Übungen zum Ferienkurs Analysis II

Topologie und Extrema

2.1 Eigenschaften von Mengen \star

Bestimmen Sie, welche der folgenden Mengen offen, abgeschlossen, zusammenhängend, kompakt sind (ohne Beweis).

- $\bullet \mathbb{R}^2$
- [4,7)
- $[0,1) \cup [2,5]$
- $\{x \in \mathbb{R} | |x| > 0\} = \mathbb{R} \setminus \{0\}$
- $\{(x,y) \in \mathbb{R}^2 | x+y=0 \}$
- $\{(x,y) \in \mathbb{R}^2 | x^4 + y^2 = 3 \}$
- $\{(x,y) \in \mathbb{R}^2 | e^{x^2} = 3e^{-|y|} \}$
- $\{(x,y) \in \mathbb{R}^2 | x^4 + y^3 = 3 \}$
- $\{(x,y) \in \mathbb{R}^2 | x^2 + y^{10} > 3\}$

Lösung

- \mathbb{R}^2 (offen, abgeschlossen, zusammenhängend)
- [4,7) (zusammenhängend)
- $[0,1) \cup [2,5]$ (gar nichts)
- $\{x \in \mathbb{R} | |x| > 0\} = \mathbb{R} \setminus \{0\}$ (offen)
- $\{(x,y) \in \mathbb{R}^2 | x+y=0\}$ (abgeschlossen, da es sich um das Urbild der Menge $\{0\}$ unter der stetigen Abbildung $f: \mathbb{R}^2 \mathbb{R}, (x,y) \mapsto x+y$ handelt und die Menge |0| abgeschlossen ist; zusammenhängend; nicht kompakt, da unbeschränkt)
- $\{(x,y) \in \mathbb{R}^2 | x^4 + y^2 = 3\}$ (abgeschlossen, da es sich um das Urbild der Menge $\{3\}$ unter der stetigen Abbildung $f : \mathbb{R}^2\mathbb{R}, (x,y) \mapsto x^4 + y^2$ handelt; zusammenhängend; kompakt nach Heine-Borel, da offensichtlich beschränkt)
- $\{(x,y) \in \mathbb{R}^2 | x^4 + y^3 = 3\}$ (abgeschlossen, da es sich um das Urbild der Menge $\{3\}$ unter der stetigen Abbildung $f : \mathbb{R}^2 \mathbb{R}, (x,y) \mapsto x^4 + y^2$ handelt; zusammenhängend)
- $\{(x,y) \in \mathbb{R}^2 | e^{x^2} = 3e^{-|y|} \}$ (abgeschlossen, da es sich um das Urbild der Menge $\{3\}$ unter der stetigen Abbildung $f: \mathbb{R}^2\mathbb{R}, (x,y) \mapsto e^{x^2+|y|}$ handelt; zusammenhängend; kompakt, da beschränkt $e^{x^2+|y|} = 3 \Leftrightarrow x^2+|y| = \log 3$)
- $\{(x,y) \in \mathbb{R}^2 | x^2 + y^{10} > 3\}$ (offen, zusammenhängend)

2.2 Stetigkeit *

Sei X, metrischer Raum, zusammenhängend und $f: X \to \mathbb{R}$ lokal konstant d.h. zu jedem $x \in X$ exisitiert eine Umgebung $x \in U \subset X$ so dass $f|_U$ konstant. Zeige: f ist konstant. Geben Sie zudem ein Gegenbeispiel an, für den Fall, dass X nicht zusammenhängend ist (eine lokal konstanten Funktion an, die nicht konstant ist).

Lösung Sei $z \in X$ und $A = \{x \in X | f(x) = f(z)\}$. Nach Voraussetzung ist f lokal konstant, also ist A offen. Die Menge $B := X \setminus A = \{x \in X | f(x) \neq f(z)\} = \{x \in X | f(x) < f(z)\} \cup \{x \in X | f(x) > f(z)\}$ ist auch offen und es gilt $X = A \cup B$. Da X nach Voraussetzung zusammenhängend ist, muss gelten $A = \emptyset$ oder $B = \emptyset$. Da aber $z \in A \Rightarrow B = \emptyset \Rightarrow f$ konstant.

Als Gegenbeispiel wählen wir $X = \mathbb{R} \setminus \{0\}$. Diese Menge ist nicht zusammenhängend. Die Funktion $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \operatorname{sgn}(x)$ ist dann lokal konstant, aber nicht global konstant.

2.3 Kompaktheit

Sei X kompakt und $A \subset X$ abgeschlossen. Zeige: A ist auch kompakt.

Lösung Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge in A. Da X kompakt ist, hat diese eine konvergente Teilfolge (x_{n_k}) in A. Der Grenzwert dieser Folge liegt wegen der Abgeschlossenheit von A auch in A und daraus folgt, dass A kompakt ist.

2.4 Kompaktheit II

Sei $(x_n)_{b\in\mathbb{N}}$ eine Folge in \mathbb{R}^n und H die Menge aller Häufungspunkte der Folge. Weiterhin sei $A := \{x_n | n \in \mathbb{N}\} \cup H$ die Menge der Folgenglieder und Häufungspunkte. Zeige: A ist kompakt.

