

CMix-NN: Mixed Low-Precision CNN Library for Memory-Constrained Edge Devices

Alessandro Capotondi*, Manuele Rusci, Marco Fariselli, Luca Benini

*alessandro.capotondi@unimore.it

Hipert Lab

Department of Physics, Mathematics

and

Informatics

Università di Modena e Reggio Emilia

Energy-Efficient Embedded Systems

Laboratory

Dipartimento di Ingegneria dell'Energia

Elettrica e dell'Informazione

Università di Bologna

Edge Smart Devices

Microcontrollers for tinyML at the edge

Source: STM32H7 datasheet

- □ Low-power (<10-100mW) & low-cost
 - ☐ Smart device are battery- operated
- ☐ Highly-flexible (SW programmable)
- ☐ But limited resources(!)
 - ☐ few MB of memories
 - □ single RISC core up to few 100s MHZ (STM32H7: 480MHz) with DSP SIMD instructions and optional FPU
- ☐ Currently, only tinyML tasks on MCUs (visual wake words, CIFAR10)

Challenge: Run 'complex' and 'big' (Imagenet-size) DL inference on MCU?

Deep Learning Model Size

Rusci, Manuele, et al. "Leveraging Automated Mixed-Low-Precision Quantization for tiny edge microcontrollers." arXiv preprint arXiv:2008.05124 (2020).

Fact 1: Integer-only model needed for deployment on low-power MCUs

Fact 2: 8-16 bit are not sufficient to bring 'complex' models on MCUs (memory!!)

Mixed-Precision Quantization

Using less than 8 bits...

HAQ (Wang et al 2018)	Accuracy-aware mixed-precision policy search with RL agent. Relies on non-uniform quantization, weight-only.
HAWQ (Dong et al 2019)	Hessian-based metric to compute the quantization policy. Less performant than HAQ.
(Rusci et al 2020)	Mixed Precision Quantizatoin appling minimum tensor-wise quantization ≤8bit to fit the memory constraints

(Wang et al 2018) Wang, Kuan, et al. "Haq: Hardware-aware automated quantization with mixed precision." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2019. (Dong et al 2019) Dong, Zhen, et al. "Hawq: Hessian aware quantization of neural networks with mixed-precision." *Proceedings of the IEEE International Conference on Computer Vision*. 2019. (Rusci et al. 2020) "Memory-driven mixed low precision quantization for enabling deep network inference on microcontrollers." *arXiv preprint arXiv:1905.13082* (2019).

Fact 3: Mixed Low-Precision Improves Accuracy on memory constrained device

CMix-NN: Mixed Low-Precision CNN Library

- Mixed-precision sub-byte (2, 4, 8 bit) quantization for weights and activations
- Per-Layer (PL), and Per-Channel (PC) Quantization
- Optimized for ARM ARMv7-M ISA
- Open-Source: https://github.com/EEESlab/CMix-NN

CMix-NN Source Code Structure

- Based on CMSIS-NN
 - Same computational model (im2col + GEMM)
 - Same HWC tensor layout
- C Library (not C++)
 - NN Graph is compiled! Good for Latency!
- Convolutional Layer Supported
 - 2D Conv, Depthwise
 - FC

More that 81 different convolutional kernel configurations!

Cmix-NN final source code is generated using templates (mako, python)

Uniform Interger Quantization Flavors

real value quantized tensor (INT-Q) tensor or subtensor
$$t = S_t \times (T_q - Z_t)$$

$$T_q = Z_t + round \left(\frac{clamp(t, a, b)}{S_t}\right)$$

$$S_{t} = \frac{b - a}{2^{Q} - 1}$$

a, b are learned or deterministic paramsIn general a != b, asymmetric quantization

Per-Layer (PL) : asym [a,b] of the whole weight tensor w

Per-Channel (PC) : asym [a,b] of the weight sub-tensor along the outer dim w[i]

Typically asymmetric by definition (e.g. ReLU), b is learned via PACT

$$Y_q = quant_{act}(x) = Z_y + floor\left(\frac{clamp(x, 0, b)}{S_x}\right) \cdot S_x$$

activations weights

To turn a fake-quantized (sub-byte) sub-graph into an integer-only Representation we use **Integer Channel-Normalization** (Rusci et al. 2019) :

$$Y_q = Z_y + clamp(floor(M_0 2^{N_0} (\Phi + B_q)), 0, 2^{Q-1})$$

 M_0 , N_0 , B_q are channel-wise integer params

(Rusci et al. 2019) "Memory-driven mixed low precision quantization for enabling deep network inference on microcontrollers." arXiv preprint arXiv:1905.13082 (Jacob, 2018) Jacob, Benoit, et al. "Quantization and training of neural networks for efficient integer-arithmetic-only inference." CVPR 2018

