

XR829 Datasheet

Single-Chip IEEE 802.11 b/g/n WLAN, Bluetooth 2.1/4.0/4.1

Revision 1.0

May 5, 2018

Declaration

THIS DOCUMENTATION IS THE ORIGINAL WORK AND COPYRIGHTED PROPERTY OF XRADIO TECHNOLOGY ("XRADIO"). REPRODUCTION IN WHOLE OR IN PART MUST OBTAIN THE WRITTEN APPROVAL OF XRADIO AND GIVE CLEAR ACKNOWLEDGEMENT TO THE COPYRIGHT OWNER.

THE INFORMATION FURNISHED BY XRADIO IS BELIEVED TO BE ACCURATE AND RELIABLE. XRADIO RESERVES THE RIGHT TO MAKE CHANGES IN CIRCUIT DESIGN AND/OR SPECIFICATIONS AT ANY TIME WITHOUT NOTICE. XRADIO DOES NOT ASSUME ANY RESPONSIBILITY AND LIABILITY FOR ITS USE. NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THE THIRD PARTIES WHICH MAY RESULT FROM ITS USE. NO LICENSE IS GRANTED BY IMPLICATION OR OTHERWISE UNDER ANY PATENT OR PATENT RIGHTS OF XRADIO. THIS DATASHEET NEITHER STATES NOR IMPLIES WARRANTY OF ANY KIND, INCLUDING FITNESS FOR ANY PARTICULAR APPLICATION.

THIRD PARTY LICENCES MAY BE REQUIRED TO IMPLEMENT THE SOLUTION/PRODUCT. CUSTOMERS SHALL BE SOLELY RESPONSIBLE TO OBTAIN ALL APPROPRIATELY REQUIRED THIRD PARTY LICENCES. XRADIO SHALL NOT BE LIABLE FOR ANY LICENCE FEE OR ROYALTY DUE IN RESPECT OF ANY REQUIRED THIRD PARTY LICENCE. XRADIO SHALL HAVE NO WARRANTY, INDEMNITY OR OTHER OBLIGATIONS WITH RESPECT TO MATTERS COVERED UNDER ANY REQUIRED THIRD PARTY LICENCE.

Revision History

Version	Data	Summary of Changes
1.0	2018-5-5	Initial Version

Table 1-1 Revision History

Contents

De	claration	n	2
Rev	vision H	istory	3
Coi	ntents		4
Tab	les		6
Fig	ures		7
1	Syster	m Overview	8
	1.1	General Description	8
	1.2	Features	8
	1.3	Applications	9
	1.4	Block Diagram	9
2	Pin De	escription	10
	2.1	Pin Assignment	10
	2.2	Pin List	10
3	Powe	r Supply	13
	3.1	Power Up and Power Down	
	3.2	Analog Power Supply	14
	3.3	Digital Power Supply	15
	3.4	Power Consumption	
4	Clocks	S	16
	4.1	Reference Clock	16
	4.2	Low Power Clock	18
5	Electr	ical Characteristics	19
	5.1	Absolute Maximum Rating	19
	5.2	Digital IO Pin DC Characteristics	19
6	Transo	ceiver/Receiver Performance	20
	6.1	WLAN Performance	20
	6.2	Bluetooth Performance	21

7	Package	Outline & PCB Layout Design	. 23
8	Carrier In	ıformation	. 25
	8.1	Tray Carrier	25
	8.2	Tape Reel Carrier	28

Tables

Table 1-1 Revision History3
Table 2-1 Pin List
Table 3-1 Analog Power Supply14
Table 3- 2 Digital Power Supply15
Table 3-3 Power Consumption15
Table 4-1 External Reference Clock Specifications16
Table 4- 2 External Clock Requirements16
Table 4-3 External Crystal Characteristics Requirements
Table 4- 4 Low Power Clock Specifications18
Table 5-1 Absolute Maximum Rating19
Table 5- 2 IO DC Characteristics (VDD_IO=3.3V)19
Table 5-3 IO DC Characteristics (VDD_IO=1.8V)19
Table 6-1 WLAN Transceiver/Receiver Performance20
Table 6- 2 Bluetooth Transceiver/Receiver Performance21
Table 7-1 Package Dimensions23

