1. MATHÉMATIQUES

1.1. Remarques générales

Plusieurs erreurs relevées l'an dernier ont été commises de nouveau cette année. Les encres pâles sont encore fréquentes, et un nombre croissant de candidats a obligé les correcteurs à utiliser la loupe tant leur écriture est minuscule. Le texte et les calculs sont souvent agrémentés de petites zones de texte coloré insérées avec des flèches par des candidats ne prenant pas la peine de rédiger une phrase pour justifier une assertion ou une expression. Une présentation soignée (écriture nette, absence de ratures, résultats encadrés) dispose très favorablement le correcteur.

Il est indispensable de travailler en profondeur le cours de mathématiques de première et de deuxième année, de connaître les théorèmes avec leurs hypothèses.

La rédaction des preuves doit être courte et complète ; tous les arguments sont attendus.

Les tentatives de bluff, moins nombreuses cette année, sont lourdement sanctionnées.

Les abréviations sont pléthore, au point de rendre la lecture parfois difficile en raison de l'ambiguïté qui peut en résulter : comment savoir que *ISMQ* signifie « *il suffit de montrer que* » ?

L'orthographe et la syntaxe sont souvent défectueuses : des démonstrations par l'absurde se terminent par « donc impossible ».

On recommande de bien traiter une partie des questions plutôt que de produire un discours inconsistant pour chacune d'entre elles.

Il est demandé aux candidats de numéroter leurs copies de façon cohérente : les examinateurs apprécient assez peu de se voir confrontés à un jeu de piste !

Enfin, les correcteurs ont été entonnés par le manque de soin ; beaucoup de copies ressemblent plus à un brouillon qu'à une épreuve de concours.

1.2. Mathématiques I — MP

Le problème qui portait sur l'analyse et les probabilités avait pour but de déterminer un équivalent de la somme d'une série entière, puis d'appliquer ce résultat à l'équation d'Airy. Les candidats ont été déstabilisés par le sujet, principalement par l'ordre des questions, puisque le même sujet, posé dans un ordre différent en filières PSI et PC, a donné de bien meilleurs résultats.

La question préliminaire consistait en la détermination des rayons de convergence de deux séries entières. Pour la première il fallait appliquer la règle de D'Alembert et de simplifier correctement des factorielles. Pour la deuxième, il fallait constater que la série était convergente pour toute valeur de z d'après ce qui précédait. Malheureusement, la majorité des candidats a préféré appliquer encore une fois la règle de D'Alembert, pour un résultat qui se réduisait en général à des ratures.

La question 2 a été abordée par tous, avec plus ou moins de succès au niveau des calculs et de la rigueur de rédaction, elle a bien départagé les candidats. Notons que l'apparition d'une partie entière provoque toujours des blocages.

À la question 3, la première partie était une question ouverte avec un calcul un peu technique, trop pour un début de problème, puisque moins d'un quart des candidats arrivait à la bonne réponse. La fin de la question, très difficile, n'a quasiment jamais été traitée correctement.

Les questions 4 et 5 ont été peu abordées, par exemple avec des sommes d'équivalents. Les correcteurs ont eu l'impression que beaucoup de candidats jetaient l'éponge et n'essayaient même pas les questions 6 et 7, dans lesquelles on trouvait pourtant des techniques étudiées en classes préparatoires.

On retrouvait une proportion correcte de candidats qui ont traité la question 8 qui consistait à appliquer l'inégalité de Bienaymé-Tchebicheff. Les difficultés sont venues de la loi de Poisson. L'espérance et la variance d'une variable aléatoire qui suit une loi de Poisson sont explicitement au programme des classes préparatoires, donc, sauf demande précise de l'énoncé, on peut directement utiliser le résultat sans refaire le calcul... ci qui évitait au mieux, une perte de temps, au pire, un résultat faux.

Dans la majorité des copies, la question 8 était la seule de la partie probabiliste à être abordée, les encadrements de la question 9 étaient un peu trop techniques et la question 10 n'avait pas beaucoup de succès non plus, probablement à cause du calcul un peu compliqué qui conduisait à une application du théorème de transfert.

Curieusement l'argument pourtant très classique de la famille de polynômes 1 échelonnée en degré était peu évoqué, les questions 11 et 12 n'étant abordées que dans les très bonnes copies.

