(12) UK Patent Application (19) GB (11) 2 385 328 (13) A

(43) Date of A Publication 20.08.2003

(21) Application No 0229456.9

(22) Date of Filing 18.12.2002

(30) Priority Data

(31) 60341988

(32) 19.12.2001

(33) US

(71) Applicant(s)

F Hoffmann-La Roche AG (Incorporated in Switzerland) 124 Grenzacherstrasse, CH-4070 Basie, **Switzerland**

(72) Inventor(s)

Wendy Lea Corbett Robert Lewis Crowther Pete William Dunten R.Ursula Kammlott Christine Maria Lukacs

(74) Agent and/or Address for Service

Forrester Ketley & Co Forrester House, 52 Bounds Green Road, LONDON, N11 2EY, United Kingdom

(51) INT CL7

C12N 9/12, A61K 31/4439, A61P 3/10, C07D 417/12 // (C07D 417/12 213:56 277:46)

(52) UK CL (Edition V)

C3H HB7E

C2C CAA

U1S S2413

(56) Documents Cited

Protein Science; Vol 11, pp 2456-2463 (2002). Tsuge et al.

Structure; Vol 9, pp 205-214 (2001). Ito et al. Diabetes; Vol 48, pp 1698-1705 (1999).

Mahalingam et al.

(58) Field of Search

INT CL7 C12N, C30B, G06F

Other: ONLINE: WPI, EPODOC, JAPIO, MEDLINE,

BIOSIS, EMBASE, SCISEARCH, CAPLUS

(54) Abstract Title Crystals of glucokinase and methods of growing them

(57) Crystalline forms of mammalian Glucokinase of sufficient size and quality to obtain structure data by X-ray crystallography are presented. Methods of growing such crystals are also disclosed.

Harry 1

Figure 2. The amino-acid sequence of the GST-GK fusion protein. The GST sequence was taken from GenBank entry U13852. Residue 229 of the fusion protein is the first residue of GK.

1 MSPILGYWKI KGLVQPTRLL LEYLEEKYEE HLYERDEGDK WRNKKFELGL EFPNLPYYID
61 GDVKLTQSMA IIRYIADKHN MLGGCPKERA EISMLEGAVL DIRYGVSRIA YSKDFETLKV
121 DFLSKLPEML KMFEDRLCHK TYLNGDHVTH PDFMLYDALD VVLYMDPMCL DAFPKLVCFK
181 KRIEAIPQID KYLKSSKYIA WPLQGWQATF GGGDHPPKSD LIEGRGIHMP RPRSQLPQPN
241 SQVEQILAEF QLQEEDLKKV MRRMQKEMDR GLRLETHEEA SVKMLPTYVR STPEGSEVGD
301 FLSLDLGGTN FRVMLVKVGE GEEGQWSVKT KHQMYSIPED AMTGTAEMLF DYISECISDF
361 LDKHQMKHKK LPLGFTFSFP VRHEDIDKGI LLNWTKGFKA SGAEGNNVVG LLRDAIKRRG
421 DFEMDVVAMV NDTVATMISC YYEDHQCEVG MIVGTGCNAC YMEEMQNVEL VEGDEGRMCV
481 NTEWGAFGDS GELDEFLLEY DRLVDESSAN PGQQLYEKLI GGKYMGELVR LVLLRLVDEN
541 LLFHGEASEQ LRTRGAFETR FVSQVESDTG DRKQIYNILS TLGLRPSTTD CDIVRRACES
601 VSTRAAHMCS AGLAGVINRM RESRSEDVMR ITVGVDGSVY KLHPSFKERF HASVRRLTPS
661 CEITFIESEE GSGRGAALVS AVACKKACML GO

Figure 3

		Δt	om 2	A.A.					
	Atom N			Гуре	A.A.#	x	Y	Z	OCC B .
	ATOM	1		SER	8	-0.421	63.744	24.899	1.00 50.68
5	ATOM	2	OG :	SER	8	-0.752	63.605	23.524	1.00 50.85
	MOTA	3	C :	SER	8	1.865	64.216	24.094	1.00 50.72
	ATOM	4	0	SER	8	2.308	63.644	23.102	1.00 51.79
	ATOM	5	N	SER	8	1.473	63.793	26.507	1.00 50.36
	MOTA	6	CA	SER	8	1.057	63.446	25.120	1.00 50.55
10	MOTA	7	N	GLN	9	2.041	65.515	24.314	1.00 49.84
	ATOM	8	CA	GLN	9	2.831	66.312	23.385	1.00 48.95
	MOTA	9	CB	GLN	9	2.983	67.745	23.895	1.00 49.08
	MOTA	10	CG	GLN	9	3.676	68.686	22.925	1.00 50.25
	ATOM	11	CD	GLN	9	3.206	70.127	23.085	1.00 51.06
15	ATOM	12	OE1	GLN	9	2.037	70.433	22.846	1.00 51.38
	MOTA	13	NE2	GLN	9	4.112	71.017	23.499	1.00 51.44
	ATOM	14		GLN	9	4.190	65.633	23.294	1.00 48.56
	MOTA	15		GLN	9	4.884	65.741	22.285	1.00 48.75
	MOTA	16		VAL	10	4.560	64.926	24.361	1.00 47.77
20	MOTA	17		VAL	10	5.823	64.198	24.392	1.00 46.87
	MOTA	18	-	VAL	10	6.293	63.902	25.842	1.00 46.39
	MOTA	19	CG1		10	7.303	62.782	25.841	1.00 46.41
	ATOM	20	CG2		10	6.952	65.135	26.436	1.00 46.79 1.00 46.17
	MOTA	21		VAL	10	5.616	62.885	23.653	1.00 46.17
25	MOTA	22		VAL	10	6.521	62.384 62.317	22.991 23.768	1.00 45.28
	ATOM	23	N	GLU	11	4.423 4.159	61.071	23.768	1.00 45.20
	MOTA	24	CA	GLU	11	2.905	60.393	23.616	1.00 45.21
	MOTA	25	CB	GLU	11 11	3.105	59.709	24.967	1.00 46.05
20	MOTA	26 27	CG CD	GLU	11	4.224	58.664	24.957	1.00 46.30
30	MOTA MOTA	28	OE1		11	4.350	57.918	23.948	1.00 46.28
	MOTA	29	OE2	GLU	11	4.963	58.583	25.972	1.00 45.66
	ATOM	30	C	GLU	11	4.002	61.345	21.580	1.00 44.48
	MOTA	31	Ö	GLU	11	4.068	60.430	20.755	1.00 44.48
35	ATOM	32	N	GLN	12	3.807	62.614	21.239	1.00 43.86
•	ATOM	33	CA	GLN	12	3.646	62.996	19.845	1.00 42.86
	ATOM	34	CB	GLN	12	2.972	64.368	19.715	1.00 44.49
	ATOM	35	CG	GLN	12	2.833	64.840	18.259	1.00 46.49
	MOTA	36	CD	GLN	12	1.986	66.099	18.113	1.00 47.74
40	ATOM	37	OE1	GLN	12	2.055	66.799	17.088	1.00 48.30
	MOTA	38	NE2	GLN	12	1.174	66.388	19.131	1.00 47.51
	MOTA	39	С	GLN	12	5.014	63.023	19.192	1.00 41.14
	MOTA	40	0	GLN	12	5.139	62.739	18.002	1.00 41.76
	MOTA	41	N	ILE	13	6.038	63.360	19.971	1.00 38.51
45	MOTA	42	CA	ILE	13	7.398	63.388	19.450	1.00 36.48
	MOTA	43	CB	ILE	13	8.274	64.351	20.261	1.00 35.85
	MOTA	44	CG2		13	9.731	64.228	19.827	1.00 35.71
	MOTA	45		ILE	13	7.740	65.777	20.079	1.00 35.77
	MOTA	46		ILE	13	8.584	66.867	20.710	1.00 35.91 1.00 36.01
50	MOTA	47	С	ILE	13	8.018	61.981	19.452	1.00 35.99
	ATOM	48	0	ILE	13	8.572	61.528	18.442	1.00 34.88
	MOTA	49	N	LEU	14	7.903	61.288 59.934	20.580 20.711	1.00 34.88
	ATOM	50 51	CA	LEU	14 14	8.430 8.230	59.934	22.141	1.00 33.29
==	ATOM	51 52	CB CG	LEU LEU	14 14	8.853	60.321	23.215	1.00 33.43
55	MOTA MOTA	52 53		LEU		8.510	59.781	24.594	
	MOTA	54		LEU	14	10.354	60.398	23.001	1.00 33.04
	VI ALI	24						–	

	6									
	MOTA	55	С	LEU	14	7.766	58.957	19.730	1.00 33.55	
	ATOM	56	ō	LEU	14	8.208	57.812	19.578	1.00 33.21	
	MOTA	57	N	ALA	15	6.710	59.403	19.065	1.00 33.22	
	MOTA	58	CA	ALA	15	6.021	58.551	18.104	1.00 32.59	
5	MOTA	59	CB	ALA	15	4.628	59.104	17.821	1.00 31.95	
,	MOTA	60	C	ALA	15	6.838	58.449	16.808	1.00 32.79	
	ATOM	61	0	ALA	15	6.664	57.519	16.018	1.00 32.75	
	ATOM	62	N	GLU	16	7.746	59.395	16.518	1.00 33.03	
	ATOM	63	CA						1.00 32.33	
10		64		GLU	16 16	8.575	59.369	15.403		
10	ATOM		CB	GLU		9.566	60.531	15.401	1.00 34.23	
	ATOM	65	CG	GLU	16	8.950	61.910	15.298	1.00 38.39	
	ATOM	66	CD	GLU	16	10.017	62.998	15.162	1.00 41.11	
	ATOM	67	OE1		16	10.445	63.269	14.012	1.00 40.68	
1.5	ATOM	68		GLU	16	10.438	63.562	16.212	1.00 42.77	
15	MOTA	69	C	GLU	16	9.369	58.073	15.279	1.00 31.93	
	ATOM	70	0	GLU	16	9.570	57.568	14.179	1.00 33.41	
	ATOM	71	N	PHE	17	9.841	57.539	16.401	1.00 30.37	
	ATOM	72	CA	PHE	17	10.640	56.321	16.369	1.00 27.71	
20	ATOM	73	CB	PHE	17	11.346	56.129	17.711	1.00 26.32	
20	MOTA	74	CG	PHE	17	12.309	57.230	18.045	1.00 24.22	
	ATOM	75	CD1		17	11.846	58.500	18.389	1.00 23.88	
	ATOM	76	CD2		17	13.680	57.010	17.981	1.00 22.24	
	ATOM	77		PHE	17	12.741	59.531	18.660	1.00 22.63	
25	MOTA	78	CE2	PHE	17	14.574	58.027	18.250	1.00 21.23	
25	ATOM	79	CZ	PHE	17	14.105	59.291	18.589	1.00 22.01	^2 22
	ATOM	80	C	PHE	17	9.836	55. 004		6.012 1.00	21.11
	ATOM	81	0	PHE	17	10.400	54. 15.		0 27.38	
	MOTA MOTA	82	N	GLN	18	8.517	55.213	15.957	1.00 28.12	
30	MOTA	83 84	CA CB	GLN	18	7.684	54.080		1.00 29.17	
30	ATOM	85	CG	GLN GLN	18 18	6.216	54.484	15.599	1.00 30.98 1.00 32.94	
	MOTA	86	CD	GLN		5.446	54.017	16.806	1.00 32.94	
	MOTA	87		GLN	18 18	4.152	54.785	16.974	1.00 34.65	
	ATOM	88	NE2	GLN	18	3.389 3.892	54.976 55.228	16.014	1.00 37.17	
35	ATOM	89	C	GLN	18	8.068	53.602	18.190 14.193	1.00 33.07	
))	ATOM	90	0	GLN	18	8.471	54.399	13.346	1.00 28.83	
	ATOM	91	N	LEU	19	7.931	52.298	13.340	1.00 29.02	
	ATOM	92	CA	LEU	19	8.235	51.659	12.704	1.00 29.94	
	ATOM	93	CB	LEU	19	9.641	51.059	12.749	1.00 29.78	
40	ATOM	94	CG	LEU	19	10.782	51.813	12.037	1.00 25.70	
10	ATOM	95		LEU	19	10.886	53.251	12.477	1.00 30.77	
	MOTA	96		LEU	19	12.083	51.087	12.339	1.00 32.05	
	ATOM	97	C	LEU	19	7.199	50.549	12.511	1.00 31.41	
	ATOM	98	ō	LEU	19	7.288	49.484	13.137	1.00 31.35	
45	ATOM	99	N	GLN	20	6.205	50.801	11.663	1.00 32.64	
	ATOM	100	CA	GLN	20	5.153	49.817	11.422	1.00 34.95	
	MOTA	101	CB	GLN	20	4.024	50.413	10.570	1.00 35.78	
	ATOM	102	CG	GLN	20	3.301	51.622	11.175	1.00 37.65	
	MOTA	103	CD	GLN	20	3.048	51.486	12.669	1.00 39.03	
50	MOTA	104		GLN	20	2.603	50.441	13.152	1.00 40.92	
	MOTA	105		GLN	20	3.324	52.552	13.410	1.00 40.04	
	ATOM	106	C	GLN	20	5.692	48.568	10.730	1.00 35.83	
	ATOM	107	ō	GLN	20	6.827	48.547	10.247	1.00 36.56	
	ATOM	108	N	GLU	21	4.864	47.531	10.681	1.00 36.52	
55	ATOM	109	CA	GLU	21	5.240	46.279	10.062	1.00 37.80	
	ATOM	110	CB	GLU	21	4.024	45.357	9.998	1.00 39.22	
	ATOM	111	CG	GLU	21	4.298	43.898	9.625	1.00 42.88	
	ATOM	112	CD	GLU	21	4.568	43.009	10.844	1.00 44.63	
	ATOM	113		GLU	21	4.540	41.758	10.699	1.00 45.40	
										

	ATOM	114	OE2	GLU	21	4.810	43.564	11.943	1.00	45.89
	MOTA	115	C	GLU	21	5.770	46.549	8.654		38.20
	MOTA	116	Ō	GLU	21	6.892	46.183	8.324		38.71
	ATOM	117	N	GLU	22	4.972	47.208	7.826		38.54
5	MOTA	118	CA	GLU	22	5.386	47.478	6.457		39.08
9	ATOM	119	CB	GLU	22					
						4.308	48.267	5.703		40.61
	ATOM	120	CG	GLU	22	3.123	47.406	5.313		43.51
	ATOM	121	CD	GLU	22	3.556	46.039	4.773		45.80
	MOTA	122		GLU	22	4.243	45.999	3.719		46.20
10	ATOM	123	OE2	GLU	22	3.215	45.007	5.414	1.00	46.87
	MOTA	124	С	GLU	22	6.711	48.197	6.359	1.00	38.74
	MOTA	125	0	GLU	22	7.482	47.954	5.423	1.00	39.26
	ATOM	126	N	ASP	23	6.988	49.084	7.308	1.00	37.74
	ATOM	127	CA	ASP	23	8.258	49.795	7.276	1.00	3723
15	ATOM	128	CB	ASP	23	8.356	50.779	8.437		38.62
	MOTA	129	CG	ASP	23	7.240	51.789	8.427		40.46
	ATOM	130	OD1	ASP	23	7.104	52.508	7.408		41.26
	MOTA	131		ASP	23	6.495	51.861	9.438		41.77
	ATOM	132	c	ASP	23		48.760	7.382		35.54
20	ATOM	133	Ö	ASP	23	10.267	48.698	6.536		35.43
	MOTA	134	N	LEU	24	9.294				
	ATOM	135	CA	LEU			47.937	8.420		33.31
	ATOM ·	136			24	10.288	46.910	8.631		32.04
			CB.	LEÚ	24	9.898	46.062	9.842		31.35
25	MOTA	137	CG	LEU	24	9.920	46.801	11.196		31.20
25	MOTA	138		LEU	24	9.710	45.815	12.343		29.48
	MOTA	139		LEU	24	11.253	47.526	11.367		31.51
	MOTA	140	C	LEU	24	10.509	46.041	7.385		31.61
	ATOM	141	0	LEU	24	11.645	45.723	7.049		31.67
	MOTA	142	N	LYS	25	9.434	45.673	6.693	1.00	31.58
30	MOTA	143	CA	LYS	25	9.551	44.863	5.486	1.00	31.41
	MOTA	144	CB	LYS	25	8.186	44.347	5.061	1.00	31.91
	ATOM	145	CG	LYS	25	7.574	43.372	6.033	1.00	34.39
	ATOM	146	CD	LYS	25	6.224	42.901	5.531	1.00	36.61
	ATOM	147	CE	LYS	25	5.414	42.232	6.640	1.00	38.71
35	ATOM	148	NZ	LYS	25	3.978	42.086	6.235	1.00	39.39
	ATOM	149	С	LYS	25	10.166	45.679	4.352		31.50
	ATOM	150	0	LYS	25	10.969		3.568	1.00	30.92
	MOTA	151	N	LYS	. 26	9.784	46.947	4.261	1.00	31.82
	ATOM	152	CA	LYS	26	10.332	47.819	3.229		32.63
40	ATOM	153	CB	LYS	26	9.695	49.203	3.315	1.00	33.38
	ATOM	154	CG	LYS	26	10.053	50.129	2.177		35.11
	ATOM	155	CD	LYS	26	9.424	51.502	2.400	1.00	
	ATOM	156	CE	LYS	26	9.364	52.312	1.104		39.72
	ATOM	157	NZ	LYS	26	8.706	53.645	1.307		42.62
45	ATOM	158	C	LYS	26	11.845	47.919	3.441		32.91
	ATOM	159	Ö	LYS	26	12.614	48.012			32.90
	ATOM	160	N	VAL	27	12.265		2.479		
	ATOM						47.901	4.705		33.16
		161	CA	VAL	27	13.687	47.956	5.046		33.43
E 0	ATOM	162	CB	VAL	27	13.903	48.281	6.555		32.58
50	ATOM	163		VAL	27	15.335	47.960	6.963		32.13
	ATOM	164	CG2		27	13.622	49.755	6.818		31.04
	MOTA	165	C	VAL	27	14.305	46.586	4.727		33.90
	ATOM	166	0	VAL	27	15.323	46.482	4.036		33.83
	MOTA	167	N	MSE	28	13.668	45.536	5.223	1.00	34.26
55	MOTA	168	CA	MSE	28	14.140	44.193	4.983	1.00	.34.84
	MOTA	169	CB	MSE	28	13.072	43.198	5.393		35.83
	MOTA	170	CG	MSE	28	13.456	41.784	5.144		38.88
	MOTA	171	SE	MSE	28	12.108	40.670	5.608		45.40
	MOTA	172	CE	MSE	28	11.054	40.713	4.095		42.96

Figure 4

•	Ŭ									
	ATOM	173	С	MSE	28	14.465	44.016	3.505	1.00 35.3	32
	ATOM	174	0	MSE	28	15.571	43.621	3.144	1.00 35.	
	ATOM	175	N	ARG	29	13.495	44.331	2.655	1.00 36.	
	ATOM	176	CA	ARG	29	13.665	44.191	1.218	1.00 36.	
5	ATOM	177	CB	ARG	29	12.352	44.520	0.509	1.00 37.	
_	ATOM	178	CG	ARG	29	11.223	43.542	0.827	1.00 37.	
	ATOM	179	CD	ARG	29	9.913	43.960			
	ATOM	180	NE	ARG	29			0.152	1.00 40.	
	ATOM	181	CZ	ARG		8.760	43.281	0.744	1.00 42.	
10	ATOM	182		ARG	29	7.621	43.889	1.081	1.00 43.	
10	ATOM				29	7.475	45.201	0.881	1.00 43.	
		183		ARG	29	6.631	43.188	1.636	1.00 44.	
	ATOM	184	C	ARG	29	14.814	45.008	0.625	1.00 36.	
	ATOM	185	0	ARG	29	15.615	44.469	-0.133	1.00 35.	
15	MOTA	186	N	ARG	30	14.906	46.296	0.948	1.00 36.	
15	ATOM	187	CA	ARG	30	16.008	47.091	0.410	1.00 38.	
	MOTA	188	CB	ARG.	30	15.944	48.543	0.894	1.00 39.3	
	MOTA	189	CG	ARG	30	14.676	49.285	0.513	1.00 41.	96
	MOTA	190	CD	ARG	30	14.742	50.763	0.933	1.00 44.	07
	MOTA	191	NE	ARG	30	13.415	51.384	0.995	1.00 45.	48
20	ATOM	192	CZ	ARG	30	13.179	52.628	1.416	1.00 45.	93
	MOTA	193		ARG	30	14.175	53.403	1.810	1.00 45.	92
	MOTA	194		ARG	30	11.937	53.091	1.467	1.00 45.	68
	MOTA	195	С	ARG	30	17.338	46.461	0.843	1.00 39.	05
	ATOM	196	0	ARG	30	18.286	46.404	0.061	1.00 38.	99
25	MOTA	197	N	MSE	31	17.408	45.999	2.092	1.00 39.3	11
	MOTA	198	CA	MSE	31	18.615	45.348	2.596	1.00 38.	96
	MOTA	199	CB	MSE	31	18.374	44.784	4.002	1.00 40.	43
	MOTA	200	CG	MSE	31	19.512	43.922	4.599	1.00 42.	62
	MOTA	201	SE	MSE	31	21.083	44.819	5.027	1.00 48.	46
30	MOTA	202	CE	MSE	31	20.438	45.988	6.389	1.00 45.	46
	MOTA	203	С	MSE	31	18.901	44.209	1.633	1.00 38.	25
	ATOM	204	0	MSE	31	19.973	44.132	1.038	1.00 38.	
	MOTA	205	N	GLN	32	17.915	43.334	1.478	1.00 37.	93
	ATOM	206	ÇA	GLN	32	18.037	42.199	0.589	1.00 37.	33
35	ATOM	207	CB	GLN	32	16.708	41.475	0.480	1.00 36.	41
	ATOM	208	CG	GLN	32	16.219	40.905	1.780	1.00 37.	04
	MOTA	209	CD	GLN	32	15.304	39.723	1.561	1.00 37.	28
	MOTA	210	OE1	GLN	32	15.740	38.682	1.072	1.00 38.3	23
	MOTA	211	NE2	GLN	32	14.027	39.874	1.912	1.00 37.	39
40	MOTA	212	С	GLN	32	18.475	42.641	-0.791	1.00 37.	81
	MOTA	213	0	GLN	32	19.215	41.929	-1.466	1.00 37.	79
	ATOM	214	N	LYS	33	18.019	43.819	-1.205	1.00 38.	80
	ATOM	215	CA	LYS	33	18.362	44.345	-2.516	1.00 39.	85
	ATOM	216	CB	LYS	33	17.525	45.588	-2.830	1.00 40.	63
45	ATOM	217	CG	LYS	33	17.591	45.992	-4.298	1.00 42.	21
	MOTA	218	CD	LYŞ	33	16.924	47.336	-4.561	1.00 43.	
	MOTA	219	CE	LYS	33	17.160	47.803	-6.006	1.00 44.	42
	MOTA	220	NZ	LYS	33	16.639	49.187	-6.256	1.00 44.	
	MOTA	221	С	LYS	33	19.843	44.695	-2.574	1.00 40.	
50	ATOM	222	0	LYS	33	20.519	44.411	-3.564	1.00 40.	
	MOTA	223	N	GLU	34	20.331	45.312	-1.500	1.00 40.	
	ATOM	224	CA	GLU	34	21.730	45.712	-1.378	1.00 40.	
	MOTA	225	CB	GLU	34	21.912	46.641	-0.179	1.00 41.	
	ATOM	226	CG	GLU	34	21.229	47.956	-0.359	1.00 41.	
55	ATOM	227	CD	GLU	34	21.476	48.506	-1.741	1.00 42.	
	MOTA	228		GLU	34	22.650	48.810	-2.063	1.00 42.	
	ATOM	229		GLU	34	20.493	48.613	-2.507	1.00 43.	
	ATOM	230	C	GLU	34	22.667	44.528	-1.221	1.00 40.	
	ATOM	231	<u>o</u> .	GLU	34	23.770	44.527	-1.767	1.00 41.	
						•		,	AP.	

8/63 Figure 4 MOTA 232 N MSE 35 22.233 43.534 -0.456 1.00 41.15 MOTA 233 CA MSE 35 23.038 42.350 -0.232 1.00 41.36 ATOM 234 CB MSE 35 22.289 41.354 0.648 1.00 41.62 ATOM 235 CG MSE 35 22.320 41.711 2.117 1.00 43.28 ATOM 236 SE MSE 35 21.428 40.506 3.120 1.00 46.51 MOTA 237 CE MSE 35 22.217 38.947 2.587 1.00 45.63 ATOM 238 С 35 MSE 23.376 41.701 -1.554 1.00 41.91 ATOM 239 0 MSE 35 24.532 41.367 -1.824 1.00 42.73 ATOM 240 N ASP 36 22.367 41.533 -2.395 1.00 42.15 10 ATOM 241 CA ASP 36 22.593 40.898 -3.675 1.00 41.96 ATOM 242 CB ASP 36 21.264 40.633 -4.369 1.00 43.56 MOTA 243 CG ASP 36 39.947 21.446 -5.699 1.00 45.91 ATOM 244 OD1 ASP 36 21.821 40.652 -6.675 1.00 46.71 MOTA 245 OD2 ASP 36 21.232 38.707 -5.754 1.00 46.76 15 ATOM 246 С ASP 36 23.502 41.717 -4.578 1.00 41.03 ATOM 247 0 ASP 36 24.406 41.178 -5.217 1.00 40.61 MOTA 248 N ARG 37 23.257 43.021 -4.620 1.00 40.36 ATOM 249 24.034 CA ARG 37 43.937 -5.446 1.00 39.76 MOTA 250 23.498 CB ARG 37 45.355 -5.283 1.00 39.56 20 ATOM 251 22.252 CG ARG 37 45.621 -6.112 1.00 40.04 ATOM 252 CD ARG 37 21.465 46.815 -5.590 1.00 41.19 ATOM 253 NE ARG 37 22.278 48.002 -5.307 1.00 41.70 ATOM 254 CZARG 37 22.938 48.711 -6.221 1.00 42.38 ATOM 255 NH1 ARG 37 22.899 48.362 -7.505 1.00 42.59 25 ATOM 256 NH2 ARG 37 23.615 49.792 -5.851 1.00 41.94 ATOM 257 C ARG 37 25.524 43.908 -5.152 1.00 39.94 MOTA 258 0 ARG 37 26.335 43.732 -6.059 1.00 40.39 MOTA 259 N GLY 38 25.893 44.076 -3.890 1.00 39.94 MOTA 260 CA GLY 38 27.305 44.063 -3.5571.00 39.60 ATOM 261 С GLY 38 27.933 42.689 -3.699 1.00 39.23 MOTA 262 0 GLY 38 29.163 42.546 -3.695 1.00 39.59 MOTA 263 LEU N 39 27.087 41.677 -3.834 1.00 38.16 ATOM 264 CA LEU 39 27.545 40.307 -3.960 1.00 37.65 MOTA 265 CB LEU 39 26.428 39.376 -3.495 1.00 35.76 35 ATOM 266 CG LEU 39 26.821 38.029 -2.900 1.00 34.52 ATOM 267 CD1 LEU 39 27.899 38.248 -1.857 1.00 33.52 ATOM 268 CD2 LEU 39 25.606 37.348 -2.284 1.00 32.44 MOTA 269 С LEU 39 27.931 39.989 -5.407 1.00 39.20 ATOM 270 0 LEU 39 28.594 38.980 -5.681 1.00 39.88 40 ATOM 271 ARG N 40 27.537 40.866 -6.329 1.00 40.51 ATOM CA 272 ARG 40 27.809 40.656 1.00 41.77 -7.751ATOM 273 CB ARG 40 26.494 40.686 -8.526 1.00 42.80 MOTA 274 CG **ARG** 40 25.735 39.392 -8.377 1.00 44.75 MOTA 275 CD ARG 40 24.257 39.551 -8.636 1.00 46.47 ATOM 276 NE ARG 40 23.639 38.239 -8.797 1.00 48.71 ATOM 277 CZARG 40 22.331 38.034 -8.890 1.00 50.01 ATOM 278 NH1 ARG 40 21.497 39.064 -8.831 1.00 51.43 ATOM 279 NH2 ARG 40 21.861 36.804 -9.060 1.00 50.46 ATOM 280 С ARG 40 28.802 41.623 -8.374 1.00 42.16 ATOM 281 0 ARG -8.097 40 28.783 42.819 1.00 42.42 ATOM 282 N LEU -9.247 41 29.650 41.087 1.00 42.03 MOTA 283 CA LEU 41 30.689 41.864 -9.902 1.00 42.00 ATOM 284 CB LEU 41 31.307 41.044 -11.041 1.00 42.00 ATOM 285 CG LEU 41 32.577 41.650 -11.660 1.00 41.78 ATOM 286 CD1 LEU 41 33.638 41.836 -10.583 1.00.40.20 ATOM 287 CD2 LEU 41 33.087 40.747 -12.773 1.00 41.95 ATOM 288 C LEU 41 30.278 43.237 -10.428 1.00 42.57 MOTA 289 0 LEU 41 30.920 44.243 -10.110 1.00 42.64 MOTA 290 N GLU 42 29.219 43.292 -11.227 1.00 43.03

Figure 4 9/63

	- 7	9 • •				,				
	ATOM	291	CA	GLU	42	28.788	44.562	-11.803	1.00	44.63
	MOTA	292	СВ	GLU	42	27.494		-12.607		43.97
	MOTA	293	CG	GLU	42	26.436	43.533	-11.922	1.00	44.02
	ATOM	294	CD	GLU	42	26.546	42.057	-12.248	1.00	43.71
5	ATOM	295	OE1	GLU	42	27.673	41.527	-12.245	1.00	45.13
	MOTA	296	OE2	GLU	42	25.504	41.416	-12.496	1.00	43.50
	ATOM	297	С	GLU	42	28.616	45.714	-10.805	1.00	46.21
	MOTA	298	0	GLU	42	28.963	46.860	-11.103	1.00	46.22
	MOTA	299	N	THR	43	28.105	45.413	-9.616	1.00	47.90
10	MOTA	300	CA ·	THR	43	27.873	46.443	-8.608	1.00	49.10
	MOTA	301	CB	THR	43	26.370	46.533	-8.285	1.00	48.63
	MOTA	302	OG1	THR	43	25.772	45.242	-8.465	1.00	47.66
	MOTA	303	CG2	THR	43	25.679	47.531	-9.192	1.00	48.90
	MOTA	304	С	THR	43	28.629	46.226	-7.302	1.00	50.94
15	MOTA	305	0	THR	43	28.481	47.008	-6.362	1.00	51.52
	MOTA	306	N	HIS	44	29.456	45.185	-7.249		52.58
	MOTA	307	CA	HIS	44	30.204	44.854	-6.037		53.89
	MOTA	308	CB	HIS	44	31.210	43.727	-6.311		54.68
	MOTA	309	CG	HIS	44	32.552	44.208	-6.775		55.77
20	MOTA	310		HIS	44	33.748	44.257	-6.139		55.82
	MOTA	311		HIS	44	32.758	44.772	-8.017		56.36
	ATOM	312		HIS	44	34.020	45.146	-8.125		56.30
	ATOM	313		HIS	44	34.643	44.845	-6.999		56.06
25	ATOM	314	C	HIS	44	30.950	46.013	-5.398		54.87
25	ATOM	315	0	HIS	44	30.823	46.254	-4.199		55.06
	MOTA	316	N	GLU	45	31.724	46.732	-6.203		56.25
	MOTA MOTA	317 318	CA CB	GLU	45 45	32.540 33.618	47.826	-5.703		57.17 59.35
	ATOM	319	CG	GLU	45	33.016	48.180 49.127	-6.721 -7.800		61.61
30	ATOM	320	CD	GLU	45	34.107	50.279	-7.985		63.07
50	ATOM	321		GLU	45	35.228	50.038	-8.487		63.72
	ATOM	322		GLU	45	33.747	51.420	-7.613		64.00
	ATOM	323	c	GLU	45	31.762	49.074	-5.356		56.66
	ATOM	324	ō	GLU	45	32.295	49.985	-4.732		56.54
35	ATOM	325	N	GLU	46	30.508	49.135	-5.772		56.24
	MOTA	326	CA	GLU	46	29.708	50.306	-5.456		56.37
	MOTA	327	СВ	GLU	46	29.542	51.157	-6.704	1.00	57.92
	ATOM	328	CG	GLU	46	30.881	51.645	-7.212	1.00	60.77
	ATOM	329	CD	GLU	46	30.782	52.400	-8.515	1.00	62.28
40	MOTA	330		GLU	46	30.566	51.762	-9.571		62.25
	ATOM	331		GLU	46	30.914	53.641	-8.474		63.95
	MOTA		С		46		49.891			
	MOTA	333	0	GLU	46	27.309	50.123	-5.457		55.75
	MOTA	334	N	ALA	47	28.440	49.264	-3.704		53.89
45	MOTA	335	CA	ALA	47	27.273	48.783	-2.987		51.80
	MOTA	336	CB	ALA	47	27.140	47.280	-3.159		52.36
	MOTA	337	C	ALA	47	27.470	49.111	-1.524		49.98
	ATOM	338	0	ALA	47	28.448	48.664	-0.923		50.36
	ATOM	339	N	SER	48	26.553	49.894	-0.960		47.18
50	ATOM	340	CA	SER	48	26.630	50.267	0.444		44.70
	ATOM	341	CB	SER	48	25.299	50.860	0.897		46.13
	ATOM	342	OG	SER	48	24.243	49.927	0.720		47.87
	MOTA MOTA	343	C O	SER SER	48 48	26.965	49.041	1.287		42.45
55	MOTA	344 345	N	VAL	48 49	27.841 26.261	49.082 47.946	2.147 1.037		42.01
"	MOTA	345	CA	VAL	49	26.201	46.713	1.762		38.96
	ATOM	347	CB	VAL	49	25.231	45.849	1.875		38.62
	ATOM	348		VAL	49	25.496	44.625	2.740		38.40
	ATOM	349		VAL	49	24.102	46.672	2.472		37.16

	ATOM	350	С	VAL	49	27.572	45.997	0.929	1.00 37.97
	ATOM	351	0	VAL	49	27.266	45.474	-0.137	1.00 38.42
	MOTA	352	N	LYS	50	28.810	45.982	1.422	1.00 36.51
	MOTA	353	CA	LYS	50	29.937	45.385	0.703	1.00 34.95
5	ATOM	354	СB	LYS	50	31.250	45.843	1.334	1.00 35.51
	MOTA	355	CG	LYS,	50	31.574	47.322	1.091	1.00 36.68
	MOTA	356	CD	LYS	50	30.676	48.249	1.913	1.00 39.05
	ATOM	357	CE	LYS	50	30.865	48.018	3.419	1.00 39.54
	MOTA	358	NZ	LYS	50	32.316	48.157	3.792	1.00 40.04
10	ATOM	359	C	LYS	50	30.012	43.879	0.482	1.00 33.72
	ATOM	360	ō	LYS	50	30.845	43.421	-0.293	1.00 33.72
	ATOM	361	N	MSE	51	29.171	43.100	1.147	
	ATOM	362	CA	MSE	51	29.209	41.647	0.967	1.00 33.02
	ATOM	363							1.00 32.08
15	ATOM		CB	MSE	51 51	28.291	41.257	-0.190	1.00 34.01
15		364	CG	MSE	51	26.867	41.744	-0.025	1.00 36.03
	ATOM	365	SE	MSE	51	26.148	41.146	1.529	1.00 40.73
	ATOM	366	CE	MSE	51	25.558	39.411	1.085	1.00 37.98
	ATOM	367	C	MSE	51	30.637	41.180	0.666	1.00 30.17
	ATOM	368	0	MSE	51	30.928	40.723	-0.437	
20	MOTA	369	N	LEU	52	31.518	41.295	1.650	1.00 28.96
	MOTA	370	CA	LEU	52	32.920	40.928	1.487	1.00 27.43
	MOTA	371	CB	LEU	52	33.769	41.839	2.357	1.00 28.05
	MOTA	372	CG	LEU	52	33.649	43.319	1.991	1.00 28.52
	MOTA	373		LEU	52	34.222	44.171	3.116	1.00 28.77
25	MOTA	374		LEU	52	34.369	43.583	0.658	1.00 28.75
	MOTA	375	С	LEU	52	33.273	39.482	1.803	1.00 26.61
	MOTA	376	0	LEU	52	32.997	38.995	2.893	1.00 25.26
	MOTA	377	N	PRO	53	33.911	38.774	0.844	1.00 27.04
	MOTA	378	CD	PRO	53	34.270	39.142	-0.540	1.00 25.69
30	MOTA	379	CA	PRO	53	34.264	37.375	1.133	1.00 27.99
	MOTA	380	CB	PRO	53	34.807	36.864	-0.204	1.00 26.92
	ATOM	381	CG	PRO	53	34.184	37.825	-1.241	1.00 25.77
	MOTA	382	С	PRO	53	35.314	37.361	2.239	1.00 28.40
	ATOM	383	0	PRO	53	36.152	38.271	2.317	1.00 28.36
35	MOTA	384	N	THR	54	35.255	36.329	3.080	1.00 29.46
	ATOM	385	CA	THR	54	36.149	36.142	4.226	1.00 30.53
	MOTA	386	CB	THR	54	35.317	35.951	5.502	1.00 29.48
	ATOM	387	OG1	THR	54	34.589	34.711	5.418	1.00 27.97
	MOTA	388	CG2	THR	54	34.324	37.084	5.659	1.00 29.42
40	MOTA	389	С	THR	54	. 37.018	34.884	4.071	1.00 31.60
	MOTA	390	0	THR	54	37.657	34.423	5.025	1.00 32.25
	MOTA	391	N	TYR	55	37.017	34.311		
	ATOM	392	CA	TYR	55	37.763	33.089	2.615	1.00 34.41
	ATOM	393	СВ	TYR	55	39.249	33.421	2.405	1.00 33.07
45	MOTA	394	CG	TYR	55	39.458	34.175	1.101	1.00 32.58
	ATOM	395		TYR	55	39.518	35.571	1.067	1.00 32.44
	ATOM	396		TYR	55	39.572	36.263	-0.157	1.00 32.44
	ATOM	397		TYR	55	39.467	33.492	-0.117	1.00 32.40
	ATOM	398		TYR	55	39.516	34.172	-1.335	1.00 31.83
50	MOTA	399	CZ	TYR	55	39.566			
30	MOTA	400	OH	TYR	55		35.548	-1.351	1.00 32.18
						39.575	36.200	-2.568	1.00 32.67
	ATOM	401	C	TYR	55 55	37.559	31.956	3.637	1.00 36.06
	MOTA	402	0	TYR	55	38.314	30.991	3.665	1.00 37.61
22	MOTA	403	N	VAL	56	36.518	32.059	4.459	1.00 38.03
55	MOTA	404	CA	VAL	56	36.199	31.006	5.429	1.00.39.87
	ATOM	405	CB	VAL	56	35.483	31.586	6.663	1.00 38.75
	ATOM			VAL	56	35.202	30.492	7.669	1.00 38.10
	MOTA	407		VAL	56	36.336	32.660	7.285	1.00 38.76
	MOTA	408	С	VAL	56	35.249	30.032	4.706	1.00 42.20

)	T75					11/63			
	FI	igure 4				•			
	ATOM	409	0	VAL	56	34.098	30.376	4.418	1.00 42.02
	MOTA	410	N	ARG	57	35.718	28.821	4.414	1.00 44.49
	MOTA	411	CA	ARG	57	34.896	27.860	3.676	1.00 47.07
_	ATOM	412	CB	ARG	57	35.688	27.288	2.499	1.00 48.02
5	ATOM	413	CG	ARG	57	36.209	28.310	1.508	1.00 49.08
	ATOM	414	CD	ARG	57	36.558	27.626	0.185	1.00 49.69
	MOTA	415	NE	ARG	57	37.239	28.528	-0.737	1.00 49.50
	MOTA	416	CZ	ARG	57	38.367	29.167	-0.447	1.00 48.83
10	ATOM	417 418	NH1		57 57	38.938 38.915	28.997 29.978	0.745	1.00 48.13 1.00 47.51
10	MOTA MOTA	419	NH2 C	ARG	57 57	34.311		-1.345 4.449	1.00 47.51
	MOTA	420	0	ARG	5 <i>7</i>	34.810	26.695 26.310	5.500	1.00 48.65
	MOTA	421	N	SER	5 <i>7</i> 58	33.256	26.310	3.891	1.00 51.15
	ATOM	422	CA	SER	58	32.589	24.973	4.501	1.00 54.78
15	ATOM	423	CB	SER	58	31.204	24.793	3.882	1.00 54.76
••	ATOM	424	OG	SER	58	31.258	24.980	2.475	1.00 54.39
	ATOM	425	c	SER	58	33.419	23.708	4.295	1.00 57.39
	ATOM	426	Ō	SER	58	33.097	22.645	4.823	1.00 57.47
	ATOM	427	N	THR	59	34.484	23.840	3.510	1.00 60.71
20	MOTA	428	CA	THR	59	35.392	22.740	3.216	1.00 64.02
	MOTA	429	CB	THR	59	35.886	22.823	1.758	1.00 63.73
	MOTA	430	OG1	THR	59	36.637	24.029	1.570	1.00 63.22
	ATOM	431	CG2	THR	59	34.704	22.843	0.801	1.00 63.87
	MOTA	432	С	THR	59	36.571	22.880	4.176	1.00 67.10
25	MOTA	433	0	THR	59	37.554	23.562	3.884	1.00 67.44
	MOTA	434	N	PRO	60	36.480	22.238	5.349	1.00 69.75
	ATOM	435	CD	PRO	60	35.366	21.412	5.854	1.00 70.63
	MOTA	436	CA	PRO	60	37.556	22.320	6.337	1.00 71.72
20	MOTA	437	CB	PRO	60	36.841	21.982	7.636	1.00 71.72
30	MOTA MOTA	438 439	CG C	PRO PRO	60 60	35.909 38.709	20.881 21.370	7.182 6.056	1.00 71.50 1.00 73.48
	ATOM	440	0	PRO	60	39.522	21.609	5.158	1.00 73.48
	ATOM	441	N	GLU	61	38.754	20.287	6.830	1.00 75.48
	ATOM	442	CA	GLU	61	39.808	19.283	6.731	1.00 76.98
35	ATOM	443	СВ	GLU	61	39.969	18.788	5.289	1.00 78.43
	ATOM	444	CG	GLU	61	40.806	17.516	5.161	1.00 80.68
	MOTA	445	CD	GLU	61	42.177	17.744	4.530	1.00 81.88
	MOTA	446	OE1	GLU	61	42.993	18.498	5.100	1.00 82.28
	MOTA	447	OE2	GLU	61	42.442	17.156	3.458	1.00 82.68
40	MOTA	448	С	GLU	61	41.083	19.969	7.194	1.00 77.00
	ATOM	449	0	GLU	61	41.942	20.327	6.389	1.00 77.10
	ATOM	450	N	GLY	62	41.177	20.181	8.502	1.00 76.85
	ATOM	451	CA	GLY	62	42.344	20.826	9.069	1.00 76.72
	ATOM	452	C	GLY	62	42.415	20.539	10.555	1.00 76.65
45	ATOM	453	0	GLY	62	42.507	19.380	10.969	1.00 76.79
	MOTA	454	N	SER	63	42.361	21.594	11.362	1.00 76.25
	MOTA	455 456	CA	SER	63	42.417	21.458	12.814	1.00 75.06
	ATOM	456 457	CB OG	SER	63 63	41.401 41.350	20.413 20.363	13.300 14.718	1.00 75.92 1.00 76.69
50	ATOM ATOM	458	C	SER SER	63	43.818	21.062	13.259	1.00 73.60
	ATOM	459	o	SER	63	44.090	19.899	13.561	1.00 73.00
	ATOM	460	N	GLU	64	44.705	22.045	13.280	1.00 71.83
	ATOM	461	CA	GLU	64	46.071	21.819	13.703	1.00 70.12
	ATOM	462	СВ	GLU	64	46.996	22.824	13.703	1.00 71.42
55	ATOM	463	CG	GLU	64	48.464	22.726	13.417	1.00 73.74
	ATOM	464	CD	GLU	64	49.014	21.309	13.342	1.00 74.84
	ATOM	465		GLU	64	48.623	20.466	14.187	1.00 75.26
	ATOM	466		GLU	64	49.837	21.041	12.434	1.00 75.45
	MOTA	467	С	GLU	64	46.136	21.971	15.221	1.00 67.97

