→ Problem 7 (Chapter 10, Exercise 9)

```
import pandas as pd
from sklearn.cluster import AgglomerativeClustering
us_arrests_df = pd.read_csv("USArrests.csv", index_col=0)
us_arrests_df;
```

▼ Problem 7(a)

```
hc_nonstd = AgglomerativeClustering(n_clusters=3, affinity="Euclidean", linkage="con
hc_nonstd.fit(us_arrests_df);
```

▼ Problem 7(b)

```
for i in range(3):
    print("Cluster %d: " % i, end='')
    for state in us_arrests_df.index[hc_nonstd.labels_ == i]:
        print(state + ", ", end='')
    print()

Cluster 0: Alabama, Alaska, Arizona, California, Delaware, Florida, Illinois, Lou Cluster 1: Connecticut, Hawaii, Idaho, Indiana, Iowa, Kansas, Kentucky, Maine, M. Cluster 2: Arkansas, Colorado, Georgia, Massachusetts, Missouri, New Jersey, Okla
```

▼ Problem 7(c)

```
from sklearn.preprocessing import StandardScaler

standard_scaler = StandardScaler()
us_arrests_df_std = standard_scaler.fit_transform(us_arrests_df)

hc_std = AgglomerativeClustering(n_clusters=3, affinity="Euclidean", linkage="comple hc_std.fit(us_arrests_df_std);
```

▼ Problem 7(d)

```
for i in range(3):
    print("Cluster %d: " % i, end='')
    for state in us_arrests_df.index[hc_std.labels_ == i]:
        print(state + ", ", end='')
    print()

Cluster 0: Arkansas, Connecticut, Delaware, Hawaii, Idaho, Indiana, Iowa, Kansas
    Cluster 1: Alabama, Alaska, Georgia, Louisiana, Mississippi, North Carolina, Sou
    Cluster 2: Arizona, California, Colorado, Florida, Illinois, Maryland, Michigan,
```

us_arrests_df.describe()

	Murder	Assault	UrbanPop	Rape
count	50.00000	50.000000	50.000000	50.000000
mean	7.78800	170.760000	65.540000	21.232000
std	4.35551	83.337661	14.474763	9.366385
min	0.80000	45.000000	32.000000	7.300000
25%	4.07500	109.000000	54.500000	15.075000
50%	7.25000	159.000000	66.000000	20.100000
75%	11.25000	249.000000	77.750000	26.175000
max	17.40000	337.000000	91.000000	46.000000

→ Problem 9 (Chapter 3, Exercise 9)

```
auto_df = pd.read_csv("Auto.csv", index_col=-1)
auto_df;
```

▼ Problem 9(a)

```
pd.plotting.scatter_matrix(auto_df, figsize=(12,12));
```


▼ Problem 9(b)

auto_df.corr()

	mpg	cylinders	displacement	horsepower	weight	acceleration
mpg	1.000000	-0.777618	-0.805127	-0.778427	-0.832244	0.423329
cylinders	-0.777618	1.000000	0.950823	0.842983	0.897527	-0.504683
displacement	-0.805127	0.950823	1.000000	0.897257	0.932994	-0.543800
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196
weight	-0.832244	0.897527	0.932994	0.864538	1.000000	-0.416839
acceleration	0.423329	-0.504683	-0.543800	-0.689196	-0.416839	1.000000
year	0.580541	-0.345647	-0.369855	-0.416361	-0.309120	0.290316
origin	0.565209	-0.568932	-0.614535	-0.455171	-0.585005	0.212746

▼ Problem 9(c)

