CS2105 Finals Cheatsheet v1.0 (2020-11-26) by Julius Putra Tanu Setiaji, page 1 of 2

Computer Networks and the Internet

What is the Internet Network Edge

1.3 Network Core

1.3.1 Circuit switching

Dedicated circuit per call

call setup required

circuit-like (guaranteed) performance

circuit segment idle if not used (no sharing)

1.3.2 Packet Switching

Data sent through the net in discrete chunks

- Store-and-forward: entire packet must arrive at a router before it can be transmitted to the next link.
- Addressing: each packet needs to carry source and destination information
- Users share network resources
- Resources are used on demand Excessive congestion is possible

1.4 Delay, Loss and Throughput in Networks End-to-end packet delay consisting of 4 sources

1.4.1 4 Sources of Packet Delay

- Nodal Processing (d_{proc}) : check bit errors, determine output link, Client/server model typically < msec
- Queueing (d_{aueue}): waiting in queue for transmission, depends on congestion level of router
- Propagation $(d_{prop} = \frac{d}{s})$: d = length of physical link, s = propaga tion speed in medium $(2 \times 10^8 \, m/sec)$

1.4.2 Throughput

How many bits can be transmitted per unit time

Measured for end-to-end communication. Compare with link ca-Refer to slides for the rest of HTTP pacity (bandwidth) only for specific link 1.4.3 Units

1 byte = 8 bits

- (-) Prefixes: milli, micro, nano, pico, femto, atto, zepto, yocto
- (+) Prefixes: kilo, mega, giga, tera, peta, exa, zetta, yotta

1.5 Protocol Layers and Service Models

1.5.1 5 Layers

- Transport: process-to-process data transfer, e.g. TCP, UDP Network: routing of datagrams from source to destination, e.g. IP, routing protocols
- Link: Data transfer between neighbouring network elements, e.g. Ethernet, 802.11, PPP
- Physical: "on the wire"

1.5.2 ISO/OSI Reference Model

Transport: Presentation (allow applications to interpret meaning

of data, e.g. encryption, compression, machine-specific convention). and Session (synchronisation, checkpointing, recovery of data ex-

2 Application Layer

2.1 Principles of Network Applications

2.1.1 Client-Server

- Server: waits for incoming requests, provides requested service to client, data centers for scaling
- Client: initiates contact with server, typically requests service 2.4.1 UDP from server, For web, client is usually implemented in browser

2.1.2 Peer-to-Peer (P2P)

- No always-on server
- Arbitrary end systems directly communicate.
- Peers request service from other peers, provide service in return to other peers
- Self-scalability: new peers bring new service capacity, as well as new service demands
- Peers are intermittently connected and change IP addresses (com plex management)

2.1.3 Requirements of apps

- Data integrity: 100% reliable vs some data loss
- Timing: some apps require low delay to be "effective"
- Throughput
- Security
- 2.1.4 Definition of App-layer Protocols
- Types of Messages exchanged, e.g. request, response
- Message syntax, e.g. message fields and how they are delineated Message semantics: meaning of information in fields
- Rules for when and how application send and respond to mes-

	2.1.5 Transport-Layer Protocols		
	TCP	UDP	
	Reliable data transfer	Unreliable data transfer	
ore	Overwheim receiver	No flow control	
ion Congestion control: throttle sender when network is overloaded		No congestion control	
	Does not provide: timing, minimum throughput guar- antee, security	Does not provide : timing, throughput guarantee, security	
	2.2 Web and HTTP	•	

2.2.1 HTTP

- HyperText Transfer Protocol
- RFC 1945 (HTTP 1.0), RFC 2616 (HTTP 1.1) Over TCP
- 2.2.2 Persistent HTTP
- Multiple objects can be sent over single TCP connection
- Transmission $(d_{trans} = \frac{1}{R})$: L = packet length (bits), R = link band **Persistent with pipelining**: client may send requests as soon as Compute 1's complement to get the checksum it encounters a referenced object – as little as 1RTT for all refer 3.3 Principles of Reliable Data Transport enced objects.

