Worst-Case Laufzeit $t_M(n)$ einer Turingmaschine M auf Eingaben der Länge n:

$$t_M(n) = \max_{w \in \Sigma^n} t_M(w).$$

Definition 4.1

Entscheidungsproblem L gehört zu der Komplexitätsklasse P, wenn es eine TM M gibt, die L entscheidet, und eine Konstante $k \in \mathbb{N}$, für die $t_M(n) = O(n^k)$ gilt.

Beobachtung: Die Klasse P ändert sich nicht, wenn Registermaschinen im logarithmischen Kostenmaß statt Turingmaschinen eingesetzt werden.

Idee: P enthält die effizient lösbaren Probleme.

Clique in einem Graphen G = (V, E) ist $V' \subseteq V$ mit $\{u, v\} \in E$ für alle $u, v \in V'$

Varianten des Cliquenproblems

Optimierungsvariante

Eingabe: ungerichteter Graph G = (V, E)

Aufgabe: Berechne eine Clique von *G* mit maximaler Kardinalität.

Wertvariante

Eingabe: ungerichteter Graph G = (V, E)

Aufgabe: Berechne das größte $k^* \in \mathbb{N}$, für das es eine k^* -Clique in G gibt.

Entscheidungsvariante

Eingabe: ungerichteter Graph G = (V, E) und ein Wert $k \in \mathbb{N}$

Aufgabe: Entscheide, ob es in G eine Clique der Größe mindestens k gibt.

Theorem 4.2

Entweder gibt es für alle drei Varianten des Cliquenproblems polynomielle Algorithmen oder für gar keine.

Beweisidee:

Optimierungsvariante polynomiell lösbar.

- ⇔ Wertvariante polynomiell lösbar.
- ⇔ Entscheidungsvariante polynomiell lösbar.

Beispiele:

• Das Zusammenhangsproblem in ungerichteten Graphen

Beispiele:

• Das Zusammenhangsproblem in ungerichteten Graphen ⇒ gehört zu P.

- ullet Das Zusammenhangsproblem in ungerichteten Graphen \Rightarrow gehört zu P.
- Das Spannbaumproblem

- $\bullet\,$ Das Zusammenhangsproblem in ungerichteten Graphen \Rightarrow gehört zu P.
- Das Spannbaumproblem ⇒ gehört zu P.

- ullet Das Zusammenhangsproblem in ungerichteten Graphen \Rightarrow gehört zu P.
- ullet Das Spannbaumproblem \Rightarrow gehört zu P.
- Das Cliquenproblem

- ullet Das Zusammenhangsproblem in ungerichteten Graphen \Rightarrow gehört zu P.
- Das Spannbaumproblem ⇒ gehört zu P.
- ullet Das Cliquenproblem \Rightarrow kein polynomieller Algorithmus bekannt.

- ullet Das Zusammenhangsproblem in ungerichteten Graphen \Rightarrow gehört zu P.
- Das Spannbaumproblem ⇒ gehört zu P.
- Das Cliquenproblem ⇒ kein polynomieller Algorithmus bekannt.
- Das Rucksackproblem

- Das Zusammenhangsproblem in ungerichteten Graphen ⇒ gehört zu P.
- Das Spannbaumproblem ⇒ gehört zu P.
- Das Cliquenproblem ⇒ kein polynomieller Algorithmus bekannt.
- $\bullet \ \, \text{Das Rucksackproblem} \Rightarrow \text{kein polynomieller Algorithmus bekannt}. \\$

4 Komplexitätstheorie

4 Komplexitätstheorie

- 4.1 Die Klassen P und NP
 - 4.1.1 Die Klasse P
 - 4.1.2 Die Klasse NP
 - 4.1.3 P versus NP
- 4.2 NP-Vollständigkeit
- 4.3 NP-vollständige Probleme

Definition 2.1

Eine Turingmaschine (TM) M ist ein 7-Tupel $(Q, \Sigma, \Gamma, \square, q_0, \bar{q}, \delta)$, das aus den folgenden Komponenten besteht.

- *Q*, die **Zustandsmenge**, ist eine endliche Menge von **Zuständen**.
- $\Sigma \supseteq \{0,1\}$, das Eingabealphabet, ist eine endliche Menge von Zeichen.
- $\Gamma \supseteq \Sigma$, das Bandalphabet, ist eine endliche Menge von Zeichen.
- $\square \in \Gamma \setminus \Sigma$ ist das Leerzeichen.
- $q_0 \in Q$ ist der Startzustand.
- \(\bar{q}\) ist der Endzustand.
- $\delta: (Q \setminus \{\bar{q}\}) \times \Gamma \to Q \times \Gamma \times \{L, N, R\}$ ist die **Zustandsüberführungsfunktion**.

$$\delta(q_0,1)=(q,1,R)$$

Definition 4.3

Eine nichtdeterministische Turingmaschine (NTM) M ist ein

7-Tupel $(Q, \Sigma, \Gamma, \Box, q_0, \bar{q}, \delta)$, das aus den folgenden Komponenten besteht.

