MAGNETIC FIELD

The Region around a magnet in which its magnetic influence can be experienced is called magnetic field. (B)

- → S.I unit Tesla (T).
- → Denote magnetic field Coming out ①.
- → Denote magnetic field going into the paper ②.

FLEMING'S LEFT-HAND RULE

If we stretch our left hand finger's like image, then thumb gives direction Force, Index finger gives direction of Magnetic Field & Middle Finger gives direction current and thumb indicates the direction of force

AMPERE'S RIGHT-HAND RULE

Holding a current carrying conductor in right hand in such a way that thumb Points in the direction of current and curling finger's gives direction of magnetic field.

Lorentz force /

Force experienced when a charged particle of charge (q) moves with velocity (v) in presence of electric field E and Magnetic Field B.

$$\overrightarrow{F}_{Lorentz} = q\overrightarrow{E} + q (\overrightarrow{v} \times \overrightarrow{B})$$

BIOT - SAVART'S LAW

The Biot-Savart law gives the relationship of magnetic field at any point with current carrying element.

$$dB = \frac{\mu_O}{4\pi} \frac{id\ell sin\theta}{r^2}$$

MAGNETIC FORCE ON A MOVING CHARGED PARTICLE / $F = q(\overrightarrow{V} \times \overrightarrow{B}), |\overrightarrow{F}| = qVB \sin\theta$

 θ = Angle between direction of motion of charge and magnetic Field. Power delivered by Magnetic Force to charged Particle is always zero.

$$P = \overrightarrow{F} \cdot \overrightarrow{V} = 0 \left[\therefore (\overrightarrow{F} \perp \overrightarrow{V}) \right]$$

Path of charged particle in External Magnetic Field:-

Case1: When charged particle is moving parallel or antiparallel to magnetic field: magnetic force $F = avB sin\theta = 0$

Charge Particle move un - deviated Radius of Path is r = ∞

Magnetic Field of Some Special Current Carrying Conductors

Shape of current carrying conductor

charge

F (Force vector)

Formula

Special case

 $\vec{B} = \frac{\mu_0 i}{4 \pi r} (Sin\phi_1 + Sin\phi_2) \hat{n}$ For infinitely long conductor.

For infinitely

 $\overrightarrow{B} = \mu_0 i \hat{n}$

For Semicircular

r = radius of Coil.

X = distance from the

Case2: When charged Particle moving perpendicular to magnetic Field:- Magnetic Force

 $F = qvB Sin90^{\circ} = qvB$ $\therefore \frac{mV^2}{r} = qVB \Rightarrow r = \frac{mV}{\alpha B}$

: Radius of circular- Path

Time period - T = $\frac{2\pi m}{R}$

Case3: When charged particle is moving in any orbitary direction with respect to Magnetic Field:- Magnetic Force

 $\overrightarrow{F} = q(\overrightarrow{V} \times \overrightarrow{B})$; $F = qVB \sin\theta$

Charged particle follow Helical path.

Radius of Helix $-r = \frac{mV \sin \theta}{qB} = \frac{mV}{qB}$

Time period -T = $\frac{2\pi r}{aB}$

AMPERE'S CIRCUITAL LAW

This Law states that the line integral of magnetic field around a closed loop is equal to μ_0 times the net current enclosed by the loop.

Magnetic Field of Solenoid:

n = Number of turn's per unit length.

i = Current flowing

Orbital Current /

The orbital Current generated by electron revolving around

nucleus $-|=\frac{e\omega}{2\pi}$

 ω is angular velocity of electron.

Magnetic Induction at Nucleus Position

$$B = \frac{\mu_o I}{2 r} = \frac{\mu_o e \omega}{4 \pi r}$$

r = orbital Radius, I = orbital current

Magnetic Moment circular orbit

$$M = IA = \frac{e\omega r^2}{2} = \frac{evr}{2}$$
, A= Area of orbit.

Bohr Magneton

The magnetic moment associated with an electron which is revolving in First orbit of an atom. It is represented as:-

$$\mu_{\rm B} = \frac{eh}{4\pi m} = 0.927 \times 10^{-23} \, \text{Am}^2$$

where, e = electronic charge, $\mu_B = \frac{eh}{h} = 0.927 \times 10^{-23} \text{ Am}^2$ m = mass of electron, h =

MOVING COIL GALVANOMETER

It works on the principle that a current carrying Coil in uniform magnetic Field, experience a Torque.

Torque - τ = NBiA N = Number of turns in the coil

A = Area

 ϕ = Deflection

F=nBil

In Equilibrium = τ = NBiA = K ϕ

 $\rightarrow i = \frac{K\phi}{NBA}$

Current sensitivity: $S_i = \frac{\phi}{i} = \frac{NBA}{K}$

Voltage sensitivity: $S_V = \frac{\Phi}{V} = \frac{S_i}{R} = \frac{NBA}{KR}$

Galvanometer to Ammeter

Galvanometer to Voltmeter

CURRENT CARRYING LOOP AS MAGNETIC DIPOLE /

The Current Carrying Coil behaves as a bar magnet and magnetic moment of Such Coil Can be expressed as M = NiA,

N = Number of turns in the coil A = Area

ATOMIC MAGNETISM

When an electron revolves in a bounded orbit around nucleus, due to its movement it behaves as a current carrying loop and produce magnetic field. This is known as Atomic Magnetism.

Relation Between Magnetic Moment and Angular Momentum of Charge Particle

$$M = \frac{qL}{2m} \Rightarrow \frac{M}{L} = \frac{q}{2m}$$

where. M = Magnetic Moment L = mvr – Angular Momentum m = mass of particle.

Torque Acting on current Carrying Coil:

 $\tau = NBiA Sin\theta$

N = Number of turns, A = Area, I = current

Magnetic moment $-\overrightarrow{M} = \overrightarrow{A}$

$$\vec{\tau} = \vec{M} \times \vec{B}$$

Work done in Rotating a coil placed in magnetic Field:

 $W = MB (1 - Cos\theta)$

Here, M = Magnetic Moment of coil.

Potential Energy of a Coil Placed in Magnetic Field:

$$U = - MB \cos\theta$$
$$= - \overrightarrow{M}.\overrightarrow{B}$$

MAGNETIC EFFECT OF CURRENT

Force on current carrying conductor in magnetic field

In uniform Magnetic Field the total force acting on conductor of Length L is expressed as,

$$\vec{F} = i(\vec{L} \times \vec{B}) = iLBSin\theta$$

 θ = Angle made by current direction with magnetic Field.

Force between two Parallel **Current Carrying Conductors**

$$F_1 = F_2 = F = \frac{\mu_0 i_1 i_2}{2 \pi a} \times L$$

a = distance between two wires L = Length of the wire.

