# Total NP Search Problems, Resolution, PLS, and Wrong Proof

Sam Buss U.C. San Diego

FOCS '2021 Workshop: Reflections on Propositional Proofs in Algorithms and Complexity

February 7, 2022



### Talk outline

- Total NP Search Problems (TFNP)
- Resolution and PLS
  - The direct connection
  - The bounded arithmetic connection
- The Wrong-Proof problem
  - Small width resolution and PLS
- Res(small) and CPLS
- Concluding comments

Some results are "folklore"; New results: joint with N. Fleming & R. Impagliazzo ([BFI'ip]).

### Total NP Search Problems — TFNP

# Definition (Meggido-Papadimitriou'91; Papadimitriou'94)

A Total NP Search Problem (TFNP) is a polynomial time relation R(x,y) so that R is

- Total: For all x, there exists y s.t. R(x, y),
- Honest (poly growth rate): If R(x, y), then  $|y| \le p(|x|)$  for some polynomial p.

The TFNP Problem is:

Given an input x, output a y s.t. R(x, y).

TFNP is intermediate between P (polynomial time) and NP (non-deterministic polynomial time).

# Polynomial Local Search (PLS)

Inspired by Dantzig's algorithm and other local search algorithms:

# Definition ([JPY'88].)

A PLS problem consists of polynomial time functions: N(x,s) and i(x), and a polynomial time predicate F(x,s) s.t.

- $\forall x (F(x, i(x))).$
- $\forall x, s(F(x,s) \rightarrow F(x,N(x,s))).$

A solution is a point s such that F(x,s) and  $N(x,s) \ge s$ .

F(x,s) means "s is a feasible solution for x".

 $i(\cdot)$  gives an initial feasible solution.

s' = N(x, s) means "s' is the neighbor of s"

The input is x.

A solution to the PLS problem is any local minimum s.

Clearly, a PLS problem is in TFNP.



For many TFNP classes, it is useful to let the polynomial-time computations be relative to an oracle  $\Omega$ : ("black-box" versus "white-box")

### Definition (Meggido-Papadimitriou'91; Papadimitriou'94)

A Total NP Search Problem (TFNP) is a polynomial time relation  $R(x,y,\Omega)$  so that R is

- Total: For all  $x, \Omega$ , there exists y s.t.  $R(x, y, \Omega)$ ,
- Honest (poly growth rate): If  $R(x, y, \Omega)$ , then  $|y| \le p(|x|)$  for some polynomial p.

The TFNP Problem is:

Given an input x, output a y s.t.  $R(x, y, \Omega)$ .

W.l.o.g.,  $x=1^n$  is a size parameter and  $\Omega$  codes everything else. The size of  $\Omega$  is  $N=2^{n^{O(1)}}$ . Queries  $\Omega(z)$  have  $|z|=n^{O(1)}$ .

For PLS relative to an oracle, F and N can access the oracle.



## **CNF Search Problem:**

"CNF formula" means a propositional formula in conjunctive normal form.

"Width w(n) CNF" means a CNF in which all clauses have width  $\leq w(n)$ , where n is the size of the CNF.

#### Definition

A CNF Search Problem is the problem of: given an unsatisfiable CNF formula and a truth assignment  $\tau$ , find a clause that is falsified by  $\tau$ .

### Observation

A CNF Search Problem for a sufficiently uniform family of (exponentially large) unsatisfiable polylog-width CNF formulas is the same thing as an oracle TFNP problem.

"Exponentially large" is  $N = 2^{n^{O(1)}}$ . "Polylog" in N is  $n^{O(1)}$ .



#### Observation

A CNF Search Problem for a sufficiently uniform family of (exponentially large) unsatisfiable polylog-width CNF formulas is the same thing as an oracle TFNP problem.

#### **Proof sketch for** $\Rightarrow$ **direction**:

Given a sufficiently uniform family of exponentially large, unsatisfiable, polylog width CNF's, and a truth assignment  $\tau$ , encode them bitwise with an oracle  $\Omega$ . The TFNP problem is to find a falsified clause, or to find a place where the CNF is incorrectly encoded by  $\Omega$ . The solution to the TFNP problem must be verifiable in polynomial time. This is possible since the clauses are polylog-width and since the CNF is sufficiently uniform.

