

* Where Can me apply the Binary Search?

Dinary Search can be applied? when the can come up with a logic of discarding half of the search space in every iteration. B. Given an Array of size N et distinct elements hoofe find any local minima in Array. A number smaller than both of its neighbours. Ali-1] > Ali] < [1-1] A < [1-1] A < [1-1] A minima. A: $\{3, 6, \pm, 0, 9, 15, 83 \Rightarrow 3, 0, 8.$ 3<6 ~ 0 < 9 < 15 × 3 < 6 > 1 × 9<15>8 × 6 > 1 7 0 X 12 >8 1>0<9 V

guiz

Qui2

A: [5,9,15,16,20,25]

Qui2

A: [24,21,19,17,15,9,7]

Quiz Will there be always a botal minima? => YES. # for inder (i) to be a local minima: C^{1+i} > C^{i-1} < C^{i-1} (right) (lyt) בוויון א [1+i]A > [i]A > [1-i]A -> local minima mill be C1-37 A present on the My+ side yor sure. => moue to left. [1+i] A < [i] A < [i-1] A => Move to right. ر ۵۱٬۴۱۸ [1+1]A < [1]A > [1-1]A (8 Ci JA => Move to any direction April April # Moving towards the smaller neighbour gives I the local minima

```
tui
      local Minima (int AC), int N) (
       ( [1]A > [0]A ) +i
           return A[0];
       14 ( A[N-1] < A[N-2])
              return A[N-1];
       J=1, x= N-2;
       while ( 1<= 2) 1
           mid= (1+2)12;
           [1+bim]A > [bim]A) ]i
                 ( [1-bim] A > [bim]A &
               veturn Almid];
           else if (A[mid-1] < A[mid]) {
               11 move to left.
               r= mid-1;
              se t
11 move to right.
l= neid+1;
```

l	<i>S</i> .	nid	A[mid]	[I+bim]A	[I-bim]A
<u></u>	Б	3	7	6	2_
\mathcal{T}	2.	1	8	2	9
2	2	2	2	7	8
			4>2<8 U		
niuna.					

B.2 Every element appears truice encept one clement. Find the single element.

*All the pairs of duplicates will always be adjacent to each other.

A: 3, 3, 1, 8, 8, 10, 10, 6, 2, 2, 4, 4.

* Before the single element.

- => 1st occurrence of all the pairs is present at even inden.
- => 2 occurrence of all the pairs is present at odd inden.

* After the single element.

- Present at odd inden.
- => 2nd occurrence of all the pairs is present at even inden.

TC: O(log N) SC: O(1)

Que Given a number N, find sqrt(N) floor (sqrt(N)) =) Proteger pard.

> E = (01) trp2 Sqrt (25) = 5 8 (20) = 4 Int sqrt(N)? (=1; ous=0; mhile(1 * 1 <= N) 1 aus= ?; î++ °, ueturn ans; 2

TC: 0(sqrt(N))

find max value of i such that i* i <= N

 $min \ ans \Rightarrow \bot$ $max \ ans \Rightarrow N$

Search space: [1, N]

Search for ans in the range [1, N] (Using Bihary Search)

* [1, N], L=1, x=N

if mid * nid > N => move to left => r= nid-1;

if nid * mid < N ⇒ move to right ⇒ ons= nid. ⇒ d= mid+1

> TC: O(log N) SC: O(1)

Search in sorted & rotated Array. A: 1, 2, 3, 4, 5, 8, 10 pripport, snapped, K=2 => 5 K=8 → 2 K=14 => -1 [4,56,8,1,2,3] A: 1, 2, 3, 4, 5, 7, 8, 10, 12, 15, 17, 21, 32, 40 rotate [o]A 4,5,7,8,10,12,15,17,21,82,40, 1,2,3 1st part

- * Sorted & rotated Array => concatenation of 2 sorted arrays.
- * AN the elements in the 2nd part me less than the elements in 1st part

 A[0] mill be greater than all the elements of 2nd part.

A[0] = 8 & A[i] = 4

 $f \circ j A > f \circ j A$

=> Asij will be present in 2nd Part.

8ui2 A(0) = 8 & A(i) = 15

[0]A < [i]A

=> Asij will be present in 1st Part.

Generalisation:

- 1) If $A[i] > A[o] \Rightarrow i^{St}$ part 2) If $A[i] < A[o] \Rightarrow 2^{nd}$ part.
- * find pivot inden

10, 20, 30, 1, 2, 3, 4, 5, 6, 4, 8, 9 end inden & X D Start Pinden of

of 1st Pivot inden 2nd half

Part Pivot inden = #

J.	x	mid \	A[mid]	Pivot index	move to
0	11	5	3	5	left
0	4	2	30	5	right
3	4	3	7	3	left
3	2			Rivot	
		7		Inden	
l> r ⇒ Break					

A: 5, 8, 10, 14, 18, 22, -15, -4, -6, 0, 2

J)	x \	nid \	A[mid]	Pivot index	move to	
0	10	5	22	-1	right	
6	10	8	- 6	8	left	
6	7	6	-15	6	left	
0						
€	5	3				
	17 x					
ely r Break.						
A	: 1,	2,3,	3 4. p	ivot = -		

l l	x \	nid \	A[mid]	Pivot inden	move to
	3		2	-1	right
2	3	2	3	-1	right
3	3	3	4	-1	right
4	3				
	break		·	·	

* IJ NO updates in pivot inden.

> NO rotations.

Steps !-

1) find pivot inden (Binary Search) => Ollog N)

2) if $(K > A[0]) \Rightarrow$ Search in 1st Part $\Rightarrow BS(A, 0, P-1);$ if $(K < = A[0]) \Rightarrow$ Search in 2nd Part $\Rightarrow BS(A, P, N-1);$

> TC: O(logN) Sc: O(1)

Implement this mith One Binary Search Cell: