PICT PUNE * LOS

PUNE INSTITUTE OF COMPUTER TECHNOLOGY, PUNE -411043

Department of Computer Engineering

CLASS: S.E. COMP SUBJECT: DEL

EXPT. NO.: 8 DATE:

TITLE : SEQUENCE GENERATOR CIRCUIT

OBJECTIVE:

1. Design and Implement the following Sequence generator circuit using IC-74LS76 and verify its truth-table.

Sequence: ()

APPARATUS :

Digital-Board, GP-4 Patch-Cords, IC-74LS76, IC-74LS32, IC-74LS04/IC-74LS08 and Required Logic gates if any

THEORY:

Sequence Generator is a Sequential Logic circuits which can be use to generate the Pre-determined sequence. Sequence Generator is classified into two categories: Sequential Sequence Generator & Non-Sequential Sequence Generator. Ring Counter can be constructed using IC-74LS76.In case of Ring Counter output of last Flip-flop is connected to the J_A input of First Flip-Flop and complementary output of Last Flip-Flop is connected to K_A Input of First Flip-Flop. Output of first flip-flop ($Q_A \& Q_A$) is connected to the inputs of second flip-flop ($J_B \& K_B$) and so on. And connect set & reset pin to Vcc.

P:F-LTL UG/03/R1 8.1

Department of Computer Engineering

PIN Diagram:

PROCEDURE :

1. Make the connections as per the Logic circuit of Sequence generator circuit using IC-74LS76 and Verify its Truth Table.

Design of Sequence Generator circuits with Lockout condition

Dec. Equ.	PRESENT STATE			NEXT STATE		INPUT						
	QA	Qв	Q c	Q _A ⁺	Q _B ⁺	Q c ⁺	J _A	K _A	J _B	Кв	Jc	Kc

P:F-LTL UG/03/R1 8.2 DEL

PUNE INSTITUTE OF COMPUTER TECHNOLOGY, PUNE -411043

Department of Computer Engineering

K-Map Simplification for $J_A\,,\,K_A\,,\,J_B\,,\,K_B\,,\,J_C\,,\,K_C$

P:F-LTL_UG/03/R1 8.3 DEL

PUNE INSTITUTE OF COMPUTER TECHNOLOGY, PUNE-411043

Department of Computer Engineering

Logic diagram	:		

Design of Sequence Generator without Lockout Condition

Dec. Equ.	PRESENT STATE			NEXT STATE			INPUT					
	QA	Qв	Q c	Q _A ⁺	Q _B ⁺	Qc ⁺	J _A	KA	J _B	K _B	Jc	Kc

PUNE INSTITUTE OF COMPUTER TECHNOLOGY, PUNE -411043

Department of Computer Engineering

K-Map Simplification for J_A , K_A , J_B , K_B , J_C , K_C

P:F-LTL_UG/03/R1 8.5 DEL

PUNE INSTITUTE OF COMPUTER TECHNOLOGY, PUNE -411043

Department of Computer Engineering

Logic	Diagram:
-------	----------

Logic Gates / MSI Device required for Implementation:

Sr.No.	Title	Name of the IC	Number of Gates required	IC Required
01	Sequence Generator with lockout condition			
02	Sequence Generator with lockout condition			

PUNE INSTITUTE OF COMPUTER TECHNOLOGY, PUNE-411043

Department of Computer Engineering

CONCLUSION	l :		

REFFRENCE:

- 1. R.P.Jain "Modern Digital Electronics" TMH 4th Edition
- 2. D.Leach, Malvino, Saha, "Digital Principles and Applications", TMH

Subject teacher Sign with Date

Remark