Análise Econômica e Financeira de Projetos

Projetos de Capital

Os projetos de capital envolvem a construção ou expansão de plantas e/ou instalação de equipamentos, tanto para produzir algum novo produto ou para manter ou ampliar a capacidade produtiva. Tipicamente envolvem significativa quantidade de capital, longos prazos e alto risco.

Custos totais do ciclo de vida do projeto

Custos totais do ciclo de vida do projeto, *life cycle costing* ou ainda *TCO – Total Cost of ownership*, refere-se aos custos totais de um projeto ao longo de toda a sua vida útil, o que inclui os custos com desenvolvimento, aquisições, implantação, operação, manutenção, com reformas e melhorias e o valor residual do projeto.

Custos do ciclo de vida do projeto

CAPEX - Capital expenditure ou despesas de capital ou investimento em bens de capital

OPEX - Operational expenditure ou despesas operacionais

Sustaining CAPEX - reinvestimento feito para manter as condições de operação

Análise econômica financeira de projetos

A análise de investimentos é desenvolvida através de critérios que tem como objetivo avaliar a viabilidade econômica e financeira de projetos de capital que possuem característica de retorno a longo prazo.

Em outras palavras, ela busca avaliar se o projeto agrega ou não valor para a empresa.

O orçamento do investimento:

- Volume de capital (CAPEX, Sustaining CAPEX)
- Cronograma de desembolso;
- Vida útil para depreciação e valor residual;
- Recebimento líquido pela venda de ativos, em caso de substituição.

O fluxo de caixa projetado:

- Tempo de análise do projeto;
- Projeções das receitas e ou benefícios gerados;
- Projeção dos custos operacionais (OPEX);
- Projeções de depreciação;
- Projeções dos tributos sobre os resultados;

- Projeção do valor residual do projeto;
- Valor terminal do capital de giro.

O custo do capital:

- Volume e custo do capital de terceiros;
- Condições de financiamento negociadas: carência, prazo e sistemas de amortização;
- Volume e custo do capital de próprio;
- · Custo médio ponderado do capital.

Análise econômica financeira de projetos

Análise econômica financeira de projetos

Os projetos são selecionados pelos critérios:

- VP Valor presente
- VPL Valor presente líquido
- TIR Taxa interna de retorno
- Payback e payback descontado
- Índice benefício custo

VP - Valor presente

Exemplo:

Qual o VP de R\$150.000 que serão recebidos daqui a 4 anos para taxa de juros de 5%?

 $VP = 150.000/(1,05)^4$

VP = 123.405,40

$VP = VF / (1+j)^n$

VP - Valor Presente
VF - Valor Futuro
j - Taxa de juros
n - número de períodos

VPL - Valor presente líquido

quanto maior o VPL, melhor o projeto melhor é o resultado econômico do projeto

VPL = VP - inv

VPL – Valor Presente líquido VP – Valor presente inv – investimento

TIR - Taxa interna de retorno

A TIR pode ser explicada como sendo a taxa de retorno que iguala os fluxos de caixa do projeto ao investimento, ou seja, VPL igual a zero.

O cálculo da TIR é difícil de ser feito. Sendo assim, o cálculo é feito com calculadora financeira ou com softwares como Excel. Para o cálculo manual, tenta-se encontrar o valor por interpolação.

TIR - Taxa interna de retorno

A TIR deve ser superior a taxa de mínima de atratividade, também chamada de custo do capital ou WACC para que o investimento seja atrativo, ou seja, para VPL maior que zero.

Quanto maior a TIR, melhor é o projeto.

A TIR assume que os fluxos gerados pelo projeto serão reinvestidos a mesma taxa.

Payback - Período de Retorno

O payback tem como objetivo determinar qual o tempo necessário para se recuperar o investimento realizado para determinado projeto. Ele não leva em consideração o custo do capital no tempo, portanto, não pode ser um indicador de rentabilidade do projeto

Payback - Período de Retorno descontado

O payback descontado é derivado do payback simples e leva em consideração o fator tempo, ou seja, o valor do capital em períodos diferentes, princípio básico da matemática financeira.

Portanto, indica efetivamente quando o projeto apresentará retorno.

IBC - Índice benefício custo

Índice que relaciona o benefício gerado pelo projeto em relação ao investimento de capital. É também conhecido como Índice de Lucratividade e determinado pela fórmula:

IBC = VP/Investimento

Portanto, para o IBC maior que 1 o projeto é viável.

Custo de oportunidade

Custo de oportunidade pode ser explicado pela oportunidade em se escolher um projeto em relação a outro (custo de algo em relação a uma oportunidade renunciada).

Por exemplo, se o projeto A tem VPL de R\$100.000 e o projeto B tem VPL de 170.000, o custo de oportunidade de se escolher o projeto B é de R\$100.000.

