Minimale knotendiskunkte Einbettung in Graphen Entwicklung eines Branch-and-Bound Solvers

Florian Hahn

Berliner Hochschule für Technik

11.Juli 2024

Inhaltsverzeichnis

- 1 Minimum Cost Disjoint Path Problem
- 2 Branch and Bound Verfahren
- 3 Testergebnisse
- Zusammenfassung
- 5 Quellen

Minimum Cost Disjoint Path Problem

Minimum Cost Disjoint Paths Problem (MCDPP) [1]

Gegeben ist ein Basis-Graph G=(V,E) mit der Kostenfunktion $c:E\to\mathbb{Q}^+$ und ein Demand-Graph H=(T,D) mit $T\subseteq V$. Für jeden Demand $d=\{s,t\}$ soll eine Einbettung in G als einfacher s-t-Weg $P^d=(V^d,E^d)$ gefunden werden, sodass alle Wege gegenseitig knotendisjunkt sind und die gesamten Kosten aller gebrauchten Kanten minimal sind:

$$\min \sum_{d \in D} \sum_{e \in E^d} c(e)$$

sodass $V^d \cap V^{d'} \subseteq d \cap d'$ mit $d \neq d'$

Minimum Cost Disjoint Path Problem

Abbildung: Testinstanz 1 dargestellt mit Basis-Graph und Demand-Graph

Minimum Cost Disjoint Path Problem

Abbildung: Eine optimale Lösung der Testinstanz 1 mit Gesamtkosten 560

- $lue{}$ zulässige Lösung des MCDPP ightarrow Knoten entweder Teil eines Weges oder nicht
- Knotenzustand ZK(i) eines Knotens $i \in V \setminus T$:
 - **1** $ZK(i) = 0 \Leftrightarrow \text{Knoten } i \in V \setminus T \text{ befindet sich auf keinem eingebetteten Weg eines Demands}$
 - 2 $ZK(i) = j \land j \in \{1, ..., |D|\} \Leftrightarrow \text{Knoten } i \in V \setminus T \text{ befindet sich auf eingebettetem Weg des Demands } j$
- zulässige Lösung = eingebettete Wege für jeden Demand = Teilgraph des Basis-Graphen
- angepasster Demand-Graph H'(T', D') speichert diesen Teilgraphen durch Einfügen von Zwischenterminals im Demand-Graphen H(T, D)

Abbildung: Testinstanz 1 dargestellt mit Basis-Graph und Demand-Graph

Einbettung

Abbildung: Testinstanz 1 mit zulässiger Lösung, Knotenzuständen und angepasstem Demand-Graph H'(T', D')

Demand-Graph H'(T', D')

- \blacksquare alle Knotenzustände besetzt \to zulässige oder unzulässige Lösung
- Knotenzustände im angepassten Demand-Graph gespeichert bis auf Knotenzustand 0
- Knotenzustand 0 = Löschen des Knotens im Basis-Graphen

Branch and Bound Verfahren

- Suchen eine optimale Lösung einer Instanz des MCDPP in beschränkten Suchraum
- Idee: Sukzessiv Knotenzustände setzen mit angepassten Demand-Graphen
- Aufbau:
 - Subinstanzen
 - Obere und untere Schranken
 - 3 Verzweigungsstrategie
 - 4 Auswahlstrategie
 - 5 Optimalitätskriterien
 - 6 Beschränkungskriterien

Branch and Bound Verfahren

Abbildung: Schematische Darstellung des Branch and Bound Verfahren

Gesamtinstanz

Abbildung: Testinstanz 1 dargestellt mit Basis-Graph und Demand-Graph

- Verzweigungsknoten VZK auswählen in Basis-Graph G = (V, E)
- Eigenschaften *VZK*:
 - 1 $VZK \in V \setminus T$
 - 2 Knotenzustand VZK ist unbesetzt
- ullet |D|+1 mögliche Knotenzustände für VZK
- ullet |D|+1 Subinstanzen, bei denen VZK als Zwischenterminal im Demand-Graphen eingefügt wird oder im Basis-Graphen gelöscht wird

Abbildung: Subinstanz 1 entstanden aus Verzweigung bei D und dargestellt mit Basis-Graph, Knotenzustand und angepassten Demand-Graph

Abbildung: Subinstanz 2 entstanden aus Verzweigung bei D und dargestellt mit Basis-Graph, Knotenzustand und angepassten Demand-Graph

