TD - Vision et perception numérique

Soit la matrice carrée notée Mat_n où $\mathbf{n} \in \mathbf{\aleph}$:

5	5	5	5	5	5	5	5	5	5
5	5	10	15	10	5	4	3	4	5
5	5	15	15	15	5	3	0	3	5
5	5	10	15	10	5	3	0	3	5
5	5	5	5	5	5	3	0	3	5
5	8	5	5	5	5	3	0	3	5
5	10	8	5	5	5	3	0	3	5
5	10	10	8	5	5	3	0	3	5
5	10	10	10	8	5	4	3	4	5
5	5	5	5	5	5	5	5	5	5

Exercice 3:

1- Calcul de quelques statistiques :

• Moyenne (μ) :

$$\mu = \frac{1}{n*n} \sum_{i,j \in [|0,n|]} Mat(i,j)$$

AN:
$$\mu = \frac{550}{100} = 5.5$$

• Ecart-type (σ) :

$$\sigma = \sqrt{(\sum_{i,j \in [|0,n|]} Mat(i,j)^2) - \mu^2}$$

AN:
$$\sigma$$
 = 3,11

• Variance (σ^2) :

$$\sigma^2 = (\sum_{i,j \in [|0,n|]} Mat(i,j)^2) - \mu^2$$

AN :
$$\sigma^2$$
 = 9,71

• <u>Luminance</u> (L):

La luminance est la moyenne de tous les pixels de l'image.

Contraste (C):

Le contraste est la variance des niveaux de gris.

AN: C= 9,71

2- Histogramme de l'image

En nous basant sur l'image fournie, nous avons associé à chaque valeur dans la matrice le nombre de pixels lui correspondant.

Niveaux	0	3	4	5	10	8	15
de gris							
Nombre	6	14	4	57	10	4	5
de pixels							

Tableau 1: Tableau d'occurrences

Où : Les niveaux de gris sont les valeurs distinctes dans la matrice et le nombre de pixels est l'occurrence de ceux-là respectivement.

Ainsi, nous avons construit l'histogramme suivant :

Histogramme de l'image

Exercice 4: (Egalisation d'histogramme d'une image numérique)

Nous avons adopté un code du pixel sur 8 bits.

L'égalisation de l'image est une méthode en quatre étapes :

- 1- Histogramme de l'image => Voir l'exercice 3
- 2- Histogramme de l'image normalisé :

Nous avons divisé les valeurs correspondantes aux nombres de pixels (Tableau1 exercice 3) par le nombre total de pixels (n=100).

Niveaux de	0	3	4	5	10	8	15
gris							
Proportions	0.06	0.14	0.04	0.57	0.10	0.04	0.05

Tableau 2 : Tableau de proportions

Histogramme normalisé

3- Histogramme cumulatif normalisé :

Niveaux de gris	0	3	4	5	10	8	15
Proportions	0.06	0.2	0.24	0.81	0.85	0.95	1.00
cumulées							

Tableau 3: Tableau cumulatif

Histogramme normalisé cumulatif

4- Nouvelles valeurs de la matrice :

En appliquant la formule suivante :

$$f'(x,y) = C(f(x,y)) * (L-1)$$

Niveaux de gris	0	3	4	5	10	8	15
Valeurs de la nouvelle	15,3	51	61,2	206,55	216,75	242,25	255
image							
Partie entière des valeurs	15	51	61	206	216	242	255
de la nouvelle image							

Tableau 4 : Tableau des valeurs de la nouvelle matrice

206	206	206	206	206	206	206	206	206	206
206	206	216	255	216	206	61	51	61	206
206	206	255	255	255	206	51	15	51	206
206	206	216	255	216	206	51	15	51	206
206	206	206	206	206	206	51	15	51	206
206	242	206	206	206	206	51	15	51	206
206	216	242	206	206	206	51	15	51	206
206	216	216	242	206	206	51	15	51	206
206	216	216	216	242	206	61	51	61	206
206	206	206	206	206	206	206	206	206	206

Nouvelle matrice

Exercice 5:

- La dynamique de l'image est : [0,15]
- Extension linéaire de la dynamique de l'image sur un codage de 8 bits :

Nous appliquons la formule vue en cours :

Avec Gmin=0, Gmax=255, g=0 et G=15

Nous obtenons la formule suivante en éliminant les valeurs nulles :

$$f'(x,y) = f(x,y) * \frac{Gmax}{G}$$

D'où
$$f'(x, y) = f(x, y) * 17$$

Exercice 6:

Les images sont listées selon la simplicité d'association à leurs histogrammes respectifs.

Image	Histogramme	Justification
I1	H2	C'est la même image!
13	H6	Nous avons un effet miroir => C'est le négatif.
12	Н3	Nous constatons une diminution du contraste. Donc, l'histogramme est condensé.
14	H5	Nous relevons un contraste fort. Donc, l'histogramme est étiré des deux côtés.
15	H4	Les pixels clairs sont devenus blancs. Donc, l'histogramme est décalé vers la droite.
16	H1	Les pixels sombres sont devenus noirs. Donc, l'histogramme est décalé à gauche.