Lösung Sei $(y_n)_{n\in\mathbb{N}}$ eine Folge in A. Nach dem Satz von Bolzano-Weierstraß hat diese eine konvergente Teilfolge in \mathbb{R}^n da sie beschränkt ist. Diese Teilfolge kann entweder konstant sein oder gegen einen der Häufungspunkte der ursprünglichen Folge konvergieren d.h. sie hat also eine konvergente Teilfolge in $H \subset A \to A$ kompakt.

2.5 Lokale Extremwerte \star

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = y^3 - 3xy + x^2$

- (a) Bestimmen Sie die beiden Punkte (x_0, y_0) und (x_1, y_1) mit grad f(x, y) = 0.
- (b) Wie lautet die Hessematrix von f im Punkt (x_0, y_0) und (x_1, y_1) ?
- (c) Besitzt f in den Punkten (x_0, y_0) und (x_1, y_1) ein lokales Maximum, ein lokales Minimum oder einen Sattelpunkt?

Nimmt f ein globales Maximum oder ein globales Minimum in den Punkten $(x_0, y_0), (x_1, y_1)$?

Lösung:

(a) grad
$$f(x,y) = \begin{pmatrix} -3y + 2x \\ 3y^2 - 3x \end{pmatrix} = 0 \Rightarrow$$

$$-3y + 2x = 0 \tag{1}$$

$$3y^2 - 3x = 0 \tag{2}$$

Aus 1 und 2 ergeben sich die beiden Punkte $(x_0, y_0) = (0, 0), (x_1, y_1) = (\frac{9}{4}, \frac{3}{2}).$

(b) Die Hesse-Matrix von
$$f$$
 lautet: $H_f(x,y)=\begin{pmatrix}2&-3\\-3&6y\end{pmatrix}\Rightarrow$
$$H_f(x_0,y_0)=\begin{pmatrix}2&-3\\-3&0\end{pmatrix}$$

$$H_f(x_1,y_1)=\begin{pmatrix}2&-3\\-3&9\end{pmatrix}$$

(c) – Bilden des charakteristischen Polynoms:

$$\det(H_f(x_0, y_0) - \lambda \mathbb{1}) = \begin{vmatrix} 2 - \lambda & -3 \\ -3 & -\lambda \end{vmatrix} = -\lambda(2 - \lambda) - 9 = \lambda^2 - 2\lambda - 9 \stackrel{!}{=} 0$$

$$\Leftrightarrow \qquad (\lambda - 1)^2 - 10 = 0$$

$$\Leftrightarrow \qquad \lambda - 1 = \pm \sqrt{10}$$

$$\Leftrightarrow \qquad \lambda_{1,2} = \sqrt{10} + 1$$

- $\Rightarrow H_f(x_0, y_0)$ indefinit $\Rightarrow (x_0, y_0)$ ist Sattelpunkt
- Bilden des charakteristischen Polynoms:

$$\det(H_f(x_1, y_1) - \lambda \mathbb{1}) = \begin{vmatrix} 2 - \lambda & -3 \\ -3 & 9 - \lambda \end{vmatrix} = (9 - \lambda)(2 - \lambda) - 9 = \lambda^2 - 11\lambda + 9 \stackrel{!}{=} 0$$

$$\Leftrightarrow \qquad (\lambda - 6, 5)^2 - 33, 25 = 0$$

$$\Leftrightarrow \qquad \lambda - 6, 5 = \pm \sqrt{33, 25}$$

$$\Leftrightarrow \qquad \lambda_1 = \sqrt{33, 25} + 6, 5 \approx 12, 27$$

$$\lambda_2 = -\sqrt{33, 25} + 6, 5 \approx 0, 73$$

- $\Rightarrow H_f(x_1, y_1)$ positiv definit $\Rightarrow (x_1, y_1)$ ist Minimum
- Die Punkte $(x_0, y_0), (x_1, y_1)$ sind keine globalen Extrema, da f(x, y) unbeschränkt.
- Extrema können auch mithilfe der Hauptabschnittsdeterminanten klassifiziert werden:

	positiv definit	negativ definit	indefinit	
1×1 -Matrix	+	-	+	-
2×2 -Matrix	+	+	-	-

2.6 Extrema mit Nebenbedingungen I \star

Berechnen Sie diejenigen Punkte auf der Kugeloberfläche

$$M = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$$

die von (1,1,1) den kleinsten bzw. größten Abstand haben.

