并行接口和串行接口的结构示意图

§ 5.5 并行I/0接口

一、8255A三端口可编程8位并行I/O

8255A的主要功能:

可以实现直接转送、查询或中断方式的并行IO数据传送

要点:

- ◆ 三个端口 (A口、B口、C口) 的功能是如何 被不同等安排的?
- ◆ C口的引脚如何被征用及转化的作用是什么?

§ 5. 5 并行I/0接口

- 一、8255A三端口可编程8位并行I/0
- (一) 引脚及结构——P276图5. 40

引脚及结构

- 1. 三个数据端口A、B、C各有8条端口数据线
- 2. 一个控制寄存器控制AB两组
- 3. 对CPU连线: DB、AB、CB

RESET:复位后控制寄存器清零, 三端口成输入

4. 寄存器的读写——P276表5.8

```
片内地址0 (A_1A_0 = 00) 读写A口
片内地址1 (A_1A_0 = 01) 读写B口
片内地址2 (A_1A_0 = 10) 读写C口
片内地址3 (A_1A_0 = 11) 写控制寄存器:
```

控制寄存器的特征位: D₇=1 写方式控制字 D₇=0 写C口位控字

(二) 工作方式

- 方式0: 基本输入输出方式
 - 适用于无条件传送和查询方式的接口电路
- 方式1: 选通输入输出方式
 - 适用于查询和中断方式的接口电路
- 方式2: 双向选通传送方式
 - 适用于与双向传送数据的外设
 - 适用于查询和中断方式的接口电路

外设数据端口支持的工作方式

端口A: PA0~PA7

- A组,支持工作方式0、1、2

端口B: PB0~PB7

- B组,支持工作方式0、1

端口C: PC0~PC7

- 仅支持工作方式0
- A组控制高4位PC4~PC7
- B组控制低4位PC0~PC3

外设数据端口的功能

- 端口A: PAO~PA7
 - 常作数据端口,功能最强大
- 端口B: PB0~PB7
 - ■常作数据端口
- 端口C: PC0~PC7
 - ■可作数据、状态和控制端口
 - 分两个4位,每位可独立操作
 - 控制最灵活,最难掌握

8255的编程

- >初始化编程:一个方式控制字
 - 采用控制I/0地址: A₁A₀=11
- ➤ 工作过程中: 通过数据端口对外设数据进 行读写
 - -数据读写利用端口A、B和C的I/O地址, A_1A_0 依次等于00、01、10
- ➤ IBM PC/XT机上,端口A、B、C和控制端口的I/O地址为60H、61H、62H和63H

控制字

方式控制字——P277图5.41 用控制寄存器的地址写,特征位 $D_7=1$

写入方式控制字示例

- >要求:
 - A端口: 方式1输入
 - C端口上半部:输出,C口下半部:输入
 - B端口: 方式0输出
- ▶方式控制字: 10110001B或B1H
- ▶ 8255端口地址为60H-63H。
- > 初始化的程序段:

MOV AL,0B1H ;方式控制字

OUT 63H, AL ; 送到控制端口

读写端口C:

- ◆ C端口被分成两个4位端口,两个端口只能以方式 0工作,可分别选择输入或输出
- ◆ 当A和B端口工作在方式1或方式2时,C端口的部分或全部引脚将被征用,其余引脚仍可设定工作在方式0

■ 在控制上,C端口上半部和A端口编为A 组,C端口下半部和B端口编为B组

控制字

(2) C口位控字——P278图5.42

用控制寄存器的地址写(写, $A_1A_0=11$),特征位 $D_7=0$

D_7	D_6	D_5	D_4	1	D_3	D_2	D_l	D_0
0	×	×		×	写》	人位约	肩 码	写入 内容 (0字) 0
特征	Æt.		写	入位	Z			[四百] ○
1寸1Ⅲ	<u> 117.</u>			\mathbf{D}_0	0	0	0	
				D_1	0	0	1	
				D_2	0	1	0	
				D ₃	0	1	1	
				D ₄	1	0	0	
				D ₅	1	0	1	
				D ₆	1	1	0	
				D_7	1	1	1	

C口位控字

- ①直接写C口某一位(例如AB口方式0时)
- ②用于写中断允许位(与C口数据线无关)

