MATH 230B

Name: Quin Darcy Instructor: Dr. Ricciotti

on \mathbb{R} .

1. Let $A_n \subseteq \mathbb{R}$ satisfy $A_{n+1} \subseteq A_n$ for all $n \in \mathbb{N}$ and denote $A = \bigcap_{n \in \mathbb{N}} A_n$. Prove that the sequence of indicator functions $f_n = 1_{A_n}$ converges pointwise to the function $f = 1_A$

Proof. Let $x \in \mathbb{R}$. Then either $x \in A$ or $x \notin A$. If $x \in A$, then $x \in \bigcap_{n \in \mathbb{N}} A_n$ which implies that for all $n \in \mathbb{N}$, $x \in A_n$. Thus $f_n(x) = 1$ for all $n \in \mathbb{N}$. The final implication is that for N = 1 and for $n \geq N$, then $|f_n(x) - 1| = 0 < \varepsilon$, for all $\varepsilon > 0$. Therefore $\lim_{n \to \infty} f_n(x) = 1$ for all $x \in A$.

If $x \notin A$, then $x \notin \bigcap_{n \in \mathbb{N}} A_n$ which implies that for some $m \geq 1$, $x \notin A_m$. Thus for all $n \geq m$, $x \in A_n$, and so $f_n(x) = 0$ for all $n \geq m$. Letting $\varepsilon > 0$, N = m, and $n \geq N$, then $|f_n(x) - 0| < \varepsilon$. Hence $\lim_{n \to \infty} f_n(x) = 0$ for all $x \notin A$. Therefore

$$\lim_{n \to \infty} f_n(x) = f.$$

2. Discuss the pointwise/uniform convergence on [0,1] of the sequence of functions

$$f_n(x) = \frac{nx}{1 + n^3 x^2}.$$

Solution. Letting $x \in [0, 1]$, then

$$\lim_{n \to \infty} \frac{nx}{1 + n^3 x^2} = \lim_{n \to \infty} \frac{n}{1 + n^3 x^2} \cdot x$$

$$= \lim_{n \to \infty} \frac{1/n^2}{1/n^3 + x^2} \cdot x$$

$$= \frac{0}{0 + x^2} \cdot x$$

$$= 0.$$

This shows that the sequence $\{f_n(x)\}$ converges for all $x \in [0,1]$ and thus $\{f_n\}$ converges pointwise on [0,1] to f=0.

Let $x \in [0, 1]$ and $n \in \mathbb{N}$, then

$$\lim_{t \to x} \frac{f_n(t) - f_n(x)}{t - x} = \lim_{t \to x} \frac{\frac{n(t - x)}{(1 + n^3 x^2)(1 + n^3 t^2)}}{t - x}$$

$$= \lim_{t \to x} \frac{n}{(1 + n^3 x^2)(1 + n^3 t^2)}$$

$$= \frac{n}{(1 + n^3 x^2)^2} \in \mathbb{R}.$$

Due Date: 04/15/2022

Assignment: Homework 05

MATH 230B Darcy

Thus $f_n(x)$ is differentiable over [0, 1]. With this we can solve for the maximum, if it exists, of f_n

$$f'_n(x) = 0 \Leftrightarrow \frac{n(1 - n^3 x^2)}{(1 + n^3 x^2)^2} = 0$$
$$\Leftrightarrow 1 - n^3 x^2 = 0$$
$$\Leftrightarrow x = \pm \frac{1}{\sqrt{n^3}}.$$

Thus

$$\sup_{x \in [0,1]} \{ f_n(x) - 0 \} = f(1/\sqrt{n^3}) = \frac{n(1/\sqrt{n^3})}{1 + n^3(1/\sqrt{n^3})^2} = \frac{1}{2\sqrt{n}}.$$

In summary, we have that $\{f_n\}$ converges pointwise to f=0 and that

$$\lim_{n \to \infty} \sup \{ f_n(x) - f \} = \lim_{n \to \infty} \frac{1}{2\sqrt{n}} = 0.$$

By Theorem 7.9 (Rudin), $\{f_n\}$ converges uniformly to f=0.

- 3. Let $f:[a,b]\to\mathbb{R}$ be a function and let $f_n\in C[a,b]$ for all $n\in\mathbb{N}$. Assume that $\{x_n\}$ is a sequence that converges to $x\in[a,b]$.
 - (a) Prove that, if $\{f_n\}_n$ converges uniformly to f on [a, b], then the numerical sequence $\{f_n(x_n)\}_n$ converges to f(x).

Proof. Let $\varepsilon > 0$. Since $\{f_n\}$ converges uniformly, then there exists N_1 such that for all $n > N_1$, we have

$$|f_n(y) - f(y)| < \frac{\varepsilon}{2}$$

for all $y \in [a, b]$. It also follows from the uniform convergence (and that each f_n is continuous on [a, b]) that f is continuous on [a, b], by Theorem 7.12 (Rudin). Specifically, f is continuous at x. This means that for some $\delta > 0$ and any $y \in [a, b]$ with $|y - x| < \delta$, then $|f(y) - f(x)| < \varepsilon/2$. Moreover, since $x_n \to x$, then there exists N_2 such that for all $n > N_2$, we have $|x_n - x| < \delta$. Letting $N = \max\{N_1, N_2\}$, then for any n > N it follows that

$$|x_n - x| < \delta \Rightarrow |f(x_n) - f(x)| < \frac{\varepsilon}{2}$$

and since $n > N > N_1$, then

$$|f_n(x_n) - f(x_n)| < \frac{\varepsilon}{2}.$$

Finally, from the triangle inequality, we get that

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| < \varepsilon.$$

Therefore $\lim_{n\to\infty} f_n(x_n) = f(x)$.

