Name: Rishi Kaul

Batch: B

UID: 2018130019

Roll: 22

CEL 51, DCCN, Monsoon 2020

Lab 7: RIPv2 Router Configuration

Topology Diagram

Addressing Table

Device	Interface	IP Address	Subnet Mask	Default Gateway
R1	Fa0/0	172.30.1.1	255.255.255.0	N/A
	Fa0/1	172.30.2.1	255.255.255.0	N/A
	S0/0/0	209.165.200.230	255.255.255.252	N/A
R2	Fa0/0	10.1.0.1	255.255.0.0	N/A
	S0/0/0	209.165.200.229	255.255.255.252	N/A
	S0/0/1	209.165.200.233	255.255.255.252	N/A
	Fa0/0	172.30.100.1	255.255.255.0	N/A
R3	S0/0/1	209.165.200.234	255.255.255.252	N/A
	Lo0	172.30.110.1	255.255.255.0	N/A
	Lo1	172.30.200.17	255.255.255.240	N/A

	Lo2	172.30.200.33	255.255.255.240	N/A
PC1	NIC	172.30.2.10	255.255.255.0	172.30.2.1
PC2	NIC	172.30.1.10	255.255.255.0	172.30.1.1

1 of 37

Device	Interface	IP Address	Subnet Mask	Default Gateway
PC3	NIC	10.1.0.10	255.255.0.0	10.1.0.1
PC4	NIC	172.30.100.10	255.255.255.0	172.30.100.1

Learning Objectives

Upon completion of this lab, you will be able to:

- Cable a network according to the Topology Diagram.
- · Load provided scripts onto the routers.
- Examine the current status of the network.
- Configure RIPv2 on all routers.
- Examine the automatic summarization of routes.
- Examine routing updates with debug ip rip.
- Disable automatic summarization.
- Examine the routing tables. Verify network connectivity.
- · Document the RIPv2 configuration.

Scenario

The network shown in the Topology Diagram contains a discontiguous network, 172.30.0.0. This network has been subnetted using VLSM. The 172.30.0.0 subnets are physically and logically divided by at least one other classful or major network, in this case the two serial networks 209.165.200.228/30 and 209.165.200.232/30. This can be an issue when the routing protocol used does not include enough information to distinguish the individual subnets. RIPv2 is a classless routing protocol that can be used to provide subnet mask information in the routing updates. This will allow VLSM subnet information to be propagated throughout the network.

Task 1: Cable, Erase, and Reload the Routers.

Step 1: Cable a network.

Cable a network that is similar to the one in the Topology Diagram.

Step 2: Clear the configuration on each router.

Clear the configuration on each of routers using the erase startup-config command and then reload the routers. Answer **no** if asked to save changes.

```
R2#erase startup-config
Erasing the nvram filesystem will remove all configuration files!
Continue? [confirm]
[OK]
Erase of nvram: complete
%SYS-7-NV BLOCK INIT: Initialized the geometry of nvram
R2#reload
System configuration has been modified. Save? [yes/no]:no
Proceed with reload? [confirm]
System Bootstrap, Version 12.3(8r)T8, RELEASE SOFTWARE (fcl)
Initializing memory for ECC
C1841 processor with 524288 Kbytes of main memory
Main memory is configured to 64 bit mode with ECC enabled
Readonly ROMMON initialized
Self decompressing the image :
#####
```

Task 2: Load Routers with the Supplied Scripts.

Step 1: Load the following script onto R1.

```
!
hostname R1
!
!
!
interface FastEthernet0/0
```

```
ip address 172.30.1.1 255.255.255.0
duplex auto
speed auto
no shutdown
interface FastEthernet0/1
ip address 172.30.2.1 255.255.255.0
duplex auto
speed auto
no shutdown
interface Serial0/0/0
ip address 209.165.200.230 255.255.255.252
clock rate 64000
no shutdown
router rip
passive-interface FastEthernet0/0
passive-interface FastEthernet0/1
network 172.30.0.0
network 209.165.200.0
line con 0
line vty 0 4
login
end
```


Step 2: Load the following script onto R2.

```
hostname R2
1
interface FastEthernet0/0
ip address 10.1.0.1 255.255.0.0
duplex auto
speed auto
no shutdown
interface Serial0/0/0
ip address 209.165.200.229 255.255.255.252
no shutdown
interface Serial0/0/1
ip address 209.165.200.233 255.255.255.252
clock rate 64000
no shutdown
router rip
passive-interface FastEthernet0/0
network 10.0.0.0
network 209.165.200.0 !
line con 0
```

```
line vty 0 4
login
!
end
```


Step 3: Load the following script onto R3.

```
hostname R3
!
!
!
!
interface FastEthernet0/0
ip address 172.30.100.1 255.255.255.0
duplex auto
speed auto
no shutdown
!
interface Serial0/0/1
ip address 209.165.200.234 255.255.255.252
no shutdown
!
interface Loopback0
ip address 172.30.110.1 255.255.255.0
!
```

```
interface Loopback1
ip address 172.30.200.17 255.255.255.240
!
interface Loopback2
ip address 172.30.200.33 255.255.255.240
!
router rip
passive-interface FastEthernet0/0
network 172.30.0.0
network 209.165.200.0
!
line con 0
line vty 0 4
login
!
end
```


Task 3: Examine the Current Status of the Network.

