GEOMETRÍA Capítulo 5

1st

Triángulo

MOTIVATING | STRATEGY

El triángulo es una de las figuras geométricas elementales, que nos permite comprender las demás figuras geométricas que estudiaremos posteriormente., aplicando los axiomas, postulados, lemas, teoremas y corolarios, estudiados en los capítulos anteriores, en nuestra vida cotidiana podemos encontrar muchos objetos de forma de triángulo como podemos observar en los siguientes gráficos.

TRIÁNGULO

Dado los puntos A, B y C no colineales, se denomina triángulo a la reunión de los segmentos \overline{AB} , \overline{BC} y \overline{AC} .

NOTACIÓN:

△ ABC: Se lee triángulo ABC

ELEMENTOS

- VÉRTICES: A, B y C
- LADOS: AB, BC y CA

Medida de los ángulos:

- INTERNOS: α , β y θ
- EXTERNOS : δ, ω y φ

PERÍMETRO DE UN TRIÁNGULO

Es la suma de las longitudes de los lados del triángulo y se denota por 2p.

$$2\mathbf{p}_{(ABC)} = \mathbf{a} + \mathbf{b} + \mathbf{c}$$

TEOREMAS FUNDAMENTALES EN EL TRIÁNGULO

La suma de las medidas de los ángulos internos de un triángulo es igual a 180°.

En todo triángulo, la suma de las medidas de los ángulos externos considerados uno por vértice es igual a 360°.

La medida de un ángulo externo de un triángulo es igual a la suma de las medidas de los ángulos internos no adyacentes al ángulo externo.

En todo triángulo, la longitud de un lado es menor que la suma y mayor que la diferencia de las longitudes de los otros dos lados.

Si: a > b

Entonces:

a - b < x < a + b

Dado dos lados de un triángulo, al mayor lado se opone el mayor

ángulo y viceversa.

$$a > b \iff \beta > \alpha$$

1. En el gráfico, halle el valor de β.

Resolución

- Piden: β
- Aplicando el teorema:

$$4\beta = \beta + 45^{\circ}$$

$$3\beta = 45^{\circ}$$

$$\beta = 15^{\circ}$$

2. Halle el valor de x.

Resolución

- Piden: x
- En todo triángulo, la suma de las medidas de los ángulos externos tomados uno por vértice, es igual a 360°.

3. En el gráfico, halle el valor de x.

Resolución

- Piden: x
- **△ ABC**:

$$m \angle ECD = 50^{\circ} + 30^{\circ}$$

$$m \neq ECD = 80^{\circ}$$

• △ **CDE**:

$$80^{\circ} + 60^{\circ} + x = 180^{\circ}$$

 $140^{\circ} + x = 180^{\circ}$

$$x = 40^{\circ}$$

4. Halle el valor de x.

Resolución

- Piden: x
- En todo triángulo la suma de las medidas de los ángulos internos es igual a 180°.
- · Luego en el punto C.

$$50^{\circ}$$
 70°
 $x + 50^{\circ} + 70^{\circ} = 180^{\circ}$
 $x + 120^{\circ} = 180^{\circ}$
 $x = 60^{\circ}$

5. Se tiene un triángulo ABC, donde el ángulo exterior de A mide 4x, el ángulo exterior B mide 6x y el ángulo C mide 40°. Halle el

valor de x.

- Piden: x
- En todo triángulo, la suma de las medidas de los ángulos externos tomados uno por vértice, es igual a 360°.

$$140^{\circ} + 4x + 6x = 360^{\circ}$$

$$140^{\circ} + 10x = 360^{\circ}$$

$$10x = 220^{\circ}$$

$$x = 22^{\circ}$$

6. Lucia y Juan observan un avión cuyas líneas visuales forman con el piso ángulos que miden 70° y 50°, respectivamente. Halle el

• △ABC: m∢ B = 60°

∆DBE:

$$x = 40^{\circ} + 60^{\circ}$$

7. Se desea formar estructuras triangulares para una mayor iluminación. Si tenemos fluorescentes de las medidas mostradas, ¿se podrá formar dicha

estructura uniendo sus extremos?

Resolución

Piden saber si se puede formar una estructura triangular

 Aplicando el teorema de la existencia, con las longitudes de los fluorescentes:

No se puede