תרגיל 4

 $A\in\mathbb{R}^{m imes n}$ החום קמור, ו ביא הקבוצות המורות כאשר נתון ש ביא הקבוצות המור, ו הפוצות המורות כאשר נתון א

 \mathbf{B}_1 הקבוצה

$$B_1 = \{ x \in \mathbb{R}^n \mid x = A^T z, z \in C \}$$

: עבדוק אם נקודה שהיא צירוף של שתי נקודות השייכות לקבוצה B_1 גם כן שייכת לקבוצה

$$x = A^T z, x \in \mathbb{R}^n$$

 $y = A^T z, y \in \mathbb{R}^n$

: מקיימת k המקיימת

$$k = \lambda x + (1 - \lambda)y, \ \lambda \in [0, 1]$$

$$k = \lambda x + (1 - \lambda)y = \lambda A^{T}z + (1 - \lambda)A^{T}z = (\lambda + 1 - \lambda)A^{T}z = A^{T}z \in B_{1}$$

. קמורה על פי הגדרה B_1

 \mathbf{B}_2 הקבוצה

$$B_2 = \{ x \in \mathbb{R}^n \, | \, Ax \in C \}$$

: עייכת שייכת שייכת אם נקודה אם נקודה שהיא אירוף של שתי נקודות השייכות לקבוצה אם נקודה שהיא צירוף של שתי נקודות השייכות לקבוצה אירוף של שתי נקודות השייכות לקבוצה ביו

 $\begin{aligned} x:Ax\,, \in C \\ y:Ay\,, \in C \end{aligned}$

: מקיימת k המקיימת

$$k = \lambda x + (1 - \lambda)y, \lambda \in [0, 1]$$

$$k = \lambda x + (1 - \lambda)y = \lambda Ax + (1 - \lambda)Ay \in B_2$$

. סכום של קבוצות קמורות היא קבוצה קמורה ולכן B_2 קמורה על פי הגדרה

תרגיל 5

1. הוכחה $B(x,\epsilon)$ מכיל אינסוף נקודות $\epsilon>0$ לכל , $x\in\mathbb{R}$, ונקודת צבר $S\in\mathbb{R}^n$ מכיל אינסוף נקודות בקבוצה S.

נוכיח בשלילה

- S בי עבור נקודת צבר x, קיימות כמות סופית של נקודות בS (1)
- ϵ_a עבור נקודת צבר ספציפית ϵ_a הנקודה בעלת סביבה בגודל מינימלי (2)
- S ב , הנמצאת העל פי הגדרה של נקודת צבר, עבור כל , $\epsilon_a>0$, נדרשת שתהיה נקודה בסביבה של נקודת צבר, עבור כל (3)
 - . $\epsilon_a/2$ נבחן את הסביבה של נקודה , x_a ברדיוס , x_a נקודה הסביבה של נקודה השייכת ל S . (כי אמרנו שהמרחק המינימלי הוא בסביבת הנקודה אין נקודה השייכת ל
 - $\epsilon > 0$ כלומר מתקיימת סתירה על פי ההגדרה שעל בל $\epsilon > 0$ חייבת להיות נקודה השייכת ל (5)
 - . על פי הסתירה חייבות להיות נקודות נוספות בסביבה של x, כלומר קיימות אינסוף נקודות (6)
 - **2. הוכחה** שהקבוצה S היא קבוצה סגורה אם ורק אם היא מכילה את כל נקודות הצבר שלה. נוכיח את הטענה בשני הכיוונים מכיוון שמדובר בטענת "אם ורק אם"

קבוצה S היא קבוצה המכילה את כל נקודות הצבר שלה

- תהי נקודה S נקודה במשלים של S (S^c) אינה נקודה צבר של אנה נקודה במשלים של S מכילה את כל עלה. (1) מקודות הצבר שלה).
 - S^c עבור הקבוצה S^c , הנקודה x היא נקודת פנים מכיוון שכל הסביבה שלה מוכלת בx
 - . כלומר, הקבוצה S^c , היא קבוצה פתוחה מכיוון שהיא מכילה את כל נקודות הפנים שלה S^c
 - . היא קבוצה או הקבוצה S^c היא קבוצה פתוחה אז הקבוצה S^c היא קבוצה סגורה.

