#### MAT02018 - Estatística Descritiva

#### **Números índices**

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2021



Apresentação

## **Apresentação**

### **Apresentação**

- Neste conjunto de notas de aulas, faremos uma breve introdução ao tema de números índices, geralmente utilizados para descrever a situação econômica ao longo do tempo.
- Veremos que a construção dos números índices está fortemente ligada a conceitos de estatística descritiva já apresentados neste curso.

- No sentido mais simples do termo, podemos dizer que um número índice é um quociente que expressa uma dada quantidade em comparação a uma quantidade base.
- Em outras palavras, são valores relativos.
- No entanto devemos considerar dois casos:
  - Quando o objetivo de comparação refere-se a um único produto ou serviço (índice simples/elementar).
  - Quando se refere a um conjunto de produtos e de serviços (índice agregativo/geral).

- No primeiro caso não temos propriamente um problema de números índices, já que não envolve a questão da agregação de bens e serviços.
  - Trata-se somente de uma forma alternativa de se fazer comparações em termos relativos.

Exemplo (único produto): a evolução das compras mensais de arroz (em kg), bem como do preço pago por kg, por parte de um supermercado, é apresentada na tabela a seguir.

Table 1: Evolução das compras mensais de arroz

| Período (t) | Quantidade $(kg)$ | Preço $(u.m./kg)$ | Valor total (u.m.) |
|-------------|-------------------|-------------------|--------------------|
| Mês 0       | 800               | 1,00              | 796,89             |
| Mês 1       | 1000              | 1,09              | 1094,82            |
| Mês 2       | 900               | 1,21              | 1092,99            |
| Mês 3       | 1050              | 1,24              | 1300,35            |

➤ Se desejarmos saber qual a evolução da quantidade, do preço e do valor total gasto em arroz com base de comparação o mês 0, basta tomarmos como divisor os respectivos valores do mês zero.

#### Relativos (notação)

- ▶ Utilizaremos a notação  $p_t$  ( $q_t$ ,  $v_t$ ) para indicar o **preço** (quantidade, valor) no período t.
  - Assim, o **relativo** do preço (**quantidade**, **valor**) pode ser definido como  $p_t/p_0$  ( $q_t/q_0$ ,  $v_t/v_0$ ) quando o período base for o período t=0.
- Por convenção, os resultados são multiplicados por 100.

Table 2: Evolução das compras mensais de arroz (relativos ao mês 0)

| Período (t) | Quantidade | Preço  | Valor total |
|-------------|------------|--------|-------------|
| Mês 0       | 100,0      | 100,00 | 100,00      |
| Mês 1       | 125,0      | 109,91 | 137,39      |
| Mês 2       | 112,5      | 121,92 | 137,16      |
| Mês 3       | 131,2      | 124,33 | 163,18      |

- ► A interpretação dos números apresentados na tabela acima é direta.
- Assim, se considerarmos a coluna referente a quantidade:
  - o número 125 significa que houve 25% de aumento (1,25 1,00 = 0,25) na compra de arroz no mês 1 relativamente ao mês 0;
  - no mês 2 verificamos 12,5% de aumento com relação ao mês 0, e assim por diante
  - sua vez: qual a variação percentual do mês 3 em relação ao mês 0?

- **Exemplo (conjunto de produtos):** considere cinco produtos usualmente consumidos por uma pessoa.
  - Os preços vigentes em dois períodos distintos de tempo estão apresentados na tabela a seguir.

 Table 3: Preços vigentes de cinco produtos

| Produtos          | Mês 0 ( <i>u.m.</i> ) | Mês 1 ( <i>u.m.</i> ) |
|-------------------|-----------------------|-----------------------|
| Arroz (kg)        | 1,98                  | 2,10                  |
| Leite (L)         | 1,99                  | 2,08                  |
| Pão francês (u)   | 0,90                  | 0,95                  |
| Cigarro (maço)    | 7,00                  | 7,50                  |
| Cerveja (garrafa) | 5,99                  | 6,99                  |

Se desejamos saber qual foi a variação de preços de um período com relação ao outro, duas soluções são possíveis e serão apresentadas nas próximas duas seções.

