DPLL method

Summary

- DPLL procedure
- DPLL example

DPLL procedure: Intro

Basic facts

- Pobably the most efficient procedure for checking satisfiability of ground clauses
- Input: a set of ground clauses
- Output: decides whether the set of clauses is unsatisfiable or not
 - if the set of clauses is satisfiable the algorithm outputs an assignment that satisfies the set of clauses

DPLL procedure: history

History

- DPLL = Davis-Putnam-Logemann-Loveland.
- Introduced in two article in 1960.
- Impressive engineering work to make it efficient over the years.

The SAT problem

DPLL method

SAT

- Given a propositional formula find an assignment that satisfies the formula or show that such an assignment does not exists
- SAT is decidable, but computationally untractable: SAT is NP-Complete
 - NP-Complete: any NP problems can be reduced to SAT in polynomial time: e.g. Travelling Salesman Problem.
- Since SAT is NP-Complete it is very important to find efficient procedures
- Many applications to practical problems: e.g. hardware verification.

DPLL procedure: general concepts

general concepts

- Start from a ground CNF formula
- Try to build an assignment that verifies the formula
- The assignment is built using a backtracking mechanism

DPLL procedure: simple sketch

Simple sketch

- A tree of possible assignments is used to guide the procedure
 - **Each** node is a set of clauses S_i
 - At each node one of the Literal is assigned a truth value
 - Truth values are propagated to reduce the number of future assignments

Algorithm

- Input: $S = C_0 = \{C_1, \dots, C_k\}$ where $C_i = L_1 \vee L_2 \vee \dots \vee L_{r_i}$.
- Set C_0 as the root of the tree.
- Apply (inference) rules to leaves, expanding the tree.
- A branch of the tree is no longer expanded if $S_i = \{\}$ or $\Box \in S_i$ where \Box is the empty clause.
- If $S_i = \{\}$ then S is satisfiable and we can stop the procedure.
- If $\square \in S_i$ for all branches then the set is unsatisfiable.

DPLL procedure: Applying rules

Applying Rules

- We apply a given set of rules that preserve satisfiability.
- When we apply a rule, we build at the same time a partial interpretation for *S*.
- Rules:
 - Tautology elimination
 - 2 One-Literal
 - 3 Pure Literal
 - 4 Splitting

Tautology Elimination

Tautology Elimination

Delete all the ground clauses from S that are tautologies. The remaining set S' is unsatisfiable iff S is unsatisfiable.

Example (Tautology elimination)

$$S = \{ (\neg P \lor Q \lor P \lor \neg R) \land Q \land R \}$$

$$S' = \{ Q \land R \}$$

One-Literal

DPLL method

One-Literal (Unit clause)

If there is a unit ground clause $L \in S$, obtain S' from S by deleting those ground clauses in S containing L. If $S' = \{\}$ then S is satisfiable Otherwise obtain a set S'' from S' by deleting $\neg L$ from all clauses. S is unsatisfiable iff S'' is unsatisfiable. When we apply this rule we fix L = T in the partial assignment.

Example (One-Literal)

$$S = \{P \lor Q \lor \neg R, P \lor \neg Q, \neg P, R, U\}$$
 Apply One-Literal rule with $L = \neg P$:
$$S' = \{P \lor Q \lor \neg R, P \lor \neg Q, R, U\}$$
 Remove $\neg L = P$ from cluases in $S' S'' = \{Q \lor \neg R, \neg Q, R, U\}$ We fix $L = \top$ therefore $P = \bot$

Pure-Literal

Definition (Pure Literal)

 $L \in S$ is a pure literal iff $\neg L \not\in S$

Pure-Literal Rule

If there is a pure literal $L \in S$, obtain S' from S by deleting all clauses where L appears. S' is unsatisfiable iff S' is unsatisfiable. When we apply this rule we fix L = T in the partial assignment.