.2.3 Non-Persistent HTTP

- At most 1 object sent over a TCP connection
- Requires 2 RTTs per object
- Response time = $2 \times RTT$ + file transmission time

2.3 DNS

- Distributed, Hierarchical Database
- Root Server: answers requests for records in the root zone by re A TCP connection/socket is identified by 4-tuple (srcIPAddr, sr turning a list of the authoritative name servers for the appropriate cPort, destIPAddr, destPort)
- DNS Caching: based on TTL
- Runs over UDP
- 2.3.1 Resource Records (RR)

Application: supporting network applications, e.g. FTP, SMTP Stores mapping between hostnames and IP addresses, 4-tuple (name, value, type, ttl)

- type = A, name is hostname, value is IP address
- type = NS, name is domain, value is hostname of authoritative name server for the domain
- type = CNAME, name is alias for some canonical name, value is the canonical name
- type = MX, value is the name of mail server assoc with name 2.3.2 DNS Name Resolution

- Theoretical only, 2 additional layers between Application and Iterative query: Local DNS server makes DNS requests one by one in the hierarchy
 - **Recursive query** (rarely used): each server in the hierarchy asks one server higher in the hierarchy .4 Socket Programming

- IP address is used to identify a host device
- Process: program running within a host, identified by (IP ac dress :: uint32, port number :: uint16)
- Socket: the software interface between app processes and trans-4 port layer protocols

- No "connection" between client and server.
- Sender explicitly attaches destination IP address and port number to each packet
- Receiver extracts sender IP address and port number from the received packet

4.2 TCP

- When client creates socket, client TCP establishes a copnnection When contacted by client, server TCP creates a new socket for
- server process to communicate with that client Allows server to talk with multiple clients individually.

Communicates as if there is a pipe between 2 processes, sending 4.2 Special IP Addresses process doesn't need to attach a destination IP address and port number in each sending attempt.

Transport Laver

3.1 Transport-layer Services

- Sender: Breaks app messages into segments, passes them to network laver
- Receiver: Reassembles segments into message, passes it to app
- Packet switches in between: only check destination IP address to decide routing
- Each IP datagram contains source and dest IP addresses
- 3.2 Connectionless Transport: UDP
- UDP addes very little on top of IP
- Multiplexing at sender Demultiplexing at receiver
- Checksum
- UDP transmission is unreliable, often used by (loss tolerant & 4.3 CIDR rate sensitive apps)

3.2.1 Connectionless De-multiplexing When UDP receiver receives a UDP segment:

- Check destination port number in segment, and direct that seg
- ment to the socket with that port number. 3.2.2 UDP Header

16 bits each for: source port number, dest port number, length,

checksum 3.2.3 UDP Checksum

- Treat segment as sequence of 16-bit integers Apply binary addition, wraparound carry added to the result

Refer to slides for rdt example protocols

- 3.4 Connection-oriented Transport: TCP
- Point-to-point: 1 sender, 1 receiver
- Connection-oriented: handshake before sending app data Full duplex service: bi-directional data flow in the same connec 4.5.1 Implementation
- **Reliable, in-order byte stream**: sequence numbers to label bytes
- 3.4.1 Connection-oriented de-mux

- 3.4.2 TCP: buffers and Segments two buffers, send and receive, are created after handshaking at
- Max Segment Size (MSS): typically 1460 bytes, max app-layer. data one TCP segment can carry.

3.4.3 TCP Header sourcePort# destPort#

sequence number acknowledgement number checksum

- **Sequence Number:** byte number of the first byte of data in a seg
- ACK number: sequence number of the next byte of data expected by the receiver
- Cumulative ACK: TCP ACKs up to the first missing byte in th tream 3.4.4 TCP ACK Generation, Timeout Value, Fast Retransmission

Network Layer

Refer to Lecture 4.5 Slide 66

4.1 DHCP (Dynamic Host Configuration Protocol)

- 4-step process (yiaddr = your internet address): Host broadcasts DHCP discover message (src 0.0.0.0:68, dest • 255.255.255.255:67, yiaddr 0.0.0.0, txn ID)
- DHCP server responds with DHCP offer message (src). DHCP.IP:67, dest 255.255.255.255:68, viaddr, txn ID) Host requests IP address: **DHCP request** message (src 0.0.0.0:68)
- dest 255.255.255.255.67, viaddr. txn ID) DHCP server sends address: DHCP ACK message (src|5.1 Error Detection and Correction
- DHCP.IP:67, dest 255.255.255.255:68, yiaddr, txn ID) DHCP server at UDP port 67, client at UDP port 68

