Misturas e Soluções

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Composição das Soluções

- 1. Concentração mássica e molar.
- 2. Partes por milhão (ppm) e bilhão (ppb).
- 3. Molalidade.
- 4. Concentração de peróxido de hidrogênio em volumes:

$$\text{F} = \frac{V_{\text{CNTP}}(O_2)}{V} = 11,\!2 \cdot \frac{[H_2O_2]}{\text{mol } L^{-1}}$$

1.0.1 Habilidades

- a. Relacionar as unidade de concentração de soluções.
- b. Calcular a concentração em volumes para uma solução de peróxido de hidrogênio.

Operações com Soluções

- 1. Diluição e secagem.
- 2. Misturas.
- 3. Balançoes materiais.
- 4. Balanço energético.

2.0.2 Habilidades

a. Calcular a concentração final após uma operação em solução.

Reações em Solução

- 1. Estequiometria em solução.
- 2. Rendimento.

3.0.3 Habilidades

a. **Calcular** a quantidade de produto formado em uma reação em solução.

Soluções Iônicas

- 1. Balanço de cargas.
- 2. Condutividade específica:

$$\kappa = \frac{1}{\rho} = \frac{1}{RA}$$

3. Condutividade molar:

$$\Lambda_{\rm m}^{\circ} = \frac{\kappa}{c}$$

4. Lei de migração independente:

Misturas e Soluções | Gabriel Braun, 2022

$$\Lambda_{\rm m}^{\circ}=\lambda_{+}^{\circ}+\lambda_{-}^{\circ}$$

5. Mobilidade iônica.

4.0.4 Habilidades

- a. Calcular a concentração de íons em solução a partir da condutividade.
- b. **Comparar** a condutividade de diferentes íons em solução.

Absortividade das Soluções

- 1. Espectrofotometria.
- 2. Absortividade molar.
- 3. Lei de Beer-Lambert:

$$A = \log_{10} \frac{I_0}{I} = \varepsilon Lc$$

5.0.5 Habilidades

 a. Determinar a concentração de íons em solução a partir de sua absortividade.

Nível I

PROBLEMA 5.1

3D01

Considere a reação química:

$$4 \operatorname{NO}_2(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{N}_2 \operatorname{O}_5(g)$$

Em um experimento, são formados $6 \text{ mol de } N_2O_5 \text{ em um minuto}$

Assinale a alternativa que mais se aproxima da velocidade média de consumo de dióxido de nitrogênio.

- \mathbf{A} 100 mmol s⁻¹
- \mathbf{B} 200 mmol s⁻¹
- \mathbf{C} 300 mmol s⁻¹
- \mathbf{D} 400 mmol s⁻¹
- $E 500 \,\mathrm{mmol}\,\mathrm{s}^{-1}$

Considere a reação química:

$$HBrO_3(aq) + HBr(aq) \longrightarrow Br_2(aq) + H_2O(aq)$$

Em um experimento, são consumidos 20 mmol de HBr em um segundo.

Assinale a alternativa que mais se aproxima da velocidade média de formação de bromo.

- \mathbf{A} 12 mmol s⁻¹
- \mathbf{B} 14 mmol s⁻¹
- $16 \,\mathrm{mmol}\,\mathrm{s}^{-1}$
- \mathbf{D} 18 mmol s⁻¹
- \mathbf{E} 20 mmol s⁻¹

PROBLEMA 5.3

3D06

Considere a reação química:

$$FeCl_2(aq) + O_2(aq) + HCl(aq) \longrightarrow FeCl_3(aq) + H_2O(l)$$

Quando a concentração de ferro (II) é duplicada, a velocidade da aumenta 8 vezes. Quando as concentrações de ferro (II) e oxigênio são duplicadas, a velocidade aumenta 16 vezes. Quando a concentração de todos os reagentes é duplicada, a velocidade aumenta 32 vezes.

Assinale a alternativa com a ordem da reação em relação ao ácido clorídrico.

- **A** 0
- **B** 1
- **c** 2
- **D** 3
- **E** 4

Considere a reação química:

PROBLEMA 5.4

$$CH_3Br(aq) + OH^-(aq) \longrightarrow CH_3OH(aq) + Br^-(aq)$$

Quando a concentração de hidróxido é duplicada, a velocidade da reação dobra. Quando a concentração de bromometano é triplicada, a velocidade da reação triplica.

Assinale a alternativa com a ordem global da reação.

