

re-rev

1600

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/470,667

DATE: 02/26/2003
TIME: 13:27:00

Input Set : N:\AMC\US09470667.raw
Output Set: N:\CRF4\02262003\I470667.raw

1 <110> APPLICANT: Asakura, Akira
 2 Hoshino, Tatsuo
 3 Ojima, Setsuko
 4 Shinjoh, Masako
 5 Tomiyama, Noribumi
 6 <120> TITLE OF INVENTION: Novel Alcohol/Aldehyde Dehydrogenases
 7 <130> FILE REFERENCE: C38435/109700CON
 8 <140> CURRENT APPLICATION NUMBER: US/09/470,667
 9 <141> CURRENT FILING DATE: 1999-12-22
 10 <150> PRIOR APPLICATION NUMBER: US 08/934,506
 11 <151> PRIOR FILING DATE: 1997-09-19
 12 <160> NUMBER OF SEQ ID NOS: 12
 13 <170> SOFTWARE: PatentIn version 3.1
 15 <210> SEQ ID NO: 1
 16 <211> LENGTH: 1740
 17 <212> TYPE: DNA
 18 <213> ORGANISM: Gluconobacter oxydans
 19 <400> SEQUENCE: 1
 20 atgaaaccga ctgcgtgct ttggccagt gctggcgac ttgcattgct tgccgcaccc 60
 21 gccttgctc aagtgacccc cgtcaccgat gaattgtgg cgaacccgcg cgctggtaa 120
 22 tggatcagct acggtcagaa ccaagaaaaac taccgtcaact cggccctgac gcagatcag 180
 23 actgagaacg tcggccaact gcaactggc tggcgccgcg gcatgcagcc gggcaaagtc 240
 24 caagtacgc ccctgatcca tgacggcgatc atgtatctgg caaacccggg cgacgtgatc 300
 25 caggccatcg acgccaaaac tggcgatctg atctggAAC accggccgcca actgccaac 360
 26 atgcccacgc tgaacagctt tggcgagccg acccgccggca tggcgctgtt cggcaccaac 420
 27 gtttactttt tttcggtggca accaccatcg gtcgcctcg acaccgcaac tggccaagt 480
 28 acgttcgacg tcgaccggcg ccaaggcgaa gacatggtt cgaactcgatc gggcccgatc 540
 29 gtggcaaaacg gcgtgatcgt tggcggttcg acctgccaat actcgccgtt cggctgctt 600
 30 gtctggggcc acgactcgcc caccgggtgaa gagctgtggc gcaactactt catcccgcc 660
 31 gctggcgaag aggggtatga gacttggggc aacgattacg aagccctgtt gatgaccgg 720
 32 gcctggggcc agatcaccta tgaccccgatc accaacctt tccactacgg ctcgaccgatc 780
 33 gtgggtccgg cggtggaaac ccaacggcgcc accccggggc gcacgtgtt cggcacgaac 840
 34 acccgtttcg ccgtgcgtcc tgacacgggc gagattgtt ggcgtccca gaccctgccc 900
 35 cgcgacaact gggaccagga atgcacgttc gagatgtatgg tcaccaatgt ggatgtccaa 960
 36 ccctcgaccg agatggaaagg tctgcgtcg atcaacccga acggccgac tggcgagcg 1020
 37 cgcgtgctga cccgggttcc gtcggaaaacc ggcaccatgt ggcgttcga cggccaaacc 1080
 38 ggcgaattcc tgtggggcccg tgataccac taccagaaca tgatcgatc catcgacgaa 1140
 39 aacggcatcg tgaccgtgaa cgaagatgcg atcctgaagg aactggatgt tgaatatgac 1200
 40 gtctggccga ccttcttggg cggccggcgcac tggccgtcg cgcactgaa ccccgacagc 1260
 41 ggcattact tcatacccgatc gaacaacgtc tgctatgaca tgatggccgt cgatcaggaa 1320
 42 ttacacctga tggacgtcta taacaccaggc aacgtgacca agctggccgc cggcaaggat 1380
 43 atgatcggtc gtattgacgc gatcgacatc agcacgggtc gtacgtgt gtcggctgaa 1440
 44 cgtgctgccc cgaactattc gcccgttcc tgcggccgc gccggcttctt gttcaacgg 1500

