Corporate Financial Management

Formula Reference Sheet

Prof. Barry Quinn

2025-01-01

Investment Appraisal Methods

Net Present Value (NPV)

Formula:

$$NPV = \sum_{t=0}^{n} \frac{Cash \ Flow_t}{(1+r)^t}$$

 $\mathbf{Where:} \text{ - } \mathrm{CF}_{t} = \mathrm{Cash} \text{ flow in period } t \text{ - } r = \mathrm{Discount} \text{ rate (cost of capital) - } t = \mathrm{Time \ period - } n = \mathrm{Project \ life}$

Decision Rule: Accept if NPV > 0

Key Points: - Use incremental cash flows only - Include working capital investment and recovery - Consider opportunity costs (e.g., foregone rental income)

Internal Rate of Return (IRR)

Definition: The discount rate that makes NPV = 0

Formula: Find r where:

$$\sum_{t=0}^{n} \frac{\operatorname{Cash Flow}_{t}}{(1+r)^{t}} = 0$$

Interpolation Formula:

$$\mathrm{IRR} = r_1 + \frac{\mathrm{NPV_1}}{\mathrm{NPV_1} - \mathrm{NPV_2}} \times (r_2 - r_1)$$

Where: - r_1 = Lower discount rate (giving positive NPV) - r_2 = Higher discount rate (giving negative NPV) - NPV₁ = NPV at r_1 - NPV₂ = NPV at r_2

Decision Rule: Accept if IRR > Cost of Capital

Payback Period

Simple Payback:

Payback Period = Time until $\sum_{t=1}^{n} \text{Cash Flow}_{t} = \text{Initial Investment}$

Discounted Payback:

Discounted Payback = Time until
$$\sum_{t=1}^{n} \frac{\operatorname{Cash} \, \operatorname{Flow}_t}{(1+r)^t} = \operatorname{Initial} \, \operatorname{Investment}$$

Decision Rule: Accept if payback period < maximum acceptable period

Accounting Rate of Return (ARR)

Formula:

$$ARR = \frac{Average\ Annual\ Profit}{Average\ Investment} \times 100\%$$

Where: - Average Annual Profit = Total profit over project life \div Number of years - Average Investment = (Initial Investment + Residual Value) \div 2

Decision Rule: Accept if ARR > minimum required return

Cost of Capital Calculations

Capital Asset Pricing Model (CAPM)

Formula:

$$r_e = r_f + \beta (r_m - r_f)$$

Where: - r_e = Required return on equity (cost of equity) - r_f = Risk-free rate of return - = Beta (systematic risk measure) - r_m = Expected market return - $(r_m - r_f)$ = Market risk premium

Key Points: - Beta = 1: Same risk as market - Beta > 1: Higher risk than market - Beta < 1: Lower risk than market

Dividend Valuation Model

No Growth Model:

$$K_e = \frac{D}{P_0}$$

Constant Growth Model:

$$K_e = \frac{D_1}{P_0} + g = \frac{D_0(1+g)}{P_0} + g$$

Where: - K_e = Cost of equity - D = Annual dividend - D_0 = Current dividend - D_1 = Next year's expected dividend - P_0 = Current share price (ex-dividend) - P_0 = Growth rate

Growth Rate Calculation:

$$g = \sqrt[n]{\frac{D_{current}}{D_{n \text{ years ago}}}} - 1$$

Cost of Debt

Bank Loans (Untraded Debt):

$$K_d = i(1 - T)$$

Where: - K_d = After-tax cost of debt - i = Interest rate - T = Tax rate

Redeemable Bonds (Traded Debt): Find the IRR where:

$$\text{Current Market Price} = \sum_{t=1}^{n} \frac{\text{Interest}(1-T)}{(1+K_d)^t} + \frac{\text{Redemption Value}}{(1+K_d)^n}$$

Weighted Average Cost of Capital (WACC)

Formula:

$$\text{WACC} = \frac{E}{V} \times K_e + \frac{D}{V} \times K_d \times (1-T)$$

Where: - E = Market value of equity - D = Market value of debt - V = E + D (total market value) - K_e = Cost of equity - K_d = Before-tax cost of debt - T = Tax rate

Key Points: - Use market values, not book values - Tax shield applies to debt only - Include all sources of finance (ordinary shares, preference shares, all debt)

Financial Ratios and Metrics

Leverage Ratios

Debt-to-Equity Ratio:

$$\label{eq:Debt-to-Equity} \begin{aligned} \text{Debt-to-Equity} &= \frac{\text{Total Debt}}{\text{Total Equity}} \end{aligned}$$

