Discusión 2

Camilo Medrano

2023-08-02

Contenidos

En esta discusión se vieron los temas de la Unidad 1, desde el $1.1~\mathrm{hasta}$ el $1.5~\mathrm{cm}$

Material de apoyo (?)

Carga eléctrica

Para hablar de carga eléctrica se de hablar del átomo

La materia esta en estado neutro \rightarrow tiene carga eléctrica.

- Para cargar un material se le agregan electrones, ya que estos son los más fáciles de extraer.
- Cargar positivamente significa quitarle electrones, esto disminuye la masa $(n \times m_e)$ y cargar negativamente es agregarle electrones lo que aumenta la masa.

Átomo: electrones, protones y neutrones

La carga eléctrica está cuantizada

q = ne

Donde q es la cantidad de carga y $n \in \mathbb{Z}$

 $e = 1.602 \times 10^{-19} C$

Partícula elemental	Carga (C)	Masa (kg)
Electrón	-e	9.109×10^{-31}
Protón	e	1.673×10^{-27}
Neutron	0	1.675×10^{-27}

$$N = \frac{N_A m}{M}$$

Donde ${\cal N}_A$ es la constante de Avogadro, M la masa molar.

Conservación de la carga

La carga eléctrica total del sistema se conserva.

Conductores y aislantes. Carga por frotamiento, contacto e inducción.

Electrones de conducción: es un electrón libre en un material conductor, como un metal, que puede moverse fácilmente a través del material en respuesta a una fuerza eléctrica externa, lo que permite la conducción de la electricidad.

¿Cuando hay corriente eléctrica?

i Conductores: gran cantidad de electrones de conducción por ${\rm cm}^3$.

Semiconductores: comportamiento intermedio entre conductores y aislantes.

Aislantes: muy poca cantidad de electrones de conducción.

Conductores: alrededor de 10^{23}

Aislantes: ni tan siquiera 1

Métodos de carga

- Por frotación.
- Por contacto.

Recordar que lo que viaja son los electrones.

Tienen que estar aislados electricamente

Ley de Coulumb

Para cargas puntuales de forma vectorial.

$$F = k \frac{q_1 q_2}{r^2}$$

Donde $k = 9 \times 10^9 \, Nm^2/C^2$

Principio de superposición

$$\vec{F}_1 = \sum_{i=2}^n \vec{F}_{1i}$$

Discusión

- De la parte B: 9.
- De la parte D: 1, 6, 8.

Todo es Ley de Coulumb.