Второй коллоквиум по МА-2

Денис Козлов Telegram

Версия от 17.12.2020 19:22

0.1

0.2

0.3

0.4

0.5 Докажите, что простые множества в \mathbb{R}^m образуют кольцо

Утв.: Класс всех простых множеств образует кольцо.

Док-во:

- 1. $\emptyset = [a; a)$ пустой полуинтервал является простым множеством.
- 2. $E_1 \cup E_2 = E$ объединение простых множеств является простым множеством. Так как каждое из простых множеств представимо в виде объединения конечного количества полуинтервалов, то их объединение представимо в виде объединения всех полуинтервалов входящих в каждое из простых, а значит является простым множеством.
- 3. $E_1 \cap E_2 = E$ пересечение простых множеств является простым множеством. Пересечение представимо в виде объединения пересечений всех возможных пар из первого и второго множества. Так как пересечение полуинтервалов является полуинтервалом, то пересечение простых множеств, является простым множеством.
- 4. $E_1 \setminus E_2 = E$ разность простых множеств является простым множеством. Пусть есть некоторый полуинтервал [a;b) покрывающий E_1 и E_2 , тогда $[a;b) \setminus E_2$ очевидно является простым множеством. В таком случае исходную разность можно записать в виде $E_1 \cap ([a;b) \setminus E_2)$, что будет пересечением простых множеств, а значит является полуинтервалом.

0.6 Дайте определение внешней меры Жордана в \mathbb{R}^m

Опр.: Пусть $A \subset \mathbb{R}^m$ - произвольное ограниченное множество. Внешней мерой Жордана множества A называется

$$\overline{\mu}(A) = \inf_{E \supseteq A} \mu(A),$$

где точная нижняя грань берется по всем простым множествам, содержащим А.

0.7 Сформулируйте и докажите основные свойства внешней меры Жордана: монотонность и полуаддитивность

Св-во: Монотонность внешней меры означает, что при $A\subseteq B$ выполняется $\overline{\mu}(A)\leqslant \overline{\mu}(B)$.

<u>Док-во:</u> Обозначим через \mathcal{E}_A класс простых множеств, покрывающих заданное ограниченное множество A. Так как $A\subseteq B$, то класс \mathcal{E}_A шире чем \mathcal{E}_B , а значит в нем найдется простое множество которое не больше любого из \mathcal{E}_B , а отсюда из определения внешней меры следует, что $\overline{\mu}(A)\leqslant \overline{\mu}(B)$

Св-во: Полуаддитивностью внешней меры называется

$$\overline{\mu}(A \sqcup B) \leqslant \overline{\mu}(A) + \overline{\mu}(B),$$

где A и B - произвольные ограниченные множества.

<u>Док-во:</u> Для любых E_A и E_B покрывающих A и B соответственно, верно что $E_A \cup E_B$ - покрывает $A \cup B$. По свойствам меры верно

$$\mu(E_A \cup E_B) \leqslant \mu(E_A) + \mu(E_B)$$

Далее по определению точной нижней грани, для любого $\varepsilon>0$ найдутся такие E_A и E_B , что

$$\mu(E_A) \leqslant \overline{\mu}(A) + \varepsilon, \quad \mu(E_B) \leqslant \overline{\mu}(B) + \varepsilon$$

Отсюда имеем

$$\overline{\mu}(A \cup B) \leqslant \mu(E_A \cup E_B) \leqslant \overline{\mu}(A) + \overline{\mu}(B) + 2\varepsilon$$

Переходя к пределу $\varepsilon \to 0$ имеем

$$\overline{\mu}(A \cup B) \leqslant \overline{\mu}(A) + \overline{\mu}(B)$$

(Искомое свойство выполняется как частный случай)

0.8 Что такое измеримое по Жордану (= жорданово) множество? Как определяестя его мера? Приведите примеры измеримого и неизмеримого множества

Опр.: Ограниченное множество $A \subset \mathbb{R}^m$ называется измеримым по Жордану, если

$$\forall \varepsilon > 0 \quad \exists E, E \supseteq A \quad \overline{\mu}(E \backslash A) < \varepsilon$$

ПРОВЕРИТЬ, НАДО ЛИ ЧТО-ТО ДОБАВИТЬ

Заметим, что так как измеримые множества образуют кольцо, а также внешняя мера на кольце измеримых множеств обладает свойством аддитивности, то выполняются все свойства меры, а значит можно дать следующее определение **Опр.:** *Мерой Жордана* измеримого множества называется его внешняя мера Жордана.

Пример: Любое просто множество является измеримым по Жордану.

