CS 314 Principles of Programming Languages

Lecture 3: Syntax Analysis (Scanning)

Prof. Zheng Zhang

Class Information

Homework 1

- Due 9/18 11:55pm EST.
- Only accepted in **pdf** format.
- No late submission will be accepted.

TA office hours announced

• See Sakai course page

Review: Formalisms for Lexical and Syntactic Analysis

Two issues in Formal Languages:

- <u>Language Specification</u> → formalism to describe what a valid program (word/sentence) looks like.
- <u>Language Recognition</u> → formalism to describe a machine and an algorithm that can verify that a program is valid or not.

We use regular expression to specify tokens (words)

A Formal Definition

Regular Expressions (RE) over an Alphabet Σ

If
$$\underline{\mathbf{x}} = \mathbf{a} \in \Sigma$$
, then $\underline{\mathbf{x}}$ is an **RE** denoting the set $\{a\}$ or, the language $L = \{a\}$

Assuming \underline{x} and \underline{y} are both **RE**s then

- 1. \underline{xy} is an **RE** denoting $L(\underline{x})L(\underline{y}) = \{ pq \mid p \in L(\underline{x}) \text{ and } q \in L(\underline{y}) \}$
- 2. $\underline{x} \mid \underline{y}$ is an **RE** denoting $L(\underline{x}) \cup L(\underline{y})$
- 3. $\underline{\mathbf{x}}^*$ is an **RE** denoting $L(\underline{\mathbf{x}})^* = \bigcup_{0 < k < \infty} L(\underline{\mathbf{x}})^k \qquad (Kleene Closure)$

Set of all strings that are zero or more concatenations of \underline{x}

4. $\underline{\mathbf{x}}^{+}$ is an **RE** denoting

$$L(\underline{\mathbf{x}})^+ = \bigcup_{1 \le k < \infty} L(\underline{\mathbf{x}})^k$$

(Positive Closure)

Set of all strings that are one or more concatenations of \underline{x}

ε is an **RE** denoting the empty set

Review: Regular Expressions

A syntax (notation) to specify regular languages.

REp

Language L(p)

 $\underline{x} \mid \underline{y}$ $L(\underline{x}) \cup L(\underline{y})$

 \underline{xy} {RS | R \in L(\underline{x}), S \in L(\underline{y})}

 \underline{x}_{+} $L(\underline{x}) \cup L(\underline{x}\underline{x}) \cup L(\underline{x}\underline{x}\underline{x}) \cup ...$

 $\underline{x}^* \left(\underline{x}^* = \underline{x}^+ \mid \epsilon\right) \qquad \qquad \{\epsilon\} \cup L(\underline{x}) \cup L(\underline{x}\underline{x}) \cup \dots$

The symbols underlined denotes a regular expression, i.e., <u>x</u>

(s)

 ϵ

L(s)

 \mathbf{a} $\{\mathbf{a}\}$

 $\{oldsymbol{\epsilon}\}$

The symbols in boldface denotes a letter from the alphabet, i.e., **a**

Review: Formalisms for Lexical and Syntactic Analysis

Two issues in Formal Languages:

- <u>Language Specification</u> → formalism to describe what a valid program (word/sentence) looks like.
- <u>Language Recognition</u> → formalism to describe a machine and an algorithm that can verify that a program is valid or not.

We use finite state automata to recognize regular language

Finite State Automata

A Finite-State Automaton is a quadruple: < S, s, F, T >

- S is a set of states, e.g., {S0, S1, S2, S3}
- s is the start state, e.g., S0
- F is a set of final states, e.g., {S3}
- T is a set of labeled transitions, of the form (state, input) \rightarrow state [i.e., $S \times \Sigma \rightarrow S$]

Recognizers for Regular Expressions

Let *letter* stand for A \mid B \mid C \mid . . . \mid Z Let *digit* stand for 0 \mid 1 \mid 2 \mid . . . \mid 9

Integer Constant

Regular Expression: digit⁺

From RE to Scanner

Classic approach is a three-step method:

- Build automata for each piece of the RE using a template.
 Multiple automata can be pasted using ε-transition.
 This construction is called "Thompson's construction"
- 2. Convert the newly built automaton into a deterministic automaton. This construction is called the "subset construction"
- 3. Given the deterministic automaton, minimize the number of states. Minimization is a **space optimization**.

