I. Lineare Algebra

Keine, eine, unendlich viele Lösungen

$$\begin{pmatrix} & & \\ 0 & 0 & 0 \end{pmatrix} \cdot x = \begin{pmatrix} & \\ c \end{pmatrix} \Rightarrow \text{ keine L\"osung}$$

$$\begin{pmatrix} & & \\ 0 & 0 & c \end{pmatrix} \cdot x = \begin{pmatrix} & \\ & \end{pmatrix} \Rightarrow \text{ eine Lösung (det } (A) \neq 0)$$

$$\begin{pmatrix} & & \\ 0 & 0 & 0 \end{pmatrix} \cdot x = \begin{pmatrix} & \\ 0 \end{pmatrix} \Rightarrow \text{unendlich viele L\"osungen}$$

allgemeine Lösung (nur bei unendlich vielen Lösungen!):

$$\begin{pmatrix} c \\ c \\ c \end{pmatrix} + t \cdot \begin{pmatrix} c \\ c \\ c \end{pmatrix} \quad \text{zB: } \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

LGS lösen

- in 2 Zeilen je 1 Null untereinander erzeugen (bei 3x3)
- beide Zeilen miteinander verrechnen sodass in einer Zeile eine zweite Null entsteht

Wenn Variable in LGS:

- Achtung, nicht durch Variable teilen, wegen DIV/0
- Fallunterscheidung: keine, eine, unendlich viele Lsg

Wenn mehr Unbekannte als Gleichungen:

- Einheitsmatrix vorne erstellen
- nach ersten x (Anzahl Gleichungen) auflösen
- allgemeine Lösung aufstellen: $\vec{x} = \begin{pmatrix} c \\ c \\ c \end{pmatrix} + x_4 \begin{pmatrix} c \\ c \\ c \end{pmatrix}$

Determinanten (Rechenregeln siehe Papula) nur bei <u>quadratischen</u> Matrizen berechenbar wenn det $(A) \neq 0 \rightarrow$ LGS <u>eindeutig</u> lösbar

Entwicklungssatz von Laplace

ab 4x4-Matrizen sinnvoll

Zeile i oder Spalte k mit vielen 0 wählen, dann:

$$\det \mathbf{A} = \sum_{i=1}^{n} (-1)^{k+i} a_{ik} \det \mathbf{A}_{ik} \qquad \mathbf{k} = \mathsf{Spalt}$$

$$\det \mathbf{A} = \sum_{k=1}^{n} (-1)^{k+i} a_{ki} \det \mathbf{A}_{ki} \qquad \qquad \mathbf{i} = \mathsf{Zeile}$$

Wenn nach Quotient zweier Determinanten gefragt: Cramersche Regel

Vektoren

Vektorrechnung siehe Papula

Winkel zw. 2 Vektoren:
$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$
 mit $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + \cdots}$

orthonormal: Basisvektoren senkrecht und Länge aller gleich 1

orthonormale Basis: siehe unten

Lineare Unabhängigkeit

Prüfen: $\lambda_1\cdot\vec{v}_1+\lambda_2\cdot\vec{v}_2+\cdots=0$ darf nur mit $\lambda_1=\lambda_2=0$ klappen Prüfen (Alternative): Vektoren als Matrix schreiben, wenn

Rang = Spaltenanzahl → linear unabhängig

Prüfen (Alternative): wenn det von Vektorenmatrix $\neq 0 \rightarrow$ lin. unabh.

Linearkombination

Kann ein Vektor als Lin.komb. anderer Vektoren dargestellt werden?

 \rightarrow Matrix aufstellen und LGS lösen: $A \cdot \vec{\lambda} = \vec{v}$ mit A aus Einzelvektoren

Basis eines Vektorraums R^m (m= Zeilenanzahl)

Menge von linear unabhängigen Vektoren

lineare Hülle: Auflistung linear unabhängiger Vektoren: $[\vec{a}_1, \vec{a}_2]$

Dimension Vektorraum/lineare Hülle: Anzahl der aufgelisteten Vektoren

Nullraum berechnen

Matrix mit Nullvektor auf rechter Seite aufstellen → Gauß (0-Dreieck) Bei unendlich vielen Lösungen:

Basis: Aufzählung der Vektoren, bei denen ein Parameter davorsteht

andere Schreibweise als lineare Hülle: [(...)]

bei $\underline{\text{eindeutiger}}$ Lösung nur Nullvektor in Nullraum (Dimension dann = 0)

Dimension: Anzahl der Vektoren in Basis (hier zB = 1)

