

Probabilistic Graphical Models in Bioinformatics

Lecture 9: score-based structure learning; partially observed data

Score-based structure learning

Learning general Bayesian networks

- **Theorem:** Finding the maximum-score network with at most $d \ge 2$ parents for each variable is *NP-hard*.
- We will use heuristic algorithm to search the space of graphs and return a highscoring one.
- Local operators:
 - Edge addition
 - Edge deletion
 - Edge reversal
- Search techniques
 - Greedy hill climbing
 - Simulated annealing
 - ...

Greedy hill climbing

- The search procedure
 - Pick an initial network structure g
 - Empty network
 - A random choice
 - The best tree
 - At each iteration
 - We consider all legal networks in neighbors of g using local operators
 - Apply the change that leads to the best improvement
 - Stopping condition: when no modification improves the score

- Two issues:
 - Stucking in a local maxima
 - Reaching a plateau (a large set of neighboring networks that have the same score).

Score decomposition and search

$$\operatorname{score}(\mathcal{G} : \mathcal{D}) = \sum_{i} \operatorname{FamScore}(X_i \mid \operatorname{Pa}_{X_i}^{\mathcal{G}} : \mathcal{D}),$$

We define the delta score as:

$$\delta(\mathcal{G} : o) = \operatorname{score}(o(\mathcal{G}) : \mathcal{D}) - \operatorname{score}(\mathcal{G} : \mathcal{D})$$

Proposition 18.5 Let G be a network structure and score be a decomposable score.

• If o is "Add $X \to Y$," and $X \to Y \not\in \mathcal{G}$, then

$$\delta(\mathcal{G} : o) = \operatorname{FamScore}(Y, \operatorname{Pa}_Y^{\mathcal{G}} \cup \{X\} : \mathcal{D}) - \operatorname{FamScore}(Y, \operatorname{Pa}_Y^{\mathcal{G}} : \mathcal{D}).$$

• If o is "Delete $X \to Y$ " and $X \to Y \in \mathcal{G}$, then

$$\delta(\mathcal{G}: o) = \operatorname{FamScore}(Y, \operatorname{Pa}_Y^{\mathcal{G}} - \{X\}: \mathcal{D}) - \operatorname{FamScore}(Y, \operatorname{Pa}_Y^{\mathcal{G}}: \mathcal{D}).$$

• If o is "Reverse $X \to Y$ " and $X \to Y \in \mathcal{G}$, then

$$\delta(\mathcal{G}: o) = \operatorname{FamScore}(X, \operatorname{Pa}_X^{\mathcal{G}} \cup \{Y\}: \mathcal{D}) + \operatorname{FamScore}(Y, \operatorname{Pa}_Y^{\mathcal{G}} - \{X\}: \mathcal{D}) - \operatorname{FamScore}(X, \operatorname{Pa}_X^{\mathcal{G}}: \mathcal{D}) - \operatorname{FamScore}(Y, \operatorname{Pa}_Y^{\mathcal{G}}: \mathcal{D}).$$

Score decomposition and search-example

Question: compute the delta score for the following operations

- 1. Add $A \rightarrow B$
- 2. Add $C \rightarrow D$
- 3. Remove $A \rightarrow D$
- 4. Remove $B \rightarrow C$
- 5. Reverse $B \rightarrow C$
- 6. Reverse $B \rightarrow D$

Structure learning methods

Constraint-based structure learning

Score-based structure learning

Bayesian model averaging methods

Bayesian model averaging

- Fully Bayesian inference
 - We consider the structure as a random variable
- Bayesian prediction

$$P(\xi[M+1]\mid\mathcal{D}) = \sum_{\mathcal{G}} P(\xi[M+1]\mid\mathcal{D},\mathcal{G}) P(\mathcal{G}\mid\mathcal{D}),$$
 where
$$P(\mathcal{G}\mid\mathcal{D}) = \frac{P(\mathcal{G}) P(\mathcal{D}\mid\mathcal{G})}{P(\mathcal{D})}.$$

- How to approximate $P(g \mid D)$?
 - often by Markov chain Monte Carlo (MCMC) over structures

Partially observed data

	Known structure (Parameter estimation)	Unknown structure (Structure learning)
Fully observable	MLE Bayesian methods	Constraint-based methods Score-based methods e.g. hill climbing
Partially observable		

Incomplete data

• In real-world applications of learning, we rarely have fully observed data.

