data organization in spreadsheets

Karl Broman

Biostatistics & Medical Informatics, UW-Madison

kbroman.org
github.com/kbroman
@kwbroman
Slides: kbroman.org/Talk_DataOrg

These are slides for a talk for the OSGA Webinar Series on 24 Sept 2021, based on my paper of the same title with Kara Woo, doi.org/gdz6cm.

	Α	В	С	D	E	F	G
1							
2	1min						
3			Normal			Mutant	
4		10-05-16	10–12–16	10–19–16	10-05-16	10–12–16	10–19–16
5	B6	146.6	138.6	155.6	166	179.3	186.9
6	BTBR	245.7	240	243.1	177.8	171.6	188.1
7							
8	5min						
9			Normal			Mutant	
10		10-05-16	10–12–16	10–19–16	10-05-16	10–12–16	10–19–16
11	B6	333.6	353.6	408.8	450.6	474.4	423.8
12	BTBR	514.4	610.6	597.9	412.1	447.4	446.5

Spreadsheets are super useful for storing and organizing datasets. But how should you arrange the data in a spreadsheet?

Often, data are arranged as they might appear in a table in a paper. This may be pleasing to view, but it can be make down-stream analysis difficult.

Data analysts often spend a lot of time rearranging data prior to analysis. Here, I'll talk about how to organize data in spreadsheets, for ease of analysis.

THE AMERICAN STATISTICIAN 2018, VOL. 72, NO. 1, 2–10 https://doi.org/10.1080/00031305.2017.1375989

Data Organization in Spreadsheets

Karl W. Broman^a and Kara H. Woo^b

^aDepartment of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI; ^bInformation School, University of Washington,

ABSTRACT

Spreadsheets are widely used software tools for data entry, storage, analysis, and visualization. Focusing on the data entry and storage aspects, this article offers practical recommendations for organizing spreadsheet data to reduce errors and ease later analyses. The basic principles are: be consistent, write dates like YYYY-MM-DD, do not leave any cells empty, put just one thing in a cell, organize the data as a single rectangle (with subjects as rows and variables as columns, and with a single header row), create a data dictionary, do not include calculations in the raw data files, do not use font color or highlighting as data, choose good names for things, make backups, use data validation to avoid data entry errors, and save the data in plain text files.

ARTICLE HISTORY

Received June 2017 Revised August 2017

KEYWORDS

Data management; Data organization; Microsoft Excel; Spreadsheets

doi.org/gdz6cm

3

A particular collaborator's data (not that shown on the previous slide) led me to write a website on data organization, which then led to this paper.

American Statistician

bit.ly/amstat_most_read

The "Data organization in spreadsheets" paper is the third-most downloaded paper at American Statistician, after two papers about p-values. This is by far my most widely-read article.

First, be consistent.

Even if you make idiosyncratic choices, if you follow them in a consistent way, it will be easier to handle the product.

Consistent categories

	Α	В	С	D	Е
1	id	sex	weight	heart	L.liver.lobe
2	DO95	Male	50.1	0.171	0.515
3	DO96	F	22.6	0.191	0.441
4	DO097	F	23.5	0.128	0.330
5	DO098	female	24.6	0.104	0.277
6	DO099	Female	20.8	0.116	0.311
7	DO100	F	16.9	0.107	NA
8	DO101	F	23.6	0.114	0.329
9	DO-102	M		0.131	0.277
10	DO-103	F	27.2	0.131	0.374
11	DO-104	F	20.5	_	0.297
12	DO-105	F	23.1	0.115	0.313
13	106	F	19.3	0.103	0.276
14	107	male	32.6	0.126	0.210

Be consistent in your labels on categories. (Ideally, use short but meaningful labels.)

Consistent missing values

	А	В	С	D	E
1	id	sex	weight	heart	L.liver.lobe
2	DO95	Male	50.1	0.171	0.515
3	DO96	F	22.6	0.191	0.441
4	DO097	F	23.5	0.128	0.330
5	DO098	female	24.6	0.104	0.277
6	DO099	Female	20.8	0.116	0.311
7	DO100	F	16.9	0.107	NA
8	DO101	F	23.6	0.114	0.329
9	DO-102	M		0.131	0.277
10	DO-103	F	27.2	0.131	0.374
11	DO-104	F	20.5	-	0.297
12	DO-105	F	23.1	0.115	0.313
13	106	F	19.3	0.103	0.276
14	107	male	32.6	0.126	0.210

And no 999 or -999!

