AUTO

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.0a [May-20-2017]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 100 compute nodes are available.

Program started at Sun Aug 13 05:22:37 2017

Program finished at Sun Aug 13 06:46:42 2017 [Runtime:0000:01:24:05]

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 2809592585

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

* = migration free to vary, Thetas are on diagonal

1

d = row population split off column population, D = split and then migration

Population

1 Romanshorn 0

Order of parameters:

1 Θ_1 <displayed>

Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy: Bayesian inference

Exponential Distribution -Population size estimation:

Proposal distributions for parameter

Parameter Proposal Theta Metropolis sampling M Metropolis sampling Divergence Metropolis sampling Divergence Spread Metropolis sampling Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Delta Prior Minimum Mean Maximum Bins UpdateFreq Theta -11 Uniform 0.000000 0.050 0.100 0.010 1500 0.20000

[-1 -1 means priors were set globally]

Markov chain settings: Long chain

Number of chains 50000 Recorded steps [a] 200 Increment (record every x step [b] Number of concurrent chains (replicates) [c]

20000000 Visited (sampled) parameter values [a*b*c] 10000 Number of discard trees per chain (burn-in)

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

> 1000000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: infile.1.0 NO

Haplotyping is turned on:

Output file: outfile_1.0_0.5

Posterior distribution raw histogram file: bayesfile

Raw data from the MCMC run: bayesallfile_1.0_0.5 Print data: No

Print genealogies [only some for some data type]: None

Data summary

Data file: infile.1.0
Datatype: Sequence data
Number of loci: 100

Mutationmodel:

Mutation	model:			
Locus S	ublocus	Mutationmodel	Mutationmodel parameters	
1	1	Jukes-Cantor	[Basefreq: =0.25]	
2	1	Jukes-Cantor	[Basefreq: =0.25]	
3	1	Jukes-Cantor	[Basefreq: =0.25]	
4	1	Jukes-Cantor	[Basefreq: =0.25]	
5	1	Jukes-Cantor	[Basefreq: =0.25]	
6	1	Jukes-Cantor	[Basefreq: =0.25]	
7	1	Jukes-Cantor	[Basefreq: =0.25]	
8	1	Jukes-Cantor	[Basefreq: =0.25]	
9	1	Jukes-Cantor	[Basefreq: =0.25]	
10	1	Jukes-Cantor	[Basefreq: =0.25]	
11	1	Jukes-Cantor	[Basefreq: =0.25]	
12	1	Jukes-Cantor	[Basefreq: =0.25]	
13	1	Jukes-Cantor	[Basefreq: =0.25]	
14	1	Jukes-Cantor	[Basefreq: =0.25]	
15	1	Jukes-Cantor	[Basefreq: =0.25]	
16	1	Jukes-Cantor	[Basefreq: =0.25]	
17	1	Jukes-Cantor	[Basefreq: =0.25]	
18	1	Jukes-Cantor	[Basefreq: =0.25]	
19	1	Jukes-Cantor	[Basefreq: =0.25]	
20	1	Jukes-Cantor	[Basefreq: =0.25]	
21	1	Jukes-Cantor	[Basefreq: =0.25]	
22	1	Jukes-Cantor	[Basefreq: =0.25]	
23	1	Jukes-Cantor	[Basefreq: =0.25]	
24	1	Jukes-Cantor	[Basefreq: =0.25]	
25	1	Jukes-Cantor	[Basefreq: =0.25]	
26	1	Jukes-Cantor	[Basefreq: =0.25]	
27	1	Jukes-Cantor	[Basefreq: =0.25]	
28	1	Jukes-Cantor	[Basefreq: =0.25]	
29	1	Jukes-Cantor	[Basefreq: =0.25]	
30	1	Jukes-Cantor	[Basefreq: =0.25]	
31	1	Jukes-Cantor	[Basefreq: =0.25]	
32	1	Jukes-Cantor	[Basefreq: =0.25]	
33	1	Jukes-Cantor	[Basefreq: =0.25]	
34	1	Jukes-Cantor	[Basefreq: =0.25]	

