

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Computación

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Arquitectura y organización de computadoras

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Quinto	025054	85

OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Proporcionar al alumno los fundamentos de la organización y arquitectura de computadoras de propósito general e identificar los factores que determinan su desempeño.

TEMAS Y SUBTEMAS

- 1. Introducción
 - 1.1.Perfil histórico y evolución de los procesadores.
 - 1.2.Organización y arquitectura.
 - 1.3. Abstracciones de software.
 - 1.4. Abstracciones de hardware.
 - 1.5.Importancia del rendimiento.
 - 1.6.Métricas para determinar el rendimiento.
- 2. Arquitectura del repertorio de instrucciones.
 - 2.1. Operaciones y operandos.
 - 2.2. Representación de instrucciones.
 - 2.3.Instrucciones aritmético lógicas.
 - 2.4.Instrucciones para tomar decisiones.
 - 2.5.Soporte de procedimientos.
 - 2.6. Modos de direccionamiento.
 - 2.7. Simuladores del repertorio de instrucciones.

3.Unidad central de procesamiento

- 3.1. Elementos de una CPU básica.
- 3.2. Registros de propósito específico.
- 3.3.Registros de propósito general.
- 3.4.Unidad Aritmético-Lógica.
- 3.5. Camino de datos (Datapath).
- 3.6.Ciclo de instrucción del CPU.
- 3.7.Interrupciones.
- 3.8.Unidad de control.

4. Procesadores segmentados

- 4.1.Conceptos generales.
- 4.2. Aritmética segmentada.
- 4.3.Segmentado de instrucciones.
- 4.4.Ejemplos de procesadores segmentados.4.5.Microarquitecturas para ILP.
- 4.6.Instrucciones de palabras muy largas (VLIW).

- 5. Sistema de memoria.
- 5.1.Jerarquía de la memoria.
 - 5.2. Tipo de acceso, capacidad, latencia, ancho de banda y costo.
 - 5.3.Localidad de referencia: Temporal y espacial.
 - 5.4. Memoria caché.
 - 5.5. Memoria principal. 5.6. Memoria virtual.
 - 5.7.Buffer de traducción anticipada.
 - 5.8. Sistemas de memoria virtual con memoria caché.
- Sistemas con multiprocesadores.
- 6.1.Lev de Ahmdal.
 - 6.2.Clasificación de los sistemas con multiprocesadores.
 - 6.3. Sistemas con memoria compartida y distribuida.
 - 6.4. Topologías de redes de interconexión.
 - 6.5.Unidades de procesamiento gráfico.

ACTIVIDADES DE APRENDIZAJE

- Sesiones dirigidas por el profesor tanto en el aula como en el laboratorio. Uso de herramientas de software que permitan validar la teoría a través del desarrollo de prácticas.
- Las sesiones se desarrollarán utilizando medios de apoyo didáctico, como retroproyectores.
- Trabajo extraclase por parte de los alumnos, involucrando revisión bibliográfica de los diferentes temas expuestos en clase, búsqueda de información a través de Internet.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACIÓN

Para aprobar el curso se realizarán tres evaluaciones parciales (50 %) y una evaluación final (50%). Para cada evaluación se realizará un examen y se evaluarán tareas y proyectos. El examen tendrá un valor mínimo de 50% y las tareas y proyectos un valor máximo de 50%.

Adicionalmente se recomienda:

Para las evaluaciones parciales deberá considerarse el desarrollo de prácticas, en las cuales se debe tomar en cuenta su realización exitosa y la documentación de la solución. La evaluación final deberá incluir un examen oral o escrito, así como el desarrollo de un proyecto final en el que se

busque aplicar los diferentes conocimientos revisados en el curso.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

- Básica:
 - Computer Organization & Design, the hardware / software interface, (5th Edition), Patterson D. A., Hennessy J. L. 1. Morgan Kaufmann Publishers, Inc. 2013. Computer Architecture: From Microprocessors to Supercomputers, (2nd Edition). Parhami, B. New York, USA:
 - Oxford Univ. Press. 2005. Computer Organization and Architecture: Designing for Performance, (9th Edition). Stallings, W. Pearson Education. 2012.

Consulta:

- Computer Architecture: A Quantitative Approach, (5th Edition). Patterson D. A., Hennessy J. L. Morgan Kaufmann 1. Publishers, Inc. 2011.
- Structured Computer Organization, (6th Edition). Tanenbaum, A. Austin, T. Pearson Education. 2013. 2. Fundamentals of computer organization and architecture. Mostafa, A., Hesham E. Wiley. 2005. 3.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniería, Maestría o Doctorado en Electrónica o Computación, con especialidad en sistemas computacionales o digitales.

JEFATURA DE CARRERA INGENIERIA EN COMPUTACION

VICE-RECTORIA ACADÉMICA