Théorème de Cauchy-Lipschitz local:

I Le développement

Le but de ce développement est de démontrer le théorème de Cauchy-Lipschitz local afin de montrer que tout problème de Cauchy admet une unique solution locale.

On commence d'abord avec un lemme qui nous sera utile pour la suite :

Lemme 1: [Demailly, p.142]

Soient U un ouvert de $\mathbb{R} \times \mathbb{R}^N$, $f: U \longrightarrow \mathbb{R}^N$ une fonction continue et $(t_0, y_0) \in U$. $y: I \subseteq \mathbb{R} \longrightarrow \mathbb{R}^N$ est solution du problème de Cauchy $PC_{(t_0, y_0)}$ si, et seulement si, y est continue et pour tout $t \in I$, $(t, y(t)) \in U$ et $y(t) = y_0 + \int_{t_0}^t f(u, y(u)) du$.

Preuve:

Soient U un ouvert de $\mathbb{R} \times \mathbb{R}^N$, $f: U \longrightarrow \mathbb{R}^N$ une fonction continue et $(t_0, y_0) \in U$. * Si y est solution du problème de Cauchy $PC_{(t_0, y_0)}$, alors y est continue (car dérivable) et puisque $u \longmapsto f(u, y(u))$ est continue, y est même de classe C^1 sur I et on a donc pour tout $t \in I$, $(t, y(t)) \in U$ et $y(t) = y_0 + \int_{t_0}^t y'(u) du = y(t) = y_0 + \int_{t_0}^t f(u, y(u)) du$.

* Réciproquement, si y est une fonction continue et pour tout $t \in I$, $(t, y(t)) \in U$ et $y(t) = y_0 + \int_{t_0}^t f(u, y(u)) du$, alors on a directement $y(t_0) = y_0$ et en dérivant la relation on obtient y'(t) = f(t, y(t)) d'où y solution de $PC_{(t_0, y_0)}$.

Finalement, on a bien démontré l'équivalence voulue.

Théorème 2 : Théorème de Cauchy-Lipschitz local [Demailly, p.153] :

Soient U un ouvert de $\mathbb{R} \times \mathbb{R}^N$ et $f: U \longrightarrow \mathbb{R}^N$ une fonction continue et localement lipschitzienne par rapport à la seconde variable.

Pour tout $(t_0, y_0) \in U$, il existe $\alpha > 0$ tel que le problème de Cauchy $PC_{(t_0, y_0)}$ ait une unique solution définie sur $[t_0 - \alpha; t_0 + \alpha]$.

Preuve:

Soient U un ouvert de $\mathbb{R} \times \mathbb{R}^N$ et $f: U \longrightarrow \mathbb{R}^N$ une fonction continue et localement lipschitzienne par rapport à la seconde variable.

On considère $(t_0, y_0) \in U$ et pour tous r > 0 et $\alpha > 0$, on note $B_r = \mathcal{B}_f(y_0, r)$ et $I_{\alpha} = [t_0 - \alpha; t_0 + \alpha]$.

Soient V un voisinage compact de (t_0, y_0) où f est k-lipschitzienne en la seconde variable et M un majorant de f sur V.

On fixe $r, \alpha > 0$ tels que $I_{\alpha} \times B_r \subseteq V$ et $\alpha M < r$ (cylindre de sécurité). L'espace $\mathcal{F} = \mathcal{C}^0(I_{\alpha}, B_r)$ est un espace complet muni de la norme $\|\cdot\|_{\infty}$ (car I_{α} est un intervalle et B_r est complet).

* Posons l'application :

$$\Phi: \left| \begin{array}{ccc} \mathcal{F} & \longrightarrow & \mathcal{F} \\ y & \longmapsto & t \longmapsto y_0 + \int_{t_0}^t f(u, y(u)) \mathrm{d}u \end{array} \right|$$

On remarque alors que y est solution de $PC_{(t_0,y_0)}$ si, et seulement si, $\Phi(y)=y$.

