C.01.01 – Ciclo Otto de Tempo Finito de Adição de Calor

FTHA - Finite-Time Heat Addition Otto Engine Model

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-08-14 02h54m33s UTC

O ciclo Otto ideal, da termodinâmica aplicada:

Assume todas as hipóteses padrão a ar;

O ciclo Otto ideal, da termodinâmica aplicada:

• Assume todas as hipóteses padrão a ar;

Gás ideal;

O ciclo Otto ideal, da termodinâmica aplicada:

• Assume todas as hipóteses padrão a ar;

- Gás ideal;
- Processos internamente reversíveis;

O ciclo Otto ideal, da termodinâmica aplicada:

Assume todas as hipóteses padrão a ar;

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;

O ciclo Otto ideal, da termodinâmica aplicada:

Assume todas as hipóteses padrão a ar;

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;

O ciclo Otto ideal, da termodinâmica aplicada:

• Assume todas as hipóteses padrão a ar;

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros $r \in k$, e

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros $r \in k$, e
- Solução analítica, hip. padrão a ar frio:

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros $r \in k$, e
- Solução analítica, hip. padrão a ar frio:

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;
- Calores específicos constantes.

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros *r* e *k*, e
- Solução analítica, hip. padrão a ar frio:

$$\eta_t = 1 - r^{1-k}$$

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;
- Calores específicos constantes.

O ciclo Otto ideal, da termodinâmica aplicada:

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros r e k, e
- Solução analítica, hip. padrão a ar frio:

$$\eta_t = 1 - r^{1-k}$$
 \rightarrow

• η_t : $\eta_t(r,k)$ apenas!

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;
- Calores específicos constantes.

Desvios do ciclo Otto ideal—incluem, mas não limitados a:

Diagrama P-V ilustrativo de perdas por (i) combustão não instantânea—verde, (ii) transferência de calor—vermelho—e de (iii) bombeamento—azul. Fonte: adaptado de Wikimedia Commons.

https://upload.wikimedia.org/wikipedia/commons/6/6c/P-V_diagram_deviations_to_Otto_cycle.svg.

• Modela combustão (adição de calor) de forma não instantânea:

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).
- Mantém-se como modelo padrão a ar:

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;
 - Perdas de bombeamento envolvem sistema e ciclo abertos.

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;
 - Perdas de bombeamento envolvem sistema e ciclo abertos.
- Mantém-se como modelo de substância pura:

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;
 - Perdas de bombeamento envolvem sistema e ciclo abertos.
- Mantém-se como modelo de substância pura:
 - Evita combustão e equilíbrio químico;

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;
 - Perdas de bombeamento envolvem sistema e ciclo abertos.
- Mantém-se como modelo de substância pura:
 - Evita combustão e equilíbrio químico;
 - Evita modelagem termodinâmica de misturas reativas.

• Inclui todos os parâmetros do ciclo Otto ideal:

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.
- Inclui parâmetros operacionais do motor:

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.
- Inclui parâmetros operacionais do motor:
 - Velocidade angular (rotação);

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.
- Inclui parâmetros operacionais do motor:
 - Velocidade angular (rotação);
 - Ângulo de ignição e

Ciclo Otto padrão a ar de tempo finito de adição de calor—FTHA

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.
- Inclui parâmetros operacionais do motor:
 - Velocidade angular (rotação);
 - Ângulo de ignição e
 - Duração da combustão.

• Diâmetro do pistão/cilindro, D;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;
- Volume morto (do PMS), V_{PMS};

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;
- Volume morto (do PMS), V_{PMS};
- Volume máximo (do PMI), V_{PMI};

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, R;
- Curso do pistão, S = 2R;
- Comprimento da biela, L;
- Volume morto (do PMS), V_{PMS};
- Volume máximo (do PMI), V_{PMI};
- Razão de compressão, $r = \frac{V_{\rm PMS}}{V_{\rm PMI}}$.

