Seat	
No.	

[4857]-1042

S.E. (E & TC/Electronics) (I Sem.) EXAMINATION, 2015 ELECTRONIC DEVICES AND CIRCUITS (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B.:— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) State and explain three stability factors. [6]
 - (b) Consider single stage CE amplifier with $R_s=1~{\rm k}\Omega$, $R_1=50~{\rm k}\Omega,~R_2=2~{\rm k}\Omega,~R_C=2~{\rm k}\Omega,~R_L=2~{\rm k}\Omega,~h_{fe}=50,$ $h_{re}=2.5~\times~10^{-4},~h_{oe}=25~\mu$ Amp/V, $h_{ie}=1.1~{\rm k}\Omega.$

Calculate:
$$A_i$$
, R_i and R_0 . [6]

- **2.** (a) Explain diode compensation technique against I_{CO} . [6]
 - (b) Calculate A_{VS} , A_{is} & R_0 for the transistor amplifier shown in Fig. (1) having h-parameters $h_{ie}=1.1$ k, $h_{fe}=50$, h_{re}

$$= 2.5 \times 10^{-4}, \ h_{oe} = \frac{1}{40 \text{ k}}. \tag{6}$$

P.T.O.

Fig. 1

- **3.** (a) Draw and explain low frequency response of single stage RC coupled CE amplifier. [6]
 - (b) Determine the frequency of Oscillation when RC phase shift oscillator has $R=10~k,~C=0.01~\mu f$ and $R_C=2.2~k$. Also find the minimum current gain needed for this purpose. [6]

Or

- **4.** (a) The following measurement were taken while testing an amplifier using square wave input waveform: [6]
 - (i) for frequency of 5 kHz, tr = 20 µsec.
 - (ii) for frequency of 100 Hz, there is a sag/tilt of 1 volt in 2.5 volts.

Amplitude as observed on CRO. Determine the bandwidth of the amplifier undertest.

(b) Draw and explain Hartley oscillator. [6]

5.	(a)	Draw and explain vertically oriental structure of n - p - n power	
		BJT.	,]
	(<i>b</i>)	Class A power amplifier has zero signal collector current of	f
		$100\mathrm{mA}$. If the collector supply voltage is 5 V, determine :	
		(i) Maximum ac power output	
		(ii) Power rating of transistor	
		(iii) Maximum collector circuit efficiency. [7]
		Or	
6.	(a)	Draw and explain class B-push pull power amplifier. State it	\mathbf{s}
		merits and demerits. [7]
	(<i>b</i>)	A power amplifier supplies 3 watt to a load of 6 k Ω . The zero	o
		signal dc collector current is 55 mA and the collector curren	t
		with signal is 60 mA. How much is the percentage second	d
		harmonic distortion ?	[]
7.	(a)	Explain the following non-ideal current voltage characteristics of	f
	, ,	MOSFET:	
		(i) Finite output resistance	
		(ii) Body effect	
		(iii) Subthreshold conduction. [6	7
	(<i>b</i>)	Calculate the drain current and drain to source voltage of	
	(0)	common source circuit shown in Fig. 2. Given : $V_{TN} = 1 \text{ V}$	
		common source circuit shown in Fig. 2. Given . $v_{TN} = 1$ v $K_n = 0.1 \text{ mA/V}^2.$	
		$1\Sigma_n = 0.1 \text{ III} \text{ M/V}$.	J

- **8.** (a) Draw and explain constant current source biasing circuit for EMOSFET. [6]
 - (b) For the circuit shown in Fig. 3 determine the small signal voltage gain. Assume parameters V_{GSQ} = 2.12 V, V_{DD} = 5 V, R_D = 2.5 k Ω , V_{TN} = 1 V, K_n = 0.8 mA/V², λ = 0.02 V⁻¹. Assume the transistor is biased in the saturation region. [7]

Fig. 3