Lösung: Gesucht sind die Extrema der Funktion $f(x, y, z) = (x - 1)^2 + (y - 1)^2 + (z - 1)^2$ unter der Nebenbedingung $g(x, y, z) = x^2 + y^2 + z^2 - 1 = 0$

 $Dg(x,y,z) = \nabla g(x,y,z) = 2(x,y,z) \neq (0,0,0)$,d.h. es genügt die kritischen Punkte der Lagrangeschen Hilfsfunktion zu bestimmen:

$$\nabla f(x,y,z) - \lambda \nabla g(x,y,z) = \begin{pmatrix} 2(x-1) \\ 2(y-1) \\ 2(z-1) \end{pmatrix} - \lambda \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Zusammen mit der Nebenbedingung liefert dies das Gleichungssystem:

$$1 = (1 - \lambda)x\tag{3}$$

$$1 = (1 - \lambda)y \tag{4}$$

$$1 = (1 - \lambda)z\tag{5}$$

$$1 = x^2 + y^2 + z^2 \tag{6}$$

Aus 3 bis 5 folgt $x = y = z = (1 - \lambda)^{-1}$, in 6 eingesetzt ergibt dies $\frac{3}{(1-\lambda)^2} = 1 \Leftrightarrow \lambda = 1 \pm \sqrt{3} \Rightarrow x = y = z = \pm \frac{1}{\sqrt{3}}$.

Da die Nebenbedingungsmenge kompakt und f stetig ist, existiert ein Minimum in

$$p_1 = \frac{1}{\sqrt{3}}(1,1,1)$$

und ein Maximum in

$$p_2 = -\frac{1}{\sqrt{3}}(1,1,1),$$

denn

$$f(p_1) = (1 - \sqrt{3})^2 < (1 + \sqrt{3})^2 = f(p_2).$$

2.7 Extrema mit Nebenbedingungen II

Bestimmen Sie die Extremwerte der Funktion $f: \mathbb{R}^3 \to \mathbb{R}, f(x,y,z) = 5x + y - 3z$ unter den Nebenbedingungen:

$$x + y + z = 0$$

 $x^2 + y^2 + z^2 = 1$.

Lösung: Die Nebenbedingungensfunktion $g: \mathbb{R}^3 \to \mathbb{R}^2$ lautet

$$q_1(x, y, z) := x + y + z$$

$$q_2(x, y, z) := x^2 + y^2 + z^2 - 1$$

Die Jacobi-Matrix

$$Dg(x,y,z) = \begin{pmatrix} 1 & 1 & 1 \\ 2x & 2y & 2z \end{pmatrix}$$

hat in jedem Punkt der Nebenbedingungsmenge vollen Rang. Es genügt also die kritischen Punkte der Lagrangeschen Hilfsfunktion $F_{\lambda,\mu}(x,y,z) = f(x,y,z) - \lambda g_1(x,y,z) - \mu g_2(x,y,z)$ zu finden:

$$\Rightarrow \nabla f(x, y, z) - \lambda \nabla g_1(x, y, z) - \mu \nabla g_2(x, y, z) \stackrel{!}{=} 0 \Leftrightarrow$$

$$\begin{pmatrix} 5 \\ 1 \\ -3 \end{pmatrix} - \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \mu \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix} \stackrel{!}{=} 0 \Rightarrow$$

$$0 = 5 - \lambda - 2\mu x \tag{7}$$

$$0 = 1 - \lambda - 2\mu y \tag{8}$$

$$0 = -3 - \lambda - 2\mu z \tag{9}$$

$$0 = x + y + z \tag{10}$$

$$0 = x^2 + y^2 + z^2 - 1 (11)$$

Wir lösen dieses Gleichungssystem: 7+8+9 liefert mit 10, dass $\lambda=1$. Daraus wird 7 und 8: $4-2\mu x=0$ bzw. $-2\mu y=0$. Deshalb ist $\mu\neq 0$ und y=0.

Aus 9 und 11 folgt schließlich z = -x und $x = \pm \frac{1}{\sqrt{2}}$.

Da die Nebenbedingungsmenge kompakt und f stetig ist, muss ein Minimum und ein Maximum existieren. f hat also

ein Minimum in $\left(-\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)\Rightarrow f\left(-\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)=-4\sqrt{2}$ und ein Maximum bei $\left(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\right)\Rightarrow f\left(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\right)=4\sqrt{2}$

2.8 Extrema mit Nebenbedingungen III

Bestimmen Sie die lokalen Extrema der Funktion $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = xy^2$ unter der Nebenbedingung $x^2 + y^2 = 1$.

Lösung Die Nebenbedingung lässt sich nach y^2 auflösen, d.h. es gilt $y^2 = 1 - x^2$. Die Extrema der Funktion f unter der Nebenbedingung sind also genau die Extrema der Funktion $\varphi : [-1,1] \to \mathbb{R}, x \mapsto x(1-x^2)$. Es gilt

$$\varphi'(x) = 1 - 3x^2 = 0 \Leftrightarrow x = \pm \sqrt{\frac{1}{3}}.$$

An diesen Stellen gilt $\varphi(\sqrt{\frac{1}{3}}) = \pm 2\frac{\sqrt{3}}{9}$. An den Rändern ± 1 des Definitionsbereichs liegen ebenfalls lokale Extrema (bei 1 ein lokales Minimum, bei -1 ein lokales Maximum). Zusammen ergibt sich, dass f bei $(\sqrt{\frac{1}{3}}, \pm \sqrt{\frac{2}{3}})$ und (-1,0) ein lokales Maximum und bei $(-\sqrt{\frac{1}{3}}, \pm \sqrt{\frac{2}{3}})$ und (1,0) ein lokales Minimum besitzt.