35	1	Jukes-Cantor	[Pagefreg: -0.25]
36	1 1	Jukes-Cantor	[Basefreq: =0.25] [Basefreq: =0.25]
37	1	Jukes-Cantor	[Basefreq: =0.25]
38	1	Jukes-Cantor	[Basefreq: =0.25]
39	1	Jukes-Cantor	[Basefreq: =0.25]
40	1	Jukes-Cantor	[Basefreq: =0.25]
41	1	Jukes-Cantor	[Basefreq: =0.25]
42	1	Jukes-Cantor	[Basefreq: =0.25]
43	1	Jukes-Cantor	[Basefreq: =0.25]
44	1	Jukes-Cantor	[Basefreq: =0.25]
45	1	Jukes-Cantor	[Basefreq: =0.25]
46	1	Jukes-Cantor	[Basefreq: =0.25]
47	1	Jukes-Cantor	[Basefreq: =0.25]
48	1	Jukes-Cantor	[Basefreq: =0.25]
49	1	Jukes-Cantor	[Basefreq: =0.25]
50	1	Jukes-Cantor	[Basefreq: =0.25]
51	1	Jukes-Cantor	[Basefreq: =0.25]
52	1	Jukes-Cantor	[Basefreq: =0.25]
53	1	Jukes-Cantor	[Basefreq: =0.25]
54	1	Jukes-Cantor	[Basefreq: =0.25]
55	1	Jukes-Cantor	[Basefreq: =0.25]
56	1	Jukes-Cantor	[Basefreq: =0.25]
57	1	Jukes-Cantor	[Basefreq: =0.25]
58	1	Jukes-Cantor	[Basefreq: =0.25]
59	1	Jukes-Cantor	[Basefreq: =0.25]
60	1	Jukes-Cantor	[Basefreq: =0.25]
61	1	Jukes-Cantor	[Basefreq: =0.25]
62	1	Jukes-Cantor	[Basefreq: =0.25]
63	1	Jukes-Cantor	[Basefreq: =0.25]
64	1	Jukes-Cantor	[Basefreq: =0.25]
65	1	Jukes-Cantor	[Basefreq: =0.25]
66	1	Jukes-Cantor	[Basefreq: =0.25]
67	1	Jukes-Cantor	[Basefreq: =0.25]
68	1	Jukes-Cantor	[Basefreq: =0.25]
69	1	Jukes-Cantor	[Basefreq: =0.25]
70	1	Jukes-Cantor	[Basefreq: =0.25]
71	1	Jukes-Cantor	[Basefreq: =0.25]
72	1	Jukes-Cantor	[Basefreq: =0.25]
73	1	Jukes-Cantor	[Basefreq: =0.25]
74	1	Jukes-Cantor	[Basefreq: =0.25]
75	1	Jukes-Cantor	[Basefreq: =0.25]
76	1	Jukes-Cantor	[Basefreq: =0.25]
77	1	Jukes-Cantor	[Basefreq: =0.25]
78	1	Jukes-Cantor	[Basefreq: =0.25]
79	1	Jukes-Cantor	[Basefreq: =0.25]

					AUTO 5
I	80	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	81	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	82	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	83	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	84	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	85	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	86	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	87	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	88	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	89	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	90	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	91	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	92	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	93	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	94	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	95	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	96	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	97	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	98	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	99	1	Jukes-Cantor	[Basefreq: =0.25]	
ı	100	1	Jukes-Cantor	[Basefreq: =0.25]	
	Sites per	locus			
	Locus		Sites		
	1	1	0000		
1	_				

Locus	Sites
1	10000
2	10000
3	10000
4	10000
5	10000
6	10000
7	10000
8	10000
9	10000
10	10000
11	10000
12	10000
13	10000
14	10000
15	10000
16	10000
17	10000
18	10000
19	10000
20	10000

21	10000	
22	10000	
23	10000	
24	10000	
25	10000	
26	10000	
27	10000	
28	10000	
29	10000	
30	10000	
31	10000	
32	10000	
33	10000	
34	10000	
35	10000	
36	10000	
37	10000	
38	10000	
39	10000	
40	10000	
41	10000	
42	10000	
43	10000	
44	10000	
45	10000	
46	10000	
47	10000	
48	10000	
49	10000	
50	10000	
51	10000	
52	10000	
53	10000	
54	10000	
55	10000	
56	10000	
57	10000	
58	10000	
59	10000	
60	10000	
61	10000	
62	10000	
63	10000	
64	10000	
65	10000	

