	WHAIT IS CLAIMED IS:
1	1. A method for processing a matrix of elements in a processor, the
2	method comprising steps of:
3	loading a first subset of matrix elements from a first location;
4 .	loading a second subset of matrix elements from a second location;
5	storing a third subset of matrix elements in a first destination; and
6	storing a fourth subset of matrix elements in a second destination, wherein
7	the loading and storing steps result from a first instruction issue.
1	2. The method for processing the matrix of elements in the processor
2	as recited in claim 1, wherein n sub-instructions perform an n -by- n matrix transpose.
1	3. The method for processing the matrix of elements in the processor
2	as recited in claim 1, wherein the first loading step is performed with a first processing
3	path and the second loading step is performed with a second processing path.
1	4. The method for processing the matrix of elements in the processor
2	as recited in claim 1, further comprising the steps of:
3	loading a fifth subset of matrix elements from a fifth location;
4	loading a sixth subset of matrix elements from a sixth location;
5	storing a seventh subset of matrix elements in a third destination; and
6	storing a eighth subset of matrix elements in a fourth destination.
1	5. The method for processing the matrix of elements in the processor
2	as recited in claim 4, wherein the loading and storing steps introduced in claim 4 result
3	from a second instruction issue.
1	6. The method for processing the matrix of elements in the processor
2	as recited in claim 4, wherein each of the first through fourth destination include a matrix
3	column.
1	7. The method for processing the matrix of elements in the processor
2	as recited in claim 1, wherein each of the first through fourth locations include a matrix
3	row.

1	Jung/>	The method for processing the matrix of elements in the processor
2	as recited in	claim 1, wherein the third and fourth subsets each comprise elements from
3	the first and s	second subsets.
l 2		9. A processing core for transposing a matrix, comprising:
2		a first source location comprising a first plurality of matrix elements;
3		a second source register comprising a second plurality of matrix elements;
4		a third source register comprising a third plurality of matrix elements;
5		a fourth source register comprising a fourth plurality of matrix elements;
6		a first destination register comprising a fifth plurality of matrix elements;
7		a second destination register comprising a sixth plurality of matrix
8	elements;	
9		a first processing path coupled to the first through fourth source registers
0	and the first of	destination register; and
1		a second processing path coupled to the first through fourth source
2	registers and	the second destination register.
1		10. The processing core for transposing the matrix of claim 9, wherein:
2		the first through fourth registers each include a plurality of source fields,
3	and	. \
4		each source field includes a matrix element.
1		11. The processing core for transposing the matrix of claim 9, wherein:
2		the first and second destination registers each include a plurality of result
3	fields, and	
4		each source field includes a matrix element.
7		each source held includes a matrix expinent.
1		12. The processing core for transposing the matrix of claim 9, further
2	comprising	
3		first and second instruction processors; and
4		an exchange path between the first and second instruction processors.
1		13. The processing core for transposing the matrix of claim 9, wherein
2	the first proc	essing path receives a first sub-instruction and the second processing path
3	receives a se	cond sub-instruction

	h.b.(
1	The processing core for transposing the matrix of claim 9, wherein
2	each of the first through fourth source registers include a matrix row.
1	15. The processing core for transposing the matrix of claim 9, wherein
2	each of the first and second destination registers include a matrix column.
1	16. The processing core for transposing the matrix of claim 9, wherein
2	the first and second destination registers are addressed by a first and second sub-
3	instructions which are included in a very long instruction word.
1	17. A method for processing a matrix of elements, the method
2	comprising steps of:
3	loading a first instruction;
4	loading a second instruction, wherein the first and second instructions
5	address a first source register, second source register, third source register, fourth source
6	register, first destination register and second destination register;
7	loading a third instruction;
8	loading a fourth instruction, wherein the third and fourth instructions
9	address the first source register, the second source register, the third source register, the
10	fourth source register, a third destination register and a fourth destination register;
11	storing a first element of the first source register in the first destination
12	register; and
13	storing a fourth element of the first source register in the fourth destination
14	register, wherein a plurality of the first through fourth elements comprise a same
15	instruction issue.
1	18. The method for processing the matrix of elements of claim 17,
2	wherein the first and second instructions include a first operation code and the third and
3	fourth instructions include a second operation code different from the first operation code.
1	19. The method for processing the matrix of elements of claim 17,
2	wherein the first and second instructions include a first operation code and the third and
3	fourth instructions include a second operation code different from the first operation code.

1 The method for processing the matrix of elements of claim 17,

wherein the first instruction is a sub-instruction in a very long instruction word.

add)