Module 1 Graded Quiz

Due Jan 23 at 11:59pm **Points** 10 **Questions** 10 **Available** after Jan 9 at 11:59am **Time Limit** 300 Minutes

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	19 minutes	10 out of 10

Score for this quiz: **10** out of 10 Submitted Jan 23 at 8:13pm This attempt took 19 minutes.

Question 1

1 / 1 pts

Apply unit propagation on the formula $p \land (p \lor q) \land (\neg p \lor \neg q) \land (q \lor r) \land (\neg q \lor \neg r)$ starting with an empty set U of literals. What are the resulting formulas F from the first three iterations?

$$F_{-1} = p \land r, F_{-2} = r, F_{-3} = T$$

$$F_-1 = q \wedge (q ee r) \wedge (\lnot q ee \lnot r), F_-2 = (q ee r) \wedge (\lnot q ee \lnot r), F_-3 = T$$

$$\bigcirc F_-1 = \neg q \land (q \lor r) \land (\neg q \lor \neg r), F_-2 = \neg q, F_-3 = T$$

Correct!

$$lacksquare F_-1 =
eg q \wedge (q ee r) \wedge (
eg q ee
eg r), F_-2 = r, F_-3 = T$$

Question 2

1 / 1 pts

 $p \land (p \lor q) \land (\neg p \lor \neg q) \land (q \lor r) \land (\neg q \lor \neg r)$ starting with an empty set U of literals. What are the resulting set U of literals from the first three iterations?

$$U_{-1} = \{p\}, U_{-2} = \{\neg q\}, U_{-3} = \{r\}$$

$$\cup U_{-}1 = \{p\}, U_{-}2 = \{p,r\}, U_{-}3 = \{p,r,\neg q\}$$

Correct!

$$U_{-}1 = \{p\}, U_{-}2 = \{p, \neg q\}, U_{-}3 = \{p, \neg q, r\}$$

$$U_1 = \{p\}, U_2 = \{r\}, U_3 = \{\neg q\}$$

Question 3 1 / 1 pts

Which option correctly shows how entailment and satisfiability are related?

$$\bigcirc \{p,q\} \models r \text{ iff } \{r\} \text{ is satisfiable }$$

$$\bigcirc \ \{p,q\} \models r \text{ iff } \{\neg p, \neg q, r\} \text{ is unsatisfiable}$$

Correct!

$$\bigcirc \ \{p,q\} \models r \text{ iff } \{p,q,\neg r\} \text{ is unsatisfiable }$$

$$\bigcirc \{p,q\} \models r \text{ iff } \{p,q,r\} \text{ is satisfiable }$$

Question 4 1 / 1 pts

Let F be a propositional formula. Is the following statement true or false?

F is a tautology iff ¬F is satisfiable.

Correct! False

Question 6 1/1 pts

Which option is to have a conclusion that is likely to be true even though we do not have enough evidence?

Abductive reasoning

Model finding

Default reasoning

Deductive reasoning

Question 7 1 / 1 pts

Recall the definition of propositional formula below.

A propositional formula of signature σ is defined recursively as follows:

- Every atom is a formula
- Both 0-place connectives are formulas
- If F is a formula then ¬F is a formula
- For any binary connective \odot , if F and G are formulas then (F \odot G) is a formula

Which option is a propositional formula according to the definition?

Correct!

 \square $a \rightarrow b$

Correct!

- **✓**
- \Box $(\bot \neg \top)$
- \Box $(\neg(a) \lor b)$

	Question 8	1 / 1 pts
	Suppose p is an atom. Is the following statement true or false? $\{\bot\}$ entails \bot .	
Correct!	True	
	○ False	

Question 9 If a propositional signature has n atoms, how many interpretations are there? 2*n n n 2*n 2*n

/17/22, 11:21 AM	Module 1 Graded Quiz: CSE 579: Knowledge Representation (2022 Spring)		
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
Correct!	${\Bbb F}_{\lor}(G \leftrightarrow H)$ and $(F \lor G) \leftrightarrow (F \lor H)$		
Correct!	$lacksquare$ (F $_{\wedge}$ G) $_{\wedge}$ H and F $_{\wedge}$ (G $_{\wedge}$ H)		
Correct!	${f igspace{!}}$ (F $_{}$ G) $_{}$ H and F $_{}$ (G $_{}$ H)		

Quiz Score: 10 out of 10