CHƯƠNG 2: CẦU TRÚC PHẦN CỨNG HỆ THỐNG NHÚNG

Bài 5: Giao diện

cuu duong than cong. com

cuu duong than cong. com

Tổng quan

- Khái niệm cơ bản
- Giao diện vi xử lý
 - Địa chỉ I/O
 - Ngắt
 - Truy cập bộ nhớ trực tiếp (DMA)
- Bus phân cấp
- Thủ tục Protocols
 - Nối tiếp
 - Song song
 - Không dây

Giới thiệu

- Chức năng của một hệ thống nhúng
 - Xử lý
 - Biến đổi dữ liệu
 - Thực hiện công việc dùng bọ xử lý
 - Luu trữ
 - Lưu trữ dữ liệu
 - Thực hiện dùng bộ nhớ
 - Truyền thông
 - Trao đổi dữ liệu giữa bộ xử lý và bộ nhớ
 - Hực hiện sử dụng bus
 - Thường được gọi là giao diện interfacing

Một bus đơn giản

• Dây nối:

- Đơn hướng hay song hướng
- Một đường truyền có thể có nhiều dây nối

Bus

- Một nhóm dây nói có chức năng riêng
 - Bus địa chỉ, bus dữ liệu
- Hoặc, việc tập hợp các dây nối
 - Địa chỉ, dữ liệu và điều khiển
 - Thủ tục (protocol): quy tắc cho việc trao đổi thông tin

4

Cổng

- Cổng dùng đấu nối thiết bị ngoại vi
- Kết nối bus tới bộ xử lý và bộ nhớ
- Thường được gọi là "chân" (pin)
 - Là chân thực tế của IC cắm vào để cắm trên mạch in
 - Đôi khi các điểm tiếp xúc thay cho chân
 - Ngày nay, các "pads" kim loại kết nối bộ xử lý và bộ nhớ trong một IC
- Cổng gồm một đường hoặc nhiêu đường với chức năng riêng
 - VD: cổng địa chỉ 12-đường

Giản đồ thời gian

- Phương pháp thông thường nhất để mô tả một thủ tục truyền thông trên công (hoặc bus)
- Thời gian biểu thị trên trục x theo chiều sang bên phải
- Tín hiệu điều khiển: thấp hoặc cao
 - Có thể tích cực thấp
 - Sử dụng thuật ngữ assert (active) và deassert
- Tín hiệu dữ liệu: not valid hoặc valid
- Thủ tục đôi khi có các thủ tục con
 - Chu kỳ bus, VD đọc và ghi
 - Mỗi thao tác có thể gồm nhiều chu kỳ đồng hồ
- Ví dụ quá trình đọc
 - rd'/wr ở mức thấp, địa chỉ đặt lên trên addr trong khoảng thời gian t_{setup} trước khi chân enable được tác động, cho phép bộ nhớ đặt dữ liệu trên chân data trong khoảng thời gian t_{read}

https://fb.com/tailieudientucntt

CuuDuongThanCong.com

Khái niệm cơ bản về thủ tục

- Kiểu tác động: master khởi đầu, slave đáp ứng
- Hướng truyền: phía gửi, phía nhận
- Địa chỉ: kiểu dữ liệu đặc biệt
 - Quy định một vị trí trên bộ nhớ, một ngoại vi, hoặc một thanh ghi trên ngoại vi
- Ghép thời gian
 - Chia sẻ một bộ kênh truyền cho nhiều dữ liệu khác nhau
 - Tiết kiệm dây truyền, nhưng tốn thời gian

Khái niệm thủ tục đơn giản: các phương pháp điều khiển

- 2. Tớ đưa dữ liệu lên trong khoảng \mathbf{t}_{access}
- 3. Chủ nhận dữ liệu và kết thúc req
- 4. Tớ sẵn sàng cho chu kỳ kế tiếp

- 1. Chủ phát *req* để nhận dữ liệu
- 2. Tớ đưa dữ liệu lên bus và gửi tín hiệu *ack*
- 3. Chủ nhận dữ liệu và ngắt req
- 4. Tớ sẵn sàng cho chu kỳ kế tiếp

