Q&A (2.11-2.20)

Luotingyu Jianghui

11th September 2019

Exercise 2.11: (Eigenedecomposition of the Pauli matrices) Find the eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices X, Y, Z.

Answer:

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

For any matrices A, through $\det |A - \lambda I| = 0$, we can caculate the eigenvalues. Firstly, we discuss X. We set $\det |X - \lambda I| = 0$, then

$$\left| \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \right| = 0, \left| \begin{array}{cc} -\lambda & 1 \\ 1 & -\lambda \end{array} \right| = 0.$$

The solution of λ is 1 or -1.

When $\lambda_1 = 1$, calculate $(X - \lambda_1 I)|\lambda_1\rangle = 0$,

$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Thus we get the solution $x_1 = x_2$.

We assume that $x_1 = 1$, then $x_2 = 1$.

After normalization, the following eigenvector is obtained:

$$|\lambda_1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |+\rangle.$$

When $\lambda_2 = -1$, calculate $(X - \lambda_2 I)|\lambda_2\rangle = 0$,

$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Thus we get the solution $x_1 = -x_2$.

We assume that $x_1 = 1$, then $x_2 = -1$.

After normalization, the following eigenvector is obtained:

$$|\lambda_2\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0 \end{bmatrix} - \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1 \end{bmatrix} = |-\rangle.$$

Thus the diagonal representation of X is $|+\rangle\langle+|-|-\rangle\langle-|$. Secondly, we discuss Y. We set $\det |Y - \lambda I| = 0$, then

$$\left| \begin{bmatrix} 1 & -i \\ i & 0 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \right| = 0, \left| \begin{array}{cc} -\lambda & -i \\ i & -\lambda \end{array} \right| = 0.$$

The solution of λ is 1 or -1.

When $\lambda_1 = 1$, calculate $(Y - \lambda_1 I)|\lambda_1\rangle = 0$,

$$\begin{bmatrix} -1 & -i \\ i & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

So we get the solution $x_1 = -ix_2$.

We assume that $x_1 = 1$, then $x_2 = i$.

After normalization, the following eigenvector is obtained:

$$|\lambda_1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\i \end{bmatrix}.$$

When $\lambda_2 = -1$, calculate $(Y - \lambda_2 I)|\lambda_2\rangle = 0$,

$$\begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

So we get the solution $x_1 = ix_2$. We assume that $x_1 = 1$, thus $x_2 = -i$. After normalization, the following eigenvector is obtained:

$$\begin{aligned} |\lambda_2\rangle &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -i \end{bmatrix}. \\ \text{So we can get } Y &= \begin{bmatrix} \frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2}i \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}i \end{bmatrix} - \begin{bmatrix} \frac{\sqrt{2}}{2}\\ -\frac{\sqrt{2}}{2}i \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}i \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} 1\\ i \end{bmatrix} \begin{bmatrix} 1 & i \end{bmatrix} - \begin{bmatrix} 1\\ -i \end{bmatrix} \begin{bmatrix} 1 & -i \end{bmatrix} \end{bmatrix}. \end{aligned}$$

Thirdly, we discuss Z. We set $det|Z - \lambda I| = 0$, then

$$\left| \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \right| = 0, \left| \begin{array}{cc} 1 - \lambda & 0 \\ 0 & -1 - \lambda \end{array} \right| = 0.$$

The solution of λ is 1 or -1.

When $\lambda_1 = 1$, calculate $(Z - \lambda_1 I)|\lambda_1\rangle = 0$,

$$\begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

The solution is $x_2 = 0$.

We assume that $x_1 = 1$, thus $|\lambda_1\rangle = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$.

When $\lambda_2 = -1$, calculate $(Z - \lambda_2 I)|\bar{\lambda_2}\rangle = 0$,

$$\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

The solution is $x_1 = 0$.

We assume that $x_2 = 1$,

thus
$$|\lambda_2\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.

So the diagonal representation of Z is $|0\rangle\langle 0| - |1\rangle\langle 1|$.

Exercise 2.12: Prove that the matrix $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ is not diagonalizable.

Answer:

The necessary and sufficient condition for diagonalization is that there are n linearly independent eigenvectors for n-order square matrices. According to the knowledge of linear algebra elementary transformation,

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \xrightarrow{second\ line\ minus\ first\ line} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \text{ They have same eigenvalue } \lambda = 1.$$
 Then we compute the eigenvectors,
$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Thus we get the solution is $x_1 = 0$, and we set $x_2 = 1$. So the eigenvector is $k \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $k \neq 0$.