Warnings:

import statsmodels.api as sm

X = auto_df.loc[:, auto_df.columns != "mpg"]

```
y = auto df["mpg"]
X = sm.add\_constant(X)
linear_regression = sm.OLS(y, X)
linear regression results = linear regression.fit()
print(linear_regression_results.summary())
   /usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWa
      import pandas.util.testing as tm
                                      OLS Regression Results
   ______
   Dep. Variable:
                                              mpg
                                                      R-squared:
                                                                                                0.821
   Model:
                                              OLS Adj. R-squared:
                                                                                                0.818
   Method:
                               Least Squares F-statistic:
                                                                                                252.4
                           Tue, 06 Jul 2021 Prob (F-statistic): 2.04e-139
   Date:
                                                      Log-Likelihood:
   Time:
                                        20:33:59
                                                                                            -1023.5
   No. Observations:
                                               392
                                                      AIC:
                                                                                                2063.
   Df Residuals:
                                               384
                                                      BIC:
                                                                                                2095.
   Df Model:
                                                 7
   Covariance Type:
                           nonrobust
   ______
                          coef std err t P>|t| [0.025 0.975]

        const
        -17.2184
        4.644
        -3.707
        0.000
        -26.350

        cylinders
        -0.4934
        0.323
        -1.526
        0.128
        -1.129

        displacement
        0.0199
        0.008
        2.647
        0.008
        0.005

        horsepower
        -0.0170
        0.014
        -1.230
        0.220
        -0.044

        weight
        -0.0065
        0.001
        -9.929
        0.000
        -0.008

        acceleration
        0.0806
        0.099
        0.815
        0.415
        -0.114

        year
        0.7508
        0.051
        14.729
        0.000
        0.651

        origin
        1.4261
        0.278
        5.127
        0.000
        0.879

                                                                                                -8.087
                                                                                                 0.142
                                                                                                 0.035
                                                                                                 0.010
                                                                                -0.008
                                                                                                -0.005
                                                                                                 0.275
                                                                                                  0.851
                                                                                                  1.973
   ______
   Omnibus:
                                          31.906 Durbin-Watson:
                                                                                                1.309
   Prob(Omnibus):
                                           0.000 Jarque-Bera (JB):
                                                                                               53.100
   Skew:
                                           0.529 Prob(JB):
                                                                                            2.95e-12
                                            4.460
                                                      Cond. No.
   ______
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly [2] The condition number is large, 8.59e+04. This might indicate that there are

strong multicollinearity or other numerical problems.

→ Problem 9(d)

```
auto_df.insert(8, "residuals", linear_regression_results.resid)

import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots(1, 7, figsize=(20, 3), sharey=True)
ax[0].set_ylabel("Residual")

for i in np.arange(1,8):
    ax[i-1].plot([auto_df.iloc[:, i].min(), auto_df.iloc[:, i].max()], [0, 0], ls="--"
    ax[i-1].scatter(auto_df.iloc[:, i], auto_df["residuals"], alpha=0.5)
    ax[i-1].set_xlabel(auto_df.columns[i])
```

```
plt.plot( [auto_df["mpg"].min(), auto_df["mpg"].max()], [0, 0], ls="--", c="gray")
plt.scatter(auto_df["mpg"], auto_df["residuals"], alpha=0.5)
plt.xlabel("True MPG")
plt.ylabel("Residual")
plt.title("Residual Plot");
```


sm.graphics.influence plot(linear regression results, plot alpha=0.5);


```
fig = plt.figure(figsize=(20,3))
sm.graphics.plot_partregress_grid(linear_regression_results, grid=(1,8), fig=fig);
```


▼ Problem 9(e)