66	10000				
67	10000				
68	10000				
69	10000				
70	10000				
71	10000				
72	10000				
73	10000				
74	10000				
75	10000				
76	10000				
77	10000				
78	10000				
79	10000				
80	10000				
81	10000				
82	10000				
83	10000				
84	10000				
85	10000				
86	10000				
87	10000				
88	10000				
89	10000				
90	10000				
91	10000				
92	10000				
93	10000				
94	10000				
95	10000				
96	10000				
97	10000				
98	10000				
99	10000				
100	10000				
	e variation and probab				
Locus S	Sublocus Region type	Rate of change	Probability	Patch size	
1	1 1	1.000	1.000	1.000	
2	1 1	1.000	1.000	1.000	
3	1 1	1.000	1.000	1.000	
4	1 1	1.000	1.000	1.000	
5	1 1	1.000	1.000	1.000	
6	1 1	1.000	1.000	1.000	

7	1	1	1.000	1.000	1.000	
8	1	1	1.000	1.000	1.000	
9	1	1	1.000	1.000	1.000	
10	1	1	1.000	1.000	1.000	
11	1	1	1.000	1.000	1.000	
12	1	1	1.000	1.000	1.000	
13	1	1	1.000	1.000	1.000	
14	1	1	1.000	1.000	1.000	
15	1	1	1.000	1.000	1.000	
16	1	1	1.000	1.000	1.000	
17	1	1	1.000	1.000	1.000	
18	1	1	1.000	1.000	1.000	
19	1	1	1.000	1.000	1.000	
20	1	1	1.000	1.000	1.000	
21	1	1	1.000	1.000	1.000	
22	1	1	1.000	1.000	1.000	
23	1	1	1.000	1.000	1.000	
24	1	1	1.000	1.000	1.000	
25	1	1	1.000	1.000	1.000	
26	1	1	1.000	1.000	1.000	
27	1	1	1.000	1.000	1.000	
28	1	1	1.000	1.000	1.000	
29	1	1	1.000	1.000	1.000	
30	1	1	1.000	1.000	1.000	
31	1	1	1.000	1.000	1.000	
32	1	1	1.000	1.000	1.000	
33	1	1	1.000	1.000	1.000	
34	1	1	1.000	1.000	1.000	
35	1	1	1.000	1.000	1.000	
36	1	1	1.000	1.000	1.000	
37	1	1	1.000	1.000	1.000	
38	1	1	1.000	1.000	1.000	
39	1	1	1.000	1.000	1.000	
40	1	1	1.000	1.000	1.000	
41	1	1	1.000	1.000	1.000	
42	1	1	1.000	1.000	1.000	
43	1	1	1.000	1.000	1.000	
44	1	1	1.000	1.000	1.000	
45	1	1	1.000	1.000	1.000	
46	1	1	1.000	1.000	1.000	
47	1	1	1.000	1.000	1.000	
48	1	1	1.000	1.000	1.000	
49	1	1	1.000	1.000	1.000	
50	1	1	1.000	1.000	1.000	
51	1	1	1.000	1.000	1.000	

52	1	1	1.000	1.000	1.000	
53	1	1	1.000	1.000	1.000	
54	1	1	1.000	1.000	1.000	
55	1	1	1.000	1.000	1.000	
56	1	1	1.000	1.000	1.000	
57	1	1	1.000	1.000	1.000	
58	1	1	1.000	1.000	1.000	
59	1	1	1.000	1.000	1.000	
60	1	1	1.000	1.000	1.000	
61	1	1	1.000	1.000	1.000	
62	1	1	1.000	1.000	1.000	
63	1	1	1.000	1.000	1.000	
64	1	1	1.000	1.000	1.000	
65	1	1	1.000	1.000	1.000	
66	1	1	1.000	1.000	1.000	
67	1	1	1.000	1.000	1.000	
68	1	1	1.000	1.000	1.000	
69	1	1	1.000	1.000	1.000	
70	1	1	1.000	1.000	1.000	
71	1	1	1.000	1.000	1.000	
72	1	1	1.000	1.000	1.000	
73	1	1	1.000	1.000	1.000	
74	1	1	1.000	1.000	1.000	
75	1	1	1.000	1.000	1.000	
76	1	1	1.000	1.000	1.000	
77	1	1	1.000	1.000	1.000	
78	1	1	1.000	1.000	1.000	
79	1	1	1.000	1.000	1.000	
80	1	1	1.000	1.000	1.000	
81	1	1	1.000	1.000	1.000	
82	1	1	1.000	1.000	1.000	
83	1	1	1.000	1.000	1.000	
84	1	1	1.000	1.000	1.000	
85	1	1	1.000	1.000	1.000	
86	1	1	1.000	1.000	1.000	
87	1	1	1.000	1.000	1.000	
88	1	1	1.000	1.000	1.000	
89	1	1	1.000	1.000	1.000	
90	1	1	1.000	1.000	1.000	
91	1	1	1.000	1.000	1.000	
92	1	1	1.000	1.000	1.000	
93	1	1	1.000	1.000	1.000	
94	1	1	1.000	1.000	1.000	
95	1	1	1.000	1.000	1.000	
96	1	1	1.000	1.000	1.000	

