Expectation Maximization Algorithm

Wei Wang @ CSE, UNSW

March 24, 2020

Motivation

- Missing data
- Latent variable
- Easier optimization

Convex Function

Figure 1: f is convex on [a,b] if $f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2) \forall x_1,x_2 \in [a,b], \quad \lambda \in [0,1].$

- e.g., $-\log(x)$
- An important concept in optimization / machine learning.

Jensen's Inequality

• Let f be a convex function defined on an interval I. If $\{x_i\}_{i=1}^n \in I$ and $\{\lambda_i\}_{i=1}^n \geq 0$ with $\sum_i \lambda_i = 1$, then

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \leq \sum_{i=1}^n \lambda_i f(x_i)$$

The equality holds iff $x_1 = x_2 = \ldots = x_n$ or f is linear.

• Corollary: Since ln(x) is a concave function (i.e., -ln(x) is a convex function), then

$$\ln\left(\sum_{i=1}^n \lambda_i f(x_i)\right) \geq \sum_{i=1}^n \lambda_i \ln\left(f(x_i)\right)$$

In addition, the equality holds iff $f(x_i)$ is a constant.

Log Likelihood

- Define log likelihood function $L(\theta) = \ln \Pr\{\mathbf{x} \mid \theta\}$. For i.i.d. examples, $L(\theta) = \sum_i L^{(i)}(\theta) = \sum_i \ln \Pr\{\mathbf{x}^{(i)} \mid \theta\}$.
 - Goal: find θ^* that maximizes the log likelihood.
- What if the model contains latent variable $\mathbf{z} = [\mathbf{z}^{(i)}]_i$ (whose value is unknown)?

$$L^{(i)}(\theta) \stackrel{\text{def}}{=} \ln \Pr \left\{ x^{(i)} \mid \theta \right\} = \ln \sum_{z^{(i)}} \Pr \left\{ x^{(i)}, z^{(i)} \mid \theta \right\}$$

$$= \ln \sum_{z^{(i)}} q(z^{(i)}) \cdot \frac{\Pr \left\{ x^{(i)}, z^{(i)} \mid \theta \right\}}{q(z^{(i)})} \qquad (\dagger)$$

$$\geq \sum_{z^{(i)}} q(z^{(i)}) \cdot \ln \frac{\Pr \left\{ x^{(i)}, z^{(i)} \mid \theta \right\}}{q(z^{(i)})}$$

• If $q(z^{(i)}) = \Pr\{z^{(i)} \mid x^{(i)}, \theta\}$, then the equality holds

• Given the current parameter $\theta_{(old)}$, and let

$$\begin{split} & q_{\text{(old)}}(z^{(i)}) \stackrel{\text{def}}{=} \Pr\{z^{(i)} \mid x^{(i)}, \theta_{\text{(old)}}\} \\ & L^{(i)}(\theta) = \ln\left(\sum_{z^{(i)}} q_{\text{(old)}}(z^{(i)}) \frac{\Pr\{x^{(i)}, z^{(i)} \mid \theta\}}{q_{\text{(old)}}(z^{(i)})}\right) \\ & \geq \sum_{z^{(i)}} q_{\text{(old)}}(z^{(i)}) \ln\left(\frac{\Pr\{x^{(i)}, z^{(i)} \mid \theta\}}{q_{\text{(old)}}(z^{(i)})}\right) \\ & = \sum_{z^{(i)}} \Pr\{z^{(i)} \mid x^{(i)}, \theta_{\text{(old)}}\} \ln\left(\Pr\{x^{(i)}, z^{(i)} \mid \theta\}\right) \\ & - \sum_{z^{(i)}} \Pr\{z^{(i)} \mid x^{(i)}, \theta_{\text{(old)}}\} \ln\left(\Pr\{z^{(i)} \mid x^{(i)}, \theta_{\text{(old)}}\}\right) \\ & = \underbrace{\sum_{z^{(i)}} \Pr\{z^{(i)} \mid x^{(i)}, \theta_{\text{(old)}}\} \ln\left(\Pr\{x^{(i)}, z^{(i)} \mid \theta\}\right)}_{\stackrel{\text{def}}{=} Q^{(i)}(\theta, \theta_{\text{(old)}})} + \underbrace{C}_{constant, entropy(q)} \end{split}$$

Hence, the EM algorithm iterates the following two steps:

- [E-step]: Compute the $q_{(old)}(z^{(i)}) = \Pr\{z^{(i)} \mid x^{(i)}, \theta_{(old)}\}$
- [M-step]: Find θ that maximizes the function $Q(\theta, \theta_{\text{old}})$ (see above (just sum over i).

