## Chi-squared tests

Decisions with Data | Inference for Frequencies

#### STAT5002

The University of Sydney

May 2025



#### **Decisions with Data**

Topics 8 and 9: Confidence intervals and the z-test

Topic 10: The t-test

Topic 11: The two-sample test

Topic 12:  $\chi^2$ -test

# Chi-squared tests

#### Suspicious dice

- A gambler is accused of using a loaded (6-sided) die, but he pleads innocent.
- A record has been kept of the last 60 throws.

```
1 die \leftarrow c(4,3,3,1,2,3,4,6,5,6,

2 2,4,1,3,3,5,3,4,3,4,

3 3,3,4,5,4,5,6,4,5,1,

4 6,4,4,2,3,3,2,4,4,5,

5 6,3,6,2,4,6,4,6,3,2,

6 5,4,6,3,3,3,5,3,1,4)
```

• Let's summarise these:

```
1 table(die)

die
1 2 3 4 5 6
4 6 17 16 8 9
```

- These counts should be "roughly equal" for a fair die, but these look a bit **too** unequal.
- How can we test if the die is fair?

## Box model for (possibly loaded) die

• We are very familiar with our box model for a **fair** die:



ullet A single random draw X from this box has the distribution

| x      | 1             | 2             | 3             | 4             | 5             | 6             |
|--------|---------------|---------------|---------------|---------------|---------------|---------------|
| P(X=x) | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |

• A box for a **loaded** die might be

giving

| x      | 1             | 2   | 3             | 4             | 5   | 6   |
|--------|---------------|-----|---------------|---------------|-----|-----|
| P(X=x) | $\frac{1}{8}$ | 1/8 | $\frac{1}{4}$ | $\frac{1}{4}$ | 1/8 | 1/8 |

#### Goodness of fit test

- ullet We can define the distribution by a probability vector  $oldsymbol{p}=(p_1,\ldots,p_6)$  of (rational) probabilities
  - ightarrow so each  $p_j \geq 0$  and  $p_1 + \cdots + p_6 = 1$ ); and
  - we can imagine a box with a certain number of each ticket, so the proportion of tickets with integer j is  $p_j$ .
- We would like to test the hypothesis  $H_0$ :  $p_1 = \cdots = p_6 = \frac{1}{6}$  .
- ullet We are interested in **any alternative that is not**  $H_0$ .
  - ightharpoonup That is,  $p_j 
    eq rac{1}{6}$  for at least one j in  $1,\ldots,6$ .
  - $\rightarrow$  In brief the alternative is  $H_1$ : not  $H_0$ .
- This is an example of a **goodness of fit test**:

## Expected frequencies after 60 "draws"

- ullet Suppose  $H_0$  is true. we have a fair die.
- Since each value 1,2,...,6 is equally likely, after 60 draws we would **expect** to get 10 of each:

| Outcome            | 1             | 2             | 3             | 4             | 5          | 6             |
|--------------------|---------------|---------------|---------------|---------------|------------|---------------|
| Prob.              | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | <u>1</u> 6 | $\frac{1}{6}$ |
| Expected frequency | 10            | 10            | 10            | 10            | 10         | 10            |

### Comparison with observed frequencies

• The table below compares observed and expected frequencies:

| Outcome            | 1             | 2             | 3             | 4             | 5             | 6             |
|--------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| $H_0$ Prob.        | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |
| Expected frequency | 10            | 10            | 10            | 10            | 10            | 10            |
| Observed frequency | 4             | 6             | 17            | 16            | 8             | 9             |

- Due to random sampling the observed are not **exactly** equal to the expected, we anticipate some "small" discrepancies.
- We want to know *How different* do these have to be before it gets suspicious??

#### General formulation

- Suppose we have data  $X_1, \ldots, X_n$  only taking k distinct values (categories), modelled as a random sample taken with replacement from a box.
  - $\rightarrow$  The tickets of the box take k distinct values (categories).
  - $\rightarrow$  We use integers  $j=1,2,\ldots,k$  (or any other distinct values/labels) to label the categories.
  - The testing procedure we use can deal with general categorical data





- ullet Write  $p_j=P(X_1=j)=$  the proportion of tickets in box labelled j (for  $j=1,\ldots,k$ ).
- Write also  $oldsymbol{p}=(p_1,\ldots,p_k)$ .
- ullet We wish to test  $H_0$ :  $oldsymbol{p}=oldsymbol{p_0}$  for some hypothesised  $oldsymbol{p_0}=(p_{01},\ldots,p_{0k})$ .
- The alternative we are interested in is  $H_1$ : not  $H_0$ .