97	1	1	1.000	1.000	1.000	
98	1	1	1.000	1.000	1.000	
99	1	1	1.000	1.000	1.000	
100	1	1	1.000	1.000	1.000	
Populati		•	1.000	1.000	Locus	Gene copies
	nshorn_0				1	10
i iXoma	113110111_0				2	10
					3	10
					4	10
					5	10
					6	10
					7	
						10
					8	10
					9	10
					10	10
					11	10
					12	10
					13	10
					14	10
					15	10
					16	10
					17	10
					18	10
					19	10
					20	10
					21	10
					22	10
					23	10
					24	10
					25	10
					26	10
					27	10
					28	10
					29	10
					30	10
					31	10
					32	10
					33	10
					34	10
					35	10
					36	10
					37	10
					38	10
					39	10
					40	10

41	10
42	10
43	10
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	10

	00	40	
	86	10	
	87	10	
	88	10	
	89	10	
	90	10	
	91	10	
	92	10	
	93	10	
	94	10	
	95	10	
	96	10	
	97	10	
	98	10	
	99	10	
	100	10	
Total of all populations	1	10	
	2	10	
	3		
		10	
	4	10	
	5	10	
	6	10	
	7	10	
	8	10	
	9	10	
	10	10	
	11	10	
	12	10	
	13	10	
	14	10	
	15	10	
	16	10	
	17	10	
	18	10	
	19	10	
	20	10	
	21	10	
	22	10	
	23	10	
	24	10	
	25	10	
	26	10	
	27	10	
	28	10	
	29	10	
	30	10	

31	10
32	10
33	10
34	10
35	10
36	10
37	10
38	10
39	10
40	10
41	10
42	10
43	10
44	10
45	10
46	10
47	10
48	10
49	10
50	10
51	10
52	10
53	10
54	10
55	10
56	10
57	10
58	10
59	10
60	10
61	10
62	10
63	10
64	10
65	10
66	10
67	10
68	10
69	10
70	10
71	10
72	10
73	10
74	10
75	10

	A010 1-
76	10
77	10
78	10
79	10
80	10
81	10
82	10
83	10
84	10
85	10
86	10
87	10
88	10
89	10
90	10
91	10
92	10
93	10
94	10
95	10
96	10
97	10
98	10
99	10
100	10

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.03300	0.04540	0.04797	0.04960	0.05160	0.04557	0.08627
2	Θ_1	0.03433	0.04533	0.04783	0.04933	0.05173	0.04557	0.08669
3	Θ_1	0.03440	0.04487	0.04797	0.04987	0.05180	0.04603	0.08802
4	Θ_1	0.03527	0.04360	0.04770	0.04987	0.05153	0.04577	0.08760
5	Θ_1	0.03413	0.04447	0.04783	0.04967	0.05153	0.04563	0.08678
6	Θ_1	0.03387	0.04467	0.04783	0.04980	0.05160	0.04583	0.08755
7	Θ_1	0.03433	0.04507	0.04797	0.04987	0.05173	0.04617	0.08803
8	Θ_1	0.03287	0.04407	0.04797	0.04987	0.05153	0.04523	0.08438
9	Θ_1	0.03333	0.04400	0.04777	0.04973	0.05147	0.04517	0.08439
10	Θ_1	0.03400	0.04467	0.04790	0.04993	0.05187	0.04583	0.08874
11	Θ_1	0.03400	0.04573	0.04790	0.04953	0.05153	0.04590	0.08745
12	Θ_1	0.03453	0.04460	0.04777	0.04973	0.05147	0.04577	0.08662
13	Θ_1	0.03507	0.04567	0.04803	0.04953	0.05167	0.04583	0.08712
14	Θ_1	0.03493	0.04447	0.04797	0.04980	0.05153	0.04563	0.08873
15	Θ_1	0.03007	0.04413	0.04790	0.04987	0.05187	0.04530	0.08615
16	Θ_1	0.03333	0.04440	0.04790	0.04960	0.05160	0.04563	0.08666
17	Θ_1	0.03440	0.04433	0.04777	0.04960	0.05147	0.04557	0.08710
18	Θ_1	0.03293	0.04400	0.04783	0.04967	0.05153	0.04523	0.08592