MATH 230B Darcy

(b) Is the same conclusion true if $\{f_n\}_n$ converges to f pointwise on [a,b]?

Solution. Let $\{f_n\}$ be a sequence of functions defined as

$$f_n(x) = nx^n(1-x)$$

for each $n \in \mathbb{N}$, where $f_n : [0,1] \to \mathbb{R}$. For each n, f_n is continuous. We also have that for all $x \in (0,1)$

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} nx^n (1 - x) = 0.$$

The last equality holds since if we let $a_n = nx^n$, where $x \in (0,1)$, then

$$\lim_{n \to \infty} \sup \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \sup \left| \frac{(n+1)x^{n+1}}{nx^n} \right|$$

$$= \lim_{n \to \infty} \sup \left(\frac{n+1}{n} \right) |x|$$

$$= \lim_{n \to \infty} \sup \left(\frac{1+\frac{1}{n}}{1} \right) |x|$$

$$= |x| < 1.$$

Thus $\sum_{n=1}^{\infty} a_n$ converges which implies that $a_n = nx^n \to 0$ as $n \to \infty$. Additionally, $f_n(0) = 0 = f_n(1)$. Now define $x_n = 1 - 1/n$. Then $\lim_{n \to \infty} x_n = x = 1$. As stated before $f_n(x) = f_n(1) = 0$. However,

$$\lim_{n \to \infty} f_n(x_n) = \lim_{n \to \infty} n \left(1 - \frac{1}{n} \right)^n \left(\frac{1}{n} \right)$$
$$= \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$$
$$= \frac{1}{n}.$$

In summary we have a sequence of continuous functions $\{f_n\}$ which converge pointwise to f = 0 and we have a sequence x_n which converges to $x \in [0, 1]$. However, $\lim_{n\to\infty} f_n(x_n) \neq f(x)$.

4. Let g be a continuous function on \mathbb{R} . Compute (with proof) the following limit

$$\lim_{n\to\infty} \int_0^1 \frac{nxg(x)}{1+n^2x} dx.$$

Solution. Let $x \in [0,1]$ be fixed. Then

$$\lim_{n\to\infty}\frac{nx}{1+n^2x}=\lim_{n\to\infty}\frac{x}{\frac{1}{n}+nx}=0.$$

Thus if

$$f_n(x) = \frac{nx}{1 + n^3 x^2}$$

MATH 230B Darcy

then $\{f_n\}$ converges to f=0 pointwise over [0,1]. Let $n \in \mathbb{N}$ and $x_1, x_2 \in [0,1]$ with $x_1 < x_2$. Then

$$n^{3}x_{1}x_{2} = n^{3}x_{1}x_{2}$$

$$\Leftrightarrow nx_{1} + n^{3}x_{1}x_{2} < nx_{2} + n^{3}x_{1}x_{2}$$

$$\Leftrightarrow nx_{1}(1 + n^{2}x_{2}) < nx_{2}(1 + n^{2}x_{1})$$

$$\Leftrightarrow \frac{nx_{1}}{1 + n^{2}x_{1}} < \frac{nx_{2}}{1 + n^{2}x_{2}}.$$

This proves that

$$f_n(x) = \frac{nx}{1 + n^2x}$$

is strictly increasing over [0,1] for all $n \in \mathbb{N}$. It follows that for x=1, $f_n(x)=\sup_{x\in[0,1]}f_n(x)$ since f_n is strictly increasing and is continuous over a compact interval for all $n\in\mathbb{N}$. Thus

$$\lim_{n \to \infty} \sup \{ f_n(x) - f \} = \lim_{n \to \infty} \frac{n}{1 + n^2} = 0.$$

Therefore $\{f_n\}$ converges uniformly to f=0. Now we note that since g(x) is continuous over $[0,1] \subset \mathbb{R}$, then g is bounded by some $M \in \mathbb{R}$. Thus

$$\left| \lim_{n \to \infty} \int_0^1 \frac{nxg(x)}{1 + n^2 x} dx \right| \le \left| \lim_{n \to \infty} \int_0^1 \frac{nxM}{1 + n^2 x} dx \right|$$

$$= \left| M \int_0^1 \lim_{n \to \infty} \frac{nx}{1 + n^2 x} dx \right|$$

$$= \left| M \int_0^1 0 dx \right|$$

$$= 0.$$

Therefore

$$\lim_{n \to \infty} \int_0^1 \frac{nxg(x)}{1 + n^2x} dx = 0.$$

5. Let $\{f_n\}_n$ be a sequence of functions with domain [0,1]. Assume that there exists L>0 such that

$$|f_n(x) - f_n(y)| \le L|x - y|$$
 for all $x, y \in [0, 1], n \in \mathbb{N}$.

Prove that if $\{f_n\}_n$ converges pointwise to f on [0,1], then $\{f_n\}_n$ converges uniformly to f on [0,1].

Proof.

4