- *Q*, die **Zustandsmenge**, ist eine endliche Menge von **Zuständen**.
- $\Sigma \supseteq \{0,1\}$, das **Eingabealphabet**, ist eine endliche Menge von Zeichen.
- $\Gamma \supseteq \Sigma$, das Bandalphabet, ist eine endliche Menge von Zeichen.
- $\square \in \Gamma \setminus \Sigma$ ist das Leerzeichen.
- $q_0 \in Q$ ist der Startzustand.
- \bar{q} ist der Endzustand.
- $\delta \subseteq ((Q \setminus \{\bar{q}\}) \times \Gamma) \times (Q \times \Gamma \times \{L, N, R\})$ ist die **Zustandsüberführungsrelation**.

Rechenbaum einer Turingmaschine:

Konfiguration = Zustand, Bandinhalt, Kopfposition

Wurzel

= Startkonfiguration

Kante

= erlaubter Übergang

Blatt

= Konfiguration ohne erlaubten Übergang in δ

Rechenweg = Weg von der Wurzel zu einem Blatt

Definition 4.4

Eine NTM M akzeptiert eine Eingabe $w \in \Sigma^*$, wenn es Rechenweg von M gibt, der bei Eingabe w zu einer akzeptierenden Endkonfiguration führt.

Eingabe wird akzeptiert

Definition 4.4

Eine NTM M akzeptiert eine Eingabe $w \in \Sigma^*$, wenn es Rechenweg von M gibt, der bei Eingabe w zu einer akzeptierenden Endkonfiguration führt.

Eingabe wird nicht akzeptiert

Definition 4.4

Eine NTM M akzeptiert eine Eingabe $w \in \Sigma^*$, wenn es Rechenweg von M gibt, der bei Eingabe w zu einer akzeptierenden Endkonfiguration führt.

Sei $L(M) \subseteq \Sigma^*$ die Menge der von M akzeptierten Eingaben. M entscheidet die Sprache L(M), wenn sie für jede Eingabe auf jedem Rechenweg hält.

Eingabe wird nicht akzeptiert

Definition 4.5

Die Laufzeit $t_M(w)$ einer nichtdeterministischen Turingmaschine M auf einer Eingabe $w \in \Sigma^*$ ist definiert als die Länge des längsten Rechenweges von M bei Eingabe w.

Gibt es bei Eingabe w einen Rechenweg, auf dem M nicht terminiert, so ist die Laufzeit unendlich.

Sei $t_M(n) = \max_{w \in \Sigma^n} t_M(w)$ die Worst-Case-Laufzeit für Eingaben der Länge $n \in \mathbb{N}$.

Laufzeit = 5

Definition 4.6

Ein Entscheidungsproblem L gehört genau dann zu der Komplexitätsklasse NP, wenn es eine nichtdeterministische Turingmaschine M gibt, die L entscheidet, und eine Konstante $k \in \mathbb{N}$, für die $t_M(n) = O(n^k)$ gilt.

NP wurde nicht mit dem Ziel definiert, ein physikalisch realisierbares Rechnermodell zu finden, sondern als theoretisches Hilfsmittel.

Theorem 4.7

Die Entscheidungsvarianten des Cliquenproblems und des Rucksackproblems gehören zu NP.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Phase 1: Schreibe n = |V| Rauten, bewege Kopf auf erste Raute, wechsel in Zustand q.

NTM kann jede Zeichenkette aus $x \in \{0,1\}^n$ nichtdeterministisch schreiben. Interpretiere x als Knotenauswahl $V' \subseteq V$.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Phase 1: Schreibe n = |V| Rauten, bewege Kopf auf erste Raute, wechsel in Zustand q.

NTM kann jede Zeichenkette aus $x \in \{0,1\}^n$ nichtdeterministisch schreiben.

Interpretiere x als Knotenauswahl $V' \subseteq V$.

Phase 2: Akzeptiere genau dann, wenn V' die Größe k besitzt und eine Clique in G ist.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Phase 1: Schreibe n = |V| Rauten, bewege Kopf auf erste Raute, wechsel in Zustand q.

NTM kann jede Zeichenkette aus $x \in \{0,1\}^n$ nichtdeterministisch schreiben.

Interpretiere x als Knotenauswahl $V' \subseteq V$.

Phase 2: Akzeptiere genau dann, wenn V' die Größe k besitzt und eine Clique in G ist.

Laufzeit ist polynomiell.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Phase 1: Schreibe n = |V| Rauten, bewege Kopf auf erste Raute, wechsel in Zustand q.

NTM kann jede Zeichenkette aus $x \in \{0, 1\}^n$ nichtdeterministisch schreiben.

