

Low Capacitance, 16- and 8-Channel ±15 V/+12 V iCMOS™ Multiplexers

ADG1206/ADG1207

FEATURES

<1 pC charge injection over full signal range
1.5 pF off capacitance
33 V supply range
120 Ω on resistance
Fully specified at ±15 V/+12 V
3 V logic-compatible inputs
Rail-to-rail operation
Break-before-make switching action
28-lead TSSOP and 32-lead, 5 mm × 5 mm LFCSP VQ

APPLICATIONS

Audio and video routing Automatic test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems Communication systems

GENERAL DESCRIPTION

The ADG1206 and ADG1207 are monolithic *i*CMOS analog multiplexers comprising sixteen single channels and eight differential channels, respectively. The ADG1206 switches one of sixteen inputs to a common output, as determined by the 4-bit binary address lines A0, A1, A2, and A3. The ADG1207 switches one of eight differential inputs to a common differential output, as determined by the 3-bit binary address lines A0, A1, and A2. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched off. When on, each channel conducts equally well in both directions and has an input signal range that extends to the supplies.

The *i*CMOS (industrial CMOS) modular manufacturing process combines high voltage CMOS (complementary metal-oxide semiconductor) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

The ultralow capacitance and exceptionally low charge injection of these multiplexers make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Figure 2 shows that there is minimum charge injection over the entire signal range of the device. *i*CMOS construction also ensures ultralow power dissipation, making the parts ideally suited for portable and battery-powered instruments.

Figure 2. Source-to-Drain Charge Injection vs. Source Voltage

TABLE OF CONTENTS

Features	I
Applications	1
Functional Block Diagrams	1
General Description	1
Revision History	2
Specifications	3
Dual Supply	3
Single Supply	

Absolute Maximum Ratings
ESD Caution
Pin Configurations and Function Descriptions8
Typical Performance Characteristics
Terminology
Test Circuits
Outline Dimensions
Ordering Guide

REVISION HISTORY

3/09—Rev. 0 to Rev. A

Change to IDD Parameter (Table 1)	4
Change to I _{DD} Parameter (Table 2)	6
Updated Outline Dimensions	19
Change to Ordering Guide	19

7/06—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted. 1

Table 1.

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{SS} to V_{DD}	V	
On Resistance, Ron	120			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}; \text{ see Figure 28}$
	200	240	270	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On Resistance Match Between Channels, ΔR_{ON}	3.5			Ωtyp	$V_S = \pm 10 \text{ V, } I_S = -1 \text{ mA}$
	6	10	12	Ω max	
On Resistance Flatness, RFLAT (On)	20			Ωtyp	$V_S = -5 \text{ V}, 0 \text{ V}, +5 \text{ V}; I_S = -1 \text{ mA}$
	64	76	83	Ω max	
LEAKAGE CURRENTS					
Source Off Leakage, Is (Off)	±0.03			nA typ	$V_D = \pm 10 \text{ V}, V_S = \mp 10 \text{ V}; \text{ see Figure 29}$
-	±0.2	±0.6	±1	nA max	15 =10 1,13 1 10 1,3cc 1 1gale 23
Drain Off Leakage, I _D (Off)	±0.05	_0.0		nA typ	$V_S = 1 \text{ V}, 10 \text{ V}; V_D = 10 \text{ V}, 1 \text{ V}; \text{ see Figure 29}$
2.am on Leanage, in (on)	±0.03	±0.6	±2	nA max	13 . 1, 10 1, 10 10 1, 1 1, 10
Channel On Leakage, I₀, I₅ (On)	±0.08	±0.0	<u></u> 2	nA typ	$V_S = V_D = \pm 10 \text{ V}$; see Figure 30
Charmer On Leakage, 15, 15 (On)	±0.00	±0.6	±2	nA max	vs = vb = ±10 v, see rigule 30
DIGITAL INPUTS	10.2			Tirkinax	
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, I _{INL} or I _{INH}	±0.005		0.0	μΑ typ	V _{IN} = V _{INI} or V _{INH}
input current, line of finh	10.005		±0.1	μΑ max	VIN — VINL OI VINH
Digital Input Capacitance, C _{IN}	2		±0.1	pF typ	
DYNAMIC CHARACTERISTICS ²	2			рг сур	
Transition Time, t _{TRANSITION}	80			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
Transition Time, transition	130	165	185	ns max	$V_s = 10 \text{ V}; \text{ see Figure 31}$
+ /ENI)	75	103	103		$R_L = 300 \Omega$, $C_L = 35 pF$
t _{on} (EN)		105	115	ns typ	·
+ (EN)	95	105	115	ns max	$V_s = 10 \text{ V}$; see Figure 33
t _{OFF} (EN)	85	125	1.40	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	100	125	140	ns max	V _s = 10 V; see Figure 33
Break-Before-Make Time Delay, t _{BBM}	20		10	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			10	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; see Figure 32
Charge Injection	0.5			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see Figure 34}$
Off Isolation	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 35
Channel-to-Channel Crosstalk	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 37
Total Harmonic Distortion + Noise	0.15			% typ	$R_L = 10 \text{ k}\Omega$, 5 V rms, $f = 20 \text{ Hz}$ to 20 kHz; see Figure 38
–3 dB Bandwidth ADG1206	280			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 36
–3 dB Bandwidth ADG1207	490			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 36
C _s (Off)	1.5			pF typ	$f = 1 MHz, V_S = 0 V$
	2			pF max	$f = 1 MHz, V_S = 0 V$
C _D (Off) ADG1206	11			pF typ	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
	12			pF max	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
C _D (Off) ADG1207	7			pF typ	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
	9			pF max	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$

