Table Main site characteristics, climatic indexes, and studied periods of flux sites used in this analysis. All the data gathered from www.fluxdata.org.

Site name	$ m Veg^1$	Lat^2	Lon^3	Clim ⁴	Period	Ref ⁵
AR-SLu	MF	-33.4648	-66.4598	Unk	2009-2011	[Ulke et al., 2015]
AR-Vir	ENF	-28.2395	-56.1886	Unk	2009-2012	[Posse et al., 2016]
AT-Neu	GRA	47.1167	11.3175	Unk	2002-2012	[Wohlfahrt et al., 2008]
AU-Ade	WSA	-13.0769	131.1178	Unk	2007-2009	[Beringer et al., 2011a]
AU-ASM	ENF	-22.2830	133.2490	Unk	2010-2013	[Cleverly et al., 2013]
AU-Cpr	SAV	-34.0021	140.5891	Unk	2010-2014	[Meyer et al., 2015]
AU-Cum	EBF	-33.6133	150.7225	Unk	2012-2014	[Beringer et al., 2016a]
AU-DaP	GRA	-14.0633	131.3181	Aw	2007-2013	[Beringer et al., 2011b]
AU-DaS	SAV	-14.1593	131.3881	Aw	2008-2014	[Hutley et al., 2011]
AU-Dry	SAV	-15.2588	132.3706	Unk	2008-2014	[Cernusak et al., 2011]
AU-Emr	GRA	-23.8587	148.4746	Unk	2011-2013	_
AU-Fog	WET	-12.5452	131.3072	Aw	2006-2008	[Beringer et al., 2013]
AU-Gin	WSA	-31.3764	115.7138	Unk	2011-2014	_
AU-GWW	SAV	-30.1913	120.6541	Unk	2013-2014	_
AU-How	WSA	-12.4943	131.1523	Aw	2001-2014	[BERINGER et al., 2007]
AU-Lox	DBF	-34.4704	140.6551	Unk	2008-2009	[Stevens et al., 2011]
AU-RDF	WSA	-14.5636	132.4776	Unk	2011-2013	[Bristow et al., 2016]
AU-Rig	GRA	-36.6499	145.5759	Unk	2011-2014	[Beringer et al., 2016b]
AU-Rob	EBF	-17.1175	145.6301	Unk	2014-2014	[Beringer et al., 2016c]
AU- Stp	GRA	-17.1507	133.3502	Unk	2008-2014	[Beringer et al., 2011c]
AU-TTE	OSH	-22.2870	133.6400	Unk	2012-2013	_
AU-Tum	EBF	-35.6566	148.1517	Cfb	2001-2014	[Leuning et al., 2005]
AU-Wac	EBF	-37.4259	145.1878	Cfb	2005-2008	[Kilinc et al., 2013]
AU-Whr	EBF	-36.6732	145.0294	Unk	2011-2014	[McHugh et al., 2017]
AU-Wom	EBF	-37.4222	144.0944	Unk	2010-2012	_
AU-Ync	GRA	-34.9893	146.2907	Unk	2012-2014	[Yee et al., 2015]
BE-Bra	MF	51.3092	4.5206	Unk	1996-2014	[Carrara et al., 2004]
BE-Lon	CRO	50.5516	4.7461	Cfb	2004-2014	[Moureaux et al., 2006]
BE-Vie	MF	50.3051	5.9981	Cfb	1996-2014	[Aubinet et al., 2001]
BR-Sa3	EBF	-3.0180	-54.9714	Am	2000-2004	[Wick et al., 2005]
CA-Man	ENF	55.8796	-98.4808	Dfc	1994-2008	[DUNN et al., 2007]
CA-NS1	ENF	55.8792	-98.4839	Dfc	2001 - 2005	[GOULDEN et al., 2006a]
CA-NS2	ENF	55.9058	-98.5247	Dfc	2001 - 2005	[GOULDEN et al., 2006b]
CA-NS3	ENF	55.9117	-98.3822	Dfc	2001-2005	[GOULDEN et al., 2006c]
CA-NS4	ENF	55.9144	-98.3806	Dfc	2002 - 2005	[GOULDEN et al., 2006d]
CA-NS5	ENF	55.8631	-98.4850	Dfc	2001-2005	[GOULDEN et al., 2006e]
CA-NS6	OSH	55.9167	-98.9644	Dfc	2001-2005	[GOULDEN et al., 2006f]
CA-NS7	OSH	56.6358	-99.9483	Dfc	2002 - 2005	[GOULDEN et al., 2006g]
CA-Qfo	ENF	49.6925	-74.3421	Dfc	2003-2010	[BERGERON et al., 2007]
CA-SF1	ENF	54.4850	-105.8176	Dfc	2003-2006	[Mkhabela et al., 2009a]
CA-SF2	ENF	54.2539	-105.8775	Dfc	2001-2005	[Mkhabela et al., 2009b]
CA-SF3	OSH	54.0916	-106.0053	Dfc	2001-2006	[Mkhabela et al., 2009c]
CH-Cha	GRA	47.2102	8.4104	Unk	2005-2014	[Merbold et al., 2014]
CH-Dav	ENF	46.8153	9.8559	Unk	1997-2014	[Zielis et al., 2014]
CH-Fru	GRA	47.1158	8.5378	Unk	2005-2014	[Imer et al., 2013]
CH-Lae	MF	47.4781	8.3650	Unk	2004-2014	[Etzold et al., 2011]

Site name	Veg^1	$\mathrm{Lat^2}$	$\mathrm{Lon^3}$	Clim ⁴	Period	Ref ⁵
CH-Oe1	GRA	47.2858	7.7319	Unk	2002-2008	[Ammann et al., 2009]
CH-Oe2	CRO	47.2863	7.7343	Unk	2004-2014	[Dietiker et al., 2010]
CN-Cha	MF	42.4025	128.0958	Dwb	2003-2005	[Guan et al., 2006]
CN-Cng	GRA	44.5934	123.5092	Unk	2007-2010	_
CN-Dan	GRA	30.4978	91.0664	ET	2004-2005	[Shi et al., 2006]
CN-Din	EBF	23.1733	112.5361	Cfa	2003-2005	_
CN-Du2	GRA	42.0467	116.2836	Dwb	2006-2008	[Chen et al., 2009]
CN-Ha2	WET	37.6086	101.3269	Unk	2003-2005	_
CN-HaM	GRA	37.3700	101.1800	ET	2002-2004	[KATO et al., 2006]
CN-Qia	ENF	26.7414	115.0581	Cfa	2003-2005	_
CN-Sw2	GRA	41.7902	111.8971	Unk	2010-2012	_
CZ-BK1	ENF	49.5021	18.5369	Unk	2004-2008	[Acosta et al., 2013]
CZ-BK2	GRA	49.4944	18.5429	Unk	2004-2006	_
CZ-wet	WET	49.0247	14.7704	Unk	2006-2014	[Dušek et al., 2012]
DE-Akm	WET	53.8662	13.6834	Cfb	2009-2014	
DE-Geb	CRO	51.1001	10.9143	Unk	2001-2014	[Anthoni et al., 2004]
DE-Gri	GRA	50.9500	13.5126	Cfb	2004-2014	[Prescher et al., 2010a]
DE-Hai	DBF	51.0792	10.4530	Unk	2000-2012	[Knohl et al., 2003]
DE-Hai DE-Kli	CRO	50.8931	13.5224	Cfb	2000-2012	[Prescher et al., 2010b]
DE-Kii DE-Lkb	ENF	49.0996	13.3047	Unk	2004-2014	[Lindauer et al., 2014]
						[Lindauer et al., 2014]
DE-Obe	ENF	50.7867	13.7213	Cfb	2008-2014	- [Dark at al. 2015]
DE-RuR	GRA	50.6219	6.3041	Unk	2011-2014	[Post et al., 2015]
DE-RuS	CRO	50.8659	6.4472	Cfb	2011-2014	[Mauder et al., 2013]
DE-Seh	CRO	50.8706	6.4497	Unk	2007-2010	[Schmidt et al., 2012]
DE-SfN	WET	47.8064	11.3275	Unk	2012-2014	[Hommeltenberg et al., 2014]
DE-Spw	WET	51.8923	14.0337	Cfb	2010-2014	
DE-Tha	ENF	50.9624	13.5652	Cfb	1996-2014	[Grünwald and Bernhofer, 2007]
DK-Fou	CRO	56.4842	9.5872	Unk	2005-2005	_
DK-NuF	WET	64.1308	-51.3861	ET	2008-2014	[Westergaard-Nielsen et al., 2013]
DK-Sor	DBF	55.4859	11.6446	Unk	1996-2014	[Pilegaard et al., 2011]
DK-ZaF	WET	74.4814	-20.5545	ET	2008-2011	[Stiegler et al., 2016]
DK-ZaH	GRA	74.4732	-20.5503	ET	2000-2014	[Lund et al., 2012]
ES-LgS	OSH	37.0979	-2.9658	Unk	2007-2009	[Reverter et al., 2010]
ES-Ln2	OSH	36.9695	-3.4758	Unk	2009-2009	_
FI-Hyy	ENF	61.8474	24.2948	Unk	1996-2014	_
FI-Jok	CRO	60.8986	23.5135	Unk	2000-2003	[Lohila, 2004]
FI-Lom	WET	67.9972	24.2092	Unk	2007-2009	_
FI-Sod	ENF	67.3619	26.6378	Unk	2001-2014	[Thum et al., 2007]
FR-Fon	DBF	48.4764	2.7801	Cfb	2005-2014	[Delpierre et al., 2015]
FR-Gri	CRO	48.8442	1.9519	Cfb	2004-2013	[Loubet et al., 2011]
FR-LBr	ENF	44.7171	-0.7693	Unk	1996-2008	[Berbigier et al., 2001]
FR-Pue	EBF	43.7414	3.5958	Unk	2000-2014	[Rambal et al., 2004]
GF-Guy	EBF	5.2788	-52.9249	Unk	2004-2014	[BONAL et al., 2008]
IT-BCi	CRO	40.5238	14.9574	Unk	2004-2014	[Vitale et al., 2015]
IT-CA1	DBF	42.3804	12.0266	Unk	2011-2014	[Sabbatini et al., 2016a]
IT-CA2	CRO	42.3772	12.0260	Unk	2011-2014	[Sabbatini et al., 2016b]
IT-CA3	DBF	42.3800	12.0200 12.0222	Unk	2011-2014	[Sabbatini et al., 2016c]
IT-CAS IT-Col	DBF	42.3800	13.5881	Unk	1996-2014	[VALENTINI et al., 1996]
						, ,
IT-Cp2	EBF	41.7043	12.3573	Unk	2012-2014	[Fares et al., 2014]

