Team ID	PNT2022TMID31735
Project Name	Machine Learning Based Vehicle Performance Analyzer

Documentation

Table of Contents

1. INTRODUCTION	3
1.1 Project Overview	3
1.2 Purpose	
2. LITERATURE SURVEY	3
2.1 Existing Problem	
2.2 References	3
3. IDEATION & PROPOSED SOLUTION	4
3.1 Empathy Map Canvas	
3.2 Ideation & Brainstroming	
3.3 Proposed Solution	
3.4 Proposed Solution fit	9
4. REQUIREMENT ANALYSIS	10
4.1 Functional requirement	10
4.2 Non-Functional requirements	10
5. PROJECT DESIGN	11
5.1 Data Flow Diagrams	11
5.2 Solution & Technical Architecture	12
5.3 User Stories	12
6. PROJECT PLANNING & SCHEDULING	13
6.1 Sprint Planning & Estimation	13
6.2 Sprint Delivery Schedule	14
6.3 Reports from JIRA	15
7. CODING & SOLUTION	16
7.1 Feature 1	
7.2 Feature 2	
8. TESTING	17
8.1 Test Cases	17
8.2 User Accepting Testing	20
9. RESULTS	21
9.1 Performance Metrics	
10. ADVANTAGES & DISADVANTAGES	21
11. CONCLUSION	22
12. FUTURE SCOPE	
13. APPENDEX	
Source Code	
Github Link	
Demo video Link:	26

1. INTRODUCTION

1.1 Project Overview

The automotive industry is extremely competitive. With increasing fuel prices and picky consumers. Automobile makers are constantly optimizing their processes to increase fuel efficiency. So we can help the predicting processor done easier by developing the application.

1.2 Purpose

The purpose of this project is to give the customer a portal to predict the performance of the vechicle (miles per gallon). Now a days fuel prices are increasing and atuomobile industries try to optimize the vehicle for running them using less fuel. This application help them to predict the performance of the vehicle.

2. LITERATURE SURVEY

2.1 Existing Problem

It is hard to predict the performance of the vehicle. It takes us a lot of time and hard work to predict the performance. if the vehicle designing engineer able to predict the performance of vehicle with less amount of the time, It make the Engineer design and testing process easier for them.

2.2 References

- [1] X. Yuan, L. Li, H. Gou, and T. Dong, "Energy and environmental impact of battery electric vehicle range in China," Applied Energy, vol. 157, pp. 75–84, 2015.
- [2] View at: Publisher Site | Google ScholarM. Ceraolo and G. Pede, "Techniques for estimating the residual range of an electric vehicle," IEEE Transactions on Vehicular Technology, vol. 50, no. 1, pp. 109–115, 2001.
- [3] View at: Publisher Site | Google ScholarA. Shekhar, V. Prasanth, P. Bauer, and M. Bolech, "Generic methodology for driving range estimation of electric vehicle with on-road charging," in Proceedings of the IEEE Transportation Electrification Conference and Expo, ITEC '15, June 2015.
- [4] View at: Google ScholarP. Ondruska and I. Posner, "Probabilistic attainability maps: Efficiently predicting driver-specific electric vehicle range," in Proceedings of the 25th IEEE Intelligent Vehicles Symposium, IV '14, pp. 1169–1174, June 2014.
- [5] View at: Google ScholarC. Bingham, C. Walsh, and S. Carroll, "Impact of driving characteristics on electric vehicle energy consumption and range," IET Intelligent Transport Systems, vol. 6, no. 6, pp. 29–35, 2012.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2) Ideation & Brainstroming

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	The objective of this project is to predict the price of used cars using the various Machine Learning models by using User Interface (UI).
2.	Idea / Solution description	To train the system with the dataset using a regression model and it will be integrated to the web-based application where the user is notified with the status.
3.	Novelty / Uniqueness	By using the optimal regression model to predict the value in a less amount to time and predict its value.
4.	Social Impact / Customer Satisfaction	The customer can get an idea about the resale value of their vehicle to predict the performance. By knowing the vehicle brand, fuel type, kilometeres driven.
5.	Business Model (Revenue Model)	The web-based application has a friendly UI for the customer to enter their vehicles detail and the system predicts the value within few seconds.
6.	Scalability of the Solution	Machine learning approaches, this project proposed a scalable framework for predicting values for different type of used cars. The solution given by the trained system is efficient and is nearly accurate value of the vehicle.

