

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 1 251 138 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 23.10.2002 Bulletin 2002/43

(51) Int Cl.7: **C07K 14/47**, C12N 15/62, A61K 39/00

(21) Application number: 01109707.8

(22) Date of filing: 19.04.2001

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(71) Applicant: Schätzi, Hermann, Dr. 82140 Olching (DE)

(72) Inventor: Schätzl, Hermann, Dr. 82140 Olching (DE)

(74) Representative: Schüssler, Andrea, Dr. Kanzlei Huber & Schüssler Truderinger Strasse 246 81825 München (DE)

Remarks:

The sequence listing, which is published as annex to the application documents, was filed after the date of filing. The applicant has declared that it does not include matter which goes beyond the content of the application as filed.

(54) Prion protein dimers useful for vaccination

(57) Described is a prion protein, wherein said prion protein is a homodimer or heterodimer. The prion protein dimers are highly immunogenic capable of inducing an immune response in a mammal, thus useful for prophylactic or therapeutic vaccination against diseases associated with the infectious forms of prion proteins, PrpSc, i.e. transmissible spongiform encephalopathies. More-

over, antibodies generated by using the prion protein dimers as an antigen, pharmaceutical composition containing the prion protein dimers or antibodies directed against said dimers as well as DNA sequences encoding the prion protein dimers are described.

Description

10

15

25

30

35

40

50

55

[0001] The present invention relates to a prion protein, wherein said prion protein is a homodimer or heterodimer. The prion protein dimers are highly immunogenic capable of inducing an immune response in a mammal, thus useful for prophylactic or therapeutic vaccination against diseases associated with the infectious forms of prion proteins, PrPSc, i.e. transmissible spongiform encephalopathies. Furthermore, the present invention relates to antibodies generated by using the prion protein dimers as an antigen, pharmaceutical compositions containing the prion protein dimers or antibodies directed against said dimers as well as DNA sequences encoding the prion protein dimers.

[0002] Transmissible spongiform encephalopathies are neurodegenerative diseases such as scrapie of sheep, bovine spongiform encephalopathy (BSE) of cattle and Creutzfeldt-Jakob disease (CJD) of man. Infectious preparations derived from infected brains are resistant to ultraviolet and ionizing radiation as well as other procedures which normally inactivate nucleic acids indicating that nucleic acids are not required for infectivity. Purification of infectious preparations from brains revealed the presence of a protein required for infectivity. These experimental observations led to the "protein only" hypothesis which proposes that particular proteinaceous infectious particles (prions) are responsible for the transmission of transmissible spongiform encephalopathies (Prusiner et al., Proc. Natl. Acad. Sci. USA 95, 13363-13383 (1998)). Prions consist mainly of a protease resistent protein designated PrPSc (prion protein, "Sc": scrapie), which is an abnormal isoform of the proteinase K sensitive PrPC ("C":cellular). The prion protein PrPc is a species specific protein which is physiologically expressed in brain cells and peripheral blood cells as well as, e.g., in spleen. The biological function of PrPc is so far unknown. Transgenic mice which are no longer capable of expressing PrPC (PrP knock out mice) do not show any pathological damages and cannot be infected with prions (Bueler et al., Nature 356, 577-582 (1992); Bueler et al., Cell 73, 1339-1347 (1993)).

[0003] Both isoforms, PrP^{Sc} and PrP^{C} , share the same amino acid sequence, but differ in their secondary structure. Circular Dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy revealed a significantly higher β -sheet content for PrP^{Sc} as compared to a high α -helix content in PrP^{C} . It has been suggested that prion propagation involves the conversion of α -helical domains in PrP^{C} into β -sheets in PrP^{Sc} . The *in vitro* conversion of PrP^{C} into a PrP^{Sc} -like molecule was demonstrated employing a proteinase K resistance assay.

[0004] It has been suggested that for the development of a transmissible spongiform encephalopathy the interaction of PrPSc and PrPC is a crucial event, wherein PrPSc forces a conversion of PrPC into the pathological conformation (PrPSc). Accordingly, transgenic mice which are no longer capable of expressing PrPC (PrP knock out mice) are resistant to infections with PrPSc. Although, the prion proteins of various species differ as regards their amino acid sequences, within the group of mammals there is a high homology (88 to 99%). Apparently, due to differences in the amino acid sequences the prion protein cannot be transmitted between certain species (relative or absolute species barrier). Due to the fact that the prion protein is a physiologically expressed protein, each species exhibits immunological tolerance via its own specific prion protein. Unfortunately, so far transmissible spongiform encephalopathies, e.g. BSE, are incurable. There is no therapy available for soothing the symptoms of the disease, let alone for stopping the disease, e.g. by vaccination.

[0005] Therefore, it is the object of the present invention to provide a vaccine for the prevention or treatment of a transmissible spongiform encephalopathy.

[0006] According to the invention this is achieved by the subject matters defined in the claims.

The present invention provides a prion protein, wherein said prion protein is a homodimer or heterodimer with the monomer corresponding to or comprising a prion protein according to the definition below. During the experiments leading to the present invention, it has, surprisingly, been found that prion protein dimers are useful for inducing an enhanced immune response against PrPc and PrPSc. Using this apparent remarkable immunogenicity of the prion protein dimer it was even possible in vivo to generate antibodies directed against the homologous prion protein (i.e. mouse antibodies directed against murine PrP), thereby abolishing or by-passing the known anto-tolerance present within a given species. After incubation of cells permanently producing PrPSc with the antibodies that were generated by immunization with the prion protein dimer for 16 hours a drastic inhibition of the de novo synthesis of PrPSc could be observed. Presumably, this result is due to generation of a functional PrPc knock out state where the surface-located PrPc substrate needed for continuous cellular conversion into PrPsc is functionally impaired, resulting finally in inhibition of generation of PrPsc. It is known from the literature that the surface location of PrPc is a prerequisite for cellular prion conversion (Taraboulos et al., J. Cell Biol. 129, 121-132 (1995)). Even more, studies with transgenic mice have demonstrated that peripheral expression of PrPc is absolutely required for replication and transport of PrPsc from peripheral sites of the body to the central nervous system (Blättler et al., Nature 389, 69-73 (1997)). In this respect it has been discovered by the inventors that after application of the prion protein dimer of the present application to a subject, the induced immune response results in the downregulation of the surface expression of PrPC. Accordingly, the conversion rate (PrPC⇒PrPSc) can be drastically reduced, thus, blocking the initiation and the progression of the disease. Thus, the prion protein dimers of the present invention are useful as a vaccine for the prevention or treatment of a transmissible spongiform encephalopathy.

