technique

SIM808 has battery charging function, but charging function is not supported by default, the customer should input AT command (AT+echarge=1) to enable charging function. There are two pins related to the battery charging function: VCHG, VBAT. The VCHG Pin is driven by an external voltage (AC adapter or USB host). System can use this pin to detect a charger supply and the external voltage provides most charging current through SIM808 module to battery when charging is in fast charge state. VBAT pin gives charging current to external battery from SIM808 module.

It is very simple to implement charging function, user just needs to connect the charger to the VCHG Pin and connect the battery to the VBAT Pin

SIM808 battery charging happens after detecting charger supply and the presence of battery. If there is no charger supply or no battery present, charging function will not be enabled.

Normally, there are three states in the whole charging procedure.

- DDLO charge (Pull-up mode) and UVLO charge (Pre-charge mode);
- Constant current mode (CC);
- Constant voltage mode and over-voltage protection(OV)

DDLO charge and UVLO charge:

DDLO is the state of battery when its voltage is under 2.5V. And UVLO means the battery voltage is less than 3.2V and more than 2.5V. The battery is not suitable for fast charging when its condition is DDLO or UVLO. The SIM808 provides a small constant current to the battery when the battery is between DDLO and UVLO. In DDLO charging state, SIM808 gives out pulse 70mA current to the battery. And in UVLO charging state, SIM808 provides about 200mA (AC<7V) or 70mA (USB mode) current to the battery.

DDLO charging terminates when the battery voltage reaches 2.5V. UVLO charging terminates when the battery voltage is up to 3.2V. Both DDLO and UVLO charge are controlled by the SIM808 hardware only.

Constant current mode (CC):

As the battery voltage is charged up and over 3.4V, the SIM808 will enter CC mode. The typical CC mode charging current with AC adapter is 700mA, and can be set from 70 to 800mA by the software.

Constant voltage mode (CV) and over-voltage protection (OV):

As the battery is charged up and over 4.1V, the SIM808 will enter CV mode. While the batter voltage actually reaches 4.2V, the charging current is gradually decreased step by step until stop charging.

4.4.4 Operating Modes during Charging

The battery can be charged during various operating mode. That means that charging can be in progress while SIM808 is in Normal mode (SLEEP, IDLE, TALK, GPRS IDLE or GPRS DATA mode). In this case the voltage supply should be sufficient. Here Charging in Normal mode is named as Charge mode.

If the charger is connected to the module's VCHG Pin and the valid battery is connected to the VBAT Pin while SIM808 is in POWER DOWN mode, SIM808 will auto power up.

4.4.5 Charger Requirements

Following is the requirements of charger for SIM808:

- Simple transformer power plug
- Output voltage: 5.0V~7V
- Minimum supply current: 1.0 C
- A 10V peak voltage is allowed for maximum 1ms when charging current is switched off.
- A 1.6A peak current is allowed for maximum 1ms when charging current is switched on.

4.5 RTC Backup

Current input for RTC when the VBAT is not supplied for the system. Current output for backup battery when the VBAT power supply is in present and the backup battery is in low voltage state. The RTC power supply of module can be provided by an external capacitor or a battery (non-chargeable or rechargeable) through the VRTC. The following figures show various reference circuits for RTC back up.

• External capacitor for RTC

Figure 18: RTC supply from capacitor

• Non-chargeable battery for RTC

Figure 19: RTC supply from non-chargeable battery

• Rechargeable battery for RTC

Figure 20: RTC supply from rechargeable battery

Coin-type rechargeable battery is recommended.

NOTE: When there are no sources on the VBAT or VCHG pins, which means the module is only supplies by the external VRTC, the system time will not be accurate.

4.6 Serial Port and USB Interface

SIM808 provides one unbalanced asynchronous serial port. The module is designed as a DCE (Data Communication Equipment). The following figure shows the connection between module and client (DTE).

	Name	Pin number	Function	
Serial port	DTR	9	Data terminal ready	
	RI	10	Ring indicator	
	DCD	11	Data carrier detect	
	CTS	12	Clear to send	
	RTS	13	Request to send	
	TXD	14	Transmit data	
	RXD	15	Receive data	
USB interface	VCHG	25	VCHG power supply	
	USB_DP	26	USB data line positive	
	USB_DN	27	USB data line negative	

Table 11: Serial port and USB pin definition

Note: Hardware flow control is disabled by default. The AT command "AT+IFC=2,2" can enable hardware flow control. The AT command "AT+IFC=0,0" can disable hardware flow control. For more details, please refer to document [1].

Table 12: Serial port characteristics

Symbol	Min	Тур	Max	Unit
V_{IL}	-0.3	-	0.7	V
V_{IH}	2.1	-	3.1	V
V_{OL}	-	-	0.4	V
V_{OH}	2.4	2.8	-	V

4.6.1 Function of Serial Port

Serial port:

- Full modem device.
- Contains data lines TXD and RXD, hardware flow control lines RTS and CTS, status lines DTR, DCD and
 RI
- Serial port can be used for CSD FAX, GPRS service and AT communication...
- Serial port supports the following baud rates:
 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400 and 460800bps
- Autobauding only supports the following baud rates:
 1200, 2400, 4800, 9600, 19200, 38400, 57600 and 115200bps
- The default setting is autobauding.

Autobauding allows SIM808 to automatically detect the baud rate of the host device. Pay more attention to the following requirements:

• Synchronization between DTE and DCE:

When DCE powers on with autobauding enabled, firstly, user must send character "AT" or "at" to synchronize the baud rate. It is recommended to send "AT" until DTE receives the "OK" response, which means DTE and DCE are correctly synchronized. For more information please refer to the AT command "AT+IPR".

• Restrictions of autobauding operation:

The DTE serial port must be set at 8 data bits, no parity and 1 stop bit.

The URC such as "RDY", "+CFUN: 1" and "+CPIN: READY" will not be reported.

Note: User can use AT command "AT+IPR=x" to set a fixed baud rate and the setting will be saved to non-volatile flash memory automatically. After the configuration is set as fixed baud rate, the URC such as "RDY", "+CFUN: 1" and "+CPIN: READY" will be reported when SIM808 is powered on.

