Devoir surveillé n°09: corrigé

Problème 1 — Dérivation et polynômes

Partie I –

- 1. On a $\lim_{x\to 0^+} \frac{\sin x}{x} = 1$. Par suite, en prenant $\ell = 1$, f est continue en 0.
- **2.** Les fonctions $x \mapsto \sin x$ et $x \mapsto x$ sont \mathscr{C}^1 sur \mathbb{R} et $x \mapsto x$ ne s'annule pas sur \mathbb{R}^*_+ donc f est \mathscr{C}^1 sur \mathbb{R}^*_+ .

De plus, pour tout x > 0, $f'(x) = \frac{x \cos x - \sin x}{x^2}$. Puisque $\cos x = 1 + o(x)$ et $\sin x = x + o(x^2)$, $x \cos x - \sin x = o(x^2)$. Par conséquent, f est continue $\sup \mathbb{R}_+$, de classe $\mathscr{C}^1 \sup \mathbb{R}_+^*$ et $\lim_{x \to 0^+} f'(x) = 0$. D'après le théorème de prolongement \mathscr{C}^1 , f est de classe \mathscr{C}^1 sur \mathbb{R}_+ .

REMARQUE. Si on n'a pas encore vu le théorème de prolongement \mathscr{C}^1 , on montre d'abord que f est dérivable en 0. En effet

$$\frac{f(x)-f(0)}{x-0} = \frac{\sin x - x}{x^2} \sim \frac{x}{6}$$

En particulier, $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = 0$ de sorte que f est dérivable en 0 et que f'(0) = 0. Puisque $\lim_{x\to 0^+} f'(x) = 0 = f'(0)$, f' est bien continue en 0. Finalement, on retrouve le fait que f est \mathcal{C}^1 sur \mathbb{R}_+ .

- 3. Soit $\varphi: x \mapsto x \cos x \sin x$. φ est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $\varphi'(x) = -x \sin x$. Ainsi φ' est de signe constant sur I_n et ne s'annule qu'aux bornes de I_n . Il s'ensuit que φ est strictement monotone sur I_n . Sur I_n , φ est continue et strictement monotone donc établit une bijection de I_n dans $\varphi(I_n)$ qui est un intervalle. Or $\varphi(n\pi)\varphi((n+1)\pi) = -n(n+1)\pi^2 < 0$. Donc $0 \in \varphi(I_n)$ et il existe un unique réel x_n dans I_n tel que $\varphi(x_n) = 0$.
- **4.** Pour tout $n \in \mathbb{N}^*$, on a $n\pi \le x_n \le n\pi + \pi$ d'où $1 \le \frac{x_n}{n\pi} \le 1 + \frac{1}{n}$. Le théorème des gendarmes prouve alors que $\lim_{n \to +\infty} \frac{x_n}{n\pi} = 1 \text{ ce qui donne } x_n \underset{n \to +\infty}{\sim} n\pi.$
- **5.** Pour tout $x \in \mathbb{R}$, f'(x) est du signe de $\varphi(x)$.

Or φ est strictement décroissante sur I_0 et $\varphi(0) = 0$. Donc f' est négative sur I_0 et ne s'annule qu'en 0. Donc fest strictement décroissante sur I₀.

Soit maintenant $n \in \mathbb{N}^*$. Sur I_{2n} , φ est strictement décroissante et s'annule en x_{2n} . Donc f est strictement croissante sur $[2n\pi, x_{2n}]$ et strictement décroissante sur $[x_{2n}, (2n+1)\pi]$.

De même, sur I_{2n-1} , φ est strictement croissante et s'annule en x_{2n-1} . Donc f est strictement décroissante sur $[(2n-1)\pi, x_{2n-1}]$ et strictement croissante sur $[x_{2n-1}, 2n\pi]$.

