## CS483 - Fundamentals of Artificial Intelligence Homework Assignment #4

Name: Shoumya Singh Id: 19566

1. Re-calculate the entropy for the feature selection in the example of file "Gini Impurity Cal in Decision Tree" rather than Gini impurity method. And then, compare the results from two different criteria

Hint: taking the reference at the following link for your calculation

<u>https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-</u>2946b9c18c8

# **Training Data**

| Color  | Diameter | Label |
|--------|----------|-------|
| Green  | 3        | Apple |
| Yellow | 3        | Apple |
| Red    | 1        | Grape |
| Red    | 1        | Grape |
| Yellow | 3        | Lemon |

Based on these data, we can compute probability of Label target.

• Since probability is equal to frequency relative, we have

$$P(Apple) = Prob (Apple) = 2 / 5$$

$$P(Grape) = Prob (Grape) = 2 / 5$$

$$P(Lemon)=Prob (Lemon) = 1 / 5$$

So now we calculate the Entropy using the below formula:

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

$$= -(2/5) * \log 2(2/5) - (2/5) * \log 2(2/5) - (1/5) * \log 2(1/5)$$
  
= 1.521

### 1st Iteration: Find the root of a decision tree

The Parent Data Table has classes of 2 Apple,2 Grape and 1 Lemon which produce entropy of 1.521

### • Information Gain for Diameter

| Diameter | Label | Diameter | Label |
|----------|-------|----------|-------|
| 3        | Apple | 3        | Apple |
| 3        | Apple | <br>3    | Apple |
| 1        | Grape | 3        | Lemon |
| 1        | Grape |          |       |
| 3        | Lemon |          |       |
|          |       | Diameter | Label |
|          |       | 1        | Grape |
|          |       | 1        | Grape |

Entropy of Diameter 3 table = 
$$-(2/3) * \log 2(2/3) - (1/3) * \log 2(1/3)$$
  
= 0.918

Entropy of Diameter 1 table = 
$$-(2/2) * log2(2/2)$$
  
= 0

The entropy of the Information Gain for Diameter = 1.521 - (3/5 \* 0.918 + 2/5 \* 0) = 0.970

### • Information Gain for Color

| Color  | Label |   |        |       |
|--------|-------|---|--------|-------|
| Green  | Apple |   | Color  | Label |
| Yellow | Apple | - | Green  | Apple |
| Red    | Grape |   | 010011 | 11991 |
| Red    | Grape |   |        |       |
| Yellow | Lemon |   |        |       |
|        |       |   | Color  | Label |
|        |       |   | Yellow | Apple |
|        |       |   | Yellow | Lemon |
|        |       |   |        |       |
|        |       |   | Color  | Label |
|        |       |   | Red    | Grape |
|        |       |   | Red    | Grape |

Entropy of Green table = 
$$-(1/1) * log2(1/1)$$
  
= 0

Entropy of Yellow table = 
$$-(1/2) * log2(1/2) - (1/2) * log2(1/2)$$
  
= 1

Entropy of Red table = 
$$-(2/2) * log2(2/2)$$
  
= 0

The entropy of the Information Gain for Color

$$= 1.521 - (1/5 * 0 + 2/5 * 1 + 2/5 * 0)$$

= 1.121

Table below summarizes the information gain for all four attributes. Result of the First Iteration:

| Gain    | Diameter | Color |
|---------|----------|-------|
| Entropy | 0.970    | 1.121 |

• Color is selected as the root because it has the highest information gain.



- Since Green and Red Color have been associated with pure class, we do not need these data any longer.
- For second iteration, our data table D come from the Yellow Color because it is not associated with pure class.
- o As we have only 2 features Color and Diameter from which color is the root so further will diameter.
- o Green color is Apple and Red color is Grape so with diameter 1 and 3, where 1 is grape and 3 is apple or lemon from which apple is gone with color.
- $\circ$  Hence diameter = 3 is lemon associated with yellow color.

