שצות פתורת הקפוצות

- $A \subset B$ אז $A \subset B$ אבל $A \neq B$ אבל $A \subset B$ אבל $A \subset B$ אוז $A \subset B$. (עיימ 6)
- נובע מהגדרה, עיים 6) ועבור כל קבוצה $A \subseteq A$ כלשהי, מתקיים $A \subseteq A$ (נובע מהגדרה, עיימ 6) ועבור כל קבוצה $A \subseteq A$ (עיימ 7).
 - יש 2^x איברים אזי ב- P(A) יש x איברים איברים 2^x איברים לאיברים 2^x איברים 2^x
 - תכונות האיחוד והקיבוץ:
 - תכונות האיחוד (עיימ 10)

 $A \cup B = B \cup A$: קומוטטיביות

 $(A \cup B) \cup C = A \cup (B \cup C)$: אסוציאטיביות

 $A \cup A = A$: אידמפוטנטיות

 $A \cup \emptyset = A$: איחוד עם הקבוצה הריקה

 $B{\subseteq}\,A{\cup}B$, $A{\subseteq}\,A{\cup}B$: כן מתקיים

תכונות החיתוך: (עיימ 15)

 $A \cap B = B \cap A$: קומוטטיביות

 $(A \cap B) \cap C = A \cap (B \cap C)$: אסוציאטיביות

 $A \cap A = A$: אידמפוטנטיות

 $A \cap \emptyset = \emptyset$: חיתוך עם הקבוצה הריקה

- (20 עיים $A \cup B = A \cup C$ טענה (שוויון בעזרת חיתוך ואיחוד) איים $A \cap B = A \cap C \Rightarrow B = C$
 - (עיימ 19) . $A \cap (A \cup B) = A$ א $-(A \cap B) = A$ (עיימ 19) . $A \cap (A \cup B) = A$
 - דיסטריביוטיביות (עיימ 18)

 $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$ - החיתוך מעל האיחוד $A\cup (B\cap C)=(A\cup B)\cap (A\cup C)$ - האיחוד מעל החיתוך

ואיוור מעל דוויינון - (AOC) ד **תכונות ההפרש** (עיימ 21) –

 $,A-B=\varnothing \Leftrightarrow A\subseteq B$ $A-\varnothing=A$ $A-A=\varnothing$ $\varnothing -A=\varnothing$

 $A-B = A \Leftrightarrow A \cap B = \emptyset$

תכונות המשלים (עיימ 22)- U היא הקבוצה האוניברסלית ❖

 $A \cup A' = U$; $A \cap A' = \emptyset$ $x \notin A' \Leftrightarrow x \in A$ $x \notin A \Leftrightarrow x \in A'$ (23 $x \notin A \Leftrightarrow A' = A$

- $(A \cap B)' = A' \cup B'$ (A \cup B)' = A' \cap B' (24 עיימ 24). \Diamond
- $A \cap (B-A) = \emptyset$ $A \cup (B-A) = A \cup B$ $A (B \cup C) = (A-B) \cap (A-C) 24$ שאלות בעיימ
 - טענות הקשורות לקבוצות חלקיות:
 - (עיימ 6) $A=B \Leftrightarrow A\subseteq B \text{ and } B\subseteq A$ עיימ 6) אוויון דרך תת-קבוצות– $A=B \Leftrightarrow (x\in A \Leftrightarrow x\in B) \Leftrightarrow A\subseteq B \text{ and } B\subseteq A$.
- עענת טרנזיטיביות של ההכלה $A \subseteq B$ and $B \subseteq C \Rightarrow A \subseteq C$ שאלה 8. (ע"מ 8 שאלה 1.6) אנת טרנזיטיביות של ההכלה $X \in B$ אז $A \subseteq C$ מתון גם $A \subseteq B$ לכן מתקיים לאותו $A \subseteq B$ גם $A \subseteq C$ מכאן נקבל $A \subseteq C$ כלומר $A \subseteq C$ כלומר
 - (11 עיימ 1.9) א \subseteq $C \hookrightarrow A \cup B \subseteq C$ שאלה 1.9 עיימ 1.9 $A \subseteq C \hookrightarrow A \cup B \subseteq C$
 - $A \cap B \subset A$ (עיימ 15 שאלה 1.10) $A \cap B \subset A$
 - (עיימ 15 שאלה 15) איים 15 שאלה $C \subseteq A$ -1 $C \subseteq B \Leftrightarrow C \subseteq A \cap B$
 - (עיימ 16 שאלה 11.11) $A \cap B = A \Leftrightarrow A \subseteq B \Leftrightarrow A \cup B = B$
 - $A \subseteq B$ and $C \subseteq D \Rightarrow A \cup C \subseteq B \cup D$ –19 שאלה 1.16 עיימ \clubsuit
 - $A \subseteq B$ and $C \subseteq D \Rightarrow A \cap C \subseteq B \cap D$

