Московский Государственный Университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

Отчёт по заданию в рамках курса «Суперкомпьютерное моделирование и технологии» Численное решение задачи Дирихле для уравнения Пуассона в криволинейной области

Выполнил: Де Ен Де 608 группа Вариант 3

Содержание

1	Математическая постановка задачи	2
2	Численный метод решения уравнения	2
3	Краткое описание проделанной работы по созданию $\it OpenMP$ -программы	3
4	Результаты расчетов для разных размеров задач и на разном числе нитей	3
5	Дополнительные графики	4

1 Математическая постановка задачи

В области $D\subset R^2,$ ограниченной контуром $\gamma,$ рассматривается дифференциальное уравнение Пуассона:

$$-\Delta u = 1$$
,

в котором оператор Лапласа

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2},$$

Для выделения единственного решения уравнение дополняется граничным условием Дирихле:

$$u(x,y) = 0, (x,y) \in \gamma.$$

Для данной работы мне был предложен **вариант 3**, который соответствует следующим точкам: A(3,0), B(0,2), C(-3,0).

2 Численный метод решения уравнения

Для решения был выбран предложенный метод наименьших невязок. Этот метод позволяет получить последовательность сеточных функций $\omega^{(k)} \in H, k=1,2,...$, сходящуюся по норме пространства H к решению разностной схемы, т.е.

$$||\omega - \omega^{(k)}||_E \to 0, k \to \infty.$$

Начальное приближение $\omega^{(0)}$ равно нулю во всех точках расчетной сетки.

Метод является одношаговым. Итерация $\omega^{(k+1)}$ вычисляется по итерации $\omega^{(k)}$ согласно равенствам:

$$\omega_{ij}^{(k+1)} = \omega_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)},$$

где невязка $r^{(k)} = A\omega^{(k)} - B$, итерационный параметр

$$\tau_{k+1} = \frac{(Ar^{(k)}, r^{(k)})}{||Ar^{(k)}||_E^2}.$$

В качестве условия остановки итерационного процесса следу ет использовать неравенство

$$||\omega^{(k+1)} - \omega^{(k)}||_E < \delta,$$

где δ — положительное число, определяющее точность итерационного метода.

3 Краткое описание проделанной работы по созданию *OpenMP*-программы

Для построения OpenMP-программы использовались следующие директивы:

#pragma omp parallel for default(shared) private(i, j) schedule(dynamic) для арифметических операций сеточных функций,

#pragma omp parallel for default(shared) private(i) reduction(+: res) schedule(dynamic) для вычисления суммы(скалярное произведение, интегрирование).

4 Результаты расчетов для разных размеров задач и на разном числе нитей

Выполнение последовательной программы решающей данное задание при $M=80,\ N=80$ заняло 270.971 секунды. А для $M=160,\ N=160$ заняло 913.675 секунд. Значение δ решено было взять равным 10^{-6} . Ускорение считалось как отношение времени выполнения последовательной программы к времени выполнения параллельной программы на той же сетке $Boost=\frac{time(sequential)}{time(parallel)}$.

Число <i>OpenMP</i> -нитей	Число точек сетки $M \times N$	Время решения (с)	Ускорение
2	80×80	176.46	1.53
4	80×80	141.96	1.90
8	80×80	103.24	2.62
16	80×80	74.81	3.62
4	160×160	439.11	1.23
8	160×160	449.07	2.03
16	160×160	190.53	4.79
32	160×160	139.22	6.56

5 Дополнительные графики

Рисунок 1. Численное решение при разбиении 80 * 80

Рисунок 2. Зависимость выполнения задачи на сетке 160 * 160 от количества нитей OpenMP

Рисунок 3. График сходимости на каждые 10000 итераций

Рисунок 4. Общий график сходимости