

S857/76/12

Physics Paper 1 — Multiple choice

Date — Not applicable

Duration — 45 minutes

Total marks — 25

Attempt ALL questions.

You may use a calculator.

Instructions for the completion of Paper 1 are given on page 02 of your answer booklet S857/76/02.

Record your answers on the answer grid on page 03 of your answer booklet.

Reference may be made to the data sheet on *page 02* of this question paper and to the relationships sheet S857/76/22.

Space for rough work is provided at the end of this booklet.

Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	C	$3.00 \times 10^8 \mathrm{ms^{-1}}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{Js}$
Magnitude of the charge on an electron	e	1.60 × 10 ^{−19} C	Mass of electron	m_{e}	9·11 × 10 ^{−31} kg
Universal Constant of Gravitation	G	$6.67 \times 10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$	Mass of neutron	$m_{ m n}$	$1.675 \times 10^{-27} \mathrm{kg}$
Gravitational acceleration on Earth	g	9·8 m s ⁻²	Mass of proton	$m_{ m p}$	1·673 × 10 ⁻²⁷ kg
Hubble's constant	H_0	$2.3 \times 10^{-18} \mathrm{s}^{-1}$			

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour		
Hydrogen	656 486 434	Red Blue-green Blue-violet	Cadmium	644 509 480	Red Green Blue		
	410 397	Violet Ultraviolet	Lasers				
	389	Ultraviolet	Element	Wavelength/nm	Colour		
Sodium	589	Yellow	Carbon dioxide	9550 } 10 590 }	Infrared		
			Helium-neon	633	Red		

PROPERTIES OF SELECTED MATERIALS

Substance	Density/kg m ⁻³	Melting point/K	Boiling point/K
Aluminium	2.70×10^3	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	1.29	• • • •	
Hydrogen	9·0 × 10 ⁻²	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1\cdot01\times10^5\,Pa$.

1. The following velocity-time graph represents the vertical motion of a ball.

Which of the following acceleration-time graphs represents the same motion?

A acceleration (m s⁻²)

B acceleration (m s⁻²)

C acceleration (m s⁻²)

D acceleration (m s⁻²)

E acceleration (m s⁻²)

2. A train accelerates uniformly from $5 \cdot 0 \, \text{m s}^{-1}$ to $12 \cdot 0 \, \text{m s}^{-1}$ while travelling a distance of 119 m along a straight track.

The acceleration of the train is

- A $0.50 \,\mathrm{m\,s^{-2}}$
- B $0.70 \,\mathrm{m\,s^{-2}}$
- C $1.2 \,\mathrm{m}\,\mathrm{s}^{-2}$
- D $7.0 \,\mathrm{m\,s^{-2}}$
- E $14 \,\mathrm{m}\,\mathrm{s}^{-2}$.
- 3. Two blocks are linked by a newton balance of negligible mass.

The blocks are placed on a level, frictionless surface. A force of $18.0\,\mathrm{N}$ is applied to the blocks as shown.

The reading on the newton balance is

- A 3.6 N
- B 7.2 N
- C 9.0 N
- D 10.8 N
- E 18.0 N.

4. A block of wood slides with a constant velocity down a slope. The slope makes an angle of 30.0° with the horizontal as shown. The mass of the block is $2.0 \, \text{kg}$.

The magnitude of the force of friction acting on the block is

- A 1.0 N
- B 1.7 N
- C 9.8 N
- D 17 N
- E 19.6 N.
- **5.** The diagram shows the masses and velocities of two trolleys just before they collide on a level bench.

After the collision, the trolleys move along the bench joined together.

The kinetic energy lost in this collision is

- A 0 J
- B 6.0 J
- C 12 J
- D 18 J
- E 24 J.

6. The graph shows the force that acts on an object over a time interval of 8.0 seconds.

The momentum gained by the object during the 8.0 seconds is

- A 12 kg m s^{-1}
- B 32 kg m s^{-1}
- C 44 kg m s^{-1}
- D 52 kg m s $^{-1}$
- E 80 kg m s^{-1} .

7. A javelin is thrown at an angle of $60 \cdot 0^{\circ}$ to the horizontal with a speed of $20 \cdot 0$ m s⁻¹.

The javelin is in flight for 3.50 s.