- A (
- **B** 1
- **c** 2
- **D** 3
- E 4

PROBLEMA 5.5

3D03

A reação de Sabatier-Sanderens consiste na hidrogenação catalítica de alcenos ou de alcinos com níquel, para a obtenção de alcanos. Considere os resultados obtidos na reação de hidrogenação do acetileno:

Assinale a alternativa que mais se aproxima da velocidade média de consumo do hidrogênio no período de 4 min a 6 min.

- **A** $1,0 \, \text{mol} \, \text{L}^{-1} \, \text{min}^{-1}$
- **B** $1,5 \, \text{mol} \, \text{L}^{-1} \, \text{min}^{-1}$
- c 2,0 mol L⁻¹ min⁻¹
- **D** $2.5 \, \text{mol} \, \text{L}^{-1} \, \text{min}^{-1}$
- $E 3,0 \, \text{mol} \, L^{-1} \, \text{min}^{-1}$

PROBLEMA 5.6

3D08

Considere a reação de decomposição do NO₂:

$$2 \operatorname{NO}_2(g) \longrightarrow 2 \operatorname{NO}(g) + \operatorname{O}_2(g)$$

Essa reação possui constante cinética $k=0.5\,\rm atm^{-1}\,s^{-1}$. Em um experimento 4,6 g de NO_2 são adicionados em um recipiente de 224 mL a 0 °C.

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de NO.

- \mathbf{A} 5 atm s⁻¹
- \mathbf{B} 10 atm s⁻¹
- **C** $50 \, \text{atm s}^{-1}$
- **D** $100 \, \text{atm s}^{-1}$
- **E** $500 \, \text{atm s}^{-1}$

Considere a reação química:

$$2\mathbf{A}(g) + 2\mathbf{B}(g) + \mathbf{C}(g) \longrightarrow 3\mathbf{G}(g) + 4\mathbf{F}(g)$$

Os resultados a seguir foram obtidos no estudo da cinética dessa reação:

() #	[A] /mM	[B] /mM	[C] /mM	$/(\text{mM s}^{-1})$
() 1	10	100	700	2
$\overset{\smile}{2}$	20	100	300	4
3	20	200	200	16
4	10	100	400	2
5	50	300	500	
$\overline{\cap}$				

Assinale a alternativa que mais se aproxima da velocidade inicial de consumo de **A** no experimento **5**.

- **A** $50 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **B** $60 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $70 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **D** $80 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **E** $90 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$

PROBLEMA 5.8

3D10

Considere a reação química:

$$2\mathbf{A}(g) + 2\mathbf{B}(g) \longrightarrow \mathbf{C}(g)$$

Os resultados a seguir foram obtidos no estudo da cinética dessa reação:

() #	[A] /mM	[B] /mM	$v/(mM s^{-1})$
() 1	0,60	0,30	12,6
$\tilde{2}$	0,20	0,30	1,4
3	0,60	0,10	4,2
4	0,17	0,25	ŕ
()			

Assinale a alternativa que mais se aproxima da velocidade inicial do experimento **4**.

- **A** $0.59 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **B** $0.63 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- c 0,74 mmol L⁻¹ s⁻¹
- **D** $0.87 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $E = 0.96 \, \text{mmol} \, L^{-1} \, \text{s}^{-1}$

Considere a reação química:

PROBLEMA 5.9

$$\mathbf{A}(aq) + \mathbf{B}(aq) + \mathbf{C}(aq) \longrightarrow \mathbf{G}(aq)$$

Os resultados a seguir foram obtidos no estudo da cinética dessa reação:

() #	[A] /mM	[B] /mM	[C] /mM	$v_{\rm G}/({\rm mM~s}^{-1}$
() 1	1,25	1,25	1,25	8,7
ž	2,50	1,25	1,25	17,4
3	1,25	3,00	1,25	50,8
4	1,25	3,00	3,75	457,0
5	3,00	1,00	1,15	,
0				

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de **G** no experimento **5**.

- **A** 10,5 mmol L^{-1} s⁻¹
- **B** $11,5 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $12,5 \,\mathrm{mmol}\,\mathrm{L}^{-1}\,\mathrm{s}^{-1}$
- **D** $13.5 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $E 14,5 \, \text{mmol} \, L^{-1} \, \text{s}^{-1}$

PROBLEMA 5.10

3D12

Considere a reação de síntese do gás fosgênio.

$$CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$$

Os resultados a seguir foram obtidos no estudo da cinética dessa reação:

() #	[CO] /mM	$[Cl_2]/mM$	$r_{\text{COCl}_2}/(\text{mM s}^{-1})$
() 1	0,12	0,20	0,121
$\ddot{2}$	0,24	0,20	0,241
3	0,24	0,40	0,682
4	0,17	0,34	·
()			

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de COCl₂ no experimento **4**.

