The Evolution of Wi-Fi

Fredrik Brännström

Chalmers University of Technology, Gothenburg, Sweden

The Evolution of Wi-Fi

Fredrik Brännström

Chalmers University of Technology, Gothenburg, Sweden Principal Design Engineer for Wi-Fi 802.11b/a/g/n, Quantenna Communications, Fremont CA, 2006 – 2010

- Founded in 2006 by Dr. Behrooz Rezvani, Prof. Andrea Goldsmith, and four other leading experts.
- Received over \$200 million in funding from leading venture capital firms, lead by Sequoia Capital (around 25%), Menlo Park, CA.
- Sequoia Capital has invested in over 250 companies since 1972: Apple, Google, Oracle, PayPal, YouTube, Instagram, Yahoo! and WhatsApp.
- Headquarters in the heart of Silicon Valley: San Jose (California)
- R&D design centers: Phoenix (Arizona), St. Petersburg (Russia), Shanghai/Wuxi (China), Taipei (Taiwan), and Sydney (Australia)
- Currently 400+ employees.
- Quantenna's technology is deployed by 50+ major service providers including: AT&T, DirecTV, Orange, Bell Canada, Swisscom, Telefonica, France Telecom, Rostelecom, TeliaSonera, ...

802.11 Standards

	802.11	Release	Freq [GHz]	Rate [Mbit/s]	Modulation
	-	Jun 1997	2.4	1 or 2	DSSS
	b	Sep 1999	2.4	5.5 or 11	CCK
	а	Sep 1999	5	6 (54)	OFDM
Oct 3, 2018	g	Jun 2003	2.4	6 – 54	? OFDM
Wi-Fi 4	n	Oct 2009	2.4 / 5	6.5 - 600	OFDM
Wi-Fi 5	ac	Nov 2013	5	up to 6933) ′	? OFDM
Wi-Fi 6	ax	Sep 2019	2.4 / 5	up to 9608	OFDMA

- Direct Sequence Spread Spectrum (DSSS)
- Complementary Code Keying (CCK)
- Orthogonal Frequency Division Multiplexing (OFDM)
- How to increase the data rate from 54 Mbit/s to 600 Mbit/s?
- How to reach almost 10 Gbit/s (178 times faster than 11a/g)?

802.11a/g: Scrambler

- The scrambler (SCR) scrambles the DATA bits (in a known fashion without changing the order) to reduce the probability of long sequences of zeros or ones.
 - Input (32): 01100000 00000000 00111111 11111111
 - Output (32): 11101001 11100101 01001000 01010111

802.11a/g: Channel Code

- A 64-state binary convolutional code (BCC) with code rate R=1/2 followed by a puncturer that removes some redundant bits.
- No puncturing: 12 bits in \rightarrow 24 bits out \rightarrow R=12/24=1/2
 - Input (12): 111010 011110
 - Output (24): 101001 001001 011100 110010
- 25% puncturing: 12 bits in \rightarrow 24 6=18 bits out \rightarrow R=12/18=2/3
 - Input (12): 1110 1001 1110 (period 4)
 - Output (18): 1010 0100 1001 0111 0011 0010
- 33% puncturing: 12 bits in \rightarrow 24 8=16 bits out \rightarrow R=12/16=3/4
 - Input (12): 111010 011110 (period 6)
 - Output (16): 101001 001001 011100 110010

802.11a/g: Interleaver

- The bit interleaver (INT) permutes the order of the coded bits to prevent long sequences of adjacent noisy bits (frequencyselective fading) from entering the BCC decoder.
- The size of the interleaver = the size of the OFDM symbol.
- Input (row) 3 x 16 = 48 bits for BPSK:
- Output (column) 3 x 16 = 48 bits for BPSK:

•	0	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
1	6	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
3	2	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47

802.11a/g: Mapper

 The mapper (MAP) maps the interleaved bits to constellation points (complex numbers) using Gray labeling.

