

Lecture 19: Anomaly Detection

COMP90049 Introduction to Machine Learning Semester 1, 2021

Lea Frermann, CIS

© 2020 The University of Melbourne Acknowledgement: Lida Rashidi

Lecture Outline

- Anomaly Detection
 - Definition
 - Importance
 - Structure
- Anomaly Detection Algorithms
 - Statistical
 - Proximity-based
 - Density-based
 - Clustering-based
- Summary

What are Outliers/Anomalies?

- Anomaly: A data object that deviates significantly from the normal objects as if it were generated by a different mechanism
 - Ex.: Unusual credit card purchase, sports: Michael Jordon, ...
- Anomalies are different from noise
 - Noise is random error or variance in a measured variable
 - Noise should be removed before anomaly detection
- Anomalies are interesting:
 - They violate the mechanism that generates the normal data
 - translate to significant (often critical) real life entities
 - Cyber intrusions
 - Credit card fraud

Importance of Anomaly Detection?

Ozone Depletion History

- In 1985 three researchers (Farman, Gardinar and Shanklin) were puzzled by data gathered by the British Antarctic Survey showing that ozone levels for Antarctica had dropped 10% below normal levels
- Why did the Nimbus 7 satellite, which had instruments aboard for recording ozone levels, not record similarly low ozone concentrations?
- The ozone concentrations recorded by the satellite were so low they were being treated as noise by a computer program and discarded!

Variants of Anomaly Detection Problem

- Variants of Anomaly/Outlier Detection Problems
 - Given a database D, find all the data points $x \in D$ with anomaly scores greater than some threshold t
 - Given a database D, find all the data points $x \in D$ having the top-n largest anomaly scores f(x)
 - Given a database D, containing mostly normal (but unlabeled) data points, and a test point x, compute the anomaly score of x with respect to D

Structure of Anomalies

Global/Point anomalies

Contextual/Conditional anomalies

Collective anomalies

Global/Point anomalies

- Global Anomaly (or point)
 - Object is O_q if it significantly deviates from the rest of the data set
 - Ex. Intrusion detection in computer networks
 - Issue: Find an appropriate measurement of deviation

COMP90049

Contextual anomalies

- Contextual Anomaly (or conditional)
 - Object is O_c if it deviates significantly based on a selected context
 - Attributes of data objects should be divided into two groups
 - Contextual attributes: defines the context, e.g., time & location
 - **Behavioral attributes**: characteristics of the object, used in anomaly evaluation, e.g., temperature
 - Can be viewed as a generalization of local anomalies—whose density significantly deviates from its local area
 - Issue: How to define or formulate meaningful context?

^{*} Song, et al, "Conditional Anomaly Detection", IEEE Transactions on Data and Knowledge Engineering, 2006.

Example of Contextual Anomalies

Ex. 10° C in Paris: Is this an anomaly?

Collective anomalies

Collective Anomalies

- A **subset** of data objects that **collectively deviate** significantly from the whole data set, even if the individual data objects may not be anomalies
- E.g., intrusion detection:
 - When a number of computers keep sending denial-of-service packages to each other
- Detection of collective anomalies
 - Consider not only behavior of individual objects, but also that of groups of objects
 - Requires background knowledge about the relationship among data objects, such as a distance or similarity measure on objects.

Example of Collective anomalies

- Requires a relationship among data instances
 - Sequential data
 - Spatial data
 - Graph data
- The individual instances within a collective anomaly are not anomalous by themselves

Anomaly detection paradigms: supervised, semi-supervised, and unsupervised

ide 12 COMP90049

Supervised Anomaly Detection

Supervised anomaly detection

- Labels available for both normal data and anomalies
- Samples examined by domain experts used for training & testing
- Challenges
 - · Require both labels from both normal and anomaly class
 - · Imbalanced classes, i.e., anomalies are rare: Boost the anomaly class and make up some artificial anomalies
 - · Cannot detect **unknown** and emerging anomalies
 - Catch as many outliers as possible, i.e., recall is more important than accuracy (i.e., not mislabeling normal objects as outliers)

Semi-supervised Anomaly Detection

Semi-Supervised anomaly detection

- · Labels available only for **normal** data
- Model normal objects & report those not matching the model as outliers
- · Challenges
 - · Require **labels** from normal class
 - Possible high false alarm rate previously unseen (yet legitimate)
 data records may be recognized as anomalies

Unsupervised Anomaly Detection I

Unsupervised anomaly detection

- Assume the normal objects are somewhat "clustered" into multiple groups, each having some distinct features
- An outlier is expected to be far away from any groups of normal objects

General steps

- Build a profile of "normal" behavior
 - summary statistics for overall population
 - model of multivariate data distribution
- Use the "normal" profile to detect anomalies
 - anomalies are observations whose characteristics differ significantly from the normal profile

Unsupervised Anomaly Detection II

Unsupervised anomaly detection **Challenges**

- Normal objects may not share any strong patterns, but the collective outliers may share high similarity in a small area
- Ex. In some intrusion or virus detection, normal activities are diverse
 - Unsupervised methods may have a high false positive rate but still miss many real outliers.

