Autonomous and Mobile Robotics M

14 June 2022 - Theory

Some questions may have more than one correct answers: for each question, indicate all the correct answers.

1. A constraint is said non-holonomic if:

	\bigotimes the differential relation between the coordinates is not reducible to finite form
	O finite relations between the coordinates of the system are present
	\bigcirc if differentiable/integrable relations between the coordinates of the system are present
2.	. Consider a WMR with constraint matrix equation $A(q)\dot{q}=0$, with $\dot{q}\in\mathbb{R}^N$
	\bigcirc the equation can be fully integrated if the constraints represent N pure rolling wheels (no slipping \bigotimes the allowable speeds can be generated by a matrix $G(q)$ such that $Im(G(q)) = Ker(A(q))$ \bigcirc the equation represents N non-holonomic constraints if slipping of the wheels is not allowed
3.	. The constraint introduced by a single wheel can be expressed as:
4.	. Given the constraints matrix equation in Pfaffian form $A(q)\dot{q}=0$, the admissible robot speed:
	\bigotimes is generated by a matrix $G(q)$ such that $\mathrm{Im}(G(q))=\mathrm{Ker}(A(q)), \forall q$
	\bigcirc is generated by a matrix $G(q)$ such that $\operatorname{Ker}(G(q)) = \operatorname{Im}(A(q)), \forall q$
	\bigcirc is generated by a matrix $G(q)$ such that $G(q) = A(q)^{-1}, \forall q$
5.	. In reactive navigation, the robot:
	O plans the trajectory using a map of the environment
	O updates the planned path on the based of sensor information
	\bigotimes navigates the environment on the base of the sensor information only
6.	. Examples of map-based navigation algorithms are:
	⊗ distance transform planning;
	$\bigotimes A^*$ and D^* ;
	○ bug algorithms.
7.	. In map-based navigation, the robot:
	\bigotimes plans the trajectory using a map of the environment
	 updates the planned path on the based of sensor information
	on navigates the environment on the base of the sensor information only
8.	. The state value function is defined as:
	$\bigcirc v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} S_t = s]$
	$\bigotimes v_{\pi}(s) = \mathbb{E}_{\pi}[G_t S_t = s]$
	$\bigcirc v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(s') S_t = s]$
9.	. The future discounted reward is defined as:
	$\bigotimes G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{i=0}^{\infty} \gamma^i R_{t+i+1}$

10. In Reinforcement Learning algorithms, the reward:

 $G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots = \sum_{i=0}^{\infty} R_{t+i+1}$ $G_t = R_{t-1} + \gamma R_{t-2} + \gamma^2 R_{t-3} + \dots = \sum_{i=0}^{\infty} \gamma^i R_{t-i-1}$

- must be a function of the agent state
- \bigotimes can be a function of the environment state
- \bigcirc depends on time

Autonomous and Mobile Robotics M

14 June 2022 - Exercise

The student is asked to solve the following problem.

Let us consider a fully observable and deterministic environment with 5 states $s_{\{1,\dots,5\}}$.

S1	89	83	S1	85 1
~ 1	- 2	~ 3	~ 4	- 0

- Action set : {TryLeft, TryRight}
- Rewards:
 - +2 in state s_1
 - 0 in state s_2
 - -1 in state s_4
 - +1 in all other states
- ullet Transition model:
 - $-p(s_1|s_1, \text{TryLeft}) = p(s_5|s_5, \text{TryRight}) = 1$
 - $p(s_1|s_1, \text{TryRight}) = p(s_2|s_1, \text{TryRight}) = 0.5$
 - $-p(s_1|s_2, \text{TryLeft}) = p(s_2|s_2, \text{TryLeft}) = 0.5$
 - $-p(s_2|s_2, \text{TryRight}) = p(s_3|s_2, \text{TryRight}) = 0.5$

_

- • Policy: $\pi(\text{TryLeft}|s_{\{1,...,5\}}) = \pi(\text{TryRight}|s_{\{1,...,5\}}) = 0.5$
- Discount factor $\gamma = 0.8$

Starting from an arbitrary initialisation of the state value function, compute the first iteration of the state value function evaluation provided by a Dynamic Programming algorithm assuming the random policy π .

$v_{\pi}(s_1)$	$v_{\pi}(s_2)$	$v_{\pi}(s_3)$	$v_{\pi}(s_4)$	$v_{\pi}(s_5)$

Solution:

The state value function is initialized to 0 for all the states.

$v_{\pi}(s_1)$	$v_{\pi}(s_2)$	$v_{\pi}(s_3)$	$v_{\pi}(s_4)$	$v_{\pi}(s_5)$
1.5	0.75	0.25	0	0.5