

TRADE: Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems

Chien-Sheng (Jason) Wu, Andrea Madotto, Ehsan Hosseini-Asl, Caiming Xiong, Richard Socher and Pascale Fung

Short Conclusion

66

TRADE is a simple copy-augmented generative model that can track dialogue states without requiring ontology. It is the current SOTA model in multi-domain DST. It also enables zero-shot and few-shot DST in an unseen domain.

Dialogue Systems: Chit-Chat v.s. Task-Oriented

Chit-Chat Dialogue Systems

- No Specific goal
- Focus on generating natural responses
- ▶ The more turns the better

Task-Oriented Dialogue Systems

- Help users achieve their goal
- Focus on understanding users, tracking states, and generating next actions.
- ▶ The less turns the better

Modularized Dialogue Systems

Problem: Multi-Domain Dialogue State

Tracking (DST)

Multi-domain, Multi-turn Conversations

Dialogue States

System belief of a user's goal or Intention.

Ex: Restaurant:

{Location: Florence,

Price: Expensive, ...}

A Dialogue Example

Restaurant: {Price: Cheap, Type: Pizza, Area: Center}

Restaurant:

{People: Four, Day: Tuesday, Time: 1pm,

Others: No

pineapple}

Sure. There is a **Dominos** nearby. How many?

Four people Tuesday at 1 pm please. Please make sure there is **NO PINEAPPLE** on the pizza!

Booked! ABCDE is your reservation code.

Yes help me book a taxi between restaurant and church.

What time do you need the taxi?

Around 3pm please.

You are all set. Have a good trip.

Attraction: {Area:

Center, Type: Architectural)

Taxi:

{Destination: Florence Cathedral, Departure: Dominos

Taxi:

{LeaveAt: 3pm}

Ontology-based DST

- Given system response and current user utterance, each slot in each domain is predicted to be one of the predefined values in ontology.
- Models: ScaleDST (Rastogi et al., 2017); MDBT (Ramadan et al., 2018); GLAD (Zhong et al., 2018); GCE (Nouri et al., 2018)

Challenges of Ontology-based DST

- Ontology is hard to obtain in real scenarios
- Need to track lots of slot values
- Cannot track unseen slot values
- Missing domain sharing capacities

Usr: Find me a cheap restaurant at 7 pm.

Sys: What cuisine would you like?

Usr: I'd prefer eating sushi or ramen.

Sys: Where should it be?

Usr: Let's do in Florence. Also I need a taxi to go there at 6:30 pm.

Sys: ...?

Dialogue History
Encoder

Domain & Slot

Usr: Find me a cheap restaurant at 7 pm.

Sys: What cuisine would you like?

Usr: I'd prefer eating sushi or ramen.

Sys: Where should it be?

Usr: Let's do in Florence. Also I need a taxi to go

there at 6:30 pm.

Sys: ...?

Dialogue History Encoder

Usr: Find me a cheap restaurant at 7 pm. Sys: What cuisine would you like? **Japanese** Usr: I'd prefer eating sushi or ramen. Sys: Where should it be? Usr: Let's do in Florence. Also I need a taxi to go State Generator there at 6:30 pm. Svs: ...? Dialogue History Restaurant Encoder S Cuisine

Usr: Find me a cheap restaurant at 7 pm. Sys: What cuisine would you like? 6:30 pm Usr: I'd prefer eating sushi or ramen. Sys: Where should it be? Usr: Let's do in Florence. Also I need a taxi to go State Generator there at 6:30 pm. Svs: ...? Dialogue History Taxi Encoder S Time

Usr: Find me a cheap restaurant at 7 pm. Sys: What cuisine would you like? None Usr: I'd prefer eating sushi or ramen. Sys: Where should it be? Usr: Let's do in Florence. Also I need a taxi to go State Generator there at 6:30 pm. Svs: ...? Dialogue History Taxi Encoder departure

Sequence-to-Sequence (Seq2Seq)

Sequence-to-sequence with attention

Seq2Seq with Attention

Seq2Seq with (Soft) Copy Mechanism

TRADE: Transferable Dialogue State Generator

TRADE: Transferable Dialogue State Generator

MultiWOZ Dataset (Budzianowski et al., 2018)

- ▶ The largest available human-human conversational corpus with DST labels (8438 dialogues with avg 13.68 turns).
- 5 domains (Hotel, Train, Attraction, Restaurant, Taxi) and 16 slots (food, leave at, area, etc).
- ▶ Total 30 domain-slot pairs and ~4500 slot values.

