Метод	Оценка	Год	Автор	Изображение автора	Описание
Метод наи- меньших квадратов (OLS)	$(X^TX)^{-1}X^Ty$	1795	Carl Friedrich Gauss Лежандр		Метод оценивания параметров эконометрической модели, состоящий в минимизации суммы квадратов расхождений между наблюдаемыми значениями зависимой переменной и значениями этой переменной, вычисленными для наблюдаемых значений независимых переменных по оценённой модели связи.
Обобщённый метод наи-меньших квадратов (GLS)	$(X^T\Omega^{-1}X)^{-1}X^T\Omega^{-1}y$	1934	Alexander Aitken	F	Теоретическая процедура оценивания коэффициентов линейной модели регрессии в ситуации, когда случайные ошибки имеют разные дисперсии и коррелированы между собой, при этом предполагается, что ковариационная матрица вектора ошибок невырождена и все ее элементы известны.
Взвешенный метод наи- меньших квадратов (WLS)	$(X^T \Omega^{-1} X)^{-1} X^T \Omega^{-1}$ $\Omega = \operatorname{diag}(\sigma_1, \sigma_2, \dots \sigma_n)$	1934	Alexander Aitken		Процедура, состоящая в минимизации определённым образом взвешенной суммы квадратов отклонений наблюдаемых значений зависиммой переменной от значений, вычисляемых по подбираемой модели связи.
Доступный обобщён- ный метод наимень- ших квадратов (FGLS)	$(X^T\hat{\Omega}^{-1}X)^{-1}X^T\hat{\Omega}^{-1}y$	1934	Alexander Aitken		Практически реализуемая процедура оценивания коэффициентов линейной модели регрессии в ситуации, когда случайные ошибки имеют разные дисперсии и коррелированы между собой, повторяющая процедуру обобщенного метода наисеньших квадратов, но импользующая оцененную ковариационную матрицу вектора ошибок.
Косвенный метод наи- меньших квадратов (ILS)		В 1928 начали заниматься проблемой инструмен- тальных переменных	Philip Wright Sewall Wright (отец и сын)		Метод получения оценок параметров i —го стохастического уравнения структурной формы через оценки наименьших квадратов коэффициентов уравнений приведенной формы. Метод применим в случае точной идентифицируемости i —го структурного уравнения.
Двухшаговый метод наи- меньших квадратов (2SLS)	$X^{T}Z(Z^{T}Z)^{-1}Z^{T}X)^{-1}$ $X^{T}Z(Z^{T}Z)^{-1}Z^{T}y$	1953 1957	Henri Theil Robert Basmann		Метод оценивания коэффициентов уравнения структурной формы, состоящий в предварительной очистке стохастической объясняющей переменой от коррелированности с ошибкой в этом уравнении с использованием инструментальных переменных и в последующем оценивании уравнения, в котором исходная объясняющая переменная заменяется ее очищенным вариантом.
Трёхшаговый метод наи- меньших квадратов (3SLS)	$(\hat{Z}^T(\hat{\Lambda}^{-1} \otimes I_g)\hat{Z})^{-1}$ $\hat{Z}^T(\hat{\Lambda}^{-1} \otimes I_g)y$	1953 1957	Henri Theil Robert Basmann		Доступный обобщённый метод наименьших квадратов, применённый к системе одновременных уравнений. Принимает во внимание наличие коррелированности между ошибками в разных структурных уравнениях.

Таблица 1: Разновидности МНК