

RADIOS DEFINIDOS POR SOFTWARE (SDR) E SUAS APLICAÇÕES.

Walter Abrahão dos Santos David Julián Molano Peralta

Mestrado em:

Engenharia e Tecnologia Espaciais.

Área de Concentração:

Engenharia e Gerenciamento de Sistemas Espaciais.

Orientação:

Walter Abrahão dos Santos.

Douglas Soares dos Santos.

Sumario.

- Introdução.
- Motivação para usar a tecnologia SDR.
- Radio Definido por Software (SDR).
- Aplicações com SDR.
 - Aquisição de imagens dos satélites NOAA.
 - Decodificação de telemetrias com SDR.
 - Decodificação de telemetrias com GNURadio.
 - Ambiente de desenvolvimento GNURadio.
- Conclusões.

Introdução.

 Aumento significativo no número de projetos relativos a pequenos satélites educacionais. (Cubesats).

Motivação para usar a tecnologia SDR.

- A principal motivação para empregar componentes SDR de estações em terra para pequenos satélites é melhorar o desempenho e a aquisição de dados dos satélites, bem como reduzir o custo de desenvolvimento e implementação de estações terrestres.
- O uso de SDR em rádio amador deveu-se principalmente ao baixo custo e à atual disponibilidade de sua tecnologia.

Radio Definido por Software (SDR).

O que é?

- Rádio em que algumas ou todas as funções da camada física são definidas por software.
- Tecnologia que usa o computador, um receptor especial e um software que faz o papel das partes principais do receptor (misturador, filtros, amplificadores, moduladores, demoduladores, detectores, etc.) para ouvir emissões de rádio, TV e praticamente quase todos modos de transmissão, seja digital ou analógico.

Radio convencional.

Radio Definido por Software (SDR).

O que é?

- Rádio em que algumas ou todas as funções da camada física são definidas por software.
- Tecnologia que usa o computador, um receptor especial e um software que faz o papel das partes principais do receptor (misturador, filtros, amplificadores, moduladores, demoduladores, detectores, etc.) para ouvir emissões de rádio, TV e praticamente quase todos modos de transmissão, seja digital ou analógico.

Radio Definido por Software (SDR).

O que é?

- Rádio em que algumas ou todas as funções da camada física são definidas por software.
- Tecnologia que usa o computador, um receptor especial e um software que faz o papel das partes principais do receptor (misturador, filtros, amplificadores, moduladores, demoduladores, detectores, etc.) para ouvir emissões de rádio, TV e praticamente quase todos modos de transmissão, seja digital ou analógico.

Placa de hardware SDR

Software Radio.

Aplicações com SDR.

Software feitos atualmente.

■ Elemento de hardware e software, no mercado e na internet.

Visão Geral.

São satélites desenvolvidos pela Administração Nacional Oceânica e Atmosférica (NOAA) dos Estados Unidos da América (USA) em cooperação com a Administração Nacional de Aeronáutica e Espaço (NASA).

Características Principais.

- ☐ Altura aproximada: 870 kms.
- □ Período da orbita: 102 min.
- Frequências de operação: 137 138 MHz
- ☐ Massa: 1400 1500 Kg.

Satélites em funcionamento.

- NOAA 15.
- NOAA 18.
- NOAA 19.

Bandas de Frequências.

Estações para uso livre.

FAIXAS E FREQUÊNCIAS PARA RADIOAMADOR			
Banda	Faixa de Frequência	Faixas para Radioamador	
		De	Até
MF (Medium Frequency)	300 KHz a 3000 KHz	1.800 KHz	2.000 KHz
HF (High Frequency)	3 MHz a 30 MHz	3.500 KHz	3.800 KHz
		7.000 KHz	7.300 KHz
		10.100 KHz	10.150 KHz
		14.000 KHz	14.350 KHz
		18.068 KHz	18.168 KHz
		21.000 KHz	21.450 KHz
		24.890 KHz	24.999 KHz
		28.000 KHz	29.700 KHz
VHF (Very High Frequency)	30 MHz a 300 MHz	50 MHz	54 MHz
		134 MHz	148 MHz
		219 MHz	225 MHz
UHF (Ultra High Frequency)	300 MHz a 3000 MHz	420 MHz	450 MHz
		902 MHz	928 MHz
		2.300 MHz	2.450 MHz
SHF (Super High Frequency)	3 GHz a 30 GHz	3.300 MHz	3.500 MHz

Hardware necessário.

Funcube Dongle Pro Plus

Antena MoxonZBZ

- 2 elementos em VHF e 4 em UHF
- Fácil fabricação.
- Custo 10 USD.

Software necessário.

Esquema de funcionamento.

Comunicação SDRSharp – WXtoImg com Virtual Audio Cable.

