

Машинное обучение

Лекция 9. Композиции классификаторов

12 ноября 2021

Пятиминутка

- 1. Выпишите функцию потерь в классическом варианте SVM
- 2. Приведите пример, когда подбор ядра радикально увеличивает качество линейной классификации
- 3. Какие недостатки есть у SVM?

https://ml-handbook.ru/chapters/ensembles/intro (https://ml-handbook.ru/chapters/ensembles/intro)

Определение композиции

$$X^\ell = (x_i, y_i)_{i=1}^\ell \subset X imes Y$$
 — обучающая выборка, $y_i = y^*(x_i)$

$$a(x) = C(b(x))$$
 – алгоритм, где

b:X o R — базовый алгоритм (алгоритмический оператор)

C:R o Y — решающее правило (composition)

R — пространство оценок

Определение

Композиция базовых алгоритмов b_1,\dots,b_T

$$a(x) = C(F(b_1(x), \ldots, b_T(x)))$$

где $F:R^T o R$ – корректирующая операция

Зачем вводится R?

В задачах классификации множество отображений $\{F:R^T o R\}$ существенно шире, чем $\{F:Y^T o Y\}.$

Примеры пространств оценок и решающих правил

• Пример 1: классификация на 2 класса, $Y=\{-1,+1\}$:

$$a(x) = \operatorname{sign}(b(x))$$

где
$$R=\mathbb{R}, b:X o\mathbb{R}, C(b)=\mathrm{sign}(b)$$

• Пример 2: классификация на M классов $Y = \{1, \dots, M\}$:

$$a(x) = rg \max_{y \in Y} b_y(x)$$

где
$$R = \mathbb{R}^M, b: X o \mathbb{R}^M, C(b_1, \dots, b_M) \equiv rg \max_{y \in Y} b_y$$

• Пример 3: регрессия, $Y=R=\mathbb{R}$

$$C(b) \equiv b$$
 — решающее правило не нужно

Примеры композиций (корректирующих операций)

• Пример 1: Простое голосование (Simple Voting)

$$F(b_1(x),\ldots,b_T(x)) = rac{1}{T}\sum_{t=1}^T b_t(x), x \in X$$

• Пример 2: Взвешенное голосование (Weighted voting)

$$F(b_1(x),\ldots,b_T(x)) = \sum\limits_{t=1}^{T} lpha_t b_t(x), x \in X, lpha_t \in \mathbb{R}$$

• Пример 3: Смесь алгоритмов (Mixture of Experts)

$$egin{aligned} F(b_1(x),\ldots,b_T(x)) &= \sum\limits_{t=1}^T g_t(x)b_t(x), x \in X, \ g_t:X &
ightarrow \mathbb{R} \end{aligned}$$

Стохастические методы построения композиций

Чтобы алгоритмы в композиции были различными

- их обучают по (случайным) подвыборкам
 - bagging = bootstrap aggregation. [Breiman, 1996]: подвыборки длины ℓ с повторениями. Доля объектов, попадающих в выборку $\left(1-\frac{1}{e}\right)\approx 0.632$
- либо по (случайным) подмножествам признаков
 - RSM = random subspace method, [Ho, 1998]

Бустинг

https://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html (https://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html)

train a weak model

Бустинг для задачи классификации с двумя классами

Возьмём
$$Y = \{\pm 1\}, b_t : X \to \{-1, [0], +1\}, C(b) = \operatorname{sign}(b)$$

Взвешенное голосование

$$a(x) = ext{sign}\left(\sum_{t=1}^T lpha_t b_t(x)
ight), x \in X$$

Функционал качества композиции — число ошибок на X^ℓ

$$Q_T = \sum\limits_{i=1}^\ell \left[y_i \sum\limits_{t=1}^T lpha_t b_t(x_i) < 0
ight]$$

Две основные эвристики бустинга:

- фиксация $lpha_1 b_1(x), \dots, lpha_{t-1} b_{t-1}(x)$ при добавлении $lpha_t b_t(x)$
- гладкая аппроксимация пороговой функции потерь $\left[M < 0
 ight]$