6. La courbe représentative de f coupe l'axe des abscisses aux points d'abscisse $n\pi$, avec $n \in \mathbb{N}^*$.

Partie II -

1. Le calcul donne
$$g''(x) = \frac{-(x^2-2)\sin x - 2x\cos x}{x^3}$$
 pour tout $x > 0$.

2.

n	0	1	2
P_n	1	X	$X^2 - 2$
Q_n	0	1	2X

3. En dérivant la relation donnée par l'énoncé, on a pour tout x > 0:

$$g^{(n+1)}(x) = \frac{P'_n(x)\sin^{(n)}(x) + P_n(x)\sin^{(n+1)}(x) + Q'_n(x)\sin^{(n+1)}(x) + Q_n(x)\sin^{(n+2)}(x)}{x^{n+1}} - (n+1)\frac{P_n(x)\sin^{(n)}(x) + Q_n(x)\sin^{(n+1)}(x)}{x^{n+2}}$$

comme $\sin^{(n)}(x) = -\sin^{(n+2)}(x)$, on obtient :

$$g^{(n+1)}(x) = \frac{P_{n+1}(x)\sin^{(n+1)}(x) + Q_{n+1}(x)\sin^{(n+2)}(x)}{x^{n+2}}$$

avec

$$\begin{aligned} \mathbf{P}_{n+1} &= \mathbf{X} \mathbf{P}_n + \mathbf{X} \mathbf{Q}_n' - (n+1) \mathbf{Q}_n \\ \mathbf{Q}_{n+1} &= \mathbf{X} \mathbf{Q}_n - \mathbf{X} \mathbf{P}_n' + (n+1) \mathbf{P}_n \end{aligned}$$

4. On isole le cas n=0. $P_0=1$ donc P_0 est à coefficients entiers, de degré 0, de coefficient dominant 1 et pair. $Q_0=0$ donc Q_0 à coefficients entiers, de degré $-\infty$. Cela n'a pas de sens de parler de son coefficient dominant et il est aussi bien pair qu'impair.

Traitons maintenant le cas $n \ge 1$. Soit \mathcal{H}_n la propriété :

 P_n est de degré n de coefficient dominant 1, Q_n est de degré n-1 et de coefficient dominant n, P_n et Q_n sont à coefficients entiers, P_n a la parité de n, Q_n a la parité opposée de celle de n.

 \mathcal{H}_1 est vraie. Supposons \mathcal{H}_n vraie pour un certain $n \in \mathbb{N}^*$.

Alors P_n , Q_n , P'_n et Q'_n sont à coefficients entiers donc P_{n+1} et Q_{n+1} aussi.

De plus, XP_n est de degré n+1 de coefficient dominant 1 et XQ'_n et Q_n sont de degré strictement inférieur à n+1donc P_{n+1} est de degré n+1 de coefficient dominant 1.

Par ailleurs, XQ_n , XP'_n et $(n+1)P_n$ sont de degré n de coefficients dominants respectifs n, n et n+1 donc Q_{n+1} est degré n de coefficient dominant n+1.

Enfin, P_n a la parité de n et Q_n a la parité opposée à celle de n donc XP_n , XQ'_n sont de la parité opposée à celle de n donc de la parité de n+1 tandis que XQ_n et XP_n' sont de la parité de n donc de la parité opposée à celle de n+1. On en déduit que \mathbf{P}_{n+1} a la parité de n+1 tandis que \mathbf{Q}_{n+1} a la parité opposée à celle de n+1.

Donc \mathcal{H}_{n+1} est vraie. Ainsi \mathcal{H}_n est vraie pour tout $n \in \mathbb{N}^*$.

- 5. On a $P_3 = XP_2 + XQ_2' 3Q_2 = X^3 6X$ et $Q_3 = XQ_2 XP_2' + 3P_2 = 3X^2 6$.
- 6. Soit $\alpha_k = \frac{\pi}{2} + 2k\pi$ et $\beta_k = 2k\pi$. Comme pour tout x > 0, on a $U(x)\sin(x) + V(x)\cos(x) = 0$, pour tout entier $k \in \mathbb{N}^*$, $U(\alpha_k) = 0$ et $V(\beta_k) = 0$. U et V admettent une infinité de racines donc sont égaux au polynôme nul.
- 7. En dérivant n+1 fois l'égalité, $xg(x) = \sin x$, on obtient pour tout x > 0,

$$xg^{(n+1)}(x) + (n+1)g^{(n)}(x) = \sin^{(n+1)}(x)$$

d'où en reportant les formules donnant $g^{(n)}(x)$ et $g^{(n+1)}(x)$:

$$(P_{n+1}(x) + (n+1)Q_n(x) - x^n)\sin^{(n+1)}(x) + ((n+1)P_n(x) - Q_{n+1}(x))\sin^{(n)}(x) = 0$$

