# Análise de dados funcionais

Luben Miguel Cruz Cabezas Vinicius Hideki Yamada Santiago

Universidade Federal de São Carlos

Introdução a dados funcionais

# O que são dados funcionais?

- Consiste em dados que podem ser ordenados de acordo com alguma dimensão;
- A dimensão (contínua) pode ser o tempo, frequência, comprimento de onda, etc;
  - Geralmente representada por t
- Em vez de pensar nos dados como vetores, pensa-se neles como uma função (curva);
  - *x*(*t*)
- Daí o nome Dados funcionais 

  Dados que são uma função;

# Surgimento

- Decomposição de Karhunen-Loève: decomposição de processos estocásticos em componentes principais [Grenander, 1950].
- Análise de componentes principais funcionais [Kleffe, 1973];
- Ramsay and Silverman [2008] expandiram o termo Análise de Dados Funcionais (aplicações e teoria).



Figura 1: James O. Ramsay.

# Exemplo de dados funcionais (Dados de $CO_2$ )

Tabela 1: Variáveis do banco de dados e suas características.

|    | Plant | conc         | c uptake |  |
|----|-------|--------------|----------|--|
| 1  | Qn1   | 95.00        | 16.00    |  |
| 2  | Qn1   | 175.00       | 30.40    |  |
| 3  | Qn1   | 250.00       | 34.80    |  |
| 4  | Qn1   | 350.00       | 37.20    |  |
| 5  | Qn1   | 500.00       | 35.30    |  |
| 6  | Qn1   | 675.00       | 39.20    |  |
| 7  | Qn1   | 1000.00      | 39.70    |  |
| 8  | Qn2   | 95.00        | 0 13.60  |  |
|    |       |              |          |  |
| 41 | Qc3   | 675.00       | 39.60    |  |
| 42 | Qc3   | 1000.00      | 0 41.40  |  |
| 43 | Mn1   | 95.00        | 10.60    |  |
| 44 | Mn1   | 175.00 19.20 |          |  |
|    |       |              |          |  |
| 84 | Mc3   | 1000.00      | 19.90    |  |
|    |       |              |          |  |

# Exemplo de dados funcionais (Dados de $CO_2$ )



**Figura 2:** Absorção de  $CO_2$  em relação em relação ao níveis de concentração de  $CO_2$ .

# Vantagens de Dados Funcionais

- Além de trabalhar com estimações da curva, pode-se trabalhar com suas derivadas e integrais;
- O ajuste das curvas é não paramétrico, ou seja, não depende da especificação de alguma distribuição probabilística;
- Como o foco s\(\tilde{a}\)o simplesmente curvas, pode-se pensar em trabalhar com imagens, caracteres, curvas de n\(\tilde{v}\)etc;

# Exemplo de dados funcionais (Câncer de Mama)

Tabela 2: Variáveis da base sobre Câncer de Mama.

|     | Idade | Ano  | TaxaCancer |
|-----|-------|------|------------|
| 1   | 47    | 1921 | 33.50      |
| 2   | 52    | 1921 | 59.10      |
| 3   | 57    | 1921 | 49.80      |
| 4   | 62    | 1921 | 55.80      |
| 5   | 67    | 1921 | 56.00      |
| 6   | 72    | 1921 | 50.00      |
| 7   | 77    | 1921 | 140.10     |
| 8   | 82    | 1921 | 116.50     |
| 9   | 87    | 1921 | 90.90      |
|     |       |      |            |
| 41  | 67    | 1925 | 69.00      |
| 42  | 72    | 1925 | 90.00      |
| 43  | 77    | 1925 | 134.20     |
|     |       |      |            |
| 729 | 87    | 2001 | 178.90     |
|     |       |      |            |

# Exemplo de dados funcionais (Câncer de Mama)



Figura 3: Taxa de Câncer de Mama em relação a Idade das mulheres.

