POLYMER PHYSICS: THERMODYNAMICS OF POLYMER SOLUTIONS

Department of Chemical Engineering Indian Institute of Technology Guwahati

CONTENT

Thermodynamics of Polymer Solution: Flory-Huggins Theory

- Combinatorial Term: ΔS_m^{comb}
- Contact Term: $\Delta G_{\rm m}^{\rm contact}$
- Flory-Huggins Interaction Parameter, χ
- Flory-Huggins Equation for Gibbs Free Energy of Mixing
- Partial Molar Properties: Chemical Potential

NOMENCLATURE

 X_i : Mole fraction of component i

 N_i : Number of molecules of component i

N: Total number of lattice cells

 n_i : Number of moles of component i

 m_i : Mass of component i

n: Total mass (of all components)

 $N_{\rm Av}$: Avogadro constant (~6.022x10²³ mol⁻¹)

 k_{B} : Boltzmann constant (~1.3806x10²³ J K⁻¹)

R: Universal gas constant (~8.314 J mol⁻¹ K⁻¹)

 H_i : Enthalpy of component i

 S_i : Entropy of component i

 G_i : Gibbs free energy of component i

 $\Delta H_{\rm m}$: Enthalpy change of mixing

 $\Delta S_{
m m}$: Entropy change of mixing

 $\Delta G_{
m m}$: Gibbs free energy change of mixing

T: Temperature

x: Number of segments per polymer molecule

FLORY-HUGGINS THEORY: ASSUMPTIONS

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins
Interaction
Parameter

Flory-Huggins
Equation

- Same lattice describes the solvent, the polymer and the solution
- There is no volume change of mixing
- All polymer molecules contain the same number of segments
- Self-intersections within polymer chain is allowed
- The volume occupied by one polymer segment is equal to that occupied by one solvent molecule
- Mean Field Approximation: The segments are uniformly distributed on the lattice.
 Poor assumption for dilute solutions.

Dilute Solution

FLORY-HUGGINS THEORY: COMBINATORIAL TERM

Consider Athermal Mixing First: $\Delta H_{
m m}=0$

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins
Interaction
Parameter

Flory-Huggins
Equation

Chemical Potential

$$\Delta S_{\rm m}^{\rm comb} = -k_B [N_1 \ln \phi_1 + N_2 \ln \phi_2] = -R[n_1 \ln \phi_1 + n_2 \ln \phi_2]$$

$$\phi_1 = \frac{N_1}{N} = \frac{N_1}{N_1 + xN_2}$$
 $\phi_2 = \frac{xN_2}{N} = \frac{xN_2}{N_1 + xN_2}$

 ϕ_1 : Volume fraction of solvent

 ϕ_2 : Volume fraction of polymer (solute)

Compare with Ideal Solution Expression (when x = 1):

$$\Delta S_{\rm m}^{\rm ideal} = -k_B [N_1 \ln X_1 + N_2 \ln X_2] = -R[n_1 \ln X_1 + n_2 \ln X_2]$$

FLORY-HUGGINS THEORY: COMBINATORIAL TERM

$$\Delta S_{\rm m}^{\rm comb} = -k_B[N_1 \ln \phi_1 + N_2 \ln \phi_2] = -R[n_1 \ln \phi_1 + n_2 \ln \phi_2]$$

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins
Interaction
Parameter

Flory-Huggins Equation

Chemical Potential

Even at very low mole fraction, the volume fraction of polymer chains can be considerable.

Example:

Consider a system with 98 solvent molecules and 2 polymer molecules ($N_1 = 98$, $N_2 = 2$). Let each polymer molecule contain 100 segments (x = 100)

$$X_1 = \frac{N_1}{N_1 + N_2} = \frac{98}{98 + 2} = 0.98$$

$$X_2 = 1 - X_1 = 0.02$$

$$\phi_1 = \frac{N_1}{N} = \frac{N_1}{N_1 + xN_2} = \frac{98}{98 + 2 \times 100} \approx 0.33$$

$$\phi_2 = 1 - \phi_1 \cong 0.67$$

$$\Delta S_{\rm m}^{\rm ideal} = -k_B [N_1 \ln X_1 + N_2 \ln X_2] = 9.8 k_B$$

$$\left[\Delta S_{\rm m}^{\rm comb}\right]_{\rm FH} = -k_B [N_1 \ln \phi_1 + N_2 \ln \phi_2] = 109.45 k_B$$

FLORY-HUGGINS THEORY: CONTACT TERM

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins
Interaction
Parameter

Flory-Huggins
Equation

Chemical Potential

Next Step: Incorporate Effects of Intermolecular Interactions

- Enthalpy Change
- Entropy Change (ordering induced by interactions)

Both effects are considered together as contact Gibbs free energy change $\Delta G_{\mathrm{m}}^{\mathrm{contact}}$

Assumption: Only first neighbour interactions are considered

Types of Contact:

Gibbs free energies of interaction

- Solvent-Solvent Contact $\longrightarrow g_{11}$
- Segment-Segment Contact $\longrightarrow g_{22}$
- Solvent-Segment Contact $\longrightarrow g_{12}$

FLORY-HUGGINS THEORY: CONTACT TERM

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins Interaction Parameter

Flory-Huggins
Equation

Chemical Potential

To form two solvent-segment contacts, one solvent-solvent and one segment-segment contact are broken.

