Job No.:
 wallace - 1
 Address:
 90 Rattrays Rd, Waimate, New Zealand
 Date:
 26/04/2024

 Latitude:
 -44.691873
 Longitude:
 171.06932
 Elevation:
 65.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N4	Ground Snow Load	0.9 KPa	Roof Snow Load	0.63 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	6 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	41.79 m/s
Wind Pressure	1.05 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 5.35 m Cpe = -0.9 pe = -0.85 KPa pnet = -0.85 KPa

For roof CP,e from 5.35 m To 10.70 m Cpe = -0.5 pe = -0.47 KPa pnet = -0.47 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 13.60 m Cpe = 0.7 pe = 0.66 KPa pnet = 0.97 KPa

For side wall CP,e from 0 m To 5.35 m Cpe = pe = -0.61 KPa pnet = -0.61 KPa

Maximum Upward pressure used in roof member Design = 0.85 KPa

Maximum Downward pressure used in roof member Design = 0.40 KPa

Maximum Wall pressure used in Design = 0.97 KPa

Maximum Racking pressure used in Design = 1.13 KPa

Design Summary

Girt Design Front and Back

Girt's Spacing = 0 mm Girt's Span = 6700 mm Try Girt 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.67 S1 Downward =12.68 S1 Upward =19.97

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.00 Kn-m	Capacity	3.92 Kn-m	Passing Percentage	Infinity %
$ m V_{0.9D ext{-}WnUp}$	0.00 Kn	Capacity	20.10 Kn	Passing Percentage	Infinity %

Deflections

Second page

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 0.00 mm

Limit by Woolcock et al, 1999 Span/100 = 67.00 mm

Sag during installation = 122.18 mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 750 mm

Girt's Span = 3400 mm

Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.88 S1 Downward =11.27 S1 Upward =15.49

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 1.05 Kn-m
 Capacity
 3.29 Kn-m
 Passing Percentage
 313.33 %

 V0.9D-WnUp
 1.24 Kn
 Capacity
 16.08 Kn
 Passing Percentage
 1296.77 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 9.35 mm

Limit by Woolcock et al. 1999 Span/100 = 34.00 mm

Sag during installation =8.10 mm

Reactions

Maximum = 1.24 kn

End Pole Design

Geometry For End Bay Pole

Geometry

250 SED H5 (Minimum 275 dia. at Floor Level) Dry Use 5800 mm Height 54091 mm2 40568.5546875 mm2 Area As 232952248 mm4 Ix Zx 1774874 mm3 232952248 mm4 Zx 1774874 mm3 Iy

Lateral Restraint mm c/c

Loads

Total Area over Pole = 22.78 m²

5.70 Kn 5.70 Kn Dead Live Wind Down 9.11 Kn Snow 14.35 Kn Moment Wind 16.99 Kn-m 3.01 Kn-m Moment snow Phi 0.57 0.8 K8

K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	fs =	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	444.90 Kn	PhiMnx Wind	29.44 Kn-m	PhiVnx Wind	96.07 Kn
PhiNcx Dead	266.94 Kn	PhiMnx Dead	17.66 Kn-m	PhiVnx Dead	57.64 Kn
PhiNex Snow	355.92 Kn	PhiMnx Snow	23.55 Kn-m	PhiVnx Snow	76.85 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.64 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.40 < 1 OK$

Deflection at top under service lateral loads = 39.76 mm < 59.85 mm

Ds = 0.6 mm Pile Diameter

1700 mm L =Pile embedment length

f1 =4500 mm Distance at which the shear force is applied

f2 = $0 \, \mathrm{mm}$ Distance of top soil at rest pressure

Loads

Total Area over Pole = 22.78 m^2

Moment Wind = 16.99 Kn-m Moment Snow = 3.01 Kn-m Shear Wind = 3.78 Kn Shear Snow = 3.01 Kn

Pile Properties

Safety Factory 0.55

Hu= 7.06 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu =18.47 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.92 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

18 Kn/m3 0 Kn/m3 Gamma Friction angle 30 deg Cohesion

K0 = $(1-\sin(30))/(1+\sin(30))$ Kp = $(1+\sin(30))/(1-\sin(30))$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L = 1700 mm Pile embedment length

f1 = 4500 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 16.99 Kn-m Moment Snow = 3.01 Kn-m Shear Wind = 3.78 Kn Shear Snow = 3.01 Kn

Pile Properties

Safety Factory 0.55

Hu = 7.06 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 18.47 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.92 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2600) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2600)

Skin Friction = 54.60 Kn

Weight of Pile + Pile Skin Friction = 59.14 Kn

Uplift on one Pile = 28.48 Kn

Uplift is ok