Работа 3.5.1

Изучение плазмы газового разряда в неоне

Шарапов Денис, Зелёный Николай, Б05-005

Содержание

1	Аннотация	2
2	Теоретические сведения	2
	2.1 Плазма	2
	2.2 Одиночный зонд	3
	2.3 Двойной зонд	3
	2.4 Установка	4
3	Результаты измерений и обработка данных	5
	3.1 Вольт-амперная характеристика разряда	5
	3.2 Зондовые характеристики	6
4	Вывод	8

1 Аннотация

Цель работы: изучить вольт-амперную характеристику тлеющего разряда и свойства плазмы методом зондовых характеристик.

В работе используются: стеклянная газоразрядная трубка, наполненная неоном, высоковольтный источник питания, источник питания постоянного тока, делитель напряжения, резистор, потенциометр, ампермометры, вольтметры, переключатели.

2 Теоретические сведения

2.1 Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

div
$$\mathbf{E} = 4\pi\rho$$
,

а с учётом сферической симметрии и $\mathbf{E} = -\mathrm{grad}\ \varphi$:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_e}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$ – радиус Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2. \tag{4}$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды $\sigma=nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем плазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}}. (5)$$

2.2 Одиночный зонд

При внесении в плазму уединённого проводника — зонда — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения U_f — nлавающего nотенциала.

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока $I_{e\text{h}}$ – электронный ток насыщения, а минимальное $I_{i\text{h}}$ – ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4neS\sqrt{\frac{2kT_e}{m_i}}. (7)$$

2.3 Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U = U_2 - U_1 = \Delta U_2 - \Delta U_1$. Через первый электрод

$$I_1 = I_{i\mathrm{H}} + I_{e1} = I_{i\mathrm{H}} - \frac{1}{4} neS \langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{i\mathrm{H}} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right). \tag{8}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right). \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов ($I_1=-I_2=I$):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{iH}} \right),$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{i_{\rm H}}} \right).$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} th \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

$$I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
 (11)

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha \approx \alpha$ при малых α и $A \to 0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$
(12)

2.4 Установка

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и геттерный узел - стеклянный баллон, на внутреннюю повехность которого напылена газопоглощающая плёнка (zemmep). Трубка наполнена изотопом неона 2 2Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор $R_6 \ (\approx 450 \ {\rm кOm})$ к регулируемому ВИП с выкодным напряжением до 5 кВ. При подключении к ВИП анода-І между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке черезе высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1+R_2)/R_2=10$. При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

3 Результаты измерений и обработка данных

3.1 Вольт-амперная характеристика разряда

Плавно увеличивая выходное напряжение ВИП, определим напряжение зажигания разряда $U_{\text{заж}}=30,9\pm0,2$ В.

С помощью вольтметра V_1 и амперметра A_1 снимем вольт-амперную характеристику (ВАХ) разряда $U_p(I_p)$ (1 дел = 0,04 мА). Результаты измерений представлены в таблице 1.

Возрас	тание	Убывание				
І, дел	U, B	I, дел	U, B			
31	32,09	83	27,10			
36	31,76	77	27,05			
40	31,33	69	27,00			
46	30,06	61	28,42			
50	29,64	59	28,70			
55	29,15	54	29,21			
59	28,76	48	29,70			
65	28,25	42	30,67			
71	27,84	36	32,07			
77	27,61	31	32,84			
84	27,33	22	32,85			
89	27,16	16	35,04			
94	27,08	11	65,96			

Таблица 1: Результаты измерений для ВАХ

По полученной таблице построим график зависимости $U_p(I_p)$.

Рис. 1: График зависимости $U_p(I_p)$

По наклону прямой определим максимальное дифференциальное сопротивление разряда:

$$R_{\text{диф}} = (7.3 \pm 0.2) \cdot 10^4 \text{ Ом.}$$

3.2 Зондовые характеристики

Снимем зондовые характеристики при токах разряда, равных 5, 3, 1,5 мА. Результаты измерений запишем в таблицу 3. Получим зависимость $I_3(U_3)$.

Рис. 2: Графики зависимости $I_{\mathfrak{I}}(U_{\mathfrak{I}})$ при различных I_p

Используя данные из таблицы 3, получим величины, определяемые формулами (5), (7), и (12). Результаты внесём в таблицу 2.

Таблица 2: Результаты измерения величин

	J, MKA	$T \cdot 10^3, {\rm K}$	$n \cdot 10^{1}3, \mathrm{m}^{-3}$	$\omega \cdot 10^4$, рад/с	$r_{D_e} \cdot 10^{-2}$, cm	$r_D \cdot 10^{-3}, \text{ cm}$
ĺ	87,6	$50, 4 \pm 5, 0$	$67,9 \pm 8,0$	$1,45 \pm 0,10$	$4,35 \pm 0,3$	5,64
ĺ	38,8	$22,4 \pm 3,0$	$45,0 \pm 5,0$	$1,18 \pm 0,08$	$5,35 \pm 0,5$	4,62
Ì	18,0	$10,3 \pm 3,0$	$30 \pm 4, 0$	$0,56 \pm 0,04$	$6,55 \pm 0,8$	8,49

Таблица 2: Продолжение

$N \cdot 10^5$	$\alpha \cdot 10^{-11}$
2,34	2,52
2,89	1,67
3,53	1,12

По таблице 2 построим график зависимости $n_e(I_p)$.

Рис. 3: График зависимости $U_p(I_p)$

Таблица 3: Результаты измерений зависимости $I_{\scriptscriptstyle 3}(U_{\scriptscriptstyle 3})$

1,5 мА		3 мА		5 мА	
U, B	I, MKA	U, B	I, MKA	U, B	I, MKA
25,067	24,5	25,11	54,28	25	94
22,064	23,67	22,046	52,37	22,07	93,7
18,93	22,9	19,043	50,53	18,83	92,48
16,097	22,15	16,064	48,67	16,096	89,48
13,035	21,15	13,069	45,97	13,065	83
10,005	18,95	10,041	40,72	10,022	71,27
8,039	16,31	7,922	34,24	8,02	59,45
6	12,22	6,048	26,17	5,697	41,16
3,94	6,83	4,07	15,37	4,15	26,35
2,07	0,8	2,05	2,3	2,03	3,56
-25	-35,9	0,54	-0,08	0,46	-14,48
-22	-34,66	-25	-70,23	-24,9	-111,4
-19,044	-33,41	-22	-68	-22,055	-112,4
-16,019	-32,13	-19	-65	-18,994	-111,05
-13,081	-30,79	-16,086	-63,6	-16	-108
-10,007	-28,74	-12,9	-60,98	-13,022	-102,11
-8,07	-26,66	-9,9	-56,5	-10,007	-92,14
-6,074	-23,55	-8,052	-52	-8,041	-82,5
-4,005	-18,94	-6,085	-45,22	-6,017	-69,2
-2,03	-13,21	-4,03	-35,65	-3,99	-52,2
-0,56	-8,23	-2,02	-23,67	-2,01	-32,48

4 Вывод

В ходе работы была изучена вольт-амперная характеристика тлеющего разряда, были изучены свойства плазмы методом зондовых характеристик.

При изучении ВАХ были определены напрежение зажигания в лампе и максимальное дифференциальное сопротивление заряда.

При изучении зондовых характеристик были получены три графика зависимости $I_3(U_3)$ при различных I_p (5, 3, 1,5 мА). С их помощью были получены значения величины $I_i=J$.