

Image Formation

- A digital grayscale image is a 2-d matrix of intensity values
- The intensity I is a function of position
 - I(x,y)
- Each of the array elements (enlarged here for clarity) is called a pixel (picture element)
- Each pixel has one single intensity

Image Formation (contd.)

A color image is made up of three component images

Blue

Image Formation (contd.)

So an RGB color image is a 3-D array I(x,y,c) with each pixel being represented by three 8-bit integers

The RGB Color System

Try: http://math.lakeforest.edu/banerji/slider.html

Grayscale

- Only one intensity image to represent all colors
- Several systems used
 - Y = 0.2126*R + 0.7152*G + 0.0722*B
 - \Rightarrow Y = 0.299*R + 0.587*G + 0.114*B
 - Y = 0.2627*R + 0.6780*G + 0.0593*B
- Weight for Green > Red > Blue
- The three weights add up to 1
- Further reading:
 - https://en.wikipedia.org/wiki/Grayscale

The HSV Color System

- Hue is represented by an angle it indicates the color
- Saturation indicates the purity of the color
 - 0 means gray
- Value indicates the intensity value of the pixel
 - Similar to the grayscale image
- Related color spaces: HSL, HSV, HSB, HSI
- Further reading:
 - https://en.wikipedia.org/wiki/H
 SL_and_HSV

Other Color Systems

- ♦ CMY
- ♦ CMYK
- ♦ YCbCr
- ♦ I₁I₂I₃
- ♦ L*a*b* (CIELAB)
- ♦ XYZ
- ⋄ oRGB
- Further Reading:
 - https://en.wikipedia.org/wiki/Color_model

The Big Question

- ♦ If all images are matrices of numbers, then how can we tell
 - What is in an image?
 - Whether two images are similar?
 - Whether two images are different?
 - Which parts of an image are important?
- ♦ For this, we need to convert the matrix into a feature vector.