Lecture 1: Introduction

Machine Learning (BBWL)

Michael Mommert, University of St. Gallen

Today's lecture

What this course is about...

Course modalities

Course syllabus

About myself

How did we get here?

What this course is about...

sandserif

Artificial Intelligence

Systems that perceive their environment and take actions to maximize their chances of achieving their goals.

What is Machine Learning (ML)?

"The field of study that gives computers the ability to learn without being explicitly programmed." - Arthur Samuel (1959)

Different approaches:

- Unsupervised learning
 Find structure within a data set.
- Reinforcement learning
 Learn a task in a dynamic and responsive environment.

Iris Versicolor

What is Machine Learning (ML)?

"The field of study that gives computers the ability to learn without being explicitly programmed." - Arthur Samuel (1959)

Different approaches:

• Supervised learning
Find a function that relates input data to output data by learning a specific task.

Unsupervised learning
 Find structure within a data set.

Iris Versicolor

• Reinforcement learning
Learn a task in a dynamic and responsive environment.

Supervised ML

Supervised ML

General goal for supervised problems:

Find a function ("task") that relates input data (x) to output data (y) such that: f(x) = y

Supervised ML

General goal for supervised problems:

Find a function ("task") that relates input data (x) to output data (y) such that: f(x) = y

Traditional (Rule-based) Approach:

Input data (x)

Output data (y)

Supervised ML

General goal for supervised problems:

Find a function ("task") that relates input data (x) to output data (y) such that: f(x) = y

Traditional (Rule-based) Approach:

seen f(x) = yunseen f(x) = yInput data f(x)Output data f(y)

Machine-Learning Approach:

Unsupervised ML

General goal for unsupervised problems:

Find a transformation (T) that builds a compact internal representation of unlabeled data (x) to unveil its internal structure.

Unsupervised ML

General goal for unsupervised problems:

Find a transformation (T) that builds a compact internal representation of unlabeled data (x) to unveil its internal structure.

Traditional Approach:

Input data (x)

Unsupervised ML

General goal for unsupervised problems:

Find a transformation (T) that builds a compact internal representation of unlabeled data (x) to unveil its internal structure.

Traditional Approach:

Machine-Learning Approach:

Input data (x)

Input data (x)

What tasks can ML learn?

Regression

Object detection

Segmentation

Anomaly detection

Synthesis

What tasks can ML learn? That depends on the data modality...

Image data

Tabular data

Textual data

Audio data

preview

preview

What tasks can ML learn? That depends on the data modality...

Image data

Tabular data

Textual data

Audio data

oreview

What tasks can ML learn? That depends on the data modality...

Image data

Tabular data

Textual data

Audio data

What tasks can ML learn? That depends on the data modality...

Image data

Tabular data

Textual data

Audio data

overlien

Course modalities

Course modalities

- Goal of this course:
 To understand and be able to implement and utilize traditional
 Machine Learning and Deep Learning models.
- **Requirements**: Math/statistics, Python programming (successful participation in *Fundamentals of Computer Science* course), English language skills
- Setup: Combination of lectures and hands-on lab courses
 + (3) home-work coding assignments
- Lab courses:
 Python, Jupyter Notebooks, Pytorch, scikit-learn, Google
 Colab

Lab courses

- Lab courses provide practical examples focused on lecture topics and they can be used to discuss questions from the lecture
- Code will be provided (and used) in the form of Jupyter Notebooks.
- We will use **Google Colab** for running our Notebooks (they offer free GPUs!). If you don't have a Google account, please let me know as soon as possible!
- All code elements from the lab courses can be used for your coding assignments.