Example (Pure-Literal)

$$S = \{P \lor Q, P \lor \neg Q, R \lor Q, R \lor \neg Q\}$$
 Apply Pure-Literal rule with $L = P$:
$$S' = \{R \lor Q, R \lor \neg Q\}$$
 We fix $L = \top$ therefore $P = \top$

Splitting Rule

If we can write S in the following form:

$$S = (C_1 \vee L) \wedge \cdots \wedge (C_m \vee L) \wedge (D_1 \vee \neg L) \wedge \cdots \wedge (D_m \vee \neg L) \wedge S_r$$

Where C_i and D_i are clauses in which L and $\neg L$ do not appear, and where S_r is a set of clauses where L and $\neg L$ do not appear. Then we can obtain two sets $S' = C_1 \land \cdots \land C_m \land S_r$ and $S'' = D_1 \land \cdots \land D_m \land S_r$. The set S is unsatisfiable iff S' and S'' are unsatisfiable. When we apply this rule we split the tree and we fix $L = \top$ for the branch of S'' and $L = \bot$ in the branch of S'.

Splitting: Example

DPLL method

Example (Splitting)

$$\begin{split} S &= \{P \vee \neg Q \vee R, \neg P \vee Q, Q \vee \neg R, \neg Q \vee \neg R\} \\ \text{Apply Splitting on } P \\ S' &= \{\neg Q \vee R, Q \vee \neg R, \neg Q \vee \neg R\}, \ P = \bot \\ S'' &= \{Q, Q \vee \neg R, \neg Q \vee \neg R\}, \ P = \top \end{split}$$

Example (Example 1)

$$S = (P \lor Q \lor \neg R) \land (P \lor \neg Q) \land \neg P \land R \land U$$

{}	$(P \lor Q \lor \neg R) \land (P \land \neg Q) \land \neg P \land R \land U$	One-Literal on $\neg P$
$\neg P$	$(Q \vee \neg R) \wedge \neg Q \wedge R \wedge U$	One-Literal on $\neg Q$
$\{\neg P, \neg Q\}$	$\neg R \wedge R \wedge U$	One-Literal on R
$\{\neg P, \neg Q\}$	$\neg R \wedge R \wedge U$	One-Literal on R
$\{\neg P, \neg Q, R\}$	$\Box \wedge U$	unsatisfiable

$$S = (P \lor Q) \land \neg Q \land (\neg P \lor Q \lor \neg R)$$

$\{\neg Q\}$ $P \land (\neg P \lor \neg R)$ One-Literal o	n P
	,
$\{\neg Q, P\}$ $\neg R$ One-Literal or	$\neg R$
$\{\neg Q, P, \neg R\}$ Satisfiable	,

Soundness of DPLL rules

Soundness

- DPLL rules must be sound
- If the original set S is unsatisfiable then the remaining set S' after applying the rule is still unsatisfiable and viceversa.

Soundness of Tautology Elimination

Need to show that S' is unsatisfiable iff S is unsatisfiable. Since a tautology is satisfied by every interpretation, S' is unsatisfiable iff S is unsatisfiable.

Soundness of One-Literal |

Soundness of One-Literal I

Recall that:

- S' obtained by removing all clauses containing L from S.
- S'' obtained by removing $\neg L$ from clauses in S'.

- If $S' = \{\}$ then S is satisfiable.
- If S' is empty then any clause in S contains L therefore any interpretation containing L satisfies S

Soundness of One-Literal II

Soundness of One-Literal II

Recall that:

- S' obtained by removing all clauses containing L from S.
- S'' obtained by removing $\neg L$ from S'.

- \blacksquare S" is unstaisfiable iff S is unsatisfiable.
- Suppose S'' is unsatisfiable and S is satisfiable, then there is I such that $L \in I$ and $I \models S$. I must satisfy all clauses which are not in S''; since I falsifies $\neg L$ then I must satisfy all clauses in S that contains $\neg L$. Then $I \models S''$.
- \Leftarrow Suppose S is unsatisfiable and S'' is satisfiable, Then there is $I \models S''$. Since S'' does not contain L and $\neg L$, we can build I' by adding L to I, $I' \models S$.