Inicio da decodificação da imagem.

Resultado Final.

Resultado Final.

Imagem recebida no dia 03 de Julho do 2017.

Tancredo-1.

UbatubaSat.

- Designed at the primary school "Presidente Tancredo de Almeida Neves" located in Ubatuba, São Paulo, Brazil; With the aim of arousing student's interest in space science and technology.
- Downlink and Uplink Frequency: 437,2 MHz (Half Duplex)

Source: Authors

Opções de Software para Decodificação de Telemetrias.

Seguimento e apontamento:

- □ Heavens-Above. (Android).
- □ Orbitron.

Recepção e processamento:

- □ SDR Sharp.
- □ SoundModem.
- AGW OnlineKiss.
- □ UbaTM-Decoder. Este software foi desenvolvido como uma contribuição do grupo AMSAT-BR e PY2SDR (Edson Pereira) para o projeto UbatubaSat.

Decodificação de telemetrias com SDR.

Esquema de configuração.

Configurações atual para obter telemetrias.

Heavens-Above

Informação dos satélites.

Tem a listagem de satélites à vista. Além de informações sobre cada um deles e frequências para downlink e uplink de informação.

Orbitron.

Seguimento de Satélites.

Software adicional para seguimento de satélites, informação da posição do satélite (Azimute e Elevação).

SDR Sharp.

Recepção do Sinal.

SDR (Software Defined Radio). Software que substitui os rádios físicos convencionais e permite escutar e receber os sinais enviados pelo satélite.

SoundModem.

Processador do Sinal.

Software que converte os sinais recebidos pelo SDRSharp em informação codificada em ASCII.

Decodificação de telemetrias com SDR.

Esquema de configuração.

Decodificador de telemetrias genérico.

AGW Online Kiss.

Conversão de informação (ASCII a Hexadecimal)

Software que converte a informação codificada em ASCII pelo SoundModem em valores hexadecimais.

Decodificação de telemetrias com SDR.

Esquema de configuração.

Software próprio do satélite para obter o valor de engenharia.

UbaTM-Decoder v.1.0

Satélite Tancredo - 1

Software especifico para o satélite Tancredo-1, responsável pela obtenção do valor bruto de cada uma das telemetrias. Contribuição do Edson Pereira (PY2SDR).

Problemas de Interoperabilidade entre os Software.

- Os problemas de interoperabilidade aparecem quando se tenta rastrear um satélite e tem que reunir todos os pacotes de software antes mencionados para obter telemetrias, por exemplo:
 - A saída de som do SDRSharp, torna-se a entrada de sinal do programa SoundModem para a conversão de som em informação codificada ASCII;
 - As informações codificadas ASCII fornecidas pela SoundModem são enviadas através de uma porta de comunicação, em uma máquina local ou remota (endereço IP). Isso depende se o satélite que está sendo rastreado se comunica com uma das duas aplicações especificadas para cada modo.

DECODIFICADOR DESENVOLVIDO.

Decodificador compacto.

■ Amigável do ponto de vista do usuário, compacto, eficaz e focado na necessidade.

Decodificação de telemetrias com GNURadio.

Esquema de Configuração Planejada.

Configuração planejada para obter telemetrias.

Ambiente de desenvolvimento GNURadio.

■ Diagramas de fluxo para reduzir, custo, esforço, tempo, mão de obra... Etc.

Desenvolvimento em GNURadio.

Receptor FM.

Ferramentas com características acordo de necessidades especificas.

Exemplo Decodificador FSK.

GNURadio

CONCLUSÕES

- A motivação deste trabalho é reduzir os custos para monitorar principalmente o downlink de projetos de pequenos satélites, que quase sempre são executados em uma restrição orçamentária.
- O material apresentado é simplesmente uma solução usada para monitorar o sinal de telemetria do picosatélite Tancredo-1 como um estudo de caso e uma prova de conceito.
- Os pacotes de software mencionados em conjunto com os elementos de hardware permitem a aquisição de imagens e decodificação das telemetrias de alguns satélites. Parte desse processamento em cadeia é independente do satélite, e apenas o fluxo final quando os valores de engenharia das telemetrias são derivadas, é preciso conhecer a configuração e a estrutura de cada um dos dados de telemetria.
- O desenvolvimento em GNURadio esta focado na criação de ferramentas mais compactas e focadas nas necessidades especificas de um projeto espacial.

OBRIGADO - GRACIAS

DAVID JULIÁN MOLANO PERALTA

E-mail: ing.djulian.molano@gmail.com

WALTER ABRAHÃO DOS SANTOS

E-mail: walter.abrahao@inpe.br

DOUGLAS SOARES DOS SANTOS

E-mail: dsoares@ita.br