- (6pts) 1. For each of the following statements, write the converse, contrapositive, and the negation.
 - (a) $\exists x \forall y (x \ge 2y \to x > y + 1)$

Solution: Converse: $\exists x \forall y (x > y + 1 \rightarrow x \ge 2y)$ Contrapositive: $\exists x \forall y (x \le y + 1 \rightarrow x < 2y)$ Negation: $\forall x \exists y (x \ge 2y \land x \le y + 1)$

(b) For all integers a and b, if a is even and b is odd, then a + b is odd.

Solution: Converse: For all integers a and b, if a+b is odd, then a is even and b is odd. Contrapositive: For all integers a and b, if a+b is not odd, then a is not even or b is not odd. Negation: There are integers a and b such that a is even and b is odd, but a+b is not odd.

(5pts) 2. Prove the statement: For all integers n, if 5n is odd, then n is odd. Clearly state the style of proof you are using.

Solution: We will prove the contrapositive: if n is even, then 5n is even.

Proof. Let n be an arbitrary integer, and suppose n is even. Then n=2k for some integer k. Thus $5n=5\cdot 2k=10k=2(5k)$. Since 5k is an integer, we see that 5n must be even. This completes the proof.

(5pts) 3. Prove the statement: For all integers a, b, and c, if $a^2 + b^2 = c^2$, then a or b is even. Hint: try a proof by contradiction.

Solution:

Proof. Suppose, contrary to stipulation, that there are integers a, b and c such that $a^2 + b^2 = c^2$ but a and b are both odd. Then a = 2k + 1 and b = 2j + 1 for some integers k and j. We then have

$$a^{2} + b^{2} = (2k+1)^{2} + (2j+1)^{2} = 4k^{2} + 4k + 1 + 4j^{2} + 4j + 1 = 4(k^{2} + j^{2} + k + j) + 2$$

So $c^2 = 4(k^2 + j^2 + k + j) + 2$. This means that c^2 is even, which can only happen if c is even. But then c^2 must be a multiple of 4. However, this is a contradiction because $4(k^2 + j^2 + k + j) + 2$ is not a multiple of 4.

- (4pts) 4. Order matters with quantifiers! Sometimes.
 - (a) Find a formula φ such that $\forall x \exists y \varphi$ is true but $\exists y \forall x \varphi$ is false.

Solution: There are many examples, but for instance φ could be x < y. It is true that for every x there is a y greater than it. However, there is not a y greater than every x

(b) Explain why you cannot find a formula ψ such that $\forall x \exists y \psi$ is false but $\exists y \forall x \psi$ is true.

Solution: Let's say $\exists y \forall x \psi$ is true. That means you can pick a y such that no matter what x is picked, ψ holds. Now say you pick that same y but keep it secret. Now you pick any x you like, and then reveal your previously selected y. Since you picked the same y as before, $\forall x \exists y \psi$ will also be true.