PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C12N 9/00

(11) Internationale Veröffentlichungsnummer:

WO 98/59040

Veröffentlichungsdatum:

(43) Internationales

30. Dezember 1998 (30.12.98)

(21) Internationales Aktenzeichen:

PCT/EP98/03468

(22) Internationales Anmeldedatum:

9. Juni 1998 (09.06.98)

(30) Prioritätsdaten:

197 26 329.1 20. Juni 1997 (20.06.97) DE 198 13 274.3 26. März 1998 (26.03.98) DE 198 16 496.3 14. April 1998 (14.04.98) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51368 Leverkusen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): HAGEN, Gustav [DE/DE]; Walter-Flex-Strasse 32, D-51373 Leverkusen (DE). SIEG-MUND, Hans-Ulrich [DE/DE]; Quettinger Strasse 167, D-51381 Leverkusen (DE). WEICHEL, Walter [DE/DE]; Dhünner Aue 15, D-51519 Odenthal (DE). WICK, Maresa [DE/DE]; Andreas-Gryphius-Strasse 26, D-51065 Köln (DE). ZUBOV, Dmitry [RU/DE]; Roggendorfstrasse 59, D-51061 Köln (DE).
- (74) Gemeinsamer Vertreter: BAYER AKTIENGE-SELLSCHAFT; D-51368 Leverkusen (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

- (54) Title: HUMAN CATALYTIC TELOMERASE SUB-UNIT AND ITS DIAGNOSTIC AND THERAPEUTIC USE
- (54) Bezeichnung: HUMANE KATALYTISCHE TELOMERASE-UNTEREINHEIT UND DEREN DIAGNOSTISCHE UND THERA-PEUTISCHE VERWENDUNG

(57) Abstract

The invention relates to the nucleotide sequence and the protein sequence derived therefrom, which encodes for the human catalytic telomerase sub-unit. The invention furthermore relates to methods involving a pharmaceutical, diagnostic or therapeutic use of this gene/protein, principally for treating cancer and ageing.

(57) Zusammenfassung

Diese Erfindung betrifft die Nukleotidsequenz und die davon abgeleitete Proteinsequenz, die für die humane katalytische Telomerase-Untereinheit codiert. Darüberhinaus betrifft diese Erfindung Methoden, die eine pharmazeutische, diagnostische oder therapeutische Verwendung von diesem Gen/Protein beinhaltet, vor allem in der Behandlung von Krebs und Alterung.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
\mathbf{AZ}	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
\mathbf{BF}	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
\mathbf{BY}	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	$\mathbf{z}\mathbf{w}$	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Humane katalytische Telomerase-Untereinheit und deren diagnostische und therapeutische Verwendung

Aufbau und Funktion der Chromosomenenden

Das genetische Material eukaryontischer Zellen ist auf linearen Chromosomen verteilt. Die Enden der Erbanlagen werden, abgeleitet von den griechischen Wörtern telos (Ende) und meros (Teil, Segment), als Telomere bezeichnet. Die meisten Telomere bestehen aus Wiederholungen von kurzen Sequenzen, die überwiegend aus Thymin und Guanin aufgebaut sind (Zakian, 1995). Die Telomersequenzen verwandter Organismen sind oft ähnlich und sogar zwischen phyllogenetisch weiter entfernten Spezies konserviert. Bemerkenswert ist, daß in allen bislang untersuchten Wirbeltieren die Telomere aus der Sequenz TTAGGG aufgebaut werden (Meyne et al., 1989).

15

10

5

Die Telomere üben verschiedene wichtige Funktionen aus. Sie verhindern die Fusion von Chromosomen (McClintock, 1941) und damit die Entstehung von dizentrischen Erbanlagen. Solche Chromosomen mit zwei Centromeren können durch Verlust der Heterozygotie bzw. Verdopplung oder Verlust von Genen zur Entwicklung von Krebs führen.

20

Desweiteren dienen Telomere dazu, intakte Erbanlagen von beschädigten zu unterscheiden. So stellten Hefezellen ihre Zellteilung ein, wenn sie ein Chromosom ohne Telomer enthielten (Sandell und Zakian, 1993).

daher die Chromosomen mit jeder Zellteilung schrumpfen ("end-replication problem";

Eine weitere wichtige Aufgabe erfüllen Telomere bei der DNA-Replikation eukaryontischer Zellen. Im Gegensatz zu den zirkulären Genomen von Prokaryonten können die linearen Chromosomen der Eukaryonten von dem DNA Polymerase-Komplex nicht vollständig repliziert werden. Zur Initiation der DNA-Replikation sind RNA-Primer notwendig. Nach Abspaltung der RNA-Primer, Verlängerung der Okazaki-Fragmente und anschließender Ligation fehlt dem neu-synthetisierten DNA-Strang das 5'-Ende, denn dort kann der RNA-Primer nicht durch DNA ersetzt werden. Ohne besondere Schutzmechanismen würden

Harley et al., 1990). Die nicht-kodierenden Telomersequenzen stellen vermutlich eine Pufferzone dar, um dem Verlust von Genen vorzubeugen (Sandell und Zakian, 1993).

- 2 -

Darüberhinaus spielen Telomere auch eine wichtige Rolle bei der Regulation der zellulären Alterung (Olovnikov, 1973). Humane somatische Zellen zeigen in Kultur eine limitierte Replikationskapazität; sie werden nach einer gewissen Zeit seneszent. In diesem Zustand teilen sich die Zellen selbst nach Stimulierung mit Wachstumsfaktoren nicht mehr, sterben aber nicht, sondern bleiben metabolisch aktiv (Goldstein, 1990). Verschiedene Beobachtungen sprechen für die Hypothese, daß eine Zelle anhand der Länge ihrer Telomere bestimmt, wie oft sie sich noch teilen kann (Allsopp et al., 1992).

Zusammenfassend besitzen die Telomere somit zentrale Funktionen bei der Alterung von Zellen sowie der Stabilisierung des genetischen Materials und Verhinderung von Krebs.

Das Enzym Telomerase synthetisiert die Telomere

Wie oben beschrieben können Organismen mit linearen Chromosomen ohne einen speziellen Schutzmechanismus ihr Genom nur unvollständig replizieren. Die meisten Eukaryonten verwenden zur Regeneration der Telomersequenzen ein spezielles Enzym, die Telomerase. In den bislang untersuchten Einzellern wird Telomerase konstitutiv expremiert. Dagegen wurde in Menschen die Telomerase-Aktivität nur in Keimzellen und Tumorzellen gemessen, wogegen benachbartes somatisches Gewebe keine Telomerase enthielt (Kim et al., 1994).

Telomerase in Ciliaten

25

30

5

10

15

20

Die Telomerase wurde, wie auch die Telomere, zuerst im Ciliaten *Tetrahymena thermophila* identifiziert. Die Telomerase-Aktivität wurde durch Verlängerung des einzelsträngigen Oligonukleotides d(TTGGGG)4 in Gegenwart von dTTP und dGTP nachgewiesen (Greider und Blackburn, 1985). Dabei wurde an den Primer wiederholt die *Tetrahymena*-Telomersequenz TTGGGG angehängt. Selbst wenn als Ausgangsmaterial ein Oligonukleotid mit der unregelmäßigen Telomersequenz von *Saccharomyces cerevisiae*, T(G)₁₋₃, angeboten wurde, verlängerte die Telomerase den Primer mit der Telomersequenz

WO 98/59040 PCT/EP98/03468

von *Tetrahymena* (Greider und Blackburn, 1985). Aus diesen Ergebnissen wurde geschlossen, daß die Telomerase selbst die Vorlage für die Sequenz der Telomere mit sich führt.

Nachdem zunächst die Existenz einer RNA-Komponente in der Telomerase nachgewiesen werden konnte (Greider und Blackburn, 1987), wurde kurze Zeit später das Gen für die RNA-Untereinheit der Telomerase kloniert (Greider und Blackburn, 1989). Diese RNA enthält eine Region mit dem Komplement zur Telomersequenz von *Tetrahymena* (nachfolgend "Komplement-Region" genannt). Die Telomerase-Aktivität war abhängig von der RNA-Komponente, was durch Verdau der RNA mit nachfolgendem Verlust der Aktivität gezeigt werden konnte. Wurde die Telomerase-RNA in ihrer Komplement-Region mutiert, so wurden die entsprechenden Mutationen *in vivo* in die Telomere von *Tetrahymena* eingebaut (Yu *et al.*, 1990). Die Telomerase gehört demnach zur Klasse der RNA-abhängigen DNA-Polymerasen.

15

20

25

30

10

5

Die ersten Protein-Untereinheiten der *Tetrahymena*-Telomerase, p80 und p95, wurden 1995 identifiziert (Collins *et al.*, 1995). Die Beobachtung, daß p95 das Enzym an der DNA verankert und p80 die RNA-Komponente bindet, führte zu folgendem Modell: Die Telomerase-RNA lagert sich mit ihrer Komplement-Region an den einzelsträngigen 3'-Überhang an. Die Verlängerung des 3'-Überhangs geschieht durch Einbau der entsprechenden Nukleotide in 5'-3'-Richtung. Die *de novo*-Synthese von Telomeren beinhaltet wahrscheinlich einen Elongations- und einen Translokationsschritt. Ist eine Telomersequenz synthetisiert worden, bewegt sich die Telomerase vermutlich an der DNA entlang, bis sie wieder in einer Position ist, um eine vollständige Telomersequenz hinzuzufügen. Dieses Modell muß nicht allgemeingültig sein, denn zwischen Telomerasen unterschiedlicher Spezies bestehen große Unterschiede in der Anzahl der Nukleotide, die das Enzym addiert bevor es vom Telomer dissoziiert (Prowse *et al.*, 1993).

Darüberhinaus wurden kürzlich auch Telomerase-Untereinheiten anderer Organismen identifiziert. In dem Ciliaten *Euplotes aediculatus* wurden zwei Protein-Untereinheiten, p123 und p43, gefunden, welche keine Homologie zu den *Tetrahymena*-Telomerase-Proteinen zeigen. Die Telomerase-Untereinheit p123 weist an ihrem N-Terminus eine

WO 98/59040 PCT/EP98/03468 - 4 -

basische Domäne und am C-Terminus eine Domäne für eine Reverse Transkriptase (RT) auf, was auf eine katalytische Funktion dieses Proteins hindeutet (Lingner *et al*, 1997). Darüberhinaus wurde eine signifikante Homologie von p123 zu dem von Lundblad gefundenen Protein Est2 aus *Saccharomyces cerevisiae* beschrieben (Lingner *et al.*, 1997).

5

10

15

20

25

30

Während für p80 und p95 bisher keine essentielle Funktion für die Telomeraseaktivität nachgewiesen wurde, konnte für die potentiellen katalytischen Untereinheiten der Telomerase p123/est2p eindeutig eine Schlüsselfunktion aufgezeigt werden: Eine Mutation des RT-Aktivitätzentrums von est2p führte zu einer signifikanten Verkürzung der Telomere in Hefezellen (Lingner *et al.*, 1997).

Telomerase-Komponenten aus Säugerzellen

Inzwischen wurden die RNA-Komponenten der Telomerasen von verschiedenen Organismen, unter anderem von Saccharomyces cerevisiae, Mäusen und Menschen (Singer und Gottschling, 1994; Blasco et al., 1996; Feng et al., 1995), kloniert. Alle bislang bekannten Telomerase-RNAs enthalten eine Region, die komplementär zu der Telomersequenz des jeweiligen Organismus ist. Die Primärsequenz der humanen Telomerase-RNA (hTR) weist jedoch keine Ähnlichkeiten mit den RNA-Komponenten der Ciliaten oder Saccharomyces cerevisiae auf. Dagegen existieren konservierte Bereiche zwischen der humanen und der murinen Telomerase-RNA (Feng et al., 1995).

Vor kurzem wurde die Isolation eines humanen Telomerase-assoziertes Proteins (hTP1) beschrieben (Harrington et al., 1997). Das korrespondierende Gen wurde aufgrund seiner Homologie zu der Tetrahymena Telomerase Untereinheit p80 in einer nicht der Allgemeinheit zugänglichen EST Datenbank gefunden (Harrington et al., 1997). hTP1 ist aus 2627 Aminosäuren zusammengesetzt und zeigt im N-Teminus drei Domänen, welche maximal zu 46% homolog zu p80 sind. Als weiteres Strukturelement konnten im C-terminalen Bereich 16 Wiederholungen aus den Aminosäuren Tryptophan und Asparagin aufgezeigt werden, die vermutlich eine Protein-Protein Interaktion vermitteln.

Aktivierung der Telomerase in menschlichen Tumoren

Eine Aktivität der Telomerase konnte in Menschen ursprünglich nur in Keimbahnzellen, nicht aber in normalen somatischen Zellen (Hastie et al., 1990; Kim et al., 1994) nachgewiesen werden. Nach der Entwicklung eines sensitiveren Nachweisverfahrens (Kim et al., 1994) wurde auch in hematopoietischen Zellen eine geringe Telomeraseaktivität detektiert (Broccoli et al., 1995; Counter et al., 1995; Hiyama et al., 1995). Allerdings wiesen diese Zellen trotzdem eine Reduktion der Telomere auf (Vaziri et al., 1994; Counter et al., 1995). Noch ist nicht geklärt, ob die Menge an Enzym in diesen Zellen nicht ausreichend für eine Kompensation des Telomerverlustes ist, oder ob die gemessene Telomerase-Aktivität von einer Subpopulation, z.B. unvollständig ausdifferenzierten CD34⁺38⁺-Vorläuferzellen, herrührt (Hiyama et al., 1995). Zur Klärung wäre ein Nachweis der Telomerase-Aktivität in einer einzelnen Zelle nötig.

Interessanterweise wurde jedoch in einer großen Zahl der bislang getesteten Tumorgeweben eine signifikante Telomerase-Aktivität nachgewiesen (1734/2031, 85%; Shay, 1997), während in normalem somatischen Gewebe keine Aktivität gefunden wurde (1/196, <1%, Shay, 1997). Verschiedene Untersuchungen zeigten außerdem, daß in seneszenten Zellen, die mit viralen Oncoproteinen transformiert wurden, die Telomere weiterhin schrumpften und Telomerase nur in der Subpopulation entdeckt werden konnte, die die Wachstumskrise überlebte (Counter et al., 1992). In diesen immortalisierten Zellen waren auch die Telomere stabil (Counter et al., 1992). Ähnliche Befunde aus Untersuchungen an Mäusen (Blasco et al., 1996) stützen die Annahme, daß eine Reaktivierung der Telomerase ein spätes Ereignis in der Tumorgenese ist.

25

30

5

10

15

20

Basierend auf diesen Ergebnissen wurde eine "Telomerase-Hypothese" entwickelt, die den Verlust von Telomersequenzen und Zellalterung mit der Aktivität von Telomerase und der Entstehung von Krebs verbindet. In langlebigen Spezies wie dem Menschen kann das Schrumpfen der Telomere als ein Mechanismus zur Tumorsuppression angesehen werden. Ausdifferenzierte Zellen, die keine Telomerase enthalten, stellen bei einer bestimmten Länge der Telomere ihre Zellteilung ein. Mutiert eine solche Zelle, so kann aus ihr nur dann ein Tumor entstehen, wenn die Zelle ihre Telomere verlängern kann. Ansonsten würde die Zelle

WO 98/59040 PCT/EP98/03468

weiterhin Telomersequenzen verlieren, bis ihre Chromsomen instabil werden und sie schließlich zugrunde geht. Die Reaktivierung der Telomerase ist vermutlich der Hauptmechanismus von Tumorzellen zur Stabilisation ihrer Telomere.

5

10

15

Aus diesen Beobachtungen und Überlegungen ergibt sich, daß eine Inhibition der Telomerase eine Therapie von Tumoren erlauben sollte. Konventionelle Krebstherapien mit Zytostatika oder kurzwelligen Strahlen schädigen nicht nur die Tumorzellen, sondern alle sich teilenden Zellen des Körpers. Da aber außer Tumorzellen nur Keimbahnzellen eine signifikante Telomerase-Aktivität enthalten, würden Telomerase-Inhibitoren spezifischer die Tumorzellen angreifen und somit weniger unerwünschte Nebenwirkungen hervorrufen. In allen bislang getesteten Tumorgeweben wurde eine Telomerase-Aktivität nachgewiesen, so daß diese Therapeutika gegen alle Krebsarten eingesetzt werden könnten. Die Wirkung von Telomerase-Inhibitoren würde dann eintreten, wenn die Telomere der Zellen sich soweit verkürzt haben, daß das Genom instabil wird. Da Tumorzellen meist kürzere Telomere aufweisen als normale somatische Zellen, würden zuerst Krebszellen durch Telomerase-Inhibitoren eliminiert werden. Zellen mit langen Telomeren, wie die Keimzellen, würden dagegen erst viel später geschädigt werden. Telomerase-Inhibitoren stellen somit einen zukunftsweisenden Weg für die Therapierung von Krebs dar.

- Eindeutige Antworten auf die Frage nach der Art und den Angriffspunkten physiologischer Telomerase-Inhibitoren werden aber erst möglich sein, wenn auch die Proteinstrukturen des Enzyms mit ihren Funktionen identifiziert und die Erkenntnisse über verschiedene Telomerbindende Proteine vertieft sind.
- Die Erfindung betrifft die katalytisch aktive humane Telomerase-Untereinheit (phTC) gegebenenfalls in aufgereinigter Form, aktive Teile des Proteins, Modulatoren, insbesondere Agonisten des Proteins, die Funktion des Proteins imitierende Substanzen sowie Kombinationen aus diesen Komponenten.

10

15

20

25

Die Erfindung betrifft weiterhin:

- Die Nucleinsäuresequenz, die für das humane Protein phTC kodiert, im einzelnen:
- 5 die genomische Sequenz des hTC-Gens,
 - die cDNA-Sequenz des hTC-Gens,
 die DNA-Sequenz von hTC-Varianten
 - die Sequenz der mRNA, die vom hTC Gen transkribiert wird,
 - Teile aus den oben genannten Sequenzen, darunter die in der Fig. 1 gezeigte DNA Sequenz (SEQ ID No. 1) von hTC.
 - Die Nucleinsäuresequenzen, die in anderen Säugern für dem hTC homologe Proteine kodieren, im einzelnen:
 - die genomischen Sequenzen hTC-homologer Gene,
 - die cDNA-Sequenzen hTC-homologer Gene,
 - die Sequenzen der mRNAs, die von hTC-homologen Genen transkribiert werden,
 - Teile aus den oben genannten Sequenzen.
 - Nucleinsäuresequenzen, die für dem Protein phTC verwandte Proteine im Menschen und anderen Säugern kodieren, im einzelnen:
 - die genomischen Sequenzen hTC-verwandter Gene in Mensch und anderen Säugern,
 - die cDNA-Sequenzen hTC-verwandter Gene in Mensch und anderen Säugern,
 - die Sequenzen der mRNAs, die von hTC-verwandten Genen transkribiert werden in Mensch und anderen Säugern,
- Teile aus den oben genannten Sequenzen.

WO 98/59040 PCT/EP98/03468

- 8 -

- Das oben beschriebene phTC Protein, isoliert aus Säugerzellen (vgl. Fig. 2 und SEQ ID No. 2).
- Das phTC Protein, markiert mit einem Nachweis-Reagenz, wobei das Nachweis-Seagenz bevorzugt ein Enzym, ein radioaktiv markiertes Element oder eine fluoreszierende Chemikalie ist.
 - Einen Antikörper, der gegen das phTC Protein gerichtet ist.

15

20

25

30

Gemäß einer bevorzugten Ausführungsform ist dies ein polyklonaler Antikörper.

Gemäß einer weiteren bevorzugten Ausführungsform ist dies ein monoklonaler Antikörper.

Solche Antikörper können beispielsweise produziert werden durch die Injektion eines substantiell immunkompetenten Wirts mit einer für die Antikörper-Produktion effektiven Menge eines phTC Polypeptids oder eines Fragments davon und durch nachfolgende Gewinnung dieses Antikörpers.

Weiterhin läßt sich in an sich bekannter Weise eine immortalisierte Zellinie erhalten, die monoklonale Antikörper produziert.

Die Antikörper können gegebenenfalls mit einem Nachweisreagenz markiert sein.

Anstelle des vollständigen Antikörpers können auch Fragmente eingesetzt werden, die die gewünschten spezifischen Bindungseigenschaften besitzen.

Bevorzugte Beispiele für ein solches Nachweis-Reagenz sind Enzyme, radioaktiv markierte Elemente, fluoreszierende Chemikalien oder Biotin.

- 9 -

Oligonukleotide in aufgereinigter Form mit einer Sequenz, die identisch oder exakt komplementär ist zu einer 10 bis 500 Nukleotide langen, zusammenhängenden Sequenz der oben beschriebenen genomischen DNA, cDNA oder mRNA.

Ein solches Oligonukleotid kann insbesondere ein Oligodesoxyribonucleotid oder ein Oligoribonucleotid oder eine Peptidnukleotidsäure (PNA) sein

Bevorzugt sind Oligonukleotide, welche die Aktivität der Telomerase inhibieren, reprimieren oder blockieren, wenn sie an die hTC mRNA binden.

10

5

Eine DNA Sequenz oder eine degenerierte Variation dieser Sequenz, die das Protein phTC oder ein Fragment dieses Proteins kodiert, gegebenenfalls enthaltend die DNA Sequenz aus Abbildung 1, oder DNA Sequenz, die mit der vorgehend aufgeführten DNA Sequenz unter Standard-Hybridisierungsbedingungen hybridisiert.

15

- Ein rekombinantes DNA Molekül, das eine DNA Sequenz oder eine degenerierte Variation dieser Sequenz beinhaltet, die phTC oder ein Fragment von phTC kodiert, wobei letztere Sequenz bevorzugt die DNA Sequenz aus Abbildung 1 enthält, oder das eine solche DNA Sequenz beinhaltet, die mit der vorgehend aufgeführten DNA Sequenz unter Standard-Hybridisierungsbedingungen hybridisiert.

20

Bevorzugt ist in dem oben genannten rekombinanten DNA Molekül die beschriebene DNA mit einer Expressions-Kontrollsequenz verbunden.

25

30

Besonders bevorzugt als Expressions-Kontrollsequenz sind z.B. der frühe oder späte Promotor des SV40- oder Adenovirus, das lac System, das trp System, das TAC System, das TRC System, die Haupt-Operator- und Promotorregionen des Phagen λ , die Kontrollregionen des fd Hüllproteins, der Promotor der 3-Phospoglycerat Kinase, der Promotor der Sauren Phosphatase und der Promotor des α -Mating Faktors der Hefe.

- 10 -

- Einen einzelligen Wirt, der mit einem oben beschriebenen rekombinanten DNA Molekül transformiert wurde, das die DNA Sequenz oder eine degenerierte Variante dieser Sequenz enthält, die für das phTC Protein oder einen Teil dieses Protein kodiert. In diesem rekombinanten DNA-Molekül ist die besagte DNA Sequenz mit einer Expressions-Kontrollsequenz verknüpft.

Bevorzugte Beispiele für den einzelligen Wirt sind: *E. coli, Pseudomonas, Bacillus, Streptomyces*, yeasts, CHO, R1.1, B-W, L-M, COS 1, COS 7, BSC1, BSC40 und BMT10 Zellen, Pflanzenzellen, Insektenzellen und Säugerzellen in Zellkultur.

10

5

- Einen rekombinanten Virus, der mit einem der vorstehend beschriebenen DNA Moleküle oder einem Derivat oder Fragment dieses Moleküls transformiert wird.
- Eine Methode zur Inhibition der Telomeraseaktivität in humanen Zellen, bevorzugt neoplastische Zellen, bei der ein exogenes Polynukleotid in die Zellen transferiert wird, das aus einer Transkriptionseinheit besteht. Diese Transkriptionseinheit beinhaltet eine Polynukleotidsequenz aus mindestens 29 aufeinanderfolgenden Nukleotiden, die substantiell identisch oder substantiell komplementär zur hTC RNA Sequenz ist und die mit einer heterologen Transkriptions-regulatorischen Sequenz verknüpft ist, die die Transkription des verknüpften Polynukleotids in besagten Zellen steuert.

Bevorzugt enthält die oben genannte heterologe Transkriptions-regulatorische Sequenz einen Promotor, der in humanen Zellen konstitutiv aktiv ist.

25

30

Alternativ kann die heterologe Transkriptions-regulatorische Sequenz einen Promotor enthalten, der in humanen Zellen durch Zugabe einer regulatorischen Substanz induziert oder reprimiert werden kann. Dazu zählen beispielsweise induzierbare und reprimierbare Tetrazyklin-abhängige Promotoren, Heatshock-Promotoren, Metallionen-abhängige Promotoren.

5

20

25

30

Das obengenannte exogene Polynukleotid kann beispielsweise ein virales Genom mit einer Transkriptionseinheit aus der humanen hTC DNA-Komponente sein.

Besonders bevorzugt produziert die besagte Transkriptionseinheit antisense RNA, die substantiell komplementär zur humanen hTC RNA-Komponente ist.

Weiterhin besonders bevorzugt kann das exogene Polynukleotid die Sequenz aus Abb. 1 enthalten.

- Ein Polynukleotid für die Gentherapie einer menschlichen Krankheit. Dieses Polynukleotid besteht aus einer Transkriptionseinheit, die eine Polynukleotidsequenz aus mindestens 9 aufeinanderfolgenden Nukleotiden enthält, die substantiell identisch oder substantiell komplementär zur hTC RNA Sequenz ist und die mit einer heterologen Transkriptions-regulatorischen Sequenz verknüpft ist, die die Transkription des verknüpften Polynukleotids in besagten Zellen steuert.
 - Eine Methode zur Detektion Telomerase-assoziierter Zustände in einem Patienten, die folgende Schritte umfaßt:
 - A. Detektion des phTC Proteins in Körperflüssigkeiten oder zellulären Proben, um einen diagnostischen Wert zu erhalten;
 - B. Vergleich des diagnostischen Werts mit Standardwerten für das phTC Protein in standardisierten normalen Zellen oder Körperflüssigkeiten des gleichen Typs wie die Testprobe;
 - C. Detektion diagnostischer Werte, die höher oder niedriger als Standardvergleichswerte liegen, indizieren einen Telomerase-assoziierten Zustand, der wiederum einen pathogenen Zustand indiziert.

Bevorzugt wird diese Methode eingesetzt zur Detektion einer neoplastischen Erkrankung eines Patienten. Die Methode umfaßt dann folgende Schritte:

WO 98/59040 PCT/EP98/03468

- 12 -

- A. Detektion des phTC Proteins in zellulären Proben, um einen diagnostischen Wert zu erhalten;
- B. Vergleich des diagnostischen Werts mit Standardwerten für das phTC Protein in nicht-neoplastischen Zellen des gleichen Typs wie die Testprobe;
- C. Diagnostische Werte, die deutlich höher als Standardvergleichswerte liegen, indizieren einen neoplastischen Zustand.
- Eine Methode zur Bestimmung der Gegenwart des phTC Proteins in einer Zelle oder zellulären Probe, die auf der Amplifikation eines hTC-Polynukleotids oder Hybridisierung eines hTC-Polynukleotids, Primers oder einer hTC komplementären Sequenz mit einem hTC Polynukleotid beruhen.

5

15

20

25

30

- Ein Testkit zum Nachweis von phTC in zellulären Proben und Körperflüssigkeiten, wobei markierte, immunchemisch-reaktive Komponenten beispielsweise sein können: polyklonale Antikörper gegen phTC, monoklonale Antikörper gegen phTC, Fragmente dieser Antikörper oder einem Gemisch aus diesen Komponenten.
 - Eine Methode zur Verhinderung und/oder Behandlung zellulärer (Zer-) Störung und/oder Fehlfunktion und/oder anderer Krankheitsbilder im Menschen, die auf der Gabe einer therapeutisch effektiven Menge an katalytisch aktiver humaner Telomerase, ihrer funktionellen Äquivalente oder ihrer katalytisch aktiven Fragmente beruht. Ebenfalls denkbar ist der Einsatz einer Substanz, die die Produktion und/oder Aktivität von phTC fördert; eine Substanz, die die Aktivität von phTC imitieren kann; einer Substanz, die die Produktion und/oder Aktivität von phTC inhibieren kann oder eines Gemisches dieser Substanzen. Weiterhin kann ein spezifischer Bindungspartner eingesetzt werden.

Bevorzugt wird die Methode eingesetzt zur Verhinderung oder Behandlung der Alterung oder von Krebserkrankungen.

Substanzen, die die Aktivität von phTC beeinflussen, d.h. inhibieren oder fördern, können, werden hier als Modulatoren bezeichnet. Solche Modulatoren können in an

sich bekannter Weise gefunden werden, wenn man in einem Telomerase-Assay ihren Einfluß auf die Telomerase-Aktivität prüft. Beispiele für Telomerase-Assays sind im Rahmen von Beispiel 15 angegeben.

Modulatoren der phTC sind interessant zur Behandlung von Krankheiten, die mit Telomerase in Zusammenhang stehen. Insbesondere seien hier die Verhinderung oder Behandlung von Alterungsprozessen oder von Krebserkrankungen genannt.

- Eine antisense-Nukleinsäure gegen die hTC mRNA, die eine Nukleotidsequenz enthält, die mit besagter mRNA hybridisiert, wobei die antisense-Nukleinsäure eine RNA oder eine DNA ist.

Bevorzugt bindet die antisense-Nukleinsäure an das Start-Kodon der jeweiligen mRNAs.

- Ein rekombinantes DNA Molekül mit einer DNA Sequenz, von der bei der Transkription eine antisense-Ribonukleinsäure gegen die hTC mRNA produziert wird. Diese besagte antisense-Ribonukleinsäure enthält eine Nukleinsäuresequenz, die mit der besagten hTC mRNA hybridisieren kann.

Ein solches DNA-Molekül kann zur Herstellung einer Zellinie mit reduzierter Expression von phTC eingesetzt werden, indem man eine phTC-produzierende Zellinie mit diesem rekombinanten DNA Molekül transfiziert.

25 - Ein Ribozym, das die hTC mRNA spaltet.

10

15

20

Bevorzugt ist dies ein *Tetrahymena*-Typ Ribozym oder ein Hammerhead-Typ Ribozym.

 Ein rekombinantes DNA Molekül mit einer DNA Sequenz, deren Transkription zur Produktion eines solchen Ribozyms führt. 5

20

Dieses rekombinante DNA-Molekül kann eingesetzt werden um eine phTC-produzierende Zellinie zu transfizieren.

- Eine Zusammenstellung, bestehend aus einem Paar von humanen hTC Polynukleotid-PCR Primern, wobei die Primer bevorzugt aus Sequenzen bestehen, die mit der Sequenz der humanen hTC mRNA korrespondieren oder zu dieser Sequenz komplementär sind.
- Eine Zusammenstellung, die eine Polynukleotid-Hybridisierungssonde für das humane hTC Gen enthält, wobei die Sonde bevorzugt mindestens 29 aufeinanderfolgende Nukleotide enthält, die mit der Sequenz des humanen hTC Gens korrespondieren oder zu dieser komplementär sind.
- Tiermodelle, mit denen die Telomerase/Telomer-Regulation *in vivo* untersucht werden kann. So können z.B. mit Knockout- oder transgenen Tieren Tumorentstehung und Alterung direkt untersucht werden.

