1

HRTF Individualization using Deep Learning

Riccardo Miccini Aalborg University rmicci18@student.aau.dk

Abstract—The research presented in this paper focuses on investigating HRTF individualization techniques using deep learning approaches, with an emphasis on HRTF estimation and synthesizing. (also mention FABIAN dataset, autoencoders, depthmaps etc, see slides)

Index Terms—Spatial Audio; HRTF; Deep Learning

I. Introduction

Virtual reality (VR) and augmented reality (AR) research has made substantial progress over the last decades, and virtual environments created using binaural sound rendering technologies find applications in a wide array of areas, such as aids for the visually impaired, tools for audio professionals, and VR-based entertainment systems.

These techniques are based on the application of a particular filter called head-related transfer function (HRTF), which colors a sound according to its location in the virtual environment. However, HRTFs derived from standard anthropometric pinnae, such as those in dummy heads, often results in localization errors and wrong spatial perception [1]. In fact, while generic HRTFs may successfully approximate the interaural time difference (ITD) and interaural level difference (ILD) cues which are used to perceive the horizontal direction of a sound source, the monaural cues needed to discern its vertical direction are highly dependent on the anthropometric characteristics of each ear.

In order to provide the most realistic and immersive experience possible, it is necessary for users to have their custom set of HRTFs measured, which can prove quite impractical due to the need for dedicated facilities and the overall invasiveness of the procedure. Recently, attempts have been performed at synthesizing or customizing HRTFs using various data from users such as anthropometric measurements, 3D scans, or perceptual feedback.

This paper investigates methods for generating individualized HRTFs, in particular using newly-developed deep learning algorithms, and further expands on the topic by documenting the replication attempts and experiments conducted as part of the research. In the next section, current relevant contributions to the field are introduced. The Methods section details the computational techniques used in selected works from the literature as well as in the research carried out as part of the seminar, with particular focus on deep learning methods. In Results, the applications and outcomes of the aforementioned

techniques for replications and other experiments are discussed, with the purpose of assessing their effectiveness. Finally, closing remarks as well as pointers for future research are stated in the Conclusions section.

II. STATE OF THE ART

Over the past decades, several strategies have been devised, in order to avoid the burden of conducting strenuous acoustical measurements with human subjects. In a recent review, Guezenoc [2] divides such alternative approaches into numerical simulation, anthropometrics-based, and perceptual feedback-based.

The former method consists in simulating the propagation of acoustic waves around the subject, using 3D scans; the most common simulation schemes include Fast-Multipole-accelerated Boundary Element Method (FM-BEM) [3] and Finite Difference Time Domain (FDTD) [4] for frequency and time domain respectively.

With the help of databases of publicly available HRTFs and machine learning techniques, anthropometric measurements can be used to choose, adapt, or estimate a subject's HRTF set. In 2010, Zeng [5] implements an hybrid model based on principal component analysis (PCA) and multiple linear regression, which uses anthropometric parameters to select the most suitable HRTF set for the given user. Similarly, user feedback on perceptual tests can be used to inform regression models for tasks such as those listed above.

In more recent times, there has been an interest in solving the aforementioned tasks using deep learning techniques. In 2017, Yao [6] uses anthropometric measurements to select the most suitable HRTF sets from a larger database. In 2018, Lee [7] develops a double-branched neural network that processes anthropometric data with a multi-layer perceptron and edge-detected pictures of the ear with convolutional layers, combining the outputs of the two into a third network to estimate HRTF sets. Again in 2017, Yamamoto [8] trains a variational autoencoder on HRTF data, and devises a perceptual calibration procedure to fine-tune the latent variable used as input by the generative part of the model. Finally, in 2019, Chen et al. [9] train an autoencoder to reconstruct HRTFs along the horizontal plane, and subsequently uses the resulting latent representations as targets for a multilayer perceptron which feeds on anthropometric data and azimuth angle, allowing users to synthesize new HRTFs using the MLP and decoder.

III. METHODS

This section presents some of the most relevant computational methods found in the relevant literature on HRTF individualization. The aspects covered in the following subsections include the encoding of generated HRTFs, the extraction and choice of predictors, and the deep neural network architectures adopted.

A. HRTF representation

A single HRTF is defined as the the far-field frequency response of a given ear, measured from a point in the free field to a point in the ear canal [10]. An HRTF set is composed of the HRTFs of both left and right ears, measured at a fixed radius from the head, and across several elevations and azimuths. According to Kulkarni et al. [11], HRTFs specified as minimum-phase FIR filters have been empirically proved to be perceptually acceptable. Thus, HRTFs can be stripped of the ITD information and stored as real-valued log-magnitude response.

