

FCC Test Report No. 170400580SHA-001

Applicant: HANGZHOU KAITE ELECTRICAL

APPLIANCE CO., LTD

Sandu Town ,Industrial Zone, Jiande City,

Hangzhou, Zhejiang

Manufacturer : HANGZHOU KAITE ELECTRICAL

APPLIANCE CO., LTD

Sandu Town ,Industrial Zone,Jiande City,

Hangzhou, Zhejiang

Product Name : Smart Socket WiFi

Type/Model: 70011

TEST RESULT : PASS

SUMMARY

Jesse X4

The equipment complies with the requirements according to the following standard(s) or specification:

47CFR Part 15 (2015): Radio Frequency Devices (Subpart C)

ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

Date of issue: May 08, 2017

Prepared by: Reviewed by:

Jesse Xu (*Project Engineer*) Daniel Zhao (*Reviewer*)

Description of Test Facility

Name: Intertek Testing Service Limited Shanghai

Address: Building No.86, 1198 Qinzhou Road(North), Shanghai 200233, P.R.

China

FCC Registration Number: 236597

IC Assigned Code: 2402B-1

Name of contact: Jonny Jing

Tel: 86 21 61278271 Fax: 86 21 54262353

Content

S	UMMAR	Y	1
1	GEN	ERAL INFORMATION	5
	1.1	Description of Client	5
	1.2	Identification of the EUT	5
	1.3	Technical Specification	6
2	TES	r specifications	7
	2.1	Standards or specification	7
	2.2	Mode of operation during the test	
	2.3	Test software list	
	2.4	Test peripherals list	8
	2.5	Instrument list	
	2.6	Test Summary	10
3	MINI	MUM 6DB BANDWIDTH	11
	3.1	Limit	11
	3.2	Test Configuration	
	3.3	Test Procedure and test setup	
	3.4	Test Protocol	
4	MAX	IMUM CONDUCTED OUTPUT POWER	18
	4.1	Test limit	18
	4.2	Test Configuration	
	4.3	Test procedure and test setup	
	4.4	Test protocol	
5	Pow	ER SPECTRUM DENSITY	21
	5.1	Test limit	21
	5.2	Test Configuration	
	5.3	Test procedure and test setup	
	5.4	Test Protocol	
6	EMIS	SION OUTSIDE THE FREQUENCY BAND	29
	6.1	Test limit	
	6.2	Test Configuration	
	6.3	Test procedure and test setup	
	6.4	Test Protocol	
7	RADI	ATED EMISSIONS IN RESTRICTED FREQUENCY BANDS	35
	7.1	Test limit	35
	7.2	Test Configuration	
	7.3	Test procedure and test setup	
	7.4	Test Protocol	37
8	Pow	ER LINE CONDUCTED EMISSION	43
	8.1	Limit	43
	8.2	Test configuration	
	8.3	Test procedure and test set up	
	8.4	Test protocol	
9	OCC	UPIED BANDWIDTH	
	0.1	Tool limit	17
	9.1	Test limit	4/

Test report no. 170400580SHA-001 Page 4 of 48 Test procedure and test setup......47 9.3 9.4 Test protocol48

1 GENERAL INFORMATION

1.1 Description of Client

Applicant : HANGZHOU KAITE ELECTRICAL APPLIANCE CO.,

LTD

Sandu Town ,Industrial Zone,Jiande City, Hangzhou,

Zhejiang

Name of contact : Baofeng Fang

Tel: 0571-58317205

Fax : 0571-64184187

Email: gma@powerkaite.com

Manufacturer : HANGZHOU KAITE ELECTRICAL APPLIANCE CO.,

LTD

Sandu Town ,Industrial Zone,Jiande City, Hangzhou,

Zhejiang

1.2 Identification of the EUT

Product Name : Smart Socket Wifi

Type/model: 70011

FCC ID : 2ACXG70011-1

IC : -

1.3 Technical Specification

Operation Frequency : 2412~2462 MHz;

