Московский государственный университет имени М.В.Ломоносова
Отчет Параллельная программа на MPI, которая реализует
однокубитное квантовое преобразование с шумами.
Факультет: Вычислительной математики и кибернетики
Кафедра: Суперкомпьютеров и квантовой информатики
Группа: 323
Студент: Тыркалов Евгений Олегович

Задача:

- 1. Реализовать параллельную программу на C++ с использованием MPI, которая выполняет квантовое преобразование n-Aдамар с зашумленными вентилями над вектором состояний длины 2n, где n количество кубитов. Описание преобразования дано в разделе методические рекомендации [1]. Описание модели зашумления дано в разделе методические рекомендации [2].
- 2. Протестировать программу на системе Ломоносов. Точность e=0.01. Использовать 64-битную адресацию. Заполнить таблицу.
- 3. Построить график распределения потерь точности 1-F [3] при фиксированной точности е=0.01 для количества кубитов 24, 25, 26, 27, 28. Для построения каждого распределения использовать не менее 60 экспериментов. Входной вектор в экспериментах должен генерироваться случайным образом. (Всего должно быть пять распределений, соответствующие разному количеству кубитов). Заполнить таблицу и построить график среднего значения потерь точности.
- 4. Построить график распределения потерь точности 1-F при фиксированном количестве кубитов n=26 и различных значениях точности: e=0.1, e=0.01, e=0.001. Для построения каждого распределения использовать не менее 60 экспериментов. Входной вектор в экспериментах должен генерироваться случайным образом. (Всего должно быть три распределения, соответствующие разному значению точности, для e=0.01 повторно выполнять эксперименты не требуется). Заполнить таблицу.

Результаты выполнения:

Пункт 2

Количество кубитов	количество вычислительных узлов	количество используемых ядер в узле	время работы основной	время работы зашемленной
28	1	1	28,2168	28,2082
		2	14,8686	14,8654
		4	8,1788	8,36432
		8	7,9815	7,9815
	2	1	14,8686	14,8654
		2	8,1788	8,36432
		4	7,9815	7,9815
		8	5,0734	5,2362
	4	1	8,1788	8,36432
		2	7,9815	7,9815
		4	5,0734	5,0734
		8	4,4092	4,5456

Значения иллюстрируют экспоненциальную зависимость ускорения от числа процессов. Наличие "Плато" обусловлено ограниченностью эффективности распараллеливания.

Пункт 3

Количество кубитов	Среднее значение потерь точности
24	1.0138e-07
25	5.0695e-08
26	2.5341e-08
27	1.2671e-08
28	8.3375e-09

Графики иллюстрируют значения потерь точности на разном количестве кубитов.

Пункт 4

е	Среднее значение потерь точности
0,1	2.4241e-03
0,01	2.5391e-05
0,001	2.2149e-07

Графики иллюстрируют значения потерь точности при разном значении e.