

insertion operation on languages

Canonical name InsertionOperationOnLanguages

Date of creation 2013-03-22 18:56:53 Last modified on 2013-03-22 18:56:53

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771)
Entry type Definition
Classification msc 68Q70
Classification msc 68Q45
Synonym insertion-closed
Synonym insertion-closure

Related topic DeletionOperationOnLanguages

Related topic ShuffleOfLanguages

Defines insertion

Defines insertion closed
Defines insertion closure

Defines k-insertion

Let Σ be an alphabet, and u, v words over Σ . An *insertion* of u into v is a word of the form v_1uv_2 , where $v = v_1v_2$. The concatenation of two words is just a special case of insertion. Also, if w is an insertion of u into v, then v is a deletion of u from w.

The insertion of u into v is the set of all insertions of v into u, and is denoted by $v \triangleright u$.

The notion of insertion can be extended to languages. Let L_1, L_2 be two languages over Σ . The insertion of L_1 into L_2 , denoted by $L_1 \triangleright L_2$, is the set of all insertions of words in L_1 into words in L_2 . In other words,

$$L_1 \rhd L_2 = \bigcup \{u \rhd v \mid u \in L_1, v \in L_2\}.$$

So $u \triangleright v = \{u\} \triangleright \{v\}.$

A language L is said to be insertion closed if $L \triangleright L \subseteq L$. Clearly Σ^* is insertion closed, and arbitrary intersection of insertion closed languages is insertion closed. Given a language L, the insertion closure of L, denoted by $\operatorname{Ins}(L)$, is the smallest insertion closed language containing L. It is clear that $\operatorname{Ins}(L)$ exists and is unique.

More to come...

The concept of insertion can be generalized. Instead of the insertion of u into v taking place in one location in v, the insertion can take place in several locations, provided that u must also be broken up into pieces so that each individual piece goes into each inserting location. More precisely, given a positive integer k, a k-insertion of u into v is a word of the form

$$v_1u_1\cdots v_ku_kv_{k+1}$$

where $u = u_1 \cdots u_k$ and $v = v_1 \cdots v_{k+1}$. So an insertion is just a 1-insertion. The k-insertion of u into v is the set of all k-insertions of u into v, and is denoted by $u \triangleright^{[k]} v$. Clearly $\triangleright^{[1]} = \triangleright$.

Example. Let $\Sigma = \{a, b\}$, and u = aba, v = bab, and w = bababa. Then

- w is an insertion of u into v, as well as an insertion of v into u, for $w = vu\lambda = \lambda vu$.
- w is also a 2-insertion of u into v:
 - the decompositions u = (ab)(a) and $v = (b)(ab)\lambda$
 - or the decompositions $u = \lambda u$ and $v = \lambda v \lambda$

produce $(b)(ab)(ab)(a)\lambda = \lambda \lambda vu\lambda = w$.

- Finally, w is also a 2-insertion of v into u, as the decompositions $u = \lambda u \lambda$ and $v = v \lambda$ produce $\lambda v u \lambda \lambda = w$.
- $u \triangleright v = \{ababab, babaab, baabab, bababa\}.$

From this example, we observe that a k-insertion is a (k + 1)-insertion, and every k-insertion of u into v is a (k + 1)-insertion of v into u. As a result,

$$u \rhd^{[k]} v \subseteq (u \rhd^{[k+1]} v) \cap (v \rhd^{[k+1]} u).$$

As before, given languages L_1 and L_2 , the k-insertion of L_1 into L_2 , denoted by $L_1 \triangleright^{[k]} L_2$, is the union of all $u \triangleright^{[k]} v$, where $u \in L_1$ and $v \in L_2$.

Remark. Some closure properties regarding insertions: let \mathscr{R} be the family of regular languages, and \mathscr{F} the family of context-free languages. Then \mathscr{R} is closed under $\triangleright^{[k]}$, for each positive integer k. \mathscr{F} is closed $\triangleright^{[k]}$ only when k=1. If $L_1\in\mathscr{R}$ and $L_2\in\mathscr{F}$, then $L_1\triangleright^{[k]}L_2$ and $L_2\triangleright^{[k]}L_1$ are both in \mathscr{F} . The proofs of these closure properties can be found in the reference.

References

[1] M. Ito, Algebraic Theory of Automata and Languages, World Scientific, Singapore (2004).