Catalogue

(1) **q-1**

marked out of 1.0 TRUE/FALSE

 $|5 - 3\sqrt{2}| > 1.$

- $\rightarrow Vrai$ • True
- False ✓ \rightarrow Faux

(2) **q-2**

marked out of 1.0 TRUE/FALSE $\sqrt{x^2} = |x|.$

- $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux
- (3) **q-3**

TRUE/FALSE marked out of 1.0

|x+3| < 2 est équivalent à 1 < x < 5.

- $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux
- (4) **q-4**

TRUE/FALSE marked out of 1.0

|x+1| < 2 est équivalent à -1 < x < 1.

- $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux
- (5) **q-5**

TRUE/FALSE marked out of 1.0

|x-2| < 3 est équivalent à -1 < x < 5.

- True ✓ $\rightarrow Vrai$
- False $\rightarrow Faux$
- (6) **q-6**

TRUE/FALSE marked out of 1.0

Si |x - 1| < 1, alors |x| < 2.

- $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux
- (7) **q-7**

TRUE/FALSE marked out of 1.0

Si |x| < 2, alors |x - 1| < 1.

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (8) **q-8**

TRUE/FALSE marked out of 1.0

Si $|x+3| \le 1$ et $|x+1| \le 1$, alors x = -2.

• True \checkmark $\rightarrow Vrai$ • False $\rightarrow \mathit{Faux}$

(18)	q-18	
	True/False marked out of 1.0	
	Si $ x-1 > 1$, alors $ 2x-1 > 1$.	
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(19)	q-19	
	TRUE/FAISE marked out of 1.0	
	Si $ x+1 > 1$, alors $ x+2 > 1$.	
	 True False √ 	$\rightarrow Vrai$ $\rightarrow Faux$
(20)	q-20	, 1000
(20)	TRUE/FALSE marked out of 1.0	
	La somme d'une fonction paire et d'une fonction impaire est impaire.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(21)	q-21	
	TRUE/FALSE marked out of 1.0	
	Le produit d'une fonction paire et d'une fonction impaire est impair.	
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(22)	q-22	
	TRUE/FALSE marked out of 1.0	
	Le produit de deux fonctions impaires est impair.	
	 True False √ 	$\rightarrow Vrai$ $\rightarrow Faux$
(99)		7 1 a a x
(23)	q-23 True/False marked out of 1.0	
	La somme de deux fonctions paires est paire.	
	• True √	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(24)	q-24	
	TRUE/FALSE marked out of 1.0	
	La somme de deux fonctions périodiques est périodique.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(25)	q-25	
	TRUE/FALSE marked out of 1.0	
	La somme de deux fonctions 2π -périodiques est 2π -périodique.	
	 True √ False 	$\rightarrow Vrai$ $\rightarrow Faux$
	• raise	→ raux

TrueFalse √

 $\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$

(26)	q-26	
	Une fonction dérivable est continue.	
	 • True √ • False 	
(27)	q-27 True/False marked out of 1.0 Il existe des fonctions à la fois croissantes et décroissantes.	
	 • True √ • False 	
(28)	q-28 True/False marked out of 1.0 Une fonction continue est dérivable.	
	 True False √ 	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(29)	q-29 True/False marked out of 1.0 Une fonction dérivable à dérivée positive est croissante.	
	 True False √ 	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(30)	q-30	
	• True √• False	
(31)	q-31 True/False marked out of 1.0 Une fonction croissante est à dérivée positive.	
	 • True • False √ 	$\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$
(32)	q-32 True/False marked out of 1.0 Une fonction croissante est continue.	
	 • True • False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(33)	q-33 True/False marked out of 1.0 Si f cet dérive ble plore f' cet continue	
	 Si f est dérivable, alors f' est continue. • True • False ✓ 	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(34)	q-34	

Une fonction $f:E\to F$ est injective ssi tout élément de F possède au moins un antécédent.

marked out of 1.0

	 True False ✓ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(35)	q-35	
	True/False marked out of 1.0	
	Une fonction $f: E \to F$ est injective ssi tout élément de F possède exactement un antécédent.	
	 True False ✓ 	$\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$
(36)	q-36	
	TRUE/FALSE marked out of 1.0	
	Une fonction $f:E\to F$ est injective ssi tout élément de F possède au plus un antécédent.	T7. •
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(37)	q-37	
	TRUE/FALSE marked out of 1.0	
	Une fonction $f: E \to F$ est surjective ssi $f(E) = F$.	T7. •
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(38)	q-38	
	TRUE/FALSE marked out of 1.0	
	Si une fonction $f: E \to F$ est bijective, elle est surjective.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(39)	q-39	
	True/False marked out of 1.0	
	Si une fonction $f: E \to F$ est injective, elle est bijective.	
	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(40)	q-40	→ Tuux
(40)	True/False marked out of 1.0	
	Une fonction $f: E \to F$ est surjective ssi pour tout $y \in F$, $f^{-1}(\{y\})$ est non vide.	
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(41)	q-41	
	Soit A, B deux parties de E. L'affirmation " $\forall x \in E, x \in A \Rightarrow x \in B$ " entraı̂ne $A \subset B$.	
	• True	$\rightarrow Vrai$
	• False	\rightarrow Faux
(42)	q-42	
	TRUE/FALSE marked out of 1.0 $ \forall A B C \in \mathcal{D}(E) A \cap (B \cup C) (A \cap B) \cup (A \cap C) $	
	$\forall A, B, C \in \mathcal{P}(E), \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$, 17 .
	 True √ False 	$\rightarrow Vrai$ $\rightarrow Faux$

(43) **q-43** TRUE/FALSE marked out of 1.0 $\forall A, B \in \mathcal{P}(E), \ (A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}.$ • True ✓ $\rightarrow Vrai$ \rightarrow Faux • False (44) **q-44** marked out of 1.0 TRUE/FALSE $\forall B \in \mathcal{P}(F), \ f^{-1}(B)^{\complement} = f^{-1}(B^{\complement}).$ • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (45) **q-45** TRUE/FALSE marked out of 1.0 $\forall A \in \mathcal{P}(E), \ f(A)^{\complement} = f(A^{\complement}).$ • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (46) **q-46** TRUE/FALSE marked out of 1.0 $\forall A, A' \in \mathcal{P}(E), \ f(A) \cap f(A') = f(A \cap A').$ $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (47) **q-47** marked out of 1.0 TRUE/FALSE Soit $f: E \to F$. Alors $\forall A \in \mathcal{P}(F), \exists X \subset f^{-1}(A), f(X) = A$. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (48) **q-48** TRUE/FALSE marked out of 1.0 $\forall B \in \mathcal{P}(F), \ f(f^{-1}(B)) \subset B.$ • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (49) **q-49** TRUE/FALSE marked out of 1.0 $\forall A, B \in \mathcal{P}(E), \ A \subset B \implies f(A) \subset f(B).$ $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (50) **q-50**

marked out of 1.0 TRUE/FALSE $\forall A, B \in \mathcal{P}(E), A \neq B \implies f(A) \neq f(B).$

 $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux

(51) **q-51**

marked out of 1.0 TRUE/FALSE

 $f: E \to F$ est surjective si, et seulement si, tout élément de F admet un antécédent par f.

• True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$ (52) **q-52** marked out of 1.0 $f: \mathbb{R} \to \mathbb{R}$ est surjective si, et seulement si, toute droite horizontale coupe la courbe représentative de f. • True ✓ • False \rightarrow Faux (53) **q-53** TRUE/FALSE marked out of 1.0 Si $f: E \to F$ est injective, alors $f: E \to f(E)$ est bijective. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (54) **q-54** TRUE/FALSE marked out of 1.0 $f: \left\{ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & 2n \end{array} \right. \text{ est surjective}.$ $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (55) **q-55** TRUE/FALSE marked out of 1.0 est injective. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (56) **q-56** TRUE/FALSE $f: \left\{ \begin{array}{ccc} 2\mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n/2 \end{array} \right. \text{ est surjective.}$ • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (57) **q-57** marked out of 1.0 Si $f: E \to F$ est surjective, alors $f^{-1}(f(A)) = A$ pour tout $A \in \mathcal{P}(E)$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (58) **q-58** TRUE/FALSE marked out of 1.0 Si $f: E \to F$ est injective, alors $f^{-1}(f(A)) = A$ pour tout $A \in \mathcal{P}(E)$. • True ✓ $\rightarrow Vrai$

(59) **q-59**

True/False marked out of 1.0

• False

Une application $f: E \to E$ est bijective si, et seulement si, elle est injective.

 \rightarrow Faux

(68) **q-68** TRUE/FALSE marked out of 1.0 L'image d'un sous-ev par une application linéaire est un sous-ev. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (69) **q-69** marked out of 1.0 TRUE/FALSE L'image réciproque d'un sous-ev par une application linéaire est un sous-ev. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (70) **q-70** marked out of 1.0 True/False La composée de deux applications linéaires est une application linéaire. • True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$ (71) **q-71** TRUE/FALSE marked out of 1.0 L'application identité d'un ev est un endomorphisme. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (72) **q-72** TRUE/FALSE marked out of 1.0 Une application constante entre espaces vectoriels est linéaire. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (73) **q-73** TRUE/FALSE marked out of 1.0 L'application nulle entre deux ev est linéaire. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (74) **q-74** marked out of 1.0 ${\rm True}/{\rm False}$ Une application linéaire est inversible ssi son déterminant est non nul. $\rightarrow Vrai$ • True • False √ \rightarrow Faux $(75) \mathbf{q-75}$ marked out of 1.0 Une application linéaire entre deux ev est inversible ssi elle admet une réciproque. • True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$

(76) **q-76**True/False marked out of 1.0

Si application linéaire entre deux ev est inversible, son inverse est une application linéaire.

	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(77)	q-77	
	TRUE/FALSE marked out of 1.0	
	Si deux applications entre deux ev sont réciproques l'une de l'autre, alors l'une est linéaire ssi également.	l'autre l'est
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(78)	q-78	
	TRUE/FALSE marked out of 1.0	
	Si $p \in \mathcal{L}(E)$ et si $p \circ p = p$, alors p est inversible.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(79)	q-79	
	TRUE/FALSE marked out of 1.0	
	Si $p \in \mathcal{L}(E)$ et si $p \circ p = p$, alors p n'est pas inversible.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(80)	q-80	
	TRUE/FALSE marked out of 1.0	
	Si $p \in \mathcal{L}(E)$ et si $E = Ker(p) \oplus Im(p)$, alors $p \circ p = p$.	
	• True	$\rightarrow Vrai$
(0.1)	• False ✓	\rightarrow Faux
(81)	q-81	
	TRUE/FALSE marked out of 1.0	
	Si $p \in \mathcal{L}(E)$ et si $p \circ p = p$, alors $E = Ker(p) \oplus Im(p)$.	
	• True False	$\rightarrow Vrai$
(00)	• False	\rightarrow Faux
(82)	q-82	
	TRUE/FAISE marked out of 1.0	
	Si $f: E \to F$ est linéaire, alors $dim(F) = rg(f) + dim(Ker(f))$.	
	 True False √ 	$\begin{array}{c} \rightarrow Vrai \\ \rightarrow Faux \end{array}$
(02)		7 1 a a.c.
(83)	q-83	
	TRUE/FALSE marked out of 1.0 Si $f \cdot F = V$ F set linearing at $dim(F) < \infty$ along $dim(F) = dim(Im(f)) + dim(V cm(f))$	
	Si $f: E \to F$ est linéaire et $dim(E) < \infty$, alors $dim(E) = dim(Im(f)) + dim(Ker(f))$.	
	True √False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(84)	q-84	
	TRUE/FALSE marked out of 1.0	
	Soient f et g deux applications linéaires de E dans F . On a $Im(f+g)=Im(f)+Im(g)$.	
	• True	$\rightarrow Vrai$
	• False √	\rightarrow Faux

(85)	q-85 True/False marked out of 1.0	
	Soient f et g deux applications linéaires de E dans F . On a $Ker(f+g)=Ker(f)+Ker(g)$. • True • False \checkmark	$\rightarrow Vrav$ $\rightarrow Faux$
(86)	q-86	
	 True √ False 	$\rightarrow Vrav$ $\rightarrow Faux$
(87)	q-87	
	 True False ✓ 	$ ightarrow Vraz \ ightarrow Faux$
(88)	q-88	
	 True √ False 	$\rightarrow Vras$ $\rightarrow Faux$
(89)	q-89	
	 True False √ 	$\rightarrow Vran$ $\rightarrow Faux$
(90)	q-90	
	 True √ False 	$\rightarrow Vras \rightarrow Faux$
(91)	q-91	automor-
	 • True • False √ 	$\rightarrow Vras$ $\rightarrow Faux$
(92)	g-92	

(92) **q-92**

TRUE/FALSE marked out of 1.0

1 est un nombre premier.

• True • False ✓ $\rightarrow Vrai$

(93) **q-93**

True/False marked out of 1.0

Tout nombre est divisible par 1.

	• False	\rightarrow Faux
(94)	q-94	
	True/False marked out of 1.0	
	Tout nombre est divisible par lui-même.	
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(95)	q-95	
	True/False marked out of 1.0	
	Il existe quatre nombres premiers inférieurs à 10.	
	 True √ False 	$\rightarrow Vrai \rightarrow Faux$
(0.0)		$\rightarrow raux$
(96)	q-96	
	TRUE/FALSE marked out of 1.0	
	Il existe quatre nombres premiers compris entre 10 et 20.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(07)	q-97	, 1 0 000
(91)	True/False marked out of 1.0	
	Il existe quatre nombres premiers compris entre 20 et 30.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(98)	q-98	
	TRUE/FALSE marked out of 1.0	
	Il existe trois nombres premiers compris entre 20 et 30.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(99)	q-99	
	TRUE/FALSE marked out of 1.0	
	12 et 8 ont une infinité de diviseurs communs.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(100)	q-100	
	TRUE/FALSE marked out of 1.0	
	16 et 18 ont une infinité de multiples communs.	
	 True √ False 	$\rightarrow Vrai$ $\rightarrow Faux$
(101)		$\rightarrow ruux$
(101)	q-101	
	12 possèdo six divisours	
	12 possède six diviseurs.	, T7 ·
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

 $\rightarrow \ \textit{Vrai}$

• True \checkmark

(102)	q-102	
	TRUE/FALSE marked out of 1.0	
	30 possède huit diviseurs.	
	 True √ False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(103)	q-103	
	TRUE/FALSE marked out of 1.0	
	26 possède deux diviseurs.	
	 True False √ 	$\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$
(104)	q-104	
	TRUE/FALSE [marked out of 1.0] 24 possède huit diviseurs.	
	 True √ False 	
(105)	q-105	
	TRUE/FALSE marked out of 1.0 12 possède quatre diviseurs.	
	TrueFalse √	$\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$
(106)	q-106	
	True/False marked out of 1.0 57 est premier.	
	 True False √ 	$\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$
(107)	q-107	
,	TRUE/FALSE marked out of 1.0 43 est premier.	
	 True √ False 	$\rightarrow Vrai \rightarrow Faux$
(108)	q-108	
(100)	TRUE/FALSE marked out of 1.0 51 est premier.	
	 True False √ 	$\rightarrow Vrai \\ \rightarrow Faux$
(109)	q-109	
(100)	TRUE/FALSE marked out of 1.0 9991 est premier.	
		, T ·
	 True False √ 	$\begin{array}{c} \rightarrow Vrai \\ \rightarrow Faux \end{array}$
(110)	q-110	
	TRUE/FALSE marked out of 1.0	

121 est premier.

	TrueFalse √	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(111)	q-111 True/False marked out of 1.0 132 est divisible par trois.	
	True √False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(112)	q-112 True/False marked out of 1.0 Le pgcd de 48 et 60 est 6.	
	TrueFalse √	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(113)	q-113 True/False marked out of 1.0 Le pgcd de 40 et 36 est 4.	
	True √False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(114)	q-114 True/False marked out of 1.0 30 possède trois facteurs premiers.	
	True √False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(115)	q-115 True/False marked out of 1.0 60 possède quatre facteurs premiers.	
	TrueFalse ✓	$\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$
(116)	q-116 True/False marked out of 1.0 $8 \times 7 = 56 \text{ et } 6 \times 9 = 54.$	
	 True √ False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(117)	q-117 TRUE/FALSE marked out of 1.0 $8 \times 7 = 56$ ou $6 \times 9 = 54$.	
	True √False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(118)	q-118 True/False marked out of 1.0 $7 \times 8 = 56 \text{ et } 9 \times 7 = 63.$	
	 True √ False 	

 $7 \times 7 = 49$ ou $5 \times 5 = 35$.

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (128) **q-128**

True/False marked out of 1.0

 $8 \times 8 = 64 \text{ et } 9 \times 6 = 48.$

- True $\rightarrow Vrai$ False \checkmark
- False ✓
- (129) **q-129**

True/False marked out of 1.0

 $6 \times 8 = 56 \text{ et } 9 \times 9 = 81.$

- True $\rightarrow Vrai$ False \checkmark $\rightarrow Faux$
- (130) **q-130**

True/False marked out of 1.0 $9 \times 6 = 73$ et $8 \times 3 = 24$.

- True $\rightarrow Vrai$ False \checkmark
- (131) **q-131**

TRUE/FALSE marked out of 1.0

 $8\times 5=40$ ou $6\times 7=42.$

- True \checkmark False $\rightarrow Vrai$ Faux
- (132) **q-132**

TRUE/FALSE marked out of 1.0

(1+i)(1+i) = 2i

- True \checkmark False $\rightarrow Vrai$
- (133) **q-133**

True/False marked out of 1.0

(1+i)(1-i) = -2

- True $\rightarrow Vrai$ False \checkmark
- (134) **q-134**

True/False marked out of 1.0

(1+i)(2+i) = -1+3i

- True $\rightarrow Vrai$ False \checkmark
- (135) **q-135**

TRUE/FALSE marked out of 1.0

(1+i)(1+2i) = -1+3i

• True \checkmark • False $\rightarrow Vrai$ • False

(136) **q-136**

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(137) **q-137**

- True
- False ✓

 $\rightarrow Vrai$

 \rightarrow Faux

(138) **q-138**

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(139) **q-139**

TRUE/FALSE marked out of 1.0
$$(1+i)(1+3i) = 2+4i$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(140) **q-140**

TRUE/FALSE marked out of 1.0
$$(1-i)(1-i) = -2i$$

- True ✓
- False

- $\rightarrow \ Vrai$
- \rightarrow Faux

(141) **q-141**

TRUE/FALSE marked out of 1.0
$$(1-i)(2+i) = -3-i$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(142) **q-142**

TRUE/FALSE marked out of 1.0
$$(1-i)(1+2i) = -3+i$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(143) **q-143**

TRUE/FALSE marked out of 1.0
$$(1-i)(1-2i) = 1-3i$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(144) **q-144**

TRUE/FALSE marked out of 1.0
$$(1-i)(3+i) = -4-2i$$

- True
- $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (145) **q-145**

TRUE/FALSE marked out of 1.0 (1-i)(3-2i) = 1-5i

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux

(146) **q-146** TRUE/FALSE marked out of 1.0

(1-i)(1+3i) = -4+2i

- $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux
- (147) **q-147**

TRUE/FALSE marked out of 1.0 (2+i)(2+i) = -3+4i

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (148) **q-148**

TRUE/FALSE marked out of 1.0 (2+i)(1+2i) = -5i

- True $\rightarrow \textit{Vrai}$ • False ✓ \rightarrow Faux
- (149) **q-149**

True/False marked out of 1.0 (2+i)(1-2i) = -4-3i

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (150) **q-150**

True/False marked out of 1.0 (2+i)(3+i) = -5+5i

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (151) **q-151**

TRUE/FALSE marked out of 1.0 (2+i)(3-2i) = 8-i

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (152) **q-152**

True/False marked out of 1.0 (2+i)(1+3i) = -1 - 7i

• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

(153) **q-153**

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(154) **q-154**

- True ✓
- False

 $\rightarrow Vrai \rightarrow Faux$

(155) **q-155**

TRUE/FALSE marked out of 1.0
$$(1+2i)(3+i) = 1-7i$$

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(156) **q-156**

TRUE/FALSE marked out of 1.0
$$(1+2i)(3-2i)=7+4i$$

- True ✓
- False

 $\begin{array}{c} \rightarrow & \mathit{Vrai} \\ \rightarrow & \mathit{Faux} \end{array}$

(157) **q-157**

TRUE/FALSE marked out of 1.0
$$(1+2i)(1+3i) = -5+5i$$

- True \checkmark
- False

- $\rightarrow \ Vrai$
- \rightarrow Faux

(158) **q-158**

TRUE/FALSE marked out of 1.0
$$(1-2i)(1-2i) = -3+4i$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(159) **q-159**

TRUE/FALSE marked out of 1.0
$$(1-2i)(3+i) = 5-5i$$

- True ✓
- False

 $\rightarrow Vrai \rightarrow Faux$

(160) **q-160**

TRUE/FALSE marked out of 1.0
$$(1-2i)(3-2i) = -1-8i$$

- True ✓
- False

 $\begin{array}{c} \rightarrow & \mathit{Vrai} \\ \rightarrow & \mathit{Faux} \end{array}$

(161) **q-161**

TRUE/FALSE marked out of 1.0
$$(1-2i)(1+3i) = -7+i$$

- True Vrai
- False \checkmark \rightarrow Faux
- (162) **q-162**

TRUE/FALSE marked out of 1.0 (3+i)(3+i) = 8-6i

- True $\rightarrow Vrai$
- False \checkmark \rightarrow Faux
- (163) **q-163**

TRUE/FALSE marked out of 1.0 (3+i)(3-2i)=11-3i

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (164) **q-164**

True/False marked out of 1.0 (3+i)(1+3i)=10i

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (165) **q-165**

TRUE/FALSE marked out of 1.0 (3-2i)(3-2i) = 5+12i

- True $\rightarrow Vrai$ False \checkmark
- (166) **q-166**

True/False marked out of 1.0 (3-2i)(1+3i) = -9+7i

- True • False \checkmark $\rightarrow Vrai$ • Faux
- (167) **q-167**

TRUE/FALSE marked out of 1.0 (1+3i)(1+3i) = -8+6i

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (168) **q-168**

TRUE/FALSE marked out of 1.0

Un argument de $-\sqrt{3} + 3i$ est $2\pi/3$.

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (169) **q-169**

TRUE/FALSE marked out of 1.0

Un argument de $3 - i\sqrt{3}$ est $-\pi/6$.

• True \checkmark • False \rightarrow Vrai \rightarrow Faux

(178) **q-178**True/False marked out of 1.0

Un argument de $\frac{1}{2} + i \frac{\sqrt{3}}{2}$ est $7\pi/3$.

- True \checkmark False $\rightarrow Vrai$
- (179) **q-179**

TRUE/FALSE marked out of 1.0

Un argument de $-\frac{1}{2} + i\frac{\sqrt{3}}{2}$ est $-4\pi/3$.

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (180) **q-180**

TRUE/FALSE marked out of 1.0

Un argument de $-\frac{\sqrt{3}}{2} + \frac{i}{2}$ est $7\pi/6$.

- True • False ✓ $\rightarrow Vrai$
- (181) **q-181**

TRUE/FALSE marked out of 1.0

Un argument de $-\frac{1}{2} - i\frac{\sqrt{3}}{2}$ est $2\pi/3$.

- True $\rightarrow Vrai$ False \checkmark
- (182) **q-182**

TRUE/FALSE marked out of 1.0

Un argument de 1-i est $7\pi/4$.

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (183) **q-183**

TRUE/FALSE marked out of 1.0

Un argument de -1 + i est $-5\pi/4$.

- True \checkmark False $\rightarrow Vrai$ Faux
- (184) **q-184**

TRUE/FALSE marked out of 1.0

Un argument de 1 + i est $5\pi/4$.

- True $\rightarrow Vrai$ False \checkmark
- (185) **q-185**

TRUE/FALSE marked out of 1.0

Un argument de 2i est $10\pi/4$.

- True \checkmark False $\rightarrow Vrai$
- (186) **q-186**

TRUE/FALSE marked out of 1.0

Un argument de -3i est $9\pi/2$.

 \rightarrow Faux

 \rightarrow Faux

(188) **q-188**

• False

• True \checkmark $\rightarrow Vrai$ • False \rightarrow Faux

(189) **q-189**

(190) **q-190** TRUE/FALSE marked out of 1.0

$$Re(z+w) = Re(z) + Re(w).$$

TRUE/FALSE marked out of 1.0

TRUE/FALSE marked out of 1.0

marked out of 1.0

marked out of 1.0

• True \checkmark $\rightarrow Vrai$ • False $\rightarrow \mathit{Faux}$

(191) **q-191**

$$Re(zw) = Re(z)Re(w).$$
• True

• False ✓ \rightarrow Faux

(192) **q-192**

$$Im(zw) = Im(z)Im(w).$$

• True

• False \checkmark
 $\rightarrow Vrai$

(193) **q-193**

(194) **q-194**

TRUE/FALSE

• False \checkmark

$$Im(z) = rac{z-\overline{z}}{2}.$$
• True o Vrai

- True ✓ $\rightarrow Vrai$
- False \rightarrow Faux

(204) **q-204**

marked out of 1.0 $|z+w| = |z| + |w| \iff z\overline{w} \in \mathbb{R}_+.$

- True ✓ $\rightarrow Vrai$
- False \rightarrow Faux

(205) **q-205**

TRUE/FALSE marked out of 1.0 $|z+w| = |z| + |w| \iff (w = 0 \text{ ou } \exists \lambda \in \mathbb{R}_+, z = \lambda w).$

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (206) **q-206**

TRUE/FALSE marked out of 1.0 $|z+w|^2 = |z|^2 + 2Re(z\overline{w}) + |w|^2.$

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (207) **q-207**

TRUE/FALSE marked out of 1.0 $|z+w|^2 = |z|^2 + 2|zw| + |w|^2.$

- True $\rightarrow \textit{Vrai}$ • False ✓ \rightarrow Faux
- (208) **q-208**

TRUE/FALSE marked out of 1.0 $|z + w|^2 = |z|^2 + 2|z\overline{w}| + |w|^2.$

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (209) **q-209**

TRUE/FALSE marked out of 1.0 $|z+w|^2 = |z|^2 + 2Re(zw) + |w|^2.$

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (210) **q-210**

TRUE/FALSE marked out of 1.0

L'équation $2z = \overline{z}$ a une unique solution.

- True ✓ $\rightarrow \ \ Vrai$ • False \rightarrow Faux
- (211) **q-211**

TRUE/FALSE marked out of 1.0

Les points d'affixe -3-2i, -1-i et 3+i sont alignés.

• True ✓ $\rightarrow Vrai$ False \rightarrow Faux

(212) **q-212** TRUE/FALSE marked out of 1.0 Le triangle dont les sommets ont pour affixes i, 3 et 4 + 3i est isocèle. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (213) **q-213** TRUE/FALSE marked out of 1.0 Les solutions complexes de l'équation |z-1|=3 forment un cercle • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (214) **q-214** True/False marked out of 1.0 Les solutions complexes de l'équation |z-1|=|z| forment une droite • True ✓ $\rightarrow \ \ Vrai$ • False \rightarrow Faux (215) **q-215** marked out of 1.0 Les solutions complexes de l'équation |z-1|=|2z| forment un cercle • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (216) **q-216** marked out of 1.0 TRUE/FALSE Les solutions complexes de l'équation |z-1| = Re(z) + 1 forment une parabole • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (217) **q-217** marked out of 1.0 Les solutions complexes de l'équation |z-1|=Im(z)+1 forment une parabole • True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$ (218) **q-218** marked out of 1.0 TRUE/FALSE L'ensemble des solutions de l'équation $z=-\overline{z}$ est une droite. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (219) **q-219** TRUE/FALSE marked out of 1.0 Les solutions complexes de l'équation |z-1| = Re(z) forment une parabole

TRUE/FALSE marked out of 1.0

Si $\frac{c-a}{b-a} \in \mathbb{R}$, alors A, B et C sont alignés

• True ✓

• False

(220) **q-220**

 $\rightarrow Vrai$

 $\rightarrow Faux$

	• False	\rightarrow Faux
(221)	q-221	
	True/False marked out of 1.0	
	Si $\frac{c-a}{b-a} \in i\mathbb{R}$, alors ABC est rectangle en A	
	• True ✓	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(222)	q-222	
	True/False marked out of 1.0	
	Si $\frac{c-a}{b-a} = i$, alors ABC est un triangle indirect	
	 True False √ 	ightarrow Vrai
(000)		$\rightarrow Faux$
(223)	q-223	
	True/False marked out of 1.0 C: C-a is along ADC act is able	
	Si $\frac{c-a}{b-a} = i$, alors ABC est isocèle	** .
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(224)	q-224	
()	True/False marked out of 1.0	
	Si ABC est isocèle, $\left \frac{c-a}{b-a} \right = 1$.	
		T7
	 True False √ 	$\begin{array}{c} \rightarrow Vrai \\ \rightarrow Faux \end{array}$
(225)	q-225	
(-)	True/False marked out of 1.0	
	Si ABC est isocèle en A , alors $\frac{c-a}{b-a} = i$,	
	• True	$\rightarrow Vrai$
	• False ✓	$\rightarrow Faux$
(226)	q-226	
	True/False marked out of 1.0	
	Si $a+c=b+d$, alors $ABCD$ est un parallélogramme	
	• True ✓	$\rightarrow Vrai$
(<u>)</u>	• False	$\rightarrow Faux$
(227)	q-227	
	TRUE/FALSE marked out of 1.0 marked out of	
	a+c=b+d si et seulement si $ABCD$ est un parallélogramme	. 17
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(228)	q-228	
. /	True/False marked out of 1.0	
	Si $ABCD$ est un carré, alors $\frac{d-b}{c-a} = i$.	
	• True	$\rightarrow Vrai$
	• False ✓	$\rightarrow Faux$

 $\rightarrow \ \textit{Vrai}$

• True ✓

(229) **q-229** True/False marked out of 1.0 Si ABCD est un carré direct, alors $\frac{d-b}{c-a} = i$. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (230) **q-230** TRUE/FALSE marked out of 1.0 Si ABCD est un carré, alors $\frac{d-b}{c-a} \in \{i, -i\}$. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (231) **q-231** TRUE/FALSE marked out of 1.0 Si $\frac{d-b}{c-a}=i$, alors ABCD est un carré $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (232) **q-232** True/False marked out of 1.0 Si ABCD est un losange, alors $\frac{d-b}{c-a}$ est imaginaire pur. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (233) **q-233** TRUE/FALSE marked out of 1.0 Si ABCD est un losange, alors $\left| \frac{d-b}{c-a} \right| = 1$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (234) **q-234** TRUE/FALSE marked out of 1.0 Si $\frac{d-b}{c-a}$ est imaginaire pur, alors ABCD est un losange. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (235) **q-235** TRUE/FALSE marked out of 1.0

Si ABCD est un rectangle, alors $\left| \frac{d-b}{c-a} \right| = 1$.