De plus, l'application Φ est bien définie :

- Pour tous $y \in \mathcal{F}$ et $t \in I_{\alpha}$, on a :

$$\|\Phi(y)(t) - y_0\| \le \int_{t_0}^t \|f(u, y(u))\| du \le M|t - t_0| \le \alpha M < r$$

Donc $\Phi(y)$ est définie sur I_{α} et à valeurs dans B_r .

- Soient $y \in \mathcal{F}$ et $(t_n)_{n \in \mathbb{N}^*} \in I_{\alpha}^{\mathbb{N}^*}$ telle que $\lim_{n \to +\infty} t_n = t \in I_{\alpha}$, on a :

$$\Phi(y)(t_n) = y_0 + \int_{t_0}^{t_n} f(u, y(u)) du = y_0 + \int_{I_\alpha} f(u, y(u)) \mathbb{1}_{[t_0; t_n]} du$$

De plus, en posant $g_n: u \longmapsto f(u,y(u))\mathbb{1}_{[t_0;t_n]}$, on a alors que la suite $(g_n)_{n\in\mathbb{N}^*}$ converge presque-sûrement vers g, où $g: u \longmapsto f(u,y(u))\mathbb{1}_{[t_0;t]}$ et pour tout $t\in I_\alpha, |g_n(t)| \leq |f(u,y(u))|$.

Donc par le théorème de convergence dominée, on a $\lim_{n\to+\infty} \Phi(y)(t_n) = \Phi(y)(t)$ et ainsi $\Phi(y)$ est continue.

* Montrons que Φ admet un unique point fixe :

Soient $y, z \in \mathcal{F}$ et $t \in I_{\alpha}$.

Montrons par récurrence que pour tout $p \in \mathbb{N}$, on a :

$$\|\Phi^{p}(y)(t) - \Phi^{p}(z)(t)\| \le \frac{k^{p}}{p!} |t - t_{0}|^{p} \|y - z\|_{\infty}$$

- Initialisation pour p = 0:

On a:

$$\|\Phi^{0}(y)(t) - \Phi^{0}(z)(t)\| = \|y(t) - z(t)\| \le \|y - z\|_{\infty} = \frac{k^{0}}{0!} |t - t_{0}|^{0} \|y - z\|_{\infty}$$

La propriété est donc bien initialisée pour p = 0.

- Hérédité :

Supposons la propriété vraie au rang p. Qu'en est-il au rang p+1?

$$\|\Phi^{p+1}(y)(t) - \Phi^{p+1}(z)(t)\| \le \int_{t_0}^t \|f(u, \Phi^p(y)(u)) - f(u, \Phi^p(z)(u))\| du$$

$$\le k \int_{t_0}^t \|\Phi^p(y)(u) - \Phi^p(z)(u)\| du$$

$$\le \frac{k^{p+1}}{p!} \|y - z\|_{\infty} \int_{t_0}^t |u - t_0|^p du$$

$$\le \frac{k^{p+1}}{(p+1)!} |t - t_0|^{p+1} \|y - z\|_{\infty}$$

La propriété est donc vraie au rang p+1, elle est donc héréditaire. Ainsi, on a démontré la formule voulue par récurrence.

De plus, pour tout $t \in I_{\alpha}$, on a $|t - t_0|^p < \alpha^p$, et donc :

$$\|\Phi^p(y)(t) - \Phi^p(z)(t)\| \le \frac{(k\alpha)^p}{p!} \|y - z\|_{\infty} \underset{p \to +\infty}{\longrightarrow} 0$$

Ainsi, il existe $p_0 \in \mathbb{N}$ tel que la fonction Φ^{p_0} est contractante de \mathcal{F} dans \mathcal{F} (qui est complet). Donc par le théorème du point fixe de Banach, il existe un unique $y \in \mathcal{F}$ tel que $\Phi^{p_0}(y) = y$. Or, on a $\Phi^{p_0}(\Phi(y)) = \Phi(\Phi^{p_0}(y)) = \Phi(y)$, donc on en déduit que $\Phi(y) = y$ (car $\Phi(y)$ est un point fixe de Φ^{p_0}). Enfin Φ admet y comme unique point fixe car tout point fixe de Φ est un point fixe de Φ^{p_0} .

