# **Nonlinearity**

#### Today:

▶ Understand some examples of what nonlinearity can look like.

Apply two methods for dealing with nonlinearity.

#### What does nonlinearity look like?

 Linear regression allows us to model a linear relationship between x and y;



#### What does nonlinearity look like?

 Linear regression allows us to model a linear relationship between x and y;

But what if the data looks like this?!



#### What does nonlinearity look like?

 Linear regression allows us to model a linear relationship between x and y;

► But what if the data looks like this?!



- Modify the dependent variable y to turn the nonlinear problem into a linear problem;
- ightharpoonup Very typical to natural log y...

i.e. instead of 
$$y = \beta_0 + \beta_1 x + \varepsilon$$
 we use:  $\ln\{y\} = \beta_0 + \beta_1 x + \varepsilon$ ;

- ▶ Apply linear regression to estimate  $\beta_0$  and  $\beta_1$ ;
- Note if you do this you need to be careful with the interpretation of the  $\beta$ s. To see this first think about 'normal' linear regression:

$$y_1 = \beta_0 + \beta_1 x$$

- Modify the dependent variable y to turn the nonlinear problem into a linear problem;
- ightharpoonup Very typical to natural log y...

i.e. instead of 
$$y = \beta_0 + \beta_1 x + \varepsilon$$
 we use:  $\ln\{y\} = \beta_0 + \beta_1 x + \varepsilon$ ;

- ▶ Apply linear regression to estimate  $\beta_0$  and  $\beta_1$ ;
- Note if you do this you need to be careful with the interpretation of the  $\beta$ s. To see this first think about 'normal' linear regression:

$$y_1 = \beta_0 + \beta_1 x$$
 for a unit increase in  $x$ :  $y_2 = \beta_0 + \beta_1 (x+1)$ 

- Modify the dependent variable y to turn the nonlinear problem into a linear problem;
- ightharpoonup Very typical to natural log y...

i.e. instead of 
$$y = \beta_0 + \beta_1 x + \varepsilon$$
 we use:  $\ln\{y\} = \beta_0 + \beta_1 x + \varepsilon$ ;

- ▶ Apply linear regression to estimate  $\beta_0$  and  $\beta_1$ ;
- Note if you do this you need to be careful with the interpretation of the  $\beta$ s. To see this first think about 'normal' linear regression:

$$y_1=\beta_0+\beta_1x$$
 for a unit increase in x:  $y_2=\beta_0+\beta_1(x+1)=\beta_0+\beta_1x+\beta_1$ 

- Modify the dependent variable y to turn the nonlinear problem into a linear problem;
- ightharpoonup Very typical to natural log y...

i.e. instead of 
$$y = \beta_0 + \beta_1 x + \varepsilon$$
 we use:  $\ln\{y\} = \beta_0 + \beta_1 x + \varepsilon$ ;

- ▶ Apply linear regression to estimate  $\beta_0$  and  $\beta_1$ ;
- Note if you do this you need to be careful with the interpretation of the  $\beta$ s. To see this first think about 'normal' linear regression:

$$y_1=\beta_0+\beta_1x$$
 for a unit increase in  $x$ :  $y_2=\beta_0+\beta_1(x+1)=\beta_0+\beta_1x+\beta_1$  so change in  $y$  is:  $y_2-y_1$ 

- Modify the dependent variable y to turn the nonlinear problem into a linear problem;
- ightharpoonup Very typical to natural log y...

i.e. instead of 
$$y = \beta_0 + \beta_1 x + \varepsilon$$
 we use:  $\ln\{y\} = \beta_0 + \beta_1 x + \varepsilon$ ;

- ▶ Apply linear regression to estimate  $\beta_0$  and  $\beta_1$ ;
- Note if you do this you need to be careful with the interpretation of the  $\beta$ s. To see this first think about 'normal' linear regression:

$$y_1 = \beta_0 + \beta_1 x$$
 for a unit increase in  $x$ :  $y_2 = \beta_0 + \beta_1 (x+1) = \beta_0 + \beta_1 x + \beta_1$  so change in  $y$  is:  $y_2 - y_1 = \underbrace{\beta_0 + \beta_1 x + \beta_1}_{y_2} - \underbrace{\beta_0 - \beta_1 x}_{y_1} = \beta_1.$ 