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (236) **q-236**

TRUE/FALSE marked out of 1.0

Si ABCD est un rectangle, alors a - b = c - d.

• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

True/False marked out of 1.0 Si $\frac{c-a}{b-a} = 1 + i$, alors ABC est rectangle. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (238) **q-238** TRUE/FALSE marked out of 1.0 Si $\frac{c-a}{b-a} = 1 + i$, alors ABC est isocèle. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (239) **q-239** TRUE/FALSE marked out of 1.0 La dérivée de $x \mapsto -1/x$ est $x \mapsto 1/x^2$. • True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$ (240) **q-240** marked out of 1.0 La dérivée de $x \mapsto 1/x^2$ est $x \mapsto -2/x^3$. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (241) **q-241** TRUE/FALSE marked out of 1.0 $x \mapsto -3/x^4$ est la dérivée de $x \mapsto 1/x^3$. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (242) **q-242** TRUE/FALSE marked out of 1.0 $x\mapsto 2/x^3$ est la dérivée seconde de $x\mapsto 1/x$. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (243) **q-243** TRUE/FALSE marked out of 1.0 La dérivée seconde de $x \mapsto 1/x$ est $x \mapsto 3/x^3$. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (244) **q-244** TRUE/FALSE marked out of 1.0 La dérivée de $x \mapsto x\sqrt{x}$ est $x \mapsto \frac{1}{2\sqrt{x}}$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (245) **q-245** TRUE/FALSE marked out of 1.0 La dérivée de $x \mapsto \cos(x)$ est $x \mapsto -\sin(x)$.

(237) **q-237**

• True ✓ $\rightarrow Vrai$

• False

 \rightarrow Faux

 \rightarrow Faux

(246) **q-246**

TRUE/FALSE marked out of 1.0

 $x \mapsto \sin(x)$ est la dérivée de $x \mapsto \cos(x)$.

 $\rightarrow Vrai$ • True

• False ✓ \rightarrow Faux

(247) **q-247**

TRUE/FALSE marked out of 1.0

marked out of 1.0

La dérivée seconde de $x \mapsto \sin(x)$ est $x \mapsto -\sin(x)$.

 $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux

(248) **q-248**

TRUE/FALSE marked out of 1.0 $(f \times g)' = f' \times g + f \times g'.$

• True ✓ $\rightarrow Vrai$ • False \rightarrow Faux

(249) **q-249**

 $(f \times g)' = f' \times g - f \times g'.$

• True $\rightarrow \textit{Vrai}$ • False ✓ \rightarrow Faux

(250) **q-250**

 $(f/g)' = \frac{f' \times g - f \times g'}{g^2}.$

• True ✓ $\rightarrow Vrai$ • False \rightarrow Faux

(251) **q-251**

 $(f/g)' = \frac{g \times f' - g' \times f}{g^2}.$ • True ✓ $\rightarrow Vrai$

• False \rightarrow Faux

(252) **q-252**

TRUE/FALSE

• False ✓

 $(f/g)' = \frac{f' \times g + f \times g'}{g^2}.$ • True $\rightarrow Vrai$

(253) **q-253**

TRUE/FALSE marked out of 1.0 $(f/g)' = \frac{f \times g' - f' \times g}{g^2}.$

• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

(·) 1

TRUE/FALSE marked out of 1.0

Si $n \in \mathbb{Z}$, la dérivée de $x \mapsto x^n$ est $x \mapsto nx^{n-1}$.

- True
 False ✓

 Faux
- (262) **q-262**

True/False marked out of 1.0

Si $n \in \mathbb{Z}$, la dérivée de $x \mapsto x^n$ est $x \mapsto nx^{n+1}$.

	• True• False √	$\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$
(263)	q-263 True/False marked out of 1.0	
	Si $n \in \mathbb{N}^*$, la dérivée de $x \mapsto x^n$ est $x \mapsto nx^{n-1}$.	
	 True √ False	$\begin{array}{ccc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(264)	q-264 True/False marked out of 1.0	
	$(\sqrt{f})' = \frac{f'}{2\sqrt{f}}.$	
	 True √ False 	$\begin{array}{ccc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(265)	q-265	
	Si $n \in \mathbb{N}$, la dérivée de f^n est $f'f^{n-1}$.	
	 True False ✓ 	$\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$
(266)	q-266	
	True/False marked out of 1.0 La dérivée de $x \mapsto x \ln(x) - x$ est $x \mapsto \ln(x)$.	
	• True √	$ ightarrow \mathit{Vrai}$
	• False	$\rightarrow Faux$
(267)	q-267 True/False marked out of 1.0	
	Une primitive de $x \mapsto 1/x$ est $x \mapsto \ln x $.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(268)	q-268	
	TRUE/FALSE marked out of 1.0	
	$x \mapsto -1/x^2$ est une primitive de $x \mapsto 2/x^3$.	
	 True √ False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(269)	q-269	
	True/False marked out of 1.0	
	Une primitive de $x \mapsto -1/x^3$ est $x \mapsto 1/2x^2$.	
	 True √ False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(270) **q-270**

Une primitive de $x \mapsto 1/x^3$ est $x \mapsto -2/x^2$.

• True • False \checkmark → Faux (271) **q-271** TRUE/FALSE marked out of 1.0 $x \mapsto 2/x^2$ est une primitive de $x \mapsto 1/x^3$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (272) **q-272** TRUE/FALSE marked out of 1.0 La dérivée seconde de $x \mapsto \ln(x)$ est $x \mapsto -1/x^2$. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (273) **q-273** TRUE/FALSE marked out of 1.0 $x \mapsto \sin(x)$ est une primitive de $x \mapsto \cos(x)$. • True ✓ $\rightarrow \ \ Vrai$ • False \rightarrow Faux (274) q-274 TRUE/FALSE marked out of 1.0 Une primitive de $x \mapsto \sin(x)$ est $x \mapsto -\cos(x)$. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (275) **q-275** TRUE/FALSE marked out of 1.0 Une primitive de $x \mapsto \cos(x)$ est $x \mapsto -\sin(x)$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (276) **q-276** TRUE/FALSE marked out of 1.0 $(g \circ f)' = (g' \circ f) \times f'.$ • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (277) **q-277** TRUE/FALSE marked out of 1.0 Si $f: \mathbb{R} \to \mathbb{R}_+^*$ est dérivable, \sqrt{f} est dérivable. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux

(278) **q-278**

TRUE/FALSE marked out of 1.0

Si $f: \mathbb{R} \to \mathbb{R}_+$ est dérivable, \sqrt{f} est dérivable.

• True • False \checkmark → Faux

(279) **q-279**

TRUE/FALSE marked out of 1.0

Si $f: \mathbb{R} \to \mathbb{R}_+^*$ est dérivable, la dérivée de $\ln f$ est $\frac{f'}{f}$.

• True ✓

• False

 $\begin{array}{ccc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(280) **q-280**

TRUE/FALSE marked out of 1.0

Si $f: \mathbb{R} \to \mathbb{R}^*$ est dérivable, une primitive de $\frac{f'}{f}$ est $\ln |f|$.

• True ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

• False

TRUE/FALSE marked out of 1.0

Si $f: \mathbb{R} \to \mathbb{R}^*$ est dérivable, une primitive de $\frac{f'}{f}$ est $\ln f$.

• True

• False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(282) **q-282**

(281) **q-281**

TRUE/FALSE marked out of 1.0

Si $f: \mathbb{R} \to \mathbb{R}_+^*$ est dérivable, une primitive de $\frac{f'}{f}$ est $\ln f$.

• True 🗸

• False

 $\begin{array}{c} \rightarrow & \mathit{Vrai} \\ \rightarrow & \mathit{Faux} \end{array}$

(283) **q-283**

True/False marked out of 1.0

Le domaine de définition de l'expression $\frac{x-1}{x+1}$ est $\mathbb{R} \setminus \{-1\}$.

• True ✓

 $\rightarrow Vrai$

• False

 \rightarrow Faux

(284) **q-284**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{x-1}{x+1}$ est $\mathbb{R} \setminus \{0\}$.

• True

 $\rightarrow Vrai$

• False √

 \rightarrow Faux

(285) **q-285**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{x}{x^2+1}$ est $\mathbb{R}\setminus\{0\}$.

• True

 $\rightarrow Vrai$

• False ✓

 \rightarrow Faux

(286) **q-286**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{2x-1}{(x+1)(x-2)}$ est $\mathbb{R} \setminus \{-1,2\}$.

• True ✓

 $\rightarrow Vrai$

• False

 $\rightarrow Faux$

(287) **q-287**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{2x-1}{(x+1)(x-2)}$ est $\mathbb{R}\setminus\{-2,1\}$.

• True

 $\rightarrow Vrai$ $\rightarrow Faux$

 \rightarrow Faux

• False √

(288) **q-288**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{3+x}{(x+1)(x-2)}$ est $\mathbb{R} \setminus [-1,2]$.

ullet True o Vrai

• False ✓ → Faux

(289) **q-289**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{3x^2+x+1}{x+2}$ est $]-\infty,-2[\cup]-2,+\infty[$.

• True \checkmark

• False $\rightarrow Faux$

(290) **q-290**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{x+2}{x^2+2x+1}$ est $]-\infty,-1[\cup]-1,+\infty[.$

• True \checkmark • False \rightarrow Vrai \rightarrow Faux

(291) **q-291**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{x+2}{x^2+2}$ est \mathbb{R} .

• True \checkmark

• False

(292) **q-292**

• True $\rightarrow Vrai$

• False \checkmark \rightarrow Faux

(293) **q-293**

Le domaine de définition de l'expression $\frac{2x-1}{x^2-6x+9}$ est $]-\infty,3[\cup]3,+\infty[$.

 $x^2 - 6x + 9$

• True √
 • False
 → Faux

(294) **q-294**

True/False marked out of 1.0

Le domaine de définition de l'expression $\frac{x^2+3}{x^2-1}$ est $\mathbb{R}\setminus\{-1,1\}$.

• True \checkmark

• False \rightarrow Faux

(295) **q-295**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{x^2-1}{x^2-4}$ est $\mathbb{R}\setminus\{-2,2\}$.

- True \checkmark
- False \rightarrow Faux

(296) **q-296**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{x^2-1}{x^2-4}$ est $]-\infty,-2[\cup]2,+\infty[$.

True
 False ✓

Faux

(297) **q-297**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{1}{x^2-3x}$ est $\mathbb{R}\setminus\{0,3\}$.

- True \checkmark False $\rightarrow Vrai$
- (298) **q-298**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{x-2}{x^2-x}$ est $]-\infty,0[\cup]1,+\infty[.$

- True
 False ✓

 Faux
- (299) **q-299**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{x-2}{x^2+2x}$ est $\mathbb{R} \setminus \{0,2\}$.

- True
 False ✓
- (300) **q-300**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{1}{3x^2 + 5x}$ est $\mathbb{R} \setminus \{-5/3, 0\}$.

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (301) **q-301**

True/False marked out of 1.0

Le domaine de définition de l'expression $\frac{2+x}{2x^2+3x}$ est $\mathbb{R}\setminus\{0,3/2\}.$

- True $\rightarrow Vrai$ False \checkmark $\rightarrow Faux$
- (302) **q-302**

True/False marked out of 1.0

Le domaine de définition de l'expression $\frac{2+x}{2x^2+3x}$ est $\mathbb{R}\setminus\{0,-2/3\}$.

	TrueFalse √	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(303)	q-303	
	TRUE/FAISE marked out of 1.0	
	Le domaine de définition de l'expression $\frac{x-1}{x+1}$ est $\mathbb{R} \setminus \{1\}$.	
	 True False √ 	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(304)	q-304	
	True/False marked out of 1.0	
	Le domaine de définition de l'expression \sqrt{x} est $[0, +\infty[$.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(305)	q-305	
	TRUE/FAISE marked out of 1.0	
	Le domaine de définition de l'expression $\sqrt{x+2}$ est $[0,+\infty[$.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(306)	q-306	
	TRUE/FALSE marked out of 1.0	
	Le domaine de définition de l'expression $\sqrt{x+2}$ est $[2, +\infty[$.	
	 True False √ 	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(307)	q-307	
	TRUE/FAISE marked out of 1.0	
	Le domaine de définition de l'expression $\sqrt{2x-6}$ est $[6,+\infty[$.	
	 True False ✓ 	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(308)	q-308	
	TRUE/FALSE marked out of 1.0	
	Le domaine de définition de l'expression $\sqrt{x+3}$ est $]3,+\infty[$.	
	 True False √ 	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(309)	q-309	
` /	TRUE/FALSE marked out of 1.0	
	Le domaine de définition de l'expression $\sqrt{x-1}$ est $]-1,+\infty[$.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(310)	q-310	

True
 False √

Le domaine de définition de l'expression $\sqrt{x-4}$ est $]-\infty,4].$

marked out of 1.0

 $\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$

(311) **q-311**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\sqrt{x-5}$ est $[5, +\infty[$.

• True \checkmark

• False \rightarrow Faux

(312) **q-312**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\sqrt{3-x}$ est $]-\infty,3]$.

• True \checkmark

• False \rightarrow Faux

(313) **q-313**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\sqrt{1-x}$ est $]-\infty,-1]$.

• True $\rightarrow Vrai$

• False ✓ → Faux

(314) **q-314**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{\sqrt{x-1}}{\sqrt{x+1}}$ est le même que celui de l'expression $\sqrt{\frac{x-1}{x+1}}$.

• True $\rightarrow Vrai$ • False \checkmark

(315) **q-315**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\sqrt{x-1}\sqrt{x+1}$ est le même que celui de l'expression $\sqrt{(x-1)(x+1)}$.

• True $\rightarrow Vrai$

• False \checkmark \rightarrow Faux

(316) **q-316**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{1}{\sqrt{x-2}}$ est $[2,+\infty[$.

• True $\rightarrow Vrai$ • False \checkmark

(317) **q-317**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{1}{\sqrt{2x-6}}$ est $]3,+\infty[$.

• True \checkmark • False $\rightarrow Vrai$ $\rightarrow Faux$

(318) **q-318**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\sqrt{\sqrt{x-2}-1}$ est $[3,+\infty[$.

• True \checkmark \rightarrow Vrai

• False \rightarrow Faux

(319) **q-319**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\sqrt{\sqrt{x-1}-2}$ est $[3,+\infty[$.

- ullet True o Vrai
- False ✓ → Faux

(320) **q-320**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\sqrt{\sqrt{x-2}-2}$ est $[6,+\infty[$.

- True \checkmark
- False \rightarrow Faux

(321) **q-321**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\sqrt{x^2-2}$ est [-2,2].

- True $\rightarrow Vrai$
- False ✓ → Faux

(322) **q-322**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\sqrt{x^2-2}$ est $]-\infty,-2] \cup [2,+\infty[$.

- ullet True o Vrai
- False \checkmark \rightarrow Faux

(323) **q-323**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\sqrt{x^2-1}$ est $]-\infty,-1]\cup[1,+\infty[$.

- True \checkmark \rightarrow Vrai
- False \rightarrow Faux

(324) **q-324**

TRUE/FALSE marked out of 1.0

Les expressions $\ln(x^2)$ et $2\ln(x)$ ont le même domaine de définition.

- True $\rightarrow Vrai$
- False \checkmark \rightarrow Faux

(325) **q-325**

TRUE/FALSE marked out of 1.0

Les expressions $\ln(x^2-1)$ et $\ln(x+1) + \ln(x-1)$ ont le même domaine de définition.

- True
 False √

 Faux
- (326) **q-326**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\ln(x-1)$ est $[1, +\infty[$.

- True
 False √

 Faux
- (327) **q-327**

True/False marked out of 1.0

Le domaine de définition de l'expression $\ln(x-5)$ est $]5, +\infty[$.

• False \rightarrow Faux (328) **q-328** TRUE/FALSE marked out of 1.0 Le domaine de définition de l'expression $\ln(x-2)$ est $]-2,+\infty[$. $\rightarrow Vrai$ • False ✓ \rightarrow Faux (329) **q-329** marked out of 1.0 TRUE/FALSE Le domaine de définition de l'expression $\ln(2-x)$ est $[2, +\infty[$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (330) **q-330** TRUE/FALSE marked out of 1.0 Le domaine de définition de l'expression $\ln(3-x)$ est $]-\infty,3[$. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (331) **q-331** TRUE/FALSE marked out of 1.0 Le domaine de définition de l'expression $\ln(2x+1)$ est $]-1,+\infty[$. $\rightarrow \textit{Vrai}$ • True • False ✓ \rightarrow Faux (332) **q-332** marked out of 1.0 TRUE/FALSE Le domaine de définition de l'expression ln(2x+2) est $]-1,+\infty[$. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (333) **q-333** marked out of 1.0 Le domaine de définition de l'expression ln(2x+2) est $]-2,+\infty[$. • True $\rightarrow \textit{Vrai}$ • False ✓ \rightarrow Faux (334) **q-334** True/False marked out of 1.0 Le domaine de définition de l'expression $\ln(1+x+x^2)$ est \mathbb{R} . $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (335) **q-335** TRUE/FALSE marked out of 1.0 Le domaine de définition de l'expression $\ln(x^2 + 3x + 2)$ est \mathbb{R} . • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

 $\rightarrow Vrai$

• True ✓

(336) **q-336**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\ln(x^2 - 1)$ est $] - \infty, -1[\cup]1, +\infty[$.

• True ✓

 $\rightarrow Vrai$

• False

 $\rightarrow Faux$

(337) **q-337**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\ln(x^2 - 1)$ est $] - \infty, 1[\cup]1, +\infty[$.

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(338) **q-338**

True/False marked out of 1.0

Le domaine de définition de l'expression $\ln(x^2-2)$ est $]-\infty, -2[\cup]2, +\infty[$.

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(339) **q-339**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\ln(2-x^2)$ est $]-\sqrt{2},\sqrt{2}[$.

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(340) **q-340**

True/False marked out of 1.0

Le domaine de définition de l'expression $\ln(x^2 - 4)$ est $]2, +\infty[$.

• True

 $\rightarrow Vrai$

• False ✓

 \rightarrow Faux

(341) **q-341**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{x-3}{\ln(x+1)}$ est $]-1,+\infty[$.

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(342) **q-342**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{x+5}{\ln(x-2)}$ est $]2,+\infty[.$

- TrueFalse √

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(343) **q-343**

TRUE/FALSE marked out of 1.0

Le domaine de définition de l'expression $\frac{2x}{\ln(x-1)}$ est $]1,2[\cup]2,+\infty[.$

• True ✓

 $\rightarrow Vrai$

• False

 $\rightarrow Faux$

(344) **q-344**

TRUE/FALSE marked out of 1.0

b>Énoncé</br/>b> : déterminer le domaine de définition de $\sqrt{\frac{x-2}{x-3}}$.

b>>
b>> Solution rédigée à évaluer :</br/>

i</br/>

sit $x \in \mathbb{R}$. L'expression $\frac{x-2}{x-3}$ est bien définie ssi $x \neq 3$.

sit c'est le cas, l'expression $\sqrt{\frac{x-2}{x-3}}$ est bien définie ssi $\frac{x-2}{x-3}$ est positive, autrement dit ssi $x-2 \geq x-3$ autrement dit jamais. L'expression $\sqrt{\frac{x-2}{x-3}}$ n'est donc jamais bien définie.»

ullet True o Vrai

False \checkmark \rightarrow Faux

(345) **q-345**

TRUE/FALSE marked out of 1.0

• True √
 • False
 → Faux

(346) **q-346**

TRUE/FALSE marked out of 1.0

b>Énoncé</br/>b> : déterminer le domaine de définition de $\sqrt{\frac{x-3}{x-2}}$.

b>>cb> Solution rédigée à évaluer :</br/>

 « Soit $x \in \mathbb{R}$. L'expression $\frac{x-3}{x-2}$ est bien définie ssi $x \neq 2$.
 Si c'est le cas, l'expression $\sqrt{\frac{x-3}{x-2}}$ est bien définie ssi $\frac{x-3}{x-2} > 0$, autrement dit ssi x > 3 ou x < 2. Le domaine de définition de $\sqrt{\frac{x-3}{x-2}}$ est donc] $-\infty$, $2[\cup]3$, $+\infty[.»$

• True
 • False √

(347) **q-347**

TRUE/FALSE marked out of 1.0

b>Énoncé</br/>/b> : déterminer le domaine de définition de $\sqrt{\frac{x}{x+2}}$.

b>
>
solution rédigée à évaluer :</br/>/b>
 « Soit $x \in \mathbb{R}$. L'expression $\frac{x}{x+2}$ est bien définie si et seulement si $x \neq -2$.
 Si c'est le cas, l'expression $\sqrt{\frac{x}{x+2}}$ est bien définie ssi $\frac{x}{x+2} \geq 0$, autrement dit ssi $x \geq 0$ ou x < -2. Le domaine de définition de $\sqrt{\frac{x}{x+2}}$ est donc] $-\infty$, $-2[\cup[0,+\infty[.»]]$

• True \checkmark • False $\rightarrow Vrai$

(348) **q-348**

TRUE/FALSE marked out of 1.0

• True $\rightarrow Vrai$ • False \checkmark

(349) **q-349**

True/False marked out of 1.0

b>Énoncé</br/>/b> : déterminer le domaine de définition de $\sqrt{\frac{x}{x+2}}$.

b>>
b>> Solution rédigée à évaluer :</br/>

ic/b>
solution rédigée à évaluer :</br/>

ic'est le cas, l'expression $\sqrt{\frac{x}{x+2}}$ est bien définie si et seulement si $x \neq -2$.

cas, l'expression $\sqrt{\frac{x}{x+2}}$ est bien définie ssi $\frac{x}{x+2} \geq 0$, autrement dit ssi $x \geq 0$ ou $x \geq -2$. Le domaine de définition de $\sqrt{\frac{x}{x+2}}$ est donc] -2, $+\infty$ [.»

• True $\rightarrow Vrai$ • False \checkmark

(350) **q-350**

True/False marked out of 1.0

b>Énoncé : déterminer le domaine de définition de $\sqrt{x-3}^2$.

b>Solution rédigée à évaluer :</br/>b>
 « Soit $x \in \mathbb{R}$. On a $\sqrt{x-3}^2 = \sqrt{(x-3)^2} = |x-3|$. Le domaine de définition de $\sqrt{x-3}^2$ est donc \mathbb{R} tout entier.»

• True $\rightarrow Vrai$ • False \checkmark

(351) **q-351**

TRUE/FALSE marked out of 1.0

b>Énoncé : déterminer le domaine de définition de $\sqrt{-1+x-x^2}$.

b>Solution rédigée à évaluer :
b>
 «Soit $x \in \mathbb{R}$. L'expression $\sqrt{-1+x-x^2}$ est bien définie si et seulement si $-1+x-x^2 \ge 0$. Ce trinôme a un discriminant égal à $\Delta = b^2 - 4ac = -3$ donc n'a aucune racine réelle. Il ne s'annule donc jamais et donc est toujours positif. Le domaine de définition de $\sqrt{-1+x-x^2}$ est donc \mathbb{R} tout entier.»

• True $\rightarrow Vrai$ • False \checkmark

(352) **q-352**

TRUE/FALSE marked out of 1.0

b>Énoncé : déterminer le domaine de définition de $\sqrt{x-1}\sqrt{x-2}$.

b>Solution rédigée à évaluer :
br> «Soit $x \in \mathbb{R}$. On a $\sqrt{x-1}\sqrt{x-2} = \sqrt{(x-1)(x-2)} = \sqrt{x^2-3x+2}$ est bien définie si et seulement si $x^2-3x+2 \ge 0$ Le discriminant du trinôme vaut $\Delta=9-4\times 2=1$, les racines sont 1 et 2. Le domaine de définition de l'expression est donc $\mathbb{R}\setminus [1,2]$.»

• True $\rightarrow Vrai$ • False \checkmark

(353) **q-353**

TRUE/FALSE marked out of 1.0

b>Énoncé : déterminer le domaine de définition de $\sqrt{x-1}\sqrt{x+1}$.

b>Solution rédigée à évaluer :
 %Soit $x \in \mathbb{R}$. L'expression $\sqrt{x-1}$ est bien définie si et seulement si $x \geq 1$.

L'expression $\sqrt{x+1}$ est bien définie si et seulement si $x \le -1$ Le domaine de définition de $\sqrt{x-1}\sqrt{x+1}$ est donc vide.»

• True $\rightarrow Vrai$

• False \checkmark \rightarrow Faux

(354) **q-354**

TRUE/FALSE marked out of 1.0

b>Énoncé : déterminer le domaine de définition de $\sqrt{x+2}\sqrt{x+3}$.

b>Solution rédigée à évaluer :
 «Soit $x \in \mathbb{R}$. L'expression $\sqrt{x+2}$ est bien définie si et seulement si $x \geq -2$. L'expression $\sqrt{x+3}$ est bien définie si et seulement si $x \geq -3$ Le domaine de définition de $\sqrt{x+2}\sqrt{x+3}$ est donc $[-2,+\infty[.»]$

• True \checkmark • False $\rightarrow Vrai$

(355) **q-355**

TRUE/FALSE marked out of 1.0

b>Énoncé : déterminer le domaine de définition de $\sqrt{2+3x+4x^2}$.

b>

b>
b>
 «Soit $x \in \mathbb{R}$. Comme les coefficients 2, 3 et 4 du trinôme $2+3x+4x^2$ sont positifs, celui-ci est positif et sa racine carrée est donc bien définie. Le domaine de définition de $\sqrt{2+3x+4x^2}$ est donc \mathbb{R} tout entier.»

True
 False ✓

Faux

(356) **q-356**

TRUE/FALSE marked out of 1.0

b>Énoncé : déterminer le domaine de définition de $\sqrt{(x+2)(x-3)}$.

b>> Solution rédigée à évaluer :</br/>
b>> % Soit $x \in \mathbb{R}$. L'expression $\sqrt{(x+2)(x-3)}$ est bien définie si et seulement si (x+2)(x-3) est positive, c'est-à-dire ssi $x \geq 3$ ou $x \leq -2$. Le domaine de définition de $\sqrt{(x+2)(x-3)}$ est donc $\mathbb{R} \setminus]-2,3[$.»

• True √
 • False
 → Faux

(357) **q-357**

TRUE/FALSE marked out of 1.0

b>Énoncé : déterminer le domaine de définition de $\sqrt{(x-2)(x+1)}$.

b>> Solution rédigée à évaluer :</br/>
 %Soit $x \in \mathbb{R}$. L'expression $\sqrt{(x-2)(x+1)}$ est bien définie si et seulement si (x-2)(x+1) est positive, c'est-à-dire ssi $x \geq 2$ ou $x \leq -1$. Le domaine de définition de $\sqrt{(x-2)(x+1)}$ est donc $\mathbb{R} \setminus [-1,2]$.»

• True $\rightarrow Vrai$ • False \checkmark

(358) **q-358**

TRUE/FALSE marked out of 1.0

b>Énoncé : déterminer le domaine de définition de $\sqrt{(1-x)(x-2)}$.

b>Solution rédigée à évaluer :
br> «Soit $x \in \mathbb{R}$. L'expression $\sqrt{(1-x)(x-2)}$ est bien définie ssi (1-x)(x-2) est positive c'est-à-dire ssi $x \in [1,2]$. Le domaine de définition de $\sqrt{(1-x)(x-2)}$ est donc [1,2].»

• True \checkmark • False $\rightarrow Vrai$

(359) **q-359**

TRUE/FALSE marked out of 1.0

b>Énoncé : déterminer le domaine de définition de $\sqrt{x^2-5x+6}$.

b>Solution rédigée à évaluer :
 «Soit $x \in \mathbb{R}$. L'expression $\sqrt{x^2-5x+6}$ est bien définie ssi x^2-5x+6 est positive. Le

discriminant de ce trinôme vaut $\Delta = 25 - 24 = 1$, les deux racines sont 2 et 3 et son coefficient dominant est positif. Le domaine de définition de $\sqrt{x^2-5x+6}$ est donc $]-\infty,2]\cup[3,+\infty[.)$

• True ✓ $\rightarrow Vrai$

• False $\rightarrow Faux$

(360) **q-360**

Énoncé : déterminer le domaine de définition de $\sqrt{x^2-6x+9}$.Solution rédigée à évaluer :
 «Soit $x \in \mathbb{R}$. L'expression $\sqrt{x^2 - 6x + 9}$ est bien définie ssi $x^2 - 6x + 9$ est positive. Le discriminant de ce trinôme vaut $\Delta = 36 - 4 \times 9 = 0$, il y a une racine double égale à 3. Comme le coefficient dominant du trinôme est positif, celui-ci est donc toujours positif. Le domaine de définition de $\sqrt{x^2-6x+9}$ est donc \mathbb{R} tout entier.»

• True ✓ $\rightarrow Vrai$ \rightarrow Faux

• False

(361) **q-361**

TRUE/FALSE marked out of 1.0

Énoncé : déterminer le domaine de définition de $\sqrt{x^2-9}$.

br> Solution rédigée à évaluer :
br> «Soit $x \in \mathbb{R}$. L'expression $\sqrt{x^2-9}$ est bien définie ssi x^2-9 est positive. Le discriminant de ce trinôme vaut $\Delta = 0 - 4 \times (-9) = 36$, les racines sont 3 et -3. Comme le coefficient dominant du trinôme est positif, le domaine de définition de $\sqrt{x^2-9}$ est donc $\mathbb{R}\setminus]-3,3[.)$

• True ✓ $\rightarrow Vrai$ \rightarrow Faux

• False

(362) **q-362**

TRUE/FALSE marked out of 1.0

à évaluer :<
br> «Soit $x \in \mathbb{R}$. L'expression $\frac{x}{(x-1)(x+1)}$ est bien définie ssi $(x-1)(x+1) \neq 0$ c'est-à-dire ssi $x \notin \{-1,1\}$. Si c'est le cas, $\sqrt{\frac{x}{(x-1)(x+1)}}$ est bien définie ssi $\frac{x}{(x-1)(x+1)} \geq 0$, autrement dit ssi $-1 \le x \le 0$ ou $x \ge 1$. Le domaine de définition de $\sqrt{\frac{x}{(x-1)(x+1)}}$ est donc $]-1,0] \cup]1,+\infty[.»$

• True ✓ $\rightarrow Vrai$ • False \rightarrow Faux

(363) **q-363**

TRUE/FALSE marked out of 1.0

Les droites d'équations 2x + y = 1 et x - 2y = 3 sont perpendiculaires.

