Derivadas - Introdução

Um ciclista fez um pedal no fim de semana e ao retornar para sua casa, o aplicativo usado para medir a altitude em função da distância percorrida indicava o gráfico ilustrado na Figura 1.

Tempo (min)	Posição (km)
25	10
55	15
75	25
90	30
190	40
210	50
235	60

Tabela 1

Ainda com base nas informações do aplicativo foi possível obter as informações apresentadas na Tabela 1.

Sabendo que a *velocidade média* é dada por $v_m=\frac{\Delta S}{\Delta t}$, onde ΔS é a variação do espaço e Δt é a variação do tempo, preencha a Tabela 2, usando a Tabela 1.

Tabela1

Tabelal			
Tempo (min)	Posição (km)		
25	10		
55	15		
75	25		
90	30		
190	40		
210	50		
235	60		

Tabela 2

Intervalo (min)	Δt (min)	Δt (h)	$\Delta S(km)$	Velocidade Média (km/h)
[0,25]				
50.5.5.3				
[25,55]				
[55,75]				
[55,75]				
[75,90]				
[90,190]				
[100.010]				
[190,210]				
[210,235]				
[210,233]				

Qual foi a velocidade média do pedal?

2. Considere agora que temos ainda as seguintes informações fornecidas na Tabela 3, onde $t_0=150min$ e que o tempo final $t_f=t_0+\Delta t$. Determine a velocidade média para os intervalos de tempo cada vez menores, conforme indicados na Tabela 3.

Tabela 3 – Velocidade média para pequenas variações no tempo

t_f (min)	$\Delta t \text{ (min)}$	Δt (h)	ΔS (Km)	v_m (km/h)
154			0,43	
152			0,21	
151			0,1	
150,5			0,048	
150,25			0,0235	
150,1			0,0091	
150,01			0,000901	

A seguir, responda:

- a) O que você pôde observar com relação aos valores Δt ?
- b) Qual o valor que você acredita que seja a velocidade no instante $t = 150 \, min$? Por quê?

3. Assumindo que $f(x) = 2x^2 - 8x + 3$ e $x_0 = 1$, calcule a taxa média de variação $\Delta f / \Delta x$, completando a tabela 4.

Tabela 4

$x_0 + \Delta x$	Δχ	$f(x_0 + \Delta x)$	$\Delta f = f(x_0 + \Delta x) - f(x_0)$	$\Delta f / \Delta x$
1,5				
1,2				
1,1				
1,01				
1,001				

- a) O que você pôde observar com relação aos valores Δx ?
- b) O que você acha que ocorre com a taxa de variação no instante em que $x_0 = 1$? Por quê?

<u>Definição</u>: A **derivada de uma função** f **no ponto** em que $x = x_0$, denotada por $f'(x_0)$, é definida como sendo o limite da taxa média de variação, ou seja,

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

se este limite existir.

c) Considerando a definição acima e os valores obtidos na Tabela 4, o que você acredita que seja a derivada de f em $x_0 = 1$? Por quê?

d. Se você considerar um x_0 qualquer (genérico), o que encontraria por $f'(x_0)$?

Pela definição de derivada num ponto, temos que: $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{2(x_0 + \Delta x)^2 - 8(x_0 + \Delta x) + 3 - (2x_0^2 - 8x + 3)}{\Delta x}$$

$$\Rightarrow f'(x_0) = \lim_{\Delta x \to 0} \frac{2\left(x_0^2 + 2x_0\Delta x + (\Delta x)^2\right) - 8\Delta x - 2x_0^2}{\Delta x}$$

$$\Rightarrow f'(x_0) = \lim_{\Delta x \to 0} \frac{4x_0 \Delta x + 2(\Delta x)^2 - 8\Delta x}{\Delta x}$$

$$\Rightarrow f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta x \left(4x_0 + 2(\Delta x) - 8\right)}{\Delta x}$$

$$\Rightarrow f'(x_0) \lim_{\Delta x \to 0} (4x_0 + 2(\Delta x) - 8) \implies f'(x_0) = 4x_0 - 8$$

Interpretação Cinemática da Derivada

Velocidade Média:
$$v_m = \frac{\Delta s}{\Delta t}$$
 \Rightarrow $v_m = \frac{s(t_0 + \Delta t) - s(t_0)}{\Delta t}$

Velocidade Instantânea:

$$v\left(t_{0}\right) = \lim_{\Delta t \to 0} v_{m}\left(t_{0}\right) = \lim_{\Delta t \to 0} \frac{s\left(t_{0} + \Delta t\right) - s\left(t_{0}\right)}{\Delta t} \Rightarrow v\left(t_{0}\right) = s'\left(t_{0}\right) = \frac{ds}{dt}\bigg|_{t=t_{0}}$$

Aceleração Média:
$$a_m = \frac{\Delta v}{\Delta t} \Rightarrow a_m = \frac{v(t_0 + \Delta t) - v(t_0)}{\Delta t}$$

Aceleração Instantânea:

$$a(t_0) = \lim_{\Delta t \to 0} a_m(t_0) = \lim_{\Delta t \to 0} \frac{v(t_0 + \Delta t) - v(t_0)}{\Delta t} \Rightarrow a = v'(t_0) = s''(t_0) = \frac{d^2s}{dt^2} \Big|_{t=t_0}$$

Exemplos:

- 1. Duas particulas partem da origem do eixo x no instante t=0 e se move ao longo desse eixo de acordo com as equações $x_1=t^2-2t\,$ e $x_2=8t-t^2,\,x_1$ e x_2 onde são medidos em metros e t é medido em segundos, pregunta-se:
- a) Quais são as velocidades das partíclulas no instante em que elas têm a mesma posição.
- b) Quais são as velocidades das partíclulas no instante em que elas têm a mesma posição.