[0008] Accordingly, the present invention relates to a prion protein, wherein said prion protein is a homodimer or heterodimer which can elicit an immune response against PrPC or PrPSc, preferably an immune response which is higher compared to the immune response obtained using for vaccination the corresponding monomer. As used herein, the term "prion protein" comprises the native (full length and/or mature) protein as well as variants thereof, e.g. truncated versions, which are still useful for eliciting an enhanced immune response, i.e. still useful for vaccination. In this context, the term "protein" also comprises peptides or polypeptides having a length of at least 8, preferably of at least 15 and, more preferably, of at least 20 amino acids. The person skilled in the art knows sources for the prion protein monomers and DNA sequences encoding the prion protein monomers, respectively (Schätzl et al., J. Mol. Biol. 245, 362-374 (1995); Wopfner et al., J. Mol. Biol. 289, 1163-1178 (1999); sequences deposited at Genbank accessible via Public Medline database). Furthermore, a person skilled in the art knows methods for coupling the monomers in order to obtain the dimer. Preferably, the monomers are covalently coupled.

10

15

20

25

30

35

40

50

[0009] In a preferred embodiment, the homodimer or heterodimer is a fusion protein comprising the monomeric prion protein units. Such a fusion protein can be generated by methods well known by the person skilled in the art. The selection of a particular method mainly depends on the length of the monomers, i.e. very short fusion proteins are preferably chemically synthesized, e.g. by standard solid phase synthesis, whereas longer fusion proteins are preferably produced by expression of the corresponding DNA sequences in a suitable host and isolation/purification of the fusion protein from the host or the culture medium.

[0010] Generally, by means of conventional molecular biological processes (see, e.g., Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd edition Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) it is not only possible to generate a DNA sequence encoding the desired fusion protein but, additionally, to introduce different mutations into the DNA sequence. One possibility is the production of deletion mutants in which DNA molecules are produced by continuous deletions from the 5'- or 3'-termini of the coding DNA sequence and that lead to the synthesis of proteins that are shortened accordingly. The person skilled in the art can easily check as to whether such prion protein dimers containing shortened monomeric units are still useful as a vaccine, e.g. using the methods described in the examples, below. For the manipulation in prokaryotic cells by means of genetic engineering the DNA sequences can be introduced into plasmids allowing a mutagenesis or a modification of a sequence by recombination of DNA sequences. By means of conventional methods (cf. Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, NY, USA) bases can be exchanged and natural or synthetic sequences can be added. Furthermore, manipulations can be performed that provide suitable cleavage sites or that remove superfluous DNA or cleavage sites. If insertions, deletions or substitutions are possible, in vitro mutagenesis, primer repair, restriction or ligation can be performed. As analysis method usually sequence analysis, restriction analysis and other biochemical or molecular biological methods are used.

[0012] For the generation of the prion protein dimers encoding DNA sequences and for constructing expression vectors which contain said DNA sequences, it is possible to use general methods known in the art. These methods include e.g. in vitro recombination techniques, synthetic methods and in vivo recombination methods as described in Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, for example.

[0013] For recombinant production of the dimeric prion protein of the invention, the DNA sequences encoding said protein are inserted into a suitable expression vector. Preferably, they are plasmids, cosmids, viruses, bacteriophages and other expression vectors usually used in the field of genetic engineering. Expression vectors suitable for use in the present invention include, but are not limited to e.g. pGEMEX, pUC derivatives, pGEX-2T, pET3b, T7 based expression vectors and pQE and pTrcHis (for expression in E.coli). For the expression in yeast, e.g. pY100 and Ycpad1 have to be mentioned while e.g. pcDNA3.1, pKCR, pEFBOS, cDM8, pMSCND, and pCEV4 have to be indicated for the expression in animal cells. The baculovirus expression vector pAcSGHisNT-A is especially suitable for the expression in insect cells. The DNA sequences can also be contained in a recombinant virus containing appropriate expression cassettes. Suitable viruses that may be used in the present invention include baculovirus, SFV, vaccinia, sindbis virus, SV40, Sendai virus, adenovirus, an AAV virus or a parvovirus, such as MVM or H-1. The vector may also be a retrovirus,

such as MoMULV, MoMuLV, HaMuSV, MuMTV, RSV or GaLV. Preferably, the DNA sequence is operatively linked to the regulatory elements in the recombinant vector that guarantee the transcription and synthesis of an RNA in prokary-otic and/or eukaryotic cells that can be translated. The nucleotide sequence to be transcribed can be operably linked to a promoter like a T7, metallothionein I or polyhedrin promoter. For expression in mammals, the DNA sequences are operatively linked to a suitable promoter like, e.g. a human cytomegalovirus "immediate early promoter" (pCMV).

[0014] Suitable host cells include bacteria, yeast, insect and animal cells, preferably mammalian cells. The E. coli strains HB101, DH1, x1776, JM101, JM109, BL21, XL1Blue and SG 13009, the yeast strain Saccharomyces cerevisiae, the insect cells sf9 and the animal cells L, A9, 3T3, FM3A, BHK, human SW13, CHO, COS, Vero and HeLa are preferred. Methods of transforming these host cells, of phenotypically selecting transformants and of expressing the DNA according to the invention by using the above described vectors are known in the art. For recombinant production of the dimeric prion protein of the invention, the host cell is cultivated under conditions allowing the synthesis of the protein and the protein is subsequently isolated from the cultivated cells and/or the culture medium. Isolation and purification of the recombinantly produced proteins may be carried out by conventional means including preparative chromatography and immunological separations involving affinity chromatography with monoclonal or polyclonal antibodies, e.g. with the antibody A7 and 3F4 described in the examples, below.

[0015] In an alternative preferred embodiment the monomers of the dimeric prion protein of the invention are covalently coupled via suitable compounds, e.g. in such a way that the monomers are covalently linked via their C-termini or N-termini or via the C-terminus of one monomer and the N-terminus of the other monomer. Care has to be taken that dimerization is carried out in such a way that eliciting an immune response by the dimeric protein is not adversely effected. Suitable compounds for dimerization are known to the person skilled in the art, preferably such a compound is a polyethylenglycole, activated benzodiazepine, oxazolone, aminimide, azalactone, diketopiperazine or a monosaccharide. The corresponding chemical reactions are also known to the person skilled in the art.

[0016] The monomers of the dimeric prion protein of the present invention can be identical (homodimer: the monomers are derived from the same species) or different (heterodimer: the monomers are derived from different species). In the case of the heterodimer it can be expected that an immune response against the own PrP^C as well as the foreign PrP^C is induced.

