

Global United Technology Services Co., Ltd.

Report No.: GTS201611000003E01

FCC Report (WIFI)

Applicant: SHENZHEN GIEC DIGITAL CO., LTD

Address of Applicant: No.1 Building, Factory, No.7 District, Dayang Development

Areas, FuYong Street, Baoan, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: TM101W635L, GK-MER1027, TM101W638L, GK-MEV1027

FCC ID: 2AHYKTM1011

Applicable standards: FCC CFR Title 47 Part 15.247:2015

Date of sample receipt: November 01, 2016

Date of Test: November 02-17, 2016

Date of report issued: November 18, 2016

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	November 18, 2016	Original

Prepared By:	Tiger. Ohn	Date:	November 18, 2016	
	Project Engineer			
Check By:	Andy wa	Date:	November 18, 2016	
	Reviewer			

3 Contents

			Page
1	CO/	VER PAGE	1
2	VER	RSION	2
3	100	NTENTS	3
4		ST SUMMARY	
5		NERAL INFORMATION	
J	GEN		
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST FACILITY	
	5.6	TEST LOCATION	
6	TES	ST INSTRUMENTS LIST	8
7	TES	ST RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	9
	7.2	CONDUCTED EMISSIONS	10
	7.3	CONDUCTED PEAK OUTPUT POWER	13
	7.4	CHANNEL BANDWIDTH	
	7.5	Power Spectral Density	
	7.6	BAND EDGES	
	7.6.		
	7.6.2		
	7.7	Spurious Emission	
	7.7.		
	7.7.2		
8	TES	ST SETUP PHOTO	52
9	FUT	CONSTRUCTIONAL DETAILS	54

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

5 General Information

5.1 Client Information

Applicant:	SHENZHEN GIEC DIGITAL CO., LTD	
Address of Applicant:	No.1 Building,Factory,No.7 District,Dayang Development Areas,FuYongStreet,Baoan,Shenzhen,China	
Manufacturer/ Factory:	SHENZHEN GIEC DIGITAL CO., LTD	
Address of Manufacturer/ Factory:	No.1 Building,Factory,No.7 District,Dayang Development Areas,FuYongStreet,Baoan,Shenzhen,China	

5.2 General Description of EUT

-	
Product Name:	Tablet PC
Model No.:	TM101W635L, GK-MER1027, TM101W638L,GK-MEV1027
Test Model:	TM101W635L
Remark: All above models are The only difference is the model	identical in the same PCB layout, interior structure and electrical circuits. Iname and battery capacity for commercial purpose.
Operation Frequency:	802.11b/802.11g/802.11n(HT20): 2412MHz~2462MHz
	802.11n(HT40): 2422MHz~2452MHz
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11
	802.11n(HT40): 7
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS)
	802.11g/802.11n(H20)/802.11n(H40):
	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	PCB antenna
Antenna gain:	2.0dBi
Power supply:	Quick Charger:
	Model:A68-502000
	Input: AC 100-240V, 50/60Hz, 0.35A
	Output: DC 5V, 2A
	or
	DC 3.7V 6000mAh Li-ion Battery for TM101W635L and GK-MER1027
	DC 3.7V 6800mAh Li-ion Battery for TM101W638L and GK-MEV1027

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)			
rest channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)		
Lowest channel	2412MHz	2422MHz		
Middle channel	2437MHz	2437MHz		
Highest channel	2462MHz	2452MHz		

5.3 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
-------------------	--

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

		•			
Mode	802.11b 802.11g		802.11n(HT20)	802.11n(HT40)	
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps	

5.4 Description of Support Units

None.

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radi	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 03 2015	July 02 2020			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 29 2016	June 28 2017			
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 29 2016	June 28 2017			
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 29 2016	June 28 2017			
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 29 2016	June 28 2017			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 29 2016	June 28 2017			
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
9	Coaxial Cable	GTS	N/A	GTS213	June 29 2016	June 28 2017			
10	Coaxial Cable	GTS	N/A	GTS211	June 29 2016	June 28 2017			
11	Coaxial cable	GTS	N/A	GTS210	June 29 2016	June 28 2017			
12	Coaxial Cable	GTS	N/A	GTS212	June 29 2016	June 28 2017			
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 29 2016	June 28 2017			
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 29 2016	June 28 2017			
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 29 2016	June 28 2017			
16	Band filter	Amindeon	82346	GTS219	June 29 2016	June 28 2017			
17	Power Meter	Anritsu	ML2495A	GTS540	June 29 2016	June 28 2017			
18	Power Sensor	Anritsu	MA2411B	GTS541	June 29 2016	June 28 2017			