Soundness of Pure-Literal

Soundness of Pure Literal

Recall that:

• S' obtained by removing all clauses containing L from S.

- \blacksquare S' unsatisfiable iff S is unsatisfiable.
- ⇒ suppose S' unsat. and S sat. Then there is $I \models S$, since $S' \subseteq S$ then $I \models S'$
- \Leftarrow suppose S unsat and S' sat. Then there is $I \models S'$, since $L \not\in S'$ and $\neg L \not\in S'$ we can build I' adding L to I, and $I' \models S$.

Soundness of Splitting

DPLL method

Soundness of Splitting

Recall that:

$$S = (C_1 \lor L) \land \cdots \land (C_m \lor L) \land (D_1 \lor \neg L) \land \cdots \land (D_m \lor \neg L) \land S_r$$

$$S' = C_1 \wedge \cdots \wedge C_m \wedge S_r$$

$$S'' = D_1 \wedge \cdots \wedge D_m \wedge S_r$$

- $lue{S}$ is unsatisfiable iff S' and S'' are unsatisfiable.
- ⇒ suppose S unsat and S' or S'' are sat. If S'(S'') has a model I then for any interpretation $I' = \neg L(L) \cup I$ we have $I' \models S$.
- $\blacksquare \Leftarrow$ suppose S' and S'' are unsat. and S is sat. Then there is $I \models S$. If I contains $\neg L(L)$ then $I \models S'$ ($I \models S''$) therefore either S' or S'' is satisfiable.

$$S = (P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$$

$$\{\ \} \qquad \qquad | \ (P \lor Q) \land (P \land \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R) \ | \qquad \qquad \mathsf{Split} \ \mathsf{on} \ P$$

$$S = (P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$$

{}	$(P \lor Q) \land (P \land \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$	Split on P
S' {¬P}	$Q \wedge \neg Q$	One-Literal on <i>Q</i>

$$S = (P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$$

{}	$(P \lor Q) \land (P \land \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$	Split on P
S' {¬P}	$Q \wedge \neg Q$	One-Literal on Q
$S' \{ \neg P, Q \}$		S' Unsat

$$S = (P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$$

{}	$(P \lor Q) \land (P \land \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$	Split on P
S' {¬P}	$Q \wedge \neg Q$	One-Literal on Q
$S' \{ \neg P, Q \}$		S' Unsat
	Backtrack	

$$S = (P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$$

{}	$(P \lor Q) \land (P \land \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$	Split on P
S' {¬P}	$Q \wedge \neg Q$	One-Literal on Q
$S' \{ \neg P, Q \}$		S' Unsat

$$S = (P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$$

{}	$(P \lor Q) \land (P \land \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$	Split on P
S' {¬P}	$Q \wedge \neg Q$	One-Literal on <i>Q</i>

$$S = (P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$$

$$\{ \} \qquad \qquad | \quad (P \lor Q) \land (P \land \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R) \quad | \qquad \mathsf{Split} \; \mathsf{on} \; P$$

$$S = (P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$$

$$\{ \} \qquad \qquad | \ (P \lor Q) \land (P \land \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R) \ | \qquad \qquad \mathsf{Split} \ \mathsf{on} \ P$$

$$S = (P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$$

$S'' \{P\}$ $Q \land \neg R$ One-Literal on Q	{}	$(P \lor Q) \land (P \land \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$	Split on P
	S'' {P}	$Q \wedge \neg R$	One-Literal on <i>Q</i>

DPLL method

$$S = (P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$$

{}	$(P \lor Q) \land (P \land \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$	Split on P
S'' {P}	$Q \wedge \neg R$	One-Literal on Q
S" {P, Q}	$\neg R$	One-Literal on ¬R