Debt Ratio:

$$\label{eq:debt} \text{Debt Ratio} = \frac{\text{Total Debt}}{\text{Total Assets}}$$

Equity Ratio:

Equity Ratio =
$$\frac{\text{Total Equity}}{\text{Total Assets}}$$

Times Interest Earned (Interest Cover):

Times Interest Earned =
$$\frac{\text{EBIT}}{\text{Interest Expense}}$$

Dividend Policy Ratios

Dividend Payout Ratio:

Dividend Payout Ratio =
$$\frac{\text{Dividends Paid}}{\text{Net Income}} \times 100\%$$

Dividend Yield:

$$\label{eq:price_energy} \text{Dividend Yield} = \frac{\text{Annual Dividend per Share}}{\text{Market Price per Share}} \times 100\%$$

Retention Ratio:

$$\mbox{Retention Ratio} = \frac{\mbox{Retained Earnings}}{\mbox{Net Income}} = 1 - \mbox{Dividend Payout Ratio}$$

Inflation Adjustments

Real vs Nominal Rates

Fisher Equation:

Nominal Rate =
$$(1 + \text{Real Rate}) \times (1 + \text{Inflation Rate}) - 1$$

Approximation (for low rates):

Nominal Rate \approx Real Rate + Inflation Rate

Cash Flow Adjustments

Inflating Cash Flows:

Nominal Cash Flow_t = Real Cash Flow_t × $(1 + inflation rate)^t$

Deflating Cash Flows:

$$\text{Real Cash Flow}_t = \frac{\text{Nominal Cash Flow}_t}{(1 + \text{inflation rate})^t}$$

Key Principle: Use real cash flows with real discount rates OR nominal cash flows with nominal discount rates - never mix!

Present Value Tables Usage

Present Value Factor

Single Cash Flow:

$$PV = Future Value \times \frac{1}{(1+r)^t}$$

From tables: Look up discount factor for given rate and period

Annuity Present Value

For equal annual cash flows:

PV of $Annuity = Annual Cash Flow <math>\times Annuity Factor$

Annuity Factor:

Annuity Factor =
$$\frac{1-(1+r)^{-n}}{r}$$

Common Calculations Checklist

NPV Calculation Steps

- 1. Identify all relevant cash flows (incremental, future, after-tax)
- 2. Include initial investment and working capital
- 3. Consider opportunity costs and terminal values
- 4. Apply appropriate discount rate consistently
- 5. Sum all present values to get NPV
- 6. State decision clearly (Accept if NPV > 0)

WACC Calculation Steps

- 1. Calculate market values for all capital sources
- 2. Determine cost of each component:
 - Equity: Use CAPM or dividend model
 - Preference shares: Dividend \div Market price
 - Debt: Yield to maturity \times (1 Tax rate)
- 3. Calculate weights based on market values
- 4. Apply tax shield to debt costs only
- 5. Multiply costs by weights and sum

Bond Valuation Steps

- 1. Identify annual coupon payments
- 2. Determine maturity date and redemption value
- 3. Apply appropriate discount rate
- 4. Calculate present value of coupon stream (annuity)
- 5. Calculate present value of redemption payment
- 6. Sum to get bond value

Quick Reference Summary

Concept	Formula	Decision Rule
NPV	$\Sigma[CF_t/(1+r)^t]$	Accept if $NPV > 0$
IRR	NPV = 0	Accept if $IRR > cost$ of capital
CAPM	$r_f + (r_m - r_f)$	$\begin{array}{ll} {\rm Higher} & = {\rm higher} \ {\rm required} \ {\rm return} \end{array}$
WACC	$(E/V) \times r_e + (D/V) \times r_d \times (1-T)$	Use market values
Dividend Model	D/P + g	Use ex-dividend price
Gearing	Debt/(Debt + Equity)	Higher = more financial risk

Important Reminders

Common Mistakes to Avoid

- Don't mix real and nominal discount rates
- Use market values not book values for WACC

- Include tax shields on debt costs only
- Remember working capital investment and recovery
- Consider opportunity costs in NPV calculations
- Use ex-dividend prices for cost of equity calculations

Professional Presentation

- Show all workings clearly and systematically
- State assumptions explicitly
- Use appropriate units (£'000s, percentages)
- Provide clear decisions with justification
- Check reasonableness of all answers

Note: This reference sheet covers the core formulas and calculations for Corporate Financial Management. Always refer to specific question requirements and apply formulas in the appropriate context.