SUPPLEMENTAL INFORMATION

For

Determination of Three Classes of Antibiotics in a Natural River Basin: Association with Antibiotic-resistant Escherichia coli

Qinqin ZHANG^{†, ‡}, Ai JIA[†], Yi Wan[†], Hong LIU[‡], Kunping WANG[§], Hui Peng[†], Zhaomin Dong[†], and Jianying Hu^{†,*}

College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China

[†]Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China

[‡]Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences Chongqing, 401120, China

§School of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400030, China

 $\hbox{*To whom correspondence may be addressed (hujy@urban.pku.edu.cn)}.$

Text 1-4

Tables 6

Figure 1

Chemicals and materials

SAs and Trimethoprim. Sulfaguanidine (SGD), sulfanilamide (SA), sulfathiazole (STZ), sulfisomidine (SIM), sulfamonomethoxine (SMM), sulfisoxazole (SIA), sulfachloropyridazine (SCP), sulfapyridine (SPD), sulfadiazine (SDZ), sulfamethazine (SMA), sulfamethoxazole (SMX), sulfamerazine (SMR), sulfaquinoxaline (SQX), sulfameter (SME), sulfamethizole (SMT), sulfamoxol (SMO), sulfadimethoxine (SDM), sulfamethoxypyridazine (SMP), sulfanitran (SNT), and trimethoprim (TMP) were all obtained from Sigma-Aldrich (MO, USA). ¹³C₆-sulfamethazine (¹³C₆-SMA) was obtained from Cambridge Isotope Laboratories (MA, USA). N-acetylsulfapyridine (NAcSPD), N-acetylsulfadiazine (NAcSDZ), *N*-acetylsulfamethazine (NAcSMA), *N*-acetylsulfamethoxazole (NAcSMX), N-acetylsulfamerazine (NAcSMR), and N-acetylsulfamethoxazole-d₅ (NAcSMX-d₅) were purchased from Toronto Research Chemicals (North York, ON, Canada). TMP and SAs are usually used for animal growth promotion agents, together.

Quinolone. Cinoxacin (CINO), lomefloxacin (LOME), pipemidic acid (PIPE), ofloxacin (OFL), danofloxacin (DANO), enrofloxacin (ENRO), ciprofloxacin (CIP), sarafloxacin (SARA), difloxacin (DIF), sparfloxacin (SPAR), moxifloxacin (MOXI), and fleroxacin (FLER) were purchased from Sigma (St. Louis, MO, USA); norfloxacin (NOR), oxolinic acid (OXO), pefloxacin (PEFL), and flumequine (FLUM) were purchased from Dr. Ehrenstorfen (GmbH, Germany); nalidixic acid (NALI) was purchased from Acros Organics (Geel, Belgium); piromidic acid (PIRO) was purchased from Wako (Japan); gatifloxacin (GATI) was purchased from LKT Laboratories Inc. (Minnesota, USA), and norfloxacin-d₅ (NOR-d₅) was purchased from RdH Laborchemikalien GmbH (Germany).

TCs. Six target tetracyclines (purity, %), including tetracycline (TC, 95%), oxytetracycline (OTC, 95%), chlortetracycline (CTC, 80%), doxycycline (DXC, 98%), minocycline (MINO,

93%), and methacycline (MTC), as well as the internal standard demeclocycline (DMC, 98%), and ten products including 4-epitetracycline (ETC,97%), anhydrotetracycline (ATC, 97%), and 4-epianhydrotetracycline (EATC,97%), 4-epioxytetracycline (EOTC, 97%), α-apo-oxytetracycline (α-apo-OTC), β-apo-oxytetracycline (β-apo-OTC), isochlortetracycline (ICTC, 97%), 4-epichlortetracycline (ECTC,97%), anhydrochlortetracycline (ACTC), and 4-epianhydrochlortetracycline (EACTC) were analyzed in this study. These seven chemicals were obtained from Sigma-Aldrich (St. Louis, MO, USA), and the ten degradation products were purchased from Acros Organics (Geel, Belgium).

Isolation Procedure of E. coli. Water samples were 10×fold serial diluted and 0.1 mL of each dilution was filtered through nitrocellulose filters (0.45 µm pore-size, 47 mm diameter, 2 Millipore Corporation, America) with the goal of obtaining 30 to 50 colonies per filter. The filters placed onto E. coli chromogenic agar (Chromagar Microbiology, France) and incubated at 44°C for 24 h. After 24 h of incubation, colonies that turned blue on E. coli chromogenic agar were chosen and streaked onto LB agar (BD, America), and then incubated at 37°C for 24 6h. Approximately 40 isolates were collected with dilution method using 6-8 disks for each water sample, and their antibiotic susceptibilities were tested. To avoid the clones, all isolates were randomly chosen from independent colonies growing on the disks and the number of 9 selected isolates from each disk was less than 10. The pure cultures were then used to inoculate 1% tryptone (Oxoid, UK) EC containing water and broth 4-methylumbelliferyl-D-glucuronide (Oxoid, UK) and incubated for 24 h at 37 and 44°C, respectively. Isolates that produced indole from tryptophan and that were positive for gas production and fluorescence in EC broth containing 4-methylumbelliferyl-D-glucuronide

were designated as E. coli isolates and used for subsequent studies.

Figure S1. The Sampling Locations in Wenyu Basin of Beijing

Table S1. The Abbreviations of Discharging Sites and STP Effluents.

Sampling site	Abbreviations
STP effluent (Qinghe) in River Qing	DQE
	DQ1
Discharging sites in River Qing	DQ2
	DQ3
STP effluent (Beixiaohe) located River Ba	DBE
STP effluent (Jiuxianqiao) in River Ba	DJE
	DB1
	DBB1
Discharging sites in Divor De	DBB2
Discharging sites in River Ba	DBB3
	DBB4
	DBB5
STP effluent (Gaobeidian) in River Tonghui	DTE
	DT1
Dischanging sites in Divon Tomphy:	DT2
Discharging sites in River Tonghui	DT3
	DT4

Table S2. Liquid Chromatography Conditions for Three Classes Antibiotics.

