

HC32L130 系列 / HC32L136 系列

32 位 ARM® Cortex®-M0+ 微控制器

数据手册

产品特性

- 48MHz Cortex-M0+32 位 CPU 平台
- HC32L130/HC32L136 系列具有灵活的功耗管 理系统,超低功耗性能
 - 0.5μA@3V深度睡眠模式: 所有时钟关闭, 上电复位有效, IO 状态保持, IO 中断有效, 所有寄存器, RAM 和 CPU 数据保存状态 时的功耗
 - 0.9μA @3V 深度睡眠模式+ RTC 工作
 - 7μA@32.768kHz 低速工作模式: CPU 和外设运行,从 flash 运行程序
 - 35μA/MHz@3V@24MHz 睡眠模式: CPU 停止,外设运行,主时钟运行
 - 130μA/MHz@3V@24MHz 工作模式: CPU
 和外设运行,从 flash 运行程序
 - 4μS 超低功耗唤醒时间,使模式切换更加灵活高效,系统反应更为敏捷
- 64K 字节 FLASH 存储器,具有擦写保护功能
- 8K字节 RAM 存储器,附带奇偶校验,增强系统的稳定性
- 通用 I/O 引脚 (56IO/64pin, 40IO/48pin)
- 时钟、晶振
 - 外部高速晶振 4MHz~32MHz
 - 外部低速晶振 32.768KHz
 - 内部高速时钟 4/8/16/22.12/24MHz
 - 内部低速时钟 32.8 / 38.4KHz
 - PLL 时钟 4MHz~48MHz
 - 硬件支持内外时钟校准和监控
- 定时器/计数器
 - 3个1通道互补通用16位定时器
 - 1个3通道互补输出16位定时器
 - 1个低功耗16位定时器
 - 3 个高性能 16 位定时器/计数器,支持 PWM 互补,死区保护功能
 - 1 个可编程 16 位定时器 PCA, 支持捕获比较, PWM 输出

- 1个超低功耗脉冲计数器 PCNT
- 1 个 20 位可编程看门狗电路,内建专用 10kHz 振荡器提供 WDT 计数

● 通讯接口

- 2路 UART 标准通讯接口
- 2路 LPUART 低功耗通讯接口,深度睡眠模式下可工作
- 2路 SPI 标准通讯接口
- 2路 I2C 标准通讯接口
- 蜂鸣器频率发生器,支持互补输出
- 硬件万年历 RTC 模块
- 硬件 CRC-16/32 模块
- 硬件 32 位除法器
- AES-128 硬件协处理器
- TRNG 真随机数发生器
- 2 通道 DMAC
- 4*40 / 6*38 / 8*36 LCD 驱动
- 全球唯一 10 字节 ID 号
- 12 位 1Msps 采样的高速高精度 SARADC,内 置运放,可测量外部微弱信号
- 集成3个多功能运算放大器
- 集成 6 位 DAC 和可编程基准输入的 2 路电压 比较器 VC
- 集成低电压侦测器,可配置 16 阶比较电平,可 监控端口电压以及电源电压
- SWD 调试解决方案,提供全功能调试器
- 工作条件: -40~85°C, 1.8~5.5V
- 封装形式: QFN32,LQFP64/48,TSSOP28

支持型号

HC32L136K8TA	HC32L130F8UA
HC32L136J8TA	HC32L130E8PA
HC32L130J8TA	

声明

- ▶ 华大半导体有限公司(以下简称: "HDSC")保留随时更改、更正、增强、修改华大半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。HDSC产品依据购销基本合同中载明的销售条款和条件进行销售。
- ▶ 用户对 HDSC 产品的选择和使用承担全部责任,用户将 HDSC 产品用于其自己或指定第三方产品上的,HDSC 不提供服务支持且不对此类产品承担任何责任。
- ▶ HDSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ▶ HDSC 产品的转售,若其条款与此处规定不同,HDSC 对此类产品的任何保修承诺无效。
- ► 任何带有"®"或"TM"标识的图形或字样是 HDSC 的商标。所有其他在 HDSC 产品上显示的产品或服务 名称均为其各自所有者的财产。
- ▶ 本通知中的信息取代并替换先前版本中的信息。

©2019 华大半导体有限公司 - 保留所有权利

目 录

产	-品特性	1
声	明	2
目	录	3
1.	简介	5
2.	产品阵容	18
	产品名称	18
	功能	19
3.	引脚配置	21
4.	引脚功能与模块功能	25
5.	框图	37
6.	存储区映射图	38
7.	电气特性	40
	7.1 测试条件	40
	7.1.1. 最小和最大数值	40
	7.1.2. 典型数值	40
	7.1.3. 供电方案	41
	7.2 绝对最大额定值	42
	7.3 工作条件	43
	7.3.1 通用工作条件	43
	7.3.2 上电和掉电时的工作条件	43
	7.3.3 内嵌复位和 LVD 模块特性	44
	7.3.4 内置的参考电压	46
	7.3.5 供电电流特性	46
	7.3.6 从低功耗模式唤醒的时间	50
	7.3.7 外部时钟源特性	51
	7.3.8 内部时钟源特性	55
	7.3.9 PLL 特性	56
	7.3.10 存储器特性	56
	7.3.11 EFT 特性	56
	7.3.12 ESD 特性	57
	7.3.13 I/O 端口特性	57
	7.3.14 RESETB 引脚特性	60
	7.3.15 ADC 特性	60
	7.3.16 VC 特性	63
	7.3.17 OPA 特性	64
	7.3.18 LCD 控制器	64
8.	封装信息	65
	封装尺寸	65
	丝印说明	70
9.	订购信息	72

1. 简介

HC32L130/HC32L136 系列是一款旨在延长便携式测量系统的电池使用寿命的超低功耗、宽电压工作范围的 MCU。集成 12 位 1M sps 高精度 SARADC 以及集成了比较器、运放、内置高性能 PWM 定时器,LCD显示、多路 UART、SPI、I2C 等丰富的通讯外设,内建 AES、TRNG 等信息安全模块,具有高整合度、高抗干扰、高可靠性和超低功耗的特点。本产品内核采用 Cortex-M0+ 内核,配合成熟的Keil & IAR 调试开发软件,支持 C 语言及汇编语言,汇编指令。

超低功耗 MCU 典型应用

- 传感器应用,物联网应用;
- 智能交通,智慧城市,智能家居;
- 火警探头,智能门锁,无线监控等智能传感器应用;
- 各种对于电池供电和对于功耗苛求的便携式设备等。

32 位 CORTEX M0+ 内核

ARM® Cortex®-M0+ 处理器源于 Cortex-M0,包含了一颗 32 位 RISC 处理器,运算能力达到 0.95 Dhrystone MIPS/MHz。同时加入了多项全新设计,改进调试和追踪能力、减少每条指令循环(IPC)数量和改进 Flash 访问的两级流水线等,更纳入了节能降耗技术。Cortex-M0+ 处理器全面支持已整合 Keil & IAR 调试器。

Cortex-M0+ 包含了一个硬件调试电路, 支持 2-pin 的 SWD 调试界面。

ARM Cortex-M0+ 特性:

指令集	Thumb / Thumb-2
流水线	2级流水线
性能效率	2.46 CoreMark / MHz
性能效率	0.95 DMIPS / MHz in Dhrystone
中断	32个快速中断
中断优先级	可配置4级中断优先级
增强指令	单周期32位乘法器
调试	Serial-wire 调试端口,支持4个硬中断(break point)以及2个观察点(watch
	point)

64K Byte Flash

内建全集成 Flash 控制器,无需外部高压输入,由全内置电路产生高压来编程。支持 ISP、 IAP、ICP 功能。

8K Byte RAM

根据客户选择不同的超低功耗模式,RAM 数据都会被保留。自带硬件奇偶校验位,万一数据被意外破坏,在数据被读取时,硬件电路会立刻产生中断,保证系统的可靠性。

时钟系统

- 一个频率为 4M~24MHz 可配置的高精度内部时钟 RCH。在配置 16MHz 下,从低功耗模式到工作模式的唤醒时间为 3uS,全电压全温度范围内的频率偏差 < ±2.5%,无需外接昂贵的高频晶体。
- 一个频率为 4M~32MHz 的外部晶振 XTH。
- 一个频率为 32.768KHz 的外部晶振 XTL, 主要提供 RTC 实时时钟。
- 一个频率为 32.768/38.4KHz 的内部时钟 RCL。
- 一个频率为 4M~48MHz 输出的 PLL。

工作模式

- 1) 运行模式 Active: CPU 运行,周边功能模块运行。
- 2) 休眠模式 Sleep: CPU 停止运行,周边功能模块运行。
- 3) 深度休眠模式 Deep sleep: CPU 停止运行,高速时钟停止,低功耗功能模块运行。

硬件实时时钟 RTC

RTC(Real Time Counter)是一个支持 BCD 数据的寄存器,采用 32,768Hz 晶振作为其时钟,能实现 万年历功能,中断周期可配置为年/月/日/小时/分钟/秒。24/12 小时时间模式,硬件自动修正闰年。具有精确度补偿功能,最高精度为 0.96ppm。可使用内部温度传感器或外部温度传感器进行精确度补偿,可用软件+1/-1 调整年/月/日/小时/分钟/秒,最小可调精度为 1 秒。

用于指示时间和日期的 RTC 日历记录器在 MCU 受外部因素影响而复位时不会清除保留值,是需要永久高精度实时时钟的测量设备仪表的最佳选择。

通用 IO 端口

最多可提供 56个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制,支持 FAST IO。支持边沿触发中断和电平触发中断,可从各种超低功耗模式下把 MCU 唤醒到工作模式。支持位置位,位清零,位置位清零操作。支持 Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能力可配置,最大支持12mA 的电流驱动能力。56个通用 IO 可支持外部异步中断。

中断控制器

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多 32 个中断请求(IRQ)输入;有四个中断优先级,可处理复杂逻辑,能够进行实时控制和中断处理。

32 个中断入口向量地址,分别为:

中断向量号	中断来源
[0]	GPIO_PA
[1]	GPIO_PB
[2]	GPIO_PC
[3]	GPIO_PD
[4]	DMAC
[5]	TIM3
[6]	UART0

[7] UART1	
[8] LPUART0	
[9] LPUART1	
[10] SPI0	
[11] SPI1	
[12] I2C0	
[13] I2C1	
[14] TIM0	
[15] TIM1	
[16] TIM2	
[17] LPTIM	
[18] TIM4	
[19] TIM5	
[20] TIM6	
[21] PCA	
[22] WDT	
[23] RTC	
[24] ADC	
[25] PCNT	
[26] VC0	
[27] VC1	
[28] LVD	
[29] LCD	
[30] RAM FLAS	Н
[31] CLKTRIM	

复位控制器

本产品具有 7 个复位信号来源,每个复位信号可以让 CPU 重新运行,绝大多数寄存器会被重新复位,程序计数器 PC 会复位指向 00000000。

	中断来源
[0]	上电掉电复位 POR BOR
[1]	外部 Reset Pin 复位
[2]	WDT 复位
[3]	PCA 复位
[4]	Cortex-M0+ LOCKUP 硬件复位
[5]	Cortex-M0+ SYSRESETREQ 软件
	复位
[6]	LVD 复位