Band

Type of Modulation : CCK/OFDM/DBPSK/DAPSK

EUT Modes of : IEEE 802.11b/g/n

Modulation

Channel Number : 11 channels

Description of EUT: The EUT is a wireless device with WIFI

Antenna : PCB antenna, 1.0dBi

Rating: 120V 60Hz

Declared Temperature : $-20^{\circ}\text{C} \sim 60^{\circ}\text{C}$

range

Category of EUT : Class B

☐ Floor standing

Sample received date : April 08, 2017

Date of test : April 10, 2017 ~May 02, 2017

2 TEST SPECIFICATIONS

2.1 Standards or specification

47CFR Part 15 (2015) ANSI C63.10 (2013) KDB 558074 (v04)

2.2 Mode of operation during the test

While testing transmitting mode of EUT, the internal modulation and continuously transmission was applied.

	Operation Frequency each of channel						
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		/

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test as representatives, and the selected channel see below:

Modulation	Lowest(MHz)	Middle(MHz)	Highest(MHz)
802.11b	2412	2437	2462
802.11g	2412	2437	2462
802.11n(HT20)	2412	2437	2462

While testing transmitting mode of EUT, the internal modulation and continuously transmission was applied.

The test setting software and command is offered by the manufactory.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, the pre-scan for all data rates in each modulation and bands was tested, and the worst case was found and used in all test cases.

After this pre-scan, we choose the following table of the data rata as the final test mode.

Modulation	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n HT20	6.5Mbps

Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

2.3 Test software list

Test Items	Software	Manufacturer	Version
Conducted emission	ESxS-K1	R&S	V2.1.0
Radiated emission	ES-K1	R&S	V1.71

2.4 Test peripherals list

Item No.	Name	Band and Model	Description
PC	HP ProBook 6450b	НР	-

2.5 Instrument list

Equipment	Type	Manu.	Internal no.	Cal. Date	Due date
Test Receiver	ESCS 30	R&S	EC 2107	2016-10-21	2017-10-20
Test Receiver	ESIB 26	R&S	EC 3045	2016-10-20	2017-10-19
Test Receiver	ESCI 7	R&S	EC4501	2016-12-29	2017-12-28
Spectrum Analyzer	N9010	Agilent	EC4890	2016-10-21	2017-10-20
Spectrum Analyzer	E4446	Agilent	/	2016-10-21	2017-10-20
Power meter	ML 2495A	Anritsu	EC 4895	2016-10-21	2017-10-20
A.M.N.	ESH2-Z5	R&S	EC 3119	2017-1-9	2018-1-8
Bilog Antenna	CBL 6112D	TESEQ	EC 4206	2016-5-15	2017-5-14
Horn antenna	HF 906	R&S	EC 3049	2016-5-12	2017-5-11
Pre-amplifier	Pre-amp 18	R&S	EC 3222	2017-4-11	2018-4-10
Pre-amplifier	Tpa0118-40	R&S	EC 4792-2	2017-4-11	2018-4-10
Log-period antenna	AT 1080	AR	EC 3044-7	2016-5-21	2017-5-20
Biconical antenna	3109PX	ETS	EC3564	2016-8-25	2017-8-24
Semi-anechoic chamber	-	Albatross project	EC 3048	2016-5-20	2017-5-19
Shielded room	-	Zhongyu	EC 2838	2017-1-12	2018-1-11
Shielded room	-	Zhongyu	EC 2839	2017-1-12	2018-1-11
High Pass Filter	WHKX 1.0/15G- 10SS	Wainwright	EC4297-1	2017-2-1	2018-1-31
High Pass Filter	WHKX 2.8/18G- 12SS	Wainwright	EC4297-2	2017-2-1	2018-1-31
High Pass Filter	WHKX 7.0/1.8G-8SS	Wainwright	EC4297-3	2017-2-1	2018-1-31
Band Reject Filter	WRCGV 2400/2483- 2390/2493- 35/10SS	Wainwright	EC4297-4	2017-2-1	2018-1-31
MXG Analog Signal Generator	N5181A	KEYSIGHT	EC5338-2	2016-11-7	2017-11-6
MXG Vector Signal Generator	N51812B	KEYSIGHT	EC5175	2016-12-30	2017-12-29
Power sensor	U2021XA	KEYSIGHT	EC5338-1	2016-10-2	2017-10-1
PXA Signal Analyzer	N9030A	KEYSIGHT	EC5338	2016-11-18	2017-11-17

2.6 Test Summary

This report applies to tested sample only. The test results have been compared directly with the limits, and the measurement uncertainty is recorded. This report shall not be reproduced in part without written approval of Intertek Testing Service Shanghai Limited.

