KDD 竞赛任务

1 目标

给定作者 ID 和论文 ID, 判断该作者是否写了这篇论文。

2 数据集描述

1. <u>作者数据集</u>: **Author.csv**。包含作者的编号(Id),名字(Name),单位(affiliation)信息。相同的作者可能在 Author.csv 数据集中出现多次,因为作者在不同会议 / 期刊上发表论文的名字可能有多个版本。例如: J. Doe, Jane Doe, 和 J. A. Doe 指的均是同一个人。

字段名称	数据类型	注释
Id	int	作者编号
Name	string	作者名称
Affiliation	string	隶属单位

2. <u>论文数据集</u>: **Paper.csv**。包含论文的标题(title),会议/期刊信息,关键字(keywords)。同一论文可能会通过不同的数据来源获取,因此在 Paper.csv 中会存在多个副本。

字段名称	数据类型	注释
Id	int	论文编号
Title	string	论文标题
Year	int	论文年份
ConferrenceId	int	论文发表的会议 Id
JournalId	int	论文发表的期刊 Id
Keywords	string	关键字

3. <u>(论文-作者)数据集</u>: **Paper-Author.csv**。包含 (论文 Id-作者 Id)对 的信息。该数据集 是包含噪声的(noisy),存在不正确的(论文 Id-作者 Id)对。即,在 Paper-Author.csv 中的(论文 Id-作者 Id),该作者 Id 并不一定写了该论文 Id。因为,作者名字存在歧义 (存在同名的人),和作者名字存在多个版本(如上面的例子: J. Doe, Jane Doe,和 J. A. Doe 指的均是同一个人)。

字段名称	数据类型	注释
PaperId	int	论文编号

字段名称	数据类型	注释
AuthorId	int	作者编号
Name	string	作者名称
Affiliation	string	隶属单位

4. <u>会议和期刊数据集</u>: Conference.csv, Journal.csv。 每篇论文发表在会议或者期刊上。

字段名称	数据类型	注释
Id	int	会议/期刊 编号
ShortName	string	简称
Fullname	string	全称
Homepage	string	主页

5. <u>共同作者的信息</u>: **coauthor.json**。目前,coauthor.json 文件给出每个作者合作频率最高的 10 个共同作者,该文件的格式为 json。coauthor.json 文件的内容格式形如:

{"A 作者 ID": {"B1 作者 ID": 合作次数, "B2 作者 ID": 合作次数}}

第一层的 key 为作者的 ID,对应的 value 为共同作者信息(同样为 key-value 形式,key 为共同作者的 ID, value 为合作次数)。

- 6. <u>论文&作者 pair 字符串信息</u>: **paperIdAuthorId_to_name_and_affiliation.json**。文件 内容是从 Paper-Author.csv 提取的,将 Paper-Author.csv 中相同的论文 ID 和作者 ID 对的 name 和 affiliation 合并,存储为 key-value 形式,key 为论文 ID 和作者 ID 对: 'paperid|authorid', value 为 {"name": "name1##name2##name3", "affiliation": "aff1##aff2##aff3"}。
- 7. <u>训练集</u>: **Train.csv**。其中 ComfirmedPaperIds 列对应的论文,表示该作者写了这些论文。DeletedPaperIds 列对应的论文,表示该作者没有写这些论文。

字段名称	数据类型	注释
AuthorId	int	作者 ID
ComfirmedPaperIds	string	以空格分割的论文(PaperId) 列表
DeletedPaperIds	string	以空格分割的论文(PaperId) 列表

8. 验证集:验证集 Valid.csv 文件的格式如下:

字段名称	数据类型	注释
AuthorId	int	作者 ID
PaperIds	string	以空格分割的论文(PaperId) 列表, 待测的论文列表

- 9. <u>验证集答案</u>: Valid.gold.csv 是验证集的标准答案,文件格式与训练集 Train.csv 格式相同。
- 10. <u>测试集</u>: **Test.csv**。测试集 Test.csv 文件的格式与验证集 Valid.csv 格式相同,将在之后发布。测试文件命名为 Test.##.csv,其中##为各个小组的编号,如 Test.01.csv 表示第一个小组的测试集。
- 11. 因此,各个小组最终需要提交的是<u>测试集预测结果</u>,提交文件的格式与 Valid.gold.csv 相同。文件命名为 Test.P##.csv, 其中##为各个小组的编号,如 Test.P01.csv 表示第一个小组提交的测试集预测结果。

12. 数据集的统计

数据集	(作者-论文)对 个数
训练集(Train.csv)	11,263
验证集(Valid.csv)	2,347
测试集(Test.csv)	每个队伍的测试集不同,约1,300;

3 数据目录介绍

data

dataset: 数据目录

train_set: 训练集文件夹

• Train.authorIds.txt: 训练集。的所有作者列表

• Train.csv: 训练集 valid_set: 验证集文件夹

• Valid.authorIds.txt: 验证集的所有作者列表

• Valid.csv: 验证集

• Valid.gold.csv: 验证集的标准答案

test set: 测试集文件夹(各个小组不同的测试集)

- Test.authorIds.txt: 测试集的所有作者列表,如 Test.01.authorIds.txt 是第一小组
- Test.csv: 测试集,如 Test.01.csv 是第一小组的测试集

Author.csv: 作者数据集 coauthor.json: 共作者数据

Conference.csv: 会议数据集 Journal.csv: 期刊数据集 Paper.csv: 论文数据集

PaperAuthor.csv: 论文-作者 数据集

paperIdAuthorId_to_name_and_affiliation.json: 包含论文-作者对(paperId, AuthorId)到

名字-单位(name1##name2; aff1##aff2)的映射关系

4 提交格式

最终提交的文件是对"<u>测试集</u>"的预测结果。该预测结果文件的格式与训练集 **Train.csv** 的格式相同,包含 AuthorId、ComfirmedPaperIds、DeletedPaperIds 字段。该预测结果文件的命名为 Test.P##.csv,其中##为各个小组的编号,如 Test.P01.csv 表示第一个小组提交的测试集预测结果。

5 评估标准

使用在"测试集"上的结果的准确率(Accuracy)作为评估标准。

例如,第一小组在验证集合上的预测结果与标准答案的评估:

评估脚本位于 model_trainer 文件夹下,名为 evalution.py,通过运行该脚本可以获得评估结果。

python evalution.py gold_file_path pred_file_path 其中, gold_file_path 为标准答案所在的路径, pred_file_path 为预测文件所在的路径。

python evalution.py valid_set/Valid.gold.csv valid_set/predict.csv