	25 sulfonamides	and their N-acetyl-metabolites	
Time(min)	%A(Methanol)	%B (0.1% formic acid, v/v)	Gradient Curve
0	10	90	1
4.5	48	52	6
5	70	30	6
6	100	0	6
7	100	0	1
10	10	90	1
		20 FQs	
0	10	90	1
0.5	20	80	6
4	35	65	6
5	45	55	6
6.5	100	0	6
8	100	0	1
10.5	10	90	1
	17 TCs and t	their degradation products	
0	10	90	1
0.5	20	80	6
3.5	30	70	6
4.5	75	35	6
6	85	15	6
7.5	100	0	1
10	10	90	1

 Table S3.
 Multi-selected Reaction Monitoring (MRM) Conditions of the Target Analytes.

Substance	SRM transition	Cone voltage (V)	Collision energy (eV)	Substance	SRM transition	Cone voltage (V)	Collision energy (eV)
			SA	As			
	173 > 92		16		254 > 92		31
SGD	173 > 156	13	10	SMX	254 > 156	31	16
	215 > 92		22		268 > 92		31
SA	215 > 156	25	13	SIA	268 > 156	25	16
	250 > 92		25		281 > 92		28
SPD	250 > 156	31	16	SMP	281 > 156	31	16
	251 > 92		25		281 > 92		28
SDZ	251 > 156	28	16	SMM	281 > 156	31	16
	256 > 92		25		285 > 92		31
STZ	256 > 156	25	16	SCP	285 > 156	25	13
	265 > 92		28		307 > 134		28
SMR	265 > 110	31	25	NAcSMR	307 > 172	36	20
	279 > 92		31		321 > 134		25
SIM	279 > 124	34	19	NAcSMA	321 > 186	40	20
	268 > 92		28		296 > 134		25
SMO	268 > 156	25	16	NAcSMX	296 > 198	35	20
G) (T)	271 > 92	22	28	NA CDE	293 > 134	22	25
SMT	271 > 156	22	13	NAcSDZ	293 > 198	32	20
	279 > 92		31		301 > 92		28
SMA	279 > 186	37	16	SQX	301 > 156	34	16
SME	281 > 92 281 > 156	31	28 16	SDM	311 > 92 311 > 156	31	31 22
¹³ C ₆ -SMA	285 > 98 285 > 186	28	31 16	SNT	336 > 64 336 >	25	43 13

					156		
					301 >		
	291 > 110		34		139		25
TMP		40		NAcSMX-d ₅		35	
	291 > 123		22		301 > 203		18
	292 > 134		25		203		
NAcSPD	292 > 134 $292 > 198$	40	20				
	292 > 198			ΓCs			
MINIO	150> 252	2.1			115> 110	20	10
MINO	458>352	31	30	ETC	445>410	28	19
БОТО	458>441	22	19	OTO	445>427	22	15
EOTC	461>426	22	19	OTC	461>426	22	19
0.77.0	461>444	2.1	16	m.a	461>444	• 0	16
α-apo-OTC	443>408	31	25	TC	445>154	28	26
	443>426		16		445>410		20
DMC	465>430	34	25	ICTC	479>462	34	15
	465>448		19		479>197		40
ECTC	479>444	34	22	EATC	427>154	31	34
	479>462		15		427>410		16
ATC	427>154	31	34	MTC	443>201	28	31
	427>410		16		443>426		16
β-apo-OTC	443>408	31	25	DXC	445>154	28	34
	443>426		16		445>428		16
EACTC	461>154	28	28	ACTC	461>154	28	28
	461>444		16		461>444		16
CTC	479>444	34	22				
	479>462		15				
]	FQs			
DIDE	304>217	2.1	22	1.01/15	352>265	2.4	22
PIPE	304>286	31	16	LOME	352>308	34	16
	370>269		25		400>299		28
FLER	370>326	37	19	DIF	400>356	45	20
	362>261		25		386>299		28
OFL	362>318	34	19	SARA	386>342	45	18
	334>290		19		376>289		28
PEFL	334>316	37	19	GATI	376>332	37	19
	320>276		16		393>292		24
NOR	320>270	31	19	SPAR	393>292	40	20
	320>302 325>281		19 19		393/349 402>358		20 19
NOR-d ₅	325>307	31	22	MOXI	402>338	34	22
CIP	332>231	37	36	CINO	263>189	30	28
	332>288		18		263>245		15 25
DANO	358>283	40	25 25	OXO	262>216	32	25
	358>340		25		262>244		18

ENDO	360>316	42	20	NIATI	233>187	20	25
ENRO	360>342	42	22	NALI	233>215	30	14
ENO	321>232	35	30	ELLIM	262>202	20	34
ENO	321>303		35	FLUM	262>244	28	22
				DIDO	289>243	22	30
				PIRO	289>271	32	18

Table S4. Recoveries (%), Instrument Detection Limits (IDLs, μg/L), Limits of Quantification (LOQs, ng/L) and Matrix Effects for Target
Antibiotics in Various Water Matrices.

