

FQ5-535

28

Claims:

1. A load distribution device provided in each of nodes included in a network, comprising:

a link state memory retrievably storing link state information of the network, wherein the link state database is used to dynamically calculate an alternate route for failure recovery when a failure notification is received;

5 a route candidate memory retrievably storing a plurality of route candidates for each of possible endpoint nodes; and

10 a route determiner for determining a route for a normally set up connection, wherein a route having a relatively small load is selected from a plurality of route candidates with a relatively high probability.

2. The load distribution device according to claim 1,
15 wherein the route determiner comprises:

a route quality checker for checking quality of each of the route candidates by referring to the link state information stored in the link state memory when receiving a connection setup request; and

20 a route candidate selector for selecting the route for a requested connection from the route candidates depending on the quality of each of the route candidates.

3. The load distribution device according to claim 2,
wherein the route candidate selector selects a route candidate
having a broadest available bandwidth as the route for a
requested connection.

5 4. The load distribution device according to claim 2,
wherein the route candidate selector selects a route candidate
as the route for a requested connection from the route candidates
in a round robin fashion.

10 5. The load distribution device according to claim 2,
wherein the route candidate selector selects a route candidate
as the route for a requested connection from the route candidates
in a weighted round robin fashion using an available bandwidth
of each of the route candidates as a weight.

15 6. The load distribution device according to claim 2,
wherein the route candidate selector selects a route candidate
having a shortest delay time as the route for a requested
connection among the route candidates satisfying a requested
quality.

20 7. The load distribution device according to claim 2,
wherein the route candidate selector selects a route candidate
having a smallest fluctuation in data arrival interval as the

FQ5-535

30

route for a requested connection among the route candidates satisfying a requested quality.

8. The load distribution device according to claim 2,
wherein the route candidate selector selects a route candidate
5 as the route for a requested connection from the route candidates
in a weighted round robin fashion using a reciprocal of delay
time for each of the route candidates as a weight.

9. The load distribution device according to claim 2,
wherein the route candidate selector selects a route candidate
10 as the route for a requested connection from the route candidates
in a weighted round robin fashion using a reciprocal of
fluctuation in data arrival interval for each of the route
candidates as a weight.

10. The load distribution device according to claim 2,
15 further comprising:

an on-demand route calculator for calculating a
route satisfying a requested quality by referring to the link
state memory when no route candidate is found in the route
candidate selector.

20 11. The load distribution device according to claim 1,
further comprising:

an alternate route determiner for determining an

alternate route when a failure notification is received, wherein a route having a relatively small load is selected as the alternate route from a plurality of route candidates with a relatively high probability.

5 12. The load distribution device according to claim 11, wherein the alternate route determiner comprises:

· a route quality checker for checking quality of each of the route candidates by referring to the link state information stored in the link state memory when receiving a
10 failure notification message; and

· a route candidate selector for selecting the alternate route for failure recovery from the route candidates depending on the quality of each of the route candidates.

13. The load distribution device according to claim 12,
15 wherein the route candidate selector selects a route candidate having a broadest available bandwidth as the alternate route for failure recovery.

14. The load distribution device according to claim 12,
wherein the route candidate selector selects a route candidate
20 as the alternate route for failure recovery from the route candidates in a round robin fashion.

15. The load distribution device according to claim 12,

wherein the route candidate selector selects a route candidate as the alternate route for failure recovery from the route candidates in a weighted round robin fashion using an available bandwidth of each of the route candidates as a weight.

- 5 16. The load distribution device according to claim 12, wherein the route candidate selector selects a route candidate having a shortest delay time as the alternate route for failure recovery among the route candidates satisfying a required quality.
- 10 17. The load distribution device according to claim 12, wherein the route candidate selector selects a route candidate having a smallest fluctuation in data arrival interval as the alternate route for failure recovery among the route candidates satisfying a required quality.
- 15 18. The load distribution device according to claim 12, wherein the route candidate selector selects a route candidate as the alternate route for failure recovery from the route candidates in a weighted round robin fashion using a reciprocal of delay time for each of the route candidates as a weight.
- 20 19. The load distribution device according to claim 12, wherein the route candidate selector selects a route candidate as the alternate route for failure recovery from the route

candidates in a weighted round robin fashion using a reciprocal of fluctuation in data arrival interval for each of the route candidates as a weight.

