# Late-Time Potential Shallowing and Low-Acceleration Hints:

### A Minimal Scalar-Refractive Interpretation with Laboratory Falsifiability

Gary Alcock

October 1, 2025

#### Abstract

Several recent measurements continue to stress General Relativity (GR) in the late-time universe. First, a model-independent, direct measurement of the Weyl gravitational potential from DES Year 3 weak-lensing × clustering finds the lowest-redshift bins are  $2-3\sigma$  shallower than  $\Lambda$ CDM+GR expectations. Second, DESI DR2 BAO—in combination with supernovae and a CMB distance prior—exhibit dataset-dependent preference for dynamical dark energy over a pure cosmological constant. Third, independent, late-time determinations of  $H_0$  (time-delay cosmography; JWST-Cepheid cross-checks of the local distance ladder) keep the Hubble tension alive as a robust crossmethod discrepancy. In parallel, Gaia wide-binary tests at accelerations  $\lesssim 10^{-10}\,\mathrm{m\,s^{-2}}$ remain active and contested. We show that a minimal scalar refractive framework—in which photons see an optical index  $n = e^{\psi}$ , matter accelerates as  $\mathbf{a} = (c^2/2)\nabla\psi$ , and  $\psi$ obeys a quasilinear Poisson equation with a low-acceleration crossover—naturally yields (i) time-weakening lensing potentials as the mean density dilutes and (ii) MOND-like phenomenology in the deep-field regime, while (iii) remaining indistinguishable from GR in Solar-System PPN tests and (iv) offering a decisive, laboratory falsifier via clock redshift comparisons between solid-state cavities and atomic transitions. We emphasise these observations as *motivations*, not proofs; the laboratory discriminator carries the ultimate burden of evidence.

#### 1 Introduction

GR remains extraordinarily successful in high-gradient and Solar-System regimes. At late times and low accelerations, however, several independent datasets continue to show mild but persistent tensions with  $\Lambda \text{CDM+GR}$ . Most notable are: (i) the DES Y3 direct Weyl-potential measurement showing shallower low-z wells; (ii) DESI DR2 BAO combinations indicating a dataset-dependent preference for  $w(z) \neq -1$ ; (iii) the durability of the  $H_0$  split across methods (distance ladder with JWST cross-checks, time-delay cosmography). At the same time, wide-binary tests of gravity at  $a \sim 10^{-10} \, \text{m s}^{-2}$  remain contested and under active

refinement. We ask a restricted, operational question: can a minimal scalar refractive picture capture the qualitative directions of these anomalies while staying fully compliant with PPN constraints and yielding an unambiguous, lab-grade falsifier?

#### 2 Minimal scalar-refractive framework

We consider a single scalar field  $\psi(\mathbf{x})$  defining an optical medium

$$n(\mathbf{x}) = e^{\psi(\mathbf{x})}, \qquad c_1(\mathbf{x}) = \frac{c}{n} = c e^{-\psi},$$
 (1)

with the weak-field matter response

$$\mathbf{a} = \frac{c^2}{2} \nabla \psi \equiv -\nabla \Phi, \qquad \Phi \equiv -\frac{c^2}{2} \psi,$$
 (2)

and a quasilinear field equation with a single crossover function  $\mu$ :

$$\nabla \cdot \left[ \mu(|\nabla \psi|/a_{\star}) \, \nabla \psi \right] = -\frac{8\pi G}{c^2} \left( \rho - \bar{\rho} \right). \tag{3}$$

Here  $a_{\star}$  sets the low-acceleration crossover. The normalisation is chosen so that in high-gradient regimes ( $\mu \to 1$ ) one recovers the Newtonian potential and all 1PN optical tests of GR (light deflection, Shapiro delay) exactly. In the deep-field regime,  $\mu(x) \sim x$  yields  $|\nabla \psi| \propto 1/r$  and asymptotically flat rotation curves, i.e. MOND-like phenomenology, without adding dark matter explicitly. This construction is *minimal*: a single scalar with a single interpolation  $\mu$ .

