Marcin Skrzypczak #21

Modelowanie matematyczne 2022/23 – zadanie projektowe nr 2 Estymacja parametrów modelu

Równania Lotki-Volterry służą do modelowania liczebności populacji dwóch gatunków, między którymi występuje zależność drapieżnik-ofiara:

$$\frac{dx}{dt}(t) = r_x x(t) + r_{xy} x(t) y(t) + r_{xx} x^2(t)$$
 (1)

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) = r_y y(t) + r_{yx} x(t) y(t) + r_{yy} y^2(t) \tag{2}$$

gdzie x to liczebność populacji gatunku ofiary, y – liczebność populacji gatunku drapieżnika, t – czas, a $r_x, r_y, r_{xx}, r_{xy}, r_{yx}, r_{yy} \in \mathbb{R}$ – parametry modelu.

W zadaniach 1 i 2 wykorzystaj plik *dane21.csv*, zawierający następujące dane:

- $t_1, ..., t_N$ chwile, w których dokonano pomiaru wartości x(t) i y(t);
- $\tilde{x}_1,...,\tilde{x}_N$ i $\tilde{y}_1,...,\tilde{y}_N$ wyniki pomiaru x(t) i y(t) w chwilach $t_1,...,t_N$.

Zadanie 1. (3 p.)

a) Wyznacz wartości r_x , r_{xy} i r_{xx} minimalizujące następujący wskaźnik dopasowania modelu do danych:

$$J_x \equiv \sum_{n=2}^{N} (\hat{x}_n - \tilde{x}_n)^2$$

gdzie \hat{x}_n (n = 2, ..., N) oznacza estymatę wartości $x(t_n)$, uzyskaną poprzez rozwiązanie równania (1) po podstawieniu $y(t_1) = \tilde{y}_1, ..., y(t_N) = \tilde{y}_N$ oraz $x(t_1) = \tilde{x}_1$.

Wskazówka: Wyznacz wartości J_x dla niewielkiej liczby trójek wartości r_x , r_{xy} i r_{xx} , a następnie trójkę dającą najlepszy wynik wykorzystaj jako punkt startowy do optymalizacji (np. za pomocą funkcji *fminsearch*). Sprawdź wartości $r_x \in [-100, 100]$ oraz wartości r_{xy} , $r_{xx} \in [-1, 1]$.

b) Wyznacz wartości r_y , r_{yx} i r_{yy} minimalizujące następujący wskaźnik dopasowania modelu do danych:

$$J_{y} \equiv \sum_{n=2}^{N} (\hat{y}_{n} - \tilde{y}_{n})^{2}$$

gdzie \hat{y}_n (n = 2, ..., N) oznacza estymatę wartości $y(t_n)$, uzyskaną poprzez rozwiązanie równania (2) po podstawieniu $x(t_1) = \tilde{x}_1, ..., x(t_N) = \tilde{x}_N$ oraz $y(t_1) = \tilde{y}_1$.

Wskazówka: Postępuj analogicznie jak w punkcie a). Sprawdź wartości $r_y \in [-100, 100]$ oraz wartości $r_{yx}, r_{yy} \in [-1, 1]$.

Obliczenia przeprowadź przy użyciu następujących metod rozwiązywania RRZ:

• jawnej metody Eulera:

$$\hat{x}_n = \hat{x}_{n-1} + f(t_{n-1}, \hat{x}_{n-1}) \Delta t$$

• jawnej metody Adamsa-Bashfortha trzeciego rzędu:

$$\hat{x}_n = \hat{x}_{n-1} + \frac{1}{12} \left[23 f(t_{n-1}, \hat{x}_{n-1}) - 16 f(t_{n-2}, \hat{x}_{n-2}) + 5 f(t_{n-3}, \hat{x}_{n-3}) \right] \Delta t$$

• niejawnej metody Eulera:

$$\hat{x}_n = \hat{x}_{n-1} + f(t_n, \hat{x}_n) \Delta t$$

gdzie Δt oznacza odstęp między chwilami $t_1, t_2, ..., t_N$.

Zadanie 2. (2 p.)

