

Genomic Selection in Sheep Breeding Programs

Julius van der Werf Rob Banks, Sam Clark, Stephen Lee, Hans Daetwyler, Ben Hayes and Andrew Swan

Outline

- What is different in sheep?
- Potential benefits to sheep breeding programs?
- Accuracy of prediction: expected and realized
- Reference population requirements
- Strategies for implementation
- Future developments

What is different in sheep?

- Existing data of high value as a RefPop
- Small Ne
- Only 1 breed (maybe 2)
- High genomic pred. acc.
- High Benefit/Cost ratio
- Large operators

- Existing data of limited value as a RefPop
- Higher Ne
- Many breeds
- Lower genomic pred. acc.
- Lower Benefit/Cost ratio
- Small operators/low cost

Challenges of implementing GS in sheep

- Economically viable? Cost vs benefit
 - How much genetic variation in profit?
 - How much increase in genetic gain?

Challenges of implementing GS in sheep

- Economically viable? Cost vs benefit
 - How much genetic variation in profit?
 - How much increase in genetic gain?
- Accuracy of genomic predictions?
 - Large genetic diversity, both within and across breeds

Challenges of implementing GS in sheep

- Economically viable? Cost vs benefit
 - How much genetic variation in profit?
 - How much increase in genetic gain?
- Accuracy of genomic predictions?
 - Large genetic diversity, both within and across breeds
- Breeding program structure
 - Many small operators
 - Genetic improvement tends to be 'low cost'

Potential benefits of GS - some principles

% increase in EBV accuracy (male 1yo) and genetic gain

	$h^2 = 0$	$.1 = r^2$	$h^2 = 0.3 = r^2$	
Trait Measurability	%∆ Асс	%∆ Gain	%∆ Асс	%∆ Gain
< 1 year, both sexes	15	7	7	7
> 1 year, both sexes	68	19	59	37
>1 year, females only	119	27	112	52
on Corr. Trait, r _g = 0.9	20	12	20	26
on Corr. Trait, r _g = 0.5	67	50	76	86

Potential benefits of GS - some principles

% increase in EBV accuracy (male 1yo) and genetic gain

	$h^2 = 0.$	$.1 = r^2$	$h^2 = 0.3 = r^2$	
Trait Measurability	%∆ Асс	%∆ Gain	%∆ Асс	%∆ Gain
< 1 year, both sexes	15	7	7	7
> 1 year, both sexes	68	19	59	37
>1 year, females only	119	27	112	52
on Corr. Trait, r _g = 0.9	20	12	20	26
on Corr. Trait, r _g = 0.5	67	50	76	86

These effects underestimated due to not accounting for Bulmer effect

Genomic breeding values

Hard to measure, late in life traits

HTML

- Lean meat yield, meat quality
- Number of lambs weaned
- Adult wool traits
- Parasite Resistance
- Milk production

Genomic prediction accuracies in sheep now

Trait group	Merino	Maternal	Terminal
Wool	0.30 to 0.50		
Body weight, muscle & fat scans	0.25 to 0.50	0.25 to 0.50	0.15 to 0.40
Worm egg count	0.30	< 0.10	0.30
Carcass	0.20	0.15	0.20
Reproduction	0.11 to 0.31	0.05 to 0.15	

Prediction across breeds has not been effective at 50K

Wool Objective

1 st		Relative
selection	GS	response/year
2	No	100%
2	Yes	108%

Wool Objective

1st	00	Relative
selection	GS	response/year
1	No	100%
1	Yes	114%

Wool Objective

1 st		Relative		
selection	GS	response/year		
2	No	100%		
1	No	110%	100%	
2	Yes	108%		
1	Yes	125%	114%	

Wool Objective

	1st		Rela	ative
se	election	GS	response/year	
	2	No	100%	
	1	No	110%	100%
	2	Yes	108%	
	1	Yes	125%	114%

Accuracy -3%

Male generation interval -39%

Potential benefits of genomic selection for sheep Wool Objective

Meat Objective

1 st		Relative
selection	GS	response/year
1	No	100%
1	Yes	108%

Male generation interval -1%

\$0.50

\$1.00

Meat Objective

Muscle conformation

Post weaning weight

Summary Potential Benefits

- 5 -15% more benefits for meat/wool objectives
- Not all benefits captured by current indexes
- Also a shift in benefit between traits

Genomic prediction accuracy Using Goddard et al, 2011

What effective population size?

Kijas et al 2012

Sampling?

Populations not homogeneous.

Within and between breed/line accuracies

Some accuracy due to population structure

Validating 'Genomic Prediction Accuracy'

More data is always good But does it increase accuracy as expected?

Strategies for implementation

- Reduce genotyping cost
 - Genotype males only ~ 3% loss
 - Genotype only the top ~20% ~10-15% loss
- Increase potential benefits
 - Earlier selection of candidates

Benefit of reproductive technologies

Granleese WCGALP 25

2-stage selection:

Testing 20% of drop gives most of benefit

2-stage selection

More traits and unfavourable correlations?

Future: Better and Cheaper testing

Whole genome sequencing (500 INF sires)

High density (600k, 2500 samples)

Medium (50k, ~18,000 INF progeny)

Low density (12k SNP chip, breeders)

- Use more info but cheaper for the breeder
- Testing across breeds
- More reliable
- Less costs for reference population

Accuracy of imputation

(12>50k)

Test Set: 1328 crossbred

Ref Set: 500, 1000, 2000 crossbreds with 0%, 2%, 5% and 10% GRM

Accuracy of GEBV from imputed genotypes

Moghaddar et al 2014

GBV Accuracy

Higher accuracy with high density markers

Breaking unfavourable correlations?

Genome Wide Association Studies

Optimizing use of technologies

Proportion				Dams	G/yr	
Captured	Al	MOET	JIVET	Used	(\$)	L
0.06	0.95	0.00	0.05	261	\$2.26	1.87
0.32	0.77	0.04	0.19	221	\$2.82	1.46
0.32	0.77	0.04	0.13	221	ΥΖ. 02	1.40
0.64	0.36	0.10	0.54	136	\$3.96	1.21

Conclusions

 A number of challenges related to implementing genomic selection in sheep, but there are clear benefits

We need to increase the accuracy and across breed prediction