Conduc	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019				
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 29 2016	June. 28 2017				
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 29 2016	June. 28 2017				
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 29 2016	June. 28 2017				
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A				
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				
7	Thermo meter	KTJ	TA328	GTS233	June. 29 2016	June. 28 2017				

Gen	General used equipment:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Barometer	ChangChun	DYM3	GTS257	June 29 2016	June 28 2017				

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 2.0dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	,				
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto				
Limit:	Frequency range (MHz)	Limit (c	dBuV)			
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithn	n of the frequency.				
Test setup:	Reference Plane		_			
	AUX Equipment E.U.T EMI Receiver Remark: E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.3 for details	•				
Test results:	Pass					

Measurement data

Line:

Site

: Shielded room : FCC PART15 CLASSB QP LISN-2016 LINE Condition

Job No.

: 0003 : WiFi(2.4G) mode Test mode

Test Engineer: Boy

	Freq		LISN Factor					Remark	
	MHz	dBuV	dB	dB	dBuV	dBuV	dB		
1 2 3 4 5	0. 155 0. 235 0. 546 0. 668 0. 788 1. 858	42. 64 39. 53 39. 89 39. 01	0. 43 0. 34 0. 29 0. 27	0.12 0.11 0.13 0.13	43. 19 39. 98 40. 31 39. 41	62. 26 56. 00 56. 00 56. 00	-19.07 -16.02 -15.69 -16.59	QP QP QP QP	

Neutral:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2016 NEUTRAL

Job No. : 0003

Test mode : WiFi(2.4G) mode

Test Engineer: Boy

	Freq		LISN Factor					Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.156							
2 3	0. 228 0. 567							
	0.716 0.830							
	17.018							

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

Measurement Data

Test CH		Peak Outp	Limit(dBm)	Result		
1631 011	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(abin)	Nesult
Lowest	9.19	8.34	7.54	7.54		Pass
Middle	8.45	8.26	8.11	7.35	30.00	
Highest	8.37	8.51	7.52	7.20		

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test CH		Channel E	Limit(KHz)	Result		
	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Littiit(IXI IZ)	Result
Lowest	10.118	16.624	17.854	36.569		Pass
Middle	10.096	16.623	17.843	36.573	>500	
Highest	10.116	16.618	17.848	36.553		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	8dBm/3KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test CH		Power Spe	Limit	Result		
	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	(dBm/3kHz)	resuit
Lowest	-3.36	-9.63	-10.16	-13.47		Pass
Middle	-4.23	-9.76	-9.99	-13.56	8.00	
Highest	-4.21	-9.51	-9.91	-13.65		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Toot Poquiroment:	ECC Port15 C Section 15 247 (d)				
Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Test plot as follows:

Lowest channel

Highest channel

Test mode:

Lowest channel

802.11g

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205					
Test Method:	ANSI C63.10:20	ANSI C63.10:2013						
Test Frequency Range:		All of the restrict bands were tested, only the worst band's (2310MHz to						
	,	2500MHz) data was showed.						
Test site:	Measurement D							
Receiver setup:	Frequency	Frequency Detector RBW VBW Value						
	Above 1GHz	Peak	1MHz	3MHz	Peak			
	7.0000 . 0.1.	RMS	1MHz	3MHz	Average			
Limit:	Freque	ency	Limit (dBuV		Value			
	Above 1	GHz	54.0		Average			
Test setup:	713070	02	74.0	0	Peak			
	EUT Turn Table	3m < 4m 4m 1.5m y Im A Im A		Antenna Towe Horn Antenna Spectrum Analyzer				
Test Procedure:	the ground a determine the 2. The EUT was antenna, whistower. 3. The antennas ground to deshorizontal and measuremer. 4. For each sussend then the and the rotasthe maximum. 5. The test-recesspecified Basing the limit specified Basing the EUT with a limit specified Basing the limit specif	t a 3 meter care position of the set 3 meters ch was mounted beight is varied termine the mad vertical polant. Independent emission antenna was totable was turned reading. Server system word with the polant with the polant with the polant polant in the polant polant polant in the polant	mber. The talle highest race away from the ed on the top of the from one maximum value rizations of the ed. The from 0 de as set to Peal from 0 de ed. Otherwise re-tested of the specified arts are performanting which is a set to performanting which is entired to the ed.	ble was rotadiation. The interference of a variable meter to four e of the field the antenna at the was arrange was arranged this from 1 mgrees to 360 at Detect Full Mode. The mode was 1 stopped and the emissione by one using the med in X, Y, it is worse can be interested to the can be ca	de-height antenna remeters above the strength. Both are set to make the ed to its worst case neter to 4 meters of degrees to find anction and anction and the peak values ions that did not sing peak, quasi-			
Toot Instruments:		node is recorde		JIT.				
Test Instruments:	Refer to section							
Test mode:	Refer to section	o.s for details						
Test results:	Pass							