Figures

Figure 1- 1 XR29 Block Diagram	
Figure 2- 1 Pin Assignment	10
Figure 3-1 WLAN subsystem Power Up and Power Down	13
Figure 3- 2 Bluetooth subsystem Power Up and Power Down	14
Town 7.4 Barbara Birrandiana	2.5
Figure 7- 1 Package Dimensions	Z:
Figure 7- 2 Example for PCB Layout Design	24
Figure 7-3 Photograph of Package Top	3/
rigure /- 3 Priotograph of Package Tob	Z4

1 System Overview

1.1 General Description

This scope of document is to provide a specification of XR829 Wireless LAN SoC, that will be used by the system/design/development teams to detail the design requirements.

XR829 is a fully integrated SoC to support 2.4G WLAN 802.11 b/g/n and Bluetooth 2.1+EDR/4.1. It is optimized for mobile applications such as PDAs and portable media players. High sensitivity and transmitting power ensure long distance and robust connection. Highest level of integration allows very compact and cost effective reference designs delivering fast time-to-market for new WLAN and Bluetooth enabled products. And small 5x5mm QFN package is suitable for very compact design.

1.2 Features

WLAN Features

- Compatible with IEEE 802.11 b/g/n standard
- 802.11n support for 20/40MHz bandwidth
- Support for Short Guard Interval
- Support for 802.11n MCS0~MCS7
- 6M~54M data rate for 802.11g
- DSSS, CCK modulation with long and short preamble
- Support frame aggregation using A-MSDU, A-MPDU
- Supports MAC enhancements including
 - -802.11d Regulatory domain operation
 - -802.11e QoS including WMM
 - 802.11h Transmit power control dynamic and frequency selection
 - 802.11i Security including WPA2 and WAPI compliance
 - -802.11r Roaming
 - -802.11w Management frame protection
- Support for Station, SoftAP and P2P mode
- Support for Wi-Fi Direct

Bluetooth Features

- Bluetooth Dual Mode support with 2.1/4.0/4.1
- Class 1, Class 2 and Class 3 transmitter operation
- Host Controller Interface using a high-speed UART, maximum baud rate of 4 Mbps

- Adaptive Frequency Hopping
- SCO and eSCO support
- 1, 3 and 5 slots all packet types support
- Audio interfaces: PCM, I2S
- Transcoders for A-law, μ-law and CVSD voice over air
- Piconet and scatternet support
- Secure simple pairing
- Sniff/Sniff Subrating low power mode support

1.3 Applications

Tablet PC
Smart internet TV box
Portable media player (PMP)
Portable gaming device (PGD)
Internet of Thing (IOT)

1.4 Block Diagram

Top level block diagram of XR829 is shown in Figure 1-1.

Figure 1-1 XR29 Block Diagram

The XR829 includes a single-band 2.4G RF transceiver (integration with PA, LNA and TR switch), PMU, WLAN modem, WLAN MAC, Bluetooth modem and Bluetooth protocol stack. The WLAN subsystem keeps data communications with the host using SDIO 2.0, while the Bluetooth subsystem uses HCI UART and PCM for audio data. The XR829 core benefits are to provide an industry leading price competitive solution with a high level of system integration. In turn this reduces the overall BOM cost while also shortening the mass production cycle.

