How DS is applied in healthcare industry?

Ella

https://rockhealth.com/reports/2017-midyear-funding-review-a-record-breaking-first-half/

Examples of healthcare tech companies

SEVEN \$100M+ VENTURE ROUNDS

H1 2017

Outcome	Consumer health information Sells to: Providers	\$500M Goldman Sachs, CapitalG	Chicago, IL
P ELOTON	Connected fitness equipment Sells to: Consumers	\$325M Wellington, KPCB, True Ventures	New York, NY
MODERNIZING MEDICINE	EMR Sells to: Physician practices	\$231M Warburg Pincus	Boca Raton, FL
PatientPoint.	Consumer health information Sells to: Providers	\$140M Searchlight Capital Partners, Silver Point Capital	Cincinnati, OH
Alignment Healthcare	Population health management Sells to: Consumers, providers	\$115M Warburg Pincus	Irvine, CA
patientslikeme-	Patient community Sells to: Pharma	\$100M iCarbonX	Cambridge, MA
© sharecare	Consumer health information Sells to: Employers, health plans, providers	\$100M Summit Partners	Atlanta, GA

Why data scientists are important in healthcare?

- Huge amount of data
 - o 30% of the entire world's stored data is generated in the healthcare industry
 - A single patient typically generates close to 80 megabytes each year in imaging and electronic medical record (EMR).
- Healthcare is in strong need of data scientists
 - Of 6,000 data scientists in the US, only 180 are estimated to work in health care field (As of mid 2017)
 - There are nearly 6,000 hospitals and 400 academic medical centers, available labor force is a bit too thin

https://www.buildingbetterhealthcare.co.uk/technical/article_page/Comment_Health_networks_delivering_the_future_of_healthcare/94931

https://catalyst.nejm.org/case-data-scientists-inside-health-care/

How DS could help?

- Use cases in healthcare
 - o Diagnostics
 - Detecting serious disorders or diseases using multiple data sources.
 - Improve hospital quality and patient safety
 - o Prevention
 - Reducing preventable hospital readmission
 - Population health management, risk stratification, and prevention
 - Cash Flow Forecasting
 - Forecasting of cash flows based on claims history, reimbursement analysis and potential denials

https://healthitanalytics.com/news/four-use-cases-for-healthcare-predictive-analytics-big-data

How DS could help?

- Use cases in healthcare
 - Workflow Optimization
 - Using historical data for staffing to reduce costs, Having the right clinician at right time at right place
 - Efficient Use of Hospital Resources
 - Prevent bottlenecks in urgent care by analyzing patient flow during peak times
 - o Grant problem
 - Predict likelihood that a particular proposal will receive grant using text analytics

What data is available?

Codified Data Sets

- o Lab measurements
- Bedside measurements (vital signs, ...)
- Prescription orders, pharmacy fulfillment
- Procedure and billing codes
- Monitoring data
- Intensive care
- Home health
- o Genetics: SNPs, CNVs, Exomes, whole genome sequences
- O Geographic location

https://www.siam.org/meetings/sdm13/szolovits.pdf

What data is available?

Narrative Data

- o Doctors' and nurses' notes
- o Radiology, pathology, ... reports
- Discharge summaries
- o Referral letters
- o Blogs, diaries, posts to social media

Imaging

o MRI, scan and etc

Major steps to build a model

- Generate a large variety of features
 - o Billing codes
 - Measured lab values
 - Medications and dosages
 - Frequency of doctors' visits and hospitalizations
 - o Total "fact load"
 - O NLP on notes and discharge summaries to find other evidence of the above
 - Results and prescriptions elsewhere are not in codified data, but are often mentioned in narrative reports

Major steps to build a model

- Data processing
 - Transformed variables: inverse, abs, square, square root, logabs, abs deviation from mean, log, ...
 - Missing values: Some values are not measured for some clinical situations, Failures in data capture process, Episodically measured variables, Extrapolate, Unclear/undefined clinical state, Imprecise timing of meds.
- Feature engineering and selection
 - Derived variables can summarize essential contributions of dynamic variation: integrals, slopes, ranges, frequencies, etc.
- Machine learning algorithm

Problem 1

Predict length of stay

Predicting length of stay (LOS)

- LOS
 - O Defined as number of days from the initial admit date to the date that the patient is discharged from hospital.

Source of variation

- Patient condition
- Various facilities
- Specialties who treat patient

Why it is important

- o enhance the quality of care
- Improve operational workload efficiency
- accurate planning for discharges resulting in lowering readmission

Predicting LOS workflow

Features

- The demographic and clinical predictors are static model inputs that are known at the time of admission.
- Other predictors such as patient census, day of the week, and elapsed length of stay are dynamic and are continuously updated during a patient's stay.

Response

 Whether the patient was discharged by 2 p.m or by end of day

Build models

- Logistic Regression
- o Tree based models

https://academic.oup.com/jamia/article/23/e1/e2/2379761

https://www.datasciencecentral.com/profiles/blogs/5-machine-learning-research-studies-to-understand-predict-length

Model performance

- Regular metrics
 - ROC, AUC, Precision Recall, F1 score
- Compare with benchmark model

Problem 2

- Breast cancer prediction
 - O Goal: Predict whether the cancer is benign or malignant
 - O Data: Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass.
- Features extracted from image
 - Radius, texture, Perimeter, Area, Smoothness, Compactness,
 Concavity, Concave points, Symmetry, Fractal dimension
 - mean, standard error and "worst" or largest of above dimensions

Correlation among variables

How to address collinearity

- Regularization
- Principal component analysis (PCA)
 - Choose appropriate number of components

Plot contributions of top variables to each new dimension

