Coronary Heart Disease (CHD)

Table of Contents

- 1. Background
- 2. Data Source
- 3. Implemented features
- 4. Logical Architecture
- 5. Data flow
- 6. Result
- 7. AWS Demo

Background

12 million deaths occur worldwide every year due to heart diseases

659,000 people in the United States die from heart disease each year

One person dies every 36 Seconds in the United States from cardiovascular disease

1 in every 4 death

Data sources

- From an ongoing cardiovascular study
- The dataset provides patient's information and each attribute is a potential risk factor

Medical

current

- Cholesterol level

- Blood pressure

- BMI

- Heart rate

• 10 year risk of coronary heart disease CHD (binary: "1", means "Yes", "0" means "No")

Implemented features

Raw Data -Stored locally

Google CoLab – Preprocessing and Modeling Training

Amazon S3 – Store Data/ and Host Website

Data Flow

	Kaggle	Google Colab	S3 Bucket	SageMaker	S3 Bucket
•	Download Data from Kaggle	EDA AnalysisData CleaningModel Building	Store DataStore Notebook	Fine-tuningGenerateResults	Store graphsStore model resultHost website

Demo

Result

- Improve the model accuracy score from 63.37% to 81.98% by:
 - Upsampling to balanced our dataset
 - Applying class weights to our model's f1 score
- Important features:

Visualized the data to get more insight