2 Pin Description

2.1 Pin Assignment

Figure 2-1 Pin Assignment

2.2 Pin List

The following signal type codes are used in the table:

I: Input

O: Output

I/O: for Input/Output

P: Power pin

Table 2-1 Pin List

Name Pin Type	Description
---------------	-------------

Analog	
XTAL1 4 I	Reference clock input or XTAL inputs
XTAL2 3 I	
ANT 40 I/O	2.4 GHz RF input/output
Power	
VDD14_TX 36 P	Supply for RF TX
VDD14_RX	Supply for RF RX
VDD14_DIG 22 P	Supply for digital LDO
VDD12_CLK 2 P	Supply for Clock
VDD12_DIG 21 P	Supply for digital LDO
VDD_IO	Supply for IO
VDD_SENSE 28 P	DCDC feedback
VDD_VLX 29 P	DCDC output
VDD_RTC 26 P	Supply for RTC
VDD25_EF 27 P	Supply for EFUSE
VDD33_PA 38 P	Supply for PA
VBAT 30,37 P	Supply for on-chip-PMU
Digital	
LDO_SEL 25 I	DCDC/LDO select
	0: Internal switching regulator select
	1: Internal LDO select
LPCLK 20 I	Low power clock input, 32.768 kHz, or be grounded
BT_WKUP_HOST 6 O	Bluetooth subsystem wakes up host
BT_HOST_WKUP 5 I	Host wakes up Bluetooth subsystem
PCM_CLK 31 I/O	Bluetooth PCM clock
PCM_IN 33 I	Bluetooth PCM data input
PCM_OUT 32 O	Bluetooth PCM data output
PCM_SYNC 34 I/O	Bluetooth PCM synchronization control
UART_TX 10 O	Bluetooth UART transmit
UART_RX 9 I	Bluetooth UART receive
UART_CTS 8 I	Bluetooth UART CTS
UART_RTS 7 O	Bluetooth UART RTS
BT_RSTN 23 I	Bluetooth Reset, active low
WL_RSTN 24 I	WLAN Reset, active low
CLKREQO 18 O	Clock request
WIRQ 35 O	WLAN interrupt request
SDIO_CMD 12 I/O	SDIO command
SDIO_D0 13 I/O	SDIO data

SDIO_D1	14	1/0	SDIO data
SDIO_D2	17	1/0	SDIO data
SDIO_D3	15	1/0	SDIO data
SDIO_CLK	16	1	SDIO clock
TEN	19	1	Test enable select, active high

3 Power Supply

3.1 Power Up and Power Down

Figure 3-1 WLAN subsystem Power Up and Power Down

There is no constraint on the WLAN subsystem power supplies (VBAT and VDD_IO) activation sequence. The WLAN subsystem can start up without the reference clock being present. The platform is then expected to provide a stable clock within T_{stable}ms (see reference value in chapter 4) unless the built-in XTAL oscillator is used. A typical startup for the WLAN subsystem is as follows:

- (1) VBAT, VDD_IO is applied.
- (2) Release WL RSTN pin from low to high.
- (3) The host should wait 30ms after the WL_RSTN release for the on-chip PMU to stabilize.
- (4)WLAN subsystem is now in the Sleep state.
- (5)The host wake up the WLAN subsystem by writing WUP bit through the SDIO interface.
- (6) Within T_{stable}ms, the reference clock should be stable and the system can start using it.
- (7)The host can download the firmware and release the CPU reset by further SDIO write.
- (8)WLAN subsystem will begin to initialize.
- (9)Once initialized, which includes a series of messages passing between the host and the WLAN subsystem, the WLAN subsystem may not have anything further to do and will enter the sleep state if Host set WLAN_RDY to 0.

To power down the WLAN subsystem, WL_RSTN have to be set to 0. There are no constraints on other input pins. VDD_IO is allowed to go down 20ms after all input signals have been set to 0 (avoid the influent current).

