

Introduction to Machine Learning

- Prof. Balaraman Ravindran IIT Madras

Problem Solving Session (Week-5)

Shreya Bansal

PMRF PhD Scholar IIT Ropar

Week-5 Contents

- 1. Artificial Neural Network
- 2. Backpropagation
- 3. Parameter Estimation

Artificial Neural Networks (ANNs)

- Discussed Perceptrons as a fundamental concept.
- ANNs were inspired by the brain's architecture but evolved into two research directions:
- Neuroscience-driven models (biological relevance).
- Mathematical and computational models (machine learning focus).
- We will focus on computational neural networks rather than biological relevance.

Basic Concept of a Neuron

- A neuron receives inputs from multiple sources.
- It performs some computation and produces an output.
- These neurons are connected in complex networks allowing powerful computations.

McCulloch-Pitts Model

- Earliest mathematical model of a neuron.
- Uses a Σ unit (summation function).
- Inputs can be excitatory or inhibitory.
- If the sum exceeds a threshold (θ) , the neuron fires (output = 1).
- If an inhibitory input is active, the output is 0.

Perceptron Model

- Improved version of McCulloch-Pitts model.
- Instead of simple summation, it uses weighted inputs:

$$Y = \sum_{i=1}^{p} \sum_{i} \beta_{i}$$

- If sum exceeds threshold, output = +1, otherwise output = -1.
- Alternative representation by adding bias term (β_0).
- Key difference from McCulloch-Pitts: No inhibitory inputs & weighted summation.
- Training Perceptron:
- Uses gradient descent to adjust weights.
- We update weights using misclassified points.

Challenges with Perceptron

- Only works for linearly separable data.
- Example: XOR problem cannot be solved using a single-layer perceptron.
- Solution:
- Transform data into higher-dimensional space.
- Introduce non-linearity (e.g., multi-layer networks, activation functions).

Gradient Descent in Neural Networks

- Used for optimizing neural networks by adjusting weights.
- Key Idea: Move in the direction of steepest descent (negative gradient).
- Step size (η) is crucial:
- Large step → Oscillations, divergence.
- Small step → Slow convergence.
- Stochastic Gradient Descent (SGD):
- Instead of computing the gradient for the entire dataset, updates are done per single data point.
- Helps in faster convergence but introduces noise.
- Trade-off: Small steps ensure steady convergence while large steps risk overshooting.

Beyond Perceptrons: Adaline (Adaptive Linear Neuron)

- Similar to perceptron but outputs a continuous value instead of a binary output.
- Uses mean squared error (MSE) instead of classification error.
- Key advantage:
- Allows gradient descent to work properly (since Perceptron's step function is non-differentiable).

Limitations of Single-Layer Networks

- Cannot handle non-linearly separable problems.
- Example: XOR problem requires hidden layers.
- Multi-layer Perceptrons (MLPs) introduce:
- Hidden layers with multiple neurons.
- Activation functions (sigmoid, ReLU, etc.).

Backpropagation

- Steps to follow-
- (1) Initialize weights for the parameters we want to train
- (2) Forward propagate through the network to get the output values
- (3) Define the error or cost function and its first derivatives
- (4) Backpropagate through the network to determine the error derivatives
- (5) Update the parameter estimates using the error derivative and the current value

Sample Question: Backpropagation

Step 1: Initialise weights

- The input and target values for this problem are
- X1=1
- X2=4
- X3=5

- T1=0.1
- T2=0.05

Step 2 : Forward propagate

Input to hidden layer

$$w_1x_1 + w_3x_2 + w_5x_3 + b_1 = z_{h_1}$$

$$w_2x_1 + w_4x_2 + w_6x_3 + b_1 = z_{h_2}$$

$$h_1 = \sigma(z_{h_1})$$

$$h_2 = \sigma(z_{h_2})$$

Hidden layer to output layer

$$w_7h_1 + w_9h_2 + b_2 = z_{o_1}$$

$$w_8h_1 + w_{10}h_2 + b_2 = z_{o_2}$$

$$o_1 = \sigma(z_{o_1})$$

$$o_2 = \sigma(z_{o_2})$$

Step 2: Forward propagate

$$\begin{aligned} w_1x_1 + w_3x_2 + w_5x_3 + b_1 &= z_{h_1} = 0.1(1) + 0.3(4) + 0.5(5) + 0.5 = 4.3 \\ h_1 &= \sigma(z_{h_1}) = \sigma(4.3) = 0.9866 \\ w_2x_1 + w_4x_2 + w_6x_3 + b_1 &= z_{h_2} = 0.2(1) + 0.4(4) + 0.6(5) + 0.5 = 5.3 \\ h_2 &= \sigma(z_{h_2}) = \sigma(5.3) = 0.9950 \\ w_7h_1 + w_9h_2 + b_2 &= z_{o_1} = 0.7(0.9866) + 0.9(0.9950) + 0.5 = 2.0862 \\ o_1 &= \sigma(z_{o_1}) = \sigma(2.0862) = 0.8896 \\ w_8h_1 + w_{10}h_2 + b_2 &= z_{o_2} = 0.8(0.9866) + 0.1(0.9950) + 0.5 = 1.3888 \\ o_2 &= \sigma(z_{o_2}) = \sigma(1.3888) = 0.8004 \end{aligned}$$

Step 3: Define the error and its first derivatives

$$E = \frac{1}{2}[(o_1 - t_1)^2 + (o_2 - t_2)^2$$

$$\frac{dE}{do_1} = o_1 - t_1$$

$$\frac{dE}{do_2} = o_2 - t_2$$

$$\begin{split} &\sigma(x)=\frac{1}{1+e^{-x}}\\ &\frac{d\sigma}{dx}=\frac{e^{-x}}{(1+e^{-x})^2}\\ &\text{We can write }\frac{e^{-x}}{1+e^{-x}} \text{ as } 1-\frac{1}{1+e^{-x}}. \text{ The derivative can be written as}\\ &\frac{d\sigma}{dx}=\frac{1}{1+e^{-x}}(1-\sigma(x))\\ &\frac{d\sigma}{dx}=\sigma(x)(1-\sigma(x)) \end{split}$$

Also, given that $w_7h_1+w_9h_2+b_2=z_{o_1}$ and $w_8h_1+w_{10}h_2+b_2=z_{o_2}$, we have $\frac{dz_{o_1}}{dw_7}=h_1$, $\frac{dz_{o_2}}{dw_8}=h_2$, $\frac{dz_{o_2}}{dw_{10}}=h_2$, $\frac{dz_{o_2}}{dw_1}=h_2$, $\frac{dz_{o_2}}{db_2}=1$, and $\frac{dz_{o_2}}{db_2}=1$.

