

PHOTONIS USA P.O. Box 1159 Sturbridge, MA 01566 United States of America T +1 800 648 1800 (US & Can) T +1 508 347 4000 (Intl calls) F +1 508 347 3849 E sales@usa.photonis.com www.photonis.com

Chevron MCP and Detector Initial Start-up and Electrical Test Procedure

NOTES: Read the entire start-up procedure before applying any voltages.

Refer to Diagram 1 - Typical Wiring Diagrams - for each detection mode.

The suggested bias voltage for a Resistive Anode Encoder (RAE) is 300 volts.

CAUTION:

Do not exceed 1000V per Microchannel Plate (MCP) for 40:1 aspect ratio MCPS. 1200V/MCP for 60:1 aspect ratio MCPS.

When installing flange mounted detectors gradually tighten the bolts in a star pattern (DO NOT exceed 20 foot-pounds per bolt). Failure to do so could cause the fiberoptic to crack.

RECOMMENDATIONS:

For optimal lifetime, operate the detector at the minimum voltage necessary to obtain a useable signal. Do not operate the phosphor screen at a higher than recommended potential.

PROCEDURE

Make all connections to the assembly.

Check all electrical connections for possible shorted or open circuits.

Pump down to 2x10⁻⁶ torr and hold for at least 15 hours.

VOLTAGE APPLICATION

Electron/Negative Ion/UV Photon Detection: (for a metal anode or Resistive Anode Encoder, skip to next section)

Phosphor Screen

Ground the input of the assembly (V_i) . Apply voltage to the phosphor screen (V_a) in +250V, 1 minute increments. Stop at +1.0 kV.

Apply voltage to the output of the assembly (V_o) in +100V, 2 minute increments. Stop at +1.0 kV.

Increase the voltage to Va in +100V, 5 minute increments to +3.0 kV. Wait 5 minutes.

Increase the voltage to Va in +100V, 10 minute increments to +4.0 kV. Wait 5 minutes.

Simultaneously increase the voltage to V_a and V_o in +100V, 10 minute increments to +4.5 kV at V_a and +1.5 kV at V_o .

<u>For screens requiring a 5.0 kV potential</u> - Increase the voltage to V_a in +100V, 10 minute increments to +5.5 kV. Wait 10 minutes.

For screens requiring a 5.0 kV potential - Increase the voltage to V_a in +50V, 10 minute increments to +6.5 kV. Wait 10 minutes.

Simultaneously increase the voltage to V_a and V_o in +50V, 10 minute increments to +2.0 kV at V_o . When through using the detector, turn off the voltage to V_a . When the voltage drops below +2.0 kV, turn off the voltage to V_o .

Metal Anode/Resistive Anode Encoder

Ground the input of the assembly (V_i). Apply the specified anode bias to V_a.

Increase the voltage to both V_a and V_o in +100V, 2 minute increments by +1.0 kV at V_a and to +1.0 kV at V_o . Wait 5 minutes.

Increase the voltage at V_o and V_a in +100V, 5 minute increments to +1.5 kV at V_o . Wait 10 minutes.

Increase the voltage at V_o and V_a in +50V, 5 minute increments to +2.0 kV at V_o .

When through using the detector, turn off the voltages to Vo and Va.

PHOTONIS USA 2/2

Positive Ion/UV Photon Detection (for a metal anode or Resistive Anode Encoder, skip to next section).

Phosphor Screen

Ground the output of the assembly (V_o) . Apply voltage to the phosphor sheen (V_a) in +250V, 1 minute increments. Stop at +1.0 kV.

Apply voltage to the input of the assembly (V_i) in -100V, 2 minute increments. Stop at -1.0 kV.

Increase the voltage to V_a in +100V, 5 minute increments to +2.0 kV. Wait 5 minutes.

Increase the voltage to V_a in +100V, 10 minute increments to +3.0 kV. Wait 5 minutes.

Adjust the voltage to V_i in -100V, 10 minute increments to -1.5 kV.

For screens requiring a 5.0 kV potential - Increase the voltage to V_a in +100V, 10 minute increments to +4.0 kV. Wait 10 minutes.

<u>For screens requiring a 5.0 kV potential</u> - Increase the voltage to V_a in +50V, 10 minute increments to +5.0 kV. Wait 10 minutes.

Adjust the voltage to V_i in -50V, 10 minute increments to -2.0 kV.

When through using the detector, turn off the voltages to the V_i and V_a.

Metal Anode/Resistive Anode Encoder

Ground the output of the assembly (V_o). Apply the specified anode bias to V_a . Apply voltage to V_i in -100V, 2 minute increments. Stop at -1.0 kV. Wait 2 minutes. Adjust the voltage at V_i in -100V, 5 minute increments to -1.5 kV. Wait 5 minutes. Adjust the voltage at V_i in -50V, 10 minute increments to -2.0 kV. When through using the detector, turn off the voltages to V_i and V_a .

TYPICAL WIRING DIAGRAMS

		Pulse Mode (metal snode)	Imaging Mode (Phosphor screen)
Electron/Negative Ion	/UV Ph	notan Detector	
	V_{i}	ground	ground
	٧,	2000v 2050v to 2500v	2000v 5000v to 7000v
Positive Ion/UV Photo	n Dete	ctor	
	V_i	-2000v	-2000v
	٧,	ground 50v to 500v	ground 3000v to 5000v