

Module 1: Introduction au Machine-Learning

Stéphan Clémençon, stephan.clemencon@telecom-paristech.fr

Telecom Evolution, Paris, France

Basic algorithms for pattern recognition

Parametric logistic regression

▶ Explicit modelling of
$$\eta(x) = \mathbb{P}(Y = +1 \mid X = x) \in]0,1[$$

▶ **Logistic** transform:
$$f(x) = \operatorname{logit} \eta(x) = \operatorname{log}(\frac{\eta(x)}{1 - \eta(x)})$$

Inverse transform:
$$\eta(x) = \frac{e^{f(x)}}{1 + e^{f(x)}}$$

▶ Assume
$$f \in \mathcal{F} = \{f_{\theta}(x); \theta \in \Theta\}$$
 with $\Theta \subset \mathbb{R}^d$

$$\eta_{ heta}(x) = rac{\mathrm{e}^{f_{ heta}(x)}}{1 + \mathrm{e}^{f_{ heta}(x)}}$$

► Ex: **linear** logistic regression
$$f(x) = \alpha +^t \beta \cdot x$$
, $\theta = (\alpha, \beta)$

$$I_n(\theta) = \sum_{i=1}^n \left\{ \frac{1+y_i}{2} \log(\eta_{\theta}(x_i)) + \frac{1-y_i}{2} \log(1-\eta_{\theta}(x_i)) \right\}$$

Parametric logistic regression

▶ Even in the additive model, the score equation

$$\nabla_{\theta} I_n(\theta) = 0$$

cannot be solved explicitly!

► Implement Newton-Raphson method (gradient descent)

▶ Alternative to logit: probit model $\Phi^{-1}(\eta(X)) = \alpha +^t \beta X$

with
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp(-\frac{t^2}{2}) dt$$
.

Parametric approach - Linear Discriminant Analysis

- Assume that the conditional distributions of X given Y=+1 and given Y=-1 are **Gaussian** with same covariance matrix Γ but different means μ_+ and μ_- . Let $p=\mathbb{P}\{Y=+1\}$.
- ► Estimate the moments of first and second orders, next the likelihood ratio and assign the likeliest labels

Parametric approach - Linear Discriminant Analysis

At point X, predict Y = +1 if

$$\log\left(\frac{\mathbb{P}\{Y=+1\mid X\}}{\mathbb{P}\{Y=-1\mid X\}}\right)>0\Leftrightarrow$$

$$\log(\frac{p}{1-p}) - \frac{1}{2}(\mu_{+} - \mu_{-})^{t}\Gamma^{-1}(\mu_{+} - \mu_{-}) + x^{t}\Gamma^{-1}(\mu_{+} - \mu_{-}) > 0$$

- Linear separator (\neq linear logistic regression, except when p = 1/2)
- ▶ Replace μ_+ , μ_- and Γ by empirical estimates

Linear Discriminant Analysis

- Naive Bayes: given Y, the input variables $X^{(1)}, \ldots, X^{(d)}$ are independent
- ► Nonlinear decision boundaries: quadratic discriminant analysis (QDA), Gaussian mixtures, kernels
- ► LDA can be easily extended to the multiclass framework

■ The (single-layer) perceptron algorithm

► The output *Y* is connected to the input *X* by

$$y = sign(^t w \cdot X - \theta)$$

- ► The input space is separated into two regions by a **hyperplane**
- ▶ Rosenblatt's algorithm (1962) for minimizing

$$-\sum_{i}y_{i}(^{t}w\cdot x_{i}+\theta)$$

- 1. Choose at random (x_i, y_i) for "feeding" the perceptron
- 2. Gradient descent with rate ρ

$$\left(\begin{array}{c} w \\ \theta \end{array}\right) \leftarrow \left(\begin{array}{c} w \\ \theta \end{array}\right) + \rho \left(\begin{array}{c} y_i x_i \\ y_i \end{array}\right)$$

Converges only when the data are separable in a linear fashion

The (single-layer) perceptron algorithm

A simplistic nonparametric method: *K*-nearest neighbours

- ▶ Let $K \ge 1$. On \mathbb{R}^D , consider a **metric** d (ex: euclidean distance)
- ▶ For any input value x, let $\sigma = \sigma_x$ be the permutation of $\{1,\ldots,n\}$ such that

$$d(x, x_{\sigma(1)}) \leq \ldots \leq d(x, x_{\sigma(n)})$$

► Consider the *K*-nearest neighbours

$$\{x_{\sigma(1)},\ldots,x_{\sigma(K)}\}$$

▶ Majority vote:
$$N_y = \text{Card}\{k \in \{1, ..., K\}; \ y_{\sigma(k)} = y\},\ y \in \{-1, 1\}$$

$$C(x) = \arg\max_{y \in \{-1, +1\}} N_y,$$

A simplistic nonparametric method: *K*-nearest neighbours

K-nearest neighbours

Consistency (Stone '77)

If $k = k_n \to \infty$ such that $k_n = o(n)$, then the K-NN rule is consistent

$$L(C_{K-NN})-L^* \rightarrow 0$$
, as $n \rightarrow \infty$

But...