We are now ready to calculate $\frac{dE}{dw_7}$, $\frac{dE}{dw_8}$, $\frac{dE}{dw_{10}}$, and $\frac{dE}{dw_{10}}$ using the derivatives we have already discussed.

$$\frac{dE}{dw_7} = \frac{dE}{do_1} \frac{do_1}{dz_{o_1}} \frac{dz_{o_1}}{dw_7}$$

$$\frac{dE}{dw_7} = (o_1 - t_1)(o_1(1 - o_1))h_1$$

$$\frac{dE}{dw_7} = (0.8896 - 0.1)(0.8896(1 - 0.8896))(0.9866)$$

$$\frac{dE}{dw_7} = 0.0765$$

$$\frac{dE}{dw_8} = \frac{dE}{do_2} \frac{do_2}{dz_{o_2}} \frac{dz_{o_2}}{dw_8}$$

$$\frac{dE}{dw_8} = (0.7504)(0.1598)(0.9866)$$

$$\frac{dE}{dw_8} = 0.1183$$

$$dE = d$$

$$\frac{dE}{dw_9} = \frac{dE}{do_1} \frac{do_1}{dz_{o_1}} \frac{dz_{o_1}}{dw_9}$$

$$\frac{dE}{dw_9} = (0.7896)(0.0983)(0.9950)$$

$$\frac{dE}{dw_9} = 0.0772$$

$$\frac{dE}{dw_{10}} = \frac{dE}{do_2} \frac{do_2}{dz_{o_2}} \frac{dz_{o_2}}{dw_{10}}$$

$$\frac{dE}{dw_{10}} = (0.7504)(0.1598)(0.9950)$$

$$\frac{dE}{dw_{10}} = 0.1193$$

The error derivative of b_2 is a little bit more involved since changes to b_2 affect the error through both o_1 and o_2 .

$$\frac{dE}{db_2} = \frac{dE}{do_1} \frac{do_1}{dz_{o_1}} \frac{dz_{o_1}}{db_2} + \frac{dE}{do_2} \frac{do_2}{dz_{o_2}} \frac{dz_{o_2}}{db_2}$$

$$\frac{dE}{db_2} = (0.7896)(0.0983)(1) + (0.7504)(0.1598)(1)$$

$$\frac{dE}{db_2} = 0.1975$$

To summarize, we have computed numerical values for the error derivatives with respect to w_7 , w_8 , w_9 , w_{10} , and b_2 . We will now backpropagate one layer to compute the error derivatives of the parameters connecting the input layer to the hidden layer. These error derivatives are $\frac{dE}{dw_1}$, $\frac{dE}{dw_2}$, $\frac{dE}{dw_3}$, $\frac{dE}{dw_4}$, $\frac{dE}{dw_5}$, and $\frac{dE}{db_1}$.

I will calculate $\frac{dE}{dw_1}$, $\frac{dE}{dw_3}$, and $\frac{dE}{dw_5}$ first since they all flow through the h_1 node.

$$\frac{dE}{dw_1} = \frac{dE}{dh_1} \frac{dh_1}{dz_{h_1}} \frac{dz_{h_1}}{dw_1}$$

The calculation of the first term on the right hand side of the equation above is a bit more involved than previous calculations since h_1 affects the error through both o_1 and o_2 .

$$\frac{dE}{dh_{1}} = \frac{dE}{do_{1}} \frac{do_{1}}{dz_{o_{1}}} \frac{dz_{o_{1}}}{dh_{1}} + \frac{dE}{do_{2}} \frac{do_{2}}{dz_{o_{2}}} \frac{dz_{o_{2}}}{dh_{1}}$$

 $\frac{dE}{dh_1} = (0.7896)(0.0983)(0.7) + (0.7504)(0.1598)(0.8) = 0.1502$

Plugging the above into the formula for $\frac{dE}{dw_1}$, we get

$$\frac{dE}{dw_1} = (0.1502)(0.0132)(1) = 0.0020$$

The calculations for $\frac{dE}{dw_3}$ and $\frac{dE}{dw_5}$ are below

$$\frac{dE}{dw_3} = \frac{dE}{dh_1} \frac{dh_1}{dz_{h_1}} \frac{dz_{h_1}}{dw_3}$$

$$\frac{dE}{dw_3} = (0.1502)(0.0132)(4) = 0.0079$$

$$\frac{dE}{dw_5} = \frac{dE}{dh_1} \frac{dh_1}{dz_{h_1}} \frac{dz_{h_1}}{dw_5}$$

$$\frac{dE}{dw_5} = (0.1502)(0.0132)(5) = 0.0099$$

I will now calculate $\frac{dE}{dw_2}$, $\frac{dE}{dw_4}$, and $\frac{dE}{dw_6}$ since they all flow through the h_2 node.

$$\frac{dE}{dw_2} = \frac{dE}{dh_2} \frac{dh_2}{dz_{h_2}} \frac{dz_{h_2}}{dw_2}$$

The calculation of the first term on the right hand side of the equation above is affects the error through both o_1 and o_2 .