# **Diferentes modelagens**

Tabela 3: Modelagens.

| Modelagem           | Objeto                  | Suposição                                                                                | Modelo                                                    | Predição                       |
|---------------------|-------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|
| Séries temporais    | $X_1,, X_n$             | Observações igualmente espaçadas no tempo                                                | $AR(1):X_t =_{t-1} + \omega_t$ ou ARMA, MA, ARIMA, SARIMA | Predizer $X_t$ com $X_{t-1}$   |
| Dados Longitudinais | ( <b>Y</b> , <b>X</b> ) | Observações igualmente espaçadas ou não no tempo $Y_i \sim \textit{Distribui} 	ilde{c}$  | $Y_{ij} = \boldsymbol{X}eta + \boldsymbol{Z}b$            | Predizer $Y_{ij}$ com $X_{ij}$ |
| Dados Funcionais    | (Y,X(t))                | Observações igualmente espaçadas ou não no tempo $Y_i$ modelado de forma não paramétrica | $Y_{ij} = \sum_{j=1}^K c_j \phi_j(t)$                     | Predizer $Y$ com $X(t)$        |

# Visualizações

- $t \ VS \ x_1(t), x_2(t), ..., x_n(t);$
- $t \ VS \ x'_1(t), x'_2(t), ..., x'_n(t);$
- Phase Plane plot  $(x'(t) \ VS \ x''(t))$ ;
- Outras visualizações [Ramsay and Silverman, 2008];

# Phase Plane Plot (dado funcional)



Figura 4: Log do Índice de produtos não duráveis dos EUA.

# Phase Plane Plot (após o ajuste da função)



**Figura 5:** Phase Plane Plot para o ano de 1964 do Log do Índice de produtos não duráveis dos EUA (função ajustada por uma b-spline).

# Phase Plane Plot (após o ajuste da função)



**Figura 6:** Phase Plane Plot para o ano de 1994 do Log do Índice de produtos não duráveis dos EUA (função ajustada por uma b-spline).

Análises descritivas em dados

**funcionais** 

## Estatísticas básicas

#### Média em Dados Funcionais

$$\bar{x}(t) = \frac{1}{n} \sum_{i=1}^{n} x_i(t).$$

#### Variância em Dados Funcionais

$$Var_x(t) = \frac{1}{n} \sum_{i=1}^n (x_i(t) - \bar{x}(t))^2.$$

#### Estatísticas básicas

#### Covariância em Dados Funcionais

$$Cov_x(t_1, t_2) = \frac{1}{n} \sum_{i=1}^n (x_i(t_1) - \bar{x}(t_1))(x_i(t_2) - \bar{x}(t_2)).$$

#### Correlação em Dados Funcionais

$$\mathit{Corr}_{\mathsf{x}}(t_1, t_2) = rac{\mathit{Cov}_{\mathsf{x}}(t_1, t_2)}{\sqrt{\mathit{Var}_{\mathsf{x}}(t_1)\mathit{Var}_{\mathsf{x}}(t_2)}}$$

#### Estatísticas básicas



**Figura 7:** Média e Covariância de um dado funcional x(.) [Ramsay et al., 2009].

# **Bases**

# Representação funcional dos dados

- Dados que têm uma estrutura funcional, vêm em um formato tabular discreto, com n pares (t<sub>i</sub>, y<sub>i</sub>);
- Interesse em obter a função suave x(t) que gera esses dados tal que,  $y_i = x(t_i) + \epsilon_i$ ;
- Considera-se geralmente que  $\epsilon_j$  são independentes, com média 0 e variância  $\sigma^2$  e  $x(t_j)$  são fixos, tendo então  $\mathbb{V}[Y] = \Sigma_e = \sigma^2 I$ .

# Representação de funções através de bases

- Para se obter uma função suave x(t) representando nossos dados funcionais pode-se utilizar da combinação linear de bases;
- Isso vem do fato de que qualquer função x(t) pode ser aproximada pela combinação linear de um conjunto com K funções linearmente independente entre si  $\phi_k$ ;
- $x(t) = \sum_{j=1}^{K} c_j \phi_j(t) = \boldsymbol{c}^t \phi;$
- A representação exata de x(t) é dada quando K=n;
- Problemas: Como escolher as bases  $\phi$ ? Como achar um bom K?
- Principais bases: Fourier, Splines (B-splines, splines naturais, etc.).

