Numerical solutions of differential equations

Patrick Henning

pathe@kth.se

Division of Numerical Analysis, KTH, Stockholm

Course SF2521, 7.5 ECTS, VT18

Lecture 10

Entropy solutions

Applications

Applications of the Entropy Condition

Entropy - Consequence for numerical schemes

Recall: von Neumann analysis for linear problem with periodic BC revealed:

Example $(\partial_t u + \partial_x u = o - Advection equation)$

Consider forward Euler and central differences for the advection equation:

$$Q_j^{n+1} = Q_j^n + rac{1}{2}\lambda_{\mathsf{CFL}}(Q_{j+1}^n - Q_{j-1}^n), \qquad \lambda_{\mathsf{CFL}} = rac{\Delta t}{\Delta x}.$$

Again, here m=M=1, but $b_{-1}=-\frac{\lambda_{CFL}}{2}$, $b_0=1$, $b_1=\frac{\lambda_{CFL}}{2}$. Then

$$g_k(\Delta t, \Delta x) = -rac{\lambda_{ ext{CFL}}}{2}e^{-\mathrm{i}k\Delta x} + 1 + rac{\lambda_{ ext{CFL}}}{2}e^{\mathrm{i}k\Delta x} = 1 + \lambda_{ ext{CFL}}\mathrm{i}\sin(k\Delta x).$$

Hence,

$$\max_{k} |g_k(\Delta t, \Delta x)| = \max_{k} \sqrt{1 + \lambda_{\mathsf{CFL}}^2 \sin(k\Delta x)^2} > 1,$$

and the method is unstable for all fixed λ_{CFL} .

Entropy - Consequence for numerical schemes

General (nonlinear) case with convex flux *f*:

central differences are inappropriate to discretize the problem.

Example

Let
$$f'' > 0$$
 with $f'(-1) < 0 < f'(1)$ and $f(1) = f(-1)$, e.g. $f(u) = u^2$.

Consider initial value
$$v_0(x) = \begin{cases} 1, & x \ge 0 \\ -1, & x < 0 \end{cases}$$
.

Central difference discretization:

$$Q_j^{n+1} := Q_j^n - \frac{\Delta t}{2\Delta x} (f(Q_{j+1}^n) - f(Q_{j-1}^n)),$$

where $Q_i^n \approx u(j\Delta x, n\Delta t)$ on an equidistant mesh.

Entropy - Consequence for numerical schemes

Example (- Part 2)

Let
$$f'' > 0$$
 with $f'(-1) < 0 < f'(1)$ and $f(1) = f(-1)$.

Consider initial value
$$\mathbf{v}_0(x) = \begin{cases} 1, & x \ge 0 \\ -1, & x < 0 \end{cases}$$
.

Hence:
$$f(Q_j^{\circ}) = f(\pm 1) = f(1) \implies f(Q_{j+1}^{\circ}) - f(Q_{j-1}^{\circ}) = 0$$
 for all j . Since

$$Q_{j}^{n+1} := Q_{j}^{n} - \frac{\Delta t}{2\Delta x} (f(Q_{j+1}^{n}) - f(Q_{j-1}^{n})),$$

we conclude

$$Q_j^n = \left\{ \begin{array}{ll} 1, & j > 0 \\ -1, & j < 0 \end{array} \right. \quad \text{for all } n \in \mathbb{N}.$$

Applications

Entropy - Consequence for numerical schemes

Example (- Part 3)

Let
$$f'' > 0$$
 with $f'(-1) < 0 < f'(1)$ and $f(1) = f(-1)$ and

initial value
$$\mathbf{v}_0(x) = \left\{ \begin{array}{ll} 1, & x \geq 0 \\ -1, & x < 0 \end{array} \right.$$

Central difference approximation:

$$Q_j^n = \left\{ \begin{array}{ll} 1, & j > 0 \\ -1, & j < 0 \end{array} \right. \quad \text{for all } n \in \mathbb{N}.$$

Question:

Is
$$u(x,t) = \begin{cases} 1, & x > 0 \\ -1, & x \le 0 \end{cases}$$
 also Lax-Entropy solution?