```
from statsmodels.formula.api import ols
```

Dep. Variable:	mpg	R-squared:	0.867
Model:	OLS	Adj. R-squared:	0.863
Method:	Least Squares	F-statistic:	224.9

Date:	Tue, 06 Jul 2021	Prob (F-statistic):	7.99e-159
Time:	20:34:03	Log-Likelihood:	-965.98
No. Observations:	392	AIC:	1956.
Df Residuals:	380	BIC:	2004.
Df Model:	11		
Covariance Type:	nonrobust		

=======================================	========	=======		=======	:======::
	coef	std err	t	P> t	[0.025
Intercept	7.5536	5.571	1.356	0.176	-3.401
cylinders	-2.2358	1.147	-1.949	0.052	-4.491
displacement	-0.0178	0.026	-0.673	0.502	-0.070
horsepower	-0.2092	0.050	-4.204	0.000	-0.307
weight	-0.0082	0.002	-3.695	0.000	-0.013
acceleration	-0.1597	0.096	-1.668	0.096	-0.348
year	0.7515	0.045	16.793	0.000	0.664
origin	0.7382	0.262	2.815	0.005	0.223
cylinders:displacement	-0.0045	0.003	-1.390	0.165	-0.011
cylinders:horsepower	0.0103	0.010	1.022	0.307	-0.010
cylinders:weight	0.0007	0.000	2.311	0.021	0.000
horsepower:displacement	0.0003	0.000	3.047	0.002	0.000
Omnibus:	48.397	======= -Durbin	======== Watson:	=======	1.543
<pre>Prob(Omnibus):</pre>	0.000	Jarque-1	Bera (JB):		97.726
Skew:	0.684	-	, ,		6.01e-22
Kurtosis:	5.028	,	Cond. No.		
	========	========	=========	=======	=======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly [2] The condition number is large, 1.46e+06. This might indicate that there are strong multicollinearity or other numerical problems.

▼ Problem 9(f)

Dep. Variable:	mpg	R-squared:	0.865
Model:	OLS	Adj. R-squared:	0.861
Method:	Least Squares	F-statistic:	222.0
Date:	Tue, 06 Jul 2021	Prob (F-statistic):	6.80e-158
Time:	20:34:03	Log-Likelihood:	-968.20
No. Observations:	392	AIC:	1960.
Df Residuals:	380	BIC:	2008.

Df Model: 11 Covariance Type: nonrobust

	coef	std err	t 	P> t	[0.02
Intercept	4.3655	6.025	0.725	0.469	-7.48
cylinders	0.0748	1.470	0.051	0.959	-2.81
displacement	-0.0329	0.022	-1.487	0.138	-0.07
horsepower	-0.1941	0.043	-4.564	0.000	-0.27
weight	-0.0106	0.003	-4.084	0.000	-0.01
acceleration	-0.1735	0.101	-1.726	0.085	-0.37
year	0.7683	0.045	16.950	0.000	0.67
origin	0.5859	0.269	2.180	0.030	0.05
<pre>np.power(cylinders, 2)</pre>	0.0279	0.119	0.235	0.814	-0.20
<pre>np.power(displacement, 2)</pre>	5.919e-05	3.87e-05	1.528	0.127	-1.7e-0
<pre>np.power(horsepower, 2)</pre>	0.0005	0.000	3.733	0.000	0.00
np.power(weight, 2)	1.038e-06	3.51e-07	2.957	0.003	3.48e-0
Omnibus:	39.818	Durbin-Wa	tson:		1.524
Prob(Omnibus):	0.000	Jarque-Be	ra (JB):		82.175
Skew:	0.564	Prob(JB):			1.43e-18
Kurtosis:	4.939	Cond. No.			4.59e+08

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly [2] The condition number is large, 4.59e+08. This might indicate that there are strong multicollinearity or other numerical problems.

→ Problem 10 (Chapter 3, Exercise 14)

▼ Problem 10(a)

```
data = pd.read_csv("ch3_q14.csv")
data
```

	x1	x2	У
0	0.265509	0.172565	3.032974
1	0.372124	0.124859	2.763146
2	0.572853	0.320539	2.923800
3	0.908208	0.341168	2.989404

▼ Problem 10(b)

```
ne 0.707200 0.202572 1.601524
data.corr()
```

	x1	x2	У
x1	1.000000	0.835121	0.449845
x2	0.835121	1.000000	0.419917
у	0.449845	0.419917	1.000000

```
plt.scatter(data["x1"], data["x2"], c=data["y"], cmap="RdYlBu", alpha=0.7)
plt.xlabel("x1")
plt.ylabel("x2");
```


▼ Problem 10(c)

```
X = data[["x1","x2"]]
y = data["y"]