Non-deterministic Finite Automaton (NFA)

- NFA might have transitions on ε
- Non-deterministic choice: multiple transition from the same sate on the same symbol

Deterministic finite automaton (DFA) has no \varepsilon-transitions and all choices are single-valued.

- From each RE symbol and operator, we have a template
- Build them, in precedence order, and join them with ϵ -transition

NFA for a

- From each RE symbol and operator, we have a template
- Build them, in precedence order, and join them with ε -transition

- From each RE symbol and operator, we have a template
- Build them, in precedence order, and join them with ε -transition

- From each RE symbol and operator, we have a template
- Build them, in precedence order, and join them with ε-transition

NFA for a

NFA for <u>xy</u>

NFA for $\underline{\mathbf{x}}|\underline{\mathbf{y}}$

- From each RE symbol and operator, we have a template
- Build them, in precedence order, and join them with ε -transition

NFA for a

NFA for <u>xy</u>

NFA for $\underline{\mathbf{x}}|\underline{\mathbf{y}}$

- From each RE symbol and operator, we have a template
- Build them, in precedence order, and join them with ϵ -transition

NFA for \mathbf{a} NFA for $\underline{\mathbf{xy}}$ $\mathbf{s_1}$ $\mathbf{s_2}$ $\mathbf{s_2}$ $\mathbf{s_3}$

- From each RE symbol and operator, we have a template
- Build them, in precedence order, and join them with ε -transition

NFA for a

NFA for xy

NFA for $\underline{\mathbf{x}}|\underline{\mathbf{y}}$

NFA for $\underline{\mathbf{x}}^*$

- From each RE symbol and operator, we have a template
- Build them, in precedence order, and join them with ε -transition

NFA for <u>xy</u> NFA for a a **S**1 NFA for $\underline{\mathbf{x}}|\underline{\mathbf{y}}$ NFA for $\underline{\mathbf{x}}^*$ ϵ ϵ S0**S**0 ϵ

- a, b, & c
 b | c
 (b| c)*
- 4. a (bl c)*

- 1. a, b, & c
- 2. blc
- 3. (blc)*
- 4. a (bl c)*

- Let's build an NFA for a (b|c)*
 - 1. a, b, & c
 - 2. blc
 - 3. (blc)*
 - 4. a (bl c)*

- Let's build an NFA for a (b|c)*
 - 1. a, b, & c
 - 2. **blc**

 - 3. (blc)*
 4. a (blc)*

- 1. a, b, & c
- 2. blc
- 3. (blc)*
 4. a (blc)*

Final states are double circled

From RE to Scanner

Classic approach is a three-step method:

- 1. Build automata for each piece of the **RE** using a **template**. Multiple automata can be pasted using ε-transition. This construction is called "**Thompson's construction**"
- 2. Convert the newly built automaton into a deterministic automaton. This construction is called the "subset construction"
- 3. Given the deterministic automaton, minimize the number of states. Minimization is a **space optimization**.

- Build a deterministic automaton that simulates the non-deterministic one
- Each state in the new one represents a set of states in the original one

