ENGI 8894 Real-Time Operating Systems Lab 2

Joshua Bennett – 201428653

Christian Legge - 201422748

Serial Execution

Number of Runs	Mean	Standard Deviation
3	22.987	1.125
5	22.244	1.664
10	21.861	1.750
100	14.337	3.835
1000	11.794	5.23

Number of Jobs (Work per Job = 10)	Mean	Standard Deviation
10	15.99	0.972
100	7.872	1.318
1000	4.872	1.894
10000	1.899	0.841

Work Per Job (Number of Jobs = 10)	Mean	Standard Deviation
10	12.234	1.896
100	11.808	0.984
1000	2.123	1.849
10000	2.149	2.973

As seen in the figure above, as the number of jobs and work per job is increased, in the serial program, the average time per work also decreases.

POSIX Threads

Average Time/JOBS

Average Time/WORK_PER_JOB

Throughput Speedup vs Number of Threads

Libdispatch

Libdispatch Average Time vs Job

Libdispatch Average Time vs Work per job

