

# **Plataforma SCADA23**

# Documento de Ingeniería de Detalle

FECHA: 7 de junio de 2025

**CONTACTO** 

Rafael Ausejo Prieto rafael.ausejo@confianza23.es



# **ÍNDICE**

| 1 | DOCUMENTO DE INGENIERÍA DE DETALLE |                                                                             |                     |
|---|------------------------------------|-----------------------------------------------------------------------------|---------------------|
|   | 1.1                                | Introducción                                                                | 3                   |
|   | 1.2                                | Requisitos Funcionales                                                      | 3                   |
|   | 1.3                                | Requisitos No Funcionales                                                   | 4                   |
|   | <b>1.4</b> definic                 | Proceso: Sistema de Agua Potable con Tres Tanques (P&ID)iError! Marcado do. | ¡Error! Marcador no |
|   | 1.5                                | Descripción Funcional del Proceso (FDS - Functional Design Specification)   | 6                   |
| 2 | ОТ                                 | DOS SECTODES DOCUMENTO DE INCENIEDÍA DE DETALLE                             | 0                   |



## 1 Documento de Ingeniería de Detalle

#### 1.1 Introducción

Este documento detalla los requisitos funcionales y no funcionales para el desarrollo de la plataforma SCADA23.

SCADA23 actuará como laboratorio de pruebas y simulación de PLCs, monitorizará y leerá tráfico de PLCs reales y funcionará como un sistema SCADA para la supervisión, control y adquisición de datos de sensores y actuadores reales.

La fase inicial se centrará en el soporte del protocolo Modbus/TCP y el sector de Agua Potable, permitiendo la extensión a otros protocolos y sectores mediante configuración.

El primer módulo implementado por defecto será el del sector de Agua Potable, simulando un sistema de tres tanques (Tank1, Tank2, Tank3) con sus respectivos sensores y actuadores.

## 1.2 Requisitos Funcionales

Se muestran a continuación los requerimientos funcionales

#### RFUNC001: Simulación y Emulación de PLCs

- Descripción: La plataforma SCADA23 debe ser capaz de simular y emular el comportamiento de PLCs. Esto incluye la inyección de tráfico Modbus/TCP simulando lecturas de sensores y respuestas a comandos de actuadores, utilizando la librería Scapy.
- **Comentarios:** Se espera que los scripts de simulación sean modulares, permitiendo la fácil adición de nuevos tipos de PLCs o comportamientos.

## RFUNC002: Monitorización de Tráfico PLC Real

- **Descripción**: SCADA23 debe poder capturar y analizar el tráfico Modbus/TCP de PLCs reales del mercado para su monitorización.
- **Comentarios:** La captura de tráfico debe ser no intrusiva y la plataforma debe ser capaz de interpretar y visualizar los datos Modbus/TCP de manera significativa.

## RFUNC003: Sistema SCADA para Supervisión y Control

• **Descripción:** La plataforma debe proporcionar una interfaz gráfica de usuario (HMI) para la supervisión, control y adquisición de datos de sensores y actuadores. Esta interfaz se construirá utilizando tcl/tk y representará un Diagrama de Tuberías e Instrumentación (P&ID).



• **Comentarios:** El HMI debe ser intuitivo y mostrar claramente el estado de los sensores y actuadores, permitiendo la interacción con los actuadores.

## **RFUNC004: Soporte de Protocolos Industriales**

- Descripción: En esta primera fase, la plataforma debe implementar y soportar completamente el protocolo Modbus/TCP para la comunicación con PLCs simulados y reales.
- **Comentarios:** Aunque se mencionan otros protocolos (PROFINET, S7, OPC-UA), su implementación se pospondrá para fases posteriores. La arquitectura debe ser extensible para permitir su futura integración.

## **RFUNC005: Configuración de Sectores Industriales**

- **Descripción:** La plataforma debe cargar por defecto el módulo para el sector "Agua Potable" y permitir la carga de otros sectores predefinidos a través de un archivo de configuración.
- **Comentarios:** El archivo de configuración debe ser de fácil edición y permitir la especificación de los parámetros relevantes para cada sector (e.g., tipos de sensores, actuadores, rangos, etc.).

## 1.3 Requisitos No Funcionales

## RNFUNC001: Tecnología de Desarrollo

- **Descripción:** La plataforma debe ser desarrollada íntegramente en Python 3.13.4 y ejecutarse en Windows 11. La comunicación con PLCs (simulados o reales) debe realizarse mediante scripts Python que utilicen la librería Scapy para la inyección y lectura de tráfico Modbus/TCP. La interfaz gráfica se desarrollará con tcl/tk.
- Comentarios: Se debe asegurar la compatibilidad con las versiones especificadas de Python y Windows. El uso de Scapy debe ser eficiente para evitar latencias significativas.

#### RNFUNC002: Modularidad del Código

- **Descripción**: El código fuente debe ser modular, bien estructurado y documentado, permitiendo el desarrollo en solitario o en equipo.
- **Comentarios:** Se deben seguir las mejores prácticas de codificación Python (PEP 8), utilizar comentarios claros y dividir el código en funciones y clases lógicas.