NFA DFA

DFA	NFA
$D\theta$	S0

DFA	NFA
D0	S0
D1	S1, S2, S3, S9, S4, S6

DFA	NFA
D0	S0
D1	S1, S2, S3, S9, S4, S6

DFA	NFA
D0	S0
D1	S1, S2, S3, S9, S4, S6
D2	

DFA	NFA
D0	S0
D1	S1, S2, S3, S9, S4, S6
D2	

DFA	NFA
D0	S0
D1	S1, S2, S3, S9, S4, S6
D2	S5, S8, S3, S9, S4, S6

DFA	NFA		
D0	S0		
D1	S1, S2, S3, S9, S4, S6		
D2	S5, S8, S3, S9, S4, S6		

• Each state in the new one represents a set of states in the original one

New Automaton

DFA	NFA		
D0	S0		
D1	S1, S2, S3, S9, S4, S6		
D2	S5, S8, S3, S9, S4, S6		
<i>D3</i>			

• Each state in the new one represents a set of states in the original one

New Automaton

DFA	NFA		
D0	S0		
D1	S1, S2, S3, S9, S4, S6		
D2	S5, S8, S3, S9, S4, S6		
D3			

• Each state in the new one represents a set of states in the original one

New Automaton

DFA	NFA		
D0	S0		
<i>D1</i>	S1, S2, S3, S9, S4, S6		
D2	S5, S8, S3, S9, S4, S6		
D3	S7, S8, S3, S9, S4, S6		

DFA	NFA		
D0	S0		
D1	S1, S2, S3, S9, S4, S6		
D2	S5, S8, S3, S9, S4, S6		
<i>D3</i>	S7, S8, S3, S9, S4, S6		

DFA	NFA		
$D\theta$	S0		
D1	S1, S2, S3, S9, S4, S6		
D2	S5, S8, S3, S9, S4, S6		
D3	S7, S8, S3, S9, S4, S6		

DFA	NFA		
D0	S0		
D1	S1, S2, S3, S9, S4, S6		
D2	S5, S8, S3, S9, S4, S6		
D3	S7, S8, S3, S9, S4, S6		

DFA	NFA		
D0	S0		
D1	S1, S2, S3, S9, S4, S6		
D2	S5, S8, S3, S9, S4, S6		
<i>D3</i>	S7, S8, S3, S9, S4, S6		

From RE to Scanner

Classic approach is a three-step method:

- 1. Build automata for each piece of the **RE** using a **template**. Multiple automata can be pasted using ε-transition. This construction is called "**Thompson's construction**"
- 2. Convert the newly built automaton into a deterministic automaton. This construction is called the "subset construction"
- 3. Given the deterministic automaton, minimize the number of states. Minimization is a **space optimization**.

DFA Minimization

• Discover states that are equivalent in their contexts and replace

multiple states with a single one

New Automaton

Minimal Automaton

Minimal DFA	Original DFA
M0	D0
M1	D1, D2, D3

 ϵ

Review: Scanner Implementation

Transitions can be represented using a transition table:

An FSA *accepts/recognizes* an input string **iff** there is some path from start state to a final state such that the labels on the path are that string. Lack of entry in the table (or no arc for a given character) indicates an *error—reject*.

Review: Code for the scanner

class	S0	S1	<i>S2</i>	S3
letter	S1	S1	_	
digit	S3	S1	_	
other	S3	<i>S2</i>	_	

Implementation: char ← next_char(); state ← S0;

```
done ← false;
while( not done ) {
   class ← char_class[char];
   state ← next_state[class,state];
    switch(state) {
       case S1:
           /* building an id */
           token_value ← token_value + char;
           char \leftarrow next\_char();
           if (char == DELIMITER)
              done = true;
           break;
        case S2: /* error state */
        case S3: /* error state */
           token type = error;
           done = true;
           break;
return token_type;
```

Compiler Front End

Syntax & semantic analyzer, IR code generator

Front End Responsibilities:

- Recognize legal programs
- Report errors
- Produce intermediate representation

Compiler Front End

Syntax & semantic analyzer, IR code generator

Front End Responsibilities:

- Recognize legal programs
- Report errors
- Produce intermediate representation

Syntax Analysis (Scott, Chapter 2.1, 2.3)

Token Sequence:

Context Free Grammars (CFGs)

- Another formalism to for describing languages
- A CFG $G = \langle T, N, P, S \rangle$:
 - 1. A set T of terminal symbols (tokens).
 - 2. A set N of nonterminal symbols.
 - 3. A set P production (rewrite) rules.
 - 4. A special start symbol S.
- The language L(G) is the set of sentences of terminal symbols in T* that can be **derived** from the start symbol S:

$$L(\mathcal{G}) = \{ w \in T^* \mid S \Rightarrow^* w \}$$

An Example of a Partial Context Free Grammar

```
<if-stmt> ::= if <expr> then <stmt> <expr> ::= id <= id <<stmt> ::= id := id
```


Context Free Grammars (CFGs)

- A formalism to for describing languages
- A CFG $G = \langle T, N, P, S \rangle$:
 - 1. A set T of terminal symbols (tokens).
 - 2. A set N of nonterminal symbols.
 - 3. A set P production (rewrite) rules.
 - 4. A special start symbol S.
- The language L(G) is the set of sentences of terminal symbols in T^* that can be derived from the start symbol S:

$$L(\mathcal{G}) = \{ w \in T^* \mid S \Rightarrow^* w \}$$

CFGs are rewrite systems with restrictions on the form of rewrite (production) rules that can be used.

