University of Toronto at Scarborough Department of Computer and Mathematical Sciences

Linear Programming and Optimazation

MATB61 Winter 2020

Selected answers to the assignment #4

Section 2.1

#2

	X 1	X 2	X 3	X 4	X 5	Z	
X4	2	-5	1	1	0	0	3
X 5	1	4	0	0	1	0	5
	- 1	- 3	-5	0	0	1	0

#4

	x_1	x_2	x_3	x_4	
x_1	1	0	10/9	2/3	4
x_2	0	1	34/27	-4/9	16/3
	0	0	22/9	8/3	28

#6

Using x_2 as the departing variable:

	x_1	x_2	x_3	x_4	x_5	
x_3	-7/30	-3/5	1	0	0	0
x_4	3/2	1	0	1	0	5/2
x_5	14/3	-2/9	0	0	1	1/9
- 0	23/2	5	0	0	0	89/6

Using x_3 as the departing variable:

	x_1	x_2	x_3	x_4	x_5	
x_4	10/9	0	5/3	1	0	5/2
x_2	7/18	1	-5/3	0	0	0
x_5	385/81	0	-10/27	0	_1	1/9
w 5	86/9	0	25/3	0	0	89/6

 $\#8 \ [4 \ 0 \ 0 \ 0 \ 4 \ 10 \ 0]^T$

#16 Make 25,000 bags of GARDEN only. Net profit = \$10,000.

#20 The optimal solution: z = 28/3; $x_1 = 0$, $x_2 = 4$, $x_3 = 4/3$, $x_4 = 0$.

#22 No finite optimal solution.

#23 The optimal solution: z = 36; x = 0, y = 12, z = 0, w = 0

#24 We have no means of finding an initial basic feasible solution.

In Addition:

1. Graph:

Optimal solution is 33/4 at B.

Simplex:

Tableau #1

X	y	s1	s2	p		
3	5	1	0	0	15	
6	2	0	1	0	24	
_2	_1	Λ	Λ	1	Λ	

-1 0 0 1 0 Corner [0, 0]

Tableau #2

Tableau #3

X	У	s1	s2	p		
0	1	0.25	-0.125	0	0.75	
1	0	-0.0833	333 0.208333	0	3.75	
0	0	0.08333	333 0.291667	1	8.25	Corner [3.75, 0.75]

2. Suppose that we have x_{ij} pounds of each product as follows:

	Fresh	Smoked on regular time	Smoked on overtime
Hams	X11	X12	X13
Bellies	X21	X22	X23
Picnics	X31	X32	X33

Then the LP problem should be

Maximizes $z = 8x_{11} + 14x_{12} + 11x_{13} + 4x_{21} + 12x_{22} + 7x_{23} + 4x_{31} + 13x_{32} + 9x_{33}$ Subject to

$$\begin{array}{l} x_{11} + x_{12} + x_{13} \leq 480 \\ x_{21} + x_{22} + x_{23} \leq 400 \\ x_{31} + x_{32} + x_{33} \leq 230 \\ x_{12} + x_{22} + x_{23} \leq 420 \\ x_{13} + x_{23} + x_{33} \leq 250 \\ x_{ij} \geq 0, \, i, \, j = 1, \, 2, \, 3. \end{array}$$

Optimal Solution:
$$p = 10910$$
; $x_{11} = 440$, $x_{12} = 0$, $x_{13} = 40$, $x_{21} = 0$, $x_{22} = 400$, $x_{23} = 0$, $x_{31} = 0$, $x_{32} = 20$, $x_{32} = 210$.