WHAT IS CLAIMED IS:

- 1. A method of inducing weight loss in a patient, comprising administering by continuous infusion an effective amount of an MC4R agonist peptide to a patient in need thereof.
- 2. A method for treating obesity in a patient, comprising administering by continuous infusion an effective amount of an MC4R agonist peptide to a patient in need thereof.
- 3. The method of any one of Claims 1 to 2, wherein the MC4R agonist peptide is administered using a pump.
- 4. The method of any one of Claims 1 to 2, wherein the MC4R agonist peptide is administered using a depot.
- 5. The method of any one of Claims 1 to 4, wherein the MC4R agonist peptide is a peptide of the formula:

and pharmaceutically acceptable salts thereof, wherein

W is Glu, Gln, Asp, Asn, Ala, Gly, Thr, Ser, Pro, Met, Ile, Val, Arg, His, Tyr, Trp, Phe, Lys, Leu, Cya, or is absent;

R¹ is -H, -C(O)CH₃, -C(O)(CH₂)₁₋₄CH₃, -C(O)(CH₂)₁₋₄NHC(NH)NH₂,

Tyr-βArg-, Ac-Tyr-β-hArg-, gluconoyl-Tyr-Arg-, Ac-diaminobutyryl-,

Ac-diaminopropionyl-, N-propionyl-, N-butyryl-, N-valeryl-,

N-methyl-Tyr-Arg-, N-glutaryl-Tyr-Arg-, N-succinyl-Tyr-Arg-,

R⁶-SO₂NHC(O)CH₂CH₂C(O)-, R⁶-SO₂NHC(O)CH₂CH₂C(O)Arg-,

R⁶-SO₂NHCH₂CH₂CH₂C(O)-, C₃-C₇ cycloalkylcarbonyl, phenylsulfonyl,

C₈-C₁₄ bicyclic arylsulfonyl, phenyl-(CH₂)_qC(O)-, C₈-C₁₄ bicyclic aryl-(CH₂)_qC(O)-,

$$\begin{split} R^2 \ is \ -H, \ -NH_2, \ -NHC(O)CH_3, \ -NHC(O)(CH_2)_{1\text{-}4}CH_3, \\ -NH\text{-}TyrC(O)CH_3, \ R^6SO_2NH\text{-}, \ Ac\text{-}Cya\text{-}NH\text{-}, \ Tyr\text{-}NH\text{-}, \\ HO\text{-}(C_6H_5)\text{-}CH_2CH_2C(O)NH\text{-}, \ or \ CH_3\text{-}(C_6H_5)\text{-}C(O)CH_2CH_2C(O)NH\text{-}; \\ R^3 \ is \ C_1\text{-}C_4 \ straight \ or \ branched \ alkyl, \ NH_2\text{-}CH_2\text{-}(CH_2)_q\text{-}, \ HO\text{-}CH_2\text{-}, \\ (CH_3)_2CHNH(CH_2)_4\text{-}, \ R^6(CH_2)_q\text{-}, \ R^6SO_2NH\text{-}, \ Ser, \ Ile, \end{split}$$

or
$$(CH_2)q$$
 $(CH_2)q$ $($

q is 0, 1, 2, or 3; $R^6 \text{ is a phenyl or } C_8\text{-}C_{14} \text{ bicyclic aryl;}$ m is 1 or 2;

n is 1, 2, 3, or 4;

 R^9 is $(CH_2)_p$ or $(CH_3)_2C_{-}$;

p is 1 or 2;

R¹⁰ is NH- or is absent:

R⁷ is a 5- or 6-membered heteroaryl or a 5- or 6-membered heteroaryl ring optionally substituted with R⁴;

 R^4 is H, C_1 - C_4 straight or branched alkyl, phenyl, benzyl, or (C_6H_5) - CH_2 -O- CH_2 -;

R⁸ is phenyl, a phenyl ring optionally substituted with X, or cyclohexyl;

X is H, Cl, F, Br, methyl, or methoxy;

 R^{11} is -C(O) or -CH₂;

 R^5 is -NH₂, -OH, glycinol, NH₂-Pro-Ser-, NH₂-Pro-Lys-, HO-Ser-,

HO-Pro-Ser-, HO-Lys-, -Ser alcohol, -Ser-Pro alcohol, -Lys-Pro alcohol,

HOCH₂CH₂-O-CH₂CH₂NH-, NH₂-Phe-Arg-, NH₂-Glu-,

 $NH_2CH_2RCH_2NH$ -, RHN-, or RO- where R is a C_1 - C_4 straight or branched alkyl; and

L is -S-S- or -S-CH₂-S-.