A Partial Context Free Grammar

Context free grammar

CFGs are rewrite systems with restrictions on the form of rewrite (production) rules that can be used. The left hand side of a production rule can only be **one non-terminal symbol**.

Elements of BNF Syntax

Terminal Symbol: Symbol-in-Boldface

Non-Terminal Symbol: Symbol-in-Angle-Brackets

Production Rule: Non-Terminal ::= Sequence of Symbols

or

Non-Terminal ::= Sequence | Sequence |

• • •

Example:

```
...
<if-stmt> ::= if <expr> then <stmt>
<expr> ::= id <= id
<stmt> ::= id := num
```

How a BNF Grammar Describes a Language

A sentence is a sequence of terminal symbols (tokens).

The language L(G) of a BNF grammar G is the set of sentences generated using the grammar:

- Begin with start symbol.
- Iteratively replace non-terminals with terminals according to the rules (rewrite system).

This replacing process is called a derivation (\Rightarrow) . Zero or multiple derivation steps are written as \Rightarrow *.

Formally,
$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}$$

Is $X2 := 0 \in L(G)$, in another word, can X2 := 0 be derived in G?

In which order to apply the rules?

Typically, there are three options:

leftmost (\Rightarrow_L) , rightmost (\Rightarrow_R) , any (\Rightarrow)

Is $X2 := 0 \in L(G)$, i.e., can X2 := 0 be derived in G?

leftmost derivation	rule
$\langle stmt \rangle \Rightarrow_L$	

$$X2 := 0$$

leftmost derivat	rule	
<stmt></stmt>	⇒L	6
<identifier> := 0</identifier>	\Rightarrow_{L}	

$$X2 := 0$$

leftmost derivation		rule
<stmt></stmt>	\Rightarrow_{L}	6
<identifier> := 0</identifier>	\Rightarrow_{L}	

$$X2 := 0$$

Is $X2 := 0 \in L(G)$, i.e., can X2 := 0 be derived in G?

leftmost derivation		rule
<stmt></stmt>	⇒L	6
<identifier> := 0</identifier>	$\Rightarrow_{\mathbb{L}}$	5
<identifier> <digit> := 0</digit></identifier>	\Rightarrow_{L}	

X2 := 0	

```
    1. < letter > ::= A | B | C | ... | Z
    2. < digit > ::= 0 | 1 | 2 | ... | 9
    3. < identifier > ::= < letter > |
    4. < identifier > < letter > |
    5. < identifier > < digit >
```

Is $X2 := 0 \in L(G)$, i.e., can X2 := 0 be derived in G?

leftmost derivation		rule
<stmt></stmt>	⇒L	6
<identifier> := 0</identifier>	$\Rightarrow_{\mathbb{L}}$	5
<identifier> <digit> := 0</digit></identifier>	\Rightarrow_{L}	

$$X2 := 0$$

Is $X2 := 0 \in L(G)$, i.e., can X2 := 0 be derived in G?

leftmost derivation		rule
<stmt></stmt>	$\Rightarrow_{\mathbb{L}}$	6
<identifier> := 0</identifier>	⇒L	5
<identifier> <digit> := 0</digit></identifier>	\Rightarrow_{L}	3
<letter> <digit> := 0</digit></letter>	$\Rightarrow_{\mathbb{L}}$	

$$X2 := 0$$

```
    < letter > ::= A | B | C | ... | Z
    < digit > ::= 0 | 1 | 2 | ... | 9
    < identifier > ::= < letter > |
    < identifier > < letter > |
    < identifier > < digit >
```

Is $X2 := 0 \in L(G)$, i.e., can X2 := 0 be derived in G?