4.6.2 Serial Port

The following figure shows the connection between module and client (DTE).

Figure 21: Connection of the serial port

If the voltage of UART on the DTE side is 3.3V, the following reference circuits are recommended. And if the voltage is 3.0V, please change the resistors in the following figure from 5.6K to 14K.

Figure 22: Level converting by resistor

If the voltage of UART is 3V or 3.3V, user also can use following reference circuits:

Figure 23: Isolation circuit by diodes

Note: when a diode used to isolate voltage cross, customer should notice that there's voltage drop on the diode. And the signal's voltage level should meet the customer's electrical character. The recommend diode is Schottky diode e.g. RB551V-30TE-17 and SDM20U40.

If the voltage of UART is 5V on customer side, customer can use the following reference circuits:

Figure 24: TX level converting by transistor

Figure 25: RX level converting by transistor

Note: The recommend Transistors' part numbers are 2SC4617TLR and PBHV8115Z.

4.6.3 USB Interface

USB interface supports software debug, firmware upgrade, do not support AT command by default. When power on the module, connect VCHG, USB_DP, USB_DN and GND to PC, then install the driver successfully, a UART port could be recognized by the PC, customer can achieve the software Debug purpose with this UART port.

The following diagram is recommended:

Figure 26: USB reference circuit

The maximum allowable cap load of TVS on USB data line should be less than 5pF (e.g. ESD9L5.0ST5G and ESD9M5.0ST5G). The USB DP and USB DN should be routed in differential traces.

Note: please reserve the USB interface or test point for debug and firmware upgrade.

Table 13: Serial port characteristics

Pin	Min	Тур	Max	Unit
VCHG	4.3	5.0	7.0	V

4.6.4 Software Upgrade and Debug

Both serial port and USB interface can be used for firmware upgrade.

If customer upgrading firmware via the USB port with the download tool, SIM808 power pin VBAT must be supplied first, then connect VCHG, USB_DP, USB_DN and GND to PC. There is no need to operate PWRKEY pin in the whole procedure, when SIM808 detects VCHG and could communicate normally by USB_DP and USB_DN, module will enter USB download mode automatically.

Note: When only USB_DP and USB_DN connected, no VCHG, customer need to pull down COL0 before power on the module, then press the PWRKEY button, the module will enter download mode.

Also only the USB interface can be used to debug by default.

4.7 RI Behaviors

Table 14: RI Behaviors

State	RI response
Standby	High
Voice call	The pin is changed to low. When any of the following events occur, the pin will be changed to high: (1)Establish the call (2)Hang up the call
Data call	The pin is changed to low. When any of the following events occur, the pin will be changed to high: (1)Establish the call (2)Hang up the call
SMS	The pin is changed to low, and kept low for 120ms when a SMS is received. Then it is changed to high.
URC	The pin is changed to low, and kept low for 120ms when some URCs are reported. Then it is changed to high. For more details, please refer to <i>document</i> [4].

The behavior of the RI pin is shown in the following figure when the module is used as a receiver.

Figure 27: RI behaviour of voice calling as a receiver

Figure 28: RI behaviour of data calling as a receiver

Figure 29: RI behaviour of URC or receive SMS

However, if the module is used as caller, the RI will remain high. Please refer to the following figure.

Figure 30: RI behaviour as a caller

4.8 Audio Interfaces

SIM808 provides one analog input, which could be used for electret microphone. The module also provides one analog output, which can directly drive 32Ω receiver.

Table 15: Audio interface definition

	Pin name	Pin number	Function
	MIC1P	19	Main Audio input positive
Audio	MIC1N	20	Main Audio input negative
channel	SPK1P	21	Main Audio output positive
	SPK1N	22	Main Audio output negative

"AT+CMIC" is used to adjust the input gain level of microphone. "AT+SIDET" is used to set the side-tone level. In addition, "AT+CLVL" is used to adjust the output gain level. For more details, please refer to document [1]

In order to improve audio performance, the following reference circuits are recommended. The audio signals have to be layout according to differential signal layout rules as shown in following figures.

4.8.1 Speaker Interface Configuration

Figure 31: Speaker reference circuit

Figure 32: Speaker with amplifier reference circuit

4.8.2 Microphone Interfaces Configuration

Figure 33: Microphone reference circuit

4.8.3 Audio Electronic Characteristics

Table 16: Microphone input characteristics

Parameter		Min	Тур	Max	Unit
Mic biasing voltage			1.9	2.2	V
Working Current				2	mA
Input impedance(differential)		13	20	27	ΚΩ
Idle channel noise				-67	dBm
SINAD	Input level:-40dBm0	29			dB
	Input level:0dBm0		69		dB

Table 17: Audio output characteristics

Parameter	Conditions	Min	Тур	Max	Unit
Normal output	$R_L=32 \Omega$ receiver	-		90	mW

4.8.4 TDD

GSM signal could interfere with audio by coupling or conducting. Coupling noise could be filtered by adding 33 pF and 10pF capacitor over audio lines.33pF capacitor could eliminate noise from GSM900MHz, while 10pF capacitor could eliminate noise from DCS1800MHz frequency. Coupling noise has great relatives with PCB layout. Under some scenarios, TDD noise from GSM 900MHz frequency affects heavily, but some different story is from GSM1800MHz fervency, so customer should develop this filter solution according to field test result.

GSM antenna is the key coupling interfering source of TDD noise. Pay attention to the layout of audio lines which should be far away from RF cable & antenna and VBAT pin. The bypass capacitor for filtering should be placed near module and another group placed near to connector.

Conducting noise is mainly caused by the VBAT drop. If Audio PA was powered by VBAT directly, then there will be some cheep noise from SPK output easily. So, it's better to put big capacitor and ferrite bead near audio PA input.

TDD noise has something to do with GND signal surely. If GND signal is not well treated, lots of high-frequency noise will interfere with MIC and speaker over bypass capacitor. So, take good care of GND during PCB layout.

4.9 SIM Card Interface

The SIM interface complies with the GSM Phase 1 specification and the new GSM Phase 2+ specification for FAST 64 kbps SIM card. Both 1.8V and 3.0V SIM card are supported. The SIM interface is powered from an internal regulator in the module.