The effects of air resistance can be ignored.

The horizontal distance travelled by the javelin is

- A 15·3 m
- B 35.0 m
- C 60·6 m
- D 70·0 m
- E 121 m.

8. Two small asteroids are 12 m apart.

The masses of the asteroids are $2 \cdot 0 \times 10^3 \, \text{kg}$ and $0 \cdot 050 \times 10^3 \, \text{kg}$.

The gravitational force acting between the asteroids is

- A $1.2 \times 10^{-9} \, \text{N}$
- B $4.6 \times 10^{-8} \, \text{N}$
- C $5.6 \times 10^{-7} \,\text{N}$
- D $1.9 \times 10^{-6} \,\mathrm{N}$
- E $6.8 \times 10^3 \,\text{N}$.
- **9.** A spaceship on a launch pad is measured to have a length L.

This spaceship has a speed of $2.5 \times 10^8 \, \text{m s}^{-1}$ as it passes a planet.

Which row in the table describes the length of the spaceship as measured by the pilot in the spaceship and an observer on the planet?

	Length measured by pilot in the spaceship	Length measured by observer on the planet
Α	L	greater than ${\cal L}$
В	L	L
С	L	less than ${\cal L}$
D	greater than ${\cal L}$	L
Е	less than ${\cal L}$	less than $\cal L$

10. The siren on an ambulance is emitting sound with a constant frequency of 900 Hz. The ambulance is travelling at a constant speed of $25 \,\mathrm{m\,s^{-1}}$ as it approaches and passes a stationary observer. The speed of sound in air is $340 \,\mathrm{m\,s^{-1}}$.

Which row in the table shows the frequency of the sound heard by the observer as the ambulance approaches and as it moves away from the observer?

	Frequency as ambulance approaches (Hz)	Frequency as ambulance moves away (Hz)
Α	900	838
В	971	838
С	838	900
D	971	900
Е	838	971

- 11. Cosmic microwave background radiation and Olbers' paradox provide evidence for
 - A the photoelectric effect
 - B the Bohr model of the atom
 - C the theory of special relativity
 - D the Big Bang theory
 - E Newton's Law of Universal Gravitation.
- 12. A student makes the following statements about particles in electric fields.
 - I A neutron experiences a force in an electric field.
 - II When an alpha particle is moved in an electric field work is done.
 - III An electric field applied to a conductor causes the free electrons in the conductor to move.

Which of the statements is/are correct?

- A II only
- B III only
- C I and II only
- D II and III only
- E I, II and III

13. The electric field patterns around charged particles Q, R and S are shown.

Which row in the table shows the charges on particles Q, R and S?

	Charge on Q	Charge on S			
Α	negative	negative	positive		
В	positive	positive	negative		
С	negative	positive	negative		
D	negative	negative	negative		
Е	positive	positive	positive		

- 14. A student makes the following statements about an electron.
 - I An electron is a boson.
 - II An electron is a lepton.
 - III An electron is a fermion.

Which of these statements is/are correct?

- A I only
- B II only
- C III only
- D I and II only
- E II and III only
- 15. The last two changes in a radioactive decay series are shown below.

A Bismuth nucleus emits a beta particle and its product, a Polonium nucleus, emits an alpha particle.

$${}_{Q}^{P}Bi \xrightarrow{\beta} {}_{S}^{R}Po \xrightarrow{\alpha} {}_{82}^{208}Pb$$

Which numbers are represented by P, Q, R and S?

	Р	Q	R	S
Α	210	83	208	81
В	210	83	210	84
С	211	85	207	86
D	212	83	212	84
Е	212	85	212	84

16. Light from a point source is incident on a screen. The screen is $3.0\,\mathrm{m}$ from the source. The irradiance at the screen is $8.0\,\mathrm{W}\,\mathrm{m}^{-2}$.

The light source is now moved to a distance of 12 m from the screen.