$$\frac{dE}{dh_2} = \frac{dE}{do_1} \frac{do_1}{dz_{o_1}} \frac{dz_{o_1}}{dh_2} + \frac{dE}{do_2} \frac{do_2}{dz_{o_2}} \frac{dz_{o_2}}{dh_2}$$

$$\frac{dE}{dh_2} = (0.7896)(0.0983)(0.9) + (0.7504)(0.1598)(0.1) = 0.0818$$

Plugging the above into the formula for $\frac{dE}{dw_2}$, we get

$$\frac{dE}{dw_2} = (0.0818)(0.0049)(1) = 0.0004$$

The calculations for $\frac{dE}{dw_4}$ and $\frac{dE}{dw_6}$ are below

$$\frac{dE}{dw_4} = \frac{dE}{dh_2} \frac{dh_2}{dz_{h_2}} \frac{dz_{h_2}}{dw_4}$$

$$\frac{dE}{dw_4} = (0.0818)(0.0049)(4) = 0.0016$$

$$\frac{dE}{dw_6} = \frac{dE}{dh_2} \frac{dh_2}{dz_{h_2}} \frac{dz_{h_2}}{dw_6}$$

$$\frac{dE}{dw_6} = (0.0818)(0.0049)(5) = 0.0020$$

The final error derivative we have to calculate is $\frac{dE}{db_1}$, which is done next

$$\frac{dE}{db_1} = \frac{dE}{do_1} \frac{do_1}{dz_{o_1}} \frac{dz_{o_1}}{dh_1} \frac{dh_1}{dz_{h_1}} \frac{dz_{h_1}}{db_1} + \frac{dE}{do_2} \frac{do_2}{dz_{o_2}} \frac{dz_{o_2}}{dh_2} \frac{dh_2}{dz_{h_2}} \frac{dz_{h_2}}{db_1}$$

$$\tfrac{dE}{db_1} = (0.7896)(0.0983)(0.7)(0.0132)(1) + (0.7504)(0.1598)(0.1)(0.0049)(1) = 0.0008$$

$w_1 := w_1 - \alpha \frac{dE}{dw_1} = 0.1 - (0.01)(0.0020) = 0.1000$	$w_7 :=$
$w_2 := w_2 - \alpha \frac{dE}{dw_2} = 0.2 - (0.01)(0.0004) = 0.2000$	$w_8 :=$
$w_3 := w_3 - \alpha \frac{dE}{dw_3} = 0.3 - (0.01)(0.0079) = 0.2999$	$w_9 :=$
$w_4 := w_4 - \alpha \frac{dE}{dw_4} = 0.4 - (0.01)(0.0016) = 0.4000$	w_{10} :
$w_5 := w_5 - \alpha \frac{dE}{dw_5} = 0.5 - (0.01)(0.0099) = 0.4999$	$b_1 :=$
$w_6 := w_6 - \alpha \frac{dE}{dw_6} = 0.6 - (0.01)(0.0020) = 0.6000$	$b_2 :=$

$$w_7 := w_7 - \alpha \frac{dE}{dw_7} = 0.7 - (0.01)(0.0765) = 0.6992$$

$$w_8 := w_8 - \alpha \frac{dE}{dw_8} = 0.8 - (0.01)(0.1183) = 0.7988$$

$$w_9 := w_9 - \alpha \frac{dE}{dw_9} = 0.9 - (0.01)(0.0772) = 0.8992$$

$$w_{10} := w_{10} - \alpha \frac{dE}{dw_{10}} = 0.1 - (0.01)(0.1193) = 0.0988$$

$$b_1 := b_1 - \alpha \frac{dE}{db_1} = 0.5 - (0.01)(0.0008) = 0.5000$$

$$b_2 := b_2 - \alpha \frac{dE}{db_2} = 0.5 - (0.01)(0.1975) = 0.4980$$

Weight Initialization

- Initializing all weights to the same value (e.g., 1, 0, or any constant) is generally a bad idea because it prevents differentiation in learning across neurons.
- Random initialization is preferred to allow weights to specialize.
- However, weights should be small to keep neuron outputs in the linear region of activation functions like sigmoid or tanh, ensuring higher gradient sensitivity for efficient learning.

Overfitting & Regularization

- Overfitting occurs when the model memorizes training data instead of generalizing to new examples.
- Neural networks are prone to overfitting due to a large number of parameters.
- Two main ways to combat overfitting:
- Regularization: Adding a penalty (e.g., L2 norm or weight decay) to the weight values.
- Validation Set: Using a separate dataset to monitor performance and stop training when generalization starts degrading.

Number of Hidden Units & Layers

- Choosing the optimal number of hidden layers/neurons is difficult and typically done via validation experiments.
- Some automatic methods exist:
- Pruning: Start with a large network and remove less important weights (e.g., "Optimal Brain Damage").
- Growing Networks: Start with a minimal architecture and iteratively add neurons as needed.

Adaptive Network Growth

- Instead of pre-defining layers, some methods dynamically add neurons as needed.
- These approaches deviate from the standard feedforward structure and may lead to more irregular architectures.

Goals of Parameter Estimation

- Estimate parameter values that best explain the given data.
- Calculate the probability of new observations given past training data.
- Previously explored in logistic regression.

Likelihood in Parameter Estimation

- Likelihood measures how well parameters explain the observed data.
- Uses Bayes' Rule:
- $P(\theta|X)=P(X|\theta)P(\theta) / P(X)$
- Focus on maximizing $P(X \mid \theta)$ since P(X) is constant.

Likelihood Function

- Likelihood is expressed as:
- $L(\theta)=P(X|\theta)$
- Example: Suppose we have different values of θ , we compute P(X | θ) for each and find the maximum likelihood estimate (MLE).

Maximum Likelihood Estimation (MLE)

- MLE finds θ that maximizes $P(X \mid \theta)$.
- If prior knowledge of θ is unavailable, we only focus on likelihood.
- Often use log-likelihood for ease of computation.

Independence Assumption in Likelihood

- If data samples are independent:
- $L(\theta) = \prod_{i} P(X_{i} | \theta)$
- We take the log-likelihood to convert the product into a sum:
- $\log L(\theta) = \sum_{i} \log P(X_{i} | \theta)$
- Commonly used in statistical modeling and machine learning.

Applying MLE to Logistic Regression

In logistic regression:

First, estimate β using MLE.

Then, use estimated parameters to predict probabilities.

