High Energy Physics and Quantum Computing

2024 IonQ 4th week meeting

Weekly goal

[Week 1] Review the reference [1] thoroughly and understand basic idea.

[Week 2~3] Implement the idea using Qiskit and/or PennyLane, and reproduce their results for two examples in the paper.

[Week 4] Then consider a more complex and more realistic example, taking electron-positron production at the Large Hadron Collider (pp \rightarrow e+e-). Effectively, this problem involves four-dimensional integration.

[Week 5] Try to optimize the circuits with different choice of the cost function or variations of quantum circuits.

[Week ?] Study Monte-Carlo sampling with above integration method, and how to implement the importance sampling into a variational quantum circuit. (Check Ref. [2])

Methodology

- Data reuploading model

The $U(x_i)$ quantum channel corresponds to the fundamental Fourier Gate, while the entangling channel W_{ent} is built with a combination of CZ gates.

```
GoodScaling (dims=4, nqubits=2, nlayers=2) running in process id: 1235043
Circuit drawing:

q0: -RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-O-RY-RZ-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-RY-RZ-
```

Most common gates: rz: 24 ry: 18 cz: 2

measure: 2

Methodology - training

$$I(\overrightarrow{\alpha}; \overrightarrow{x}) = \int g(\overrightarrow{\alpha}; \overrightarrow{x}) \, d\overrightarrow{x}$$

Input data : $[x_1, x_2, x_3, ..., \alpha_0] = (\text{train the parameters } \theta) = \text{Target data : } g = g(\overrightarrow{\alpha}; \overrightarrow{x})$ After training

Get the integration values I

- **Training**: First, learn the parameters of the Variational Quantum Circuit (VQC) for the given objective function $g(\alpha; x)$.
 - The goal is to make the circuit approximate the function g.
 - In this process, we aim to minimize the Mean-Squared Error loss function, which finds the parameters of the circuit that provide the optimal prediction for each training data in g.

$$g_{j,\text{est}}(\boldsymbol{\alpha}; \boldsymbol{x}_j | \boldsymbol{\theta}) = \left. \frac{\partial G(\boldsymbol{\alpha}, x_1, ..., x_n | \boldsymbol{\theta})}{\partial x_1 ... \partial x_n} \right|_{\boldsymbol{x}_j}$$

$$J_{ ext{mse}} = rac{1}{N_{ ext{train}}} \sum_{j=1}^{N_{ ext{train}}} \left[g_{j, ext{meas}} - g_{j, ext{est}}(oldsymbol{lpha}; oldsymbol{x}_j | oldsymbol{ heta})
ight]^2$$

Methodology - test (Integration)

Evaluating analytic gradients on quantum hardware

Maria Schuld Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran Xanadu Inc., 372 Richmond St W, Toronto, M5V 1X6, Canada (Dated: November 29, 2018)

$$G(x;\alpha) = \int g(\alpha;x)dx.$$

$$g(\mu) = \partial_{\mu}G(\theta) = r(G(\mu^{+}) - G(\mu^{-}))$$

- **Integration**: Using the learned model, calculate the integral of g. Using Parameter Shift Rule (**PSR**) to calculate the derivative of a circuit, which allows us to calculate the indefinite integral of g ($G(\alpha; x)$).

That is, evaluate G as a circuit, calculate the derivative of g as PSR, and obtain the integral value.

$$I(\alpha) = G(x_b; \alpha) - G(x_a; \alpha) \qquad g_{i,est}(\alpha; x_j | \theta) = \frac{\partial G(\alpha, x_1, \dots, x_n | \theta)}{\partial x_1 \dots \partial x_n}$$
 How to derive?

$$I_{ab}(\ldots, x_{k-1}, x_{k+1}, \ldots) = \int_{x_{k,a}}^{x_{k,b}} g(x) dx_k = G(x_{k,b}; \alpha) - G(x_{k,a}; \alpha) \approx g_{est}(x_{k,b} | \theta_{best}) - g_{est}(x_{k,a} | \theta_{best}).$$

Methodology - test (Integration) ex: $g(x_1, x_2, x_3, \alpha_0)$

To perform integration over variables x_2 and x_3 and express the result as a function of x_1 , we compute the double integral of these variables.

1. Setting up the double integral:

$$I(x_1) = \int_{x_{min}}^{x_{max}} \int_{x_{min}}^{x_{max}} g_{est}(x_1, x_2, x_3, \alpha_0) dx_2 dx_3$$
 with $\alpha_0 = \#$ fixed.

2. Dividing the interval:

For both variables x_2 and x_3 , divide the interval $[x_{min}, x_{max}]$ into N small intervals. The width of the interval for each variable is $\Delta x = (x_{max} - x_{min})/N$, which is the same.

3. Calculating the function's value:

To calculate the Riemann sum using the double sum, compute the value of the function at representative points x_{2i} and x_{3i} for each interval.

Methodology - test (Integration)

4. Calculating the double Riemann sum:

Multiply the function's value at each representative point and then sum over all intervals for x_2 and x_3 to calculate the double Riemann sum.

$$I(x_1) = \sum_{i=1}^{N} \sum_{j=1}^{N} g_{est}(x_1, x_{2i}, x_{3j}, \alpha_0) \Delta x^2$$

5. Calculating the integral value and Interpreting the results:

After calculating the Riemann sum, take N sufficiently large so that the approximate integral value $I(x_1)$ approximates the actual double integral value.

By calculating $I(x_1)$ for x_1 , we can obtain the double integral result as a function of x_1 .

$$g(\vec{x}) = \cos(\vec{\alpha} \cdot \vec{x} + \alpha_0)$$

$$I(\overrightarrow{\alpha}; \overrightarrow{x}) = \int g(\overrightarrow{\alpha}; \overrightarrow{x}) d\overrightarrow{x} = \int \cos(x_1 + 2x_2 + 0.5x_3 + \alpha_0) dx_1 dx_2 dx_3$$

Input data : $[x_1, x_2, x_3, \alpha_0]$

Target data : $g = \cos(x_1 + 2x_2 + 0.5x_3 + \alpha_0)$

Parameter	Value
$N_{x, \text{train}}$	100
α	$\{1, 2, 0.5\}$
N_{lpha_0}	10
$N_{ m layers}$	2
$N_{ m params}$	20
$ I-\widetilde{I} $	$4.4 \cdot 10^{-3}$
$N_{ m shots}$	Exact simulation
Optimizer	L-BFGS

$$I(\alpha_0; x_1)_{target} = \left[-\cos(\alpha_0 + x_1) + \cos(\alpha_0 + x_1 + 1.5) + \cos(\alpha_0 + x_1 + 6) - \cos(\alpha_0 + x_1 + 7.5) \right]_{x_1 = 0}^{x_1 = 3}$$

$$g(\vec{x}) = \cos(\vec{\alpha} \cdot \vec{x} + \alpha_0)$$

Pennylane reproduce results - train results

Input data : $[x_1, x_2, \alpha_0]$

Target data : $g = \cos(x_1 + 2x_2 + \alpha_0)$

alphas = [1, 2]xdim = len(alphas) xmin = [0]*xdimxmax=[3.5]*xdim

$$g(\vec{x}) = \cos(\vec{\alpha} \cdot \vec{x} + \alpha_0)$$

Pennylane reproduce results - test results $x_{min} = 0.0$, $x_{max} = 3.0$, $\alpha_0 = 1.25$ (or 4.0)

$$x_{\text{min}} = 0.0$$
, $x_{\text{max}} = 3.0$, $\alpha_0 = 1.25$ (or 4.0)

Input data : $[x_1, x_2, \alpha_0]$

Target data : $g = \cos(x_1 + 2x_2 + \alpha_0)$

$$I(x_1) = \int dx_1 \int_{x_{min}}^{x_{max}} dx_2 \ g(x_1, x_2, \alpha_0 = \#)$$

In Fig. 3 we have plotted the differential distribution

$$\frac{\mathrm{d}I(\boldsymbol{\alpha};x_1)}{\mathrm{d}x_1},\tag{19}$$

$$g(\vec{x}) = \cos(\vec{\alpha} \cdot \vec{x} + \alpha_0)$$

Pennylane reproduce results - train results

Input data : $[x_1, x_2, x_3, \alpha_0]$

Target data : $g = \cos(x_1 + 2x_2 + 0.5x_3 + \alpha_0)$

alphas = [1, 2, 0.5]xdim = len(alphas) xmin = [0]*xdimxmax=[3.5]*xdim

$$g(\vec{x}) = \cos(\vec{\alpha} \cdot \vec{x} + \alpha_0)$$

Pennylane reproduce results - test results $x_{min} = 0.0$, $x_{max} = 3.0$, $\alpha_0 = 1.25$ (or 4.0)

$$x_{\text{min}} = 0.0$$
, $x_{\text{max}} = 3.0$, $\alpha_0 = 1.25$ (or 4.0)

$$I(x_1) = \int dx_1 \int_{x_{min}}^{x_{max}} dx_2 \int_{x_{min}}^{x_{max}} dx_3 \ g(x_1, x_2, x_3, \alpha_0 = \#)$$

Input data : $[x_1, x_2, x_3, \alpha_0]$

Target data : $g = \cos(x_1 + 2x_2 + 0.5x_3 + \alpha_0)$

In Fig. 3 we have plotted the differential distribution

$$\frac{\mathrm{d}I(\boldsymbol{\alpha};x_1)}{\mathrm{d}x_1},\tag{19}$$

Weekly goal

[Week 1] Review the reference [1] thoroughly and understand basic idea.

[Week 2~3] Implement the idea using Qiskit and/or PennyLane, and reproduce their results for two examples in the paper.

[Week 4] Then consider a more complex and more realistic example, taking electron-positron Collider ($e^+e^- \to \mu^+\mu^-$). Effectively, this problem involves four-dimensional integration.

[Week 5] Try to optimize the circuits with different choice of the cost function or variations of quantum circuits.

[Week ?] Study Monte-Carlo sampling with above integration method, and how to implement the importance sampling into a variational quantum circuit. (Check Ref. [2])