

货拉拉大数据场景下的

稳定性保障实践与思考

王海华货拉拉

QCon⁺案例研习社

扫码学习大厂案例

学习前沿案例, 向行业领先迈进

40 个 热门专题

行业专家把关内容筹备, 助你快速掌握最新技术发展趋势 200个 实战案例

了解大厂前沿实战案例, 为 200 个真问题找到最优解 40 场 直播答疑

40 位技术大咖,每周分享最新技术认知,互动答疑

365天 持续学习

视频结合配套 PPT 畅学 365 天

自我介绍

王海华

货拉拉大数据基础架构负责人/架构师

- 6年以上大数据架构经验
- 涉及大数据平台产品/系统架构/安全等方向
- 负责过几千到几万台规模大数据集群和架构

Apache Hive/Spark/Alluxio contributor

- 1 背景和挑战
- 2 能力保障
- 3 流程规范保障
- 4 组织保障
- 5 总结与思考

背景和挑战

货拉拉介绍

363

国内城市

58万

月活司机

760万

月活用户

8+

业务线

7+

IDC

1000+

机器数

20PB+

存储量

20K+

日均任务数

货拉拉-大数据

背景和挑战

01

大数据领域下稳定性保障的特殊性

02

大数据领域下场景多样性(在线/实时/离线)

03

开源软件基本能力和生产需求之间的巨大差距

背景和挑战-特殊性

背景和挑战-场景多样性

背景和挑战-开源软件生产差距

- 1. Hadoop生态软件Bug多
- 2. 只提供数据存储、数据计算等基本能力

项目	(截止2021.05.20) Issue数	Bug数	Bug占比
Hadoop- common	15444	7762	50.25%
HDFS	1264	3173	39.8%
Spark	35058	14482	41.3%

保障需求和保障目标

场景	价值	稳定性矛盾	保障目标
数据采集和存储	数据存储可靠性是大数 据的生命线	数据丢失	数据可靠性100%
离线核心数据链路和报表	高管日常决策首要依据	数据延迟	核心链路数据延迟 >= 1次/每月
数据准确性	基 础		核心数据准确性100%
大数据核心服务	抢单、风控、实时营销等 核心链路数据服务	稳定性无保障 冒烟事故多	可用性 >= 99.95% 单次不可用时间 >= 10min
大数据核心产品			可用性 >= 99.9% 单次不可用时间 <= 30min

台台力保障

能力保障

分场景保障

To distinguish the scene

链路高可用

link high availability

故障隔离

Fault isolation

容量规划

Capacity planning

区分场景

三 在线场景

- 延迟敏感: 毫秒级
- 可用性要求高

□ 离线场景

- 延迟不敏感:分钟 到小时级别
- 吞吐高,资源利用率
- 高
- 可用性要求中等

学 实时场景

- 延时敏感: 亚秒到 秒级
 - 可用性要求较高

分场景保障

场景	保障需求	保障策略
	高: 99.95%可靠性意味着一个月停机时间<= 21.6分钟 单次停机时间要求10分钟内	事前保障,故障预案,熔断降级
	一般: 99%可靠性意味着一个月停机时间<= 432分钟 单次停机要求60分钟内	优先事后保障,着重是发 现、响应和恢复能力
实时		与在线相近,降级能力,恢 复能力

链路高可用

- 1. 定义关键路径和关键依赖
- 2. 关键路径系统高可用
- 3. 尽量弱依赖

故障隔离

- 1. IDC故障隔离
- 2. 业务故障隔离
- 3. 分场景故障隔离

容量规划

容量梳理

- 1. 确定容量指标
- 2. 压测确认容量最大水位
- 3. 包含自身容量和外部资源依赖容量

容量指标

- 1. 业务层/服务层/VM/OS
- 2. 外部依赖容量
- 3. 指标分层

容量监控和预警

- 1. 告警包含ERROR、WARN 两个级别
- 根据历史趋势设定预警
 值,能做到容量预警

容量监控

- 1. 从以系统指标梳理为起点,以容量预警作为目标
- 2. 指标分级,一级指标覆盖ERROR级别告警

分级	作用	告警级别	常见系统指标
一级指标	发现问题和定位问题	ERROR, WARN	系统服务能力和存储能力时延/吞吐/错误率 CPU/Memory/Network/IO
二级指标	定位问题	WARN	系统内部状态,例如外部资源读写效率,GCTime,线程池繁忙数量等