FT-Cpz	Site name	$ m Veg^1$	Lat ²	$\mathrm{Lon^3}$	Clim ⁴	Period	Ref ⁵
IT-La2	IT-Cpz	EBF	41.7052	12.3761	Unk	1997-2009	[GARBULSKY et al., 2008]
TT-Law	IT-Isp	DBF	45.8126	8.6336	Unk	2013-2014	. , ,
IT-Mbo	IT-La2	ENF	45.9542	11.2853	Unk	2000-2002	[Marcolla et al., 2003a]
IT-Noc	IT-Lav	ENF	45.9562	11.2813	Unk	2003-2014	[Marcolla et al., 2003b]
TP-PT1	IT-MBo	GRA	46.0147	11.0458	Unk	2003-2013	[Marcolla et al., 2011]
TT-Ren	IT-Noe	CSH	40.6061	8.1515	Unk	2004-2014	[Papale et al., 2014]
TT-Ro1	IT-PT1	DBF	45.2009	9.0610	Unk	2002-2004	[Migliavacca et al., 2009]
TT-Ro1	IT-Ren	ENF	46.5869	11.4337	Unk	1998-2013	[Montagnani et al., 2009]
TT-Ro2	IT-Ro1	DBF	42.4081	11.9300	Unk	2000-2008	
TT-SRc	IT-Ro2	DBF	42.3903	11.9209	Unk	2002-2012	
TT-Sro	IT-SR2	ENF	43.7320	10.2910	Unk	2013-2014	_
IT-Tor	IT-SRo	ENF	43.7279	10.2844		1999-2012	[Chiesi et al., 2005]
JP-MBF DBF 44.3869 142.3186 Unk 2003-2005 Matsumoto et al., 2008a] JP-SMF MF 35.2617 137.0788 Unk 2002-2006 [Matsumoto et al., 2008b] NL-Hor GRA 52.2404 5.0713 Unk 2004-2011 Jacobs et al., 2007] NL-Hor ENF 52.1666 5.7436 Unk 2004-2011 Jacobs et al., 2007] NO-Adv WET 78.1860 15.9230 Unk 2011-2014 - NO-Blv SNO 78.9216 11.8311 Unk 2008-2009 [Lüers et al., 2014] RU-Che WET 68.6130 161.3414 Unk 2002-2005 [MERBOLD et al., 2009] RU-Cok OSH 70.8291 147.4943 Unk 2003-2004 [Marchesini et al., 2007] RU-Fyo ENF 56.4615 32.9221 Unk 2002-2004 [Marchesini et al., 2008] RU-Fyo ENF 56.4615 32.9221 Unk 2002-2004 [Marchesini et al., 2007] RU-Fya			45.8444	7.5781			
JP-SMF							
NL-Hor GRA 52.2404 5.0713 Unk 2004-2011 Jacobs et al., 2007 NL-Loo ENF 52.1666 5.7436 Unk 1996-2013							
NL-Loo							
NO-Adv WET 78.1860 15.9230 Unk 2011-2014 — NO-Blv SNO 78.9216 11.8311 Unk 2008-2009 [Lüers et al., 2014] RU-Che WET 68.6130 161.3414 Unk 2002-2005 [MERBOLD et al., 2009] RU-Cok OSH 70.8291 147.4943 Unk 2003-2014 [van der Molen et al., 2007] RU-Fyo ENF 56.4615 32.9221 Unk 1998-2014 [Kurbatova et al., 2008] RU-Ha1 GRA 54.7252 90.0022 Dfc 2002-2004 [Marchesini et al., 2007] SD-Dem SAV 13.2829 30.4783 Unk 2010-2013 [Tagesson et al., 2014] US-AR1 GRA 36.4267 -99.4200 Dsa 2009-2012 [Raz-Yaseef et al., 2015a] US-AR1 GRA 36.6358 -99.5975 Dsa 2009-2012 [Raz-Yaseef et al., 2015b] US-AR2 GRA 35.5465 -98.0400 Cfa 2005-2006 [Raz-Yaseef et al., 2015c] <							_
NO-Blv							_
RU-Che WET 68.6130 161.3414 Unk 2002-2005 [MERBOLD et al., 2009] RU-Cok OSH 70.8291 147.4943 Unk 2003-2014 [van der Molen et al., 2007] RU-Fyo ENF 56.4615 32.9221 Unk 1998-2014 [Kurbatova et al., 2008] RU-Ha1 GRA 54.7252 90.0022 Dfc 2002-2004 [Marchesini et al., 2007] SD-Dem SAV 13.2829 30.4783 Unk 2010-2013 [Tagesson et al., 2014] SN-Dhr SAV 15.4028 -15.4322 Unk 2010-2013 [Tagesson et al., 2014] US-AR1 GRA 36.4267 -99.4200 Dsa 2009-2012 [Raz-Yaseef et al., 2015a] US-AR2 GRA 35.5465 -99.5975 Dsa 2009-2012 [Raz-Yaseef et al., 2015c] US-ARb GRA 35.5465 -98.0402 Cfa 2005-2006 [Raz-Yaseef et al., 2015d] US-ARc GRA 35.5465 -98.0400 Cfa 2005-2006 [Raz-Yaseef et al., 2015d] <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>[Lüers et al 2014]</td>							[Lüers et al 2014]
RU-Cok OSH 70.8291 147.4943 Unk 2003-2014 van der Molen et al., 2007 RU-Fyo ENF 56.4615 32.9221 Unk 1998-2014 [Kurbatova et al., 2008] RU-Hal GRA 54.7252 90.0022 Dfc 2002-2004 [Marchesini et al., 2007] SD-Dem SAV 13.2829 30.4783 Unk 2005-2009 [Ardo et al., 2008] SN-Dhr SAV 15.4028 -15.4322 Unk 2010-2013 [Tagesson et al., 2014] US-AR1 GRA 36.4267 -99.4200 Dsa 2009-2012 [Raz-Yaseef et al., 2015a] US-AR2 GRA 36.6358 -99.5975 Dsa 2009-2012 [Raz-Yaseef et al., 2015c] US-ARD GRA 35.5465 -98.0400 Cfa 2005-2006 [Raz-Yaseef et al., 2015c] US-ARD GRA 35.5465 -98.0400 Cfa 2005-2006 [Raz-Yaseef et al., 2015d] US-ARD GRA 38.0900 -109.3900 Unk 2001-2007 [Goldstein et al., 2007]							
RU-Fyo ENF 56.4615 32.9221 Unk 1998-2014 [Kurbatova et al., 2008] RU-Ha1 GRA 54.7252 90.0022 Dfc 2002-2004 [Marchesini et al., 2007] SD-Dem SAV 13.2829 30.4783 Unk 2005-2009 [Ardo et al., 2008] SN-Dhr SAV 15.4028 -15.4322 Unk 2010-2013 [Tagesson et al., 2014] US-AR1 GRA 36.4267 -99.4200 Dsa 2009-2012 [Raz-Yaseef et al., 2015a] US-AR2 GRA 36.6358 -99.5975 Dsa 2009-2012 [Raz-Yaseef et al., 2015b] US-ARb GRA 35.5465 -98.0400 Cfa 2005-2006 [Raz-Yaseef et al., 2015d] US-ARM CRO 36.6058 -97.4888 Cfa 2003-2012 [Fischer et al., 2007] US-Blo ENF 38.8953 -120.6328 Csa 1997-2007 [Goldstein et al., 2000] US-GEBT ENF 41.3665 -106.2397 Dfc 1999-2006 [Zeller and Nikolov, 2000]							
RU-Ha1 GRA 54.7252 90.0022 Dfc 2002-2004 [Marchesini et al., 2007] SD-Dem SAV 13.2829 30.4783 Unk 2005-2009 [Ardo et al., 2008] SN-Dhr SAV 15.4028 -15.4322 Unk 2010-2013 [Tagesson et al., 2014] US-AR1 GRA 36.4267 -99.4200 Dsa 2009-2012 [Raz-Yaseef et al., 2015a] US-AR2 GRA 36.6358 -99.5975 Dsa 2009-2012 [Raz-Yaseef et al., 2015c] US-ARb GRA 35.5497 -98.0400 Cfa 2005-2006 [Raz-Yaseef et al., 2015c] US-ARb GRA 35.5465 -98.0400 Cfa 2005-2006 [Raz-Yaseef et al., 2015d] US-ARM CRO 36.6058 -97.4888 Cfa 2003-2012 [Fischer et al., 2007] US-Blo ENF 41.3658 -106.2397 Dfc 1997-2007 [Bowling et al., 2010] US-GBT ENF 41.3658 -106.2399 Dfc 2004-2014 [Frank et al., 2014]							, ,
SD-Dem SAV 13.2829 30.4783 Unk 2005-2009 Ardo et al., 2008 SN-Dhr SAV 15.4028 -15.4322 Unk 2010-2013 [Tagesson et al., 2014] US-AR1 GRA 36.4267 -99.4200 Dsa 2009-2012 [Raz-Yaseef et al., 2015a] US-AR2 GRA 36.6358 -99.5975 Dsa 2009-2012 [Raz-Yaseef et al., 2015b] US-ARb GRA 35.5465 -98.0402 Cfa 2005-2006 [Raz-Yaseef et al., 2015d] US-ARM CRO 36.6058 -97.4888 Cfa 2003-2012 [Fischer et al., 2007] US-ARM CRO 36.6058 -97.4888 Cfa 2003-2012 [Fischer et al., 2007] US-Blo ENF 38.8953 -120.6328 Csa 1997-2007 [Goldstein et al., 2000] US-Cop GRA 38.0900 -109.3900 Unk 2001-2007 [Bowling et al., 2010] US-GET ENF 41.3668 -106.2399 Dfc 2004-2014 [Frank et al., 2014]	*						
SN-Dhr SAV 15.4028 -15.4322 Unk 2010-2013 Tagesson et al., 2014 US-AR1 GRA 36.4267 -99.4200 Dsa 2009-2012 [Raz-Yaseef et al., 2015a] US-AR2 GRA 36.6358 -99.5975 Dsa 2009-2012 [Raz-Yaseef et al., 2015b] US-ARb GRA 35.5467 -98.0402 Cfa 2005-2006 [Raz-Yaseef et al., 2015d] US-ARC GRA 35.5465 -98.0400 Cfa 2005-2006 [Raz-Yaseef et al., 2015d] US-ARM CRO 36.6058 -97.4888 Cfa 2003-2012 [Fischer et al., 2007] US-Blo ENF 38.8953 -120.6328 Csa 1997-2007 [Goldstein et al., 2000] US-Cop GRA 38.0900 -109.3990 Unk 2001-2007 [Bowling et al., 2010] US-GEBT ENF 41.3658 -106.2399 Dfc 2004-2014 [Frank et al., 2014] US-Ha1 DBF 42.5378 -72.1715 Dfb 1991-2012 [Urbanski et al., 2006]							<u> </u>
US-AR1 GRA 36.4267 -99.4200 Dsa 2009-2012 [Raz-Yaseef et al., 2015a] US-AR2 GRA 36.6358 -99.5975 Dsa 2009-2012 [Raz-Yaseef et al., 2015b] US-ARb GRA 35.5497 -98.0402 Cfa 2005-2006 [Raz-Yaseef et al., 2015c] US-ARc GRA 35.5465 -98.0400 Cfa 2005-2006 [Raz-Yaseef et al., 2015d] US-ARM CRO 36.6058 -97.4888 Cfa 2003-2012 [Fischer et al., 2007] US-Blo ENF 38.8953 -120.6328 Csa 1997-2007 [Goldstein et al., 2000] US-Cop GRA 38.0900 -109.3900 Unk 2001-2007 [Bowling et al., 2010] US-GBT ENF 41.3658 -106.2397 Dfc 1999-2006 [Zeller and Nikolov, 2000] US-GLE ENF 41.3665 -106.2399 Dfc 2004-2014 [Frank et al., 2014] US-Ha1 DBF 42.5378 -72.1715 Dfb 1991-2012 [Urbanski et al., 2007] US-KS2 CSH 28.6086 -80.6715 Cwa 2003-2006 [Powell et al., 2009] US-Me1 ENF 44.5794 -121.5000 Csb 2004-2004 [IRVINE et al., 2009] US-Me2 ENF 44.4523 -121.5574 Csb 2002-2014 [IRVINE et al., 2008] US-Me6 ENF 44.3233 -121.6078 Csb 2010-2014 [Ruehr et al., 2012] US-Myb WET 38.0498 -121.7651 Csa 2010-2014 [DRAGONI et al., 2011] US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORV WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2015]							
US-AR2 GRA 36.6358 -99.5975 Dsa 2009-2012 [Raz-Yaseef et al., 2015b] US-ARb GRA 35.5497 -98.0402 Cfa 2005-2006 [Raz-Yaseef et al., 2015c] US-ARc GRA 35.5465 -98.0400 Cfa 2005-2006 [Raz-Yaseef et al., 2015d] US-ARM CRO 36.6058 -97.4888 Cfa 2003-2012 [Fischer et al., 2007] US-Blo ENF 38.8953 -120.6328 Csa 1997-2007 [Goldstein et al., 2000] US-Cop GRA 38.0900 -109.3900 Unk 2001-2007 [Bowling et al., 2010] US-GBT ENF 41.3658 -106.2397 Dfc 1999-2006 [Zeller and Nikolov, 2000] US-GLE ENF 41.3665 -106.2399 Dfc 2004-2014 [Frank et al., 2014] US-Hal DBF 42.5378 -72.1715 Dfb 1991-2012 [Urbanski et al., 2006] US-KS2 CSH 28.6086 -80.6715 Cwa 2003-2006 [Powell et al., 2006] US-Me1 ENF 44.5794 -121.5000 Csb 2004-2004 [IRVINE et al., 2009] US-Me2 ENF 44.4523 -121.5574 Csb 2002-2014 [IRVINE et al., 2007] US-Me6 ENF 44.3233 -121.6078 Csb 2010-2014 [Ruehr et al., 2012] US-Ms DBF 39.3232 -86.4131 Cfa 1999-2014 [DRAGONI et al., 2011] US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORV WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]							
US-ARb GRA 35.5497 -98.0402 Cfa 2005-2006 [Raz-Yaseef et al., 2015c] US-ARc GRA 35.5465 -98.0400 Cfa 2005-2006 [Raz-Yaseef et al., 2015d] US-ARM CRO 36.6058 -97.4888 Cfa 2003-2012 [Fischer et al., 2007] US-Blo ENF 38.8953 -120.6328 Csa 1997-2007 [Goldstein et al., 2000] US-Cop GRA 38.0900 -109.3900 Unk 2001-2007 [Bowling et al., 2010] US-GBT ENF 41.3658 -106.2397 Dfc 1999-2006 [Zeller and Nikolov, 2000] US-GLE ENF 41.3665 -106.2399 Dfc 2004-2014 [Frank et al., 2014] US-Ha1 DBF 42.5378 -72.1715 Dfb 1991-2012 [Urbanski et al., 2007] US-KS2 CSH 28.6086 -80.6715 Cwa 2003-2006 [Powell et al., 2006] US-Los WET 46.0827 -89.9792 Dfb 2000-2014 [Sulman et al., 2009] US-Me1 ENF 44.5794 -121.5000 Csb 2004-2005 [IRVINE et al., 2007] US-Me2 ENF 44.4523 -121.5574 Csb 2002-2014 [Ruehr et al., 2008] US-M66 ENF 44.3233 -121.6078 Csb 2010-2014 [Ruehr et al., 2012] US-MMS DBF 39.3232 -86.4131 Cfa 1999-2014 [DRAGONI et al., 2011] US-Nyb WET 38.0498 -121.7651 Csa 2010-2014 [Matthes et al., 2014] US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORV WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]							
US-ARc GRA 35.5465 -98.0400 Cfa 2005-2006 Raz-Yaseef et al., 2015d US-ARM CRO 36.6058 -97.4888 Cfa 2003-2012 Fischer et al., 2007 US-Blo ENF 38.8953 -120.6328 Csa 1997-2007 [Goldstein et al., 2010] US-Cop GRA 38.0900 -109.3900 Unk 2001-2007 [Bowling et al., 2010] US-GBT ENF 41.3658 -106.2397 Dfc 1999-2006 [Zeller and Nikolov, 2000] US-GLE ENF 41.3665 -106.2399 Dfc 2004-2014 [Frank et al., 2014] US-Ha1 DBF 42.5378 -72.1715 Dfb 1991-2012 [Urbanski et al., 2007] US-KS2 CSH 28.6086 -80.6715 Cwa 2003-2006 [Powell et al., 2006] US-Los WET 46.0827 -89.9792 Dfb 2000-2014 [Sulman et al., 2006] US-Me1 ENF 44.5794 -121.5000 Csb 2004-2005 [IRVINE et al., 2007] <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
US-ARM CRO 36.6058 -97.4888 Cfa 2003-2012 [Fischer et al., 2007] US-Blo ENF 38.8953 -120.6328 Csa 1997-2007 [Goldstein et al., 2000] US-Cop GRA 38.0900 -109.3900 Unk 2001-2007 [Bowling et al., 2010] US-GBT ENF 41.3658 -106.2397 Dfc 1999-2006 [Zeller and Nikolov, 2000] US-GLE ENF 41.3665 -106.2399 Dfc 2004-2014 [Frank et al., 2014] US-Ha1 DBF 42.5378 -72.1715 Dfb 1991-2012 [Urbanski et al., 2007] US-KS2 CSH 28.6086 -80.6715 Cwa 2003-2006 [Powell et al., 2006] US-Los WET 46.0827 -89.9792 Dfb 2000-2014 [Sulman et al., 2009] US-Me1 ENF 44.5794 -121.5000 Csb 2004-2005 [IRVINE et al., 2007] US-Me2 ENF 44.4523 -121.5574 Csb 2002-2014 [Ruehr et al., 2012]							
US-Blo ENF 38.8953 -120.6328 Csa 1997-2007 [Goldstein et al., 2000] US-Cop GRA 38.0900 -109.3900 Unk 2001-2007 [Bowling et al., 2010] US-GBT ENF 41.3658 -106.2397 Dfc 1999-2006 [Zeller and Nikolov, 2000] US-GLE ENF 41.3665 -106.2399 Dfc 2004-2014 [Frank et al., 2014] US-Ha1 DBF 42.5378 -72.1715 Dfb 1991-2012 [Urbanski et al., 2007] US-KS2 CSH 28.6086 -80.6715 Cwa 2003-2006 [Powell et al., 2006] US-Los WET 46.0827 -89.9792 Dfb 2000-2014 [Sulman et al., 2009] US-Me1 ENF 44.5794 -121.5000 Csb 2004-2005 [IRVINE et al., 2007] US-Me2 ENF 44.4523 -121.5574 Csb 2010-2014 [Ruehr et al., 2012] US-MmS DBF 39.3232 -86.4131 Cfa 1999-2014 [DRAGONI et al., 2011]							, ,
US-Cop GRA 38.0900 -109.3900 Unk 2001-2007 [Bowling et al., 2010] US-GBT ENF 41.3658 -106.2397 Dfc 1999-2006 [Zeller and Nikolov, 2000] US-GLE ENF 41.3665 -106.2399 Dfc 2004-2014 [Frank et al., 2014] US-Ha1 DBF 42.5378 -72.1715 Dfb 1991-2012 [Urbanski et al., 2007] US-KS2 CSH 28.6086 -80.6715 Cwa 2003-2006 [Powell et al., 2006] US-Los WET 46.0827 -89.9792 Dfb 2000-2014 [Sulman et al., 2009] US-Me1 ENF 44.5794 -121.5000 Csb 2004-2005 [IRVINE et al., 2007] US-Me2 ENF 44.4523 -121.5574 Csb 2002-2014 [IRVINE et al., 2008] US-Me6 ENF 44.3233 -121.6078 Csb 2010-2014 [Ruehr et al., 2012] US-MMS DBF 39.3232 -86.4131 Cfa 1999-2014 [DRAGONI et al., 2011] US-Myb WET 38.0498 -121.7651 Csa 2010-2014 [Matthes et al., 2014] US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORV WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]							
US-GBT ENF 41.3658 -106.2397 Dfc 1999-2006 [Zeller and Nikolov, 2000] US-GLE ENF 41.3665 -106.2399 Dfc 2004-2014 [Frank et al., 2014] US-Ha1 DBF 42.5378 -72.1715 Dfb 1991-2012 [Urbanski et al., 2007] US-KS2 CSH 28.6086 -80.6715 Cwa 2003-2006 [Powell et al., 2006] US-Los WET 46.0827 -89.9792 Dfb 2000-2014 [Sulman et al., 2009] US-Me1 ENF 44.5794 -121.5000 Csb 2004-2005 [IRVINE et al., 2007] US-Me2 ENF 44.4523 -121.5574 Csb 2002-2014 [IRVINE et al., 2008] US-Me6 ENF 44.3233 -121.6078 Csb 2010-2014 [Ruehr et al., 2012] US-MMS DBF 39.3232 -86.4131 Cfa 1999-2014 [DRAGONI et al., 2011] US-Myb WET 38.0498 -121.7651 Csa 2010-2014 [Matthes et al., 2014] US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORV WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]							
US-GLE ENF 41.3665 -106.2399 Dfc 2004-2014 [Frank et al., 2014] US-Ha1 DBF 42.5378 -72.1715 Dfb 1991-2012 [Urbanski et al., 2007] US-KS2 CSH 28.6086 -80.6715 Cwa 2003-2006 [Powell et al., 2006] US-Los WET 46.0827 -89.9792 Dfb 2000-2014 [Sulman et al., 2009] US-Me1 ENF 44.5794 -121.5000 Csb 2004-2005 [IRVINE et al., 2007] US-Me2 ENF 44.4523 -121.5574 Csb 2002-2014 [IRVINE et al., 2008] US-Me6 ENF 44.3233 -121.6078 Csb 2010-2014 [Ruehr et al., 2012] US-MMS DBF 39.3232 -86.4131 Cfa 1999-2014 [DRAGONI et al., 2011] US-Myb WET 38.0498 -121.7651 Csa 2010-2014 [Matthes et al., 2014] US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORV WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]	-						
US-Ha1 DBF 42.5378 -72.1715 Dfb 1991-2012 [Urbanski et al., 2007] US-KS2 CSH 28.6086 -80.6715 Cwa 2003-2006 [Powell et al., 2006] US-Los WET 46.0827 -89.9792 Dfb 2000-2014 [Sulman et al., 2009] US-Me1 ENF 44.5794 -121.5000 Csb 2004-2005 [IRVINE et al., 2007] US-Me2 ENF 44.4523 -121.5574 Csb 2002-2014 [IRVINE et al., 2008] US-Me6 ENF 44.3233 -121.6078 Csb 2010-2014 [Ruehr et al., 2012] US-MMS DBF 39.3232 -86.4131 Cfa 1999-2014 [DRAGONI et al., 2011] US-Myb WET 38.0498 -121.7651 Csa 2010-2014 [Matthes et al., 2014] US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORv WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]							
US-KS2 CSH 28.6086 -80.6715 Cwa 2003-2006 [Powell et al., 2006] US-Los WET 46.0827 -89.9792 Dfb 2000-2014 [Sulman et al., 2009] US-Me1 ENF 44.5794 -121.5000 Csb 2004-2005 [IRVINE et al., 2007] US-Me2 ENF 44.4523 -121.5574 Csb 2002-2014 [IRVINE et al., 2008] US-Me6 ENF 44.3233 -121.6078 Csb 2010-2014 [Ruehr et al., 2012] US-MMS DBF 39.3232 -86.4131 Cfa 1999-2014 [DRAGONI et al., 2011] US-Myb WET 38.0498 -121.7651 Csa 2010-2014 [Matthes et al., 2014] US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORv WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]							, ,
US-Los WET 46.0827 -89.9792 Dfb 2000-2014 [Sulman et al., 2009] US-Me1 ENF 44.5794 -121.5000 Csb 2004-2005 [IRVINE et al., 2007] US-Me2 ENF 44.4523 -121.5574 Csb 2002-2014 [IRVINE et al., 2008] US-Me6 ENF 44.3233 -121.6078 Csb 2010-2014 [Ruehr et al., 2012] US-MMS DBF 39.3232 -86.4131 Cfa 1999-2014 [DRAGONI et al., 2011] US-Myb WET 38.0498 -121.7651 Csa 2010-2014 [Matthes et al., 2014] US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORv WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]							
US-Me1 ENF 44.5794 -121.5000 Csb 2004-2005 [IRVINE et al., 2007] US-Me2 ENF 44.4523 -121.5574 Csb 2002-2014 [IRVINE et al., 2008] US-Me6 ENF 44.3233 -121.6078 Csb 2010-2014 [Ruehr et al., 2012] US-MMS DBF 39.3232 -86.4131 Cfa 1999-2014 [DRAGONI et al., 2011] US-Myb WET 38.0498 -121.7651 Csa 2010-2014 [Matthes et al., 2014] US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORv WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]							
US-Me2 ENF 44.4523 -121.5574 Csb 2002-2014 [IRVINE et al., 2008] US-Me6 ENF 44.3233 -121.6078 Csb 2010-2014 [Ruehr et al., 2012] US-MMS DBF 39.3232 -86.4131 Cfa 1999-2014 [DRAGONI et al., 2011] US-Myb WET 38.0498 -121.7651 Csa 2010-2014 [Matthes et al., 2014] US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORv WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]							
US-Me6 ENF 44.3233 -121.6078 Csb 2010-2014 [Ruehr et al., 2012] US-MMS DBF 39.3232 -86.4131 Cfa 1999-2014 [DRAGONI et al., 2011] US-Myb WET 38.0498 -121.7651 Csa 2010-2014 [Matthes et al., 2014] US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORv WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]							, ,
US-MMS DBF 39.3232 -86.4131 Cfa 1999-2014 [DRAGONI et al., 2011] US-Myb WET 38.0498 -121.7651 Csa 2010-2014 [Matthes et al., 2014] US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORv WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]							
US-Myb WET 38.0498 -121.7651 Csa 2010-2014 [Matthes et al., 2014] US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORv WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]							
US-Ne1 CRO 41.1651 -96.4766 Dfa 2001-2013 [Verma et al., 2005a] US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORv WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]							, ,
US-Ne2 CRO 41.1649 -96.4701 Dfa 2001-2013 [Verma et al., 2005b] US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORv WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]	•						
US-Ne3 CRO 41.1797 -96.4397 Dfa 2001-2013 [Verma et al., 2005c] US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORv WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]			41.1651				
US-NR1 ENF 40.0329 -105.5464 Dfc 1998-2014 [Monson et al., 2002] US-ORv WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]							
US-ORv WET 40.0201 -83.0183 Cfa 2011-2011 [Morin et al., 2014] US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]			41.1797		Dfa	2001-2013	
US-PFa MF 45.9459 -90.2723 Dfb 1995-2014 [Desai et al., 2015]	US-NR1	ENF	40.0329	-105.5464	Dfc	1998-2014	
	US-ORv	WET	40.0201	-83.0183	Cfa	2011-2011	
US-Prr ENF 65.1237 -147.4876 Dwc 2010-2013 [Nakai et al., 2013]	US-PFa	MF	45.9459	-90.2723	Dfb	1995-2014	[Desai et al., 2015]
	US-Prr	ENF	65.1237	-147.4876	Dwc	2010-2013	[Nakai et al., 2013]