Interpretiere x als Knotenauswahl $V' \subseteq V$.

Phase 2: Akzeptiere genau dann, wenn V' die Größe k besitzt und eine Clique in G ist.

Laufzeit ist polynomiell.

Es gibt k-Clique in G. \iff Es gibt akzeptierenden Rechenweg von M.

Wir betrachten nun das Rucksackproblem.

Eingabe: Nutzenwerte $p_1, \ldots, p_n \in \mathbb{N}$, Gewichte $w_1, \ldots, w_n \in \mathbb{N}$,

Kapazität $t \in \mathbb{N}$, Schranke $z \in \mathbb{N}$.

Frage: Gibt es Teilmenge $I \subseteq \{1, \ldots, n\}$ der Objekte mit $\sum_{i \in I} w_i \le t$ und $\sum_{i \in I} p_i \ge z$.

Wir betrachten nun das Rucksackproblem.

Eingabe: Nutzenwerte $p_1, \ldots, p_n \in \mathbb{N}$, Gewichte $w_1, \ldots, w_n \in \mathbb{N}$,

Kapazität $t \in \mathbb{N}$, Schranke $z \in \mathbb{N}$.

Frage: Gibt es Teilmenge $I \subseteq \{1, ..., n\}$ der Objekte mit $\sum_{i \in I} w_i \le t$ und $\sum_{i \in I} p_i \ge z$.

Analoges Vorgehen zum Cliquenproblem:

Erzeuge nichtdeterministisch eine Auswahl I $\subseteq \{1,\ldots,n\}$ und teste, ob sie die beiden Bedingungen erfüllt.

Die NTMs für Clique und das Rucksackproblem haben eine spezielle Struktur:

Nichtdeterminismus wird nur am Anfang benötigt.

Die NTMs für Clique und das Rucksackproblem haben eine spezielle Struktur:

Nichtdeterminismus wird nur am Anfang benötigt.

Theorem 4.8

Eine Sprache $L\subseteq \Sigma^*$ ist genau dann in der Klasse NP enthalten, wenn es eine deterministische Turingmaschine V (einen Verifizierer) gibt, deren Worst-Case-Laufzeit polynomiell beschränkt ist, und ein Polynom p, sodass für jede Eingabe $x\in \Sigma^*$ gilt

$$x \in L \iff \exists y \in \{0,1\}^* : |y| \le p(|x|) \text{ und } V \text{ akzeptiert } x \# y.$$

Dabei sei # ein beliebiges Zeichen, das zum Eingabealphabet des Verifizierers, aber nicht zu Σ gehört.

Beweis:

" \Rightarrow ": Sei $L \in \text{NP}$. Dann gibt es NTM $M = (Q, \Sigma, \Gamma, \square, q_0, \bar{q}, \delta)$, die L entscheidet, und ein Polynom r mit $t_M(n) \leq r(n)$.

Beweis:

" \Rightarrow ": Sei $L \in \text{NP}$. Dann gibt es NTM $M = (Q, \Sigma, \Gamma, \Box, q_0, \bar{q}, \delta)$, die L entscheidet, und ein Polynom r mit $t_M(n) \leq r(n)$.

Idee: Konstruiere Verifizierer V für L, der M simuliert. Dabei gibt das Zertifikat y die nichtdeterministischen Entscheidungen vor.

Beweis:

" \Rightarrow ": Sei $L \in \text{NP}$. Dann gibt es NTM $M = (Q, \Sigma, \Gamma, \square, q_0, \bar{q}, \delta)$, die L entscheidet, und ein Polynom r mit $t_M(n) \leq r(n)$.

Idee: Konstruiere Verifizierer V für L, der M simuliert. Dabei gibt das Zertifikat y die nichtdeterministischen Entscheidungen vor.

In jeder Konfiguration maximal $\ell := 3|\mathit{Q}||\Gamma|$ mögliche Rechenschritte.

Codiere jeden Rechenschritt mit $\ell^* := \lceil \log_2 \ell \rceil$ Bits.

Beweis:

" \Rightarrow ": Sei $L \in \text{NP}$. Dann gibt es NTM $M = (Q, \Sigma, \Gamma, \Box, q_0, \bar{q}, \delta)$, die L entscheidet, und ein Polynom r mit $t_M(n) \leq r(n)$.

Idee: Konstruiere Verifizierer V für L, der M simuliert. Dabei gibt das Zertifikat y die nichtdeterministischen Entscheidungen vor.

In jeder Konfiguration maximal $\ell := 3|Q||\Gamma|$ mögliche Rechenschritte.

Codiere jeden Rechenschritt mit $\ell^{\star} := \lceil \log_2 \ell \rceil$ Bits.

Der Verifizierer V erhält die Eingabe x # y für ein Zertifikat $y \in \{0, 1\}^m$ mit $m \le \ell^* r(|x|)$.