#### Action principle, coupling, and PPN limit

To address physical mechanism and avoid ad hoc postulation, consider the action

$$S = \int d^4x \sqrt{-g} \left[ \frac{c^4}{16\pi G} a_{\star}^2 \mathcal{H} \left( \frac{|\nabla \psi|}{a_{\star}} \right) - \psi \left( \rho - \bar{\rho} \right) \right] + S_{\text{SM}} \left[ e^{-\psi} A_{\mu}, \ \Psi_{\text{matter}} \right]. \tag{4}$$

Here  $\mathcal{H}$  is a dimensionless function and  $S_{\rm SM}$  denotes the Standard-Model sector with photons coupled through the optical metric (phase velocity  $v_{\rm phase} = c \, e^{-\psi}$ ) while massive fields follow the weak-field acceleration law above. Varying (4) with respect to  $\psi$  yields

$$\nabla \cdot \left[ \mu \left( \frac{|\nabla \psi|}{a_{\star}} \right) \nabla \psi \right] = -\frac{8\pi G}{c^2} \left( \rho - \bar{\rho} \right), \qquad \mu(y) \equiv \frac{1}{y} \frac{d\mathcal{H}}{dy}. \tag{5}$$

Thus the interpolation  $\mu$  is generated by a single scalar functional  $\mathcal{H}$ ; the limits  $\mu \to 1$  (high gradient) and  $\mu \sim y$  (deep field) follow from  $\mathcal{H}$  being quadratic for  $y \gg 1$  and  $\propto y^2/2$  for  $y \ll 1$ , respectively. PPN sketch. Expanding (4) around a static, weak-field source with  $g_{\mu\nu} = \eta_{\mu\nu} + \delta g_{\mu\nu}$  and  $\psi \ll 1$ , one finds to  $\mathcal{O}(v^2/c^2)$  that  $g_{00} = -1 + 2\Phi/c^2 + \mathcal{O}(c^{-4})$  and  $g_{ij} = \delta_{ij} (1 + 2\Phi/c^2) + \mathcal{O}(c^{-4})$  with  $\Phi = -\frac{c^2}{2}\psi$  sourced by (3). Hence light deflection and Shapiro delay correspond to  $\gamma = 1$ , and the quadratic response of  $\mathcal{H}$  in the high-gradient limit yields  $\beta = 1$  at 1PN order; preferred-frame/non-conservative PPN parameters vanish at leading order.

#### Units and normalization of $\mu$

Because  $\psi$  is dimensionless,  $|\nabla \psi|$  has units of inverse length. It is convenient to write the argument of  $\mu$  in terms of the acceleration  $a \equiv (c^2/2) |\nabla \psi|$ :

$$x \equiv \frac{|\nabla \psi|}{(2a_{\star}/c^2)} = \frac{a}{a_{\star}}.$$

With this choice, the interpolation  $\mu(x)$  is a function of  $a/a_{\star}$  as in standard MOND-like notation, while Eq. (3) retains the form given.

#### Interpolation $\mu(x)$ and the scale $a_{\star}$

Representative choices that capture both regimes are

$$\mu_{\text{simple}}(x) = \frac{x}{1+x}, \qquad \mu_{\text{standard}}(x) = \frac{x}{\sqrt{1+x^2}}.$$
(6)

Both satisfy  $\mu \to 1$  for  $x \gg 1$  and  $\mu \sim x$  for  $x \ll 1$ . The scale  $a_{\star}$  is not a fine-tuned constant but encodes the transition from linear (Newton/GR) response to the deep-field regime; phenomenologically,  $a_{\star} \sim 10^{-10} \,\mathrm{m\,s^{-2}}$  brackets the galactic crossover and is precisely where wide-binary tests are probing.

### 3 Late-time potential shallowing (DES)

GR+ $\Lambda$  anticipates nearly constant late-time gravitational potentials on large scales; departures are typically ascribed to evolving dark energy or modified growth functions. DES Y3 report a *direct*, model-independent estimate of the Weyl potential in four redshift bins using combined galaxy-galaxy lensing and clustering; the two lowest-z bins are measured  $\sim 2\sigma$  and  $\sim 2.8\sigma$  below  $\Lambda$ CDM expectations. In Eq. (3), the source of  $\psi$  tracks ( $\rho - \bar{\rho}$ ). As the universe dilutes, the line-of-sight mean approaches  $\bar{\rho}(t)$  and the typical  $\psi$ -gradient weakens, leading generically to shallower lensing potentials at late times:

$$\frac{\Delta\Phi}{\Phi} \sim \frac{\Delta\rho}{\rho} \implies \text{late-time shallowing as } \rho \downarrow .$$
 (7)

Quantitatively, the DES low-z deficit corresponds to a fractional reduction at the  $\mathcal{O}(10\%)$  level (consistent with a 2–3 $\sigma$  deviation when mapped to the fiducial covariance), which is the expected order from modest dilution of the large-scale  $\psi$ -gradient without invoking exotic microphysics. This qualitative trend matches the DES finding and requires no exotic dark-energy microphysics beyond the effective refractive response of the cosmic medium.