Abbildung: Subinstanz 3 entstanden aus Verzweigung bei D und dargestellt mit Basis-Graph, Knotenzustand und angepassten Demand-Graph

Abbildung: Subinstanz 4 entstanden aus Verzweigung bei D und dargestellt mit Basis-Graph, Knotenzustand und angepassten Demand-Graph

Abbildung: Schematische Darstellung des Branch and Bound Verfahren

Subinstanz

- Knotenzustand gesetzt oder ungesetzt
- Knotenzustand = 0 entspricht Knoten löschen
- nicht alle Knotenzustände belegt mit zugehörigen $H'(T',D') \rightarrow$ neues MCDPP mit Basis-Graph G'(V',E') und Demand-Graph H'(T',D'), welches Subinstanz genannt wird
- Subinstanz besitzt untere Schranke $U_S \le z(X_S^*)$
- Zustand der Subinstanz: UNZULÄSSIG, OPTIMAL, KANDIDAT

Subinstanz

Subinstanz

- $+ Z_s$: enum
- + $U_{\mathcal{S}}$: double
- + Ls: vector<Knoten>
- + D_S: vector<pair<Knoten,Knoten>>

Abbildung: UML-Diagramm der Subinstanz

Auswahlstrategie

Es wird immer die Subinstanz mit dem kleinsten Wert U_S zum Verzweigen ausgewählt.

Abbildung: Schematische Darstellung des Branch and Bound Verfahren

Auswahlstrategie

Warteschlange

- W_W: list<Subinstanz>
- O_W: double
- X_w: vector<Kante>
- + empty(): bool
- + size(): unsigned_int
- + getO(): double
- + getX(): vector<Kante>
- + push(s : Subinstanz) : void
- + pop(): Subinstanz
- + setO(o : double) : void
- + setX(x : vector<Kante>) : void
- + updateObereSchranke(x :vector<Kante>, o : double) : void

Abbildung: UML Diagramm der Menge der verzweigbaren Subinstanzen \ensuremath{W} als Warteschlange implementiert

Untere Schranke

- Lagrange-Vektor $\lambda \in (\mathbb{R}^+)^{|V|}$ mit $\mathbb{R}^+ = \{x | x \in \mathbb{R} \land x \geq 0\}$
- Angepasste Kosten c' des Basis-Graphen G = (V, E):

$$c'(u, v, \lambda) = c(u, v) + \lambda(u) + \lambda(v) \quad \forall \{u, v\} \in E$$
 (1)

■ Untere Schranke des MCDPP mit G = (V, E) und H = (T, D):

$$U(\lambda) = \sum_{d \in D} z(\text{k\"{u}rzesterWeg}(G, d, \lambda)) - \sum_{u \in V} \omega(u)\lambda(u) \quad (2)$$

$$\omega(u) = \begin{cases} 2 & u \in V \setminus T \\ d_H(u) & u \in T \end{cases} \tag{3}$$

$$z(P(d)) = \sum_{e} c'(e) \tag{4}$$

■ Einbettung kürzester Wege kann zulässige Lösung sein

Untere Schranke

- große untere Schranke finden mit Subgradientenverfahren
- lacksquare n_{sub} Itterationen erzeugt unterschiedliche λ
- U_S ist größte gefundene untere Schranke

$$\lambda^{(k+1)} = \lambda^{(k)} + \alpha^{(k)} \cdot \zeta^{(k)} \qquad k = 1, ..., n_{sub}$$
 (5)

$$\zeta^{(k)} = \mu^{(k)} - \omega \tag{6}$$

$$\mu(u)^{(k)} = \sum_{d \in D} (u \in V^{d^{(k)}}) \qquad \forall u \in V$$
 (7)

$$\alpha^{(k)} = \theta^{(k)} \frac{\overline{L} - U(\lambda^{(k)})}{||\zeta^{(k)}||^2} \tag{8}$$

$$\theta^{(k)} = \begin{cases} 2 & k = 1\\ \frac{\theta^{(k-1)}}{2} & \operatorname{mod}(k, n_{iter_half}) = 0 & \wedge \max_{j \in [1, k]} U(\lambda^{(j)}) = \max_{j \in [1, k-n]} U(\lambda^{(j)})\\ \theta^{(k-1)} & \operatorname{sonst} \end{cases}$$

Obere Schranke

- Gesamtkosten jeder gefundenen zulässigen Lösung = obere Schranke der Instanz des MCDPP
- die gefundene zulässige Lösung mit kleinsten Gesamtkosten wird gespeichert
- am Anfang keine zulässige Lösung bekannt
- Summe aller Kantenkosten = obere Schranke *O* des MCDPP
- O kann verkleinert werden

Optimalitätskriterium

Das MCDPP besitzt kein Optimalitätskrterium.