Beweis:

" \Rightarrow ": Sei $L \in \text{NP}$. Dann gibt es NTM $M = (Q, \Sigma, \Gamma, \Box, q_0, \bar{q}, \delta)$, die L entscheidet, und ein Polynom r mit $t_M(n) \leq r(n)$.

Idee: Konstruiere Verifizierer V für L, der M simuliert. Dabei gibt das Zertifikat y die nichtdeterministischen Entscheidungen vor.

In jeder Konfiguration maximal $\ell := 3|\mathit{Q}||\Gamma|$ mögliche Rechenschritte.

Codiere jeden Rechenschritt mit $\ell^{\star} := \lceil \log_2 \ell \rceil$ Bits.

Der Verifizierer V erhält die Eingabe x # y für ein Zertifikat $y \in \{0,1\}^m$ mit $m \le \ell^* r(|x|)$.

V zerlegt das Zertifikat y in eine Folge von Zeichenketten der Länge jeweils ℓ^{\star} und interpretiert diese als Folge von Rechenschritten.

Beweis:

" \Rightarrow ": Sei $L \in \text{NP}$. Dann gibt es NTM $M = (Q, \Sigma, \Gamma, \square, q_0, \bar{q}, \delta)$, die L entscheidet, und ein Polynom r mit $t_M(n) \leq r(n)$.

Idee: Konstruiere Verifizierer *V* für *L*, der *M* simuliert. Dabei gibt das Zertifikat *y* die nichtdeterministischen Entscheidungen vor.

In jeder Konfiguration maximal $\ell := 3|Q||\Gamma|$ mögliche Rechenschritte.

Codiere jeden Rechenschritt mit $\ell^\star := \lceil \log_2 \ell \rceil$ Bits.

Der Verifizierer V erhält die Eingabe x # y für ein Zertifikat $y \in \{0, 1\}^m$ mit $m \le \ell^* r(|x|)$.

V zerlegt das Zertifikat y in eine Folge von Zeichenketten der Länge jeweils ℓ^\star und interpretiert diese als Folge von Rechenschritten.

V simuliert den entsprechenden Rechenweg von M und akzeptiert, wenn dieser zu einer akzeptierenden Endkonfiguration führt.

" \Leftarrow ": Sei nun eine Sprache L gegeben, für die es ein Polynom p und einen Verifizierer V mit den geforderten Eigenschaften gibt.

Wir konstruieren NTM *M* für die Sprache *L*.

" \Leftarrow ": Sei nun eine Sprache L gegeben, für die es ein Polynom p und einen Verifizierer V mit den geforderten Eigenschaften gibt.

Wir konstruieren NTM M für die Sprache L.

Bei Eingabe x erzeugt M nichtdeterministisch ein beliebiges Zertifikat $y \in \{0, 1\}^*$ mit $|y| \le p(|x|)$.

" \Leftarrow ": Sei nun eine Sprache L gegeben, für die es ein Polynom p und einen Verifizierer V mit den geforderten Eigenschaften gibt.

Wir konstruieren NTM M für die Sprache L.

Bei Eingabe x erzeugt M nichtdeterministisch ein beliebiges Zertifikat $y \in \{0, 1\}^*$ mit $|y| \le p(|x|)$.

Dann simuliert M den Verifizierer V auf der Eingabe x # y und akzeptiert genau dann die Eingabe x, wenn V die Eingabe x # y akzeptiert.

4 Komplexitätstheorie

4 Komplexitätstheorie

- 4.1 Die Klassen P und NP
 - 4.1.1 Die Klasse P
 - 4.1.2 Die Klasse NP

4.1.3 P versus NP

- 4.2 NP-Vollständigkeit
- 4.3 NP-vollständige Probleme

Zusammenfassung:

P enthält alle Probleme, die in polynomieller Zeit gelöst werden können.

NP enthält alle Probleme, für die ein Lösungskandidat in polynomieller Zeit überprüft werden kann.

Zusammenfassung:

P enthält alle Probleme, die in polynomieller Zeit gelöst werden können.

NP enthält alle Probleme, für die ein Lösungskandidat in polynomieller Zeit überprüft werden kann.

Aus der Definition folgt direkt $P \subseteq NP$.

Wie mächtig ist die Klasse NP?

Theorem 4.9

Für jede Sprache $L \in \mathsf{NP}$ gibt es eine deterministische Turingmaschine M, die L entscheidet, und ein Polynom r, für das $\mathsf{t_M}(\mathsf{n}) \leq \mathsf{2^{r(n)}}$ gilt.

Theorem 4.9

Für jede Sprache $L \in \mathsf{NP}$ gibt es eine deterministische Turingmaschine M, die L entscheidet, und ein Polynom r, für das $\mathsf{t_M}(\mathsf{n}) \leq \mathsf{2^{r(n)}}$ gilt.

Beweis: Es sei $L \in NP$ beliebig. Dann gibt es Polynom p und einen polynomiellen Verifizierer V, sodass für jede Eingabe $x \in \Sigma^*$ gilt:

$$x \in L \iff \exists y \in \{0,1\}^* : |y| \le p(|x|) \text{ und } V \text{ akzeptiert } x \# y.$$

Theorem 4.9

Für jede Sprache $L \in \mathsf{NP}$ gibt es eine deterministische Turingmaschine M, die L entscheidet, und ein Polynom r, für das $\mathsf{t_M}(\mathsf{n}) \leq \mathsf{2^{r(n)}}$ gilt.

Beweis: Es sei $L \in \mathsf{NP}$ beliebig. Dann gibt es Polynom p und einen polynomiellen Verifizierer V, sodass für jede Eingabe $x \in \Sigma^*$ gilt:

$$x \in L \iff \exists y \in \{0,1\}^* : |y| \le p(|x|) \text{ und } V \text{ akzeptiert } x \# y.$$

Konstruiere deterministische TM M für L: Bei Eingabe x simuliere den Verifizierer V auf der Eingabe x#y für alle Zertifikate $y\in\{0,1\}^*$ mit $|y|\leq p(|x|)$. Akzeptiere x genau dann, wenn der Verifizierer in mindestens einer dieser Simulationen akzeptiert.

Theorem 4.9

Für jede Sprache $L \in \mathsf{NP}$ gibt es eine deterministische Turingmaschine M, die L entscheidet, und ein Polynom r, für das $\mathsf{t_M}(\mathsf{n}) \leq \mathsf{2^{r(n)}}$ gilt.

Beweis: Es sei $L \in \mathsf{NP}$ beliebig. Dann gibt es Polynom p und einen polynomiellen Verifizierer V, sodass für jede Eingabe $x \in \Sigma^*$ gilt:

$$x \in L \iff \exists y \in \{0,1\}^* : |y| \le p(|x|) \text{ und } V \text{ akzeptiert } x \# y.$$

Konstruiere deterministische TM M für L: Bei Eingabe x simuliere den Verifizierer V auf der Eingabe x#y für alle Zertifikate $y\in\{0,1\}^*$ mit $|y|\leq p(|x|)$. Akzeptiere x genau dann, wenn der Verifizierer in mindestens einer dieser Simulationen akzeptiert.

Korrektheit: *M* akzeptiert *x* genau dann, wenn ein gültiges Zertifikat *y* existiert.

Theorem 4.9

Für jede Sprache $L \in \mathsf{NP}$ gibt es eine deterministische Turingmaschine M, die L entscheidet, und ein Polynom r, für das $\mathsf{t_M}(\mathsf{n}) \leq \mathsf{2^{r(n)}}$ gilt.

Beweis: Es sei $L \in NP$ beliebig. Dann gibt es Polynom p und einen polynomiellen Verifizierer V, sodass für jede Eingabe $x \in \Sigma^*$ gilt:

$$x \in L \iff \exists y \in \{0,1\}^* : |y| \le p(|x|) \text{ und } V \text{ akzeptiert } x \# y.$$

Konstruiere deterministische TM M für L: Bei Eingabe x simuliere den Verifizierer V auf der Eingabe x#y für alle Zertifikate $y\in\{0,1\}^*$ mit $|y|\leq p(|x|)$. Akzeptiere x genau dann, wenn der Verifizierer in mindestens einer dieser Simulationen akzeptiert.

Korrektheit: M akzeptiert x genau dann, wenn ein gültiges Zertifikat y existiert.

Laufzeit: Anzahl Zertifikate
$$\sum_{i=0}^{p(|x|)} 2^i = 2^{p(|x|)+1} - 1 = O(2^{p(|x|)})$$

Simulation von V für konkrete Eingabe x # y benötigt polynomielle Zeit.

Zusammenfassung

- Es gilt $P \subseteq NP$.
- Alle Probleme aus NP können in exponentieller Zeit auf deterministischen Turingmaschinen gelöst werden.

Zusammenfassung

- Es gilt $P \subseteq NP$.
- Alle Probleme aus NP können in exponentieller Zeit auf deterministischen Turingmaschinen gelöst werden.

Offene Frage

Gilt P = NP oder gibt es $L \in NP$ mit $L \notin P$?

4 Komplexitätstheorie

4 Komplexitätstheorie

- 4.1 Die Klassen P und NP
 - 4.1.1 Die Klasse P
 - 4.1.2 Die Klasse NP
 - 4.1.3 P versus NP
- 4.2 NP-Vollständigkeit
- 4.3 NP-vollständige Probleme

Frage: Warum ist die Klasse NP überhaupt interessant?

Frage: Warum ist die Klasse NP überhaupt interessant?

Wir lernen zunächst, wie wir die Komplexität von Problemen in Relation setzen können.

Frage: Warum ist die Klasse NP überhaupt interessant?

Wir lernen zunächst, wie wir die Komplexität von Problemen in Relation setzen können.

Definition 4.10

Eine polynomielle Reduktion einer Sprache $A\subseteq \Sigma_1^*$ auf eine Sprache $B\subseteq \Sigma_2^*$ ist eine Many-One-Reduktion $f\colon \Sigma_1^*\to \Sigma_2^*$, die in polynomieller Zeit berechnet werden kann. Existiert eine solche Reduktion, so heißt A auf B polynomiell reduzierbar und wir schreiben $A\leq_p B$.

Frage: Warum ist die Klasse NP überhaupt interessant?

Wir lernen zunächst, wie wir die Komplexität von Problemen in Relation setzen können.

Definition 4.10

Eine polynomielle Reduktion einer Sprache $A\subseteq \Sigma_1^*$ auf eine Sprache $B\subseteq \Sigma_2^*$ ist eine Many-One-Reduktion $f\colon \Sigma_1^*\to \Sigma_2^*$, die in polynomieller Zeit berechnet werden kann. Existiert eine solche Reduktion, so heißt A auf B polynomiell reduzierbar und wir schreiben $A\leq_p B$.

Erinnerung: Many-One-Reduktion $f: \Sigma_1^* \to \Sigma_2^*$ erfüllt für alle $x \in \Sigma_1^*$:

$$x \in A \iff f(x) \in B$$
.

Frage: Warum ist die Klasse NP überhaupt interessant?

Wir lernen zunächst, wie wir die Komplexität von Problemen in Relation setzen können.

Definition 4.10

schreiben $A \leq_{p} B$.

Eine polynomielle Reduktion einer Sprache $A\subseteq \Sigma_1^*$ auf eine Sprache $B\subseteq \Sigma_2^*$ ist eine Many-One-Reduktion $f\colon \Sigma_1^*\to \Sigma_2^*$, die in polynomieller Zeit berechnet werden kann. Existiert eine solche Reduktion, so heißt A auf B polynomiell reduzierbar und wir

Erinnerung: Many-One-Reduktion $f: \Sigma_1^* \to \Sigma_2^*$ erfüllt für alle $x \in \Sigma_1^*$:

$$x \in A \iff f(x) \in B$$
.

Polynomielle Berechenbarkeit:

 $\exists k \in \mathbb{N} : \exists \mathsf{TM} M : \forall x \in \Sigma_1^* : M \text{ berechnet } f(x) \text{ in Zeit } t_M(|x|) = O(|x|^k).$

Theorem 4.11

Es seien $A\subseteq \Sigma_1^*$ und $B\subseteq \Sigma_2^*$ zwei Sprachen, für die $A\leq_{\rho} B$ gilt.

Ist $B \in P$, so ist auch $A \in P$. Ist $A \notin P$, so ist auch $B \notin P$.

Theorem 4.11

Es seien $A \subseteq \Sigma_1^*$ und $B \subseteq \Sigma_2^*$ zwei Sprachen, für die $A \leq_{\rho} B$ gilt.

Ist $B \in P$, so ist auch $A \in P$. Ist $A \notin P$, so ist auch $B \notin P$.

Beweis: Sei $A \leq_{p} B$ mit polynomieller Reduktion $f \colon \Sigma_{1}^{*} \to \Sigma_{2}^{*}$ und sei $B \in P$.

Sei M_B die TM, die B in polynomieller Zeit entscheidet.

Sei M_f die TM, die f in polynomieller Zeit berechnet.

Theorem 4.11

Es seien $A\subseteq \Sigma_1^*$ und $B\subseteq \Sigma_2^*$ zwei Sprachen, für die $A\leq_{\rho} B$ gilt.

Ist $B \in P$, so ist auch $A \in P$. Ist $A \notin P$, so ist auch $B \notin P$.

Beweis: Sei $A \leq_{p} B$ mit polynomieller Reduktion $f \colon \Sigma_{1}^{*} \to \Sigma_{2}^{*}$ und sei $B \in P$.

Sei M_B die TM, die B in polynomieller Zeit entscheidet.

Sei M_f die TM, die f in polynomieller Zeit berechnet.

Konstruktion einer TM MA für A:

- 1. Berechne bei einer Eingabe x zunächst f(x) mittels M_f .
- 2. Simuliere anschließend M_B auf f(x).

Theorem 4.11

Es seien $A\subseteq \Sigma_1^*$ und $B\subseteq \Sigma_2^*$ zwei Sprachen, für die $A\leq_{\rho} B$ gilt.

Ist $B \in P$, so ist auch $A \in P$. Ist $A \notin P$, so ist auch $B \notin P$.

Beweis: Sei $A \leq_p B$ mit polynomieller Reduktion $f \colon \Sigma_1^* \to \Sigma_2^*$ und sei $B \in P$.

Sei M_B die TM, die B in polynomieller Zeit entscheidet.

Sei M_f die TM, die f in polynomieller Zeit berechnet.

Konstruktion einer TM M_A für A:

- 1. Berechne bei einer Eingabe x zunächst f(x) mittels M_f .
- 2. Simuliere anschließend M_B auf f(x).

Korrektheit: Folgt direkt aus der Definition von \leq_p .

Laufzeit: Es gilt

- $t_{M_B}(n) \leq p(n)$ für ein Polynom p,
- $t_{M_f}(n) \le q(n)$ für ein Polynom q.

Laufzeit: Es gilt

- $t_{M_B}(n) \leq p(n)$ für ein Polynom p,
- $t_{M_f}(n) \le q(n)$ für ein Polynom q.

Laufzeit von M_A bei einer Eingabe der Länge n:

$$O(q(n) + p(q(n) + n)).$$

Laufzeit: Es gilt

- $t_{M_B}(n) \leq p(n)$ für ein Polynom p,
- $t_{M_f}(n) \le q(n)$ für ein Polynom q.

Laufzeit von M_A bei einer Eingabe der Länge n:

$$O(q(n) + p(q(n) + n)).$$

Die Verschachtelung zweier Polynome ist wieder ein Polynom.

Vertex-Cover-Problem (VC)

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Gibt es $V' \subseteq V$ mit $|V'| \le k$, sodass jede Kante aus E zu mindestens einem

Knoten aus V' inzident ist?

Vertex-Cover-Problem (VC)

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Gibt es $V' \subseteq V$ mit $|V'| \le k$, sodass jede Kante aus E zu mindestens einem

Knoten aus V' inzident ist?

Theorem 4.12

Es gilt CLIQUE \leq_{p} VC.

Vertex-Cover-Problem (VC)

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Gibt es $V' \subseteq V$ mit $|V'| \le k$, sodass jede Kante aus E zu mindestens einem Knoten aus V' inzident ist?

Theorem 4.12

Es gilt CLIQUE \leq_{ρ} VC.

Beweis: Reduktion f mit f((G, k)) = ((G', k')).

Vertex-Cover-Problem (VC)

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Gibt es $V' \subseteq V$ mit $|V'| \le k$, sodass jede Kante aus E zu mindestens einem Knoten aus V' inzident ist?

Theorem 4.12

Es gilt CLIQUE \leq_{ρ} VC.

Beweis: Reduktion f mit f((G, k)) = ((G', k')).

Sei G' = (V', E') mit V' = V.

E' enthält genau die Kanten, die E nicht enthält, d. h.

$$E' = \{\{x,y\} \mid x,y \in V, x \neq y, \{x,y\} \notin E\}.$$

Außerdem sei k' = n - k für n = |V|.

Vertex-Cover-Problem (VC)

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Gibt es $V' \subseteq V$ mit $|V'| \le k$, sodass jede Kante aus E zu mindestens einem

Knoten aus V' inzident ist?

Theorem 4.12

Es gilt CLIQUE \leq_{ρ} VC.

Beweis: Reduktion f mit f((G, k)) = ((G', k')).

Sei G' = (V', E') mit V' = V.

E' enthält genau die Kanten, die E nicht enthält, d. h.

$$E' = \{\{x,y\} \mid x,y \in V, x \neq y, \{x,y\} \notin E\}.$$

Außerdem sei k' = n - k für n = |V|.

Reduktion *f* kann in polynomieller Zeit berechnet werden.

zu zeigen: G enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k

zu zeigen: *G* enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k " \Rightarrow ": Sei $C \subseteq V$ eine k-Clique in G.

Dann ist $D = V \setminus C$ ein Vertex Cover in G' der Größe $k' = n - k = |V \setminus C|$.

zu zeigen: *G* enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k " \Rightarrow ": Sei $\mathbb{C} \subseteq V$ eine k-Clique in G.

Dann ist $D = V \setminus C$ ein Vertex Cover in G' der Größe $k' = n - k = |V \setminus C|$.

Annahme: D kein VC in G'.

 \Rightarrow Es existiert $\{x,y\} \in E'$ mit $x \notin D$ und $y \notin D$, also $x,y \in C$.

zu zeigen: *G* enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k " \Rightarrow ": Sei $C \subseteq V$ eine k-Clique in G.

Dann ist $D = V \setminus C$ ein Vertex Cover in G' der Größe $k' = n - k = |V \setminus C|$.

Annahme: D kein VC in G'.

- \Rightarrow Es existiert $\{x,y\} \in E'$ mit $x \notin D$ und $y \notin D$, also $x,y \in C$.
- $\Rightarrow \{x,y\} \in E \text{ (da } C \text{ Clique in } G)$

zu zeigen: G enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k " \Rightarrow ": Sei $C \subseteq V$ eine K-Clique in G.