4.9.1 SIM Card Application

Table 18: SIM pin definition

Name	Pin	Function
SIM_VDD	29	Voltage supply for SIM card. Support 1.8V or 3V SIM card
SIM_DATA	30	SIM data input/output
SIM_CLK	31	SIM clock
SIM_RST	32	SIM reset
SIM_DET	33	SIM card detection

It is recommended to use an ESD protection component such as ON (http://onsemi.com) SMF12CT1G. Note that the SIM peripheral circuit should be close to the SIM card socket. The reference circuit of the 8-pin SIM card holder is illustrated in the following figure.

Figure 34: Reference circuit of the 8-pin SIM card holder

implement SIM card detection function. AT command "AT+CSDT" is used to enable or disable SIM card detection function. For details of this AT command, please refer to *document* [1].

If the SIM card detection function is not used, user can keep the SIM_DET pin open. The reference circuit of 6-pin SIM card holder is illustrated in the following figure.

Figure 35: Reference circuit of the 6-pin SIM card holder

4.9.2 SIM Card Design Consideration

SIM card circuit is susceptible to interference, causing the SIM card failures or some other situations, so it is strongly recommended to follow these guidelines while designing:

- Make sure that SIM card holder should far away from GSM antenna while in PCB layout.
- SIM traces should keep away from RF lines, VBAT and high-speed signal lines.
- The traces should be as short as possible.
- Keep SIM holder's GND connect to main ground directly.
- Shielding the SIM card signal by ground well.
- Recommended to place a 1uF capacitor on VSIM line and keep close to the holder.
- Add some TVS and the parasitic capacitance should not exceed 50pF.

4.9.3 Design Considerations for SIM Card Holder

For 8 pins SIM card holder, SIMCom recommends to use Molex 91228.User can visit http://www.molex.com for more information about the holder.

Figure 36: Molex 91228 SIM card holder

Table 19: Pin description (Molex SIM card holder)

Pin name	Signal	Description
C1	SIM_VDD	SIM card power supply
C2	SIM_RST	SIM card reset
C3	SIM_CLK	SIM card clock
C4	GND	Connect to GND
C5	GND	Connect to GND
C6	VPP	Not connect
C7	SIM_DATA	SIM card data I/O
C8	SIM_DET	Detect SIM card presence

For 6-pin SIM card holder, SIMCom recommends to use Amphenol C707 10M006 512 2 .User can visit http://www.amphenol.com for more information about the holder.

Figure 37: Amphenol C707 10M006 512 2 SIM card holder

Table 20: Pin description (Amphenol SIM card holder)

Pin name	Signal	Description
C1	SIM_VDD	SIM card power supply
C2	SIM_RST	SIM card reset
C3	SIM_CLK	SIM card clock
C5	GND	Connect to GND
C6	VPP	Not connect
C7	SIM_DATA	SIM card data I/O

4.10 PCM Interface

SIM808 provides PCM interface.

Table 21: PCM pin definition

Pin name	Pin number	Description
PCM_OUT	48	PCM data output
PCM_IN	47	PCM data input
PCM_SYNC	45	PCM synchrony
PCM_CLK	46	PCM clock

SIM808 PCM interface only supports master mode, data length is 16 bits (linear), and PCM clock rate is 256 KHz.

Table 22: PCM pin specification

Feature	Specification
Line Interface Format	Linear(Fixed)
Data length	16bits(Fixed)
PCM Clock/Sync Source	Master Mode(Fixed)
PCM Clock Rate	256KHz(Fixed)
PCM Sync Format	Short sync/Long sync both support
Zero Padding/Sign extension	Default Zero Padding
Data Ordering	MSB/LSB both support

Note: User can use AT command control PCM interface, for details please refer to document [1].

4.10.1 PCM Interface

Refer to the following figure for PCM design:

Figure 38: PCM reference circuit

4.10.2 LCD Display/SPI Interface

SIM808 provides a serial interface. It could be used as SPI interface in the embedded AT application. For details about embedded AT application, please refer to *document* [1].

Refer to the following figure for SPI design:

Figure 39: LCD reference circuit

Note: This function is not supported in the standard firmware. If user wants this function, the firmware must be customized. Please contact SIMCom for more details.

4.11 SD Card Interface

Refer to the following figure for SD card design:

Figure 40: SD reference circuit

When needed, the SD card interface should be multiplexed as follows:

Pin name	Pin number	Mode 0(default)	Mode 1	Mode 2
SIM_DET	33	SIM_DET	SD_DAT3	GPIO36
GPIO17	44	GPIO31	SD_CLK	
GPIO19	43	GPIO32	SD_CMD	
DCD	11	DCD	SD_DAT2	-
NETLIGHT	50	NETLIGHT	SD_DAT1	
SDTATUS	49	STATUS	SD_DAT0	

If the VDD of SD card is 2.8V, user can use VDD_EXT power the SD card directly. If the VDD is 3.3V, customer should design the power circuit external.

Note: This function is not supported in the standard firmware. If user wants this function, the firmware must be customized. Please contact SIMCom for more details.

4.12 Keypad Interface

SIM808 consists of 4 keypad column outputs and 4 keypad row inputs.

Figure 41: Traditional keypad reference circuit

Note:1. According to the traditional 4*4 keypad matrix, when there are unused COLs or ROWs, user can execute AT command to define unused COLs and ROWs as GPIO, for details please see the document [1].

2. Press COL0 and ROW0 or pull down COL0 when power-on(PWRKEY, Charging, RTC alarm), power sequence is USB Download.

Customer should add a resistor to enhance the ESD performance and the value of resistor should be less than $1K\Omega$, the connection diagram is shown in follow figure as an example.