Figure 3-2 Bluetooth subsystem Power Up and Power Down

The Bluetooth subsystem power up and power down is similar to the WLAN subsystem. A typical startup for the Bluetooth subsystem is as follows:

- (1) VBAT, VDD_IO is applied.
- (2)Release BT_RSTN pin from low to high.
- (3)The host should wait 30ms after the BT_RSTN release for the on-chip PMU to stabilize.
- (4)Bluetooth subsystem is now in the Sleep state.
- (5)The host should now wake the Bluetooth subsystem by pull up BT_HOST_WKUP pin.
- (6) Within T_{stable}ms, the reference clock should be stable and the system can start using it.
- (7)The host and Bluetooth subsystem will synchronous baud rate through the UART interface.
- (8) The host can download firmware by further UART write.
- (9)Bluetooth subsystem will begin to initialize.
- (10)Once initialized, which includes a series of messages passing between the host and the Bluetooth subsystem, the Bluetooth subsystem may not have anything further to do and will enter the sleep state if Host pull down BT_HOST_WKUP pin.

To power down the Bluetooth subsystem, BT_RSTN have to be set to 0. There are no constraints on other input pins. VDD IO is allowed to go down 20ms after all input signals have been set to 0 (avoid the influent current).

3.2 Analog Power Supply

Table 3-1 Analog Power Supply

Symbol	Parameter	Min	Тур	Max	Unit
VBAT	Power supply	2.7	3.6	5.5	V
VDD33_PA	TX PA 3.3V power supply	3.0	3.3	3.6	V

VDD14_RX	RX LDO power supply	1.4	1.5	2	V
VDD14_TX	TX LDO power supply	1.4	1.5	2	V
VDD_SENSE	DCDC feedback	1.4	1.5	2	V
VDD12_CLK	Clock LDO power supply	1.14	1.2	1.26	V

3.3 Digital Power Supply

Table 3-2 Digital Power Supply

Symbol	Parameter	Min	Тур	Max	Unit
VDD_IO	IO power supply	1.62	3.3	3.6	V
VDD25_EF	EFUSE power supply	2.3	2.5	2.7	V
VDD14_DIG	Digital LDO power supply	1.4	1.5	2	V
VDD12_DIG	Digital power supply	1	1.1	1.2	V
VDD_RTC	RTC power supply	1	1.1	1.2	V

3.4 Power Consumption

Conditions: VBAT=3.6V; VDDIO=3.3V; Temp:25°C

Table 3-3 Power Consumption

WLAN State	Bluetooth State	DCDC mode (mA)	LDO mode (mA)
Standby	Standby	0.00078	0.00078
Sleep	Sleep	0.12	0.21
20M Mode RX DSSS/CCK 1M	Standby	29	62
20M Mode RX OFDM MCS7	Standby	35	75
40M Mode RX OFDM MCS7	Standby	41	88
20M Mode TX @16dBm,	Standby	145	192
DSSS/CCK 11M			
20M Mode TX @14dBm,	Standby	128	179
OFDM MCS7			
40M Mode TX @15dBm,	Standby	137	190
OFDM MCS0			
40M Mode TX @14dBm,	Standby	126	180
OFDM MCS7			
Standby	RX active DH1/2DH3/3DH5	19	41
Standby	TX active @5dbm	42	90
	DH1/2DH3/3DH5		

4 Clocks

XR829 uses a reference clock and a low power clock.

For the reference clock, XR829 can either use an external reference clock source or generate its own reference using a XTAL and a built-in oscillator.

For the low power clock, XR829 can either use an external 32.768 KHz clock or generate its internal RCOSC. If use internal RCOSC, the LPCLK pin should be grounded. The low power clock is used during power save modes and used only for power controller module.

4.1 Reference Clock

Table 4-1 External Reference Clock Specifications

Symbol	Parameter	Min	Тур	Max	Unit
	Clock input frequency list using an external clock source	13	24	52	MHz
F _{IN}	Clock input frequency list using a XTAL and the built-in oscillator	19.2	24	52	MHz
F _{INTOL}	Tolerance on input frequency without trimming	-20	-	+20	ppm
T _{stable}	Clock stabilization time	-	-	10	ms
I _{LEAK}	Input leakage current, both for analog and digital	-	-	1	uA

Clock frequency detection

An integrated automatic detection algorithm detects the reference clock frequency using the low power clock after a hardware reset.