Only have one eigenvalue and one anti-linearly dependent eigenvector of the matrix does not satisfy the necessary and sufficient conditions, so the matrix is not diagonalizable.

Exercise 2.13: If $|w\rangle$ and $|v\rangle$ are any two vectors, show that $(|w\rangle\langle v|)^{\dagger} = |v\rangle\langle w|$.

Answer:

Suppose A, B is any linear operator on a Hilbert space V. For all vectors $|w\rangle, |v\rangle \in V$, since $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ and $|v\rangle^{\dagger} \equiv \langle v|$, we can get $(|v\rangle\langle w|)^{\dagger} = \langle w|^{\dagger}|v\rangle^{\dagger} = |w\rangle\langle v|$.

Exercise 2.14:(Anti-linearity of the adjoint) Show that the adjoint operation is anti-

linear,
$$\left(\sum_{i} a_{i} A_{i}\right)^{\dagger} = \sum_{i} a_{i}^{*} A_{i}^{\dagger}$$
.

Answer:

Suppose A_i is any linear operator on a Hilbert space V and we set all vectors $|w\rangle, |v\rangle \in V$. According to inner product is linear in the second argument and conjugate-linear in the first argument, we can make the following derivation:

$$\begin{split} & \left(|v\rangle, \sum_i a_i^* A_i^\dagger \, |w_i\rangle \right) = \sum_i a_i^* \left(|v\rangle, A_i^\dagger \, |w_i\rangle \right) \\ & = \sum_i a_i^* \left(A_i |v\rangle, |w_i\rangle \right) = \left(\sum_i a_i A_i |v\rangle, |w_i\rangle \right) = \left(|v\rangle, \left(\sum_i a_i A_i \right)^\dagger |w_i\rangle \right). \end{split}$$
 Thus the adjoint operation is anti-linear, $\left(\sum_i a_i A_i \right)^\dagger = \sum_i a_i^* A_i^\dagger.$

Exercise 2.15: Show that $(A^{\dagger})^{\dagger} = A$.

Answer:

Suppose A is any linear operator on a Hilbert space V and we set $|w_i\rangle, |v\rangle \in V$. Since $(|v\rangle, A^{\dagger}|w\rangle) = (A^{\dagger}|w\rangle, |v\rangle)^* = (|w\rangle, A|v\rangle)^* = (A|v\rangle, |w\rangle)$ and $(|v\rangle, A^{\dagger}|w\rangle) = [(A^{\dagger})^{\dagger}|v\rangle, |w\rangle]$. Thus we proved that $(A^{\dagger})^{\dagger} = A$.

Exercise 2.16: Show that any projector P satisfies the equation $P^2 = P$.

Answer:

Suppose V is a Hermite space, W is the k-dimensional subspace of d-dimensional vector space V. Using the Gram-Schimdt process, we can construct $|1\rangle$, $|2\rangle$, ... $|d\rangle$ as a set of standard orthogonal basis of V, so that $|1\rangle$, $|2\rangle$, ... $|k\rangle$ is a standard orthogonal basis of W, $P \equiv \sum_{i=1}^{k} |i\rangle\langle i|$.

The proof process is as follows:

$$P^{2} = \left(\sum_{i=1}^{k} |i\rangle\langle i|\right)\left(\sum_{j=1}^{k} |j\rangle\langle j|\right) = \sum_{i=1}^{k} \sum_{j=1}^{k} |i\rangle\langle i|j\rangle\langle j|$$
$$= \sum_{i=1}^{k} \sum_{j=1}^{k} |i\rangle\delta_{ij}\langle j| = \sum_{i=1}^{k} |i\rangle\langle i| = P.$$

Exercise 2.17: Show that a normal matrix is Hermitian if and only if it has real eigenvalues.

Answer:

Suppose A is a normal matrix, so it can be given a spectral decomposition, $A = \sum_i \lambda_i |i\rangle\langle i|$ and $A^{\dagger} = \sum_i \lambda_i^* |i\rangle\langle i|$, $(\lambda_i \geq 0)$.

Since A is a Hermitian operators, we have $A = A^{\dagger}$, then $\sum_{i} \lambda_{i} |i\rangle\langle i| = \sum_{i} \lambda_{i}^{*} |i\rangle\langle i|$. Thus we can get $\lambda_{i} = \lambda_{i}^{*}$, then $\lambda_{i} \in R$. Since $\lambda_{i} \in R$, we can get $\lambda_{i} = \lambda_{i}^{*}$ and $\sum_{i} \lambda_{i} |i\rangle\langle i| = \sum_{i} \lambda_{i}^{*} |i\rangle\langle i|$. Thus we can get $A = A^{\dagger}$. A is Hermitian.