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
Minimum 6dB Bandwidth & Occupied bandwidth	15.247(a)(2)	-	Pass
Maximum peak output power	15.247(b)	-	Pass
Power spectrum density	15.247(e)	-	Pass
Radiated emission	15.205 & 15.209	-	Pass
Emission outside the frequency band	15.247(d)	-	Pass
Power line conducted emission	15.207	-	Pass
Occupied bandwidth	-	-	Tested

Notes: 1: NA =Not Applicable

3 Minimum 6dB Bandwidth

Test result: Pass

3.1 Limit

For systems using digital modulation techniques that may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands, the minimum 6 dB bandwidth shall be at least 500 kHz.

3.2 Test Configuration

Antenna connector

3.3 Test Procedure and test setup

The minimum 6dB bandwidth per FCC §15.247(a)(2) is measured using the Spectrum Analyzer according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance v04" for compliance to FCC 47CFR 15.247 requirements(clause 8.2).

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth $(VBW) \ge 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.4 Test Protocol

Temperature: 24 °C Relative Humidity: 52 %

Mode	Frequency	Minimum 6dB Bandwidth (MHz)			Limits
	(MHz)	Port0	Port 1	Port 2	(MHz)
b	2412	8.131	1	1	> 0.5
	2437	7.557	-	-	> 0.5
	2462	7.675	ı	ı	> 0.5

Channel L

Channel M

Channel H

Mode	Mode Frequency		Minimum 6dB Bandwidth (MHz)				
	(MHz)	Port0	Port 1	Port 2	(MHz)		
g	2412	16.433	-	-	> 0.5		
	2437	16.450	-	-	> 0.5		
	2462	16.424	-	1	> 0.5		

L

Η

Mode	Frequency	Minir	num 6dB Band (MHz)	lwidth	Limits
	(MHz)	Port0	Port 1	Port 2	(MHz)
n	2412	17.642	1	ı	> 0.5
	2437	17.634	-	-	> 0.5
	2462	17.613	-	-	> 0.5

L

Η

4 Maximum Conducted Output power

Test result: Pass

4.1 Test limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt
For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts
\boxtimes For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt (EIRP: 4 watt).

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 30dBm and 30+ (6 –antenna gain-beam forming gain).

4.2 Test Configuration

4.3 Test procedure and test setup

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance v04" for compliance to FCC 47CFR 15.247 requirements (clause 9.2.3.2).

4.4 Test protocol

Temperature: 24 °C Relative Humidity: 52 %

3.6	Frequency	R	eading (dE	Bm)	Total Power (dBm)	Limit (dBm)
Mode	(MHz)	Port0	Port 1	Port 2		
	2412	15.58	-	-	15.58	30
-	2437	15.23	-	-	15.23	30
	2462	15.06	-	-	15.06	30

	Frequency	R	eading (dE	Bm)	Total	Limit
Mode	(MHz)	Port0	Port 1	Port 2	Power (dBm)	(dBm)
	2412	13.72	-	-	13.72	30
-	2437	13.36	-	-	13.36	30
	2462	13.16	-	-	13.16	30

	Frequency	R	eading (dE	Bm)	Total Power (dBm)	Limit (dBm)
Mode	(MHz)	Port0	Port 1	Port 2		
	2412	12.32	-	-	12.32	30
-	2437	12.53	-	-	12.53	30
	2462	12.21	1	1	12.21	30

Note:

Reading port x (mW) = $10 ^ (reading port x (dBm)/10 ^ (reading port x (dB$

x = 0, 1, 2.

