Силабус освітнього компоненту

Шифр та назва	136 – Металургія
спеціальності	
Назва освітньої	Металургія
	Тисталургія
програми Рівень вищої	Третій (доктор філософії)
освіти	трети (доктор філософіі)
	Dysimuono wygyynyiyo a yyyyny ymodociżyyci wiynomonyy
Статус	Вибіркова дисципліна з циклу професійної підготовки
освітнього	
компонента	2 CICTO (00
Обсяг освітнього	3 кредити ЄКТС (90 академічних годин)
компонента	
Терміни	3 семестр (I – II чверті)
вивчення	
освітнього	
компонента	
Назва кафедри,	аспірантура
яка виклада ϵ	
освітній	
компонент	
Провідний	Тогобицька Дар'я Миколаївна, д. т. н, проф., завідувач відділу
викладач	фізико-хімічних проблем металургійних процесів
(лектор)	E-mail: dntog@ukr.net, кімн. Д-26
Мова	Українська
викладання	
Передумови	Вивченню дисципліни має передувати вивчення дисциплін:
вивчення	- Патентно-інформаційні дослідження;
дисципліни	- Інформаційні технології в наукових дослідженнях
Мета навчальної	Формування глибинних знань та навичок щодо створення
дисципліни	інформаційно-аналітичних систем, розробки та адаптації прогнозних
	моделей металургійних процесів та технологій, основних підходів до
	оптимізації технологічних процесів
Компетентності,	ІК. Здатність розв'язувати складні спеціалізовані задачі та практичні
формування	проблеми металургії у професійній діяльності або у дослідницько-
яких забезпечує	інноваційної діяльності, що передбачає застосування теоретичних
навчальна	положень та методів інженерії, проведення досліджень та/або
дисципліна	здійснення інновацій і характеризується комплексністю та
	невизначеністю умов і вимог, глибоке переосмислення наявних та
	створення нових цілісних знань та/або професійної практики.
	СК01. Здатність ініціювати інноваційні комплексні проекти в
	металургії та дотичні до неї міждисциплінарні проекти, лідерство під
	час їх реалізації.
	тие их решинации.

СК02. Здатність виконувати оригінальні дослідження, досягати наукових результатів, які створюють нові знання в металургії і дотичних до неї міждисциплінарних напрямах і можуть бути опубліковані у провідних наукових виданнях з металургії та суміжних галузей.

СК03. Здатність самовдосконалюватися, презентувати результати досліджень фахівцям і нефахівцям, читати лекції, вести спеціалізовані навчальні і наукові семінари.

Програмні результати навчання

В результаті вивчення освітнього компоненту здобувач вищої освіти третього (освітньо-наукового) рівня повинен

знати:

- основні принципи та способи оптимізації технологічних процесів;
- шляхи та методи вдосконалення виробництва чавуну та сталі, що забезпечують отримання якісної, конкурентоспроможної металопродукції;
- принципи створення баз даних та їх використання для розробки математичних моделей металургійних процесів;
- методологічні основи оптимізації.

вміти:

- виконувати пошук, обробку та аналіз інформації з різних джерел;
- в залежності від характеру дослідних процесів, обгрунтовано виконувати постановку задачі оптимізації;
- здійснювати оптимізацію металургійних технологічних процесів з використанням стандартних прикладних пакетів і засобів;
- здійснювати оптимізацію для вирішення конкретних завдань металургійних технологій;
- визначати межі оптимізації, обирати критерій оптимальності та незалежні змінні.

Дисципліна забезпечує досягнення таких програмних результатів навчання:

РН01. Мати передові концептуальні та методологічні знання з металургії та на межі предметних галузей, а також дослідницькі навички, достатні для проведення наукових і прикладних досліджень на рівні останніх світових досягнень, отримання нових знань та/або здійснення інновацій.

РН02. Вільно презентувати та обговорювати з фахівцями і нефахівцями результати досліджень, наукові та прикладні проблеми металургії державною та іноземною мовами, кваліфіковано відображати результати досліджень у наукових публікаціях в провідних наукових виданнях.

РН03. Використовувати необхідні для обгрунтування висновків докази, зокрема, результати теоретичного аналізу, експериментальних досліджень і математичного та/або комп'ютерного моделювання, наявні емпіричні дані.

РН04. Розробляти та досліджувати концептуальні, математичні і комп'ютерні моделі металургійних процесів і систем, ефективно використовувати їх для отримання нових знань та/або створення інноваційних продуктів в металургії.