Example – Coin Tossing Experiment

Define C as a random variable representing coin outcome:

$$C = 1$$
 (heads), $C = 0$ (tails).

Coin has an unknown probability ρ of landing heads.

Likelihood function:

$$L(\varrho) = \prod_{i} \varrho^{Ci} (1 - \varrho)^{1 - Ci}$$

Bernoulli Distribution and Likelihood

The probability of a single coin flip:

$$P(C_i|\varrho)=\varrho^{Ci}(1-\varrho)^{1-Ci}$$

For N tosses:

 N_1 = number of heads, N_0 = number of tails.

Log-likelihood:

 $\log L(\varrho) = N_1 \log \varrho + N_0 \log(1 - \varrho)$

Finding the MLE for Coin Tossing

- Differentiate log-likelihood and set to zero:
- $d/d\varrho (N_1 \log \varrho + N_0 \log(1-\varrho)) = 0$

Solve for ρ :

- $\bullet \quad \varrho^{\wedge} = N_1 / N$
- Conclusion: MLE estimates probability as (heads count) / (total tosses).

Maximum Likelihood and Prior Knowledge

- Maximum likelihood assumes no prior knowledge of parameters.
- What if we have some prior knowledge?
- Example: Coin toss experiment
 - Suppose we believe the coin is fair.
 - o How do we incorporate this belief into estimation?

Prior Knowledge in Probability

- Prior belief: The coin is fair (ρ = 0.5).
- This belief can be represented as a probability distribution.
- Gaussian distribution with a peak at 0.5 could be used.
- However, Gaussian is not ideal since probabilities must be between 0 and 1.

The Beta Distribution

Beta Distribution

The **Beta distribution** is a continuous probability distribution defined on the interval (0,1) and is parameterized by two positive shape parameters, α and β .

Probability Density Function (PDF)

$$f(x;lpha,eta)=rac{x^{lpha-1}(1-x)^{eta-1}}{B(lpha,eta)}$$

where $B(\alpha, \beta)$ is the Beta function:

$$B(lpha,eta)=\int_0^1 t^{lpha-1}(1-t)^{eta-1}dt$$

Properties 🙎

- 1. Support: $x \in (0,1)$, making it useful for modeling probabilities.
- 2. Mean:

$$E[X] = \frac{\alpha}{\alpha + \beta}$$

3. Variance:

$$\mathrm{Var}(X) = rac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$$

- 4. Shape Behavior:
 - If $\alpha = \beta = 1$, it's Uniform(0,1).
 - If $\alpha > \beta$, it's skewed right.
 - If $\alpha < \beta$, it's skewed left.
 - If $\alpha=\beta>1$, it's symmetric and bell-shaped.

The Beta Distribution

- Why Beta Distribution?
 - Defined between [0,1] → Suitable for probability priors.
 - Frequently used in Bayesian statistics for probability estimation.
- The Beta distribution is ideal for modeling prior beliefs.

Maximum A Posteriori (MAP) Estimation

- Unlike Maximum Likelihood (ML), MAP incorporates prior beliefs.
- ML: Maximizes likelihood function only.
- MAP: Maximizes posterior probability:

$$\theta_{MAP}$$
 = argmax $P(\theta | X)$ = argmax $P(X | \theta)P(\theta)$

Only the numerator matters in maximization.

Using Priors in Optimization

- Priors can be useful when we have prior knowledge or preferences:
 - Belief in fair coin → Use Beta distribution centered at 0.5.
 - Ridge/Lasso regression → Use priors to enforce small parameters.
 - Sparsity constraints → Low probability for many nonzero parameters.

Role of Priors in Regularization

- Priors can act as regularizers:
 - Prevent overfitting.
 - Encourage simpler models.
- Example:
 - L2 prior (Gaussian): Encourages small parameter values.
 - L1 prior (Laplace): Encourages sparsity.

Impact of Wrong Priors

- If the prior is correct:
 - Less data is needed for accurate estimation.
- If the prior is incorrect:
 - More data is required to correct the estimate.
- A very strong incorrect prior may never be corrected!

Beta Distribution and Pseudo Counts

- Beta(α , β) Prior:
 - Acts like "pseudo counts" in Bayesian updating.
 - \circ α : Adds to the count of heads.
 - β: Adds to the count of tails.
- Example:
 - If $\alpha > \beta \rightarrow$ Higher probability for heads.
 - If $\beta > \alpha \rightarrow$ Higher probability for tails.

Understanding Bayesian Parameter Estimation

- Find parameters that best explain the data.
- Optimize predictions for new data points.
- Question: Is picking the best single parameter always the right approach?

The Computational Challenge

- Finding $P(\theta|X)$ requires computing P(X).
- P(X) is difficult because we don't know the true distribution of the data.
- Computational complexity increases significantly.

Parameter Estimation Approaches

- Maximum Likelihood (ML): Ignores the prior, finds the best θ .
- Maximum A Posteriori (MAP): Uses a prior but still picks one θ .
- Bayesian Inference: Integrates over all θ values but is computationally expensive.

Prior Distributions in Bayesian Inference

- We assume a prior distribution over parameters.
- Example: In logistic regression, parameters are modeled using a logit function.
- For Linear Discriminant Analysis (LDA), we assumed a Gaussian distribution.

Conjugate Priors & Their Importance

- A conjugate prior simplifies Bayesian inference because the posterior remains in the same family as the prior.
- Example: Beta-Bernoulli Conjugacy
 - \circ If prior: $\theta \sim Beta(\alpha, \beta)$
 - \circ Likelihood: X~Bernoulli (θ)
 - Then posterior: $\theta \mid X \sim Beta(\alpha + n_1, \beta + n_0)$

Common Conjugate Pairs

Data Distribution	Conjugate Prior
-------------------	-----------------

Bernoulli Beta

Binomial Beta

Gaussian (mean) Gaussian

Multinomial Dirichlet

Real-World Applications

- Text Modeling: Multinomial distribution (Unigram model).
- Coin Tossing: Bernoulli distribution.
- Machine Learning Research: Complex parameter estimation techniques, including non-parametric models.

