NAME: Solution

PROBLEM 1 (35 pts): The figure below shows a four bar mechanism. The length of the base link O₂O₄ is 15 in, all other dimensions of the link are shown in the figure. Link 2 is rotating at $\omega_2 = -25\frac{1}{s}$, and $\alpha_2 = -180\frac{1}{s^2}$.

1a. Use the program/tool that you developed in class to calculate all the important parameters. Print out your solution. Print the solution such that it all fits on a single page and staple it directly behind this page. Make sure that I can read your output.

$$(8in)^{2} = (12in)^{2} + (5in)^{2} - 2 \cdot (12in)(5in) \cos 5'$$

$$\cos 5' = \frac{(8in)^{2} - (12in)^{2} + (5in)^{2}}{2(42in)(5in)} \Rightarrow 5' = \cos^{-1} \left[\frac{(12in)^{2} + (5in)^{2} - (8in)^{2}}{2(42in)(5in)} \right] = 29^{\circ}$$

$$5' = 360 - 5' = 331^{\circ}$$

1a. Use the figure on the next page, find all instant centers then use the instant centers to verify your calculated results for V_A , V_B , V_C , ω_3 , and ω_4 .

K4=

-6.4770E+01

					e _r		$e_{\scriptscriptstyle{\theta}}$	
	x comp	y comp	mag	angle	i	j	i	j
r04=	15.00	0.00	15.000	0.0	1.000	0.000	0.000	1.000
rA=	2.50	4.33	5.000	60.0	0.500	0.866	-0.866	0.500
rBA=	10.67	5.50	12.000	27.3	0.889	0.458	-0.458	0.889
rBO4=	-1.83	9.83	10.000	100.6	-0.183	0.983	-0.983	-0.183
rB=	13.17	9.83	16.430	36.7	0.801	0.598	-0.598	0.801
rPA=	5.00	-0.15	5.000	-1.7	1.000	-0.030	0.030	1.000
rP=	7.50	4.18	8.584	29.1	0.873	0.487	-0.487	0.873
vA=	108.25	-62.50	125.000	-30.0	0.866	-0.500	0.500	0.866
vBA=	-38.91	75.44	84.884	117.3	-0.458	0.889	-0.889	-0.458
vB=	69.35	12.94	70.545	10.6	0.983	0.183	-0.183	0.983
vPA=	1.06	35.35	35.368	88.3	0.030	1.000	-1.000	0.030
vP=	109.31	-27.15	112.635	-13.9	0.971	-0.241	0.241	0.971
aA=	-783.08	-3156.33	3252.019	-103.9	-0.241	-0.971	0.971	-0.241
аВА	-1794.18	2169.07	2814.948	129.6	-0.637	0.771	-0.771	-0.637
аВ	-2577.26	-987.26	2759.879	-159.0	-0.934	-0.358	0.358	-0.934
aPA=	-215.68	1152.89	1172.895	100.6	-0.184	0.983	-0.983	-0.184
aP=	-998.76	-2003.44	2238.588	-116.5	-0.446	-0.895	0.895	-0.446
ALT	x comp	y comp	mag	angle	i	j	i	j
rO4=	15.00	0.00	15.000	0.0	1.000	0.000	0.000	1.000
rA=	2.50	4.33	5.000	60.0	0.500	0.866	-0.866	0.500
rBA=	4.98	-10.92	12.000	-65.5	0.415	-0.910	0.910	0.415
rBO4= rB=	-7.52 7.48	-6.59 -6.59	10.000 9.966	-138.8 -41.4	-0.752 0.750	-0.659 -0.661	0.659 0.661	-0.752 0.750
r B= rPA=	-0.39	- 6.59 -4.98	5.000	-41.4 -94.5	-0.078	-0.001 -0.997	0.001	-0.078
rP=	2.11	-0.65	2.208	-17.2	0.955	-0.296	0.296	0.955
vA=	108.25	-62.50	125.000	-30.0	0.866	-0.500	0.500	0.866
vBA=	-38.24	-17.43	42.027	-155.5	-0.910	-0.415	0.415	-0.910
vB=	70.01	-79.93	106.259	-48.8	0.659	-0.752	0.752	0.659
vPA=	-17.46	1.37	17.511	175.5	-0.997	0.078	-0.078	-0.997
vP=	90.80	-61.13	109.456	-34.0	0.830	-0.558	0.558	0.830
aA=	-783.08	-3156.33	3252.019	-103.9	-0.241	-0.971	0.971	-0.241
aBA	3506.76	1760.36	3923.805	26.7	0.894	0.449	-0.449	0.894
аВ	2723.68	-1395.97	3060.583	-27.1	0.890	-0.456	0.456	0.890
aPA=	1633.55	-66.86	1634.919	-2.3 -75.2	0.999	-0.041	0.041	0.999 0.255
aP=	850.47	-3223.19	3333.504	-/3.2	0.255	-0.967	0.967	0.200

PROBLEM 2 (35 pts): A slider crank linkage has the following dimensions.

Link 2	Link 3	Offset	θ_2	$\mathbf{\omega}_2$	α_2
5.5m	21m	2m	55	$-20\frac{1}{s}$	$5 \frac{1}{s^2}$

- **2a.** Using the program that you have been developing, calculate all the critical parameters associated with this linkage in both of the possible configurations. Print out the results of your program and staple it **directly behind this page**.
- **2b**. Using the grid paper on the next two pages, draw the mechanism in both the open and crossed configurations. Find the instant centers in the open configuration and verify the velocity of the slider that you calculated in the previous section.

Slider Crank

a=	5.5	Link 2		
b=	21	21 Link 3		
C=	2	Offset		
$\theta_2 =$	55	0.959931089		
$\dot{\theta}_2 =$	-20	1/s		
$\ddot{\theta}_2 =$	5	$\frac{1}{s^2}$		
By=	2.00	2.00		
Bx=	24.00	-17.70		
$\theta_3 =$	-6.9	-173.1		
$\dot{\theta} =$	3.03	-3.03		
$\ddot{\theta} =$	84.58	-84.58		
vB=	97.69	82.53		
aB=	-1263.43	-1305.36		

PROBLEM 1 (35 pts): The figure below shows a four bar mechanism. The length of the base link O_2O_4 is 15 in, all other dimensions of the link are shown in the figure. Link 2 is rotating at $\omega_2 = -25\frac{1}{s}$, and $\alpha_2 = -180\frac{1}{s^2}$.

1b. Use the program/tool that you developed in class to calculate all the important parameters. Print out your solution. Print the solution such that it **all fits on a single page** and staple it **directly behind this page**. Make sure that I can read your output.

1a. Use the figure on the next page, find all instant centers then use the instant centers to verify your calculated results for V_A , V_B , V_C , ω_3 , and ω_4 .

PROBLEM 2 (35 pts): A slider crank linkage has the following dimensions.

Link 2	Link 3	Offset	$\boldsymbol{\theta}_2$	$\mathbf{\omega}_2$	$\mathbf{\alpha}_2$
5.5m	21m	2m	55	$-20 \frac{1}{s}$	$5 \frac{1}{s^2}$

- **2a.** Using the program that you have been developing, calculate all the critical parameters associated with this linkage in both of the possible configurations. Print out the results of your program and staple it **directly behind this page**.
- **2b**. Using the grid paper on the next two pages, draw the mechanism in both the open and crossed configurations. Find the instant centers in the open configuration and verify the velocity of the slider that you calculated in the previous section.

PROBLEM 3 (30 pts): Find the mechanical advantage for the hood mechanism shown.

Union College Mechanical Engineering