Trabalho 1 Métodos Iterativos para Sistemas Lineares

Eduardo Brunaldi dos Santos 8642515 Jorge Ashkar Ferreira Simondi 8517081

Victor Luiz da Silva Mariano Pereira 8602444

2018

Introdução

Métodos iterativos, em cálculo numérico, são utilizados para calcular de forma progressiva a solução de um sistema de equações lineares. Assim, achando a solução o mais próxima o quanto desejarmos.

No caso desse trabalho, temos que implementar o método iterativo de Gauss-Seidel, método baseado no método de Jacobi, os quais se diferenciam somente na utilização dos valores obtidos para achar os próximos valores.

O método de Jacobi utiliza sempre os valores da etapa passada, já o de Gauss-Seidel, utiliza os valores mais atualizados possíveis.

1 Método Iterativo de Gauss-Seidel

2 Códigos Fonte

2.1 Programa principal (main.c)

```
1
          Trabalho 1 - Métodos Iterativos para Sitemas Lineares
2
3
              Cálculo Numérico
                                 SME-0104
4
              Prof.: Murilo Francisco Tomé
5
6
7
              Eduardo Brunaldi dos Santos
                                                       8642515
8
              Jorge Ashkar Ferreira Simondi
                                                       8517081
9
              Victor Luiz da Silva Mariano Pereira
                                                       8602444
10
11
12
    #include <stdio.h>
    #include <stdlib.h>
13
    #include <gauss_seidel.h>
14
15
    int main (int argc, char *argv[]){
16
        // Variáveis de entrada
17
        int n;
                           // Quantidade de equações do sistema linear
18
        int itmax;
                           // Número máximo de iterações
19
20
        long double **A; // Matriz de sistemas lineares
21
        long double *b;
                           // Vetor resultado das equações
22
        long double *x;
                           // Vetor inicial
23
        long double e;
                           // Erro permitido, precisão
24
        // Iteradores
25
        int i;
26
        int j;
27
28
        // Dimensão da matriz (número de equações do sistema linear)
29
        scanf("%d", &n);
30
31
32
        // Alocação da matriz
        A = malloc(sizeof(long double *) * n);
33
        for (i = 0; i < n; i++)
34
            A[i] = malloc(sizeof(long double) * n);
35
36
        // Pegando valores de A
37
        for (i = 0; i < n; i++)
38
39
            for (j = 0; j < n; j++)
                scanf("%Lf", &(A[i][j]));
40
41
        // Alocação do vetor resultado
42
43
        b = malloc(sizeof(long double) * n);
44
        // Pegando os valores de b
45
        for(i = 0; i < n; i++)
46
            scanf("%Lf", &b[i]);
47
48
49
        // Alocação do vetor chute
        x = malloc(sizeof(long double) * n);
50
51
        // Pegando os valores do x(0), o vetor inicial
52
        for(i = 0; i < n; i++)
53
            scanf("%Lf", &x[i]);
54
55
         // Pegando o valor da precisão (erro permitido)
```

```
57
        scanf("%Lf", &e);
58
        // Pegando a quantidade máxima de iterações
59
        scanf("%d", &itmax);
60
61
        // Calcula um valor aproximado para a resposta
62
        // usando o método de Gauss-Seidel
63
        x = gauss_seidel(A, b, x, n, e, itmax);
64
65
        // Imprime a solução na tela
66
        imprime_vetor(x, n);
67
68
69
        // Liberando a memória
70
        free(x);
71
        free(b);
        for (i = 0; i < n; i++)
72
73
            free(A[i]);
        free(A);
74
75
        return 0;
76
77
    2.2
         Biblioteca auxiliar
    2.2.1 Header (gauss_seidel.h)
1
          Trabalho 1 - Métodos Iterativos para Sitemas Lineares
2
3
                                 SME-0104