CMix-NN Quantized Convolutional Layer NIMORE

Layer-by-layer execution

Layer transfer function

$$Y_q = Z_y + clamp(floor(M_0 2^{N_0} (\Phi + B_q)), 0, 2^{Q-1})$$

$$\Phi = \sum (W_q - Z_w) \cdot (X_q - Z_x)$$

NB. This formulation holds either for PL or PC quantization of weights, only Z_w differs from scaler to array

CMix-NN Quantized Convolutional Layer Type Con

- W_q, X_q and Y_q has arbitrary precision (2-, 4-, 8-bit)
- MAC Unit exploits 2x16-bit SIMD MAC (ARMv7-M ISA)
- Compession (or Activation Function) brings 32-bit accumulator to arbitrary precision (2-, 4-, 8-bit)

for *x,y=0*; *x,y*<*dimOut*; *x,y++* **do**

end for

for x,y=0; x,y< dimOut; x,y++ do

u32 ptrBuff0 ← im2colQ(tensorIn[x,y], Zin, kw, kh, InFeat, nCol) u32 ptrBuff1 ← im2colQ(tensorIn[x+1,y], Zin, kw, kh, InFeat, nCol)

Input Image

NOTE! Patches are also packed from original bitwidth to 2x16-bit Vectors

end for

Figure: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Figure: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/


```
for x,y=0; x,y< dimOut; x,y++ do
         u32 ptrBuff0 \leftarrow im2colQ(tensorIn[x,y], Zin, kw, kh, InFeat, nCol)
         u32 ptrBuff1 \leftarrow im2colQ(tensorin[x+1,y], Zin, kw, kh, InFeat, nCol)
         for each co in OutFeat; co+=2 do
                                                                                w8: K=2
           acc0 = acc2 \leftarrow bias[co], acc1 = acc3 \leftarrow bias[co+1]
                                                                                w4: K=4
           for each i in len(ptrBuff0), i+=K do
                                                                               w2: K=8
              w_0[0], w_0[1], \dots w_0[K-1] \leftarrow UnpackQ (tensorW[so], Qw) - Zw
              W_1[0], W_1[1], ... W_1[K-1] \leftarrow UnpackQ (tensorW[co+1], Qw) - Zw
     AccLoop
             acc0 += MAC16(ptrBuff0[i], w_0[0]) + MAC16(ptrBuff0[i+1], w_0[1])
             acc1 += MAC16(ptrBuff0[i], w_1[0]) + MAC16(ptrBuff0[i+1], w_1[1])
             acc2 += MAC16(ptrBuff1[i], w_0[0]) + MAC16(ptrBuff1[i+1], w_0[1])
MatMul
             acc3 += MAC16(ptrBuff1[i],W_1[0]) + MAC16(ptrBuff1[i+1],W_1[1])
             acc0 += MAC16(ptrBuff0[i+(K-2)], w_0[K-2]) + MAC16(ptrBuff0[i+(K-1)], w_0[K-1])
             acc1 += MAC16(ptrBuff0[i+(K-2)], w_1[K-2]) + MAC16(ptrBuff0[i+(K-1)], w_1[K-1])
             acc2 += MAC16(ptrBuff1[i+(K-2)], w_0[K-2]) + N
                                                            e.g. Unpacking 4-bit tensors.
             acc3 += MAC16(ptrBuff1[i+(K-2)], w_1[K-2]) + N
           end for
                                                            int32 inA = *((int32 *) tensorW);
           tensorOut[x,y,co] \leftarrow CompressQ( {acc0, acc2},
                                                            w[0]= UXTB16(
                                                                                                      & 0x000F000F);
                                                                                           inA
           tensorOut[x,y+1,co] \leftarrow CompressQ( {acc1, acc}
                                                            w[1] = UXTB16(ROR(inA, 4) & 0x000F000F);
         end for
       end for
                                                            w[2] = UXTB16(ROR(inA, 8) & 0x000F000F);
                                                            w[3] = UXTB16(ROR(inA, 12) & 0x000F000F);
```

Low-bitdwith Extraction is not a free meal...