### Observed and Expected frequencies

- ullet We summarise the data to **observed frequencies**:  $O_j =$  number of data points labelled j.
- ullet We compare these to the corresponding **expected frequencies**:  $E_j=np_{0j}$ , i.e. the number of data points labelled j we would expect **under**  $H_0$ .

| Outcome            | 1               | 2               | <br>k               |
|--------------------|-----------------|-----------------|---------------------|
| $H_0$ Prob.        | $p_{01}$        | $p_{02}$        | <br>$p_{0k}$        |
| Expected frequency | $E_1 = np_{01}$ | $E_2 = np_{02}$ | <br>$E_k = np_{0k}$ |
| Observed frequency | $O_1$           | $O_2$           | <br>$O_k$           |

## Test statistic: Pearson's $\chi^2$ statistic

- A "foundational" paper in modern statistics was by Karl Pearson in 1900.
- He considered the statistic

$$T = rac{(O_1 - E_1)^2}{E_1} + \dots + rac{(O_k - E_k)^2}{E_k} \, .$$

- ullet For categories with larger  $E_i$ , the "error"  $O_i-E_i$  tends to be bigger;
  - ightharpoonup Dividing  $(O_i-E_i)^2$  by  $E_i$ , this "normalised squared error" makes each term "comparable".
- ullet He argued that under  $H_0$ , for "large n",

$$T \stackrel{ ext{approx.}}{\sim} \chi^2_{k-1}$$
 ,

the chi-squared distribution with k-1 degrees of freedom.

# The $\chi_d^2$ distribution

- ullet Suppose we take d independent (i.e. with replacement) random draws from a N(0,1) box:  $Z_1,Z_2,\ldots,Z_d$ .
- ullet Then the sum of squares  $Z_1^2+Z_2^2+\cdots+Z_d^2$  has a  $\chi_d^2$  distribution.
- ullet It is a skewed (to the right) distribution, but gets more symmetric as d increases.

#### **Chi-square distribution**



#### P-value

- ullet Suppose we have k categories, and the observed value of Pearson's statisic is  $t_{
  m obs}$ .
- ullet The **larger**  $t_{
  m obs}$ , the more evidence against  $H_0$ .
  - One-sided test.
  - op The P-value is given by the area under the  $\chi^2_{k-1}$  curve to the **right** of  $t_{
    m obs}$ .
- This is the chance of
  - ightharpoonup observing something more extreme than  $t_{
    m obs}$ , assuming  $H_0$  true.
- Why the degrees of freedom is k-1 in  $\chi^2_{k-1}$ ?
  - The test statistic T for k categories behaves like the summation of  $Z_1^2+\ldots+Z_{k-1}^2$  the actual derivation of this is beyond the scope of this unit.
  - Quick way to remember (more later): there are k elements in the probability vector, but  $\sum_{i=1}^k p_j = 1$ , so we only need k-1 of "free" probability parameters to define the entire vector.

### Our dice example

#### Η

- Null hypothesis  $(H_0:p_0=(rac{1}{6},\ldots,rac{1}{6}))$ : the die is fair.
- Alternative hypothesis  $(H_1:)$  at least one of  $p_{0j} 
  eq rac{1}{6}, j=1,\ldots,6$ , indicating the die is loaded.
- $oxed{A}$  We need a sufficiently large n, what else? We will discuss this later.
- $\overline{f T}$  The degrees of freedom is 6-1=5, so  $\chi^2_5$  is the test distribution.
  - ullet One-sided test: large values of test statistics argue against  $H_0$ .
  - For the record of results from the die

```
1 0i = table(die)
2 Ei = rep(10, 6)
3 rbind( Ei, 0i)

1 2 3 4 5 6
Ei 10 10 10 10 10 10
0i 4 6 17 16 8 9

1 sum(((0i-Ei)^2)/Ei)
[1] 14.2
```

