

Computational Learning Theory

Prof. Chia-Yu Lin
Yuan Ze University
2021 Spring

Outline

- Sample Complexity
- Errors of a Hypothesis
- PAC Learnability
- Exhausting the Version Space
- Mistake Bounds

Computational Learning Theory

- What general laws constrain inductive learning?
- We seek theory to relate:
 - Complexity of hypothesis space considered by the learner
 - Accuracy to which target concept is approximated
 - Probability that the learner outputs a successful hypothesis
 - Manner in which training examples presented to the learner

Goals:

- Sample complexity: How many training examples are needed for successful learning?
- Computational complexity: How much computational effort is needed for a learner to converge to a successful hypothesis?
- Mistake bound: How many examples will the learner misclassify before the convergence?

Q1:

- Which of the following statements below is not the goal that computational learning theory want to achieve?
- (A) Learning successfully in polynomial time.
- (B) Finding out the upper and lower bound of error.
- (C) Deriving sample complexity.
- (D) All of the above.

Sample Complexity

- How many training examples are sufficient to learn the target concept?
- 3 settings:
 - ① Learner proposes instances, as queries to teacher: Learner proposes instance x, teacher provides c(x).
 - 2 Teacher provides training examples: Teacher provides sequence of examples of form $\langle x, c(x) \rangle$.
 - Some random process (e.g., nature) proposes instances: Instance x generated randomly, teacher provides c(x).

Cross-validation

Sample Complexity: Setting 1

- Learner proposes instance x, teacher provides c(x) (assume c is in learner's hypothesis space H)
- Optimal query strategy: play 20 questions
 - Pick instance x such that half of hypotheses in VS classify x positive, half classify x negative.
 - When this is possible, need $\lceil \log_2 |H| \rceil$ queries to learn c. => Best case
 - When not possible, need even more.

Sample Complexity: Setting 2

- Teacher (who knows c) provides training examples (assume c is in learner's hypothesis space H)
- Optimal teaching strategy: depends on H used by learner.
- Consider the case where H is conjunctions of up to n boolean literals (positive or negative).
 - e.g., $(AirTemp = Warm) \land (Wind = Strong)$, where AirTemp, Wind, . . . each has 2 possible values.
 - if *n* possible boolean attributes in H, (n+1) examples suffice.
 - Why?

The size of hypothesis space (|H|) : 3^n (Attribute is +, -, or ?) The number of examples: log(|H|) => Worst case

如果concept有don 't care? (1/2)

	A_1	A ₂	A ₃	••••	A _n
Concept:	+	-	?	?	?

要學會這樣的concept,需要提供幾個example??

Step1: 學don't care

Step2: 學A₁只能是+ & A₂只能是-

如果concept有don 't care? (2/2)

A_1	A ₂	A ₃	••••	A _n
+	-	?	?	?

要學會這樣的concept,需要提供幾個example??

Step1: 學don't care

Step2: 學A₁只能是+ & A₂只能是-

如果concept都沒有don 't care?

	A_1	A ₂	A_3	••••	A _n
Concept:	+	+	+	+	+

要學會這樣的concept,需要提供幾個example??

A_1	A ₂	A ₃		A _n	Class	
+	+	+	+	+	=>+}	– 1 example
-	+	+	+	+	=> -	
+	-	+	+	+	=> -	– n ovamnio
+	+	-	+	+	=> -	– n example
Ė					ل	

Total example: n+1

Sample Complexity: Setting 3

Given:

- Set of instances X.
- Set of hypotheses H.
- Set of possible target concepts C.
- Learner observes a sequence D of training examples of form $\langle x, c(x) \rangle$, for some target concept $c \in C$.
 - Instances x are drawn from distribution D.
 - Teacher provides target value c(x) for each x.
- Learner must output a hypothesis h estimating c
 - h is evaluated by its performance on subsequent instances drawn according to D
- Note: randomly drawn instances, noise-free classifications.

True Error of a Hypothesis

Definition

The **true error** (denoted $error_{\mathbb{D}}(h)$) of hypothesis h with respect to target concept c and distribution \mathbb{D} is the probability that h misclassifies an instance drawn at random according to \mathbb{D} .

$$error_{\mathbb{D}}(h) \equiv \Pr_{x \in \mathbb{D}} (c(x) \neq h(x))$$

Two Notations of Error

多常錯? =>100個training example 錯2個 =>2%

- Training error, denoted $error_D(h)$, of hypothesis h with respect to c: How often $h(x) \neq c(x)$ over training instances.
- True error, denoted $error_{\mathbb{D}}^{\frac{k}{2}}(h)$, of hypothesis h with respect to c: How often $h(x) \neq c(x)$ over future random instances.
- Our concerns: Training error: 2% => True error不高於3%的機率是多少?
 - Can we bound the true error of h given its training error?
 - First consider when training error of h is zero (i.e., $h \in VS_{H,D}$)

PAC Learning

- Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.
- We desire that the learner probably learns a hypothesis that is approximately correct.

