I) Hyperbolicité

I.1) Hypoubolicité au sers de Broom

Dans tout l'exposi X vouvet : complexe de duneuson n

Dos X est dit hyperbolique (ou ser de BRODY) Si bout $f: C \longrightarrow X$ holomouphe est constants

 $E_x: C^n$ et les tres C^n/Λ avec $\Lambda \simeq 7/2^n$ re soit pos hyperboliques

Conséques: X hyporbolique >> X hyporbolique.

Ex: Cas des courses.

gense	0	1	2
Coulone	< 0	11	>0
$\overline{\widetilde{x}}$	P'	\square	Δ
E×	P	C/A Smooth day 3 hypers [CP2	Tev remité de 17' au doseu de 6 pts
HMPERBOLIQUE	Non	NON	OUI
K _×	O(-z)	O _×	> 0

-> Liens entre la positivité de Kx 9 et l'hyperbolicité.

CONJ. (KOBAYASHI) [X compact kohler hyperbolique → Kx auple

I.2) Hyperboliciti du ses de Kobayasti

 $\Delta := \mathbb{D}(o, i) \subseteq \mathbb{C}$

Dos: (Quasi-norme de Finsler de Kobayashi-Royden sur Tx)

Moral !
$$\xi$$
 wildow : $K_{\lambda}(\xi)$ petit \Longrightarrow J existe des $g: \Delta \to X$ passent pour x (nul) are x are x (or the fraction of x)

("Copiso": 180 metrique
ou 10,3 d 3)

 $R_{j}: \cdot k_{i}(\xi) < \infty$ (on paul prod Δ comme caute au voisinnage de x)

• $K_{x}(\xi+5) \not\leftarrow K_{x}(\xi) + K_{x}(\xi)$ "quasi-norme de Finsler"

Det
$$X$$
 cot dit Infinitesimacement Hypercoulque au sens de Korayashi

si $\forall z \in X$, $k_z(\xi) = 0 \implies \xi = 0$

-> Il n'y a pas de abseque abstracement grand passent per re dos un direction withoute 3.

 \rightarrow $X = \Delta$, k oot la nétrique de Poisicoui: $\frac{d|t|^2}{(|-|t|^2)^2}$

emme de Brody

 $f: \Delta \longrightarrow X$ holomorphe, $\forall E > 0 \exists R \ge (1-E)|f'(0)|$ et il exist $\Psi: R\Delta \longrightarrow (1-E)\Delta$ homographic lelle que $|(F \circ \Psi)'(\circ)|_{X} = 1$ of $|(F \circ \Psi)'(s)|_{X} \leq \frac{1}{|-|s|^{2}/R^{2}}$ $\forall s \in R\Delta$