Grading

Exam (70%):

- Written decentralized examination (90 min): **22 May 2023, 12:15-14:00**, room 01-114
- In general, **all lecture slides and lab course materials** are relevant for the exam (unless specifically excluded); no additional literature (e.g., books) is required for the exam; you will not have to write code, but may have to interpret code snippets
- Exam goes beyond simply memorizing the slides: you have to understand the content

• 3 Coding Assignments (30%):

- Related to supervised learning (with traditional ML), unsupervised learning and Deep Learning
- Assignments in the form of Jupyter Notebooks that must be submitted before the deadline
- Due dates: see course syllabus

Coding assignments

- **Coding assignment grades** will be based on the following aspects (in this order):
 - Code implementation (clean and well-structured code, inline comments where useful)
 - Documentation (explanations as markdown cells, analysis of the results, plots)
 - Approach (how novel is the approach compared to what was introduced in the corresponding lab course?)
 - **Results** (how good are the results of the method?)

Will it hurt?

If you want to use ML, you have to understand ML...

$$S(i,j)=(I*K)(i,j)=\sum_{m}\sum_{n}I(m,n)K(i-m,j-n)$$

$$\sigma(\mathbf{z})_{i} = \frac{\exp(z_{i})}{\sum_{j=1}^{K} \exp(z_{j})}$$

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon$$

```
class CIFAR10Net(nn.Module):
    def init (self):
        # call super class constructor
        super(CIFAR10Net, self). init ()
        self.conv1 = nn.Conv2d(in channels=3, out channels=6, kernel size=5, stride=1, padding=0)
        self.pool1 = nn.MaxPool2d(kernel size=2, stride=2)
        self.conv2 = nn.Conv2d(in channels=6, out channels=16, kernel size=5, stride=1, padding=0)
        self.pool2 = nn.MaxPool2d(kernel size=2, stride=2)
        self.linear1 = nn.Linear(16 * 5 * 5, 120, bias=True)
        self.relu1 = nn.ReLU(inplace=True)
        self.linear2 = nn.Linear(120, 84, bias=True)
        self.relu2 = nn.ReLU(inplace=True)
        self.linear3 = nn.Linear(84, 10)
        self.logsoftmax = nn.LogSoftmax(dim=1)
    # define network forward pass
    def forward(self, images):
        x = self.pool1(self.conv1(images))
        x = self.pool2(self.conv2(x))
        x = x.view(-1, 16 * 5 * 5)
        x = self.relu1(self.linear1(x))
        x = self.relu2(self.linear2(x))
        x = self.logsoftmax(self.linear3(x))
        return x
```

Slides

- Slides will be uploaded to Canvas before each lecture.
- Slides should be **self-explanatory**; your final exam will be based on the slide deck content (but goes beyond simply memorizing facts)
- I am using a few symbols that will guide you through the slides:

There is a **Jupyter notebook** available with some related code.

This content will be discussed in more detail in the future.

Content in an orange dotted box is generally a bit more complex and only shown for completeness. For the exam you should be **aware of its existence** and be able to **describe it roughly**, but you will not have to memorize every detail.

Github, Canvas and Zoom

Github:

• Coding resources are stored at github.com/HSG-AIML-Teaching/MLBBWL-2023FS

Canvas:

- All resources (slides, lab notebooks) will be accessible through Canvas
- Feel free to utilize the Canvas discussion board to ask questions on lectures and lab sessions.

Zoom:

- By all default, **lectures and lab courses are in-person** (unless the university decides otherwise)
- **Hybrid format** (in-person + zoom) or recordings are only available for select students under **special circumstances** (sickness, unforeseen family situation, military service, etc.)
- Job-related collisions or other courses taking place at the same time do **not** count as special circumstances!

Literature resources

• Stuart Russell, Peter Norvig: **Artificial Intelligence: A Modern Approach** (2020 and earlier versions, MIT Press)

Part V ("Learning") is especially relevant to this course and provides good introductions

ebook@HSG

 Andreas Müller & Sarah Guido: Introduction to Machine Learning with Python (2017, O'Reilly)

Easy-to-understand introduction to Python for ML, uses scikit-learn

• Ian Goodfellow, Yoshua Bengio, Aaron Courville: **Deep Learning** (2016, MIT Press) *All you need to know about Deep Learning*

free online

How (and when) to reach me?