The irradiance at the screen is now

- $A \hspace{0.5cm} 0 \cdot 50 \hspace{0.1cm} W \hspace{0.1cm} m^{-2}$
- B $2.0 \, \text{W m}^{-2}$
- C 4.0 W m^{-2}
- D $6.0 \,\mathrm{W}\,\mathrm{m}^{-2}$
- E $8.0 \,\mathrm{W}\,\mathrm{m}^{-2}$.
- 17. S_1 and S_2 are sources of coherent waves.

An interference pattern is obtained between X and Y.

The first order maximum occurs at P, where $S_1P = 200 \, \text{mm}$ and $S_2P = 180 \, \text{mm}$.

For the third order maximum, at R, the path difference $(S_1R - S_2R)$ is

- A 20 mm
- B 30 mm
- C 40 mm
- D 50 mm
- E 60 mm.

18. In an atom, a photon is emitted when an electron makes a transition from a higher energy level to a lower energy level as shown.

The wavelength of the radiation emitted due to an electron transition between the two energy levels shown is

- A 7.31×10^{-8} m
- B 9.12×10^{-8} m
- $C \qquad 1 \cdot 21 \times 10^{-7} \, m$
- D $8.23 \times 10^6 \,\mathrm{m}$
- E 2.47×10^{15} m.
- 19. A ray of red light travels from air into water.

Which row in the table describes the change, if any, in speed and frequency of a ray of red light as it travels from air into water?

	Speed	Frequency
Α	stays constant	decreases
В	increases	increases
С	increases	stays constant
D	decreases	stays constant
Е	decreases	decreases

20. The rms voltage of the mains supply is 230 V.

The approximate value of the peak voltage is

- A 115 V
- B 163 V
- C 325 V
- D 460 V
- E 651 V.
- 21. An oscilloscope is connected to the output terminals of a signal generator.

The trace displayed on the screen is shown.

The timebase of the oscilloscope is set at 30 ms/div.

The frequency of the output signal from the signal generator is

- $A \qquad 4 \cdot 2 \times 10^{-3} \, Hz$
- B $8.3 \times 10^{-3} \, \text{Hz}$
- C 0.12 Hz
- D 4.2 Hz
- E 8⋅3 Hz.

22. In the diagrams below, each resistor has the same resistance.

Which combination has the least value of the effective resistance between the terminals X and Y?

23. Four resistors each of resistance $20\,\Omega$ are connected to a 60 V supply of negligible internal resistance as shown.

The potential difference across PQ is

- A 12 V
- B 15 V
- C 20 V
- D 24 V
- E 30 V.

24. The EMF of a battery is

- A the total energy supplied by the battery
- B the voltage lost due to the internal resistance of the battery
- C the total charge that passes through the battery
- D the number of coulombs of charge passing through the battery per second
- E the energy supplied to each coulomb of charge passing through the battery.

25. A student carries out three experiments to investigate the charging of a capacitor using a DC supply.

The graphs obtained from the experiments are shown.

The axes of the graphs have not been labelled.

Which row in the table shows the labels for the axes of the graphs?

	Graph 1	Graph 2	Graph 3		
Α	voltage and time	charge and voltage	current and time		
В	current and time	voltage and time	charge and voltage		
С	current and time	charge and voltage	voltage and time		
D	voltage and time	current and time	charge and voltage		
Е	charge and voltage	current and time	voltage and time		

[END OF SPECIMEN QUESTION PAPER]

