Chapter 1

1.1 Martingales

p.s. for a probability space.

r.v. for a random variable.

Definition 1.1

For a p.s. $(\Omega, \mathcal{F}_0, P)$ a σ -field $\mathcal{F} \subset \mathcal{F}_0$ and a r.v. $X \in \mathcal{F}_0$ with $E|X| < \infty$. We define the conditional expectation of X given \mathcal{F} , $E(X|\mathcal{F})$ to be any r.v. Y that has a. $Y \in \mathcal{F}$.

b. $\int_A X dP = \int_A Y dP$ for all $A \in \mathcal{F}$. and Y is said to be a version of $E(X|\mathcal{F})$.

*

Lemma 1.1

If Y satisfies (a),(b) above, then it is integrable.

Proof

We know

$$\int_{\{Y>0\}} Y dP = \int_{\{Y>0\}} X dP < \infty \int_{\{Y<0\}} Y dP = \int_{\{Y<0\}} X dP < \infty$$

and hence $\int |Y| dP$ finite.

Lemma 1.2

If Y' also satisfies (a),(b) in Def.1.1., then Y = Y' a.s.

Proof

Assume
$$E_n=\{Y'-Y>n^{-1}\},$$
 $F_n=\{Y-Y'>n^{-1}\},$ $n\in\mathbb{N}$, then we know
$$n^{-1}P(E_n)\leq \int_{E_n}(Y-Y')dP=\int_{E_n}YdP-\int_{E_n}Y'dP=0$$

and hence $P(E_n)=0$ for any $n\in\mathbb{N}$, similarly, we know $P(F_n)=0$ for any $n\in\mathbb{N}$, therefore, Y=Y' a.s.

Theorem 1.1

If
$$X_1 = X_2$$
 on $B \in \mathcal{F}$ then $E(X_1|\mathcal{F}) = E(X_2|\mathcal{F})$ a.s. on B .

Proof

For any $E \subset B$, we have

$$0 = \int_{\{E(X_1|\mathcal{F}) - E(X_2|\mathcal{F}) > n^{-1}\} \cap E} (X_1 - X_2) dP \ge n^{-1} P(\{E(X_1|\mathcal{F}) - E(X_2|\mathcal{F}) > n^{-1}\} \cap E)$$

and the rest is similar.

Theorem 1.2

$$E(X|\mathcal{F})$$
 exists.

 \sim

Proof

Define $\nu(E) = \int_E X dP$ for $E \in \mathcal{F}$ and we know $\nu \ll P$ and hence there exists $Y \in \mathcal{F}$ such that

$$\int_{E} Y dP = \nu(E) = \int_{E} X dP$$

for all $E \in \mathcal{F}$ by Radon-Nikodym's Theorem.

Example 1.1 a. If $X \in \mathcal{F}$, then $E(X|\mathcal{F}) = X$.

- b. If X is independent to \mathcal{F} , i.e. $P(\{X \in B\} \cap A) = P(X \in B)P(A)$, then X is independent to χ_A for any $A \in \mathcal{F}$ and hence $E(X|\mathcal{F}) = EX$.
- c. Suppose $\Omega_1, \Omega_2, \cdots$ is a finite or infinite partition of Ω into disjoint sets, with $P(\Omega_i) > 0, i \geq 1$ and then let $\mathcal{F} = \sigma(\Omega_1, \Omega_2, \cdots)$ and then

$$E(X|\mathcal{F}) = \frac{E(X;\Omega_i)}{P(\Omega_i)}$$
 on Ω_i

d. Suppose X,Y have joint density f(x,y) i.e.,

$$P((X,Y) \in B) = \int_{B} f(x,y) dx dy$$
 for $B \in \mathbb{R}^{2}$

then if $E[g(X)] < \infty$, then E(g(X)|Y) = h(Y), where

$$h(y) = \int g(x)f(x,y)dx / \int f(x,y)dx$$

on $\{(x,y), \int f(x,y)dx > 0\}$, and hence a.s.

e. Suppose X and Y are independent, let ϕ be a function with $E|\phi(X,Y)|<\infty$ and let $g(x)=E(\phi(x,Y))$, then $E(\phi(X,Y)|X)=g(X)$.