Rang + Dimension Nullraum = Anzahl Vektorzeilen

Orthonormale Basis

Besonders schnell lassen sich die Koeffizienten berechnen, wenn wir von einem orthonormalen Basis $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ zu einer anderen orthonormalen Basis $\vec{b}_1, \vec{b}_2, ..., \vec{b}_n$ wechseln. Auch hier müssen die neuen Koordinaten eines Vektors \vec{x} aus der Gleichung

$$\vec{x} = x_1 \vec{a}_1 + x_2 \vec{a}_2 + ... + x_n \vec{a}_n = \lambda_1 \vec{b}_1 + \lambda_2 \vec{b}_2 + ... + \lambda_n \vec{b}_n$$

gewinnen. Multiplizieren wir beide Seiten der Gleichung mit \vec{b}_i , dann erhalten wir direkt den Koeffizienten λ_i , denn es gilt

$$x_1 \vec{a}_1 \cdot \vec{b}_i + x_2 \vec{a}_2 \cdot \vec{b}_i + \dots + x_n \vec{a}_n \cdot \vec{b}_i = \lambda_1 \vec{b}_1 \cdot \vec{b}_i + \lambda_2 \vec{b}_2 \cdot \vec{b}_i + \dots + \lambda_n \vec{b}_n \cdot \vec{b}_i$$

$$= \lambda_i.$$

Eine quadratische Matrix heißt **invertierbar** oder **regulär**, falls sie eine Inverse besitzt. Existiert keine Inverse, so heißt die Matrix **singulär**. Hat die $n \times n$ Matrix A den Rang $\operatorname{rg}(A) = n$, dann ist die Matrix A regulär.

Für reguläre $n \times n$ Matrizen A und B gilt

$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$
 und $(A^{-1})^{T} = (A^{T})^{-1}$.

Rang einer Matrix

Matrizen

spezielle Matrizen und Rechenregeln siehe Papula

$$(\mathbf{A} \cdot \mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \cdot \mathbf{A}^{\mathrm{T}}$$

Inverse Matrix berechnen

invertierbar ≜ regulär ≜ det ≠ 0

(nur quadratische Matrizen invertierbar)

- mit Einheitsmatrix rechts erweitern
- Umformen bis links Einheitsmatrix steht
- Kontrolle: $A^{-1} \cdot A$ muss Einheitsmatrix ergeben

Inverse hilfreich für:

$$A \cdot X = B \quad \triangleq \quad X = A^{-1} \cdot B$$

$$X \cdot A = B \triangleq X = B \cdot A^{-1}$$

Orthogonale Matrix

Inverse ergibt transponierte Matrix: $A^{-1} = A^T$

Nummer der letzten Zeile ohne Nullzeile

$$\overrightarrow{X} \cdot \overrightarrow{X} \rightarrow Zahl$$
 34 $\overrightarrow{a} \cdot \overrightarrow{A} \rightarrow \Pi x + i \times$

Eigenwerte λ bestimmen (Matrix vorher nicht verändern!)

- 1. Charakteristisches Polynom $det(A \lambda \cdot E)$ muss 0 sein $\rightarrow \lambda$ ausrechnen
- 2. Eigenvektoren bestimmen durch Fallunterscheidung mit verschiedenen λ

wenn mehr als eine Lösung:

$$\mathsf{zB} \colon \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{vmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \, \boldsymbol{\rightarrow} \, \, \vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} v_2 - v_3 \\ v_2 + 0 \\ 0 + v_3 \end{pmatrix} = v_2 \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + v_3 \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Übrigens: Produkt aller λ ist Determinante der Ursprungsmatrix Falls Eigenwerte Vielfachheit k haben: Anzahl der Eigenvekt. zwischen 1 und k

Matrix diagonalisierbar? Ja, wenn alle Eigenwerte verschieden Matrix V aus Eigenvektoren: $V^{-1} \cdot A \cdot V = Diagonalmatrix$

Ausgleichsrechnung

versch. Messwerte führen zu keiner Funktionsgl.

- → kleinsten Fehler bestimmen
- 1. Messwerte in f(x) einsetzen und Gleichungssystem $A\vec{x} = \vec{b}$ aufstellen
- 2. Normalengleichung berechnen: $A^T A \vec{x} = A^T \vec{b}$
- 3. Anschließend ist LGS lösbar und \vec{x} -Parameter können bestimmt werden
- 4. Funktionsgleichung f(x) aufstellen

II. Differentialgleichungen

DGL 1. Ordnung

Grundsätze

Typ
$$y'(x) = f(x) \cdot g(y)$$

Typ
$$y'(x) = f(ax + by + c)$$

$$\rightarrow$$
 Substitution $u = ax + by + c$

$$\mathsf{Typ}\ y'(x) = f\left(\frac{y}{x}\right)$$

$$\rightarrow$$
 Substitution $u = \frac{y}{x}$

Typ
$$y'(x) = f(ax + by + c) \cdot g(y)$$

Typ
$$y'(x) = f\left(\frac{y}{x}\right) \cdot g(y)$$

Substitution

- 1. Substitution (am besten: $u = \frac{y}{x}$)
- 2. Nach y auflösen
- 3. y nach x ableiten (evtl. y' = u'x + u)
- 4. y' auf linker Seite und u auf rechter Seite einsetzen
- 5. Lösung durch Trennung der Variablen
- 6. Rücksubstitution

Lineare DGL 1. Ordnung

$$y'(x) + a(x) \cdot y(x) = f(x)$$

 $(f(x) = \text{St\"orfunktion, wenn } 0 \rightarrow \text{homogene DGL})$

- 1. homogene DGL berechnen (f(x) gleich 0 setzen) (zuerst in diese Form bringen: $y'(x) + a(x) \cdot y(x) = f(x)$)
- 2. spezielle DGL berechnen: Variation der Konstanten
- 3. Allgemeine Lösung: $y(x) = y_h(x) + y_s(x)$
- 4. Partikuläre Lösung $y_p(x)$: Anfangswert einsetzen und C bestimmen

Variation der Konstanten

$$y_h(x) = C \cdot y_1(x)$$

$$K(x) = \int_{y_1(t)}^{x} \frac{f(t)}{y_1(t)} dt \qquad (f(t) = \text{St\"{o}rfkt.})$$

$$(f(t) = Störfkt.)$$

$$\rightarrow y_s(x) = K(x) \cdot y_1(x)$$
 (ohne C!)

