

- Spatial Simulation PostSIM
- Workflow with GeostatsPy

Summarization and communication of spatial uncertainty.

Spatial Simulation PostSIM

Multiple Realizations

- Visualizing / Communicating Uncertainty
- We need practical workflows to summarize over multiple realizations
- Local uncertainty maps provide measures of local uncertainty suitable to support decision making (more on this later)

Summarizing Uncertainty Over Multiple Realizations

Method:

- Scan over all the realizations and scenarios
- Calculate the local distributions of uncertainty at each location
- Calculate statistical summary over each location and place in a map / model

What is a specific percentile outcome at this location?

$$z_p(\mathbf{u}_\alpha) = F_z^{-1}(p; \mathbf{u}_\alpha)$$

What is the local probability of exceeding a threshold at this location?

$$P(\mathbf{z}(\mathbf{u}_{\alpha}) > z_{k}) = 1 - F_{z}(z_{k}; \mathbf{u}_{\alpha})$$

$$P(\mathbf{z}(\mathbf{u}_{\alpha}) < z_{k}) \qquad F_{z}(\mathbf{z}; \mathbf{u}_{\alpha})$$

Local Uncertainty Example

Michael Pyrcz, The University of Texas at Austin

9 Realizations of porosity

Local Uncertainty Example

We will start with the e-type and the conditional variance.

- e-type is the local expectation, the average of the L realizations at location \mathbf{u}_{α} as we assume all realizations are equally likely.
- conditional variance is the local variance

Local Uncertainty Example

- Local percentile maps are the maps with the local percentile values sampled from the local realizations
- We can interpret these as follows, at a location if we have a local P10 of 14% porosity, then we have a 90% probability of an even higher porosity, the porosity at that location is surely high.
- Local percentiles are very convenient to understand local uncertainty. We must NOT confuse them with a percentile model (the model that is globally ranked as a specific percentile outcome).

Workflow with GeostatsPy

Spatial Simulation Workflow with GeostatsPy

Let's walkthrough a more thorough spatial simulation PostSIM workflow:

- specify the percentiles and threshold values
- calculate and visualize the uncertainty summarization maps

Python Jupyter variogram calculation (GeostatsPy_simulation_wPostSim.ipynb).

- Spatial Simulation
- Interactive Demo with GeostatsPy
- Workflow with GeostatsPy