

MEMORIAL TÉCNICO DESCRITIVO

MICROGERAÇÃO DISTRIBUÍDA UTILIZANDO UM SISTEMA FOTOVOLTAICO DE 8 kW EM POTÊNCIA NOMINAL CONECTADO À REDE DE ENERGIA ELÉTRICA DE BAIXA TENSÃO EM 220V CARACTERIZADO COMO INDIVIDUAL

JOSE ENOCK CARNEIRO LEITE

CPF: 121.132.042-15

MATHEUS PINHEIRO DA SILVA FÉLIX

TÉCNICO EM ELETROTÉCNICA
REGISTRO: CRT-02 03646511214

BELÉM - PA

SETEMBRO - 2025

LISTA DE SIGLAS E ABREVIATURAS

ABNT: Associação Brasileira de Normas Técnicas

ANEEL: Agência Nacional de Energia Elétrica

BT: Baixa tensão (220/127 V, 380/220 V)

C.A: Corrente Alternada

C.C: Corrente Contínua

CD: Custo de disponibilidade (30 kWh, 50kWh ou 100 kWh em sistemas de baixa tensão monofásicos,

bifásicos ou trifásicos, respectivamente)

CI: Carga Instalada

DSP: Dispositivo Supressor de Surto

DSV: Dispositivo de seccionamento visível

FP: Fator de potência

FV: Fotovoltaico

GD: Geração distribuída HSP: Horas de sol pleno

IEC: International Electrotechnical Commission

In: Corrente Nominal

I_{DG}: Corrente nominal do disjuntor de entrada da unidade consumidora em ampéres (A)

Ist: Corrento de curto-circuito de módulo fotovoltaico em ampéres (A)

kW: kilo-watt

kWp: kilo-watt pico kWh: kilo-watt-hora

MicroGD: Microgeração distribuída MT: Média tensão (13.8 kV, 34.5 kV)

NF: Fator referente ao número de fases, igual a 1 para sistemas monofásicos e bifásicos ou $\sqrt{3}$ para

sistemas trifásicos

PRODIST: Procedimentos de Distribuição

PD: Potência disponibilizada para a unidade consumidora onde será instalada a geração distribuída

PR: Pára-raio

QGD: Quadro Geral de Distribuição QGBT: Quadro Geral de Baixa Tensão

REN: Resolução Normativa

SPDA: Sistema de Proteção contra Descargas Atmosféricas

SFV: Sistema Fotovoltaico

SFVCR: Sistema Fotovoltaico Conectado à Rede

TC: Transformador de corrente TP: Transformador de potencial

UC: Unidade Consumidora

UTM: Universal Transversa de Mercator

V_N: Tensão nominal de atendimento em volts (V)

Voc: Tensão de circuito aberto de módulo fotovoltaico em volts (V)

SUMÁRIO

1.	OBJE	ETIVO			4
2.	REFE	ERÊNCIAS NORMATIVAS E REGULATÓRIA			4
3.	DOC	UMENTOS OBRIGATÓRIOS			5
4.	DAD	OS DA UNIDADE CONSUMIDORA			5
5.	LEVA	ANTAMENTO DE CARGA E CONSUMO			6
	5.1.	Levantamento de Carga			6
	5.2.	Consumo Mensal			7
6.	PADI	RÃO DE ENTRADA			7
	6.1.	Tipo de Ligação e Tensão de Atendimento			7
	6.2.	Disjuntor de Entrada			7
	6.3.	Potência Disponibilizada			8
	6.4.	Caixa de Medição			8
	6.5.	Ramal de Entrada			9
7.	ESTI	MATIVA DE GERAÇÃO			9
8.	DIME	ENSIONAMENTO DO GERADOR			9
	8.1.	Dimensionamento do gerador			9
9.	DIME	ENSIONAMENTO DO INVERSOR			10
	9.1.	Localização e acesso ao inversor			11
10.	DIME	ENSIONAMENTO DA PROTEÇÃO			12
		1	0.1.	Fusíve	eis 12
	10.2.	Disjuntores			12
	10.3.	Dispositivo de seccionamento visível			12
		1	0.4.	DPS	12
	10.5.	Aterramento			13
	10.6.	Requisitos de Proteção			14
11.	DIME	ENSIONAMENTO DOS CABOS			14
12.	PLAC	CA DE ADVERTÊNCIA			14
12	A NIE'	YOS			15