[0017] As already described above the dimeric prion protein of the present invention also includes monomers which are variants of the native prion protein monomers. Particularly preferred are variants which are N-terminally and/or C-terminally truncated proteins (monomers).

30 [0018] A preferred dimeric prion protein (and its corresponding nucleotide sequence) is shown in Fig. 5.

[0019] The present invention also relates to the use of a dimeric prion protein of the present invention for the production of polyclonal or monoclonal antibodies as well as to an antibody, preferably a monoclonal antibody which binds to the dimeric prion protein of the present invention. Such antibodies are useful for passive immunization and can be produced according to well known methods. The term "antibody", preferably, relates to antibodies which consist essentially of pooled monoclonal antibodies with different epitopic specificities, as well as distinct monoclonal antibody preparations. Monoclonal antibodies are made using as an antigen the dimeric prion protein of the invention by methods well known to those skilled in the art (see, e.g., Köhler et al., Nature 256 (1975), 495). As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain (scFv), and humanized antibodies.

[0020] Moreover, the present invention also relates to DNA sequences encoding the dimeric prion proteins of the present invention as well as an expression vector containing such a DNA sequence. Examples of such DNA sequences and suitable expression vectors are already described above. Such DNA sequences or expression vectors are not only useful for the recombinant production of the dimeric prion protein of the present invention but also useful as "genetic vaccine". For the preparation of a genetic vaccine, the DNA sequences of the invention are inserted into an appropriate vector under the control of a suitable promoter, e.g. a vector or promoter as described above. Additional suitable vectors are, e.g., herpes simplex virus type 1 amplicon or recombinant Semliki forest virus vectors, plus-strand RNA virus vectors (lentiviral vectors), minus-strand RNA virus vectors (e.g. Rabies virus, RSV). In this connection also "gene gun" applications are suitable. A vaccine according to the present invention can be used to stimulate humoral and/or cellular immune response in subjects who may benefit from such responses by protection against or treatment of a transmissible spongiform encephalopathy.

[0021] Finally, the present invention relates to a pharmaceutical composition comprising a dimeric prion protein, an antibody, DNA sequence or an expression vector of the present invention in a pharmaceutically acceptable carrier. After application to the subject, the immune response induced should result in the downregulation of the surface expression of PrPc. Accordingly, the transport of infectious prions from peripheral sites of inoculation (e.g. oral or i.v.) to

20

35

40

the central nervous system as well as the initial peripheral replication should be significantly impaired. In addition, the conversion rate (PrPC⇒PrPSc) can be drastically reduced, thus blocking the progression of the disease. Thus, the compounds of the present invention are useful for the preparation of a vaccine for the prevention or treatment of a transmissible spongiform encephalopathy (prophylactic or therapeutic vaccination). For the preparation of the vaccine the purified compounds described above may be combined with any suitable adjuvant such as ISCOMS, alum, Freund's Incomplete or Complete Adjuvant, Quil A and other saponins or any other adjuvant as described in the literature. Suitable doses and routes of administration depend on the particular compound and are well known to the person skilled in the art.

10 Brief description of the drawings

Figure 1: PrP dimer

[0022] Coomassie blue staining after purification showing a purity of > 90%. M, molecular weight standards.

Figure 2: Characterization of the PrP dimer using CD

[0023] The results show that the PrP monomer and the PrP dimer have a similar or even identical secondary structure.

20 Figure 3

15

25

30

40

45

50

(a) Immunological responses in different mice

[0024] Immunization with the PrP monomer and PrP dimer, respectively. Recombinant murine PrP was separated on a SDS PAGE gel, subsequently transferred to a PVDF membrane and the immunoblots were probed with decreasing concentrations auf mice antisera. The immunization with the PrP dimer resulted in an enhanced antibody production.

(b) Immunological responses in different rabbits

[0025] Immunization with the PrP monomer and PrP dimer, respectively. Recombinant PrP monomer (PrP_M) and PrP dimer (PrP_D), respectively, were separated on a SDS PAGE gel, subsequently transferred to a PVDF membrane and the immunoblots were probed with anti-PrP_{monomer} and anti-PrP_{dimer}, respectively. The immunization with the PrP dimer resulted in an enhanced antibody production.

35 Figure 4: In vitro experiments using PrPSc infected cells

[0026] During incubation with antibodies for 16 hours proteins were metabolically labeled using ³⁵S-methionine and subsequently immunoprecipitated (RIPA). Prior to the RIPA the cell lysates were separated into two fractions for digestion with proteinase K (+/-) and separated into soluble and insoluble fractions using ultracentrifugation (1 hour, 100,000 x g, 1% sarcosyl); data only shown for the insoluble fraction. Only after incubation with A7 a drastic decrease of the *de novo* synthesis of PrPSc can be observed. A,B: after deglycosylation using PNGase F; K: without incubation with antibodies; P: preimmune serum; 3F4: monoclonal antibody directed against the 3F4 epitope of the prion protein; A7: antibody obtained from rabbits which had been immunized with the PrP dimer.

Figure 5: Translation of hisPrPDPcr (1-1320)

[0027]

Underlined in the first line: His-Tag Underlined in the middle: Linker

[0028] The present invention is explained by the examples.

Example 1

5

10

15

20

25

30

35

45

50

55

Generation of a fusion protein (dimer) comprising two prion protein monomers covalently linked by a peptide linker