 $\overline{P}$  Obtain P-value using  $\overline{pchisq}(\ldots, df=\ldots, lower.tail=F)$ : we need the *upper tail* (large values of  $t_{obs}$  argue against  $H_0$ ).

```
1 pchisq(14.2, df=5, lower.tail=F)
[1] 0.01438768
```



- $oxed{\mathrm{C}}$  Is the value  $t_{
  m obs}=14.2$  consistent with  $H_0$ ?
  - The P-value is a rather small.
  - ullet At a rather small false alarm rate (e.g., 2%), the data is significantly different from the claim of  $H_0$  (all 6 sides equally likely).
    - Indirectly suggests the die may be loaded.

## Using chisq.test()

- We can also use the built-in function <a href="mailto:chisq.test">chisq.test()</a>.
- If we give it a vector of counts, it compares it to the vector of probabilities in p:

```
1 chisq.test(0i, p=c(1/6, 1/6, 1/6, 1/6, 1/6, 1/6))
Chi-squared test for given probabilities

data: 0i
X-squared = 14.2, df = 5, p-value = 0.01439
```

• Note that by default it takes p as the same length as the vector containing observed frequencies, with equal probabilities:

```
1 chisq.test(0i)

Chi-squared test for given probabilities

data: 0i
X-squared = 14.2, df = 5, p-value = 0.01439
```

# A Assumptions required

- ullet The  $\chi^2_{k-1}$  distribution is a "large-sample approximation" to the exact sampling distribution of Pearson's statistic when  $H_0$  is true.
- It may not be a good approximation if
  - $\rightarrow$  either the sample size n is not very large
  - or some categories have very small hypothesised probabilities.
- ullet A "rule of thumb" is that if all expected frequencies  $E_j$  are at least 5, the  $\chi^2_{k-1}$  approximation should be reasonably accurate.
  - The R function chisq.test() prints a warning if this condition is violated:

```
1  0i = c(5, 3, 4)
2  chisq.test(0i, p=c(1/3, 1/3, 1/3))
Warning in chisq.test(0i, p = c(1/3, 1/3, 1/3)): Chi-squared approximation may be incorrect
    Chi-squared test for given probabilities

data: 0i
X-squared = 0.5, df = 2, p-value = 0.7788
```

### Special case: wquivalence with Z-test for 0-1 box

- We can draw a connection between the chi-squared test and a two-sided Z-test for proportion.
- ullet Consider a box containing only  $oxed{0}$ s and  $oxed{1}$ s, let p denote the proportion of  $oxed{1}$ s in the box.
- ullet Suppose we have a random sample  $X_1,\ldots,X_n$  taken with replacement from the box.
- ullet Consider testing the null hypothesis  $H_0 \colon p = p_0$  with the two-sided  $H_1 \colon p 
  eq p_0$
- We have already done this using a Z-test with the statistic

$$Z = rac{ar{X} - p_0}{\sqrt{rac{p_0(1-p_0)}{n}}} = rac{S - np_0}{\sqrt{np_0(1-p_0)}} \ ,$$

where  $ar{X}=rac{1}{n}\sum_{i=1}^n X_i=S/n$  is the sample proportion of  $oxed{1}$ s.

### Chi-squared test for 0-1 box

ullet Note that the two-sided P-value P(|Z|>|z|) is the same as

$$P(Z^2>z^2)=P\left(Z^2>rac{(s-np_0)^2}{np_0(1-p_0)}
ight)$$

where  $Z^2 \sim \chi_1^2$  and s is the observed sample sum (number of 1's in a sample).

