Proposition 50.11. The invertibility of the KKT-matrix

$$\begin{pmatrix} P & A^{\top} \\ A & 0 \end{pmatrix}$$

is equivalent to the following conditions:

- (1) For all $x \in \mathbb{R}^n$, if Ax = 0 with $x \neq 0$, then $x^{\top}Px > 0$; that is, P is positive definite on the kernel of A.
- (2) The kernels of A and P only have 0 in common ((Ker A) \cap (Ker P) = {0}).
- (3) There is some $n \times (n-m)$ matrix F such that Im(F) = Ker(A) and $F^{\top}PF$ is symmetric positive definite.
- (4) There is some symmetric positive semidefinite matrix Q such that $P + A^{T}QA$ is symmetric positive definite. In fact, Q = I works.

Proof sketch. Recall from Proposition 6.19 that a square matrix B is invertible iff its kernel is reduced to $\{0\}$; equivalently, for all x, if Bx = 0, then x = 0. Assume that Condition (1) holds. We have

$$\begin{pmatrix} P & A^{\mathsf{T}} \\ A & 0 \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

iff

$$Pv + A^{\mathsf{T}}w = 0, \quad Av = 0. \tag{*}$$

We deduce that

$$v^{\top} P v + v^{\top} A^{\top} w = 0,$$

and since

$$v^{\mathsf{T}} A^{\mathsf{T}} w = (Av)^{\mathsf{T}} w = 0w = 0,$$

we obtain $v^{\top}Pv=0$. Since Condition (1) holds, because $v \in \text{Ker } A$, we deduce that v=0. Then $A^{\top}w=0$, but since the $m \times n$ matrix A has rank m, the $n \times m$ matrix A^{\top} also has rank m, so its columns are linearly independent, and so w=0. Therefore the KKT-matrix is invertible.

Conversely, assume that the KKT-matrix is invertible, yet the assumptions of Condition (1) fail. This means there is some $v \neq 0$ such that Av = 0 and $v^{\top}Pv = 0$. We claim that Pv = 0. This is because if P is a symmetric positive semidefinite matrix, then for any v, we have $v^{\top}Pv = 0$ iff Pv = 0.

If Pv = 0, then obviously $v^{\top}Pv = 0$, so assume the converse, namely $v^{\top}Pv = 0$. Since P is a symmetric positive semidefinite matrix, it can be diagonalized as

$$P = R^{\top} \Sigma R,$$