Lineare DGL 1. Ordnung mit konstanten Koeffizienten

$$y'(x) + a \cdot y(x) = f(x)$$

- 1. homogene DGL berechnen: $y_h(x) = C \cdot e^{-a \cdot x}$
- 2. spezielle DGL berechnen:
 - a. Tabelle mit Lösungsansätzen
 - b. y_s ableiten
 - c. in DGL einsetzen
 - d. Koeffizientenvergleich
 - e. y_s aufstellen
- 3. Allgemeine Lösung: $y(x) = y_h(x) + y_s(x)$
- 4. Partikuläre Lösung $y_p(x)$: Anfangswert einsetzen und C bestimmen

Störfunktion $f(x)$	Lösungsansatz $y_s(x)$			
$f(x) = \alpha_0$	$y_s(x) = c_0$			
	Parameter: c_0			
$f(x) = \alpha_1 x + \alpha_0$	$y_s(x) = c_1 x + c_0$			
	Parameter: c_1, c_0			
$f(x) = \alpha_m x^m + \dots + \alpha_1 x + \alpha_0$	$y_s(x) = c_m x^m + \dots + c_1 x + c_0$			
	Parameter: $c_m,, c_1, c_0$			
$f(x) = \alpha \sin(\omega x) + \beta \cos(\omega x)$	$y_s(x) = A\sin(\omega x) + B\cos(\omega x)$			
	Parameter: A, B			
$f(x) = \alpha e^{\beta x}$	$y_s(x) = Ae^{\beta x}$, falls $\beta \neq -a$			
	$y_s(x) = Ax e^{\beta x}$, falls $\beta = -a$			
	Parameter: A			

DGL 2. Ordnung

Wronski-Determinante / Linearkombination der homogenen DGL

Ist für mindestens ein x die Wronski-Determinante $W(y_1, y_2)(x)$ ungleich 0, dann sind $y_1(x)$ und $y_2(x)$ linear unabhängig und es gilt: $y_h(x) = c_1 \cdot y_1(x) + c_2 \cdot y_2(x)$

 $\rightarrow y_1(x)$ und $y_2(x)$ bilden <u>Fundamentalsystem</u>

Wenn Wronski-Determinante für alle x = 0, gibt es ein c: $y_1(x) = c \cdot y_2(x)$

Wronski-Determinante

$$W(y_1, y_2)(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix}$$

Lösungsmethode DGL 2. Ordnung

- 1. Homogene DGL bestimmen (Störfunktion = 0 setzen)
- 2. charakteristische Gleichung aufstellen: $\lambda^2 + a\lambda + b$
- 3. $\lambda_{1/2}$ bestimmen durch Mitternachtsformel
 - a. wenn Wurzel > 0: $y_h(x) = c_1 \cdot e^{\lambda_1 \cdot x} + c_2 \cdot e^{\lambda_2 \cdot x}$
 - b. wenn Wurzel = 0: $y_h(x) = c_1 \cdot e^{\lambda_1 \cdot x} + x \cdot c_2 \cdot e^{\lambda_1 \cdot x}$
 - c. wenn Wurzel < 0: $y_h(x) = c_1 \cdot e^{-\frac{a}{2} \cdot x} \cdot \sin(\omega x) + c_2 \cdot e^{-\frac{a}{2} \cdot x} \cdot \cos(\omega x)$

Alternativ: $y_h(x) = c_1 \cdot e^{-\frac{a}{2} \cdot x + j\omega x} + c_2 \cdot e^{-\frac{a}{2} \cdot x - j\omega x}$

mit $\omega = \sqrt{b - \frac{a^2}{4}}$ bzw. aus $\lambda_{1/2} = -\frac{a}{2} \pm j \cdot \omega$

- 4. Spezielle Lösung berechnen:
 - a. Tabelle mit Lösungsansätzen
 - b. y_s ableiten
 - c. in DGL einsetzen
 - d. Koeffizientenvergleich
 - e. y_s aufstellen
- 5. Allgemeine Lösung: $y(x) = y_h(x) + y_s(x)$
- 6. Partikuläre Lösung $y_p(x)$: Anfangswerte einsetzen und Cs bestimmen

	Störfunktion $f(x)$	Lösungsansatz $y_s(x)$				
	Polynom vom Grad n	• $y_s(x) = Q_n(x)$ falls $b \neq 0$				
	$f(x) = P_n(x)$	• $y_s(x) = x \cdot Q_n(x)$ falls $a \neq 0$ und $b = 0$				
		• $y_s(x) = x^2 \cdot Q_n(x)$ falls $a = b = 0$				
		mit $Q_n(x) = q_n x^n + q_{n-1} x^{n-1} + + q_1 x + q_0$				
		Parameter: $q_0, q_1,, q_n \in \mathbb{R}$				
	Exponentialfunktion	• $y_s(x) = A \cdot e^{cx}$ falls c keine Lösung				
	$f(x) = K \cdot e^{cx}$	der charakteristischen Gleichung				
)		• $y_s(x) = Ax \cdot e^{cx}$ falls c einfache Lösung				
		der charakteristischen Gleichung				
		• $y_s(x) = Ax^2 \cdot e^{cx}$ falls c zweifache Lösung				
		der charakteristischen Gleichung				
		Parameter: A ∈ ℝ				
_	Lösungsansatz j	$v_s(x)$				