ENTERED

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/470,667

DATE: 02/26/2003
TIME: 13:27:00

Input Set : N:\AMC\US09470667.raw
Output Set: N:\CRF4\02262003\I470667.raw

45	ggtaacggatc gttacttccg cgccttcagc caagaaaccg gcgagaccct gtggcagacc	1560
46	cgccttgc aa ccgtcgctc gggccaggcc atctttagc aggttgacgg catgcaat	1620
47	gtcggccatcg cagggtggg tgtcagctat ggctcggcc tgaactcggc actggctggc	1680
48	gagcagatcg actcgaccgc catcgtaac gccgtctacg tcttcggccct gccgcaataa	1740
50 <210>	SEQ ID NO: 2	
51 <211>	LENGTH: 1740	
52 <212>	TYPE: DNA	
53 <213>	ORGANISM: Gluconobacter oxydans	
54 <400>	SEQUENCE: 2	
55	atgaagacgt cgtctttgt ggttgcgagc gttgccgc ttgcaagcta tagctcctt	60
56	gcccggctc aagtgcaccc cggtcaccgt gaattgtgg cgaacccggcc cgctggtaa	120
57	tggatcagct acggtcagaa ccaagaaaac taccgtact cggccctgac gcagatcag	180
58	actgagaacg tcggccaact gcaactggc tggcgcgcg gcatgcagcc gggcaaaagtc	240
59	caagtcacgc ccctgatcca tgacggcgtc atgtatctgg caaacccggg cgacgtgatc	300
60	caggccatcg acgccaaaac tggcgatctg atctggAAC accggccgca actgcccgaac	360
61	atgcgcacgc tgaacagctt tggcgagccg acccgccgca tggcgctgta cggcaccaac	420
62	gtttaactttt tttcggtggaa caaccacctg gtcgcctcg acaccgcaac tggccaagt	480
63	acgttcgacg tcgaccgcgg ccaaggcgaa gacatgttt cgaactcgatc gggcccgatc	540
64	gtggcaaaacg gcgtgatcg tggcggttcg acctgccaat actcgccgtt cggctgctt	600
65	gtctcgcc acgactcgcc caccggtaa gagctgtggc gcaactactt catcccgcc	660
66	gctggcgaag agggtatga gacttggggc aacgattacg aagccgttg gatgaccggc	720
67	gtctgggtc agatcaccta tgaccccggtt ggcggcctt tccactacgg ctgcgtggct	780
68	gttggcccggtt cttcgaaac ccacgcgcg accacccggc gcaccatgta cggcaccaac	840
69	acccggttcg ctgtccgtcc cgagactggc gagatgtctt ggcgtcacca aactctgccc	900
70	cgcgacaact gggaccaaga gtgcacccctc gagatgtgg ttgccaacgt tgacgtgcag	960
71	cccgccatcg acatggacgg cggtcgatcg atcaacccga acggccgac cggcggcgatc	1020
72	cgcgttctga cccgggttcc gtgcacccaaacc ggcaccatgt ggcgttccg cggccaaacc	1080
73	ggcgaattcc tggggcccg tgacaccagg tacgagaaca tcatcgatc gatcgacgaa	1140
74	aacggcatcg tgaccgtcga cgagtcgaaa gttctgaccg agctggacac cccctatgac	1200
75	gtctggccgc tgctgtggg tggccgtgac tggccgtgg ctgcgtgaa ccccgatacc	1260
76	ggcatctact ttatccccgtt gaaacaacacc tgcatgata tgcgttgcgtt cggccggaa	1320
77	ttcagctcg tggacgtgtt caaccaaagg ctgaccgca aatggcacc gggtaaagag	1380
78	ctgggtggcc gtatcgacgc catcgacatc agcacaggcc gcaccctgtt gaccgttgc	1440
79	cgcgaaacctt cgaactacgc gctgtctcg tgcgttgcgtt gccggcgatc gttcaacggc	1500
80	ggcaccgacc gttacttccg cgctctcagc caagagaccg gcgagaccct gttccatcg	1560
81	cgtctggcga ctgtcgatcc gggccaaagct gttctgtacg agatcgacgg cgtccaaatac	1620
82	atcgccatcg gcgccggcgg cacgacatat gttctgtcc acaaccgtcc cctggccgag	1680
83	ccggtcact cgaccgcgtt cggtatcgatc atgtacgtt tgcgttgcgtcc ccagcaataa	1740
85 <210>	SEQ ID NO: 3	
86 <211>	LENGTH: 1737	
87 <212>	TYPE: DNA	
88 <213>	ORGANISM: Gluconobacter oxydans	
89 <400>	SEQUENCE: 3	
90	atgaaactga cgaccctgtt gcaacggcgc gcccgcctgc ttgtgtttgg caccattccc	60
91	gcccggccaa acccgccat caccgtgaa atgctggcga acccgccgc tggtaatgg	120
92	atcaactacg gtcagaacca agagaactac cgccactcgcc ccctgacgc gattaccgc	180
93	gacaacgtcg gccaactgca actggctgg gcgccggta tggaaacggg caagatccaa	240
94	gtgaccccgcc ttgtccatga cggcgatcg tatctggca accccggta cgtgtatccatc	300
95	cccatcgacg ccggccggcc cgatctgatc tggaaacacc gccgccaact gccgacatc	360

