Problemas de Mistura

Prof. Gustavo Peixoto Silva Departamento de Computação Univ. Federal de Ouro Preto

Problemas de Mistura

Problemas deste tipo consistem em combinar *matérias primas* para gerar *produtos* com características desejadas.

Fábrica de Rações: produz vários tipos de rações para diferentes animais: bovinos, equinos, caninos, galináceos, peixes, etc.

As rações são produzidas pela *mistura de alimentos* ou farinhas de restos de alimentos como: milho, farelo de arroz, farinha de osso, soja, entre outros.

Os *preços e a composição nutricional* destes ingredientes também são conhecidas, ou seja, a quantidade de cálcio, ferro, manganês, etc.

São especificadas as *necessidades mínimas e máximas* desses nutrientes por kg de ração para cada tipo de animal.

O objetivo é determinar quais e quanto de cada tipo de cada ingrediente deve compor cada kg da ração, tal que as necessidades sejam atendidas com o menor custo possível.

Outros exemplos:

- Produção de adubo,
- Sucos concentrados,
- Lotes de minério, etc.

Produção de ração animal

Considere a produção de ração animal a partir de três ingredientes básicos: osso bovino, soja e farinha de peixe. Os principais nutrientes da ração são: proteína e cálcio. As necessidades mínimas desses nutrientes por kg de ração são 30% de proteína e 50% de cálcio. Os custos e quantidades de nutriente (em porcentagem) por ingrediente são dados na tabela.

Nutrientes	Ingredientes			
Numeriles	Osso	Soja	Peixe	Ração
Proteína	0,2	0,5	0,4	0,3
Cálcio	0,6	0,4	0,3	0,5
Custo (\$/Kg)	0,56	0,81	0,46	

Devemos determinar as quantidades de cada ingrediente tal forma que as necessidades mínimas sejam satisfeitas com o menor custo possível

Nutrientes	Ingredientes			
Numeriles	Osso	Soja	Peixe	Ração
Proteína	0,2	0,5	0,4	0,3
Cálcio	0,6	0,4	0,3	0,5
Custo (\$/Kg)	0,56	0,81	0,46	

Devemos determinar as quantidades de cada ingrediente de tal forma que as necessidades mínimas sejam satisfeitas com o menor custo possível

xo = kg de osso na ração , xs = kg de soja na ração e xp = kg de peixe na ração

Minimizar Z = 0.56xo + 0.81xs + 0.46xp sujeito a:

(min proteína) 0.2xo + 0.5xs + 0.4xp >= 0.3(xo+xs +xp)

(min cálcio) 0.6xo + 0.4xs + 0.3xp >= 0.5(xo+xs +xp)

 $xo, xs, xp \ge 0$

Nutrientes	Ingredientes				
Numeriles	Osso	Soja	Peixe	% Min	% Max
Proteína	0,2	0,5	0,4	0,3	0,4
Cálcio	0,6	0,4	0,3	0,5	0,6
Custo (\$/Kg)	0,56	0,81	0,46		

Considere agora que temos:

1. quantidades mínimas e máximas de cada nutriente

xo = kg de osso na ração , xs = kg de soja na ração e xp = kg de peixe na ração Minimizar Z = 0,56xo + 0,81xs + 0,46xp sujeito a:

(min proteína) 0.2*xo + 0.5*xs + 0.4*xp >= 0.3*(xo+xs +xp)

(max proteína) $0.2*xo + 0.5*xs + 0.4*xp \le 0.4*(xo+xs +xp)$

. . .

Produção de Petróleo 1

Uma refinaria fabrica dois tipos de gasolina (1 e 2) a partir de dois tipos de petróleo bruto (A e B). Os custos, os preços de venda e a matéria-prima para fabricar as gasolinas são.

Tipo de Petróleo	Disp (barris/dia)	Custo (\$/barril)
Α	100	36,00
В	200	33,00

Gasolina	% mínima do petróleo A	Preço de venda (\$/barril)
1	60	45,00
2	30	42,00

Considerando que o petróleo bruto é convertido totalmente em combustível, sem perdas, formular um PPL para maximizar o lucro diário da refinaria.

Tipo de Petróleo	Disp (barris/dia)	Custo (\$/barril)
А	100	36,00
В	200	33,00

Gasolina	% mínima do petróleo A	Preço de venda (\$/barril)
1	60	45,00
2	30	42,00

FO: Max Lucro = Venda – custo

Tipo de Petróleo	Disp (barris/dia)	Custo (\$/barril)
А	100	36,00
В	200	33,00

Gasolina	% mínima do petróleo A	Preço de venda (\$/barril)
1	60	45,00
2	30	42,00

$$A2 = ...; B1 = ...; B2 = ...;$$

FO: Max Lucro = Venda – custo

Max Lucro = 45^* (A1 + B1) + 42^* (A2+B2) - [36(A1 +A2) + 33^* (B1 + B2)]