19	Θ_1	0.03180	0.04453	0.04770	0.04927	0.05160	0.04470	0.08352
20	Θ_1	0.03580	0.04513	0.04797	0.04973	0.05167	0.04630	0.08782
21	Θ_1	0.03320	0.04440	0.04783	0.04980	0.05160	0.04557	0.08577
22	Θ_1	0.03307	0.04440	0.04790	0.04993	0.05153	0.04550	0.08573
23	Θ_1	0.03487	0.04480	0.04790	0.04973	0.05173	0.04603	0.08702
24	Θ_1	0.03333	0.04413	0.04783	0.04980	0.05160	0.04523	0.08434
25	Θ_1	0.03587	0.04587	0.04810	0.04953	0.05160	0.04603	0.08772
26	Θ_1	0.03287	0.04433	0.04803	0.04980	0.05180	0.04557	0.08630
27	Θ_1	0.03233	0.04367	0.04790	0.04980	0.05160	0.04483	0.08254
28	Θ_1	0.03447	0.04460	0.04803	0.05000	0.05173	0.04570	0.08705
29	Θ_1	0.03293	0.04440	0.04797	0.05000	0.05153	0.04543	0.08566
30	Θ_1	0.03293	0.04433	0.04797	0.04987	0.05160	0.04550	0.08614
31	Θ_1	0.03400	0.04440	0.04790	0.04973	0.05160	0.04563	0.08612
32	Θ_1	0.03373	0.04240	0.04803	0.05067	0.05173	0.04623	0.08765
33	Θ_1	0.03307	0.04433	0.04790	0.04980	0.05187	0.04550	0.08609
34	Θ_1	0.03333	0.04533	0.04783	0.04953	0.05180	0.04550	0.08634
35	Θ_1	0.03600	0.04613	0.04837	0.05013	0.05160	0.04630	0.08869
36	Θ_1	0.03587	0.04500	0.04803	0.04980	0.05167	0.04617	0.08825
37	Θ_1	0.03507	0.04473	0.04790	0.04973	0.05160	0.04590	0.08716
38	Θ_1	0.03253	0.04513	0.04790	0.04960	0.05160	0.04530	0.08475
39	Θ_1	0.03313	0.04447	0.04790	0.04980	0.05167	0.04563	0.08705
40	Θ_1	0.03440	0.04453	0.04770	0.04967	0.05160	0.04563	0.08660
41	Θ_1	0.03300	0.04433	0.04810	0.04993	0.05167	0.04543	0.08540

_ocus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
42	Θ_1	0.03560	0.04480	0.04790	0.04980	0.05167	0.04597	0.08797
43	Θ_1	0.03700	0.04500	0.04777	0.04947	0.05153	0.04630	0.08846
44	Θ_1	0.03207	0.04413	0.04790	0.04987	0.05167	0.04530	0.08500
45	Θ_1	0.03400	0.04447	0.04783	0.04947	0.05160	0.04577	0.08807
46	Θ_1	0.03487	0.04480	0.04810	0.04987	0.05167	0.04597	0.08764
47	Θ_1	0.03360	0.04473	0.04803	0.04980	0.05160	0.04543	0.08707
48	Θ_1	0.03273	0.04527	0.04797	0.04973	0.05153	0.04550	0.08465
49	Θ_1	0.03593	0.04507	0.04810	0.04993	0.05167	0.04617	0.08790
50	Θ_1	0.03380	0.04453	0.04797	0.04987	0.05167	0.04570	0.08447
51	Θ_1	0.03420	0.04467	0.04803	0.04980	0.05180	0.04590	0.08696
52	Θ_1	0.03400	0.04453	0.04797	0.04987	0.05167	0.04563	0.08585
53	Θ_1	0.03393	0.04487	0.04797	0.05000	0.05173	0.04597	0.08696
54	Θ_1	0.03333	0.04453	0.04797	0.04980	0.05160	0.04563	0.08602
55	Θ_1	0.03467	0.04493	0.04803	0.05000	0.05167	0.04603	0.08711
56	Θ_1	0.03293	0.04467	0.04797	0.05000	0.05173	0.04577	0.08718
57	Θ_1	0.03340	0.04453	0.04810	0.05000	0.05160	0.04563	0.08616
58	Θ_1	0.03427	0.04473	0.04810	0.05000	0.05160	0.04583	0.08705
59	Θ_1	0.03200	0.04407	0.04797	0.04987	0.05167	0.04523	0.08459
60	Θ_1	0.03393	0.04467	0.04790	0.04987	0.05160	0.04583	0.08749
61	Θ_1	0.03527	0.04493	0.04797	0.05000	0.05173	0.04603	0.08734

