Computabilità e Algoritmi - 15 Luglio 2013

Soluzioni Formali

Esercizio 1

Problema: Considerare la sottoclasse dei programmi URM nei quali, se l'i-ma istruzione è una istruzione di salto J(m, n, t), allora t > i. Dimostrare che le funzioni calcolabili dai programmi in tale sottoclasse sono tutte totali.

Soluzione:

Consideriamo la sottoclasse di programmi URM con la restrizione sui salti: se l'istruzione I_i è J(m, n, t), allora t > i.

Teorema: Tutte le funzioni calcolabili da programmi in questa sottoclasse sono totali.

Dimostrazione:

Sia P un programma in questa sottoclasse con lunghezza I(P).

Lemma: Per ogni computazione di P, l'indice dell'istruzione da eseguire al passo t+1 è maggiore dell'indice dell'istruzione eseguita al passo t.

Dimostrazione del Lemma: Procediamo per induzione sul numero di passi di computazione.

Caso base (t = 0): L'istruzione iniziale ha indice 1.

Passo induttivo: Supponiamo che al passo t l'istruzione da eseguire abbia indice i. Consideriamo i casi:

- 1. Istruzione aritmetica (Z(n), S(n), T(m,n)): La prossima istruzione ha indice i+1 > i.
- 2. Istruzione di salto J(m,n,j):
 - Se r_m = r_n: la prossima istruzione ha indice j > i (per ipotesi della sottoclasse)
 - Se r_m ≠ r_n: la prossima istruzione ha indice i+1 > i

In entrambi i casi, l'indice della prossima istruzione è strettamente maggiore dell'indice corrente.

Conseguenza del Lemma: Poiché l'indice dell'istruzione cresce strettamente ad ogni passo e è limitato superiormente da I(P), la computazione deve terminare entro al più I(P) passi.

Formalizzazione: Al passo t, se l'istruzione eseguita ha indice i_t, allora:

- $i \ 0 = 1$
- i_{t+1} > i_t per ogni t ≥ 0
- i_t ≤ I(P) per ogni t (altrimenti il programma termina)

Poiché la sequenza {i_t} è strettamente crescente e limitata, deve essere finita.

Conclusione sulla totalità: Ogni computazione termina in tempo finito, quindi ogni funzione calcolabile da un programma in questa sottoclasse è totale. ■

Osservazione: La restrizione t > i impedisce i "loop backwards" che sono la causa principale della nonterminazione nei programmi URM.

Esercizio 2

Problema: Dimostrare che un insieme A è ricorsivo se e solo se esistono due funzioni totali calcolabili f, g : $\mathbb{N} \to \mathbb{N}$ tale che per ogni $x \in \mathbb{N}$: $x \in A$ se e solo se f(x) > g(x).

Soluzione:

Teorema: $A \subseteq \mathbb{N}$ è ricorsivo $\iff \exists f, g: \mathbb{N} \to \mathbb{N}$ totali calcolabili tali che $\forall x \in \mathbb{N}: x \in A \iff f(x) > g(x)$.

Dimostrazione:

Direzione (⇐): Se esistono f, g, allora A è ricorsivo

Supponiamo che esistano f, g: $\mathbb{N} \to \mathbb{N}$ totali calcolabili tali che:

$$\forall x \in \mathbb{N}: x \in A \iff f(x) > g(x)$$

Definiamo la funzione caratteristica di A:

```
\chi_A(x) = \{
1 se f(x) > g(x)
0 se f(x) \le g(x)
}
```

Equivalentemente: $\chi_A(x) = sg(f(x) - g(x))$

dove sg è la funzione sign: sg(0) = 0, sg(n) = 1 per n > 0.

La funzione sq è primitiva ricorsiva, quindi calcolabile.

Poiché f e g sono calcolabili, per composizione χ_A è calcolabile.

Quindi A è ricorsivo.

Direzione (⇒): Se A è ricorsivo, allora esistono f, g

Supponiamo A ricorsivo. Allora χ_A è calcolabile.