#### Base de fourier

• Expansão de Fourier:

$$\hat{x}(t) = c_0 + c_1 \operatorname{sen}\omega t + c_2 \cos \omega t + c_3 \operatorname{sen}2\omega t + c_4 \cos 2\omega t + \dots;$$

- Base periódica:  $\phi_0(t) = 1$ ,  $\phi_{2r-1}(t) = \operatorname{sen} rwt$ ,  $\phi_{2r}(t) = \cos rwt$ ;
- $\omega$  determina o período  $2\pi/\omega$ ;
- Transformada rápida de fourier torna possível encontrar os coeficientes c<sub>k</sub> de forma muito eficiente;
- Assim, a base é boa de se utilizar em dados periódicos ou séries de duração muito longa.
- Derivadas são facilmente calculaveis:

$$\mathbf{D}_{x} = (0, c_{1}, -\omega c_{2}, 2\omega c_{3}, -2\omega c_{4}, \dots) e$$

$$\mathbf{D}_{x}^{2} = (0, -\omega^{2} c_{1}, -\omega^{2} c_{2}, -4\omega^{2} c_{3}, -4\omega^{2} c_{4}, \dots)$$

• "Séries de Fourier são como margarina".

## Base de fourier



**Figura 8:** Base de Fourier de periodo 1 com K = 7

# **Splines**

- Escolha mais comum para aproximar funções não periódicas
- Idéia principal: Dividir o intervalo de interesse em L subintervalos separado por nós  $\tau_I, I = \{1, \dots, L-1\}$  e adicionar polinômios distintos de ordem m para cada intervalo.
- Ou seja, a spline é um conjunto de polinômios de ordem m por partes
- Ressalta-se que os polinômios de cada intervalo se juntam de forma suave, tendo valores iguais para os nós que os separam.
- São usados m + L 1 parâmetros para determinar uma spline, sendo m a ordem dos polinômios em partes e L o número de subintervalos separados por um sequência de nós τ.

# **Splines**



**Figura 9:** Exemplo de splines interpoladas à função seno (à esquerda) e sua derivada (à direita), retirado de Ramsay and Silverman [2008]

# **B-splines**

- Uma maneira de especificar um conjunto de funções de base  $\phi_k(t)$  que construam uma spline é a partir das seguintes propriedades:
  - Cada base  $\phi_k(t)$  é uma spline de ordem m e sequência de nós  $\tau$ ;
  - Qualquer combinação linear dessas bases resulta em uma função spline;
  - Qualquer spline definida por m e τ pode ser expressada pela combinação linear dessas bases.
- Há varias formas de construir essa base, mas o mais popular são as B-splines, desenvolvidas por Boor [2001].
- Propriedade interessante: cada função B-spline de ordem m é positiva sobre apenas m intervalos adjacentes.
- Isso garante certa esparsidade no produto interno da matriz Φ, com as bases sendo parcialmente ortogonais.

# **B-splines**



Figura 10: B-splines de ordem diferentes com K = 10.

#### **Outras** bases

- Há várias outras bases comumente utilizadas não só para aproximar
   x(t) mas também para modelos de equação diferencias dos dados
   funcionais, e para análise de componentes principais em dados
   funcionais;
- Ondaletas:  $\psi_{jk}(t) = 2^{j/2}\psi(2^{j}t k)$
- Base exponencial:  $e^{\lambda_1 t}, e^{\lambda_2 t}, \dots, e^{\lambda_k t}, \dots$ ;
- Base de monômios:  $\phi_k(t) = (t \omega)^k, k = 0, \dots, K$ .