Assignment-5 (Cs-101- 2024) (Week-5)

SOLVE Let's =

Question-1

01:00

Given a 3 layer neural network which takes in 10 inputs, has 5 hidden units and outputs 10 outputs, how many parameters are present in this network?

- a) 500
- b) 115
- c) 25
- d) 100

Question-1- Correct answer

Given a 3 layer neural network which takes in 10 inputs, has 5 hidden units and outputs 10 outputs, how many parameters are present in this network?

- a) 500
- b) 115 —--[(50+5) + (50+10)]
- c) 25
- d) 100

Correct options: (b)

We use several techniques to ensure the weights of the neural network are small (such as random initialization around 0 or regularisation). What conclusions can we draw if weights of our ANN are high?

- a) Model has overfitted
- b) It was initialized incorrectly.
- c) At least one of (a) or (b).
- d) None of the above

Question-2- Correct answer

We use several techniques to ensure the weights of the neural network are small (such as random initialization around 0 or regularisation). What conclusions can we draw if weights of our ANN are high?

- a) Model has overfitted
- b) It was initialized incorrectly.
- c) At least one of (a) or (b).
- d) None of the above makes insensitive system for weights change

Correct options: (d)

In a basic neural network, which of the following is generally considered a good initialization strategy for the weights?

- a) Initialize all weights to zero
- b) Initialize all weights to a constant non-zero value (e.g., 0.5)
- c) Initialize weights with large random values (e.g., between -10 and 10)
- d) Initialize weights randomly with small values close to zero

Question-3 - Correct answer

In a basic neural network, which of the following is generally considered a good initialization strategy for the weights?

- a) Initialize all weights to zero
- b) Initialize all weights to a constant non-zero value (e.g., 0.5)
- c) Initialize weights with large random values (e.g., between -10 and 10)
- d) Initialize weights randomly with small values close to zero

Correct options: (d)

Recall the XOR(tabulated below) example from class where we did a transformation of features to make it linearly separable. Which of the following transformations can also work?

- a) Rotating x1 and x2 by a fixed angle.
- b) Adding a third dimension z=x*y
- c) Adding a third dimension $z=x^2+y^2$
- d) None of the above

x1	x2	у
-1	-1	-1
1	-1	1
-1	1	1
1	1	-1

Question-4 - Correct answer

Recall the XOR(tabulated below) example from class where we did a transformation of features to make it linearly separable. Which of the following transformations can also work?

- a) Rotating x1 and x2 by a fixed angle.
- b) Adding a third dimension z=x*y
- c) Adding a third dimension z=x2+y2
- d) None of the above

Correct options: (b)

Which of the following is the primary reason for rescaling input features before passing them to a neural network?

- a) To increase the complexity of the model
- b) To reduce the number of parameters in the network
- c) To ensure all input features contribute equally to the initial learning process
- d) To eliminate the need for activation functions

Question-5 - Correct answer

Which of the following is the primary reason for rescaling input features before passing them to a neural network?

- a) To increase the complexity of the model
- b) To reduce the number of parameters in the network
- c) To ensure all input features contribute equally to the initial learning process
- d) To eliminate the need for activation functions

Correct options: (c)

In the Bayesian approach to machine learning, we often use the formula: $P(\theta|D)=P(D|\theta)P(\theta)/P(D)$ Where θ represents the model parameters and D represents the observed data. Which of the following correctly identifies each term in this formula?

- a) $P(\theta|D)$ is the likelihood, $P(D|\theta)$ is the posterior, $P(\theta)$ is the prior, P(D) is the evidence
- b) $P(\theta|D)$ is the prior, $P(D|\theta)$ is the evidence, $P(\theta)$ is the likelihood, P(D) is the posterior
- c) $P(\theta|D)$ is the evidence, $P(D|\theta)$ is the likelihood, $P(\theta)$ is the posterior, P(D) is the prior
- d) $P(\theta|D)$ n is the posterior, $P(D|\theta)$ is the likelihood, $P(\theta)$ is the prior, P(D) is the evidence

Question-6 - Correct answer

In the Bayesian approach to machine learning, we often use the formula: $P(\theta|D)=P(D|\theta)P(\theta)/P(D)$ Where θ represents the model parameters and D represents the observed data. Which of the following correctly identifies each term in this formula?

- a) $P(\theta|D)$ is the likelihood, $P(D|\theta)$ is the posterior, $P(\theta)$ is the prior, P(D) is the evidence
- b) $P(\theta|D)$ is the prior, $P(D|\theta)$ is the evidence, $P(\theta)$ is the likelihood, P(D) is the posterior
- c) $P(\theta|D)$ is the evidence, $P(D|\theta)$ is the likelihood, $P(\theta)$ is the posterior, P(D) is the prior
- d) $P(\theta|D)$ is the posterior, $P(D|\theta)$ is the likelihood, $P(\theta)$ is the prior, P(D) is the evidence

Correct options: (d)

Why do we often use log-likelihood maximization instead of directly maximizing the likelihood in statistical learning?

- a) Log-likelihood provides a different optimal solution than likelihood maximization
- b) Log-likelihood is always faster to compute than likelihood
- c) Log-likelihood allows us to avoid using probability altogether
- d) Log-likelihood turns products into sums, making computations easier and more numerically stable

Question-7 - Correct answer

Why do we often use log-likelihood maximization instead of directly maximizing the likelihood in statistical learning?

- a) Log-likelihood provides a different optimal solution than likelihood maximization
- b) Log-likelihood is always faster to compute than likelihood
- c) Log-likelihood allows us to avoid using probability altogether
- d) Log-likelihood turns products into sums, making computations easier and more numerically stable

Correct options: (d)

In machine learning, if you have an infinite amount of data, but your prior distribution is incorrect, will you still converge to the right solution?

- a) Yes, with infinite data, the influence of the prior becomes negligible, and you will converge to the true underlying solution.
- b) No, the incorrect prior will always affect the convergence, and you may not reach the true solution even with infinite data.
- c) It depends on the type of model used; some models may still converge to the right solution, while others might not.
- d) The convergence to the right solution is not influenced by the prior, as infinite data will always lead to the correct solution regardless of the prior.