While this is the preferred way of storing, exchanging, and using HRTF sets, neural networks have different requirements that call for ad-hoc formats. In particular, Yamamoto [8] uses different representations for the input and output of his autoencoder. The input data format, which is dubbed HRTF patch, consists of a 4-dimensional tensor of shape $(5 \times 5 \times 128 \times 4)$. The first two dimension describe the HRTF under investigation and its neighbors along the elevation and azimuth directions, for a total of 25 HRTFs in each given patch. The remaining ones describe the content of each HRTF in the patch: the last dimension, also called *channel*, encodes frequency power spectrum or time-domain signal for either left or right ear, where 128 is their length. This data representation provides a substantial amount of contextual information, which can be learnt by 3D-convolutional layers.

The output of the autoencoder does not contain any neighbor HRTF, but instead of encoding the frequency power spectrum or time-domain information as a continuous signals, it uses a quantized format where each sample can have one of 256 possible discrete values that are then mapped to another dimension using one-hot encoding. The continuous signals can be reconstructed by taking the index of the value with highest magnitude and passing it to a µ-law algorithm. This strategy makes sure to retain some of the high-frequency details of the continuous signals, which are often lost when reconstructing data with autoencoders, and can be found in certain WaveNet implementations [12].

Further formats which have been investigated include mappings where HRTFs sharing the same azimuth or elevation are combined in a 2-dimensional image-like representation with either elevation or azimuth along one axis and frequency along the other; the color of each pixel would then represent the log-magnitude of the spectrum. The structure expressed by adjacent HRTFs could therefore be learnt using 2D-convolutional layers. However, the

downside of combining data in this way is the reduction of available data points to use for training.

Finally, a compact representation for individual HRTFs has been proposed, consisting of the first N principal components of the HRTF. While it has been observed that as little as 10 components are enough to reconstruct the original HRTF with maximum 1dB of spectral distortion, the loadings of the PCA must be learned, and become an essential part of the representation.

B. User data extraction

A fundamental aspect of HRTF individualization is the kind of data used to personalize the frequency response. Most often, acquiring data about a subject is faster and less strenuous than collecting an entire HRTF set, as well as having looser requirements in terms of external conditions and tools. The kind of data that can be collected comprises anthropometric measurements, other anthropometric data, and perceptual feedback.

The CIPIC dataset [13] released in 2001 sets a convention for anthropometric data collection and reporting, which has been adopted by later datasets too [14]. Its format specifies 17 anthropometric parameters for head and torso, and 10 for the pinna. This data has the disadvantage of having loosely defined measurement points, which translate into systematic biases that make merging different datasets particularly prone to errors. Moreover, anthropometric features are only unique for each given subject and as such, may not have enough predictive power to be used for the regression of several HRTFs per subject. Spagnol et al. address this shortcoming by introducing elevation-dependent anthropometric measurements as predictors [15].

Another source of useful predictors for regression and prediction tasks may be found in 3-dimensional representation of the subjects' pinnae and head. CONTINUE FROM HERE

FABIAN dataset [fabian_hutubs_2019], depthmaps, CIPIC anthropometric parameters

C. Autoencoder

Most conventional neural networks are employed to predict a target y from an input x in a supervised manner. On the other hand, autoencoders learn a compressed representation z of the input data x called *latent representation*, which is then used to generate a reconstructed version \hat{x} . The purpose of autoencoders is to learn useful features from the input data in an unsupervised manner [16].

Autoencoders usually consists of a feed-forward neural network composed of two sub-nets: an encoder network f() and a decoder network g() such that $g(f(x)) = g(z) = \hat{x}$. Training an autoencoder usually involves iteratively updating the weights and biases of the two networks through backpropagation, in order to minimize a cost function representing the mean squared error (MSE) between x and \hat{x} .

Over time, several variants of the autoencoder have been developed. Each variant extends on the conventional autoencoder architecture by promoting different properties of the latent space, thereby catering to different tasks such as denoising, classification, or — as it is this case here — generative applications. Two common generative models based on the autoencoder are described below.

- 1) Variational autoencoder (VAE): Variational autoencoders are a class of generative models, extending the classic autoencoder. A VAE is a probabilistic model where the encoder $q_{\theta}(z|x)$ maps the probability distribution a certain latent representation given a data point, and the decoder $p_{\phi}(x|z)$ outputs the probability distribution of the data, given a point in the latent space. In VAEs, it is often desireable to model the latent space as an isotropic multivariate Gaussian distribution. This constraint is enforced by introducing a measure of distance between the aforementioned prior distribution $p_{\theta}(z) \sim \mathcal{N}(0,1)$ and the encoder distribution, called Kullback-Leibler divergence. This probabilistic framework proves useful when synthesizing HRTFs, because it can learn causal factors of variations in the data [17]. However, there exists no way of generating a specific HRTF — i.e. one for a given combination of azimuth and elevation angles; while the points in latent space are likely to generate plausible new data, one can only obtain random instances of said data. The class of autoencoders described below aims at addressing this shortcoming.
- 2) Conditional variational autoencoder (CVAE): CVAEs are an extension of variational autoencoders, where an input data labels c modulate the prior distribution of the latent variables that generate the output [18]. Thus, the encoder is formulated as $q_{\theta}(z|x,c)$, meaning that the encoding process is further conditioned by an attribute c, instead of the data content x alone. Furthermore, the decoder is also conditioned by the label, so that it models $p_{\phi}(x|z,c)$. The influence of the label c is incorporated into the VAE structure by means of concatenating its value to the input data x before feeding it into the encoder, as well as to the latent variables z before feeding them into the decoder. Yamamoto [8] uses a customized deep CVAE, where labels consisting of a subject's ID and a spatial orientation, both provided as one-hot encoded vectors, are used to condition each layer of the encoder and decoder.