• We may also view this as a  $\chi^2$ -test.

| Outcome            | 0                  | 1          |
|--------------------|--------------------|------------|
| Prob.              | $1-p_0$            | $p_0$      |
| Expected frequency | $E_0 = n(1 - p_0)$ | $E_1=np_0$ |
| Observed frequency | $O_0 = n - S$      | $O_1 = S$  |

#### Both tests are equivalent for 0-1 box

Pearson's statistic is then

$$T = \frac{(O_0 - E_0)^2}{E_0} + \frac{(O_1 - E_1)^2}{E_1}$$

$$= \frac{\left[(n - S) - n(1 - p_0)\right]^2}{n(1 - p_0)} + \frac{(S - np_0)^2}{np_0}$$

$$= \frac{(n - S - n + np_0)^2}{n(1 - p_0)} + \frac{(S - np_0)^2}{np_0}$$

$$= \frac{(S - np_0)^2}{n} \left(\frac{1}{1 - p_0} + \frac{1}{p_0}\right)$$

$$= \frac{(S - np_0)^2}{n} \left(\frac{p_0 + (1 - p_0)}{p_0(1 - p_0)}\right)$$

$$= \frac{(S - np_0)^2}{np_0(1 - p_0)}$$

$$= Z^2.$$

ullet The chi-squared test is **exactly** a two-sided Z-test for 0-1 box, as for  $Z\sim N(0,1)$ ,  $Z^2$  follows  $\chi_1^2$ .

#### Example: 5% level of significance

```
1 round(qchisq(.95, df=1),2)
[1] 3.84
```

- An upper 5% percentage point for  $\chi_1^2$  is
  - ightharpoonup The critical region of rejection is T>3.84.

```
1 round(qnorm(0.975),2)
[1] 1.96
1 round(qnorm(0.975)^2,2)
[1] 3.84
```

- ullet An upper 2.5% percentage point (97.5% quantile) for N(0,1) is approximately 1.96
  - ightarrow P(|Z|>1.964) is the same as  $P(|Z|^2=Z^2>1.96^2pprox 3.84)$
  - ightharpoonup The region of rejection is |Z|>1.96 or  $Z^2>3.84$ .
- The chi-squared test may be viewed as a **generalisation** of the **two-sided** Z-test for a proportion, to a box with more than 2 different values in it.

## Simulation

#### Using simulation: the dice example

- We can approximate the sampling distribution of the test statistic by simulating an appropriate (approximate if necessary) box model.
- ullet Straightforward for chi-sq tests  $H_0$  completely specifies the distribution of  $X_i$ , and hence the box.

```
sim.stat=0 # the dice example
for(i in 1:100000) {
    sim.rolls=sample(1:6, size=60, replace=T)
    freqs = tabulate(sim.rolls, nbins=6) # works even with zero freqs, better than table()
    sim.stat[i] = chisq.test(freqs)$stat # save the test statistics
}
```



ullet Nice agreement between the histogram of simulated Pearson statisics and the  $\chi^2_5$  curve.

#### Simulated P-value

• The observed Pearson statistic

```
1  0i = table(die)
2  Ei = rep(10, 6)
3  rbind( Ei, 0i)

    1  2  3  4  5  6
Ei 10 10 10 10 10 10
0i  4  6 17 16  8  9

1  stat=sum(((0i-Ei)^2)/Ei)
2  stat
[1] 14.2
```

- P-value obtained using the simulated test distribution
  - Note that it's a one-sided test

```
1 mean(sim.stat≥stat)
[1] 0.0139
```

ullet P-value obtained using the theoretical  $\chi^2_5$ 

```
1 chisq.test(0i)$p.value
[1] 0.01438768
```

ullet The simulation-based P-value is close to that obtained using the  $\chi^2_5$  approximation.

### Small expected frequencies

- Consider another example where we the assumptions are not reasonable:
  - $\rightarrow$  suppose we draw a sample of size n=10 from the box (with 11 tickets)

- How does Pearson's statistic behave when we test  $H_0$ :  $p_0 = \left(\frac{4}{11}, \frac{4}{11}, \frac{1}{11}, \frac{1}{11}, \frac{1}{11}, \frac{1}{11}\right)$ ?
- Note that  $H_0$  is ture in this example.
- The expected frequencies are then all < 5:

```
1 n = 10

2 p0=c(4,4,1,1,1)/11

3 n*p0

[1] 3.6363636 3.6363636 0.9090909 0.9090909
```

ullet So we suspect the  $\chi_4^2$  approximation may not be so good.

