Funzioni Pari e Dispari

L'espressione booleana

$$E_n = A_1 \oplus A_2 \oplus \ldots \oplus A_n$$
.

vale 1 solo quando il numero di variabili cui si assegna il valore 1 è dispari.

La funzione di verità catturata dall'espressione E_n è detta funzione dispari.

Funzioni Pari e Dispari

- Se si osserva la mappa di Karnaugh per la funzione dispari, si nota subito che la sua implementazione in somma di prodotti (o in prodotto di somme) risulta estremamente inefficiente.
 - Serve una quantità esponenziale di porte AND, OR e NOT.
 - Utilizzando la porta XOR, basta invece una quantità lineare di porte.
- Il complemento della funzione dispari è detto funzione pari.
- Le funzioni per pari e dispari risultano molto utili per la generazione e il controllo di parità.

Controllo di parità

- Il circuito che permette l'aggiunta del bit di parità prende il nome di generatore di parità (parity generator)
- Il circuito che permette il controllo di parità prende il nome parity checker
- Usando parità pari, si ha un errore se il parity checker genera 1 in uscita (perché un XOR di più variabili è 1 se il numero di bit 1 è dispari).

Multiplexer

- Un multiplexer è una rete combinatoria con:
 - 2ⁿ ingressi per i dati.
 - n ingressi di controllo.
 - Una singola uscita.
- Gli input di controllo permettono di selezionare uno tra i possibili ingressi per i dati, il cui input diventerà il valore dell'unica uscita.
 - Ad ogni sequenza di valori di verità lunga n corrisponderà un numero binario compreso tra 0 e 2ⁿ – 1.

Multiplexer

- Assegnando valori costanti agli ingressi per i dati, si può costruire una rete combinatoria che implementi qualunque funzione booleana di n variabili.
- Un'altra applicazione del multiplexer è la conversione di dati da parallelo a seriale.
- ► Il demultiplexer redirige il suo unico ingresso per i dati verso una delle sue 2ⁿ uscite in base ai valori degli ingressi di controllo.

Multiplexer (4-1)

Demultiplexer (1-4)

s_0	s ₁	y o	y 1	y_2	y 3
0	0	x	0	0	0
0	1	0	x	0	0
1	0	0	0	37	0
1	1	0	0	0	x

Decoder

- Un decodificatore è una rete combinatoria con:
 - n ingressi.
 - \triangleright 2ⁿ uscite.
- I valori in ingresso vengono utilizzati per selezionare una tra le uscite, che sarà l'unica ad essere impostata ad 1.

Figura 5.6 Decoder a un ingresso: tabella della verità e simbolo

Decoder

Truth Table

A_1	A_0	D_3	\mathbf{D}_2	D_1	D_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Equations

$$D_0 = \overline{A_1} \cdot \overline{A_0}$$

$$D_1 = \overline{A_1} \cdot A_0$$

$$D_2 = A_1 \cdot \overline{A_0}$$

$$D_3 = A_1 \cdot A_0$$

Encoder (codificatore)

- Dualmente al decodificatore avremo il codificatore, con 2ⁿ ingressi e n uscite.
 - L'inerente ambiguità viene in genere risolta tramite un meccanismo a priorità.

	Inputs						0	utpu	uts	
D ₇	D_6	D_5	D_4	D_3	D_2	D_1	D_0	Q_2	Q_1	Q_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	х	0	0	1
0	0	0	0	0	1	x	X	0	1	0
0	0	0	0	1	х	х	х	0	1	1
0	0	0	1	x	х	х	х	1	0	0
0	0	1	x	x	х	x	х	1	0	1
0	1	x	X	х	х	х	х	1	1	0
1	x	x	x	x	x	x	x	1	1	1
								•		

X = dont care

Comparatore

- Un comparatore è una rete combinatoria con:
 - 2n ingressi, suddivisi in due sequenze lunghe n.
 - Un'uscita.
- ▶ Il valore dell'unica uscita sarà 1 se le due sequenze in input sono identiche, mentre sarà 0 se le due sequenze sono diverse.
 - In alternativa, si può fare in modo che l'uscita valga 0 se le due sequenze sono diverse e 1 se le due sequenze sono diverse.
- La porta logica XOR risulterà molto utile nella realizzazione del comparatore.
- Oltre all'uscita che indica se le due sequenze sono uguali, possono essere presenti altre uscite, che indicano se le due sequenze sono una maggiore dell'altra (qualora interpretate come numeri binari).