[0029] Mouse genomic DNA encoding the prion protein (murine PrP-A, derived from murine N2a neuroblastoma cell line; for sequence see Schätzl et al, 1995, supra; Wopfner et al., 1999, supra) was amplified by polymerase chain reaction (PCR) using the following primer pairs which introduce a peptide linker (Ala-Gly-Ala-Ile-Gly-Ala) encoding sequence containing a Pvul restriction site; primer pair I: 5'-GCG GAT CCG TCG CCA CCA TGG CGA ACC TTG GCT A-3' (PrPB+1) and 5'-ACC GAT CGC TCC AGC GCT GGA TCT TCT CCC GTC GTA AT-3' (231+L new); primer pair II: 5'-AGC GAT CGG TGG AGC TAA AAA GCG GCC AAA GCC TGG AG-3' (23+L new); 5'-ATC TAG ATC ATC ATC ATC CCA CGA TCA GGA AGA-3' (254 PX) (the DNA sequence encoding the Pvul restriction site is underlined). For the introduction of an N-terminal His-tag, the removal of the N-terminal and C-terminal signal peptides and the introduction of additional restriction sites, a second PCR was carried out using the following primers: 5'-GAT GTT GGA TCC TGC AAG AAG CGG CCA AAG-3' (5'-primer, the BamHI-site is underlined.); 5'-GGA GGA GAT CCA GCA GCT AGA AGC TTT TC-3' (3'-primer, the HindIII-site is underlined.) The PCR fragment obtained (c.f. Fig. 5) was inserted into the pQE30 expression vector (Qiagen, Hilden, DE). In order to obtain higher yields of the recombinantly produced protein, proteinase deficient bacteria (BL21, Stratagene Europe, Amsterdam, The Netherlands) were used for expression. Four hours after induction of expression using 2 mM IPTG, bacteria were lysed in 6 M guanidine hydrochloride (6 M guanidine hydrochloride, 20 mM sodium phosphate, 500 mM sodium chloride, pH 7,8). cell debris were pelleted by centrifugation (20 min., 10,000 x g), the supernatant was loaded on a Ni2+ loaded SP-HiTrap column (Amersham Pharmacia, Uppsala, Sweden) which had been previously equilibrated using binding buffer (8 M urea, 20 mM sodium phosphate, 500 mM sodium chloride, pH 7.8) and incubated. The column was washed for several times (8 M urea, 20 mM sodium phosphate, 500 mM sodium chloride, 80 mM imidazole, pH 6.3) and, subsequently, the fusion protein containing the His-tag was eluted using 8 M urea, 20 mM sodium phosphate, 500 mM sodium chloride, 500 mM imidazole, pH 6.3. Fractions of the eluate were collected. The fractions showing the highest protein concentration were pooled and for removal of urea dialyzed against pure water (Slide-A-Lyzer, Pierce, Bonn, DE). As shown in Figure 1, the protein could be obtained with a very high purity. As shown in Figure 2, the secondary structure of the purified renatured dimer is similar (or even identical) to the secondary structure of the prion protein monomer.

Example 2

Immunization of mice and rabbits

[0030] Ten female B6D₂F₁ (B57BL/6 x DBA) mice (inbred strain generated at the Institute of Molecular Animal Breeding/Gene Center Munich, DE; six weeks old) were immunized by subcutaneous injections of 50 μg of the protein dimer described in Example 1 and a control monomer, respectively (monomer: murine PrP23-231 verus dimer: murine PrP23-231=23-231 [connected by the linker sequence], both with the 3F4 epitope and an N-terminal poly-histidine tag). At day 0 the proteins were combined with Freund's Complete Adjuvant, for boostering (at day 21 and day 42, respectively) the proteins were combined with Freund's Incomplete Adjuvant. Ten days after the last immunization blood samples for antibody evaluation were taken. It could be shown that the application of the prion protein monomer (control) resulted in the generation of a lower amount of specific antibodies compared to the application of the prion protein dimer. After application of the dimer about 50% of mice showed a pronounced accumulation of specific antibodies (Figure 3a). The induced specific polyclonal immune response was measured in immunoblot. Recombinant murine PrP23-231 was separated on SDS-PAGE, transferred to PVDF membranes and incubated in an immunoblot analysis with serial dilutions of sera of immunized mice (primary antibody). The pre-immune sera were used to eliminate background signals. Staining was accomplished using conjugated secondary antibodies (antimouse) and the enhanced chemiluminescence kit (ECL plus, Amersham Corp., Buckinghamshire, U.K.). The mice immunized with PrP dimer showed higher antibody titers. Dilutions beyond 1:3000 still resulted in detectable signals. This finding indicates that the used immunogen was capable of overcoming the auto-tolerance phenomenon known for species-identical prion proteins. Further data showed that the induced antibodies were not directed against the N-terminal fusion domain or the linker sequence being reactive against authentic murine PrP23-231.

[0031] A similar result could already be achieved using rabbits, i.e. the rabbits immunized with the prion protein dimer showed a stronger immune response compared to the rabbits immunized with the prion protein monomer (Figure 3b). Recombinant monomeric and dimeric prion proteins (PrPM and PrPD, respectively, which were used also as immunogens in immunization) were separated on SDS-PAGE, transferred to PVDF membranes and analyzed in immunoblot. The left panel shows incubation with the serum from the rabbit immunized with PrP monomer, the right panel from the arbbit immunized with PrP dimer. Staining was accomplished using conjugated anti-rabbit secondary antibodies and

the ECL plus kit. Whereas the left panel shows mainly a reaction against the monomeric PrP, the right panel demonstrates a much stronger immune reactivity which is directed against monomeric and dimeric prion protein.

Example 3

5

10

15

20

30

35

40

45

The same that the state of the same of

The application of antibodies generated by immunization with a prion protein dimer leads to inhibition of the *de novo* synthesis of PrP^{Sc} in vitro

[0032] The biological relevance of the immunization experiments described in Example 2 could be verified by the following in vitro experiment. ScMHM2 cells [cultured murine neuroblastoma cells (ATCC CCL 131); persistently infected with RML prions; stably transfected with a 3F4-tagged PrP; c.f. Schätzl et al., J. Virol. 71, 8821-8831, (1997)] which are infected with the infectious version of the prion protein (PrPSc) and permanently produce PrPSc were incubated with different types of antibodies. Incubation was carried using (a) commercially available monoclonal antibodies (3F4) (Signet Pathology Systems, Dedham, MA, USA) which are directed against an epitope of the prion protein produced in ScMHM2 cells and (b) the antiserum obtained from rabbits immunized with the prion protein dimer described in Example 1. During incubation with antibodies for 16 hours proteins were metabolically labeled using 35S-methionine and subsequently immunoprecipitated (RIPA). Prior to the RIPA the cell lysates were separated into two fractions for digestion with proteinase K (+/-) and separated into soluble and insoluble fractions using ultracentrifugation (1 hour, 100,000 x g. 1% sarcosyl). As shown in Figure 4, after incubation with the prion protein dimer for 16 hours a drastic inhibition of the de novo synthesis of PrPSc could be observed. The results observed with the 3FA antibody are less pronounced. It can be concluded that this result is due to generation of a functional PrPc knock out state on the cell surface and, accordingly, an inhibition of the generation of PrPSc. These results demonstrate in living cells that the induced anti-PrP antibodies are capable of binding to surface-located authentic PrPc under native conditions (proof of principle for interaction with surface-located PrP under native conditions). Even more, bound antibodies are apparently internalised with PrPc demonstrating a high binding affinity (resulting in an insoluble PrP of full length which is PK sensitive, see full-length signal in Fig. 4A, lanes 5-8). Finally, endogeneous PrPSc biogenesis was heavily impaired resulting in no more de novo generated PK resistant PrPSc (Fig. 4B, lanes 7 and 8). The biological effect on PrPSc biogenesis is therefore demonstrated as well (proof of principle for impairment of prion biogenesis). The efficiency of this principle could also be shown by using particular chemical compounds: The functional removal of surface-Prpc resulted in a reduction of the production of prion proteins.