Parameter	+25°C	−40°C to +85°C	−40°C to +125°C	Unit	Test Conditions/Comments
C _D , C _s (On) ADG1206	13			pF typ	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
	15			pF max	$f = 1 MHz, V_S = 0 V$
C _D , C _S (On) ADG1207	8			pF typ	$f = 1 MHz, V_S = 0 V$
	10			pF max	$f = 1 MHz, V_S = 0 V$
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I _{DD}	0.002			μA typ	Digital inputs = 0 V or V _{DD}
			1.0	μA max	
I _{DD}	260			μA typ	Digital inputs = 5 V
			475	μA max	
Iss	0.002			μA typ	Digital inputs = 0 V , 5 V , or V_{DD}
			1.0	μA max	
V_{DD}/V_{SS}			±5/±16.5	V min/max	GND = 0V

 $^{^1}$ Temperature range for Y version is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted. 1

Table 2.

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0toV_{\text{DD}}$	V	
On Resistance, R _{ON}	300			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1 \text{ mA}; \text{ see Figure } 28$
	475	567	625	Ω max	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance Match Between Channels, ΔR_{ON}	5			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -1 \text{ mA}$
	16	26	27	Ω max	
On Resistance Flatness, R _{FLAT} (On)	60			Ω typ	$V_S = 3 \text{ V}, 6 \text{ V}, 9 \text{ V}; I_S = -1 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure 29}$
	±0.2	±0.6	±1	nA max	
Drain Off Leakage, I _D (Off)	±0.05			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure 29}$
	±0.2	±0.6	±2	nA max	
Channel On Leakage, ID, IS (On)	±0.08			nA typ	$V_S = V_D = 1 \text{ V or } 10 \text{ V}$; see Figure 30
_	±0.2	±0.6	±2	nA max	_
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	±0.001			μA typ	
,			±0.1	μA max	$V_{IN} = V_{INL}$ or V_{INH}
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ²				1. 21.	
Transition Time, trransition	100			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	140	175	200	ns max	$V_s = 8 \text{ V}$; see Figure 31
ton (EN)	80			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
(=. 1)	100	120	130	ns max	$V_s = 8 \text{ V}$; see Figure 33
t _{OFF} (EN)	90			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	110	130	155	ns max	$V_s = 8 \text{ V}$; see Figure 33
Break-Before-Make Time Delay, t _{BBM}	25	150	.55	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
break before wake time belay, them	23		15	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$; see Figure 32
Charge Injection	0.2		.5	pC typ	$V_s = 6 \text{ V}$, $R_s = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 34
Off Isolation	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 35
Channel-to-Channel Crosstalk	–85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 37
–3 dB Bandwidth ADG1206	185			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 36
-3 dB Bandwidth ADG1207	300			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 36
C _s (Off)	1.5			pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
C3 (O11)	2			pF max	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
C _D (Off) ADG1206	13			pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
CD (OII) ADG 1200					
C _D (Off) ADG1207	15 9			pF max	$f = 1 \text{ MHz}, V_5 = 6 \text{ V}$ $f = 1 \text{ MHz}, V_5 = 6 \text{ V}$
CD (OII) ADG 1207				pF typ	
C C (0n) ADC1306	11			pF max	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
C _D , C _s (On) ADG1206	15			pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
C (0.1) ADC1337	17			pF max	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
C _D , C _s (On) ADG1207	10			pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
	12			pF max	$f = 1 MHz, V_S = 6 V$