À partir de la question 13, on retrouvait des thèmes classiques des classes préparatoires, et on aurait pu s'attendre à ce que les candidats en profitent pour rebondir. Cela n'a été le cas que pour une minorité d'entre eux.

À la question 13, on retrouvait les problèmes de calcul avec des factorielles du début du problème, mais les meilleurs candidats ont traité correctement la question.

La réponse (ou plutôt l'absence de réponse) à la question 14 a considérablement surpris les correcteurs dans la mesure où la série étudiée a été vue par la quasi-totalité des élèves des classes préparatoires.

On peut faire la même constatation avec la question suivante, qui est une question de cours. À part un blocage provoqué par les questions difficiles des parties précédentes, on ne voit pas comment expliquer les résultats extrêmement faibles de cette question, peu abordée et très mal traitée. Rappelons à cette occasion que l'application d'un théorème ne se réduit pas à citer le nom d'un mathématicien (même si c'est le baron Cauchy), mais à vérifier des hypothèses et à en déduire une conclusion. Et dans plus de la moitié du petit nombre de copies dans lesquelles la question était abordée, les hypothèses manquaient.

La guestion 16 consistait à rechercher une série entière solution d'une équation différentielle.

Les deux dernières questions n'ont été abordées de manière significative que par quelques candidats.

Dans ce problème, les candidats étaient plutôt préparés à traiter la fin du problème que le début, sans qu'il soit question de grappillage puisqu'il avait plusieurs questions à la suite relevant de thèmes classiques des classes préparatoires. L'excellent travail de préparation fait par les professeurs de prépa qui permet en général à leurs élèves de repérer les parties d'un sujet à aborder en priorité a trouvé ses limites avec ce problème, peut être aussi avec des élèves habitués à tout obtenir tout de suite. Il faudra en tenir compte pour les futurs sujets de concours.

1.3. Mathématiques II — MP

Le théorème spectral est certes moins souvent « spectrale », mais Schwarz et Cauchy sont souvent mal orthographiés. La rédaction est souvent insuffisante : les propriétés utilisées ne sont pas toujours citées, et on a régulièrement vu dix ou vingt lignes de calcul sans aucune explication ni justification. Les erreurs de calcul sont courantes, notamment sur les inégalités, et les raisonnements sont assez souvent incomplets, inachevés, inexacts ou faux, et surtout manquent de plus en plus de simplicité : que de circonvolutions parfois pour établir une propriété qui se déduit aisément d'un argument simple ! Cependant, une bonne partie des candidats s'est battue avec un sujet coriace, aux questions souvent ardues ou calculatoires, comme en témoignent les ratures qui émaillent un grand nombre de copies. Chapeau à ceux qui ont su traiter avec succès la majorité des questions du problème.

Question 1. Bien que la notion de matrice symétrique réelle définie positive ne soit pas au programme, cette question a été abordée avec profit par plus de la moitié des candidats. En effet, nombreux sont ceux qui ont fait le lien entre la matrice et l'intégrale proposée. Toutefois, si l'on ne peut se contenter d'écrire « il est évident que H_n est symétrique », l'établir ne nécessite pas non plus deux pages de calcul, et il n'est pas non plus pertinent de proposer une démonstration par récurrence. En outre, il est regrettable que les candidats soient si nombreux à traiter systématiquement une somme double comme un produit de Cauchy, ce qui les amène à commettre des erreurs dirimantes dans les indices de sommation. Certains autres ont utilisé le même indice pour les deux sommes. Les correcteurs ont également été frappés par le nombre de candidats qui ne semblent pas capables de maîtriser une somme double pour exprimer ${}^{t}X H_{n}X$ et écrivent des additions avec des pointillés. L'usage généralisé de ceux-ci en lieu et place du symbole de sommation est à proscrire. Du côté de l'intégrale, certains candidats confondent fonction non identiquement nulle et fonction qui ne s'annule pas, ou pensent que le carré d'un polynôme ne peut avoir de racine réelle. Enfin, un argument important manquait souvent dans le caractère défini, à savoir le fait que la nullité de $\tilde{X}(t)$ sur [0, 1] implique celle du polynôme \tilde{X} , celui-ci admettant une infinité de racines.

