WORKSHOP MACHINE LEARNING

Dania International Days

13 – 15 March 2024

Andy Louwyck

Vives University of applied sciences – Association KU Leuven – Kortrijk, Belgium

Dania International Days 2024 Workshop Machine Learning

MACHINE LEARNING: OVERVIEW

Data

"We are drowning in data but starving for knowledge"
[Naisbitt, 1982]

- A lot of data is gathered, but never used
- It is easier to generate data than to analyze data

→ MACHINE LEARNING

THE INTERNET IN 2023 EVERY MINUTE

Created by: eDiscovery Today & LTMG

Machine Learning & Artificial Intelligence

Artificial Intelligence (AI):

"The set of all tasks in which a computer can make decisions."

Machine Learning (ML):

"The set of all tasks in which a computer can make decisions based on data."

Deep Learning (DL):

"The field of machine learning that uses certain objects called neural networks."

Machine Learning

• Core domain of AI, concerned with automatic learning

 A computer is said to be able to <u>learn</u> if its performance in solving some task <u>improves with its experience</u>

Machine Learning

Example: buying a new car

- How do we make decisions?
 - by logical reasoning
 - by relying on previous experiences (either our own or those of others)
- For a computer: **experiences = data**

"Machine learning is common sense, except done by a computer"

Machine Learning ≠ Data Science

In practice:

- ML team: delivers software
- DS team: provides new insights

What about ChatGPT?

Algorithm vs Model

- Model: A set of rules that represent our data and can be used to make predictions.
- Algoritme: A procedure, or a set of steps, used to build a model.

"An algorithm is run on data to create a model"

Machine Learning vs Classical Programming

Thermostat example

Traditional approach

- The rule is given:
 - "If temperature is smaller than 17°C, then heating is on, otherwise it's off"
- The algorithm implements the rule
- No data required to derive the rule!

The heating is off!

```
threshold = 17
temperature = float(input("What is the temperature?\n"))  # data
heating = 'on' if temperature < threshold else 'off'  # rule
print(f'The heating is {heating}!')  # answer

What is the temperature?
18</pre>
```


Machine learning

The rule is not known and must be derived from data!

```
import pandas as pd
temperature = [17.1, 15.6, 23.1, 19.8, 12.9, 20.3, 14.7, 16.2] # data
heating = ['off', 'on', 'off', 'on', 'off', 'on', 'on'] # answers
table = pd.DataFrame(dict(temperature=temperature, heating=heating))
```

temperature heating

•		
0	17.1	off
1	15.6	on
2	23.1	off
3	19.8	off
4	12.9	on
5	20.3	off
6	14.7	on
7	16.2	on

Naive algorithm

```
max_temperature_on = table[table.heating=='on']['temperature'].max()
min_temperature_off = table[table.heating=='off']['temperature'].min()
threshold = (max_temperature_on + min_temperature_off) / 2
print(f'maximum temperature if heating is on: {max_temperature_on}°C')
print(f'minimum temperature if heating is off: {min_temperature_off}°C')
print(f'threshold is {threshold}°C')
```

maximum temperature if heating is on: 16.2°C minimum temperature if heating is off: 17.1°C threshold is 16.65°C

Nearest neighbor

```
temperature = float(input("What is the temperature?\n"))  # input temperature
abs_difference = (temperature - table.temperature).abs()  # absolute difference
heating = table.heating.iloc[abs_difference.argmin()]  # label of nearest neighbor
print(f'The heating is {heating}!')  # answer
```

What is the temperature? 16.5 The heating is on!

Some issues

- Real-life datasets are typically much larger:
 - more data points
 - more variables
- Real-life datasets may contain outliers and/or errors
- Therefore we need more robust algorithms
 - that use more than 1 or 2 samples only
 - that quantify and minimize the errors
- Examples:
 - Logistic regression: separates all data points instead of 2
 - K Nearest Neighbors: considers K nearest data points instead of 1

Dania International Days 2024 Workshop Machine Learning

MACHINE LEARNING: APPLICATIONS & TASKS

Machine Learning Applications

- Spam filters
- Recommender systems
- Personalized shopping
- Voice assistants
- Self-driving cars
- Search engines
- Chatbots
- Fraud prevention
- Face recognition
- Medical imaging
- Robotics
- Route planning
- Sales forecasting

Machine Learning Tasks

- Classification
 Regression
 Forecasting
 Prediction
 Anomaly detection
 Association rule mining
 Clustering
- supervised learning
- = A to B mapping
- = Input to output mapping
- = learning from (input, output) pairs

unsupervised learning

= learning from data without output

Supervised Learning

Input (A)	Output (B)	Application
email	spam? (0/1)	spam filtering
audio	text transcript	speech recognition
English	Chinese	machine translation
ad, user info	click? (0/1)	online advertising
image, radar info	position of other cars	self-driving car
image of phone	defect? (0/1)	visual inspection

The Big Three

What about GenAl?