- In person:
 - before/after the lecture/lab course
 - at ICS (please make an appointment via email first)

- Via Email: michael.mommert@unisg.ch
 (please start the header with MLBBWL: so I immediately see that the email is related to this lecture)
- One personal note: Please be aware that I am generally unable to reply to emails outside office hours.

Questions?

Date	Lecture	Lab Course
20 Feb	Intro	Prep: Python Intro + Numpy
27 Feb	Data and Features	-
6 Mar	Supervised Learning	-
13 Mar	-	Supervised Learning
20 Mar	Unsupervised Learning	-
27 Mar	-	Unsupervised Learning
	Spring Break	
17 Apr	Neural Networks	-
24 Apr	-	Neural Networks
1 May	CNNs and Computer Vision	-
8 May	-	CNNs
15 May	Deep Learning & Ethics	-
22 May	Exam!	

Date	Lecture	Lab Course	
20 Feb	Intro	Prep: Python Intro + Numpy	
27 Feb	Data and Features	-	
6 Mar	Supervise parning	-	
13 Mar	-	Supervised Learning	
20 Mar	Unsupervis		Assignment 1
27 Mar	• Data typos	arning	
	Data typesFeatures and feature e	ngineering	
17 Apr	Neu • Data scaling	1181116611118	Assignment 2
24 Apr		rks	
1 May	CNNs and		
8 May	-	CNNs	Assignment 3
15 May	Deep Learning & Ethics	-	
22 May	Exam!		

Date	Lectu	ure	Lab Course	
20 Feb	Intro	0	Prep: Python Intro + Numpy	
27 Feb	Data and F	eatures	-	
6 Mar	Supervised	Learning	-	
13 Mar	-		Supervised Learning	
20 Mar	Unsupervise	d Lea	-	Assignment 1
27 Mar	-/		ning	
		 Supervised learning 	·	
17 Apr	Neural 1	 Benchmarking and 	metrics	Assignment 2
24 Apr		Linear modelsNearest neighbor m	nodels	<u> </u>
1 May	CNNs and Co	 Tree-based models 	lodels	
8 May	7	1100 20300 11100013		Assignment 3
15 May	Deep Learnin	ng & Ethics	-	
22 May		Exam!		

Date	Lecture	Lab Course	
20 Feb	Intro	Prep: Python Intro + Numpy	
27 Feb	Data and Features	-	
6 Mar	Supervised Learning	-	
13 Mar	-	Supervised Learning	
20 Mar	Unsupervised Learning	-	Assignment 1
27 Mar		Unsupervised Learning	_
17 Apr	Supervised learning with scikit-learning with	arn -	Assignment 2
24 Apr	Iris dataset	ural Networks	<u> </u>
1 May	• K-NN	-	
8 May	Fashion-MNIST dataset	CNNs	Assignment 3
15 May			
22 May	Exam!		

Date	Lecture		Lab Course	
20 Feb	Intro	Intro		
27 Feb	Data and Feature	S	-	
6 Mar	Supervised Learni	ng	-	
13 Mar	-		Supervised Learning	
20 Mar	Unsupervised Learn	ning	-	Assignment 1
27 Mar	-		Unsupervised Learning	
	Sprir	ng Brea		
17 Apr	Neural Network	 Unsupervise 	ed learning setup	Assignment 2
24 Apr	-	 Hierarchical 		T.
1 May	CNNs and Computer	• K-means clu	ıstering	
8 May	-	 Expectation 	Maximization Clustering	Assignment 3
15 May	Deep Learning & E	• Principal co	mponent analysis	厂
22 May		Елапі:		

Date	Lecture	Lab Course	
20 Feb	Intro	Prep: Python Intro + Numpy	
27 Feb	Data and Features	-	
6 Mar	Supervised Learning	-	
13 Mar	-	Supervised Learning	
20 Mar	Unsupervised Learning	-	Assignment 1
27 Mar	-	Unsupervised Learning	_
	Snring Bro		
17 Apr		-	Assignment 2
24 Apr	 Unsupervised learning with scikit-le 	arn Jeural Networks	
1 May	• k-means	-	
8 May	Agglomerative clusteringPCA	CNNs	Assignment 3
15 May		-	
22 May	Exam:		