Question 2. Le sens direct était évident. Nombreux sont les candidats qui ont « démontré » le sens réciproque en simplifiant par tX , ou en multipliant par l'inverse de tX , ou en considérant que toute matrice est régulière pour le produit, ou encore en multipliant à gauche les deux membres par X puis « simplifié » par le *nombre réel* X^tX , parfois après de fortes contorsions dans le discours. Une telle stratégie est vouée à l'échec ; plus le propos est confus, plus le correcteur est à l'affût de la faille dans le raisonnement. Une bonne partie des candidats ont

obtenu le résultat demandé à partir de la diagonalisation de H_n dans une base orthonormée et de l'inégalité ${}^tX H_n X \le \rho_n \mid \mid X \mid \mid^2$, qu'ils n'ont cependant pas tous établie avant de l'utiliser.

Question 3. L'inégalité demandée ne présentait pas de difficulté particulière, à condition de ne pas oublier de mentionner la positivité des coefficients de H_n . On a constaté dans cette question de nombreuses inégalités entre vecteurs, notamment $X \le |X|$, ainsi que l'égalité $|H_nX| = H_n |X|$ « puisque H_n est positive »... Par ailleurs, un certain nombre de candidats ont raisonné avec la notation $|X_0|$ comme s'il s'agissait d'une valeur absolue, mais elle n'en a pas toutes les propriétés : en particulier, |AB| = |A| |B| est faux en général. Par contre il est vrai, et cela se vérifie aisément, que $|{}^tX_0X_0| = |{}^tX_0| |X_0|$. On en déduit rapidement l'inégalité $|{}^tX_0| |H_n| |X_0| \ge \rho_n ||| |X_0| ||^2$; l'inégalité dans l'autre sens est vraie pour tout X comme on le voit en recourant à la diagonalisation de H_n dans une base orthonormée, et on conclut avec la question précédente.

Question 4. Cette question simple a été paradoxalement assez mal traitée en général. En particulier, pour certains candidats, le contraire de « aucune coordonnée n'est nulle » semble être « toutes les coordonnées sont nulles ». Il fallait écrire qu'une somme de réels positifs dont l'un au moins est non nul est strictement positive, puis que ρ_n est strictement positif, pour obtenir les deux résultats demandés.

Question 5. Cette question a donné lieu aux réponses les plus fantaisistes : le plus souvent n, mais aussi n-1, voire même n^2 ! Arrive-t-il aux candidats de penser qu'un sous-espace vectoriel ne saurait avoir une dimension supérieure à celle de l'espace, et que quand elle lui est égale, lui-même est tout l'espace ? N'ont-ils pas lu dans le rapport de l'année dernière ce que nous avions écrit sur les matrices admettant un sous-espace propre de dimension n? Ils ne sont pas la moitié à avoir écrit que deux vecteurs non colinéaires de V ont nécessairement une combinaison linéaire dont au moins une coordonnée est nulle, ce qui contredit le résultat de la quatrième question. Il ne peut donc y avoir deux vecteurs non colinéaires dans V qui est de ce fait de dimension 1.

Question 6. De nombreux candidats ont « prouvé » l'égalité $\int_0^1 P(t)dt = \int_0^\pi P(e^{i\theta})ie^{i\theta}d\theta$ en effectuant le changement de variable $t=e^{i\theta}$, qui a le gros inconvénient de ne pas être réel! Et ils ont parfois osé affirmer qu'il est strictement croissant sur [0,1]! Par ce changement de variable, on change de contour dans le plan complexe, et un polynôme étant holomorphe, l'égalité est vraie ; il faut faire avec les outils dont on dispose, intégrer terme à terme les deux intégrales et constater que les résultats sont égaux, si toutefois on ne s'est pas emmêlé les pinceaux dans la parité des indices, si on ne s'est pas trompé dans la primitivation de e^{ik} , si on n'a pas écrit que e^{ik} = 1... La première inégalité demandée s'en déduit aisément. La deuxième s'obtient alors immédiatement en prenant $P=\tilde{X}^2$ et en utilisant le calcul de l'intégrale de la première question et le fait que l'intégrale sur [0,1] d'une fonction positive est inférieure à son intégrale sur [-1,1]; mais ce n'en est pas forcément la moitié, le fait que \tilde{X}^2 soit paire n'étant rien d'autre qu'une légende urbaine.