SEQUENCE LISTING

5	<110> Dr. Schätzl, Herrmann	
	<120> Prion protein dimers	
	<130> S1044	
10	<140> EP 01109707.8 <141> 2001-04-19	
	<160> 15	
	<170> PatentIn Ver. 2.1	
15	<210> 1 <211> 1320 <212> DNA <213> Artificial Sequence	
20	<220> <223> Description of Artificial Sequence:	
	fusion protein	
25	<220> <221> CDS <222> (1)(1317)	
	<400> 1	
30	atg aga gga tcg cat cac cat cac gga tcc tgc aag aag cgg Met Arg Gly Ser His His His His His Gly Ser Cys Lys Lys Arg 1 5 10 15	
	cca aag cct gga ggg tgg aac act ggc gga agc cga tac cct ggg cag Pro Lys Pro Gly Gly Trp Asn Thr Gly Gly Ser Arg Tyr Pro Gly Gln 20 25 30	
35	ggg agc cct gga ggc aac cgt tac cca cct cag ggt ggc acc tgg ggg Gly Ser Pro Gly Gly Asn Arg Tyr Pro Pro Gln Gly Gly Thr Trp Gly 35 40 45	4
40	cag ccc cac ggt ggt ggc tgg gga caa ccc cat ggg ggc agc tgg gga Gln Pro His Gly Gly Gly Trp Gly Gln Pro His Gly Gly Ser Trp Gly 50 55 60	2
and the second s	caa cct cat ggt ggt agt tgg ggt cag ccc cat ggc ggt gga tgg ggc Gln Pro His Gly Gly Ser Trp Gly Gln Pro His Gly Gly Trp Gly 65 70 75. 80	0
45	caa gga ggg ggt acc cac aat cag tgg aac aag ccc agt aag cca aaa 28 Gln Gly Gly Gly Thr His Asn Gln Trp Asn Lys Pro Ser Lys Pro Lys 85 90 95	8
50	acc aac atg aag cac atg gcc ggc gct gct gcg gca ggg gcc gtg gtg Thr Asn Met Lys His Met Ala Gly Ala Ala Ala Ala Gly Ala Val 100 105 110	6
<i>5</i> 0	ggg ggc ctt ggt ggc tac atg ctg ggg agt gcc atg agc agg ccc atg Gly Gly Leu Gly Gly Tyr Met Leu Gly Ser Ala Met Ser Arg Pro Met 115 120 125	4
55	atc cat ttt ggc aac gac tgg gag gac cgc tac tac cgt gaa aac atg Ile His Phe Gly Asn Asp Trp Glu Asp Arg Tyr Tyr Arg Glu Asn Met 130 135 140	2

	tac Tyr 145	cgc Arg	tac Tyr	cct Pro	aac Asn	caa Gln 150	gtg Val	tac Tyr	tac Tyr	agg Arg	cca Pro 155	gtg Val	gat Asp	cag Gln	tac Tyr	agc Ser 160	480
5	aac Asn	cag Gln	aac Asn	aac Asn	ttc Phe 165	gtg Val	cac His	gac Asp	tgc Cys	gtc Val 170	aat Asn	atc Ile	acc Thr	atc Ile	aag Lys 175	cag Gln	528
10	cac His	acg Thr	gtc Val	acc Thr 180	acc Thr	acc Thr	acc Thr	aag Lys	ggg Gly 185	gag Glu	aac Asn	ttc Phe	acc Thr	gag Glu 190	acc Thr	gat Asp	576
15	gtg Val	aag Lys	atg Met 195	atg Met	gag Glu	cgc Arg	gtg Val	gtg Val 200	gag Glu	cag Gln	atg Met	tgc Cys	gtc Val 205	acc Thr	cag Gln	tac Tyr	624
13	cag Gln	aag Lys 210	gag Glu	tcc Ser	cag Gln	gcc Ala	tat Tyr 215	tac Tyr	gac Asp	GJA aaa	aga Arg	aga Arg 220	tcc Ser	agc Ser	gct Ala	gga Gly	672
20	gcg Ala 225	atc Ile	ggt Gly	gga Gly	gct Ala	aaa Lys 230	aag Lys	cgg Arg	cca Pro	aag Lys	cct Pro 235	gga Gly	ggg Gly	tgg Trp	aac Asn	act Thr 240	720
25	ggc Gly	gga Gly	agc Ser	cga Arg	tac Tyr 245	cct Pro	ggg Gly	cag Gln	ggc Gly	agc Ser 250	PIO	gga Gly	ggc Gly	aac Asn	cgt Arg 255	tac Tyr	768
	cca Pro	cct Pro	cag Gln	ggt Gly 260	ggc Gly	acc Thr	tgg Trp	Gly ggg	cag Gln 265	ccc Pro	cac His	ggt Gly	ggt Gly	ggc Gly 270	tgg Trp	gga Gly	816
30	caa Gln	ccc Pro	cat His 275	ggg Gly	ggc Gly	agc Ser	tgg Trp	gga Gly 280	Gin	cct Pro	cat His	ggt Gly	ggt Gly 285	Ser	tgg Trp	ggt Gly	864
35	Gln	Pro 290	His	Gly	Gly	Gly	Trp 295	Gly	Gln	GIY	GIA	300	THE	nis	ASII	cag Gln	912
	Trp 305	Asn	Lys	Pro	Asn	Lys 310	Pro	Lys	Thr	ASD	315	Lys	nıs	Mec	. Ala	ggc Gly 320	960
40	Ala	Ala	Ala	Ala	Gly 325	Ala	Val	Val	. GIY	330) Let	r GTÄ	GIY	TÄT	335		1008
45	Gly	Ser	Ala	Met 340	Ser	Arg	Pro	Met	345	His	s Pne	e GTZ	ASI	35()	gag Glu	1056
	gac Asp	cgc Arg	tac Tyr 355	Tyr	cgt Arg	gaa Glu	aac Asn	atg Met 360	Tyr	cgc Arg	tac Tyi	c cct	aac Asr 365	1 GII	a gtg n Val	tac Tyr	1104
50	tac Tyr	agg Arg 370	Pro	gtg Val	gat Asp	cag Gln	tac Tyr 375	Ser	aac Asr	cag Glr	g aad n Asi	aad Asi 380	ı Pne	gtg Vai	g cad l His	gac Asp	1152
55	tgc Cys 385	Val	aat Asn	atc Ile	acc	atc Ile 390	: Lys	cag Glr	g cac h His	acg Thi	g gto va: 39!	L TII	c acc	c acc	c acc	Lys 400	1200