Total Power (mW) = reading port 0 (mW) + reading port 1 (mW) + reading port 2 (mW)

Total power (dBm) = 10 * log (Total power (mW))

5 Power spectrum density

Test result: Pass

5.1 Test limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 8dBm/MHz and 8+ (6 –antenna gain-beam forming gain).

5.2 Test Configuration

5.3 Test procedure and test setup

The power output per FCC §15.247(e) was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance v04" (clause 10.2) for compliance to FCC 47CFR 15.247 requirements.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the *DTS bandwidth*.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW $\geq 3 \times RBW$.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.4 Test Protocol

Temperature: 24 °C Relative Humidity: 52 %

Fraguancy]	PSD (dBm	Total	Limit	
Mode	Frequency (MHz)	Port 0	Port 1	Port 2	PSD (dBm)	(dBm)
	2412	-11.27	-	-	-11.27	8
b	2437	-11.11	-	-	-11.11	8
	2462	-11.57	-	-	-11.57	8

Note 1:

PSD port x (mW) = $10 ^ (PSD port x (dBm)/10; x = 0, 1, 2.$ Total PSD (mW) = PSD port 0 (mW) + PSD port 1 (mW) + PSD port 2 (mW) Total PSD (dBm) = 10 * log (Total PSD (mW))

Channel L

Channel M

Frequency]	PSD (dBm)	Total	Limit	
Mode	(MHz)	Port 0	Port 1	Port 2	PSD (dBm)	(dBm)
	2412	-15.92	-	-	-15.92	8
g	2437	-16.15	-	-	-16.15	8
	2462	-16.96	-	-	-16.96	8

Note 1:

PSD port x (mW) = $10 ^ (PSD port x (dBm)/10; x = 0, 1, 2.$ Total PSD (mW) = PSD port 0 (mW) + PSD port 1 (mW) + PSD port 2 (mW) Total PSD (dBm) = 10 * log (Total PSD (mW)

L

Η

Frequency]	PSD (dBm)	Total	Limit	
Mode	(MHz)	Port 0	Port 1	Port 2	PSD (dBm)	(dBm)
	2412	-15.67	-	-	-15.67	8
n	2437	-15.14	-	-	-15.14	8
	2462	-17.58	-	-	-17.58	8

Note 1:

PSD port x (mW) = $10 ^ (PSD port x (dBm)/10; x = 0, 1, 2.$ Total PSD (mW) = PSD port 0 (mW) + PSD port 1 (mW) + PSD port 2 (mW) Total PSD (dBm) = 10 * log (Total PSD (mW)

L

Η

6 Emission outside the frequency band

Test result: Pass

6.1 Test limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

6.2 Test Configuration

Antenna connector

6.3 Test procedure and test setup

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance v04" (clause 11.0) for compliance to FCC 47CFR 15.247 requirements.

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to ≥ 1.5 times the *DTS bandwidth*.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.

- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 3 x RBW.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

6.4 Test Protocol

Temperature: 24 °C Relative Humidity: 52 %

Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result			
	802.11b mode					
Left-band	41.87	20	Pass			
Right-band	43.855	20	Pass			
	802.11g mode					
Left-band	32.46	20	Pass			
Right-band	33.132	20	Pass			
802.11n-HT20 mode						
Left-band	33.126	20	Pass			
Right-band	36.834	20	Pass			

802.11b: Band Edge, Left Side

802.11b: Band Edge, Right Side

802.11g: Band Edge, Left Side

802.11g: Band Edge, Right Side

802.11n-HT20: Band Edge, Left Side

802.11n-HT20: Band Edge, Right Side

7 Radiated Emissions in restricted frequency bands

Test result: Pass

7.1 Test limit

The radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) showed as below:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

7.2 Test Configuration

7.3 Test procedure and test setup

The measurement was applied in a semi-anechoic chamber. While testing for spurious emission higher than 1GHz, if applied, the pre-amplifier would be equipped just at the output terminal of the antenna.

Tabletop devices shall be placed on a nonconducting platform with nominal top surface dimensions 1 m by 1.5 m. For emissions testing at or below 1 GHz, the table height shall be 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height shall be 1.5 m.