Question 7. N'était-il pas écrit dans le rapport de l'an dernier que le carré de la somme de réels n'est en général pas inférieur à la somme de leurs carrés ? Et pourtant, cela n'a pas empêché la majorité des candidats ayant abordé cette question de l'affirmer, ce qui simplifiait bien sûr la démonstration de l'inégalité demandée. Quelques-uns ont fait encore plus fort en affirmant que toutes les normes étant équivalentes en dimension finie, on pouvait remplacer le carré de la somme des valeurs absolues par la somme des carrés, puisque ce sont les carrés de deux normes. D'autres encore ont invoqué l'inégalité de Cauchy-Schwarz, voire la convexité de la fonction carrée, pour « justifier » cette inégalité. Il fallait être un peu plus subtil, développer le carré de la somme et vérifier que les doubles produits étaient deux à deux opposés, ou d'intégrale nulle si on utilisait la parité de $\left|P(e^{i\theta})\right|^2$ (qui est vraie). Mais au fond, pourquoi s'embêter ? Le premier membre ${}^tX H_n X$ est réel, donc la partie imaginaire du second est nulle, et il ne reste que la somme des carrés.

Question 8. Le fait que ρ_n est majoré par π résulte de la deuxième question et de la question précédente appliquée à un vecteur $non\ nul$ de V, cette dernière précision étant hélas trop souvent absente. La croissance de la suite (ρ_n) est une conséquence évidente du fait que si X_n est un vecteur propre de H_n pour la valeur propre ρ_n et si $Y_n = {X_n \choose 0}$, alors on a : $\rho_n \mid \mid X_n \mid \mid^2 = {}^t X_n H_n X_n = {}^t Y_n H_{n+1} Y_n \le \rho_{n+1} \mid \mid Y_n \mid \mid^2 = \rho_{n+1} \mid \mid X_n \mid \mid^2$; mais attention, cela ne veut pas dire, comme le pensent maints candidats, que Y_n est un vecteur propre de H_{n+1} pour la valeur propre ρ_n ! Encore une légende urbaine, qui du reste contredirait le résultat de la quatrième question. Quant à ceux qui ont écrit que ρ_n est valeur propre de H_{n+1} , ils n'ont manifestement pas vérifié si cette assertion est vraie pour n=1, ce qui les aurait rapidement détrompés.

Question 9. Certains candidats pensent que la linéarité d'une application se réduit à son additivité, tandis que d'autres ont justifié soigneusement $T_n(0) = 0...$ Les candidats les plus scrupuleux ont compris que la linéarité de T_n étant simple à établir, ce qui était intéressant dans la première moitié de cette question était de prouver que T_n est bien définie et que l'image par T_n de tout élément de E appartient à E. Il leur suffisait pour cela d'écrire que comme f est intégrable et K_n est un polynôme donc continu et borné, $K_n(tx) f(t)$ est intégrable et son intégrale est un polynôme donc appartient à E. De surcroît, c'est un polynôme de degré au plus n, donc l'image de T_n est de dimension finie, et E étant de dimension infinie, T_n ne saurait être injective, donc E0 en est bien valeur propre. Un certain nombre de candidats ont choisi un polynôme orthogonal à E1, souvent de degré E2 n' 1, mais cela n'avait rien d'obligatoire, et en ont déduit qu'il appartient au noyau de E3. Oublions ceux qui ont montré que la fonction égale à E3 sur E4 en 1 est propre pour la valeur propre E5, sans penser que E6 est un ensemble de fonctions définies et continues sur E5, E6, E7, E8, E8, E9, and and E9, and E9, and E9, and E9, and E9, and E9, and

Question 10. Nombreux sont les candidats à avoir obtenu l'égalité $T_n(\tilde{X}) = \widetilde{H_nX}$. Beaucoup en ont déduit que toute valeur propre de H_n est une valeur propre de T_n , et que le polynôme propre associé a pour coefficients les composantes du vecteur propre de H_n . La réciproque

est plus subtile, et une bonne partie des candidats ont omis de préciser d'une part que l'on prend une valeur propre λ non nulle de T_n , d'autre part qu'une fonction propre associée f vérifie $f=\frac{1}{\lambda}T_n(f)$ donc est bien un polynôme de degré au plus n, ce qui permet ensuite de décrire comme vecteur propre de H_n le vecteur colonne dont les composantes sont les coefficients de ce polynôme.