## Using chisq.test()

• Sure enough, chisq.test() tells us this: suppose we draw the sample

```
1 samp
 [1] 1 3 3 2 3 2 2 2 2 2
  1 table(samp) # skips categories with zero frequency, can't be used here
samp
1 2 3
1 6 3
  1 Obs.freq = tabulate(samp, nbins=5) # works even if some values don't appear
  2 Obs.freq
[1] 1 6 3 0 0
 1 chisq.test(Obs.freq, p=p0)
Warning in chisq.test(Obs.freq, p = p0): Chi-squared approximation may be
incorrect
    Chi-squared test for given probabilities
data: Obs.freq
X-squared = 10.075, df = 4, p-value = 0.03918
```

• the function tabulate(samp, nbins=5) counts the frequencies of categories from 1 to 5 in this case, without skipping labels.

#### Using simulation

ullet Simulate the box under  $H_0$ 

```
box = c(1, 1, 1, 1, 2, 2, 2, 3, 4, 5)
sim.stat=0
for(i in 1:100000) {
    sim.obs = sample(box, size=n, replace=T)
    freqs = tabulate(sim.obs, nbins=5)
    sim.stat[i] = suppressWarnings(chisq.test(freqs, p=p0)$stat)
    # without supressWarnings() we get
# 10000 "approximation may be incorrect"
# warnings
# warnings
```

• Compare the quantiles of simulated Pearson's statistics with the theoretical ones

```
1 quantile(sim.stat, probs=c(0.95, 0.98, 0.99))
95% 98% 99%
8.975 12.550 14.200

1 qchisq(c(.95, .98, .99), df=4)
[1] 9.487729 11.667843 13.276704
```

• The upper 2% and 1% points are bigger than  $\chi_4^2$  would suggest.

#### Histogram of sim.stat



- ullet The distribution is multi-modal and there are more large values than  $\chi_4^2$  would suggest.
- Our earlier observed Pearson's statistic gives a simulation-based P-value of

```
1 stat = chisq.test(Obs.freq, p=p0)$stat
2 mean(sim.stat≥stat)
[1] 0.04037
```

## Using chisq.test(..., simulate=T)

The simulate=T argument gives a similar result.

```
1 stat = chisq.test(Obs.freq, p=p0)$stat
2 mean(sim.stat≥stat)

[1] 0.04037

1 chisq.test(Obs.freq, p=p0, simulate=T, B = 100000)

Chi-squared test for given probabilities with simulated p-value (based on 1e+05 replicates)

data: Obs.freq
X-squared = 10.075, df = NA, p-value = 0.04034
```

• B = ... specify the number of samples used in the simulation.



#### **Parameters**

- In Pearson's test
  - Observed frequency O of each category is compared with expected frequency E=np, where p is the probability of "landing" in that category.
  - We test **goodness of fit**, i.e. a null hypothesis  $H_0$  specifies probabilities for each category next we will see they possibly depend on some parameters.
    - riangleright alternative hypothesis is then  $H_1\colon\mathsf{not}\;H_0$ .
- ullet Pearsons statistic T is the sum of  $\frac{(O-E)^2}{E}$  over all categories.
- ullet When  $H_0$  is true, T has an approximate  $\chi^2_d$  distribution, where the degrees of freedom parameter d is given by

(no. free parameters under full model) – (no. free parameters under  $H_0$ ).

### Completely specified probability vector

- In the previous examples, we had k categories and a vector of probabilities  $m{p}=(p_1,\ldots,p_k)$  for each category.
- Then under the full model (where any probability vector is allowed), we have
  - $\rightarrow$  k parameters but
  - ightharpoonup only k-1 of these are **free** since they add to 1, if we know  $p_1,\ldots,p_{k-1}$ ,

$$p_k=1-(p_1+\cdots+p_{k-1})$$

is automatically determined.

- ullet In  $H_0$ :  $m{p}=m{p_0}=(p_{01},\ldots,p_{0k})$ , we had a completely specified probability vector  $m{p_0}$ .
  - ightharpoonup Then there are zero free parameters under  $H_0$ .
- ullet Therefore, T is approx.  $\chi^2_d$  with

$$d= ( ext{no. free parameters under full model}) - ( ext{no. free parameters under } H_0) = (k-1) - 0 = k-1$$
.

