A mathematical modeling toolbox for ion channels and transporters across cell membranes

Shadi Zaheria, Fatemeh Hassanipoura,*

^aDepartment of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA

- The following supplementary material is from " A mathematical modeling toolbox for ion channels
- 2 and transporters across cell membranes" manuscript. It contains an overview of all equations
- 3 related to Ion channels, Pumps, Cotransporters, and Symporters, organized in a table form. The
- 4 detailed transporters along with the descriptions of their equatuons can be found from here.

^{*}This document is the result of the research project funded by the National Science Foundation.

^{*}Corresponding author

9 1.1.3. Voltage Gated Potassium Channel (VGPC, k_v)

	r 4 7
	[4]
$i_{K,K_{\nu}} = g_{K_{\nu}} (f_o^{K\nu})^2 \left(V_m^{M-N} - V_{K,re\nu}^{M-N} \right) $ (15)	
where:	
$f_o^{K\nu} = C_f f_f^{K\nu} + C_s f_s^{K\nu} \tag{16}$	
$\frac{df_f^{Kv}}{dt} = \frac{\bar{f}_o^{Kv} - f_f^{Kv}}{\tau_{f_c}^{Kv}} \tag{17}$	
$\frac{df_s^{Kv}}{dt} = \frac{\bar{f}_o^{Kv} - f_s^{Kv}}{\tau_{f_s}^{Kv}} \tag{18}$	
$\tau_{f_f}^{K_V} = A_{\tau_{f_f}^{K_V}} exp \left[\left(\frac{-(V_m^{M-N} + V_{\tau_{f_f}^{K_V}})}{k_{\tau_{f_f}^{K_V}}} \right)^2 \right] - B_{\tau_{f_f}^{K_V}} $ (19)	
$\tau_{f_s}^{Kv} = A_{\tau_{f_s}^{Kv}} exp\left[\left(\frac{-(V_m^{M-N} + V_{\tau_{f_s}^{Kv}})}{k_{\tau_{f_s}^{Kv}}}\right)^2\right] + B_{\tau_{f_s}^{Kv}} $ (20)	
$\bar{f}_o^{Kv} = \frac{1.0}{1.0 + exp\left(\frac{-(V_m^{M-N} - V_{1/2, Kv}^{M-N})}{k_{Kv}}\right)} $ (21)	
$V_{1/2,K\nu} = A \tag{22}$	
	[9]
$i_{K,Kv} = g_{K_v} \left(V_m - V_{K,rev} \right)$ where:	
where. $g_{K_{\nu}} = g_{K\nu}^{\circ} n^4 \tag{24}$	
dn	
$\frac{dN}{dt} = \alpha_n \left(1 - n(t) \right) - \beta_n \ n(t) \tag{25}$	

Table 2: The corresponding equations describing the ionic current transported via Voltage Gated Potassium Channel (VGPC, k_v) across the cell membrane