Site name	$ m Veg^1$	Lat ²	Lon ³	Clim ⁴	Period	Ref ⁵
US-SRG	GRA	31.7894	-110.8277	Bsk	2008-2014	[Scott et al., 2015a]
US- SRM	WSA	31.8214	-110.8661	Bsk	2004-2014	[Scott et al., 2009]
US-Syv	MF	46.2420	-89.3477	Dfb	2001-2014	[Desai et al., 2005]
US-Ton	WSA	38.4316	-120.9660	Csa	2001-2014	[Baldocchi et al., 2010]
US-Tw1	WET	38.1074	-121.6469	Csa	2012-2014	[Oikawa et al., 2017]
US-Tw2	CRO	38.1047	-121.6433	Csa	2012-2013	[Knox et al., 2016]
US-Tw3	CRO	38.1159	-121.6467	Csa	2013-2014	[Baldocchi et al., 2015]
US-Tw4	WET	38.1030	-121.6414	Csa	2013-2014	[Baldocchi, 2016]
US-Twt	CRO	38.1087	-121.6530	Csa	2009-2014	[Hatala et al., 2012]
US-UMB	DBF	45.5598	-84.7138	Dfb	2000-2014	[Gough et al., 2013a]
US-UMd	DBF	45.5625	-84.6975	Dfb	2007-2014	[Gough et al., 2013b]
US-Var	GRA	38.4133	-120.9507	Csa	2000-2014	[Ma et al., 2007]
US-WCr	DBF	45.8059	-90.0799	Dfb	1999-2014	[Cook et al., 2004]
US-Whs	OSH	31.7438	-110.0522	Bsk	2007-2014	[Scott et al., 2015b]
US-Wi0	ENF	46.6188	-91.0814	Dfb	2002-2002	[Noormets et al., 2007a]
US-Wi3	DBF	46.6347	-91.0987	Dfb	2002-2004	[Noormets et al., 2007b]
US-Wi4	ENF	46.7393	-91.1663	Dfb	2002-2005	[Noormets et al., 2007c]
US-Wi6	OSH	46.6249	-91.2982	Dfb	2002-2003	[Noormets et al., 2007d]
US-Wi9	ENF	46.6188	-91.0814	Dfb	2004-2005	[Noormets et al., 2007e]
US-Wkg	GRA	31.7365	-109.9419	Bsk	2004-2014	[Scott et al., 2010]
ZA-Kru	SAV	-25.0197	31.4969	Unk	2000-2010	[Archibald et al., 2009]
ZM-Mon	DBF	-15.4378	23.2528	Unk	2000-2009	[Merbold et al., 2009]