62	Θ_1	0.03427	0.04467	0.04783	0.04987	0.05147	0.04577	0.08728
63	Θ_1	0.03567	0.04587	0.04797	0.04953	0.05167	0.04603	0.08669
64	Θ_1	0.03560	0.04520	0.04803	0.04993	0.05167	0.04630	0.08786
65	Θ_1	0.03580	0.04513	0.04817	0.05000	0.05167	0.04623	0.08762
66	Θ_1	0.03347	0.04440	0.04810	0.04987	0.05167	0.04557	0.08673
67	Θ_1	0.03553	0.04467	0.04783	0.04960	0.05153	0.04590	0.08776
68	Θ_1	0.03420	0.04493	0.04797	0.04987	0.05160	0.04603	0.08767
69	Θ_1	0.03453	0.04427	0.04783	0.04967	0.05153	0.04550	0.08667
70	Θ_1	0.03273	0.04420	0.04803	0.04987	0.05180	0.04537	0.08666
71	Θ_1	0.03407	0.04467	0.04797	0.04987	0.05167	0.04583	0.08588
72	Θ_1	0.03507	0.04453	0.04770	0.04960	0.05160	0.04570	0.08743
73	Θ_1	0.03400	0.04460	0.04797	0.05007	0.05167	0.04563	0.08620
74	Θ_1	0.03567	0.04513	0.04810	0.05000	0.05167	0.04623	0.08793
75	Θ_1	0.03680	0.04540	0.04810	0.04987	0.05180	0.04657	0.08790
76	Θ_1	0.03120	0.04553	0.04803	0.04967	0.05193	0.04570	0.08555
77	Θ_1	0.03153	0.04453	0.04783	0.04967	0.05153	0.04470	0.08350
78	Θ_1	0.03460	0.04467	0.04783	0.04980	0.05167	0.04583	0.08732
79	Θ_1	0.03340	0.04407	0.04803	0.04973	0.05173	0.04537	0.08606
80	Θ_1	0.03427	0.04480	0.04810	0.05007	0.05193	0.04590	0.08769
81	Θ_1	0.03420	0.04527	0.04803	0.05013	0.05180	0.04623	0.08780
82	Θ_1	0.03247	0.04420	0.04783	0.04960	0.05167	0.04550	0.08514
83	Θ_1	0.03287	0.04553	0.04810	0.04967	0.05193	0.04570	0.08638
84	Θ_1	0.03447	0.04493	0.04803	0.04980	0.05167	0.04603	0.08702

