Név:	Neptun kód:

Algoritmusok és adatszerkezetek I. vizsga, 2016.01.05.

Az eljárásokat és függvényeket megfelelően elnevezett és paraméterezett struktogramok segítségével adjuk meg! Ne feledkezzünk meg a referencia paraméterek szükség szerinti jelöléséről sem! A változókat alapértelmezésben a struktogramra vonatkozóan lokálisnak tekintjük.

- 1. Mi a rendezési feladat fogalma? Mekkora a beszúró rendezés műveletigénye? Szemléltessük a beszúró rendezést (insertion sort) a következő vektorra! < 7; 4; 1; 4; 3; 8; 9 >. Szemléltessük az előbbi vektorra az összefésülő rendezést (mergesort) is! Egyenlőtlen vágás esetén a bal oldali részvektor legyen eggyel rövidebb! Mekkora az összefésülő rendezés műveletigénye? Érdemes-e az előbbi gyors és lassú rendezéseket egyetlen rendezésben egyesíteni? Hogyan? Miért? (20p)
- 2. A d-edfokú B+ fák leveleinek milyen tulajdonságait ismeri? Adott a { [$(2\ 4)\ 8\ (8\ 10\ 12)\ 14\ (14\ 16)\ 18\ (20\ 22)\]\ 24\ [<math>(24\ 26\ 28)\ 30\ (30\ 32)\]\ }$ negyedfokú B+ fa. Rajzoljuk le a fát! Szemléltessük az előadáson elhangzott algoritmus szerint a 18, a 25 és a 9 beszúrását, **mindhárom esetben az eredeti fára**! (20p)
- 3. Az L_1, L_2 pointerek egy-egy szigorúan monoton növekvő FKCL (fejelemes, kétirányú, ciklikus, láncolt lista) fejelemére mutatnak. A listák kezeléséhez felhasználhatók az előadásról isnert Elem2 osztály műveletei. Írjuk meg a különbség (L_1, L_2) eljárást, ami az L_1 lista elemei közül törli az L_2 listán is szereplő elemeket! Az L_2 lista változatlan, de az L_1 is szigorúan monoton növekvő marad. Mindkét listán legfeljebb egyszer menjünk végig! A felszabaduló listaelemeket adjuk vissza a szabad területnek! $MT(n_1, n_2) \in O(n_1 + n_2), mT(n_1, n_2) \in O(min(n_1, n_2))$, ahol n_1 az L_1 , n_2 az L_2 lista hossza. (20p)
- 4. A bináris fa fogalmát ismertnek feltételezve, definiáljuk a bináris keresőfa fogalmát! Írjuk meg a beszúr(t,k,s) ciklust nem tartalmazó $T(h) \in O(h)$ hatékonyságú rekurzív eljárást, ami megpróbál beszúrni a t bináris keresőfába egy k kulcsú csúcsot (akkor tudja beszúrni, ha nem talál ilyet), és az s, logikai típusú paraméterben visszaadja, hogy sikeres volt-e a beszúrás! A fa csúcsai Csúcs típusúak, azaz szülő pointert nem tartalmaznak. Igaz-e, hogy a fenti beszúr eljárásra $mT(h) \in \Theta(1)$? Miért? (20p)
- **5.** Bizonyítsuk be a következő állítást! Tetszőleges n csúcsú és h magasságú bináris fára $n-1 \ge h \ge \lfloor \lg n \rfloor$. Mikor lesz h=n-1 és miért? Bizonyítsuk be, hogy majdnem teljes bináris fák esetén a $h=\lfloor \lg n \rfloor$ egyenlőség teljesül! (20p)