### Two-way tables: test of independence

• Consider the following data giving biological sex (row categories) and handedness (column categories) for 2,237 people:

|       | Right-handed | Left-handed | Ambidextrous | Total |
|-------|--------------|-------------|--------------|-------|
| Men   | 934          | 113         | 20           | 1067  |
| Women | 1070         | 92          | 8            | 1170  |
| Total | 2004         | 205         | 28           | 2237  |

- Do the data suggest any evidence against that the handedness and the gender are independent?
  - Note that, if they are independent, there is no difference in handedness between men and women.

#### Pearson's statistic

• The statistic takes the same basic form: we add terms like  $\frac{(O-E)^2}{E}$ , but over all cells in the table:

$$T = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

and so is now a "double sum".

- Here,
  - $ightharpoonup O_{ij}$  is the observed frequency in row i, column j
  - $lacktriangleright E_{ij}$  is the expected frequency in row i, column j under the null hypothesis.
- How do we formulate the null hypothesis exactly?
- ullet How do we determine the expected frequencies, the  $E_{ij}$ s?

#### Full model

ullet Full model: rc different categories, unconstrained probabilities

|                        | Col 1         | Col 2         |       | $\operatorname{Col} c$ | Total        |
|------------------------|---------------|---------------|-------|------------------------|--------------|
| Row 1                  | $p_{11}$      | $p_{12}$      |       | $p_{1c}$               | $p_{1ullet}$ |
| Row 2                  | $p_{21}$      | $p_{22}$      | • • • | $p_{2c}$               | $p_{2ullet}$ |
| •                      | •             | •             | ٠.    | •                      | •            |
| $\operatorname{Row} r$ | $p_{r1}$      | $p_{r2}$      |       | $p_{rc}$               | $p_{rullet}$ |
| Total                  | $p_{ullet 1}$ | $p_{ullet 2}$ | • • • | $p_{ullet c}$          | 1            |

- ullet We thus have rc-1 free parameters under the full model.
- Here we use "dot" notation for sums. E.g.,
  - $p_{ullet 1} = \sum_{i=1}^r p_{i1}$  (sum over a rows for a specified column)
  - $p_{1ullet} = \sum_{j=1}^c p_{1j}$  (sum over columns for a specified row)
- ullet The row sums  $p_{ullet j}$  gives the marginal probabilities for every column. That is,
  - $\rightarrow$  the chance of landing in j-th column category of the table. E.g., handedness in this example.
- ullet The column sums  $p_{iullet}$  gives the marginal probabilities for for every rom. That is,
  - $\rightarrow$  the chance of landing in i-th row category of the table. E.g., biological sex in this example.

## Null hypothesis

• The null hypothesis says: the events  $\{ being \ in \ Row \ i \}$  and  $\{ being \ in \ Col \ j \}$  are independent. That is

$$p_{ij} = P\{\text{in Row } i \text{ and Col } j\} = P\{\text{in Row } i\} \times P\{\text{in Col } j\} = p_{i \bullet} p_{\bullet j}$$

ullet Under  $H_0$ , the probability of each cell is

|                        | Col 1                   | Col 2                   |    | $\operatorname{Col} c$  | Total          |
|------------------------|-------------------------|-------------------------|----|-------------------------|----------------|
| Row 1                  | $p_{1ullet}p_{ullet 1}$ | $p_{1ullet}p_{ullet2}$  |    | $p_{1ullet}p_{ullet c}$ | $p_{1ullet}$   |
| Row 2                  | $p_{2ullet}p_{ullet 1}$ | $p_{2ullet}p_{ullet 2}$ |    | $p_{2ullet}p_{ullet c}$ | $p_{2\bullet}$ |
| :                      | •                       | :                       | ٠. | ÷                       | ÷              |
| $\operatorname{Row} r$ | $p_{rullet}p_{ullet 1}$ | $p_{rullet}p_{ullet 2}$ |    | $p_{rullet}p_{ullet c}$ | $p_{rullet}$   |
| Total                  | $p_{ullet 1}$           | $p_{ullet 2}$           |    | $p_{ullet c}$           | 1              |