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Lowest

Measurement data:

Test mode:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel:

802.11b

Peak value	:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	51.28	27.59	5.38	34.01	50.24	74.00	-23.76	Horizontal
2400.00	60.17	27.58	5.39	34.01	59.13	74.00	-14.87	Horizontal
2390.00	52.94	27.59	5.38	34.01	51.90	74.00	-22.10	Vertical
2400.00	61.87	27.58	5.39	34.01	60.83	74.00	-13.17	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	38.15	27.59	5.38	34.01	37.11	54.00	-16.89	Horizontal
2400.00	36.40	27.58	5.39	34.01	35.36	54.00	-18.64	Horizontal
2390.00	39.94	27.59	5.38	34.01	38.90	54.00	-15.10	Vertical
2400.00	37.50	27.58	5.39	34.01	36.46	54.00	-17.54	Vertical
Test mode:		802.1	1b	Te	st channel:	F	Highest	
Peak value		_						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	51.78	27.53	5.47	33.92	50.86	74.00	-23.14	Horizontal
2500.00	47.72	27.55	5.49	29.93	50.83	74.00	-23.17	Horizontal
2483.50	53.96	27.53	5.47	33.92	53.04	74.00	-20.96	Vertical
2500.00	50.16	27.55	5.49	29.93	53.27	74.00	-20.73	Vertical
Average va	lue:		_				_	
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	

2500.00 Remark:

Frequency

(MHz)

2483.50

2500.00

2483.50

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Loss

(dB)

5.47

5.49

5.47

5.49

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Factor

(dB)

33.92

29.93

33.92

29.93

Level

(dBuV)

38.46

34.63

40.37

36.50

Factor

(dB/m)

27.53

27.55

27.53

27.55

Project No.: GTS201611000003

Limit

(dB)

-16.46

-16.26

-14.55

-14.39

Polarization

Horizontal

Horizontal

Vertical

Vertical

Limit Line

(dBuV/m)

54.00

54.00

54.00

54.00

Level

(dBuV/m)

37.54

37.74

39.45

39.61

Test mode:	Test mode: 802.11g			Test channel:			Lowest	
Peak value:		,						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.57	27.59	5.38	34.01	49.53	74.00	-24.47	Horizontal
2400.00	59.22	27.58	5.39	34.01	58.18	74.00	-15.82	Horizontal
2390.00	52.17	27.59	5.38	34.01	51.13	74.00	-22.87	Vertical
2400.00	60.72	27.58	5.39	34.01	59.68	74.00	-14.32	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.64	27.59	5.38	34.01	36.60	54.00	-17.40	Horizontal
2400.00	35.82	27.58	5.39	34.01	34.78	54.00	-19.22	Horizontal
2390.00	39.37	27.59	5.38	34.01	38.33	54.00	-15.67	Vertical
2400.00	36.86	27.58	5.39	34.01	35.82	54.00	-18.18	Vertical
Test mode:		802.1	1g	Те	st channel:	1	Highest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	50.76	27.53	5.47	33.92	49.84	74.00	-24.16	Horizontal
2500.00	46.93	27.55	5.49	29.93	50.04	74.00	-23.96	Horizontal
2483.50	52.79	27.53	5.47	33.92	51.87	74.00	-22.13	Vertical
2500.00	49.24	27.55	5.49	29.93	52.35	74.00	-21.65	Vertical
Average va	lue:	,		1	1		•	,
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	37.84	27.53	5.47	33.92	36.92	54.00	-17.08	Horizontal
2500.00	34.15	27.55	5.49	29.93	37.26	54.00	-16.74	Horizontal
2483.50	39.69	27.53	5.47	33.92	38.77	54.00	-15.23	Vertical
					1			-