Special Addresses

.0.0.0/8	for special use
27.0.0.0/8	Loopback address. A data-
	gram sent to an address within this block loops back
	inside the host. This is or- dinarily implemented using only 127.0.0.1/32
0.0.0.0/8, 172.16.0.0/12, 92.168.0.0/16	Private addresses, can be used without any coordination with IANA or an Internet
	registry.
55.255.255.255/32	Broadcast address. All hosts on the same subnet receive a datagram with such a destina-

Present Use

tion address.

- Address format: $\mathbf{a.b.c.d/x}$ (x = no of bits in subnet prefix)
- number of IP addresses = $2^{(32-x)}$
- Longest prefix match for matching on forwarding table

4.4 Routing Algorithms 4.4.1 Distance Vector Algorithms

- Routers know neighbours & link costs to them
- Routers exchange local views with neighbours & update own local views iteratively to fixed pt.
- Use Bellman-Ford: $d_x(y) = min_v\{c(x, v) + d_v(y)\}\$

4.4.2 RIP (Routing Information Protocol) – DV algo

- Hop count as cost metric (insensitive to network congestion)
- Entries in the routing table are aggregated subnet masks (routing to destination subnet)
- Exchange routing table every 30 seconds over UDP port 520.
- Self-repair: if no update from a neighbour router for 3 mins, assume neighbour has failed.

4.5 NAT (Network Address Translation)

- Replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
- Store in NAT translation table the mapping from (source IP ad dress, port #) to (NAT IP addressi, new port #)
- Replace (NAT IP, new port #) in destination fields of every incoming datagram with (source IP, port #) from NAT translation table

4.6 The Internet Protocol (IP): IPv4

- Header: 20 bytes (details in L6-7: 45)
- Different links may have different MTU (Max Transfer Unit): max
- amount of data a link-level frame can carry. Too large IP datagrams may be fragmented by routers, reassembled by destination host: same ID, different offsets, until fragmentation flag is 0

Offset is expressed in unit of 8-bytes.

4.7 ICMP (Internet Control Message Protocol) Carried by IP datagrams for error reporting + echo request/reply

g-	Type	Code	Description
-	8	0	echo request (ping)
d	0	0	echo reply (ping)
	3	1	dest host unreachable
ıe	3	3	dest port unreachable
	11	0	TTL expired
n	12	0	had IP header

5 Link Laver

Sends datagram between adjacent nodes over a single link.

- Framing: encapsulating into a frame adding header & trailer.
- single link Reliable delivery: used often on error-prone links (e.g. wireless)
- Error correction: corrects bit error(s) without retransmission

Single-bit parity: can detect single bit errors in data (*d* data bits with 1 parity bit)

- Possible services:
- **Link access control**: coordination when multiple nodes share a
- Error detection: caused by signal attenuation/noise receiver detects error & asks sender for retransmission or drops frame

5.1.1 Parity Checks

CS2105 Finals Cheatsheet v1.0 (2020-11-26) by Julius Putra Tanu Setiaji, page 2 of 2

2D bit parity: can detect and correct single bit errors in data, can detect any 2-bit error in data (parity bits for each column, each). row, and 1 parity bit for the columns and rows)

5.1.2 Cyclic Redundancy Check (CRC)

D: data bits, G: generator or r+1 bits, R: will generate CRC of r bits

· long-division by bit-wise XOR operation without carry or borrow

5.2 Multiple Access Links and Protocols 5.2.1 Channel Partitioning Protocols

- TDMA (time-division multiple access): each node gets a fixed length slot, unused slots go idle.
- FDMA (frequency-division multiple access): channel spectrum divided into frequency bands, each node assigned a fixed frequency band.