Funktionelle Äquivalente sind im Fall von Proteinen oder Peptiden solche Verbindungen, die sich zwar hinsichtlich der Aminosäuresequenz unterscheiden können, aber im wesentlichen dieselben Funktionen haben.

Bekannte Beispiele hierfür sind Isoenzyme bzw. sogenannte Mikroheterogenitäten bei Proteinen.

- Im Fall der Oligo- oder Polynucleinsäuren sollten unter funktionellen Äquivalenten solche Verbindungen verstanden werden, die sich in der Nucleotid-Sequenz unterscheiden, aber für das selbe Protein codieren. Dies ist z.B. auf den degenerierten genetischen Code zurückzuführen.
- 30 Erläuterung der Abbildungen:

- 15 -

Fig. 1: cDNA Sequenz der humanen katalytischen Telomerase-Untereinheit (hTC) (SEQ ID No. 1).

Fig. 2: Abgeleitete Aminosäuresequenz von der in Fig.1 dargestellten hTC DNA Sequenz (SEQ ID No. 2).

5

15

20

25

30

Die in Fig. 1 dargestellte DNA Sequenz läßt sich von Position 64 bis Position 3461 vollständig in eine Aminosäuresequenz translatieren. Die Aminosäurereste sind entsprechend ihrem Einbuchstabencode dargestellt.

Fig. 3: Ethidiumbromid-gefärbtes Agarosegel mit unterschiedlich vorbehandelter DNA von AA281296.

Die Abbildung zeigt ein Ethidiumbromid-gefärbtes 0,8%iges Agarosegel. In den Spuren 1 und 8 sind zwei verschiedene DNA Größenstandards aufgetragen, wobei die DNA Fragmentlängen 3, 2, 0.5 und 0.4 kb hervorgehoben sind. Die AA281296 DNA in pT7T3D wurde mit den Restriktionsenzymen Eco RI /Not I (Spur 3), Pst I (Spur 6) und Xho 1 (Spur 7) verdaut. Auf die Spur 2 wurde unverdaute DNA von AA281296 in pT7T3D aufgetragen. In den Spuren 4 und 5 wurde 1/10 eines PCR-Ansatzes (1 Minute 94°C, 2 Minuten 60°C, 3 Minuten 72°C) mit der hTC cDNA in pT7T3D und den Primern 1 (5' GAGTGTGTACGTC-GTCGAGCTGCTCAGGTC 3') und 4 (5' CACCCTCGAGGTGAGACGCTCGGCC 3') [Spur 4] bzw. mit den Primern 6 (5' GCTCGTAGTTGAGCACGCTGAACAGTG 3') und 7 (5' GCCAAGTTCCTGCACTGGCTGATGAGCACGCTGAACAGTG 3') und 7 (5' GCCAAGTTCCTGCACTGGCTGATGAGCACGCTGAACAGTG 3') spuliziert.

Fig. 4: Ausschnitt aus einem Proteinsequenzvergleich der katalytischen Telomerase-Untereinheiten von *Euplotes* p123 (p123) und Mensch (phTC).

Die Bedingungen (Ktuple, Gap Penalty und Gap Length Penalty) für den in dieser Abbildung dargestellten Lipman-Pearson Proteinvergleich mit der Lasergene Programmsoftware (Dnastar, Inc.) sind aufgelistet. Die Aminosäurereste sind entsprechend ihrem Einbuchstabencode dargestellt. Die zwischen p123 von *Euplotes aediculatus* und dem identifizierten EST+1 identischen Aminosäuren sind ebenfalls durch den entsprechenden Buchstaben aus dem Einbuchstabencode hervorgehoben.

Nicht identische, aber in der Funktion ähnliche oder vergleichbare Aminosäuren sind durch ein: gekennzeichnet.

Fig. 5: Ausschnitt aus einem Proteinsequenzvergleich der katalytischen Telomerase-Untereinheiten von *Euplotes* p123 (p123), und Hefe (est2p).

Die Bedingungen (Ktuple, Gap Penalty und Gap Length Penalty) für den in dieser Abbildung dargestellten Lipman-Pearson Proteinvergleich mit der Lasergene Programmsoftware (Dnastar, Inc.) sind aufgelistet. Die Aminosäurereste sind entsprechend ihrem Einbuchstabencode dargestellt. Die zwischen p123 von Euplotes aediculatus und est2p von Hefe identischen Aminosäuren sind ebenfalls durch den entsprechenden Buchstaben aus dem Einbuchstabencode hervorgehoben. Nicht identische, aber in der Funktion ähnliche oder vergleichbare Aminosäuren sind durch ein: gekennzeichnet.

Fig. 6: Ausschnitt aus einem Proteinsequenzvergleich der katalytischen Telomerase-Untereinheiten von Hefe (est2p) und Mensch (phTC).

Die Bedingungen (Ktuple, Gap Penalty und Gap Length Penalty) für den in dieser Abbildung dargestellten Lipman-Pearson Proteinvergleich mit der Lasergene Programmsoftware (Dnastar, Inc.) sind aufgelistet. Die Aminosäurereste sind entsprechend ihrem Einbuchstabencode dargestellt. Die zwischen est2p von Hefe und dem identifizierten EST+1 identischen Aminosäuren sind ebenfalls durch den entsprechenden Buchstaben aus dem Einbuchstabencode hervorgehoben. Nicht identische, aber in der Funktion ähnliche oder vergleichbare Aminosäuren sind durch ein: gekennzeichnet.

25

30

5

10

15

20

Fig. 7: Ausschnitt aus einem Proteinsequenzvergleich der katalytischen Telomerase-Untereinheiten von *Euplotes* p123 (p123), Hefe (est2p) und Mensch (phTC).

Der in der Fig. 5 dargestellte Vergleich zwischen *Euplotes* p123 (p123), Hefe (est2p) und Mensch (phTC) wurde mit dem Clustal Method Subprogramm der Lasergene Programmsoftware (Dnastar, Inc.) unter Standardtbedingungen durchgeführt. Die Aminosäurereste sind entsprechend ihrem Einbuchstabencode dargestellt. Die zwischen est2p von Hefe, p123 von *Euplotes aediculatus* und dem

identifizierten EST₊₁ identischen Aminosäuren sind ebenfalls durch den entsprechenden Buchstaben aus dem Einbuchstabencode hervorgehoben. Zusätzlich sind die Bereiche, die zwischen allen drei Proteinen identisch sind, durch einen hellgrauen Balken oberhalb der Proteinsequenz gekennzeichnet.

5

- Fig. 8: Generierte DNA Sequenz aus Beispiel 6 (RACE Runde 1) (SEQ ID No. 3).
- Fig. 9: Generierte DNA Sequenz aus Beispiel 6 (RACE Runde 2) (SEQ ID No. 4).
- Fig. 10: Generierte DNA Sequenz aus Beispiel 6 (RACE Runde 3) (SEQ ID No. 5).
 - Fig. 11: Generierte DNA Sequenz aus Beispiel 8 (RACE Runde 3) (SEQ ID No. 6).

15

Fig. 12: Übersicht zur Klonierung der vollständigen hTC cDNA. Die Positionen der Startund Stopcodons sind mit Pfeilen gekennzeichnet. Die schwarzen Bereiche der Rechtecke symbolisieren für Protein kodierende Sequenzabschnitte, während die hellgrauen Bereiche 5' und 3' untranslatierte cDNA Regionen symbolisieren bzw. für Intronsequenzen stehen. Die dunkelgrauen Blöcke im Rechteck für die Full length cDNA stehen entweder für das Telomerase-spezifische Motiv (T), oder für die sieben Reverse Transkriptase Motive (Nummer 1-7).

20

25

Die DNA-Fragmente, die zur Darstellung der vollständigen hTC cDNA notwendig sind, sind ebenfalls als Rechtecke dargestellt und entsprechend ihrer Herkunft gekennzeichnet. Alle Rechtecke sind in ihrer Position relativ zueinander angeordnet. Die Herkunft des DNA-Fragments, für das das Rechteck AA261296 steht, ist in Beispiel 2 beschreiben. Die relative Position der 182 bp Deletion in diesem Fragment (vergleiche Beispiel 2) ist durch eine Lücke im Rechteck gekennzeichnet. Die Herkunft der DNA-Fragmente, für die die Rechtecke RACE1, RACE2 und RACE3 stehen, sind in Beispiel 6 beschreiben. Die Herkunft des DNA-Fragments, für das das Rechteck C5F-Fragment steht, ist in Beispiel 7 beschreiben. Die Herkunft des DNA-Fragments, für das das Rechteck Lambda12 steht, ist in Beispiel 9 beschreiben. Der 3' Teil in dem DNA-Fragment Lambda 12, der für eine nicht mit hTC in Verbindung stehende cDNA codiert (vergleiche Beispiel 9), ist in dieser Ab-

30

WO 98/59040 PCT/EP98/03468

- 18 -

bildung nicht dargestellt. Die vollständige hTC-cDNA Sequenz wurde unter Verwendung der in dieser Abbildung dargestellten DNA-Fragmente Lambda 12 und C5F an den 5' und 3' Splicestellen zusammengefügt (vergleiche Beispiel 7) Diese Splicestellen wurden in diversen Fragmenten identifiziert (RACE 1, RACE 3, Lambda 12 und C5F).

5

Fig. 13: Detailausschnitte aus einem Proteinsequenzvergleich der katalytischen Telomerase-Untereinheiten von *Euplotes* und Mensch (hTC).

10

Die Abbildung zeigt Ausschnitte aus einem Proteinsequenzvergleich zwischen den katalytischen Telomerase-Untereinheiten von *Euplotes* und Mensch (hTC). In den umrandeten Boxen sind die Motive für die Reverse Transkriptase hervorgehoben. Die Ziffern unter den Umrandungen beziehen sich auf die jeweilige Aminosäureposition in der Fig. 2. Die Aminosäurereste sind entsprechend ihrem

Einbuchstabencode dargestellt. Identische Aminosäuren sind fett gedruckt.

15

Konsensussequenz für das Reverse Transkriptase (RT consensus)-Motiv steht h für eine hydrophobe Aminosäure und p bezeichnet eine polare Aminosäure Sind diese

Gruppen von Aminosäuren in der Aminosäuresequenz von Euplotes und hTC

erhalten, sind p bzw. h fettgedruckt. Sehr hoch konservierte Aminosäuren sind grau

unterlegt. In RT3 ist die umrandete Box erweitert, um zusätzliche homologe

Aminosäuren zu erfassen. Das Telomerase-spezifische Motiv ist in Beispiel 9

beschrieben.

20

Fig. 14: Generierte DNA-Sequenz aus Beispiel 11 (3' Variante) (SEQ ID No. 7). Der nicht zu der in Fig. 1 dargestellten DNA-Sequenz homologe Bereich ist fett hervorgehoben.

25

Fig.15: hTC Expression in Krebszellinien und in normalem humanen Gewebe. Abb. A: Auf dem Northern-Blot wurden nach Angaben des Herstellers (Fa. Clontech) etwa 2 μg poly A⁺ RNA aus verschiedenen humanen Zellinien immobilisiert. Im einzelnen stammte die RNA aus einem Melanom (G361), einem Lungenkarzinom (A549), aus einem Adenokarzinom des Kolons (SW480), aus einem Burkitt Lymphom Raji, aus einer Leukämie Zellinie (MOLT-4), aus einer chronischen Leukämie Zellinie (K-

30

5

10

15

20

25

30

562), aus einem Cervixtumor (HeLa) und aus der Leukämie Zellinie HL60. Die gekennzeichneten 4,4 kb, 6 kb und 9,5 kb Transkripte sind spezifisch für hTC (vergleiche Beispiel 10). Abb. B: Auf dem Northern-Blot wurden nach Angaben des Herstellers (Fa. Clontech) etwa 2 μg poly A⁺ RNA aus verschiedenen humanen Geweben immobilisiert. Im einzelnen wurde die RNA aus Herz, Gehirn, Plazenta, Lunge, Leber, Skelettmuskulatur, Niere und Pankreas isoliert. Ein RNA-Größenstandard ist dargestelt.

Fig. 16; Western-Blot Analyse der Kaninchenseren gegen Peptide aus der humanen Telomerase-Aminosäuresequenz (Beispiel 12). Jeweils 20 µl der bakteriellen Lysate aus Beispiel 13 wurden unter zuhilfenahme der Antiseren aus Beispiel 12 in einem Western-Blot (Ausubel et al., 1987) analysiert. In den Spuren 1, 2, 6 und 7 wurden Lysate aus Bakterien, die das pMALEST-Konstrukt beinhalten, aufgetragen. In den Spuren 3, 4, 8 und 9 wurden Lysate aus Bakterien, die das pMALA1-Konstrukt beinhalten, aufgetragen. In den Spuren 1, 3, 6 und 8 sind Lysate aus nicht mit IPTG (Isopropyl-beta-thiogalaktopyranosid) induzierten Bakterien aufgetragen. In den Spuren 2, 4, 7 und 9 sind Lysate aus mit IPTG induzierten Bakterien aufgetragen. In der Spur 5 wurde ein Standardgrößenmmarker (10 kDa Protein-Leiter der Firma Life Technologies, Kat. Nr. 10064-012) aufgetragen. Die 50 kDa- und 120 kDa-Banden sind am Rande der Membranen gekennzeichnet. Die PVDF-Membran in der Abb. A mit den Spuren 1 bis 4 wurde mit Preimmunseren gegen das Peptid B (vergleiche Beispiel 12) inkubiert. Die PVDF-Membran in Abb. B mit den Spuren 6 bis 9 wurde mit Preimmunseren gegen das Peptid C (vergleiche Beispiel 12) inkubiert. Die PVDF-Membran in der Abb. B mit den Spuren 1 bis 4 wurde mit Immunseren gegen das Peptid B (vergleiche Beispiel 12) inkubiert. Die PVDF-Membran in Abb. B mit den Spuren 6 bis 9 wurde mit Immunseren gegen das Peptid C (vergleiche Beispiel 12) inkubiert.

Fig. 17: Autoradiogramm von ³⁵S-markiertem, *in vitro* translatiertem Protein. In der Spur 1 wurde das vollständige *in vitro* translatierte hTC aufgetragen (vergleiche Beispiel 15). In der Spur 2 wurde eine C-terminal verkürzte Version von phTC aufgetragen. Die Spur 3 zeigt eine vom Hersteller (vergleiche Beispiel 15) gelieferte

Positivkontrolle für die *in vitro* Translation. Zur Abschätzung der Proteingrößen ist auf der rechten Seite ein Proteingrößenstandard gekennzeichnet.

Fig.18: Autoradiogramm von ³²P-markierten Produkten aus dem TRAP-Assay (vergleiche Beispiel 15). In den Spuren 1 und 2 wurde als Negativkontrolle ein TRAP-Assay Ansatz ohne Zugabe von Enzym oder Protein aufgetragen. In den Spuren 3 und 4 wurde als Positivkontrolle ein TRAP-Assay-Ansatz mit partiell aufgereinigter humaner Telomerase aus HeLa-Zellen aufgetragen. In den Spuren 5 und 6 wurde ein TRAP-Assay-Ansatz mit *in vitro* translatiertem phTC unverdünnt aufgetragen. In den Spuren 7 und 8 wurde ein TRAP-Assay Ansatz mit *in vitro* translatiertem phTC in einer 1:4 Verdünnung aufgetragen. In den Spuren 9 und 10 wurde ein TRAP-Assay Ansatz mit *in vitro* translatiertem phTC in einer 1:16 Verdünnung aufgetragen. In den Spuren 11 und 12 wurde als Negativkontrolle ein TRAP-Assay Ansatz mit *in vitro* translatierter Luziferase aufgetragen.

15

20

10

5

Fig. 19: Autoradiogramm von ³²P-markierten Produkten aus dem direkten Telomerase Assay (vergleiche Beispiel 15). In der Spur 1 wurde ein radioaktiv markierter 10 bp-Marker aufgetragen. In der Spur 2 wurde ein 5' radioaktiv markiertes Telomeroligonukleotid ([TTAGGG]₃) aufgetragen. Bei der Spur 3 handelt es sich um eine leere Spur. In der Spur 4 wurde als Positivkontrolle partiell aufgereinigte humane Telomerase aus HeLa-Zellen im direkten Assay verwendet und das Syntheseprodukt aufgetragen. In der Spur 5 wurde das *in vitro* translatierte phTC aus Beispiel 15 im direkten Assay verwendet und das Syntheseprodukt aufgetragen.

WO 98/59040

Beispiele

Beispiel 1

5

10

15

20

Es wird heute angenommen, daß weniger als 5 % des humanen Genoms tatsächlich transkribiert und in Protein translatiert werden. Durch die gezielte Untersuchung dieser kodierenden Genomanteile könnten bereits vor der kompletten Sequenzierung des Genoms wichtige Informationen über die 60 000 - 70 000 Gene in einer humanen Zelle gewonnen werden. Die Automatisierung der Hochdurchsatz-DNA-Sequenziertechnologie in den letzten 10 bis 15 Jahren ermöglichte es, viele cDNAs aus Plasmid-cDNA-Bibliotheken unterschiedlichsten Ursprungs zu sammeln und das jeweilige 5′- bzw. 3′-Ende zu sequenzieren. Diese typischerweise 300 bis 400 bp kurzen DNA-Sequenzen werden "Expressed Sequence Tags" oder kurz ESTs genannt und sind in verschiedenen spezialisierten Datenbanken zusammengefaßt. Der EST-Ansatz wurde zuerst von Okubo et al. (1992) beschrieben und von Adams et al. (1992) auf einen größeren Maßstab übertragen. Gegenwärtig sind etwa 50 000 Gene aus humanen Zellen teilweise sequenziert und als EST-Eintragung dokumentiert.

Durch den Vergleich mit DNA- und Aminosäuresequenzen bekannter Gene können verwandte, aber bislang unbekannte Gene in diesen EST-Datenbanken identifiziert werden (Gerhold and Caskey, 1996). Ein Suchalgorithmus, der sich hierfür besonders bewährt hat, ist das tBLASTn (Altschul *et al.*, 1990). Dieser Algorithmus translatiert jede DNA-Sequenz in der EST-Datenbank in alle sechs möglichen Leserahmen und vergleicht diese Aminosäuresequenzen mit der bekannten Proteinsequenz.

25

30

Mit der kürzlich publizierten Proteinsequenz für die katalytische Telomerase-Untereinheit aus *Euplotes aediculatus*, p123 (Lingner *et al.*, 1997), wurde die EST-Datenbank am National Center for Biotechnology Information (NCBI) durchsucht. Als Resultat wurde ein humaner EST mit der Accession Nummer AA281296 identifiziert, der im Leserahmen +1 eine signifikante Homologie zu p123 aufweist. Diese Aminosäuresequenz mit dem Leserahmen +1 wird im folgenden als EST₊₁ bezeichnet.

Die Homologie zwischen p123 und dem EST₊₁ ist am auffälligsten in zwei Sequenzbereichen, die durch 30 Aminosäuren getrennt sind. Der längere Sequenzbereich, der sich bei p123 von Aminosäure 438 bis 484 erstreckt, ist zu 38% identisch zu dem korrespondierenden Bereich im EST₊₁. Werden auch ähnliche Aminosäuren berücksichtigt, liegt die Übereinstimmung sogar bei 59%. Der zweite Homologieblock erstreckt sich im p123-Protein von Aminosäure 513 bis 530 und weist eine 44%ige Identität zu dem entsprechenden Sequenzabschnitt im identifizierten EST₊₁ auf. Unter Berücksichtigung von Aminosäureresten mit ähnlichen Eigenschaften findet sich eine Überstimmung von 61%.

5

10

15

20

Ein wichtiger Parameter zur Beurteilung einer BLAST-Suche ist der Wert P (Probability). P gibt an, mit welcher Wahrscheinlichkeit ein spezifisches Segmentpaar auch in einer BLAST-Suche mit einer Zufallssequenz gefunden würde und bewegt sich numerisch zwischen 0 (Resultat hoch signifikant) und 1 (Ergebnis ohne Bedeutung). So verlief z.B. der Vergleich des p123 Äquivalents aus Hefe (est2p) mit der NCBI-EST-Datenbank negativ: Der gefundene EST hatte eine Wahrscheinlichkeit von P=1 (Tab. 1). Dagegen weist das humane Telomerase- assoziierte Protein 1 (hTP1), das in einer der Allgemeinheit nicht zugänglichen EST-Datenbank gefunden wurde (Harrington *et al.*, 1997), eine Wahrscheinlichkeit von P=0.004 auf.

bekanntes Gen	P	identifiziertes Gen	Ursprung der cDNA Bi-
(Spezies)			bliothek
est2p (Saccharomyces cerevisiae)	0.999	Ratten EST	Niere
p80 (Tetrahymena termophilia)	0.004	hTP1 (Harrington et al., 1997)	Krypten des Darmepithels
p123 (Euplotes ae- diculatus)	3.5×10 ⁻⁰⁶	AA281296	Keimzentren der Tonsillen

Tab. 1: Vergleich dreier tBlastn-Suchläufe mit verschiedenen bekannten Genen.

Der durch den Vergleich mit p123 identifizierte humane EST AA281296 hat eine Wahrscheinlichkeit von P=3.5x10⁻⁰⁶.

Diese Daten legen nahe, daß der identifizierte EST aller Wahrscheinlichkeit nach für ein Fragment der katalytischen Untereinheit der humanen Telomerase kodiert. Daher wird das korrespondierende Gen im folgenden mit hTC (human Telomerase, catalytic) und das abgeleitete Protein mit phTC abgekürzt.

Beispiel 2

5

10

15

20

25

30

Der durch den Vergleich mit p123 identifizierte EST wurde am 2. April 1997 in die EST-Datenbank eingespeist und ist in keiner Zeitschrift publiziert. Die cDNA-Bibliothek, in welcher dieser EST-Klon vorliegt, wurde laut Angaben des National Center for Biotechnology Information wie folgt hergestellt:

Nach Präparation der mRNA aus den Keimzentren der Tonsillen wurde eine cDNA-Synthese durchgeführt und die doppelsträngigen cDNA-Fragmente gerichtet über die Restriktionsenzymschnittstellen Not I und Eco RI in den Vektor pT7T3D-Pac kloniert.

Die Sequenzierung der in die EST-Datenbank eingespeisten 389 bp erfolgte über den - 28m13 rev2-Primer der Firma Amersham (DNA-Sequenz siehe Fig. 1Position 1685 bis 2073).

Unter Verwendung der Lasergene Programmsoftware (Dnastar Inc.) wurde die DNA-Sequenz von EST AA281296 entsprechend des humanen genetischen Codes translatiert. Die resultierende Aminosäuresequenz (EST₊₁) enstpricht der Position 542 bis 670 in Fig. 2.

Die abgeleitete Proteinsequenz von EST₊₁ setzt sich aus 129 Aminosäuren zusammen, darunter 27 basische, 11 saure, 51 hydrophobe und 28 polare Aminosäurereste.

Der in Beispiel 1 identifizierte EST (AA 281296) wurde kommerziell von der Research Genetics, Inc. (Huntsville) in Form eines in *E. coli* transformierten Plasmids erworben und experimentiell analysiert:

WO 98/59040 PCT/EP98/03468

- 24 -

Wie in dem Ethidiumbromid-gefärbten Agarosegel der Fig. 3 gezeigt, wird nach Restriktionsverdau der hergestellten Plasmid DNA vom EST AA 281296 ein etwa 2,2 kb großes Fragment aus dem Vektor pT7T3D freigesetzt. Anhand einer parallel durchgeführten Polymeraseketten- (PCR) -Reaktion mit spezifischen internen Primern wurde der EST AA281296 überprüft. Die Länge der erwarteten PCR Produkte liegt bei 325 und 380 bp und stimmt mit der Länge der experimentell gefundenen Fragmente überein (vergl. Spur 4 und 5 in Fig.3). Damit konnte gezeigt werden, daß der vom Research Genetics, Int. (Huntsville) zugesandte E.coli-Klon den identifizierten EST als Plasmid beinhaltet.

10

15

5

Nach DNA-Präparation wurden die insgesamt 2176 bp des Inserts durch Doppelstrangsequenzierung identifiziert. Ein Sequenzvergleich des Klons AA281296 mit der DNA-Sequenz des C5F-Fragments (vergleiche Beispiel 7) ergab, daß eine 182 bp Deletion vorliegt (Position 2352 bis 2533, Fig. 1) und sich somit der offene Leserahmen in diesem Bereich verschiebt. Zusammenfassend setzt sich die DNA-Sequenz von Klon AA281296 somit aus den Sequenzinformationen der Fig. 1 (Position 1685 bis 2351 und Position 2534 bis 4042) zusammen.

Beispiel 3

20

25

Im tBLASTn Vergleich werden nur die Bereiche mit den höchsten Übereinstimmung zwischen p123 und EST+1 identifiziert (Aminosäuren 438-530, in p123), wogegen die dazwischenliegenden Aminosäuren nicht berücksichtigt werden. Um Aussagen über die Verwandtschaft der Proteinsequenzen über einen größeren Bereich (Aminosäuren 437-554, in p123) zu treffen, wurde ein "Lipman-Pearson Proteinvergleich" durchgeführt (siehe Fig. 4). Hierbei wurden 34% identische Aminosäuren bzw. 59% Aminosäuren, die entweder identisch oder biochemisch ähnlich sind, gefunden. Dieses Ergebnis zeigt, daß sich auch außerhalb der mit dem tBLASTn gefundenen Homologiebereiche die Verwandtschaft zwischen diesen Proteinen fortsetzt.

30

Wie kürzlich berichtet (Lingner et al., 1997), sind p123 aus Euplotes aediculatus und est2p aus Saccharomyces cerevisiae zueinander homolog. Um den Grad der Verwandtschaft

zwischen p123 und est2p ins Verhältnis zu der hier beschriebenen Homologie zwischen p123 und EST+1 zu stellen, wurde die oben beschriebene Region von p123 (Aminosäuren 437-554) mit Hilfe des Lipman-Pearson Proteinvergleichs unter Verwendung identischer Parameter auch mit est2p verglichen. Dabei zeigte sich, daß p123 und est2p in diesem ausgewählten Bereich zu 21% identisch sind bzw. 22% identische Aminosäuren oder biochemisch ähnliche Aminosäurereste aufweisen (siehe Fig. 5). Demnach ist die Homologie zwischen EST+1 und dem p123 von *Euplotes* signifikant höher als zwischen die p123 und est2p.

Beispiel 4

5

10

15

25

30

Die Homologie von p123 zu EST₊₁ und est2p legt die Schlußfolgerung nahe, daß alle 3 Proteine zur gleichen Proteinfamilie gehören. Um diese Annahme zu bestätigen, wurde est2p unter den in Beispiel 3 erwähnten Bedingungen mit EST₊₁ verglichen (siehe Fig. 6). Dabei zeigte sich, daß EST₊₁ 20% Identität zu est2p hat, also eine vergleichbare Homologie wie p123 zu est2p aufweist. Diese vergleichsweise geringe Übereinstimmung bestätigt auch den Befund, daß in der tBLASTn-Suche mit est2p kein signifikanter EST identifiziert wurde (siehe Beispiel 1).

20 Beispiel 5

Um für die Proteinfamilie der katalytischen Telomerase-Untereinheiten aus verschiedenen Spezies wichtige, unter Umständen funktionelle Domänen, zu identifizieren, wurde ein Computervergleich mit p123, est2p und phTC durchgeführt (siehe Fig. 7). Bei dieser Analyse fallen insbesondere zwei Bereiche auf, die in allen drei Proteinen enthalten sind (siehe Fig. 7). Dem Bereich, der bei p123 den Aminosäuren 447 bis 460 entspricht (Fig. 13, Telomerase Motiv) kann gegenwärtig keine eindeutige Funktion zugeordnet werden. Eine Motiv-Suche mit dem "Wisconsin Sequence Analysis Package" von der "Genetics Computer Group" (GCG) und eine Suche in einer Protein-Datenbank (Swissprot, Ausgabe vom 8.6.1997) ergaben keine signifikanten Erkenntnisse.

Dagegen weist ein zweiter, zwischen p123, est2p und phTC homologer Bereich, der bei p123 den Aminosäuren 512-526 entspricht, ein Konsensus-Motiv für eine Reverse Transkriptase (RT) auf (Fig. 7 und 13). Lingner *et al.* (1997) konnten zeigen, daß p123/est2p insgesamt 6 solcher RT-Motive enthalten, die für die katalytische Funktion von p123/est2p essentiell sind. Wie in Fig. 7 und 13 dargestellt, sind in der untersuchten Sequenz von phTC auch zwei solcher RT-Motive konserviert. Hierbei handelt es sich um die RT-Motive, welche bei p123/est2p am weitesten N-terminal lokalisiert sind (Lingner *et al.*, 1997).

Die Primärsequenzen von Reversen Transkriptasen sind stark divergent; nur wenige Aminosäuren sind innerhalb eines separaten Motivs vollständig konserviert (Poch *et al.*, 1989 und Xiong and Eickbush, 1990). Außerdem unterscheiden sich Reverse Transkriptasen, die von Retroviren oder Long Terminal Repeat (LTR) Retrotransposons kodiert werden, durch verschiedene Abstände zwischen den konservierten RT-Motiven von solchen Reversen Transkriptasen, die von Nicht-LTR Retrotransposons oder der Gruppe II Introns kodiert werden (Xiong and Eickbush, 1990). Entsprechend des Aufbaus ihrer RT-Motive sind p123, est2p und phTC letzterer RT-Gruppe zuzuordnen. Interessanterweise entsprechen dabei die Konsensussequenzen der RT-Motive in phTC am genauesten dem postulierten RT-Konsensus-Motiv: Von acht Aminosäureresten innerhalb der zwei RT-Motive sind bei phTC 6, bei p123 und est2p hingegen nur 5 Aminosäuren zu finden (Fig. 7 und 13). Auffällig sind hierbei insbesondere die hydrophoben Aminosäuren wie Leucin und Isoleucin sowie die Aminosäuren Lysin und Arginin in bestimmten Positionen (Fig. 7 und 13).

Zusammenfassend konnte hiermit auf deskriptiver Ebene gezeigt werden, daß der aufgrund seiner Homologie zu p123 identifizierte Klon AA281296 ein Fragment der katalytischen Untereinheit der humanen Telomerase darstellt.

Beispiel 6

5

10

15

20

25

Zur Klonierung des 5'-Endes der hTC-cDNA wurden zusätzlich zu dem in Beispiel 8 aufgeführten Homologiescreening drei aufeinanderfolgende RACE (rapid amplification of cDNA ends)-Reaktionen durchgeführt. Als cDNA-Quelle wurde Marathon-Ready cDNA

WO 98/59040 PCT/EP98/03468 - 27 -

(Fa. Clontech) aus der humanen Leukämiezellinie K562 bzw. aus humanem Testisgewebe eingesetzt. Nachfolgend ist die Durchführung sowie das Ergebnis der einzelnen RACE-Runden beschrieben.

Darüberhinaus wurden die Sequenzinformationen der RACE-Runden genutzt, um per PCR die Einzelfragmente als einen zusammenhängenden cDNA-Klon zu amplifizieren.