1. OBJETIVO

O presente memorial técnico descritivo tem como objetivo apresentar a metodologia utilizada para elaboração e apresentação à EQUATORIAL ENERGIA dos documentos mínimos necessários, em conformidade com a REN 482, com o PRODIST Módulo 3 secção 3.7, com a NT.020 e com as normas técnicas nacionais (ABNT), para **SOLICITAÇÃO DO PARECER DE ACESSO** de uma microgeração distribuída conectada à rede de distribuição de energia elétrica através de um sistema fotovoltaico de 8 kW em potência, composto por 20 módulos e 1 inversor, caracterizado como INDIVIDUAL .

2. REFERÊNCIAS NORMATIVAS E REGULATÓRIA

Para elaboração deste memorial técnico descritivo, no âmbito da área de concessão do estado do Pará, foram utilizadas as normas e resoluções, nas respectivas revisões vigentes, conforme descritas abaixo:

- a) ABNT NBR 5410: Instalações Elétricas de Baixa Tensão.
- b) ABNT NBR 10899: Energia Solar Fotovoltaica Terminologia.
- c) ABNT NBR 11704: Sistemas Fotovoltaicos Classificação.
- d) ABNT NBR 16149: Sistemas fotovoltaicos (FV) Características da interface de conexão com a rede elétrica de distribuição.
- e) ABNT NBR 16150: Sistemas fotovoltaicos (FV) Características da interface de conexão coma rede elétrica de distribuição Procedimentos de ensaio de conformidade.
- f) ABNT NBR IEC 62116: Procedimento de Ensaio de Anti-ilhamento para Inversores de Sistemas Fotovoltaicos Conectados à Rede Elétrica.
- g) EQUATORIAL ENERGIA NT.020.EQTL.Normas e Padrões Conexão de Microgeração Distribuída ao Sistema de Baixa Tensão.
- h) EQUATORIAL ENERGIA NT.001.EQTL.Normas e Padrões Fornecimento de Energia Elétrica em Baixa Tensão.
- EQUATORIAL ENERGIA NT.030.EQTL.Normas e Padrões Padrões Construtivos de Caixas de Medição e Proteção.
- j) ANEEL Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional –
 PRODIST: Módulo 3 Acesso ao Sistema de Distribuição. Revisão 6. 2016, Seção 3.7.
- k) ANEEL Resolução Normativa nº 414, de 09 de setembro de 2010, que estabelece as condições gerais de fornecimento de energia elétrica.
- I) ANEEL Resolução Normativa ANEEL nº 482, de 17 de abril de 2012, que estabelece as condições gerais para o acesso de micro geração e mini geração distribuída aos sistemas de distribuição de energia elétrica e o sistema de compensação de energia elétrica.
- m) IEC 61727 Photovoltaic (PV) Systems Characteristics of the Utility Interface
- n) IEC 62116:2014 Utility-interconnected photovoltaic inverters Test procedure of islanding prevention measures

3. DOCUMENTOS OBRIGATÓRIOS

Tabela 1 – Documentos obrigatórios para a solicitação de acesso de microgeração distribuída