• True ✓ $\rightarrow Vrai$

• False \rightarrow Faux

(364) **q-364**

marked out of 1.0 TRUE/FALSE

Les droites d'équations 2x + y = 1 et x + 2y = 1 sont perpendiculaires.

 $\rightarrow Vrai$ True

• False ✓ \rightarrow Faux

(365) **q-365**

TRUE/FALSE marked out of 1.0

Les droites d'équations 3x - y = 1 et 3x - y = 5 sont parallèles.

• True ✓ Vrai • False $\rightarrow \textit{Faux}$ (366) **q-366**

TRUE/FALSE marked out of 1.0

Les droites d'équations 2x - 3y = 1 et 4x - 6y = 3 sont parallèles.

- True √
 False
 Faux
- (367) **q-367**True/False marked out of 1.0

Les droites d'équations x + y = 1 et x - 2y = 0 se coupent dans le premier quadrant.

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (368) **q-368**True/False marked out of 1.0

Les droites d'équations x - y = 1 et x - 2y = 0 se coupent dans le deuxième quadrant.

- True • False \checkmark → Faux
- TRUE/FALSE marked out of 1.0

La droite d'équation x+y=1 intersecte le cercle de centre O et de rayon 1.

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (370) **q-370**

(369) **q-369**

True/False marked out of 1.0 La droite d'équation x + y = -1 intersecte le cercle de centre O et de rayon 1.

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- False (371) q-371
- True/False marked out of 1.0

La droite d'équation 3x + 2y = 6 intersecte le cercle de centre O et de rayon 1.

- True $\rightarrow Vrai$ False \checkmark $\rightarrow Faux$
- (372) q-372

 True/False marked out of 1.0

Le point de coordonnées (1,1) appartient à la droite d'équation 2x + 3y + 5 = 0

- True
 False √

 Faux
- (373) **q-373**

Le point de coordonnées (2,3) appartient à la droite $\left\{ \begin{pmatrix} 2t+1\\3t+1 \end{pmatrix} \middle| t \in \mathbb{R} \right\}$.

True
 False ✓

(374) **q-374**

TRUE/FALSE marked out of 1.0

Le point de coordonnées (-1, -2) appartient à la droite $\left\{ \begin{pmatrix} 2t+1\\3t+1 \end{pmatrix} \middle| t \in \mathbb{R} \right\}$.

- True \checkmark
- False \rightarrow Faux

(375) **q-375**

TRUE/FALSE marked out of 1.0

La droite $\left\{ \begin{pmatrix} 2t+1\\3t+1 \end{pmatrix} \middle| t \in \mathbb{R} \right\}$ est orthogonale à la droite d'équation 2x+3y+7=0.

- True ✓ → Vrai
- False \rightarrow Faux

(376) **q-376**

TRUE/FALSE marked out of 1.0

La droite $\left\{ inom{t+1}{3t-1} \middle| t \in \mathbb{R} \right\}$ peut être définie par l'équation 3x-y-4=0.

- True \checkmark
- False $\rightarrow Faux$

(377) **q-377**

TRUE/FALSE marked out of 1.0

La droite $\left\{ inom{2t+1}{3t+2} \middle| t \in \mathbb{R} \right\}$ peut être définie par l'équation 3x+2y-7=0.

- True $\rightarrow Vrai$
- False ✓ → Faux

(378) **q-378**

TRUE/FALSE marked out of 1.0

La droite $\left\{ \begin{pmatrix} 2t \\ 3t+1 \end{pmatrix} \middle| t \in \mathbb{R} \right\}$ est parallèle à la droite d'équation 3x-2y+7=0.

- True \checkmark
- False \rightarrow Faux

(379) **q-379**

TRUE/FALSE marked out of 1.0

La droite $\left\{ \begin{pmatrix} 5t+1\\2t-1 \end{pmatrix} \middle| t \in \mathbb{R} \right\}$ est orthogonale à la droite d'équation 2x-5y+7=0.

- ullet True o Vrai
- False \checkmark \rightarrow Faux

(380) **q-380**

True/False marked out of 1.0

La droite d'équation 3x - y = 1 est dirigée par le vecteur de coordonnées (3, -1).

- True
 False √
- (381) **q-381**

TRUE/FALSE marked out of 1.0

La droite d'équation 3x - 2y = 5 est dirigée par le vecteur de coordonnées (2,3).

- True ✓ $\rightarrow Vrai$ \rightarrow Faux
- False

(382) **q-382** marked out of 1.0

Le vecteur de coordonnées (-1,2) est un vecteur normal à la droite d'équation x-2y=1.

- True ✓ $\rightarrow Vrai$
- False \rightarrow Faux

(383) **q-383**

marked out of 1.0 TRUE/FALSE

Le vecteur de coordonnées (1,3) dirige la droite d'équation x+3y=2.

- True $\rightarrow Vrai$
- False ✓ \rightarrow Faux

(384) **q-384**

(385) **q-385**

TRUE/FALSE marked out of 1.0

2 est une solution de l'équation $x^4 - 3x^3 + x^2 + 4 = 0$.

- True ✓ $\rightarrow Vrai$ \rightarrow Faux
- False

TRUE/FALSE marked out of 1.0

2 est une solution de l'équation $x^6 - x^4 - 6x^3 = 0$.

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (386) **q-386**

marked out of 1.0 TRUE/FALSE

2 est une solution de l'équation $-x^5 + 3x^4 - 6x + 2 = 0$.

- $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux
- (387) **q-387**

TRUE/FALSE marked out of 1.0

Une solution de l'équation $x^3 - 10x + 3 = 0$ est 3.

- $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux
- (388) **q-388**

TRUE/FALSE marked out of 1.0

3 est une solution de l'équation $x^3 - 6x + 8 = 0$.

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (389) **q-389**

TRUE/FALSE marked out of 1.0

L'équation $x^2 - 3x + 2 = 0$ a une solution dans \mathbb{Z} .

• True ✓ $\rightarrow Vrai$ • False \rightarrow Faux

(390) **q-390**

TRUE/FALSE marked out of 1.0

L'équation $x^2 - 3x + 2 = 0$ a deux solutions dans \mathbb{Z} .

- True \checkmark
- False \rightarrow Faux

(391) **q-391**

TRUE/FALSE marked out of 1.0

1/2 est une solution de l'équation $x^2 + x - 1 = 0$.

- ullet True o Vrai
- False \checkmark

(392) **q-392**

TRUE/FALSE marked out of 1.0

-1 est une solution de l'équation |x + 2/3| - 1/3 = 0.

• True \checkmark

 \rightarrow Faux

 \rightarrow Faux

• False

(393) **q-393**

TRUE/FALSE marked out of 1.0

5 est une solution de l'équation $x^2 - 6x + 1 = 0$.

- True $\rightarrow Vrai$ False \checkmark
- False √

(394) **q-394**

True/False marked out of 1.0

L'équation $x^2 - 6x + 1 = 0$ a deux solutions distinctes dans \mathbb{R} .

- True ✓ → Vrai
- False

(395) **q-395**

TRUE/FALSE marked out of 1.0

L'équation $x^2 - 6x + 1 = 0$ a deux solutions distinctes dans \mathbb{Q} .

- ullet True o Vrai
- False ✓ → Faux

(396) **q-396**

TRUE/FALSE marked out of 1.0

L'équation $x^2 - 3x - 4 = 0$ a deux solutions distinctes dans \mathbb{Q} .

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (397) **q-397**

TRUE/FALSE marked out of 1.0

Le trinôme $X^2 - X - 3$ a deux racines distinctes dans \mathbb{R} .

- True \checkmark False $\rightarrow Vrai$
- (398) **q-398**

TRUE/FALSE marked out of 1.0

Le trinôme $X^2 - 3X + 3$ a deux racines distinctes dans \mathbb{R} .

	• False ✓	\rightarrow Faux
(399)	q-399	
	TRUE/FALSE marked out of 1.0	
	Le trinôme $X^2 - 6X + 9$ a deux racines distinctes.	
	• True	$\rightarrow Vrai$
	• False ✓	$\rightarrow Faux$
(400)	q-400	
	TRUE/FALSE marked out of 1.0	
	Le trinôme $X^2 + 8X + 16$ a deux racines distinctes.	
	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(401)	q-401	/ I www
(401)	TRUE/FALSE marked out of 1.0	
	L'équation $e^x = -5$, d'inconnue $x \in \mathbb{R}$, admet $\ln(-5)$ comme solution.	
	• True	$\rightarrow Vrai$
	• False ✓	$\rightarrow Faux$
(402)	q-402	
	TRUE/FALSE marked out of 1.0	
	Il est possible qu'un espace vectoriel possède un seul élément.	
	• True ✓	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(403)	q-403	
	True/False marked out of 1.0	
	Il est possible qu'un espace vectoriel ne possède aucun élément.	
	 True False √ 	
(404)	q-404	, 1 3 3 6
(404)	True/False marked out of 1.0	
	Il est possible qu'un \mathbb{R} -ev possède exactement deux éléments.	
	• True	$\rightarrow Vrai$
	• False ✓	$\rightarrow Faux$
(405)	q-405	
	True/False marked out of 1.0	
	Soit E un \mathbb{R} -ev, et F,G des sous-ev. Alors, $F\cap G$ est un sous-ev.	
	• True ✓	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(406)	q-406	
	TRUE/FAISE marked out of 1.0	
	Soit E un \mathbb{R} -ev, et F, G des sous-ev. Alors, $F \cup G$ est un sous-ev.	· .
	 True False √ 	$\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$

 $\rightarrow \textit{Vrai}$

• True

(407) **q-407** TRUE/FALSE marked out of 1.0 Soit E un \mathbb{R} -ev, et F, G des sous-ev. Alors, F+G est un sous-ev. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (408) **q-408** marked out of 1.0 TRUE/FALSE Soit E un \mathbb{R} -ev de dimension finie, et F, G des sous-ev. Si dim(F) + dim(G) = dim(E), alors F et G sont supplémentaires. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (409) **q-409** TRUE/FALSE marked out of 1.0 Soit E un \mathbb{R} -ev, et F, G des sous-ev. Si $E = F \oplus G$ et $x \notin F$, alors $x \in G$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (410) **q-410** TRUE/FALSE marked out of 1.0 Soit E un \mathbb{R} -ev, et F,G des sous-ev. Le complémentaire de F est un sous-ev de G. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (411) **q-411** TRUE/FALSE marked out of 1.0 Soit E un \mathbb{R} -ev, F un sous-ev, et cF le complémentaire de F. Alors, $E = F \oplus {}^cF$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (412) **q-412** marked out of 1.0 Soit E un \mathbb{R} -ev, F un sous-ev, et cF le complémentaire de de F. Alors, $E = Vect\{F, {}^cF\}$. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (413) **q-413** TRUE/FALSE marked out of 1.0 Soit E un \mathbb{R} -ev, F, G, H des sous-ev. Si $E = F \oplus G$ et $E = F \oplus H$, alors G = H. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux

(414) **q-414**

TRUE/FALSE marked out of 1.0

Soit E un \mathbb{R} -ev, et F, G des sous-ev. Si dim(F) = dim(G) = 2 et $F \cap G = \{0\}$, alors $dim(E) \geq 4$.

• True \checkmark • False $\rightarrow Vrai$ • False

(415) **q-415**

True/False marked out of 1.0

Soit $E = \mathbb{R}^5$, et F, G des sous-ev. Si dim(F) = dim(G) = 3 alors $F \cap G \neq \{0\}$.

• True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (416) **q-416** marked out of 1.0

Soit $E = \mathbb{R}^5$, et F, G des sous-ev. Si dim(F) = dim(G) = 3 alors $dim(F \cap G) = 1$.

- $\rightarrow Vrai$
- False ✓ \rightarrow Faux

(417) **q-417**

(418) **q-418**

(419) **q-419**

marked out of 1.0 $\{(x,y,z)\in\mathbb{R}^3, 3x+2y=0 \text{ et } x+y=0\}$ est un sous-ev de \mathbb{R}^3

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- TRUE/FALSE marked out of 1.0

 $\{(x,y,z)\in\mathbb{R}^3, x+y\geq 0\}$ est un sous-ev de \mathbb{R}^3 $\rightarrow Vrai$ • True

- False √ \rightarrow Faux
- TRUE/FALSE marked out of 1.0

marked out of 1.0

 $\{(x,y) \in \mathbb{R}^2, x = y^2\}$ est un sous-ev de \mathbb{R}^2

- $\rightarrow Vrai$ • True • False √ \rightarrow Faux
- (420) **q-420** TRUE/FALSE marked out of 1.0

 $\{(x,y) \in \mathbb{R}^2, (x-y)^2 = 0\}$ est un sous-ev de \mathbb{R}^2

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (421) **q-421**

TRUE/FALSE

 $\{P \in \mathbb{R}[X], \int_0^1 P(t)dt = 0\}$ est un sous-ev de $\mathbb{R}[X]$

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (422) **q-422**

TRUE/FALSE marked out of 1.0 $\{P \in \mathbb{R}[X], P + P' = 1\}$ est un sous-ev de $\mathbb{R}[X]$

• True $\rightarrow Vrai$

- False ✓ \rightarrow Faux
- (423) **q-423**

TRUE/FALSE marked out of 1.0 $\{P \in \mathbb{R}[X], P(3) + P'(3) = 0\}$ est un sous-ev de $\mathbb{R}[X]$

• True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$

(424) **q-424**True/False

 $\{P \in \mathbb{R}[X], P(3) = 3\}$ est un sous-ev de $\mathbb{R}[X]$

marked out of 1.0

 $[1 \in \mathbb{R}[N], 1 \quad (0) = 0]$ can all sous evalue $\mathbb{R}[N]$

- True $\rightarrow Vrai$ False \checkmark
- (425) **q-425**

TRUE/FALSE marked out of 1.0

 $\{P \in \mathbb{R}[X], P = 3P'\}$ est un sous-ev de $\mathbb{R}[X]$

- True \checkmark False $\rightarrow Vrai$ False
- (426) **q-426**

True/False marked out of 1.0

Une famille liée à laquelle on enlève un vecteur reste liée.

- True $\rightarrow Vrai$ False \checkmark
- (427) **q-427**

True/False marked out of 1.0

Une famille liée à laquelle on enlève un vecteur devient libre.

- True
 False ✓

 Faux
- (428) **q-428**

TRUE/FALSE marked out of 1.0

Une famille libre à laquelle on ajoute un vecteur reste libre.

- True $\rightarrow Vrai$ False \checkmark
- (429) **q-429**

TRUE/FALSE marked out of 1.0

Une famille libre à laquelle on ajoute un vecteur devient liée.

- True $\rightarrow Vrai$ False \checkmark
- (430) **q-430**

TRUE/FALSE marked out of 1.0

Une famille liée à laquelle on ajoute un vecteur reste liée.

- True √
 False
 Faux
- (431) **q-431**

TRUE/FALSE marked out of 1.0

Une famille est libre si ses vecteurs sont deux à deux non colinéaires

- True
 False √

 Faux
- (432) **q-432**

TRUE/FALSE marked out of 1.0

Une sous-famille d'une famille libre est libre.

	• False	\rightarrow Faux
(433)	q-433	
	TRUE/FALSE marked out of 1.0	
	Une sous-famille d'une famille liée est liée.	
	• True	$\rightarrow \textit{Vrai}$
	• False ✓	\rightarrow Faux
(434)	q-434	
	TRUE/FALSE marked out of 1.0	
	Ajouter un vecteur à une base produit une famille libre.	
	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(495)		→ raux
(435)	q-435 True/False marked out of 1.0	
	Enlever un vecteur à une base produit une famille libre.	
	• True ✓	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(436)	q-436	
	TRUE/FALSE marked out of 1.0	
	$\overline{a^2 + 2ab} + b^2$ est factorisable par $a + b$.	
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(437)	q-437	
	True/False marked out of 1.0	
	$x^2 - b^2$ est factorisable par $b - x$.	
	 True √ False 	$\rightarrow Vrai$ $\rightarrow Faux$
(420)		$\rightarrow raux$
(438)	q-438 True/False marked out of 1.0	
	$a^2 - 2ab + b^2$ est factorisable par $b - a$.	
		, IZ:
	 True √ False 	$\rightarrow Vrai$ $\rightarrow Faux$
(439)	q-439	
, ,	TRUE/FAISE marked out of 1.0	
	$a^2 + 3a + 2$ est factorisable par $a + 1$.	
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(440)	q-440	
	TRUE/FALSE marked out of 1.0	
	$n^2 + 6n + 9$ est factorisable par $n + 3$.	
	• True ✓	→ Vrai
	• False	\rightarrow Faux

 $\rightarrow \ \textit{Vrai}$

• True \checkmark

	 True False √ 	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(450)	q-450	
,	TRUE/FALSE marked out of 1.0	
	$a^2 + 2a - 8$ est factorisable par $a + 2$.	
	TrueFalse ✓	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(451)	q-451	
	TRUE/FALSE marked out of 1.0	
	$p^2 + 3p + 3$ est factorisable par $p + 3$.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(452)	q-452	
	TRUE/FALSE marked out of 1.0	
	$a^2 + 3a + 9$ est factorisable par $a + 3$.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(453)	q-453	
	TRUE/FALSE marked out of 1.0	
	ab + a + b + 1 est factorisable par $a + 1$.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(454)	q-454	
(101)	True/False marked out of 1.0	
	ab + a + b + 1 est factorisable par $a + b$.	
	• True	$\rightarrow Vrai$
	• False ✓	$\rightarrow Faux$
(455)	q-455	
,	True/False marked out of 1.0	
	ab + 2a + 3b + 6 est factorisable par $a + 3$.	
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(456)	q-456	
	TRUE/FAISE marked out of 1.0	
	$\overline{ab + 2a + 3b + 6}$ est factorisable par $a + 2$.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(457)	q-457	
	TRUE/FALSE marked out of 1.0	
	ab + 2a + 3b + 5 est factorisable par $a + 3$.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux

(466) **q-466**

TRUE/FALSE marked out of 1.0

La fraction $\frac{15}{123}$ est irréductible.

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(467) **q-467**

TRUE/FALSE marked out of 1.0

La fraction $\frac{21}{33}$ est irréductible.

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(468) **q-468**

TRUE/FALSE marked out of 1.0

La fraction $\frac{48}{39}$ est irréductible.

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(469) **q-469**

TRUE/FALSE marked out of 1.0

$$\frac{48}{70} \leq \frac{2}{3}$$

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(470) **q-470**

TRUE/FALSE marked out of 1.0

$$\frac{34}{50} \leq \frac{2}{3}$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(471) **q-471**

True/False marked out of 1.0

$$\frac{42}{65} \leq \frac{2}{3}$$

- True ✓
- False

 $\rightarrow Vrai$

 \rightarrow Faux

(472) **q-472**

TRUE/FALSE marked out of 1.0

$$\frac{1}{7}+\frac{7}{9}\leq 1$$

- True ✓
- False

 $\rightarrow Vrai$

 \rightarrow Faux

(473) **q-473**

TRUE/FALSE marked out of 1.0

 $\frac{5}{12}+\frac{2}{3}\leq 1$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(474) **q-474**

- True \checkmark
- False

 $\begin{array}{ccc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(475) **q-475**

$$\boxed{ \frac{\text{True/False}}{7} \left(\text{marked out of 1.0} \right) }$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(476) **q-476**

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(477) **q-477**

- True
- False \checkmark

- $\rightarrow Vrai$
- \rightarrow Faux

(478) **q-478**

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(479) **q-479**

$$\frac{a}{b} + \frac{c}{d} = \frac{ab + cd}{b + d}$$

- True
- False ✓

- $\rightarrow Vrai$
- \rightarrow Faux

(480) **q-480**

True/False marked out of 1.0
$$\frac{a}{1} + \frac{c}{1} = \frac{ab + cd}{1.1}$$

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(481) **q-481**

True/False marked out of 1.0

$$a \quad c \quad ad + bc$$

• True ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

 $\rightarrow Vrai$

 \rightarrow Faux

• False

(482) **q-482**

TRUE/FALSE marked out of 1.0

$$\frac{1}{n} + \frac{1}{n+1} = \frac{1}{n(n+1)}$$

• True

• False ✓

(483) **q-483**

TRUE/FALSE marked out of 1.0

$$\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$$

• True ✓

 $\rightarrow Vrai$ • False \rightarrow Faux

(484) **q-484**

TRUE/FALSE marked out of 1.0

$$\frac{n+1}{n^2-1}=\frac{1}{n-1}$$

• True ✓ $\rightarrow \ \ Vrai$

• False \rightarrow Faux

(485) **q-485**

TRUE/FALSE marked out of 1.0

« $A \implies B$ » signifie « A ou non-B ».

• True $\rightarrow Vrai$

• False ✓ \rightarrow Faux

(486) **q-486**

TRUE/FALSE marked out of 1.0

« $A \implies B$ » peut se lire « A est vraie, donc B est vraie ».

• True $\rightarrow Vrai$

• False ✓ \rightarrow Faux

(487) **q-487**

TRUE/FALSE marked out of 1.0

« $A \implies B$ » peut se lire « B est vraie car A est vraie».

 $\rightarrow Vrai$ • True

• False ✓ \rightarrow Faux

(488) **q-488**

TRUE/FALSE marked out of 1.0

« $A \implies B$ » peut se lire « A est fausse ou B est vraie ».

 $\rightarrow Vrai$ • True ✓

• False \rightarrow Faux

(489) **q-489**

TRUE/FALSE marked out of 1.0

 $\langle A \rangle \Rightarrow B \rangle$ peut se lire $\langle A \rangle \Rightarrow B \rangle$.

• True ✓ $\rightarrow \ \ Vrai$

(498) **q-498** TRUE/FALSE marked out of 1.0 Si $9 \times 6 = 54$, alors $7 \times 8 = 46$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (499) **q-499** TRUE/FALSE marked out of 1.0 2+2=5 est une condition suffisante pour que $2\times 2=6$. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (500) **q-500** True/False marked out of 1.0 2+2=5 est une condition nécessaire pour que $2\times 2=6$. • True ✓ $\rightarrow \ \ Vrai$ • False $\rightarrow Faux$ (501) **q-501** TRUE/FALSE marked out of 1.0 $6 \times 7 = 42$ est une condition suffisante pour que $2 \times 2 = 5$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (502) **q-502** TRUE/FALSE marked out of 1.0 $6 \times 7 = 42$ est une condition nécessaire pour que $2 \times 2 = 5$. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (503) **q-503** TRUE/FALSE marked out of 1.0 $6 \times 7 = 42$ est une condition nécessaire pour que $5 \times 7 = 35$. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (504) **q-504** marked out of 1.0 $6 \times 7 = 42$ est une condition suffisante pour que $5 \times 7 = 35$. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (505) **q-505**

 $2+5=8 \implies 3\times 7=21.$

• True ✓ $\rightarrow Vrai$ • False \rightarrow Faux

(506) **q-506**

TRUE/FALSE marked out of 1.0 $9 \times 8 = 72 \implies 3 \times 7 = 21.$ • True \checkmark • False $\rightarrow Vrai$ $\rightarrow Faux$

(507) **q-507**

True/False marked out of 1.0

 $6\times 9=54\implies 7\times 8=48.$

True
 False ✓

Faux

(508) **q-508**

TRUE/FALSE marked out of 1.0

Pour que 2+2=5, il faut que $3\times 8=24$.

• True \checkmark • False $\rightarrow Vrai$ • Faux

(509) **q-509**

TRUE/FALSE marked out of 1.0

Pour que 2+2=5, il suffit que $9\times 5=40$.

• True \checkmark • False $\rightarrow Vrai$

(510) **q-510**

TRUE/FALSE marked out of 1.0

Pour que 2 + 2 = 4, il suffit que $9 \times 5 = 40$.

• True \checkmark • False $\rightarrow Vrai$

(511) **q-511**

True/False marked out of 1.0 $9 \times 7 = 63 \implies 6 \times 8 = 46.$

• True • False \checkmark $\rightarrow Vrai$

(512) **q-512**

True/False marked out of 1.0 $2 + 2 = 4 \implies 7 \times 9 = 53.$

• True $\rightarrow Vrai$ • False \checkmark $\rightarrow Faux$

(513) **q-513**

TRUE/FALSE marked out of 1.0

Si $x \in [2, 3]$, alors $x^2 \in [4, 9]$

• True \checkmark • False $\rightarrow Vrai$ $\rightarrow Faux$

(514) **q-514**

True/False marked out of 1.0

Si $x \in [-1, 2]$, alors $x^2 \in [0, 4]$

• True \checkmark • False \rightarrow Vrai \rightarrow Faux

	• False √	\rightarrow Faux
(524)	q-524	
	TRUE/FALSE marked out of 1.0	
	$x \leq 3$ si et seulement si $x^2 \leq 9$	
	• True	$\rightarrow Vrai$
(===)	• False ✓	\rightarrow Faux
(525)	q-525	
	True/False marked out of 1.0 Si $x^2 \le 4$, alors $x \le 2$	
) IZ:
	 True √ False 	$\rightarrow Vrai$ $\rightarrow Faux$
(526)	q-526	
	True/False marked out of 1.0	
	$\overline{\text{Si } x^2 \le 4}, \text{ alors } x \ge -2$	
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(527)	q-527	
	TRUE/FAISE marked out of 1.0	
	Si $x^2 \ge 4$, alors $x \ge 2$	T 7
	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(528)	q-528	
,	True/False marked out of 1.0	
	$Si \ x \in [2, 3], alors \ x^2 - x \in [-1, 7]$	
	• True	$\rightarrow Vrai$
	• False	\rightarrow Faux
(529)	q-529	
	TRUE/FALSE marked out of 1.0	
	Si $x \in [2,3]$, alors $x^2 - x \in [2,6]$	
	 True √ False 	$\rightarrow Vrai$ $\rightarrow Faux$
(530)	q-530	
()	TRUE/FALSE marked out of 1.0	
	Si $x \in [0,3]$, alors $x^2 - x \in [0,6]$	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(531)	q-531	
	TRUE/FALSE marked out of 1.0	
	Si $x \in [0,3]$, alors $x^2 - x \in [-3,9]$	
	• True √	$\rightarrow Vrai$

 $\rightarrow \textit{Vrai}$

 $\rightarrow \mathit{Faux}$

• True

• False

(532) **q-532**

marked out of 1.0 TRUE/FALSE

Si $x \in [1, 2]$, alors $x^2 - x \in [0, 3]$

- True ✓ $\rightarrow Vrai$
- $\rightarrow Faux$ • False

(533) **q-533**

marked out of 1.0 True/False

Si $x \in [2, 3]$, alors $\sqrt{x} - x \in [\sqrt{2} - 3, \sqrt{3} - 2]$

- True ✓ $\rightarrow Vrai$
- False \rightarrow Faux

(534) **q-534**

marked out of 1.0 TRUE/FALSE

Si $x \in [2, 3]$, alors $\sqrt{2} - 2 \le \sqrt{x} - x \le \sqrt{3} - 3$

- True $\rightarrow Vrai$
- False ✓ \rightarrow Faux

(535) **q-535**

TRUE/FALSE marked out of 1.0

Si $x \in [2, 3]$, alors $\sqrt{x} - x \in [\sqrt{2} - 3, 0]$

- True ✓ $\rightarrow Vrai$
- False $\rightarrow Faux$

(536) **q-536**

marked out of 1.0

Deux isométries commutent.

- True $\rightarrow Vrai$
- False ✓ \rightarrow Faux

(537) **q-537**

marked out of 1.0

La composée de deux isométries est une isométrie.

- True ✓ $\rightarrow Vrai$ \rightarrow Faux
- False

(538) **q-538**

TRUE/FALSE marked out of 1.0

La composée de deux isométries indirectes est indirecte.

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (539) **q-539**

marked out of 1.0 ${\rm True}/{\rm False}$

La composée de deux isométries directes est directe.

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (540) **q-540**

TRUE/FALSE marked out of 1.0

La composée d'une isométrie directe et d'une indirecte est indirecte.

	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(541)	q-541	
	True/False marked out of 1.0	
	Une isométrie préserve l'alignement. • True ✓	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(542)	q-542	
	Une isométrie préserve les milieux.	
	 True √ False 	
(543)	q-543	
	True/False marked out of 1.0	
	Une isométrie préserve les barycentres. • True ✓	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(544)	q-544	
	Une isométrie envoie une droite sur une autre droite qui lui est parallèle.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(545)	q-545 True/False marked out of 1.0	
	Une isométrie directe est soit une rotation, soit une translation.	
	• True ✓	$\rightarrow Vrai$
(546)	• False q-546	$\rightarrow Faux$
(040)	True/False marked out of 1.0	
	Une isométrie est soit une rotation, soit une translation, soit une réflexion (symétrie axiale).	
	 True False √ 	$\rightarrow Vrai$ $\rightarrow Faux$
(547)	q-547	
	True/False marked out of 1.0	
	La composée de deux réflexions (symétries axiales) est une réflexion.	
	 True False √ 	$\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$
(548)	q-548 True/False marked out of 1.0	
	La composée de deux réflexions (symétries axiales) est une translation.	
	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(549) **q-549** TRUE/FALSE marked out of 1.0 La composée de deux réflexions (symétries axiales) est une rotation. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (550) **q-550** TRUE/FALSE marked out of 1.0 La composée de deux réflexions (symétries axiales) est une rotation ou une translation. • True √ $\rightarrow Vrai$ False \rightarrow Faux (551) **q-551** marked out of 1.0 TRUE/FALSE La composée d'une réflexion et d'une translation est une réflexion. $\rightarrow Vrai$ False ✓ \rightarrow Faux (552) **q-552** TRUE/FALSE marked out of 1.0 Les isométries qui laissent un carré invariant sont au nombre de quatre. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (553) **q-553** TRUE/FALSE marked out of 1.0 Les isométries qui laissent un carré invariant sont au nombre de huit. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (554) **q-554** TRUE/FALSE marked out of 1.0 Les isométries qui laissent un parallélogramme (non losange et non rectangle) invariant sont au nombre de deux. • True √ $\rightarrow Vrai$ False \rightarrow Faux (555) **q-555** TRUE/FALSE marked out of 1.0

Les isométries qui laissent un rectangle (non carré) invariant sont au nombre de quatre.

• True \checkmark • False $\rightarrow Vrai$ • False

(556) **q-556**

TRUE/FALSE marked out of 1.0

Les isométries qui laissent un triangle invariant sont au nombre de six.

True
 False √

Faux

(557) **q-557**

TRUE/FALSE marked out of 1.0

Toute isométrie directe possède des points fixes.

