FINANCIAL ENGINEERING IME611A

Suman Saurabh, IIT Kanpur

SESSION OBJECTIVES

- The Short rate
- Relationship between Short rate and forward rate
- Useful formulation for present value

SHORT RATES

• Short rates: these are <u>forward rates spanning</u> a single time period.

$$(1+s_k)^k = (1+r_0)(1+r_1)(1+r_2)...(1+r_{k-1})$$

- All forward rates can be found from the short rates in similar way,

$$(1 + f_{i,j})^{j-i} = (1 + r_i) (1 + r_{i+1}) ... (1 + r_{j-1})$$

FORWARD RATES, SHORT RATES: AN EXAMPLE

• Given current spot rate curve, **construct forecast** curve for next year.

	s ₁	s_2	S_3	S ₄	S ₅	S ₆	s ₇
Current	6.00	6.45	6.80	7.10	7.36	7.56	7.77

FORWARD RATES

	S ₁	s_2	S_3	S ₄	S ₅	S ₆	S ₇
Current	6.00	6.45	6.80	7.10	7.36	7.56	7.77

t ₁	t ₂	t_3	t ₄	t ₅	t ₆	t ₇
6.00	6.45	6.80	7.10	7.36	7.56	7.77
6.90	7.20	7.47	7.70	7.88	8.06	
7.50	7.75	7.97	8.12			
8.00	8.20	8.33				
8.40	8.50	8.67				
8.60	8.80					
9.00						

SHORT RATES

	s ₁	S ₂	S_3	S ₄	S ₅	S ₆	s ₇
Current	6.00	6.45	6.80	7.10	7.36	7.56	7.77

t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇
6.00	6.90	7.50	8.00	8.40	8.60	9.00
6.90	7.50	8.00	8.40	8.60	9.00	
7.50	8.00	8.40	8.60	9.00		
8.00	8.40	8.60	9.00			
8.40	8.60	9.00				
8.60	9.00					
9.00						

PRESENT VALUE IN TERM STRUCTURE FRAMEWORK

• We know, for a cashflow stream, $(x_0, x_1, ..., x_n)$

$$PV(0) = x_0 + d_1x_1 + d_2x_2 + \dots + d_nx_n$$

Alternatively,

$$PV(0) = x_0 + d_1[x_1 + (d_2/d_1)x_2 + ... + (d_n/d_1)x_n]$$

• Now, $\left(\frac{d_k}{d_1}\right)$ for k = 2, 3, ..., n are **discount factors 1 year from now** under an assumption of expectation dynamics

$$PV(0) = x_0 + d_1 PV(1)$$

IMPORTANT RESULT

• Present value updating: The running present values satisfy the recursion

$$PV(k) = x_k + d_{k,k+1}PV(k+1)$$

where , $d_{k,k+1} = 1/(1 + f_{k,k+1})$ is the discount factor for the short rate at k.

Practice Example 4.6, 4.7

DISCLAIMER

 The information in this presentation has been compiled from the following textbook which has been mentioned as a reference text for this course on **Financial Engineering**.

- Reference Text:
 - Investment Science, 2nd Edition, Oxford University Press, David G. Luenberger