dom: I grandit les vecteur tages à 1 on muit Δ de la metrique de Poincour (I-E) A > - - - X (1-161z)2 On charche où su (1-E) A elle gradit le ple le voetou. t → f((1-E)t): Ta -> Tx a pour norme $N_t = \sup |f'(1-\epsilon)t|_X = (|-|t|^2)|f'(1-\epsilon)t|$ $\frac{doc}{dt}$ $\frac{1}{2}$ \frac On va reparemetra en enoyent O ERA su (I-E)to E (I-E) Δ $\Psi: \left(\begin{array}{c} R\Delta & \longrightarrow (1-\epsilon)\Delta \\ S & \longleftarrow \end{array} \right) \quad \text{homographs} \quad \Psi(0) = t_0 \\ \Psi'(0) = \frac{1-\epsilon}{R} \left(|t_0|^2 - 1 \right) \\ \frac{10^{f_0} - 1-\epsilon}{R} \right) \quad \text{homographs} \quad \Psi'(0) = \frac{1-\epsilon}{R} \left(|t_0|^2 - 1 \right)$ I suffit de prode \mathbb{R} to $\left| \left(f \circ \Psi \right)'(\circ) \right|_{X} = 1$ ie $\left| f''((1-\epsilon)t_{o}) \cdot \Psi'(\circ) \right|_{X} = 1$ $\frac{\psi'(s) = \frac{|-\epsilon|}{\Re} \frac{|t_{o}|^{2} - 1}{(1 - \overline{t_{o}} \circ / \Re)^{2}}}{(1 - \overline{t_{o}} \circ / \Re)^{2}}$ $\frac{d'ou}{d'ou} = \frac{1-|t_0|^2}{R} \left(1-|t_0|^2\right) = 1$ $\frac{1-|t_0|^2}{(1-\epsilon)N_{t_0}}$ $f \circ \psi : R\Delta \longrightarrow X$ $(f \circ \Psi)'(s) : T_{R\Delta} \longrightarrow T_{X} \qquad |(f \circ \Psi)'(s)|_{F,X} = \sup_{|\xi| < 1 - |s|_{R}} |(f \circ \Psi)'(s)|_{X} (1 - |s|_{R})$ DR pur contraction $\|(f \circ \Psi)'(s)\|_{P,X} \leq \|f'(\Psi(s))\|_{P,X} \cdot \|\Psi(s)\|_{P,X} \cdot \|f'(s)\|_{P,X} \cdot \|\Psi(s)\|_{P,X} \cdot \|\Psi(s)\|_{P,X} \cdot \|\Psi(s)\|_{P,X} = N_{t_0} \cdot \frac{(-\epsilon)(1-|tt|)}{R} = 1$ $\left| \frac{1}{| (s)|^{2}} \right|_{X} \leq \frac{1}{| - s|^{2}/R^{2}}$ La metrique de Poncour est max, er o On suppose X compact. Soient $f_n: \Delta \longrightarrow X$ suit de f° holo. $f_{\bullet}V_{\bullet}$ que |f'(a)|tells qu $|f'_n(o)| \longrightarrow +\infty$ A_{e} $\exists g: \mathbb{C} \longrightarrow X$ $\forall |g'(o)|_{X} = 1 \leftrightarrow |g'|_{X} \leq 1 \text{ su } \mathbb{C}$

dem : On ce pour le lemme de BRODY we suite $(R_n)_n$ $R_n \to +\infty$ $(Y_n)_n$ $Y_n: R_n \Delta \to (1-E)\Delta$

 $f_n \circ f_n : \mathbb{R} \Delta \longrightarrow X$

Soit Ω CCC Alon APCR Ω \subseteq R₁ Δ et $(f_n \circ Y_n)_n$ eot equicatione en Ω

dere par Montel I son suit qui ex curtornimet sur tout corpect de SZ.

Par extraction diagonale on continuit we suit $q_i \text{ or wit su tout corpert de } \mathbb{C} \text{ var } g: \mathbb{C} \longrightarrow X$ area |g'(0)| = 1

Cor 2 $\begin{bmatrix} k_{x}(\xi) = 0 \Rightarrow \exists g: C \to X \text{ hob. non contact} \\ \text{(Ne passe pos reconsuments par } x \text{)} \end{bmatrix}$

By: Su C, $k_z \equiv 0$.

On point mailter que si $C \longrightarrow X$ alors $k \equiv 0$ sur son image done X n'est pas infinitésimalement hyporbolique au seus de KOBAYASHI,

BILAN!

INFINIT. HYPERBOLIQUE AU SENS DE KOBAHASHI

(=> HYPERBOLIQUE AU SENS DE BRODY

II) DIMENSION DE KODAHRA

I 1) Definitions

Dos (Phuigeres) Soil
$$d \ge 0$$

on note $P_d = h^o(X, K_x^{od})$

Def
$$K(X) = \limsup_{d \to +\infty} \left(\frac{\log(P_d)}{\log(d)} \right)$$

dimension of Kodaira

$$\frac{1}{K}$$
 $h^{\circ}(X, K_{\infty}^{\times}) \in \Theta(d^{K(X)})$

Col :
$$X$$
 de dim n , $K(X) \in \{-\infty, 0, 1, 2, ..., n\}$

Exemple (1)
$$\mathbb{P}^n$$
 $K_{\mathbb{P}^n} = \mathcal{O}(-(n+1))$

due $\forall d>0$ $H^{\circ}(\mathbb{P}^n, K_{\mathbb{P}^n}^{\otimes d}) = 0$
 $K(\mathbb{P}^n) = -\infty$

2 De manière génerale si
$$K_X$$
 conti-emple $H^0(X, K_X^{\text{od}}) = 0$ aper done $K(X) = -\infty$

(3) À l'inverse si
$$K_X$$
 cample, $h^0(K_X^{\otimes d}) = \chi(K_X^{\otimes d})$ [HRR] polynôme et d de dez n dece $K(X) = n$.