Komplementäre Schlupfbedingung

Entsprechen die kürzesten Wege aller eingebetteten Demands des angepassten Demand-Graphen einer Subinstanz S für eine untere Schranke $U_S(\lambda)$ einer zulässigen Lösung der Instanz des MCDPP und ist das Skalarprodukt aus λ und ζ gleich 0, dann entsprechen alle Kanten X der kürzesten Wege einer optimalen Lösung X_S^* der Subinstanz S.

Beschränkungskriterien

Abbildung: Schematische Darstellung des Branch and Bound Verfahren

Beschränkungskriterien

- \blacksquare Zustand der Subinstanz ist OPTIMAL oder UNZULÄSSIG \to nicht weiter verzweigbar
- nur Subinstanzen von Zustand KANDIDAT weiter verzweigbar
- lacksquare Suboptimalität $U_S \geq O
 ightarrow$ nicht weiter verzweigbar
- lacksquare alle Knotenzustände gesetzt ightarrow Zustand ist UNZULÄSSIG oder OPTIMAL
- existiert keine verzweigbare Subinstanz endet das Verfahren

Testergebnisse

- 7 Testinstanzen insgesamt
- 6 Testinstanzen mit Referenzlösung richtig berechnet unter 1 min
- Einstellbaren Parameter haben Einfluss auf Zeitaufwand der Solver
- Zeitaufwand ist instanzabhängig
- 7.Testinstanz sehr groß ohne Referenzlösung
- 7.Testinstanz unterschiedliche Lösungen bei Solvern mit Zeiten unter 2h (Abbruch 1 Tag)
- Numerische Fehler bei Berechnung unterer Schranke → Subinstanzen werdern verworfen (Beschränkungskriterien), die durch Verzweigung zur optimalen Lösung führen würden

Zusammenfassung

- Branch and Bound Solver theoretisch hergeleitet und praktisch in C++ implementiert
- Testinstanzen mit Referenzlösung richtig berechnet in kurzer Zeit
- lacktriangle Numerische Fehler bei großen Testinstanzen ightarrow keine Optimalitätsgarantie
- Laufzeit hängt von Instanz und einstellbaren Parametern ab

Quellen

- Florian Hahn. Schrankenverfahren für sichere Subnetze. Berlin Hochschule für Technik, 2023.
- [2] James B. Orlin Bavindra K. Ahuja Thomas L. Magnanti. Network Flows: Theory, Algorithms and Applications. Prentice Hall, 1993.
- [3] Prof. Dr. Martin Oellrich. *Operations Research Vorlesungsskript*. Berliner Hochschule für Technik, 2023.

Fibonacci-Heap

- Dijkstra-Algorithmus O(|V|pop + |E|push)
- implementierte Liste für Dijkstra: O(|V| + |E||V|)
- Fibonacci-Heap:

$$O(extit{pop}) = O(extit{log}(V))$$
 $O(extit{push}) = O(1)$ $O(|V| extit{pop} + |E| extit{push}) = O(|V| extit{log}(V) + |E|)$

 theoretisch beste bekannte Datenstruktur für Warteschlange des Dijkstra-Algorithmus

Modifizierte Kantenkosten

Sei G=(V,A) ein gerichteter Graph mit Kantenkosten $c:A\to\mathbb{R}^+_0$ und $s\in V$. Es sei $t\in V$ ein weiterer Knoten, $dist_c(\cdot,t)$ die Distanzen aller anderen Knoten zu ihm und $c':A\to\mathbb{R}^+_0$ die modifizierte Kantenkostenfunktion

$$c'(u,v) = c(u,v) - dist_c(u,t) + dist_c(v,t)$$

Dann gilt fur alle Knoten $u \in V$: Ein s-u-Weg ist genau dann ein kürzester bzgl. c', wenn er auch ein kürzester bzgl. c ist.

