Managing Undo Data

Objectives

- After completing this lesson, you should be able to:
 - Explain DML and undo data generation
 - Monitor and administer undo data
 - Describe the difference between undo data and redo data
 - Configure undo retention
 - Guarantee undo retention
 - Enable temporary undo
 - Use the Undo Advisor

Undo Data: Overview

- Undo data is:
 - A record of the action of a transaction
 - Captured for every transaction that changes data
 - Retained at least until the transaction is ended
 - Used to support:
 - Rollback operations
 - Read-consistent queries
 - Oracle Flashback Query, Oracle Flashback Transaction, and Oracle Flashback Table
 - Recovery from failed transactions

Transactions and Undo Data

- Each transaction is assigned to only one undo segment.
- An undo segment can service more than one transaction at a time.

Storing Undo Information

- Undo information is stored in undo segments, which are stored in an undo tablespace.
- Undo tablespaces:
 - Are used only for undo segments
 - Have special recovery considerations
 - May be associated with only a single instance
 - Require that only one of them be the current writable undo tablespace for a given instance at any given time

Comparing Undo Data and Redo Data

	Undo	Redo
Record of	How to undo a change	How to reproduce a change
Used for	Rollback, read consistency, flashback	Rolling forward of database changes
Stored in	Undo segments	Redo log files

Managing Undo

- Automatic undo management:
 - Fully automated management of undo data and space in a dedicated undo tablespace
 - For all sessions
 - Self-tuning in AUTOEXTEND tablespaces to satisfy long-running queries
 - Self-tuning in fixed-size tablespaces for best retention
- DBA tasks in support of Flashback operations:
 - Configuring undo retention
 - Changing the undo tablespace to a fixed size
 - Avoiding space and "snapshot too old" errors

Comparing SHARED Undo Mode and LOCAL Undo Mode

- There are two undo modes in the multitenant architecture: SHARED and LOCAL.
 - There is only one SHARED undo tablespace (in CDB root).
 - There can be a LOCAL undo tablespace in each PDB.

- When is LOCAL undo mode required?
 - Hot cloning
 - Near-zero down time PDB relocation

```
SQL> STARTUP UPGRADE;
SQL> ALTER DATABASE LOCAL UNDO ON;
```

Configuring Undo Retention

- UNDO_RETENTION specifies (in seconds) how long already committed undo information is to be retained.
- Set this parameter when:
 - The undo tablespace has the AUTOEXTEND option enabled
 - You want to set undo retention for LOBs
 - You want to guarantee retention

Categories of Undo

Category	Description
Active: Uncommitted undo information	Supports an active transaction and is never overwritten
Unexpired: Committed undo information	Is required to meet the undo retention interval
Expired: Expired undo information	Overwritten when space is required for an active transaction

Guaranteeing Undo Retention

SQL> ALTER TABLESPACE undotbs1 RETENTION GUARANTEE;

This example is based on an UNDO_RETENTION setting of 900 seconds (15 minutes).

Changing an Undo Tablespace to a Fixed Size

- Rationale:
 - Supporting Flashback operations
 - Limiting tablespace growth
- Steps:
 - Run the regular workload.
 - The self-tuning mechanism establishes the minimum required size.
 - (Optional) Use the Enterprise Manager Cloud Control Undo Advisor, which calculates the required size for future growth.
 - (Optional) Change the undo tablespace to a fixed size.

Temporary Undo: Overview

Temporary Undo Benefits

- Reduces the amount of undo stored in the undo tablespaces
- Reduces the amount of redo data written to the redo log
- Enables DML operations on temporary tables in a physical standby database with the Oracle Active Data Guard option

Enabling Temporary Undo

Enable temporary undo for a session:

```
SQL> ALTER SESSION SET temp_undo_enabled = true;
```

Enable temporary undo for the database instance:

```
SQL> ALTER SYSTEM SET temp_undo_enabled = true;
```

Temporary undo mode is selected when a session first uses a temporary object.

Monitoring Temporary Undo

```
SQL> SELECT to char (BEGIN TIME, 'dd/mm/yy hh24:mi:ss') "BEGIN TIME",
 2 txncount "TXNCNT", maxconcurrency, undoblkcnt, uscount "USCNT",
 3 nospaceerrcnt "NOSPEERRCNT"
 4 FROM v$tempundostat;
BEGIN TIME
                TXNCNT MAXCONCURRENCY UNDOBLKCNT USCNT NOSPEERRCNT
19/08/12 22:19:44
19/08/12 22:09:44
19/08/12 13:09:44
                                            24 1
19/08/12 12:59:44
576 rows selected.
SQL>
```

Viewing Undo Information

Viewing Undo Activity

Summary

- In this lesson, you should have learned how to:
 - Explain DML and undo data generation
 - Monitor and administer undo data
 - Describe the difference between undo data and redo data
 - Configure undo retention
 - Guarantee undo retention
 - Enable temporary undo
 - Use the Undo Advisor

Practice 14: Overview

• 14-1: Managing Undo Data