DMAC

DMAC (直接内存访问控制器) 功能块可以不通过 CPU 高速传输数据。使用 DMAC 能提高系统性能。

定时器/计数器

类型	名称	位宽	预除频	计数方向	PWM	捕获	互补输出
通用定时	TIM0	16/32	1/2/4/8/16	上计数/	2	2	1
器			32/64/256	下计数/			
				上下计数			
	TIM1	16/32	1/2/4/8/16/	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM2	16/32	1/2/4/8/16/	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM3	16/32	1/2/4/8/16/	上计数/	6	6	3
			32/64/256	下计数/			
				上下计数			
低功耗定	LPTIM	16	无	上计数	无	无	无
时器							
可编程计	PCA	16	2/4/8/16/32	上计数	5	5	无
数阵列							
高级定时	TIM4	16	1/2/4/8/16/	上计数/	2	2	1
器			64/256/1024	下计数/			
				上下计数			
	TIM5	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			
	TIM6	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			

通用定时器 包含四个定时器 TIM0/1/2/3。

通用定时器特性

- PWM 独立输出,互补输出
- 捕获输入
- 死区控制
- 刹车控制
- 边沿对齐、对称中心对齐与非对称中心对齐 PWM 输出

- 正交编码计数功能
- 单脉冲模式
- 外部计数功能

TIM0/1/2 功能完全相同。TIM0/1/2 是同步定时/计数器,可以作为 16 位自动重装载功能的定时/计数器,也可以作为 32 位无重载功能的定时/计数器。TIM0/1/2 每个定时器都具有 2 路捕获比较功能,可以产生 2 路 PWM 独立输出或 1 组 PWM 互补输出。具有死区控制功能。

TIM3 是多通道的通用定时器,具有 TIM0/1/2 的所有功能,可以产生 3 组 PWM 互补输出或 6 路 PWM 独立输出,最多 6 路输入捕获。具有死区控制功能。

低功耗定时器 LPTIM 是异步 16 位定时/计数器,在系统时钟关闭后仍然可以通过内部低速 RC 或者外部低速晶体振荡计时/计数。通过中断在低功耗模式下唤醒系统。

PCA(可编程计数器阵列 Programmable Counter Array)支持最多 5 个 16 位的捕获/比较模块。该定时/计数器可用作为一个通用的时钟计数/事件计数器的捕获/比较功能。PCA 的每个模块都可以进行独立编程,以提供输入捕捉,输出比较或脉冲宽度调制。另外模块 4 有额外的看门狗定时器模式。

高级定时器 Advanced Timer 包含三个定时器 TIM4/5/6。TIM4/5/6 是功能相同的高性能计数器,可用于计数产生不同形式的时钟波形,1个定时器可以产生互补的一对 PWM 或者独立的 2 路 PWM 输出,可以捕获外界输入进行脉冲宽度或周期测量。

Advanced Timer 基本的功能及特性如表所示:

波形模式	锯齿波、三角波					
	• 递加、递减计数方向					
	• 软件同步					
	• 硬件同步					
基本功能	• 缓存功能					
基 华切肥	• 正交编码计数					
	• 通用PWM输出					
	• 保护机制					
	• AOS关联动作					
	计数比较匹配中断					
中断类型	计数周期匹配中断					
	死区时间错误中断					

超低功耗脉冲计数器 PCNT

PCNT (Pulse Counter) 模块用以对外部脉冲进行计数,支持单路以及双路(正交编码与非交叉编码)

脉冲。它可以在低功耗休眠模式下无需软件参与进行计数。

脉冲计数器特性:

- 支持重载功能的 16 bit 计数器
- 单通道脉冲计数
- 双通道非交脉冲计数
- 双通道正交脉冲计数,不失码
- 加/减计数溢出中断
- 脉冲超时中断
- 4种解码错误中断,非交脉冲模式
- 1种方向改变中断,正交脉冲模式
- 多级脉冲宽度滤波
- 输入脉冲极性可配置
- 支持低功耗模式计数
- 支持唤醒低功耗模式下 MCU
- 支持任意脉冲沿间距不小于1个计数时钟周期

看门狗 WDT

WDT (Watch Dog Timer)是一个可配置的 20 位定时器,在 MCU 异常的情况下提供复位;内建 10KHz 低速时钟输入作为计数器时钟。调试模式下,可选择暂停或继续运行;只有写入特定序列才能重启 WDT。

通用异步收发器 UART0~UART1

2 路通用异步收发器(Universal Asynchronous Receiver/Transmitter),UART0/UART1。

通用 UART 基本功能:

- 半双工和全双工传输
- 8/9-Bit 传输数据长度
- 硬件奇偶校验
- 1/1.5/2-Bit 停止位
- 四种不同传输模式
- 16-Bit 波特率计数器

- 多机通讯
- 硬件地址识别
- DMAC 硬件传输握手
- 硬件流控

低功耗异步收发器 LPUART0~LPUART1

2 路低功耗模式下可以工作的异步收发器(Low Power Universal Asynchronous Receiver/Transmitter),LPUART0/LPUART1。

LPUART 基本功能:

- 传输时钟 SCLK(SCLK 可选择 XTL、RCL 以及 PCLK)
- 系统低功耗模式下收发数据
- 半双工和全双工传输
- 8/9-Bit 传输数据长度
- 硬件奇偶校验
- 1/1.5/2-Bit 停止位
- 四种不同传输模式
- 16-Bit 波特率计数器
- 多机通讯
- 硬件地址识别
- DMAC 硬件传输握手
- 硬件流控

同步串行接口 SPI

2路同步串行接口(Serial Peripheral Interface)。

SPI 基本特性:

- 通过编程可以配置为主机或者从机
- 四线传输方式,全双工通信
- 主机模式7种波特率可配置
- 主机模式最大波特率为 1/2 系统时钟

- 从机模式最大波特率为 1/8 系统时钟
- 可配置的串行时钟极性和相位
- 支持中断
- 8位数据传输,先传输高位后低位
- 支持 DMA 软件/硬件访问

I2C 总线

2路 I2C,采用串行同步时钟,可实现设备之间以不同的速率传输数据。

I2C 基本特性:

- 支持主机发送/接收,从机发送/接收四种工作模式
- 支持标准(100Kbps) / 快速(400Kbps) / 高速(1Mbps) 三种工作速率
- 支持7位寻址功能
- 支持噪声过滤功能
- 支持广播地址
- 支持中断状态查询功能

蜂鸣器 Buzzer

4 个通用定时器与 1 个 低功耗定时器功能复用输出为 Buzzer 提供可编程驱动频率。该蜂鸣器端口可提供 16mA 的 sink 电流,互补输出,不需要额外的三极管。

时钟校准电路

内建时钟校准电路,可以通过外部精准的晶振时钟校准内部 RC 时钟,亦可使用内部 RC 时钟去检验外部晶振时钟是否工作正常。

时钟校准基本特性:

- 校准模式
- 监测模式
- 32 位参考时钟计数器可加载初值
- 32 位待校准时钟计数器可配置溢出值
- 6 种参考时钟源

- 5 种待校准时钟源
- 支持中断方式

唯一识别号 UID

每颗芯片出厂前具备唯一的 10 字节设备标识号,包括 wafer lot 信息,以及芯片坐标信息等。UID 地址为: 0X00100E74 - 0X00100E7D。

CRC16/32 硬件循环冗余校验码

CRC16 符合 ISO/IEC13239 中给出的多项式 =X16+X12+X5+1

CRC32 符合 ISO/IEC13239 中给出的多项式 $= x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$

32 位硬件除法器

HDIV(Hardware Divider)是一个 32 位有/无符号整数硬件除法器。

HDIV 硬件除法器基本特性:

- 可配置有符号/无符号整数除法计算
- 32 位被除数, 16 位除数
- 输出 32 位商和 32 位余数
- 除数为零警告标志位,除法运算结束标志位
- 10个时钟周期完成一次除法运算
- 写除数寄存器触发除法运算开始
- 读商寄存器/余数寄存器时自动等待计算结束

AES 硬件加密

AES(The Advanced Encryption Standard)是美国国家标准技术研究所(NIST)在 2000 年 10 月 2 日正式宣布的新的数据加密标准。AES 的分组长度固定为 128 位,而密钥长度支持 128。

TRNG 真随机数发生器

TRNG 是一个真随机数发生器,用来产生真随机数。

12 Bit SARADC

单调不失码的 12 位逐次逼近型模数转换器,在 24M ADC 时钟下工作时,采样率达到 1Msps。参考电压可选择片内精准电压(1.5v 或 2.5v)或从外部输入或电源电压。30 个输入通道,包括 24 路外部引脚输入、1 路内部温度传感器电压、1 路 1/3 电源电压、1 路内建 BGR 1.2V 电压、3 路 OPA 输出。内建可配置的输入信号放大器以检测弱信号。

SAR ADC 基本特性:

- 12 位转换精度;
- 1M SPS 转换速度;
- 30 个输入通道,包括 24 路外部引脚输入、1 路内部温度传感器电压、1 路 1/3 AVCC 电压、1 路 内建 BGR 1.2V 电压、3 路 OPA 输出;
- 4种参考源: AVCC 电压、ExRef 引脚、内置 1.5v 参考电压、内置 2.5v 参考电压;
- ADC 的电压输入范围: 0~Vref;
- 4种转换模式:单次转换、顺序扫描连续转换、插队扫描连续转换、连续转换累加;
- 输入通道电压阈值监测;
- 软件可配置 ADC 的转换速率;
- 内置信号放大器,可转换高阻信号;
- 支持片内外设自动触发 ADC 转换,有效降低芯片功耗并提高转换的实时性。

电压比较器 VC

芯片引脚电压监测/比较电路。16个可配置的正外部输入通道,11个可配置的负外部输入通道;5个内部负输入通道,包括1路内部温度传感器电压、1路内建 BGR 2.5V 参考电压、1路内建 BGR 1.2V 电压、1路 64 阶电阻分压。VC输出可供通用定时器 TIM0/1/2/3,低功耗定时器 LPTIM 与可编程计数阵列 PCA 捕获、门控、外部计数时钟使用。可根据上升/下降边沿产生异步中断,从低功耗模式下唤醒MCU。可配置的软件防抖功能。

低电压检测器 LVD

对芯片电源电压或芯片引脚电压进行检测。16 档电压监测值(1.8v~3.3v)。可根据上升/下降边沿产生异步中断或复位。具有硬件迟滞电路和可配置的软件防抖功能。

LVD 基本特性:

- 4 路监测源, AVCC、PC13、PB08、PB07;
- 16 阶阈值电压, 1.8V~3.3V 可选;
- 8种触发条件,高电平、上升沿、下降沿组合;
- 2种触发结果,复位、中断;
- 8 阶滤波配置,防止误触发;
- 具备迟滞功能,强力抗干扰。

运放 OPA

OPA 模块可以灵活配置,适用于简易滤波器和 Buffer 应用。内部的三个运放可以配置为反向、同向具有不同增益的组合运放,也可以使用外部电阻进行级联。

LCD 驱动

LCD 控制器是一款适用于单色无源液晶显示器(LCD)的数字控制器/驱动器,最多具有 8 个公用端子(COM)和 40 个区段端子(SEG),用以驱动 160 (4x40)或 288 (8x36)个 LCD 图像元素。可以选择电容分压或电阻分压,支持内部电阻分压。内部电阻分压可以调节对比度。支持 DMA 硬件数据传输。LCD 基本特性:

- 高度灵活的帧速率控制。
- 支持静态、1/2、1/3、1/4、1/6 和 1/8 占空比。
- 支持 1/2、1/3 偏置。
- 多达 16 个寄存器的 LCD 数据 RAM。
- 可通过软件配置 LCD 的对比度。
- 3 种驱动波形生成方式
 - 内部电阻分压、外部电阻分压,外部电容分压方式
 - 可通过软件配置内部电阻分压方式的功耗,从而匹配 LCD 面板所需的电容电荷
- 支持低功耗模式: LCD 控制器可在 Active、Sleep、DeepSleep 模式下进行显示。
- 可配置帧中断。
- 支持 LCD 闪烁功能且可配置多种闪烁频率
- 未使用的 LCD 区段和公共引脚可配置为数字或模拟功能。

嵌入式调试系统

嵌入式调试解决方案,提供全功能的实时调试器,配合标准成熟的 Keil/IAR 等调试开发软件。支持 4个硬断点以及多个软断点。

在线编程模式

支持在线编程,将 MODE (PD03) 引脚接高电平即可进入 ISP 在线烧录模式。MODE 引脚接低电平进入用户模式。

高安全性

加密型嵌入式调试解决方案,提供全功能的实时调试器。

2. 产品阵容

产品名称

	HC 32 L 1 3 0 F 8 U A
华大半导体	
CPU位宽 32: 32bit	
产品类型 L: 超低功耗	
CPU类型 1: Cortex-M0+	
性能识别码 3: 经济型	
功能配置识别码	
6: 配置4 引脚数	
F: 32Pin / E: 28Pin K: 64Pin / J: 48Pin	
FLASH容量 8: 64KB	
封装类型 P: TSSOP	
U: QFN T: LQFP	
环境温度范围 A: -40-85℃	

HC32L130 系列 / HC32L136 系列数据手册 Rev1.2

功能

产品名称		136K8TA	136J8TA	130J8TA	130F8UA	130E8PA			
引脚数		64	48	48	32	28			
通用引脚数 GPIO		56	40	40	26	23			
CDU	内核	Cortex M0+							
CPU	频率	48MHz							
电源电压	范围			1.8 ~5.5V					
单/双电》	原			单电源					
温度范围				-40 ~ 85°C					
调试功能	33			串行线调试接口					
唯一识别]码			支持					
夕马处由	1 4∵ + ò 1=1			UART0/1					
多功能串			LPUART0/1	LPUART0	LPUART1				
(UART/S	SPI/I2C)		SPI0/1 I ² C0/1	SPI0 I ² C0/1	SPI0 I ² C0/1				
		Timer0/1/2/3							
定时器		LPTimer							
		Advanced Timer4/5/6							
液晶控制	器(LCDC)	有							
12 位 A/I	D转换器	12bit							
模拟电压	比较器	VC0/1							
实时时钟	i		1						
端口中断	Í	56	40	40	26	23			
低电压检	ѝ测复位/中断	1							
	内部高速振荡								
n+ &+	器		IRC4	M/8M/16M/22.12M	I/24IVI				
时钟	内部低速振荡								
器			IRC32.768K/38.4K						

产品	名称	136K8TA	136J8TA	130J8TA	130F8UA	130E8PA		
外部高速晶振			4M/9M/1/2M/22M					
	振荡器	# M/8M/16M/32M # M/8M/16M/32M						
	外部低速晶振							
	振荡器							
	PLL 震荡器							
蜂鸣器		Max 5ch						
闪存安全保护		支持						
RAM 奇偶校验		支持						

3. 引脚配置

HC32L136K8TA

HC32L136J8TA

HC32L130J8TA

HC32L130F8UA

HC32L130E8PA

4. 引脚功能与模块功能

引脚功能说明

64	48	32	28	NAME	DIGITAL	ANALOG
1	1	1	1	VCORE		
2	2			PC13	RTC_1HZ TIM3_CH1B	LVD_IN0
3	3	2	2	PC14		XTLI
4	4	3	3	PC15		XTLO
5	5	4	4	PD00	I2C0_SDA UART1_TXD	ХТНІ
6	6	5	5	PD01	I2C0_SCL TIM4_CHB UART1_RXD	ХТНО
7	7	6	6	RESETB		
8				PC00	LPTIM_GATE PCNT_S0 UART1_CTS	AIN10 VC0_INP0 VC1_INN0 SEG27
9				PC01	LPTIM_TOG TIM5_CHB UART1_RTS	AIN11 VC0_INP1 VC1_INN1 SEG26
10				PC02	SPI1_MISO LPTIM_TOGN PCNT_S1	AIN12 VC0_INP2 VC1_INN2 SEG25
11				PC03	SPI1_MOSI LPTIM_ETR LPTIM_TOGN	AIN13 VC0_INP3 VC1_INN3 SEG24
12	8			AVSS		
13	9	7	7	AVCC		

					UART1_CTS	
					LPUART1_TXD	AIN0
					TIM0_ETR	VC0_INP4
14	10		8	PA00	VC0_OUT	VC0_INN0
					TIM1_CHA	VC1_INP0
					TIM3_ETR	VC1_INN4
					TIM0_CHA	SEG23
					UART1_RTS	
					LPUART1_RXD	AIN1
					TIM0_CHB	VC0_INP5
15	11		9	PA01	TIM1_ETR	VC0_INN1
					TIM1_CHB	VC1_INP1
					HCLK_OUT	VC1_INN5
					SPI1_MOSI	SEG22
					UART1_TXD	
					TIM0_CHA	AIN2
					VC1_OUT	VC0_INP6
16	12	8	10	PA02	TIM1_CHA	VC0_INN2
					TIM2_CHA	VC1_INP2
					PCLK_OUT	SEG21
					SPI1_MISO	
					UART1_RXD	
					TIM0_GATE	AIN3
					TIM1_CHB	VC0_INP7
17	13		11	PA03	TIM2_CHB	VC0_INN3
					SPI1_CS	VC1_INP3
					TIM3_CH1A	SEG20
					TIM5_CHA	
18				PD04		
10				1004		
19				PD05		
					SPI0_CS	
					UART1_TXD	AIN4
					PCA_CH4	VC0_INP8
20	14	9	12	PA04	TIM2_ETR	VC0_INN4
					TIM5_CHA	VC1_INP4
					LVD_OUT	SEG19
					TIM3_CH2B	
					_	

21	15	10	13	PA05	SPI0_CLK TIM0_ETR PCA_ECI TIM0_CHA TIM5_CHB XTL_OUT XTH_OUT	AIN5 VC0_INP9 VC0_INN5 VC1_INP5 SEG18
22	16	11	14	PA06	SPI0_MISO PCA_CH0 TIM3_BK TIM1_CHA VC0_OUT TIM3_GATE LPUART0_CTS	AIN6 VC0_INP10 VC0_INN6 SEG17
23	17	12	15	PA07	SPI0_MOSI PCA_CH1 HCLK_OUT TIM3_CH0B TIM2_CHA VC1_OUT TIM4_CHB	AIN7 VC0_INP11 VC0_INN7 SEG16
24				PC04	LPUART0_TXD TIM2_ETR IR_OUT	AIN14 VC0_INN8 SEG15
25				PC05	LPUARTO_RXD TIM6_CHB PCA_CH4	AIN15 VC0_INN9 SEG14
26	18	13	16	PB00	PCA_CH2 TIM3_CH1B LPUART0_TXD TIM5_CHB RCH_OUT RCL_OUT PLL_OUT	AIN8 VC0_INN10 VC1_INN6 SEG13
27	19	14	17	PB01	PCA_CH3 PCLK_OUT TIM3_CH2B TIM6_CHB LPUART0_RTS	AIN9/EXVREF VC1_INP6 VC1_INN7 SEG12

28	20		18	PB02	LPTIM_TOG PCA_ECI LPUART1_TXD TIM4_CHA TIM1_BK TIM0_BK TIM2_BK	AIN16 VC1_INP7 VC1_INN8 OP2_INN SEG11
29	21			PB10	I2C1_SCL SPI1_CLK TIM1_CHA LPUART0_TXD TIM3_CH1A LPUART1_RTS UART1_RTS	AIN17 VC1_INP8 OP2_INP SEG10
30	22	15		PB11	I2C1_SDA TIM1_CHB LPUART0_RXD TIM2_GATE TIM6_CHA LPUART1_CTS UART1_CTS	AIN18 OP2_OUT SEG9
31	23	16	19	DVSS		
32	24	17	20	DVCC		
33	25			PB12	SPI1_CS TIM3_BK LPUART0_TXD TIM0_BK LPUART0_RTS TIM6_CHA	AIN19 VC1_INP9 OP1_INN SEG8
34	26			PB13	SPI1_CLK I2C1_SCL TIM3_CH0B LPUART0_CTS TIM1_CHA TIM1_GATE TIM6_CHB	AIN20 VC1_INP10 OP1_INP SEG7

35	27			PB14	SPI1_MISO I2C1_SDA TIM3_CH1B TIM0_CHA RTC_1HZ LPUART0_RTS TIM1_BK	AIN21 VC1_INP11 OP1_OUT SEG6
36	28			PB15	SPI1_MOSI TIM3_CH2B TIM0_CHB TIM0_GATE LPUART1_RXD	AIN22 OP0_INN SEG5
37				PC06	PCA_CH0 TIM4_CHA TIM2_CHA	AIN23 OP0_INP SEG4
38				PC07	PCA_CH1 TIM5_CHA TIM2_CHB	OP0_OUT SEG3
39				PC08	PCA_CH2 TIM6_CHA TIM2_ETR	SEG2
40				PC09	PCA_CH3 TIM4_CHB TIM1_ETR	SEG1
41	29	18	21	PA08	UART0_TXD TIM3_CH0A TIM1_GATE TIM4_CHA TIM3_BK	SEG0
42	30	19	22	PA09	UART0_TXD TIM3_CH1A TIM0_BK I2C0_SCL HCLK_OUT TIM5_CHA	COM0

43	31	20	23	PA10	UART0_RXD TIM3_CH2A TIM2_BK I2C0_SDA TIM2_GATE PCLK_OUT TIM6_CHA	COM1
44	32	21	24	PA11	UARTO_CTS TIM3_GATE I2C1_SCL VC0_OUT SPI0_MISO TIM4_CHB	COM2
45	33	22	25	PA12	UART0_RTS TIM3_ETR I2C1_SDA VC1_OUT SPI0_MOSI PCNT_S0	COM3
46	34	23	26	PA13	IR_OUT UART0_RXD LVD_OUT TIM3_ETR RTC_1HZ PCNT_S1 SWDIO	
47	35			PD06	I2C1_SCL LPUART1_CTS UART0_CTS	
48	36			PD07	I2C1_SDA LPUART1_RTS UART0_RTS	
49	37	24	27	PA14	UART1_TXD UART0_TXD TIM3_CH2A LVD_OUT RCH_OUT RCL_OUT PLL_OUT SWCLK	

