

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА «Компьютерные системы и сети»
НАПРАВЛЕНИЕ ПОДГОТОВКИ «09.03.01 Информатика и вычислительная техника»

ОТЧЕТ по лабораторной работе № 2

Название: «Детерминированные сигналы и их основные характеристики» Дисциплина: «Основы теории обработки цифровых сигналов»

 Студент
 ИУ6-62Б (Группа)
 А.Е.Медведев (Подпись, дата)
 А.Е.Медведев (И. О. Фамилия)

 Преподаватель
 А.А. Сотников (Подпись, дата)
 (И. О. Фамилия)

Цель работы

Приобретение практических навыков имитационного моделирования различных видов детерминированных сигналов. Экспериментальное изучение основных характеристик дискретных сигналов, в том числе: энергия и средняя мощность сигнала на интервале, амплитудный и энергетический спектры, спектр мощности и функция спектральной плотности мощности.

Задачи

- 1. Провести имитационное моделирование детерминированного сигнала в виде од
- 2. Провести имитационное моделирование гармонического сигнала с заданным типом модуляции длительностью τ с девиацией частоты в диапазоне $f \in [f_{min}; f_{max}]$ на временном интервале $t \in [t_{min}; t_{max}]$. Частота дискретизации должна быть выбрана в соответствии с требованиями теоремы Найквиста-Котельникова, а именно $f_d > 2 * f_{max}$, где $_{max}$ максимальная частота в спектре моделируемого сигнала.
- 3. Экспериментально рассчитать энергию моделируемого гармонического сигнала во временной и частотной областях и подтвердить выполнение теоремы Парсеваля.
- 4. Оценить среднюю мощность моделируемого гармонического сигнала на заданном интервале.
- 5. Построить амплитудный и энергетический спектры, спектр мощности и функцию спектральной плотности мощности гармонического сигнала. Так как спектральные характеристики действительного сигнала симметричны относительно нулевой частоты, то рекомендуется при выполнении работы на графиках изображать только положительные частоты, удваивая значения характеристики в области положительных частот за счет скрытых на графике соответствующих отрицательных частот. Такой вид изображения является более интуитивно понятным, так как в физических процессах отрицательные частоты отсутствуют.

Выполнение

Листинг 1 – Код программы

```
import matplotlib.pyplot as plt
import numpy as np
from scipy.signal import chirp, spectrogram, periodogram
from scipy.fft import fft, ifft, fftshift
from pylab import *
import os
def f(t):
    return (np.exp(-t) * np.cos(2*np.pi*t) + 1)
AO = 2
A = 3
fmin = 2
fmax = 10
f0 = 15
fd = 100
tmin = -1
tmax = 4
dt = tmax - tmin
N = dt * fd
def tripuls(t,tau, phi):
    x = np.zeros(len(t))
    idx = np.where(np.logical_and(t>=-tau/2 + phi, t <= 0 + phi))
    x[idx] = (t[idx]+tau/2+ phi)/(tau/2+ phi)
    idx = np.where(np.logical_and(t<tau/2 + phi, t>0 + phi))
    x[idx] = -(t[idx]-tau/2-phi)/(tau/2+phi)
    return x
xd = np.linspace(tmin, tmax, N)
zd = A * tripuls(xd, 0.1, 1)
plt.figure()
plt.subplot(211)
plt.plot(xd, zd, 'k')
plt.show()
```

```
def pulstran(t, count, tau, tau_count):
    x = np.zeros(len(t))
    for i in range(1, count + 1, 1):
        x += tripuls(t, tau, tau_count * i)
    return x / 2
zd = A * pulstran(xd, 4, 0.1, 0.3)
plt.figure()
plt.subplot(211)
plt.plot(xd, zd, 'k')
plt.show()
w = chirp(xd[::-1], fmax, fmin, tmax, method='linear')
plt.figure()
plt.subplot(111)
plt.xlim([0, 4])
plt.plot(xd, -w)
plt.show()
zd = A0+A*np.sin(2*np.pi*f0*xd)
plt.figure()
plt.subplot(111)
plt.xlim([0, 4])
plt.plot(xd, zd)
plt.show()
Et = 1/fd * np.sum(zd**2);
Pt = Et/dt;
print(Et)
X = fft(zd,N);
Ew = 1/(fd*N) * np.sum(abs(X)**2);
print(Ew)
print(Pt)
zd = A0+A*np.sin(2*np.pi*f0*xd)
```

```
af = abs(fft(zd)/N);
plt.figure()
plt.xlim([-50, 50])
plt.plot(xd, fftshift(af))
plt.show()
#f=np.linspace(0, fd/N, fd / (fd-fd/N))
ef = 1/(N*fd) * (np.abs(fft(zd))**2)
plt.plot(xd, fftshift(ef))
plt.show()
pf = ef / dt
plt.plot(xd, fftshift(pf))
plt.show()
f, Pxx_den = periodogram(xd, fd ** (0.5), scaling='spectrum')
plt.ylim([10 ** (-6), 100])
plt.xlim([0, 10])
plt.semilogy(f, Pxx_den)
plt.show()
f, Pxx_den = periodogram(xd, fd, scaling='density')
plt.ylim([10 ** (-6), 100])
plt.xlim([0, 10])
plt.semilogy(f, Pxx_den)
plt.show()
```


Рисунок 1 – Моделирование треугольного импульса

Рисунок 2 — Моделирование последовательности треугольных импульсов

Рисунок 3 — Моделирование сигнала с линейной частотной модуляцией

Рисунок 4 — Моделирование сигнала во временной области

Рисунок 5 — Расчет амплитудного спектра сигнала

Рисунок 6 – Расчет энергетического спектра сигнала

Рисунок 7 – Расчет спектра мощности сигнала

Рисунок 8 – Функция спектральной мощности сигнала

Рисунок 9 – Функция спектральной плотности мощности сигнала

Вывод

В ходе работы лабораторной работы были промоделированы различные виды сигналов. Были расчитаны амплитудные и энергетические спектры сигналов и спектор можности сигналов.