

Week 7
November 3, 2023

Exercise 1. The following three algorithms sort the input sequence a_1, \ldots, a_n of real numbers in ascending order.

Algorithm 1 Bubble Sort	Algorithm 2 Selection Sort	Algorithm 3 Insertion Sort
for $i = 1$ to $n - 1$ do	for i = 1 to n - 1 do	for $j=2$ to n do
for $j=1$ to $n-i$ do	$\min \leftarrow i + 1$	$i \leftarrow 1$
if $a_j > a_{j+1}$ then	for $j = i + 1$ to n do	while $a_j > a_i$ do
swap a_j and a_{j+1}	if $a_{\min} > a_j$ then	$i \leftarrow i + 1$
	$\min \leftarrow j$	$m \leftarrow a_j$
	if $a_i > a_{\min}$ then	for $k = 0$ to $j - i - 1$ do
	swap a_i and a_{\min}	$a_{j-k} \leftarrow a_{j-k-1}$
	-	$a_i \leftarrow m$

9, 12,-43, 20, -2, 3, 7, 28, 19.

Use Bubble Sort, Selection Sort and Insertion Sort to sort the following sequence:

7,9,12,19,20,28

3, 12, -43, 20, -2, 3, 7, 28, 19 -43, 12, 9, 20, -2, 3, 7, 28, 19 -43, -2, 9, 20, 12, 3, 7, 28, 19 -43, -2, 3, 20, 12, 9, 7, 28, 19 -43, -2, 3, 7, 12, 9, 20, 28, 19 -43, -2, 3, 7, 9, 12, 20, 28, 19 -43, -2, 3, 7, 9, 12, 19, 28, 20 -43, -2, 3, 7, 9, 12, 19, 28, 20 -43, -2, 3, 7, 9, 12, 19, 28.

9,12,-43,20,-2,3,7,28,19 -43,9,12,20,-2,3,7,28,19 -43,-2,9,12,20,3,7,28,19 -43,-2,3,9,12,20,7,28,19 -43,-2,3,7,9,12,20,28,19

Exercise 2. Adapt the bubble sort algorithm so that it stops when no interchanges are required. Express this more efficient version of the algorithm in pseudocode.

procedure babble sert (a,, an Irst) (for i = 1 to n-1 do 1 has_changed = false for c = 1 to n-c } if (aj > aj+1) (Swap a; and a; en if (!has_dranged) { exit() }

Exercise 5.

$$L_{x_1} = (y_3, y_1, y_2)$$
 $L_{y_1} = (x_2, x_1, x_3)$
 $L_{x_2} = (y_2, y_3, y_1)$ $L_{y_2} = (x_1, x_3, x_2)$

$$L_{x_3} = (y_1, y_2, y_3)$$
 $L_{y_3} = (x_3, x_2, x_1)$

Let L_x for $x \in X = \{x_1, x_2, x_3\}$ be the preference list of x as given above and let L_y for $y \in Y = \{y_1, y_2, y_3\}$ be the preference list of y as given above.

We say that a matching is X-optimal (resp. Y-optimal) if all elements of X (resp. Y) are matched with their highest preference.

The matching $\{(x_1, y_1), (x_2, y_3), (x_3, y_2)\}$ is

- O unstable.
- \bigcirc stable and Y-optimal.
- \bigcirc stable and X-optimal.
- \nearrow stable but not a stable matching that is X- or Y-optimal.

Let's see	if X-aprimal	Y-optime 1?
	3	
(24/93)		(91,24
(x_1, y_3) (x_2, y_2) (x_3, y_1)		(y_1, x_2) (y_2, x_3) (y_3, x_3)
(x_3,y_1)		(43, 23)
		L) no
15 NO		(a) No
Stable:		<u> </u>
· Ocom T	200 X -211- h	

Exercise 7. Let $\{A, B, C, D\}$ be a set of men, and $\{a, b, c, d\}$ a set of women. We want to match up men and women using the Gale-Shapley algorithm in two different ways. The preferences of men and women are given in the following lists, going from most preferable on the left to least preferable on the right.

Men	1st	2nd	3rd	4th
A	С	d	b	a
В	d	\mathbf{c}	a	b
C	a	\mathbf{c}	b	d
D	b	d	a	\mathbf{c}

Women	1st	2nd	3rd	4th
a	D	A	В	С
b	С	$_{\mathrm{B}}$	A	D
c	С	В	\mathbf{A}	D
d	D	A	\mathbf{B}	\mathbf{C}

- 1. If the men propose, and women accept/reject, what is the matching after the algorithm terminates?
- 2. If the women propose, and men accept/reject, what is the matching after the algorithm terminates?
- 3. Who is the best possible (stable) valid partner for "a"?