- איחוד קבוצות מאפשרת האיחוד קבוצות לכל משפחה של קבוצות האסוציאטיביות של איחוד הקבוצות מאפשרת איחוד קבוצות לכל משפחה של קבוצות. לכל קבוצה ניתן אינדקס $i\in I$, וכדי לסמן לרשום איחוד של קבוצות i נסמן: $\{A_i\}_{i\in I}$ כאשר i יעובריי על קבוצות האינדקסים הנתונה I איחוד קבוצות לכל משפחה של קבוצות מסמנים: I לפחות אחד, כך ש- I אם ורק אם קיים I לפחות אחד, כך ש- I הגדרה 1.6 עיימ 1.2 עיים I
- את $\bigcap_{i\in I}A_i$ מסמנים ב- , $\left\{A_i\right\}_{i\in I}$ את קבוצת קבוצת קבוצות אם עבור ב- , מסמנים ב- . $x\in\bigcap_{i\in I}A_i$ את הקבוצה המקיימת איברים באלה אם ורק אם $x\in\bigcap_{i\in I}A_i$ אם אין איברים באלה החיתוך הוא הקבוצה הריקה \varnothing
 - (נעיימ 15). $A \cap B = \emptyset$ אם $+ A \cap B = \emptyset$
- קבוצה של קבוצות זרות (זו לזו) קבוצה של קבוצות ארות הקבוצות קבוצות קבוצות קבוצות קבוצות זרות (זו לזו) אם אם $A_{i_1}\cap A_{i_2}=\phi$ עבור כל A_{i_1} . כלומר, אם כל שתי קבוצות מתוך אוסף הקבוצות הזה זרות זו לזו.
 - סכומי קבוצות

```
|A \cup B| = |A| + |B| - |A \cap B| עבור 2 קבוצות סופיות: |A \cup B| = |A| + |B| - |A \cap B| בפרט עבור זרות נקבל: |A \cup B| = |A| + |B| מתקיים: |A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |C \cap A| + |A \cap B \cap C|
```

- יהא נתון ביטוי באלגברת הקבוצות, נבצע בעת ובעונה אחת מדואלי העשרה (עיימ 25) –יהא נתון ביטוי באלגברת הקבוצות, נבצע בעת ובעונה אחת את ההחלפות הבאות: כל סימן איחוד \cup יוחלף בסימן חיתוך \cap ולהפך , כל הופעה של U תוחלף בהופעה של \bigcirc ולהפך.
 - ירובן. הביטוי המתקבל נקרא ביטוי דואלי לביטוי הנתון.
 - ויי: B ו- A ווּ B ווּ A עייי: A הפרש סימטרי של הקבוצות A ווּ A עייי: A ההפרש הסימטרי מקיים את התכונות הבאות: $A \oplus B = (A-B) \cup (B-A)$

```
קומוטטיביות : קומוטטיביות : (A\oplus B)\oplus C=A\oplus (B\oplus C) : אסוציאטיביות : A\oplus\varnothing=A : הפרש סימטרי עם הקבוצה הריקה : A\oplus A=\varnothing=A : הפרש סימטרי בין קבוצה לבין עצמה : A\oplus A=\varnothing=A : הפרש סימטרי בין קבוצה לבין עצמה : A\oplus A=\varnothing=A : כן מתקיים : A\oplus B\oplus (A\cap B)=A\cup B , A\cap (B\oplus C)=(A\cap B)\oplus (A\cap C)
```

הצרות / טיפים:

- 0 בקורס שלנו. קבוצת המספרים הטבעיים \mathbf{N} כוללת את המספר ס
- לשים לב בהוכחות שבהם יש התייחסות למשלים לבחור קבוצה אוניברסלית מתאימה. לדוג'
 "נבחר קבוצה אוניברסלית U המכילה את A וגם את U"
- כל טענה או מעבר שאינו הגדרה יש לנמק בקצרה, מספיק לרשום את התרגיל/ המשפט בספר שבו זה מופיע

אנות מרלציות *

:הגדרות

מכפלה קרטזית - $A \times B = \{(a,b) \mid a \in A, b \in B\}$ (הגדרה (ב.2.2) מכפלה קרטזית - תח קבוצה של AXBXC רלציה טרינארית – תח קבוצה של $(a,b) \in R; aRb$ איבר ברלציה - $(a,b) \in R; aRb$

ullet (2.4 הגדרה) $Domain(R) = \{x \in A \mid there is \ y \in B \ so \ xRy\} - תחום Domain(R) <math>\subseteq A$

 $Range(R) \subseteq B$ (2.5 הגדרה Range(R) = $\{y \in B \mid there is \ x \in Aso \ xRy\}$ - טווח

(2.6 הגדרה $bR^{-1}a=aRb$ או $R^{-1}=\{(b,a)\,|\, (a,b)\in R\}$ - רלציה הופכית

 $R' = A \times A - R$ - המשלים ליחס

.(2.7 הגדרה . $RS = \{(a,c) \mid (threis b \in B so aRb and bSc\}$ - מכפלת רלציות

אל A ב רלציה מעל קבוצה A - רלציה מ

(2.9 הגדרה היחידה - $I_A = \{(a,a) \, | \, a \in A\}$ - רלציית היחידה

טענות (חזקות והיפוך):

(ישירות מהגדרה) $\varnothing R = \varnothing$; $R\varnothing = \varnothing$

$$I_A R = R$$
; $RI_A = R$

(2.6 שאלה (R^{-1})⁻¹ = R

(2.8 שאלה) .
$$(RS)^{-1} = S^{-1}R^{-1}$$

 $R^n R^m = R^{n+m}$

טענות (חיתוך, איחוד והכלה): 💠

(2.6 שאלה) $(R \cup S)^{-1} = R^{-1} \cup S^{-1}; (R \cap S)^{-1} = R^{-1} \cap S^{-1}; R \subseteq S \Leftrightarrow R^{-1} \subseteq S^{-1}$

(2.10 שאלה) $R(S \cup T) = RS \cup RT$

(2.10 שאלה) . $R(S \cap T) = RS \cap RT$

(2.10 שאלה) . $R \subset S \Rightarrow RT \subset ST, VR \subset VS$

:(תחום וטווח) 💠

(2.6 שאלה) $Domain(R^{-1}) = Range(R)$; $Range(R^{-1}) = Domain(R)$

(2.12 שאלה) . $I_{\scriptscriptstyle A} \subseteq RR^{-1} \Leftrightarrow Domain(R) = A$

(2.12 שאלה) . $I_{\scriptscriptstyle A}=R^{-1}R \Leftrightarrow Range(R)=A$

- (2.8 משפט) a(RS)Tb <=> aR(ST)b משפט . מכפלת רלציות היא אסוציאטיבית: ♦
- $|A_1 \times ... \times A_n| = |A_1| \cdot ... \cdot |A_n|$ מספר האיברים של מכפלות קרטזיות של קבוצות סופיות של מכפלות איברים של מכפלות קרטזיות של קבוצות סופיות או |AXB|=|A|*|B|
 - במות הרלציות השונות מ- A ל B הוא ^{|A||B|} ❖

:(47 טענה (ע"מ

R, R^2 , R^3 ... החזקה הקטנה ביותר של R, השווה לחזקה R^k של R החזקה הקטנה ביותר של R, השווה אף לחזקה קודמת של R הגבוהה מ R^m , שווה אף לחזקה קודמת של R הגבוהה כל עוד מדובר ברלציה מעל קבוצה סופית.