_ocus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
85	Θ_1	0.03480	0.04553	0.04783	0.04920	0.05160	0.04570	0.08621
86	Θ_1	0.03413	0.04407	0.04783	0.04960	0.05153	0.04537	0.08716
87	Θ_1	0.03387	0.04427	0.04803	0.04993	0.05153	0.04537	0.08570
88	Θ_1	0.03340	0.04467	0.04803	0.04987	0.05173	0.04577	0.08633
89	Θ_1	0.03527	0.04520	0.04810	0.04993	0.05173	0.04630	0.08866
90	Θ_1	0.03433	0.04467	0.04803	0.04993	0.05160	0.04577	0.08632
91	Θ_1	0.03487	0.04493	0.04790	0.04980	0.05160	0.04603	0.08766
92	Θ_1	0.03360	0.04447	0.04803	0.04993	0.05167	0.04557	0.08584
93	Θ_1	0.03420	0.04513	0.04810	0.04993	0.05160	0.04617	0.08745
94	Θ_1	0.03553	0.04527	0.04797	0.04973	0.05167	0.04643	0.08815
95	Θ_1	0.03440	0.04453	0.04797	0.04973	0.05173	0.04583	0.08798
96	Θ_1	0.03587	0.04513	0.04810	0.05000	0.05153	0.04610	0.08891
97	Θ_1	0.03507	0.04600	0.04810	0.04973	0.05153	0.04617	0.08790
98	Θ_1	0.03413	0.04560	0.04803	0.04967	0.05173	0.04583	0.08631
99	Θ_1	0.03533	0.04420	0.04790	0.04967	0.05160	0.04550	0.08733
100	Θ_1	0.03300	0.04400	0.04777	0.04973	0.05167	0.04523	0.08588
All	Θ_1	0.01333	0.01633	0.01770	0.01967	0.02327	0.01803	0.09980

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?					
In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli,					
and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.					

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations: $BF = Exp[\ ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel)) \\ or \ as \ LBF = 2 \ (ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel))) \\ shows the \ support for \ thisModel]$

Locus	TI(1a)	BTI(1b)	SS(2)	HS(3)
1	-15712.53	-15176.34	-15188.72	-15248.89
2	-17060.79	-15943.60	-15865.89	-15917.20
3	-16979.16	-16057.03	-16024.21	-16071.80
4	-16593.91	-15991.05	-16018.15	-16064.93
5	-16125.40	-15504.18	-15512.91	-15565.09
6	-16200.58	-15523.45	-15528.26	-15574.29
7	-16944.36	-16011.62	-15974.29	-16020.35
8	-16627.61	-15886.71	-15875.14	-15932.90
9	-15887.97	-15073.64	-15036.76	-15093.75
10	-19205.60	-17454.75	-17276.75	-17322.63
11	-16247.39	-15723.68	-15762.26	-15809.61
12	-16245.55	-15483.76	-15469.15	-15524.40
13	-16636.52	-15760.64	-15728.02	-15777.02
14	-17378.69	-16637.22	-16650.57	-16689.82
15	-16135.18	-15479.09	-15483.60	-15536.05
16	-15899.77	-15350.63	-15376.33	-15426.52
17	-16706.28	-15902.13	-15885.15	-15934.46
18	-15754.20	-15334.85	-15381.42	-15430.34
19	-16142.64	-15412.12	-15395.08	-15453.69
20	-17538.34	-16156.11	-16020.56	-16081.15
21	-16532.74	-15647.15	-15607.69	-15661.00
22	-16016.47	-15430.35	-15449.58	-15499.08
23	-15799.38	-15229.75	-15247.39	-15299.76
24	-16316.26	-15349.29	-15284.93	-15343.64
25	-17741.30	-16277.60	-16133.39	-16187.41
26	-16300.22	-15628.43	-15631.56	-15683.70
27	-15210.64	-14730.06	-14749.98	-14811.89
28	-20310.76	-17720.93	-17379.03	-17430.51
29	-15863.76	-15230.69	-15233.80	-15288.60

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 05:22:37]