	1 drameter. At the				
Störfunktion $f(x)$	Lösungsansatz $y_s(x)$				
Sinus- oder Kosinusfunktion	• $y_s(x) = A \cdot \sin(\beta x) + B \cdot \cos(\beta x)$				
$f(x) = K \cdot \sin(\beta x)$	falls $j \beta$ keine Lösung der charakteristischen Gleichung				
oder	• $y_s(x) = x (A \cdot \sin(\beta x) + B \cdot \cos(\beta x))$				
$f(x) = K \cdot \cos(\beta x)$	falls j eta Lösung der charakteristischen Gleichung				
	Parameter: $A, B \in \mathbb{R}$				
Mischterm	• $y_s(x) = e^{cx} \left(Q_n(x) \cdot \sin(\beta x) + R_n(x) \cdot \cos(\beta x) \right)$				
$f(x) = P_n(x) \cdot e^{cx} \cdot \sin(\beta x)$	falls $c+j\beta$ keine Lösung der charakteristischen Gleichung				
oder	• $y_s(x) = x^{!} e^{cx} \left(Q_n(x) \cdot \sin(\beta x) + R_n(x) \cdot \cos(\beta x) \right)$				
$f(x) = P_n(x) \cdot e^{cx} \cdot \cos(\beta x)$	falls $c+j\beta$ Lösung der charakteristischen Gleichung				
	mit $Q_n(x) = q_n x^n + q_{n-1} x^{n-1} + + q_1 x + q_0$				
P_n : Polynom vom Grad n	und $R_n(x) = r_n x^n + r_{n-1} x^{n-1} + + r_1 x + r_0$				
	Parameter: $q_0, q_1,, q_n, r_0, r_1,, r_n \in \mathbb{R}$				

Systeme linearer DGLs

1

Ein System von DGL der Form

 $\begin{array}{rcl} y_1'(x) & = & a_{11}(x) \cdot y_1(x) + a_{12}(x) \cdot y_2(x) + \ldots + a_{1n}(x) \cdot y_n(x) + f_1(x) \\ y_2'(x) & = & a_{21}(x) \cdot y_1(x) + a_{22}(x) \cdot y_2(x) + \ldots + a_{2n}(x) \cdot y_n(x) + f_2(x) \\ & \vdots & \vdots \\ y_n'(x) & = & a_{n1}(x) \cdot y_1(x) + a_{n2}(x) \cdot y_2(x) + \ldots + a_{nn}(x) \cdot y_n(x) + f_n(x) \end{array}$

heißt ${\bf Differentialgleichungssystem}$ (DGL-System) $n\text{-}{\rm ter}$ Ordnung. In Matrixform lautet das System

$$\underbrace{\begin{pmatrix} y_1' \\ y_2' \\ \vdots \\ y_n' \end{pmatrix}}_{\widetilde{y}'} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}}_{\widetilde{\Lambda}} \underbrace{\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}}_{\widetilde{y}} + \underbrace{\begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix}}_{\widetilde{f}}$$

Ordnung eines DGL-Systems = Summe der Ordnungen der einzelnen DGLs

2

Eine DGL n-ter Ordnung

$$y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_1(x)y'(x) + a_0(x)y(x) = f(x)$$

wird mittels der Transformation

$$y_1 = y$$
, $y_2 = y'$, ..., $y_{n-1} = y^{(n-2)}$, $y_n = y^{(n-1)}$

zu dem DGL-System

$$\begin{pmatrix} y_1' \\ y_2' \\ \vdots \\ y_{n-1} \\ y_n \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ -a_0 & -a_1 & -a_2 & \dots & -a_{n-2} & -a_{n-1} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ f(x) \end{pmatrix}.$$

- Transformationsgl. immer so viele wie Ordnung;
- Wenn 2 DGLs gegeben auch folg. Transformation möglich:

$$y_1 = y_a$$
, $y_2 = y'_a$, $y_3 = y_b$, $y_4 = y'_b$

3

Homogene lineare Systeme mit konstanten Koeffizienten

$$\left(\begin{array}{c} y_1' \\ y_2' \end{array} \right) = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) \left(\begin{array}{c} y_1 \\ y_2 \end{array} \right)$$

- 1. Eigenwerte berechnen: $\det\begin{pmatrix} (a_{11}-\lambda) & a_{12} \\ a_{21} & (a_{22}-\lambda) \end{pmatrix} = 0$ $\Rightarrow \lambda$ berechnen
- 2. Eigenvektoren berechnen
- 3. Allgemeine Lösung: $\vec{y} = c_1 \cdot \overrightarrow{v_1} \cdot e^{\lambda_1 \cdot x} + c_2 \cdot \overrightarrow{v_2} \cdot e^{\lambda_2 \cdot x}$ (etc. bei größerer A-Matrix)