Be consistent in your code for missing values. And don't use a code that is a valid number (like 999), as it might be missed in later analyses. (I mean, they might be included, but with that crazy value.) I prefer to not have empty cells, because it is less clear whether it is a mistake or intentional.

Consistent subject IDs

	A	В	С	D	Е
1	id	sex	weight	heart	L.liver.lobe
2	DO95	Male	50.1	0.171	0.515
3	DO96	F	22.6	0.191	0.441
4	DO097	F	23.5	0.128	0.330
5	DO098	female	24.6	0.104	0.277
6	DO099	Female	20.8	0.116	0.311
7	DO100	F	16.9	0.107	NA
8	DO101	F	23.6	0.114	0.329
9	DO-102	M		0.131	0.277
10	DO-103	F	27.2	0.131	0.374
11	DO-104	F	20.5	_	0.297
12	DO-105	F	23.1	0.115	0.313
13	106	F	19.3	0.103	0.276
14	107	male	32.6	0.126	0.210

Be consistent in the format of subject IDs. OMG I spend so much time converting subject IDs between formats.

I prefer to not use raw numbers, but it's nice to have them be short.

Consistent column names

	А	В	С	D	Е	
1	id	glucose.mg.dl	I.0 glucose.mg.d	I.5 glucose.mg.dl.	15 glucose.mg.dl	.30
2	DO-121	99.165552	349.303552	2 286.092208	312.047704	4
3		A	В	С	D	E
4	1	id	glucose.0	glucose.5	glucose.15	glucose.30
5	2	DO-221	145.742786	206.452638	216.640608	299.55501
6	3	DO-222	138.010378	342.866944	339.836676	276.148802
7	4	DO-223	138.219362	407.443	336.858654	235.501414
8	5	DO-224	100.445504	310.944638	384.97722	308.907044
9	6	DO-225	121.030428	290.41196	345.740474	313.818168
10	7	DO-226	118.418128	189.524934	159.692468	144.488882
11	8	DO-227	117.4777	395.321928	448.612848	310.369932
	9	DO-228	98.773632	149.452252	245.637138	317.423142
	10	DO-229	122.44107	260.63174	231.008258	202.272958

If you have multiple batches of the same measurements, use the same column names in each file.

Consistent layout

		A	E	3	С	;	D)	Е				
1	i	d	glucose	.mg.dl.0	glucose.	lucose.mg.dl.5 glucose.mg.d		mg.dl.15	5 glucose.mg.dl.30				
2	DO-	-121	99.16	55552	349.30	3552	286.09	92208	312.04	17704			
3			Α		В		С		D		E		
4	1		id		glucose.0	1	glucose.5	5	glucose.1	5	glucose.3	0	
5	2		DO-221	ı	145.74278	6	206.45263	38	216.64060)8	299.5550	1	
6	3				A	1	В		С		D	Е	
7	4		1	i	id	gluce	ose.0	insı	ulin.0	glud	cose.5	insulir	า.5
8	5		2	DO-	-321	66.83	39405	0	.04	246.6	685995	0.04	1
9	6		3	DO-	-322	98.1	2509	0.5	1185	246.	25574	1.406	62
10	7		4	DO-	-323	94.6	8305	1.7	'812	448	.1068	1.024	48
11	8		5	DO-	-324	121.0	51535	0.0)882	407.3	355505	0.634	75
	9		6	DO-	-325	122.9	95695	0.1	9155	298.	193665	0.646	ò7
	10		7	DO-	-326	201.4	47755	0.7	454	386.	51887	0.608	31 10

And keep those columns in the same order. Use the same layout for the multiple spread-sheets.

Consistent date format

	Α	В	С
1	Date	Assay date	Weight
2		12/9/05	54.9
3		12/9/05	45.3
4	12/6/2005	е	47
5		е	45.7
6		е	52.9
7		1/11/2006	46.1
8		1/11/2006	38.6

Use a single format for all dates. I don't remember what the e's were for in this example, but sometimes using 4 digits for the year and sometimes 2 can be painful to deal with.

PUBLIC SERVICE ANNOUNCEMENT:

OUR DIFFERENT WAYS OF WRITING DATES AS NUMBERS CAN LEAD TO ONLINE. CONFUSION. THAT'S WHY IN 1988 ISO SET A GLOBAL STANDARD NUMERIC DATE FORMAT.