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/470,667

DATE: 02/26/2003
 TIME: 13:27:00

Input Set : N:\AMC\US09470667.raw
 Output Set: N:\CRF4\02262003\I470667.raw

96	gccacgctga acagcttgg tgagccgacc cgccggcatgg ccctctatgg caccAACGTC	420
97	tatttcgtct cgtgggacaa ccacttggc gcgctggaca cctcgaccgg ccaAGTCGTA	480
98	ttcgaCGTcg atcgcggta aggacacggat atggtctcg aCTCGTCCGG CCCGATTGTC	540
99	gccaatggcg tcatcggtc gggctcgacc tGTCAgTATT CGCCGTTCGG CTGTTCGTT	600
100	tcgggcccacg actcggccac cggtGAAGAG ctgtggcga acACCTTAT CCCGCGCGCC	660
101	ggcgaAGAGG gtGATGAGAC ctggggcaat gattacgagg CCCGCTGGAT GACCAGCGTT	720
102	tggggccaga tcacctatga ccccgttgc ggccttgc actacggcac CTCAGCAGTT	780
103	ggccctgCGG CCGAGATTCA GCGCGGCACC GTTGGGGCT CGATGTATGG CACCAACACC	840
104	cgctttgtcg tccgccccga gaccggcgag atcgtctggc gtcacAAAC TCTGCCCGC	900
105	gacaactggg accaAGAGTG tacgttcgag atgatggtc tcaacgtcg CgtccAGCCC	960
106	tcggctgaga tggaaGGCCT gcacGCCATC AACCCGATG CGGCCACGGG CGAGCGTCG	1020
107	gttgtgaccg gcgttccgtg caagaACGGC accatgtggc agttcgacgc CGAAACCGGC	1080
108	gaattcctgt gggcgcgcga caccagctat cagaacctga tCGAAAGCGT CGATCCCGAT	1140
109	ggtctgggtc atgtgaacga agatctggc tgacccgagc tggaaAGTGGC CTATGAAATC	1200
110	tgcccgacct tccctgggtgg cccgcactgg cCGTCCGCTG CGCTGAACCC CGATACTGGC	1260
111	atctatttca tcccgtgaa caacgcgtg acgcgttatga cggctgtcg CCAAGAGTTC	1320
112	agctcgctcg atgtgtataa cgtcagcctc gactataaac tGTCGCCCGG TTCGGAAAAC	1380
113	atggggccgta tcgacGCCAT CGACATCAGC ACCGGCCGCA CGCTGTGGTC GGCTGAACGC	1440
114	tacgcctcga actacgcGCC tgcctgtc ACCGGCGCG GCCTGTGTGTT CAACGGCGGC	1500
115	accgaccgtt acttccgcgc cctcagccaa gagacccggc agacgcgtg GCAGACCCGT	1560
116	ctggcgactg tcgcctcggg tcaagcgatt tcctatgaga tcgacccggt GCAATATGTC	1620
117	gccatcgggc gccgcggcac cagctatggc agcaaccaca ACCGCGCCCT GACCGAGCGG	1680