- ► The rate can be arbitrarily slow
- Curse of dimensionality: sorting data is computationally expensive
- ▶ Instability: choice of *K*? metric *D*?
- ▶ **Metric learning** (*e.g.* Mahalanobis distance)
- ► Variants with weights

K-nearest neighbours - A too flexible method?

Histogram rules - Local averaging

- ► K-NN limitations: a nearest neighbor may be very far from X!
- ► Consider a **partition** of the feature space:

$$C_1 \bigcup \cdots \bigcup C_K = \mathcal{X}$$

- ▶ Apply the **majority rule**: suppose that X lies in C_k ,
 - 1. Count the number of training examples with positive label lying in C_k
 - 2. If $\sum_{i: X_i \in C_k} \mathbb{I}\{Y_i = +1\} > \sum_{i: X_i \in C_k} \mathbb{I}\{Y_i = -1\}$, predict Y = +1. Otherwise predict Y = -1.
- ▶ This corresponds to the "plug-in" classifier $2\mathbb{I}\{\widehat{\eta}(x)\}-1$, where

$$\widehat{\eta}(x) = \sum_{k=1}^{K} \mathbb{I}\{x \in C_k\} \frac{\sum_{i=1}^{n} \mathbb{I}\{Y_i = +1, \ X_i \in C_k\}}{\sum_{i=1}^{n} \mathbb{I}\{X_i \in C_k\}}$$

is the **Nadaraya-Watson estimator** of the posterior probability.

Kernel rules - Local averaging

- Smooth the estimator/boundary decision!
- ▶ Replace the indicator function by a **convolution kernel**:

$$\mathcal{K}: \mathbb{R}^d o \mathbb{R}_+, \;\; \mathcal{K} \geq 0$$
, symmetric and $\int \mathcal{K}(x) dx = 1$

▶ Bandwidth *h* > 0 and **rescaling**

$$K_h(x) = \frac{1}{h}K(x/h)$$

Examples: Gaussian kernel, Novikov, Haar, etc.

Kernel rules - Local averaging

- ▶ If $\sum_{i=1}^{n} \mathbb{I}\{Y_i = +1\} K_h(x X_i) > \sum_{i=1}^{n} \mathbb{I}\{Y_i = -1\} K_h(x X_i),$ predict Y = +1. Otherwise predict Y = -1.
- ▶ This corresponds to the "plug-in" classifier $2\mathbb{I}\{\widetilde{\eta}(x)\}-1$, where

$$\widetilde{\eta}(x) = \frac{\sum_{i=1}^{n} \mathbb{I}\{Y_i = +1\} K_h(x - X_i)}{\sum_{i=1}^{n} K_h(x - X_i)}$$

is the **Nadaraya-Watson estimator** of the posterior probability.

▶ Statistical argument: if η is a "smooth" function, $\widetilde{\eta}$ may be a better estimate than $\widehat{\eta}$ (smaller variance but... biased)

Decision Trees: the CART Algorithm

- ▶ If the partition is picked in advance (before observing the data), many cells may be empty!
- ► Choose the partition depending on the traning data!
- ► The CART Book Breiman, Friedman, Olshen & Stone (1986)
- ▶ **Greedy** Recursive Dyadic Partitioning: $X = (X^{(1)}, \dots, X^{(d)}) \in \mathbb{R}^d$
- ► The algorithm will be explained in the next Machine-Learning Session

Decision Trees: the CART Algorithm

Model Selection

Model Assessment

Agenda

- Generalization ability
- ► Bias, variance and model complexity
- ► The "data-rich situation": Train-Validation-Test
- ▶ The training error: a too optimistic estimate
- Structural risk minimization (VC theory)
- Cross-validation: a popular method for prediction error estimation
- Bootstrap techniques

Looking for the right amount of complexity

Errors, training errors, generalization errors

Learning is based on a training sample

$$\mathcal{D}_n = \{(X_1, Y_1), \ldots, (X_n, Y_n)\}$$

▶ The classifier $\hat{C}_n \in \mathcal{G}$ selected through an "ERM like" method is **random**, depending on \mathcal{D}_n , as well as its **error**:

$$L(\hat{C}_n) = \mathbb{E}\left[\mathbb{I}\{Y \neq \hat{C}_n(X)\} \mid \mathcal{D}_n\right]$$