50	38	25	PA15	SPI0_CS UART1_RXD LPUART1_RTS TIM0_ETR TIM0_CHA TIM3_CH1A	
51			PC10	LPUART1_TXD LPUART0_TXD PCA_CH2	COM4/SEG39
52			PC11	LPUART1_RXD LPUART0_RXD PCA_CH3	COM5/SEG38
53			PC12	LPUART0_TXD LPUART1_TXD PCA_CH4	COM6/SEG37
54			PD02	PCA_ECI LPUARTO_RTS TIM1_ETR	COM7/SEG36
55	39	26	PB03	SPIO_CLK TIMO_CHB TIM1_GATE TIM3_CHOA LPTIM_GATE XTL_OUT XTH_OUT	VC1_INN9 SEG35/VLCDH
56	40	27	PB04	SPI0_MISO PCA_CH0 TIM2_BK UART0_CTS TIM2_GATE TIM3_CH0B LPTIM_ETR	VC0_INP12 VC1_INP12 VC1_INN10 SEG34/VLCD3
57	41	28	PB05	SPI0_MOSI TIM1_BK PCA_CH1 LPTIM_GATE PCNT_S0 UART0_RTS	VC0_INP13 VC1_INP13 SEG33/VLCD2

					I2C0_SCL	
					UART0_TXD	
					TIM1_CHB	VC0_INP14
58	42	29		PB06	TIM0_CHA	VC1_INP14
					LPTIM_ETR	SEG32/VLCD1
					TIM3_CH0A	
					LPTIM_TOG	
					I2C0_SDA	
					UART0_RXD	VC0_INP15
					TIM2_CHB	VC0_INP15
59	43	30		PB07	LPUART1_CTS	LVD_IN2
					TIM0_CHB	SEG31
					LPTIM_TOGN	SEGS1
				PCNT_S1		
60	44	31	28	PD03	MODE	SEG30
					I2C0_SCL	
					TIM1_CHA	
61	45			DD 00	TIM2_CHA	LVD_IN1
01	45			PB08	TIM0_GATE	SEG29
					TIM3_CH2A	
					UART0_TXD	
					I2C0_SDA	
					IR_OUT	
62	46			PB09	SPI1_CS	SEG28
02	40			L D03	TIM2_CHA	SEU20
					TIM2_CHB	
					UART0_RXD	
63	47	32		DVSS		
64	48			DVCC		

每个引脚的数字功能由 PSEL 位域进行控制,详见下表。

PSEL	1	2	3	4	5	6	7
PA00	UART1_CTS	LPUART1_TXD	TIM0_ETR	VC0_OUT	TIM1_CHA	TIM3_ETR	TIM0_CHA
PA01	UART1_RTS	LPUART1_RXD	TIM0_CHB	TIM1_ETR	TIM1_CHB	HCLK_OUT	SPI1_MOSI
PA02	UART1_TXD	TIM0_CHA	VC1_OUT	TIM1_CHA	TIM2_CHA	PCLK_OUT	SPI1_MISO
PA03	UART1_RXD	TIM0_GATE	TIM1_CHB	TIM2_CHB	SPI1_CS	TIM3_CH1A	TIM5_CHA
PA04	SPIO_CS	UART1_TXD	PCA_CH4	TIM2_ETR	TIM5_CHA	LVD_OUT	TIM3_CH2B
PA05	SPI0_SCK	TIM0_ETR	PCA_ECI	TIM0_CHA	TIM5_CHB	XTL_OUT	XTH_OUT
PA06	SPI0_MISO	PCA_CH0	TIM3_BK	TIM1_CHA	VC0_OUT	TIM3_GATE	LPUARTO_CTS
PA07	SPI0_MOSI	PCA_CH1	HCLK_OUT	TIM3_CH0B	TIM2_CHA	VC1_OUT	TIM4_CHB
PA08	UART0_TXD	TIM3_CH0A			TIM1_GATE	TIM4_CHA	TIM3_BK
PA09	UART0_TXD	TIM3_CH1A	TIM0_BK	I2C0_SCL		HCLK_OUT	TIM5_CHA
PA10	UART0_RXD	TIM3_CH2A	TIM2_BK	I2C0_SDA	TIM2_GATE	PCLK_OUT	TIM6_CHA
PA11	UART0_CTS	TIM3_GATE	I2C1_SCL		VC0_OUT	SPI0_MISO	TIM4_CHB
PA12	UART0_RTS	TIM3_ETR	I2C1_SDA		VC1_OUT	SPI0_MOSI	PCNT_S0
PA13	IR_OUT	UART0_RXD	LVD_OUT	TIM3_ETR	RTC_1HZ	PCNT_S1	
PA14	UART1_TXD	UART0_TXD	TIM3_CH2A	LVD_OUT	RCH_OUT	RCL_OUT	PLL_OUT
PA15	SPI0_CS	UART1_RXD	LPUART1_RTS	TIM0_ETR	TIM0_CHA	TIM3_CH1A	
PB00	PCA_CH2	TIM3_CH1B	LPUART0_TXD	TIM5_CHB	RCH_OUT	RCL_OUT	PLL_OUT
PB01	PCA_CH3	PCLK_OUT	TIM3_CH2B	TIM6_CHB	LPUART0_RTS		
PB02	LPTIM_TOG	PCA_ECI	LPUART1_TXD	TIM4_CHA	TIM1_BK	TIM0_BK	TIM2_BK
PB03	SPI0_SCK	TIM0_CHB	TIM1_GATE	TIM3_CH0A	LPTIM_GATE	XTL_OUT	XTH_OUT
PB04	SPI0_MISO	PCA_CH0	TIM2_BK	UART0_CTS	TIM2_GATE	TIM3_CH0B	LPTIM_ETR
PB05	SPI0_MOSI		TIM1_BK	PCA_CH1	LPTIM_GATE	PCNT_S0	UART0_RTS
PB06	I2C0_SCL	UART0_TXD	TIM1_CHB	TIM0_CHA	LPTIM_ETR	TIM3_CH0A	LPTIM_TOG
PB07	I2C0_SDA	UART0_RXD	TIM2_CHB	LPUART1_CTS	TIM0_CHB	LPTIM_TOGN	PCNT_S1
PB08	I2C0_SCL	TIM1_CHA		TIM2_CHA	TIM0_GATE	TIM3_CH2A	UART0_TXD
PB09	I2C0_SDA	IR_OUT	SPI1_CS	TIM2_CHA		TIM2_CHB	UART0_RXD
PB10	I2C1_SCL	SPI1_SCK	TIM1_CHA	LPUART0_TXD	TIM3_CH1A	LPUART1_RTS	UART1_RTS
PB11	I2C1_SDA	TIM1_CHB	LPUART0_RXD	TIM2_GATE	TIM6_CHA	LPUART1_CTS	UART1_CTS
PB12	SPI1_CS	TIM3_BK	LPUART0_TXD	TIM0_BK		LPUART0_RTS	TIM6_CHA
PB13	SPI1_SCK	I2C1_SCL	TIM3_CH0B	LPUARTO_CTS	TIM1_CHA	TIM1_GATE	TIM6_CHB
PB14	SPI1_MISO	I2C1_SDA	TIM3_CH1B	TIM0_CHA	RTC_1HZ	LPUART0_RTS	TIM1_BK
PB15	SPI1_MOSI	TIM3_CH2B	TIM0_CHB	TIM0_GATE			LPUART1_RXD
PC00	LPTIM_GATE	PCNT_S0	UART1_CTS				
PC01	LPTIM_TOG	TIM5_CHB	UART1_RTS				
PC02	SPI1_MISO	LPTIM_TOGN	PCNT_S1				
PC03	SPI1_MOSI	LPTIM_ETR	LPTIM_TOGN				
PC04	LPUART0_TXD	TIM2_ETR	IR_OUT				
PC05	LPUART0_RXD	TIM6_CHB	PCA_CH4				

_	1	1	1	1	ı	
PC06	PCA_CH0	TIM4_CHA	TIM2_CHA			
PC07	PCA_CH1	TIM5_CHA	TIM2_CHB			
PC08	PCA_CH2	TIM6_CHA	TIM2_ETR			
PC09	PCA_CH3	TIM4_CHB	TIM1_ETR			
PC10	LPUART1_TXD	LPUART0_TXD	PCA_CH2			
PC11	LPUART1_RXD	LPUART0_RXD	PCA_CH3			
PC12	LPUART0_TXD	LPUART1_TXD	PCA_CH4			
PC13		RTC_1HZ	TIM3_CH1B			
PC14						
PC15						
PD00	I2C0_SDA		UART1_TXD			
PD01	I2C0_SCL	TIM4_CHB	UART1_RXD			
PD02	PCA_ECI	LPUARTO_RTS	TIM1_ETR			
PD03						
PD04						
PD05						
PD06	I2C1_SCL	LPUART1_CTS	UART0_CTS			
PD07	I2C1_SDA	LPUART1_RTS	UART0_RTS			

模块信号说明

模块	引脚名称	描述
电源	DVCC	数字电源
	AVCC	模拟电源
	DVSS	数字地
	AVSS	模拟地
	VCAP	LDO内核供电输出(仅限内部电路使用,需外接
		不小于1uF的去耦电容)
ISP	MODE	MODE (PD03)为高电平进入在线编程模式,通过
		上位机可以进行在线编程。
		MODE (PD03)为低电平为工作模式
ADC	AIN0~AIN23	ADC 输入通道0~23
	ADC_VREF	ADC外部参考电压
电压比较VC	VCIN0~VCIN15	VC 输入0~15
	VC0_OUT	VC0比较输出
	VC1_OUT	VC1比较输出
LVD	LVDIN0	电压侦测输入0
	LVDIN1	电压侦测输入1
	LVDIN2	电压侦测输入2
	LVD_OUT	电压侦测输出
OPA	OPx_INN	OPA负端输入
x=0,1,2	OPx_INP	OPA正端输入
	OPx_OUT	OPA输出
LCD	COMx	LCD 公共端输出
x=0~7	SEGy	LCD区段端输出
y=0-39	VLCDz	外部电阻模式,外部电容模式使用引脚
z=1,2,3,H		
UART	UARTx_TXD	UARTx数据发送端
x=0,1	UARTx_RXD	UARTx数据接收端
	UARTx_CTS	UARTx CTS
	UARTx_RTS	UARTx RTS
LPUART	LPUARTx_TXD	LPUART数据发送端
x=0,1	LPUARTx_RXD	LPUART数据接收端
	LPUARTx_CTS	LPUART CTS
	LPUARTx_RTS	LPUART RTS
SPI	SPIx_MISO	SPI模块主机输入从机输出数据信号
	CDI MOCI	SPI模块主机输出从机输入数据信号
x=0,1	SPIx_MOSI	31 11 天火 工业间 山 火小 間 八
x=0,1	SPIx_MOSI SPIx_SCK	SPI模块时钟信号