Пример: Пусть $Q = \{q_1, q_2, ...\}$ - множество всех рациональных чисел отрезка [0; 1] и $A_n = [0; 1] \setminus \{q_1, ..., q_n\}$. Множество $\bigcap_{n \in \mathbb{N}} A_n = [0; 1] \setminus Q$ не является измеримым

0.9 Докажите, что измеримые по Жордану множества образуют кольцо

<u>Утв.:</u> Измеримые по Жордану множества образуют кольцо Док-во:

- 1. Ø пустое множество является простым, а значит измеримо.
- 2. A,B измеримы, $A\cup B$ объединение измеримых множеств измеримо. Пусть $A_i\subseteq E_i$ и $\overline{\mu}(E_i\backslash A_i)<\frac{\varepsilon}{2},$ при i=1,2. Тогда так как

$$(E_1 \cup E_2) \setminus (A_1 \cup A_2) \subseteq (E_1 \setminus A_1) \cup (E_2 \setminus A_2)$$

в силу монотонности имеем

$$\overline{\mu}((E_1 \cup E_2) \setminus (A_1 \cup A_2)) \leqslant \overline{\mu}((E_1 \setminus A_1) \cup (E_2 \setminus A_2)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

а из этого следует, что объединение измеримо.

3. A, B - измеримы, $A \cap B$ - пересечение измеримых множеств измеримо. Проведем рассуждения аналогично предыдущему пункту. Так как

$$(E_1 \cap E_2) \setminus (A_1 \cap A_2) \subseteq (E_1 \setminus A_1) \cup (E_2 \setminus A_2)$$

в силу монотонности имеем

$$\overline{\mu}((E_1 \cap E_2) \setminus (A_1 \cap A_2)) \leqslant \overline{\mu}((E_1 \setminus A_1) \cup (E_2 \setminus A_2)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

а из этого следует, что пересечение измеримо.

4. A,B - измеримы, $A\backslash B$ - разность измеримых множеств измерима. Пусть $A_i\subseteq E_i$, при i=1,2 и простые множества E_i таковы, что $\overline{\mu}(E_1\backslash A_1)<\frac{\varepsilon}{2}$, а $E_2\backslash A_2\subseteq E_2'$, где $\mu(E_2')<\frac{\varepsilon}{2}$. Обозначим

$$A = A_1 \backslash A_2$$
, и $E = (E_1 \backslash E_2) \cup E_2'$

Докажем, что $A \subseteq E$. Из всех возможных вариантов рассмотрим следующий. Пусть $x \in A_1$ и $x \notin A_2$. Тогда $x \in E_1$, а если $x \in E_2$, то $x \in E_2'$. Все прочие случаи тривиальны. Теперь докажем, что

$$(E \backslash A) \subseteq (E_1 \backslash A_1) \cup E_2'$$

Снова из всех возможных вариантов рассмотрим следующее. Пусть $x \in E$ и $x \notin A$. Отсюда пусть $x \in E_1$ и $x \notin E_2$. Если $x \in A_1$, то либо $x \in A$, что противоречит первоначальному условию, либо $x \in A_1 \cap A_2$, что также невозможно, так как $x \notin E_2$. Отсюда следует, что $x \notin A_1$. Все прочие случаи тривиальны. Далее имеем

$$\overline{\mu}(E \backslash A) \leqslant \overline{\mu}(E_1 \backslash A_1) + \overline{\mu}(E_2') = \varepsilon$$

Из чего следует, что разность измеримых множеств измерима.

Все необходимые условия выполнены а это значит, что измеримые множества образуют кольцо.

0.10 Докажите, что множество измеримо по Жордану ровно тогда, когда его граница имеет Жорданову меру нуль

МУТНАЯ ТЕМА, ЕСТЬ ВОПРОСЫ

Teop.: Пусть $A \subseteq \mathbb{R}^m$ - произвольное множество, тогда множество измеримо тогда и только тогда, когда $\overline{\mu}(\partial A) = 0$, где ∂A - граница множества A.

Док-во:

 $\overline{\Rightarrow}$ Пусть множество A - измеримо по Жордану. Пусть $E_1 \subseteq A$ - простое множество, такое что $\mu(E_1) = \underline{\mu}(A)$, а также $E_2 \supseteq A$ - такое, что $\mu(E_2) = \overline{\mu}(A)$

По определению границы знаем, что $\partial A \subseteq E_2 \backslash E_1$. Можно заметить, что так как $E_1 \subseteq A \subseteq E_2$, то $E_2 \backslash E_1 = (E_2 \backslash A) \cup (A \backslash E_1)$

0.11 Что такое разбиение Жорданова множества? Как вводится произведение разбиений? В каком случае говорят, что одно разбиение является измельчением другого?