# Suavizando dados funcionais pelos mínimos quadrados

# Mínimos quadrados ordinários

- Como visto anteriormente, se usarmos a expansão por bases, escrevemos  $x(t) = {m c}^t \phi$
- Definimos assim a matriz de covariáveis  $\Phi$  com dimensão  $n \times K$  com entradas  $\phi_k(t_i)$
- Minimizar  $SQT(\mathbf{y}|\mathbf{c}) = \sum_{i=1}^{n} [y_i \sum_{j=1}^{K} c_j \phi_j(t_i)]^2 = (\mathbf{y} \mathbf{\Phi}\mathbf{c})^t (\mathbf{y} \mathbf{\Phi}\mathbf{c})$
- Estimador de mínimos quadrados:  $\hat{\boldsymbol{c}} = (\boldsymbol{\Phi}^t \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^t \boldsymbol{y}$
- Mínimos quadrados ponderados:
  - Minimizar  $SQT(y|c) = (y \Phi c)^t W(y \Phi c)$
  - Estimador de mínimos quadrados ponderados:

$$\hat{\boldsymbol{c}} = (\boldsymbol{\Phi}^t \boldsymbol{W} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^t \boldsymbol{W} \boldsymbol{y}$$

# Exemplo: Precipitação em Vancouver



**Figura 11:** Suavização da precipitação em Vancouver usando mínimos quadrados com uma base de fourier.

# Exemplo: Precipitação em Vancouver



**Figura 12:** Suavização da precipitação em Vancouver usando mínimos quadrados com uma base de b-splines.

# Exemplo: Precipitação em mais outras estações



Figura 13: Curvas estimadas de precipitações para outras estações.

# Escolher K para as funções de base

- Uma dúvida já levantada antes era como escolher a ordem da base K;
- Quanto maior K, melhor tende a ser o ajuste da suavização, mas pode levar a sobreajustes da curva.
- Já, quanto menor K, tendemos mais a um subajuste da curva.
- Para determinar K, analisa-se o balanço entre o viés e variância da suavização
- O erro quadratico médio é decomposto em função do viés e variância da seguinte maneira:  $EQM(\hat{x}(t)) = Vies(\hat{x}(t))^2 + V[\hat{x}(t)]$

# Escolher K para as funções de base

- Validação cruzada leave-one out para escolher K
  - Remover um par  $(t_i, y_i)$ ;
  - Ajustar a curva nos dados restantes  $\hat{x}_{-i}(t_i)$  para vários K
  - Escolher o K que minimiza  $VC(y) = \sum_{i=1}^{n} (y_i \hat{x}_{-i}(t_i))^2$
- Outra maneira de escolher o K é realizar seleção de variáveis, como o stepwise, em uma base com K grande;

# Exemplo utilizando validação cruzada



**Figura 14:** Validação cruzada para escolher K nos dados de precipitação em Vancouver

# mínimos quadrados locais

Suavizando dados funcionais por

#### Mínimos quadrados locais

- Intuição: a estimação da função no ponto t deve ser principalmente influenciada por observações próximas ao ponto t;
- Essa propriedade já existe de forma implícita no estimador de mínimos quadrados, e é explicita em estimadores de pesos locais;
- A idéia desses tipos de estimadores é estimar a função x(t) para cada  $t_j$  como uma ponderação dos valores  $y_j$ :  $x(t_j) = \sum_{i=1}^n w_i y_i$
- As observações mais próximas a t<sub>j</sub> teriam um peso maior que observações mais distantes a esse.

#### Mínimos quadrados locais

- Podemos obter os pesos locais w<sub>i</sub> através de kernels centralizados em t<sub>j</sub>:
  - Uniforme:  $K(u) = 0.5 \mathbb{I}(|u| \le 1)$
  - Quadrático:  $K(u) = 0.75(1 u^2) \mathbb{I}(|u| \le 1)$
  - Gaussiano:  $K(u) = (2\pi)^{-1/2} \exp(-u^2/2)$
- Mais especificamente, fixado um  $t_j$ , teremos:  $w_i = K\left(\frac{t_i t_j}{h}\right)$ ;
- Valores grandes de w<sub>i</sub> estão atrelados a proximidade de t<sub>i</sub> nas vizinhanças de t<sub>i</sub>;
- O parâmetro h é o parâmetro de largura de banda que controla o grau de concentração da vizinhança de t<sub>i</sub>:
  - Valores grandes implicam em pesos parecidos entre valores distantes ou próximos a t<sub>j</sub>
  - Valores pequenos implicam em pesos maiores apenas para valores mais próximos a t<sub>j</sub>

