课后习题:

设题图所示的序列 \mathbf{x} (\mathbf{n}) 的 \mathbf{FT} 用 \mathbf{X} $(e^{j\omega})$ 表示,不直接求出 \mathbf{X} $(e^{j\omega})$,完成下列运算

或工作:

- (2) $\int_{-\pi}^{\pi} X \left(e^{j\omega} \right) d\omega$;
- (3) $\times (e^{j\pi})$;

- (4) 确定并画出傅里叶变换实部 $Re[X(e^{j\omega})]$ 的时间序列 x_a (n);
- (5) $\int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$;

(6)
$$\int_{-\pi}^{\pi} \left| \frac{dX (e^{j\omega})}{d\omega} \right|^2 d\omega_{\circ}$$

解: (1) X
$$(e^{j0})$$
 =FT[x(n)]| $_{\omega=0}=\sum_{-3}^{7}x(n)\cdot e^{-j\cdot 0\cdot n}$ =6

(2)
$$\int_{-\pi}^{\pi} X (e^{j\omega}) \cdot e^{j\omega n} d\omega = 2\pi x(n)$$

当 n=0 时,
$$\int_{-\pi}^{\pi} X \ (e^{j\omega}) \ d\omega = 2\pi x(0) = 4\pi$$

(3)
$$X(e^{j\pi}) = FT[x(n)]|_{\omega=\pi} = \sum_{-3}^{7} x(n) \cdot e^{-j \cdot \pi \cdot n}$$

$$= \sum_{-3}^{7} x(n) \cdot (\cos(n\pi) - j\sin(n\pi))$$

$$= \sum_{-3}^{7} x(n) \cdot (-1)^{n}$$

$$= 2$$

(4) 因为傅里叶变换的实部对应序列的共轭对称部分,即

Re[X
$$(e^{j\omega})$$
]= $\sum_{-\infty}^{\infty} x(n) \cdot e^{-j \cdot \omega \cdot n}$

$$x_e$$
 (n) = $\frac{1}{2}$ [x(n)+x(-n)]

则 x_e (n) 的波形图如下:

颞解

(5)
$$\sum_{-\infty}^{\infty} |x| (n) |^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

$$\Rightarrow \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega = 2\pi \sum_{-3}^{7} |x(n)|^2 = 28\pi$$

(6)
$$FT[nx(n)]=j\frac{dX (e^{j\omega})}{d\omega}$$

$$\therefore \int_{-\pi}^{\pi} |\frac{dX \ (e^{j\omega})}{d\omega}|^2 \ d\omega = 2\pi \sum_{-3}^{7} |-jnx \ (n)|^2$$

$$= 2\pi \sum_{-3}^{7} |nx \ (n)|^2$$

$$= 316 \pi$$

已知 $X(z) = \frac{-3z^{-1}}{2-5z^{-1}+2z^{-2}}$ 分别求:

- (1) 收敛域 0.5<|z|<2 对应的原序列 x (n);
- (2) 收敛域|z|>2 对应的原序列 x(n)。

解:
$$x(n) = \frac{1}{2\pi j} \oint_C X (z) z^{n-1} dz$$

 $F(z) = X(z) z^{n-1} = \frac{-3z^{-1}}{2-5z^{-1}+2z^{-2}} z^{n-1} = \frac{-3 \cdot z^n}{2(z-0.5)(z-2)}$

(1) 收敛域 0.5<|z|<2:

n≥0 时, c 内有极点 0.5,

$$\times$$
 (n) =Res[F(z),0.5]= $0.5^n=2^{-n}$

n<0 时,c 内有极点 0.5、0,但 0 是一个 n 阶极点,改求 c 外极点留数,c 外极点只有 2.

$$x (n) = -Res[F(z),2] = 2^n$$

最后得到

$$x(n) = 2^{-n}u(n) + 2^{n}u(-n-1) = 2^{|n|}$$
 $-\infty < n < \infty$

(2) 收敛域|z|>2:

n≥0 时,c 内有极点 0.5、2,

x (n) =Res[F(z),0.5]+ Res[F(z),2]=
$$0.5^n + \frac{-3 \cdot z^n}{2(z-0.5)(z-2)}(z-2)|_{z=2}$$

= $0.5^n - 2^n$

n<0 时, c 内有极点 0.5、2、0,但 0 是一个 n 阶极点,改求 c 外极点留数,可是 c 外没有极点,因此

$$x(n) = 0$$

最后得到

$$x (n) = (0.5^n - 2^n) u(n)$$