Пусть $E \supseteq D$ - простое множество покрывающее D. Пусть $E = \sqcup Q_i$, где Q_i - m-мерные полуинтервалы составляющие простое множество E.

Опр.: Разбиением τ множества D, соответствующим данному простому множеству E, назовем представление D в виде

$$D = \sqcup (D \cap Q_i) = \sqcup D_i, \quad D_i = D \cap Q_i$$

<u>Опр.:</u> Произведение разбиений $\tau = \{D_i \mid i=1,...,n\}$ и $\tau' = \{D'_j \mid j=1,...,k\}$ называется система множеств

$$\tau \cdot \tau' = \{D_i \cap | i = 1, ..., n, j = 1, ..., k\}$$

Опр.: Разбиение τ называется *измельчением* разбиения τ' (пишется $\tau\leqslant\tau'$), если для любого $D_j'\in\tau'$ найдутся такие $\overline{D_1,...},D_m\in\tau$, что

$$D'_j = D_1 \sqcup ... \sqcup D_m$$

0.12 Докажите, что произведение разбиений является измельчением и одного, и другого разбиения

<u>Утв.:</u> Пусть τ и τ' - произвольные разбиения некоторого множества, тогда $\tau \cdot \tau'$ является измельчением τ и τ' Док-во: Пусть $D_i \subseteq \tau$ и $D_i' \subseteq \tau'$, тогда так как

$$\forall i \in \{1, ..., n\} \ D_i = D_i \cap D = D_i \cap (\bigsqcup_j D_j) = \bigsqcup_j (D_i \cap D'_j)$$

По определению произведения $D_i \cap D'_j \subseteq \tau \cdot \tau'$, а значит по определению измельчения $\tau \cdot \tau'$ является измельчением τ (τ' также является измельчением; доказывается симметрично)

0.13 Что такое диаметр разбиения? Покажите, что при измельчении разбиения диаметр не увеличивается.

Опр.: Пусть au - некоторое разбиение, тогда *диаметром* разбиения называют

$$\Delta(\tau) = \max_{i} \sup_{x,y \in D_i} |x - y|$$

Утв.: При измельчении разбиения его диаметр не увеличивается.

Док-во: Пусть τ и τ' - некоторые разбиения, причем $\tau\leqslant\tau'$

 $\overline{\text{Тогда пусть } D_i' \in \tau'}$ - некоторое множество. По определению измельчения

$$D'_i = D_{i_1} \sqcup \ldots \sqcup D_{i_k}$$

где $D_{i_1},...,D_{i_k} \in \tau$. Очевидно, что так как $\forall j \ D_{i_j} \in D'_i$, то диаметр D_{i_j} не превосходит диаметр D'_i . Данное утверждение верно для любого i, а значит, что при измельчении разбиения диаметр не увеличивается.

0.14 Сформулируйте определение интеграла Римана от функции по жордановому множеству. Что такое интегрируемая функция?

Пусть $f: D \to \mathbb{R}$ - заданная на D числовая функция и $\tau = \{D_i\}$ - разбиение множества D. Выберем произвольно точки $\xi_i \in D_i$. Систему выбранных точек будем обозначать $p = \{\xi_i\}$

$$I_D(f,\tau,p) = \sum_i f(\xi_i)\mu(D_i)$$

Опр.: Функция f называется uнтегрируемой по Pиману на D, если существует такое число I, что

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ |I_D(f, \tau, p) - I| < \varepsilon$$
 при $\Delta(\tau) < \delta$

Причем это число I называется uнтегралом Pимана функции f на D и обозначается

$$I = \int_{D} f(x)dx$$

Множество всех функций, интегрируемых по Риману на жордановом множестве D, обозначается $\mathcal{R}(D)$

0.15 Сформулируйте и докажите критерий Коши интегрируемости функции по Риману.

Теор.: Пусть f - некоторая функция. Если для любого $\varepsilon > 0$ найдется $\delta > 0$, что при любом выборе разбиений τ, τ', c диаметрами $\Delta(\tau), \Delta(\tau)$ и при любом выборе систем точек p, p' выполняется

$$|I_D(f,\tau,p) - I_D(f,\tau',p')| < \varepsilon,$$

то функция интегрируема по Риману.

