Nome:	Cognome:	Matricola:
Tinologia: 🗆 Lesc	onero - 🗆 II esonero - 🗀 scritto	

ESAME SCRITTO FISICA II - AA 2018/2019 - 10/07/2019

- Chi svolge tutto lo scritto ha due ore per svolgere gli esercizi
- Chi recupera uno dei due esoneri ha un'ora per svolgere gli esercizi
- Scrivete nome, cognome, matricola e ID del compito sui fogli che consegnate
- Chi si vuole ritirare può farlo ma deve consegnare questo foglio (che non verrà corretto)
- Sono vietati i telefoni: chiunque venga trovato ad utilizzare il telefono dovrà abbandonare l'aula

Elettricità

Il circuito in figura è composto da un generatore di forza elettromotrice $\mathcal{E}=10$ V e resistenza interna trascurabile, da un condensatore sferico C_1 di raggi $R_1=5$ cm ed $R_2=6$ cm, da un condensatore piano C_2 di dimensioni $a \times b \times h$ (a=10 cm, b=10 cm, h=1 cm) e da due resistori, $R_1=10\,\Omega$ ed $R_2=30\,\Omega$. L'interruttore è inizialmente aperto.

- 1. Calcolare l'intensità di corrente che scorre in R_1 (5 punti).
- 2. L'interruttore viene chiuso e si aspetta un tempo tale per cui il sistema torna in uno stato stazionario. Determinare in quale configurazione (aperta o chiusa) il circuito dissipa più energia (5 punti).
- 3. Calcolare la carica immagazzinata in ognuno dei due condensatori (6 punti).

Magnetismo

Un sistema è composto da due fili indefiniti percorsi dalle correnti i_1 ed i_2 e disposti uno sopra l'altro. Il primo filo è **fisso**, mentre il secondo, che ha densità di massa $\lambda = 0.1$ kg/m, si può muovere. Nel filo in alto scorre una corrente $i_1 = 50$ A nel verso indicato nel pannello di sinistra della figura.

Il sistema è in equilibrio quando il secondo filo è posto alla stessa distanza d=1cm dal primo filo. **Nota Bene:** la forza peso ha direzione $-\hat{y}$ e i pallini del pannello di destra **non** indicano la direzione delle correnti ma solo la posizione dei fili da un altro punto di vista.

- 1. Calcolare verso e intensità di i_2 (6 punti).
- 2. Calcolare $\int_C \vec{B} \cdot d\vec{s}$, con C il percorso chiuso indicato nel pannello di destra della figura (5 punti).
- 3. Il primo filo viene rimosso e si ha la possibilità di accendere un campo magnetico uniforme \vec{B} nella regione di spazio in cui è presente il secondo filo. Determinare per quale modulo, direzione e verso di \vec{B} il secondo filo resta in equilibrio (5 punti).