Wyznacz wartości r_x , r_{xy} , r_{xx} , r_y , r_{yx} , r_{yy} minimalizujące następujący wskaźnik dopasowania modelu do danych:

$$J \equiv \sum_{n=2}^{N} (\hat{x}_n - \tilde{x}_n)^2 + \sum_{n=2}^{N} (\hat{y}_n - \tilde{y}_n)^2$$

gdzie \hat{x}_n , $\hat{y}_n(n=2,...,N)$ oznaczają estymaty wartości $x(t_n)$, $y(t_n)$, uzyskane poprzez rozwiązanie układu równań (1), (2) dla warunków początkowych $x(t_1) = \tilde{x}_1$, $y(t_1) = \tilde{y}_1$.

Wskazówka: Wykorzystaj wartości r_x , r_{xy} , r_{xx} , r_y , r_{yx} , r_{yy} wyznaczone w Zadaniu 1 (przy użyciu wybranej metody) jako punkt startowy do optymalizacji (np. za pomocą funkcji *fminsearch*).

Obliczenia przeprowadź przy użyciu dowolnej metody jawnej lub funkcji ode45.

Uwaga: Przy rozwiązywaniu układu RRZ należy dobrać dostatecznie mały krok całkowania, a następnie – w celu obliczenia wartości J – interpolować uzyskane rozwiązanie w punktach $t_1, ..., t_N$ (np. za pomocą funkcji *interp1*).

Dla jakiej pary wartości x, y > 0 układ osiąga stan równowagi (tzn. brak zmian x(t) i y(t) w czasie)?

Zadanie 3. (3 p.)

Powtórz operacje z Zadań 1 i 2 dla wybranego spośród następujących zbiorów danych, reprezentujących wyniki rzeczywistych pomiarów liczebności populacji:

- zajęcy amerykańskich i rysi kanadyjskich w pewnym obszarze Kanady (plik *HudsonBay.csv*);
- łosi i wilków na wyspie Isle Royale (plik *IsleRoyale.csv*);
- chromistów *Paramecium Caudatum* i *Didinium Nasutum* w pewnym doświadczeniu z 1934 r. (plik *Chromista.csv*).

Zamiast zakładać $\hat{x}_1 = \tilde{x}_1$, $\hat{y}_1 = \tilde{y}_1$, dobierz optymalne wartości \hat{x}_1 i \hat{y}_1 w taki sam sposób, jak wartości parametrów r_x , r_{xy} , r_{xx} , r_y , r_{yx} , r_{yy} . Wartości t_1 , ..., t_N wyznacz, skalując numery lat lub dni, w których przeprowadzono pomiary, do przedziału [0, 1]. Przyjmij, że x(t) oznacza liczbę osobników z gatunku ofiary (zajęcy, łosi lub *Paramecium Caudatum*), a y(t) – liczbę osobników z gatunku drapieżnika (rysi, wilków lub *Didinium Nasutum*). Obliczenia przeprowadź przy użyciu dowolnych metod rozwiązywania RRZ.

Jak należy interpretować wartości parametrów r_x , r_{xy} , r_{xx} , r_y , r_{yx} , r_{yy} ? W razie trudności w uzyskaniu dobrego dopasowania modelu do danych – co może być ich przyczyną?

Literatura

- A. Lotka, "Analytical note on certain rhythmic relations in organic systems," *Proceedings of the National Academy of Sciences*, vol. 6, pp. 410–415, 1920.
- M. E. Gilpin, "Do hares eat lynx?," The Americal Naturalist, vol. 107, no. 957, pp. 727–730, 1973.
- M. S. Weinstein, "Hares, lynx, and trappers," *The American Naturalist*, vol. 111, no. 980, pp. 806–808, 1977.
- J. P. Finerty, "Cycles in Canadian lynx," *The American Naturalist*, vol. 114, no. 3, pp. 453–455, 1979.
- J. A. Vucetich, R. O. Peterson, C. L. Schaefer, "The effect of prey and predator densities on wolf predation," *Ecology*, vol. 83, no. 11, pp. 3003–3013, 2002.
- L. K. Mühlbauer, M. Schulze, W. S. Harpole, A. T. Clark, "gauseR: Simple methods for fitting Lotka-Volterra models describing Gause's Struggle for Existence," *Ecology and Evolution*, vol. 10, no. 23, pp. 13275–13283, 2020.

The Population Biology of Isle Royale Wolves and Moose: An Overview, https://isleroyalewolf.org/data/data/home.html (5.01.2023).