              Cálculo Numérico
4
              Prof.: Murilo Francisco Tomé
5
6
7
              Eduardo Brunaldi dos Santos
                                                       8642515
              Jorge Ashkar Ferreira Simondi
                                                       8517081
8
              Victor Luiz da Silva Mariano Pereira 8602444
9
10
11
    #ifndef GAUSS_SEIDEL_H
12
    #define GAUSS_SEIDEL_H
13
14
15
     * Função para imprimir de forma mais legível uma matriz quadrada
16
17
     * Oparam A Matriz a ser impressa
     * @param n dimensão da matriz
18
19
    void imprime_matriz(long double **A, int n);
20
21
22
     * Função para imprimir um vetor de forma mais legível
23
24
     * Oparam v vetor a ser impresso
     * @param n tamanho do vetor
25
26
    void imprime_vetor(long double *v, int n);
27
28
29
     * Função para retornar a norma infinita de um vetor obtido pela subtração
30
     * de dois vetores
31
     * @param xk Vetor x(k+1)
```

```
33
     * @param x Vetor x(k)
34
     * @param n Dimensão dos vetores
35
                  norma do vetor obtido pela subtração
36
37
    long double norma_infinita(long double *xk, long double *x, int n);
38
39
     * Função para resolver o sistema linear usando o método de gauss-seidel
40
     * Oparam A Matriz de funções do sistema linear
41
     * @param b
                    Resultados das equações do sistema linear
42
     * @param x
                    Vetor contendo os resultados iniciais
43
     * @param n
                    Dimensão do sistema linear
44
45
     * @param e
                    Precisão
46
     * @param itmax Número máximo de iterações
47
    long double *gauss_seidel(long double **A, long double *b, long double *x, int n, long
     → double e, int itmax);
49
     #endif
50
    2.2.2 Implementação da biblioteca (gauss_seidel.c)
1
2
          Trabalho 1 - Métodos Iterativos para Sitemas Lineares
3
4
              Cálculo Numérico
                                  SME-0104
              Prof.: Murilo Francisco Tomé
5
6
7
              Eduardo Brunaldi dos Santos
                                                       8642515
              Jorge Ashkar Ferreira Simondi
                                                       8517081
8
              Victor Luiz da Silva Mariano Pereira
9
                                                      8602444
10
11
    #include <stdio.h>
12
     #include <stdlib.h>
13
    #include <math.h>
14
    #include <gauss_seidel.h>
15
16
17
     * Função para imprimir de forma mais legível uma matriz quadrada
18
     * Oparam A Matriz a ser impressa
19
     * @param n dimensão da matriz
20
21
22
    void imprime_matriz(long double **A, int n){
23
        int i;
24
        int j;
25
        for (i = 0; i < n; i++){
26
            for (j = 0; j < n; j++)
27
                printf("%Lf\t", A[i][j]);
28
            printf("\n");
29
30
31
32
33
     * Função para imprimir um vetor de forma mais legível
34
     * Oparam v vetor a ser impresso
35
       @param n tamanho do vetor
36
```

```
37
38
    void imprime_vetor(long double *v, int n){
39
        int i;
40
        for (i = 0; i < n; i++)
41
42
            printf("%.16Lf\n", v[i]);
43
44
45
     * Função para retornar a norma infinita de um vetor obtido pela subtração
46
     * de dois vetores
47
     * @param xk Vetor x(k+1)
48
49
     * @param x Vetor x(k)
50
     * @param n Dimensão dos vetores
51
     * @return
                  norma do vetor obtido pela subtração
52
53
    long double norma_infinita(long double *xk, long double *x, int n){
54
        int i;
        long double maximo = 0;
55
56
        for(i = 0; i < n; i++)
57