D. Architectures and models

IV. Results

Introduce the three main themes.

- A. Autoencoding ear images
- B. Autoencoding HRTFs
- C. Autoencoding principal components
- 1) Predicting principal components:

V. Conclusions

This work presented some of the most promising advances in HRTF individualization, introduced the deep learning technologies associated with them, and detailed the results of the replication efforts and further experiments based on the underlying knowledge base.

[19]

BIBLIOGRAPHY

- [1] H. Møller, M. F. Sørensen, C. B. Jensen, and D. Hammershøi, "Binaural Technique: Do We Need Individual Recordings?" *J. Audio Eng. Soc*, vol. 44, no. 6, pp. 451–469, 1996.
- [2] C. Guezenoc and R. Seguier, "HRTF Individualization: A Survey," in *Audio Engineering Society Convention* 145, 2018.
- [3] N. A. Gumerov, R. Duraiswami, and D. N. Zotkin, "Fast Multipole Accelerated Boundary Elements for Numerical Computation of the Head Related Transfer Function," in 2007 IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP '07, 2007, vol. 1, pp. I–165–I–168.
- [4] P. Mokhtari, H. Takemoto, R. Nishimura, and H. Kato, "Comparison of Simulated and Measured HRTFs: FDTD Simulation Using MRI Head Data," in *Audio Engineering Society Convention* 123, 2007.
- [5] X.-Y. Zeng, S.-G. Wang, and L.-P. Gao, "A hybrid algorithm for selecting head-related transfer function based on similarity of anthropometric structures," *Journal of Sound and Vibration*, vol. 329, no. 19, pp. 4093–4106, Sep. 2010.
- [6] S.-N. Yao, T. Collins, and C. Liang, "Head-Related Transfer Function Selection Using Neural Networks," *Archives of Acoustics*, vol. 42, no. 3, pp. 365–373, Sep. 2017.
- [7] G. Lee and H. Kim, "Personalized HRTF Modeling Based on Deep Neural Network Using Anthropometric Measurements and Images of the Ear," *Applied Sciences*, vol. 8, no. 11, p. 2180, Nov. 2018.
- [8] K. Yamamoto and T. Igarashi, "Fully perceptual-based 3D spatial sound individualization with an adaptive variational autoencoder," *ACM Transactions on Graphics*, vol. 36, no. 6, pp. 1–13, Nov. 2017.
- [9] T.-Y. Chen, T.-H. Kuo, and T.-S. Chi, "Autoencoding HRTFS for DNN Based HRTF Personalization Using Anthropometric Features," in *ICASSP 2019 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2019, pp. 271–275.
- [10] C. I. Cheng, "Introduction to Head-Related Transfer Functions (HRTFs): Representations of HRTFs in Time, Frequency, and Space," *J Audio Eng Soc*, vol. 49, no. 4, p. 19, 2001.

- [11] A. Kulkarni, S. K. Isabelle, and H. S. Colburn, "On the minimum-phase approximation of head-related transfer functions," in *Proceedings of 1995 Workshop on Applications of Signal Processing to Audio and Accoustics*, 1995, pp. 84–87.
- [12] A. van den Oord *et al.*, "WaveNet: A Generative Model for Raw Audio," *arXiv:1609.03499 [cs]*, Sep. 2016.
- [13] V. R. Algazi, R. O. Duda, D. M. Thompson, and C. Avendano, "The CIPIC HRTF database," in *Proceedings* of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No.01TH8575), 2001, pp. 99–102.
- [14] B. Fabian *et al.*, "The HUTUBS head-related transfer function (HRTF) database," 2019.
- [15] S. Spagnol and F. Avanzini, "Frequency estimation of the first pinna notch in head-related transfer functions with a linear anthropometric model," p. 6, 2015.
- [16] I. Goodfellow, Y. Bengio, and A. Courville, *Deep Learning*. MIT Press, 2016.
- [17] D. P. Kingma and M. Welling, "An Introduction to Variational Autoencoders," *Foundations and Trends® in Machine Learning*, vol. 12, no. 4, pp. 307–392, 2019.
- [18] K. Sohn, H. Lee, and X. Yan, "Learning Structured Output Representation using Deep Conditional Generative Models," in *NIPS*, 2015.
- [19] G. D. Romigh, D. S. Brungart, R. M. Stern, and B. D. Simpson, "Efficient Real Spherical Harmonic Representation of Head-Related Transfer Functions," *IEEE Journal of Selected Topics in Signal Processing*, vol. 9, no. 5, pp. 921–930, Aug. 2015.