例如:

写PC₄=1的位控字为0×××1001B 则允许A口方式1或2输入中断 写PC₄=0的位控字为0×××1000B 则禁止A口方式1或2输入中断

并行接口连接外设示意图

8255A与系统的连接示意图

8255A的读/写操作控制

A_1	A_0	$\overline{\text{RD}}$	WR	CS	输入操作(CPU读)
0	0	0	1	0	数据总线←端口A
0	1	0	1	0	数据总线←端口B
1	0	0	1	0	数据总线←端口C
					输出操作(CPU写)
0	0	1	0	0	数据总线→端口A
0	1	1	0	0	数据总线→端口B
1	0	1	0	0	数据总线→端口C
1	1	1	0	0	数据总线→控制端口

2. 8255A的工作方式

(1) 方式0——直接I/0 没有固定的联络选通信号、不能用于中断

可通过写C口位控字实现

例 P278图5.43 附加联络信号 的方式0 O/I

(1) 方式0——直接1/0

P278图5.43 例

控制字= 8AH = 10001010B

A口方式0输出数据

B口方式0输入数据

C口方式0:

高4位输入状态信号 低4位输出控制信号

用户定义

用户用C端口部分线当成联络信号

2. 8255A的工作方式

——固定联络选通信号的I/O (2) 方式1-

① 方式1输入

A组方式控制字 D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0 $A\square$ 1/0 \times X X (PC_4) **INTEA** PC_{7,6} I/O 控制 PC₄ −− STBA 方式1 输出 端口A输入 PC₃ → INTRA \overline{RD} B组方式控制字 $B\square$ D_6 D_5 D_4 D_3 D_2 D_1 D_0 Χ Χ (PC₂)**INTEB** PC₂ STBB 方式1-PC₁ ► IBFB 端口B输入 P279图5.44 → INTRB RD 方式1输入的控制字及信号

方式1输入引脚: A端口,单向

方式1输入引脚: B端口,单向

方式1输入联络信号

STB——选通信号,低电平有效

- 由外设提供的输入信号,当其有效时,将输入设备送来的数据锁存至**8255**的输入锁存器

IBF—输入缓冲器满信号,高电平有效

- **8255**输出的联络信号。当其有效时,表示数据已锁存在输入锁存器

INTR——中断请求信号,高电平有效

- 8255输出的信号,可用于向CPU提出中断请求,要求CPU读取外设数据。(INTE=1 且IBF=1,由STB的后沿产生,RD清除)

方式1输入时序

STB和IBF是外设和8255间的一对应答联络信号, 为的是可靠地输入数据

(2) 方式1——固定联络选通信号的I/O

① 方式1输入——P279图5.44

A □ :

PA_{7~0} 输入数据

PC₄ 输入:选通STB

PC₅输出:缓冲器满IBF,

PC。输出:中断请求INTR,

B口: 与A口类似,占用C口3条线联络:

PC。输入,选通信号STB

PC1. 输出,缓冲器满信号IBF

PC。输出,中断请求INTR

C口: 若A口B口全工作于方式1输入, C口被占用6根, 则仅剩PC_{7~6}可当端口数据线使用, 由方式控制字的D₃决定I/O。

8255 方式1作输入时的各联络信号对应关系

联络信号	端口A	端口B
STB	对应PC ₄	对应PC ₂
IBF	对应PC ₅	对应PC ₁
INTR	对应PC ₃	对应PC ₀
INTE	PC ₄ 置位	PC ₂ 置位

方式1输入

方式控制字:

将A组B组的方式控制位合成1个字节,用1条OUT指令写一次。

用C口地址读状态

 D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0 I/O I/O IBFA INTEA INTRA INTEB IBFB INTRB

例1:要把A口指定为1方式,输入,C口上半部 为输出;B组指定为0方式,输出,C口下半部 定为输入,则方式命令字为:

10110001B = B1H

初始化的程序段为:

MOV DX, 303H

MOV AL, 0B1H

OUT DX, AL

;8255A命令口地址

;初始化命令

; 送到命令口

2. 8255A的工作方式

- (2) 方式1——固定联络选通信号的I/O
- ② 方式1输出

A组方式控制字 D_6 D_5 $D_4 D_3 D_2 D_1 D_0$ 1/0 0 X \times X $PA_{7\sim0}$ (PC_6) PC_{4,5} I/O 控制 **INTEA** 方式1 输出 端口A输出 ► INTRA $\overline{\mathrm{WR}}$ B组方式控制字 D_4 D_3 D_2 D_1 \times X PB_{7~0} (PC_2) **INTEB** → OBFB 方式1→ $-\overline{\text{ACKB}}$ 端口B输出 P280图5.45 PC_0 ➤ INTRB $\overline{\mathrm{WR}}$ 方式1输出的控制字及信号

方式1输出引脚: A端口

方式1输出引脚: B端口

方式1下的输出过程:

- · CPU发WR信号,向8255送一个数据
- · WR使INTR无效, OBF有效, 通知外设可取数据
- · 外设接到数据后,向8255回送ACK信号
- · OBF无效,接着INTR有效,向CPU发中断申请,请求 发送新数据。

② 方式1输出——P280图5.45

A口: PA_{7~0}输出数据
PC₇输出,缓冲器满OBF,由CPU写A口建立
PC₆输入,应答信号ACK,接受数据,清除OBF
PC₃输出,中断请求信号INTR,INTE=1且
OBF=1时由ACK后沿建立,由CPU写操作清除。

B口:与A口相似

方式1输出时序

OBF和ACK是外设和8255A间的一对应答联络信号, 为的是可靠地输出数据

方式1输出

C口: 若A/B口全工作于方式1输出, C口被占用6根, 则仅剩PC_{4~5}可当端口数据线使用, 由方式控制字的D₃决定I/O。

8255A方式1作输出时的各联络信号对应关系

联络信号	端口A	端口B
OBF	对应PC ₇	对应PC ₁
ACK	对应PC ₆	对应PC ₂
INTR	对应PC ₃	对应PC ₀
INTE	PC ₆ 置位	PC ₂ 置位

方式1输出

方式控制字:

将A组B组的方式控制位合成1个字节,用1条OUT指令写一次。

用C口地址读状态

 D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0 OBFA INTEA I/O I/O INTRA INTEB OBFB INTRB

(3) A口方式2 ——P280图5. 46

用PC₆设置INTE₁(输出)用PC₄设置INTE₂(输入)输入和输出中断通过或门输出INTR_A信号

方式2控制字

方式2 (双向选通方式)

- 方式2将方式1的选通输入输出功能组合成一个双向数据端口,可以发送数据和接收数据
- 只有端口A可以工作于方式2,需要利用端口C的5 个信号线,其作用与方式1相同
- 方式2的数据输入过程与方式1的输入方式一样
- 方式2的数据输出过程与方式1的输出方式有一点不同:数据输出时8255A不是在OBF有效时向外设输出数据,而是在外设提供响应信号ACK时才送出数据,即仅在ACK信号有效时才出现在A口的1/0线PA₀~PA₇。

用C口地址读状态

 D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0 OBFA INTE1 IBFA INTE2 INTRA

A口B口各自单独选择工作方式及1/0,剩下的C口线可以选择1/0,合成一个字节写方式控制字。

方式2双向时序

▶总结:

8255A的工作方式与端口有关:

PA口有三种方式(0方式、1方式、2方式),

PB口只有两种方式(0方式、1方式)。

PC口只有一种方式(0方式)

A口、B口只能作8位数据口

C口可作为:

- 1) 8位或4位的数据口
- 2) 状态信号线
- 3) 联络信号线
- 4) 按位控制(C口的8个引脚可从一个引脚输出高/
- 低电平)

1) 0方式的特点和功能

0方式称为"简单I/0方式"(或"基本I/0方式")。

82C55A与CPU之间采用无条件或查询方式,

82C55A与I/0设备之间采用单向传输。

它的3个8位并行端口引脚全部由用户支配。

0方式下,82C55A的 3个并行端口的功能:

A端口作数据口(8位并行)

B端口作数据口(8位并行)

C端口有两种功能:

- ① 作数据口(4位并行,分高4位和低4位)
- ② 作位控,按位输出逻辑1或逻辑0

2) 1方式的特点和功能("单向选通I/0方式")