Question-8- Correct answer

In machine learning, if you have an infinite amount of data, but your prior distribution is incorrect, will you still converge to the right solution?

- a) Yes, with infinite data, the influence of the prior becomes negligible, and you will converge to the true underlying solution.
- b) No, the incorrect prior will always affect the convergence, and you may not reach the true solution even with infinite data.
- c) It depends on the type of model used; some models may still converge to the right solution, while others might not.
- d) The convergence to the right solution is not influenced by the prior, as infinite data will always lead to the correct solution regardless of the prior.

Correct options: (a)

Statement: Threshold function cannot be used as activation function for hidden layers.

Reason: Threshold functions do not introduce non-linearity.

- a) Both are true and the reason does not explain the statement.
- b) Both are true and the reason explains the statement.
- c) Statement is false and reason is true.
- d) Statement is true and reason is false

Question-9 - Correct answer

Statement: Threshold function cannot be used as activation function for hidden layers.

Reason: Threshold functions do not introduce non-linearity.

- a) Both are true and the reason does not explain the statement.
- b) Both are true and the reason explains the statement.
- c) Statement is false and reason is true.
- d) Statement is true and reason is false (correct reason : non-differentiable)

Correct options: (d)

Choose the correct statement (multiple may be correct):

- a) MLE is a special case of MAP when prior is a uniform distribution
- b) MLE acts as regularisation for MAP
- c) MLE is a special case of MAP when prior is a beta distribution
- d) MAP acts as regularisation for MLE.

Question-10- Explanation

MLE (Maximum Likelihood Estimation)

MLE finds the parameter θ that maximizes the **likelihood function** given observed data D:

$$\hat{ heta}_{MLE} = rg \max_{ heta} P(D \mid heta)$$

For a **Bernoulli process** (e.g., coin flips), where each observation $x_i \in \{0, 1\}$ follows:

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{1 - x_i}$$

the likelihood function for n observations is:

$$L(heta) = P(D \mid heta) = \prod_{i=1}^n heta^{x_i} (1- heta)^{1-x_i}$$

Taking the log-likelihood:

$$\log L(heta) = \sum_{i=1}^n x_i \log heta + (1-x_i) \log (1- heta)$$

Solving for θ , we get:

$$\hat{ heta}_{MLE} = rac{\sum x_i}{n} = rac{k}{n}$$

where k is the number of successes.

2 MAP (Maximum A Posteriori Estimation) with a Beta Prior

MAP incorporates prior knowledge about θ . Using Bayes' Rule:

$$P(\theta \mid D) = rac{P(D \mid heta)P(heta)}{P(D)}$$

MAP estimates θ as:

$$\hat{ heta}_{MAP} = rg \max_{ heta} P(D \mid heta) P(heta)$$

If we assume a **Beta prior** for θ :

$$P(heta) = \mathrm{Beta}(lpha,eta) = rac{ heta^{lpha-1}(1- heta)^{eta-1}}{B(lpha,eta)}$$

 $B(\alpha,\beta) = \int_0^1 t^{\alpha-1} (1-t)^{\beta-1} dt$

the posterior distribution is:

$$P(\theta \mid D) \propto P(D \mid \theta)P(\theta)$$

Substituting the likelihood and prior:

$$P(\theta \mid D) \propto \theta^{k} (1 - \theta)^{n-k} \cdot \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$P(\theta \mid D) \propto \theta^{k+\alpha - 1} (1 - \theta)^{n-k+\beta - 1}$$

which is another Beta distribution:

$$P(\theta \mid D) = \text{Beta}(k + \alpha, n - k + \beta)$$

The MAP estimate is the mode of this Beta distribution:

$$\hat{ heta}_{MAP} = rac{k+lpha-1}{n+lpha+eta-2}$$

How MLE is a Special Case of MAP

If we choose an uninformative prior, such as Beta(1,1) (which is uniform on (0,1)), then:

$$\alpha = 1$$
, $\beta = 1$

Plugging into the MAP estimate:

$$\hat{ heta}_{MAP}=rac{k+1-1}{n+1+1-2}=rac{k}{n}$$

which is exactly the MLE estimate:

$$\hat{ heta}_{MLE} = rac{k}{n}$$

Thus, MLE is a special case of MAP when we use a uniform Beta prior (Beta(1,1)). If we use a more informative Beta prior (e.g., Beta(2,2)), MAP gives a more regularized estimate.

Intuition

- MLE ignores prior knowledge and only maximizes the likelihood.
- MAP incorporates prior knowledge (e.g., previous beliefs) to adjust the estimate.
- When the prior is uninformative (Beta(1,1)), MAP reduces to MLE.
- When the prior is informative, MAP acts as a regularized version of MLE.

Choose the correct statement (multiple may be correct):

- a) MLE is a special case of MAP when prior is a uniform distribution
- b) MLE acts as regularisation for MAP
- c) MLE is a special case of MAP when prior is a beta distribution
- d) MAP acts as regularisation for MLE.

Question-10- Correct answer

Choose the correct statement (multiple may be correct):

- a) MLE is a special case of MAP when prior is a uniform distribution
- b) MLE acts as regularisation for MAP
- c) MLE is a special case of MAP when prior is a beta distribution
- d) MAP acts as regularisation for MLE.

Correct options: (a) (d)

Assignment-5 (Cs-46-2025) (Week-5)

SOLVE let's =

Consider a feedforward neural network that performs regression on a p -dimensional input to produce a scalar output. It has m hidden layers and each of these layers has k hidden units. What is the total number of trainable parameters in the network? Ignore the bias terms.

- a) $pk+mk^2+k$
- b) $pk+(m-1)k^2+k$
- c) $p^2+(m-1)pk+k$
- d) $p^2+(m-1)pk+k^2$

Question-1- Correct answer

Consider a feedforward neural network that performs regression on a p -dimensional input to produce a scalar output. It has m hidden layers and each of these layers has k hidden units. What is the total number of trainable parameters in the network? Ignore the bias terms.