RACE-Runde 1:

- 10 In einem Endvolumen von 50 µl wurden 5 µl K562 Marathon-Ready cDNA (Fa. Clontech, Katalognummer 7441-1) mit 10 pmol dNTP-Mix versetzt und in 1 x Klen Tag PCR-Reaktionspuffer und 1 x Advantage Klen Tag Polymerase Mix (Fa. Clontech) eine PCR-Reaktion durchgeführt. Als Primer wurden 10 pmol des internen genspezifischen Primers GSP2 (5'-GCAACTTGCTCCAGACACTCTTCCGG-3') aus dem 5'-Bereich des hTC-15 **EST-Klons** sowie 10 des AP1 pmol Marathon Adaptor Primers CCATCCTAATACGACTCACTATAGGGC-3'; Fa. Clontech) zugefügt. Die PCR wurde in 4 Schritten durchgeführt. Nach einer einminütigen Denaturierung bei 94°C wurde über 5 Zyklen für 30 sec bei 94°C denaturiert und anschließend für 4 min bei 72°C die Primer angelagert und die DNA-Kette verlängert. Es folgten 5 Zyklen, bei denen für 30 sec die 20 DNA bei 94°C denaturiert wurde, die anschließende Primerverlängerung aber für 4 min bei 70°C erfolgte. Abschließend wurden dann 22 Zyklen durchgeführt, bei denen nach den 30 sec DNA-Denaturierung die Primeranlagerung und Kettenverlängerung für 4 min bei 68°C stattfand.
- Im Anschluß an diese PCR wurde das PCR-Produkt 1:50 verdünnt. Fünf μl dieser Verdünnung wurden in einer zweiten "nested" PCR zusammen mit 10 pmol dNTP-Mix in 1 x Klen Taq PCR-Reaktionspuffer und 1 x Advantage Klen Taq Polymerase-Mix sowie 10 pmol des Primers GSP2 und 10 pmol des "nested" Marathon Adaptor Primers AP2 (5'-ACTCACTATAGGGCTCGAGCGGC-3'; Fa. Clontech) eingesetzt. Die PCR-Bedingungen entsprachen den in der ersten PCR gewählten Parametern. Als einzige Ausnahme wurden im letzten PCR-Schritt statt 22 Zyklen nur 16 Zyklen gewählt.

- 28 -

Als Produkt dieser Nested-RACE-PCR wurde ein 1153 bp langes DNA-Fragment erhalten. Dieses wurde in den TA-Cloning Vektor pCR2.1 der Fa. InVitrogen kloniert und vollständig doppelsträngig sequenziert (Fig. 8 und SEQ ID No. 3).

Die Nukleotide 974 bis 1153 repräsentieren die in Fig. 1 dargestellte Nukleotidregion 1629 bis 1808 der hTC-cDNA. Bei dem von bp 1-973 reichenden Nukleotidbereich, der keine Homologie zu der in Fig. 1 gezeigten hTC-cDNA-Sequenz aufweist, handelt es sich um Intronsequenzen des hTC-Gens (Daten nicht gezeigt). Eine 3'-Splice-Konsensussequenz ist am Exon-Intron-Übergang zu finden. Die Präsenz von Intronsequenzen könnte auf unvollständig gesplicte mRNA als Ausgangssubstanz für die cDNA-Synthese zurückzuführen sein. Auch genomische DNA-Kontaminationen in der cDNA könnten das Auffinden von Intronsequenzen erklären.

RACE-Runde 2:

15

20

25

30

10

5

Basierend auf den Sequenzdaten der ersten RACE-Runde wurde eine zweite RACE mit dem genspezifischen Primer GSP5 aus der 5'-Region von RACE-Produkt 1 (5'-GGCAGTGACCAGGAGGCAACGAGAGG-3') sowie dem AP1-Primer durchgeführt. Als cDNA-Quelle wurde Marathon-Ready cDNA aus humanem Testis (Fa. Clontech; Katalognummer 7414-1) verwendet. Es wurden gleiche PCR-Bedingungen wie bei der 1. PCR in RACE-Runde 1 gewählt. Auch in RACE-Runde 2 wurde an die 1. PCR eine 2. "nested" PCR mit verdünntem PCR-Produkt als cDNA-Quelle angeschlossen. Als "nested" PCR-Primer wurden der genspezifische Primer GSP6 aus der 5'-Region von RACE-Produkt 1 (5'-GGCACACTCGGCAGGAAACGCACATGG-3') sowie der AP2-Primer genutzt. Die Bedingungen entsprachen den Parametern der Nested-PCR aus RACE-Runde 1.

Das 412 bp lange PCR-Produkt der Nested-PCR aus RACE-Runde 2 wurde in den TA-Cloning Vektor pCRII-Topo der Fa. Invitrogen kloniert und vollständig sequenziert (Fig. 9 und SEQ ID No. 4). Der Sequenzabschnitt von bp 267 bis bp 412 ist komplett homolog zu dem 5'-Bereich des Produktes aus RACE 1. Die Region von bp 1 bis bp 266 verlängert

RACE-Produkt 1 am 5'-Ende. Bei diesem RACE-Produkt 2 handelt es sich wahrscheinlich komplett um einen Intronbereich des hTC-Gens (Daten nicht gezeigt).

RACE-Runde 3:

5

10

15

20

Eine dritte RACE-Runde führte zur Identifizierung von weiter 5'-gelegenen hTC-cDNA-Regionen. Ausgehend von den Sequenzergebnissen der RACE-Runde 2 wurde ein genspezifischer Primer GSP9 (5'-CCTCCTCTGTTCACTGCTCTGGCC-3') aus dem 5'-Bereich des RACE-Produkts 2 gewählt und zusammen mit dem AP1-Primer und Marathon-Ready cDNA aus humanem Testis (Fa. Clontech) in einer neuen RACE eingesetzt. Die RACE-Bedingungen glichen denen der 1. PCR in RACE 1 und 2. In der nachfolgenden "nested" RACE, die, entsprechend der "nested"-RACE in Runde 1 und 2, mit dem genspezifischen Primer GSP 10 aus dem 5'-Bereich von RACE-Produkt 2 (5'-CGTAAGTTTATGCAAACTGGACAGG-3') und AP2 erfolgte, wurde ein 1012 bp langes Fragment (Fig. 10 und SEQ ID No. 5) amplifiziert und in den TA-Cloning Vektor pCRII-TOPO kloniert. Die nachfolgende Sequenzierung zeigte, daß die 3'-Region dieses RACE-Fragments (bp 817 - bp 1012) offensichtlich noch Intronsequenz des hTC-Gens darstellt. Komplett homolog zur 5'-Region von RACE-Produkt 2 ist der Bereich von bp 889-1012. Dagegen ist der 5'-Bereich dieses Fragments von bp 1-bp 816 identisch mit der in Fig. 1 gezeigten Region von bp 814 - bp 1629 der hTC-cDNA. Eine potentielle 5'-Splice-Konsensussequenz ist am Exon-Intron-Übergang zu finden.

Beispiel 7

Zur Klonierung eines zusammenhängenden Fragments aus den Sequenzinformationen von RACE 2 und dem Klon AA281296 wurde eine PCR durchgeführt. Als cDNA-Quelle wurde Marathon-Ready cDNA aus humanem Testis (Fa. Clontech; Katalognummer 7414-1) verwendet. Der PCR Ansatz erfolgte wie unter RACE 1 (vergleiche Beispiel 6) beschrieben, allerdings mit den Primern C5F (5'-CGAGTGGACACGGTGATCTCTGCC-3') aus der 5' Region von RACE 2 und dem Primer C3B (5'- GCACACCTTTGGTCACTCCAAATTCC-3') aus der 3' Region vom Klon AA281296. Die PCR wurde in 2 Schritten durchgeführt. Nach einer einminütigen Denaturierung bei 94°C wurde über 36 Zyklen für 30 sec bei 94°C

WO 98/59040

denaturiert und anschließend für 4 min bei 68°C die Primer angelagert und die DNA-Kette verlängert.

- 30 -

PCT/EP98/03468

Als Produkt dieser PCR wurde ein 2486 bp langes DNA-Fragment, im folgenden als C5F-Fragment bezeichnet, erhalten. Dieses wurde in den TA-Cloning Vektor pCRII-TOPO der Fa. Invitrogen kloniert und vollständig doppelsträngig sequenziert. Ein Sequenzvergleich von dem C5F-Fragment mit DNA-Sequenz vom Klon AA281296 ergab, daß zwischen dem RT-Motiv 3 und RT-Motiv 4 eine 182 bp lange in frame Insertion vorliegt (Position 2352 bis 2533, Fig.1). Ein weiterer Vergleich der DNA vom C5F-Fragment mit den Sequenzen der drei RACE-Runden machte deutlich, daß am 3´Ende von C5F ein bereits in RACE 2 identifiziertes Intron vorliegt. Eine 3'-Splice-Konsensussequenz ist am Exon-Intron-Übergang zu finden. Zusammenfassend setzt sich die DNA-Sequenz vom C5F-Fragment somit aus den Sequenzinformationen der Fig. 9 (Position 64 bis 278) und den Sequenzdaten der Fig. 1 (Position 1636 bis 3908) zusammen.

Beispiel 8

5

10

15

20

25

30

Zur Klonierung des 5'-Endes der hTC-cDNA wurden zusätzlich zu dem in Beispiel 6 aufgeführten RACE-Protokoll ein Homologiescreening (Ausubel *et al.*, 1987) durchgeführt. Als cDNA-Quelle wurde eine humane Erythroleukemia 5'-Stretch Plus cDNA Bibliothek (Fa. Clontech, Kat. Nr. HL5016b) aus der humanen Leukämiezellinie K562 verwendet. Etwa $3x10^6$ Pfu dieser random und oligo dT geprimten Bibliothek wurden wie bei Ausubel *et al.*, (1987) ausplattiert und zum Screening eingesetzt. Als Probe wurde ein 719 bp langes (Position 1685 bis 2404, entsprechend der Fig. 1) radioaktiv markiertes hTC-DNA-Fragment benutzt.

Von 20 putativ positiven λ Klonen konnte nach einem Rescreening mit der gleichen hTC-Sonde der λ Klon 12 als positiv verifiziert werden. Nach Plaqueaufreinigung und λ DNA-Präparation (Ausubel *et al.*, 1987) wurde das 4kb Insert in den Vektor pBluescript umkloniert und durchsequenziert (Fig. 11 und SEQ ID No. 6).

Ein Vergleich der λ Klon 12-Sequenz mit den Sequenzen der RACE-Klone und der DNA-Sequenz vom Klon AA281296 ergab, daß dieser im Homologie Screening identifizierte Klon für einen 5′ Teil der hTC-cDNA kodiert und ein putatives ATG-Startcodon in Position 63 entsprechend der Fig.1 aufweist. 5′ von diesem ATG liegt kein Stopcodon im gleichen Leserahmen vor. Weitere Sequenzanalysen machen deutlich, daß der λ Klon 12 von Position 1656 bis 2004 wahrscheinlich ein Intron enthält. Sehr gut konservierte 5′ und 3′ Splicestellen belegen diese Hypothese. Die für die hTC-cDNA kodierende Sequenz setzt sich dann von Position 2005 bis Position 2382 fort. Die Sequenz von 2383 bis zum 3′ Ende vom λ Klon 12 weist einen auffälligen offenen Leserahmen in Leseraster -4 auf. Eine bioinformatorische Analyse der entsprechenden DNA-Sequenz zeigte, daß dieser Leserahmen über etwa 400 bp identisch zu diversen ESTs ist, die in keinem Zusammenhang zur hTC-cDNA stehen. Somit handelt es sich bei dem λ Klon 12 um einen chimären Klon, der sich im wesentlichen aus dem 5′ Ende der hTC cDNA und einem weiteren cDNA-Klon unbekannter Funktion zusammensetzt.

15

20

10

5

Eine zusammenfassende schematische Darstellung mit der relativen Orientierung der RACE-Produkte und des Homologiescreenings ist in Fig. 12 dargestellt. Die vollständige Sequenz der hTC-cDNA (Fig. 1) wurde aus dem λ Klon 12 (Position 21 bis 1655 entsprechend der Fig. 11), dem PCR-Produkt C5F (Position 1636 bis 3908 entsprechend der Fig. 1) und dem EST AA281296 (Position 3909 bis 4042 entsprechend der Fig. 1) zusammengesetzt.

Beispiel 9

Durch einen Vergleich der phTC-Proteinsequenz (Fig. 2 und SEQ ID No. 2) mit einer Konsensussequenz von Reversen Transkriptasen (Poch *et al.*., 1989, Xiong and Eickbush, 1990) wurden insgesamt sieben Motive für Reverse Transkriptasen (RT-Motive) identifiziert (Fig. 13). Innerhalb dieser Motive sind einige Aminosäuren nicht nur zwischen der RT-Konsensussequenz und dem phTC, sondern auch im Vergleich zu dem Telomerase-protein aus *Euplotes* hoch konserviert. So sind z.B. in RT-Motiv 5 zwei Asparaginsäuren (Position 868 und 869 in Fig. 2) völlig konserviert (Fig. 13). Das aus anderen Reverse

Transkriptasen abgeleitete RT-Motiv 7 (Poch *et al..*, 1989, Xiong and Eickbush, 1990) wurde nur in der humanen katalytischen Telomeraseuntereinheit aufgezeigt, nicht in dem *Euplotes*-Protein (Fig. 13).

Auffällig sind weiterhin Strukturmerkmale, die sich nur in den Telomeraseproteinen, nicht jedoch in anderen Reverse Transkriptasen aufzeigen lassen. Das Telomerase Motiv (Position 553 und 565 in Fig. 2) ist eine für diese Proteinfamilie spezifische Struktur, da es in keinem bisher bekannten Protein vorkommt. Ein weiteres nur in den katalytischen Telomeraseproteinen identifiziertes Merkmal ist der Abstand zwischen den RT-Motiven 3 und 4, der mit 107 Aminosäuren deutlich größer ist als in anderen RTs. Diese Besonderheiten erlauben die Schlußfolgerung, daß die katalytischen Untereinheiten der Telomerasen aus verschiedenen Spezies wahrscheinlich eine eigene Untergruppe der RNA-abhängigen DNA-Polymerasen darstellt.

Beispiel 10

5

10

15

20

25

30

Die Expression der Telomerase RNA-Untereinheit (hTR) korreliert nicht mit der Telomeraseaktivität, sondern wird ubiquitär beobachtet (Feng et al., 1995). Somit stellt sich die Frage, ob die Ausprägung dier katalytischen Telomerase-Untereinheit mit der Telomeaseaktivität einhergeht.

Um das hTC-Expressionslevel zu analysieren, wurden Northern Blot-Experimente (Ausubel et al., 1987) durchgeführt. Die kommerziell erhältlichen Northern Blots waren entweder mit einer Reihe von RNA-Präparationen aus normalem, humanem Gewebe (Fa. Clontech; Katalognummer 7760-1) oder mit RNA-Proben aus humanen Krebszellinien (Fa. Clontech; Katalognummer 7757-1) bestückt. Als Probe wurde ein 719 bp langes (Position 1685 bis 2404, entsprechend der Fig.1) radioaktiv markiertes hTC-DNA-Fragment benutzt. Die Inkubation der Membranen mit der Probe erfolgte nach Angaben des Herstellers (Fa. Clontech).

In den acht getesteten humanen Zellinien (3 Leukämiezellinien, 3 Carcinomzellinien, ein Melanom und ein Lymphom) wurden zwei RNA-Haupttranskripte in der Größe von etwa

9,5 kb und 4,4 kb und ein RNA-Nebentranskript von etwa 6 kb nachgewiesen, die mit der Probe kreuzhybridisieren (Fig. 15, Abb. A). Die hTC mRNA wurde im Vergleich am stärksten in den Leukämie Zellinien K-562 und HL-60 exprimiert (Fig. 15, Abb. A). Im Gegensatz dazu war das hTC-Transkript in den getesteten normalen Geweben (Herz, Gehirn, Plazenta, Lunge, Leber, Skelettmuskel, Niere und Pankreas) nicht nachzuweisen (Fig. 15, Abb. B). Diese Beobachtung ist nicht überraschend, da in diesen Geweben auch keine Telomeraseaktivität nachgewiesen werden konnte (Kim et al., 1994).

Diese Daten deuten darauf hin, daß die Induktion der hTC Expression für die Aktivierung der Telomerase während der Tumorentstehung eine wesentliche Rolle spielt.

Beispiel 11

5

10

15

20

25

Bei der PCR-Amplifikation der hTC-cDNA-Fragmente aus verschiedenen cDNA-Banken (Marathon Ready cDNA der Fa. Clontech aus der humanen Leukämiezellinie K562 und aus humanem Testis sowie cDNA aus der humanen prämyeloischen Leukämiezellinie HL60) wurden stets mehrere PCR-Produkte erhalten, die in ihrer Größe minimal voneinander abwichen. Um die Unterschiede zwischen den verschiedenen hTC-PCR-Produkten aufzuklären, wurde mit den Primern C5A (5'-CCGGAAGAGTGTCTGGAGCAAGTTGC-3') und C3B (5'-GCACACCTTTGGTCACTCCAAATTCC-) ein von bp 1783 bis bp 3901 reichendes Fragment der in Fig. 1 dargestellten hTC-cDNA amplifiziert. Als cDNA-Quelle wurde Marathon-Ready cDNA aus K562-Leukämiezellen (Fa. Clontech; Katalognummer 7441-1) verwendet (PCR1 und 2). In einer dritten PCR wurde mit den Primern GSP1vor (5'-GGCTGATGAGTGTGTACGTCGTCGAG-3') HTRT3A (5'und GGGTGGCCATCAGTCCAGGATGG-3') ein hTC-Fragment von bp 1695 bis bp 3463 der hTC-cDNA in Fig. 1 aus HL60-cDNA amplifiziert.

Nachfolgend sind die Bedingungen der 3 PCR-Reaktionen beschrieben:

In der ersten PCR wurden in einem Endvolumen von 50 µl 5 µl K562 Marathon-Ready cDNA mit 10 pmol dNTP-Mix versetzt und in 1 x Klen Taq PCR-Reaktionspuffer und 1 x Advantage Klen Taq Polymerase Mix (Fa. Clontech) eine PCR-Reaktion durchgeführt. Je

WO 98/59040 PCT/EP98/03468 - 34 -

10 pmol der Primer C5A und C5B wurden zugefügt. Die PCR wurde in 3 Schritten durchgeführt. An eine einminütige Denaturierung bei 94°C schlossen sich 35 PCR-Zyklen an, in denen die DNA zunächst für 30 sec bei 94°C denaturiert wurde und anschließend für 4 min bei 68°C die Primer angelagert und die DNA-Kette verlängert wurde. Zum Abschluß folgte für 10 min eine Kettenverlängerung bei 68°C. Die entstandenen PCR-Produkte wurden in den TA-Cloning Vektor pCRII-TOPO der Fa. InVitrogen kloniert.

5

10

15

20

25

30

In einer zweiten PCR wurden 5 µl K562 Marathon-Ready cDNA mit je 10 pmol der Primer C5A und C3B, 10 pmol dNTP-Mix und 2 U Taq-DNA-Polymerase (Fa. Gibco-BRL) versetzt und in einem Endvolumen von 50 µl eine PCR-Reaktion in 1x PCR-Puffer der Fa. Perkin Elmer durchgeführt. Die PCR-Reaktion erfolgte in 3 Schritten. Zunächst wurde die DNA für 3 min bei 94°C denaturiert. Es folgten 34 Zyklen, bei denen aufeinanderfolgend die DNA für 45 sec bei 94°C denaturiert wurde, anschließend für 1 min bei 68°C die Primeranlagerung erfolgte und danach für 3 min bei 72°C die DNA-Kette verlängert wurde. Im letzten PCR-Schritt wurde für 10 min bei 72°C eine abschließende Kettenverlängerung durchgeführt. Die entstandenen PCR-Produkte wurden in den TA-Cloning Vektor pCR2.1 der Fa. InVitrogen kloniert.

Für die dritte PCR wurde zunächst mit dem cDNA-Synthese-Kit der Fa. Boehringer Mannheim aus 2 μg DNaseI-behandelter Poly A-RNA der humanen prämyeloischen Zellinie HL60 eine cDNA-Synthese entsprechend den Angaben der Hersteller durchgeführt. In einem Endvolumen von 50 μl wurde anschließend 1 μl dieser HL60-cDNA mit je 10 pmol der Primer GSP1vor und HTRT3A sowie 10 pmol dNTP-Mix gemischt und nach Zusatz von 1,25 μl DMSO in 1 x Klen Taq PCR-Reaktionspuffer und 1 x Advantage Klen Taq Polymerase Mix (Fa. Clontech) eine PCR-Reaktion durchgeführt. Die PCR-Reaktion verlief in 3 Schritten. Nach einer Denaturierung für 3 min bei 94°C wurde über 37 Zyklen die DNA zunächst für 1 min bei 94°C denaturiert und anschließend für 4 min bei 68°C die Primer angelagert und die DNA-Kette verlängert. Abschließend erfolgte noch eine Inkubation für 10 min bei 68°C. Die PCR-Produkte wurden in den TA-Cloning Vektor pCR 2.1-TOPO kloniert.

WO 98/59040

Die vollständige Doppelstrangsequenzierung der aus PCR 1 und 2 klonierten hTC-cDNA-Fragmente sowie die partielle Sequenzierung der aus PCR 3 erhaltenen hTC-cDNA-Fragmente zeigte, daß zusätzlich zu der in Fig. 1 dargestellten hTC-cDNA 4 Varianten dieser cDNA in humanen Zellen existieren:

5

<u>Variante 1</u> der humanen hTC-cDNA zeichnet sich durch eine 182 bp lange Deletion der Nukleotide 2345 bis 2526 aus. Durch diese Deletion kommt es zu einer Verschiebung im ORF und es wird ein verkürztes hTC-Protein abgelesen, dem die RT-Motive 4 bis 7 fehlen.

10

<u>Variante 2</u> der humanen hTC-cDNA weist eine 36 bp lange Deletion der Nukleotide 2184 bis 2219 auf. Durch diese Deletion geht das RT-Motiv 3 verloren. Der Leserahmen bleibt jedoch erhalten und es wird ein Protein hergestellt, dem selektiv das RT-Motiv 3 fehlt.

15

<u>Variante 3</u> der humanen hTC-cDNA stellt eine Kombination der Varianten 1 und 2 dar. Sie weist sowohl eine Deletion der bp 2184 bis 2219 als auch der bp 2345 bis 2526 auf.

20

<u>Variante 4</u> der humanen hTC-cDNA zeichnet sich durch den Verlust des Nukleotidbereichs von bp 3219 bis 3842 aus. Diese fehlende Sequenz ist durch eine nicht zu hTC homologe Sequenz ersetzt. Ab bp 3843 ist die Sequenz wieder völlig identisch zu der in Fig. 1 dargestellten hTC-Sequenz. Die Sequenz der Variante 4 ist in Fig. 14 dargestellt. Entsprechend des gewählten 5'-Primers beginnt sie mit bp 1783 der in Fig. 1 dargestellten hTC-cDNA. Der nicht-homologe Bereich ist fett hervorgehoben und stimmt von Position 3219 bis Position 3451 (Fig. 14 und SEQ ID No. 7) auf DNA Ebene zu 98,7% mit einem EST (Accession Nr. AA299878) aus einem humanen Uterustumor überein.

25

Beispiel 12

30

Zur Gewinnung von Antiseren mit Spezifität für die katalytische Untereinheit der humanen Telomerase wurde die vorhandene Nukleotidsequenz (Fig. 1) in eine Aminosäuresequenz übersetzt (Fig. 2). Mit Hilfe eines Programms zur Sekundärstrukturvorhersage (PROTEAN, aus dem Softwarepaket DNAStar, DNASTAR Inc., Madison, WI, USA) wurden zwei Peptide ausgewählt, die mit gewisser Wahrscheinlichkeit eine Immunantwort hervorrufen.

WO 98/59040 - 36 -

PCT/EP98/03468

Es handelt sich um folgende Peptide, die im Einbuchstabencode für Aminosäuren dargestellt sind:

B: <u>C-K-R-V-Q-L-R-E-L-S-E-A-E-V-R-Q - CONH</u>₂ / Pos. 594 - 608

C: <u>C</u>-Q-E-T-S-P-L-R-D-A-V-V-I-E-Q-S-S-S-L-N-E - CONH₂ / Pos. 781-800

Die unterstrichenen Cysteine stammen nicht aus der Telomerasesequenz, sondern wurden als Linker für die Kopplung zusätzlich angefügt

Die Peptide wurden über das Thiol-reaktive Kopplungsreagenz m-Maleimido-benzoyl-N-Hydroxysuccinimidester (MBS) an Keyhole Limpet Hemocyanin (KLH) gekoppelt. Damit wurden je zwei Kaninchen im Abstand von 2 bis 4 Wochen immunisiert. Vor der Immunisierung wurden 5 ml Blut zur Gewinnung von Preimmunseren entnommen. Nach 4 Immunisierungen wurden ebenfalls 5 ml Blut zur Gewinnung von Immunseren entnommen.

Diese Seren wurden in einem Western-Blot Experiment (Ausubel et al., 1987) auf Reaktivität mit Fusionsproteinen (Beispiel 13) getestet.

Beispiel 13

5

15

Um das Protein der katalytischen Telomerase-Untereinheit analysieren zu können, wurden bakterielle Expressionversuche durchgeführt.

Die Konstrukte für diese Experimente sind im Folgenden beschrieben:

Für das Expressionskonstrukt pMalEST wurde das Insert des in Beispiel 2 erwähnten Klons AA281296 mit den Restriktionsenzymen Eco RI und Not I herausgeschnitten, die Schnittstellen mit dem Klenow-Fragment aufgefüllt (Ausubel *et al.*, 1987) und in den vorgegebenen Leserahmen des Maltose bindenden Proteins des bakteriellen Expressionvektors pMAL-C2 (Fa. New England Biolabs) kloniert. Der Vektor pMAL-C2 wurde mit dem Restriktionsenzym Pst I verdaut und die überstehenden Einzelstrangenden mit der T4 DNA Polymerase entfernt (Ausubel *et al.*, 1987).

WO 98/59040 PCT/EP98/03468 - 37 -

Das Expressionskonstrukt pMalA1 beinhaltet die Nukleotidsequenz der Fig. 1 von Position 1789 bis Position 3908. Dieses DNA-Fragment wurde über PCR mit den Primern C5A (5'-ACCGGAAGAGTGTCTGGAGCAAGTTG-3') und C3B (5'-GCACACCTTTGGTCACTCCAAATTCC-3') aus einer kommerziell erhältlichen K562 Marathon-Ready cDNA Library (Fa. Clontech, Katalognummer 7441-1) amplifiziert und in TA-Cloning Vektor pCRII-TOPO der Fa. Invitrogen kloniert. Die PCR-Bedingungen wurden wie im Beispiel 7 beschrieben durchgeführt. Für das Expressionskonstrukt pMalA1 wurde das Insert mit dem Restriktionsenzym Eco RI herausgeschnitten, die Schnittstellen mit dem Klenow-Fragment aufgefüllt (Ausubel *et al.*, 1987) und in den mit dem Restriktionsenzym Xmn I geschnittenen bakteriellen Expressionvektors pMAL-C2 (Fa. New England Biolabs) kloniert.

Die Proteinexpression unter Verwendung dieser Konstrukte erfolgte in dem Bakterienstamm *E. coli* DH5α. Die Expressionsbedingungen erfolgten wie in der Betriebsanleitung der Fa. New England Biolabs (Katalognummer 800) beschrieben. Die hergestellten bakteriellen Lysate wurden in einem Western-Blot Experiment (Ausubel *et al.*, 1987) getestet.

Beispiel 14

5

10

15

25

30

Die bakteriellen Lysate aus Beispiel 13 wurden unter zuhilfenahme der Antiseren aus Beispiel 12 in einem Western Blot (Ausubel *et al.*, 1987) analysiert.

Da der Fusionsanteil für das Maltose bindende Protein etwa 43 kDa groß ist, werden für die Konstrukte pMalEST und pMalA1 Fusionsproteine in der Größe von etwa 74 kDa bzw 106 kDa erwartet.

Im Vergleich der Pre-Immunseren mit den Seren nach der ersten Immunisierung wird ersichtlich, daß spezifische Antikörper gegen die Epitope B und C gebildet wurden (Fig. 16). Darüber hinaus wurden neben den erwarteten 74 kDa, bzw. 106 kDa-Proteinen auch kleinere Proteinfragmente beobachtet, die mit den Antiseren reagieren. Diese kleineren Produkte gehen wahrscheinlich auf vorzeitige zurück.

Auf dem Fusionsprotein aus der Expression mit pMal EST befindet sich nur das Epitop für Serum B. Im Gegensatz dazu befinden sich auf dem Fusionsprotein von pMalA1 die Epitope der Seren B und C. Aus diesem Grunde erkennt das Antiserum C nicht das Expressionsprodukt von pMalEST und lediglich die größeren Proteinfragmente aus den Expressionversuchen mit pMalA1. Diese Beobachtung unterstreicht die hohe Spezifität der generierten Antiseren.

Beispiel 15

5

15

20

25

30

Um das Protein der katalytischen Telomerase-Untereinheit analysieren zu können, sollen die Proteinkomponente zusammen mit der RNA-Komponente *in vitro* rekonstituiert werden.

Die Konstrukte für diese Experimente sind im folgenden beschrieben:

Die 504 nt lange RNA Komponente (Feng et al., 1995) wurde mit den Primern HTR9BAM (5'-CGCGGATCCTAATACGACTCACTATAGGGTTGCGGAGGGTGGCCTG-3') und HTR2BAM (5'-CGCGGATCCCGGCGAGGGGTGACGGATGC-3) aus einer 293 Zell-cDNA-Bibliothek amplifiziert. Der Primer HTR9BAM beinhaltet von Nukleotid 10 bis 29 einen T7 Promotor. In der PCR wurden in einem Endvolumen von 100 μl 3 μl cDNA aus 293-Zellen mit 10 pmol dNTP-Mix versetzt und in 1 x PCR-Reaktionspuffer mit 0,5 μl Taq-Polymerase (Fa. Gibco) eine PCR-Reaktion durchgeführt. Je 10 pmol der Primer HTR9BAM und HTR2BAM wurden zugefügt. Die PCR wurde in 3 Schritten durchgeführt. An eine zehnminütige Denaturierung bei 94°C schlossen sich 35 PCR-Zyklen an, in denen die DNA zunächst für eine Minute bei 94°C denaturiert wurde und anschließend für 2 min bei 62°C die Primer angelagert und die DNA-Kette verlängert wurde. Zum Abschluß folgte für 4 min eine Kettenverlängerung bei 72°C. Die entstandenen PCR-Produkte wurden nach einem Restriktionsverdau mit Bam HI in die Bam HI-Schnittstelle des Vektor pUC19 kloniert, so daß die RNA Komponente unter Kontrolle des T7-Promotors steht. Dieses Konstrukt wird im folgenden als HTR504 bezeichnet.

Das 3411 bp lange cDNA Fragment (Position 60 bis Position 3470, Fig. 1) wurde in den Vektor PCRII TOPO (Fa. Invitrogen) kloniert. Detailliertere Angaben zur Klonierung sind

15

20

25

30

in Beispiel 8 und 7, bzw. in Fig. 12 beschrieben. In diesem als HTC FL bezeichneten Konstrukt liegt der T7 Promotor 5' vor der hTC cDNA.