Proof

c. By the $\pi - \lambda$ theorem, it suffices to show that

$$\int_A X dP = \int_A Y dP$$

for any $A \in \{\bigcup_{1 < i < n} \Omega_i\}$ where Y was defined as above.

d. Firstly, we recall any simple function $\phi \geq 0$ will cause $\int \phi(x,y)dy$ is measurable since $\int \phi(x,y)dy = \nu(E_y)$ when $\phi = \chi_E$ and then we know for any $g \geq 0$, $\int g(x)f(x,y)dy$ is measurable and then $\int g(x)f(x,y)dy$ is measurable for general g, then we will know $h(Y) \in \sigma(Y)$.

Consider $A \in \sigma(Y)$, where $A = \{Y \in B\}$, then

$$E(h(Y);A) = \int_{Y \in B} h(y)f(x,y)dxdy = \int_{B} \int h(y)f(x,y)dxdy = \int_{B} \int g(x)f(x,y)dxdy = E(g(X);A)$$

and the conclusion goes.

e. We know $g(X) \in \sigma(X)$ and then for any $A = \{X \in B\}$, we will know

$$E(g(X); A) = \int_{B} g(x)dx = \int_{B} \int \phi(x, y)dydx = E(\phi(X, Y); A)$$

and hence $E(\phi(X,Y)|X) = g(X)$.

Definition 1.2

Denote

$$P(A|\mathcal{G}) = E(1_A|\mathcal{G})$$
$$P(A|B) = P(A \cap B)/P(B)$$

and $E(X|Y) = E(X|\sigma(Y))$.

Theorem 1.3

For the first two parts, we assume $E|X|, E|Y| < \infty$.

- (a) $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F}).$
- (b) If $X \leq Y$ then $E(X|\mathcal{F}) \leq E(Y|\mathcal{F})$.
- (c) If $X_n \geq 0$ and $X_n \uparrow X$ with $EX < \infty$ then $E(X_n | \mathcal{F}) \uparrow E(X | \mathcal{F})$.

Theorem 1.4

If ϕ is convew and $E[X], E[\phi(X)] < \infty$ then

$$\phi(E(X|\mathcal{F})) \le E(\phi(X)|\mathcal{F})$$

Proof

Let
$$S=\{(a,b): a,b\in\mathbb{Q}, ax+b\leq\phi(x) \text{ for all } x\}$$
, then $\phi(x)=\sup\{ax+b: (a,b)\in S\}$. And we know
$$E(\phi(X)|\mathcal{F})\geq aE(X|\mathcal{F})+b$$

and hence $E(\phi(X)|\mathcal{F}) \ge \phi(E(X|\mathcal{F}))$.

Theorem 1.5

Conditional expectation is a contraction in L^p , $p \ge 1$.

 \Diamond

Proof

By Theorem 1.5., we have $|E|(X|\mathcal{F})|^p \leq E(|X|^p|\mathcal{F})$, then we know

$$E(|E(X|\mathcal{F})|^p) \le E(E(|X|^p|\mathcal{F})) = E|X|^p$$

Theorem 1.6

If $\mathcal{F} \subset \mathcal{G}$ and $E(X|\mathcal{G}) \in \mathcal{F}$, then $E(X|\mathcal{F}) = E(X|\mathcal{G})$.

 \bigcirc

Theorem 1.7

If $\mathcal{F}_1 \subset \mathcal{F}_2$ then

(i)
$$E(E(X|\mathcal{F}_1)|\mathcal{F}_2) = E(X|\mathcal{F}_1)$$

(ii)
$$E(E(X|\mathcal{F}_2)|\mathcal{F}_1) = E(X|\mathcal{F}_1)$$

 \sim

Proof

For $A \in \mathcal{F}_1$, we know

$$\int_A E(E(X|\mathcal{F}_1)|\mathcal{F}_2)dP = \int_A E(X|\mathcal{F}_1)dP = \int_A XdP$$

$$\int_A E(E(X|\mathcal{F}_2)|\mathcal{F}_1)dP = \int_A E(X|\mathcal{F}_2)dP = \int_A XDP$$

therefore, the equalities go.

