Department of Computer Science Chair of Computer Networks and Telematics Prof. Dr. Christian Schindelhauer Exam: "Mock Exam 16: Introduction to Cryptography" Date and time: 2020/09/04 14:38 Duration: 90 minutes Room: your room Permitted exam aids: none (well, not this time, but in the real exam) Prof. Dr. Christian Schindelhauer Examiner: Family name: First name: Matriculation number: Subject: Program: ☐ Bachelor ☐ Master ☐ Lehramt □ others

NOTES

Signature:

· Please fill out this form.

Signature of the examiner:

- Please write your matriculation number on each paper sheet.
- Please fill in your answer in the designated areas.

	Max	Reached	Comments
Basics	6		
DES & AES	12		
Fields and Modular Arithmetics	28		
Hash Functions, Digital Signature and Cryptographic Protocols	10		
Public Key Cryptography	28		
Quantum Cryptography	6		
Sum	90		
Grade:			
Date of the review of the exam:			

ıesti	on 1: Ba	sics					[6 Points
(a)	[6 Points]	Describe a Ch	allenge and I	Response Pr	otocol with a	figure.	

Ouestion	2:	DES	&	AES
Outsuui	. 4.		u	

estion 2: DES & AES	[12 Points]		
[12 Points] Describe the electronic Codebook Mode	and explain why it should be avoided.		

Question 3: Fields and Modular Arithmetics

[28 Points]

(a) [12 Points] Define the set of square residuals modulo n as $\mathbb{QR}_p := \{x^2 \mid x \in \mathbb{Z}_n\}$. Let p > 2 be a prime number. Show that every square number $x \in \mathbb{QR}_p$ has not more than two roots.

(Hint: consider $a^2 - b^2 = (a - b)(a + b)$).

9)	[8 Points]	ints] State the Chinese Remainder Theorem for two prime numbers p, q .			

 e-Symbol?			

```
Consider the El-Gamal based Digital Signature from the lecture: public: large prime number p, generator g \in \mathbb{Z}_n^* secret: x \in \{1, \dots p-2, \} public: y = g^x \mod p input: message m \in \{1, \dots, p-2\} output: signature \sigma repeat k \leftarrow \text{random from}: \{1, \dots, p-2\} until \gcd(k, p-1) = 1 r \leftarrow g^k \mod p s \leftarrow k^{-1}(m-rx) \mod (p-1) \sigma = (m, r, s) return \sigma
```

Question 4: Crypto Hash Functions, Digital Signature and Crypto Protocols [10 Points]

(a) [10 Points] Assume that k is published with the signature σ . Show how to compute the

secret x with thi	is information.		

Question 5: Public Key Cryptography	[28 Points]
(a) [12 Points] Describe the El-Gamal-Encryption method.	

 (q) and $x_p \neq x$	-		

Question 6: Quantum Cryptography

[6 Points]