Pure Solvent Polymer Solution Pure Polymer

So, the Gibbs free energy change for the formation of a single solvent-segment contact is:

$$\Delta g_{12} = g_{12} - \frac{1}{2}(g_{11} + g_{22})$$

If the number of solvent-segment contacts in the solution is p_{12} , we have

$$\Delta G_{\rm m}^{\rm contact} = p_{12} \Delta g_{12}$$

FLORY-HUGGINS THEORY: CONTACT TERM

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins
Interaction
Parameter

Flory-Huggins Equation

Chemical Potential

Number of lattice cells adjacent to each polymer molecule:

$$(z-2) \times (x-2) + (z-1) \times 2 = (z-2)x + 2 \cong (z-2)x$$

Segments NOT Segments For large x at chain ends

Total number of lattice cells adjacent to all polymer molecules in the solution: $N_2(z-2)x$

Number of solvent-segment contacts in the solution, $p_{12} = N_2(z-2)x\phi_1$

(Mean-field Approximation)

$$N_2 x \phi_1 = (x N_2) \frac{N_1}{N_1 + x N_2} = N_1 \frac{x N_2}{N_1 + x N_2} = N_1 \phi_2$$

$$p_{12} = N_2(z-2)x\phi_1 = (z-2)N_1\phi_2$$

FLORY-HUGGINS INTERACTION PARAMETER, χ

$$\Delta G_{\rm m}^{\rm contact} = p_{12} \Delta g_{12}$$

$$p_{12} = (z - 2)N_1\phi_2$$

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins
Interaction
Parameter

Flory-Huggins Equation

Chemical Potential

Define Flory-Huggins Polymer-Solvent Interaction parameter, χ :

$$\chi = \frac{(z-2)\Delta g_{12}}{k_B T}$$

 $\Delta G_{\rm m}^{\rm contact} = (z-2)N_1\phi_2\Delta g_{12}$

$$\Delta G_{\rm m}^{\rm contact} = k_B T N_1 \phi_2 \chi = R T n_1 \phi_2 \chi$$

$$\chi = a + \frac{b}{r}$$
 (a, b are independent of temperature) $\chi = \chi_H + \chi_S$

$$\chi_H = -T\left(\frac{\partial \chi}{\partial T}\right) = \frac{b}{T}$$

$$\chi_S = \frac{\partial (T\chi)}{\partial T} = a$$

FLORY-HUGGINS EQUATION

Combinatorial contribution to change in Gibbs free energy:

$$-T\Delta S_{\rm m}^{\rm comb} = RT[n_1 \ln \phi_1 + n_2 \ln \phi_2]$$

Change in Gibbs free energy due to interaction:

$$\Delta G_{\rm m}^{\rm contact} = RT n_1 \phi_2 \chi$$

Gibbs Free Energy of Mixing:

$$\Delta G_{\rm m} = \Delta G_{\rm m}^{\rm contact} - T\Delta S_{\rm m}^{\rm comb} = RT n_1 \phi_2 \chi + RT [n_1 \ln \phi_1 + n_2 \ln \phi_2]$$

$$\Delta G_{\rm m} = RT[n_1 \mathrm{ln}\phi_1 + n_2 \mathrm{ln}\phi_2 + n_1\phi_2\chi]$$

Flory-Huggins Equation for the Gibbs Free Energy of Mixing

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins
Interaction
Parameter

Flory-Huggins Equation

FLORY-HUGGINS EQUATION

$$\Delta G_{\rm m} = RT[n_1 \ln \phi_1 + n_2 \ln \phi_2 + n_1 \phi_2 \chi]$$

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins
Interaction
Parameter

Flory-Huggins Equation

Chemical Potential

Flory-Huggins equation can qualitatively describe:

- Equilibrium thermodynamic properties of polymer solutions
- Phase separation and fractionation behavior
- Swelling of network polymers

Limitations:

- Trends are predicted but quantitative agreement not achieved
- Self intersections of polymer chains allowed: physically unrealistic
- Mean-field approximation: Not satisfactory for dilute solutions
- χ is not a simple parameter

PARTIAL MOLAR PROPERTY AND CHEMICAL POTENTIAL

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins
Interaction
Parameter

Flory-Huggins Equation

Chemical Potential

Partial Molar Property:
$$\bar{Z}_i = \left(\frac{\partial Z}{\partial n_i}\right)_{T,P,n_{j\neq i}}$$

Chemical Potential, μ_i , is the Partial Molar Gibbs Free Energy

$$\mu_i = \bar{G}_i = \left(\frac{\partial G}{\partial n_i}\right)_{T,P,n_{j \neq i}}$$

Activity, a_i , is related to the chemical potential by:

$$\mu_i - \mu_i^0 = RT \ln a_i$$

 μ_i^0 : Chemical potential of component i in its standard state

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins
Interaction
Parameter

Flory-Huggins Equation

Partial Molar Property

Chemical Potential

$$\mu_i - \mu_i^0 = \overline{\Delta G}_i = \left(\frac{\partial \Delta G}{\partial n_i}\right)_{T,P,n_{j \neq i}}$$

Using Flory-Huggins equation:

$$\Delta G_{\rm m} = RT[n_1 \ln \phi_1 + n_2 \ln \phi_2 + n_1 \phi_2 \chi]$$

For the solvent (component 1):

$$\mu_1 - \mu_1^0 = \left(\frac{\partial \Delta G_{\rm m}}{\partial n_1}\right)_{T,P,n_2} = RT \left[\frac{\partial}{\partial n_1} \{n_1 \ln \phi_1 + n_2 \ln \phi_2 + n_1 \phi_2 \chi\}\right]_{T,P,n_2}$$

$$\frac{\mu_1 - \mu_1^0}{RT} = n_1 \left[\frac{\partial (\ln \phi_1)}{\partial n_1} \right]_{T,P,n_2} + \ln \phi_1 + n_2 \left[\frac{\partial (\ln \phi_2)}{\partial n_1} \right]_{T,P,n_2} + \phi_2 \chi + n_1 \chi \left[\frac{\partial (\phi_2)}{\partial n_1} \right]_{T,P,n_2}$$

$$\frac{\mu_1 - \mu_1^0}{RT} = n_1 \left[\frac{\partial (\ln \phi_1)}{\partial n_1} \right]_{T,P,n_2} + \ln \phi_1 + n_2 \left[\frac{\partial (\ln \phi_2)}{\partial n_1} \right]_{T,P,n_2} + \phi_2 \chi + n_1 \chi \left[\frac{\partial (\phi_2)}{\partial n_1} \right]_{T,P,n_2}$$

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins
Interaction
Parameter

Flory-Huggins Equation

Partial Molar Property

$$\left[\frac{\partial(\ln\phi_1)}{\partial n_1}\right]_{T,P,n_2} = \left[\frac{\partial(\ln\phi_1)}{\partial\phi_1}\right]_{T,P,n_2} \left[\frac{\partial(\phi_1)}{\partial n_1}\right]_{T,P,n_2} = \frac{1}{\phi_1} \left[\frac{\partial(\phi_1)}{\partial n_1}\right]_{T,P,n_2}$$

$$\phi_1 = \frac{N_1}{N_1 + xN_2} = \frac{n_1}{n_1 + xn_2}$$

$$\left[\frac{\partial(\phi_1)}{\partial n_1}\right]_{TPn_2} = \frac{1}{n_1 + xn_2} - \frac{n_1}{(n_1 + xn_2)^2} = \frac{xn_2}{(n_1 + xn_2)^2}$$

$$\left[\frac{\partial(\ln\phi_1)}{\partial n_1}\right]_{T.P.n_2} = \frac{xn_2}{\phi_1(n_1 + xn_2)^2} = \frac{xn_2}{n_1(n_1 + xn_2)} = \frac{\phi_2}{n_1}$$

$$\frac{\mu_1 - \mu_1^0}{RT} = n_1 \left[\frac{\partial (\ln \phi_1)}{\partial n_1} \right]_{T,P,n_2} + \ln \phi_1 + n_2 \left[\frac{\partial (\ln \phi_2)}{\partial n_1} \right]_{T,P,n_2} + \phi_2 \chi + n_1 \chi \left[\frac{\partial (\phi_2)}{\partial n_1} \right]_{T,P,n_2}$$