leftmost derivation		rule
<stmt></stmt>	⇒L	6
<identifier> := 0</identifier>	$\Rightarrow_{\mathbb{L}}$	5
<identifier> <digit> := 0</digit></identifier>	$\Rightarrow_{\mathbb{L}}$	3
<letter> <digit> := 0</digit></letter>	\Rightarrow_{L}	

$$X2 := 0$$

```
    1. < letter > ::= A | B | C | ... | Z
    2. < digit > ::= 0 | 1 | 2 | ... | 9
    3. < identifier > ::= < letter > |
    4. < identifier > < letter > |
    5. < identifier > < digit >
```

leftmost derivation		rule
<stmt></stmt>	⇒L	6
<identifier> := 0</identifier>	$\Rightarrow_{\mathbb{L}}$	5
<identifier> <digit> := 0</digit></identifier>	$\Rightarrow_{\mathbb{L}}$	3
<letter> <digit> := 0</digit></letter>	\Rightarrow_{L}	1
X < digit> := 0	⇒L	
X2 := 0		

```
    1. < letter > ::= A | B | C | ... | Z
    2. < digit > ::= 0 | 1 | 2 | ... | 9
    3. < identifier > ::= < letter > |
    4. < identifier > < letter > |
    5. < identifier > < digit >
    6. < stmt > ::= < identifier > := 0
```

leftmost derivation		rule
<stmt></stmt>	⇒L	6
<identifier> := 0</identifier>	⇒L	5
<identifier> <digit> := 0</digit></identifier>	$\Rightarrow_{\mathbb{L}}$	3
<le>teter> <digit> := 0</digit></le>	$\Rightarrow_{\mathbb{L}}$	1
X < digit > := 0	⇒L	
X2 := 0		

```
    1. < letter > ::= A | B | C | ... | Z
    2. < digit > ::= 0 | 1 | 2 | ... | 9
    3. < identifier > ::= < letter > |
    4. < identifier > < letter > |
    5. < identifier > < digit >
    6. < stmt > ::= < identifier > := 0
```

leftmost derivation		rule
<stmt></stmt>	⇒L	6
<identifier> := 0</identifier>	$\Rightarrow_{\mathbb{L}}$	5
<identifier> <digit> := 0</digit></identifier>	⇒L	3
<le>teter> <digit> := 0</digit></le>	$\Rightarrow_{\mathbb{L}}$	1
X < digit > := 0	⇒L	2
X2 := 0		

```
    1. < letter > ::= A | B | C | ... | Z
    2. < digit > ::= 0 | 1 | 2 | ... | 9
    3. < identifier > ::= < letter > |
    4. < identifier > < letter > |
    5. < identifier > < digit >
    6. < stmt > ::= < identifier > := 0
```

leftmost derivation		rule
<stmt></stmt>	⇒L	6
<identifier> := 0</identifier>	⇒L	5
<identifier> <digit> := 0</digit></identifier>	⇒L	3
<le>tetter> <digit> := 0</digit></le>	\Rightarrow_{L}	1
X <digit> := 0</digit>	⇒L	2
X2 := 0		

```
    1. < letter > ::= A | B | C | ... | Z
    2. < digit > ::= 0 | 1 | 2 | ... | 9
    3. < identifier > ::= < letter > |
    4. < identifier > < letter > |
    5. < identifier > < digit >
    6. < stmt > ::= < identifier > := 0
```

leftmost derivation		rule
<stmt></stmt>	$\Rightarrow_{\mathbb{L}}$	6
<identifier> := 0</identifier>	$\Rightarrow_{\mathbb{L}}$	5
<identifier> <digit> := 0</digit></identifier>	$\Rightarrow_{\mathbb{L}}$	3
<le>tetter> <digit> := 0</digit></le>	$\Rightarrow_{\mathbb{L}}$	1
X <digit> := 0</digit>	$\Rightarrow_{\mathbb{L}}$	2
X2 := 0		

```
    1. < letter > ::= A | B | C | ... | Z
    2. < digit > ::= 0 | 1 | 2 | ... | 9
    3. < identifier > ::= < letter > |
    4. < identifier > < letter > |
    5. < identifier > < digit >
    6. < stmt > ::= < identifier > := 0
```

Next Lecture

Things to do:

• Read Scott, Chapter 2.2 - 2.5 (skip 2.3.3 bottom-up Parsing)