Figure 42: Enhance the ESD performance of keypad circuit

Table 24: Pin definition of the keypad interface

Name	Pin	Function	Default state
KBC0	62		Pull up
KBC1	61	Keypad matrix column	Pull up
KBC2	60	Reypau maurx corumn	Pull up
KBC3	59		Pull up
KBR0	58		Pull down
KBR1	57	Kaynad matrix row	Pull down
KBR2	56	Keypad matrix row	Pull down
KBR3	55		Pull down

Table 25: Keypad multiplex function

Pin name	Pin number	Mode 0(default)	Mode 1
KBC0	62	COL0	GPIO16
KBC1	61	COL1	GPIO14
KBC2	60	COL2	GPIO13
KBC3	59	COL3	GPIO12
KBR0	58	ROW0	GPIO21
KBR1	57	ROW1	GPIO20
KBR2	56	ROW2	GPIO19
KBR3	55	ROW3	GPIO18

Note: Multiplex Function need different software version.

4.13 I2C Bus

The SIM808 provides an I2C interface, it can be driven by either the master or slave and conform to the I2C specification.

Table 26: Pin definition of the I2C

Pin name	Pin number	Description	
SCL	39	I2C serial bus clock	
SDA	38	I2C serial bus data	

Note: I2C has been pulled up internal to 2.8V via 4.7K Ω .

Table 27: I2C multiplex function

Pin name	Pin number	Mode 0(default)	Mode 1
SCL	39	SCL	GPIO43
SDA	38	SDA	GPIO44

Note: Multiplexing function need different software version.

4.14 General Purpose Input/Output (GPIO)

SIM808 provides 2 GPIO pins. The output voltage level of the GPIO can be set by the AT command "AT+ SGPIO". The input voltage level of the GPIO can also be read by the AT command "AT+ SGPIO". For more details, please refer to *document* [1].

Table 28: Pin definition of the GPIO

Pin name	Pin number	Reset state
GPIO17	44	I/PU
GPIO19	43	I/PU

Figure 43: GPIO timing sequences

4.15 ADC

Table 29: Pin definition of the ADC

Pin name	Pin number	Description	
ADC0	23	Analog to Digital Converter	
ADC1	24	Analog to Digital Converter	

SIM808 provides two auxiliary ADC, which can be used to measure the voltage. User can use AT command "AT+CADC" to read the voltage value. For details of this AT command, please refer to *document* [1].

Table 30: ADC specification

Parameter	Min	Тур	Max	Unit
Voltage range	0	-	2.8	V
ADC Resolution	-	10	-	bits
Sampling rate	-	-	1.0833	MHz
ADC precision		10	30	mV

Note: The voltage should be less than 2.8V, or the ADC may be damaged.

4.16 PWM

Table 31: Pin definition of the PWM

Pin name	Pin number Description	
PWM1	42	PWM1, multiplex with GPIO2
PWM2	41	PWM2, multiplex with GPIO3

PWM output frequency varies from 200Hz to 100KHz.Two 7-bit unsigned binary parameters are used for the output period and for the duty cycle. The AT command "AT + SPWM" is used to set the output period and duty cycle of the PWM. For details, please refer to *document* [1].

A typical circuit of the PWM drives buzzer is shown in the following figure:

Figure 44: Reference circuit of PWM drive buzzer

Table 32: Buzzer output characteristics

Parameter	Min	Тур	Max	Unit
Working voltage	2.5	2.8	2.9	V
Working current		4	16	mA

Note: PWM pin must keep low when module in the boot process.

Table 33: PWM multiplex function

Pin name	Pin number	Mode 0(default)	Mode 1
PWM1	42	PWM1	GPIO2
PWM2	41	PWM2	GPIO3

Note: Multiplexing function need different software version.

4.17 Network Status Indication

Table 34: Pin definition of the NETLIGHT

Pin name	Pin number	Description
NETLIGHT	50	Network Status Indication

The NETLIGHT pin can be used to drive a network status indication LED. The status of this pin is listed in following table:

Table 35: Status of the NETLIGHT pin

Status	SIM808 behavior
Off	SIM808 is not running
64ms On/800ms Off	SIM808 not registered the network
64ms On/ 3000ms Off	SIM808 registered to the network
64ms On/ 300ms Off	PPP GPRS communication is established

A reference circuit is recommended in the following figure:

Figure 45: Reference circuit of NETLIGHT

4.18 Operating Status Indication

The STATUS pin indicates the operating status of module. The pin output high when module power on, output is low when module powered off.

Table 36: Pin definition of the STATUS

Pin name	Pin number	Description
STATUS	49	Operating status indication

4.19 RF Synchronization Signal

The synchronization signal serves to indicate growing power consumption during the transmit burst.

Table 37: Definition of the RF_SYNC pin

Pin name	Pin number	Description
RF_SYNC	63	Transmit synchronization signal

Note: Do not pull up RF_SYNC.

The timing of the synchronization signal is shown in the following figure. High level of the RF_SYNC signal indicates increased power consumption during transmission.

Figure 46: RF SYNC signal during transmit burst

4.20 Bluetooth

SIM808 supports Bluetooth function, customer only needs to design the Bluetooth antenna, and then customer can operate Bluetooth conveniently by AT commands.

As module solution, SIM808 provides series of AT interface to operate Bluetooth function, including pairing, bonding, pushing or receiving file. Also including interface for SPP service, which could communicate between Bluetooth device and others via serial port.

When the module as a Bluetooth headset role, we provide a set of AT commands to control the remote smart phones, such as phone calls, turn on or hang up calls and so on.

For the detail commands about Bluetooth please refer to document [9]

The Bluetooth performance please refer to table 3.

The feature of Bluetooth is listed as below:

- Fully compliant with Bluetooth specification 3.0/2.1 + EDR
- Support operation with GPS and GSM/GPRS worldwide radio systems
- Supports class 1 output power
- Up to 4 simultaneous active ACL links
- Support sniff mode
- Support PCM interface and built-in programmable transcoders for liner voice with transmission.

4.21 GPS

4.21.1 GPS Overview

SIM808 provide a high-performance L1 GPS solution for cellular handset applications. The solution offers best-in-class acquisition and tracking sensitivity, Time-To-First-Fix (TTFF) and accuracy. The GPS engine supports both fully-autonomous operations for use in handheld consumer navigation devices and other standalone navigation systems.

The module supports GPS, QZSS, SBAS ranging (WAAS, EGNOS, GAGAN, MSAS). GPS engine Performance, please refer to Table 2.

All the GPS function is controlled by AT command via serial port. And the GPS NMEA information is output

also by serial port. The default baud rate is 115200bps.