I2C	I2Cx_SDA	I2C模块数据信号		
x=0,1	I2Cx_SCL	I2C模块时钟信号		
通用定时器	TIMx_CHA	Timer的捕获输入比较输出A		
TIMx	TIMx_CHB	Timer的捕获输入比较输出B		
x=0,1,2	TIMx_ETR	Timer的外部计数输入信号		
7,1,2	TIMx_GATE	Timer的门控信号		
通用定时器	TIM3_CHyA	Timer的捕获输入比较输出A		
TIM3	TIM3_CHyB	Timer的捕获输入比较输出B		
y=0,1,2	TIM3_ETR	Timer的外部计数输入信号		
<i>y</i> -,-,-	TIM3_GATE	Timer的门控信号		
低功耗定时	LPTIM_TOG	LPTimer的翻转输出信号		
器LPTIM	LPTIM_TOGN	LPTimer的翻转输出反向信号		
	LPTIM_EXT	LPTimer的外部计数输入信号		
	LPTIM_GATE	LPTimer的门控信号		
可编程计数	PCA_ECI	外部时钟输入信号		
阵列PCA	PCA_CH0	捕获输入/比较输出/PWM输出 0		
	PCA_CH1	捕获输入/比较输出/PWM输出 1		
	PCA_CH2	捕获输入/比较输出/PWM输出 2		
	PCA_CH3	捕获输入/比较输出/PWM输出 3		
	PCA_CH4	捕获输入/比较输出/PWM输出 4		
PCNT	PCNT_S0	PCNT 脉冲计数输入0		
	PCNT_S1	PCNT 脉冲计数输入1		
高级定时器	TIM4_CHA	Advanced Timer4 比较输出/捕获输入端A		
Advanced	TIM4_CHB	Advanced Timer4 比较输出/捕获输入端B		
Timer	TIM5_CHA	Advanced Timer5 比较输出/捕获输入端A		
	TIM5_CHB	Advanced Timer5 比较输出/捕获输入端B		
	TIM6_CHA	Advanced Timer6 比较输出/捕获输入端A		
	TIM6_CHB	Advanced Timer6 比较输出/捕获输入端B		

注意:

- IO 端口复位为输入高阻状态,休眠模式和深度休眠模式保持之前的端口状态。

5. 框图

功能模块

图 5-1 功能模块

6. 存储区映射图

7. 电气特性

7.1 测试条件

除非特别说明,所有的电压都以 VSS 为基准。

7.1.1. 最小和最大数值

除非特别说明,在生产线上通过对 100%的产品在环境温度 TA=25°C 和 TA=TAmax 下执行的测试 (TAmax 与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件 下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在综合评估的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均 $\pm 3 \Sigma$)得到。

7.1.2. 典型数值

除非特别说明,典型数据是基于 TA=25° C 和 VCC=3.3V(1.8V \leq VCC \leq 5.5V 电压范围)。这些数据仅用于设计指导而未经测试。

典型的 ADC 精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的误差 小于等于给出的数值(平均 $\pm 2\Sigma$)。

7.1.3. 供电方案

注意:

- 每组电源都需要一个去耦电容,去耦电容尽量靠近相应电源引脚。

7.2 绝对最大额定值

加在器件上的载荷如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号	描述	最小值	最大值	单位
VCC - VSS	外部主供电电压(包含AVCC和DVCC) ⁽¹⁾	-0.3	5.5	V
V_{IN}	在其它引脚上的输入电压(2)		VCC + 0.3	V
ΔVCCx	不同供电引脚之间的电压差		50	mV
VSSx - VSS 不同接地引脚之间的电压差			50	mV
V _{ESD} (HBM) ESD静电放电电压(人体模型)		参考绝对最大值	电气参数	V

表 7-1 电压特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS,AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{\text{INJ(PIN)}}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{\text{INJ(PIN)}}$ 不超过其最大值。当 V_{IN} >VCC 时,有一个正向注入电流;当 V_{IN} <VSS 时,有一个反向注入电流。

符号	描述	最大值(1)	单位
I_{VCC}	经过DVCC/AVCC电源线的总电流(供应电流) ⁽¹⁾	300	mA
I_{VSS}	经过VSS地线的总电流(流出电流) ⁽¹⁾	300	mA
I_{IO}	任意I/O和控制引脚上的输出灌电流	25	mA
	任意I/O和控制引脚上的输出电流	-25	mA
(2) (3) I _{INJ(PIN)}	RESETB引脚的注入电流	+/-5	mA
	XTH的XTHI引脚和XTL的XTLI引脚的注入电流	+/-5	mA
	其他引脚的注入电流(4)	+/-5	mA
$\sum I_{\text{INJ(PIN)}}^{(2)}$	所有I/O和控制引脚上的总注入电流 ⁽⁴⁾	+/-25	mA

表 7-2 电流特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS,AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{\text{INJ(PIN)}}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{\text{INJ(PIN)}}$ 不超过其最大值。当 V_{IN} > V_{CC} 时,有一个正向注入电流;当 V_{IN} > V_{CS} 时,有一个反向注入电流。
- 3. 反向注入电流会干扰器件的模拟性能。
- 4. 当几个 I/O 口同时有注入电流时, Σ I $_{INJ(PIN)}$ 的最大值为正向注入电流与反向注入电流的即时绝对值之和。该结果基于在器件 4 个 I/O 端口上 Σ I $_{INJ(PIN)}$ 最大值的特性。

符号	描述	数值	单位
TSTG	储存温度范围	-60 ~ + 150	$^{\circ}$
TJ	最大结温度	105	$^{\circ}$

表 7-3 温度特性

7.3 工作条件

7.3.1 通用工作条件

符号	参数	条件	最小值	最大值	单位
fHCLK	内部AHB时钟频率		0	48	MHz
fPCLK0	内部APB0时钟频率		0	48	MHz
fPCLK1	内部APB1时钟频率		0	48	MHz
DVCC	标准工作电压		1.8	5.5	V
AVCC ⁽¹⁾	模拟部分工作电压	必须与DVCC(2)相同	1.8	5.5	V
PD	功率耗散 TA=85℃	LQFP64		455	mW
	功率耗散 TA=85℃	LQFP48		364	mW
	功率耗散 TA=85℃	LQFP32		357	mW
	功率耗散 TA=85℃	TSSOP28		283	mW
TA	环境温度	最大功率消耗	-40	85	$^{\circ}$
		低功率消耗(3)	-40	105	$^{\circ}$
TJ	结温度范围		-40	105	$^{\circ}$

表 7-4 通用工作条件

- 1. 当使用 ADC 时,参见 ADC 电气参数。
- 2. 建议使用相同的电源为 DVCC 和 AVCC 供电,在上电和正常操作期间, DVCC 和 AVCC 之间最多允许有 300mV 的差别。
- 3. 在较低的功率耗散的状态下,只要 T_I 不超过 T_{Imax} , T_A 可以扩展到这个范围。

7.3.2 上电和掉电时的工作条件

符号	参数	条件	最小值	最大值	单位
tvcc	VCC上升速率		0	8	μs/V
$t_{ m Vcc}$	VCC下降速率		10	8	μs/V

表 7-5 上电和掉电的工作条件

7.3.3 内嵌复位和 LVD 模块特性

1. 设计保证,不在生产中测试。

图 7-1 POR/Brown Out 示意图

符号	参数	条件	最小值	典型值	最大值	单位
V _{por}	POR 释放电压(上电过程)		1.45	1.50	1.65	V
	BOR 检测电压(掉电过程)					

表 7-6 POR/Brown Out

符号	参数	条件	最小值	典型值	最大值	单位
Vex	外部输入电压范围		0		VCC	V
Vlevel	检测阈值	LVD_CR.VTDS=0000	1.7	1.8	1.9	V
		LVD_CR.VTDS =0001	1.8	1.9	2.0	
		LVD_CR.VTDS =0010	1.9	2.0	2.1	
		LVD_CR.VTDS =0011	2.0	2.1	2.2	
		LVD_CR.VTDS =0100	2.1	2.2	2.3	
		LVD_CR.VTDS=0101	2.2	2.3	2.4	
		LVD_CR.VTDS=0110	2.3	2.4	2.5	
		LVD_CR.VTDS=0111	2.4	2.5	2.6	
		LVD_CR.VTDS=1000	2.5	2.6	2.7	
		LVD_CR.VTDS=1001	2.6	2.7	2.8	
		LVD_CR.VTDS=1010	2.7	2.8	2.9	
		LVD_CR.VTDS=1011	2.8	2.9	3.0	
		LVD_CR.VTDS=1100	2.9	3.0	3.1	
		LVD_CR.VTDS=1101	3.0	3.1	3.2	
		LVD_CR.VTDS=1110	3.1	3.2	3.3	
		LVD_CR.VTDS=1111	3.2	3.3	3.4	
Icomp	功耗			0.12		uA
Tresponse	响应时间			80		uS
Tsetup	建立时间			400		uS
Vhyste	迟滞电压			40		mV
Tfilter	滤波时间	LVD_debounce = 000		7		uS
		LVD_debounce = 001		14		
		LVD_debounce = 010		28		
		LVD_debounce = 011		112		
		LVD_debounce = 100		450		
		LVD_debounce = 101		1800		
		LVD_debounce = 110		7200		
		LVD_debounce = 111		28800		

表 7-7 LVD 模块特性

7.3.4 内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REF25}	Internal 2.5v Reference Voltage	常温25℃ 3.3V	2.475	2.5	2.525	V
V _{REF25}	Internal 2.5v Reference Voltage	-40C~85C; 2.8V~5.5V	2.463	2.5	2.525	V[1]
V _{REF15}	Internal 1.5v Reference Voltage	常温25℃ 3.3V	1.485	1.5	1.515	V
V _{REF15}	Internal 1.5v Reference Voltage	-40C~85C; 1.8V~5.5V	1.477	1.5	1.519	V[1]
$T_{ m Coeff}$	Internal 2.5v 1.5v temperature	-40 ~ 85°C			120	Ppm/°
1 Coeff	coefficient	-40 ~ 83 C			120	C

1. 数据基于考核结果,不在生产中测试

7.3.5 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的位置以及执行的代码等。 微控制器处于下列条件:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——VCC 或 VSS(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到 fHCLK 的频率(0~24MHz 时为 0 个等待周期, 24~48MHz 时为 1 个 等待周期)。
- 当开启外设时: fPCLK0 = fHCLK, fPCLK1 = fHCLK。

Symbol	Parameter		Conditions		Typ ⁽¹⁾	Max ⁽²⁾	Unit	
I _{DD}	All peripherals clock ON, Run while(1) in RAM	Vcore=1.5V Vcc=3.3V T _A =2xC	RCH clock source	4M 8M 16M 22.12M 24M 32M	655 1290 2470 3500 3790 5090		uA	
(Run in RAM)				xxM clock source	48M	7580		
				4M	270			
	All peripherals clock OFF, Run while(1) in RAM Vcore=1.5V Vcc=3.3V T _A =2xC	Vcore=1.5V	DCH	8M	510			
		V _{CC} =3.3V	RCH clock source	16M	950		uA	
		T _A =2xC	clock source	22.12M	1320			
				24M	1420			

