Model	Description	Hyperparameters	Performance Metric (e.g., Accuracy, F1 Score)
Random Forest	Ensemble method using decision trees	n_estimators=100, max_depth=10, min_samples_split=2	Accuracy: 92%

Linear Regression	Simple linear model for prediction	-	Accuracy: 75%
Support Vector Machine (SVM)	Classifier using hyperplanes	C=1.0, kernel='rbf', gamma='scale'	Accuracy: 85%

Model Development Phase Template

Date	20 June 2024
Team ID	739712
Project Title	Rain fall prediction using ml
Maximum Marks	6 Marks

Model Selection Report

The model selection report for the rainfall prediction project highlights Random Forest as the best performer, with superior accuracy and robustness compared to other algorithms like Linear Regression and SVM.

	for local variations in loan approval criteria.		
Gradient Boosting	Gradient boosting with trees; optimizes predictive performance, handles complex relationships, and is suitable for accurate loan approval predictions.	-	Accuracy score = 81%