Практическая работа 2.. «Эмпирическая функция распределения. Поведение в точке»

Цель работы:

- ознакомиться с определением ЭФР и ее поведением при фиксированном значении аргумента;
- аналитически и графически оценить надежность асимптотического интервала;
- убедиться в том, что асимптотические методы работают при конечном объеме выборки.

Задание и ход работы.

- 1. Выбрать параметры двух из трех распределений генеральной совокупности $X: X \sim U(a,b), X \sim Exp^u$ или $X \sim N(a,\sigma^2)$.
- 2. Выбрать такую точку t_0 , что $0.05 < F_X(t_0) < 0.95$. Вычислить $F_X(t_0)$.
- 3. Смоделировать $m=10^2$ выборок объема $n=10^4$ для каждого из двух выбранных распределений. Для каждой выборки построить $F_n(t_0)$ значение эмпирической функции распределения в точке t_0 оценку значения функции распределения в точке t_0 , то есть величины $F_X(t_0)$. Для каждого из распределений получите 100 оценок величины $F_X(t_0)$.
- 4. Значение функции распределения $F_X(t_0) = P(X \in (-\infty, t_0) = \Delta)$ является вероятностью события $A = \{X \in (-\infty, t_0)\}$. Значение эмпирической функции распределения $F_n(t_0)$ —оценка вероятности события $A = \{X \in (-\infty, t_0)\}$, то есть $k(\Delta)/n$ частота попадания значения случайной величины X в интервал Δ . Частота, полученная по серии независимых однотипных испытаний с двумя исходами A и \overline{A} , является состоятельной, несмещенной, асимптотически нормальной оценкой вероятности события. Свойство асимптотической нормальности позволяет строить асимптотический доверительный интервал надежности γ . Фиксировать $\gamma > 0.9$ и построить по 100 асимптотических доверительных интервалов надежности γ для значения $F_X(t_0)$ каждого из выбранных распределений.
- 5. Построить 2 графика по оси x номер выборки, по оси y соответствующие левый и правый концы асимптотических доверительных интервалов и значение $F_X(t_0)$.
- 6. Найти количество δ_n асимптотических доверительных интервалов, в которые значение $F_x(t_0)$ не попало. Сравнить среднее количество δ_n для к =100 серий

(mean(δ_n)) с величиной 1- γ (δ_n можно рассматривать как оценку величины 1- γ) для различных $\gamma = 0.9, 0.91, ..., 0.99$. Составить таблицу результатов.

Выбранные параметры:

```
m = 10^2;

n = 10^4;

t0 = 0.4;

alpha = 0;

sigma = 1;

a = 0;

b = 1;
```

Графики для gamma = 0.95:

Равномерное распределение:


```
gamma = 0.9
              and
                    average = 10.41
                     average = 9.11
               and
gamma = 0.91
gamma = 0.92
               and
                     average = 7.98
gamma = 0.93
               and
                     average = 7.22
               and
                     average = 6.26
gamma = 0.94
               and
gamma = 0.95
                     average = 4.68
                     average = 4.12
               and
gamma = 0.96
               and
                     average = 3.17
gamma = 0.97
               and
                     average = 2.03
gamma = 0.98
gamma = 0.99
               and
                     average = 1.11
```

Нормальное распределение:

При увеличении gamma среднее количество δ n асимптотических доверительных интервалов, в которые значение Fx(t0) не вошло, уменьшается. Заметим, что значение average примерно в k раз больше (k — количество серий), чем (1 — gamma). Получается, что при приближении gamma к единице увеличивается точность доверительного интервала.