#### Suavização por kernel

- Estimador mais comum que usa pesos locais: estimador por kernel
- $\hat{x}(t) = \sum_{i=1}^n S_i(t)y_i$
- $S_i(t)$ : Função de pesos baseada em kernel
- Estimador de Nadaraya-Watson:  $S_i(t) = \frac{K((t_i-t)/h)}{\sum_{j=1}^n K((t_j-t)/h)}$
- Pesos normalizados de forma que  $\sum_{i=1}^{n} S_i(t) = 1$

#### Exemplo: temperatura diária de Vancouver



**Figura 15:** Suavização da temperatura diária em Vancouver para 3 diferentes larguras de bandas

#### Temperatura diária para outras estações



**Figura 16:** Suavização da temperatura diária para 11 diferentes estações tomando h=20

#### Escolher h para os estimadores por kernel

- Como podemos chegar a melhor largura de banda h?
- Problema de sobreajuste e subajuste similar ao visto para o parâmetro K das funções de base;
- Similarmente, podemos usar a validação cruzada leave-one-out para escolher h ótimo;
- Há várias outras técnicas de escolha automática de h, geralmente no espirito da validação cruzada, mas não se pode confiar cegamente em nenhuma delas;
- Ramsay and Silverman [2008] sugerem testar uma variedade de valores h e por análise gráfica escolher um h interessante

#### Exemplo utilizando validação cruzada



Figura 17: Validação cruzada para encontrar h ótimo

#### Mínimos quadrados locais com funções de bases

- Idéia: combinar o estimador local baseado em kernel com o estimador baseado em funções de bases.
- Isso é feito ao estender os mínimos quadrados ordinários para uma fórmula de erro local:

$$SQT_t(\boldsymbol{y}|\boldsymbol{c}) = \sum_{i=1}^n w_i(t) \left[ y_i - \sum_{j=1}^K c_j \phi_j(t_i) \right]^2 = (\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{c})^t \boldsymbol{W}(t) (\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{c})$$

- Minimizando  $SQT_t$ , obtemos o estimador dos coeficientes locais:  $\hat{c}(t) = [\mathbf{\Phi}^t \mathbf{W}(t)\mathbf{\Phi}]^{-1}\mathbf{\Phi}^t \mathbf{W}(t)\mathbf{y}$
- O estimador por kernel de Nadaraya-Watson é um caso especial dos minimos quadrados locais com funções de bases, tomando K=1 e  $\phi_j(t)=1$ .

#### Caso particular: suavização polinomial local

- Tomar como base as funções de base de monômios
- Minimizar em particular:

$$SQT_t(\mathbf{y}|\mathbf{c}) = \sum_{i=1}^n K_h(t_i, t) \left[ y_i - \sum_{j=0}^L c_j (t - t_i)^k \right]^2$$

 Dessa maneira, conseguimos utilizar a função de base polinomial para estimar mais facilmente as derivadas.

#### Exemplo: temperatura diária de Vancouver



**Figura 18:** Ajuste por polinômio local com h=6 e segunda derivada estimada

Suavização por penalização

#### Suavização com penalização

- Erro Quadrático Médio = Viés² + Variância Da Amostra
- Intuição
  - Pode-se aumentar um pouco o Viés para reduzir a variância;
  - Predição varia "gentilmente" de um valor ao outro;
  - Utiliza-se a suavidade entre os vizinhos (observações) mais próximos;
- Pode-se expressar uma penalização como

$$PEN_m(x) = \int [D^m x(s)]^2 ds$$

- Sabe-se que  $x(t) = \sum_k^K c_k \phi_k(t) = oldsymbol{c}' oldsymbol{\phi}(t)$ 
  - $\phi$  é vetor de tamanho k das funções de base;
  - c é vetor de tamanho k dos coeficientes;