802.11a/g: Data/Pilot/Zero (DPZ) Allocation

- 64 sub-carriers in 20 MHz give a sub-carrier spacing of 20 MHz / 64 = 312.5 kHz.
- 48 DATA sub-carriers from mapper output.
- 4 PILOT sub-carriers are inserted to track for example carrier frequency offset and changes in the channel.
- 12 ZERO sub-carriers (DC and between channels).

802.11a/g: OFDM

- The Inverse Discrete Fourier Transform (IDFT) converts a block of 64 complex valued constellation points 312.5 kHz apart to a time domain block of 1 / 312.5 kHz = 3.2 μs.
- Frequency 20 MHz BPSK
- Time3.2 µs64 samples

802.11a/g: Guard Interval

A guard interval (GI) is added by copying the last 25% of the IDFT output and attach it to the beginning (cyclic prefix) to create the OFDM symbol of 3.2 + 0.8 = 4 μs.

 Using GI reduces the sensitivity to time synchronization problems and eliminates the OFDM intersymbol interference (ISI) if the multipath time-spreading is shorter than the GI.

802.11a/g: Analog

 The analog block up-converts the complex baseband waveform to a radio frequency (RF) signal according to the center frequency of the desired channel (around 2.4 GHz for 802.11g and around 5 GHz for 802.11a).

802.11a/g: Rate Parameters

- Four modulations and three code rates, but only 8 valid combinations.
- How can we increase the data rate from 54 to 600 Mbit/s?

802.11n: Data/Pilot/Zero (DPZ) Allocation

802.11a/g: 48 DATA, 4 PILOT, and 12 ZERO.

802.11n: 52 DATA, 4 PILOT, and 8 ZERO.

802.11n: Scrambler

- 802.11a/g: The scrambler (SCR) scrambles the DATA bits (in a known fashion without changing the order) to reduce the probability of long sequences of zeros or ones.
 - Input (32): 01100000 00000000 00111111 11111111
 - Output (32): 11101001 11100101 01001000 01010111
- 802.11n: No update can increase the data rate!

802.11n: Channel Code

- 802.11a/g: A 64-state binary convolutional code (BCC) with code rate R=1/2 followed by a puncturer that removes some redundant bits.
 - No puncturing: R=1/2
 - 25% puncturing: R=2/3
 - 33% puncturing: R=3/4
- 802.11n: More puncturing gives higher data rate!
- 40% puncturing: 20 bits in \rightarrow 40 16=24 bits out \rightarrow R=20/24=5/6
 - Input (20): 1110100111 1001011010 (period 10)
 - Output (24): 1010010010 0101110011 0101110011 0101110011
- Maximum data rate: 58.5 Mbit/s → 58.5·(5/6)/(3/4) = 65 Mbit/s

802.11n: Interleaver

- 802.11a/g: Input (row) 3 x 16 = 48 bits for BPSK:
- 802.11a/g: Output (column) 3 x 16 = 48 bits for BPSK:

0	0	01	02	-03	04	05	06	07	08	09	10	11	12	13	14	15
1	6	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
3	2	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47

- 802.11n: Input (write row) 4 x 13 = 52 bits for BPSK:
- 802.11n: Output (read column) 4 x 13 = 52 bits for BPSK:

0	0	01	02	03	04	05	06	07	08	09	10	11	12
1	3	14	15	16	17	18	19	20	21	22	23	24	25
2	6	27	28	29	30	31	32	33	34	35	36	37	38
3	9	40	41	42	43	44	45	46	47	48	49	50	51

802.11n: Mapper

- 802.11a/g: BPSK, QPSK, 16-QAM, and 64-QAM
- 802.11n: No update! (higher constellations require very high SNR)

802.11n: Guard Interval (GI)

• 802.11a/g: 25% of the end is copied to the beginning: 3.2 + 0.8 = 4 μs.

- 65 Mbit/s
- Long GI (LGI)

802.11n: 12.5% of the end is copied to the beginning: 3.2 + 0.4 = 3.6 μs.

- 65·4.0/3.6 = 72.2 Mbit/s
- Short GI (SGI)

802.11n: Modulation and Coding Scheme (MCS)

33% increase of the data rate – how do we increase it further?