Die Synthese der katalytischen Telomerase-Proteinkomponente erfolgte nach Zugabe des hTC FL-Konstruktes in einem kommerziell erhältlichen Transkriptions/Translation-System nach Angaben des Herstellers (Fa. Promega; Katalognummer L4610). Die erfolgreiche *in vitro* Translation des erwarteten 127 kDa Produktes wurde mittels ³⁵S-markiertem Cystein in einer SDS-PAGE (Ausubel *et al.*, 1987) kontrolliert (Fig. 17).

Die Synthese der Telomerase-RNA-Komponente erfolgte mit einem Transkriptions-System nach Angaben des Herstellers (Fa. Ambion; Katalognummer 1344) oder nach der von Pokrovskaya und Gurevich (1994) beschriebenen Methode.

Für die *in vitro* Rekonstitution wurden 50 μl des oben beschriebenen Translations-Ansatzes mit dem hTC FL-Konstrukt mit 0,5 μg hTRNA versetzt und 10 min bei 37°C inkubiert. 2 μl dieser Mischung wurden auf ihre enzymatische Aktivität mit Hilfe des TRAP-Assays untersucht (N.W. Kim *et al.*, 1994). Als Positivkontrolle diente eine Aktivitätsmessung nach gleicher Methode von aus HeLa-Zellen gereinigter Telomerase (Shay *et al.*, 1994). Wie in Fig. 18 zu sehen, erzeugen sowohl das rekonstituierte Enzym als auch das native Enzym das gleiche Produktmuster, die für die Telomerase charakteristische Nukleotidleiter. Mit diesem Ergebnis wurde darüberhinaus belegt, daß eine einzige Proteinkomponente zusammen mit der RNA für die enzymatische Telomeraseaktivität ausreichend ist.

Zusätzlich zu dem beschriebenen TRAP-Assay wurden 5 µl der Rekonstitutionsmischung im direkten Telomerase-Assay (Shay *et al.*, 1994) auf ihre Aktivität geprüft. Auch in diesem Experiment belegt die charakteristische Nukleotidleiter die erfolgreiche Rekonstitution von rekombinantem hTC Protein und Telomerase-RNA-Komponente.

Zusammenfassend konnte hiermit auf funktioneller Ebene gezeigt werden, daß die identifizierte und vollständig klonierte hTC cDNA die katalytische Untereinheit der humanen Telomerase darstellt.

10

25

35

Literaturvereichnis

Adams, M.D., Dubnick, M., Kerlavage, A.R., Moreno, R., Kelley, J.M., Utterback, T.R., Nagle, J.W., Fields, C. und Venter, J.C. (1992). Sequence identification of 2.375 human brain genes. Nature 355: 632-634.

Allsopp, R. C., Vazire, H., Pattersson, C., Goldstein, S., Younglai, E.V., Futcher, A.B., Greider, C.W. und Harley, C.B. (1992). Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. 89, 10114-10118.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. et al. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410.

Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1987).

Current protocols in molecular bilogy. Greene Publishing Associates and Whiley-Intersciences, New York.

Blasco, M. A., Rizen, M., Greider, C. W. und Hanahan, D. (1996). Differential regulation of telomerase activity and telomerase RNA during multistage tumorigenesis. Nature Genetics 12, 200-204.

Broccoli, D., Young, J. W. und dcLange, T. (1995). Telomerase activity in normal and malignant hematopoietic cells. Proc. Natl. Acad. Sci. 92, 9082-9086.

Collins, K., Kobayashi, R. und Greider, C. W. (1995). Purification of Tetrahymena telomerase and cloning of genes encoding the two protein components of the enzyme. Cell 81, 677-686.

Counter, C. M., Avilion, A. A., LeFeuvre, C. E., Stewart, N. G. Greider, C.W. Harley, C. B. und Bacchetti S. (1992). Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921-1929.

Counter, C. M., Gupta, J., Harley, C. B., Leber, B. und Baccetti, S. (1995). Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 85, 2315-2320.

Feng, J., Funk, W. D., Wang, S.-S., Weinrich, S. L., Avilion, A.A., Chiu, C.-P., Adams, R.R., Chang, E., Allsopp, R.C., Yu, J., Le, S., West, M.D., Harley, C.B., Andrews, W.H., Greider, C.W. und Villeponteau, B. (1995). The RNA component of human telomerase. Science 269, 1236-1241.

Gerhold, D. und Caskey, T. (1996). It's the genes! EST access to human genome content. BioEssays 18, 973-981.

25

30

- Goldstein, S. (1990). Replicative senescence: The human fibroblast comes of age. Science 249, 1129-1133.
- Greider, C. W. und Blackburn, E. H. (1985). Identification of a specific telomere terminal transferase activity in *Tetrahymena* extracts. Cell 43, 405-413.
 - Greider, C. W. und Blackburn, E. H. (1987). The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51, 887-898.
- Greider, C. W. und Blackburn, E. H. (1989). A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331-337.
 - Harley, C. B., Futcher, A. B. und Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature 345, 458-460.
 - Harrington, L., McPhail, T., Mar, V., Zhou, W., Oulton, R., Amgen EST Program, Bass, M.B., Arruda, I. und Robinson, M.O. (1997). A mammalian telomerase-associated protein. Science 275: 973-977.
- Hastie, N. D., Dempster, M., Dunlop, M. G., Thompson, A. M., Green, D.K. und Allshire, R.C. (1990). Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866-868.
 - Hiyama, K., Hirai, Y., Kyoizumi, S., Akiyama, M., Hiyama, E., Piatyszek, M.A., Shay, J.W., Ishioka, S. und Yamakido, M. (1995). Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J. Immunol. 155, 3711-3715.
 - Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C. B., West, M.D., Ho, P.L.C., Coviello, G.M., Wright, W.E., Weinrich, S.L. und Shay, J.W. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011-2015.
 - Lingner, J., Hughes, T.R., Shevchenko, A., Mann, M., Lundblad, V. und Cech T.R. (1997). Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276: 561-567.
- Lundblad, V. und Szostak, J. W. (1989). A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633-643.
 - McClintock, B. (1941). The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234-282.

35

- Meyne, J., Ratliff, R. L. und Moyzis, R. K. (1989). Conservation of the human telomere sequence (TTAGGG)_n among vertebrates. Proc. Natl. Acad. Sci. 86, 7049-7053.
- Okubo, K., Hori, N., Matoba, R., Niiyama, T., Fukushima, A., Kojima, Y. and Matsubra, K. (1992).

 Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nature Genetics 2: 173-179.
 - Olovnikov, A. M. (1973). A theory of marginotomy. J. Theor. Biol. 41, 181-190.
- Poch, O., Sauvaget, I., Delarue, M. und Tordo, N. (1989). Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 8: 3867-3874.
 - **Pokrovskaya, I.D. and Gurevich, V.V.** (1994). *In vitro* transcription: Preparative RNA yields in analytical scale reactions. Analytical Biochemistry **220**, 420-423.
 - Prowse, K. R., Avilion, A. A. und Greider, C. W. (1993). Identification of a nonprocessive telomerase activity from mouse cells. Proc. Natl. Acad. Sci. 90, 1493-1497.
- Sandell, L. L. und Zakian, V. A. (1993). Loss of a yeast telomere: Arrest, recovery and chromosome loss.

 Cell 75, 729-739.
 - Shampay, J. und Blackburn, E. H. (1988). Generation of telomere-length heterogenity in *Saccharomyces cerevisiae*. Proc. Natl. Acad. Sci. 85, 534-538.
- Shay, J. W., Brasiskyte, D., Ouellette, M., Piatyszek, M.A., Werbin, H., Ying, Y. and Wright, E.W. (1994). Analysis of telomerase and telomeres. Methods of Molecular Genetics 5, 263-280.
 - Shay, J. W. (1997). Telomerae and Cancer. Ciba Foundation Meeting: Telomeras and Telomerase. London.
- 30 Singer, M. S. und Gottschling, D. E. (1994). TLC1: Template RNA Component of Saccharomyces cerevisiae Telomerase. Science 266, 404-409.
 - Vaziri, H., Dragowska, W., Allsopp, R. C., Thomas, T. E., Harley, C.B. und Landsdorp, P.M. (1994). Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age. Proc. Natl. Acad. Sci. 91, 9857-9860.
 - Xiong, Y. und Eickbush, T.H. (1990). Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353-3362.

Yu, G.-L., Bradley, J. D., Attardi, L. D. und Blackburn, E. H. (1990). *In vivo* alteration of telomere sequences and senescence caused by mutated *Tetrahymena* telomerase RNAs. Nature 344, 126-132.

5 Zakian, V. A. (1995). Telomeres: Beginning to understand the end. Science 270, 1601-1607.

- 44 -

SEQUENZPROTOKOLL

(1) ALLGEMEINE ANGABEN:

- (i) ANMELDER:
 - (A) NAME: Bayer AG
 - (B) STRASSE: Bayerwerk
 - (C) ORT: Leverkusen
 - (E) LAND: Deutschland
 - (F) POSTLEITZAHL: D-51368
 - (G) TELEFON: 0214-303688
 - (H) TELEFAX: 0214-303482
- (ii) BEZEICHNUNG DER ERFINDUNG: Humane katalytische Telomerase-Untereinheit

und deren diagnostische und therapeutische Verwendung

- (iii) ANZAHL DER SEQUENZEN: 7
- (iv) COMPUTER-LESBARE FASSUNG:
 - (A) DATENTR□GER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30B (EPA)
- (2) ANGABEN ZU SEQ ID NO: 1:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LONGE: 4042 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKŠLS: cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
 - (vi) URSPRŠNLICHE HERKUNFT:
 - (C) INDIVIDUUM/ISOLAT: Human
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

GTTTCAGGCA	GCGCTGCGTC	CTGCTGCGCA	CGTGGGAAGC	CCTGGCCCCG	GCCACCCCG	60
CGATGCCGCG	CGCTCCCCGC	TGCCGAGCCG	TGCGCTCCCT	GCTGCGCAGC	CACTACCGCG	120
AGGTGCTGCC	GCTGGCCACG	TTCGTGCGGC	GCCTGGGGCC	CCAGGGCTGG	CGGCTGGTGC	180
AGCGCGGGGA	CCCGGCGGCT	TTCCGCGCGC	TGGTGGCCCA	GTGCCTGGTG	TGCGTGCCCT	240
GGGACGCACG	GCCGCCCCC	GCCGCCCCT	CCTTCCGCCA	GGTGTCCTGC	CTGAAGGAGC	300
TGGTGGCCCG	AGTGCTGCAG	AGGCTGTGCG	AGCGCGGCGC	GAAGAACGTG	CTGGCCTTCG	360
GCTTCGCGCT	GCTGGACGGG	GCCCGCGGG	GCCCCCCGA	GGCCTTCACC	ACCAGCGTGC	420