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

S857/76/22

Physics Paper 1 — Relationships sheet

Date — Not applicable

Relationships required for Physics Higher

$d = \overline{v}t$	W = QV	$V_{rms} = \frac{V_{peak}}{\sqrt{2}}$
$S = \overline{V}t$	$E = mc^2$	VZ
v = u + at	$I = \frac{P}{4}$	$I_{rms} = \frac{I_{peak}}{\sqrt{2}}$
$s = ut + \frac{1}{2}at^2$	A	$T = \frac{1}{f}$
$v^2 = u^2 + 2as$	$I = \frac{k}{d^2}$	$I - \frac{1}{f}$
$s = \frac{1}{2}(u+v)t$	$I_1 d_1^2 = I_2 d_2^2$	V = IR
F = ma	E = hf	$P = IV = I^2 R = \frac{V^2}{R}$
W = mg	$E_k = hf - hf_0$	$R_T = R_1 + R_2 + \dots$
$E_{w} = Fd$, or $W = Fd$	$v = f\lambda$	1 1 2
$E_p = mgh$	$E_2 - E_1 = hf$	$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
$E_k = \frac{1}{2}mv^2$	$d\sin\theta = m\lambda$	$V_1 = \left(\frac{R_1}{R_1 + R_2}\right) V_S$
$P = \frac{E}{t}$	$n = \frac{\sin \theta_1}{\sin \theta_2}$	$\left(R_1 + R_2\right)^{-3}$
ι	$\sin \theta_2$	$\frac{V_1}{V_2} = \frac{R_1}{R_2}$
p = mv $Ft = mv - mu$	$\frac{\sin \theta_1}{\sin \theta_2} = \frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2}$	E = V + Ir
$F = G \frac{m_1 m_2}{r^2}$	$\sin \theta_c = \frac{1}{n}$	$C = \frac{Q}{V}$
t' =t		Q = It
$t' = \frac{t}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$		$E = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q}{C}$
$l' = l \sqrt{1 - \left(\frac{v}{c}\right)^2}$		
$a = \begin{pmatrix} v \end{pmatrix}$	path difference = $m\lambda$ or $(m+$	$(\frac{1}{2})\lambda$ where $m = 0,1,2$
$f_o = f_s \left(\frac{v}{v \pm v_s} \right)$	$random\ uncertainty\ =\ \frac{max.\ value}{numb}$	ue – min. value per of values
$z = \frac{\lambda_{observed} - \lambda_{rest}}{\lambda_{rest}}$	or	
$z = \frac{v}{c}$	$\Delta R = \frac{R_{\text{max}} - R_{\text{min}}}{n}$	
$v = H_0 d$		

Additional relationships

Circle

circumference = $2\pi r$

$$area = \pi r^2$$

Sphere

area =
$$4\pi r^2$$

volume =
$$\frac{4}{3}\pi r^3$$

Trigonometry

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$\tan\theta = \frac{\mathsf{opposite}}{\mathsf{adjacent}}$$