ПРОВЕРИТЬ ДОКАЗАТЕЛЬСТВО

Док-во:

 \leftarrow Пусть $f \in \mathcal{R}(D)$, тогда существует I, такое что

$$|I_D(f,\tau,p)-I|<rac{arepsilon}{2}$$

$$|I_D(f,\tau',p')-I|<rac{arepsilon}{2}$$

отсюда имеем

$$|I_D(f,\tau,p) - I_D(f,\tau',p')| \le |I_D(f,\tau,p) - I| + |I_D(f,\tau',p') - I| < \varepsilon$$

 \Rightarrow Возьмем последовательности τ_n и p_n , причем $\Delta(\tau_n) \to 0$

С помощью данных последовательностей образуем последовательность интегральных сумм $I_D(f, \tau_n, p_n)$.

Теперь положим, что выполнен критерий Коши

$$|I_D(f, \tau_m, p_m) - I_D(f, \tau_n, p_n)| < \varepsilon$$

из чего следует, что $I_D(f, au_n, p_n) o I$, где I - некоторое число.

Теперь в исходное неравенство подставим $I_D(f, \tau_n, p_n)$ и устримим его к I

$$|I_D(f,\tau,p) - I_D(f,\tau_n,p_n)| < \varepsilon$$

$$|I_D(f,\tau,p)-I|<\varepsilon$$

из чего следует, что функция интегрируема по Риману.

0.16

0.17 Покажите, что на жордановом множестве меры нуль любая функция интегрируема

Имеем D - жорданово множество, причем $\mu(D) = 0$

Рассмотрим некоторое разбиение $\tau = \{D_i\}$

Очевидно, что так как $\forall i \ D_i \subseteq D$, то $\mu(D_i) = 0$

Теперь пусть задана некоторая система точек р

Рассмотрим интегральную сумму

$$I_D(f,\tau,p) = \sum_i f(\xi_i)\mu(D_i)$$

отсюда заметим, что так как $\forall i \ \mu(D_i) = 0$, то и интегральная сумма также будет равна 0, вне зависимости от функции. Теперь пусть имеем I = 0, рассмотрим

$$|I_D(f, \tau, p) - I| = |0 - 0| < \varepsilon, \quad \forall \varepsilon > 0$$

Таким образом любая функция f интегрируема на жордановом множестве меры нуль, причем значение интеграла равно нулю.

0.18Выведите формулу для интеграла константы

$$\int \cdots \int C dx_1 ... dx_n = C\mu(D), \quad \text{где } C \text{ - константа}$$

Док-во: Пусть имеем некоторое разбиение τ и систему точек p, рассмотрим интегральную сумму

$$I_D(f,\tau,p) = \sum_i f(\xi_i)\mu(D_i) = C\sum_i \mu(D_i)$$

Так как $\forall i \neq j, \ D_i \cap D_j = \varnothing,$ а также в силу аддитивности меры имеем

$$C\sum_{i}\mu(D_{i})=C\mu(D)$$

очевидно, что в данном случае

$$I = \int \cdots \int C dx_1 ... dx_n = C\mu(D)$$

Дайте определение верхней и нижней сумм Дарбу для ограниченной функции

Пусть $\tau = \{D_i\}$ - некоторое разбиение жорданова множества D. Предполагая функцию f ограниченной на D, введем следующие обозначения

$$m_i = \inf_{x \in D_i} f(x), \qquad M_i = \sup_{x \in D_i} f(x)$$

Опр.: Hижней и 6ерхней суммами \mathcal{J} арбу ограниченной функции f на D, соответствующими разбиению τ , называются

$$s_D(f,\tau) = \sum_i m_i \mu(D_i), \qquad S_D(f,\tau) = \sum_i M_i \mu(D_i)$$

0.20 Сформулируйте и докажите основные свойства сумм Дарбу

ПРОВЕРИТЬ ВСЕ ЛИ НУЖНЫЕ СВОЙСТВА ТУТ

<u>Св-во:</u> При измельчении разбиения $\tau \leqslant \tau'$ нижняя сумма Дарбу не уменьшается $s_D(f,\tau) \geqslant s_D(f,\tau')$ Док-во: Рассмотрим $D'_j = D_{j1} \sqcup ... \sqcup D_{jk}$. Тогда $\forall i, \ m'_j \leqslant m_{ji}$ и в силу аддитивности меры $\mu(D'_j) = \mu(D_{j1}) + ... + \mu(D_{jk})$ Из этого следует, что

$$m'_{i}\mu(D'_{i}) \leq m_{j1}\mu(D_{j1}) + \dots + m_{jk}\mu(D_{jk})$$

Данное неравенство верно при всех j, из чего как и раз и следует искомое.

<u>Св-во:</u> При измельчении разбиения $\tau \leqslant \tau'$ верхняя сумма Дарбу не увеличивается $S_D(f,\tau) \leqslant S_D(f,\tau')$ Док-во: Аналогично предыдущему пункту.