Parameter	+25°C	−40°C to +85°C	−40°C to +125°C	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$V_{DD} = 13.2 \text{ V}$
I _{DD}	0.002			μA typ	Digital inputs = 0 V or V _{DD}
			1.0	μA max	
I _{DD}	260			μA typ	Digital inputs = 5
			475	μA max	
V_{DD}			5/16.5	V min/max	$V_{SS} = 0 \text{ V, GND} = 0 \text{ V}$

 $^{^1}$ Temperature range for Y version is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Table 3.			
Parameter	Rating		
V _{DD} to V _{SS}	35 V		
V _{DD} to GND	-0.3 V to +25 V		
V _{SS} to GND	+0.3 V to -25 V		
Analog, Digital Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$ or 30 mA, whichever occurs first		
Continuous Current, S or D	30 mA		
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Maximum)	100 mA		
Operating Temperature Ranges			
Industrial (Y Version)	-40°C to +125°C		
Storage	−65°C to +150°C		
Junction Temperature	150°C		
28-Lead TSSOP			
θ_{JA} , Thermal Impedance	97.9°C/W		
θ_{JC} , Thermal Impedance	14°C/W		
32-Lead LFCSP_VQ			
θ_{JA} , Thermal Impedance	27.27°C/W		
Reflow Soldering Peak Temperature (Pb-Free)	260(+0/-5)°C		

 $^{^{\}rm 1}$ Overvoltages at A, EN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. ADG1206 Pin Configuration—TSSOP

Figure 4. ADG1206 Pin Configuration—5 mm \times 5 mm LFCSP_VQ, Exposed Pad Tied to Substrate, V_{SS}

Table 4. ADG1206 Pin Function Descriptions

Pin	Number	_						
TSSOP	LFCSP_VQ	Mnemonic	nic Description					
1	31	V_{DD}	Most Positive Power Supply Potential.					
2	12, 13	NC	No Connect.					
3	26, 27, 28, 30, 32	NC	No Connect.					
4	1	S16	Source Terminal 16. Can be an input or an output.					
5	2	S15	Source Terminal 15. Can be an input or an output.					
6	3	S14	Source Terminal 14. Can be an input or an output.					
7	4	S13	Source Terminal 13. Can be an input or an output.					
8	5	S12	Source Terminal 12. Can be an input or an output.					
9	6	S11	Source Terminal 11. Can be an input or an output.					
10	7	S10	Source Terminal 10. Can be an input or an output.					
11	8	S9	Source Terminal 9. Can be an input or an output.					
12	9	GND	Ground (0 V) Reference.					
13	_	NC	No Connect.					
14	10	A3	Logic Control Input.					
15	11	A2	Logic Control Input.					
16	14	A1	Logic Control Input.					
17	15	A0	Logic Control Input.					
18	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the Ax logic inputs determine which switch is turned on.					
19	17	S1	Source Terminal 1. Can be an input or an output.					
20	18	S2	Source Terminal 2. Can be an input or an output.					
21	19	S3	Source Terminal 3. Can be an input or an output.					
22	20	S4	Source Terminal 4. Can be an input or an output.					
23	21	S5	Source Terminal 5. Can be an input or an output.					
24	22	S6	Source Terminal 6. Can be an input or an output.					
25	23	S7	Source Terminal 7. Can be an input or an output.					
26	24	S8	Source Terminal 8. Can be an input or an output.					
27	25	V _{SS}	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.					
28	29	D	Drain Terminal. Can be an input or an output.					