The GPS functions of AT commands are listed in the following table.

Table 38: AT Commands for GPS function

Command	Description
AT+CGPSPWR	GPS power control
AT+CGPSRST	GPS mode reset (hot/warm/cold)
AT+CGPSSTATUS	Get current GPS status
AT+CGPSOUT	GPS NMEA data output control
AT+CGPSINF	Get current GPS location info
AT+CGPSIPR	Set GPS NMEA output UART bps

For details of these AT command, please refer to document [8].

4.21.2 GPS Operating Modes

GPS has two operating modes which can be controlled by AT command: Active mode and Power down mode. The following describes how to power on GPS and power down GPS.

4.21.2.1 Power on GPS

The GPS engine is controlled by GSM engine, so when it is necessary to run GPS, the GSM engine must be powered on and not in SLEEP mode.

User can power on GPS engine by sending AT command "AT+CGPSPWR=1".

After powered on, GPS is active as a GPS receiver. The GPS engine will automatically acquire and track GPS satellites.

4.21.2.2 Power down GPS

The GPS engine will be set into power down mode by sending AT command "AT+CGPSPWR=0".

In this mode the internal power supply for GPS will be shutdown, and the current consumption is very low. The last position, current time and ephemeris data will be stored in the GSM host memory.

4.21.3 1PPS Output

The 1PPS pin outputs pulse-per-second (1PPS) pulse signal for precise timing purposes. It will come out after successfully positioning .The 1PPS signal can be provided through designated output pin for many external applications.

4.22 Antenna Interface

There are three antenna ports for SIM808, GSM antenna port named GSM_ANT, Bluetooth antenna port named BT_ANT and GPS antenna port named GPS_ANT. The RF interfaces of all the antenna ports have the impedance of 50Ω .

- The input impendence of the antenna should be 50Ω , and the VSWR should be less than 2.
- The traces from antenna pads to the corresponding antenna connections on the customer's application board should be treated as 50Ω impedance in PCB layout.
- It is recommended that the three antennas are placed far away from each other.
- The isolations of the three antennas should be more than 30dB.

Note: About the RF trace layout please refer to "AN SMT Module RF Reference Design Guide"

4.22.1 GSM Antenna Interface

There is a GSM antenna pad named GSM_ANT to connect an external GSM antenna, the connection of the antenna must be decoupled from DC voltage. This is necessary because the antenna connector is DC coupled to ground via an inductor for ESD protection. The external antenna must be matched properly to achieve the best performance, so the matching circuit is necessary, the connection is recommended as following:

Figure 47: GSM antenna matching circuit

R101, C101 are the matching circuit, the values depend on antenna debug result. Normally R101 is 0Ω , C101 and C102 are not mounted. The RF connector is used for conducted test, and should be placed as close as possible to the module's GSM_ANT pad.

If the space between GSM_ANT pin and antenna is not enough, the matching circuit could be simplified as the following figure:

Figure 48: GSM simple antenna matching circuit

4.22.2 Bluetooth Antenna Interface

The module provides a Bluetooth antenna interface named BT_ANT.

The external antenna must be matched properly to achieve best performance, so the matching circuit is necessary, the connection is recommended as the following figure:

Figure 49: Bluetooth antenna matching circuit

R201, C201, C202 are the matching circuit, the values depend on antenna debug result. Normally R201 is $0\,\Omega$, C201 and C202 are not mounted.

4.22.3 GPS Antenna Interface

The module also provides a GPS antenna interface named GPS_ANT to connect the antenna on the customer's application board. To obtain excellent GPS reception performance, a good antenna will always be required. Proper choice and placement of the antenna will ensure that satellites at all elevations can be seen, and therefore, accurate fix measurements are obtained. There are two normal options: passive antenna and active antenna. GPS antenna choice should be based on the designing product and other conditions. For detailed Antenna designing consideration, please refer to related antenna vendor's design recommendation. The antenna vendor will offer further technical support and tune their antenna characteristic to achieve successful GPS reception

performance.

The external antenna must be matched properly to achieve best performance, so the matching circuit is necessary, the connection is recommended as the following figure:

Figure 50: GPS passive antenna matching circuit

The components R101, C101 and C102 are used for antenna matching, the components' value only can be got after the antenna tuning. Normally R101 is 0Ω , C101 and C102 are not mounted.

Figure 51: GPS active antenna matching circuit

Active antennas have an integrated Low-Noise Amplifier (LNA). VCC_ANT is needed on customer's application board for the active antenna power input, as shown in Figure 54. The inductor L101 is used to prevent the RF signal from leaking into the VCC_ANT pass and route the bias supply to the active antenna, the recommended value of L101 is no less than 27nH. R102 can protect the whole circuit in case the active antenna is shorted to ground.

5 PCB Layout

Usually, most electronic products with good performance are based on good PCB layout. A bad PCB layout will lead to lots of issues, like TDD noise, SIM card can not be detected, etc. The final solution for these problems is to redo PCB layout. Making good PCB layout at beginning will save development schedule and cost as well.

This section as below will give some guidelines on PCB layout.

5.1 Pin Assignment

Before PCB layout, we should learn well about pin assignment in order to get reasonable layout with so many external components. Please refer figure 2 for details.

5.2 Principle of PCB Layout

During layout, attention should be paid to the following interfaces, like Antenna, power supply, SIM card interface, audio interface, and so on.

5.2.1 Antenna Interface

There are some suggestions for components placing and routing of GSM and Bluetooth RF traces:

- The RF connector is used for conducted test, so keep it as close to the GSM ANT pin as possible;
- Antenna matching circuit should be close to the antenna;
- Keep the RF traces as 50Ω ;
- The RF traces should be kept far away from the high speed signals and strong disturbing source.
- If using a RF cable, kept it far away from SIM card, power ICs;

It is recommended that GSM antenna and Bluetooth antenna be placed as far as possible.

5.2.2. Power Supply

Not only VBAT but also return GND are very important in layout. The positive line of VBAT should be as short and wide as possible. The correct flow from source to VBAT pin should go though Zener diode then huge capacitor. Pin 1, Pin 2, and Pin 3 are GND signals, and shortest layout to GND of power source should be designed.

