Machine Learning Project Documentation

Model Refinement

1. Overview

The model refinement phase focused on optimizing the initial machine learning model to improve predictive accuracy, generalization, and robustness. This phase involved hyperparameter tuning, cross-validation adjustments, and feature selection to address overfitting and enhance performance on unseen data.

2. Model Evaluation

Initial Model Performance:

- Accuracy: 82% (training), 75% (validation) Indicated slight overfitting.
- **Precision/Recall:** Class imbalance observed in literacy rate predictions.
- Key Visualizations:
 - o Confusion matrix showed higher misclassification in rural vs. urban regions.
 - o Learning curves revealed high variance, suggesting need for regularization.

Areas for Improvement:

- Reduce overfitting.
- Address class imbalance.
- Optimize hyperparameters for better generalization.

3. Refinement Techniques

Techniques Applied:

- **Algorithm Selection:** Switched from Logistic Regression to **Random Forest** (better for imbalanced data).
- Ensemble Methods: Used Gradient Boosting (XGBoost) to improve accuracy.
- Class Imbalance: Applied SMOTE (Synthetic Minority Oversampling).
- **Dimensionality Reduction:** PCA for feature selection in geospatial data.

4. Hyperparameter Tuning

Methods:

- **GridSearchCV** for exhaustive parameter search.
- RandomizedSearchCV for faster optimization.

Key Hyperparameters Tuned:

- Random Forest: max_depth, n_estimators, min_samples_split.
- XGBoost: learning rate, subsample, colsample bytree.

Impact:

- Improved validation accuracy from $75\% \rightarrow 83\%$.
- Reduced overfitting (training/validation gap narrowed).

5. Cross-Validation

Original Strategy: 5-fold CV.

Refinements:

- Stratified K-Fold (10 folds) to handle class imbalance.
- TimeSeriesSplit for literacy trend forecasting (ARIMA).

Reasoning:

- Stratified CV ensured balanced representation across regions.
- TimeSeriesSplit prevented data leakage in temporal data.

6. Feature Selection

Methods Used:

- Recursive Feature Elimination (RFE) with Random Forest.
- Correlation Matrix to remove multicollinear features.

Results:

- Reduced features from $50 \rightarrow 25$ without losing predictive power.
- Improved model interpretability.

Test Submission

1. Overview

The test phase evaluated the refined model's performance on unseen data, ensuring readiness for deployment. Steps included data preprocessing, model inference, and metric evaluation.

2. Data Preparation for Testing

Steps:

- Applied same preprocessing as training (scaling, imputation).
- Ensured no data leakage (separate test set).
- Handled missing values with **median imputation**.

3. Model Application

Process:

- Loaded trained model (joblib/pickle).
- Generated predictions on test data.

Code Snippet:

```
import joblib
```

```
# Load model
model = joblib.load('literacy_model_xgboost.pkl')
# Predict on test set
y pred = model.predict(X test)
```

4. Test Metrics

Results:

Metric	Training	Validation	Test
Accuracy	88%	83%	81%
Precision	0.87	0.82	0.80
Recall	0.85	0.81	0.79
F1-Score	0.86	0.815	0.795

Insights:

• Slight drop in test performance (expected due to real-world variance).

• Model generalized well compared to validation.

5. Model Deployment

Steps Taken:

- Containerized model using **Docker**.
- Deployed as **REST API** (Flask/FastAPI).
- Integrated with Ethiopian Ministry of Education's dashboard.

Challenges:

• Latency issues with large datasets → Optimized batch prediction.

6. Code Implementation

Hyperparameter Tuning Example:

```
from sklearn.model_selection import GridSearchCV

params = {
    'n_estimators': [100, 200],
    'max_depth': [10, 20]
}

grid = GridSearchCV(RandomForestClassifier(), params, cv=5)
grid.fit(X_train, y_train)
```

Conclusion

- Model Refinement: Improved accuracy by 8%, reduced overfitting.
- **Test Phase:** Model generalized well (81% test accuracy).
- **Deployment:** Successfully integrated with MoE systems.

Challenges:

- Class imbalance in rural/urban data.
- Latency in real-time predictions.

References

- Pedregosa et al. (2011). Scikit-learn: Machine Learning in Python. JMLR.
 Chen & Guestrin (2016). XGBoost: A Scalable Tree Boosting System. KDD.
 Chawla et al. (2002). SMOTE: Synthetic Minority Over-sampling Technique. JAIR.