Step 1: Verify that both serial links are up.

The two serial links can quickly be verified using the show ip interface brief command on R2.

Step 2: Check the connectivity from R2 to the hosts on the R1 and R3 LANs.

Note: For the 1841 router, you will need to disable IP CEF to obtain the correct output from the ping command. Although a discussion of IP CEF is beyond the scope of this course, you may disable IP CEF by using the following command in global configuration mode:

```
R2(config) #no ip cef
```

From the R2 router, how many ICMP messages are successful when pinging PC1?

```
R2>ping 172.30.2.10

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.30.2.10, timeout is 2 seconds:
!U!.!
Success rate is 60 percent (3/5), round-trip min/avg/max = 1/11/12 ms
```

From the R2 router, how many ICMP messages are successful when pinging PC4?

```
R2>ping 172.30.100.10

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 172.30.100.10, timeout is 2 seconds:
!U!.!

Success rate is 60 percent (3/5), round-trip min/avg/max = 1/8/10 ms

R2>
```

Step 3: Check the connectivity between the PCs.

```
From the PC1, is it possible to ping PC2? ____yes_____
What is the success rate? ___100%____
From the PC1, is it possible to ping PC3? ____yes_____
What is the success rate? ____50%____
```


From the PC4, is it possible to ping PC2? ___no___
What is the success rate? ___0%___

From the PC4, is it possible to ping PC3? ___yes___
What is the success rate? ___100%___

Step 4: View the routing table on R2.

Both the R1 and R3 are advertising routes to the 172.30.0.0/16 network; therefore, there are two entries for this network in the R2 routing table. The R2 routing table only shows the major classful network address of 172.30.0.0—it does not show any of the subnets for this network that are used on the LANs attached to R1 and R3. Because the routing metric is the same for both entries, the router alternates the routes that are used when forwarding packets that are destined for the 172.30.0.0/16 network.

R2#show ip route

```
R2#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       {
m N1} - OSPF NSSA external type 1, {
m N2} - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/16 is subnetted, 1 subnets
        10.1.0.0 is directly connected, FastEthernet0/0
R
     172.30.0.0/16 [120/1] via 209.165.200.234, 00:00:11, Seria10/0/1
                     [120/1] via 209.165.200.230, 00:00:12, Serial0/0/0
     209.165.200.0/30 is subnetted, 2 subnets
C
        209.165.200.228 is directly connected, Serial0/0/0
C
        209.165.200.232 is directly connected, Serial0/0/1
```

Step 5: Examine the routing table on the R1 router.

Both R1 and R3 are configured with interfaces on a discontiguous network, 172.30.0.0. The 172.30.0.0 subnets are physically and logically divided by at least one other classful or major network—in this case, the two serial networks 209.165.200.228/30 and 209.165.200.232/30. Classful routing protocols like RIPv1 summarize networks at major network boundaries. Both R1 and R3 will be summarizing 172.30.0.0/24 subnets to 172.30.0.0/16. Because the route to 172.30.0.0/16 is directly connected, and because R1 does not have any specific routes for the 172.30.0.0 subnets on R3, packets destined for the R3 LANs will not be forwarded properly.

R1#show ip route

```
Rl#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter
area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
R
     10.0.0.0/8 [120/1] via 209.165.200.229, 00:00:25, Serial0/0/0
     172.30.0.0/24 is subnetted, 2 subnets
C
        172.30.1.0 is directly connected, FastEthernet0/0
C
        172.30.2.0 is directly connected, FastEthernet0/1
     209.165.200.0/30 is subnetted, 2 subnets
C
        209.165.200.228 is directly connected, Serial0/0/0
R
        209.165.200.232 [120/1] via 209.165.200.229, 00:00:25, Serial0/0/0
R1#
```

Step 6: Examine the routing table on the R3 router.

R3 only shows its own subnets for 172.30.0.0 network: 172.30.100/24, 172.30.110/24, 172.30.200.16/28, and 172.30.200.32/28. R3 does not have any routes for the 172.30.0.0 subnets on R1.