THIS IS THE CORRECT WAY TO WRITE NUMERIC DATES:

2013-02-27

THE FOLLOWING FORMATS ARE THEREFORE DISCOURAGED:

xkcd.com/1179

12

And really, you should just go with the ISO 8601 format for writing dates, for ease of sorting, and because we should all use the same format.

"Do you have a favorite transcription factor?" "Yeah, oct-4." @KasperDHansen @jtleek

10:35 AM · Jul 17, 2015 · Twitter for iPhone

"oct-4: because Excel turns it into a date and it actually has a cool function." @jtleek

10:36 AM · Jul 17, 2015 · Twitter for iPhone

And dates in Excel are a abomination. It likes to turn non-dates into dates, and it stores dates internally as an integer, but with different starting values on different systems.

My preference is to force Excel to treat certain columns as text.

One might also enter dates as numbers 'YYYYMMDD', or split them into 3 columns (year, month, day).

Consistent file names

```
Complete F2 Liver TG Set.xls
CPL Rosetta Lipids FINAL.xls
D20 Summary of All F2 Samples MF 30July2009.xls
FINAL RBM Data 102989 26Sept2007.xls
Mapped Urine Plasma Data to Statgen.xls
Necropsy Tracking Report rk 2011-04-26.xls
Necropsy Tracking Report rk61412.xls
Necropsy_Tracking_Report_rk_052912_atb.xls
Original Necropsy Tracking Report rk.xls
RBM Tube Number Key.xls
```

- ► No spaces or special characters
- ► Short but descriptive
- ► Consistent scheme
- ▶ Take advantage of computer sorting

Where you can, you should also strive for some consistent system for naming files. And for later analysis, it would be best to avoid spaces or other special characters (though underscores and hyphens are good).

File names should be descriptive of their contents, so you don't need to look inside to understand what it contains.

Take advantage of the way the computer sorts files, by starting with general groupings, followed by more specific groupings.

No "final" in file names

Never include "final" in a file name. Best to use version numbers. No file is ever final.

Choose good names for things

good name	good alternative	avoid
Max_temp_C Precipitation_mm Mean_year_growth sex weight cell_type Observation_01	Precipitation	Maximum Temp (°C) precmm Mean growth/year M/F w. Cell type 1st Obs.

DataCarpentry.org

16

More generally, you want to put thought into the names that you choose for things, such as the names of columns. Don't include spaces, and be short but descriptive.

No empty cells

	А	В	С
1	id	date	glucose
2	101	2015-06-14	149.3
3	102		95.3
4	103	2015–06–18	97.5
5	104		117.0
6	105		108.0
7	106	2015-06-20	149.0
8	107		169.4

Don't leave any cells empty, particularly as here where just the first of several repeated values are shown. If the rows of this spreadsheet get sorted, the information in the date column will be lost.

In general, I prefer to have some missing value code inserted where data are missing, rather than leave cells blank. This helps to distinguish actually missing data from mistakes.

One thing per cell

	Α	В	С	D	Е
1	id	sex	Glu	Ins	weight
2	71	М	216.9914	0.17985	32.4 g
3	72	М	242.0906	3.5117	58.8 g
4	73	М	109.4086	0.06834	30.6 g
5	74	М	147.1094	0.85040	34.4 g
6	25	F	199.8594	0.4 (off curve lo)	22.9 g
7	26	F	141.3293	0.64955	29.4 g
8	27	F	172.6252	0.61845	26.6 g
9	28	F	167.3137	0.037430	24.6 g
10	75	М	266.0442	0.15875	51.5 g
11	76	M	205.2229	0.26185	33.3 g

Put just one value in each cell. The most common issues here are to include a note with a value. (Instead, put notes in a separate column.) Or you might want to include the units. (Instead, include the units in the column name, or even better include them in a separate data dictionary file, with metadata.)