802.11n: DPZ Allocation, 40 MHz

802.11a/g 20 MHz 48 D, 4 P, 12 Z 54 Mbit/s

802.11n 20 MHz 52 D, 4 P, 8 Z 72.2 Mbit/s

802.11n 40 MHz 108 D, 6 P, 14 Z 72.2·108/52 = 150 Mbit/s

128-point IDFT

802.11n: MCS for 20 MHz and 40 MHz

MCS	Code rate R	Mod	802.11a/g 20MHz [Mbit/s]	802.11n 20MHz LGI [Mbit/s]	802.11n 20MHz SGI [Mbit/s]	802.11n 40MHz LGI [Mbit/s]	802.11n 40MHz SGI [Mbit/s]
0	1/2	BPSK	6	6.5	7.2	13.5	15.0
-	3/4	BPSK	9	-	-	-	-
1	1/2	QPSK	12	13.0	14.4	27.0	30.0
2	3/4	QPSK	18	19.5	21.7	40.5	45.0
3	1/2	16-QAM	24	26.0	28.9	54.0	60.0
4	3/4	16-QAM	36	39.0	43.3	81.0	90.0
5	2/3	64-QAM	48 DF	Z 52.0	57.8	108.0	120.0
6	3/4	64-QAM	54	58.5 s	GI 65.0	121.5	135.0
7	5/6	64-QAM	_ BCC	65.0	72.2	135.0	150.0

How do we get from 150 to 600 Mbit/s?

40 MHz

802.11n: Multiple Input Multiple Output (MIMO)

 One to four spatial streams (SSs) of data at the same time in the same channel give a data rate up to 4·150 = 600 Mbit/s.

MCS	R	Mod SS0	Mod SS1	Mod SS2	Mod	20MHz LGI [Mbit/s]	SGI	40MHz LGI [Mbit/s]	40MHz SGI [Mbit/s]
31	5/6	64QAM	64QAM	64QAM	64QAM	260	288.9	540	600

802.11n: Performance?

- The data rate is increased from 54 to 600 Mbit/s.
- Mandatory (DPZ and BCC) and optional (SGI, 40 MHz, MIMO) features.

What about the performance? Can it be improved? Suggestions?

802.11n: LDPC

- Low Density Parity Check (LDPC) code.
- Same four code rates as BCC, R={1/2, 2/3, 3/4, 5/6}.
- Better performance than BCC.
- More complex encoder/decoder than BCC, i.e., harder to implement.
- Block code instead of convolutional code, i.e., usually longer delay.

802.11n: Spatial Mapper (SM) or TxBF

- Increasing number of streams: 1 ≤ N_{SS} ≤ N_{TX} ≤ 4
- The SM maps the N_{SS} spatial streams to N_{TX} antennas for sub-carrier k using a complex matrix Q_k of size N_{TX} times N_{SS}
- The performance depends on the choice of Q_k.
- Q_k is not standardized.
- It can be static, or dynamically derived, e.g., from the channel estimate.
- It can be generated in the receiver or transmitter.

802.11n: Unequal Modulation

- There are 76 different MCS values.
- MCS 0 to 31 have equal modulation of the spatial streams.
- MCS 33 to 76 have unequal modulation of the spatial streams.
- For example:

MCS	R	Mod SS0	Mod SS1	Mod SS2	Mod SS3	20MHz LGI [Mbit/s]	20MHz SGI [Mbit/s]	40MHz LGI [Mbit/s]	40MHz SGI [Mbit/s]
33	1/2	16QAM	QPSK	-	-	39	43.3	81	90
42	1/2	64QAM	16QAM	QPSK	-	78	86.7	162	180
70	3/4	64QAM	16QAM	16QAM	QPSK	156	173.3	324	360

- Unequal modulation can be useful in beamforming, when the channels for different spatial streams are different (rate adaptation).
- There are 8 different rates in 802.11a/g.
- There are $76 \cdot 2 \cdot 2 = 304$ different rates in 802.11n.