Comparatore

Registri a Scorrimento

- Il Registro a Scorrimento è una rete combinatoria con
 - n ingressi per i dati.
 - Un ingresso di controllo.
 - n uscite.
- L'idea è quella di far scorrere verso destra o verso sinistra i valori in input.
 - L'input di controllo serve proprio a determinare se lo scorrimento debba avvenire verso destra o verso sinistra.
- In ognuno dei due casi, il valore di uno tra gli ingressi andrà perso, mentre una tra le uscite assumerà un valore non proveniente dagli ingressi e fissato a priori.

Registri a Scorrimento

Registri a Scorrimento

C=1: $0 \rightarrow S0$, $D0 \rightarrow S1$, $D1 \rightarrow S2$,... $D5 \rightarrow S6$, $D6 \rightarrow S7$ (dal più significativo verso il meno sign.)

C=0 : D1 \rightarrow S0, D2 \rightarrow S1, D3 \rightarrow S2, ...D7 \rightarrow S6, 0 \rightarrow S7 (dal meno significativo verso il più sign.)

Half-Adder

- Un semisommatore (o half-adder) è una rete combinatoria con:
 - Due ingressi.
 - Due uscite.
- La prima delle due uscite è valorizzata con la somma dei due bit in ingresso, mentre la seconda è valorizzata con il riporto generato dalla somma dei due bit in ingresso.
- Non è possibile utilizzare il semisommatore per calcolare la somma (e il riporto relativo al bit più significativo) di una sequenza di n bit (con $n \ge 1$).
 - In particolare, manca la possibilità di propagare il riporto ai bit più significativi.

Half-Adder

Calcola somma e carry (riporto) su singoli bit

A	В	Somma	Riporto		
0	0	0	0		
0	1	1	0		
1	0	1	0		
1	1	0	1		
Somma = A xor B Riporto = A an					

Full-Adder

- Un sommatore (o full-adder) è una rete combinatoria con:
 - Tre ingressi.
 - Due uscite.
- Come nel caso del semisommatore, la prima delle due uscite è valorizzata con la somma dei bit in ingresso (che in questo caso sono tre, due operandi e un riporto in entrata), mentre la seconda è valorizzata con il riporto generato dalla somma dei bit in ingresso.
- È facile rendersi conto che un sommatore può essere realizzato a partire da due semisommatori.

Full-Adder

Α	В	Carry in	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Propagazione del Riporto

- ▶ I sommatori, al contrario dei semisommatori, possono essere combinati a formare un sommatore a *n* bit.
 - Per ogni bit, il riporto in uscita viene utilizzato come riporto in entrata per il bit successivo.
- Parliamo in questo caso di sommatore a propagazione di riporto.
 - Se supponiamo che ogni porta logica aggiorni il suo output con un ritardo costante, la somma di n bit richiederà tempo proporzionale a n.
- Il ritardo diventa logaritmico in n se si utilizza un sommatore a selezione di riporto.
 - L'idea è quella di calcolare preventivamente le somme dei bit più significativi sia nel caso in cui il relativo riporto sia 1, sia nel caso in cui sia 0.

Full-Adder

А	В	C _{in}	Somma	Ci
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$somma = \overline{A} \overline{B} C_{in} + \overline{A} B \overline{C_{in}} + A \overline{B} \overline{C_{in}} + A B C_{in}$$

$$si raccoglie primo-quarto e secondo-terzo$$

$$= C_{in} (\overline{A} \overline{B} + A B) + \overline{C_{in}} (\overline{A} B + A \overline{B})$$

$$= C_{in} (\overline{A} \oplus \overline{B}) + \overline{C_{in}} (A \oplus B) = A \oplus B \oplus C_{in}$$

Full-Adder

Α	В	C _{in}	Somma	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

riporto =
$$\overline{A}BC_{in} + A\overline{B}C_{in} + AB\overline{C}_{in} + ABC_{in}$$

si raccoglie primo-secondo e terzo-quarto
= $C_{in} \cdot (A \oplus B) + A \cdot B$

Propagazione del Riporto

Figura 3 27 Diagramma logico di un circuito full adder

Calcolo anticipato del Riporto

Riporto in ingresso Addendo A Addendo B Somma S Riporto in uscita

Figura 3 29 Circuito sommatore con logica di riporto anticipato (carry lookahead)

Sommatore completo in complemento a 2

Ricordando che il complemento a 2 di un numero è uguale al suo complemento a 1, +1: possiamo allora fare un circuito che calcoli correttamente la differenza di due numeri rappresentati in complemento a 2:

S/D è un segnale che indica se si deve calcolare la somma o la differenza.

ALU a 1 bit

I 6 input indicano il tipo di operazione da calcolare sui due operandi A e B.

Figura 3.18 ALU a I bit.

ALU a 1 bit

Parte dell'ALU che calcola le funzioni logiche

ALU a 1 bit

F0	F1	Funzione
0	0	A AND B
0	1	A OR B
1	0	not(B)
1	1	A+B (con riporto)