Clock source detection

An integrated automatic detection mechanism detects the clock source from the connections of the XTAL1 and XTAL2 pins:

- When an external reference clock source is used, the clock input pin is XTAL2. The XR829 supports both an analog and digital source. An analog source shall be AC coupled to XTAL2 while a digital source shall be DC coupled to XTAL2. In both cases, XTAL1 must be left floating.
- When a XTAL and the built-in oscillator are used, the XTAL shall be DC coupled to XTAL1 and XTAL2.

External Clock Source

Requirements

Table 4-2 External Clock Requirements

Symbol	Parameter	Min	Тур	Max	Unit
AC coupled	signal	,			
F _{IN}	Frequency	13	24	52	MHz
V _{APP}	Peak-to-peak voltage range of the AC coupled	0.4	0.5	1.2	Vpp
	analog input				
N_{H}	Total harmonic content of the input signal	-	-	-25	dBc
DC coupled	signal				
V_{IL}	input low voltage on XTAL2	0	-	0.3*V18	V
V _{IH}	input high voltage on XTAL2	0.7*V18	-	V18	V
T _r /T _f	10%-90% rise and fall time	-	-	5	ns
Duty cycle	Cycle-to-cycle	40	50	60	%
Both analog	g and digital signals				
Z _{INRE}	Real part of parallel AC input impedance at the pin	30	-	- 1	KOhm
Z _{INIM}	Imaginary part of parallel AC input impedance at	_	3.5	5	pF
	the pin		3.5	3	Pi
Z _{DC}	DC input impedance	1	-		MOhm
Phase	Ref clock @ 24 MHz, 2.4 GHz 802.11b/g/n operation				
noise	@1 kHz			-123	
	@10 kHz	-	-	-133	dBc/Hz
	@100 kHz			-138	
	@1 MHz			-138	

External XTAL and Built-in Oscillator

Table 4-3 External Crystal Characteristics Requirements

Parameter	Conditions	Min	Тур	Max	Unit
Frequency range		13	-	52	MHz
ESR		-	-	60	Ohm
C _{in_xtal} (1)	Single-ended	3.5	18	36	pF
Load capacitance ⁽¹⁾		-	16	27	pF
Oscillator tuning range ⁽²⁾		+/-20	+/-50	+/-70	ppm
Crystal frequency accuracy at nominal temperature	25 °C	-10	-	+10	ppm
Crystal drift due to temperature	-20 °C to +85 °C	-10	-	+10	ppm
Crystal pull ability		10	-	150	ppm/pF

(1)The load capacitance value (C_{load}) depends on XTAL model, XTAL1 and XTAL2 pin have extra capacitance (C_{in_xtal}), so external added load capacitance value $C_{load_ext} = C_{load} - C_{in_xtal}$. C_{in_xtal} has tuning range about 7pF, which is controlled by software, for details please go to software user manual.

(2) Tuning range depends on XTAL load capacitance requirement, typical case is based on 26MHz XTAL, 8pF Cload.

4.2 Low Power Clock

Table 4-4 Low Power Clock Specifications

Symbol	Parameter	Min	Тур	Max	Unit
F _{IN}	Frequency	-	32.768	-	KHz
F/F _{IN}	Frequency accuracy	-250	-	+250	ppm
Duty cycle		30	-	70	%
Jitter	Cycle-to-cycle	-40	-	+40	ns
R _{in}	Input resistance	1	-	-	MOhm
C _{in}	Input capacitance	-	-	5	pF
V _{IL}	Input low voltage on LPCLK	0	-	0.4	V
V _{IH}	Input high voltage on LPCLK	VDD_IO- 0.4	-	VDD_IO	V

5 Electrical Characteristics

5.1 Absolute Maximum Rating

The Absolute Maximum Rating (AMR) corresponds to the maximum value that can be applied without leading to instantaneous or very short-term unrecoverable hard failure (destructive breakdown).