### Suavização com penalização

Pode-se expressar uma penalização como

$$PEN_{m}(x) = \int [D^{m}x(s)]^{2} ds = \int [D^{m}\mathbf{c}'\phi(s)]^{2} ds =$$

$$= \int \mathbf{c}'D^{m}\phi(s)D^{m}\phi'\mathbf{c} ds =$$

$$= \mathbf{c}'\left(\int D^{m}\phi(s)D^{m}\phi' ds\right)\mathbf{c} =$$

$$= \mathbf{c}'R\mathbf{c}.$$

• Somando a penalização  $PEN_m(x)$  e soma de quadrados total  $SQT_t(\boldsymbol{y}|\boldsymbol{c})$ , tem-se

$$(\mathbf{y} - \mathbf{\Phi} \mathbf{c})^t \mathbf{W}(t) (\mathbf{y} - \mathbf{\Phi} \mathbf{c}) + \lambda \mathbf{c}' \mathbf{R} \mathbf{c}.$$

• Derivando em relação a **c** e igualando a 0, conclui-se que

$$\hat{\boldsymbol{c}} = [\boldsymbol{\Phi}^t \boldsymbol{W}(t) \boldsymbol{\Phi} + \lambda \boldsymbol{R}]^{-1} \boldsymbol{\Phi}^t \boldsymbol{W}(t) \boldsymbol{y}$$

# Suavização com penalização (4 métodos)



**Figura 19:** Suavizações para a estação de Vancouver com 4 métodos de estimação.

# Suavização com penalização (4 métodos)

**Tabela 4:** Valores preditos das Suavizações para a estação de Vancouver com 4 métodos de estimação.

|       | Vancouver | day | REML    | P-REML  | GCV.Cp  | GACV.Cp |
|-------|-----------|-----|---------|---------|---------|---------|
| jan01 | 2.30000   | 1   | 2.04601 | 2.04590 | 2.05941 | 2.05900 |
| jan02 | 2.10000   | 2   | 2.11015 | 2.11005 | 2.12251 | 2.12213 |
| jan03 | 1.90000   | 3   | 2.17428 | 2.17418 | 2.18561 | 2.18525 |
| jan04 | 2.00000   | 4   | 2.23838 | 2.23829 | 2.24867 | 2.24835 |
| jan05 | 1.60000   | 5   | 2.30244 | 2.30237 | 2.31171 | 2.31142 |
|       |           |     |         |         |         |         |

#### Suavização com penalização (derivadas)



**Figura 20:** Suavização para a estação de Vancouver (estimação por REML) e primeira derivada.

### Suavização com penalização (derivadas)



**Figura 21:** Suavização para a estação de Vancouver (estimação por REML) e segunda derivada.

#### Suavização com penalização (derivadas)



Figura 22: Suavizações para 11 estações (estimação por REML).

Extensões da análise de dados

**funcionais** 

#### Extensões

- Análise de componentes principais funcional
  - Matriz de covariância  $\sum \implies$  Superfície de covariância  $\sigma(s,t)$ ;
- Exploratória de dados funcionais
  - Suavização;
  - · ACP Funcional;
  - Covariância Funcional;
- Regressão funcional
  - $y_i = \alpha + \sum \beta_j x_i(t_j) + \epsilon$
  - ACP Funcional + Regressão
  - $y_i(t) = \beta_0(t) + \sum_{j=1}^p \beta_i(t) x_{ij}$ ;
- E ainda mais;

#### Referências

- C de Boor. A practical guide to splines. revised edition. new-york: Springer. 2001.
- Ulf Grenander. Stochastic processes and statistical inference. *Arkiv för matematik*, 1(3):195–277, 1950.
- Jürgen Kleffe. Principal components of random variables with values in a seperable hilbert space. *Mathematische Operationsforschung und Statistik*, 4(5):391–406, 1973.
- James O Ramsay and Bernhard W Silverman. Functional data analysis. *İnternet Adresi: http*, 2008.
- JO Ramsay, Giles Hooker, and Spencer Graves. Introduction to functional data analysis. In *Functional data analysis with R and MATLAB*, pages 1–19. Springer, 2009.