Linear Method for Classification

Linear Regression

- Linear approach to model the relationship between a scalar response, (y) (or dependent variable) and one or more predictor variables, (x or x) (or independent variables)
- The response is going to be the linear function of input (one or more independent variables)
- Optimal coefficient vector w is given by

$$\hat{\mathbf{w}} = \left(\mathbf{X}^{\mathsf{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Linear Method for Classification

- The boundary that separates the region of classes is linear
- · Separating surface will be a hyperplane
- A hyperplane that best fit the region of separation between the classes

• Discriminant function in 2-dimensional space :

 $\mathbf{x}_n = [x_{n1}, x_{n2}]^\mathsf{T}$ $f(\mathbf{x}_n, w_1, w_2, w_0) = w_1 x_{n1} + w_2 x_{n2} + w_0$

Linear Method for Classification

- The boundary that separates the region of classes is linear
- · Separating surface will be a hyperplane
- A hyperplane that best fit the region of separation between the classes

• Discriminant function in 2-dimensional space :

 $\mathbf{x}_{n} = [x_{n1}, x_{n2}]^{\mathsf{T}} \quad f(\mathbf{x}_{n}, w_{1}, w_{2}, w_{0}) = w_{1} x_{n1} + w_{2} x_{n2} + w_{0} = 0$

Linear Method for Classification

- The boundary that separates the region of classes is linear
- Separating surface will be a hyperplane
- A hyperplane that best fit the region of separation between the classes

Discriminant function in 2-dimensional space:

$$\mathbf{x}_n = [x_{n1}, x_{n2}]^\mathsf{T}$$

$$\mathbf{x}_{n} = [x_{n1}, x_{n2}]^{\mathsf{T}}$$
 $x_{n2} = -\frac{w_{1}}{w_{2}} x_{n1} - \frac{w_{0}}{w_{2}} = mx_{n1} + c$

Linear Method for Classification

- The boundary that separates the region of classes is linear
- Separating surface will be a hyperplane
- A hyperplane that best fit the region of separation between the classes

Discriminant function in $\emph{d}\text{-dimensional}$ space:

$$f(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0 = \sum_{i=0}^{a} w_i x_i$$

Two classes of Approaches for Linear Classification

- 1. Modeling a discriminating function:
 - For each class, a linear discriminant function $f_i(\mathbf{x}, \mathbf{w}_i)$ is defined
 - Let C_1 , C_2 , ..., C_i , ..., C_M be the M classes
 - Let $f_i(\mathbf{x}, \mathbf{w}_i)$ be the linear discriminant function for i^{th} class

Class label for $\mathbf{x} = \underset{i}{\operatorname{arg max}} f_i(\mathbf{x}, \mathbf{w}_i)$ i = 1, 2, ..., M

- Discriminant function is defined independent of the classes
- Linear regression can be treated as discriminant function
 - Do the linear regression by considering dependent variable as indicator variable
- Logistic regression

7

Two classes of Approaches for Linear Classification

- 2. Directly learn a discriminant function (hyperplane):
 - Classic method: Discriminant function between the classes is learnt

- Perceptron (linear discriminant function is learnt)
- Support vector machine (SVM) (linear discriminant function is learnt)
- Neural networks (when the discriminant function is nonlinear)

Classification Using Linear Regression

- Given:-Training data: $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } \mathbf{y}_n \in \mathbb{R}^M$
 - $-\mathbf{x}_n$ is input vector (d dependent variable)
 - There are ${\cal M}$ classes, represented by ${\cal M}$ indicator variables
 - $-\mathbf{y}_n$ is response vector (dependent variables) which is M-dimensional binary vector i.e. one of the M values is 1
 - For N examples, \mathbf{X} is data matrix of size $N \times (d+1)$ and \mathbf{Y} is response matrix of size $N \times M$
- Linear regression on response vector: $\hat{\mathbf{W}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$
 - $\hat{\mathbf{W}}$ is of the size $(d+1) \times M$ $\hat{\mathbf{W}} = [\hat{\mathbf{w}}_1, \hat{\mathbf{w}}_2, ..., \hat{\mathbf{w}}_M]$
 - Each column of $\hat{\mathbf{W}}$ is (d+1) coefficients corresponding to a class

q

Classification Using Linear Regression

 For any test example x, the discriminant value for class i is:

$$f_i(\mathbf{x}, \hat{\mathbf{w}}_i) = \hat{\mathbf{w}}_i^\mathsf{T} \mathbf{x} = \sum_{i=0}^d \hat{w}_{ij} x_i$$

Class label for
$$\mathbf{x} = \underset{i}{\operatorname{argmax}} f_i(\mathbf{x}, \hat{\mathbf{w}}_i)$$
 $i = 1, 2, ..., M$

11

12

Illustration of Classification using Linear Regression

Uninha	Weight	Cla	ass
neight	weight	y1	y2
90	21.5	1	0
95	23.67	1	0
100	32.45	1	0
116	38.21	1	0
98	28.43	1	
108	36.32	1	0
104	27.38	1	0
112	39.28	1	0
121	35.8	1	0
92	23.56	1	0
152	46.8	0	1
178	78.9	0	1
163	67.45	0	1
173	82.9	0	1
154	52.6	0	1
168	66.2	0	1
183	90	0	1
172	82	0	1
156	45.3	0	1
161	59	0	1

- Number of training examples (N) = 20
- Dimension of a training example = 2
- · Number of classes: 2
- Each output variable is a 2-dimensional binary vector
- Class: Child (C1) Adult (C2)

Illustration of Classification using Linear Regression

Height	14/-:-ba	Class		
neight	weight	y1	y2	
90	21.5	1	C	
95	23.67	1	C	
100	32.45	1	C	
116	38.21	1	C	
98	28.43	1	C	
108	36.32	1	C	
104	27.38	1	C	
112	39.28	1	C	
121	35.8	1	C	
92	23.56	1	C	
152	46.8	0	1	
178	78.9	0	1	
163	67.45	0	1	
173	82.9	0	1	
154	52.6	0	1	
168	66.2	0	1	
183	90	0	1	
172	82	0	1	
156	45.3	0	1	
161	59	0	1	

- Training: $\hat{\mathbf{W}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y}$
- X is data matrix of size 20 x 3
- Y is response matrix of size 20 x 2

$$\hat{\mathbf{W}} = \begin{bmatrix} \hat{\mathbf{w}}_1 & \hat{\mathbf{w}}_2 \end{bmatrix} = \begin{bmatrix} 2.8897 & -1.8897 \\ -0.0222 & 0.0222 \\ 0.0122 & -0.0122 \end{bmatrix}$$

Illustration of Classification using Linear Regression							
Height Weigh	147-1-La	Class		Test Example: 150 50.6			
	Weight	y1	y2	1 cot Example:			
90	21.5	1	0	100			
95	23.67	1	0	/ / /			
100	32.45	1	0	/ /•			
116	38.21	1	0	$f_1(\mathbf{x}, \hat{\mathbf{w}}_1)$			
98	28.43	1	0				
108	36.32	1	0	Weight /			
104	27.38	1	0	in Kg 60			
112	39.28	1	0	$/f_2(\mathbf{x}, \hat{\mathbf{w}}_2)$			
121	35.8	1	0	40			
92	23.56	1	0				
152	46.8	0	1	//			
178	78.9	0	1	20 400 400 400 400			
163	67.45	0	1	80 100 120 140 160 180 200 Height in cm			
173	82.9	0	1	neight in chi			
154	52.6	0	1	$f_1(\mathbf{x}, \hat{\mathbf{w}}_1) = 0.1842$ $f_2(\mathbf{x}, \hat{\mathbf{w}}_2) = 0.8158$			
168	66.2	0	1	J1(-, j) 0.10 12 J2(-, j) 0.010 0			
183	90	0	1	CI			
172	82	0	1	 Class: Adult (C2) 			
156	45.3	0	1				
161	59	0	1	13			

Classification Using Linear Regression

- Dependent variable is categorical (indicator variable)
- Output is multiple outputs (multiple dependent variables)
- If the input \mathbf{x} belongs to C_i , then y_i is 1
- The expected output for x should be close to 1
- During linear regression for classification, we are trying to predict the expected output value
- In other way, we are trying to predict probability of class $\mathbf{E}[y_i \mid \mathbf{x}] = P(y_i = C_i \mid \mathbf{x})$
- · This is the ideal situation
- · Linear regression gives the hope of getting this
- The notion of predicting probability of class is given nicely by *logistic regression*

Logistic Regression

• Requirement: The discriminant function $f_i(\mathbf{x}, \mathbf{w}_i)$ should give the probability of class C_i

$$E[y_i \mid \mathbf{x}] = P(y_i = C_i \mid \mathbf{x})$$

- Look for some kind of transformation of probability and fit that
- Logit transformation: $\log \left(\frac{P(\mathbf{x})}{1 P(\mathbf{x})} \right)$
- 2-class classification:
 - Class label: 0 or 1
 - $-P(\mathbf{x})$ is $P(C_i=1|\mathbf{x})$ i.e. probability that output is 1 given input (probability of success)
 - $-1-P(\mathbf{x})$ is $P(C_i=0|\mathbf{x})$ i.e. probability of failure

17

Logistic Regression

- · Logit function: Log of odds function
- Odds function: $\frac{P(\mathbf{x})}{1 P(\mathbf{x})}$
 - Probability of success divided by the probability of failure
- Fit a linear model to logit function:

$$\log \left(\frac{P(\mathbf{x})}{1 - P(\mathbf{x})} \right) = w_0 + w_1 x_1 + \dots + w_d x_d = \mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}}$$

where
$$\mathbf{w} = [w_0, w_1, ..., w_d]^T$$
 and $\hat{\mathbf{x}} = [1, x_1, ..., x_d]^T$

- For 1-dimensional (d=1) space, x

$$\log\left(\frac{P(x)}{1 - P(x)}\right) = w_0 + w_1 x \qquad \frac{P(x)}{1 - P(x)} = e^{(w_0 + w_1 x)}$$

- Logit function: Log of odds function
- Odds function: $P(\mathbf{x})$ $1-P(\mathbf{x})$
 - Probability of success divided by the probability of failure
- · Fit a linear model to logit function:

$$\boxed{\log\left(\frac{P(\mathbf{x})}{1 - P(\mathbf{x})}\right) = \mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}}} \quad \text{where } \mathbf{w} = [w_0, w_1, ..., w_d]^{\mathsf{T}} \\ \text{and } \hat{\mathbf{x}} = [1, x_1, ..., x_d]^{\mathsf{T}}}$$

- For 1-dimensional (d=1) space, x

$$\frac{P(x)}{1 - P(x)} = e^{(w_0 + w_1 x)}$$

$$P(x) = \frac{e^{(w_0 + w_1 x)}}{1 + e^{(w_0 + w_1 x)}} = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

40

Logistic Regression

$$P(x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

- This function is a sigmoidal function, specifically called as logistic function
- · Logistic function:

$$P(x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

$$P(x) = \frac{1}{1 + e^{-(\beta x)}}$$

- · Logit function: Log of odds function
- Odds function:
 - Probability of success divided by the probability of failure
- Fit a linear model to logit function: $\left| \log \left(\frac{P(\mathbf{x})}{1 P(\mathbf{x})} \right) = \mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}} \right|$
 - For *d*-dimensional space, $\mathbf{x} = [x_1, x_2, ..., x_d]^T$

$$\log\left(\frac{P(\mathbf{x})}{1 - P(\mathbf{x})}\right) = w_0 + w_1 x_1 + \dots + w_d x_d = \mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}} \quad \text{where } \mathbf{w} = [w_0, w_1, \dots, w_d]^{\mathsf{T}}$$

$$= \frac{P(\mathbf{x})}{1 - P(\mathbf{x})} = e^{(\mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}})}$$

Logistic Regression

- Logit function: Log of odds function
- $P(\mathbf{x})$ Odds function: $1-P(\mathbf{x})$
 - Probability of success divided by the probability of failure
- Fit a linear model to logit function: $\log \left(\frac{P(\mathbf{x})}{1 P(\mathbf{x})} \right) = \mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}}$

$$\frac{P(\mathbf{x})}{1 - P(\mathbf{x})} = e^{(\mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}})} \qquad \text{where } \mathbf{w} = [w_0, w_1, ..., w_d]^{\mathsf{T}}$$
and $\hat{\mathbf{x}} = [1, x_1, ..., x_d]^{\mathsf{T}}$

- For
$$d$$
-dimensional space, $\mathbf{x} = [x_1, x_2, ..., x_d]^\mathsf{T}$

$$\frac{P(\mathbf{x})}{1 - P(\mathbf{x})} = e^{(\mathbf{w}^\mathsf{T} \hat{\mathbf{x}})} \quad \text{where } \mathbf{w} = [w_0, w_1, ..., w_d]^\mathsf{T}$$

$$\text{and } \hat{\mathbf{x}} = [1, x_1, ..., x_d]^\mathsf{T}$$

$$P(\mathbf{x}) = \frac{e^{(\mathbf{w}^\mathsf{T} \hat{\mathbf{x}})}}{1 + e^{(\mathbf{w}^\mathsf{T} \hat{\mathbf{x}})}} \quad \text{If } P(\mathbf{x}) \ge 0.5 \text{ then } \mathbf{x} \text{ is assigned to } C_2$$

$$P(\mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^\mathsf{T} \hat{\mathbf{x}})}} \quad \text{If } P(\mathbf{x}) < 0.5 \text{ then } \mathbf{x} \text{ is assigned to } C_1$$

Estimation of Parameter in Logistic Regression

- Criterion considered is different than linear regression to estimate the parameter
- · Optimize the likelihood of data
- As that goal is to model the probability of class, we are maximizing the likelihood of data
- Maximum likelihood (ML) method of parameter estimation
- Given:- Training data: $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \{1,0\}$
- Data of a class is represented by parameter vector: $\mathbf{w} = [w_0, w_1, ..., w_d]^\mathsf{T}$ (parameter of linear function)
- Unknown: w
- Likelihood of \mathbf{x}_n : $P(\mathbf{x}_n \mid \mathbf{w}) = P(\mathbf{x}_n)^{y_n} (1 P(\mathbf{x}_n))^{(1 y_n)}$ Probability that \mathbf{x} has label 1
 has label 0

22

Estimation of Parameter in Logistic Regression

- Different criterion than linear regression to estimate the parameter
- · Optimize the likelihood of data
- As that goal is to model the probability of class, we are maximizing the likelihood of data
- Maximum likelihood (ML) method of parameter estimation
- Given:- Training data: $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \{1,0\}$
- Data of a class is represented by parameter vector: $\mathbf{w} = [w_0, w_1, ..., w_d]^\mathsf{T}$ (parameter of linear function)
- Unknown: w
 Binomial distribution (Bernoulli Distribution)
- Likelihood of \mathbf{x}_n : $P(\mathbf{x}_n \mid \mathbf{w}) = P(\mathbf{x}_n)^{y_n} (1 P(\mathbf{x}_n))^{(1-y_n)}$
- Total data likelihood: $P(\mathcal{D} \mid \mathbf{w}) = \prod_{n=1}^{N} P(\mathbf{x}_n \mid \mathbf{w})$

Estimation of Parameter in Logistic Regression

- Different criterion than linear regression to estimate the parameter
- · Optimize the likelihood of data
- As that goal is to model the probability of class, we are maximizing the likelihood of data
- Maximum likelihood (ML) method of parameter estimation
- Given:- Training data: $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \{1,0\}$
- Data of a class is represented by parameter vector: $\mathbf{w} = [w_0, w_1, ..., w_d]^T$ (parameter of linear function)
- Unknown: w
- Likelihood of \mathbf{x}_n : $P(\mathbf{x}_n \mid \mathbf{w}) = P(\mathbf{x}_n)^{y_n} (1 P(\mathbf{x}_n))^{(1-y_n)}$
- Total data likelihood: $P(\mathcal{D} \mid \mathbf{w}) = \prod_{n=1}^{N} P(\mathbf{x}_n)^{y_n} (1 P(\mathbf{x}_n))^{(1-y_n)}$

21

Estimation of Parameter in Logistic Regression

· Total data log likelihood:

$$l(\mathbf{w}) = \ln(P(\mathcal{D} \mid \mathbf{w}))$$

$$l(\mathbf{w}) = \sum_{n=1}^{N} y_n \ln(P(\mathbf{x}_n)) + (1 - y_n) \ln(1 - P(\mathbf{x}_n))$$

 Choose the parameters for which the total data log likelihood is maximum:

$$\mathbf{w}_{\mathrm{ML}} = \underset{\mathbf{w}}{\mathrm{arg max}} l(\mathbf{w})$$

Cost function for optimization:

$$l(\mathbf{w}) = \sum_{n=1}^{N} y_n \ln(P(\mathbf{x}_n)) + (1 - y_n) \ln(1 - P(\mathbf{x}_n))$$

- Conditions for optimality: $\frac{\partial l(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{0}$
- Unfortunately, solving this, no closed form expression for w is obtained
- Solution: Gradient accent method

Estimation of Parameter in Logistic Regression

- · Gradient accent method
- It is an iterative procedure
- We start with an initial value for \mathbf{w}
- · At each iteration:
 - Estimate change in w
 - The change in w (∆w) is proportional to the slope (gradient) of the likelihood surface

 $\Delta \mathbf{w} = \frac{\partial l(\mathbf{w})}{\partial \mathbf{w}}$

- Then, the w is updated using Δw
- This indicate, we move in the positive slope of the likelihood surface, likelihood is maximum in each iteration

2.

Estimation of Parameter in Logistic Regression – Gradient Accent Method

- Given a training dataset, the goal is to maximize the likelihood function with respect to the parameters of linear function
 - 1. Initialize the w
 - Evaluate the initial value of the log likelihood, $l(\mathbf{w})$
 - 2. Determine the change in \mathbf{w} ($\Delta \mathbf{w}$): $\Delta \mathbf{w} = \frac{\partial l(\mathbf{w})}{\partial \mathbf{w}}$
 - 3. Update the w: $\mathbf{w} = \mathbf{w} + \Delta \mathbf{w}$
 - 4. Evaluate the log likelihood and check for convergence of the log likelihood
 - If the convergence criterion is not satisfied repeat steps 2 to 4
- Convergence criterion: Difference between log likelihoods of successive iterations fall below a threshold (E.g. threshold=10⁻³)

Illustration of Classification using **Logistic Regression** Number of training examples (N) = 20 Height Weight Class 21.5 Dimension of a training example = 20 95 23.67 0 Class label attribute is 3rd dimension 100 32.45 38.21 0 116 Class: 28.43 0 - Child (0) 108 36.32 0 104 27.38 0 - Adult (1) 112 39.28 0 0 121 35.8 90 92 23.56 0 152 46.8 1 78.9 178 163 67.45 Weight in Kg 60 82.9 173 154 52.6 168 66.2 40 90 1 30 172 82 1 156 45.3 161 Height in cm 29

- · Logistic regression is a linear classifier
- Logistic regression looks simple, but yields a very powerful classifier
- It is used not just building classifier, but also used in sensitivity analysis
- Logistic regression is used to identify how each attribute contribute to output
 - How much each attribute is important for predicting class label
- Perform logistic regression and observe w
- The value of each element of **w** indicate how much each attribute is contributing to the output

33

Illustration of Sensitivity Analysis using **Logistic Regression** Height Weight Class • Training: [-378.2085⁻ w_0 90 21.5 23.67 0 2.2065 W_1 32.45 0 100 1.8818 38.21 0 116 0 28.43 98 100 36.32 0 108 104 27.38 80 39.28 112 0 121 35.8 Weight 60 in Kg 23.56 0 92 152 46.8 78.9 178 163 67.45 1 40 173 82.9 1 154 52.6 1 20 168 66.2 1 140 183 90 1 Height in cm 172 82 Both the attributes are equally 156 45.3 important 161

Discriminative Learning Methods for Classification

Two classes of Approaches for Linear Classification

- 1. Modeling a discriminating function:
 - · Linear regression and Logistic regression
- 2. Directly learn a discriminant function (hyperplane):
 - Classic method: Discriminant function between the classes is learnt