容量规划-NameNode

主要功能:

- 1. 存储元数据管理
- 2. 元数据读写服务
- 3. Datanode节点管理

容量规划-NameNode

内部实现:

- 1. Listener
- 2. Reader
- 3. CallQueue
- 4. Handler
- 5. Responder

容量规划-NameNode

指标分级	指标名	压测容量值	告警阈值
一级指标	RpcProcessingTime RpcProcessingNumops RpcQueueTime CPU user avg/load/IOUtil/loawait/Network	RpcProcessingNumops 100K Metadata storage 500M	CPU user avg 20min > 30% RpcProcessingNumops avg > 60K/s
二级指标	ReaderRunnableCount RpcQueueLength Get/Delete/RenameRpcNumops	N/A	ReaderRunnableCount avg 30min > 30%

流程规范保障

流程规范保障

研发和发布规范

故障管理规范

01

02

系统和数据研发规范

系统研发	系统设计规范	代码规范检测 Code review	Sonar检测 单元/集成测试	灰度上线 变更窗口 发布审核
	设计	研发	测试	上线
数据研发	数据模型设计规范	SQLScan 静态检测 SQL Review	数据质量检测	试运行验证 准确性、资源

系统发布规范

01

发布窗口

- 1. 业务低峰期,非节假日前一天
- 离线12-18点,在线/实时
 20-24点

02

发布内容和用户通知

- 1、非标准附加详细命令
- 2、通知对应业务方和值班人员

03

验收

- 1、稳定性验收
- 2、功能和性能验收
- 3、可回滚、发布后oncall

04

审核

- 1、日常审核,变更数量限制
- 2、节假日封版,紧急变更流程
- 3、审核规范执行情况

故障定级规范

No measurement, no improvement

作用:稳定性度量

故障定级规范

稳定性保障目标	核心指标	故障等级严重程度
数据可靠性	表数据丢失率	表数据丢失比例 是否可找回
数据准确性	数据重要等级 是否业务先发现	是否业务先发现 数据重要程度
离线核心数据链路和报表	报表延迟时间	报表产出与预期差距
核心服务可用性	资损/服务停机时间	资损大小 服务停机时间长短 停机时间是否高峰期 是否核心链路
核心产品可用性	服务停机时间	功能损失比例 服务停机时间长短 停机时间是否高峰期

系统复盘规范

时间线与事实对齐

- 1. 保证大家对于事实有相同的感受
- 2. 区分为发生、发现、定位、恢复阶段

存在问题讨论

- 1. 发现和引入
- 2. 定位
- 3. 恢复
- 4. 根本原因

整改事项确定

- 1. 与问题——对应
- 2. 事项明确、有负责人和完成时间

整改跟进

- 1. 由责任人/故障跟进小组跟进
- 2. 复盘结果用户信息同步

组织保持

SRE

72%故障来源于发布和变更:没有变更就 没有"伤害"

→ 稳定性 or 产品研发需求PK谁胜利?

研发为新功能负责,SRE为稳定性负责

专职 SRE team?

故障跟进小组

技术委员会

打破组织壁垒,提升技术和稳定性底线

负责技术评审、研发规范、架构统筹规划

注重为结果负责,避免形式化

总结

能力保障

分场景保障

链路高可用

故障隔离

容量规划

流程规范

研发和发布规范

故障管理规范

保障目标

数据准确性/可靠性

核心数据链路稳定性

核心服务/产品稳定性

组织保障

SRE团队

故障跟进小组

技术委员会

一些思考

稳定性的建设是风险控制能力建设,而非靠运气

● 稳定性的提升依靠事实和数据,而非靠感觉

● 稳定性的目标实现靠端到端体系化建设,而非靠单点突破

"道阻且长,行则将至,行而不辍,未来可期"

InfoQ[®] 写作平台

InfoQ 写作平台是 InfoQ 开放给开发者的高端技术社区,创作者可以在这里自由创作和发布内容。

写作平台将为创作者提供**签约、培训、资金扶持**等一系列权益,助力作者成长为高精尖技术人才;同时也为企业提供品牌、活动打造、内容传播等服务,与伙伴一同成长。

扫码申请创作者

扫码进入写作平台