				ttc Phe													1248
5				tgc Cys 420													1296
10				aga Arg				tag									1320
15	<21:	0> 2 1> 4 2> P 3> A	RT	icial	l Sed	quenc	ce										
	<220 <22		escr:	ipti	on of	E Art	cific	cial	Seq	ience	e:						
20		£	usio	n pro	oteir	n											
	<40	0> 2															
25	Met 1	Arg	Gly	Ser	His 5	His	His	His	His	His 10	Gly	Ser	Cys	Lys	Lys 15	Arg	
	Pro	Lys	Pro	Gly 20	Gly	Trp	Asn	Thr	Gly 25	Gly	Ser	Arg	Tyr	Pro 30	Gly	Gln	
30	Gly	Ser	Pro 35	Gly	Gly	Asn	Arg	Tyr 40	Pro	Pro	Gln	Gly	Gly 45	Thr	Trp	Gly	
	Gln	Pro 50	His	Gly	Gly	Gly	Trp 55	Gly	Gln	Pro	His	Gly 60	Gly	Ser	Trp	Gly	
35	Gln 65	Pro	His	Gly	Gly	Ser 70	Trp	Gly	Gln	Pro	His 75	Gly	Gly	Gly	Trp	Gly 80	
	Gln	Gly	Gly	Gly	Thr 85	His	Asn	Gln	Trp	Asn 90	Lys	Pro	Ser	Lys	Pro 95	Lys	
40	Thr	Asn	Met	Lys 100	His	Met	Ala	Gly	Ala 105	Ala	Ala	Ala	Gly	Ala 110	Val	Val	
	Gly	Gly	Leu 115	Gly	Gly	Tyr	Met	Leu 120	Gly	Ser	Ala	Met	Ser 125	Arg	Pro	Met	
45	Ile	His 130	Phe	Gly	Asn	Asp	Trp 135	Glu	Asp	Arg	Туг	Tyr 140	Arg	Glu	Asn	Met	
	Tyr 145	Arg	Tyr	Pro	Asn	Gln 150	Val	Tyr	Tyr	Arg	Pro 155	Val	Asp	Gln	Tyr	Ser 160	
50	Asn	Gln	Asn	Asn	Phe 165	Val	His	Asp	Cys	Val 170	Asn	Ile	Thr	Ile	Lys 175	Gln	
	His	Thr	Val	Thr 180	Thr	Thr	Thr	Lys	Gly 185	Glu	Asn	Phe	Thr	Glu 190	Thr	Asp	
55	Val	Lys	Met 195	Met	Glu	Arg	Val	Val 200	Glu	Gln	Met	Cys	Val 205	Thr	Gln	Tyr	

	Gln	Lys 210	Glu	Ser	Gln	Ala	Tyr 215	Tyr	Asp	Gly	Arg	Arg 220	Ser	Ser	Ala	Gly
5	Ala 225	Ile	Gly	Gly	Ala	Lys 230	Lys	Arg	Pro	Lys	Pro 235	Gly	Gly	Trp	Asn	Thr 240
	Gly	Gly	Ser	Arg	Tyr 245	Pro	Gly	Gln	Gly	Ser 250	Pro	Gly	Gly	Asn	Arg 255	Tyr
10	Pro	Pro	Gln	Gly 260	Gly	Thr	Trp	Gly	Gln 265	Pro	His	Gly	Gly	Gly 270	Trp	Gly
	Gln	Pro	His 275	Gly	Gly	Ser	Trp	Gly 280	Gln	Pro	His	Gly	Gly 285	Ser	Trp	Gly
15	Gln	Pro 290	His	Gly	Gly	Gly	Trp 295	Gly	Gln	Gly	Gly	Gly 300	Thr	His	Asn	Gln
	Trp 305	Asn	Lys	Pro	Asn	Lys 310	Pro	Lys	Thr	Asn	Met 315	Lys	His	Met	Ala	Gly 320
20	Ala	Ala	Ala	Ala	Gly 325	Ala	Val	Val	Gly	Gly 330	Leu	Gly	Gly	Tyr	Met 335	Leu
	Gly	Ser	Ala	Met 340	Ser	Arg	Pro	Met	11e 345	His	Phe	Gly	Asn	Asp 350	Trp	Glu
25	Asp	Arg	Tyr 355	Tyr	Arg	Glu	Asn	Met 360	Tyr	Arg	Туr	Pro	Asn 365	Gln	Val	Tyr
	-	370					375					380				Asp
30	385					390					395					400
	_				405					410					415	
35	Glu	Gln	Met	Cys 420	Val	Thr	Gln	Туг	Gln 425	Lys	Glu	Ser	Gln	430	Tyr	Tyr
	Asp	Gly	Arg 435	Arg	Ser	Ser	Ser									
40					San Proces			estable e	piew ee .	per vere "	- ,					
40	<21 <21	0> 3 1> 7 2> P 3> A	RT rtif	icia	l Se	quen	ce					-				
45	<22 <22	0> 3> D	escr	ipti	on o	f Ar	tifi	cial	Seç	nenc	:e:					
		p	epti	de s	pace	r										
	<40	0> 3														
50	Ala	Gly	Ala	Ile	Gly 5	Gly	Ala									
55	<21 <21	0> 4 1> 6 2> P 3> A		icia	l Se	quen	.ce									

```
<220>
               <223> Description of Artificial Sequence:
                     peptide spacer
5
               <400> 4
               Ser Gly Gly Arg Gly Gly
10
               <210> 5
               <211> 17
               <212> PRT
               <213> Artificial Sequence
15
               <220>
               <223> Description of Artificial Sequence:
                     peptide spacer
20
               <400> 5
               Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Ser Gly
               Ala
25
               <210> 6
               <211> 5
<212> PRT
               <213> Artificial Sequence
30
               <223> Description of Artificial Sequence:
                     peptide spacer
35
               <400> 6
               Gly Gly Gly Ser
40
               <210> 7
               <211> 10
<212> PRT
               <213> Artificial Sequence
               <223> Description of Artificial Sequence:
45
                      peptide spacer
               <400> 7
               Gly Gly Gly Ser Gly Gly Gly Ser
50
               <210> 8
               <211> 15
<212> PRT
<213> Artificial Sequence
55
```

```
<220>
           <223> Description of Artificial Sequence:
                 peptide spacer
5
           <400> 8
           Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser
10
           <210> 9
           <211> 7
           <212> PRT
           <213> Artificial Sequence
15
           <220>
           <223> Description of Artificial Sequence:
                 peptide spacer
20
           <400> 9
           Ala Gly Ala Ile Gly Gly Ala
25
           <210> 10
           <211> 34
<212> DNA
           <213> Artificial Sequence
30
           <223> Description of Artificial Sequence:
                  Primer
           <400> 10
35
                                                                                  34
           gcggatccgt cgccaccatg gcgaaccttg gcta
           <210> 11
           <211> 38
           <212> DNA
40
           <213> Artificial Sequence
           <223> Description of Artificial Sequence: .
                  Primer
45
           <400> 11
           accgatcgct ccagcgctgg atcttctccc gtcgtaat
                                                                                  38
50
            <210> 12
           <211> 38
<212> DNA
            <213> Artificial Sequence
            <220>
55
            <223> Description of Artificial Sequence:
```