Tipo de Petróleo	Disp (barris/dia)	Custo (\$/barril)
А	100	36,00
В	200	33,00

Gasolina	% mínima do petróleo A	Preço de venda (\$/barril)
1	60	45,00
2	30	42,00

$$A2 = ...; B1 = ...; B2 = ...;$$

FO: Max Lucro = Venda – custo Max Lucro = 45* (A1 + B1) + 42*(A2+B2) – [36(A1 +A2) + 33*(B1 + B2)]

(dispA)
$$A1 + A2 \le 100$$
,
(dispb) $B1 + B2 \le 200$,

Tipo de Petróleo	Disp (barris/dia)	Custo (\$/barril)
А	100	36,00
В	200	33,00

Gasolina	% mínima do petróleo A	Preço de venda (\$/barril)
1	60	45,00
2	30	42,00

$$A2 = ...; B1 = ...; B2 = ...;$$

FO: Max Lucro = Venda – custo Max Lucro = 45* (A1 + B1) + 42*(A2+B2) – [36(A1 +A2) + 33*(B1 + B2)]

(Min em G1) A1 >= 0.6 * (A1 + B1)(Min em G2) A2 >= 0.3 * (A2 + B2)

$$A1, A2, B1, B2 >= 0$$

Produção de Petróleo 2

Uma refinaria mistura dois tipos de frações de petróleo, A e B para produzir gasolinas tipo 1 e 2. A disponibilidade máxima dos insumos A e B são 450 e 700 barris/hora e suas octanagens são 98 e 89, e as pressões de vapor são 12 e 8 lb/pol². As octanagens da gasolina 1 e 2 devem ser de no mínimo 91 e 93 respectivamente. A pressão de vapor associada a ambos os produtos não deve exceder 11 lb/pol². Os lucros por barril de gasolina 1 e 2 são de \$7 e \$10. Determine a taxa ótima de produção das gasolinas tipo 1 e 2 bem como suas razões de mistura de A e B.

Considere que as gasolinas são a mistura "direta" das frações dos petróleos, sem qualquer perda.

Obs. a pressão e a octanagem podem ser tomadas como as médias ponderadas da mistura.

Uma refinaria mistura dois tipos de frações de petróleo, A e B para produzir gasolinas tipo 1 e 2. A disponibilidade máxima dos insumos A e B são 450 e 700 barris/hora e suas octanagens são 98 e 89, e as pressões de vapor são 12 e 8 lb/pol². As octanagens da gasolina 1 e 2 devem ser de no mínimo 91 e 93 respectivamente. A pressão de vapor associada a ambos os produtos não deve exceder 11 lb/pol². Os lucros por barril de gasolina 1 e 2 são \$7 e \$10. Determine a taxa ótima de produção das gasolinas tipo 1 e 2 bem como suas razões de mistura de A e B. A pressão e a octanagem são as médias ponderadas das misturas.

Considere que as gasolinas são a mistura "direta" dos petróleos, sem perda.

1 – VARIÁVEIS DE DECISÃO A1, A2, B1, B2 =

Temos 4 VDs pois temos uma mistura dos insumos para produzir as gasolinas....

2 – FUNÇÃO OBJETIVO

3 – RESTRIÇÕES

Octanagem das gasolinas1: (98 A1 + 89B1) /(A1 + B1) >= 91

Idem G2

Idem para pressões de vapor

Produção de Petróleo 3

A Petrobras de Ouro Preto produz três combustíveis especiais com base na mistura de dois insumos: um extrato mineral e um solvente. No processo não existe perda de material, de forma que a quantidade de extrato mineral somada à quantidade de solvente usada na mistura resulta no total de litros daquele combustível. A proporção da mistura está descrita na tabela abaixo

	Combustível A	Combustível B	Combustível C
Extrato mineral	8 litros	5 litros	4 litros
Solvente	5 litros	4 litros	2 litros

Supondo que a Petrobrás OP tenha disponível 120 litros de extrato mineral e 200 litros de solvente e que os lucros por litro para os três combustíveis são de R\$ 20,00, R\$ 22,00 e R\$ 18,00, respectivamente. Monte um modelo de Programação Linear para estabelecer um plano de produção dos combustíveis que maximize o lucro da empresa.

Produção de Liga Metálica

Uma central industrial de reciclagem usa 2 tipos de sucata de alumínio, A e B, que misturadas produz uma liga especial. A sucata A contém 6% de alumínio, 3% de silício e 4% de carbono. A sucata B tem 3% de alumínio, 6% de silício e 3% de carbono. Os custos por tonelada das sucatas A e B são \$100 e \$80 respectivamente. As especificações da liga especial requerem que:

- 1) o teor de alumínio deva ser no mínimo 3% e no máximo 6% do volume final;
- 2) o teor de silício deva ficar entre 3% e 5% do volume final;
- 3) o teor de carbono deva ficar entre 3% e 7% do volume final.

Determine o mix ótimo (de menor custo) de sucatas que deve ser usado para produzir uma quantidade qualquer da liga.

Problema de Rações

Um criador de porcos pretende determinar quanto de cada tipo de ração que deve ser dada diariamente a cada animal, de forma a suprir as quantidades nutritivas a um custo mínimo.