R3#show ip route

```
R3#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS
inter area
       * - candidate default, U - per-user static route, o - ODR
      P - periodic downloaded static route
Gateway of last resort is not set
    10.0.0.0/8 [120/1] via 209.165.200.233, 00:00:04, Serial0/0/1
    172.30.0.0/16 is variably subnetted, 4 subnets, 2 masks
       172.30.100.0/24 is directly connected, FastEthernet0/0
C
       172.30.110.0/24 is directly connected, Loopback0
C
       172.30.200.16/28 is directly connected, Loopback1
       172.30.200.32/28 is directly connected, Loopback2
    209.165.200.0/30 is subnetted, 2 subnets
R
       209.165.200.228 [120/1] via 209.165.200.233, 00:00:04,
Serial0/0/1
       209.165.200.232 is directly connected, Serial0/0/1
C
R3#
```

Step 7: Examine the RIPv1 packets that are being received by R2.

Use the **debug** ip rip command to display RIP routing updates.

R2 is receiving the route 172.30.0.0, with 1 hop, from both R1 and R3. Because these are equal cost metrics, both routes are added to the R2 routing table. Because RIPv1 is a classful routing protocol, no subnet mask information is sent in the update.

```
R2#debug ip rip
```

R2 is sending only the routes for the 10.0.0.0 LAN and the two serial connections to R1 and R3. R1 and R3 are not receiving any information about the 172.30.0.0 subnet routes.

```
R2#debug ip rip
RIP protocol debugging is on
R2#
R2#
R2#RIP: received vl update from 209.165.200.234 on Serial0/0/1
     172.30.0.0 in 1 hops
RIP: sending vl update to 255.255.255.255 via Serial0/0/0 (209.165.200.229)
RIP: build update entries
     network 10.0.0.0 metric 1
     network 209.165.200.232 metric 1
RIP: sending v1 update to 255.255.255.255 via Serial0/0/1 (209.165.200.233)
RIP: build update entries
     network 10.0.0.0 metric 1
     network 209.165.200.228 metric 1
RIP: received v1 update from 209.165.200.230 on Serial0/0/0
     172.30.0.0 in 1 hops
RIP: received v1 update from 209.165.200.234 on Seria10/0/1
     172.30.0.0 in 1 hops
```

When you are finished, turn off the debugging.

R2#undebug all

Task 4: Configure RIP Version 2.

Step 1: Use the version 2 command to enable RIP version 2 on each of the routers.

```
R2(config) #router rip R2(configrouter) #version 2

R1(config) #router rip R1(configrouter) #version 2

R3(config) #router rip R3(configrouter) #version 2
```

RIPv2 messages include the subnet mask in a field in the routing updates. This allows subnets and their masks to be included in the routing updates. However, by default RIPv2 summarizes networks at major network boundaries, just like RIPv1, except that the subnet mask is included in the update.

```
R3>en
R3≠conf t
Enter configuration commands, one per line. End with CNTL/Z.
R3(config) #router rip
R3(config-router) #version 2
R3(config-router) #end
R3#
%SYS-5-CONFIG_I: Configured from console by console
```

Step 2: Verify that RIPv2 is running on the routers.

The debug ip rip, show ip protocols, and show run commands can all be used to confirm that RIPv2 is running. The output of the show ip protocols command for R1 is shown below.

R1# show ip protocols

```
Rl#show ip protocols
Routing Protocol is "rip"
Sending updates every 30 seconds, next due in 20 seconds
Invalid after 180 seconds, hold down 180, flushed after 240
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Redistributing: rip
Default version control: send version 2, receive 2
                      Send Recv Triggered RIP Key-chain
 Interface
 Serial0/0/0
                      2
                             2
Automatic network summarization is in effect
Maximum path: 4
Routing for Networks:
         172.30.0.0
         209.165.200.0
Passive Interface(s):
         FastEthernet0/0
         FastEthernet0/1
Routing Information Sources:
                                     Last Update
                  Distance
         Gateway
         209.165.200.229
                            120
                                     00:00:11
Distance: (default is 120)
R1#
```

```
R2#show ip protocols
Routing Protocol is "rip"
Sending updates every 30 seconds, next due in 17 seconds
Invalid after 180 seconds, hold down 180, flushed after 240
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Redistributing: rip
Default version control: send version 2, receive 2
 Interface
                      Send Recv Triggered RIP Key-chain
                     2
 Seria10/0/1
                            2
 Serial0/0/0
                      2
                            2
Automatic network summarization is in effect
Maximum path: 4
Routing for Networks:
         10.0.0.0
         209.165.200.0
Passive Interface(s):
         FastEthernet0/0
Routing Information Sources:
                                    Last Update
         Gateway
                    Distance
         209.165.200.230 120 00:00:08
                            120
         209.165.200.234
                                     00:00:06
Distance: (default is 120)
R2#
R3#show ip protocols
Routing Protocol is "rip"
Sending updates every 30 seconds, next due in 1 seconds
Invalid after 180 seconds, hold down 180, flushed after 240
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Redistributing: rip
Default version control: send version 2, receive 2
  Interface
                     Send Recv Triggered RIP Key-chain
                      2
 Loopback0
                             2
 Loopbackl
                      2
                             2
 Loopback2
                       2
 Serial0/0/1
                       2
Automatic network summarization is in effect
Maximum path: 4
Routing for Networks:
         172.30.0.0
         209.165.200.0
Passive Interface(s):
         FastEthernet0/0
Routing Information Sources:
         Gateway Distance
                                    Last Update 
00:00:02
         209.165.200.233 120
 --More--
```

Task 5: Examine the Automatic Summarization of Routes.

