Representação de Grafos

Um grafo pode ser representado de diversas maneiras. Neste texto apresentaremos três maneiras mais utilizadas: Matriz de adjacência , Lista de Adjacência e Matriz de incidência.

Matriz de Adjacência

Seja G=(V,E) um grafo com n vértices. A matriz de adjacência para G é uma matriz bidimensional $n \times n$, que denotaremos por A, onde A(i,j)=1 se a aresta (i,j) está presente em G.

	12345	
1	01001	
2	10111	
3	01010	
4	01101	
5	11010	

	V]	V Z	V 3	V 4	VJ	10
νį	0	1	0	0	1	0
v_2	1	0	1	1	1	0
ν3	0	1	0	0	0	0
V4	0	1	0	0	1	1
ν5	1	1	0	1	0	0
V6	0	0	0	1	0	0

Propriedades:

- Para grafo simples, os valores da diagonal principal da matriz são 0.
- O grau de um vértice é igual ao número de 1 na linha ou coluna correspondente ao vértice.
- Para saber se um vértice j é adjacente ao vértice i basta consultar a matriz na posição (i,j).
- Para descobrir todos os vértices adjacentes ao vértice i devemos percorrer toda a linha i.

Lista de Adjacência

Nesta representação, a linha i da matriz contém os vértices adjacentes ao vértice i. Cada vértice i tem uma variável d[i] que guarda o grau do vértice i.

	1	2	3	4	5
d	2	4	2	3	3

1	2	5			
2	1	5	4	3	
3	2	4			
4	2	3	5		
5	1	2	4		

Propriedades:

- Para saber se um vértice j é adjacente ao vértice i temos que percorrer todos os vértices adjacentes ao vértices i.
- Para descobrir todos os vértices adjacentes ao vértice i devemos percorrer a linha i até d[i].

Matriz de Incidência

Seja G=(V,E) um grafo com n vértices e m arestas. A matriz de incidência para G é uma matriz bidimensional nxm, que denotaremos por A, onde A(i,j)=1 se a aresta j incide no vértice i em G.

Propriedades:

- Como cada aresta é incidente a exatamente dois vértices, cada coluna contém exatamente dois 1.
- O número de 1 em cada linha é igual ao grau do vértice correspondente.

```
Implementação
Matriz de Adjacência
Inicialização
for (i=1; i<=n; i++) {</pre>
               for(j=1;j<=n;j++){
                 g[i][j] = 0;
}
Arestas
for(i=1;i<=m;i++){
               scanf("%d %d",&a,&b);
               g[a][b] = g[b][a] = 1;
}
Lista de Adjacência
Inicialização
for (i=1; i<=n; i++) {</pre>
   d[i]=0;
Arestas
for(i=1;i<=m;i++){
        scanf("%d %d", &a, &b);
        g[a][d[a]++]=b;
        g[b][d[b]++]=a;
Matriz de Incidência
Inicialização
for(i=1;i<=n;i++){
               for(j=1;j<=m;j++){
                 g[i][j] = 0;
}
Arestas
for (i=1; i<=m; i++) {</pre>
               scanf("%d %d", &a, &b);
               g[a][m] = g[b][m] = 1;
}
```