

How to use Excel efficiently

Why Excel?

- Spreadsheets are the most flexible form of software available. They may not be the best for everything but they can do everything, even if slightly less efficiently for some applications.
- There are costs in maintaining many different software packages, especially if they are used infrequently.
- Excel even has a free built-in programming language *VBA* (used to write *macros* and automate Excel).

What we are not going to cover

- This module is not a crash course in Excel. It is assumed that you are familiar with the basics of spreadsheets and know how to:
 - Enter text, numbers and formulae and use these to carry out calculations
 - Basic operations such as copy/cut and paste, copy/ fill across and down
 - Absolute and relative cell references: \$ sign is used to make reference absolute, e.g. \$A\$2, \$A2, A\$2
- If not look them up.

What are we going to cover?

- Instead, we are going to look at:
 - Ways to improve your use of Excel, so making it more efficient, and therefore more productive
 - Handling data in Excel, since this is the prime requirement for many organisations
 - Use Excel for optimisation
- This is not going to be a series of tutorials but a quick guide to things you ought to know, so you can look them up for yourselves, with assignments to test your understanding

Spreadsheet design

Overview

- Objectives
 - Better spreadsheet models
 - More reliable
 - More efficient
 - Easier to check, update & maintain
 - More likely to do the calculations intended
 - Less likely to fail an audit
 - Produced more quickly and easily

Before you begin

- Plan ahead:
 - What do you want your spreadsheet to do?
 - Who will use it?
 - What future changes might you want to make?
 - How can you make the layout more efficient?
 - What are the key inputs and outputs?
- A bit of thought at this stage can save you lots of time later on.

Components of a spreadsheet

Spreadsheet Style Guide

Separate model functions Use a clear, consistent layout

Label rows, columns, cells; name ranges

Check validity of inputs & results

Ensure correct use of absolute and relative references

Keep it simple!

Do not use constants in formulas

Only use formulas that can be copied across & down

Avoid hiding rows, columns, sheets

Avoid formulas that link to other workbooks

When you have finished

- Document your spreadsheet
- Protect cells and worksheets that should not be changed (use a password if necessary)
- Highlight cells that users should change and make sure they are visible when the spreadsheet is opened
- Give your spreadsheet names that are selfexplanatory - add the date if necessary
- Make back-ups

Examples

Refrigeration costs

Yellow cells are for entering parameters; blue cells are for entering rules on number of units operating

Maximum temperature rise	5	°C	Note: for convenience,
Temperature rise	1.8	°C/h	temperatures are measured as
Refrigeration rate	0.8	°C/h	°C above the minimum the
Peak electricity rate	120	£/h	pumps can operate at.
Off-peak electricity rate	40	£/h	
Maximum number of units	3		Total Cost £5,164
Initial temperature (at 06:30)	2.5	°C	Final temp (°C) 0.06

Units on	Temperature		
(num)	(°C)	Rate (£/h)	Cost (£)
1	2.50	120.00	£2.00
1	2.52	120.00	£2.00
1	2.53	120.00	£2.00
1	2.55	120.00	£2.00
1	2.57	120.00	£2.00
		(num) (°C) 1 2.50 1 2.52 1 2.53 1 2.55	(num) (°C) Rate (£/h) 1 2.50 120.00 1 2.52 120.00 1 2.53 120.00 1 2.55 120.00

/_	Α	В	С	D	Е	F	G	Н	1	J	K	L	M
	The s	and and	gravel	compar	ıv								
1			_	•	•								
2	T												
3	The deci	sion matrix		00	02	04	0.5						
4		Q1	C1	C2	C3	C4	C5		75				
6		Q2						0	150				
7		Q3						0	75				
8		Q3	0	0	0	0	0	U	15				
9		Totals	100	60	40	75	25		300				
10		Totals	100	00	40	13	23		300				-
-10	The cone	trainte aro	that each r	ow and col	umn in the	o docision	matriy ad	d to to the	total				-
11	The constraints are that each row and column in the decision matrix add to to the total given, and all are positive.												
12	giveii, ai	iu ali ale p	ositive.										
13	The cost	matriy											
14	THE COSE	IIIduix	C1	C2	C3	C4	C5						
15		Q1	3	2	3	4	1						
16		Q2	4	1	2	4	2						
17		Q3	1	0	5	3	2						
18							_						
19	The obie	ctive functi	on, which	we want to	minimise:								
20	,												
21		Z =	0										
22													
23													
24													
25													
26													
27													
28													
29													
30													