	А	В	С	D	E	F
1						
2		101	102	103	104	105
3	sex	Male	Female	Male	Male	Female
4						
5		101	102	103	104	105
6	glucose	134.1	120.0	124.8	83.1	105.2
7						
8		101	102	103	104	105
9	insulin	0.60	1.18	1.23	1.16	0.73

	A	В	С	D	Е	F	G	н	- 1	J	К
1			week 4			week 6			week 8		
2	Mouse ID	SEX	date	weight	glucose	date	weight	glucose	date	weight	glucose
3	3005	М	3/30/2007	19.3	635	4/11/2007	31	460.7	4/27/2007	39.6	530.2
4	3017	М	10/6/2006	25.9	202.4	10/19/2006	45.1	384.7	11/3/2006	57.2	458.7
5	3434	F	11/22/2006	26.6	238.9	12/6/2006	45.9	378	12/22/2006	56.2	409.8
6	3449	М	1/5/2007	27.5	121	1/19/2007	42.9	191.3	2/2/2007	56.7	182.5
7	3499	F	1/5/2007	19.8	220.2	1/19/2007	36.6	556.9	2/2/2007	43.6	446

	A	В	С	D	E	F
1		GTT date	GTT weight	time	glucose mg/dl	insulin ng/ml
2	321	2/9/15	24.5	0	99.2	lo off curve
3				5	349.3	0.205
4				15	286.1	0.129
5				30	312	0.175
6				60	99.9	0.122
7				120	217.9	lo off curve
8	322	2/9/15	18.9	0	185.8	0.251
9				5	297.4	2.228
10				15	439	2.078
11				30	362.3	0.775
12				60	232.7	0.5
13				120	260.7	0.523
14	323	2/9/15	24.7	0	198.5	0.151
15				5	530.6	off curve lo

	A	В	С	D	E	F	G
1							
2	Date	11/3/14					
3	Days on diet	126					
4	Mouse #	43					
5	sex	f					
6	experiment		values			mean	SD
7	control		0.186	0.191	1.081	0.49	0.52
8	treatment A		7.414	1.468	2.254	3.71	3.23
9	treatment B		9.811	9.259	11.296	10.12	1.05
10							
11	fold change		values			mean	SD
12	treatment A		15.26	3.02	4.64	7.64	6.65
13	treatment B		20.19	19.05	23.24	20.83	2.17

19

The datasets I see tend to be organized in complex ways. Here are four examples.

But when it comes to the layout of the data, what I want to see is just a rectangle, with subjects as rows, variables as columns, and a single header row.

	Α	В	C	;	D)	Е		F			
1												
2		101	10)2 1		03 10)4	105			
3	sex	Male	Fem	nale	Ма	ale Ma		ale Fem		nale		
4					A		В	С		D		Е
5		10	1	i	id	sex		glucose		insulin		triglyc
6	glucose	134	2	1	01	Male		134.1		0.60		273.4
7			3	1	02	Fer	male	120.0		1.18		243.6
8		10										
9	insulin	0.6	4	1	03	М	ale	12	4.8	1.	23	297.6
		1	5	1	04	М	ale	83	3.1	1.	16	142.4
			6	1	05	Fer	male	10	5.2	0.	73	215.7

For example, this dataset has three variables presented as rows, each with its own row of IDs, and with blank lines between.

A preferred layout would be to have a single column of IDs, and then another column for each attribute or measured variable.

	А	В	С		D	E		F		
1		GTT date	GTT we	eight	time	glucose mg	/dl insulir	ng/ml		
2	321	2/9/15	24.	24.5		99.2	lo off	curve		
3					- 5	3/10/3		205		_
4			Α		В	С	D		E	F
5		1	id	GT	T date	GTT weight	time	glucos	e mg/dl	insulin ng/ml
6		2	321	2	2/9/15	24.5	0	99	9.2	lo off curve
7		3	321	2	/9/15	24.5	5	34	9.3	0.205
		4	321	2	/9/15	24.5	15	28	6.1	0.129
8	322	5	321	2	/9/15	24.5	30	3	12	0.175
9		6	321	2	/9/15	24.5	60	90	9.9	0.122
10		7	321		/9/15	24.5	120		7.9	lo off curve
11		8								
12			322		/9/15	18.9	0		5.8	0.251
13		9	322		2/9/15	18.9	5		7.4	2.228
14	323	10	322	2	/9/15	18.9	15	4:	39	2.078
15		11	322	2	2/9/15	18.9	30	36	2.3	0.775
- 13		12	322	2	/9/15	18.9	60	23	2.7	0.5
		13	322	2	2/9/15	18.9	120	26	0.7	0.523
		14	323	2	2/9/15	24.7	0	19	8.5	0.151
		15	323	2	2/9/15	24.7	5	53	0.6	off curve lo

This example has data for a glucose tolerance test: a treatment was applied, and then glucose and insulin were measured from successive serum samples over time.

The IDs are provided just in the rows for time=0. The assay date and the weight of the mouse are provided in those rows, too.

One solution would be to fill in those ID, date, and weight measurements in each row. No empty cells!