Св-во: Для любых разбиений τ и τ' выполняется $s_D(f,\tau) \leqslant S_D(f,\tau')$

Док-во: Рассмотрим измельчение $\tau'' = \tau \cdot \tau'$

Из двух предыдущих пунктов имеем

$$s_D(f,\tau) \leqslant s_D(f,\tau'')$$

$$S_D(f,\tau') \geqslant S_D(f,\tau'')$$

так как $s_D \leqslant S_D$ при каком либо фиксированном разбиении, а также из этих двух неравенств имеем

$$s_D(f,\tau) \leqslant s_D(f,\tau'') \leqslant S_D(f,\tau'') \leqslant S_D(f,\tau')$$

0.21 Что такое верхний и нижний интегралы Дарбу для ограниченной функции?

Опр.: Нижним и верхним интегралами Дарбу называются

$$\overline{s}_D(f) = \sup_{\tau} s_D(f, \tau), \qquad \underline{S}_D(f) = \inf_{\tau} S_D(f, \tau)$$

0.22 Сформулируйте и докажите критерий Дарбу интегрируемости ограниченной функции

Разность точных граней ограниченной функции f на множестве D_i называется колебанием функции и обозначается:

$$\omega_i = M_i - m_i = \sup_{x,y \in D_i} |f(x) - f(y)| \geqslant 0$$

используя это обозначение сформулируем теорему

Теор.: Критерий Дарбу интегрируемости функции по Риману.

 $\overline{\Pi y}$ сть f - ограниченная функция, тогда f - интегрируема на жордановом множестве D тогда и только тогда когда выполнено следующее

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \Delta(\tau) < \delta \Rightarrow \ S_D(f,\tau) - s_D(f,\tau) = \sum_i \omega_i \mu(D_i) < \varepsilon$$

Док-во:

 $\overline{Heoбxodu}$ мость: Пусть $f \in \mathcal{R}(D)$, тогда выполнено следующее

$$|I_D(f, au,p')-I_D(f, au,p'')|<rac{arepsilon}{3},\;\;$$
при $\Delta(au)<\delta$

(доказывается элементарно)

Выбором p интегральная сумма ограниченной функции может быть сделана сколь угодно близкой к нижней (верхней) сумме Дарбу

$$I_D(f,\tau,p') - s_D(f,\tau) < \frac{\varepsilon}{3}, \quad S_D(f,\tau) - I_D(f,\tau,p'') < \frac{\varepsilon}{3}$$

(также доказывается элементарно) из этих 3 неравенств следует

$$\varepsilon > |S_{D}(f,\tau) - I_{D}(f,\tau,p'')| + |I_{D}(f,\tau,p'') - I_{D}(f,\tau,p')| + + |I_{D}(f,\tau,p') - s_{D}(f,\tau)| \geqslant \geqslant |S_{D}(f,\tau) - I_{D}(f,\tau,p'') + I_{D}(f,\tau,p'') - I_{D}(f,\tau,p')| + + |I_{D}(f,\tau,p') - s_{D}(f,\tau)| = = |S_{D}(f,\tau) - I_{D}(f,\tau,p')| + |I_{D}(f,\tau,p') - s_{D}(f,\tau)| \geqslant \geqslant |S_{D}(f,\tau) - I_{D}(f,\tau,p') + I_{D}(f,\tau,p') - s_{D}(f,\tau)| =$$

$$= |S_D(f,\tau) - s_D(f,\tau)| < \varepsilon$$

Достаточность: Пусть критерий Дарбу выполнен. Сперва докажем, что $\bar{s}_D(f) = \underline{S}_D(f)$. Пусть это не так, тогда $\bar{s}_D(f) < \underline{S}_D(f)$, в таком случае для какого либо τ

$$s_D(f,\tau) \leqslant \overline{s}_D(f) < \underline{S}_D(f) \leqslant S_D(f,\tau)$$

В таком случае можно подобрать такой ε , что критерий выполнятся не будет \Rightarrow противоречие.

