

WHAT IS CLAIMED IS:

1. An optical element comprising:
a polarizing plate; and
a light diffusing plate laminated on said polarizing
5 plate, said light diffusing plate comprising a birefringent film
containing dispersed therein minute regions differing from the
birefringent film in birefringent characteristics,
wherein the minute regions comprises a thermoplastic
liquid-crystal polymer, and difference in refractive index
10 between the birefringent film and the minute regions in a direction
perpendicular to an axis direction in which a linearly polarized
light has a maximum transmittance, Δn^1 , is 0.03 or larger and that
in said axis direction, Δn^2 , is not larger than 80% of the Δn^1 ,
and
15 wherein the Δn^1 direction of said light diffusing plate
is parallel to a transmission axis of said polarizing plate.
2. An optical element according to claim 1, wherein
said thermoplastic liquid-crystal polymer is a thermoplastic
20 branched liquid-crystal polymer having side chains each
containing a segment represented by general formula (I): -Y-Z-,
wherein Y is one of a polymethylene chain, a polyoxymethylene chain
and a polyoxyethylene chain branching from a main chain and Z is
a para-substituted cyclic compound.

3. An optical element according to claim 1, wherein
said light diffusing plate contains the minute regions
dispersedly formed by phase separation and each having a length
in the Δn^1 direction of from 0.05 to 500 μm .

5

4. An optical element according to claim 2, wherein
said light diffusing plate contains the minute regions
dispersedly formed by phase separation and each having a length
in the Δn^1 direction of from 0.05 to 500 μm .

10

5. An optical element according to claim 1, wherein
said light diffusing plate comprises two or more birefringent
films superposed on each other so that the Δn^1 directions of each
of the birefringent film layer are parallel to those for one or
15 two of the adjacent layer.

6. An optical element according to claim 2, wherein
said light diffusing plate comprises two or more birefringent
films superposed on each other so that the Δn^1 directions of each
20 of the birefringent film layer are parallel to those for one or
two of the adjacent layer.

7. An optical element according to claim 3, wherein
said light diffusing plate comprises two or more birefringent
25 films superposed on each other so that the Δn^1 directions of each

of the birefringent film layer are parallel to those for one or two of the adjacent layer.

8. An optical element according to claim 4, wherein
5 said light diffusing plate comprises two or more birefringent films superposed on each other so that the Δn^1 directions of each of the birefringent film layer are parallel to those for one or two of the adjacent layer.

10 9. A liquid-crystal display comprising a liquid-crystal cell and the optical element asccording to any one of claims 1 to 8 disposed on one or each side of said liquid-crystal cell.

15 10. A liquid-crystal display according to claim 9,
wherein said optical element is disposed on a viewing side of said liquid-crystal cell, with said light diffusing plate of said optical element facing said liquid-crystal cell.