Гладкие аппроксимации пороговой функции потерь $\left[M < 0 ight]$

```
In [1]: import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-5.5, 5.5, num=100)
acc_loss = x < 0
V_M = (1 - x) * ((1 - x) > 0)
H_M = acc_loss * (-x)
L_M = np.log2(1 + np.exp(-x))
Q_M = (1 - x)**2
c, s = 0.25, 5.0
G_M = np.exp(-c * x * (x + s))
S_M = 2 * (1 + np.exp(x))**(-1)
E_M = np.exp(-x)
```

```
In [9]: fig, ax = plt.subplots()

ax.set_xlabel('M')
ax.plot(x, acc_loss, 'b', label='[M<0]')
ax.plot(x, V_M, 'g', label='V_M (w3 SVM)')
ax.plot(x, L_M, 'r', label='L_M (LogitBoost)')
ax.plot(x, Q_M, '--c', label='Q_M (GentleBoost)')
ax.plot(x, G_M, '.g', label='G_M (BrownBoost)')
ax.plot(x[::5], S_M[::5], '^m', label='S_M (sigmoid)')
ax.plot(x, E_M, 'k:', label='E_M (AdaBoost)')

ax.set_ylim(-0.5, 5.5)
ax.grid(True)
fig.set_size_inches(14, 8)
plt.legend(loc='best')</pre>
```

Out[9]: <matplotlib.legend.Legend at 0x19d001b6e88>

Экспоненциальная аппроксимация пороговой функции потерь

Оценка функционала качества Q_T сверху:

$$Q_T \leq ilde{Q}_T = \sum_{i=1}^\ell \underbrace{\exp(-y_i \sum_{t=1}^{T-1} lpha_t b_t(x_i))}_{w_i} \exp(-y_i lpha_T b_T(x_i))$$

Нормированные веса: ${ ilde W}^\ell=(ilde w_1,\dots, ilde w_\ell), ilde w_i=w_i/\sum_{i=1}^\ell w_j$

Взвешенное число ошибочных (negative) и правильных (positive) классификаций при векторе весов $U^\ell=(u_1,\ldots,u_\ell)$:

$$N(b,U^\ell) = \sum\limits_{i=1}^\ell u_i [b(x_i) = -y_i]$$

$$P(b,U^\ell) = \sum\limits_{i=1}^\ell u_i [b(x_i) = y_i]$$

1-N-P — взвешенное число отказов от классификации

Классический вариант AdaBoost

Пусть отказов нет, $b_t: X o \{\pm 1\}$. Тогда P=1-N.

Teopeмa (Freund, Schapire, 1995)

Пусть для любого нормированного вектора весов U^ℓ существует алгоритм $b\in B$, классифицирующий выборку хотя бы немного лучше, чем наугад: $N(b,U^\ell)<rac{1}{2}$.

Тогда минимум функционала $ilde{Q}_T$ достигается при

$$b_T = rg \min_{b \in B} N(b, { ilde W}^\ell)$$

$$lpha_T = rac{1}{2} ext{ln} \, rac{1 - N(b_T, ilde{W}^\ell)}{N(b_T, ilde{W}^\ell)}$$

Алгоритм AdaBoost

Вход: обучающая выборка X^ℓ , параметр Т

Выход: базовые алгоритмы и их веса $lpha_t b_t, t=1,\ldots,T$

- 1. инициализировать веса объектов: $w_i = \frac{1}{\ell}, i = 1, \dots, \ell$
- 2. для всех $t=1,\ldots, {\color{red} T}$
- 3. обучить базовый алгоритм:

$$b_t = rg \min_b N(b, W^\ell)$$

4.
$$lpha_t = rac{1}{2} ext{ln} \, rac{1 - N(b, W^\ell)}{N(b, W^\ell)}$$

5. обновить веса объектов:

$$w_i = w_i \exp(-\alpha_t y_i b_t(x_i)), \ i = 1, \ldots, \ell$$

6. нормировать веса объектов:

$$egin{aligned} w_0 &= \sum\limits_{j=1}^\ell w_j \ w_i &= w_i/w_0, \ i=1,\ldots,\ell \end{aligned}$$

Эвристики и рекомендации

- Базовые классификаторы (weak classifiers)
 - решающие деревья используются чаще всего
 - пороговые правила (data stumps)

$$B = \{b(x) = [f_i(x) \leqslant \theta | | j = 1, \dots, n, \theta \in \mathbb{R}\}$$

- для SVM бустинг обычно не эффективен
- Отсев шума: отбросить объекты с наибольшими w_i
- Дополнительный критерий остановки: увеличение частоты ошибок на контрольной выборке

Вопрос 1: Почему бустинг работает?