#### FRW implementation

Write  $\psi(\mathbf{x}, a) = \bar{\psi}(a) + \delta \psi(\mathbf{x}, a)$  and  $\rho = \bar{\rho}(a) [1 + \delta(\mathbf{x}, a)]$  in a spatially flat FRW background with scale factor a. In comoving coordinates,  $\nabla^2_{\text{phys}} = a^{-2} \nabla^2$ . Assuming  $\mu$  is slowly varying



Figure 1: Schematic comparison: the scalar-refractive picture generically weakens the line-of-sight  $\psi$ -gradient with cosmic dilution, producing shallower late-time lensing potentials than a strictly constant-potential baseline.

on the large scales of interest, one obtains at linear order and in the quasistatic regime  $(k \gg aH)$ :

$$\mu(\bar{x}) \nabla^2 \delta \psi \simeq -\frac{8\pi G}{c^2} a^2 \bar{\rho}(a) \delta(\mathbf{x}, a), \qquad \delta \Phi \equiv -\frac{c^2}{2} \delta \psi. \tag{8}$$

Hence

$$\delta\Phi_k(a) \propto \frac{a^2 \,\bar{\rho}(a) \,D(a)}{\mu(\bar{x}(a)) \,k^2},\tag{9}$$

with D(a) the linear growth factor. In GR  $(\mu = 1)$  this reduces to the familiar result:  $\delta\Phi$  roughly constant in matter domination and decaying once dark energy dominates. In the scalar-refractive picture, any secular drift of  $\mu(\bar{x}(a))$  due to the slow evolution of the background  $|\nabla\psi|$  produces an additional, controlled decay factor. Toy parametrization. Taking  $\mu^{-1}(\bar{x}(a)) = 1 + \epsilon_0 [a/a_t]^p$  with  $(\epsilon_0, p) \sim (0.1, 1)$  and  $a_t \sim 0.7$  yields a  $\sim 10\%$  reduction in  $\delta\Phi$  between  $z \approx 0.6$  and  $z \approx 0.2$ , consistent in order-of-magnitude with DES. We present this as a toy  $\mu$ -evolution model; a full Boltzmann treatment is left for future work.

## 4 Dynamical late-time background (DESI DR2, cautiously)

DESI DR2 BAO, when combined with SNe and a CMB distance prior, shows a dataset-dependent preference for dynamical dark energy w(z) over  $\Lambda$ . We treat this not as proof of new physics but as convergent motivation: late-time geometry appears flexible enough that a refractive description—in which optical path-lengths are effectively  $D_{\rm opt} = \frac{1}{c} \int e^{\psi} ds$ —can account for mild departures from a rigid- $\Lambda$  background without compromising early-time CMB fits. Toy model. For small  $\psi$ ,  $D_{\rm opt} \approx \frac{1}{c} \int (1+\psi) ds$  so the inferred distance-redshift relation acquires a fractional bias  $\Delta D/D \simeq \langle \psi \rangle_{\rm LOS}$ . Parametrising  $\langle \psi \rangle_{\rm LOS}(z)$  by a smooth function (e.g. a cubic spline anchored at the DESI effective redshifts) induces an effective w(z) in standard fits without invoking a fluid; small, percent-level  $\psi$  biases can mimic mild dynamical-w preferences in the same redshift range, consistent with the cautious language used here.



Figure 2: Illustrative acceleration profiles: a low-a crossover (dashed) flattens relative to Newton/GR (solid) near  $a \sim 10^{-10}\,\mathrm{m\,s^{-2}}$ . Wide-binary studies currently disagree over the presence of such a deviation.

## 5 Low-acceleration regime (wide binaries; active and contested)

Gaia wide binaries probe internal accelerations down to  $a \sim 10^{-10}\,\mathrm{m\,s^{-2}}$ . Some analyses report a  $\sim 20\%$  velocity excess beyond  $\sim 3000$  au consistent with MOND-like expectations; others demonstrate that realistic triple-population modelling and stricter data cuts drive the signal back toward Newtonian dynamics. Given current disagreement, wide binaries are best viewed as an active, near-term battleground precisely at the scale where Eq. (3) transitions  $(\mu \sim x)$ . For orientation, the  $\mu$ -crossover radius follows from  $x = a/a_{\star} \simeq 1$ . Using  $a = (c^2/2)|\nabla\psi|$  and the point-mass high-gradient solution  $|\nabla\psi| = 2GM/(c^2r^2)$ , one has  $a = GM/r^2$  and  $x = GM/(a_{\star}r^2)$ . Thus the crossover radius is