Puisque à n fixé, l'une des expressions $\sin^{(n+1)}(x)$ ou $\sin^{(n)}(x)$ vaut $\pm \sin(x)$ tandis que l'autre vaut $\pm \cos x$, on peut appliquer le résultat de la question précédente et on a donc :

$$P_{n+1} + (n+1)Q_n - X^{n+1} = 0 (n+1)P_n - Q_{n+1} = 0$$

8. En reportant $Q_{n+1} = (n+1)P_n$ dans la définition de Q_{n+1} , on a $X(Q_n - P_n') = 0$ ce qui donne $Q_n = P_n'$ par intégrité

On a donc $P_{n+1} = X^{n+1} - (n+1)Q_n = XP_n + XP_n'' - (n+1)Q_n$ ce qui donne $P_n + P_n'' = X^n$ à nouveau par intégrité de

 P_n est donc solution de l'équation différentielle $\mathcal{E}_n: y''+y=x^n$.

9. Si T est un polynôme non nul de degré p, T+T" est aussi de degré p et non nul (car le degré de T" est strictement inférieur à celui de T). Cela montre que Ψ est injectif et que si T appartient à $\mathbb{R}_n[X]$, $\Psi(T)$ aussi.

Donc Ψ_n est un endomorphisme injectif de $\mathbb{R}_n[X]$. Comme $\mathbb{R}_n[X]$ est de dimension finie, cela implique que Ψ_n est

Si Q est un polynôme quelconque, il existe un entier p tel que Q appartienne à $\mathbb{R}_p[X]$. Comme Ψ_p est bijectif, il existe P tel que $\Psi_p(P) = Q$. Donc P est un antécédent de Q par $\Psi : \Psi$ est surjectif et comme Ψ est injectif, Ψ est

10. Notons $P_n = \sum_{k=0}^n b_k X^k$. On a

$$\begin{aligned} \mathbf{P}_n + \mathbf{P}_n'' &= \sum_{k=0}^n b_k \mathbf{X}^k + \sum_{k=0}^n k(k-1)b_k \mathbf{X}^k \\ &= b_n \mathbf{X}^n + b_{n-1} \mathbf{X}^{n-1} + \sum_{k=0}^{n-2} (b_k + (k+2)(k+1)b_{k+2}) \mathbf{X}^k = \mathbf{X}^n \end{aligned}$$

 $\begin{aligned} & \text{Par suite } b_n = 1, \ b_{n-1} = 0 \text{ et pour tout } k \in [\![0,n-2]\!], \ b_k = -(k+2)(k+1)b_{k+2}. \\ & \text{Cela donne pour tout } k \in [\![1,p]\!], \ b_{n-2k} = (-1)^k \frac{n!}{(n-2k)!} \text{ et } b_{n-2k+1} = 0. \end{aligned}$

Finalement P =
$$\sum_{k=0}^{p} a_k X^{n-2k}$$
 avec $a_k = (-1)^k \frac{n!}{(n-2k)!}$.

11. Les solutions de $y'' + y = x^n$ sont la somme d'une solution particulière de cette équation et de la solution générale

 P_n étant solution particulière, les solutions sont donc les fonctions du type : $x \mapsto P_n(x) + \lambda \cos x + \mu \sin x$, λ et μ étant deux réels.

Problème 2 – ENSI 1979

Partie I - Etude de cas particuliers

1. On trouve

$$P_1 = X$$
 $P_2 = 2X$ $P_3 = 3X - X^3$ $P_4 = 4X - 4X^3$ $Q_1 = 1$ $Q_2 = 1 - X^2$ $Q_3 = 1 - 3X^2$ $Q_4 = 1 - 6X^2 + X^4$

2. Les décompositions en facteurs irréductibles de P2, Q2, P3, Q3 ne posent pas de problèmes.

$$P_2 = 2X$$
 $Q_2 = (1 - X)(1 + X)$ $P_3 = X(\sqrt{3} - X)(\sqrt{3} + X)$ $Q_3 = (1 - X\sqrt{3})(1 + X\sqrt{3})$

La factorisation de P_4 est évidente. Les racines de $1-6X+X^2$ sont $3-2\sqrt{2}$ et $3+2\sqrt{2}$. Les racines de Q_4 sont donc les racines carrées de ces derniers réels. Puisque $3-2\sqrt{2}=(1-\sqrt{2})^2$ et $3+2\sqrt{2}=(1+\sqrt{2})^2$, les racines de Q_4 sont $1-\sqrt{2}$, $-1+\sqrt{2}$, $1+\sqrt{2}$, $-1-\sqrt{2}$. Finalement,

$$P_4 = 4X(1-X)(1+X) \\ Q_4 = (X+1+\sqrt{2})(X-1+\sqrt{2})(X+1-\sqrt{2})(X-1-\sqrt{2})$$