Documentos Obrigatórios	Até 10 kW	Acima de 10 kW	Observações
1. Formulário de Solicitação de Acesso	SIM	SIM	
2. ART do Responsável Técnico	SIM	SIM	
3. Diagrama unifilar do sistema de geração, carga, proteção e medição	SIM	SIM	
4. Diagrama de blocos do sistema de geração, carga e proteção	NÃO	SIM	Até 10kW apenas o diagrama unifilar
5. Memorial Técnico Descritivo	SIM	SIM	
6. Projeto Elétrico, contendo:	NÃO	SIM	
6.1. Planta de Situação			
6.2. Diagrama Funcional			
6.3. Arranjos Físicos ou layout e detalhes de montagem			Itens integrantes do Projeto
6.4. Manual com Folha de Dados (datasheet) dos Inversores (fotovoltaica e eólica) ou dos geradores (hidríca, biomassa, resíduos, cogeração, etc)			Elétrico
7. Certificados de Conformidade dos Inversores ou o número de registro de concessão do INMETRO para a tensão nominal de conexão com a rede	SIM	SIM	Inversor acima de 10 kW, não é obrigatória a homologação, apresentar apenas certificados de conformidade.
8. Dados necessários para registro da central geradora conforme disponível no site da ANEEL: www.aneel.gov.br/scg	SIM	SIM	
9. Lista de unidades consumidoras participantes do sistema de compensação (se houver) indicando a porcentagem de rateio dos créditos e o enquadramento conforme incisos VI a VIII do art. 2º da Resolução Normativa nº 482/2012	SIM, ver observação	SIM, ver observação	Apenas para os casos de autoconsumo consumo remoto, geração compartilhada e EMUC
10. Cópia de instrumento jurídico que comprove o	SIM, ver	SIM, ver	Apenas para EMUC e geração
compromisso de solidariedade entre os Integrantes	observação	observação	compartilhada.
11.Documento que comprove o reconhecimento pela	SIM, ver	SIM, ver	Apenas para cogeração
ANEEL, no caso de cogeração qualificada 12. Contrato de aluguel ou arrendamento da unidade	observação	observação	qualificada
consumidora	SIM, ver observação	SIM, ver observação	Quando a UC geradora for alugada ou arrendada
13.Procuração	SIM, ver observação	SIM, ver observação	Quando a solicitação for feita por terceiros
14. Autorização de uso de área comum em condomínio	SIM, ver observação	SIM, ver observação	Quando uma UC individualmente construir uma central geradora utilizando a área comum do condomínio

NOTA 1: Para inversores até 10 kW é obrigatório o registro de concessão do INMETRO.

4. DADOS DA UNIDADE CONSUMIDORA

Número da Conta Contrato: 3035752152

Classe: B/B1 – RESIDÊNCIAL

Nome do Titular da CC: JOSE ENOCK CARNEIRO LEITE

Endereço Completo: AV CONSELHEIRO FURTADO, 3691, SÃO BRAZ - BELÉM PA

Número de identificação do poste e/ou transformador mais próximo: S/N

Coordenadas Georreferenciadas: Latitude:9838935.38 / Longitude:781966.48

5. LEVANTAMENTO DE CARGA E CONSUMO

5.1. Levantamento de Carga

Tabela 2 – Levantamento de carga

ITEM	DESCRIÇÃO	P (W)	QUANT. [B]	CI (kW) [C = (A*B)/1000]	FP [D]	CI (kVA) [E = C/D]	FD [F]	D(kW) [G = CxF]	D(kVA) [H = ExF]
1	Lâmpada de Led	10	30	0,3	0,92	0,33	0,36	0,11	0,12
2	Geladeira	500	1	0,5	0,92	0,55	0,8	0,4	0,44
3	Central de AR 9.000 BTU	1.400	3	4,2	0,92	4,57	0,65	2,73	2,98
4	Ventilador	150	1	0,15	0,92	0,17	0,55	0,09	0,1
5	Micro-ondas	1.200	1	1,2	0,92	1,31	0,8	0,96	1,05
6	Ferro de passar roupas	550	1	0,55	0,92	0,6	0,8	0,44	0,48
7	Televisão de 32"	150	1	0,15	0,92	0,17	0,8	0,12	0,14
8	Freezer	500	1	0,5	0,92	0,55	0,65	0,33	0,36
9	Central de AR 12.000 BTU	3500	1	3,5	0,92	3,81	0,8	2,8	3,05
TOTAL		7960		11,05		12,06		7,98	8,72

5.2. Consumo Mensal

Tabela 3 – Consumo mensal dos últimos 12 meses – CC: 3035752152 (SEM HBISTORICO DE CONSUMO)

MÊS	CONSUMO (kWh)
MÊS 1	0,0
MÊS 2	0,0
MÊS 3	0,0
MÊS 4	0,0
MÊS 5	0,0
MÊS 6	0,0
MÊS 7	0,0
MÊS 8	0,0
MÊS 9	0,0
MÊS 10	0,0
MÊS 11	0,0
MÊS 12	0,0
TOTAL	0,0
MÉDIA	0,0

6. PADRÃO DE ENTRADA

6.1. Tipo de Ligação e Tensão de Atendimento

A unidade consumidora é ligada em ramal de ligação em baixa tensão, através de um circuito BIFÁSICO à 3 condutores, sendo 2 condutores FASE de diâmetro nominal 16 mm² e um condutor NEUTRO de diâmetro nominal 16 mm², com tensão de atendimento em 220V, derivado de uma rede aérea de distribuição secundária da EQUATORIAL ENERGIA no estado do PA.

