Exercise 8 Answer Sheet — Logic Theory (2), 80424

June 2, 2025

Question 2

We will show that the universal recursive function $U: \mathbb{N}^2 \to \mathbb{N}$ is not total, and that there is no total recursive function U' containing it.

Proof. We defined the universal function over the domain of coded Σ_1 -formulas, and directly by past constructions the number 1 does not codify such a formula. Let us assume towards a contradiction that there is $U' \supseteq U$ total recursive function.

 $U': \mathbb{N}^2 \to \mathbb{N}$ is recursive, then using projections we get that $g: \mathbb{N} \to \mathbb{N}$ which defined by g(x) = U'(Le(x), Re(x)) is recursive as well. There is a code for g such that U(e, cd(x,y)) = g(cd(x,y)) = U'(x,y) for all values. In particular for x = e, U(e, cd(e,y)) = U'(e,y)

$$f(x) = \begin{cases} 0 & \exists z \ T(x, x, z) \\ 1 & \text{Otherwise} \end{cases}$$

f is total recursive by the closure to existential quantifiers of Σ_1^0 , and

Question 3

For every $l \in \mathbb{N}$ we define $b_l : \mathbb{N} \to \mathbb{N}$ by $b_0(n) = 2n$, $b_{l+1}(n) = b_l^{n+1}(1)$ in the sense of composition. Let $B(l,n) = b_l(n)$, such that B(0,n) = 2n, B(l+1,0) = B(l,1) and B(l+1,n+1) = B(l,B(l+1,n)).

Part a

We will show that for any $l \in \mathbb{N}$, b_l is primitive-recursive.

Proof.