	IDI	Rec	covery ± RSD	(%)	(6) LOQs (ng/L)						
compounds	IDLs	discharging	STP	river	discharging	STP		effects			
	$(\mu g/L)$	sites	effluents	water	sites	effluents	river	(%)			
				TCs							
MINO	0.5	95±15.7	81±5.2	91±3.9	19.1	30.6	32.6	32.7			
ETC	0.03	101±19.6	98±6.7	87±3.4	4.7	1.6	1.4	8			
EOTC	0.05	94±6.4	103 ± 7.7	90 ± 5.3	6.8	6.5	6.0	11.7			
OTC	0.05	90±8.1	93±6.7	88±2.7	3.0	3.3	2.3	5.3			
α-apo-OTC	0.1	120 ± 10.1	73 ± 10.1	68 ± 9.4	11.7	4.4	6.3	20.3			
TC	0.03	86±4.5	97±10.2	89±1.1	4.9	1.4	1.4	8.3			
DMC	0.1	85±9.7	82 ± 8.5	95±2.9				=			
ICTC	0.05	108 ± 2.4	95±7.8	113±1.3	11.7	8.8	2.5	20.1			
ECTC	0.1	80 ± 2.0	87±3.9	85±7.5	16.3	7.5	6.5	27.9			
EATC	0.05	83 ± 9.7	61 ± 2.4	64±11.5	7.5	3.7	4.2	12.8			
ATC	0.05	75 ± 14.2	76 ± 6.8	71 ± 12.2	7.9	4.4	2.8	13.6			
MTC	0.05	79±8.4	84 ± 5.0	67 ± 6.1	7.5	4.0	4.4	12.9			
β-apo-OTC	0.1	78 ± 1.0	73 ± 12.7	68±1.2	14.0	12.8	5.1	24.1			
DXC	0.1	113±5.6	80 ± 1.7	91±7.1	9.5	7.2	4.0	16.4			
EACTC	0.1	57±6.9	54 ± 6.2	54±2.5	16.6	8.6	8.9	28.5			
ACTC	0.05	50 ± 16.4	55±8.3	48 ± 6.0	15.1	9.1	8.2	25.9			
CTC	0.1	82 ± 10.7	77±5.2	86±1.5	11.7	5.8	4.6	20.2			
				SAs							
SGD	1	76±14.4	86±10.4	93±9.1	2	1.75	1.45	9			
SA	0.5	79 ± 18.5	87 ± 20.0	95 ± 20.0	1.75	1.25	0.6	(+)27.4			
SPD	0.08	84 ± 8.8	91±2.9	102±11.9	1	0.75	0.5	5			
SDZ	0.2	78 ± 10.1	89 ± 7.6	93±10.0	1.5	1	1	12.2			
STZ	0.15	82±10.6	92±5.2	89±16.4	2.5	1.3	1.3	15.2			
SMR	0.07	80 ± 9.0	86 ± 1.7	105 ± 10.9	1.5	1.3	1.1	6.5			
SIM	0.06	81 ± 10.8	88±3.7	102 ± 12.3	0.8	0.5	0.5	13.3			
					1.1						

SMO	0.07	75±11.8	85±6.6	96±12.1	0.8	0.5	0.5	17
SMT	0.03	75 ± 10.0	84 ± 9.0	75±19.2	2.5	1.5	1.5	1.7
SMA	0.08	82±9.8	90±4.6	113 ± 12.0	1.3	0.8	0.8	8.9
SME	0.01	82±8.2	88 ± 2.8	97±11.4	1.5	0.8	1.3	6.8
TMP	0.05	84 ± 9.0	92±11.0	110 ± 7.3	2.3	1.5	1.3	21
SMX	0.15	82±9.1	89 ± 4.2	86 ± 9.4	2.5	1.5	1.3	3.8
SIA	0.12	67±18.6	90 ± 9.7	71±10.6	2.8	1.0	1.5	24.6
SMP	0.2	83±7.1	88 ± 10.0	120 ± 15.4	2.0	1.5	1.5	11
SMM	0.2	84 ± 9.4	83±12.3	103±11.8	2.3	1.3	1.5	5.5
SCP	0.35	80 ± 8.4	88 ± 7.9	81 ± 16.4	3.8	2.3	2.0	9.8
SQX	0.04	80 ± 10.0	87±11.2	102 ± 6.0	3.3	2.3	1.5	8.6
SDM	0.11	83±7.7	89±10.5	107 ± 3.9	3.3	3.0	1.3	11.6
SNT	0.19	82 ± 10.7	73 ± 5.8	62 ± 0.3	17.5	6.8	7.5	2.8
NAcSPD	0.11	81±4.2	116 ± 7.2	110 ± 3.2	5.0	2.5	2.5	5.7
NAcSDZ	0.12	75±1.2	91±12.4	92 ± 9.8	6.3	4.0	2.5	(+)9.6
NAcSMA	0.06	85±2.9	117 ± 8.6	115±2.8	2.5	1.8	1.3	14.1
NAcSMX	0.5	91±5.0	98 ± 7.9	120 ± 8.9	5.0	4.3	3.3	12.3
NAcSMR	0.5	77±3.3	91±6.0	110 ± 0.1	7.5	7.5	3.5	11.7
$^{13}C_6$ -SMA	0.05	82±4.9	89±0.4	110±10.8	-	-	-	3.6
NAcSMX-d ₅	0.5	89±11.1	92±6.9	109±8.4	-	-	-	15.8
				FQs				
PIPE	0.15	57±2	53±11	63±8	4.4	11.0	2.3	(+)4.0
FLER	0.06	80±7	81±3	94±5	0.6	1.5	0.5	4.3
OFL	0.1	61±21	61±6	71±7	6.0	15.0	7.5	(+)15.7
PEFL	0.1	94±4	80±11	112±6	3.5	8.8	2.3	(+)19.6
ENO	0.2	58±2	59±9	61±17	1.2	3.0	1.5	(+)17.0
NOR	0.15	76±2	64 ± 13	88±9	10.4	26.0	6.5	(+)1.4
$NOR-d_5$	1.2	72±1	91±13	86±10	-			(+)14.4
CIPRO	0.25	59±3	75±18	63±9	1.3	3.3	1.0	(+)18.4
DANO	0.1	84±4	107±10	98±11	1.7	4.3	1.5	(+)26.3