	 True False ✓ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(558)	q-558	
	True/False marked out of 1.0	
	Toute isométrie indirecte possède des points fixes.	
	TrueFalse √	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(559)	q-559	
	True/False marked out of 1.0	
	Une isométrie directe possède soit aucun, soit un seul point fixe.	
	TrueFalse √	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(560)	q-560	
	TRUE/FALSE marked out of 1.0	
	Une isométrie ayant deux points fixes (distincts) est l'identité.	
	TrueFalse √	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(561)	q-561	
	TRUE/FALSE marked out of 1.0	
	Une isométrie directe ayant deux points fixes (distincts) est l'identité.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(562)	q-562	
	True/False marked out of 1.0	
	Une isométrie ayant trois points fixes (distincts) est l'identité.	
	• True	$\rightarrow Vrai$
		\rightarrow Faux
(563)	q-563	
	True/False marked out of 1.0	
	Soient A et B deux points distincts. Il existe une isométrie vérifiant $f(A) = B$.	
	• True √	$\rightarrow Vrai$
	• False	$\rightarrow \mathit{Faux}$
(564)	q-564	
	True/False marked out of 1.0	
	Soient A et B deux points distincts. Il y a une infinité d'isométries vérifiant $f(A) = B$.	
	• True √	$\rightarrow Vrai$
	• False	\rightarrow Faux
(565)	q-565	
	True/False marked out of 1.0	
	Soient A et B deux points distincts. Il y a une infinité d'isométries directes vérifiant $f(A) = B$.	
	• True √	$\rightarrow Vrai$
	• False	$\rightarrow \mathit{Faux}$

(566) **q-566**

TRUE/FALSE marked out of 1.0

Soient A, B, A' et B' quatre points. Il existe une isométrie vérifiant «f(A) = A' et f(B) = B'».

ullet True o Vrai

• False \checkmark \rightarrow Faux

(567) **q-567**

True/False marked out of 1.0

Soient A, B, A' et B' quatre points, avec $A \neq A'$ et $B \neq B'$. Il existe une isométrie vérifiant f(A) = A' et f(B) = B'.

ullet True o Vrai

• False \checkmark \rightarrow Faux

(568) **q-568**

TRUE/FALSE marked out of 1.0

Soient A, B, A' et B' quatre points, avec AB = A'B'. Il existe une isométrie vérifiant f(A) = A' et f(B) = B'.

• True \checkmark \rightarrow Vrai

• False \rightarrow Faux

(569) **q-569**

True/False marked out of 1.0

Soient A, B, A' et B' quatre points, avec AB = A'B'. Il existe une isométrie directe vérifiant f(A) = A' et f(B) = B'.

• True \checkmark

• False \rightarrow Faux

(570) **q-570**

TRUE/FALSE marked out of 1.0

Soient A, B, A' et B' quatre points, avec AB = A'B'. Il existe exactement une isométrie directe vérifiant f(A) = A' et f(B) = B'.

• True $\rightarrow Vrai$

• False \checkmark \rightarrow Faux

(571) **q-571**

TRUE/FALSE marked out of 1.0

Soient A, B, A' et B' quatre points, avec AB = A'B' et $A \neq B$. Il existe exactement une isométrie directe vérifiant f(A) = A' et f(B) = B'.

• True \checkmark

• False \rightarrow Faux

(572) **q-572**

TRUE/FALSE marked out of 1.0

Soient A, B, A' et B' quatre points, avec AB = A'B' et $A \neq A'$. Il existe exactement une isométrie directe vérifiant f(A) = A' et f(B) = B'.

• True $\rightarrow Vrai$ • False \checkmark

(573) **q-573**

TRUE/FALSE marked out of 1.0

Soient A, B, A' et B' quatre points, avec AB = A'B' et $A \neq B$. Il existe exactement deux isométries vérifiant f(A) = A' et f(B) = B'.

(574)	q-574	
	True/False marked out of 1.0	
	Une matrice carrée est inversible ssi son déterminant est non nul.	
	• True √	$\rightarrow Vrai$
	• False	\rightarrow Faux
(575)	q-575	
	True/False marked out of 1.0	
	La somme de deux matrices carrées de même taille non inversibles est non inversible.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(576)	q-576	
	TRUE/FALSE marked out of 1.0	
	Si le produit de deux matrices existe et est inversible, alors chaque matrice est inversible.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(577)	q-577	
	TRUE/FALSE marked out of 1.0	
	Soient $A, B \in M_n(\mathbb{R})$. Si AB est inversible, alors A et B aussi.	
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(578)	q-578	
	TRUE/FALSE marked out of 1.0	
	Si $AB = I$, alors on a automatiquement $BA = I$ et B est l'inverse de A .	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(579)	q-579	
	TRUE/FALSE marked out of 1.0	
	Soient $A, B \in M_n(\mathbb{R})$. Alors $AB = I \Leftrightarrow BA = I$.	
	• True False	$\rightarrow Vrai$
()	• False	$\rightarrow Faux$
(580)	q-580	
	TRUE/FALSE marked out of 1.0	
	Tr(AB) = Tr(BA).	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(FO1)		$\rightarrow raux$
(581)	q-581	
	TRUE/FALSE marked out of 1.0 Pour A P C \subset M (ID) $T_{m}(APC) = T_{m}(CPA)$	
	Pour $A, B, C \in M_n(\mathbb{R}), Tr(ABC) = Tr(CBA)$	
	 True False √ 	$\begin{array}{c} \rightarrow Vrai \\ \rightarrow Faux \end{array}$
	·	, 1000

 $\begin{array}{cc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

• True \checkmark

• False

(582) **q-582**

TRUE/FALSE marked out of 1.0

Pour $A, B, C \in M_n(\mathbb{R}), Tr(ABC) = Tr(BCA)$

- True \checkmark
- False \rightarrow Faux

(583) **q-583**

True/False marked out of 1.0

 $Tr(AB) = Tr(A) \cdot Tr(B).$

- True $\rightarrow Vrai$
- False \checkmark \rightarrow Faux

(584) **q-584**

TRUE/FALSE marked out of 1.0

Tr(A + B) = Tr(A) + Tr(B).

- True \checkmark
- False \rightarrow Faux

(585) **q-585**

TRUE/FALSE marked out of 1.0

 $^{t}(AB) = {}^{t}B \cdot {}^{t}A$

- True \checkmark \rightarrow Vrai
- False \rightarrow Faux

(586) **q-586**

TRUE/FALSE marked out of 1.0

Toute matrice carrée réelle est somme d'une matrice symétrique et d'une antisymétrique.

- True \checkmark \rightarrow Vrai
- False \rightarrow Faux

(587) **q-587**

TRUE/FALSE marked out of 1.0

Les lignes d'une matrice sont indépendantes ssi ses colonnes le sont également.

- ullet True o Vrai
- False ✓ → Faux

(588) **q-588**

True/False marked out of 1.0

Une matrice carrée est inversible ssi son noyau est vide.

• True • False \checkmark → Faux

(589) **q-589**

TRUE/FALSE marked out of 1.0

Une matrice est inversible ssi son noyau est réduit à zéro.

- True
 False √

 Faux
- (590) **q-590**

TRUE/FALSE marked out of 1.0

Si la k-ème colonne de A est nulle, la k-ème colonne de AB l'est aussi.

	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(591)	q-591	
	True/False marked out of 1.0	
	Si la k -ème colonne de A est nulle, la k -ème colonne de BA l'est aussi.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(592)	q-592 True/False marked out of 1.0	
	Si une matrice carrée vérifie $A^5 + A = I$, alors elle est inversible	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(593)	q-593 True/False marked out of 1.0	
	Si une matrice carrée vérifie $A^k = I$ pour un entier k , alors elle est inversible.	
	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(594)	q-594	
	True/False marked out of 1.0	
	Si une matrice vérifie $A^p=0$ pour un certain entier p , alors elle n'est jamais inversible.	
	 True √ False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(595)	q-595	
	TRUE/FAISE marked out of 1.0 Si douve matrices non pulles vénificant AP = 0 avenue d'entre elles n'est inversible	
	Si deux matrices non nulles vérifient $AB=0$, aucune d'entre elles n'est inversible.	17
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(596)	q-596	
	True/False marked out of 1.0	
	Si deux matrices vérifient $AB=0$, alors $A=0$ ou $B=0$.	
	 True False √ 	$\rightarrow Vrai$
(507)		$\rightarrow Faux$
(597)	q-597 True/False marked out of 1.0	
	Soit A une matrice. S'il existe $B \neq 0$ tq $AB = 0$, alors $BA = 0$ aussi.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(598)	q-598	
	True/False marked out of 1.0	
	Si une matrice carrée vérifie $A^2 + 2A = 0$, alors $A + I$ est inversible et son propre inverse.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(599) **q-599** TRUE/FALSE marked out of 1.0 Si une matrice carrée vérifie $A^2 + 2A = 0$, alors soit A = 0, soit A = -2I• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (600) **q-600** marked out of 1.0 TRUE/FALSE La somme de deux complexes de module un est de module un. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (601) **q-601** marked out of 1.0 TRUE/FALSE La somme de deux racines de l'unité est une racine de l'unité. • True $\rightarrow \textit{Vrai}$ • False ✓ \rightarrow Faux (602) **q-602** marked out of 1.0 Le produit de deux complexes de module un est de module un. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (603) **q-603** TRUE/FALSE marked out of 1.0 Le produit de deux racines de l'unité est une racine de l'unité. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (604) **q-604** marked out of 1.0 Le produit de deux racines n-èmes de l'unité est une racine n-ème de l'unité. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (605) **q-605** TRUE/FALSE marked out of 1.0 Le produit d'une racine de l'unité par un complexe de module un est de module un. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (606) **q-606**

(607) **q-607**

TRUE/FALSE

• True

• False ✓

TRUE/FALSE marked out of 1.0 $\frac{3}{5} + i \frac{4}{5} \text{ est de module un.}$

marked out of 1.0

 $\rightarrow Vrai$

 \rightarrow Faux

Le produit d'une racine de l'unité par un complexe de module un est une racine de l'unité.

	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(608)	q-608	
	TRUE/FALSE marked out of 1.0	
	-i est une racine de l'unité.	
	• True √	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(609)	q-609	
	TRUE/FALSE marked out of 1.0	
	$e^{i\pi/n}$ est une racine n -ème de l'unité.	
	• True	$\rightarrow Vrai$
	• False ✓	$\rightarrow Faux$
(610)	q-610	
	True/False marked out of 1.0	
	$\frac{3}{5} + i\frac{4}{5}$ est une racine de l'unité.	
	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(011)		\rightarrow $raux$
(611)	q-611	
	TRUE/FAISE marked out of 1.0	
	$1+i\sqrt{3}$ est une racine de l'unité.	
	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(612)	q-612	7 1 0 0 0 0
(012)	True/False marked out of 1.0	
	$\frac{1}{2} + i \frac{\sqrt{3}}{2}$ est une racine cubique de l'unité.	
	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(619)	q-613	, 1000
(013)	True/False marked out of 1.0	
	$\frac{1}{2} + i\frac{\sqrt{3}}{2}$ est une racine de l'unité.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(614)	q-614	
(014)	True/False marked out of 1.0	
	$\mathbb{U}_3\subset\mathbb{U}_6.$	
	• True ✓	$ ightarrow \mathit{Vrai}$
	• False	$\rightarrow Faux$
(615)	q-615	
	TRUE/FALSE marked out of 1.0	
	$\overline{\mathbb{U}_4\cap\mathbb{U}_5}=\emptyset.$	
	• True	$ ightarrow \mathit{Vrai}$
	• False ✓	$\rightarrow Faux$

 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(625) q-625	
TRUE/FALSE marked out of 1.0	
Si $p q$, alors $\mathbb{U}_p \subset \mathbb{U}_q$.	
 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(626) q-626	
TRUE/FALSE marked out of 1.0	
$x \ge 0 \Rightarrow x > 0$ est toujours fausse.	
• True	$\rightarrow Vrai$
• False ✓	\rightarrow Faux
(627) q-627	
TRUE/FALSE marked out of 1.0	
$x > 0 \Rightarrow x \ge 0$ est fausse si $x = -1$.	
 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
	-7 Paux
(628) q-628 True/False marked out of 1.0	
$x > 0 \Rightarrow x \ge 0$ est parfois vraie, parfois fausse, ça dépend de x .	
• True	$\rightarrow Vrai$
• False ✓	\rightarrow Faux
(629) q-629	
TRUE/FALSE marked out of 1.0	
L'assertion « $x>0 \Rightarrow x\geq 0$ » est parfois vraie, parfois fausse, ça dépend de x .	
• True	$\rightarrow \textit{Vrai}$
• False ✓	\rightarrow Faux
(630) q-630	
TRUE/FALSE marked out of 1.0	
L'assertion « $x \geq 3 \Rightarrow x \geq 2$ » est vraie quel que soit le paramètre réel x .	
 True √ False 	$\rightarrow Vrai$ $\rightarrow Faux$
(631) q-631	, 1 0 000
TRUE/FALSE marked out of 1.0	
L'assertion « $x \ge 3 \Rightarrow x \ge 2$ » est vraie si $x = 0$.	
 • True ✓	$\rightarrow Vrai$
• True ✓	
 True √ False 	
• True ✓ • False (632) q-632	

(633) **q-633** TRUE/FALSE marked out of 1.0 L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est parfois vraie, parfois fausse, ça dépend de x. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (634) **q-634** marked out of 1.0 TRUE/FALSE L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si $x \ge 3$. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (635) **q-635** TRUE/FALSE marked out of 1.0 L'assertion « $x \geq 2 \Rightarrow x \geq 3$ » est vraie si et seulement si $x \geq 3.$ • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (636) **q-636** marked out of 1.0 L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si et seulement si $(x \ge 3$ ou x < 2). • True ✓ $\rightarrow Vrai$ False \rightarrow Faux (637) **q-637** TRUE/FALSE marked out of 1.0 L'assertion « $x \geq 2 \Rightarrow x \geq 3$ » est vraie si x = 4. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (638) **q-638** True/False marked out of 1.0 L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si x = 2. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (639) **q-639** True/False marked out of 1.0 L'assertion « $x \ge 2 \Rightarrow x \ge 3$ » est vraie si x = 1. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (640) **q-640** True/False marked out of 1.0

(641) **q-641**

TRUE/FALSE marked out of 1.0

• True ✓

• False

L'assertion « $x \ge 2 \Leftrightarrow x \ge 3$ » est vraie si et seulement si $x \ge 3$.

L'assertion « $x \geq 2 \Leftrightarrow x \geq 3$ » est vraie si $x \geq 3$.

 $\rightarrow Vrai$

 \rightarrow Faux

(642)	q-642	
	TRUE/FALSE marked out of 1.0	
	L'assertion « $x \geq 2 \Leftrightarrow x \geq 3$ » est vraie si et seulement si $(x \geq 3$ ou $x < 2)$.	
	• True ✓	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(643)	q-643	
	True/False marked out of 1.0	
	L'assertion « $x \le 2 \Rightarrow x \ge 3$ » est toujours fausse.	. .
	 True False √ 	$\begin{array}{c} \rightarrow Vrai \\ \rightarrow Faux \end{array}$
(644)	q-644	
(-)	True/False marked out of 1.0	
	L'assertion « $x \le 2 \Rightarrow x \ge 3$ » est vraie si $x = 2, 5$.	
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(645)	q-645	
	TRUE/FALSE marked out of 1.0	
	L'assertion « $x \le 2 \Rightarrow x \ge 3$ » est vraie si $x = 2$.	
	 True False √ 	$\begin{array}{c} \rightarrow Vrai \\ \rightarrow Faux \end{array}$
(646)	q-646	, 1000
(010)	True/False marked out of 1.0	
	L'assertion « $x \le 2 \Rightarrow x \ge 3$ » est vraie si et seulement si $x > 2$.	
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(647)	q-647	
	TRUE/FALSE marked out of 1.0	
	L'assertion « $x \le 2 \Rightarrow x \ge 3$ » est vraie si $x \in]2;3[$.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(619)		7 1 6 6 2
(040)	q-648 True/False marked out of 1.0	
	L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est toujours fausse.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(649)	q-649	
	TRUE/FALSE marked out of 1.0	
	L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est vraie si $x = 2, 5$.	
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux

• True

• False ✓

 $\rightarrow Vrai$

 \rightarrow Faux

(650) **q-650** TRUE/FALSE marked out of 1.0 L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est vraie si $x \ge 3$. $\rightarrow Vrai$ • True • False √ \rightarrow Faux (651) **q-651** TRUE/FALSE marked out of 1.0 L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est vraie si et seulement si $x \ge 3$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (652) **q-652** TRUE/FALSE marked out of 1.0 L'assertion « $x \le 2 \Leftrightarrow x \ge 3$ » est vraie si et seulement si $x \in]2;3[$. • True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$ (653) **q-653** marked out of 1.0 L'assertion « $x \ge 2 \Rightarrow x \le 3$ » est vraie si et seulement si $x \le 3$. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (654) **q-654** TRUE/FALSE marked out of 1.0 L'assertion « $x \geq 2 \Rightarrow x \leq 3$ » est vraie si et seulement si $x \in]2;3[.$ $\rightarrow \textit{Vrai}$ • True • False √ \rightarrow Faux (655) **q-655** True/False marked out of 1.0 L'assertion « $x \ge 2 \Rightarrow x \le 3$ » est fausse si x < 2. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (656) **q-656** TRUE/FALSE marked out of 1.0 La somme des angles d'un quadrilatère convexe vaut 360°. $\rightarrow Vrai$ • True ✓

• False \rightarrow Faux

(657) **q-657**

TRUE/FALSE marked out of 1.0

La somme des angles d'un quadrilatère vaut 360°.

• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

(658) **q-658**

TRUE/FALSE marked out of 1.0

Si ABCD est un carré, les diagonales se coupent en leur milieu à angle droit.

	• False	\rightarrow Faux
(659)	\mathbf{q} -659	
	TRUE/FALSE marked out of 1.0	
	Si $[AC]$ et $[BD]$ se coupent en leur milieu à angle droit, alors $ABCD$ est un carré.	
	• True	$\rightarrow \textit{Vrai}$
	• False ✓	\rightarrow Faux
(660)	q-660	
	True/False marked out of 1.0	
	Si $[AC]$ et $[BD]$ se coupent en leur milieu et ont même longueur, alors $ABCD$ est un carré.	
	 True False √ 	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(661)	q-661	
	TRUE/FALSE marked out of 1.0	
	Si $[AC]$ et $[BD]$ se coupent en leur milieu et ont même longueur, alors $ABCD$ est un losange.	
	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(662)	q-662	
(002)	True/False marked out of 1.0	
	Si $ABCD$ est un rectangle, les diagonales se coupent en leur milieu.	
	• True ✓	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(663)	q-663	
	TRUE/FALSE marked out of 1.0	
	Si $ABCD$ est un rectangle, les diagonales se coupent à angle droit.	
	• True	$\rightarrow \textit{Vrai}$
	• False ✓	\rightarrow Faux
(664)	q-664	
	TRUE/FALSE marked out of 1.0	
	ABCD est un parallélogramme si et seulement si ses diagonales se coupent en leur milieu.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(005)		$\rightarrow raux$
(665)	q-665	
	ABCD est un parallélogramme si et seulement si $AB = CD$.	
		. 17
	 True False √ 	$\begin{array}{c} \rightarrow Vrai \\ \rightarrow Faux \end{array}$
(666)	q-666	
` /	TRUE/FALSE marked out of 1.0	
	Si $(AB)//(CD)$, alors $ABCD$ est un parallélogramme.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux

 $\rightarrow \ \textit{Vrai}$

• True \checkmark

(667)	q-667	
	TRUE/FALSE marked out of 1.0	
	Si $AB = CD$, alors $ABCD$ est un paralléloramme.	
	• True	$\rightarrow Vrai$
	• False √	$\rightarrow Faux$
(668)	q-668	
	TRUE/FALSE marked out of 1.0	
	Si $AB = CD$ et $(BC)//(AD)$ alors $ABCD$ est un parallélogramme.	
	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(660)		7 I www
(669)	q-669 True/False marked out of 1.0	
	Si $ABCD$ est un parallélogramme, alors $AB = CD$ et $(BC)//(AD)$.	
		T7 .
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(670)	q-670	
(0.0)	TRUE/FALSE marked out of 1.0	
	Tout parallélogramme avec deux côtés égaux est un carré	
	• True	$\rightarrow Vrai$
	• False ✓	$\rightarrow Faux$
(671)	q-671	
	TRUE/FALSE marked out of 1.0	
	Tout parallélogramme avec deux côtés consécutifs égaux est un carré	
	• True	$\rightarrow Vrai$
	• False ✓	$\rightarrow Faux$
(672)	q-672	
	TRUE/FALSE marked out of 1.0	
	Tout parallélogramme avec un angle droit est un rectangle	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(679)		$\rightarrow raux$
(673)	q-673	
	Tout parellélogramme avec des disconsles de même language est un rectangle	
	Tout parallélogramme avec des diagonales de même longueur est un rectangle	T7 .
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(674)	q-674	
(0)	TRUE/FALSE marked out of 1.0	
	ABCD est un trapèze si et seulement si $AB = CD$.	
	• True	$\rightarrow Vrai$
	• False ✓	$\rightarrow Faux$
(675)	q-675	
	True/False marked out of 1.0	
	$\overrightarrow{Si} AB = CD$ alors $ABCD$ est un trapèze.	

(676)	q-676 True/False marked out of 1.0	
	Si $AB = CD$ alors $ABCD$ est un trapèze isocèle.	
	 True False ✓ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(677)	q-677	
	True/False marked out of 1.0	
	Si $AB = CD$ et $(AB)//(CD)$ alors $ABCD$ est un trapèze isocèle.	
	 True False √ 	$\begin{array}{c} \rightarrow Vrai \\ \rightarrow Faux \end{array}$
(678)	q-678	
	True/False marked out of 1.0	
	Si $ABCD$ est un trapèze isocèle alors ses diagonales se coupent en leur milieu.	
	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(679)	q-679	
	True/False marked out of 1.0	
	Si $ABCD$ est un losange, alors ses diagonales se coupent en leur milieu.	
	• True ✓	$\rightarrow Vrai$
(000)	• False	$\rightarrow Faux$
(680)	q-680 True/False marked out of 1.0	
	Si $[AC]$ et $[BD]$ se coupent en leur milieu à angle droit, alors $ABCD$ est un losange.	
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(681)	q-681	
	TRUE/FALSE marked out of 1.0	
	Si $AB = BC = CD = DA$, alors $(AC) \perp (BD)$.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(682)	q-682	
	True/False marked out of 1.0	
	Tout losange avec des diagonales de même longueur est un rectangle.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(692)	q-683	$\rightarrow raux$
(000)	True/False marked out of 1.0	
	Les sommets d'un trapèze isocèle sont sur un même cercle.	
	• True √	$\rightarrow Vrai$
	• False	\rightarrow Faux

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

• True

• False ✓

(684) **q-684**

TRUE/FALSE marked out of 1.0

Les sommets d'un losange sont sur un même cercle.

 $\rightarrow Vrai$ • True \rightarrow Faux

• False ✓

(685) **q-685**

TRUE/FALSE marked out of 1.0

 $\forall x \in \mathbb{R}, \ x > 3.$

 $\rightarrow Vrai$ • True

• False ✓ \rightarrow Faux

(686) **q-686**

TRUE/FALSE marked out of 1.0

 $\exists x \in \mathbb{R}, \ x > 3.$

 $\rightarrow Vrai$ • True ✓

• False \rightarrow Faux

(687) **q-687**

TRUE/FALSE marked out of 1.0

Le contraire de $\forall x \in \mathbb{R}, x > 3$ est équivalent à 2 + 2 = 4.

 $\rightarrow Vrai$ • True ✓

• False \rightarrow Faux

(688) **q-688**

TRUE/FALSE marked out of 1.0

Le contraire de $\exists x \in \mathbb{R}, \ x > 3$ est équivalent à 2 + 2 = 4.

 $\rightarrow Vrai$

• False ✓ \rightarrow Faux

(689) **q-689**

TRUE/FALSE marked out of 1.0

 $\exists x \in \mathbb{R}, (x+2)^2 > 3.$

• True ✓ $\rightarrow Vrai$

• False \rightarrow Faux

(690) **q-690**

TRUE/FALSE marked out of 1.0

 $\forall x \in \mathbb{R}, \ (x+2)^2 > 3.$

• True $\rightarrow Vrai$

• False ✓ \rightarrow Faux

(691) **q-691**

marked out of 1.0 TRUE/FALSE

 $\forall x \in \mathbb{R}_+, (x+2)^2 > 3.$

• True ✓ $\rightarrow Vrai$

• False \rightarrow Faux

(692) **q-692**

TRUE/FALSE marked out of 1.0

 $\forall x \in \mathbb{R}, \ x > 3$ est équivalente à 2 + 2 = 4.

 $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (693) **q-693** TRUE/FALSE marked out of 1.0 $\forall x \in \mathbb{R}, \ 1/x > -3.$ • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (694) **q-694** TRUE/FALSE marked out of 1.0 $\forall x \in \mathbb{R}^*, \ 1/x > -3.$ $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (695) **q-695** TRUE/FALSE marked out of 1.0 $\exists x \in \mathbb{R}^*, \ 1/x > -3.$ • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (696) **q-696** TRUE/FALSE marked out of 1.0 $\forall x \in \mathbb{R}_+^*, \ 1/x > -3.$ • True \checkmark $\rightarrow \ \ Vrai$ • False \rightarrow Faux (697) **q-697** TRUE/FALSE marked out of 1.0 $\forall x \in \mathbb{R}, \ \sqrt{x} > 3.$ $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (698) **q-698** TRUE/FALSE marked out of 1.0 $\forall x \in \mathbb{R}_+, \sqrt{x} > 3.$ $\rightarrow Vrai$ • True • False \checkmark \rightarrow Faux (699) **q-699** TRUE/FALSE marked out of 1.0 $\exists x \in \mathbb{R}_+, \ \sqrt{x} > 3.$ • True \checkmark $\rightarrow Vrai$ • False \rightarrow Faux

 $\forall x \in \mathbb{R}_+, \ \sqrt{x}^3 > 0.$

• True • False \checkmark → Faux

(708) **q-708**

marked out of 1.0 TRUE/FALSE

Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x \leq 0$.

• True ✓ $\rightarrow Vrai$ • False \rightarrow Faux

(709) **q-709**

TRUE/FALSE marked out of 1.0

Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x < 0$.