3.4 Proposed Solution fit

1, CUSTOMER SEGMENT

Define CS,

, fit into

CC

9

J&P, tap into BE

Who is your Customer?

The customer is one who wants to predict the performance of the vehicle.

6. CUSTOMER CONSTRAINTS

Multi-constants preven you opposed from sking action or limit their choices oil.

- . To determine the worthiness of the car by their own within few minutes
- A loss function is to be optimized by spending money for dealers, brokens to buy or sell a car

5. AVAILABLE SOLUTIONS

What solutions are available to the costomers when they face the problem or need to get the job done? what have they tried in the pass?? what pros & cons do these solutions have?

- . In the past User cannot fid the value of used car buy their own without prior knowmuch about the cars
- A person who don't know much about the car can also make predictions for used caes easily.

2 JOBS-TO-BE-DONE / PROBLEMS

To build a supervised machine learning model using regression algorithms for forecasting the value of a vehicle based on multiple attributes such as condition of Engine, Year of Registration, Kilometers, Number of owner

9. PROBLEM ROOT CAUSE

- · The price predicted by the dealers or brokers for used car is
- not trustful

 Users can predict the correct valuation of the car remotely
- without human intervention like car dealers.
 User can eliminate the valuation predicted by the dealer.

7. BEHAVIOUR

What does your customer it to sildness the problem and get the job done if

. The History of yer car's condition and documents produced by them will be suspicious. The model is to be built would give the nearest value of the vehicle by eliminating anonymous value predicted by using humans.

3 TRIGGERS

Users can predict the correct valuation of the car by their own like Olicars, Cars24 and other car resale value prediction websites by using modely ear, ewiner, etc.

. The main aim of this project is to predict the price of used cars using the Machine Learning(ML) algorithms and collection data's about different cars.

8. CHANNELS of BEHAVIOUR

What land of actions do custamers take entine? Extract entine channels.

What is a of actions do customers take offline? Extract offline channels
from 67 and use them for customer development.

- · Customer should predict the worth of the car by using different parameters given by the
- . User Should confirm the details provided about the vehicle in RTO online.

4 EMOTIONS BEFORE / AFTER

How do castorers feel when they face a problem or a job and oftenwards?

Reform:

- User will be in first about the biased values predicted. By the humans based on the condition of the car.

+ User can determine the worthiness of the car by their own without human intervention.

. The project should take parameters related to used car as inputs and enable the customers to make decisions by their own.

- · User can decide by seeing the exterior and interior condition of the car.
- . User can test the performance of the car and to buy it up in a affordable price based on its condition.

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

FR	Functional Requirement	Sub Requirement (Story / Sub-Task)		
No.	(Epic)			
		Registration through Form		
FR-1	User Registration	Registration through Gmail		
=		Registration through LinkedIN		
FR-2	User Confirmation	Confirmation via Email		
		Confirmation via OTP		
FR-3	Reset Password	Reset password through Gmail		
		Reset password through Mobile number		
FR-4	Feedback			
		The user can submit the feedback through a contact form in the website		
		or through Gmail		