Applications

Entropy - Consequence for numerical schemes

Example (- Part 4)

Is
$$u(x,t) = \begin{cases} 1, & x > 0 \\ -1, & x \le 0 \end{cases}$$
 also Lax-Entropy solution?

1. Verify Rankine-Hugoniot jump condition:

$$s = 0$$
, $f(u_l) - f(u_r) = 0$ \Rightarrow $(u_l - u_r)s = f(u_l) - f(u_r)$

 $\Rightarrow \mu$ is weak solution.

2. Verify Lax entropy condition:

We have
$$f'(u_l) = f'(-1)$$
 and $f'(u_r) = f'(1)$. Hence:

$$f'(-1) = f'(u_l) < \underbrace{s}_{-0} < f'(u_r) = f'(1)$$
 "Contradiction".

 \Rightarrow u does not fulfill Lax entropy condition.

The central difference scheme does not produce an entropy solution!

Entropy - Consequence for numerical schemes

Observe:

If
$$f''>0$$
 with $f'(-1)<0< f'(1)$ and $f(1)=f(-1)$, and for initial value $v_0(x)=\left\{ \begin{array}{ll} 1,&x\geq 0\\ -1,&x<0 \end{array} \right.$,

the upwind scheme

$$Q_j^{n+1} := Q_j^n - \frac{\Delta t}{\Delta x} (f(Q_j^n) - f(Q_{j-1}^n)),$$

suffers from the same problem.

Entropy solutions to the Riemann-problem

Riemann-problem.

Let $f \in C^2(\mathbb{R})$ be a convex flux, i.e. f'' > 0, and let

$$\mathbf{v_0}(x) = \left\{ \begin{array}{ll} u_l, & x < 0 \\ u_r, & x > 0 \end{array} \right.$$

We seek the entropy solution $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}^+)$ to

$$\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = \mathbf{o}$$
 and $\mathbf{u}(\cdot, \mathbf{o}) = \mathbf{v_0}$.

The equation is understood in the weak sense!

Can we explicitly state the entropy solution to this problem?

Entropy solutions to the Riemann-problem Observation:

Let u be a weak solution to $\partial_t u + \partial_x f(u) = 0$.

Then, $u_{\lambda}(x,t) := u(\lambda x, \lambda t)$ is also a weak solution for all $\lambda > 0$. In particular:

$$u_{\lambda}(x,0) = u(\lambda x,0) = \begin{cases} u_{l}, & \lambda x < 0 \\ u_{r}, & \lambda x > 0 \end{cases} = v_{0}(x).$$

Since the entropy solution is <u>unique</u>, it must hold $u(\lambda x, \lambda t) = u(x, t)$ for all $\lambda > 0$.

We therefore consider solutions of the form

$$u(x,t) = v\left(\frac{x}{t}\right)$$
.

Entropy solutions to the Riemann-problem

Let
$$u(x,t) = v(\frac{x}{t})$$
.

In regions in which *v* is smooth we have:

$$0 = \partial_t \mathbf{u}(\mathbf{x}, t) + \partial_x f(\mathbf{u}(\mathbf{x}, t))$$

$$= -\frac{\mathbf{x}}{t^2} \mathbf{v}'(\frac{\mathbf{x}}{t}) + f'(\mathbf{v}(\frac{\mathbf{x}}{t})) \mathbf{v}'(\frac{\mathbf{x}}{t}) \frac{1}{t}$$

$$= \mathbf{v}'(\frac{\mathbf{x}}{t}) \frac{1}{t} \left(f'(\mathbf{v}(\frac{\mathbf{x}}{t})) - \frac{\mathbf{x}}{t} \right).$$

Hence for all $\xi = \frac{X}{t} \in \mathbb{R}$ we have either

$$f'(\mathbf{v}(\xi)) - \xi = 0$$

or

$$\mathbf{v}'(\xi) = 0.$$

Entropy solutions to the Riemann-problem

From the conservation we have

$$f'(\mathbf{v}(\xi)) - \xi = 0$$
 or $\underline{\mathbf{v}'(\xi) = 0}$ for all $\xi = \frac{X}{t} \in \mathbb{R}$.