ENRO	0.05	92±2	83±6	111±4	1.1	2.8	1.0	(+)23.9
LOME	0.3	63±5	62±11	72±14	0.4	1.0	0.5	15.5
DIF	0.15	68±3	81±5	80±9	2.7	6.8	3.3	3.1
SARA	0.1	58±3	66±17	62±17	9.0	22.5	5.5	13.4
GATI	0.15	56±4	46±2	59±20	1.5	3.8	0.8	5.2
SPAR	0.03	67±2	60±18	77±18	2.6	6.5	1.5	25.1
MOXI	0.1	91±4	99±14	106±3	9.6	24.0	4.8	(+)19.5
CINO	0.15	62±5	67±19	66±11	3.8	9.5	3.3	(+)1.3
OXO	0.55	61±3	54±13	64±16	1.8	4.5	1.3	22.9
NALI	0.05	66±3	71±18	68±2	3.3	8.3	2.0	21.8
FLUM	0.05	66±4	68±12	78±4	1.5	3.8	2.0	6.1
PIRO	0.05	57±3	55±14	58±14	3.9	9.8	3.3	20.8

Table S5. Number of *E. coli* Resistant to FQs, TCs, and SAs in Sampling Sites, and the Level of All Target Chemicals.

	Sampling sites	Q1	DQE	Q2	Q3	Q4	Q5	Q6	Q 7	DQ2	DQ3	W1	W2	W3	W4	W5
	FLER		9.5													
	OFL	71.9	854.0	54.9	116.7	81.3	39.5	30.0	251.3	18.5	2.1	73.4	39.7	25.1	42.4	208.2
	DANO															
	PEFL		5.9													
	CIP		15.0	12.7			6.7	4.5								
	NOR	28.8	140.3	160.0	199.4	81.8	95.9	41.5	33.2		11.1					60.7
	PIPE	15.3	10.2	1.3	19.5	12.7	9.1	4.9	10.2							4.3
FQs	DIF															
	LOME	2.4	27.2					1.2	1.8						1.5	
	GATI	8.8	56.5	8.8	14.7	11.3	8.1	5.2	27.5	2.6		3.1	3.2	1.6	4.6	16.5
	MOXI															
	OXO	9.4	4.5	7.3	12.0	11.9	11.1	4.9	6.9	3.7		5.3				7.3
	PIRO	129.1		11.0	16.4		12.3								12.0	8.9
	FLUM	48.4	131.8	74.3	104.4	96.3	54.6	41.4	109.6	52.9		54.6	25.4	29.8	45.1	88.1
	NALI	78.1	5.2	6.1												
	MINO	0.0	0.0	1.4	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	ETC	4.8	7.7	4.8	3.7	4.5	3.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.0	0.0
	OTC	30.9	41.1	37.2	34.9	30.2	32.1	31.4	11.5	9.8	0.0	39.1	0.0	0.0	0.0	8.5
TCs	TC	7.1	12.6	7.9	5.9	7.2	3.4	5.2	3.0	2.2	0.0	2.1	0.0	0.0	1.4	1.4
105	ICTC	29.1	3.7	6.2	6.1	4.4	13.0	12.3	5.5	14.1	0.0	3.4	1.9	0.0	0.0	2.3
	DXC															
	ATC	0.0										0.0	0.0	0.0	0.0	0.0
	EACTC	0.0		0.7					0.0	1.6		0.0	0.0	0.0	0.0	0.0
SAs	SGD			0.7					0.9	1.6		1.2	0.9	1.0	1.0	1.3
	SA								0.5	1.3		0.9	1.6	0.7	1.1	1.0

	SPD	28.6	91.1	51.9	35.1	29.3	31.1	40.4	49.4	13.2	0.2	6.8	3.7	1.3	4.8	21.5
	SDZ	176.5	245.4	216.9	106.3	121.6	192.6	221.1	216.3	142.9	0.8	46.9	136.4	107.7	131.5	151.5
	STZ				0.8		0.3		0.5	2.0		0.2	0.7		0.5	0.5
	SMA	0.9	2.0	1.4	4.6	1.4	1.4	2.2	4.2	8.8	0.9	37.2	37.0	29.6	39.4	19.1
	SME		0.0		1.2	0.5	0.6	1.0	0.5	1.7		4.4	9.5	5.4	6.0	2.9
	TMP	77.1	138.7	67.3	81.3	77.0	50.7	71.5	58.6	44.2	27.7	16.1	34.1	22.8	23.8	54.8
	SMX	138.2	443.5	272.0	221.0	246.9	234.1	293.0	284.2	136.0		71.3	97.5	83.6	95.3	164.6
	SMM	1.4	0.7	1.1	1.4	0.8	1.2	0.8	1.3	3.7		5.5	11.6	9.3	10.8	6.4
	SCP		0.0		0.5	1.5	1.1	1.8	3.9	1.9		1.4	3.1	2.8	2.3	7.4
	SQX		1.1		0.7	1.4	0.6					0.8	1.0	2.1	1.0	1.0
	NAcSPD	37.9	119.0	107.3	70.4	76.8	65.2	116.6	87.9	13.2		8.7	7.8	4.5	7.5	48.9
	NAcSDZ	175.1	218.2	213.6	106.4	152.2	220.9	317.7	207.9	77.3	0.8	33.2	61.5	51.1	63.5	146.8
	NAcSMA	3.4	4.1	3.8	4.0	2.9	3.8	8.0	3.7	2.7		21.7	35.6	25.1	31.3	20.3
	NAcSMX	434.5	313.5	459.3	352.4	461.4	595.0	753.2	520.7	241.3	1.1	218.6	229.5	205.8	201.6	319.3
	Numbers of <i>E. coli</i> resistant to three antibiotics (E.coli/ml)	57000	1700	41000	15000	13000	17000	2000	1000	300	6	2800	17	10	4	13
	Numbers of <i>E. coli</i> resistant to SXT(SAs, E. coli/ml) Numbers of <i>E. coli</i>	13100	290	6400	4500	1700	2800	300	180	170	1	860	4	1	2	2
	resistant to TC(TCs, E.coli/ml) Numbers of E. coli resistant to	6400	440	3600	600	600	200	400	130	200	2	290	1	0	0	3
	LEV(FQs, E.coli/ml)		100	2000	1600	800	1200	100	60	50	1	130	2	0	0	5
	sampling sites	W6	WT1	W7	W8	W10	WT2	W11	W12	W13	B5	W14	WT3	W16	T8	W17
FQs	FLER OFL	225.9	27.0	28.7	62.2	45.2	110.0	1.1 53.5	116.7	116.3	345.6	0.6 296.7	77.6	1.0 185.7	202.4	3.3 1092.4