## Observed and expected frequencies

• Observed frequencies:

|                        | Col 1           | Col 2         |       | $\operatorname{Col} c$ | Total        |
|------------------------|-----------------|---------------|-------|------------------------|--------------|
| Row 1                  | $O_{11}$        | $O_{12}$      |       | $O_{1c}$               | $O_{1ullet}$ |
| Row 2                  | $O_{21}$        | $O_{22}$      | • • • | $O_{2c}$               | $O_{2ullet}$ |
| :                      | •               | :             | ٠.    | :                      | •            |
| $\operatorname{Row} r$ | $O_{r1}$        | $O_{r2}$      |       | $O_{rc}$               | $O_{rullet}$ |
| Total                  | $O_{\bullet 1}$ | $O_{ullet 2}$ |       | $O_{ullet c}$          | n            |

ullet Expected frequencies under null hypothesis:  $E_{ij}=np_{iullet}p_{ullet j}$ 

|                        | Col 1                    | $\operatorname{Col} 2$   |       | $\operatorname{Col} c$   | Total         |
|------------------------|--------------------------|--------------------------|-------|--------------------------|---------------|
| Row 1                  | $np_{1ullet}p_{ullet 1}$ | $np_{1ullet}p_{ullet 2}$ |       | $np_{1ullet}p_{ullet c}$ | $np_{1ullet}$ |
| Row 2                  | $np_{2ullet}p_{ullet 1}$ | $np_{2ullet}p_{ullet 2}$ | • • • | $np_{2ullet}p_{ullet c}$ | $np_{2ullet}$ |
| :                      | ÷                        | :                        | ٠.    | :                        | :             |
| $\operatorname{Row} r$ | $np_{rullet}p_{ullet 1}$ | $np_{rullet}p_{ullet 2}$ | • • • | $np_{rullet}p_{ullet c}$ | $np_{rullet}$ |
| Total                  | $np_{ullet 1}$           | $np_{ullet 2}$           |       | $np_{ullet c}$           | n             |

ullet We need to estimate the marginal probabilities  $p_{iullet}$ s and the  $p_{ullet j}$ s.

# Estimate marginal probabilities $p_{iullet}$ s and $p_{ullet}$ s

• Under  $H_0$ , we can collapse all the rows into a single row (last row of the observed table) to form a single sample from the "column" box. We can then estimate the column probability  $P\{\text{in Col }j\}$  using

$$\hat{p}_{\bullet j} = rac{O_{ullet j}}{n} \,,$$

• Similarly, we can collapse all the columns into a single column (last column of the observed table) to form a single sample from the "row" box. We can then estimate the row probability  $P\{\text{in Row }i\}$  using

$$\hat{p}_{iullet}=rac{O_{iullet}}{n}$$

• This gives expected frequencies

$$E_{ij} = n\hat{p}_{i\bullet}\hat{p}_{\bullet j} = n \frac{O_{i\bullet}}{n} \frac{O_{\bullet j}}{n} = \frac{(\text{Row } i \text{ total}) \times (\text{Col } j \text{ total})}{\text{Grand total}},$$

.

### Degrees of freedom

- Pearson's statistic approximately follows a  $\chi^2$  distribution under  $H_0$  with degrees of freedom given by  $(\text{no. free parameters under full model}) (\text{no. free parameters under } H_0)$ .
- There are rc-1 free parameters under the full model.
- Under the null hypothesis there are
  - ightharpoonup r row probabilities, giving r-1 free parameters
  - ightharpoonup c column probabilities, giving c-1 free parameters
  - ightharpoonup there are thus (r-1)+(c-1) free parameters under  $H_0$ .
- The difference is

$$(rc-1)-(r-1)-(c-1)=rc-r-c+1=(r-1)(c-1)$$
.

### Handedness example

• Observed frequencies:

Row and column sums:

```
1 R = rowSums(0ij)
2 R

men women
1067 1170

1 C = colSums(0ij)
2 C

RH LH Ambi
2004 205 28
```

#### Pearson's statistic and P-value

Pearson's statistic

ullet P-value, Pearson's statistic approximately follows  $\chi^2_{(r-1)(c-1)}$ 

```
1 r=length(R)
2 c=length(C)
3 d=(r-1)*(c-1)
4 d

[1] 2
1 pchisq(stat, df=d, lower.tail=F)

[1] 0.002731055
```

