Национальный исследовательский университет

ОСНОВЫ ТЕОРИИ РАДИОСИСТЕМ И КОМПЛЕКСОВ РАДИОУПРАВЛЕНИЯ

Пр5. Непрерывный фильтр Калмана

1. Построение непрерывной модели объекта

Рассмотрим непрерывный случайный процесс $\lambda(t)$, заданный спектральной плотностью $S_{\lambda}(\omega)$ или корреляционной функцией $R_{\lambda}(\tau)$.

$$S_{\lambda}(\omega) = \int_{-\infty}^{\infty} R(\tau) \cdot e^{-j\omega\tau} d\tau$$

Представим информационный процесс как результат прохождения белого шума через формирующий фильтр.

$$S_{\lambda}(\omega) = S_0 |K(j\omega)|^2 = S_0 K(j\omega) K(-j\omega)$$

$$W(t)$$

$$K(p)$$

В результате приходим к представлению информационного процесса в виде дифференциального уравнения.

$$\begin{split} \lambda(t) &= K(p) \cdot w(t), \qquad K(p) = \frac{A(p)}{B(p)} = \frac{a_m p^m + a_{m-1} p^{m-1} + \ldots + a_1 p + a_0}{b_n p^n + b_{n-1} p^{n-1} + \ldots + b_1 p + b_0}, \qquad n > m \\ \frac{d^n \lambda(t)}{dt^n} + b_{n-1} \cdot \frac{d^{n-1} \lambda(t)}{dt^{n-1}} + \ldots + b_1 \cdot \frac{d\lambda(t)}{dt} + b_0 \cdot \lambda(t) = \\ &= a_m \cdot \frac{d^m w(t)}{dt^m} + a_{m-1} \cdot \frac{d^{m-1} w(t)}{dt^{m-1}} + \ldots + a_1 \cdot \frac{dw(t)}{dt} + a_0 \cdot w(t) \end{split}$$

Задача описания процесса в пространстве состояний сводится к представлению дифференциального уравнения *п*-го порядка в виде системы из *п* дифференциальных уравнений первого порядка, которые в векторно-матричной форме записывают в виде.

$$\frac{d\vec{x}}{dt} = F \cdot \vec{x}(t) + G \cdot w(t) \qquad \lambda(t) = H \cdot \vec{x}(t)$$

Существует несколько способов такого перехода и описание одного процесса в пространстве состояний может иметь различные формы, например:

$$F = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -b_0 & -b_1 & -b_2 & -b_3 & \cdots & -b_{n-1} \end{bmatrix}, G = \begin{bmatrix} g_1 \\ g_2 \\ g_3 \\ \vdots \\ g_n \end{bmatrix}, g_i = a_{n-i} - \sum_{j=1}^{i-1} g_j \cdot b_{n-i+j}.$$

$$H = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix},$$

 $S_{\lambda}(\omega)$

Пример

Рассмотрим непрерывный случайный процесс $\lambda(t)$, заданный спектральной плотностью $S_{\lambda}(\omega)$ или корреляционной функцией $R_{\lambda}(\tau)$.

$$R_{\lambda}(\tau) = \frac{S_0}{2\alpha} e^{-\alpha |\tau|} \qquad S_{\lambda}(\omega) = \int_{-\infty}^{\infty} R_{\lambda}(\tau) \cdot e^{-j\omega\tau} d\tau \qquad S_{\lambda}(\omega) = \frac{S_0}{\omega^2 + \alpha^2}$$

Представим информационный процесс как результат прохождения белого шума через формирующий фильтр.

$$S_{\lambda}(\omega) = S_0 |K(j\omega)|^2 = S_0 K(j\omega) K(-j\omega)$$
 $W(t)$ $K(p)$

$$S_{\lambda}(\omega) = \frac{S_0}{(-j\omega + \alpha)\cdot(j\omega + \alpha)}, \quad K(j\omega) = \frac{1}{j\omega + \alpha}, \quad K(p) = \frac{1}{p+\alpha}$$