Question 11. Cette question difficile n'a été valablement abordée que par un petit nombre de candidats, et ceux-ci ont souvent établi l'inégalité contraire à celle qui était demandée, la preuve du fait que celle-ci est une égalité étant la partie simple de cette question. Voici l'idée : soit v un vecteur propre de T_n associé à la valeur propre ρ_n . Pour tout $\phi \in A$, on pose $u = \frac{v}{\phi}$ qui existe et est continue et strictement positive sur [0,1] par hypothèse sur ϕ et du fait que v est un polynôme dont tous les coefficients strictement positifs, vu la première partie. Alors de $T_n v = \rho_n v$ on déduit $T_n u \phi = \rho_n u \phi$ donc $\rho_n u = \frac{1}{\phi} T_n(u \phi) \leq \frac{1}{\phi} T_n(\phi) \sup_{\sigma \in A} u$. On en déduit

$$\rho_{n} \sup_{x \in]0,1[} u(x) \le \sup_{x \in]0,1[} \left(\frac{1}{\varphi(x)} T_{n}(\varphi)(x) \right) \sup_{x \in]0,1[} u(x),$$

puis en simplifiant par $\sup_{x\in]0,1[}u(x),\; \rho_n\leq \sup_{x\in]0,1[}\left(\frac{1}{\varphi(x)}T_n(\varphi)(x)\right)$. Il ne reste plus qu'à prendre la borne inférieure quand φ décrit A, pour obtenir le résultat demandé. En choisissant $\varphi=v$, on a immédiatement l'égalité par définition de v. En faisant cette démonstration, on a un peu l'impression de sortir un lapin d'un chapeau : cela arrive parfois en mathématiques.

Question 12. Cette question très classique de dérivabilité d'une intégrale dépendant d'un paramètre n'a pas été aussi bien traitée que nous l'espérions. Passons sur les candidats, heureusement rares, qui semblent ignorer l'existence d'un théorème servant à justifier cette dérivabilité. Les autres l'ont généralement énoncé correctement et complètement, mais c'est la mise en œuvre qui a péché. La fonction intégrée est continue et intégrable en t sur]0, 1[ainsi que sa dérivée partielle par rapport à x, ce qu'il ne suffit pas d'affirmer, il faut aussi le justifier. Mais là où cela se gâte vraiment, c'est dans la domination. De nombreux candidats ont majoré la dérivée, soit par $t^n \varphi(t)$, ce qui est faux, soit par $\frac{t^n \varphi(t)}{(1-t)^2}$, ce qui est correct, mais présente le grave inconvénient de ne pas être intégrable sur]0, 1[; n'en déplaise à ceux qui ont certes fait référence à la règle de Riemann, mais en l'infini, et non en une borne finie ! Enfin, une simple application de la linéarité de l'intégrale permettait d'obtenir l'égalité demandée ; mais nombre de ceux qui s'étaient trompés de signe dans la dérivation de $\frac{1}{1-tx}$ sont retombés sur leurs pattes via un léger truandage... qui n'a bien sûr pas échappé à la sagacité du correcteur. En fin de compte, cette question s'est avérée être un révélateur du soin et de la rigueur apportés par les candidats dans la résolution du présent problème.

Question 13. Il est clair que résoudre cette question requérait une intégration par parties, un indice en étant la présence de $\phi'(t)$ dans la deuxième intégrale du second membre. Mais s'agissant d'intégrales impropres comme celles considérées ici, il était nécessaire de prendre quelques précautions, notamment de vérifier que la partie tout intégrée a bien une limite finie en 1. De nombreux candidats ont été pénalisés pour ne pas l'avoir fait, ou pour ne pas

avoir justifié le caractère C^1 des fonctions employées. Beaucoup ont abordé le cas n=0, mais pas le cas n non nul, ou inversement ; certains ont sans doute été déroutés par l'indication c=0 dans le premier cas où en réalité $c=\varphi(0)$ tandis que c=0 dans le second cas... Regrettable erreur d'énoncé qui a donné à cette question un air d'énigme davantage digne de Da Vinci Code que d'un sujet de concours, et dont il a bien sûr été tenu compte dans la correction.

Question 14. Question purement calculatoire, sans contenu théorique particulier, l'égalité demandée étant obtenue par combinaison des égalités établies dans les deux questions précédentes. Elle a toutefois de nouveau permis d'évaluer le soin et la rigueur des candidats dans la gestion de leurs calculs. Inutile de dire que ceux qui en rédigent plusieurs lignes qui n'aboutissent pas puis écrivent « après simplification, on trouve » suivi de l'égalité de l'énoncé n'ont obtenu aucun point pour la question.