Table 5. ADG1206 Truth Table

A3	A2	A1	A0	EN	On Switch	
Χ	X	Х	Х	0	None	
0	0	0	0	1	1	
0	0	0	1	1	2	
0	0	1	0	1	3	
0	0	1	1	1	4	
0	1	0	0	1	5	
0	1	0	1	1	6	
0	1	1	0	1	7	
0	1	1	1	1	8	
1	0	0	0	1	9	
1	0	0	1	1	10	
1	0	1	0	1	11	
1	0	1	1	1	12	
1	1	0	0	1	13	
1	1	0	1	1	14	
1	1	1	0	1	15	
1	1	1	1	1	16	

Figure 6. ADG1207 Pin Configuration—5 mm × 5 mm LFCSP_VQ Exposed Pad Tied to Substrate, V_{SS}

Table 6. ADG1207 Pin Function Descriptions

Pin Number							
TSSOP	LFCSP_VQ	Mnemonic	Description				
1	29	V _{DD}	Most Positive Power Supply Potential.				
2	31	DB	Drain Terminal B. Can be an input or an output.				
3	11, 12, 13	NC	No Connect.				
4	1	S8B	Source Terminal 8B. Can be an input or an output.				
5	2	S7B	Source Terminal 7B. Can be an input or an output.				
6	3	S6B	Source Terminal 6B. Can be an input or an output.				
7	4	S5B	Source Terminal 5B. Can be an input or an output.				
8	5	S4B	Source Terminal 4B. Can be an input or an output.				
9	6	S3B	Source Terminal 3B. Can be an input or an output.				
10	7	S2B	Source Terminal 2B. Can be an input or an output.				
11	8	S1B	Source Terminal 1B. Can be an input or an output.				
12	9	GND	Ground (0 V) Reference.				
13	26, 28, 30, 32	NC	No Connect.				
14	_	NC	No Connect.				
15	10	A2	Logic Control Input.				
16	14	A1	Logic Control Input.				
17	15	A0	Logic Control Input.				
18	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the Ax logic inputs determine which switch is turned on.				
19	17	S1A	Source Terminal 1A. Can be an input or an output.				
20	18	S2A	Source Terminal 2A. Can be an input or an output.				
21	19	S3A	Source Terminal 3A. Can be an input or an output.				
22	20	S4A	Source Terminal 4A. Can be an input or an output.				
23	21	S5A	Source Terminal 5A. Can be an input or an output.				
24	22	S6A	Source Terminal 6A. Can be an input or an output.				
25	23	S7A	Source Terminal 7A. Can be an input or an output.				
26	24	S8A	Source Terminal 8A. Can be an input or an output.				
27	25	V _{SS}	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.				
28	27	DA	Drain Terminal A. Can be an input or an output.				

Table 7. ADG1207 Truth Table

A2	A1	A0	EN	On Switch Pair	
Χ	Х	X	0	None	
0	0	0	1	1	
0	0	1	1	2	
0	1	0	1	3	
0	1	1	1	4	
1	0	0	1	5	
1	0	1	1	6	
1	1	0	1	7	
1	1	1	1	8	

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. On Resistance as a Function of V_D (V_S) for Dual Supply

Figure 8. On Resistance as a Function of V_D (V_S) for Dual Supply

Figure 9. On Resistance as a Function of V_D (V_S) for Single Supply

Figure 10. On Resistance as a Function of V_D (V_S) for Different Temperatures, Dual Supply