Теперь пусть $I = \overline{s}_D(f) = \underline{S}_D(f)$

Очевидно, что для любого разбиения au и системы точек p выполняется

$$s_D(f,\tau) \leqslant I, I(f,\tau,p) \leqslant S_D(f,\tau)$$

Принимая во внимание данное неравенство, а также критерий Дарбу можно утверждать что

$$|I_D(f,\tau,p)-I|\varepsilon$$
, причем $\Delta(\tau)<\delta$

что как раз значит, что функция Интегриурема по Риману на D

0.23

0.24 Сформулируйте критерий Дюбуа-Реймона интегрируемости ограниченной функции

Теор.: Критерий Дюбуа-Реймона интегрируемости ограниченной функции. Для любых $\alpha, \nu > 0$ найдется такое $\delta > 0$, что для всех разбиений τ , удовлетворяющих условию $\Delta(\tau) < \delta$, выполняется

$$\sum_{i:\omega_i\geqslant\alpha}\mu(D_i)<\nu$$

где $\omega_i = \sup_{x \in D_i} f(x) - \inf_{x \in D_i} f(x),$ а D_i - жорданово множество

0.25 Что такое множество лебеговой меры нуль? В каком случае функция называется непрерывной почти всюду на множестве?

<u>Опр.:</u> Множество $A \subset \mathbb{R}^m$ имеет m-мерную m-мерную лебега нуль, если для любого $\varepsilon > 0$ существует счетный набор m-мерных полуинтервалов

$$Q_i = [a_i^1; b_i^1) \times \dots \times [a_i^m; b_i^m), \quad i \in \mathbb{N}$$

имеющий сумму мер

$$\sum_{i=1}^{\infty} \mu(Q_i) < \varepsilon$$

и объединение которых покрывает A

$$A \subseteq \bigcup_{i \in \mathbb{N}} Q_i$$

0.26 Сформулируйте критерий Лебега интегрируемости ограниченной функции

Опр.: Критерий Лебега интегрируемости функции по Риману. Функция f ограниченная на D, интегрируема на D ровно в том случае, когда она непрерывна на D почти всюду.

0.27 Сформулируйте и докажите свойство линейности интеграла

Св-во: Из того, что $f,g \in \mathcal{R}(D)$ следует, что $f+g \in \mathcal{R}(D)$, причем

$$\int\limits_{D} (f(x) + g(x))dx = \int\limits_{D} f(x)dx + \int\limits_{D} g(x)dx$$

Док-во: Рассмотрим интегральную сумму

$$I_D(f+g,\tau,p) = \sum_i (f+g)(\xi_i)\mu(D_i) = \sum_i f(\xi_i)\mu(D_i) + \sum_i g(\xi_i)\mu(D_i) =$$

 $= I_D(f, \tau, p) + I_D(g, \tau, p)$

Обе интегральные суммы имеют предел при $\Delta(\tau) \to 0$, а значит и интегральная сумма от f+g имеет предел. Следовательно $f+g \in \mathcal{R}(D)$

0.28 Сформулируйте и докажите теорему об интегрируемости произведения ограниченных интегрируемых функций

Теор.: Пусть функции f, g ограничены и интегрируемы на D. Покажите, что

$$f \cdot g \in \mathcal{R}(D)$$

Док-во: Воспользуемся критерием Дарбу. Заметим, что

$$f(x)g(x) - f(y)g(y) = (f(x) - f(y)) \cdot g(x) + f(y) \cdot (g(x) - g(y))$$

Сл-но, можно оценить колебание произведения функций на D_i

$$w_i(f \cdot g) = \sup_{x,y \in D_i} |f(x)g(x) - f(y)g(y)| \le C_g w_i(f) + C_f w_i(g)$$

где $C_f = \sup |f(x)|$ и $C_g = \sup |g(x)|$. Поэтому $\sum w_i(f \cdot g)\mu(D_i)$ мала при малых $\sum w_i(f)\mu(D_i)$ и $\sum w_i(g)\mu(D_i)$

0.29 Сформулируйте и докажите утверждение об интеграле от модуля функции.

 $\overline{\text{Теор.:}}$ Если ограниченная функция f интегрируема на D, то и $|f| \in \mathcal{R}(D)$

Док-во: Поскольку

$$|f(x) - f(y)| \ge |f(x)| - |f(y)|,$$

то колебание функции $w_i(f)$ связано с колебанием функции $|w_i(f)|$ неравенством

$$w_i(f) = \sup_{x,y \in D_i} |f(x) - f(y)| \le \sup_{x,y \in D_i} ||f(x)| - |f(y)|| = w_i(|f|)$$

Остается воспользоваться критерием Дарбу интегрируемости функции

0.30 Сформулируйте и докажите теорему о среднем значении.

Теор.: Пусть f, g ограничены и интегрируемы на D, причем $g \geqslant 0$. Покажите, что

$$m \int_{D} g(x)dx \leqslant \int_{D} f(x)g(x)dx \leqslant M \int_{D} g(x)dx,$$

где
$$m = \inf_{x \in D} f(x)$$
 и $M = \sup_{x \in D} f(x)$

<u>Док-во:</u> Произведение ограниченных интегрируемых функций - интегрируемая функция. Остается воспользоваться монотонностью интеграла.

