Семинар 17

Классификация особых точек функции комплексной переменной

Пусть f(z) — однозначная функция.

О. Если функция f(z) является аналитической в точке z_0 , то z_0 называется *правильной* точкой функции f(z).

О. Если z_0 — предельная точка области определения функции f(z), но функция f(z) не является аналитической в точке z_0 , то z_0 называется *особой точкой* (ОТ) функции f(z).

Также к числу особых точек функции причисляют бесконечно удалённую точку $z_0 = \infty$.

О. Если функция f(z) является аналитической в некоторой проколотой окрестности *осо*бой точки z_0 : $0 < |z - z_0| < \delta$ (т. е. в этой окрестности нет других особых точек), то z_0 изолированная особая точка (ИОТ) функции f(z).

Заметим, что в проколотой окрестности изолированной особой точки z_0

(в кольце $0 < |z - z_0| < \delta$) функция f(z) единственным образом раскладывается в ряд Лорана вида

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n.$$

Ни в какой проколотой окрестности *неизолированной* особой точки (HOT) функция f(z)не раскладывается в ряд Лорана.

О. (классификация ИОТ). Пусть z_0 — конечная ($z_0 \neq \infty$) ИОТ однозначной функции f(z), и в проколотой окрестности точки z_0 справедливо разложение функции f(z) в ряд Лорана вида

1) $f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots = \sum_{n=0}^{+\infty} a_n(z - z_0)^n$.

Тогда z_0 — устранимая особая точка (УОТ) функции f(z). В этом случае главная часть ряда Лорана отсутствует, т. е. это степенной ряд. В УОТ функцию f(z) можно доопределить (переопределить) по непрерывности: $f(z_0) = a_0$. Тогда функция f(z)станет аналитической в точке z_0 .

Пример:
$$f(z) = \frac{\sin z}{z}, z_0 = 0.$$

$$\frac{\sin z}{z} = \frac{1}{z} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{(2n-1)!} z^{2n-1} = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{(2n-1)!} z^{2n-2} = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} z^{2k}, \qquad |z| > 0.$$

Здесь мы сделали замену: n-1=k. Если функцию f(z) доопределить в точке

 $z_0=0$ её предельным значением 1, то функция станет аналитической в точке $z_0=0$. 2) $f(z)=\frac{a_{-m}}{(z-z_0)^m}+\frac{a_{-m+1}}{(z-z_0)^{m-1}}+\cdots=\sum_{n=-m}^{+\infty}a_n(z-z_0)^n$, где $m\in\mathbb{N},\ a_{-m}\neq 0$. (Главная часть ряда Лорана содержит конечное число ненулевых членов.)

Тогда z_0 — *полюс порядка т* функции f(z).

Пример:
$$f(z) = \frac{1}{z}$$
, $z_0 = 0$.

Функция $\frac{1}{z}$ уже является своим рядом Лорана вида $\sum_{n=-\infty}^{+\infty} a_n z^n$ при |z|>0, который состоит из одного слагаемого: $\frac{1}{z^1}$, т. е. $z_0 = 0$ — полюс первого порядка для функ-

3) $f(z) = \sum_{n=-\infty}^{+\infty} a_n (z-z_0)^n$, и главная часть ряда Лорана содержит бесконечно много *ненулевых* членов (с отрицательными степенями $(z-z_0)$).

Тогда z_0 — *существенно особая* точка (СОТ) функции f(z).

Пример: $f(z) = \exp \frac{1}{z}, z_0 = 0.$

$$\exp\frac{1}{z} = \sum_{n=0}^{+\infty} \frac{(1/z)^n}{n!} = \sum_{n=0}^{+\infty} \frac{z^{-n}}{n!}, \qquad |z| > 0.$$

О. Бесконечно удалённая точка $z = \infty$ является для функции f(z) особой точкой того же типа, что и точка t=0 для функции $f\left(\frac{1}{t}\right)$.

Таким образом, чтобы исследовать тип ИОТ $z = \infty$ для функции f(z), можно сделать замену $z = \frac{1}{t}$ и исследовать тип ИОТ t = 0 для функции $f\left(\frac{1}{t}\right)$.

Пример: $f(z) = \exp z$. Как мы только что убедились, точка t=0 является СОТ для функции $f\left(\frac{1}{t}\right) = \exp\frac{1}{t}$, поэтому точка $z = \infty$ является СОТ для функции $f(z) = \exp z$.

Eи \ddot{e} npumep: f(z) = z. Как мы показали выше, точка t=0 является полюсом первого порядка для функции $f\left(\frac{1}{t}\right) = \frac{1}{t}$, поэтому точка $z = \infty$ является полюсом первого порядка для функции f(z) = z.

