Universidade Federal De Campina Grande Departamento De Engenharia Elétrica Laboratório De Arquitetura De Sistemas Digitais – LASD Prof. Rafael B. C. Lima

Aluno:	
Matrícula:	Data:

Sprint 5 - Unidade de Controle - CPU RISC-V

Descrição geral do problema: Implementar a unidade de controle, memória de instruções e o registrador PC a fim de obter a primeira versão do nosso processador RISC-V v0.1. Esse circuito será capaz de rodar as seguintes instruções *addi, add, sub, and, or* e *slt*.

Requisitos mínimos:

Abra o projeto da Sprint4 e edite-o para incluir as funcionalidades dessa sprint. **Obs: "File > Open Project"** e **NÃO** "File > **Open"**.

- 1. É ilustrado na Figura 1 o diagrama de blocos do processador RISC-V v0.1. Além do banco de registradores e da ULA implementados anteriormente, será necessário incluir:
 - Uma memória de instruções, para armazenar o programa a ser executado;
 - O registrador PC, que determina o endereço da instrução atual;
 - A unidade de controle, responsável por gerar os sinais de controle do datapath.

Figura 1 – CPU v0.1

Os barramentos devem ser criados com uma nomenclatura lógica para facilitar o entendimento geral do circuito e facilitar o debug. Seguem sugestões na Tabela 1

Nome	Tamanho
w_ULASrc	1 bit
w_RegWrite	1 bit
w_ULAControl	3 bits
w_PCp4	8 bits
w PC	8 hits

w_rd1SrcA	8 bits
w_rd2	8 bits
w_SrcB	8 bits
w_ULAResultWd3	8 bits
w_Inst	32 bits

Tabela 1 –fios utilizados na montagem da Figura 1

Instrução	Descrição	Algoritmo
ADD \$X, \$Y, \$Z	Adicionar	\$X = \$Y + \$Z
SUB \$X, \$Y, \$Z	Subtrair	\$X = \$Y - \$Z
AND \$X, \$Y, \$Z	AND Bit a bit	\$X = \$Y & \$Z
OR \$X, \$Y, \$Z	OR Bit a bit	\$X = \$Y \$Z
SLT \$X, \$Y, \$Z	Menor que	\$X = 1 se \$Y < \$Z e 0 c.c.
ADDi \$X, \$Y, i	Adicionar Imediato	\$X = \$Y + i

Tabela 2 – Conjunto de instruções RISC-V suportadas pela CPU v0.1

2. Faça a descrição de hardware, em Verilog/SystemVerilog, da Unidade de Controle indicada na figura 2. Esse módulo gera os sinais de controle para cada uma das instruções suportadas pela CPU.

- Esse circuito é um decodificador COMBINACIONAL;
- A relação lógica entre as entradas e saídas é definida pela Tabela 3;
- Utilize a estratégia que preferir para a codificação. A título de inspiração, é possível implementar esse circuito com 1 ou 2 "cases" (Lembrar do "default").

Figura 2 – Unidade de Controle.

	ENTRADAS			SAÍDAS		
Instr	OP Funct3 Funct7			RegWrite	ULASrc	ULAControl
ADD	0110011	000	0000000	1	0	000
SUB	0110011	000	0100000	1	0	001
AND	0110011	111	0000000	1	0	010
OR	0110011	110	0000000	1	0	011
SLT	0110011	010	0000000	1	0	101
ADDi	0010011	000	XXXXXXX	1	1	000

Tabela 3 – Tabela do decodificador da Unidade de Controle

Nessa sprint, focaremos em instruções do tipo R (add, sub, and, or e slt) e I (addi), cujo formato está definido na Tabela 4.

	31:25	24:20	19:15	14:12	11:7	6:0
Tipo R	Funct7 _{6:0}	Rs2 _{4:0}	Rs1 _{4:0}	Funct3 _{2:0}	Rd _{4:0}	Op _{6:0}
Tipo I	Imm _{11:0}		Rs1 _{4:0}	Funct3 _{2:0}	Rd _{4:0}	Op _{6:0}

Tabela 4 – Regra de formação do código de máquina das instruções MIPS

3. Faça a descrição de hardware, em Verilog/SystemVerilog, do Registrador PC (Program Counter). Tal componente é um registrador de 8 bits com uma entrada de clock (clk), uma entrada de reset (rst), uma entrada para carregamento paralelo (*PCin*) e uma saída paralela (PC).

