Getting Started (cont.)

Content

Sorting problem

- Sorting algorithms
 - Insertion sort $\Theta(n^2)$.
 - Merge sort $\Theta(n \lg n)$.

Merge

- What is merge sort?
 - A sorting algorithm using merge.
- What is merge?
 - Given two sorted lists of keys, generate a sorted list of the keys in the given sorted lists.
 - \bullet <1, 5, 6, 8> < 2, 4, 7, 9> \rightarrow < 1, 2, 4, 5, 6, 7, 8, 9>

Merge

Merging example

• <1, 5, 6, 8> <2, 4, 7, 9>
$$\rightarrow$$
 <1>
• < 5, 6, 8> <2, 4, 7, 9> \rightarrow <1, 2>
• < 5, 6, 8> < 4, 7, 9> \rightarrow <1, 2, 4>
• < 5, 6, 8> < 7, 9> \rightarrow <1, 2, 4, 5>
• < 6, 8> < 7, 9> \rightarrow <1, 2, 4, 5, 6>
• < 8> < 7, 9> \rightarrow <1, 2, 4, 5, 6, 7>
• < 8> < 9> \rightarrow <1, 2, 4, 5, 6, 7, 8>
• < 9> \rightarrow <1, 2, 4, 5, 6, 7, 8>
• < 9> \rightarrow <1, 2, 4, 5, 6, 7, 8, 9>

Merge

- Running time of merge
 - Let n_1 and n_2 denote the lengths of two sorted lists.
 - $\Theta(n_1 + n_2)$ time.
 - Main operations: compare and move
 - #comparison ≤ #movement
 - Obviously, #movement = $n_1 + n_2$
 - So, #comparison $\leq n_1 + n_2$
 - Hence, #comparison + #movement $\leq 2(n_1 + n_2)$
 - which means $\Theta(n_1 + n_2)$.

Merge sort

- A divide-and-conquer approach
 - **Divide:** Divide the n keys into two lists of n/2 keys.
 - Conquer: Sort the two lists recursively using merge sort.
 - Combine: Merge the two sorted lists.

Merge sort

Merge sort

Pseudo code

```
MERGE-SORT(A, p, r)
```

- 1 if p < r
- $2 q = \lfloor (p+r)/2 \rfloor$
- 3 MERGE-SORT(A, p, q)
- 4 MERGE-SORT(A, q + 1, r)
- 5 MERGE(A, p, q, r)

Merge(A, p, q, r)

```
for i = 1 to n_1
  L[i] = A[p+i-1]
  for j = 1 to n_2
  R[j] = A[q+j]
8 L[n_1+1] = \infty
9 R[n_2+1] = \infty
10 i = 1
11 j = 1
12 for k = p to r
   if L[i] \leq R[j]
13
14
        A[k] = L[i]
15 i = i + 1
16 else A[k] = R[j]
17
    j = j + 1
```

What if there are two keys with the same values?
Insertion sort? Merge sort?

Running time

- \circ Divide: $\Theta(1)$
 - The divide step just computes the middle of the subarray, which takes constant time.
- \circ Conquer: 2T(n/2)
 - We recursively solve two subproblems, each of size n/2.
- \circ Combine: $\Theta(n)$
 - We already showed that merging two sorted lists of size n/2 takes $\Theta(n)$ time.

Running time

 \circ T(n) can be represented as a recurrence.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Running time

where the constant c represents the time required to solve problems of size 1 as well as the time per array element of the divide and combine steps.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

$$T(n) = \begin{cases} c & \text{if } n=1, \\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

 $Total : cnlgn + cn = \Theta(nlgn)$

• Divide and conquer with a subproblems and each of which is 1/a the size of the original.

• Divide and conquer with a subproblems and each of which is 1/b the size of the original.

- Suppose that our division of the problem yields a subproblems, each of which is 1/b the size of the original.
- Let D(n) denote time to divide the problem into subproblems.
- Let C(n) denote time to combine the solutions to the subproblems into the solution to the original problem.
- We get the recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq c, \\ aT(n/b) + D(n) + C(n) & \text{otherwise.} \end{cases}$$

- For merge sort,
 - a = b = 2.
 - $D(n) = \Theta(1)$.
 - $C(n) = \Theta(n)$.
- The worst-case running time T(n) of merge sort:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n=1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Self-study

Merge sort

- Exercise 2.3-1
- Exercise 2.3-2

• Horner's rule

- Problem 2-3 (a) (b)
- Loop invariant is difficult.

More (sorting) algorithms

- Binary Search
 - Exercise 2.3-5

- Selection sort
 - Exercise 2.2-2

- Bubble sort
 - Problem 2-2
- http://www.sorting-algorithms.com/