5.2.2 Taking-Turns Protocols

Polling: master node invites slave nodes to transmit in turn (concerns: polling overhead, single point of failure – master node) Token passing: control token passed from a node to next sequentially (concerns: token overhead, single point of failure – token)

5.2.3 Random Access Protocols

- Slotted ALOHA Assumptions: all frames are of equal size, time divided into slots of equal length, nodes transmit only at the beginning of a
- Listens to the channel while transmitting (channel detection) - On collision: node retransmits a frame in each subsequent slot with probability *p* until success
- Pure ALOHA: no slot, no synchronization (increased chance of collision)

Carrier Sense Multiple Access

- Sense the channel before transmission
- Collisions can still occur due to propagation delay

CSMA/CD (carrier sensing & deferral)

- When collision is detected, transmission is aborted
- Retransmit after a random amount of time
- Minimum frame size to prevent undetected collisions
- CSMA/CA (collision avoidance): receiver needs to return ACK if a frame is received OK (due to hidden node problem)

5.3 Switched Local Area Networks

- 5.3.1 Link Layer Addressing
- Every adapter (NIC) has a MAC address, 48 bits long
- On receiving a frame, NIC checks if destination MAC address matches its own address. If yes, extracts datagram and passes 6.2.3 Recovery from packet loss to protocol stack. Otherwise, discards the frame.

5.3.2 ARP (Address Resolution Protocol)

- TTL) of other nodes in the same subnet
- Sending frame:
- In the same subnet:
- Dest IP in ARP table: create a frame with dest MAC ad dress from ARP table.
- Otherwise: broadcasts an ARP query packet containing dest IP addr (Dest MAC set to FF-FF-FF-FF-FF), receive MAC addr. store to ARP table, then create a frame with dest
- To another subnet: Create a frame with router's MAC address 6.3.1 RTP (Real-time Protocol) and actual dest IP address. Router then move datagram to outgoing link, constructing a new frame with dest MAC address.

- Topology:
- Bus (popular in mid 90s): all nodes can collide with each other
- Star (prevails today): switch in the center, nodes don't collide with each other. Ethernet header:
- Preamble (8 bytes): 7 bytes 10101010 and 1 byte 10101011
- 6 bytes dest addr
- 6 bytes src addr
- 2 bytes type (indicating higher level protocol, mostly IP) Ethernet trailer: 4 bytes CRC-32
- Connectionless: no handshaking Unreliable: no ACK or NAK
- Multiple Access: CSMA/CD with binary exponential backoff Ethernet CSMA/CD:
- On collision, abort, send jam signal

- Then, binary backoff: after m-th collision, choose random K from $\{0, 1, 2, ..., 2^m - 1\}$
- NIC waits K × 512 bit times before retransmitting

5.4 Link-laver Switches

- Star topology: hosts have dedicated connection to switch.
- Switch buffer frames and is full-duplex Switch Forwarding Table: list of (MAC addr, interface, TTL)
- Self-learning: switch learns which hosts can be reached through
- which interfaces: - On receiving frame, note down (MAC addr, interface, TTL) of
- src in forwarding table If dest is found on the table, forward frame to that link.
- Otherwise, broadcast the frame to all outgoing links.
- Routers vs Switches: Routers check IP address, Switches check MAC address
- Both store-and-forward
- Routers compute routes to destination, Switches forward Read lecture notes

frame to outgoing link or broadcast **Multimedia Networking**

Streaming stored Video

- Client-side buffering and playout delay to compensate for network-added delay, delay jitter
- Push-based streaming: via UDP, transmission rate can be oblivi 8.1.2 RZ (Return to Zero) ous to congestion levels
- **Pull-based streaming:** via HTTP GET at max possible rate under = 1, low = 0) TCP, fill rate fluctuates due to TCP congestion control, retrans-8.1.3 Manchester missions

.2 Voice-over-IP

Application sends segment into socket every 20 ms during talkspurt $A \sin(2\pi f t + \phi)$ where A = peak amplitude, $A \sin(2\pi f t + \phi)$ where A = peak amplitude, $A \sin(2\pi f t + \phi)$ 6.2.1 Losses

- Network loss: IP datagram lost due to network congestion (router) buffer overflow)
- Delay loss: datagram arrives too late for playout (max tolerable delay: 400 ms)
- Loss tolerance: depends on voice encoding, loss concealment, 1 10% can be tolerated