But this is a lot of duplicated information.

	A	В	С
1	id	GTT date	GTT weight
2	321	2/9/15	24.5
3	322	2/9/15	18.9
4	323	2/9/15	24.7

	Α	В	С	D	E
1	id	GTT time	glucose mg/dl	insulin ng/ml	note
2	321	0	99.2	NA	insulin below curve
3	321	5	349.3	0.205	
4	321	15	286.1	0.129	
5	321	30	312	0.175	
6	321	60	99.9	0.122	
7	321	120	217.9	NA	insulin below curve
8	322	0	185.8	0.251	
9	322	5	297.4	2.228	
10	322	15	439	2.078	
11	322	30	362.3	0.775	
12	322	60	232.7	0.5	
13	322	120	260.7	0.523	
14	323	0	198.5	0.151	
15	323	5	530.6	NA	insulin below curve

Another alternative is to split the data into two tables: one with assay date and mouse weight, and a second with the actual GTT data.

We would also prefer those "lo below curve" notes pulled out as a separate column.

	А	В		С	1)	Е		F	F	G		Н			I	,	J	K			
1				week 4				v	vee	ek 6					we	ek 8						
2	Mouse ID	SE	x	date	we	ight	gluco	se	da	ate	weig	ht	gluco	se	d	ate	we	ight	gluco	se		
3	3005		Α		В	C	;	D		Е			F		G	Н		- 1		J	К	
4	3017	1	Mous	se ID S	EX	date	e_4	weight_	_4	glucos	e_4	da	te_6	wei	ght_6	glucos	se_6	date	=_8	weight_8	glucose_8	3
5	3434	2	300				A			В			(0			D			E		F
6	3449	3	301		2		mouse 300	_		sex M				week 4		date 3/30/2007			glucose 19.3		eight 335	
7	3499				 3		3005		М		\dagger		3			1/20			31		60.7	
•	0.00	4	343		4		3005		М				8	3		4/2	27/20	07		39.6	5	30.2
					5		301	7		М			4	4		10	/6/20	06		25.9	2	02.4
		5	344	4	6		301	7		М			(6		10/	19/20	006		45.1	3	34.7
					7		301	7		М			8	3		11	/3/20	06		57.2	4	58.7
		6	349		8		343	4		F			4	4		11/	22/20	006		26.6	2:	38.9
					9		343	4		F			(6		12	/6/20	06		45.9		378
				1	0		343	4		F			8	3		12/	22/20	006		56.2	4	09.8
				1	1		344	9		М			4	4		1/	5/200)7		27.5		21
				1	2		344	9		М			(3		1/1	9/20	07		42.9	19	91.3
				1	3		344	9		М			8	3		2/	2/200)7		56.7	18	32.5
				1	4		349	9		F			-	4		1/	5/200	7		19.8	2:	20.2

In this example, there are two header rows. One indicates week (4, 6, or 8) for sets of three columns.

23

Instead, we might include the week number in the column names, so that we just need a single header row.

Alternatively, we could put each week in a separate row, and add a column with the week variable, so that each mouse's information is split across three rows.

	Α	В	С	D	E	F	G
1							
2	Date	11/3/14					
3	Days on diet	126					
4	Mouse #	43					
5	sex	f					
6	experiment		values			mean	SD
7	control		0.186	0.191	1.081	0.49	0.52
8	treatment A		7.414	1.468	2.254	3.71	3.23
9	treatment B		9.811	9.259	11.296	10.12	1.05
10							
11	fold change		values			mean	SD
12	treatment A		15.26	3.02	4.64	7.64	6.65
13	treatment B		20.19	19.05	23.24	20.83	2.17

This spreadsheet is a single tab in a 500-tab Excel file, with one tab per animal. These data are similar to the GTT data. I'd probably split it into two files with days on diet and sex in one file and the experiment values in the other. And I would drop the calculations of mean, SD, and fold-change and just focus on a file with the raw measurements.

No calculations in the data file

And related to that last example: don't do calculations in your raw data file. Even if you find Excel useful for data analysis and visualization, it's best to do those things in a separate file, and keep your raw data pure and locked down, and opened just to add or correct data.

Every time you open a data file, you introduce an opportunity for errors. So you only want to open them when you really need to.

Have you ever opened an Excel file and started typing and nothing happens, and then you realize that you need to select a cell first? Well sometimes the stuff you were typing is entered in there in some sporadic location, for your data analyst to find later. I've seen some really weird bits of text typed into data files.