)	Fig	gure 4			·	12/63				
	MOTA	468	0	GLŲ	64	46.775	22.886	15.734	1.00	68.33
	MOTA	469	N	VAL	65	45.448	21.076	15.927		65.13
	ATOM	470	CA	VAL	65	45.400	21.067	17.391	1.00	62.32
	ATOM	471	CB	VAL	65	45.335	19.621	17.918	1.00	62.48
5	MOTA	472		VAL	65	45.487	19.607	19.430	1.00	62.45
	MOTA	473		VAL	65	44.011	18.975	17.508	1.00	62.79
	ATOM	474	C	VAL	65	46.587	21.752	18.055	1.00	60.42
	ATOM	475	0	VAL	65	47.703	21.708	17.540	1.00	60.54
	ATOM	476	N	GLY	66	46.354	22.386	19.200		58.26
10	ATOM	477	CA	GLY	66	47.454	23.043	19.888		55.67
	ATOM	478	C	GLY	66	47.081	24.174	20.823		53.42
	MOTA	479	0	GLY	66	46.153	24.052	21.615		54.08
	MOTA MOTA	480 481	N CA	ASP ASP	67 67	47.832	25.267	20.739		51.06
15	MOTA	482	CB	ASP	67	47.614	26.460	21.549		48.67
1.5	ATOM	483	CG	ASP	67	48.617 48.381	26.531 25.462	22.703		49.14
	ATOM	484		ASP	67	48.201	24.287	23.751 23.365	1.00	49.34 49.37
	ATOM	485		ASP	67	48.386	25.791	24.956		49.62
	ATOM	486	c	ASP	67	47.832	27.634	20.612		47.26
20	ATOM	487	0	ASP	67	48.786	27.635	19.827		47.44
	MOTA	488	N	PHE	68	46.955	28.632	20.678		45.41
	MOTA	489	CA	PHE	68	47.075	29.778	19.785		43.60
	MOTA	490	СB	PHE	68	46.031	29.682	18.667	1.00	41.17
	ATOM	491	CG	PHE	68	46.032	28.361	17.946	1.00	39.29
25	MOTA	492		PHE	68	45.621	27.199	18.592	1.00	38.55
	ATOM	493		PHE	68	46.468	28.272	16.623		38.76
	ATOM	494		PHE	68	45.647	25.966	17.934	1.00	38.24
	ATOM	495		PHE	68	46.498	27.050	15.959		37.31
30	ATOM ATOM	496 497	CZ C	PHE	68 .	46.086	25.893	16.619	1.00	37.76
30	ATOM	498	0	PHE	68 68	46.918 46.395	31.096	20.514		43.33
	ATOM	499	N	LEU	69	47.386	31.147 32.166	21.621 19.889		43.27 43.51
	ATOM	500	CA	LEU	69	47.274	33.475	20.497		44.73
	ATOM	501	CB	LEU	69	48.625	34.197	20.518		45.26
35	ATOM	502	CG	LEU	69	48.781	34.949	21.848		46.33
	MOTA	503	CD1	LEU	69	49.166	33.928	22.932	1.00	46.09
	ATOM	504		LEU	69	49.811	36.072	21.748	1.00	45.48
	MOTA	505	С	LEU	69	46.275	34.278	19.681	1.00	45.37
	MOTA	506	0	LEU	69	46.448	34.451	18.470		45.62
40	ATOM	507	N	SER	70	45.228	34.758	20.351		45.75
	ATOM	508	CA	SER	70	44.177	35.528	19.697		44.98
	ATOM ATOM	509 510	CB	SER	70 70	42.794	34.984	20.074		44.61
	ATOM	510 511	OG C	SER SER	70 70	42.697	33.589	19.844		44.25
45	ATOM	512	Ö	SER	70	44.250 44.451	36.978 37.289	20.109		44.92
15	ATOM	513	N	LEU	71	44.451	37.269	21.277 19.130		44.67 45.85
	ATOM	514	CA	LEU	71	44.093	39.294	19.130		47.27
	ATOM	515	CB	LEU	71	45.064	40.000	18.421		47.71
	ATOM	516	CG	LEU	71	46.552	39.942	18.787		49.06
50	ATOM	517		LEU	71	47.008	38.497	19.039		49.69
	ATOM	518	CD2	LEU	71	47.348	40.572	17.656		49.35
	MOTA	519	С	LEU	71	42.668	39.752	19.082		47.94
	ATOM	520	0	LEU	71	41.873	38.997	18.499	1.00	48.06
	MOTA	521	N	ASP	72	42.333	40.976	19.479		48.20
55	MOTA	522	CA	ASP	72	40.985	41.451	19.244		.48.67
	ATOM	523	CB	ASP	72	40.043	40.807	20.262		48.71
	MOTA	524	CG	ASP	72	38.668	41.420	20.243		49.13
	MOTA	525 526	OD1		72	38.090	41.549	19.144		49.57
	MOTA	526	OD2	ASP	72	38.168	41.777	21.331	1.00	50.11

13/63 Figure 4 19.258 1.00 48.98 42.962 ATOM 527 C **ASP** 72 40.819 20.187 - 1.00 48.82 43.530 MOTA 528 **ASP** 72 40.247 1.00 49.73 18.214 ATOM 529 LEU 73 41.312 43.613 N 45.060 18.117 1.00 51.48 ATOM 41.193 530 CA LEU 73 1.00 50.80 42.199 45.603 17.096 ATOM 531 CB LEU 73 42.160 47.096 16.774 1.00 50.07 MOTA 532 CG LEU 73 1.00 50.10 MOTA 533 CD1 LEU 73 42.358 47.902 18.045 1.00 49.97 43.223 47.421 15.738 MOTA 534 CD2 LEU 73 1.00 52.93 39.764 45.392 17.687 MOTA 535 C LEU 73 LEU 73 38.909 44.507 17.628 1.00 52.38 ATOM 536 0 74 39.504 46.665 17.401 1.00 54.88 MOTA 537 N GLY 1.00 56.88 MOTA 538 CA GLY 74 38.177 47.068 16.983 MOTA 539 C GLY 74 37.285 47.420 18.148 1.00 58.48 MOTA 540 0 GLY 74 36.476 48.348 18.071 1.00 58.31 46.668 19.233 1.00 60.27 15 ATOM 541 N GLY 75 37.428 46.925 20.410 1.00 62.46 ATOM 542 CA GLY 75 36.621 37.020 48.230 21.074 1.00 63.75 **ATOM** 543 С GLY 75 1.00 64.06 ATOM 544 0 GLY 75 37.824 49,005 20.536 1.00 64.50 36.452 48.481 22.248 MOTA 545 N THR 76 1.00 65.42 36.759 49.697 22.991 ATOM 546 CA THR 76 1.00 66.28 35.905 49.776 24.266 ATOM 547 CB THR 76 36.361 48.791 25.203 1.00 67.43 ATOM 548 OG1 THR 76 1.00 66.14 ATOM 549 CG2 THR 76 34.425 49.505 23.938 1.00 65.25 76 38.238 49.651 23.385 ATOM 550 С THR 25 ATOM THR 76 39.005 50.595 23.152 1.00 65.01 551 0 1.00 64.74 48.528 23.980 ATOM 552 N ASN 77 38.622 1.00 64.17 ASN 77 39.987 48.309 24.412 MOTA 553 CA 1.00 65.44 40.015 47.966 25.903 MOTA 554 CB ASN 77 49.027 26.765 1.00 66.47 39.346 555 ASN 77 ATOM CG 26.663 1.00 67.13 39.656 50.219 30 556 OD1 ASN 77 ATOM 48.596 1.00 66.65 ND2 ASN 77 38.431 27.629 MOTA 557 1.00 63.19 40.547 47.149 23.603 MOTA 558 C ASN 77 ASN 77 39.795 46.303 23.120 1.00 62.58 559 0 MOTA 1.00 62.14 ATOM 560 N PHE 78 41.866 47.123 23.446 42.526 46.051 22.708 1.00 61.12 35 ATOM CA PHE 78 561 1.00 61.81 MOTA 562 CB PHE 78 43.887 46.514 22.172 1.00 62.50 PHE 78 44.684 45.420 21.516 ATOM 563 CG 1.00 62.81 PHE 78 44.347 44.956 20.245 ATOM 564 CD1 45.741 1.00 62.99 CD2 PHE 78 44.818 22.189 MOTA 565 1.00 62.72 PHE 78 45.051 43.899 19.655 ATOM 566 CE1 1.00 63.38 ATOM 567 CE2 PHE 78 46.450 43.763 21.607 1.00 63.01 43.301 PHE 78 46.103 20.336 MOTA 568 CZ 1.00 60.09 MOTA 569 PHE 78 42.732 44.893 23.668 С 1.00 60.08 MOTA 570 0 PHE 78 43.065 45.100 24.834 1.00 58.63 42.528 43.675 23.184 45 MOTA 571 N ARG 79 1.00 57.40 24.025 ATOM 572 CA ARG 79 42.706 42.504 1.00 57.06 24.280 41.367 41.819 ARG 79 ATOM 573 CB 1.00 57.49 41.481 40.637 25.222 574 ARG 79 ATOM CG 40.221 39.819 25.219 1.00 57.47 575 CD ARG 79 ATOM 25.504 1.00 57.16 576 ARG 79 39.062 40.646 50 MOTA NE 40.266 25.267 1.00 57.69 37.818 ATOM 577 CZ ARG 79 39.071 24.738 1.00 57.38 37.586 578 ARG 79 MOTA NH1 1.00 58.45 79 36.812 41.080 25.555 579 ARG MOTA NH2 43.663 41.522 23.368 1.00 56.71 580 С ARG 79 MOTA 1.00 57.24 55 ATOM 581 0 ARG 79 43.926 41.619 22.170 1.00 55.50 44.180 40.590 24.167 MOTA 582 N VAL 80 39.557 23.724 1.00 54.27 VAL 80 45.114 MOTA 583 CA 39.947 23.996 1.00 54.31 VAL 80 46.576 MOTA 584 CB MOTA 585 CG1 VAL 80 47.491 38.779 23.674 1.00 54.49

	_								
	MOTA	586	CG2	VAL	80	46.960	41.158	23.166	1.00 54.39
	ATOM	587	С	VAL	80	44.806	38.327	24.555	1.00 54.04
	ATOM	588	0	VAL	80	44.517	38.447	25.738	1.00 53.31
	MOTA	589	N	MSE	81	44.881	37.144	23.957	1.00 54.52
5	MOTA	590	CA	MSE	81	44.568	35.935	24.703	1.00 54.52
_	ATOM	591	CB						
				MSE	81	43.053	35.804	24.828	1.00 57.08
	MOTA	592	CG	MSE	81	42.300	36.025	23.520	1.00 60.39
	MOTA	593	SE	MSE	81	40.534	36.437	23.792	1.00 65.62
	MOTA	594	CE	MSE	81	39.999	34.926	24.679	1.00 62.03
10	MOTA	595	С	MSE	81	45.142	34.645	24.146	1.00 53.56
	MOTA	596	0	MSE	81	45.598	34.582	23.007	1.00 52.99
	ATOM	597	N	LEU	82	45.096	33.611	24.978	1.00 52.63
	MOTA	598	CA	LEU	82	45.602	32.292	24.638	1.00 51.86
	ATOM	599	CB	LEU	82	46.660	31.863	25.665	1.00 52.75
15	MOTA	600	CG	LEU	82	47.261	30.455	25.542	1.00 53.22
	ATOM	601		LEU	82	48.562	30.521	24.736	1.00 53.22
	ATOM	602		LEU	82	47.523			1.00 52.42
	ATOM	603	C	LEU			29.882	26.937	
	ATOM	604	Ö		82	44.461	31.286	24.650	1.00 51.18
20				LEU	82	43.718	31.186	25.632	1.00 51.20
20	ATOM	605	N	VAL	83	44.333	30.535	23.563	1.00 50.58
	MOTA	606	CA	VAL	83	43.292	29.522	23.448	1.00 50.00
	MOTA	607	CB	VAL	83	42.274	29.887	22.362	1.00 49.63
	MOTA	608		VAL	83	41.213	28.794	22.262	1.00 49.26
	ATOM	609	CG2	VAL	83	41.660	31.244	22.670	1.00 48.32
25	ATOM	610	С	VAL	83	43.914	28.187	23.080	1.00 50.53
	MOTA	611	0	VAL .	83	44.759	28.122	22.192	1.00 50.93
	MOTA	612	N	LYS	84	43.496	27.127	23.763	1.00 51.05
	MOTA	613	CA	LYS	84	44.017	25.788	23.504	1.00 51.89
	ATOM	614	CB	LYS	84	44.338	25.061	24.826	1.00 51.79
30	MOTA	615	CG	LYS	84	44.716	23.581	24.659	1.00 51.85
	ATOM	616	CD	LYS	84	44.951	22.870	26.009	1.00 51.58
	ATOM	617	CE	LYS	84	46.429	22.848	26.422	1.00 50.92
	MOTA	618	NZ	LYS	84	47.041	24.198	26.592	1.00 50.33
	ATOM	619	С	LYS	84	42.997	24.983	22.708	1.00 52.68
35	ATOM	620	0	LYS	84	42.115	24.327	23.282	1.00 53.00
	MOTA	621	N	VAL	85	43.124	25.038	21.383	1.00 52.91
	MOTA	622	CA	VAL	85	42.224	24.319	20.488	1.00 52.70
	ATOM	623	CB	VAL	85	42.399	24.805	19.048	1.00 51.79
	ATOM	624	CG1	VAL	85	41.302	24.232	18.176	1.00 52.19
40	ATOM	625	CG2	VAL	85	42.389	26.319	19.017	1.00 52.19
	ATOM	626	C	VAL	85	42.525	22.823	20.548	1.00 51.59
	ATOM	627	Ö	VAL	85	43.637	22.389		
	ATOM	628	N		_				1.00 53.87
	ATOM	629		GLY	86	41.534	22.037	20.952	1.00 54.38
45			CA	GLY	86	41.726	20.603	21.053	1.00 55.35
43	ATOM	630	C	GLY	86	40.901	19.810	20.060	1.00 56.21
	ATOM	631	0	GLY	86	40.136	20.370	19.278	1.00 55.63
	MOTA	632	N	GLU	87	41.050	18.493	20.106	1.00 57.81
	MOTA	633	CA	GLU	87	40.339	17.611	19.195	1.00 59.64
	ATOM	634	CB	GLU	87	41.290	16.529	18.673	1.00 60.88
50	ATOM	635	CG	GLU	87	40.680	15.648	17.611	1.00 62.26
	MOTA	636	CD	GLU	87	40.215	16.457	16.423	1.00 63.21
	MOTA	637	OE1	GLU	87	41.072	16.931	15.644	1.00 63.20
	MOTA	638	OE2	GLU	87	38.989	16.631	16.278	1.00 64.58
	ATOM	639	С	GLU	87	39.133	16.959	19.859	1.00 60.12
55	ATOM	640	0	GLU	87	39.271	16.187	20.810	1.00.60.00
	ATOM	641	N	GLY	88	37.948	17.273	19.347	1.00 60.93
	ATOM	642	CA	GLY	88	36.735	16.707	19.902	1.00 61.61
	ATOM	643	C	GLY	88	35.840	16.120	18.833	1.00 62.11
	ATOM	644	Ō	GLY	88	36.038	16.346	17.638	1.00 61.67
			-			JJ. JJ.	~~. ~ ~ ~	エ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	A

)	Fi	gure 4				15/63			
	ATOM	645	N	GLU	89	34.845	15.363	19.274	1.00 62.79
	ATOM	646	CA	GLU	89	33.898	14.724	18.372	1.00 63.90
	ATOM	647	CB	GLU	89	32.782	14.089	19.203	1.00 63.50
-	MOTA	648	CG	GLU	89	33.304	13.137	20.275	1.00 62.64
5	ATOM	649	CD	GLU	89	32.214	12.623	21.203	1.00 62.46
	MOTA	650		GLU	89	32.510	11.728	22.019	1.00 62.39
	MOTA	651	OE2		89	31.064	13.110	21.128	1.00 62.11
	ATOM ATOM	652	С	GLU	89	33.312	15.688	17.325	1.00 65.16
10	ATOM	653 654	N	GLU	89	32.975	16.837	17.634	1.00 64.98
••	ATOM	655	CA -		90 . 90	33.204	15.205	16.087	1.00 66.03
	ATOM	656	CB	GLU	90	32.667	15.977	14.958	1.00 66.67
	ATOM	657	CG	GLU	90	31.135 30.495	15.974 14.620	14.978	1.00 67.21
•	ATOM	658	CD	GLU	90	28.986	14.620	14.717 14.869	1.00 66.83
15	MOTA	659		GLU	90	28.308	15.273	14.009	1.00 67.49 1.00 67. 1 7
	ATOM	660	OE2		90	28.480	14.090	15.858	1.00 66.84
	ATOM	661	С	GLU	90	33.149	17.421	14.871	1.00 66.91
	MOTA	6 62	0	GLU	90	32.623	18.212	14.080	1.00 66.74
	ATOM	663	N	GLY	91	34.149	17.769	15.671	1.00 67.05
20	ATOM	664	CA	GLY	91	34.649	19.126	15.628	1.00 67.38
	MOTA	665	C	GLY	91	36.036	19.339	16.201	1.00 67.42
	ATOM ATOM	666	0	GLY	91	37.025	18.797	15.708	1.00 68.24
	ATOM	667 668	N CA	GLN GLN	92	36.094	20.154	17.246	1.00 66.86
25	ATOM	669	CB	GLN	92 92	37.335	20.492	17.929	1.00 65.93
	ATOM	670	CG	GLN	92	38.395 38.007	20.968	16.924	1.00 66.17
	ATOM	671	CD	GLN	92	38.564	22.215 22.236	16.159 14.750	1.00 66.24 1.00 66.57
	MOTA	672		GLN	92	38.432	21.260	14.007	1.00 66.37
	ATOM	673	NE2	GLN	92	39.177	23.356	14.367	1.00 66.54
30	ATOM	674	С	GLN	92	36.999	21.605	18.920	1.00 65.21
	ATOM	675	0	GLN	92	36.625	22.721	18.530	1.00 65.44
	MOTA	676	N	TRP	93	37.111	21.278	20204	1.00 63.62
	ATOM ATOM	677	CA	TRP	93	36.820	22.227	21.261	1.00 61.61
35	ATOM	678 679	CB CG	TRP TRP	93	36.859	21.540	22.626	1.00 62.77
•	MOTA	680		TRP	93 93	38.050 39.213	20.641	22.857	1.00 63.86
	ATOM	681		TRP	93	40.026	20.943 19.787	23.637 23.645	1.00 64.17 1.00 64.21
	ATOM	682	CE3	TRP	93	39.647	22.080	24.336	1.00 64.21
	ATOM	683	CD1	TRP	93	38.206	19.349	22.424	1.00 63.84
40	MOTA	684	NE1		93	39.387	18.830	22.897	1.00 63.69
	MOTA	685		TRP	93	41.246	19.731	24.324	1.00 64.43
	ATOM	686		TRP	93	40.859	22.026	25.009	1.00 64.63
	ATOM ATOM	687 688	CH2	TRP	93	41.645	20.857	24.999	1.00 64.71
45	ATOM	689	0	TRP TRP	93 93	37.784	23.393	21.248	1.00 59.53
••	ATOM	690	N	SER	93 94	38.733 37.521	23.420	20.474	1.00 59.18
	ATOM	691	CA	SER	94	38.353	24.366 25.549	22.106	1.00 57.94
	ATOM	692	СВ	SER	94	37.880	26.615	22.207 21.219	1.00 56.46 1.00 56.58
	ATOM	693	OG	SER	94	36.504	26.899	21.213	1.00 56.78
50	ATOM	694	С	SER	94	38.185	26.050	23.624	1.00 55.56
	MOTA	695	0	SER	94	37.142	25.822	24.237	1.00 55.36
	MOTA	696	N	VAL	95	39.208	26.722	24.146	1.00 54.53
	MOTA	697	ÇA	VAL	95	39.152	27.248	25.504	1.00 53.17
55	ATOM	698	CB	VAL	95	39.511	26.183	26.549	1.00 52.17
55	ATOM	699	CG1		95 05	39.742	26.844	27.891	1.00 52.13
	ATOM ATOM	700 701	CG2 C	VAL VAL	95 95	38.396	25.172	26.666	1.00 51.73
	ATOM	701	0	VAL	95 95	40.099 41.268	28.399	25.719	1.00 52.74
	ATOM	703	N	LYS	96	39.587	28.315 29.469	25.357 26.318	1.00 53.14
					,,	39.301	49.407	20.318	1.00 52.63

	-								
	MOTA	704	CA	LYS	96	40.402	30.637	26.629	1.00 52.93
	ATOM	705	CB	LYS	96	39.513	31.849	26.932	1.00 53.25
	ATOM	706	CG	LYS	96	40.277	33.129	27.231	1.00 53.79
	MOTA	707	CD	LYS	96	39.910	33.706	28.595	1.00 54.80
5	MOTA	708	CE	LYS	96	38.427	34.102	28.682	1.00 55.69
	MOTA	709	NZ	LYS	96	38.027	35.162	27.696	1.00 55.59
		710	C	LYS	96	41.154	30.218	27.882	1.00 52.96
	ATOM	711	Ö	LYS	96	40.546	29.733	28.834	
	ATOM	712	N	THR	97	42.470	30.384		1.00 52.93
10	ATOM	713	CA	THR	97			27.886	1.00 53.38
10	ATOM	714	CB			43.253	29.980	29.050	1.00 53.93
	ATOM	715		THR	97	44.238	28.850	28.684	1.00 53.99
			OG1	THR	97	43.512	27.736	28.151	1.00 52.99
	MOTA	716	CG2	THR	97	44.998	28.394	29.918	1.00 55.29
	ATOM	717	С	THR	97	44.036	31.132	29.670	1.00 53.82
15	MOTA	718	0	THR	97	44.330	31.123	30.866	1.00 53.34
	MOTA	719	N	LYS	98	44.373	32.117	28.848	1.00 53.85
	MOTA	720	CA	LYS	98	45.115	33.276	29.315	1.00 54.60
	MOTA	721	CB	LYS	98	46.627	33.096	29.087	1.00 55.51
	MOTA	722	CG	LYS	98	47.220	31.809	29.652	1.00 56.78
20	MOTA	723	CD	LYS	98	47.074	31.733	31.162	1.00 58.23
	ATOM	724	CE	LYS	98	47.553	30.389	31.713	1.00 58.82
	ATOM	725	NZ	LYS	98	47.404	30.320	33.201	1.00 58.98
	ATOM	726	С	LYS	98	44.644	34.479	28.518	1.00 54.54
	MOTA	727	0	LYS	98	44.323	34.360	27.329	1.00 54.79
25	ATOM	728	N	HIS	99	44.590	35.632	29.173	1.00 54.03
	MOTA	729	CA	HIS	99	44.193	36.853	28.496	1.00 54.03
	MOTA	730	CB	HIS	99	42.720	36.793	28.052	1.00 55.02
	MOTA	731	CG	HIS	99	41.732	36.872	29.172	1.00 55.71
	MOTA	732	CD2	HIS	99	40.682	37.704	29.373	1.00 55.66
30	ATOM	733	ND1	HIS	99	41.739	35.999	30.239	1.00 56.19
	MOTA	734	CE1	HIS	99	40.736	36.288	31.049	1.00 56.30
	ATOM	735	NE2	HIS	99	40.080	37.319	30.546	1.00 56.72
	ATOM	736	С	HIS	99	44.445	38.082	29.351	1.00 53.46
	ATOM	737	0	HIS	99	44.526	38.007	30.577	1.00 53.47
35	MOTA	738	N	GLN	100	44.583	39.214	28.683	1.00 52.94
	MOTA	739	CA	GLN	100	44.841	40.468	29.349	1.00 53.34
	MOTA	740	CB	GLN	100	46.354	40.649	29.513	1.00 53.39
	ATOM	741	CG	GLN	100	46.790	42.001	30.055	1.00 54.26
	ATOM	742	CD	GLN	100	46.168	42.345	31.394	1.00 54.43
40	ATOM	743	OE1	GLN	100	46.349	41.629	32.384	1.00 55.27
	ATOM	744	NE2	GLN	100	45.433	43.452	31.432	1.00 53.60
	ATOM	745	С	GLN	100	44.243	41.567	28.481	1.00 53.43
	MOTA	746	Ō	GLN	100	44.416	41.569	27.260	1.00 53.75
	MOTA	747	N	THR	101	43.527	42.493	29.105	1.00 52.90
45	MOTA	748	CA	THR	101	42.905	43.576	28.367	1.00 53.12
	ATOM	749	CB	THR	101	41.495	43.826	28.894	1.00 52.52
	ATOM	750	OG1	THR	101	40.789	42.582	28.925	1.00 52.85
	ATOM	751	CG2		101	40.752	44.808	27.999	1.00 52.03
	ATOM	752	C	THR	101	43.731	44.845	28.499	
50	ATOM	753	0	THR	101	44.285	45.108		1.00 53.61 1.00 53.95
50	ATOM	754	N	TYR	102		45.628	29.563	
	ATOM	755	CA		102	43.809		27.422	1.00 54.10
	ATOM	756		TYR		44.585	46.869	27.422	1.00 55.36
	ATOM	757	CB CG	TYR	102	45.878	46.708	26.608	1.00 54.89
55				TYR	102	46.788	45.569	27.015	1.00 54.25
23	ATOM	758	CD1		102	46.382	44.241	26.888	1.00 54.08
	ATOM	759		TYR	102	47.227	43.197	27.226	1.00 53.44
	ATOM	760	CD2		102	48.069	45.822	27.497	1.00 53.79
	ATOM	761		TYR	102	48.922	44.785	27.840	1.00 53.76
	ATOM	762	CZ	TYR	102	48.498	43.475	27.701	1.00 53.85

	•									
	ATOM	763	OH	TYR	102	49.355	42.442	28.021	1.00 5	4.03
	ATOM	764	С	TYR	102	43.813	48.041	26.822	1.00 5	6.65
	MOTA	765	0	TYR	102	43.173	47.899	25.781	1.00 5	
	MOTA	766	N	SER	103	43.891	49.203	27.462	1.00 5	
5	MOTA	767	CA	SER	103	43.217	50.385	26.938	1.00 6	
	ATOM	768	СВ	SER	103	42.997	51.411	28.049	1.00 6	
	MOTA	769	OG	SER	103	44.231	51.829	28.602	1.00 6	
	MOTA	770	С	SER	103	44.090	50.985	25.833	1.00 6	
	ATOM	771	ō	SER	103	45.293	50.729	25.771	1.00 6	
10	ATOM	772	N	ALA	104	43.487	51.783	24.960	1.00 6	
	ATOM	773	CA	ALA	104	44.226	52.386	23.856	1.00 6	
	ATOM	774	СВ	ALA	104	43.516	52.093	22.526	1.00 6	
	ATOM	775	C	ALA	104	44.410	53.888	24.025	1.00 6	
	ATOM	776	ō	ALA	104	43.458	54.658	23.902	1.00 6	
15	MOTA	777	N	PRO	105	45.648	54.327	24.305	1.00 7	
	ATOM	778	CD	PRO	105	46.878	53.522	24.303	1.00 7	
	ATOM	779	CA	PRO	105	45.946	55.751	24.397	1.00 7	
	MOTA	780	CB	PRO	105	47.443	55.748	24.483	1.00 7	
	MOTA	781	CG	PRO	105	47.929	54.535		1.00 7	
20	MOTA	782	C	PRO	105	47.523		24.046	1.00 7	
20	MOTA	783	0	PRO	105	45.837	56.586	23.251		
	ATOM	784	N	GLU	105		56.170	22.117	1.00 7	
	MOTA	785	CA	GLU	106	45.012 44.619	57.762	23.479		
	ATOM	786	CB	GLU	106	43.991	58.652 59.921	22.391	1.00 7	
25	ATOM	787	CG	GLU	106	42.702	59.673	22.950	1.00 7	
	ATOM	788	CD	GLU	106	42.702	60.775	23.680 24.657	1.00 7	
	ATOM	789	OE1		106	42.239	61.934	24.037	1.00 7	
	ATOM	790	OE2		106	42.326	60.478	25.871	1.00 8	
	ATOM	791	C	GLU	106	45.784	59.028	21.494	1.00 7	
30	ATOM	792	ō	GLU	106	45.600	59.262	20.300	1.00 7	
	ATOM	793	N	ASP	107	46.980	59.104	22.068	1.00 7	
	ATOM	794	CA	ASP	107	48.161	59.440	21.284	1.00 8	
	ATOM	795	CB	ASP	107	49.431	59.316	22.134	1.00 8	
	ATOM	796	CG	ASP	107	49.965	57.889	22.185	1.00 8	
35	ATOM	797	OD1		107	49.198	56.976	22.569	1.00 8	
	ATOM	798	OD2		107	51.151	57.682	21.839	1.00 8	
	ATOM	799	C	ASP	107	48.212	58.424	20.151	1.00 8	
	ATOM	800	Ō	ASP	107	48.724	58.703	19.065	1.00 8	
	ATOM	801	N	ALA	108	47.670	57.241	20.428	1.00 8	
40	MOTA	802	CA	ALA	108	47.628	56.151	19.463	1.00 8	
	MOTA	803	СВ	ALA	108	47.605	54.813	20.200	1.00 8	
	MOTA	804	С	ALA	108	46.406	56.275	18.553	1.00 8	
	ATOM	805	0	ALA	108	46.536	56.351	17.331	1.00 8	
	ATOM	806	N	MSE	109	45.221	56.303	19.157	1.00 8	
45	MOTA	807	CA	MSE	109	43.974	56.414	18.407	1.00 8	
	MOTA	808	CB	MSE	109	42.787	56.519	19.368	1.00 8	
	MOTA	809	CG	MSE	109	41.581	55.678	18.972	1.00 8	
	ATOM	810	SE	MSE	109	41.933	53.898	19.096	1.00 9	
	ATOM	811	CE	MSE	109	42.665	53.581	17.453	1.00 8	
50	ATOM	812	С	MSE	109	43.992	57.633	17.494	1.00 8	
	ATOM	813	0	MSE	109	43.235	57.710	16.527	1.00 8	
	MOTA	814	N	THR	110	44.854	58.590	17.820	1.00	
	ATOM	815	CA	THR	110	44.986	59.815	17.040	1.00 8	
	MOTA	816	СВ	THR	110	45.289	61.022	17.949	1.00 8	
55	ATOM	817		THR	110	44.302	61.103	18.986	1.00 8	
	ATOM	818	CG2		110	45.283	62.313	17.142	1.00	
	ATOM	819	C	THR	110	46.150	59.640	16.082	1.00	
	ATOM	820	ō	THR	110	46.127	60.123	14.949	1.00	
	ATOM	821	N	GLY	111	47.168	58.933	16.559	1.00	
				-						

18/63 Figure 4 1.00 80.12 48.358 58.691 15.768 ATOM 822 CA GLY 111 57.986 14.450 1.00 79.53 ATOM 823 С GLY 111 48.121 ATOM 824 0 GLY 111 47.018 57.531 14.148 1.00 79.54 N 1.00 78.87 MOTA 825 THR 112 49.181 57.904 13.658 1.00 78.09 ATOM 826 49.129 57.254 12.360 CA THR 112 1.00 78.67 50.427 57.553 11.561 ATOM 827 CB THR 112 50.329 57.001 10.240 1.00 79.18 ATOM 828 OG1 THR 112 56.956 12.279 1.00 78.48 ATOM 829 CG2 THR 112 51.644 MOTA 48.992 55.748 12.579 1.00 77.09 830 С THR 112 10 ATOM 831 0 THR 112 49.231 55.254 13.685 1.00 76.48 11.529 1.00 76.26 MOTA 832 Ν ALA 113 48.601 55.027 48.443 53.573 11.603 1.00 75.60 MOTA ALA 833 CA 113 48.184 53.001 10.208 1.00 76.00 MOTA 834 CB 113 ALA 52.965 12.191 1.00 74.65 MOTA 835 С 113 49.711 ALA 15 ATOM 0 49.665 52.006 12.968 1.00 74.58 836 ALA 113 50.845 11.803 1.00 73.24 ATOM 837 N GLU 114 53.538 12.288 1.00 71.57 ATOM 838 CA 52.139 53.088 GLU 114 11.700 1.00 72.34 839 CB GLU 53.246 53.971 MOTA 114 54.167 10.188 1.00 71.64 840 GLU 53.130 ATOM CG 114 20 841 CD GLU 53.325 52.877 9.401 1.00 72.49 ATOM 114 1.00 72.24 MOTA 842 OE1 GLU 114 53.192 51.781 9.994 1.00 71.83 MOTA 843 OE2 GLU 114 53.600 52.960 8.183 52.085 1.00 70.37 ATOM 844 С **GLU** 53.233 13.801 114 1.00 69.92 MOTA 845 0 GLU 52.297 52.266 14.537 114 25 MOTA 846 N MET 51.778 54.450 14.246 1.00 68.75 115 15.669 1.00 66.97 MOTA 847 CA MET 115 51.657 54.760 15.866 1.00 67.15 MOTA 848 CB MET 115 51.013 56.140 51.999 57.277 16.040 1.00 66.94 ATOM 849 CG MET 115 MET 53.203 56.869 17.320 1.00 67.61 ATOM 850 SD 115 18.788 1.00 66.65 30 ATOM 851 CE MET 115 52.137 56.732 MOTA 852 MET 115 50.799 53.718 16.374 1.00 65.81 С 1.00 65.94 17.275 MOTA 853 0 MET 115 51.266 53.010 1.00 63.70 15.940 49.542 53.635 MOTA 854 N LEU 116 1.00 61.63 16.504 855 LEU 48.561 52.711 MOTA CA 116 15.650 1.00 60.89 47.287 52.720 35 ATOM 856 CB LEU 116 1.00 59.42 16.205 45.948 52.226 MOTA 857 CG LEU 116 15.051 1.00 58.84 CD1 LEU 116 44.953 52.182 MOTA 858 1.00 58.86 859 CD2 LEU 116 46.081 50.858 16.847 MOTA 116 49.083 51.285 16.613 1.00 60.35 MOTA 860 С LEU 1.00 60.48 40 ATOM 861 0 LEU 116 48.977 50.665 17.667 15.531 1.00 59.14 ATOM 862 N PHE 117 49.641 50.756 15.580 1.00 58.14 PHE 117 50.138 49.391 ATOM 863 CA ATOM 864 CB PHE 117 50.298 48.819 14.173 1.00 57.03 49.055 13.669 1.00 56.22 MOTA 865 CG PHE 117 48.144 1.00 55.49 48.005 48.889 13.143 ATOM 866 CD1 PHE 117 48.909 46.763 13.783 1.00 55.59 ATOM 867 CD2 PHE 117 46.830 48.270 12.741 1.00 55.25 ATOM 868 CE1 PHE 117 1.00 55.20 MOTA 869 CE2 PHE 117 47.736 46.134 13.384

1.00 55.23 870 117 46.695 46.887 12.862 MOTA CZ PHE 871 117 51.415 49.204 16.382 1.00 57.89 MOTA С PHE 1.00 57.80 MOTA 872 0 PHE 117 51.799 48.073 16.690 1.00 57.35 ATOM 873 N ALA 118 52.078 50.303 16.725 874 118 53.275 50.193 17.537 1.00 56.79 MOTA CA ALA 17.594 1.00 56.42 ATOM 875 CB ALA 118 54.004 51.533 1.00 56.46 18.922 ATOM 876 ALA 118 52.747 49.792 C 19.536 1.00 56.68 53.220 48.829 ATOM 877 0 ALA 118 1.00 55.57 878 51.733 50.515 19.391 MOTA N ALA 119 20.693 1.00 55.05 51.142 50.226 MOTA 879 ÇA ALA 119 51.135 1.00 53.91 **ATOM** 880 CB ALA 119 49.931 20.952

Figure 4 MOTA 881 1.00 54.96 C 50.719 48.769 20.763 ALA 119 ATOM 882 0 ALA 119 48.052 21.698 1.00 54.94 51.090 ATOM 883 N ILE 120 49.948 48.338 19.763 1.00 55.10 MOTA 884 CA 49.443 1.00 55.51 ILE 120 46.969 19.715 ATOM 885 CB ILE 120 48.679 46.679 18.397 1.00 54.45 MOTA 886 CG2 ILE 47.922 45.363 18.525 1.00 53.30 120 ATOM 887 CG1 ILE 47.688 1.00 53.32 120 47.808 18.089 ATOM 888 CD1 ILE 46.871 1.00 51.70 120 47.581 16.820 ATOM 889 C ILE 120 50.575 45.957 19.846 1.00 56.57 10 ATOM 890 1.00 56.52 0 ILE 120 50.477 45.006 20.632 ATOM 891 N SER 121 51.645 46.169 19.076 1.00 57.78 ATOM 892 CA SER 121 52.814 45.284 19.093 1.00 58.54 MOTA 893 CB SER 121 53.844 45.730 18.045 1.00 58.96 **ATOM** 894 OG SER 121 53.377 45.507 16.720 1.00 59.32 15 MOTA 895 С SER 121 53.457 45.280 20.473 1.00 58.74 **ATOM** 896 0 SER 121 54.007 44.265 20.918 1.00 57.56 ATOM 897 N GLU 122 53.379 46.422 21.151 1.00 59.50 MOTA 898 CA GLU 122 53.947 46.529 22.484 1.00 60.44 ATOM 899 CB GLU 122 54.003 47.986 22.941 1.00 60.60 20 ATOM 900 CG GLU 122 55.104 48.241 23.952 1.00 60.45 MOTA 901 CD GLU 122 54.706 49.252 25.003 1.00 61.76 ATOM 902 OE1 GLU 122 54.152 50.312 24.630 1.00 61.92 ATOM 903 OE2 GLU 122 54.950 48.986 1.00 62.20 26.202 **ATOM** 904 C GLU 122 53.091 45.725 1.00 60.63 23.452 25 ATOM 905 0 GLU 122 53.565 44.761 24.048 1.00 60.82 MOTA 906 N CYS 123 51.831 46.120 23.605 1.00 60.96 ATOM 907 CA CYS 123 50.936 45.410 24.510 1.00 61.79 ATOM 908 CB 1.00 61.63 CYS 123 49.481 45.840 24.278 ATOM 909 47.636 SG CYS 123 49.191 24.439 1.00 62.83 ATOM 910 С CYS 123 51.107 43.922 24.233 1.00 61.90 MOTA 911 0 CYS 123 51.028 43.095 25.147 1.00 61.89 MOTA 912 1.00 62.36 N ILE 124 51.350 43.588 22.966 ATOM 913 CA ILE 124 51.561 42.197 22.588 1.00 62.79 ATOM 914 CB ILE 124 52.033 42.061 21.109 1.00 62.52 ATOM 915 ILE 124 40.676 1.00 61.07 CG2 52.618 20.877 ATOM 916 CG1 ILE 124 50.866 42.280 1.00 61.53 20.138 ATOM 917 CD1 ILE 124 50.016 41.038 19.888 1.00 61.77 MOTA 918 C ILE 124 52.673 41.706 23.499 1.00 62.76 MOTA 919 24.320 1.00 62.23 0 ILE 124 52.475 40.807 40 ATOM 920 42.327 N SER 125 53.839 23.347 1.00 63.43 MOTA 921 42.002 24.138 CA SER 125 55.020 1.00 64.63 MOTA 922 СВ SER 125 56.062 43.117 23.986 1.00 65.05 ATOM 923 OG SER 125 57.324 42.745 24.523 1.00 67.01 924 MOTA С SER 125 54.646 41.840 25.610 1.00 64.32 ATOM 925 40.794 0 54.886 26.219 1.00 64.46 SER 125 ATOM 42.884 926 1.00 64.43 N ASP 54.047 26.169 126 MOTA 927 42.894 27.562 ÇA ASP 126 53.626 1.00 64.86 ATOM 928 44.060 27.788 ÇВ ASP 126 52.660 1.00 64.95 ATOM 929 44.323 29.253 CG ASP 126 52.390 1.00 65.38 MOTA 930 29.955 OD1 ASP 51.952 43.389 1.00 65.74 126 MOTA 931 OD2 ASP 29.706 1.00 65.92 126 52.613 45.467 ATOM 932 С ASP 126 52.968 41.572 27.980 1.00 64.65 MOTA 933 0 ASP 126 53.424 40.918 28.924 1.00 64.28 ATOM 934 N PHE 51.902 41.189 27.274 1.00 64.96 127 ATOM 935 27.565 1.00 65.21 CA PHE 127 51.177 39.948 1.00 64.22 MOTA 936 26.468 CB PHE 127 50.145 39.657 MOTA 937 38.258 26.525 1.00 63.67 CG PHE 127 49.569 ATOM 938 CD1 PHE 127 48.774 37.857 27.594 1.00 63.64 ATOM 939 CD2 PHE 127 49.830 37.343 25.512 1.00 63.42

19/63

20/63 Figure 4 ATOM 940 CE1 PHE 127 48.247 36.564 36.051 ATOM 941 CE2 PHE 127 49.308 MOTA 942 CZPHE 35.661 127 48.516 MOTA 943 C PHE 127 52.154 38.791 ATOM 944 0 PHE 127 52.195 38.030 MOTA 945 N LEU 128 52.931 38.684 MOTA 946 CA LEU 128 53.942 MOTA 947 СВ LEU 128 54.773 ATOM 948 CG LEU 53.926 128 10 ATOM 949 CD1 LEU 128 54.819 MOTA 950 CD2 LEU 128 53.195 MOTA 951 С LEU 128 54.850 MOTA 952 LEU 54.829 0 128 ATOM 953 N **ASP** 55.654 129 15 ATOM 56.565 954 CA ASP 129 MOTA 955 CB ASP 57.135 129 MOTA 956 CG ASP 129 58.115 MOTA 957 OD1 ASP 59.100 129 MOTA 958 OD2 ASP 57.900 129 20 ATOM 959 ASP С 129 55.843 MOTA 960 0 ASP 129 56.063

1.00 66.57 26.562 1.00 67.52 37.656 26.387 38.022 25.166 1.00 67.64 38.452 23.969 1.00 67.42 39.108 22.941 1.00 67.90 1.00 67.65 37.251 23.387 1.00 68.09 37.502 27.609 28.285 1.00 67.92 36.468 38.530 27.878 1.00 68.62 38.514 29.018 1.00 69.22 39.907 29.287 1.00 68.93 1.00 68.90 28.239 40.342 28.011 1.00 69.12 39.606 27.650 1.00 69.22 41.423 38.059 30.267 1.00 69.59 36.956 30.761 1.00 69.41 MOTA 961 N LYS 54.973 30.753 1.00 70.10 130 38.940 ATOM 962 CA 1.00 70.67 LYS 130 54.190 38.733 31.958 MOTA 963 CB 32.159 1.00 70.80 LYS 130 53.285 39.946 25 ATOM 964 CG LYS 54.076 32.052 1.00 70.54 130 41.252 MOTA 965 CD LYS 130 53.218 42.479 32.266 1.00 70.22 ATOM 966 CE LYS 130 54.021 43.746 32.011 1.00 70.07 ATOM 967 NZ LYS 130 53.204 44.977 32.195 1.00 69.69 ATOM 968 С LYS 130 53.394 37.441 31.982 1.00 71.17 30 MOTA 969 0 LYS 130 52.381 37.331 32.673 1.00 70.99 MOTA 970 1.00 72.01 N HIS 131 53.883 36.468 31.221 MOTA 971 CA HIS 131 53.301 35.139 31.125 1.00 73.44 ATOM 972 CB HIS 131 52.313 35.065 29.965 1.00 73.00 ATOM 973 CG HIS 131 50.881 35.076 30.397 1.00 72.93 35 ATOM 974 CD2 HIS 131 49.960 34.085 30.454 1.00 72.73 MOTA 975 ND1 HIS 131 50.256 36.210 30.869 1.00 72.87 MOTA 976 CE1 HIS 131 49.010 35.917 31.196 1.00 73.01 ATOM 30.954 1.00 73.04 977 NE2 HIS 131 48.806 34.634 ATOM 978 30.908 1.00 74.61 С HIS 131 54.424 34.124 40 ATOM 979 31.514 0 HIS 131 54.419 33.049 1.00 74.70 MOTA 980 55.374 30.046 1.00 76.14 GLN 132 34.502 N 1.00 77.30 MOTA 981 CA GLN 132 56.566 33.727 29.658 ATOM 1.00 77.68 982 CB GLN 132 56.536 32.293 30.218 ATOM 983 CG GLN 132 55.424 31.387 29.676 1.00 78.41 45 ATOM 984 CD GLN 132 55.823 30.611 28,436 1.00 78.88 1.00 78.50 ATOM 985 27.356 OE1 GLN 132 56.016 31.179 55.951 ATOM 29.294 28.587 986 NE2 GLN 132 1.00 79.41 ATOM 56.673 28.134 1.00 77.86 987 C GLN 132 33.682 1.00 77.91 ATOM 988 0 GLN 132 57.769 33.638 27.574 50 ATOM 989 27.472 1.00 78.39 N MSE 133 55.520 33.703 ATOM 26.017 990 1.00 78.88 CA MSE 133 55.450 33.662 ATOM 991 CB 53.989 33.684 25.551 1.00 80.96 MSE 133 992 ATOM CG MSE 133 53.278 32.347 25.586 1.00 83.34 ATOM 993 133 26.846 1.00 87.09 SE MSE 51.991 32.273 27.421 ATOM 994 CE MSE 133 52.168 30.521 1.00 84.33 MOTA 995 C MSE 133 56.174 34.812 25.333 1.00 77.90 MOTA 996 Ö MSE 133 55.552 35.548 24.567 1.00 78.34 MOTA 997 N LYS 134 57.470 34.973 25.587 1.00 75.97 MOTA 998 CA LYS 134 58.225 36.053 24.949 1.00 73.96

27.652 1.00 63.40

25.560

26.632

27.631

28.600

1.00 63.55

1.00 63.49

1.00 65.83

1.00 65.71

21/63 Figure 4 1.00 73.14 ATOM 999 CB LYS 134 58.976 36.879 25.997 **ATOM** 1000 CG 59.676 38.125 25.454 1.00 72.28 LYS 134 1.00 70.99 ATOM 1001 ÇD LYS 134 58.697 39.250 25.141 59.415 1.00 70.06 ATOM 1002 40.586 24.935 CE LYS 134 ATOM 1003 40.640 23.687 1.00 69.46 NZ LYS 134 60.234 1.00 72.94 ATOM 1004 C LYS 134 59.211 35.443 23.964 1.00 72.63 MOTA 1005 59.727 36.123 23.077 0 LYS 134 **ATOM** 1006 59.457 24.132 1.00 72.28 N HIS 135 34.148 MOTA 1007 23.275 1.00 71.52 135 60.377 33.411 CA HIS 1008 1.00 71.15 10 ATOM CB 135 61.359 32.584 24.119 HIS MOTA 1009 CG 135 60.719 31.448 24.859 1.00 70.88 HIS 1.00 70.87 ATOM 1010 CD2 HIS 135 60.908 30.109 24.773 MOTA 59.750 1.00 70.81 1011 ND1 HIS 135 31.635 25.822 MOTA 59.370 26.298 1.00 70.56 1012 CE1 HIS 135 30.462 15 ATOM 1013 NE2 HIS 135 60.057 29.519 25.678 1.00 70.85 **ATOM** 1014 HIS 135 59.584 32.482 22.365 1.00 71.26 С MOTA 1015 0 HIS 135 60.152 31.818 21.499 1.00 71.53 32.434 MOTA 1016 58.272 22.574 1.00 70.85 N LYS 136 31.590 MOTA 1017 57.393 21.766 1.00 70.33 LYS 136 CA 20 56.077 31.329 22.508 1.00 69.64 ATOM 1018 CB LYS 136 1019 56.225 23.886 1.00 68.45 MOTA CG LYS 136 30.694 ATOM 1020 CD LYS 136 56.740 29.271 23.783 1.00 68.01 MOTA 1021 136 56.698 28.560 25.128 1.00 67.56 CE LYS 1.00 66.87 MOTA 1022 NZ LYS 136 55.303 28.356 25.623 MOTA 1023 57.088 20.443 1.00 70.46 С LYS 136 32.296 **ATOM** 1024 0 LYS 136 57.100 33.530 20.371 1.00 70.94 MOTA 1025 N LYS 137 56.828 31.519 19.396 1.00 70.16 1.00 69.80 MOTA 1026 CA LYS 137 56.505 32.096 18.096 1.00 71.09 MOTA 1027 CB LYS 137 57.505 31.642 17.023 1.00 71.73 30 ATOM 1028 CG LYS 137 57.602 30.132 16.801 1.00 72.44 ATOM 1029 CD LYS 137 58.567 29.840 15.654 1.00 72.39 ATOM 1030 137 58.915 15.545 CE LYS 28.363 1.00 72.59 ATOM 59.919 1031 NZ LYS 137 28.136 14.463 MOTA 1032 С 137 55.097 17.702 1.00 68.73 LYS 31.685 1.00 69.92 35 ATOM 1033 0 LYS 137 54.799 31.476 16.524 1.00 66.57 ATOM 1034 N LEU 138 54.243 31.579 18.716 31.193 1.00 63.82 MOTA 1035 CA LEU 138 52.841 18.586 1.00 63.11 ATOM 1036 CB LEU 138 52.057 31.788 19.748 MOTA 1037 CG LEU 138 52.364 31.145 21.092 1.00 62.89 22.220 51.924 1.00 62.68 MOTA 1038 CD1 LEU 138 32.068 1039 51.669 29.786 21.150 1.00 61.80 ATOM CD2 LEU 138 ATOM 1040 52.114 17.294 1.00 62.26 С LEU 138 31.553 ATOM 1041 52.416 32.566 16.647 1.00 62.54 0 LEU 138 MOTA 1042 N PRO 139 51.149 30.708 16.894 1.00 60.11 29.394 ATOM 1043 CD PRO 139 50.841 17.489 1.00 59.82 1.00 57.91 ATOM 1044 CA PRO 139 50.356 30.937 15.682 ATOM 1045 139 49.761 29.564 15.398 1.00 58.05 CB PRO 16.772 1.00 59.12 MOTA 1046 PRO 139 49.573 28.999 CG ATOM 1047 С PRO 139 49.302 31.968 16.101 1.00 55.89 1.00 55.71 16.973 50 ATOM 1048 0 PRO 139 48.469 31.693 1.00 53.40 49.358 15.501 ATOM 1049 N LEU 140 33.154 48.440 15.850 1.00 50.78 ATOM 1050 CA LEU 140 34.237 49.195 35.576 15.834 1.00 49.87 MOTA 1051 CB LEU 140 MOTA 1052 CG LEU 140 48.452 36.893 16.091 1.00 49.01 37.933 ATOM 140 49.414 16.646 1.00 48.17 1053 CD1 LEU 1.00 48.88 MOTA 1054 CD2 LEU 140 47.825 37.389 14.801 MOTA 1055 C LEU 140 47.169 34.359 15.018 1.00 49.13 1.00 49.12 ATOM 1056 140 47.211 34.368 13.785 0 LEU 141 46.040 34.441 15.722 1.00 46.93 ATOM 1057 N GLY