The LANs connected to R1 and R3 are still composed of discontiguous networks. R2 still shows two equal cost paths to the 172.30.0.0/16 network in the routing table. R2 still shows only the major classful network address of 172.30.0.0 and does not show any of the subnets for this network.

```
R2#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
      * - candidate default, U - per-user static route, o - ODR
      P - periodic downloaded static route
Gateway of last resort is not set
    10.0.0.0/16 is subnetted, 1 subnets
       10.1.0.0 is directly connected, FastEthernet0/0
C
R
    172.30.0.0/16 [120/1] via 209.165.200.230, 00:00:09, Serial0/0/0
                   [120/1] via 209.165.200.234, 00:00:06, Serial0/0/1
    209.165.200.0/30 is subnetted, 2 subnets
C
       209.165.200.228 is directly connected, Serial0/0/0
C
       209.165.200.232 is directly connected, Serial0/0/1
R2#
```

R1 still shows only its own subnets for the 172.30.0.0 network. R1 still does not have any routes for the 172.30.0.0 subnets on R3.

R1#show ip route

```
Rl#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter
area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
    10.0.0.0/8 [120/1] via 209.165.200.229, 00:00:09, Serial0/0/0
    172.30.0.0/24 is subnetted, 2 subnets
        172.30.1.0 is directly connected, FastEthernet0/0
C
        172.30.2.0 is directly connected, FastEthernet0/1
     209.165.200.0/30 is subnetted, 2 subnets
        209.165.200.228 is directly connected, Serial0/0/0
        209.165.200.232 [120/1] via 209.165.200.229, 00:00:09, Serial0/0/0
R
R1#
```

R3 still only shows its own subnets for the 172.30.0.0 network. R3 still does not have any routes for the 172.30.0.0 subnets on R1.

```
R3#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter
area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
    10.0.0.0/8 [120/1] via 209.165.200.233, 00:00:16, Serial0/0/1
R
    172.30.0.0/16 is variably subnetted, 4 subnets, 2 masks
C
       172.30.100.0/24 is directly connected, FastEthernet0/0
        172.30.110.0/24 is directly connected, Loopback0
C
       172.30.200.16/28 is directly connected, Loopbackl
C
       172.30.200.32/28 is directly connected, Loopback2
     209.165.200.0/30 is subnetted, 2 subnets
       209.165.200.228 [120/1] via 209.165.200.233, 00:00:16, Serial0/0/1
R
C
        209.165.200.232 is directly connected, Serial0/0/1
R3#
```

Use the output of the debug ip rip command to answer the following questions:

What entries are included in the RIP updates sent out from R3?

On R2, what routes are in the RIP updates that are received from R3?

```
____172.30.0.0/16_____
```

```
R2>
R2>en
R2#debug ip rip
RIP protocol debugging is on
R2#RIP: received v2 update from 209.165.200.230 on Serial0/0/0
     172.30.0.0/16 via 0.0.0.0 in 1 hops
RIP: received v2 update from 209.165.200.234 on Serial0/0/1
     172.30.0.0/16 via 0.0.0.0 in 1 hops
RIP: sending v2 update to 224.0.0.9 via Serial0/0/1 (209.165.200.233)
RIP: build update entries
     10.0.0.0/8 via 0.0.0.0, metric 1, tag 0
     209.165.200.228/30 via 0.0.0.0, metric 1, tag 0
RIP: sending v2 update to 224.0.0.9 via Serial0/0/0 (209.165.200.229)
RIP: build update entries
     10.0.0.0/8 via 0.0.0.0, metric 1, tag 0
     209.165.200.232/30 via 0.0.0.0, metric 1, tag 0
undebug all
All possible debugging has been turned off
R2#
R2#
```

R3 is not sending any of the 172.30.0.0 subnets—only the summarized route of 172.30.0.0/16, including the subnet mask. This is why R2 and R1 are not seeing the 172.30.0.0 subnets on R3.

Task 6: Disable Automatic Summarization.

The no auto-summary command is used to turn off automatic summarization in RIPv2. Disable auto summarization on all routers. The routers will no longer summarize routes at major network boundaries.

```
R2(config) #router rip
R2(config-router) #no auto-summary
R1(config) #router rip
R1(config-router) #no auto-summary
R3(config) #router rip
R3(config-router) #no auto-summary
```

```
R2#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config) #router rip
R2(config-router) #no auto-summary
R2(config-router) #end
R2#
%SYS-5-CONFIG_I: Configured from console by console
R2#
```

The show ip route and ping commands can be used to verify that automatic summarization is off.

Task 7: Examine the Routing Tables.