Date	Lecti	ıre	Lab Course	
20 Feb	In	 Perceptron and neu 	urons	ру
27 Feb	Data and	 Activation functions 		
6 Mar	Supervise	 Loss functions 		
13 Mar		 Backpropagation 	g	
20 Mar	Unsupervis	 Multilayer Perceptro 	on	Assignment 1
27 Mar	-		Onsuperviseu Learning	
		5 Break		
17 Apr	Neural Ne	etworks	-	Assignment 2
24 Apr	-		Neural Networks	- ·
1 May	CNNs and Con	nputer Vision	-	
8 May	-		CNNs	Assignment 3
15 May	Deep Learnir	ng & Ethics	-	
22 May		Exam!		

Date	Lecture	Lab Course	
20 Feb	Intro	Prep: Python Intro + Numpy	
27 Feb Data	and Ecatures		
6 Mar Super			
13 Mar	 Convolutional neural n 	etworks rning	
20 Mar Unsupe	 Semantic segmentation 	n	Assignment 1
27 Mar	 Object detection 	arning	
17 Apr Neu	ral New		Assignment 2
24 Apr	-/	Neural Networks	1
1 May CNNs and	d Computer Vision	-	
8 May	-	CNNs	Assignment 3
15 May Deep Le	earning & Ethics	-	
22 May	Exam!		

Date	Lecture	Lab Course	
20 Feb	Intro	Prep: Python Intro + Numpy	
27 Feb	Data and Features	-	
6 Mar	Supervised Learning	-	
13 Mar		ed Learning	
20 Mar	Convolutional neural network	s with	Assignment 1
27 Mar	PyTorch	sed Learning	
	Image classification		
17 Apr		-	Assignment 2
24 Apr		— aral Networks	
1 May	CNNs and Computer Vision		
8 May	-	CNNs	Assignment 3
15 May	Deep Learning & Ethics	-	
22 May	Exam!		

Date	Lecture	Lab Course	
20 Feb	Intro	Prep: Python Intro + Numpy	
27 Feb	Data and Features	-	
6 Mar	Supervised Learning	-	
13 Mar	-	Supervised Learning	
20 Mar	Unsupervised L		Assignment 1
27 Mar		in large models earning approaches	
17 Apr	Neural Netv • Ethics in Al	9	Assignment 2
24 Apr	-		<u> </u>
1 May	CNNs and Comput		
8 May	-	CNNs	Assignment 3
15 May	Deep Learning & Ethics	-	
22 May	Exam!		

Date	Lecture	Lab Course
20 Feb	Intro	Prep: Python Intro + Numpy
27 Feb	Data and Features	-
6 Mar	Supervised Learning	-
13 Mar	-	Supervised Learning
20 Mar	Unsupervised Learning	-
27 Mar	-	Unsupervised Learning
	Spring Break	
17 Apr	Neural Networks	-
24 Apr	-	Neural Networks
1 May	CNNs and Computer Vision	-
8 May	-	CNNs
15 May	Deep Learning & Ethics	-
22 May	Exam!	

2009

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Dr. rer. nat. (Earth Sciences)

2009 2013

Commercial Vehicle Traffic Monitoring (*Blattner et al. 2021*)

Commercial Vehicle Traffic Monitoring (*Blattner et al. 2021*)

Characterization of Industrial Smoke Plumes from Remote Sensing Data (Mommert et al. 2020, Hanna et al. 2021)

R: ground-truth, G: prediction

Commercial Vehicle Traffic Monitoring (*Blattner et al. 2021*)

Characterization of Industrial Smoke Plumes from Remote Sensing Data (Mommert et al. 2020, Hanna et al. 2021)

R: ground-truth, G: prediction

Power Plant
Classification from
Remote Imaging with
Deep Learning
(Mommert et al. 2021)

Commercial Vehicle Traffic Monitoring (*Blattner et al. 2021*)

Characterization of Industrial Smoke Plumes from Remote Sensing Data (Mommert et al. 2020, Hanna et al. 2021)

R: ground-truth, G: prediction

Power Plant
Classification from
Remote Imaging with
Deep Learning
(Mommert et al. 2021)

Road Traffic Noise Estimation from Remote Imaging Data (Eicher et al. submitted)

What I work on...