The turntable rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mast. The antenna moved up and down between from 1meter to 4 meters to find out the maximum emission level.

The EUT was tested according to DTS test procedure of KDB558074 D01 DTS "Meas Guidance v04" for compliance to FCC 47CFR 15.247 requirements.

The radiated emission was measured using the Spectrum Analyzer with the resolutions bandwidth set as:

```
RBW = 300 Hz, VBW = 1 kHz (9 kHz~150 kHz);

RBW = 10 kHz, VBW = 30 kHz (150 kHz~30MHz);

RBW = 100 kHz, VBW = 300 kHz (30MHz~1GHz for PK)

RBW = 1MHz, VBW = 3MHz (>1GHz for PK);

RBW = 1MHz, VBW = 10Hz (>1GHz for AV);
```

Remark:

- 1. Factor= Antenna Factor + Cable Loss (-Amplifier, is employed)
- 2. Measured level= Original Receiver Reading + Factor
- 3. Margin = Limit Measured level
- 4. If the PK measured level is lower than AV limit, the AV test can be elided.

Example:

```
Assuming Antenna Factor = 30.20 dB/m, Cable Loss = 2.00 dB, Gain of Preamplifier = 32.00 dB, Original Receiver Reading = 10 dBuV. Then Factor = 30.20 + 2.00 - 32.00 = 0.20 dB/m; Measured level = 10 dBuV + 0.20 dB/m = 10.20 dBuV/m Assuming limit = 54 dBuV/m, Measured level = 10.20 dBuV/m, then Margin = 54 - 10.20 = 43.80 dBuV/m.
```


7.4 Test Protocol

Temperature: 24 °C Relative Humidity: 52 %

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Test data:

Frequency	Emission	Limits	Margin	Azimuth	Height	Polarizati		
(MHz)	level	(dBµV/m)	(dBµV/m)	(Degrees)	(cm)	on (H/V)		
	$(dB\mu V/m)$							
30.00	*	40.00	*	180	100	Н		
80.54	*	40.00	*	180	100	Н		
285.53	*	46.00	*	270	200	Н		
317.69	*	46.00	*	270	400	Н		
422.64	*	46.00	*	270	200	Н		
665.65	*	46.00	*	270	400	Н		
Note: *	Note: * means the emission level 10dB lower than the relevant limit.							

30MHz~1GHz, Vertical

Test data:

1 cot autu.						
Frequency	Emission	Limits	Margin	Azimuth	Height	Polarizati
(MHz)	level	(dBµV/m)	(dBµV/m)	(Degrees)	(cm)	on (H/V)
	(dBµV/m)			_		
	•					
32.00	*	40.00	*	180	100	V
49.08	*	40.00	*	180	100	V
111.64	30.50	43.50	13.00	270	200	V
129.13	33.20	43.50	10.30	270	400	V
492.64	*	46.00	*	270	200	V
665.65	*	46.00	*	270	400	V

Note: * means the emission level 15dB lower than the relevant limit.

Test data above 1GHz:

1: 2.4G band 802.11b

Polarity	Frequenc y (MHz)	Measured level (dBuv/m)	Limit (dBuv/m)	Factor (dB)	Antenna (cm)	Turn table (deg)	Margin (dB)	Remark
	2390	51.15	74	-7.80	100	190	22.85	PK
	2390	41.25	54	-7.80	100	190	12.75	AV
Ver/Hor	2412	110.21	-	-7.80	100	190	-	PK
vermor	2412	99.33	-	-7.80	100	190	-	AV
	4824	51.11	74	-2.10	100	190	22.89	PK
	4024	40.44	54	-2.10	100	190	13.56	AV
Note:	2412MHz is fundamental signal.							

Polarity	Frequenc y (MHz)	Measured level (dBuv/m)	Limit (dBuv/m)	Factor (dB)	Antenna (cm)	Turn table (deg)	Margin (dB)	Remark
	2437	107.51	-	-7.80	100	190	-	PK
	2437	99.83	-	-7.80	100	190	-	AV
V/II	4074	51.33	74	-2.10	100	190	22.82	PK
Ver/Hor	4874	40.37	54	-2.10	100	190	13.63	AV
	7311	48.48	74	6.50	100	190	25.52	PK
	/311	38.45	54	6.50	100	190	15.55	AV
Note:	2437MHz is fundamental signal.							

