LNG-1100 : Méthodes expérimentales et analyse de données

Analyse de données : test $t \to ANOVA$

Guilherme D. Garcia

fr.gdgarcia.ca

5

Révision

Test t

Pratique

- 1. Dans quelles conditions pouvons-nous utiliser le test t?
- 2. Quelle est la fonction et la syntaxe pour exécuter le test?
- 3. Quelle est l'hypothèse nulle dans un test *t*?
- 4. Quelle est l'interprétation de la valeur *p*?
- 5. Qu'est-ce qu'on voit dans le résultat d'un test t?
- 6. Quelles sont les limitations du test *t*?

Pratique

- 1. Pour vérifier si deux groupes sont statistiquement différents par rapport à une variable **continue**, ou pour vérifier si un groupe est statistiquement différent d'une valeur spécifique (normalement, zéro).
- 2. $t.test(y \sim x, data = ...)$
- 3. Que les moyennes des groupes sont identiques : $\mu_A = \mu_B$ ou que la moyenne d'un groupe est identique à zéro (ou à la valeur définie par l'utilisateur)
- 4. C'est la probabilité de voir les données (et la différence) en question si l'hypothèse nulle est vraie
- 5. La valeur p, l'intervalle de confiance à 95 %, les moyennes pertinentes, les dégrées de liberté (ddl), la valeur t
- 6. 1 ou 2 groupes; juste une variable analysable (groupe); très simpliste

Révision: test t

- \square Voyons le calcul de la variance et de la statistique t
- La variance (s^2) est la somme des écart au carré divisée par n-1:

Groupe A	$(x_i-\bar{x})^2$	Groupe B	$(x_i-\bar{x})^2$
87		76	
57		89	
48		95	
90		67	
91		58	
$\bar{x} = 74.6$		$\bar{x} = 77$	

Révision: test t

- We voyons le calcul de la variance et de la statistique *t* :
- La variance (s^2) est la somme des écart au carré divisée par n-1:

Groupe A	$(x_i-\bar{x})^2$	Groupe B	$(x_i-\bar{x})^2$
87	153.76	76	1
57	309.76	89	144
48	707.56	95	324
90	237.16	67	100
91	268.96	58	361
$\bar{x} = 74.6$	$s^2 = \frac{1677.2}{4} = 419.3$	$\bar{x} = 77$	$s^2 = \frac{930}{4} = 232.5$

Révision: test t

$$\bar{x}_A = 74.6$$
; $s_A^2 = 419.3$; $\bar{x}_B = 77$; $s_B^2 = 232.5$; $n_A = n_B = 5$

$$t = \frac{\bar{x}_A - \bar{x}_B}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}} \tag{1}$$

$$t = \frac{74.6 - 77}{\sqrt{\frac{419.3}{5} + \frac{232.5}{5}}} = \frac{-2.4}{\sqrt{130.36}} = -0.21$$
 (2)

Quand il y a plus de 2 groupes

Hypothèse nulle : a, b et c ne sont pas différents; ils viennent de la même population ($p \ge 0,05$). Autrement dit, $\mu_a = \mu_b = \mu_c$.

Hypothèse alternative : il y a au moins une différence parmi les trois groupes.

Scénarios:

$$\mu_a = \mu_b \neq \mu_c$$

$$\mu_a \neq \mu_b = \mu_c$$

$$\mu_a \neq \mu_b \neq \mu_c$$

Les limitations du test t

- On a souvent plus de deux groupes dans notre analyse
- En plus, on veut analyser plusieurs variables en même temps
- Un test *t* est simplement **trop limité**

Aujourd'hui : **ANOVA** (*ANalysis Of VAriance*)

- Une méthode qui nous permet d'analyser plusieurs groupes/variables en même temps
- Ici, l'ANOVA sera examinée de façon temporaire : on cible les régressions complètes
- Mais il est important de bien connaître l'ANOVA:

la littérature contient beaucoup d'articles que l'utilisent

test
$$t o \mathsf{ANOVA} o \mathbf{régressions}$$

Pratique

Révision du chapitre 5

Questions de base

- 1. Si on examine 5 villes dans notre fichier, combien de tests *t* faudra-t-il exécuter pour comparer toutes les villes?
- 2. Quel est le problème de cet approche?
- 3. Quels sont les deux types d'erreurs pertinents à l'analyse de données?

Pratique

Révision du chapitre 5

Questions de base

1. 10 (AB, AC, AD, AE, BC, BD, BE, CD, CE, DE)

 $\frac{k(k-1)}{2}$

2. Le taux d'erreur de type 1 explose

$$1-(1-\alpha)^{10}$$

3. Type 1 (faux positif) et type 2 (faux négatif)

Erreurs

Nos possibilités

	H ₀ est vraie	H ₀ est fausse
on rejette H_0	Type I	
on ne rejette pas H_0		Type II

Exemple classique : un test de grossesse

- Positif mais la femme n'est pas enceinte
- Négatif mais la femme est enceinte

erreur de type I

erreur de type II

Ces concepts sont pertinent n'importe quelle méthode on utilise dans le cours

ANOVA

Concepts de base

• L'idée générale : $F = \frac{\text{variabilité entre les groupes}}{\text{variabilité à l'intérieur des groupes}}$ Si F > 1, peut-être les groupes sont différents

Vrai ou faux?

- 1. Une ANOVA nous montre où sont les différences entre des groupes
- 2. La fonction utilisé pour exécuter une ANOVA est anova()
- 3. L'hypothèse alternative (H_1) d'une ANOVA est que tous les groupes sont différents

Vrai ou faux? 1. Une ANOVA nous montre où sont les différences entre des groupes **FAUX**

2. La fonction utilisé pour exécuter une ANOVA est anova()

FAUX

3. L' H_1 d'une ANOVA est que tous les groupes sont différents

FAUX

Qu'est-ce la variance...?

La variabilité à l'intérieur des groupes

- Si l'ANOVA cible la variance, il faut bien comprendre la définition de variance
- Voici les premières lignes de villes2.csv (version simplifiée)
- Analysons notre tableau : pour Calgary, la note moyenne est 67.

	note	ville
1	52.47	Calgary
2	68.67	Calgary
3	48.29	Calgary
4	96.91	Calgary
5	71.59	Calgary
6	48.59	Calgary

Qu'est-ce la variance...?

La variabilité à l'intérieur des groupes

- On calcule la différence (l'écart) entre chaque note et la moyenne du groupe
- Après, on calcule le carré de l'écart (ce qui nous donnera juste des valeurs positives)

	note	ville	moyenne	note-moyenne	(note-moyenne) ²
1	52.47	Calgary	67.00	-14.53	211.09
2	68.67	Calgary	67.00	1.67	2.80
3	48.29	Calgary	67.00	-18.71	350.16
4	96.91	Calgary	67.00	29.91	894.35
5	71.59	Calgary	67.00	4.59	21.07
6	48.59	Calgary	67.00	-18.41	338.90
	•••				$\frac{somme}{N-k}$

• La variance à l'intérieur des groupes sera la somme totale divisée par N-k

N = nombre total d'observations; k = nombre de groupes (villes ici)

ANOVA

Concepts de base

• L'idée générale : $F = \frac{\text{variabilité entre les groupes}}{\text{variabilité à l'intérieur des groupes}}$

Maintenant, calculons la variabilité entre les groupes

Qu'est-ce la variance...?

La variabilité entre les groupes

- Calculez les moyennes par groupe ainsi que la différence entre leurs moyennes et la moyenne générale ($\bar{x} = 70.25$)
- ullet Après, multipliez les carrés des écarts (CE) par le nombre d'observations (n) \to n_CE

	ville	moyenne	n	diff	CE	n_CE
1	Calgary	67.01	50	-3.25	10.54	526.90
2	Montréal	69.58	50	-0.67	0.45	22.54
3	Québec	74.17	50	3.92	15.35	767.38
						$\frac{somme}{k-1}$

• La somme totale est donc divisée par k-1, et cela sera notre variété entre les groupes

Pratique

Chapitre 5

• Examinons les code et les exercices dans le chapitre [2]

ANOVA + R

• Heureusement, il y a une fonction qui automatise le calcul pour nous : aov()

Pratique

Complétez le script seance-5.R:

- 1. Calculez les moyennes et les écarts-types des cinq groupes.
- 2. Visualisez les données et exécutez une ANOVA.
- 3. Pouvons-nous rejeter l'hypothèse nulle? Générez des comparaisons multiples.
- 4. Avons-nous des erreurs dans les résultats?
- 5. Communiquer les résultats en utilisant le modèle présenté dans le chapitre.

ANNEXE: LA DISTRIBUTION F

La distribution F

Pour mieux comprendre la logique de l'ANOVA

- 1. On calcule les variabilités et la valeur F
- 2. Ensuite, avec les **dégrées de liberté** des données (2 et 147 pour villes2.csv), 1 on consulte un tableau de valeurs critiques. Pour $\alpha = 0.05$ et une hypothèse bilatérale cette valeur sera de \approx 3.06. Donc, si notre valeur F est supérieure à cette valeur, on sera dans la **région critique**, ce qui nous permettra de rejeter l'hypothèse nulle.
- Examinez le tableau en question : quelle est la relation entre les dégrées de liberté et les valeurs critiques de *F*?

¹Nombre de groupes (3) - 1. Nombre d'observations (150) - nombre de groupes (3).

La distribution F

Visualisons nos données

Après avoir calculé F (ou après avoir exécuté aov(...)), on arrive à F = 5.82
(Ici, la variance de Calgary est immense, ce qui serait un problème pour l'analyse!)

La distribution F

La région critique (rouge) = 5 % de la distribution

5.82 (ligne pointillée) est **beaucoup** plus élevé que 3.06, la valeur critique pour F(2, 147)

ullet On est donc dans la région critique o on **rejette** l'hypothèse nulle

Commentaires finaux

Test t vs. ANOVA

- L'ANOVA et le test *t* suppose que la variable de réponse est **normale**
- En plus, les deux méthodes suppose que la variance est la même à travers les groupes
- Le test t est limité à 1 ou 2 groupes; l'ANOVA est libre
- L'ANOVA peut avoir plusieurs variables : aov (y ~ x + w + z)
- Ces méthodes nous donnent une valeur *p*, ce qui nous permet de rejeter ou de ne pas rejeter l'hypothèse nulle. La statistique nous permet de conclure si un effet ou si une différence est **significative** ou **crédible**. Notre analyse ne doit pas pourtant se concentrer simplement sur les valeurs *p*!

Les deux méthodes servent de point de départ pour le cours