¹ Vegetation types: deciduous broadleaf forest (DBF); evergreen broadleaf forest (EBF); evergreen needleleaf forest (ENF); grassland (GRA); mixed deciduous and evergreen needleleaf forest (MF); savanna ecosystem (SAV); shrub ecosystem (SHR); wetland (WET); unknown (UNK). ² Positive value indicates north latitude. ³ Negative value indicates west longitude. ⁴ Köppen Climate classification. ⁵ References.

References

[Acosta et al., 2013] Acosta, M., Pavelka, M., Montagnani, L., Kutsch, W., Lindroth, A., Juszczak, R., and Janouš, D. (2013). Soil surface CO2 efflux measurements in norway spruce forests: Comparison between four different sites across europe — from boreal to alpine forest. *Geoderma*, 192:295–303.

[Ammann et al., 2009] Ammann, C., Spirig, C., Leifeld, J., and Neftel, A. (2009). Assessment of the nitrogen and carbon budget of two managed temperate grassland fields. *Agriculture, Ecosystems & Environment*, 133(3-4):150–162.

[Anthoni et al., 2004] Anthoni, P. M., Knohl, A., Rebmann, C., Freibauer, A., Mund, M., Ziegler, W., Kolle, O., and Schulze, E.-D. (2004). Forest and agricultural land-use-dependent CO2 exchange in thuringia, germany. *Global Change Biology*, 10(12):2005–2019.

[Archibald et al., 2009] Archibald, S. A., Kirton, A., van der Merwe, M. R., Scholes, R. J., Williams, C. A., and Hanan, N. (2009). Drivers of inter-annual variability in net ecosystem exchange in a semi-arid savanna ecosystem, south africa. *Biogeosciences*, 6(2):251–266.

