Function GET_MW – single-thread version, no external ζ -function array (solar abundances are assumed), no Saha equation is used (electron and neutral concentrations are specified):

res = call external(libname, 'GET MW', Ndat, Parms, T arr, DEM arr, DDM arr, RL)

- 1. Ndat = [Nz, Nf, NT, Nparms] array of dimensions (4-element long integer):
 - a. Nz number of voxels along LOS;
 - b. Nf number of frequencies in the spectrum;
 - c. NT number of temperatures in the T_arr array; must be ≥ 2 otherwise DEM/DEM are ignored;
 - d. Nparms number of parameters used to describe each voxel (currently 15).
- 2. Parms array of parameters, Nparms×Nz, double (see below).
- 3. T_arr array of temperatures where DEM/DDM are specified, NT elements, double, in K (the temperature grid is assumed to be the same in all voxels).
 - 4. DEM_arr array of DEM, NT×Nz, double, in cm⁻⁶ K⁻¹.
 - 5. DDM_arr array of DDM, NT×Nz, double, in cm⁻³ K⁻¹.
 - 6. RL input/output array, 7×Nf, double:
 - a. first row (RL[0, *]) emission frequencies, in GHz;
 - b. other rows emission intensities, in sfu.

Array of parameters Parms (for a single voxel):

- 0. Parms[0] = S visible source area, in cm² (only the value for first voxel is used).
- 1. Parms[1] = Δz voxel length, in cm.
- 2. Parms[2] = T_0 plasma temperature, in K (is used if DEM/DDM are not specified).
- 3. Parms[3] = n_e electron concentration, in cm⁻³ (is used if DEM/DDM are not specified).
- 4. Parms[4] = B magnetic field strength, in G.
- 5. Parms[5] = θ viewing angle, in degrees.
- 6. Parms[6] = ψ magnetic field azimuthal angle, in degrees.
- 7. Parms[7] = f_0 starting frequency of the spectrum, in Hz:
 - a. is used, only if > 0;
 - b. if ≤ 0 , the frequencies are taken from the RL[0, *] array.
- 8. Parms[8] = Δ logarithmic frequency step (is used only if $f_0 > 0$).
- 9. Parms[9] emission mechanism flag (rounded to the nearest integer):
 - a. 0: all emission mechanisms (gyroresonance + free-free + contribution of neutrals) are included;
 - b. 1: gyroresonance is off;
 - c. 2: free-free is off;
 - d. 4: contribution of neutrals is off.

Several flags can be combined by usual or bitwise summation: e.g., Parms[9] = 2 + 4 turns off both free-free and contribution of neutrals, etc.

- 10. Parms[10] = s_{max} maximum cyclotron harmonic number.
- 11. Parms[11] = $n_{\rm H}$ neutral hydrogen concentration, in cm⁻³.
- 12. Parms[12] = n_{He} neutral helium concentration, in cm⁻³.
- 13. Parms[13] DEM/DDM on/off key:
 - a. 0: DEM/DDM are used (provided that NT \geq 2);
 - b. \neq 0: DEM/DDM in this voxel are ignored even if they are specified; T_0 and n_e are used instead.
- 14. Parms[14] element abundance model:
 - a. 0: coronal (it is also used if Parms[14] < 0 or > 2);
 - b. 1: photospheric (Caffau);
 - c. 2: photospheric (Scott).