Grundsätzliches

kausale Funktion: f(t) = 0 für alle t < 0

Laplace-Transformation: $F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t) \cdot e^{-st} dt$

 \rightarrow f(t) darf keine Polstellen haben und nicht stärker wachsen als e^{-st} abnimmt

Sprungfunktion

$$\varepsilon(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

$$\varepsilon(t - t_1) = \begin{cases} 1, & t \ge t_1 \\ 0, & t < t_1 \end{cases}$$

Deltadistribution ("Ableitung" der Sprungfunktion)

$$\int_{-\infty}^{\infty} \delta(t) \cdot f(t) dt = f(0)$$

$$\int_{-\infty}^{\infty} \delta(t-t_1) \cdot f(t) dt = f(t_1) \qquad \text{(Verschiebung von δ nach t_1)}$$

 \rightarrow Suche t sodass $\delta(0)$ entsteht und setze dieses t in f(t) ein

Verallgemeinerte Ableitung (besser: einfach mit Produktregel ableiten)

$$Df(t) = f'(t) + \sum_{i=1}^{n} h_i \cdot \delta(t - t_1)$$

Transformationsregeln

R1-Linearität: Auseinanderziehen von zwei Einzelfunktionen und Konstanten raus

R2-Verschiebungssatz: Bei
$$f(t-t_0)$$
 $\rightarrow \mathcal{L}\{f^*(t)\} = e^{-st_0} \cdot \mathcal{L}\{f(t)\}$

R3-Ähnlichkeitssatz:
$$\mathcal{L}\{f(c \cdot t)\} = \frac{1}{c} \cdot F\left(\frac{s}{c}\right)$$
 (s in Bildfunktion durch $\frac{s}{c}$ ersetzen)

R4-Dämpfungssatz:
$$\mathcal{L}\lbrace e^{-at} \cdot f(t)\rbrace = F(s+a)$$
 (s in Bildfkt von f(t) ersetzen)

R5-periodisch:
$$\mathcal{L}{f(t)} = \frac{1}{1 - e^{-sT}} \cdot \int_0^T f(t) \cdot e^{-st} dt$$
 (T = Periodendauer)

R6-Ableitung:
$$\mathcal{L}{f'(t)} = s \cdot F(s) - f(0+)$$

$$\mathcal{L}\{f''(t)\} = s^2 \cdot F(s) - s \cdot f(0+) - f'(0+)$$

$$\mathcal{L}\{f'''(t)\} = s^3 \cdot F(s) - s^2 \cdot f(0+) - s \cdot f'(0+) - f''(0+)$$

Alternativ: $\mathcal{L}{Df(t)} = s \cdot F(s)$ (verallgemeinerte Ableitung)

R7-Integration: wenn $g(t) = \int_0^t f(\tau) d\tau$, dann $\mathcal{L}\{g(t)\} = \frac{1}{s} F(s)$ (nur für g(0)=0)

R8-Differ./Integr. im Bildbereich: $F'(s) = \mathcal{L}\{(-t)f(t)\}$

$$F''(s) = \mathcal{L}\{(-t)^2 f(t)\}$$

$$\int_{s}^{\infty} F(u) du = \mathcal{L}\left\{\frac{1}{t}f(t)\right\} \left(\text{wenn} \frac{1}{t}f(t) \text{ transformierbar}\right)$$

R9-Faltungssatz:

$$H(s) = F(s) \cdot G(s) = \mathcal{L}\{(f * g)(t)\}\$$

$$\Rightarrow h(t) = (f * g)(t) = \int_0^t f(\tau) \cdot g(t - \tau) d\tau$$

	Bildfunktion F(s)	Original funktion $f(t)$
1	1	$\delta(t)$
2	$\frac{1}{s}$	$\varepsilon(t)$
3	$\frac{1}{s^2}$	$t \cdot \varepsilon(t)$
4	$\frac{1}{s^n}$	$\frac{t^{n-1}}{(n-1)!}\varepsilon(t)$
5	e^{-as}	$\delta(t-a)$
6	$\frac{a \cdot s}{1 + a \cdot s}$	$\delta(t) - \frac{1}{a}e^{-\frac{t}{a}} \cdot \varepsilon(t)$
7	$\frac{1}{s(1+a\cdot s)}$	$\left(1-e^{-\frac{t}{a}}\right)\varepsilon(t)$
8	$\frac{a}{s^2 + a^2}$	$\sin(at)\varepsilon(t)$
9	$\frac{s}{s^2 + a^2}$	$\cos(at)\varepsilon(t)$
10	$\frac{a}{s^2 - a^2}$	$\sinh(at)\varepsilon(t)$
11	$\frac{s}{s^2 - a^2}$ 1	$\cosh(at)\varepsilon(t)$
12	$\frac{1}{(s^2+a^2)^2}$	$\frac{\sin(at) - a \cdot t \cdot \cos(at)}{2a^3} \varepsilon(t)$
13	$\frac{s}{(s^2+a^2)^2}$	$\frac{t \cdot \sin(at)}{2a} \varepsilon(t)$
14	$\frac{1}{s-a}/\frac{1}{s+a}$	at a(t) / a-at a(t)

