Test de Langage Mathématiques L1en2ans Aix-Montperrin

La réussite passe par l'effort.

Exercice 1 Soit E un ensemble non vide et R une relation binaire sur E.

- 1. (a) Définir \mathcal{R} est réflexif.
 - (b) Donner ça négation.
- 2. (a) Définir \mathcal{R} est Symétrique.
 - (b) Donner ça négation.
- 3. (a) Définir \mathcal{R} est antisymétrique.
 - (b) Donner ça négation.
- 4. (a) Définir \mathcal{R} est transitive.
 - (b) Donner ça négation.
- 5. Que signifie R est une relation d'ordre et quand dit-on qu'elle est totale.

Exercice 2 1. Soient E un ensemble et $\alpha \in E$. Dire si la relation binaire suivante sur $\mathcal{P}(E)$ est une relation d'ordre :

$$ARB \iff \alpha \in A \cup \mathbf{C}_E B.$$

2. Dans \mathbb{R} , dites si la relation binaire $x\mathcal{R}y \iff x-y \in \mathbb{N}$ est une relation d'ordre.

Exercice 3 On définit une rélation binaire $\lesssim sur \mathbb{R}_+^*$ par

$$x \lesssim y \Leftrightarrow \exists n \in \mathbb{N}, \ y = x^n.$$

Montrer que \leq est une relation d'ordre. Cet ordre est il total.

Exercice 4 Soit \mathcal{R} une relation binaire sur E. Le but de cet exercice est de montrer que \mathcal{R} est symétrique et antisymétrique si et seulement si c'est un sous ensemble de la relation d'égalité.

Soient $\Gamma_R := \{(x,y) \in E \times E, xRy\}$ et $\Gamma_= := \{(x,y) \in E \times E, x = y\}$. Γ_R et $\Gamma_=$ désignent les graphes respectifs de R et de la relation =.

- 1. On suppose que \mathcal{R} est symétrique et antisymétrique. Montrer que $\Gamma_R \subset \Gamma_=$ et conclure.
- 2. On suppose que $\Gamma_R \subset \Gamma_=$. Montrer que \mathcal{R} est symétrique et antisymétrique, puis conclure.