For the oracle (black-box) version of TFNP: The "sufficient uniformity" does not require a uniform algorithm for generating the CNF instances. It only requires that, for any  $\Omega$  that does **not** correctly encode one of the CNF's, there is a small (size  $n^{O(1)}$ ) witness, verifiable in polynomial time, that it is not a valid instance of the family of CNF's.

#### Observation

A CNF Search Problem for a sufficiently uniform family of (exponentially large) unsatisfiable polylog-width CNF formulas is the same thing as an oracle TFNP problem.

#### **Proof** sketch for $\Leftarrow$ direction:

Given a TFNP problem  $R(x, y, \Omega)$ , choose the propositional variables  $p_z$  to have values given by  $\Omega(z)$ , and let the CNF be

$$\bigwedge_{y} \neg [R(x, y, \Omega) \text{ accepts}].$$

 $[R(x, y, \Omega) \text{ accepts}]$  is the DNF of clauses of size  $n^{O(1)}$  representing the answers to queries to the oracle  $\Omega$  by an accepting computation of R.

 $[R(x, y, \Omega)]$  is expressed as a decision tree of depth  $n^{O(1)}$  querying variables  $p_z$  for queries " $\Omega(z)$ ?" made by the computation  $R(x, y, \Omega)$ .

Note 
$$n^{O(1)} = polylog(2^n) = polylog(N)$$
.



# Equivalence of PLS and polylog-width resolution

## Theorem (? — B.-Kołodziejczyk-Thapen'14)

A family of polylog width CNF Search problems is in PLS iff it has (sufficiently uniform) polylog-width resolution refutations.

**Proof sketch for**  $\Leftarrow$  **direction:** A poly log-width, exponentially long, resolution refutation  $\mathcal R$  can be converted into a PLS problem, with  $\Omega$  encoding a propositional truth assignment  $\tau$  and a resolution refutation  $\mathcal R$ , by

- ullet The nodes of the PLS problem are the lines (clauses) of  ${\cal R}.$
- A vertex s is feasible (satisfies  $F(x, s, \Omega)$  iff  $\tau(s) = False$ .
- The neighborhood function N maps s to the hypothesis s' used to derive the clause s s.t.  $\tau(s') = False$ .
- Solutions are falsified input clauses.



### Theorem (? — B. Kołodziejczyk-Thapen'14)

A family of polylog width CNF Search problems is in PLS iff it has (sufficiently uniform) polylog-width resolution refutations.

#### **Proof sketch for** $\Rightarrow$ **direction**:

The main conditions for a PLS problem solving a CNF Search problem can restated as:

- $F(x, i(x), \Omega)$
- $F(x, s, \Omega) \wedge s' := N(x, s, \Omega) < s \rightarrow F(x, s', \Omega)$
- $F(x, s, \Omega) \wedge s' := N(x, s, \Omega) \ge s \to (C_{s'} \text{ is false}),$ where  $C_{s'}$  is the clause that is found to be falsified at the solution s' to the PLS problem.

F and N are computed by polynomial time oracle machines. Queries to the oracle  $\Omega(z)$  give values of variables  $p_z$  in the CNF Search Problem.



Thus,  $\neg F(x, s, \Omega)$  and  $N(x, s, \Omega)$  can computed by  $n^{O(1)}$  many queries to the values of variables  $p_x$ .

- $\neg F(x, s, \Omega)$  is a conjunction of polylog-width clauses.
- $s' := N(x, s, \Omega)$  is determined by a  $n^{O(1)}$ -depth (polylog-depth) decision tree. Let  $s_1, s_2, \ldots s_l$  be the possible values for s'

By b. and c., there is a straightforward polylog-width resolution derivation of  $[\neg F(x, s, \Omega)]$  from the clauses

$$C_{s_1} \ldots C_{s_{L'}} \quad \llbracket \neg F(x, s_{L'+1}, \Omega) \rrbracket \ldots \llbracket \neg F(x, s_L, \Omega) \rrbracket.$$

Note  $s_{L'+1}, ..., s_L < s$ .

