Introduction Background Information The Modelling Approach Making the Model Realistic

Realistic modelling of transmitter release at neocortical nerve terminals using CellBlender and MCell

Jaron Lee

June 3, 2015

Motivation of this project

- Modelling in biology is important narrowing down the scientific questions, predicting experimental outcomes, providing hypotheses for results
- Modelling in biology is difficult requires skills and knowledge which fall outside biology itself

The Modelling Approach
Making the Model Realistic

Goals of this project

Develop a thorough understanding of the software, biology

Goals of this project

- Develop a thorough understanding of the software, biology
- Implement a working visualisation of calcium action at nerve terminals

Goals of this project

- Develop a thorough understanding of the software, biology
- Implement a working visualisation of calcium action at nerve terminals
- Parameterise the model to mimic biological conditions where possible

Goals of this project

- Develop a thorough understanding of the software, biology
- Implement a working visualisation of calcium action at nerve terminals
- Parameterise the model to mimic biological conditions where possible
- Document the process to allow for easy replication

Introduction

Background Information The Modelling Approach Making the Model Realistic

Software

CellBlender - an addon written for Blender

Advantages of the approach

Programming-free

Advantages of the approach

- Programming-free
- Simulation results are easy to interpret

Advantages of the approach

- Programming-free
- Simulation results are easy to interpret
- Easily adaptable model

An overview of synaptic transmission

Action potential invades presynaptic cell and opens VGCCs

- Action potential invades presynaptic cell and opens VGCCs
- Calcium ions enter and activate SNAREpins in nerve terminal, causing vesicle fusion

- Action potential invades presynaptic cell and opens VGCCs
- Calcium ions enter and activate SNAREpins in nerve terminal, causing vesicle fusion
- Neurotransmitters (glutamate) diffuse across the cleft and bind to receptors (AMPA, NMDA)

- Action potential invades presynaptic cell and opens VGCCs
- Calcium ions enter and activate SNAREpins in nerve terminal, causing vesicle fusion
- Neurotransmitters (glutamate) diffuse across the cleft and bind to receptors (AMPA, NMDA)
- Activated receptors allow for an influx of ions, produce a postsynaptic potential due to change in potential

- Action potential invades presynaptic cell and opens VGCCs
- Calcium ions enter and activate SNAREpins in nerve terminal, causing vesicle fusion
- Neurotransmitters (glutamate) diffuse across the cleft and bind to receptors (AMPA, NMDA)
- Activated receptors allow for an influx of ions, produce a postsynaptic potential due to change in potential
- 5 Excess neurotransmitter are taken up by glial cells to be reused

Summary

Two phases - Phase I and Phase II

Phase I

- Simulate calcium ion diffusion - but not the electrophysiology
- Simulate calcium binding to SNAREpins (Need two calcium to activate)
- Record time of vesicle fusion (require three activated SNAREpins on a vesicle)

Phase II

- Simulate diffusion of neurotransmitter across synaptic cleft
- Simulate activation of neurotransmitter receptors

A question

- Why not do everything in one step?
- The activation of SNAREpins is randomly determined during the simulation (depends on the movement of calcium ions)
- The release of neurotransmitter must be specified before the simulation is run (due to the way CellBlender defines molecule placement and release)

Presynaptic bouton

- Presynaptic bouton
- Spine head

- Presynaptic bouton
- Spine head
- Voltage-gated calcium channel regions (2)

- Presynaptic bouton
- Spine head
- Voltage-gated calcium channel regions (2)
- 4 Vesicles (2)

- Presynaptic bouton
- Spine head
- Voltage-gated calcium channel regions (2)
- 4 Vesicles (2)
- Glial cells

VGCC - the calcium channels responsible for permitting flow of calcium into bouton. Has open and closed states.

- VGCC the calcium channels responsible for permitting flow of calcium into bouton. Has open and closed states.
- Ca calcium ion

- VGCC the calcium channels responsible for permitting flow of calcium into bouton. Has open and closed states.
- Ca calcium ion
- CaBS a SNARE complex which has no calcium ion bound

- VGCC the calcium channels responsible for permitting flow of calcium into bouton. Has open and closed states.
- Ca calcium ion
- CaBS a SNARE complex which has no calcium ion bound
- CaBS_Ca a SNARE complex which has one calcium ion bound

- VGCC the calcium channels responsible for permitting flow of calcium into bouton. Has open and closed states.
- Ca calcium ion
- CaBS a SNARE complex which has no calcium ion bound
- CaBS_Ca a SNARE complex which has one calcium ion bound
- TAG a SNARE complex which has two calcium ions bound

- VGCC the calcium channels responsible for permitting flow of calcium into bouton. Has open and closed states.
- Ca calcium ion
- CaBS a SNARE complex which has no calcium ion bound
- CaBS_Ca a SNARE complex which has one calcium ion bound
- TAG a SNARE complex which has two calcium ions bound
- NT a neurotransmitter molecule (represents glutamate)

- VGCC the calcium channels responsible for permitting flow of calcium into bouton. Has open and closed states.
- Ca calcium ion
- CaBS a SNARE complex which has no calcium ion bound
- CaBS_Ca a SNARE complex which has one calcium ion bound
- TAG a SNARE complex which has two calcium ions bound
- NT a neurotransmitter molecule (represents glutamate)
- LGIC a neurotransmitter receptor residing on spine head (receptive to NT). Has open and closed states.

Model Equations

Equation	Description
$\overline{VGCC_C} o VGCC_O$	Calcium channel opening
$VGCC_O o VGCC_C$	Calcium channel closing
$VGCC_O \rightarrow VGCC_O + Ca$	Calcium influx into bouton
$Ca + CaBS \to CaBS_Ca$	First calcium binding
CaBS_Ca + Ca $ ightarrow$ TAG	Second calcium binding
$NT + LGIC_C \to LGIC_O$	Neurotransmitter binding

Model Parameters

Need to calibrate:

- Rates
- Dimensions
- Quantities

to get a realistic model.

Model Rates

Parameter	Value
Rate of calcium influx	$1 \times 10^{3} \text{mol}^{-1} \text{ls}^{-1}$
SNARE complex binding rate	$1 \times 10^{8} \text{mol}^{-1} \text{ls}^{-1}$
Glutamate binding rate	$4.6 \times 10^6 \text{mol}^{-1} \text{ls}^{-1}$
Rate of glutamate diffusion	$4 \times 10^{-6} \text{cm}^2 \text{s}^{-1}$
Rate of calcium diffusion	$5.3 \times 10^{-6} \text{cm}^2 \text{s}^{-1}$
Vesicle unzip time	200 μs
Estimate for bouton volume	0.36 μm ³
Derived estimate for bouton radius	0.7 μm
Estimate for synaptic vesicle radius	0.017 μm
Synaptic cleft width	0.023 μm
Number of Neurotransmitter molecules per vesicle	4700
Number of Neurotransimtter receptors per spine head	100
Number of SNARE complexes per vesicle	15
Number of calcium ions to activate synaptotagmin/SNARE	2
Number of SNAREs to induce vesicle fusion	3
Number of vesicles	750

Final Result

Future Outlook

- Improve model details postsynaptic receptor, VGCCs
- Simulate the electrophysiology of the synapse
- Adapt model to different scenarios

Introduction
Background Information
The Modelling Approach
Making the Model Realistic

References

 Synaptic terminal, obtained from https://classconnection.s3.amazonaws.com/811/flashcards/1418