Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

Отчет по лабораторной работе №1 по курсу «Модели решения задач в интеллектуальных системах» Тема: Сжатие графической информации линейной рециркуляционной сетью.

Вариант 10

Выполнил студент группы 021702:	Кавков М. А.
Проверил:	Жук А. А.

Цель: Ознакомиться, проанализировать и получить навыки реализации модели линейной рециркуляционной сети для задачи сжатия графической информации.

Задание:

Реализовать модель линейной рециркуляционной сети с адаптивным шагом обучения.

Описание модели:

В лабораторной работе выполняется сжатие изображений формата ВМР.

Входные данные:

```
block_height — высота прямоугольника;
block_width — ширина прямоугольника;
alpha (α) — коэффициент обучения;
maximum_error (e) — максимальная допустимая ошибка.
stelth_neurons — количество нейронов;
```

Выходные данные:

- Z коэффициент сжатия (регулируется количеством нейронов скрытого слоя сети);
 - E суммарная ошибка для обучающей выборки;
- I число итераций

В отчёте содержатся графики и таблицы следующих зависимостей:

- 1) числа итераций обучения от коэффициента сжатия ${\bf Z}$ (для фиксированного изображения и параметров);
- 2) числа итераций обучения для разных изображений (для фиксированных параметров и **Z**);
- 3) числа итераций от е (остальные параметры фиксированы);
- 4) числа итераций от α (остальные параметры фиксированы).

1) Входные параметры:

- 1) изображение 256х256
- 2) n=m=8
- 3) e = 620

p	Z	i
32	1,26341	12
24	1,6845	16
20	2,02136	20
16	2,52662	24
10	4,04222	47

2) Входные параметры

$$1)n = m = 8$$

$$2)p = 32$$

$$3)e = 700$$

16 iteration

17 iteration

49 iteration

3)Входные параметры

1)изображение 256х256

$$3)p = 25$$

4) Входные параметры 1)изображение 256х256

2)n=m=8

3)e = 1000

4)p = 25

a	i
0,0001	96
0,0002	38
0,0003	21
0,0005	15
0,0007	11

Вывод:

В результате лабораторной работы была реализована модель линейной рециркуляционной сети с адаптивным шагом обучения. Были получены таблицы и графики зависимости кол-ва итераций от других параметров.

На их основе выявлено следующее:

1)При увеличении коэффициента сжатия Z количество итераций і увеличивается

- 2) При увеличении максимально допустимой ошибки е количество итераций і уменьшается
- 3) Количество итераций зависит от исходного изображения и его размера
- 4) При увеличение кол-ва нейронов на скрытом слое уменьшается коэффициента сжатия ${\bf Z}$