            if(fabs(xk[i] - x[i]) > maximo)
58
                maximo = fabs(xk[i] - x[i]);
59
60
        return maximo;
61
62
63
64
65
     * Função para resolver o sistema linear usando o método de gauss-seidel
                    Matriz de funções do sistema linear
66
     * @param A
     * @param b
                    Resultados das equações do sistema linear
67
                     Vetor contendo os resultados iniciais
     * @param x
68
                    Dimensão do sistema linear
69
     * @param n
70
     * @param e
                     Precisão
     * @param itmax Número máximo de iterações
71
72
    long double *gauss_seidel(long double **A, long double *b, long double *x, int n, long
73
       double e, int itmax){
        // Variáveis auxiliares
74
        long double somaL;
75
        long double somaU;
76
        long double *x_ant;
77
78
        // Iteradores
79
        int i;
80
        int j;
81
        int it = 0;
82
83
        // Alocando espaço da memória para o vetor auxiliar
84
85
        x_ant = malloc(sizeof(long double) * n);
86
        dof
87
            // Para toda iteração, atualiza o vetor x anterior
88
            for(i = 0; i < n; i++)
89
                x_ant[i] = x[i];
90
91
            for(i = 0; i < n; i++){
                somaL = 0;
93
94
                somaU = 0;
95
                 // Somatório da parte de baixo da matriz
```

```
96
                 for(j = 0; j < i; j++)
                     somaL += A[i][j] * x[j];
97
                 // Somatório da parte de cima da matriz
98
                 for(j = i + 1; j < n; j++)
99
100
                     somaU += A[i][j] * x[j];
101
                 // Aproximação do x
                 x[i] = (b[i] - somaL - somaU)/A[i][i];
102
             }
103
104
             // Calcula a norma infinita e compara com a tolerância
105
106
             if(norma_infinita(x, x_ant, n) <= e){</pre>
107
                 // Se quiser imprimir o número de iterações necessários para
108
                 // chegar na solução encontrada, só descomentar o próximo
109
                 // comando 'printf()'. Se caso não imprimir o número de
110
                 // iterações mesmo descomentando o comando, quer dizer que
111
                 // o it chegou ao itmax.
112
                 // printf("Numero de iteracoes: %d\n", it);
113
114
                 free(x_ant);
115
                 return x;
116
117
118
119
             it++;
         }while(it < itmax);</pre>
120
121
122
         // Libera memória
123
         free(x_ant);
124
         return x;
125
          Programa auxiliar (gera_input.c)
 1
           Trabalho 1 - Métodos Iterativos para Sitemas Lineares
 2
 3
               Cálculo Numérico
                                    SME-0104
 4
               Prof.: Murilo Francisco Tomé
 5
 6
                                                         8642515
 7
               Eduardo Brunaldi dos Santos
               Jorge Ashkar Ferreira Simondi
                                                         8517081
 8
               Victor Luiz da Silva Mariano Pereira
                                                         8602444
 9
 10
11
12
     #include <stdio.h>
     #include <stdlib.h>
13
14
15
      * Programa feito para gerar parte do input utilizado no trabalho
16
17
      * com ele é possível gerar a matriz A solicitada, o vetor b (que
      * dependendo da letra do enunciado é diferente), o vetor x com o
 18
 19
      * chute inicial O, número máximo de iterações e a tolerância de erro.
      * O programa sempre imprimirá mensagem de como usar se caso não for
20
21
      * usado corretamente.
22
      * Se usado corretamente, ele sempre imprimirá na sequência:
23
```