6. The method of any one of Claims 1 to 4, wherein the MC4R agonist peptide is a peptide of the formula:

and pharmaceutically acceptable salts thereof, wherein

W is Glu, Gln, Asp, Asn, Ala, Gly, Thr, Ser, Pro, Met, Ile, Val, Arg, His, Tyr, Trp, Phe, Lys, Leu, Cya, or is absent;

R¹ is -H, -C(O)CH₃, -C(O)(CH₂)₁₋₄CH₃, -C(O)(CH₂)₁₋₄NHC(NH)NH₂, Tyr-βArg-, Ac-Tyr-β-hArg-, gluconoyl-Tyr-Arg-, Ac-diaminobutyryl-, Ac-diaminopropionyl-, N-propionyl-, N-butyryl-, N-valeryl-, N-methyl-Tyr-Arg-, N-glutaryl-Tyr-Arg-, N-succinyl-Tyr-Arg-, R 6 -SO $_2$ NHC(O)CH $_2$ CH $_2$ C(O)-, R 6 -SO $_2$ NHC(O)CH $_2$ CH $_2$ C(O)-, C $_3$ -C $_7$ cycloalkylcarbonyl, phenylsulfonyl, C $_8$ -C $_1$ 4 bicyclic arylsulfonyl, phenyl-(CH $_2$) $_q$ C(O)-, C $_8$ -C $_1$ 4 bicyclic aryl-(CH $_2$) $_q$ C(O)-,

$$\begin{split} R^2 \text{ is -H, -NH}_2, -NHC(O)CH_3, -NHC(O)(CH_2)_{1-4}CH_3, \\ -NH-TyrC(O)CH_3, & R^6SO_2NH-, Ac-Cya-NH-, Tyr-NH-, \\ HO-(C_6H_5)-CH_2CH_2C(O)NH-, \text{ or } CH_3-(C_6H_5)-C(O)CH_2CH_2C(O)NH-; \\ R^3 \text{ is } C_1-C_4 \text{ straight or branched alkyl, } NH_2-CH_2-(CH_2)_q-, HO-CH_2-, \\ (CH_3)_2CHNH(CH_2)_4-, & R^6(CH_2)_q-, R^6SO_2NH-, Ser, Ile, \end{split}$$

or
$$(CH_2)q$$
 $(CH_2)q$ $($

q is 0, 1, 2, or 3;

R⁶ is a phenyl or C₈-C₁₄ bicyclic aryl;

m is 1 or 2;

p is 1 or 2;

 R^4 is H, C_1 - C_4 straight or branched alkyl, phenyl, benzyl, or (C_6H_5) - CH_2 -O- CH_2 -;

X is H, Cl, F, Br, methyl, or methoxy; and

 \mbox{R}^{5} is -NH $_{2}$ -OH, glycinol, NH $_{2}$ -Pro-Ser-, NH $_{2}$ -Pro-Lys, HO-Ser-,

HO-Pro-Ser-, HO-Lys-, -Ser alcohol, -Ser-Pro alcohol, -Lys-Pro alcohol, HOCH₂CH₂-O-CH₂CH₂NH-, NH₂-Phe-Arg-, NH₂-Glu-,

NH₂CH₂RCH₂NH-, RHN-, or RO- where R is a C₁-C₄ straight or branched alkyl.