Definition

C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathbb{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathbb{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

 To prove any concept is PAC-learnable or not, we need to derive the sample complexity needed for setting 3.

如果一個concept是PAC-learnable,代表此concept沒有很難,可以 在夠短的時間內,夠高的機率輸出一個夠準確的hypothesis

Q2:

- Which of the following statements is true about PAC learning?
- (A) The parameters ε should be less than $\frac{1}{2}$.
- (B) The algorithm is expected to output a hypothesis that is approximately correct.
- (C) If the concept is PAC learnable, we can get an accurate hypothesis with a high enough probability in a short time.
- (D) All of the above.

Exhausting the Version Space

Hypothesis Space H

r: training error error: true error

This version space is **0.3-exhausted**.

(r is training error, error is true error)

Definition

The version space $VS_{H,D}$ is ϵ -exhausted with respect to c and \mathbb{D} , if every hypothesis h in $VS_{H,D}$ has error less than ϵ with respect to c and \mathbb{D} .

$$(\underline{\forall}h \in VS_{H,D}) \ error_{\mathbb{D}}(h) < \epsilon$$

Question

 Given training error is 0 (i.e. hypothesis is in version space), what is the true error?

• => How many examples can make version space ε -exhausted?

Probability of Exhausting the Version Space

How many examples ε-exhaust the VS?

Theorem (Haussler, 1988)

If H is finite, and D is a sequence of $m \geq 1$ independent random examples (from distribution \mathbb{D}) of some target concept c, then for any $0 \le \epsilon \le 1$, the probability that $VS_{H,D}$ is not ϵ -exhausted is less than or equal to

$$|H|e^{-\epsilon m}$$
.

- The above theorem bounds the probability that any consistent learner will output a hypothesis h with $error_{\mathbb{D}}(h) \geq \epsilon$.
- If we want to this probability to be below δ

$$H|e^{-\epsilon m} \le \delta$$

$$|H|e^{-\epsilon m} \le \delta$$
 \Longrightarrow $m \ge \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$

1-δ的機率輸出夠準確的 hypothesis 所需要的example

充分但不必要條件!!

Q3:

- Which of the following statements is true about the probability of the version space is not ε -exhausted?
- (A) By this theorem , we can know the most number of example drawn from distribution, that we can get a hypothesis such that the true error is large than or equal to ε .
- (B) According to this, we can infer that if, Pr will be large than or equal to $|H|e^{-\varepsilon m}$.
- (C) m is the symbol of the number of the examples.
- (D) The theorem is still true, if H is infinite.

Proof of ε -exhausting (1/2)

• What is the probability that version space is not ε -exhausted if m examples are given?

Proof: ϵ -exhausting the version space.

- Let h_1, \dots, h_k be all hypotheses in H with true errors greater than ϵ with respect to c.
- Fail to ϵ -exhausting the VS iff at least one of these hypotheses consistent with all m examples.
- Such prob. for a single hypothesis and a single random example is (1ϵ) ; or $(1 \epsilon)^m$ for all m examples.
- The prob. that fail to ϵ -exhausting is at most $k(1-\epsilon)^m$.

For k 個hypothesis

$$k(1-\epsilon)^m \le |H|(1-\epsilon)^m \le |H|e^{-\epsilon m}$$

Proof of ε -exhausting (2/2)

After asking m times, the probability of h consistent with c is $(1-\varepsilon)^m$

Learning Conjunctions of Boolean Literals

- Recall that $m \geq \frac{1}{\epsilon}(\ln |H| + \ln(1/\delta))$ examples are sufficient to assure with probability at least (1δ) that every h in $VS_{H,D}$ satisfies $error_{\mathbb{D}}(h) \leq \epsilon$.
- Suppose H contains conjunctions of constraints on up to n boolean attributes.
 - $|H| = 3^n$. Every attribute can be (+, -, don't care)
 - $m \ge \frac{1}{\epsilon} (n \ln 3 + \ln(1/\delta))$
 - Boolean conjunctions is PAC-learnable!