Commercial Vehicle Traffic Monitoring (*Blattner et al. 2021*)

Characterization of Industrial Smoke Plumes from Remote Sensing Data (Mommert et al. 2020, Hanna et al. 2021)

R: ground-truth, G: prediction

Power Plant
Classification from
Remote Imaging with
Deep Learning
(Mommert et al. 2021)

Road Traffic Noise Estimation from Remote Imaging Data (Eicher et al. submitted)

Looking for a Bachelor thesis topic?

→ hsg.ai

How did we get here?

TedColes @ wikipedia

Alan Turing's work

TedColes @ wikipedia

Alan Turing's work

Venusianer @ wikipedia

1941: Z3 (first digital computer)

TedColes @ wikipedia

Alan Turing's work

Venusianer @ wikipedia

1941: Z3 (first digital computer)

Mathematics:

- Logic
- Information Theory

1950s

TedColes @ wikipedia

Alan Turing's work

Venusianer @ wikipedia

1941: Z3 (first digital computer)

Mathematics:

- Logic
- Information Theory

A little history

Computer science

- + Neuroscience
- = "Cybernetics"

1950s

1956: Dartmouth Workshop

- 6-week workshop of leading researchers: Minsky, McCarthy, Shannon, Rochester...
- Birth of the term "Artificial Intelligence"
- Objective of Al: *To write a calculator* program which can solve intellectual problems as well as or better than a human being.

Connectionism:

Use of Artificial Neural Networks (ANNs) as function approximators

1958: The Perceptron

First ANN implementation (as a physical device with manually tunable "weights"); able to solve many problems.

Cornell University Library

University of St.Gallen

1969: *Perceptrons* book (Minsky and Papert):

Major limitations of ANNs revealed (cannot approximate XOR function)

1969: *Perceptrons* book (Minsky and Papert):
Major limitations of ANNs revealed (cannot approximate XOR function)

Al Winter:

- High expectations of Al not met
- Lack of computational resources
- Limitations of ANNs become clear:
 Moravec's paradoxon: Al able to solve
 well-defined "intellectual" problems, but unable to learn sensoric or perception skills

1969

Al Winter

1980s: success of **expert systems** (utilize pre-programmed domain knowledge to define rules to solve tasks)

First commercial wave of AI only short-lived: limited applicability and inability to learn = no commercial success

1980s: success of **expert systems** (utilize pre-programmed domain knowledge to define rules to solve tasks)

First commercial wave of AI only short-lived: limited applicability and inability to learn = no commercial success

Nature

1986: Rumelhart et al. propose **backpropagation**: a method to train ANNs

James the Photographer @ wikipedia

1990s and 2000s: slow progress due to improved computational resources

- DeepBlue beats Gary Kasparov
- Watson defeats Jeopardy champions

Jeopardy (2011)

2012: **AlexNet** (Krizhevsky et al. 2012) Convolutional Neural Network trained on two GPUs with backpropagation beats all challengers on the ImageNet Challenge with a wide margin.

(150,000 images in 1,000 categories)

2012: **AlexNet** (Krizhevsky et al. 2012) Convolutional Neural Network trained on two GPUs with backpropagation beats all challengers on the ImageNet Challenge with a wide margin.

1969

(150,000 images in 1,000 categories)

Al Winter

1986

1956

Interest in Al

25

2010s: Deep Learning

Deep Neural Networks outperform almost all other ML methods based on two factors:

- Training on GPUs is highly efficient
- Vast amounts of data is available to train and validate these models

That's all folks!

Today's lecture

1- Introduction

What this course is about...

Course modalities

Course syllabus

About myself

How did we get here?

Next lecture (27th Feb)

2 - Data and Features

Types of Data

Features and feature engineering

Data scaling