- [Ardo et al., 2008] Ardo, J., Molder, M., El-Tahir, B. A., and Elkhidir, H. A. M. (2008). Seasonal variation of carbon fluxes in a sparse savanna in semi arid sudan. *Carbon Balance and Management*, 3(1):7.
- [Aubinet et al., 2001] Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Laitat, E. (2001). Long term carbon dioxide exchange above a mixed forest in the belgian ardennes. *Agricultural and Forest Meteorology*, 108(4):293–315.
- [Baldocchi, 2016] Baldocchi, D. (2016). AmeriFlux US-Tw4 Twitchell East End Wetland from 2013-present.
- [Baldocchi et al., 2010] Baldocchi, D., Chen, Q., Chen, X., Ma, S., Miller, G., Ryu, Y., Xiao, J., Wenk, R., and Battles, J. (2010). The dynamics of energy, water, and carbon fluxes in a blue oak (quercus douglasii) savanna in california. In *Ecosystem Function in Savannas*, pages 135–151. CRC Press.
- [Baldocchi et al., 2015] Baldocchi, D., Sturtevant, C., and Contributors, F. (2015). Does day and night sampling reduce spurious correlation between canopy photosynthesis and ecosystem respiration? *Agricultural and Forest Meteorology*, 207:117–126.
- [Berbigier et al., 2001] Berbigier, P., Bonnefond, J.-M., and Mellmann, P. (2001). CO2 and water vapour fluxes for 2 years above euroflux forest site. *Agricultural and Forest Meteorology*, 108(3):183–197.
- [BERGERON et al., 2007] BERGERON, O., MARGOLIS, H. A., BLACK, T. A., COURSOLLE, C., DUNN, A. L., BARR, A. G., and WOFSY, S. C. (2007). Comparison of carbon dioxide fluxes over three boreal black spruce forests in canada. *Global Change Biology*, 13(1):89–107.
- [Beringer et al., 2011a] Beringer, J., Hacker, J., Hutley, L. B., Leuning, R., Arndt, S. K., Amiri, R., Bannehr, L., Cernusak, L. A., Grover, S., Hensley, C., Hocking, D., Isaac, P., Jamali, H., Kanniah, K., Livesley, S., Neininger, B., U, K. T. P., Sea, W., Straten, D., Tapper, N., Weinmann, R., Wood, S., and Zegelin, S. (2011a). SPECIAL—savanna patterns of energy and carbon integrated across the landscape. *Bulletin of the American Meteorological Society*, 92(11):1467–1485.
- [Beringer et al., 2011b] Beringer, J., Hutley, L. B., Hacker, J. M., Neininger, B., and U, K. T. P. (2011b). Patterns and processes of carbon, water and energy cycles across northern australian landscapes: From point to region. *Agricultural and Forest Meteorology*, 151(11):1409–1416.
- [Beringer et al., 2011c] Beringer, J., Hutley, L. B., Hacker, J. M., Neininger, B., and U, K. T. P. (2011c). Patterns and processes of carbon, water and energy cycles across northern australian landscapes: From point to region. *Agricultural and Forest Meteorology*, 151(11):1409–1416.
- [Beringer et al., 2016a] Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., de Dios, V. R., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and Wardlaw, T. (2016a). An introduction to the australian and new zealand flux tower network OzFlux. *Biogeosciences*, 13(21):5895–5916.

- [Beringer et al., 2016b] Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., de Dios, V. R., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and Wardlaw, T. (2016b). An introduction to the australian and new zealand flux tower network OzFlux. *Biogeosciences*, 13(21):5895–5916.
- [Beringer et al., 2016c] Beringer, J., Hutley, L. B., McHugh, I., Arndt, S. K., Campbell, D., Cleugh, H. A., Cleverly, J., de Dios, V. R., Eamus, D., Evans, B., Ewenz, C., Grace, P., Griebel, A., Haverd, V., Hinko-Najera, N., Huete, A., Isaac, P., Kanniah, K., Leuning, R., Liddell, M. J., Macfarlane, C., Meyer, W., Moore, C., Pendall, E., Phillips, A., Phillips, R. L., Prober, S. M., Restrepo-Coupe, N., Rutledge, S., Schroder, I., Silberstein, R., Southall, P., Yee, M. S., Tapper, N. J., van Gorsel, E., Vote, C., Walker, J., and Wardlaw, T. (2016c). An introduction to the australian and new zealand flux tower network OzFlux. *Biogeosciences*, 13(21):5895–5916.
- [BERINGER et al., 2007] BERINGER, J., HUTLEY, L. B., TAPPER, N. J., and CERNUSAK, L. A. (2007). Savanna fires and their impact on net ecosystem productivity in north australia. *Global Change Biology*, 13(5):990–1004.
- [Beringer et al., 2013] Beringer, J., Livesley, S. J., Randle, J., and Hutley, L. B. (2013). Carbon dioxide fluxes dominate the greenhouse gas exchanges of a seasonal wetland in the wet–dry tropics of northern australia. *Agricultural and Forest Meteorology*, 182-183:239–247.
- [BONAL et al., 2008] BONAL, D., BOSC, A., PONTON, S., GORET, J.-Y., BURBAN, B., GROSS, P., BONNEFOND, J.-M., ELBERS, J., LONGDOZ, B., EPRON, D., GUEHL, J.-M., and GRANIER, A. (2008). Impact of severe dry season on net ecosystem exchange in the neotropical rainforest of french guiana. *Global Change Biology*, 14(8):1917–1933.
- [Bowling et al., 2010] Bowling, D. R., Bethers-Marchetti, S., Lunch, C. K., Grote, E. E., and Belnap, J. (2010). Carbon, water, and energy fluxes in a semiarid cold desert grassland during and following multiyear drought. *Journal of Geophysical Research*, 115(G4).
- [Bristow et al., 2016] Bristow, M., Hutley, L. B., Beringer, J., Livesley, S. J., Edwards, A. C., and Arndt, S. K. (2016). Quantifying the relative importance of greenhouse gas emissions from current and future savanna land use change across northern australia. *Biogeosciences Discussions*, pages 1–47.
- [Carrara et al., 2004] Carrara, A., Janssens, I. A., Yuste, J. C., and Ceulemans, R. (2004). Seasonal changes in photosynthesis, respiration and NEE of a mixed temperate forest. *Agricultural and Forest Meteorology*, 126(1-2):15–31.
- [Cernusak et al., 2011] Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A., and Turner, B. L. (2011). Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern australia. Agricultural and Forest Meteorology, 151(11):1462–1470.
- [Chen et al., 2009] Chen, S., Chen, J., Lin, G., Zhang, W., Miao, H., Wei, L., Huang, J., and Han, X. (2009). Energy balance and partition in inner mongolia steppe ecosystems with different land use types. *Agricultural and Forest Meteorology*, 149(11):1800–1809.

- [Chiesi et al., 2005] Chiesi, M., Maselli, F., Bindi, M., Fibbi, L., Cherubini, P., Arlotta, E., Tirone, G., Matteucci, G., and Seufert, G. (2005). Modelling carbon budget of mediterranean forests using ground and remote sensing measurements. *Agricultural and Forest Meteorology*, 135(1-4):22–34.
- [Cleverly et al., 2013] Cleverly, J., Boulain, N., Villalobos-Vega, R., Grant, N., Faux, R., Wood, C., Cook, P. G., Yu, Q., Leigh, A., and Eamus, D. (2013). Dynamics of component carbon fluxes in a semi-aridAcaciawoodland, central australia. *Journal of Geophysical Research:* Biogeosciences, 118(3):1168–1185.
- [Cook et al., 2004] Cook, B. D., Davis, K. J., Wang, W., Desai, A., Berger, B. W., Teclaw, R. M., Martin, J. G., Bolstad, P. V., Bakwin, P. S., Yi, C., and Heilman, W. (2004). Carbon exchange and venting anomalies in an upland deciduous forest in northern wisconsin, USA. *Agricultural and Forest Meteorology*, 126(3-4):271–295.
- [Delpierre et al., 2015] Delpierre, N., Berveiller, D., Granda, E., and Dufrêne, E. (2015). Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. *New Phytologist*, 210(2):459–470.
- [Desai et al., 2005] Desai, A. R., Bolstad, P. V., Cook, B. D., Davis, K. J., and Carey, E. V. (2005). Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper midwest, USA. *Agricultural and Forest Meteorology*, 128(1-2):33–55.
- [Desai et al., 2015] Desai, A. R., Xu, K., Tian, H., Weishampel, P., Thom, J., Baumann, D., Andrews, A. E., Cook, B. D., King, J. Y., and Kolka, R. (2015). Landscape-level terrestrial methane flux observed from a very tall tower. *Agricultural and Forest Meteorology*, 201:61–75.
- [Dietiker et al., 2010] Dietiker, D., Buchmann, N., and Eugster, W. (2010). Testing the ability of the DNDC model to predict CO2 and water vapour fluxes of a swiss cropland site. Agriculture, Ecosystems & Environment, 139(3):396–401.
- [DRAGONI et al., 2011] DRAGONI, D., SCHMID, H. P., WAYSON, C. A., POTTER, H., GRIMMOND, C. S. B., and RANDOLPH, J. C. (2011). Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central indiana, USA. *Global Change Biology*, 17(2):886–897.
- [DUNN et al., 2007] DUNN, A. L., BARFORD, C. C., WOFSY, S. C., GOULDEN, M. L., and DAUBE, B. C. (2007). A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. *Global Change Biology*, 13(3):577–590.
- [Dušek et al., 2012] Dušek, J., Cížková, H., Stellner, S., Czerný, R., and Květ, J. (2012). Fluctuating water table affects gross ecosystem production and gross radiation use efficiency in a sedge-grass marsh. *Hydrobiologia*, 692(1):57–66.
- [Etzold et al., 2011] Etzold, S., Ruehr, N. K., Zweifel, R., Dobbertin, M., Zingg, A., Pluess, P., Häsler, R., Eugster, W., and Buchmann, N. (2011). The carbon balance of two contrasting mountain forest ecosystems in switzerland: Similar annual trends, but seasonal differences. *Ecosystems*, 14(8):1289–1309.
- [Fares et al., 2014] Fares, S., Savi, F., Muller, J., Matteucci, G., and Paoletti, E. (2014). Simultaneous measurements of above and below canopy ozone fluxes help partitioning ozone deposition between its various sinks in a mediterranean oak forest. *Agricultural and Forest Meteorology*, 198-199:181–191.