O tipo de <u>ração granulada</u> tem 20g/kg de hidratos de carbono, 50g/kg de vitaminas, 30g/kg de proteínas a um custo de 60,00 R\$/kg. O tipo de <u>ração em farinha</u> tem 50g/kg de hidratos de carbono, 10g/kg de vitaminas, 20g/kg de proteínas e custa 45,00 R\$/kg.

As quantidades mínimas diárias requeridas por cada porco são de 200g de hidratos de carbono, 150g de vitaminas e 210g de proteínas.

Sabendo que a quantidade de ração granular deve ser pelo menos 50% a mais do que a quantidade de ração em farinha, escreva o Modelo de Programação Linear que represente o problema do criador.

Problema da Dieta - Fazer o modelo Gusek compacto

Uma pessoa é forçada a fazer uma dieta alimentar que fornece, diariamente, pelo menos as seguintes quantidades, em mg, de vitaminas: 80 de A, 70 de B, 100 de C e 60 de D.

A dieta deverá incluir leite, arroz, feijão e carne, que contém os seguintes miligramas de vitaminas em cada uma de suas unidades de medida:

Vitaminas	Leite (I)	Arroz (kg)	Feijão (kg)	Carne (kg)
Α	10	5	9	10
В	8	7	6	6
С	15	3	4	7
D	20	2	3	9
Custo unitário	1,85	2,00	3,40	12,00

Deseja-se saber o consumo diário de cada alimento de tal maneira que a dieta seja satisfeita com o menor custo possível.

Fazer o modelo compacto para este problema usando o menor num de estruturas de dados. Fazer a entrada de dados também.

Produção de Sucos de Frutas

Uma empresa produz 3 tipos de sucos de frutas A, B e C, usando morangos, uvas e maçãs frescas. O fornecimento diário é limitado a 200 t de morangos, 100 t de uvas e 150 t de maçãs. O custo por tonelada de morangos, uvas e maçãs e \$200, \$100 e \$90, respectivamente. Cada tonelada rende 1.500 l de suco de morango, 1.200 l de suco de uva e 1.000 l de suco de maçã.

A bebida A é uma mistura de 1:1 de suco de morango e maçã. A bebida B é uma mistura de 1:1:2 de suco de morango, de uva e de maçã. A bebida C é uma mistura de 2:3 de suco de uva e de maçã. Todas as bebidas são acondicionadas em garrafas de 0,5 l. O preço por garrafa é de \$3.30, \$3.50 e \$3,20 para as bebidas A, B e C.

Determine a quantidade a ser produzida de garrafas de cada bebida que geram o maior lucro.

Uma empresa produz 3 tipos de sucos de frutas A, B e C, usando morangos, uvas e maçãs frescas. O fornecimento diário é limitado a 200 t de morangos, 100 t de uvas e 150 t de maçãs. O custo por tonelada de morangos, uvas e maçãs e \$200, \$100 e \$90, respectivamente. Cada tonelada rende 1.500 l de suco de morango, 1.200 l de suco de maçã.

A bebida A é uma mistura de 1:1 de suco de morango e maçã. A bebida B é uma mistura de 1:1:2 de suco de morango, de uva e de maçã. A bebida C é uma mistura de 2:3 de suco de uva e de maçã. Todas as bebidas são acondicionadas em garrafas de 0,5 l. O preço por garrafa é de \$3.30, \$3.50 e \$3,20 para as bebidas A, B e C.

Determine o mix ótimo de produção para as três bebidas.

	Morango	Uva	Maçã	Venda
Bebida A	1	0	1	3,30
Bebida B	1	1	2	3,50
Bebida C	0	2	3	3,20
Disp.	200*1500	100*1200	150*1000	
Custo/I	200/1500	100/1200	90/1000	

Bebida A

Bebida B

Bebida C

0,25 litros

0,25 litros

0,125 litros

0,125 litros

0,25 litros

0,2 litros

0,3 litros

	Morango	Uva	Maçã	Venda
Bebida A	1	0	1	3,30
Bebida B	1	1	2	3,50
Bebida C	0	2	3	3,20
Disp.	200*1500	100*1200	150*1000	
Custo/I	200/1500	100/1200	90/1000	

Modelo 1 - Gusek

```
/* variáveis decisão*/
var xa, integer, >=0; #qtd latas do suco A
var xb, integer, >=0; #qtd latas do suco B
var xc, integer, >=0; #qtd latas do suco C
/*funcao objetivo*/
maximize lucro: 3.3*xa + 3.5*xb + 3.2*xc
-(0.25*xa + 0.125*xb)*200/1500
-(0.125*xb + 0.2*xc)*100/1200
-(0.25*xa + 0.25*xb + 0.3*xc)*90/1000;
/*Restrições*/
subject to
Morango: 0.25*xa + 0.125*xb \le 200*1500;
Uva: 0.125*xb + 0.2*xc \le 100*1200;
Maca: 0.25*xa + 0.25*xb + 0.3*xc \le 150*1000;
solve;
end;
```