The LANs connected to R1 and R3 should now be included in all three routing tables.

R2#show ip route

```
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/16 is subnetted, 1 subnets
       10.1.0.0 is directly connected, FastEthernet0/0
    172.30.0.0/16 is variably subnetted, 7 subnets, 3 masks
R
       172.30.0.0/16 [120/1] via 209.165.200.230, 00:01:27, Serial0/0/0
                       [120/1] via 209.165.200.234, 00:00:54, Serial0/0/1
       172.30.1.0/24 [120/1] via 209.165.200.230, 00:00:02, Serial0/0/0
        172.30.2.0/24 [120/1] via 209.165.200.230, 00:00:02, Serial0/0/0
       172.30.100.0/24 [120/1] via 209.165.200.234, 00:00:25, Serial0/0/1
       172.30.110.0/24 [120/1] via 209.165.200.234, 00:00:25, Serial0/0/1
       172.30.200.16/28 [120/1] via 209.165.200.234, 00:00:25, Serial0/0/1 172.30.200.32/28 [120/1] via 209.165.200.234, 00:00:25, Serial0/0/1
    209.165.200.0/30 is subnetted, 2 subnets
 --More--
```

R1#show ip route

```
Rl#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
        10.0.0.0/8 is possibly down, routing via 209.165.200.229, Serial0/0/0
       10.1.0.0/16 [120/1] via 209.165.200.229, 00:00:19, Serial0/0/0
    172.30.0.0/16 is variably subnetted, 6 subnets, 2 masks
       172.30.1.0/24 is directly connected, FastEthernet0/0
       172.30.2.0/24 is directly connected, FastEthernet0/1
       172.30.100.0/24 [120/2] via 209.165.200.229, 00:00:19, Serial0/0/0
       172.30.110.0/24 [120/2] via 209.165.200.229, 00:00:19, Serial0/0/0
       172.30.200.16/28 [120/2] via 209.165.200.229, 00:00:19, Serial0/0/0
       172.30.200.32/28 [120/2] via 209.165.200.229, 00:00:19, Serial0/0/0
     209.165.200.0/30 is subnetted, 2 subnets
       209.165.200.228 is directly connected, Serial0/0/0
 --More--
```

R3#show ip route

```
R3#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      El - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
       10.0.0.0/8 is possibly down, routing via 209.165.200.233, Serial0/0/1
       10.1.0.0/16 [120/1] via 209.165.200.233, 00:00:07, Serial0/0/1
    172.30.0.0/16 is variably subnetted, 6 subnets, 2 masks
       172.30.1.0/24 [120/2] via 209.165.200.233, 00:00:07, Serial0/0/1
       172.30.2.0/24 [120/2] via 209.165.200.233, 00:00:07, Serial0/0/1
       172.30.100.0/24 is directly connected, FastEthernet0/0
       172.30.110.0/24 is directly connected, Loopback0
       172.30.200.16/28 is directly connected, Loopbackl
       172.30.200.32/28 is directly connected, Loopback2
     209.165.200.0/30 is subnetted, 2 subnets
R
       209.165.200.228 [120/1] via 209.165.200.233, 00:00:07, Serial0/0/1
 --More--
```

Use the output of the debug ip rip command to answer the following questions:

What entries are included in the RIP updates sent out from R1?

 172.30.1.0/24	
172.30.2.0/24	

On R2, what routes are in the RIP updates that are received from R1? 172.30.1.0/24 172.30.2.0/24 Are the subnet masks now included in the routing updates? __yes___ R2#debug ip rip RIP protocol debugging is on R2#RIP: sending v2 update to 224.0.0.9 via Serial0/0/1 (209.165.200.233) RIP: build update entries 10.1.0.0/16 via 0.0.0.0, metric 1, tag 0 172.30.1.0/24 via 0.0.0.0, metric 2, tag 0 172.30.2.0/24 via 0.0.0.0, metric 2, tag 0 209.165.200.228/30 via 0.0.0.0, metric 1, tag 0 RIP: sending v2 update to 224.0.0.9 via Serial0/0/0 (209.165.200.229) RIP: build update entries 10.1.0.0/16 via 0.0.0.0, metric 1, tag 0 172.30.100.0/24 via 0.0.0.0, metric 2, tag 0 172.30.110.0/24 via 0.0.0.0, metric 2, tag 0 172.30.200.16/28 via 0.0.0.0, metric 2, tag 0 172.30.200.32/28 via 0.0.0.0, metric 2, tag 0 209.165.200.232/30 via 0.0.0.0, metric 1, tag 0 RIP: received v2 update from 209.165.200.234 on Serial0/0/1 172.30.100.0/24 via 0.0.0.0 in 1 hops 172.30.110.0/24 via 0.0.0.0 in 1 hops 172.30.200.16/28 via 0.0.0.0 in 1 hops 172.30.200.32/28 via 0.0.0.0 in 1 hops RIP: received v2 update from 209.165.200.230 on Serial0/0/0 172.30.1.0/24 via 0.0.0.0 in 1 hops 172.30.2.0/24 via 0.0.0.0 in 1 hops **Task 8: Verify Network Connectivity.** Step 1: Check connectivity between R2 router and PCs. From R2, how many ICMP messages are successful when pinging PC1? 100% From R2, how many ICMP messages are successful when pinging PC4? 100% R2#ping 172.30.2.10 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.30.2.10, timeout is 2 seconds: Success rate is 100 percent (5/5), round-trip min/avg/max = 1/7/35 ms R2#ping 172.30.100.10 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 172.30.100.10, timeout is 2 seconds: Success rate is 100 percent (5/5), round-trip min/avg/max = 1/7/16 ms R2#

Step 2: Check the connectivity between the PCs.

From PC1, is it possible to ping PC2? ____yes____

```
What is the success rate? ___100%___
From PC1, is it possible to ping PC3? ___yes____
What is the success rate? 100%
From PC1, is it possible to ping PC4? ____yes___
What is the success rate? 100%
 C:\>ping 172.30.1.10
 Pinging 172.30.1.10 with 32 bytes of data:
 Reply from 172.30.1.10: bytes=32 time=1ms TTL=127
 Reply from 172.30.1.10: bytes=32 time<lms TTL=127
 Reply from 172.30.1.10: bytes=32 time<1ms TTL=127
 Reply from 172.30.1.10: bytes=32 time=1ms TTL=127
 Ping statistics for 172.30.1.10:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
  Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 1ms, Average = 0ms
 C:\>ping 10.1.0.10
 Pinging 10.1.0.10 with 32 bytes of data:
 Reply from 10.1.0.10: bytes=32 time=18ms TTL=126
 Reply from 10.1.0.10: bytes=32 time=1ms TTL=126
 Reply from 10.1.0.10: bytes=32 time=1ms TTL=126
 Reply from 10.1.0.10: bytes=32 time=1ms TTL=126
 Ping statistics for 10.1.0.10:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
     Minimum = 1ms, Maximum = 18ms, Average = 5ms
 C:\>ping 172.30.100.10
  Pinging 172.30.100.10 with 32 bytes of data:
 Reply from 172.30.100.10: bytes=32 time=3ms TTL=125
 Reply from 172.30.100.10: bytes=32 time=15ms TTL=125
 Reply from 172.30.100.10: bytes=32 time=3ms TTL=125
 Reply from 172.30.100.10: bytes=32 time=11ms TTL=125
 Ping statistics for 172.30.100.10:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
     Minimum = 3ms, Maximum = 15ms, Average = 8ms
From PC4, is it possible to ping PC2? ____yes____
What is the success rate? ___100%___
From PC4, is it possible to ping PC3? yes
What is the success rate? ____100%___
```

```
C:\>ping 172.30.1.10
Pinging 172.30.1.10 with 32 bytes of data:
Reply from 172.30.1.10: bytes=32 time=17ms TTL=125
Reply from 172.30.1.10: bytes=32 time=19ms TTL=125
Reply from 172.30.1.10: bytes=32 time=2ms TTL=125
Reply from 172.30.1.10: bytes=32 time=2ms TTL=125
Ping statistics for 172.30.1.10:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 2ms, Maximum = 19ms, Average = 10ms
C:\>ping 10.1.0.10
Pinging 10.1.0.10 with 32 bytes of data:
Reply from 10.1.0.10: bytes=32 time=1ms TTL=126
Reply from 10.1.0.10: bytes=32 time=2ms TTL=126
Reply from 10.1.0.10: bytes=32 time=2ms TTL=126
Reply from 10.1.0.10: bytes=32 time=2ms TTL=126
Ping statistics for 10.1.0.10:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 1ms, Maximum = 2ms, Average = 1ms
```

Task 9: Documentation

On each router, capture the following command output to a text (.txt) file and save for future reference.

- show running-config
- show ip route
- · show ip interface brief
- show ip protocols

If you need to review the procedures for capturing command output, refer to Lab 1.5.1.

Saved to .txt files and uploaded to github.

R1:

show running config:

Building configuration...

```
Current configuration: 885 bytes!

version 12.4 no service timestamps log
datetime msec no service timestamps
debug datetime msec no service password-
encryption
!
hostname R1
```

```
!
no ip cef no
ipv6 cef
spanning-tree mode pvst
interface FastEthernet0/0 ip address
172.30.1.1 255.255.255.0 duplex
auto speed auto
interface FastEthernet0/1 ip address
172.30.2.1 255.255.255.0 duplex
auto speed auto
!
interface Serial0/0/0 ip address
209.165.200.230 255.255.255.252 clock rate
64000
```

```
interface Serial0/0/1
no ip address clock
rate 2000000
shutdown
interface Vlan1
no ip address
shutdown
router rip version 2 passive-
interface FastEthernet0/0
passive-interface FastEthernet0/1
network 172.30.0.0 network
209.165.200.0 no auto-summary
ip classless
ip flow-export version 9
line con 0
line aux 0
line vty 0 4
login
end show ip
route:
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
    D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
```

