Übungsblatt 1

Aufgabe 1 (4 Punkte)

Arrays und Broadcasting.

- (a) Generiere eine Range von 1 bis 100 und ordne diese der Variablen a zu.
- (b) Mache Dich mit den Funktionen sum und prod vertraut, und speichere in den Variablen sum_a, fac_20, exp_a, log_a, log2_a und sq_a entsprechend
 - (i) $\sum_{n=1}^{100} n$
 - (ii) 20! (Tipp: Wir betrachten nicht 100!, weil diese Zahl zu groß ist)
 - (iii) Den Vektor $(e^1, e^2, ..., e^{100})$ (Tipp: exp)
 - (iv) Den Vektor $(\ln(1), \ln(2), ..., \ln(100))$ (Tipp: log)
 - (v) Den Vektor $(\log_2(1), \log_2(2), ..., \log_2(100))$
 - (vi) Den Vektor $(1^2, 2^2, ..., 100^2)$.
- (c) Erstelle nun einen weiteren Vektor c, der 100 mal nacheinander die Zahlen von 1 bis 100 als Einträge hat. Gib Dir zur Überprüfung die Elemente 95–105 aus (Tipp: repeat).

Aufgabe 2 (3 + 2 Punkte)

Rechnen mit Matrizen und Vektoren.

- (a) Erstelle eine Matrix mat der Dimension 10×10 mit Zufallszahlen durch rand¹.
- (b) Berechne die Zeilen- und Spaltensummen und speichere diese in den Variablen rowsum, colsum.
- (c) Generiere den Vektor $(1,...,1) \in \mathbb{R}^{10}$ und ordne ihn der Variablen b zu. Weise nun die Lösung der Gleichung

$$\mathsf{mat} \cdot x = \mathsf{b}, \quad x \in \mathbb{R}^{10}$$

der Variablen solution zu (Tipp: fill).

(d) (Zusatzaufgabe) Checke, ob mat \cdot solution \approx b (Tipp: Google).

¹Es muss nicht im Detail verstanden werden, was diese Funktion bewirkt.

Aufgabe 3 (3 Punkte)

Lineare Regression.

- (a) Erstelle Vektoren $x, y \in \mathbb{R}^3$ für die jeweiligen Achsenwerte der Punkte (1.0, 1.1), (2.0, 1.9), (3.0, 3.0).
- (b) Initialisiere eine Matrix X mit

$$\begin{pmatrix} 1.0 & x_1 \\ 1.0 & x_2 \\ 1.0 & x_3 \end{pmatrix}$$

(c) Berechne $\beta = (X^T X)^{-1} X^T y$.

Herzlichen Glückwunsch, wir haben soeben eine hübsche Ausgleichsgerade (bestehend aus y-Achsenverschiebung und Steigung) durch unsere Punkte gelegt!

Aufgabe 4 (4 Punkte)

Mutation und Kopieren von Arrays.

- (a) Betrachte den Array d = [1, [2, 3], 4]. Weise fünf weiteren Variablen die Terme d, copy(d), deepcopy(d), d[1:2] und view(d, 1:2) zu. Erkläre, ob und warum sich die Variablen ändern, wenn man die Befehle d[1] = 0; d[2][1] = 10 ausführt.
- (b) Wir stellen fest, dass für unsere Range a[1] = 0 nicht funktioniert. Finde in der Dokumentation zu UnitRange einen Befehl, um aus a einen gewöhnlichen Vector{Int64} zu machen.

Viel Erfolg!