$$\sin^2\theta + \cos^2\theta = 1$$

Electron arrangements of elements

		8/ Fr 2,8,18,32, 18,8,1 Francium	55 Cs 2,8,18,18, 8,1 Caesium	37 Rb 2,8,18,8,1 Rubidium	2,8,8,1 Potassium	> 19	2,8,1 Sodium	N 11	Lithium	2, . . 3	Hydrogen	<u> </u>	Group 1
	Lan	Ra 2,8,18,32, 18,8,2 Radium	2,8 Bi	38 Sr 2,8,18,8,2 Strontium	2,8,8,2 Calcium	20 Ca	2,8,2 Magnesium	12 Mg	Beryllium	Be	(2)		Group 2
Actinides	Lanthanides	89 Ac 2,8,18,32, 18,9,2 Actinium	57 La 2,8,18,18, 9,2 Lanthanum	39 Y 2,8,18,9,2 Yttrium	2,8,9,2 Scandium	21 Sc	(3)						
89 Ac 2,8,18,32, 18,9,2 Actinium	57 La 2,8,18, 18,9,2 Lanthanum	704 Rf 2,8,18,32, 32,10,2 Rutherfordium	72 Hf 2,8,18,32, 10,2 Hafnium	40 Zr 2,8,18, 10,2 Zirconium	2,8,10,2 Titanium	22 Ti	(4)					Key	
90 Th 2,8,18,32, 18,10,2 Thorium	58 Ce 2,8,18, 20,8,2 Cerium	105 Db 2,8,18,32, 32,11,2 Dubnium	73 Ta 2,8,18, 32,11,2 Tantalum	41 Nb 2,8,18, 12,1 Niobium	2,8,11,2 Vanadium	23 Y	(5)			[Ato		_
91 Pa 2,8,18,32, 20,9,2 Protactinium	59 Pr 2,8,18,21, 8,2 Praseodymium	106 Sg 2,8,18,32, 32,12,2 Seaborgium	74 W 2,8,18,32, 12,2 Tungsten	42 Mo 2,8,18,13, 1 Molybdenum	2,8,13,1 Chromium	24 Cr	(6)	1		Name	Atomic number Symbol Flectron arrangement		
92 U 2,8,18,32, 21,9,2 Uranium	60 Nd 2,8,18,22, 8,2 Neodymium	2,8,18,32, 32,13,2 Bohrium	75 Re 2,8,18,32, 13,2 Rhenium	43 Tc 2,8,18,13, 2 Technetium	2,8,13,2 Manganese	25 Mn	(7)	Transition elements		(ber ement		בעינו טון מון מון צרווירוומ טו רערוורוומ
93 Np 2,8,18,32, 22,9,2 Neptunium	61 Pm 2,8,18,23, 8,2 Promethium	108 Hs 2,8,18,32, 32,14,2 Hassium	76 Os 2,8,18,32, 14,2 Osmium	Ru 2,8,18,15, 1 Ruthenium	2,8,14,2 Iron	26 Fe	(8)	ı element:					5
94 Pu 2,8,18,32, 24,8,2 Plutonium	62 Sm 2,8,18,24, 8,2 Samarium	109 Mt 2,8,18,32, 32,15,2 Meitnerium	77 Ir 2,8,18,32, 15,2 Iridium	45 Rh 2,8,18,16, 1 Rhodium	2,8,15,2 Cobalt	27 Co	(9)	Vi .					6
95 Am 2,8,18,32, 25,8,2 Americium	63 Eu 2,8,18,25, 8,2 Europium	110 Ds 2,8,18,32, 32,17,1 Darmstadtium	78 Pt 2,8,18,32, 17,1 Platinum	46 Pd 2,8,18, 18,0 Palladium	2,8,16,2 Nickel	28 Ni	(10)						
96 Cm 2,8,18,32, 25,9,2 Curium	64 Gd 2,8,18,25, 9,2 Gadolinium	110 111 112 Ds Rg Cn 2,8,18,32, 2,8,18,32, 32,17,1 32,18,1 32,18,2 Darmstadtium Roentgenium Copernicium	79 Au 2,8,18, 32,18,1 Gold	47 Ag 2,8,18, 18,1 Silver	2,8,18,1 Copper	29 Cu	(11)						
97 Bk 2,8,18,32, 27,8,2 Berkelium	65 Tb 2,8,18,27, 8,2 Terbium	112 Cn 2,8,18,32, 32,18,2 Copermicium	80 Hg 2,8,18, 32,18,2 Mercury	48 Cd 2,8,18, 18,2 Cadmium	2,8,18,2 Zinc	30 Zn	(12)						
98 Cf 2,8,18,32, 28,8,2 Californium	66 Dy 2,8,18,28, 8,2 Dysprosium		81 T (2,8,18, 32,18,3 Thallium	49 In 2,8,18, 18,3 Indium	2,8,18,3 Gallium	31 Ga	2,8,3 Aluminium	2 13	Boron	3 B 5	(13)		Group 3
99 Es 2,8,18,32, 29,8,2 Einsteinium	67 Ho 2,8,18,29, 8,2 Holmium		82 Pb 2,8,18, 32,18,4 h Lead	50 Sn 2,8,18, 18,4 Tin	2,8 Geri	32 Ge	2,8,4 ım Silicon	7 ₁ 4	Carbon	, o o	(14)		3 Group 4
100 Fm 2,8,18,32, 30,8,2 Fermium	68 Er 2,8,18,30, 8,2 Erbium		83 Bi 2,8,18, 4 32,18,5 Bismuth	51 Sb 2,8,18, 18,5 Antimony	2,8 AI	33 As	2,8,5 Phosphorus	p 15	Nitrogen	3 Z 7	(15)		4 Group 5
101 Md 2,8,18,32, 31,8,2 Mendelevium	69 Tm 2,8,18,31, 8,2 Thulium		84 Po 2,8,18, 32,18,6	52 Te 2,8,18, 18,6 7	2,8 Sel	34 Se	2,8,6 us Sulfur	16 S	n Oxygen	, o «	(16)		5 Group 6
102 No 2,8,18,32, 32,8,2 Nobelium	70 Yb 2,8,18,32, 8,2 Ytterbium		85 At 2,8,18, 6 32,18,7 n Astatine	53 2,8,18, 18,7 n lodine	2,8 Bra	35 Br	2,8,7 Chlorine	17 Cl	Fluorine	3 ₇ T 9	(17)		6 Group 7
103 Lr 2,8,18,32, 32,9,2 Lawrencium	71 Lu 2,8,18,32, 9,2 Lutetium		86 Rn 2,8,18, 32,18,8 e Radon	54 Xe , 2,8,18, 18,8 Xenon	2,8	36	2,8,8 e Argon	A 18	e Neon	2 Z 10	He 2	(18)	മ
13 13 13 13 13 13 13 13 13 13 13 13 13 1	1 u 8,32,		86 Rn 2,8,18, 2,18,8 Radon	Xe Xe 2,8,18, 18,8 Xenon	,8,18,8 (rypton	36 ~	2,8,8 Argon	₽ 18	Neon	Z Z 10	Helium	(18)	roup 0