3. La décomposition en éléments simples de R₂ est directe :

$$R_2 = \frac{2X}{(1-X)(1+X)} = \frac{(X+1)-(1-X)}{(1-X)(1+X)} = \frac{1}{1-X} - \frac{1}{1+X}$$

Une division euclidienne montre que la partie entière de R_3 est $\frac{1}{3}X$. La méthode usuelle montre que

$$R_3 = \frac{1}{3}X - \frac{4}{9(X - \frac{1}{\sqrt{3}})} - \frac{4}{9(X + \frac{1}{\sqrt{3}})}$$

La décomposition en éléments simples de R_4 est de la forme

$$R_4 = \frac{\alpha}{X - 1 - \sqrt{2}} + \frac{\beta}{X - 1 + \sqrt{2}} + \frac{\gamma}{X + 1 - \sqrt{2}} + \frac{\delta}{X + 1 + \sqrt{2}}$$

avec

$$\alpha = \frac{P_4(1+\sqrt{2})}{Q_4'(1+\sqrt{2})} \qquad \beta = \frac{P_4(1-\sqrt{2})}{Q_4'(1-\sqrt{2})} \qquad \gamma = \frac{P_4(-1+\sqrt{2})}{Q_4'(-1+\sqrt{2})} \qquad \delta = \frac{P_4(-1-\sqrt{2})}{Q_4'(-1-\sqrt{2})}$$

On remarquera pour simplifier les calculs que $\frac{P_4}{Q_4'} = \frac{1-X^2}{X^2-3}$ et on tirera profit du fait que R_4 est impaire. On trouve alors

$$R_4 = \frac{-1 - \frac{1}{\sqrt{2}}}{X - 1 - \sqrt{2}} + \frac{-1 + \frac{1}{\sqrt{2}}}{X - 1 + \sqrt{2}} + \frac{-1 + \frac{1}{\sqrt{2}}}{X + 1 - \sqrt{2}} + \frac{-1 - \frac{1}{\sqrt{2}}}{X + 1 + \sqrt{2}}$$

Partie II – Etude du cas général

1. Remarquons que pour tout $n \in \mathbb{N}$,

$$Z_{n+1} = Q_{n+1} + iP_{n+1} = -XP_n + Q_n + iP_n + iXQ_n = (1+iX)(Q_n + iP_n) = (1+iX)Z_n$$

Puisque $Z_0 = 1$, on montre alors aisément que $Z_{n+1} = (1 + iX)^n$ pour tout $n \in \mathbb{N}$.

2. Tout d'abord, $1+i\tan\alpha=\frac{e^{i\alpha}}{\cos\alpha}$ donc $(1+i\tan\alpha)^n=\frac{e^{in\alpha}}{\cos^n\alpha}$. Puisque P_n et Q_n sont à coefficients réels, il s'ensuit que

$$P_n(\tan \alpha) = \operatorname{Im}((1+i\tan \alpha)^n) = \frac{\sin n\alpha}{\cos^n \alpha} \qquad Q_n(\tan \alpha) = \operatorname{Re}((1+i\tan \alpha)^n) = \frac{\cos n\alpha}{\cos^n \alpha}$$

3. D'après la formule du binôme,

$$Z_n = (1+iX)^n = \sum_{k=0}^n \binom{n}{k} i^k X^k = \sum_{0 \le 2k \le n} \binom{n}{2k} (-1)^k X^{2k} + i \sum_{0 \le 2k+1 \le n} \binom{n}{2k+1} (-1)^k X^{2k+1} = \sum_{k=0}^n \binom{n}{2k} i^k X^k = \sum_{0 \le 2k \le n} \binom{n}{2k} (-1)^k X^{2k} + i \sum_{0 \le 2k+1 \le n} \binom{n}{2k+1} (-1)^k X^{2k+1} = \sum_{0 \le 2k \le n} \binom{n}{2k} (-1)^k X^{2k} + i \sum_{0 \le 2k+1 \le n} \binom{n}{2k+1} (-1)^k X^{2k} + i \sum_{0$$

donc

$$P_n = \sum_{0 \le 2k+1 \le n} \binom{n}{2k+1} (-1)^k X^{2k+1} \qquad Q_n = \sum_{0 \le 2k \le n} \binom{n}{2k} (-1)^k X^{2k}$$