	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(710)	q-710 True/False marked out of 1.0	
	Le contraire de $\forall x \in \mathbb{R}, \ x > 0$ est $\exists x \in \mathbb{R}, \ x > 0$. • True • False \checkmark	$\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$
(711)	q-711 $ ext{marked out of 1.0}$ $ ext{} orall n \in \mathbb{N}, \ n^2 \leq 2^n$	
	$\forall n \in \mathbb{N}, \ n \leq 2$ • True • False \checkmark	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(712)	$egin{align*} \mathbf{q ext{-}712} & & & & & & & & & & & & & & & & & & &$	
	• True \checkmark • False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(713)	q-713 $oxed{ egin{array}{c} oxed{ True/False} & oxed{ marked out of 1.0} \ \hline \exists n \in \mathbb{N}^*, \ 1/n < 1/\pi. \end{array} }$	
	 True √ False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(714)	q-714	
	TrueFalse √	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(715)	$egin{aligned} \mathbf{q ext{-}715} \ \hline egin{aligned} & & & & & \\ \hline & & & & & \\ \hline & & & & \\ \hline & & & &$	
	 True √ False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(716)	$egin{align*} \mathbf{q ext{-}716} \ \hline egin{align*} & & & & & & & & & & & & & & & & & & &$	
	 True False ✓ 	$\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$
(717)	$egin{array}{c} \mathbf{q ext{-}717} \ \hline egin{array}{c} \mathbb{T}_{ ext{TRUE/FALSE}} \end{array} egin{array}{c} \mathbb{T}_{ ext{marked out of 1.0}} \ \hline orall n \in \mathbb{N}, \ 1/\cos(n) \geq 1. \end{array}$	
	• True √ • False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(742) **q-742**

$$\sqrt{72} = 3\sqrt{8}$$

- True ✓
- False

 $\begin{array}{ccc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(743) **q-743**

$$\sqrt{72} = 6\sqrt{2}$$

- True ✓
- False

 $\begin{array}{c} \rightarrow & \mathit{Vrai} \\ \rightarrow & \mathit{Faux} \end{array}$

(744) **q-744**

$$\sqrt{72} = 2\sqrt{9}$$

- True
- False \checkmark

 $\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$

(745) **q-745**

$$\sqrt{2} + \sqrt{8} = 3\sqrt{2}$$

- True \checkmark
- False

 $\rightarrow Vrai$ $\rightarrow Faux$

(746) **q-746**

$$\sqrt{3} + \sqrt{2} = \sqrt{5}$$

- True
- False ✓

- $\rightarrow Vrai$
- \rightarrow Faux

(747) **q-747**

True/False marked out of 1.0
$$\sqrt{3} + \sqrt{2} = \sqrt{6}$$

- True
- False \checkmark

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(748) **q-748**

• True √

 $\sqrt{27} + \sqrt{3} = 4\sqrt{3}$

• False

 $\begin{array}{c} \rightarrow & \mathit{Vrai} \\ \rightarrow & \mathit{Faux} \end{array}$

(749) **q-749**

$$\sqrt{12} + \sqrt{3} = 5\sqrt{3}$$

- True
- False ✓

 $\rightarrow \textit{Vrai}$

(750) **q-750**

$$\sqrt{18} - \sqrt{2} = \sqrt{8}$$

- True ✓
- False

 $\begin{array}{ccc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(751) **q-751**

$$\sqrt{20} + 7\sqrt{5} = \sqrt{15}$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(752) **q-752**

• True

 $2\sqrt{12} + 4\sqrt{3} = 4\sqrt{6}$

• False \checkmark

 $\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$

(753) **q-753**

$$6\sqrt{5}<5\sqrt{6}$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(754) **q-754**

$$3\sqrt{5} < 2\sqrt{11}$$

- True
- False ✓

- $\rightarrow \textit{Vrai}$
- \rightarrow Faux

(755) **q-755**

$$3\sqrt{64} + 2\sqrt{49} = 48$$

- True
- False \checkmark

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(756) **q-756**

$$12\sqrt{121} = 132$$

- True \checkmark
- False

 $\rightarrow Vrai$ $\rightarrow Faux$

(757) **q-757**

$$2\sqrt{81} + 4\sqrt{49} = 36$$

- True
- False \checkmark

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(758) **q-758**

$$(\sqrt{2}+2)(\sqrt{2}-1)=\sqrt{2}$$

- True ✓
- False

 $\begin{array}{ccc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(759) **q-759**

True/False marked out of 1.0

$$(\sqrt{2}+2)(\sqrt{2}+1) = 2+3\sqrt{2}$$

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(760) **q-760**

TRUE/FALSE marked out of 1.0

$$(\sqrt{2}+1)(\sqrt{2}+1) = 3+\sqrt{8}$$

- True ✓
- False

 $\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(761) **q-761**

TRUE/FALSE marked out of 1.0

$$(\sqrt{3} - 1)(1 - \sqrt{3}) = -4 - 2\sqrt{3}$$

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(762) **q-762**

True/False marked out of 1.0

$$\sqrt{2}(\sqrt{2}+\sqrt{3})=2+\sqrt{6}$$

- True √
- False

- $\rightarrow \ \ Vrai$
- \rightarrow Faux

(763) **q-763**

True/False marked out of 1.0

$$\sqrt{2}(\sqrt{8} - \sqrt{2}) = 2$$

- True ✓
- False

 $\begin{array}{cc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(764) **q-764**

TRUE/FALSE marked out of 1.0

$$(\sqrt{5} + \sqrt{2})\sqrt{10} = 5\sqrt{2} + 2\sqrt{5}$$

- True ✓
- False

 $\rightarrow Vrai$ $\rightarrow Faux$

(765) **q-765**

TRUE/FALSE marked out of 1.0

$$(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3}) = 1$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$

(766) **q-766**

$$\sqrt{3}(\sqrt{12} - \sqrt{3}) = 3$$

- True ✓
- False

 $\begin{array}{ccc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(767) **q-767**

$$(\sqrt{18} + \sqrt{8})\sqrt{2} = 10$$

- True ✓
- False

 $\begin{array}{ccc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(768) **q-768**

- $\sqrt{2}(\sqrt{18} \sqrt{8}) = 4$
 - True
 - False \checkmark

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(769) **q-769**

$$\sqrt{3+2\sqrt{2}} = 1 + \sqrt{2}$$

- True ✓
- False

 $\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(770) **q-770**

$$\sqrt{\sqrt{4}} = \sqrt{2}$$

- True ✓
- False

 $\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(771) **q-771**

True/False marked out of 1.0
$$\sqrt{\sqrt{64}}=4$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(772) **q-772**

$$\sqrt{\sqrt{8}} = 2$$

- True
- False \checkmark

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(773) **q-773**

$$\sqrt{\sqrt{128}} = 4$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$

(774) **q-774**

$$\sqrt{6+2\sqrt{2}} = 2+2\sqrt{2}$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

· Taise

- V 1 V - 1
- True √False

 $\begin{array}{cc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(776) **q-776**

(775) **q-775**

True/false marked out of 1.0
$$\sqrt{3}(\sqrt{6}+\sqrt{8}) = 3\sqrt{2}+2\sqrt{3}$$

- True
- False √

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(777) **q-777**

$$(\sqrt{3}+1)(3+\sqrt{3}) = 6+4\sqrt{3}$$

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(778) **q-778**

$$\frac{\sqrt{60}}{\sqrt{3}} = 2\sqrt{5}$$

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(779) **q-779**

$$\frac{\sqrt{3}}{\sqrt{20}} = \frac{1}{2}\sqrt{\frac{3}{5}}$$

- True ✓
- False

- $\rightarrow \ \textit{Vrai}$
- \rightarrow Faux

(780) **q-780**

$$\frac{3}{\sqrt{6}} = \frac{6}{\sqrt{2}}$$

- True
- False \checkmark

- $\rightarrow Vrai$
- \rightarrow Faux

(781) **q-781**

$$\frac{6}{\sqrt{2}} = \sqrt{3}$$

ullet True o Vrai

• False \checkmark

(782) **q-782**

- True \checkmark
- False $\rightarrow Faux$

(783) **q-783**

True/False marked out of 1.0
$$\frac{6}{\sqrt{12}} = \sqrt{3}$$

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (784) **q-784**

True/False marked out of 1.0
$$\frac{1}{\sqrt{2}+1} = \sqrt{2}-1$$

- True \checkmark False \rightarrow Vrai \rightarrow Faux
- (785) **q-785**

True/False marked out of 1.0
$$\frac{2}{\sqrt{3}-1} = 1 + \sqrt{3}$$

- True \checkmark False $\rightarrow Vrai$
- (786) **q-786**

True/False marked out of 1.0
$$\frac{\sqrt{2}-1}{\sqrt{2}+1}=3-\sqrt{8}$$

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (787) **q-787**

- True $\rightarrow Vrai$ False \checkmark
- (788) **q-788**

True/False marked out of 1.0
$$\frac{1}{\sqrt{8}} + \frac{1}{\sqrt{20}} = \frac{\sqrt{5} + \sqrt{2}}{4\sqrt{10}}$$

• True $\rightarrow Vrai$ • False \checkmark

(789) **q-789**

$$\frac{\sqrt{2}}{\sqrt{3}} + \frac{\sqrt{3}}{\sqrt{2}} = \frac{5}{\sqrt{6}}$$

- True ✓
- False

 $\begin{array}{c} \rightarrow & \mathit{Vrai} \\ \rightarrow & \mathit{Faux} \end{array}$

(790) **q-790**

True/False marked out of 1.0

$$\frac{\sqrt{48}+\sqrt{75}}{\sqrt{3}}=9$$

- True ✓
- False

 $\rightarrow Vrai$

 \rightarrow Faux

(791) **q-791**

True/False marked out of 1.0

$$\frac{\sqrt{2}}{\sqrt{8} - \sqrt{2}} = 1$$

- True \checkmark
- False

 $\rightarrow Vrai$

 \rightarrow Faux

(792) **q-792**

TRUE/FALSE marked out of 1.0

$$\frac{2}{\sqrt{5}+1} = \frac{\sqrt{5}-1}{2}$$

- True \checkmark
- False

 $\rightarrow \ \ Vrai$

 \rightarrow Faux

(793) **q-793**

TRUE/FALSE marked out of 1.0

$$\frac{2}{\sqrt{3}+1} = \frac{\sqrt{3}-1}{2}$$

- True
- False ✓

 $\rightarrow \textit{Vrai}$

 \rightarrow Faux

(794) **q-794**

TRUE/FALSE marked out of 1.0

$$\overline{\sqrt{3} + \frac{1}{\sqrt{3}}} = \frac{4}{\sqrt{3}}$$

- True \checkmark
- False

 $\rightarrow \ \mathit{Vrai}$

 \rightarrow Faux

(795) **q-795**

TRUE/FALSE marked out of 1.0

$$\sqrt{2} + \frac{1}{\sqrt{2}} = 3\sqrt{2}$$

- True
- False ✓

 $\rightarrow Vrai$

 \rightarrow Faux

(796) **q-796**

$$\frac{1}{3+\sqrt{5}}=\frac{3-\sqrt{5}}{2}$$

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(797) **q-797**

- True
- False \checkmark

- $\rightarrow \textit{Vrai}$
- \rightarrow Faux

(798) **q-798**

$$\frac{1}{1+\sqrt{3}} = \frac{1-\sqrt{3}}{2}$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(799) **q-799**

$$\frac{1}{\sqrt{5} + \sqrt{3}} = \sqrt{5} - \sqrt{3}$$

- True
- False ✓

- $\rightarrow Vrai$
- \rightarrow Faux

(800) **q-800**

$$\frac{1}{\sqrt{2} + \sqrt{8}} = \frac{\sqrt{2}}{6}$$

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(801) **q-801**

- True ✓
- False

 $\begin{array}{c} \rightarrow & \mathit{Vrai} \\ \rightarrow & \mathit{Faux} \end{array}$

(802) **q-802**

$$\boxed{ \frac{1}{\sqrt{3}+\sqrt{4}} = \sqrt{3}-2 }$$

- True
- False ✓

- $\rightarrow Vrai$
- \rightarrow Faux

(803) **q-803**

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(804) **q-804**

TRUE/FALSE marked out of 1.0

$$\frac{\sqrt{2}}{\sqrt{3}} + \frac{1}{\sqrt{6}} = \frac{\sqrt{3}}{\sqrt{2}}$$

- True ✓
- $\rightarrow \ \ Vrai$ • False \rightarrow Faux

(805) **q-805**

TRUE/FALSE marked out of 1.0

$$\sqrt{2} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

• True ✓ $\rightarrow Vrai$

 \rightarrow Faux

• False

(806) **q-806**

TRUE/FALSE marked out of 1.0

3/5 est une solution de l'équation 5x + 4 = 7.

- True ✓ $\rightarrow Vrai$
- False \rightarrow Faux

(807) **q-807**

marked out of 1.0 TRUE/FALSE

3/2 est une solution de l'équation 4x + 1 = 7.

- True ✓ $\rightarrow Vrai$
- False \rightarrow Faux

(808) **q-808**

TRUE/FALSE marked out of 1.0

3/4 est une solution de l'équation 4x - 3 = 6.

- $\rightarrow Vrai$
- False ✓ \rightarrow Faux

(809) **q-809**

TRUE/FALSE marked out of 1.0 5/6 - 3/4 = 1/12.

- True ✓ $\rightarrow Vrai$
- False \rightarrow Faux

(810) **q-810**

TRUE/FALSE marked out of 1.0 7/9 + 5/6 = 29/18.

• True \checkmark $\rightarrow \ \ Vrai$ • False $\rightarrow \mathit{Faux}$

(811) **q-811**

TRUE/FALSE marked out of 1.0

11/4 - 13/8 = 9/8.

- True \checkmark $\rightarrow Vrai$
- False \rightarrow Faux

Soit $z \in \mathbb{C}$. On a $\overline{z}^2 = \overline{z^2}$.

• True ✓

• False

 $\begin{array}{c} \rightarrow & \mathit{Vrai} \\ \rightarrow & \mathit{Faux} \end{array}$

(821) **q-821**

TRUE/FALSE marked out of 1.0

Soient z et z' deux complexes. On a $\overline{z+z'}=\overline{z}+\overline{z'}$.

• True v

 $\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

• False

(822) **q-822**

TRUE/FALSE marked out of 1.0

Soient z et z' deux complexes. On a |z + z'| = |z| + |z'|.

• True

• False √

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(823) **q-823**

TRUE/FALSE marked out of 1.0

(2+i)(1+2i) = 5i

• True \checkmark

 $ightarrow \ Vrai$

• False

(824) **q-824**

TRUE/FALSE marked out of 1.0

(2+i)(1-2i) = -i

• True

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

 \rightarrow Faux

• False ✓

(825) **q-825**

TRUE/FALSE marked out of 1.0

 $|2+i| = \sqrt{3}.$

• True

 $\rightarrow \textit{Vrai}$

• False ✓

 \rightarrow Faux

(826) **q-826**

TRUE/FALSE marked out of 1.0

 $|2+i| = \sqrt{5}.$

• True ✓

 $\rightarrow Vrai$

• False

 \rightarrow Faux

(827) **q-827**

TRUE/FALSE marked out of 1.0

 $|4+i| \ge |3+3i|$.

TrueFalse √

 $\rightarrow Vrai$ $\rightarrow Faux$

(828) **q-828**

TRUE/FALSE marked out of 1.0

 $|3+i| \ge |2+2i|$.

• True \checkmark

 $\rightarrow Vrai$

• False

 \rightarrow Faux

(837) **q-837**

TRUE/FALSE marked out of 1.0

Si x est un réel, alors $(\sqrt{x^2})^3 = x^3$.

• True $\rightarrow Vrai$ • False \checkmark

(838) **q-838**

TRUE/FALSE marked out of 1.0 $(a+b)^3 = a^3 + 3ab + b^3$

• True $\rightarrow Vrai$

• False \checkmark \rightarrow Faux

(839) **q-839**

TRUE/FALSE marked out of 1.0 $(a+b)^3 = a^3 + 3ab + 3ba + b^3$

• True $\rightarrow Vrai$ • False \checkmark

(840) **q-840**

True/False marked out of 1.0 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

• True \checkmark • False $\rightarrow Vrai$ • Faux

(841) **q-841**

TRUE/FALSE marked out of 1.0 $a^3 - b^3 = (a - b)(a^2 + ab + b^2).$

• True \checkmark • False $\rightarrow Vrai$ $\rightarrow Faux$

(842) **q-842**

TRUE/FALSE marked out of 1.0

La dérivée de $x \mapsto \sin(3+2x)$ est $x \mapsto 3\cos(3+2x)$.

(843) **q-843**

TRUE/FALSE marked out of 1.0

La dérivée de $x \mapsto \cos(3-2x)$ est $x \mapsto 2\sin(3-2x)$.

• True \checkmark • False $\rightarrow Vrai$

(844) **q-844**

True/False marked out of 1.0

La dérivée de $x \mapsto \sin(3x+2)$ est $x \mapsto 3\cos(3x+2)$.

(845) **q-845**

True/False marked out of 1.0

La dérivée de $x \mapsto \cos(2x+3)$ est $x \mapsto 2\sin(2x+3)$.

True
 False √

Faux

(846) **q-846**

TRUE/FALSE marked out of 1.0

Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt{(x^2 - 5)}$ est $]-\infty, -\sqrt{5}[\cup]\sqrt{5}, +\infty[$.

- ullet True o Vrai
- False ✓

 → Faux

(847) **q-847**

TRUE/FALSE marked out of 1.0

Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt(5-x^2)$ est $[-\sqrt{5},\sqrt{5}]$.

- True \checkmark \rightarrow Vrai
- False $\rightarrow Vrai$

(848) **q-848**

TRUE/FALSE marked out of 1.0

Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt{(5 - \ln x)}$ est $[0, e^5]$.

- True \checkmark \rightarrow Vrai
- False $\rightarrow Faux$

(849) **q-849**

TRUE/FALSE marked out of 1.0

Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt{(\ln x)}$ est \mathbb{R}_+^* .

- ullet True o Vrai
- False \checkmark \rightarrow Faux

(850) **q-850**

True/False marked out of 1.0

Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\ln(5-\sqrt{x})$ est [0,25[.

- True \checkmark False $\rightarrow Vrai$
- (851) **q-851**

True/False marked out of 1.0

Soit $x \in \mathbb{R}$. Le domaine de définition de l'expression $\sqrt(2 - \ln x)$ est $[0, e^2]$.

- ullet True o Vrai
- False \checkmark

(852) **q-852**

True/False marked out of 1.0

 $\lim \frac{3\sqrt{n}+n}{2\sqrt{n}+n} = \frac{3}{2}.$

- True $\rightarrow Vrai$ False \checkmark
- (853) **q-853**

TRUE/FALSE marked out of 1.0

La fonction $f: \mathbb{R}^* \to \mathbb{R}, x \mapsto 1/x$ est décroissante.

- True $\rightarrow Vrai$
 - False \checkmark

(854) **q-854**

True/False marked out of 1.0

 $\sqrt{68} = 4\sqrt{17}.$

- True
- False ✓

 $\rightarrow Vrai \rightarrow Faux$

(855) **q-855**

TRUE/FALSE marked out of 1.0

 $\sqrt{48} = 4\sqrt{3}.$

- True \checkmark
- False

 \rightarrow Faux

(856) **q-856**

TRUE/FALSE marked out of 1.0

 $\frac{2+\sqrt{3}}{2-\sqrt{3}} = 7 + 4\sqrt{3}.$

- True \checkmark
- False \rightarrow Faux

(857) **q-857**

TRUE/FALSE marked out of 1.0

 $\frac{\sqrt{2}+3}{\sqrt{2}-3} = \frac{5+6\sqrt{2}}{5}.$

- True $\rightarrow Vrai$
- False \checkmark

(858) **q-858**

TRUE/FALSE marked out of 1.0

La relation \star sur $\mathbb R$ définie par $x\star y\iff xy^2=yx^2$ est une relation d'équivalence

- True ✓ → Vrai
- False \rightarrow Faux

(859) **q-859**

TRUE/FALSE marked out of 1.0

La relation \star sur $\mathbb R$ définie par $x\star y\iff\cos^2(x)+\sin^2(y)=1$ est une relation d'équivalence

- True ✓ → Vrai
- False \rightarrow Faux

(860) **q-860**

TRUE/FALSE marked out of 1.0

La relation \star sur $\mathbb R$ définie par $x\star y\iff xy^2=yx^2$ coïncide avec l'égalité.

- True $\rightarrow Vrai$ False \checkmark $\rightarrow Faux$
- (861) **q-861**

TRUE/FALSE marked out of 1.0

La relation \star sur \mathbb{R} définie par $x \star y \iff xe^y = ye^x$ est une relation d'équivalence

• True \checkmark \rightarrow Vrai

• False \rightarrow Faux

(862) **q-862** TRUE/FALSE marked out of 1.0 La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y')\iff x=x'$ est une relation d'équivalence. $\rightarrow Vrai$ • True ✓ • False $\rightarrow Faux$ (863) **q-863** TRUE/FALSE marked out of 1.0 La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y')\iff x^2=x'^2$ est une relation d'équivalence. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (864) **q-864** TRUE/FALSE marked out of 1.0 La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y') \iff x=-y'$ est une relation d'équivalence. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (865) **q-865** La relation \heartsuit sur \mathbb{R}^2 définie par $y \heartsuit y \iff x + 3y = 5$ est une relation d'équivalence. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (866) **q-866** TRUE/FALSE marked out of 1.0 La relation • sur \mathbb{R}^2 définie par $x \bullet y \iff (\exists \lambda \in \mathcal{R}, x + 3y = \lambda))$ est une relation d'équivalence. $\rightarrow Vrai$ • False \rightarrow Faux (867) **q-867** marked out of 1.0 La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff n^2+m^2=2nm+2n$ est une relation d'équivalence. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (868) **q-868** marked out of 1.0 TRUE/FALSE La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff n^2 - m^2 = 2nm + 2n$ est une relation d'équivalence. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux

(869) **q-869**

marked out of 1.0

La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff n^2+m^2=2nm$ est une relation d'équivalence.

• True ✓ $\rightarrow Vrai$ • False \rightarrow Faux

(870) **q-870**

TRUE/FALSE marked out of 1.0

La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff 3|(n-m)$ est une relation d'équivalence.

	True √False		Vrai Faux
(871)	q-871		
	TRUE/FALSE marked out of 1.0		
	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{N}, n = km)$) est une relation d'équivalence.		T.7 .
	 True False √ 		Vrai Faux
(872)	q-872		
	TRUE/FALSE marked out of 1.0		
	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{N}, n = k + m))$ est une relation d'équivalence		
	 True False √ 		Vrai Faux
(873)	q-873		
	True/False marked out of 1.0 La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{Z}, n = k + m)$ est une relation d'équivalence		
	• True √		Vrai
	• False	\rightarrow	Faux
(874)	q-874		
	True/False marked out of 1.0		
	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff n m$ est une relation d'équivalence.		
	 True False ✓ 		Vrai Faux
(875)	q-875		
	True/False marked out of 1.0		
	La relation \star sur $\mathbb R$ définie par $x\star y\iff x-1 \leq 1$ est une relation d'équivalence.		
	 True False ✓ 		Vrai Faux
(876)	q-876		
	True/False marked out of 1.0		
	La relation \star sur $\mathbb R$ définie par $x\star y\iff xy^2=yx^2$ est une relation d'équivalence		
	 True √ False 		Vrai Faux
(877)	q-877		
	True/False marked out of 1.0		
	La relation \star sur un ensemble E dont le graphe est la diagonale $\Delta_E := \{(t,t) \mid t \in E\}$ est un d'équivalence	e rela	ation
	 True √ False 		Vrai Faux
(878)	q-878		
	True/False marked out of 1.0		

 $\rightarrow \ \ Vrai$

 $\rightarrow \mathit{Faux}$

La relation \star sur un ensemble E dont le graphe est $E\times E$ est une relation d'équivalence

• True \checkmark

• False

(879) **q-879**

TRUE/FALSE marked out of 1.0

La relation \star sur un ensemble E non vide dont le graphe est vide est une relation d'équivalence

- True
 False √

 → Faux
- (880) **q-880**

TRUE/FALSE marked out of 1.0

La relation \star sur \mathbb{R} dont le graphe est $\Gamma_{\star} = \{(x,y) \in \mathbb{R}^2 \mid y = x^2\}$ est une relation d'équivalence

- ullet True o Vrai
- False ✓ → Faux

(881) **q-881**

TRUE/FALSE marked out of 1.0

La relation \star sur \mathbb{R} dont le graphe est $\Gamma_{\star} = \mathbb{R} \times \{0\}$ est une relation d'équivalence

- True $\rightarrow Vrai$
- False ✓ → Faux

(882) **q-882**

TRUE/FALSE marked out of 1.0

La relation \star sur $\mathbb R$ définie par $x\star y\iff x\in\mathbb Z$ ou $y\in\mathbb Z$ est une relation d'équivalence

- True $\rightarrow Vrai$ False \checkmark
- (883) **q-883**

TRUE/FALSE marked out of 1.0

La relation \star sur $\mathbb R$ dont le graphe est $\Gamma_\star = \mathbb Z^2$ est une relation d'équivalence

- True $\rightarrow Vrai$
- False \checkmark

(884) **q-884**

TRUE/FALSE marked out of 1.0

La relation \diamond sur \mathbb{R} dont le graphe est $\Gamma_{\diamond} = \{(x,y) \in \mathbb{R}^2 \mid x=y \text{ ou } x=-y\}$ est une relation d'équivalence

- True ✓ → Vrai
- False \rightarrow Faux

(885) **q-885**

TRUE/FALSE marked out of 1.0

La relation † sur \mathbb{R} dont le graphe est $\Gamma_{\dagger} = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 2\}$ est une relation d'équivalence

- True $\rightarrow Vrai$
- False ✓ → Faux

(886) **q-886**

TRUE/FALSE marked out of 1.0

La relation \odot sur \mathbb{R} définie par $x \odot y \iff \cos^2(x) + \sin^2(y) = 1$ est une relation d'équivalence

- True √
 False

 → Vrai
 → Faux
- (887) **q-887**

TRUE/FALSE marked out of 1.0

La relation \star sur $\mathbb R$ définie par $x \star y \iff xy^2 = yx^2$ coïncide avec l'égalité.

	TrueFalse √	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(888)	q-888 True/False marked out of 1.0	
	La relation \otimes sur \mathbb{R} définie par $x \otimes y \iff xe^y = ye^x$ est une relation d'équivalence	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(889)	q-889 True/False marked out of 1.0	
	La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y')\iff x=x'$ est une relation d'équivalence.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(890)	q-890 True/False marked out of 1.0	
	La relation \oplus sur \mathbb{R}^2 définie par $(x,y)\oplus(x',y')\iff x^2=x'^2$ est une relation d'équivalence.	
	 True √ False	$\begin{array}{l} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(891)	q-891	
	True/False marked out of 1.0	
	La relation \square sur \mathbb{R}^2 définie par $(x,y)\square(x',y')\iff x=-y'$ est une relation d'équivalence.	, IZ:
	 True False ✓ 	$\begin{array}{c} \rightarrow Vrai \\ \rightarrow Faux \end{array}$
(892)	q-892	
	La relation \heartsuit sur $\mathbb R$ définie par $x\heartsuit y \iff x+3y=5$ est une relation d'équivalence.	
	TrueFalse √	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(893)	q-893	
	TRUE/FALSE marked out of 1.0	
	La relation • sur \mathbb{R} définie par $x \bullet y \iff (\exists \lambda \in \mathcal{R}, x + 3y = \lambda))$ est une relation d'équivalence.	
	 True √ False 	$\rightarrow Vrai$ $\rightarrow Faux$
(894)	q-894	
	TRUE/FALSE marked out of 1.0	
	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff n^2+m^2=2nm+2n$ est une relation d'équivalence	
	 True False ✓ 	$\rightarrow Vrai$ $\rightarrow Faux$
(895)	q-895	
	La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff n^2 - m^2 = 2nm + 2n$ est une relation d'équivalence.	
	La relation \mathcal{R} sur \mathbb{N} definie par $n\mathcal{R}m \iff n^2 - m^2 = 2nm + 2n$ est une relation d'equivalence • True	o Vrai
	• False ✓	$\rightarrow Vrai$ $\rightarrow Faux$

(896) **q-896**

TRUE/FALSE marked out of 1.0

La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff n^2+m^2=2nm$ est une relation d'équivalence.

- True ✓ → Vrai
- False \rightarrow Faux

(897) **q-897**

TRUE/FALSE marked out of 1.0

La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff 3|(n-m)$ est une relation d'équivalence.

- True √ → Vrai
- False \rightarrow Faux

(898) **q-898**

TRUE/FALSE marked out of 1.0

La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{N}, n = km)$) est une relation d'équivalence.

- ullet True
- False \checkmark \rightarrow Faux

(899) **q-899**

True/False marked out of 1.0

La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{N}, n = k + m))$ est une relation d'équivalence.

- True $\rightarrow Vrai$
- False \checkmark \rightarrow Faux

(900) **q-900**

TRUE/FALSE marked out of 1.0

La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff (\exists k \in \mathbb{Z}, n = k + m)$ est une relation d'équivalence.

- True \checkmark
- False \rightarrow Faux

(901) **q-901**

TRUE/FALSE marked out of 1.0

La relation \mathcal{R} sur \mathbb{N} définie par $n\mathcal{R}m \iff n|m$ est une relation d'équivalence.

- ullet True o Vrai
- False \checkmark \rightarrow Faux

(902) **q-902**

TRUE/FALSE marked out of 1.0

La relation \star sur \mathbb{R} définie par $x \star y \iff |x-1| \leq 1$ est une relation d'équivalence.

- True $\rightarrow Vrai$
- False \checkmark \rightarrow Faux

(903) **q-903**

TRUE/FALSE marked out of 1.0

La relation \triangleleft sur $\mathbb R$ définie par $x \triangleleft y \iff x^2 \leq y^2$ est une relation d'ordre.

- ullet True o Vrai
- False \checkmark

(904) **q-904**

TRUE/FALSE marked out of 1.0

La relation \triangleleft sur \mathbb{R} définie par $x \triangleleft y \iff x^3 \leq y^3$ est une relation d'ordre.

	 True √ False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(905)	q-905	
	True/False marked out of 1.0	
	La relation \leq sur \mathbb{N}^* définie par $p \leq q \iff \exists k \in \mathbb{N}^*, q = p^k$ est une relation d'ordre.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(000)		7 1 4 4 4 5
(906)	q-906	
	La relation de divisibilité sur \mathbb{N}^* est une relation d'ordre.	
	• True √	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(907)	q-907	
	True/False marked out of 1.0	
	La relation de divisibilité sur N est une relation d'ordre.	
	• True ✓	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(908)	q-908	
	TRUE/FALSE marked out of 1.0	
	La relation de divisibilité sur $\mathbb N$ est une relation d'ordre total.	
	 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(909)	q-909	
	True/False marked out of 1.0	
	La relation de divisibilité sur \mathbb{N}^* n'a pas de plus grand élément.	
	• True ✓	$\rightarrow Vrai$
	• False	\rightarrow Faux
(910)	q-910	
	True/False marked out of 1.0	
	La relation de divisibilité sur $\mathbb N$ n'a pas de plus grand élément.	
	 True False √ 	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(011)		$\rightarrow raax$
(911)	q-911 True/False marked out of 1.0	
	La relation de divisibilité sur $\{1, 2, 3, 4\}$ n'a pas de plus grand élément.	
		$\rightarrow Vrai$
	 True √ False 	
(912)	q-912	
	True/False marked out of 1.0	
	La relation de divisibilité sur $\{0,1,2,3,4\}$ n'a pas de plus grand élément.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux

(913) **q-913** TRUE/FALSE marked out of 1.0 L'ensemble $\{0,1,2,3,4\}$ muni de la relation de divisibilité admet 4 comme plus grand élément. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (914) **q-914** TRUE/FALSE marked out of 1.0 L'ensemble $\{0, 1, 2, 3, 4\}$ muni de la relation de divisibilité admet 0 comme plus petit élément. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (915) **q-915** TRUE/FALSE marked out of 1.0 L'ensemble {0, 1, 2, 3, 4} muni de la relation de divisibilité admet 1 comme plus petit élément. • True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$ (916) **q-916** marked out of 1.0 L'ensemble $\{0,1,2,3,4\}$ muni de la relation de divisibilité admet 0 comme plus grand élément. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (917) **q-917** TRUE/FALSE marked out of 1.0 La relation de divisibilité sur $\mathbb Z$ est une relation d'ordre. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (918) **q-918** TRUE/FALSE marked out of 1.0 Si E est un ensemble, la relation d'inclusion sur $\mathcal{P}(E)$ est une relation d'ordre. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (919) **q-919** TRUE/FALSE marked out of 1.0 Si E est un ensemble, la relation d'inclusion sur $\mathcal{P}(E)$ est une relation d'ordre total. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

(920) **q-920**

TRUE/FALSE marked out of 1.0

Si E est un ensemble, la relation d'inclusion sur $\mathcal{P}(E)$ possède un plus grand élément

• True ✓ $\rightarrow Vrai$ • False \rightarrow Faux

(921) **q-921**

TRUE/FALSE marked out of 1.0

La relation \leq sur \mathbb{R}^2 définie par $(x,y) \leq (x',y') \iff (x \leq x' \text{ ou } y \leq y')$ est une relation d'ordre.

- True $\rightarrow Vrai$ False \checkmark
- (922) **q-922**

True/False marked out of 1.0

La relation \mathcal{R} sur \mathbb{R}^2 définie par $(x,y)\mathcal{R}(x',y') \iff (x \leq x' \text{ et } y \leq y')$ est une relation d'ordre.

- True \checkmark False $\rightarrow Vrai$ False
- raise

(923) **q-923**True/False | marked out of 1.0

La relation \star sur $\mathbb N$ définie par $x \star y \iff x - y \ge 1$ est une relation d'ordre.

- True ightarrow Vrai
- False \checkmark
- (924) **q-924**

TRUE/FALSE marked out of 1.0

La relation \star sur $\mathbb N$ définie par $x\star y\iff \exists k\in\mathbb N, x^2=k-y^2$ est une relation d'ordre.

- ullet True ullet Vrai
- False \checkmark
- (925) **q-925**

TRUE/FALSE marked out of 1.0

La relation \star sur $\mathbb N$ définie par $x\star y\iff \exists k\in\mathbb N, x^2=k+y^2$ est une relation d'ordre.

- True ✓ → Vrai
- False \rightarrow Faux
- (926) **q-926**

True/False marked out of 1.0

Soit $f: \mathcal{P} \to \mathcal{P}$. L'assertion «f est une rotation» signifie « $\exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R}, \forall z \in \mathbb{C}, \tilde{f}(z) = e^{i\theta}(z - \omega) + \omega$.»

- True \checkmark False $\rightarrow Vrai$ Faux
- (927) q-927

TRUE/FALSE marked out of 1.0

Soit $f: \mathcal{P} \to \mathcal{P}$. L'assertion «f est une rotation» signifie « $\exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R}, \forall z \in \mathbb{C}, \tilde{f}(z) = e^{i\theta}(z+\omega) - \omega$.»