- Incomplete data
 - Hidden variables
 - Missing values

Phylogenetic trees

Seq1 = CTRPNNNTRKSIRPQIGPGQAFYATGD-IGDI-RQAHC
Seq2 = CGRPNNHRIKGLR--IGPGRAFFAMGAIRGGEIRQAHC

Cancer progression

The likelihood function

- Question: write the likelihood function for $X \to Y$
 - Based on counts $M[x^0, y^0]$,

$$L(\boldsymbol{\theta}_{X}, \boldsymbol{\theta}_{Y|x^{0}}, \boldsymbol{\theta}_{Y|x^{1}} : \mathcal{D}) = \theta_{x^{1}}^{M[x^{1}]} \theta_{x^{0}}^{M[x^{0}]} \cdot \theta_{y^{1}|x^{0}}^{M[x^{0},y^{1}]} \theta_{y^{0}|x^{0}}^{M[x^{0},y^{0}]} \cdot \theta_{y^{1}|x^{1}}^{M[x^{1},y^{1}]} \theta_{y^{0}|x^{1}}^{M[x^{1},y^{0}]}.$$

- Data:
 - $M[x^1, y^1] = 13$, $M[x^1, y^0] = 16$, $M[x^0, y^1] = 10$, $M[x^0, y^0] = 4$ $\theta_{x^1}^{29} (1 - \theta_{x^1})^{14} \cdot \theta_{y^1|x^0}^{10} (1 - \theta_{y^1|x^0})^4 \cdot \theta_{y^1|x^1}^{13} (1 - \theta_{y^1|x^1})^{16}.$
 - The function is well-behaved; it is log-concave and has a unique global maximum.
- Now assume the first observation was $X[1] = x^0$, $Y[1] = y^1$. Consider we observed only $Y[1] = y^1$.
- Question: write down modified likelihood.

$$\theta_{x^1}^{29}(1-\theta_{x^1})^{13} \cdot \theta_{y^1|x^0}^{9}(1-\theta_{y^1|x^0})^4 \cdot \theta_{y^1|x^1}^{13}(1-\theta_{y^1|x^1})^{16} \left[\theta_{x^1}\theta_{y^1|x^1} + (1-\theta_{x^1})\theta_{y^1|x^0}\right].$$

A multimodal likelihood function with incomplete data

- Complete data likelihood defines a unimodal function.
- Their sum can be a multimodal function.
 - Mixture of peaks

$$\theta_{x^1}^{29} (1 - \theta_{x^1})^{13} \cdot \theta_{y^1|x^0}^9 (1 - \theta_{y^1|x^0})^4 \cdot \theta_{y^1|x^1}^{13} (1 - \theta_{y^1|x^1})^{16} \left[\theta_{x^1} \theta_{y^1|x^1} + (1 - \theta_{x^1}) \theta_{y^1|x^0} \right].$$

- Are parameters independence given incomplete data?
 - We lose the property of parameter independence
 - The likelihood function is not decomposable!

On global decomposability of likelihood function

The probability of observing x and y

$$P(x,y) = \sum_{h} P(h)P(x \mid h)P(y \mid h).$$

Likelihood function

$$L(\boldsymbol{\theta}: \mathcal{D}) = \prod_{x,y} \left(\sum_{h} P(h)P(x \mid h)P(y \mid h) \right)^{M[x,y]}$$

Can we write the likelihood as the product of local likelihoods?

• Likelihood function in the general case:

$$L(\theta:\mathcal{D}) = P(\mathcal{D}\mid\theta) = \sum_{\mathcal{H}} P(\mathcal{D},\mathcal{H}\mid\theta).$$
 exponential numbers of modes (worst case)

Likelihood function for IID instances:

$$L(\boldsymbol{\theta}:\mathcal{D}) = \prod_{m} P(\boldsymbol{o}[m] \mid \boldsymbol{\theta}) = \prod_{m} \sum_{\boldsymbol{h}[m]} P(\boldsymbol{o}[m], \boldsymbol{h}[m] \mid \boldsymbol{\theta}).$$

Parameter estimation for the partially observed case

We cover methods for maximum likelihood estimation.

- Problem definition:
 - Input
 - a network structure g and the form of the CPDs
 - A data set *D* that consists of *M* partial instances
 - **Goal:** Find the values $\hat{\theta}$ that maximize the log-likelihood function: $\hat{\theta} = \arg\max_{\theta} l(\theta; D)$
 - The problem requires optimizing a highly nonlinear and multimodal function over a high-dimensional space.
- Two main classes of methods for performing this optimization
 - A generic nonconvex optimization algorithm such as gradient ascent
 - Expectation maximization: a more specialized approach for optimizing likelihood functions.