- [Ferréa et al., 2012] Ferréa, C., Zenone, T., Comolli, R., and Seufert, G. (2012). Estimating heterotrophic and autotrophic soil respiration in a semi-natural forest of lombardy, italy. *Pedobiologia*, 55(6):285–294.
- [Fischer et al., 2007] Fischer, M. L., Billesbach, D. P., Berry, J. A., Riley, W. J., and Torn, M. S. (2007). Spatiotemporal variations in growing season exchanges of CO2, h2o, and sensible heat in agricultural fields of the southern great plains. *Earth Interactions*, 11(17):1–21.
- [Frank et al., 2014] Frank, J. M., Massman, W. J., Ewers, B. E., Huckaby, L. S., and Negrón, J. F. (2014). Ecosystem CO2/h2o fluxes are explained by hydraulically limited gas exchange during tree mortality from spruce bark beetles. *Journal of Geophysical Research: Biogeosciences*, 119(6):1195–1215.
- [Galvagno et al., 2013] Galvagno, M., Wohlfahrt, G., Cremonese, E., Rossini, M., Colombo, R., Filippa, G., Julitta, T., Manca, G., Siniscalco, C., di Cella, U. M., and Migliavacca, M. (2013). Phenology and carbon dioxide source/sink strength of a subalpine grassland in response to an exceptionally short snow season. *Environmental Research Letters*, 8(2):025008.
- [GARBULSKY et al., 2008] GARBULSKY, M. F., PEÑUELAS, J., PAPALE, D., and FILELLA, I. (2008). Remote estimation of carbon dioxide uptake by a mediterranean forest. *Global Change Biology*, 14(12):2860–2867.
- [Goldstein et al., 2000] Goldstein, A., Hultman, N., Fracheboud, J., Bauer, M., Panek, J., Xu, M., Qi, Y., Guenther, A., and Baugh, W. (2000). Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the sierra nevada (CA). Agricultural and Forest Meteorology, 101(2-3):113–129.
- [Gough et al., 2013a] Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel, C. S., Nadelhoffer, K. J., and Curtis, P. S. (2013a). Sustained carbon uptake and storage following moderate disturbance in a great lakes forest. *Ecological Applications*, 23(5):1202–1215.
- [Gough et al., 2013b] Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel, C. S., Nadelhoffer, K. J., and Curtis, P. S. (2013b). Sustained carbon uptake and storage following moderate disturbance in a great lakes forest. *Ecological Applications*, 23(5):1202–1215.
- [GOULDEN et al., 2006a] GOULDEN, M. L., WINSTON, G. C., McMILLAN, A. M. S., LIT-VAK, M. E., READ, E. L., ROCHA, A. V., and ELLIOT, J. R. (2006a). An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange. *Global Change Biology*, 12(11):2146–2162.
- [GOULDEN et al., 2006b] GOULDEN, M. L., WINSTON, G. C., McMILLAN, A. M. S., LIT-VAK, M. E., READ, E. L., ROCHA, A. V., and ELLIOT, J. R. (2006b). An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange. *Global Change Biology*, 12(11):2146–2162.
- [GOULDEN et al., 2006c] GOULDEN, M. L., WINSTON, G. C., McMILLAN, A. M. S., LIT-VAK, M. E., READ, E. L., ROCHA, A. V., and ELLIOT, J. R. (2006c). An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange. *Global Change Biology*, 12(11):2146–2162.

- [GOULDEN et al., 2006d] GOULDEN, M. L., WINSTON, G. C., McMILLAN, A. M. S., LIT-VAK, M. E., READ, E. L., ROCHA, A. V., and ELLIOT, J. R. (2006d). An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange. *Global Change Biology*, 12(11):2146–2162.
- [GOULDEN et al., 2006e] GOULDEN, M. L., WINSTON, G. C., McMILLAN, A. M. S., LIT-VAK, M. E., READ, E. L., ROCHA, A. V., and ELLIOT, J. R. (2006e). An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange. *Global Change Biology*, 12(11):2146–2162.
- [GOULDEN et al., 2006f] GOULDEN, M. L., WINSTON, G. C., McMILLAN, A. M. S., LIT-VAK, M. E., READ, E. L., ROCHA, A. V., and ELLIOT, J. R. (2006f). An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange. *Global Change Biology*, 12(11):2146–2162.
- [GOULDEN et al., 2006g] GOULDEN, M. L., WINSTON, G. C., McMILLAN, A. M. S., LIT-VAK, M. E., READ, E. L., ROCHA, A. V., and ELLIOT, J. R. (2006g). An eddy covariance mesonet to measure the effect of forest age on land?atmosphere exchange. *Global Change Biology*, 12(11):2146–2162.
- [Grünwald and Bernhofer, 2007] Grünwald, T. and Bernhofer, C. (2007). A decade of carbon, water and energy flux measurements of an old spruce forest at the anchor station tharandt. *Tellus B*, 59(3).
- [Guan et al., 2006] Guan, D.-X., Wu, J.-B., Zhao, X.-S., Han, S.-J., Yu, G.-R., Sun, X.-M., and Jin, C.-J. (2006). CO2 fluxes over an old, temperate mixed forest in northeastern china. *Agricultural and Forest Meteorology*, 137(3-4):138–149.
- [Hatala et al., 2012] Hatala, J. A., Detto, M., Sonnentag, O., Deverel, S. J., Verfaillie, J., and Baldocchi, D. D. (2012). Greenhouse gas (CO2, CH4, h2o) fluxes from drained and flooded agricultural peatlands in the sacramento-san joaquin delta. *Agriculture, Ecosystems & Environment*, 150:1–18.
- [Hommeltenberg et al., 2014] Hommeltenberg, J., Schmid, H. P., Drösler, M., and Werle, P. (2014). Can a bog drained for forestry be a stronger carbon sink than a natural bog forest? *Biogeosciences*, 11(13):3477–3493.
- [Hutley et al., 2011] Hutley, L. B., Beringer, J., Isaac, P. R., Hacker, J. M., and Cernusak, L. A. (2011). A sub-continental scale living laboratory: Spatial patterns of savanna vegetation over a rainfall gradient in northern australia. *Agricultural and Forest Meteorology*, 151(11):1417–1428.
- [Imer et al., 2013] Imer, D., Merbold, L., Eugster, W., and Buchmann, N. (2013). Temporal and spatial variations of soil CO₂, CH₄ and n₂0 fluxes at three differently managed grasslands. *Biogeosciences*, 10(9):5931–5945.
- [IRVINE et al., 2007] IRVINE, J., LAW, B. E., and HIBBARD, K. A. (2007). Postfire carbon pools and fluxes in semiarid ponderosa pine in central oregon. *Global Change Biology*, 13(8):1748–1760.
- [IRVINE et al., 2008] IRVINE, J., LAW, B. E., MARTIN, J. G., and VICKERS, D. (2008). Interannual variation in soil CO2efflux and the response of root respiration to climate and canopy gas exchange in mature ponderosa pine. *Global Change Biology*, 14(12):2848–2859.

- [Jacobs et al., 2007] Jacobs, C. M. J., Jacobs, A. F. G., Bosveld, F. C., Hendriks, D. M. D., Hensen, A., Kroon, P. S., Moors, E. J., Nol, L., Schrier-Uijl, A., and Veenendaal, E. M. (2007). Variability of annual CO₂ exchange from dutch grasslands. *Biogeosciences*, 4(5):803–816.
- [KATO et al., 2006] KATO, T., TANG, Y., GU, S., HIROTA, M., DU, M., LI, Y., and ZHAO, X. (2006). Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the qinghai-tibetan plateau. *Global Change Biology*, 12(7):1285–1298.
- [Kilinc et al., 2013] Kilinc, M., Beringer, J., Hutley, L. B., Tapper, N. J., and McGuire, D. A. (2013). Carbon and water exchange of the world's tallest angiosperm forest. *Agricultural and Forest Meteorology*, 182-183:215–224.
- [Knohl et al., 2003] Knohl, A., Schulze, E.-D., Kolle, O., and Buchmann, N. (2003). Large carbon uptake by an unmanaged 250-year-old deciduous forest in central germany. *Agricultural and Forest Meteorology*, 118(3-4):151–167.
- [Knox et al., 2016] Knox, S. H., Matthes, J. H., Sturtevant, C., Oikawa, P. Y., Verfaillie, J., and Baldocchi, D. (2016). Biophysical controls on interannual variability in ecosystem-scale CO2and CH4exchange in a california rice paddy. *Journal of Geophysical Research: Biogeosciences*, 121(3):978–1001.
- [Kurbatova et al., 2008] Kurbatova, J., Li, C., Varlagin, A., Xiao, X., and Vygodskaya, N. (2008). Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in russia. *Biogeosciences*, 5(4):969–980.
- [Leuning et al., 2005] Leuning, R., Cleugh, H. A., Zegelin, S. J., and Hughes, D. (2005). Carbon and water fluxes over a temperate eucalyptus forest and a tropical wet/dry savanna in australia: measurements and comparison with MODIS remote sensing estimates. *Agricultural and Forest Meteorology*, 129(3-4):151–173.
- [Lindauer et al., 2014] Lindauer, M., Schmid, H., Grote, R., Mauder, M., Steinbrecher, R., and Wolpert, B. (2014). Net ecosystem exchange over a non-cleared wind-throw-disturbed upland spruce forest—measurements and simulations. *Agricultural and Forest Meteorology*, 197:219–234.
- [Lohila, 2004] Lohila, A. (2004). Annual CO2exchange of a peat field growing spring barley or perennial forage grass. *Journal of Geophysical Research*, 109(D18).
- [Loubet et al., 2011] Loubet, B., Laville, P., Lehuger, S., Larmanou, E., Fléchard, C., Mascher, N., Genermont, S., Roche, R., Ferrara, R. M., Stella, P., Personne, E., Durand, B., Decuq, C., Flura, D., Masson, S., Fanucci, O., Rampon, J.-N., Siemens, J., Kindler, R., Gabrielle, B., Schrumpf, M., and Cellier, P. (2011). Carbon, nitrogen and greenhouse gases budgets over a four years crop rotation in northern france. *Plant and Soil*, 343(1-2):109–137.
- [Lüers et al., 2014] Lüers, J., Westermann, S., Piel, K., and Boike, J. (2014). Annual CO₂ budget and seasonal CO₂ exchange signals at a high arctic permafrost site on spitsbergen, svalbard archipelago. *Biogeosciences*, 11(22):6307–6322.
- [Lund et al., 2012] Lund, M., Falk, J. M., Friborg, T., Mbufong, H. N., Sigsgaard, C., Soegaard, H., and Tamstorf, M. P. (2012). Trends in CO2exchange in a high arctic tundra heath, 2000–2010. *Journal of Geophysical Research: Biogeosciences*, 117(G2):n/a-n/a.