Alternative interpretation:

$$Q^{(i)}(\theta, \theta_{\text{(old)}}) \stackrel{\text{def}}{=} \sum_{z^{(i)}} \Pr \left\{ z^{(i)} \mid x^{(i)}, \theta_{\text{(old)}} \right\} \ln \left(\Pr \left\{ x^{(i)}, z^{(i)} \mid \theta \right\} \right)$$

$$= \mathbf{E}_{z^{(i)} \sim q_{\text{(old)}}(z^{(i)})} \left[\ln \Pr \left\{ x^{(i)}, z^{(i)} \mid \theta \right\} \right]$$

i.e., the expected complete log-likelihood (function)

- Sample z from the proposal distribution q
- Then it is easy to compute the complete log-likelihood
- Do this for every possible z

Illustration

How EM converges

Figure 2: Graphical interpretation of a single iteration of the EM algorithm: The function $L(\theta|\theta_n)$ is upper-bounded by the likelihood function $L(\theta)$. The functions are equal at $\theta=\theta_n$. The EM algorithm chooses θ_{n+1} as the value of θ for which $l(\theta|\theta_n)$ is a maximum. Since $L(\theta) \geq l(\theta|\theta_n)$ increasing $l(\theta|\theta_n)$ ensures that the value of the likelihood function $L(\theta)$ is increased at each step.

Example 1: Three Coins

- Given three coins: z, a, b, with head probabilities λ , α , and β , respectively.
- Generative process: if toss(z) == head, return(toss(a)); else return(toss(b)).
- Observed data $\mathbf{x} = [1, 1, 0, 1, 0, 0, 1, 0, 1, 1].$
- Goal: estimate the parameters
- The usual assumption: all tosses are i.i.d.

If we know $\{z^{(i)}\}_{i=1}^{10}$

Observed data:

$$\lambda_{\mathsf{MLE}} = \qquad \qquad \alpha_{\mathsf{MLE}} = \qquad \qquad \beta_{\mathsf{MLE}} = \qquad \qquad \qquad$$

Solution /1

- Problem setup!:
 - $\theta = ?$
 - Missing data (i.e., z) = ?
 - Complete likelihood (for a single item): $Pr\{x_i, z_i \mid \theta\}$ (change of notation henceforth)
- The E-step: Given current θ_t , we can determine the distribution a

$$\begin{split} & \mu_{i,t} \stackrel{\text{def}}{=} \Pr\{z_i = 1 \mid x_i, \theta_t\} = \frac{\Pr\{z_i = 1, x_i \mid \theta_t\}}{\Pr\{x_i \mid \theta_t\}} \\ & = \frac{\pi_t \alpha_t^{x_i} (1 - \alpha_t)^{1 - x_i}}{\pi_t \alpha_t^{x_i} (1 - \alpha_t)^{1 - x_i} + (1 - \pi_t) \beta_t^{x_i} (1 - \beta_t)^{1 - x_i}} \end{split}$$

- Numerator:
 - $\bullet = \Pr\{z_i = 1 \mid \theta_t\} \cdot \Pr\{x_i \mid z_i = 1, \theta_t\}$
 - typical trick to write the piece-wise function for the likelihood.
- Denominator: sum over $z_i=1$ and $z_i=0$

Solution /2

Compute $Q(\theta, \theta_{\text{(old)}})$

First

$$\begin{aligned} & \ln(\Pr\{\mathbf{x}_{i}, \mathbf{z}_{i} \mid \theta\}) = \ln\left(\pi[\alpha^{x_{i}}(1-\alpha)^{1-x_{i}}]^{z_{i}} \cdot [(1-\pi)\beta^{x_{i}}(1-\beta)^{1-x_{i}}]^{1-z_{i}}\right) \\ &= \ln \pi + z_{i} \cdot (x_{i} \ln \alpha + (1-x_{i}) \ln(1-\alpha)) + \\ & (1-z_{i}) \cdot (x_{i} \ln \beta + (1-x_{i}) \ln(1-\beta)) \end{aligned}$$

