Lógica – Grado en Ingeniería Informática, Grado en Matemáticas e Informática Examen 5 de julio de 2016

Bloque Lógica Proposicional

Ejercicio 1.1.

a) Demostrar, sin usar tablas de verdad, que las dos fórmulas siguientes no son equivalentes:

$$p \wedge \neg q \rightarrow \neg p$$
, $\neg (p \wedge q) \vee \neg q$

b) Justificar adecuadamente la verdad o falsedad de la siguiente afirmación: "Si el conjunto de fórmulas {A1, A2} es insatisfacible, entonces el conjunto {¬A1, ¬A2} es satisfacible"

Solución:

a) Si no son equivalentes significa que existe al menos una interpretación que es modelo de una y contramodelo de la otra. Para facilitar la identificación de tal interpretación se podrían poner ambas fórmulas en forma clausular:

$$p \wedge \neg q \rightarrow \neg p = \neg (p \wedge \neg q) \vee \neg p = \neg p \vee q \vee \neg p = \neg p \vee q$$
$$\neg (p \wedge q) \vee \neg q = \neg p \vee \neg q \vee \neg q = \neg p \vee \neg q$$

Se ve fácilmente que la interpretación i(p) = i(q) = V es modelo de la primera fórmula y contramodelo de la segunda, por lo que no son equivalentes.

b) Si la afirmación fuese correcta, no podría satisfacerse la premisa y no satisfacerse la conclusión. Es decir, no podría existir un conjunto de fórmulas {A1, A2} insatisfacible tal que {¬A1, ¬A2} no fuese satisfacible. Pero con el ejemplo trivial del conjunto {p, ¬p}, que es insatisfacible, se ve que el conjunto {¬p, p} no es satisfacible. Por tanto, la afirmación es falsa.

Ejercicio 1.2. Formalizar en el lenguaje de la lógica proposicional:

- a) Sólo si estudio y no sigo la Eurocopa, sacaré el curso adelante. Si no saco el curso, no podré irme de vacaciones. O me voy de vacaciones o no podré estudiar más. Por tanto, si me voy de vacaciones es que no he seguido la Eurocopa.
- b) Si copio en el examen, suspenderé, salvo si no me pillan.

Solución:

a) p: estudio q: sigo la Eurocopa r: saco el curso s: me voy de vacaciones

$$r \rightarrow p \land \neg q$$
, $\neg r \rightarrow \neg s$, $s \lor \neg p$: $s \rightarrow \neg q$

b) p: copio en el examen q: suspendo r: me pillan

$$r \land p \rightarrow q$$
 (o bien $p \land \neg q \rightarrow \neg r$)

Ejercicio 2. Demostrar que no existe relación de consecuencia lógica en la siguiente argumentación, justificando adecuadamente todos los pasos.

$$\{\neg p \rightarrow q \lor r, \neg (q \land s), s \lor \neg q \rightarrow \neg r\} \models p \lor \neg r$$

(Nota: No pueden utilizarse tablas de verdad para llevar a cabo la demostración).

Solución:

*) Buscamos una interpretación i tal que $i(A_1) = i(A_2) = i(A_3) = V$ y i(B) = F

*)
$$i(B) = i(p \lor \neg r) = F \longrightarrow [i(p) = F] y [i(r) = V]$$

*)
$$i(A_1) = i(\neg p \rightarrow q \lor r) \longrightarrow i(A_1) = V$$

 $i(\neg p) = V$, $i(q \lor r) = V$

*)
$$i(A_3) = i(s \lor \neg q \to \neg r) = V$$
 \longrightarrow $i(s \lor \neg q) = F$ \longrightarrow $i(g) = F$ y $i(q) = V$

*)
$$i(A_2) = i(\neg(q \land s))$$
 con $i(q \land s) = F$ ($i(s) = F$) es $i(A_2) = V$

Por tanto, la interpretación i(p) = i(s) = F i(q) = i(r) = V es la interpretación buscada

⇒ NO se cumple la relación de consecuencia lógica.