Ещё пример: $f(z) = z \sin \frac{1}{z}$. Как мы показали выше, точка t = 0 является УОТ для функции $f\left(\frac{1}{t}\right) = \frac{\sin t}{t}$, поэтому точка $z = \infty$ является УОТ для функции $f(z) = z \sin \frac{1}{z}$.

Т. (характеристические свойства ИОТ). Пусть z_0 — ИОТ однозначной функции f(z). Тогда

- 1) z_0 УОТ $\Leftrightarrow \exists \lim_{z \to z_0} f(z)$ (конечный предел); 2) z_0 полюс $\Leftrightarrow \lim_{z \to z_0} f(z) = \infty$; 3) z_0 СОТ $\Leftrightarrow \nexists \lim_{z \to z_0} f(z)$ (не существует ни конечного, ни бесконечного предела);
- 4) $z_0 \neq \infty$ полюс порядка $m \Leftrightarrow f(z) = 0^* \left(\frac{1}{(z-z_0)^m}\right)$ при $z \to z_0$, т. е. $\exists \lim_{z \to z_0} (z - z_0)^m f(z) \neq 0$ (конечный предел);
- 5) $z_0 \neq \infty$ полюс порядка $m \Leftrightarrow$ в некоторой проколотой окрестности точки z_0 : $f(z) = \frac{g(z)}{(z-z_0)^m}$, где функция g(z) является аналитической в точке z_0 и $g(z_0) \neq 0$.

Пример 1 (задача к общему зачёту № 43). Определить тип особых точек функции $f(z) = \frac{\cos\frac{1}{z^2}}{z^2 + 4}.$

OT: $z_0 = 0$, $z_{1,2} = \pm 2i$, $z_3 = \infty$. Все они — ИОТ.

a) $z_3 = \infty$.

$$\lim_{z \to \infty} f(z) = \lim_{z \to \infty} \frac{\cos \frac{1}{z^2}}{z^2 + 4} = \frac{1}{\infty} = 0.$$

Существует конечный предел $\lim_{z\to\infty} f(z)$, поэтому $z_3=\infty$ — УОТ.

б) $z_0 = 0$.

Докажем, что $\exists \lim_{z\to 0} f(z)$.

Рассмотрим две последовательности точек, лежащих на вещественной оси:

$$z_n' = \frac{1}{\sqrt{2\pi n}}, z_n'' = \frac{1}{\sqrt{2\pi n + \pi}}, n = 1, 2, ...$$
 (здесь $\sqrt{}$ означает арифметический корень). Тогда $z_n' \to 0, z_n'' \to 0$ при $n \to +\infty$, и

$$f(z'_n) = \frac{\cos 2\pi n}{(z'_n)^2 + 4} = \frac{1}{(z'_n)^2 + 4} \to \frac{1}{4} \text{ при } n \to +\infty,$$

$$f(z''_n) = \frac{\cos(2\pi n + \pi)}{(z''_n)^2 + 4} = \frac{-1}{(z''_n)^2 + 4} \to -\frac{1}{4} \text{ при } n \to +\infty.$$

Это означает, что $\nexists \lim_{z\to 0} f(z)$ (не существует ни конечного, ни бесконечного предела в смысле определения предела функции по Гейне). Значит, $z_0=0$ — СОТ.

B)
$$z_1 = 2i$$
.

 $\lim_{z \to 2i} f(z) = \frac{\cos\left(-\frac{1}{4}\right)}{0} = \infty \Rightarrow z_1 = 2i$ — полюс. Осталось определить его порядок. Имеем:

$$f(z) = \frac{\cos\frac{1}{z^2}}{z^2 + 4} = \frac{\cos\frac{1}{z^2}}{(z + 2i)(z - 2i)} = \frac{g(z)}{z - 2i'}$$

где функция $g(z) = \frac{\cos \frac{1}{z^2}}{z+2i}$ — аналитическая в окрестности точки $z_1 = 2i$ и

$$g(2i) = \frac{\cos\frac{1}{(2i)^2}}{4i} = \frac{\cos\left(-\frac{1}{4}\right)}{4i} \neq 0.$$

Значит, точка $z_1 = 2i$ — полюс первого порядка.

$$\Gamma$$
) $z_2 = -2i$.