TGCTGCGCCC CGTGGGCGAC GACGTGCTG TTCACCTGCT GCACGCTGC GCGCTCTTTG 54 TGCTGGTGGC TCCCAGCTGC GCCTACCAGG TGTGCGGGCC GCGCTGTAC CAGCTCGGCG 60 CTGCCACTCA GGCCCGGCCC CCGCACACG CTAGTGGACC GCGCATGTAC CAGCTCGGCG AACGGGCCTG GAACCATAGC GTCAGGGAGG CCGGGGTCCC CCTGGGCCTC CCAGGCCCCGG 72: GTGCGAGGAG GCGCGGGGC ACTGCCAGCC GAAGTCTGCC CTGGGCTTG CAGCCCCGG 76: GTGCGAGGAG GCGCGGGGC ACTGCCAGC GAAGTCTGCC GTTGCCCAAA AGGCCCAGGC GCAGGACGCG TGGACCAAGT GACCGTGGT TCTGTGTGGT GTCACCTGC GCCCACCCGG AAGAAGCCAC CTCTTTGGAA GGTGCGCTT CTGGCACGCC CCATCCCAC CAGCCCCGG AAGAAGCCAC CTCTTTGGAA GGTGCCATCC CTGGCACGCC CACCCCGC 90: AAGAAGCCAC CTCTTTGGAA GGTGCCATCCA CATCCGTCC ACACCCGCC 90: AGGCTGCGACCA CACCGGGGC CCCCATCCA CATCCGTGC ACACCGCCC TGGAACAGC CTTGTCCCCC GGTGTACGCC GAGACCAACC ACTTCCTCA CTCCTCCAC CATCCGTG AGCTGCGGCC CTCCTTCCTA CTCAGCTCT TGAGGCCCAG CCTGACTGGC GACAAGGAC AGCTGCGGCC CCCCATCCA CATCCGGGC CCTGACTGGC GACAAGGAC 108: AGCTGCGGCC CCCCATCCA CATCCGGCC ACCACGTCCC TGGGAACGC CTGTGGGACC CTCTTCCTA CTCAGCTCT TGAGGCCCAG CCTGACTGGC GACAAGGAC 108: AGCTGCGCCCC CCCACCCATCCA CATCCAGCC CCTGGATGCC AGGGACTCCC CGCAGGTTGC CCCGCCTGCC CCAGGGGCTAC TGGCAAATGC GCCCCTGTT TCTGGAGCTC CTGGGAACC 120: CCCGCCTGCC CCCACAGGG GTCCTCCTA AGACGCACTG CCTGGGACC CTTGGGAACC 120: CCCCAGCAGC CGGTGTCTGT GCCCGGGAAA AGCCCCAGGG CTTCTGGGAACC 120: CCCCAGCAGC CGGTGTCTGT GCCCGGGAAA AGCCCCAGGG CTCTGTGGCA GCCCCCAGG 138: AGGGGAACAA CAACCCCCGT CGCCTGGTGC AGCCCCAGGG CTCTGGGGAC 130: AGGGGAACAA CAACCCCCGT CGCCTGGTG AGCCCCAAGG CTCCTGGGAAC AGGGGACAA CAACCCCCGT CGCCTGCTGC GCCGGCTGGT GCCCCCAAGC CTCTGGGGAT AGGCGAACAA CAACCCCCGT CGCCTGCTGC GCCGCAGGA GCCCCCTGGC 140: AGGTGTACGG CTTCGTGCAG GACCTGACGT GCGCCCCAGG CTCTGGGGAT AGCCCAAGGGTT CTCCTCAGGA ACACCAAGAA GTTCATCTC CTGGGGAAC ATCCCCAGGCAA CGAACCCCCG TCCCTCAGGAC ACCCCCTGG CTCTGGGAAC ATCCCCAGGCAAA CGAACCCCC TTCCTCAGGA ACACCAAGAA GTTCATCTC CTGGGGAAC ATCCCCAGGCCAA CGACCCCCTT GCGCCAGAC CCCCCTG CTGAGGACA AGCTGTCGAA GCACAGACA ACGTTCAAA AGAACAGCCT CTTTTTTCAC CGGAAGAGGT TCTTGTACAAGC ATTGCAAAA AGAACAACAC GCCCCCCTG CTGAGGACA AGCTTCTGAACA CACGCCC TTCCACAA ACA								
TGCTGGTGGC TCCCAGCTGC GCCTACCAGG TGTGCGGGCC GCCGCTGTAC CAGCTCGCG 60 CTGCCACTCA GGCCCGCCCC CGCCACACG CTAGTGGACC CCGAAGGCGT CTGGGATGCG 66 AACGGGCCTG GAACCATAGC GTCAGGGAGG CCGGGTCCC CCTGGGCCTG CCACCCCGG 72 GTGCGAGGAG GCGCGGGGC AGTGCCAGCC GAAGTCTGCC GTTGCCCAAG AGGCCCAGGC 78 GTGCGAGAGGC CCCTGAGCCG GAGCGACGC CGGTTGGGCA GGGGTCCTG GCCCACCCGG 84 GCAGGACGCG TGGACCAGT GACCTTGT TCTGTGTGT GTCACCTGC AGACCCCCG 90 AAGAAGCCAC CTCTTTGGA GGTGCGCTT CTGGCACGG CACTCCCAC CATCCCTG 96 GCGCCAGCA CCACGCGGC CCCCCATCAC CATCGCGGC AGACCGCCC TGGACACGC 102 CTTGTCCCC GGTGTACCCC GAGACCAAGC ACTTCCTCA CTCCTCAGG GACAAGGAC 108 AGCTGCGGCC CTCCTTCTA CTCAGCTCT TGAGGCCCA GCACGTCCC TGGACACGC 102 CTGTGCCCC GGTGTACCC GAGACCAAGC ACTTCCTCA CTCCTCAGG GACAAGGAC 108 AGCTGCGGCC CTCCTTCCTA CTCAGCTCT TGAGGCCCAG CCTGACTGG GCACAGGAC 108 AGCTGCGGCC CCCCATCAC AGACCAAGC ACTTCCTCA GCACAGGAC 114 CCCGGCCTGC CCAGCGCTAC TGCAAATGC GCCCCGTTT TCTGGAGCTC CGCAGGTTC 120 CCCGCCTGCC CCAGCGCTAC TGGCAAATGC GCCCCTGTT TCTGGAGCTC CTGGGAACC 126 ACGCGCAGG CCCCCATCCA AGACGCCCT TCTGGAGCC GCCCCGAGG 138 AGGAGGACA AGACCCCCT CCCCTGGAA AGCCCCAGG CTCTGTGGC GCCCCCAGG 138 AGGAGGACA AGACCCCCT CCCCTGGTG AGCCCCAGG CTCTGTGGG CCCCCGAGG 138 AGGAGGACA AGACCCCCT CCCTGGTG AGCTCCTCC CAGCACAGC AGCCCCTGGC 144 AGGTGTACGG CTTCGTGCG GCCTGGTGA ACCCCAAGAA GTTCATCTC CTGGGGAC 150 CCAGGCAAA CGAACGCCC TCCCTGGGA ACCCCAAGAA GTTCATCTC CTGGGGAC 150 CCAGGCAAA CGAACGCCC TCCCTGGA ACCCCAAGAA GTTCATCTC CTGGGGAC 150 CCAGGCAAA CGAACGCCC TCCCTGGAA AGACCAAAAA GTTCATCTC CTGGGGAC 150 CCAGGCAAA CGAACGCCC TCCCTGAGA ACACCAAAAA GTTCATCTC CTGGGGAC 150 CCAGGCAAA CGAACGCCC TCCCTGAGA ACACCAAAAA GTTCATCTC CTGGGGAC 150 CCAGGCAAA CGAACGCCA TCCCTGAAA AGAACAGCC CTTTTTTCTAC CGGGAAAGA 168 CCCCGGCAAAA CGAACGCCA AGCTTCAAA AGAACAGCC CTTTTTTCTAC CGGAAGAGA 168 CCCCGAGGAAA CTTCCTGCA GCGTGTATCA GACACACAC CACCTTCA CTCACTCA 192 CCCTGGCCAAA CTTCCCCAA CCTGCTGCA GCCCCCACAC CTCTGCGCC CTGAGGACA TCCCTGCG CTGACGCC CTGACGCC CTGACGCC CTGACGCC CTGACCCC CTGACCCC CTGACCCC CTGACCCC CTGACCCC CTGACCCC CTGACCCCC CTGACCCC CTGACCCC CTGACCCC CTGACCCC CTGCCCCC CGCCCCCC CTGCCCC	GCAGCTAC	CT	GCCCAACACG	GTGACCGACG	CACTGCGGGG	GAGCGGGGCG	TGGGGGCTGC	480
CTGCCACTCA GGCCCGGCCC CCGCCACAG CTAGTGGACC CCGAAGGGT CTGGGATGCG AACGGCCTG GAACGATGC GTCAGGGAGG CCGGGTCCC CTGGGCCTG CCACCCCGG 72.6 GTGCGAGGAG GCGCGGGGC AGTGCCAGC GAAGTCTGCC GTTGCCCAAG AGGCCCAGG 78.6 GTGGCGCTGC CCCTGAGCCG GAGCGGACGC CCGTTGGGCA GGGTCCTG GCCCACCGG 84.6 GCAGGACGCG TGGACCGAGT GACCGTGGTT TCTGTGTGGT GTCACCTGC AGACCCGCC 90.6 AAGAAGCCAC CTCTTTGGAG GGTGCGCTCT CTGGCACAGG CCATCCCAG CCATCCGTG 96.6 GCCGCCAGCA CCACGGGGC CCCCCATCCA CATCGCGGC AGACCGCCC 79.6 GCCGCCAGCA CCACGCGGGC CCCCCATCCA CATCGCGGC AGACAGGACC 102.6 CTTGTCCCCC GGTGTACGCC GAGACCAAGC ACTTCCTCA CTCCTCAGC GACAAGGAC 108.6 AGCTGCGGCC CTCCTTCCTA CTCACCTCT TGAGGCCCA GCTGACTGGC GCCCGGAGGC 114.6 TCGTGGAGAC CATCTTCTG GGTTCCAGGC CCTGGATGCC AGGACTCCC GCAGGTTGC 12.0 CCCGCCTGCC CCAGCGCTAC TGGCAAATGC GCCCCTGTT TCTGGAGCTC CGCAGGTTGC 12.0 CCCGCCTGCC CCAGCGCTAC TGGCAAATGC GCCCCTGTT TCTGGAGCTC CGCAGGTTGC 12.0 ACGCGCAGTG CCCCTACGGG GTGCTCCTCA AGACGCACTG CCGCCTGGA GCTGCGGTCA 13.2 ACGCGCAGTG CCCCTACGGG GTGCTCCTCA AGACGCACTG CCCCCGAGG CTCTGGGAACC 12.6 ACGCGCAGTG CCCCTACGGG GTGCTCCTCA AGACGCACTG CCCCCGAGG CTCTGGGGAC CCCCCGAGG AGGCACCTC CCCCAGCAC AGACCCCCG CCCCCGAGG 13.8 AGGAGGACAC AGACCCCCT CCCTGGTGC AGCTGCCTGG CCCCCCGAGG CTCTGGGGAC CTCTGGGGAC CTCTGGGGAC AGCCCCTGGC CCCCCGAGG CTCTGGGGAC CTCTGGGAACC AGCCCCTGGC GCCCCCAGGC CTCTGGGAAC CTCTGGGAAC CTCTGGAACCAAGAA GTCCACAGAA GACCCAAGAA GACCCAAGAA GACCCAAGAA GTCCACAGAA GACCCAAGAA CTCTCTCAAGA AGAACACACAAGAA CTCTACTCC CGGGAAGACCA CCGCCCTG CTCAGGGAC CTCAGGGCT CTCTGGAGAGA CCGCCCCCAGG CCCCCCGGGCC CTCAGGGCT CTCAGGGCT CTCAGGGCT CTCAGGGCC CTGACGGCC CTGACGGCC CTGACGGCC CTGACGCCC CTGACGCCC CTGACCGCCC CTGACCGCC CTGACCGCC CTGACCGCC CTGACGGCC CTGACGGCC CTGACGGCC CTG	TGCTGCGC	CG	CGTGGGCGAC	GACGTGCTGG	TTCACCTGCT	GGCACGCTGC	GCGCTCTTTG	540
AACGGGCCTG GAACCATAGC GTCAGGGAGG CCGGGGTCCC CCTGGGCCTG CCAGCCCCGG GTGCGAGGAG GCGGGGGGC AGTGCCAGCC GAAGTCTGCC GTTGCCAAA AGGCCCAGGC GTGCGAGGAC CCCTGAGCCG GAGCGAGCC CCGTTGGGCA GGGGTCCTG GCCCACCCGG GCAGGACGCC TGGACCGA GACCGTGGTT TCTGTGTGGT GTCACCTGC AGACCGCCG AAGAAGCCA CTCTTTGGAG GGTGCGCTC CTGGCACGGG CACTCCCAC CCATCCGTGG GCCGCCAGCA CACGCGGGG CCCCCATCCA CATCGCGGC ACCACGTCCC TGGGACAGGC CTTGTCCCCC GGTGTACGCC GAGACCAAGC ACTTCCTCTA CTCCTCAGGC GACAAGGAGC AGCTGCGGC CTCCTTCCTA CTCAGCTCC TGAGGCCCA CCTGACTGGC GACAAGGAGC AGCTGCGGC CTCCTTCCTA CTCAGCTCC TGAGGCCCAG CCTGCAGGC GACAAGGACC CCCGCCTGC CCAGCGGGG CCCCCATCCA CATCGCGGC CCTGGATGCC GCACGGGC GACAAGGACC AGCTGCGGC CTCCTTCCTA CTCAGCTCC TGAGGCCCAG CCTGCAGGC GACAAGGACC AGCTGCGGCC CTCCTTCCTA CTCAGCTCC TGAGGCCCAG CCTGGATGCC GCACGGCC GCCGGAGGC 1140 CCCCGCCTGCC CCAGCGGG GTGCTCCTCA AGACGCACGC CCCGAGGTTCC CCCGCCTGCC CCAGCGGG GTGCTCCTCA AGACGCACTG CCCGCTGGA GCTGCGGACC ACGCGCAGG CCCCTACGGG GTGCTCCTCA AGACGCACTG CCCGCTGGA GCTGCGGTCA 1320 CCCCAGCAGC CGCTGCTGT GCCCGGGAGA AGCCCCAGGG CTCTGTGGGG GCCCCCGAGG 1380 AGGAGGACAA AGACCCCCGT CGCCTGGTGC AGCTCCCCCAGGG CTCTGTGGGG CCCCCGAGG 1380 AGGAGGACAA CGAACGCCC TCCTCAGGA AGCCCCAGGG CTCTGTGGGG CCCCCGAGG 1380 AGGGGCACAA CGAACGCCC TCCTCAGGA ACACCAAGAA GTTCATCTC CTGGGGAAC 1560 ATGCCAAGCT CTCGCTGCAG GACTGACGT GGAAGATGAG CTCCCCCAGGC CTCTGGGGAAC 1560 ATGCCAAGCT CTCGCTGCAG GACTGACTT CGGCCGAGA GCACCGTCTG CTGGGAACC 1620 ATGCCAAGCT CTCGCTGCAG GACTGATGA GTGTGTACAT CGCCTGAGCTT CTCTTTTTTATG CACGAGAGAC ACGTTCTAAA AGAACAGGCT CTTTTTTTAC CGGAAGAGT 1800 TCTTGGACCAA GTTCCTGCA GCGTGTTCAAA AGAACAGCAT GAAGAGGGT CTCAGGTCTT 1740 TCTTTTATGT CACGGAGACC ACGTTCAAA AGAACAGCAT GAAGAGGGT CTGAGGTCT 1920 GACTCCCCTT CATCCCCAAG CTTGCAGACCA GCCGCCCTG CTGAACGTC CTGAGCTCC 1920 AGCTGTCGGA ACGTTCCG AGGAAAAGA GGGCCGCGCC TCTGTACATCC AGGGGC CTGCCCCCG CTGACCTCC CGGAAGAGTG CTGACGTCCA 1920 GACTCCCCTT CATCCCCAAG CCTGACGGCC TGCGGCCCCT CTGACCTCC AGGGTGAACC ACCTGTTCAA ACGTCCCC AGGAAAAAGA GGGCCGACCT TGTGAACATG GACTACGTCC 1920 ACCTGTTCAA ACGTTCCC AGGAAAAAGA GGCCCGCCCC CGGCCCCC CGGCCCCC CGGCCCCC CGGCCCCC	TGCTGGTG	GC	TCCCAGCTGC	GCCTACCAGG	TGTGCGGGCC	GCCGCTGTAC	CAGCTCGGCG	600
GTGCGAGGAG GCGCGGGGGC AGTGCCAGCC GAAGTCTGCC GTTGCCAAG AGGCCCAGGC TGGCGGCTGC CCCTGAGCCG GAGCGGACGC CCGTTGGGCA GGGGTCCTGG GCCCACCCGG 84 GCGAGCACGC TGGACCGAGT GACCGTGGTT TCTGTGTGGT GTCACCTGCC AGACCCGCCG 90 GAGAGAGCCC CTCTTTGGAG GGTGCGCTC CTGGCACGGG CCACTCCCAC CCATCCGTGG 96 GCGCCCACCAC CCACTCCAC CCATCCGTGG GCGCGCCACCCC GGTGTACGCC GAGACCAAGC ACTTCCTCA CTCCTCAGGC GACAAGGACC 102 GCGCCCACC GGTGTACGCC GAGACCAAGC ACTTCCTCA CTCCTCAGGC GACAAGGACC 108 GACCAGGCC CTCCTTCCTA CTCCTCAGGC GACAAGGACC 108 GACCAGGCC CTCCTTCCTA CTCCTCAGGC GACAAGGACC 108 GACCAGGCC CTCCTTCCTA CTCCTCAGGC GACCAGGCC 114 GCGCGCCAC CCACCCTCC CAGCGCTCC CCAGCGCTC CTGGGAGCC 114 GCGCGCAGGC CCCCCACCCC CCAGCGCTCC CCAGCGCTC CCCCCCCCCC	CTGCCACT	CA	GGCCCGGCCC	CCGCCACACG	CTAGTGGACC	CCGAAGGCGT	CTGGGATGCG	660
GTGGCGCTGC CCCTGAGCCG GAGCGGACGC CCGTTGGGCA GGGGTCCTGG GCCCACCCGG GCAGACGCG TGGACCGAGT GACCGTGGTT TCTGTGTGGT GTCACCTGCC AGACCCGCG 90 AAGAAGCCAC CTCTTTGGAG GGTGCGCTCT CTGGCACGGC CCACTCCCAC CCATCCGTGG 96 GCCGCCAGCA CCACGCGGGC CCCCCATCCA CATCGCGGCC ACCACTCCCAC CCATCCGTGG 96 AGGAGGCAC CTCCTTCCTA CTCAGCCCAC CATCGCGCC ACCACTCCCAC GACAAGGAGC 102 AGCTGCGGCC CTCCTTCCTA CTCAGCTCTC TGAGGCCCAG CCTGACTGCG GCCCGAGGGC 114 TCGTGGAGAC CATCTTTCTG GGTTCCAGGC CCTGGATGCC AGGGACTCCC CGCAGGTTGC 120 CCCGCCTGCC CCAGCGCTAC TGGCAAATGC GCCCCTGTT TCTGGAGCTC CGCAGGTTGC 120 ACGCGCAGGC CCCTACGGG GTGCTCCTA AGACGCACTG CCCGCTGCGA GCTCGGAGC 112 CCCCAGCAGC CGGTGTCTG GCCCGGGAGA AGCCCCAGGG CTCTGTGGGAACC 126 AGGAGGACAC AGACCCCCGT CGCCTGGTGC AGCCCCAGGG CTCTGTGGCA GCCCCCAGGA AGCCCCAGGA AGCCCCAGG CCCCCAAGCA AGACCCCCGG CCCCCAGGA ACCCCAGGA ACCCCAGGA ACCCCAGGA CTCTGTGGCA AGCCCCAGGA AGCCCCAGG CCCCCAAGC AGCCCCTGCC CCAGGCACAC AGACCCCCGG CCCCCAGGA AGCCCCCAGG CCCCCAGGA AGCCCCCAGG CCCCCAGGA AGCCCCCGG CCCCCAGGA AGCCCCCGG CCCCCAGGA ACCCCAGGA CTCCTGCC CCAGGCACAC AGCCCCTGCC CCAGGCACACA CGACCCCCGG CCCCCAGGA ACCCCAAGAA ACCCAAGAA GTTCATCTC CTGGGGAAC 156 ATGCCCAAGCA CGAACGCCC TTCCTCAGGA ACACCAAGAA GTTCATCTC CTGGGGAAC 166 ATGCCCAAGCA CCAGGGGTT GGCTGATGA GGCTGCAGA CAGCCGTCTG CGTGAGGAA 166 ATCCTGGCCAA GTTCCTGCA GAGCTGACGT GGAAGATGA CCTGCGGGGA CTCCGGTTGC 162 TCCTGGCCAA GTTCCTGCA TGCTGCTGA GTGTGTACGT CGTCGAGGTC CTCAGGTCTT 174 TCTTTTATGT CACGGAGAC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGG 180 AGCTGTGGAA GTTCCTGCA ACGTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGG 180 AGCTGTGGAA GTTCCTGCA AGCAGCATC GGACAACAG CCCCCCCC CTGCCTGC CTGACGTCC 192 GACTCCGCTT CATCCCCAAG CTGACGGC TGCGGCAA CGCCCCCCC CTGACGTCC CTGACGTCC 192 GACTCCGCTT CATCCCCAAG CTGACGGC TGCGGCGAT TGTGAACATC GACTACGTC 198 AGCTGTCGGA AACGTTCCGC AGAGAAAAAA GGGCCCAACAC CCGCCCTC CTGACGTCCA 192 ACCTGTTCAA ACACACACT CGCGCGACC TCTCACCTC AGGGTCAC CTGACGTCC 198 ACCTGTTCAA ACCTCCAAC CCTGACGGC TCCTGCGCG TCTCACCTC AGGGTCAC 198 ACCTGTTCAA ACCTCCAAC CCTGACGGC TCTGACGTCC CGCCCTC CGCCCTC CGCCCTC CGCCCTC CGCCCTC CGCCCTC CGCCCTC CGCCCTC CGCCCTC CG	AACGGGCC'	ΓG	GAACCATAGC	GTCAGGGAGG	CCGGGGTCCC	CCTGGGCCTG	CCAGCCCCGG	720
GCAGGACGCG TGGACCGAGT GACCGTGGTT TCTGTGTGGT GTCACCTGCC AGACCCGCCG AAGAAGACCAC CTCTTTGGAG GGTGCGCTC CTGGCACGCG CCACTCCCAC CCATCCGTGG 966 GCCGCCAGCA CCACGCGGGC CCCCCATCCA CATCGCGGCC ACCACTCCCAC CCATCCGTGG 966 GCCGCCAGCA CCACGCGGCG CCCCCATCCA CATCGCGGCC ACCACGTCCC TGGGACAGCC 1026 CTTGTCCCCC GGTGTACGCC GAGACCAAGC ACTCCTCTA CTCCTCAGG GACAAGGAGC 1086 AGCTGCGGGC CTCCTTCCTA CTCACGCTCC TGAGGCCCAG CCTGACTGCC GCCAGGTTGC 1206 CCCGCCTGCC CCACGCGTAC TGGCAAATGC GCCCCTGTT TCTGGAGCTG CTTGGGAACC 1266 ACCGCCTGCC CCACGCGTAC TGGCAAATGC GCCCCTGTT TCTGGAGCTG CTTGGGAACC 1266 ACCGCCAGCA CCCCCAAGCA GCCCCCAAGCA GCCCCCAAGCA AGCCCCAGG GTGCCCCCAAGCA GCCCCCAAGCA AGCCCCAGG GTGCCCCCAAGCA AGCCCCAGG CCCCCAAGCA AGCCCCCGT CGCCTGCGA ACCCCAGGC CCCCCAAGCA AGCCCCCGT CGCCTGCGA ACCCCCAAGCA AGCCCCCGT CGCCTGCGC ACCCCAAGCA AGCCCCCGT CGCCTGCGC ACCCCAAGCA AGCCCCCGGC CCCCCAAGCA AGCCCCCGGC CCCCCAAGCA AGCCCCCGGC CCCCCAAGCA AGCCCCCAGC ACCCCCAAGCA AGCCCCCGGC CCCCCAAGCA ACCCCAAGCA ACCCCAAGCA CAACACAAGAA GTTCATCTC CTGGGGAAC 1666 ACCCCCAAGCA CACACAAGCA CACCCAAGCA CACACAGCA CACCCCAGGC CCCCCGGGCA CACGCCCCCAGG CCCCCCAGG CCCCCCCC	GTGCGAGG	AG	GCGCGGGGGC	AGTGCCAGCC	GAAGTCTGCC	GTTGCCCAAG	AGGCCCAGGC	780
AAGAAGCCAC CTCTTTGGAG GGTGCGCTCT CTGGCACGCG CCACTCCCAC CCATCCGTGG 966 GCCGCCAGCA CCACGCGGGC CCCCCATCCA CATCGCGGCC ACCACGTCCC TGGGACACGC 1026 CTTGTCCCCC GGTGTACGCC GAGACCAAGC ACTTCCTCTA CTCCTCAGGC GACAAGGAGC 1086 AGCTGCGGCC CTCCTTCCTA CTCAGCTCTC TGAGGCCCAG CCTGACTGGC GACAAGGAGC 1146 TCGTGGAGACC CATCTTTCTG GGTTCCAGGC CCTGGATGCC AGGGACTCCC CGCAGGTTGC 1206 CCCGCCTGCC CCAGCGCTAC TGGCAAATGC GCCCCTGTT TCTGGAGCTG CTTGGGAACC 1266 ACGCGCAGGT CCCCTACGGG GTGCTCCTCA AGACGCACTG CCCGCTGCGA GCTCCGGAGGC 1326 CCCCAGCAGC CGGTTCTTT GCCCGGGAGA AGCCCCAGGG CTCTTGTGGCG GCCCCCGAGG 1386 AGGAGGACAC AGACCCCCGT CGCCTGGTGC AGCTGCTCG CCAGCACAGC AGCCCCTGGC 1446 AGGTGTACGG CTTCGTGCGG GCCTGCTGC GCCGGCTGCG CTCTGGGGCT 1506 CCAGGCACAA CGAACGCCCC TCCCTCAGGA ACACCAAGAA GTTCATCTCC CTGGGGAACC 1566 ATGCCAAGAC CTCGTGCAG GAGCTGACGT GCAGCACAGC CTCTGGGGCT 1506 TCCTGGCCAGAG CCCAGGGGTT GGCTGATGA GCACCAAGAA GTTCATCTCC CTGGGGAAGC 1626 TCCTGGCCAGAG CCCAGGGGTT GGCTGATGA GCACCAAGAA GTTCATCTCC CTGGGGAAGC 1626 TCCTGGCCAGA CTCCTCCAG GAGCTGACGT GGAAGATGAG CTGCGCTTGGC 1626 TCCTGGCCAA CTCCTCCAG GAGCTGACGT GGAAGATGAG CTGCGCTTG CTGAGGTCT 1746 TCTTTTATGT CACGGAGACC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1806 TCTGGAGCAA ACCACAAGAA GTTCCTGCAC AGGTTCAACACGC CTTTTTTCTAC CGGAAGAGTG 1806 AGCTGTCGGA AGCAGAGCC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1806 AGCTGTCGGA AGCAGAGCC ACGTTCCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1806 AGCTGTCGGA AGCAGAGCC ACGTTCCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1806 AGCTGTCGGA AGCAGAGCC ACGTTCCAAC GCCGCCCTT GAAGAGAGT 1806 AGCTGTCGGA AGCAGAGCC ACGTTCCAAC GCGGCCCCTT GAAGAGCAG GCCCCCCCCC CTGACGTCCA 1926 GACTCCGCTT CATCCCCAAG CCTGACGGC TGCGGCCCC CTGACGCCCT CTGACGTCCA 1926 CACTGTTCAG AGCAGAAAAAAAAAAAAAAAAAAAAAAAA	GTGGCGCT	GC	CCCTGAGCCG	GAGCGGACGC	CCGTTGGGCA	GGGGTCCTGG	GCCCACCCGG	840
GCCGCCAGCA CCACGCGGGC CCCCCATCCA CATCGCGGCC ACCACGTCCC TGGGACACGC 1020 CTTGTCCCCC GGTGTACGCC GAGACCAAGC ACTTCCTCTA CTCCTCAGGC GACAAGGAGC 1080 AGCTGCGGCC CTCCTTCCTA CTCAGCTCTC TGAGGCCCAG CCTGACTGGC GACAAGGAGC 1140 TCGTGGAGAC CATCTTCTG GGTTCCAGGC CTGGATGCC AGGGACTCCC CGCAGGTTGC 1200 CCCGCCTGCC CCAGCGCTAC TGGCAAATGC GGCCCCTGTT TCTGGAGCTG CTTGGGAACC 1260 ACGCGCAGTG CCCCTACGGG GTGCTCCTCA AGACGCACTG CCCGCTGCGA GCTGCGGTCA 1320 CCCCAGCAGC CGGTGTCTG GCCCGGGAGA AGCCCCAGGG CTCTGTGGGG GCCCCCGAGG 1380 AGGAGGACAC AGACCCCCGT CGCCTGGGTC AGCTGCTCG CCAGCACAGC AGCCCCTGGC 1440 AGGTGTACGG CTTCGTGCG GCCTGCTG GCCGGCTGGT GCCCCCAGGC CTCTGGGGAC 1500 CCAGGCACAA CGAACGCCCC TCCCTCAGGA ACACCAAGAA GTTCATCTCC CTGGGGAAGC 1500 CCAGGCACAA CGAACGCCGC TTCCTCAGGA ACACCAAGAA GTTCATCTCC CTGGGGAAGC 1500 CCAGGCACAA CGAACGCCGC TTCCTCAGGA ACACCAAGAA GTTCATCTCC CTGGGGAAGC 1620 TGCCGAGGAG CCCAGGGGTT GGCTGATGA GTGGTACGT CGTCGAGGAGA 1680 TCCTGGCCAAG CTCCTGCAC TGGCTGATGA GTGTTACGT CGTCGAGGCT TCCAGGTCTT 1740 TCTTTTATGT CACGGAGACC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1800 TCTGGAGCAA GTTCCTGCAC AGGCTACAA GACACACAC GCCCCCCCC CTCAGGTCTT 1740 TCTTTTATGT CACGGAGACC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1800 TCTGGAGCAA GTTCCTGCAC ACGTTCCAA GACACACTT GAAGAGGGT CTCAGGTCT 1920 GACTCCGCTT CATCCCCAAG CCTGACGGC TGCGGCCAC GCCCCCCTC CTGACGTCCA 1920 GACTCCGCTT CATCCCCAAG CCTGACGGC TGCGGCCGAC TCTCACCTCC AGGGTCAC 1920 GACTCCGCTT CATCCCCAAG CCTGACGGGC TGCGGCCGCCT CTGACGTCCA 1920 CACTGTTCAG CAGCACAAC CACAAAAAAAAAAAAAAAA	GCAGGACG	CG	TGGACCGAGT	GACCGTGGTT	TCTGTGTGGT	GTCACCTGCC	AGACCCGCCG	900
CTTGTCCCCC GGTGTACGCC GAGACCAAGC ACTTCCTCTA CTCCTCAGGC GACAAGGAGC 1080 AGCTGCGGCC CTCCTTCTA CTCAGCTCTC TGAGGCCCAG CCTGACTGGC GCTCGGAGGC 1140 TCGTGGAGAC CATCTTTCTG GGTTCCAGGC CCTGGATGCC AGGGACTCCC CGCAGGTTGC 1200 CCCGCCTGCC CCAGCGCTAC TGGCAAATGC GGCCCCTGTT TCTGGAGCTG CTTGGGAACC 1260 ACGCGCAGTG CCCCTACGGG GTGCTCCTCA AGACGCACTG CCCGCTGCGA GCTCCCGAGGC ACGCGCAGTG CCCCTACGGG GTGCTCTCA AGACGCACTG CCCGCTGCGA GCTCCCGAGG AGGAGGACAC AGACCCCCGT CGCCTGGTGC AGCCCCAGGG CTCTGTGGCG GCCCCCGAGG 1380 AGGAGGACAC AGACCCCCGT CGCCTGGTCC AGCCGCAGGC CTCTGTGGCG GCCCCCGAGG 1440 AGGTGTACGG CTTCGTGCGG GCCTGCTCC GCCGGCTGGT GCCCCAGGC CTCTGGGGCT 1500 CCAGGCACAA CGAACGCCGC TTCCTCAGGA ACACCAAGAA GTTCATCTCC CTGGGGAAGC 1560 ATGCCAAGCT CTCGCTGCAG GAGCTGACGT GGAAGATGAG CGTCCGGGAAC TGCGCTTGGC 1620 TCCTGGCCAA GTTCCTCCAC GGCTGTTC CGGCCGCAGA GCACCGTCTG CGTGAGGAAG TCCTGGCCAA GTTCCTCCAC TGGCTGATGA GTGTGTACGT CGTCGAGGCT CTCAGGTCTT 1740 TCTTTTATGT CACGGAGACC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1800 TCTGGAGCAA GTTCCTCAA AGCCACATC GGAAGCACTT GAAGAGGGTG CAGCTGCCGG 1860 AGCTGTCGGA AGCAGAGCT AGGCAGCATC GGGAAGCCAG GCCCCCCTG CTGACGTCCA 1920 GACTCCGCTT CATCCCCAAG CCTGACGGC TGCGGCCGAT TGTGAACATT GACAGGCTG 1980 TGGGAGGCCAG AACGTTCCGC AGAGAAAAGA GGGCCGAGCG TCTCACCTCG AGGGTGAAGG 2040 CACTGTTCAG CGTGCTCAAC TACGAGCGG CGCGCGCCC CGGCCCCTG CTGACGTCC 1980 TGGGAGGCCAG AACGTTCCGC AGAGAAAAGA GGGCCGAGCG TCTCACCTCG AGGGTGAAGG 2040 CACTGTTCAG CGTGCTCAAC TACGAGCGG CGCGCGCCC CGGCCCTCTG GGCGCCCTTG CTGCCGCCC CGGCCCCTTG CTGCCGCCC CGGCCCCTTG CTGCCGCCC CGGCCCCTTG CGGCGCCCCTTG CTGCCGGCC CGGCCCCTTG CGGCGCCCCTTG CGGCGCCCCTTG CGGCGCCCCTTG CGGCCCCTTG CGGCCCCTTG CGGCGCCCCTTG CGGCGCCCCTTG CGGCCCCCTTG CGGCCCCCTTG CGGCGCCCCTTG CGGCGCCCCTTG CGGCGCCCCTTG CGGCCCCTTG CGGCCCCCTTG CGGCCCCCTTG CGGCCCCCTTG CGGCCCCCTTG CGGCCCCCTTG CGGCCCCCTTG CGCCCCTTG CGGCCCCCTTG CGGCCCCTTG CGGCCCCCTTG CGGCCCCCCCTTG CGGCCCCCTTG CGGCCCCCCCC	AAGAAGCC	AC	CTCTTTGGAG	GGTGCGCTCT	CTGGCACGCG	CCACTCCCAC	CCATCCGTGG	960
AGCTGCGGCC CTCCTTCCTA CTCAGCTCTC TGAGGCCCAG CCTGACTGGC GCTCGGAGGC 1140 TCGTGGAGAC CATCTTTCTG GGTTCCAGGC CCTGGATGCC AGGGACTCCC CGCAGGTTGC 1206 CCCGCCTGCC CCAGCGCTAC TGGCAAATGC GGCCCTGTT TCTGGAGCTG CTTGGGAACC 1266 ACGCGCAGTG CCCCTACGGG GTGCTCCTCA AGACGCACTG CCCGCTGCGA GCTGCGGTCA 1326 CCCCAGCAGC CGGTGCTGT GCCCGGGAGA AGCCCCAGGG CTCTGTGGCG GCCCCCGAGG 1386 AGGAGGACAC AGACCCCCGT CGCCTGGTC AGCTGCTCG CCAGCACAGC AGCCCCTGGC 1446 AGGTGTACGG CTTCGTGCGG GCCTGCCTG GCCGGCTGGT GCCCCAGGC CTCTGGGGAT 1506 CCCAGGCACAA CGAACGCCGC TTCCTCAGGA ACACCAAGAA GTTCATCTC CTGGGGAACC 1566 ATGCCAAGCT CTCGCTGCAG GAGCTGACGT GGAAGATGAG CGTGCGGGAC TGCGCTTGGC 1626 TCCTGGCCAA GTTCCTGCAC GAGCTGATGA GTGTGTACGT CGTCAGGACA 1680 TCCTGGCCAA GTTCCTGCAC TGGCTGATGA GTGTGTACGT CGTCAGGACA 1680 TCCTTGGAGCAA GTTCCTGCAC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1806 AGCTGTCGGA AGCAGAGGCC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1806 AGCTGTCGGA AGCAGAGGTC AGGCAGCATC GGGAAGCCAG GCCCCCTG CTGACGTCCA 1926 GACTCCGCTT CATCCCCAAG CCTGACGGC TGCGCCGAG GCCCCCTG CTGACGTCCA 1926 GACTCCGCTT CATCCCCAAG CCTGACGGC TGCGGCGAT TGTGAACATG GACTACGTCG 1986 CACTGTTCAG CGTGCTCAAC TACGAGGGC TGCGGCGCCC CGGCCCTG CTGACGTCCA 1926 CACTGTTCAG CGTGCTCAAC TACGAGGGG CGCGGCCCC CGGCCTCTG GGCGCCTCTG 1986 CACTGTTCAG CGTGCTCAAC TACGAGGGG CGCGGCCCC CGGCCTCTG GGCGCCCTCTG 1986 CACTGTTCAG CGTGCTCAAC TACGAGGGG CGCGGCCCC CGGCCCTCTG GGCGCCTCTG 1986 CACTGTTCAG CGTGCTCAAC TACGAGGGG CGCGGCCCC CGGCCTCTG GGCGCCCTCTG 1986 CACTGTTCAG CGGACAATAC CACAGGGCC CGCGCCCCTG GGCGCCCCTCTG 1986 CACTGTTCAG CGGACAATAC CACAGGGCC CGCGCCCCC GGCCCCCTG GGCGCCCCCCCCCC	GCCGCCAG	CA	CCACGCGGGC	CCCCCATCCA	CATCGCGGCC	ACCACGTCCC	TGGGACACGC	1020
TCGTGGAGAC CATCTTTCTG GGTTCCAGGC CCTGGATGCC AGGGACTCCC CGCAGGTTGC 1200 CCCGCCTGCC CCAGCGCTAC TGGCAAATGC GGCCCCTGTT TCTGGAGCTG CTTGGGAACC 1266 ACGCGCAGTG CCCCTACGGG GTGCTCCTCA AGACGCACTG CCCGCTGCGA GCTGCGGTCA 1320 CCCCAGCAGC CGGTGTCTGT GCCCGGGAGA AGCCCCAGGG CTCTGTGGCA GCCCCCGAGG 1380 AGGAGGACAC AGACCCCCGT CGCCTGGTGC AGCTGCTCCG CCAGCACAGC AGCCCCTGGC 1440 AGGTGTACGG CTTCGTGCGG GCCTGCTGC GCCGGTGGT GCCCCAGGC CTCTGGGGAT 1500 CCAGGCACAA CGAACGCCGC TTCCTCAGGA ACACCAAGAA GTTCATCTC CTGGGGAAGC 1560 ATGCCAAGCT CTCGCTGCAG GAGCTGACGT GGAAGATGAG CGTGCGGGAA TGCGCTTGGC 1620 TCCTGGCAGAGA CCCAGGGGTT GGCTGGTTC CGGCCGCAGA GCACCGTTGG CTCAGGGAAGA 1680 TCCTGGCCAA GTTCCTGCAC TGGCTGATGA GTGTGTACGT CGTCGAGGAG CTCAGGTCTT 1740 TCTTTTATGT CACGGAGACC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1800 AGCTGTCGGA AGCAGAGGC AGGTACAGA GACAGCACT GAAGAGGGT CAGCTGCGGG 1860 AGCTGTCGGA AGCAGAGGTC AGGCAGCATC GGGAAGCCAG GCCCCCCCC CTGACGGCC 1920 GACTCCGCTT CATCCCCAAG CCTGACGGC TGCGGCCACT TCTGACCACT GACGTCCA 1920 GACTCCGCTT CATCCCCAAG CCTGACGGC TGCGGCCCCT GCGCCCCT GACGGTCCA 1920 CACTGTTCAG CAGCACTC CAGAGAAAAAA GGGCCCGACCT TCTCACCTCC AGGGTGAAG 2040 CACTGTTCAG CGGCCCCAC CGGCCCCCT GCCCCCCC GCCCCCCC GCCCCCCC GCCCCCCC GCCCCCC	CTTGTCCC	CC	GGTGTACGCC	GAGACCAAGC	ACTTCCTCTA	CTCCTCAGGC	GACAAGGAGC	1080
CCCGCCTGCC CCAGCGCTAC TGGCAAATGC GGCCCCTGTT TCTGGAGCTG CTTGGGAACC 1266 ACGCGCAGTG CCCCTACGGG GTGCTCCTCA AGACGCACTG CCCGCTGCGA GCTGCGGTCA 1326 CCCCAGCAGC CGGTGTCTGT GCCCGGGAGA AGCCCCAGGG CTCTGTGGCG GCCCCCGAGG 1386 AGGAGGACAC AGACCCCCGT CGCCTGGTGC AGCTGCTCCG CCAGCACAGC AGCCCCTGGC 1446 AGGTGTACGG CTTCGTGCGG GCCTGCTGC GCCGGTGGT GCCCCCAGGC CTCTGGGGCT 1500 CCAGGCACAA CGAACGCCGC TTCCTCAGGA ACACCAAGAA GTTCATCTCC CTGGGGAAGC 1560 ATGCCAAGCT CTCGCTGCAG GAGCTGACGT GGAAGATGAG CGTGCGGGAA TGCGCTTGGC 1620 TGCGCAGGAG CCCAGGGGTT GGCTGTTCC CGGCCGCAGA GCACCGTCTG CGTGAGGAGA 1680 TCCTGGCCAA GTTCCTGCAC TGGCTGATGA GTGTGTACGT CGTCGAGCTG CTCAGGTCTT 1740 TCTTTTATGT CACGGAGACC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1800 TCTGGAGCAA GTTGCAAAGC ATTGGAATCA GACAGCACTT GAAGAGGGT CAGCTGCGG 1860 AGCTGTCGGA AGCAGAGGTC AGGCAGCATC GGGAAGACTG GACTGCCGG 1920 GACTCCGCTT CATCCCCAAG CCTGACGGC TGCGGCCGAT TGTGAACATG GACTACGTCC 1920 GACTCCGCTT CATCCCCAAG CCTGACGGC TGCGGCCGAT TGTGAACATG GACTACGTCG 1980 CACTGTTCAG CGTGCTCAAC TACGAGCGG CGCGCACCT CTCACCTCC AGGGTGAAGG 2040 CACTGTTCAG CGTGCTCAAC TACGAGCGG CGCGCGCCC CGGCCTCTG GGCGCCCTCT 2100 TGCTGGGCCT GGACGATATC CACAGGGCCT GCGCGCCCT GGCCCCTTG GGCGCCCTCTG CGCTGCGCC 2100	AGCTGCGG	CC	CTCCTTCCTA	CTCAGCTCTC	TGAGGCCCAG	CCTGACTGGC	GCTCGGAGGC	1140
ACGCGCAGTG CCCCTACGGG GTGCTCCTCA AGACGCACTG CCCGCTGCGA GCTGCGGTCA 132 (CCCCAGCAGC CGGTGTCTGT GCCCGGGAGA AGCCCCAGGG CTCTGTGGCG GCCCCCGAGG 138 (AGACGCACAC AGACCCCCGT CGCCTGGTGC AGCTGCTCCG CCAGCACAGC AGCCCCTGGC 144 (AGAGGGACAC AGACCCCCGT CGCCTGCT GCCGGGTGT GCCCCCAGGC CTCTGGGGCT 150 (AGGTGTACGG CTTCGTGCGG GCCTGCTGC GCCGGCTGGT GCCCCCAGGC CTCTGGGGCT 150 (AGGTGTACGG CTCGTGCAG GAGCTGCTGC GCCGCAGAGA GTTCATCTCC CTGGGGAAGC 156 (AGGTGCAGAGC CTCGCTGCAG GAGCTGACGT GGAAGATGAG CGTGCGGGAAGC CTCGGGGAAGC 156 (AGGTGCAGAGA GCCCCTTGGC GAGCACAGAGA GCACCGTCTG CGTGAGGAGA 168 (AGGTGCCAAGAGA GTTCCTGCAC TGGCTGTTC CGGCCGCAGA GCACCGTCTG CGTGAGGAGA 168 (AGGTGCCAAGAGA GTTCCTGCAC TGGCTGATGA GTGTGTACGT CGTCGAGGCTG CTCAGGTCTT 174 (AGGTCTTTATTGT CACGGAGACC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 186 (AGCTGTCGGA AGCAGAGGC AGGTGCAGAGACC AGGTTCAAA AGAACAGCACTT GAAGAGGGTG CAGCTGCGGG 186 (AGCTGCTGCA AGCAGAGACC AGGCAGCACTC GAGAAGAGGGTG CAGCTGCGGG 186 (AGCTGCGCAA AGCAGAGACCACTC GAGAAGAGAG CACCGCCCTG CTGACGTCCA 192 (AGCTCCGCTT CATCCCCAAG CCTGACGGGC TGCGGCCGAT TGTGAACATG GACTACGTCG 198 (ACCTCGCTT CATCCCCAAG CCTGACGGGC TGCGGCCCAC TGTGAACATG GACTACGTCG 198 (ACCTGCTCAAC AGAGAAAAAAAA GGGCCCGACCTT TGTGAAACATG GACTACGTCG 198 (ACCTGTTCAAC AGAGAAAAAAAA GGGCCCGACCTT TGTGAAACATG GACTACGTCG 198 (ACCTGTTCAAC AGAGAAAAAAAA GGGCCCGACCTT TGTGAAACATG GACTACGTCG 198 (ACCTGTTCAAC TACGAGGGGC CGCGGCCCC CGGCCCTCTG GGCGCCCTTG CACCTCTG GGCGCCCTTG CACCTCTG GGCGCCCCCCCCCC	TCGTGGAG	AC	CATCTTTCTG	GGTTCCAGGC	CCTGGATGCC	AGGGACTCCC	CGCAGGTTGC	1200
CCCCAGCAGC CGGTGTCTGT GCCCGGGAGA AGCCCCAGGG CTCTGTGGCG GCCCCGAGG 138 (AGGAGGACAC AGACCCCGT CGCCTGGTC AGCTGCTCC CCAGCACAGC AGCCCCTGGC 144 (AGGTGTACGG CTTCGTGCGG GCCTGGTC GCCGGGTGGT GCCCCAGGC CTCTGGGGCT 150 (AGCTGTACGG CTTCGTGCGG GCCTGGT GCCCCAGGC CTCTGGGGCT 150 (AGCTGCACAA CGAACGCCGC TTCCTCAGGA ACACCAAGAA GTTCATCTC CTGGGGAAGC 156 (ATGCCAAGCT CTCGCTGCAG GAGCTGACGT GGAAAGATGAG CGTGCGGGAC TGCGCTTGGC 162 (AGCTGCAAGAA GTTCATCTC CTGGGGAAGC 162 (AGCTGCAAGAA GTTCATCTC CTGGGGAAGA GCCCGTCTG CGTGAGGAGA 168 (AGCTGCCAAGAA GTTCCTGCAC TGGCTGATGA GTGTGTACGT CGTCGAGCTG CTCAGGTCTT 174 (AGCTGCCAA GTTCCTGCAC TGGCTGATGA GTGTGTACGT CGTCGAGCTG CTCAGGTCTT 174 (AGCTGTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 186 (AGCTGTCGAAGAC ATTGGAATCA GACAGCACTT GAAGAGGGTG CAGCTGCGGG 186 (AGCTGCTGCA AGCAGAAGCT AGCAGCACTT GAAGAGGGTG CAGCTGCGGG 192 (AGCTCCGCTT CATCCCCAAG CCTGACGGCC TGCGGCCCTT CTGACGTCCA 192 (ACCTCGCTT CATCCCCAAG CCTGACGGCC TGCGGCGCAT TGTGAACATG GACTACGTCG 198 (ACCTGTTCAACAAGAAAAGA GGGCCGACCTT TGTGAACATG GACTACGTCG 198 (ACCTGTTCAAC AACGTTCCC AGAGAAAAGA GGGCCGACCTT TGTGAACATG GACTACGTCG 198 (ACCTGTTCAG CGTGCTCAACGTCG AGAGAAAAGA GGGCCGACCTT CGTGCTCCTG GGCGCCCTTG CTGCGGCCCTTG CTGCGGCCCTTG CTGCTGCACGTCCA CACCTGTTCAACATG CACCTCTG GGCGCCCCTTG CTGCGGCCCCTG CTGCGGCCCCTG CTGCGGCCCCTG CTGCGGCCCCCTG CTGCGGCCCCCTG CTGCGGCCCCCTG CTGCGGCCCCCTG CTGCGGCCCCCCCC	CCCGCCTG	CC	CCAGCGCTAC	TGGCAAATGC	GGCCCCTGTT	TCTGGAGCTG	CTTGGGAACC	1260
AGGAGGACAC AGACCCCGT CGCCTGGTGC AGCTGCTCCG CCAGCACAGC AGCCCCTGGC 1446 AGGTGTACGG CTTCGTGCGG GCCTGCCTGC GCCGGCTGGT GCCCCCAGGC CTCTGGGGCT 1506 CCAGGCACAA CGAACGCCGC TTCCTCAGGA ACACCAAGAA GTTCATCTCC CTGGGGAAGC 1566 ATGCCAAGCT CTCGCTGCAG GAGCTGACGT GGAAGATGAG CGTGCGGGAC TGCGCTTGGC 1626 TGCGCAGGAG CCCAGGGGTT GGCTGTGTC CGGCCGCAGA GCACCGTCTG CGTGAGGAGA 1686 TCCTGGCCAA GTTCCTGCAC TGGCTGATGA GTGTGTACGT CGTCGAGCTG CTCAGGTCTT 1746 TCTTTTATGT CACGGAGACC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1806 AGCTGTCGGA AGCAGAGGTC AGGCAGCATC GGGAAGACCTT GAAGAGGGTG CAGCTGCGGG 1866 AGCTGCTCGGA AGCAGAGGTC AGGCAGCATC GGGAAGACCAG GCCCGCCCTG CTGACGTCCA 1926 GACTCCGCTT CATCCCCAAG CCTGACGGGC TGCGGCCGAT TGTGAACATG GACTACGTCG 1986 CACTGTTCAG CGTGCTCAAC TACGAGGGC TGCGGCGCCC CGGCCTCCTG GGCGCCCCTG CTGACGTCCA 1926 TGGGGAGCCAG AACGTTCCGC AGAGAAAAGA GGGCCGAGCG TCTCACCTCG AGGGTGAAGG 2046 CACTGTTCAG CGTGCTCAAC TACGAGGGCC GGCGCGCCC CGGCCTCCTG GGCGCCCCTG CTGCTCTG 1966 TGCTGGGCCC GGACGATATC CACAGGGCCT GGCGCCCCC CGGCCTCCTG GGCGCCCCC 2106 TGCTGGGCCC GGACGATATC CACAGGGCCT GGCGCCCCC CGGCCTCCTG GGCGCCCC 2106 TGCTGGGCCC GGACGATATC CACAGGGCCT GGCGCCCC CGGCCTCCTG GTGCGGCCC 2106	ACGCGCAG!	ΓG	CCCCTACGGG	GTGCTCCTCA	AGACGCACTG	CCCGCTGCGA	GCTGCGGTCA	1320
AGGTGTACGG CTTCGTGCGG GCCTGCCTGC GCCGGCTGGT GCCCCCAGGC CTCTGGGGCT 1500 CCAGGCACAA CGAACGCCGC TTCCTCAGGA ACACCAAGAA GTTCATCTCC CTGGGGAAGC 1560 ATGCCAAGCT CTCGCTGCAG GAGCTGACGT GGAAGATGAG CGTGCGGGAC TGCGCTTGGC 1620 TGCGCAGGAG CCCAGGGGTT GGCTGTTCC CGGCCGCAGA GCACCGTCTG CGTGAGGAGA 1680 TCCTGGCCAA GTTCCTGCAC TGGCTGATGA GTGTGTACGT CGTCGAGCTG CTCAGGTCTT 1740 TCTTTTATGT CACGGAGACC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1800 TCCTGGAGCAA GTTGCAAAGC ATTGGAATCA GACAGCACTT GAAGAGGGTG CAGCTGCGGG 1860 AGCTGCGGA AGCAGAGACAC GGGAAGACCAG GCCCGCCCTG CTGACGTCCA 1920 GACTCCGCTT CATCCCCAAG CCTGACGGCC TGCGGCCGAT TGTGAACATG GACTACGTCG 1980 TGGGAGCCAG AACGTTCCGC AGAGAAAAGA GGGCCGAGCG TCTCACCTCG AGGGTGAAGG 2040 TGCGGGCCC CGGCCCTTG CGCGCCCTTG CGCGCCCCTG CTGACGTCCA 1920 TGGGAGCCCAG CGCGCCCCC GGCCCCTCG CGGCCCCTG CTGACGTCCA 1920 TGGGGGCCCC GGCCCCCCC GGCCCCCCC GCGCCCCCC GCGCCCCCC	CCCCAGCA	GC	CGGTGTCTGT	GCCCGGGAGA	AGCCCCAGGG	CTCTGTGGCG	GCCCCGAGG	1380
CCAGGCACAA CGAACGCCGC TTCCTCAGGA ACACCAAGAA GTTCATCTC CTGGGGAAGC 1560 ATGCCAAGCT CTCGCTGCAG GAGCTGACGT GGAAGATGAG CGTGCGGGAC TGCGCTTGGC 1620 TGCGCAGGAG CCCAGGGGTT GGCTGTGTC CGGCCGCAGA GCACCGTCTG CGTGAGGAGA 1680 TCCTGGCCAA GTTCCTGCAC TGGCTGATGA GTGTGTACGT CGTCGAGGTG CTCAGGTCTT 1740 TCTTTTATGT CACGGAGACC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1800 AGCTGTCGGA AGCAGAGGT AGGCAGCATC GGGAAGACCTT GAAGAGGGTG CAGCTGCGGG 1860 AGCTGTCGGA AGCAGAGGTC AGGCAGCATC GGGAAGACCAG GCCCGCCCTG CTGACGTCCA 1920 GACTCCGCTT CATCCCCAAG CCTGACGGGC TGCGGCCGAT TGTGAACATG GACTACGTCG 1980 TGGGGAGCCAG AACGTTCCGC AGAGAAAAGA GGGCCGAGCG TCTCACCTCG AGGGTGAAGG 2040 CACTGTTCAG CGTGCTCAAC TACGAGCGGG CGCGCCCC CGGCCTCCTG GGCGCCTCTG 2100 TGCTGGGCCT GGACGATATC CACAGGGCCT GGCGCACCTT CGTGCTGCGT GTGCGGGCCC 2160	AGGAGGAC	AC	AGACCCCCGT	CGCCTGGTGC	AGCTGCTCCG	CCAGCACAGC	AGCCCCTGGC	1440
ATGCCAAGCT CTCGCTGCAG GAGCTGACGT GGAAGATGAG CGTGCGGGAC TGCGCTTGGC 1620 TGCGCAGGAG CCCAGGGGTT GGCTGTTC CGGCCGCAGA GCACCGTCTG CGTGAGGAGA 1680 TCCTGGCCAA GTTCCTGCAC TGGCTGATGA GTGTGTACGT CGTCGAGCTG CTCAGGTCTT 1740 TCTTTTATGT CACGGAGACC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1800 AGCTGTCGGA AGCAGAGGT AGGCAGCATC GGGAAGCCAG GCCCGCCCTG CTGACGTCCA 1920 GACTCCGCTT CATCCCCAAG CCTGACGGGC TGCGGCCGAT TGTGAACATG GACTACGTCG 1980 TGGGAGCCAG AACGTTCCGC AGAGAAAAGA GGGCCGAGCG TCTCACCTCG AGGGTGAAGG 2040 CACTGTTCAG CGTGCTCAAC TACGAGCGGG CGCGGCCCC CGGCCTCTG GGCGCCTCTG 2100 TGCTGGGCCT GGACGATATC CACAGGGCCT GGCGCACCTT CGTGCTGCGT GTGCGGCCC 2100 TGCTGGGCCT GGACGATATC CACAGGGCCT GGCGCACCTT CGTGCTGCGT GTGCGGCCC 2100	AGGTGTAC	GG	CTTCGTGCGG	GCCTGCCTGC	GCCGGCTGGT	GCCCCAGGC	CTCTGGGGCT	1500
TGCGCAGGAG CCCAGGGGTT GGCTGTGTTC CGGCCGCAGA GCACCGTCTG CGTGAGGAGA 1680 TCCTGGCCAA GTTCCTGCAC TGGCTGATGA GTGTGTACGT CGTCGAGGTG CTCAGGTCTT 1740 TCTTTTATGT CACGGAGACC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 1800 TCTGGAGCAA GTTGCAAAGC ATTGGAATCA GACAGCACTT GAAGAGGGTG CAGCTGCGGG 1860 AGCTGTCGGA AGCAGAGGTC AGGCAGCATC GGGAAGACCAG GCCCGCCCTG CTGACGTCCA 1920 GACTCCGCTT CATCCCCAAG CCTGACGGGC TGCGGCCGAT TGTGAACATG GACTACGTCG 1980 TGGGAGCCAG AACGTTCCGC AGAGAAAAGA GGGCCGAGCG TCTCACCTCG AGGGTGAAGG 2040 CACTGTTCAG CGTGCTCAAC TACGAGCGGG CGCGGCGCC CGGCCTCCTG GGCGCCTCTG 2100 TGCTGGGCCT GGACGATATC CACAGGGCCT GGCGCACCTT CGTGCTGCGT GTGCGGGCCC 2160	CCAGGCAC	AA	CGAACGCCGC	TTCCTCAGGA	ACACCAAGAA	GTTCATCTCC	CTGGGGAAGC	1560
TCCTGGCCAA GTTCCTGCAC TGGCTGATGA GTGTGTACGT CGTCGAGCTG CTCAGGTCTT 174 GTCTTTTATGT CACGGAGCC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG 180 GTCTGGAGCAA GTTGCAAAGC ATTGGAATCA GACAGCACTT GAAGAGGGTG CAGCTGCGGG 186 GACTGCTGGA AGCAGAGGTC AGGCAGCATC GGGAAGCCAG GCCCGCCCTG CTGACGTCCA 192 GACTCCGCTT CATCCCCAAG CCTGACGGCC TGCGGCCGAT TGTGAACATG GACTACGTCG 198 GCACTGCTAG AACGTTCCGC AGAGAAAAGA GGGCCGAGCG TCTCACCTCG AGGGTGAAGG 204 GCACTGTTCAG CGTGCTCAAC TACGAGCGGG CGCGGCGCC CGGCCTCCTG GGCGCCTCTG 210 GCCTGGGGCCC CGGCCTCTG GGCGCCTCTG GGCGCCCCCTG GGCGCCCCCCCC	ATGCCAAG	CT	CTCGCTGCAG	GAGCTGACGT	GGAAGATGAG	CGTGCGGGAC	TGCGCTTGGC	1620
TCTTTTATGT CACGGAGACC ACGTTTCAAA AGAACAGGCT CTTTTCTAC CGGAAGAGTG 1800 TCTGGAGCAA GTTGCAAAGC ATTGGAATCA GACAGCACTT GAAGAGGGTG CAGCTGCGGG 1860 AGCTGTCGGA AGCAGAGGTC AGGCAGCATC GGGAAGCCAG GCCCGCCCTG CTGACGTCCA 1920 GACTCCGCTT CATCCCCAAG CCTGACGGGC TGCGGCCGAT TGTGAACATG GACTACGTCG 1980 TGGGAGCCAG AACGTTCCGC AGAGAAAAGA GGGCCGAGCG TCTCACCTCG AGGGTGAAGG 2040 CACTGTTCAG CGTGCTCAAC TACGAGCGGG CGCGGCGCC CGGCCTCCTG GGCGCCTCTG 2100 TGCTGGGCCT GGACGATATC CACAGGGCCT GGCGCACCTT CGTGCTGCGT GTGCGGGCCC 2160	TGCGCAGG	AG	CCCAGGGGTT	GGCTGTGTTC	CGGCCGCAGA	GCACCGTCTG	CGTGAGGAGA	1680
TCTGGAGCAA GTTGCAAAGC ATTGGAATCA GACAGCACTT GAAGAGGGTG CAGCTGCGGG 1860 AGCTGTCGGA AGCAGAGGTC AGGCAGCATC GGGAAGCCAG GCCCGCCCTG CTGACGTCCA 1920 GACTCCGCTT CATCCCCAAG CCTGACGGGC TGCGGCCGAT TGTGAACATG GACTACGTCG 1980 TGGGAGCCAG AACGTTCCGC AGAGAAAAGA GGGCCGAGCG TCTCACCTCG AGGGTGAAGG 2040 CACTGTTCAG CGTGCTCAAC TACGAGCGGG CGCGGCGCCC CGGCCTCCTG GGCGCCTCTG 2100 TGCTGGGCCT GGACGATATC CACAGGGCCT GGCGCACCTT CGTGCTGCGT GTGCGGGCCC 2160	TCCTGGCC	AA	GTTCCTGCAC	TGGCTGATGA	GTGTGTACGT	CGTCGAGCTG	CTCAGGTCTT	1740
AGCTGTCGGA AGCAGAGGTC AGGCAGCATC GGGAAGCCAG GCCCGCCCTG CTGACGTCCA 1920 GACTCCGCTT CATCCCCAAG CCTGACGGGC TGCGGCCGAT TGTGAACATG GACTACGTCG 1980 TGGGAGCCAG AACGTTCCGC AGAGAAAAGA GGGCCGAGCG TCTCACCTCG AGGGTGAAGG 2040 CACTGTTCAG CGTGCTCAAC TACGAGCGGG CGCGGCGCCC CGGCCTCCTG GGCGCCTCTG 2100 TGCTGGGCCT GGACGATATC CACAGGGCCT GGCGCACCTT CGTGCTGCGT GTGCGGGCCC 2160	TCTTTTAT	GT	CACGGAGACC	ACGTTTCAAA	AGAACAGGCT	CTTTTTCTAC	CGGAAGAGTG	1800
GACTCCGCTT CATCCCCAAG CCTGACGGGC TGCGGCCGAT TGTGAACATG GACTACGTCG 1980 TGGGAGCCAG AACGTTCCGC AGAGAAAAGA GGGCCGAGCG TCTCACCTCG AGGGTGAAGG 2040 CACTGTTCAG CGTGCTCAAC TACGAGCGGG CGCGGCGCCC CGGCCTCCTG GGCGCCTCTG 2100 TGCTGGGCCT GGACGATATC CACAGGGCCT GGCGCACCTT CGTGCTGCGT GTGCGGGCCC 2160	TCTGGAGC	AA	GTTGCAAAGC	ATTGGAATCA	GACAGCACTT	GAAGAGGGTG	CAGCTGCGGG	1860
TGGGAGCCAG AACGTTCCGC AGAGAAAAGA GGGCCGAGCG TCTCACCTCG AGGGTGAAGG 2046 CACTGTTCAG CGTGCTCAAC TACGAGCGGG CGCGCGCCC CGGCCTCCTG GGCGCCTCTG 2106 TGCTGGGCCT GGACGATATC CACAGGGCCT GGCGCACCTT CGTGCTGCGT GTGCGGGCCC 2166	AGCTGTCG	GΑ	AGCAGAGGTC	AGGCAGCATC	GGGAAGCCAG	GCCCGCCCTG	CTGACGTCCA	1920
CACTGTTCAG CGTGCTCAAC TACGAGCGGG CGCGGCGCCC CGGCCTCCTG GGCGCCTCTG 2100 TGCTGGGCCT GGACGATATC CACAGGGCCT GGCGCACCTT CGTGCTGCGT GTGCGGGCCC 2160	GACTCCGC	гт	CATCCCCAAG	CCTGACGGGC	TGCGGCCGAT	TGTGAACATG	GACTACGTCG	1980
TGCTGGGCCT GGACGATATC CACAGGGCCT GGCGCACCTT CGTGCTGCGT GTGCGGGCCC 216	TGGGAGCC	AG	AACGTTCCGC	AGAGAAAAGA	GGGCCGAGCG	TCTCACCTCG	AGGGTGAAGG	2040
	CACTGTTC	AG	CGTGCTCAAC	TACGAGCGGG	CGCGGCGCCC	CGGCCTCCTG	GGCGCCTCTG	2100
AGGACCCGCC GCCTGAGCTG TACTTTGTCA AGGTGGATGT GACGGGCGCG TACGACACCA 222	TGCTGGGC	CT	GGACGATATC	CACAGGGCCT	GGCGCACCTT	CGTGCTGCGT	GTGCGGGCCC	2160
	AGGACCCG	CC	GCCTGAGCTG	TACTTTGTCA	AGGTGGATGT	GACGGGCGCG	TACGACACCA	2220

