Automi e Linguaggi Formali – A.A. 2016/17

Appello 28.6.17 Parte II – Versione 1

Esercizio 1. (a) Descrivete in italiano il linguaggio accettato dalla macchina di Turing *M* definita dalla seguente tabella di transizione:

	0	1	X	В
q_0	(q_1, X, R)	(q_2, X, R)	(q_0, X, R)	
q_1	$(q_1, 0, R)$	(q_3, X, L)	(q_1, X, R)	(q_4, B, R)
q_2	(q_3, X, L)	$(q_2, 1, R)$	(q_2, X, R)	(q_4, B, R)
q_3	$(q_3, 0, L)$	$(q_3, 1, L)$	(q_3, X, L)	(q_0, B, R)
$*q_4$				

(b) Scrivete tre esempi di stringhe accettate dalla TM M, e tre esempi di stringhe non accettate da M.

Soluzione: (a) La TM accetta il linguaggio costituito dalle stringhe con diverso numero di 0 e 1. (b) Esempi di stringhe accettate sono 0, 110, 01011; esempi di stringhe non accettate sono 10, 0011, 100011.

Esercizio 2. Definite una macchina di Turing M per il linguaggio $\{a^{n-1}b^mc^n \mid n > 0, m \ge 0\}$. Definite la specifica formale della TM M, riportando δ sia come tabella che come grafo di transizione.

Soluzione (una tra le possibili):

	a	b	c	X	В
q_0	(q_1, X, R)	$(q_0, \mathbf{b}, \mathbf{R})$	(q_4, c, R)		
q_{I}	$(q_1, \mathbf{a}, \mathbf{R})$	$(q_1, \mathbf{b}, \mathbf{R})$	(q_1, c, R)	(q_2, X, L)	(q_2, B, L)
q_2			(q_3, X, L)		
q_3	$(q_3, \mathbf{a}, \mathbf{L})$	(q_3, b, L)	(q_3, c, L)	(q_0, X, R)	
q_4				(q_4, X, R)	(q_5, B, R)
*q ₅					

Esercizio 3. Scrivete le descrizioni istantanee della TM *M* definita nell'Esercizio 2 quando il nastro di input contiene: (a) bbc (b) aacc (c) abbcc.

Soluzione:

(a) $q_0bbc \mid -bq_0bc \mid -bbcq_4B \mid -bbcBq_5B$ termina accettando l'input (b) $q_0aacc \mid -Xq_1acc \mid -Xaq_1cc \mid -Xacq_1c \mid -Xacq_1b \mid -Xacq_2c \mid -Xaq_3cX \mid -Xq_3acX \mid -q_3XacX \mid -Xq_0acX \mid -XXq_1cX \mid -XXcq_1X \mid -XXq_2cX \mid -Xq_3XXX \mid -XXq_0XX$ termina senza accettare l'input

(c) $q_0abbcc \mid -Xq_1bbcc \mid -Xbq_1bcc \mid -Xbbq_1cc \mid -Xbbcq_1c \mid -Xbbcq_1c \mid -Xbbcq_2c \mid -Xbbq_3cX \mid -Xbq_3bcX \mid -Xq_3bbcX \mid -q_3XbbcX \mid -Xq_0bbcX \mid -Xbq_0bcX \mid -Xbbq_0cX \mid -Xbbcq_4X \mid -XbbcXq_4B \mid -XbbcXBq_5B termina accettando l'input$

Esercizio 4. Data la TM *M* definita nell'Esercizio 2, riportate (e descrivete) la sua rappresentazione binaria seguendo la codifica presentata a lezione.

Soluzione: data la tabella di transizione definita nell'esercizio 2, codifichiamo ogni $\delta(q_i, X_i) = (q_k, X_l, D_m)$ come $0^{i+1}10^i10^k10^l10^m$.

Gli stati saranno quindi codificati come q_0 =0, q_1 =00, ..., q_5 =00000; i simboli sono codificati come X_1 =a=0, X_2 =b=00, ..., X_5 =B=00000; le direzioni come D_1 =R=0 e D_2 =L=00.

La codifica della prima transizione C_1 , definita come $\delta(q_0, a) = (q_1, X, R)$, sarà perciò 0101001000010, quella di C_2 definita da $\delta(q_0, b) = (q_0, b, R)$ sarà 01001010010, etc. L'intera TM viene codificata concatenando tutti i codici delle transizioni separati da due simboli 1, cioè: C_1 11 C_2 11... C_{n-1} 11 C_n .

Quindi avremo ad es. 01010010000101101001010010...

Esercizio 5. (a) Date la definizione del linguaggio universale L_u e della macchina di Turing Universale U. (b) A quale classe di linguaggi appartiene L_u (indicate la classe e datene la definizione)?

Soluzione: (a) Il linguaggio universale L_u è l'insieme delle stringhe binarie che codificano una coppia (M, w) dove $w \in L(M)$. Definiamo la TM U, tale che $L_u = L(U)$, come la "TM universale". (b) Il linguaggio L_u è RE ma non ricorsivo. I linguaggi RE non ricorsivi sono quelli per cui ho garanzia che la TM si arresterà se l'input è nel linguaggio, ma nel caso in cui non lo sia potrebbe proseguire in eterno.

Esercizio 6. (a) Date la definizione formale della classe dei problemi NP-hard. (b) A quale classe di problemi appartiene il problema del commesso viaggiatore (TSP)?

Soluzione: (a) Un problema è NP-completo se è definito da un linguaggio L tale che: (1) L è in NP, e (2) per ogni altro L' in NP esiste una riduzione polinomiale di L' a L. Un problema si dice NP-arduo se è possibile dimostrare la sola condizione (2) della definizione di NP-completezza, mentre non si può dimostrare la (1). Di solito ci riferiamo a questa classe di problemi come "intrattabili".

(b) Il problema del commesso viaggiatore (TSP) appartiene alla classe dei problemi NP, cioè a quei problemi risolvibili in tempo polinomiale da una macchina di Turing non deterministica.

Esercizio 7. Dite quali tra le seguenti affermazioni è corretta:

- (a) I linguaggi che possiamo accettare usando una macchina di Turing sono detti ricorsivi.
- (b) L'espressione $(x \land \neg y) \lor (\neg x \land z) \lor (x \land \neg z)$ è in 2-CNF.

- (c) Il linguaggio L_e è non ricorsivamente enumerabile.
- (d) Il problema della soddisfacibilità di espressioni booleane (SAT) è NP-completo.
- (e) Il problema di corrispondenza di Post è NP-hard.

Soluzione: (a) non corretta (sono detti ricorsivamente enumerabili); (b) non corretta (le clausole devono essere in OR e collegate tra loro da soli AND; (c) corretta; (d) corretta; (e) non corretta (è un problema indecidibile).