In [21]:	<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression</pre>
In [43]:	<pre>from sklearn.linear_model import LinearRegression %matplotlib inline plt.scatter(new_df['Mileage'], new_df['Sell Price(\$)'], color='red', marker='+')</pre>
Out[43]:	emetholish collections DathCollection of Ov16207hd25505
	35000 - + + + + + + + + + + + + + + + + +
	25000 -
	15000 -
In [44]:	<pre>%matplotlib inline plt.scatter(new_df['Age(yrs)'], new_df['Sell Price(\$)'], color='red', marker='+')</pre>
Out[44]:	<pre><matplotlib.collections.pathcollection 0x1638c091430="" at=""></matplotlib.collections.pathcollection></pre>
	35000 - 30000 -
	25000 -
	15000 - + + 2 3 4 5 6 7 8
In [7]: In [8]:	<pre>df=pd.read_csv('E:/machine learning/carprices.csv')</pre>
Out[8]:	
	1 BMW X5 35000 34000 3 2 BMW X5 57000 26100 5 3 BMW X5 22500 40000 2
	4 BMW X5 46000 31500 4 5 Audi A5 59000 29400 5 6 Audi A5 52000 32000 5
	7 Audi A5 72000 19300 6 8 Audi A5 91000 12000 8
	10 Mercedez Benz C class 83000 20000 7 11 Mercedez Benz C class 79000 21000 7
In [9]:	12 Mercedez Benz C class 59000 33000 5 dummy=pd.get_dummies(df.CarModel)
In [10]:	dummy
Out[10]:	0 0 1 0 1 0 1 0
	2 0 1 0 3 0 1 0 4 0 1 0
	5 1 0 0 6 1 0 0 7 1 0 0
	8 1 0 0 9 0 0 1 10 0 0 1
	11 0 0 1 12 0 0 1
In [14]: In [15]:	<pre>merge=pd.concat([df,dummy] ,axis='columns') merge</pre>
Out[15]:	CarModel Mileage Sell Price(\$) Age(yrs) Audi A5 BMW X5 Mercedez Benz C class 0 BMW X5 69000 18000 6 0 1 0
	1 BMW X5 35000 34000 3 0 1 0 2 BMW X5 57000 26100 5 0 1 0 3 BMW X5 22500 40000 2 0 1 0
	4 BMW X5 46000 31500 4 0 1 0 5 Audi A5 59000 29400 5 1 0 0 6 Audi A5 52000 32000 5 1 0 0
	7 Audi A5 72000 19300 6 1 0 0 8 Audi A5 91000 12000 8 1 0 0 9 Mercedez Benz C class 67000 22000 6 0 0 1
	10 Mercedez Benz C class 83000 20000 7 0 0 1 11 Mercedez Benz C class 79000 21000 7 0 0 1 12 Mercedez Benz C class 59000 33000 5 0 0 1
In [18]:	<pre>new_df=merge.drop(['CarModel','Mercedez Benz C class'],axis='columns')</pre>
In [19]: Out[19]:	new_df Mileage Sell Price(\$) Age(yrs) Audi A5 BMW X5
	0 69000 18000 6 0 1 1 35000 34000 3 0 1 2 57000 26100 5 0 1
	3 22500 40000 2 0 1 4 46000 31500 4 0 1 5 59000 29400 5 1 0
	6 52000 32000 5 1 0 7 72000 19300 6 1 0
	8 91000 12000 8 1 0 9 67000 22000 6 0 0 10 83000 20000 7 0 0
	11 79000 21000 7 0 0 12 59000 33000 5 0 0
In [24]: In [25]:	<pre>model=LinearRegression() x=new_df.drop(['Sell Price(\$)'], axis='columns')</pre>
In [26]:	
Out[26]:	Mileage Age(yrs) Audi A5 BMW X5 0 69000 6 0 1 1 35000 3 0 1
	2 57000 5 0 1 3 22500 2 0 1 4 46000 4 0 1
	5 59000 5 1 0 6 52000 5 1 0 7 72000 6 1 0
	8 91000 8 1 0 9 67000 6 0 0 10 83000 7 0 0
	11 79000 7 0 0 12 59000 5 0 0
In [27]: In [28]:	<pre>y=new_df['Sell Price(\$)']</pre>
Out[28]:	0 18000 1 34000 2 26100
	2 20100 3 40000 4 31500 5 29400 6 32000 7 19300
	8 12000 9 22000 10 20000 11 21000 12 33000
In [29]:	12 33000 Name: Sell Price(\$), dtype: int64 model.fit(x,y)
Out[29]:	LinearRegression() model.predict([[75000,3,1,0]]) #predicts the selling price of an audi a5 which has mileage 75000 and has run for 3 years
Out[35]: In [34]:	array([24766.56726931])
Out[34]:	model.predict([[50000,1,0,1]]) #predicts the selling price of a bmw x5 which has mileage 50000 and has run for 1 year array([32399.86029584])
In [33]: Out[33]:	model.predict([[33000,5,0,0]]) #predicts the selling price of a mercedez benz c class which has mileage 33000 and has run for 5 years array([40100.32871566])
In [36]: Out[36]:	model.predict([[11500,9,1,0]]) array([40274.5984973])
In [37]:	model.predict([[77071,5,0,0]])
Out[37]: In [38]:	array([23788.67789387]) model.predict([[25000,5,1,0]]) #predicts the selling price of an audi a5 which has mileage 25000 and has run for 5 years
Out[38]: In [39]:	array([40607.76473351]) model.predict([[55016,3,0,1]]) #predict the selling price of a bmw x5 which has mileage 55016 and has run for 3 years
Out[39]:	array([27878.42061517])
In [40]: Out[40]:	model.score(x,y) #gives the accuracy of the model out of 1 0.9417050937281082