- Perceptron (linear discriminant function is learnt)
- Neural networks (when the discriminant function is nonlinear)

Discriminative Learning Methods

- Learn the surface that better separates the region of classes
- Learning discriminant function: Learns a function that maps input data to output
- · Linear discriminant function:

37

Linear Discriminant Function

- Regions of two classes are separable by a linear surface (line, plane or hyperplane)
- 2-dimensional space: The decision boundary is a line specified by

$$w_1 x_1 + w_2 x_2 + w_0 = 0$$

$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{w_0}{w_2}$$

 d-dimensional space: The decision surface is a hyperplane specified by

$$w_d x_d + \dots + w_2 x_2 + w_1 x_1 + w_0 = \sum_{i=0}^d w_i x_i = \mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}} = 0$$

where $\mathbf{w} = [w_0, w_1, ..., w_d]^{\mathsf{T}}$ and $\hat{\mathbf{x}} = [1, x_1, ..., x_d]^{\mathsf{T}}$

Discriminant Function of a Hyperplane

• The discriminant function of a hyperplane:

$$g(\mathbf{x}) = \sum_{i=1}^{d} w_i x_i + w_0 = \mathbf{w}^{\mathsf{T}} \mathbf{x} + w_0$$

· For any point the lies on the hyperplane

$$g(\mathbf{x}) = \sum_{i=1}^{d} w_i x_i + w_0 = \mathbf{w}^{\mathsf{T}} \mathbf{x} + w_0 = 0$$

- Example:
 - Consider a straight line with its equation as $x_2+x_1-1=0$
 - Discriminant function of the straight line is $g(\mathbf{x}) = x_2 + x_1 1$
 - For points (1,0) and (0,1) that lie on this straight line $g(\mathbf{x})=0$
 - For the point (0,0), $g(\mathbf{x})$ =-1 i.e. the value of $g(\mathbf{x})$ is negative
 - For the point (1,1), $g(\mathbf{x})=+1$ i.e. the value of $g(\mathbf{x})$ is positive

39

Discriminant Function of a Hyperplane

- A hyperplane has a positive side and a negative side
 - For any point on the positive side, the value of discriminant function, $g(\mathbf{x})$, is positive
 - For any point on the negative side, the value of discriminant function , $g(\mathbf{x})$, is negative

Perceptron Learning

- Given training data: $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \{+1, -1\}$
- Goal: To estimate parameter vector $\mathbf{w} = [w_0, w_1, ..., w_d]^T$
 - such that linear function (hyperplane) is places between the training data of two classes so that training error (classification error) is minimum

Perceptron Learning

- Given training data: $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \{+1,-1\}$
 - 1. Initialize the w
 - 2. Choose a training example \mathbf{x}_n
 - Update the \mathbf{w} , if \mathbf{x}_n is misclassified $\mathbf{w} = \mathbf{w} + \eta \; \mathbf{x}_n$, for $\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0 \leq 0$ and $\mathbf{x}_n \in C_2(+1)$ 3.
 - $\mathbf{w} = \mathbf{w} \eta \mathbf{x}_n$, for $\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0 > 0$ and $\mathbf{x}_n \in C_1(-1)$ Here η is a positive, learning rate parameter

 - Increment the misclassification count by 1
 - 4. Repeat steps 2 and 3 till all the training examples are presented
 - 5. Repeat steps 2 to 4 by setting misclassification count to 0, till the convergence criterion is not satisfied
- Convergence criterion:
 - Total misclassification count is 0
 - Total misclassification count is minimum (falls below threshold)

Perceptron Learning

• Training:

- · Test phase:
- Classification of a test pattern x using the weights w obtained by training the model:
 - If $\mathbf{w}^\mathsf{T}\mathbf{x} + w_0 > 0$ then \mathbf{x} is assigned to C_2
 - If $\mathbf{w}^\mathsf{T}\mathbf{x} + w_0 \leq 0$ then \mathbf{x} is assigned to C_1

43

Discriminative Learning Methods for Classification:

Neural Networks

Biological Neural Networks

 Several neurons are connected to one another to form a neural network or a layer of a neural network

Neuron with Threshold Logic Activation Function

Input Weights Activation value signal x_1 w_1 x_2 w_2 x_d w_d $x_i + w_0$ $x_$

s=1 if f(a) > 0s=0 if $f(a) \le 0$

Threshold logic activation function

• McCulloch-Pitts Neuron [1]

[1] W.S.McCulloch and W.Pitts. A logival calculus of the ideas imminent in nervous &ctivity. 1943.