4.2 Non-Functional requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The analyzer allows the user to improve performance based on the results provided. It is easy to use with just the data required
NFR-2	Security	The security is improved by using vehicle alarm, wheel lock, vehicle lock and also GPS tracker
NFR-3	Reliability	The reliability rating is good due to best performance, less frequency of problem occurrence and cost for repairing is low.
NFR-4	Performance	The vehicle is upgraded in their quality and infrastructure to provide better performance like good mileage, smooth travel
NFR-5	Availability	The data required is collected by research persons and this data can be used to provide better results.
NFR-6	Scalability	Better scalability since our model analyses all information provides better refined solution. With less change to the vehicle, we could achieve maximum performance.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story /Task	Acceptance criteria	Priority	Release
Customer (web user)	Visiting Webpage	USN-1	As a user, I can able to view the website using the good domain name	I can access the website	High	Sprint-4
	Design	USN-2	As a user, I can able to Enter the data	I can submit the data to the server to preict	High	Sprint-1

		of the vehicle			
Result	USN-3	As a user, I can get the predicted performance of the vehicle using the given data	I get the vehicle performance value	High	Sprint-2
Design	USN-4	As a user, I want the good user experience.	I get easy understanding of website	Low	Sprint-3
Result	USN-5	As a user, I want the website is fast	I get results faster	Low	Sprint-3
Result	USN-6	As a user, I expect the prediction is highly accuracy.	I get most high accrued value	Medium	Sprint-4

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-4	Visiting Webpage	USN-1	As a user, I can able to view the website using the good domain name	10	High	Nisha T

Sprint-1	Design	USN-2	As a user, I can	20	High	Leodas L
			able to Enter the			
			data of the vehicle			
Sprint-2	Result	USN-3	As a user, I can get	20	High	Bavadharni T
			the predicted			
			performance of the			
			vehicle using the			
			given data			
Sprint-3	Design	USN-4	As a user, I want 10 Low I		Nissan	
			the good user			Nawaz SA
			experience.			
Sprint-3	Result	USN-5	As a user, I want	10	Low	Samuel V
			the website is fast			
Sprint-4	Result	USN-6	As a user, I expect 10 Medium Lec		Leodas L	
			the prediction is			
			highly accuracy.			

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	25 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	08 Nov 2022	12 Nov 2022	20	13 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	20 Nov 2022

7. CODING & SOLUTION

7.1 Feature 1

Created a GUI based interface for the easy interation of the user using the HTML, CSS, PythonFlask. Code in Appendex

Output:

7.2 Feature 2

Implementation of the Model integrated with HTML and CSS in Appendex

8. TESTING

8.1 Test Cases

Input dataset:

```
array([[-0.76894131, -0.6338073 , -0.6601792 , -0.55841396, 0.37006707,
       -0.38798451, -0.75260027],
      [ 1.64342359, 2.07850256, 3.38793037, 1.59935958, -2.34958594,
       -0.64240058, -0.75260027],
      [-0.76894131, -0.50697267, -0.55222961, -0.74265735, -1.53369004,
        1.64734406, -0.75260027],
      [ 0.43724114, 0.37111326, -0.25536825, 0.40177755, 0.17580614,
       -0.13356844, -0.75260027],
      [ 1.64342359, 1.15163409, 0.68919065, 1.08206084, -0.05730697,
        0.88409585, -0.75260027],
      [-0.76894131, -0.86796355, -1.06499016, -1.03791919, 0.25351051,
        1.39292799, -0.75260027],
      [-0.76894131, -0.87772006, -0.714154, -0.73675211, -0.40697665,
       -0.38798451, 0.47613487],
      [-0.76894131, -0.99479818, -1.01101537, -1.28593914, 0.68088456,
        1.13851192, 0.47613487],
      [-0.76894131, -0.87772006, -1.01101537, -1.10878203, 0.33121488,
        0.37526371, 1.70487001],
      [ 0.43724114, 0.1272005 , -0.52524222, -0.39779152, 0.17580614,
       -1.4056488 , -0.75260027],
      [-0.76894131, -1.08260677, -1.41582632, -1.50561395, 0.37006707,
       -0.38798451, 1.70487001],
      [\ 1.64342359,\ 1.59067705,\ 2.03856051,\ 1.71982642,\ -1.33942911,
        0.12084763, -0.75260027],
      [ 0.43724114, 0.61502602, -0.714154 , 0.76790224, 2.11841544,
        0.12084763, -0.75260027],
      [-0.76894131, -0.41916407, -0.22838085, -0.30566982, -0.64008976,
        1.64734406, 1.70487001],
      [-0.76894131, \ -0.64356381, \ \ 0.2304049 \ , \ -0.81470124, \ -1.18402036,
       -1.4056488 , 0.47613487],
      [ 1.64342359, 1.27846872, 1.2289386, 0.6049177, -1.76680315,
       -1.4056488 , -0.75260027],
      [-0.76894131, -0.87772006, -0.714154, -0.86902942, 0.09810177,
        1.13851192, 0.47613487],
      [ 1.64342359, 1.59067705, 0.55425367, 1.15292368, 0.71973674,
        0.88409585, -0.75260027],
      [-0.76894131, -0.87772006, -0.44428003, -0.93753017, -0.40697665,
       -1.15123272, 1.70487001],
      [-0.76894131, -0.87772006, -0.714154 , -0.86666732, -0.56238539,
        0.37526371, 0.47613487],
      [ 1.64342359, 1.27846872, 0.82412764, 1.07025036, -0.13501135,
        0.88409585, -0.75260027],
      [-0.76894131, -0.72161589, -0.25536825, -0.76273515, -0.01845479,
       -0.89681665, 1.70487001],
      [-0.76894131, -1.13138933, -1.06499016, -1.35916408, 1.34137172,
       -1.15123272, 1.70487001],
      [-0.76894131, -0.83869402, -0.57921701, -0.85249475, -0.09615916,
        0.12084763, 0.47613487],
      [-0.76894131, -0.77039845, -0.93005317, -0.80170972, 0.52547581,
        1.64734406, 1.70487001],
      [-1.37203254, -1.14114584, -0.20139345, -0.70132069, -0.79549851,
       -0.89681665, 1.70487001],
```

```
[-0.76894131, -0.99479818, -0.93005317, -1.15602393, 0.48662363,
  0.37526371, 1.70487001],
[-0.76894131, -0.30208595, -0.33633044, -0.40015361, -0.40697665,
 1.64734406, -0.75260027],
[-0.76894131, -0.45819012, -0.33633044, -0.06946035, 0.33121488,
 1.64734406, -0.75260027],
[-0.76894131, -0.7313724 , -0.44428003, -0.33519601, 1.18596297,
 1.64734406, -0.75260027],
[ 1.64342359, 1.91264189, 1.76868654, 0.75491072, -2.15532501,
-1.4056488 , -0.75260027],
[-0.16585009, -0.03866017, -0.74114139, 0.71593615, 1.76874576,
  0.88409585, 0.47613487],
[ 1.64342359, 1.60043356, 1.28291339, 1.5249536 , -1.06746381,
 0.12084763, -0.75260027],
[-0.76894131, -0.45819012, -0.49825482, -0.1580389 , 0.0203974 ,
 1.64734406, -0.75260027],
[ 1.64342359, 1.27846872, 1.2289386 , 1.85919001, -0.40697665,
 -0.13356844, -0.75260027],
[-0.76894131, -0.78015496, -0.49825482, -0.54306034, -0.01845479,
 0.12084763, 0.47613487],
[-0.76894131, -0.64356381, 0.14944271, -0.31157506, -0.60123758,
-0.64240058, 0.47613487],
[ \ 0.43724114, \ 0.42965232, \ 0.14944271, \ 0.13604189, \ -0.21271572,