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

- * candidate default, U per-user static route, o ODR
- P periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/16 is subnetted, 1 subnets

- R 10.1.0.0 [120/1] via 209.165.200.229, 00:00:21, Serial0/0/0 172.30.0.0/16 is variably subnetted, 6 subnets, 2 masks
- C 172.30.1.0/24 is directly connected, FastEthernet0/0
- C 172.30.2.0/24 is directly connected, FastEthernet0/1
- R 172.30.100.0/24 [120/2] via 209.165.200.229, 00:00:21, Serial0/0/0
- R 172.30.110.0/24 [120/2] via 209.165.200.229, 00:00:21, Serial0/0/0
- R 172.30.200.16/28 [120/2] via 209.165.200.229, 00:00:21, Serial0/0/0
- R 172.30.200.32/28 [120/2] via 209.165.200.229, 00:00:21, Serial0/0/0 209.165.200.0/30 is subnetted, 2 subnets
- C 209.165.200.228 is directly connected, Serial0/0/0
- R 209.165.200.232 [120/1] via 209.165.200.229, 00:00:21, Serial0/0/0

show ip interface brief:

Interface	IP-Address	OK? Method Status	Protocol
FastEthernet0/0	172.30.1.1	YES manual up	up
FastEthernet0/1	172.30.2.1	YES manual up	up
Serial0/0/0	209.165.200.	230 YES manual up	up
Serial0/0/1	unassigned	YES NVRAM admir	nistratively down down
Vlan1	unassigned	YES NVRAM admini	stratively down down

show ip protocols:

Routing Protocol is "rip"

Sending updates every 30 seconds, next due in 22 seconds Invalid after 180 seconds, hold down 180, flushed after 240 Outgoing update filter list for all interfaces is not set Incoming update filter list for all interfaces is not set

Redistributing: rip

Default version control: send version 2, receive 2

Interface Send Recv Triggered RIP Key-chain

Serial0/0/0 2 2

Automatic network summarization is not in effect

```
Maximum path: 4
Routing for Networks:
        172.30.0.0
       209.165.200.0
Passive Interface(s):
        FastEthernet0/0
        FastEthernet0/1
Routing Information Sources:
        Gateway
                                 Last Update
                     Distance
                                  00:00:02
        209.165.200.229
                           120
Distance: (default is 120)
R2:
show running config:
Building configuration...
Current configuration: 831 bytes
version 12.4
no service timestamps log datetime msec no
service timestamps debug datetime msec
no service password-encryption
hostname R2
no ip cef no
ipv6 cef
```

```
!
spanning-tree mode pvst
interface FastEthernet0/0 ip
address 10.1.0.1 255.255.0.0
duplex auto speed auto
interface FastEthernet0/1
no ip address duplex
auto speed auto
shutdown
interface Serial0/0/0 ip address
209.165.200.229 255.255.255.252
interface Serial0/0/1 ip address
209.165.200.233 255.255.255.252 clock rate
64000
!
interface Vlan1
no ip address
shutdown
router rip version 2 passive-
interface FastEthernet0/0
network 10.0.0.0 network
209.165.200.0 no auto-summary
ip classless
```

```
ip flow-export version 9
line con 0
line aux 0
line vty 0 4
login
end show ip
route:
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
    D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
    N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
    * - candidate default, U - per-user static route, o - ODR
    P - periodic downloaded static route
Gateway of last resort is not set
   10.0.0.0/16 is subnetted, 1 subnets
С
     10.1.0.0 is directly connected, FastEthernet0/0
   172.30.0.0/16 is variably subnetted, 6 subnets, 2 masks
R
      172.30.1.0/24 [120/1] via 209.165.200.230, 00:00:09, Serial0/0/0
R
      172.30.2.0/24 [120/1] via 209.165.200.230, 00:00:09, Serial0/0/0
R
      172.30.100.0/24 [120/1] via 209.165.200.234, 00:00:20, Serial0/0/1
R
      172.30.110.0/24 [120/1] via 209.165.200.234, 00:00:20, Serial0/0/1
R
      172.30.200.16/28 [120/1] via 209.165.200.234, 00:00:20, Serial0/0/1
R
      172.30.200.32/28 [120/1] via 209.165.200.234, 00:00:20, Serial0/0/1
```

!