Вопрос 2: Какие недостатки у AdaBoost?

Недостатки AdaBoost

- Чрезмерная чувствительность к выбросам из-за e^{M}
- AdaBoost строит «чёрные ящики» громоздкие неинтерпретируемые композиции из сотен алгоритмов
- Требуются достаточно большие обучающие выборки (бэггинг обходится более короткими)

Способы устранения:

- Другие аппроксимации пороговой функции потерь
- Непрерывные вещественные базовые алгоритмы $b_t:X o\mathbb{R}$
- Явная оптимизация отступов, без аппроксимации
- Менее жадные стратегии наращивания композиции

Градиентный бустинг для произвольной функции потерь

Линейная (выпуклая) комбинация базовых алгоритмов:

$$a(x) = \sum\limits_{t=1}^{T} lpha_t b_t(x), \; x \in X, \; lpha_t \in \mathbb{R}_+$$

Функционал качества с произвольной функцией потерь $\mathcal{L}(a,y)$

$$Q(lpha,b,X^\ell) = \sum_{i=1}^\ell \mathcal{L}(\underbrace{\sum_{t=1}^{T-1}lpha_t b_t(x_i)}_{f_{T-1,i}} + lpha b(x_i),y_i)
ightarrow \min_{lpha,b}$$

 $f_{T-1,i}$ — текущее приближение

 $f_{T,i}$ — следующее приближение

Friedman G. Greedy Function Approximation: A Gradient Boosting Machine. 1999.

Параметрическая аппроксимация градиентного шага

Градиентный метод минимизации $Q(f) o \min, f \in \mathbb{R}^\ell$:

 $f_0=$ начальное приближение

$$f_{T,i} = f_{T-1,i} - lpha g_i, \ i=1,\ldots,\ell$$

 $g_i = \mathcal{L}'(f_{T-1,i},y_i)$ — компоненты вектора градиента, lpha — градиентный шаг.

Наблюдение: это очень похоже на одну итерацию бустинга!

$$f_{T,i}=f_{T-1,i}+lpha b(x_i),\ i=1,\ldots,\ell$$

Идея: будем искать такой базовый алгоритм b_T , чтобы вектор $(b_T(x_i))_{i=1}^\ell$ приближал вектор антиградиента $(-g_i)_{i=1}^\ell$

$$b_T = rg\min_b \sum_{i=1}^\ell (b(x_i) + g_i)^2$$

Алгоритм градиентного бустинга (Gradient Boosting)

Вход: обучающая выборка X^ℓ , параметр Т

Выход: базовые алгоритмы и их веса $lpha_t b_t, t=1,\ldots,T$

- 1. инициализация: $f_i=0, i=1,\ldots,\ell$
- 2. для всех $t=1,\ldots, {\color{red} T}$
- 3. базовый алгоритм, приближающий антиградиент:

$$b_t = rg\min_b \sum_{i=1}^\ell (b(x_i) + \mathcal{L}'(f_i, y_i))^2$$

- 4. задача одномерной минимизации: $lpha_t = rg \min_{lpha>0} \sum_{i=1}^\ell \mathcal{L}(f_i + lpha b_t(x_i), y_i)$
- 5. обновление вектора значений на объектах выборки:

$$f_i = f_i + lpha_t b_t(x_i)), i = 1, \ldots, \ell$$

Стохастический градиентный бустинг (SGB)

Идея: на шагах 3-5 использовать не всю выборку X^ℓ , а случайную подвыборку без возвращений.

Преимущества:

- улучшается качество
- улучшается сходимость
- уменьшается время обучения

Friedman G. Stochastic Gradient Boosting, 1999.

Вопрос 3: Почему всё так идеально?

Регрессия и AdaBoost

Регрессия: $\mathcal{L}(a,y)=(a-y)^2$

- $b_T(x)$ обучается на разностях $y_i \sum\limits_{t=1}^{T-1} lpha_t b_t(x_i)$
- ullet если регрессия линейная, то $lpha_t$ можно не обучать

Классификация: $\mathcal{L}(a,y) = e^{-ay}, b_t \in \{-1,0,+1\}$

• GB в точности совпадает с AdaBoost

XGBoost — популярная и быстрая реализация GB над деревьями

Деревья регрессии и классификации (CART):

$$b(x) = \sum\limits_{j=1}^J w_j [x \in R_j],$$

где R_j — область пространства, покрываемая листом j, w_j — веса листьев, J — число листьев в дереве.