^{*}מכיל את כל החומר שנלמד בפרק פרט לייסגוריי

תכונות מיוחדות:

תכונות	הגדרה	
$R \subset R^2$	$I_{\scriptscriptstyle A}\subseteq R$	רפלקסיביות**
$R\subseteq R\subseteq R^3\subseteq\subseteq R^n\subseteq$ (2.18 שאלה)	$a \in A \Rightarrow (a,a) \in R$	(2.10)
סימטריות (ש $R \cap R^{-1}$, $R \cup R^{-1}$	$R = R^{-1}$	*סימטריות
(2.23	<u>או</u>	(2.10)
·	$aRb \Leftrightarrow bRa$	
	<u>או</u>	
	(2.12a) SR=RS	
	aRb and $bRa \Rightarrow a = b$	אנטי
	<u>או</u>	*סימטריות
	$R \cap R^{-1} \subseteq I_A$	(2.13)
$R^2 \subseteq R$	aRb and $bRc \Rightarrow aRc$	**טרנזיטיביות
	$(a,b),(b,c) \in R \Rightarrow (a,c) \in R$	(2.14)
(2.29	$(u,v),(v,v)\in \mathbb{N} \to (u,v)\in \mathbb{N}$	

^{*=} שקילות

^{*=} סדר חלקי

$A \times A$ משלים ל	הפרש	חזקה	כפל	הופכי	חיתוך	איחוד	הפעולה
R'	R-S	$R^n (n \ge 1)$	RS	R ⁻¹	$R \cap S$	$R \cup S$	התכונה
לא	לא	כן	כן	כן	כן	כן	רפלקסיביות
כן	כן	כן	לא	כן	כן	כן	סימטריות
לא	כן	לא	לא	כן	כן	לא	אנטיסימטריות
לא	לא	כן	לא	כן	כן	לא	טרנזיטיביות

טענות (שאלה 2.31): (תכונות של רלציות מיוחדות)

הרלציה (שקילות) היא רפלקסיבית, סימטרית וטרנזיטיבית (שקילות) הרלציה איא היא היא סימטרית, אנטי-סימטרית וטרנזיטיבית (על ריק). הרלציה איא היא סימטרית, אנטי

עם בספר (רפלקסיבית, I_A למרות או לא מופיע בספר (רפלקסיבית, בדאי להכיר גם את התכונות של I_A טימטרית, אנטיסימטרית וטרנזיטיבית – עבור I_A

רלציית שקילות:

הגדרות:

 $.xR_{\pi}y \Leftrightarrow x,y$ are in the same block - (A מעל R_{π}

רלציית שקילות (E) אם היא רפלקסיבית, סימטרית וטרנזיטיבית

A מעל E קבוצת המנה (A/E) קבוצת מחלקות השקילות של רלציית שקילות – קבוצת מחלקות השקילות של |A/E|=(מטפר במחלקות השקילות של |E|=(מוכל להיות סופי / אינסופי) אינסופי – באינדקט של π_1 הוא עידון של π_2 של בלוק של π_2 כל בלוק של π_2 בלוק של π_2

:משפטים

- (עיימ 60) היא סימטרית, רפלקסיבית וטרנזיטיבית (עיימ 60) R_π
- משפט (2.20): שקילות E מעל קבוצה A משרה חלוקה של הקבוצות למחלקות
 שקילות. כל האיברים במחלקת אחת (או בבלוק אחד של החלוקה המתקבלת)
 נמצאים ביחס E זה עם זה, ואף אחד מהם אינו ביחס U עם איבר ממחלקה אחרת.
 - E_1, E_2 אזי: מעל A. אינות (שאלה 2.40):תהיינה אזי: אינות מעל \bullet
 - .A היא שקילות מעל $E_1 \cap E_2$ (א)
 - $E_1E_2=E_2E_1$ שקילות מעל A אם מעל E_1E_2 (ב)
 - $E_1E_2=E_2E_1=E_1\bigcup E_2$ היא שקילות אזי היא $E_1\bigcup E_2$ (ד)
 - $I_A \subseteq E \subseteq A imes A$ מקיימת A מקיימת בה (2.46):כל שקילות אינה (תשובה 2.46) אינה (תשובה 2.46)