$$r_{\times} = \sqrt{\frac{GM}{a_{\star}}} \approx 7.1 \times 10^{3} \,\text{au} \left(\frac{M}{M_{\odot}}\right)^{1/2} \left(\frac{1.2 \times 10^{-10} \,\text{m s}^{-2}}{a_{\star}}\right)^{1/2},$$
 (10)

i.e.  $(3-7) \times 10^3$  au for  $M \sim (0.2-1) M_{\odot}$ , matching the observational dispute range now under scrutiny. Our point is limited: the *direction* of the disputed anomaly aligns with the minimal scalar-refractive crossover.

#### 6 Consistency and counter-evidence

Any alternative must squarely face null tests. A key geometry vs. dynamics test,  $E_G$ , has recently been measured with ACT DR6 CMB-lensing  $\times$  BOSS galaxies and found consistent with  $\Lambda$ CDM/GR and largely scale-independent within current precision. Weak-lensing  $S_8$  results have also evolved: the KiDS-Legacy cosmic-shear analysis is consistent with Planck  $\Lambda$ CDM. These findings do not contradict the qualitative late-time trends above, but they emphasise caution: late-time tensions are uneven across probes and evolving with improved analyses.

#### Quantitative benchmarks and laboratory error budget

Cavity—atom slope (decisive prediction). For two stationary platforms separated by  $\Delta h$ , the gravitational potential difference is  $\Delta \Phi \simeq g \, \Delta h$ . The scalar-refractive picture yields a ratio redshift between an evacuated optical cavity (tracking  $v_{\rm phase} = c \, e^{-\psi}$ ) and a co-located atomic transition:

$$\frac{\Delta f}{f}\Big|_{\text{cav/atom}} = \kappa \frac{\Delta \Phi}{c^2}, \qquad \boxed{\kappa = 1 \text{ (scalar refractive)}}, \quad \kappa = 0 \text{ (GR)}.$$

Derivation of  $\kappa=1$ . Locally,  $f_{\rm cav} \propto v_{\rm phase}/(2L) \propto e^{-\psi}$  (with L a proper length stabilized against elastic sag). Thus  $\Delta f_{\rm cav}/f_{\rm cav} = -\Delta \psi$ . Using  $\Phi = -\frac{c^2}{2}\psi$ , one has  $\Delta \psi = -2\,\Delta\Phi/c^2$  so  $\Delta f_{\rm cav}/f_{\rm cav} = +2\,\Delta\Phi/c^2$ . Atomic transitions redshift with proper time,  $\Delta f_{\rm at}/f_{\rm at} = +\Delta\Phi/c^2$  to leading order. Therefore for the ratio  $R = f_{\rm cav}/f_{\rm at}$  across two heights:

$$\frac{\Delta R}{R} = \left(\frac{\Delta f}{f}\right)_{\text{cav}} - \left(\frac{\Delta f}{f}\right)_{\text{at}} = (2-1)\frac{\Delta \Phi}{c^2} = \frac{\Delta \Phi}{c^2},$$

i.e.  $\kappa = 1$ . With  $\Delta h = 100$  m and  $g \simeq 9.81$  m s<sup>-2</sup>,

$$\frac{\Delta f}{f} \approx \frac{g \,\Delta h}{c^2} \approx 1.1 \times 10^{-14} \text{ per } 100 \text{ m}, \tag{12}$$

providing a clear target for present-day optical metrology. A cross-material (e.g. ULE vs. Si) and cross-species (e.g. Sr vs. Yb) ratio design isolates the universal geometry-locked slope from material dispersion or atomic structure.

**DES shallowing (order-of-magnitude).** Mapping the reported  $2\text{--}3\sigma$  low-z deficit to fractional amplitude implies  $\mathcal{O}(10\%)$  weaker Weyl potential than the Planck- $\Lambda$ CDM expectation in those bins, consistent with dilution of  $\nabla \psi$  along typical lines of sight.