14	$\frac{1}{s-a} / \frac{1}{s+a}$ $für Re(s) > Re(a)$	$e^{at} \cdot \varepsilon(t) / e^{-at} \cdot \varepsilon(t)$
15	$\frac{n!}{s^{n+1}}$	$t^n \cdot arepsilon(t)$
	$f \ddot{u} r Re(s) > 0$	

 $x^t \to e^{t \cdot \ln(x)}$

Rücktransformation \mathcal{L}^{-1}

→ Partialbruchzerlegung mögliche Typen:

$$\frac{1}{s-a} \longrightarrow e^{at} \cdot \varepsilon(t)$$

$$\frac{1}{(s-a)^n} \to e^{at} \cdot \frac{t^{n-1}}{(n-1)!} \cdot \varepsilon(t)$$

$$\frac{1}{s^2+1} \longrightarrow \sin(t) \cdot \varepsilon(t)$$

$$\frac{s}{s^2+1} \rightarrow \cos(t) \cdot \varepsilon(t)$$

Laplace-Trafo und lineare DGLs

Einsatz nur bei linearen DGLs mit konstanten Koeffizienten

Wenn Berechnung für t > 0 gefordert: Alles in einem Schritt, aber NICHT mit verallgemeinerter Ableitung.

- 1. Homogene DGL lösen (Störfunktion = 0) (nur wenn Anfangsbed. \neq 0)
 - a. Einzelne Terme Laplace-transformieren: $y(t) \rightarrow Y(s)$, $y'(t) \rightarrow s \cdot Y(s) y(0)$, $y''(t) \rightarrow s^2 \cdot Y(s) s \cdot y(0) y'(0)$
 - b. In DGL einsetzen (Achtung auf Vorzeichendrehung innerhalb eines Terms wenn zB -y"!)
 - c. Vergangenheitswerte für y(0) und y'(0) einsetzen
 - d. Y(s) ausklammern und alles ohne Y(s) auf andere Seite, dann nach Y(s) auflösen
 - e. Rücktransformation zu Originalfunktion, prüfen ob $\varepsilon(t)$ notwendig ist (nur notwendig wenn nur t > 0 gefordert) $\rightarrow y_h(t)$
- 2. Inhomogene DGL lösen
 - a. DGL mit verallgemeinerter Ableitung formulieren, z.B.: $D^2y + 2Dy + y = \varepsilon(t)$
 - b. Laplace-Trafo: $y(t) \to Y(s)$, $Dy \to s \cdot Y(s)$, $D^2y \to s^2 \cdot Y(s)$ (ohne y(0)-Terme!)
 - c. Y(s) ausklammern und alles ohne Y(s) auf andere Seite, dann nach Y(s) auflösen
 - d. Rücktransformation zu Originalfunktion, $\varepsilon(t)$ hier unbedingt notwendig!
- 3. Allgemeine Lösung: Summe aus 1 und 2

Laplace-Trafo und lineare DGL-Systeme

Einsatz nur bei linearen DGL-Systemen mit konstanten Koeffizienten

- \rightarrow Wenn Anfangsbedingungen $\vec{y}(0-)=(0;0) \rightarrow$ homogene DGLs = 0
 - 1. Matrix in Gleichungen umformen
 - 2. Laplace-Transformation nach Schritt 1a siehe oben (Achtung, wenn y(0) = 0 kann y(0) weggelassen werden)
 - 3. Gleichungen umstellen und $Y_1(s)$ bzw. $Y_2(s)$ jeweils zusammenfassen
 - 4. Gleichungen nach $Y_1(s)$ und $Y_2(s)$ auflösen

Achtung auf Vorzeichendrehung beim Einsetzen!

- \rightarrow Wenn Anfangsbedingungen $\vec{v}(0-)!=(0;0)$:
 - Schritte unter 1 siehe oben erst für Störfunktionen = 0 durchführen (homogene DGLs)

5. Rücktransformation der beiden Terme \rightarrow Lösungsvektor $\vec{y}(t)$ aufstellen

Für inhomogen DGLs Methode mit verallgemeinerter Ableitung D verwenden, siehe oben Schritt 2

	Originalbereich	Bildbereich		
Ohmscher Widerstand	$u(t) = R \cdot i(t)$	$U(s) = R \cdot I(s)$		
Induktivität	$u(t) = L \cdot \frac{d}{dt}i(t)$	$U(s) = L \cdot (s \cdot I(s) - i(0))$		
Kapazität	$u(t) = \frac{q}{c} = \frac{1}{c} \cdot \int_0^t i(\tau) d\tau$	$U(s) = \frac{I(s)}{s \cdot c} \qquad f \ddot{u} r \ u(0) = 0$		

LTI-Systeme / Übertragungsfunktion

$$Y(s) = G(s) \cdot X(s)$$
 $\Rightarrow G(s)$ ist Übertragungsfunktion $\Rightarrow \mathcal{L}^{-1}\{G(s)\} = g(t)$ ist Impulsantwort $(\Rightarrow G(s) = \frac{Y(s)}{X(s)} = \frac{Ausgang}{Eingang})$

Duhamel'sches Integral:
$$y(t) = \int_0^t x(\tau) \cdot g(t-\tau) d\tau$$
 (folgt aus Faltungssatz)

el'sches Integral:
$$\frac{y(t) = \int_0^t x(\tau) \cdot g(t-\tau) d\tau}{y(t) = \delta(t)}$$
 (folgt aus Faltungssatz)
wenn $x(t) = \delta(t)$ (Impuls als Eingangssignal) $\Rightarrow y(t) = g(t)$ da $Y(s) = G(s) \cdot 1$
wenn $x(t) = \varepsilon(t)$ (Sprung von 0 auf 1) $\Rightarrow h(t) = \int_0^t g(\tau) d\tau$ da $H(s) = \frac{G(s)}{s}$ (h = Sprungantw., g = Impuls)

ightarrow Sprungantwort ist Integral von Impulsantwort! ightarrow Dh(t) = g(t) und $s \cdot H(s) = G(s)$

$$\Rightarrow Y(s) = G(s) \cdot X(s) = s \cdot H(s) \cdot X(s) \quad \text{und} \quad y(t) = \int_0^t h(t - \tau) \cdot Dx(\tau) \, d\tau$$

Wachstum der Ausgangsfunktion y(t)

Ablesbar anhand Nullstellen von G(s)

- $s_1 < 0$: exponentiell abnehmend
- $s_1 > 0$: exponentiell zunehmend
- $s_1 = 0$: konstant
- $s_1 = (\alpha \pm j\beta), \ \alpha < 0$: gedämpfte Schwingung
- $s_1 = (\alpha \pm i\beta)$, $\alpha > 0$: anwachsende Schwingung
- $s_1 = \pm j\beta$, $\alpha = 0$: stationäre Schwingung

Fourier-Reihe:
$$F(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cdot \cos\left(\frac{2\pi}{T}kt\right) + b_k \cdot \sin\left(\frac{2\pi}{T}kt\right) \right)$$

 $\omega = \frac{2\pi}{r}$ Kreisfrequenz der Grundschwingung

$$a_0 = \frac{2}{T} \int_0^T f(t) dt$$

kω Kreisfrequenz der k-ten Oberschwing.

$$a_k = \frac{2}{T} \int_0^T f(t) \cdot \cos\left(\frac{2\pi}{T}kt\right) dt$$
 \rightarrow bei Punktsymmetrie = 0

$$A_k = \sqrt{a_k^2 + b_k^2}$$
 diskretes Amplit.spektrum

$$b_k = \frac{2}{T} \int_0^T f(t) \cdot \sin\left(\frac{2\pi}{T}kt\right) dt$$
 \rightarrow bei Achsensymmetrie = 0

$$\varphi_k = \arctan\left(\frac{b_k}{a_k}\right)$$

Wenn Integral aufgeteilt werden muss bleiben $\cos\left(\frac{2\pi}{T}kt\right)$ (und Sinus und e) trotzdem mit ganzem T

$$\sin(-x) = -\sin(x)$$
$$\cos(-x) = \cos(x)$$

 $a_1 = Amplitude der Grundschwingung$ $a_{k>1} =$ Amplituden der Oberschwingungen

Umrechnung zw. Fourier-Koeffizienten siehe Papula!

Polarform:
$$F(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} A_k \cdot \cos\left(\frac{2\pi}{T}kt - \varphi_k\right)$$

Exponential form:
$$F(t) = \sum_{k=-\infty}^{\infty} c_k \cdot e^{j\frac{2\pi}{T}kt}$$

mit
$$c_k = \frac{1}{x} \cdot \int_0^T f(t) \cdot e^{-j\frac{2\pi}{T}kt} dt$$
 (wenn nötig: $c_0 = \frac{1}{x} \int_0^T f(t) dt$)

Parseval'sche Gleichung:
$$\frac{1}{T}\int_0^T \lvert f(t)\rvert^2 dt = \sum_{k=-\infty}^\infty \lvert c_k\rvert^2$$

Achtung!
$$e^{-j\pi k}$$
 und $cos(\pi k)$ sind immer $(-1)^k$!!

- **1. Streckung der Periode:** Wenn Funktion g(t) vielfache Periode von f(t) hat \rightarrow Koeffiz. gleich, $c_k = C_k$, nur Periode verschieden
- 2. Verschiebung um to: $g(t) = f(t+t_0)$ $\rightarrow G(t) = F(t+t_0) = \sum_{k=-\infty}^{\infty} c_k \cdot e^{j\frac{2\pi}{T}k(t+t_0)} = \sum_{k=-\infty}^{\infty} c_k \cdot e^{j\frac{2\pi}{T}kt_0} \cdot e^{j\frac{2\pi}{T}kt_0}$ Koeffizient von G(t): $C_k = c_k \cdot e^{j\frac{2\pi}{T}kt_0}$
- 3. Multiplikation mit Schwingung: $g(t) = e^{j\frac{2\pi}{T}nt} \cdot f(t) \rightarrow G(t) = \sum_{k=-\infty}^{\infty} c_{k-n} \cdot e^{j\frac{2\pi}{T}kt}$ Koeffizienten von G(t): $C_k = c_{k-n}$
- **4.** Ableitung: g(t) = f'(t) $\Rightarrow G(t) = F'(t) = \sum_{k=-\infty; k\neq 0}^{\infty} c_k \cdot \left(j\frac{2\pi}{T}k\right) \cdot e^{j\frac{2\pi}{T}kt}$ Koeffizient von G(t): $C_0=0$ und $C_k=c_k\cdot\left(j\frac{2\pi}{\tau}k\right)$ für $k\neq 0$
- **5.** Integration: $g(t) = \int_0^t f(\tau)d\tau$ $\Rightarrow G(t) = \int_0^t F(\tau)d\tau = \sum_{k=-\infty; k\neq 0}^{\infty} \frac{c_k}{i^{2\pi}_k} \cdot e^{j\frac{2\pi}{T}kt} \sum_{k=-\infty; k\neq 0}^{\infty} \frac{c_k}{i^{2\pi}_k}$ Koeffizienten von G(t): $C_0=-\sum_{k=-\infty;\;k\neq 0}^{\infty}\frac{c_k}{j\frac{2\pi}{m}k}\;\;{\rm und}\;C_k=\frac{c_k}{j\frac{2\pi}{m}k}$ für $k\neq 0$