Thủ tục "Strobe"

Thủ tục "Handshake"

Thủ tục strobe/handshake có thỏa hiệp

- 1. Chủ phát req để nhận dữ liệu
- 2. Tớ đưa dữ liệu lên bus $trong\ khoảng\ t_{access}$ (đường wait không được sử dụng)
- 3. Chủ nhận dữ liệu và kết thúc req
- 4. Tớ sẵn sàng cho chu kỳ kế tiếp

- 1. Chủ phát req để nhận dữ liệu
- 2. Tớ không đặt data t_{access}, đợi wait
- 3. Tớ đặt dữ liệu trên bus và ngắt wait
- 4. Chủ nhận dữ liệu và kết thúc req
- 5. Tớ sẵn sàng cho chu kỳ kế tiếp

Trường hợp đáp ứng nhanh

Trường họp đáp ứng chậm

9

Thủ tục bus ISA bus – truy cập bộ nhớ

- ISA: Kiến trúc công nghiệp tiêu chuẩn
 - Sử dụng cho các họ
 80x86's
- Đặc điểm
 - Đường địa chỉ 20-bit
 - Điều khiển
 strobe/handshake thỏa
 hiệp
 - Mặc định 4 chu kỳ máy

10

Giao tiếp vi xử lý: Địa chỉ I/O

- Một bộ vi xử lý giao tiếp với các thiết bị khác qua chân của nó
 - I/O dựa trên cổng (I/O song song)
 - Bộ xử lý có một hoặc nhiều cổng N-bit
 - Chương trình của bộ xử lý đọc và ghi một cổng như đối với một thanh ghi
 - VD: P0 = 0xFF; v = P1.2; P0 và P1 là cổng 8-bit
 - I/O dựa trên bus
 - Bộ xử lý có cổng địa chỉ, dữ liệu và điều khiển trên một bus đơn
 - Thủ tục truyền thông được xây dựng bên trong bộ xử lý
 - Một lệnh sẽ thực hiện việc ghi hay đọc trên bus

Thỏa hiệp/mở rộng

- Ngoại vi I/O song song
 - Khi bộ xử lý chỉ có I/O dựa trên bus nhưng chúng ta muốn I/O song song
 - Mỗi cổng trên ngoại vi kết nối với một thanh ghi trong ngoại vi được read/written bởi bộ xử lý
- I/O song song mở rộng
 - Khi bộ xử lý chỉ có I/O dựa trên cổng nhưng chúng ta cần nhiều cổng hơn
 - Một hoặc nhiều cổng của bộ xử lý giao tiếp với ngoại vi I/O song song sẽ mở rộng tổng số cổng I/O
 - VD: mở rộng 4 cổng thành 6 cổng như hình bên

Adding parallel I/O to a busbased I/O processor

12

Các kiểu I/O dựa trên bus: I/O bản đồ nhớ và I/O tiêu chuẩn

- Bộ xử lý trao đổi với cả bộ nhớ và ngoại vi sử dụng chung bus –
 có hai cách để trao đổi với ngoại vi
 - I/O bản đồ nhớ
 - Thanh ghi của ngoại vi chiếm địa chỉ trong cùng không gian địa chỉ của bộ nhớ
 - VD: Bus có địa chỉ 16-bit
 - Địa chỉ 32k vùng thấp dùng cho bộ nhớ
 - Địa chỉ 32k vùng cao dùng cho ngoại vi
 - I/O tiêu chuẩn (I/O-mapped I/O)
 - Các chân bổ sung (M/IO) trên bus biểu thị bộ nhớ hoặc ngoại vi được truy cập
 - VD: Bus có địa chỉ 16-bit
 - Tất cả 64K địa chỉ dùng cho bộ nhớ khi chân M/IO ở mức 0
 - $-\,$ Tất cả 64K địa chỉ dùng cho ngoại vi khi chân M/IO ở mức 1