Combining these derivations for all s, together with  $[F(x, i(x), \Omega)]$  from condition a., we get a polylog-width resolution refutation of the initial clauses  $C_s$ .

## Connection via Bounded Arithmetic

#### Definition

 $T_2^1$  (resp.  $S_2^2$ ) is the theory of bounded arithmetic with induction on NP-predicates (and length induction, PIND, on  $\Sigma_2^b$  predicates).

### Theorem (B.-Krajíček'94, Krajíček'94)

- The provably total functions of  $T_2^1$  (and  $S_2^2$ ) are the functions many-one reducible to PLS.
- The  $\forall \Pi_1^b$  (coNP) consequences of  $T_2^1$  (and  $S_2^2$ ) have straightforward propositional translations which have polylog-width resolution refutations.

The first item is a witnessing theorem for  $T_2^1$ .

The second item is the Paris-Wilkie translation from bounded arithmetic to propositional logic.

These results hold also for the relativized (black box) setting, corresponding to TFNP with an oracle.



# Wrong-Proof / Proof Consistency Search Problem

[Beckmann-B.'17] and [Goldberg-Papadimitriou'17,'18] also [Krajíček'16]

## Definition (Wrong-Proof Search Problem)

Let T be a proof system. An instance of Wrong-Proof for T is an (exponentially large) purported T-proof of a contradiction. A solution to the Wrong-Proof problem is the identification of a syntactic error in the T-proof.

- [Beckmann-B.; Krajíček]: Wrong-Proof for Frege and extended-Frege.
- [Goldberg-Papadimitriou]: Wrong-Proof for Q-EFF (QBF + extended Frege functions)
- This talk: Wrong-Proof for
  - (a) log-width resolution and constant-width resolution and
  - (b) Resolution and Res(log).



### Wrong-Proof for Resolution Refutations as a TFNP problem

An exponentially large  $(2^{n^{O(1)}} \text{ size})$  instance is encoded by  $\Omega$  describing:

- A truth assignment  $\tau$ .
- For each clause, the presence or absence of each literal.
   In limited width resolution, the identities of the *i*-th literals.
- Some clauses are initial clauses; each has a designated literal which is true under  $\tau$ . (Optional for polylog width.)
- Other clauses are listed with the resolution variable and pointers to their parent clauses (their hypotheses). Parent clauses precede the clause (so the proof is a dag).
- The final clause is the empty clause.
- A solution is either
  - A falsified input clause, or
  - An error in an inference.



#### Theorem

PLS is many-one equivalent to the Wrong-Proof Problem for polylog-width resolution.

**Proof idea:** By the previous construction, PLS instances can be converted to instances of the Wrong-Proof for polylog-width resolution, and vice-versa.

## Theorem (BFI'ip)

The Wrong-Proof Problem for width 3 resolution is many-one equivalent to the Wrong-Proof Problem for polylog-width resolution.

**Proof idea:** We need to show how to convert a polylog width resolution derivation to a width 3 resolution refutation. In the TFNP setting, this means converting a width  $n^{O(1)}$  resolution refutation to a width 3 resolution refutation.

The idea is to introduce new variables that stand for all possible disjunctions of  $n^{O(1)}$  many literals. This is essentially the same as introducing these variables by extension, which can be done with width 3 clauses. With the new variables, any width  $n^{O(1)}$  refutation can be converted to a width 3 refutation.

# Restatement as Effective Quasi-P Simulation

### Definition (see Pitassi-Santhanan'10)

A proof system P (strongly) effectively p-simulates a proof system Q if there is a truth-preserving polynomial time transformation f such for all  $\varphi$ , an Q-proof of  $f(\varphi)$  can be converted (in polynomial time) to a polynomial size P proof of  $\varphi$ .

Define "effectively quasi-p simulates" similarly with quasipolynomial in place of polynomial.

#### Theorem

Width 3 resolution strongly effectively quasi-p simulates polylog-width resolution.

**Proof idea:** The same proof idea works; however, now we are converting arbitrary proofs from width 3 resolution to polylog-width resolution.

Note: For simplicity, the definition of "(strongly) effective p-simulation" is slightly strengthened from the usual one.

