Probability review II: Random variables, expectation, and variance

Topics we'll cover

- What is a random variable?
- ② Expected value
- 3 Variance and standard deviation

Random variables

Roll two dice. Let X be their sum.

outcome =
$$(1,1)$$
 \Rightarrow $X=2$
outcome = $(1,2)$ or $(2,1)$ \Rightarrow $X=3$

Probability space:

- Sample space: $\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}.$
- Each outcome equally likely.

Random variable X lies in $\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$.

A random variable (r.v.) is a defined on a probability space. It is a mapping from Ω (outcomes) to \mathbb{R} (numbers). We'll use capital letters for r.v.'s.

The distribution of a random variable

Roll a die.

Define X = 1 if die is ≥ 3 , otherwise X = 0.

$$X \in \{0,1\}$$

$$P(X=0) = P(diP = 1,2) = \frac{1}{3}$$

$$P(X=1) = P(diP = 3,45,6) = \frac{2}{3}$$

Expected value, or mean

Expected value of a random variable X:

$$\mathbb{E}(X) = \sum_{x} x \Pr(X = x).$$
Roll a die. Let X be the number observed. $X \in \{1, 2, 3, 4, 5, 6\}$
What is $\mathbb{E}(X)$?
$$\mathbb{E}(X) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{6} + \frac{1}{6} + \frac{1}{6} \cdot \frac{1}{6} + \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{6}$$

Another example

A biased coin has heads probability p. Let X be 1 if heads, 0 if tails. What is $\mathbb{E}(X)$?

$$E(X) = 6 \cdot P(X=0) + 1 \cdot P(X=1)$$

= $0 \cdot (1-P) + 1 \cdot P$
 $E(X) = P$

A property of expected values

How is the average of a set of numbers affected if:

- You double the numbers?
- You increase each number by 1?

Summary: Let X be any random variable.

If
$$V = aX + b$$
 (any constants a, b), then $\mathbb{E}(V) = a\mathbb{E}(X) + b$

$$E(v) = a E(x) + b$$

Variance

Can summarize an r.v. X by its mean, μ . But this doesn't capture the **spread** of X:

A measure of spread: average distance from the mean, $\mathbb{E}(|X-\mu|)$? Mathematill, it is more convenient to litely it expresses distant from the mean - variances,

- Variance: $var(X) = \mathbb{E}((X \mu)^2)$, where $\mu = \mathbb{E}(X)$
- Standard deviation $\sqrt{\text{var}(X)}$: Roughly, the average amount by which X differs from its mean.

Variance: example

Choose X uniformly at random from $\{1, 2, 3, 4, 5\}$.

$$V_{an}(x) = 0.\frac{1}{5} + 1(\frac{1}{5}) + 4(\frac{1}{5}) + 4(\frac{1}{5}) + 4(\frac{1}{5}) = 0.\frac{1}{5} + 1(\frac{2}{5}) + 4(\frac{2}{5}) = 2$$

Variance: properties

Variance: $var(X) = \mathbb{E}((X - \mu)^2)$, where $\mu = \mathbb{E}(X)$

• Variance is always ≥ 0

How is the variance affected if:

You increase each number by 1?

You double each number?

affected. Summary: If V = aX + b then $var(V) = a^2 var(X)$ she we multiply the by a per specific multiply the by a

Alternative formula for variance

Variance: $var(X) = \mathbb{E}((X - \mu)^2)$, where $\mu = \mathbb{E}(X)$

Another way to write it: $var(X) = \mathbb{E}(X^2) - \mu^2$

Example: Choose X uniformly at random from $\{1, 2, 3, 4, 5\}$.

$$E(x^{2}) = 1^{2} \cdot \frac{1}{5} + 2^{2} \cdot \frac{1}{5} + 3^{2} \cdot \frac{1}{5} + 4^{2} \cdot \frac{1}{5} + 5^{2} \cdot \frac{1}{5} = \frac{1}{5}$$

$$= \frac{1 + 4 + 9 + 16 + 25}{5} = 11$$

$$Van(x) = E(x^{2}) - \mu^{2} = 11 - 3^{2} = 11 - 9 = 2$$

$$Var(x) = 2$$