So sánh I/O bản đồ nhớ và I/O tiêu chuẩn

• I/O bản đồ nhớ

- Không yêu cầu lệnh đặc biệt
 - Lệnh assembly có các lệnh như MOV và ADD cngx cho phép làm việc với ngoại vi
 - I/O tiêu chuẩn yêu cầu các lệnh đặc biệt (VD: IN, OUT) để di chuyển dữ liệu giữa thanh ghi của ngoại vi và bộ nhớ
- I/O tiêu chuẩn
 - Không mất địa chỉ nhớ cho ngoại vi
 - Bộ giải mã địa chỉ đơn giản hơn
 - Khi số ngoại vi phải nhỏ hơn không gian địa chỉ thì các bit địa chỉ vùng cao có thể bỏ trống
 - Bộ so sánh nhỏ hơn và/hoặc nhanh hơn

Bus ISA

- ISA cung cấp I/O tiêu chuẩn
 - /IOR khác với /MEMR để cho phép đọc từ thiết bị ngoại vi
 - /IOW sử dụng cho ghi
 - Không gian địa chỉ 16-bit cho
 I/O vs. không gian địa chỉ 20 bit cho bộ nhớ
 - Ngoài ra nó tương tự với thủ
 tục truy cập bộ nhớ
 tuang than cong. com

Một thủ tục truy cập bộ nhớ đơn giản

- Giao tiếp 8051 với bộ nhớ ngoài
 - Cổng P0 và P2 hỗ trợ I/O dựa trên cổng khi bộ nhớ trong của 8051 được sử dụng
 - Các cổng này phục vụ như bus dữ liệu/địa chỉ khi bộ nhớ ngoài được sử dụng
 - Địa chỉ 16-bit và dữ liệu 8-bit được ghép theo thời gian; 8-bits thấp của địa chỉ phải được chốt nhờ tín hiệu ALE

Giao tiếp vi xử lý: ngắt

- Giả sử một thiết bị ngoại vi yêu cầu được thu nhận dữ liệu lập tức bởi bộ xử lý
 - Bộ xử lý có thể kiểm tra liên tục ngoại vi xem dữ liệu đã đến hay chưa – rất kém hiệu quả
 - Ngoại vi có thể ngắt bộ xử lý khi nó có dữ liệu
- Yêu cầu phải có thêm chân: Int
 - Nếu Int là 1, bộ xử lý dừng chương trình đang thực hiện,
 nhảy tới một Interrupt Service Routine, hoặc ISR
 - Được biết như đầu vào điều khiển ngắt I/O

Giao tiếp vi xử lý: ngắt

- Địa chỉ của ISR (interrupt address vector) là gì?
 - Ngắt cổ định
 - Địa chỉ ngắt được thiết lập sẵn trong bộ xử lý, không thể thay đổi
 - Ngắt vector
 - Ngoại vi phải cung cấp địa chỉ
 - Thường sử dụng khi bộ xử lý có nhiều ngoại vi kết nối chung một bus
 - Phối hợp: bảng địa chỉ ngắt

cuu duong than cong. com

Truyền thông song song

- Nhiều chân dữ liệu, điều khiển, và có thể cả công suất
 - Mỗi dây một bit
- Tốc độ dữ liệu cao, cự ly truyền dẫn ngắn
- Thường sử dụng khi kết nối các thiết bị trên cùng IC hoặc trên cùng bo mạch
 - Bus phải đủ ngắn
 - Dây dài dẫn đến điện dung ký sinh cao
 - Nhiễu xuyên kênh tăng khi dây dài
- Giá cao hơn

Truyền thông nối tiếp

- Dây dữ liệu đơn, có thể bao gồm dây điều khiển và công suất
- Từ được truyền đi từng bít một
- Truyền dữ liệu tốt hơn với cự ly dài
 - Điện dung ký sinh ít
- Rê hơn
- Thủ tục truyền thông và giao tiếp linh hoạt hơn
 - Phía gửi phải tách từ thành các bit
 - Phía thu làm ngược lại
 - Tín hiệu điều khiển thường gửi cùng trên một dây với dữ liệu làm cho thủ tục truyền phức tạp hơn