- [Ma et al., 2007] Ma, S., Baldocchi, D. D., Xu, L., and Hehn, T. (2007). Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in california. *Agricultural and Forest Meteorology*, 147(3-4):157–171.
- [Marchesini et al., 2007] Marchesini, L. B., Papale, D., Reichstein, M., Vuichard, N., Tchebakova, N., and Valentini, R. (2007). Carbon balance assessment of a natural steppe of southern siberia by multiple constraint approach. *Biogeosciences Discussions*, 4(1):165–208.
- [Marcolla et al., 2011] Marcolla, B., Cescatti, A., Manca, G., Zorer, R., Cavagna, M., Fiora, A., Gianelle, D., Rodeghiero, M., Sottocornola, M., and Zampedri, R. (2011). Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow. *Agricultural and Forest Meteorology*, 151(9):1233–1243.
- [Marcolla et al., 2003a] Marcolla, B., Pitacco, A., and Cescatti, A. (2003a). Canopy architecture and turbulence structure in a coniferous forest. *Boundary-Layer Meteorology*, 108(1):39–59.
- [Marcolla et al., 2003b] Marcolla, B., Pitacco, A., and Cescatti, A. (2003b). Canopy architecture and turbulence structure in a coniferous forest. *Boundary-Layer Meteorology*, 108(1):39–59.
- [Matsumoto et al., 2008a] Matsumoto, K., Ohta, T., Nakai, T., Kuwada, T., Daikoku, K., Iida, S., Yabuki, H., Kononov, A. V., van der Molen, M. K., Kodama, Y., Maximov, T. C., Dolman, A. J., and Hattori, S. (2008a). Energy consumption and evapotranspiration at several boreal and temperate forests in the far east. *Agricultural and Forest Meteorology*, 148(12):1978–1989.
- [Matsumoto et al., 2008b] Matsumoto, K., Ohta, T., Nakai, T., Kuwada, T., Daikoku, K., Iida, S., Yabuki, H., Kononov, A. V., van der Molen, M. K., Kodama, Y., Maximov, T. C., Dolman, A. J., and Hattori, S. (2008b). Energy consumption and evapotranspiration at several boreal and temperate forests in the far east. Agricultural and Forest Meteorology, 148(12):1978–1989.
- [Matthes et al., 2014] Matthes, J. H., Sturtevant, C., Verfaillie, J., Knox, S., and Baldocchi, D. (2014). Parsing the variability in CH4flux at a spatially heterogeneous wetland: Integrating multiple eddy covariance towers with high-resolution flux footprint analysis. *Journal of Geophysical Research: Biogeosciences*, 119(7):1322–1339.
- [Mauder et al., 2013] Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, H. P., Schmidt, M., and Steinbrecher, R. (2013). A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. *Agricultural and Forest Meteorology*, 169:122–135.
- [McHugh et al., 2017] McHugh, I. D., Beringer, J., Cunningham, S. C., Baker, P. J., Cavagnaro, T. R., Nally, R. M., and Thompson, R. M. (2017). Interactions between nocturnal turbulent flux, storage and advection at an "ideal" eucalypt woodland site. *Biogeosciences*, 14(12):3027–3050.
- [Merbold et al., 2009] Merbold, L., Ardö, J., Arneth, A., Scholes, R. J., Nouvellon, Y., de Grandcourt, A., Archibald, S., Bonnefond, J. M., Boulain, N., Brueggemann, N., Bruemmer, C., Cappelaere, B., Ceschia, E., El-Khidir, H. A. M., El-Tahir, B. A., Falk, U., Lloyd, J., Kergoat, L., Dantec, V. L., Mougin, E., Muchinda, M., Mukelabai, M. M., Ramier, D., Roupsard, O., Timouk, F., Veenendaal, E. M., and Kutsch, W. L. (2009). Precipitation as driver of carbon fluxes in 11 african ecosystems. Biogeosciences, 6(6):1027–1041.

- [Merbold et al., 2014] Merbold, L., Eugster, W., Stieger, J., Zahniser, M., Nelson, D., and Buchmann, N. (2014). Greenhouse gas budget (CO2, CH4and n2o) of intensively managed grassland following restoration. *Global Change Biology*, 20(6):1913–1928.
- [MERBOLD et al., 2009] MERBOLD, L., KUTSCH, W. L., CORRADI, C., KOLLE, O., REBMANN, C., STOY, P. C., ZIMOV, S. A., and SCHULZE, E.-D. (2009). Artificial drainage and associated carbon fluxes (CO2/CH4) in a tundra ecosystem. *Global Change Biology*, 15(11):2599–2614.
- [Meyer et al., 2015] Meyer, W. S., Kondrlovà, E., and Koerber, G. R. (2015). Evaporation of perennial semi-arid woodland in southeastern australia is adapted for irregular but common dry periods. *Hydrological Processes*, 29(17):3714–3726.
- [Migliavacca et al., 2009] Migliavacca, M., Meroni, M., Busetto, L., Colombo, R., Zenone, T., Matteucci, G., Manca, G., and Seufert, G. (2009). Modeling gross primary production of agro-forestry ecosystems by assimilation of satellite-derived information in a process-based model. *Sensors*, 9(2):922–942.
- [Mkhabela et al., 2009a] Mkhabela, M., Amiro, B., Barr, A., Black, T., Hawthorne, I., Kidston, J., McCaughey, J., Orchansky, A., Nesic, Z., Sass, A., Shashkov, A., and Zha, T. (2009a). Comparison of carbon dynamics and water use efficiency following fire and harvesting in canadian boreal forests. *Agricultural and Forest Meteorology*, 149(5):783–794.
- [Mkhabela et al., 2009b] Mkhabela, M., Amiro, B., Barr, A., Black, T., Hawthorne, I., Kidston, J., McCaughey, J., Orchansky, A., Nesic, Z., Sass, A., Shashkov, A., and Zha, T. (2009b). Comparison of carbon dynamics and water use efficiency following fire and harvesting in canadian boreal forests. *Agricultural and Forest Meteorology*, 149(5):783–794.
- [Mkhabela et al., 2009c] Mkhabela, M., Amiro, B., Barr, A., Black, T., Hawthorne, I., Kidston, J., McCaughey, J., Orchansky, A., Nesic, Z., Sass, A., Shashkov, A., and Zha, T. (2009c). Comparison of carbon dynamics and water use efficiency following fire and harvesting in canadian boreal forests. *Agricultural and Forest Meteorology*, 149(5):783–794.
- [Monson et al., 2002] Monson, R. K., Turnipseed, A. A., Sparks, J. P., Harley, P. C., Scott-Denton, L. E., Sparks, K., and Huxman, T. E. (2002). Carbon sequestration in a high-elevation, subalpine forest. *Global Change Biology*, 8(5):459–478.
- [Montagnani et al., 2009] Montagnani, L., Manca, G., Canepa, E., Georgieva, E., Acosta, M., Feigenwinter, C., Janous, D., Kerschbaumer, G., Lindroth, A., Minach, L., Minerbi, S., Mlder, M., Pavelka, M., Seufert, G., Zeri, M., and Ziegler, W. (2009). A new mass conservation approach to the study of CO2advection in an alpine forest. *Journal of Geophysical Research*, 114(D7).
- [Morin et al., 2014] Morin, T. H., Bohrer, G., d. M. Frasson, R. P., Naor-Azreli, L., Mesi, S., Stefanik, K. C., and Schäfer, K. V. R. (2014). Environmental drivers of methane fluxes from an urban temperate wetland park. *Journal of Geophysical Research: Biogeosciences*, 119(11):2188–2208.
- [Moureaux et al., 2006] Moureaux, C., Debacq, A., Bodson, B., Heinesch, B., and Aubinet, M. (2006). Annual net ecosystem carbon exchange by a sugar beet crop. *Agricultural and Forest Meteorology*, 139(1-2):25–39.
- [Nakai et al., 2013] Nakai, T., Kim, Y., Busey, R. C., Suzuki, R., Nagai, S., Kobayashi, H., Park, H., Sugiura, K., and Ito, A. (2013). Characteristics of evapotranspiration from a permafrost black spruce forest in interior alaska. *Polar Science*, 7(2):136–148.

- [Noormets et al., 2007a] Noormets, A., Chen, J., and Crow, T. R. (2007a). Age-dependent changes in ecosystem carbon fluxes in managed forests in northern wisconsin, USA. *Ecosystems*, 10(2):187–203.
- [Noormets et al., 2007b] Noormets, A., Chen, J., and Crow, T. R. (2007b). Age-dependent changes in ecosystem carbon fluxes in managed forests in northern wisconsin, USA. *Ecosystems*, 10(2):187–203.
- [Noormets et al., 2007c] Noormets, A., Chen, J., and Crow, T. R. (2007c). Age-dependent changes in ecosystem carbon fluxes in managed forests in northern wisconsin, USA. *Ecosystems*, 10(2):187–203.
- [Noormets et al., 2007d] Noormets, A., Chen, J., and Crow, T. R. (2007d). Age-dependent changes in ecosystem carbon fluxes in managed forests in northern wisconsin, USA. *Ecosystems*, 10(2):187–203.
- [Noormets et al., 2007e] Noormets, A., Chen, J., and Crow, T. R. (2007e). Age-dependent changes in ecosystem carbon fluxes in managed forests in northern wisconsin, USA. *Ecosystems*, 10(2):187–203.
- [Oikawa et al., 2017] Oikawa, P. Y., Jenerette, G. D., Knox, S. H., Sturtevant, C., Verfaillie, J., Dronova, I., Poindexter, C. M., Eichelmann, E., and Baldocchi, D. D. (2017). Evaluation of a hierarchy of models reveals importance of substrate limitation for predicting carbon dioxide and methane exchange in restored wetlands. *Journal of Geophysical Research: Biogeosciences*, 122(1):145–167.
- [Papale et al., 2014] Papale, D., Migliavacca, M., Cremonese, E., Cescatti, A., Alberti, G., Balzarolo, M., Marchesini, L. B., Canfora, E., Casa, R., Duce, P., Facini, O., Galvagno, M., Genesio, L., Gianelle, D., Magliulo, V., Matteucci, G., Montagnani, L., Petrella, F., Pitacco, A., Seufert, G., Spano, D., Stefani, P., Vaccari, F. P., and Valentini, R. (2014). Carbon, water and energy fluxes of terrestrial ecosystems in italy. In *The Greenhouse Gas Balance of Italy*, pages 11–45. Springer Berlin Heidelberg.
- [Pilegaard et al., 2011] Pilegaard, K., Ibrom, A., Courtney, M. S., Hummelshøj, P., and Jensen, N. O. (2011). Increasing net CO2 uptake by a danish beech forest during the period from 1996 to 2009. *Agricultural and Forest Meteorology*, 151(7):934–946.
- [Posse et al., 2016] Posse, G., Lewczuk, N., Richter, K., and Cristiano, P. (2016). Carbon and water vapor balance in a subtropical pine plantation. *iForest Biogeosciences and Forestry*, 9(5):736–742.
- [Post et al., 2015] Post, H., Franssen, H. J. H., Graf, A., Schmidt, M., and Vereecken, H. (2015). Uncertainty analysis of eddy covariance CO₂ flux measurements for different EC tower distances using an extended two-tower approach. *Biogeosciences*, 12(4):1205–1221.
- [Powell et al., 2006] Powell, T. L., Bracho, R., Li, J., Dore, S., Hinkle, C. R., and Drake, B. G. (2006). Environmental controls over net ecosystem carbon exchange of scrub oak in central florida. *Agricultural and Forest Meteorology*, 141(1):19–34.
- [Prescher et al., 2010a] Prescher, A.-K., Grünwald, T., and Bernhofer, C. (2010a). Land use regulates carbon budgets in eastern germany: From NEE to NBP. Agricultural and Forest Meteorology, 150(7-8):1016–1025.