Figure 4

		•							
	ATOM	1058	CA	GLY	141	44.743	34.613	15.086	1.00 43.70
	MOTA	1059	C	GLY	141	44.324	36.041	15.402	1.00 41.11
	ATOM	1060	ō	GLY	141	44.277	36.414	16.569	1.00 41.46
	ATOM	1061	N	PHE	142	44.018	36.842	14.388	1.00 38.27
5	ATOM	1062	CA	PHE	142	43.659	38.232	14.629	1.00 36.42
•	ATOM	1063	CB	PHE	142	44.648			
	ATOM	1064	CG				39.118	13.882	1.00 34.58
	ATOM	1065		PHE	142	44.403	40.593	14.037	1.00 33.28
	MOTA	1065		PHE	142	43.941	41.124	15.229	1.00 32.86
10				PHE	142	44.702	41.465	12.992	1.00 32.75
10	ATOM	1067		PHE	142	43.784	42.505	15.375	1.00 32.95
	ATOM	1068		PHE	142	44.551	42.845	13.125	1.00 31.57
	MOTA	1069	CZ	PHE	142	44.094	43.365	14.313	1.00 32.24
	MOTA	1070	C	PHE	142	42.224	38.652	14.300	1.00 36.83
	MOTA	1071	0	PHE	142	41.843	38.801	13.124	1.00 36.76
15	MOTA	1072	N	THR	143	41.423	38.848	15.347	1.00 35.96
	ATOM	1073	CA	THR	143	40.047	39.288	15.156	1.00 34.35
	ATOM	1074	CB	THR	143	39.179	38.997	16.373	1.00 33.98
	ATOM	1075		THR	143	38.947	37.586	16.472	1.00 33.45
	MOTA	1076	CG2	THR	143	37.854	39.750	16.255	1.00 33.35
20	MOTA	1077	С	THR	143	40.081	40.793	14.964	1.00 33.92
	MOTA	1078	0	THR	143	40.190	41.544	15.928	1.00 34.30
	ATOM	1079	N	PHE	144	40.009	41.227	13.716	1.00 33.00
	ATOM	1080	CA	PHE	144	40.029	42.649	13.383	1.00 31.69
	ATOM	1081	CB	PHE	144	40.891	42.842	12.132	1.00 29.18
25	MOTA	1082	CG	PHE	144	41.189	44.264	11.807	1.00 26.95
	MOTA	1083	CD1	PHE	144	41.727	45.108	12.763	1.00 26.21
	ATOM	1084	CD2	PHE	144	40.956	44.755	10.533	1.00 25.39
	ATOM	1085	CE1	PHE	144	42.026	46.428	12.450	1.00 26.79
	ATOM	1086	CE2	PHE	144	41.250	46.070	10.212	1.00 25.46
30	ATOM	1087	CZ	PHE	144	41.785	46.910	11.167	1.00 25.80
	ATOM	1088	С	PHE	144	38.562	42.981	13.112	1.00 32.02
	ATOM	1089	0	PHE	144	37.929	42.280	12.333	1.00 33.96
	ATOM	1090	N	SER	145	38.025	44.027	13.744	1.00 32.29
	ATOM	1091	CA	SER	145	36.602	44.387	13.600	1.00 31.56
35	ATOM	1092	CB	SER	145	35.993	44.689	14.968	1.00 31.79
	ATOM	1093	OG	SER	145	35.997	43.539	15.790	1.00 33.15
	ATOM	1094	С	SER	145	36.271	45.546	12.679	1.00 30.95
	ATOM	1095	0	SER	145	35.601	46.508	13.082	1.00 30.63
	ATOM	1.096	N	PHE	146	36.723	45.456	11.439	1.00 30.27
40	ATOM	1097	CA	PHE	146	36.452	46.513	10.489	1.00 29.49
	ATOM	1098	CB	PHE	146	37.573	47.541	10.535	1.00 29.01
	ATOM	1099	CG	PHE	146	37.848	48.054		
	MOTA	1100		PHE	146	38.654	47.336	12.775	1.00 28.87
	MOTA	1101		PHE	146	37.245	49.221	12.359	1.00 27.88
45	ATOM	1102		PHE	146	38.852	47.777	14.078	1.00 29.72
	ATOM	1103		PHE	146	37.434	49.670	13.659	1.00 26.92
	ATOM	1104	CZ	PHE	146	38.232	48.955	14.520	1.00 28.49
	ATOM	1105	Ċ	PHE	146	36.318	45.937	9.093	1.00 29.49
	ATOM	1106	ō	PHE	146	36.668	44.778	8.846	1.00 29.49
50	ATOM	1107	N	PRO	147	35.805	46.738	8.152	1.00 29.02
	ATOM	1108	CD	PRO	147	35.452	48.167	8.211	1.00 28.09
	ATOM	1109	CA	PRO	147	35.662			
	ATOM	1110	CB	PRO	147	34.852	46.212	6.798	1.00 30.12
	MOTA	1111	CG	PRO	147		47.309	6.099	1.00 28.65
55	MOTA	1112	C	PRO	147	35.377	48.540	6.749	1.00 28.13
JJ	ATOM	1113	0	PRO		37.047	45.969	6.179	1.00 30.89
	ATOM	1113	Ŋ	VAL	147 148	37.938	46.821	6.263	1.00 32.17
	ATOM	1115	CA	VAL		37.221	44.807	5.557	1.00 31.62
	MOTA	1115	CB	VAL	148 148	38.499	44.453	4.957	1.00 32.00
	-11 Old	1110	CB	A YITI	T#0	39.399	43.733	6.002	1.00 32.44

23/63 Figure 4 5.311 1.00 33.36 ATOM 40.471 1117 CG1 VAL 148 42.940 ATOM 40.035 6.934 1.00 32.04 1118 CG2 VAL 148 44.758 MOTA 1119 С 148 38.351 43.557 3.733 1.00 31.54 VAL 1.00 30.91 ATOM 1120 0 VAL 148 37.937 42.402 3.858 ATOM 1.00 31.66 1121 N ALA 149 38.688 44.091 2.560 1.00 32.33 ATOM 1122 CA ALA 149 38.610 43.316 1.324 MOTA 1123 CB ALA 149 38.834 44.213 0.120 1.00 31.16 ATOM 1124 С ALA 149 39.723 42.288 1.428 1.00 33.43 MOTA 1125 0 ALA 149 40.882 42.653 1.431 1.00 35.59 10 ATOM 1126 N HIS 150 39.387 41.008 1.535 1.00 33.73 MOTA 1127 · CA HIS 150 40.410 39.980 1.666 1.00 33.88 MOTA 1128 CB HIS 150 39.868 38.780 2.450 1.00 34.82 ATOM 1129 CG HIS 150 39.879 38.961 3.933 1.00 35.58 MOTA 1130 CD2 HIS 150 40.344 38.162 4.921 1.00 36.49 15 MOTA 1131 ND1 HIS 150 39.329 40.061 4.555 1.00 36.45 ATOM 1132 CE1 HIS 150 39.454 39.930 5.865 1.00 36.79 MOTA 1133 NE2 HIS 150 40.067 38.786 6.114 1.00 36.38 ATOM 1134 150 40.960 39.442 0.353 1.00 34.39 С HIS 1.00 34.56 MOTA 1135 HIS 150 40.245 39.364 -0.655 0 20 ATOM 1136 ALA 151 42.239 39.068 0.380 1.00 34.73 N 1.00 34.53 ATOM 1137 CA ALA 151 42.898 38.440 -0.762 **ATOM** 1138 CB ALA 151 44.334 38.949 -0.9191.00 34.86 MOTA 1139 С ALA 151 42.894 36.968 -0.338 1.00 34.46 1.00 34.16 MOTA 1140 0 ALA 151 42.734 36.065 -1.161 25 MOTA 1141 N ASP 152 43.050 36.754 0.970 1.00 34.36 ATOM 1142 CA ASP 152 43.045 35.422 1.562 1.00 35.45 1.00 37.69 MOTA 1143 CB ASP 152 44.335 34.687 1.214 1.00 40.20 ATOM 1144 44.233 33.185 CG ASP 152 1.431 1.00 40.73 MOTA 1145 OD1 ASP 152 43.219 32.717 2.007 30 ATOM 1.00 42.29 1146 OD2 ASP 152 45.177 32.464 1.018 3.088 42.901 35.549 1.00 35.53 MOTA 1147 С ASP 152 ATOM 1148 0 ASP 152 43.048 36.642 3.642 1.00 35.08 ATOM 1149 N ILE 153 42.627 34.433 3.762 1.00 35.49 ATOM 1150 CA ILE 153 42.436 34.427 5.213 1.00 35.75 1.00 35.32 35 ATOM 1151 CB ILE 153 42.258 32.984 5.754 1.00 34.16 MOTA 43.609 1152 CG2 ILE 153 32.316 5.937 1.00 35.44 MOTA . 153 41.593 33.022 1153 CG1 ILE 7.130 MOTA 1154 CD1 ILE 40.225 33.697 7.131 1.00 36.43 153 1.00 36.77 MOTA 1155 С ILE 153 43.571 35.079 6.011 1.00 36.40 40 ATOM 1156 0 ILE 153 43.450 35.278 7.229 1.00.37.10 MOTA 1157 N ASP 154 44.665 35.411 5.332 1.00 37.27 MOTA 1158 CA ASP 154 45.815 36.003 6.000 MOTA 1159 CB ASP 154 46.982 35.013 5.991 1.00 38.98 **ATOM** 1160 CG ASP 154 47.795 35.079 4.703 1.00 41.58 MOTA 1161 OD1 ASP 154. 47.215 34.890 3.605 1.00 42.46 ATOM 1162 OD2 ASP 154 49.022 35.331 4.789 1.00 42.65 46.233 1.00 36.74 ATOM 1163 С ASP 154 37.287 5.307 47.360 37.751 1.00 37.07 ATOM 1164 0 ASP 154 5.471 1.00 35.91 **ATOM** 1165 N ALA 155 45.328 37.865 4.531 1.00 36.20 50 ATOM 45.650 39.093 1166 CA ALA 155 3.830 1.00 36.22 38.771 MOTA 1167 CB ALA 155 46.522 2.621 1.00 36.20 ATOM 44.412 39.864 1168 С ALA 155 3.387 ATOM 155 43.490 39.289 2.820 1.00 36.87 1169 0 ALA 1.00 36.26 **ATOM** 1170 N GLY 156 44.402 41.168 3.642 1.00 37.08 55 ATOM 1171 GLY 156 43.279 41.997 3.245 CA ATOM 43.481 1.00 38.10 1172 С 156 43.446 GLY 3.647 MOTA 44.027 43.727 1.00 38.52 1173 0 GLY 156 4.711 1174 **ATOM** ILE 157 43.052 44.377 2.805 1.00 39.16 N ATOM 1175 CA ILE 157 43.203 45.789 3.125 1.00 41.42

ATOM 1176 CB ILE 157 43.389 46.646 1.842 1.00 42.84 44.844 MOTA 1177 CG2 ILE 46.550 157 1.349 1.00 44.32 MOTA 1178 46.193 CG1 ILE 157 42.399 0.761 1.00 43.93 ATOM 1179 CD1 ILE 157 42.630 46.838 -0.615 1.00 44.55 MOTA 1180 С ILE 157 42.010 46.331 3.921 1.00 42.26 MOTA 1181 0 ILE 157 40.864 45.912 1.00 42.28 3.732 MOTA 1182 47.259 N LEU 158 42.300 4.824 1.00 42.54 ATOM 1183 CA LEU 158 41.283 47.873 1.00 43.22 5.648 MOTA 1184 CB LEU 158 41.928 48.504 6.884 1.00 44.12 10 ATOM 1185 CG LEU 158 41.090 49.514 7.670 1.00 44.84 MOTA 1186 CD1 LEU 158 40.020 48.782 8.472 1.00 45.23 MOTA 1187 CD2 LEU 158 42.006 50.320 8.590 1.00 45.09 ATOM 1188 С LEU 158 40.548 48.947 4.855 1.00 43.56 MOTA 1189 0 LEU 158 40.984 50.099 4.801 1.00 43.77 15 ATOM 1190 N LEU 159 39.434 48.569 4.239 1.00 43.40 1191 MOTA CA LEU 159 38.634 49.508 3.465 1.00 43.01 MOTA 1192 CB LEU 159 37.238 48.935 3.280 1.00 43.36 MOTA 1193 CG LEU 159 37.279 47.599 2.539 1.00 43.44 ATOM 1194 CD1 LEU 159 36.020 46.808 2.829 1.00 44.00 20 ATOM 1195 CD2 LEU 47.857 159 37.443 1.050 1.00 42.93 MOTA 1196 С LEU 159 38.564 50.879 4.139 1.00 42.62 ATOM 1197 3.488 0 LEU 159 38.745 51.905 1.00 43.03 MOTA 1198 N ASN 160 38.297 50.902 1.00 42.20 5.440 6.170 ATOM 1199 CA ASN 160 38.243 52.169 1.00 41.99 25 ATOM 1200 CB ASN 160 37.347 53.197 5.447 1.00 42.23 ATOM 1201 CG ASN 160 35.913 52.733 1.00 43.38 5.295 **ATOM** 1202 OD1 ASN 160 35.225 53.102 1.00 42.38 4.334 ATOM 1203 ND2 ASN 160 35.444 51.934 6.250 1.00 44.48 ATOM 1204 51.988 С ASN 160 37.813 7.616 1.00 41.13 30 ATOM 1205 ASN 50.913 0 160 37.359 8.011 1.00 41.17 **ATOM** 1206 N TRP 161 37.980 53.043 8.403 1.00 40.24 **ATOM** 1207 CA TRP 161 37.652 53.004 9.824 1.00 39.69 ATOM 1208 CB TRP 161 38.522 54.003 10.602 1.00 39.33 ATOM 1209 CG TRP 39.987 161 53.640 10.769 1.00 39.07 35 ATOM 1210 CD2 TRP 161 40.527 52.469 11.411 1.00 38.63 ATOM 1211 CE2 TRP 161 41.931 52.616 1.00 38.27 11.438 MOTA 1212 CE3 TRP 161 39.960 51.317 11.972 1.00 38.43 41.060 ATOM 1213 CD1 TRP 54.417 1.00 38.40 161 10.436 42.228 ATOM 1214 NE1 TRP 53.812 1.00 38.42 161 10.840 40 ATOM 1215 CZ2 TRP 42.778 51.659 161 12.000 1.00 38.26 40.809 42.200 36.196 35.578 MOTA 1216 CZ3 TRP 161 50.357 12.538 1.00 38.07 ATOM 1217 CH2 TRP 161 50.540 12.545 1.00 38.37 ATOM 1218 TRP 1.00 39.07 С 161 53.301 10.150 ATOM 1219 0 TRP 161 54.193 9.562 1.00 39.38 45 ATOM 1220 N THR 35.668 162 52.555 11.114 1.00 38.45 ATOM 1221 CA THR 162 34.302 52.734 11.593 1.00 38.37 ATOM 1222 CB THR 162 33.381 51.600 11.125 1.00 37.71 MOTA 1223 OG1 THR 162 33.926 50.338 11.548 1.00 37.02 ATOM 1224 CG2 THR 9.617 162 33.226 51.635 1.00 36.52 50 ATOM 1225 С THR 162 34.357 52.702 13.121 1.00 38.24 MOTA 1226 0 THR 162 35.405 52.443 13.703 1.00 37.86 MOTA 1227 N LYS 163 33.231 52.968 13.770 1.00 38.99 MOTA 1228 CA LYS 163 33.192 52.941 1.00 39.72 15.222 MOTA 1229 CB LYS 163 33.510 51.528 1.00 38.16 15.728 55 ATOM 1230 CG LYS 163 32.467 50.487 15.311 1.00 36.62 MOTA 1231 CD LYS 163 32.727 49.108 15.918 1.00 34.66 ATOM 1232 CE LYS 163 33.829 48.349 15.195 1.00 33.22 MOTA 1233 NZ LYS 163 34.068 47.031 15.850 1.00 32.19 ATOM 1234 C LYS 163 34.142 53.956 15.848 1.00 40.71

24/63

26/63 Figure 4 3.115 1.00 60.42 **ATOM** 1294 CA ASN 173 46.800 49.065 1.00 61.72 MOTA 1295 ASN 173 47.922 49.722 3.913 CB CG 48.035 51.201 3.631 1.00 62.78 ATOM 1296 ASN 173 2.515 1.00 63.29 MOTA 1297 OD1 ASN 48.367 51.605 173 ATOM 1298 47.741 52.024 4.637 1.00 63.06 ND2 ASN 173 1.00 59.26 MOTA 1299 С ASN 173 46.463 47.747 3.771 45.440 1.00 59.57 47.624 4.430 ATOM 1300 0 ASN 173 47.336 46.763 3.598 1.00 58.79 1301 ATOM N ASN 174 47.126 45.447 4.196 1.00 58.46 MOTA 1302 CA ASN 174 44.495 3.793 1.00 57.45 48.264 10 MOTA 1303 CB ASN 174 48.104 43.093 4.375 1.00 57.22 MOTA 1304 CG ASN 174 48.757 3.924 1.00 56.21 MOTA 1305 OD1 ASN 174 42.144 47.245 5.382 1.00 56.76 42.957 MOTA 1306 ND2 ASN 174 47.083 5.712 1.00 58.42 1307 45.615 ATOM C ASN 174 15 1308 0 174 47.927 46.302 6.281 1.00 59.03 ATOM ASN 1309 VAL 175 46.091 45.008 6.359 1.00 58.23 MOTA N MOTA 1310 CA VAL 175 45.966 45.106 7.809 1.00 57.79 44.544 44.765 8.295 1.00 57.69 MOTA 1311 CB VAL 175 MOTA 44.461 44.933 9.807 1.00 56.81 1312 CG1 175 VAL 1.00 57.69 45.665 7.603 CG2 43.531 20 **ATOM** 1313 VAL 175 46.944 44.150 8.470 1.00 57.62 1314 175 MOTA С VAL MOTA 1315 0 VAL 175 47.734 44.560 9.319 1.00 57.89 1.00 57.24 MOTA 1316 46.896 42.878 8.086 N VAL 176 41.904 8.660 1.00 57.25 MOTA 1317 CA VAL 176 47.818 40.501 8.037 1.00 57.27 25 MOTA 1318 CB VAL 176 47.638 **ATOM** 1319 CG1 VAL 176 48.597 39.511 8.701 1.00 56.21 ATOM 1320 CG2 VAL 176 46.196 40.035 8.199 1.00 56.28 1321 49.232 42.396 8.362 1.00 57.38 MOTA С VAL 176 1.00 57.30 **ATOM** 1322 0 VAL 176 50.212 41.911 8.926 43.374 1.00 57.41 **ATOM** 1323 GLY 177 49.319 7.467 N 1.00 57.60 MOTA 1324 CA **GLY** 177 50.605 43.939 7.103 1.00 57.50 44.878 8.170 MOTA 1325 С GLY 177 51.135 1.00 58.09 44.605 8.781 MOTA 1326 0 GLY 177 52.171 45.982 1.00 56.68 50.425 8.396 MOTA 1327 N LEU 178 1.00 55.42 35 1328 LEU 178 50.837 46.959 9.396 ATOM CA 1.00 55.02 **ATOM** 1329 CB LEU 178 49.710 47.968 9.646 48.906 8.466 1.00 54.15 MOTA 1330 CG LEU 178 49.394 1.00 53.80 49.743 8.766 1331 178 48.158 ATOM CD1 LEU 178 49.815 8.197 1.00 54.17 1332 CD2 LEU 50.588 MOTA 1.00 54.84 40 ATOM 1333 C LEU 178 51.247 46.279 10.701 1.00 55.07 1334 0 178 52.177 46.717 11.375 MOTA LEU 11.050 1.00 53.85 1335 179 50.575 45.192 **ATOM** N LEU 1.00 53.57 1336 LEU 179 50.917 44.491 12.274 ATOM CA ATOM 1337 LEU 179 49.882 43.409 12.582 1.00 52.75 CB ATOM 1338 CG LEU 179 50.099 42.671 13.907 1.00 52.23 MOTA 1339 CD1 LEU 179 49.689 43.580 15.056 1.00 51.63 49.286 41.381 13.935 1.00 51.34 MOTA 1340 CD2 LEU 179 1341 179 52.286 43.845 12.128 1.00 54.26 MOTA C LEU MOTA 1342 0 LEU 179 53.070 43.796 13.075 1.00 54.60 1.00 54.59 **MOTA** 1343 N ARG 180 52.576 43.343 10.932 1.00 54.08 42.679 10.688 MOTA 1344 CA ARG 180 53.855 1.00 52.59 41.911 MOTA 1345 CB ARG 180 53.824 9.357 40.498 9.515 1.00 50.37 MOTA 1346 CG ARG 180 53.273 1.00 47.24 MOTA 1347 CD ARG 180 53.276 39.702 8.223 1.00 45.06 ATOM 1348 NE ARG 180 52.610 38.420 8.425 1.00 43.97 ATOM 1349 CZ ARG 180 51.979 37.754 7.462 1.00 42.53 ATOM 1350 NH1 ARG 180 51.935 38.256 6.226 7.735 1.00 42.95 36.601 MOTA 1351 NH2 ARG 180 51.366 10.732 1.00 54.76 1352 С ARG 180 55.059 43.605 MOTA

Figure 4 11.473 1.00 54.65 43.343 180 56.009 MOTA 1353 0 ARG 1.00 55.34 9.951 181 55.036 44.681 ATOM 1354 N ASP 45.593 9.972 1.00 56.60 MOTA 1355 CA ASP 181 56.169 1.00 56.43 46.386 8.649 56.266 MOTA 1356 CB ASP 181 47.382 8.448 1.00 55.64 55.132 MOTA 1357 CG ASP 181 1.00 55.20 54.658 47.483 7.294 MOTA 1358 OD1 ASP 181 48.076 9.416 1.00 55.23 1359 OD2 ASP 181 54.734 ATOM 1.00 57.64 ASP 181 56.115 46.514 11.199 ATOM 1360 С 1.00 57.96 MOTA 1361 0 ASP 181 56.510 47.685 11.153 1.00 57.87 45.947 12.303 10 MOTA 1362 N ALA 182 55.634 1.00 57.84 46.646 13.577 ALA 55.524 MOTA 1363 CA 182 1.00 58.19 47.048 13.836 CB 54.078 ALA 182 ATOM 1364 45.683 14.657 1.00 57.83 56.013 ALA 182 MOTA 1365 С 1.00 58.32 56.681 46.094 15.611 MOTA ALA 182 1366 0 1.00 57.35 14.505 ILE 183 55.669 44.404 15 ATOM 1367 N 1.00 57.40 43.381 15.448 56.109 MOTA 1368 CA ILE 183 1.00 56.09 42.036 15.233 ILE 55.374 CB 183 MOTA 1369 56.025 40.932 16.074 1.00 55.25 CG2 ILE 183 MOTA 1370 1.00 55.30 CG1 ILE 183 53.904 42.174 15.628 MOTA 1371 1.00 54.14 15.505 20 ATOM 1372 CD1 ILE 183 53.115 40.881 1.00 58.51 15.199 57.600 43.164 MOTA 1373 C ILE 183 1.00 59.24 16.002 58.294 42.531 ATOM 1374 0 ILE 183 14.077 1.00 59.04 58.093 43.689 ATOM 1375 N LYS 184 1.00 59.19 59.508 43.550 13.757 ATOM 1376 CA LYS 184 1.00 59.15 12.268 25 ATOM 1377 CB LYS 184 59.719 43.243 1.00 58.36 44.354 11.310 59.356 MOTA 1378 CG LYS 184 1.00 58.59 43.897 9.868 LYS 59.566 MOTA 1379 CD 184 1.00 59.26 42.735 9.500 MOTA LYS 184 58.637 1380 CE 8.067 1.00 59.63 ATOM 1381 LYS 184 58.751 42.306 NZ 1.00 59.27 44.806 14.155 60.270 30 ATOM 1382 С LYS 184 44.705 1.00 59.28 14.667 61.382 ATOM 1383 0 LYS 184 1.00 59.21 13.923 59.695 45.984 MOTA 1384 N ARG 185 1.00 59.69 60.383 47.211 14.331 ATOM 1385 CA ARG 185 1.00 59.70 14.060 59.545 48.458 ATOM 1386 CB ARG 185 1.00 60.85 48.772 12.610 59.278 35 MOTA 1387 CG ARG 185 1.00 60.89 59.138 50.280 12.443 185 ATOM 1388 CD ARG 50.628 11.459 1.00 62.26 58.121 ARG 185 **ATOM** 1389 NE 11.620 1.00 61.84 ARG 56.819 50.403 MOTA 1390 CZ185 56.372 49.828 12.731 1.00 61.22 ATOM 1391 NH1 ARG 185 1.00 62.23 55.966 50.754 10.666 ATOM 1392 NH2 ARG 185 40 1.00 60.41 60.574 47.104 15.836 ATOM 1393 ARG 185 С 1.00 60.45 61.630 47.430 16.384 1394 ARG 185 ATOM 0 1.00 61.07 16.489 1395 ARG 186 59.518 46.633 **ATOM** N 1.00 61.42 17.933 59.489 46.460 MOTA 1396 CA ARG 186 1.00 61.16 18.358 58.066 46.055 1397 ARG 186 45 ATOM CB 19.786 1.00 61.08 57.666 46.433 1398 ARG 186 ATOM CG 20.828 1.00 60.87 58.249 45.473 1399 ARG 186 MOTA CD 22.188 1.00 61.44 1400 NE ARG 186 57.917 45.894 MOTA 45.246 23.288 1.00 60.67 58.294 MOTA 1401 CZARG 186 1.00 60.28 NH1 ARG 186 59.024 44.133 23.201 ATOM 1402 1.00 61.46 24.481 57.942 MOTA 1403 NH2 ARG 186 45.712 1.00 61.85 18.344 MOTA 1404 C ARG 186 60.516 45.399 17.514. 1.00 62.16 186 60.980 44.610 MOTA 1405 0 ARG 1.00 62.07 45.401 19.628 MOTA 1406 N GLY 187 60.873 1.00 62.22 44.455 20.157 61.843 55 ATOM 1407 CA GLY 187 1.00 62.50 43.017 19.754 1408 61.591 MOTA С GLY 187 1.00 62.37 42.692 19.202 1409 187 60.541 ATOM 0 GLY 20.036 1.00 63.08 42.148 MOTA 1410 N ASP 188 62.556 19.684 1.00 62.67 62.414 40.746 188 ATOM 1411 CA ASP

27/63

)	F	igure 4				28/63			
	ATOM	1412	СВ	ASP	188	63.465	39.873	20.373	1.00 61.80
	MOTA	1413	CG	ASP	188	63.027	38.409	20.468	1.00 60.64
	ATOM	1414		ASP	188	62.125	38.107	21.289	1.00 60.77
-	ATOM	1415		ASP	188	63.565	37.563	19.715	1.00 60.43
5	MOTA	1416	C	ASP	188	61.047	40.193	20.022	1.00 63.58
	MOTA	1417	0	ASP	188	60.441	40.539	21.044	1.00 62.69
	MOTA	1418	N	PHE	189	60.599	39.309	19.138	1.00 64.49
	ATOM	1419	CA	PHE	189	59.327	38.632	19.249	1.00 64.75
10	MOTA MOTA	1420	CB	PHE	189	58.233	39.629	19.598	1.00 64.84
10	ATOM	1421 1422	CG CD1	PHE PHE	189	56.886	39.010	19.689	1.00 65.46
	ATOM	1422		PHE	189	56.707	37.824	20.402	1.00 65.54
	ATOM	1424		PHE	189 189	55.795	39.592	19.052	1.00 65.28
	MOTA	1425	CE2	PHE	189	55.455	37.224	20.481	1.00 65.61
15	ATOM	1426	CZ	PHE	189	54.542 54.369	39.007 37.819	19.122 19.839	1.00 65.71
	ATOM	1427	C	PHE	189	59.018	37.819	17.919	1.00 65.57 1.00 65.33
	ATOM	1428	Õ	PHE	189	58.921	38.609	16.881	1.00 64.91
	ATOM	1429	N	GLU	190	58.879	36.631	17.956	1.00 66.13
	ATOM	1430	CA	GLU	190	58.584	35.854	16.752	1.00 66.57
20	MOTA	1431	CB	GLU	190	59.387	34.545	16.755	1.00 66.34
	MOTA	1432	CG	GLU	190	60.778	34.649	17.389	1.00 64.66
	MOTA	1433	CD	GLU	190	61.908	34.356	16.411	1.00 64.02
	MOTA	1434	OE1		190	63.054	34.161	16.874	1.00 63.09
	ATOM	1435	OE2	GLU	190	61.658	34.327	15.186	1.00 63.04
25	MOTA	1436	С	GLU	190	57.093	35.528	16.745	1.00 67.09
	MOTA	1437	0	GLU	190	56.609	34.828	17.638	1.00 67.36
	MOTA	1438	N	MSE	191	56.367	36.030	15.747	1.00 67.05
	MOTA	1439	CA	MSE	191	54.928	35.775	15.666	1.00 66.65
	MOTA	1440	CB	MSE	191	54.164	36.920	16.347	1.00 69.47
30	ATOM	1441	CG	MSE	191	52.867	36.492	17.037	1.00 72.30
	ATOM.	1442	SE	MSE	191	53.120	35.293	18.409	1.00 78.56
	MOTA	1443	CE	MSE	191	51.941	35.893	19.581	1.00 75.88
	ATOM	1444	C	MSE	191	54.412	35.590	14.230	1.00 64.85
35	MOTA	1445	0	MSE	191	54.399	36.538	13.435	1.00 64.30
33	MOTA MOTA	1446 1447	N	ASP	192	53.977	34.368	13.910	1.00 62.82
	ATOM	1448	CA CB	ASP ASP	192 192	53.449	34.051	12.580	1.00 60.76
	ATOM	1449	CG	ASP	192	53.774 55.210	32.607 32.427	12.207 11.792	1.00 61.24 1.00 61.76
	ATOM	1450		ASP	192	55.684	33.219	10.947	1.00 62.45
40	ATOM	1451		ASP	192	55.863	31.492	12.299	1.00 62.32
	ATOM	1452	C	ASP	192	51.942	34.266	12.459	1.00 59.03
	ATOM	1453	0	ASP	192	51.143	33.375	12.767	1.00 58.37
	ATOM	1454	N	VAL	193	51.567	35.453	11.991	1.00 57.00
	ATOM .	1455	CA	VAL	193	50.167	35.818	11.818	1.00 54.85
45	MOTA	1456	CB	VAL	193	50.034	37.305	11.454	1.00 55.09
	MOTA	1457	CG1	VAL	193	48.568	37.712	11.448	1.00 54.84
	MOTA	1458	CG2	VAL	193	50.826	38.146	12.441	1.00 54.87
	MOTA	1459	C	VAL	193	49.473	34.977	10.746	1.00 53.19
	MOTA	1460	0	VAL	193	49.500	35.303	9.555	1.00 52.03
50	ATOM	1461	N	VAL	194	48.854	33.894	11.205	1.00 51.82
	MOTA	1462	CA	VAL	194	48.126	32.949	10.367	1.00 50.66
	ATOM	1463	CB	VAL	194	47.841	31.644	11.174	1.00 51.08
	ATOM	1464		VAL	194	46.686	30.860	10.554	1.00 52.09
	ATOM	1465		VAL	194	49.091	30.778	11.211	1.00 51.33
55	MOTA	1466	C	VAL	194	46.798	33.498	9.808	1.00 49.99
	MOTA	1467	0	VAL	194	46.677	33.726	8.602	1.00 49.40
	MOTA	1468	N .	ALA	195	45.813	33.723	10.683	1.00 48.93
	MOTA MOTA	1469 1470	CA CB	ALA	195	44.499	34.193	10.251	1.00 47.60
	A I OM	T#/0	CB	ALA	195	43.467	33.123	10.572	1.00 47.58

\bigcirc	F	igure 4		29/63		
	АТОМ	1471	С	ALA	195	43.9
	ATOM	1472	0	ALA	195	44.3
	MOTA	1473	N	MSE	196	43.1
	MOTA	1474	CA	MSE	196	42.5

1.00 46.68 992 35.546 10.760 35.996 11.851 1.00 46.16 344 9.940 1.00 45.43 36.182 157 1.00 44.60 37.459 10.279 521 1.00 45.32 1475 196 43.079 38.623 9.451 MOTA CB MSE 1.00 47.29 39.925 9.716 MOTA 1476 CG MSE 196 42.329 1.00 53.21 8.852 42.937 41.426 MOTA 1477 SE MSE 196 1.00 51.44 9.982 44.264 41.920 MOTA 1478 CE MSE 196 10.002 1.00 43.09 37.333 ATOM 1479 С MSE 196 41.019 36.973 8.892 1.00 43.71 MOTA 1480 MSE 196 40.610 0 MOTA 1481 VAL 197 40.190 37.631 10.996 1.00 40.47 N MOTA 1482 CA VAL 197 38.751 37.514 10.799 1.00 37.00 1.00 37.31 11.458 ATOM 1483 CB VAL 197 38.240 36.228 10.766 1.00 36.64 MOTA 1484 CG1 VAL 197 38.840 35.004 1.00 36.88 197 38.643 36.217 12.914 MOTA 1485 CG2 VAL 11.354 1.00 35.22 197 37.991 38.710 MOTA 1486 С VAL 1.00 35.21 ATOM 1487 197 38.561 39.544 12.057 0 VAL 11.015 1.00 33.39 ATOM 1488 Ν ASN 198 36.708 38.801 11.491 1.00 30.23 MOTA 1489 ASN 198 35.830 39.883 CA 1.00 30.65 10.446 ATOM 1490 ASN 198 34.740 40.175 CB 10.852 1.00 31.35 ATOM 1491 ASN 198 33.801 41.309 CG 1.00 32.70 MOTA 1492 OD1 ASN 198 32.907 41.128 11.686 1.00 30.53 33.997 42.486 10.251 ATOM 1493 ND2 ASN 198 12.780 1.00 28.41 35.217 39.356 ATOM 1494 C ASN 198 12.937 1.00 26.14 35.052 38.143 25 MOTA 1495 0 ASN 198 34.892 40.252 13.711 1.00 27.77 MOTA 1496 **ASP** 199 N 34.325 39.816 14.990 1.00 26.87 MOTA 1497 CA **ASP** 199 1.00 26.75 34.156 41.007 15.945 MOTA 1498 **ASP** 199 CB 1.00 26.24 33.254 42.097 15.396 ATOM 1499 ASP 199 CG 1500 33.221 42.292 14.167 1.00 26.90 30 ATOM OD1 ASP 199 1.00 26.19 ATOM 1501 OD2 ASP 199 32.587 42.777 16.205 199 33.027 39.034 14.843 1.00 26.43 ATOM 1502 C ASP ASP 199 32.715 38.188 15.684 1.00 27.02 MOTA 1503 0 13.763 1.00 25.45 ATOM 1504 Ν THR 200 32.291 39.292 1505 38.585 13.510 1.00 25.65 35 ATOM THR 200 31.050 CA ATOM 1506 CB THR 200 30.261 39.193 12.339 1.00 25.75 31.008 39.044 11.130 1.00 26.04 ATOM 1507 OG1 THR 200 1.00 26.48 30.002 40.672 12.573 ATOM 1508 CG2 THR 200 13.143 1.00 26.96 1509 200 31.383 37.155 ATOM C THR 1.00 27.62 ATOM 1510 200 30.832 36.211 13.712 0 THR 12.189 1.00 28.07 MOTA 1511 N VAL 201 32.295 36.990 11.742 1.00 28.50 ATOM 1512 201 32.695 35.654 CA VAL 1.00 29.26 ATOM 1513 VAL 201 33.785 35.726 10.665 CB 1.00 31.22 ATOM 1514 CG1 VAL 201 34.056 34.332 10.123 33.370 36.684 9.546 1.00 27.90 45 ATOM 1515 CG2 VAL 201 12.901 1.00 29.16 MOTA 1516 VAL 201 33.231 34.818 C 13.101 1.00 29.44 32.816 33.676 ATOM 1517 0 VAL 201 13.663 1.00 30.31 35.395 34.156 **ATOM** 1518 N ALA 202 34.752 34.710 14.812 1.00 32.23 MOTA 1519 CA ALA 202 1.00 31.72 50 1520 35.591 35.705 15.643 ATOM CB ALA 202 15.696 1.00 33.37 34.070 MOTA 1521 С ALA 202 33.688 16.073 1.00 34.14 33.789 32.894 MOTA 1522 202 0 ALA 32.667 34.858 16.019 1.00 34.41 MOTA 1523 203 N THR 16.870 1.00 35.37 MOTA 1524 203 31.566 34.422 CA THR ATOM 1525 30.614 35.604 17.117 1.00 36.27 55 CB THR 203 17.645 1.00 37.04 MOTA 1526 OG1 THR 203 31.370 36.708 1.00 35.19 29.500 35.213 18.090 ATOM 1527 CG2 THR 203 16.242 1.00 36.08 30.800 33.260 1528 203 MOTA С THR