Wide-binary crossover (orientation). For a solar-mass system,  $a = GM/r^2$  crosses  $\sim 10^{-10} \,\mathrm{m\,s^{-2}}$  for separations of order  $(3-7) \times 10^3$  au, overlapping the regime where Gaia analyses disagree.

| Scale / Probe       | Prediction (scalar refractive)                               | Status                     |
|---------------------|--------------------------------------------------------------|----------------------------|
| Solar System (PPN)  | $\gamma = \beta = 1$ ; preferred-frame $\approx 0$           | GR-consistent              |
| DES (low- $z$ Weyl) | $\Delta\Phi/\Phi = \mathcal{O}(10\%)$ shallower              | $2-3\sigma$ low at low $z$ |
| Galactic rotation   | $ \nabla \psi  \propto 1/r$ ; flat $v$ ; TF scaling          | Empirical trend            |
| Wide binaries       | Crossover near $a_{\star} \sim 10^{-10}  \mathrm{m  s^{-2}}$ | Active, contested          |
| Lab (100 m)         | $(\Delta f/f)_{\rm cav/atom} \approx 1.1 \times 10^{-14}$    | Near-term falsifier        |

Table 1: Representative quantitative benchmarks across regimes.

#### 7 Laboratory falsifiability (decisive path)

The decisive test is local and composition-resolved. In a verified nondispersive band, a vacuum optical cavity's resonance frequency scales with the phase velocity  $v_{\rm phase} = c/n = c\,e^{-\psi}$ , while co-located atomic transition frequencies track internal energy intervals. Comparing a cavity to an atomic clock at two different gravitational potentials isolates a ratio redshift: GR predicts a strict null (both redshift equally), whereas the scalar-refractive picture allows a small, geometry-locked slope  $\propto \Delta\Phi/c^2$ . A cross-material, cross-species ratio protocol cleanly separates material/atomic systematics; the observable is route- and potential-dependent, not device-dependent. This experiment carries the model's risk: a strict null at laboratory sensitivity falsifies the framework.

#### Embedding and symmetry remark

While the present work stays agnostic about a full high-energy completion, Eq. (4) sketches a minimal embedding: a single scalar controlling the optical metric seen by photons and sourcing an effective potential for matter. Deep-field universality arises from the single interpolation function  $\mu(x)$ ; no multiple free functions are introduced. The  $\mu \sim x$  behaviour reflects an emergent scale-free response in the  $|\nabla \psi| \ll a_{\star}$  sector rather than fine-tuning a specific exponent.

#### 8 Conclusions

We have outlined a minimal scalar-refractive model that: (i) matches Solar-System PPN constraints; (ii) qualitatively reproduces late-time potential shallowing as the universe dilutes and a low-a crossover phenomenology at  $a \sim 10^{-10}\,\mathrm{m\,s^{-2}}$ ; (iii) remains decisively falsifiable via laboratory cavity—atom redshift ratios. We regard current cosmological anomalies as motivations, not conclusions. If future DESI/LSST-era analyses strengthen dynamical late-time signals while  $E_G$  and shear constraints continue to tighten, the scalar-refractive picture will face sharper quantitative tests. Regardless, the laboratory ratio test provides a clean decision procedure independent of cosmological systematics.

#### References

**DES Weyl potential (model-independent)**: I. Tutusaus *et al.*, "Measurement of the Weyl potential evolution from the first three years of Dark Energy Survey data," *Nature Communications* **15**, 9295 (2024).

**DESI DR2 dynamical** w (dataset-dependent): S. Adil et al., "Dynamical dark energy in light of the DESI DR2 BAO," Nature Astronomy (2025); see also arXiv:2504.06118 (updated 2025) for a data-combination analysis consistent with the journal version.

 $H_0$  status (independent late-time anchors): S. Birrer *et al.* (TDCOSMO), "Cosmological constraints from strong lensing time delays," arXiv:2506.03023 (2025) and references therein; L. Breuval *et al.*, "Latest updates on the Hubble tension from JWST by the SH0ES team," AAS 246 (2025), abstract; see also contemporaneous JWST-based coverage confirming HST Cepheid

calibrations.

 $E_G$  gravity test (GR-consistent): L. Wenzl *et al.*, "The Atacama Cosmology Telescope DR6: gravitational lensing  $\times$  BOSS  $E_G$  test," *Phys. Rev. D* **111**, 043535 (2025).

**KiDS-Legacy shear (Planck-consistent)**: B. Stölzner *et al.*, "KiDS-Legacy: Consistency of cosmic shear measurements with Planck," arXiv:2503.19442 (2025).

Wide binaries (active & contested): C. Pittordis & W. Sutherland, "Wide binaries from Gaia DR3: testing GR vs. MOND with realistic triple modelling," *Open Journal of Astrophysics* (2025); X. Hernandez, "A recent confirmation of the wide binary gravitational anomaly," *MNRAS* 537, 2925 (2025).