Решения на контролно теория 2 по Дискретни структури, специалност Информационни системи, първи курс, зимен семестър на 2019/2020 г.

Задача 1, Вариант А

Дефинирайте релацията "A е равномощно с B". Обяснете кои от множествата $\mathbb Z$ и $2^{\mathbb N}$ са равномощни с $N \times N$.

Задача 1, Вариант Б

Дефинирайте кога множеството A е изброимо. Обяснете кои от множествата $\mathbb Z$ и $2^{\mathbb N}$ са изброими.

Решение

А е равномощно с В \leftrightarrow съществува биекция $f:A\to B$. А е изброимо \leftrightarrow f е крайна или съществува биекция $f:\mathbb{N}\to A$. Множеството $\mathbb{N}\times\mathbb{N}$ е изброимо, \mathbb{Z} също е изброимо, от където следва, че съществува биекция м/у двете множества. $2^{\mathbb{N}}$ не е изброимо. Следователно не съществува биекция с $\mathbb{N}\times\mathbb{N}$.

Задача 2, Вариант: А

Нека А е множество с п елемента, а В е множество с к елемента.

- а) Колко са функциите $f: A \to B$?
- б) Колко са инекциите $f: A \to B$?

Задача 2, Вариант: Б

Нека А е множество с п елемента.

- а) Колко са k-елементните подмножества на A?
- б) Колко са всички подмножества на А?

Решение

|A| = n, |B| = m.

- а) Функциите f : A \to B са n^m . Подмножествата на A с k елемента са $\binom{n}{k}$
- б) Инкециите $f: A \to B$ са $\frac{m!}{(m-n)!}$, защото всяка инекция е наредена порка с различни елементи от m. Броят им е $m*(m-1)*\cdots*(m-n+1) = \frac{m!}{(m-n)!}$ Всички подмножества на A са 2^n .

Задача 3

Нека F е множество от Булеви функции.

- а) Дефинирайте [F] и определете кога F е затворено и кога пълно.
- б) Възможно ли е F да е затворено множество, ако F не съдържа функцията f(x,y)=x?
- в) Възможно ли е F да е пълно, ако F не съдържа функцията f(x,y) = y?

Решение

- а) F е затворено \leftrightarrow F = [F]. F е пълно \leftrightarrow всяка булева функция f може да бъде представена като композиция на функциите от F.
- б) F не може да е затворено множество, ако F не съдържа функцията f(x,y)=x. Това следва от критерия за затвореност. F може да е пълно, ако F не съдържа функцията f(x,y)=y. Това следва от теоремата на Бул, която твърди, че $\{\land,\lor,\neg\}$ е пълно. В множеството не се съдържа f.

Задача 4

За булевата функция f на n аргумента , различна от константата 0, покажете съвършената дизюнктивна нормална форма в общ вид. Дефинирайте, кога е самодвойнствена и кога е монотонна.

- а) Намерете тази форма за функциите (по 1 функция на вариант) $f_1 = (00011011), f_2 = (00100111).$
- б) Самодвойнствени ли са?
- в) Монотонни ли са?

Решение

 $f(x_1,x_2\dots x_n)$. СДН Φ на f е $(t_1^1\wedge t_2^1\dots\wedge t_n^1)\vee (t_1^2\wedge t_2^2\dots\wedge t_n^2)\dots\vee (t_1^k\wedge t_2^k\dots\wedge t_n^k)$, където $t_i^j\in\{x_i,\neg x_i\}$.

Двойствена функция на f наричаме функцията $f^*(x_1,\ldots,x_n) = \neg f(\neg x_1,\ldots,\neg x_n)$. Булева функция f е самодвойствена, ако f съвпада със своята двойствена функция.

Нека $\alpha=(a_1,a_2\dots a_n)$ и $\beta=(b_1,b_2\dots b_n)$. Казваме, че $\alpha\leq\beta\leftrightarrow a_1\leq b_1\dots a_n\leq b_n$. Функцията f е монотонна, ако: $\alpha\leq\beta\to f(\alpha)\leq f(\beta)$. $f_1=(00011011)$ и $f_2=(00100111)$. Представяме ги в таблица:

\boldsymbol{x}	y	z	$f_1(x,y,z)$	$f_2(x,y,z)$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

а) СДНФ:

$$f_1(x, y, z) = (\neg x \land y \land z) \lor (x \land \neg y \land \neg z) \lor (x \land y \land \neg z) \lor (x \land y \land z)$$

$$f_2(x, y, z) = (\neg x \land y \land \neg z) \lor (x \land \neg y \land z) \lor (x \land y \land \neg z) \lor (x \land y \land z)$$

б) Функциите не са самодвойствени.

$$f_1(0,1,0) \neq \neg f_1(1,0,1)$$

 $f_2(0,1,0) \neq \neg f_2(1,0,1)$

в) Функциите не са монотонни.

$$f_1(1,0,0) \not \leq f_1(1,0,1)$$
, но $(1,0,0) \leq (1,0,1)$
 $f_2(0,1,0) \not \leq f_2(0,1,1)$, но $(0,1,0) \leq (0,1,1)$