8. Zadania do wykładu analiza 3B

- 1. Znaleźć równanie płaszczyzny stycznej powierzchni w podanym punkcie (x_0, y_0, z_0) i zbadać gładkość w (a) i (b).
 - (a) x = 2u, $y = u^2 + v$, $z = v^2$, w (0, 1, 1).
 - (b) $x = u^2 v^2$, y = u + v, $z = u^2 + 4v$, w $\left(-\frac{1}{4}, \frac{1}{2}, 2\right)$.
 - (c) $x = u^2$, $y = u \sin e^v$, $z = \frac{1}{3}u \cos e^v$, w (13, -2, 1).
- 2. Znaleźć wzór na wektor normalny do powierzchni.
 - (a) $x = 3\sin\varphi\cos\psi$, $y = 2\sin\varphi\sin\psi$, $z = \cos\varphi$, dla $\varphi \in [0, \pi]$ i $\psi \in [0, 2\pi]$.
 - (b) $x = \sin v, y = u, z = \cos v \text{ dla } u \in [-1, 3] \text{ i } v \in [0, 2\pi].$
 - (c) $x = (2 \cos v) \cos u$, $y = (2 \cos v) \sin u$, $z = \sin v$, dla $u, v \in [-\pi, \pi]$, zbadać gładkość.
- 3. Znaleźć równanie płaszczyzny stycznej do powierzchni w podanym punkcie.
 - (a) $x = u^2$, $y = v^2$, $z = u^2 + v^2$, w u = v = 1.
 - (b) $z = 3x^2 + 8xy$, x = 1, y = 0.
 - (c) $x^3 + 3xy + z^2 = 2$, x = 1, $y = \frac{1}{3}$, z = 0.
- 4. Rozważmy powierzchnię określoną przez $\Phi(r,\theta) = (r\cos\theta, r\sin\theta, \theta), \ 0 \leqslant r \leqslant 1$ i $0 \leqslant \theta \leqslant 4\pi$. Naszkicować i opisać tę powierzchnię. Znaleźć wzór na wektor normalny. Pokazać, że dla punktu (x_0, y_0, z_0) leżącego na powierzchni, odcinek poziomy długości 1 od osi z przez punkt (x_0, y_0, z_0) leży na powierzchni i na płaszczyźnie stycznej.
- 5. Obliczyć pole powierzchni helikoidy z zadania 4.
- **6.** Obliczyć pole powierzchni torusa $x = (R + r \cos \varphi) \cos \psi$, $y = (R + r \cos \varphi) \cos \psi$, $z = r \sin \varphi$, gdzie $\varphi, \psi \in [0, 2\pi]$. Co by się stało, gdyby dopuścić $\varphi, \psi \in [0, 4\pi]$?
- 7. Niech $\Phi(u,v)=(u-v,u+v,u)$ i D będzie kołem jednostkowym w płaszczyźnie uv. Obliczyć pole powierzchni $\Phi(D)$.
- 8. Obliczyć pole powierzchni fragmentu sfery jednostkowej wyciętego przez stożek $z \geqslant \sqrt{x^2 + y^2}$.
- 9. Znaleźć parametryzację powierzchni $x^2-y^2=1$, gdzie $x>0,\ -1\leqslant y\leqslant 1$ i $0\leqslant z\leqslant 1$. Wyrazić pole powierzchni za pomocą całki.
- 10. Obliczyć pole powierzchni określonej przez $x+y+z=1,\,x^2+2y^2\leqslant 1.$
- **11.** Znaleźć pole powierzchni wykresu funkcji $f(x,y)=\frac{2}{3}(x^{\frac{3}{2}}+y^{\frac{3}{2}})$, leżącego ponad kwadratem $[0,1]\times[0,1]$.
- 12. Obliczyć $\int_S xy \, dS$, gdzie S jest powierzchnią czworościanu o ścianach $z=0,\,y=0,\,x+z=1$ i x=y.
- 13. Niech $\Phi(u,v)=(x(u,v),y(u,v),z(u,v))$ $(u,v)\in D$ będzie parametryzacją powierzchni S. Niech $E=\|T_u\|^2,\ F=T_u\cdot T_v$ i $G=\|T_v\|^2$. Pokazać, że $\|T_u\times T_v\|=\sqrt{EG-F^2}$ i $A(S)=\int_D\sqrt{EG-F^2}$. Jaką postać przybierze wzór, gdy wektory T_u i T_v będą zawsze prostopadłe?