Truyền thông không dây

- Hồng noại (IR)
 - Tần số dưới phổ ánh sáng nhìn thấy
 - Đi ốt phát ánh sáng hồng ngoại để tạo tín hiệu
 - Transistor hồng ngoại xác định tín hiệu, dẫn khi có ánh sáng hồng ngoại
 - Giá rẻ
 - Cần đường truyền thắng, phạm vi hẹp
- Sóng vô tuyến (RF)
 - Sóng điện từ trong phổ radio
 - Mạch tương tự và anten ở cả hai phía phát và thu
 - Không càn đường truyền thẳng, phạm vi hoạt động phụ thuộc vào công suất phát

Xác định lỗi và sửa lỗi

- Thường là một phần của thủ tục truyền
- Xác định lỗi: là khả năng của bộ thu xác định lỗi trong quá trình truyền
- Sửa lỗi: khả năng phối hợp giữa bọ thu và bộ phát để khôi phục lỗi
- bit lỗi đơn: sử dụng một bit
- Bit lỗi nhóm: sử dụng nhóm bit
- Chẵn lẻ: bit bổ sung cho việc xác định lỗi
- Kiểm tra tóng: từ bổ sung với gói dữ liệu nhiều từ

Thủ tục nối tiếp: I²C

• I²C (Inter-IC)

- Thủ tục bus nối tiếp 2 dây phát triển bởi Philips Semiconductors gần 20 năm trước
- Cho phép các ngoại vi của ICs giao tiếp với nhau sử dụng phần cứng truyền thông đơn giản
- Tốc độ truyền dữ liệu lên tới 100 kbits/s và địa chỉ 7-bit ở chế độ hoạt động thông thường
- 3.4 Mbits/s và dịa chỉ 10-bit ở chế độ nhanh
- Các thiết bị có thể giao tiếp với bus I²C:
 - EPROMS, Flash, và một vài bộ nhớ RAM, đồng hồ thời gian thực và vi điều khiển,...

Kiến trúc bus I2C

https://fb.com/tailieudientucntt

Thủ tục nối tiếp: CAN

- CAN (Controller area network)
 - Thủ tục cho ứng dụng thời gian thực
 - Phát triển bởi Robert Bosch GmbH
 - Thường sử dụng trong các hệ thống thông tin trong oto
 - Các ứng dụng sử dụng CAN ngày nay bao gồm:
 - Điều khiển thang máy, máy photo, hệ thống điều khiển tự động, thiết bị y tế
 - Tốc độ truyền dữ liệu lên tới 1 Mbit/s và địa chỉ 11-bit
 - Các thiết bị có thể giao tiếp với CAN:
 - 8051-tương thích bộ xử lý 8592 và bộ điều khiển CAN
 - Thiết kế vật lý thực tế của bus CAN không quy định trong thủ tục

Thủ tục nối tiếp: FireWire

- FireWire (a.k.a. I-Link, Lynx, IEEE 1394)
 - Bus nối tiếp chất lượng cao phát triển bởi Apple Computer Inc.
 - Thiết kế cho việc giao tiếp các thiết bị điện tử độc lập
 - e.g., Desktop, scanner
 - Tốc độ truyền dữ liệu từ 12.5 tới 400 Mbits/s, 64-bit địa chỉ
 - Khả năng Plug-and-play
 - Thiết kế theo cấu trúc góc dữ liệu
 - Các ứng dụng sử dụng FireWire bao gồm:
 - disk drives, printers, scanners, cameras

Thủ tục nối tiếp: USB

- USB (Universal Serial Bus)
 - Dễ kết nối hơn giữa PC và màn hình, máy in, modem, máy scanner, camera,
 vv...
 - Có hai tốc độ dữ liệu:
 - 12 Mbps đối với thiết bị băng rộng
 - 1.5 Mbps đối với thiết bị tốc độ thấp
 - Cấu hình sao có thể được sử dụng
 - Một thiết bị USB (hub) kết nối với PC
 - Hub có thể nhúng trong thiết bị như màn hình, máy in, hoặc bàn phím
 - Nhiều thiết bi USB có thể kết nói với hub
 - Tối đa 127 thiết bị có thể kết nối kiểu này
 - Bộ điều khiển USB host
 - Quản lý và điều khiển độ rộng băng truyền và phần mềm điều khiển cần thiết cho mỗi ngoại vi
 - Điều khiển công suất tùy theo thiết bị được kết nối

