Задание 1.

Для IP-адреса 172.30.1.33 с маской подсети 255.255.224.0 определите: адрес сети, широковещательный адрес, IP-адреса первого и последнего узлов, количество узлов. Запишите результаты в таблицу 1.

Ответ:

Таблица 1 – Ответ к заданию 1

Адрес сети	Широковещательный	IP-адрес	ІР-адрес	Количество
	адрес	первого	последнего	узлов
		узла	узла	
172.30.0.0	172.30.31.255	172.30.0.1	172.30.1.254	8190

Решение:

Переведем ІР-адрес 172.30.1.33 и маску подсети 255.255.224.0 в двоичный вид.

10101100.00011110.000 | 00001.00100001

11111111.111111111.111|00000.000000000

10101100.00011110.000 | 00000.000000000

172.30.0.0 – адрес сети

Адрес узла: 00000000.00000000.00000001.00100001

Переведем адрес узла обратно в десятичный вид: 00000000.00000000.00000001.00100001 = 0.0.1.33

Широковещательный адрес: 10101100.00011110.00011111.11111111

172.30.31.255

ІР-адрес первого узла: 172.30.0.1

ІР-адрес последнего узла: 172.30.1.254

Количество узлов:

11100000

 $2^13 - 2 = 8190$

Задание 2.

Для IP-адреса 192.168.100.234 с маской подсети 255.255.192.0 определите: адрес сети, широковещательный адрес, IP- адреса первого и последнего узлов, количество узлов. Запишите результаты в таблицу 2.

Ответ:

Таблица 2 – Ответ к заданию 2

Адрес сети	Широковещательный	ІР-адрес	ІР-адрес	Количество
	адрес	первого	последнего	узлов
		узла	узла	
192.168.64.0	192.168.127.255	172.30.0.1	172.30.1.254	16382

Решение:

ІР-адрес: 11000000.10101000.01|100100.11101010

Идентификатор сети: 11000000.10101000.01|000000.00000000

Адрес сети: 11000000.10101000.01|000000.000000000 = 192.168.64.0

192.168.127.255

IP-адрес первого узла: 192.168.64.1

IP-адрес последнего узла: 192.168.127.254

Кол-во узлов: $2^14 - 2 = 16382$

Залание 3.

Администратор собирается создать подсеть, в которой 1000 узлов. Какую маску подсети он должен использовать?

Ответ: 255.255.252.0

 $2^n - 2 \ge 1000 \Rightarrow n = 10$

11111111, 111111111, 111111100.00000000 = 255.255.252.0

Залание 4.

Администратор собирается создать подсеть, в которой 55 узлов. Какую маску подсети он должен использовать?

Ответ: 255.255.255.192

$$2^n - 2 \ge 55 \Rightarrow n = 6$$

11111111, 11111111, 111111111.11000000 = 255.255.255.192

Задание 5.

Для IP-адреса 172.17.99.171 с маской подсети 255.255.255.240 определите: адрес сети, широковещательный адрес, IP- адреса первого и последнего узлов, количество узлов. Запишите результаты в таблицу 3.

Ответ:

Таблица 3 – Ответ к заданию 5

Адрес сети	Широковещате	ІР-адрес	ІР-адрес	Количество
	льный адрес	первого узла	последнего	узлов
			узла	
192.168.64.0	192.168.127.255	192.168.64.1	192.168.127.254	16382

Решение:

ІР-адрес: 11000000.10101000.01|100100.11101010

192.168.127.255

IP-адрес первого узла: 192.168.64.1

IP-адрес последнего узла: 192.168.127.254

Кол-во узлов: $2^14 - 2 = 16382$

Задание 6.

Администратор собирается разделить сеть 185.210.192.0/18 на 7 подсетей. В каждой подсети должно быть одинаковое количество узлов. Определите: сколько бит требуется занять из идентификатора узла, маску подсети, количество узлов в каждой подсети.

Решение:

Займем 3 бита у идентификатора. Так как $2^3 = 8$, а нам нужно всего лишь 7.

10111001.11010010.11 | 000000.000000000

11111111. 111111111.11|000000.00000000

Идентификатор занимает 14, 3 мы позаимствовали => осталось 11

 $2^11 - 2 = 2046$ -Количество узлов

Подсеть 1.

 $10111001.11010010.11000 \\ | 000.00000000 \\ -185.210.192.0$

Подсеть 2.

10111001.11010010.11001 | 000.00000000 - 185.210.200.0

Подсеть 3.

10111001.11010010.11010 | 000.00000000 - 185.210.208.0

Подсеть 4.

 $10111001.11010010.11011 \\ | 000.00000000 \\ -185.210.216.0$

Подсеть 5.

 $10111001.11010010.11100 \\ | 000.00000000 \\ -185.210.192.0$

Подсеть 6.

 $10111001.11010010.11101 \\ | 000.00000000 \\ -185.210.232.0$

Подсеть 7.

 $10111001.11010010.11110 \\ |000.00000000 \\ -185.210.240.0$

Задание 7.

Администратор собирается разделить сеть 212.100.54.0/24 на 7 подсетей. В четырех подсетях должно быть 2 узла, в пятой подсети — 10 узлов, в шестой подсети — 26 узлов, в седьмой подсети — 58 узлов.

Ответ:

Подсеть	Адрес подсети	Маска подсети	Количество узлов
1	212.100.54.0	/30	2
2	212.100.54.4	/30	2
3	212.100.54.8	/30	2
4	212.100.54.12	/30	2
5	212.100.54.16	/28	10
6	212.100.54.32	/27	26
7	212.100.54.64	/26	58

Задание 8.

Администратор собирается разделить сеть 185.10.0.0/16 на 256 подсетей. Определите: сколько бит требуется занять из идентификатора узла, маску подсети, количество узлов в каждой подсети.

Решение:

Количество бит для идентификатора: $2^8 = 256$.

Маска: 16+8=24

Каждая сеть будет иметь $2^8 - 2 = 254$ узла