Hoy: Dimension de voiedades algebraices.	
(1) Dimension es un concepto topológico:	
Deg: X es reduible si J anados A,B & X	
tales que X = AUB. X es incheste si	
no es reducible.	
$X \subseteq \mathbb{C}^2$ $X = V(xy)$	
$X = (x) \cup V(y)$	
$X = V(x) \cup V(y)$	
C[y]=C(x, s) ~ C(y) 1 indulu	
Ejercicio: Sea X C Ch cenado, las ng son equiv.	
\sim	
(2) I(X) C [X1Xn] es idul pro (fgeI=>fe I o geI)	
(1) C[X]:= ([x,x-]) es un domaio de integrado	
V V V V V V V V V V V V V V V V V V V	
X ₁₁ UX ₁₂ UX ₂₁ UX ₂₂ Hecho. (C ^N J ₂₁) Son e> panos hp	
XUX2 X Noeth , &s dun	
No (md? do cadeno	
mo? desardate de	
cenados es embrha es huma.	
Z2Z, 23, 2 2 ₹ 2.	
Corsec: Toda medad co uno de futto de les	
X = X, V - V Xx Hamadus compts ired.	
Ejeranio: Jemuesta que, si X = X, U. V.	
=> la des comp. e> Unica	
=> la des comp. es única	

Z C V(h,) (ag ntoch 1)

V ejenph

Z h (V(h,)) < k-1 => dim (71) \le k-1 tugo dum (Ch) = k. => dum (Ch) = k Lema: Si he $\mathbb{C}[x_1, x_n]$ h $\neq 0$ entrus dim $(V(h)) \leq n-1$. Den: $X_1 = x_1 + \lambda_1 x_n$ $y = \sum_{i=1}^{n} x_i x_i$ $X_{n-1} = X_{n-1} + \lambda_n X_n$ $X_n = X_n$ 1 X Xn $\frac{\lambda_{1}}{\lambda_{1}} = \left(\frac{\lambda_{1}}{\lambda_{1}} \right) \cdot \left(\frac{\lambda_{1}}{\lambda_{1}} - \frac{\lambda_{1}$ $= \sum_{n} \lambda_{n} + \lambda_{n$ (X_1, X_2) (Xn p(1...ln) +...)
Ul es entras (Escojo di ip(x) \$\forall 0\$) $\mathbb{C}(X_{1...}X_{n-1})$ $\mathbb{dim}(Y(h)) = \mathbb{dim}(\mathbb{C}^{n-1}) = \mathbb{h}^{-1}$

Sea
$$X \subseteq \mathbb{P}^n$$
 in words.

 $T(X)$ es horogrino lugo

$$\begin{aligned}
& (X) = (X_0, X_1) &= (X_0, X_1) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_2, X_1) \\
& (X_1) = (X_1, X_2) &= (X_2, X_1) \\
& (X_1) = (X_1, X_2) &= (X_2, X_2) &= (X_1, X_2) \\
& (X_2, X_3) = (X_1, X_2) &= (X_2, X_3) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_2, X_3) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_2, X_3) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_2, X_3) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1) = (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) \\
& (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2) &= (X_1, X_2)$$