- 1. Circuitos sequenciais conceito
- 2. Flip-flops
- 3. Registradores
- 4. Contadores

Circuitos Sequenciais

- saídas são função tanto das entradas quanto dos valores de saída (estado atual)
- são construídos com portas lógicas com realimentação
- possuem elementos de armazenamento (memórias)
- exemplos:
 - flip-flop
 - registrador
 - contador

Exemplo de Circuito Sequencial

Exemplo de Funcionamento

(Simular a partir de A = B = S1 = 0 e S2 = 1)

Flip-flops e Latches

- são circuitos que podem assumir apenas dois estados diferentes, que se convenciona corresponderem aos valores binários 0 e 1
- podem se manter no estado em que se encontram (0 ou 1) enquanto não receberem sinais de entrada e/ou de controle que os façam mudar de estado
- portanto, na prática são "memórias" com capacidade de armazenar o valor de 1 bit (0 ou 1)

Tipos de flip-flops

Quanto à forma de operação:

- tipo RS
- tipo JK
- tipo D
- tipo T (toggle)

Quanto a sinais de controle (clock):

- sem sinal de controle (pouco usados)
- com sinal de controle

```
♦ resposta à borda
```

- > borda positiva $(0 \rightarrow 1)$
- > borda negativa $(1 \rightarrow 0)$
- ♦ resposta ao nível
 - > nível 0
 - > nível 1

Flip-flop Tipo RS

(implementação 1 - com portas NOR)

R(eset)	S(et)	Q_{t+1}	Resultado
0	0	Qt	Estado fica inalterado
0	1	1	Estado passa para 1
1	0	0	Estado passa para 0
1	1	Indeterminado	Condição de erro

Flip-flop Tipo RS

(implementação 2 - com portas NAND)

R'	S'	Q_{t+1}	Resultado
1	1	Qt	Estado fica inalterado
1	0	1	Estado passa para 1
0	1	0	Estado passa para 0
0	0	Indeterminado	Condição de erro

Comportamento de um FF tipo RS

t	R	S	Q	Q'
1	0	0	0	1
2	0	1	1	0
3	0	0	1	0
4	1	0	0	1
5	0	0	0	1
6	1	0	0	1
7	0	0	0	1
8	0	1	1	0
9	0	0	1	0

Flip-flop Tipo RS com controle

Controle	R	S	Q_{t+1}	Resultado
Inativo	X	X	Qt	Estado fica inalterado
Ativo	0	0	Q_{t}	Estado fica inalterado
Ativo	0	1	1	Estado passa para 1
Ativo	1	0	0	Estado passa para 0
Ativo	1	1	Indeterminado	Condição de erro

Sinal de Controle (Clock)

Tipos de flip-flop x controle - notação

Flip-flop tipo D (dado)

D	C	Q_{t+1}
X	inativo	Qt
D	ativo	D

Flip-flop tipo D sensível ao nível (latch)

Flip-flop tipo D sensível à borda

Flip-flop tipo JK

J	K	C	Q_{t+1}
X	X	inativo	Qt
0	0	ativo	Qt
0	1	ativo	0
1	0	ativo	1
1	1	ativo	Q _t '

Flip-flop tipo T (toggle)

C	Q_{t+1}
inativo	Qt
ativo	Q _t '

Sinais de Controle Adicionais

- DC Set (ou Preset) coloca FF no estado 1
- DC Reset (ou Clear) coloca FF no estado 0
- ambos independem das demais entradas e do controle

Exercício

Completar o diagrama de tempos (teórico) abaixo com os valores de Q e Q', considerando os valores dos demais sinais e o funcionamento do flip-flop mostrado no desenho

