群論 (第10回)の解答

問題 10-1 の解答

(1) $x, y \in \mathbb{R}$ に対し、

$$f(x+y) = e^{2\pi i(x+y)} = e^{2\pi ix}e^{2\pi iy} = f(x)f(y).$$

よってfは準同型.また

$$\ker f = \{ x \in \mathbb{R} \mid e^{2\pi i x} = 1 \} = \mathbb{Z}.$$

さらに

$$\operatorname{Im} f = \{ e^{2\pi i x} \mid x \in \mathbb{R} \} = S^1.$$

以上より、準同型定理から $\mathbb{R}/\mathbb{Z} \simeq S^1$.

問題 10-2 の解答

(1) $f: G \to G$ $(x \mapsto x^2)$ と置く. $x, y \in G$ に対し、

$$f(xy) = (xy)^2 = x^2y^2 = f(x)f(y).$$

よって f は準同型. また

$$\ker f = \{ x \in G \mid x^2 = 1 \} = B.$$

さらに

Im
$$f = \{f(x) \mid x \in G\} = \{x^2 \mid x \in G\} = A$$
.

以上より準同型定理から $G/A \simeq B$.

問題 10-3 の解答

よって f は準同型.

(2) f の定義より、

$$\ker f = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in G \mid f \begin{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \end{pmatrix} = 1 \right\} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in G \mid \frac{a}{c} = 1 \right\} = N.$$

また $z\in\mathbb{C}^{\times}$ に対して、 $\alpha=\begin{pmatrix}z&0\\0&1\end{pmatrix}$ とおけば、 $\alpha\in G$ で $f(\alpha)=z$ を満たす.従って f は全射.特に $\mathrm{Im} f=\mathbb{C}^{\times}$.準同型定理より $F:G/N\to\mathbb{C}^{\times}$ $(\alpha N\mapsto f(\alpha))$ は同型写像.従って $G/N\simeq\mathbb{C}^{\times}$.

(3) について.

$$F(gN) = f(g) = \frac{1+i}{1-i} = i.$$

i の \mathbb{C}^{\times} における位数は 4 で、F は同型写像であるから gN の G/N における位数も 4 である.

(4) まず、 \mathbb{C}^{\times} の位数 6 の元を求める. $\omega = e^{\frac{2\pi i}{6}}$ とおくと、

$$\{\alpha \in \mathbb{C}^{\times} \mid \alpha^6 = 1\} = \{1, \omega, \omega^2, \omega^3, \omega^4, \omega^5\}$$

に注意する. $\omega^6=1$ より, \mathbb{C}^{\times} の位数 6 の元は

$$\omega = \frac{1}{2} + \frac{\sqrt{-3}}{2}, \quad \omega^5 = \frac{1}{2} - \frac{\sqrt{-3}}{2}.$$

の 2 つである. F は同型写像より, $\alpha N\in G/N$ に対し, αN の位数が 6 であることと $F(\alpha N)\in\mathbb{C}^{\times}$ の位数が 6 であることは同値. よって $F(\alpha N)=\omega$, ω^5 となる $\alpha N\in G/N$ を見つければよい. ここで,

$$\alpha_1 = \begin{pmatrix} \omega & 0 \\ 0 & 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} \omega^5 & 0 \\ 0 & 1 \end{pmatrix}$$

と置けば, $F(\alpha_1 N) = \omega$, $F(\alpha_2 N) = \omega^5$. 従って G/N の位数 6 の元は $\alpha_1 N$, $\alpha_2 N$ である.