

LEADERS: Learnable Deep Radial Subsampling for MRI reconstruction Zhiwen Wang¹, Bowen Li ¹, Wenjun Xia ¹, Chenyu Shen ¹, Mingzheng Hou ^{2,1}, Hu Chen ¹, Yan Liu ³, Jiliu Zhou ¹, Yi Zhang ^{4, 1, 🖂}

¹College of Computer Science, Sichuan University, Chengdu, China

²National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu, China
³College of Electrical Engineering, Sichuan University, Chengdu, China

⁴School of Cyber Science and Engineering, Sichuan University, Chengdu, China

8-31 March 2022, ITC Royal Bengal, Kolkata, Ind

 W/M_R

Motivations

- MRI suffers from a relatively long acquisition time, which limits its sphere of application and probably discomfort the patients.
- One way to speed up MR imaging is to observe partial measurement and reconstruct image.
- Radial subsampling design: generate adaptive radial sampling trajectories for each subsampling rate by deep Monte Carlo method.

Radial sampling No Yes End-to-end [2] Yes LOUPE [1] A-DPS [5] Traditional methods Golden angle [4]

Method (Simplified)

Radial parameter layer (RPL):

Initialization: a)~b)

Forward training: d)~g)

Radial sampler and reconstructor are optimized jointly:

1st stage: Training sampler and reconstructor jointly; 2nd stage: Fixing sampler, binarizing its' output, and finetuning reconstructor.

References

- [1] Deep-learning-based Optimization of the Under-Sampling Pattern in MRI (Bahadir et al, 2020)
- [2] End-to-End Sequential Sampling and Reconstruction for MR Imaging (Tianwei et al, 2021)
- [3] Active MR k-space Sampling with Reinforcement Learning (Pineda et al, 2020)
- [4] An Optimal Radial Profile Orderbased on the Golden Ratio for Time-resolved MRI (Winkelmann et al, 2006)
- [5] Active Deep Probabilistic Subsampling (Hans et al, 2021)

Experiments

MDR: MD-Recon-Net

Table 1. Quantitative results with two acceleration factors Radial subsampling patterns \mathbf{M}_G PSNR | PSNR | PSNR | PSNR 33.76 32.91 35.0334.14 42.4140.5040.4935.73**39.55** 38.97 39.03 Unet [16] 47.0246.4646.0140.31

Deep radial subsampling is crucial for good performance.

- 4x accelerated rate in the 1st row.
- 8x accelerated rate in the 2nd row.

[16] U-net: Convolutional Networks for Biomedical Image Segmentation (Ronneberger et al, 2015)

[19] MD-Recon-Net: A Parallel Dual-domain Convolutional Neural Network for Compressed Sensing MRI (Maosong et al, 2020)