MATHEMATICS 3C/3D CALCULATOR-FREE

SAMPLE EXAMINATION MARKING KEY

Determine all turning points and points of inflection of the function $f(x)=2x^2-3x^2-12x+20$, and use these to sketch its graph.

If $f(x) = 2x^2 - 3x^2 - 12x + 20$, then $f'(x) = 6x^2 - 6x - 12$ and f''(x) = 12x - 6

 $6x^{?} - 6x - 12 = 0 \Rightarrow 6(x - 2)(x + 1) = 0$

So the critical points occur at x = 2 and x = -1.

 $12x-6=0 \Rightarrow x=\frac{1}{2}$, where the point of inflection will be tound.

Now
$$f(2) = 0$$
, $f(-1) = 27$ and $f(\frac{1}{2}) = \frac{27}{2}$, $f(0) = 20$

So the graph is

- determines f'(x)
 determines f'(x)
 determines f'(x)
 Index critical points
 finds the point of inflection
 graph passes through the correct y-infercept
 graph passes through appropriate range of x values for intercept, i.e. (-3 to -2)
 correct shape of graph

MATHEMATICS 3C/3D CALCULATOR-FREE

2

SAMPLE EXAMINATION MARKING KEY

SAMPLE EXAMINATION MARKING KEY (3 marks)

Question 1 Section One: Calculator-free

(40 Marks)

(4 marks)

Determine the domain and range of f(g(x)), given that $f(x) = \sqrt{x}$ and $g(x) = 4 - 2^x$

Solution
$f(g(x)) = f(4-2^{\circ})$
$=\sqrt{4-2^x}$
Domain: We need $4-2^x \ge 0$, i.e. $2^x \le 4$, i.e. $x \le 2$.
Range: 0 ≤ y < 2
6/ / //
\checkmark determines $f(g(x))$ correctly
✓ correctly identifies requirement that $4-2^x \ge 0$
✓ correctly states range

Differentiate the following, without simplifying:

 $y=e^{2x-x^4}$

(2 marks)

(4 marks)

✓ e^{2x-x-} remains in solution differentiates (2x-2x²) part rivative: $(2-2x)e^{2x-x^2}$ Specific behaviours

 $y = \frac{5x}{x^2 + 4}$ (2 marks)

MATHEMATICS 3C/3D CALCULATOR-FREE

The probabilities of two events A and B are given by: P(A)=0.6 and P(B)=0.3 Calculate $P(A\cup B)$, given that A and B are independent.

Specific behaviours

v selects appropriate rule from formula sheet

v uses multiplication rule for independence

v substitutes and calculates probability So $P(A \cup B) = 0.6 + 0.3 - 0.6 \times 0.3 = 0.72$ and $P(A \cap B) = P(A) \times P(B)$ by independence $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Question 4 (5 marks)

Find the maximum and minimum values over the interval $1 \le x \le 4$ of the function

$$f(x) = x + \frac{4}{x^2}$$

The function is continuous and differentiable in the interval $1 \le x \le 4$ and so the extreme values occur at the end points or at critical points.

$$\begin{split} f'(x) &= 1 - \frac{8}{x} = 0 \quad \text{when } x = 2 \quad \text{and} \quad f(2) = 2 + \frac{4}{2^2} = 3 \\ \text{Also } f(0) &= 1 + \frac{4}{1^2} = 5 \quad \text{and} \quad f(4) = 4 + \frac{4}{4^2} = 4 \frac{1}{4} \\ \text{So } f_{\text{max}} &= 5 \quad \text{and} \quad f_{\text{min}} = 3 \, . \end{split}$$

Specific behaviour

 \checkmark correctly differentiates \checkmark solves f'(x) = 0 \checkmark evaluates f(2) \checkmark evaluates f(1) and f(4) \checkmark states maximum and minim

SAMPLE EXAMINATION
MARKING KEY
(4 marks) $\frac{3}{x} + \frac{4x}{1 + 2x} = 2$ 4 Solve for x in the equation MATHEMATICS 3C/3D CALCULATOR-FREE Question 5

Specific behaviours

recognises common denominator correctly

resplites by common denominator correctly

states correct solution 3(1+2x)+4x' = 2 x(1+2x) $3(1+2x)+4x^2 = 2x(1+2x)$ $3+6x+4x^2 = 2x+4x^2$ $3+6x+4x^2 = 2x+4x^2$ 3+4x=0, $x=-\frac{3}{3}$

SAMPLE EXAMINATION MARKING KEY Solution Determine the following integrals: $\int \frac{x^2 - 1}{(x^3 - 3x)^2} \, dx$ MATHEMATICS 3C/3D CALCULATOR-FREE Question 6

(2 marks)

 $= \frac{1}{3} \int \frac{3x^2 - 3}{\left(x^2 - 3x\right)^2} dx = \frac{1}{3} \int \left[\left(x^2 - 3x\right)^2 (3x^2 - 3) dx \right]$ $= \frac{1}{3} \frac{\left(x^2 - 3x\right)^{-1}}{\left(-1\right)} + C = -\frac{1}{3\left(x^3 - 3x\right)} + C$

Specific behaviours $\checkmark \text{ expresses integral in terms of } \int [f(x)]^* f'(x) \, dx \\ | \checkmark \text{ integrales correctly and adds constant}$

(2 marks)

 $\int_{0}^{\delta} e^{-j\lambda x} dx = \left(-\frac{1}{2}e^{-2x}\right)_{\mu=0}^{|x-\delta|}$ $= \frac{1}{2}\left(-e^{-10} + e^{0}\right) = \frac{1}{2}\left(-e^{-10}\right)$ $\int_0^5 e^{-2x} \, dx$ (Q

Specific behaviours finds the integrand
 substitutes limits of integration and simplifies

> SAMPLE EXAMINATION MARKING KEY x + 3y + z = 2 2x + 5y + 3z = 11 4x + 3y + 2z = 169 MATHEMATICS 3C/3D CALCULATOR-FREE Question 7

Solve the system of equations

Solution Eq2-2Eq1→ Eq2 Eq3-4Eq1→ Eq3 9Eq2-Eq3 -y+z=7 -9y-2z=8 11z=55For example:

Substitution gives y = -2 and x = 3

SAMPLE EXAMINATION MARKING KEY (4 marks) MATHEMATICS 3C/3D CALCULATOR-FREE Question 8

The graph passes through the point (0, 2), and The graph of $y=ae^{bx}+c$ is shown below. $y\to 3$ as $x\to \infty$

(a) is b positive or negative? Justify your answer.

(1 mark)

Solution Since $y \to 3$ as $x \to \infty$, $e^{0x} \to 0$ as $x \to \infty$. So b must be negative.

Specific behaviours gives logical argument as to why b is negative

(b) Evaluate α and c.

(2 marks)

Since $y \to 3$ as $x \to \infty$, c = 3. Since $y(0) = ae^0 + c = a + c = 2$, a = -t. Since $y(0) = ae^0 + c = a + c = 2$. Specific behaviours Solution ✓ evaluates c

(c) Sketch on the same axes the graph of $y = \alpha e^{2bx} + c$.

(1 mark)

See graph above.