DPLL method

$$S = (P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$$

{}	$(P \lor Q) \land (P \land \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg R)$	Split on P
S" {P}	$Q \wedge \neg R$	One-Literal on Q
5" {P, Q}	$\neg R$	One-Literal on <i>¬R</i>
S'' $\{P, Q, \neg R\}$	{}	Satisfiable!
·		

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

$$\{\} \qquad | (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q | \qquad \mathsf{Split} \ \mathsf{on} \ P$$

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

{}	$(P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$	Split on <i>P</i>
$S' \{ \neg P \}$	$ eg Q \wedge Q$	One-Literal on Q

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

{}	$(P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$	Split on <i>P</i>
$\overline{S' \{ \neg P \}}$	$\neg Q \land Q$	One-Literal on Q
$S' \{ \neg P, Q \}$		S' Unsat

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

{}	$(P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$	Split on <i>P</i>
$S' \{ \neg P \}$	$\neg Q \land Q$	One-Literal on Q
$S' \{ \neg P, Q \}$		S' Unsat
	Backtrack	

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

{}	$ (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$	Split on <i>P</i>
$S' \{ \neg P \}$	$\neg Q \wedge Q$	One-Literal on Q
$S' \{ \neg P, Q \}$		S' Unsat

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

{}	$(P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$	Split on <i>P</i>
$S' \{ \neg P \}$	$ eg Q \wedge Q$	One-Literal on Q

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

$$\{\} \qquad | (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q | \qquad \mathsf{Split} \ \mathsf{on} \ P$$

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

$$\{\} \qquad | (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q | \qquad \text{Split on } P$$

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

{}	$(P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$	Split on <i>P</i>
S" {P}	$R \wedge Q$	One-Literal on Q

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

{}	$ (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$	Split on <i>P</i>
<i>S''</i> { <i>P</i> }	$R \wedge Q$	One-Literal on Q
$S''\{P,Q\}$	R	One-Literal on <i>R</i>

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

{}	$(P \lor \neg Q) \land (\neg P \lor R) \land Q$	Split on <i>P</i>
S" {P}	$R \wedge Q$	One-Literal on Q
<i>S''</i> { <i>P</i> , <i>Q</i> }	R	One-Literal on R
S'' $\{P,Q,R\}$	{}	Satisfiable!

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

$$\{\} \mid (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q \mid \text{One-Literal on } Q$$

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

[{ }	$(P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$	One-Literal on <i>Q</i>
$\{Q\}$	$P \wedge (\neg P \vee R)$	Pure-Literal on <i>R</i>

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

{}	$ (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$	One-Literal on Q
$\overline{\{Q\}}$	$P \wedge (\neg P \vee R)$	Pure-Literal on R
$\{Q,R,\}$	Р	One-Literal on P

$$S = (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q$$

{}	$ \mid (P \vee \neg Q) \wedge (\neg P \vee R) \wedge Q $	One-Literal on Q
Q	$P \wedge (\neg P \vee R)$	Pure-Literal on R
Q, R,	Р	One-Literal on P
$\{Q,R,P\}$	{}	Satisfiable!

Exercise

- Decide whether the following set of clauses are satisfiable using DPLL
 - 1 $p \lor q, \neg p \lor q, \neg r \lor \neg q, r \lor \neg q$

Exercise

- Solve the Quack and Doctors problem using Gilmore + DPLL
 - $\mathbf{I} F_1 \triangleq \mathsf{Some} \mathsf{\ patients} \mathsf{\ like} \mathsf{\ all\ doctors}$

$$(\exists x)(P(x) \land (\forall y)(D(y) \rightarrow L(x,y)))$$

- $F_2 \triangleq \text{No patient likes any quack:}$
 - $(\forall x)(P(x) \to (\forall y)(Q(y) \to \neg L(x,y)))$
- $F_3 \triangleq \text{No doctor is a quack:}$
 - $(\forall x)(D(x) \to \neg Q(x))$
- $F_1 \land F_2 \models F_3$?