A (um elemento por linha)

b (um elemento por linha)

 24

```
26
                   x (um elemento por linha)
                   e (precisão)
27
                   itmax (número máximo de iterações)
28
29
30
     * para facilitar, recomendo que use da seguinte forma:
31
32
                   ./gera_input n exercicio
33
     st sendo que n é a dimensão da matriz, dos vetores x e do vetor b. Já a
34
     * variável exercicio pode assumiros seguintes valores:
35
                                0 -> para gerar exemplo para o item b) do trabalho
36
37
                              e 1 -> para gerar exemplo para o item c) do trabalho
38
39
40
41
42
     * Função que gera uma matriz pentadiagonal como a descrita no enunciado
43
     * do trabalho
     st @param n Dimensão da matriz
44
     st Oreturn Matriz alocada e com valores setados
45
46
    int **gera_matriz_A(int n){
47
        int i;
48
        int j;
49
50
51
        int **A;
52
        // Alocando memória
53
        A = malloc(sizeof(int *) * n);
54
        for(i = 0; i < n; i++)
55
            A[i] = malloc(sizeof(int) * n);
56
57
        for(i = 0; i < n; i++)
58
            for(j = 0; j < n; j++){
59
                 // Caso da diagonal principal
60
                 if(i == j)
61
62
                     A[i][j] = 4;
                 // Caso das diagonais especiais
63
                 else if(j == i+1 || i == j+1 || j == i+3 || i == j+3)
64
                     A[i][j] = -1;
65
                 // Caso do resto
66
67
                 else
                     A[i][j] = 0;
68
            }
69
70
        return A;
71
72
73
74
     * Função que gera o vetor b de acordo com a letra b) do enunciado do
75
     * trabalho
76
     * @param A Matriz base para a criação do vetor b
77
     * @param n Tamanho do vetor
78
     * @return Vetor b com os valores solicitados
79
80
    int *gera_vetor_b_b(int **A, int n){
81
82
        int i;
83
        int j;
        int *b;
84
85
```

```
b = calloc(sizeof(int), n);
 86
 87
         for(i = 0; i < n; i++)
 88
             for(j = 0; j < n; j++)
 89
 90
                 b[i] += A[i][j];
 91
 92
         return b;
 93
 94
 95
      st Função que gera o vetor b de acordo com a letra c) do enunciado do
 96
 97
       * trabalho
 98
       * @param n Tamanho do vetor
 99
      * Oreturn Vetor b com os valores solicitados
100
101
     long double *gera_vetor_b_c(int n){
102
         int i;
         long double *b;
103
104
         b = malloc(sizeof(int)* n);
105
106
         for(i = 0; i < n; i++)
107
             b[i] = 1.0/((i+1)*1.0);
108
109
110
         return b;
111
112
113
114
      * Função para imprimir um vetor de inteiros, com um elemento por linha
      * Oparam v Vetor a ser impresso
115
      * @param n Dimensão do vetor
116
117
118
     void imprime_vetor(int *v, int n){
         int i;
119
120
         for(i = 0; i < n; i++)
121
122
             printf("%d\n", v[i]);
123
124
125
126
      * Função para imprimir uma matriz para usar como input de outro programa
      * Oparam A Matriz a ser impressa
127
128
      * @param n dimensão da matriz
129
     void imprime_matriz(int **A, int n){
130
         int i;
131
132
         int j;
133
         for (i = 0; i < n; i++)
134
             imprime_vetor(A[i], n);
135
136
137
138
139
      * Função para imprimir um vetor para usar como input de outro programa
      * no caso o vetor é da forma do item c) do trabalho
140
141
      * Oparam b vetor a ser impresso
142
      * @param n dimensão do vetor
143
      void imprime_vetor_c(long double *b, int n){
144
         int i;
145
```

```
146
         for(i = 0; i < n; i++)
147
              printf("%.16Lf\n", b[i]);
148
149
150
151
     int main(int argc, char *argv[]){
152
         // Variáveis
153
         int *x;
         int *bb;
154
         int **A;
155
         long double *bc;
156
         int ex;
157
         int n;
158
159
         // Iteradores
160
161
         int i;
162
         if(argc != 3){
163
              printf("Usage: ./programa valor_de_n exercicio, sendo que o exercicio pode ter
164
              \hookrightarrow valores\n\t0 -> b\n\t1 -> c\n");
              return -1;
165
         }
166
167
168
         n = atol(argv[1]);
         ex = atol(argv[2]);
169
170
171
         if(ex > 1 && ex < 0 || n < 1){
172
              printf("Usage: ./programa valor_de_n exercicio, sendo que o exercicio pode ter
              \hookrightarrow valores\n\t0 -> b\n\t1 -> c\n");
173
              return -1;
         }
174
175
         A = gera_matriz_A(n);
176
         printf("%d\n", n);
177
         imprime_matriz(A, n);
178
179
180
         // Como o chute inicial é sempre o vetor nulo, podemos alocar com zeros
181
         x = calloc(sizeof(int), n);
182
         if(ex == 0){
183
              bb = gera_vetor_b_b(A, n);
184
              imprime_vetor(bb, n);
185
186
187
              imprime_vetor(x, n);
188
              printf("0.00001\n");
189
190
              printf("10000000\n");
191
              // Liberando memória
192
              free(bb);
193
         } else if(ex == 1){
194
              bc = gera_vetor_b_c(n);
195
              imprime_vetor_c(bc, n);
196
197
198
              imprime_vetor(x, n);
199
200
              printf("0.000000001\n");
201
              printf("10000000\n");
202
              // Liberando memória
203
```

```
204
             free(bc);
205
         } else{
             // Liberando memória
206
             for(i = 0; i < n; i++)
207
208
                 free(A[i]);
209
             free(A);
             free(x);
210
             return -1;
211
212
         }
213
214
         // Liberando memória
         for(i = 0; i < n; i++)
215
             free(A[i]);
216
         free(A);
217
218
         free(x);
219
         return 0;
220
221
```

