

Universidade Federal do Paraná Laboratório de Estatística e Geoinformação - LEG

Support Vector Machines

Eduardo Vargas Ferreira

Definição

 Support Vector Machines são baseados no conceito de planos de decisão (que definem limites de decisão);

 Tentamos encontrar o plano que separa as classes no espaço de características, (X₁, X₂).

O que é um hiperplano?

• Se f(X) > 0, estamos em um lado, se f(X) < 0, estamos do outro;

• Note que se codificarmos como $Y_i = +1$ os pontos em azul, e $Y_i = -1$ os pontos em rosa, então $Y_i \cdot f(X_i) > 0$ para todo i.

Separando as classes

• Mas, em meio a tantos hiperplanos possíveis, qual escolher?

Maximal Margin Classifier

 Dentre todos os hiperplanos, buscamos aquele que apresenta maior distância entre as margens das duas classes (seria a largura do corredor).

Problema de otimização com restrição

Voltamos ao problema de otimização restrita (eg

Então, temos o seguinte problema:

$$\underset{\beta_0, \boldsymbol{\beta}}{\operatorname{argmax}} M$$
, sujeito a $y_i(\langle \boldsymbol{x}_i, \boldsymbol{\beta} \rangle + \beta_0) \geq M, \forall i = 1:n$.

Utilizando a técnica dos Multiplicadores de Lagrange chega-se em

$$J(\boldsymbol{\beta}, \beta_0, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{\beta}\|^2 - \sum_{i=1}^n \alpha_i [y_i(\langle \boldsymbol{x}_i, \boldsymbol{\beta} \rangle + \beta_0) - 1].$$

• A resolução das equações $\frac{\partial J}{\partial \beta}=0$ e $\frac{\partial J}{\partial \beta_0}=0$ leva ao seguinte problema

$$\underset{\boldsymbol{\alpha}}{\operatorname{argmax}} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_{i} \alpha_{k} y_{i} y_{k} \langle \mathbf{x}_{i}, \mathbf{x}_{k} \rangle, \quad \operatorname{com} \begin{cases} \alpha_{i} \geq 0, \forall i = 1, \dots, n \\ \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \end{cases}$$

Perturbação nos dados

 A busca por um classificador que separe perfeitamente todas as observações de treinamento torna-o sensível a outliers;

Dados não separáveis

 Além disso, em situações reais, é difícil encontrar aplicações cujos dados sejam linearmente separáveis (o hiperplano, geralmente, não existe);

- Diante desses problemas, surgiu a ideia de se considerar um classificador que não separe as classes perfeitamente, tal que:
 - * Seja mais robusto a observações individuais;
 - * Classifique a maior parte dos dados de treinamento.
- O Support Vector Classifier (ou Soft Margin Classifier) faz isso.

$$\begin{array}{ll} \underset{\beta_0,\beta_1,\ldots,\beta_p,\epsilon_1,\ldots,\epsilon_n}{\operatorname{argmax}} M, \quad \text{sujeito a} \quad \sum_{j=1}^p \beta_j^2 = 1. \\ \\ y_i(\beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}) \quad \geq \quad \underbrace{M(1-\epsilon_i)}_{\text{violação da margem}} \\ \\ \epsilon_i \geq 0, \, \sum_{i=1}^n \epsilon_i \leq C \end{array}$$

- *C* é o **tuning parameter** (decide o quanto aceitamos errar);
- E ϵ_i são as variáveis de folga:
 - * Se $\epsilon_i = 0$, então a *i*-ésima obs. está no lado correto da margem;
 - * Se $0 < \epsilon_i \le 1$, então a *i*-ésima obs. está no lado errado da margem;
 - \star Se $\epsilon_i > 1$, então a *i*-ésima obs. está no lado errado do hiperplano.

Limite linear pode falhar

• O Support Vector Classifier é útil quando o limite as classes é linear;

• Entretanto, por vezes temos limites de classes não lineares.

Expansão das características

Ideia da expansão das características

• Considere o seguinte problema linearmente não separável

• Expandindo a característica de x_1 , através de $x_2 = x_1^2$, conseguimos uma separação linear

• Que projetada no espaço original, se transforma em

Ideia da expansão das características

• Suponha outro problema de classificação:

• Expandindo o espaço, temos um hiperplano linearmente separável em \mathbb{R}^3 .

Exemplo simulado

• Suponha que utilizemos $(X_1, X_1^2, X_2, X_2^2, X_1X_2)$, ao invés de (X_1, X_2) . A fronteira de decisão ficará

$$\beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 = 0$$

Se fosse um polinômio cubico sairíamos de 2 para 9 variáveis!