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:

Report No.: GTS201611000003E01

Lowest

restinioue.		002.1	111(11120)	16	si channei.	L	-owesi	
Peak value	•							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.70	27.59	5.38	34.01	49.66	74.00	-24.34	Horizontal
2400.00	59.40	27.58	5.39	34.01	58.36	74.00	-15.64	Horizontal
2390.00	52.32	27.59	5.38	34.01	51.28	74.00	-22.72	Vertical
2400.00	60.94	27.58	5.39	34.01	59.90	74.00	-14.10	Vertical
Average va	lue:			•	•	•	•	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.74	27.59	5.38	34.01	36.70	54.00	-17.30	Horizontal
2400.00	35.93	27.58	5.39	34.01	34.89	54.00	-19.11	Horizontal
2390.00	39.48	27.59	5.38	34.01	38.44	54.00	-15.56	Vertical
2400.00	36.98	27.58	5.39	34.01	35.94	54.00	-18.06	Vertical
Test mode:		802.1	1n(HT20)	Te	st channel:	ŀ	Highest	
Peak value							_	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	50.95	27.53	5.47	33.92	50.03	74.00	-23.97	Horizontal
2500.00	47.08	27.55	5.49	29.93	50.19	74.00	-23.81	Horizontal
2483.50	53.02	27.53	5.47	33.92	52.10	74.00	-21.90	Vertical
2500.00	49.42	27.55	5.49	29.93	52.53	74.00	-21.47	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	37.96	27.53	5.47	33.92	37.04	54.00	-16.96	Horizontal
2500.00	34.24	27.55	5.49	29.93	37.35	54.00	-16.65	Horizontal
2483.50	39.82	27.53	5.47	33.92	38.90	54.00	-15.10	Vertical
2500.00	36.08	27.55	5.49	29.93	39.19	54.00	-14.81	Vertical
Remark:								

Test channel:

802.11n(HT20)

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:

Report No.: GTS201611000003E01

Lowest

			- /	_				
Peak value):							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.00	27.59	5.38	34.01	48.96	74.00	-25.04	Horizontal
2400.00	58.46	27.58	5.39	34.01	57.42	74.00	-16.58	Horizontal
2390.00	51.57	27.59	5.38	34.01	50.53	74.00	-23.47	Vertical
2400.00	59.81	27.58	5.39	34.01	58.77	74.00	-15.23	Vertical
Average va	alue:	•	•	•	•			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.24	27.59	5.38	34.01	36.20	54.00	-17.80	Horizontal
2400.00	35.35	27.58	5.39	34.01	34.31	54.00	-19.69	Horizontal
2390.00	38.92	27.59	5.38	34.01	37.88	54.00	-16.12	Vertical
2400.00	36.35	27.58	5.39	34.01	35.31	54.00	-18.69	Vertical
Test mode:		802.1	1n(HT40)	Te	st channel:	F	lighest	
Peak value): 							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	49.95	27.53	5.47	33.92	49.03	74.00	-24.97	Horizontal
2500.00	46.30	27.55	5.49	29.93	49.41	74.00	-24.59	Horizontal
2483.50	51.87	27.53	5.47	33.92	50.95	74.00	-23.05	Vertical
2500.00	48.50	27.55	5.49	29.93	51.61	74.00	-22.39	Vertical
Average va	alue:	_			_			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	Polarization
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	1 Old 12 dilott
(MHz) 2483.50						(dBuV/m) 54.00		Horizontal
	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	` '	(dB)	
2483.50	(dBuV) 37.35	(dB/m) 27.53	(dB) 5.47	(dB) 33.92	(dBuV/m) 36.43	54.00	(dB) -17.57	Horizontal

Test channel:

802.11n(HT40)

Remark.