Resultados

Apesar da precisão ϵ ser especificada em alguns casos, em outros não, o programa que nós fizemos sempre vai imprimir o resultado encontrado com 16 casas decimais. Outro ponto a se observar, é que na apresentação dos resultados mostraremos os componentes do vetor x obtidos, faremos isso por questão de estética.

3.1 Teste 1

Nesse primeiro teste, foi solicitado que executássemos nosso programa com os seguintes dados:

- n = 50
- Regra de formação de A é denotada por:

$$\begin{cases} a_{i,i} = 4, & i = 1, 2, \dots, n; \\ a_{i,i+1} = -1, & i = 1, 2, \dots, n - 1; \\ a_{i+1,i} = -1, & i = 1, 2, \dots, n - 1; \\ a_{i,i+3} = -1, & i = 1, 2, \dots, n - 3; \\ a_{i+3,i} = -1, & i = 1, 2, \dots, n - 3; \\ a_{i,j} = 0, & \text{no restante.} \end{cases}$$

- $b_i = \sum_{j=1}^n a_{ij}, \quad i = 1, 2, \dots, n$
- A tolerância de erro e a quantidade de iterações máxima não foram especificadas, então deixamos como padrão $\epsilon = 10^{-5}$ e $itmax = 10^{7}$.

Com 429 iterações, conseguimos o seguinte vetor x como resultado:

$x_1 = 0.9999337056119755$	$x_{15} = 0.9995449525304450$	$x_{29} = 0.9994761612548965$
$x_2 = 0.9999022580617377$	$x_{16} = 0.9995275349651083$	$x_{30} = 0.9994856808399818$
$x_3 = 0.9998767564132660$	$x_{17} = 0.9995119448425527$	$x_{31} = 0.9994969866366955$
$x_4 = 0.9998373110649970$	$x_{18} = 0.9994982360680523$	$x_{32} = 0.9995100271367293$
$x_5 = 0.9998043818757397$	$x_{19} = 0.9994864324485824$	$x_{33} = 0.9995247400284760$
$x_6 = 0.9997745311874137$	$x_{20} = 0.9994765653157160$	$x_{34} = 0.9995410581501044$
$x_7 = 0.9997426561581359$	$x_{21} = 0.9994686592137438$	$x_{35} = 0.9995589220334093$
$x_8 = 0.9997127717351563$	$x_{22} = 0.9994627261862783$	$x_{36} = 0.9995782457760340$
$x_9 = 0.9996847662462976$	$x_{23} = 0.9994587736375708$	$x_{37} = 0.9995989330477007$
$x_{10} = 0.9996574884419451$	$x_{24} = 0.9994568022326934$	$x_{38} = 0.9996209526818133$
$x_{11} = 0.9996317401867282$	$x_{25} = 0.9994568043937440$	$x_{39} = 0.9996441831497855$
$x_{12} = 0.9996076670815898$	$x_{26} = 0.9994587659437409$	$x_{40} = 0.9996684275186901$
$x_{13} = 0.9995850658671707$	$x_{27} = 0.9994626656965930$	$x_{41} = 0.9996938378919464$
$x_{14} = 0.9995641285500906$	$x_{28} = 0.9994684755790514$	$x_{42} = 0.9997202487630036$