Objetivo do item a: $v_1(t_0)$ e $v_2(t_0)$ para $x_1=x_2$.

Entrando t tal que para $x_1 = x_2$:

$$t^2 - 2t = 8t - t^2$$

$$\implies 2t^2 - 10t = 0$$

$$\Rightarrow$$
 $2t(t-5)=0$

$$\Rightarrow$$
 $t = 0$ ou $t = 5$

Entrando as velocidades, usando a definição de derivada num ponto:

$$v_1(t_0) = \lim_{\Delta t \to 0} \frac{x_1(t_0 + \Delta t) - x_1(t_0)}{\Delta t}$$

$$v_1(t_0) = \lim_{\Delta t \to 0} \frac{(t_0 + \Delta t)^2 - 2(t_0 + \Delta t) - (t_0^2 - 2t_0)}{\Delta t}$$

$$v_1(t_0) = \lim_{\Delta t \to 0} \frac{t_0^2 + 2t_0\Delta t + (\Delta t)^2 - 2t_0 - 2\Delta t - t_0^2 + 2t_0}{\Delta t}$$

$$v_1(t_0) = \lim_{\Delta t \to 0} \frac{2t_0 \Delta t + (\Delta t)^2 - 2\Delta t}{\Delta t}$$

$$v_1(t_0) = \lim_{\Delta t \to 0} \frac{\Delta t \left(2t_0 + \Delta t - 2\right)}{\Delta t}$$

$$v_1(t_0) = \lim_{\Delta t \to 0} (2t_0 + \Delta t - 2)$$

$$v_1(t_0) = 2t_0 - 2$$
 \longrightarrow $v_1(5) = 8 m/s$

$$v_1(5) = 8 \, m/s$$

Entrando as velocidades, usando a definição de derivada num ponto:

$$v_2(t_0) = \lim_{\Delta t \to 0} \frac{x_2(t_0 + \Delta t) - x_2(t_0)}{\Delta t}$$

$$v_2(t_0) = \lim_{\Delta t \to 0} \frac{8(t_0 + \Delta t) - (t_0 + \Delta t)^2 - (8t_0 - t_0^2)}{\Delta t}$$

$$v_2(t_0) = \lim_{\Delta t \to 0} \frac{8t_0 + 8\Delta t - t_0^2 - 2t_0\Delta t - (\Delta t)^2 - 8t_0 + t_0^2}{\Delta t}$$

$$v_2(t_0) = \lim_{\Delta t \to 0} \frac{8\Delta t - 2t_0 \Delta t - (\Delta t)^2}{\Delta t}$$

$$v_2(t_0) = \lim_{\Delta t \to 0} \frac{\Delta t (8 - 2t_0 - \Delta t)}{\Delta t}$$

$$v_2(t_0) = \lim_{\Delta t \to 0} (8 - 2t_0 - \Delta t)$$

$$v_2(t_0) = 8 - 2t_0$$

$$v_2(t_0) = 8 - 2t_0$$
 \Rightarrow $v_2(10) = -2 m/s$

b. Quais são as acelerações das partíclulas no instante em que elas têm a mesma velocidade.

Objetivo do item : $a(t_0)$ e $a_2(t_0)$ para $v_1(t_0) = v_2(t_0)$.

$$\begin{cases}
v_1(t_0) = 2t_0 - 2 \\
v_2(t_0) = 8 - 2t_0
\end{cases}$$

$$v_1(t_0) = v_2(t_0) \\
2t_0 - 2 = 8 - 2t_0 \\
4t_0 = 10 \\
t_0 = \frac{5}{2}s$$

Temos que:

$$a_{1}(t_{0}) = \lim_{\Delta t \to 0} \frac{v_{1}(t_{0} + \Delta t) - v_{1}(t_{0})}{\Delta t}$$

$$a_{1}(t_{0}) = \lim_{\Delta t \to 0} \frac{2(t_{0} + \Delta t) - 2 - (2t_{0} - 2)}{\Delta t}$$

$$a_{1}(t_{0}) = \lim_{\Delta t \to 0} \frac{2t_{0} + 2\Delta t - 2 - 2t_{0} + 2}{\Delta t}$$

$$2\Delta t$$

$$a_1(t_0) = \lim_{\Delta t \to 0} \frac{2\Delta t}{\Delta t} = \lim_{\Delta t \to 0} 2 \quad \Rightarrow \quad a_1(t_0) = 2m/s^2 \quad \Rightarrow \quad a_1\left(\frac{5}{2}\right) = 2m/s^2$$

b. Quais são as acelerações das partíclulas no instante em que elas têm a mesma velocidade.

Objetivo do item : $a(t_0)$ e $a_2(t_0)$ para $v_1(t_0) = v_2(t_0)$.

$$a_2(t_0) = \lim_{\Delta t \to 0} \frac{v_2(t_0 + \Delta t) - v_2(t_0)}{\Delta t}$$

$$a_2(t_0) = \lim_{\Delta t \to 0} \frac{8 - 2(t_0 + \Delta t) - (8 - 2t_0)}{\Delta t}$$

$$a_2(t_0) = \lim_{\Delta t \to 0} \frac{8 - 2t_0 - 2\Delta t - 8 + 2t_0}{\Delta t}$$

$$a_2(t_0) = \lim_{\Delta t \to 0} \frac{-2\Delta t}{\Delta t}$$

$$a_2(t_0) = \lim_{\Delta t \to 0} -2$$

$$a_2(t_0) = -2m/s^2$$

$$a_2\left(\frac{5}{2}\right) = -2\text{m/s}^2$$