- **A** $0.17 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **B** $0.37 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- \mathbf{c} 0,57 mmol L⁻¹ s⁻¹
- **D** $0.77 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **E** $0,97 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$

A substância **A** sofre decomposição com cinética de ordem zero. **Assinale** a alternativa *correta*.

- A velocidade inicial de consumo de A é maior que sua média.
- **B** A velocidade inicial de consumo de **A** é função da concentração de **A**.
- **C** A velocidade inicial de consumo de **A** permanece constante durante a reação.
- **D** O logaritmo da concentração de **A** diminui linearmente com o tempo.
- **E** A concentração de **A** diminui exponencialmente.

PROBLEMA 5.12

3D14

Uma substância gasosa se decompõe por um processo com cinética de orem zero com constante $k=1\times 10^{-3}\, atm\, s^{-1}$. Em um experimento, a pressão inicial dessa substância é 0,6 atm. **Assinale** a alternativa que mais se aproxima do tempo necessário para que um terço da substância se decomponha.

- **A** 100 s
- **B** 200 s
- **c** 400 s
- **D** 600 s
- **E** 700 s

PROBLEMA 5.13

3D15

Considere a reação de decomposição do N₂O₅:

$$2\,N_2O_5(g) \longrightarrow 4\,NO_2(g) + O_2(g)$$

Com cinética de primeira ordem e constante $k=5,2\times 10^{-3}~s^{-1}$. Em um experimento a concentração inicial de N_2O_5 é 40 mmol L^{-1} . **Assinale** a alternativa que mais se aproxima da concentração de N_2O_5 após 600 s do início do experimento.

- A 1,4 mmol L
- B 1,8 mmol L
- c 2,2 mmol L
- **D** 2,6 mmol L
- E 3,8 mmol L

Um fármaco é metabolizado pelo corpo humano por um processo com cinética de primeira ordem com constante $k=7,6\times 10^{-3}~\text{min}^{-1}$. Uma dose contendo 20 mg desse fármaco é administrada em um paciente.

Assinale a alternativa que mais se aproxima da massa de fármaco restante após 5 h da administração.

- A 2 mg
- B 6 mg
- **c** 10 mg
- **D** 14 mg
- **E** 18 mg

PROBLEMA 5.15

3D17

Considere a reação de decomposição do etano a 700 °C:

$$C_2H_6 \longrightarrow 2\,CH_3$$

Com cinética de primeira ordem e constante $k=2\,h^{-1}$. Em um experimento a pressão inicial de etano é 20 atm. **Assinale** a alternativa que mais se aproxima do tempo necessário para que a pressão de metano caia para 2 atm

- A 50 min
- **B** 70 min
- **c** 90 min
- **D** 120 min
- **E** 150 min

PROBLEMA 5.16

3D18

O mercúrio é metabolizado pelo corpo humano por um processo com cinética de primeira ordem de meia-vida de 70 dias. **Assinale** a alternativa que mais se aproxima do tempo necessário para que a concentração do mercúrio nos tecidos de um paciente decaia para 12,5% de seu valor inicial.

- A 70 dias
- **B** 140 dias
- **c** 210 dias
- **D** 280 dias
- **E** 350 dias

Considere a reação de decomposição do NO₂:

$$2 NO_2(g) \longrightarrow 2 NO(g) + O_2(g)$$

Com cinética de segunda ordem e constante $k=0.54\,L\,mol^{-1}\,s^{-1}$. Em um experimento a concentração inicial de NOBr é $0.3\,mol\,L^{-1}$. **Assinale** a alternativa que mais se aproxima do tempo necessário para que a concentração de NOBr caia para $0.1\,mol\,L^{-1}$

- **A** 10 s
- **B** 12 s
- **c** 14 s
- **D** 16 s
- **E** 18 s

PROBLEMA 5.18

3D21

Considere a reação de decomposição do N₂O a 1000 K:

$$2\,N_2O\left(g\right) \longrightarrow 2\,N_2(g) + O_2(g)$$

Os resultados a seguir foram obtidos no estudo da cinética dessa reação:

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de oxigênio em um experimento em que a pressão parcial de N₂O é 30 atm.

- \mathbf{A} 12 atm s⁻¹
- \mathbf{B} 24 atm s⁻¹
- c 72 atm s⁻¹
- **D** $360 \, atm \, s^{-1}$
- **E** $720 \, \text{atm s}^{-1}$

Considere a reação de decomposição do NOBr:

$$2 \operatorname{NOBr}(g) \longrightarrow 2 \operatorname{NO}(g) + \operatorname{Br}_2(g)$$

Com cinética de segunda ordem e constante $k=0.8\,L\,mol^{-1}\,s^{-1}$. Em um experimento a concentração inicial de NOBr é 860 mol L^{-1} . **Assinale** a alternativa que mais se aproxima da concentração de NOBr após 22 s.