 $x_{43} = 0.9997469483563225$ $x_{44} = 0.9997749237180661$ $x_{45} = 0.9998042064202979$ $x_{46} = 0.9998313692296440$ $x_{47} = 0.9998608077401657$ $x_{48} = 0.9998952663788790$ $x_{49} = 0.9999175540360030$ $x_{50} = 0.9999445904440422$

3.2 Teste 2

No segundo teste, foi solicitado que executássemos nosso programa com os seguintes dados:

- n = 100
- Regra de formação de A é denotada por:

$$\begin{cases} a_{i,i} = 4, & i = 1, 2, \dots, n; \\ a_{i,i+1} = -1, & i = 1, 2, \dots, n-1; \\ a_{i+1,i} = -1, & i = 1, 2, \dots, n-1; \\ a_{i,i+3} = -1, & i = 1, 2, \dots, n-3; \\ a_{i+3,i} = -1, & i = 1, 2, \dots, n-3; \\ a_{i,j} = 0, & \text{no restante.} \end{cases}$$

- $b_i = \sum_{j=1}^n a_{ij}, \quad i = 1, 2, \dots, n$
- A tolerância de erro e a quantidade de iterações máxima não foram especificadas, então deixamos como padrão $\epsilon=10^{-5}$ e $itmax=10^{7}$.

Com 1357 iterações, conseguimos o seguinte vetor x como resultado:

$x_1 = 0.9998738542396985$	$x_{12} = 0.9991725355247364$	$x_{23} = 0.9985640720869986$
$x_2 = 0.9998129435623880$	$x_{13} = 0.9991116311073441$	$x_{24} = 0.9985165101388453$
$x_3 = 0.9997626042371170$	$x_{14} = 0.9990516865321048$	$x_{25} = 0.9984704367415823$
$x_4 = 0.9996848479263462$	$x_{15} = 0.9989928222278777$	$x_{26} = 0.9984258924917748$
$x_5 = 0.9996182432345047$	$x_{16} = 0.9989349787055476$	$x_{27} = 0.9983829168228631$
$x_6 = 0.9995562138527778$	$x_{17} = 0.9988782439532933$	$x_{28} = 0.9983415471628708$
$x_7 = 0.9994889115229971$	$x_{18} = 0.9988226902835039$	$x_{29} = 0.9983018194640830$
$x_8 = 0.9994237903157294$	$x_{19} = 0.9987683448745465$	$x_{30} = 0.9982637681626284$
$x_9 = 0.9993605364284126$	$x_{20} = 0.9987152612888901$	$x_{31} = 0.9982274259594643$
$x_{10} = 0.9992968430669336$	$x_{21} = 0.9986634928002946$	$x_{32} = 0.9981928238934358$
$x_{11} = 0.9992341148124684$	$x_{22} = 0.9986130812852338$	$x_{33} = 0.9981599913289189$

