Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2023

Minimierung von deterministischen endlichen Automaten

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik

Stand: 16. Mai 2023 Folien ursprünglich von PD Dr. David Sabel

Äquivalenzklassenautomat

Definition (Äquivalenzklassenautomat)

Sei $M=(Z,\Sigma,\delta,z_0,E)$ ein DFA. Wir nennen zwei Zustände $z,z'\in Z$ äquivalent und schreiben $z\equiv z'$ falls gilt: für alle $w\in\Sigma^*:\widehat{\delta}(z,w)\in E\Longleftrightarrow\widehat{\delta}(z',w)\in E$. Der Äquivalenzklassenautomat zu M ist der DFA $M'=(Z',\Sigma,\delta',z'_0,E')$ mit

$$Z' = \{ [z]_{\equiv} \mid z \in Z \}$$

$$z'_0 = [z_0]_{\equiv}$$

$$E' = \{ [z]_{\equiv} \mid z \in E \}$$

$$\delta'([z]_{\equiv}, a) = [\delta(z, a)]_{\equiv}$$

Satz

Sei $M=(Z,\Sigma,\delta,z_0,E)$ ein DFA und $M'=(Z',\Sigma,\delta',z'_0,E')$ der Äquivalenzklassenautomat zu M. Dann gilt

- 1. L(M') = L(M).
- 2. Falls alle Zustände in Z vom Startzustand z_0 erreichbar sind, dann ist M' minimal.

Beweis (nur Teil 1):

Satz

Sei $M=(Z,\Sigma,\delta,z_0,E)$ ein DFA und $M'=(Z',\Sigma,\delta',z'_0,E')$ der Äquivalenzklassenautomat zu M. Dann gilt

- 1. L(M') = L(M).
- 2. Falls alle Zustände in Z vom Startzustand z_0 erreichbar sind, dann ist M' minimal.

Beweis (nur Teil 1): Sei $w \in \Sigma^*$. Dann gilt:

▶ M durchläuft die Zustandsfolge $q_0, \ldots, q_{|w|}$ entlang w und akzeptiert w g.d.w. $q_{|w|} \in E$ gilt.

Satz

Sei $M=(Z,\Sigma,\delta,z_0,E)$ ein DFA und $M'=(Z',\Sigma,\delta',z_0',E')$ der Äquivalenzklassenautomat zu M. Dann gilt

- 1. L(M') = L(M).
- 2. Falls alle Zustände in Z vom Startzustand z_0 erreichbar sind, dann ist M' minimal.

Beweis (nur Teil 1): Sei $w \in \Sigma^*$. Dann gilt:

- ▶ M durchläuft die Zustandsfolge $q_0, \ldots, q_{|w|}$ entlang w und akzeptiert w g.d.w. $q_{|w|} \in E$ gilt.
- ▶ M' durchläuft die Zustandsfolge $[q_0]_{\equiv}, \ldots, [q_{|w|}]_{\equiv}$ und akzeptiert w g.d.w. $[q_{|w|}]_{\equiv} \in E'$ gilt.

Satz

Sei $M=(Z,\Sigma,\delta,z_0,E)$ ein DFA und $M'=(Z',\Sigma,\delta',z_0',E')$ der Äquivalenzklassenautomat zu M. Dann gilt

- 1. L(M') = L(M).
- 2. Falls alle Zustände in Z vom Startzustand z_0 erreichbar sind, dann ist M' minimal.

Beweis (nur Teil 1): Sei $w \in \Sigma^*$. Dann gilt:

- ▶ M durchläuft die Zustandsfolge $q_0, \ldots, q_{|w|}$ entlang w und akzeptiert w g.d.w. $q_{|w|} \in E$ gilt.
- ▶ M' durchläuft die Zustandsfolge $[q_0]_{\equiv}, \ldots, [q_{|w|}]_{\equiv}$ und akzeptiert w g.d.w. $[q_{|w|}]_{\equiv} \in E'$ gilt.

Da per Definition $[q_{|w|}]_{\equiv} \in E'$ genau dann gilt, wenn $q_{|w|} \in E$ gilt, folgt, dass M und M' dieselben Wörter akzeptieren.

Zustandsminimierung von DFAs

- A. Entferne nicht erreichbare Zustände.
- B. Berechne äquivalente Zustände (bezüglich \equiv).
- C. Bilde Äquivalenzklassenautomat, indem äquivalente Zustände verschmolzen werden.

Zustandsminimierung von DFAs

- A. Entferne nicht erreichbare Zustände.
- B. Berechne äquivalente Zustände (bezüglich \equiv).
- C. Bilde Äquivalenzklassenautomat, indem äquivalente Zustände verschmolzen werden.

Schritte:

1. Markiere Paare von Zuständen, die verschieden sein müssen. Markiere initial alle $\{z,z'\}$ mit $z\in E, z'\not\in E$.

