(862079740)

1. Suppose that F is a finite field with q elements. Let $E \supset F$ be a field extension and suppose $\alpha \in E$ is algebraic over F with degree n. Show that as a set, $F(\alpha)$ has q^n elements.

slu.

Since the degree of α over F is n, then $F(\alpha)$ is an n-dimensional vector space over F with basis $A = \{\alpha^k\}_{k=0}^{n-1}$.

Let,
$$a_k \in F, r \in F(\alpha)$$
, then $r = \sum_{k=0}^{n-1} a_k \alpha^k$.

If
$$n = 1$$
, then $F(\alpha) = F$, so $|F(\alpha)| = |F| = q$.

If n=2, then $r=a_0+a_1\alpha$. There are q possible choices for, a_0 and a_1 respectively. So, there are q^2 possible ways to express r as a linear combination of 1 and α . So, $|F(\alpha)|=q^2$.

So in general we can think of an element of $F(\alpha)$ as consisting of n-slots $1,\alpha,\ldots,\alpha^{n-1}$, and q possible entries a_k . Thus there are at least q^n possible ways to determine an element r of $F(\alpha)$. Since, A is a basis for $F(\alpha)$, r is uniquely determined, so there are at most q^n possible ways to determine r.

So,
$$|F(\alpha)| = q^n$$

2. Let F be the field $\mathbb{Z}/2\mathbb{Z}$. Find an irreducible polynomial in F[x] of degree 3. Use this to construct a field extension of F that contains 8 elements.

slu.

Let $f(x) \in (\mathbb{Z}/2\mathbb{Z})[x]$ be of degree 3. Then,

$$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0, \, a_i \in \mathbb{Z}/2\mathbb{Z}$$

There are 2^4 possibilities for f(x), since $\mathbb{Z}/2\mathbb{Z} = \{0, 1\}$.

If f(x) is reducible, then f(x) = g(x)r(x).

Since, $\deg f = \deg g + \deg r$, WLOG assume $\deg g = 2$.

Then the only two possibilities for r are r(x) = x or r(x) = x + 1. So if f is reducible,

$$f(x) = xg(x) \ \mathrm{or} \ f(x) = (x-1)g(x)$$

So f(0) = 0 or f(1) = 0 respectively. If neither f(0) nor f(1) are 0, then r(x) is not a factor of f, thus f is irreducible.

$$f(0)=a_0 \text{ and } f(1)=\sum_{i=0}^3 a_i$$

So, $a_0 \neq 0 \implies a_0 = 1 \implies \sum_{i=0}^3 a_i = 1 + \sum_{i=1}^3 a_i$. Since $\deg f = 3 \implies a_3 \neq 0 \implies a_3 = 1$. Therefore, $\sum_{i=0}^3 a_i = 1 + \sum_{i=1}^2 a_i + 1 = \sum_{i=1}^2 a_i \neq 0 \implies a_1 = 0$ and $a_2 = 1$ or $a_1 = 1$ and $a_2 = 0$.

Thus $h(x) = x^3 + x^2 + 1$ and $k(x) = x^3 + x + 1$ are irreducible.

Since k is irreducible, $\langle k(x) \rangle$ is maximal, thus $E = (\mathbb{Z}/2\mathbb{Z})[x]/\langle k(x) \rangle$ is a field.

Let $(\mathbb{Z}/2\mathbb{Z})(\alpha)$ be a field extension of $(\mathbb{Z}/2\mathbb{Z})$ such that $k(\alpha)=0$. Since the degree of α over $(\mathbb{Z}/2\mathbb{Z})$ is equal to the degree of the irreducible polynomial that vanishes at α , the degree of α over $(\mathbb{Z}/2\mathbb{Z})$ is 3. So, by the previous problem it has $2^3=8$ elements \Diamond

3. Find a basis for the field $\mathbb{Q}(\sqrt{2}+\sqrt{5})$ as a vector space over \mathbb{Q} . slu.

$$\alpha = \sqrt{2} + \sqrt{5} \implies (\alpha - \sqrt{2})^2 = 5$$

$$\implies (\alpha - \sqrt{2})^2 - 5 = 0$$

$$\implies \alpha^2 - 2\alpha\sqrt{2} + 2 - 5 = 0$$

$$\implies \alpha^2 - 3 = 2\alpha\sqrt{2}$$

$$\implies (\alpha^2 - 3)^2 = (2\alpha\sqrt{2})^2$$

$$\implies \alpha^4 - 6\alpha^2 + 9 = 8\alpha^2$$

$$\implies \alpha^4 - 14\alpha^2 + 9 = 0$$

Thus $f(x) = x^4 - 14x^2 + 9 \implies f(\sqrt{2} + \sqrt{5}) = 0$

By the quadratic formula, f(x) = 0

$$\Rightarrow x^2 = \frac{14 \pm \sqrt{196 - 36}}{2} = \frac{14 \pm \sqrt{160}}{2} = \frac{14 \pm 4\sqrt{10}}{2} = 7 \pm 2\sqrt{10}$$
$$\Rightarrow x = \pm \sqrt{7 \pm 2\sqrt{10}}$$

So, f doesn't factor over \mathbb{Q} , thus f is irreducible.

Therefore $\{1, \sqrt{2} + \sqrt{5}, (\sqrt{2} + \sqrt{5})^2, (\sqrt{2} + \sqrt{5})^3\}$ is a basis for $\mathbb{Q}(\sqrt{2} + \sqrt{5})$

4. Let $E\supset F$ be a field extension and let $\alpha\in E$ be algebraic over F with odd degree. Show that $F(\alpha)=F(\alpha^2)$. Conversely, find an $\alpha\in\mathbb{R}$ which is algebraic over \mathbb{Q} with even degree such that $\mathbb{Q}(\alpha)\neq\mathbb{Q}(\alpha^2)$.

slu.

Since
$$f(x)=x^2-\alpha^2\in F(\alpha^2)[x]\implies f(\alpha)=0\implies [F(\alpha):F(\alpha^2)]=2.$$
 It follows that,

$$[F(\alpha):F] = [F(\alpha):F(\alpha^2)][F(\alpha^2):F] = 2[F(\alpha^2):F]$$

That contradicts that $[F(\alpha):F]$ is odd.

$$\alpha = \sqrt{3} \implies \alpha^2 - 3 = 0 \implies \deg \alpha = 2$$
, and $\mathbb{Q}(\sqrt{3}) \neq \mathbb{Q}(3) = \mathbb{Q}$, since $3 \in \mathbb{Q}$