Polynomial in $\frac{1}{\varepsilon}$. Polynomial in $\frac{1}{\delta}$. Polynomial in n

EnjoySport Revisit

• Inn *EnjoySport*, if we consider only conjunctions, |H| = 973.

$$m \geq \frac{1}{\epsilon}(\ln 973 + \ln(1/\delta))$$

• If want to assure that with probability 95%, VS contains only hypotheses with $error_{\mathbb{D}}(h) \leq 0.1$, then it is sufficient to have m examples, where

$$m \ge \frac{1}{0.1} \left(\ln 973 + \ln \frac{1}{0.05} \right)$$

Agnostic Learning (Learning Inconsistent Hypotheses)

• The equation $m \geq \frac{1}{\epsilon}(\ln |H| + \ln(1/\delta))$ tells us how many training examples suffice to ensure that every hypotheses in H having zero training error will have true error of at most ϵ .

C. $\neq H$

• However, if $c \notin H$, zero training error may not be achievable.

- We desire to know how many examples suffice to ensure $error_{\mathbb{D}}(h) > error_{\mathbb{D}}(h) + \epsilon$.
- Hoeffding bounds: $|\bar{X} \mu|$ $\Pr(error_{\mathbb{D}}(h) > error_{D}(h) + \epsilon) \leq e^{-2m\epsilon^{2}}$
- Sample complexity in this case:

$$\Pr\left((\exists h \in H) \; error_{\mathbb{D}}(h) > error_{D}(h) + \epsilon\right) \leq |H|e^{-2m\epsilon^{2}} \leq \delta$$

$$m \geq \frac{1}{2\epsilon^{2}}(\ln|H| + \ln(1/\delta)) \qquad \mathsf{H}$$

Infinite Hypothesis Space

- The above sample complexity has two drawbacks:
 - Weak bounds.
 - # has to be finite.
- We need another measure of the complexity of H.

Definition

A **dichotomy** of a set *S* is a partition of *S* into two disjoint subsets.

Definition

A set of instances *S* is **shattered** by hypothesis space *H* iff for every dichotomy of *S* there exists some hypothesis in *H* consistent with this dichotomy.

$$S = \{a,b,c\} => \{a\}$$

 $\{b,c\}$ $h \in H$ $\{a\}:+$ $\{b,c\}:-$

Shattering a Set of Instances (1/2)

- S is a subset of instances, $S \subseteq X$; $2^{|S|}$ distinct dichotomies in total.
- Each $h \in H$ imposes a dichotomy on S:

$$\{x \in S | h(x) = 0\}$$
 and $\{x \in S | h(x) = 1\}$

• H shatters S iff every dichotomy of S is represented by some $h \in H$.

Instance Space X

a, b, c instances have 8 dichotomies.

=>如果8個dichotomies對應的h都在H裡

=>S is shattered by H

Shattering a Set of Instances (2/2)

• H shatter S => $|H| \ge 2^{|S|}$

а	b	С		
+	+	+	h ₁	
+	+	-	h ₂	0 /IT!
•••			•••	► 8個h均屬於H
-	-	-	h ₈	7万里///

The Vapnik-Chervonenkis (VC) Dimension

- The ability to shatter a set of instances is closely related to the inductive bias of the hypothesis space.
- An unbiased hypothesis space can represent every possible concept (dichotomy) over X: An unbiased hypothesis space shatters X.
- What if H cannot shatter X, but can shatter a subset S?
- Intuitively, the larger S is, the more expressive H is.

Definition

The **Vapnik-Chervonenkis dimension**, VC(H), of hypothesis space H is the size of the <u>largest finite subset</u> of instance space X shattered by H. If arbitrarily large finite sets of X can be shattered by X, then X

• Note that for any finite H, $VC(H) \leq \log_2 |H|$. => $|H| \geq 2^{|S|}$ => $|H| \geq 2^{|VC(H)|}$ =>雙邊取 \log

Why VC Dimension?

- Make VC dimension to define sample complexity.
- Since $m \ge log|H|$ is too weak, we will use VC Dimension to bound.

Q4:

- Which of the following statements is the application of VC dimension?
- (A) The complexity of the model.
- (B) The accuracy of the prediction.
- (C) The speed of the computation.
- (D) The upper bound of the training examples.

VC Dimension (1/3)

- Instances are real numbers: $X = \mathbb{R}$
- Hypotheses are real intervals: $h_{ab} = a < x < b$; $H = \{ \forall a, b \mid h_{ab} \}$
- Consider $S = \{3.1, 5.7\}$. H shatters S, why?
- For any set of 3 instances: $S = \{x, y, z\}$, where x < y < z. There is no way for H to represent this dichotomy: $\{x, z\}$ and $\{y\}$.

$$VC(H) = 2$$

• For 2D points (X) and line separations (H), VC(H) = 3.

Example: 1 Instance on a Line

$$X = \mathbb{R}$$
 $/H/=\infty$

$$\{x\} => Dichotomy: \emptyset, \{x\}$$

 $\{x\}, \emptyset$

Is there h can make \emptyset : + , $\{x\}$: - ? =>don' t include x: $h_{10,20}$

Is there h can make $\{x\}$: +, \emptyset : -? =>include x: $h_{0,1}$

 $h_{10,20}$ and $h_{0,1}$ are belong to H = > H shatter $\{x\}$

$$VC(H)=?$$
 $VC(H) \ge 1$

Example: 2 Instances on a Line

$$X = \mathbb{R}$$
$$/H/ = \infty$$

Is there h can get + + ? = Include a and b: $h_{5,5}$

Is there h can get + -? =>Include a and not include b: $h_{-5,0.5}$

Is there h can $get - +? => not include a and include b: <math>h_{0.5,5}$

Is there h can $get - -? => not include a and b: <math>h_{20,40}$

All h are belong to H => H shatter $\{a,b\}$

$$VC(H)=?$$
 $VC(H) \ge 2$

Example: 3 Instances on a Line

$$X = \mathbb{R}$$
 $/H/=\infty$

Dichotomy: 8

Is there h can get + - + ? => Include a, c and not include b:??

=> We cannot get a "h" to shatter **any** 3 instances in the line.

By definition of VC, we have to shatter "every" dichotomy

$$=> VC(H) \neq 3$$

$$=> VC(H) = 2$$

Example: Linear Classifier with 2 Instances

$$X = \mathbb{R}^2 = \{(x,y) | x,y \in R\}$$

$$m(H) = \{(x,y) | ax+by+c \ge 0, a,b,c \in R\}$$

$$VC(H)=?$$
 $\Rightarrow VC(H) \ge 2$

Example: Linear Classifier with 3 Instances

$$X = \mathbb{R}^2 = \{(x,y) | x,y \in R\}$$

$$m(H) = \{(x,y) | ax + by + c \ge 0, a,b,c \in R\}$$

Example: Linear Classifier with 3 Instances

$$X = \mathbb{R}^2 = \{(x,y) | x,y \in R\}$$

$$m(H) = \{(x,y) | ax+by+c \ge 0, a,b,c \in R\}$$

If 3 instances are on a line??

We cannot find a linear classifier to shatter 3 instances on a line.

So
$$VC(H) \ge 2$$
??

Definition

The **Vapnik-Chervonenkis dimension**, VC(H), of hypothesis space H is the size of the <u>largest finite subset</u> of instance space X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

So
$$VC(H) = 3$$

Q5:

- Consider the case on the 2D plane. VC(H)=?
- (A) 2
- (B) 3
- (C) 4
- (D) 8

Example: Linear Classifier with 4 Instances

$$X = \mathbb{R}^2 = \{(x,y) | x,y \in R\}$$

$$m(H) = \{(x,y) | ax+by+c \ge 0, a,b,c \in R\}$$

Case 1: Any 3 instances are on a line.

Case 2: Any 3 instances are not on a line.

Dichotomy: 16

- ⇒ There is one dichotomy cannot be shattered.
- \Rightarrow XOR problem.

$$VC(H)=?$$
=> $VC(H) \neq 4$

$$=> VC(H) = 3$$

Linear Classifier in n Dimension

Linear classifier in n dimension => In general, the VC is n+1

VC Dimension and Sample Complexity

• How many randomly drawn examples suffice to ϵ -exhaust $VS_{H,D}$ with probability at least $(1-\delta)$? [Blumer et al., 1989] 女公日本心東悠

Upper bound on sample complexity

$$m \ge \frac{1}{\epsilon} \left(4 \log_2 \frac{2}{\delta} + 8 \underline{VC(H)} \log_2 \frac{13}{\epsilon} \right)$$

$$m \geq rac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

- Similarly, m grows with $\log(1/\delta)$.
- Now, m grows with $(1/\epsilon)\log(1/\epsilon)$ rather than linear.
- Most importantly, $\ln |H|$ is replaced by VC(H). Recall that $VC(H) \leq \log_2 |H|$.

VC Dimension and Sample Complexity

• How about lower bound? [Ehrenfeucht et al., 1989]

Lower bound on sample complexity

Consider any concept C where $VC(C) \geq 2$, any learner L, any $0 < \epsilon < \frac{1}{8}$, and $0 < \delta < \frac{1}{100}$. There exists a distribution $\mathbb D$ and target concept in C such that if L observes fewer examples than Upper bound正比於VC(C) Lower bound也正比於VC(C)

$$\max\left\{\frac{1}{\epsilon}\log_2(1/\delta), \frac{VC(C)-1}{32\epsilon}\right\}$$

then with prob. at least δ , L outputs a hypothesis h having $error_{\mathbb{D}}(h) > \epsilon$.

 Given the lower bound, we see that the upper bound in the previous slide is fairly tight.

Mistake Bounds

- So far, we discuss "How many examples you need to learn an accurate concept?"
- Now, we want to change the scenario.
- I give you an example without answer.
- Learner predict the result is positive or negative.
- And I tell you the answer.
- So under this scenario, how many errors will you encounter?

Mistake Bound for Find-S

• Consider FIND-S when H are conjunctions of n boolean literals ℓ_1, \dots, ℓ_n .

FIND-S

Initialize h to the most specific hypothesis

$$\emptyset = \ell_1 \wedge \neg \ell_1 \wedge \ell_2 \wedge \neg \ell_2 \dots \ell_n \wedge \neg \ell_n$$

- For each positive training instance x
 - Remove from h any literal that is not satisfied by x
- Output hypothesis h.
- How many mistakes before converging to correct h?
 - Provided $c \in H$, FIND-S never misclassifies negative examples.
 - The first positive example reduce the 2n literals to n.
 - Then every misclassified positive examples removes at least one literal.
 - At most (n+1) mistakes.

FIND-S Example

$$\emptyset = \ell_1 \wedge \neg \ell_1 \wedge \ell_2 \wedge \neg \ell_2 \dots \ell_n \wedge \neg \ell_n$$

Example x ₁ :	L ₁	L ₂	L ₃	••••	Class
	+	-	+	••••	+

$$h_{1} = \ell_{1} \wedge \neg \ell_{1} \wedge \ell_{2} \wedge \neg \ell_{2} \neg \ell_{3} \ell_{n} \wedge \neg \ell_{n} \qquad h_{1} \text{ becomes } x_{1}$$

Example x ₂ :	L ₁	L ₂	L ₃	••••	Class
(-	+		+

$$h_{2} = \ell_{1} \wedge \neg \ell_{1} \wedge \ell_{2} \wedge \neg \ell_{2} \rightarrow l_{3} \ell_{n} \wedge \neg \ell_{n}$$

Original hypothesis 2n \rightarrow 1st mistake: n \rightarrow 2nd mistake: -1 \rightarrow ...

Most: n times

Q6

- Which of the following statement is true about the FIND-S algorithm for mistake bound?
- (A) Initially, we set h to the most general hypothesis.
- (B) If the concept c is in hypothesis space, the FIND-S probably misclassifies negative examples.
- (C) After first iteration, hypothesis space will become half of the original one.
- (D) There will be at most n mistake before finding the correct h.

Mistake Bound for Halving Algorithm

- Consider the HALVING Algorithm:
 - Learn concept with version space such as the CANDIDATE-ELIMINATION algorithm
 - Classify new instances by majority vote of version space members

- How many mistakes before converging to correct h?
 - Worst case: $\lfloor \log_2 |H| \rfloor$, why?
 - Best case: 0, why?

Original hypothesis space |H| → 1st mistake: |H|/2 → 2nd mistake: |H|/4

$$\rightarrow \dots \rightarrow \text{Most:} \lfloor \log_2 |H| \rfloor$$

Optimal Mistake Bound

- We define the mistake bound based on a specific algorithm.
- What is about the general case?

Optimal Mistake Bound

- Interested in the optimal mistake bound for an arbitrary concept class C, assuming H = C.
- Define M_A(c) as the maximum over all possible sequence of training examples of the number of mistakes made by algorithm A and the target concept c.
- For any nonempty concept class C, define $M_A(C) = \max_{c \in C} M_A(c)$. 小 c 屬於大 C 裡面最難最難的那一個

Definition

Let C be an arbitrary nonempty concept class. The **optimal mistake bound** for C, denoted Opt(C), is the minimum over all possible learning algorithms A of $M_A(C)$. min $_{\Delta}$:最聰明的那一個演算法

 $Opt(C) = \min_A M_A(C)$

最聰明的那一個演算法在最困難的 concept, concept class 裡面最難的那個 concept 裡面最糟的 sequence, 所犯的錯誤

Bounds for Optimal Mistake Bound

• $VC(C) \le Opt(C) \le \log_2 |C|$ (Littlestone, 1987)

Proof.