Theorem 1.8

If $X \in \mathcal{F}$ and $E|Y|, E|XY| < \infty$ then

$$E(XY|\mathcal{F}) = XE(Y|\mathcal{F})$$

 \Diamond

Proof

For any $X,Y\geq 0$, assume $\phi_n\uparrow X$ simple, then we know $\phi_nY\uparrow XY$ and then

$$\int_A E(\chi_B Y|\mathcal{F}) = \int_A \chi_B Y dP = \int_{AB} Y dP = \int_{AB} E(Y|\mathcal{F}) dP = \int_A \chi_B E(Y|\mathcal{F})$$

for any $A, B \in \mathcal{F}$ and hence $E(\chi_B Y | \mathcal{F}) = \chi_B E(Y | \mathcal{F})$ for any $B \in \mathcal{F}$, therefore, we know $E(\phi_n Y | \mathcal{F}) = \phi_n E(Y | \mathcal{F})$. By theorem 1.3 we know $E(\phi_n T | \mathcal{F}) \uparrow E(XY | \mathcal{F})$ and hence $E(XY | \mathcal{F}) = XE(Y | \mathcal{F})$, so for any $X \in \mathcal{F}, E|Y| < \infty$, $E|XY| < \infty$, we can consider the positive and negative parts and the conclusion goes.

Theorem 1.9

Suppose $EX^2 < \infty$. $E(X|\mathcal{F})$ is the variable $Y \in \mathcal{F}$ that minimizes the "mean square error" $E(X-Y)^2$.

 \Diamond

Proof

If $Z \in L^2(\mathcal{F})$, then

$$ZE(X|\mathcal{F}) = E(ZX|\mathcal{F})$$

then we know

$$E(ZE(X|\mathcal{F})) = E(E(ZX|\mathcal{F})) = E(ZX)$$

and hence $E(Z(X - E(X|\mathcal{F}))) = 0$ for any $Z \in L^2(\mathcal{F})$.

*

If
$$Z = E(X|\mathcal{F}) - Y$$
, then

$$E(X - Y)^{2} = E(X - E(X|\mathcal{F}) + Z)^{2} = E(X - E(X|\mathcal{F}))^{2} + EZ^{2}$$

and hence $E(X - Y)^2$ are minimal when $Y = E(X|\mathcal{F})$.

Definition 1.3

Let (Ω, \mathcal{F}, P) be a probability space, $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and \mathcal{G} a σ -algebra contained by \mathcal{F} . $\mu : \Omega \times \mathcal{S} \to [0, 1]$ is said to be a regular conditional distribution for X given \mathcal{G} if

- a. For each A, $\omega \to \mu(\omega, A)$ is a version of $P(X \in A|\mathcal{G})$.
- b. For a.e. ω , $A \to \mu(\omega, A)$ is a probability measure on (S, \mathcal{S}) .

When $S = \Omega$ and X is the identity map, μ is called a regular condition probability.

Proposition 1.1

Suppose X and Y have a joint density f(x,y) > 0. If

$$\mu(y,A) = \int_A f(x,y)dx / \int f(x,y)dx$$

then $\mu(Y(\omega), A)$ is a r.c.d for X given $\sigma(Y)$.

Proof

Here we know $X:(\Omega.\mathcal{F})\to(\mathbb{R},\mathcal{R})$, so we should check:

- a. $\mu(Y(\omega), A) = \int_A f(x, Y(\omega)) dx / \int f(x, Y(\omega)) dx$ is a version of $P(X \in A|Y)$.
- b. For a.e. ω , $\mu_{Y(\omega)}(A) = \mu(Y(\omega), A)$ is a probability measure on $(\mathbb{R}, \mathcal{R})$.