-0.13356844, -0.75260027],
[0.43724114, 0.37111326, 0.01450573, 0.60846084, -0.01845479,
-1.15123272, -0.75260027],
[-0.76894131, -0.72161589, -0.25536825, -0.6517167, -0.21271572,
-1.4056488 , 1.70487001],
[ 1.64342359, 1.91264189, 2.03856051, 2.39892865, -1.57254222,
 -1.15123272, -0.75260027],
[ 0.43724114, 0.43940883, -0.39030523, 0.33800099, 0.64203237,
 0.62967978, -0.75260027],
[-0.76894131, -0.86796355, -0.98402797, -1.03791919, 1.14711079,
 0.37526371, 1.70487001],
[-0.76894131, -0.6338073 , -0.49825482, -0.82414962, 0.37006707,
-0.89681665, -0.75260027],
[ 1.64342359, 2.07850256, 1.76868654, 2.15208975, -1.37828129,
 -1.15123272, -0.75260027],
[-0.76894131, -0.93625912, -1.01101537, -1.26822343, -0.67894195,
 1.13851192, 1.70487001],
[ 1.64342359, 1.60043356, 1.44483777, 1.69974861, -0.98975944,
 -0.64240058, -0.75260027],
[-0.76894131, -0.3508685 , -0.39030523, -0.29031621, 0.37006707,
 1.13851192, -0.75260027],
[-0.76894131, -0.86796355, -0.39030523, -0.77808877, -0.01845479,
 -0.64240058, 0.47613487],
[ 1.64342359, 2.36144136, 2.52433366, 2.39538551, -1.57254222,
 -0.64240058, -0.75260027],
[-0.76894131, \ -0.3508685 \ , \ -0.33633044, \ \ 0.1313177 \ , \ \ 1.92415451,
 1.64734406, -0.75260027],
[-0.76894131, -1.05333724, -0.93005317, -1.00366882, 1.53563265,
-1.15123272, 0.47613487],
[ 0.43724114, 0.61502602, -0.17440605, 0.71003092, 1.34137172,
 0.37526371, -0.75260027],
[-0.76894131, -0.45819012, -0.44428003, -0.03993416, 0.68088456,
 0.88409585, -0.75260027],
[ 0.43724114, 0.42965232, 1.63374955, 0.61554713, -0.83435069,
 0.62967978, -0.75260027],
[ 1.64342359, 2.61511063, 3.25299338, 1.77297355, -2.15532501,
-1.4056488 , -0.75260027],
[-0.76894131, -1.12163282, -0.95704057, -1.54813166, 0.95284986,
-1.15123272, 1.70487001],
[\ 0.43724114,\ 0.1272005\ ,\ -0.52524222,\ 0.04864439,\ 0.09810177,
  0.62967978, -0.75260027],
[-0.76894131, -0.87772006, -0.44428003, -0.76155411, 1.34137172,
-0.64240058, 1.70487001],
```

```
[-0.76894131, -0.87772006, -0.33633044, -0.75092468, 0.564328]
 -0.89681665, 1.70487001],
[0.43724114, 0.37111326, -0.12043126, 0.59783142, 0.64203237,
  0.62967978, -0.75260027],
[ 0.43724114, 0.43940883, -0.12043126, -0.15921995, -0.21271572,
 -0.64240058, -0.75260027],
[-0.76894131, -0.3508685 , -0.39030523, -0.22299651, 0.95284986,
 1.64734406, -0.75260027],
[ 1.64342359, 1.12236455, 0.95906463, 0.62027132, -1.96106408,
 -1.4056488 , -0.75260027],
[ 0.43724114, 0.61502602, -0.12043126, 0.48681296, 0.564328 ,
 -0.38798451, -0.75260027],
[-0.76894131, -0.51672918, -0.39030523, -0.25134164, -0.01845479,
 1.13851192, 1.70487001],
[-0.76894131, -0.65332032, -0.47126742, 0.06517905, 1.53563265,
 -0.89681665, 0.47613487],
[-0.76894131, -0.78015496, -0.79511619, -0.84895161, -0.40697665,
  1.64734406, 1.70487001],
[-0.76894131, -0.86796355, -0.25536825, -1.03673814, 1.34137172,
 -1.15123272, -0.75260027],
[0.43724114, 0.6930781, 0.14944271, 0.04510125, -0.79549851,
 -1.15123272, -0.75260027],
[-0.76894131, -0.93625912, -0.93005317, -1.14421345, 1.92415451,
 -1.15123272, -0.75260027],
[ 0.43724114, -0.23379038, 0.77015285, 0.57421047, 0.09810177,
  0.62967978, 0.47613487],
[ 1.64342359, 0.71259112, 0.14944271, 1.34189126, 1.34137172,
  0.37526371, -0.75260027],
[\ 1.64342359,\ 1.27846872,\ 1.2289386\ ,\ 1.81076706,\ -0.79549851,
 -0.38798451, -0.75260027],
[-0.76894131, -0.69234636, -0.79511619, -0.90446084, -0.01845479,
 -0.64240058, 0.47613487],
[ 0.43724114, 0.1272005 , -0.39030523, -0.05764987, 0.564328 ,
-0.38798451, -0.75260027],
[-0.76894131, -0.30208595, 0.01450573, -0.14622843, -0.44582883,
 1.13851192, -0.75260027],
[-0.76894131, \ -0.6338073 \ , \ -0.49825482, \ -0.62455261, \ \ 0.17580614,
 -0.89681665, -0.75260027],
[-0.76894131, -0.70210287, -0.25536825, -0.27141945, -0.21271572,
-0.13356844, 0.47613487],
[ 1.64342359, 1.12236455, 0.95906463, 1.4375561 , -0.60123758,
 -0.38798451, -0.75260027]])
```