Faltung

Wenn $g(t)=(f_1*f_2)(t)$ dann gilt $G(t)=\sum_{k=-\infty}^{\infty}c_k\cdot d_k\cdot e^{j\frac{2\pi}{T}kt}$ mit c_k und d_k als Koeffizienten von $F_1(t)$ und $F_2(t)$

LTI-System

Ausgangssignal $Y(t) = (X*g)(t) = \sum_{k=-\infty}^{\infty} c_k \cdot d_k \cdot e^{j\frac{2\pi}{T}kt}$ wobei $g(t) = \sum_{k=-\infty}^{\infty} d_k \cdot e^{j\frac{2\pi}{T}kt}$ (ähnlich Impulsantwort)

DGL vom Typ $y''' + a_2 \cdot y'' + a_1 \cdot y' + a_0 \cdot y = f(t)$

- 1. Fourier-Reihe von Störfunktion f(t) bestimmen, deren Koeffizienten heißen dk
- 2. Bestimme $Q(k) = \left(j\frac{2\pi}{T}k\right)^3 + a_2 \cdot \left(j\frac{2\pi}{T}k\right)^2 + a_1 \cdot \left(j\frac{2\pi}{T}k\right) + a_0$ (Q(k) darf nicht 0 werden können!)
- 3. Koeffizienten der Lösung berechnen: $c_k = \frac{d_k}{O(k)}$ (wenn Fallunterscheidung bei d_k auch Fallunterscheidung bei c_k)
- 4. Lösung der DGL: $y(t) = \sum_{k=-\infty}^{\infty} c_k \cdot e^{j\frac{2\pi}{T}kt}$

Wenn Funktion in der Form $f(t) = \sin(t) + \sin(3t) - \cos(5t)$ etc. gegeben:

- 1. Periode T = kleinster gemeinsamer Wert der für t eingesetzt werden muss damit in sin bzw. cos Vielfaches von 2π steht
- 2. Fourier-Reihe in allgemeiner Form hinschreiben und T einsetzen: $F(t) = \sum_{k=-\infty}^{\infty} c_k \cdot e^{j\frac{2\pi}{T}kt}$ 3. f(t) mit Euler-Formeln schreiben: $\sin(\omega t) = \frac{e^{j\omega t} e^{-j\omega t}}{2j}$ $\cos(\omega t) = \frac{e^{j\omega t} + e^{-j\omega t}}{2}$
- 4. Brüche einzeln darstellen (Vorsicht falls Minus!)
- 5. Einzelne ck überlegen indem geschaut wird was für k in allgemeiner Form aus (2) eingesetzt werden muss, damit der Term in f(t) entsteht. Der Vorfaktor vor dem e-hoch-Term (zB $-\frac{3}{2i}$) ist dann das jeweilige c_k
- 6. "c_k = 0 sonst" hinschreiben

-	_					
	la	n	O.	e	n	9

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
tan(x)	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$

Sinus/Cosinus

,									
X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
cos(x)	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

Sinus/Cosinus

•									
X	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
sin(x)	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos(x)	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

$$h(t) = \int \tau \cdot \epsilon(\tau) \cdot \epsilon(t - \tau - t_0) d\tau = \int \tau \cdot \epsilon(\tau) \cdot \epsilon(t - t_0 - \tau) d\tau = \int \tau d\tau = \left[\frac{1}{2}\tau^2\right]_0^{t - t_0} = \frac{1}{2}(t - t_0)^2 \cdot \epsilon(t - t_0)$$
where $\tau < t - t_0$

we can $\tau < t - t_0$

$$F(t) = \frac{2}{3\pi} \sum_{k=-\infty}^{\infty} \frac{1}{2k-1} \cdot e^{\frac{1}{3}(2k-1)t}$$

$$g(t) = f\left(\frac{t}{2} - \frac{\pi}{2}\right)$$

$$-> G(t) = \frac{2}{J!T} \cdot \sum_{h=-\infty}^{\infty} \frac{1}{2h-1} \cdot e^{J(2h-1)\left(\frac{t}{2} - \frac{\pi}{2}\right)} =$$

$$= \frac{2}{J!T} \cdot \sum_{h=-\infty}^{\infty} \frac{1}{2h-1} \cdot e^{-J(2h-1)\frac{\pi}{2}} \cdot e^{J(2h-1)\frac{t}{2}}$$

$$g\left(t\right) = f\left(\pi + t\right) - \pi$$