- 1. Markiere Paare von Zuständen, die verschieden sein müssen. Markiere initial alle $\{z, z'\}$ mit $z \in E$, $z' \notin E$.
- 2. Vervollständige das Markieren durch Untersuchen von Übergängen:
 - 2.1 Wenn $\{z, z'\}$ noch nicht markiert: Prüfe für jedes $a \in \Sigma$, ob die beiden Nachfolger $\{\delta(z, a), \delta(z', a)\}$ markiert sind.
 - 2.2 Falls ja, dann markiere $\{z, z'\}$.
 - 2.3 Wiederhole, bis sich nichts mehr ändert.

- 1. Markiere Paare von Zuständen, die verschieden sein müssen. Markiere initial alle $\{z, z'\}$ mit $z \in E$, $z' \notin E$.
- 2. Vervollständige das Markieren durch Untersuchen von Übergängen:
 - 2.1 Wenn $\{z, z'\}$ noch nicht markiert: Prüfe für jedes $a \in \Sigma$, ob die beiden Nachfolger $\{\delta(z, a), \delta(z', a)\}$ markiert sind.
 - 2.2 Falls ja, dann markiere $\{z, z'\}$.
 - 2.3 Wiederhole, bis sich nichts mehr ändert.
- 3. Alle am Ende unmarkierten Paare sind äquivalente Zustände.

Algorithmus 3: Berechnung aller äquivalenten Zustände

```
Eingabe: DFA M = (Z, \Sigma, \delta, z_0, E), der keine unerreichbaren Zustände hat
Ausqabe: Zustandspaare \{z, z'\} mit z \neq z' für die gilt z \equiv z'
Beginn
   stelle Tabelle T aller Zustandspaare \{z, z'\} mit z \neq z' und z, z' \in Z auf;
   markiere alle Paare \{z, z'\} in T mit z \in E und z' \notin E;
   wiederhole
       für jedes unmarkierte Paar \{z, z'\} in T tue
            für jedes a \in \Sigma tue
               wenn \{\delta(z,a),\delta(z',a)\} in T markiert ist dann
                    markiere \{z, z'\} in T:
                Ende
            Ende
        Ende
    bis sich T nicht mehr verändert:
   return \{\{z, z'\} \mid \{z, z'\} \text{ ist nicht markiert in } T\}
Ende
```

Satz

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der keine unerreichbaren Zustände hat.

Algorithmus 3 berechnet äquivalente Zustandspaare von M und es gibt keine weiteren äquivalenten Paare.

Satz

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der keine unerreichbaren Zustände hat. Algorithmus 3 berechnet äquivalente Zustandspaare von M und es gibt keine weiteren äquivalenten Paare.

Beweis:

- ▶ Teil 1: Wird das Paar $\{z, z'\}$ markiert, dann gilt $z \neq z'$.
- ▶ Teil 2: Wenn $z \not\equiv z'$, dann wird das Paar $\{z, z'\}$ markiert.

Satz

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der keine unerreichbaren Zustände hat.

Algorithmus 3 berechnet äquivalente Zustandspaare von ${\it M}$ und es gibt keine weiteren äquivalenten Paare.

Satz

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der keine unerreichbaren Zustände hat.

Algorithmus 3 berechnet äquivalente Zustandspaare von ${\it M}$ und es gibt keine weiteren äquivalenten Paare.

Beweis (Teil 1): Wird das Paar $\{z, z'\}$ markiert, dann gilt $z \not\equiv z'$.

▶ Wir zeigen: Für jedes markierte Paar $\{z, z'\}$ gibt es Wort w mit $\neg(\widehat{\delta}(z, w) \in E \iff \widehat{\delta}(z', w) \in E)$.

Satz

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der keine unerreichbaren Zustände hat.

Algorithmus 3 berechnet äquivalente Zustandspaare von ${\it M}$ und es gibt keine weiteren äquivalenten Paare.

- ▶ Wir zeigen: Für jedes markierte Paar $\{z, z'\}$ gibt es Wort w mit $\neg(\widehat{\delta}(z, w) \in E \iff \widehat{\delta}(z', w) \in E)$.
- Induktion über Anzahl Schleifeniterationen bis $\{z, z'\}$ markiert wird.

Satz

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der keine unerreichbaren Zustände hat.

Algorithmus 3 berechnet äquivalente Zustandspaare von M und es gibt keine weiteren äquivalenten Paare.

- ▶ Wir zeigen: Für jedes markierte Paar $\{z, z'\}$ gibt es Wort w mit $\neg(\widehat{\delta}(z, w) \in E \iff \widehat{\delta}(z', w) \in E)$.
- ▶ Induktion über Anzahl Schleifeniterationen bis $\{z, z'\}$ markiert wird.
- ▶ Basis: 0 Iterationen, $\{z, z'\}$ wird vor der Schleife markiert, $w = \varepsilon$ erfüllt Behauptung.