X = sm.add_constant(X)
```

```
linear_regression_x1_x2 = sm.OLS(y, X)
linear_regression_x1_x2_results = linear_regression_x1_x2.fit()
print(linear_regression_x1_x2_results.summary())
```

OLS Regression Results

==========	======				========		=======
Dep. Variable:			У	R-squ	ared:		0.209
Model:		C	LS	Adj.	R-squared:		0.193
Method:		Least Squar	es	F-sta	tistic:		12.80
Date:	Tu	ie, 06 Jul 20	21	Prob	(F-statistic)):	1.16e-05
Time:		20:34:	04	Log-L	ikelihood:		-145.84
No. Observations	:	1	00	AIC:			297.7
Df Residuals:			97	BIC:			305.5
Df Model:			2				
Covariance Type:		nonrobu	st				
=========	coef	std err	:====	t	P> t	[0.025	0.975]
const 2	.1305	0.232		.188	0.000	1.670	2.591
x1 1	.4396	0.721	1	L.996	0.049	0.008	2.871
x2 1	.0097	1.134	(.891	0.375	-1.240	3.260

Omnibus: 0.011 Durbin-Watson: 2.081 Prob(Omnibus): 0.995 Jarque-Bera (JB): 0.132 Skew: -0.005Prob(JB): 0.936 Kurtosis: 2.823 Cond. No. 14.3

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

▼ Problem 10(d)

```
X = data["x1"]
y = data["y"]

X = sm.add_constant(X)

linear_regression_x1 = sm.OLS(y, X)
linear_regression_x1_results = linear_regression_x1.fit()

print(linear_regression_x1_results.summary())
```

=======================================			=========
Dep. Variable:	У	R-squared:	0.202
Model:	OLS	Adj. R-squared:	0.194
Method:	Least Squares	F-statistic:	24.86
Date:	Tue, 06 Jul 2021	Prob (F-statistic):	2.66e-06
Time:	20:34:04	Log-Likelihood:	-146.24
No. Observations:	100	AIC:	296.5

Df Residuals: BIC: 301.7 Df Model: 1 Covariance Type: nonrobust ______ coef std err [0.025 2.1124 0.231 const 9.155 0.000 1.654 2.570 4.986 1.9759 0.396 0.000 1.190 ______ Omnibus: 0.041 Durbin-Watson: 2.109 Prob(Omnibus): 0.980 Jarque-Bera (JB): 0.012 Skew: 0.003 Prob(JB): 0.994 Kurtosis: 2.947 Cond. No. 4.82

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

▼ Problem 10(e)

```
X = data["x2"]
y = data["y"]

X = sm.add_constant(X)

linear_regression_x2 = sm.OLS(y, X)
linear_regression_x2_results = linear_regression_x2.fit()

print(linear_regression_x2_results.summary())
```

=========	======			-=====		=======	
Dep. Variable:			У	R-sq	uared:		0.176
Model:			OLS	Adj.	R-squared:		0.168
Method:		Least Squ	ares	F-sta	atistic:		20.98
Date:		Tue, 06 Jul	2021	Prob	(F-statistic)	:	1.37e-05
Time:		20:3	4:04	Log-l	Likelihood:		-147.85
No. Observatio	ns:		100	AIC:			299.7
Df Residuals:			98	BIC:			304.9
Df Model:			1				
Covariance Typ	e:	nonro	bust				
	======		=====			=======	
	coef	f std err		t	P> t	[0.025	0.975]
const	2.3899	0.195		 L2.261	0.000	2.003	2.777
x2	2.8996	0.633		4.580	0.000	1.643	4.156
Omnibus:	======	 0	.491	===== Durb:	======== in-Watson:	=======	2.052
Prob(Omnibus):		0	.782	Jarqı	ıe-Bera (JB):		0.625
Skew:		-0	.024	Prob	(JB):		0.731
Kurtosis:		2	.616	Cond	. No.		6.31
==========	======		=====	======		=======	========

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

▼ Problem 10(g)

data_g = data.append(pd.DataFrame([[0.1, 0.8, 6]], columns=["x1", "x2", "y"]), ignor
data_g

	x1	x2	У
0	0.265509	0.172565	3.032974
1	0.372124	0.124859	2.763146
2	0.572853	0.320539	2.923800
3	0.908208	0.341168	2.989404
4	0.201682	0.244143	0.989147
96	0.455274	0.436354	2.496664
97	0.410084	0.206782	2.626532
98	0.810870	0.276805	3.538661
99	0.604933	0.138406	4.271852
100	0.100000	0.800000	6.000000

101 rows × 3 columns

```
X = data_g[["x1","x2"]]
y = data_g["y"]

