Designing resistor values for modulator,

Given
$$V_{ec} = 12V$$
 $I_{c} = 2mA$
 $B = 100$
 $R_{1} = 1k\Sigma$

Using the formulas,

 $R_{c} = \frac{V_{cc} - 0.3}{I_{c}} = \frac{12 - 0.3}{2mA}$
 $R_{c} = \frac{V_{io} - 0.7}{I_{o}(I_{c}/B)} = \frac{1 - 0.7}{I_{o}(\frac{2mA}{100})}$
 $R_{g} = 1.5k\Sigma$

assume $A_{V} = 3$,

 $A_{V} = 1 + \frac{R_{o}}{R_{I}}$
 $A_{z} = 2k\Sigma$

Thus, G(on) = 3 and G(off) = 0.25

Designing resistor value for demodulator,

$$f = \frac{1}{2\pi RC}$$

$$ASSUME C = 0.1 \mu F$$

$$=) 100 Hz = \frac{1}{2\pi \times R \times 0.1 \mu}$$

$$=) R = \frac{1}{2\pi \times 100 \times 0.1 \mu}$$

$$R = 16 k \pi L$$

ASK Modulator circuit

G.Karishni CB.EN.U4ECE19116

Message signal

Carrier wave

Modulated signal

ASK Demodulator circuit

Message signal

Envelop detector of modulated signal

Demodulated signal