Тут всё аналогично случаю б):

$$f(z) = \frac{\cos\frac{1}{z^2}}{z^2 + 4} = \frac{\cos\frac{1}{z^2}}{(z + 2i)(z - 2i)} = \frac{g(z)}{z + 2i'}$$

где функция $g(z) = \frac{\cos\frac{1}{z^2}}{z-2i}$ — аналитическая в окрестности точки $z_2 = -2i$ и

 $z = \pi k$, $k \in \mathbb{Z}$.

$$g(-2i) = \frac{\cos\frac{1}{(-2i)^2}}{4i} = \frac{\cos\left(-\frac{1}{4}\right)}{4i} \neq 0.$$

Значит, точка $z_2 = -2i$ — полюс первого порядка.

Omsem: ∞ — УОТ, 0 — СОТ, $\pm 2i$ — полюсы первого порядка.

Пример 2. Определить тип особых точек функции $f(z) = \operatorname{ctg} z$.

$$f(z) = \frac{\cos z}{\sin z}.$$

Особые точки: $z = \infty$ и нули знаменателя. Найдём их:

$$\sin z = 0.$$

$$\frac{e^{iz} - e^{-iz}}{2i} = 0.$$

$$e^{iz} = e^{-iz}$$
.

$$e^{2iz}=1.$$

$$2iz = \text{Ln } 1 = \ln|1| + i(\arg 1 + 2\pi k) = 2\pi ki, \qquad k \in \mathbb{Z}.$$

- а) Заметим, что $z=\infty$ НОТ, т. к. в любой её окрестности (|z|>R) найдутся другие особые точки вида $z=\pi k$.
- б) Рассмотрим ОТ $z_k = \pi k, \ k \in \mathbb{Z}$. Все они ИОТ. Зафиксируем некоторое k и найдём предел

$$\lim_{z \to \pi k} f(z) = \lim_{z \to \pi k} \frac{\cos z}{\sin z} = \frac{(-1)^k}{0} = \infty.$$

Значит, точка $z_k=\pi k$ является полюсом. Остаётся определить, какого порядка. Если точка z_k является полюсом, то $\exists m \in \mathbb{N} : \exists \lim_{z \to z_0} (z - z_0)^m f(z) \neq 0$ (конечный пре-

дел). Причём число m из этого условия определяется однозначно (нетрудно заметить, что для других натуральных m данный предел будет равен 0 или ∞). Будем вычислять данный предел для m=1,2,..., пока не получим конечное ненулевое значение. Для m = 1:

$$\lim_{z \to \pi k} (z - \pi k) f(z) = \lim_{z \to \pi k} (z - \pi k) \operatorname{ctg} z = \lim_{z \to \pi k} \frac{z - \pi k}{\operatorname{tg} z} = \lim_{z \to \pi k} \frac{(z - \pi k)'}{(\operatorname{tg} z)'} = \lim_{z \to \pi k} \frac{1}{\frac{1}{\cos^2 z}} = \lim_{z \to \pi k} \cos^2 z = 1 \neq 0.$$

Здесь мы использовали правило Лопиталя для раскрытия неопределённости типа $\frac{\sigma}{\sigma}$. Поскольку мы доказали, что существует конечный предел $\lim_{z \to \pi b} (z - \pi k) f(z) \neq 0$, то $z_k = \pi k$ — полюс первого порядка, $k \in \mathbb{Z}$.

Ответ: ∞ — HOT, πk — полюсы первого порядка, $k \in \mathbb{Z}$.

Точки ветвления

Пусть f(z) — многозначная функция, которая распадается на однозначные аналитические ветви $f_k(z)$ (например, $\sqrt[n]{z}$ или Ln z). Многозначные функции могут иметь ещё один тип ОТ — точки ветвления.

О. Точка z_0 называется *точкой ветвления* функции f(z), если в некоторой окрестности точки z_0 при обходе по любому простому замкнутому контуру вокруг точки z_0 одна ветвь функции f(z), изменяясь непрерывно, переходит в другую её ветвь.

В проколотой окрестности точки ветвления однозначные функции $f_n(z)$ нельзя разложить в ряд Лорана, ибо они не являются аналитическими (они могут быть аналитическими в окрестности с разрезом).

Пример: рассмотрим $f(z)=\sqrt{z}=\sqrt{\rho}e^{i\left(\frac{\varphi}{2}+\pi k\right)},\,k=1,2,$ где $z=\rho e^{i\varphi},\,\varphi$ — одно из значений Arg z.