- Modify the dependent variable y to turn the nonlinear problem into a linear problem;
- $\triangleright$  Very typical to natural log y...

i.e. instead of 
$$y = \beta_0 + \beta_1 x + \varepsilon$$
 we use:  $\ln\{y\} = \beta_0 + \beta_1 x + \varepsilon$ ;

- ▶ Apply linear regression to estimate  $\beta_0$  and  $\beta_1$ ;
- Note if you do this you need to be careful with the interpretation of the  $\beta$ s. Now think about 'logged' linear regression:

$$\ln\{y_1\} = \beta_0 + \beta_1 x$$

- Modify the dependent variable y to turn the nonlinear problem into a linear problem;
- $\triangleright$  Very typical to natural log y...

i.e. instead of 
$$y = \beta_0 + \beta_1 x + \varepsilon$$
 we use:  $\ln\{y\} = \beta_0 + \beta_1 x + \varepsilon$ ;

- ▶ Apply linear regression to estimate  $\beta_0$  and  $\beta_1$ ;
- Note if you do this you need to be careful with the interpretation of the  $\beta$ s. Now think about 'logged' linear regression:

$$\ln\{y_1\} = \beta_0 + \beta_1 x$$
 for a unit increase in x: 
$$\ln\{y_2\} = \beta_0 + \beta_1 (x+1)$$

- Modify the dependent variable y to turn the nonlinear problem into a linear problem;
- Very typical to natural log y...

i.e. instead of 
$$y = \beta_0 + \beta_1 x + \varepsilon$$
 we use:  $\ln\{y\} = \beta_0 + \beta_1 x + \varepsilon$ ;

- ▶ Apply linear regression to estimate  $\beta_0$  and  $\beta_1$ ;
- Note if you do this you need to be careful with the interpretation of the  $\beta$ s. Now think about 'logged' linear regression:

$$\ln\{y_1\}=\beta_0+\beta_1x$$
 for a unit increase in x: 
$$\ln\{y_2\}=\beta_0+\beta_1(x+1)=\beta_0+\beta_1x+\beta_1$$

- Modify the dependent variable y to turn the nonlinear problem into a linear problem;
- $\triangleright$  Very typical to natural log y...

i.e. instead of 
$$y = \beta_0 + \beta_1 x + \varepsilon$$
 we use:  $\ln\{y\} = \beta_0 + \beta_1 x + \varepsilon$ ;

- ▶ Apply linear regression to estimate  $\beta_0$  and  $\beta_1$ ;
- Note if you do this you need to be careful with the interpretation of the  $\beta$ s. Now think about 'logged' linear regression:

$$\exp\{\ln\{y_1\}\} = \exp\{\beta_0+\beta_1x\}$$
 for a unit increase in x: 
$$\exp\{\ln\{y_2\}\} = \exp\{\beta_0+\beta_1(x+1)\} = \exp\{\beta_0+\beta_1x+\beta_1\}$$

- Modify the dependent variable y to turn the nonlinear problem into a linear problem;
- $\triangleright$  Very typical to natural log y...

i.e. instead of 
$$y = \beta_0 + \beta_1 x + \varepsilon$$
 we use:  $\ln\{y\} = \beta_0 + \beta_1 x + \varepsilon$ ;

- ▶ Apply linear regression to estimate  $\beta_0$  and  $\beta_1$ ;
- Note if you do this you need to be careful with the interpretation of the  $\beta$ s. Now think about 'logged' linear regression:

$$y_1=\exp\{\beta_0+\beta_1x\}$$
 for a unit increase in x:  $y_2=\exp\{\beta_0+\beta_1(x+1)\}=\exp\{\beta_0+\beta_1x+\beta_1\}$ 

- Modify the dependent variable y to turn the nonlinear problem into a linear problem;
- $\triangleright$  Very typical to natural log y...

i.e. instead of 
$$y = \beta_0 + \beta_1 x + \varepsilon$$
 we use:  $\ln\{y\} = \beta_0 + \beta_1 x + \varepsilon$ ;