Many clustering methods can be adapted for unsupervised methods

- Find clusters, then outliers: not belonging to any cluster
- Problem 1: Hard to distinguish noise from outliers
- Problem 2: Costly since first clustering: but far less outliers than normal objects

Unsupervised anomaly detection: Approaches

- Statistical (or: model-based)
 - Assume that normal data follow some statistical model
- Proximity-based
 - An object is an outlier if the nearest neighbors of the object are far away
- Density-based
 - Outliers are objects in regions of low density
- Clustering-based
 - Normal data belong to large and dense clusters

Statistical Anomaly detection

ide 18 COMP90049

Statistical anomaly detection

Anomalies are objects that are fit poorly by a statistical model.

- **Idea**: learn a model fitting the given data set, and then identify the objects in **low probability regions** of the model as anomalies
- Assumption: normal data is generated by a parametric distribution with parameter θ
 - The probability density function of the parametric distribution $f(x, \theta)$ gives the probability that object x is generated by the distribution
 - The smaller this value, the more likely x is an outlier
- Challenges of Statistical testing:
 - highly depends on whether the assumption of statistical model holds in the real data

COMP90049

Visualizing the data

Graphical Approaches

- Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D)
- Limitations: Time consuming, Subjective

Image: https://en.wikipedia.org/wiki/Box_plot#/media/File:Boxplot_with_outlier.png

Univariate data -- General Approach

Avg. temp.: $x=\{24.0, 28.9, 28.9, 29.0, 29.1, 29.1, 29.2, 29.2, 29.3, 29.4\}$

• Use the **maximum likelihood** method to estimate μ and σ

$$\hat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

• For the above data x with n = 10:

$$\hat{\mu} = 28.61$$
 $\hat{\sigma} = \sqrt{2.29} = 1.51$

• Decide on a confidence limits, e.g., $\mu \pm 3\sigma$ region contains 99.7% data

Then 24 is an outlier since:

$$(24 - 28.61)/1.51 = -3.04 < -3$$

Image: https://en.wikipedia.org/wiki/Standard_deviation#/media/File:Standard_deviation_diagram.svg

Multivariate Data

- Multivariate Gaussian distribution
 - Outlier defined by Mahalanobis distance
 - Grubb's test on the distances

	Distance	
	Euclidean	Mahalanobis
А	5.7	35
В	7.1	24

Mahalanobis Distance

ide 23 COMP90049

Mahalanobis Distance

Mahalanobis Distance

$$y^2 = (x - \bar{x})'S^{-1}(x - \bar{x})$$

S is the covariance matrix:

$$S = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})'$$

For 2-dimensional data:

$$\begin{pmatrix} \sigma(x,x) & \sigma(x,y) \\ \sigma(y,x) & \sigma(y,y) \end{pmatrix}$$

Likelihood approach

- Assume the dataset D contains samples from a mixture of two probability distributions:
 - M (majority distribution)
 - A (anomalous distribution)
- General approach:
 - Initially, assume all the data points belong to M
 - Let L_t(D) be the log likelihood of D at time t
 - For each point x_t that belongs to M, move it to A
 - Let L_{t+1} (D) be the new log likelihood.
 - Compute the difference, $\Delta = L_t(D) L_{t+1}(D)$
 - If $\Delta > c$ (some threshold), then x_t is declared as an anomaly and moved permanently from M to A

Likelihood approach

Data distribution, D = $(1 - \lambda)$ M + λ A

- M is a probability distribution estimated from data
- A is initially assumed to be uniform distribution
- Likelihood at time t:

$$L_{t}(D) = \prod_{i=1}^{N} P_{D}(x_{i}) = \left((1 - \lambda)^{|M_{t}|} \prod_{x_{i} \in M_{t}} P_{M_{t}}(x_{i}) \right) \left(\lambda^{|A_{t}|} \prod_{x_{i} \in A_{t}} P_{A_{t}}(x_{i}) \right)$$

$$LL_{t}(D) = |M_{t}| \log(1 - \lambda) + \sum_{x_{i} \in M_{t}} \log P_{M_{t}}(x_{i}) + |A_{t}| \log \lambda + \sum_{x_{i} \in A_{t}} \log P_{A_{t}}(x_{i})$$

Statistical Anomaly detection

Pros

- Statistical tests are well-understood and well-validated.
- Quantitative measure of degree to which object is an outlier.