0.31 Сформулируйте свойство непрерывности интеграла (о предельном переходе под знаком интеграла).

Теорема. Пусть все функции f_n ограничены и интегрируемы на D, а также $f_n \rightrightarrows f$ на D. Тогда функция f будет интегрируема на D и

$$\lim_{n \to \infty} \int_D f_n(x) dx = \int_D f(x) dx.$$

0.32 Сформулируйте свойство аддитивности интеграла.

Теорема. Пусть D — жорданово множество, а функция f — ограничена и интегрируема на D. Пусть A и B это дизъюнктные (непересекающиеся) жордановы подмножества D. Тогда:

$$\int_{A \cup B} f(x)dx = \int_{A} f(x)dx + \int_{B} f(x)dx.$$

0.33 Как вводится понятие заряда на кольце множеств? Покажите, что для заряда справедлива формула включения-исключения.

Определение. Функция ν , определенная на некотором кольце множеств, называется зарядом, если

- a) $\nu(\varnothing) = 0;$
- b) $\nu(A \sqcup B) = \nu(A) + \nu(B)$ (аддитивность).

Таким образом, мера — это неотрицательный заряд.

 $\Pi pumep$. Пусть f это ограниченная интегрируемая функция на множестве D. В силу свойства аддитивности интеграла имеем

$$\nu(A) = \int_{A} f(x)dx.$$

Теорема. Для заряда справедлива формула включений-исключений:

$$\nu(A \cup B) = \nu(A) + \nu(B) - \nu(A \cap B).$$

Доказательство. Заметим, что $A \cup B = A \sqcup (B \setminus A)$ и $B = (B \setminus A) \sqcup (A \cap B)$.

• С одной стороны имеем

$$\nu(A \cup B) = \nu(A \sqcup (B \setminus A)) = \nu(A) + \nu(B \setminus A).$$

• С другой стороны имеем

$$\nu(A) + \nu(B) - \nu(A \cap B) = \nu(A) + \nu((B \setminus A) \sqcup (A \cap B)) - \nu(A \cap B) = \nu(A) + \nu(B \setminus A) + \nu(A \cap B) - \nu(A \cap B) = \nu(A) + \nu(B \setminus A) + \nu(B \setminus$$

То есть оба выражения равны $\nu(A) + \nu(B \setminus A)$, из чего делаем вывод:

$$\nu(A \cup B) = \nu(A) + \nu(B \setminus A) = \nu(A) + \nu(B) - \nu(A \cap B).$$

```
0.34
```

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.1

0.42

0.43

0.44

0.45 Дайте определение цилиндрических координат (формулы, область задания, координатные линии, матрица Якоби перехода, якобиан)

Цилиндрические координаты (r, φ, z) в пространстве (x, y, z) вводятся формулами

```
x = r \cos \varphiy = r \sin \varphiz = z
```

При этом $U = (0; +\infty) \times [0; 2\pi) \times \mathbb{R}$ и $X = \mathbb{R}^3 \setminus \{(0, 0, z) | z \in \mathbb{R}\}$ Выколотая ось z при этом называется полярной осью. Угол φ называется азимутом или азимутальным углом.

Координатные линии r – лучи, выходящие из точки на полярной оси перпендикулярно полярной оси. Координатные линии φ – окружности с центром на полярной оси, расположенные в плоскостях, перпендикулярных полярной оси. Координатные линии z – прямые, параллельные полярной оси.

Матрица Якоби перехода имеет вид:

$$\begin{pmatrix}
\cos \varphi & -r \sin \varphi & 0 \\
\sin \varphi & r \cos \varphi & 0 \\
0 & 0 & 1
\end{pmatrix}$$
Якобиан равен r .

0.46 Дайте определение сферических координат (формулы, область задания, координатные линии, матрица Якоби перехода, якобиан)

Сферические координаты (r, θ, φ) в пространстве (x, y, z) вводятся формулами

```
x = r \sin \theta \cos \varphiy = r \sin \theta \sin \varphiz = r \cos \theta
```

При этом $U=(0;+\infty)\times(0;\pi)\times[0;2\pi)$ и $X=\mathbb{R}^3\setminus\{(0,0,z)|z\in\mathbb{R}\}$ Выколотая ось z при этом называется полярной осью. Угол θ называется полярным углом, а угол φ называется азимутальным углом.

Координатные линии r — лучи, выходящие из начала координат. Координатные линии θ — полуокружности с центром в начале координат, и концами, расположенными на полярной оси. Координатные линии φ — окружности с центром на полярной оси, расположенные в плоскостях, перпендикулярных полярной оси.