- Subgradientenverfahren \rightarrow Kantenkosten c ändern sich mit λ
- modifizierte Kantenkosten:

$$c''(u,v) = c'(u,v) - dist_c(u,t) + dist_c(v,t)$$
$$c'(u,v) = c(u,v) + \lambda(u) + \lambda(v)$$

- kürzeste Wege bzgl c' bleiben gleich, jedoch bei Suche existiert Orientierung (siehe S. 211)
- Beweis folgt

$$\begin{split} c''(P(s,u)) &= \sum_{(v,w) \in P(s,u)} c''(v,w) \\ &= \sum_{(v,w) \in P(s,u)} c'(v,w) - dist_c(v,t) + dist_c(w,t) \\ &= \sum_{(v,w) \in P(s,u)} c'(v,w) + \sum_{(v,w) \in P(s,u)} dist_c(w,t) - dist_c(v,t) \\ &= c'(P(s,u)) + (dist_c(u,t) - dist_c(s,t)) \end{split}$$

 \rightarrow argmin $_{P(s,u)}c''(P(s,u))$ und argmin $_{P(s,u)}c'(P(s,u))$ liefern die selben kürzesten Wege aber mit anderen Längenwerten

- \blacksquare Branch and Bound Verfahren \to Löschen von Knoten aus Basis-Graphen möglich
- Löschen verringert Menge der Wege zwischen 2 Knoten u und v
- $lue{}$ Beweis bleibt gleich ightarrow selbe kürzeste Wege
- erstelle am Anfang des B& B Verfahrens |T|Kürzeste-Wege-Bäume für jeden Terminalknoten \rightarrow jeder Dijkstra für einen Demand und λ im Subgradientenverfahren für jede Subinstanz kann mit c''rechnen
 - ightarrow Dijkstra findet schneller kürzesten Weg, weil alle Zwischenterminals in der Nähe des Terminals liegen

Einstellbare Parameter

- Basis-Graph: G = (V, E)
- Demand-Graph: H = (T, D)
- Anzahl Iteration Subgradientenverfahren: n_{sub}
- Update Schrittweite Subgradientenverfahren: n_{iter_half}
- Start-Lagrange-Vektor: λ_{Option}
- Wahl des Verzweigungsknotens: VZK_{Option}
- $lue{}$ verringerte Anzahl Iteration Subgradientenverfahren: n'_{sub}

Einstellbare Parameter

- 1 $\lambda_{Option} = \lambda_{NULL} \Leftrightarrow \lambda_{Start} = \mathbf{0}$
- $\begin{array}{l} \textbf{2} \ \, \lambda_{Option} = \lambda_\mathsf{MAX} \Leftrightarrow \lambda \in P \ \mathsf{mit} \\ P = \{\lambda^{(k)} \ \, \wedge \ \, k \in [1, n_{sub}] \mid \mathit{U}(\lambda^{(k)}) = \max_{k \in [1, n_{sub}]} \mathit{U}(\lambda^{(k)}) \} \end{array}$
- $\begin{array}{ll} \mathbf{3} \ \, \lambda_{Option} = \lambda_\mathsf{KONFLIKT} \Leftrightarrow \lambda \in P' \ \mathsf{mit} \\ P' = \{\lambda^{(k)} \ \, \wedge \ \, k \in [1, n_{sub}] \mid \mathit{MK}^{(k)} = \min_{k \in [1, n_{sub}]} |\mathit{MK}^{(k)}| \} \end{array}$

Einstellbare Parameter

- **1** $VZK_{Option} = MAX_{FLUSS} \Leftrightarrow bei \lambda_{Start}$ Knoten der am häufigsten Teil eines Weges ist
- 2 $VZK_{Option} = WEG \Leftrightarrow bei \lambda_{Start}$ mittlerer Knoten des Weges, welcher die meisten Knoten besitzt
- 3 $VZK_{Option} = KONFLIKTE \Leftrightarrow bei \lambda_{Start}$ aus Menge an Konfliktknoten den Knoten wählen, der nach Verzweigung den größten Wert der kleinsten unteren Schranke der verzweigten Subinstanzen besitzt

Relation

Eine binäre Relation R zwischen zwei Mengen A,B ist eine (beliebige) Teilmenge ihres kartesischen Produkts:

$$R \subseteq A \times B$$
 d.h. $R = \{(x, y) \in A \times B \mid r(x, y)\}$

mit einem definierenden zweistelligen Prädikat r(x, y).

Optimale Substruktur kürzester Wege

Optimale Substruktur kürzester Wege (S.192)

Sei G=(V,A) ein gerichteter Graph mit Kantenkosten $c:A\to\mathbb{R}_0^+$ und P(s,t) ein kürzester s-t-Weg in G bzgl. c. Dann ist jeder Teilweg $P(u,v)\subseteq P(s,t)$ ein kürzester u-v-Weg in G bzgl. c.