6.2. Disjuntor de Entrada

No ponto de entrega será instalado um disjuntor termomagnético de 63 A, em conformidade com a norma NT.001.EQTL.Normas e Padrões da Equatorial Energia, com as seguintes características:

Nº DE POLOS: 2

TENSÃO NOMINAL: 400 V

CORRENTE NOMINAL: 63 A

FREQUÊNCIA NOMINAL: 60 HZ

ELEMENTO DE PROTEÇÃO: Termomagnético

CAPACIDADE MÁXIMA DE INTERRUPÇÃO: 3 kA

ACIONAMENTO: Automático

CURVA DE ATUAÇÃO (DISPARO): C

6.3. Potência Disponibilizada

A potência disponibilizada para a unidade consumidora onde será instalada a microGD é igual à:

PD $[kVA] = (V_N [V] X I_{DG} [A] X NF)/1000$

 $PD [kW] = PD [kVA] \times FP$

 $V_N = 220V$

I_{DG}=63A

NF = $\sqrt{2}$

FP = 0.92

PD (kVA) = $220*63*\sqrt{2}/1000 = 13,37$ KVA

PD (kW) = 13,37*0,92 = 12,31 kW = 12 Kw

NOTA 2: A potência de geração deve ser menor ou igual a potência disponibilizada PD em kW.

É possível constatar que a potência de geração está dentro dos limites estabelecidos pela potência disponibilizada, visto que: PG (8kW) < PD (12 kW).

6.4. Caixa de Medição

A caixa de medição nova polifásica em material polimérico terá as dimensões de **260** mm x **423** mm x **130** mm, está instalada no poste pontale no ponto de entrega caracterizado como o limite da via pública com a propriedade, conforme fotos abaixo, atendendo aos requisitos de localização, facilidade de acesso e lay-out, em conformidade com as normas da concessionária NT.001.EQTL e NT.030.EQTL, conforme a FIGURA 2 e FIGURA 3.

Figura 2: Desenho dimensional detalhado da caixa de medição.

A caixa de medição existente na propriedade, caixa polifásica em material polimérico, conforme as normas da concessionária.

Figura 3: Foto da caixa de medição.

O aterramento da caixa de medição é com 1 haste de aterramento de aço cobreado, com comprimento 2.44 mm e diâmetro 5/8", condutor de 16 mm² com conexão em conector tipo cunha.

6.5. Ramal de Entrada

O ramal de ligação em baixa tensão, através de um circuito BIFÁSICO a 3 condutores, sendo 2 condutores FASE de diâmetro nominal 16 mm² e um condutor NEUTRO de diâmetro nominal 16 mm², com tensão de atendimento em 220V, derivado de uma rede aérea de distribuição secundária da EQUATORIAL ENERGIA no estado do PA.

7. ESTIMATIVA DE GERAÇÃO

A estimativa de geração do gerador fotovoltaico é de 1188 kWh/Mês.

8. DIMENSIONAMENTO DO GERADOR

8.1. Dimensionamento do gerador

O gerador fotovoltaico é composto por 20 módulos, arranjados em 03 strings, distribuídos em 1 inversor. O inversor (8 kW), possui módulos arranjados em 03 strings, 01 strings com 07 módulos, ligados em série conectadas na MPPT1, 01 com 07 módulos ligados em série conectadas na MPPT2 e 01 com 06 módulos ligados em série conectadas na MPPT3.