X = sm.add_constant(X)

linear_regression_x1_x2 = sm.OLS(y, X)
linear_regression_x1_x2_results = linear_regression_x1_x2.fit()

print(linear_regression_x1_x2_results.summary())
```

=======================================			
Dep. Variable:	У	R-squared:	0.219
Model:	OLS	Adj. R-squared:	0.203
Method:	Least Squares	F-statistic:	13.72
Date:	Tue, 06 Jul 2021	Prob (F-statistic):	5.56e-06
Time:	20:34:04	Log-Likelihood:	-149.07
No. Observations:	101	AIC:	304.1
Df Residuals:	98	BIC:	312.0

Df Model: 2 Covariance Type: nonrobust

=========	=======	==========	=======	========	=========	
	coef	std err	t	P> t	[0.025	0.975]
const	2.2267	0.231	9.624	0.000	1.768	2.686
x1	0.5394	0.592	0.911	0.365	-0.636	1.715
x2	2.5146	0.898	2.801	0.006	0.733	4.296
Omnibus:	=======	0.60	========)8	======== n-Watson:	:=======	1.992
Prob(Omnibus):	0.73	88 Jarqu	e-Bera (JB):		0.708
Skew:		-0.02	24 Prob(JB):		0.702
Kurtosis:		2.59	Cond.	No.		11.1
=========						

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

```
X = data_g["x1"]
y = data_g["y"]

X = sm.add_constant(X)

linear_regression_x1 = sm.OLS(y, X)
linear_regression_x1_results = linear_regression_x1.fit()
```

print(linear_regression_x1_results.summary())

OLS Regression Results

Dep. Variable	٠ <u>٠</u>		y R-so	quared:		0.156
Model:	. •	OL	_	. R-squared:		0.148
Method:		Least Square	_	tatistic:		18.33
Date:		Tue, 06 Jul 202		o (F-statisti	(c):	4.29e-05
Time:		20:34:0		-Likelihood:		-152.96
No. Observati	ons:	10	_			309.9
Df Residuals:		9	9 BIC:	:		315.1
Df Model:			1			
Covariance Ty	pe:	nonrobus	t			
=========		======================================	=======			0.0751
	coef	std err	t	P> t	[0.025	0.975]
const	2.2569	0.239	9.445	0.000	1.783	2.731
x1	1.7657	0.412	4.282	0.000	0.947	2.584
Omnibus:	:======	======================================	======= 3 Durk	========= oin-Watson:	========	 1.957
Prob(Omnibus)	:	0.26	7 Jaro	que-Bera (JB)):	2.042
Skew:		0.24	5 Prob	o(JB):		0.360
Kurtosis:		3.49	6 Cond	d. No.		4.77

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

```
y = data_g["y"]

X = sm.add_constant(X)

linear_regression_x2 = sm.OLS(y, X)
linear_regression_x2_results = linear_regression_x2.fit()

print(linear_regression_x2_results.summary())
```

OLS Regression Results

=======================================							
Dep. Variable:			У	R-sqı	ared:		0.212
Model:		0	LS	Adj.	R-squared:		0.204
Method:		Least Squar	es	F-sta	atistic:		26.66
Date:		Tue, 06 Jul 20	21	Prob	(F-statistic):		1.25e-06
Time:		20:34:	04	Log-I	Likelihood:		-149.49
No. Observatio	ns:	1	01	AIC:			303.0
Df Residuals:			99	BIC:			308.2
Df Model:			1				
Covariance Type:		nonrobu	st				
==========	======		===	======		======	========
	coef	std err		t	P> t	[0.025	0.975]
const	2.3451	0.191	1	2.264	0.000	1.966	2.725
x2	3.1190	0.604		5.164	0.000	1.921	4.318
Omnibus: 0.837		=== 37	Durbi	========= in-Watson:	======	2.016	
Prob(Omnibus):		0.6	58	Jarqı	ue-Bera (JB):		0.862
Skew:		-0.0	44	Prob	` ,		0.650
Kurtosis:		2.5	56	Cond	No.		6.05
=========		=========	===	======			========

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

✓ 0s completed at 3:34 PM

×