• Posição do pistão (rel. PMS), *x*;

- Posição do pistão (rel. PMS), x;
- Ângulo do virabrequim (rel. PMS), α;

- Posição do pistão (rel. PMS), x;
- Ângulo do virabrequim (rel. PMS), α;
- Volume instantâneo, *V*;

- Posição do pistão (rel. PMS), x;
- Ângulo do virabrequim (rel. PMS), α;
- Volume instantâneo, V;

$$x(\alpha) = L\left(1 - \sqrt{1 - \frac{R^2}{L^2}\sin^2\alpha}\right) + R(1 - \cos\alpha)$$

- Posição do pistão (rel. PMS), x;
- Ângulo do virabrequim (rel. PMS), α;
- Volume instantâneo, V;

$$x(\alpha) = L\left(1 - \sqrt{1 - \frac{R^2}{L^2}\sin^2\alpha}\right) + R(1 - \cos\alpha)$$
$$V(\alpha) = \frac{\pi x(\alpha)}{4}D^2 + V_{\text{PMS}} \quad \rightarrow \quad v(\alpha) = \frac{V(\alpha)}{m_{\text{PMS}}}$$

• Ângulo de ignição (rel. PMS), θ;

- Ângulo de ignição (rel. PMS), θ;
- Duração da combustão, Δt_c ;

- Ângulo de ignição (rel. PMS), θ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;

- Ângulo de ignição (rel. PMS), θ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;
- "Duração angular" da combustão, $\delta = \omega \Delta t_c$;

- Ângulo de ignição (rel. PMS), θ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;
- "Duração angular" da combustão, $\delta = \omega \Delta t_c$;
- Casos de ω constante—discretização em α:
 - Intervalo de simulação: $-\pi \le \alpha \le +\pi$;

- Ângulo de ignição (rel. PMS), θ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;
- "Duração angular" da combustão, $\delta = \omega \Delta t_c$;
- Casos de ω constante—discretização em α:
 - Intervalo de simulação: $-\pi \le \alpha \le +\pi$;
 - Intervalo de adição de calor: $\theta \le \alpha \le \theta + \delta$.

- Ângulo de ignição (rel. PMS), θ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;
- "Duração angular" da combustão, $\delta = \omega \Delta t_c$;
- Casos de ω constante—discretização em α:
 - Intervalo de simulação: $-\pi \le \alpha \le +\pi$;
 - Intervalo de adição de calor: $\theta \le \alpha \le \theta + \delta$.
 - $\alpha_i = -\pi + i\Delta\alpha$, $i \in \mathbb{N}$, $0 \le i \le 2I$, with

- Ângulo de ignição (rel. PMS), θ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;
- "Duração angular" da combustão, $\delta = \omega \Delta t_c$;
- Casos de ω constante—discretização em α:
 - Intervalo de simulação: $-\pi \le \alpha \le +\pi$;
 - Intervalo de adição de calor: $\theta \le \alpha \le \theta + \delta$.
 - $\alpha_i = -\pi + i\Delta\alpha$, $i \in \mathbb{N}$, $0 \le i \le 2I$, with
 - $\Delta \alpha = \pi/I, I \in \mathbb{N}^*$.

- Ângulo de ignição (rel. PMS), θ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;
- "Duração angular" da combustão, $\delta = \omega \Delta t_c$;
- Casos de ω constante—discretização em α:
 - Intervalo de simulação: $-\pi \le \alpha \le +\pi$;
 - Intervalo de adição de calor: $\theta \le \alpha \le \theta + \delta$.
 - $\alpha_i = -\pi + i\Delta\alpha$, $i \in \mathbb{N}$, $0 \le i \le 2I$, with
 - $\Delta \alpha = \pi/I, I \in \mathbb{N}^*$.
- Casos de ω variável—discretização em t.

$$q(\alpha) = q_{ent} \cdot y(\alpha)$$
, com

$$q(\alpha) = q_{ent} \cdot y(\alpha), \quad \text{com}$$

$$y(\alpha) = \begin{cases} 0 & \text{para } \alpha < \theta, \\ g(\alpha) & \text{para } \theta \leqslant \alpha \leqslant \theta + \delta, \\ 1 & \text{para } \alpha > \theta + \delta. \end{cases}$$

$$q(\alpha) = q_{ent} \cdot y(\alpha), \quad \text{com}$$

$$y(\alpha) = \begin{cases} 0 & \text{para } \alpha < \theta, \\ g(\alpha) & \text{para } \theta \leqslant \alpha \leqslant \theta + \delta, \\ 1 & \text{para } \alpha > \theta + \delta. \end{cases}$$

• $g(\alpha)$ modela o histórico da ad. de calor:

$$q(\alpha) = q_{ent} \cdot y(\alpha), \quad \text{com}$$

$$y(\alpha) = \begin{cases} 0 & \text{para } \alpha < \theta, \\ g(\alpha) & \text{para } \theta \leqslant \alpha \leqslant \theta + \delta, \\ 1 & \text{para } \alpha > \theta + \delta. \end{cases}$$

• $g(\alpha)$ modela o histórico da ad. de calor:

•
$$g(\theta) = 0$$
 e $g(\theta + \delta) = 1$;

$$q(\alpha) = q_{ent} \cdot y(\alpha), \quad \text{com}$$

$$y(\alpha) = \begin{cases} 0 & \text{para } \alpha < \theta, \\ g(\alpha) & \text{para } \theta \leqslant \alpha \leqslant \theta + \delta, \\ 1 & \text{para } \alpha > \theta + \delta. \end{cases}$$

- $g(\alpha)$ modela o histórico da ad. de calor:
 - $g(\theta) = 0$ e $g(\theta + \delta) = 1$;
 - Função $g(\alpha)$ deve ser monotônica;

$$q(\alpha) = q_{ent} \cdot y(\alpha), \quad \text{com}$$

$$y(\alpha) = \begin{cases} 0 & \text{para } \alpha < \theta, \\ g(\alpha) & \text{para } \theta \leqslant \alpha \leqslant \theta + \delta, \\ 1 & \text{para } \alpha > \theta + \delta. \end{cases}$$

- $g(\alpha)$ modela o histórico da ad. de calor:
 - $g(\theta) = 0$ e $g(\theta + \delta) = 1$;
 - Função $g(\alpha)$ deve ser monotônica;
 - $g(\alpha)$ pode basear-se em experimentos;

$$q(\alpha) = q_{ent} \cdot y(\alpha), \quad \text{com}$$

$$y(\alpha) = \begin{cases} 0 & \text{para } \alpha < \theta, \\ g(\alpha) & \text{para } \theta \leqslant \alpha \leqslant \theta + \delta, \\ 1 & \text{para } \alpha > \theta + \delta. \end{cases}$$

- $g(\alpha)$ modela o histórico da ad. de calor:
 - $g(\theta) = 0$ e $g(\theta + \delta) = 1$;
 - Função $g(\alpha)$ deve ser monotônica;
 - $g(\alpha)$ pode basear-se em experimentos;

• Lit.:
$$g(\alpha) = \frac{1}{2} - \frac{1}{2}\cos(\frac{\pi}{\delta}(\alpha - \theta))$$
.

No *i*-ésimo (sub-)processo politrópico:

No i-ésimo (sub-)processo politrópico:

• O sistema evolui do estado-i para o estado-(i+1).

No i-ésimo (sub-)processo politrópico:

- O sistema evolui do estado-i para o estado-(i+1).
- Propriedades P_i , T_i , v_i , u_i , etc., definidas nos estados -i e -(i+1).

No i-ésimo (sub-)processo politrópico:

- O sistema evolui do estado-i para o estado-(i+1).
- Propriedades P_i , T_i , v_i , u_i , etc., definidas nos estados -i e -(i+1).
- Interações do *i*-ésimo processo são q_i e w_i .

No i-ésimo (sub-)processo politrópico:

- O sistema evolui do estado-i para o estado-(i+1).
- Propriedades P_i , T_i , v_i , u_i , etc., definidas nos estados -i e -(i+1).
- Interações do *i*-ésimo processo são q_i e w_i .

Balanço de energia de processo:

No *i*-ésimo (sub-)processo politrópico:

- O sistema evolui do estado-i para o estado-(i+1).
- Propriedades P_i , T_i , v_i , u_i , etc., definidas nos estados -i e -(i+1).
- Interações do *i*-ésimo processo são q_i e w_i .

Balanço de energia de processo:

$$q_i + w_i = \Delta u_i = u_{i+1} - u_i$$

No *i*-ésimo (sub-)processo politrópico:

- O sistema evolui do estado-i para o estado-(i+1).
- Propriedades P_i , T_i , v_i , u_i , etc., definidas nos estados -i e -(i+1).
- Interações do *i*-ésimo processo são q_i e w_i .

Balanço de energia de processo:

$$q_i + w_i = \Delta u_i = u_{i+1} - u_i \quad \rightarrow$$

No *i*-ésimo (sub-)processo politrópico:

- O sistema evolui do estado-i para o estado-(i+1).
- Propriedades P_i , T_i , v_i , u_i , etc., definidas nos estados -i e -(i+1).
- Interações do *i*-ésimo processo são q_i e w_i .

Balanço de energia de processo:

$$q_i + w_i = \Delta u_i = u_{i+1} - u_i \rightarrow u_{i+1} = u_i + q_i + w_i, \text{ com,}$$

$$q_i = q_{ent} \cdot (y_{i+1} - y_i)$$

$$q_i = q_{ent} \cdot (y_{i+1} - y_i)$$
 \rightarrow

$$q_i = q_{ent} \cdot (y_{i+1} - y_i)$$
 \rightarrow $q_i = q_{ent} \cdot [y(\alpha_{i+1}) - y(\alpha_i)], e$

$$q_i = q_{ent} \cdot (y_{i+1} - y_i) \quad \neg$$

$$q_i = q_{ent} \cdot [y(\alpha_{i+1}) - y(\alpha_i)], \quad e$$

$$w_i = \int_{v_i}^{v_{i+1}} (P_i v_i^{n_i}) v^{-n_i} dv,$$

$$q_{i} = q_{ent} \cdot (y_{i+1} - y_{i}) \longrightarrow$$

$$q_{i} = q_{ent} \cdot [y(\alpha_{i+1}) - y(\alpha_{i})], \quad e$$

$$w_{i} = \int_{v_{i}}^{v_{i+1}} (P_{i}v_{i}^{n_{i}})v^{-n_{i}} dv, \quad \longrightarrow$$

$$q_{i} = q_{ent} \cdot (y_{i+1} - y_{i}) \longrightarrow$$

$$q_{i} = q_{ent} \cdot [y(\alpha_{i+1}) - y(\alpha_{i})], \quad e$$

$$w_{i} = \int_{v_{i}}^{v_{i+1}} (P_{i}v_{i}^{n_{i}})v^{-n_{i}} dv, \quad \longrightarrow$$

$$w_{i} = \begin{cases} \frac{P_{i}v_{i}}{1 - n_{i}} \left[1 - \left(\frac{v_{i}}{v_{i+1}}\right)^{n_{i}-1}\right], & \text{para } n_{i} \neq 1, \\ P_{i}v_{i} \ln \frac{v_{i}}{v_{i+1}}, & \text{para } n_{i} = 1, \\ 0, & \text{para } v_{i} \approx v_{i+1} \longrightarrow |v_{i} - v_{i+1}| \leq \varepsilon_{v}. \end{cases}$$

Solução de Sub-Processo

Conjectura (de consistência termodinâmica)

Para uma dada interação de calor, q_i , existe um único expoente politrópico, n_i , tal que o processo politrópico $Pv^{n_i} = C_i = \text{const.}$, aplicado entre estados (i) e (i+1) resulta em uma interação de trabalho, w_i , e em uma variação de energia interna, $\Delta u_i = u_{i+1} - u_i$, que é termodinamicamente consistente com a equação P-v-T de estado da substância de trabalho em ambos estados finais e que também satisfaz o balanço de energia do processo.

Solução de Sub-Processo

Conjectura (de consistência termodinâmica)

Para uma dada interação de calor, q_i , existe um único expoente politrópico, n_i , tal que o processo politrópico $Pv^{n_i} = C_i = \text{const.}$, aplicado entre estados (i) e (i+1) resulta em uma interação de trabalho, w_i , e em uma variação de energia interna, $\Delta u_i = u_{i+1} - u_i$, que é termodinamicamente consistente com a equação P-v-T de estado da substância de trabalho em ambos estados finais e que também satisfaz o balanço de energia do processo.

 \rightarrow Processo de estimativa (n_i^0) e j-ésima correção (n_i^j) até a convergência.

Solução de Sub-Processo

Conjectura (de consistência termodinâmica)

Para uma dada interação de calor, q_i , existe um único expoente politrópico, n_i , tal que o processo politrópico $Pv^{n_i} = C_i = \text{const.}$, aplicado entre estados (i) e (i+1) resulta em uma interação de trabalho, w_i , e em uma variação de energia interna, $\Delta u_i = u_{i+1} - u_i$, que é termodinamicamente consistente com a equação P-v-T de estado da substância de trabalho em ambos estados finais e que também satisfaz o balanço de energia do processo.

- \rightarrow Processo de estimativa (n_i^0) e j-ésima correção (n_i^j) até a convergência.
- \rightarrow Tolerâncias de convergência ε_w e ε_u .

• Com n_i^j é possível obter w_i^j e u_{i+1}^j por balanço de energia;

- Com n_i^j é possível obter w_i^j e u_{i+1}^j por balanço de energia;
- P_{i+1} pode ser obtida via u_{i+1}^{j} e o modelo de substância;

- Com n_i^j é possível obter w_i^j e u_{i+1}^j por balanço de energia;
- P_{i+1} pode ser obtida via u_{i+1}^{j} e o modelo de substância;
- O novo expoente n_i^{j+1} pode ser achado pelo processo politrópico:

- Com n_i^j é possível obter w_i^j e u_{i+1}^j por balanço de energia;
- P_{i+1} pode ser obtida via u_{i+1}^{j} e o modelo de substância;
- O novo expoente n_i^{j+1} pode ser achado pelo processo politrópico:

$$P_i v_i^{n_i^{j+1}} = P_{i+1}^j v_{i+1}^{n_i^{j+1}}$$

- Com n_i^j é possível obter w_i^j e u_{i+1}^j por balanço de energia;
- P_{i+1} pode ser obtida via u_{i+1}^{j} e o modelo de substância;
- O novo expoente n_i^{j+1} pode ser achado pelo processo politrópico:

$$P_{i}v_{i}^{n_{i}^{j+1}} = P_{i+1}^{j}v_{i+1}^{n_{i}^{j+1}} \quad \rightarrow \quad n_{i}^{j+1} = \frac{\ln\frac{P_{i+1}^{j}}{P_{i}}}{\ln\frac{v_{i}}{v_{i+1}}}.$$

Algoritmo de Inicialização

```
REQUER: Parâmetros do motor: \{\omega, D, L, R, V_{PMS}, e V_{du}\};
REOUER: Ângulos \theta \in \delta (via \Delta t_c):
REOUER: Refinamento da discretização, I;
REQUER: Estado inicial (P_0, T_0) e modelo de substância;
REQUER: Função g(\alpha) e q_{ent};
REQUER: Tolerâncias de convergência \varepsilon_v, \varepsilon_w e \varepsilon_u.
 1: Inicializa todas quant. com índice i como vetores vazios: \alpha_i, v_i, q_i, w_i, n_i, P_i, T_i, and u_i;
 2: Calcula \Delta \alpha = \pi/I e todos \alpha_i = -\pi + i\Delta \alpha;
 3: v_0 \leftarrow volume específico, de (P_0, T_0) e equação de estado;
 4: m \leftarrow V_0/v_0;
 5: Calcula todos v_i = V(\alpha_i)/m;
 6: i \leftarrow 0;
```


Algoritmo de Laço do Ciclo

```
    PARA i = 0 até 2I FAÇA
    Calcula q<sub>i</sub> = q<sub>ent</sub> · [y(α<sub>i+1</sub>) − y(α<sub>i</sub>)];
    Resolve para w<sub>i</sub>, n<sub>i</sub>, u<sub>i+1</sub>, P<sub>i+1</sub> e T<sub>i+1</sub> via algoritmo de solução de sub-processo;
    PRÓXIMO
    i ← i + 1;
    q<sub>i</sub> ← u<sub>0</sub> − u<sub>i</sub>;
    w<sub>i</sub> ← 0;
    Estado-(i) = Estado-0; {Para todas as funções de estado rastreadas}
```


Algoritmo de Finalização

```
    w<sub>ent</sub> ← ∑w<sub>i</sub> ≥ 0; {Trabalho que entra no sistema}
    w<sub>out</sub> ← −∑w<sub>i</sub> < 0; {Trabalho realizado pela sistema}</li>
    w<sub>net</sub> ← w<sub>out</sub> − w<sub>ent</sub>; {Trabalho líquido realizado pelo sistema}
    q<sub>ent</sub> ← ∑q<sub>i</sub> ≥ 0; {Calor que entra no sistema}
    q<sub>rej</sub> ← −∑q<sub>i</sub> < 0; {Calor rejeitado pelo sistema}</li>
    η<sub>t</sub> ← w<sub>net</sub>/q<sub>ent</sub>; {Eficiência térmica}
    r<sub>bw</sub> ← w<sub>ent</sub>/w<sub>out</sub>; {Fração de consumo de trabalho}
    MEP ← w<sub>net</sub>/(V<sub>du</sub>/m); {Pressão média efetiva}
    Salva dados da simulação para o pós-processamento (relatório).
```


Algoritmo de Solução de Sub-Processo

```
    SE |v<sub>i</sub> - v<sub>i+1</sub>| ≤ ε<sub>ν</sub> ENTÃO
    {Processo isocórico}
    u<sub>i+1</sub> ← u<sub>i</sub> + q<sub>i</sub>;
    Calcula T<sub>i+1</sub> via u<sub>i+1</sub> pelo modelo (biblioteca) de substância;
    Calcula P<sub>i+1</sub> pela equação de estado;
    SENÃO
    {Processo politrópico}
    ...
    FIM SE
```


Algoritmo de Solução de Sub-Processo Politrópico

```
1: j \leftarrow 0;
2: Inicializa vetores n_i, w_i, u_{i+1}, T_{i+1} e P_{i+1};
3: n_i^j \leftarrow 1 + R_{gas}/c_v(T_i); {Chute inicial isentrópico}
4: Calcula w_i^j com n_i = n_i^j;
5: ENQUANTO j = 0 OU |w_i^{j-1} - w_i^j| \ge \varepsilon_w FACA
       u_{i+1}^j \leftarrow u_i + q_i + w_i^j \text{ com } w_i = w_i^j;
      Calcula T_{i+1} via u_{i+1} pelo modelo (biblioteca) de substância;
     Calcula P_{i+1} pela equação de estado;
     Corrige n_i^{j+1} pelo processo politrópico;
10: j \leftarrow j + 1;
      Calcula w_i^j \operatorname{com} n_i = n_i^j;
12: REVEJA
13: n_i, w_i, u_{i+1}, T_{i+1} \in P_{i+1} \leftarrow \text{seus últimos elementos } j; {Reverte vetores (linha 2)}
```


Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A.

Termodinâmica 7ª Edição. Seções 9–3 a 9–5.

AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

Naaktgeboren, C.

An air-standard finite-time heat addition Otto engine model.

Int. J. Mech. Eng. Educ. 45 (2), 2017.

DOI 10.1177/0306419016689447.

