Chapter 1: The Real and Complex Number Systems

Author: Meng-Gen Tsai Email: plover@gmail.com

Unless the contrary is explicitly stated, all numbers that are mentioned in these exercise are understood to be real.

Exercise 1.1. If r is a rational $(r \neq 0)$ and x is irrational, prove that r + x and rx are irrational.

Proof. Assume $r + x \in \mathbb{Q}$. \mathbb{Q} is a field, then $-r \in \mathbb{Q}$ for any $r \in \mathbb{Q}$. So $(-r) + (r+x) = (-r+r) + x = 0 + x = x \in \mathbb{Q}$, a contradiction.

Similarly, assume $rx \in \mathbb{Q}$. $r \in \mathbb{Q}$ with $r \neq 0$ implies that there exists an element $1/r \in \mathbb{Q}$ such that $r \cdot (1/r) = 1$. So $(1/r) \cdot (rx) = ((1/r) \cdot r) \cdot x = 1 \cdot x = x \in \mathbb{Q}$, a contradiction. \square

Exercise 1.2. Prove that there is no rational number whose square is 12.

Apply the argument in Example 1.1. Again we can examine this situation a little more closely. Let A be the set of all positive rational p such that $p^2 < 12$ and let B be the set of all positive rational p such that $p^2 > 12$. We might show that A contains no largest number and B contains no largest number again.

In fact, we can associate with each rational p > 0 the number

$$q = p - \frac{p^2 - 12}{p + 12} = \frac{12p + 12}{p + 12}.$$

Then

$$q^2 - 12 = \frac{132(p^2 - 12)}{(p+12)^2}.$$

If $p \in A$ then $p^2 - 12 < 0$, q > p and $q^2 < 12$. Thus $q \in A$. If $p \in B$ then $p^2 - 12 > 0$, 0 < q < p and $q^2 > 12$. Thus $q \in B$.

Proof (Example 1.1). We now show that the equation

$$p^2 = 12$$

is not satisfied by any rational p. If there were such a $p \in \mathbb{Q}$, we could write $p = \frac{m}{n}$ where $m, n \in \mathbb{Z}$ are relatively prime. Let us assume this is done. Then

$$p^2 = 12$$
 implies

$$m^2 = 12n^2.$$

This shows that $3 \mid m^2$. Hence $3 \mid m$ (since 3 is a prime in \mathbb{Z}), and so m^2 is divisible by 9. It follows that $12n^2$ is divisible by 9, so that $4n^2$ is divisible by 3, so that n^2 is divisible by 3, which implies that $3 \mid n$. That is, both m and n have a common factor 3 > 1, contrary to our choice of m and n. Hence $p^2 = 12$ is impossible for rational p. \square

Exercise 1.12. If $z_1, ..., z_n$ are complex, prove that

$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|.$$

Proof. Use mathematical induction on n. n=2 is established by Theorem 1.33 (e). Suppose the inequality holds on n=k, then n=k+1 we again apply Theorem 1.33 (e) to get the result, say

$$|z_1 + z_2 + \dots + z_k + z_{k+1}| \le |z_1 + z_2 + \dots + z_k| + |z_{k+1}|$$

 $\le |z_1| + |z_2| + \dots + |z_k| + |z_{k+1}|$

Corollary. If $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^k$, then

$$|x_1 + x_2 + \dots + x_n| \le |x_1| + |x_2| + \dots + |x_n|.$$

Here we might use Theorem 1.37 (e) to prove it. Since the norm $|\cdot|$ on \mathbb{C} is the same as the norm on \mathbb{R}^2 , we might prove this corollary first and set k=2 on $\mathbb{R}^k=\mathbb{R}^2$.