洛谷 CSP-S / NOIP 模拟赛

feecle6418

时间: 2023 年 10 月 6 日 14:00 ~ 18:00

题目名称	移动棋子	01 串	松鼠搬家	淘汰赛
题目类型	传统型	传统型	传统型	传统型
可执行文件名	chess	string	squirrel	match
输入文件名	chess.in	string.in	squirrel.in	match.in
输出文件名	chess.out	string.out	squirrel.out	match.out
每个测试点时限	0.5 秒	2.0 秒	3.0 秒	1.5 秒
内存限制	512 MiB	512 MiB	512 MiB	512 MiB

提交源程序文件名

编译选项

对于 C++ 语言	-1m -O2
-----------	---------

注意事项:

- 1. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
- 2. 对于因未遵守以上规则对成绩造成的影响,相关申诉不予受理。
- 3. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格进行分隔。
- 4. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 5. 程序可使用的栈空间大小与该题内存空间限制一致。
- 6. 在终端下可使用命令 <u>ulimit -s unlimited</u> 将栈空间限制放大,但你使用的栈空间大小不应超过题目限制。
- 7. 上述时间限制以洛谷评测机为准。

洛谷模拟赛 移动棋子 (chess)

移动棋子 (chess)

【题目描述】

有一个 $H \times W$ 的网格,左上角的格子坐标为 (1,1),右下角的格子坐标为 (H,W)。 网格上有 n 枚棋子,第 i 枚棋子的坐标为 (x_i,y_i) 。

你可以无限次(包括0次)任意进行以下操作:

- 将所有棋子向上移动一格。
 如果某棋子原来在 (x,y),则其被移到 (x-1,y)。特别地,若原来在 (1,y),则其被移到 (H,y)。
- 将所有棋子向下移动一格。 如果某棋子原来在 (x,y),则其被移到 (x+1,y)。特别地,若原来在 (H,y),则 其被移到 (1,y)。
- 将所有棋子向左移动一格。 如果某棋子原来在 (x,y),则其被移到 (x,y-1)。特别地,若原来在 (x,1),则其 被移到 (x,W)。
- 将所有棋子向右移动一格。
 如果某棋子原来在 (x,y),则其被移到 (x,y+1)。特别地,若原来在 (x,W),则
 其被移到 (x,1)。

定义所有棋子的最小包围矩形是满足以下条件的矩形:

- 所有边都平行于网格边缘
- 面积最小
- 所有棋子都在矩形内部

下面是一个例子:

图中灰色的格子为有棋子的格子,坐标分别为(1,1),(1,4),(3,4),虚线即为最小包围矩形。接着,我们依次执行右移操作和上移操作。

你的目标是:在任意多次操作后,让最小包围矩形的面积最小。在此基础上,让操 作次数尽可能小。

【输入格式】

从文件 chess.in 中读入数据。

洛谷模拟赛 移动棋子 (chess)

第一行三个整数 H, W, n。

接下来 n 行, 第 i 行两个整数 x_i, y_i 。保证棋子的位置不重复。

【输出格式】

输出到文件 chess.out 中。

输出两个整数:第一个为任意操作后,最小包围矩形的面积最小值。第二个为达到这个最小值需要的最小步数。

如果你的最小值正确但是步数错误,仍可以得到该测试点 60% 的分数。请注意,即 使你不知道最小步数,也需要输出一个符合格式要求的答案!

【样例1输入】

```
1 1 10 3
2 1 5
3 1 7
4 1 2
```

【样例1输出】

1 6 0

【样例1解释】

不需要任何操作,最小包围矩形即为一个 1×6 的矩形。

【样例 2 输入】

```
1 3 4 3
2 1 1
3 3 4
4 1 4
```

【样例 2 输出】

1 4 2

洛谷模拟赛 移动棋子 (chess)

【样例2解释】

该样例即为题目描述中的例子。例子中的方案就是最优方案。

如果你的输出为 <u>4_0</u>, 也可以获得 60% 的分数。**注意:如果你只输出一个 <u>4</u>**, **会因格式错误获得** 0 分。

【样例 3,4】

见下发文件。

【子任务】

本题共 20 个测试点,每个测试点 5 分。所有数据均满足: $1 \le H, W \le 10^9, 1 \le n \le 10^5$ 。

测试点 1 满足 n=1。

测试点 $2 \sim 5$ 满足 n = 2。

测试点 6,7 满足 $H=1,W\leq 500$ 。

测试点 $8 \sim 13$ 满足 H = 1。

测试点 14,15 满足 $H,W \leq 50$ 。

测试点 16,17 满足 $H,W \leq 1000$ 。

测试点 18 满足 $H,W \le 2 \times 10^5$ 。

测试点 19,20 无特殊限制。

洛谷模拟赛
01 串 (string)