	DANO														3.4	
	PEFL															6.4
	CIP			6.9				5.5							18.1	7.0
	NOR			41.0	34.5			51.4			79.7	46.6		23.4	144.9	1.8
	PIPE		4.0				10.0							3.1	19.4	7.0
	DIF														2.6	
	LOME				2.9		4.5	6.9	3.6					2.9	4.9	7.0
	GATI	19.7	2.0	4.8	9.1	5.1	3.6	6.4	19.5	19.7	66.4	31.5	13.1	16.8	34.6	90.5
	MOXI															7.4
	OXO	8.5	12.2	5.9	8.6	3.7		1.7	5.6	4.0	20.8	2.1		3.7	14.0	3.1
	PIRO					4.1		4.1					5.7	2.1	72.7	
	FLUM	113.9	28.4	95.2	67.1	40.5	50.3	51.4	127.9	106.0	113.7	87.3	41.9	48.7	114.1	56.0
	NALI														69.7	
	MINO															2.0
	ETC	1.4		1.7					0.8	0.0	2.2			1.3	26.3	7.6
	OTC	11.9	20.1	12.7	13.3	7.4		4.9	5.6	9.0	12.3	8.6	20.2	8.8	110.2	46.8
TCs	TC	2.4	1.9	2.4	1.7	1.6		2.7	1.7	1.7	3.6	2.6	1.3	2.9	44.6	11.4
103	ICTC	3.8	3.8	3.5	4.9	2.7		3.5	2.7	3.7	5.4	1.8	1.8	1.8	8.0	1.6
	DXC														13.4	
	ATC														0.0	
	EACTC														2.9	
	SGD	1.1	0.7	1.2	1.1	0.9	1.3	1.4	2.8	1.3	1.4	1.2	2.0	2.2	1.4	4.4
	SA	0.5	0.7	0.8	0.8		1.7	0.7	1.7	1.1	0.8	0.5	2.5	2.0	1.0	4.4
	SPD	25.4	18.9	23.6	14.1	18.1	2.6	22.3	51.7	20.8	17.3	19.7	4.9	32.0	129.3	48.1
	SDZ	174.5	177.9	146.1		141.8	54.4	175.9	342.0	188.0	123.1	97.5	215.6	185.1	739.2	460.1
SAs	STZ	0.4		0.4	2.6			0.4	0.9	0.4	0.3	0.3		0.4	0.8	0.5
	SMA	18.6	3.2	12.1	25.6	13.4	43.5	14.9	18.4	10.5	2.4	9.8	16.2	9.7	17.4	22.4
	SME	3.0	1.9	1.7	2.0	2.2		2.9	2.9	1.8	0.4	1.4	2.8	1.7		0.7
	TMP	63.9	46.7	47.2	39.0	49.8	12.8	39.4	119.7	61.4	30.4	48.3	14.5	48.2	79.2	82.6
	SMX	220.0	130.1	166.1	113.4	153.8	33.2	183.1	359.8	201.1	106.3	200.6	144.8	188.0	528.1	370.5

	SMM	5.4	3.3	0.3	4.9	4.1	0.9	5.3	5.1	3.8	1.3	2.7	17.8	4.0	1.		1.4
	SCP	10.4	0.3	3.7	2.4	2.0	0.9	4.7	9.5	5.9		4.8	0.3	3.5	1.		1.3
	SQX	1.6	0.7	0.6	1.1	0.7		1.0	1.1				0.5	0.7	1.		1.0
	NAcSPD	48.7	22.5	66.7	21.7	44.6	6.0	38.8	54.0	39.1		45.9	6.9	29.3	192		89.9
	NAcSDZ	131.5	114.0	191.4	64.4		83.5	110.0	180.1		101.3	154.2	135.6	130.0			407.0
	NAcSMA	12.4	1.3	13.9	7.3	16.9	2.7	12.4	8.7	5.6	1.3	8.3	6.5	4.6	5.		5.5
	NAcSMX	322.5	285.3	446.7	165.6	391.6	239.4	245.7	358.0	340.5	207.5	438.9	282.2	262.3	826	6.0	670.0
	Numbers of <i>E</i> .																
	coli resistant to																
	three antibiotics																
	(E.coli/ml)	2100	20000	1300	8	50	31	68	22	8	1050	40	11	315	550	000	17000
	Numbers of <i>E</i> .																
	coli resistant to	340	2600	430	1	9	3	16	1	0	340	6	1	83	114	.00	4000
	SXT (SAs,	340	2000	730	1		3	10	1	U	340	O	1	03	117	.00	1 000
	E.coli/ml)																
	Numbers of E .																
	coli resistant to																
	TC (TCs,																
	E.coli/ml)	110	700	150	0	7	5	11	0	2	90	5	2	37	380	00	650
	Numbers of <i>E</i> .																
	coli resistant to																
	LEV (FQs,																
	E.coli/ml)	50	600	110	0	3	0	6	1	0	44	3	0	22	59:	50	900
	sampling sites	T1	Т3	T5	T4	DTE	T6	T	7 BB	1 D	BE BI	B2 BI	B3 D1	BB4	BL1	D.	JE_
	FLER		2.2			5.0		1.3	3	52	2.2					2.	.4
	OFL	375.9	543.9	598.3	436.3	1308.6	5 1213.	.6 163	.3 38.	.8 111	0.1 33	3.5 88	3.1 1	1.3	34.1	159	9.3
EO-	DANO										1.	.0					
FQs	PEFL					9.1				21	1.7						
	CIP					14.2	3.7	10.	.0	13	3.1 23	3.4 6.	.0		9.9	66	5.3
	NOR		22.2	30.8		102.2	32.2	2 132	.0 141	.4 49	9.3 14	6.4 23	.6	1	15.2	512	2.5