Tabela 4 – Características técnicas do gerador//

Fabricante	JA SOLAR		
Modelo	JAM72S30-550/MR		
Potência nominal – Pn [W]	550		
Tensão de circuito aberto – Voc [V]	49,9		
Corrente de curto circuito – Isc [A]	14		
Tensão de máxima potência – Vmpp [V]	41,96		
Corrente de máxima potência – Impp [A]	13,11		
Eficiência [%]	21,3		
Comprimento [m]	2,278		
Largura [m]	1,134		
Área [m2]	2,583		
Peso [kg]	27,3		
Quantidade	20		
Potência do gerador [kWp]	11		

9. DIMENSIONAMENTO DO INVERSOR

Para a composição do gerador fotovoltaico, serão 01 inversor do fabricante SOLIS, modelo S5-GR1P8K, operando em 220V/MONOFÁSICO

Tabela 5 – Características técnicas do inversor

Fabricante	SOLIS
Modelo	S5-GR1P8K
Quantidade	1
Entrada CC	
Potência nominal – Pn [kW]	8
Máxima potência na entrada CC – Pmax-cc [kW]	13,6
Máxima tensão CC – Vcc-máx [V]	600
Máxima corrente CC – Icc-máx [V]	14/14/14
Máxima tensão MPPT – Vpmp-máx [V]	500
Mínima tensão MPPT – Vpmp-min [V]	100
Tensão CC de partida – Vcc-part [V]	120
Quantidade de Strings	1/1/1
Quantidade de entradas MPPT	3
Saída CA	
Potência nominal CA – Pca [kW]	8
Máxima potência na saída CA – Pca-máx [kW]	8
Máxima corrente na saída CA – Imáx-ca [A]	36,6
Tensão nominal CA – Vnon-ca [V]	220
Frequência nominal – Fn [Hz]	50/60
Máxima tensão CA – Vca-máx [V]	220
Mínima tensão CA – Vca-min [V]	127
THD de corrente [%]	<3%
Fator de potência	0,8

Tipo de conexão – número de fases + neutro + terra	
	MONOFÁSICO
Eficiência máxima [%]	98

9.1. Localização e acesso ao inversor

A Concessionária, terá total acesso aos equipamentos instalados, bastando solicitar ao proprietário, pois para segurança patrimonial os equipamentos foram instalados dentro da propriedade, com 1,3m de altura do piso, conforme a FIGURA 4:

Figura 4: Local onde será instalado o inversor.

Figura 5: Arranjo físico do inversor.

10. DIMENSIONAMENTO DA PROTEÇÃO

10.1. Fusíveis

Para este sistema de geração fotovoltaica, não será necessário o uso de fusíveis.

10.2. Disjuntores

A parte CA do gerador fotovoltaico, será protegida por 1 disjuntor termomagnético de 40A, responsável por proteger os condutores que saem da caixa CA até o ramal de ligação.

Saída do inversor:

- Número de polos: 2
- Tensão nominal CA: 400V
- Corrente Nominal [A]: 40A
- Frequência [Hz], para disjuntor CA: 60Hz
- Capacidade máxima de interrupção [kA]: 3kA
- Curva de atuação: C

Saída do barramento:

- Número de polos: 2
- Tensão nominal CA: 400V
- Corrente Nominal [A]: 40A
- Frequência [Hz], para disjuntor CA: 60Hz
- Capacidade máxima de interrupção [kA]: 3kA
- Curva de atuação: C

10.3. Dispositivo de seccionamento visível

O seccionamento da parte CC fica a cargo da seccionadora, onde cada entrada MPPT dos inversores podem ser seccionadas individualmente.

10.4. DPS

Serão instalados DPS em ambos os circuitos do sistema (CC e CA), conforme os dados abaixo:

Lado CC Inversor 01:

- Quantidade de DPS: 6
- Número de polos: 2
- Classe: II
- Tensão CC [V]: 1000
- Corrente nominal [kA]: 20
- Corrente máxima [kA]: 40

Lado CA Inversor 01:

Quantidade de DPS: 2

Número de polos: 2

Classe: II

Tensão CC [V]: 275

Corrente nominal [kA]: 20

Corrente máxima [kA]: 40

10.5. Aterramento

A geração distribuída deve possuir uma malha de terra, esta malha de terra deve ser conectada ao sistema de aterramento existente da unidade consumidora, tornando os sistemas de aterramento equipotencializados.