30	-15127.35	-14825.36	-14886.68	-14940.42
31	-16646.92	-15645.83	-15585.02	-15637.48
32	-15969.34	-15454.90	-15487.92	-15540.40
33	-16218.34	-15716.31	-15752.71	-15800.81
34	-17002.06	-15882.05	-15799.92	-15855.85
35	-19112.79	-17548.81	-17414.77	-17456.62
36	-17602.47	-16312.38	-16207.40	-16251.89
37	-15829.97	-15227.47	-15243.35	-15291.72
38	-15551.55	-14973.35	-14981.09	-15037.55
39	-17588.84	-16461.35	-16388.66	-16439.16
40	-17213.41	-16013.52	-15905.91	-15971.80
41	-15666.82	-15097.21	-15112.19	-15164.88
42	-17022.34	-16095.84	-16053.21	-16107.18
43	-19843.59	-17567.33	-17282.16	-17334.93
44	-15058.11	-14707.67	-14755.27	-14811.12
45	-17546.20	-16378.94	-16288.28	-16346.61
46	-16568.50	-15766.09	-15747.86	-15796.45
47	-16455.55	-15625.84	-15599.76	-15649.79
48	-15708.84	-15283.40	-15327.06	-15381.69
49	-17916.80	-16648.39	-16555.35	-16600.72
50	-15310.07	-14940.99	-14988.85	-15047.87
51	-15788.86	-15242.59	-15267.21	-15316.53
52	-16319.45	-15611.35	-15609.00	-15658.84
53	-17583.02	-16461.34	-16382.18	-16440.11
54	-16847.13	-15948.50	-15912.78	-15964.49
55	-16710.30	-15850.65	-15823.09	-15872.12
56	-17844.54	-16220.16	-16044.20	-16098.50
57	-17585.50	-16479.41	-16403.06	-16457.56
58	-17173.58	-16222.38	-16186.71	-16231.13
59	-16473.03	-15657.19	-15625.47	-15686.70
60	-16259.61	-15551.01	-15550.75	-15597.32
61	-17567.03	-16248.88	-16126.46	-16183.99
62	-16369.04	-15608.57	-15597.40	-15644.84
63	-17235.88	-15917.40	-15799.67	-15852.16
64	-18943.43	-17313.25	-17160.12	-17207.40
65	-15921.30	-15328.62	-15344.60	-15397.42
66	-16859.48	-16074.52	-16060.58	-16109.96
67	-17552.40	-16564.54	-16516.57	-16570.30
68	-15962.42	-15449.69	-15475.89	-15533.61
69	-16143.99	-15445.44	-15442.27	-15494.02
70	-15888.16	-15185.40	-15177.89	-15230.12
71	-15827.62	-15298.92	-15328.61	-15379.34
72	-17999.67	-16535.81	-16396.17	-16447.58
73	-15962.79	-15274.52	-15267.94	-15321.84
74	-17116.36	-16056.13	-15995.08	-16040.85

All	-1681456.90	-1588603.08	-1584234.14	-1589434.15
100	-15403.72	-14939.14	-14971.07	-15024.84
99	-17917.26	-16915.37	-16876.94	-16919.13
98	-15487.78	-14954.19	-14976.18	-15027.72
97	-24006.36	-19378.40	-18650.43	-18715.31
96	-17194.79	-16167.22	-16114.09	-16164.44
95	-17940.79	-16655.76	-16559.67	-16605.41
94	-17251.39	-16284.00	-16245.14	-16287.74
93	-15996.84	-15556.62	-15604.21	-15650.08
92	-15697.20	-15222.94	-15257.95	-15311.41
91	-16294.03	-15644.33	-15645.95	-15702.21
90	-15926.46	-15368.30	-15389.19	-15441.58
89	-18837.81	-17313.18	-17160.26	-17221.46
88	-16664.75	-15937.45	-15937.81	-15984.53
87	-15771.81	-15298.97	-15334.33	-15387.77
86	-17641.36	-16359.66	-16258.26	-16306.42
85	-16968.81	-16011.91	-15957.97	-16014.49
84	-21601.87	-18206.71	-17716.75	-17767.56
83	-16724.09	-15988.77	-15986.91	-16035.29
82	-16240.42	-15488.98	-15471.32	-15528.39
81	-15851.21	-15308.73	-15335.78	-15382.89
80	-18730.53	-17581.92	-17518.45	-17568.92
79	-16352.95	-15608.69	-15595.46	-15649.17
78	-16240.81	-15497.41	-15481.85	-15534.00
77	-15491.19	-15024.28	-15051.93	-15111.41
76	-15180.84	-14783.20	-14824.77	-14879.86
75	-17201.07	-16448.51	-16451.56	-16497.73

- (1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures(1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!
- (2) SS: Steppingstone Sampling (Xie et al 2011)
- (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = 167.747460]

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets. In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods,

Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	369806039/399999027	0.92452
Genealogies	72140915/1600000973	0.04509

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.42730	4020878.31
Genealogies	0.47205	3619037.52

Average temperatures during the run

Chain Temperatures 1 0.00000

3 0.00000

0.00000

2

4 0.00000

Adaptive heating often fails, if the average temperatures are very close together try to rerun using static heating! If you want to compare models using marginal likelihoods then you MUST use static heating

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou tes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run