Above all, we proved that a normal matrix is Hermitian if and only if it has real eigenvalues.

Exercise 2.18: Show that all eigenvalues of a unitary matrix have modulus 1, that is, can be written in the form $e^{i\theta}$ for some real θ .

Answer:

Suppose U is a unitary matrix, thus U is normal and can be given a spectral decomposition, $U = \sum_{i} \lambda_{i} |i\rangle\langle i|, (\lambda_{i} \geq 0)$. The derivation process is as follows:

U satisfies $UU^\dagger = I(I \equiv \sum_i |i\rangle\langle i|).$

$$UU^{\dagger} = \left(\sum_{i} \lambda_{i} |i\rangle\langle i|\right) \left(\sum_{i} \lambda_{i} |i\rangle\langle i|\right)^{\dagger} = \sum_{i} \lambda_{i} \lambda_{i}^{*} |i\rangle\langle i| = I.$$

$$\sum_{i} \lambda_{i} \lambda_{i}^{*} |i\rangle \langle i| = \sum_{i} |i\rangle \langle i| \Rightarrow \forall i, \lambda_{i} \lambda_{i}^{*} = 1.$$

Since $\lambda_i \lambda_i^* = 1$, we can get $||\lambda_i|| = 1$.

Let $\lambda_i = e^{i\theta} = \cos \theta + i \sin \theta$, then $\lambda_i^* = e^{-i\theta} = \cos \theta - i \sin \theta$.

Since $e^{i\theta} * (e^{i\theta})^* = (\cos \theta + i \sin \theta) * (\cos \theta - i \sin \theta) = 1$, λ_i can be written in the form $e^{i\theta}$ for some real θ .

Exercise 2.19: (Pauli matrices: Hermitian and unitary) Show that the Pauli matrices are Hermitian and unitary.

Answer:

For Y is an example.

Hermitian:

$$Y^{\dagger} = (Y^*)^{\mathrm{T}} = \left(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}^* \right)^{\mathrm{T}} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = Y.$$

Unitary:

$$Y^{\dagger}Y = (Y^*)^T Y = \left(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}^* \right)^T \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}^T \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I.$$

Thus Y is Hermitian and unitary.

Other cases will also reach corresponding conclusions according to the above calculations.

Exercise 2.20: (Basis changes) Suppose A' and A'' are matrix representations of an operator A on a vector space V with respect to two different orthonormal bases, $|v_i\rangle$ and $|w_j\rangle$. Then the elements of A' and A'' are $A'_{ij} = \langle v_i | A | v_j \rangle$ and $A''_{ij} = \langle w_i | A | w_j \rangle$. Characterize the relationship between A' and A''.

Answer:

Suppose $U \equiv \sum_{i} |w_{i}\rangle \langle v_{i}|$, U is unitary operator, then we can make the following derivation:

$$\begin{split} A'_{ij} &= \left\langle v_i \middle| A \middle| v_j \right\rangle \\ &= \left\langle v_i \middle| U U^\dagger A U U^\dagger \middle| v_j \right\rangle \\ &= \sum_{p,q,r,s} \left\langle v_i \middle| w_p \right\rangle \left\langle v_p \middle| v_q \right\rangle \left\langle w_q \middle| A \middle| w_r \right\rangle \left\langle v_r \middle| v_s \right\rangle \left\langle w_s \middle| v_j \right\rangle \\ &= \sum_{p,q,r,s} \left\langle v_i \middle| w_p \right\rangle \delta_{pq} A''_{qr} \delta_{rs} \left\langle w_s \middle| v_j \right\rangle \\ &= \sum_{p,r} \left\langle v_i \middle| w_p \right\rangle \left\langle w_r \middle| v_j \right\rangle A''_{pr}. \end{split}$$

 $= \sum_{p,r} \left\langle v_i | w_p \right\rangle \left\langle w_r | v_j \right\rangle A_{pr}''.$ Suppose $P = \sum_{ij} p_{ij}$ is a row elementary matrix and its elements are $p_{ij} = \left\langle w_j | v_i \right\rangle$, we can get $A'_{ij} = \sum_{p,r} p_{ip}^* A_{pr}'' p_{jr}$. Thus there is a row elementary matrix P between A and B such that $A' = P^\dagger A'' P$ holds.