Problem Statement

Linear Regression

Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [4]:
    a=pd.read_csv("fitness.csv")
    a
```

Out[4]:		Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
	0	А	5.62%	7.73%	6.16%	75
	1	В	4.21%	17.27%	19.21%	160
	2	С	9.83%	11.60%	5.17%	101
	3	D	2.81%	21.91%	7.88%	127
	4	Е	25.28%	10.57%	11.82%	179
	5	F	8.15%	16.24%	18.47%	167
	6	G	18.54%	8.76%	17.49%	171
	7	Н	25.56%	5.93%	13.79%	170
	8	Grand Total	100.00%	100.00%	100.00%	1150

To display top 10 rows

```
In [5]: c=a.head(15) c
```

Out[5]:		Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
	0	А	5.62%	7.73%	6.16%	75
	1	В	4.21%	17.27%	19.21%	160
	2	С	9.83%	11.60%	5.17%	101
	3	D	2.81%	21.91%	7.88%	127
	4	E	25.28%	10.57%	11.82%	179
	5	F	8.15%	16.24%	18.47%	167
	6	G	18.54%	8.76%	17.49%	171
	7	Н	25.56%	5.93%	13.79%	170

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
8	Grand Total	100.00%	100.00%	100.00%	1150

To find Missing values

```
In [6]:
        c.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 9 entries, 0 to 8
        Data columns (total 5 columns):
           Column
                              Non-Null Count Dtype
        0
           Row Labels
                              9 non-null
                                              object
            Sum of Jan
                              9 non-null
                                              object
            Sum of Feb
                              9 non-null
                                               object
            Sum of Mar
                               9 non-null
                                               object
            Sum of Total Sales 9 non-null
                                               int64
        dtypes: int64(1), object(4)
        memory usage: 488.0+ bytes
```

To display summary of statistics

```
In [7]:
          a.describe()
                 Sum of Total Sales
Out[7]:
                          9.000000
          count
          mean
                        255.55556
            std
                        337.332963
                         75.000000
           min
           25%
                        127.000000
           50%
                        167.000000
           75%
                        171.000000
                       1150.000000
           max
```

To display column heading

Pairplot

```
In [9]: s=a.dropna(axis=1)
s
```

Out[9]:		Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
	0	Α	5.62%	7.73%	6.16%	75
	1	В	4.21%	17.27%	19.21%	160
	2	С	9.83%	11.60%	5.17%	101
	3	D	2.81%	21.91%	7.88%	127
	4	E	25.28%	10.57%	11.82%	179
	5	F	8.15%	16.24%	18.47%	167
	6	G	18.54%	8.76%	17.49%	171
	7	Н	25.56%	5.93%	13.79%	170
	8	Grand Total	100.00%	100.00%	100.00%	1150
[10]:	S	.columns				
t[10]:	In	'Sum o	Labels', 'S of Total Sa 'object')		, 'Sum of Fo	eb', 'Sum of Mar'
[10]:	SI	ns.pairplot	t(a)			

Distribution Plot

```
In [12]: sns.distplot(a['Sum of Total Sales'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarn
ing: `distplot` is a deprecated function and will be removed in a future version. Pl
ease adapt your code to use either `displot` (a figure-level function with similar f
lexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[12]: <AxesSubplot:xlabel='Sum of Total Sales', ylabel='Density'>

Correlation

Out[15]: <AxesSubplot:>

Train the model - Model Building

```
In [32]:
    g=s[['Sum of Total Sales']]
    h=s['Sum of Total Sales']
```

To split dataset into training end test

```
from sklearn.model_selection import train_test_split
g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.3)
```

To run the model

Coeffecient

```
In [37]: coeff=pd.DataFrame(lr.coef_,g.columns,columns=['Co-effecient'])
coeff

Out[37]: Co-effecient
Sum of Total Sales 1.0
```

Best Fit line

```
In [38]: prediction=lr.predict(g_test)
plt.scatter(h_test,prediction)
```

Out[38]: <matplotlib.collections.PathCollection at 0x26dc5e7a2e0>

To find score

```
In [39]: print(lr.score(g_test,h_test))
1.0
```

In []:			