Problems learning RNNs

- In theory, should be able to propagate information over arbitrarily long contexts.
- In practice, RNNs suffer from vanishing gradients that decay to 0, or exploding gradients that increase towards infinity.

Vanilla RNN Gradient Flow

Backpropagation from h_t to h_{t-1} multiplies by W (actually W_{hh}^T)

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

Vanilla RNN Gradient Flow

Computing gradient of h₀ involves many factors of W (and repeated tanh)

LSTM Networks

- Recurrent Neural Networks
 - Long Short-Term Memory (LSTM) networks are a variant of RNNs
 - LSTM mitigates the vanishing/exploding gradient problem
 - Solution: a Memory Cell, updated at each step in the sequence
 - Three gates control the flow of information to and from the Memory Cell
 - Input Gate: protects the current step from irrelevant inputs
 - Output Gate: prevents current step from passing irrelevant information to later steps
 - Forget Gate: limits information passed from one cell to the next
 - Most modern RNN models use either LSTM units or other more advanced types of recurrent units (e.g., GRU units)

Vanilla RNN Gradient Flow

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

Long Short Term Memory (LSTM)

Vanilla RNN

LSTM

$$h_t = \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right)$$

Two vectors at each timestep:

Cell state

Hidden state

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Long Short Term Memory (LSTM)

Vanilla RNN

$$h_t = \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right)$$

Compute four gates at each timestep

LSTM

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Cell State Example

- Want to remember person & number of a subject noun so that it can be checked to agree with the person & number of verb when it is eventually encountered.
- Forget gate will remove existing information of a prior subject when a new one is encountered.
- Input gate "adds" in the information for the new subject.

LSTM Network Architecture

Cell State

- Maintains a vector C_t that is the same dimensionality as the hidden state, h_t
- Information can be added or deleted from this state vector via the forget and input gates.

Forget Gate

- Forget gate computes a 0-1 value using a logistic sigmoid output function from the input, x_t , and the current hidden state, h_t :
- Multiplicatively combined with cell state, "forgetting" information where the gate outputs something close to 0.

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Input Gate

- First, determine which entries in the cell state to update by computing 0-1 sigmoid output.
- Then determine what amount to add/subtract from these entries by computing a tanh output (valued –1 to 1) function of the input and hidden state.

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Updating the Cell State

• Cell state is updated by using component-wise vector multiply to "forget" and vector addition to "input" new information.

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output Gate

- Hidden state is updated based on a "filtered" version of the cell state, scaled to −1 to 1 using tanh.
- Output gate computes a sigmoid function of the input and current hidden state to determine which elements of the cell state to "output".

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Overall Network Architecture

 Single or multilayer networks can compute LSTM inputs from problem inputs and problem outputs from LSTM outputs.

LSTM Training

- Trainable with backprop derivatives such as:
 - Stochastic gradient descent (randomize order of examples in each epoch) with momentum (bias weight changes to continue in same direction as last update).
 - ADAM optimizer (Kingma & Ma, 2015)
- Each cell has many parameters (W_f, W_i, W_C, W_o)
 - Generally requires lots of training data.
 - Requires lots of compute time that exploits GPU clusters.