- Supervised learning
 - = learning from <u>labeled</u> data
- Unsupervised learning
 - = learning from <u>unlabeled</u> data
- Reinforcement learning
 - = learning from rewards
- Generative Al
 - = generating new data

Supervised vs Unsupervised

- Labeled data: data with label
 - → **SUPERVISED** LEARNING
- Unlabeled data: data without label
 - → UNSUPERVISED LEARNING

Classification vs Regression

- Categorical target → Classification
- Numerical target → Regression

CLASSIFICATION

Sorting items into categories

REGRESSION

Identifying real values (dollars, weight, etc.)

Numerical

Structured Data

- Data = information (= table)
- **Example** = sample = instance = data point (= table row/record)
- Feature = independent variable (= table column/attribute)
- Target = labels = dependent variable = feature we want to predict

Dania International Days 2024 Workshop Machine Learning

MACHINE LEARNING: SUPERVISED LEARNING

Supervised Learning

<u>Task</u>: learn a model to predict a target for new data instances,
 based on a training set of data instances for which the target is known

Supervised Learning Algorithms

- There exist plenty of supervised learning algorithms
- No free lunch: there is no algorithm that works best for every problem

K Nearest Neighbors (KNN)

- Classification (regression is also possible)
- Requires no training (= lazy learning, as opposed to eager learning)
- Main task: find suitable distance function (Euclidean, Manhattan, ...)

Simple Linear Regression

- Regression for numeric targets
- 1 independent variable (feature x) and 1 dependent variable (target y)
- Main task: estimate parameters m and b, such that predictions (red line) and targets (blue dots) are as close as possible (= best-fitting straight line)

Linear & Nonlinear Regression

- Linear Regression 2 features and 1 target (left)
- Nonlinear regression 1 feature and 1 target (right)

Source: James et al. Introduction to Statistical Learning (Springer 2013)

Source: the minitab blog

Logistic Regression

- Regression for binary targets
- Features x_i and target y
- Main task: find a separating straight line
 binary classification
- N dimensions: separating hyperplane

source: https://www.jcchouinard.com/logistic-regression/

Decision Tree

- Classification (regression is also possible)
- Example: Play tennis or not? (depending on weather conditions)

	Outlook	Temp.	Hum.	Wind	Play?		
	Sunny	85	85	False	no		_
	Sunny	80	90	True	no	Outlook	
	Overcast	83	86	False	yes	- Cution	_
• Leaf no = labe	odes versu	ıs interr		les Hig		Sunny Overcast idity Yes Normal Yes	Rainy Wind Strong Weak No Yes

Artificial Neural Network

- Regression or classification
- Features X and targets Y
- Loss: function quantifying differences between targets Y and predictions Y'
- Main task: find optimal weights that minimize the loss

Thermostat example

Logistic Regression

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(penalty=None) # instantiate
model.fit(table[['temperature']].values, table.heating=='on') # fit data
threshold = -model.intercept_.item() / model.coef_.item() # determine threshold
print(f'threshold is {threshold}°C')
model.predict([[17]]).item() # predict label for new temperature value
```

threshold is 16.681991552397978°C False

K Nearest Neighbors