:טענות בנושא עידון

. $E_2\subseteq E_1$ היא מקיימות המתאימות האילויות של היא עידון של של היא עידון אזי היא π_2 :(2.45 שאלה של היא עידון של היא עידון של היא אידי היא אידי היא עידון של היא עידון של היא $E_2\subseteq E_1$

. π שהיא כל חלוקה של היא עידון של התאימה התאימה התאימה החלוקה שהיא . $A \times A$ היא לשקילות של החלוקה התאימה היא עידון של החלוקה התאימה לשקילות . π

 $\pi_1\pi_2=\pi_2$ אזי π_1 אזי עידון של $\pi_2=\pi_2$ אזי (2.48) טענה (שאלה 2.48) אם

 $E_1 \cap E_2$ יהיו בהתאמה. אזי בהתאמות ל π_1,π_2 השקילויות השקילויות הבתאמה. אזי יהיו יהיא רלציית השקילות המתאימה ל π_1,π_2

רלציית מיוחדות:

 aRb_1 and $aRb_2 \Rightarrow b_1 = b_2$ רלציה - רלציה שבה לכל איבר בתחום מתאים איבר אחד ויחיד בטווח

פונקציה חלקית – תחומה חלקי ממש ל-A

פונקציה על – אם טווח הפונקציה הוא כל B. (לכל איבר בטווח מגיע לפחות חץ אחד בדיגרף) $f(a_1)=f(a_2)$ \Rightarrow $a_1=a_2$ מתקיים $a_1,a_2\in A$ פונקציה חח"ע – לכל איבר תמונה שונה. לכל

$$a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$$
 או

 $\varphi(b) = a \Leftrightarrow a \in \varphi^{-1}(b) - (\varphi^{-1})$ פונקציה הופכית

 $\varphi(a)=a$ מתקיים $a\in A$ לכל

 $(\psi : B o \mathcal{C}$ ו $\varphi : A o B$ מכפלת פונקציות- $\psi(\phi(a)) = \psi(\phi(a))$ מכפלת פונקציות-

 $R(A_1) = \{b | (a,b) \in -1 \ \varphi(A_1) = \{\varphi(a) | a \in A_1\}$ -פונקציה של תת קבוצה של התחום $R, a \in A_1$

(ייB ל A ל Bיי) אונקציה חחייע ועל (ייהתאמה חחייע בין

A-על-A פונקציה חחייע מ-A על

(84 ע 84) $E = ff^{-1}$ איא המתאימה הרלציה שקילות. הרלציה משרה חלוקה לרכיבי שקילות משרה היא

(למי שלמד אינפי, זה מזכיר את פוני דיריכלה) $f_{\scriptscriptstyle A} = egin{cases} 1 & \textit{if } x \in A \\ 0 & \textit{if } x \in U-A \end{cases}$ -פונקצייה אופיינית-

טענה(שאלה 3.3): שיוויון עוצמות

אז Bאז או A אז א A או B או A או B או A אז אם A אם A או B אם א

ו אזי אפשר לקבוע התאמה חד-חד-ערכית בין A ו Bו⊨IBI ולהיפך, אם ו

טענה (שאלה 3.7): תכונות של מכפלת פונקציות

מכפלת פונקציות היא פונקציה. כמו כן כפל פונקציות הוא **אסוציאטיבי**. אם 2 פונקציות הן על אז גם מכפלתם היא על ואם שתיהן חחייע אז גם מכפלתם חחייע.

טענות (שאלה 3.2): תכונות של פונקציה הופכית

- (א) f^{-1} היא פונקציה מ B ל B אםם f היא פוני חחייע מ f ל B היא פונקציה מ f^{-1} היא חחייע.
- (נובע מאי) A על B על B איז f^{-1} היא פונקציה חחייע של A על B על A איז פונקציה חחייע של f (ב)
 - (ג) על B אזי מתקיים $f^{-1}=I_{\scriptscriptstyle A}$ כאשר $f^{-1}=I_{\scriptscriptstyle B}$ כאשר ו היא $f^{-1}=I_{\scriptscriptstyle A}$ פונקצית הזהות על A או B בהתאם לסימון.