- ▶ Apply linear regression to estimate  $\beta_0$  and  $\beta_1$ ;
- Note if you do this you need to be careful with the interpretation of the  $\beta$ s. Now think about 'logged' linear regression:

$$y_1=\exp\{\beta_0+\beta_1x\}$$
 for a unit increase in  $x$ :  $y_2=\exp\{\beta_0+\beta_1(x+1)\}=\exp\{\beta_1\}\exp\{\beta_0+\beta_1x\}$ 

- Modify the dependent variable y to turn the nonlinear problem into a linear problem;
- Very typical to natural log y...

i.e. instead of 
$$y = \beta_0 + \beta_1 x + \varepsilon$$
 we use:  $\ln\{y\} = \beta_0 + \beta_1 x + \varepsilon$ ;

- ▶ Apply linear regression to estimate  $\beta_0$  and  $\beta_1$ ;
- Note if you do this you need to be careful with the interpretation of the  $\beta$ s. Now think about 'logged' linear regression:

$$y_1=\exp\{\beta_0+\beta_1x\}$$
 for a unit increase in  $x$ :  $y_2=\exp\{\beta_0+\beta_1(x)\}=\exp\{\beta_1\}\exp\{\beta_0+\beta_1x)\}$  so change in  $y$  is:  $y_2-y_1$ 

- Modify the dependent variable y to turn the nonlinear problem into a linear problem;
- $\triangleright$  Very typical to natural log y...

i.e. instead of 
$$y = \beta_0 + \beta_1 x + \varepsilon$$
 we use:  $\ln\{y\} = \beta_0 + \beta_1 x + \varepsilon$ ;

- ▶ Apply linear regression to estimate  $\beta_0$  and  $\beta_1$ ;
- Note if you do this you need to be careful with the interpretation of the  $\beta$ s. Now think about 'logged' linear regression:

$$y_1 = \exp\{\beta_0 + \beta_1 x\}$$
 for a unit increase in  $x$ :  $y_2 = \exp\{\beta_0 + \beta_1 (x)\} = \exp\{\beta_1\} \exp\{\beta_0 + \beta_1 x)\}$  so change in  $y$  is:  $y_2 - y_1 = \underbrace{\exp\{\beta_1\} \exp\{\beta_0 + \beta_1 x)\}}_{y_2} - \underbrace{\exp\{\beta_0 + \beta_1 x\}}_{y_1}$ 

- Modify the dependent variable y to turn the nonlinear problem into a linear problem;
- Very typical to natural log y...

i.e. instead of 
$$y = \beta_0 + \beta_1 x + \varepsilon$$
 we use:  $\ln\{y\} = \beta_0 + \beta_1 x + \varepsilon$ ;

- ▶ Apply linear regression to estimate  $\beta_0$  and  $\beta_1$ ;
- Note if you do this you need to be careful with the interpretation of the  $\beta$ s. Now think about 'logged' linear regression:

$$\begin{aligned} y_1 &= \exp\{\beta_0 + \beta_1 x\} \\ \text{for a unit increase in } x \colon y_2 &= \exp\{\beta_0 + \beta_1 (x)\} = \exp\{\beta_1\} \exp\{\beta_0 + \beta_1 x)\} \\ \text{so change in } y \text{ is: } y_2 - y_1 &= (\exp\{\beta_1\} - 1) \exp\{\beta_0 + \beta_1 x)\}. \end{aligned}$$





- ▶ Modify the independent variable *x* to model the nonlinearity;
- ▶ Very typical to use a polynomial of x, for example  $x^2$  or  $x^3$ :

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \varepsilon$$

- ▶ Apply linear regression to estimate  $\beta$ s;
- ▶ Note if you do this do not extrapolate beyond the boundary of the sample.



## What about a simple linear model?



#### What about a quadratic model?



## What about a **cubic polynomial** model?



Here is the true model:  $y = 1.0 + 0.5x - 2.5x^2 + 1.25x^3 + \varepsilon$ .



#### Examples...

▶ What is the optimal top marginal tax rate for economic growth?

Does inequality make democracy more or less likely?

## Why should we care?

Linear regression can deal with non-linear situations – this broadens its applicability and makes it even more powerful.