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Test plot as follows:

Test mode: 802.11b

Lowest channel

30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

Test mode: 802.11g

Lowest channel

30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

Test mode: 802.11n(HT20)

Lowest channel

30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

30MHz~25GHz

Test mode: 802.11n(HT40)

Lowest channel

30MHz~25GHz

Middle channel

Highest channel

Peak Search Next Peak Atten 20 dB Next Pk Right Next Pk Left Min Search Stop 25.00 GHz Sweep 2.386 s (601 pts) Pk-Pk Search Type Freq Amplitude -14.02 dBm Mkr → CF More 1 of 2

30MHz~25GHz

Copyright 2000-2012 Agilent Technologies

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209									
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	30MHz to 25GHz									
Test site:	Measurement Dis	stance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Value					
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak									
	Abovo 1CHz	Peak	1MHz	3MHz	Peak					
	Above 1GHz RMS 1MHz 3MHz Average									
Limit:	Frequen	псу	Limit (dBuV	/m @3m)	Value					
	30MHz-88MHz 40.00 Quasi-peak									
	88MHz-216	6MHz	43.5	0	Quasi-peak					
	216MHz-96	60MHz	46.0	0	Quasi-peak					
	960MHz-1	960MHz-1GHz 54.00 Quasi-peak								
	Above 10	2H2	54.0	0	Average					
	Above 10	J1 12	74.0	0	Peak					
Test setup:	Below 1GHz	EUT+		Antenna« 1 4m > Preamplif	fier»					

	Tum Table+ < lm 4m >+/ Tum Table+ Receiver- Preamplifier-
Test Procedure:	1. The EUT was placed on the top of a rotating table(0.8 meters below 1G and 1.5 meters above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
32.29	51.29	14.32	0.58	30.09	36.10	40.00	-3.90	Vertical
72.08	54.68	10.26	0.96	29.84	36.06	40.00	-3.94	Vertical
134.56	53.94	10.56	1.47	29.49	36.48	43.50	-7.02	Vertical
239.99	48.22	14.09	2.07	29.56	34.82	46.00	-11.18	Vertical
422.06	48.30	17.48	2.96	29.45	39.29	46.00	-6.71	Vertical
537.59	42.25	19.36	3.47	29.30	35.78	46.00	-10.22	Vertical
57.59	46.84	14.85	0.84	29.94	32.59	40.00	-7.41	Horizontal
96.10	50.73	14.90	1.16	29.72	37.07	43.50	-6.43	Horizontal
153.74	57.18	10.42	1.59	29.39	39.80	43.50	-3.70	Horizontal
268.49	54.76	14.34	2.21	29.79	41.52	46.00	-4.48	Horizontal
383.93	54.16	16.68	2.78	29.57	44.05	46.00	-1.95	Horizontal
499.43	45.81	18.58	3.30	29.30	38.39	46.00	-7.61	Horizontal

