Thermal Mitigation for HBM Architecture

HBM2 Architecture

HBM Parameters From Previous Works

Parameter	Value	
Number of layers/ DRAM dies	4	
Number of channels	8 (2 per DRAM die)	
Memory controller	1 per channel	
Ranks, banks, bank groups	1 rank/channel 2 bank groups/rank 4 banks/bank group	
Memory size	1 GB	
Memory mapping	rorabgbachco	

HBM2 Parameters From Previous Works

Parameter	Value
Number of layers/ DRAM dies	4
Number of channels	8 (2 per DRAM die)
Memory controller	1 per channel
Ranks, banks, bank groups	1 rank/channel 4 bank groups/rank 4 banks/bank group
Memory size	4 GB
Memory mapping	rorabgbachco

Pseudo-channel in HBM2

Generating DRAM Access Trace For HBM2

- To determine the bank accessed for every DRAM request, we will use below masks and change the equation corresponding to HMC architecture in current infrastructure
 - channel_mask = 7 [111]
 - rank_mask = 0 [0]
 - bankgroup mask = 3 [11]
 - bank_mask = 3 [11]
 - o row_mask = 16383 [111111111111]
 - o column_mask = 31 [11111]

References Used For Determining HBM Parameters

- Shashank Adavally and Krishna Kavi. 2020. Towards Application-Specific Address Mapping for Emerging Memory Devices. The
 International Symposium on Memory Systems. Association for Computing Machinery, New York, NY, USA, 105–113.

 DOI:https://doi.org/10.1145/3422575.3422785
- Mahzabeen Islam, Soumik Banerjee, Mitesh Meswani, and Krishna Kavi. 2016. Prefetching as a Potentially Effective Technique for Hybrid Memory Optimization. In *Proceedings of the Second International Symposium on Memory Systems* (*MEMSYS '16*). Association for Computing Machinery, New York, NY, USA, 220–231. DOI:https://doi.org/10.1145/2989081.2989129
- Shang Li, Dhiraj Reddy, and Bruce Jacob. 2018. A performance & power comparison of modern high-speed DRAM architectures. In Proceedings of the International Symposium on Memory Systems (MEMSYS '18). Association for Computing Machinery, New York, NY, USA, 341–353. DOI:https://doi.org/10.1145/3240302.3240315
- X. Wang, A. Tumeo, J. D. Leidel, J. Li and Y. Chen, "HAM: Hotspot-Aware Manager for Improving Communications With 3D-Stacked Memory," in IEEE Transactions on Computers, vol. 70, no. 6, pp. 833-848, 1 June 2021, doi: 10.1109/TC.2021.3066982.
- S. Yin et al., "Parana: A Parallel Neural Architecture Considering Thermal Problem of 3D Stacked Memory," in IEEE
 Transactions on Parallel and Distributed Systems, vol. 30, no. 1, pp. 146-160, 1 Jan. 2019, doi: 10.1109/TPDS.2018.2858230.

References Used For Determining HBM Parameters

- Mahzabeen Islam, Shashank Adavally, Marko Scrbak, and Krishna Kavi. 2020. On-the-fly Page Migration and Address Reconciliation for Heterogeneous Memory Systems. J. Emerg. Technol. Comput. Syst. 16, 1, Article 10 (February 2020), 27 pages. DOI:https://doi.org/10.1145/3364179
- Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi. 2017. BATMAN: techniques for maximizing system bandwidth of memory systems with stacked-DRAM. In Proceedings of the International Symposium on Memory Systems (MEMSYS '17). Association for Computing Machinery, New York, NY, USA, 268–280. DOI:https://doi.org/10.1145/3132402.3132404
- M. M. Rafique and Z. Zhu, "Memory-Side Prefetching Scheme Incorporating Dynamic Page Mode in 3D-Stacked DRAM," in IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 11, pp. 2734-2747, 1 Nov. 2021, doi: 10.1109/TPDS.2020.3044856.
- S. Adavally and K. Kavi, "3D-DRAM Performance for Different OpenMP Scheduling Techniques in Multicore Systems," 2018
 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International
 Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2018, pp.
 675-683, doi: 10.1109/HPCC/SmartCity/DSS.2018.00119.