Матрица Якоби перехода имеет вид:

$$\begin{pmatrix} \sin\theta\cos\varphi & r\cos\theta\cos\varphi & -r\sin\theta\sin\varphi \\ \sin\theta\sin\varphi & r\cos\theta\sin\varphi & r\sin\theta\cos\varphi \\ \cos\theta & -r\sin\theta & 0 \end{pmatrix}$$
 Якобиан равен $r^2\sin\theta$.

0.47

0.48

0.49

0.50

0.51

0.52

. . .

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64 Выведите формулу для площади гладкой поверхности в \mathbb{R}^3 , заданной уравнением $z=f(x,y),\ f$ – непрерывно дифференцируемая функция.

Простейший способ задать поверхность D – это задать её как график функции f(x,y). Параметризацией такой поверхности будет

$$z = f(x, y), (x, y) \in G$$

Получим формулу для её площади. Вычислислим матрицу Якоби:

$$\frac{\partial(x,y,z)}{\partial(x,y)} = \begin{pmatrix} 1 & 0\\ 0 & 1\\ f'_x & f'_y \end{pmatrix}$$

Найдём матрицу Грама:

$$\left(\frac{\partial(x,y,z)}{\partial(x,y)}\right)^T \cdot \left(\frac{\partial(x,y,z)}{\partial(x,y)}\right) = \begin{pmatrix} (f_x')^2 + 1 & f_x'f_y' \\ f_x'f_y' & (f_y')^2 + 1 \end{pmatrix}$$

и её определитель:

$$((f'_x)^2 + 1)((f'_y)^2 + 1) - (f'_x f'_y)^2 = (f'_x)^2 + (f'_y)^2 + 1$$

Получаем площадь графика функции z = f(x, y)

$$\mu(D) = \iint_C \sqrt{(f'_x)^2 + (f'_y)^2 + 1} \ dxdy$$

0.65 Выведите формулу для площади гладкой поверхности вращения в \mathbb{R}^3 , заданной в цилиндрических координатах (r,φ,z) уравнением $z=\rho(z)$, где ρ — непрерывно дифференцируемая функция.

Поверхность D называется поверхностью вращения, если она может быть задана в цилиндрических координатах уравнением

$$r = \rho(z)$$

Параметризация поверхности вращения имеет вид

$$x = \rho(z)\cos\varphi, y = \rho(z)\sin\varphi, z \in [a; b], \varphi \in [0; 2\pi)$$

Получим формулу для площади поверхности вращения. Вычислислим матрицу Якоби:

$$\frac{\partial(x,y,z)}{\partial(z,\varphi)} = \begin{pmatrix} \rho'(z)\cos\varphi & -\rho(z)\sin\varphi\\ \rho'(z)\sin\varphi & \rho(z)\cos\varphi\\ 1 & 0 \end{pmatrix}$$

Найдём матрицу Грама:

$$\left(\frac{\partial(x,y,z)}{\partial(z,\varphi)}\right)^T\cdot \left(\frac{\partial(x,y,z)}{\partial(z,\varphi)}\right) = \begin{pmatrix}(\rho'(z))^2+1 & 0\\ 0 & \rho^2(z)\end{pmatrix}$$

и её определитель:

$$((\rho'(z))^2 + 1)\rho^2(z)$$

Получаем площадь поверхности вращения

$$\mu(D) = \iint_G \sqrt{(\rho'(z))^2 + 1} \, \rho(z) \, dz d\varphi = \int_a^b d\varphi \int_0^{2\pi} \sqrt{(\rho'(z))^2 + 1} \, \rho(z) \, dz = 2\pi \int_a^b \sqrt{(\rho'(z))^2 + 1} \, \rho(z) \, dz$$

0.66 Что такое исчерпание $\{D_n\}$ множества $D \subseteq \mathbb{R}^m$? Что можно утверждать в случае, когда D – жорданово множество?

Пусть множество $D\subseteq R^m$ таково, что существует последовательность жордановых множеств $D_n\subseteq D$ такая, что

$$D_1 \subseteq D_2 \subseteq \ldots$$
, а также $D_1 \cup D_2 \cup \cdots = D$

Тогда последовательность $\{D_n\}$ называется *исчерпанием* множества D, а само множество D называется *пределом* возрастающей последовательности $\{D_n\}$.

Теорема. Если D – жорданово, то $\lim_{n\to +\infty}\mu(D_n)=\mu(D)$

Доказательство. Последовательность жордановых множеств $A_n = D \setminus D_n$ убывает и сходится к пустому множеству.

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75