1. test iz Uvoda v geometrijsko topologijo

14. 4. 2017

Veliko uspeha!

1. naloga (5 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna Poziroma napačna N.

Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

Topologija na $\hat{C}(\mathbb{R}, [-1,1])$ se ujema s topologijo enakomerne konvergence.

Množica polinomov je gosta v prostoru $C([0,1),\mathbb{R})$, ki je opremljem s topologijo enakomerne konvergence.

Prostor $\hat{C}([-2,-1]\cup[1,2],\mathbb{R})$ je povezan.

Kvocientni prostor $[0,\infty)/(1,\infty)$ je homeomorfen intervalu [0,1].

Naj bo G topološka grupa, ki deluje na X. Tedaj je $q\colon X\to X/G$ odprta preslikava.

Preslikava $q\colon X\to Y$ je kvocientna natanko tedaj, ko velja: $U\subset X$ je odprta natanko tedaj, ko je q(U) odprta.

Kvocientni prostor separabilnega prostora je separabilen.

Topološka grupa G je T_1 natanko tedaj, ko obstaja $\{g\}\subset G$, ki je zaprta množica.

2. naloga (5 točk)

Naj bo $A = \{ f \in \mathcal{C}([0,1], \mathbb{R}) \mid f(0) = f(1) \}$. Za vsako $f \in A$ definiramo $\widetilde{f} \colon \mathbb{R} \to \mathbb{R}$ s predpisom $\widetilde{f}(x) = f(x - [x])$.

1. Za $A \subset \hat{\mathcal{C}}([0,1],\mathbb{R})$ določi njeno notranjost in zaprtje.

Vsi projektivni prostori $\mathbb{R}P^n$ so normalni.

2. Pokaži, da je $F\colon A\to \hat{\mathcal{C}}(\mathbb{R},\mathbb{R}),$ podana s predpisom $F(f)=\widetilde{f},$ vložitev.

3. naloga (5 točk+1 točka)

Naj bo $X=(0,\infty), Y=\mathbb{R}^2\setminus\{(0,0)\}$ in $G=\mathbb{Z}$.

- 1. Poišči podprostor evklidskega prostora, ki je homeomorfen kvocientu X/G, kjer grupa G deluje na X s predpisom $n \cdot x = 2^n x$.
- 2. Poišči podprostor evklidskega prostora, ki je homeomorfen kvocientu Y/G, kjer grupa G deluje na Y s predpisom $n \cdot (x, y) = (2^n x, 2^n y)$.
- (*) Pokaži, da kvocienta Y/G, kjer grupa G deluje na Y s predpisom $n \cdot (x, y) = (2^n x, 2^{-n} y)$, ni moč vložiti v noben evklidski prostor.