There are 15 GND pads in middle of module, these pads could enhance the GND performances. On the upper layer of these pads, do not trace any signal if possible.

5.2.3 SIM Card Interface

SIM card holder will take large space on board, and there is no anti-EMI component inside. Thus SIM card interface may be interfered, please pay more attention on this interface during layout. Ensure SIM card holder is far way from antenna or RF cable inside. And it is better to put SIM card holder near the module, as nearer as possible. It is better to add ESD component to protect clock, data, reset and SIM_VDD signals which should be far away from power and high-speed-frequency signal.

5.2.4 Audio Interface

In order to avoid TDD noise, current noise, or some other noise, the signal trace of audio, which is recommended to surrounded by ground, should far away from antenna and power. And do not let audio trace and VBAT trace parallel.

5.2.5 Others

It is better to trace signal lines of UART bunched, as well as signals of USB and I2C.

5.3 Recommended PCB Layout

Based on above principles, recommended layout is shown in the following illustration.

Figure 52: PCB layout pinout example

6 Electrical, Reliability and Radio Characteristics

6.1 Absolute Maximum Ratings

The absolute maximum ratings stated in following table are stress ratings under non-operating conditions. Stresses beyond any of these limits will cause permanent damage to SIM808.

Table 39: Absolute maximum ratings

Symbol	Min	Тур	Max	Unit
VBAT	-	-	4.5	V
Peak Current	0	-	2.0	A
VCHG	-	-	12	V
I_I^*	-	-	16	mA
I ₀ *	-	-	16	mA

^{*} These parameters are for digital interface pins, such as keypad, GPIO, I2C, UART, PWM and PCM...

6.2 Recommended Operating Conditions

Table 40: Recommended operating conditions

Symbol	Parameter	Min	Тур	Max	Unit
VBAT	Power supply voltage	3.4	4.0	4.4	V
T_{OPER}	Operating temperature	-40	+25	+85	${\mathbb C}$
T_{STG}	Storage temperature	-45		+90	$^{\circ}$

6.3 Digital Interface Characteristics

Table 41: Digital interface characteristics

Symbol	Parameter	Min	Тур	Max	Unit
V_{IH}	High-level input voltage	2.1	-	3.1	V
V_{IL}	Low-level input voltage	-0.3	-	0.7	V
V_{OH}	High-level output voltage	2.4	2.8	-	V
V_{OL}	Low-level output voltage	-	-	0.4	V

^{*} These parameters are for digital interface pins, such as keypad, GPIO, I²C, UART, LCD, PWMs and DEBUG.

6.4 SIM Card Interface Characteristics

Table 42: SIM card interface characteristics

Symbol	Parameter	Min	Тур	Max	Unit
I_{IH}	High-level input current	-1	-	1	uA
I_{IL}	Low-level input current	-1	-	1	uA
V_{IH}	High-level input voltage	1.4	-	-	V
V IH	mgn-iever input voltage	2.4	-	-	V
V_{IL}	Low-level input voltage	-	-	0.27	V
V IL	Low-level input voltage			0.4	V
V_{OH}	High-level output voltage	1.62	-	-	V
V OH	mgn-iever output voltage	2.7	-	-	V
V_{OL}	Low-level output voltage	-	-	0.36	V
V OL		-	-	0.4	V

6.5 SIM_VDD Characteristics

Table 43: SIM_VDD characteristics

Symbol	Parameter	Min	Тур	Max	Unit
Vo	Output voltage	-	3	-	V
V _O		-	1.80	-	*
I_{O}	Output current	-	-	10	mA

6.6 VDD_EXT Characteristics

Table 44: VDD_EXT characteristics

Symbol	Parameter	Min	Тур	Max	Unit
V_{O}	Output voltage	2.70	2.80	2.95	V
I_{O}	Output current	-	-	50	mA

6.7 VRTC Characteristics

Table 45: VRTC characteristics

Symbol	Parameter	Min	Тур	Max	Unit
V _{RTC-IN}	VRTC input voltage	1.2	2.8	3.0	V
I _{RTC-IN}	VRTC input current	-	3.0	5.0	uA

$V_{RTC ext{-}OUT}$	VRTC output voltage	-	2.8	-	V
$I_{RTC ext{-}OUT}$	VRTC output current	-		2.0	mA

6.8 Current Consumption (VBAT = 4V, GPS engine is powered down)

Table 46: GSM current consumption*

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VBAT	Voltage		3.4	4.0	4.4	V
	Voltage drop	PCL=5			350	mV
	Voltage ripple	PCL=5 @ f<200kHz @ f>200kHz			50 2.0	mV mV
I_{VBAT}	Average current	Power off mode		134	150	uA
		Sleep mode (AT+CFUN=1): (BS-PA-MFRMS=9) (BS-PA-MFRMS=5) (BS-PA-MFRMS=2)		1.073 1.167 1.627		mA mA mA
		Idle mode (AT+CFUN=1): EGSM900		16.80		mA
		Voice call (PCL=5): GSM850 EGSM900 Voice call (PCL=0): DCS1800 PCS1900		216.6 221.7 140.3 155.0		mA mA mA
		Data mode GPRS (1Rx,4Tx): GSM850 EGSM900 DCS1800 PCS1900		445.5 433.7 287.1 296.5		mA mA mA
		Data mode GPRS (3Rx,2Tx): GSM850 EGSM900 DCS1800 PCS1900		332.9 333.5 222.0 229.8		mA mA mA
		Data mode GPRS (4Rx,1Tx): GSM850 EGSM900 DCS1800 PCS1900		222.6 224.7 158.4 165.2		mA mA mA
I_{MAX}	Peak current	During TX burst			2.0	A

^{*} In above table the current consumption value is the typical one of the module tested in laboratory. In the mass production stage, there may be differences among each individual.

6.9 Electro-Static Discharge

SIM808 is an ESD sensitive component, so more attention should be paid to the procedure of handling and packaging. The ESD test results are shown in the following table.