4. D'après la question **II.3**, P_n est impair et Q_n est pair.

Remarque. On peut également déterminer la parité de P_n et Q_n sans leurs formes développées. D'une part,

$$\overline{Z}_n = (1 - iX)^n = Z_n(-X) = Q_n(-X) + iP_n(-X)$$

D'autre part, puisque P_n et Q_n sont à coefficients réels,

$$\overline{Z}_n = Q_n - iP_n$$

Puisque P_n , Q_n , $P_n(-X)$, $Q_n(-X)$ sont à coefficients réels, $P_n(-X) = -P_n(X)$ et $Q_n(-X) = Q_n(X)$. Autrement dit, P_n est impair et Q_n est pair.

La question II.3 montre également que

- ▶ si n est pair, $\deg P_n = n 1$, $\deg Q_n = n$, le coefficient dominant de P_n est $-(-1)^{\frac{n}{2}}n$ et le coefficient dominant de Q_n est $(-1)^{\frac{n}{2}}$;
- ▶ si n est impair, $\deg P_n = n$, $\deg Q_n = n 1$, le coefficient dominant de P_n est $(-1)^{\frac{n-1}{2}}$ et le coefficient dominant de Q_n est $(-1)^{\frac{n-1}{2}}n$.
- **5.** \triangleright Supposons n pair.

La question II.2 montre que les réels tan $\frac{k\pi}{n}$ pour $k \in \left[-\frac{n}{2} + 1, \frac{n}{2} - 1 \right]$ sont racines de P_n . La fonction tan étant strictement croissante sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, ces n-1 réels sont distincts. Puisque $\deg P_n = n-1$, ce sont exactement les racines de P_n et elles sont simples.

La question II.2 montre que les réels tan $\frac{(2k+1)\pi}{2n}$ pour $k \in \left[-\frac{n}{2}, \frac{n}{2} - 1\right]$ sont racines de Q_n . La fonction tan étant strictement croissante sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, ces n réels sont distincts. Puisque $\deg Q_n = n$, ce sont exactement les racines de P_n et elles sont simples.

ightharpoonup Supposons n impair.

La question II.2 montre que les réels $\tan \frac{k\pi}{n}$ pour $k \in \left[-\frac{n-1}{2}, \frac{n-1}{2} \right]$ sont racines de P_n . La fonction tan étant strictement croissante sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, ces n réels sont distincts. Puisque $\deg P_n = n$, ce sont exactement les racines de P_n et elles sont simples.

La question **II.2** montre que les réels $\tan\frac{(2k+1)\pi}{2n}$ pour $k\in\left[\left[-\frac{n-1}{2},\frac{n-1}{2}-1\right]\right]$ sont racines de Q_n . La fonction tan étant strictement croissante sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right[$, ces n-1 réels sont distincts. Puisque $\deg Q_n=n-1$, ce sont exactement les racines de P_n et elles sont simples.

6. Les questions précédentes montrent que si n est pair

$$P_{n} = -(-1)^{\frac{n}{2}} n \prod_{k=-\frac{n}{2}+1}^{\frac{n}{2}-1} \left(X - \tan \frac{k\pi}{n} \right)$$

$$= -(-1)^{\frac{n}{2}} n X \prod_{k=1}^{\frac{n}{2}-1} \left(X - \tan \frac{k\pi}{n} \right) \left(X + \tan \frac{k\pi}{n} \right)$$

$$Q_{n} = (-1)^{\frac{n}{2}} \prod_{k=-\frac{n}{2}}^{\frac{n}{2}-1} \left(X - \tan \frac{(2k+1)\pi}{2n} \right)$$

$$= (-1)^{\frac{n}{2}} \prod_{k=0}^{\frac{n}{2}-1} \left(X - \tan \frac{(2k+1)\pi}{2n} \right) \left(X + \tan \frac{(2k+1)\pi}{2n} \right)$$