В результате приходим к представлению информационного процесса в виде дифференциального уравнения.

$$\lambda(t) = K(p) \cdot w(t),$$
 $p \cdot \lambda(t) + \alpha \cdot \lambda(t) = w(t),$ $\frac{d\lambda(t)}{dt} + \alpha \cdot \lambda(t) = w(t)$

Уравнение состояния.

$$\frac{d\lambda(t)}{dt} = -\alpha \cdot \lambda(t) + w(t) \qquad \overline{w(t)} = 0, \quad \overline{w(t)} \cdot \overline{w(t-\tau)} = Q \cdot \delta(\tau), \quad Q = S_0$$

2. Постановка задачи синтеза оптимального линейного непрерывного фильтра

2.1 Уравнение сост ояния объект а, модель объект а, модель сообщения

Предполагается, что интересующий нас процесс представлен компонентом многомерного марковского процесса, задаваемого системой линейных дифференциальных уравнений в векторно-матричной форме

$$\frac{d\vec{x}}{dt} = F(t) \cdot \vec{x}(t) + B(t) \cdot \vec{u}(t) + G(t) \cdot \vec{w}(t)$$

где $\vec{x}(t) = [x_1, x_2, ..., x_n]^{\mathrm{T}}$ - вектор состояния, $\vec{u}(t) = [u_1, u_2, ..., u_l]^{\mathrm{T}}$ - вектор управления

$$\vec{w}(t) = [w_1, w_2, ..., w_m]^{\text{T}}$$
- вектор случайных возмущений $\overline{\vec{w}(t)} = 0$, $\overline{\vec{w}(t) \cdot \vec{w}^{\text{T}}(t-\tau)} = Q(t) \cdot \delta(\tau)$

2.2 Уравнение наблюдения (уравнение измерений)

$$\vec{z}(t) = H(t) \cdot \vec{x}(t) + \vec{\xi}(t)$$

$$\vec{z}(t) = \begin{bmatrix} z_1, z_2, ..., z_r \end{bmatrix}^\mathsf{T} \quad \text{- вектор наблюдений}$$

$$\vec{\xi}(t) = \begin{bmatrix} \xi_1, \xi_2, ..., \xi_r \end{bmatrix}^\mathsf{T} \quad \text{- шум наблюдений}$$

$$\vec{\xi}(t) = 0 \quad \boxed{\vec{\xi}(t) \cdot \vec{\xi}^\mathsf{T}(t-\tau)} = R(t) \cdot \delta(\tau)$$

2.3 Начальные условия

$$\overline{\vec{x}(0)}, \qquad P(0) = \overline{(\vec{x}(0) - \overline{\vec{x}(0)}) \cdot (\vec{x}(0) - \overline{\vec{x}(0)})^{\mathrm{T}}}$$

3. Решение задачи оптимальной линейной фильтрации

ление задачи оптимальной линейной фильтрации заключается в нахождении алгоритма, который используя наблюдения и априорную информацию (уравнение объекта и начальные условия), формирует несмещенную оценку вектора состояния с минимальной среднеквадратической ошибкой каждой составляющей в любой момент времени t.

Алгорит м непрерывного фильт ра Калмана (Калмана-Бюси)

Алгорит м вычисления коэффициент ов фильт ра $K(t) = P(t) \cdot H^{\mathsf{T}}(t) \cdot R^{-1}(t)$

Уравнение Риккат и - дисперсионное уравнение

$$\frac{dP(t)}{dt} = F(t) \cdot P(t) + P(t) \cdot F^{\mathsf{T}}(t) + G(t) \cdot Q(t) \cdot G^{\mathsf{T}}(t) - P(t) \cdot H^{\mathsf{T}}(t) \cdot R^{-1}(t) \cdot H(t) \cdot P(t)$$

Ст ационарный режим

$$\frac{dP(t)}{dt} = 0, \qquad F(t) \cdot P(t) + P(t) \cdot F^{\mathsf{T}}(t) + G(t) \cdot Q(t) \cdot G^{\mathsf{T}}(t) - P(t) \cdot H^{\mathsf{T}}(t) \cdot R^{-1}(t) \cdot H(t) \cdot P(t) = 0$$

Задача 1.