			PLL RCH4M to	32M	1980		
			clock source	48M	2920		
				4M	735		
	All peripherals clock OFF,			8M	1415		
I_{DD}		Vcore=1.5V	RCH	16M	2643		
(Run		V _{CC} =3.3V	clock source	22.12M	3573		uA
CoreMark	Run CoreMark in Flash	T _A =2xC		24M	3808		
)			PLL RCH4M to	48M			
			xxM	FlashWait=1	5815		
				4M	1000	1300	
		Vcore=1.5V	p.cu.	8M	1910	2420	
		V _{CC} =1.8-5.5V	RCH	16M	3650	4590	uA
		T _A =N40C- 85C	clock source	22.12M	5080	6330	
		830		24M	5440	6820	
				16M	3960	4850	
	All peripherals clock ON, Run while(1) in Flash			24M	5700	5700 7000	uA
		Vcore=1.5V V _{CC} =1.8-5.5V	PLL RCH4M to	32M FlashWait=1	6600	7480	
		T _A =N40C- 85C	xxM clock source	40M FlashWait=1	8140	9190	
				48M FlashWait=1	9550	10860	
				16M	4030	4940	_
I _{DD}				24M	5780	7060	
(Run mode)		Vcore=1.5V Vcc=1.8-5.5V	PLL RCH8M to	32M FlashWait=1	6670	7560	
		T _A =N40C- 85C	xxM clock source	40M FlashWait=1	8240	9340	uA
				48M FlashWait=1	9630	10970	
				4M	610	875	
		Vcore=1.5V		8M	1330	1570	
		V _{CC} =1.8-5.5V	RCH	16M	2110	2900	uA
		T _A =N40C-	clock source	22.12M	2860	3860	
	All peripherals clock OFF,	85C		24M	3060	4120	
	Run while(1) in Flash	Vcore=1.5V		16M	2360	3110	
		V _{CC} =1.8-5.5V	PLL RCH4M to	24M	3360	4330	
		T _A =N40C- 85C	xxM clock source	32M FlashWait=1	3490	4010	uA

				40M FlashWait=1	4240	4890	
				48M FlashWait=1	4910	5720	
				16M	2430	3190	
		2	24M	3420	4405		
		Vcore=1.5V Vcc=1.8-5.5V	PLL RCH8M to	32M FlashWait=1	3560	4090	
		T _A =N40C- 85C	xxM clock source	40M FlashWait=1	4320	4960	uA
				48M FlashWait=1	4980	5760	
				4M	545	625	
		Vcore=1.5V		8M	1060	1200	
		V _{CC} =1.8-5.5V	RCH	16M	2030	2290	uA
		T _A =N40C-	clock source	22.12M	2870	3230	
		85C		24M	3100	3470	
				16M	2280	2560	
				24M	3350	3745	
		Vcore=1.5V V _{CC} =1.8-5.5V	3-5.5V PLL RCH4M to FlashWait=1 40M		4190	4690	
	All peripherals clock ON	T _A =N40C- 85C		5210	5830	uA	
,				48M FlashWait=1	6210	6935	uA
I _{DD}				16M	2340	2625	
(Sleep mode)				24M	3410	3810	
mode)		Vcore=1.5V Vcc=1.8-5.5V	PLL RCH8M to	32M FlashWait=1	4260	4760	A
		T _A =N40C- 85C	xxM clock source	40M FlashWait=1	5290	5900	uA
				48M FlashWait=1	6290	7020	
				4M	155	190	
		Vcore=1.5V		8M	280	338	
		V _{CC} =1.8-5.5V	RCH	16M	500	586	uA
	All peripherals clock OFF	T _A =N40C-	clock source	22.12M	680	800	
		85C		24M	735	855	
		Vcore=1.5V		16M	715	820	
		V _{CC} =1.8-5.5V		24M	1005	1150	uA

		T _A =N40C-		32M	ĺ		
		85C		FlashWait=1	1060	1210	
			PLL RCH4M to	40M			
			xxM	FlashWait=1	1290	1470	
			clock source	48M	1.700	1500	
				FlashWait=1	1520	1730	
				16M	775	888	
				24M	1060	1210	
		Vcore=1.5V Vcc=1.8-5.5V	PLL RCH8M to	32M FlashWait=1	1120	1280	
		T _A =N40C-	xxM	40M			uA
		85C	clock source	FlashWait=1	1345	1530	
				48M FlashWait=1	1580	1800	
				T _A =N40-25C	10.3	15.5	
	All peripherals clock ON,	Vcore=1.5V	XTL32K	T _A =50C	11	15.5	
	Run while(1) in Flash	V _{CC} =1.8-5.5V	clock source	T _A =85C	14.3	20	uA
I_{DD}			Driver=0x0	T _A =105C	20.3	28	
(LP Run)			XTL32K	T _A =N40-25C	7.1	12	
	All peripherals clock OFF,	Vcore=1.5V	clock source	T _A =50C	7.7	12	uA
	Run while(1) in Flash V _{CC} =1.8-5.5V Driver=0x0	e(1) in Flash $V_{CC}=1.8-5.5V$		T _A =85C	11	16	ur i
			XTL32K	T _A =N40-25C	5.6	6.2	
	All peripherals clock ON	Vcore=1.5V	clock source	T _A =50C	6	6.8	uA
		V _{CC} =1.8-5.5V	Driver=0x0	T _A =85C	9.2	11	
			XTL32K	T _A =N40-25C	2.4	2.7	
I_{DD}	All peripherals clock OFF	Vcore=1.5V	clock source	T _A =50C	2.8	3.3	uA
(LP Sleep)		V _{CC} =1.8-5.5V	Driver=0x0	T _A =85C	6	7.7	
	LpTimer+RTC+32K clk		XTL32K	T _A =N40-25C	2.5	2.8	
	ON,	Vcore=1.5V	clock source	T _A =50C	3	3.5	uA
	Other clk OFF	V _{CC} =1.8-5.5V	Driver=0x0	T _A =85C	6.1	7.8	
	RTC+WDT+LPT+XTL32			T _A =N40-25C	930	1110	
	K	Vcore=1.5V	XTL32K	T _A =50C	1290	1610	nA
	+DeepSleep	V _{CC} =1.8-5.5V	Driver=0x0	T _A =85C	3600	4700	
$I_{ m DD}$				T _A =N40-25C	825	1000	
(DeepSlee	LPT+XTL32K	Vcore=1.5V	XTL32K	T _A =50C	1195	1500	nA
p mode)	+DeepSleep	V _{CC} =1.8-5.5V	Driver=0x0	T _A =85C	3490	4540	
				T _A =N40-25C	800	970	
	RTC+XTL32K	Vcore=1.5V		T _A =50C	1165	1470	nA
	+DeepSleep	V _{CC} =1.8-5.5V	Driver=0x0	T _A =85C	3460	4480	

	NEW CONT		WITH AAV	T _A =N40-25C	790	970	
		Vcore=1.5V	Driver=0x0	T _A =50C	1155	1450	nA
		V _{CC} =1.8-5.5V		T _A =85C	3450	4530	
	IDC22V	V 1 5V		T _A =N40-25C	745	888	
	IRC32K +DeepSleep	Vcore=1.5V Vcc=1.8-5.5V		T _A =50C	nA		
		VCC=1.6-3.5 V		T _A =85C	3400	4420	
	WDT V 1.5	V 1 5V		T _A =N40-25C 515 650		650	
	WDT +DeepSleep	Vcc=1.8-5.5V		T _A =50C	T _A =50C 865 113		nA
	+Всерысер	VCC=1.0-3.5 V		T _A =85C	3130	4110	
		Vacua-1 5V		T _A =N40-25C	420	550	
	DeepSleep	Vcore=1.5V Vcc=1.8-5.5V		T _A =50C	770	1020	nA
	VCC=1.8-3.3 V		T _A =85C	3050	4040		

- 1. 若没有其他指定条件,该 Typ 的值是在 25 ° C & $V_{CC} = 3.3V$ 测得。
- 2. 若没有其他指定条件,该 Max 的值是 Vcc = 1.8-5.5 & Temperature = N40 85 ° C 范围内的最大值。
- 3. 数据基于考核结果,不在生产中测试

表 7-8 工作电流特性

7.3.6 从低功耗模式唤醒的时间

唤醒时间是在 RCH 振荡器的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

- 休眠模式: 时钟源是 RCH 振荡器
- 深度休眠模式:时钟源是进入深度休眠时所使用的时钟是 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Twu	休眠模式唤醒时间			1.8		μs
	深度休眠唤醒时间	$F_{MCLK} = 4MHz$		9.0		μs
		$F_{MCLK} = 8MHz$		6.0		μs
		F _{MCLK} = 16MHz		5.0		μs
		F _{MCLK} = 24MHz		4.0		μs

1. 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

7.3.7 外部时钟源特性

外部输入高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
fXTH_ext	用户外部时钟频率(1)		0	8	32	MHz
VXTHH	输入引脚高电平电压		0.7VCC		VCC	V
VXTHL	输入引脚低电平电压		VSS		0.3VCC	V
Tr(XTH)	上升的时间(1)				20	ns
Tf(XTH)	下降的时间(1)				20	ns
Tw(XTH)	输入高或低的时间 ⁽¹⁾		16			ns
Cin(XTH)	输入容抗 ⁽¹⁾			5		pF
Duty	占空比		40		60	%
IL	输入漏电流				±1	μΑ

由设计保证,不在生产中测试。

外部输入低速时钟

符号	参数	条件	最小值	典型值	最大值	单位
fXTH_ext	用户外部时钟频率(1)		0	32.768	1000	KHz
VXTHH	输入引脚高电平电压		0.7VCC		VCC	V
VXTHL	输入引脚低电平电压		VSS		0.3VCC	V
Tr(XTH)	上升的时间(1)				50	ns
Tf(XTH)	下降的时间(1)				50	ns
Tw(XTH)	输入高或低的时间 ⁽¹⁾		450			ns
Cin(XTH)	输入容抗(1)			5		pF
Duty	占空比		30		70	%
IL	输入漏电流				±1	μΑ

由设计保证,不在生产中测试。

高速外部时钟 XTH

高速外部时钟(XTH)可以使用一个 4~32MHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTH 晶振⁽¹⁾⁽²⁾

符号	参数	条件	最小值	典型值	最大值	单位
FCLK	振荡频率		4		32	MHz
ESR _{CLK}	支持的晶振ESR范围	32M		30	60	Ohm
		4M		400	1500	Ohm
$C_{LX}^{(3)}$	负载电容	两个引脚都有负载电容	12		24	pF
Duty	占空比		40	50	60	%
Idd ⁽⁴⁾	电流	32M Xtal, CL=12pF,		600		uA
luu	H-t/IL	ESR=30ohm				
T _{start} (5)	启动时间	32MHz		300		us
		@ XTH_CR.Driver=1111				
		4MHz		2		ms
		@ XTH_CR.Driver=0011				

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。
- 3. C_{LX} 指 XTAL 的两个引脚负载电容 C_{L1} 和 C_{L2}。对于 C_{L1} 和 C_{L2},建议使用高质量的、为高频应用而设计瓷介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。在选择 C_{L1} 和 C_{L2} 时,应该根据晶振的频率和 ESR 等参数,并且将 PCB 和 MCU 引脚的容抗考虑在内。在晶振频率为 32M 时,C_{LX}需要选择小的电容值,XTH_CR.Driver 为 1110 时,可以选择 C_{LX} 为 12pF。
- 4. 电流跟随频率变化而变化,测试条件: XTH_CR.Driver=1110
- 5. T_{start} 是启动时间,是从软件使能 XTH 开始测量,直至得到稳定的 32MHz/4MHz 振荡这段时间。这个数值是在 XTH_CR.Startup=10 设置下,使用一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