■ Above 1GHz

Test mode:		802.11b		Test	channel:	Lowe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	39.94	31.79	8.62	32.10	48.25	74.00	-25.75	Vertical
7236.00	34.00	36.19	11.68	31.97	49.90	74.00	-24.10	Vertical
9648.00	32.55	38.07	14.16	31.56	53.22	74.00	-20.78	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.66	31.79	8.62	32.10	46.97	74.00	-27.03	Horizontal
7236.00	33.77	36.19	11.68	31.97	49.67	74.00	-24.33	Horizontal
9648.00	32.15	38.07	14.16	31.56	52.82	74.00	-21.18	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.05	31.79	8.62	32.10	37.36	54.00	-16.64	Vertical
7236.00	22.87	36.19	11.68	31.97	38.77	54.00	-15.23	Vertical
9648.00	22.91	38.07	14.16	31.56	43.58	54.00	-10.42	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	28.22	31.79	8.62	32.10	36.53	54.00	-17.47	Horizontal
7236.00	22.36	36.19	11.68	31.97	38.26	54.00	-15.74	Horizontal
9648.00	21.90	38.07	14.16	31.56	42.57	54.00	-11.43	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b		Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.06	31.85	8.66	32.12	47.45	74.00	-26.55	Vertical
7311.00	34.11	36.37	11.71	31.91	50.28	74.00	-23.72	Vertical
9748.00	33.60	38.27	14.25	31.56	54.56	74.00	-19.44	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.58	31.85	8.66	32.12	47.97	74.00	-26.03	Horizontal
7311.00	32.77	36.37	11.71	31.91	48.94	74.00	-25.06	Horizontal
9748.00	33.50	38.27	14.25	31.56	54.46	74.00	-19.54	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.93	31.85	8.66	32.12	38.32	54.00	-15.68	Vertical
7311.00	22.43	36.37	11.71	31.91	38.60	54.00	-15.40	Vertical
9748.00	22.86	38.27	14.25	31.56	43.82	54.00	-10.18	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.71	31.85	8.66	32.12	38.10	54.00	-15.90	Horizontal
7311.00	21.86	36.37	11.71	31.91	38.03	54.00	-15.97	Horizontal
9748.00	23.22	38.27	14.25	31.56	44.18	54.00	-9.82	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b		Test	channel:	Highe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	44.38	31.90	8.70	32.15	52.83	74.00	-21.17	Vertical
7386.00	34.65	36.49	11.76	31.83	51.07	74.00	-22.93	Vertical
9848.00	36.80	38.62	14.31	31.77	57.96	74.00	-16.04	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	43.76	31.90	8.70	32.15	52.21	74.00	-21.79	Horizontal
7386.00	33.59	36.49	11.76	31.83	50.01	74.00	-23.99	Horizontal
9848.00	32.99	38.62	14.31	31.77	54.15	74.00	-19.85	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.33	31.90	8.70	32.15	43.78	54.00	-10.22	Vertical
7386.00	24.57	36.49	11.76	31.83	40.99	54.00	-13.01	Vertical
9848.00	25.31	38.62	14.31	31.77	46.47	54.00	-7.53	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.15	31.90	8.70	32.15	42.60	54.00	-11.40	Horizontal
7386.00	22.99	36.49	11.76	31.83	39.41	54.00	-14.59	Horizontal
9848.00	22.26	38.62	14.31	31.77	43.42	54.00	-10.58	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	lowes	st	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	39.68	31.79	8.62	32.10	47.99	74.00	-26.01	Vertical
7236.00	33.83	36.19	11.68	31.97	49.73	74.00	-24.27	Vertical
9648.00	32.44	38.07	14.16	31.56	53.11	74.00	-20.89	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.44	31.79	8.62	32.10	46.75	74.00	-27.25	Horizontal
7236.00	33.63	36.19	11.68	31.97	49.53	74.00	-24.47	Horizontal
9648.00	32.03	38.07	14.16	31.56	52.70	74.00	-21.30	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	28.81	31.79	8.62	32.10	37.12	54.00	-16.88	Vertical
7236.00	22.71	36.19	11.68	31.97	38.61	54.00	-15.39	Vertical
9648.00	22.79	38.07	14.16	31.56	43.46	54.00	-10.54	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertica
4824.00	28.01	31.79	8.62	32.10	36.32	54.00	-17.68	Horizontal
7236.00	22.22	36.19	11.68	31.97	38.12	54.00	-15.88	Horizontal
9648.00	21.79	38.07	14.16	31.56	42.46	54.00	-11.54	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	38.84	31.85	8.66	32.12	47.23	74.00	-26.77	Vertical
7311.00	33.97	36.37	11.71	31.91	50.14	74.00	-23.86	Vertical
9748.00	33.50	38.27	14.25	31.56	54.46	74.00	-19.54	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.40	31.85	8.66	32.12	47.79	74.00	-26.21	Horizontal
7311.00	32.65	36.37	11.71	31.91	48.82	74.00	-25.18	Horizontal
9748.00	33.41	38.27	14.25	31.56	54.37	74.00	-19.63	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.73	31.85	8.66	32.12	38.12	54.00	-15.88	Vertical