01 **串** (string)

【题目描述】

我们说一个 01 串是好的,当且仅当其能被写为 $(0^k)1(0^k)1...1(0^k)$ 的形式,k 是非负整数,且中间至少有一个 1。换句话说,其形如:"k 个 0,一个 1" 不停重复,最后以 k 个 0 结尾,且至少有一个 1。

给定一个 01 串, 求其最长的好子序列。子序列的定义是删去若干个位置后得到的 串。

【输入格式】

从文件 string.in 中读人数据。 一行一个 01 串。

【输出格式】

输出到文件 string.out 中。

第一行一个整数,表示答案长度。

第二行输出这个最长的好子序列。若有多个输出任意一个均可。

【样例1输入】

0100100000

【样例1输出】

1 7

2 0001000

【样例 2 输入】

0100101

201 串 (string)

【样例 2 输出】

1 5

2 01010

【样例 3】

见下发文件。

【子任务】

设 len 为 01 串长度。

所有数据均满足 $1 \le len \le 5 \times 10^6$ 。保证 01 串中至少有一个 1。

测试点 1 满足 $len \leq 1$ 。

测试点 2,3,4 满足 $len \leq 50$ 。

测试点 5,6,7 满足 $len \leq 10^4$ 。

测试点 8,9,10 满足 $len \le 10^5$ 且字符串中至多有 50 个 1。

测试点 11, 12, 13 满足 $len \leq 5 \times 10^5$ 。

测试点 14,15,16 无特殊限制。

测试点 $1\sim 4$ 每个测试点 7 分,测试点 $5\sim 10$ 每个测试点 8 分,测试点 $11\sim 16$ 每个测试点 4 分。

洛谷模拟赛 松鼠搬家(squirrel)

松鼠搬家 (squirrel)

【题目描述】

有 n 种松鼠,第 i 种松鼠有 b_i 只。初始时,第 i 种松鼠栖息在数轴上坐标为 a_i 的点上,保证 a_i 是整数。

松鼠会经常移动。具体地,有下面三种可能的移动方式:

- 1. 给定 l,r,x: 种类编号在 [l,r] 的松鼠全部往数轴正方向移动 x 单位。
- 2. 给定 *l*,*r*: 种类编号在 [*l*,*r*] 的松鼠全部移动到数轴上同一个 ** 整点 **。由于松鼠很聪明,所以这个整点一定是使得所有松鼠移动距离之和最小的整点。若有多个这样的整点,松鼠会选择坐标最小的。

对于每个2操作, 你需要输出移动到的整点的坐标。

3. 给定 id, y,种类为 id 的松鼠坐标不变,但总数变成了 y 只。

形式化地, 你要支持对 a,b 进行如下三种操作:

- 1. 给定 l, r, x: 将 $a_l, a_{l+1}, \ldots, a_r$ 加上 x。
- 2. 给定 l,r: 设整数 x 满足 $\sum_{l \leq i \leq r} (b_i \times |a_i x|)$ 是所有整数 x 中最小的(若有多个则取最小的那个),将 $a_l, a_{l+1}, \ldots, a_r$ 全部改为 x。同时,请你输出 x。
- 3. 给定 id, y: 将 b_{id} 改为 y。

【输入格式】

从文件 squirrel.in 中读入数据。

第一行两个正整数 n,q。

接下来一行 n 个整数 $a_1 \sim a_n$ 。

接下来一行 n 个整数 $b_1 \sim b_n$ 。

接下来 q 行,每行第一个整数为 opt。

- 1. 若 opt = 1,再输入三个整数 l, r, x $(1 \le l \le r \le n)$ 表示操作 1。
- 2. 若 opt = 2,再输入两个整数 l, r $(1 \le l \le r \le n)$ 表示操作 2。
- 3. 若 opt = 3,再输入两个整数 $id, y \ (1 < id < n)$ 表示操作 3。

【输出格式】

输出到文件 squirrel.out 中。

对于每个2操作,按要求输出一行一个整数表示答案。

【样例 1 输入】

1 5 8

2 8 1 6 4 9

【样例1输出】

```
1 1 2 0 3 -7 4 9 5 -1
```

【样例 2,3】

见下发文件。

【子任务】

本题共 20 个测试点,每个测试点 5 分。所有数据均满足: $1 \le n \le 5 \times 10^5$, $1 \le q \le 5 \times 10^5$, $-10^8 \le a_i, x \le 10^8$, $1 \le b_i, y \le 10^8$ 。