Finalement, le problème de Cauchy $PC_{(t_0,y_0)}$ admet une unique solution.

II Remarques sur le développement

II.1 Résultat(s) utilisé(s)

Dans ce développement, on a utilisé le théorème du point fixe de Banach généralisé (que l'on a redémontré dans la démonstration) ainsi que la complétude de $\mathcal{F} = (\mathcal{C}^0(I_\alpha, B_r), \|\cdot\|_{\infty})$.

Remarque 3: [Demailly, p.152]

Il est également possible d'utiliser le lemme de Gronwall pour démontrer le théorème de Cauchy-Lipschitz local.

II.2 Pour aller plus loin...

Le théorème d'unicité locale entraı̂ne un résultat d'unicité globale au moyen d'un raisonnement de connexité :

Théorème 4 : Théorème de Cauchy-Lipschitz global [Demailly, p.154] :

Soient U un ouvert de $\mathbb{R} \times \mathbb{R}^N$, $f: U \longrightarrow \mathbb{R}^N$ une fonction continue et localement lipschitzienne par rapport à la seconde variable et $(t_0, y_0) \in U$.

Si $y_1, y_2 : I \longrightarrow \mathbb{R}^N$ sont deux solutions de $PC_{(t_0, y_0)}$ qui coïncident en un point de I, alors $y_1 = y_2$ sur I.

Preuve:

Soient U un ouvert de $\mathbb{R} \times \mathbb{R}^N$, $f: U \longrightarrow \mathbb{R}^N$ une fonction continue et localement lipschitzienne par rapport à la seconde variable et $(t_0, y_0) \in U$.

On considère $y_1, y_2: I \longrightarrow \mathbb{R}^N$ deux solutions de $PC_{(t_0, y_0)}$ qui coïncident en un point t_0 de I.

Montrons (sans perte de généralités) que $y_1=y_2$ pour $t\geq t_0$ en raisonnant par l'absurde :

Considérons $\widetilde{t_0}$ le premier instant où y_1 et y_2 bifurquent :

$$\widetilde{t_0} = \inf_{t \in I} \{ t \ge t_0 \text{ tq } y_1(t) \ne y_2(t) \}$$

On a par définition que $y_1 = y_2$ sur $[t_0; \widetilde{t_0}]$ et par continuité on a $y_1(\widetilde{t_0}) = y_2(\widetilde{t_0})$.

Soient $\widetilde{y_0}$ ce point et $\widetilde{C} = \left[\widetilde{t_0} - \widetilde{T}; \widetilde{t_0} + \widetilde{T}\right] \times \mathcal{B}_f\left(\widetilde{y_0}, \widetilde{r_0}\right)$ un cylindre de sécurité de centre $(\widetilde{t_0}; \widetilde{y_0})$.

Le théorème d'unicité locale implique alors que $y_1 = y_2$ sur $\left[\widetilde{t_0} - \widetilde{T}; \widetilde{t_0} + \widetilde{T}\right]$, ce qui contredit la définition de $\widetilde{t_0}$.

Ainsi, on a donc démontré le théorème.

On en déduit que corollaire suivant :

Corollaire 5: [Demailly, p.154]

Soient U un ouvert de $\mathbb{R} \times \mathbb{R}^N$, $f: U \longrightarrow \mathbb{R}^N$ une fonction continue et localement lipschitzienne par rapport à la seconde variable et $(t_0, y_0) \in U$. Il existe une unique solution maximale $y: I \longrightarrow \mathbb{R}^N$ de $PC_{(t_0, y_0)}$.

Remarque 6: [Demailly, p.114]

Géométriquement, le théorème d'unicité signifie que des courbes intégrales distinctes ne peuvent se croiser.

II.3 Recasages

Recasages : 205 - 220 - 221.

III Bibliographie

— Jean-Pierre Demailly, Analyse numérique et équations différentielles.