	Primer	
	<400> 12	
5		
3	agcgatcggt ggagctaaaa agcggccaaa gcctggag	38
	<210> 13	
40	<211> 33	
10	<212> DNA	
	<213> Artificial Sequence	
	<pre><220> <223> Description of Artificial Sequence:</pre>	
15	Primer	
	<400> 13	
	atctagatca tcatcatccc acgatcagga aga	33
20		
	<210> 14	
	<211> 30	
	<211> 30 <212> DNA	
	<213> Artificial Sequence	
25	-	
	<220>	
	<pre><223> Description of Artificial Sequence:</pre>	
	Primer	
30	<400> 14	
	and the same and an analysis of the same and an analysis o	30
	gatgttggat cctgcaagaa gcggccaaag	30
35	<210> 15	
35	<211> 29	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
40	<223> Description of Artificial Sequence:	
	Primer	
	<400> 15	
45	ggaggagatc cagcagctag aagcttttc	29
Claim	ne	

- 50
 - 1. A prion protein, wherein said prion protein is a homodimer or heterodimer.
 - 2. The prion protein of claim 1, wherein the monomers of the homodimer or heterodimer are covalently coupled.
- 3. The prion protein of claim 2, wherein the homodimer or heterodimer is a fusion protein comprising the monomers. 55
 - 4. The prion protein of claim 3, wherein the monomers of the fusion protein are linked via a peptide spacer.

- 5. The prion protein of claim 4, wherein the peptide spacer is (a) a spacer having a length of 2 to 3 amino acids, wherein the DNA sequence encoding said spacer contains a restriction site or (b) an oligomer composed of small neutral amino acids or c) an oligomer having an amino acid sequence that defines an epitope.
- The prion protein of claim 1 or 2, wherein the monomers are covalently coupled via polyethylenglycole, activated benzodiazepine, oxazolone, azalactone, diketopiperazine or a monosaccharide.
 - 7. The prion protein of any one of claims 1 to 6, wherein the monomers are derived from the same or different species.
- 10 8. The prion protein of any one of claims 1 to 7, wherein the monomers comprise the native prion protein or a variant thereof.
 - 9. The prion protein of claim 8, wherein the variant is a N-terminally and/or C-terminally truncated prion protein.
- 15 10. Use of a prion protein according to any one of claims 1 to 9 for the production of a polyclonal or monoclonal antibody.
 - 11. An antibody which specifically binds to a prion protein according to any one of claims 1 to 9.
 - 12. The antibody of claim 11 which is a monoclonal antibody.
 - 13. A DNA sequence encoding the prion protein of any one of claims 1 to 9.
 - 14. An expression vector containing a DNA sequence of claims 13.
- 15. A pharmaceutical composition containing a prion protein according to any one of claims 1 to 9, an antibody of claim 11 or 12, a DNA sequence of claim 13 or an expression vector of claim 14.
 - 16. Use of a prion protein according to any one of claims 1 to 9, an antibody of claim 11 or 12, a DNA sequence of claim 13 or an expression vector of claim 14 for the preparation of a vaccine for the prevention or treatment of a transmissible spongiform encephalopathy.

15

20

30

35

40

45

50

Fig. 1

Fig. 3a

Fig. 3b

Fig. 5
Translation of hisPrPDPcr(1-1320)
Universal code
Total amino acid number: 439, MW=48163
Max ORF: 1-1317, 439 AA, MW=48163