Satz

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der keine unerreichbaren Zustände hat.

Algorithmus 3 berechnet äquivalente Zustandspaare von M und es gibt keine weiteren äquivalenten Paare.

- ▶ Wir zeigen: Für jedes markierte Paar $\{z, z'\}$ gibt es Wort w mit $\neg(\widehat{\delta}(z, w) \in E \iff \widehat{\delta}(z', w) \in E)$.
- ▶ Induktion über Anzahl Schleifeniterationen bis $\{z, z'\}$ markiert wird.
- ▶ Basis: 0 Iterationen, $\{z, z'\}$ wird vor der Schleife markiert, $w = \varepsilon$ erfüllt Behauptung.
- Schritt: Mehr als 0 Iterationen. Dann wird $\{z,z'\}$ markiert, weil es $a\in \Sigma$ und ein markiertes Paar $\{\delta(z,a),\delta(z',a)\}$ gibt. Induktionsannahme liefert Wort w' mit $\neg(\widehat{\delta}(\delta(z,a),w')\in E\Longleftrightarrow\widehat{\delta}(\delta(z',a),w')\in E)$.

Satz

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der keine unerreichbaren Zustände hat.

Algorithmus 3 berechnet äquivalente Zustandspaare von M und es gibt keine weiteren äquivalenten Paare.

- ▶ Wir zeigen: Für jedes markierte Paar $\{z, z'\}$ gibt es Wort w mit $\neg(\widehat{\delta}(z, w) \in E \iff \widehat{\delta}(z', w) \in E)$.
- ▶ Induktion über Anzahl Schleifeniterationen bis $\{z, z'\}$ markiert wird.
- ▶ Basis: 0 Iterationen, $\{z, z'\}$ wird vor der Schleife markiert, $w = \varepsilon$ erfüllt Behauptung.
- ▶ Schritt: Mehr als 0 Iterationen. Dann wird $\{z,z'\}$ markiert, weil es $a \in \Sigma$ und ein markiertes Paar $\{\delta(z,a),\delta(z',a)\}$ gibt. Induktionsannahme liefert Wort w' mit $\neg(\widehat{\delta}(\delta(z,a),w')\in E \iff \widehat{\delta}(\delta(z',a),w')\in E)$.
- ▶ Mit w = aw' folgt: $\neg(\widehat{\delta}(z, w) \in E \iff \widehat{\delta}(z', w) \in E)$.

Satz

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der keine unerreichbaren Zustände hat.

Algorithmus 3 berechnet äquivalente Zustandspaare von M und es gibt keine weiteren äquivalenten Paare.

Beweis (Teil 2): Wenn $z \not\equiv z'$, dann wird das Paar $\{z, z'\}$ markiert.

Satz

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der keine unerreichbaren Zustände hat.

Algorithmus 3 berechnet äquivalente Zustandspaare von M und es gibt keine weiteren äquivalenten Paare.

Beweis (Teil 2): Wenn $z \not\equiv z'$, dann wird das Paar $\{z, z'\}$ markiert.

▶ Beweis durch Widerspruch. Annahme es gibt Paare $z \not\equiv z'$, die der Algorithmus nicht markiert. O.B.d.A. können wir ein Paar $\{z,z'\}$ wählen, für welches es ein minimal langes Wort w gibt mit $\neg(\widehat{\delta}(z,w) \in E \iff \widehat{\delta}(z',w) \in E)$.

Satz

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der keine unerreichbaren Zustände hat.

Algorithmus 3 berechnet äquivalente Zustandspaare von M und es gibt keine weiteren äquivalenten Paare.

Beweis (Teil 2): Wenn $z \not\equiv z'$, dann wird das Paar $\{z, z'\}$ markiert.

- ▶ Beweis durch Widerspruch. Annahme es gibt Paare $z \not\equiv z'$, die der Algorithmus nicht markiert. O.B.d.A. können wir ein Paar $\{z,z'\}$ wählen, für welches es ein minimal langes Wort w gibt mit $\neg(\widehat{\delta}(z,w) \in E \iff \widehat{\delta}(z',w) \in E)$.
- ▶ Wenn $w = \varepsilon$, dann wird $\{z, z'\}$ vor der Schleife markiert. Widerspruch.

Satz

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der keine unerreichbaren Zustände hat.

Algorithmus 3 berechnet äquivalente Zustandspaare von M und es gibt keine weiteren äquivalenten Paare.

Beweis (Teil 2): Wenn $z \not\equiv z'$, dann wird das Paar $\{z, z'\}$ markiert.