Найти алгоритм формирования несмещенной оценки процесса $\lambda(t)$ с минимальной среднеквадратической ошибкой в любой момент времени по доступным наблюдениям $z(t) = \lambda(t) + \xi(t)$.

Процесс $\lambda(t)$ задан корреляционной функцией $R_{\lambda}(\tau) = \frac{S_0}{2\alpha} e^{-\alpha |\tau|}$, $\xi(t)$ - белый шум, $\xi(t) = 0$, $\xi(t) \cdot \xi(t-\tau) = S_{\varepsilon} \cdot \delta(\tau)$

- Построить структурную схему фильтра.
- Записать алгоритм расчета коэффициента фильтра.
- Найти значение коэффициента фильтра в установившемся режиме.

8

Уравнение состояния.

$$\frac{d\lambda(t)}{dt} = -\alpha \cdot \lambda(t) + w(t)$$

$$\overline{w(t)} = 0$$
, $\overline{w(t) \cdot w(t - \tau)} = S_0 \cdot \delta(\tau)$, $Q = S_0$

Уравнение наблюдений.

$$z(t) = \lambda(t) + \xi(t)$$

$$\overline{\xi(t)} = 0$$
, $\overline{\xi(t) \cdot \xi(t-\tau)} = S_{\xi} \cdot \delta(\tau)$, $R = S_{\xi}$

Обозначения.

$$x=\lambda\;,\quad F=-\alpha\;,\quad G=1\;,\quad H=1\;,\quad Q=S_0\;,\quad R=S_{\xi}$$

$$\frac{d\widehat{\lambda}}{dt} = -\alpha\widehat{\lambda} + K(z - \widehat{\lambda}), \qquad K = \frac{P}{R}, \qquad \frac{dP}{dt} = -2\alpha P - \frac{P^2}{R} + Q$$

$$\frac{d\widehat{\lambda}}{dt} = -\alpha\widehat{\lambda} + K(z - \widehat{\lambda}), \qquad K = \frac{P}{R}, \qquad \frac{dP}{dt} = -2\alpha P - \frac{P^2}{R} + Q$$

$$\frac{d\widehat{\lambda}}{dt} = -\alpha\widehat{\lambda} + K(z - \widehat{\lambda}), \qquad K = \frac{P}{R}, \qquad \frac{dP}{dt} = -2\alpha P - \frac{P^2}{R} + Q$$

В стационарном режиме

$$K = \sqrt{\alpha^2 + \frac{Q}{R}} - \alpha$$

при

$$\alpha \to 0$$

$$K = \sqrt{\frac{Q}{R}}$$

Задача 2.

Найти алгоритм формирования несмещенной оценки процесса $\lambda(t)$ с минимальной среднеквадратической ошибкой в любой момент времени по доступным наблюдениям $z(t) = \lambda(t) + \xi(t)$.

Процесс $\lambda(t)$ задан спектральной плотностью $S_{\lambda}(\omega) = \frac{S_0}{\omega^4}$,

$$\xi(t)$$
 - белый шум, $\overline{\xi(t)} = 0$, $\overline{\xi(t)\cdot \xi(t- au)} = S_{\xi}\cdot \delta(au)$

Построить структурную схему фильтра.

Записать алгоритм расчета коэффициента фильтра.