Question 15. Rien de plus simple et de plus direct que la résolution d'une équation différentielle linéaire du premier ordre sans second membre. Il était légitime d'utiliser la formule que nombre de candidats avaient manifestement apprise par cœur. Toutefois, il ne fallait pas omettre de préciser que 1-t ne s'annulant pas sur [0, 1[, cette équation est bien résolue en y', ce qui justifiait l'utilisation de cette formule. Et il ne fallait pas non plus se tromper dans les signes, ce qui a été pourtant le cas d'environ la moitié des candidats... Sans compter quelques étourdis qui ont cru bien faire en appliquant ensuite la méthode de variation de la constante, et ont été très surpris d'obtenir le même ensemble de solutions! Si tout va bien, on obtient comme solutions $y(t) = c(1-t)\gamma$ avec $c \in \mathbb{R}$. Puis voilà une question réellement digne de Da Vinci Code : trouver à quelles conditions cette solution vérifie les hypothèses faites sur φ. Mais quelles sont-elles, ces fameuses hypothèses ? Cela demande un peu de recherche dans les pages précédentes : φ doit être continue et intégrable sur [0, 1[et à valeurs strictement positives sur]0, 1[; $\frac{1}{\phi}$ doit admettre un prolongement continu sur [0, 1], donc en 0 et en 1; φ doit être de classe C^1 sur [0, 1[et $(1-t)\varphi(t)$ doit tendre vers 0 quand t tend vers 1. Ces hypothèses sont toutes réalisées si et seulement si c > 0 et $-1 < \gamma \le 0$, conditions que bien peu de candidats ont réussi à toutes obtenir.

Question 16. La dérivabilité de Φ_n résulte des théorèmes généraux, encore faut-il les citer de manière précise, ce que bien peu de candidats ont pris la peine de faire : Φ_n est dérivable sur]0, 1[en tant que quotient de fonctions dérivables dont le dénominateur ne s'annule pas sur]0, 1[. Le calcul de sa dérivée est assez long, et bien peu de candidats l'ont mené à leur terme sans erreur ni raisonnement malhonnête.

Question 17. Encore une équation différentielle, cette fois avec second membre, mais dont la solution était fournie, ce qui a amené nombre de candidats à se contenter de vérifier que la fonction proposée est bien solution de l'équation. Cette démarche est légitime, encore fallait-il vérifier la condition initiale $\Phi_n(0) = 0$ et justifier via un théorème du cours que cette fonction est bien l'unique solution de l'équation différentielle satisfaisant cette condition initiale. Ceux

qui ont entrepris de résoudre l'équation différentielle par les formules classiques ont souvent abouti à la solution proposée.

Question 18. Cette question n'a été abordée que par une infime minorité de candidats. On se souvient qu'à la question 12 on a obtenu la majoration $\rho_n \leq \sup_{x \in]0,1[} \left(\frac{1}{\varphi(x)} T_n(\varphi)(x)\right)$. Or on a : $\frac{1}{\varphi(x)} T_n(\varphi)(x) = r_n(x) = \Phi_0(x) - \Phi_n(x)$, et en remplaçant Φ_0 et Φ_n par leurs expressions, on obtient l'expression fournie par l'énoncé.

Question 19. Cette question, elle aussi très rarement abordée, se traite en choisissant $\alpha = \frac{1}{2}$ dans l'inégalité précédente et en procédant au calcul de l'intégrale obtenue.

Question 20. Un nombre non négligeable de candidats ont abordé cette question qui pouvait être traitée en admettant le résultat des questions précédentes. Malheureusement ils ont généralement fait preuve de beaucoup de maladresse dans la manipulation des équivalents. Tout d'abord, il est clair que ω_n tend vers 1 quand n tend vers l'infini, de sorte qu'il n'est pas pertinent de commencer par prendre un équivalent de ω_n . Par contre, comme ln x est équivalent en 1 à x-1, il est beaucoup plus intéressant de chercher un équivalent de ln ω_n , que l'on obtient facilement grâce à la formule de Stirling : $\omega_n-1\sim \ln \omega_n \sim \frac{\ln n}{4n}$. Ensuite la primitivation de l'équivalent $\frac{1}{\sqrt{1-x^2}}\sim \frac{1}{\sqrt{2(1-x)}}$ donne $\mathrm{Arcsin}x=\frac{\pi}{2}-\sqrt{2(1-x)}+o(\sqrt{1-x})$ au voisinage de 1. En remplaçant ω_n-1 par l'équivalent précédent, on en déduit enfin :

$$\pi - 2\omega_n \operatorname{Arcsin}\left(\frac{1}{\omega_n}\right) \sim \sqrt{\frac{2\ln n}{n}}$$

On a donc obtenu une majoration de ρ_n légèrement meilleure que π puisque $\sqrt{\frac{2 \ln n}{n}}$ tend vers 0 quand n tend vers l'infini. Les quelques candidats qui sont arrivés à ce point auront peut-être été déçus de constater que tant d'efforts ont abouti à un si petit progrès : mais c'est là le propre des mathématiques que d'avancer à petits pas vers une meilleure connaissance d'une discipline dont l'esprit humain peine à entrevoir la complexité infinie.

Conclusion

Le sujet de cette année permettait à tout candidat sérieux et travailleur de mettre en valeur ses connaissances et ses capacités. Les questions 2 à 10, 12, 15 et 17 étaient tout à fait abordables et nécessitaient surtout de la réflexion, de la rigueur et du soin dans les calculs et les raisonnements. Ce sujet donne aux candidats le temps de réfléchir, de soigner leurs raisonnements, de peaufiner leur rédaction et de vérifier leurs calculs. Encore leur faut-il se départir d'une attitude fréquente de nonchalance voire d'indifférence, et de manque de combativité au cours de l'épreuve. Ne pas renoncer, rester mobilisé pendant toute la durée

des concours, voilà l'attitude qui permettra aux étudiants de réussir. Car comme disait Amy Sherald : « People who don't quit eventually rise to the top, because the world is full of quitters ».

1.4. Mathématiques I — PC

Présentation du sujet

Pour $p \in \mathbb{N}^*$ et $r \in \mathbb{R}$, posons

$$\forall z \in \mathbb{C}, \qquad S_{r,p}(z) = \sum_{n=1}^{+\infty} \frac{(pn)^r}{(pn)!} z^{pn}.$$

Le but essentiel de ce problème est d'établir le résultat suivant.

Théorème 1. Soient $p \in \mathbb{N}^*$ et $r \in \mathbb{R}^+$. Alors

$$S_{r,p}(x) \underset{x \to +\infty}{\sim} \frac{1}{p} x^r e^x.$$

La partie I justifie le fait que la série entière définissant $S_{r,p}$ a pour rayon de convergence $+\infty$ et fait calculer $S_{0,1}$ et $S_{0,2}$ au moyen de fonctions usuelles.

La partie II est consacrée à la démonstration du théorème pour p=1. Pour $x \in \mathbb{R}^{+*}$, soit X_X une variable de Poisson de paramètre x. La démonstration part de l'égalité :

$$\forall x \in \mathbb{R}^{+*}, \qquad S_{r,1}(x) = e^x E(X_x^r).$$

On utilise alors la concentration de X_X autour de x pour montrer que, lorsque x tend vers $+\infty$, $E(X_{Xr}) \sim x_r$. Le calcul combine l'inégalité de Bienaymé-Tchebychev et l'utilisation ingénieuse d'un argument de convexité.

La partie III achève la démonstration du théorème 1. Un argument classique permet d'extraire de Sr, I la somme correspondant aux multiples de p:

$$\forall z \in \mathbb{C}, \qquad S_{r,p}(z) = \frac{1}{p} \sum_{\omega \in \mathbb{U}_p} S_{r,1}(\omega z).$$

Il faut alors voir que, pour ω dans $Up \setminus \{1\}$, $Sr, 1(\omega x)$ est négligeable devant Sr, 1(x) lorsque x tend vers $+\infty$, ce qui provient d'une transformation d'Abel et d'estimations asymptotiques non immédiates des quantités $u_{k+}/x_{k}/(x)$, où l'on pose :

$$\forall n \in \mathbb{N}, \quad , \forall x \in \mathbb{R} \qquad u_n(x) = \frac{n^r}{n!} x^n.$$

La partie IV applique le théorème obtenu à la démonstration de l'énoncé ci-après.