Costruzione 1: Definiamo:

- $f(x) = \chi_A(x)$
- q(x) = 0

Allora:

• Se
$$x \in A$$
: $f(x) = 1 > 0 = g(x)$

• Se
$$x \notin A$$
: $f(x) = 0 \le 0 = g(x)$

Quindi $x \in A \iff f(x) > g(x)$.

Costruzione 2 (più interessante): Definiamo:

$$\bullet \ \ \mathsf{f}(\mathsf{x}) = \chi_{-}\mathsf{A}(\mathsf{x}) \, + \, 1$$

•
$$q(x) = 1$$

Allora:

• Se
$$x \in A$$
: $f(x) = 2 > 1 = g(x)$

• Se
$$x \notin A$$
: $f(x) = 1 \le 1 = g(x)$

Costruzione 3 (alternativa simmetrica): Definiamo:

•
$$f(x) = \chi_A(x)$$

•
$$q(x) = \chi_{\bar{A}}(x)$$

Poiché A è ricorsivo, anche \bar{A} è ricorsivo, quindi $\chi_{\bar{A}}$ è calcolabile.

Allora:

• Se
$$x \in A$$
: $f(x) = 1$, $g(x) = 0$, quindi $f(x) > g(x)$

• Se
$$x \notin A$$
: $f(x) = 0$, $g(x) = 1$, quindi $f(x) \le g(x)$

Verifica delle proprietà: In tutte le costruzioni, f e g sono totali (definite per ogni input) e calcolabili (composizione di funzioni calcolabili).

Conclusione: A è ricorsivo \iff $\exists f, g$ totali calcolabili tali che $x \in A \iff f(x) > g(x)$.

Osservazione: Questo teorema mostra che i predicati ricorsivi coincidono esattamente con le disuguaglianze calcolabili.

Esercizio 3

Problema: Studiare la ricorsività dell'insieme $A = \{x : \forall y. \text{ if } y + x \in W_x \text{ then } y \leq \phi_x(y + x)\}$, ovvero dire se $A \in \bar{A}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

A contiene gli indici x tali che per ogni y, se y + x è nel dominio di φ_x , allora y $\leq \varphi_x(y + x)$.

Riscrittura della condizione: $x \in A \iff \forall y \in \mathbb{N}$. $[(y + x \in W_x) \rightarrow (y \le \phi_x(y + x))]$

Analisi della struttura:

A è un insieme saturo, poiché la proprietà dipende solo dal comportamento di φ_x .

Ricorsività:

A non è ricorsivo. La condizione coinvolge una quantificazione universale su y, che generalmente rende l'insieme non ricorsivo.

Dimostrazione via Rice: A può essere espresso come $A = \{x \in \mathbb{N} : \phi_{-}x \in \mathcal{A}\}$, dove: $\mathcal{A} = \{f \in \mathcal{C} : \forall y \in \mathbb{N}. | (\exists x. y + x \in dom(f)) \rightarrow (y \le f(y + x))]\}$

Questa è una proprietà non banale delle funzioni, quindi per il teorema di Rice, A non è ricorsivo.

Enumerabilità ricorsiva di A:

A non è r.e. La condizione universale "Vy" non può essere verificata in tempo finito.

Dimostrazione: Supponiamo per assurdo che A sia r.e. Allora potremmo semi-decidere se ϕ_x soddisfa la proprietà universale. Questo contrasterebbe con il fatto che le proprietà universali delle funzioni calcolabili generalmente non sono semidecidibili.

Enumerabilità ricorsiva di Ā:

$$\bar{A} = \{x \in \mathbb{N} : \exists y \in \mathbb{N}. [(y + x \in W_x) \land (y > \phi_x(y + x))]\}$$

À è r.e. Possiamo scrivere la funzione semicaratteristica:

$$sc_\bar{A}(x) = 1(\mu t. \exists y \le t. [H(x, y+x, t) \land S(x, y+x, v, t) \land y > v] per qualche $v \le t)$$$

Più precisamente:

$$sc_{\bar{A}}(x) = 1(\mu t. \exists y \le t. \exists v \le t. [S(x, y+x, v, t) \land y > v])$$

Questa funzione cerca un testimone y e un tempo t tali che $\varphi_x(y + x)$ converge a un valore y < y.