et que si n est impair

$$\begin{split} \mathbf{P}_n &= (-1)^{\frac{n-1}{2}} \prod_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} \left(\mathbf{X} - \tan \frac{k\pi}{n} \right) \\ &= (-1)^{\frac{n-1}{2}} \mathbf{X} \prod_{k=1}^{\frac{n-1}{2}} \left(\mathbf{X} - \tan \frac{k\pi}{n} \right) \left(\mathbf{X} + \tan \frac{k\pi}{n} \right) \\ \mathbf{Q}_n &= (-1)^{\frac{n-1}{2}} n \prod_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}-1} \left(\mathbf{X} - \tan \frac{(2k+1)\pi}{2n} \right) \\ &= (-1)^{\frac{n-1}{2}} n \prod_{k=0}^{\frac{n-1}{2}-1} \left(\mathbf{X} - \tan \frac{(2k+1)\pi}{2n} \right) \left(\mathbf{X} + \tan \frac{(2k+1)\pi}{2n} \right) \end{split}$$

- 7. Lorsque n est pair, $\deg P_n < \deg Q_n$ donc la partie entière de R_n est nulle. Lorsque n est impair, $\deg P_n = \deg Q_n + 1$ donc la partie entière de R_n est de degré 1. Puisque P_n et Q_n sont respectivement impair et pair, R_n est impaire. L'unicité de la décomposition en éléments simples nous apprend donc que la partie entière de R_n est également impaire. Elle est donc de la forme aX où a est le quotient du coefficient de P_n par le coefficient dominant de Q_n . Ainsi $a = \frac{1}{n}$. La partie entière de la fraction rationnelle R_n est donc $\frac{1}{n}X$.
- 8. D'une part,

$$Z'_{n} = n i (1 + iX)^{n-1} = n i Z_{n-1} = -n P_{n-1} + n i Q_{n-1}$$

D'autre part,

$$Z'_{n} = Q'_{n} + iP'_{n}$$

Puisque P_{n-1} , Q_{n-1} , P'_n , Q'_n sont à coefficients réels, on en déduit que $Q'_n = -nP_{n-1}$ et $P'_n = nQ_{n-1}$.

9. Supposons n pair. Puisque \mathbf{R}_n est impaire, la décomposition en éléments simples de \mathbf{R}_n est de la forme

$$R_n = \sum_{k=0}^{\frac{n}{2}-1} \frac{\lambda_k}{X - \tan\frac{(2k+1)\pi}{2n}} + \frac{\lambda_k}{X + \tan\frac{(2k+1)\pi}{2n}}$$

avec

$$\lambda_k = \frac{\Pr_n \left(\tan \frac{(2k+1)\pi}{2n} \right)}{Q_n' \left(\tan \frac{(2k+1)\pi}{2n} \right)} = -\frac{1}{n} \cdot \frac{\Pr_n \left(\tan \frac{(2k+1)\pi}{2n} \right)}{\Pr_{n-1} \left(\tan \frac{(2k+1)\pi}{2n} \right)}$$

D'après la question II.2, on obtient après simplification

$$\lambda_k = -\frac{1}{n\cos^2\frac{(2k+1)\pi}{2n}}$$

Supposons n impair. Puisque R_n est impaire, la décomposition en éléments simples de R_n est de la forme

$$R_n = \frac{1}{n}X + \sum_{k=0}^{\frac{n-1}{2}-1} \frac{\lambda_k}{X - \tan\frac{(2k+1)\pi}{2n}} + \frac{\lambda_k}{X + \tan\frac{(2k+1)\pi}{2n}}$$

avec

$$\lambda_k = -\frac{1}{n\cos^2\frac{(2k+1)\pi}{2n}}$$

10. \triangleright Supposons n pair.

Les racines non nulles de P_n autrement dit de $\frac{P_n}{X}$ sont les $\tan \frac{k\pi}{n}$ et les $-\tan \frac{k\pi}{n}$ pour $k \in [1, \frac{n}{2} - 1]$. Le produit de ces racines vaut donc

$$(-1)^{\frac{n}{2}-1} \prod_{k=1}^{\frac{n}{2}-1} \tan^2 \frac{k\pi}{n} = (-1)^{\frac{n}{2}-1} A_n^2$$

Par ailleurs.

$$\frac{P_n}{X} = \sum_{k=0}^{\frac{n}{2}-1} {n \choose 2k+1} (-1)^k X^{2k}$$

donc le produit des racines de $\frac{P_n}{X}$ est aussi

$$(-1)^{n-2} \frac{\binom{n}{1}(-1)^0}{\binom{n}{n-1}(-1)^{\frac{n}{2}-1}} = (-1)^{\frac{n}{2}-1}$$