To see the first claim, consider

$$\int_{Y \in B} P(X \in A|Y)dP = \int_{Y \in B} \chi_{X \in A} dP = \int_{B} \int_{A} f(x,y) dx dy$$

$$= \int_{A} \int_{B} f(x,y) dy dx$$

$$= \int_{B} \int_{A} f(x,y) dx dy$$

$$= \int_{B} \int \int_{A} f(x,y) dx / \int f(x,y) dx f(x,y) dx dy = \int_{Y \in B} \mu(Y(\omega), A) dP$$

and the second claim is trivial.

Theorem 1.10

Let $\mu(\omega, A)$ be a r.c.d for X given \mathcal{F} . If $f:(S, \mathcal{S}) \to (\mathbb{R}, \mathcal{R})$ has $E|f(X)| < \infty$ then

$$E(f(x)|\mathcal{F}) = \int \mu(\omega, dx) f(x)$$
 a.s.

Proof

Consider $f = \chi_A$ for some A mrb in \mathcal{R} , then $\int \mu(\omega, dx) f(x) = \mu(\omega, A) = P(X \in A|\mathcal{F})$ and hence the equality holds for all simple functions, then the problem goes.

Here we skip some properties of regular conditional distribution and continue to martingale.

Definition 1.4

 \mathcal{F}_n is a filtration, i.e. an increasing sequence of σ -fields. A sequence X_n is said to be adapted to \mathcal{F}_n if $X_n \in \mathcal{F}_n$ for all n. If X_n is sequence with

- a. $E|X_n| < \infty$.
- b. X_n is adapted to \mathcal{F}_n .
- c. $E(X_{n+1}|\mathcal{F}_n) = X_n$ for all n then X is said to be a martingale (resp to \mathcal{F}_n). If we replace the equality into \leq or \geq , then X is said to be a supermartingale or submartingale.

Example 1.2 (Random walk)Let ξ_1, ξ_2, \cdots be independent and id.d, $S_n = S_0 + \sum_{i=1}^n \xi_i$ where S_0 is a constant. $\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n)$ and take $\mathcal{F}_0 = \{\emptyset, \Omega\}$.

a. If $\mu = E\xi_i = 0$ then $S_n, n \ge 0$ is a martingale with respect to \mathcal{F}_n .

b. $\mu=E\xi_i=0$ and $\sigma^2=\mathrm{var}(\xi_i)<\infty$, then $S_n^2-n\sigma^2$ is a martingale.

Proof

a. Notice $E|S_n|<\infty, n\geq 0$, for any $A\in\mathcal{F}_n$, then notice

$$E(S_{n+1}|\mathcal{F}_n) = E(\xi_{n+1}|\mathcal{F}_n) + S_n = E\xi_{n+1} + S_n = S_n$$

b. Notice that $E|S_n - n\sigma^2| < \infty$, and

$$E(S_{n+1}^2 - (n+1)\sigma^2 | \mathcal{F}) = S_n^2 - (n+1)\sigma^2 + \sigma^2 = S_n^2 - n\sigma^2$$

Example 1.3 Let Y_1, Y_2, \cdots be nonnegative i.i.d r.v.s with $EY_m = 1$. If $\mathcal{F}_n = \sigma(Y_1, \cdots, Y_n)$, then $M_n = \prod_{m \leq n} Y_m$ defines a martingale.

Then assume $\phi(\theta) = Ee^{\theta \xi_i}, Y_i = e^{\theta \xi_i}/\phi(\theta)$, then we know $M_n = e^{\theta S_n}/\phi(\theta)^n$.

Theorem 1.11

If X_n is a (super-/sub-)martingale then for n > m, $E(X_n | \mathcal{F}_m) \le (\ge / =) X_m$.

Proof Notice

$$E(X_{m+k}|\mathcal{F}_m) = E(E(X_{m+k}|\mathcal{F}_{m+k-1})|\mathcal{F}_m) \le E(X_{m+k-1}|\mathcal{F}_m)$$

the rest proof is similar.