20. The load distribution device according to claim 12,
5 further comprising:

an on-demand route calculator for calculating an alternate route satisfying a required quality by referring to the link state memory when no route candidate is found in the route candidate selector.

10 21. A node in a network, comprising:

a connection setup request receiver;

a connection setup processor;

15 a link state memory retrievably storing link state information of the network, wherein the link state database is used to dynamically calculate an alternate route for failure recovery when a failure notification is received;

a route candidate memory retrievably storing a plurality of route candidates for each of possible endpoint nodes; and

20 a route determiner for determining a route for a normally set up connection to set up the requested connection, wherein a route having a relatively small load is selected from a plurality of route candidates with a relatively high probability.

22. The node according to claim 21, wherein the route determiner comprises:

a route quality checker for checking quality of each of the route candidates by referring to the link state information stored in the link state memory when receiving a connection setup request; and

a route candidate selector for selecting the route for the requested connection from the route candidates depending on the quality of each of the route candidates.

10 23. The node according to claim 21, further comprising:

an alternate route determiner for determining an alternate route when a failure notification is received, wherein a route having a relatively small load is selected as the alternate route from a plurality of route candidates with a relatively high probability.

24. The node according to claim 23, wherein the alternate route determiner comprises:

a route quality checker for checking quality of each of the route candidates by referring to the link state information stored in the link state memory when receiving a failure notification message; and

a route candidate selector for selecting the alternate route for failure recovery from the route candidates

FQ5-535

35

depending on the quality of each of the route candidates.

25. The node according to claim 21, further comprising:
a link state memory controller for updating at least
the link state memory when one of a link state message and a
failure notification message is received.
5

26. A load distribution method in each of nodes included
in a network, comprising the steps of:

a) retrievably storing link state information of
the network, wherein the link state database is used to
10 dynamically calculate an alternate route for failure recovery
when a failure notification is received;
b) retrievably storing a plurality of route
candidates for each of possible endpoint nodes; and
c) determining a route for a normally set up
15 connection, wherein a route having a relatively small load is
selected from a plurality of route candidates with a relatively
high probability.

27. The load distribution method according to claim 26,
wherein the step (c) comprises the steps of:

20 checking quality of each of the route candidates by
referring to the link state information when receiving a
connection setup request; and
selecting the route for a requested connection from

FQ5-535

36

the route candidates depending on the quality of each of the route candidates.

28. The load distribution method according to claim 26, further comprising the step of:

5 d) determining an alternate route when a failure notification is received, wherein a route having a relatively small load is selected as the alternate route from a plurality of route candidates with a relatively high probability.

10 29. The load distribution method according to claim 28, wherein the step (d) comprises the steps of:

 checking quality of each of the route candidates by referring to the link state information when receiving a failure notification message; and

15 selecting the alternate route for failure recovery from the route candidates depending on the quality of each of the route candidates.

30. A recording medium storing a computer program for performing a load distribution operation in each of nodes included in a network, the computer program comprising the steps of:

 a) retrievably storing link state information of the network, wherein the link state database is used to

FQ5-535

37

dynamically calculate an alternate route for failure recovery when a failure notification is received;

b) retrievably storing a plurality of route candidates for each of possible endpoint nodes; and

5 c) determining a route for a normally set up connection, wherein a route having a relatively small load is selected from a plurality of route candidates with a relatively high probability.

31. The recording medium according to claim 30, wherein
10 the step (c) comprises the steps of:

 checking quality of each of the route candidates by referring to the link state information when receiving a connection setup request; and

15 selecting the route for a requested connection from the route candidates depending on the quality of each of the route candidates.

32. The recording medium according to claim 30, further comprising the step of:

20 d) determining an alternate route when a failure notification is received, wherein a route having a relatively small load is selected as the alternate route from a plurality of route candidates with a relatively high probability.

FQ5-535

38

33. The recording medium according to claim 32, wherein
the step (d) comprises the steps of:

checking quality of each of the route candidates by
referring to the link state information when receiving a
failure notification message; and

selecting the alternate route for failure recovery
from the route candidates depending on the quality of each of
the route candidates.