שאלה 3.8 – תכונות של פונקציה של תת קבוצה:

$$A_1 \subseteq \varphi \varphi^{-1}(A_1)$$
 (N)

A של א לקבוצה משרה כלשהי משרה לקבוצה A לקבוצה ϕ

- . A אף הן תמורות של fg , f^{-1} אזי , A הן תמורות של g ו f אם (א)
- מתקיים של A מתקיים ל מתקיים ל גבור כל תמורה ל מתקיים של A מתקיים של $I_{\scriptscriptstyle A}$

$$I_A f = fI_A = f$$
 $ff^{-1} = f^{-1}f = I_A$

טענות (שאלה 3.12): תכונות של פונקציות אופייניות

$$f_{A \cap B}(x) = f_A(x) \cdot f_B(x) \qquad f_A = f_B \Leftrightarrow A = B$$

$$f_{U-A}(x) = 1 - f_A(x) \qquad f_{A \cup B}(x) = f_A(x) + f_B(x) - f_A(x) \cdot f_B(x)$$

$$f_{A-B}(x) = f_A(x) \cdot (1 - f_B(x))$$

סדר חלקי:

:הגדרות:

סדר חלקי – (מעל A) רלציה רפלקסיבית, טרנזיטיבית ואנטי-סימטרית.

קבוצה סדורה חלקית - קבוצה עם רלציית סדר חלקי מעליה

סדר מבין המשווה בין כל 2 איברים ב- (3.5) איברים בקים המשווה בין כל 2 איברים ב- סדר חלקי המשווה בין כל 2 איברים ב-

(a=b או bRa או aRb: הבאים

סדר $a\leq c\leq b$ כך ש $c\neq a,b$, $c\in A$ ואין $a\leq b$, $a\neq b$, $a,b\in A$ אם $a\neq b$ סדר b חלקי מעל (A)

לא שארית b מחלק אם a אם ורק אם ורק אם ווק ארית" - ארית מחלק אליית שארית" אם אם ורק אם ארית מחלק בלי שארית"

קבוצה סדורה לינארית (שרשרת) - קבוצה עם סדר מלא מעליה

. $x \leq a$ המקיים a השונה איבר איבר איבר א כלומר, אם אין $x \leq a \Rightarrow x = a$ המקיים המלי- אם לכל

X איבר A איבר אם אין איבר א , $b \leq x \Rightarrow b = x$ מתקיים איבר א איבר אם אין ב A איבר א איבר מקסימאלי- אם איבר א $b \leq x$ שונה מ

 $a \le x$ מתקיים $x \in A$ איבר קטן ביותר - אם עבור כל $x \in A$ מתקיים $x \in A$ איבר גדול ביותר - אם עבור כל

מבנה דיאגרמת הסה:

ענף מחבר איבר b עם איבר a, אם ורק אם b ענף מחבר איבר b ענף מחבר החלקי. איבר b המכסה את איבר a, נמצא גבוה ממנו בדיאגרמה.

 R^{-1} אז גם A אז חלקי מעל R הוא סדר חלקי אז אנם R טענה (שאלה 3.13):

הוא סדר חלקי מעל A (שני סדרים חלקיים אלה נקראים סדרים חלקיים דואליים).

משפט (3.8): קיום איבר מינמלי בקבוצה סופית

בקבוצה סדורה חלקית סופית, חייב להיות איבר מינימלי אחד לפחות.

טענות (שאלה 3.21): יחידות האיבר הקטן והגדול

בקבוצה סדורה חלקית יכולים להיות לכל היותר איבר קטן ביותר אחד ואיבר גדול ביותר אחד. כמן כן, בקבוצה סדורה חלקית שיש בה איבר קטן ביותר **יש רק איבר מינימלי אחד** ובקבוצה סדורה חלקית שיש בה איבר גדול ביותר יש רק **איבר מקסימלי אחד**.

טענות (שאלה 3.22): על בקבוצה סדורה בסדר מלא בלבד

אם בקבוצה <u>סדורה בסדר מלא</u> יש איבר מינימלי, אזי הוא יחיד והוא גם האיבר הקטן ביותר. אם בקבוצה סדורה בסדר מלא יש איבר מקסימלי, אזי הוא יחיד והוא גם האיבר הגדול ביותר.

טענות (שאלה 3.25א): כל קבוצה היא סדורה בסדר חלקי לגבי הכלה (⊇).