קבוצה סגורה S

- מכילה את קבוצה קבוצה (כלומר קבוצה מכילה את אז הקבוצה S^c היא קבוצה סגורה, אז הקבוצה מכילה את כל מכיוון ש S^c היא קבוצה סגורה, אז הקבוצה מכילה את כל נקודות הפנים שלה).
 - x נניח שקיימת נקודה x, שהיא נקודת צבר של x. אז קיימת איזושהי נקודה ב־x, בסביבה של x
 - S^c לא שייכת ל S^c אז היא שייכת לx מכיוון שהנקודה (3)
- היא נקודת ב c ב לומר כל נקודה ב S^{c} למוחה, ולכן מכילה את כל נקודות הפנים שלה. כלומר כל נקודה ב S^{c} היא נקודת פנים.
- S ל x ל הסביבה בין הסביבה להיות חיתוך לכן אלכן מנצרה בר של א נקודת בין היא היא נקודת בר של לכן הייב להיות היתוך בין הסביבה של ל

הוכחנו בשני הכיוונים ולכן הוכחנו את הטענה

- $x\in S$ אז , $\lim_{i o\infty}\|x_i-x\|=0$: x מתכנסת ל $x_i\in S$ מתכנסת $x_i\in S$ מוכיח בשלילה כיx
 otin S סגורה, והסדרה $x_i\in S$ מוכיח בשלילה כיx
 otin S
- נובע $x \not\in S$ היא קבוצה שלה. ולכן היא מכילה את כל נקודות הצבר שלה. ולכן בהנחת אז היא מכילה א מכילה א מכילה שS היא קבוצה ש $x \not\in S$ שי אינה נקודת צבר של
 - $B(x,\epsilon) \notin S$ אם אם אם הכדור הפתוח אז עבור אז עבור של א נקודת צבר של (2)
 - x_i הסדרה של בסביבה להיות צריכה הווה, הסדרה ו $\lim_{i \to \infty} \|x_i x\| = 0$ (3)
 - $x \in S$ ולכן (3) ל י (2) קיבלנו סתירה בין סעיף (4)

תרגיל 6

: עניח בעיית האופטמיזציה פתרונות נוספים y_0,z_0 אשר פותרים את בעיית נניח נניח נניח אופטמיזציה

$$||y_0 - x_0||^2 = ||z_0 - x_0||^2 = (\min_{y \in C} ||y - y_0||)^2 = \delta^2$$
 (1)

C ' שייכת א $y\in C$ אז גם נקודה אויכת ל שייכת איינת האופטימיזציה, וגם אויכת ל הוא פתרון לבעיית מכיוון ש

$$k_0 = \lambda z_0 + (1 - \lambda)y_0 \in C$$

 k_0 מתקבל כי הנקודה $\lambda=1/2$

$$k_0 = \lambda z_0 + (1 - \lambda)y_0 = \frac{z_0 + y_0}{2} \in C$$

: הנקודה איא לא פיתרון של בעיית האופטימיזציה ולכן הנקודה k_0

$$||x_0 - x_0||^2 \ge \delta^2$$

$$||\frac{z_0 + y_0}{2} - x_0||^2 \ge \delta^2$$

$$\frac{1}{4}||z_0 + y_0 - 2x_0||^2 \ge \delta^2$$

$$\frac{1}{4}||(z_0 - x_0) + (y_0 - x_0)||^2 \ge \delta^2$$

$$\frac{1}{4}\left[||(z_0 - x_0)||^2 + 2\langle z_0 - x_0, y_0 - x_0\rangle + ||(y_0 - x_0)||^2\right] \ge \delta^2$$
(2)

: (1) את משוואה (2) את נציב במשוואה

$$\frac{1}{4} \left[\delta^2 + 2\langle z_0 - x_0, y_0 - x_0 \rangle + \delta^2 \right] \ge \delta^2
\frac{1}{2} \langle z_0 - x_0, y_0 - x_0 \rangle \ge \frac{1}{2} \delta^2
\langle z_0 - x_0, y_0 - x_0 \rangle \ge \delta^2
2\langle z_0 - x_0, y_0 - x_0 \rangle \ge \|(z_0 - x_0)\|^2 + \|(y_0 - x_0)\|^2
\|(z_0 - x_0)\|^2 + \|(y_0 - x_0)\|^2 - 2\langle z_0 - x_0, y_0 - x_0 \rangle \le 0
\|(z_0 - x_0) - (y_0 - x_0)\|^2 \le 0
\|z_0 - y_0\|^2 \le 0$$

: על פי הגדרת ה $\|\cdot\|_{0}, \|\cdot\|_{0} \geq \|\cdot\|_{0}$ ולכן הפתרון היחיד האפשרי לתוצאה שקיבלנו הוא ש

$$||z_0 - y_0||^2 = 0$$
$$z_0 - y_0 = 0$$
$$z_0 = y_0$$

כלומר הפתרונות שהנחנו שפותרים את בעיית האופטימיזציה זהים, ולכן קיים רק פתרון יחיד שפותר את בעיית האופטימיזציה