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins Interaction Parameter

Flory-Huggins Equation

Partial Molar Property

$$\left[\frac{\partial(\ln\phi_2)}{\partial n_1}\right]_{T,P,n_2} = \left[\frac{\partial(\ln\phi_2)}{\partial\phi_2}\right]_{T,P,n_2} \left[\frac{\partial(\phi_2)}{\partial n_1}\right]_{T,P,n_2} = \frac{1}{\phi_2} \left[\frac{\partial(\phi_2)}{\partial n_1}\right]_{T,P,n_2}$$

$$\phi_2 = \frac{xN_2}{N_1 + xN_2} = \frac{xn_2}{n_1 + xn_2}$$

$$\left[\frac{\partial(\phi_2)}{\partial n_1}\right]_{TPn_2} = -\frac{xn_2}{(n_1 + xn_2)^2} = -\frac{\phi_2}{n_1 + xn_2}$$

$$\left[\frac{\partial(\ln\phi_2)}{\partial n_1}\right]_{T,P,n_2} = \frac{1}{\phi_2} \left[\frac{\partial(\phi_2)}{\partial n_1}\right]_{T,P,n_2} = -\frac{1}{n_1 + xn_2}$$

$$\frac{\mu_1 - \mu_1^0}{RT} = n_1 \left[\frac{\partial (\ln \phi_1)}{\partial n_1} \right]_{T,P,n_2} + \ln \phi_1 + n_2 \left[\frac{\partial (\ln \phi_2)}{\partial n_1} \right]_{T,P,n_2} + \phi_2 \chi + n_1 \chi \left[\frac{\partial (\phi_2)}{\partial n_1} \right]_{T,P,n_2}$$

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins

Interaction

Parameter

Flory-Huggins

Equation

Partial Molar Property

$$\left[\frac{\partial(\ln\phi_1)}{\partial n_1}\right]_{T,P,n_2} = \frac{\phi_2}{n_1} \qquad \left[\frac{\partial(\ln\phi_2)}{\partial n_1}\right]_{T,P,n_2} = -\frac{1}{n_1 + xn_2} \qquad \left[\frac{\partial(\phi_2)}{\partial n_1}\right]_{T,P,n_2} = -\frac{\phi_2}{n_1 + xn_2}$$

$$\frac{\mu_1 - \mu_1^0}{RT} = n_1 \left(\frac{\phi_2}{n_1}\right) + \ln \phi_1 - \frac{n_2}{n_1 + xn_2} + \phi_2 \chi - \frac{n_1 \chi \phi_2}{n_1 + xn_2}$$

$$\frac{\mu_1 - \mu_1^0}{RT} = \phi_2 + \ln \phi_1 - \frac{\phi_2}{x} + \phi_2 \chi - \phi_1 \chi \phi_2 = \ln \phi_1 + \phi_2 \left(1 - \frac{1}{x}\right) + \phi_2 \chi (1 - \phi_1)$$

$$\mu_1 - \mu_1^0 = RT \left[\ln \phi_1 + \phi_2 \left(1 - \frac{1}{x} \right) + \chi \phi_2^2 \right]$$

CHEMICAL POTENTIAL AND ACTIVITY

Flory-Huggins Theory:

Combinatorial Term

Contact Term

Flory-Huggins Interaction

Parameter

Flory-Huggins

Equation

Partial Molar Property

Chemical Potential

For Solvent:
$$\mu_1 - \mu_1^0 = RT \left[\ln \phi_1 + \phi_2 \left(1 - \frac{1}{x} \right) + \chi \phi_2^2 \right]$$

 $(\gamma_i$: Activity Coefficient)

$$\ln a_1 = \ln(\gamma_1 X_1) = \frac{\mu_1 - \mu_1^0}{RT} = \ln \phi_1 + \phi_2 \left(1 - \frac{1}{x}\right) + \chi \phi_2^2$$

For Polymer:

$$\mu_2 - \mu_2^0 = RT \left[\ln \phi_2 + \phi_1(x - 1) + x\chi \phi_1^2 \right]$$

$$\ln a_2 = \ln(\gamma_2 X_2) = \frac{\mu_2 - \mu_2^0}{RT} = \ln \phi_2 + \phi_1(x - 1) + x\chi\phi_1^2$$

Per Segment:

$$\mu_{s} - \mu_{s}^{0} = \frac{\mu_{2} - \mu_{2}^{0}}{x} = RT \left[\frac{\ln \phi_{2}}{x} + \phi_{1} \left(1 - \frac{1}{x} \right) + \chi \phi_{1}^{2} \right]$$

For polydisperse sample, number-average value of x should be used: $\bar{x}_n = \frac{\sum_i x_i n_i}{\sum_i n_i} = \frac{\sum_i x_i n_i}{n_i}$

$$\bar{x}_n = \frac{\sum_i x_i n_i}{\sum_i n_i} = \frac{\sum_i x_i n_i}{n_2}$$