Cas d'une combe:

 $\frac{\mathcal{R}_{K}}{\mathcal{R}} \;\; \Rightarrow \;\; \chi(K_{F}) = \chi(0) + \frac{1}{7} \big(\chi_{\bullet,F}^{\bullet,F} \chi_{\bullet,F} - \chi_{\bullet,F}^{\bullet,F} \big)$

BILAN $P_2 = 1 - h'(0) + h'(K^{or}) + K \times \geq 1 - h'(0) + K \times K$

 $\mathcal{P}_0 = 1$

 $P_{i} = g^{*}$

 $P_{z} = h'(x, K_{x}^{2})$

≥1-h'(0)+K·K

Po = 1 P = 9

(4) Enfin
$$K_X \sim O_X$$
 (Toe pares), $K(X) = O$

1.2) CLASSIFICATION, LE CAS DES SURFACES

CONJECTURE (KORAHASHI) (X Kahler hyportolique => Kx ample)

SURFACES KAHLER (COMPACTE)

(1) K(x) = -∞ X est unreglé clore non-hyperbolique (ce resultat est conjectué)

-> les Tors sort non-hyperbolique -> leo KS sont non-hyperboliq (difficile)

(3) K(x) = 4X elliptique. -> non-hyperbolique Toute K3 pout être approchée par des Kummer en désamstion or Kermner = Tore est non-hypers. dac les coubes articles

 $(4) K(X) = 2 = d_{im}(X)$

Exemple: E = Blo(X) b*Kx+E = KBlo(x) X Kx ample huy peuboliqu

● Si Kx non ample, ala il exist (-2)-combe do X donc non-hyperbolique 4

EST VERIFIEE POUR LES SUFFACES

" Si X hyperbolique le seul con qui est c'est Kx anyle

En dim experieure, le cas le plus du rest de mentrer: $(K(X)=0) \Longrightarrow (X \text{ non-hyperbolique})$

* C4 ???

En particular si $K_{x} \simeq O_{x}$ Ale $X = (Toreo) \times (Calabi Yau) \times (Symp. Holo)$ (QUITE À PASSER À UN REV FINI)

* Toos (ok!)

* Symp Holo -

II) LE CAS HYPERKAHLERIEN

II.1) ESPACE DES TWISTEURS

III.1.a)
$$[(X, \tau)]$$
 est dite symplectique holomorphe $\underline{x}i$ · $(\Gamma[\sigma] = H^{2}(X, \mathbb{C}))$ de dim $2n$

Reg:
$$TX \sim \Omega'_X$$
 (product interior per or)

et dac $K_X \sim \Omega_X$ (et dac $K(X) = 0$)

Thm
$$X$$
 compacte symp. hob

[YAU] $\exists ! \ g \text{ melnique Riem.}/X \ tq \ \left[[w_{g}] = c \right]$

Ricci-plate

$$Hol(g) \simeq Sp(n)$$
 II
 $U(2n) \cap Sp(2n, \mathbb{C})$

On montre

$$P_{rop}$$
: (M,g) van Riem. area $Hol(g_0) \simeq Sp(n)$

$$\exists I,J,K \in End(TM) \lor (\lor I = \lor V) = \lor K = 0)$$

$$I^2 = J^2 = K^2 = IJK = -1$$

(M,I,J,K,g) eot appeló vouiété hyperkahleneme

#1.1.b)
$$J \in \mathbb{R}^{3} \simeq S^{2} \subseteq \mathbb{R}^{3}$$
 $J = (J_{1}, J_{2}, J_{3})$ $(J_{1} I + J_{2} J_{1} + J_{3} K)^{2}$

$$= J_{3}^{2} I^{2} + J_{2}^{2} J^{2} + J_{3}^{2} K^{2} + J_{1} J_{2} (IJ + JI) + J_{1} J_{3} (IK + KI) + J_{1} J_{3} (IK + KI)$$

$$= (J_{1}^{2} + J_{2}^{2} + J_{3}^{2} + J_{3}^{2})(-1) + 0 = -1$$

$$= (J_{1}^{2} + J_{2}^{2} + J_{3}^{2})(-1) + 0 = -1$$

$$= (J_{1}^{2} + J_{2}^{2} + J_{3}^{2})(-1) + 0 = -1$$

•
$$(I_5,g)$$
 structure kählerenne on not $X_5 = (X_d, I_5, g_c)$

On a de plus sur X5 me structure symplectique (Iz-)hobrophe で = 色(で+iK)_,_)