7. The method of any one of Claims 1 to 4, wherein the MC4R agonist peptide is a peptide of the formula:

and pharmaceutically acceptable salts thereof, wherein

W is a single bond, Glu, Gln, Asp, Asn, Ala, Gly, Thr, Ser, Pro, Met, Ile, Val, Arg, His, Tyr, Trp, or Phe;

R₁ is -H, -C(O)CH₃, -C(O)(CH₂)₁₋₄NH-C(NH)NH₂, Tyr-βArg, gluconoyl-Tyr-Arg, Ac-Dab, Ac-Dap, N-succinyl-Tyr-Arg, N-propionyl, N-valeryl, N-glutaryl-Tyr-Arg, N-butyryl,

HN NH O NH NH NH NH NH CH₃ O or R2
$$\stackrel{*}{\underset{R3}{\overset{*}{\bigcap}}}$$
 , wherein

 R_2 is -H, -NH₂, -NHC(O)CH₃, -NHC(O)(CH₂)₁₋₄CH₃, Tyr, or -NH-Tyr-C(O)CH₃;

R₃ is C₁-C₄ straight or branched alkyl, Ser, Ile, Arg,

q is 0, 1, 2, or 3;

m is 1 or 2;

p is 1 or 2;

 R_4 is -H, -CH₃, or -(CH₂)₁₋₃(CH₃);

X is -H, -Cl, -F, -Br, methyl, or methoxy; and

R₅ is -NH₂, -OH, glycinol, -Ser-Pro-NH₂, -Lys-Pro-NH₂, -Ser-OH,

-Ser-Pro-OH, -Lys-Pro-OH, -Arg-Phe-NH₂, -GluNH₂, -NHR, or -OR, where R is -CH₃ or -(CH₂)₁₋₃(CH₃).

8. The method of any one of Claims 1 to 4, wherein the MC4R agonist peptide is cyclo[hCys-His-D-Phe-Arg-Trp-Cys]-NH₂, Ac-cyclo[hCys-His-D-Phe-Arg-Trp-Cys]-NH₂, Arg-cyclo[hCys-His-D-Phe-Arg-Trp-Cys]-OH,

Ac-Arg-cyclo[Cys-Glu-His-D-Phe-Arg-Trp-Cys]-NH₂, or Ac-D-Arg-cyclo[Cys-Glu-His-D-Phe-Arg-Trp-Cys]-NH₂.

- 9. The method of any one of Claims 1 to 4, wherein the MC4R agonist peptide is Ac-D-Arg-cyclo[Cys-Glu-His-D-Phe-Arg-Trp-Cys]-NH₂.
- 10. Use of an MC4R agonist peptide for the manufacture of a medicament for the treatment of obesity, wherein the medicament is administered by continuous infusion.
- 11. The use of Claim 10, wherein the medicament is administered using a pump.
- 12. The use of Claim 10, wherein the medicament is administered using a depot.
- 13. The use according to any one of Claims 10 to 12, wherein the MC4R agonist peptide is a peptide of the formula:

and pharmaceutically acceptable salts thereof, wherein

W is Glu, Gln, Asp, Asn, Ala, Gly, Thr, Ser, Pro, Met, Ile, Val, Arg, His, Tyr, Trp, Phe, Lys, Leu, Cya, or is absent;

 R^1 is -H, -C(O)CH₃, -C(O)(CH₂)₁₋₄CH₃, -C(O)(CH₂)₁₋₄NHC(NH)NH₂, Tyr-βArg-, Ac-Tyr-β-hArg-, gluconoyl-Tyr-Arg-, Ac-diaminobutyryl-, Ac-diaminopropionyl-, N-propionyl-, N-butyryl-, N-valeryl-, N-methyl-Tyr-Arg-, N-glutaryl-Tyr-Arg-, N-succinyl-Tyr-Arg-, R^6 -SO₂NHC(O)CH₂CH₂C(O)-, R^6 -SO₂NHC(O)CH₂CH₂C(O)Arg-, R^6 -SO₂NHCH₂CH₂CH₂C(O)-, C₃-C₇ cycloalkylcarbonyl, phenylsulfonyl, C₈-C₁₄ bicyclic arylsulfonyl, phenyl-(CH₂)_qC(O)-, C₈-C₁₄ bicyclic aryl-(CH₂)_qC(O)-,