32.241

30.538

ATOM

1529

0

THR

203

16.891

1.00 35.34

ATOM		1.1	gui e 4			•				
APOM		λ.πΩM	1520	M	MCE	204	20 422	22 /15	14 070	1 00 36 99
ATOM 1532 CB MSE 204 29.582 32.665 12.811 1.00 39.76 ATOM 1533 CG MSE 204 29.135 31.967 10.181 1.00 45.75 ATOM 1535 CE MSE 204 30.643 31.057 14.665 1.00 38.76 ATOM 1536 C MSE 204 30.643 31.057 14.665 1.00 38.76 ATOM 1537 O MSE 204 30.024 30.064 14.954 1.00 40.78 ATOM 1538 N ILE 205 31.798 31.148 14.061 1.00 37.86 ATOM 1538 N ILE 205 31.798 31.148 14.061 1.00 37.86 ATOM 1539 CA ILE 205 32.696 30.008 14.137 1.00 40.09 ATOM 1540 CB ILE 205 35.098 29.240 14.072 1.00 39.47 ATOM 1541 CG2 ILE 205 33.098 29.240 14.072 1.00 39.47 ATOM 1541 CG2 ILE 205 34.398 31.112 12.616 1.00 38.947 ATOM 1543 CG ILE 205 34.595 30.081 14.25 1.00 39.34 ATOM 1546 N SER 206 32.812 29.830 16.584 1.00 41.94 ATOM 1545 CB ILE 205 32.597 29.215 15.440 1.00 41.94 ATOM 1548 CB SER 206 32.812 29.830 16.584 1.00 43.71 ATOM 1548 CB SER 206 32.999 30.038 19.013 1.00 43.71 ATOM 1548 CB SER 206 32.999 30.038 19.013 1.00 43.57 ATOM 1554 CB SER 206 32.149 31.163 18.971 1.00 44.54 ATOM 1555 C SER 206 31.185 27.304 18.364 1.00 44.54 ATOM 1550 C SER 206 31.185 27.304 18.364 1.00 44.04 ATOM 1550 C SER 206 31.185 27.304 18.364 1.00 45.40 ATOM 1555 C SER 207 27.869 29.842 17.780 1.00 45.50 ATOM 1555 C C SER 207 27.869 29.842 17.780 1.00 45.50 ATOM 1555 C C SER 207 27.869 29.842 17.780 1.00 45.50 ATOM 1555 C C SER 207 27.946 31.163 18.971 1.00 45.50 ATOM 1555 C C SER 207 28.666 27.551 17.186 1.00 50.79 ATOM 1555 C C YF 207 27.946 31.163 18.971 1.00 45.50 ATOM 1556 C C YF 207 27.946 31.163 12.24 18.883 1.00 42.50 ATOM 1557 C C YF 207 27.946 31.244 18.883 1.00 57.74 ATOM 1556 C C YF 207 27.946 31.244 18.883 1.00 57.74 ATOM 1556 C C YF 207 27.946 31.244 18.883 1.00 57.74 ATOM 1557 C C YF 208 30.495 21.844 18.863 1.00 57.74 ATOM 1556 C C YF 207 27.946 31.244 18.883 1.00 57.74 ATOM 1557 C C YF 208 30.495 22.126 10.50 0.0 57.74 ATOM 1557 C C YF 208 30.495 22.126 10.360 1.00 57.74 ATOM 1558 C T YF 208 30.495 22.126 10.360 1.00 57.74 ATOM 1556 C C YF 209 30.495 22.126 10.50 0.0 57.74 ATOM 1556 C C YF 209 30.495 22.126 10.50 0.0 57.74 ATOM 1557 C C YF 209 30.495 22.126										
ATOM										
S										
ATOM 1535 CE MSE 204 30.643 31.057 9.627 1.00 45.26 ATOM 1536 C MSE 204 30.531 31.075 14.465 1.00 38.36 ATOM 1537 0 MSE 204 30.024 30.054 14.954 1.00 37.86 ATOM 1539 N ILE 205 31.798 31.148 14.061 1.00 38.79 10 ATOM 1539 CA ILE 205 31.798 31.148 14.061 1.00 38.79 ATOM 1540 CB ILE 205 34.178 30.451 13.991 1.00 40.0 39.81 ATOM 1541 CGZ ILE 205 34.178 30.451 13.991 1.00 39.81 ATOM 1542 CGI ILE 205 34.398 31.112 12.616 1.00 39.46 ATOM 1543 CDI ILE 205 34.398 31.112 12.616 1.00 39.46 ATOM 1543 CDI ILE 205 34.250 30.158 I1.425 1.00 39.34 ATOM 1545 C ILE 205 32.577 29.215 15.400 1.00 41.41 ATOM 1546 N SER 206 32.121 28.050 15.408 1.00 41.41 ATOM 1547 CA SER 206 32.683 29.112 17.849 1.00 43.71 ATOM 1548 CB SER 206 32.683 29.112 17.849 1.00 43.71 ATOM 1540 CS SER 206 32.683 29.112 17.849 1.00 43.71 ATOM 1540 CS SER 206 32.149 31.163 18.971 1.00 44.54 ATOM 1550 C SER 206 31.306 28.494 18.056 1.00 44.54 ATOM 1550 C SER 206 31.306 28.494 18.056 1.00 44.54 ATOM 1551 C SER 206 31.306 28.494 18.056 1.00 44.54 ATOM 1552 N CYS 207 27.869 29.842 17.780 1.00 46.54 ATOM 1555 C CYS 207 27.869 29.842 17.780 1.00 46.54 ATOM 1555 C CYS 207 27.869 29.842 17.780 1.00 46.74 ATOM 1555 C CYS 207 27.869 29.842 17.780 1.00 46.74 ATOM 1555 C CYS 207 27.869 29.842 17.780 1.00 46.74 ATOM 1555 C CYS 207 27.869 29.842 17.780 1.00 46.74 ATOM 1555 C CYS 207 27.869 29.842 17.780 1.00 46.74 ATOM 1555 C CYS 207 27.869 29.812 17.894 1.00 56.76 ATOM 1556 C CYS 207 27.946 31.264 18.883 1.00 57.29 ATOM 1556 C CYS 207 27.956 27.951 17.854 10.00 57.79 ATOM 1556 C CYS 207 27.956 27.951 17.854 10.00 57.79 ATOM 1556 C CYS 207 27.956 27.951 17.851 10.00 57.73 ATOM 1556 C CYS 207 27.956 27.951 17.806 10.00 57.73 ATOM 1556 C CYS 207 28.912 28.766 10.360 10.00 57.73 ATOM 1556 C CYS 207 28.912 28.766 27.551 17.86 10.00 57.73 ATOM 1556 C CYS 207 27.956 27.952 27.9	E									
ATOM	5									
ATOM		-								
ATOM										
10										
ATOM										
ATOM	10									
ATOM										
ATOM										
15										
ATOM				CD1						
ATOM	15			С						
ATOM				0						
ATOM				N						
ATOM										
ATOM										
ATOM	20									
ATOM				С						
ATOM		-		0						
ATOM										
ATOM				CA						
ATOM 1556 C CYS 207 28.666 27.551 17.186 1.00 50.79 ATOM 1557 0 CYS 207 27.715 26.799 17.403 1.00 50.97 3.91 3.00 1558 N TYR 208 29.533 27.361 16.190 1.00 53.91 3.00 1558 N TYR 208 29.533 27.361 16.190 1.00 53.91 3.00 1500 1.00 1500 1.00 150.97 3.91 3.00 1500 1.00 1500 1.00 150.97 3.91 3.00 1500 1.00 1500	25								17.780	
ATOM 1557 O CYS 207 27.715 26.799 17.403 1.00 50.97 ATOM 1558 N TYR 208 29.533 27.361 16.190 1.00 53.91 30 ATOM 1550 CB TYR 208 29.418 26.243 15.247 1.00 56.61 ATOM 1560 CB TYR 208 30.350 26.458 14.045 1.00 57.29 ATOM 1561 CG TYR 208 30.370 25.303 13.062 1.00 57.29 ATOM 1562 CD1 TYR 208 29.307 25.090 12.182 1.00 57.54 ATOM 1563 CEL TYR 208 29.319 24.026 11.280 1.00 57.54 ATOM 1565 CEZ TYR 208 31.448 24.418 13.019 1.00 57.54 ATOM 1565 CEZ TYR 208 31.448 23.350 12.125 1.00 57.54 ATOM 1566 CZ TYR 208 31.448 23.350 12.125 1.00 57.60 ATOM 1566 CZ TYR 208 30.404 23.163 11.258 1.00 57.47 ATOM 1567 OH TYR 208 30.435 22.126 10.360 1.00 57.71 ATOM 1568 C TYR 208 29.705 24.867 15.854 1.00 57.71 ATOM 1569 O TYR 208 29.705 24.867 15.854 1.00 58.12 40 ATOM 1569 O TYR 208 28.874 23.960 15.773 1.00 58.61 ATOM 1570 N TYR 209 30.876 24.699 16.459 1.00 59.77 ATOM 1571 CA TYR 209 31.698 23.399 17.028 1.00 61.36 ATOM 1573 CG TYR 209 33.648 23.401 16.472 1.00 65.26 45 ATOM 1575 CEI TYR 209 33.648 23.401 16.472 1.00 65.26 45 ATOM 1575 CEI TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1578 CZ TYR 209 34.058 24.595 15.876 1.00 66.32 ATOM 1578 CZ TYR 209 35.062 22.193 14.906 1.00 67.31 ATOM 1578 CZ TYR 209 35.062 22.193 14.906 1.00 67.31 ATOM 1578 CZ TYR 209 35.062 22.193 14.906 1.00 67.37 50 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1578 CZ TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1581 C TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1582 N GLU 210 28.542 23.658 19.701 1.00 61.63 ATOM 1584 CB GLU 210 28.544 24.808 20.706 1.00 62.29 ATOM 1586 CD GLU 210 28.544 24.808 20.706 1.00 65.45 ATOM 1586 CD GLU 210 28.544 24.808 20.706 1.00 65.45 ATOM 1586 CD GLU 210 28.544 24.808 20.706 1.00 65.45 ATOM 1586 CD GLU 210 27.756 25.669 23.535 1.00 68.93									18.883	
ATOM 1558 N TYR 208 29.533 27.361 16.190 1.00 53.91 ATOM 1559 CA TYR 208 29.418 26.243 15.247 1.00 56.61 ATOM 1560 CB TYR 208 30.350 26.458 14.045 1.00 56.66 ATOM 1561 CG TYR 208 30.370 25.303 13.062 1.00 57.29 ATOM 1562 CD1 TYR 208 29.307 25.090 12.182 1.00 57.54 ATOM 1563 CE1 TYR 208 29.319 24.026 11.280 1.00 57.47 35 ATOM 1564 CD2 TYR 208 31.468 23.350 12.125 1.00 57.64 ATOM 1566 CZ TYR 208 31.468 23.350 12.125 1.00 57.60 ATOM 1566 CZ TYR 208 30.404 23.163 11.258 1.00 57.47 ATOM 1567 OH TYR 208 30.435 22.126 10.360 1.00 57.71 ATOM 1568 C TYR 208 29.705 24.867 15.854 1.00 57.71 ATOM 1569 O TYR 208 28.874 23.960 15.773 1.00 58.61 ATOM 1571 CA TYR 209 30.876 24.699 16.459 1.00 59.77 ATOM 1571 CA TYR 209 31.198 23.399 17.028 1.00 63.23 ATOM 1573 CG TYR 209 33.648 23.3401 16.472 1.00 65.26 45 ATOM 1574 CD1 TYR 209 34.058 24.595 15.876 1.00 66.33 ATOM 1576 CD2 TYR 209 34.959 24.594 14.807 1.00 66.32 ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 67.37 ATOM 1578 CZ TYR 209 35.355 15.876 1.00 66.79 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 ATOM 1581 O TYR 209 35.457 23.386 14.328 1.00 67.37 ATOM 1581 O TYR 209 35.457 23.386 14.328 1.00 67.37 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.32 ATOM 1584 CB GLU 210 28.524 23.658 19.701 1.00 61.63 ATOM 1586 CD GLU 210 28.524 23.658 19.701 1.00 61.63 ATOM 1586 CD GLU 210 28.524 23.658 19.701 1.00 65.29 ATOM 1586 CD GLU 210 28.524 23.658 19.701 1.00 65.48 ATOM 1586 CD GLU 210 28.524 23.658 19.701 1.00 67.38 ATOM 1586 CD GLU 210 28.524 23.658 19.701 1.00 67.38 ATOM 1586 CD GLU 210 28.524 23.658 19.701 1.00 67.38 ATOM 1586 CD GLU 210 28.524 23.658 19.701 1.00 67.38 ATOM 1586 CD GLU 210 28.524 23.658 19.701 1.00 65.43				С						
ATOM				0	CYS				17.403	
ATOM 1560 CB TYR 208 30.350 26.458 14.045 1.00 56.96 ATOM 1561 CG TYR 208 30.370 25.303 13.062 1.00 57.29 ATOM 1562 CD1 TYR 208 29.307 25.090 12.182 1.00 57.54 ATOM 1563 CE1 TYR 208 29.319 24.026 11.280 1.00 57.54 ATOM 1565 CE2 TYR 208 31.448 24.418 13.019 1.00 57.54 ATOM 1565 CE2 TYR 208 31.468 23.350 12.125 1.00 57.60 ATOM 1566 CZ TYR 208 30.404 23.163 11.258 1.00 57.47 ATOM 1567 OH TYR 208 30.404 23.163 11.258 1.00 57.47 ATOM 1568 C TYR 208 29.705 24.867 15.854 1.00 57.71 ATOM 1569 O TYR 208 28.874 23.960 15.773 1.00 58.12 ATOM 1570 N TYR 209 30.876 24.699 16.459 1.00 59.77 ATOM 1571 CA TYR 209 31.198 23.399 17.028 1.00 61.36 ATOM 1572 CB TYR 209 32.619 23.394 17.581 1.00 63.23 ATOM 1573 CG TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1575 CE1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1576 CD2 TYR 209 34.058 24.595 15.876 1.00 66.79 ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 67.31 ATOM 1578 CZ TYR 209 35.062 22.193 14.906 1.00 67.37 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.63 ATOM 1578 CZ TYR 209 36.350 23.370 13.277 1.00 67.37 50 ATOM 1578 CZ TYR 209 36.350 23.370 13.277 1.00 67.37 50 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.05 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.05 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.05 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.05 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.05 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.05 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.05 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.05 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.05 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.05 ATOM 1580 C TYR 209 30.048 21.771 1				N			29.533			i i
ATOM 1561 CG TYR 208 30.370 25.303 13.062 1.00 57.29 ATOM 1562 CD1 TYR 208 29.307 25.090 12.182 1.00 57.54 ATOM 1563 CE1 TYR 208 29.319 24.026 11.280 1.00 57.47 35 ATOM 1564 CD2 TYR 208 31.448 24.418 13.019 1.00 57.54 ATOM 1565 CE2 TYR 208 31.448 24.418 13.019 1.00 57.54 ATOM 1566 CZ TYR 208 31.448 23.350 12.125 1.00 57.60 ATOM 1566 CZ TYR 208 30.404 23.163 11.258 1.00 57.47 ATOM 1567 OH TYR 208 30.404 23.163 11.258 1.00 57.71 ATOM 1568 C TYR 208 29.705 24.867 15.854 1.00 57.71 ATOM 1569 O TYR 208 28.874 23.960 15.773 1.00 58.61 ATOM 1570 N TYR 209 30.876 24.699 16.459 1.00 59.77 ATOM 1571 CA TYR 209 31.198 23.399 17.028 1.00 61.36 ATOM 1572 CB TYR 209 32.619 23.394 17.581 1.00 63.23 ATOM 1573 CG TYR 209 33.648 23.401 16.472 1.00 65.26 ATOM 1575 CE1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1575 CE1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1576 CD2 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1577 CE2 TYR 209 34.058 24.595 15.876 1.00 66.79 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1584 CB GLU 210 28.524 23.658 19.701 1.00 65.48 ATOM 1585 CG GLU 210 28.524 23.658 19.701 1.00 65.48 ATOM 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 23.535 1.00 68.93	30									
ATOM 1562 CD1 TYR 208 29.307 25.090 12.182 1.00 57.54 ATOM 1563 CE1 TYR 208 29.319 24.026 11.280 1.00 57.47 35 ATOM 1564 CD2 TYR 208 31.448 24.418 13.019 1.00 57.54 ATOM 1565 CE2 TYR 208 31.448 24.418 13.019 1.00 57.54 ATOM 1566 CZ TYR 208 30.404 23.350 12.125 1.00 57.60 ATOM 1566 CZ TYR 208 30.404 23.163 11.258 1.00 57.47 ATOM 1567 OH TYR 208 30.435 22.126 10.360 1.00 57.47 ATOM 1568 C TYR 208 29.705 24.867 15.854 1.00 58.12 4.00 ATOM 1569 O TYR 208 28.874 23.960 15.773 1.00 58.61 ATOM 1570 N TYR 209 30.876 24.699 16.459 1.00 59.77 ATOM 1571 CA TYR 209 31.198 23.399 17.028 1.00 61.36 ATOM 1572 CB TYR 209 32.619 23.394 17.581 1.00 63.23 ATOM 1573 CG TYR 209 33.648 23.401 16.472 1.00 65.26 ATOM 1575 CE1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1576 CD2 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1577 CE2 TYR 209 34.058 24.595 15.876 1.00 66.32 ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 67.31 ATOM 1578 CZ TYR 209 35.062 22.193 14.906 1.00 66.79 ATOM 1578 CZ TYR 209 35.062 22.193 14.906 1.00 66.79 ATOM 1578 CZ TYR 209 35.062 22.193 14.906 1.00 66.737 ATOM 1580 C TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1581 O TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1583 CA GLU 210 29.523 23.938 18.680 1.00 61.05 63.45 ATOM 1584 CB GLU 210 28.524 23.658 19.701 1.00 65.45 ATOM 1584 CB GLU 210 28.524 23.658 19.701 1.00 65.45 ATOM 1586 CD GLU 210 28.524 23.658 19.701 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 23.535 1.00 68.93										
ATOM 1563 CE1 TYR 208 29.319 24.026 11.280 1.00 57.47 ATOM 1564 CD2 TYR 208 31.448 24.418 13.019 1.00 57.54 ATOM 1565 CE2 TYR 208 31.468 23.350 12.125 1.00 57.60 ATOM 1566 CZ TYR 208 30.404 23.163 11.258 1.00 57.47 ATOM 1567 OH TYR 208 29.705 24.867 15.854 1.00 57.71 ATOM 1568 C TYR 208 29.705 24.867 15.854 1.00 58.12 ATOM 1569 O TYR 208 28.874 23.960 15.773 1.00 58.12 ATOM 1570 N TYR 209 30.876 24.699 16.459 1.00 59.77 ATOM 1571 CA TYR 209 31.198 23.399 17.028 1.00 61.36 ATOM 1572 CB TYR 209 32.619 23.394 17.581 1.00 63.23 ATOM 1573 CG TYR 209 33.648 23.401 16.472 1.00 65.26 ATOM 1575 CE1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1575 CE1 TYR 209 34.959 24.594 14.807 1.00 67.31 ATOM 1577 CE2 TYR 209 34.165 22.206 15.973 1.00 65.88 ATOM 1577 CE2 TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1580 C TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1580 C TYR 209 30.048 21.771 18.336 1.00 61.63 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.63 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 28.524 23.658 19.701 1.00 61.63 ATOM 1584 CB GLU 210 28.524 23.658 19.701 1.00 61.63 ATOM 1585 CG GLU 210 28.544 24.898 20.706 1.00 62.29 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.849 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.849 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.849 21.884 1.00 65.45										
ATOM										
ATOM 1565 CE2 TYR 208 31.468 23.350 12.125 1.00 57.60 ATOM 1566 CZ TYR 208 30.404 23.163 11.258 1.00 57.47 ATOM 1567 OH TYR 208 30.435 22.126 10.360 1.00 57.71 ATOM 1568 C TYR 208 29.705 24.867 15.854 1.00 58.12 ATOM 1569 O TYR 208 28.874 23.960 15.773 1.00 58.61 ATOM 1570 N TYR 209 30.876 24.699 16.459 1.00 59.77 ATOM 1571 CA TYR 209 31.198 23.399 17.028 1.00 61.36 ATOM 1572 CB TYR 209 32.619 23.394 17.581 1.00 63.23 ATOM 1573 CG TYR 209 33.648 23.401 16.472 1.00 65.26 ATOM 1574 CD1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1575 CE1 TYR 209 34.959 24.594 14.807 1.00 67.31 ATOM 1576 CD2 TYR 209 34.165 22.206 15.973 1.00 65.88 ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 66.79 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1581 O TYR 209 30.206 22.965 18.083 1.00 67.37 50 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.05 55 ATOM 1584 CB GLU 210 28.524 23.658 19.701 1.00 65.45 ATOM 1585 CG GLU 210 28.544 24.808 20.706 1.00 62.29 ATOM 1585 CG GLU 210 28.544 24.808 20.706 1.00 65.45 ATOM 1585 CG GLU 210 28.544 24.808 20.706 1.00 65.45 ATOM 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.38 ATOM 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1587 OE1 GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1587 OE1 GLU 210 27.539 24.499 23.535 1.00 68.93										
ATOM 1566 CZ TYR 208 30.404 23.163 11.258 1.00 57.47 ATOM 1567 OH TYR 208 30.435 22.126 10.360 1.00 57.71 ATOM 1568 C TYR 208 29.705 24.867 15.854 1.00 58.12 40 ATOM 1569 O TYR 208 28.874 23.960 15.773 1.00 58.61 ATOM 1570 N TYR 209 30.876 24.699 16.459 1.00 59.77 ATOM 1571 CA TYR 209 31.198 23.399 17.028 1.00 61.36 ATOM 1572 CB TYR 209 32.619 23.394 17.581 1.00 63.23 ATOM 1573 CG TYR 209 33.648 23.401 16.472 1.00 65.26 ATOM 1574 CD1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1575 CE1 TYR 209 34.959 24.594 14.807 1.00 67.31 ATOM 1576 CD2 TYR 209 34.165 22.206 15.973 1.00 65.88 ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 66.79 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1583 CA GLU 210 29.523 23.938 18.680 1.00 61.19 ATOM 1584 CB GLU 210 29.523 23.938 18.680 1.00 61.05 65.45 ATOM 1585 CG GLU 210 28.544 24.808 20.706 1.00 62.29 ATOM 1584 CB GLU 210 28.544 24.808 20.706 1.00 62.29 ATOM 1585 CG GLU 210 28.544 24.808 20.706 1.00 65.45 ATOM 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1587 OE1 GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1587 OE1 GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1587 OE1 GLU 210 27.539 24.499 23.535 1.00 68.93	35									
ATOM 1567 OH TYR 208 30.435 22.126 10.360 1.00 57.71 ATOM 1568 C TYR 208 29.705 24.867 15.854 1.00 58.12 40 ATOM 1569 O TYR 208 28.874 23.960 15.773 1.00 58.61 ATOM 1570 N TYR 209 30.876 24.699 16.459 1.00 59.77 ATOM 1571 CA TYR 209 31.198 23.399 17.028 1.00 61.36 ATOM 1572 CB TYR 209 32.619 23.394 17.581 1.00 63.23 ATOM 1573 CG TYR 209 33.648 23.401 16.472 1.00 65.26 45 ATOM 1574 CD1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1575 CE1 TYR 209 34.959 24.594 14.807 1.00 67.31 ATOM 1576 CD2 TYR 209 34.165 22.206 15.973 1.00 65.88 ATOM 1577 CE2 TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 28.524 23.658 19.701 1.00 62.29 ATOM 1584 CB GLU 210 28.524 23.658 19.701 1.00 62.29 ATOM 1585 CG GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1585 CG GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1587 OE1 GLU 210 27.716 25.463 23.050 1.00 67.38										
ATOM 1568 C TYR 208 29.705 24.867 15.854 1.00 58.12 40 ATOM 1569 O TYR 208 28.874 23.960 15.773 1.00 58.61 ATOM 1570 N TYR 209 30.876 24.699 16.459 1.00 59.77 ATOM 1571 CA TYR 209 31.198 23.399 17.028 1.00 61.36 ATOM 1572 CB TYR 209 32.619 23.394 17.581 1.00 63.23 ATOM 1573 CG TYR 209 33.648 23.401 16.472 1.00 65.26 45 ATOM 1574 CD1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1575 CE1 TYR 209 34.959 24.594 14.807 1.00 67.31 ATOM 1576 CD2 TYR 209 34.165 22.206 15.973 1.00 65.88 ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 66.79 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.37 51 ATOM 1580 C TYR 209 30.246 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 29.523 23.938 18.680 1.00 61.05 55 ATOM 1584 CB GLU 210 28.544 24.808 20.706 1.00 62.29 ATOM 1585 CG GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.38 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38										
40 ATOM 1569 O TYR 208 28.874 23.960 15.773 1.00 58.61 ATOM 1570 N TYR 209 30.876 24.699 16.459 1.00 59.77 ATOM 1571 CA TYR 209 31.198 23.399 17.028 1.00 61.36 ATOM 1572 CB TYR 209 32.619 23.394 17.581 1.00 63.23 ATOM 1573 CG TYR 209 33.648 23.401 16.472 1.00 65.26 45 ATOM 1574 CD1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1575 CE1 TYR 209 34.959 24.594 14.807 1.00 67.31 ATOM 1576 CD2 TYR 209 34.165 22.206 15.973 1.00 65.88 ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 66.79 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.05 65.45 ATOM 1584 CB GLU 210 28.524 23.658 19.701 1.00 62.29 ATOM 1586 CD GLU 210 28.444 24.808 20.706 1.00 66.43 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 67.38 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93										
ATOM 1570 N TYR 209 30.876 24.699 16.459 1.00 59.77 ATOM 1571 CA TYR 209 31.198 23.399 17.028 1.00 61.36 ATOM 1572 CB TYR 209 32.619 23.394 17.581 1.00 63.23 ATOM 1573 CG TYR 209 33.648 23.401 16.472 1.00 65.26 45 ATOM 1574 CD1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1575 CE1 TYR 209 34.959 24.594 14.807 1.00 67.31 ATOM 1576 CD2 TYR 209 34.165 22.206 15.973 1.00 65.88 ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 66.79 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.05 55 ATOM 1584 CB GLU 210 29.523 23.938 18.680 1.00 61.05 55 ATOM 1585 CG GLU 210 28.524 23.658 19.701 1.00 62.29 ATOM 1586 CD GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93	40									
ATOM 1571 CA TYR 209 31.198 23.399 17.028 1.00 61.36 ATOM 1572 CB TYR 209 32.619 23.394 17.581 1.00 63.23 ATOM 1573 CG TYR 209 33.648 23.401 16.472 1.00 65.26 45 ATOM 1574 CD1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1575 CE1 TYR 209 34.959 24.594 14.807 1.00 67.31 ATOM 1576 CD2 TYR 209 34.165 22.206 15.973 1.00 65.88 ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 66.79 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.32 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1584 CB GLU 210 28.524 23.658 19.701 1.00 62.29 ATOM 1585 CG GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93	40									
ATOM 1572 CB TYR 209 32.619 23.394 17.581 1.00 63.23 ATOM 1573 CG TYR 209 33.648 23.401 16.472 1.00 65.26 45 ATOM 1574 CD1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1575 CE1 TYR 209 34.959 24.594 14.807 1.00 67.31 ATOM 1576 CD2 TYR 209 34.165 22.206 15.973 1.00 65.88 ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 66.79 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.19 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 28.524 23.658 19.701 1.00 61.05 55 ATOM 1584 CB GLU 210 28.524 23.658 19.701 1.00 62.29 ATOM 1585 CG GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93										
ATOM 1573 CG TYR 209 33.648 23.401 16.472 1.00 65.26 ATOM 1574 CD1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1575 CE1 TYR 209 34.959 24.594 14.807 1.00 67.31 ATOM 1576 CD2 TYR 209 34.165 22.206 15.973 1.00 65.88 ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 66.79 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.19 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1584 CB GLU 210 28.524 23.658 19.701 1.00 61.05 55 ATOM 1585 CG GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93										
45 ATOM 1574 CD1 TYR 209 34.058 24.595 15.876 1.00 66.13 ATOM 1575 CE1 TYR 209 34.959 24.594 14.807 1.00 67.31 ATOM 1576 CD2 TYR 209 34.165 22.206 15.973 1.00 65.88 ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 66.79 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.19 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 29.523 23.938 18.680 1.00 61.65 55 ATOM 1584 CB GLU 210 28.524 23.658 19.701 1.00 62.29 ATOM 1585 CG GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93										
ATOM 1575 CE1 TYR 209 34.959 24.594 14.807 1.00 67.31 ATOM 1576 CD2 TYR 209 34.165 22.206 15.973 1.00 65.88 ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 66.79 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.19 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 29.523 23.938 18.680 1.00 61.05 55 ATOM 1584 CB GLU 210 28.524 23.658 19.701 1.00 62.29 ATOM 1585 CG GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1586 CD GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93	A.E.									
ATOM 1576 CD2 TYR 209 34.165 22.206 15.973 1.00 65.88 ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 66.79 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.19 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 28.524 23.658 19.701 1.00 61.05 55 ATOM 1584 CB GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93	45									
ATOM 1577 CE2 TYR 209 35.062 22.193 14.906 1.00 66.79 ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.19 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 28.524 23.658 19.701 1.00 61.05 55 ATOM 1584 CB GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93										
ATOM 1578 CZ TYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.19 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 28.524 23.658 19.701 1.00 61.05 55 ATOM 1584 CB GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93										
50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.19 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 28.524 23.658 19.701 1.00 61.05 55 ATOM 1584 CB GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93										
ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.19 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 28.524 23.658 19.701 1.00 61.05 55 ATOM 1584 CB GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93	50									
ATOM 1581 O TYR 209 30.048 21.771 18.336 1.00 61.19 ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 28.524 23.658 19.701 1.00 61.05 55 ATOM 1584 CB GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93	50									
ATOM 1582 N GLU 210 29.523 23.938 18.680 1.00 61.63 ATOM 1583 CA GLU 210 28.524 23.658 19.701 1.00 61.05 55 ATOM 1584 CB GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93										
ATOM 1583 CA GLU 210 28.524 23.658 19.701 1.00 61.05 55 ATOM 1584 CB GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OEI GLU 210 28.865 25.609 23.535 1.00 68.93										
55 ATOM 1584 CB GLU 210 28.444 24.808 20.706 1.00 62.29 ATOM 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OEI GLU 210 28.865 25.609 23.535 1.00 68.93										
ATOM 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OEI GLU 210 28.865 25.609 23.535 1.00 68.93										
ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93	22									
ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93										
AIOM 1300 UEZ GEU ZIU Z0./U/ 20.005 Z3.488 1.00 6/.92										
		ATUM	TORR	UE2	GTO	210	20.707	20.065	23.488	1.00 0/.92

	Figure
	HIODITA

	MOTA	1589	С	GLU	210	27.175	23.459	19.026		60.04
	ATOM	1590	0	GLU	210	26.255	22.901	19.618	1.00	59.93
	ATOM	1591	N	ASP	211	27.073	23.920	17.780	1.00	58.82
	ATOM	1592	CA	ASP	211	25.849	23.797	16.984		57.80
_										58.16
5	ATOM	1593	CB	ASP	211	24.804	24.824	17.441		
	MOTA	1594	CG.	ASP	211	23.504	24.730	16.653		58.25
	MOTA	1595	OD1	ASP	211	22.490	25.299	17.111	1.00	57.88
	MOTA	1596	OD2	ASP	211	23.495	24.096	15.572	1.00	58.65
	ATOM	1597	С	ASP	211	26.173	23.993	15.503	1.00	56.54
10	ATOM	1598	Ō	ASP	211	26.351	25.116	15.037		56.17
••	ATOM	1599	N	HIS	212	26.234	22.884	14.773		55.81
		1600				26.577	22.884			55.26
	ATOM		CA	HIS	212			13.351		
	ATOM	1601	СВ	HIS	212	26.699	21.442	12.852		57.87
	MOTA	1602	CG	HIS	212	27.816	20.678	13.493		61.52
15	MOTA	1603	CD2	HIS	212	27.815	19.527	14.205	1.00	62.63
	ATOM	1604	ND1	HIS	212	29.127	21.110	13.460	1.00	62.80
	ATOM	1605	CE1	HIS	212	29.884	20.258	14.127	1.00	63.70
	ATOM	1606		HIS	212	29.114	19.288	14.590	1.00	63.71
	ATOM	1607	C	HIS	212	25.665	23.656	12.412		53.29
20							23.883			52.77
20	MOTA	1608	0	HIS	212	26.014		11.251		
	MOTA	1609	N	GLN	213	24.496	24.058	12.895		51.08
	MOTA	1610	CA	GLN	213	23.579	24.790	12.037		48.22
	ATOM	1611	CB	GLN	213	22.135	24.347	12.298		49.39
	ATOM	1612	CG	GLN	213	21.957	22.839	12.130	1.00	50.76
25	MOTA	1613	CD	GLN	213	20.507	22.410	11.965	1.00	51.82
	ATOM	1614	OE1		213	19.653	22.721	12.803	1.00	52.48
	ATOM	1615	NE2	GLN	213	20.223	21.679	10.883		51.72
	ATOM	1616	C	GLN	213	23.746	26.289	12.202		45.19
										45.00
	ATOM	1617	0	GLN	213	22.978	27.077	11.654		
30	ATOM	1618	N	CYS	214	24.759	26.686	12.957		41.87
	ATOM	1619	CA	CYS	214	25.015	28.105	13.122		39.08
	MOTA	1620	CB	CYS	214	25.907	28.386	14.332		39.18
	MOTA	1621	SG	CYS	214	26.281	30.175	14.542	1.00	40.32
	MOTA	1622	С	CYS	214	25.743	28.530	11.859	1.00	36.43
35	MOTA	1623	0	CYS	214	26.915	28.214	11.689	1.00	36.06
	ATOM	1624	N	GLU	215	25.046	29.223	10.967		33.00
	ATOM	1625	CA	GLU	215	25.664	29.672	9.736		30.60
	ATOM	1626	CB	GLU	215	25.054	28.960	8.541		31.95
					215	25.289	27.466	8.561		33.57
	ATOM	1627	CG	GLU						
40	MOTA	1628	CD	GLU	215	24.973	26.827	7.233		35.80
	MOTA	1629		GLU	215	25.719	27.094	6.264		37.32
	ATOM	1630	OE2	GLU	215	23.978	26.064	7.156		37.21
	ATOM	1631	C	GLU	215	25.518	31.162	9.563		28.84
	MOTA	1632	0	GLU	215	25.665	31.687	8.459	1.00	28.39
45	ATOM	1633	N	VAL	216	25.243	31.847	10.669	1.00	26.45
	MOTA	1634	CA	VAL	216	25.083	33.291	10.648		23.67
	ATOM	1635	СВ	VAL	216	23.589	33.706	10.607		23.44
								10.492		22.72
	MOTA	1636		VAL	216	23.485	35.214			
	MOTA	1637		VAL	216	22.875	33.031	9.449		22.30
50	MOTA	1638	С	VAL	216	25.671	33.858	11.921		22.20
	MOTA	1639	0	VAL	216	25.444	33.328	13.006		22.86
	ATOM	1640	N	GLY	217	26.423	34.939	11.793	1.00	21.40
	MOTA	1641	CA	GLY	217	26.997	35.554	12.965	1.00	21.14
	ATOM	1642	C	GLY	217	26.524	36.994	13.022		22.30
55	ATOM	1643	Ö	GLY	217	26.432	37.677	11.983		22.05
"							37.454	14.228		23.03
	ATOM	1644	N	MSE	218	26.201				23.03
	ATOM	1645	CA	MSE	218	25.748	38.815	14.414		
	MOTA	1646	CB	MSE	218	24.208		14.445		25.98
	MOTA	1647	CG	MSE	218	23.647	40.306	14.646	1.00	28.99

Figur

	ATOM	1648	SE	MSE	218	21.806	40.486	14.543	1.00	35.34
	ATOM	1649	CE	MSE	218	21.273	39.804	16.207	1.00	31.95
	ATOM	1650	C	MSE	218	26.320	39.405	15.694		21.99
	MOTA	1651	0	MSE	218	26.425	38.738	16.724	1.00	22.34
5	MOTA	1652	N	ILE	219	26.694	40.670	15.606	1.00	21.28
	ATOM	1653	CA	ILE	219	27.240	41.402	16.720		20.85
	ATOM	1654	CB	ILE	219	28.702	41.840	16.449	1.00	20.74
	ATOM	1655	CG2	ILE	219.	29.164	42.757	17.558		19.65
	MOTA	1656	CG1	ILE	219	29.623	40.627	16.335		19.32
10	ATOM	1657	CD1	ILE	219	29.656	39.770	17.596		20.63
	ATOM	1658	С	ILE	219	26.413	42.676	16.838		21.47
	ATOM	1659	0	ILE	219	26.297	43.431	15.868		21.30
	ATOM	1660	N	VAL	220	25.823	42.908	18.003		21.91
	ATOM	1661	CA	VAL	220	25.059	44.135	18.224		22.49
15	ATOM	1662	CB	VAL	220	23.563	43.873	18.479		22.04
	ATOM	1663	CG1	VAL	220	22.815	45.183	18.425		21.50
	ATOM	1664	CG2	VAL	220	23.007	42.901	17.463		22.03
	ATOM	1665	С	VAL	220	25.650	44.775	19.477		23.27
	ATOM	1666	0	VAL	220	25.095	44.642	20.575		23.94
20	ATOM	1667	N	GLY	221	26.795	45.436	19.312		22.78
	ATOM	1668	CA	GLY	221	27.448	46.063	20.443		22.86
	ATOM	1669	С	GLY	221	27.728	47.509	20.138		23.75
	ATOM	1670	0	GLY	221	26.816	48.264	19.828		25.09
	ATOM	1671	N	THR	222	28.988	47.906	20.233		24.06
25	ATOM	1672	CA	THR	222	29.375	49.277	19.939		24.06
	ATOM	1673	CB	THR	222	30.893	49.423	19.960	1.00	24.59
	ATOM	1674	OG1	THR	222	31.377	49.051	21.258		26.00
•	ATOM	1675	CG2	THR	222	31.299	50.860	19.640		24.67
	ATOM	1676	С	THR	222	28.888	49.530	18.533		24.09
30	ATOM	1677	0	THR	222	28.248	50.530	18.259		24.72
	ATOM	1678	N	GLY	223	29.211	48.597	17.646	1.00	24.40
	MOTA	1679	CA	GLY	223	28.790	48.686	16.262		24.65
	MOTA	1680	С	GLY	223	27.797	47.560	16.020	1.00	25.05
	MOTA	1681	0	GLY	223	27.478	46.779	16.936	1.00	25.80
35	MOTA	1682	N	CYS	224	27.298	47.453	14.798	1.00	24.73
	ATOM	1683	CA	CYS	224	26.338	46.405	14.504	1.00	24.18
	MOTA	1684	CB	CYS	224	24.928	46.958	14.682	1.00	24.47
	ATOM	1685	SG	CYS	224	23.640	45.925	13.998	1.00	25.11
	MOTA	1686	C	CYS	224	26.550	45.895	13.085	1.00	23.65
40	MOTA	1687	0	CYS	224	26.618	46.683	12.144	1.00	24.07
	MOTA	1688	N	ASN	225	26.650	44.578	12.941		23.06
	MOTA	1689	CA	ASN	225	26.883	43.963	11.638	1.00	23.27
	MOTA	1690	СВ	ASN	225	28.346	44.230	11.210		26.15
	MOTA	1691	CG	ASN	225	28.831	43.296	10.098	1.00	27.94
45	MOTA	1692		ASN	225	28.271	43.265	8.997	1.00	29.23
	MOTA	1693		ASN	225	29.878	42.524	10.393	1.00	28.62
	MOTA	1694	С	ASN	225	26.603	42.459	11.740	1.00	21.80
	MOTA	1695	0	ASN	225	26.291	41.954	12.827	1.00	20.54
	MOTA	1696	N	ALA	226	26.709	41.759	10.610	1.00	19.99
50	MOTA	1697	CA	ALA	226	26.478	40.322	10.566	1.00	19.47
	MOTA	1698	CB	ALA	226	24.994	40.032	10.443	1.00	20.99
	MOTA	1699	С	ALA	226	27.194	39.723	9.378	1.00	18.72
	MOTA	1700	0	ALA	226	27.529	40.428	8.415	1.00	17.97
	MOTA	1701	N	CYS	227	27.404	38.415	9.439	1.00	18.36
55	MOTA	1702	CA	CYS	227	28.077	37.675	8.368	1.00	19.35
	MOTA	1703	CB	CYS	227	29.523	37.396	8.751		18.42
	MOTA	1704	SG	CYS	227	29.556	36.326	10.207	1.00	20.13
	MOTA	1705	С	CYS	227	27.331	36.352	8.291	1.00	19.81
	ATOM	1706	0	CYS	227	26.702	35.951	9.280	1.00	20.62

- Fi	gu	re	4

	MOTA	1707	N	TYR	228	27.402	35.668	7.148	1.00 20.49
	MOTA	1708	CA	TYR	228	26.705	34.384	6.989	1.00 20.56
	MOTA	1709	СВ	TYR	228	25.242	34.633	6.624	1.00 17.90
	ATOM	1710	CG	TYR	228	25.096	35.134	5.204	1.00 15.65
5	ATOM	1711	CD1		228	24.922	34.249	4.145	1.00 15.81
•	ATOM	1712			228	24.885	34.701	2.823	1.00 15.89
		1712			228		36.483	4.913	1.00 15.28
	ATOM			TYR		25.221			
	MOTA	1714	CE2	TYR	228	25.186	36.949	3.601	1.00 16.08
	MOTA	1715	CZ	TYR	228	25.022	36.051	2.564	1.00 16.76
10	MOTA	1716	ОН	TYR	228	25.033	36.505	1.263	1.00 18.93
	MOTA	1717	С	TYR	228	27.345	33.539	5.887	1.00 22.19
	MOTA	1718	0	TYR	228	28.174	34.024	5.112	1.00 21.49
	MOTA	1719	N	MSE	229	26.928	32.278	5.808	1.00 24.74
	MOTA	1720	CA	MSE	229	27.438	31.349	4.808	1.00 26.69
15	MOTA	1721	CB	MSE	229	27.342	29.918	5.339	1.00 28.61
	MOTA	1722	CG	MSE	229	28.167	29.637	6.598	1.00 32.37
	MOTA	1723	SE	MSE	229	29.987	30.056	6.460	1.00 41.17
	ATOM	1724	CE	MSE	229	30.544	28.874	5.098	1.00 36.30
	ATOM	1725	Ċ	MSE	229	26.663	31.470	3.481	1.00 27.83
20	ATOM	1726	Ō	MSE	229	25.535	30.994	3.363	1.00 28.02
	ATOM	1727	N	GLU	230	27.282	32.109	2.492	1.00 29.19
	ATOM	1728	CA	GLU	230	26.688	32.296	1.172	1.00 29.81
	ATOM	1729	CB	GLU	230	27.165	33.623	0.577	1.00 30.83
	ATOM	1730	CG	GLU	230	26.685	33.922	-0.843	1.00 32.33
25	ATOM	1731	CD	GLU	230	25.173	33.825	-0.989	1.00 32.33
23	ATOM	1731		GLU	230	24.663	32.698	-1.222	1.00 34.43
	ATOM	1732	OE2		230	24.497	34.878	-0.858	1.00 34.43
				GLU					
	ATOM	1734	C	GLU	230	27.127	31.143	0.282	1.00 30.91
20	ATOM	1735	0	GLU	230	27.958	30.319	0.685	1.00 30.80
30	ATOM	1736	N	GLU	231	26.562	31.078	-0.923	1.00 32.47
	ATOM	1737	CA	GLU	231	26.885	30.024	-1.883	1.00 34.04
	MOTA	1738	CB	GLU	231	25.668	29.696	-2.745	1.00 34.21
	MOTA	1739	CG	GLU	231	24.408	29.396	-1.979	1.00 34.89
	ATOM	1740	CD	GLU	231	24.452	28.054	-1.296	1.00 36.36
35	MOTA	1741		GLU	231	24.745	27.064	-2.002	1.00 36.80
	ATOM	1742		GLU	231	24.182	27.981	-0.067	1.00 36.72
	ATOM	1743	С	GLU	231	27.997	30.550	-2.777	1.00 35.65
	MOTA	1744	0	GLU	231	27.889	31.663	-3.304	1.00 35.42
	MOTA	1745	N	MSE	232	29.060	29.758	-2.952	1.00 37.13
40	MOTA	1746	ÇA	MSE	232	30.188	30.181	-3.780	1.00 38.19
	ATOM	1747	CB	MSE	232	31.191	29.036	-3.935	1.00 41.27
	MOTA	1748	CG	MSE	232	32.195	28.912	-2.765	1.00 45.40
	MOTA	1749	SE	MSE	232	33.237	30.431	-2.467	1.00 52.07
	ATOM	1750	CE	MSE	232	34.286	30.483	-3.969	1.00 48.20
45	ATOM	1751	С	MSE	232	29.694	30.664	-5.137	1.00 38.02
	ATOM	1752	0	MSE	232	30.179	31.656	-5.678	1.00 36.84
	MOTA	1753	N	GLN	233	28.698	29.970	-5.668	1.00 38.35
	MOTA	1754	CA	GLN	233	28.110	30.331	-6.948	1.00 38.79
	ATOM	1755	CB	GLN	233	26.954	29.373	-7.257	1.00 40.19
50	ATOM	1756	CG	GLN	233	25.658	30.041	-7.672	1.00 41.80
50	ATOM	1757	CD	GLN	233	24.460	29.119	-7.510	1.00 43.22
	ATOM	1758		GLN	233	24.226	28.582	-6.424	1.00 44.27
	ATOM	1759	NE2		233	23.688		-8.586	1.00 43.87
		1760	C		233		28.936 31.777	-6.936	1.00 43.87
55	ATOM			GLN		27.615			
<i>)</i>	ATOM	1761	0	GLN	233	27.495	32.407	-7.984	1.00 39.07
	MOTA	1762	N	ASN	234	27.329	32.313	-5.753	1.00 37.79
	MOTA	1763	CA	ASN	234	26.840	33.687	-5.668	1.00 36.56
	ATOM	1764	CB	ASN		25.657	33.771	-4.706	1.00 37.03
	ATOM	1765	CG	ASN	234	24.505	32.864	-5.119	1.00 36.83

\sim	F	igure 4				34/63			
	MOTA	1766	OD1	ASN	234	24.152	32.793	-6.299	1.00 36.50
	ATOM	1767	ND2		234	23.910			1.00 36.35
	ATOM	1768	C	ASN	234	27.910	32.173 34.676	-4.146 -5.250	1.00 36.25
	ATOM	1769	Ö	ASN	234	27.712	35.890		1.00 35.71
5	ATOM	1770	N	VAL	235	29.069	34.156	-5.301 -4.837	1.00 35.11
•	ATOM	1771	CA	VAL	235	30.177	35.009		1.00 33.22
	MOTA	1772	CB	VAL	235	31.056	34.321	-4.439 -3.384	
	ATOM	1773		VAL	235	31.036	35.343	-2.717	1.00 34.01 1.00 32.35
	ATOM	1774		VAL	235	30.185	33.576	-2.376	1.00 32.63
10	ATOM	1775	C	VAL	235	30.103	35.209	-5.706	1.00 32.03
	ATOM	1776	ō	VAL	235	32.011	34.548	-5.910	1.00 35.65
	MOTA	1777	N	GLU	236	30.556	36.125	-6.556	1.00 33.03
	MOTA	1778	CA	GLU	236	31.220	36.383	-7.830	1.00 39.52
	ATOM	1779	CB	GLU	236	30.337	37.284	-8.701	1.00 39.67
15	MOTA	1780	CG	GLU	236	29.242	36.539	-9.448	1.00 41.92
	ATOM	1781	CD	GLU	236	28.214	37.467	-10.072	1.00 42.58
	ATOM	1782	OE1	GLU	236	28.607	38.529	-10.630	1.00 42.67
	MOTA	1783	OE2	GLU	236	27.009	37.121	-10.011	1.00 43.02
	MOTA	1784	С	GLU	236	32.631	36.961	-7.782	1.00 40.97
20	MOTA	1785	0	GLU	236	33.328	36.967	-8.803	1.00 42.27
	MOTA	1786	N	LEU	237	33.064	37.457	-6.628	1.00 41.32
	ATOM	1787	CA	LEU	237	34.408	38.017	-6.538	1.00 41.63
	ATOM	1788	CB	LEU	237	34.438	39.163	-5.537	1.00 41.68
25	ATOM	1789	CG	LEU	237	33.545	40.367	-5.820	1.00 42.50
25	ATOM	1790		LEU	237	33.630	41.301	-4.623	1.00 44.17
	ATOM ATOM	1791		LEU	237	33.984	41.101	-7.085	1.00 42.46
	ATOM	1792 1793	С 0	LEU	237 237	35.454	36.970	-6.148	1.00 42.43
	ATOM	1794	Ŋ	VAL	237	36.636 35.019	37.294 35.724	-6.010	1.00 42.30
30	ATOM	1795	CA	VAL	238	35.922	34.629	-5.967 -5.606	1.00 42.96 1.00 43.89
•	ATOM	1796	СВ	VAL	238	35.922	34.380	-4.097	1.00 42.33
	ATOM	1797		VAL	238	36.722	33.136	-3.769	1.00 41.32
	ATOM	1798		VAL	238	36.503	35.578	-3.385	1.00 42.74
	ATOM	1799	С	VAL	238	35.520	33.337	-6.313	1.00 45.65
35	ATOM	1800	0	VAL	238	34.755	32.555	-5.770	1.00 46.15
	ATOM	1801	N	GLU	239	36.069	33.116	-7.510	1.00 47.60
	MOTA	1802	CA	GLU	239	35.769	31.947	-8.346	1.00 48.96
	MOTA	1803	CB	GLU	239	36.819	31.793	-9.448	1,00 51.17
••	ATOM	1804	CG	GLU	239	37.000		-10.290	1.00 53.95
40	ATOM	1805	CD	GLU	239	37.817	34.066	-9.570	1.00 56.27
	ATOM	1806		GLU	239	39.070	33.982	-9.637	1.00 58.40
	ATOM	1807		GLU	239	37.211	34.950	-8.918	1.00 57.25
	ATOM ATOM	1808 1809	C O	GLU	239	35.599	30.594	-7.675	1.00 48.87
45	ATOM	1810	Ŋ	GLU GLY	239 240	36.272 34.705	30.274	-6.701	1.00 48.25
43	MOTA	1811	CA	GLY		34.703	29.797 28.469	-8.252 -7.750	1.00 49.09 1.00 50.05
	ATOM	1812	C	GLY	240	32.967	28.418	-7.730	1.00 50.03
	ATOM	1813	0	GLY	240	32.482	29.379	-6.712	1.00 52.00
	ATOM	1814	N	ASP	241	32.259	27.332	-7.580	1.00 51.38
50	ATOM	1815	CA	ASP	241	30.882	27.214	-7.127	1.00 51.30
	MOTA	1816	СВ	ASP	241	29.963	26.766	-8.252	1.00 52.95
	MOTA	1817	CG	ASP	241	30.186	27.534	-9.529	1.00 53.84
	MOTA	1818		ASP	241	30.046	28.779	-9.522	1.00 53.20

ATOM

ATOM

ATOM

MOTA

ATOM

55 ATOM

1819 OD2 ASP

CA

ASP

ASP

GLU

GLU

GLU

1820 C

1821 0

1822 N

1824 CB

1823

241

241

241

242

242

242

30.496 26.875 -10.546

30.924 26.122 -6.083

29.898 25.563 -5.701

32.325 24.760 -4.646

25.816 -5.626

33.785 24.299 -4.670 1.00 55.19

32.131

1.00 53.97

1.00 52.90

1.00 53.59

1.00 53.45

1.00 53.65

\bigcirc	Figu	re 4									
\bigcup	6**-		•			35/63					
	ATOM 1	825 C	3 G	LU	242	34.056	23.062	-3.826	1.00	57.57	
		826 CI			242	35.527	22.672	-3.811		58.85	
			31 G		242	36.063	22.340	-4.893		59.63	
_			E2 G		242	36.143	22.701	-2.717		59.85	
5		829 C			242	31.933	25.159	-3.229		52.66	
		830 0			242	32.469	26.113	-2.661		53.15	
		831 N 832 C			243 243	30.987	24.418	-2.665		51.11	
		833 C			243	30.545 30.200	24.673 26.110	-1.305 -0.967		48.74 46.87	
10		834 0			243	29.879	26.110	-1.850		46.49	
••		835 N			244	30.288	26.421	0.326		44.89	
		836 C			244	29.967	27.748	0.838		43.27	
		837 CI			244	28.852	27.639	1.873		42.24	
	ATOM 1	838 C	3 A	ARG	244	27.571	27.040	1.339	1.00	42.16	
15		839 CI			244	26.442	27.153	2.356		41.95	
		840 N			244	25.254	26.425	1.925		39.30	
		841 C			244	24.702	25.446	2.630		39.15	
			HI A		244	25.236	25.085	3.794		38.10	
20		843 M 844 C	H2 A		244 244	23.627	24.821 28.524	2.168		38.77	
20		845 O		ARG ARG	244	31.121 32.089	27.945	1.465 1.958		42.34 41.77	
		846 N			245	30.990	29.849	1.446		42.07	
		847 C		1SE	245	31.977	30.745	2.042		41.32	
		848 C		1SE	245	32.846	31.391	0.974		42.25	
25		849 C		4SE	245	33.870	32.345	1.566		44.07	
	ATOM 1	850 S	E M	ISE	245	34.884	33.206	0.332	1.00	47.16	
		851 C		ise	245	36.149	31.909	-0.005		44.40	
		852 C		ISE	245	31.324	31.863	2.863		40.37	
20		853 O		1SE	245	30.525	32.644	2.338		40.13	
30		854 N 855 C		CYS CYS	246 246	31.664	31.940 32.990	4.148 5.001		38.95 37.00	
		856 C		CYS	246	31.125 31.794	32.953	6.376		37.69	
•		857 S		CYS	246	31.231	34.229	7.567		38.96	
		858 C		CYS	246	31.422	34.320	4.311		35.82	
35		859 O		CYS	246	32.484	34.497	3.706		34.54	
	ATOM 1	860 N	7	JAL	247	30.466	35.240	4.388	1.00	34.51	
		861 C		JAL	247	30,591	36.566	3.782		32.46	
		862 C		/AL	247	29.609	36.751	2.588		32.34	
40			G1 \		247	29.709	38.170	2.038		31.78	
40		864 C	G2 Ţ	VAL VAL	247 247	29.930 30.239	35.750 37.580	1.486 4.863		32.04 32.03	
		866 O		VAL	247	29.291	37.377	5.628		33.28	
		867 N		ASN	248	31.011	38.657	4.931		29.34	
		868 C		ASN	248	30.792	39.699	5.917		27.36	
45	ATOM 1	869 C	B 1	ASN	248	32.147	40.219	6.401	1.00	28.42	
•		870 C		ASN	248	32.031	41.471	7.253	1.00	29.34	
			D1 <i>I</i>		248	30.975	41.774	7.816		29.82	
			D2 <i>I</i>		248	33.141	42.201	7.374		29.54	
		873 C		ASN	248	29.983	40.798	5.257		27.10	
50		874 0		ASN	248	30.531	41.618	4.503		26.98	
		875 N		THR	249	28.679 27.778	40.823	5.544		26.01 23.85	
		876 C 877 C		THR THR	249 249	26.325	41.809 41.634	4.937 5.424		23.85	
			G1 :		249	26.323	42.100	6.775		25.10	
55			G2 :		249	25.899	40.156	5.380		22.15	
		.880 C		THR	249	28.208	43.226	5.270	1.00	24.20	
	ATOM 1	881 0		THR	249	28.023	44.143	4.467		23.38	
		.882 N		GLU	250	28.777	43.406	6.462		24.31	
	ATOM 1	.883 C	A (GLU	250	29.219	44.733	6.891	1.00	23.61	