```
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=3) # instantiate with K = 3
model.fit(table[['temperature']].values, table.heating=='on') # fit data
model.predict([[17.0]]).item() # predict label for new temperature value
```

True

Dania International Days 2024 Workshop Machine Learning

MACHINE LEARNING: UNSUPERVISED LEARNING

Unsupervised Learning

- Data are not labeled
- Often used during data preprocessing
- I have no idea what you gave me, but I can tell you these two on the left are different from the two in the right.

 Unsupervised learning model
- Clustering: grouping data based on similarities
- <u>Dimensionality reduction</u>: reducing the number of features while retaining as much meaningful information as possible
- Matrix factorization: decomposing the data in order to discover latent features

Clustering

Applications:

- Genetics: grouping species based on similarities
- Medical imaging: partitioning images based on tissue structures
- Market segmentation: clustering customers based on demographics, income, etc.
- Mails:

No labels!

E-mail	Size	Recipients
1	8	1
2	12	1
3	43	1
4	10	2
5	40	2
6	25	5
7	23	6
8	28	6
9	26	7

mails.csv

Clustering vs Classification

- Classification: labeled data → classes already exist
- **Clustering**: unlabeled data → classes don't exist yet

customer	age	salary	risk
0	23	1500	high
1	51	2500	low
2	42	3100	low
3	36	1900	high
4	67	2100	low

age	salary	risk
23	1500	?
51	2500	?
42	3100	?
36	1900	?
67	2100	?
	23 51 42 36	51 2500 42 3100 36 1900

(source: https://techdifferences.com/difference-between-classification-and-clustering.html)

Clustering Algorithms

K-means clustering

https://youtu.be/nXY6PxAaOk0

- Hierarchical clustering (dendrogram)
- Gaussian mixture models
- DBSCAN

•

Dimensionality Reduction

- Number of dimensions = number of features
- Reducing the number of features

Example: Principal Component Analysis

(source: https://knowledge.dataiku.com/latest/ml-analytics/statistics/concept-principal-component-analysis-pca.html)

Matrix Factorization

- Clustering: reducing samples (= rows)
- Dimensionality Reduction: reducing features (= columns)
- Matrix Factorization: reducing both rows and columns

(source: https://www.kaggle.com/code/residentmario/notes-on-matrix-factorization-machines)

Example: Recommender Systems

Matrix Factorization

	M1	M2	МЗ	M4	M5
Comedy	3	1	1	3	1
Action	1	2	4	1	3

https://youtu.be/ZspR5PZemcs

	M1	M2	МЗ	M4	M5
	3	1	1	3	1
	1	2	4	1	3
9	3	1	1	3	1
0	4	3	5	4	4

Dania International Days 2024 Workshop Machine Learning

MACHINE LEARNING: REINFORCEMENT LEARNING

Reinforcement Learning

(source: https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292)

Applications

- Robotics
- Self-driving cars
- Games
- •

AlphaGo en AlphaZero

https://deepmind.google/technologies/alphago/ AlphaGo - the movie

Dania International Days 2024 Workshop Machine Learning

MACHINE LEARNING: TRAINING AND EVALUATION

Training vs Inference

DANIA ACADEMY

What about GenAI? Training vs Sampling

https://www.oreilly.com/library/view/generative-deep-learning/9781492041931/ch01.html

Optimization vs Generalization

- Optimization: fitting the data as best as possible during training
- Generalization: good model performance on new data during inference

Underfitting vs Overfitting

• <u>Underfitting:</u> model is too simple

Overfitting:

model is too specific

Causes:

- Noise
- Uncertainty
- Rare features
- **—** ..

(source: https://towardsdatascience.com/underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6 fe 4a 8a 49 db f)

(source: https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning)

Training, Validating and Testing

Splitting the dataset:

• training:

- deriving the optimal model parameters
- by the machine learning algorithm

validating:

- finding the optimal model configuration
- fine-tuning the hyperparameters
- to overcome overfitting
- by the machine learning engineer

testing:

- final evaluation
- by the machine learning engineer

(source: https://vitalflux.com/hold-out-method-for-training-machine-learning-model)

Training vs Validation Performance

Decision Trees

Polynomial Regression

Artificial Neural Networks

(source: https://www.dataquest.io/blog/regularization-in-machine-learning)

Model Evaluation

Loss functions:

- Compare predictions and true target values
- Minimized by machine learning <u>algorithms</u> to obtain the best fit of the data
- Should be mathematically convenient

Evaluation metrics:

- Also compare predictions and true target values
- Used by machine learning <u>engineers</u> to evaluate the model performance
- Easier to interpret by humans

Common Loss Functions and Metrics

Task	Loss	Metric
Regression	Mean Squared Error (MSE)	Root Mean Squared Error (RMSE)
	= mean of the squared differences between predictions and targets	= square root of MSE
	Mean Absolute Error (MAE)	Coefficient of Determination (R2)
	= mean of the absolute differences between predictions and targets	= number between 0 and 1 expressing the goodness of fit where 1 indicates a perfect fit
Classification	Cross-Entropy or Log Loss	Accuracy
	quantifies the difference between the predicted probabilities and the true labels	= the number of correct predictions divided by the total number of samples

Machine Learning Workflow

Sources

- The slides are adopted from the "Introduction to Artificial Intelligence" course taught by Dr. Stefaan Haspeslagh and Dr. Andy Louwyck (Applied Informatics, Vives)
- Many slides are based on the book "Grokking Machine Learning" by Luis G Serrano (2021)
- Other slides are inspired by the book "Deep Learning with Python (2nd edition)" by François Chollet (2021)
- Some slides are taken from lectures given by Prof. Dr. Celine Vens and Prof. Dr. Hendrik Blockeel (Computer Sciences, KUL)
- Information was also obtained from Andrew Ng's online course "AI for Everyone": https://www.deeplearning.ai/courses/ai-for-everyone/
- Other sources are mentioned on the slides

