Mathématiques pour l'informatique

LSI 1 - Examen final

Deux heures. Documents et calculatrice interdits.

1 Équations récurrentes et complexité

1. Résoudre l'équation récurrente

$$\forall n \in \mathbb{N}^* \quad u_n - 3u_{n-1} = \ln n \tag{1}$$

(1 pt).

2. Résoudre l'équation récurrente

$$\forall n \in \mathbb{N} \quad (n+2)(n+1)u_{n+2} - 3(n+1)u_{n+1} + 2u_n = 0 \text{ avec } u_0 = 0, u_1 = -1$$
 (2) (3 pts)

- 3. On considère un programme récursif prenant en entrée une donnée de taille $n \in \mathbb{N}$. Voici les caractéristiques de ce programme.
 - Son execution nécessite un certain nombre d'opérations, dites élémentaires.
 - Le nombre d'opérations élémentaires effectuées ne dépend que de la taille n de la donnée d'entrée, et non de la donnée d'entrée elle même.
 - Si $n \leq 2$, il rend immédiatement le résultat, sans effectuer d'opération élémentaire.
 - Pour $n \geq 3$, son execution nécessite trois appels récursifs sur des données de taille n-2, deux appels récursifs sur des données de taille n-3, et 2^n opérations élémentaires en plus de celles effectuées lors des appels récursifs.

Déterminer, en fonction de n, le nombre c_n d'opérations élémentaires effectuées pour une donnée de taille n. Commenter le résultat $(4 \ pts)$.

2 Mathématiques du signal

Pour $a \in \mathbb{R}$, on considère la fonction f_a définie par

$$f_a(t) = e^{-at}H(t)$$

où H désigne la fonction d'Heaviside.

- 1. Soit a et b des réels. Après avoir justifié son existence, calculer le produit de convolution $f_a * f_b \ (2 \ pts)$.
- 2. On suppose que a > 0. Montrer l'existence de la T.F. de f_a . Calculer $\mathcal{F}f_a$ (1,5 pt).
- 3. En déduire la T.F. du signal $g(t) = t^2 e^{-t} H(t)$ (1 pt).
- 4. En déduire la valeur des intégrales

$$I_1 = \int_{-\infty}^{+\infty} \frac{e^{-ix}}{(1+ix)^3} dx$$
, $I_2 = \int_{-\infty}^{+\infty} \frac{e^{ix}}{(1+ix)^3} dx$ et $I_3 = \int_0^{+\infty} \frac{dx}{(1+x^2)^3} dx$

(2 pts)

5. Pour a > 0, b > 0, $b \neq a$, retrouver le produit de convolution $f_a * f_b$ par transformation de Fourier $(1,5 \ pts)$.

3 Arithmétique

Le but du problème est la démonstration du résultat suivant :

Théorème de Wilson.

Soit $p \ge 2$ un entier naturel. Alors : p est premier ssi p divise (p-1)! + 1.

1. Soit $p \ge 2$ un entier naturel. Supposons que p divise (p-1)! + 1. Démontrer que p est le plus petit diviseur ≥ 2 de (p-1)! + 1, et en déduire que p est premier (1 pt).

Il faut maintenant démontrer la réciproque. Vous êtes guidé pas à pas.

- 2. Soit p un nombre premier (donc $p \ge 2$).
 - (a) Justifier que tout entier entre 1 et p-1 est inversible modulo p. En déduire que l'anneau $(\mathbb{Z}/p\mathbb{Z}, +, \times)$ (où + et \times désignent l'addition et de la multiplication modulo p) est un corps, donc que $(\mathbb{Z}/p\mathbb{Z} \setminus \{0\}, \times)$ est un groupe. On notera dans la suite \mathbb{Z}_p^* ce groupe multiplicatif $(1 \ pt)$.

On remarque que \mathbb{Z}_p^* comporte p-1 éléments. Nous admettons que ce groupe est cyclique. Cela signifie qu'il existe un élément $a \in \mathbb{Z}_p^*$ tel que

$$\mathbb{Z}_p^* = \{a^k ; 0 \le k \le p - 2\}$$

- (b) Que vaut a^{p-1} (justifier)? Pourquoi dit-on de ce groupe qu'il est « cyclique »? (1 pt).
- (c) On considère l'application ψ définie sur \mathbb{Z}_p^* et à valeurs dans $\mathbb{Z}/(p-1)\mathbb{Z}$, qui à l'élément a^k (avec $0 \le k \le p-2$) associe $\psi(a^k) = \overline{k}$ (où \overline{k} désigne la classe de k modulo p-1).

Démontrer que ψ est bijective et vérifie

$$\forall (k, k') \in \{0, \dots, p-2\} \times \{0, \dots, p-2\} \qquad \psi(a^k a^{k'}) = \overline{k} + \overline{k'}$$

Autrement dit, ψ est un isomorphisme du groupe multiplicatif \mathbb{Z}_p^* sur le groupe additif $\mathbb{Z}/(p-1)\mathbb{Z}$ (2 pts).

Il est maintenant possible de démontrer la réciproque voulue, en démontrant que $(p-1)! \equiv -1 \ [p]$. On appelle b la classe de (p-1)! modulo p.

- (d) Justifier que b est un élément de \mathbb{Z}_p^* (0,5 pt).
- (e) Démontrer que

$$\psi(b) = \frac{\overline{p(p-1)}}{2}$$

i.e. l'image de b par l'isomorphisme ψ est la classe de $\frac{p(p-1)}{2}$ modulo p-1 (2 pts).

- (f) On note que la réciproque voulue est triviale pour p=2. On suppose donc que $p\geq 3$, de sorte que p-1 est pair. En déduire que $\psi(b)=\frac{\overline{p-1}}{2}$ $(0,5\ pt)$.
- (g) En déduire que $b^2=1$ dans \mathbb{Z}_p^* . Dans le corps $\mathbb{Z}/p\mathbb{Z}$, cela implique que $b=\pm 1$ (admis). En déduire que b=-1 et conclure $(1\ pt)$.