We can distinguish 3 cases.

Case 1:
$$u_1 = u_r$$
.

We have the classical solution $u(x,t) \equiv u_l$ for all $(x,t) \in \mathbb{R} \times \mathbb{R}^+$.

Since it is a classical solution, it must be the unique entropy solution.

Entropy solutions to the Riemann-problem

From the conservation we have

$$f'(\mathbf{v}(\xi)) - \xi = 0$$
 or $\underline{\mathbf{v}'(\xi) = 0}$ for all $\xi = \frac{x}{t} \in \mathbb{R}$.

Case 2: $u_l > u_r$. Then

$$u(x,t) = \begin{cases} u_l & \text{for} & x < st \\ u_r & \text{for} & x > st \end{cases}$$

with $s = \frac{f(u_l) - f(u_r)}{u_l - u_r}$ is the unique entropy solution, because

$$f'(u_r) < \frac{f(u_l) - f(u_r)}{u_l - u_r} < f'(u_l).$$

This is the Lax shock.

Entropy solutions to the Riemann-problem

Ansatz: $u(x, t) = v(\frac{x}{t})$. From the conservation we have

$$\underline{f'(v(\xi)) - \xi = o}$$
 or $\underline{v'(\xi)} = o$ for all $\xi = \frac{x}{t} \in \mathbb{R}$.

<u>Case 3:</u> $u_l < u_r$. Recall: discontinuous solutions are only possible if the Lax entropy condition is violated. Since $v'(\xi) = o$ is therefore not everywhere possible, it must hold $f'(v(\xi)) - \xi = o$. Hence:

$$f'(\mathbf{v}(\xi)) = \xi \quad \Rightarrow \quad (f')^{-1}(f'(\mathbf{v}(\xi))) = (f')^{-1}(\xi)$$

$$\mathbf{v}(\xi) := (f')^{-1}(\xi).$$

We obtain

 \Rightarrow

$$u(x,t) := \begin{cases} u_l & \text{for} & \frac{x}{t} \le f'(u_l) \\ v(\frac{x}{t}) & \text{for} & f'(u_l) < \frac{x}{t} < f'(u_r) \\ u_r & \text{for} & \frac{x}{t} > f'(u_r) \end{cases}$$

This entropy solution is called rarefaction-wave.

Entropy solutions to the Riemann-problem

Summary. Riemann-problem: $\partial_t u + \partial_x f(u) = 0$.

Let $f \in C^2(\mathbb{R})$ be a convex flux, i.e. f'' > 0, and let

$$u(x,0) = v_0(x) = \begin{cases} u_l, & x < 0 \\ u_r, & x > 0 \end{cases}$$

The entropy solution $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}^+)$ is given by:

If
$$u_l = u_r$$
:

$$u(x,t)\equiv u_l.$$

If $u_l > u_r$:

$$u(x,t) = \begin{cases} u_l & \text{for} & x < st \\ u_r & \text{for} & x > st \end{cases}$$

where
$$s = \frac{f(u_l) - f(u_r)}{u_l - u_r}$$
.

If
$$u_l < u_r$$
:

$$u(x,t) := \begin{cases} u_l & \text{for} & \frac{x}{t} \le f'(u_l) \\ (f')^{-1}(\frac{x}{t}) & \text{for} & f'(u_l) < \frac{x}{t} < f'(u_r) \\ u_r & \text{for} & \frac{x}{t} > f'(u_r) \end{cases}$$

Entropy solutions to the Riemann-problem

Remarks:

- ▶ It is possible to show that these unique entropy solutions are obtained by the viscosity limit.
- ► For the Riemann-problem we have now an explicit formula to state the solutions for quite general nonlinearities.
- Unfortunately, it is not always that easy and we mostly need numerical methods.
- Can we use the Lax entropy condition for numerical solutions?