Make a data dictionary

	А	В	С	D
1	name	plot_name	group	description
2	mouse	Mouse	demographic	Animal identifier
3	sex	Sex	demographic	Male (M) or Female (F)
4	sac_date	Date of sac	demographic	Date mouse was sacrificed
5	partial_inflation	Partial inflation	clinical	Indicates if mouse showed partial pancreatic inflation
6	coat_color	Coat color	demographic	Coat color, by visual inspection
7	crumblers	Crumblers	clinical	Indicates if mouse stored food in their bedding
8	diet_days	Days on diet	clinical	Number of days on high-fat diet

Create a data dictionary, describing the variables in your dataset.

I'd like to also have versions of the variable names useful in plots. It can also be useful to classify the variables or include other information about the measurement process, units, and allowed values/ranges.

Metadata is data, so put it in a spreadsheet and make it a rectangle.

No color/formatting as data

	А	В	С
1	id	date	glucose
2	101	2015-06-14	149.3
3	102	2015-06-14	95.3
4	103	2015-06-18	97.5
5	104	2015-06-18	1.1
6	105	2015-06-18	108.0
7	106	2015-06-20	149.0
8	107	2015-06-20	169.4

Never use color or formatting as data. It can be tricky to extract such information.

Rather, add an additional column, for example indicating questionable values.

Make backups

- Automatic
- ► Multiple locations (including off site)
- Consider formal version control

Be sure to backup your data. Many of us use dropbox or google drive. The key things are that backups be automatic and in multiple locations including off site.

If you need to insert an external drive for the backup to occur, it won't be done as frequently as it should. If it's not happening automatically, it won't get done as you'd like.

And off site, so in case there's a fire or other accident in your lab or home, you don't lose everything.

And consider a formal version control system like git and github. It's not ideal for large datasets, but it's good to be able to retain multiple versions of your data over time: to see what changes were made when, or to look at the state of the data on a particular date.

Use data validation

I don't have much experience with data entry, but if you're using excel to enter data, consider its data validation features, where you can indicate the allowed values in different columns, to help to catch data entry errors and to ensure consistency of variable categories.

Save as plain text

- ► Don't rely on a proprietary format
- ► Save as a comma-delimited (CSV) or tab-delimited (TSV) file

Or vertical-bar-delimited?

While Excel, OpenOffice, and Google Sheets formats are likely to be continued to be readable, I recommend saving data in non-proprietary plain-text formats, such as commadelimited or tab-delimited text files, so that future users won't have to rely on the availability of particular software tools.

Summary

- 1. Be consistent
- 2. Write dates as YYYY-MM-DD
- 3. Choose good names for things
- 4. No empty cells
- 5. One thing per cell
- 6. Make it a rectangle

- 7. Make a data dictionary
- 8. No calculations in the data file
- 9. No color/formatting as data
- 10. Make backups
- 11. Use data validation
- 12. Save as plain text

It's always good to have a summary.

Acknowledgements

Kara Woo

Jenny Bryan

Hadley Wickham

All of my past scientific collaborators

Thanks to Kara Woo, without whom this would never have become a proper paper.

And thanks to Jenny Bryan and Hadley Wickham for encouraging us.

And of course to my 20 years of collaborators and their creative uses of Excel.

Further reading

- ► Broman KW, Woo KH (2018) Data organization in spreadsheets. Am Stat 72:2-10 doi.org/gdz6cm
- ► White EP et al. (2013) Nine simple ways to make it easier to (re)use your data. Ideas Ecol Evol 6:1-10 doi.org/10.4033/iee.2013.6b.6.f
- ► Briney K (2015) Data management for researchers. Pelagic Publishing. ISBN: 9781784270117
- ► Ziemann et al (2016) Gene name errors are widespread in the scientific literature. Genome Biol 17:177 doi.org/10.1186/s13059-016-1044-7
- ► Ellis SE, Leek JT (2018) How to share data for collaboration. Am Stat 72:53-57 doi.org/10.1080/00031305.2017.1375987
- ► Wilson SL et al. (2021) Sharing biological data: why, when, and how. FEBS Letters 595:847-863 doi.org/10.1002/1873-3468.14067

Here's our paper again, plus several other papers and a book which you may find interesting.

Slides: kbroman.org/Talk_DataOrg

kbroman.org

github.com/kbroman

@kwbroman

Here's where you can find me and the slides.