Gradient ascent

Review A.5.1 and A.5.2 from the text book

Algorithm A.10 Simple gradient ascent algorithm Procedure Gradient-Ascent ($\theta^{1}, \quad \text{// Initial starting point}$ $f_{\text{obj}}, \quad \text{// Function to be optimized}$ $\delta \quad \text{// Convergence threshold}$) 1 \quad t \leq 1 2 \quad \text{do} 3 \quad \theta^{t+1} \leq \theta^{t} + \eta \nabla f_{\text{obj}}(\theta^{t}) 4 \quad t \leq t + 1 5 \quad \text{while } \|\theta^{t} - \theta^{t-1}\| > \delta 6 \quad \text{return }(\theta^{t})

- Question: consider $X \sim \text{Poisson}(\lambda)$ with $P(x) = \frac{\lambda^x e^{-\lambda}}{x!}$. Suppose $D = \{4, 6, 3, 7\}, \lambda^1 = 10$, and $\eta = 1$.
 - Write the gradient-ascent updating formula for λ .
 - Compute λ^4

Gradient ascent for Bayesian networks

• Let $D = \{o[1], ..., o[M]\}$ be a partially observed data set and X be a variable and U its parent in g. Then

$$\frac{\partial \ell(\boldsymbol{\theta} : \mathcal{D})}{\partial P(x \mid \boldsymbol{u})} = \frac{1}{P(x \mid \boldsymbol{u})} \sum_{m=1}^{M} P(x, \boldsymbol{u} \mid \boldsymbol{o}[m], \boldsymbol{\theta}).$$

• Given θ is a parameter in a CPD, we can use *chain rule of derivative*

$$\frac{\partial \ell(\boldsymbol{\theta} : \mathcal{D})}{\partial \theta} = \sum_{x, \boldsymbol{u}} \frac{\partial \ell(\boldsymbol{\theta} : \mathcal{D})}{\partial P(x \mid \boldsymbol{u})} \frac{\partial P(x \mid \boldsymbol{u})}{\partial \theta},$$

Example

University of TEHRAN

• given $o = \langle a^1, ?, ?, d^0 \rangle$ for the following network

$$\frac{\partial \ell(\boldsymbol{\theta} : \mathcal{D})}{\partial P(x \mid \boldsymbol{u})} = \frac{1}{P(x \mid \boldsymbol{u})} \sum_{m=1}^{M} P(x, \boldsymbol{u} \mid \boldsymbol{o}[m], \boldsymbol{\theta}).$$

$$\begin{array}{ll} \theta_{a^1} &= 0.3 \\ \theta_{b^1} &= 0.9 \\ \theta_{c^1|a^0,b^0} &= 0.83 \\ \theta_{c^1|a^0,b^1} &= 0.09 \\ \theta_{c^1|a^1,b^0} &= 0.6 \\ \theta_{c^1|a^1,b^1} &= 0.2 \\ \theta_{d^1|c^0} &= 0.1 \\ \theta_{d^1|c^1} &= 0.8. \end{array}$$

Probabilities of the consistent cases with o

$$\begin{array}{lcl} P(\langle a^1,b^1,c^1,d^0\rangle) & = & 0.3\cdot 0.9\cdot 0.2\cdot 0.2 = 0.0108 \\ P(\langle a^1,b^1,c^0,d^0\rangle) & = & 0.3\cdot 0.9\cdot 0.8\cdot 0.9 = 0.1944 \\ P(\langle a^1,b^0,c^1,d^0\rangle) & = & 0.3\cdot 0.1\cdot 0.6\cdot 0.2 = 0.0036 \\ P(\langle a^1,b^0,c^0,d^0\rangle) & = & 0.3\cdot 0.1\cdot 0.4\cdot 0.9 = 0.0108. \end{array}$$

$$P(\langle a^1, b^1, c^1, d^0 \rangle \mid \mathbf{o}) = 0.0492$$

 $P(\langle a^1, b^1, c^0, d^0 \rangle \mid \mathbf{o}) = 0.8852$
 $P(\langle a^1, b^0, c^1, d^0 \rangle \mid \mathbf{o}) = 0.0164$
 $P(\langle a^1, b^0, c^0, d^0 \rangle \mid \mathbf{o}) = 0.0492$.

- 1. Inference for each instance $P(X[m], U[m] \mid o[m], \theta)$ at each iteration
- 2. Ensure that parameters describe a legal probability distribution
 - Reparametrization
 - Lagrange multipliers