Polarity	Frequenc y (MHz)	Measured level (dBuv/m)	Limit (dBuv/m)	Factor (dB)	Antenna (cm)	Turn table (deg)	Margin (dB)	Remark
	2462	107.80	-	-7.80	100	190	-	PK
	2462	98.23	-	-7.80	100	190	-	AV
	2492.5	50.33	74	-7.50	100	190	23.67	PK
Ver/Hor	2483.5	41.17	54	-7.50	100	190	12.83	AV
ver/nor	4924	51.51	74	-2.10	100	190	22.49	PK
	4924	41.81	54	-2.10	100	190	12.19	AV
	7386	48.12	74	6.50	100	190	25.88	PK
		38.54	54	6.50	100	190	15.46	AV
Note:	2462MHz is fundamental signal.							

2: 2.4G band 802.11g

Polarity	Frequenc y (MHz)	Measured level (dBuv/m)	Limit (dBuv/m)	Factor (dB)	Antenna (cm)	Turn table (deg)	Margin (dB)	Remark
	2390	50.62	74	-7.80	100	190	23.38	PK
	2390	41.47	54	-7.80	100	190	12.53	AV
Ver/Hor	2412	105.66	-	-7.80	100	190	-	PK
Vermor	2412	96.25	-	-7.80	100	190	-	AV
	4924	49.55	74	-2.10	100	190	24.45	PK
	4824	36.44	54	-2.10	100	190	17.56	AV
Note:	2412MHz is fundamental signal.							

Polarity	Frequenc y (MHz)	Measured level (dBuv/m)	Limit (dBuv/m)	Factor (dB)	Antenna (cm)	Turn table (deg)	Margin (dB)	Remark
	2437	105.46	-	-7.80	100	190	1	PK
	2437	95.36	-	-7.80	100	190	-	AV
Van/IIIan	4074	51.15	74	-2.10	100	190	22.85	PK
Ver/Hor	4874	41.24	54	-2.10	100	190	12.76	AV
	7211	46.85	74	6.50	100	190	25.15	PK
	7311	39.52	54	6.50	100	190	14.48	AV
Note:	2437MHz is fundamental signal.							

Polarity	Frequenc y (MHz)	Measured level (dBuv/m)	Limit (dBuv/m)	Factor (dB)	Antenna (cm)	Turn table (deg)	Margin (dB)	Remark
	2462	106.88	-	-7.80	100	190	ı	PK
	2402	94.52	-	-7.80	100	190	-	AV
	2483.5	50.08	74	-7.50	100	190	23.92	PK
Ver/Hor	2463.3	40.12	54	-7.50	100	190	13.88	AV
Vermor	4924	52.08	74	-2.10	100	190	21.92	PK
	4924	42.58	54	-2.10	100	190	11.42	AV
	7296	45.15	74	6.50	100	190	28.85	PK
	7386	36.25	54	6.50	100	190	17.75	AV
Note:	2462MHz is fundamental signal.							

3: 2.4G band 802.11n HT20

Polarity	Frequenc y (MHz)	Measured level (dBuv/m)	Limit (dBuv/m)	Factor (dB)	Antenna (cm)	Turn table (deg)	Margin (dB)	Remark
	2390	51.40	74	-7.80	100	190	22.60	PK
	2390	42.33	54	-7.80	100	190	11.67	AV
Ver/Hor	2412	106.45	-	-7.80	100	190	-	PK
ver/Hor	2412	93.66	-	-7.80	100	190	-	AV
	4924	49.86	74	-2.10	100	190	24.14	PK
	4824	38.94	54	-2.10	100	190	15.06	AV
Note:	2412MHz is fundamental signal.							