6.2.2 Dealing with Jitter

- Fixed playout delay
- Adaptive playout delay
- Estimate network delay, adjust playout delay at beginning of each talk spurt.
- Silent periods compressed and elongated
- $-d_i = (1-\alpha)d_{i-1} + \alpha(r_i t_i)$ where α is a small constant, e.g. 0.1
- Estimate avg deviation of delay $v_i = (1 \beta)v_{i-1} + \beta|r_i t_i d_i|$
- For first packet in talk spurt, playout-time_i = $t_i + d_i + Kv_i$

Each ACK/NAk takes 1 RTT, alternative is FEC (Forward Error Correction):

- Each IP node has an ARP table: stores (IP address, MAC address). Simple FEC: for every group of n chunks, create redundant chunk by XOR-ing n original chunks (increase bandwidth by reconstruct at most 1 lost chunk from n+1 chunks)
 - Piggyback lower quality stream FEC: send lower resolution audio stream as redundant information (non-consecutive loss: re 8.2.3 Examples ceiver can conceal loss)
 - Interleaving to conceal loss, packet contains small units from differnet chunks.

6.3 Protocols for Real-Time Conversational Applications

- RTP for media flow (via UDP usually)
- RTCP (real-time control protocol) for out-of-band statistics and control information for an RTP session (via UDP usually)
- RTSP (real-time streaming protocol), e.g. Play, Pause (via TCP
- Runs on UDP, details on headers on L10:43
- Advantage: Short end-to-end latency (< 100 500ms)
- Special-purpose server for media, keep state (complex)
- Protocol use TCP and UDP transmissions (firewalls)
- Difficult to cache data (no web caching)

6.3.2 SIP (Session Initiation Protocol)

- Mechanism for call setup:
- For caller to let callee know the former wants to establish a call
- Caller and calee can agree on media type, encoding - End call
- Determine current IP address of callee (similar to DNS)

Call management (add new media streams, change encoding during call; invite others; transfer, hold calls)

6.4 DASH (Dynamic Adaptive Streaming over HTTP)

- Use HTTP protocol to stream media: divide media into small chunks.
 - More info on L10:54-57
 - Advantages:
 - Server is simple (no state)
 - No firewall problem
 - Standard web caching works
 - Disadvantages:
 - Based on media segment transmissions, typically 2-10s long
 - By buffering on client side, DASH doesn't provide low latency for interactive, two-way app.

Network Security

- - Physical Laver
- Digital Transmission
- 8.1.1 NRZ (Non Return to Zero)
- NRZ-L: absolute voltage level (high = 0, low = 1)
- NRV-I: inverts if bit 1 is encountered
- 3 voltage levels, return to zero halfway through a bit interval, (high
- Inverts signal in the midle of the bit, $(- \rightarrow + = 1, + \rightarrow = 0)$

8.2 Analog transmission

- phase.
- **Channel bandwidth** = frequency range $(f_{hi} f_{lo})$
- **SNR** (**Signal to Noise Ratio**) = strength of signal over noise

8.2.1 Shannon Channel Capacity

- Theoretical max bit rate of a noisy channel
- $C = B \times \log_2(1 + SNR)$ where C = bit-rate, B = channel bandwidth

8.2.2 Analog encoding

- Changing A, f, or ϕ . ASK (Amplitude Shift Keying): change A to represent 0 and 1 susceptible to noise.
- **FSK** (Frequency Shift Keying): change f to represent 0 and 1 limited by channel bandwidth.
- **PSK** (**Phase Shift Keying**): change ϕ to represent 0 and 1 QPSK (Quadrature PSK): signal with 4 possible phases for 2 bits
- data for every signal
- 8-PSK: 8 possible phases for 3 bits of data for every signal

2^k-QAM (Quadrature Amplitude Modulation):

- A signal unit is a combination of amplitude and phase that
- **Baud rate** = no of signal units per second.
- **Bit rate** = no of bits receiver receives / second
- Combines ASK and PSK, check both amplitude and phase to determine data carried.

- Ethernet, RFID, NFC = Manchester
- Digital RV uses DVB-T = OPSK, 16-OAM, 64-OAM
- Wi-Fi = PSK, QPSK, 16-QAM, 64-QAM