שרככככר <u>א</u> ככא	CAGGCTCACG	CACCTCATCC	CCACCAMCAM	CAAACCCCAC	7 7 C 7 C C C C 7 C C	2200
						2280
GCGTGCGTCG	GTATGCCGTG	GTCCAGAAGG	CCGCCCATGG	GCACGTCCGC	AAGGCCTTCA	2340
AGAGCCACGT	CTCTACCTTG	ACAGACCTCC	AGCCGTACAT	GCGACAGTTC	GTGGCTCACC	2400
TGCAGGAGAC	CAGCCCGCTG	AGGGATGCCG	TCGTCATCGA	GCAGAGCTCC	TCCCTGAATG	2460
AGGCCAGCAG	TGGCCTCTTC	GACGTCTTCC	TACGCTTCAT	GTGCCACCAC	GCCGTGCGCA	2520
TCAGGGGCAA	GTCCTACGTC	CAGTGCCAGG	GGATCCCGCA	GGGCTCCATC	CTCTCCACGC	2580
TGCTCTGCAG	CCTGTGCTAC	GGCGACATGG	AGAACAAGCT	GTTTGCGGGG	ATTCGGCGGG	2640
ACGGGCTGCT	CCTGCGTTTG	GTGGATGATT	TCTTGTTGGT	GACACCTCAC	CTCACCCACG	2700
CGAAAACCTT	CCTCAGGACC	CTGGTCCGAG	GTGTCCCTGA	GTATGGCTGC	GTGGTGAACT	2760
TGCGGAAGAC	AGTGGTGAAC	TTCCCTGTAG	AAGACGAGGC	CCTGGGTGGC	ACGGCTTTTG	2820
TTCAGATGCC	GGCCCACGGC	CTATTCCCCT	GGTGCGGCCT	GCTGCTGGAT	ACCCGGACCC	2880
TGGAGGTGCA	GAGCGACTAC	TCCAGCTATG	CCCGGACCTC	CATCAGAGCC	AGTCTCACCT	2940
TCAACCGCGG	CTTCAAGGCT	GGGAGGAACA	TGCGTCGCAA	ACTCTTTGGG	GTCTTGCGGC	3000
TGAAGTGTCA	CAGCCTGTTT	CTGGATTTGC	AGGTGAACAG	CCTCCAGACG	GTGTGCACCA	3060
ACATCTACAA	GATCCTCCTG	CTGCAGGCGT	ACAGGTTTCA	CGCATGTGTG	CTGCAGCTCC	3120
CATTTCATCA	GCAAGTTTGG	AAGAACCCCA	CATTTTTCCT	GCGCGTCATC	TCTGACACGG	3180
CCTCCCTCTG	CTACTCCATC	CTGAAAGCCA	AGAACGCAGG	GATGTCGCTG	GGGGCCAAGG	3240
GCGCCGCCGG	CCCTCTGCCC	TCCGAGGCCG	TGCAGTGGCT	GTGCCACCAA	GCATTCCTGC	3300
TCAAGCTGAC	TCGACACCGT	GTCACCTACG	TGCCACTCCT	GGGGTCACTC	AGGACAGCCC	3360
AGACGCAGCT	GAGTCGGAAG	CTCCCGGGGA	CGACGCTGAC	TGCCCTGGAG	GCCGCAGCCA	3420
ACCCGGCACT	GCCCTCAGAC	TTCAAGACCA	TCCTGGACTG	ATGGCCACCC	GCCCACAGCC	3480
AGGCCGAGAG	CAGACACCAG	CAGCCCTGTC	ACGCCGGGCT	CTACGTCCCA	GGGAGGGAGG	3540
GGCGGCCCAC	ACCCAGGCCC	GCACCGCTGG	GAGTCTGAGG	CCTGAGTGAG	TGTTTGGCCG	3600
AGGCCTGCAT	GTCCGGCTGA	AGGCTGAGTG	TCCGGCTGAG	GCCTGAGCGA	GTGTCCAGCC	3660
AAGGGCTGAG	TGTCCAGCAC	ACCTGCCGTC	TTCACTTCCC	CACAGGCTGG	CGCTCGGCTC	3720
CACCCCAGGG	CCAGCTTTTC	CTCACCAGGA	GCCCGGCTTC	CACTCCCCAC	ATAGGAATAG	3780
TCCATCCCCA	GATTCGCCAT	TGTTCACCCC	TCGCCCTGCC	CTCCTTTGCC	TTCCACCCC	3840
ACCATCCAGG	TGGAGACCCT	GAGAAGGACC	CTGGGAGCTC	TGGGAATTTG	GAGTGACCAA	3900
AGGTGTGCCC	TGTACACAGG	CGAGGACCCT	GCACCTGGAT	GGGGGTCCCT	GTGGGTCAAA	3960
TTGGGGGGAG	GTGCTGTGGG	AGTAAAATAC	TGAATATATG	AGTTTTTCAG	TTTTGAAAAA	4020
AAAAAAAAA	AAAAAAAAA	AA				4042

(2) ANGABEN ZU SEQ ID NO: 2:

- (i) SEQUENZKENNZEICHEN:
 - (A) L□NGE: 1132 Aminos,uren
 - (B) ART: Aminos,ure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKŠLS: Protein
- (iii) HYPOTHETISCH: NEIN
- (iv) ANTISENSE: NEIN
- (vi) URSPRŠNLICHE HERKUNFT:
 - (C) INDIVIDUUM/ISOLAT: Human
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:
- Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser 1 5 10 15
- His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly 20 25 30
- Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg 35 40 45
- Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro 50 55 60
- Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys Leu Lys Glu Leu 65 70 75 80
- Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val 85 90 95
- Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro 100 105 110
- Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr 115 120 125
- Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val 130 135 140
- Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val 145 150 155 160
- Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr 165 170 175
- Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly 180 185 190
- Pro Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg 195 200 205
- Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg

	210					215					220				
Gly 225	Gly	Ser	Ala	Ser	Arg 230	Ser	Leu	Pro	Leu	Pro 235	Lys	Arg	Pro	Arg	Arg 240
Gly	Ala	Ala	Pro	Glu 245	Pro	Glu	Arg	Thr	Pro 250	Val	Gly	Gln	Gly	Ser 255	Trp
Ala	His	Pro	Gly 260	Arg	Thr	Arg	Gly	Pro 265	Ser	Asp	Arg	Gly	Phe 270	Cys	Val
Val	Ser	Pro 275	Ala	Arg	Pro	Ala	Glu 280	Glu	Ala	Thr	Ser	Leu 285	Glu	Gly	Ala
Leu	Ser 290	Gly	Thr	Arg	His	Ser 295	His	Pro	Ser	Val	Gly 300	Arg	Gln	His	His
Ala 305	Gly	Pro	Pro	Ser	Thr 310	Ser	Arg	Pro	Pro	Arg 315	Pro	Trp	Asp	Thr	Pro 320
Cys	Pro	Pro	Val	Tyr 325	Ala	Glu	Thr	Lys	His 330	Phe	Leu	Tyr	Ser	Ser 335	Gly
Asp	Lys	Glu	Gln 340	Leu	Arg	Pro	Ser	Phe 345	Leu	Leu	Ser	Ser	Leu 350	Arg	Pro
Ser	Leu	Thr 355	Gly	Ala	Arg	Arg	Leu 360	Val	Glu	Thr	Ile	Phe 365	Leu	Gly	Ser
Arg	Pro 370	Trp	Met	Pro	Gly	Thr 375	Pro	Arg	Arg	Leu	Pro 380	Arg	Leu	Pro	Gln
Arg 385	Tyr	Trp	Gln	Met	Arg 390	Pro	Leu	Phe	Leu	Glu 395	Leu	Leu	Gly	Asn	His 400
Ala	Gln	Cys	Pro	Tyr 405	Gly	Val	Leu	Leu	Lys 410	Thr	His	Cys	Pro	Leu 415	Arg
Ala	Ala	Val	Thr 420	Pro	Ala	Ala	Gly	Val 425	Cys	Ala	Arg	Glu	Lys 430	Pro	Gln
Gly	Ser	Val 435	Ala	Ala	Pro	Glu	Glu 440	Glu	Asp	Thr	Asp	Pro 445	Arg	Arg	Leu
Val	Gln 450	Leu	Leu	Arg	Gln	His 455	Ser	Ser	Pro	Trp	Gln 460	Val	Tyr	Gly	Phe
Val 465	Arg	Ala	Cys	Leu	Arg 470	Arg	Leu	Val	Pro	Pro 475	Gly	Leu	Trp	Gly	Ser 480
Arg	His	Asn	Glu	Arg 485	Arg	Phe	Leu	Arg	Asn 490	Thr	Lys	Lys	Phe	Ile 495	Ser
Leu	Gly	Lys	His 500	Ala	Lys	Leu	Ser	Leu 505	Gln	Glu	Leu	Thr	Trp 510	Lys	Met
Ser	Val	Arg 515	Asp	Cys	Ala	Trp	Leu 520	Arg	Arg	Ser	Pro	Gly 525	Val	Gly	Cys
Val	Pro 530	Ala	Ala	Glu	His	Arg 535	Leu	Arg	Glu	Glu	Ile 540	Leu	Ala	Lys	Phe

Leu 545	His	Trp	Leu	Met	Ser 550	Val	Tyr	Val	Val	Glu 555	Leu	Leu	Arg	Ser	Phe 560
Phe	Tyr	Val	Thr	Glu 565	Thr	Thr	Phe	Gln	Lys 570	Asn	Arg	Leu	Phe	Phe 575	Tyr
Arg	Lys	Ser	Val 580	Trp	Ser	Lys	Leu	Gln 585	Ser	Ile	Gly	Ile	Arg 590	Gln	His
Leu	Lys	Arg 595	Val	Gln	Leu	Arg	Glu 600	Leu	Ser	Glu	Ala	Glu 605	Val	Arg	Gln
His	Arg 610	Glu	Ala	Arg	Pro	Ala 615	Leu	Leu	Thr	Ser	Arg 620	Leu	Arg	Phe	Ile
Pro 625	Lys	Pro	Asp	Gly	Leu 630	Arg	Pro	Ile	Val	Asn 635	Met	Asp	Tyr	Val	Val 640
Gly	Ala	Arg	Thr	Phe 645	Arg	Arg	Glu	Lys	Arg 650	Ala	Glu	Arg	Leu	Thr 655	Ser
Arg	Val	Lys	Ala 660	Leu	Phe	Ser	Val	Leu 665	Asn	Tyr	Glu	Arg	Ala 670	Arg	Arg
Pro	Gly	Leu 675	Leu	Gly	Ala	Ser	Val 680	Leu	Gly	Leu	Asp	Asp 685	Ile	His	Arg
Ala	Trp 690	Arg	Thr	Phe	Val	Leu 695	Arg	Val	Arg	Ala	Gln 700	Asp	Pro	Pro	Pro
Glu 705	Leu	Tyr	Phe	Val	Lys 710	Val	Asp	Val	Thr	Gly 715	Ala	Tyr	Asp	Thr	Ile 720
Pro	Gln	Asp	Arg	Leu 725	Thr	Glu	Val	Ile	Ala 730	Ser	Ile	Ile	Lys	Pro 735	Gln
Asn	Thr	Tyr	Cys 740	Val	Arg	Arg	Tyr	Ala 745	Val	Val	Gln	Lys	Ala 750	Ala	His
Gly	His	Val 755	Arg	Lys	Ala	Phe	Lys 760	Ser	His	Val	Ser	Thr 765	Leu	Thr	Asp
Leu	Gln 770	Pro	Tyr		Arg			Val	Ala	His	Leu 780	Gln	Glu	Thr	Ser
Pro 785	Leu	Arg	Asp	Ala	Val 790	Val	Ile	Glu	Gln	Ser 795	Ser	Ser	Leu	Asn	Glu 800
Ala	Ser	Ser	Gly	Leu 805	Phe	Asp	Val	Phe	Leu 810	Arg	Phe	Met	Cys	His 815	His
Ala	Val	Arg	Ile 820	Arg	Gly	Lys	Ser	Tyr 825	Val	Gln	Cys	Gln	Gly 830	Ile	Pro
Gln	Gly	Ser 835	Ile	Leu	Ser	Thr	Leu 840	Leu	Cys	Ser	Leu	Cys 845	Tyr	Gly	Asp
Met	Glu 850	Asn	Lys	Leu	Phe	Ala 855	Gly	Ile	Arg	Arg	Asp 860	Gly	Leu	Leu	Leu

Arg Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr His Ala 870 Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu Phe Pro Trp Cys Gly Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser 935 Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr Phe 955 Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val Asn 985 Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu Gln 1000 Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr Ala 1030 1035 Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met Ser Leu 1045 1050 Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala Val Gln Trp 1065 Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg His Arg Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala Gln Thr Gln Leu Ser 1095 Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala Leu Glu Ala Ala Asn 1105 1115 Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile Leu Asp

1130

- (2) ANGABEN ZU SEQ ID NO: 3:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LONGE: 1153 Basenpaare

1125

- (B) ART: Nucleotid
- (C) STRANGFORM: Einzelstrang
- (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKŠLS: cDNA

- (iii) HYPOTHETISCH: NEIN
- (iv) ANTISENSE: NEIN
- (vi) URSPRŠNLICHE HERKUNFT:
 - (C) INDIVIDUUM/ISOLAT: Human
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

GTGCCTGCAG AGACCCGT	CT GGTGCACTCT	GATTCTCCAC	TTGCCTGTTG	CATGTCCTCG	60
TTCCCTTGTT TCTCACCA	CC TCTTGGGTTG	CCATGTGCGT	TTCCTGCCGA	GTGTGTGTTG	120
ATCCTCTCGT TGCCTCCT	GG TCACTGGGCA	TTTGCTTTTA	TTTCTCTTTG	CTTAGTGTTA	180
CCCCCTGATC TTTTTATT	GT CGTTGTTTGC	TTTTGTTTAT	TGAGACAGTC	TCACTCTGTC	240
ACCCAGGCTG GAGTGTAA	IG GCACAATCTC	GGCTCACTGC	AACCTCTGCC	TCCTCGGTTC	300
AAGCAGTTCT CATTCCTC	AA CCTCATGAGT	AGCTGGGATT	ACAGGCGCCC	ACCACCACGC	360
CTGGCTAATT TTTGTATT	IT TAGTAGAGAT	AGGCTTTCAC	CATGTTGGCC	AGGCTGGTCT	420
CAAACTCCTG ACCTCAAG	IG ATCTGCCCGC	CTTGGCCTCC	CACAGTGCTG	GGATTACAGG	480
TGCAAGCCAC CGTGCCCG	GC ATACCTTGAT	CTTTTAAAAT	GAAGTCTGAA	ACATTGCTAC	540
CCTTGTCCTG AGCAATAA	GA CCCTTAGTGT	ATTTTAGCTC	TGGCCACCCC	CCAGCCTGTG	600
TGCTGTTTTC CCTGCTGA	CT TAGTTCTATC	TCAGGCATCT	TGACACCCCC	ACAAGCTAAG	660
CATTATTAAT ATTGTTTT	CC GTGTTGAGTG	TTTCTTTAGC	TTTGCCCCCG	CCCTGCTTTT	720
CCTCCTTTGT TCCCCGTC	G TCTTCTGTCT	CAGGCCCGCC	GTCTGGGGTC	CCCTTCCTTG	780
TCCTTTGCGT GGTTCTTC	TG TCTTGTTATT	GCTGGTAAAC	CCCAGCTTTA	CCTGTGCTGG	840
CCTCCATGGC ATCTAGCG	AC GTCCGGGGAC	CTCTGCTTAT	GATGCACAGA	TGAAGATGTG	900
GAGACTCACG AGGAGGGC	GG TCATCTTGGC	CCGTGAGTGT	CTGGAGCACC	ACGTGGCCAG	960
CGTTCCTTAG CCAGGGTT	GG CTGTGTTCCG	GCCGCAGAGC	ACCGTCTGCG	TGAGGAGATC	1020
CTGGCCAAGT TCCTGCAC	rg gctgatgagt	GTGTACGTCG	TCGAGCTGCT	CAGGTCTTTC	1080
TTTTATGTCA CGGAGACC	AC GTTTCAAAAG	AACAGGCTCT	TTTTCTACCG	GAAGAGTGTC	1140
TGGAGCAAGT TGC					1153

- (2) ANGABEN ZU SEQ ID NO: 4:
 - (i) SEQUENZKENNZEICHEN:
 - (A) L□NGE: 412 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKŠLS: cDNA
 - (iii) HYPOTHETISCH: NEIN

(iv)	ANTISENSE:	NEIN
------	------------	------

(vi) URSPRŠNLICHE HERKUNFT:

(C) INDIVIDUUM/ISOLAT: Human

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

CAGAGCCCTG GTCCTCCTGT	CTCCATCGTC	ACGTGGGCAC	ACGTGGCTTT	TCGCTCAGGA	60
CGTCGAGTGG ACACGGTGAT	CTCTGCCTCT	GCTCTCCCTC	CTGTCCAGTT	TGCATAAACT	120
TACGAGGTTC ACCTTCACGT	TTTGATGGAC	ACGCGGTTTC	CAGGCACCGA	GGCCAGAGCA	180
GTGAACAGAG GAGGCTGGGC	GCGGCAGTGG	AGCCGGGTTG	CCGGCAATGG	GGAGAAGTGT	240
CTGGAAGCAC AGACGCTCTG	GCGAGGGTGC	CTGCAGAGAC	CCGCCTGGTG	CACTCTGATT	300
CTCCACTTGC CTGTTGCATG	TCCTCGTTCC	CTTGTTTCTC	ACCACCTCTT	GGGTTGCCAT	360
GTGCGTTTCC TGCCGAGTGT	GTGTTGATCC	TCTCGTTGCC	TCCTGGTCAC	TG	412

(2) ANGABEN ZU SEQ ID NO: 5:

- (i) SEQUENZKENNZEICHEN:
 - (A) L□NGE: 1012 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKŠLS: cDNA
- (iii) HYPOTHETISCH: NEIN
- (iv) ANTISENSE: NEIN
- (vi) URSPRŠNLICHE HERKUNFT:
 - (C) INDIVIDUUM/ISOLAT: Human

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

GGGGTCCTGG	GCCCACCCGG	GCAGGACGCG	TGGACCGAGT	GACCGTGGTT	TCTGTGTGGT	60
GTCACCTGCC	AGACCCGCCG	AAGAAGCCAC	CTCTTTGGAG	GGTGCGCTCT	CTGGCACGCG	120
CCACTCCCAC	CCATCCGTGG	GCCGCCAGCA	CCACGCGGGC	CCCCCATCCA	CATCGCGGCC	180
ACCACGTCCC	TGGGACACGC	CTTGTCCCCC	GGTGTACGCC	GAGACCAAGC	ACTTCCTCTA	240
CTCCTCAGGC	GACAAGGAGC	AGCTGCGGCC	CTCCTTCCTA	CTCAGCTCTC	TGAGGCCCAG	300
CCTGACTGGC	GCTCGGAGGC	TCGTGGAGAC	CATCTTTCTG	GGTTCCAGGC	CCTGGATGCC	360
AGGGACTCCC	CGCAGGTTGC	CCCGCCTGCC	CCAGCGCTAC	TGGCAAATGC	GGCCCCTGTT	420
TCTGGAGCTG	CTTGGGAACC	ACGCGCAGTG	CCCCTACGGG	GTGCTCCTCA	AGACGCACTG	480
CCCGCTGCGA	GCTGCGGTCA	CCCCAGCAGC	CGGTGTCTGT	GCCCGGGAGA	AGCCCCAGGG	540

CTCTGTGGC	G GCCCCGAGG	AGGAGGACAC	AGACCCCCGT	CGCCTGGTGC	AGCTGCTCCG	600
CCAGCACAG	C AGCCCCTGGC	AGGTGTACGG	CTTCGTGCGG	GCCTGCCTGC	GCCGGCTGGT	660
GCCCCAGG	C CTCTGGGGCT	CCAGGCACAA	CGAACGCCGC	TTCCTCAGGA	ACACCAAGAA	720
GTTCATCTC	C CTGGGGAAGC	ATGCCAAGCT	CTCGCTGCAG	GAGCTGACGT	GGAAGATGAG	780
CGTGCGGGA	C TGCGCTTGGC	TGCGCAGGAG	CCCAGGTGAG	GAGGTGGTGG	CCGTCGAGGG	840
CCCAGGCCC	C AGAGCTGAAT	GCAGTAGGGG	CTCAGAAAAG	GGGGCAGGÇA	GAGCCCTGGT	900
CCTCCTGTC	r ccatcgtcac	GTGGGCACAC	GTGGCTTTTC	GCTCAGGACG	TCGAGTGGAC	960
ACGGTGATC'	r ctgcctctgc	TCTCCCTCCT	GTCCAGTTTG	CATAAACTTA	CG	1012

(2) ANGABEN ZU SEQ ID NO: 6:

- (i) SEQUENZKENNZEICHEN:
 - (A) L□NGE: 3972 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKŠLS: cDNA
- (iii) HYPOTHETISCH: NEIN
- (iv) ANTISENSE: NEIN
- (vi) URSPRŠNLICHE HERKUNFT:
 - (C) INDIVIDUUM/ISOLAT: Human

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

GAATTCGCGG	CCGCGTCGAC	GTTTCAGGCA	GCGCTGCGTC	CTGCTGCGCA	CGTGGGAAGC	60
CCTGGCCCCG	GCCACCCCG	CGATGCCGCG	CGCTCCCCGC	TGCCGAGCCG	TGCGCTCCCT	120
GCTGCGCAGC	CACTACCGCG	AGGTGCTGCC	GCTGGCCACG	TTCGTGCGGC	GCCTGGGGCC	180
CCAGGGCTGG	CGGCTGGTGC	AGCGCGGGGA	CCCGGCGGCT	TTCCGCGCGC	TGGTGGCCCA	240
GTGCCTGGTG	TGCGTGCCCT	GGGACGCACG	GCCGCCCCC	GCCGCCCCT	CCTTCCGCCA	300
GGTGTCCTGC	CTGAAGGAGC	TGGTGGCCCG	AGTGCTGCAG	AGGCTGTGCG	AGCGCGGCGC	360
GAAGAACGTG	CTGGCCTTCG	GCTTCGCGCT	GCTGGACGGG	GCCCGCGGG	GCCCCCCGA	420
GGCCTTCACC	ACCAGCGTGC	GCAGCTACCT	GCCCAACACG	GTGACCGACG	CACTGCGGGG	480
GAGCGGGGCG	TGGGGGCTGC	TGCTGCGCCG	CGTGGGCGAC	GACGTGCTGG	TTCACCTGCT	540
GGCACGCTGC	GCGCTCTTTG	TGCTGGTGGC	TCCCAGCTGC	GCCTACCAGG	TGTGCGGGCC	600
GCCGCTGTAC	CAGCTCGGCG	CTGCCACTCA	GGCCCGGCCC	CCGCCACACG	CTAGTGGACC	660
CCGAAGGCGT	CTGGGATGCG	AACGGGCCTG	GAACCATAGC	GTCAGGGAGG	CCGGGGTCCC	720

CCTGGGCCTG	CCAGCCCCGG	GTGCGAGGAG	GCGCGGGGGC	AGTGCCAGCC	GAAGTCTGCC	780
GTTGCCCAAG	AGGCCCAGGC	GTGGCGCTGC	CCCTGAGCCG	GAGCGGACGC	CCGTTGGGCA	840
GGGGTCCTGG	GCCCACCCGG	GCAGGACGCG	TGGACCGAGT	GACCGTGGTT	TCTGTGTGGT	900
GTCACCTGCC	AGACCCGCCG	AAGAAGCCAC	CTCTTTGGAG	GGTGCGCTCT	CTGGCACGCG	960
CCACTCCCAC	CCATCCGTGG	GCCGCCAGCA	CCACGCGGGC	CCCCCATCCA	CATCGCGGCC	1020
ACCACGTCCC	TGGGACACGC	CTTGTCCCCC	GGTGTACGCC	GAGACCAAGC	ACTTCCTCTA	1080
CTCCTCAGGC	GACAAGGAGC	AGCTGCGGCC	CTCCTTCCTA	CTCAGCTCTC	TGAGGCCCAG	1140
CCTGACTGGC	GCTCGGAGGC	TCGTGGAGAC	CATCTTTCTG	GGTTCCAGGC	CCTGGATGCC	1200
AGGGACTCCC	CGCAGGTTGC	CCCGCCTGCC	CCAGCGCTAC	TGGCAAATGC	GGCCCCTGTT	1260
TCTGGAGCTG	CTTGGGAACC	ACGCGCAGTG	CCCCTACGGG	GTGCTCCTCA	AGACGCACTG	1320
CCCGCTGCGA	GCTGCGGTCA	CCCCAGCAGC	CGGTGTCTGT	GCCCGGGAGA	AGCCCCAGGG	1380
CTCTGTGGCG	GCCCCGAGG	AGGAGGACAC	AGACCCCCGT	CGCCTGGTGC	AGCTGCTCCG	1440
CCAGCACAGC	AGCCCCTGGC	AGGTGTACGG	CTTCGTGCGG	GCCTGCCTGC	GCCGGCTGGT	1500
GCCCCAGGC	CTCTGGGGCT	CCAGGCACAA	CGAACGCCGC	TTCCTCAGGA	ACACCAAGAA	1560
GTTCATCTCC	CTGGGGAAGC	ATGCCAAGCT	CTCGCTGCAG	GAGCTGACGT	GGAAGATGAG	1620
CGTGCGGGAC	TGCGCTTGGC	TGCGCAGGAG	CCCAGGTGAG	GAGGTGGTGG	CCGTCGAGGG	1680
CCCAGGCCCC	AGAGCTGAAT	GCAGTAGGGG	CTCAGAAAAG	GGGGCAGGCA	GAGCCCTGGT	1740
CCTCCTGTCT	CCATCGTCAC	GTGGGCACAC	GTGGCTTTTC	GCTCAGGACG	TCGAGTGGAC	1800
ACGGTGATCT	CTGCCTCTGC	TCTCCCTCCT	GTCCAGTTTG	CATAAACTTA	CGAGGTTCAC	1860
CTTCACGTTT	TGATGGACAC	GCGGTTTCCA	GGCGCCGAGG	CCAGAGCAGT	GAACAGAGGA	1920
GGCTGGGCGC	GGCAGTGGAG	CCGGGTTGCC	GGCAATGGGG	AGAAGTGTCT	GGAAGCACAG	1980
ACGCTCTGGC	GAGGGTGCCT	GCAGGGGTTG	GCTGTGTTCC	GGCCGCAGAG	CACCGTCTGC	2040
GTGAGGAGAT	CCTGGCCAAG	TTCCTGCACT	GGCTGATGAG	TGTGTACGTC	GTCGAGCTGC	2100
TCAGGTCTTT	CTTTTATGTC	ACGGAGACCA	CGTTTCAAAA	GAACAGGCTC	TTTTTCTACC	2160
GGAAGAGTGT	CTGGAGCAAG	TTGCAAAGCA	TTGGAATCAG	ACAGCACTTG	AAGAGGGTGC	2220
AGCTGCGGGA	GCTGTCGGAA	GCAGAGGTCA	GGCAGCATCG	GGAAGCCAGG	CCCGCCCTGC	2280
TGACGTCCAG	ACTCCGCTTC	ATCCCCAAGC	CTGACGGGCT	GCGGCCGATT	GTGAACATGG	2340
ACTACGTCGT	GGGAGCCAGA	ACGTTCCGCA	GAGAAAAGAG	GGTGGCTGTG	CTTTGGTTTA	2400
ACTTCCTTTT	TAAACAGAAG	TGCGTTTGAG	CCCCACATTT	GGTATCAGCT	TAGATGAAGG	2460
GCCCGGAGGA	GGGGCCACGG	GACACAGCCA	GGGCCATGGC	ACGGCGCCAA	CCCATTTGTG	2520

CGCACGGTGA	GGTGGCCGAG	GTGCCGGTGC	CTCCAGAAAA	GCAGCGTGGG	GGTGTAGGGG	2580
GAGCTCCTGG	GGCAGGGACA	GGCTCTGAGG	ACCACAAGAA	GCAGCTGGGC	CAGGGCCTGG	2640
ATGCAGCACG	GCCCGAGCGG	GTGGGGGCCC	ACCACGCCAT	TCTGGTCAAA	GGTGTTGTAG	2700
TCGTAATAGC	CGGCCCAGGC	GCTCTGAACC	TTCAGAGTCT	CAAAAGCTGG	GACCCTCAGG	2760
GCCAAATGGG	GCCACACCTT	GTCCTGGAAG	AAATCATGGT	CCACTTCCAG	GTTCGCCGGG	2820
TCCGGTTCTT	CCTGCTCAGT	GGGGCTACGA	CCACCTAGGT	AGTTGCTACC	TAATCCTTCC	2880
CGGCGAAAAT	AGGCTCCACT	GGTGTCTGCA	ACAAGCGGAG	TCTCTAGGCC	TGGTCCCTGG	2940
GGGCAGTGCC	ACACATACAC	ATACCTTTTC	CTCGGCTCCA	CAGGTAGCTT	GGTGCCCTGC	3000
AGGGTGCCAG	GCGGCCCCTC	TCCAACACCA	GCCAGTGCTG	CGATTTGCGC	AGACCAGGCT	3060
CCGGCTGCGT	TGATCACAAT	GGCGCATTCC	ACAGGCTGGT	ACTCCAGGCT	GCGGTCCATC	3120
TTCACATGGA	CTTCATGGAT	CCTTTTCAAG	ACCACCGCTT	TGTCATCTGT	GGTCAACATG	3180
CGTTGAGATG	AAGAGACAAA	ACGTGTCACC	TCTCCCTGGC	AGAAAAGGAC	TCCCAAGGAC	3240
TGGACCTTTC	GCCGAAGCCC	CTGGAGCAGA	CACCAGGGGT	CAAACCAACC	TTCGTCCTCC	3300
ATCCCATAAG	ACGCCAAAGC	CACTCCCTCT	GTGTTTATCC	AGGGAAACTT	GTTCCGAAGC	3360
TGATCAGGAG	ACATCAGAGA	AACTTTGGCT	CCCTCCTGCC	TCTGCACTTT	CACGTTGCTC	3420
TCCATGGCTG	CAGCATCCTT	TTCTGAAGCC	AGCAAGAGGT	AGCCCGAGGG	GTTGAACCGG	3480
AGGTCCAGGG	GAGGAGCATC	GACTACGGCC	AGGTACTCAT	TGATGTTCCG	TAGAAAGCTG	3540
GCTGAAAAGA	GGGAGAGCTG	GATGTTCTCA	GGCAATGAGA	ACTGCTGACA	AATCCCACCT	3600
ACTGAGAGCC	CAGTGGAGGC	CTGTGAATAC	GTGTGGTCCC	GTTCCACCAC	TAGCACTCGA	3660
ATAGCACCTC	GTCTGCTCTC	CAGCTTCTTC	AGCCAATAGG	CCACAGACAA	GCCAAGCACC	3720
CCACCTCCCA	CGATCACCAC	ATCCGAGTGC	TCGGGAGGCA	GGTGGCTGGT	GTCTTGCAGT	3780
AGATCACAGG	ACCTTCCAGG	CAGGATCGAC	TTGATCTTCT	TCTTAATCTC	AGACACCTTT	3840
CCATCCCAGT	CCAGAGAAAA	GCCTCCTCTG	CGCGTGCCTG	GCCTCCGGGT	CAAGAGGCCC	3900
CGGCCCATGC	CGTGCGGCAG	AACCCTCCGA	ATCATAGCCC	CTCTGAGCCC	GGGTCGACGC	3960
GGCCGCGAAT	TC					3972

(2) ANGABEN ZU SEQ ID NO: 7:

- (i) SEQUENZKENNZEICHEN:

 - (A) L□NGE: 2089 Basenpaare
 (B) ART: Nucleotid
 (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKŠLS: cDNA
- (v) ART DES FRAGMENTS: linear

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:

CCGGAAGAGT	GTCTGGAGCA	AGTTGCAAAG	CATTGGAATC	AGACAGCACT	TGAAGAGGGT	60
GCAGCTGCGG	GAGCTGTCGG	AAGCAGAGGT	CAGGCAGCAT	CGGGAAGCCA	GGCCCGCCCT	120
GCTGACGTCC	AGACTCCGCT	TCATCCCCAA	GCCTGACGGG	CTGCGGCCGA	TTGTGAACAT	180
GGACTACGTC	GTGGGAGCCA	GAACGTTCCG	CAGAGAAAAG	AGGGCCGAGC	GTCTCACCTC	240
GAGGGTGAAG	GCACTGTTCA	GCGTGCTCAA	CTACGAGCGG	GCGCGGCGCC	CCGGCCTCCT	300
GGGCGCCTCT	GTGCTGGGCC	TGGACGATAT	CCACAGGGCC	TGGCGCACCT	TCGTGCTGCG	360
TGTGCGGGCC	CAGGACCCGC	CGCCTGAGCT	GTACTTTGTC	AAGGTGGATG	TGACGGGCGC	420
GTACGACACC	ATCCCCCAGG	ACAGGCTCAC	GGAGGTCATC	GCCAGCATCA	TCAAACCCCA	480
GAACACGTAC	TGCGTGCGTC	GGTATGCCGT	GGTCCAGAAG	GCCGCCCATG	GGCACGTCCG	540
CAAGGCCTTC	AAGAGCCACG	TCTCTACCTT	GACAGACCTC	CAGCCGTACA	TGCGACAGTT	600
CGTGGCTCAC	CTGCAGGAGA	CCAGCCCGCT	GAGGGGTGCC	GTCGTCATCG	AGCAGAGCTC	660
CTCCCTGAAT	GAGGCCAGCA	GTGGCCTCTT	CGACGTCTTC	CTACGCTTCA	TGTGCCACCA	720
CGCCGTGCGC	ATCAGGGGCA	AGTCCTACGT	CCAGTGCCAG	GGGATCCCGC	AGGGCTCCAT	780
CCTCTCCACG	CTGCTCTGCA	GCCTGTGCTA	CGGCGACATG	GAGAACAAGC	TGTTTGCGGG	840
GATTCGGCGG	GACGGGCTGC	TCCTGCGTTT	GGTGGATGAT	TTCTTGTTGG	TGACACCTCA	900
CCTCACCCAC	GCGAAAACCT	TCCTCAGGAC	CCTGGTCCGA	GGTGTCCCTG	AGTATGGCTG	960
CGTGGTGAAC	TTGCGGAAGA	CAGTGGTGAA	CTTCCCTGTA	GAAGACGAGG	CCCTGGGTGG	1020
CACGGCTTTT	GTTCAGATGC	CGGCCCACGG	CCTATTCCCC	TGGTGCGGCC	TGCTGCTGGA	1080
TACCCGGACC	CTGGAGGTGC	AGAGCGACTA	CTCCAGCTAT	GCCCGGACCT	CCATCAGAGC	1140
CAGTCTCACC	TTCAACCGCG	GCTTCAAGGC	TGGGAGGAAC	ATGCGTCGCA	AACTCTTTGG	1200
GGTCTTGCGG	CTGAAGTGTC	ACAGCCTGTT	TCTGGATTTG	CAGGTGAACA	GCCTCCAGAC	1260
GGTGTGCACC	AACATCTACA	AGATCCTCCT	GCTGCAGGCG	TACAGGTTTC	ACGCATGCGT	1320
GCTGCAGCTC	CCATTTCATC	AGCAAGTTTG	GAAGAACCCC	ACATTTTTCC	TGCGCGTCAT	1380
CTCTGACACG	GCCTCCCTCT	GCTACTCCAT	CCTGAAAGCC	AAGAACGCAG	GTATGTGCAG	1440
GTGCCTGGCC	TCAGTGGCAG	CAGTGCCTGC	CTGCTGGTGT	TAGTGTGTCA	GGAGACTGAG	1500
TGAATCTGGG	CTTAGGAAGT	TCTTACCCCT	TTTCGCATCA	GGAAGTGGTT	TAACCCAACC	1560
ACTGTCAGGC	TCGTCTGCCC	GCCCTCTCGT	GGGGTGAGCA	GAGCACCTGA	TGGAAGGGAC	1620

AGGAGCTGTC	TGGGAGCTGC	CATCCTTCCC	ACCTTGCTCT	GCCTGGGGAA	GCGCTGGGGG	1680
GCCTGGTCTC	TCCTGTTTGC	CCCATGGTGG	GATTTGGGGG	GCCTGGCCTC	TCCTGTTTGC	1740
CCTGTGGTGG	GATTGGGCTG	TCTCCCGTCC	ATGGCACTTA	GGGCCCTTGT	GCAAACCCAG	1800
GCCAAGGGCT	TAGGAGGAGG	CCAGGCCCAG	GCTACCCCAC	CCCTCTCAGG	AGCAGAGGCC	1860
GCGTATCACC	ACGACAGAGC	CCCGCGCCGT	CCTCTGCTTC	CCAGTCACCG	TCCTCTGCCC	1920
CTGGACACTT	TGTCCAGCAT	CAGGGAGGTT	TCTGATCCGT	CTGAAATTCA	AGCCATGTCG	1980
AACCTGCGGT	CCTGAGCTTA	ACAGCTTCTA	CTTTCTGTTC	TTTCTGTGTT	GTGGAGACCC	2040
TGAGAAGGAC	CCTGGGAGCT	CTGGGAATTT	GGAGTGACCA	AAGGTGTGC		2089

20

25

Patentansprüche

- 1. Katalytisch aktive humane Telomerase-Untereinheit, ihre funktionellen Äquivalente, ihre Varianten und ihre katalytisch aktiven Fragmente.
- 2. Telomerase gemäß Anspruch 1, enthaltend die Aminosäuresequenz gemäß Abb. 2 oder deren funktionelle Äquivalente.
- Nucleinsäuresequenzen codierend für Verbindungen gemäß den Ansprüchen 1 und 2
 und ihre funktionellen Äquivalente.
 - 4. Nucleinsäuresequenzen gemäß Anspruch 3, enthaltend die DNA-Sequenz aus Abb. 1 oder ihre funktionellen Äquivalente.
- 15 5. Antisense-Nucleinsäuresequenz bindend an die Nucleinsäuresequenz gemäß Anspruch 3 oder 4.
 - 6. Antikörper gegen Telomerase gemäß den Ansprüchen 1 und 2, gegebenenfalls markiert mit einem oder mehreren Markern.
 - 7. Verwendung von Nucleinsäuresequenzen gemäß den Ansprüchen 3 und 4 zur Herstellung von Telomerase.
 - 8. Verwendung von Antikörpern gemäß Anspruch 6 zur Diagnose.
 - 9. Verwendung von Antikörpern gemäß Anspruch 6 zur Herstellung von Arzneimitteln.
- Vektor enthaltend eine Nucleinsäuresequenz, insbesondere DNA, gemäß Anspruch 3 und 4.
 - 11. Mikroorganismen enthaltend den Vektor gemäß Anspruch 10.

WO 98/59040 PCT/EP98/03468 - 59 -

- 12. Screening Assay zur Auffindung von Modulatoren der humanen Telomerase enthaltend die Telomerase gemäß den Ansprüchen 1 und 2.
- Verfahren zur Herstellung der Telomerase gemäß den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man den Mikroorganismus gemäß Anspruch 11 kultiviert und die Telomerase isoliert.

Fig. 1

- 1 / 15 -

GTTTCAGGCA GCGCTGCGTC CTGCTGCGCA CGTGGGAAGC CCTGGCCCCG GCCACCCCCG CGATGCCGCG CGCTCCCCGC TGCCGAGCCG TGCGCTCCCT GCTGCGCAGC CACTACCGCG AGGTGCTGCC GCTGGCCACG 140 TTCGTGCGGC GCCTGGGGCC CCAGGGCTGG CGGCTGGTGC AGCGCGGGGA CCCGGCGGCT TTCCGCGCGC 210 TGGTGGCCCA GTGCCTGGTG TGCGTGCCCT GGGACGCACG GCCGCCCCCC GCCGCCCCC CCTTCCGCCA 280 GGTGTCCTGC CTGAAGGAGC TGGTGGCCCG AGTGCTGCAG AGGCTGTGCG AGCGCGGCGC GAAGAACGTG CTGGCCTTCG GCTTCGCGCT GCTGGACGGG GCCCGCGGGG GCCCCCCGA GGCCTTCACC ACCAGCGTGC GCAGCTACCT GCCCAACACG GTGACCGACG CACTGCGGGG GAGCGGGGCG TGGGGGCTGC TGCTGCGCCG 490 CGTGGGCGAC GACGTGCTGG TTCACCTGCT GGCACGCTGC GCGCTCTTTG TGCTGGTGGC TCCCAGCTGC 560 CTAGTGGACC CCGAAGGCGT CTGGGATGCG AACGGGCCTG GAACCATAGC GTCAGGGAGG CCGGGGTCCC 700 CCTGGGCCTG CCAGCCCGG GTGCGAGGAG GCGCGGGGGC AGTGCCAGCC GAAGTCTGCC GTTGCCCAAG 770 AGGCCCAGGC GTGGCGCTGC CCCTGAGCCG GAGCGGACGC CCGTTGGGCA GGGGTCCTGG GCCCACCCGG 840 GCAGGACGCG TGGACCGAGT GACCGTGGTT TCTGTGTGGT GTCACCTGCC AGACCCGCCG AAGAAGCCAC 910 CTCTTTGGAG GGTGCGCTCT CTGGCACGCG CCACTCCCAC CCATCCGTGG GCCGCCAGCA CCACGCGGGC 980 CCCCCATCCA CATCGCGGCC ACCACGTCCC TGGGACACGC CTTGTCCCCC GGTGTACGCC GAGACCAAGC 1050 ACTTCCTCTA CTCCTCAGGC GACAAGGAGC AGCTGCGGCC CTCCTTCCTA CTCAGCTCTC TGAGGCCCAG 1120 CCTGACTGGC GCTCGGAGGC TCGTGGAGAC CATCTTTCTG GGTTCCAGGC CCTGGATGCC AGGGACTCCC 1190 CGCAGGTTGC CCCGCCTGCC CCAGCGCTAC TGGCAAATGC GGCCCCTGTT TCTGGAGCTG CTTGGGAACC 1260 ACGCGCAGTG CCCCTACGGG GTGCTCCTCA AGACGCACTG CCCGCTGCGA GCTGCGGTCA CCCCAGCAGC 1330 CGGTGTCTGT GCCCGGGAGA AGCCCCAGGG CTCTGTGGCG GCCCCCGAGG AGGAGGACAC AGACCCCCGT 1400 CGCCTGGTGC AGCTGCTCCG CCAGCACAGC AGCCCCTGGC AGGTGTACGG CTTCGTGCGG GCCTGCCTGC 1470 GCCGGCTGGT GCCCCCAGGC CTCTGGGGCT CCAGGCACAA CGAACGCCGC TTCCTCAGGA ACACCAAGAA 1540 GTTCATCTCC CTGGGGAAGC ATGCCAAGCT CTCGCTGCAG GAGCTGACGT GGAAGATGAG CGTGCGGGAC 1610 TGCGCTTGGC TGCGCAGGAG CCCAGGGGTT GGCTGTGTTC CGGCCGCAGA GCACCGTCTG CGTGAGGAGA 1680 TCCTGGCCAA GTTCCTGCAC TGGCTGATGA GTGTGTACGT CGTCGAGCTG CTCAGGTCTT TCTTTTATGT 1750 CACGGAGACC ACGTTTCAAA AGAACAGGCT CTTTTTCTAC CGGAAGAGTG TCTGGAGCAA GTTGCAAAGC 1820 ATTGGAATCA GACAGCACTT GAAGAGGGTG CAGCTGCGGG AGCTGTCGGA AGCAGAGGTC AGGCAGCATC 1890 GGGAAGCCAG GCCCGCCCTG CTGACGTCCA GACTCCGCTT CATCCCCAAG CCTGACGGGC TGCGGCCGAT 1960 TGTGAACATG GACTACGTCG TGGGAGCCAG AACGTTCCGC AGAGAAAAGA GGGCCGAGCG TCTCACCTCG 2030 AGGGTGAAGG CACTGTTCAG CGTGCTCAAC TACGAGCGGG CGCGGCGCCC CGGCCTCCTG GGCGCCTCTG 2100 TGCTGGGCCT GGACGATATC CACAGGGCCT GGCGCACCTT CGTGCTGCGT GTGCGGGCCC AGGACCCGCC 2170 GCCTGAGCTG TACTTTGTCA AGGTGGATGT GACGGGCGCG TACGACACCA TCCCCCAGGA CAGGCTCACG 2240 GAGGTCATCG CCAGCATCAT CAAACCCCAG AACACGTACT GCGTGCGTCG GTATGCCGTG GTCCAGAAGG 2310 CCGCCCATGG GCACGTCCGC AAGGCCTTCA AGAGCCACGT CTCTACCTTG ACAGACCTCC AGCCGTACAT 2380 GCGACAGTTC GTGGCTCACC TGCAGGAGAC CAGCCCGCTG AGGGATGCCG TCGTCATCGA GCAGAGCTCC 2450 TCCCTGAATG AGGCCAGCAG TGGCCTCTTC GACGTCTTCC TACGCTTCAT GTGCCACCAC GCCGTGCGCA 2520 TCAGGGGCAA GTCCTACGTC CAGTGCCAGG GGATCCCGCA GGGCTCCATC CTCTCCACGC TGCTCTGCAG 2590 CCTGTGCTAC GGCGACATGG AGAACAAGCT GTTTGCGGGG ATTCGGCGGG ACGGGCTGCT CCTGCGTTTG 2660 GTGGATGATT TCTTGTTGGT GACACCTCAC CTCACCCACG CGAAAACCTT CCTCAGGACC CTGGTCCGAG 2730 GTGTCCCTGA GTATGGCTGC GTGGTGAACT TGCGGAAGAC AGTGGTGAAC TTCCCTGTAG AAGACGAGGC 2800 CCTGGGTGGC ACGGCTTTTG TTCAGATGCC GGCCCACGGC CTATTCCCCT GGTGCGGCCT GCTGCTGGAT 2870 ACCCGGACCC TGGAGGTGCA GAGCGACTAC TCCAGCTATG CCCGGACCTC CATCAGAGCC AGTCTCACCT 2940 TCAACCGCGG CTTCAAGGCT GGGAGGAACA TGCGTCGCAA ACTCTTTGGG GTCTTGCGGC TGAAGTGTCA 3010 CAGCCTGTTT CTGGATTTGC AGGTGAACAG CCTCCAGACG GTGTGCACCA ACATCTACAA GATCCTCCTG 3080 CTGCAGGCGT ACAGGTTTCA CGCATGTGTG CTGCAGCTCC CATTTCATCA GCAAGTTTGG AAGAACCCCA 3150 CATTITICCT GCGCGTCATC TCTGACACGG CCTCCCTCTG CTACTCCATC CTGAAAGCCA AGAACGCAGG 3220 GATGTCGCTG GGGGCCAAGG GCGCCGCCGG CCCTCTGCCC TCCGAGGCCG TGCAGTGGCT GTGCCACCAA 3290 GCATTCCTGC TCAAGCTGAC TCGACACCGT GTCACCTACG TGCCACTCCT GGGGTCACTC AGGACAGCCC 3360 AGACGCAGCT GAGTCGGAAG CTCCCGGGGA CGACGCTGAC TGCCCTGGAG GCCGCAGCCA ACCCGGCACT 3430 GCCCTCAGAC TTCAAGACCA TCCTGGACTG ATGGCCACCC GCCCACAGCC AGGCCGAGAG CAGACACCAG 3500 CAGCCCTGTC ACGCCGGGCT CTACGTCCCA GGGAGGGAGG GGCGGCCCAC ACCCAGGCCC GCACCGCTGG 3570 GAGTCTGAGG CCTGAGTGAG TGTTTGGCCG AGGCCTGCAT GTCCGGCTGA AGGCTGAGTG TCCGGCTGAG 3640 GCCTGAGCGA GTGTCCAGCC AAGGGCTGAG TGTCCAGCAC ACCTGCCGTC TTCACTTCCC CACAGGCTGG 3710 CGCTCGGCTC CACCCCAGGG CCAGCTTTTC CTCACCAGGA GCCCGGCTTC CACTCCCCAC ATAGGAATAG 3780 TCCATCCCCA GATTCGCCAT TGTTCACCCC TCGCCCTGCC CTCCTTTGCC TTCCACCCCC ACCATCCAGG 3850 TGGAGACCCT GAGAAGGACC CTGGGAGCTC TGGGAATTTG GAGTGACCAA AGGTGTGCCC TGTACACAGG 3920 CGAGGACCCT GCACCTGGAT GGGGGTCCCT GTGGGTCAAA TTGGGGGGGAG GTGCTGTGGG AGTAAAATAC 3990 TGAATATATG AGTTTTTCAG TTTTGAAAAA AAAAAAAAA AAAAAAAAA AA