РН05. Планувати і виконувати експериментальні дослідження з металургії та дотичних міждисциплінарних напрямів з використанням сучасних обладнання та методик, аналізувати результати експериментів у контексті усього комплексу сучасних знань щодо досліджуваної проблеми. РН06. Застосовувати сучасні інструменти і технології пошуку, оброблення та аналізу інформації, зокрема, статистичні методи аналізу даних великого обсягу та/або складної структури, бази даних та інформаційні системи. РН07. Розробляти та реалізовувати наукові та/або інноваційні інженерні проекти, які дають можливість переосмислити наявне та створити нове цілісне знання та/або професійну практику і розв'язувати значущі наукові та технологічні проблеми металургії з дотриманням норм академічної етики і врахуванням соціальних, екологічних та правових аспектів. РН08. Глибоке розуміння загальних принципів і методів природничих та технічних наук, а також методології наукових досліджень, їх застосування у власних дослідженнях у сфері металургії та у викладацькій практиці. Зміст навчальної Модуль 1. Теоретичні основи оптимізації. дисципліни Модулі 2. Методологічні основи оптимізації... Модуль 3. Чисельні та графічні методи оптимізації. Форми та Отримання позитивної оцінки при виконанні 3-х модульних контрольних робіт за 12-бальною шкалою. методи оцінювання Підсумкова оцінка навчальної дисципліни визначається як середнє арифметичне 3-х модульних оцінок та результатів іспиту за 12бальною шкалою.

Види навчальної роботи та її обсяг в акад. годинах

	Varana	Семестр
	Усього	2
Усього годин за навчальним планом, у тому числі		90
Аудиторні заняття		54
з них:		
- лекції	36	36
- лабораторні роботи		
- практичні заняття		18
- семінарські заняття		1
Самостійна робота		36
у тому числі при:		
- підготовці до аудиторних занять		18
- підготовці до заходів модульного контролю (екзамен)		9
- виконанні курсових проектів (робіт)		-
- виконанні індивідуальних завдань		-
- опрацюванні розділів програми, які не викладаються		
на лекціях		9
Семестровий контроль		Іспит

Методи	Усні у формі лекцій, обговорення їх змісту та дискусії. Розв'язання
навчання	дослідницьких задач на основі вивчення окремих кейсів. Самостійна
	робота здійснюється у формі: підготовки до лекцій, практичних занять;
	роботи з науковою літературою та науковими публікаціями.
Політика щодо	При отриманні здобувачем за підсумковим контролем (іспитом)
дедлайнів та	оцінки «незадовільно», підсумкова оцінка з дисципліни не
перескладання	виставляється. Перескладання модулів відбувається за наявності
	поважних причин (наприклад, лікарняний) та у відповідності до
	діючого Положення про організацію освітнього процесу в ІЧМ НАН
	України
Політика щодо	Списування під час проведення контрольних робіт та екзаменів
академічної	заборонені (в т.ч. із використанням мобільних девайсів). Мобільні
доброчесності	пристрої дозволяється використовувати лише під час он-лайн
	тестування та підготовки практичних завдань під час заняття
Політика щодо	Відвідування занять є обов'язковим компонентом оцінювання. За
відвідування	об'єктивних причин (наприклад, хвороба, працевлаштування,
	міжнародне стажування) навчання може відбуватись в он-лайн формі
	за погодженням із керівником курсу
Навчально-	1. Л.Р. Ладієва. Оптимізація технологічних процесів.: Навчальний
методичне	посібникК.: НМЦ ВО,2003. 209 с.
забезпечення	2. Оптимізація технологічних процесів галузі. А. Дорохович, В.
	Дорохович, Т. Зинченко. К.: Інкос, 2018. 392 с.
	3. М.І. Жалдак, Ю.В. Триус Основи теорії і методів оптимізації. –
	Черкаси: Брама-Україна, 2005. 602 с.
	4. Тогобицкая Д.Н. Методологические основы физико-химического
	моделирования и оптимизации процессов производства чугуна и
	стали / Д.Н.Тогобицкая, А. И.Белькова, Д.А.Степаненко, А.
	Ф.Петров //Металл и литье Украины. – Киев. – 2019 № 7-9 С.
	33-42.
	5. Тогобицкая Д.Н. Комплексный подход к выбору оптимального
	состава доменной шихты / Д.Н. Тогобицкая, А. И. Белькова, Д. А.
	Степаненко, А. С. Скачко // Спеціальна металургія: вчора, сьогодні,
	завтра: матеріали XVI Всеукраїнської науково-практичної
	конференції. – К.: НТУУ «КПІ». –2018. – С.321-335.
	6. Тогобицька Д.М. Оптимізація металургійних технологій у змінних
	сировинних та технологічних умовах /Д.М.Тогобицька,
	А.І.Белькова, Ю.М.Ліхачов //Materials of VI International Scientific
	and Practical Conference «About the problems of science and practice,
	tasks and ways to solve them» Milan, Italy. –2020 Pp. 558-562.
	7. Тогобицкая Д.Н. Роль ограничений при решении задачи
	оптимизации доменной шихты /Д.Н.Тогобицкая, А.И.Белькова,
	Ю.М.Лихачев, Н.Е.Ходотова //Тези доповідей V Міжнародної НТК
	«Комп'ютерне моделювання та оптимізація складних систем. –
	Дніпро. – 2019. – С. 100-101

Ухвалено на засіданні групи забезпечення якості освітньої програми «Металургія» (Протокол № 4 від 17.06.2022 р.).

Гарант освітньої програми, д.т.н, с.н.с. *Шришен* Меркулов О.€.