7311.00	22.29	36.37	11.71	31.91	38.46	54.00	-15.54	Vertical
9748.00	22.76	38.27	14.25	31.56	43.72	54.00	-10.28	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.54	31.85	8.66	32.12	37.93	54.00	-16.07	Horizontal
7311.00	21.74	36.37	11.71	31.91	37.91	54.00	-16.09	Horizontal
9748.00	23.13	38.27	14.25	31.56	44.09	54.00	-9.91	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:		802.11g		Test	channel:	Highe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	44.00	31.90	8.70	32.15	52.45	74.00	-21.55	Vertical
7386.00	34.41	36.49	11.76	31.83	50.83	74.00	-23.17	Vertical
9848.00	36.63	38.62	14.31	31.77	57.79	74.00	-16.21	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	43.44	31.90	8.70	32.15	51.89	74.00	-22.11	Horizontal
7386.00	33.38	36.49	11.76	31.83	49.80	74.00	-24.20	Horizontal
9848.00	32.83	38.62	14.31	31.77	53.99	74.00	-20.01	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	34.98	31.90	8.70	32.15	43.43	54.00	-10.57	Vertical
7386.00	24.34	36.49	11.76	31.83	40.76	54.00	-13.24	Vertical
9848.00	25.15	38.62	14.31	31.77	46.31	54.00	-7.69	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	33.85	31.90	8.70	32.15	42.30	54.00	-11.70	Horizontal
7386.00	22.78	36.49	11.76	31.83	39.20	54.00	-14.80	Horizontal
9848.00	22.10	38.62	14.31	31.77	43.26	54.00	-10.74	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Lowe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	39.41	31.79	8.62	32.10	47.72	74.00	-26.28	Vertical
7236.00	33.66	36.19	11.68	31.97	49.56	74.00	-24.44	Vertical
9648.00	32.32	38.07	14.16	31.56	52.99	74.00	-21.01	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.22	31.79	8.62	32.10	46.53	74.00	-27.47	Horizontal
7236.00	33.48	36.19	11.68	31.97	49.38	74.00	-24.62	Horizontal
9648.00	31.92	38.07	14.16	31.56	52.59	74.00	-21.41	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:						•	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	28.56	31.79	8.62	32.10	36.87	54.00	-17.13	Vertical
7236.00	22.55	36.19	11.68	31.97	38.45	54.00	-15.55	Vertical
9648.00	22.68	38.07	14.16	31.56	43.35	54.00	-10.65	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	27.80	31.79	8.62	32.10	36.11	54.00	-17.89	Horizontal
7236.00	22.08	36.19	11.68	31.97	37.98	54.00	-16.02	Horizontal
9648.00	21.69	38.07	14.16	31.56	42.36	54.00	-11.64	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:		802.11n(H	IT20)	Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	38.62	31.85	8.66	32.12	47.01	74.00	-26.99	Vertical
7311.00	33.83	36.37	11.71	31.91	50.00	74.00	-24.00	Vertical
9748.00	33.40	38.27	14.25	31.56	54.36	74.00	-19.64	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.21	31.85	8.66	32.12	47.60	74.00	-26.40	Horizontal
7311.00	32.53	36.37	11.71	31.91	48.70	74.00	-25.30	Horizontal
9748.00	33.32	38.27	14.25	31.56	54.28	74.00	-19.72	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.53	31.85	8.66	32.12	37.92	54.00	-16.08	Vertical
7311.00	22.16	36.37	11.71	31.91	38.33	54.00	-15.67	Vertical
9748.00	22.67	38.27	14.25	31.56	43.63	54.00	-10.37	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.36	31.85	8.66	32.12	37.75	54.00	-16.25	Horizontal
7311.00	21.63	36.37	11.71	31.91	37.80	54.00	-16.20	Horizontal
9748.00	23.04	38.27	14.25	31.56	44.00	54.00	-10.00	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Highe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	43.62	31.90	8.70	32.15	52.07	74.00	-21.93	Vertical
7386.00	34.17	36.49	11.76	31.83	50.59	74.00	-23.41	Vertical
9848.00	36.46	38.62	14.31	31.77	57.62	74.00	-16.38	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	43.12	31.90	8.70	32.15	51.57	74.00	-22.43	Horizontal
7386.00	33.17	36.49	11.76	31.83	49.59	74.00	-24.41	Horizontal
9848.00	32.67	38.62	14.31	31.77	53.83	74.00	-20.17	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	34.64	31.90	8.70	32.15	43.09	54.00	-10.91	Vertical
7386.00	24.11	36.49	11.76	31.83	40.53	54.00	-13.47	Vertical
9848.00	24.99	38.62	14.31	31.77	46.15	54.00	-7.85	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	33.55	31.90	8.70	32.15	42.00	54.00	-12.00	Horizontal
7386.00	22.58	36.49	11.76	31.83	39.00	54.00	-15.00	Horizontal
9848.00	21.95	38.62	14.31	31.77	43.11	54.00	-10.89	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

