Objectives

By the end of this module we will learn:

- Define File Management System
- Drawbacks of File Management System
- Define Database Management System (DBMS)
- · Benefits of DBMS
- Functionalities of DBMS
- Data Models

What is a Database?

- Data: Is nothing but known facts which is recorded with implicit meaning
- · Database: It is a collection of logically related data at one place

Agenda

- 1
- Introduction to Database Management System (DBMS)
- 2

Introduction to Relational Database Management System (RDBMS)

DBMS

- Database Management System: is a collection of programs that facilitates the management of databases. It acts as an interface between user and database
- Management activities of a DBMS is to:
 - To provide an efficient environment to access the data in database
 - To provide methods for adding or modifying the data content
 - Defining structure for storing new data
 - Implement security, concurrency control and recovery from crash

Benefits of DBMS

- Redundancy is reduced
- Inconsistency is avoided
- Data is shared
- Standard is enforced
- Security is applied
- Integrity is maintained
- Data Independency is provided

Data Model

- Data Model provides structure to the data of the Database System
- It is used to achieve compatibility across systems and applications
- Three types of common data model instance are:
 - Conceptual Model otherwise called Logical model Eg: Entity Relationship Diagram
 - Physical Model or Database Record based Model like Hierarchical, Network, Relational or Object Oriented Model
 - Representational Model

Types of Database Models

- The most well-known record-based models are the Hierarchical Model, the Network Model, the Relational Model, the Object Oriented Model.
- Hierarchical Model
 - · Represents data as hierarchical tree
 - Very efficient model in case of searching
 - But had issues when a data element is associated with more than one group

HIERARCHICAL

Types of Database Models (Contd.).

- Network Model
 - This overcomes Hierarchical Model issue
 - This represents data as record types
 - Each record has a link field corresponding to every relationship which it participates in(Circular Linked List)
 - It is a general and powerful model
 - But still it had high system complexity and very less structural data independence

Types of Database Models (Contd.).

- Relational Model
 - Network model is replaced with relational model
 - Represents data as record types in table format
 - · Relationship between records are maintained using logical data

Types of Database Models (Contd.).

- Object Oriented Model
 - Here information is organized in graphs of objects, where each object has a number of attributes(Columns).
 - Attributes can be simple values, complex values like references to other objects.
 - Relationship is maintained through inheritance(like hierarchical).

Quiz

- One live database system for each of these models
 - Hierarchical model
 - Network Model
 - Relational Model
 - Object Oriented Model

Objectives

By the end of this module we will learn:

- Definition: RDBMS
- · Features of an RDBMS
- Some Important Terms
- Properties of Table
- Key and Type of Keys
- Referential Integrity

Definition of RDBMS

- Drawbacks of DBMS
 - DBMS models are complex
 - It is very difficult for new programmers and users to understand thus training is required
 - · Requires a costly system set up
- These drawbacks gave way for the new Relational Model
- Relational Model
 - Dr. Database in which all the data is represented in form of Tables.

Benefits of an RDBMS

- The ability to create multiple relations (tables) and enter data into them
- An interactive query language
- · Retrieval of information stored in more than one table
- Provides a Catalog or Dictionary, which itself consists of tables (called system tables)

Some Important Terms

- Relation : A table
- Tuple : A row in a table
- Attribute: A Column in a table
- Degree : Number of attributes
- Cardinality : Number of tuples
- Primary Key: A unique identifier for the table
- Domain: Pool of values from which specific attributes of specific relations draw their values

Table or Relation Properties

- There are no duplicate rows (Tuples)
- Tuples are unordered, top to bottom
- Attributes are unordered, left to right
- All attribute values are atomic (or scalar)
- Relational databases do not allow repeating groups

Key and Types of Keys

- Key
 - An attribute or a set of attributes whose values uniquely identify each entity in an entity set
- Super Key
 - A key whose values uniquely identify each entity in an entity set, which is generally all combination subsets of the table.
- Candidate Keys smallest subsets are identified as candidate keys
 - Primary Key: Chosen key to uniquely identify a table
 - Alternate Key: other candidate keys are termed as alternate keys
- Secondary Keys
 - Keys that classify the entity set

Referential Integrity

<u>Student</u> sid cid grade 53666 carnatic101 C Student sid name login

В

53650 topology112 A 53666 history105 B

53688 reggae203

Foreign key referring to sid of STUDENT relation

 53666 Jones
 Jones@cs
 18
 3.4

 53688 Smith
 Smith@eecs
 18
 3.2

 53650 Smith
 Smith@math
 19
 3.8

age

gpa

Primary key

Quiz

Stock						Movement						
Stock Code	Stock Description	UOM	Quantity on Hand	Average Cost		Transactio n Date		Supplier	Docume nt Number	Stock Code	Transacti on Quantity	Invoice Amount
PM2000	Plastic Wrap	Rolls	8.50	20.54		7/7/2015	Purchase	XY Packaging	IN0009	PM2000	5.00	105.00
PM2005	Labels	1000	-	-		7/7/2015	Purchase	QS Printers	76868	PM2005	2.00	750.00
PM2015	Boxes	Units	18.00	1.02		7/7/2015	Purchase	WW Butchery	5765765	RM1000	400.00	21,760.00
RM1000	Meat	Kg	600.00	46.47		7/16/2015	Usage	None	None	PM2000	-2.00	_
						7/16/2015	Usage	None	None	PM2005	-1.00	-

Identify the following from above tables

- Primary Keys of both the tables
- Foreign Key
- Degree of table 1 and 2
- Cardinality of table 1 and 2
- Nullable columns of table 1 and 2