低速外部时钟 XTL

低速外部时钟(XTL)可以使用一个 32.768kHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTL 晶振⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位
F _{CLK}	振荡频率			32.768		KHz
ESR _{CLK}	支持的晶振ESR范围			65	85	kOhm
CLx	负载电容	两个引脚都有负载电容	0	12		pF
DC _{ACLK}	占空比		30	50	70	%
Idd ⁽³⁾		ESR= 65 kOhm		350	1000	nA
	电流	C _L =12 pF				
T _{start}	启动时间	ESR=65 kOhm,		500		ms
		C _L =12 pF,				
		40% - 60% duty cycle has				
		been reached				

- 1. 由综合评估得出,不在生产中测试。
- 2. C_{LX} 指 XTAL 的两个引脚负载电容 C_{L1} 和 C_{L2} 。对于 C_{L1} 和 C_{L2} ,建议使用高质量的瓷介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。在选择 C_{L1} 和 C_{L2} 时,应该将 PCB 和 MCU 引脚的容抗考虑在内。
- 3. 典型值为 XTL_CR.Driver=1001 时的功耗。选择具有较小 ESR 值的高质量振荡器(如 MSIV-TIN32.768kHz),可以通过减小 XTL CR.Driver 设置值以优化电流消耗。
- 4. Tstart 是启动时间,是从软件使能 XTL 开始测量,直至得到稳定的 32768 振荡这段时间。这个数值是在 XTL_CR.Driver=1001 和 XTL_CR.Startup=10 设置下,使用一个标准的晶体谐振器上测量得到,它可能因晶体制 造商和型号的不同而变化较大。

7.3.8 内部时钟源特性

内部 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCH振荡器精度	User-trimmed with clock_trim for		0.25		%
		given VCC and TA conditions				
		VCC = 1.8V ~ 5.5V	-2.5		+2.5	%
		$T_{AMB} = -40^{\circ}C \sim 85^{\circ}C$				
		VCC = 1.8V ~ 5.5V	-2.0		+2.0	%
		$T_{AMB} = -20^{\circ}C \sim 50^{\circ}C$				
FCLK	振荡频率		4.0	4.0	24.0	MHz
				8.0		
				16.0		
				22.12		
				24.0		
I_{CLK}	功耗	$F_{MCLK} = 4MHz$		80		μΑ
		$F_{MCLK} = 8MHz$		100		μΑ
		F _{MCLK} = 16MHz		120		μΑ
		F _{MCLK} = 24MHz		140		μΑ
DC _{CLK}	占空比(1)		45	50	55	%

^{1.} 由综合评估得出,不在生产中测试。

内部 RCL 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCH振荡器精度	User-trimmed with clock_trim		0.5		%
		for given VCC and TA				
		conditions				
		$VCC = 1.8V \sim 5.5V$	-2.5		+2.5	%
		$VCC = 1.8V \sim 5.5V$	-1.5		+1.5	%
F _{CLK}	振荡频率			38.4		KHz
				32.768		
Tclk	启动时间			150		uS
DCCLK	占空比(1)		25	50	75	%
I _{CLK}	功耗			0.35		μΑ

^{1.} 由综合评估得出,不在生产中测试。

7.3.9 PLL 特性

符号	参数	条件	最小值	典型值	最大值	单位
Fin ⁽¹⁾	输入时钟		4	4	24	MHz
	输入时钟占空比		40		60	%
Fout	输出频率		8	-	48	MHz
Duty ⁽¹⁾	输出占空比		48%	-	52%	
Tlock ⁽¹⁾	锁定时间	输入频率4MHz	-	100	200	us

1. 由综合评估得出,不在生产中测试。

7.3.10 存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
ECFLASH	擦写次数	Regulator voltage=1.5v,	20K			cycles
		$T_{AMB} = 25$ °C				
RET _{FLASH}	数据保存期限	$T_{AMB} = 85$ °C	20			Years
		常温	100			Years
Tw_prog	编程时间		6		7.5	μs
T _{p_erase}	页擦除时间		4		5	ms
T _{m_erase}	整片擦除时间		30		40	ms

7.3.11 EFT 特性

芯片复位可以使系统恢复正常操作。

符号	级别/类型
EFT to IO	2kV
(IEC61000-4-4)	Class:4
EFT to Power	4kV
(IEC61000-4-4)	Class:4

软件建议

软件的流程中必须包含程序跑飞的控制,如:

- 被破坏的程序计数器
- 意外的复位
- 关键数据被破坏(控制寄存器等)

在进行 ESD 测试时,可以把超出应用要求的电压直接施加在芯片上,当检测到意外动作的地方,软件部分需要加强以防止发生不可恢复的错。

7.3.12 ESD 特性

使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

符号	参数	条件	最小值	典型值	最大值	单位
VESD _{HBM}	ESD @ Human Body Mode			4		KV
VESD _{CDM}	ESD @ Charge Device Mode			1		KV
VESD _{MM}	ESD @ machine Mode			200		V
Ilatchup	Latch up current			200		mA

7.3.13 I/O 端口特性

输出特性——端口

符号	参数	条件	最小值	最大值	单位
V _{OH}	High level output voltage	Sourcing 5 mA, VCC = 3.3 V	VCC-0.25		V
	Source Current	(see Note 1)			
		Sourcing10 mA, VCC = 3.3 V	VCC-0.6		V
		(see Note 2)			
Vol	Low level output voltage	Sinking 6 mA, VCC = 3.3 V		VSS+0.25	V
	Sink Current	(see Note 1)			
		Sinking 15 mA, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			
V _{OHD}	High level output voltage	Sourcing10 mA, VCC = 3.3 V	VCC-0.25		V
	Double source Current	(see Note 1)			
		Sourcing 20 mA, VCC = 3.3V	VCC-0.6		V
		(see Note 2)			
V _{OLD}	Low level output voltage	Sinking 10 mA, VCC = 3.3 V		VSS+0.25	V
	Double Sink Current	(see Note 1)			
		Sinking 20 mA, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			

表 7-9 端口输出特性

NOTES: 1. The maximum total current, IoH(max) and IoL(max), for all outputs combined, should not exceed 40 mA to satisfy the maximum specified voltage drop.

2. The maximum total current, IoH(max) and IoL(max), for all outputs combined, should not exceed 100 mA to satisfy the maximum specified voltage drop.

图 7-2 输出端口 VOH/VOL 实测曲线

输入特性——端口 PA,PB,PC,PD, RESET

符号	参数	条件	最小值	典型值	最大值	单位
V_{IH}	Positive-going input	VCC=1.8v	1			V
	threshold voltage	VCC=3.3v	1.75			V
		VCC=5.5v	2.8			V
V _{IL}	Negative-going input	VCC=1.8v			0.8	V
	threshold voltage	VCC=3.3v			1.5	V
		VCC=5.5v			2.4	V

V _{hys(1)}	Input voltage hysteresis	VCC=1.8v	0.3	V
	(V _{IH} - V _{IL})	VCC=3.3v	0.4	V
		VCC=5.5v	0.6	V
Rpullhigh	Pullup resistor	Pullup enabled	80	Kohm
		VCC=3.3V		
R _{pulllow}	Pulldown resistor	Pulldown enabled	40	Kohm
		VCC=3.3V		
C _{input}	Input capacitance		5	pf

^{1.} 由综合评估得出,不在生产中测试。

端口外部输入采样要求——Timer Gate/Timer Clock

符号	参数	条件	最小值	典型值	最大值	单位
t(int)	External interrupt	External trigger signal for the	1.8v	30		ns
	timing	interrupt flag (see Note 1)	3.3v	30		ns
			5.5v	30		ns
t(cap)	Timer capture timing	Timer4/5/6 capture pulse width	1.8v	0.5		us
		Fsystem = 4MHz	3.3v	0.5		us
			5.5v	0.5		us
t(clk)	Timer clock frequency	Timer0/1/2/4/5/6 external clock	1.8v		PCLK/2	MHz
	applied to pin	input	3.3v		PCLK/2	MHz
		Fsystem = 4MHz	5.5v		PCLK/2	MHz
t(pca)(2)	PCA clock frequency	PCA external clock input	1.8v		PCLK/8	MHz
	applied to pin	Fsystem = 4MHz	3.3v		PCLK/8	MHz
			5.5v		PCLK/8	MHz

NOTES: 1. The external signal sets the interrupt flag every time the minimum $t_{(int)}$ parameters are met. It may be set even with trigger signals shorter than $t_{(int)}$.

2. 由综合评估得出,不在生产中测试。

端口漏电特性——PA,PB,PC,PD

名	符号	参数	条件	最小值	典型值	最大值	单位
I	lkg(Px.y)	Leakage current	V _(Px.y) (see Note 1,2)		±50		nA

NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

2. The port pin must be selected as input.

7.3.14 RESETB 引脚特性

RESETB 引脚输入驱动使用 CMOS 工艺,它连接了一个不能断开的上拉电阻。

符号	参数	条件	最小值	典型值	最大值	单位
VIL(RESETB) (1)	输入低电平电压		-0.3		0.8	
VIH(RESETB)	输入高电平电压		0.8*VCC		VCC+0.5	
Vhys(RESETB)	施密特触发器电压迟滞			200		mV
RPU	弱上拉等效电阻	VIN = VSS		80		kΩ
VF(RESETB) ⁽¹⁾	输入滤波脉冲				100	ns
VNF(RESETB) (1)	输入非滤波脉冲		300			ns

^{1.} 由设计保证,不在生产中测试。

7.3.15 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ADCIN}	Input voltage range	Single ended	0		V _{ADCREFIN}	V
Vadcrefin	Input range of external reference voltage	Single ended	0		AVCC	V
I _{ADC1}	Active current including reference generator and buffer	200Ksps		2		Ma
I _{ADC2}	Active current without reference generator and buffer	1MSPS		0.5		Ma
Cadcin	ADC input capacitance			16	19.2	Pf
R _{ADC} ⁽¹⁾	ADC sampling switch impedance			1.5		Kohm
R _{AIN} ⁽¹⁾	ADC external input resistor ⁽²⁾				100	Kohm
F _{ADCCLK}	ADC clock Frequency				24M	Hz
TADCSTART	Startup time of reference generator and ADC core			30		Ms
TADCCONV	Conversion time		20	24	28	cycles
ENOB	Effective Bits	1MSPS@VCC>=2.7v 500KSPS@VCC>=2.4v 200KSPS@VCC>=1.8v REF=EXREF		10.3		Bit
		1MSPS@VCC>=2.7v 500KSPS@VCC>=2.4v		10.3		Bit