118	atcgactcga ccgcattcg CAGCGCGATC TATGTCCTTG CTCTGCCGCA GCAGTAA	1737
120	<210> SEQ ID NO: 4	
121	<211> LENGTH: 1740	
122	<212> TYPE: DNA	
123	<213> ORGANISM: Gluconobacter oxydans	
124	<400> SEQUENCE: 4	
125	atgaACCCCA caacgcgtct tcgcaccAGC GCGGCCGTGc tattgcttac CGCGCCCGCC	60
126	gcattcgcgc aggtAAACCC GATTACCGAT gaACTGCTGG CGAACCCGCC CGCTGGTGAA	120
127	tgattaACT acggccgcaa ccaAGAAAAC tatcgccACT CGCCCGTGC ACAGATCACT	180
128	gcccacaACG ttggTCAGTT gcaACTGGTC tgggCCCGCG ggATGGAGGC gggggCCGTA	240
129	caggTCACGC CGATGATCCA tGATGGCGTG atgtatCTGG CAAACCCCGG TGATGTGATC	300
130	caggCGCTGG atgcGCAAAC AGGCATCTG atctggAAC ACCGCCGCA ACTGCCGCC	360
131	gtcgccacgc taaACGCCA AGGCACCGC aAGCGCGCG TCGCCCTTA CGCACGAGC	420
132	ctctatttca gctcatggA CAACCATCTG ATCGCGCTGG ATATGGAGAC GGGCCAGGTC	480
133	gtattcgatG TCAGACGTGG ATCGGGCGAA GACGGCTGA CCAGTAACAC CACGGGGCCG	540
134	attgtcgcca atggcgtcat CGTCGCGGGT TCCACCTGCC AATATTCGCC CTATGGATGC	600
135	tttatctcgG ggcacGATTc CGCGACGGGT GAGGAGCTGT GGCACAACCA CTTTATCCCG	660
136	cagCCGGCG AAGAGGGTGA CGAGACTTGG GGCAATGATT TCAGGGCGCG CTGGATGACC	720
137	ggcgtctggG gtcagatCAC CTATGATCCC GTGACGAACC TTGTGTTCTA TGGCTCGACC	780
138	ggcgtgggCc CAGCGTCCGA AACCCAGCGC GGCACGCCG GCGGCACGCT GTATGGCACC	840
139	aacACCCGCT ttgcggTGC tcccgacacG GGCAGAGATT TCTGGCGTC CCAGACCCGT	900
140	ccgcgcgaca ACTGGGACCA AGAATGCACG TTGAGATGA TGGTCGCCAA CGTCATGTG	960
141	caaccctcgG CCGAGATGGA GGGTCTGC GCGATCAACC CCAATGCGGC GACGGGCGAG	1020
142	cggcgtgtc tgacgggtc GCGCTGCAAG ACCGGCACGA TGTGGTCGTT TGTGCGGCC	1080
143	tcgggCgaaT tcctgtggc GCGTGTACCC AACTACACCA ATATGATCGC CTCGATCGAC	1140
144	gagaccggc ttgtgacggT GAACGAGGAT GCGGTGCTGA AAGAGCTGGA CGTTGAATAT	1200
145	gacgtctgCc CGACCTTCCT GGGTGGGCGC GACTGGTCGT CAGCGCACT GAAACCCGGAC	1260