Table 47: The ESD characteristics (Temperature: 25℃, Humidity: 45 %)

Pin	Contact discharge	Air discharge
VBAT	±5KV	±10KV
GND	±5KV	±10KV
RXD, TXD	±2KV	±8KV
Antenna port	±5KV	±10KV
SPK1P/ SPK1N MIC1P/ MIC1N	±4KV	±8KV
PWRKEY	±4KV	±8KV

Note: It is suggested that customers in serials with 100ohm resistances on UART lines for ESD consideration.

6.10 Radio Characteristics

6.10.1 Module RF Output Power

The following table shows the module conducted output power, it is followed by the 3GPP TS 05.05 technical specification requirement.

Table 48: SIM808 GSM 900 and GSM 850 conducted RF output power

GSM 900 and EGSM 850				
PCL	Nominal output power (dBm)	Tolerance (dB) for conditions		
ICL	Nominal output power (ubin)	Normal	Extreme	
0-2	39	±2	±2.5	
3	37	±3	±4	
4	35	±3	±4	
5	33	±3	±4	
6	31	±3	±4	
7	29	±3	±4	
8	27	±3	±4	
9	25	±3	±4	
10	23	±3	±4	
11	21	±3	±4	
12	19	±3	±4	
13	17	±3	±4	
14	15	±3	±4	
15	13	±3	±4	

16	11	±5	±6
17	9	±5	±6
18	7	±5	±6
19-31	5	±5	±6

Table 49: SIM808 DCS 1800 and PCS 1900 conducted RF output power

DCS 1800 and PCS 1900				
PCL	Nominal output power (dBm)	Tolerance (dB) for conditions		
rcl	Nominal output power (ubin)	Normal	Extreme	
29	36	±2	±2.5	
30	34	±3	±4	
31	32	±3	±4	
0	30	±3	±4	
1	28	±3	±4	
2	26	±3	±4	
3	24	±3	±4	
4	22	±3	±4	
5	20	±3	±4	
6	18	±3	±4	
7	16	±3	±4	
8	14	±3	±4	
9	12	±4	±5	
10	10	±4	±5	
11	8	±4	±5	
12	6	±4	±5	
13	4	±4	±5	
14	2	±5	±6	
15-28	0	±5	±6	

For the module's output power, the following should be noted:

At GSM900 and GSM850 band, the module is a class 4 device, so the module's output power should not exceed 33dBm, and at the maximum power level, the output power tolerance should not exceed +/-2dB under normal condition and +/-2.5dB under extreme condition.

At DCS1800 and PCS1900 band, the module is a class 1 device, so the module's output power should not exceed 30dBm, and at the maximum power level, the output power tolerance should not exceed +/-2dB under normal condition and +/-2.5dB under extreme condition.

6.10.2 Module RF Receive Sensitivity

The following table shows the module's conducted receive sensitivity, it is tested under static condition.

Table 50: SIM808 conducted RF receive sensitivity

Frequency	Receive sensitivity (Typical)	Receive sensitivity(Max)
GSM850	-109dBm	-107dBm
EGSM900	-109dBm	-107dBm
DCS1800	-109dBm	-107dBm
PCS1900	-109dBm	-107dBm

6.10.3 Module Operating Frequencies

The following table shows the module's operating frequency range; it is followed by the 3GPP TS 05.05 technical specification requirement.

Table 51: SIM808 operating frequencies

Frequency	Receive	Transmit
GSM850	869 ~ 894MHz	824 ~ 849 MHz
EGSM900	925 ~ 960MHz	880 ~ 915MHz
DCS1800	1805 ~ 1880MHz	$1710 \sim 1785 MHz$
PCS1900	1930 ~ 1990MHz	$1850 \sim 1910 MHz$

7 Manufacturing

7.1 Top and Bottom View of SIM808

Figure 53: Top and Bottom View of SIM808

7.2 Typical Solder Reflow Profile

Figure 54: Typical Solder Reflow Profile

Note: Please refer to 《Module secondary-SMT-UGD》 for more information about the module shipping and manufacturing.

7.3 The Moisture Sensitivity Level

The moisture sensitivity level of SIM808 is 3. The module should be mounted within 168 hours after unpacking in the environmental conditions of temperature <30°C and relative humidity of <60% (RH). It is necessary to bake the module if the above conditions are not met:

Table 52: Moisture classification level and floor life

Level	Floor Life (out of bag) at factory ambient≤30°C /60% RH or as stated
1	Unlimited at ≤30°C /85% RH
2	1 year
2a	4 weeks
3	168 hours
4	72 hours
5	48 hours
5a	24 hours
6	Mandatory bake before use. After bake, it must be reflowed within the time limit specified on the
	label.

NOTES:

- 1. If the vacuum package is not open for 6 months or longer than the packing date, baking is also recommended before re-flow soldering.
- 2. For product handling, storage, processing, IPC / JEDEC J-STD-033 must be followed.

7.4 Baking Requirements

SIM808 modules are vacuum packaged, and guaranteed for 6 months storage without opening or leakage under the following conditions: the environment temperature is lower than 40°C, and the air humidity is less than 90%.

If the condition meets one of the following ones shown below, the modules should be baked sufficiently before re-flow soldering, and the baking condition is shown in below table; otherwise the module will be at the risk of permanent damage during re-flow soldering.

- If the vacuum package is broken or leakage;
- If the vacuum package is opened after 6 months since it's been packed;
- If the vacuum package is opened within 6 months but out of its Floor Life at factory ambient ≤ 30°C /60%RH or as stated.

Table 53: Baking requirements

Baking temperature	Moisture	Time
40°C±5°C	<5%	192 hours
120°C±5°C	<5%	6 hours

Note: Care should be taken if that plastic tray is not heat-resistant, the modules should be taken out for preheating, otherwise the tray may be damaged by high-temperature heating.