		200KSPS@VCC>=1.8v REF=VCC				
		200KSPS@VCC>=1.8v		9.4		Bit
		REF=internal 1.5V				
		200KSPS@VCC>=2.8v		9.4		Bit
		REF=internal 2.5V		9.4		DIL
		1MSPS@VCC>=2.7v				
		500KSPS@VCC>=2.4v		60.2		D1
		200KSPS@VCC>=1.8v		68.2		Db
		REF=EXREF				
		1MSPS@VCC>=2.7v				
a	Signal to Noise	500KSPS@VCC>=2.4v		68.2		D1
SNR	Ratio	200KSPS@VCC>=1.8v				Db
		REF=VCC				
		200KSPS@VCC>=1.8v				DI
		REF=internal 1.5V		60		Db
		200KSPS@VCC>=2.8v				DI
		REF=internal 2.5V		60		Db
DNI (1)	D. C 1 1	200KSps;	1		1	I CD
DNL ⁽¹⁾	Differential non-linearity	VREF=EXREF/AVCC	-1		1	LSB
INL ⁽¹⁾	Internal new linearity	200KSps;	2		2	I CD
IINL'''	Integral non-linearity	VREF=EXREF/AVCC	-3		3	LSB
Eo	Offset error			0		LSB
Eg	Gain error			0		LSB

- 1. 由设计保证,不在生产中测试。
- 2. ADC 的典型应用如下图所示:

对于 0.5LSB 采样误差精度要求的条件下,外部输入阻抗的计算公式如下:

$$R_{AIN} = \frac{M}{F_{ADC} * C_{ADC} * (N+1) * ln(2)} - R_{ADC}$$

其中 F_{ADC} 为 ADC 时钟频率,寄存器 ADC_CR0<3:2>可设定其与 PCLK 的关系,如下表:

下表为 ADC 时钟频率 F_{ADC} 和 PCLK 分频比关系:

ADC_CR0<3:2>	N
00	1
01	2
10	4
11	8

M 为采样周期个数,由寄存器 ADC_CR0<13:12>设定。

下表为采样时间 t_{sa} 和 ADC 时钟频率 F_{ADC} 的关系:

ADC_CR0<13:12>	М
00	4
01	6
10	8
11	12

下表为 ADC 时钟频率 F_{ADC} 和外部电阻 R_{AIN} 的关系(M=12,采样误差 0.5LSB 的条件下):

R _{AIN} (Kohm)	$F_{ADC}(\mathrm{KHz})$
10	5600
30	2100
50	1300
80	820
100	660
120	550
150	450

对于上述典型应用,应注意:

- 尽量减小 ADC 输入端口 AIN_X 的寄生电容 $C_{PARACITIC}$;
- 除了考虑 R_{AIN} 值外,如果信号源 V_{AIN} 的内阻较大时,也需要加入考虑。

7.3.16 VC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vin	Input voltage range		0		5.5	V
Vincom	Input common mode range		0		VCC-0.2	V
Voffset	Input offset	常温25℃ 3.3V	-10		+10	mV
Icomp	Comparator's current	VCx_BIAS_SEL=00		0.3		uA
		VCx_BIAS_SEL=01		1.2		
		VCx_BIAS_SEL=10		10		
		VCx_BIAS_SEL=11		20		
Tresponse	Comparator's response time	VCx_BIAS_SEL=00		20		uS
	when one input cross another	VCx_BIAS_SEL=01		5		
		VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Tsetup	Comparator's setup time when	VCx_BIAS_SEL=00		20		uS
	ENABLE.	VCx_BIAS_SEL=01		5		
	Input signals unchanged.	VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Twarmup	From main bandgap enable to			20		uS
	1.2V BGR reference. Temp					
	sensor voltage. ADC internal					
	1.5V \ 2.5V reference stable					
Tfilter	Digital filter time	VC_debounce = 000		7		μS
		VC_debounce = 001		14		
		VC_debounce = 010		28		
		VC_debounce = 011		112		
		VC_debounce = 100		450		
		VC_debounce = 101		1800		
		VC_debounce = 110		7200		
		VC_debounce = 111		28800		

7.3.17 OPA 特性

OPA: $(AVCC=2.2V \sim 5.5 \text{ V}, AVSS=0 \text{ V}, Ta=-40^{\circ} \text{ C} \sim +85^{\circ} \text{ C})$

符号	参数	条件	最小值	典型值	最大值	单位
Vi	输入电压		0	-	AVCC	V
Vo	输出电压 ⁽¹⁾		0.1	-	AVCC- 0.1	V
Io	输出电流(1)				0.5	mA
RL	负载电阻 ⁽¹⁾		10K			Ohm
Tstart	初始化时间(2)				20	us
Vio	输入失调电压	Vic=AVCC/2, Vo=AVCC/2, RL=10KΩ, Rs=50Ω		±6		mV
PM	相位范围(1)	RL=10kΩ, CL=20pF		65	-	deg
GM	增益范围(2)	RL=10kΩ, CL=20pF		15	-	dB
UGBW	单位增益带宽(1)	CL=20pF		2.5		MHz
SR	压摆率(1)	CL=15pF		2.6		V/uS
CMRR	共模抑制比(1)			70		dB

- 1. 由设计保证,不在生产中测试。
- 2. 需要同时设置 BGR_CR<0>=1

7.3.18 LCD 控制器

符号	参数	工作条件	最小	典型	最大	单位
I _{LCD}	电流	VCC=3.3V		3.3		uA
RH	低驱动电阻			1M		Ω
RL	高驱动电阻			360K		Ω
VLCDH	LCD 可调最高电压				VCC	V
VLCD3	LCD 最高电压				VLCDH	V
VLCD2	LCD 2/3电压				2/3 VLCDH	V
VLCD1	LCD 1/3电压				1/3 VLCDH	V
VLCD0	LCD 最低电压		0			V
$\triangle V_{XX}$	LCD 电压偏差	TA=-40~85°C			±50	mV

8. 封装信息

封装尺寸

LQFP64 封装

SECTION B-B

	L	QFP64 (10x1	0)	I	LQFP64 (7x7)						
Symbol	Min	Nom	Max	Min	Nom	Max					
A			1.60			1.60					
A1	0.05		0.15	0.05		0.15					
A2	1.35	1.40	1.45	1.35	1.40	1.45					
A3	0.59	0.64	0.69	0.59	0.64	0.69					
b	0.18		0.26	0.16		0.24					
b1	0.17	0.20	0.23	0.15	0.18	0.21					
С	0.13		0.17	0.13		0.17					
c1	0.12	0.13	0.14	0.12	0.13	0.14					
D	11.80	12.00	12.20	8.80	9.00	9.20					
D1	9.90	10.00	10.10	6.90	7.00	7.10					
E	11.80	12.00	12.20	8.80	9.00	9.20					
E1	9.90	10.00				7.10					
		10.00	10.10		6.90 7.00						
eB	11.25	0.50733	11.45	8.10	0.407.33	8.25					
e		0.50BSC			0.40BSC						
L	0.45		0.75	0.40		0.65					
L1		1.00REF		1.00REF							
θ	0°		7°	0°		7°					

NOTE:

- Dimensions "D1" and "E1" do not include mold flash.

LQFP48 封装

DETAIL: F

		Millimeter					
Symbol	Min	Nom	Max				
A			1.60				
A1	0.05		0.15				
A2	1.35	1.40	1.45				
A3	0.59	0.64	0.69				
b	0.18		0.26				
b1	0.17	0.20	0.23				
С	0.13		0.17				
c1	0.12	0.13	0.14				
D	8.80	9.00	9.20				
D1	6.90	7.00	7.10				
Е	8.80	9.00	9.20				
E1	6.90	7.00	7.10				
eВ	8.10		8.25				
e		0.50BSC					
L	0.40		0.65				
L1		1.00REF					
θ	0		7°				

NOTE:

Dimensions "D1" and "E1" do not include mold flash.

QFN32 封装

Millimeter **Symbol** Min Nom Max 0.70 0.75 0.80 Α 0.02 0.05 A1 0 0.15 0.20 0.25 b 0.18 0.20 0.25 c 3.90 4.00 4.10 D D2 2.60 2.70 2.65 0.40BSC 2.80BSC Nd 3.90 E 4.00 4.10 E2 2.60 2.70 2.65 2.80BSC Ne K 0.20 L 0.35 0.40 0.45 0.30 0.35 0.40 L1 L2 0.15 0.20 0.25 0.30 0.35 0.40 h L/F 载体尺 112*112 寸 (Mil)

BOTTOM VIEW

Nd

EXPOSED THERMAL

PAD ZONE

TSSOP28 封装

		Millimeter			
Symbol	Min	Nom	Max		
A			1.20		
A1	0.05		0.15		
A2	0.80		1.00		
A3	0.39	0.44	0.49		
b	0.20		0.29		
b1	0.19	0.22	0.25		
С	0.14		0.18		
c1	0.12	0.13	0.14		
D	9.60	9.70	9.80		
E	6.20	6.40	6.60		
E1	4.30	4.40	4.50		
e		0.65BSC			
L	0.45	0.60	0.75		
L1		1.00BSC			
θ	0		8°		

NOTE:

- Dimensions "D" and "E1" do not include mold flash.

丝印说明

LQFP64 封装 (10mm x 10mm)

LQFP64 封装 (7mm x 7mm) / LQFP48 封装

QFN32 封装

TSSOP28 封装

9. 订购信息

Part Number	Flash	RAM	UART	LPUART	SPI	I2C	ADC	PWM	Comp	OP	I/O	RTC	LVD	LVR	AES	LCD	Vdd	Package	脚间距
HC32L136K8TA-LQFP64	64K	8K	2	2	2	2	24*12	23	2	3	56	√	√	√	√	4*40	1.8~5.5v	LQFP64(10*10)	0.5mm
HC32L136K8TA-LQ64	64K	8K	2	2	2	2	24*12	23	2	3	56	√	√	√	√	4*40	1.8~5.5v	LQFP64(7*7)	0.4mm
HC32L136J8TA-LQ48	64K	8K	2	2	2	2	17*12	18	2	2	40	√	√	√	√	4*26	1.8~5.5v	LQFP48(7*7)	0.5mm
HC32L130J8TA-LQ48	64K	8K	2	2	2	2	17*12	18	2	2	40	√	√	√	√	-	1.8~5.5v	LQFP48(7*7)	0.5mm
HC32L130F8UA-QFN32TR	64K	8K	2	1	1	2	8*12	10	2	0	26	√	√	√	√	-	1.8~5.5v	QFN32(4*4)	0.4mm
HC32L130F8UA-QFN32	64K	8K	2	1	1	2	8*12	10	2	0	26	√	√	√	√	-	1.8~5.5v	QFN32(4*4)	0.4mm
HC32L130E8PA-TSSOP28	64K	8K	2	1	1	2	11*12	12	2	0	23	√	√	√	√	-	1.8~5.5v	TSSOP28	0.65mm

10. 版本记录 & 联系方式

版本	修订日期	修订内容摘要
Rev1.0	2018/8/20	初版发布。
Rev1.1	2018/10/16	唯一 ID 号修正为 10 字节;更新"产品阵容"中功能表;修正 RESETB 引脚特性
		参数。
Rev1.2	2019/2/27	修正以下数据: ①ADC 特性 ②QFN32 封装尺寸 ③增加丝印说明 ④删除产品
		选型表,增加订购信息 ⑤更新产品名称 ⑥封装尺寸中增加 NOTE ⑦ESD 特性
		⑧存储器特性中 ECFLASH 最小值。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: http://www.hdsc.com.cn/mcu.htm

通信地址: 上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

