Sequence models & Attention mechanism

TOTAL POINTS 10

1.	Consider using this encoder-decoder model for machine translation.

 $a^{<0>} \longrightarrow \bigvee_{\substack{\uparrow \\ \chi < 1>}} \bigvee_{\substack{\gamma < T_{\chi}>}} \bigvee_{\substack{\uparrow \\ \gamma < T_{\chi}$

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

- True
- False
- 2. In beam search, if you increase the beam width B, which of the following would you expect to be true? Check all that apply.

1 point

1 point

- Beam search will run more slowly.
- Beam search will use up more memory.
- $oxed{\square}$ Beam search will generally find better solutions (i.e. do a better job maximizing $P(y\mid x)$)
- Beam search will converge after fewer steps.
- In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

1 point

- True
- False
- 4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.

1 point

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

- \bigcirc No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- One, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm
- O Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- O Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- 5. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on improving the search algorithm.

1 point

True.

6. Consider the attention model for machine translation.

9<t-1> 9<t->
| 6<t->
| 7<t->
| 8<t->
| 8<t->
| 1<t->
| 1<t->
| 1<t->
| 1<t->
| 2<t->
| 3<t->
| 4<t->
| 5<t->
| 4<t->
| 6<t->
| 7<t->
|

Further, here is the formula for $\alpha^{< t, t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$$

Which of the following statements about $lpha^{< t, t'>}$ are true? Check all that apply.

- \square We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)
- $\begin{tabular}{ll} \hline & We expect $\alpha^{< t, t'>}$ to be generally larger for values of $\alpha^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.) \\ \end{tabular}$
- $\ \ \ \ \ \ \sum_{t'} lpha^{< t,t'>} = 1$ (Note the summation is over t' .)
- 7. The network learns where to "pay attention" by learning the values $e^{< t,t'>}$, which are computed using a small neural network:

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evalute this network, we

○ True

haven't computed $s^{< t>}$ yet.

○ False

8. Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

 \bigcirc The input sequence length T_x is large.

 \bigcirc The input sequence length T_x is small.

Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?

_c_oo_o_kk__b_ooooo_oo_kkk

Ocokbok

Cookbook

O cook book

oookkbooooookkk

10. In trigger word detection, $x^{< t>}$ is:

igcup Features of the audio (such as spectrogram features) at time t.

 \bigcirc The t-th input word, represented as either a one-hot vector or a word embedding.

1 point

1 point

1 point

1 point

1 point

\bigcirc Whether the trigger word is being said at time $t.$		
igcup Whether someone has just finished saying the trigger word at time $t.$		
I, Ching Chang, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code		3 P
	Save	Submit