	Hotel	Train	Attraction	Restaurant	Taxi
Slots	price, type, parking, stay, day, people, area, stars, internet, name	destination, departure, day, arrive by, leave at, people	area, name, type	food, price, area, name, time, day, people	destination, departure, arrive by, leave by
Train	3381	3103	2717	3813	1654
Valid	416	484	401	438	207
Test	394	494	395	437	195

Multi-Domain Joint Training

MDBT (Ramadan et al., 2018) GLAD (Zhong et al., 2018) GCE (Nouri et al., 2018) SpanPtr (Xu et al., 2018)

Multi-Domain Joint Training: Visualization

Zero-Shot Domain DST

	Trained Single		Zero-Shot	
	Joint	Slot	Joint	Slot
Hotel	55.52	92.66	13.70	65.32
Train	77.71	95.30	22.37	49.31
Attraction	71.64	88.97	19.87	55.53
Restaurant	65.35	93.28	11.52	53.43
Taxi	76.13	89.53	60.58	73.92

Table 3: Zero-shot experiments on an unseen domain. In *taxi* domain, our model achieves 60.58% joint goal accuracy without training on any samples from *taxi* domain. *Trained Single* column is the results achieved by training on 100% single-domain data as a reference.

Unseen Domain Testing (Zero-Shot): Correctness Analysis

Restaurant

Few-Shot Domain Expansion DST: (1% unseen domain data)

- ▷ Why?
 - Be able to quickly adapt to new domains.
 - Not require retraining with all the data from previously learned domains (not available and time-consuming).
- ▶ How?
 - Naive fine-tuning; EWC (Kirkpatrick et al., 2017); GEM (Lopez-Paz et al., 2017).
- What?
 - Unseen domain performance
 - Trained domains performance

$$L_{ewc}(\Theta) = L(\Theta) + \sum_{i} \frac{\lambda}{2} F_i (\Theta_i - \Theta_{S,i})^2$$

 $\begin{aligned} & \text{Minimize}_{\Theta} \ L(\Theta) \\ & \text{Subject to} \ L(\Theta, K) \leq L(\Theta_S, K), \end{aligned}$

Unseen Domain Performance (Few-Shot)

Unseen Domain Performance (Few-Shot)

Unseen Domain Performance

Trained Domains Performance (Few-Shot)

Trained Domains Performance

MultiWOZ 2.1 (Eric et al., 2019)

A correction version of original MultiWOZ dataset, resulting in changes to 32% of state annotations across 40% of the dialogue turns.

Type	Conversation	MultiWOZ 2.0	MultiWOZ 2.1
Delayed	User: I'd also like to try a Turkish		
Markups	restaurant. Is that possible?	restaurant.food: None	restaurant.food: Turkish
	Agent: I'm sorry but the only		
	restaurants in that part of town serve		
	either Asian food or African food.		

Model	MultiWOZ 2.0	MultiWOZ 2.1
FJST	40.2%	38.0%
HJST	38.4%	35.55%
TRADE	48.6%	45.6%
DST Reader	39.41%	36.4%
HyST	42.33%	38.1%

restaurant.food:Turkish		
hotel.name: The Cambridge Belfry		
attraction.name: None		
train.leaveAt: None		
train.day: Thursday		
attraction.area: Centre		
restaurant.pricerange: Dontcare		

Stafford on Thursday.

train.destination: Bishop Stortford train.destination: Bishops Stortford

Thank you! Any Questions?

Chien-Sheng (Jason) Wu

Andrea Madotto

Ehsan Hosseini-Asl

Caiming Xiong

Richard Socher

Pascale Fung

