

# Project 4: Build-a-Planet

M. Berger, A. Bernhardt, M. Bleich, Y. Shi, A. Tarrant

#### Goals

- Run code from a command line
- Predict a planet's mass from its radius
- Understand results in context of similar planets



Compare to mineralogy to Earth



### GJ 1132b

- · Orbits a red dwarf star
- Orbit ~ 1.6 days
- It is 39 light-years away
- Temperature = 450°F (232 °C)
- Likely rocky





## What does the Stellar Composition tell us?

- The metallicity of Gliese 1132 can tell us the likely refractory composition of GJ 1132 b
- Unknown refractory ratios: Fe/Mg & Si/Mg



## Composition of Gliese 1132

- From NEA: [Fe/H] = -0.12
- [Mg/Fe] = 0.13

$$(Mg/Fe)_{sun} = 1.148$$

• [Mg/Fe] = 
$$\log_{10}(\frac{Mg/Fe}{(Mg/Fe)_{sym}})$$
  $\rightarrow$  Mg/Fe = 1.548

• 
$$\frac{Mg}{H} = \frac{Mg}{Fe} * \frac{Fe}{H}$$
  $\rightarrow$  [Mg/H] =  $\log_{10}(\frac{Mg/H}{(Mg/H)_{sun}}) = 0.01$ 



|    |    | Solar photosphere | s.d. (dex) |
|----|----|-------------------|------------|
| 12 | Mg | 7.54              | 0.06       |
| 13 | Al | 6.47              | 0.07       |
| 14 | Si | 7.52              | 0.06       |
| 15 | Р  | 5.46              | 0.04       |
| 16 | S  | 7.16              | 0.05       |
| 17 | CI | 5.50              | 0.30       |
| 18 | Ar | 6.50              | 0.10       |
| 19 | K  | 5.11              | 0.09       |
| 20 | Ca | 6.33              | 0.07       |
| 21 | Sc | 3.10              | 0.10       |
| 22 | Ti | 4.90              | 0.06       |
| 23 | V  | 4.00              | 0.02       |
| 24 | Cr | 5.64              | 0.01       |
| 25 | Mn | 5.37              | 0.05       |
| 26 | Fe | 7.48              | 0.06       |

#### Conversion

$$[X/Mg] = \alpha_{cc}[Mg/H] + \log \left[ \frac{1 + R_{Ia}^{X}(A_{Ia}/A_{cc})10^{(\alpha_{Ia} - \alpha_{cc})[Mg/H]}}{1 + R_{Ia}^{X}} \right]$$

where 
$$\frac{A_{Ia}}{A_{cc}} = 10^{0.3 - [Mg/Fe]} - 1$$

Griffith et al., 2020

## Other Rocky Planets

- Planets with radii within 10% of our calculated value
- Below radius gap and orbits very close to star —— no substantial atmosphere
- Follows R ~ M^0.28 (Chen & Kipping)



# Atmospheric Retention of GJ 1132 b

• Escape Velocity: 
$$V_e = \sqrt{\frac{2GM_P}{R_P}}$$

- M<sub>P</sub> = 1.62 M<sub>E</sub> R<sub>P</sub> = 1.16 R<sub>E</sub>
- $T_{Eq} = 529 \text{ K} \pm 9$
- We can assume that our planet has some form of atmosphere, potentially due to volcanism



# **Expected Range of Radius & Density**



# **Effects of Measured Mass Uncertainty**

- Expected Radius & Density:  $R_P = 1.159 R_E$   $\rho_P = 5.737 \text{ kg/m}^3$
- Lower Limit:  $R_P = 1.036 R_E$   $\rho_P = 5.305 \text{ kg/m}^3$
- ExoPlex breaks at  $M_P = 1.647$  when attempting to get the upper limit
- Break Limit:  $R_P = 1.169 R_E$   $\rho_P = 5.684 \text{ kg/m}^3$

$$\rho_P = \frac{3M_P}{4\pi R_P^3}$$

## Determining an Accurate Model for GJ 1132 b



Analyze how changing the FeO & FeMg affects the density of our planet

#### Core & Mantle Structure

- Mass of the planet doesn't change
- RP = 1.169 RE
- FeMg = 0.6
- FeO = 0.02
- Accounts for the extended radius due to the atmosphere



# Mineralogy







#### Conclusions

- Expected:  $R_P = 1.159 R_E$  and  $M_P = 1.62 M_E$   $\rho_P = 5.737 \text{ kg/m}^3$
- Accounting for atmosphere:  $R_P = 1.169 R_E \qquad \rho_P = 5.591 \text{ kg/m}^3$
- Refractory composition: Si/Mg = 0.86 and Fe/Mg = 0.65
- No substantial atmosphere, but probably some due to volcanism
- Similar composition to Earth; some Fe in mantle

Questions?



#### Contributions

- Alex Calculations, ppt
- Ashley Calculations, ppt, report
- Mariana Report, ppt
- Missie Report
- Yuanhao Coding, calculations