

IN THE SPECIFICATION

Please replace paragraph [0012] with the following rewritten paragraph:

[0012] To limit alkali mobility, the molar ratio of Na_2/K_2O Na_2O/K_2O is preferably approximately 1.0. However, a molar ratio of 1.2-3.0 is preferred in order to minimize liquidus temperature. The alkalis are used to maintain a high coefficient of thermal expansion (CTE). CaO and MgO limit alkali mobility and flux of the melt at relatively high temperatures while helping to maintain a high strain point. The higher atomic weight cations, such as Ba^{2+} or La^{3+} , increase the density of the glass. B_2O_3 generally lowers the viscosity of the glass and improves liquidus temperature. B_2O_3 also lowers the strain point and CTE of the glass.