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/470,667

DATE: 02/26/2003
TIME: 13:27:00

Input Set : N:\AMC\US09470667.raw
Output Set: N:\CRF4\02262003\I470667.raw

146	accggcattt acttcttgcc gctgaacaat gcctgctacg atattatgcc cggttatcaa	1320
147	gagtttagcg cgctcgacgt ctataacacc agcgcgaccg caaaactcgc gccgggcttt	1380
148	gaaaatatgg gccgcatcga cgcgattgat atcagcaccc ggcgcaccc ttggtcggcg	1440
149	gagcgccctg cggcgaacta ctcgcccgtt ttgtcgacgg caggcggtgt ggtttcaac	1500
150	ggcgggaccg accgctattt ccgtgccctc agccaggaaa cccggcgagac tttgtggcag	1560
151	gccccgtcttgcgacgt acgagttgaa cggcgtgcaaa	1620
152	tatatcgcca tcggtgcggg cgtctgacc tatggcacgc aattgaacgc gccgctggcc	1680
153	gaggcaatcg attcgaccc ggtcgtaat gcgatctatg tctttgcact gccgcagtaa	1740
155 <210>	SEQ ID NO: 5	
156 <211>	LENGTH: 579	
157 <212>	TYPE: PRT	
158 <213>	ORGANISM: Gluconobacter oxydans	
159 <220>	FEATURE:	
160 <221>	NAME/KEY: SIGNAL	
161 <222>	LOCATION: (1)..(23)	
162 <223>	OTHER INFORMATION:	
w--> 163 <400> 5		
164	Met Lys Pro Thr Ser Leu Leu Trp Ala Ser Ala Gly Ala Leu Ala Leu	
165	1 5 10 15	
166	Leu Ala Ala Pro Ala Phe Ala Gln Val Thr Pro Val Thr Asp Glu Leu	
167	20 25 30	
168	Leu Ala Asn Pro Pro Ala Gly Glu Trp Ile Ser Tyr Gly Gln Asn Gln	
169	35 40 45	
170	Glu Asn Tyr Arg His Ser Pro Leu Thr Gln Ile Thr Thr Glu Asn Val	
171	50 55 60	
172	Gly Gln Leu Gln Leu Val Trp Ala Arg Gly Met Gln Pro Gly Lys Val	
173	65 70 75 80	
174	Gln Val Thr Pro Leu Ile His Asp Gly Val Met Tyr Leu Ala Asn Pro	
175	85 90 95	
176	Gly Asp Val Ile Gln Ala Ile Asp Ala Lys Thr Gly Asp Leu Ile Trp	
177	100 105 110	
178	Glu His Arg Arg Gln Leu Pro Asn Ile Ala Thr Leu Asn Ser Phe Gly	
179	115 120 125	
180	Glu Pro Thr Arg Gly Met Ala Leu Tyr Gly Thr Asn Val Tyr Phe Val	
181	130 135 140	
182	Ser Trp Asp Asn His Leu Val Ala Leu Asp Thr Ala Thr Gly Gln Val	
183	145 150 155 160	
184	Thr Phe Asp Val Asp Arg Gly Gln Gly Glu Asp Met Val Ser Asn Ser	
185	165 170 175	
186	Ser Gly Pro Ile Val Ala Asn Gly Val Ile Val Ala Gly Ser Thr Cys	
187	180 185 190	
188	Gln Tyr Ser Pro Phe Gly Cys Phe Val Ser Gly His Asp Ser Ala Thr	
189	195 200 205	
190	Gly Glu Glu Leu Trp Arg Asn Tyr Phe Ile Pro Arg Ala Gly Glu Glu	
191	210 215 220	
192	Gly Asp Glu Thr Trp Gly Asn Asp Tyr Glu Ala Arg Trp Met Thr Gly	
193	225 230 235 240	
194	Ala Trp Gly Gln Ile Thr Tyr Asp Pro Val Thr Asn Leu Val His Tyr	
195	245 250 255	