#### **RNFUNC003: Rendimiento**

 Descripción: La plataforma debe ser capaz de procesar y visualizar datos Modbus/TCP en tiempo real con una latencia mínima para garantizar un control y supervisión efectivos.



• **Comentarios:** Se deben realizar pruebas de rendimiento para asegurar que la actualización de los datos en el HMI y la respuesta a los comandos de actuadores sea fluida y sin retrasos perceptibles.

#### RNFUNC004: Escalabilidad

- Descripción: La arquitectura de la plataforma debe ser escalable para permitir la futura integración de nuevos protocolos industriales, tipos de sensores, actuadores y sectores.
- **Comentarios:** Se recomienda un diseño que desacople las capas de comunicación, lógica de negocio y presentación para facilitar futuras expansiones.

## RNFUNC005: Seguridad

- **Descripción:** La plataforma debe estar diseñada con consideraciones de ciberseguridad industrial, minimizando las vulnerabilidades.
- **Comentarios:** Aunque Modbus/TCP no incluye seguridad intrínseca, se deben implementar las mejores prácticas de desarrollo seguro a nivel de aplicación para proteger la integridad y disponibilidad de los datos y el control. Se debe considerar la segregación de la red y el uso de firewalls.



## 2 Proceso de Sistema de Agua Potable

# 2.1 Descripción Funcional del Proceso (FDS - Functional Design Specification)

El sistema de agua potable simulará el llenado y vaciado de tres tanques, con la posibilidad de monitorizar sus parámetros (presión, temperatura, flujo y nivel) y controlar sus válvulas de entrada y salida.

## a. Rangos Operativos Normales

• Presión: 2 a 6 bar

Temperatura: 15 a 30 °C
Flujo: 30 a 70 L/min
Nivel: 20% a 80%

## b. Puntos de Ajuste para Alarmas y Control

• Alarma de Presión Alta: > 8 bar

• Alarma de Presión Baja: < 1 bar

Alarma de Temperatura Alta: > 90 °C

Alarma de Temperatura Baja: < 5 °C</li>

• Alarma de Flujo Alto: > 95 L/min

• Alarma de Flujo Bajo: < 10 L/min

Alarma de Nivel Alto: > 95% (Detener llenado, abrir salida si es necesario)

• Alarma de Nivel Bajo: < 5% (Iniciar llenado, cerrar salida si es necesario)

• Control de Válvulas: El usuario podrá abrir/cerrar las válvulas de entrada y salida de cada tanque desde el HMI.



## 2.2 Hojas de Datos de Instrumentos

A continuación, se detallan las especificaciones para los sensores y actuadores del sistema de Agua Potable. Estos datos servirán como base para la simulación y la representación en el P&ID.

## a. Sensores de Presión (PS/PT)

- Identificadores: PS-101, PT-101 (Tanque 1); PS-102, PT-102 (Tanque 2); PS-103, PT-103 (Tanque 3)
- Descripción: Mide la presión del líquido dentro del tanque.
- Rango de Medición: 0 a 10 bar
- Unidades: bar
- Punto de Ajuste (Setpoint): Presión máxima para alarma (ej. 8 bar)
- Precisión: ±0.5% del fondo de escala
- Conexión: Modbus/TCP Holding Register

## b. Sensores de Temperatura (TS)

- Identificadores: TS-101 (Tanque 1); TS-102 (Tanque 2); TS-103 (Tanque 3)
- **Descripción:** Mide la temperatura del líquido dentro del tanque.
- Rango de Medición: 0 a 100 °C
- Unidades: °C
- Punto de Ajuste (Setpoint): Temperatura mínima/máxima para alarma (ej. 5 °C, 90 °C)
- Precisión: ±1°C
- Conexión: Modbus/TCP Holding Register

#### c. Sensores de Flujo (FS)

- Identificadores: FS-101 (Tanque 1); FS-102 (Tanque 2); FS-103 (Tanque 3)
- **Descripción:** Mide el caudal de entrada o salida del tanque.
- Rango de Medición: 0 a 100 L/min
- Unidades: L/min
- Punto de Ajuste (Setpoint): Caudal mínimo/máximo para alarma (ej. 10 L/min, 95 L/min)
- Precisión: ±1% del fondo de escala
- Conexión: Modbus/TCP Holding Register

## d. Sensores de Nivel (LS)

- Identificadores: LS-101 (Tanque 1); LS-102 (Tanque 2); LS-103 (Tanque 3)
- **Descripción:** Mide el nivel de llenado del tanque.
- Rango de Medición: 0% a 100%
- Unidades: Porcentaje (%)
- Punto de Ajuste (Setpoint): Nivel mínimo/máximo para alarma (ej. 5%, 95%)
- Precisión: ±1%



Conexión: Modbus/TCP Holding Register

## e. Válvulas de Entrada (XV)

- Identificadores: XV-101A (Tanque 1); XV-102A (Tanque 2); XV-103A (Tanque 3)
- **Descripción:** Actuador On/Off que controla el flujo de entrada al tanque.
- Estado: Abierta (True) / Cerrada (False)
- Tiempo de Apertura/Cierre: Instantáneo para simulación (en la realidad, podría ser milisegundos).
- Conexión: Modbus/TCP Coil

