1 General Derivative Rules

- 1. Constant Rule $\frac{d}{dx}[c] = 0$
- 2. Constant Multiple Rule $\frac{d}{dx} [cf(x)] = cf'(x)$
- 3. Sum Rule $\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$
- 4. Difference Rule $\frac{d}{dx}[f(x) g(x)] = f'(x) g'(x)$
- 5. Product Rule $\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$
- 6. Quotient Rule $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) f(x)g'(x)}{\left[g(x) \right]^2}$
- 7. Chain Rule $\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$

2 Derivative Rules for Particular Functions

Basic Rule Chain Rule Form

- 1. Powers $\frac{d}{dx}[x^n] = nx^{n-1} \qquad \qquad \frac{d}{dx}[(f(x))^n] = n(f(x))^{n-1}f'(x)$
- 2. Sine $\frac{d}{dx} [\sin x] = \cos x \qquad \qquad \frac{d}{dx} [\sin (f(x))] = \cos (f(x))f'(x)$
- 3. Cosine $\frac{d}{dx} \left[\cos x \right] = -\sin x \qquad \qquad \frac{d}{dx} \left[\cos \left(f(x) \right) \right] = -\sin \left(f(x) \right) f'(x)$
- 4. Tangent $\frac{d}{dx} [\tan x] = \sec^2 x \qquad \qquad \frac{d}{dx} [\tan (f(x))] = \sec^2 (f(x)) f'(x)$
- 5. Secant $\frac{d}{dx}\left[\sec x\right] = \sec x \tan x \qquad \qquad \frac{d}{dx}\left[\sec \left(f(x)\right)\right] = \sec \left(f(x)\right) \tan \left(f(x)\right) f'(x)$
- 6. Cosecant $\frac{d}{dx}\left[\csc x\right] = -\csc x \cot x \qquad \qquad \frac{d}{dx}\left[\csc \left(f(x)\right)\right] = -\csc \left(f(x)\right) \cot \left(f(x)\right) f'(x)$
- 7. Cotangent $\frac{d}{dx} \left[\cot x \right] = -\csc^2 x \qquad \frac{d}{dx} \left[\cot \left(f(x) \right) \right] = -\csc^2 \left(f(x) \right) f'(x)$
- 8. Exponential (base e) $\frac{d}{dx}[e^x] = e^x$ $\frac{d}{dx}[e^{(f(x))}] = e^{(f(x))}f'(x)$
- 9. Exponential (base a) $\frac{d}{dx}[a^x] = a^x \ln a$ $\frac{d}{dx}[a^{(f(x))}] = a^{(f(x))} \ln af'(x)$
- 10. Natural Logarithm $\frac{d}{dx} [\ln x] = \frac{1}{x} \qquad \qquad \frac{d}{dx} [\ln f(x)] = \frac{1}{f(x)} f'(x)$
- 11. Logarithm (base a) $\frac{d}{dx} [\log_a x] = \frac{1}{x \ln a} \qquad \frac{d}{dx} [\log_a f(x)] = \frac{1}{f(x) \ln a} f'(x)$

3 General Antiderivative Rules

Let F(x) be any antiderivative of f(x). That is, F'(x) = f(x). The most general antiderivative of f(x) is then F(x) + C.

	Original Function	General Antiderivative
1. Constant Rule	c (a constant)	cx + C
2. Constant Multiple Rule	cf(x)	cF(x) + C
3. Sum Rule	f(x) + g(x)	F(x)+G(x)+C
4. Difference Rule	f(x) - g(x)	F(x) - G(x) + C

4 Antiderivative Rules for Particular Functions

	Original Function	General Antiderivative
1. Powers $(n \neq -1)$	x ⁿ	$\frac{x^{n+1}}{n+1} + C$
2. Powers $(n=-1)$	$\frac{1}{x}$	$\ln x + C$
3. Sine	$\sin x$	$-\cos x + C$
4. Cosine	cos x	$\sin x + C$
5. Secant squared	$sec^2 x$	tan x + C
6. Secant times tangent	sec x tan x	$\sec x + C$
7. Cosecant times cotangent	$\csc x \cot x$	$-\csc x + C$
8. Cosecant squared	$\csc^2 x$	$-\cot x + C$
9. Exponential (base e)	e ^x	$e^{x} + C$
10. Exponential (base <i>a</i>)	a ^x	$\frac{a^{\times}}{\ln a} + C$