Predicted Output:

```
In [129]: 1 y_pred = rf.predict(x_test)
In [130]: 1 y pred
Out[130]: array([15.95333333, 30.6
                                                 , 31.13333333, 27.21333333, 15.84666667,
                    67, 24.75333333, 18.08 , 28.08333333, 37.683333333, 18.44666667, 23.15333333, 29.83666667, 28.93333333, 26.99666667,
                                , 33.05
                    17.1
                                  , 18.73
                    26.12666667, 34.61
                                                 , 26.51333333, 35.71666667, 23.57666667,
                    15.58666667, 34.23333333, 14.46333333, 13.65 , 23.53333333, 13.15 , 34.19666667, 11.7 , 33.33666667, 20.40333333, 13.15
                    28.61333333, 29.40333333, 37.87
                                                                , 11.16666667, 20.58666667,
                    21.13 , 31.33666667, 19.14 , 18.07333333, 17.82666667, 18.26666667, 17.97666667, 25.73 , 27.51333333, 25.59666667, 14.08333333, 26.15666667, 25.84666667, 19.56666667, 20.40333333,
                                                               , 18.07333333, 17.82666667,
```

8.2 User Accepting Testing

Input:

Output:

9. RESULTS

9.1 Performance Metrics

Model Evaluation

10. ADVANTAGES & DISADVANTAGES

Advantages:

- It made easy to predict the performance of the Vehicle
- It can accessible everyone who want to predict the performance of the vehicle using the internet

Disadvantages:

- Need to Increase the Accuracy of the Project
- Cost for deploying in IBM CLOUD for permanently
- In Program API Key is Publicly available, it may give rise to the security risk

11. CONCLUSION

The automotive industry is extremely competitive. With increasing fuel prices and picky consumers. Automobile makers are constantly optimizing their processes to increase fuel efficiency. The performance analysis of the car is based on the various parameters. These are the factors on which the health of the car is analyzed, improved to gain the competitive advantage. This application will solve the problems in evaluation of the vehicle.

