(I) ÉTUDE PAS À PAS D'UN ALGORITHME DONNÉ

1. Dichotomre. Of cour et TP7 et son congé.

2. print algorithme (carre, 0., 2., 0.15) (Rg: a Hention carre(n) est une valeur; le fonction c'est carre.

3. le voiten d'annêt de la bouch while ort:

(b-a) > L* epr done (b-a) > 0,30.

	debut		(b-a)>0,30	dans la bonde			last conditionnel:		f.n	
iteration	a	Ь	nesultat	c	f(c)	f(a)	nesultat	consépulie	a	b
0	0	2	unai	1	- 2	- 3	fanx	a - c	1	2
1	Λ	2	vnai	1, 5	-0,45	-2	farx	a c e	1,5	2
2	1,5	2	vrai	1,75	0,0621	-0,15	Unai	bec	1,5	1,75
3	1,5	1,75	fanx -	->	On s	sont de	le boud	le while		

(Eq: * Vu l'appel de fonction au 2. : $f(n) = cane(n) = n^2 - 3$ * $\sqrt{3} \approx 1,73$, pour s'auto coniger on peut vérifrer qu'on a à chaque étape a (4,73) b ...

4. \star la valeur affichée à l'écran est celle rem voyée par l'algorithme, clest-à-dire la demnire valeur de $\frac{a+b}{2}$. \star la valeur offichée est donc $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{62}{2} = \frac{1}{2}$

- 5. * quel que soit l'intervalle de départ, l'algorithme renvoire une valeur (tant que f'est définie our l'entervalle brien sûr...), et la bourle n'est jameur infinie. Le programme affiche done toujours un résultat.
 - * Mais, pursque \$\forall n'apportent par \(\alpha\) [2;3], la forction carre me s'ammule pur sur cet intervalle et on a toujours, to e [a; b], \(f(a) f(c) > 0 \).

 Dour l'algorithme on fait done toujours: \(a \in c \), et c converge vers \(b \), qui m'est par une approximation pertinente de la raune cherchée.
 - * En l'occurrence, le programme affiche 2,875.
- 6. On inserte entre les lignes 1 et 2...

 if f(a) * f(b) > 0:

 | return " nous ne savour par si f s'annule entre a et b"
 - On privilègie un return qui fait sontin de la faction platot:
 - qu'un print seul qui laisse la bourde whole Etre étéres alors qu'elle est absurde
 - qu'un pant pais un else, qui oblige à indenter la totalile du code suivant.

Cf TP 10 et son conigé.

quelques remarques:

& on connait le nombre d'itérations, donc on privilègre une boucke for, la boucke while étant préférée larque le nombre d'itérations est difficile à anticiper-

R un encherinement du type:

 $n_0 = x_n$ $n_1 = x_0 - f(x_0)/df(x_0)$) on l'inverse

n'est utile que si no ou un dovent être réulilisées à une itération ultérreure, sinon cela ne sont à ven-

C'est utile, par exemple, si on utilise une bonde while avec comme critère d'anet quelque chose ublisant no ou xn.

& si on fait lecalail $n \leftarrow n - f(n)/df(n)$ avant la bouck for, on rique de faire une ilération de trop.

(III) EXERCICE - MÉTHODE DE LA FAUSTE POSITION

(Rg: Il s'agit de la méthode de la sécante: TP10- Exercice 6

1. * Soit
$$y = pn + q$$
 l'équation de la droite parsant par (a, $f(a)$) et (b, $f(b)$).

$$\neq$$
 On a done: $p = \frac{f(b) - f(a)}{b - a}$

* On thouse auss:
$$y(a)=f(a)=pa+q$$
 d'ou $q=\frac{f(a)b-f(b)a}{b-a}$

$$\neq$$
 On cherche n^* tel que $y(n^*) = 0$, d'où:

$$y(n^{*}) = 0 = pn^{*} + q$$
 et
 $x^{*} = -\frac{q}{p} = a - f(a) \frac{b-a}{f(b)-f(a)}$

(Rq: relation analogue à celle utilisée dans la methode de Newton.

2. Of code en Annexe.

Rq: le critère d'arrêt est une distance minimale entre 2 positions de découpe (c-prec-e>eps) et non par une longueux minimale d l'intervalle [a; b].

```
# -*- coding: utf-8 -*-
Created on Wed Mar 22 12:28:16 2017
@author: willie
# Exemple d'équation non linéaire à résoudre
def f(x):
    return (x-2)**2-1
#Recherche de la solution par la méthode de la fausse position
def fausse_position(f,a,b,epsilon):
    #on vérifie si une solution existe dans l'intervalle [a;b]
    if f(a)*f(b)>0:
        print("Il n'est pas sûr qu'il y ait une solution dans l'intervalle.")
        return None
    i=0 #initialisation compteur du nombre d'iteration
    #on note c la position de découpe
    distance = b-a #initialisation de la distance entre deux positions de découpe
    c=b #initialisation de la première position de découpe
    while abs(distance)>epsilon and i<1000:
    #on teste si la distance entre deux positions de découpe
    #est supérieure à la précision cherchée
    #et si le nombre d'iteration n'est pas trop grand
        c_prec=c #on sauvegarde la position de découpe précédente
        c=a-f(a)*(b-a)/(f(b)-f(a)) #on calcule la nouvelle position de découpe
        if f(a)*f(c)<0: #le zéro est dans l'intervalle [a;nouvelle position]</pre>
            print 'b
            b=c #le nouvel intervalle [a;b] est donc [a;nouvelle position]
        else: #le zéro est dans l'intervalle [nouvelle position;b]
            a=c #le nouvel intervalle [a;b] est donc [nouvelle position;b]
        distance=c_prec-c #on recalcule la distance entre deux positions de découpe
i=i+1 #on incémente le nombre d'iterations
    return i,c #on renvoie le nombre d'itérations total et la dernière position
calculée
#on affiche la dernière position calculée après appel de la fonction
print fausse_position(f,0.,2.,1e-12)
```