Unitary limit Fermions under trap And Dripline

Young-Ho Song (IRIS, IBS), Myungkuk Kim ,Youngman Kim (CENS,IBS)

NLEFT collaboration

Nuclear Lattice Effective Field Theory Collaboration

- Serdar Elhatisari(Gaziantep Islam Science and Technology)
- Lukas Bovermann(Ruhr)
- Evgeny Epelbaum (Bochum)
- Dillon Frame (Juelich)
- Fabian Hildenbrand(Darmstadt)
- Hermann Krebs(Ruhr)
- Timo A. Lähde (Juelich)
- Dean Lee (MSU)
- Ning Li(Sun Yat-sen)
- Bing-Nan Lu(Graduate School of China Academy of Engineering Physic)
- Myungkuk Kim(CENS,IBS)
- Youngman Kim (CENS,IBS)
- Young-Ho Song(IRIS,IBS)
- Yuan-Zhuo Ma(Peking)
- Ulf-G. Meißner (Bonn/Juelich)
- Gautam Rupak(Mississippi State)
- Shihang Shen (Juelich)
- Gianluca Stellin(CEA Paris-Saclay)
- And More...

Ab-initio method

Nuclear forces

- ab-initio Nuclear Physics
 - (1) nucleon degrees of freedom
 - (2) nucleon-nucleon interaction

Goal: predict wide range(structure, reaction, nuclear matter) of nuclear phenomena (without parameter fitting, model assumption) from nuclear interaction (for 2-body,3-body, many-body, based on QCD)

Direct connection between
Nuclear Force ↔ Nuclear Phenomena

Dripline

Can we explain the dripline in NLEFT?

Can we find a effective mean-field from NLEFT?

Nuclear Lattice Effective Field Theory

One of ab initio method for many fermion system

Nucleon in LQCD

Nucleons as point particles on the lattice

Path integral

Correlator function for A Nucleons

$$Z_A(t) = \langle \Psi_A | \exp(-tH) | \Psi_A \rangle$$

Slater Determinants for A free Nucleons

Ground state energy by time derivative of the correlator

$$E(t) = -\frac{d}{dt} \ln Z_A(t)$$

At large time only ground states survive

$$E_A^0 = \lim_{t \to \infty} E_A(t)$$

$$\begin{array}{lcl} |\Psi_A\rangle & = & \displaystyle\sum_n c_n |n\rangle_A, \\ \\ Z_A(t) & = & \displaystyle\langle\Psi_A|e^{-tH}|\Psi_A\rangle = \displaystyle\sum_n c_n e^{-tE_n} \end{array}$$

Applications of NLEFT

- Has been successfully applied to
 - Nuclear matter, Cold atom, dilute fermion system
 - Finite nuclei (A<=60)
 - First ab-initio calculation of Hoyle state
 - Cluster structure of ¹²C and ¹⁶O
 - NN scattering, N-D scattering
 - Alpha-alpha scattering
 - radiative capture, fusion
 - Etc.

The first ab-initio calculation of Hoyle state

Epelbaum, Krebs, Lähde, Lee, Meißner: Phys. Rev. Lett. 109, 252501 (2012)

Ab initio alpha-alpha scattering (Nature 528, 111-114(2015))

BE/A from WFM

RMSD ~ 0.1 MeV per nucleon

Accepted by Nature recently

Charge Radius

No fitting! RMSD~ 0.03 fm

Nuclear/Neutron Matter

Neutron matter:

A=4~80

box size 6.6 ~ 13.2 fm.

Nuclear matter:

 $A=4 \sim 160$

Box size 7.92~9.24 fm.

 Uncertainties from finite system size correction

Carbon isotopes

Carbon and Oxygen

How can we understand the dripline?

- Although fully ab initio calculation of dripline was possible,
 Mean field picture is very useful to understand the general beh avior.
 - For example, core potential in a shell model with core.
- How can we find more simple picture which describe the dripline? What is the most important property of the potential to get the dripline?
 - Fully ab-initio approach
 - Half ab-initio/phenomenological approach
- Warning: This is on-going work and no final results are avail able.

Dripline for unitary Fermions

- Unitary Fermion Gas :
 - A strongly coupled conformal system
 - Physically interesting multi-fermion system with simple interaction

$$\mathcal{A} = \frac{4\pi}{M} \frac{1}{p \cot \delta - ip}$$

$$p \cot \delta = -\frac{1}{a} + \frac{1}{2}r_0p^2 + O(p^4)$$

- $p \cot \delta = 0$: Unitary limit
- → largest possible scattering amplitude. Infinite scattering length. (Realistic nuclear force is close to unitary limit.)

Universality of unitary limit of many fermion system

→ Bertsch Parameter

$$r_e \ll n^{-\frac{1}{3}} \ll a_s$$

$$E_0 = \xi E_{FG}$$
,

Bertsch parameter

Unitary limit Hamiltonian

1S0 NN scattering phase shift is fitted for unitary limit .

→ Very large scattering length.

In cubic and BCC lattice

N=66 neutrons (33 spin up, 33 spin down) L = 4,..., 10

$$\xi = E_0/E_{\rm FG}$$

$$\xi_{33,33}^{\text{thermo}} = 0.369(2) \text{ and } \xi_{33,33}^{\text{finite}} = 0.372(2)$$
 Cubic lattice $\xi^{\text{therm}} = 0.369(2)$ $\xi^{\text{few}} = 0.371(2)$ BCC lattice

Unitary Fermions under trap

- Unitary Fermion itself does not form a bound nuclei
 - → Introduce an external spherical well potential Can we find a relation between trap shape and dripline?
- Separation energy have to be calculated accurately
 - → Use an re-weighting method to reduce error in separation energy. (correlated error estimation in energy difference.)
- Unfortunately, realistic mean-field potential is rather expensive.
 (reaching dripline in Unitary limits is difficult.)
 - → limited to shallow external potential.
 Try to see the dependence on parameter : y0 = m R^2 V

(Work in progress. Only preliminary results)

Neutrons in trap

Separation energies

Lattice spacing 100 MeV

Spherical well radius~ 4fm

 Unitary limit interaction has too strong pairing!

Preliminary

V0=8MeV density contour

V0=8MeV density contour

Extrapolation?

- Linear Fit
- Needs More data
- Unitary limit interaction has too strong pairing.
- getting mean field potential for the last neutron by using inver se method→ not accurate.

Preliminary

Mean field potential from protons?

- Instead of inverse method to get mean field potential, let us try to use half-phenomenological approach.
- Oxygen isotopes as
 - Fully interacting neutrons (WFM interaction up to N3LO)
 - Replace proton contributions into WS potential
 - → N neutrons under effective proton mean field.
- What kind of effective potential will give experimental separation on energies?
 - Searching for the best Woods-Saxon potential form

Preliminary

Mean field potential from protons?

Variation of WS potential parameters

depth: $-45 \sim -50$ MeV,

Diffuseness: 0.5 ~ 0.7 fm

Radius: 2.52 fm

Summary

- How one can get a simple mean field picture of dripline from ab initio?
- Unitary limit Fermion system: simple but too strong pairing for dripline.
- Half-Phenomenological approach:
 - Searching for the basic property of mean field potential.
 - Still preliminary stage.