	PIPE		4.9			8.9	1.8	18.4	15.8			2.9		13.6	19.5
	DIF										2.7				
	LOME		4.6			7.3	6.2	12.8	3.4	37.7	0.9	2.5		3.9	15.2
	GATI	44.2	46.9	38.6	39.8	72.5	91.9	26.3	6.9	28.2	14.3	19.5		5.2	28.4
	MOXI						10.6								
	OXO	5.3		1.5			1.6	7.1	8.7	2.6	12.7	5.0		7.1	6.6
	PIRO	16.8					4.8	22.7		7.1	12.6			17.1	57.4
	FLUM	24.2	56.2	69.8	79.8	93.8	64.0	90.4	39.4	139.2	50.0	30.5	28.0	33.2	154.6
	NALI														112.7
	MINO									2.7					5.8
	ETC	3.2	3.1	4.0	3.6	10.5	5.5	5.9	46.5	16.1	5.6	4.1	3.5	4.5	21.0
	OTC	14.3	5.1	7.9	7.8	74.0	37.7	53.5	101.6	92.3	52.2	27.6	4.3	36.8	214.3
TCs	TC	4.2	5.8	5.8	4.9	15.8	9.8	9.7	90.7	31.0	12.3	5.6	6.7	5.9	32.5
ics	ICTC	3.0	2.1	1.3	1.7	2.6	3.5	3.4	6.4	4.0	7.3	4.9	35.7	5.0	22.0
	DXC			8.4						8.1					1.5
	ATC														
	EACTC												50.1		
	SGD		1.6	1.5	0.9	2.0	2.5	2.9	0.7		1.2	0.7	1.1	0.6	2.6
	SA		0.6	0.7		0.6	0.8	2.7					1.7	0.5	1.0
	SPD	5.9	31.2	25.8	24.1	52.7	51.2	95.1	8.9	46.6	54.7	15.9		2.0	60.9
	SDZ	67.9	201.1	194.6	197.3	304.5	292.7	180.7	115.0	187.7	238.6	108.2	6.3	76.6	321.0
	STZ		0.5	0.5	0.5	0.3	0.3	1.6						0.2	
	SMA		4.0	3.7	3.7	9.1	9.8	267.3	0.8	0.8	1.1	1.7		1.6	1.5
SAs	SME		0.7				0.6			0.0	1.6	1.1		0.7	0.3
	TMP	38.1	23.8	28.3	17.5	6.1	19.8	57.1	67.6	165.5	59.7	25.4	1.3	37.1	39.1
	SMX	58.4	228.1	214.6	180.6	355.0	341.4	395.4	115.5			74.5	5.0	78.1	202.4
	SMM		0.9	1.1	0.9	1.1	1.1	1.1	0.5	0.0	0.8	0.8			1.2
	SCP		0.9	0.7	0.7	1.1	1.3	2.3		0.5					
	SQX						0.6	0.8		0.0					
	NAcSPD	11.7	47.0	37.7	41.1	107.2	84.1	107.5	24.5	93.7	139.5	40.2		5.9	87.0

	NAcSDZ	70.3	93.6	92.2	113.3	110.8	198.5	205.4	96.1	109.4	268.5	105.1	1.7	78.7	225.4
	NAcSMA	0.9	1.4	1.4	1.4	2.3	2.9	4.2	0.6	1.8	1.5	1.5		3.4	1.8
	NAcSMX	214.6	285.7	256.9	286.9	213.9	87.4	623.4	640.6	162.7	571.2	239.2	7.7	562.0	329.2
	Numbers of <i>E. coli</i> resistant to three antibiotics														
	(E.coli/ml)	1650	560	700	560	410	750	27000	1300	300	900	540	28	180	360000
	Numbers of <i>E. coli</i> resistant to SXT (SAs, E.coli/ml)	435	150	205	86	101	235	5150	1040	108	340	143		52	34000
	Numbers of <i>E. coli</i> resistant to TC (TCs, E.coli/ml) Numbers of <i>E. coli</i> resistant to LEV (FQs,	65	130	45	76	102	35	1000	260	39	300	54	17	10	11000
	E.coli/ml)	165	54	60	25	31	70	1500	170	19	80	33	1	8	12300
	sampling sites	BL2	B 1	B2	B3	B4	DQ1	DBB1	DBB2	DBB3	DBB5	DT1	DT2	DT3	DT4
FQs	FLER	7.3											16.05	60.01	11.08
	OFL	685.9	195.5	972.4	89.5	105.0	61.17	368.09	0.78	35.30		966.34	758.90	1717.34	176.23
	DANO														
	PEFL											7.08			
	CIP	24.1		9.6	14.3			24.98		13.29		6.35	404.72	304.55	46.52
	NOR	142.3		74.2	41.4	19.5	68.02	1182.42	4.73	386.39		58.86	1710.70	1773.23	3 412.48
	PIPE	15.3	5.7			7.3	6.18			3.37		9.50		16.42	24.15
	DIF	2.1													
	LOME	15.7		8.7		1.6	1.65			2.13		1.79	60.51	1735.39	9 195.19
	GATI	76.9	36.6	116.4	12.1	21.7	8.53			2.42		101.03	24.84	259.35	17.25

