Программа для подготовки к рубежному контролю № 2 по ФНП ИУ (кроме ИУ-9), РЛ, БМТ; 2016-2017 уч. год

Теоретические вопросы (как они сформулированы в билетах рубежного контроля)

Часть А

- 1. Дать определение открытой окрестности и открытого множества в \mathbb{R}^{n} .
- 2. Дать определение предельной точки, граничной точки множества, и замкнутого множества в \mathbb{R}^n .
- 3. Дать определение ограниченного и связного множества в \mathbb{R}^n .
- 4. Дать определение предела функции нескольких переменных (Φ HП) по множеству и непрерывной Φ HП.
- 5. Дать определение частной производной ФНП в точке.
- 6. Дать определение дифференцируемой ФНП в точке.
- 7. Сформулировать теорему о связи непрерывности и дифференцируемости Φ HП.
- 8. Сформулировать теорему о необходимых условиях дифференцируемости $\Phi H\Pi$
- 9. Сформулировать теорему о достаточных условиях дифференцируемости $\Phi H \Pi.$
- 10. Дать определение (полного) первого дифференциала ФНП.
- 11. Дать определение второго дифференциала ФНП и матрицы Гессе.
- 12. Сформулировать теорему о независимости смешанных частных производных от порядка дифференцирования.
- 13. Сформулировать теорему о необходимых и достаточных условиях того, чтобы выражение $P(x,y)\,dx + Q(x,y)\,dy$ было полным дифференциалом.
- 14. Записать формулы для вычисления частных производных сложной функции вида z=f(u(x,y),v(x,y)).
- 15. Записать формулу для вычисления производной сложной функции вида u = f(x(t), y(t), z(t)).
- 16. Сформулировать теорему о неявной функции.
- 17. Записать формулы для вычисления частных производных неявной функции z(x,y), заданной уравнением F(x,y,z)=0.
- 18. Дать определение градиента ФНП и производной ФНП по направлению.
- 19. Записать формулу для вычисления производной ФНП по направлению.
- 20. Перечислить основные свойства градиента ФНП.
- 21. Сформулировать теорему Тейлора для функции двух переменных.
- 22. Сформулировать теорему об условиях существовании касательной плоскости к поверхности, заданной уравнением F(x, y, z) = 0.
- 23. Записать уравнения касательной и нормали к поверхности F(x,y,z)=0 в точке (x_0,y_0,z_0) .

- 24. Дать определение (обычного) экстремума (локального максимума и минимума) Φ H Π .
- 25. Сформулировать необходимые условия экстремума ФНП.
- 26. Сформулировать достаточные условия экстремума ФНП.
- 27. Дать определение условного экстремума ФНП.
- 28. Дать определение функции Лагранжа и множителей Лагранжа задачи на условный экстремум ФНП.
- 29. Сформулировать необходимые условия условного экстремума ФНП.
- 30. Сформулировать достаточные условия условного экстремума ФНП.

Часть Б

- 1. Доказать теорему о необходимых условиях дифференцируемости ФНП.
- 2. Доказать теорему о достаточных условиях дифференцируемости ФНП.
- 3. Доказать теорему о независимости смешанных частных производных от порядка дифференцирования (для вторых производных функции двух переменных).
- 4. Вывести формулу для дифференцирования сложной ФНП (можно ограничиться случаем функции вида z=f(x(t),y(t))).
- 5. Сформулировать теорему о неявной функции. Вывести формулы для частных производных неявной функции.
- 6. Вывести уравнение касательной плоскости к поверхности, заданной уравнением F(x,y,z)=0.

Примеры задач

Часть А

- 1. Составить уравнения касательной плоскости и нормали к поверхности S в точке M:
- a) $S: z = 2x^2 3y^2 + x + y$, M(1, 1, 1);
- 6) $S: x^3 + y^4 + z^2 = 10, M(2, -1, -1);$
- B) $S: e^{x+y+z} = \sin(x-2y-z), M(1,2,-3).$
- 2. Исследовать на экстремум следующие функции:
- a) $z = 9x^2 4xy + 6y^2 + 16x 8y 2;$
- 6) $z = 1 + 6x + 8y 2x^2 4xy 5y^2$;
- B) $z = y^3 x^2 + 2xy y^2 3y$.
- 3. Исследовать на экстремум функцию
- а) $z = x^2 + y^2$ при условии x + y = 1;
- б) z = x + y при условии $x^2 + y^2 = 1$;
- в) z = xy при условии $\frac{x^2}{3} + \frac{y^2}{1} = 1$.

Часть Б

1. В каких точках поверхности 4x + 9y + 25z = -xyz касательная плоскость параллельна одной из координатных плоскостей?

2. Найти такие a, b, c, чтобы однополостный гиперболоид $\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$ касался плоскости 4x+y+2z=1 в точке (4,5,-10).

3. Найти те нормали к гиперболическому параболоиду $x^2 - y^2 = 2z$, которые проходят через точку (6,0,0).

4. Среди касательных к эллипсоиду

$$\frac{x^2}{75} + \frac{y^2}{48} + \frac{z^2}{12} = 1$$

найти ту, которая отсекает от положительного октанта $x>0,\ y>0,\ z>0$ тетраэдр наименьшего объёма.

5. Среди эллипсоидов $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$, проходящих через точку $(1,2,\sqrt{5})$, найти тот, который имеет наименьший объём. (Указание: Объём эллипсоида с полуосями a,b,c равен $\frac{4}{3}\pi abc$.)

6. На кривой

$$4x^2 + 8xy + 3y^2 + 1 = 0$$

найти точки, наименее удалённые от оси OX.

7. Среди эллипсоидов $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, касающихся плоскости 7x + 4y + 4z = 9 найти тот, который имеет наибольший объём. (Указание: сначала найти точку M на эллипсоиде с полуосями a,b,c, в которой касательная плоскость имеет нормальный вектор (7,4,4); условие принадлежности точки M плоскости 7x + 4y + 4z = 9 даст уравнение связи.)

3

Примерный вариант билета рубежного контроля

Часть А

необходимо ответить хотя бы на 2 вопроса и решить не менее 2 задач; оценка 20 баллов

Теория

- 1. Дать определение предельной точки, граничной точки множества, замкнутого множества в \mathbb{R}^n .
- 2. Записать формулы для вычисления частных производных сложной функции вида z = f(u(x, y), v(x, y)).
- 3. Сформулировать необходимые условия условного экстремума ФНП.

Задачи

- 4. Составить уравнения касательной плоскости и нормали к поверхности $z=x-\sqrt{x^2+y^2}$ в точке (4,3,-1).
- 5. Исследовать на экстремум функцию $z = e^{2x} + e^{2y} x y$.
- 6. Исследовать на экстремум функцию $z=e^{-2xy}$ при условии

$$\frac{x^2}{9} + \frac{y^2}{4} = 1.$$

Часть Б

засчитывается, только если выполнена часть А; необходимо решить задачу; оценка 4–12 баллов

Теория

7. Доказать теорему о достаточных условиях дифференцируемости ФНП.

Задача

8. На поверхности

$$\frac{27}{x} + \frac{8}{y} + \frac{8}{z} = 1$$

найти точку, наименее удалённую от точки O(0,0,0).