Prostate cANcer graDe Assessment (PANDA) Challenge

Derechowski, Markiewicz, Nyczka

University of Wrocław

September 26, 2020

Introduction

- Kaggle challenge
- detecting prostate cancer on tissue samples

Scoring

- image classification
- scoring based on Gleason scale (tissue type) mapped into ISUP scale

Data distribution

- equal number of samples for both data provider
- unequal class distribution
- different class distribution for both providers

Our approach

• We choose to make classification based on ISUP ranking

 trying both 6-class classification and regression with one output neuron

ResNet

 Residual network - shortcuts to avoid vanishing gradient problem, allows for deeper networks

ResNext

• Resnext - also uses split, transform, merge, which are then summed up

 number of independent paths is another hyperparameter for net tuning

Squeeze-and-Excitation Networks

 SE block adaptively recalibrates channel-wise feature responses by explicitly modeling interdependencies between channels

Attempts - PNG caching

 At first we tried to preprocess all images by cutting up the significant parts and we tried to do it beforehand to decrease overall training time.

 Since it didn't speed up the process significantly, it was easier for us to work with original data and preprocess it in-flow.

Other attempts

- batch and image size option 64x64x64 works slightly better than the others
- tried to merge little squares randomly, by the amount of valuable pixels and using heuristic
- ADAM and SGD with different learning rates
- different alpha scheduler's factors
- data transforms and augmentation
- different number of epochs

Result

First tries:

- regression (3 epochs) 0.79 CV score and 0.55 LB score
- after some bugs fixing 0.79 CV score and 0.72 LB score
- classification (3 epochs) 0.75 CV score and 0.74 LB score

After parameters tuning:

- classification (25 epochs) 0.83 CV score and 0.78 LB score
- regression (25 epochs) 0.87 CV score and 0.77 LB score

Plans

- more parameters tuning
- test longer and shorter training
- more data preprocess

What did we learn

- work organization
- dealing with big dataset
- se-resnext architecture
- re-training big net
- choosing parameters with time-consuming training
- how hard is to make effective model

References

ttps://towardsdatascience.com/review-resnext-1st-runner-up-of-ilsvrc-2016-image-classification-15d7f17b42ac

ttps://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035

ttps://towards datascience.com/understanding-and-visualizing-resnets-442284831be8

ttps://arxiv.org/pdf/1709.01507.pdf