12. FUTURE SCOPE

- Developing the CSS and Animation of the Website
- Developing the High Accuracy Model
- Developing the Code to make API key highly secure

13. APPENDEX

Source Code

Code:

index.html

```
<link href="//maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" rel="stylesheet" id="bootstrap-css">
<link href="//maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" rel="stylesheet"
<link href="https://fonts.googleapis.com/css2?family=Girassol&display=swap" rel="stylesheet">
<script src="//maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>
<script src="//cdnjs.cloudflare.com/ajax/libs/jquery/3.2.1/jquery.min.js"></script>
<link rel="stylesheet" href="{{ url_for('static', filename='css/style.css') }}">
<link rel="shortcut icon" href="{{ url_for('static', filename='css/favicon.ico') }}"></ur>
<div class="navbar">
         <section class="title">
         <h1>PREDICT YOUR CAR'S PERFORMANCE</h1>
            <lottie-player
            src="https://assets9.lottiefiles.com/datafiles/HN7OcWNnoqje6iXIiZdWzKxvLIbfeCGTmvXmEm1h/data.json"
background="transparent"
            speed="1"
            style="width:300px; height: 300px;"
            loop
         autoplay
></lottie-player>
       </section>
</div>
<div class="wrapper fadeInDown">
   <div id="formContent">
    <section class="date">
      <div class="fadeIn first">
           <script src="https://unpkg.com/@lottiefiles/lottie-player@latest/dist/lottie-player.js"></script>
            <lottie-player
               src="https://assets6.lottiefiles.com/packages/lf20_TkGfat.json"
              background="transparent"
               speed="1"
               loop
               style="width: 100px; height: 100px;"
               autoplay
```

main.css

```
body {
    font-family: 'Times New Roman', Times, serif;
background-image: url("bgp.jpg");
    background-repeat: no-repeat;
    background-size: cover;
    background-position: center center;
    padding: 0;
    margin: 0;
}
    box-sizing: border-box;
header {
    align-items: center;
    justify-content: center;
    width: 100%;
    height: 40px;
    display: flex;
}
h1 {
    position: absolute;
    text-align: center;
    top: 2px;
color: #ffffff;
}
form {
    width: max-content;
    background-color: rgba(0, 0, 0, 0.5);
    padding-left: 50px;
    padding-right: 50px;
    border-radius:20px;
```

```
padding-top: 10px;
.field-name {
    padding: 10px 0;
    margin: 0;
   font-size: 20px;
   font-weight: bolder;
}
.field {
   padding: 2px 0;
}
.form-container {
    font-family: 'Times New Roman', Times, serif;
    display: flex;
    align-items: center;
    justify-content: center;
    padding: 3vh;
    min-height:max-content;
    color: #ffffff;
}
.field input[type=number]{
    width: 200px;
    background-color: #eeeef0;
    font-size:15px;
    padding:5px 10px;
    color:black:
    border-radius: 20px;
    border: none;
```

```
.submit-btn{
    font-size:15px;
    padding:10px 30px;
    color:black;
    background-color:white;
    border-radius: 20px;
    border: none;
    display:block;
    margin: 20px auto;
    cursor: pointer;
}
.submit-btn:hover{
    color: white;
    background-color: black;
    border: none;
}
.result{
    text-align:center;
    font-size:20px;
    color:white;
    margin-top: 0;
    text-decoration: underline;
}
.answer{
    color:#ffffff;
    font-weight:bolder;
```

```
.makers{
    margin-top: 0%;
    text-align: center;
    color: white;
    font-size:15px;
}
```

App.py:

```
from flask import Flask, render_template, request
import pickle

app=Flask(__name__)
model=pickle.load(open('RFregression.pkl','rb'))

@app.route('/')
def start():
    return render_template('index.html')

@app.route('/model', methods=["GET", "POST"])
def result():
    no_of_clynder=request.form["no_of_cylinders"]
    displacement=request.form["displacement"]
    horsepower=request.form["horsepower"]
```

```
weight=request.form["weight"]
acceleration=request.form["acceleration"]
model_year=request.form["model_year"]
origin=request.form["origin"]

t1=[[int(no_of_clynder),float(displacement),int(horsepower),int(weight),float(acceleration),int(model_year),int(origin)]]
output=model.predict(t1)
return render_template("index.html",prediction="The predicted MPG of the vehicle is ", mpg=str(output[0]))

if __name__ == "__main__":
    app.run(debug=False)
```

Github Link:

https://github.com/IBM-EPBL/IBM-Project-46950-1660795123