Linearly Separable Classes – Perceptron Model

- Regions of two classes are separable by a linear surface (line, plane or hyperplane)
- Perceptron model that uses a single MuCulloch-Pitts neuron can be trained using the perceptron learning algorithm [2]

Decision surface in a 2-dimensional space is a line:

$$w_1 x_1 + w_2 x_2 + w_0 = 0$$

$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{w_0}{w_2}$$

Decision surface in a d-dimensional space is a hyperplane:

$$\sum_{i=0}^{d} w_i x_i = \mathbf{w}^{\mathsf{T}} \mathbf{x} + w_0 = 0$$

48

[2] A.G. Ivakhnenko and V.G. Lapa. Cybernetic predicting devices. 1965.

Perceptron Learning

• Perceptron learning rule for weight update:

At Step
$$m$$
, choose a training example \mathbf{x}_n
 $\mathbf{w} = \mathbf{w} + \eta \; \mathbf{x}_n$, for $\mathbf{w}^\mathsf{T} \mathbf{x}_n + w_0 \leq 0$ and $\mathbf{x}_n \in C_2(+1)$

$$\mathbf{w} = \mathbf{w} - \eta \mathbf{x}_n$$
, for $\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0 > 0$ and $\mathbf{x}_n \in C_1(-1)$

Here η is the learning rate parameter.

- Test phase:
- Classification of a test pattern x using the weights w obtained by training the model:
 - If $\mathbf{w}^\mathsf{T}\mathbf{x} + w_0 > 0$ then \mathbf{x} is assigned to C_2
 - If $\mathbf{w}^\mathsf{T}\mathbf{x} + w_0 \leq 0$ then \mathbf{x} is assigned to C_1

Hard Problems

• Nonlinearly separable classes

Neuron with Continuous Activation Function

Sigmoidal Activation Functions

Logistic function:

$$f(a) = \frac{1}{1 + e^{-\beta a}}$$

$$f(a) = \frac{1}{1 + e^{-\beta a}}$$

$$f(a)_{0.6}$$

$$\frac{df(a)}{da} = \beta f(a) (1 - f(a))$$

Hyperbolic tangent function:

$$f(a) = \tanh(\beta a)$$

$$\frac{df(a)}{da} = \beta (1 - f^2(a))$$

Neuron with Continuous Activation Function

Weights Input

 $\sum_{i=1}^{d} w_i x_i + w_0$

Activation value

Output signal

Sigmoidal activation function

- Given a set of N input-output pattern pairs $(\mathbf{x}_n, \mathbf{y}_n)$, n=1,2,...N. Here $y_n \in \{0,1\}$ or $y_n \in \{+1,-1\}$
- Instantaneous error for the *n*th pattern is given as , $E_n = \frac{1}{2}(y_n s)^2$ Change in weight at m^{th} iteration: (Gradient descent technique) $\Delta w_i(m) = -\eta \frac{\partial E_n(m)}{\partial w_i}$

$$\Delta w_i(m) = \eta \delta^o s$$

 $w_i(m+1) = w_i(m) + \Delta w_i(m)$

where
$$\delta^{\circ} = (y_n - s) \frac{df(a_n)}{da_n}$$

Feedforward Neural Networks

Multilayer Feedforward Neural Network

- Architecture of an MLFFNN
 - Input layer: Linear neurons
 - Hidden layers (1 or 2 or more): Sigmoidal neurons
 - Output layer:
 - Linear neurons (for function approximation task)
 - Sigmoidal neurons (for pattern classification task)

Multilayer Feedforward Neural Network

Backpropagation Learning

- · Gradient descent method
- Error backpropagation algorithm
- Forward computation:
 - Innerproduct computation
 - Activation function computation
- Backward operation:
 - Error calculation and propagation
 - Modification of weights
- Given a set of N input-output pattern pairs $(\mathbf{x}_n, \mathbf{y}_n)$, n=1,2,....N.
 - $-\mathbf{y}_n$ is a K-dimensional binary vector if activation function is logistic function. Only one element is 1 and rest are 0
 - $-\mathbf{y}_n$ is a K-dimensional vector with only one element is 1 rest are -1 when the activation function is hyperbolic tangent function

Instantaneous error for the *n*th pattern is given as ,
$$E_n = \frac{1}{2} \sum_{k=1}^{K} (y_{nk} - s_k^{\circ})^2$$

Backpropagation Learning (contd.)

Change in weight at output layer is given by

$$\begin{split} \Delta w_{jk}(m) &= -\eta \frac{\partial E(m)}{\partial w_{jk}} \\ \Delta w_{jk}(m) &= \eta \delta_k^o s_j^h \\ \text{where } \delta_k^o &= (y_k - s_k^o) \frac{df_k^o(a_k^o)}{da_k^o} \end{split}$$

Change in weight at hidden layer is given by

$$\Delta w_{ij}^{h}(m) = -\eta \frac{\partial E(m)}{\partial w_{ij}^{h}}$$

$$\Delta w_{ij}^{h}(m) = \eta \delta_{j}^{h} s_{i}$$

$$w_{ij}^{h}(m+1) = w_{ij}^{h}(m) + \Delta w_{ij}^{h}(m)$$
where $\delta_{j}^{h} = \sum_{k=1}^{K} \delta_{k}^{o} w_{jk} \frac{df_{j}^{h}(a_{j}^{h})}{da_{j}^{h}}$

$$62$$

Mode of Presentation of Patterns

- Stochastic Gradient Descent Method
- Pattern Mode:
 - At mth iteration: Weights are updated after the presentation of each pattern.

$$\Delta w_{jk}(m) = -\eta \frac{\partial E(m)}{\partial w_{jk}}$$

- Epoch: Presentation of all the patterns once (all training examples).
- Batch Mode:
 - Weights are updated after the presentation of all the patterns once.

patterns once.
$$\Delta w_{jk}(m) = -\eta \frac{\partial E_{av}}{\partial w_{jk}}$$

where
$$E_{av} = \frac{1}{2N} \sum_{l=1}^{N} \sum_{k=1}^{K} (y_{nk} - s_{nk}^{\circ})^2$$

Practical Considerations

- Stopping Criterion:
 - Threshold on average error
 - Threshold on average gradient
- Number of Weights:
 - Depends on number of input nodes, output nodes, hidden nodes and hidden layers
- Number of Hidden Nodes
 - Cross-validation method
- Data Requirements
- Limitations:
 - Slow convergence
 - Local minima problem

Feedforward Neural Networks: Summary

- Perceptrons, with threshold logic function as activation function, are suitable for pattern classification tasks that involve linearly separable classes
- Multilayer feedforward neural networks, with sigmoidal function as activation function, are suitable for nonlinearly separable classes
 - Complexity of the model depends on
 - Dimension of the input pattern vector
 - Number of classes
 - Shapes of the decision surfaces to be formed
 - Architecture of the model is empirically determined
 - Large number of training examples are required when the complexity of the model is high
 - Local minima problem
- Multilayer feedforward neural network models are suitable for function approximation tasks also
- Multilayer feedforward neural network with one or two hidden layers is now called a shallow network

Text Books

- J. Han and M. Kamber, *Data Mining: Concepts and Techniques*, Third Edition, Morgan Kaufmann Publishers, 2011.
- 2. S. Theodoridis and K. Koutroumbas, *Pattern Recognition*, Academic Press, 2009.
- 3. C. M. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2006.
- 4. B. Yegnanarayana, Artificial Neural Networks, Prentice-Hall of India, 1999.
- 5. Satish Kumar, Neural Networks A Class Room Approach, Second Edition, Tata McGraw-Hill, 2013.
- 6. S. Haykin, Neural Networks and Learning Machines, Prentice Hall of India, 2010.