Expectation is taken over a pair (X,Y) independent from training data \mathcal{D}_n

▶ The **generalization error**: take next expectation over \mathcal{D}_n

$$Err = \mathbb{E}\left[L(\hat{C}_n)\right]$$

Methods for performance assessment, for model selection

► Training error is not a good estimate!

$$\hat{L}_n(\hat{C}_n) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{Y_i \neq C(X_i)\}\$$

It vanishes as soon as the class G is complex enough \Rightarrow Overfitting and poor generalization

- ► The objective is twofold
 - Model selection: choose the best model among a collection of models
 - Model assessment: for a given model, estimate its generalization error

■ When data are not expensive

Divide the data into three parts:

Training - Validation - Test

- ► Typical choice: 50% 25% 25%
- ▶ $K \ge 1$ model candidates: $\mathcal{G}_1, \ldots, \mathcal{G}_K$
 - ▶ For each $k \in \{1, \ldots, K\}$, apply ERM to training data $\Rightarrow \hat{C}^{(k)}$
 - ▶ Use validation data to find the "best" $\hat{k} \in \{1, ..., K\}$
 - Estimate the error using the test data (independent from \hat{k})
- ▶ How to proceed in a data-poor situation?

Complexity regularization (structural risk minimiation), resampling methods, etc.

Model selection by penalization

- ▶ Consider a sequence of model classes \mathcal{G}_1 , \mathcal{G}_2 , ... As $k \nearrow +\infty$, \mathcal{G}_k gets richer
- lackbox Let $\hat{\mathcal{C}}^{(k)}$ be the empirical risk minimizer over \mathcal{G}_k
- ▶ Our goal: select \hat{k} so that $\mathbb{E}[L(\hat{C}^{(\hat{k})})] L^*$ is close to

$$\min_{k} \mathbb{E}[L(\hat{C}^{(k)})] - L^* =$$

$$\min_{k} \left\{ \left(\mathbb{E}[L(\hat{C}^{(k)})] - \inf_{C \in G_k} L(C) \right) + \left(\inf_{C \in G_k} L(C) - L^* \right) \right\}$$

▶ Idea: add a complexity penalty to the training error to compensate the overfitting effect

$$\hat{L}_n(\hat{C}^{(k)}) + pen(n, k)$$

- ► The penalty may depend on the data or not
- ▶ The penalty is related to a distribution-free upper bound for

 \hat{I}

Complexity regularization

▶ Suppose that an estimate $R_{n,k}$ of $L(\hat{C}_k)$ is available, s.t. for all $\epsilon > 0$

$$\mathbb{P}\left\{L(\hat{C}_k) - R_{n,k} > \epsilon\right\} \le c e^{-2m\epsilon^2}$$

for fixed constants c, m

► The ideal optimization would be

$$L(\hat{C}_k) - \hat{L}_n(\hat{C}_k)$$

that can be estimated by

$$R_{n,k} - \hat{L}_n(\hat{C}_k)$$

► This yields
$$pen(n, k) = R_{n,k} - \hat{L}_n(\hat{C}_k) + \sqrt{\log(k)/m}$$

Complexity regularization

► Select the prediction rule

$$C_n^* = \operatorname*{arg\,min}_k \tilde{L}_n(\hat{g}_k)$$

based on the complexity penalized training error

$$ilde{\mathcal{L}}_n(\hat{g}_k) = \hat{\mathcal{L}}_n(\hat{g}_k) + extstyle{pen}(n,k) = R_{n,k} + \sqrt{\log(k)/m}$$

Penalization by the VC dimension

$$R_{n,k} = \hat{L}_n(\hat{g}_k) + 2\sqrt{\frac{V_{\mathcal{G}_k}\log(n+1) + \log 2}{n}}$$

Cross-Validation

- Goal: estimate the generalization error
- Let K ≥ 1 (typical choices are 5 or 10), "K-fold cross-validation" (K=n "leave-one-out" estimation)
- ► Split the data into *K* parts (of same size)
- ▶ For all $k \in \{1, ..., K\}$,
 - ▶ learn $\hat{C}^{(-k)}$ based on all data except the k-th part
 - calculate the error of $\hat{C}^{(-k)}$ over the k-th part
- Average the K quantities

"Pulling yourself up by your own bootstrap" (Baron de Münchausen)

▶ Bootstrap (the plug-in principle): estimate the distribution of

$$\mathbb{E}^*[\mathbb{I}\{\hat{C}(X)\neq Y\}]$$

where $\mathbb{E}^*[.]$ is the expectation w.r.t. the empirical df of the $(X_i,Y_i)'s$

- ▶ Heuristics: replace the unknown df by an estimate
- ► Monte-Carlo approximation
- Higher-order validity