Analisi più dettagliata:

La condizione di A è relativamente restrittiva. Richiede che ϕ_x si "comporti bene" nel senso che l'output sia sempre maggiore o uguale all'indice dell'input relativo a x.

Esempi:

- Se $\phi_x(z) = z$ per ogni $z \in W_x$, allora per $y + x \in W_x$ abbiamo $\phi_x(y + x) = y + x \ge y$, quindi $x \in A$
- Se $\phi_x(z) = 0$ per ogni $z \in W_x$ e $0 \in W_x$, allora y = 0, $\phi_x(0) = 0$, e $0 \le 0$, ma per y > 0, se $y \in W_x$ allora $\phi_x(y) = 0 < y$, quindi $x \notin A$

Conclusione: A non è ricorsivo, A non è r.e., Ā è r.e. ■

Esercizio 4

Problema: Sia f una funzione calcolabile totale. Studiare la ricorsività dell'insieme $B_f = \{x \in \mathbb{N} : \phi_x(y) = f(y) \text{ per infiniti } y\}$, ovvero dire se $B_f \in \overline{B}_f$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

B_f contiene gli indici x tali che φ_x coincide con f su un insieme infinito di punti.

Analisi della struttura:

B_f è un insieme saturo, poiché può essere espresso come B_f = $\{x \in \mathbb{N} : \phi_x \in \mathcal{B}_f\}$, dove:

$$\mathcal{B}_{-}f = \{g \in \mathcal{C} : |\{y \in \mathbb{N} : g(y) = f(y)\}| = \infty\}$$

Ricorsività:

Per il teorema di Rice, poiché B_f è saturo, dobbiamo verificare se B_f = \emptyset , $\mathbb N$ o né l'uno né l'altro.

- B_f $\neq \emptyset$: La funzione identica a f appartiene a \mathcal{B}_f , quindi un suo indice appartiene a B_f
- $B_f \neq \mathbb{N}$: La funzione sempre indefinita non coincide con f su infiniti punti (anzi, su nessun punto), quindi un suo indice non appartiene a B f

Per il teorema di Rice, B_f non è ricorsivo.

Enumerabilità ricorsiva di B_f:

B_f non è r.e. Utilizziamo il teorema di Rice-Shapiro.

Dimostrazione: Consideriamo f stesso. Abbiamo $f \in \mathcal{B}_{-}f$.

Consideriamo una qualsiasi funzione finita $\theta \subseteq f$. Allora θ coincide con f solo su un insieme finito $(dom(\theta))$, quindi $\theta \notin \mathcal{B}_f$.

Per Rice-Shapiro, esiste $f \in \mathcal{B}_f$ tale che $\forall \theta \subseteq f$ finita, $\theta \notin \mathcal{B}_f$, quindi $g \in \mathcal{B}_f$ non è r.e.

Enumerabilità ricorsiva di B_f:

$$\bar{B}_f = \{x \in \mathbb{N} : \phi_x(y) = f(y) \text{ per al più finiti y} \}$$

B_f non è r.e. in generale.

Dimostrazione: La condizione "per al più finiti y" è una proprietà cofinita che generalmente non è semidecidibile.

Tuttavia, l'analisi dipende dalla specifica funzione f:

Caso speciale: f funzione costante Se f(y) = c per ogni $y \in \mathbb{N}$, allora:

- $B_f = \{x : \phi_x(y) = c \text{ per infiniti } y\}$
- $\bar{B}_f = \{x : \phi_x(y) = c \text{ per al più finiti } y\}$

In questo caso, B_f potrebbe essere r.e. se possiamo caratterizzarlo diversamente.

Caso generale: Per una f arbitraria, B_f tipicamente non è r.e. perché la verifica della finitezza dell'insieme di accordo non è semidecidibile.