¹ Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2 &}quot;*", means this data is the too weak instrument of signal is unable to test.

d Anten el Facto V) (dB/r 5 31.8	or Loss n) (dB)	Fac (dl	tor dBu		I I imit	and all
el Facto V) (dB/r 5 31.8	or Loss n) (dB)	Fac (dl	tor dBu		ine Limit	and and a C
	1 8.63	00	/	, ,	(dB)	polarization
9 36.2		32.	11 47.4	18 74.00	-26.52	Vertical
00.2	8 11.69	31.	94 49.	74.00	-24.48	Vertical
0 38.1	3 14.21	31.	52 53.0	74.00	-20.98	Vertical
				74.00	0	Vertical
				74.00	0	Vertical
				74.00	0	Vertical
9 31.8	1 8.63	32.	11 46.3	32 74.00	-27.68	Horizontal
3 36.2	8 11.69	31.	94 49.3	36 74.00	-24.64	Horizontal
1 38.1	3 14.21	31.	52 52.6	74.00	21.37	Horizontal
				74.00	0	Horizontal
				74.00	0	Horizontal
				74.00	0	Horizontal
	3 36.2	3 36.28 11.69	3 36.28 11.69 31.	3 36.28 11.69 31.94 49.3	9 31.81 8.63 32.11 46.32 74.00 3 36.28 11.69 31.94 49.36 74.00 1 38.13 14.21 31.52 52.63 74.00 74.00	3 36.28 11.69 31.94 49.36 74.00 -24.64

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	28.32	31.81	8.63	32.11	36.65	54.00	-17.35	Vertical
7266.00	22.39	36.28	11.69	31.94	38.42	54.00	-15.58	Vertical
9688.00	22.56	38.13	14.21	31.52	43.38	54.00	-10.62	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4844.00	27.59	31.81	8.63	32.11	35.92	54.00	-18.08	Horizontal
7266.00	21.93	36.28	11.69	31.94	37.96	54.00	-16.04	Horizontal
9688.00	21.58	38.13	14.21	31.52	42.40	54.00	-11.60	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(F	IT40)	Tes	st channel:	Midd	lle	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	38.40	31.85	8.66	32.12	46.79	74.00	-27.21	Vertical
7311.00	33.69	36.37	11.71	31.91	49.86	74.00	-24.14	Vertical
9748.00	33.30	38.27	14.25	31.56	54.26	74.00	-19.74	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.03	31.85	8.66	32.12	47.42	74.00	-26.58	Horizontal
7311.00	32.41	36.37	11.71	31.91	48.58	74.00	-25.42	Horizontal
9748.00	33.23	38.27	14.25	31.56	54.19	74.00	-19.81	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:		_					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.33	31.85	8.66	32.12	37.72	54.00	-16.28	Vertical
7311.00	22.03	36.37	11.71	31.91	38.20	54.00	-15.80	Vertical
9748.00	22.57	38.27	14.25	31.56	43.53	54.00	-10.47	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.19	31.85	8.66	32.12	37.58	54.00	-16.42	Horizontal
7311.00	21.51	36.37	11.71	31.91	37.68	54.00	-16.32	Horizontal
9748.00	22.96	38.27	14.25	31.56	43.92	54.00	-10.08	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT40)	Test	channel:	Highe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	43.24	31.88	8.68	32.13	51.67	74.00	-22.33	Vertical
7356.00	33.93	36.45	11.75	31.86	50.27	74.00	-23.73	Vertical
9808.00	36.29	38.43	14.29	31.68	57.33	74.00	-16.67	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4904.00	42.80	31.88	8.68	32.13	51.23	74.00	-22.77	Horizontal
7356.00	32.96	36.45	11.75	31.86	49.30	74.00	-24.70	Horizontal
9808.00	32.52	38.43	14.29	31.68	53.56	74.00	-20.44	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	34.29	31.88	8.68	32.13	42.72	54.00	-11.28	Vertical
7356.00	23.88	36.45	11.75	31.86	40.22	54.00	-13.78	Vertical
9808.00	24.82	38.43	14.29	31.68	45.86	54.00	-8.14	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4904.00	33.25	31.88	8.68	32.13	41.68	54.00	-12.32	Horizontal
7356.00	22.38	36.45	11.75	31.86	38.72	54.00	-15.28	Horizontal
9808.00	21.80	38.43	14.29	31.68	42.84	54.00	-11.16	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*	_				54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

¹ Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2 &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Project No.: GTS201611000003

Page 59 of 62

-----End-----