Table 5-1 Absolute Maximum Rating

Symbol	Parameter	Min	Max	Unit
VBAT	2.7~5.5V power supply	-0.3	5.8	V
VDD_IO	IO power supply	-0.3	4.0	V
Vin	Input voltage on any digital pin	-0.3	3.6	V
T _{stg}	Storage Temperature	-40	150	°C
Ta	Ambient Operating Temperature	-40	85	°C
Llumiditu	Storage	5	95	%
Humidity	Operation	10	93	%

5.2 Digital IO Pin DC Characteristics

Table 5-2 IO DC Characteristics (VDD_IO=3.3V)

			-		
Symbol	Parameter	Min	Тур	Max	Unit
V _{IH}	Input high voltage	2.06	-	3.6	V
V _{IL}	Input low voltage	-0.3	-	1.32	V
V _{OH}	Output high voltage	2.4	-	3.6	V
V _{OL}	Output low voltage	-0.3	-	0.4	V
R _{PU}	Input Pull-up Resistance	40	66	110	ΚΩ
R _{PD}	Input Pull-down Resistance	40	66	110	ΚΩ

Table 5-3 IO DC Characteristics (VDD_IO=1.8V)

Symbol	Parameter	Min	Тур	Max	Unit
V _{IH}	Input high voltage	1.18	-	2	V
V _{IL}	Input low voltage	-0.3	-	0.65	V
V _{OH}	Output high voltage	1.44	-	2	V
V _{OL}	Output low voltage	-0.3	-	0.4	V
R _{PU}	Input Pull-up Resistance	80	135	210	ΚΩ
R _{PD}	Input Pull-down Resistance	80	135	210	ΚΩ

6 Transceiver/Receiver Performance

6.1 WLAN Performance

Conditions: VBAT=3.6V; VDDIO=3.3V; Temp:25 °C

Table 6-1 WLAN Transceiver/Receiver Performance

Davamakan	Description	Perform	Performance		
Parameter	Description	Min	Тур	Max	Unit
Frequency range	Center channel frequency	2412	-	2484	MHz
RX Sensitivity (802.11b)	1Mbps DSSS	-	-97	-	dBm
	2Mbps DSSS	-	-95	-	dBm
	5.5Mbps CCK	-	-93	-	dBm
	11Mbps CCK	-	-90	-	dBm
RX Sensitivity (802.11g)	6Mbps OFDM	-	-92	-	dBm
	9Mbps OFDM	-	-92	-	dBm
	12Mbps OFDM	-	-91	-	dBm
	18Mbps OFDM	-	-88	-	dBm
	24Mbps OFDM	-	-86	-	dBm
	36Mbps OFDM	-	-82	-	dBm
	48Mbps OFDM	-	-78	-	dBm
	54Mbps OFDM	-	-76	-	dBm
RX Sensitivity (802.11n,	MCS0	-	-91	-	dBm
20MHz)	MCS1	-	-87	-	dBm
	MCS2	-	-85	-	dBm
	MCS3	-	-83	-	dBm
	MCS4	-	-79	-	dBm
	MCS5	-	-75	-	dBm
	MCS6	-	-74	-	dBm
	MCS7	-	-72	-	dBm
RX Sensitivity (802.11n,	MCS0	-	-89	-	dBm
40MHz)	MCS1	-	-87.5	-	dBm
	MCS2	-	-84.5	-	dBm

