

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

light intensity decreased the thallus decreased in size, the air chambers decreased in number per unit area, and chloroplasts appeared in the dorsal epidermal cells. In the region of least light intensity and in dripping water a form was found which showed neither air chambers, ventral scales, nor tuberculate rhizoids. Miss Maybrook concludes that the factors responsible for this condition of the thallus are diminished light intensity and excessive moisture. Since none of these plants were in fruit the question of identity naturally is of prime importance. The long series of recently conducted experiments on undoubted *Fegatella conica* by Bryan in this laboratory show that under extreme conditions of moisture the air chambers can be somewhat modified. Bryan eliminated neither air chambers nor ventral scales. The reviewer considers the presence of air chambers and ventral scales of such importance in undoubted Marchantiales that he hopes Miss Maybrook will place some of the plants under suitable conditions for fruiting in order that there may be no doubt of their identity.—W. J. G. Land.

Notes from Florida.—HARSHBERGER⁷ has written a popular sketch of his journey across the Everglades, promising later to give a detailed account of the plant formations studied. Attention is called to the great lack of scientific knowledge of this region. South Florida is regarded as that portion of the state south of 27°. Brief treatment is given the plant and animal life, agricultural possibilities, and other topics.

BESSEY⁸ has given a brief description of the hammocks, as they are seen about Miami, contrasting them with the pine lands and with the Everglades. Reference is made to a number of the more interesting species, and the cause of the sharp contrast between the vegetation of the pine lands and that of the hammocks is discussed.

In a steamboat ride up the Apalachicola River, R. M. Harper⁹ noted a considerable change in the bank vegetation in the progress of the journey. Among the possible explanations suggested for this common phenomenon, the chief place is given to the probability that the upstream plants require or tolerate greater fluctuation in level than do the plants of the estuarine swamps, in which, of course, the seasonal changes in level are small.—H. C. Cowles.

An ecological study of weeds.—Weeds have been largely neglected by ecologists and phytogeographers, who for the most part have concerned themselves with the more primeval types of vegetation. For several years Miss Brenchley has been making observations on the soil relations of weeds, and

⁷ HARSHBERGER, J. W., South Florida; a geographic reconnaissance. Bull. Geog. Soc. Phila. 10:37-47. figs. 10. 1912.

⁸ Bessey, E. A., The hammocks and everglades of southern Florida. Plant World 14:268-276. figs. 2. 1911.

⁹ HARPER, R. M., The river-bank vegetation of the lower Apalachicola, and a new principle illustrated thereby. Torreya 11:225-234. fig. 1. 1911.