802.11n: Summary

- 802.11a/g: 8 different rates {6, 9, 12, 18, 24, 36, 48, 54} Mbit/s
- Mandatory in 802.11n: 20 MHz MCS 0 7, BCC, DPZ, 2.4 GHz
 8 different rates {6.5, 13, 19.5, 26, 39, 52, 58.5, 65} Mbit/s
- Optional in 802.11n: 20 MHz MCS 8 76, 40 MHz MCS 0 76, 5 GHz,
 SGI, LDPC, STBC, SM, 296 different rates: 7.2 600 Mbit/s
- 802.11a/g: 54 Mbit/s using 48 subcarriers, each 312.5 kHz: 3.6 bit/s/Hz
- 802.11n: 600 Mbit/s using 108 subcarriers, each 312.5 kHz: >17 bit/s/Hz
- Next time you buy a Wi-Fi device, read the specification!

802.11ac

- MAP: 64QAM to 256QAM, 600-8/6 = 800 Mbit/s
- DPZ: 108 DATA carriers in 40 MHz to 468 DATA carriers in 160 MHz, 800-468/108 = 3467 Mbit/s
- IDFT: 128 FFT to 512 FFT
- STREAM PARSER: 4 streams to 8 streams, 3467-8/4 = 6933 Mbit/s
- Multi-user MIMO (MU-MIMO) in downlink
- 6933 Mbit/s using 468 subcarriers, each 312.5 kHz: >47 bit/s/Hz

802.11ax

- MAP: 256QAM to 1024QAM, 6933-10/8 = 8666 Mbit/s
- Subcarrier spacing: 312.5 kHz to 78.125 kHz (both 160 MHz)
- DPZ: 468 DATA carriers in 3.2+0.4 μs to 1960 DATA carriers in 12.8+0.8 μs 8666·3.6/468·1960/13.6 = 9608 Mbit/s
- IDFT: 512 FFT to 2048 FFT
- MU-MIMO also in uplink
- Orthogonal Frequency Division Multiple Access (OFDMA)
- 9608 Mbit/s using 1960 subcarriers, each 78.125 kHz: >62 bit/s/Hz

2007-2009 2010-2011 2012-2013 2014 2015-2018 2019

• *iPhone 1/3G/3GS*: 802.11g, 1 stream, 20 MHz, 2.4 GHz, **54 Mbps**

• *iPhone 4/4S*: 802.11n, SGI, STBC, **72.2 Mbps**

iPhone 5/5S: 802.11n, 40 MHz, 5 GHz, LDPC, 150 Mbps

• *iPhone 6*: 802.11ac, 80 MHz, 256 QAM, TxBF, **433 Mbps**

• *iPhone 6S/7/8/X/Xs*: 802.11ac, 2 streams, **867 Mbps**

• *iPhone 11:* 802.11ax, >**1320 Mbps ?**

Quantenna

- Oct. 2008 announced the world's first fully integrated 802.11n chipsets with 4x4 MIMO and transmit beamforming (TxBF) 600 Mbps
- Nov. 2011 released the world's first 802.11ac chipset for retail Wi-Fi routers and consumer electronics
- Jan. 2015 the world's first full 802.11ac including 8x8 MIMO, Multi-User MIMO (MU-MIMO) and 160 Mhz channel support.
- Sept. 2015 first and only company to support speeds over 10 Gbps.
 True 8x8™ MIMO for 5GHz + 4x4 MIMO on 2.4 GHz using 1024QAM.
 Was the world's fastest Wi-Fi chip!
- Oct. 2016 industry's first 802.11ax Wi-Fi chipset
- Oct 28, 2016 Registered as QTNA on NASDAQ to raise around \$123 million in an initial public offering (IPO).
- June 19, 2019 ON Semiconductor Corporation acquires Quantenna for \$1.07 billion

Next time you buy a Wi-Fi device, read the specification!

Asus Rapture GT-AX11000, 10.756 Gbps 5290 SEK at Kjell & Company