第 21 回 仮説検定(12.1, 12.5)

村澤 康友

2022年12月20日

今日	のポイ	ン	۲
----	-----	---	---

- 1. 母集団分布に関する仮説を統計的仮説と いう. 統計的仮説の真偽を標本から判定 することを検定という. 仮説を偽と判定 することを, 仮説を棄却するという. 仮説 を真と判定することを, 仮説を採択すると いう.
- 2. とりあえず真と想定する仮説を帰無仮説 (H_0) という. 帰無仮説を棄却するとき代 わりに採択する仮説を対立仮説(H_1)と いう. 検定問題では必ず H_0 と H_1 を設定 する.
- $3.~H_0$ が真なのに H_0 を棄却する誤りを第 1種の誤り、 H_1 が真なのに H_0 を採択する 誤りを第2種の誤りという. 許容する第1 種の誤りの確率を有意水準という.
- 4. 検定に用いる統計量を検定統計量という. 標本 (検定統計量) の値域で H₀ を棄却す る領域を棄却域, 採択する領域を採択域と
- 5. 第2種の誤りを起こさない確率を検定の 検出力という. 与えられた有意水準の下で 検出力が最大の検定を最強力検定という.

目次

1	統計的仮説 (pp. 233, 251)	1	定義 3. 複数の分布を許容する仮説を 複合仮 いう.
2	検定問題	2	例 2. $\operatorname{Bin}(1,p)$ で $p\geq 1/2$, $\operatorname{N}\left(0,\sigma^2\right)$ (σ^2 は任意
9.1	給 完(n. 933)	2	平均が 0 (分布の型は任音) たど

2.2	帰無仮説と対立仮説(p. 235)	2		
2.3	片側検定と両側検定(p. 238)	2		
3	検定の手順	2		
3.1	有意水準(p. 234)	2		
3.2	棄却域と採択域(p. 238)	2		
3.3	検定の手順	2		
4	検定の性質(p. 251)	3		
5	今日のキーワード	3		
6	次回までの準備	3		
1 統計的仮説 (pp. 233, 251)				
.,				
定義 1. 母集団分布に関する仮説を統計的仮説と				
115				

いう.

注 1. 母数に関する仮説と言ってもよい.

定義 2. ただ1つの分布を許容する仮説を単純仮 説という.

注 2. ただ 1 点の母数を許容する仮説と言っても よい.

例 1. Bin(1,1/2), N(0,1) など.

頻粉の分布を許容する仮説を**複合仮説**と

意),

2 検定問題

2.1 検定 (p. 233)

定義 4. 統計的仮説の真偽を標本から判定することを**検定**という.

定義 5. 仮説を偽と判定することを,仮説を**棄却**するという.

定義 6. 仮説を真と判定することを,仮説を**採択**するという.

2.2 帰無仮説と対立仮説 (p. 235)

定義 7. とりあえず真と想定する仮説を**帰無仮説**という.

注 3. H₀ で表す.

定義 8. 帰無仮説を棄却するとき代わりに採択する 仮説を対立仮説という.

注 4. H₁ で表す.

注 5. 検定問題では必ず H_0 と H_1 を設定する. すなわち母数空間を Θ とすると

$$H_0: \theta \in \Theta_0 \quad \text{vs} \quad H_1: \theta \in \Theta_1$$

ただし Θ_0 , Θ_1 は Θ の分割.標本の実現値が H_0 と 矛盾するなら H_0 を棄却して H_1 を採択,矛盾しな ければ H_0 を採択する.

注 $6.~H_0$ の採択は,偽とする証拠が不十分という判定であり,積極的に真と断定するのではない(推定無罪,疑わしきは罰せず). したがって「 H_0 を採択」より「 H_0 を棄却しない」の方が適切な表現.

2.3 片側検定と両側検定 (p. 238)

定義 9. 片側検定問題は

 $H_0: \theta \leq (\geq)\theta_0 \quad \text{vs} \quad H_1: \theta > (<)\theta_0$

注 7. 実際には H_0 として $\theta = \theta_0$ を想定するので、次のように書いてもよい.