Theorem 1.12

If X_n is a martingale w.r.t. \mathcal{F}_n and ϕ is a convex function with $E|\phi(X_n)| < \infty$ for all n then $\phi(X_n)$ is a submartingale w.r.t. \mathcal{F}_n . Consequently, if $p \geq 1$ and $E|X_n|^p < \infty$ for all n, then $|X_n|^p$ is a submartingale w.r.t. \mathcal{F}_n .

Proof Notice

$$E(\phi(X_{n+1})|\mathcal{F}_n) \ge \phi(E(X_{n+1})|\mathcal{F}_n) = \phi(X_n)$$

and the problem goes.

Theorem 1.13

If X_n is a submartingale w.r.t. \mathcal{F}_n and ϕ is an increasing convex function with $E|\phi(X_n)| < \infty$ for all n, then $\phi(X_n)$ is a submartingale w.r.t. \mathcal{F}_n . Consequently

a. If X_n is a submartingale then $(X_n - a)^+$ is a submartingale.

b. If X_n is a supermartingale then $\min(X_n, a)$ is a supermartingale.

Proof Notice

$$E(\phi(X_{n+1})|\mathcal{F}_n) \ge \phi(E(X_{n+1})|\mathcal{F}_n) \ge \phi(X_n)$$

then (a) is easy to be checked and hence (b) is correct.

Definition 1.5

Let $\mathcal{F}_n, n \geq 0$ be a filtration. $H_n, n \geq 1$ is said to be a predictable sequence if $H_n \in \mathcal{F}_{n-1}$ for all $n \geq 1$.

Definition 1.6

We denote

$$(H \cdot X)_n = \sum_{m=1}^n H_m(X_m - X_{m-1})$$

Theorem 1.14

Let $X_n, n \geq 0$ be a supermartingale. If $H_n \geq 0$ is predictable and each H_n is bounded then $(H \cdot X)_n$ is a supermartingale.

Proof Consider

$$E((H \cdot X)_{n+1} | \mathcal{F}_n) = E(\sum_{m=1}^{n+1} H_m(X_m - X_{m-1}) | \mathcal{F}_n) = (H \cdot X)_n + E(X_{n+1} | \mathcal{F}_n) - X_n \le (H \cdot X)_n$$

Definition 1.7

A r.v. N is said to be a stopping time if $\{N = n\}$ in \mathcal{F}_n for all $n > \infty$.

4

Theorem 1.15

If N is a stopping time and X_n is a supermartingale, then $X_{N \wedge n}$ is a supermartingale.

 \sim

Proof Consider

$$E(X_{N \wedge n+1} | \mathcal{F}_n) = E(X_{n+1} \chi_{N \geq n+1} + \sum_{k=0}^n X_k \chi_{N=k} | \mathcal{F}_n) \le \chi_{N \geq n+1} X_n + \sum_{k=0}^n X_k \chi_{N=k} = X_{N \wedge n}$$

Definition 1.8

Suppose $X_n, n \ge 0$ is a submartingale. Let $a < b, N_0 = -1$ and for $k \ge 1$ let

$$N_{2k-1} = \inf\{m > N_{2k-2}, X_m \le a\}$$
$$N_{2k} = \inf\{m > N_{2k-1}, X_m > b\}$$

The N_i are stopping times so

$$H_m = \begin{cases} 1 & \text{if } N_{2k-1} < m \le N_{2k} \text{ for some } k \\ 0 & \text{otherwise} \end{cases}$$

defines a predictable sequence.

Proof

Notice

$$\{N_{2k-1}=n\}=\bigcup_{0\leq m\leq n-1}\{N_{2k-2}=m\}\cap (\bigcap_{n-1-m\geq k\geq 0}\{X_{m+k}>a\})\cap \{X_n\leq a\}$$

and

$$\{N_{2k} = n\} = \bigcup_{0 \le m \le n-1} \{N_{2k-1} = m\} \cap (\bigcap_{n-1-m \ge k \ge 0} \{X_{m+k} < b\}) \cap \{X_n \ge b\}$$

and hence N_{2k-1}, N_{2k} are stopping times by induction.