Cons

- Data may be hard to model parametrically.
 - multiple modes
 - variable density
- In high dimensions, data may be insufficient to estimate true distribution.

Proximity-based Anomaly detection

ide 28 COMP90049

Proximity-based Anomaly detection

Anomalies are objects far away from other objects.

- An object is an **anomaly** if the nearest neighbors of the object are **far** away, i.e., the **proximity** of the object significantly deviates from the proximity of most of the other objects in the same data set
- Common approach:
 - Outlier score is distance to k^{th} nearest neighbor.
 - Score sensitive to choice of k.

Proximity-based anomaly detection

Figure 10.5. Outlier score based on the distance to the first nearest neighbor. Nearby outliers have low outlier scores.

Proximity-based anomaly detection

Figure 10.7. Outlier score based on the distance to the fifth nearest neighbor. Clusters of differing density.

Proximity-based outlier detection

Pros

- Easier to define a proximity measure for a dataset than determine its statistical distribution.
- Quantitative measure of degree to which object is an outlier.
- Deals naturally with multiple modes.

Cons

- $-O(n^2)$ complexity.
- Score sensitive to choice of k.
- Does not work well if data has widely variable density.

Density-based Anomaly detection

ide 33 COMP90049

Outliers are objects in regions of low density.

- Outlier score is the **inverse of the density** around a point
- Scores usually based on **proximities**.
- Example scores:
 - # points within a fixed radius d
 - Reciprocal of average distance to k nearest neighbors:

Tend to work **poorly** if data has **variable density**.

density(
$$\mathbf{x}, k$$
) = $\left(\frac{1}{k} \sum_{\mathbf{y} \in N(\mathbf{x}, k)} \text{distance}(\mathbf{x}, \mathbf{y})\right)^{-1}$

Image: https://en.wikipedia.org/wiki/Local outlier factor#/media/File:Reachability-distance.svg

Relative density outlier score

- Local Outlier Factor (LOF)
- Reciprocal of average distance to k
 nearest neighbors, relative to that of those k neighbors.

relative density(
$$\mathbf{x}, k$$
) = $\frac{\text{density}(\mathbf{x}, k)}{\frac{1}{k} \sum_{\mathbf{y} \in N(\mathbf{x}, k)} \text{density}(\mathbf{y}, k)}$

Image: https://en.wikipedia.org/wiki/File:LOF-idea.svg

In the NN approach, o_2 is not considered as outlier, while LOF approach find both o_1 and o_2 as outliers!

COMP90049

Pros

- Quantitative measure of degree to which object is an outlier.
- Can work well even if data has variable density.

Cons

- $O(n^2)$ complexity
- Must choose parameters
 - k for nearest neighbor
 - d for distance threshold

Cluster-based Anomaly Detection

ide 38 COMP90049

Outliers are objects that do not belong strongly to any cluster.

Approaches:

- Assess degree to which object belongs to any cluster.
- Eliminate object(s) to improve objective function.
- Discard small clusters far from other clusters

Issue:

Outliers may affect initial formation of clusters.

Assess degree to which object belongs to any cluster.

- For prototype-based clustering (e.g. k-means), use distance to cluster centers.
- To deal with variable density clusters, use relative distance:

$$\frac{\operatorname{distance}(\mathbf{x}, centroid_C)}{\operatorname{median}(\left\{\forall_{x' \in C} \operatorname{distance}(\mathbf{x'}, centroid_C)\right\})}$$

Similar concepts for density-based or connectivity-based clusters.

distance of points from nearest centroid

relative distance of points from nearest centroid

Eliminate object(s) to improve objective function.

- 1) Form initial set of clusters.
- 2) Remove the object which most improves objective function.
- 3) Repeat step 2) until ...

Discard small clusters far from other clusters.

Need to define thresholds for "small" and "far".

Pros:

- Some clustering techniques have O(n) complexity.
- Extends concept of outlier from single objects to groups of objects.

Cons:

- Requires thresholds for minimum size and distance.
- Sensitive to number of clusters chosen.
- Hard to associate outlier score with objects.
- Outliers may affect initial formation of clusters.

Summary

Today

- Types of outliers
- Supervised, semi-supervised, or unsupervised
- Statistical, proximity-based, clustering-based approaches

Next up

- Ethics in Machine Learing
- Wednesday: Guest lecture, part I (pre-recorded)
- Friday: normal lecture
- Wednesday: Guest lecture, part II (live)

References

- Tan et al (2006) Introduction to Data Mining. Section 4.3, pp 150-171. (Chapter 10)
- V. Chandola, A. Banerjee, and V. Kumar, (2009). Anomaly detection: A survey. *ACM computing surveys (CSUR)*, *41*(3), 1-58.
- A. Banerjee, et al (2008). Tutorial session on anomaly detection. The SIAM Data Mining Conference (SDM08)