Experimental Setup

- Low-bitwidth Performance Characterization
- End2End Network Inference SoA Comparison

Target Board

- STM32H7
 - ARM Cortex-M7 480 MHz, 2MB FLASH, 512kB SRAM

CNN Network Configuration

- Mobilenet v1 and Mobilenet v2 Family
- Imagenet (1000-class) Classification Task

Inference Libraries SOA

- CMSIS-NN
- STM CubeMX.AI

activation bit

Low-bitwidth Performance Characterization

End2End SoA Comparison

	X-CUBE-AI		CMSIS-NN		PC+ICN	C	CMix-NN (our)			
Network	Mob-V1	Mob-V1	Mob-V1	Mob-V1	Mob-V1	Mob-V1	Mob-V1	Mob-V1	Mob-V1	Mob-V2
1100110111	128_0.25	$192_0.5$	$192_0.5$	224_0.75	$224_0.75$	$224_0.75$	$192_0.5$	$160_0.50$	$128_0.25$	224_1.0
Quantization	_	PL	PL	PC+ICN	PL+ICN	PL+ICN	PC+ICN	PC+ICN	PC+ICN	PC+ICN
Tensor Type	FP32	$INT8^{1}$	INT8 ²	w4a4	mixed		w8a8	w8a8	w8a8	mixed
Avg Act. Bits	32	8	8	4	6.72	6.72	8	8	8	5.35
Avg Wgt. Bits	32	8	8	4	5.99	5.99	8	8	8	4.61
Model Size (MB)	1.88	1.37	1.37	0.98	1.97	1.97	1.37	1.37	0.49	1.95
Latency (s)	0.206	0.437	0.510	2.290	1.86	1.419	0.677	0.460	0.110	2.013
MAC/Cycle	0.14	0.52	0.45	0.30	0.36	0.48	0.33	0.35	0.26	0.30
Accuracy Top-1	45.0%	59.5%	$59.5\%^3$	60.5%	68.2%	67.0 %	62.9 %	61.25%	44.6%	54.0%
Energy $(\mu \mathbf{J})$	54.40	115.40	134.64	604.69	491.15	374.70	178.77	121.46	29.05	531.55

Best Cmix-NN solution (MobV1-224-0.75, PC+ICN, Mixed, Top1% 68.2%) up to

- +23% Accuracy compared to the best FP32 solution (CubeMX.AI)
- +9% Accuracy compared to the best INT8 solution (CubeMX.AI, CMISIS-NN)

Per-Channel quantization is always more accurate compare to Per-Layer (up to +1.75%)

Per-Channel quatization is approx. 24% less efficient in MAC/s (CubeMX.AI 0.52 MAC/s, Cmix-NN PL+ICN 0.48, Cmix-NN PC+ICN 0.36)

But, **MobV1-160-0.50**, PC+ICN, has the same or lower latency of any other competitors and provide a **more accurate solution!**

Conclusions

- CMix-NN, flexible inference library for MCU-based edge devices
 - optimized backend to deploy state-of-the-art mixed lowprecision deep neural networks for ARM Cortex-M MCUs
 - Support different flavor of quantization
 - Different Datatypes, for weights and activations
 - Per-Channel and Per-Layer quantization
- Open-Source https://github.com/EEESlab/CMix-NN
- CMix-NN enables the deployment of a 68% Imagenet
 MobilenetV1 into a MCU with 2MB FLASH and 512 kB RAM.

What's next

Supporting Complex ML problems on MCU-class require

- Optmized byte and sub-byte operations on ISA!
 - A. Garofalo "XpulpNN: Accelerating Quantized Neural Networks On RISC-V Processors Through ISA Extensions"
 - ARMv8-M (MAC 8/16-bit SIMD arithmetic)
- Novel Quantization Mechanisms to improve accuracy degradation on low-precision (sub-byte) models
- Quantization is only one of the levels for DL Compression
 - Pruning
 - NAS and AutoML
 - How integrate them properly!

Check it out and Contribute to Cmix-NN!

https://github.com/EEESlab/CMix-NN

Alessandro Capotondi Università di Modena e Reggio Emilia alessandro.capotondi@unimore.it