209.165.200.0/30 is subnetted, 2 subnets

- C 209.165.200.228 is directly connected, Serial0/0/0
- C 209.165.200.232 is directly connected, Serial0/0/1

show ip interface brief:

Interface IP-Address OK? Method Status Protocol

FastEthernet0/0 10.1.0.1 YES manual up up

FastEthernet0/1 unassigned YES unset administratively down down

Serial0/0/0 209.165.200.229 YES manual up up Serial0/0/1 209.165.200.233 YES manual up up

Vlan1 unassigned YES unset administratively down down

show ip protocols:

Routing Protocol is "rip"

Sending updates every 30 seconds, next due in 18 seconds

Invalid after 180 seconds, hold down 180, flushed after 240

Outgoing update filter list for all interfaces is not set Incoming

update filter list for all interfaces is not set

Redistributing: rip

Default version control: send version 2, receive 2

Interface Send Recv Triggered RIP Key-chain

Serial0/0/1 2 2 Serial0/0/0 2 2

Automatic network summarization is not in effect

Maximum path: 4

Routing for Networks:

10.0.0.0

209.165.200.0

Passive Interface(s):

FastEthernet0/0

Routing Information Sources:

Gateway Distance Last Update 209.165.200.230 120 00:00:15

209.165.200.234 120 00:00:00 Distance:

(default is 120)

R3:

show running config:

Building configuration...

```
Current configuration: 1011 bytes
version 12.4 no service timestamps log
datetime msec no service timestamps
debug datetime msec no service password-
encryption
hostname R3
no ip cef no
ipv6 cef
spanning-tree mode pvst
interface Loopback0 ip address
```

172.30.110.1 255.255.255.0

```
!
interface Loopback1 ip address
172.30.200.17 255.255.255.240
interface Loopback2 ip address
172.30.200.33 255.255.255.240
interface FastEthernet0/0 ip address
172.30.100.1 255.255.255.0 duplex
auto speed auto
interface FastEthernet0/1
no ip address duplex
auto speed auto
shutdown
!
interface Serial0/0/0
no ip address clock
rate 2000000
shutdown
interface Serial0/0/1
ip address 209.165.200.234 255.255.255.252
interface Vlan1
no ip address
shutdown
router rip version 2 passive-
interface FastEthernet0/0
network 172.30.0.0 network
209.165.200.0 no auto-summary
ip classless
ip flow-export version 9
```

```
!
line con 0
line aux 0
line vty 04
login
end
show ip route:
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
    D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
    N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
                                                                            E1 - OSPF external type 1, E2
- OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
    * - candidate default, U - per-user static route, o - ODR
    P - periodic downloaded static route
Gateway of last resort is not set
```

```
10.0.0.0/16 is subnetted, 1 subnets
```

R 10.1.0.0 [120/1] via 209.165.200.233, 00:00:07, Serial0/0/1

172.30.0.0/16 is variably subnetted, 6 subnets, 2 masks

- R 172.30.1.0/24 [120/2] via 209.165.200.233, 00:00:07, Serial0/0/1
- 172.30.2.0/24 [120/2] via 209.165.200.233, 00:00:07, Serial0/0/1 R
- С 172.30.100.0/24 is directly connected, FastEthernet0/0
- С 172.30.110.0/24 is directly connected, Loopback0
- С 172.30.200.16/28 is directly connected, Loopback1
- С 172.30.200.32/28 is directly connected, Loopback2

209.165.200.0/30 is subnetted, 2 subnets

- 209.165.200.228 [120/1] via 209.165.200.233, 00:00:07, Serial0/0/1 R
- C 209.165.200.232 is directly connected, Serial0/0/1

show ip interface brief:

IP-Address OK? Method Status Interface Protocol

FastEthernet0/0	172.30.100.1	YES manual u	p up
FastEthernet0/1	unassigned	YES NVRAM	administratively down down
Serial0/0/0	unassigned Y	ES NVRAM adr	ministratively down down
Serial0/0/1	209.165.200.234	YES manual up	o up
Loopback0	172.30.110.1	YES manual up	up
Loopback1	172.30.200.17	YES manual up	o up
Loopback2	172.30.200.33	YES manual up	o up
Vlan1	unassigned YE	S NVRAM adm	inistratively down down

show ip protocols:

Routing Protocol is "rip"

Sending updates every 30 seconds, next due in 25 seconds

Invalid after 180 seconds, hold down 180, flushed after 240

Outgoing update filter list for all interfaces is not set

Incoming update filter list for all interfaces is not set

Redistributing: rip

Default version control: send version 2, receive 2

Interface Send Recv Triggered RIP Key-chain

Loopback0 2 2 Loopback1 Loopback2 2 2 Serial0/0/1 2 2

Automatic network summarization is not in effect

Maximum path: 4

Routing for Networks:

172.30.0.0

209.165.200.0

Passive Interface(s):

FastEthernet0/0

Routing Information Sources:

Gateway Distance Last Update 00:00:09

209.165.200.233 120

Distance: (default is 120)

Task 10: Clean Up

Erase the configurations and reload the routers. Disconnect and store the cabling. For PC hosts that are normally connected to other networks (such as the school LAN or to the Internet), reconnect the appropriate cabling and restore the TCP/IP settings.