• Voltando ao problema de otimização

$$\underset{\boldsymbol{\alpha}}{\operatorname{argmax}} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_{i} \alpha_{k} y_{i} y_{k} \langle \mathbf{x_{i}}, \mathbf{x_{k}} \rangle.$$

• Por exemplo, considere o espaço de características com x_1 e x_2

$$K(x_i, x_k) = (1 + \langle x_i, x_k \rangle)^2$$

= 1 + 2x_{i1}x_{k1} + 2x_{i2}x_{k2} + (x_{i1}x_{k1})² + (x_{i2}x_{k2})² + 2x_{i1}x_{k1}x_{i2}x_{k2}

• Ao escolher $\Phi(\mathbf{x}_i) = \left(1, \sqrt{2}x_{i1}, \sqrt{2}x_{i2}, x_{i1}^2, x_{i2}^2, \sqrt{2}x_{i1}x_{i2}\right)$, chegamos em:

$$K(\mathbf{x}_i, \mathbf{x}_k) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_k) \rangle.$$

Voltando ao problema de otimização

$$\underset{\boldsymbol{\alpha}}{\operatorname{argmax}} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} \alpha_{i} \alpha_{k} y_{i} y_{k} \left(\mathbf{x}_{i}, \mathbf{x}_{k} \right).$$

• Por exemplo, considere o espaço de características com x_1 e x_2

$$K(x_i, x_k) = (1 + \langle x_i, x_k \rangle)^2$$

= 1 + 2x_{i1}x_{k1} + 2x_{i2}x_{k2} + (x_{i1}x_{k1})² + (x_{i2}x_{k2})² + 2x_{i1}x_{k1}x_{i2}x_{k2}

• Ao escolher $\Phi(\mathbf{x}_i) = \left(1, \sqrt{2}x_{i1}, \sqrt{2}x_{i2}, x_{i1}^2, x_{i2}^2, \sqrt{2}x_{i1}x_{i2}\right)$, chegamos em:

$$K(\mathbf{x}_i, \mathbf{x}_k) = \langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_k) \rangle.$$

- Lembrando que $||x_i x_k||^2 = \langle x_i, x_i \rangle + \langle x_k, x_k \rangle 2\langle x_i, x_k \rangle$, abaixo alguns exemplos de Kernel
 - * Kernel linear: $K(x_i, x_k) = \langle x_i, x_k \rangle$;
 - * Kernel gaussiano: $K(x_i, x_k) = exp(-\gamma ||x_i x_k||^2);$
 - * Kernel exponencial: $K(x_i, x_k) = exp(-\gamma ||x_i x_k||)$;
 - * Kernel polinomial: $K(x_i, x_k) = (p + \langle x_i, x_k \rangle)^q$;
 - * Kernel híbrido: $K(x_i, x_k) = (p + \langle x_i, x_k \rangle)^q \exp(-\gamma ||x_i x_k||^2);$
 - * Kernel sigmoidal: $K(x_i, x_k) = \tanh(k\langle x_i, x_k \rangle \delta)$.
- Os parâmetros que devem ser determinados pelo usuário.

Exemplo simulado

Kernel polinomial $K(x_i, x_k) = (p + \langle x_i, x_k \rangle)^q$

Kernel exponencial

$$K(x_i, x_k) = \exp(-\gamma ||x_i - x_k||)$$

Exemplo: Iris dataset

• O objetivo deste estudo é classificar a flor em três categorias:

- Versicolor;
- ⋆ Virginica;
- * Setosa.
- Para tanto, utilizamos o comprimento e largura das pétalas e sépalas.

Exemplo: Iris dataset

Exemplo: Iris dataset

	42.			
##	\$linear			
##				
##	setosa	setosa 50	versicolor 0	virginica 0
##			ŭ	-
##	versicolor	0	47	3 49
##	virginica	0	1	49
	\$polynomial			
##				
##			versicolor	
##	setosa	50	0	0
##	versicolor	0	50	0
##	virginica	0	15	35
##				
	\$radial			
##				
##			versicolor	-
##	setosa	50	0	0
##	versicolor	0	48	2
##	virginica	0	4	46
##				
	\$sigmoid			
##				
##			versicolor	
##	setosa	50	0	0
##	versicolor	4	23	23
##	virginica	0	14	36

Exemplo: heart disease - HD

- Os dados contêm o diagnóstico de 303 pacientes com dores no peito:
 - * Yes: indica a presença de doença cardíaca;
 - * No: indica ausência de doença cardíaca;
- Os dados apresentam 13 preditores incluindo Age, Sex, Cho1, e outras medidas de funções cardíacas e pulmonar;

Exemplo: heart disease - HD

 Vamos comparar o desempenho dos métodos através da curva ROC, utilizando os dados de treino;

• No gráfico da direita, note que não temos uma comparação muito justa, pois quanto maior γ mais complexo é o modelo (e melhor o ajuste).

Exemplo: heart disease - HD

 Agora, com os dados de teste, o comportamento da curva ROC é um pouco diferente;

• Note agora que SVM com $\gamma = 10^{-1}$ apresentou um pior desempenho.

Se temos mais de duas classes?

• O que fazemos então se temos K > 2 classes?

* One versus All (OVA):

- Compara-se cada classe vs as restantes;
- Calcula-se $f_k(x^*), k = 1 : K$;
- $-x^* \in k \mid f_k(x^*) > f_{(-k)}(x^*).$

* One versus One (OVO):

- Treina-se os $\binom{K}{2}$ classificadores;
- Classifica x* para a classe que vencer a maioria das competições.

Referências

- James, G., Witten, D., Hastie, T. e Tibshirani, An Introduction to Statistical Learning, 2013;
- Hastie, T., Tibshirani, R. e Friedman, J., The Elements of Statistical Learning, 2009;
- Lantz, B., Machine Learning with R, Packt Publishing, 2013;
- Tan, Steinbach, and Kumar, Introduction to Data Mining, Addison-Wesley, 2005;
- Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani