Exercícios - Cálculo IV - Aula 10 - Semana 26/10 - 30/10 Revisão de Séries de Taylor

1 Série Binomial

Seja $f(x) = (1+x)^{\alpha}$, $\alpha \in \mathbb{R} - \mathbb{N}$. Queremos obter a série de Maclaurin de f, que é chamada de série binomial. A série é dada por $s(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$. Temos que

- $f'(x) = \alpha (1+x)^{\alpha-1}$.
- $f''(x) = (\alpha 1)\alpha(1 + x)^{\alpha 2}$.
- $f'''(x) = (\alpha 2)(\alpha 1)\alpha(1 + x)^{\alpha 3}$.
- $f^{(n)}(x) = (\alpha (n-1))(\alpha (n-2))\dots(\alpha 2)(\alpha 1)\alpha(1+x)^{\alpha n}$

Logo

$$s(x) = 1 + \sum_{n=1}^{\infty} \frac{(\alpha - (n-1))(\alpha - (n-2))\dots(\alpha - 2)(\alpha - 1)\alpha}{n!} x^n$$

Usando a notação (que é o número binomial quando α é natural):

$$\frac{(\alpha - (n-1))(\alpha - (n-2))\dots(\alpha - 2)(\alpha - 1)\alpha}{n!} = \begin{pmatrix} \alpha \\ n \end{pmatrix}$$

temos

$$s(x) = 1 + \sum_{n=1}^{\infty} {\binom{\alpha}{n}} x^n$$

Veja na apostila da Prof. Janete que:

- O intervalo de convergência desta série é]-1,1[.
- A série converge para f neste intervalo.

Exemplo 1 A série de Maclaurin de $f(x) = \sqrt{1+x}$ é

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128} + \dots + (-1)^{n-1} \frac{1 \cdot 3 \cdot 5 \dots (2n-3)}{2^n n!} x^n + \dots$$

para |x| < 1. Vamos usar esta série para calcular um valor aproximado de $\sqrt{1,3}$ com erro inferior a 10^{-3} . Substituindo x=0,3 na série acima temos uma série alternada satisfazendo as condições do Critério de Leibniz. Segundo vimos na lista de exercícios da aula 7, $|s_n - s| < a_{n+1}$ onde s é a soma da série e s_n é a soma parcial da série. Procuramos n de modo que $a_{n+1} < 10^{-3}$. Observe que $a_4 = \frac{5 \cdot (0,3)^4}{128} = 0,000316 < 10^{-3}$, logo $\sqrt{1,3} \approx 1 + \frac{0.3}{2} - \frac{(0,3)^2}{8} + \frac{(0,3)^3}{16} = 1,1404375.$

Exercício 1 Obtenha o desenvolvimento em série de potências de f(x) em torno de 0 e indique o raio de convergência:

$$a) f(x) = \sqrt{1 - x^3}.$$

b)
$$f(x) = (1+x)^{-3}$$

b)
$$f(x) = (1+x)^{-3}$$
.
c) $f(x) = 1/\sqrt[3]{1-x^2}$.

2 Aproximações e Erro

Dada uma série $\sum_{n=0}^{\infty} a_n$ convergente, seja $s = \sum_{n=0}^{\infty} a_n$ a soma da série. Con-

sidere a soma parcial $s_k = \sum_{n=0}^{\infty} a_n$. O erro (em módulo) cometido quando

aproximamos s por s_k é simplesmente $|s-s_k|$. Não é elementar estimar este erro. Vimos duas fórmulas: quando a série é uma série alternada satisfazendo as condições do Critério de Leibniz e, no caso de série de potências, temos a fórmula de Lagrange.

Exemplo 2 Queremos encontrar um valor aproximado para $\int_0^1 e^{-t^2} dt$ com erro inferior a 10^{-3} . Sabemos que $e^{-t^2} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!}$, logo

$$\int_0^x e^{-t^2} dt = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{n!(2n+1)}$$

tomando x = 1 temos:

$$s = \int_0^1 e^{-t^2} dt = \sum_{n=0}^{\infty} (-1)^n \frac{1}{n!(2n+1)}.$$

Esta é uma série alternada satisfazendo as condições do Critério de Leibniz, logo $|s - s_k| < \frac{1}{(k+1)!(2k+3)} < 10^{-3}$. Observe que para k = 4, $\frac{1}{5!(2.4+3)} = \frac{1}{1320} < 10^{-3}$. Portanto

$$s = \int_0^1 e^{-t^2} dt \approx 1 - \frac{1}{3} + \frac{1}{10} - \frac{1}{42} + \frac{1}{216} = 0,747...$$

Exemplo 3 Calcule sen 0,7 com erro inferior a 0,002. Temos que $f(x) = sen x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$. Seja $P_{k,0}(x)$ o polinômio de Taylor de f de ordem k em 0 e $R_{k,0}(x) = f(x) - P_{k,0}(x)$ o resto de Taylor. Segue da fórmula de Lagrange que $|R_{k,0}(x)| = \left| \frac{f^{(k+1)}(\bar{x})x^{k+1}}{(k+1)!} \right|$, onde \bar{x} está entre 0 e x. Agora tome x = 0, 7:

$$|sen 0, 7 - P_{k,0}(0,7)| = |R_{k,0}(0,7)| = \left| f^{(k+1)}(\bar{x}) \frac{(0,7)^{k+1}}{(k+1)!} \right|$$

Para k=4, $|f^{(5)}(\bar{x})| \leq 1$ e $(0,7)^5/5!=0,0014<0,002$. Portanto $sen\,0,7\approx 0,7-\frac{(0,7)^3}{6}=0,64283$. Lembre-se que o polinômio de ordem 4 de f é $x-x^3/3!$.

Exercício 2 Utilize uma série infinita para aproximar o número dado com precisão de quatro decimais:

a)
$$\int_0^{1/2} \frac{\ln(1+x)}{x} dx$$
 b) $\int_0^{0.5} \cos x^2 dx$ c) $\int_0^1 \frac{\sin x}{x} dx$ d) $\int_0^1 \frac{1-e^{-x}}{x} dx$

3 Funções Analíticas

Seja I um intervalo aberto contendo ponto x_0 e seja $f: I \to \mathbb{R}$ infinitamente derivável (de classe C^{∞}). Se

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

para $x \in I$, dizemos que f é analítica em x_0 . Dizemos que f é analítica em I se for analítica para todo $x_0 \in I$.

Exemplo 4 Vimos nas videoaulas do Prof. Possani que e^x , $\cos x$, sen x, arctg x e $\ln\left(\frac{1+x}{1-x}\right)$ são funções analíticas em $x_0=0$. Você pode facilmente provar (imitando o caso já feito) que e^x , $\cos x$ e sen x são funções analíticas em todo $x_0 \in \mathbb{R}$. Escreva a série de Taylor em torno de x_0 e calcule o erro de Taylor usando a fórmula de Lagrange.