AMENDMENT WITH RCE

01240162aa

Reply to office action mailed 09/07/2004

The following is a complete listing of all claims in the application, with an indication of the status of each:

Listing of claims:

1	1. (currently amended) A method of forming a field effect transistor (FET),
2	comprising:
3	providing a substrate;
4	forming a layer on the substrate, the layer having exposed vertical side
5	surfaces on opposite sides of the layer, the layer being able to support epitaxial
6	growth on said side surfaces;
7	forming an epitaxial channel on each of the exposed vertical side
8	surfaces of the layer, the channel having an exposed first vertical sidewall
9	opposite the vertical side surface of the layer;
10	removing a channel on a first vertical side surface of the layer and then
11	removing the layer, thereby exposing a second vertical sidewall of the channel
12	formed on the second vertical side of the layer;
13	forming a second channel in place of said removed channel; and
14	forming a gate adjacent to at least one of the sidewalls of the channel
15	and the second channel, there being a gate dielectric between each channel and
16	the gate.
1	2-13. (canceled)
1	14. (previously presented) A method for forming a double gated field effect
2	transistor (FET), comprising the steps of:
3	forming on a substrate a first and a second epitaxially grown channels,
4	said channels having vertical side surfaces extending up from the substrate,

AMENDMENT WITH RCE 01240162aa Reply to office action mailed 09/07/2004

5	wherein said second channel is grown following removal of a semiconductor
6	region centered between said channels upon one of whose opposite vertical
7	sides said first channel was grown;
8	etching areas within a silicon layer to form a source and a drain,
9	wherein a side surface of the source and the drain contact opposing end
10	surfaces of the first and second epitaxially grown channels; and
11	forming a gate that contacts a top surface and two side surfaces of the
12	first and second epitaxially grown channels and a top surface of the substrate.
1	15. (previously presented) The method as recited in claim 14, wherein the
2	forming step comprises the steps of:
3	forming first and second semiconductor lines, each end of the silicon
4	lines contacting an end of the source and the drain;
5	forming an etch stop layer on an exposed side surface of each of the
6	first and second semiconductor lines;
7	epitaxially growing first and second semiconductor layers on each etch
8	stop layer;
9	etching away the first and second semiconductor lines and the etch
10	stop layers;
11	filling areas surrounding the first and second epitaxially grown
12	semiconductor layers and between the source and the drain with an oxide fill;
13	and
14	etching a portion of the oxide fill to form an area that defines a gate,
15	wherein the area that defines the gate is substantially centered between and
16	substantially parallel to the source and the drain.
1	16. (original) The method as recited in claim 15, further comprising the steps
2	of:

2

AMENDMENT WITH RCE

01240162aa Reply to office action mailed 09/07/2004

3 etching the oxide fill between the gate the source to expose the first 4 and second epitaxially grown silicon layers; and 5 etching the oxide fill between the gate and the drain to expose the first 6 and second epitaxially grown silicon layers. 1 17. (original) The method as recited in claim 16, further comprising the step 2 of forming an oxide on the first and second epitaxially grown silicon layers. 1 18. (original) The method as recited in claim 17, wherein the oxide is silicon 2 dioxide. 1 19. (previously presented) The method as recited in claim 14, further 2 comprising the steps of: 3 implanting a portion of the epitaxially grown silicon layers between 4 the gate and the source; and 5 implanting a portion of the epitaxially grown silicon layers between the gate and the drain. 6 1 20. (previously presented) The method as recited in claim 19, wherein the 2 implanting step is in the range of 10 to 45 degrees relative to a vector 3 perpendicular to a top surface of the epitaxially grown silicon layers. 1 21. (previously presented) The method as recited in claim 20, wherein the 2 implants are done in a series at approximately 90 degrees relative to each 3 other. 1 22. (original) The method as recited in claim 14, further comprising the step

of forming a contact on each of the gate, the source and the drain.

AMENDMENT WITH RCE 01240162aa Reply to office action mailed 09/07/2004

1	23. (original) The method as recited in claim 14, wherein the gate material is
2	polysilicon.
1	24. (currently amended) A method of forming an FET, comprising:
2	forming on a substrate a first semiconductor layer having first and
3	second ends and a central region that is thinner than said first and second ends
4	said central region having first and second side surfaces extending upward
5	from said substrate, said semiconductor layer being able to support epitaxial
6	growth on said first and second side surfaces;
7	epitaxially growing a semiconductor channel region on at least one of
8	said first and second side surfaces of said central region of said first
9	semiconductor layer, a first side of said channel being exposed;
10	removing said central region of said first semiconductor layer, thereby
11	exposing a second side of said channel;
12	forming a dielectric layer on exposed surfaces of said semiconductor
13	channel region; and
14	forming a gate electrode on said dielectric layer.
1	25. (previously presented) The method of claim 24, wherein said
2	semiconductor channel region is formed of a combination of Group IV
3	elements.
1	26. (previously presented) The method of claim 24, wherein said
2	semiconductor channel region is formed of an alloy of silicon and a Group IV
3	element.

BUR9-1999-0300US1 Amendment dated 01/07/2005 AMENDMENT WITH RCE 01240162aa Reply to office action mailed 09/07/2004

l	27. (previously presented) The method of claim 24, wherein said
2	semiconductor channel region is formed of a material selected from the group
3	consisting of silicon, silicon-germanium, and silicon-germanium-carbon.
1	28. (previously presented) The method of claim 27, wherein said step of
2	removing said first semiconductor layer does not appreciably remove said
3	semiconductor channel region.
1	29. (previously presented) The method of claim 28, wherein an etch stop is
2	epitaxially grown between said first semiconductor layer and said
3	semiconductor channel region.
1	30 (previously presented) The method of claim 24, wherein said gate
2	electrode is formed of a material selected from the group consisting of
3	polysilicon, silicon-germanium, refractory metals, Ir, Al, Ru, Pt, and titanium
4	nitride.