- a) $pk+mk^2+k$
- b) $pk+(m-1)k^2+k$
- c) $p^2+(m-1)pk+k$
- d) $p^2+(m-1)pk+k^2$

Correct options: (b)

Consider a neural network layer defined as y=ReLU(Wx). Here $x \in R^p$ is the input, $y \in R^d$ is the output and $W \in R^{d \times p}$ is the parameter matrix. The ReLU activation (defined asReLU(z):=max(0,z) for a scalar z) is applied element-wise to Wx

Find $(\partial y_i/\partial W_{ii})$ where i=1,..,d and j=1,...,p.

In the following options, I(condition) is an indicator function that returns 1 if the condition is true and 0 if it is false.

- a) $I(\sum_{k=1}^{p} W_{ik} x_k \le 0) x_i$
- b) $I(\sum_{k=1}^{p} W_{ik} x_k > 0) x_i$
- c) $I(\sum_{k=1}^{p} W_{ik} x_{k} > 0) W_{ij} x_{j}$
- d) $I(\sum_{k=1}^{p} W_{ik} x_k \le 0) W_{ij} x_j$

Question-2- Correct answer

Consider a neural network layer defined as y=ReLU(Wx). Here $x\in R^p$ is the input, $y\in R^d$ is the output and $W\in R^{d\times p}$ is the parameter matrix. The ReLU activation (defined asReLU(z):=max(0,z) for a scalar z) is applied element-wise to Wx. Find $(\partial y_i/\partial W_{ii})$ where i=1,...,d and j=1,...,p.

In the following options, I(condition) is an indicator function that returns 1 if the condition is true and 0 if it is false

- a) $I(\sum_{k=1}^{p} W_{ik} x_k \le 0) x_i$
- b) $I(\sum_{k=1}^{p} W_{ik} x_k > 0) x_j$
- c) $I(\sum_{k=1}^{p} W_{ik} x_{k} > 0) W_{ij} x_{j}$
- d) $I(\sum_{k=1}^{p} W_{ik} x_k \le 0) W_{ij} x_j$

Correct options: (b)

Consider a two-layered neural network $y=\sigma(W^{(B)}\sigma(W^{(A)}x))$. Let $h=\sigma(W^{(A)}x)$ denote the hidden layer representation. $W^{(A)}$ and $W^{(B)}$ are arbitrary weights. Which of the following statement(s) is/are true? Note: $\nabla_g(f)$ denotes the gradient of f w.r.t g.

- a) $\nabla_{\mathbf{h}}(\mathbf{y})$ depends on $\mathbf{W}^{(A)}$
- b) $\nabla_{W(A)}(y)$ depends on $W^{(B)}$
- c) $\nabla_{W(A)}(h)$ depends on $W^{(B)}$
- d) $\nabla_{W(B)}(y)$ depends on $W^{(A)}$

Question-3 - Correct answer

Consider a two-layered neural network $y=\sigma(W^{(B)}\sigma(W^{(A)}x))$. Let $h=\sigma(W^{(A)}x)$ denote the hidden layer representation. $W^{(A)}$ and $W^{(B)}$ are arbitrary weights. Which of the following statement(s) is/are true? Note: $\nabla_g(f)$ denotes the gradient of f w.r.t g.

- a) $\nabla_{h}(y)$ depends on W^(A)
- b) $\nabla_{W(A)}(y)$ depends on $W^{(B)}$
- c) $\nabla_{W(A)}(h)$ depends on $W^{(B)}$
- d) $\nabla_{W(B)}(y)$ depends on $W^{(A)}$

Correct options: (b)(d)

5) Consider the following statements about the derivatives of the sigmoid $(\sigma(x) = \frac{1}{1 + exp(-x)})$ and $(tanh(x) = \frac{exp(x) - exp(-x)}{exp(x) + exp(-x)})$ activation functions. Which of these statement(s) is/are correct?

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

$$0 < \sigma'(x) \le \frac{1}{4}$$

$$tanh'(x) = \frac{1}{2}(1-(tanh(x))^2)$$

$$0 < tanh'(x) \le 1$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

$$0<\sigma'(x)\leq rac{1}{4}$$

$$tanh'(x) = \frac{1}{2}(1-(tanh(x))^2)$$

$$0 < tanh'(x) \leq 1$$

5) Consider the following statements about the derivatives of the sigmoid $(\sigma(x) = \frac{1}{1 + exp(-x)})$ and $(tanh(x) = \frac{exp(x) - exp(-x)}{exp(x) + exp(-x)})$ activation functions. Which of these statement(s) is/are correct?

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

$$0<\sigma'(x)\leq rac{1}{4}$$

$$tanh'(x) = \frac{1}{2}(1 - (tanh(x))^2)$$

$$0 < tanh'(x) \le 1$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

$$0<\sigma'(x)\leq rac{1}{4}$$

$$tanh'(x) = \frac{1}{2}(1-(tanh(x))^2)$$

$$0 < tanh'(x) \le 1$$

Correct options:

Accepted Answers:
$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

$$0<\sigma'(x)\leq \frac{1}{4}$$

$$0 < tanh'(x) \le 1$$

Which of the following statement(s) about the initialization of neural network weights is/are true for a network that uses the sigmoid activation function?

- a) Two different initializations of the same network could converge to different minima
- b) For a given initialization, gradient descent will converge to the same minima irrespective of the learning rate.
- c) Initializing all weights to the same constant value leads to undesirable results
- d) Initializing all weights to very large values leads to undesirable results

Question-5 - Correct answer

Which of the following statement(s) about the initialization of neural network weights is/are true for a network that uses the sigmoid activation function?

- a) Two different initializations of the same network could converge to different minima
- b) For a given initialization, gradient descent will converge to the same minima irrespective of the learning rate.
- c) Initializing all weights to the same constant value leads to undesirable results
- d) Initializing all weights to very large values leads to undesirable results

Correct options: (a)(c)(d)

A geometric distribution is defined by the p.m.f. $f(x;p)=(1-p)^{(x-1)}p$ for x=1,2,... Given the samples [4, 5, 6, 5, 4, 3] drawn from this distribution, find the MLE of p.