$$\begin{split} R^2 \ is \ -H, \ -NH_2, \ -NHC(O)CH_3, \ -NHC(O)(CH_2)_{1\text{-}4}CH_3, \\ -NH\text{-}TyrC(O)CH_3, \ R^6SO_2NH\text{-}, \ Ac\text{-}Cya\text{-}NH\text{-}, \ Tyr\text{-}NH\text{-}, \\ HO\text{-}(C_6H_5)\text{-}CH_2CH_2C(O)NH\text{-}, \ or \ CH_3\text{-}(C_6H_5)\text{-}C(O)CH_2CH_2C(O)NH\text{-}; \\ R^3 \ is \ C_1\text{-}C_4 \ straight \ or \ branched \ alkyl, \ NH_2\text{-}CH_2\text{-}(CH_2)_q\text{-}, \ HO\text{-}CH_2\text{-}, \\ (CH_3)_2CHNH(CH_2)_4\text{-}, \ R^6(CH_2)_q\text{-}, \ R^6SO_2NH\text{-}, \ Ser, \ Ile, \end{split}$$

$$H_2N$$
 or H_2N or H_2N H_2N H_2N H_2N H_2N H_2N H_2N H_2N H_2N H_2N

q is 0, 1, 2, or 3; R^6 is a phenyl or C_8 - C_{14} bicyclic aryl; m is 1 or 2; n is 1, 2, 3, or 4;

 R^9 is $(CH_2)_p$ or $(CH_3)_2C$ -;

p is 1 or 2;

WO 2005/102377

R¹⁰ is NH- or is absent;

R⁷ is a 5- or 6-membered heteroaryl or a 5- or 6-membered heteroaryl ring optionally substituted with R⁴;

 R^4 is H, C_1 - C_4 straight or branched alkyl, phenyl, benzyl, or (C_6H_5) - CH_2 -O- CH_2 -;

R⁸ is phenyl, a phenyl ring optionally substituted with X, or cyclohexyl;

X is H, Cl, F, Br, methyl, or methoxy;

 R^{11} is -C(O) or -CH₂;

R⁵ is -NH₂, -OH, glycinol, NH₂-Pro-Ser-, NH₂-Pro-Lys-, HO-Ser-,

HO-Pro-Ser-, HO-Lys-, -Ser alcohol, -Ser-Pro alcohol, -Lys-Pro alcohol,

HOCH₂CH₂-O-CH₂CH₂NH-, NH₂-Phe-Arg-, NH₂-Glu-,

 $NH_2CH_2RCH_2NH$ -, RHN-, or RO- where R is a C_1 - C_4 straight or branched alkyl; and

L is -S-S- or -S-CH₂-S-.

14. The use according to any one of Claims 10 to 12, wherein the MC4R agonist peptide is a peptide of the formula:

and pharmaceutically acceptable salts thereof, wherein

W is Glu, Gln, Asp, Asn, Ala, Gly, Thr, Ser, Pro, Met, Ile, Val, Arg, His, Tyr,

Trp, Phe, Lys, Leu, Cya, or is absent;

R¹ is -H, -C(O)CH₃, -C(O)(CH₂)₁₋₄CH₃, -C(O)(CH₂)₁₋₄NHC(NH)NH₂,

Tyr-βArg-, Ac-Tyr-β-hArg-, gluconoyl-Tyr-Arg-, Ac-diaminobutyryl-,

Ac-diaminopropionyl-, N-propionyl-, N-butyryl-, N-valeryl-, N-methyl-Tyr-Arg-, N-glutaryl-Tyr-Arg-, N-succinyl-Tyr-Arg-, R⁶-SO₂NHC(O)CH₂CH₂C(O)-, R⁶-SO₂NHC(O)CH₂CH₂C(O)Arg-, R⁶-SO₂NHCH₂CH₂CH₂C(O)-, C₃-C₇ cycloalkylcarbonyl, phenylsulfonyl, C₈-C₁₄ bicyclic arylsulfonyl, phenyl-(CH₂)_qC(O)-, C₈-C₁₄ bicyclic aryl-(CH₂)_qC(O)-,

