TEMPERATURE PREDICTION

By Axel Sjöberg & Erik Stålberg

Data selection

Data selection

Summer of 67 and March of 68

Trends and transformations

Maximum log-likelihood: 0.71 no transformation

testMean.m suggested no deterministic trend

ARMA

ACF & PACF

Strong 24 hour seasonality

Differentiate to remove season

No more seasonality

Time to start modelling

Choosing model orders

MA(24)-term to compensate for differentiation

AR(15) seems good

ARMA(15, 24)

After removing insignificant parameters:

A: 8 remaining terms

C: Only z⁻²⁴-term

Validation data prediction, ARMA Actual data 1 step prediction 1 h naive prediction 29 Aug 30 Aug 31 Aug 01 Sep 02 Sep 03 Sep 04 Sep 05 Sep 06 Sep 07 Sep 08 Sep 09 Sep 10 Sep 11 Sep 12 Sep

Model prediction	1 step	7 steps	26 steps
Naive prediction	1 h	24 h	48 h
Prediction residual variance	0.222	2.375	2.533
Naive residual variance	0.531	3.836	4.814

Validation

Test data prediction, ARMA

	Sep. 1967	Mar. 1968
24 h naive predictor	2.549	2.355
ARMA 7 h	1.447	1.736

ARMA Test

ARMAX

Introducing input signal

Max log-likelihood before transformation: 0.18

Transformation:

$$\boldsymbol{x} := ln(\boldsymbol{x} - min\{\boldsymbol{x}\} + 11)$$

$$\mathbf{x} := \mathbf{x} - mean\{\mathbf{x}\}$$

Max log-likelihood after transformation: 1.03

Net radiation

Removing season

- Fitted AR(24) with only z⁻²⁴-term
- Used resulting model to remove seasonality

Modelling input signal

- Fitted ARMA(12,24) with only z⁻²⁴-term in MA-part
- Removed least significant AR-terms one by one until FPE reached its maximum
- This was done automatically using or own function removeInsignificant

Finding transfer function

We calculated

$$w_t = \frac{C3}{A3\nabla_{24}} m{x}$$
 $\epsilon_t = \frac{C3}{A3\nabla_{24}} m{y}$ and plotted their cross-correlation

It suggests (s,r,d) = (0, 1, 0), however we found (s, r,d) = (0, 3, 0) to work best

Box Jenkins model

Our \tilde{e} =y-Hx was best modelled as with an ARMA(6,2)

This yielded the following Box Jenkins model:

$$B(z) = 1.191 + 0.346z^{-1} - 1.083z^{-2} - 0.243z^{-3}$$

$$C(z) = 1 - 1.539z^{-1} + 0.607z^{-2}$$

$$D(z) = 1 - 2.875z^{-1} + 3.14z^{-2} - 1.636z^{-3} + 0.417z^{-4} - 0.037z^{-6}$$

$$F(z) = 1 - 0.0.518z^{-1} - 0.986z^{-2} + 0.520z^{-3}$$

Test data prediction, ARMAX

	Sep. 1967	Mar. 1968
24 h naive predictor	2.549	2.355
ARMA 7 h	1.447	1.736
ARMAX 7 h	1.147	1.679

ARMAX Test

Kalman filter

Kalman filter

$$x_0 = [A(2:end) B C(2:end)]$$

$$C = [\hat{y}_{t-1}...\hat{y}_{t-p} x_t...x_{t-r} \hat{e}_{t-1}...$$
$$\hat{e}_{t-q}]$$

If $-0.2 < \overline{x}_i < 0.2$ we set $x_i = 0$

This removed 12 of 18 parameters

	Sep. 1967	Mar. 1968
24 h naive predictor	2.549	2.355
ARMA 7 h	1.447	1.736
ARMAX 7 h	1.147	1.679
Kalman 7 h	1.141	1.382

Kalman Test