## f. Válvulas de Salida (XV)

- Identificadores: XV-101B (Tanque 1); XV-102B (Tanque 2); XV-103B (Tanque 3)
- **Descripción:** Actuador On/Off que controla el flujo de salida del tanque.
- Estado: Abierta (True) / Cerrada (False)
- Tiempo de Apertura/Cierre: Instantáneo para simulación.
- Conexión: Modbus/TCP Coil

## g. Tanques de Agua Potable

- Identificadores: T-101 (Tanque 1); T-102 (Tanque 2); T-103 (Tanque 3)
- **Descripción:** Depósitos de almacenamiento de agua potable.
- Volumen/Capacidad: Se definirá en el archivo de configuración por sector (ej. 1000 Litros).

## 2.3 Componentes

#### Sistema de Control (SCADA/PLC)

El módulo de Agua Potable en SCADA23 se encargará de:

- Adquisición de Datos: Leerá los valores de los sensores (presión, temperatura, flujo, nivel) de los PLCs (simulados o reales) a través de Modbus/TCP (Holding Registers).
- Visualización: Los valores adquiridos se mostrarán en tiempo real en el HMI (P&ID) de forma gráfica. Se utilizarán indicadores visuales para el estado de las válvulas y el nivel de los tanques.
- Control: Enviará comandos a los actuadores (válvulas de entrada y salida) a los PLCs (simulados o reales) a través de Modbus/TCP (Coils) para cambiar su estado (abrir/cerrar).
- **Alertas:** Detectará y mostrará alarmas cuando los valores de los sensores superen o caigan por debajo de los puntos de ajuste predefinidos.
- Registro de Datos: La plataforma debería tener la capacidad básica de registrar los datos de los sensores a lo largo del tiempo, aunque esto podría ser una mejora futura.
- **Configuración:** Los rangos de medición, unidades y puntos de ajuste se cargarán desde el archivo de configuración del sector, permitiendo una fácil adaptación.



## 3 Otros Sectores Documento de Ingeniería de Detalle

Tras la implementación del primer sector de agua potable, se impementarán el resto de sectores soportados:

| Categoría               | Código de<br>Sector | Descripción del Sector                                                                  |
|-------------------------|---------------------|-----------------------------------------------------------------------------------------|
| Energía                 | SAC01               | Energía (General)                                                                       |
|                         | SAC01a              | Electricidad                                                                            |
|                         | SAC01b              | Sistemas urbanos de calefacción y refrigeración                                         |
|                         | SAC01c              | Crudo                                                                                   |
|                         | SAC01d              | Gas                                                                                     |
|                         | SAC01e              | Hidrógeno                                                                               |
| Transporte              | SAC02               | Transporte (General)                                                                    |
|                         | SAC02a              | Transporte aéreo                                                                        |
|                         | SAC02b              | Transporte por ferrocarril                                                              |
|                         | SAC02c              | Transporte marítimo y fluvial                                                           |
|                         | SAC02d              | Transporte por carretera                                                                |
| Banca                   | SAC03               | Banca                                                                                   |
| Finanzas                | SAC04               | Infraestructura de los mercados financieros                                             |
| Sanidad                 | SAC05               | Sector sanitario                                                                        |
| Agua Potable            | SAC06               | Agua potable (Módulo inicial implementado por defecto)                                  |
| Aguas Residuales        | SAC07               | Aguas residuales                                                                        |
| Infraestructura digital | SAC08               | Infraestructura digital                                                                 |
| Servicios TIC           | SAC09               | Gestión de servicios de TIC (de empresa a empresa)                                      |
| AGE                     | SAC10               | Entidades de la Administración pública (excl. judicial, parlamentos y bancos centrales) |
| Espacio                 | SAC11               | Espacio                                                                                 |
| Nuclear                 | SAC12               | Industria Nuclear                                                                       |
| Otros Sectores          | OTR01               | Servicios postales y de mensajería                                                      |
|                         | OTR02               | Gestión de residuos                                                                     |



|             | OTR03 | Fabricación, producción y distribución de sustancias y mezclas químicas              |
|-------------|-------|--------------------------------------------------------------------------------------|
|             | OTR04 | Producción, transformación y distribución de alimentos                               |
| Fabricación | OTR05 | Fabricación (General)                                                                |
|             | OTR5a | Fabricación de productos sanitarios y productos sanitarios para diagnóstico in vitro |
|             | OTR5b | Fabricación de productos informáticos, electrónicos y ópticos                        |
|             | OTR5c | Fabricación de material eléctrico                                                    |
|             | OTR5d | Fabricación de maquinaria y equipo n.c.o.p.                                          |
|             | OTR5e | Fabricación de vehículos de motor, remolques y semirremolques                        |
|             | OTR5f | Fabricación de otro material de transporte                                           |
|             | OTR06 | Proveedores de servicios digitales                                                   |
|             | OTR07 | Investigación                                                                        |
|             | OTR08 | Seguridad Privada                                                                    |