7-ая неделя

16.10.2023

Билет 34 ((с леммой о верхнем пределе произведения)). $x_n, y_n \in \mathbb{R}, x_n \to x, x > 0$. $Torda \ \overline{\lim}_{n \to \infty} x_n y_n = x \overline{\lim}_{n \to \infty} y_n$.

Следствие 1 (Сумма степенного ряда непрерывна в круге сходимости). *skipped*

Билет 35 (Теорема Абеля). R - $paduyc\ cxodumocmu\ \sum_{n=0}^{\infty} c_n x^n,\ R>0.$ Torda

- 1. Если ряд сходится в точке R, то он сходится равномерно на [0,R]
- 2. Если ряд сходится в точке -R, то он сходится равномерно на [-R,0]

Билет 35 (Интегрирование степенных рядов). $[\alpha, \beta] \subset (a-r, a+r)$, r - радиус сходимости степенного ряда $\sum_{n=0}^{\infty} c_n (z-a)^n$.

Тогда $\int_{\alpha}^{\beta} \sum_{n=0}^{\infty} c_n (x-a)^n dx = \sum_{n=0}^{\infty} c_n \int_{\alpha}^{\beta} (x-a)^n dx$, то есть ряд допускает почленное интегрирование.

Билет 35 (Дифференцирование степенных рядов). Степенной ряд $\sum_{n=0}^{\infty} c_n(z-a)^n \in C^{\infty}(B_r(a))$, где r -радиус сходимости.

Этот ряд допускает т-кратное дифференцирование почленно $\forall m \in \mathbb{Z}_+\ u\ (\sum_{n=0}^\infty c_n(z-a)^n)^{(m)} = \sum_{n=m}^\infty n(n-1)\dots(n-m+1)c_n(z-a)^{n-m},\ z \in B_r(a)$

Следствие 1. Пусть $[\alpha,\beta]\subset (a-r,a+r),\ {\it rde}\ r=\frac{1}{\overline{\lim}_{n\to\infty}\sqrt[q]{|c_n|}}$

Тогда $\int_{\alpha}^{\beta} \sum_{n=0}^{\infty} c_n (x-a)^n dx = \sum_{n=0}^{\infty} c_n \int_{\alpha}^{\beta} (x-a)^n dx$, то есть ряд допускает почленное дифференцирование на $[\alpha, \beta]$.

Если ряд сходится в точке a+r (или a-r), то утверждение верно и для $[\alpha,\beta]\subseteq (a-r,a+r]$ (или $[\alpha,\beta]\subseteq [a-r,a+r)$)

Определение 1 (Комплексная дифференцируемость). $f: \mathbb{C} \supseteq O \to \mathbb{C}, \ a \in O$ $f'(a) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a}$ - производная f в точке a (если предел существует).

Теорема. Степенной ряд $\sum_{n=0}^{\infty} c_n(z-a)^n \in C^{\infty}(B_r(a))$, где r - радиус сходимости. Этот ряд допускает m-кратное дифференцирование почленно $\forall m \in \mathbb{Z}_+$ и $(\sum_{n=0}^{\infty} c_n(z-a)^n)^{(m)} = \sum_{n=m}^{\infty} n(n-1)\dots(n-m+1)c_n(z-a)^{n-m}$, $z \in B_r(a)$

Билет 21 (Необходимое условие условного экстремума (геометрическая формулировка)). $m, N \in \mathbb{N}, m < N$, $\mathbb{R}^n \supseteq O$ открытое, $F_1, \ldots, F_m, f \in C^1(O)$ и $F = (F_1, \ldots, F_m)$, F регулярно в O; $a \in O$, a - точка условного экстремума f при условие F(x) = 0.

Тогда $\nabla_a f$ есть линейная комбинация $\nabla_a F_1, \dots, \nabla_a F_m$, то есть $\exists \lambda_1, \dots, \lambda_m : \nabla_a f = \sum_{k=1}^m \lambda_k \cdot \nabla_a F_k$.

Билет 21 (Необходимое условие условного экстремума (формулировка, использующая функцию Лагранжа)). $\mathcal{L}(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_m)=f(x_1,\ldots,x_n)-\sum_{k=1}^m\lambda_kF_k(x_1,\ldots,x_n)$ - функция Лагранжа, отвечающая функции f и системе связи $F_i(x)=0$.

Пусть выполнено условие формулировки выше.

Тогда $\exists \lambda \in \mathbb{R}^m : d_{(a,\lambda)}\mathcal{L} = 0.$

Билет 20 (Линейное касательное пространство к k-мерной поверхности — определение и свойства). $\mathcal{M} \subseteq \mathbb{R}^n$, $p \in \mathcal{M}$, $\tau \in \mathbb{R}^N$, τ называется касательным вектором к \mathcal{M} в точке p $(p \in T_p\mathcal{M})$, если \exists гладкое отображение $\gamma : (a,b) \to \mathcal{M}$ и $\exists c \in (a,b) : \gamma(c) = p, \gamma'(c) = \tau$.

Билет 20 (Канонические базисы линейного касательного пространства). *М допускает (в окрестности*

точки p) гладкую параметризацию $\Phi: \mathbb{R}^n \supseteq U \to \mathbb{R}^N, \ \Phi(U) = \mathcal{M}; \ a \in U, \ \Phi(a) = p.$ Тогда $\frac{\partial \Phi}{\partial x_1}(a), \dots, \frac{\partial \Phi}{\partial x_n}(a)$ называются каноническими касательными векторами. Если Φ регулярно в точке a, они линейно независимы.

Билет 20 (и его ортогонального дополнения). По теореме о способах задания гладких многообразий $\exists F$: $\mathbb{R}^n \supseteq O \ (om\kappa p \cup moe) \rightarrow \mathbb{R}^m, \ m+n=N, \ \mathcal{M} \cap O = \{x : F(x)=0\}.$

Тогда $\forall au \in T_p\mathcal{M} \ \forall j=1,\ldots,m \ au \perp \nabla_p F_j \ u \ \{\nabla_p F_j\}_{j=1}^m$ является каноническим базисом ортогонального дополнения линейного касательного пространства: $T_p\mathcal{M} = (span(\nabla_p F_1, \dots, \nabla_p F_m))^{\perp}$.