- ullet True o Vrai
- False \checkmark
- (928) **q-928**

TRUE/FALSE marked out of 1.0

Soit $f: \mathcal{P} \to \mathcal{P}$ et $\Omega \in \mathcal{P}$. L'assertion «f est rotation de centre Ω » signifie « $\exists \theta \in \mathbb{R}, \forall z \in \mathbb{C}, \tilde{f}(z) = e^{i\theta}(z-\omega) + \omega$.»

- True \checkmark False $\rightarrow Vrai$
- (929) **q-929**

TRUE/FALSE marked out of 1.0

Soit $f: \mathcal{P} \to \mathcal{P}$ et $\theta \in \mathbb{R}$. L'assertion «f est rotation d'angle θ » signifie « $\exists \omega \in \mathbb{C}, \forall z \in \mathbb{C}, \tilde{f}(z) = e^{i\theta}(z-\omega) + \omega$.»

• True \checkmark

	• False	$\rightarrow Faux$
(930)	q-930	
()	TRUE/FALSE marked out of 1.0	
	Soit $f: \mathcal{P} \to \mathcal{P}$, $\Omega \in \mathcal{P}$ et $\theta \in \mathbb{R}$. L'assertion « f est rotation d'angle θ et centre Ω » signifie $\mathbb{C}, \tilde{f}(z) = e^{i\theta}(z - \omega) + \omega$.»	$\forall z \in$
		$\rightarrow Vrai$ $\rightarrow Faux$
(931)	q-931	
	TRUE/FALSE marked out of 1.0	
	Soit $f: \mathcal{P} \to \mathcal{P}$. L'assertion « f est la rotation de centre Ω et d'angle θ » signifie « $\exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{Z}$ $\mathbb{C}, \tilde{f}(z) = e^{i\theta}(z - \omega) + \omega$.»	$\mathbb{R}, \forall z \in$
		$\rightarrow Vrai$
	• False \checkmark	Faux
(932)	q-932	
	TRUE/FALSE marked out of 1.0	
	Soit $f: \mathcal{P} \to \mathcal{P}$ et soit $\Omega \in \mathcal{P}$. L'assertion « f est une rotation de centre Ω » signifie « $\exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R}$ $\mathbb{C}, \tilde{f}(z) = e^{i\theta}(z - \omega) + \omega$.»	$\mathbb{R}, \forall z \in$
		$\rightarrow Vrai$
	• False \checkmark	Faux
(933)	q-933	
	TRUE/FALSE marked out of 1.0	
	Soit $f: \mathcal{P} \to \mathcal{P}$ et soit $\theta \in \mathbb{R}$. L'assertion «f est une rotation d'angle θ » signifie « $\exists \Omega \in \mathcal{P}, \exists \theta \in \mathbb{R}$	$\mathbb{R}, \forall z \in$
	$\mathbb{C}, \hat{f}(z) = e^{i\theta}(z - \omega) + \omega.$ »	
		$ ightarrow Vrai \ Faux$
(004)		raux
(934)	q-934	
	TRUE/FALSE marked out of 1.0	
	Deux rotations commutent toujours.	
		$\rightarrow Vrai$
()		Faux
(935)	q-935	
	TRUE/FALSE marked out of 1.0	
	Deux rotations de même centre commutent toujours.	
		Vrai
		→ Faux
(936)	q-936	
	TRUE/FALSE marked out of 1.0	

La composée de deux rotations est une rotation.

• True • False \checkmark → Faux

(937) **q-937**

TRUE/FALSE marked out of 1.0

La composée de deux rotations de même centre est une rotation de même centre.

• True \checkmark

(938)	q-938	
	True/False marked out of 1.0	
	La composée de deux rotations de centre distincts est une rotation.	
	 True False √ 	$\begin{array}{c} \rightarrow Vrai \\ \rightarrow Faux \end{array}$
(939)	q-939	
	True/False marked out of 1.0	
	La composée de deux rotations de centre distincts est une translation.	
	 True False ✓ 	$\rightarrow Vrai$ $\rightarrow Faux$
(940)	q-940	
	TRUE/FALSE marked out of 1.0	
	Soient $\theta, \theta' \in \mathbb{R}$. La composée de deux rotations d'angles θ et θ' est une rotation d'angle $\theta + \theta'$.	
	 True False ✓ 	$\rightarrow Vrai$ $\rightarrow Faux$
(941)	q-941	
	True/False marked out of 1.0	
	Une rotation conserve l'alignement.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(042)	q-942	7 1 d d x
(942)	True/False marked out of 1.0	
	Une rotation conserve les distances.	
	• True √	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(943)	q-943	
	TRUE/FALSE marked out of 1.0	
	Une rotation conserve les rapports de longueurs (autrement dit les proportions).	
	• True ✓	$\rightarrow Vrai$
(0.1.1)	• False	\rightarrow Faux
(944)	q-944	
	Une rotation conserve les milieux.	
	• True ✓	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(945)	q-945	
	True/False marked out of 1.0	
	TRUE/FALSE MARKED OUT OF 1.0	
	Une rotation envoie une droite sur une droite parallèle.	
	Une rotation envoie une droite sur une droite parallèle. • True	$\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$

 $\rightarrow \mathit{Faux}$

• False

(946) **q-946**

TRUE/FALSE marked out of 1.0

 $\begin{cases} 5x - y = 1 \\ 2x + 3y = 2 \end{cases}$ admet une unique solution.

- True ✓
- False

- $\rightarrow \ \ Vrai$
- \rightarrow Faux

(947) **q-947**

TRUE/FALSE marked out of 1.0

 $\begin{cases} 2x + 3y &= 1\\ 4x + 6y &= 2 \end{cases}$ admet une unique solution.

- True
- False √

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(948) **q-948**

True/False marked out of 1.0

 $\begin{cases}
-x + 3y &= -1 \\
2x - 6y &= 0
\end{cases}$ n'admet pas de solutions.

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(949) **q-949**

TRUE/FALSE marked out of 1.0

 $\begin{cases} 2x + 3y &= 1\\ 4x + 6y &= 2 \end{cases}$ n'admet pas de solutions.

- True
- False ✓

- $\rightarrow Vrai$
- \rightarrow Faux

(950) **q-950**

TRUE/FALSE marked out of 1.0

 $\begin{cases} 2x + y &= 1 \\ x - y &= 2 \end{cases}$ admet des solutions.

- True ✓
- False

- $\rightarrow \ \mathit{Vrai}$
- $\rightarrow Faux$

(951) **q-951**

TRUE/FALSE marked out of 1.0

 $\begin{cases} 2x + 3y &= 1\\ 4x + 6y &= 2 \end{cases}$ admet des solutions.

- True ✓
- False

- $\rightarrow \ \ Vrai$
- $\rightarrow \mathit{Faux}$

(952) **q-952**

TRUE/FALSE marked out of 1.0

 $\begin{cases} 3x + 2y &= 1\\ 6x + 4y &= 1 \end{cases}$ admet des solutions.

- True
- False ✓

- $\rightarrow Vrai$
- \rightarrow Faux

(953) **q-953**

TRUE/FALSE marked out of 1.0

 $\begin{cases} x - 3y = 1 \\ 2x - 6y = 2 \end{cases}$ admet une infinité de solutions.

- True ✓
- False

- $\rightarrow \ \ Vrai$
- \rightarrow Faux

(954) **q-954**

TRUE/FALSE marked out of 1.0

 $\begin{cases} 2x + 3y &= 1 \\ x + 3y &= 2 \end{cases}$ admet une infinité de solutions.

- True
- False ✓

 $\rightarrow Vrai \rightarrow Faux$

(955) **q-955**

True/False marked out of 1.0

 $\begin{cases} 2x - y = 3 \\ 4x - 2y = 6 \end{cases}$ admet plusieurs solutions.

- True ✓
- False

- $\rightarrow Vrai$
- $\rightarrow Faux$

(956) **q-956**

TRUE/FALSE marked out of 1.0

 $\begin{cases} 2x - y = 6 \\ x - 2y = 3 \end{cases}$ admet plusieurs solutions.

- True
- False ✓

- $\rightarrow Vrai$
- \rightarrow Faux

(957) **q-957**

True/False marked out of 1.0

 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est une solution de $\begin{cases} 6x - 2y = 4 \\ 2x + y = 3 \end{cases}$.

- True ✓
- False

- $\rightarrow Vrai$
- $\rightarrow Faux$

(958) **q-958**

TRUE/FALSE marked out of 1.0

 $\begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ est une solution de } \begin{cases} 2x + y &= 1 \\ x - y &= 2 \end{cases}.$

- True ✓
- False

- $\rightarrow Vrai$
- $\rightarrow Faux$

(959) **q-959**

TRUE/FALSE marked out of 1.0

 $\begin{pmatrix}
2 \\
1
\end{pmatrix} \text{ est une solution de } \begin{cases}
x - 2y &= 0 \\
-x + y &= 1
\end{cases}.$

- True
- False ✓

- $\rightarrow Vrai$
- \rightarrow Faux

(960) **q-960**

TRUE/FALSE marked out of 1.0

 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ est l'unique solution de $\begin{cases} 3x - 2y &= 1 \\ x + y &= 2 \end{cases}$.

- True ✓ → Vrai
- False $\rightarrow Faux$

(961) **q-961**

TRUE/FALSE marked out of 1.0

- ullet True o Vrai
- False \checkmark

(962) **q-962**

TRUE/FALSE marked out of 1.0

L'ensemble des solutions de $\begin{cases} 2x-y &= 3 \\ 4x-2y &= 6 \end{cases}$ est une droite.

- True \checkmark
- False \rightarrow Faux

(963) **q-963**

TRUE/FALSE marked out of 1.0

L'ensemble des solutions de $\begin{cases} 2x - y &= 6 \\ x - 2y &= 3 \end{cases}$ est une droite.

- True $\rightarrow Vrai$ False \checkmark
- False ✓

(964) **q-964**

TRUE/FALSE marked out of 1.0

L'ensemble des solutions de $\begin{cases} x-y &= 1 \\ x+y &= 2 \end{cases}$ contient un seul élément.

• True \checkmark • False $\rightarrow Vrai$ $\rightarrow Faux$

(965) **q-965**

TRUE/FALSE marked out of 1.0

L'ensemble des solutions de $\begin{cases} 2x-4y &= -2 \\ -x+2y &= 1 \end{cases}$ contient un seul élément.

• True • False \checkmark $\rightarrow Vrai$ • False \checkmark

(966) **q-966**

TRUE/FALSE marked out of 1.0

L'ensemble des solutions de $\begin{cases} -x+2y &= 1\\ 2x-4y &= 3 \end{cases}$ contient un seul élément.

- True $\rightarrow Vrai$
- False \checkmark \rightarrow Faux

(967) **q-967**

True/False marked out of 1.0

L'ensemble des solutions de $\begin{cases} -x + 2y &= 1 \\ 2x - 4y &= 3 \end{cases}$ est vide.

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(968) **q-968**

TRUE/FALSE marked out of 1.0

L'ensemble des solutions de $\begin{cases} -x + 2y &= 1 \\ 2x - y &= 1 \end{cases}$ est vide.

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(969) **q-969**

TRUE/FALSE marked out of 1.0

L'ensemble des solutions de $\begin{cases} x+y = 4 \\ x-y = 2 \end{cases}$ est $\left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}$.

- True ✓
- False

- $\rightarrow Vrai$
- $\rightarrow Faux$

(970) **q-970**

True/False marked out of 1.0

L'ensemble des solutions de $\begin{cases} x+y = 4 \\ x-y = 2 \end{cases}$ est $\left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\}$.

- True
- False ✓

- $\rightarrow Vrai$
- \rightarrow Faux

(971) **q-971**

TRUE/FALSE marked out of 1.0

 $\begin{cases} 2x - 6y = 0 \\ -x + 3y = -1 \end{cases}$ est équivalent à 0 = 1.

- True √
- False

 $\rightarrow Vrai$ $\rightarrow Faux$

(972) **q-972**

TRUE/FALSE marked out of 1.0

 $\begin{cases} -x + 3y &= -1 \\ 2x - 6y &= 2 \end{cases}$ est équivalent à l'équation x - 3y = 1.

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(973) **q-973**

 $\begin{cases} 5x - 2y &= 3 \\ x + 2y &= 3 \end{cases} \text{ est \'equivalent au syst\`eme } \begin{cases} x &= 1 \\ y &= 1 \end{cases}.$

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(974) **q-974**

True/False marked out of 1.0

 $\begin{cases} 4x - y &= 2 \\ x + y &= 2 \end{cases}$ est équivalent au système $\begin{cases} x &= 1 \\ y &= 2 \end{cases}$

- ullet True o Vrai
- False ✓ → Faux

(975) **q-975**

TRUE/FALSE marked out of 1.0

 $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b).$

- True \checkmark
- False \rightarrow Faux

(976) **q-976**

TRUE/FALSE marked out of 1.0

 $\cos(a+b) = \sin(a)\sin(b) + \cos(a)\cos(b).$

- ullet True ullet Vrai
- False \checkmark

(977) **q-977**

TRUE/FALSE marked out of 1.0

 $\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b).$

- True \checkmark
- False \rightarrow Faux

(978) **q-978**

TRUE/FALSE marked out of 1.0

 $\sin(a+b) = \sin(a)\sin(b) + \cos(a)\cos(b).$

- ullet True o Vrai
- False \checkmark \rightarrow Faux

(979) **q-979**

TRUE/FALSE marked out of 1.0

 $\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a).$

- True \checkmark
- False \rightarrow Faux

(980) **q-980**

TRUE/FALSE marked out of 1.0

 $\sin(a - b) = \cos(a)\sin(b) - \sin(a)\cos(b).$

- ullet True o Vrai
- False \checkmark \rightarrow Faux

(981) **q-981**

TRUE/FALSE marked out of 1.0

 $\cos(2a) = 2\sin^2(a) - 1.$

- True $\rightarrow Vrai$
- False \checkmark \rightarrow Faux

(982) **q-982**

- True $\rightarrow Vrai$
- False \checkmark \rightarrow Faux

(983) **q-983**

True/False marked out of 1.0
$$\cos(2a) = \cos^2(a) - \sin^2(a)$$
.

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (984) **q-984**

$$\begin{array}{|c|c|c|c|}\hline \text{True/False} & \text{(marked out of 1.0)} \\ \\ \cos(2a) = \cos^2(a) + \sin^2(a). \end{array}$$

- True $\rightarrow Vrai$ False \checkmark
- (985) **q-985**

True/False marked out of 1.0
$$\sin(2a) = 2\sin(a)\cos(a)$$
.

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (986) **q-986**

True/False marked out of 1.0
$$\sin(2a) = 2\sin^2(a) - 1.$$

- True • False \checkmark → Faux
- (987) **q-987**

- True ✓
 False $\rightarrow Vrai$ $\rightarrow Faux$
- (988) **q-988**

True/False marked out of 1.0
$$\sin^2(a) = \frac{1+\sin(2a)}{2}$$
.

- True • False \checkmark → Faux
- (989) **q-989**

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (990) **q-990**

TRUE/FALSE marked out of 1.0
$$\sin(a + \frac{\pi}{2}) = \cos(a)$$
.

- True ✓
- $\rightarrow Vrai$ • False \rightarrow Faux

(991) **q-991**

TRUE/FALSE marked out of 1.0 $\sin(a+2\pi) = -\sin(a).$

- True $\rightarrow Vrai$
- False ✓ \rightarrow Faux

(992) **q-992**

TRUE/FALSE marked out of 1.0 $\sin(-a) = \sin(a).$

- $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux
- (993) **q-993**

TRUE/FALSE marked out of 1.0 $\cos(a+\pi) = -\cos(a).$

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (994) **q-994**

TRUE/FALSE marked out of 1.0 $\cos(a + \frac{\pi}{2}) = -\sin(a).$

- True \checkmark $\rightarrow \ \ Vrai$ • False \rightarrow Faux
- (995) **q-995**

TRUE/FALSE marked out of 1.0 $\cos(-a) = \cos(a).$

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (996) **q-996**

True/False marked out of 1.0 $\cos(a+\pi) = \cos(a).$

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (997) **q-997**

TRUE/FALSE marked out of 1.0 $\cos(a + \frac{\pi}{2}) = \sin(a).$

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (998) **q-998**

TRUE/FALSE marked out of 1.0 $\cos(a + 2\pi) = -\cos(a).$

• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

 $\rightarrow Vrai$

 \rightarrow Faux

 $\rightarrow Vrai$

 \rightarrow Faux

True/False (marked out of 1.0) $\cos(4\pi/3) = -1/2$.

• True \checkmark • False $\rightarrow Vrai$ • False

(1007) **q-1007**

True/False marked out of 1.0 $\cos(11\pi/6) = -1/2$.

(1015) **q-1015**

True/False marked out of 1.0 $\sin(2\pi/3) = \sqrt{3}/2$.

• True \checkmark • False $\rightarrow Vrai$ • False

- True
 False \checkmark (1025) q-1025

 True/False marked out of 1.0 $\sin(a + 2\pi) = \sin(a)$.
 - True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (1026) q-1026

 [True/False] [marked out of 1.0]

 $\sin(-a) = -\sin(a).$

TRUE/FALSE marked out of 1.0

(1028) **q-1028**

- True \checkmark False $\rightarrow Vrai$ False
- (1027) **q-1027**True/False marked out of 1.0 $\sin(a+\pi) = \sin(a)$.
 - True • False ✓ $\rightarrow Vrai$ • Faux
- $egin{align*} & egin{align*} & egin{align*$
- False \checkmark $(1029) \mathbf{q-1029}$
 - $egin{array}{c} & egin{array}{c} & egin{arra$
- False $\rightarrow Vuu$ False $\rightarrow Faux$ (1030) q-1030
 - $\sin(5\pi/4) = -1/\sqrt{2}.$ True \checkmark False $\rightarrow Vrai$
- (1031) **q-1031**TRUE/FALSE marked out of 1.0
- $\sin(4\pi/3) = -\sqrt{3}/2.$ True \checkmark False (1032) q-1032 $\boxed{\text{True/False}} \boxed{\text{marked out of 1.0}}$ $\cos(7\pi/6) = -1/2.$ True
 False \checkmark $\rightarrow Vrai$ $\rightarrow Vrai$

(1035) **q-1035**

True/False marked out of 1.0 $\cos(3\pi/2) = 0$.

- True √ False
- (1036) **q-1036**

True/False marked out of 1.0 $\cos(5\pi/3) = 1/2$.

- True √ False
- (1037) **q-1037**

True/False marked out of 1.0 $\cos(7\pi/4) = \sqrt{2}/2$.

- $\cos(7\pi/4) = \sqrt{2}/2.$ True \checkmark
- False
- (1038) **q-1038**

 $\begin{array}{|c|c|}\hline \text{True/False} & \text{(marked out of 1.0)} \\ & \cos(3\pi/2) = -1. \end{array}$

- True False √
- (1039) **q-1039**TRUE/FALSE | marked out of 1.0
 - $\cos(5\pi/3) = -\sqrt{3}/2.$ True
 - False ✓
- - $\cos(7\pi/4) = 1/2.$
 - True False √
- (1041) **q-1041**

TRUE/FALSE (marked out of 1.0) $\sin(3\pi/4) = 1/2$.

 $\rightarrow Vrai$

 \rightarrow Faux

 $\rightarrow Vrai$

 \rightarrow Faux

 $\rightarrow Vrai$

 \rightarrow Faux

 $\rightarrow Vrai$

 $\rightarrow \mathit{Faux}$

 $\rightarrow Vrai$

 \rightarrow Faux

 $\rightarrow Vrai$

 \rightarrow Faux

 $\rightarrow Vrai$

 \rightarrow Faux

 $\rightarrow Vrai$

 \rightarrow Faux

(1075) **q-1075**

True/False marked out of 1.0 $\sin(a) = \sin(b) \Rightarrow (a \equiv b[2\pi]).$

- True • False \checkmark (1076) q-1076 True/False marked out of 1.0 $\sin(a) = \sin(b) \Rightarrow (a \equiv \pi - b[2\pi]).$
 - True • False ✓ $\rightarrow Vrai$
- (1077) \mathbf{q} -1077 \mathbf{q} -RUE/FALSE \mathbf{m} \mathbf{q} -marked out of 1.0

(1079) **q-1079**

TRUE/FALSE

(1082) **q-1082**

 $cos(a) = cos(b) \leftarrow (a \equiv \pi - b[2\pi]).$

marked out of 1.0

- True
 False √
- (1078) **q-1078**True/False marked out of 1.0

 Si $t = \tan \frac{x}{2}$, on a $\cos(x) = \frac{1-t^2}{1+t^2}$.
 - True \checkmark False $\rightarrow Vrai$ False
- False \rightarrow Faux (1080) \mathbf{q} -1080
 - Si $t = \tan \frac{x}{2}$, on a $\tan(x) = \frac{2t}{1+t^2}$.

 True
- - $\tan(a-b) = \frac{\tan(a) \tan(b)}{1 \tan(a)\tan(b)}.$ True

 False \checkmark $\rightarrow Vrai$
- $\tan(a-b) = \frac{\tan(a) + \tan(b)}{1 \tan(a) \tan(b)}.$ True
- True \checkmark True \checkmark False $\longrightarrow Vrai$

 $tan(a) = tan(b) \Leftrightarrow (a \equiv b[2\pi] \text{ ou } a \equiv -b[2\pi]).$

- TrueFalse √

(1092) **q-1092**

TRUE/FALSE marked out of 1.0

Si $t = \tan \frac{x}{2}$, on a $\tan(x) = \frac{2t}{1-t^2}$.

 $\rightarrow Vrai$

 \rightarrow Faux

- True \checkmark False $\rightarrow Vrai$ Faux
- (1093) **q-1093**

TRUE/FALSE marked out of 1.0

Si $t = \tan \frac{x}{2}$, on a $\cos(x) = \frac{1+t^2}{1-t^2}$.

- True $\rightarrow Vrai$ False \checkmark
- (1094) **q-1094**

TRUE/FALSE marked out of 1.0

Si $t = \tan \frac{x}{2}$, on a $\sin(x) = \frac{2t}{1-t^2}$.

- True $\rightarrow Vrai$
- False \checkmark $\rightarrow Vrai$
- (1095) **q-1095**

True/False marked out of 1.0

 $cos(a) = cos(b) \Leftrightarrow (a \equiv b[2\pi] \text{ ou } a \equiv -b[2\pi]).$

- True \checkmark \rightarrow Vrai
- False $\rightarrow Faux$
- (1096) **q-1096**

TRUE/FALSE marked out of 1.0

 $\sin(a) = \sin(b) \Leftrightarrow (a \equiv b[2\pi] \text{ ou } a \equiv \pi - b[2\pi]).$

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- False

(1097) **q-1097**

TRUE/FALSE marked out of 1.0

 $\tan(a) = \tan(b) \Leftrightarrow (a \equiv b[2\pi]).$

- ullet True
- False \checkmark \rightarrow Faux
- (1098) **q-1098**

TRUE/FALSE marked out of 1.0

 $\tan(5\pi/6) = -\sqrt{3}/3.$ • True \checkmark

• True \checkmark • False $\rightarrow Vrai$ $\rightarrow Faux$

(1099) **q-1099**

True/False marked out of 1.0

 $\tan(\pi) = 0.$

• True \checkmark • False $\rightarrow Vrai$ $\rightarrow Faux$

(1100) **q-1100**

TRUE/FALSE marked out of 1.0

 $tan(\pi)$ est défini.

• True \checkmark • False $\rightarrow Vrai$ $\rightarrow Faux$

(1118) **q-1118**

TRUE/FALSE marked out of 1.0

 $\tan(\pi/3) = \sqrt{3}/3.$

- ullet True o Vrai
- False \checkmark \rightarrow Faux

(1119) **q-1119**

TRUE/FALSE marked out of 1.0

Le fait que deux assertions P et Q sont incompatibles peut se traduire, au choix, par l'assertion $P \implies$ non (Q) ou par $Q \implies$ non (P).

- True \checkmark
- False \rightarrow Faux

(1120) **q-1120**

TRUE/FALSE marked out of 1.0

Si $f: E \to F$ est une application et $A \subset B \subset E$, alors $f[A] \subset f[B]$.

- True \checkmark
- False \rightarrow Faux

(1121) **q-1121**

TRUE/FALSE marked out of 1.0

Si $f: E \to F$ est une application et $A \neq B \subset E$, alors $f[A] \neq f[B]$.

- True $\rightarrow Vrai$
- False \checkmark \rightarrow Faux

(1122) **q-1122**

TRUE/FALSE marked out of 1.0

Toute application $f: \llbracket 1, 10 \rrbracket \to \llbracket 1, 20 \rrbracket$ est injective.

- ullet True o Vrai
- False \checkmark

(1123) **q-1123**

Aucune application $f: [1, 10] \to [1, 20]$ n'est surjective.

- True \checkmark \rightarrow Vrai
- False \rightarrow Faux

(1124) **q-1124**

TRUE/FALSE marked out of 1.0

Les deux solutions de l'équation $x^2 + 3ix + 1 = 0$ sont conjuguées.

- True $\rightarrow Vrai$ False \checkmark
- (1125) **q-1125**

TRUE/FALSE marked out of 1.0

Le nombre $12^{2019} + 13^{2019}$ est divisible par 25.

• True \checkmark • False $\rightarrow Vrai$ $\rightarrow Faux$

(1126) **q-1126**

TRUE/FALSE marked out of 1.0

 $(n+1)! \underset{n \to +\infty}{\sim} n!.$

- True $\rightarrow Vrai$
- False ✓ \rightarrow Faux

(1127) **q-1127**

TRUE/FALSE marked out of 1.0

Si c_n est le nombre de chiffres de n dans l'écriture décimale de l'entier n, alors $c_n \underset{n \to +\infty}{\sim} \log n$.

• True $\rightarrow Vrai$ • False ✓

 \rightarrow Faux

(1128) **q-1128**

TRUE/FALSE marked out of 1.0

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

Alors $1 = \underset{n \to +\infty}{o}(u_n)$ si et seulement si $u_n \xrightarrow[n \to +\infty]{} +\infty$.

 $\rightarrow Vrai$ • True

• False ✓ \rightarrow Faux

(1129) **q-1129**

True/False marked out of 1.0

Si $f(x) = \frac{1}{x+1} + o(\frac{1}{x^2})$, alors $f(x) \sim 1$, $\frac{1}{x^2}$.

• True ✓ $\rightarrow Vrai$

• False \rightarrow Faux

(1130) **q-1130**

marked out of 1.0

Si $u_n \underset{n \to +\infty}{\sim} v_n$ et que $(v_n)_n$ est strictement positive à partir d'un certain rang, alors $(u_n)_n$ est strictement positive à partir d'un certain rang.

• True ✓ $\rightarrow Vrai$ \rightarrow Faux • False

(1131) **q-1131**

Si $u_n \underset{n \to +\infty}{\sim} v_n$ et que $(v_n)_n$ est décroissante à partir d'un certain rang, alors $(u_n)_n$ est décroissante à

 $\rightarrow Vrai$ • True \rightarrow Faux • False ✓

(1132) **q-1132**

TRUE/FALSE marked out of 1.0

Si $u_n \underset{n \to +\infty}{\sim} v_n$ et que $(v_n)_n$ est strictement décroissante à partir d'un certain rang, alors $(u_n)_n$ est strictement décroissante à partir d'un certain rang.

 $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux

(1133) **q-1133**

marked out of 1.0

Si une suite à valeurs entières converge, elle est stationnaire.

• True ✓ $\rightarrow Vrai$ $\rightarrow Faux$

• False

(1134) **q-1134**

marked out of 1.0

Si le produit de deux suites tend vers $+\infty$, alors au moins l'une des deux tend également vers $+\infty$.

 $\rightarrow Vrai$ • False ✓ \rightarrow Faux

(1135) **q-1135**

TRUE/FALSE marked out of 1.0

Il existe $\theta \in \mathbb{R}$ tel que la suite $(\sin(n\theta))_{n \in \mathbb{N}}$ converge.

• True ✓ $\rightarrow Vrai$ $\rightarrow Faux$

• False

(1136) **q-1136**

marked out of 1.0

La suite (u_n) définie par $\begin{cases} u_0 = \frac{3}{2} \\ \forall n \in \mathbb{N}, u_{n+1} = -3u_n + 10 \end{cases}$ converge.

 $\rightarrow Vrai$ • True

 \rightarrow Faux • False ✓

(1137) **q-1137**

TRUE/FALSE marked out of 1.0

La suite (u_n) définie par $\begin{cases} u_0 = \frac{5}{2} \\ \forall n \in \mathbb{N}, u_{n+1} = -3u_n + 10 \end{cases}$ converge.

 $\rightarrow Vrai$ • True ✓

 \rightarrow Faux

• False

(1138) **q-1138**

marked out of 1.0

Une suite réelle de limite ≥ 0 est positive à partir d'un certain rang.

• True $\rightarrow Vrai$

• False ✓ \rightarrow Faux

(1139) **q-1139**

TRUE/FALSE marked out of 1.0

Une suite monotone converge.

 $\rightarrow Vrai$ True

• False ✓ \rightarrow Faux

(1140) **q-1140**

TRUE/FALSE marked out of 1.0

Une suite bornée converge.

• True $\rightarrow Vrai$

• False ✓ \rightarrow Faux

(1141) **q-1141**

Deux suites bornées $(u_n)n \in \mathbb{N}$ et $(v_n)n \in \mathbb{N}$ telles que $u_n - v_n \xrightarrow[n \to +\infty]{} 0$ convergent vers la même limite.

• True $\rightarrow Vrai$

• False ✓ \rightarrow Faux (1142) **q-1142** TRUE/FALSE marked out of 1.0 Si les deux sous-suites $(u_{2n})n \in \mathbb{N}$ et $(u_{2n}+1)n \in \mathbb{N}$ convergent vers la même limite alors $(u_{2n})_{n \in \mathbb{N}}$ converge. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1143) **q-1143** TRUE/FALSE marked out of 1.0 Soit $(u_n)n \in \mathbb{N}$ une suite croissante. On suppose que $(u2n)n \in \mathbb{N}$ converge. Alors la suite $(u_n)n \in \mathbb{N}$ converge. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1144) **q-1144** True/False marked out of 1.0 Si la série $\sum_n u_n$ converge, alors la suite $(u_n)_{n\in\mathbb{N}}$ converge. • True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$ (1145) **q-1145** TRUE/FALSE marked out of 1.0 $\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln n.$ • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1146) **q-1146** TRUE/FALSE marked out of 1.0 La série $\sum_{n} \rho^{n}$ converge si et seulement si $|\rho| < 1$. • True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$ (1147) **q-1147** marked out of 1.0 TRUE/FALSE La série de terme général $\frac{1}{\sqrt{n} \ln n}$ converge. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1148) **q-1148** marked out of 1.0 Le produit de deux fonctions croissantes est croissant. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1149) **q-1149**

 $\rightarrow \textit{Vrai}$

marked out of 1.0

La fonction $x \mapsto |x|$ est impaire.