- [Prescher et al., 2010b] Prescher, A.-K., Grünwald, T., and Bernhofer, C. (2010b). Land use regulates carbon budgets in eastern germany: From NEE to NBP. Agricultural and Forest Meteorology, 150(7-8):1016–1025.
- [Rambal et al., 2004] Rambal, S., Joffre, R., Ourcival, J. M., Cavender-Bares, J., and Rocheteau, A. (2004). The growth respiration component in eddy CO2 flux from a quercus ilex mediterranean forest. *Global Change Biology*, 10(9):1460–1469.
- [Raz-Yaseef et al., 2015a] Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A., and Torn, M. S. (2015a). Vulnerability of crops and native grasses to summer drying in the u.s. southern great plains. *Agriculture, Ecosystems & Environment*, 213:209–218.
- [Raz-Yaseef et al., 2015b] Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A., and Torn, M. S. (2015b). Vulnerability of crops and native grasses to summer drying in the u.s. southern great plains. *Agriculture, Ecosystems & Environment*, 213:209–218.
- [Raz-Yaseef et al., 2015c] Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A., and Torn, M. S. (2015c). Vulnerability of crops and native grasses to summer drying in the u.s. southern great plains. *Agriculture, Ecosystems & Environment*, 213:209–218.
- [Raz-Yaseef et al., 2015d] Raz-Yaseef, N., Billesbach, D. P., Fischer, M. L., Biraud, S. C., Gunter, S. A., Bradford, J. A., and Torn, M. S. (2015d). Vulnerability of crops and native grasses to summer drying in the u.s. southern great plains. *Agriculture, Ecosystems & Environment*, 213:209–218.
- [Reverter et al., 2010] Reverter, B. R., Sánchez-Cañete, E. P., Resco, V., Serrano-Ortiz, P., Oyonarte, C., and Kowalski, A. S. (2010). Analyzing the major drivers of NEE in a mediterranean alpine shrubland. *Biogeosciences*, 7(9):2601–2611.
- [Rey et al., 2002] Rey, A., Pegoraro, E., Tedeschi, V., Parri, I. D., Jarvis, P. G., and Valentini, R. (2002). Annual variation in soil respiration and its components in a coppice oak forest in central italy. *Global Change Biology*, 8(9):851–866.
- [Ruehr et al., 2012] Ruehr, N. K., Martin, J. G., and Law, B. E. (2012). Effects of water availability on carbon and water exchange in a young ponderosa pine forest: Above- and belowground responses. *Agricultural and Forest Meteorology*, 164:136–148.
- [Sabbatini et al., 2016a] Sabbatini, S., Arriga, N., Bertolini, T., Castaldi, S., Chiti, T., Consalvo, C., Djomo, S. N., Gioli, B., Matteucci, G., and Papale, D. (2016a). Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice. *Biogeosciences*, 13(1):95–113.
- [Sabbatini et al., 2016b] Sabbatini, S., Arriga, N., Bertolini, T., Castaldi, S., Chiti, T., Consalvo, C., Djomo, S. N., Gioli, B., Matteucci, G., and Papale, D. (2016b). Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice. *Biogeosciences*, 13(1):95–113.
- [Sabbatini et al., 2016c] Sabbatini, S., Arriga, N., Bertolini, T., Castaldi, S., Chiti, T., Consalvo, C., Djomo, S. N., Gioli, B., Matteucci, G., and Papale, D. (2016c). Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice. *Biogeosciences*, 13(1):95–113.

- [Schmidt et al., 2012] Schmidt, M., Reichenau, T., Fiener, P., and Schneider, K. (2012). The carbon budget of a winter wheat field: An eddy covariance analysis of seasonal and interannual variability. *Agricultural and Forest Meteorology*, 165:114–126.
- [Scott et al., 2015a] Scott, R. L., Biederman, J. A., Hamerlynck, E. P., and Barron-Gafford, G. A. (2015a). The carbon balance pivot point of southwestern u.s. semiarid ecosystems: Insights from the 21st century drought. *Journal of Geophysical Research: Biogeosciences*, 120(12):2612–2624.
- [Scott et al., 2015b] Scott, R. L., Biederman, J. A., Hamerlynck, E. P., and Barron-Gafford, G. A. (2015b). The carbon balance pivot point of southwestern u.s. semiarid ecosystems: Insights from the 21st century drought. *Journal of Geophysical Research: Biogeosciences*, 120(12):2612–2624.
- [Scott et al., 2010] Scott, R. L., Hamerlynck, E. P., Jenerette, G. D., Moran, M. S., and Barron-Gafford, G. A. (2010). Carbon dioxide exchange in a semidesert grassland through drought-induced vegetation change. *Journal of Geophysical Research*, 115(G3).
- [Scott et al., 2009] Scott, R. L., Jenerette, G. D., Potts, D. L., and Huxman, T. E. (2009). Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. *Journal of Geophysical Research*, 114(G4).
- [Shi et al., 2006] Shi, P., Sun, X., Xu, L., Zhang, X., He, Y., Zhang, D., and Yu, G. (2006). Net ecosystem CO2 exchange and controlling factors in a steppe—kobresia meadow on the tibetan plateau. *Science in China Series D: Earth Sciences*, 49(S2):207–218.
- [Stevens et al., 2011] Stevens, R. M., Ewenz, C. M., Grigson, G., and Conner, S. M. (2011). Water use by an irrigated almond orchard. *Irrigation Science*, 30(3):189–200.
- [Stiegler et al., 2016] Stiegler, C., Lund, M., Christensen, T. R., Mastepanov, M., and Lindroth, A. (2016). Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-arctic tundra ecosystem. *The Cryosphere*, 10(4):1395–1413.
- [Sulman et al., 2009] Sulman, B. N., Desai, A. R., Cook, B. D., Saliendra, N., and Mackay, D. S. (2009). Contrasting carbon dioxide fluxes between a drying shrub wetland in northern wisconsin, USA, and nearby forests. *Biogeosciences*, 6(6):1115–1126.
- [Tagesson et al., 2014] Tagesson, T., Fensholt, R., Guiro, I., Rasmussen, M. O., Huber, S., Mbow, C., Garcia, M., Horion, S., Sandholt, I., Holm-Rasmussen, B., Göttsche, F. M., Ridler, M.-E., Olén, N., Olsen, J. L., Ehammer, A., Madsen, M., Olsen, F. S., and Ard, J. (2014). Ecosystem properties of semiarid savanna grassland in west africa and its relationship with environmental variability. Global Change Biology, 21(1):250–264.
- [TEDESCHI et al., 2006] TEDESCHI, V., REY, A., MANCA, G., VALENTINI, R., JARVIS, P. G., and BORGHETTI, M. (2006). Soil respiration in a mediterranean oak forest at different developmental stages after coppicing. *Global Change Biology*, 12(1):110–121.
- [Thum et al., 2007] Thum, T., Aalto, T., Laurila, T., Aurela, M., Kolari, P., and Hari, P. (2007). Parametrization of two photosynthesis models at the canopy scale in a northern boreal scots pine forest. *Tellus B*, 59(5).
- [Ulke et al., 2015] Ulke, A. G., Gattinoni, N. N., and Posse, G. (2015). Analysis and modelling of turbulent fluxes in two different ecosystems in argentina. *International Journal of Environment and Pollution*, 58(1/2):52.

- [Urbanski et al., 2007] Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., McKain, K., Fitzjarrald, D., Czikowsky, M., and Munger, J. W. (2007). Factors controlling CO2exchange on timescales from hourly to decadal at harvard forest. *Journal of Geophysical Research*, 112(G2).
- [VALENTINI et al., 1996] VALENTINI, R., ANGELIS, P., MATTEUCCI, G., MONACO, R., DORE, S., and MUCNOZZA, G. E. S. (1996). Seasonal net carbon dioxide exchange of a beech forest with the atmosphere. *Global Change Biology*, 2(3):199–207.
- [van der Molen et al., 2007] van der Molen, M. K., van Huissteden, J., Parmentier, F. J. W., Petrescu, A. M. R., Dolman, A. J., Maximov, T. C., Kononov, A. V., Karsanaev, S. V., and Suzdalov, D. A. (2007). The growing season greenhouse gas balance of a continental tundra site in the indigirka lowlands, NE siberia. *Biogeosciences*, 4(6):985–1003.
- [Verma et al., 2005a] Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T., Knops, J. M., Arkebauer, T. J., Suyker, A. E., Burba, G. G., Amos, B., Yang, H., Ginting, D., Hubbard, K. G., Gitelson, A. A., and Walter-Shea, E. A. (2005a). Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology, 131(1-2):77-96.
- [Verma et al., 2005b] Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T., Knops, J. M., Arkebauer, T. J., Suyker, A. E., Burba, G. G., Amos, B., Yang, H., Ginting, D., Hubbard, K. G., Gitelson, A. A., and Walter-Shea, E. A. (2005b). Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology, 131(1-2):77-96.
- [Verma et al., 2005c] Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T., Knops, J. M., Arkebauer, T. J., Suyker, A. E., Burba, G. G., Amos, B., Yang, H., Ginting, D., Hubbard, K. G., Gitelson, A. A., and Walter-Shea, E. A. (2005c). Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology, 131(1-2):77-96.
- [Vitale et al., 2015] Vitale, L., Tommasi, P. D., D'Urso, G., and Magliulo, V. (2015). The response of ecosystem carbon fluxes to LAI and environmental drivers in a maize crop grown in two contrasting seasons. *International Journal of Biometeorology*, 60(3):411–420.
- [Westergaard-Nielsen et al., 2013] Westergaard-Nielsen, A., Lund, M., Hansen, B. U., and Tamstorf, M. P. (2013). Camera derived vegetation greenness index as proxy for gross primary production in a low arctic wetland area. *ISPRS Journal of Photogrammetry and Remote Sensing*, 86:89–99.
- [Wick et al., 2005] Wick, B., Veldkamp, E., de Mello, W. Z., Keller, M., and Crill, P. (2005). Nitrous oxide fluxes and nitrogen cycling along a pasture chronosequence in central amazonia, brazil. *Biogeosciences*, 2(2):175–187.
- [Wohlfahrt et al., 2008] Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U., and Cernusca, A. (2008). Seasonal and inter-annual variability of the net ecosystem CO2exchange of a temperate mountain grassland: Effects of weather and management. *Journal of Geophysical Research*, 113(D8).
- [Yee et al., 2015] Yee, M. S., Pauwels, V. R., Daly, E., Beringer, J., Rüdiger, C., McCabe, M. F., and Walker, J. P. (2015). A comparison of optical and microwave scintillometers with eddy covariance derived surface heat fluxes. *Agricultural and Forest Meteorology*, 213:226–239.

[Zeller and Nikolov, 2000] Zeller, K. and Nikolov, N. (2000). Quantifying simultaneous fluxes of ozone, carbon dioxide and water vapor above a subalpine forest ecosystem. *Environmental Pollution*, 107(1):1–20.

[Zielis et al., 2014] Zielis, S., Etzold, S., Zweifel, R., Eugster, W., Haeni, M., and Buchmann, N. (2014). NEP of a swiss subalpine forest is significantly driven not only by current but also by previous year's weather. *Biogeosciences*, 11(6):1627–1635.