Функционал качества с суммой $L_0, L_1, L_2\,$ регуляризаторов:

$$Q(b,\{w_j\}_{j=1}^J,X^\ell) = \sum_{i=1}^\ell \mathcal{L}\left(\sum_{t=1}^{T-1} lpha_t b_t(x_i) + lpha b(x_i,y_i)
ight) + \gamma \sum_{j=1}^J [w_j
eq 0] + \mu \sum_{j=1}^J |w_j| + rac{\lambda}{2} \sum_{j=1}^J w_j^2 o \min_{b,\{u,v\}} \left(\sum_{t=1}^J a_t b_t(x_i) + a_t b_t(x_i) +$$

По w_i задача имеет аналитическое решение.

Ещё популярные реализации градиентного бустинга над случайными деревьями: LightGBM, CatBoost

Резюме по бустингу

- Композиции позволяют решать сложные задачи, которые плохо решаются отдельными алгоритмами
- Обучать композицию целиком слишком сложно. Поэтому обучаем базовые алгоритмы по одному
- Важное открытие середины 90-х: обобщающая способность бустинга не ухудшается с ростом сложности Т
- Градиентный бустинг наиболее общий из всех бустингов:
 - произвольная функция потерь
 - произвольное пространство оценок R
 - подходит для регрессии, классификации, ранжирования
- Стохастический вариант SGB лучше и быстрее
- Чаще всего GB применяется к решающим деревьям
- Градиентный бустинг над Oblivious Decision Trees = Catboost (раньше был Yandex.MatrixNet)

Сравнение: boosting — bagging — RSM

- Бустинг лучше для больших обучающих выборок и для классов с границами сложной формы
- Бэггинг и RSM лучше для коротких обучающих выборок
- RSM лучше в тех случаях, когда признаков больше, чем объектов, или когда много неинформативных признаков
- Бэггинг и RSM эффективно распараллеливаются, бустинг выполняется строго последовательно

https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205 (https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205)

Случайный лес (Random forest)

Обучение случайного леса:

- бэггинг над решающими деревьями, без pruning
- признак в каждой вершине дерева выбирается из случайного подмножества k из n признаков

Подбор числа деревьев T можно делать по критерию out-of-bag: число ошибок на объектах x_i , если не учитывать голоса деревьев, для которых x_i был обучающим:

$$ext{out-of-bag}(a) = \sum\limits_{i=1}^{\ell} \left[ext{sign}(\sum\limits_{t=1}^{T} [x_i
otin U_t] b_t(x_i))
otin y_i
ight]
ightarrow ext{min}$$

Это несмещенная оценка обобщающей способности.

Спасибо за внимание!

Обоснование бустинга

Усиление понятия частоты ошибок алгоритма $a(x) = \mathrm{sign}(b(x))$

$$u_{ heta}(a,X^{\ell}) = rac{1}{\ell} \sum_{i=1}^{\ell} [b(x_i)y_i \leq heta]$$

Обычная частота ошибок $u_0(a,X^\ell) \leq
u_{ heta}(a,X^\ell)$ при heta > 0

Теорема (Freund, Schapire, Bartlett, 1998)

Если $|B| < \infty$, то $orall heta > 0, orall \eta \in (0,1)$ с вероятностью $1-\eta$

$$P[ya(x) < 0] \leq
u_{ heta}(a, X^{\ell}) + C\sqrt{rac{\ln|B|\ln\ell}{\ell heta^2} + rac{1}{\ell}\lnrac{1}{\eta}}$$

Основной вывод: оценка зависит от |B|, но не от T.

Голосование не увеличивает сложность эффективно используемого множества алгоритмов.

Обоснование бустинга: что же всё-таки происходит?

Распределение отступов: доля объектов, имеющих отступ меньше заданного θ после 5, 100, 1000 итераций (задача классификации UCI:vehicle)

- С ростом T распределение отступов сдвигается вправо, то есть бустинг «раздвигает» классы в пространстве векторов растущей размерности $(b_1(x),\dots,b_T(x))$
- Значит, в оценке можно уменьшить второй член, увеличив heta и не изменив $u_{ heta}(a,X^l)$
- Можно уменьшить второй член, если уменьшить |В|, то есть взять простое семейство базовых алгоритмов