# Índice agregativo simples

▶ Representando por  $p_0^i$  e  $p_1^i$  os preços do produto i (i = 1, 2, ..., n), respectivamente, no **período 0** (**período-base**) e **1** (**período atual**)<sup>1</sup>, a expressão formal do **índice agregativo simples** (também conhecido como **Índice de Dutot**) é:

$$I_{01}^{as} = \frac{\sum_{i=1}^{n} p_1^i}{\sum_{i=1}^{n} p_0^i},$$

ou seja, somamos os preços dos produtos, sem ponderações, tanto para o período-base como para o período atual, e dividimos um pelo outro<sup>2</sup>.

 $^{2}$ Note que  $I_{01}^{as}$  é o **relativo das médias** de preços do mês 1 com respeito ao mês 0.

 $<sup>^{-1}</sup>$ Se o produto 1 representa o arroz, então  $\rho_0^1=0,87$  e  $\rho_0^1=1,02$ ; se o produto 2 é o leite, então  $\rho_0^2=0,62$  e  $\rho_0^2=0,65$ ; e assim respectivamente para os demais produtos.

Aplicando a fórmula do  $I^{as}$  aos valores dos preços dos cinco produtos, temos que  $\sum_{i=1}^5 p_0^i = 17,86$  e  $\sum_{i=1}^5 p_1^i = 19,62$ , e o portanto, o índice agregativo simples é:

$$I_{01}^{as} = \frac{17,86}{19,62} = 1,10,$$

isto é, os preços do conjunto de cinco produtos apresentados no último exemplo acusaram 10% de aumento no mês atual com relação ao mês-base.

- Note que o l<sup>as</sup> é influenciado pela unidade de medida que estão expressos os preços.
- ➤ Se substituirmos apenas o preço da cerveja em u.m. por meia garrafa, teremos 2,99 u.m. para o mês 0 e 3,49 u.m. para o mês 1.
- ▶ Mantendo os mesmos preços para os demais produtos, o *l*<sup>as</sup> é:

$$I_{01}^{as} = \frac{14,87}{16,13} = 1,08.$$

 Notamos que o aumento apurado é 8% no mês atual com relação ao mês-base.

# Índice de preços de Sauerbeck

- A influência pela unidade de medida expressa no preço no índice agregativo simples é sanada pelo índice de preços de Sauerbeck.
- Este nada mais que a média (aritmética simples) dos relativos de preços. Portanto temos:

$$I_{01}^{S} = \frac{1}{n} \sum_{i=1}^{n} \left( \frac{p_{1}^{i}}{p_{0}^{i}} \right).$$

Na tabela a seguir calculamos os relativos dos preços do mês 1 em relação ao mês 0 para cada um dos cinco produtos do exemplo apresentado anteriormente.

Table 4: Relativos de preços (cinco produtos)

| Produtos          | Mês 0 ( <i>u.m.</i> ) | Mês 1 ( <i>u.m.</i> ) | $p_1^i/p_0^i$ |
|-------------------|-----------------------|-----------------------|---------------|
| Arroz (kg)        | 1,98                  | 2,10                  | 1,061         |
| Leite (L)         | 1,99                  | 2,08                  | 1,045         |
| Pão francês (u)   | 0,90                  | 0,95                  | 1,056         |
| Cigarro (maço)    | 7,00                  | 7,50                  | 1,071         |
| Cerveja (garrafa) | 5,99                  | 6,99                  | 1,167         |

Aplicando a fórmula do Índice de preços de Sauerbeck aos relativos de preços da última coluna da tabela acima, obtemos:

$$I_{01}^S = \frac{5,4}{5} = 1,08,$$

isto é, o aumento médio dos preços dos cinco produtos foi da ordem de 8% no mês atual relativamente ao mês-base.

#### Observações

- O índice de preços de Sauerbeck não é afetado pelas unidades de medidas em que estão expressos os preços
  - Sua vez: recalcule o I<sup>S</sup><sub>01</sub> utilizando o preço referente a meia garrafa de cerveja.
- ► Todos os produtos têm a mesma importância relativa dentro do conjunto de bens e serviços no cálculo do  $I_{01}^S$ .
- Poderemos obter diferentes resultados se utilizarmos outros conceitos de média.
  - ▶ Sua vez: calcule a média harmônica  $(H_{01})$  e a média geométrica  $(G_{01})$  dos relativos de preços dos cinco produtos do exemplo. Utilize quatro casas decimais para concluir que  $H_{01} \leq G_{01} \leq I_{01}^{S}$ .

#### Próxima aula

Principais fórmulas de cálculo de números índices.

#### Por hoje é só!

#### Bons estudos!