1方式下82C55A与CPU一侧采用查询或中断方式。

82C55A与I/0设备一侧采用单向传输。

要求固定的联络信号。且信号线,不能全部由用户支配。

1方式下,82C55A的 3个并行端口的功能:

A端口作数据端口(8位并行)

B端口作数据端口(8位并行)

C端口可有4种功能:

- ① 作A端口和B端口的固定联络信号线
- ② 未分配作固定联络信号的引脚,可作数据线用
- ③ 作状态端口,读取A端口和B端口的状态字
- ④ 作位控,按位输出逻辑1或逻辑0

3) 2方式的特点和功能(双向选通I/0方式)

82C55A与CPU一侧采用查询和中断方式。

82C55A的A端口与I/0设备一侧采用双向传输,即1次初始 化可置成既输入又输出。

要求两对固定的联络信号,要求固定的工作时序,设置固定的工作状态字。

只有A端口具有双向传输功能,而B端口没有。

2方式下,82C55A的3个并行端口的功能:

A端口作数据端口(8位并行)

B端口作数据端口(8位并行)

C端口有4种功能,与1方式类似

4. 端口C的状态字

1) 状态字的作用

- ❖ 在1方式和2方式下8255A有固定的状态字
- * 状态字为查询方式提供了状态标志位,如IBF和0BF,
- ※ 采用中断方式时,CPU也要通过读状态字来确定中断源,实现查询中断。

使用状态字时要注意的几个问题:

- 1)从C口读取的状态字与C口的外部引脚无关,即独立于C口的外部引脚;因为状态字是在8255输入/输出操作过程由内部产生,仅仅通过C口的各位反映出来。
- 2)方式0时用C口某引脚(任意)作为状态提取和信号控制,完全是通过编程实现,而方式1的引脚控制是固定的,自动的。
- 3) 状态字中的INTE位,是控制标志位,控制82C55A能否提出中断请求,因此它不是I/0操作过程中自动产生的状态,而是由程序通过按位置位/复位命令来置位或复位的。

例如: 若允许A端口输入中断请求,则必须设置INTEA=1,即置PC4=1;若禁止它中断请求,则置INTEA=0,即置PC4=0,其程序段为:

MOV DX, 303H ; 82C55A命令端口

MOV AL, 00001001B ; 置PC4=1, 允许中断请求

OUT DX, AL

MOV AL, 00001000B ; 置PC4=0, 禁止中断请求

OUT DX, AL

5. 1方式和2方式下的输入、输出

1方式下输入

1方式输入(端口A) 1方式输入(端口B) $\overline{PA}_{7\sim0}$ $|\overline{\mathrm{PB}}_{7\sim0}|$ INTE INTE PC_4 STB_A PC_2 $\overline{\text{STB}}_{\text{B}}$ B PC₅ IBF_{A} PC_1 IBF_{B} & & → INTR_A PC_0 PC_3 \rightarrow INTR_B 2 RD RD PC_{6,7} /___ I/O

1方式下输出

1方式输出(端口A)

1方式输出(端口B)

1方式输出时联络信号线定义

注意:

A口和B口可工作在组合方式,即硬件连接方式,大虚框互换即可

8255A的应用 PPICS-ĪOR

三口始终工作于方式0:

A口: 先输出自检信号, 后重设成输入(读键盘)

B口:输出控制信号。

用户可不断改变PB₁、PB₀控制扬声器发声。

C口: 输入状态及配置信息

 $PC_{3\sim 0}$: 在PB₃ = 0时输入DIP开关1~4

 $PB_3 = 1$ 时输入DIP开关5 \sim 8

2. 编程

工作过程中可以重新对8255写控制字

自检编程例

```
mov AL, 10001001;方式0, A口,B口输出,C口输入
out 63H, AL
mov AL, 10100101; B口输出,PB3=0, 读DIP低4位
out 61H, AL
in AL, 62H ; 读 C口
mov AL, 10101101; B口输出,PB3=1, 读DIP高4位
out 61H, AL
in AL, 62H ; 读 C口
  •••••
mov AL, 10011001; 重写控制字, A口改输入
    63H, AL
out
```