Ejercicio 3. Demostrar con el cálculo **deducción natural** (justificando cada paso y utilizando solamente reglas básicas):

$$T[p \land s, p \land \neg q, s \leftrightarrow q \land r] \vdash \neg (p \lor r)$$

(*Nota*: No se pueden utilizar tablas de verdad, ni razonamientos semánticos ni el método de resolución)

Solución:

1. p ∧ s	Premisa
2. p ∧ ¬q	Premisa
$3. s \leftrightarrow q \wedge r$	Premisa
4. p v r	Supuesto
5. p	E∧ (1)
6. s	E∧ (1)
7. ¬q	E∧ (2)
8. $s \rightarrow q \wedge r$	$E \Leftrightarrow (3)$
9. q ∧ r	MP (6,8)
10. q	E∧ (9)
11. q ∧ ¬q	I _A (7,10)
12. $p \vee r \rightarrow q \wedge \neg q$	$I \rightarrow (4,11)$
13. ¬ (p ∧ r)	I¬ (12)

Otra posible solución:

1. p ∧ s	Premisa
2. p ∧ ¬q	Premisa
$3. s \leftrightarrow q \wedge r$	Premisa
4. p	E ₁ (1)
5. s	E ₁ (1)
6. ¬q	E ₁ (2)
7. $s \rightarrow q \wedge r$	$E \leftrightarrow (3)$
8. q ^ r	MP (5,7)
9. q	E^ (8)
10. q ∧ ¬q	In (6,9)
11. ¬ (p ∨ r)	ECQ Ex Contradictione Quodlibet: A ^ ¬ A
	В
	de una contradicción se sigue cualquier cosa

Ejercicio 4. Demostrar que la siguiente estructura deductiva es correcta usando el método de resolución:

$$T[(\neg p \land q) \lor (p \land \neg q), p \rightarrow q \lor r, r \rightarrow \neg (s \rightarrow p), \neg r \rightarrow s] \vdash s \land \neg p$$

Solución:

T[
$$(\neg p \land q) \lor (p \land \neg q)$$
, $p \rightarrow q \lor r$, $r \rightarrow \neg (s \rightarrow p)$, $\neg r \rightarrow s$] |— $s \land \neg p$
A1 A2 A3 A4 B

[A1, A2, A3, A4] | B sii {A1, A2, A3, A4, ¬B} es insatisfacible sii de {A1, A2, A3, A4, ¬B} se deduce la cláusula vacía por resolución

*) Forma clausular:

A1:
$$(\neg p \land q) \lor (p \land \neg q) \equiv (distributividad) (\neg p \lor (p \land \neg q)) \land (q \lor (p \land \neg q))$$

$$\equiv (distributividad) ((\neg p \lor p) \land (\neg p \lor \neg q)) \land ((q \lor p) \land (q \lor \neg q)) \equiv$$

$$\equiv (elim \ paréntesis) (\neg p \lor p) \land (\neg p \lor \neg q) \land (q \lor p) \land (q \lor \neg q)$$
cláusulas 1,2,3,4

A2:
$$p \rightarrow q \vee r \equiv (eliminación \rightarrow) \neg p \vee q \vee r$$
 cláusula 5

A3:
$$r \rightarrow \neg (s \rightarrow p) \equiv (eliminación \rightarrow) \neg r \lor \neg (\neg s \lor p)$$

$$\equiv (DeMorgan) \neg r \lor (s \land \neg p) \equiv (distributividad) (\neg r \lor s) \land (\neg r \lor \neg p) cláusulas 6 y 7$$

A4:
$$\neg r \rightarrow s \equiv (eliminación \rightarrow) \neg \neg r \lor s \equiv (elim \neg \neg) \quad r \lor s$$
 cláusula 8

$$\neg B: \neg (s \land \neg p) \equiv (DeMorgan) \neg s \lor \neg \neg p \equiv (elim \neg \neg) \neg s \lor p$$
 cláusula 9

*) Resolución:

C17: □

desde C15 con C16