- 14. Obliczyć $\int_S z\,dS$, gdzie S jest górną półsferą o promieniu a.
- **15.** Obliczyć $\int_S xyz\,dS$, gdzie S jest trójkątem o wierzchołkach $(1,0,0),\,(0,2,0)$ i (0,1,1).
- **16.** Obliczyć $\int_S z \, dS$, gdzie S jest powierzchnią $z = x^2 + y^2$, $x^2 + y^2 \leqslant 1$.
- 17. Obliczyć $\int_S z^2 dS$, gdzie S jest brzegiem sześcianu $[-1,1] \times [-1,1] \times [-1,1]$.
- 18. Obliczyć masę sfery o promieniu R, gdzie gęstość masy w punkcie (x, y, z) jest równa odległości tego punktu od ustalonego punktu (x_0, y_0, z_0) tej sfery.

- 19. Metalowa powłoka S ma kształt górnej półsfery o promieniu R. Gęstość masy w (x, y, z) wynosi $\varrho(x, y, z) = x^2 + y^2$. Znaleźć całkowitą masę S.
- **20.** Znaleźć środek masy części sfery o promieniu R leżącej w pierwszym oktancie, przy założeniu, że masa jest proporcjonalna do powierzchni.
- **21.** Załóżmy, że temperatura w punkcie przestrzeni jest dana wzorem $T(x,y,z)=3x^2+3z^2$. Obliczyć przepływ ciepła przez powierzchnię $x^2+z^2=2,\,0\leqslant y\leqslant 2,$ przy k=1.
- **22.** Obliczyć przepływ ciepła przez sferę jednostkową, jeśli T(x,y,z)=x. Podać interpretację fizyczną wyniku.
- **23.** Niech S będzie powierzchnią zamkniętą złożoną z górnej półsfery jednostkowej i jej podstawy $x^2 + y^2 \le 1$, z = 0. Niech E(x, y, z) = (2x, 2y, 2z) będzie polem elektrycznym w \mathbb{R}^3 . Obliczyć strumień elektryczny przez S. Wskazówka: Rozłożyć S na dwie części S_1 i S_2 i obliczyć $\int_{S_1} E \cdot dS$ i $\int_{S_2} E \cdot dS$ oddzielnie.
- **24.** Obliczyć $\int_S F \cdot dS$, gdzie S jest powierzchnią półkuli $x^2 + y^2 + z^2 \le 1$, $z \ge 0$ i $F = (x + 3y^5, y + 10xz, z xy)$.
- **25.** Znaleźć przepływ pola $F(x, y, z) = (3xy^2, 3x^2y, z^3)$ na zewnątrz sfery jednostkowej.
- **26.** Obliczyć całkę $\int_S F \cdot n \, dS$, gdzie $F = (1, 1, z(x^2 + y^2)^2)$, a S jest powierzchnią cylindra $x^2 + y^2 \le 1$, $0 \le z \le 1$.
- 27. Budynek restauracji położony jest na zboczu wzgórza w kształcie półkuli o promieniu 2R tak, że wnętrze znajduje się pomiędzy powierzchnią półkuli i cylindrem $x^2 + (y R)^2 = R^2$, $0 \le z \le 2R$. Obliczyć powierzchnię pionowej ściany restauracji. W typowy letni dzień w otoczeniu restauracji temperatura wynosi $T = 3x^2 + (y R)^2 + 16z^2$. Intensywność przepływu ciepła $V = -k\nabla T$ (gdzie k jest stałą zależną od stopnia izolacji ścian) poprzez ściany restauracji (włącznie z sufitem i ścianą dotykającą wzgórza) powoduje napływ ciepła. Jaki jest całkowity przepływ ciepła ? (Wynik będzie zależny od R i k.)
- **28.** (a) Silna jednostajna ulewa powoduje przepływ wody zgodnie z polem wektorowym F(x, y, z) = (0, 0, -1). Znaleźć całkowity przepływ przez powierzchnię stożka $z = (x^2 + y^2)^{1/2}$, $x^2 + y^2 \le 1$.
 - (b) Mocny wiatr powoduje, że deszcz zaczyna padać pod kątem 45° i jest opisany przez pole $F(x, y, z) = -(\sqrt{2}/2, 0, \sqrt{2}/2)$. Jaki teraz jest przepływ wody przez stożek?