HBM vs HMC Architecture

Towards Application-Specific Address Mapping for Emerging Memory Devices

Memory type	HBM 1Gbps		
Memory channels	8		
Memory size	4 GB		
Memory controller queue size	Readq-32; Writeq-32		
Scheduling Policy	FR-FCFS-Cap [18]		
Baseline Memory Mapping	SK Hynix GDDR5 [1]		
	(RoBaCoBaChCo)		

Prefetching as a Potentially Effective Technique for Hybrid Memory Optimization

HBM Memory	Values
Channels, capacity	8, 1 GB (8 x 128 MB)
Memory Controller (MC)	1 per channel
Ranks, banks	1 rank/channel,
	2 bank groups/rank,
	4 banks/bank group
Row buffer size	2 KB
Read queue	32 entries/MC
Write queue	32 entries/MC
tCAS-tRCD-tRP-tRAS	14 ns - 14 ns - 14 ns - 34 ns
Bus (per channel)	128-bit, 500MHz
	(DDR 1.0 GHz)

A Performance & Power Comparison of Modern High-Speed DRAM Architectures

Table 2: DRAM Parameters

DRAM Type	Density	Device Width	Page Size	# of Banks (per rank)	Pin Speed	Max. Bandwidth ^[3]	tRCD (ns)	tRAS (ns)	tRP (ns)	CL/CWL (ns)
DDR3	8Gb	8 bits	2KB	8	1.866Gbps	14.9GB/s	14	34	14	14/10
DDR4	8Gb	8 bits	1KB	16	3.2Gbps	25.6GB/s	14	33	14	14/10
LPDDR4	6Gb	16 bits	2KB	8	3.2Gbps	25.6GB/s	_[5]	_[5]	_[5]	_[5]
GDDR5	8Gb	16 bits	2KB	16	6Gbps	48GB/s	$14/12^{[4]}$	28	12	16/5
$HBM^{[1]}$	4Gbx8	128 bits	2KB	16	1Gbps	128GB/s	14	34	14	14/4
$HBM2^{[1]}$	4Gbx8	128 bits	2KB	16	2Gbps	256GB/s	14	34	14	14/4
$HMC^{[1]}$	2Gbx16	32 bits	256 Bytes	16	$2.5 \mathrm{Gbps}^{[2]}$	120GB/s	14	27	14	14/14
HMC2 ^[1]	2Gbx32	32 bits	256 Bytes	16	$2.5 \mathrm{Gbps}^{[2]}$	320GB/s	14	27	14	14/14

^[1] HBM and HMC have multiple channels per package, therefore the format here is channel density x channels.

^[2] The speed here is HMC DRAM speed, simulated as 2.5Gbps according to [49]. HMC link speed can be 10–30Gbps.

^[3] Bandwidths for DDR3/4, LPDDR4 and GDDR5 are based on 64-bit bus design; HBM and HBM2 are 8×128 bits wide; Bandwidth of HMC and HMC2 are maximum link bandwidth of all 4 links. We use 2 links 120GB/s in most simulations.

^[4] GDDR5 has different values of tRCD for read and write commands.

^[5] We are using numbers from a proprietary datasheet, and they are not publishable.

Parana: A Parallel Neural Architecture Considering Thermal Problem of 3D Stacked Memory

HBM [64]				
Process Technology	29 nm DRAM process			
Capacity	8 Gb 1			
Chip Size	$5.10 \text{ mm} \times 6.91 \text{ mm}$			
# of Stack	4 memory dies + 1 logic die			
TSV IO	1024			
Peak Bandwidth	128 GB/s			
Supply Voltages	VDD = 1.2 V, VPP = 2.5 V			
Energy [22] and	d Thermal Parameters			
Activation Energy	3.65 nJ			
Read/Write Energy	10.11 nJ			
Precharge energy	3.44 nJ			
TSV Energy	0.57 nJ			
Logic die Energy	18.52 nJ			
Ambient Temperature	318.15 (Kelvin)			

On-the-fly Page Migration and Address Reconciliation for Heterogeneous Memory Systems

Parameter	HBM
Channels, capacity	8, 1 GB (8 × 128 MB)
Memory Controller (MC)	1/channel
Row buffer	2 KB
Queue size/MC	RD 32, WR 32, Mig. 32 entries
Latency	tCAS-tRCD-tRP-tRAS:
	14 ns-14 ns-14 ns-34 ns
Bus/channel	128 bit, 1 GHz

Table 5. Memory Energy Parameters

Memory	Access energy
HBM	3.92 pj/bit
PCM	Read 42 pj/bit
	Write 140 pj/bit

3D-DRAM Performance for Different OpenMP Scheduling Techniques in Multicore Systems

HBM	values		
Capacity	2 GB		
Memory Controllers	1 per Channel		
Banks	8		
Row Buffer	2 KB		
Bus Width	128 bit per Channel		
Bandwidth	128GBps		

TABLE III HBM Configuration.

Important Parameters

- Energy_per_access
- Energy_per_refresh_access
- Bank_size [provided]
- No_columns
- No_bits_per_column
- T refi
- No_refesh_commands_in_t_refw
- Leakage power equation

To-Do

- ISSC HBM papers
 - Die photograph

 \circ