测试点编号	$n \le$	$q \leq$	特殊性质	分值
$1\sim 5$	15	15	$ a_i ,b_i, x ,y\leq 15$	5
6,7	10^3	10^{3}	$b_i=y=1$	5
8,9	10^{3}	10^{3}	无	5
10, 11, 12	10^5	10^{5}	2 操作不超过 5 次	5
13, 14, 15	$2 imes 10^5$	$2 imes 10^5$	无	5
$16\sim 20$	$5 imes 10^5$	$5 imes10^5$	无	5

洛谷模拟赛 淘汰赛 (match)

淘汰赛 (match)

【题目描述】

有一场比赛,规则如下:

- 共有 n 人。编号为 i 的人初始有能力值 a_i , a_i 是一个正整数。所有人按照编号排成一列。
- 你作为裁判,会规划 n-1 轮对决,每轮对决里你从当前队列里选出一对**相邻的 人**,让他们开始决斗。

设对决的两人能力值分别为 p,q。若 $p \neq q$,一定是能力值大的人胜利;否则,你指定哪个人胜利。

胜者留在队列里,败者离开队列。如果队列有空隙,后面的人向前移动把空隙补上。

对决后胜者的能力值增加 1。

• n-1 轮对决后只剩一个人留在队列里,这个人就是胜者。

不难发现,如果你选出决斗的人的方式不同,你的指定胜利的人不同,最终的胜者就可能不同。我们说第i个人"可能获胜",当且仅当存在一种你的确定赛程以及指定胜者的方式,使得最终的胜者是第i个人。

定义函数 $f([a_1, a_2, ..., a_n]) = [b_1, b_2, ..., b_n]$,其中 a_i 是上面提到的能力值序列, b_i 是 0 或 1,表示第 i 个人是($b_i = 1$)否($b_i = 0$)可能获胜。

你需要解决的问题是:

给定 $n, m, [c_1, c_2, \ldots, c_n]$ 和 n 个集合 A_1, \ldots, A_n , 满足 $\forall i, \forall j \in A_i, 1 \leq j \leq m$ 。求有多少个正整数序列 $[a_1, a_2, \ldots, a_n]$ 满足:

- $\forall i, a_i \in A_i$.

答案对 998244353 取模。

【输入格式】

从文件 match.in 中读入数据。

第一行两个正整数 n, m。

第二行 n 个正整数 c_1, c_2, \ldots, c_n 。

接下来 n 行,第 i 行一个长度为 m 的 01 串 s_i ,满足 $s_{i,j} = [j \in A_i]$ 。这里 [P] 当 P 为真时值为 1,否则值为 0。

【输出格式】

输出到文件 match.out 中。

输出一行一个正整数,表示答案对 998244353 取模的结果。

洛谷模拟赛 淘汰赛 (match)

【样例1输入】

```
1 5 5
2 0 1 2 2 2
3 10100
4 01000
5 01000
6 00010
7 00001
```

【样例1输出】

1 1

【样例1解释】

可能的序列 a 有两种: [1,2,2,4,5] 或 [3,2,2,4,5]。

当 a = [1, 2, 2, 4, 5] 时,考虑第二个人,能力值为 2。如果我们按照下面方法安排赛程,就可以让他成为最终胜者:

- 1. 让加下划线的两人决斗,红色为胜者: $[1, \frac{2}{2}, 2, 4, 5]$ → $[1, \frac{3}{2}, 4, 5]$
- 2. 让加下划线的两人决斗,红色为胜者: $[1, 3, 4, 5] \rightarrow [4, 4, 5]$
- 3. 让加下划线的两人决斗,红色为胜者: $[4,4,5] \to [5,5]$
- 4. 让加下划线的两人决斗,红色为胜者: $[5,5] \rightarrow [6]$

最终剩下的人就是初始时的第二个人, 所以第二个人可能获胜。

而第一个人能力值为 1, 无论怎么安排比赛他都不能最终获胜, 所以他不可能获胜。 类似地可以算出 f([1,2,2,4,5])=[0,1,1,1,1], f([3,2,2,4,5])=[1,1,1,1,1], 所以只有 [1,2,2,4,5] 符合条件。

【样例 2,3,4】

见下发文件。

样例2满足测试点1的性质。

样例 3 满足测试点 5,6 的性质。

样例 4 满足测试点 8,9,10 的性质。

洛谷模拟赛 淘汰赛 (match)

【子任务】

所有数据均满足 $1 \le n \le 40, 1 \le m \le 80, 0 \le c_i \le 2$.

测试点编号	$n \le$	$m \leq$	特殊性质	分值
1, 2	5	5	无	10
3,4	30	40	$\prod A_i \leq 10^7$	5
5,6	30	40	$c_1=1$, $orall i eq 1, c_i=2$	5
7	30	40	存在 $1 \leq i \leq n$, $c_i = 1$, $orall j eq i, c_j = 2$	24
8, 9, 10	30	40	无	5
11, 12, 13	40	80	无	7