Costruzione di una riduzione: Se B_f fosse r.e., potremmo potenzialmente costruire riduzioni da problemi non r.e., ottenendo contraddizioni.

Osservazione tecnica: L'insieme $\{y : \phi_x(y) = f(y)\}$ per un x fissato non è necessariamente decidibile, rendendo difficile verificare se è finito o infinito.

Conclusione: B_f non è ricorsivo, B_f non è r.e., B̄_f non è r.e. ■

Esercizio 5

Problema: Enunciare il Secondo Teorema di Ricorsione ed utilizzarlo per dimostrare che esiste $n \in \mathbb{N}$ tale che $W_n = E_n = \{x \cdot n : x \in \mathbb{N}\}.$

Soluzione:

Enunciato del Secondo Teorema di Ricorsione: Per ogni funzione f: $\mathbb{N} \to \mathbb{N}$ totale e calcolabile, esiste e \mathbb{N} tale che $\phi_e = \phi_f(e)$.

Dimostrazione dell'esistenza di n:

Vogliamo trovare n tale che $W_n = E_n = \{x \cdot n : x \in \mathbb{N}\} = \{0, n, 2n, 3n, ...\}$.

Costruzione della funzione: Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

```
g(k, y) = \{

y 	 se \exists x \in \mathbb{N}. y = x \cdot k \land k > 0

\uparrow 	 altrimenti
```

Verifica che g è calcolabile:

```
g(k, y) = y \cdot sg(k) \cdot sg(\mu x \le y. |y - x \cdot k|)
```

dove $\mu x \le y$. $|y - x \cdot k|$ cerca se esiste $x \le y$ tale che $x \cdot k = y$.

Più precisamente:

```
g(k, y) = \{

y \cdot 1(\mu x \le y. |y - x \cdot k|) se k > 0

\uparrow se k = 0

}
```

Proprietà di g: Per k > 0:

- $W_{s(k)} = \{x \cdot k : x \in \mathbb{N}\}$ (dominio)
- $E_{s(k)} = \{x \cdot k : x \in \mathbb{N}\}\ (codominio, perché g(k, x \cdot k) = x \cdot k)$

Quindi $W_{s(k)} = E_{s(k)} = \{x \cdot k : x \in \mathbb{N}\}.$

Applicazione del teorema smn: Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che: $\phi_{s}(k)$ (y) = g(k, y)

Applicazione del Secondo Teorema di Ricorsione: Per il Secondo Teorema di Ricorsione applicato alla funzione s, esiste $n \in \mathbb{N}$ tale che: $\phi_n = \phi_{s(n)}$

Verifica della proprietà richiesta: Da $\phi_n = \phi_s(n)$, abbiamo:

```
• W_n = W_{s(n)} = \{x \cdot n : x \in \mathbb{N}\}\
```

•
$$E_n = E_{s(n)} = \{x \cdot n : x \in \mathbb{N}\}$$

Caso n = 0: Se n = 0, allora $\{x \cdot 0 : x \in \mathbb{N}\} = \{0\}$. Ma per la definizione di g, $g(0, y) \uparrow$ per ogni y, quindi $W_{s(0)} = \emptyset \neq \{0\}$.

Gestione del caso n = 0: Per evitare problemi con n = 0, modifichiamo g:

```
g(k, y) = \{
y \quad \text{se } y = 0 \land k = 0
y \quad \text{se } \exists x \in \mathbb{N}. \ y = x \cdot k \land k > 0
\uparrow \quad \text{altrimenti}
```

Allora:

```
• Per k = 0: W_{s(0)} = E_{s(0)} = \{0\} = \{x \cdot 0 : x \in \mathbb{N}\}
```

• Per k > 0: $W_{s(k)} = E_{s(k)} = \{x \cdot k : x \in \mathbb{N}\}$

Conclusione: Esiste $n \in \mathbb{N}$ tale che $W_n = E_n = \{x \cdot n : x \in \mathbb{N}\}$.