- ▶ Beweis durch Widerspruch. Annahme es gibt Paare $z \not\equiv z'$, die der Algorithmus nicht markiert. O.B.d.A. können wir ein Paar $\{z,z'\}$ wählen, für welches es ein minimal langes Wort w gibt mit $\neg(\widehat{\delta}(z,w) \in E \iff \widehat{\delta}(z',w) \in E)$.
- ▶ Wenn $w = \varepsilon$, dann wird $\{z, z'\}$ vor der Schleife markiert. Widerspruch.
- Wenn w = aw' mit $a \in \Sigma$, dann gilt: Wenn $\{\delta(z, a), \delta(z', a)\}$ vom Algorithmus markiert wird, dann auch $\{z, z'\}$. Daher: $\{\delta(z, a), \delta(z', a)\}$ wird nicht markiert. Aber dann gilt für w': $\neg \left(\widehat{\delta}(\delta(z, a), w') \in E \iff \widehat{\delta}(\delta(z', a), w') \in E\right)$, d.h. $\delta(z, a) \not\equiv \delta(z', a)$, und |w'| < |w|. Widerspruch zur Minimalität von $\{z, z'\}$.

Laufzeit

- Darstellung der Tabelle T: zweidimensionales Array der Größe $O(|Z| \times |Z|)$
- ► Ermöglicht konstanten Zugriff auf Markierungen
- ▶ Pro Durchlauf der Schleife: $O(|Z|^2 \cdot |\Sigma|)$
- Anzahl der Durchläufe ist durch $|Z|^2$ begrenzt, da es nur $|Z|^2$ Paare gibt und mindestens 1 Paar pro Durchlauf markiert wird
- ▶ Restliche Schritte: Konstante Laufzeit
- ▶ Daher: Algorithmus 3 kann in Zeit $O(|Z|^4 \cdot |\Sigma|)$ implementiert werden
- Tatsächlich gibt es effizientere Implementierungen

Algorithmus 4: Minimierung von DFAs

Eingabe: DFA $M = (Z, \Sigma, \delta, z_0, E)$

Ausgabe: Minimaler DFA M' mit L(M) = L(M')

Beginn

entferne Zustände aus M, die nicht vom Startzustand aus erreichbar sind; berechne äquivalente Zustände mit Algorithmus 3; erzeuge den Äquivalenzklassenautomat, indem die berechneten äquivalenten Zustände verschmolzen werden;

Ende

Sei $\Sigma = \{a, b, c\}$ und der folgende DFA M gegeben:

ightharpoonup alle Zustände sind von z_0 aus erreichbar

Sei $\Sigma = \{a, b, c\}$ und der folgende DFA M gegeben:

- ightharpoonup alle Zustände sind von z_0 aus erreichbar
- ▶ äquivalente Zustände berechnen: Tabelle *T* erstellen

Sei $\Sigma = \{a, b, c\}$ und der folgende DFA M gegeben:

- ightharpoonup alle Zustände sind von z_0 aus erreichbar
- ▶ äquivalente Zustände berechnen: Tabelle *T* erstellen
- ▶ Initiales Markieren: $\{z, z'\}$ mit $z \in \{z_0, z_1, z_2, z_3\}$ und $z' \in \{z_4, z_5\}$

Sei $\Sigma = \{a, b, c\}$ und der folgende DFA M gegeben:

- ightharpoonup alle Zustände sind von z_0 aus erreichbar
- ightharpoonup äquivalente Zustände berechnen: Tabelle T erstellen
- ▶ Initiales Markieren: $\{z, z'\}$ mit $z \in \{z_0, z_1, z_2, z_3\}$ und $z' \in \{z_4, z_5\}$
- ▶ $\{z_0, z_1\}$, da $\{\delta(z_0, c), \delta(z_1, c)\} = \{z_3, z_4\}$ bereits markiert ist,
- $\{z_0, z_2\}$, da $\{\delta(z_0, c), \delta(z_2, c)\} = \{z_3, z_4\}$ bereits markiert ist, und
- $\{z_0, z_3\}$, da $\{\delta(z_0, c), \delta(z_3, c)\} = \{z_3, z_5\}$ bereits markiert

Ergibt
$$z_1 \equiv z_3$$
, $z_1 \equiv z_2$, $z_2 \equiv z_3$, $z_4 \equiv z_5$ und daher die Äquivalenzklassen

$$[z_0]_{\equiv} = \{z_0\}$$

 $[z_1]_{\equiv} = \{z_1, z_2, z_3\}$
 $[z_4]_{\equiv} = \{z_4, z_5\}$

$$[z_0]_{\equiv} = \{z_0\}$$

 $[z_1]_{\equiv} = \{z_1, z_2, z_3\}$
 $[z_4]_{\equiv} = \{z_4, z_5\}$

Der Minimalautomat zu

ist hiermit