 $H_0: \theta = \theta_0 \quad \text{vs} \quad H_1: \theta > (<)\theta_0$

定義 10. 両側検定問題は

 $H_0: \theta = \theta_0 \quad \text{vs} \quad H_1: \theta \neq \theta_0$

3 検定の手順

3.1 有意水準 (p. 234)

定義 11. H_0 が真なのに H_0 を棄却する誤りを第 1 種の誤りという.

定義 12. H_1 が真なのに H_0 を採択する(棄却しない)誤りを第 2 種の誤りという.

注 8. 起こりうる状況は表1の通り.

注 9. 2 つの誤りの可能性を同時にゼロにすることは不可能.

注 $10. H_0$ の採択は消極的な判断に過ぎないので、第 1 種の方が第 2 種より重大な誤り.

定義 13. 許容する第 1 種の誤りの確率を**有意水 準**という.

注 11. より重大な第 1 種の誤りの確率を、あらかじめ設定しておく.

3.2 棄却域と採択域 (p. 238)

定義 14. 検定に用いる統計量を検定統計量という.

定義 15. 標本(検定統計量)の値域で H_0 を棄却する領域を**棄却域**という.

定義 16. 標本(検定統計量)の値域で H_0 を採択する(棄却しない)領域を採択域という.

3.3 検定の手順

まとめると検定の手順は以下の通り.

- 1. 検定問題を定式化する.
- 2. 有意水準を設定する.
- 3. 検定統計量を選択する.
- 4. 棄却域を設定する.
- 5. 検定統計量の値から H_0 の棄却/採択を決定する.

例 3. 母集団分布を N (μ, σ^2) とする. ただし σ^2 は既知とする. 次の検定問題を考える.

 $H_0: \mu = 0$ vs $H_1: \mu = 1$

有意水準を5%とする. 大きさ n の無作為標本の

表1 検定の2種類の誤り

	H_0 が真	H_1 が真
H ₀ を棄却	第1種の誤り	0
H_0 を採択		第2種の誤り

標本平均を $ar{X}$ とすると

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

標準化すると

$$\frac{\bar{X} - \mu}{\sqrt{\sigma^2/n}} \sim N(0, 1)$$

検定統計量は

$$Z:=\frac{\bar{X}}{\sqrt{\sigma^2/n}}$$

 H_0 の下で

$$Z \sim N(0,1)$$

標準正規分布表より Hoの下で

$$\Pr[Z \ge 1.65] = .05$$

したがって棄却域は $[1.65,\infty)$. H_1 の下で

$$\begin{split} Z &= \frac{\bar{X} - 1 + 1}{\sqrt{\sigma^2/n}} \\ &= \frac{\bar{X} - 1}{\sqrt{\sigma^2/n}} + \frac{1}{\sqrt{\sigma^2/n}} \\ &\sim \mathcal{N}\left(\frac{1}{\sqrt{\sigma^2/n}}, 1\right) \end{split}$$

したがって H_1 の下での検定統計量の分布は σ と n の値により異なる (図 1).

4 検定の性質 (p. 251)

定義 17. 第 2 種の誤りを起こさない確率を検定の **検出力**という.

注 12. H_1 が真のとき正しく H_0 を棄却する確率.

定義 18. 与えられた有意水準の下で検出力が最大の検定を**最強力検定**という.

注 13. 「統計学入門」では検定の最強力性は確認しない.

5 今日のキーワード

統計的仮説,単純仮説,複合仮説,検定,棄却,採択,帰無仮説,対立仮説,片側検定問題,両側検定問題,第1種の誤り,第2種の誤り,有意水準,検定統計量,棄却域,採択域,検出力,最強力検定

6 次回までの準備

復習 教科書第 12 章 1, 5 節, 復習テスト 21 **予習** 教科書第 12 章 2 節

図 1 H_1 の下での検定統計量の分布