- A 26 mmol L
- B 35 mmol L
- C 44 mmol L
- D 53 mmol L
- E 62 mmol L

PROBLEMA 5.20

3D22

Considere a reação de decomposição do HI a 800 K:

$$H_2(g) + I_2(g) \longrightarrow 2 HI(g)$$

Considere os resultados obtidos no estudo da cinética dessa reação com mesma concentração inicial de H₂ e I₂:

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de HI em um experimento em que a concentração de H_2 e I_2 é 2 mol L^{-1} .

- \mathbf{A} 6 atm s⁻¹
- \mathbf{B} 12 atm s⁻¹
- \mathbf{C} 24 atm s⁻¹
- \mathbf{D} 48 atm s⁻¹
- \mathbf{E} 72 atm s⁻¹

PROBLEMA 5.21 3D23

Considere quatro séries de experimentos em que quatro espécies químicas reagem entre si, à pressão e temperatura constantes:

$$\mathbf{A}(aq) + \mathbf{B}(aq) + \mathbf{C}(aq) + \mathbf{D}(aq) \longrightarrow \text{produtos}$$

Em cada série, fixam-se as concentrações de três espécies e varia-se a concentração, c_0 , da quarta. Para cada série, determina-se a velocidade inicial da reação, v_0 , em cada experimento. Os resultados de cada série são apresentados a seguir.

Assinale a alternativa com a ordem global da reação.

- **A** 3
- B 4
- **C** 5
- **D** 6
- **E** 7

PROBLEMA 5.22 3D25

Considere os resultados obtidos no estudo cinético da decomposição da substância **A**.

0	100	200	300	400	500
t/s					
() [A]/M	0,63	0,43	0,30	0,21	0,14
$ln([\mathbf{A}]/M)$	-0,46	-0,84	-1,20	-1,56	-1,97
$1/([\mathbf{A}]/\mathrm{M})$	1,59	2,33	3,33	4,76	7,14
()					

Assinale alternativa que mais se aproxima da constante cinética dessa reação.

- $m A \ 4 \times 10^{-3} \, s^{-1}$
- $\hbox{\bf B} \quad 4\times 10^{-3}\, mol\, L^{-1}\, s^{-1}$

PROBLEMA 5.23

3D24

Considere a reação química:

$$\mathbf{A}(g) \longrightarrow \mathbf{B}(g)$$

Considere as proposições:

- Se [A] variar linearmente com o tempo, a lei de velocidade da reação dependerá somente da constante de velocidade.
- 2. Se $1/[\mathbf{A}]$ variar linearmente com o tempo, a reação será de segunda ordem.
- Se a velocidade da reação variar linearmente com [A], a reação será de primeira ordem.
- **4.** Se a velocidade da reação variar linearmente com [**A**]², a reação será de segunda ordem.

Assinale a alternativa que relaciona as proposições corretas.

- A 1, 2 e 3
- **B** 1, 2 e 4
- **c** 1, 3 e 4
- **D** 2, 3 e 4
- **E** 1, 2, 3 e 4

Considere a reação de decomposição do etanal:

$$CH_3CHO(g) \longrightarrow CH_4(g) + CO(g)$$

Em um experimento, metade do etanal em um cilindro de 90 atm sofre decomposição em 20 min. A lei de velocidade para essa reação é:

$$\nu_{\text{CH}_3\text{CHO}} = -k[\text{CH}_3\text{CHO}]^{3/2}$$

Assinale a alternativa que mais se aproxima do tempo necessário para a decomposição de metade do etanal em um cilindro de 10 atm.

- **A** 1 h
- **B** 2 h
- **c** 3 h
- **D** 4h
- **E** 5 h

PROBLEMA 5.25

3D27

Considere a reação de decomposição do amônia:

$$NH_3(g) \longrightarrow \frac{1}{2}\,N_2(g) + \frac{3}{2}\,H_2(g)$$

Os resultados a seguir foram obtidos no estudo da cinética dessa reação:

() P _{NH3} /atm	264	130	59	16
() t _{1/2} /min	456	228	102	60
()				

Assinale a alternativa com a ordem dessa reação.

