Mathematical Methods in Engineering and Applied Science

Prof. A. Kasimov. Skoltech. F2021

Problem Set 6. Due on Nov. 13 at 23:59.

- - (a) Find the best linear fit by solving the 2×2 normal system by hand $A^T A u = A^T b$, with $A = \begin{bmatrix} x^T & 1 \end{bmatrix}$ and $b = y^T$. Plot the data and the fit.
 - (b) Calculate the Moore-Penrose pseudo-inverse A^+ of A directly from its definition.
 - (c) Write down the SVD of A^+ .
 - (d) What is the error vector e of the approximation and its 2-norm?
- (2) Find the best plane in \mathbb{R}^3 , in the least-squares sense, through the data given in the table:

x_i	1	1	2	3	5
y_i	5	3	4	10	7
z_i	2	1	2	5	5

. What is the error vector and its norm?

(3) Determine the dominant modes in the function f of space x and time t:

$$f(x,t) = e^{-x^2} \sin(x+3t) \cos(x-t)$$
,

considering the interval $x \in [-5, 5], t \in [0, 10].$

- (a) Plot the singular values in uniform as well as semilog scales.
- (b) Plot the solution in the x-t plane over the given interval.
- (c) How much "energy" of the solution is contained in mode 1 and in modes 1+2?
- (d) Plot the first two columns of U and V in the SVD of matrix F obtained by calculating f(x,t) over a grid with 100 points in x and 50 points in t. Explain their meaning.
- (4) To find a root of f(x) = 0, Newton's method tells to start with some initial guess x_0 and then to iterate following the scheme: $x_{n+1} = x_n f(x_n)/f'(x_n)$.
 - (a) Use this method to find the root x = 1 of $f(x) = x^2 1$.
 - (b) What is the range of initial conditions x_0 that give convergence to x = 1?
 - (c) How fast do the iterations converge? Plot the error $e_n = |x_n 1|$ as a function of n (maybe, in log scale).
- (5) Now apply the same Newton iterations as in the previous problem to the equation $f(x) = x^2 + 1 = 0$. Clearly, this equation has no real roots.
 - (a) The question is: What do the iterations do? Do they converge to anything?
 - (b) How does the behavior of the iterations depend on the initial point x_0 ?
 - (c) What if you start the iterations in the complex plane? Can you get convergence to the actual roots $\pm i$ of the equation? What are the domains of attraction of the roots?
- (6) Consider the function $f = 2x^2 + 2xy + y^2 x 2y$.
 - (a) Find its minimum analytically by representing f as $\frac{1}{2}u^TAu b^Tu$. Plot the function together with its contour levels using, for example, **surfc** function in Matlab.
 - (b) Now find the minimum using the gradient descent. Determine the step τ in the descent method.

1

- (c) Starting with $(x_0, y_0) = (0, 4)$, calculate the first two steps of the gradient descent explicitly and indicate on a single plot both the positions and the gradient vectors at those positions. Also plot the level curves of f going through these points.
- (d) Implement the descent algorithm in Matlab or Python and starting with the same initial condition as in (c) find the minimum within a tolerance of $tol = 10^{-6}$. How many iterations does it take to reach the minimum?