MPRAPRCRAV	RSLLRSHYRE	VLPLATFVRR	LGPQGWRLVQ	RGDPAAFRAL	50
VAQCLVCVPW	DARPPPAAPS	FRQVSCLKEL	VARVLQRLCE	RGAKNVLAFG	100
FALLDGARGG	PPEAFTTSVR	SYLPNTVTDA	LRGSGAWGLL	LRRVGDDVLV	150
HLLARCALFV	LVAPSCAYQV	CGPPLYQLGA	ATQARPPPHA	SGPRRRLGCE	200
RAWNHSVREA	GVPLGLPAPG	ARRRGGSASR	SLPLPKRPRR	GAAPEPERTP	250
VGQGSWAHPG	RTRGPSDRGF	CVVSPARPAE	EATSLEGALS	GTRHSHPSVG	300
RQHHAGPPST	SRPPRPWDTP	CPPVYAETKH	FLYSSGDKEQ	LRPSFLLSSL	350
RPSLTGARRL	VETIFLGSRP	WMPGTPRRLP	RLPQRYWQMR	PLFLELLGNH	400
AQCPYGVLLK	THCPLRAAVT	PAAGVCAREK	PQGSVAAPEE	EDTDPRRLVQ	450
LLRQHSSPWQ	VYGFVRACLR	RLVPPGLWGS	RHNERRFLRN	TKKFISLGKH	500
AKLSLQELTW	KMSVRDCAWL	RRSPGVGCVP	AAEHRLREEI	LAKFLHWLMS	550
VYVVELLRSF	FYVTETTFQK	NRLFFYRKSV	WSKLQSIGIR	QHLKRVQLRE	600
LSEAEVRQHR	EARPALLTSR	LRFIPKPDGL	RPIVNMDYVV	GARTFRREKR	650
AERLTSRVKA	LFSVLNYERA	RRPGLLGASV	LGLDDIHRAW	RTFVLRVRAQ	700
DPPPELYFVK	VDVTGAYDTI	PQDRLTEVIA	SIIKPQNTYC	VRRYAVVQKA	750
AHGHVRKAFK	SHVSTLTDLQ	PYMRQFVAHL	QETSPLRDAV	VIEQSSSLNE	800
ASSGLFDVFL	RFMCHHAVRI	RGKSYVQCQG	IPQGSILSTL	LCSLCYGDME	850
NKLFAGIRRD	GLLLRLVDDF	LLVTPHLTHA	KTFLRTLVRG	VPEYGCVVNL	900
RKTVVNFPVE	DEALGGTAFV	QMPAHGLFPW	CGLLLDTRTL	EVQSDYSSYA	950
RTSIRASLTF	NRGFKAGRNM	RRKLFGVLRL	KCHSLFLDLQ	VNSLQTVCTN	1000
IYKILLLQAY	RFHACVLQLP	FHQQVWKNPT	FFLRVISDTA	SLCYSILKAK	1050
NAGMSLGAKG	AAGPLPSEAV	QWLCHQAFLL	KLTRHRVTYV	PLLGSLRTAQ	1100
TQLSRKLPGT	TLTALEAAAN	PALPSDFKTI	LD		1132

Sn	gth	123	¢50 ¢60 ¢70 ¢80	PHIC.PRO KFLHWLMSVYVVELLRSFFYVIETTFOKNRLFFYRKSVWSKLOSIGIROHLKRVOLRDVSEAEVROHREARPALLISRLR	:: ::YRK::W. : .::I .:LK: L :V E EV ::: :: .::LR	ETLAEVOĘKEV-EEWKKS	₹ 20 ₹ 60 ₹ 70			
Gap Consensus	Length	12	*	LOSIGIRC		IMKMSI-4	0	(-	O VLNYERA
Gap	Length	9	01/2	YRKSVWSK	YRK::W.	YRKNIWDV	0h →			F120 SRVKALFSVL
y: 12 Gap	Index Number	4	√ 30	FOKNRLFF	::	KSYSKTYY	€ 30		0 • 10	∢110 EKRAERLT
ingth Penalty Similarity	Index	31.5	₹ 20	SFFYVTETT	FFYVTE	FFYVTEOO	\$ 20		√ 100	∢ 100 /VGARTFRR
	P123.PR0	(1>117)	€ 10	LHWLMSVYVVELLRS	K:L:W: VV.L:R.FFYVTE	LRWIFEDLVVSLIRC	√ 10		00\$	←90 ←120 ←120 ←120 ←120 ←120 ←120 ←120 ←12
Ktuple: 2; Gap Penalty: 4; Gap Le Seq1(1>129)	PHTC.PR0	(2>124)		PHTC.PRO KF	.∵ ¥	P123.PR0 KL				PHTC.PRO FI

l	5	•
	_	
	-	ת
l	1	-

Lipman-Pear	Lipman-Pearson Protein Alignment	<u> </u>	Ç			
Ktuple: 2; G8 Seq1(1>150)	Ktuple: 2; Gap Penalty: 4; Gap Lengtn Penalty Seq1(1>150)	ngtn Penalty: 12 Similarity G	y: 1 <i>2</i> Gap	Gap Consensus	nsensus	
P123.PR0		Index	Index Number	Length	Length	
(2>148)	(1>146)	21.6	4	5	149	
	ø 10	\$ 20	√ 30	01/2	450	¢60 ¢70 ¢80
P123.PR0	LLRWIFEDLVVSLIRC	FFYVTEOD	KSYSKTYYY	RKNIWDVIM	(MSIADLKKETLAE)	EWKK
	. I	FFY TE	·· · · · · · · · · · · · · · · · · · ·	R W	1.: K. L.E	
EST2P.PRO	F I SWL FROL I PK I I 0 I	FFYCTEIS	STVTIVYF-	RHDTWNKLI	I P F I V E Y F K T Y L V E I	EST2P PRO FISWLFROLIPKIIOTFFYCTEISSTVTIVYF-RHDTWNKLITPFIVEYFKTYLVENNVCRNHNSYTLSNFNHSKMRIIP
	√ 10	√ 20	4 30	0h→	√ 20	4 60 4 70
	06\$	₹ 100	₹ 110		₹120 ₹130	¢140 ¢150
P123.PR0	KKTTFRPIMTFNKKIVNSDRKTTKLTTNTKLLNSHLMLKTLKNRMFKDPFGFAVFNYDDVMKKYEEFVC	IVNSDRKT	TKLTTNTKL	LNSHLMLKTI	KNRMFKDPFGFAVI	=NYDDVMKKYEEFVC
	KK: FR I . :	•	··· ··· ···			
EST2P.PRO	EST2P.PRO KKSNNEFRIIAIPCRGADEEEFTIYKENHKNAIQPTQKILEYLRNKR-PTSFT-KIYSPTQIADRIKEFKQ	ADEEFTI	YKENHKNAI	OPTOKILEYI	RNKR-PTSFT-KI	YSPTQIADRIKEFKQ
	√ 80 √ 90	√ 100	₹ 110	0 4120	20 4130	₹ 140

- 1 g. 6

Lipman-Pear	-ipman-Pearson Protein Alignment							
Ktuple: 2; Ga	Ktuple: 2; Gap Penalty: 4; Gap Length Penalty: 12	angth Penali	ty: 12					
Seq1(1>129)	Seq2(1>150) Similarity Gap	Similarity	Gap	Gap (Gap Consensus			
PHTC.PR0	EST2P.PRO	Index	Index Number	Length	Length			
(3>85)	(1>80)	23.3	က	က	83			
	♦ 10	¢ 20	₹ 30	0h ≯	4 50	09*	€ 70	₹80
PHTC.PR0	FLHWLMSVYVVELLRSFFYVTETTFOKNRLFFYRKSVWSKLOSIGIROHLKRVOLRDVSEAEVROHREARPALLTSRLRF	SFFYVTETT	FOKNRLFF	YRKSVWSKL	OSIGIROHLKI	RVOLRDVSEAEV	/ROHREARPA	LLTSRLRF
	F: WL	:FFY TE.:		:RW:KL	¥::	:RW:KL : 1K L : S::R:		. S.:.R.
EST2P.PR0	EST2P.PRO FISWLFROLIPKIIOTFI	TFF YCTE IS	-STVTIVY	FRHDTWNKL	ITPFIVEYFK	FYCTEIS-STVTIVYFRHDTWNKLITPFIVEYFKTY-LVE-NNVCRNHNSYTLSNFNHSKMRI	RNHNSYTLSN	FNHSKMR I
	√ 10	√ 20	√ 30	₩	γ 0hγ	₹ 50	4 60	4 70
		((

- 6/15-

EST2P.PRO IPKKSNNEFRIJAIPCRGADEEEFTIYKENHKNAIOPTOKILEYLRN
&80 &100 &110 &120 IPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKALFSVLNYERA IPK : :: :L:Y R. PHTC.PR0

-1g. 7

Alignment Workspace of Untitled, using Clustal method with PAM250 residue weight table

PHTC.PRO P123.PRO	-KFLXWLFXXLVVXLIRXFFYVTEXXXXXXXYYRKXXWXKLXXXXLXXXLKXXXLXXVXEXEVRXHXXXXLX-FXXS -KFLXWLFXXLVVXLIRXFFYVTEXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KFLXWLFXXLVVXLIRXFFYVTEXXXXXXXXXYYRKXXWXKLXXXXLXXXLKXXXLXXVXEXEVRXHXXXXLX-FXXS 10 20 30 40 50 60 70 8 KFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQLRDVSEAEVRQHREARPA-LLTS KLLRWIFEDLVVSLIRCFFYVTEQQKSYSKTYYYRKNIWDVIMKMSI-ADLKKETLAEVQEKEV-EEWKKSLG-FAPG	XXYYRKXXWXKL 40 LFFYRKSVWSKL CTYYYRKNIWDVI	KXXXIXXXLKXXXI 50 QSIGIRQHLKRVQI MKMSI-ADLKKETI	XXLXXVXEXEVRXHX co VQLRDVSEAEVRQHR ETTAEVQEKEV-EEW	XXXLX-FXXS 70 80 EARPA-LLTS KKSLG-FAPG
EST2P.PRO	EST2P.PROFISWLFRQLIPKIIQTFFYCTEIS-STVTIVYFRHDTWNKLITPFIVEYFKTYLVENNVCRNHNSYTLSNFNHS	(QTFFYCTEIS-STVI	IVYFRHDIWNKL	ITPFIVEYFKTYL	VENNVCRNHN	SYTLSNFNHS

	S SSE	-FRPIXXXXXXXXXX	TXXXEXX	XXXI.TXXXKXI.X	XXXXXIX	XXXFXXX-	S SOM S S SOM S S S S S S S S S S S S S	
	0,6	100	110	120	130	140	150	F3
PHTC. PRO	LRFIPKPDG-	PHTC.PRO LRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKALFSVLNYERA	TFRREKR	AERLTSRVKAL-		; ; ; ; ;	-FSVLNYERA	
P123.PRO	LRLIPKKTT-	-FRPIMTFNKK	IVNSDRK	TTKLITINIKLLA	ISHLMLKTLK	NRMFKDPF	P123.PRO LRLIPKKTTFRPIMTFNKKIVNSDRKTTKLTTNTKLLNSHLMLKTLKNRMFKDPFGFAVFNYDDVMKKYE	
EST2P. PRO	MRIIPKKSNN	EFR-IIAIPCRGADE	EEFTIYKENH	KNAIQPTOKILE	!YLRNKR	PTSFTKI-	EST2P. PRO MRIIPKKSNNEFR-IIAIPCRGADEEEFTIYKENHKNAIQPTOKILEYLRNKRPTSFTKIYSPTOIADRIKEFK	

Fig. 8

- 8 / 15 -

GTGCCTGCAG	AGACCCGTCT	GGTGCACTCT	GATTCTCCAC	TTGCCTGTTG	CATGTCCTCG	TTCCCTTGTT	70
TCTCACCACC	TCTTGGGTTG	CCATGTGCGT	TTCCTGCCGA	GTGTGTGTTG	ATCCTCTCGT	TGCCTCCTGG	140
TCACTGGGCA	TTTGCTTTTA	TTTCTCTTTG	CTTAGTGTTA	CCCCCTGATC	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	CGTTGTTTGC	210
TTTTGTTTAT	TGAGACAGTC	TCACTCTGTC	ACCCAGGCTG	GAGTGTAATG	GCACAATCTC	GGCTCACTGC	280
AACCTCTGCC	TCCTCGGTTC	AAGCAGTTCT	CATTCCTCAA	CCTCATGAGT	AGCTGGGATT	ACAGGCGCCC	350
ACCACCACGC	CTGGCTAATT	TTTGTATTTT	TAGTAGAGAT	AGGCTTTCAC	CATGTTGGCC	AGGCTGGTCT	420
CAAACTCCTG	ACCTCAAGTG	ATCTGCCCGC	CTTGGCCTCC	CACAGTGCTG	GGATTACAGG	TGCAAGCCAC	490
CGTGCCCGGC	ATACCTTGAT	CTTTTAAAAT	GAAGTCTGAA	ACATTGCTAC	CCTTGTCCTG	AGCAATAAGA	560
CCCTTAGTGT	ATTTTAGCTC	TGGCCACCCC	CCAGCCTGTG	TGCTGTTTTC	CCTGCTGACT	TAGTTCTATC	630
TCAGGCATCT	TGACACCCCC	ACAAGCTAAG	CATTATTAAT	ATTGTTTTCC	GTGTTGAGTG	TTTCTTTAGC	700
TTTGCCCCCG	CCCTGCTTTT	CCTCCTTTGT	TCCCCGTCTG	TCTTCTGTCT	CAGGCCCGCC	GTCTGGGGTC	770
CCCTTCCTTG	TCCTTTGCGT	GGTTCTTCTG	TCTTGTTATT	GCTGGTAAAC	CCCAGCTTTA	CCTGTGCTGG	840
CCTCCATGGC	ATCTAGCGAC	GTCCGGGGAC	CTCTGCTTAT	GATGCACAGA	TGAAGATGTG	GAGACTCACG	910
AGGAGGGCGG	TCATCTTGGC	CCGTGAGTGT	CTGGAGCACC	ACGTGGCCAG	CGTTCCTTAG	CCAGGGTTGG	980
CTGTGTTCCG	GCCGCAGAGC	ACCGTCTGCG	TGAGGAGATC	CTGGCCAAGT	TCCTGCACTG	GCTGATGAGT	1050
GTGTACGTCG	TCGAGCTGCT	CAGGTCTTTC	TTTTATGTCA	CGGAGACCAC	GTTTCAAAAG	AACAGGCTCT	1120
TTTTCTACCG	GAAGAGTGTC	TGGAGCAAGT	TGC				1153

Fig.9

CAGAGCCCTG	GTCCTCCTGT	CTCCATCGTC	ACGTGGGCAC	ACGTGGCTTT	TCGCTCAGGA	CGTCGAGTGG	70
ACACGGTGAT	CTCTGCCTCT	GCTCTCCCTC	CTGTCCAGTT	TGCATAAACT	TACGAGGTTC	ACCTTCACGT	140
TTTGATGGAC	ACGCGGTTTC	CAGGCACCGA	GGCCAGAGCA	GTGAACAGAG	GAGGCTGGGC	GCGGCAGTGG	210
AGCCGGGTTG	CCGGCAATGG	GGAGAAGTGT	CTGGAAGCAC	AGACGCTCTG	GCGAGGGTGC	CTGCAGAGAC	280
CCGCCTGGTG	CACTCTGATT	CTCCACTTGC	CTGTTGCATG	TCCTCGTTCC	CTTGTTTCTC	ACCACCTCTT	350
GGGTTGCCAT	GTGCGTTTCC	TGCCGAGTGT	GTGTTGATCC 1	CTCGTTGCC I	CCTGGTCAC TO	3	412

_				•			
GGGGTCCTGG	GCCCACCCGG	GCAGGACGCG	TGGACCGAGT	GACCGTGGTT	TCTGTGTGGT	GTCACCTGCC	70
AGACCCGCCG	AAGAAGCCAC	CTCTTTGGAG	GGTGCGCTCT	CTGGCACGCG	CCACTCCCAC	CCATCCGTGG	140
GCCGCCAGCA	CCACGCGGGC	CCCCCATCCA	CATCGCGGCC	ACCACGTCCC	TGGGACACGC	CTTGTCCCCC	210
GGTGTACGCC	GAGACCAAGC	ACTTCCTCTA	CTCCTCAGGC	GACAAGGAGC	AGCTGCGGcC	CTCCTTCCTA	280
CTCAGCTCTC	TGAGGCCCAG	CCTGACTGGC	GCTCGGAGGC	TCGTGGAGAC	CATCTTTCTG	GGTTCCAGGC	350
CCTGGATGCC	AGGGACTCCC	CGCAGGTTGC	CCCGCCTGCC	CCAGCGCTAC	TGGCAAATGC	GGCCCCTGTT	420
TCTGGAGCTG	CTTGGGAACC	ACGCGCAGTG	CCCCTACGGG	GTGCTCCTCA	AGACGCACTG	CCCGCTGCGA	490
GCTGCGGTCA	CCCCAGCAGC	CGGTGTCTGT	GCCCGGGAGA	AGCCCCAGGG	CTCTGTGGCG	GCCCCGAGG	560
AGGAGGACAC	AGACCCCCGT	CGCCTGGTGC	AGCTGCTCCG	CCAGCACAGC	AGCCCCTGGC	AGGTGTACGG	630
CTTCGTGCGG	GCCTGCCTGC	GCCGGCTGGT	GCCCCCAGGC	CTCTGGGGCT	CCAGGCACAA	CGAACGCCGC	700
TTCCTCAGGA	ACACCAAGAA	GTTCATCTCC	CTGGGGAAGC	ATGCCAAGCT	CTCGCTGCAG	GAGCTGACGT	770
GGAAGATGAG	CGTGCGGGAC	TGCGCTTGGC	TGCGCAGGAG	CCCAGGTGAG	GAGGTGGTGG	CCGTCGAGGG	840
CCCAGGCCCC	AGAGCTGAAT	GCAGTAGGGG	CTCAGAAAAG	GGGGCAGGCA	GAGCCCTGGT	CCTCCTGTCT	910
CCATCGTCAC	GTGGGCACAC	GTGGCTTTTC	GCTCAGGACG	TCGAGTGGAC	ACGGTGATCT	CTGCCTCTGC	980
TCTCCCTCCT	GTCCAGTTTG	CATAAACTTA (CG				1012

3	=						
						CCTGGCCCCG	
GCCACCCCCG	CGATGCCGCG	CGCTCCCCGC	TGCCGAGCCG	TGCGCTCCCT	GCTGCGCAGC	CACTACCGCG	140
AGGTGCTGCC	GCTGGCCACG	TTCGTGCGGC	GCCTGGGGCC	CCAGGGCTGG	CGGCTGGTGC	AGCGCGGGGA	210
CCCGGCGGCT	TTCCGCGCGC	TGGTGGCCCA	GTGCCTGGTG	TGCGTGCCCT	GGGACGCACG	GCCGCCCCC	280
GCCGCCCCT	CCTTCCGCCA	GGTGTCCTGC	CTGAAGGAGC	TGGTGGCCCG	AGTGCTGCAG	AGGCTGTGCG	350
AGCGCGGCGC	GAAGAACGTG	CTGGCCTTCG	GCTTCGCGCT	GCTGGACGGG	GCCCGCGGG	GCCCCCCGA	420
GGCCTTCACC	ACCAGCGTGC	GCAGCTACCT	GCCCAACACG	GTGACCGACG	CACTGCGGGG	GAGCGGGGCG	490
TGGGGGCTGC	TGCTGCGCCG	CGTGGGCGAC	GACGTGCTGG	TTCACCTGCT	GGCACGCTGC	GCGCTCTTTG	560
TGCTGGTGGC	TCCCAGCTGC	GCCTACCAGG	TGTGCGGGCC	GCCGCTGTAC	CAGCTCGGCG	CTGCCACTCA	630
GGCCCGGCCC	CCGCCACACG	CTAGTGGACC	CCGAAGGCGT	CTGGGATGCG	AACGGGCCTG	GAACCATAGC	700
GTCAGGGAGG	CCGGGGTCCC	CCTGGGCCTG	CCAGCCCCGG	GTGCGAGGAG	GCGCGGGGC	AGTGCCAGCC	770
GAAGTCTGCC	GTTGCCCAAG	AGGCCCAGGC	GTGGCGCTGC	CCCTGAGCCG	GAGCGGACGC	CCGTTGGGCA	840
GGGGTCCTGG	GCCCACCCGG	GCAGGACGCG	TGGACCGAGT	GACCGTGGTT	TCTGTGTGGT	GTCACCTGCC	910
AGACCCGCCG	AAGAAGCCAC	CTCTTTGGAG	GGTGCGCTCT	CTGGCACGCG	CCACTCCCAC	CCATCCGTGG	980
GCCGCCAGCA	CCACGCGGGC	CCCCCATCCA	CATCGCGGCC	ACCACGTCCC	TGGGACACGC	CTTGTCCCCC	1050
GGTGTACGCC	GAGACCAAGC	ACTTCCTCTA	CTCCTCAGGC	GACAAGGAGC	AGCTGCGGCC	CTCCTTCCTA	1120
CTCAGCTCTC	TGAGGCCCAG	CCTGACTGGC	GCTCGGAGGC	TCGTGGAGAC	CATCTTTCTG	GGTTCCAGGC	1190
CCTGGATGCC	AGGGACTCCC	CGCAGGTTGC	CCCGCCTGCC	CCAGCGCTAC	TGGCAAATGC	GGCCCCTGTT	1260
TCTGGAGCTG	CTTGGGAACC	ACGCGCAGTG	CCCCTACGGG	GTGCTCCTCA	AGACGCACTG	CCCGCTGCGA	1330
						GCCCCGAGG	
						AGGTGTACGG	
						CGAACGCCGC	
TTCCTCAGGA	ACACCAAGAA	GTTCATCTCC	CTGGGGAAGC	ATGCCAAGCT	CTCGCTGCAG	GAGCTGACGT	1610
						CCGTCGAGGG	
						CCTCCTGTCT	
CCATCGTCAC	GTGGGCACAC	GTGGCTTTTC	GCTCAGGACG	TCGAGTGGAC	ACGGTGATCT	CTGCCTCTGC	1820
						GCGGTTTCCA	
						GGCAATGGGG	
						GGCCGCAGAG	
						GTCGAGCTGC	
						GGAAGAGTGT	
						GCTGTCGGAA	
						ATCCCCAAGC	
CTGACGGGCT	GCGGCCGATT	GTGAACATGG	ACTACGTCGT	GGGAGCCAGA	ACGTTCCGCA	GAGAAAAGAG	2380
GGTGGCTGTG	CTTTGGTTTA	ACTTCCTTTT	TAAACAGAAG	TGCGTTTGAG	CCCCACATTT	GGTATCAGCT	2450
TAGATGAAGG	GCCCGGAGGA	GGGGCCACGG	GACACAGCCA	GGGCCATGGC	ACGGCGCCAA	CCCATTTGTG	2520
CGCACGGTGA	GGTGGCCGAG	GTGCCGGTGC	CTCCAGAAAA	GCAGCGTGGG	GGTGTAGGGG	GAGCTCCTGG	2590
GGCAGGGACA	GGCTCTGAGG	ACCACAAGAA	GCAGCTGGGC	CAGGGCCTGG	ATGCAGCACG	GCCCGAGCGG	2660
GTGGGGGCCC	ACCACGCCAT	TCTGGTCAAA	GGTGTTGTAG	TCGTAATAGC	CGGCCCAGGC	GCTCTGAACC	2730
TTCAGAGTCT	CAAAAGCTGG	GACCCTCAGG	GCCAAATGGG	GCCACACCTT	GTCCTGGAAG	AAATCATGGT	2800
CCACTTCCAG	GTTCGCCGGG	TCCGGTTCTT	CCTGCTCAGT	GGGGCTACGA	CCACCTAGGT	AGTTGCTACC	2870
TAATCCTTCC	CGGCGAAAAT	AGGCTCCACT	GGTGTCTGCA	ACAAGCGGAG	TCTCTAGGCC	TGGTCCCTGG	2940
GGGCAGTGCC	ACACATACAC	ATACCTTTTC	CTCGGCTCCA	CAGGTAGCTT	GGTGCCCTGC	AGGGTGCCAG	3010
GCGGCCCCTC	TCCAACACCA	GCCAGTGCTG	CGATTTGCGC	AGACCAGGCT	CCGGCTGCGT	TGATCACAAT	3080
GGCGCATTCC	ACAGGCTGGT	ACTCCAGGCT	GCGGTCCATC	TTCACATGGA	CTTCATGGAT	CCTTTTCAAG	3150
ACCACCGCTT	TGTCATCTGT	GGTCAACATG	CGTTGAGATG	AAGAGACAAA	ACGTGTCACC	TCTCCCTGGC	3220
AGAAAAGGAC	TCCCAAGGAC	TGGACCTTTC	GCCGAAGCCC	CTGGAGCAGA	CACCAGGGGT	CAAACCAACC	3290
TTCGTCCTCC	ATCCCATAAG	ACGCCAAAGC	CACTCCCTCT	GTGTTTATCC	AGGGAAACTT	GTTCCGAAGC	3360
TGATCAGGAG	ACATCAGAGA	AACTTTGGCT	CCCTCCTGCC	TCTGCACTTT	CACGTTGCTC	TCCATGGCTG	3430
						GAGGAGCATC	
GACTACGGCC	AGGTACTCAT	TGATGTTCCG	TAGAAAGCTG	GCTGAAAAGA	GGGAGAGCTG	GATGTTCTCA	3570
GGCAATGAGA	ACTGCTGACA	AATCCCACCT	ACTGAGAGCC	CAGTGGAGGC	CTGTGAATAC	GTGTGGTCCC	3640
GTTCCACCAC							
GCCAAGCACC							
AGATCACAGG							
						CGTGCGGCAG	
AACCCTCCGA							3972
	• =====================================	· · · · ·					

Fig. 13

_							
CCGGAAGAGT	GTCTGGAGCA	AGTTGCAAAG	CATTGGAATC	AGACAGCACT	TGAAGAGGGT	GCAGCTGCGG	1853
GAGCTGTCGG	AAGCAGAGGT	CAGGCAGCAT	CGGGAAGCCA	GGCCCGCCCT	GCTGACGTCC	AGACTCCGCT	1923
TCATCCCCAA	GCCTGACGGG	CTGCGGCCGA	TTGTGAACAT	GGACTACGTC	GTGGGAGCCA	GAACGTTCCG	1993
CAGAGAAAAG	AGGGCCGAGC	GTCTCACCTC	GAGGGTGAAG	GCACTGTTCA	GCGTGCTCAA	CTACGAGCGG	2063
GCGCGGCGCC	CCGGCCTCCT	GGGCGCCTCT	GTGCTGGGCC	TGGACGATAT	CCACAGGGCC	TGGCGCACCT	2133
TCGTGCTGCG	TGTGCGGGCC	CAGGACCCGC	CGCCTGAGCT	GTACTTTGTC	AAGGTGGATG	TGACGGGCGC	2203
GTACGACACC	ATCCCCCAGG	ACAGGCTCAC	GGAGGTCATC	GCCAGCATCA	TCAAACCCCA	GAACACGTAC	2273
TGCGTGCGTC	GGTATGCCGT	GGTCCAGAAG	GCCGCCCATG	GGCACGTCCG	CAAGGCCTTC	AAGAGCCACG	2343
TCTCTACCTT	GACAGACCTC	CAGCCGTACA	TGCGACAGTT	CGTGGCTCAC	CTGCAGGAGA	CCAGCCCGCT	2413
GAGGGGTGCC	GTCGTCATCG	AGCAGAGCTC	CTCCCTGAAT	GAGGCCAGCA	GTGGCCTCTT	CGACGTCTTC	2483
CTACGCTTCA	TGTGCCACCA	CGCCGTGCGC	ATCAGGGGCA	AGTCCTACGT	CCAGTGCCAG	GGGATCCCGC	2553
AGGGCTCCAT	CCTCTCCACG	CTGCTCTGCA	GCCTGTGCTA	CGGCGACATG	GAGAACAAGC	TGTTTGCGGG	2623
GATTCGGCGG	GACGGGCTGC	TCCTGCGTTT	GGTGGATGAT	TTCTTGTTGG	TGACACCTCA	CCTCACCCAC	2693
GCGAAAACCT	TCCTCAGGAC	CCTGGTCCGA	GGTGTCCCTG	AGTATGGCTG	CGTGGTGAAC	TTGCGGAAGA	2763
CAGTGGTGAA	CTTCCCTGTA	GAAGACGAGG	CCCTGGGTGG	CACGGCTTTT	GTTCAGATGC	CGGCCCACGG	2833
CCTATTCCCC	TGGTGCGGCC	TGCTGCTGGA	TACCCGGACC	CTGGAGGTGC	AGAGCGACTA	CTCCAGCTAT	2903
GCCCGGACCT	CCATCAGAGC	CAGTCTCACC	TTCAACCGCG	GCTTCAAGGC	TGGGAGGAAC	ATGCGTCGCA	2973
AACTCTTTGG	GGTCTTGCGG	CTGAAGTGTC	ACAGCCTGTT	TCTGGATTTG	CAGGTGAACA	GCCTCCAGAC	3043
GGTGTGCACC	AACATCTACA	AGATCCTCCT	GCTGCAGGCG	TACAGGTTTC	ACGCATGCGT	GCTGCAGCTC	3113
CCATTTCATC	AGCAAGTTTG	GAAGAACCCC	ACATTTTTCC	TGCGCGTCAT	CTCTGACACG	GCCTCCCTCT	3183
GCTACTCCAT	CCTGAAAGCC	AAGAACGCAG	GTATGTGCAG	GTGCCTGGCC	TCAGTGGCAG	CAGTGCCTGC	3253
CTGCTGGTGT	TAGTGTGTCA	GGAGACTGAG	TGAATCTGGG	CTTAGGAAGT	TCTTACCCCT	TTTCGCATCA	3323
GGAAGTGGTT	TAACCCAACC	ACTGTCAGGC	TCGTCTGCCC	GCCCTCTCGT	GGGGTGAGCA	GAGCACCTGA	3393
TGGAAGGGAC	AGGAGCTGTC	TGGGAGCTGC	CATCCTTCCC	ACCTTGCTCT	GCCTGGGGAA	GCGCTGGGGG	3463
GCCTGGTCTC	TCCTGTTTGC	CCCATGGTGG	GATTTGGGGG	GCCTGGCCTC	TCCTGTTTGC	CCTGTGGTGG	3533
GATTGGGCTG	TCTCCCGTCC	ATGGCACTTA	GGGCCCTTGT	GCAAACCCAG	GCCAAGGGCT	TAGGAGGAGG	3603
CCAGGCCCAG	GCTACCCCAC	CCCTCTCAGG	AGCAGAGGCC	GCGTATCACC	ACGACAGAGC	CCCGCGCCGT	3673
CCTCTGCTTC	CCAGTCACCG	TCCTCTGCCC	CTGGACACTT	TGTCCAGCAT	CAGGGAGGTT	TCTGATCCGT	3743
CTGAAATTCA	AGCCATGTCG	AACCTGCGGT	CCTGAGCTTA	ACAGCTTCTA	CTTTCTGTTC	TTTCTGTGTT	3813
GTGGAGACCC	TGAGAAGGAC (CCTGGGAGCT C	TGGGAATTT GG	AGTGACCA AA	GGTGTGC		3872

Fig. 16

Abb. B

- 15 / 15 -

Fig. 18

1 2 3 4 5 6 7 8 9 10 11 12