	FOR OFFICIAL USE		
ы	National Qualifications SPECIMEN ONLY		Mark
S857/76/02		Paper 1	Physics — Multiple choice Answer bookle
Date — Not applicable Duration — 45 minutes			* S 8 5 7 7 6 0 2
Fill in these boxes and re	ad what is printed below.		
Fill in these boxes and rea	ad what is printed below.	Town	

Instructions for the completion of Paper 1 are given on page 02.

Record your answers on the answer grid on page 03.

Use **blue** or **black** ink.

Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

The questions for Paper 1 are contained in the question paper \$857/76/12.

Read these and record your answers on the answer grid on page 03.

Use blue or black ink. Do NOT use gel pens or pencil.

- 1. The answer to each question is **either** A, B, C, D or E. Decide what your answer is, then fill in the appropriate bubble (see sample question below).
- 2. There is **only one correct** answer to each question.
- 3. Any rough working should be done on the space for rough work at the end of the question paper \$857/76/12.

Sample question

The energy unit measured by the electricity meter in your home is the

- A ampere
- B kilowatt-hour
- C watt
- D coulomb
- E volt.

The correct answer is ${\bf B}$ — kilowatt-hour. The answer ${\bf B}$ bubble has been clearly filled in (see below).

Α	В	С	D	Ε
0		0	0	0

Changing an answer

If you decide to change your answer, cancel your first answer by putting a cross through it (see below) and fill in the answer you want. The answer below has been changed to **D**.

Α	В	С	D	Ε
0		0		0

If you then decide to change back to an answer you have already scored out, put a tick (\checkmark) to the right of the answer you want, as shown below:

	Α	В	С	D	Ε
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0
5	0	0	0	0	0
6	\circ	\circ	\circ	\circ	\circ
7	0	0	0	0	0
8	0	0	0	0	0
9	0	0	0	0	0
10	0	0	0	0	0
11	0	0	0	0	0
12	0	0	0	0	0
13	0	0	0	0	0
14	0	0	0	0	0
15	0	0	0	0	0
16	0	0	0	0	0
17	0	0	0	0	0
18	0	0	\circ	0	0
19	0	0	0	0	0
20	0	0	0	0	0
21	0	0	0	0	0
22	0	0	0	0	0
23	0	0	0	0	0
24	0	0	0	0	0
25	0	0	0	0	0

page 03

S857/76/12

Physics Paper 1 — Multiple choice

Marking Instructions

These marking instructions have been provided to show how SQA would mark this specimen question paper.

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user's responsibility to obtain the necessary copyright clearance.

Marking instructions for each question

Question	Answer	Max mark
1.	С	1
2.	Α	1
3.	В	1
4.	С	1
5.	С	1
6.	С	1
7.	В	1
8.	В	1
9.	С	1
10.	В	1
11.	D	1
12.	D	1
13.	В	1
14.	E	1
15.	D	1
16.	Α	1
17.	E	1
18.	С	1
19.	D	1
20.	С	1
21.	E	1
22.	Α	1
23.	A	1
24.	E	1
25.	D	1

[END OF SPECIMEN MARKING INSTRUCTIONS]