Figura 3 - PC.

- Esse circuito é SEQUENCIAL. Depende da borda de subida do clock.
- A cada clock, o novo PCin é carregado no registrador e disponibilizado na saída PC
- Caso o rst esteja em nível baixo, o valor do PC deve ser zerado
- 4. O último elemento a ser implementado é a memória de instruções. Nessa sprint, deverá ser implementada uma memória puramente combinacional, com até 256 posições de 32 bits.

Figura 4 – Instruction Memory.

- Esse circuito é COMBINACIONAL;
- Essa memória será somente de LEITURA (ROM);
- Seguem algumas sugestões de implementação, para inspiração:
 - Um decodificador usando um case;
 - O Um array bidimensional inicializado por um .txt, .mif ou .hex;
 - Um IP de ROM, disponível no Quartus (Tools > MegaWizzard Plug-in Manager);
- O conteúdo da memória será definido pelo código de máquina da sequência de instruções a serem executadas (programa). Nessa sprint, deve-se rodar o programa de testes da Tabela 5.

Endereço	Assembly	Código de máquina (hexa)	Código de máquina (binário)
8'h00	addi x1, x0, 3	00300093	00000000011_00000_000_00001_0010011
8'h04	addi x2, x0, 9	00900113	00000001001_00000_000_00010_0010011
8'h08	add x2, x1, x2	00208133	0000000_00010_00001_000_00010_0110011
8'h0C	and x3, x1, x2	0020f1b3	0000000_00010_00001_111_00011_0110011
8'h10	or x4, x1, x2	0020e233	0000000_00010_00001_110_00100_0110011
8'h14	slt x5, x3, x4	0041a2b3	0000000_00100_00011_010_00101_0110011
8'h18	sub x6, x4, x5	40520333	0100000_00101_00100_000_00110_0110011

Tabela 5 –programa teste

- 5. Ligações auxiliares para Debug:
 - Faça uma pequena alteração no módulo RegisterFile. Crie 8 saídas auxiliares para visualizar externamente os valores de cada um dos registradores. Ao instanciar o módulo, faça as seguintes ligações: .x0(w_d0x0), .x1(w_d0x1), .x2(w_d0x2), .x3(w_d0x3), .x4(w_d1x0), .x5(w_d1x1), .x6(w_d1x2), .x7(w_d1x3). Nesse caso, o LCD deverá ficar conforme a Figura 6.
 - Mostre também o PC, na posição w_d0x4 do LCD. (assign)
 - Visualize o código de máquina da instrução sendo executada (w_Inst) nos displays HEX0-HEX7
 - Visualize os 3 sinais de controle gerados pelo módulo "Control Unit" nos LEDs vermelhos. LEDR[4:0]. (assign)

Figura 6 – Placa

6.	Roteiro	do	tactac
n.	ROIPHO	ue	167167

- O circuito proposto tem quantas entradas externas?
- Simule o programa da Tabela 5 no software RARS
- Carregue no FPGA e compare os resultados
- Qual o conteúdo final dos registradores?

x0:	. x1:	, x2:	. x3:	, x4:	. x5:	, x6:	, x7:
/··	, ^\=	,	,	, ,, ,,	,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,

Desafio (Valendo +0,1 na média geral)

- Escreva e rode nesse processador v0.1, uma rotina em assembly para detectar se o conteúdo do registrador x1 é múltiplo de 4.
- Caso o número seja múltiplo de 4, retorne 1 no registrador x7, caso contrário, 0.
- Utilize somente as 6 instruções da Tabela 3. Não inclua nenhum hardware adicional no processador.

Desafio EXTRA (Valendo +0,5 na média geral)

- O aluno que fizer o desafio utilizando menos instruções, receberá uma pontuação extra!
- Em caso de empate, ganha quem submeter o código antes;
- LINK para concorrer ao desafio extra!