Dados Semana 1 - LFEA-I

Grupo A6

May 2022

1 Análise de Pulsos - Histograma

Geraram-se 50 pulsos com amplitudes diferentes e fez-se um histograma das ocorrências por amplitude. Na figura 1 é também possível encontrar um ajuste de uma função gaussiana, aos dados obtidos, cujos parâmetros do fit são:

$$gaussian(x) = [C] \frac{x - \mu}{\sigma} e^{\frac{-0.5(x - \mu)}{\sigma}}$$
(1)

$$\begin{split} [C] &= 6.88498e + 00 \pm 2.18625e + 00 \\ \mu &= 6.05341e - 01 \pm 1.55426e - 02 \\ \sigma &= 8.03850e - 02 \pm 2.10528e - 02 \end{split}$$

Figure 1: Histograma das amplitudes de 50 pulsos

Dados relativos à amostra:

Frequência absoluta	50
Valor esperado μ	0.6308
Desvio Padrão σ	0.1314
χ^2	20.3693

Table 1: Dados relativos à amostra

2 MCA

Analisaram-se as amplitudes de pulsos, obtidas a partir do MCA, com o objetivo de modelar os dados a uma função gaussiana, referida em (1). Na figura 2, as amplitudes ainda não foram convertidas para valores de tensão, [V], e os dados foram obtidos de pulsos não amplificados.

Figure 2: Histograma das amplitudes pulsos não amplificados, obtidas utilizando o MCA.

Parâmetros do fit:

\mathbb{C}	892.33 ± 24.63
$\parallel \mu$	72.139 ± 0.50773
$\parallel \sigma$	15.702 ± 0.48555
$\ \chi^2\ $	1830167.968 (??)

Table 2: Parâmetros da Modelação de (1) aos dados da figura 2.

Em seguida repetiu-se o processo, desta vez amplificando os pulsos.

Figure 3: Histograma das amplitudes pulsos amplificados, obtidas utilizando o MCA.

Parâmetros do fit:

ſ	С	753.23 ± 2.0305
Ì	μ	151.97 ± 0.081977
Ì	σ	26.326 ± 0.08189
Ì	χ^2	42611.26135 (??)

Table 3: Parâmetros da Modelação de (1) aos dados da figura 3.

2.1 Calibração

Para fazer corresponder cada *channel* (CHN) a um valor de tensão, mediu-se os valores de tensão de três pulsos, e em seguida registou-se em que *channel* do MCA se encontravam, de modo a fazer uma relação entre estes. Assim, obteve-se a seguinte reta de calibração:

Figure 4: Reta de Calibração

Modelando a uma função linear do tipo y = ax + b, os valores obtidos para os parâmetros livres foram:

$$a = 0.051805 \pm 0.003369 \\ b = -0.19727 \pm 1.822$$

Em seguida, aplicando a relação obtida aos dados, obtêm-se os seguintes gráficos e fits: Para os pulsos não amplificados:

Figure 5: Histograma das amplitudes pulsos não amplificados, obtidas utilizando o MCA, depois de calibrados. Aos dados é modelada uma função gaussiana, (1).

Parâmetros do fit:

С	892.33 ± 24.63
$\parallel \mu$	3.5399 ± 0.026303
σ	0.81346 ± 0.025154
χ^2	1830167.812 (??)

Table 4: Parâmetros da Modelação de (1) aos dados da figura 5

Para os pulsos amplificados:

Figure 6: Histograma das amplitudes pulsos amplificados, obtidas utilizando o MCA, depois de calibrados. Aos dados é modelada uma função gaussiana, (1).

Parâmetros do fit:

С	753.23 ± 2.0305
μ	7.6758 ± 0.0042468
σ	1.3638 ± 0.0042423
χ^2	42611.2695 (??)

Table 5: Parâmetros da Modelação de (1) aos dados da figura 6.