

Chenting Ding

Main Supervisor: A/Prof Yu Bai

2.1 Method for Determining Point A:

$$A_y = 2\mu N$$

$$A_{x} = 2A_{y}(\frac{l_{p}}{EA_{1}})$$

The contact area

■ The stress field (under tension)

Factors related to stress distribution:

- The external load
- 2. The ratio of plate width to hole diameter

Model with non-prismatic beams

How to determine the area of cross section A(x)?

- Simulation of a bolted connection with non-prismatic beam elements
- The axial displacement of a beam can be determined by:

$$u_x = \int_0^l \varepsilon(x) \, \mathrm{d}x$$

• The stress in a beam element:

$$\sigma(x) = E \, \varepsilon(x)$$

• Required cross section area in a beam element:

$$A(x) = \frac{F_x}{\sigma(x)}$$

Required cross section width in a beam element:

$$L(x) = \frac{A(x)}{t}$$

Displacement field

A series of detailed FE analysis are performed.

	Model1	Model2	Model3	Model4	Model5
Plate Width	40 mm	60 mm	80 mm	100 mm	120 mm
Hole Diameter	20 mm				
Ratio of Plate Width to Hole Diameter	2	3	4	5	6

K: Normalized plate width, which is the ratio of plate width to hole diameter

Two parameters to determine:

- a₁: The value of normalized initial width, which is normalized by the hole diameter
- a₂: The slope of increasing stage

$$a_2 = tan(\theta) = -0.2031 + 0.7454 * k$$

 $a_1 = -0.9324 + 0.9241 * k - 0.0826 * k^2$

k: normalized plate width, which is normalized by hole diameter

 Implementation of beams with variable cross sections in OpenSees

- Steel plates are modelled with Force-based beam column element
- Fiber sections are used.
- Integration method is "Fixed Location Integration".

Chenting Ding

Main Supervisor: A/Prof Yu Bai

- Traditional Steel Beam CFS tube column connection
- Outer ring diaphragm

Inner ring diaphragm

My new design

- Experiment plan:
- 3 pairs of comparisons:
- 1. bending in x and y directions
- 2. monotonic and cyclic load
- 3. middle column and corner column