Appendix

I. Related Documents

Table 54: Related documents

SN	Document name	Remark
[1]	SIM808 Series AT Command Manual	
[2]	SIM808 Series_TCPIP_Application Note_	TCP/IP Applications User Manual
[3]	SIM808 Series UART Port Application Note	
[4]	AN_Serial Port	AN_Serial Port
[5]	AN_SMT Module_RF_Reference Design_Guide	
[6]	Module secondary-SMT-UGD	Module secondary SMT User Guide
[7]	ITU-T Draft new recommendation V.25ter:	Serial asynchronous automatic dialing and control
[8]	SIM808_GPS_Application Note	
[9]	SIM808_Series_Bluetooth_Appl ication_Note	
[10]	GSM 07.07	Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)
[11]	GSM 07.10	Support GSM 07.10 multiplexing protocol
[12]	GSM 07.05	Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
[13]	GSM 11.14	Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface
[14]	GSM 11.11	Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface
[15]	GSM 03.38	Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information
[16]	GSM 11.10	Digital cellular telecommunications system (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification

II. Multiplexing Function

Table 55: Multiplexing function

Pin name	Reset	Pin number	Mode 0(default)	Mode 1	Mode 2	Mode 3
SIM_DET	I/PD	33	SIM_DET	SD_DAT3	GPIO36	
KBC0	I/PU	62	COL0	GPIO16	-	-
KBC1	I/PU	61	COL1	GPIO14	-	-
KBC2	I/PU	60	COL2	GPIO13	-	-
KBC3	I/PU	59	COL3	GPIO12	-	-
KBR0	I/PD	58	ROW0	GPIO21	-	-
KBR1	I/PD	57	ROW1	GPIO20	-	-
KBR2	I/PD	56	ROW2	GPIO19	-	-
KBR3	I/PD	55	ROW3	GPIO18	-	-
PWM1	I/PD	42	PWM0	GPIO2		-
PWM2	I/PD	41	PWM1	GPIO3		-
PCM_OUT	I/PD	48	PCM_OUT	GPIO28		
PCM_IN	I/PD	47	PCM_IN	GPIO27		
PCM_SYNC	I/PD	45	PCM_SYNC	GPIO29		
PCM_CLK	I/PD	46	PCM_CLK	GPIO26		
GPIO17	I/PD	44	GPIO31	SD_CLK		-
GPIO19	I/PD	43	GPIO32	SD_CMD		-
DTR	I/PD	9	DTR	EINT16		-
RI	I/PD	10	RI			-
DCD	I/PD	11	DCD	SD_DAT2	-	-
CTS	I/PD	12	CTS	GPIO4	-	-
RTS	I/PD	13	RTS	GPIO15	-	-
TXD	I/PD	14	TXD	-	-	-
RXD	I/PD	15	RXD	-	-	-
SCL	I/PD	39	SCL	GPIO43	-	-
SDA	I/PD	38	SDA	GPIO44	-	-
NETLIGHT	I/PD	50	NETLIGHT	SD_DAT1		
SDTATUS	I/PD	49	STATUS	SD_DAT0		

Note:1, Multiplexing function need different software version

III. Terms and Abbreviations

Table 56: Terms and Abbreviations

Abbreviation	Description	
ADC	Analog-to-Digital Converter	
AMR	Adaptive Multi-Rate	
CS	Coding Scheme	
CSD	Circuit Switched Data	
CTS	Clear to Send	
CEP	Circular Error Probable	
DTE	Data Terminal Equipment (typically computer, terminal, printer)	
DTR	Data Terminal Ready	
DTX	Discontinuous Transmission	
EFR	Enhanced Full Rate	
EGSM	Enhanced GSM	
EGNOS	European Geostationary Navigation Overlay Service	
ESD	Electrostatic Discharge	
ETS	European Telecommunication Standard	
FR	Full Rate	
GPRS	General Packet Radio Service	
GSM	Global Standard for Mobile Communications	
GPS	Global Positioning System	
GAGAN	The GPS Aided Geo Augmented Navigation	
HR	Half Rate	
IMEI	International Mobile Equipment Identity	
Li-ion	Lithium-Ion	
MO	Mobile Originated	
MS	Mobile Station (GSM engine), also referred to as TE	
MT	Mobile Terminated	
MSAS	Multi-Functional Satellite Augmentation System	
NMEA	National Marine Electronics Association	
PAP	Password Authentication Protocol	
PBCCH	Packet Broadcast Control Channel	
PCB	Printed Circuit Board	
PCL	Power Control Level	
PCS	Personal Communication System, also referred to as GSM 1900	
PDU	Protocol Data Unit	
PPP	Point-to-point protocol	
QZSS	Quasi-Zenith Satellites System	
RF	Radio Frequency	
RMS	Root Mean Square (value)	

RTC	Real Time Clock	
RX	Receive Direction	
SIM	Subscriber Identification Module	
SBAS	Satellite Based Augmentation Systems	
SMS	Short Message Service	
TE	Terminal Equipment, also referred to as DTE	
TX	Transmit Direction	
UART	Universal Asynchronous Receiver & Transmitter	
URC	Unsolicited Result Code	
USSD	Unstructured Supplementary Service Data	
WAAS	Wide Area Augmentation System	
Phonebook abbreviations		
FD	SIM fix dialing phonebook	
LD	SIM last dialing phonebook (list of numbers most recently dialed)	
MC	Mobile Equipment list of unanswered MT calls (missed calls)	
ON	SIM (or ME) own numbers (MSISDNs) list	
RC	Mobile Equipment list of received calls	
SM	SIM phonebook	
NC	Not connect	

IV. Safety Caution

Table 57: Safety caution

Marks Requirements

When in a hospital or other health care facility, observe the restrictions about the use of mobiles. Switch the cellular terminal or mobile off, medical equipment may be sensitive to not operate normally for RF energy interference.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. Forget to think much of these instructions may lead to the flight safety or offend against local legal action, or both.

Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard.

Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for hands free operation. Before making a call with a hand-held terminal or mobile, park the vehicle.

GSM cellular terminals or mobiles operate over radio frequency signals and cellular networks and cannot be guaranteed to connect in all conditions, for example no mobile fee or a invalid SIM card. While you are in this condition and need emergent help, please remember using emergency calls. In order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Some networks do not allow for emergency call if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may have to deactivate those features before you can make an emergency call.

Also, some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile.

Contact us:

Shanghai SIMCom Wireless Solutions Ltd.

Add: SIM Technology Building, No.633, Jinzhong Road, Changning District, Shanghai P.R. China

200335

Tel: +86 21 3252 3300 Fax: +86 21 3252 3301 URL: www.sim.com/wm