Найти значение коэффициента фильтра в установившемся режиме.

$$S_{\lambda}(\omega) = S_{0}|K(j\omega)|^{2} = S_{0}K(j\omega)K(-j\omega) \qquad S_{\lambda}(\omega) = \frac{S_{0}}{\omega^{4}} \Rightarrow K(j\omega) = \frac{1}{(j\omega)^{2}}$$

$$w(t) \qquad \frac{1}{p} \qquad \lambda'(t) \qquad \lambda(t) \qquad z(t) \qquad \vec{x}(t) = \begin{bmatrix} \lambda(t) \\ \lambda'(t) \end{bmatrix} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

B

$$S_{\lambda}(\omega) = S_{0} |K(j\omega)|^{2} = S_{0}K(j\omega)K(-j\omega)$$
 $S_{\lambda}(\omega) = \frac{S_{0}}{\omega^{4}} \Rightarrow K(j\omega) = \frac{1}{(j\omega)^{2}}$

$$S_{\lambda}(\omega) = \frac{S_0}{\omega^4} \Rightarrow K(j\omega) = \frac{1}{(j\omega)^2}$$

Уравнение состояния.

$$\begin{cases} \frac{dx_1(t)}{dt} = x_2(t) \\ \frac{dx_2(t)}{dt} = w(t) \end{cases} \qquad \overline{w(t)} = 0, \ \overline{w(t)} \cdot w(t-\tau) = S_0 \cdot \delta(\tau) \,, \ \mathcal{Q} = S_0 \end{cases}$$
ий.

Уравнение наблюдений.

$$z(t) = \lambda(t) + \xi(t)$$
 $\overline{\xi(t)} = 0$, $\overline{\xi(t) \cdot \xi(t-\tau)} = S_{\xi} \cdot \delta(\tau)$, $R = S_{\xi}$

Обозначения.

$$F = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \quad H = \begin{pmatrix} 1 & 0 \end{pmatrix}; \quad G = \begin{pmatrix} 0 \\ 1 \end{pmatrix}; \quad R = S_{\xi}; \quad Q = S_{0}$$

$$\begin{cases} \frac{d\widehat{x}_1(t)}{dt} = \widehat{x}_2(t) + k_1 \left[z(t) - \widehat{x}_1(t) \right] \\ \frac{d\widehat{x}_2(t)}{dt} = k_2 \left[z(t) - \widehat{x}_1(t) \right] \end{cases} K = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} \quad \begin{cases} \frac{dP_{11}}{dt} = 2P_{12} - P_{11}^2 R^{-1} \\ \frac{dP_{12}}{dt} = P_{22} - P_{11}P_{12}R^{-1} \\ \frac{dP_{22}}{dt} = Q - P_{12}^2 R^{-1} \end{cases} \qquad \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} P_{11} / R \\ P_{12} / R \end{bmatrix}$$

$$\begin{cases} \frac{d\widehat{x}_{1}(t)}{dt} = \widehat{x}_{2}(t) + k_{1} \left[z(t) - \widehat{x}_{1}(t) \right] \\ \frac{d\widehat{x}_{2}(t)}{dt} = k_{2} \left[z(t) - \widehat{x}_{1}(t) \right] \end{cases} K = \begin{bmatrix} k_{1} \\ k_{2} \end{bmatrix} = \begin{bmatrix} P_{11} / R \\ P_{12} / R \end{bmatrix}$$

$$K = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} P_{11} \\ R \\ P_{12} \\ R \end{bmatrix}$$

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} \quad \begin{cases} \frac{dP_{11}}{dt} = 2P_{12} - P_{11}^{2}R^{-1} \\ \frac{dP_{12}}{dt} = P_{22} - P_{11}P_{12}R^{-1} \\ \frac{dP_{22}}{dt} = Q - P_{12}^{2}R^{-1} \end{cases} \qquad \begin{bmatrix} k_{1} \\ k_{2} \end{bmatrix} = \begin{bmatrix} P_{11}/R \\ P_{12}/R \end{bmatrix}$$

В стационарном режиме
$$k_2 = \sqrt{\frac{\mathcal{Q}}{R}}$$
 , $k_1 = \sqrt{2k_2}$