USN]
						1

18MCE12

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU, Belagavi)

I Semester Master of Technology (Computer Science and Engineering)
ADVANCES IN ALGORITHMS AND APPLICATIONS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Each unit consists of two questions of 20 marks each.
- 2. Answer FIVE full questions selecting one from each unit.

UNIT-1

1	а	Define asymptomatic notations $0, \theta, \Omega, o, w$ with neat diagram.	08			
	b	Show that the solution of $T(n) = T(\lfloor n/2 \rfloor) + 1$ is $O(\lg n)$.				
	c	Write algorithm for counting sort and sort $A = \{6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2\}$.	06			
		OR				
2	а	Draw the recursion tree for $T(n) = 4T(\lfloor n/2 \rfloor) + cn$ where c is a constant, and provide a tight asymptomatic bound on its solution.				
		Verify your bound by substitution method.	08			
	b	Perform radix sort on {329, 457, 657, 839, 436, 720, 355}.				
	c	Write algorithm for Bucket sort and sort the following elements				
		$\{0.79, 0.13, 0.16, 0.64, 0.39, 0.20, 0.89, 0.53, 0.71, 0.42\}.$	06			

UNIT-2

3	а	Mention the steps to optimally parenthesize a matrix chain. Explain the steps with an example. Find optimal paranthesization of a matrix-							
		chain product whose sequence of dimensions is {5, 10, 3, 12, 5, 50, 6}.							
	b	Explain amortized analysis of stack operations for aggregate,							
		accounting and potential methods.	10						
		OR							
4	a	Write algorithm for longest common subsequence and determine LCS							
		of {1,0,0,1,0,1,0,1} and {0,1,0,1,1,0,1,1,0}.							
	b	List the steps involved in design of greedy algorithms.							
	С	Explain potential method of incrementing a binary counter in detail.	08						

UNIT-3

	b	Six reporters Asif (A), Becky (B), Chris (C), David (D), Emma (E), and								
		Fred (F) are to be assigned to six news stories Business:								
		(1), Crime (2), Finance (3), Foreign (4), Local (5), and Sport (6). The								
		table shows possible allocations of reporters to news stories.								
			1	2	3	4	5	6		
		A					✓			
		В	✓							
		C	~	✓		~				
		D					√			
		E			✓		√	✓		
		F				~				
		i) Show these allocation of	n a	bir	oart	ite	grap	oh.		
		ii) Use appropriate algorit	hm	to f	find	a n	nax	ima	l matching.	10
		OR								
6	a	Explain Johnson Algorithm and mention importance of Dijkstra algorithm in Johnson Algorithm.								10
	b	Write Ford Fulkerson algorithm and find max flow for the below graph in Fig. 6.b.								
		(1) 12 (3)								
		19								
		(0)								
		4								
		12 7								
		11								
				Fi	g. 6	.b				10

UNIT-4

8	а	Illustrate implementation of append and union on linked list	
		representation of disjoint sets.	06
	b	Working modulo $q = 11$, explain Rabin-Karp algorithm for string matching of the pattern 14159 in the text $T = 3141592$. Give the	
		pseudo code of the alg.	10
	c	Draw prefix table for KMP for pattern "ACAAAAB".	04

UNIT-5

9	a b	Explain multithreaded merge sort with an example and algorithm. Write an algorithm for P square matrix multiplication using recursion.	10					
		OR						
10	a	Explain Strassen's multithreading method with example.	10					
	b	Explain the terms, spawn, sync and parallel with example.	10					