Seleção de Projeto

	Projeto A	Projeto B	Qual o melhor projeto?
VPL	R\$ 130.000	R\$ 110.000	A
TIR	15%	18%	В
Payback descontado	1 ano 4 meses	1 ano 9 meses	Α
IBC	2,4	1,8	A

Sunk Costs - Custos afundados

Os custos afundados são custos não recuperáveis em um projeto que tenha sido abandonado ou desistido.

Por exemplo, gastou-se R\$300.000 em determinado projeto cujo investimento estava orçado em R\$450.000. As novas projeções indicam uma tendência de se gastar mais R\$600.000 para finalizar o projeto. O projeto não será continuado e os R\$300.000 se tornarão custos afundados.

Depreciação

Os ativos sofrem uma redução no seu valor com o tempo, o que é chamado de depreciação e está diretamente relacionado com a vida útil de um projeto.

A definição da vida útil é necessária para o cálculo da depreciação. Os critérios permitidos para depreciação encontram-se detalhados no regulamento do imposto de renda.

Depreciação

Existem dois principais tipos de depreciação:

- 1. Linear (Método das quotas constantes), quando o mesmo valor é depreciado anualmente;
- 2. Acelerada, que pode ser pelo método da soma dos dígitos dos anos, método da depreciação média, entre outros.

Depreciação Linear

Ex: Investimento de R\$15.000.000 com vida útil de 5 anos

Depreciação = R\$3.000.000 / ano

		1º ano	2º ano	3º ano	4º ano	5º ano
Investimento	15.000.000	12.000.000	9.000.000	6.000.000	3.000.000	-
Depreciação		3.000.000	3.000.000	3.000.000	3.000.000	3.000.000

Depreciação Acelerada

O método da soma dos dígitos dos anos pode ser calculado da seguinte forma:

Somar os algarismos – para o exemplo 1+2+3+4+5=15, que chamaremos de "anos"

"n" será o último ano de vida útil, para o caso anterior, n=5

Depreciação Acelerada

A depreciação anual será uma fração composta de:

Para o ano 1 -> n/anos, para o ano 2 ->(n-1)/anos), para o ano 3 -> (n-2)/anos, etc.

Anos	Fração	Depreciação
1	(5/15) x 15.000.000	5.000.000
2	(4/15) x 15.000.000	4.000.000
3	(3/15) x 15.000.000	3.000.000
4	(2/15) x 15.000.000	2.000.000
5	(1/15) x 15.000.000	1.000.000

Case

A empresa PLB Participações deseja investir em um dos dois projetos abaixo. Admitindo taxa mínima de atratividade de 12% ao ano, calcular o VPL, TIR, IBC, Payback, Payback descontado e escolher o melhor projeto.

Case

	Projeto X	Projeto Y
Investimento	R\$ 250.000	R\$ 350.000
Vida Útil	10 anos	7 anos
Valor residual	nulo	nulo
Estimativa fluxo caixa	R\$ 50.000 ano	R\$ 75.000 ano

Case

Solução no arquivo excel "Solução case 4" distribuído com material.

Recomendações básicas sobre investimentos

- Analisar em detalhes todos os projetos de investimento na empresa;
- Comparar os resultados com o benchmarking de mercado;
- Ter certeza de que os investimentos agregam valor ao negócio;
- Analisar os riscos dos investimentos antes de tomar decisão.

Encerramento

MUITO OBRIGADO!!!

Professor Fábio Alexandre de Almeida Gomes

fabgomes.bhe@gmail.com

(31) 9 9935-9069

Bibliografia Básica

- VALERIANO, Dalton. Moderno gerenciamento de projetos. 2º edição.
 Pearson Education do Brasil, São Paulo, 2015
- CARVALHO, Fábio Câmara Araújo de. Gestão de projetos. Pearson Education do Brasil, São Paulo, 2015
- VALERIANO, Dalton. Gerenciamento estratégico e administração por projetos. Makron Books, São Paulo, 2001

Bibliografia Complementar

- DINSMORE, Paul Campbell. Silveira Neto, Fernando Henrique da.
 Gerenciamento de projetos: como gerenciar seu projeto com qualidade, dentro do prazo e custos previstos. Qualitymark, Rio de Janeiro, 2004
- Um Guia do Conhecimento em Gerenciamento de Projetos, Guia PMBOK®, 5º edição, Project Management Institute, 2013
- Construction Extension to the PMBOK® Guide, Project Management Institute, 2016

Bibliografia Complementar

- Skills & Knowledge of Cost Engineering, 5th Edition Revised, AACE International, Morgantown, WV, 2010
- MULCAHY PMP, Rita. PMP® Exam Prep. Third Edition, RMC Publications, Inc, 2005
- VARGAS, Ricardo Viana. Análise de Valor Agregado em Projetos. Editora Brasport, Rio de Janeiro, 2002

Bibliografia Complementar

- DAMODARAN, Aswath. Avaliação de investimentos ferramentas e técnicas para determinação do valor de qualquer ativo. Qualitymark, Rio de Janeiro, 1997
- ASSAF NETO, Alexandre. Matemática financeira e suas aplicações. 10º edição. Editora Atlas, São Paulo, 2008