TRUE/FALSE

• True

• False ✓ \rightarrow Faux (1150) **q-1150** TRUE/FALSE marked out of 1.0 Si f est périodique, alors $g \circ f$ est périodique. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (1151) **q-1151** TRUE/FALSE marked out of 1.0 Pour tout $x \in \mathbb{R}$, $\exp(x) \ge 1 + x + \frac{x^2}{2}$. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1152) **q-1152** TRUE/FALSE marked out of 1.0 $\cos: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$ est une bijection. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1153) **q-1153** TRUE/FALSE marked out of 1.0 Dès que la formule a un sens, on a $\arctan(\tan x) = x$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1154) **q-1154** marked out of 1.0 TRUE/FALSE Dès que la formule a un sens, on a $tan(\arctan x) = x$. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1155) **q-1155** marked out of 1.0 TRUE/FALSE Sur \mathbb{R}^* , la dérivée de $x \mapsto \ln |x|$ est $x \mapsto \frac{1}{|x|}$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1156) **q-1156** marked out of 1.0

Si la fonction $\exp \circ f$ admet une limite finie en $+\infty$, alors la fonction f admet une limite finie en $+\infty$.

• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

(1157) **q-1157**

marked out of 1.0

Une fonction monotone admet une limite en tout point intérieur à son domaine de définition.

 $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux

(1158) **q-1158** TRUE/FALSE marked out of 1.0 Étant donné une fonction $f: \mathbb{R} \to \mathbb{R}$, il existe une fonction $g: \mathbb{R} \to \mathbb{R}$ croissante telle que $f \leq g$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1159) **q-1159** TRUE/FALSE marked out of 1.0 Une fonction continue périodique est bornée. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1160) **q-1160** TRUE/FALSE marked out of 1.0 Une fonction bornée atteint ses bornes. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1161) **q-1161** TRUE/FALSE marked out of 1.0 Une fonction continue bornée atteint ses bornes. • True $\rightarrow \textit{Vrai}$ • False ✓ \rightarrow Faux (1162) **q-1162** marked out of 1.0 Une fonction polynomiale $\mathbb{R} \to \mathbb{R}$ de degré impair admet au moins une racine réelle. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1163) **q-1163** marked out of 1.0 True/False La fonction $x\mapsto \frac{x}{|x|}$ est prolongeable par continuité en 0. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1164) **q-1164** marked out of 1.0 TRUE/FALSE La fonction $x\mapsto \frac{\cos x-1}{|x|}$ est prolongeable par continuité en 0. • True ✓ $\rightarrow Vrai$

(1165) **q-1165**

• False

TRUE/FALSE marked out of 1.0

La dérivée en 0 de $x \mapsto \ln(1 + (\tan x)^2)$ est 0.

• True √
 • False
 → Faux

 \rightarrow Faux

(1166) **q-1166** TRUE/FALSE marked out of 1.0 Une fonction de classe C^1 est dérivable. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1167) **q-1167** TRUE/FALSE marked out of 1.0 La fonction $x \mapsto x|x|$ est de classe C^1 . • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1168) **q-1168** TRUE/FALSE marked out of 1.0 Une fonction de classe C^1 sur un segment est lipschitzienne. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1169) **q-1169** marked out of 1.0 TRUE/FALSE Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable. La fonction |f| est dérivable si et seulement si f ne s'annule pas. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1170) **q-1170** marked out of 1.0 True/False Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable. Si la dérivée de f s'annule en 0, alors f admet un extremum local en 0. • True $\rightarrow Vrai$ • False √ \rightarrow Faux (1171) **q-1171** marked out of 1.0 TRUE/FALSE Soit $f:[0,1]\to\mathbb{R}$ dérivable. Si f admet un maximum en 0, alors f'(0) = 0. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1172) **q-1172** marked out of 1.0 TRUE/FALSE Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable. Si f admet un maximum en 0, alors f'(0) = 0. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux

(1173) **q-1173**

TRUE/FALSE marked out of 1.0

Si une fonction réelle f est de classe C^n et admet n+1 zéros distincts sur un intervalle, alors sa dérivée n-ième s'annule au moins une fois.

• True √
 • False
 → Faux

(1174) **q-1174**

TRUE/FALSE marked out of 1.0

Une primitive de $x \mapsto \ln x$ est $x \mapsto x \ln x - x - 1$.

- True \checkmark
- False \rightarrow Faux

(1175) **q-1175**

True/False marked out of 1.0

Soit $f, g \in C^0([0,1])$. Alors, $\left| \int_0^1 f(t)g(t)dt \right| \le ||f||_{\infty} \left| \int_0^1 g(t)dt \right|$.

- True $\rightarrow Vrai$
- False \checkmark

(1176) **q-1176**

TRUE/FALSE marked out of 1.0

Soit $f, g \in C^0([0,1])$. Alors, $\left| \int_0^1 f(t)g(t)dt \right| \le \|f\|_\infty \int_0^1 |g(t)| \, dt$.

- True \checkmark
- False \rightarrow Faux

(1177) **q-1177**

True/False marked out of 1.0

Une fonction $f \in C^0([0,1],\mathbb{R})$ admet exactement une primitive d'intégrale nulle sur le segment [0,1].

- True \checkmark
- False

 $\rightarrow Faux$

(1178) **q-1178**

TRUE/FALSE marked out of 1.0

Une fonction f dérivable vérifie f' = 2f si et seulement si, pour tout x, il existe C tel que $f(x) = Ce^{2x}$.

- ullet True o Vrai
- False \checkmark

(1179) **q-1179**

TRUE/FALSE marked out of 1.0

Les solutions de y' + ay = 0 sont de la forme $x \mapsto Ce^{ax}$ avec $C \in \mathbb{R}$.

- ullet True o Vrai
- False \checkmark \rightarrow Faux

(1180) **q-1180**

TRUE/FALSE marked out of 1.0

Les solutions de y' + 2y = 0 sont deux à deux proportionnelles.

- True ✓ → Vrai
- False \rightarrow Faux

(1181) **q-1181**

True/False marked out of 1.0

Les solutions de y'' + 2y' = 0 sont deux à deux proportionnelles.

ullet True o Vrai

• False \checkmark

(1182) **q-1182** TRUE/FALSE marked out of 1.0 Les fonctions $x \mapsto \sin(x)$ et $x \mapsto \sin(2x)$ sont solutions d'une même équation linéaire d'ordre 2 à coefficients constants réels. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1183) **q-1183** TRUE/FALSE marked out of 1.0 Pour tous $a \leq b$ entiers, le cardinal de $\{a, \ldots, b\} = b - a$. $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1184) **q-1184** TRUE/FALSE marked out of 1.0 Il y a 50 entiers pairs dans l'intervalle [0, 100]. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1185) **q-1185** marked out of 1.0 TRUE/FALSE Le produit de sept entiers consécutifs est toujours divisible par 720. • True ✓ $\rightarrow \ \ Vrai$ • False \rightarrow Faux (1186) **q-1186** marked out of 1.0 Il est possible de construire 2^n parties différentes de $[\![1,2n]\!]$ à n éléments, donc $\binom{2n}{n} \geq 2^n$. • True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$ (1187) **q-1187** marked out of 1.0 TRUE/FALSE Une matrice et sa transposée ont même noyau. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1188) **q-1188** TRUE/FALSE marked out of 1.0 Pour $A, B \in M_n(\mathbb{R})$, Tr(AB) = Tr(BA). • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1189) **q-1189** TRUE/FALSE marked out of 1.0

True
 False √

Pour $A, B, C \in M_n(\mathbb{R})$, Tr(ABC) = Tr(ACB).

(1190) **q-1190**

TRUE/FALSE marked out of 1.0

Deux systèmes linéaires ont les mêmes ensembles de solutions si et seulement si leurs matrices augmentées sont équivalentes par lignes.

• True $\rightarrow Vrai$

• False ✓ \rightarrow Faux

(1191) **q-1191**

TRUE/FALSE

Multiplier A à droite par une matrice d'opération élémentaire fait agir l'opération élémentaire correspondante sur ses colonnes.

• True ✓ $\rightarrow Vrai$ • False \rightarrow Faux

(1192) **q-1192**

TRUE/FALSE marked out of 1.0

Soit $\alpha_1, \ldots, \alpha_n \in \mathbb{R}^*$.

La matrice «antidiagonale» $\begin{pmatrix} 0 & \cdots & 0 & \alpha_1 \\ 0 & \cdots & \alpha_2 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ \alpha & \cdots & 0 & 0 \end{pmatrix}$ est inversible.

• True ✓ $\rightarrow Vrai$

• False $\rightarrow Faux$

(1193) **q-1193**

• True $\rightarrow Vrai$

• False ✓ \rightarrow Faux

(1194) **q-1194**

marked out of 1.0 TRUE/FALSE

Si le système AX = Y admet des solutions, alors A est inversible.

 $\rightarrow Vrai$ • True

• False √ \rightarrow Faux

(1195) **q-1195**

marked out of 1.0 TRUE/FALSE

Soit $A, B, C \in M_n(K)$. Alors la matrice $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} \in M_{2n}(K)$ est inversible si et seulement si A et C sont inversibles.

• True ✓ $\rightarrow Vrai$

• False \rightarrow Faux

(1196) **q-1196**

TRUE/FALSE marked out of 1.0

L'ensemble $M_n(\mathbb{R}) \setminus GL_n(\mathbb{R})$ des matrices non-inversibles est un sous-espace vectoriel de $M_n(\mathbb{K})$.

• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

(1197) q-1197	
TRUE/FALSE marked out of 1.0	. 1 TD N
L'ensemble constitué des suites monotones est un sous-espace vectoriel de l'esp	
 True False √ 	$\begin{array}{c} \rightarrow Vras \\ \rightarrow Faux \end{array}$
(1198) q-1198	
TRUE/FALSE marked out of 1.0	
L'ensemble des solutions de l'équation différentielle $y''+2y'+3y=0$ est u $C^{\infty}(\mathbb{R}).$	ın sous-espace vectoriel de
 True √ False	$ ightarrow Vran \ ightarrow Faux$
(1199) q-1199	
True/False marked out of 1.0	
L'ensemble des solutions de l'équation différentielle $y'' + 2y' + 3y = 1$ est u $C^{\infty}(\mathbb{R})$.	ın sous-espace vectoriel de
• True	$\rightarrow Vras$
• False ✓	\rightarrow Faux
(1200) q-1200	
TRUE/FALSE marked out of 1.0	
L'ensemble des suites bornées est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.	
 True √ False 	$\begin{array}{c} \rightarrow Vras \\ \rightarrow Faux \end{array}$
(1201) q-1201	
True/False marked out of 1.0	
L'intersection de deux sous-espaces vectoriels d'un même espace vectoriel est u	ın sous-espace vectoriel.
• True ✓	$\rightarrow Vrav$
• False	\rightarrow Faux
(1202) q-1202	
La réunion de deux sous-espaces vectoriels d'un même espace vectoriel est un	sous-espace vectoriel
• True	ightarrow Vrai
• False ✓	$\rightarrow Faux$
(1203) q-1203	
True/False marked out of 1.0	
La somme de deux sous-espaces vectoriels d'un même espace vectoriel est un s	sous-espace vectoriel.

• True \checkmark • False $\rightarrow Vrai$

(1204) **q-1204**

TRUE/FALSE marked out of 1.0

Soit F, G, H trois sous-espaces vectoriels d'un meme espace vectoriel tels que F+G=F+H. Alors G=H.

(1205) **q-1205** TRUE/FALSE marked out of 1.0 Soit F, G deux sous-espaces vectoriels de E tels que $F + G = F \cap G$. On a alors l'égalité F = G. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1206) **q-1206** marked out of 1.0 TRUE/FALSE Soit F, G deux sous-espaces vectoriels de E tels que F + G = F. On a alors l'égalité F = G. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1207) **q-1207** TRUE/FALSE marked out of 1.0 Une famille de vecteurs deux à deux non colinéaires est libre. $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1208) **q-1208** TRUE/FALSE marked out of 1.0 La famille des fonctions $x \mapsto x$, $x \mapsto -x$ et $x \mapsto |x|$ est libre. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1209) **q-1209** TRUE/FALSE marked out of 1.0 La famille des fonctions $x \mapsto 1$, $x \mapsto |x|$ et $x \mapsto |x-1|$ est libre. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1210) **q-1210** TRUE/FALSE marked out of 1.0 Si (e_1, \ldots, e_n) est une famille libre d'un espace vectoriel E et $x \in E$, alors la famille $(e_1 + x, \ldots, e_n + x)$ est libre. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1211) **q-1211** marked out of 1.0 TRUE/FALSE Si (e_1, \ldots, e_n) et (f_1, \ldots, f_n) sont des familles libres de E, alors $(e_1 + f_1, \ldots, e_n + f_n)$ est une famille libre. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1212) **q-1212**

TRUE/FALSE marked out of 1.0

Si $u \in \mathcal{L}(E)$, alors Im u et ker u sont supplémentaires.

True
 False ✓

Faux

(1213) **q-1213**

True/False marked out of 1.0

Si $u, v \in \mathcal{L}(E)$, alors $\operatorname{Im}(u+v) \subset \operatorname{Im} u + \operatorname{Im}(v)$.

	 True √ False 	$\overset{\rightarrow}{\rightarrow}$	Vrai Faux
(1214)	q-1214		
	TRUE/FALSE marked out of 1.0		
	Si $u \in \mathcal{L}(E)$ et que G et H sont deux sous-espaces vectoriels de E , alors on a l'égalité $u[G] + u[H]$.	! + I	H] =
	 True √ False 		Vrai Faux
(1215)	q-1215		
	TRUE/FALSE marked out of 1.0		
	Soit $u, v \in \mathcal{L}(E)$. Alors $u \circ v = 0$ si et seulement si $\operatorname{Im} v \subset \ker u$.		
	• True ✓		Vrai
	• False	\rightarrow	Faux
(1216)	q-1216		
	TRUE/FALSE marked out of 1.0		
	Soit $p \in \mathcal{L}(E)$. Alors p est un projecteur si et seulement si la différence $\mathrm{Id}_E - p$ est un projecteu	r.	
	• True ✓		Vrai
()	• False	\rightarrow	Faux
(1217)	q-1217		
	TRUE/FALSE marked out of 1.0		
	Si $p \in \mathcal{L}(E)$ est un projecteur, alors $\operatorname{Im} p = \ker(p - \operatorname{Id}_E)$.		
	 True √ False 		$\begin{array}{c} Vrai\\ Faux \end{array}$
(1010)		7	raax
(1218)	q-1218		
	TRUE/FALSE marked out of 1.0		
	Si $s \in \mathcal{L}(E)$ est une symétrie, alors $\operatorname{Im} s = \ker(s - \operatorname{Id}_E)$.		
	 True False √ 		Vrai Faux
(1910)	q-1219	,	1 0000
(1219)	TRUE/FALSE marked out of 1.0		
	De toute famille génératrice d'un espace vectoriel de dimension finie, on peut extraire une base.		
			17
	 True √ False 		Vrai Faux
(1220)	q-1220		
(1==0)	TRUE/FALSE marked out of 1.0		
	Tout vecteur d'un espace vectoriel de dimension finie peut être complété en une base.		
	• True	\rightarrow	Vrai
	• False ✓		Faux
(1221)	q-1221		
. /	TRUE/FALSE marked out of 1.0		
	Soit F un sous-espace d'un espace vectoriel E de dimension finie. Alors $E = F$ si, et seul	eme	nt si,

 $\rightarrow \ \ \mathit{Vrai}$

 $\rightarrow \mathit{Faux}$

 $\dim E = \dim F.$ • True \checkmark

• False

(1222) **q-1222**

TRUE/FALSE marked out of 1.0

Si (f_1, \ldots, f_n) est une base de F, que (g_1, \ldots, g_p) est une base de G et enfin que $(f_1, \ldots, f_n, g_1, \ldots, g_p)$ est une base de E, alors $E = F \oplus G$.

• True \checkmark

• False \rightarrow Faux

(1223) **q-1223**

True/False marked out of 1.0

Si $u \in \mathcal{L}(E, F)$ est une application linéaire injective entre deux espaces vectoriels de dimension finie, alors $\dim E \leq \dim F$.

• True \checkmark • False $\rightarrow Vrai$ • False

(1224) **q-1224**

TRUE/FALSE marked out of 1.0

Soit E et F deux espaces vectoriels de dimension finie tels que dim $E \ge \dim F$. Alors toute application linéaire $E \to F$ est surjective.

• True $\rightarrow Vrai$

• False \checkmark

(1225) **q-1225**

TRUE/FALSE marked out of 1.0

Soit E un espace vectoriel de dimension n possédant une base \mathscr{B} .

On a $Mat_{\mathscr{B}}(Id_E) = I_n$.

• True \checkmark \rightarrow Vrai

• False \rightarrow Faux

(1226) **q-1226**

TRUE/FALSE marked out of 1.0

Soit E un espace vectoriel de dimension n possédant deux bases \mathscr{B},\mathscr{C} .

On a $Mat_{\mathscr{B},\mathscr{C}}(Id_E) = I_n$.

• True $\rightarrow Vrai$

• False \checkmark \rightarrow Faux

(1227) **q-1227**

True/False marked out of 1.0

Une matrice et sa transposée ont même rang.

• True ✓ → Vrai

• False \rightarrow Faux

(1228) **q-1228**

TRUE/FALSE marked out of 1.0

Pour $A, B \in M_n(\mathbb{R})$, $\operatorname{rg}(AB) \leq \operatorname{rg} B$.

• True \checkmark \rightarrow Vrai

• False \rightarrow Faux

(1229) **q-1229**

TRUE/FALSE marked out of 1.0

Si $A \in M_{2,3}(\mathbb{R})$ et $B \in M_{3,2}(\mathbb{R})$ sont deux matrices vérifiant $AB \in GL_2(\mathbb{R})$, alors rg $A = \operatorname{rg} B = 2$.

• True ✓ → Vrai

• False	\rightarrow Faux
(1230) q-1230	
TRUE/FALSE marked out of 1.0	
Il existe une base de $M_n(\mathbb{R})$ composée de matrices de rang 1.	
• True √• False	$\begin{array}{cc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(1231) q-1231	
TRUE/FALSE marked out of 1.0	
Il existe une base de $M_n(\mathbb{R})$ composée de matrices inversibles.	
 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(1232) q-1232	
TRUE/FALSE marked out of 1.0	
Un polynôme constant est de degré nul.	
 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
	7 1 4 4 4
(1233) q-1233 True/False marked out of 1.0	
Si (P,Q,R,S) est une base de $\mathbb{R}_3[X]$, alors les degrés des quatre polynômes sont tous dist	tincts.
• True	$\rightarrow Vrai$
• False ✓	\rightarrow Faux
(1234) q-1234	
TRUE/FALSE marked out of 1.0	
$X^2 + X + 1$ est irréductible dans $\mathbb{R}[X]$.	
• True ✓	$\rightarrow Vrai$
• False	$\rightarrow Faux$
(1235) q-1235	
TRUE/FALSE marked out of 1.0	
$X^2 + X + 1$ est irréductible dans $\mathbb{C}[X]$.	
 True False √ 	$\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$
(1236) q-1236	7 1 0 0 0 0
TRUE/FALSE marked out of 1.0	
$X^3 + X + 1$ est irréductible dans $\mathbb{R}[X]$.	
• True	$\rightarrow Vrai$
• False ✓	$\rightarrow Faux$
(1237) q-1237	
TRUE/FALSE marked out of 1.0	
Le nombre 1 est racine simple de $1 + X + X^2 + X^3 + X^4 + X^5$.	
• True /	$\rightarrow Vrai$

 $\rightarrow \mathit{Faux}$

• False

(1238) **q-1238** TRUE/FALSE marked out of 1.0 Si P est un polynôme réel vérifiant $\forall n \in \mathbb{Z}, P(n) \in \mathbb{Z}$, alors les coefficients de P sont entiers. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1239) **q-1239** marked out of 1.0 TRUE/FALSE Soit \vec{x} et \vec{y} deux vecteurs d'un espace euclidien. Alors \vec{x} et \vec{y} sont orthogonaux si et seulement si $||\vec{x} + \vec{y}||^2 =$ $\|\vec{x}\|^2 + \|\vec{y}\|^2$. • True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$ (1240) **q-1240** TRUE/FALSE marked out of 1.0 Toute famille orthonormale d'un espace euclidien est libre. $\rightarrow Vrai$ • False \rightarrow Faux (1241) **q-1241** TRUE/FALSE marked out of 1.0 Aucun vecteur de $\overrightarrow{\mathscr{P}}$ n'est orthogonal à tous les vecteurs de $\overrightarrow{\mathscr{P}}$. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1242) **q-1242** marked out of 1.0 Deux droites disjointes dans le plan sont parallèles. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1243) **q-1243** marked out of 1.0 Deux droites disjointes dans l'espace sont parallèles. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux

(1244) **q-1244**

TRUE/FALSE marked out of 1.0

Deux plans disjoints dans l'espace sont parallèles.

• True \checkmark • False $\rightarrow Vrai$ $\rightarrow Faux$

(1245) **q-1245**

True/False marked out of 1.0

Étant donné deux droites quelconques de \mathbb{R}^3 , il existe une droite simultanément perpendiculaire aux deux.

• True \checkmark • False $\rightarrow Vrai$ • False

(1246) **q-1246**

TRUE/FALSE marked out of 1.0

On considère un point O et deux droites Δ , Δ' du plan. Alors il existe une rotation envoyant Δ sur Δ' si et seulement si $d(O, \Delta) = d(O, \Delta')$.

• True \checkmark

• False \rightarrow Faux

(1247) **q-1247**

TRUE/FALSE marked out of 1.0

Soit $p_1, ..., p_n \in \mathbb{R}_+$ de somme 1. Il existe une unique probabilité \mathbb{P} sur l'univers $\Omega = \{1, ..., n\}$ telle que $\mathbb{P}(\{k\}) = p_k$.

• True \checkmark • False $\rightarrow Vrai$ $\rightarrow Faux$

(1248) **q-1248**

TRUE/FALSE marked out of 1.0

Soit A de probabilité non nulle. Alors, pour tout $B \in \mathcal{P}(\Omega)$, $\mathbb{P}(B|A) \leq \mathbb{P}(B)$.

• True $\rightarrow Vrai$

• False \checkmark \rightarrow Faux

(1249) **q-1249**

TRUE/FALSE marked out of 1.0

Dans un espace probabilisé (Ω, P) fini, tout événement A indépendant de $\Omega \setminus A$ est de probabilité 0 ou 1.

• True \checkmark \rightarrow Vrai

• False \rightarrow Faux

(1250) **q-1250**

TRUE/FALSE marked out of 1.0

Soit A et B deux événements. Alors $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ si et seulement si A et B sont indépendants.

• True $\rightarrow Vrai$

• False \checkmark \rightarrow Faux

(1251) **q-1251**

TRUE/FALSE marked out of 1.0

Soit A, B et C des événements tels que A et B sont indépendants et B et C sont indépendants. Alors A et C sont indépendants.

• True $\rightarrow Vrai$ • False \checkmark

(1252) **q-1252**

TRUE/FALSE marked out of 1.0

Trois événements indépendants sont indépendants deux à deux.

• True √
 • False
 → Vrai
 → Faux

(1253) **q-1253**

TRUE/FALSE marked out of 1.0

La somme de deux variables de loi de Bernoulli de paramètre p suit une loi binomiale de paramètre 2 et p.

• True $\rightarrow Vrai$ • False \checkmark

(1254) **q-1254** TRUE/FALSE marked out of 1.0 Si $X \sim \mathcal{U}(\{0,\ldots,n\})$, alors $n - X \sim \mathcal{U}(\{0,\ldots,n\})$. • True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$ (1255) **q-1255** marked out of 1.0 True/False Si $X \sim \mathcal{B}(n, p)$, alors $n - X \sim \mathcal{B}(n, p)$. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1256) **q-1256** TRUE/FALSE marked out of 1.0 Si une variable aléatoire $X:\Omega\to\mathbb{R}$ est d'espérance nulle, alors la variable e^X est d'espérance 1. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1257) **q-1257** TRUE/FALSE marked out of 1.0 Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire réelle. Alors, pour tout $a\in\mathbb{R}$, on a l'inégalité $\mathbb{E}(X)\geq a\,\mathbb{P}(X\geq a)$. $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1258) **q-1258** marked out of 1.0 TRUE/FALSE Tout rectangle dont les diagonales sont perpendiculaires est un losange. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1259) **q-1259** marked out of 1.0 TRUE/FALSE Tout trapèze ayant un angle droit est un rectangle. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1260) **q-1260** marked out of 1.0 Tout trapèze ayant deux angles droits est un rectangle. $\rightarrow Vrai$ • True \rightarrow Faux • False ✓ (1261) **q-1261** marked out of 1.0 TRUE/FALSE

Tout trapèze isocèle ayant un angle droit est un rectangle.

• True \checkmark • False $\rightarrow Vrai$ • Faux

(1262) **q-1262**

TRUE/FALSE marked out of 1.0

Tout trapèze isocèle ayant un angle droit est un carré.

	 True False √ 	$\rightarrow Vrai$ $\rightarrow Faux$
(1263)	q-1263	
	True/False marked out of 1.0	
	Tout quadrilatère dont les diagonales sont perpendiculaires et de même longueur est un carré.	
	 True False √ 	$\rightarrow Vrai$ $\rightarrow Faux$
(1264)	q-1264	7 1 0 0 0 0
(1201)	TRUE/FAISE marked out of 1.0	
	Tout losange avec un angle droit est un carré.	
	 True √ False 	$\rightarrow Vrai \rightarrow Faux$
(1265)	q-1265	
` /	TRUE/FALSE marked out of 1.0	
	Tout losange avec un angle droit a des diagonales de même longueur.	
	 True √ False 	$\rightarrow Vrai \rightarrow Faux$
(1266)	q-1266	7 1 4 4 4
(1200)	True/False marked out of 1.0	
	Tout losange avec deux angles égaux est un carré.	
	• True	$\rightarrow Vrai$
(1007)	• False ✓	\rightarrow Faux
(1267)	q-1267 True/False marked out of 1.0	
	Tout losange avec deux angles consécutifs égaux est un carré.	
	• True √	$\rightarrow Vrai$
	• False	\rightarrow Faux
(1268)	q-1268	
	Tout trapèze avec deux angles égaux est un trapèze isocèle.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(1269)	q-1269	
	True/Faise marked out of 1.0	
	Tout trapèze avec deux angles consécutifs égaux est un trapèze isocèle. • True	$\rightarrow Vrai$
	• False ✓	$\rightarrow Faux$
(1270)	q-1270	
	TRUE/FALSE marked out of 1.0	
	Tout trapèze avec deux bases de même longueur est un rectangle.	•-
	 True False √ 	$\rightarrow Vrai$ $\rightarrow Faux$

(1271) q-1271 TRUE/FALSE marked out of 1.0 Tout trapèze avec deux bases de même longueur est un losange. $\rightarrow Vrai$ • True • False √ \rightarrow Faux (1272) **q-1272** TRUE/FALSE marked out of 1.0 Tout trapèze avec deux bases de même longueur est un parallélogramme. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1273) **q-1273** TRUE/FALSE marked out of 1.0 Tout quadrilatère ayant au moins un axe de symétrie est un losange ou bien un trapèze isocèle. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1274) **q-1274** TRUE/FALSE marked out of 1.0 Tout quadrilatère ayant exactement un axe de symétrie est un trapèze isocèle. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1275) **q-1275** TRUE/FALSE marked out of 1.0 Tout carré possède exactement deux axes de symétrie. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1276) **q-1276** TRUE/FALSE marked out of 1.0 Tout carré possède exactement huit axes de symétrie. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1277) **q-1277** TRUE/FALSE marked out of 1.0 Tout carré possède exactement quatre axes de symétrie. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (1278) **q-1278** marked out of 1.0 TRUE/FALSE Tout rectangle possède exactement quatre axes de symétrie. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1279) **q-1279** TRUE/FALSE marked out of 1.0

Tout rectangle possède exactement deux axes de symétrie.

	 True False √ 	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(1280)	q-1280 TRUE/FALSE marked out of 1.0	
	Tout rectangle possède au moins deux axes de symétrie. • True ✓ • False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(1281)	q-1281 True/False marked out of 1.0	
	Tout losange possède exactement deux axes de symétrie. • True • False ✓	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(1282)	q-1282 True/False marked out of 1.0	
	Tout losange possède au moins deux axes de symétrie. • True ✓ • False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(1283)	q-1283 True/False marked out of 1.0	
	Tout losange possède exactement quatre axes de symétrie. • True • False ✓	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(1284)	q-1284 True/False marked out of 1.0	
	Tout pentagone possède cinq axes de symétrie. • True • False ✓	
(1285)	q-1285 True/False marked out of 1.0	
	Tout pentagone régulier possède cinq axes de symétrie. • True ✓ • False	
(1286)	q-1286 True/False marked out of 1.0	, 1 aa
	Tout triangle équilatéral possède trois axes de symétrie. • True ✓ • False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(1287)	q-1287 True/False marked out of 1.0	7 I WW.L
	Tout triangle isocèle possède exactement un axe de symétrie.	.
	 True False √ 	$\begin{array}{c} \rightarrow Vrai \\ \rightarrow Faux \end{array}$

(1288) **q-1288** TRUE/FALSE marked out of 1.0 Tout triangle isocèle possède au moins un axe de symétrie. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (1289) **q-1289** TRUE/FALSE marked out of 1.0 Les axes de symétrie d'un hexagone régulier passent par ses sommets. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1290) **q-1290** TRUE/FALSE marked out of 1.0 Les axes de symétrie d'un pentagone régulier passent par ses sommets. • True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$ (1291) **q-1291** TRUE/FALSE marked out of 1.0 Les axes de symétrie d'un carré passent par ses sommets. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1292) **q-1292** TRUE/FALSE marked out of 1.0 Les axes de symétrie d'un triangle équilatéral passent par ses sommets. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1293) **q-1293** TRUE/FALSE marked out of 1.0 Les axes de symétrie d'un carré sont ses diagonales. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1294) **q-1294** marked out of 1.0 TRUE/FALSE Les axes de symétrie d'un losange sont ses diagonales $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1295) **q-1295** TRUE/FALSE marked out of 1.0 Tout trapèze possède au moins un axe de symétrie. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1296) **q-1296** TRUE/FALSE marked out of 1.0

Tout trapèze isocèle possède au moins un axe de symétrie.