• Then:

$$\begin{split} Q &= \sum_{i} \sum_{z_i} q(z_i) \ln(\Pr\{\mathbf{x}_i, z_i \mid \theta_t\}) \\ &= \sum_{i} \left(\mu_{i,t} \ln(\Pr\{\mathbf{x}_i, \mathbf{z}_i = 1 \mid \theta_t\}) + (1 - \mu_{i,t}) \ln(\Pr\{\mathbf{x}_i, \mathbf{z}_i = 0 \mid \theta_t\}) \right) \end{split}$$

• The M-step:

$$\frac{\partial Q(\theta \mid \theta_t)}{\partial \pi} = 0 \Longrightarrow \pi_{t+1} = \frac{1}{n} \sum_{i} \mu_{i,t}$$

$$\frac{\partial Q(\theta \mid \theta_t)}{\partial \alpha} = 0 \Longrightarrow \alpha_{t+1} = \frac{\sum_{i} \mu_{i,t} \times_{i}}{\sum_{i} \mu_{i,t}}$$

$$\frac{\partial Q(\theta \mid \theta_t)}{\partial \beta} = 0 \Longrightarrow \beta_{t+1} = \frac{\sum_{i} (1 - \mu_{i,t}) \times_{i}}{\sum_{i} (1 - \mu_{i,t})}$$

12/15

Understanding the Equations

$$\begin{split} &\frac{\partial Q(\theta \mid \theta_t)}{\partial \pi} = 0 \Longrightarrow \pi_{t+1} = \frac{1}{n} \sum_i \mu_{i,t} \\ &\frac{\partial Q(\theta \mid \theta_t)}{\partial \alpha} = 0 \Longrightarrow \alpha_{t+1} = \frac{\sum_i \mu_{i,t} x_i}{\sum_i \mu_{i,t}} \\ &\frac{\partial Q(\theta \mid \theta_t)}{\partial \beta} = 0 \Longrightarrow \beta_{t+1} = \frac{\sum_i (1 - \mu_{i,t}) x_i}{\sum_i (1 - \mu_{i,t})} \end{split}$$

Consider the example on the question page. In that example, we can deem that $\mu_{i,t}$ is a binary variable, i.e., $\mu_{i,t}=1$ iff coin $z^{(i)}=$ head, or equivalent, coin a is chosen to determine $x^{(i)}$. Then one can easily verify that the MLE estimation is the same as the update rules in EM. Therefore, these rules can be deemed as a "soft" version of MLE: informally, each $x^{(i)}$ has $\mu_{i,t}$ contribution to the parameter estimation of coin a, and $(1-\mu_{i,t})$ contribution to the parameter estimation of coin b.

Concrete Example

$$\mu_{i,t} = p(z_i = 1 \mid x_i = 1, \underbrace{\theta_t}_{\pi = 0.6, \alpha = 0.1, \beta = 0.8})$$

$$= \frac{p(z_i = 1, x_i = 1 \mid \theta_t)}{p(x_i = 1 \mid \theta_t)}$$

$$= \frac{p(z_i = 1, x_i = 1 \mid \theta_t)}{p(z_i = 1, x_i = 1 \mid \theta_t) + p(z_i = 0, x_i = 1 \mid \theta_t)}$$

$$= \frac{0.6 \cdot 0.1}{0.6 \cdot 0.1 + 0.4 \cdot 0.8} = 0.16$$

Similarly,

$$p(z_i = 1 \mid x_i = 0, \theta_t) = \frac{0.6 \cdot 0.9}{0.6 \cdot 0.9 + 0.6 \cdot 0.2} = 0.82$$

Concrete Example /2

• How many different scenarios?

Zi	X _i	$p(z_i \mid x_i, \theta_t)$
0	0	0.18
0	1	0.84
1	0	0.82
1	1	0.16

Observations: 6 1's and 4 0's.

$$\pi_{t+1} = \frac{1}{n} \sum_{i} \mu_{i,t} = \frac{0.16 \cdot 6 + 0.82 \cdot 4}{10} = 0.424$$

$$\alpha_{t+1} = \frac{\sum_{i} \mu_{i,t} x_{i}}{\sum_{i} \mu_{i,t}} = \frac{0.16 \cdot 6}{4.24} = 0.226$$

$$\beta_{t+1} = \frac{\sum_{i} (1 - \mu_{i,t}) x_{i}}{\sum_{i} (1 - \mu_{i,t})} = \frac{0.84 \cdot 6}{0.84 \cdot 6 + 0.18 \cdot 4} = 0.875$$