And notice

$$\{N_{2k-1} < m \le N_{2k} \text{ for some } k\} = \bigcup_{k \ge 0} \{N_{2k-1} \le m-1\} \cap \{N_{2k} \ge m\} \in \mathcal{F}_{m-1}$$

and hence H_m is predictable.

Theorem 1.16

(Upcoming inequality) If $X_m, m \ge 0$, is a submartingale then

$$(b-a)EU_n \le E(X_n-a)^+ - E(X_0-a)^+$$

where $U_n = \sup\{k, N_{2k} \le n\}$.

Proof Here we assume $Y_m = a + (X_m - a)^+$ and we have

$$(b-a)U_n \leq (H \cdot Y)_n$$

let $K_m = 1 - H_m$ and then we know that $(K \cdot X)_n$ is a submartingale and then

$$E(K \cdot X)_n \ge E(K \cdot X)_0 = 0$$

so we know

$$E(H \cdot Y)_n \le E(Y_n - Y_0) = E(X_n - a)^+ - E(X_0 - a)^+$$

since $Y_n - Y_0 = (H \cdot Y)_n + (K \cdot Y)_n$

Theorem 1.17

(Martingale convergence theorem) If X_n is a submartingale with $\sup EX_n^+ < \infty$ then as $n \to \infty$, X_n converges a.s. to a limit X with $E|X| < \infty$.

Proof We know $(X - a)^+ \le X^+ |a|$, then we know

$$EU_n \leq (|a| + EX_n^+)/(b-a)$$

so $\sup X_n^+$ will imply than $EU < \infty$ where $U = \lim U_n$ and hence for all rational a, b, we know

$$P(\{\liminf X_n < a < b < \limsup X_n\}) = 0$$

and hence $\lim X_n$ exists a.s. and $EX^+ \leq \liminf EX_n^+ < \inf ty$ and hence $X < \infty$ a.s. and notice

$$EX_n^- = EX_n^+ - EX_n \le EX_n^+ - EX_0$$

and hence $EX^- \leq \liminf EX_n^- \leq \liminf EX_n^+ - EX_0 < \infty$ therefore $E|X| < \infty$.

Theorem 1.18

If $X_n \geq 0$ is a supermartingale then as $n \to \infty$, $X_n \to X$ a.s. and $EX \leq EX_0$.

Proof Let $Y_n = -X_n$ and hence a submartingale with $EY_n^+ = 0$, then we know $X_n \to X$ a.s. and we also have $EX \le \liminf EX_n^+ \le EX_0$

Proposition 1.2

The theorem 1.18, provide a method to show that a.s. convergence does not guarantee convergence in L^1 .

Proof Let S_n be a symmetric simple random walk with $S_0 = 1$ and $P(\xi_i = 1) = P(\xi_i = -1) = \frac{1}{2}$, let $N = \inf\{n : S_n = 0\}$ and $X_n = S_{N \wedge n}$. Then we know X_n nonnegative and $EX_n = EX_0 = 1$ since X_n is a martingale, then we know $X_n \to X$ where X is some r.v. and hence X = 0, because there is no way to converge to others and hence X_n do not converge to X in L^1 .

Proposition 1.3

Convergence in probability do not guarantee convergence a.s.

Proof Let $X_0 = 0$ and $P(X_k = 1 | X_{k-1} = 0) = P(X_k = -1 | X_{k-1} = 0) = \frac{1}{2k}$, $P(X_k = 0 | X_{k-1} = 0) = 1 - \frac{1}{k}$ and $P(X_k = k | X_{k-1} | X_{k-1} \neq 0) = \frac{1}{k}$, $P(X_k = 0 | X_{k-1} \neq 0) = 1 - \frac{1}{k}$, then we know $X_k \to 0$ in probability, but $P(X_k = 0, k \geq K)$ and it picks discrete values and hence X_k can not converge to 0 a.s.