## Using chisq.test()

- The R function <a href="mailto:chisq.test">chisq.test</a>() can also be used to test for relationships between rows and columns of two-way tables.
- The observed frequencies need to be in a matrix.

```
1 Oij

RH LH Ambi
men 934 113 20
women 1070 92 8

1 chisq.test(Oij)

Pearson's Chi-squared test

data: Oij
X-squared = 11.806, df = 2, p-value = 0.002731
```

### Using simulation

- As with other tests, the chi-squared approximation may not be reasonable in some circumstances,
  - if either the overall sample size is small; or
  - we have too many small expected frequencies.
- In such a case, it is possible to use the simulation-based P-value (setting simulate=T).

```
1 chisq.test(Oij, simulate=T)

Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)

data: Oij
X-squared = 11.806, df = NA, p-value = 0.003498
```

- The simulation for two way table is rather complicated (we skip the details here).
- Note that the chi-squared approximation gives a P-value that is about half the size it should be here:
  - trusting approximations blindly can lead to false significance in some cases.

### Summary

- Pearson's statistic adds  $\frac{(O-E)^2}{E}$  over each category, where O is the observed frequency and E is the expected frequency under the null hypothesis.
  - ightharpoonup We may need to estimate parameters to compute the Es.
- $\circ$  For large enough sample sizes, the statistic has an approximate  $\chi^2$  distribution under the null hypothesis, with degrees of freedom given by

(no. free parameters under full model) – (no. free parameters under  $H_0$ ).

- If we estimate parameters, we need to make sure they are estimated "properly" for this to be true.
- We can always use <a href="chisq.test(..., simulate=T">chisq.test(..., simulate=T)</a> if unsure.
  - It is good practice to always compare the two.

Example: test of independence

## Example

• The table below shows the results of a random sample of 100 males being classified according to amount of smoking (row categories) and age (column categories).

|                          | Under 40 years | Over 40 years |
|--------------------------|----------------|---------------|
| < 20 cigarettes/day      | 50             | 15            |
| $\geq 20$ cigarettes/day | 10             | 25            |

```
1 under.40 = c(50, 10)
2 over.40=c(15, 25)
3 Of = cbind(under.40, over.40)
4 rownames(Of)=c("less.20", "more.20")
5 Of

    under.40 over.40
less.20     50     15
more.20     10     25
```

## Manual calculation: use rowSums(), colSums() and outer().

Row and column sums may be obtained using apply():

```
1  rsums = rowSums(0f)
2  csums = colSums(0f)
3  rsums

less.20 more.20
65    35

1  csums

under.40  over.40
60    40
```

• Expected frequencies may be obtained using outer():

## Pearson's statistic and (theoretical) P-value

```
1 stat = sum(((0f-Ef)^2)/Ef)
2 stat

[1] 22.16117

1 pchisq(stat, df=1, lower.tail=F)

[1] 2.506928e-06
```

• This is a very small P-value, providing very strong evidence against the hypothesis that smoking level and age are independent.

## Using chisq.test() in the 2-by-2 case

- When we have a 2-by-2 table, the R function chisq.test() applies a (Yates') "continuity correction" by subtracting 0.5 from each |O-E| before squaring.
  - This is designed to improve the chi-squared approximation.
  - We **do not want this** though: it confuses the issue (we prefer to use simulation if the chi-squared approximation is not reliable).
- We must thus use chisq.test(..., correct=F).
- With the correction we get a *slightly smaller* statistic:

```
1 chisq.test(Of)

Pearson's Chi-squared test with Yates' continuity correction

data: Of
X-squared = 20.192, df = 1, p-value = 7.003e-06
```

• Without the correction we get results that agree with our manual calculation:

```
1 chisq.test(Of, correct=F)

Pearson's Chi-squared test

data: Of
X-squared = 22.161, df = 1, p-value = 2.507e-06
```

• We can also use <a href="mailto:chisq.test()">chisq.test()</a>'s built-in <a href="mailto:simulate=T">simulate=T</a> option to obtain the simulated P-value:

```
1 chisq.test(Of, simulate=T)

Pearson's Chi-squared test with simulated p-value (based on 2000 replicates)

data: Of
X-squared = 22.161, df = NA, p-value = 0.0004998
```

• For all methods, we get a very small P-value: this data provides very strong evidence of a relationship between age and smoking level.