HN NH NH NH NH NH
$$H_2N$$
 H_2N H_3 H_4 H_2 H_3 H_4 H_5 H_6 H_8 $H_$

$$\begin{split} R^2 \text{ is -H, -NH}_2, -\text{NHC(O)CH}_3, -\text{NHC(O)(CH}_2)_{1\text{-}4}\text{CH}_3, \\ -\text{NH-TyrC(O)CH}_3, R^6\text{SO}_2\text{NH-, Ac-Cya-NH-, Tyr-NH-,} \\ \text{HO-(C}_6\text{H}_5)\text{-CH}_2\text{CH}_2\text{C(O)NH-, or CH}_3\text{-(C}_6\text{H}_5)\text{-C(O)CH}_2\text{CH}_2\text{C(O)NH-;} \\ R^3 \text{ is C}_1\text{-C}_4 \text{ straight or branched alkyl, NH}_2\text{-CH}_2\text{-(CH}_2)_q\text{-, HO-CH}_2\text{-,} \\ \text{(CH}_3)_2\text{CHNH(CH}_2)_4\text{-, } R^6\text{(CH}_2)_q\text{-, } R^6\text{SO}_2\text{NH-, Ser, Ile,} \end{split}$$

or
$$(CH_2)q$$
 $(CH_2)q$ $($

q is 0, 1, 2, or 3; $R^6 \text{ is a phenyl or } C_8\text{-}C_{14} \text{ bicyclic aryl;}$ m is 1 or 2; p is 1 or 2;

WO 2005/102377 PCT/US2004/016623

-35-

 R^4 is H, C_1 - C_4 straight or branched alkyl, phenyl, benzyl, or (C_6H_5) - CH_2 -O- CH_2 -;

X is H, Cl, F, Br, methyl, or methoxy; and

 \mbox{R}^{5} is -NH $_{2}$, -OH, glycinol, NH $_{2}$ -Pro-Ser-, NH $_{2}$ -Pro-Lys, HO-Ser-,

HO-Pro-Ser-, HO-Lys-, -Ser alcohol, -Ser-Pro alcohol, -Lys-Pro alcohol, HOCH₂CH₂O-CH₂CH₂NH-, NH₂-Phe-Arg-, NH₂-Glu-,

NH₂CH₂RCH₂NH-, RHN-, or RO- where R is a C₁-C₄ straight or branched alkyl.

15. The use according to any one of Claims 10 to 12, wherein the MC4R agonist peptide is a peptide of the formula:

and pharmaceutically acceptable salts thereof, wherein

W is a single bond, Glu, Gln, Asp, Asn, Ala, Gly, Thr, Ser, Pro, Met, Ile, Val, Arg, His, Tyr, Trp, or Phe;

R₁ is -H, -C(O)CH₃, -C(O)(CH₂)₁₋₄NH-C(NH)NH₂, Tyr-βArg, gluconoyl-Tyr-Arg, Ac-Dab, Ac-Dap, N-succinyl-Tyr-Arg, N-propionyl, N-valeryl, N-glutaryl-Tyr-Arg, N-butyryl,

 R_2 is -H, -NH₂, -NHC(O)CH₃, -NHC(O)(CH₂)₁₋₄CH₃, Tyr, or -NH-Tyr-C(O)CH₃;

R₃ is C₁-C₄ straight or branched alkyl, Ser, Ile, Arg,

q is 0, 1, 2, or 3;

m is 1 or 2;

p is 1 or 2;

 R_4 is -H, -CH₃, or -(CH₂)₁₋₃(CH₃);

X is -H, -Cl, -F, -Br, methyl, or methoxy; and

R₅ is -NH₂, -OH, glycinol, -Ser-Pro-NH₂, -Lys-Pro-NH₂, -Ser-OH,

-Ser-Pro-OH, -Lys-Pro-OH, -Arg-Phe-NH₂, -GluNH₂, -NHR, or -OR, where R is -CH₃ or -(CH₂)₁₋₃(CH₃).

16. The use according to any one of Claims 10 to 12, wherein the MC4R agonist peptide is cyclo[hCys-His-D-Phe-Arg-Trp-Cys]-NH₂,

Ac-cyclo[hCys-His-D-Phe-Arg-Trp-Cys]-NH2,

Arg-cyclo[hCys-His-D-Phe-Arg-Trp-Cys]-OH,

 $\label{lem:conditional} Ac-Arg-cyclo[Cys-Glu-His-d-Phe-Arg-Trp-Cys]-NH_2, or \\ Ac-d-Arg-cyclo[Cys-Glu-His-d-Phe-Arg-Trp-Cys]-NH_2.$

17. The use according to any one of Claims 10 to 12, wherein the MC4R agonist peptide is Ac-D-Arg-cyclo[Cys-Glu-His-D-Phe-Arg-Trp-Cys]-NH₂.