Right: $Opt(C) \leq M_{HALVING}(C) \leq \log_2 |C|$

Left (Adversarial):

- ① Let $S = \{x_1, \dots, x_{VC(C)}\} \subseteq X$ be a shattered set.
- 2 Suppose the environment reveals $x_i \in S$, and the algorithm outputs \hat{y}_i .
- ③ The environment selects a new target concept $c \in C$ such that $c(x_i) = y_i \neq \hat{y}_i$. 要唱反調,跟你預測的答案不同
- 4 Since S is shattered by C, there always exists such c, and no way the algorithm can tell the difference.
- **5** Therefore, the algorithm makes at least VC(C) mistakes.

Example

Answer: 1234

Guess: 1567 => 1A

Guess: 1234 => I don't want you to win so fast. I change the answer to 8097

Another guess

:

How many times can you change the answer?

Q7

- Which of the following statements is correct?
- (A) The algorithm makes at least VC(C) (assuming C=H).
- (B) MA(C) means the hardest concept to learn in C.
- (C) Worst case for the Halving algorithm is log₂|H|, which is the upper bound of the mistakes.
- (D) All of the above.

Weighted-Majority Algorithm

Weighted-Majority

```
a_i: prediction algorithms; w_i: weights, initialized to all 1; 0 \le \beta < 1

1 for each training example \langle x, c(x) \rangle

2 q_0 = 0; q_1 = 0

3 for each algorithm a_i

4 If a_i(x) == 0 then q_0 = q_0 + w_i

5 If a_i(x) == 1 then q_1 = q_1 + w_i

6 If q_0 > q_1 then predict \hat{c}(x) = 0

7 If q_0 < q_1 then predict \hat{c}(x) = 1

8 If q_0 == q_1 then predict \hat{c}(x) = 0 or 1 at random

9 for each algorithm a_i

10 each a_i(x) \ne c(x) then w_i = \beta w_i. \beta is usually set to be 0.5
```

• Note that β is 0, WEIGHTED-MAJORITY reduces to HALVING.

Mistake Bound for Weighted-Majority

• For any sequence of training examples D, let A be any set of n prediction algorithms, and let k be the minimum number of mistakes made by any algorithm in A over D. The number of mistakes over D made by WEIGHTED-MAJORITY with $\beta = 1/2$ is at most

$$2.4(k + \log_2 n).$$

Proof.

- Let a_j be the best algorithm which yields k; its final weight $w_j = \frac{1}{2^k}$.
- Consider the sum $W = \sum_i w_i$. W initially n. 1=>1/2=>1/4 =>k times=>1/2^k
- Each mistake reduces W to at most $\frac{3}{4}W$. $\frac{1}{8}$ weight $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$
- Let M be the total number of mistakes of WEIGHTED-MAJORITY.
- The final W is at most $n\left(\frac{3}{4}\right)^M$. So $\left(\frac{1}{2}\right)^k \leq n\left(\frac{3}{4}\right)^M$

Total: W Total: 3/4W Total: 9/16W

Q8

• Consider the Weighted-Majority algorithm with $\beta = 1/2$.

What is the total number's upper bound of the mistake? (where n is the number of total algorithms, and K is the minimum number of mistakes.)

- (A) 2.4K
- (B) 2.4K+2.4ln(n)
- (C) 2.4[K+log(n)]
- (D) $2.4K+2.4log_2(n)$

Summary

- PAC considers algorithms that learns target concept using training examples randomly drawn from an unknown but fixed distribution.
- PAC: with high probability (1δ) , the learner outputs a hypothesis that is approximately correct (within error ϵ) within computational time polynomial in $1/\delta$, $1/\epsilon$, the size of instances, and the size of target concept.
- For finite hypothesis spaces, sample complexity can be derived for a consistent and agnostic learners, respectively.
- VC dimension measures the expressiveness of a hypothesis space, and an alternative (usually tighter, and for infinite hypothesis space) upper bound is derived using VC-dimension.
- Optimal mistake is bounded by VC-dimension and HALVING.
- The number of mistakes of Weighted-Majority is bounded by its best predictor.