$x_{34} = 0.9981289558893802$	$x_{56} = 0.9979338529569851$	$x_{78} = 0.9986367098011544$
$x_{35} = 0.9980997434513928$	$x_{57} = 0.9979475840069450$	$x_{79} = 0.9986857235278032$
$x_{36} = 0.9980723781293944$	$x_{58} = 0.9979632247011112$	$x_{80} = 0.9987358836422807$
$x_{37} = 0.9980468822474435$	$x_{59} = 0.9979807566890773$	$x_{81} = 0.9987871403698153$
$x_{38} = 0.9980232763240508$	$x_{60} = 0.9980001598714995$	$x_{82} = 0.9988394474634000$
$x_{39} = 0.9980015790579967$	$x_{61} = 0.9980214124222428$	$x_{83} = 0.9988927483413111$
$x_{40} = 0.9979818073123535$	$x_{62} = 0.9980444908122079$	$x_{84} = 0.9989469867000615$
$x_{41} = 0.9979639761023460$	$x_{63} = 0.9980693698350556$	$x_{85} = 0.9990021309945048$
$x_{42} = 0.9979480985851344$	$x_{64} = 0.9980960226336919$	$x_{86} = 0.9990581078225971$
$x_{43} = 0.9979341860505684$	$x_{65} = 0.9981244207284375$	$x_{87} = 0.9991148304313648$
$x_{44} = 0.9979222479140781$	$x_{66} = 0.9981545340486365$	$x_{88} = 0.9991723487039626$
$x_{45} = 0.9979122917114375$	$x_{67} = 0.9981863309622862$	$x_{89} = 0.9992305448790375$
$x_{46} = 0.9979043230951400$	$x_{68} = 0.9982197783064963$	$x_{90} = 0.9992891527897000$
$x_{47} = 0.9978983458326130$	$x_{69} = 0.9982548414300648$	$x_{91} = 0.9993486065323530$
$x_{48} = 0.9978943618062428$	$x_{70} = 0.9982914842231527$	$x_{92} = 0.9994087268533902$
$x_{49} = 0.9978923710151436$	$x_{71} = 0.9983296691384520$	$x_{93} = 0.9994682235509935$
$x_{50} = 0.9978923715787057$	$x_{72} = 0.9983693572692299$	$x_{94} = 0.9995292193590008$
$x_{51} = 0.9978943597419185$	$x_{73} = 0.9984105083744410$	$x_{95} = 0.9995919759926195$
$x_{52} = 0.9978983298824433$	$x_{74} = 0.9984530808251019$	$x_{96} = 0.9996496775214918$
$x_{53} = 0.9979042745194355$	$x_{75} = 0.9984970318264450$	$x_{97} = 0.9997113652847045$
$x_{53} = 0.9373042740134067$ $x_{54} = 0.9979121843241067$	$x_{76} = 0.9985423174643067$	$x_{98} = 0.9997829628126369$
$x_{54} = 0.9979121043241007$ $x_{55} = 0.9979220481320004$	$x_{76} = 0.998588922234198$ $x_{77} = 0.998588922234198$	$x_{98} = 0.9997629028120909$ $x_{99} = 0.9998293169924293$
$\begin{bmatrix} u_{55} - 0.3313220401320004 \end{bmatrix}$	$x_{77} - 0.3300000322204130$	$x_{99} = 0.9998293109924293$ $x_{100} = 0.9998851705692834$
		$x_{100} - 0.9990001100092004$

3.3 Teste 3

Já no terceiro teste solicitado, diferente dos anteriores, foram especificados os valores de ϵ e de itmax, ficando da seguinte maneira:

- n = 100
- Regra de formação de A é denotada por:

$$\begin{cases} a_{i,i} = 4, & i = 1, 2, \dots, n; \\ a_{i,i+1} = -1, & i = 1, 2, \dots, n-1; \\ a_{i+1,i} = -1, & i = 1, 2, \dots, n-1; \\ a_{i,i+3} = -1, & i = 1, 2, \dots, n-3; \\ a_{i+3,i} = -1, & i = 1, 2, \dots, n-3; \\ a_{i,j} = 0, & \text{no restante.} \end{cases}$$