Figure 4 36/63 MOTA 1884 CB GLU 250 30.446 45.145 6.060 1.00 23.87 ATOM 1885 CG GLU 250 31.242 46.362 6.571 1.00 25.94 MOTA 1886 GLU 250 32.237 46.041 7.700 1.00 25.83 CD MOTA 1887 OE1 GLU 250 32.728 44.893 7.813 1.00 25.67 MOTA 1888 OE2 GLU 250 32.552 46.960 8.473 1.00 26.46 MOTA 1889 C 250 28.003 45.624 6.589 1.00 23.30 GLU MOTA 1890 0 GLU 250 28.110 46.648 5.896 1.00 23.33 MOTA 1891 N TRP 251 26.841 45.208 7.096 1.00 22.28 1.00 22.36 MOTA 1892 CA TRP 251 25.609 45.940 6.840 1.00 20.65 **ATOM** 1893 24.376 45.077 CB TRP 251 7.133 **ATOM** 1894 TRP 44.726 CG 251 24.133 8.543 1.00 18.29 MOTA 1895 CD2 TRP 23.308 43.648 251 9.016 1.00 16.51 23.279 ATOM 1896 CE2 TRP 251 43.725 10.424 1.00 15.08 ATOM 1897 CE3 TRP 251 22.589 42.635 8.384 1.00 16.17 ATOM 1898 CD1 TRP 251 24.565 1.00 17.71 45.395 9.652 ATOM 1899 NE1 TRP 251 24.051 44.795 1.00 17.10 10.795 MOTA 1900 CZ2 TRP 251 22.567 42.830 11.201 1.00 14.23 ATOM 1901 CZ3 TRP 251 21.872 41.737 9.171 1.00 15.72 MOTA 1902 CH2 TRP 21.869 41.842 251 10.559 1.00 14.23 20 ATOM 1903 TRP 25.445 47.283 1.00 23.49 С 251 7.523 1.00 23.95 MOTA 1904 0 TRP 251 24.541 48.044 7.167 **ATOM** 1905 N GLY 252 26.302 47.579 8.500 1.00 24.44 ATOM 1906 CA GLY 252 26.214 48.857 9.179 1.00 25.17 **ATOM** 1907 С GLY 252 26.195 49.979 8.152 1.00 26.19 25 1908 51.086 **ATOM** 0 GLY 252 25.715 8.429 1.00 26.19 MOTA 1909 26.714 49.675 1.00 26.83 N ALA 253 6.960 MOTA 1910 CA ALA 253 26.791 50.622 5.851 1.00 27.86 27.822 50.148 ATOM 1911 CB ALA 253 4.851 1.00 27.90 1912 25.448 50.834 ATOM С ALA 253 5.144 1.00 28.52 30 ATOM 1913 25.249 51.834 1.00 27.73 0 ALA 253 4.448 49.884 **ATOM** 1914 N PHE 254 24.536 5.314 1.00 30.23 ATOM 1915 23.224 49.974 4.696 1.00 31.42 CA PHE 254 48.947 1.00 31.71 MOTA 1916 CB PHE 254 22.289 5.314 1917 20.899 48.995 4.768 1.00 31.90 ATOM CG PHE 254 35 MOTA 1918 CD1 PHE 254 20.655 48.736 3.429 1.00 31.47 MOTA 1919 CD2 PHE 254 19.824 49.273 5.600 1.00 32.95 ATOM 1920 CE1 PHE 254 19.367 48.746 2.927 1.00 31.38 CE2 PHE 18.518 MOTA 1921 254 49.285 5.096 1.00 32.69 49.021 MOTA 1922 PHE 254 18.295 3.763 CZ 1.00 31.47 MOTA 1923 С PHE 254 22.664 51.367 4.928 1.00 32.56 MOTA 1924 0 PHE 254 22.638 51.839 6.064 1.00 33.19 MOTA 1925 Ν GLY 255 22.227 52.017 3.849 1.00 33.62 MOTA 1926 GLY 21.674 53.354 3.947 1.00 34.98 CA 255 MOTA 1927 С GLY 255 22.673 54.429 3.565 1.00 36.85 45 ATOM 1928 0 GLY 255 22.317 55.604 3.424 1.00 36.70 ATOM 1929 N ASP 256 23.932 54.038 3.395 1.00 38.95 24.966 MOTA 1930 CA ASP 256 55.000 3.038 1.00 41.47 ATOM 1931 ASP CB 256 26.349 54.347 3.088 1.00 41.77 **ATOM** 1932 **ASP** 26.880 54.224 4.502 CG 256 1.00 42.36 50 ATOM 1933 OD1 ASP 26.573 55.120 256 5.322 1.00 43.08 MOTA 1934 OD2 ASP 256 27.617 53.251 4.791 1.00 42.28 **ATOM** 1935 C ASP 256 24.744 55.636 1.666 1.00 43.10 ATOM 1936 0 ASP 256 25.489 56.533 1.261 1.00 44.08 MOTA 1937 N SER 257 23.729 55.171 0.946 1.00 44.19 55 1938 ATOM CA SER 257 23.427 55.738 -0.3631.00 45.32 1939 MOTA CB SER 257 23.714 54.713 -1.4671.00 45.78 ATOM 1940 OG SER 257 22.845 53.601 -1.3751.00 46.48 1941 21.967 ATOM C SER 257 56.204 -0.423 1.00 45.41 1942 **ATOM** 0 257 21.378 -1.501 1.00 46.14 SER 56.316

		Figure 4									
()		r.igure 4				37/63					
Ŭ	ATOM	1943	N	GLY	258	21.393	56.466	0.751	1.00 45.52		
	ATOM	1944	CA	GLY	258	20.018	56.933	0.835	1.00 45.22		
	MOTA	1945	Ċ	GLY	258	18.922	55.896	1.042	1.00 45.11		
	MOTA	1946	0	GLY	258	17.745	56.253	1.068	1.00 45.45		
	5 ATOM	1947	N	GLU	259	19.284	54.627	1.205	1.00 44.67		
	ATOM	1948	CA	GLU	259	18.288	53.572	1.380	1.00 44.04	•	
	MOTA	1949	CB	GLU	259	18.954	52.187	1.415	1.00 44.23		
	MOTA	1950	CG	GLU	259	19.952	51.916	0.295	1.00 44.88		
	MOTA	1951	CD	GLU	259	21.318	52.552	0.548	1.00 45.53	•	
1	MOTA 0	1952	OE1	GLU	259	21.381	53.785	0.753	1.00 44.98	•	
	MOTA	1953	OE2	GLU	259	22.335	51.817	0.537	1.00 45.95		
	MOTA	1954	С	GLU	259	17.462	53.749	2.647	1.00 43.91		
	ATOM	1955	0	GLU	259	16.461	53.061	2.836	1.00 43.49		
	MOTA	1956	N	LEU	260	17.875	54.661	3.520	1.00 43.87		
1	5 ATOM	1957	CA	LEU	260	17.143	54.865	4.765	1.00 44.40		
	MOTA	1958	CB	LEU	260	18.023	54.513	5.967	1.00 44.36		
	MOTA	1959	CG	LEU	260	18.398	53.041	6.153	1.00 44.87		
	ATOM	1960		LEU	260	19.315	52.879	7.369	1.00 44.30		
•	ATOM	1961		LEU	260	17.127	52.216	6.307	1.00 44.88		
2	MOTA 0	1962	C	LEU	260	16.632	56.282	4.932	1.00 44.59		
	ATOM	1963	0	LEU	260	15.744	56.534	5.749	1.00 44.72		
	MOTA	1964	N	ASP.	261	17.200	57.202	4.161	1.00 44.48		
	ATOM ATOM	1965	CA	ASP	261	16.821	58.608	4.234	1.00 44.18		
2	5 ATOM	1966 1967	CB CG	ASP ASP	261 261	16.813	59.224	2.841	1.00 44.99		
•	ATOM	1968		ASP	261	18.192 19.165	59.310 58.994	2.247 2.980	1.00 46.23		
	ATOM	1969		ASP	261	18.296	59.697	1.055	1.00 46.42 1.00 46.79		
	ATOM	1970	C	ASP	261	15.482	58.885	4.892	1.00 43.79		
	ATOM	1971	ō	ASP	261	15.415	59.592	5.898	1.00 42.63		
3	MOTA 0	1972	N	GLU	262	14.424	58.317	4.320	1.00 41.88		
	MOTA	1973	CA	GLU	262	13.070	58.525	4.810	1.00 41.00		
	ATOM	1974	CB	GLU	262	12.088	57.744	3.940	1.00 41.65		
	MOTA	1975	CG	GLU	262	12.249	56.254	3.999	1.00 43.54		
_	ATOM	1976	CD	GLU	262	11.359	55.562	2.996	1.00 45.44		
3	5 ATOM	1977		GLU	262	11.715	55.561	1.800	1.00 47.21		
	MOTA	1978		GLU	262	10.296	55.031	3.391	1.00 47.29		
	MOTA	1979	C	GLU	262	12.830	58.211	6.286	1.00 39.99		
	ATOM ATOM	1980 1981	N O	GLU PHE	262	11.997	58.852	6.918	1.00 40.22		
Δ	MOTA 0	1982	CA	PHE	263 263	13.545 13.360	57.238 56.908	6.845	1.00 38.83		
•	ATOM	1983	CB	PHE	263	13.684	55.430	8.258 8.512	1.00 37.00 1.00 34.37		
	ATOM	1984	CG	PHE	263	12.828	54.476	7.717	1.00 34.37		
	ATOM	1985		PHE	263	13.366	53.753	6.660	1.00 32.41		
	ATOM	1986		PHE	263	11.474	54.317	8.012	1.00 30.95		
4	5 ATOM	1987		PHE	263	12.567	52.886	5.909	1.00 29.82		
	ATOM	1988	CE2	PHE	263	10.667	53.450	7.261	1.00 28.87		
•	MOTA	1989	CZ	PHE	263	11.214	52.737	6.213	1.00 29.09		
	MOTA	1990	С	PHE	263	14.197	57.797	9.190	1.00 36.78		
	MOTA	1991	0	PHE	263	13.809	58.041	10.327	1.00 37.58		
5	MOTA 0	1992	N	LEU	264	15.328	58.301	8.712	1.00 36.72		
	ATOM	1993	CA	LEU	264	16.193	59.142	9.542	1.00 37.11		
	MOTA	1994	CB	LEU	264	17.389	59.638	8.725	1.00 36.98		
	ATOM	1995	CG	LEU	264	18.131	58.621	7.852	1.00 36.59		
-	ATOM	1996		LEU	264	19.233	59.346	7.077	1.00 35.39		
J	5 ATOM	1997		LEU	264	18.701	57.503	8.717	1.00 35.46		
	ATOM ATOM	1998 1999	С 0	LEU	264	15.482	60.350	10.158	1.00 37.28		
	MOTA	2000	N	LEU	264 265	14.879 15.574	61.148	9.451	1.00 38.03		
	ATOM	2001	CA	LEU	265	14.965	60.480 61.585	11.479 12.215	1.00 37.63 1.00 37.33		
		2001	Çħ		203	14.903	01.00	12.213	1.00 31.33		

•

$\overline{}$	F	igure 4				38/63			
	ATOM	2002	CD	T 1377	265		61 000	12 500	4 40 54 65
	MOTA	2002	CB CG	LEU LEU	265 265	14.380	61.070	13.527	1.00 36.25
	MOTA	2003	CD1		265	13.529 13.157	59.807 59.295	13.417 14.808	1.00 35.76 1.00 35.17
	ATOM	2005		LEU	265	12.292	60.120	12.598	1.00 35.17
5	ATOM	2006	C	LEU	265	16.054	62.613	12.521	1.00 38.22
_	ATOM	2007	Ö	LEU	265	17.239	62.285	12.486	1.00 38.22
	ATOM	2008	N	GLU	266	15.653	63.844	12.832	1.00 30.34
	MOTA	2009	CA	GLU	266	16.599	64.922	13.137	1.00 40.56
	ATOM	2010	CB	GLU	266	15.874	66.101	13.813	1.00 41.82
10	ATOM	2011	CG	GLU	266	15.277	65.777	15.196	1.00 44.28
	MOTA	2012	CD	GLU	266	14.612	66.974	15.886	1.00 44.95
	MOTA	2013	OE1		266	13.543	67.432	15.410	1.00 45.08
	MOTA	2014	OE2	GLU	266	15.163	67.452	16.910	1.00 45.53
	MOTA	2015	C .	GLU	266	17.733	64.435	14.036	1.00 40.54
15	MOTA	2016	0	GLU	266	18.910	64.657	13.750	1.00 40.69
	MOTA	2017	N	TYR	267	17.366	63.760	15.121	1.00 40.61
	ATOM	2018	CA	TYR	267	18.342	63.234	16.062	1.00 40.30
	MOTA MOTA	2019	CB CG	TYR	267	17.639	62.364	17.110	1.00 39.44
20	ATOM	2020 2021	CD1	TYR TYR	267 267	16.216	62.784	17.423	1.00 38.98
20	MOTA	2021	CE1		267	15.134 13.813	61.967 62.342	17.066 17.349	1.00 38.66
	ATOM	2023	CD2	TYR	267	15.943	63.995	18.075	1.00 38.28 1.00 38.72
	ATOM	2024	CE2	TYR	267	14.619	64.381	18.364	1.00 38.72
	MOTA	2025	CZ	TYR	267	13.564	63.548	17.996	1.00 38.30
25	MOTA	2026	OH	TYR	267	12.267	63.923	18.251	1.00 37.22
	MOTA	2027	С	TYR	267	19.381	62.403	15.296	1.00 40.27
	MOTA	2028	0	TYR	267	20.580	62.469	15.579	1.00 40.14
	MOTA	2029	N	ASP	268	18.909	61.626	14.324	1.00 40.61
20	MOTA	2030	CA	ASP	268	19.781	60.790	13.511	1.00 40.87
30	ATOM	2031	CB	ASP	268	18.946	59.920	12.566	1.00 39.36
	ATOM ATOM	2032	CG	ASP	268	18.183	58.843	13.301	1.00 38.52
	ATOM	2033 2034	OD1 OD2	ASP ASP	268 268	18.819	58.118 58.711	14.082	1.00 39.79
	ATOM	2035	C	ASP	268	16.961 20.764	61.643	13.110 12.712	1.00 36.13 1.00 41.97
35	ATOM	2036	ō	ASP	268	21.956	61.339	12.712	1.00 41.97
	MOTA	2037	N	ARG	269	20.266	62.710	12.090	1.00 42.73
	MOTA	2038	CA	ARG	269	21.113	63.606	11.310	1.00 43.23
	MOTA	2039	CB	ARG	269	20.302	64.793	10.786	1.00 45.34
	MOTA	2040	CG	ARG	269	18.923	64.464	10.223	1.00 47.46
40	MOTA	2041	CD	ARG	269	19.000	63.819	8.864	1.00 49.22
	MOTA	2042	NE	ARG	269	17.667	63.552	8.337	1.00 52.67
	ATOM	2043	CZ	ARG	269	17.426	62.969	7.165	1.00 54.63
	MOTA	2044		ARG	269	18.436	62.591	6.386	1.00 55.41
4 5	MOTA MOTA	2045 2046		ARG	269 269	16.173	62.747	6.775	1.00 55.38
43	ATOM	2040	С 0	ARG ARG	269	22.204	64.150	12.231	1.00 42.99
	ATOM	2047	N	LEU	270	23.400 21.777	63.999 64.796	11.977	1.00 43.63
	MOTA	2049	CA	LEU	270	22.702	65.372	13.305 14.261	1.00 41.99 1.00 41.33
	ATOM	2050	СВ	LEU	270	21.924	65.812	15.502	1.00 41.33
50	MOTA	2051	CG	LEU	270	21.004	67.002	15.217	1.00 40.34
	ATOM	2052		LEU	270	19.964	67.182	16.307	1.00 39.94
	MOTA	2053	CD2	LEU	270	21.879	68.237	15.084	1.00 40.26
	MOTA	2054	С	LEU	270	23.828	64.406	14.635	1.00 41.26
	MOTA	2055	0	LEU	270	25.009	64.762	14.553	1.00 41.76
55	MOTA	2056	N	VAL	271	23.462	63.188	15.030	1.00 40.24
	MOTA	2057	CA	VAL	271	24.443	62.177	15.415	1.00 40.08
	ATOM	2058	CB	VAL	271	23.776	60.838	15.730	1.00 40.42
	ATOM	2059		VAL	271	24.846	59.800	16.050	1.00 39.86
	ATOM	2060	CG2	VAL	271	22.796	61.000	16.891	1.00 40.86

Figure 4 39/63 1.00 40.51 25,477 61.903 14.329 2061 VAL 271 ATOM С 1.00 40.15 2062 26.676 61.832 14.595 VAL 271 MOTA 0 24.998 61.730 13.103 1.00 40.78 2063 ASP 272 MOTA N 61.447 2064 ASP 272 25.866 11.977 1.00 40.36 MOTA CA 10.695 1.00 39.16 ATOM 2065 CB ASP 272 25.038 61.344 60.670 9.553 1.00 38.09 ASP 25.792 ATOM 2066 CG 272 9.807 1.00 36.54 26.821 60.000 OD1 ASP MOTA 2067 272 25.335 60.798 8.394 1.00 37.12 OD2 ASP 272 ATOM 2068 26.901 62.544 11.849 1.00 40.88 C ASP ATOM 2069 272 ASP 28.099 62.297 11.953 1.00 40.75 10 2070 0 272 **ATOM** GLU 273 26.429 63.763 11.638 1.00 41.96 MOTA 2071 N 11.477 1.00 43.14 ATOM 2072 CA GLU 273 27.321 64.896 26.501 11.470 1.00 44.13 66.170 ATOM 2073 CB GLU 273 25.576 10.272 1.00 46.73 66.214 2074 GLU 273 **ATOM** CG 24.629 67.388 10.308 1.00 48.40 CD GLU 273 15 ATOM 2075 25.047 68.455 10.828 1.00 49.15 OE1 GLU 273 ATOM 2076 23.482 67.241 9.811 1.00 48.64 OE2 GLU 273 MOTA 2077 28.428 64.968 12.517 1.00 43.48 C 273 ATOM 2078 GLU 1.00 43.59 29.575 65.279 12.187 0 GLU 273 2079 ATOM 28.095 64.666 13.767 1.00 44.05 2080 N SER 274 20 ATOM 2081 CA SER 274 29.089 64.702 14.837 1.00 44.54 ATOM 1.00 45.39 MOTA 2082 CB SER 274 28.421 64.568 16.205 1.00 48.14 2083 OG SER 274 27.496 65.611 16.424 ATOM 63.582 14.694 1.00 44.23 274 30.106 ATOM 2084 С SER 63.783 14.931 1.00 44.76 2085 0 SER 274 31.292 25 ATOM 1.00 43.84 2086 SER 275 29.632 62.400 14.318 MOTA N 1.00 43.42 30.489 61.227 14.162 MOTA 2087 CA SER 275 1.00 43.28 275 29.754 60.139 13.392 MOTA 2088 SER CB 1.00 42.94 275 29.758 60.444 12.010 MOTA 2089 OG SER 1.00 43.34 275 31.789 61.535 13.426 30 MOTA 2090 С SER 1.00 43.76 MOTA 2091 0 SER 275 31.914 62.552 12.738 1.00 42.68 2092 276 32.756 60.639 13.570 MOTA N ALA 1.00 42.98 MOTA 2093 CA ALA 276 34.034 60.805 12.906 1.00 42.92 13.639 MOTA 2094 CB ALA 276 35.108 60.015 1.00 43.23 33.930 60.319 11.465 2095 276 MOTA С ALA 1.00 44.60 60.277 10.751 2096 ALA 276 34.936 ATOM 0 11.039 1.00 42.10 32.722 59.949 277 MOTA 2097 N ASN 59.447 9.691 1.00 40.87 277 32.517 ASN MOTA 2098 CA 1.00 41.63 277 32.615 57.927 9.685 2099 ASN ATOM CB 277 31.654 57.283 10.659 1.00 42.64 40 MOTA 2100 CG ASN 57.898 11.067 1.00 43.50 OD1 ASN 277 30.670 MOTA 2101 56.033 11.029 1.00 42.98 2102 ND2 ASN 277 31.925 ATOM 59.865 9.104 1.00 40.57 277 31.178 MOTA 2103 С ASN 1.00 39.89 277 30.430 59.039 8.579 2104 ASN ATOM 0 1.00 40.83 61.163 9.163 2105 PRO 278 30.868 45 MOTA N 1.00 40.90 62.282 9.451 278 31.783 MOTA 2106 CD PRO 1.00 40.71 29.600 61.657 8.623 278 2107 CA PRO MOTA 2108 29.807 63.175 8.579 1.00 40.88 278 CB PRO MOTA 1.00 41.27 2109 278 31.303 63.326 8.474 CG PRO MOTA 1.00 40.60 29.239 61.074 7.258 50 2110 С PRO 278 ATOM 29.949 61.284 6.270 1.00 40.71 PRO 278 MOTA 2111 0 1.00 40.34 279 28.131 60.338 7.216 2112 N GLY MOTA 1.00 39.10 279 27.676 59.747 5.971 2113 CA GLY MOTA 58.252 5.828 1.00 38.94 GLY 279 27.904 MOTA 2114 С 279 27.315 57.635 4.952 1.00 39.74 ATOM 2115 0 GLY 6.683 1.00 38.66 ATOM 2116 GLN 280 28.735 57.660 N 1.00 37.75 6.605 29.049 56.230 MOTA 2117 CA GLN 280 1.00 37.97 56.043 6.513 30.563 2118 CB GLN 280 MOTA 31.243 56.954 5.509 1.00 39.85 GLN 280 2119 CG MOTA

\supset	F	Figure 4				40/63			
	MOTA	2120	CD	GLN	280	32.743	57.046	5.730	1.00 40.76
	MOTA	2121	OE1	GLN	280	33.465	56.058	5.587	1.00 41.39
	MOTA	2122	NE2	GLN	280	33.220	58.240	6.083	1.00 41.57
_	ATOM	2123	С	GLN	280	28.553	55.455	7.817	1.00 36.99
5	MOTA	2124	0	GLN	280	28.645	55.939	8.941	1.00 37.89
	ATOM	2125	N	GLN	281	28.054	54.242	7.592	1.00 35.75
	ATOM	2126	CA	GLN	281	27.572	53.401	8.681	1.00 34.04
	ATOM	2127	CB	GLN	281	28.590	53.404	9.829	1.00 33.35
10	MOTA	2128	CG	GLN	281	29.971	52.951	9.447	1.00 33.09
10	MOTA MOTA	2129 2130	CD	GLN	281	29.967	51.576	8.800	1.00 34.44
	MOTA	2131		GLN	281	29.917	51.451	7.572	1.00 33.95
	MOTA	2132	C	GLN GLN	281 281	30.000	50.529	9.630	1.00 34.63
	MOTA	2133	0	GLN	281	26.210 25.895	53.831	9.237	1.00 33.42
15	ATOM	2134	N	LEU	282	25.395	53.530 54.511	10.390	1.00 34.87
	ATOM	2135	ÇA	LEU	282	24.098	54.992	8.436 8.913	1.00 31.53
	ATOM	2136	CB	LEU	282	23.345	55.685	7.777	1.00 29.87 1.00 30.15
	ATOM	2137	CG	LEU	282	24.030	56.871	7.085	1.00 30.13
	MOTA	2138		LEU	282	22.963	57.741	6.435	1.00 29.82
20	ATOM	2139	CD2	LEU	282	24.815	57.699	8.097	1.00 30.66
	MOTA	2140	С	LEU	282	23.191	53.949	9.578	1.00 28.70
	MOTA	2141	0	LEU	282	22.716	54.153	10.698	1.00 28.78
	ATOM	2142	N	TYR	283	22.935	52.841	8.894	1.00 27.35
25	MOTA	2143	CA	TYR	283	22.095	51.793	9.461	1.00 26.53
25	MOTA	2144	CB	TYR	283	22.233	50.511	8.633	1.00 24.41
	MOTA MOTA	2145	CG	TYR	283	21.420	49.338	9.143	1.00 22.90
	ATOM	2146 2147		TYR TYR	283	20.021	49.413	9.210	1.00 21.94
	MOTA	2148		TYR	283 283	19.257 22.038	48.318	9.609	1.00 20.96
30	MOTA	2149	CE2	TYR	283	22.038	48.129 47.030	9.503 9.907	1.00 21.53
	MOTA	2150	CZ	TYR	283	19.886	47.140	9.950	1.00 20.87 1.00 21.33
	ATOM	2151	OH	TYR	283	19.105	46.068	10.310	1.00 23.85
	MOTA	2152	С	TYR	283	22.567	51.532	10.891	1.00 27.12
	MOTA	2153	0	TYR	283	21.783	51.521	11.841	1.00 28.95
35	MOTA	2154	N	GLU	284	23.869	51.352	11.035	1.00 26.60
	MOTA	2155	CA	GLU	284	24.486	51.072	12.317	1.00 26.43
	ATOM	2156	CB	GLU	284	25.982	50.905	12.108	1.00 27.03
	MOTA	2157	CG	GLU	284	26.763	50.680	13.375	1.00 27.21
40	MOTA MOTA	2158 2159	CD	GLU	284	28.224	50.492	13.082	1.00 27.57
40	MOTA	2160		GLU GLU	284 284	28.897 28.670	51.506	12.734	1.00 27.02
	MOTA	2161	C	GLU	284	24.249	49.319 52.133	13.185 13.381	1.00 26.30
	MOTA	2162	ŏ	GLU	284	24.197	51.826	14.582	1.00 26.81 1.00 26.06
	ATOM	2163	N	LYS	285	24.134	53.384	12.940	1.00 27.07
45	ATOM	2164	CA	LYS	285	23.926	54.502	13.860	1.00 27.39
•	MOTA	2165	CB	LYS	285	24.339	55.825	13.186	1.00 25.99
	MOTA	2166	CG	LYS	285 ·	25.840	56.012	13.132	1.00 24.13
	MOTA	2167	CD	LYS	285	26.235	57.110	12.179	1.00 23.29
	MOTA	2168	CE	LYS	285	27.755	57.193	12.052	1.00 22.03
50	MOTA	2169	NZ	LYS	285	28.142	58.198	11.027	1.00 21.72
	ATOM	2170	C	LYS	285	22.488	54.595	14.368	1.00 28.05
	ATOM	2171	0	LYS	285	22.086	55.615	14.941	1.00 28.61
	MOTA	2172	N	LEU	286	21.717	53.535	14.144	1.00 27.60
55	ATOM ATOM	2173 2174	CA CB	LEU	286	20.335	53.488	14.599	1.00 27.30
<i>JJ</i>	MOTA	2174	CB	LEU	286 286	19.399	53.157	13.435	1.00 28.57
	MOTA	2176	CD1		286 286	19.375 18.480	54.167 53.647	12.279	1.00 30.25
	ATOM	2177	CD2		286	18.863	55.507	11.139 12.780	1.00 29.98 1.00 29.35
	ATOM	2178	C	LEU	286	20.260	52.381	15.632	1.00 29.33
		•	-			20.200	J2.J01	13.032	1.00 Z/.UI

)	F	igure 4				41/63			
	MOTA	2179	0	LEU	286	19.296	52.294	16.399	1.00 27.55
	MOTA	2180	N	ILE	287	21.306	51, 554	15.645	1.00 26.00
	MOTA	2181	CA	ILE	287	21.415	50.399	16.532	1.00 24.38
-	ATOM	2182	CB	ILE	287	21.551	49.141	15.715	1.00 23.92
5	ATOM	2183 2184	CG2 CG1		287	21.470	47.919	16.628	1.00 22.70
	ATOM ATOM	2185	CD1	ILE	287. 287	20.510 20.676	49.158 48.042	14.597 13.607	1.00 22.87 1.00 22.79
	MOTA	2186	CDI	ILE	287	22.639	50.444	17.433	1.00 24.65
	MOTA	2187	Ö	ILE	287	22.550	50.255	18.644	1.00 23.54
10	MOTA	2188	N	GLY	288	23.791	50.668	16.810	1.00 25.94
	MOTA	2189	CA	GLY	288	25.060	50.714	17.519	1.00 26.86
	MOTA	2190	С	GLY	288	25.081	51.266	18.927	1.00 27.76
	MOTA	2191	0	GLY	288	24.697	52.412	19.164	1.00 28.19
	MOTA	2192	N	GLY	289	25.554	50.445	19.860	1.00 28.95
15	ATOM	2193	CA	GLY	289	25.656	50.856	21.249	1.00 30.64
	ATOM	2194	C	GLY	289	26.632	52.007	21.407	1.00 31.92
	ATOM	2195	0	GLY	289	26.930	52.442	22.509	1.00 32.56
	ATOM	2196 2197	N CA	LYS	290	27.133	52.504	20.291	1.00 32.83
20	ATOM ATOM	2197	CB	LYS LYS	290 290	28.067 29.104	53.607 53.373	20.296 19.191	1.00 33.99 1.00 35.04
20	ATOM	2199	CG	LYS	290	29.104	54.598	18.665	1.00 35.04
	ATOM	2200	CD	LYS	290	31.032	54.996	19.551	1.00 38.80
	ATOM	2201	CE	LYS	290	31.936	56.011	18.839	1.00 39.77
	MOTA	2202	NZ	LYS	290	32.864	56.707	19.787	1.00 41.04
25	MOTA	2203	С	LYS	290	27.278	54.880	20.035	1.00 34.58
	MOTA	2204	0	LYS	290	27.810	55.984	20.138	1.00 35.79
	ATOM	2205	N	TYR	291	26.001	54.734	19.708	1.00 33.80
	ATOM	2206	CA	TYR	291	25.196	55.907	19.406	1.00 33.61
30	ATOM ATOM	2207	CB CG	TYR TYR	291	25.010	56.046	17.892	1.00 33.22
30	MOTA	2208 2209	CD1		291 291	26.256 26.659	55.752 54.435	17.084 16.838	1.00 33.77 1.00 34.23
	MOTA	2210	CE1		291	27.789	54.155	16.065	1.00 34.23
	ATOM	2211	CD2		291	27.021	56.783	16.542	1.00 33.61
	ATOM	2212		TYR	291	28.150	56.515	15.773	1.00 33.54
35	MOTA	2213	CZ	TYR	291	28.528	55.200	15.532	1.00 33.76
	MOTA	2214	ОH	TYR	291	29.620	54.928	14.729	1.00 34.36
	ATOM	2215	C	TYR	291	23.836	55.874	20.070	1.00 33.11
	ATOM	2216	0	TYR	291	23.069	56.828	19.975	1.00 32.86
40	MOTA MOTA	2217 2218	N CA	MSE MSE	292 292	23.521 22.230	54.778	20.737 21.389	1.00 33.27 1.00 33.18
40	MOTA	2219	CB	MSE	292	22.230	54.699 53.349	22.062	1.00 33.18
	ATOM	2220	CG	MSE	292	20.639	52.975	22.314	1.00 35.77
	MOTA	2221	SE	MSE	292	20.564	51.230	22.803	1.00 41.54
	MOTA	2222	CE	MSE	292	20.269	50.385	21.171	1.00 35.91
45	MOTA	2223	С	MSE	292	22.148	55.818	22.423	1.00 32.97
	MOTA	2224	0	MSE	292	21.227	56.637	22.400	1.00 33.49
	MOTA	2225	N	GLY	293	23.131	55.861	23.315	1.00 32.96
	ATOM	2226	CA	GLY	293	23.151	56.892	24.334	1.00 32.25
E 0	MOTA	2227	С	GLY	293	23.067	58.290	23.750	1.00 32.18
50	ATOM	2228 2229	O N	GLY	293 294	22.307	59.126	24.241	1.00 33.24
	MOTA MOTA	2230	CA	GLU GLU	294 294	23.835 23.809	58.560 59.883	22.702 22.096	1.00 31.47 1.00 31.38
	MOTA	2231	CB	GLU	294	24.875	59.971	21.008	1.00 31.38
	MOTA	2232	CG	GLU	294	24.075	61.321	20.304	1.00 33.29
55	ATOM	2233	CD	GLU	294	25.227	62.474	21.257	1.00 35.80
-	ATOM	2234		GLU	294	25.708	62.244	22.389	1.00 36.49
	MOTA	2235		GLU	294	24.946	63.623	20.858	1.00 37.16
	MOTA	2236	С	GLU	294	22.428	60.192	21.521	1.00 30.62
	MOTA	2237	0	GLU	294	21.919	61.305	21.664	1.00 30.94

.

Figure 4 42/63 1.00 29.56 21.818 59.204 20.878 MOTA 2238 N LEU 295 1.00 29.24 20.495 20.303 295 59.392 MOTA 2239 CA LEU 19.589 1.00 27.27 20.030 58.112 MOTA 2240 CB LEU 295 20.389 58.007 18.099 1.00 25.46 MOTA 2241 CG LEU 295 1.00 21.87 ATOM 2242 CD1 LEU 295 19.979 56.668 17.522 1.00 25.71 19.677 ATOM 2243 CD2 LEU 295 59.136 17.352 1.00 29.98 19.497 ATOM 2244 C LEU 295 59.787 21.388 18.587 1.00 30.19 MOTA 2245 0 LEU 295 60.573 21.156 1.00 31.23 MOTA 2246 VAL 296 19.665 59.250 22.585 N ATOM 2247 VAL 296 18.745 59.590 23.657 1.00 32.87 CA 1.00 32.48 ATOM 2248 CB VAL 296 18.890 58.623 24.831 1.00 32.99 2249 VAL 296 17.827 58.899 25.868 ATOM CG1 MOTA 2250 CG2 VAL 296 18.762 57.198 24.323 1.00 33.56 MOTA 2251 C VAL 296 19.020 61.025 24.122 1.00 33.74 MOTA 2252 0 VAL 296 18.086 61.778 24.431 1.00 33.68 2253 N ARG 297 20.296 61.409 24.145 1.00 34.02 MOTA 1.00 35.34 MOTA 2254 CA ARG 297 20:659 62.757 24.563 1.00 34.89 MOTA 2255 CB ARG 297 22.147 63.008 24.342 1.00 35.27 22.940 MOTA 2256 CG ARG 297 63.279 25.609 23.791 25.454 1.00 35.98 ATOM 2257 CD ARG 297 64.525 1.00 37.11 MOTA 2258 NE ARG 297 24.226 64.700 24.074 1.00 37.43 297 24.476 65.878 23.513 MOTA 2259 CZARG 24.348 1.00 38.45 297 66.994 24.226 **ATOM** 2260 NH1 ARG NH2 1.00 36.61 ARG 297 24.809 65.944 22.229 MOTA 2261 25 2262 C ARG 297 19.870 63.766 23.747 1.00 36.07 MOTA 1.00 36.76 **ATOM** 2263 0 ARG 297 19.103 64.574 24.285 20.063 1.00 36.93 298 63.699 22.437 MOTA 2264 N LEU 19.407 64.596 1.00 37.55 298 21.500 MOTA 2265 CA LEU 298 19.768 64.178 20.077 1.00 37.28 ATOM 2266 CB LEU 30 ATOM 2267 CG LEU 298 21.272 64.065 19.816 1.00 36.13 21.478 1.00 36.85 MOTA 2268 CD1 LEU 298 63.784 18.341 21.991 65.356 20.218 1.00 35.02 ATOM 2269 CD2 LEU 298 298 17.892 64.633 21.670 1.00 38.53 ATOM 2270 C LEU 1.00 38.44 MOTA 2271 0 LEU 298 17.276 65.708 21.618 1.00 39.23 ATOM 2272 N VAL 299 17.289 63.462 21.866 1.00 40.08 15.839 MOTA 2273 CA VAL 299 63.389 22.054 1.00 39.44 15.349 MOTA 2274 CB VAL 299 61.932 22.110 1.00 37.91 13.844 61.892 22.385 ATOM 2275 CG1 VAL 299 1.00 38.72 15.676 61.240 MOTA 2276 CG2 VAL 299 20.802 1.00 40.94 15.435 64.087 23.350 C 299 40 MOTA 2277 VAL 1.00 41.66 14.321 64.612 23:461 2278 VAL 299 MOTA 0 2279 300 16.337 64.091 24.328 1.00 41.41 MOTA LEU N 1.00 42.31 16.043 ATOM 2280 CA LEU 300 64.737 25.600 1.00 41.48 16.973 64.224 **ATOM** 2281 CB LEU 300 26.713 1.00 40.38 16.943 45 ATOM 62.766 2282 300 27.206 CG LEU 17.677 62.711 1.00 40.14 2283 300 28.545 ATOM CD1 LEU 15.517 62.251 27.380 1.00 38.74 2284 CD2 LEU 300 ATOM 2285 300 16.204 66.251 25.444 1.00 43.44 MOTA C LEU 1.00 43.84 15.304 67.020 25.806 MOTA 2286 0 LEU 300 17.346 66.675 24.898 1.00 43.90 50 ATOM 2287 LEU 301 N 17.603 68.100 24.707 1.00 43.85 ATOM 2288 CA LEU 301 18.895 68.335 23.919 1.00 43.20 2289 CB LEU 301 MOTA 2290 LEU 301 20.211 67.969 24.613 1.00 43.48 ATOM CG MOTA 2291 CD1 LEU 301 21.385 68.372 23.730 1.00 43.37 1.00 43.71 55 ATOM 2292 CD2 LEU 301 20.307 68.675 25.955 1.00 44.11 16.444 68.738 23.969 ATOM 2293 C LEU 301 1.00 44.38 16.068 69.875 24.254 2294 LEU 301 MOTA 0 2295 ARG 302 15.863 68.007 23.025 1.00 44.45 MOTA N 14.753 68.571 22.280 1.00 45.04 MOTA 2296 CA ARG 302

	Fi	gure 4							
\bigcirc	•	•			43/63				
	MOTA	2297	CB AR	G 302	14.296	67.660	21.148	1.00 45.49	
	MOTA	2298	CG AR		13.082	68.256	20.468	1.00 45.91	
	ATOM	2299	CD AR		12.391	67.327	19.514	1.00 46.45	
	ATOM	2300	NE AR		11.194	67.985	19.007	1.00 47.37	
5	ATOM	2301	CZ AR		10.423	67.503	18.043	1.00 48.12	
	MOTA	2302	NH1 AR		10.719	66.344	17.466	1.00 48.80	•
	ATOM	2303	NH2 AR		9.357	68.190	17.657	1.00 47.77	
	ATOM	2304	C AR		13.577	68.807	23.196	1.00 45.13	
	MOTA	2305	O AR		12.982	69.885	23.198	1.00 45.57	
10	ATOM	2306	N LE		13.228	67.787	23.966	1.00 45.14	•
	MOTA	2307	CA LE		12.113	67.918	24.883	1.00 45.18	
	ATOM	2308	CB LE		11.952	66.624	25.695	1.00 44.02	
	ATOM	2309	CG LE		11.495	65.427	24.846	1.00 42.43	
	MOTA	2310	CD1 LE		11.365	64.162	25.690	1.00 41.06	
15	ATOM	2311	CD2 LE		10.154	65.784	24.207	1.00 41. 9 6	•
	ATOM	2312	C LE		12.359	69.133	25.783	1.00 45.83	
	ATOM	2313	O LE		11.444	69.919	26.044	1.00 45.85	
	MOTA	2314	N VA		13.599	69.302	26.232	1.00 46.44	
	ATOM	2315	CA VA		13.943	70.440	27.085	1.00 47.76	
20	MOTA	2316	CB VA		15.443	70.426	27.496	1.00 47.79	
	ATOM	2317	CG1 VA		15.866	71.815	27.996	1.00 46.89	
	ATOM	2318	CG2 VA		15.678	69.386	28.581	1.00 47.81	
	ATOM ATOM	2319 2320	C VA		13.666	71.764	26.371	1.00 48.44	
25	MOTA	2321	O VA N AS		12.899 14.297	72.596	26.861	1.00 48.95	
23	ATOM	2322	CA AS		14.297	71.946	25.212	1.00 48.52	
	MOTA	2323	CB AS		14.968	73.165 73.067	24.432 23.143	1.00 48.31 1.00 49.45	
	ATOM	2324	CG AS		16.441	72.715	23.143	1.00 49.45	
•	ATOM	2325	OD1 AS		17.056	73.323	24.317	1.00 50.99	
30	MOTA	2326	OD2 AS		16.994	71.834	22.715	1.00 51.84	
	ATOM	2327	C AS		12.677	73.460	24.122	1.00 47.77	
	ATOM	2328	O AS		12.341	74.541	23.641	1.00 48.22	
	ATOM	2329	N GL		11.799	72.505	24.407	1.00 46.84	
	MOTA	2330	CA GL	U 306	10.378	72.713	24.176	1.00 46.34	
35	MOTA	2331	CB GL	U 306	9.831	71.683	23.184	1.00 46.20	
	ATOM	2332	CG GL		9.866	72.216	21.761	1.00 48.15	
	ATOM	2333	CD GL		9.571	71.175	20.692	1.00 49.26	
	ATOM	2334	OE1 GL		8.514	70.499	20.768	1.00 50.03	
40	ATOM	2335	OE2 GL		10.398	71.049	19.759	1.00 49.62	
40	MOTA	2336	C GL		9.635	72.661	25.493	1.00 45.99	
	MOTA	2337	O GL		8.459	72.331	25.550	1.00 45.90	
	ATOM	2338	N AS		10.350	72.997	26.560	1.00 46.00	
	ATOM ATOM	2339 2340	CA AS		9.787	73.029	27.902	1.00 45.60	•
45	ATOM	2341	CG AS		9.033 9.971	74.342	28.094	1.00 46.42	
43	ATOM	2342	OD1 AS		10.435	75.531 75.849	28.224 29.321	1.00 46.98 1.00 47.63	
	ATOM	2343	ND2 AS		10.433	76,181	27.102	1.00 47.83	
	ATOM	2344	C AS		8.886	71.853	28.246	1.00 45.05	
•	ATOM	2345	O AS		7.812	72.029	28.829	1.00 45.19	
50	ATOM	2346	N LE		9.336	70.650	27.900	1.00 44.24	
	ATOM	2347	CA LE		8.575	69.439	28.180	1.00 43.28	
	ATOM	2348	CB LE		8.376	68.637	26.893	1.00 43.27	
	ATOM	2349	CG LE		7.070	68.825	26.115	1.00 44.09	
	ATOM	2350	CD1 LE		6.765	70.294	25.935	1.00 44.22	
55	ATOM	2351	CD2 LE		7.182	68.139	24.760	1.00 43.94	
	MOTA	2352	C LE		9.287	68.570	29.205	1.00 42.96	
	ATOM	2353	O LE		8.688	67.660	29.775	1.00 42.27	
	MOTA	2354	N LE		10.560	68.868	29.448	1.00 43.49	
	MOTA	2355	CA LE	U 309	11.368	68.077	30.371	1.00 44.85	

.

