Teorema de Gauss, Stokes

- 8. Sea S la superficie del cubo limitado por los planos $x=0, \ x=1, \ y=0, \ y=1, \ z=0, \ z=1$ con la cara correspondiente a x=1 removida. Use Teorema de Gauss para calcular $\iint_S \vec{F} \cdot \vec{N} dS$, donde $\vec{F}(x,y,z) = (4xz,-y^2,yz)$
- 9. Sean $R = \{(x,y,z) \mid 0 \le x \le a, \ 0 \le y \le a, \ 0 \le z \le a \}$ región de \mathbb{R}^3 , S frontera y $\overrightarrow{F}(x,y,z) = (4xz,-y^2,yz)$.

 a) Compruebe que R, S y \overrightarrow{f} satisfacen las hipótesis del Teorema de Gauss.
 - b) Use Teorema de Gauss para calcular $\iint_S \vec{F} \cdot \vec{N} dS$. c) ¿Qué interpretación física tiene el valor de la integral de superficie propuesta en b)?
- 10. Sean $R = \{(x,y,z) / 9x^2 + 9y^2 \le 4z^2, \ 0 \le z \le z\}$. Sea S la superficie frontera de R. $\vec{F}(x,y,z) = (x^2,y^2,z^2), I = \iint_S \vec{F} \cdot \vec{N} dS$
 - a) Use Teorema de Gauss para expresar I como integral iterada triple en coordenadas cilíndricas.
 - b) ¿Qué interpretación física tiene el valor de I?
 - 11. Verificar el Teorema de la divergencia si:

$$\iint_{S} x^2 dy dz + y^2 dz dx + z^2 dx dy$$

donde S es la cara exterior de la frontera del cubo. $0 \le x \le a, 0 \le y \le a, 0 \le z \le a.$

- 12. Sea $I=\iint_S z dx dy$, donde S es la superficie frontera de la región $R\subset\mathbb{R}^3$, acotada por y=1, $x^2+z^2+y-5=0$.
 - a) Calcule I, directamente.
 - b) Calcule I, usando Teorema de Gauss.
 - c) ¿Qué interpretación física puede dar al valor de I?
- 13. Usar el teorema de Stokes para hallar $\oint_C 3ydxxzdy + yz^2dz$, donde C es el borde (Considere C orientada antihorario mirando desde el origen).
- 14. Sea $C: \begin{array}{ccc} x^2+y^2+z^2 &=1 \\ x+z &=1 \end{array} \}$ orientada en sentido horario al mirar desde el origen.
 - a) Parametrice y grafique C.
 - b) Use Stokes para calcular $\oint_C ydx + zdy + xdz$.
 - c) Sea C' la parte de C contenida en el primer octante y $\vec{F}(x,y,z)=(2xy,x^2+z^2,2yz)$. Muestre que $\int_{C'}\vec{F}\cdot\vec{dr}$ es independiente de la trayectoria y halle su valor.
- 15. Sea C la curva: $\begin{cases} x+z = 4 \\ x^2+y^2+z^2 = 16 \end{cases}$ orientada en sentido antihorario al mirar desde el origen.
 - a) Parametrice la curva.
 - b) Calcule $\int_C dL$ a partir del gráfico.
 - c) Sea $I = \int_C y dx + z dy + x dz$.

- i) ¿Es independiente de la trayectoria?
- ii) Calcule I directamente.
- iii) Calcule I, usando el Teorema de Stokes.
- 16. Sea S la parte del cilindro $y^2 + z^2 = 25$, $1 \le x \le 4$.
 - a) Calcule la masa de una lámina que tiene la forma de S, si la densidad en cada punto es la distancia al eje x.
 - b) Sea S' la superficie S anterior, a la que se agrega como tapa el plano x=1. Use Teorema de Stokes para calcular: $\iint_S rot \vec{F} \cdot \vec{N} dS$, donde $\vec{F}(x,y,z)=(y^3,z,x)$.
- 17. Sean $I=\oint_C \vec{F}\cdot d\vec{r}$, con C el triángulo de vértices $(1,0,0),\,(0,2,0),\,(0,2,3)$ (orientada en ese orden), $\vec{F}(x,y,z)=(xy,yz,zx)$.
 - a) Parametrice la curva C.
 - b) Calcule I, directamente.
 - c) ¿Qué interpretación física tiene I?
 - d) Transforme I en una integral de superficie, usando Teorema de Stokes y calcule.
 - e) ¿Qué interpretación física tiene el resultado obtenido en d)?
- 18. Sea S la parte del paraboloide $z=1-x^2-y^2; z\geq 0$. Si $\vec{F}(x,y,z)=(y,z,x)$, verifique el Teorema de Stokes para \vec{F} y S.
- 19. Sea S la superficie del tetraedro limitado por los planos coordenados y el plano 3x + y + 3z = 6.
 - a) Use Teorema de Gauss para calcular: $\iint_S (\nabla \times \vec{F}) \cdot \vec{N} dS, \text{ si } \vec{F}(x,y,z) = (xz,-y,-x^2y).$