	MOXI	14.9										8.18			
	OXO	3.3	7.7	6.7	6.9	9.1	8.65	5.58		1.69		0.36	9.86	36.04	27.62
	PIRO	20.2		6.4	13.6	8.1		79.72		11.34		8.08		395.58	
	FLUM	65.4	27.1	62.1	109.7	93.5	88.72		2.98		11.51			66.69	
	NALI	37.5	7.3					499.50		36.39			153.45	224.83	206.59
TCs	MINO	3.4									0.86				
	ETC	8.7	0.0	5.2	3.0	2.6	3.38	9.41	11.00	1.01	0.79	4.52	3.71	53.94	44.39
	OTC	60.8	13.6	41.7	30.0	19.7	26.15	704.93	47.19	26.06	9.38	30.67	33.28	153.47	42.49
	TC	13.7	1.8	8.0	5.0	5.6	5.31	15.76	16.06	1.60	0.95	7.55	6.11	89.36	67.24
	ICTC	7.2	5.7	5.7	6.0	4.6	2.90	10.51	0.92	3.58	1.49	3.06	43.21	70.74	9.41
	DXC							4.02				6.88			5.37
	ATC		0.4									4.13	5.35		
	EACTC														
SAs	SGD	2.8	1.0	1.5	0.8	1.2	1.1	0.9		1.5		3.4	3.0	2.6	9.6
	SA	2.0	0.8	1.1	0.6	0.6		0.5		1.0		1.6	3.6	0.6	2.1
	SPD	47.8	6.2	23.0	19.9	18.1	32.7		1.5	3.6	1.1	46.7	4.5	1970.7	47.6
	SDZ	260.8	129.1	193.4	189.3	163.9	173.6	311.6	40.7	1500.2	41.4	330.0	965.9	2544.3	2931.2
	STZ			0.3	0.3					1.3		1.3	0.6		2.3
	SMA	1.4	1.5	2.3	1.6	2.2	2.4	0.6		1.4	1.0	143.3	213.7	2.0	484.1
	SME		0.3	0.4	0.7	0.7	0.5							0.7	
	TMP	61.6	58.3	40.0	37.8	27.7	54.4	49.1	22.5	74.7	9.4	20.9	48.3	53.5	461.4
	SMX	162.9	90.4	118.9	229.1	128.6	208.0	183.4	27.2	174.1	25.8	346.1	827.8	486.5	1294.3
	SMM	1.1	1.9	2.6	1.5	0.9	1.0	0.4		0.3		1.0	0.6	0.9	
	SCP						9.8					1.7	1.6		
	SQX				0.6							0.8			
	NAcSPD	62.9	7.5	39.4	18.6	32.8	50.5	3.7	1.4	0.8	2.2	73.5	6.5	1011.7	92.6
	NAcSDZ	124.2	80.2	134.8	76.0	103.5	171.8	398.5	36.2	165.5	13.5	178.3	2442.3	1228.5	378.8
	NAcSMA	0.8	0.6	1.2	0.9	4.6	2.7	0.6		2.6		3.0	8.3	3.5	2.0
	NAcSMX	289.3	310.0	345.8	231.5	198.2	384.6	824.2	67.5	373.6	69.6	335.2	7800.1	2053.1	606.7
	Numbers of <i>E</i> .	298000	4800	300000	7100	1400									

	- 1:					
	coli resistant to					
	three antibiotics					
	(E.coli/ml)					
	Numbers of E .					
	coli resistant to	11500	980	9600	2200	470
	SXT (SAs,	11300	980	8000	2200	4/0
	E.coli/ml)					
	Numbers of <i>E</i> .					
	coli resistant to					
	TC (TCs,					
	E.coli/ml)	3100	260	2000	1000	170
	Numbers of <i>E</i> .					
	<i>coli</i> resistant to					
	LEV (FQs,					
	E.coli/ml)	3800	220	1800	320	50
						50
	sampling sites	T2	W9	W15	DB1	
FQs	FLER	0.8				
FQs	FLER OFL	0.8	100.9			
FQs	FLER OFL DANO	0.8				
FQs	FLER OFL	0.8			61.14	
FQs	FLER OFL DANO	0.8				
FQs	FLER OFL DANO PEFL	0.8 421.5		226.4	61.14	
FQs	FLER OFL DANO PEFL CIP NOR	0.8 421.5		226.4	61.14	
FQs	FLER OFL DANO PEFL CIP NOR PIPE	0.8 421.5 10.2 24.3		226.4	61.14 11.14 182.91	
FQs	FLER OFL DANO PEFL CIP NOR PIPE DIF	0.8 421.5 10.2 24.3 3.5		226.4	61.14 11.14 182.91	
FQs	FLER OFL DANO PEFL CIP NOR PIPE DIF LOME	0.8 421.5 10.2 24.3 3.5 3.4	100.9	226.4 2.7 2.1	61.14 11.14 182.91 25.20 1.29	
FQs	FLER OFL DANO PEFL CIP NOR PIPE DIF LOME GATI	0.8 421.5 10.2 24.3 3.5		226.4	61.14 11.14 182.91 25.20	
FQs	FLER OFL DANO PEFL CIP NOR PIPE DIF LOME GATI MOXI	0.8 421.5 10.2 24.3 3.5 3.4 39.3	100.9	226.4 2.7 2.1 16.7	61.14 11.14 182.91 25.20 1.29 3.33	
FQs	FLER OFL DANO PEFL CIP NOR PIPE DIF LOME GATI MOXI OXO	0.8 421.5 10.2 24.3 3.5 3.4	100.9	226.4 2.7 2.1 16.7 2.9	61.14 11.14 182.91 25.20 1.29 3.33 3.26	
FQs	FLER OFL DANO PEFL CIP NOR PIPE DIF LOME GATI MOXI	0.8 421.5 10.2 24.3 3.5 3.4 39.3	100.9	226.4 2.7 2.1 16.7 2.9 3.7	61.14 11.14 182.91 25.20 1.29 3.33	