# Resolution and Res(polylog)

### Definition

- A *t*-conjunction is a conjunction of  $\leq t$  literals.
- $\operatorname{Res}(f(S))$  means a propositional refutation system in which lines are permitted to be disjunctions of f(S)-conjunctions, where S is the size of the refutation.

We will discuss resolution (that is, Res(1)) and Res(polylog).

## The next level of Bounded Arithmetic

#### Definition

 $T_2^2$  (resp.  $S_2^3$ ) is the theory of bounded arithmetic with induction on  $\Sigma_2^p$ -predicates (and length induction, PIND, on  $\Sigma_3^p$  predicates).

# Theorem (Krajíček-Skelley-Thapen'07, Krajíček'94, ...)

- The provably total functions of  $T_2^2$  (and  $S_2^3$ ) are the functions many-one reducible to CPLS (Colored-PLS).
- The  $\forall \Pi_1^b$  (coNP) consequences of  $T_2^2$  (and  $S_2^3$ ) have straightforward propositional translations which have Res(polylog) refutations.

The first item is an NP-witnessing theorem for  $T_2^2$ .

The second item is the Paris-Wilkie translation from bounded arithmetic to propositional logic.

These results hold also for the relativized (black box) setting, corresponding to TFNP with an oracle.



# Colored PLS (CPLS) [Krajíček-Skelley-Thapen'07]

Simlar to PLS: With C(x, s, y) expressing that node s has color y and c(x, s) giving a color to terminal nodes s.

### Definition (Modified from Krajíček-Skelley-Thapen'07)

A CPLS problem has polynomial time functions N(x, s), i(x) and c(x, y), and polynomial time predicates F(x, s) and C(x, s, y) s.t.:

- $\forall x \forall y (F(x, i(x)) \land \neg C(x, i(x), y))$ . "Initial node (root) has no color".
- $\forall x, s(F(x,s) \rightarrow F(x,N(x,s)).$
- $\forall x, s, y (F(x, s) \land N(x, s) < s \land C(x, N(x, s), y) \rightarrow C(x, s, y))$ . "Colors propagate from neighbors".

A solution to the CPLS problem is a point the following fails.

•  $\forall x, s(F(x,s) \land N(x,s) \ge s \rightarrow C(x,s,c(x,s)))$ . "Leaf nodes have a (known) color."

CPLS relativizes to an oracle  $\Omega$  similarly to PLS.



# Theorem (BFI'ip)

A family of CNF Search problems is in CPLS iff it has (sufficiently uniform) resolution refutations.

**Proof idea:** Similar in spirit to before. For the conversion from CPLS to a resolution refutation, clauses are the disjunctions of the possible colors of the node.

### Theorem (BFI'ip)

The CPLS Search Problem is many-one equivalent to the Wrong-Proof Search problem for Resolution.

### Theorem (BFI'ip)

The Wrong-Proof Search problem for Resolution (i.e.,  $\operatorname{Res}(1)$ ) is many-one equivalent to the Wrong-Proof Search problem for  $\operatorname{Res}(\operatorname{polylog})$ .

### Theorem (BFI'ip; c.f. Pitassi-Santhanan'10, Atserias-Bonet'04)

Resolution (i.e., Res(1)) strongly effectively quasi-p simulates Res(polylog).

# Concluding comments

- Many-one equivalence of Wrong-Proof Search problem is not always equivalent to Strongly Effective Quasi-P Equivalence.
   E.g., Pitassi-Santhanan show a quantified propositional logic is complete for effective p-simulation, but their method does not work to give a complete Wrong-Proof Search problem.
- The Wrong-Proof Search problem Frege encompasses all provably total functions of  $U_2^1$ , and thus all "usual" TFNP problems [B.-Beckmann]. What can be said about stronger classes, such as for extended Frege or Q-EFF or even stronger? Is there a natural stopping point? (c.f. [Goldberg-Papadimtriou]).
- Is there a better generalization of CPLS for higher levels the of Bounded Arithmetic theories? (Compare to the Game Induction Principles of [Skelley-Thapen'11].)
- What about Wrong-Proof Search for other weak propositional proof systems (cutting planes, SOS, etc.)? [BFI'ip]

Thank you!