Modal Logic Part2

Dr. Igor Ivkovic iivkovic@uwaterloo.ca

[with material from "Mathematical Logic for Computer Science", by Zhongwan, published by World Scientific; and "Modal Logic Tutorial", by V. Goranko, Indian School on Logic and Its Applications (ISLA) 2010, Online]

Objectives

- Introduction to Model Checking
- Modal Logic Proofs using the System K
- Soundness and Completeness of the System K

Introduction to Model Checking /1

Model Checking:

- Checking whether a given model satisfies a given property,
 where the model is usually specified in some logical language
- The process may or may not be algorithmically decidable, depending on the logical formalism and the class of models
- For modal logic, we distinguish three classes of model checking: Local, Global, and Satisfiability Checking

Local Model Checking:

Given a finite Kripke Structure (Interpretation) M, a node
 w ∈ W and a modal formula A, determine if M, w ⊨ A

Global Model Checking:

- Given a finite Kripke Model (Interpretation) M and a modal formula A, determine all w ∈ W such that M, w ⊨ A
 - The set of nodes w where M, w = A is denoted as $||A||_M$

Introduction to Model Checking /2

Satisfiability Checking:

- Given a finite Kripke Model (Interpretation) M and a modal formula A, determine if M, w ⊨ A for any w ∈ W
 - □ That is, determine if $||A||_M \neq \emptyset$

Global Model Checking Approach:

- For atomic propositions p, compute ||p||_M for each p from the structure, by listing all nodes where p holds
- For ◊A formulas, compute ||◊A||_M by listing all nodes w which have a successor s (i.e., wRs holds) in ||A||_M
- For □A formulas, compute ||□A||_M by listing all nodes w which have all their successor s (i.e., wRs holds) in ||A||_M
- For A ∧ B, compute ||A ∧ B||_M by computing ||A||_m ∩ ||B||_M
- For A ∨ B, compute ||A ∨ B||_M by computing ||A||_m ∪ ||B||_M

Introduction to Model Checking /3

Example M (on the left):

- $\|p\|_{M} = \{w2, w3, w6\}$
- $\| \phi \|_{M} = \{ w1, w2, w3, w5 \}$
 - Why not w6?
 - **Need ANY successor** s such that $I, s \models p$
 - $\|\Box p\|_{M} = \{w1, w2, w6\}$
 - Why w6?
 - **Need ALL successors** $s(\emptyset)$ such that I, $s \models p$

$$\|\mathbf{p} \wedge \mathbf{p}\|_{\mathsf{M}} = \{\mathsf{w2}, \mathsf{w6}\}$$

$$||p \lor \Box p||_{M} = \{w1, w2, w3, w6\}$$

Definition 7.1. The System K:

- A deduction system for the modal logic formulas
- Ax1: $\langle (A \Rightarrow (B \Rightarrow A)) \rangle$
- $Ax2: \langle ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))) \rangle$
- $Ax3: \langle (((\neg A) \Rightarrow (\neg B)) \Rightarrow (B \Rightarrow A)) \rangle$
- $Ax4: \langle (\Box(A \Rightarrow B) \Rightarrow (\Box A \Rightarrow \Box B)) \rangle$
- $\blacksquare MP: \langle A \Rightarrow B, A, B \rangle$
- Nec: ⟨A, □A⟩
 - Where A cannot be deduced from the assumptions
 - □ Also referred to as □-Introduction
- A WFMF A₁ is formally provable by K iff ⊢_K A₁ holds

- Prove that ⊢_K □(A ⇒ A) holds
 - 1. $(A \Rightarrow A)$ (by Theorem from Notes #3)
 - 2. $\Box(A \Rightarrow A)$ (by Nec, (1))
- That is, we can use any previously proved theorem of H since K includes H axioms and MP rule