Ainsi $A_n^2 = 1$. Puisque $\tan \frac{k\pi}{n} > 0$ pour $k \in \left[\!\left[1, \frac{n}{2} - 1\right]\!\right]$, on a donc $A_n > 0$ de sorte que $A_n = 1$. Les racines de Q_n sont les $\tan \frac{(2k+1)\pi}{2n}$ et les $-\tan \frac{(2k+1)\pi}{2n}$ pour $k \in \left[\!\left[0, \frac{n}{2} - 1\right]\!\right]$. Le produit de ces racines vaut

$$(-1)^{\frac{n}{2}} \prod_{k=0}^{\frac{n}{2}-1} \tan^2 \frac{(2k+1)\pi}{2n} = (-1)^{\frac{n}{2}} B_n^2$$

Par ailleurs,

$$Q_n = \sum_{k=0}^{\frac{n}{2}} {n \choose 2k} (-1)^k X^{2k}$$

donc le produit des racines de Q_n est aussi

$$(-1)^n \frac{\binom{n}{0}(-1)^0}{\binom{n}{n}(-1)^{\frac{n}{2}}} = (-1)^{\frac{n}{2}}$$

Ainsi $B_n^2 = 1$. Puisque $\tan \frac{(2k+1)\pi}{2n} > 0$ pour $k \in [0, \frac{n}{2} - 1]$, on a donc $B_n > 0$ de sorte que $B_n = 1$.

Remarque. On peut aussi remarquer que les tangentes intervenant dans chacun des produits A_n et B_n sont inverses l'une de l'autre deux à deux en vertu de la relation trigonométrique $\tan\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\tan(\theta)}$.

Supposons n impair.

Les racines non nulles de P_n autrement dit de $\frac{P_n}{X}$ sont les $\tan \frac{k\pi}{n}$ et les $-\tan \frac{k\pi}{n}$ pour $k \in [1, \frac{n-1}{2}]$. Le produit de ces racines vaut donc

$$(-1)^{\frac{n-1}{2}} \prod_{k=1}^{\frac{n-1}{2}} \tan^2 \frac{k\pi}{n} = (-1)^{\frac{n-1}{2}} A_n^2$$

Par ailleurs.

$$\frac{P_n}{X} = \sum_{k=0}^{\frac{n-1}{2}} {n \choose 2k+1} (-1)^k X^{2k}$$

donc le produit des racines de $\frac{P_n}{X}$ est aussi

$$(-1)^{n-1} \frac{\binom{n}{1}(-1)^0}{\binom{n}{n}(-1)^{\frac{n-1}{2}}} = (-1)^{\frac{n-1}{2}} n$$

Ainsi $A_n^2=n$. Puisque $\tan\frac{k\pi}{n}>0$ pour $k\in \left[\!\left[1,\frac{n-1}{2}\right]\!\right]$, on a donc $A_n>0$ de sorte que $A_n=\sqrt{n}$. Les racines de Q_n sont les $\tan\frac{(2k+1)\pi}{2n}$ et les $-\tan\frac{(2k+1)\pi}{2n}$ pour $k\in \left[\!\left[0,\frac{n-1}{2}-1\right]\!\right]$. Le produit de ces racines vaut

$$(-1)^{\frac{n-1}{2}} \prod_{k=0}^{\frac{n-1}{2}-1} \tan^2 \frac{(2k+1)\pi}{2n} = (-1)^{\frac{n-1}{2}} B_n^2$$

Par ailleurs,

$$Q_n = \sum_{k=0}^{\frac{n-1}{2}} {n \choose 2k} (-1)^k X^{2k}$$

donc le produit des racines de Q_n est aussi

$$(-1)^{n-1} \frac{\binom{n}{n}(-1)^0}{\binom{n}{n-1}(-1)^{\frac{n-1}{2}}} = (-1)^{\frac{n-1}{2}} \frac{1}{n}$$

Ainsi $B_n^2 = \frac{1}{n}$. Puisque $\tan \frac{(2k+1)\pi}{2n} > 0$ pour $k \in [0, \frac{n-1}{2} - 1]$, on a donc $B_n > 0$ de sorte que $B_n = \frac{1}{\sqrt{n}}$.

Remarque. A nouveau, en utilisant la relation trigonométrique $\tan\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\tan(\theta)}$, on peut montrer que $B_n = \frac{1}{A_n}$.