Polarity	Frequenc y (MHz)	Measured level (dBuv/m)	Limit (dBuv/m)	Factor (dB)	Antenna (cm)	Turn table (deg)	Margin (dB)	Remark
	2437	105.45	-	-7.80	100	190	-	PK
	2437	94.52	-	-7.80	100	190	-	AV
Ver/Hor	4874	47.87	74	-2.10	100	190	26.13	PK
Vermor	46/4	39.67	54	-2.10	100	190	14.33	AV
	7211	45.77	74	6.50	100	190	28.23	PK
	7311	38.97	54	6.50	100	190	14.03	AV
Note:	2437MHz is fundamental signal.							

Polarity	Frequenc y (MHz)	Measured level (dBuv/m)	Limit (dBuv/m)	Factor (dB)	Antenna (cm)	Turn table (deg)	Margin (dB)	Remark
	2462	103.93	-	-7.80	100	190	-	PK
	2402	92.16	-	-7.80	100	190	-	AV
	2483.5	50.77	74	-7.50	100	190	23.23	PK
Ver/Hor	2463.3	40.45	54	-7.50	100	190	13.55	AV
ver/nor	4924	48.48	74	-2.10	100	190	25.52	PK
	4924	37.98	54	-2.10	100	190	16.02	AV
	7386	44.08	74	6.50	100	190	29.92	PK
	/380	38.07	54	6.50	100	190	15.93	AV
Note:	2462MHz is fundamental signal.							

Remark: 1. For fundamental emission, no amplifier is employed.

- 2. Correct Factor = Antenna Factor + Cable Loss (-Amplifier, is employed)
- 3. Corrected Reading = Original Receiver Reading + Correct Factor
- 4. Margin = limit Corrected Reading
- 5. If the PK reading is lower than AV limit, the AV test can be elided.
- 6. The emission was conducted from 30MHz to 25GHz.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB, Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV. Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m Assuming limit = 54dBuV/m, Corrected Reading = 10.20dBuV/m, then Margin = 54 - 10.20 = 43.80dBuV/m

8 Power line conducted emission

Test result: Pass

8.1 Limit

Frequency of Emission (MHz)	Conducted Lin	mit (dBuV)					
	QP	AV					
0.15-0.5	66 to 56*	56 to 46 *					
0.5-5	56	46					
5-30	60	50					
* Decreases with the logarithm of the frequency.							

8.2 Test configuration

For table top equipment, wooden support is 0.8m height table

☐ For floor standing equipment, wooden support is 0.1m height rack.

8.3 Test procedure and test set up

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

8.4 Test protocol

Temperature: 24 °C Relative Humidity: 52 %

L line

Test Data:

Quasi-peak			Average			Line
level dB(µV)	Limit dB(µV)	Margin (dB)	level dB(µV)	limit dB(µV)	Margin (dB)	
43.77	56.00	12.33	39.53	46.00	6.47	L
						L
						L
38.23	56.00	17.77	29.52	46.00	16.48	L
						L
						L
	level dB(μV) 43.77	level Limit dB(μV) 43.77 56.00 38.23 56.00	level dB(μV) Limit dB(μV) Margin (dB) 43.77 56.00 12.33 38.23 56.00 17.77	level dB(μV) Limit dB(μV) Margin dB(μV) level dB(μV) 43.77 56.00 12.33 39.53 38.23 56.00 17.77 29.52	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Test Data:

Frequency	(Quasi-peak		Average			Line
(MHz)	level dB(µV)	Limit dB(µV)	Margin (dB)	level dB(µV)	limit dB(µV)	Margin (dB)	
0.51	40.32	56.00	15.68	36.70	46.00	9.30	L
0.20							L
0.39							L
1.02	35.41	56.00	20.59	25.95	46.00	20.05	L
1.67							L
6.92							L

9 Occupied Bandwidth

Test Status: NA

9.1 Test limit

None

9.2 Test Configuration

9.3 Test procedure and test setup

The occupied bandwidth per RSS-Gen Issue 4 Clause 6.6 was measured using the Spectrum Analyzer.

9.4 Test protocol

Temperature : °C Relative Humidity : %

Mode	Frequency	99% Bandwidth (MHz)				
	(MHz)	Port0		Port 2		
-	2412		-	-		
	2437		-	-		
	2462		-	-		