\bigcirc	Fi	gure 4				44/63				
	ATOM	2356	СВ	LEU	309	12.030	66.936	29.581	1.00 43.53	
	ATOM	2357		LEU	309	12.030	65.925	30.254	1.00 42.07	
	ATOM	2358	CD1		309	12.235	65.226	31.390	1.00 40.83	
	ATOM	2359	CD2		309	13.416	64.913	29.212	1.00 42.11	
. 5	ATOM	2360		LEU	309	12.436	68.900	31.108	1.00 46.21	
	ATOM	2361		LEU	309	13.074	69.777	30.518	1.00 46.04	
	MOTA	2362	N	PHE	310	12.625	68.601	32.397	1.00 47.92	
	MOTA	2363	CA	PHE	310	13.608	69.293	33.238	1.00 49.25	
	MOTA	2364	CB	PHE	310	15.013	69.093	32.666	1.00 48.20	
10	MOTA	2365	CG	PHE	310	15.438	67.650	32.590	1.00 47.06	
	MOTA	2366	CD1	PHE	310	16.338	67.228	31.615	1.00 46.24	
	ATOM	2367	CD2	PHE	310	14.947	66.715	33.497	1.00 46.63	
	MOTA	2368	CE1	PHE	310	16.740	65.903	31.540	1.00 45.74	
	MOTA	2369	CE2	PHE	310	15.344	65.385	33.433	1.00 46.27	
15	MOTA	2370	CZ	PHE	310	16.243	64.978	32.451	1.00 45.93	
	MOTA	2371	С	PHE	310	13.292	70.785	33.345	1.00 51.16	
	ATOM	2372	0	PHE	310	14.185	71.616	33.561	1.00 50.84	
	MOTA	2373	N	HIS	311	12.009	71.109	33.183	1.00 53.40	
20	ATOM	2374		HIS	311	11.529	72.482	33.262	1.00 55.80	
. 20	MOTA	2375		HIS	311	11.744	73.012	34.683	1.00 57.57	
	MOTA	2376		HIS	311	11.212	72.098	35.745	1.00 59.78	
	ATOM ATOM	2377 2378	CD2 ND1		311 311	11.848	71.363	36.689	1.00 60.29 1.00 60.36	
	ATOM	2379	CE1		311	9.867 9.699	71.815 70.944	35.879 36.860	1.00 60.36	
25	MOTA	2380	NE2		311	10.885	70.654	37.368	1.00 60.85	
2.5	MOTA	2381	C	HIS	311	12.214	73.384	32.236	1.00 56.24	
	MOTA	2382	ō	HIS	311	12.288	74.608	32.415	1.00 56.87	
	ATOM	2383	N	GLY	312	12.705	72.772	31.159	1.00 55.96	
	MOTA	2384	CA	GLY	312	13.366	73.522	30.109	1.00 55.87	
30	MOTA	2385	С	GLY	312	14.820	73.804	30.420	1.00 56.16	
	MOTA	2386	0	GLY	312	15.563	74.264	29.562	1.00 56.58	
	MOTA	2387	N	GLU	313	15.235	73.519	31.646	1.00 56.52	
	ATOM	2388	CA	GLU	313	16.612	73.765	32.048	1.00 57.69	
	MOTA	2389	CB	GLU	313	16.621	74.379	33.447	1.00 59.84	
35	MOTA	2390	CG	GLU	313	15.849	75.698	33.515	1.00 63.16	
•	ATOM	2391	CD.	GLU	313	15.388	76.061	34.925	1.00 65.16	
	MOTA	2392	OE1		313	14.554	75.315	35.503	1.00 66.01	
	MOTA MOTA	2393 2394	OE2 C	GLU	313 313	15.858 17.439	77.096 72.484	35.455 32.011	1.00 66.34 1.00 57.06	
40	ATOM	2395	o	GLU	313	17.155	72.484	32.728	1.00 57.00	
10	ATOM	2396	N	ALA	314	18.463	72.472	31.169	1.00 56.56	
	ATOM	2397	CA	ALA	314	19.316	71.305	31.029	1.00 56.76	
	ATOM	2398	СВ	ALA	314	19.454	70.939	29.557	1.00 56.47	
	MOTA	2399	С	ALA	314	20.699	71.490	31.643	1.00 56.94	
45	ATOM	2400	0	ALA	314	21.310	72.558	31.527	1.00 57.46	
	ATOM	2401	N	SER	315	21.183	70.422	32.276	1.00 56.73	
	MOTA	2402	CA	SER	315	22.487	70.383	32.932	1.00 56.15	
	MOTA	2403	CB	SER	315	22.666	69.029	33.624	1.00 56.44	
•	MOTA	2404	OG	SER	315	23.981	68.868	34.130	1.00 57.39	
50	MOTA	2405	С	SER	315	23.673	70.627	32.003	1.00 56.00	
	MOTA	2406	0	SER	315	23.595	70.416	30.793	1.00 55.42	
	MOTA	2407	N	GLU	316	24.776	71.070	32.598	1.00 56.67	
	MOTA	2408	CA	GLU	316	26.012	71.346	31.875	1.00 57.46	
	MOTA	2409	CB	GLU	316	27.111	71.754	32.860	1.00 58.71	
55	MOTA	2410	CG	GLU	316	28.458	72.050	32.206	1.00 60.34	
	ATOM	2411	CD OF1	GLU	316	28.442	73.343	31.406	1.00 61.64	
	MOTA MOTA	2412 2413		GLU GLU	316 316	28.288	74.420	32.031	1.00 62.41 1.00 61.76	
	ATOM	2413	C	GLU	316	28.574 26.442	73.280 70.078	30.160 31.161	1.00 61.76	
	ATOM	* 4T4	•	3110	210	20.442	70.076	JI. 101	1.00 31.33	

\bigcirc	1	Figure 4				45/63				
\bigcirc										
	ATOM	2415	0	GLU	316	26.770	70.088	29.972	1.00 57.68	
	ATOM ATOM	2416 2417	N	GLN	317	26.439	68.988	31.920	1.00 56.84	
	ATOM	2417	CA CB	GLN	317	26.817	67.677	31.427	1.00 56.23	
5		2419	CG	GLN GLN	317 317	26.760	66.669	32.580	1.00 55.93	
_	ATOM	2420	CD	GLN	317	27.504 27.063	67.113 66.355	33.840	1.00 55.46	
	ATOM	2421		GLN	317	27.246	65.140	35.085 35.194	1.00 55.01 1.00 54.83	
	ATOM	2422	NE2		317	26.468	67.074	36.029	1.00 54.68	
	MOTA	2423	C	GLN	317	25.902	67.210	30.290.	1.00 56.37	
10		2424	0	GLN	317	26.376	66.634	29.312	1.00 56.16	•
	MOTA	2425	N	LEU	318	24.599	67.476	30.412	1.00 56.41	
	ATOM	2426	CA	LEU	318	23.616	67.043	29.413	1.00 56.48	
	ATOM	2427	CB	LEU	318	22.190	67.333	29.890	1.00 55.59	
15	MOTA MOTA	2428 2429	CG	LEU	318	21.084	66.700	29.034	1.00 54.71	
13	ATOM	2429		LEU LEU	318	21.090	65.191	29.231	1.00 53.68	
	ATOM	2431	CD2	LEU	318 318	19.731 23.784	67.268	29.422	1.00 54.28	
	MOTA	2432	ō	LEU	318	23.784	67.621 66.893	28.017 27.029	1.00 56.99	
•	ATOM	2433	N	ARG	319	24.011	68.924	27.029	1.00 57.21 1.00 57.16	
20	ATOM	2434	CA	ARG	319	24.177	69.530	26.606	1.00 57.18	
	MOTA	2435	CB	ARG	319	23.870	71.026	26.690	1.00 59.32	
	MOTA	2436	CG	ARG	319	22.420	71.284	27.105	1.00 62.20	
	ATOM	2437	CD	ARG	319	22.125	72.743	27.401	1.00 64.53	
25	ATOM	2438	NE	ARG	319	20.758	72.927	27.892	1.00 66.89	
25	ATOM	2439	CZ	ARG	319	20.297	.74.055	28.433	1.00 68.29	
	ATOM ATOM	2440		ARG	319	21.096	75.112	28.555	1.00 68.30	
	ATOM	2441 2442	NH2 C	ARG ARG	319	19.034	74.127	28.851	1.00 68.25	
	ATOM	2443	0	ARG	319 319	25.587 26.049	69.278	26.081	1.00 57.09	
30	ATOM	2444	N	THR	320	26.246	69.951 68.277	25.160 26.667	1.00 57.05	
	ATOM	2445	CA	THR	320	27.612	67.888	26.318	1.00 56.25 1.00 55.15	
	ATOM	2446	СВ	THR	320	28.478	67.836	27.589	1.00 54.85	
	ATOM	2447		THR	320	28.601	69.158	28.133	1.00 54.94	
	ATOM	2448		THR	320	29.854	67.262	27.287	1.00 54.63	
35	MOTA		. C	THR	320	27.689	66.524	25.613	1.00 55.04	
	ATOM	2450	0	THR	320	27.476	65.480	26.229	1.00 55.13	
	ATOM ATOM	2451 2452	N CA	ARG ARG	321	28.017	66.536	24.326	1.00 54.38	
	ATOM	2453	CB	ARG	321 321	28.106 28.841	65.304	23.545	1.00 54.36	
40	ATOM	2454	CG	ARG	321	28.153	65.586 66.651	22.236	1.00 56.05	
	MOTA	2455	CD	ARG	321	28.943	67.013	21.402 20.156	1.00 59.03 1.00 61.60	
	ATOM	2456	NE	ARG	321	28.331	68.123	19.426	1.00 63.68	
	MOTA	2457	CZ	ARG	321	28.909	68.753	18.406	1.00 65.43	
	MOTA	2458	NH1		321	30.119	68.381	17.997	1.00 65.83	
45	ATOM	2459	NH2		321	28.280	69.750	17.792	1.00 65.76	
	ATOM	2460	C	ARG	321	28.765	64.123	24.262	1.00 52.97	
	ATOM	2461	0	ARG	321	29.885	64.234	24.758	1.00 53.13	
	ATOM ATOM	2462 2463	N	GLY	322	28.056	62.996	24.316	1.00 51.39	
50	ATOM	2463	CA C	GLY GLY	322 322	28.592	61.802	24.950	1.00 49.22	
30	ATOM	2465	0	GLY	322	28.198 28.450	61.609	26.402	1.00 48.17	
	ATOM	2466	N	ALA	323	27.574	60.550 62.627	26.986 26.988	1.00 48.17	
	MOTA	2467	CA	ALA	323	27.150	62.573	28.385	1.00 46.66 1.00 44.99	
	ATOM	2468	CB	ALA	323	26.462	63.861	28.761	1.00 45.87	
55	ATOM	2469	С	ALA	323	26.224	61.403	28.676	1.00 43.43	
	MOTA	2470	0	ALA	323	26.514	60.562	29.530	1.00 43.02	
	ATOM	2471	N	PHE	324	25.094	61.361	27.981	1.00 41.61	
	ATOM	2472	CA	PHE	324	24.147	60.282	28.185	1.00 40.44	
	ATOM	2473	CB	PHE	324	22.797	60.631	27.564	1.00 38.94	

$\overline{}$	F	igure 4								
)	_	-6				46/63				
	MOTA	2474	CG	PHE	324	21.644	59.988	28.262	1.00 38.08	
	MOTA	2475		PHE	324	21.047	60.613	29.360	1.00 37.48	
	MOTA	2476		PHE	324	21.185	58.733	27.860	1.00 36.96	
_	MOTA	2477		PHE	324	20.010	59.998	30.050	1.00 37.11	
5	MOTA	2478		PHE	324	20.146	58.105	28.542	1.00 37.79	
	ATOM	2479	CZ	PHE	324	19.555	58.739	29.643	1.00 37.73	•
	MOTA	2480	С	PHE	324	24.721	59.033	27.525	1.00 40.11	
	MOTA	2481	0	PHE	324	24.785	58.937	26.289	1.00 40.76	
••	MOTA	2482	N	GLU	325	25.129	58.072	28.350	1.00 39.06	
10	ATOM	2483	CA	GLU	325	25.740	56.851	27.844	1.00 37.85	•
	ATOM	2484	CB	GLU	325	26.846	56.418	28.781	1.00 38.17	
	ATOM	2485	CG	GLU	325	27.790	57.528	29.085	1.00 40.68	
	MOTA	2486	CD	GLU	325	28.922	57.075	29.951	1.00 42.47	
15	MOTA	2487		GLU	325	28.653	56.608	31.086	1.00 44.06	
15	MOTA	2488		GLU	325	30.080	57.181	29.490	1.00 44.51	
	ATOM	2489	C	GLU	325	24.799	55.693	27.641	1.00 36.60	
	ATOM ATOM	2490	0	GLU	325	23.903	55.445	28.447	1.00 37.31	
	ATOM	2491	N	THR	326	25.019	54.968	26.554	1.00 35.30	
.20	ATOM	2492 2493	CA CB	THR	326	24.193	53.816	26.245	1.00 33.37	
.20	ATOM	2493		THR THR	326	24.875	52.921	25.207	1.00 31.58	
	ATOM	2495	CG2		326 326	24.934	53.617	23.956	1.00 29.82	
	ATOM	2496	C	THR	326	24.113 23.951	51.619	25.041	1.00 29.94	
	MOTA	2497	0	THR	326	22.846	53.016 52.528	27.515 27.742	1.00 33.05	
25	ATOM	2498	N	ARG	327	24.981	52.902	28.349	1.00 33.99 1.00 32.29	
	MOTA	2499	CA	ARG	327	24.859	52.148	29.588	1.00 32.29	
	MOTA	2500	CB	ARG	327	26.146	52.245	30.417	1.00 33.30	
	MOTA	2501	CG	ARG	327	26.226	51.162	31.485	1.00 36.71	
	MOTA	2502	CD	ARG	327	27.596	51.043	32.177	1.00 38.88	
30	ATOM	2503	NE	ARG	327	27.795	52.024	33.249	1.00 40.62	
	MOTA	2504	CZ	ARG	327	28.274	53.255	33.069	1.00 41.13	
	MOTA	2505 ·			327	28.615	53.670	31.846	1.00 40.49	
	ATOM	2506		ARG	327	28.393	54.078	34.113	1.00 40.82	
25	ATOM	2507	C	ARG	. 327	23.681	52.691	30.387	1.00 30.62	
35	MOTA	2508	0	ARG	327	22.888	51.930	30.940	1.00 29.96	
	MOTA	2509	N	PHE	328	23.559	54.014	30.425	1.00 29.60	
	MOTA	2510	CA	PHE	328	22.479	54.660	31.154	1.00 28.70	
	ATOM ATOM	2511 2512	CB CG	PHE PHE	328	22.632	56.176	31.069	1.00 28.03	
40	ATOM	2512		PHE	328 328	23.903	56.684	31.686	1.00 27.73	
40		2514	_			24.337	57.975	31.439	1.00 27.37	
	ATOM ATOM	2515	CD2 CE1		328 328	24.678 25.526	55.857	32.505	1.00 28.92	
	ATOM	2516		PHE	328	25.871	58.437 56.305	31.992 33.069	1.00 28.75 1.00 28.74	
	ATOM	2517	CZ	PHE	328	26.298	57.599	32.812	1.00 28.74	
45	ATOM	2518	C	PHE	328	21.135	54.226	30.590	1.00 29.06	
	ATOM	2519	ō	PHE	328	20.189	53.953	31.351	1.00 29.59	
	ATOM	2520	N	VAL	329	21.057	54.154	29.257	1.00 28.40	
	ATOM	2521	CA	VAL	329	19.830	53.735	28.587	1.00 26.44	
	MOTA	2522	CB	VAL	329	20.040	53.552	27.059	1.00 25.14	
50	MOTA	2523	CG1	VAL	329	18.737	53.107	26.387	1.00 22.55	
	MOTA	2524	CG2	VAL	329	20.542	54.841	26.444	1.00 23.05	
	MOTA	2525	С	VAL	329	19.388	52.399	29.166	1.00 27.98	
	MOTA	2526	0	VAL	329	18.240	52.239	29.576	1.00 27.88	
	ATOM	2527	N	SER	330	20.308	51.442	29.219	1.00 28.76	
55	MOTA	2528	CA	SER	330	19.966	50.117	29.718	1.00 30.08	
	ATOM	2529	CB	SER	330	21.136	49.171	29.534	1.00 30.45	
	ATOM	2530	OG	SER	330	20.720	47.852	29.822	1.00 31.92	
	ATOM	2531	С	SER	330	19.534	50.107	31.172	1.00 31.40	
	MOTA	2532	0	SER	330	18.690	49.298	31.577	1.00 31.74	•

\bigcirc	Fig	gure 4				47/63				
\bigcirc										
	MOTA	2533	N	GLN	331	20.118	50.993	31.972	1.00 32.45	
	MOTA	2534	ÇA	GLN	331	19.745	51.061	33.381	1.00 33.16	
		2535	CB	GLN	331	20.668	51.992	34.151	1.00 33.58	
_		2536	CG	GLN	331	22.093	51.540	34.194	1.00 35.83	
5		2537	CD	GLN	331	22.947	52.534	34.919	1.00 37.72	
		2538	OE1		331	22.626	52.927	36.043	1.00 39.62	
	MOTA	2539			331	24.042	52.958	34.291	1.00 38.98	
	ATOM	2540	C	GLN	331	18.327	51.591	33.482	1.00 33.78	
10	ATOM	2541.		GLN	331	17.428	50.881	33.938	1.00 34.06	
10	MOTA	2542	N	VAL	332	18.129	52.835	33.038	1.00 33.77	
	ATOM	2543	CA	VAL	332	16.808	53.457	33.097	1.00 33.65	
	ATOM	2544	CB	VAL	332	16.760	54.791	32.282	1.00 32.19	
	ATOM	2545	CG1		332	17.279	54.584	30.905	1.00 33.04	
15	ATOM	2546	CG2		332	15.340	55.312	32.215	1.00 31.67	
15	MOTA	2547	C	VAL	332	15.695	52.505	32.638	1.00 34.20	
	ATOM	2548	0	VAL	332	14.571	52.566	33.139	1.00 34.51	
	ATOM	2549 2550	N	GLU	333	16.001	51.607	31.711	1.00 34.30	
	MOTA		CA	GLU	333	14.981	50.676	31.258	1.00 34.92	
20	ATOM ATOM	2551 2552	CB CG	GLU	333 333	15.210	50.289	29.795	1.00 34.40	
20	MOTA	2553	CD	GLU GLU	333	14.893 14.806	51.413	28.837	1.00 33.07	
	MOTA	2554		GLU	333		50.956	27.409	1.00 31.80	
	MOTA	2555		GLU	333	13.983 15.561		27.114	1.00 31.65	
	ATOM	2556	C	GLU	333	14.949	51.504 49.438	26.581 32.135	1.00 31.72 1.00 35.76	
25	ATOM	2557	0	GLU	333	14.163	48.520	31.911	1.00 35.76	
	ATOM	2558	N	SER	334	15.814	49.419	33.138	1.00 36.91	
	ATOM	2559	CA	SER	334	15.876	48.307	34.071	1.00 38.13	
	ATOM	2560	CB	SER	334	17.328	47.934	34.346	1.00 39.38	
	ATOM	2561	OG	SER	334	17.460	46.524	34.468	1.00 41.52	
30	ATOM	2562	C	SER	334	15.201	48.747	35.362	1.00 37.93	
	ATOM	2563	0	SER	334	15.053	47.973	36.306	1.00 38.63	
	MOTA	2564	N	ASP	335	14.807	50.014	35.385	1.00 38.51	
	MOTA	2565	CA	ASP	335	14.133	50.619	36.521	1.00 38.59	
	MOTA	2566	CB	ASP	335	13.776	52.061	36.173	1.00 39.10	
35	ATOM	2567	CG	ASP	335	13.346	52.864	37.373	1.00 39.89	
	MOTA	2568		ASP	335	12.278	52.547	37.950	1.00 40.30	
	MOTA	2569		ASP,	335	14.079	53.816	37.737	1.00 39.90	
	MOTA	2570	С	ASP	335	12.876	49.809	36.840	1.00 39.11	
	MOTA	2571	0	ASP	335		49.249		1.00 39.03	
40	ATOM	2572	N	THR	336		49.768	38.119	1.00 39.68	
	ATOM	2573	CA	THR	336	11.372	48.999	38.605	1.00 39.94	
	ATOM	2574	CB	THR	336	11.773	48.297	39.896	1.00 39.68	
	ATOM	2575		THR	336	12.901	47.464	39.630	1.00 40.95	
45	MOTA	2576	CG2		336	10.650	47.452	40.426	1.00 39.84	
45	MOTA	2577 2578	C	THR	336	10.043	49.735	38.853	1.00 40.52	
	ATOM	2579	O N	THR	336 337	8.984	49.108	38.931	1.00 40.91	
	MOTA MOTA	2580	CA	GLY GLY	337 337	10.085 8.870	51.054 51.804	38.970	1.00 40.80	
	ATOM	2581	CA	GLY	337	9.307		39.234	1.00 41.83 1.00 42.60	
50	ATOM	2582	0	GLY	337	8.990	52.948 54.105	40.112		
20	ATOM	2583	N	ASP	338	10.043	52.604	39.865 41.156	1.00 43.33 1.00 43.47	
	ATOM	2584	CA	ASP	338		53.589	42.059	1.00 43.47	
	ATOM	2585	CB	ASP	338	11.354	52.868	42.039	1.00 44.40	
	ATOM	2586		ASP	338	12.303	51.808	42.637	1.00 45.34	
55	ATOM	2587		ASP	338		51.032	41.751	1.00 45.34	
55	ATOM	2588		ASP	338		51.032	43.087	1.00 45.12	
	ATOM	2589	C	ASP	338	11.597	54.296	41.142	1.00 43.39	
	ATOM	2590	0	ASP	338	12.605	53.709	40.756	1.00 44.84	
	MOTA	2591		ARG	339			40.763	1.00 43.33	
					555		55.555	40.103	T.00 34.07	

)	Fi	igure 4				48/63			
-	ATOM	2592	CA	ARG	339	12.208	56.256	39.874	1.00 45.11
	MOTA	2593	СВ	ARG	339	11.702	57.687	39.654	1.00 45.72
	ATOM	2594	CG	ARG	339	10.466	57.799	38.783	1.00 46.11
	ATOM	2595	CD	ARG	339	9.201	57.413	39.521	1.00 46.99
5	ATOM	2596	NE	ARG	339	8.041	57.492	38.633	1.00 47.58
-	ATOM	2597	CZ	ARG	339	6.780	57.326	39.017	1.00 47.30
	ATOM	2598	NH1		339	6.492	57.068	40.287	1.00 47.38
	ATOM	2599	NH2		339	5.806	57.413	38.123	1.00 47.44
	ATOM	2600	C	ARG	339	13.637	56.295	40.419	1.00 44.98
10	ATOM	2601	ō	ARG	339	14.466	57.084	39.960	1.00 44.83
••	ATOM	2602	N	LYS	340	13.922	55.441	41.394	1.00 44.75
	ATOM	2603	CA	LYS	340	15.238	55.394	42.001	1.00 45.05
	ATOM	2604	СВ	LYS	340	15.341	54.179	42.917	1.00 46.19
	MOTA	2605	CG	LYS	340	14.358	54.250	44.081	1.00 47.87
15	ATOM	2606	CD	LYS	340	14.598	53.154	45.094	1.00 49.25
	ATOM	2607	CE	LYS	340	13.365	52.949	45.957	1.00 50.44
	ATOM	2608	NZ	LYS	340	13.353	51.589	46.598	1.00 51.78
	ATOM	2609	C	LYS	340	16.398	55.422	41.014	1.00 44.66
	MOTA	2610	0	LYS	340	17.186	56.372	41.026	1.00 44.90
20	MOTA	2611	N	GLN	341	16.509	54.408	40.155	1.00 43.94
	ATOM	2612	CA	GLN	341	17.603	54.362	39.174	1.00 42.93
	ATOM	2613	CB	GLN	341	17.598	53.028	38.435	1.00 45.04
	ATOM	2614	CG	GLN	341	18.035	51.860	39.289	1.00 48.03
	ATOM	2615	CD	GLN	341	18.758	50.801	38.482	1.00 49.69
25	ATOM	2616		GLN	341	19.731	51.101	37.779	1.00 50.67
	MOTA	2617	NE2	GLN	341	18.297	49.556	38.581	1.00 50.43
	MOTA	2618	C	GLN	341	17.616	55.497	38.146	1.00 40.93
	MOTA	2619	0	GLN	341	18.672	56.057	37.839	1.00 38.85
20	MOTA	2620	N	ILE	342	16.449	55.824	37.600	1.00 39.61
30	ATOM	2621	CA	ILE	342	16.364	56.905	36.624	1.00 39.07
	ATOM ATOM	2622 2623	CB CG2	ILE	342 342	14.920 14.880	57.110 58.226	36.130	1.00 39.24 1.00 39.19
	MOTA	2624		ILE	342	14.392	55.817	35.107 35.501	1.00 39.19 1.00 39.87
	ATOM	2625	CD1		342	12.945	55.902	35.070	1.00 39.87
35	ATOM	2626	C	ILE	342	16.832	58.185	37.301	1.00 38.43
•	ATOM	2627	ō	ILE	342	17.704	58.892	36.795	1.00 37.48
	ATOM	2628	N	TYR	343	16.240	58.466	38.456	1.00 38.93
	MOTA	2629	CA	TYR	343	16.580	59.647	39.236	1.00 39.71
	ATOM	2630	CB	TYR	343	15.813	59.656	40.567	1.00 40.97
40	ATOM	2631	CG	TYR	343	16.173	60.835	41.448	1.00 42.53
	MOTA	2632		TYR	343	15.344	61.954	41.521	1.00 43.30
	MOTA	2633		TYR	343	15.730	63.092	42.228	1.00 44.58
	ATOM	2634	CD2	TYR	343	17.397	60.880	42.119	1.00 43.04
	ATOM	2635		TYR	343	17.791	62.014	42.826	1.00 43.55
45	MOTA	2636	CZ	TYR	343	16.958	63.117	42.872	1.00 44.31
	ATOM	2637	OH	TYR	343	17.369	64.260	43.523	1.00 45.74
	ATOM	2638	С	TYR	343	18.070	59.635	39.532	1.00 39.93
	ATOM	2639	0	TYR	343	18.789	60.598	39.262	1.00 40.28
	ATOM	2640	N	ASN	344	18.525	58.529	40.098	1.00 40.14
50	ATOM	2641	CA	ASN	344	19.924	58.371	40.460	1.00 40.97
	MOTA	2642	CB	ASN	344	20.146	56.958	40.989	1.00 42.94
	MOTA	2643	CG	ASN	344	21.287	56.880	41.977	1.00 44.68
	ATOM	2644		ASN	344	22.448	57.137	41.628	1.00 46.05
	ATOM	2645		ASN	344	20.965	56.531	43.225	1.00 44.93
55	ATOM	2646	C	ASN	344	20.869	58.649	39.292	1.00 40.46
	MOTA	2647	0	ASN	344	21.946	59.208	39.483	1.00 40.33
	ATOM	2648	N	ILE	345	20.460	58.262	38.085	1.00 40.50
	ATOM ATOM	2649 2650	CA CB	ILE .	345 . 345	21.280	58.467	36.890	1.00 39.89 1.00 39.76
	AION	2000	CD	THE	747	20.003	57.555	35.720	1.00 33.70

\bigcirc	F	lgure 4				49/63			
\bigcirc	ATOM	2651	cca	ILE	245		ET 040	24 440	1 00 10 50
	MOTA	2652		ILE	345 345	21.597 20.966	57.849 56.090	34.448 36.114	1.00 38.62 1.00 38.74
	ATOM	2653		ILE	345	20.201	55.151	35.242	1.00 38.74
	ATOM	2654	C	ILE	345	21.247	59.924	36.434	1.00 39.80
5	ATOM	2655	ō	ILE	345	22.281	60.490	36.074	1.00 39.67
	ATOM	2656	N	LEU	346	20.062	60.529	36.449	1.00 39.59
	ATOM	2657	CA	LEU	346	19.912	61.923	36.029	1.00 39.58
	ATOM	2658	CB	LEU	346	18.434	62.255	35.818	1.00 37.79
	ATOM	2659	CG	LEU	346	17.809	61.528	34.625	1.00 36.58
10	ATOM	2660		LEU	346	16.277	61.599	34.684	1.00 35.18
	ATOM	2661		LEU	346	18.363	62.145	33.337	1.00 35.05
	ATOM	2662	С	LEU	346	20.519	62.892	37.034	1.00 40.82
	ATOM	2663	0	LEU	346	21.177	63.857	36.654	1.00 41.02
15	MOTA	2664	N	SER	347	20.298	62.646	38.322	1.00 42.34
15	MOTA MOTA	2665 2666	CA	SER	347	20.859	63.530	39.339	1.00 43.44
	MOTA	2667	CB OG	SER SER	347	20.491	63.042	40.745	1.00 43.90
	MOTA	2668	C	SER	347 347	20.665 22.368	61.639	40.868	1.00 45.32
	MOTA	2669	0	SER	347	22.974	63.556 64.624	39.156 39.051	1.00 43.44 1.00 44.11
20	ATOM	2670	N	THR	348	22.969	62.374	39.096	1.00 44.11
	ATOM	2671	CA	THR	348	24.407	62.285	38.909	1.00 42.97
	MOTA	2672	СВ	THR	348	24.853	60.830	38.700	1.00 42.31
	ATOM	2673	OG1	THR	348	24.666	60.096	39.918	1.00 42.08
	ATOM	2674	CG2	THR	348	26.322	60.780	38.282	1.00 40.85
25	ATOM	2675	С	THR	348	24.798	63.093	37.683	1.00 43.25
	ATOM	2676	0	THR	348	25.796	63.813	37.680	1.00 43.52
	ATOM	2677	N	LEU	349	23.990	62.982	36.640	1.00 43.57
	ATOM ATOM	2678 2679	CA CB	LEU LEU	349	24.271	63.697	35.412	1.00 44.17
30	ATOM	2680	CG	LEU	349 349	23.343	63.180	34.311	1.00 44.43
50	ATOM	2681		LEU	349	23.787 25.198	63.204 62.658	32.847	1.00 44.86
	ATOM	2682		LEU	349	22.790	62.375	32.688 32.046	1.00 44.59 1.00 44.64
	ATOM	2683	c	LEU	349	24.102	65.201	35.638	1.00 44.32
	ATOM	2684	0	LEU	349	24.317	66.003	34.726	1.00 45.33
35	ATOM	2685	N	GLY	350	23.722	65.574	36.862	1.00 43.94
	ATOM	2686	CA	GLY	350	23.559	66.981	37.210	1.00 43.15
	MOTA	2687	C	GLY	350	22.167	67.570	37.038	1.00 42.49
	ATOM	2688	0	GLY	350	22.024	68.752	36.703	1.00 41.70
40	MOTA MOTA	2689 2690	N	LEU	351	21.143	66.758	37.288	1.00 41.97
40	ATOM	2691	CA	LEU LEU	351 351	19.758 19.194	67.197		
	ATOM	2692		LEU	351	19.194		35.812 34.522	1.00 40.99 1.00 40.66
	ATOM	2693		LEU	351	19.516		33.416	1.00 40.66
	ATOM	2694		LEU	351	19.453		34.172	1.00 40.77
45	ATOM	2695	С	LEU	351	18.858		38.262	1.00 41.15
	ATOM	2696	0	LEU	351	19.170	65.760	38.973	1.00 40.88
	MOTA	2697	N	ARG	352	17.720	67.379	38.410	1.00 41.10
	MOTA	2698	CA	ARG	352	16.782	67.007	39.457	1.00 41.25
50	MOTA	2699	CB	ARG	352	16.614	68.173	40.431	1.00 42.65
50	ATOM	2700	CG	ARG	352	17.929	68.581	41.070	1.00 43.68
	ATOM	2701	CD	ARG	352	18.504	67.421	41.851	1.00 45.59
	ATOM ATOM	2702 2703	NE	ARG	352	19.960	67.478	41.917	1.00 47.73
	ATOM	2703	CZ NIL/1	ARG ARG	352 352	20.715	66.567	42.521	1.00 48.77
55	ATOM	2704		ARG	352 352	20.143 22.038	65.524 66.700	43.119	1.00 49.05
	ATOM	2706	C	ARG	352	15.458	66.621	42.519 38.827	1.00 49.14 1.00 39.59
	ATOM	2707	Õ	ARG	352	14.512		38.793	1.00 40.34
	ATOM	2708	N	PRO	353	15.378	65.388	38.324	1.00 38.06
	ATOM	2709	CD	PRO	353	16.325		38.555	1.00 37.28

·)	F	igure 4				50/63			
	ATOM	2710	CA	PRO	353	14.159	64.901	37.683	1.00 37.45
	ATOM	2711	CB	PRO	353	14.595	63.552	37.134	1.00 37.43
	ATOM	2712	CG	PRO	353	15.491	63.064	38.232	1.00 36.92
	ATOM	2713	C	PRO	353	12.998	64.763	38.650	1.00 36.35
5	ATOM	2714	0	PRO	353	13.180			
,	ATOM	2715	N	SER	354	11.805	64.360 65.110	39.791 38.194	1.00 36.28 1.00 35.82
	ATOM	2716	CA	SER	354	10.625	64.951	39.028	1.00 35.82
	ATOM	2717	СВ	SER	354	9.570	66.010		1.00 35.40
	ATOM	2718	OG	SER	354	8.944	65.725	38.698	1.00 35.94
10	ATOM	2719	C	SER	354	10.091	63.725	37.459	
	ATOM	2720	ō	SER	354	10.592	62.948	38.653 37.716	1.00 36.41 1.00 37.42
	ATOM	2721	N	THR	355	9.087	63.091	39.375	1.00 37.42
	ATOM	2722	CA	THR	355	8.493	61.790		
	ATOM	2723	CB	THR	355	7.200	61.615	39.099	1.00 35.68
15	ATOM	2724	0G1		355 355	7.525	61.645	39.923 41.316	1.00 36.38 1.00 37. 2 5
15	ATOM	2725	CG2	THR	355	6.510	60.293	39.598	1.00 37.23
	MOTA	2726	C	THR	355	8.161	61.633		
	ATOM	2727	0	THR	355	8.319	60.548	37.609	1.00 35.80 1.00 34.73
	ATOM	2728	N	THR	356	7.698	62.720	37.029 36.994	1.00 34.73
20	ATOM	2729	CA	THR	. 356	7.336	62.720	35.586	1.00 35.28
	MOTA	2730	CB	THR	356	6.287	63.774	35.263	1.00 35.59
	ATOM	2731	OG1		356	6.651	64.990	35.263	1.00 35.39
	ATOM	2732	CG2	THR	356	4.892	63.331	35.719	1.00 33.39
	ATOM	2733	C	THR	356	8.542	62.848	34.662	1.00 34.33
25	ATOM	2734	Ö	THR	356	8.560	62.285	33.559	1.00 33.30
23	ATOM	2735	N	ASP	357	9.537	63.624	35.089	1.00 34.91
	ATOM	2736	CA	ASP	357	10.740	63.782	34.277	1.00 35.80
	ATOM	2737	CB	ASP	357	11.804	64.598	35.012	1.00 35.80
	ATOM	2738	CG	ASP	357	11.451	66.077	35.116	1.00 38.19
- 30	ATOM	2739		ASP	357	11.475	66.778	34.071	1.00 37.60
•	ATOM	2740		ASP	357	11.158	66.538	36.249	1.00 37.00
	MOTA	2741	c	ASP	357	11.277	62.373	34.039	1.00 35.70
	ATOM	2742	0	ASP	357	11.460	61.942	32.901	1.00 36.94
	MOTA	2743	N	CYS	358	11.498	61.649	35.131	1.00 35.67
35	MOTA	2744	CA	CYS	358	12.013	60.293	35.057	1.00 35.44
	MOTA	2745	CB	CYS	358	12.051	59.658	36.447	1.00 35.93
	ATOM	2746	SG	CYS	358	13.247	60.410	37.575	1.00 35.81
	ATOM	2747	С	CYS	358	11.177	59.433	34.138	1.00 34.88
	ATOM	2748	0	CYS	358	11.711	58.698	33.308	1.00 35.87
40	MOTA	2749	N	ASP	359	9.863	59.517	34.290	1.00 34.10
	MOTA	2750	CA	ASP	359	8.960	58.729	33.464	1.00 33.10
	MOTA	2751	CB	ASP	359	7.519	58.964	33.910	1.00 35.03
	MOTA	2752	CG	ASP	359	7.118	58.058	35.062	1.00 36.65
	MOTA	2753		ASP	359	7.950	57.850	35.975	1.00 38.15
45	MOTA	2754	OD2	ASP	359	5.969	57.561	35.055	1.00 37.12
	MOTA	2755	С	ASP	359	9.130	59.058	31.985	1.00 31.16
	MOTA	2756	0	ASP	359	9.090	58.170	31.133	1.00 30.01
	MOTA	2757	N	ILE	360	9.325	60.334	31.682	1.00 29.54
	MOTA	2758	CA	ILE	360	9.524	60.741	30.300	1.00 28.61
50	MOTA	2759	CB	ILE	360	9.546	62.273	30.162	1.00 27.75
	MOTA	2760	CG2	ILE	360	10.255	62.668	28.874	1.00 27.01
	MOTA	2761	CG1	ILE	360	8.112	62.818	30.235	1.00 26.18
	ATOM	2762	CD1	ILE	360	8.024	64.322	30.190	1.00 23.23
	MOTA	2763	С	ILE	360	10.857	60.176	29.825	1.00 29.21
55	ATOM	2764	0	ILE	360	10.919	59.480	28.805	1.00 29.88
	ATOM	2765	N	VAL	361	11.923	60.466	30.569	1.00 28.39
	ATOM	2766	CA	VAL	361	13.248	59.971	30.219	1.00 28.01
	MOTA	2767	СВ	VAL	361	14.258	60.256	31.342	1.00 27.73
	MOTA	2768	CG1	VAL	361	15.575	59.551	31.055	1.00 27.43

)	F	igure 4				51/63			
	MOTA	2769	CG2	VAL	361	14.492	61.759	31.453	1.00 27.76
	ATOM	2770	С	VAL	361	13.245	58.464	29.919	1.00 27.74
	MOTA	2771	0	VAL	361	14.055	57.982	29.107	1.00 27.40
	ATOM	2772	N	ARG	362	12.341	57.719	30.556	1.00 27.72
5	MOTA	2773	CA	ARG	362	12.277	56.275	30.325	1.00 27.95
	ATOM	2774	CB	ARG	362	11.523	55.571	31.455	1.00 29.48
	MOTA	2775	CG	ARG	362	11.137	54.147	31.101	1.00 31.97
	MOTA	2776	CD	ARG	362	10.900	53.266	32.308	1.00 33.93
	ATOM	2777	NE	ARG	362	10.930	51.859	31.893	1.00 37.37
10	MOTA	2778	cz	ARG	362	10.938	50.817	32.725	1.00 37.52
	MOTA	2779	NH1	ARG	362	10.920	51.010	34.043	1.00 38.72
	MOTA	2780	NH2	ARG	362	10.960	49.582	32.230	1.00 36.06
	MOTA	2781	C	ARG	362	11.614	55.959	28.994	1.00 27.88
	ATOM	2782	0	ARG	362	12.016	55.032	28.289	1.00 29.02
15	ATOM	2783	N	ARG	363	10.586	56.728	28.660	1.00 27.31
	ATOM	2784	CA	ARG	363	9.866	56.564	27.400	1.00 25.77
	ATOM	2785	CB	ARG	363	8.641	57.486	27.374	1.00 26.51
	MOTA	2786	CG	ARG	363	7.530	57.084	28.318	1.00 26.30
	ATOM	2787	CD	ARG	363	6.730	55.929	27.739	1.00 28.36
20	MOTA	2788	NE	ARG	363	6.259	56.216	26.380	1.00 30.91
	MOTA	2789	CZ	ARG	363	6.872	55.826	25.260	1.00 31.55
	MOTA	2790	NH1	ARG	363	7.992	55.112	25.315	1.00 33.18
	ATOM	2791	NH2	ARG	363	6.370	56.158	24.077	1.00 32.30
	ATOM	2792	С	ARG	363	10.817	56.949	26.272	1.00 24.71
25	MOTA	2793	0	ARG	363	10.748	56.392	25.175	1.00 24.40
	ATOM	2794	N	ALA	364	11.706	57.905	26.540	1.00 23.90
	ATOM	2795	CA	ALA	364	12.653	58.339	25.507	1.00 24.48
	MOTA	2796	CB	ALA	364	13.463	59.545	25.969	1.00 23.15
	MOTA	2797	C	ALA	364	13.571	57.176	25.226	1.00 25.01
30	MOTA	2798	0	ALA	364	13.854	56.872	24.069	1.00 26.22
	MOTA	2799	N	CYS	365	14.023	56.518	26.290	1.00 25.03
	MOTA	2800	CA	CYS	365	14.902	55.370	26.157	1.00 24.77
•	MOTA.	2801	CB	CYS	365	15.450	54.970	27.528	1.00 23.03
	MOTA	2802	SG	CYS	365	16.728	56.114	28.173	1.00 21.60
35	ATOM	2803	С	CYS	365	14.140	54.206	25.514	1.00 26.44
	MOTA	2804	0	CYS	365	14.661	53.535	24.617	1.00 27.49
	MOTA	2805	N	GLU	366	12.906	53.956	25.944	1.00 26.87
	ATOM	2806	CA	GLU	366	12.145	52.859	25.342	1.00 27.98
40	MOTA	2807	CB	GLU	366	10.757	52.743	25.988	1.00 28.74
40	ATOM	2808	CG	GLU	366	10.785	52.431	27.490	1.00 30.75
	ATOM	2809	CD	GLU	366	9.427	51.981	28.041	1.00 32.09
	MOTA	2810		GLU	366	8.444	52.757	27.970	1.00 32.39
	ATOM	2811		GLU	366	9.342	50.841	28.547	1.00 33.30
4E	ATOM	2812	C	GLU	366	12.005	53.056	23.815	1.00 28.15
45	MOTA	2813	0	GLU	366	12.117	52.104	23.029	1.00 27.63
	ATOM	2814	N	SER	367	11.776	54.304	23.407	1.00 28.42
	ATOM	2815	CA	SER	367	11.612	54.650	21.993	1.00 27.23
	MOTA	2816	CB	SER	367	11.368	56.156	21.833	1.00 27.45
50	ATOM	2817	OG	SER	367	10.161	56.552	22.447	1.00 27.44
50	ATOM	2818	C	SER	367	12.824	54.276	21.165	1.00 26.52
	ATOM	2819	0	SER	367	12.724	53.567	20.162	1.00 27.99
	ATOM	2820	N	VAL	368	13.977	54.773	21.581	1.00 24.30
	ATOM	2821	CA	VAL	368	15.194	54.499	20.849	1.00 22.45
er	ATOM	2822	CB	VAL	368	16.324	55.395	21.375	1.00 20.96
55	ATOM	2823		VAL	368	17.623	55.075	20.682	1.00 18.44
	MOTA	2824		VAL	368	15.928	56.843	21.190	1.00 18.99
	ATOM	2825	С	VAL	368	15.605	53.019	20.888	1.00 23.13
•	ATOM	2826	O N	VAL	368	15.850	52.420	19.832	1.00 23.88
	MOTA	2827	N	SER	369	15.660	52.405	22.071	1.00 22.54

	\bigcirc	F	igure 4				52/63			
		ATOM	2828	CA	SER	369	16.071	51.003	22.106	1.00 21.93
•		MOTA	2829	CB	SER	369	16.248	50.476	23.542	1.00 23.39
		MOTA	2830	OG	SER	369	15.011	50.251	24.197	1.00 25.91
		MOTA	2831	С	SER	369	15.109	50.112	21.348	1.00 20.54
	5	MOTA	2832	0	SER	369	15.526	49.063	20.850	1.00 20.31
		MOTA	2833	N	THR	370	13.832	50.499	21.259	1.00 18.40
		MOTA	2834	CA	THR	370	12.878	49.682	20.496	1.00 17.32
		MOTA	2835	CB	THR	370	11.400	49.976	20.859	1.00 16.46
		MOTA	2836		THR	370	11.053	49.298	22.073	1.00 15.81
	10	MOTA	2837		THR	370	10.473	49.487	19.774	1.00 14.39
		ATOM	2838	С	THR	. 370	13.076	49.936	19.001	1.00 17.03
		MOTA	2839	0	THR	370	12.977	49.008	18.186	1.00 17.38
		ATOM	2840	N	ARG	371	13.358	51.177	18.617	1.00 16.71
	15	ATOM	2841	CA	ARG	371	13.562	51.423	17.201	1.00 16.54
	15	ATOM	2842	CB	ARG	371	13.810	52.905	16.882	1.00 17.42
		MOTA	2843	CG	ARG	371	14.013	53.123	15.374	1.00 17.76
		MOTA	2844	CD	ARG	371	14.283	54.559	14.943	1.00 17.40
		ATOM ATOM	2845	NE	ARG	371	15.567	55.076	15.412	1.00 18.85
	20	MOTA	2846 2847	CZ	ARG ARG	371	16.159	56.154	14.896	1.00 18.99
	20	MOTA	2848		ARG	371	15.583	56.810	13.892	1.00 17.43
		ATOM	2849	C	ARG	371 371	17.303	56.605	15.406	1.00 19.19
		ATOM	2850	0	ARG	371 371	14.763 14.689	50.607 49.929	16.759	1.00 15.91
		ATOM	2851	N	ALA	372	15.856	50.644	15.748 17.519	1.00 17.14
	25	ATOM	2852	CA	ALA	372	17.061	49.883	17.148	1.00 15.40 1.00 16.23
		MOTA	2853	CB	ALA	372	18.152	50.046	18.197	1.00 15.66
		ATOM	2854	C	ALA	372	16.775	48.407	16.157	1.00 15.00
		MOTA	2855	ō	ALA	372	17.125	47.838	15.923	1.00 18.06
		ATOM	2856	N	ALA	373	16.149	47.790	17.955	1.00 16.86
	30	MOTA	2857	CA	ALA	373	15.817	46.367	17.912	1.00 17.10
		ATOM	2858	CB	ALA	373	15.027	45.976	19.156	1.00 16.66
		MOTA	2859	С	ALA	373	15.024	46.018	16.665	1.00 18.79
		MOTA	2860	0	ALA	373	15.301	45.004	16.018	1.00 20.02
		MOTA	2861	N	HIS	374	14.037	46.841	16.316	1.00 19.22
	35	MOTA	2862	CA	HIS	374	13.243	46.560	15.122	1.00 20.89
		MOTA	2863	CB	HIS	374	12.025	47.489	15.052	1.00 20.98
		ATOM	2864	CG	HIS	374	10.948	47.131	16.029	1.00 19.79
•		MOTA	2865	CD2		374	10.813	46.065	16.855	1.00 19.53
	· 40	ATOM	2866	ND1		374	9.833	47.914	16.229	1.00 19.92
	***	ATOM	2867		HIS	374	9.057	47.347	17.137	1.00 18.78
		MOTA MOTA	2868 2869	NE2 C	HIS	374 374	9.629	46.223 46.696	17.532	1.00 18.61
		ATOM	2870	0	HIS	374	14.075 14.136	45.789	13.866	1.00 21.57 1.00 21.42
		ATOM	2871	N	MSE	375	14.722	47.835	13.058 13.698	1.00 21.42
	45	ATOM	2872	CA	MSE	375	15.561	48.027	12.528	1.00 24.00
•		ATOM	2873	CB	MSE	375	16.390	49.311	12.526	1.00 28.31
		ATOM	2874	CG	MSE	375	15.671	50.558	12.197	1.00 28.31
		ATOM	2875	SE	MSE	375	15.246	50.448	10.400	1.00 31.40
		MOTA	2876	CE	MSE	375	16.340	51.745	9.680	1.00 36.51
	50	ATOM	2877	C	MSE	375	16.476	46.810	12.390	1.00 25.84
		MOTA	2878	0	MSE	375	16.501	46.159	11.351	1.00 26.84
		MOTA	2879	N	CYS	376	17.200	46.489	13.455	1.00 25.61
		MOTA	2880	CA	CYS	376	18.107	45.349	13.436	1.00 25.11
		MOTA	2881	CB	CYS	376	18.693	45.117	14.831	1.00 26.04
	55	MOTA	2882	SG	CYS	376	20.038	43.879	14.876	1.00 27.98
		ATOM	2883	С	CYS	376	17.445	44.058	12.931	1.00 24.01
		MOTA	2884	0	CYS	376	18.015	43.369	12.078	1.00 24.35
		MOTA	2885	N	SER	377	16.251	43.741	13.443	1.00 22.14
,		MOTA	2886	CA	SER	377	15.519	42.531	13.038	1.00 20.58
•										