II.L) GRANDES DEFORMATIONS

Soit se S

ale dfods =
$$id_{TP'}$$
 donc ds ne s'annula pas

anni ds: $TTP' \rightarrow TZ \setminus O_{T}$ (section rule)

 $(\forall S \in TP', ds_3 \cdot \frac{2}{3} \in T_{S_1}Z \setminus O)$

d'où do et j∈P' définissent u pt de P(TZ)

{ ds(3)·X | X ∈ Tpi} = Tz

0 -> kardf -> TZ df +*Tp - 0

$$Prop$$
: $\exists (s_n, S_n)_n$ suit de $S \times P'$ et $\exists p \in D$ telle que $Pds_n(S_n) \xrightarrow[n \to +\infty]{} P \in D$ $\exists CERTAINES DEFO$

CERTAINES DEFORMATIONS DE DROITES TWISTORIELLES
TENDENT À ETRE HORIZONTALES
EN CERTAINS POINT

clem: Sinon en prenent Da l'infini de PTZ

pas se S, en a ds: P' -> IP(TZ) re s'approchail pas de D

done la famille S est équicartime. Par comparait de IP1

il s'en suit que S est comparait

Soil $p \in \mathbb{Z}$ countries $S_p \in \{s \in S \mid p \in S(P')\}$ ensemble des subjections passant par p $S_p \subseteq S$ sous-essemble analytique. \Longrightarrow compact

of
$$\varphi: (S_p \longrightarrow \mathbb{P}(T_p Z))$$
 or $\forall C = s(\mathbb{P}')$ pour $s \in S_p$, $N_{C/Z}$ ample $s \in S_p$, $S_p \in S_p$ done $s \in S_p$, $S_p \in S_p$ and $S_p \in S_p$ and $S_p \in S_p$ done $S_p \in S_p$ done $S_p \in S_p$ and $S_p \in S_p$ done $S_p \in S_p$

+ COMPACTE
$$\Rightarrow$$
 $\Psi_p(S_p) = \mathbb{P}(T_p Z)$ en particulier $\Psi_p(S_p)$ remarks \mathbb{D}_p contradit l'hypothèse.

II.3) CONCLUSION

with
$$s_n \subseteq S$$
 OPS quith a procle $s_n \subseteq S$ $s_n \subseteq S$ $s_n \subseteq \Delta$

$$\left|S_{0}^{\prime}(\zeta_{0})\right| \longrightarrow +\infty$$

$$\mathcal{U} = f(\Delta) \subseteq S$$

$$\Rightarrow \exists g: \mathbb{C} \longrightarrow \overline{\mathcal{U}} \subseteq Z \text{ limits avec } |g'(0)| = 1$$

Mais
$$g \in \overline{U}$$
 done $f \circ g : \mathbb{C} \to \overline{\Delta}$

CQFD.

(Un petit supplément qui donne une idée de l'approche du VERBITSKY)

$$X_o = (X, \sigma, c)$$
 Var symp + classe de kähler

M: espace des deformations de Xo

$$0 = [X_0] \in \mathcal{U}$$

$$O = [X_o] \in \mathcal{U}$$
 $T_o \mathcal{U} \cong H'(X_o, T_{X_o}) \simeq_{\sigma} H'(X_o, \Omega_{X_o})$

$$\left(\begin{array}{ccc} \mathbb{P}' \longrightarrow \mathcal{M} \\ \mathbb{Z} & \longrightarrow & \mathbb{Z} \end{array} \right)$$
 enoise $\frac{2}{25}$ dos $\mathbb{C} \cdot [c] \in H''(X_s, \mathbb{C}) \simeq \mathbb{T} \cdot \mathcal{M}$

On peut faire vaux [c] E Kahler (Xo) C H' (Xo,C) nH2(Xo,R) ga nous donne à chaque fois une nouvelle chrecto du droit trashovelle. (codim $_R=1$)

Et on sait par ce qui précide que chaque de ces directions contiertan mons Un point [X] arec X now hyperbolique. Donc Versemble des HK non hypotodyn est de codim R < 2