- a) 0.111
- b) 0.222
- c) 0.333
- d) 0.444

Question-6 - Correct answer

A geometric distribution is defined by the p.m.f. $f(x;p)=(1-p)^{(x-1)}p$ for x=1,2,... Given the samples [4, 5, 6, 5, 4, 3] drawn from this distribution, find the MLE of p.

- a) 0.111
- b) 0.222
- c) 0.333
- d) 0.444

Correct options: (b)

Consider a Bernoulli distribution with p=0.7 (true value of the parameter). We draw samples from this distribution and compute an MAP estimate of p by assuming a prior distribution over p. Let $N(\mu, \sigma^2)$ denote a gaussian distribution with a mean μ and variance σ^2 . Distributions are normalized as needed. Which of the following statement(s) is/are true?

- a) If the prior is N(0.6,0.1), we will likely require fewer samples for converging to the true value than if the prior is N(0.4,0.1)
- b) If the prior is N(0.4,0.1), we will likely require fewer samples for converging to the true value than if the prior is N(0.6,0.1)
- c) With a prior of N(0.1,0.001), the estimate will never converge to the true value, regardless of the number of samples used.
- d) With a prior of U(0,0.5) (i.e. uniform distribution between 0 and 0.5), the estimate will never converge to the true value, regardless of the number of samples used.

Question-7 - Correct answer

Consider a Bernoulli distribution with p=0.7 (true value of the parameter). We draw samples from this distribution and compute an MAP estimate of p by assuming a prior distribution over p. Let $N(\mu,\sigma^2)$ denote a gaussian distribution with a mean μ and variance σ^2 . Distributions are normalized as needed. Which of the following statement(s) is/are true?

- a) If the prior is N(0.6,0.1), we will likely require fewer samples for converging to the true value than if the prior is N(0.4,0.1)
- b) If the prior is N(0.4,0.1), we will likely require fewer samples for converging to the true value than if the prior is N(0.6,0.1)
- c) With a prior of N(0.1,0.001), the estimate will never converge to the true value, regardless of the number of samples used.
- d) With a prior of U(0,0.5) (i.e. uniform distribution between 0 and 0.5), the estimate will never converge to the true value, regardless of the number of samples used.

Correct options: (a)(d)

Which of the following statement(s) about parameter estimation techniques is/are true?

- a) To obtain a distribution over the predicted values for a new data point, we need to compute an integral over the parameter space.
- b) The MAP estimate of the parameter gives a point prediction for a new data point.
- c) The MLE of a parameter gives a distribution of predicted values for a new data point.
- d) We need a point estimate of the parameter to compute a distribution of the predicted values for a new data point.

Question-8- Correct answer

Which of the following statement(s) about parameter estimation techniques is/are true?

- a) To obtain a distribution over the predicted values for a new data point, we need to compute an integral over the parameter space.
- b) The MAP estimate of the parameter gives a point prediction for a new data point.
- c) The MLE of a parameter gives a distribution of predicted values for a new data point.
- d) We need a point estimate of the parameter to compute a distribution of the predicted values for a new data point.

Correct options: (a) (b)

In a classification setting, it is common in machine learning applications to minimize the discrete cross entropy loss given by $HCE(p,q)=-\Sigma_i p_i \log q_i$ where p_i and q_i are the true and predicted distributions (p_i \in {0,1} depending on the label of the corresponding entry). Which of the following statement(s) about minimizing the cross entropy loss is/are true?

- a) Minimizing $H_{CE}(p,q)$ is equivalent to minimizing the (self) entropy H(q)
- b) Minimizing $H_{CE}(p,q)$ is equivalent to minimizing $H_{CE}(q,p)$
- c) Minimizing $H_{CE}(p,q)$ is equivalent to minimizing the KL divergence $D_{KL}(p||q)$
- d) Minimizing $H_{CE}(p,q)$ is equivalent to minimizing the KL divergence $D_{KL}(q||p)$

Question-9 - Correct answer

In a classification setting, it is common in machine learning applications to minimize the discrete cross entropy loss given by $H_{CE}(p,q)=-\Sigma_i p_i \log q_i$ where p_i and q_i are the true and predicted distributions (p_i \in {0,1} depending on the label of the corresponding entry). Which of the following statement(s) about minimizing the cross entropy loss is/are true?

- a) Minimizing $H_{CE}(p,q)$ is equivalent to minimizing the (self) entropy H(q)
- b) Minimizing $H_{CE}(p,q)$ is equivalent to minimizing $H_{CE}(q,p)$
- c) Minimizing $H_{CE}(p,q)$ is equivalent to minimizing the KL divergence $D_{KL}(p||q)$
- d) Minimizing $H_{CE}(p,q)$ is equivalent to minimizing the KL divergence $D_{KL}(q||p)$

Correct options: (c)

Which of the following statement(s) about activation functions is/are NOT true?

- a) Non-linearity of activation functions is not a necessary criterion when designing very deep neural networks
- b) Saturating non-linear activation functions (derivative $\rightarrow 0$ as $x \rightarrow \pm \infty$) avoid the vanishing gradients problem
- c) Using the ReLU activation function avoids all problems arising due to gradients being too small.
- d) The dead neurons problem in ReLU networks can be fixed using a leaky ReLU activation function

Question-10- Correct answer

Which of the following statement(s) about activation functions is/are NOT true?

- a) Non-linearity of activation functions is not a necessary criterion when designing very deep neural networks
- b) Saturating non-linear activation functions (derivative $\rightarrow 0$ as $x \rightarrow \pm \infty$) avoid the vanishing gradients problem
- c) Using the ReLU activation function avoids all problems arising due to gradients being too small.
- d) The dead neurons problem in ReLU networks can be fixed using a leaky ReLU activation function

Correct options: (a) (d)

THANK YOU

Suggestions and Feedback

Next Session:

Sunday: 31-Aug-2025

3:00 - 5:00 PM