Section 2.5 – Higher Order Derivatives

Higher Derivatives

 $\frac{d}{dx}[f'(x)] = f''(x)$ Second derivative

 $\frac{d}{dx}[f''(x)] = f'''(x)$ Third derivative

Notation for Higher-Order Derivatives						
1.	1st derivative	y'	f'(x)	$\frac{dy}{dx}$	$\frac{d}{dx}[f(x)]$	$D_{x}[y]$
2.	nd 2 derivative	y"	f''(x)		$\frac{d^2}{dx^2} [f(x)]$	$D_x^2[y]$
3.	3 rd derivative	y‴	f'''(x)		$\frac{d^3}{dx^3} [f(x)]$	
4.	th 4 derivative	y ⁽⁴⁾	$f^{(4)}(x)$	$\frac{d^4y}{dx^4}$	$\frac{d^4}{dx^4} [f(x)]$	$D_x^4[y]$
5.	n derivative	$y^{(n)}$	$f^{(n)}(x)$	$\frac{d^n y}{dx^n}$	$\frac{d^n}{dx^n} [f(x)]$	$D_x^n[y]$

Example

Find the first four derivatives of $f(x) = 6x^3 - 2x^2 + 1$

Solution

$$f'(x) = 18x^2 - 4x$$

$$f''(x) = 36x - 4$$

$$f'''(x) = 36$$

$$f^{(4)}(x) = 0$$

Example

Find the value of g'''(1) for $g(x) = x^4 - x^3 + 2x$

Solution

$$g'(x) = 4x^{3} - 3x^{2} + 2$$

$$g''(x) = 12x^{2} - 6x$$

$$g'''(x) = 24x - 6$$

$$\Rightarrow g'''(1) = 24 - 6 = 18$$

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 $\Rightarrow f^{(n)}(x) = n! a_n$

Example

Find the fourth derivative of $y = \frac{1}{x^2}$

Solution

$$\Rightarrow y = \frac{1}{x^2} = x^{-2}$$

$$y' = -2x^{-3} = -\frac{2}{x^3}$$

$$y'' = 6x^{-4} = \frac{6}{x^4}$$

$$y''' = -24x^{-5} = -\frac{24}{x^5}$$

$$y^{(4)} = 120x^{-6} = \frac{120}{x^6}$$

Acceleration

$$s = f(t)$$
 Position function

$$\frac{ds}{dt} = f'(t)$$
 Velocity function

$$\frac{d^2s}{dt^2} = f'''(t)$$
 Acceleration function

Example

A ball is thrown upward from the top of an 80-foot cliff with an initial velocity of 64 feet per second. Give the position function. Then find the velocity and acceleration functions.

Solution

$$s(t) = -16t^2 + 64t + 80$$

Velocity :
$$v(t) = s'(t) = -32t + 64$$

Acceleration:
$$a(t) = s''(t) = -32$$

Exercises Section 2.5 – Higher Order Derivatives

1. Find the second derivative:
$$f(x) = 3(2-x^2)^3$$

2. Find the third derivative:
$$f(x) = 5x(x+4)^3$$

3. Find
$$f'''(-5)$$
 the given value: $f(x) = \sqrt{4-x}$

4. Find the 4th derivative of
$$f(x) = x^4 + 2x^3 + 3x^2 - 5x + 7$$

5. Find the second derivative of
$$f(x) = (x^2 - 1)^2$$

6. Find
$$f''(x)$$
 for $f(x) = \sqrt{x^2 + 36}$, then find $f''(0)$ and $f''(9)$

7. Find
$$f''(x)$$
 for $f(x) = \sqrt{x^2 + 81}$, then find $f''(0)$ and $f''(2)$

8. The position function on Earth, where *s* is measured in meters, *t* is measured in seconds, v_0 is the initial velocity in meters per second, and h_0 is the initial height in meters, is

$$s = -4.9t^2 + v_0 t + h_0$$

If the initial velocity is 2.2 and the initial height is 3.6, what is the acceleration due to gravity on Earth in meters per second per second?