Thủ tục song song: bus PCI

- PCI Bus (Peripheral Component Interconnect)
 - Bus chất lượng cao được đưa ra bởi Intel vào đầu những năm 1990's
 - Tiêu chuẩn được lựa chọn cho công nghiệp và được quản lý bởi PCISIG (PCI Special Interest Group)
 - Liên kết chíp, board mở rộng, bộ nhớ con của hệ vi xử lý
 - Tốc độ truyền dữ liệu từ 127.2 đến 508.6 Mbits/s và 32-bit địa chỉ
 - Sau đó được mở rộng tới 64-bit trong khi đó vẫn cho phép tương hợp với cấu trúc 32-bit
 - Kiến trúc bus đồng bộ
 - Đường địa chỉ/dữ liệu ghép

Thủ tục song song: bus ARM

ARM Bus

- Thiết kế và sử dụng bởi tập đoàn ARM
- Giao tiếp với vi xử lý ARM
- Nhiều công ty thiết kế IC có chuẩn bus riêng
- Tốc độ truyền dữ liệu là một hàm số của chu kỳ đồng hồ
 - Nếu tốc độ đồng hồ của bus là X, tốc độ truyền là = $16 \times X$ bits/s
- 32-bit địa chỉ

cuu duong than cong. com

Thủ tục không dây: IrDA

• IrDA

- Thủ tục cho phép truyền dữ liệu bằng sóng hồng ngoại điểm tới điểm với cự ly ngắn
- Được tạo ra bởi Infrared Data Association (IrDA)
- Tốc độ truyền dữ liệu 9.6 kbps và 4 Mbps
- Phần cứng IrDA có trong máy notebook, máy in, PDAs, cameras số, điện thoại

cuu duong than cong. com

Thủ tục không dây: Bluetooth

Bluetooth

- Mới, chuẩn quốc tế cho kết nối không dây
- Dựa trên vô tuyến cụ ly ngắn, giá thấp
- Kết nối trong phạm vi 10m
- Không yêu cầu đường truyền thẳng
 - VD: kết nối với máy in của phòng khác

cuu duong than cong. com

Thủ tục không dây: IEEE 802.11

• IEEE 802.11

- Tiêu chuẩn cho mạng LANs không dây
- Các thông số cụ thể cho các lớp PHY và MAC của mạng
 - Lớp PHY
 - Lớp vật lý cuy dụcng than cong. com
 - Xử lý việc truyền dữ liệu giữa các lớp
 - Cung cấp tốc độ truyền 1 hoặc 2 Mbps
 - Oạt động trong băng tần từ 2.4 đến 2.4835 GHz (RF)
 - Hoặc 300 đến 428,000 GHz (IR)
 - Lớp MAC
 - Lớp điều khiển truy cập
 - Thủ tục cho việc duy trì thứ tự trong truyền thông nhiều điểm (nút)
 - Tránh xung đột dữ liệu

Tóm tắt

- Các khái niệm về thủ tục
 - Hướng truyền, ghép kênh theo thời gian, phương pháp điều khiển
- Bộ xử lý chức năng chung
 - I/O dựa trên cổng hoặc dựa trên bus
 - Địa chỉ I/O: I/O bản đồ nhớ hoặc I/O tiêu chuẩn
 - Xử lý ngắt: cố định hay vector
 - Truy cập bộ nhớ trực tiếp
- Phân cấp bus
- Thông tin
 - Song song hay nối tiếp, hữu tuyến hay không dây, xác định và sửa lỗi, các lớp
 - Thủ tục nối tiếp: I²C, CAN, FireWire, và USB;
 - Song song: PCI và ARM.
 - Thủ tục không dây nối tiếp: IrDA, Bluetooth, và IEEE 802.11.