 True √ False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(1297) q-1297	
True/False marked out of 1.0	
Tout parallélogramme possède un axe de symétrie.	
 True False √	$\begin{array}{c} \rightarrow \ Vrai \\ \rightarrow \ Faux \end{array}$
(1298) q-1298	
True/False marked out of 1.0	
Tout parallélogramme possède un centre de symétrie.	
 True √ False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(1299) q-1299	, 1888
True/False marked out of 1.0	
Tout losange possède un centre de symétrie.	
• True √	$ ightarrow \ Vrai$
• False	$\rightarrow Faux$
(1300) q-1300	
TRUE/FALSE marked out of 1.0	
Tout rectangle possède un centre de symétrie.	
 True √ False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(1301) q-1301	
TRUE/FALSE marked out of 1.0	
Tout carré possède un centre de symétrie.	
• True ✓	ightarrow Vrai
• False	$\rightarrow Faux$
(1302) q-1302	
True/False (marked out of 1.0) Tout trapèze possède un centre de symétrie.	
• True	$ ightarrow \mathit{Vrai}$
• False ✓	
(1303) q-1303	
True/False marked out of 1.0	
Tout trapèze isocèle possède un centre de symétrie.	
• True	ightarrow Vrai
• False ✓	$\rightarrow Faux$
(1304) q-1304	
True/False marked out of 1.0 $7 \times 13 = 91$	
• True √	ightarrow Vrai
• False	

(1338) **q-1338**

TRUE/FALSE marked out of 1.0 $(a-1)(a+2) = a^2 + a - 2$

• True \checkmark • False $\rightarrow Vrai$

(1339) **q-1339**

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(1340) **q-1340**

- $(a-1)(a-2) = a^2 3a + 2$
 - True √False

 $\begin{array}{cc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(1341) **q-1341**

True/False marked out of 1.0
$$(a+1)(a+3) = a^2 + 4a + 3$$

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(1342) **q-1342**

True/False (marked out of 1.0)
$$(a-1)(a+3) = a^2 + 2a - 3$$

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(1343) **q-1343**

True/False marked out of 1.0
$$(a+1)(a-3)=a^2-2a-3$$

- True √
- False

- $\rightarrow \ Vrai$
- \rightarrow Faux

(1344) **q-1344**

True/False marked out of 1.0
$$(a-1)(a-3) = a^2 - 4a + 3$$

- True ✓
- False

- $\rightarrow Vrai$
- \rightarrow Faux

(1345) **q-1345**

True/False marked out of 1.0
$$(a+2)(a+3) = a^2 + 5a + 6$$

- True ✓
- False

- $\rightarrow \ \mathit{Vrai}$
- \rightarrow Faux

(1346) **q-1346**

True/False marked out of 1.0
$$(a-2)(a+3) = a^2 + a - 6$$

- True ✓
- False

 $\begin{array}{c} \rightarrow & \mathit{Vrai} \\ \rightarrow & \mathit{Faux} \end{array}$

(1347) **q-1347**

TRUE/FALSE marked out of 1.0
$$(a+2)(a-3) = a^2 - a - 6$$

- True ✓
- False

 $\rightarrow Vrai$ $\rightarrow Faux$

(1348) **q-1348**

TRUE/FALSE marked out of 1.0

 $(a-2)(a-3) = a^2 - 5a + 6$

- True ✓
- False

 $\rightarrow \ \ \mathit{Vrai}$

 \rightarrow Faux

(1349) **q-1349**

TRUE/FALSE marked out of 1.0

 $(a+1)(a+1) = a^2 + 2a + 1$

- True ✓
- False

 $\rightarrow Vrai \rightarrow Faux$

(1350) **q-1350**

TRUE/FALSE marked out of 1.0

 $(a-1)(a-1) = a^2 - 2a + 1$

- True ✓
- False

- $\rightarrow Vrai$
- $\rightarrow Faux$

(1351) **q-1351**

TRUE/FALSE marked out of 1.0

 $(a+2)(a+2) = a^2 + 4a + 4$

- True ✓
- False

 $\rightarrow \ \ \mathit{Vrai}$

 \rightarrow Faux

(1352) **q-1352**

TRUE/FALSE marked out of 1.0

 $(a-2)(a-2) = a^2 - 4a + 4$

- True ✓
- False

 $\rightarrow Vrai$ $\rightarrow Faux$

(1353) **q-1353**

TRUE/FALSE marked out of 1.0

 $(a+1)(a+2) = a^2 + 2a + 2$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(1354) **q-1354**

TRUE/FALSE marked out of 1.0

 $(a-1)(a+2) = a^2 + 2a - 2$

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(1355) **q-1355**

TRUE/FALSE marked out of 1.0

 $(a+1)(a-2) = a^2 - a + 2$

- True
- False ✓

 $\rightarrow Vrai$

 \rightarrow Faux

(1356) **q-1356**

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(1357) **q-1357**

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(1358) **q-1358**

True/False marked out of 1.0
$$(a-1)(a+3) = a^2 + 2a + 3$$

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(1359) **q-1359**

TRUE/FALSE marked out of 1.0
$$(a+1)(a-3)=a^2+a-3$$

- True
- False √

 $\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$

(1360) **q-1360**

$$(a-1)(a-3) = a^2 - 2a + 3$$

- True
- False √

 $\rightarrow Vrai$ $\rightarrow Faux$

(1361) **q-1361**

True/False marked out of 1.0
$$(a+2)(a+3) = a^2 + 6a + 6$$

- TrueFalse √

 $\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$

• False √

(1362) **q-1362**

TRUE/FALSE marked out of 1.0
$$(a-2)(a+3) = a^2 + a + 6$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(1363) **q-1363**

$$(a+2)(a-3) = a^2 + a - 6$$

- True
- False ✓

 $\begin{array}{c} \rightarrow \textit{Vrai} \\ \rightarrow \textit{Faux} \end{array}$

(1364) **q-1364**

$$(a-2)(a-3) = a^2 + 5a + 6$$

- $\rightarrow Vrai$ • True \rightarrow Faux
- False ✓

(1365) **q-1365**

TRUE/FALSE marked out of 1.0 $(a+1)(a+1) = a^2 + 2a + 2$

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (1366) **q-1366**

TRUE/FALSE marked out of 1.0 $(a-1)(a-1) = a^2 - 2a - 1$

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (1367) **q-1367**

TRUE/FALSE marked out of 1.0 $(a+2)(a+2) = a^2 + 2a + 4$

- True $\rightarrow Vrai$ • False √ \rightarrow Faux
- (1368) **q-1368**

TRUE/FALSE marked out of 1.0 $(a-2)(a-2) = a^2 - 4a - 4$

- $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux
- (1369) **q-1369**

TRUE/FALSE marked out of 1.0 $(2a+1)(a+1) = 2a^2 + 3a + 1$

- $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux
- (1370) **q-1370**

TRUE/FALSE marked out of 1.0 $(2a-1)(a+1) = 2a^2 + a - 1$

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (1371) **q-1371**

True/False marked out of 1.0 $(2a+1)(a-1) = 2a^2 - a - 1$

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (1372) **q-1372**

TRUE/FALSE marked out of 1.0 $(2a-1)(a-1) = 2a^2 - 3a + 1$

• True ✓ $\rightarrow Vrai$ • False \rightarrow Faux

TRUE/FALSE marked out of 1.0

 $(2a+1)(a+3) = 2a^2 + 7a + 3$

- True ✓
- False

 $\rightarrow Vrai$ $\rightarrow Faux$

(1374) **q-1374**

True/False marked out of 1.0

 $(2a+1)(a-3) = 2a^2 - 5a - 3$

- True ✓
- False

 $\rightarrow Vrai \rightarrow Faux$

(1375) **q-1375**

TRUE/FALSE marked out of 1.0

 $(2a-1)(a+3) = 2a^2 + 5a - 3$

- True ✓
- False

 $\rightarrow Vrai$ $\rightarrow Faux$

(1376) **q-1376**

TRUE/FALSE marked out of 1.0

 $(2a-1)(a-3) = 2a^2 - 7a + 3$

- True √
- False

 $\begin{array}{c} \rightarrow & \mathit{Vrai} \\ \rightarrow & \mathit{Faux} \end{array}$

(1377) **q-1377**

TRUE/FALSE marked out of 1.0

 $(2a+1)(a+1) = 2a^2 + 3a + 2$

- True
- False ✓

 $\rightarrow \textit{Vrai}$

 \rightarrow Faux

(1378) **q-1378**

TRUE/FALSE marked out of 1.0

 $(2a-1)(a+1) = 2a^2 - a - 1$

- True
- False ✓

 $\rightarrow \textit{Vrai}$

 \rightarrow Faux

(1379) **q-1379**

TRUE/FALSE marked out of 1.0

 $(2a+1)(a-1) = 2a^2 - 2a - 1$

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(1380) **q-1380**

TRUE/FALSE marked out of 1.0

 $(2a-1)(a-1) = 2a^2 - 3a - 1$

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(1381) **q-1381**

TRUE/FALSE marked out of 1.0

 $(2a+1)(a+3) = 2a^2 + 4a + 3$

- $\rightarrow Vrai$ • True
- False ✓ \rightarrow Faux

(1382) **q-1382**

TRUE/FALSE marked out of 1.0 $(2a+1)(a-3) = 2a^2 - 6a - 3$

- True $\rightarrow Vrai$
- False ✓ \rightarrow Faux

(1383) **q-1383**

TRUE/FALSE marked out of 1.0 $(2a-1)(a+3) = 2a^2 + 7a - 3$

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (1384) **q-1384**

TRUE/FALSE marked out of 1.0 $(2a-1)(a-3) = 2a^2 - 5a + 3$

- $\rightarrow Vrai$ • True • False √ \rightarrow Faux
- (1385) **q-1385**

TRUE/FALSE marked out of 1.0 (a+1)(b+1) = ab + a + b + 1

- $\rightarrow Vrai$ • True ✓ \rightarrow Faux • False
- (1386) **q-1386**

TRUE/FALSE marked out of 1.0 (a+1)(b-1) = ab - a + b - 1

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (1387) **q-1387**

TRUE/FALSE marked out of 1.0 (a-1)(b+1) = ab + a - b - 1

- True ✓ $\rightarrow Vrai$ \rightarrow Faux • False
- (1388) **q-1388**

True/False marked out of 1.0 (a-1)(b-1) = ab - a - b + 1

- True ✓ $\rightarrow \ \ Vrai$ • False \rightarrow Faux
- (1389) **q-1389**

True/False marked out of 1.0 (a+2)(b+1) = ab + a + 2b + 2

• True ✓ $\rightarrow \ \ Vrai$ • False \rightarrow Faux

• True ✓

• False

 $\rightarrow Vrai$ $\rightarrow Faux$

(1391) **q-1391**

$$(a-2)(b+1) = ab + a - 2b - 2$$

• True ✓

• False

 $\begin{array}{ccc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(1392) **q-1392**

TRUE/FALSE marked out of 1.0

$$(a-2)(b-1) = ab - a - 2b + 2$$

• True ✓

• False

 $\rightarrow Vrai$

 \rightarrow Faux

(1393) **q-1393**

TRUE/FALSE marked out of 1.0

$$(a+b)(a+1) = a^2 + ab + a + b$$

• True √

• False

 $\begin{array}{c} \rightarrow & \mathit{Vrai} \\ \rightarrow & \mathit{Faux} \end{array}$

 $\rightarrow Vrai$

 $\rightarrow \mathit{Faux}$

(1394) **q-1394**

TRUE/FALSE marked out of 1.0

$$(a+b)(a-1) = a^2 + ab - a - b$$

• True √

• False

(1395) **q-1395**

True/False marked out of 1.0 $(a-b)(a+1) = a^2 - ab + a - b$

• True \checkmark

• False $\rightarrow Faux$

(1396) **q-1396**

True/False marked out of 1.0 $(a-b)(a-1)=a^2-ab-a+b$

• True \checkmark

• False $\rightarrow Vrai$

(1397) **q-1397**

TRUE/FALSE marked out of 1.0

 $(a-2b)(a+2) = a^2 - 2ab + 2a - 4b$

• True \checkmark • False $\rightarrow Vrai$

(1398) **q-1398**

True/False marked out of 1.0 $(a+2b)(a-3)=a^2+2ab-3a-6b$

- True ✓ $\rightarrow Vrai$
- False \rightarrow Faux

(1399) **q-1399**

marked out of 1.0

 $(2a - 3b)(3a + 2) = 6a^2 - 9ab + 4a - 6b$

- True ✓ $\rightarrow Vrai$ \rightarrow Faux
- False

(1400) **q-1400**

True/False marked out of 1.0

 $(3a - 2b)(2a + 3) = 6a^2 - 4ab + 9a - 6b$

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (1401) **q-1401**

TRUE/FALSE marked out of 1.0 $(a+b)(a-b) = a^2 - b^2$

- $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux
- (1402) **q-1402**

TRUE/FALSE marked out of 1.0

 $(a+2b)(a+3b) = a^2 + 5ab + 6b^2$

- $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux
- (1403) **q-1403**

TRUE/FALSE marked out of 1.0

 $(2a+b)(a-b) = 2a^2 - ab - b^2$

- $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux
- (1404) **q-1404**

TRUE/FALSE marked out of 1.0

 $(2a - b)(3a + b) = 6a^2 - ab - b^2$

- True ✓ $\rightarrow Vrai$
- False \rightarrow Faux
- (1405) **q-1405**

TRUE/FALSE marked out of 1.0

 $(2a+b)(a-3b) = 2a^2 - 5ab - 3b^2$

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (1406) **q-1406**

TRUE/FALSE marked out of 1.0

(a+1)(b+1) = ab + 2a + 2b + 1

• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

(1408) **q-1408**

TRUE/FALSE (marked out of 1.0)
$$(a-1)(b+1) = ab - a - b - 1$$

 $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux

(1409) **q-1409**

TRUE/FALSE marked out of 1.0 (a-1)(b-1) = ab - a - b - 1

• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

(1410) **q-1410**

TRUE/FALSE marked out of 1.0 (a+2)(b+1) = ab + a + b + 2

 $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux

(1411) **q-1411**

TRUE/FALSE marked out of 1.0 (a+2)(b-1) = ab - a + 2b + 2

 $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux

(1412) **q-1412**

TRUE/FALSE marked out of 1.0 (a-2)(b+1) = ab + a + 2b - 2

• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

(1413) **q-1413**

True/False marked out of 1.0 (a-2)(b-1) = ab - a - 2b - 2

• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

(1414) **q-1414**

TRUE/FALSE marked out of 1.0 $(a+b)(a+1) = a^2 + 2ab + a + b$

 $\rightarrow Vrai$ • True • False \checkmark \rightarrow Faux

(1415) **q-1415**

TRUE/FALSE marked out of 1.0 $(a+b)(a-1) = a^2 + ab + a - b$

- $\rightarrow Vrai$ • True
- False ✓

 \rightarrow Faux

 \rightarrow Faux

(1416) **q-1416**

True/False (marked out of 1.0)
$$(a-b)(a+1) = a^2 + ab + a - b$$

- True $\rightarrow Vrai$
- False ✓ \rightarrow Faux

(1417) **q-1417**

True/False (marked out of 1.0)
$$(a-b)(a-1) = a^2 - ab + a + b$$

TRUE/FALSE marked out of 1.0

True/False marked out of 1.0

• False ✓

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (1418) **q-1418**

TRUE/FALSE marked out of 1.0
$$(a-2b)(a+2)=a^2-2ab-2a-4b$$

- True $\rightarrow Vrai$ • False √ \rightarrow Faux
- (1419) **q-1419**

$$\overline{(a+2b)(a-3)} = a^2 + 2ab + 3a - 6b$$
• True
$$\rightarrow Vrai$$

(1420) **q-1420**

True/False marked out of 1.0
$$(2a-3b)(3a+2)=6a^2-9ab-4a-6b$$

- True $\rightarrow Vrai$ • False √ \rightarrow Faux
- (1421) **q-1421**

TRUE/FALSE marked out of 1.0
$$(3a-2b)(2a+3)=6a^2-4ab+9a+6b$$

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (1422) **q-1422**

$$\overline{(a+b)(a-b)} = a^2 + b^2$$

• True

• False ✓

• Faux

(1423) **q-1423**

TRUE/FALSE marked out of 1.0
$$(a+2b)(a+3b) = a^2 + 6ab + 5b^2$$

• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

(1424) **q-1424**

TRUE/FALSE marked out of 1.0

 $(2a+b)(a-b) = 2a^2 + ab - b^2$

- True $\rightarrow Vrai$
- False ✓ \rightarrow Faux

(1425) **q-1425**

TRUE/FALSE marked out of 1.0

 $(2a - b)(3a + b) = 6a^2 - 5ab - b^2$

- True $\rightarrow Vrai$
- False ✓ \rightarrow Faux

(1426) **q-1426**

TRUE/FALSE marked out of 1.0

 $(2a+b)(a-3b) = 2a^2 - 5ab + 3b^2$

- True $\rightarrow Vrai$
- False ✓ \rightarrow Faux

(1427) **q-1427**

TRUE/FALSE marked out of 1.0

Les diagonales d'un pentagone régulier se coupent en leur milieu.

- $\rightarrow Vrai$ • True \rightarrow Faux
- False ✓

(1428) **q-1428**

TRUE/FALSE marked out of 1.0

Tout losange possède au moins deux angles égaux.

- True ✓ $\rightarrow Vrai$
- False $\rightarrow Faux$

(1429) **q-1429**

TRUE/FALSE marked out of 1.0

Tout parallélogramme possède au moins deux angles égaux.

- True ✓ $\rightarrow Vrai$
- False \rightarrow Faux

(1430) **q-1430**

TRUE/FALSE marked out of 1.0 $(a+1)^3 = a^3 + 3a^2 + 3a + 1.$

- $\rightarrow Vrai$ • True ✓
- False \rightarrow Faux

(1431) **q-1431**

True/False marked out of 1.0 $(a+1)^3 = 1 + 3a + 3a^2 + a^3.$

- True ✓ $\rightarrow Vrai$
- False \rightarrow Faux

(1432) **q-1432**

TRUE/FALSE marked out of 1.0 $(a+2)^3 = a^3 + 3a^2 + 3a + 2.$

- True $\rightarrow Vrai$
- False \checkmark

(1433) **q-1433**

True/False marked out of 1.0 $(a+2)^3 = a^3 + 3a^2 + 3a + 8.$

- True $\rightarrow Vrai$ False \checkmark
- (1434) **q-1434**

True/False marked out of 1.0 $(a+2)^3 = a^3 + 6a^2 + 12a + 8.$

- True \checkmark False $\rightarrow Vrai$ Faux
- (1435) **q-1435**

True/False marked out of 1.0 $(a+3)^3 = a^3 + 9a^2 + 27a + 27.$

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (1436) **q-1436**

True/False marked out of 1.0 $(a+1)^3 = 1 + a + a^2 + a^3.$

- True $\rightarrow Vrai$ False \checkmark
- (1437) **q-1437**

True/False marked out of 1.0 $(a+1)^3 = a^3 + 2a^2 + 2a + 1.$

- True • False \checkmark $\rightarrow Vrai$ • Faux
- (1438) **q-1438**

True/False marked out of 1.0 $(a-1)^3 = a^3 - 3a^2 + 3a - 1.$

- True \checkmark False $\rightarrow Vrai$ $\rightarrow Faux$
- (1439) **q-1439**

True/False marked out of 1.0 $(a-1)^3 = a^3 - 3a^2 - 3a + 1.$

- True • False ✓ $\rightarrow Vrai$
- (1440) **q-1440**

True/False marked out of 1.0 $(a-1)^3 = 1 - 3a + 3a^2 - a^3.$

• True $\rightarrow Vrai$ • False \checkmark

(1441) **q-1441**

- True ✓
- False

 $\rightarrow Vrai$ $\rightarrow Faux$

(1442) **q-1442**

- True ✓
- False

 $\rightarrow Vrai \rightarrow Faux$

(1443) **q-1443**

TRUE/FALSE marked out of 1.0
$$(a-1)^3 = (1-a)^3$$
.

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(1444) **q-1444**

TRUE/FALSE marked out of 1.0
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$$

- True ✓
- False

 $\begin{array}{ccc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(1445) **q-1445**

$$\overline{(a+b)^3} = a^3 + 3a^2b + 3ba^2 + b^3.$$

- True
- False ✓

 $\rightarrow Vrai$ $\rightarrow Faux$

(1446) **q-1446**

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3.$$

- True ✓
- False

 $\begin{array}{cc} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(1447) **q-1447**

True/False marked out of 1.0
$$(a-b)^3 = a^3 - 3a^2b - 3ab^2 + b^3.$$

- True ✓
- False

 $\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$

(1448) **q-1448**

$$\overline{(a-b)^3} = a^3 - 3ab^2 + 3a^2b - b^3.$$

- True
- False \checkmark

 $\rightarrow Vrai$ $\rightarrow Faux$

(1449) **q-1449**

$$\overline{a^3 - b^3} = (a - b)(a^2 + ab + b^2).$$

- True ✓ $\rightarrow Vrai$
- False \rightarrow Faux

(1450) **q-1450**

TRUE/FALSE marked out of 1.0 $a^3 - b^3 = (a - b)(a^2 + a + 1).$

- True $\rightarrow Vrai$
- False ✓ \rightarrow Faux

(1451) **q-1451**

True/False marked out of 1.0 $a^3 - b^3 = (a - b)(a^2 - ab + b^2).$

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (1452) **q-1452** TRUE/FALSE marked out of 1.0

 $a^3 - 1 = (a - 1)(a^2 + a + 1).$ • True ✓ $\rightarrow Vrai$

• False \rightarrow Faux

(1453) **q-1453**

 $a^3 + b^3 = (a+b)(a^2 - ab + b^2).$ • True ✓ $\rightarrow Vrai$

• False \rightarrow Faux

(1454) **q-1454**

 $a^3 + b^3 = (a+b)(a^2 + ab + b^2).$ • True $\rightarrow Vrai$

- False ✓ \rightarrow Faux
- (1455) **q-1455**

 $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.$

- True ✓ $\rightarrow Vrai$ • False \rightarrow Faux
- (1456) **q-1456**

TRUE/FALSE marked out of 1.0 $(a+b)^4 = a^4 + 4a^3 + 6a^2 + 4a + 1.$

- True $\rightarrow Vrai$ • False ✓ \rightarrow Faux
- (1457) **q-1457**

TRUE/FALSE marked out of 1.0 $(a+b)^4 = a^4 + 4a^3b + 4a^2b^2 + 4ab^3 + b^4.$

• True $\rightarrow Vrai$ • False ✓ \rightarrow Faux

(1458) **q-1458**

TRUE/FALSE marked out of 1.0

 $(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4.$

- True ✓
- False
- (1459) **q-1459**

TRUE/FALSE marked out of 1.0

 $(a-b)^4 = a^4 - 4a^3b - 6a^2b^2 - 4ab^3 + b^4.$

• True $\rightarrow Vrai$

 $\rightarrow Vrai$

 $\rightarrow Faux$

- False \checkmark
- (1460) **q-1460**

TRUE/FALSE marked out of 1.0

 $(a+2)^4 = a^4 + 8a^3b + 24a^2 + 32a + 16.$

- True \checkmark
- False \rightarrow Faux
- (1461) **q-1461**

TRUE/FALSE marked out of 1.0

 $(a+3)^4 = a^4 + 12a^3b + 54a^2 + 108a + 81.$

- True \checkmark
- False \rightarrow Faux
- (1462) **q-1462**

TRUE/FALSE marked out of 1.0

 $\overline{(a+3)^4} = a^4 + 12a^3b + 54a^2 + 108a + 27.$

- ullet True o Vrai
- False \checkmark \rightarrow Faux
- (1463) **q-1463**

TRUE/FALSE marked out of 1.0

 $(a+2)^4 = a^4 + 4a^3b + 6a^2 + 4a + 2.$

- ullet True o Vrai
- False ✓ → Faux
- (1464) **q-1464**

TRUE/FALSE marked out of 1.0

 $(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5.$

- True ✓ → Vrai
- False \rightarrow Faux
- (1465) **q-1465**

TRUE/FALSE marked out of 1.0

 $(a+1)^5 = a^5 + 5a^4 + 10a^3 + 10a^2 + 5a + 1.$

- True ✓ → Vrai
- False \rightarrow Faux
- (1466) **q-1466**

TRUE/FALSE marked out of 1.0

Toute fonction affine est linéaire.

	TrueFalse √	$\begin{array}{c} \rightarrow \mathit{Vrai} \\ \rightarrow \mathit{Faux} \end{array}$
(1467)	q-1467	
	TRUE/FALSE marked out of 1.0	
	Toute fonction linéaire est affine.	
	True √False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(1468)	q-1468	
	TRUE/FALSE marked out of 1.0	
	Toute fonction constante est affine.	
	 True √ False	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(1469)	q-1469	
, ,	TRUE/FALSE marked out of 1.0	
	Toute fonction constante est linéaire.	
	• True	$\rightarrow Vrai$
(• False √	$\rightarrow Faux$
(1470)	q-1470	
	La fonction nulle est linéaire.	
	• True ✓	$\rightarrow Vrai$
	• False	$\rightarrow Faux$
(1471)	q-1471	
	TRUE/FALSE marked out of 1.0	
	la fonction nulle est affine.	
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(1472)	q-1472	7 1 0 0 0 0
(1412)	TRUE/FALSE marked out of 1.0	
	La fonction $x \mapsto -3x + 5$ est linéaire.	
	• True	$\rightarrow Vrai$
	• False ✓	\rightarrow Faux
(1473)	q-1473	
	TRUE/FAISE marked out of 1.0	
	La fonction $x \mapsto -3x + 5$ est affine.	Vmai
	 True √ False 	$\begin{array}{c} \rightarrow & Vrai \\ \rightarrow & Faux \end{array}$
(1474)	q-1474	
	TRUE/FALSE marked out of 1.0	
	L'image de 2 par la fonction $x \mapsto 2x + 7$ est 11.	
	True √False	$\rightarrow Vrai \rightarrow Faux$

(1475) **q-1475** TRUE/FALSE marked out of 1.0 L'image de 3 par la fonction $x \mapsto -5x + 2$ est -13. $\rightarrow Vrai$ • True ✓ • False \rightarrow Faux (1476) **q-1476** TRUE/FALSE marked out of 1.0 L'image de 3 par la fonction $x \mapsto 9x + 7$ est 33. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1477) **q-1477** TRUE/FALSE marked out of 1.0 L'image de 7 par la fonction $x \mapsto 3x + 11$ est 22. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1478) **q-1478** TRUE/FALSE marked out of 1.0 L'image de 11 par la fonction $x \mapsto 9x + 22$ est 121. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1479) **q-1479** TRUE/FALSE marked out of 1.0 L'image de 12 par la fonction $x \mapsto 7x - 35$ est 49. • True ✓ $\rightarrow Vrai$ • False \rightarrow Faux (1480) **q-1480** TRUE/FALSE marked out of 1.0 L'image de 8 par la fonction $x \mapsto 11x - 59$ est 39. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1481) **q-1481** marked out of 1.0 TRUE/FALSE L'antécédent de 7 par la fonction $x \mapsto 2x + 3$ est 17. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1482) **q-1482** marked out of 1.0 L'antécédent de 7 par la fonction $x \mapsto 2x + 3$ est 2. • True ✓ $\rightarrow Vrai$ • False $\rightarrow Faux$ (1483) **q-1483** TRUE/FALSE marked out of 1.0

L'antécédent de 9 par la fonction $x \mapsto 5x + 7$ est 2/5.

 True √ False	$\begin{array}{c} \rightarrow & Vra \\ \rightarrow & Faus \end{array}$
(1484) q-1484	$\rightarrow 5x + 7 \text{ est } 1.$
 True √ False	$\begin{array}{ccc} \rightarrow & Vra \\ \rightarrow & Faus \end{array}$
(1485) q-1485	$\rightarrow 5x + 7 \text{ est } 6/5.$
 True √ False	$\begin{array}{ccc} \rightarrow & Vra \\ \rightarrow & Faus \end{array}$
(1486) q-1486 True/False marked out of 1.0 L'antécédent de 13 par la fonction x +	$\rightarrow 5x + 7 \text{ est } 5/6.$
 True False √	$\begin{array}{c} \rightarrow Vra \\ \rightarrow Faus \end{array}$
(1487) q-1487	$\rightarrow 5x + 7 \text{ est } 2/5.$
 True False √	$ ightarrow Vra \ ightarrow Faus$
(1488) q-1488 True/False marked out of 1.0 Toute fonction constante est croissant	e.
• True √ • False	$\begin{array}{c} \rightarrow & Vra \\ \rightarrow & Faus \end{array}$
(1489) q-1489 True/False marked out of 1.0 Toute fonction constante est décroisse	unte.
 True √ False	$\begin{array}{c} \rightarrow & Vra \\ \rightarrow & Faus \end{array}$
(1490) q-1490	
 True False √	$ ightarrow Vra \ ightarrow Faus$
(1491) q-1491	
 True False √ 	$ ightarrow Vra \ ightarrow Faus$

(1492) **q-1492** TRUE/FALSE marked out of 1.0 La fonction $x \mapsto 11x - 7/2$ est croissante. $\rightarrow Vrai$ • True ✓ • False $\rightarrow Faux$ (1493) **q-1493** TRUE/FALSE marked out of 1.0 La fonction $x \mapsto 9x - 5/3$ est décroissante. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1494) **q-1494** TRUE/FALSE marked out of 1.0 La fonction $x \mapsto 2 - x/7$ est croissante. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1495) **q-1495** TRUE/FALSE marked out of 1.0 Si une fonction affine de la forme $x \mapsto ax + b$ est croissante, alors a > 0. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1496) **q-1496** marked out of 1.0 Si une fonction affine de la forme $x \mapsto ax + b$ est croissante, alors $a \le b$. $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1497) **q-1497** TRUE/FALSE marked out of 1.0 Si une fonction affine de la forme $x \mapsto ax + b$ est croissante, alors $a \ge b$. $\rightarrow Vrai$ • True • False ✓ \rightarrow Faux (1498) **q-1498** TRUE/FALSE marked out of 1.0 Si une fonction affine de la forme $x \mapsto ax + b$ est décroissante, alors $a \le 0$. $\rightarrow Vrai$ • True ✓ • False $\rightarrow Faux$ (1499) **q-1499** marked out of 1.0 TRUE/FALSE La droite qui représente la fonction affine $x \mapsto 7x + 9$ a un coefficient directeur égal à 9. • True $\rightarrow Vrai$ • False ✓ \rightarrow Faux (1500) **q-1500** TRUE/FALSE marked out of 1.0 La droite qui représente la fonction affine $x \mapsto -5x + 11$ a un coefficient directeur égal à 5.

• True • False \checkmark → Faux

Total of marks: 1500