Dann ist $D = V \setminus C$ ein Vertex Cover in G' der Größe $k' = n - k = |V \setminus C|$.

Annahme: D kein VC in G'.

- \Rightarrow Es existiert $\{x,y\} \in E'$ mit $x \notin D$ und $y \notin D$, also $x,y \in C$.
- $\Rightarrow \{x,y\} \in E \text{ (da } C \text{ Clique in } G)$
- $\Rightarrow \{x,y\} \notin E'$

zu zeigen: G enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k " \Leftarrow ": Sei $D \subseteq V' = V$ ein Vertex Cover der Größe k' in G'. Dann ist $C = V \setminus D$ eine k-Clique in G für $k = |V \setminus D| = n - k'$.

zu zeigen: G enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k

" \Leftarrow ": Sei $D \subseteq V' = V$ ein Vertex Cover der Größe k' in G'.

Dann ist $C = V \setminus D$ eine k-Clique in G für $k = |V \setminus D| = n - k'$.

Annahme: C keine Clique in G.

 \Rightarrow Es existieren $x, y \in C$ mit $\{x, y\} \notin E$.

zu zeigen: G enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k

" \Leftarrow ": Sei D ⊆ V′ = V ein Vertex Cover der Größe k′ in G'.

Dann ist $C = V \setminus D$ eine k-Clique in G für $k = |V \setminus D| = n - k'$.

Annahme: C keine Clique in G.

 \Rightarrow Es existieren $x, y \in C$ mit $\{x, y\} \notin E$.

 $\Rightarrow \{x,y\} \in E'$.

zu zeigen: G enthält Clique der Größe $k \iff G'$ enthält VC der Größe k' = n - k

" \Leftarrow ": Sei $D \subseteq V' = V$ ein Vertex Cover der Größe k' in G'.

Dann ist $C = V \setminus D$ eine k-Clique in G für $k = |V \setminus D| = n - k'$.

Annahme: C keine Clique in G.

 \Rightarrow Es existieren $x, y \in C$ mit $\{x, y\} \notin E$.

 $\Rightarrow \{x,y\} \in E'$.

 $\Rightarrow x \in D$ oder $y \in D$ (da D Vertex Cover in G')

Übung: $A \leq_{p} B$ und $B \leq_{p} C \Rightarrow A \leq_{p} C$.

Übung: $A \leq_{p} B$ und $B \leq_{p} C \Rightarrow A \leq_{p} C$.

Definition 4.14

Eine Sprache L heißt NP-schwer, wenn $L' \leq_p L$ für jede Sprache $L' \in NP$ gilt. Ist eine Sprache L NP-schwer und gilt zusätzlich $L \in NP$, so heißt L NP-vollständig.

Übung: $A \leq_{\rho} B$ und $B \leq_{\rho} C \Rightarrow A \leq_{\rho} C$.

Definition 4.14

Eine Sprache L heißt NP-schwer, wenn $L' \leq_p L$ für jede Sprache $L' \in NP$ gilt. Ist eine Sprache L NP-schwer und gilt zusätzlich $L \in NP$, so heißt L NP-vollständig.

Theorem 4.15

Gibt es eine NP-schwere Sprache $L \in P$, so gilt P = NP.

Übung: $A \leq_{p} B$ und $B \leq_{p} C \Rightarrow A \leq_{p} C$.

Definition 4.14

Eine Sprache L heißt NP-schwer, wenn $L' \leq_p L$ für jede Sprache $L' \in NP$ gilt. Ist eine Sprache L NP-schwer und gilt zusätzlich $L \in NP$, so heißt L NP-vollständig.

Theorem 4.15

Gibt es eine NP-schwere Sprache $L \in P$, so gilt P = NP.

Beweis: Sei $L' \in NP$ beliebig. Dann gilt $L' \leq_{p} L$. Wegen $L \in P$ folgt daraus $L' \in P$.

Übung: $A \leq_{p} B$ und $B \leq_{p} C \Rightarrow A \leq_{p} C$.

Definition 4.14

Eine Sprache L heißt NP-schwer, wenn $L' \leq_p L$ für jede Sprache $L' \in NP$ gilt. Ist eine Sprache L NP-schwer und gilt zusätzlich $L \in NP$, so heißt L NP-vollständig.

Theorem 4.15

Gibt es eine NP-schwere Sprache $L \in P$, so gilt P = NP.

Beweis: Sei $L' \in NP$ beliebig. Dann gilt $L' \leq_p L$. Wegen $L \in P$ folgt daraus $L' \in P$.

Korollar 4.16

Es sei L eine NP-vollständige Sprache. Dann gilt $L \in P$ genau dann, wenn P = NP gilt.