- Prove that ⊢_K □(A ∧ B) ⇒ □A holds
 - 1. $A \wedge B \Rightarrow A$ (by \wedge -Elimination)
 - 2. $\Box(A \land B \Rightarrow A)$ (by Nec, (1))
 - 3. $\Box(A \land B \Rightarrow A) \Rightarrow (\Box(A \land B) \Rightarrow \Box A)$ (by Ax4)
 - 4. $\Box(A \land B) \Rightarrow \Box A \text{ (by MP, (3), (2))}$
- Prove that $\vdash_{\mathsf{K}} \Box(\mathsf{A} \land \mathsf{B}) \Rightarrow \Box \mathsf{B}$ holds
 - 1. $A \wedge B \Rightarrow B$ (by \wedge Elimination)
 - 2. $\Box(A \land B \Rightarrow B)$ (by Nec, (1))
 - 3. $\Box(A \land B \Rightarrow B) \Rightarrow (\Box(A \land B) \Rightarrow \Box B)$ (by Ax4)
 - 4. $\Box(A \land B) \Rightarrow \Box B$ (by MP, (3), (2))

- Prove that $\vdash_{\mathsf{K}} \Box(\mathsf{A} \land \mathsf{B}) \Rightarrow (\Box \mathsf{A} \land \Box \mathsf{B})$ holds
 - Enough to prove that $\Box(A \land B) \vdash_{\mathsf{K}} (\Box A \land \Box B)$
 - 1. \Box (A \wedge B) (by Assumptions)
 - 2. $\Box(A \land B) \Rightarrow \Box A$ (see Previous Slides)
 - 3. $\Box(A \land B) \Rightarrow \Box B$ (see Previous Slides)
 - 4. $\Box A$ (by MP, (2), (1))
 - 5. \Box B (by MP, (2), (1))
 - 6. $\Box A \Rightarrow (\Box B \Rightarrow (\Box A \land \Box B))$ (by \land -Introduction)
 - 7. $\Box B \Rightarrow (\Box A \land \Box B)$ (by MP, (6), (4))
 - 8. $\Box A \wedge \Box B$ (by MP, (7), (5))

- Prove that $\vdash_{\mathsf{K}} \Box(\mathsf{A} \land \mathsf{B}) \Rightarrow (\Box \mathsf{A} \land \Box \mathsf{B})$ holds
 - Alternatively without using the Deduction Theorem for K, first prove (A ⇒ B) ⇒ (A ⇒ C) ⇒ (A ⇒ (B ∧ C)) in H and then use that theorem instead
 - 1. $\Box(A \land B) \Rightarrow \Box A$ (see Previous Slides)
 - 2. $\Box(A \land B) \Rightarrow \Box B$ (see Previous Slides)
 - 3. $(\Box(A \land B) \Rightarrow \Box A) \Rightarrow (\Box(A \land B) \Rightarrow \Box B) \Rightarrow$ $(\Box(A \land B) \Rightarrow (\Box A \land \Box B))$ (by Theorem above)
 - 4. $(\Box(A \land B) \Rightarrow \Box B) \Rightarrow$ $(\Box(A \land B) \Rightarrow (\Box A \land \Box B))$ (by MP, (3), (1))
 - 5. $\Box(A \land B) \Rightarrow (\Box A \land \Box B)$ (by MP, (4), (2))

Deduction Theorem for the System K:

- For A, B ∈ Form (L^{pm}) and $\Sigma \subseteq$ Form (L^{pm}) , $\Sigma \vdash_{\mathsf{K}} \mathsf{A} \Rightarrow \mathsf{B}$ iff $\Sigma \cup \{\mathsf{A}\} \vdash_{\mathsf{K}} \mathsf{B}$
- Proof: Based on the Deduction Theorem proof for H with the addition of the Nec inference rule (see A3.Q4)

Soundness of the System K:

- For $A \in \text{Form } (L^{pm})$ and $\Sigma \subseteq \text{Form } (L^{pm})$, $\Sigma \vdash_{\mathsf{K}} A \Rightarrow \Sigma \vDash A$
- Proof: By induction on the structure of A; similar to the Soundness proof for H with the addition of the Nec rule

Completeness of the System K:

- For $A \in \text{Form } (L^{pm})$ and $\Sigma \subseteq \text{Form } (L^{pm})$, $\Sigma \models A \Rightarrow \Sigma \vdash_{\mathsf{K}} A$
- Proof: Based on the Maximal Consistency property

Food for Thought

Read:

- Chapter 8, Sections 8.1 and 8.2 from Zhongwan
 - Read the material discussed in class in more detail
 - Skip the material not mentioned in class
- Handout on "Modal Logic"
 - Available from the course schedule web page or through LEARN

Answer Assignment #3 questions

 Assignment #3 includes several practice exercises related to Modal Logic