EOS/PHYS 427 — Assignment 8

Due: Tuesday, April 4, 2023

- 1. (a) Compute the root depth of a 6000-m high mountain with an average density of 2700 kg/m^3 in Airy isostatic equilibrium with an underlying substratum of density 3300 kg/m^3 . (5 pts)
 - (b) For a compensation depth equal to the base of the continental crust (35 km), continental crust density of 2700 kg/m^3 , oceanic crust density of 3000 kg/m^3 , and water density of 1000 kg/m^3 , compute the ocean depth assuming Pratt isostatic equilibrium. (5 pts)
- 2. (a) Show that the geoid height anomaly for an ocean basin in Airy isostatic equilibrium is given by (15 pts)

$$\Delta h = -\frac{\pi G d}{g} (\rho_u - \rho_w) \left[2t - d \left(\frac{\rho_s - \rho_w}{\rho_s - \rho_u} \right) \right].$$

- (b) Evaluate the geoid height anomaly for a 5-km deep ocean given a compensation depth at the base of the crust (t=35 km) with $\rho_u=2800$ kg/m³, $\rho_s=3300$ kg/m³, and $\rho_w=1000$ kg/m³. (5 pts)
- 3. (a) Show that the geoid height anomaly for an ocean basin in Pratt isostatic equilibrium is given by (15 pts)

$$\Delta h = -\frac{\pi G dt}{g} (\rho_u - \rho_w).$$

(b) Evaluate the geoid height anomaly for a 5-km deep ocean assuming a compensation depth at the base of the lithosphere (t = 100 km) using densities given in 2(b). (5 pts)