Figure 11. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

Figure 12. ADG1206 Leakage Currents as a Function of Temperature, Dual Supply

Figure 13. ADG1206 Leakage Currents as a Function of Temperature, Single Supply

DEMUX (DRAIN TO SOURCE)

Figure 14. IDD vs. Logic Level

Figure 17. Transition Time vs. Temperature

Figure 15. Source-to-Drain Charge Injection vs. Source Voltage

Figure 18. Off Isolation vs. Frequency

Figure 19. ADG1206 Crosstalk vs. Frequency

Figure 20. ADG1207 Crosstalk vs. Frequency

Figure 21. On Response vs. Frequency

Figure 22. THD + N vs. Frequency

Figure 23. ADG1206 Capacitance vs. Source Voltage, ±15 V Dual Supply

Figure 24. ADG1206 Capacitance vs. Source Voltage, 12 V Single Supply

Figure 25. ADG1207 Capacitance vs. Source Voltage, ± 15 V Dual Supply

Figure 27. AC PSRR vs. Frequency

Figure 26. ADG1207 Capacitance vs. Source Voltage, 12 V Single Supply

TERMINOLOGY

Ron

Ohmic resistance between D and S.

ΔR_{ON}

Difference between the Ron of any two channels.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.

Is (Off)

Source leakage current when the switch is off.

In (Off)

Drain leakage current when the switch is off.

I_D , I_S (On)

Channel leakage current when the switch is on.

$V_D(V_S)$

Analog voltage on Terminals D and S.

Cs (Off)

Channel input capacitance for the off condition.

C_D (Off)

Channel output capacitance for the off condition.

C_D , C_S (On)

On switch capacitance.

C_{IN}

Digital input capacitance.

ton (EN)

Delay time between the 50% and 90% points of the digital input and the switch on condition.

tore (EN)

Delay time between the 50% and 90% points of the digital input and the switch off condition.

tTRANSITION

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

T_{BBM}

Off time measured between the 80% points of the switches when switching from one address state to another.

V_{INL}

Maximum input voltage for Logic 0.

$\mathbf{V}_{\mathsf{INF}}$

Minimum input voltage for Logic 1.

IINL (IINH)

Input current of the digital input.

Inn

Positive supply current.

I_{ss}

Negative supply current.

Off Isolation

A measure of unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

ACPSRR (AC Power Supply Rejection Ratio)

Measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

TEST CIRCUITS

 $v_{s} = v_{D} = v_{D}$

Figure 28. On Resistance

Figure 29. Off Leakage

Figure 30. On Leakage

Figure 31. Address to Output Switching Times, ttransition

Figure 32. Break-Before-Make Delay, t_{BBM}

Figure 33. Enable Delay, ton (EN), toff (EN)

Figure 34. Charge Injection

Figure 35. Off Isolation

Figure 37. Channel-to-Channel Crosstalk

Figure 36. Bandwidth

Figure 38. THD + Noise

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AE

Figure 39. 28-Lead Thin Shrink Small Outline Package [TSSOP] (RU-28) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2

Figure 40. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 5 mm × 5 mm Body, Very Thin Quad (CP-32-2) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Description	Package Option
ADG1206YRUZ ¹	-40°C to +125°C	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG1206YRUZ-REEL71	-40°C to +125°C	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG1206YCPZ-REEL71	-40°C to +125°C	32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-32-2
ADG1207YRUZ ¹	-40°C to +125°C	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG1207YRUZ-REEL71	-40°C to +125°C	28-Lead Thin Shrink Small Outline Package [TSSOP]	RU-28
ADG1207YCPZ-REEL71	-40°C to +125°C	32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-32-2

 $^{^{1}}$ Z = RoHS Compliant Part.

ADG1206/ADG1207

NOTES

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

ADG1207YRUZ-REEL7 ADG1207YRUZ ADG1206YRUZ ADG1206YCPZ-REEL7 ADG1206YCPZ-REEL7 ADG1207YCPZ-REEL7