\sim	`	F	igure 4				· ;e					
	y						53/63					
		MOTA	2887	CB	SER	377	14.203	42.399	13.811	1.00 20.36		
		MOTA	2888	OG	SER	377	13.233	43.325	13.338	1.00 20.95		
		MOTA	2889	C	SER	377	15.210	42.535	11.542	1.00 20.00		
	_	MOTA	2890	0	SER	377	15.154	41.484	10.900	1.00 19.23		
	5	MOTA	2891	N	ALA	378	14.995	43.715	10.980	1.00 19.64		
		MOTA	2892	CA	ALA	378	14.723	43.787	9.549	1.00 19.32		•
		ATOM	2893	CB	ALA	378	14.521	45.243	9.119	1.00 18.02		
		MOTA	2894	С	ALA	378	15.958	43.186	8.874	1.00 19.40		
		MOTA	2895	0	ALA	378	15.860	42.230	8.093	1.00 18.55		
	10	ATOM	2896	N	GLY	379	17.123	43.740	9.222	1.00 20.18	• .	
		MOTA	2897	CA	GLY	379	18.381	43.271	8.669	1.00 20.06		
		MOTA	2898	C	GLY	379	18.547	41.762	8.734	1.00 19.52		
		ATOM	2899	0	GLY	379	18.754	41.113	7.704	1.00 20.07		
		ATOM	2900	N	LEU	380	18.442	41.201	9.936	1.00 18.61		
	15	MOTA	2901	CA	LEU	380	18.596	39.763	10.110	1.00 18.74		
		MOTA	2902	CB	LEU	380	18.489	39.371	11.579	1.00 18.49		
		ATOM	2903	CG	LEU	380	18.774	37.881	11.816	1.00 17.82		
		MOTA MOTA	2904		LEU	380	20.215	37.586	11.383	1.00 16.94		
	20	ATOM	2905 2906		LEU	380	18.557	37.512	13.285	1.00 16.34		
	20	MOTA	2907	C	LEU	380	17.580	38.938	9.341	1.00 19.56		
		ATOM	2908	O N	LEU	380	17.895	37.833	8.892	1.00 20.67		
		ATOM	2909	CA	ALA ALA	381	16.354	39.447	9.211	1.00 19.83		
		ATOM	2910	CB	ALA	381 381	15.311	38.713	8.496	1.00 20.17		•
	25	ATOM	2911	C	ALA	381	13.961	39.327	8.759	1.00 19.87		
		ATOM	2912	Ö	ALA	381	15.638 15.421	38.746 37.773	7.009	1.00 21.06		
		MOTA	2913	N	GLY	382	16.174	39.874	6.269 6.567	1.00 21.05		
		ATOM	2914	CA	GLY	382	16.561	39.965	5.175	1.00 21.33 1.00 22.63		
		ATOM	2915	С	GLY	382	17.670	38.954	4.903	1.00 23.10		
	30	ATOM	2916	Ō	GLY	382	17.708	38.319	3.832	1.00 23.74		
		ATOM	2917	N	VAL	383	18.579	38.778	5.859	1.00 21.83		
		MOTA	2918	CA	VAL	383	19.642	37.828	5.615	1.00 22.47		
		ATOM	2919	CB	VAL	383	20.786	37.967	6.643	1.00 22.80		
		ATOM	2920		VAL	383	21.737	36.777	6.525	1.00 21.04		
	35	ATOM	2921	CG2	VAL	383	21.562	39.298	6.396	1.00 21.85		
		ATOM	2922	C	VAL	383	19.075	36.423	5.639	1.00 22.92		
		MOTA	2923	0	VAL	383	19.199	35.681	4.675	1.00 23.65		
		MOTA	2924	N	ILE	384	18.414	36.061	6.724	1.00 23.52		
	40	ATOM	2925	CA	ILE	384	17.853	34.721	6.835	1.00 24.64		
	40	MOTA	2926	CB	ILE	384	17.124	34.551	8.179	1.00 24.17		
		ATOM	2927		ILE	384	16.533	33.143	8.283	1.00 22.50		
		ATOM	2928		ILE	384	18.112	34.810	9.318	1.00 23.69		
		ATOM ATOM	2929 2930	CD1 C		384		.34.861	10.661	1.00 24.39		
	45	MOTA	2931	0	ILE	384	16.910	34.324	5.691	1.00 26.04		
	43	MOTA	2932	N	ILE ASN	384 385	17.029	33.233	5.144	1.00 26.98		
		ATOM	2933	CA	ASN	385	15.974 15.097	35.182	5.310	1.00 26.88		
		MOTA	2934		ASN	385	13.984	34.785 35.819	4.218	1.00 27.99		
		ATOM	2935		ASN	385	13.038	35.918	3.998 5.174	1.00 25.92		
	50	ATOM	2936	OD1		385	12.721	34.921	5.820	1.00 23.68 1.00 21.60		
		ATOM	2937		ASN	385	12.567	37.128	5.448	1.00 23.03		
		ATOM	2938	С	ASN	385	15.888	34.579	2.915	1.00 29.62		
		ATOM	2939	0	ASN	385	15.610	33.647	2.143	1.00 29.62		
		ATOM	2940	N	ARG	386	16.869	35.440	2.660	1.00 23.02		
	55	MOTA	2941	CA	ARG	386	17.660	35.301	1.442	1.00 33.07		
		ATOM	2942	СВ	ARG	386	18.840	36.261	1.446	1.00 32.62		
	•	MOTA	2943	CG	ARG	386	19.697	36.147	0.214	1.00 33.28		
		ATOM -	2944	CD	ARG	386	20.908	37.059	0.284	1.00 34.52		
		ATOM	2945	NE	ARG	386	21.923	36.698	-0.704	1.00 35.29		

	Figure 4				
				54/63	
	ATOM 2946	CZ ARG	386	21.812 36.910 -2.014 1.00 36.32	
	ATOM 2947	NH1 ARG	386	20.729 37.492 -2.518 1.00 35.95	
	ATOM 2948	NH2 ARG	386	22.782 36.525 -2.832 1.00 37.07	
_	ATOM 2949	C ARG	386	18.178 33.875 1.362 1.00 34.69	
5	ATOM 2950	O ARG	386	18.077 33.232 0.320 1.00 35.70	
	ATOM 2951	N MSE	387	18.710 33.383 2.480 1.00 35.94	
	ATOM 2952	CA MSE	387	19.250 32.036 2.560 1.00 37.39	
	ATOM 2953	CB MSE	387	19.903 31.828 3.927 1.00 39.78	
10	ATOM 2954	CG MSE	387	21.099 32.754 4.186 1.00 42.37	
10	ATOM 2955	SE MSE	387	21.873 32.552 5.859 1.00 49.18	
	ATOM 2956	CE MSE	387	21.738 30.694 6.097 1.00 44.67	
	ATOM 2957	C MSE	387	18.179 30.976 2.311 1.00 38.50	
	ATOM 2958 ATOM 2959	O MSE	387	18.463 29.927 1.721 1.00 37.80	
15	ATOM 2960	N ARG	388	16.954 31.255 2.769 1.00 40.15	
.5	ATOM 2961	CA ARG	388	15.808 30.352 2.586 1.00 41.28	
	ATOM 2962	CG ARG	388 388	14.554 30.941 3.245 1.00 42.50	
	ATOM 2963	CD ARG	388	13.268 30.115 3.069 1.00 42.73 12.266 30.443 4.178 1.00 43.15	
	ATOM 2964	NE ARG	388		
20	ATOM 2965	CZ ARG	388	10.965 29.787 4.012 1.00 44.47 10.049 30.134 3.104 1.00 44.46	
	ATOM 2966	NH1 ARG	388	10.283 31.139 2.269 1.00 44.11	
	ATOM 2967	NH2 ARG	388	8.895 29.478 3.033 1.00 44.15	
	ATOM 2968	C ARG	388	15.579 30.210 1.094 1.00 41.39	
	ATOM 2969	O ARG	388	15.516 29.104 0.554 1.00 40.76	
25	ATOM 2970	n Glu	389	15.460 31.355 0.439 1.00 41.88	
	ATOM 2971	CA GLU	389	15.275 31.405 -0.997 1.00 43.37	
	ATOM 2972	CB GLU	389	15.211 32.867 -1.448 1.00 45.21	
	ATOM 2973	CG GLU	389	15.227 33.079 -2.957 1.00 48.22	
20	ATOM 2974	CD GLU	389	13.894 32.754 -3.632 1.00 50.35	
30	ATOM 2975	OE1 GLU	389	13.850 32.799 -4.891 1.00 51.00	
·	ATOM 2976	OE2 GLU	389	12.900 32.464 -2.912 1.00 50.86	
	ATOM 2977	C GLU	389	16.476 30.713 -1.635 1.00 43.77	
	ATOM 2978 ATOM 2979	O GLU	389	16.325 29.726 -2.355 1.00 43.53	
35	ATOM 2980	N SER CA SER	390	17.671 31.227 -1.335 1.00 43.84	
	ATOM 2981	CB SER	390 390	18.925 30.697 -1.878 1.00 43.61 20.112 31.549 -1.425 1.00 43.41	
	ATOM 2982	OG SER	390		
	ATOM 2983	C SER	390	20.229 32.703 -2.241 1.00 43.45 19.243 29.234 -1.607 1.00 43.62	
	ATOM 2984	O SER	390	20.126 28.671 -2.251 1.00 44.11	
40	ATOM 2985	N ARG	391	18.555 28.614 -0.660 1.00 43.22	
·	ATOM 2986	CA ARG	391	18.815 27.213 -0.396 1.00 43.67	
	ATOM 2987	CB ARG	391	19.174 26.994 1.078 1.00 42.72	
	ATOM 2988	CG ARG	391	20.440 27.699 1.512 1.00 41.51	
	ATOM 2989	CD ARG	391	20.907 27.245 2.892 1.00 39.51	
45	ATOM 2990	NE ARG	391	22.183 27.864 3.231 1.00 37.99	
	ATOM 2991	CZ ARG	391	22.940 27.512 4.266 1.00 37.81	
	ATOM 2992	NH1 ARG	391	22.545 26.540 5.070 1.00 36.05	
	ATOM 2993	NH2 ARG	391	24.105 28.121 4.482 1.00 37.12	
50	ATOM 2994	C ARG	391	17.578 26.404 -0.756 1.00 44.95	
30	ATOM 2995	O ARG	391	17.458 25.241 -0.372 1.00 45.05	
	ATOM 2996 ATOM 2997	N SER	392	16.666 27.023 -1.502 1.00 46.71	
	ATOM 2998	CA SER CB SER	392	15.420 26.367 -1.895 1.00 48.25	
	ATOM 2999		392	15.631 25.468 -3.121 1.00 48.10	
55	ATOM 2999 ATOM 3000	OG SER C SER	392	15.610 26.216 -4.326 1.00 48.60	
	ATOM 3000	O SER	392 392	14.880 25.536 -0.737 1.00 49.61	
	ATOM 3001	N GLU	392	14.601 24.344 -0.882 1.00 49.37	
	ATOM 3003	CA GLU	393 393	14.749 26.175 0.420 1.00 51.58 14.237 25.510 1.617 1.00 53.54	
	ATOM 3004	CB GLU	393		
		320		15.085 25.897 2.842 1.00 54.33	

•

_	F	igure 4				•			
)	-	-gare -				55/63			
_	MOTA	3005	CG	GLU	3.93	16.586	25.655	2.701	1.00 54.92
	ATOM	3006	CD	GLU	393	17.057	24.420	3.450	1.00 55.87
	MOTA	3007		GLU	393	16.845	24.347	4.683	1.00 55.29
	MOTA	3008	OE2	GLU	393	17.646	23.523	2.806	1.00 56.69
5	ATOM	3009	С	GLU	393	12.793	25.961	1.838	1.00 54.20
	MOTA	3010	0	GLU	393	12.482	27.151	1.693	1.00 53.70
	MOTA	3011	N	ASP	394	11.907	25.026	2.173	1.00 55.42
	MOTA	3012	CA	ASP	394	10.519	25.404	2.419	1.00 56.88
	MOTA	3013	CB	ASP	394	9.585	24.194	2.400	1.00 58.69
10	MOTA	3014	CG	ASP	394	8.111	24.602	2.415	1.00 61.23
	MOTA	3015		ASP	394	7.691	25.298	3.376	1.00 62.29
	ATOM	3016		ASP	394	7.374	24.237	1.466	1.00 62.03
	ATOM	3017	C	ASP	394	10.489	26.041	3.795	1.00 56.57
3.5	MOTA	3018	0	ASP	394	10.023	27.164	3.959	1.00 56.22
15	MOTA	3019	N .	VAL	395	10.994	25.298	4.773	1.00 56.79
	MOTA	3020	CA	VAL	395	11.086	25.756	6.153	1.00 57.23
	MOTA MOTA	3021	CB	VAL	395	10.166	24.949	7.093	1.00 57.72
	ATOM	3022 3023		VAL VAL	395	10.444	25.320	8.548	1.00 57.64
20	MOTA	3023	C	VAL	395 395	8.708 12.534	25.221	6.749	1.00 58.46
	ATOM	3025	ō	VAL	395	12.968	25.538 24.407	6.575 6.793	1.00 57.01 1.00 56.90
	ATOM	3026	N	MSE	396	13.280	26.626	6.690	1.00 56.80
	ATOM	3027	CA	MSE	396	14.682	26.536	7.058	1.00 56.12
	MOTA	3028	CB	MSE	396	15.463	27.645	6.375	1.00 57.66
25	ATOM	3029	CG	MSE	396	16.932	27.623	6.690	1.00 60.51
	MOTA	3030	SE	MSE	396	17.716	29.077	6.002	1.00 65.26
	MOTA	3031	CE	MSE	396	17.988	28.564	4.293	1.00 64.74
	MOTA	3032	С	MSE	396	14.964	26.600	8.545	1.00 54.59
	MOTA	3033	0	MSE	396	14.487	27.491	9.245	1.00 54.08
30	MOTA	3034	N	ARG	397	15.740	25.637	9.025	1.00 53.05
	ATOM	3035	. CA	ARG	397	16.134	25.613	10.426	1.00 51.13
	MOTA	3036	CB	ARG	397	16.226	24.181	10.951	1.00 52.77
	MOTA MOTA	3037 3038	CG CD	ARG	397	14.888	23.520	11.244	1.00 55.36
35	ATOM	3038	NE	ARG ARG	397 397	15.132	22.079	11.671	1.00 58.69
33	ATOM	3040	CZ	ARG	397	13.985 14.056	21.448 20.294	12.326 12.990	1.00 61.28 1.00 62.10
	ATOM	3041		ARG	397	15.215	19.651	13.078	1.00 62.10
	MOTA	3042		ARG	397	12.978	19.793	13.583	1.00 62.37
	MOTA	3043	С	ARG	397	17.509	26.252	10.397	1.00 48.33
40	MOTA	3044	0	ARG	397	18.273	26.029	9.466	1.00 47.77
	MOTA	3045	N	ILE	398	17.825	27.064	11.395	1.00 45.82
	MOTA	3046	CA	ILE	398	19.120	27.721	11.396	1.00 43.01
	MOTA	3047	CB	ILE	398	19.202	28.791	10.293	1.00 43.25
	MOTA	3048		ILE	398	18.161	29.864	10.532	1.00 43.18
45	MOTA	3049	CG1		398	20.594	29.417	10.279	1.00 43.75
	ATOM	3050	CD1		398	20.768	30.466	9.206	1.00 44.64
	ATOM	3051	C	ILE	398	19.441	28.381	12.717	1.00 40.64
	ATOM	3052	0	ILE	398	18.557	28.890	13.404	1.00 40.10
50	MOTA MOTA	3053 3054	N CA	THR	399	20.722	28.360	13.060	1.00 37.78
50	ATOM	3055	CB	THR THR	399 399	21.185 22.052	28.954 27.988	14.290	1.00 35.36
	MOTA	3056	OG1		399	21.280	26.832	15.079	1.00 35.02 1.00 34.92
	ATOM	3057		THR	399	22.570	28.666	15.425 16.345	1.00 34.92
	ATOM	3058	C	THR	399	22.001	30.197	13.994	1.00 34.73
55	MOTA	3059	Õ	THR	399	22.736	30.254	13.005	1.00 35.10
	MOTA	3060	N	VAL	400	21.858	31.184	14.871	1.00 32.96
	MOTA	3061	CA	VAL	400	22.539	32.457	14.759	1.00 31.07
	MOTA	3062	CB	VAL	400	21.514	33.593	14.592	1.00 31.21
	MOTA	3063	CG1	VAL	400	22.211	34.934	14.415	1.00 31.76

$\widehat{}$	TF.	igure 4								
()		iguie 4				56/63				
	ATOM	3064	CG2	VAL	400	20.628	33.298	13.405	1.00 31.47	
	MOTA	3065	С	VAL	400	23.336	32.685	16.039	1.00 30.19	
	MOTA	3066	0	VAL	400	22.779	32.640	17.144	1.00 30.96	
	MOTA	3067	N	GLY	401	24.641	32.905	15.888	1.00 28.35	
5	MOTA	3068	CA	GLY	401	25.482	33.150	17.041	1.00 24.47	
	MOTA	3069	C	GLY	401	25.487	34.641	17.235	1.00 23.04	•
	MOTA	3070	0	GLY	401	25.595	35.388	16.260	1.00 20.38	
	MOTA	3071	N	VAL	402	25.367	35.086	18.482	1.00 23.36	
	MOTA	3072	CA	VAL	402	25.338	36.514	18.751	1.00 23.38	
10	MOTA	3073	CB	VAL	402	23.927	36.960	19.124	1.00 22.79	
	MOTA	3074	CG1		402	23.790	38.458	18.909	1.00 22.85	
	MOTA	3075	CG2		402	22.895	36.176	18.320	1.00 22.42	
	ATOM	3076	C	VAL	402	26.252	36.899	19.893	1.00 24.25	
	ATOM	3077	0	VAL	402	26.484	36.098	20.794	1.00 25.20	
15	MOTA	3078	N	ASP	403	26.770	38.124	19.848	1.00 24.83	
	ATOM	3079	CA	ASP	403	27.637	38.649	20.894	1.00 27.11	
	ATOM	3080	CB	ASP	403	29.078	38.212	20.691	1.00 30.98	
	ATOM	3081	CG	ASP	403	30.003	38.739	21.787	1.00 34.48	
20	ATOM	3082	OD1		403	29.887	39.938	22.122	1.00 36.02	
20	MOTA MOTA	3083 3084	OD2		403	30.842	37.960	22.311	1.00 36.05	
	MOTA	3084	C	ASP	403	27.562	40.154	20.763	1.00 27.24	
	ATOM	3086	N O	ASP	403	27.550	40.667	19.645	1.00 29.15	
	ATOM	3087	CA	GLY GLY	404 404	27.519 27.410	40.863	21.888	1.00 26.60	
25	ATOM	3088	C	GLY	404		42.316	21.863	1.00 26.50	
	ATOM	3089	Ö	GLY	404	26.750 25.810	42.829 42.193	23.137	1.00 27.10	
	ATOM	3090	N	SER	405	27.209	43.972	23.665 23.644	1.00 26.90	
	ATOM	3091	CA	SER	405	26.638	44.496	24.887	1.00 26.72 1.00 27.96	
	ATOM	3092	СВ	SER	405	27.409	45.722	25.371	1.00 27.98	
30	MOTA	: 3093	OG	SER	405	27.164	46.828	24.521	1.00 20.04	
	ATOM	3094	C	SER	405	25.168	44.857	24.738	1.00 28.25	
	ATOM	3095	0	SER	405	24.341	44.473	25.573	1.00 27.96	
	MOTA	3096	N	VAL	406	24.844	45.591	23.675	1.00 27.79	
	MOTA	3097		VAL	406	23.465	45.992	23.445	1.00 28.13	
35	MOTA	3098		VAL	406	23.281	46.667	22.074	1.00 28.02	
	ATOM	3099	CG1	VAL	406	21.814	47.063	21.908	1.00 27.91	
	MOTA	3100	CG2	VAL	406	24.197	47.877	21.940	1.00 26.07	
	ATOM	3101	С	VAL	406	22.535	44.789	23.488	1.00 28.35	
	MOTA	3102		VAL	406	21.484	44.826	24.120	1.00 28.48	
40	MOTA	3103	N	TYR	407	22.934	43.718	22.811	1.00 28.72	
	ATOM	3104		TYR	407	22.130	42.493	22.736	1.00 28.45	
	ATOM	3105		TYR	407	22.613	41.643	21.558	1.00 26.86	
	MOTA	3106		TYR	407	21.831	40.373	21.341	1.00 25.29	
AE	ATOM	3107	CD1		407	20.700	40.358	20.535	1.00 25.44	
45	MOTA	3108	CE1		407	19.964	39.189	20.346	1.00 25.93	
	ATOM	3109	CD2		407	22.213	39.192	21.955	1.00 24.93	
	ATOM	3110	CE2		407	21.488	38.021	21.780	1.00 25.18	
	MOTA MOTA	3111		TYR	407	20.362	38.024	20.974	1.00 26.03	
50	ATOM	3112 3113		TYR	407	19.626	36.868	20.822	1.00 25.67	
50	ATOM	3113		TYR	407	22.175	41.651	24.014	1.00 28.83	
•	MOTA	3114		TYR	407	21.202	40.988	24.369	1.00 28.62	
	ATOM	3116		LYS	408	23.306	41.674	24.705	1.00 29.64	
	ATOM	3117		LYS	408	23.440	40.881	25.916	1.00 30.07	
55	ATOM	3117		LYS LYS	408	24.904	40.477	26.118	1.00 30.08	
33	MOTA	3119		LYS	408 408	25.442	39.556	25.030	1.00 30.61	
	MOTA	3120		LYS	408	26.597	38.698	25.529	1.00 30.05	
	ATOM	3121		LYS	408	26.799 27.828	37.515	24.601	1.00 30.22	
	MOTA	3122		LYS	408	27.828	36.573 41.551	25.097 27.185	1.00 30.20	
			_			44.74V	*****	£1.100	1.00 30.82	

Figure 4 57/63 28.038 ATOM 3123 LYS 408 22.327 40.901 1.00 31.98 0 27.296 1.00 30.97 ATOM 3124 N LEU 409 23.176 42.853 **ATOM** 3125 CA LEU 409 22.823 43.598 28.501 1.00 31.11 24.006 44.482 28.875 1.00 30.54 ATOM 3126 CB LEU 409 25.305 43.700 28.962 1.00 29.31 ATOM 3127 CG LEU 409 **ATOM** 3128 CD1 LEU 409 26.372 44.591 29.597 1.00 29.41 42.423 29.785 1.00 28.16 ATOM 3129 CD2 LEU 409 25.067 21.548 44.441 1.00 31.44 MOTA 3130 C LEU 409 28.611 20.978 44.542 29.708 1.00 31.86 MOTA 3131 0 LEU 409 1.00 31.34 10 ATOM 3132 N HIS 410 21.122 45.077 27.519 MOTA 3133 CA 410 19.929 45.912 27.572 1.00 30.80 HIS 1.00 30.36 MOTA 3134 CB HIS 410 19.732 46.635 26.247 1.00 29.89 MOTA 3135 410 18.703 47.717 26.303 CG HIS 1.00 29.29 MOTA 3136 CD2 HIS 410 18.815 49.060 26.179 ATOM 3137 ND1 HIS 410 17.362 47.457 26.508 1.00 30.79 15 48.595 1.00 29.88 MOTA 3138 CE1 HIS 410 16.691 26.505 49.583 MOTA 3139 NE2 HIS 410 17.548 26.309 1.00 30.87 45.031 27.900 1.00 31.41 MOTA 3140 C HIS 410 18.728 MOTA 3141 410 18.467 44.055 27.207 1.00 31.97 0 HIS MOTA 3142 411 17.985 45.376 28.969 1.00 31.63 N PRO MOTA 3143 18.173 46.690 29.610 1.00 31.32 CD PRO 411 MOTA 3144 CA PRO 411 16.798 44.708 29.518 1.00 31.33 MOTA 3145 411 16.111 45.815 30.299 1.00 31.27 CB PRO MOTA 3146 411 17.257 46.599 30.822 1.00 32.32 CG PRO 25 MOTA 3147 411 15.827 44.037 28.571 1.00 32.09 C PRO MOTA 3148 0 PRO 411 15.362 42.920 28.838 1.00 32.76 MOTA 3149 N SER 412 15.519 44.684 27.457 1.00 31.73 44.094 1.00 31.92 ATOM 3150 CA SER 412 14.527 26.573 44.834 1.00 32.51 ATOM 3151 CB SER 412 13.210 26.771 46.200 30 3152 412 13.368 26.390 1.00 33.27 ATOM OG SER 3153 С 412 14.838 44.047 25.082 1.00 31.91 MOTA SER 3154 14.039 43.520 24.304 1.00 32.59 ATOM 0 SER 412 1.00 30.72 3155 44.601 24.679 PHE 413 15.974 MOTA N 3156 16.348 44.615 23.271 1.00 30.13 CA PHE 413 **ATOM** 35 ATOM 3157 CB PHE 413 17.778 45.105 23.130 1.00 28.18 1.00 25.96 MOTA 3158 CG PHE 413 18.213 45.285 21.716 1.00 25.70 MOTA 3159 CD1 PHE 413 18.085 46.522 21.094 21.015 18.772 44.233 1.00 24.47 MOTA 3160 CD2 PHE 413 18.517 46.711 19.787 1.00 25.13 MOTA 3161 CE1 PHE 413 ATOM 3162 CE2 PHE 413 19.208 44.408 19.707 1.00 24.84 3163 PHE 413 19.082 45.652 19.092 1.00 24.48 MOTA CZATOM 3164 PHE 413 16.232 43.228 22.645 1.00 31.20 С 1.00 31.56 MOTA 3165 0 PHE 413 15.571 43.026 21.612 MOTA 3166 N LYS 414 16.888 42.268 23.275 1.00 31.75 1.00 32.75 MOTA 3167 CA LYS 414 16.851 40.906 22.790 1.00 33.66 39.999 23.755 MOTA 3168 CB LYS 414 17.626 1.00 34.45 17.570 23.429 MOTA 3169 CG LYS 414 38.526 37.744 1.00 36.05 MOTA 3170 CD LYS 414 18.732 24.049 37.909 25.558 1.00 35.80 MOTA 3171 CE LYS 414 18.845 **ATOM** 3172 NZLYS 414 19.972 38.817 25.920 1.00 36.66 1.00 33.19 40.411 22.600 MOTA 3173 C LYS 414 15.412 15.054 39.927 21.518 1.00 33.30 MOTA 3174 0 LYS 414 1.00 33.81 40.542 23.627 MOTA 3175 N GLU 415 14.577 40.071 23.513 1.00 34.53 MOTA 3176 CA GLU 415 13.193 24.838 1.00 37.66 55 ATOM 3177 CB GLU 415 12.462 40.251 3178 415 13.062 39.497 26.002 1.00 42.83 MOTA CG GLU 1.00 45.68 40.090 26.520 MOTA 3179 CD GLU 415 14.376 41.339 26.526 1.00 47.31 ATOM 3180 OE1 GLU 415 14.523 415 15.245 39.293 26.956 1.00 47.44 MOTA 3181 OE2 GLU

Figure 4 58/63 ATOM 3182 C GLU 415 12.409 40.776 22.401 1.00 33.23 ATOM 3183 0 GLU 415 11.676 40.137 21.649 1.00 33.06 MOTA 3184 42.092 N ARG 416 12.551 22.299 1.00 31.77 MOTA 3185 CA ARG 416 11.841 42.825 21.264 1.00 30.32 ATOM 3186 CB ARG 44.328 416 12.066 21.427 1.00 31.27 MOTA 3187 CG ARG 416 11.645 44.875 22.796 1.00 33.92 MOTA 3188 CD ARG 416 11.783 46.393 22.901 1.00 35.48 ATOM 3189 NE ARG 416 11.545 46.866 24.267 1.00 38.24 ATOM 3190 CZARG 416 11.982 48.030 24.746 1.00 39.11 10 ATOM 3191 NH1 ARG 416 12.676 48.850 23.967 1.00 39.89 NH2 ARG ATOM 3192 416 11.754 48.365 26.009 1.00 38.52 MOTA 3193 С ARG 416 12.379 42.354 19.916 1.00 29.08 ATOM 3194 0 ARG 416 42.159 11.620 18.964 1.00 28.85 MOTA 3195 PHE 42.144 1.00 27.59 N 417 13.694 19.862 15 MOTA 3196 41.707 CA PHE 417 14.377 18.648 1.00 25.70 MOTA 3197 CB PHE 417 15.886 41.687 18.890 1.00 23.64 MOTA 3198 41.310 CG PHE 417 16.687 17.680 1.00 20.59 MOTA 3199 CD1 PHE 417 16.910 42.230 16.671 1.00 18.99 ATOM . 3200 CD2 PHE 417 17.183 40.018 17.540 1.00 19.41 20 ATOM 3201 CE1 PHE 417 17.610 41.870 15.540 1.00 19.87 MOTA 3202 CE2 PHE 1.00 18.04 417 17.884 39.641 16.413 MOTA 3203 CZPHE 417 18.100 40.563 15.409 1.00 20.04 MOTA 3204 С PHE 417 13.943 40.342 18.099 1.00 25.74 MOTA 3205 0 417 13.568 40.225 PHE 16.927 1.00 25.24 25 MOTA 3206 N HIS 418 14.012 39.301 18.922 1.00 26.11 MOTA 3207 CA HIS 418 13.612 37.962 18.459 1.00 26.79 MOTA 3208 CB HIS 418 13.638 36.973 19.615 1.00 28.01 MOTA 3209 CG HIS 418 14.973 36.854 20.279 1.00 28.81 1.00 29.42 MOTA 3210 CD2 HIS 16.168 37.425 418 19.989 30 ATOM 3211 ND1 HIS 15.182 36.067 418 21.389 1.00 28.15 MOTA 3212 CE1 HIS 418 16.446 36.157 21.755 1.00 29.43 ATOM 3213 NE2 HIS 418 17.067 36.974 20.924 1.00 29.74 MOTA 3214 С HIS 418 12.209 37.985 17.876 1.00 26.41 ATOM 3215 0 HIS 418 11.976 37.565 16.733 1.00 26.40 35 MOTA 3216 N ALA 419 11.284 38.487 18.688 1.00 25.83 MOTA ALA 3217 CA 419 9.885 38.603 18.328 1.00 25.05 ATOM 3218 CB ALA 419 9.182 39.454 19.352 1.00 24.80 **ATOM** 3219 С ALA 419 9.731 39.215 16.943 1.00 25.35 MOTA 0 3220 ALA 419 9.146 38.601 16.029 1.00 25.99 40 ATOM 3221 N SER 420 10.249 40.425 16.777 1.00 25.26 MOTA 3222 CA SER 420 10.159 41.078 15.481 1.00 25.31 ATOM 3223 CB SER 15.515 420 10.897 42.405 1.00 23.85 ATOM 3224 OG SER 10.692 43.089 420 14.303 1.00 23.43 ATOM 3225 C SER 420 10.751 40.170 14.391 1.00 26.14 ATOM 3226 0 SER 420 10.145 39.976 13.331 1.00 25.95 ATOM 3227 N VAL 421 11.926 39.602 14.670 1.00 27.34 **ATOM** 3228 CA VAL 421 12.602 38.699 13.733 1.00 28.41 ATOM 3229 VAL 13.919 CB 421 38.127 14.346 1.00 27.63 ATOM 3230 CG1 VAL 421 14.479 37.020 13.475 1.00 26.36 50 ATOM 14.953 3231 CG2 VAL 421 39.232 14.469 1.00 28.22 ATOM 11.689 3232 C VAL 421 37,535 13.325 1.00 29.65 ATOM 3233 11.557 0 VAL 421 37.227 12.130 1.00 28.72 ATOM 3234 N ARG 422 11.069 36.886 14.310 1.00 30.74 ATOM 3235 CA ARG 422 10.165 35.775 14.014 1.00 32.79 ATOM 3236 CB ARG 422 9.419 35.328 15.265 1.00 33.29 MOTA 3237 CG ARG 422 10.259 35.197 16.512 1.00 34.47 ATOM 3238 CD ARG 422 11.081 33.927 16.558 1.00 34.54 ATOM 11.862 3239 NE ARG 422 33.905 17.795 1.00 35.75 ATOM 3240 CZARG 422 12.824 33.028 18.066 1.00 35.45

)	Fi	igure 4				59/63			
)	ATOM	3241	NTL/ 1	N D C	422		22 005	17 100	4 00 25 25
	MOTA	3241		ARG	422	13.127	32.085	17.180	1.00 35.35
	ATOM	3242	C	ARG	422	13.490	33.108	19.215	1.00 33.55
	MOTA	3243		ARG	422	9.123	36.277	13.019	1.00 33.41
5	ATOM	3244	0	ARG	422	8.949	35.728	11.929	1.00 33.68
,	ATOM	3245	N	ARG ARG	423	8.446	37.348	13.417	1.00 34.00
	ATOM	3240	CA		423	7.394	37.946	12.622	1.00 34.13
	ATOM	3248	CB	ARG	423	7.022	39.301	13.207	1.00 35.16
	ATOM		CG	ARG	423	5.538	39.584	13.202	1.00 36.10
- 10		3249	CD	ARG	423	5.212	40.831	14.012	1.00 37.57
10	ATOM ATOM	3250 3251	NE CZ	ARG ARG	423	5.482	40.682	15.441	1.00 38.90
	ATOM	3252		ARG	423	6.274	41.503	16.133	1.00 40.51
	ATOM	3253		ARG	423 423	6.874	42.523	15.513	1.00 41.42
	ATOM	3254	C	ARG	423	6.461	41.324	17.440	1.00 38.76
15	ATOM	3255	0	ARG	423 423	7.754	38.100	11.165	1.00 33.94
15	ATOM	3256	N	LEU	424	6.919 8.993	37.849	10.295	1.00 35.59
	ATOM	3257	CA	LEU	424	9.418	38.494 38.699	10.884	1.00 32.85
	ATOM	3258	СВ	LEU	424	10.474	39.788	9.497 9.450	1.00 31.57
	ATOM	3259	CG	LEU	424	10.030	41.129	10.003	1.00 28.75 1.00 27.64
20	ATOM	3260		LEU	424	11.220	42.080	10.066	1.00 27.64
	ATOM	3261		LEU	424	8.942	41.686	9.115	1.00 28.47
	ATOM	3262	С	LEU	424	9.950	37.479	8.747	1.00 27.23
	ATOM	3263	ō	LEU	424	10.232	37.562	7.551	1.00 32.00
	MOTA	3264	N	THR	425	10.065	36.343	9.424	1.00 33.88
25	MOTA	3265	CA	THR	425	10.615	35.153	8.778	1.00 35.30
	ATOM	3266	CB	THR	425	11.886	34.722	9.495	1.00 35.17
	MOTA	3267	OG1	THR	425	11.580	34.463	10.874	1.00 35.24
	ATOM	3268	CG2	THR	425	12.939	35.817	9.399	1.00 35.16
	MOTA	3269	С	THR	425	9.711	33.923	8.675	1.00 37.00
30	ATOM	3270	0	THR	425	10.059	32.854	9.182	1.00 37.54
	ATOM	3271	N	PRO	426	8.562	34.040	7.982	1.00 38.04
	ATOM	3272	CD	PRO	426	8.144	35.123	7.073	1.00 38.49
	ATOM	3273	CA	PRO	426	7.663	32.890	7.856	1.00 38.85
35	MOTA MOTA	3274 3275	CB	PRO	426	6.745	33.295	6.700	1.00 38.23
33	ATOM	3275	CG C	PRO PRO	426 426	6.699	34.772	6.802	1.00 38.07
	ATOM	3277	0	PRO	426	8.445 9.378	31.615	7.527	1.00 39.83
	MOTA	3278	N	SER	427	8.073	31.641 30.510	6.728 8.158	1.00 40.28 1.00 40.72
	ATOM	3279	CA	SER	427	8.713	29.232	7.892	1.00 40.72
40	ATOM	3280	СВ	SER	427	8.358	28.785	6.474	1.00 41.82
	MOTA	3281	OG	SER	427	6.954	28.802	6.287	1.00 44.69
	MOTA	3282	С	SER	427	10.234	29.228	8.068	1.00 42.10
	MOTA	3283	0	SER	427	10.981	28.899	7.140	1.00 41.85
	ATOM	3284	N	CYS	428	10.679	29.586	9.267	1.00 42.60
45	ATOM	3285	CA	CYS	428	12.096	29.608	9.601	1.00 42.43
	MOTA	3286	CB	CYS	428	12.724	30.960	9.258	1.00 42.59
	MOTA	3287	SG	CYS	428	12.860	31.327	7.492	1.00 44.02
	MOTA	3288	С	CYS	428	12.195	29.381	11.096	1.00 42.45
	ATOM	3289	0	CYS	428	11.671	30.169	11.879	1.00 43.76
50	MOTA	3290	N	GLU	429	12.846	28.296	11.494	1.00 42.34
	MOTA	3291	CA	GLU	429	13.014	27.995	12.909	1.00 41.23
	MOTA	3292	CB	GLU	429	13.030	26.486	13.146	1.00 42.97
	MOTA	3293	CG	GLU	429	11.699	25.796	12.933	1.00 45.48
	MOTA	3294	CD	GLU	429	11.847	24.282	12.925	1.00 47.43
55	ATOM	3295		GLU	429	12.518	23.756	13.847	1.00 48.77
•	ATOM	3296		GLU	429	11.298	23.623	12.005	1.00 48.07
	ATOM	3297	C	GLU	429	14.341	28.587	13.346	1.00 39.77
	MOTA MOTA	3298 3299	И О	GLU	429	15.370	27.902	13.352	1.00 39.92
	A10H	3433	14	ILE	430	14.315	29.864	13.708	1.00 38.09

	F	igure 4								
)	•	25010 4				60/63				
_	MOTA	3300	CA	ILE	430	15.514	30.560	14.142	1.00 36.48	
	ATOM	3301	CB	ILE	430	15.341	32.070	13.998	1.00 35.17	
	MOTA	3302	CG2	ILE	430	16.659	32.770	14.280	1.00 34.48	
	MOTA	3303	CG1	ILE	430	14.839	32.390	12.589	1.00 35.30	
5	MOTA	3304	CD1	ILE	430	14.669	33.866	12.310	1.00 34.88	
	MOTA	3305	C	ILE	430	15.872	30.254	15.591	1.00 37.06	
	MOTA	3306	0	ILE	430	15.044	30.399	16.495	1.00 38.13	
	MOTA	3307	N	THR	431	17.109	29.823	15.808	1.00 36.61	
	ATOM	3308	CA	THR	431	17.600	29.520	17.146	1.00 36.17	
10	MOTA	3309	CB	THR	.431	18.067	28.053	17.240	1.00 36.58	•
	ATOM	3310		THR	431	16.950	27.180	17.031	1.00 36.34	
	MOTA	3311		THR	431	18.692	27.774	18.604	1.00 36.38	
	MOTA MOTA	3312	C	THR	431	18.796	30.441	17.396	1.00 36.13	
15	ATOM	3313 3314	O N	THR PHE	431 432	19.705	30.513	16.569	1.00 36.10	
13	ATOM	3315	CA	PHE	432	18.804 19.926	31.157	18.514	1.00 35.79	
	ATOM	3316	CB	PHE	432	19.443	32.054 33.450	18.794 19.232	1.00 35.93 1.00 34.31	
	ATOM	3317	CG	PHE	432	18.643	34.194	18.188	1.00 34.31	
	MOTA	3318		PHE	432	17.271	33.977	18.048	1.00 32.55	
20	MOTA	3319		PHE	432	19.262	35.124	17.353	1.00 31.00	
	ATOM	3320		PHE	432	16.527	34.676	17.092	1.00 30.53	
	MOTA	3321	CE2	PHE	432	18.525	35.826	16.395	1.00 30.25	
	MOTA	3322	CZ	PHE	432	17.154	35.600	16.266	1.00 30.11	
	MOTA	3323	С	PHE	432	20.767	31.483	19.917	1.00 37.08	
25	MOTA	3324	0	PHE	432	20.248	30.772	20.779	1.00 38.85	
	MOTA	3325	N	ILE	433	22.063	31.774	19.906	1.00 37.32	
	MOTA	3326	CA	ILE	433	22.933	31.321	20.983	1.00 38.46	
	MOTA	3327	CB	ILE	433	23.526	29.890	20.722	1.00 39.06	
30	MOTA MOTA	3328 3329		ILE	433	22.398	28.863	20.624	1.00 38.62	
50	MOTA	3330		ILE	433 433	24.367 25.028	29.861	19.449	1.00 39.03	
	ATOM	3331	C	ILE	433	24.039	28.520 32.358	19.227 21.161	1.00 38.32 1.00 39.33	
	ATOM	3332	Ö	ILE	433	24.429	33.034	20.201	1.00 39.35	
	MOTA	3333	N	GLU	434	24.527	32.505	22.388	1.00 40.58	
35	ATOM	3334	CA	GLU	434	25.559	33.498	22.669	1.00 42.92	
	MOTA	3335	CB	GLU	434	25.152	34.312	23.885	1.00 43.91	
	MOTA	3336	CG	GLU	434	23.769	34.883	23.744	1.00 45.53	
	ATOM	3337	CD	GLU	434	23.342	35.640	24.965	1.00 46.68	
40	MOTA	3338		GLU	434	23.436	35.072	26.074	1.00 47.18	
40	MOTA	3339		GLU	434	22.910	36.802	24.816	1.00 48.77	
	MOTA MOTA	3340 3341	C	GLU	434	26.965	32.950	22.865	1.00 44.01	
	ATOM	3342	N O	GLU SER	434 435	27.206	32.058	23.680	1.00 44.48	
	ATOM	3343	CA	SER	435	27.901 29.284	33.518 33.075	22.119 22.167	1.00 45.00 1.00 46.11	
45	ATOM	3344	CB -	SER	435		33.779	21.057	1.00 46.11	
	ATOM	3345	OG	SER	435	29.839	35.186	21.053	1.00 47.94	
	MOTA	3346	C	SER	435	29.984	33.274	23.507	1.00 46.36	
	MOTA	3347	0	SER	435	30.043	34.396	24.022	1.00 46.31	
	MOTA	3348	N	GLU	436	30.505	32.180	24.069	1.00 46.22	
50	MOTA	3349	CA	GLU	436	31.248	32.250	25.330	1.00 46.33	
	MOTA	3350	CB	GLU .	436	31.322	30.884	26.020	1.00 47.64	
	MOTA	3351	CG	GLU	436	32.144	30.908	27.317	1.00 50.83	
	MOTA	3352	CD	GLU	436	32.726	29.541	27.711	1.00 52.03	
	ATOM	3353		GLU	436	31.951	28.585	27.970	1.00 52.84	
5 5	MOTA	3354		GLU	436	33.972	29.428	27.765	1.00 52.07	
	ATOM	3355	С	GLU	436	32.650	32.671	24.912	1.00 45.58	
	MOTA MOTA	3356 3357	O N	GLU	436	33.446	31.843	24.463	1.00 45.50	
	ATOM	3357 3358	N CA	GLU GLU	437 437	32.950 34.252	33.956	25.051	1.00 44.67	
	••• •••	2220	CA	3110	-2J/	J4.434	34.462	24.643	1.00 44.13	

Figure 4 61/63 35.328 ATOM 3359 CB GLU 437 34.050 25.652 1.00 43.61 36.745 MOTA 3360 CG **GLU** 437 34.334 25.190 1.00 43.39 36.931 35.752 MOTA 3361 CD **GLU** 437 24.678 1.00 43.50 36.976 ATOM 3362 OE1 GLU 437 36.680 25.514 1.00 44.49 **ATOM** 3363 OE2 GLU 437 37.025 35.940 23.441 1.00 42.17 ATOM 3364 C GLU 437 34.569 33.880 23.264 1.00 43.56 MOTA 3365 0 GLU 437 35.530 33.131 23.108 1.00 45.30 MOTA 3366 GLY 438 33.757 34.225 22.266 1.00 41.68 N ATOM 3367 CA GLY 438 33.958 33.700 20.926 1.00 39.44 10 **ATOM** 3368 GLY 438 34.748 19.934 1.00 38.11 C 34.538 ATOM 3369 0 GLY 438 34.932 18.791 1.00 37.45 34.130 ATOM 3370 SER 439 35.213 35.713 20.329 1.00 37.14 N 19.386 ATOM 3371 CA SER 439 35.980 36.502 1.00 36.86 ATOM 3372 SER 439 35.916 19.714 1.00 36.81 CB 37.983 **ATOM** 3373 439 36.825 38.678 1.00 35.32 OG SER 18.878 MOTA 3374 С 439 37.420 36.053 1.00 36.74 SER 19.444 ATOM 3375 439 38.192 18.513 1.00 36.37 0 SER 36.265 ATOM 3376 N GLY 440 37.774 35.439 20.562 1.00 36.58 MOTA 3377 CA GLY 440 39.126 34.957 20.746 1.00 36.42 1.00 36.28 20 MOTA 3378 C GLY 440 39.207 33.518 20.302 MOTA 3379 0 GLY 440 40.146 33.140 19.613 1.00 36.20 ATOM 3380 N ARG 441 38.224 32.714 20.699 1.00 36.09 ATOM 3381 CA ARG 441 38.190 31.309 20.312 1.00 37.16 ATOM 3382 CB ARG 441 37.151 30.562 21.138 1.00 37.34 25 MOTA ARG 37.312 30.717 1.00 39.57 3383 CG 441 22.632 1.00 42.28 ATOM 3384 ARG 441 36.334 29.806 23.375 CD MOTA 3385 NE ARG 441 35.270 29.339 22.488 1.00 44.36 MOTA 3386 ARG 34.240 28.585 22.862 CZ441 1.00 45.80 28.192 MOTA 3387 ARG 34.103 24.127 1.00 45.87 NH1 441 ATOM 3388 NH2 ARG 33.346 28.214 21.955 1.00 47.26 441 ATOM 37.848 31.179 3389 С ARG 441 18.821 1.00 37.42 1.00 37.52 MOTA 3390 0 ARG 441 38.103 30.151 18.189 37.270 1.00 37.34 3391 32.234 18.262 MOTA N GLY 442 1.00 37.39 MOTA 3392 36.906 32.204 16.863 CA GLY 442 1.00 37.47 35 ATOM 3393 442 38.165 32.308 16.048 С GLY ATOM 3394 0 GLY 442 38.483 31.410 15.278 1.00 37.51 33.408 MOTA 3395 N ALA 443 38.887% 16.241 1.00 38.17 3396 33.660 ATOM CA ALA 443 40.134 15.526 1.00 38.50 3397 443 34.999 15.967 MOTA CB ALA 40.739 1.00 36.50 15.759 MOTA 3398 C ALA 443 41.127 32.521 1.00 39.03 ATOM 3399 0 ALA 443 42.015 32.297 14.941 1.00 39.36 MOTA 3400 N ALA 444 40.977 31.807 16.875 1.00 39.93 ATOM 3401 CA ALA 444 41.864 30.685 17.172 1.00 40.31 30.242 ATOM 3402 CB ALA 444 41.724 18.623 1.00 39.25 45 29.569 MOTA 3403 С ALA 444 41.427 16.246 1.00 40.97 MOTA 3404 0 ALA 444 42.146 29.210 15.312 1.00 41.31 3405 LEU 40.233 29.038 16.501 1.00 41.41 MOTA N 445 MOTA 3406 LEU 39.678 27.960 1.00 41.97 CA 445 15.690 MOTA 3407 CB LEU 38.195 27.776 16.024 1.00 40.09 445 50 MOTA 3408 CG LEU 37.954 26.806 17.182 1.00 39.14 445 ATOM 3409 CD1 LEU 445 36.750 27.233 17.982 1.00 39.27 MOTA 3410 CD2 LEU 445 37.781 25.399 16.647 1.00 37.36 3411 39.860 28.156 14.176 1.00 43.29 MOTA С LEU 445 3412 39.918 27.179 13.427 1.00 43.28 MOTA 0 LEU 445 55 3413 29.406 13.729 1.00 44.66 ATOM N VAL 446 39.955 29.684 12.307 ATOM 3414 CA VAL 446 40.136 1.00 46.32 ATOM 3415 CB VAL 446 39.687 31.120 11.948 1.00 46.15 31.578 ATOM 3416 CG1 VAL 446 40.356 10.653 1.00 46.15 MOTA CG2 VAL 38.164 31.160 11.793 1.00 45.75 3417 446

Figure 4 62/63 ATOM 3418 446 41.597 C VAL 29.503 11.944 1.00 48.03 MOTA 3419 0 VAL 446 41.929 29.105 10.825 1.00 48.75 MOTA 3420 N SER 447 42.465 29.802 12.904 1.00 49.63 MOTA 3421 CA SER 447 43.902 29.657 12.725 1.00 50.76 5 ATOM 3422 CB SER 447 44.635 30.267 13.918 1.00 50.76 **ATOM** 3423 OG SER 447 44.377 31.659 14.021 1.00 50.83 ATOM 3424 С SER 447 44.259 28.173 12.612 1.00 52.07 MOTA 3425 0 SER 447 44.923 .27.753 11.662 1.00 52.17 MOTA 3426 N ALA 448 43.804 27.387 13.584 1.00 53.51 10 ATOM 3427 CA ALA 448 44.071 25.953 13.621 1.00 55.46 MOTA 3428 CB ALA 448 43.273 25.306 14.745 1.00 55.02 448 MOTA 3429 С ALA 43.751 25.263 12.300 1.00 57.02 MOTA 3430 0 ALA 448 44.599 24.564 11.726 1.00 57.18 MOTA 3431 N VAL 449 42.523 25.457 11.825 1.00 58.39 15 ATOM 3432 CA VAL 449 42.093 24.841 10.579 1.00 59.69 MOTA 3433 CB VAL 449 40.571 24.977 10.382 1.00 59.67 MOTA 3434 CG1 VAL 449 40.152 24.262 9.112 1.00 60.28 MOTA 3435 CG2 VAL 449 39.833 24.384 11.577 1.00 59.48 ATOM 3436 C VAL 449 42.821 25.482 9.403 1.00 60.70 ATOM 3437 0 VAL 449 42.903 24.898 8.321 1.00 61.00 MOTA 3438 N ALA 450 43.361 26.677 9.627 1.00 61.41 MOTA 3439 CA ALA 450 44.093 27.392 8.591 1.00 62.12 MOTA 3440 CB ALA 450 43.981 28.889 8.814 1.00 62.32 ATOM 3441 С ALA 450 45.558 26.973 1.00 63.02 8.606 ATOM 3442 450 0 ALA 46.437 27.748 8.217 1.00 62.75 MOTA 3443 CYS 451 45.807 N 25.744 9.061 1.00 64.03 **ATOM** 3444 CA CYS 25.183 451 47.160 1.00 65.19 9.148 ATOM 3445 CB CYS 451 47.530 24.440 1.00 65.75 7.850 ATOM 3446 SG CYS 451 46.901 22.720 7.723 1.00 66.86 ATOM 3447 С CYS 451 48.239 26.217 9.474 1.00 65.22 ATOM 47.929 3448 0 CYS 451 27.230 10.144 1.00 65.18 49.398 MOTA 3449 OXT CYS 451 25.979 9.073 1.00 65.50 MOTA . 3450 C1 HEX 1 31.023 47.521 12.611 1.00 25.83 32.239 MOTA 3451 C2 HEX 1 47.182 11.801 1.00 25.25 35 ATOM 3452 C3 32.203 HEX 45.697 1 11.565 1.00 25.11 ATOM 3453 C4 32.071 44.939 HEX 1 12.862 1.00 24.99 MOTA 3454 C5 31.030 45.591 HEX 1 13.785 1.00 25.34 ATOM 3455 C6 HEX 1 30.772 44.921 15.126 1.00 25.58 MOTA 3456 48.942 01 HEX 1 30.750 12.579 1.00 27.04 ATOM 3457 02 HEX 32.183 47.912 1.00 24.71 1 10.609 ATOM 3458 O3 HEX 1 33.337 45.251 10.836 1.00 25.99 ATOM 3459 O4 HEX 1 31.699 43.621 12.545 1.00 25.85 ATOM 3460 O5 HEX 1 31.267 46.968 13.935 1.00 25.37 ATOM 3461 O6 HEX 1 31.835 45.222 16.009 1.00 27.23 45 ATOM 3462 C1 LIG 1 30.034 26.620 8.669 1.00 35.87 ATOM 3463 C2 LIG 29.909 1.00 34.82 1 27.259 10.064 ATOM 3464 C3 LIG 1 31.308 27.852 10.344 1.00 35.54 ATOM 3465 C4 LIG 1 32.212 27.447 9.148 1.00 35.52 ATOM 3466 C5 LIG 1 31.520 26.207 8.584 1.00 35.20 ATOM 3467 C6 LIG 1.00 36.33 1 33.670 27.245 9.637 MOTA 3468 C7 LIG 1 34.562 1.00 37.11 26.321 8.758 ATOM 3469 **C8** LIG 1 35.946 26.832 8.778 1.00 36.91 ATOM 3470 N9 LIG 1 36.382 27.317 7.570 1.00 36.92 MOTA 3471 C10 LIG 1 37.668 27.907 7.331 1.00 36.42 55 ATOM 3472 N11 LIG 1 38.035 28.336 6.087 1.00 37.39 MOTA 3473 C12 LIG 1 39.058 28.930 6.462 1.00 36.99 ATOM 3474 C13 LIG 1 39.426 29.003 7.575 1.00 37.10 38.681 36.640 ATOM 3475 S14 LIG 1 28.342 8.700 1.00 37.86 1 ATOM 3476 015 LIG 36.640 26.843 9.817 1.00 38.32

è	F	igure 4			63/63			
	ATOM	3477	C16 LIG	1	34.538	24.890	9.296	1.00 37.59
	ATOM	3478	C17 LIG	1	34.906	24.620	10.610	1.00 37.22
	ATOM	3479	C18 LIG	1	34.658	23.346	11.130	1.00 38.09
	ATOM	3480	N19 LIG	1	34.084	22.371	10.404	1.00 38.80
5	ATOM	3481	C20 LIG	1	33.729	22.598	9.128	1.00 38.90
	MOTA	3482	C21 LIG	1	33.942	23.860	8.546	1.00 38.73
	ATOM	3483	K1 K	1	32.471	32.037	-7.104	1.00 46.91

CRYSTALS OF GLUCOKINASE AND METHODS OF GROWING THEM

The invention relates to crystalline forms of Glucokinase of sufficient size and quality to obtain structural data by X-ray crystallography and to methods of growing such crystals.