Descrição: A edificação possui malhas de aterramentos no esquema TT (conforme norma ABNT NBR 5410:2004), resultando em uma resistência de aterramento inferior a 15 ohms, mesmo que em solo seco. A instalação original composta por 3 hastes de 2,44 mm com seção de 5/8" enterradas no solo, garantem a qualidade do aterramento.

Os cabos de aterramento dos módulos fotovoltaicos, assim como os cabos de força CC, são apropriados para instalação externa, sujeitos a insolação e intempéries. A bitola para aterramento entre as estruturas metálicas e as caixas CC é de 6mm², conforme recomendado pela IEC/TS 62548:2013 (norma em elaboração no Brasil pela Comissão de Estudo CE-03:064.01 do COBEI).

- Modelo de aterramento TT: alimentação aterrada, neutro aterrado, massas ligadas a terra, separadas da alimentação;
- A distância entre as hastes é equivalente ao seu comprimento em altura, ou seja, 2,4 metros;
- Quantidade de hastes: 3:
- Descrição das conexões: clips de aterramento, jumpers entre os perfis e grampos terminadores específicos para aterramento;
- Valor da resistência de aterramento: 10 ohms;
- O barramento de equipotencialização é destinado a servir de via de interligação de todos os elementos que podem ser incluídos em uma equipotencialização suplementar ou equipotencialização local. O material do barramento de equipotencialização é de aço cobreado.

10.6. Requisitos de Proteção

Tabela 6 – Características técnicas do gerador

Requisito de Proteção	Obrigatório	Ajuste
Elemento de desconexão	Sim, quando não usar inversor	
Elemento de interrupção (52)	Sim	
Proteção de subtensão (27) e sobretensão (59)	Sim	
Proteção de subfrequência (81U) e sobrefrequência (81O)	Sim	
Relé de sincronismo (25)	Sim	
Anti-ilhamento (78 e 81 df/dt – ROCOF)	Sim	
Proteção direcional de potência (32)	Sim, quando não usar inversor	
Tempo de Reconexão (temporizador) (62)	Opcional, quando não usar inversor	

11. DIMENSIONAMENTO DOS CABOS

Todos os cabos serão instalados em conduto apropriados para sua aplicação. Todos os cabos de força CC e aterramento que serão usados na instalação dos módulos são apropriados para instalação externa, sujeitos à insolação e intempéries.

Características dos condutores CC:

- Isolação: Composto termofixo extrudado, apropriado para temperatura de operação no condutor em regime permanente de até 90°C e 20.000h à temperatura de 120°C;
- Isolamento: 1kV;
- Bitola [mm2]: 6mm²;
- Capacidade de condução de corrente: 67A.

Características dos condutores CA:

- Isolação: PVC;
- Isolamento: 0,6/1kV;
- Bitola [mm2]: 6mm²;
- Capacidade de condução de corrente: 54A.

12. PLACA DE ADVERTÊNCIA

A placa de advertência será fixada na parede, acima da caixa de medição, informando que a propriedade possui geração própria de energia elétrica.

Características da Placa:

- Espessura: 2 mm;
- Material: Policarbonato com aditivos anti-raios UV (ultravioleta);
- Gravação: Letras em Arial Black;
- Acabamento: Cor amarela, obtida por processo de masterização com 2%, assegurando opacidade que permita adequada visualização das marcações pintadas na superfície da placa.

CUIDADO

RISCO DE CHOQUE
ELÉTRICO
GERAÇÃO PRÓPRIA
advertência.

13. ANEXOS

- Formulário de Solicitação de Acesso
- ART do Responsável Técnico
- Diagrama unifilar contemplando, geração, inversor (se houver), cargas, proteção e medição.
- Diagrama de blocos contemplando geração, inversor (se houver), cargas, proteção e medição.
- Projeto Elétricos contendo: planta de situação, diagrama funcional, arranjos físicos ou lay-out, detalhes de montagem, manual com folha de dados do gerador e manual com folha de dados do inversor (se houver)
- Para inversores até 10 kW registro de concessão do INMETRO, para inversores acima de 10 kW certificados de conformidade
- Dados de registro
- Lista de rateio dos créditos
- Cópia de instrumento jurídico de solidariedade
- Para cogeração documento que comprove o reconhecimento pela ANEEL.