- **A** 0
- **B** 1
- **c** 2
- **D** 3
- E 4

Considere os resultados obtidos no estudo cinético da decomposição de três substâncias, **A**, **B** e **C**

0	200	210	202	230	240
t/s	200	210	202	250	240
() [A]/M	0,8000	0,7900	0,7800	0,7700	0,7600
$[\mathbf{B}]/\mathrm{M}$	0,8333	0,8264	0,8196	0,8130	0,8064
$[\mathbf{C}]/M$	0,8186	0,8105	0,8024	0,7945	0,7866
$\overline{\cap}$					

Assinale a alternativa com a ordem da cinética de decomposição de **A**, **B** e **C**, respectivamente.

A 1, 2 e 0.

PROBLEMA 5.26

- **B** 0, 1 e 2.
- **c** 0, 2 e 1.
- **D** 2, 0 e 1.
- **E** 2, 1 e 0.

PROBLEMA 5.27

3D30

Dois isômeros **A** e **B** se decompões com cinética de segunda ordem formando o composto **C**:

$$2 \mathbf{A} \xrightarrow{k_1} \mathbf{C}$$

$$2 \mathbf{B} \xrightarrow{k_2} \mathbf{C}$$

Sendo $k_1=0,25\,L\,mol^{-1}\,s^{-1}$. Em um experimento, uma solução é preparada com $10\,mmol\,L^{-1}$ de ${\bf A}$ e $25\,mmol\,L^{-1}$ de ${\bf B}$. Após três minutos, a concentração de ${\bf C}$ é $3,7\,mmol\,L^{-1}$. Assinale a alternativa que mais se aproxima do valor da constante cinética k_2 .

- **A** $0.11 \, \text{L} \, \text{mol}^{-1} \, \text{s}^{-1}$
- **B** $0.22 \, \text{L} \, \text{mol}^{-1} \, \text{s}^{-1}$
- c 2,20 L mol⁻¹ s⁻¹
- \mathbf{D} 0,44 L mol⁻¹ s⁻¹
- \mathbf{E} 4,40 L mol⁻¹ s⁻¹

3D29

Considere os resultados obtidos no estudo cinético da decomposição de quatro substâncias, A, B, C e D.

Assinale a alternativa com a substância que sofre decaimento com cinética de segunda ordem.

- A A
- ВВ
- C C
- D D
- E N

Considere a reação química:

$$2\,\boldsymbol{A}(g) \longrightarrow 3\,\boldsymbol{C}(g) + 4\,\boldsymbol{D}(g) + \boldsymbol{E}(g)$$

A lei de velocidade para essa reação a 293 °C é:

$$v_{A} = -(0,25 \, h^{-1}) P_{A}$$

Um reator químico, projetado com uma válvula de alívio de pressão que é acionada a 8,5 atm, contém uma mistura gasosa composta por quantidades iguais do reagente **A** e de uma substância inerte **B**, a 10 °C e 2 atm. Ao elevar rapidamente a temperatura do reator para 293 °C, o reagente **A** começa a se decompor.

- a. Determine o tempo até que a válvula de alívio seja acionada.
- Determine a composição do reator no momento de acionamento da válvula.
- Determine a quantidade máxima de mistura gasosa que pode ser adicionada ao reator sem que a válvula de alívio seja acionada.

PROBLEMA 5.30

3D33

Considere a reação química:

$$2\,\boldsymbol{A}(g) \longrightarrow 3\,\boldsymbol{B}(g)$$

Um reator contem 20 atm de uma mistura gasosa contendo 75% da substância **A** e 25% do inerte **I** em volume. Os resultados a seguir foram obtidos no estudo da cinética dessa reação:

() t/min	0,89	2,08	3,75	6,25	10,42
() P/atm	21	22	23	24	25
$v/atm min^{-1}$	1,96	1,44	1,00	0,64	0,36
()					

- a. **Determine** a ordem da reação.
- b. Determine a constante cinética da reação.
- c. **Determine** a composição do reator em 10,42 min.

Gabarito

Nível I

- 1. B
- 2. A
- 3. B
- 4. C
- 5. E
- 6. E
- 7. B
- 8. D
- 9. B
- •
- 10. D
- 11. C
- 12. A
- 13. B
- 14. A
- 15. B
- 16. C
- 17. B
- 18. C
- 19. D
- 20. C

Nível II

- 1. C
- 2. A
- 3. E
- 4. A
- 5. A
- 6. C
- 7. C
- 8. C
- **9.** a. 6 h
 - b. $P_{A}=0.5\,atm,\,P_{B}=2\,atm,\,P_{C}=2,\!25\,atm,\,P_{D}=0,\!75\,atm,\,P_{E}=0,\!75\,atm$
 - c. 1,7 atm
- 10. a. Segunda ordem
 - b. $0,01 \, \text{min atm}^{-1}$
 - c. $P_A=6$ atm, $P_B=14$ atm, $P_C=4$ atm