5

Glucokinase (GK) is one of four hexokinases found in mammals [Colowick, S.P., in The Enzymes, Vol. 9 (P. Boyer, ed.) Academic Press, New York, NY, pages 1-48. 1973]. The hexokinases catalyze the first step in the metabolism of glucose, i.e., the conversion of glucose to glucose-6-phosphate. Glucokinase has a limited cellular distribution, being found principally in pancreatic β -cells and liver parenchymal cells. In addition, GK is a rate-controlling enzyme for glucose metabolism in these two cell types that are known to play critical roles in whole-body glucose homeostasis [Chipkin, S.R., Kelly, K.L., and Ruderman, N.B. in *Joslin's Diabetes* (C.R. Khan and G.C. Wier, eds.), Lea and Febiger, Philadelphia, PA, pages 97-115, 1994]. The concentration of glucose at which GK demonstrates half-maximal activity is approximately 8 mM. The other three hexokinases are saturated with glucose at much lower concentrations (<1 mM). Therefore, the flux of glucose through the GK pathway rises as the concentration of glucose in the blood increases from fasting (5 mM) to postprandial (≈10-15 mM) levels following a carbohydrate-containing meal [Printz, R.G., Magnuson, M.A., and Granner, D.K. in Ann. Rev. Nutrition Vol. 13 (R.E. Olson, D.M. Bier, and D.B. McCormick, eds.), Annual Review, Inc., Palo Alto, CA, pages 463-496, 1993]. These findings contributed over a decade ago to the hypothesis that GK functions as a glucose sensor in β-cells and hepatocytes (Meglasson, M.D. and Matschinsky, F.M. Amer. J. Physiol. 246, E1-E13, 1984). In recent years, studies in transgenic animals have confirmed that GK does indeed play a critical role in whole-body glucose homeostasis. Animals that do not express GK die within days of birth with severe diabetes while animals overexpressing GK have improved glucose tolerance (Grupe, A., Hultgren, B., Ryan, A. et al., Cell 83, 69-78, 1995; Ferrie, T., Riu, E., Bosch, F. et al., FASEB J., 10, 1213-1218, 1996). An increase in glucose exposure is coupled through GK in \(\beta\)-cells to increased insulin secretion and in hepatocytes to increased glycogen deposition and perhaps decreased glucose production.

The finding that type II maturity-onset diabetes of the young (MODY-2) is caused by loss of function mutations in the GK gene suggests that GK also functions as a glucose sensor in humans (Liang, Y., Kesavan, P., Wang, L. et al., *Biochem. J.* 309, 167-173, 1995). Additional evidence supporting an important role for GK in the regulation of glucose metabolism in humans was provided by the identification of patients that express a mutant form of GK with increased enzymatic activity. These patients exhibit a fasting hypoglycemia associated with an inappropriately elevated level of plasma insulin (Glaser, B., Kesavan, P., Heyman, M. et al., *New England J. Med.* 338, 226-230, 1998). While mutations of the GK gene are not found in the majority of patients with type II diabetes, compounds that activate GK and, thereby, increase the sensitivity of the GK sensor system will still be useful in the treatment of the hyperglycemia characteristic of all type II diabetes. Glucokinase activators will increase the flux of glucose metabolism in β-cells and hepatocytes, which will be coupled to increased insulin secretion. Such agents would be useful for treating type II diabetes.

In an effort to elucidate the mechanisms underlying kinase activation, the crystal structure of such proteins is often sought to be determined. The crystal structures of several hexokinases have been reported. See, e.g. A. E. Aleshin, C. Zeng, G. P. Bourenkov, H. D. Bartunik, H. J. Fromm & R. B. Honzatko 'The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate' Structure 6, 39-50 (1998); W. S. Bennett, Jr. & T. A. Steitz 'Structure of a complex between yeast hexokinase A and glucose I. Structure determination and refinement at 3.5 Å resolution' J. Mol. Biol. 140, 183-209 (1978); and S. Ito, S. Fushinobu, I. Yoshioka, S. Koga, H. Matsuzawa & T. Wakagi 'Structural Basis for the ADP-Specificity of a Novel Glucokinase from a Hyperthermophilic Archaeon' Structure 9, 205-214 (2001). Despite these reports, researchers armed with the knowledge of how to obtain crystals of related hexokinases have attempted to obtain crystals of any mammalian Glucokinase without success.

20

25

Applicants have discovered protocols which allow crystallization of mammalian Glucokinase with or without a bound allosteric ligand. The crystal structure has been solved by X-ray crystallography to a resolution of 2.7 Å. See Figures 3 and 4. Thus the invention relates to a crystalline form of Glucokinase and a crystalline form of a complex of Glucokinase and an allosteric ligand. The invention further relates to a method of forming crystals of Glucokinase, with or without a bound allosteric ligand.

Figure 1 shows Glucokinase co-crystals having P6(5)22 symmetry.

Figure 2 shows the amino acid sequence of an expressed Glucokinase used for crystallization.

Figure 3 shows a ribbon diagram of the structure of Glucokinase showing the α -helices and β -sheets.

15

Figure 4 shows the atomic structure coordinates for Glucokinase bound to 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide.

The present invention relates to crystalline forms of mammalian Glucokinase, with or without a ligand bound in the allosteric site, where the crystals are of sufficient quality and size to allow for the determination of the three-dimensional X-ray diffraction structure to a resolution of about 2.0 Å to about 3.5 Å. The invention also relates to methods for preparing and crystallizing the Glucokinase. The crystalline forms of Glucokinase, as well as information derived from their crystal structures can be used to analyze and modify glucokinase activity as well as to identify compounds that interact with the allosteric site.

The crystals of the invention include apo crystals and co-crystals. The apo crystals of the invention generally comprise substantially pure Glucokinase. The co-crystals generally comprise substantially pure Glucokinase with a ligand bound to the allosteric site.

5

15

It is to be understood that the crystalline Glucokinases of the invention are not limited to naturally occurring or native Glucokinases. Indeed, the crystals of the invention include mutants of the native Glucokinases. Mutants of native Glucokinases are obtained by replacing at least one amino acid residue in a native Glucokinase domain with a different amino acid residue, or by adding or deleting amino acid residues within the native polypeptide or at the N- or C- terminus of the native polypeptide, and have substantially the same three-dimensional structure as the native Glucokinase from which the mutant is derived.

By having substantially the same three-dimensional structure is meant having a set of atomic structure coordinates from an apo- or co-crystal that have a root mean square deviation of less than or equal to about 2 Å when superimposed with the atomic structure coordinates of the native Glucokinase from which the mutant is derived when at least about 50% to about 100% of the alpha carbon atoms of the native Glucokinase are included in the superposition.

In some instances, it may be particularly advantageous or convenient to substitute, delete and/or add amino acid residues to a native Glucokinase domain in order to provide convenient cloning sites in cDNA encoding the polypeptide, to aid in purification of the polypeptide, etc. Such substitutions, deletions and/or additions which do not substantially alter the three dimensional structure of the native Glucokinase will be apparent to those having skills in the art.

It should be noted that the mutants contemplated herein need not exhibit glucokinase activity. Indeed, amino acid substitutions, additions or deletions that interfere with the kinase activity of the glucokinase but which do not significantly alter the three-dimensional structure of the domain are specifically contemplated by the invention. Such crystalline polypeptides, or the atomic structure coordinates obtained therefrom, can be used to identify compounds that bind to the native domain. These compounds may affect the activity or the native domain.

The derivative crystals of the invention generally comprise a crystalline glucokinase polypeptide in covalent association with one or more heavy metal atoms. The polypeptide may correspond to a native or a mutated Glucokinase. Heavy metal atoms useful for providing derivative crystals include, by way of example and not limitation, gold and mercury. Alternatively, derivative crystals can be formed from proteins which have heavy atoms incorporated into one or more amino acids, such as seleno-methionine substitutions for methionine.

The co-crystals of the invention generally comprise a crystalline Glucokinase polypeptide in association with one or more compounds at an allosteric site of the polypeptide. The association may be covalent or non-covalent.

The native and mutated glucokinase polypeptides described herein may be isolated from natural sources or produced by methods well known to those skilled in the art of molecular biology. Expression vectors to be used may contain a native or mutated Glucokinase polypeptide coding sequence and appropriate transcriptional and/or translational control signals. These methods include in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination. See, for example, the techniques described in Maniatis et al., 1989, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, NY; and Ausubel et al., 1989, *Current Protocols in Molecular Biology*, Greene Publishing Associates and Wiley Interscience, NY.

30

20

10

A variety of host-expression vector systems may be utilized to express the Glucokinase coding sequence. These include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing the Glucokinase coding sequence; yeast transformed with recombinant yeast expression vectors containing the Glucokinase coding sequence; insect cell systems infected with recombinant virus expression vectors (e.g. baculovirus) containing the Glucokinase coding sequence; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosiac virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing the glucokinase coding sequence; or animal cell systems. The expression elements of these systems vary in their strength and specificities. Depending on the host/vector system utilized, any of a number of suitable transcription and translation elements, including constitutive and inducible promotors such as pL of bacteriophage μ, plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used; when cloning in insect cell systems, promoters such as the baculovirus polyhedrin promoter may be used; when cloning in plant cell systems, promoters derived from the genome of plant cells (e.g., heat shock promoters; the promoter for the small subunit of RUBISCO; the promoter for the chlorophyll a/b binding protein) or from plant viruses (e.g., the 35 S RNA promoter of CaMV; the coat protein promoter of TMV) may be used; when cloning in mammalian cell systems, promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter) may be used; when generating cell lines that contain multiple copies of the glucokinase coding sequence, SV40-, BPV- and EBV-based vectors may be used with an appropriate selectable marker.

25

The apo, derivative and co-crystals of the invention can be obtained by techniques well-known in the art of protein crystallography, including batch, liquid bridge, dialysis, vapor diffusion and hanging drop methods (see e.g. McPherson, 1982, *Preparation and Analysis of Protein Crystals*, John Wiley, NY; McPherson, 1990, *Eur. J. Biochem.* 189:1-23; Webber, 1991, *Adv. Protein Chem.* 41:1-36; Crystallization of Nucleic Acids and Proteins, Edited by Arnaud Ducruix and Richard Giege, Oxford University Press; Protein Crystallization Techniques, Strategies, and Tips, Edited by Terese Bergfors, International University Line, 1999). Generally, the apo- or co-crystals of the invention are grown by

placing a substantially pure Glucokinase polypeptide in an aqueous buffer containing a precipitant at a concentration just below that necessary to precipitate the protein. Water is then removed from the solution by controlled evaporation to produce crystallizing conditions, which are maintained until crystal growth ceases.

5

15

In a preferred embodiment of the invention, apo or co-crystals are grown by vapor diffusion. In this method, the polypeptide/precipitant solution is allowed to equilibrate in a closed container with a larger aqueous reservoir having a precipitant concentration optimal for producing crystals. Generally, less than about 10 µL of subtantially pure polypeptide solution is mixed with an equal volume of reservoir solution, giving a precipitant concentration about half that required for crystallization. This solution is suspended as a droplet underneath a coverslip, which is sealed onto the top of a reservoir. The sealed container is allowed to stand, from one day to one year, usually for about 2-6 weeks, until crystals grow.

For crystals of the invention, it has been found that hanging drops containing about 2-5 µl of Glucokinase (9-22 mg/ml in 20 mM tris pH 7.1 measured at room temperature, 50 mM NaCl, 50 mM glucose, 10 mM DTT and optionally 0.2 mM EDTA) and an equal amount of reservoir solution (16-25% w/v polyethylene glycol with an average molecular weight from about 8000 to about 10000 Daltons, 0.1-0.2 M tris or bistris or Hepes or ammonium phosphate buffer, pH 6.9-7.5, 8-10 mM DTT, 0 - 30% saturated glucose) suspended over 0.5 to 1.0 mL reservoir buffer for about 3-4 weeks at 4-6°C provided crystals suitable for high resolution X-ray structure determination. Particularly preferred conditions were: about 2-5 µl of Glucokinase (10 mg/ml in 20 mM tris pH 7.1 measured at room temperature, 50 mM NaCl, 50 mM glucose, 10 mM DTT and optionally 0.2 mM EDTA) and an equal amount of reservoir solution (22.5% w/v polyethylene glycol with an average molecular weight of about 10000 Daltons, 0.1 M tris pH 7.08, 10 mM DTT, 20% glucose) were suspended over 0.5 to 1.0 mL reservoir buffer for about 3-4 weeks at 4-6°C.

The optimum procedure for growing crystals large enough to collect data from involved first streaking 3-4 µl of protein solution on the coverslip, followed by streaking 3-4 µl of well solution across the elongated droplet of protein, forming a droplet shaped like the letter 'X'. Before discovering this crossed droplet technique, most droplets yielded showers of small crystals which were not large enough for data collection purposes. The crossed droplets allow gradients of protein and precipitating agent to form as the two solutions slowly mix, and the resulting kinetics of crystal nucleation and growth are optimal for the growth of a small number of large crystals in each crossed droplet. Simply mixing the protein and precipitant solutions together in a single round droplet often produced an overabundance of nuclei which grew to a final size too small for data collection purposes. Crystals usually appeared within 5 days of setup. The crystals grow in the form of hexagonal bipyramids, reaching dimensions of 0.2 x 0.2 x 0.4 mm typically, although larger crystals are often observed. Figure 1 shows grown crystals.

Crystals may be frozen prior to data collection. The crystals were cryo-protected with either (a) 20-30% saturated glucose present in the crystallization setup, (b) ethanol added to 15-20%, (c) ethylene glycol added to 10-20% and PEG10,000 brought up to 25%, or (d) glycerol added to 15%. The crystals were either briefly immersed in the cryo-protectant or soaked in the cryo-protectant for periods as long as a day. Freezing was accomplished by immersing the crystal in a bath of liquid nitrogen or by placing the crystal in a stream of nitrogen gas at 100 K.

15

20

25

The mosaic spread of the frozen crystals could sometimes be reduced by annealing, wherein the stream of cold nitrogen gas is briefly blocked, allowing the frozen crystal to thaw momentarily before re-freezing in the nitrogen gas stream. Another technique which was sometimes helpful in data collection was to center one of the ends of the hexagonal bipyramid in the x-ray beam, rather than the mid portion of the crystal. The mosaic spread could sometimes be reduced by this technique.

Diffraction data typically extending to 2.7 Å was collected from the frozen crystals at the synchrotron beamline X8C of the National Synchrotron Light Source in Brookhaven, New York. Under optimum conditions, data extending to 2.2 Å was recorded. See Figures 3 and 4 for solution. The space group of the crystals was determined to be P6(5)22 during the course of the solution of the crystal structure. The crystals have unit cell dimensions a = b = 79.62 + -0.60 Å, c = 321.73 + -3.70 Å, $c = 90^\circ$, $c = 120^\circ$. The crystals are in a hexagonal system with P6(5)22 symmetry.

Of course, those having skill in the art will recognize that the above-described crystallization conditions can be varied. Such variations may be used alone or in combination, and include polypeptide solutions containing polypeptide concentrations between 1 mg/mL and 60 mg/mL, any commercially available buffer systems which can maintain pH from about 6.5 to about 7.6, Tris-HCl concentrations between 10 mM and 200 mM, dithiothreitol concentrations between 0 mM and 20 mM, preferably between 8 and 10 mM, substitution of dithiothreitol with beta mercapto ethanol or other artrecognized equivalents, glucose concentrations between 0% w/v and 30% w/v, or substitution of glucose with other sugars known to bind to Glucokinase; and reservoir solutions containing polyethylene glycol (PEG) concentrations between about 10% and about 30%, polyethylene glycol average molecular weights between about 1000 and about 20,000 daltons, any commercially available buffer systems which can maintain pH from about 6.5 to about 7.6, dithiothreitol concentrations between 0 mM and 20 mM, substitution of dithiothreitol with beta mercapto ethanol or other art-recognized -SH group containing equivalents, or substitution of glucose with other sugars known to bind to Glucokinase, and temperature ranges between 4 and 20°C.

25

Derivative crystals of the invention can be obtained by soaking apo or co-crystals in mother liquor containing salts of heavy metal atoms, according to procedures known to those of skill in the art of X-ray crystallography.

Co-crystals of the invention can be obtained by soaking an apo crystal in mother liquor containing a ligand that binds to the allosteric site, or can be obtained by co-crystallizing the Glucokinase polypeptide in the presence of one or more ligands that bind to the allosteric site. Preferably, co-crystals are formed with a glucokinase activator disclosed in US Pat. No. 6,320,050; US Pat. Appl. 09/532,506 filed March 21, 2000; US Pat. Appl. 09/675,781 filed September 28, 2000; US Pat. Appl. 09/727,624, filed December 1, 2000; US Pat. Appl. 09/841,983, filed April 25, 2001; US Pat. Appl. 09/843,466, filed April 26, 2001; US Pat. Appl. 09/846,820, filed May 1, 2001; US Pat. Appl. 09/846,821, filed May 1, 2001; US Pat. Appl. 09/905,152, filed July 13, 2001; US Pat. Appl. 09/924,247, filed August 8, 2001; US Provisional Pat. Appl. 60/251,637, filed December 6, 2000; or US Provisional Pat. Appl. 60/318,715, filed September 13, 2001, each of which is incorporated herein by reference.

Methods for obtaining the three-dimensional structure of the crystalline glucokinases described herein, as well as the atomic structure coordinates, are well-known in the art (see, e.g., D. E. McRee, Practical Protein Crystallography, published by Academic Press, San Diego (1993), and references cited therein).

The crystals of the invention, and particularly the atomic structure coordinates obtained therefrom, have a wide variety of uses. For example, the crystals and structure coordinates described herein are particularly useful for identifying compounds that activate Glucokinases as an approach towards developing new therapeutic agents. One such compound is 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide and pharmaceutically acceptable salts thereof. Pharmaceutical compositions of said compounds can be developed, and said compounds can be used for the manufacture of a medicament comprising said compound for the treatment of hyperglycemia in type II diabetes.

20

The structure coordinates described herein can be used as phasing models in determining the crystal structures of additional native or mutated glucokinases, as well as

the structures of co-crystals of such glucokinases with allosteric inhibitors or activators bound. The structure coordinates, as well as models of the three-dimensional structures obtained therefrom, can also be used to aid the elucidation of solution-based structures of native or mutated glucokinases, such as those obtained via NMR. Thus, the crystals and atomic structure coordinates of the invention provide a convenient means for elucidating the structures and functions of glucokinases.

For purposes of clarity and discussion, the crystals of the invention will be described by reference to specific Glucokinase exemplary apo crystals and co-crystals. Those skilled in the art will appreciate that the principles described herein are generally applicable to crystals of any mammalian Glucokinase, including, but not limited to the Glucokinase of Figure 2.

As used herein, "allosteric site" refers in general to any ligand binding site on a mammalian Glucokinase other than the active site of the enzyme.

15

As used herein, "apo crystal" refers to crystals of mammalian Glucokinase formed without a bound allosteric ligand.

As used herein, "allosteric ligand" refers to any molecule which specifically binds an allosteric site on a mammalian Glucokinase.

EXAMPLES

Example 1: Expression and Purification of Glucokinase

5 Expression of GK

Glucokinase (GK) was expressed as a glutathione S-transferase (GST) fusion protein in *Escherichia coli*. The amino-acid sequence of the fusion protein is given in Figure 2. The expression construct is based on the pGEX-3X vector from Pharmacia, as described in Y. Liang, P. Kesavan, L. Wang, K. Niswender, Y. Tanizawa, M. A. Permutt, M. A. Magnuson, F. M. Matschinsky, *Biochem. J.* 309, 167 (1995). The construct codes for one of the two liver isozymes of human GK. The GST tag is at the N-terminus of the construct, and is separated from the coding sequence for GK by a Factor Xa cleavage site. After purification of the GST fusion protein, the GST fusion tag was removed with Factor Xa protease, which also removes five residues from the N-terminus of GK.

Purification of GK

15

20

E. coli cells expressing GST-GK were suspended in lysis buffer (50 mM tris, 200 mM NaCl, 5 mM EDTA, 5 mM DTT, 1% NP-40, pH 7.7) in the presence of protease inhibitors, incubated with lysozyme at 200 μ/ml for 30 minutes at room temperature, and sonicated 4x30 sec. at 4° C. After centrifugation to remove insoluble material, the supernatant was loaded onto glutathione-Sepharose, washed with lysis buffer and then with lysis buffer minus NP-40. GST-GK was eluted with lysis buffer (minus NP-40) containing 50 mM D-glucose and 20 mM glutathione. The eluted protein was concentrated and dialyzed into 20 mM tris, 100 mM NaCl, 0.2 mM EDTA, 50 mM D-glucose, 1mM DTT, pH 7.7. Factor Xa was added at a protein ratio of 1:100 GST-GK followed by the addition of CaCl₂ to 1 mM, and the sample was incubated at 4° C for 48

hours. The sample was added to glutathione Sepharose and the unbound fraction collected and concentrated. The sample was then incubated with benzamidine Sepharose to remove Factor Xa, and the unbound fraction was collected and loaded on a Q Sepharose column equilibrated with 25 mM bis-tris propane, 50 mM NaCl, 5 mM DTT, 50 mM D-glucose and 5% glycerol (pH 7.0). The protein was eluted with a NaCl gradient from 50-400 mM. Fractions containing purified GK were pooled and concentrated and filtered.

Example 2: Formation of apo Crystal

4 μl of glucokinase and 4 μl of precipitant were mixed and equilibrated against the precipitant solution at 4° C. The glucokinase solution consisted of 22 mg/ml glucokinase prepared in Example 1 in 20 mM hepes pH 7.5, 50 mM NaCl, 10 mM DTT, and 50 mM glucose. The precipitant consisted of 22.5% PEG10000, 0.1 M tris pH 7.08, 10 mM DTT, 20% glucose; the precipitant solution contained seed crystals in order to microseed the droplets. Crystals appeared in the droplets after leaving the crystallization plates at 4° C.

Example 3: Formation of Co-crystal with 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide

3(a):

20

4 μl of glucokinase and 4 μl of precipitant were mixed and equilibrated against the precipitant solution at 4° C. The glucokinase solution consisted of 13 mg/ml glucokinase prepared in Example 1 in 20 mM tris pH 7.0, 50 mM NaCl, 10 mM DTT, 50 mM glucose, and the glucokinase activator 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide at a concentration 5 times that of the protein. The precipitant consisted of 22.5% PEG10000, 0.1 M tris pH 7.08, 10 mM DTT, 20% glucose. Crystals appeared in the droplets after leaving the crystallization plates at 4° C.

3(b):

Alternatively, crystals were grown as in Example 3(a) with the following changes: instead of 4 µl glucokinase and 4 µl precipitant, 2 µl of each were used; the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 18% PEG8000 was used; the precipitant solution contained seed crystals in order to microseed the droplets.

3(c):

10

In another alternative, crystals were grown as in Example 3(a) with the following changes: instead of 4 μ l glucokinase and 4 μ l precipitant, 2 μ l of each were used; the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 20% PEG8000 was used; the precipitant solution contained seed crystals in order to microseed the droplets.

15

3(d):

In yet another alternative, crystals were grown as in Example 3(a) with the following changes: instead of 4 μ l glucokinase and 4 μ l precipitant, 2 μ l of each were used; the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 16% PEG10000 was used; glucose was not present as a component of the precipitant; the precipitant solution contained seed crystals in order to microseed the droplets.

25 3(e):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 11 mg/ml glucokinase in tris

buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 25% PEG10000 was used.

3(f):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 21.25% PEG10000 was used; in place of tris buffered at pH 7.08 in the precipitant tris buffered at pH 7.52 was used.

3(g):

10

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of tris buffered at pH 7.08 in the precipitant, hepes buffered at pH 6.89 was used; in place of 20% glucose in the precipitant, 200 mM glucose was used.

15 3(h):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 0.1 M tris buffered at pH 7.08 in the precipitant, 0.2 M ammonium phosphate buffered at pH 7.03 was used; in place of 20% glucose in the precipitant, 200 mM glucose was used.

3(i):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant, 20% PEG10000 was used; in place of tris buffered at pH 7.08 in the precipitant, tris buffered at pH 7.05 was used; in place of 10 mM DTT in the precipitant, 8 mM DTT was used; glucose was not present as a component of the precipitant.

3(j):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant, 22% PEG8000 was used; glucose was not present as a component of the precipitant; the precipitant solution contained seed crystals in order to microseed the droplets.

3(k):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 20% glucose in the precipitant, 30% glucose was used.

Example 4: Formation of Co-crystal with N-(5-Bromo-pyridin-2-yl)-2-(3-chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-propionamide

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 9 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator N-(5-Bromo-pyridin-2-yl)-2-(3-chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-propionamide; in place of 20% glucose in the precipitant, 200 mM glucose was used.

Example 5: Formation of Co-crystal with 2-(3-Chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-N-(5-trifluoromethyl-pyridin-2-yl)-propionamide

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase

activator of Example 3(a), the glucokinase solution contained the glucokinase activator 2-(3-Chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-N-(5-trifluoromethyl-pyridin-2-yl)propionamide; in place of 22.5% PEG10000 as precipitant, 21.25% PEG10000 was used.

5 Example 6: Formation of Co-crystal with (2S)-2-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionylamino]-thiazole-4-carboxylic acid methyl ester

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.1 instead of 10 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-2-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionylamino]-thiazole-4-carboxylic acid methyl ester; in place of 22.5% PEG10000 as precipitant, 21.25% PEG10000 was used; in place of tris buffered at pH 7.08 in the precipitant, bistris buffered at pH 7.0 was used.

Example 7: Formation of Co-crystal with (2S)-{2-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionylamino]-thiazol-5-yl}-oxo-acetic acid ethyl ester

15

Crystals were grown as in Example 3(a) with the following changes: the 20 glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator $(2S)-\{2-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionylamino]-thiazol-5-yl\}-oxo-phenyl-2-(3,4-dichloro-phenyl)-propionylamino]-thiazol-5-yl\}-oxo-phenyl-2-(3,4-dichloro-phenyl)-propionylamino]-thiazol-5-yl\}-oxo-phenyl-2-(3,4-dichloro-phenyl)-propionylamino]-thiazol-5-yl\}-oxo-phenyl-2-(3,4-dichloro-phenyl)-propionylamino]-thiazol-5-yl\}-oxo-phenyl-2-(3,4-dichloro-phenyl)-propionylamino]-thiazol-5-yl]-oxo-phenyl-2-(3,4-dichloro-pheny$ acetic acid ethyl ester; in place of 22.5% PEG10000 as precipitant, 21.25% PEG10000 was used.

Example 8: Formation of Co-crystal with (2S)-{3-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionyl]-ureido}-acetic acid methylester

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 9 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-{3-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionyl]-ureido}-acetic acid methylester; in place of 20% glucose in the precipitant, 200 mM glucose was used.

10

15

20

25

Example 9: Formation of Co-crystal with (2S)-1-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionyl]-3-(3-hydroxy-propyl)-urea

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 14 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-1-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionyl]-3-(3-hydroxy-propyl)-urea; in place of 20% glucose in the precipitant, 200 mM glucose was used.

Example 10: Formation of Co-crystal with (2S)-{3-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionyl]-ureido}-acetic acid ethyl ester

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 14 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-{3-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionyl]-ureido}-acetic acid ethyl ester; in place of tris buffered at pH 7.08 in the precipitant, tris buffered at pH 7.05 was used.

Example 11: Synthesis of 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide

3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide can be prepared using well-

known organic synthesis techniques according to the following reaction scheme:

3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide is useful as an allosteric activator of Glucokinase and to assist the formation of co-crystals of Glucokinase.

In the present specification "comprises" means "includes or consists of" and "comprising" means "including or consisting of".

5

10

The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.

SEQUENCE LISTING <110> F. Hoffmann - La Roche <120> CRYSTALS OF GLUCOKINASE AND METHODS OF GROWING THEM <130> Case 20892 5 <140> US 60/341988 <141> 2001-12-19 <150> US 60/341988 <151> 2001-12-19 <160> 1 10 <170> PatentIn version 3.1 <210> 1 <211> 692 PRT <212> <213> Homo sapiens 15 <220> <221> GK <222> (229)..(692) <223> <300> 20 <308> Genbank U13852 <309> 1994-12-13 <313> (1)..(228) <400> 1 Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro 10 25 1 Thr Arg Leu Leu Glu Tyr Leu Glu Glu Lys Tyr Glu Glu His Leu

25

Tyr Glu Arg Asp Glu Gly Asp Lys Trp Arg Asn Lys Lys Phe Glu Leu

			35					40					45			
	Gly	Leu	${\tt Glu}$	Phe	Pro	Asn	Leu	Pro	Tyr	Tyr	Ile	Asp	Gly	Asp	Val	Lys
		50					55					60				
	Leu	Thr	Gln	Ser	Met	Ala	Ile	Ile	Arg	Tyr	Ile	Ala	Asp	Lys	His	Asr
5	65					70					75					80
	Met	Leu	Gly	Gly	Cys	Pro	Lys	Glu	Arg	Ala	Glu	Ile	Ser	Met	Leu	Gli
					85					90					95	_
	Gly	Ala	Val	Leu	Asp	Ile	Arg	Tyr	Gly	Val	Ser	Arg	Ile	Ala	Tyr	Ser
				100					105					110		
10	Lys	Asp	Phe	Glu	Thr	Leu	Lys	Val	Asp	Phe	Leu	Ser	Lys	Leu	Pro	Gli
			115					120					125			
	Met	Leu	Lys	Met	Phe	Glu	Asp	Arg	Leu	Cys	His	Lys	Thr	Tyr	Leu	Asr
		130					135					140				
	Gly	Asp	His	Val	Thr	His	Pro	qaA	Phe	Met	Leu	Tyr	Asp	Ala	Leu	Asp
15	145					150					155					160
	Val	Val	Leu	Tyr	Met	Asp	Pro	Met	Cys	Leu	Asp	Ala	Phe	Pro	Lys	Leu
					165					170					175	
	Val	Суѕ	Phe	Lys	Lys	Arg	Ile	Glu	Ala	Ile	Pro	Gln	Ile	Asp	Lys	Туг
				180					185					190		
20	Leu	Lys	Ser	Ser	Lys	Tyr	Ile	Ala	Trp	Pro	Leu	Gln	Gly	Trp	Gln	Ala
			195					200					205			
	Thr	Phe	Gly	Gly	Gly	Asp	His	Pro	Pro	Lys	Ser	Asp	Leu	Ile	Glu	Gly
		210					215					220				
	Arg	Gly	Ile	His	Met	Pro	Arg	Pro	Arg	Ser	Gln	Leu	Pro	Gln	Pro	Asr
25	225					230					235					240
	Ser	Gln	Val	Glu	Gln	Ile	Leu	Ala	Glu	Phe	Gln	Leu	Gln	Glu	Glu	Asp
					245					250					255	
	Leu	Lvs	Lvs	Val	Met	Ara	Ara	Met	Gln	Lvs	Glu	Met	Asp	Ara	Glv	Lei

				260					265					270		
	Arg	Leu	Glu	Thr	His	Glu	Glu	Ala	Ser	Val	Lys	Met	Leu	Pro	Thr	Tyr
			275					280					285			
	Val	Arg	Ser	Thr	Pro	Glu	Gly	Ser	Glu	Val	Gly	Asp	Phe	Leu	Ser	Leu
5		290					295					300				
	Asp	Leu	Gly	Ġly	Thr	Asn	Phe	Arg	Val	Met	Leu	Val	Lys	Val	Gly	Glu
	305					310					315					320
	Gly	Glu	Glu	Gly	Gln	Trp	Ser	Val	Lys	Thr	Lys	His	Gln	Met	Tyr	Ser
					325					330			•		335	
10	Ile	Pro	Glu	Asp	Ala	Met	Thr	Gly	Thr	Ala	Glu	Met	Leu	Phe	Asp	Tyr
				340					345					350		
	Ile	Ser	Glu	Cys	Ile	Ser	Asp	Phe	Leu	Asp	Lys	His	Gln	Met	Lys	His
			355.					360					365			
	Lys	Lys	Leu	Pro	Leu	Gly	Phe	Thr	Phe	Ser	Phe	Pro	Val	Arg	His	Glu
15		370					375					380				
	Asp	Ile	Asp	Lys	Gly	Ile	Leu	Leu	Asn	Trp	Thr	Lys	Gly	Phe	Lys	Ala
	385					390					395					400
	Ser	Gly	Ala	Glu	Gly	Asn	Asn	Val	Val	Gly	Leu	Leu	Arg	Asp	Ala	Ile
					405					410					415	
20	Lys	Arg	Arg	Gly	Asp	Phe	Glu	Met	Asp	Val	Val	Ala	Met	Val	Asn	Asp
				420					425					430		
	Thr	Val	Ala	Thr	Met	Ile	Ser	Cys	Tyr	Tyr	Glu	Asp	His	Gln	Cys	Glu
			435					440					445			
	Val	Gly	Met	Ile	Val	Gly	Thr	Gly	Cys	Asn	Ala	Cys	Tyr	Met	Glu	Glu
25		450					455		-			460				
	Met	Gln	Asn	Val	Glu	Leu	Val	Glu	Gly	Asp	Glu	Gly	Arg	Met	Cys	Val
	465					470					475					480
	Asn	Thr	Glu	Trp	Gly	Ala	Phe	Gly	Asp	Ser	Gly	Glu	Leu	Asp	Glu	Phe

					485					490					495	
	Leu	Leu	Glu	Tyr	Asp	Arg	Leu	Val	Asp	Glu	Ser	Ser	Ala	Asn	Pro	Gly
				500					505					510		
	Gln	Gln	Leu	Tyr	Glu	Lys	Leu	Ile	Gly	Gly	Lys	Tyr	Met	Gly	Glu	Leu
5			515					520					525			
	Val	Arg	Leu	Val	Leu	Leu	Arg	Leu	Val	Asp	Glu	Asn	Leu	Leu	Phe	His
		530					535					540				-
	Gly	Glu	Ala	Ser	Glu	Gln	Leu	Arg	Thr	Arg	Gly	Ala	Phe	Glu	Thr	Arg
	545					550					555					560
10	Phe	Val	Ser	Gln	Val	Glu	Ser	Asp	Thr	Gly	Asp	Arg	Lys	Gln	Ile	Tyr
					565					570					575	
	Asn	Ile	Leu	Ser	Thr	Leu	Gly	Leu	Arg	Pro	Ser	Thr	Thr	Asp	Cys	Asp
				580					585					590		
	Ile	Val	Arg	Arg	Ala	Cys	Glu	Ser	Val	Ser	Thr	Arg	Ala	Ala	His	Met
15			595					600					605			
	Cys	Ser	Ala	Gly	Leu	Ala	Gly	Val	Ile	Asn	Arg	Met	Arg	Glu	Ser	Arg
		610					615					620				
	Ser	Glu	Asp	Val	Met	Arg	Ile	Thr	Val	Gly	Val	Asp	Gly	Ser	Val	Tyr
	625					630					635					640
20	Lys	Leu	His	Pro	Ser	Phe	Lys	Glu	Arg	Phe	His	Ala	Ser	Val	Arg	Arg
					645					650					655	
	Leu	Thr	Pro	Ser	Cys	Glu	Ile	Thr	Phe	Ile	Glu	Ser	Glu	Glu	Gly	Ser
				660					665					670		
	Gly	Arg	Gly	Ala	Ala	Leu	Val	Ser	Ala	Val	Ala	Cys	Lys	Lys	Ala	Cys
25			675					680					685			
	Met	Leu	Gly	Gln												
		690														

Claims

1. A co-crystal of mammalian Glucokinase and a ligand bound to an allosteric site of the Glucokinase, wherein

the co-crystal has unit cell dimensions of:

```
a and b are from 79.02 Å to 80.22 Å;
```

c is from 318.03 Å to 325.03 Å;

 α and β are 90°; and

γ is 120°;

and the co-crystal has P6(5)22 symmetry.

10

20

5

2. A crystal of mammalian Glucokinase, wherein

the crystal has unit cell dimensions of:

a and b are from 79.02 Å to 80.22 Å;

c is from 318.03 Å to 325.03 Å;

15 α and β are 90°; and

γ is 120°;

and the crystal has P6(5)22 symmetry.

3. A process for co-crystalizing mammalian Glucokinase and an allosteric ligand of Glucokinase, the process comprising:

providing a buffered, aqueous solution of 9 to 22 mg/ml of the mammalian Glucokinase;

adding a molar excess of the allosteric ligand to the aqueous solution of mammalian Glucokinase; and

growing crystals by vapor diffusion using a buffered reservoir solution between about 10% and about 30% PEG, about 0% w/v and about 30% w/v glucose, and between 0 and 20 mM DTT, wherein the PEG has an average molecular weight between about 1,000 and about 20,000.

- 4. The process of claim 3, wherein the step of growing crystals by vapor diffusion comprises:
- streaking the buffered, aqueous solution of mammalian Glucokinase with added allosteric ligand on a surface to form an elongated droplet of protein solution, and streaking about an equal amount of the buffered reservoir solution across the elongated droplet of protein solution, forming a combined droplet shaped like the letter 'X'.
 - 5. A crystal produced by the process of claims 3 or 4.
 - 6. A compound identified by analysing the structure coordinates of the co-crystal of claim 1, said compound being a ligand that binds to the allosteric site of Glucokinase.

15

* 7

7. The compound

and pharmaceutically acceptable salts

thereof.

- 8. A pharmaceutical composition comprising the compound of claim 6.
- 9. The pharmaceutical composition of claim 8, wherein said compound is the compound of claim 7.
- Use of the compound of claim 6 for the manufacture of a medicament comprising a
 compound according to claim 6 for the treatment of hyperglycemia in type II diabetes.
 - 11. The use of claim 10 wherein said compound is the compound of claim 7.
- 12. A compound according to claims 6 or 7, for use as a therapeutic active substance, in particular for the reduction of hyperglycemia in type II diabetes.
 - 13. The novel crystals, processes, compounds, compositions and uses as hereinbefore described.

20

- 14. A process according to Claim 3 or 4 further comprising the step of freezing the crystals.
- 15. A method of identifying a ligand that binds to the allosteric site of
 5 Glucokinase comprising analysing the structure co-ordinates of a co-crystal according to Claim 1.
 - 16. Use of a co-crystal according to Claim 1 or a crystal according to Claim 2 in the identification of a compound which activates Glucokinase.
 - 17. Use of a co-crystal according to Claim 1 or a crystal according to Claim2 for elucidating the structure and function of a Glucokinase.

- 18. A compound according to Claim 6 or 7, or a composition according to Claim 8 or 9, for use in a method of treatment of human or animal body.
 - 19. Any novel feature or combination of features described herein.

Application No:

GB 0229456.9

Examiner:

Dr Rowena Dinham

Claims searched:

1-5 & 14-17; and 12, 13, 18 Date of search:

16 June 2003

and 19 (in part)

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category	Relevant to claims	Identity of document and passage or figure of particular relevance
A, P		Protein Science; Vol 11, pp 2456-2463 (2002). Tsuge et al. "Crystal structure of the ADP-dependent glucokinase" See entire document, especially Results and Discussion "Overall strucure"
A		Structure; Vol 9, pp 205-214 (2001). Ito et al. "Structural basis for the ADP-specificity of a novel glucokinase" See entire document, especially Results and Discussion "Crystal structure of T. lioralis glucokinase"
A		Diabetes; Vol 48, pp 1698-1705 (1999). Mahalingam et al. "Structural model of human glucokinase" See entire document, especially Results "Overall model and comparison with previous model and hexokinase structures"

Categories:

Γ	x	Document indicating lack of novelty or inventive step	A	Document indicating technological background and/or state of the art.
	Y	Document indicating lack of inventive step if combined with one or more other documents of same category.	P	Document published on or after the declared priority date but before the filing date of this invention.
	&	Member of the same patent family	E	Patent document published on or after, but with priority date earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCV:

Worldwide search of patent documents classified in the following areas of the IPC':

C12N; C30B; G06F

The following online and other databases have been used in the preparation of this search report:

WPI, EPODOC, JAPIO, MEDLINE, BIOSIS, EMBASE, SCISEARCH, CAPLUS