Имеется две ветви:
$$f_0(z)=\sqrt{\rho}e^{\frac{i\varphi}{2}}$$
 и $f_1(z)=\sqrt{\rho}e^{i\left(\frac{\varphi}{2}+\pi\right)}=\sqrt{\rho}e^{\frac{i\varphi}{2}}e^{i\pi}=-\sqrt{\rho}e^{\frac{i\varphi}{2}}=-f_0(z),$ каждая из которых аналитична на комплексной плоскости с разрезом.

Рассмотрим простой замкнутый контур C, охватывающий точку $z_0=0$ (например, окружность). Возьмём в качестве начальной точки точку $z_1 = \rho_1 e^{i \varphi_1} \in \mathcal{C}$ и будем обходить контур C в положительном направлении так, чтобы аргумент φ изменялся непрерывно, тогда и значение $f_0(z) = \sqrt{\rho}e^{\frac{i\varphi}{2}}$ будет изменяться непрерывно. После полного обхода по контуру C мы вернёмся в начальную точку, но аргумент ϕ увеличится на 2π , то есть вместо начального значения $f_0(z_1) = \sqrt{\rho_1} e^{\frac{i\phi_1}{2}}$ мы придём к значению

$$\sqrt{\rho_1}e^{\frac{i(\varphi_1+2\pi)}{2}} = f_1(z_1) = -f_0(z_1).$$

 \dot{T} . е. при обходе по замкнутому контуру мы переходим на другую ветвь. Если мы ещё раз обойдём по контуру \mathcal{C} , то ветвь f_1 вновь перейдёт в ветвь f_0 .

Таким образом, $z_0 = 0$ — точка ветвления многозначной функции $f(z) = \sqrt{z}$.

Для точки $z_0 = \infty$ справедливы те же рассуждения (контур берётся такой же), она также является точкой ветвления.

Любая конечная точка $z_0 \neq 0$ не является точкой ветвления, т. к. при обходе по замкнутому контуру, охватывающему точку z_0 , но не охватывающему точку 0, аргумент φ , изменяясь непрерывно, вернётся к своему первоначальному значению (ибо аргумент φ — это угол между радиус-вектором точки z и положительным направлением вещественной оси), и смены ветви не произойдёт.

Пример 3 (дополнительный). Определить тип особых точек функции $f(z) = \text{Ln } (1+z^2)$. Ln $z = \ln|z| + i$ Arg $z = \ln|z| + i(\arg z + 2\pi k)$, $k \in \mathbb{Z}$. Зафиксировав k, получим однозначную ветвь логарифма.

Каждая из ветвей логарифма — аналитическая функция на плоскости с разрезом (разрез можно проводить по любому лучу вида $\arg z = \varphi_0$). Точки $z_0 = 0$ и $z_0 = \infty$ являются особыми для функции Ln z (точки ветвления, как и для \sqrt{z}). Тогда для функции Ln $(1+z^2)$ особыми будут точки $z_0 = \pm i$ и $z_0 = \infty$.

а) Рассмотрим точку $z_0 = i$.

$$f(z) = \operatorname{Ln}(z+i)(z-i).$$

Каждая озднозначная ветвь логарифма изменяется непрерывно, когда аргумент изменяется непрерывно.

При обходе против часовой стрелки по замкнутому контуру, охватывающему точку i, но оставляющему вне себя точку -i, аргумент z-i увеличится на 2π

(z-i) — это вектор, проведённый из точки i в точку z, а аргумент z-i — это угол между данным вектором и положительным направлением вещественной оси), а аргумент z+i не изменится.

Заметим, что при перемножении двух комплексных чисел их аргументы складываются:

$$\rho_1 e^{i\varphi_1} \cdot \rho_2 e^{i\varphi_2} =$$

$$= \rho_1 \rho_2 e^{i(\varphi_1 + \varphi_2)}.$$

Поэтому аргумент произведения (z+i)(z-i) увеличится на 2π , и мы перейдём с одной ветви логарифма на другую ветвь.

Таким образом, $z_0 = i$ — точка ветвления.

- б) $z_0 = -i$ также точка ветвления (всё аналогично случаю а)).
- B) $z_0 = \infty$.

При обходе против часовой стрелки по замкнутому контуру, вне которого нет других особых точек, аргумент z-i увеличится на 2π , и аргумент z+i увеличится на 2π . Аргумент произведения (z+i)(z-i) увеличится на 4π , и мы перейдём с одной на другую ветвь логарифма (но уже не на соседнюю).

3начит, $z_0 = ∞$ — точка ветвления.

Oтвет: ±i, ∞ — точки ветвления.

ДЗ 17. КРАМ гл. II № 4.3, 4.4, 4.6(a), 4.8, 4.14, 5.2, 5.8 (задачи для самостоятельного решения).