	NALI	11.3			22.99
TCs	MINO	1.2	0.0	0.0	
	ETC	4.0	0.0	1.9	
	OTC	14.5	12.2	12.5	
	TC	5.6	2.7	2.2	
	ICTC		3.3	1.1	
	DXC				
	ATC				
	EACTC				
SAs	SGD	0.8	1.2	1.3	1.2
	SA	0.4	1.3	0.8	0.6
	SPD	21.2	17.6	19.5	37.3
	SDZ	159.4	148.1	239.5	172.7
	STZ		0.2		0.6
	SMA	3.7	14.3	12.2	2.1
	SME		1.8	2.5	3.0
	TMP	17.1	44.5	56.7	78.0
	SMX	168.6	105.9	233.0	239.8
	SMM	0.7	3.9	9.0	1.7
	SCP	0.7	2.4	2.7	
	SQX		0.6		
	NAcSPD	43.7	80.9	20.6	64.1
	NAcSDZ	127.8	227.1	100.0	84.6
	NAcSMA	1.8	23.3	4.8	3.5
	NAcSMX			296.6	682.0
=	Numbers of <i>E</i> .				
	coli resistant to				
	three antibiotics				
	(E.coli/ml)				
_	Numbers of <i>E</i> .				

coli resistant to SA (SAs, E.coli/ml) Numbers of *E*. coli resistant to TC (TCs, E.coli/ml) Numbers of *E*. coli resistant to levofloxacin(FQs, E.coli/ml)

Sampling sites in red: No data on *E. coli* Isolation, including 3 river samples (T2, W9, W15), 10 discharging sites samples (DQ1, DB1, DBB1, DBB2, DBB3, DBB5, DT1, DT2, DT3, DT4). Sampling sites in blue: data reported in our previous papers.^{1,2} Sampling sites in black: data were

collected in the present study. 9

Table S6. Concentrations and Detection Frequencies of Target Antibiotics in Wenyu Rivers.

Compounda	n^b	Frequency (%)	Median (ng/L)	Range (ng/L)
		FQs	3	
OFL	45	100	110	25.1-1213.6
GATI	45	100	16.5	1.6-116.4
FLUM	45	100	56.2	24.2-137.0
OXO	38	84.4	6.9	ND-20.8
NOR	29	64.4	46.6	ND-199.4
PIPE	24	53.3	7.2	ND -19.5
LOME	22	48.9	3.5	ND -15.7
PIRO	21	46.7	12	ND-129.1
CIP	17	37.8	9.6	ND-24.1
FLER	8	17.8	1.2	ND-7.3
DIF	3	6.7	2.6	ND-2.7
MOXI	3	6.7	10.6	ND-14.9
DANO	2	4.4	2.2	ND-3.4
PEFL	1	2.2	6.4	ND-6.4
NALI	6	13.3	24.4	ND-78.1
Total	45	100	287.5	56.5-1430.3
		TCs	3	
TC	42	93	3.6	ND-90.7
OTC	41	91	14.3	ND-110.2
ICTC	41	91	3.5	ND-29.1
ETC	29	64	2.2	ND-46.5
DXC	2	7		ND-13.4
MINO	5	11		ND-3.4
EACTC	1	2		ND-2.9
ATC	1	2		ND-0.4
			22.6	
Total	45	100	23.6	ND-296.6
		SAs		
SPD	45	100	21.5	1.3-129.3
SDZ	45	100	175.9	46.9-739.2
TMP	45	100	47.2	12.8-119.7
SMX	45	100	166.1	33.2-528.1
NAcSPD	45	100	40.2	4.5-192.6
NAcSDZ	45	100	127.8	33.2-638.9

NAcSMA	45	100	4.0	0.6-35.6
NAcSMX	45	100	319.3	87.4-826.0
SMA	44	98	7.2	ND-267.3
SMM	43	96	1.4	ND-17.8
SGD	39	87	1.2	ND-4.4
SME	34	76	1.6	ND-9.5
SA	33	73	0.8	ND-4.4
SCP	32	71	2.1	ND-10.4
STZ	27	60	0.4	ND-2.6
SQX	23	51	0.8	ND-2.1
Total	45	100	967	468-3164

^aFull names and structures of chemicals are listed in Table 1. ^bNumber detected.

13

ND=Not detected.

14 **References**

- 15 (1) Hu, J.; Shi, J.; Chang, H.; Li, D.; Yang, M.; Kamagata, Y. Phenotyping and Genotyping of
- 16 Antibiotic-Resistant Escherichia coli Isolated from a Natural River Basin. Environ. Sci.
- 17 Technol. **2008**, 42, 3415-3420.
- 18 (2) Shi, J.C.; Hu, J.Y.; Chang, H.; Wan, Y.; Zhang, Z.B.; Xiang, Y. Investigation on the
- antibiotic-resistance E.coli in Wenyu river in Beijing. China Environmental Science, 2008, 28,
- 20 39~42

21