1	ATG	AGA	GGA'	TCG	CAT	CAC	CAT	CAC	CAT	CAC	GGA'	TCC'	TGC	AAG	AAG	CGG	CCA	AAG	CCT	3GA
1	М	R		s								S		K			P		P	G
61	GGG	TGG	AAC	ACT	GGC	GGA	AGC	CGA'	TAC	CCT	GGG	CAG	GGG	AGC	CCT	GGA(GGC	AAC	CGT	rac
21	G	W	N	T	G	G	S	R	Y	P	G	Q	G	S	P	G	G	N	R	Y
121	CCA	ССТ	CAG	GGT	GGC.	ACC	TGG	GGG	CAG	ccc	CAC	GGT	GGT	GGC'	TGG	GGA	CAA	CCC	CAT	GGG
41			Q				W							G				P		G
181	GGC	AGC	TGG	GGA	CAA	CCT	CAT	GGT	GGT.	AGT	TGG	GGT	CAG	ccc	CAT	GGC	GGT	GGA	TGG	GGC
61	G		W				н									G		G		G
241	CAA	.GGA	.GGG	GGT.	ACC	CAC	TAA	CAG	TGG	AAC	AAG	CCC	AGT	AAG	CCA	AAA	ACC	AAC	ATG	AAG
81	Q	G	G	G	T	H	N	Q	W	N	K	P	s	K	P	K	T	N	M	K
301	CAC	CATE	GCC	GGC	GCT	GCT	'GCG	GCA	GGG	GCC	GTG	GTG	GGG	GGC	CTT	GGT	'GGC	:TAC	ATG	CTG
101	Н	M	A	G	A	A	A	A	G	A	V	V	G	G	L.	G	G	Y	M	L
361	GGG	AGI	GCC	ATG	AGC	AGG	ccc	:ATG	ATC	CAT	TTT	GGC	CAAC	GAC	TGG	GAG	GAC	:CGC	CTAC	TAC
121	G		A		S		P					G		D	W	E	D	R		Y
421	CG	'GA	AAC	ATG	TAC	CGC	TAC	CCI	'AAC	CAA	GTG	STAC	CTAC	AGG	CCA	GTG	GA1	'CA	CATE	CAGC
141	R	£	N	M	Y	R	Y	P	N	Q	V	Y	Y	R	P	V	D	Q	Y	s
481	AAC	CAG	SAAC	AAC	TTC	GTG	CAC	GAC	TGC	GTC	CAAT	TAT(CAC	CATC	CAAC	CAC	CAC	CAC	GTC	CACC
161	N	Q	N	N	F	V	H	D	С	V	N	I	T	I	K	Q	H	T	V	T
541	ACC	CACC	CACC	AAG	GGG	GAG	SAAC	CTTC	CACC	GAC	SAC	CGA!	rgto	SAAG	ATO	SATO	GA(3CG(CGT	GTG
181	T	T	T	K	G	E	N	F	T	E	T	D	V	K	M	М	E	R	V	V
601	GAG	GCAG	SATO	TGC	GTC	ACC	CAC	TAC	CAC	AAG	GAG	STC	CCA	GCC	CTA	PAT	CGA	CGG	GAG!	AAGA
201	E	Q	M	С	V	T	Q	Y	Q	K	E	s	Q	A	Y	Y	D	G	R	R
661	TC	CAGO	CGCI	rgga	GCG	ATC	CGG	rgg <i>i</i>	AGC T	'AA'	AAA	GCG	GCC	AAA	GCC:	rgg	AGG	GTG	GAA	CACT
221	s	S	A	G	A	I	G	G	Α	K	K	R	P	K	P	G	G	M	N	T
721	GG	CGGI	AAGO	CGA	ATAC	ccc:	rgg	CAC	GGG	CAG	CCC'	TGG.	AGG	CAA	CCG'	TTA	CCC.	ACC	TCA	GGGT
241	G	G	S	R	Y	P	G	Q	G	S	P	G	G	N	R	Y	P	P	Q	G
781	GG	CAC	CTGG	GGG	CAG	SCC(CCA	CGG!	rgg:	rgg	CTG	GGÇ.	ACA	ACC	CCA	TGG	GGG	CAG	CTG	GGGA
261	G	T	W	G	Q	P	H	G	G	G	M	G	Q	P	Н	G	G	S	W	G~
841	CA	ACC:	rca:	rgg1	'GG'	rag:	TTG	GGG:	rca(GCC	CCA	TGG	CGG	TGG	ATG	GGG	CCA	AGG	AGG	GGGT
281	Q	P	H	G	G	s	W	G	Q	P	H	G	G	G	W	G	Q	G	G	G
901	AC	CCA	CAA!	CAG	TG	SAAG	CAA	GCC	CAA'	TAA	GCC.	AAA	AAC	CAA	CAT	GAA	GCA	CAT	GGC	CGGC
301	T	Н	N	Q	W	N	K	₽	N	K	P	K	T	N	M	K	Н	M	I A	G
961	GC	TGC'	TGC	GC	AGGG	3GC	CGT	GGT	GGG	GGG	CCT	TGG	TGG	CTA	CAT	GCT	GGG	GAG	CGC	CATG
321	A	A	A	A	G	A	v	V	G	G	L	G	G	Y	M	L	. G	S	A	M
1021																				CATG
341	S	R	P	M	I	H	F	G	N	Ð	M	E	: D	R	. Y	Y	R	₹ E	: N	M

4051130A1 | -

1081	TAC	CGC	TAC	CCT	AAC	CAA	GTG	TAC	TAC	AGG	CCA	GTG	GAT	CAG	TAC	AGC	AAC	CAG	AAC	AAC
361	Y	R	Y	P	N	Q	V	Y	Y	R	P	V	D	Q	Y	S	N	Q	N	N
1141	TTC	GTG	CAC	GAC	TGC	GTC	CAAT	ATC	ACC	ATC	AAG	CAG	CAC	ACG	GTC	ACC	ACC	ACC	ACC	AAG
381	F	V	H	D	С	V	N	I	T	I	K	Q	H	T	V	T	T	T	T	K
1201	GGG	GAG	AAC	TTC	ACC	GAG	ACC	GAT	'GTG	AAG	ATG	ATG	GAG	CGC	GTG	GTG	GAG	CAG	ATG	TGC
401	G	E	N	F	T	E	T	D	V	K	M	M	E	R	V	V	E	Q	M	С
1261	GTC	ACC	CAG	TAC	CAG	AAG	GAG	TCC	CAG	GCC	TAT	TAC	GAC	GGG	AGA	AGA	TCC	AGC	AGC	TAG
421	V	T	Q	Y	Q	K	E	s	Q	A	Y	Y	D	G	R	R	S	s	S	*

EUROPEAN SEARCH REPORT

Application Number

EP 01 10 9707

X A	normal and scrapie—a. PrP*" J. BIOL. CHEM., vol. 270, no. 7, 17 February 1995 (19: 3299-3305, XP0021789 * the whole document HARMEYER S ET AL.:	"A 60-kDa Prion roperties of both the ssociated forms of 95-02-17), pages 41	1,2,7,8, 10-16	C07K14/47 C12N15/62 A61K39/00
A	Protein (PrP) with prormal and scrapie—a. PrP*" J. BIOL. CHEM., vol. 270, no. 7, 17 February 1995 (19: 3299—3305, XP0021789) * the whole document HARMEYER S ET AL.:	roperties of both the ssociated forms of 95-02-17), pages 41 *	10-16	C12N15/62
	PrP*" J. BIOL. CHEM., vol. 270, no. 7, 17 February 1995 (19: 3299-3305, XP0021789 * the whole document HARMEYER S ET AL.:	95-02-17), pages 41 * 	3-6	
	17 February 1995 (19 3299-3305, XP0021789 * the whole document HARMEYER S ET AL.:	41 * 	3-6	
	* the whole document HARMEYER S ET AL.:	*	3-6	
A	luncaines vield monoc	"Synthetic mentide	i	
	of ruminants."	lonal antibodies to gical prion proteins	1-16	
	vol. 79, 1998, pages * the whole document	937-945, XP002178942 * 		
				TECHNICAL FIELDS SEARCHED (Int.Cl.7)
				C07K A61K C12N
	,			
		and the second second		
	The present search report has t			Examiner
	Place of search	Date of completion of the search	٠ ٠	
	THE HAGUE	1 October 2001		alli, I
Y : g	CATEGORY OF CITED DOCUMENTS articularly relevant if taken alone articularly relevant if combined with anot ocument of the same category achicological background	her D: document cit	document, but p date ed in the applicated for other reasons	ior

23

in. -rn 105113941 1 5

and the second of the second o