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/470,667

DATE: 02/26/2003
TIME: 13:27:00

Input Set : N:\AMC\US09470667.raw
Output Set: N:\CRF4\02262003\I470667.raw

196 Gly Ser Thr Ala Val Gly Pro Ala Ser Glu Thr Gln Arg Gly Thr Pro
 197 260 265 270
 198 Gly Gly Thr Leu Tyr Gly Thr Asn Thr Arg Phe Ala Val Arg Pro Asp
 199 275 280 285
 200 Thr Gly Glu Ile Val Trp Arg His Gln Thr Leu Pro Arg Asp Asn Trp
 201 290 295 300
 202 Asp Gln Glu Cys Thr Phe Glu Met Met Val Thr Asn Val Asp Val Gln
 203 305 310 315 320
 204 Pro Ser Thr Glu Met Glu Gly Leu Gln Ser Ile Asn Pro Asn Ala Ala
 205 325 330 335
 206 Thr Gly Glu Arg Arg Val Leu Thr Gly Val Pro Cys Lys Thr Gly Thr
 207 340 345 350
 208 Met Trp Gln Phe Asp Ala Glu Thr Gly Glu Phe Leu Trp Ala Arg Asp
 209 355 360 365
 210 Thr Asn Tyr Gln Asn Met Ile Glu Ser Ile Asp Glu Asn Gly Ile Val
 211 370 375 380
 212 Thr Val Asn Glu Asp Ala Ile Leu Lys Glu Leu Asp Val Glu Tyr Asp
 213 385 390 395 400
 214 Val Cys Pro Thr Phe Leu Gly Gly Arg Asp Trp Pro Ser Ala Ala Leu
 215 405 410 415
 216 Asn Pro Asp Ser Gly Ile Tyr Phe Ile Pro Leu Asn Asn Val Cys Tyr
 217 420 425 430
 218 Asp Met Met Ala Val Asp Gln Glu Phe Thr Ser Met Asp Val Tyr Asn
 219 435 440 445
 220 Thr Ser Asn Val Thr Lys Leu Pro Pro Gly Lys Asp Met Ile Gly Arg
 221 450 455 460
 222 Ile Asp Ala Ile Asp Ile Ser Thr Gly Arg Thr Leu Trp Ser Val Glu
 223 465 470 475 480
 224 Arg Ala Ala Ala Asn Tyr Ser Pro Val Leu Ser Thr Gly Gly Val
 225 485 490 495
 226 Leu Phe Asn Gly Gly Thr Asp Arg Tyr Phe Arg Ala Leu Ser Gln Glu
 227 500 505 510
 228 Thr Gly Glu Thr Leu Trp Gln Thr Arg Leu Ala Thr Val Ala Ser Gly
 229 515 520 525
 230 Gln Ala Ile Ser Tyr Glu Val Asp Gly Met Gln Tyr Val Ala Ile Ala
 231 530 535 540
 232 Gly Gly Gly Val Ser Tyr Gly Ser Gly Leu Asn Ser Ala Leu Ala Gly
 233 545 550 555 560
 234 Glu Arg Val Asp Ser Thr Ala Ile Gly Asn Ala Val Tyr Val Phe Ala
 235 565 570 575
 236 Leu Pro Gln
 238 <210> SEQ ID NO: 6
 239 <211> LENGTH: 579
 240 <212> TYPE: PRT
 241 <213> ORGANISM: Gluconobacter oxydans
 242 <220> FEATURE:
 243 <221> NAME/KEY: SIGNAL
 244 <222> LOCATION: (1)..(23)
 245 <223> OTHER INFORMATION:

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/470,667

DATE: 02/26/2003

TIME: 13:27:01

Input Set : N:\AMC\US09470667.raw

Output Set: N:\CRF4\02262003\I470667.raw

L:163 M:258 W: Mandatory Feature missing, <223> Blank for SEQ#:5,Line#:0
L:246 M:258 W: Mandatory Feature missing, <223> Blank for SEQ#:6,Line#:0
L:329 M:258 W: Mandatory Feature missing, <223> Blank for SEQ#:7,Line#:0
L:412 M:258 W: Mandatory Feature missing, <223> Blank for SEQ#:8,Line#:0
L:511 M:258 W: Mandatory Feature missing, <223> Blank for SEQ#:11,Line#:0