Econ C103 Problem Set 1

Sahil Chinoy

January 23, 2017

Exercise 1

- (a) $E[x] = \int_{\mathbb{R}} x f(x) dx$ $V[x] = \int_{\mathbb{R}} x^2 f(x) dx - (E[x])^2$
- (b) $\int\limits_{\mathbb{R}} v(x)f(x)dx = -\int\limits_{\mathbb{R}} v(x)\frac{d}{dx}(1-F(x))dx = \int\limits_{\mathbb{R}} v'(x)(1-F(x))dx v(x)(1-F(x))\bigg|_{-\infty}^{+\infty}, \text{ using integration by parts. This equals } \int\limits_{\mathbb{R}} v'(x)(1-F(x))dx + \lim_{x \to -\infty} v(x), \text{ since } \lim_{x \to +\infty} (1-F(x)) = 0 \text{ and } \lim_{x \to -\infty} (1-F(x)) = 1.$
- (c) $P(y_1 < x) = P(x_1 < x) \cap P(x_2 < x)$, which implies $F_{y_1}(x) = F(x)^2$. Thus $f_{y_1}(x) = 2F(x)f(x)$. $P(y_2 < x) = 1 P(y_2 \ge x) = 1 (P(x_1 \ge x) \cap P(x_2 \ge x))$, which implies $F_{y_2}(x) = 1 (1 F(x))^2$. Thus $f_{y_2}(x) = 2(1 F(x))f(x)$.
- (d) $E[y_1] = 2 \int_{\mathbb{R}} x F(x) f(x) dx$ $E[y_2] = 2 \int_{\mathbb{R}} x (1 - F(x)) f(x) dx$
- (e) For $x \ge z$, $f_{y_1}(x|x \ge z) = \frac{P(y_1=x)}{P(y_1 \ge z)} = \frac{2F(x)f(x)}{1-F(z)^2}$. For x < z, $f_{y_1}(x|x \ge z) = 0$. So $E[y_1|y_1 > z] = \frac{2}{1-F(z)^2} \int_{-\infty}^{\infty} xF(x)f(x)dx$.
- (f) For $x \geq z$, $f_{y_1}(x|y_2=z) = \frac{P(y_1=x)\cap P(y_2=z)}{P(y_2=z)} = \frac{2f(x)f(z)}{2(1-F(z))f(z)} = \frac{f(x)}{1-F(z)}$. For x < z, $f_{y_1}(x|y_2=z) = 0$, since the maximum cannot be less than the minimum. So $E[y_1|y_2=z] = \frac{1}{1-F(z)} \int_{-\infty}^{\infty} x f(x) dx$.

Exercise 2

- (a) Since $m(\theta) = x^*$ is a maximum, it is defined implicitly by $f(x^*, \theta) = \frac{\partial w}{\partial x} = 0$. By the implicit function theorem, $m'(\theta) = \frac{\partial x^*}{\partial \theta} = -\frac{\partial f/\partial \theta}{\partial f/\partial x^*} = -\frac{\partial^2 w/\partial x \partial \theta}{\partial^2 w/\partial x^2}$.
- (b) We are given that w is concave in x, so $\frac{\partial^2 w}{\partial x^2} < 0$. Thus $m(\theta)$ is increasing for all $\theta \in \Theta$ when $\frac{\partial^2 w}{\partial x \partial \theta} > 0$ and decreasing when $\frac{\partial^2 w}{\partial x \partial \theta} < 0$.
- (c) $v(\theta) = w(m(\theta), \theta)$, so by the chain rule $v'(\theta) = \frac{\partial w}{\partial x^*} m'(\theta) + \frac{\partial w}{\partial \theta}$. But $\frac{\partial w}{\partial x^*} = 0$, since the derivative of the objective function is 0 at the maximum. So $v'(\theta) = \frac{\partial w}{\partial \theta} = w_{\theta}(m(\theta), \theta)$. This is an illustration of the envelope theorem.