	MCS3	-	-81.5	-	dBm
	MCS4	-	-78	-	dBm
	MCS5	-	-74	-	dBm
	MCS6	-	-72	-	dBm
	MCS7	-	-71	-	dBm
Maximum Input Level	11b@11Mbps CCK	-	-10	-	dBm
	11g@54Mbps OFDM	-	-20	-	dBm
	11n@ HT20, MCS 7	-	-20	-	dBm
	11n@ HT40, MCS 7	-	-20	-	dBm
TX Power	1Mbps DSSS	-	20	-	dBm
	11Mbps CCK	-	20	-	dBm
	6Mbps OFDM	-	20	-	dBm
	54Mbps OFDM	-	19	-	dBm
	HT20, MCS 0	-	17.5	-	dBm
	HT20, MCS 7	-	17.5	-	dBm
	HT40, MCS 0	-	16	-	dBm
	HT40, MCS 7	-	17	-	dBm

6.2 Bluetooth Performance

Conditions: VBAT=3.6V; VDDIO=3.3V; Temp:25 °C

Table 6-2 Bluetooth Transceiver/Receiver Performance

Parada tra	Description.	Performance			11:::4
Parameter	Description	Description Min		Max	Unit
Frequency range	Center channel frequency	2402	-	2480	MHz
RX Sensitivity (BR)	1Mbps GFSK		-91	-	dBm
RX Sensitivity (EDR)	2Mbps π/4-DQPSK	-	-93	-	dBm
	3Mbps 8DPSK	-	-85	-	dBm
RX Sensitivity (BLE)	1Mbps GFSK	-	-93	-	dBm
Maximum Input Level	1Mbps GFSK	-	-20	-	dBm
	2Mbps π/4-DQPSK	-	-20	-	dBm
	3Mbps 8DPSK	-	-10	-	dBm
TX Out Power Class1, Class2, Class3		-17	7	-	dBm

@BR, EDR				
BLE	-	7	-	dBm

7 Package Outline & PCB Layout Design

Figure 7-1 Package Dimensions

Table 7-1 Package Dimensions

Symbol	Min	Тур	Max	Unit
Α	0.70	0.75	0.80	mm
A1	0	0.02	0.05	mm
A3	0.20REF			mm
b	0.15	0.20	0.25	mm
D	4.90	5.00	5.10	mm
E	4.90	5.00	5.10	mm
D2	3.15	3.30	3.45	mm
E2	3.15	3.30	3.45	mm
е	0.30	0.40	0.50	mm
К	0.20	-	-	mm

L	0.30	0.40	0.50	mm
R	0.09	-	-	mm
La	0.12	0.15	0.18	mm
Lb	0.23	0.26	0.29	mm
Lc	0.30	0.39	0.50	mm

Figure 7-2 Example for PCB Layout Design

Figure 7-3 Photograph of Package Top

8 Carrier Information

XR829 use two kinds of carriers for customer delivery and production, which are tray carrier and tape reel carrier. Each tray has 490ps of chips, while each tape reel provides 4900ps samples.

8.1 Tray Carrier

NOTE:

1. HEAT RESISTANCE UP TO 24 HOURS 150°C.

2. SURFACE ELECTRIC RESISTIVITY LESS THAN $10^{12}\Omega$ /sq.

3. WARPAGE IS WITHIN 0.76mm.

4. TOLERANCE : X=±0.5mm

 $X.X=\pm0.25mm$ $X.XX=\pm0.13mm$

5. Material: PPE+Carbon Fiber.

8.2 Tape Reel Carrier

SECTION A-A

⚠ 技术要求:

- 1. 颜色: 蓝色。
- 2. 未注公差为±0.20mm; 3. 盘面光洁,无翘曲变形、杂质等缺陷;

- 4. 外包装良好,无破损;
 5. 表面电阻率; 10⁵~10¹⁰ Ω/□。
 6. 卷盘表面除指定的标识外,其余依供应商而定。

圆盘基本尺寸 (mm)							
载带宽度	A	В	С	D	t		
12	$\emptyset 329 \pm 1$	12.8±1	∅100 <u>±</u> 1	Ø13.3±0.3	2.0±0.3		