- $b_i = 1.0/i, \quad i = 1, 2, \dots, n$
- $\epsilon = 10^{-10}$

• $itmax = 10^7$

Com 4035 iterações, conseguimos o seguinte vetor x como resultado:

```
x_1 = 0.9187448165907161
                               x_{34} = 3.8879486080854190
                                                               x_{67} = 2.8767566370039185
 x_2 = 1.1045965699783248
                               x_{35} = 3.8935446760295326
                                                               x_{68} = 2.8152756070057247
 x_3 = 1.2325874938164970
                               x_{36} = 3.8962863828783725
                                                               x_{69} = 2.7523243683867061
 x_4 = 1.5703826964083346
                               x_{37} = 3.8962528733599743
                                                               x_{70} = 2.6879242130190810
 x_5 = 1.7670539695354222
                               x_{38} = 3.8935190268071943
                                                               x_{71} = 2.6220958501560915
 x_6 = 1.9220373755819542
                               x_{39} = 3.8881557807540906
                                                               x_{72} = 2.5548593686640197
 x_7 = 2.1131445057330069
                               x_{40} = 3.8802304488311668
                                                               x_{73} = 2.4862342823983469
 x_8 = 2.2711992362214035
                               x_{41} = 3.8698069878026507
                                                               x_{74} = 2.4162397050438427
x_9 = 2.4086968666307383
                               x_{42} = 3.8569462390514479
                                                               x_{75} = 2.3448940849725689
x_{10} = 2.5461015719238098
                               x_{43} = 3.8417061536023001
                                                               x_{76} = 2.2722152128718184
x_{11} = 2.6709016030530332
                               x_{44} = 3.8241419928140214
                                                               x_{77} = 2.1982210892729214
x_{12} = 2.7843381717571969
                               x_{45} = 3.8043065104340237
                                                               x_{78} = 2.1229287201109216
x_{13} = 2.8916633123568407
                               x_{46} = 3.7822501199568167
                                                               x_{79} = 2.0463535002357254
x_{14} = 2.9910583414847695
                               x_{47} = 3.7580210468883337
                                                               x_{80} = 1.9685137062025785
x_{15} = 3.0827575717446547
                               x_{48} = 3.7316654678906484
                                                               x_{81} = 1.8894256932616957
x_{16} = 3.1682320874339032
                               x_{49} = 3.7032276386672660
                                                               x_{82} = 1.8090981340243647
x_{17} = 3.2474823074568488
                               x_{50} = 3.6727500113467956
                                                               x_{83} = 1.7275545421499002
x_{18} = 3.3207350197423259
                               x_{51} = 3.6402733424392654
                                                               x_{84} = 1.6448165338014529
x_{19} = 3.3885251582887751
                               x_{52} = 3.6058367924089371
                                                               x_{85} = 1.5608636785986605
x_{20} = 3.4510802518712860
                               x_{53} = 3.5694780175913818
                                                               x_{86} = 1.4757416018946408
x_{21} = 3.5086194860451511
                               x_{54} = 3.5312332551719267
                                                               x_{87} = 1.3895174593800130
x_{22} = 3.5614216952868021
                               x_{55} = 3.4911374019048185
                                                               x_{88} = 1.3020337388756733
x_{23} = 3.6096940558257294
                               x_{56} = 3.4492240871063841
                                                               x_{89} = 1.2134028205516427
                               x_{57} = 3.4055257404294229
x_{24} = 3.6536219297971451
                                                               x_{90} = 1.1239837101476174
x_{25} = 3.6933935356735150
                               x_{58} = 3.3600736549446078
                                                               x_{91} = 1.0329873606760617
                                                               x_{92} = 0.9406162762941549
x_{26} = 3.7291740856229907
                               x_{59} = 3.3128980458356888
x_{27} = 3.7611139751266089
                               x_{60} = 3.2640281050369084
                                                               x_{93} = 0.8489160889277005
x_{28} = 3.7893564321402836
                               x_{61} = 3.2134920524875769
                                                               x_{94} = 0.7543267064481112
x_{29} = 3.8140332375616510
                               x_{62} = 3.1613171838998899
                                                               x_{95} = 0.6562892698483521
x_{30} = 3.8352664160698222
                               x_{63} = 3.1075299149135004
                                                               x_{96} = 0.5659849746877800
x_{31} = 3.8531706946495210
                               x_{64} = 3.0521558236288166
                                                               x_{97} = 0.4684758085009985
x_{32} = 3.8678532579607074
                               x_{65} = 2.9952196902850702
                                                               x_{98} = 0.3537028062007704
x_{33} = 3.8794144237793418
                               x_{66} = 2.9367455313930225
                                                               x_{99} = 0.2798420648291652
                                                              x_{100} = 0.1895794683325409
```

Considerações finais	