

Progettare software in linea con il nuovo regolamento GDPR

Raffaele Rialdi @raffaeler

http://iamraf.net

Senior Software Architect

Presidente DotNetLiguria

Chi è Raffaele Rialdi

- Lavoro nella progettazione del software dal 1987
- Libero professionista con clienti nei settori
 - Banking / Financial, Manufacturing, Healthcare, F1 Racing, ...
- Responsabile della Divisione Tecnologie Avanzate di Vevy Europe SpA
 - Settore chimico
- Microsoft MVP (Most Valuable Professional) dal 2003
 - Award riconosciuto su base annuale da Microsoft a professionisti che si sono distinti per competenza e promozione della conoscenza
 - Specializzazione: "Developer Security"
- Communities
 - Presidente di DotNetLiguria
 - Co-fondatore di ItalianCpp
 - Member of the board di UGIdotNET

SDL Security Development Lifecycle

IN PARALLELO CON IL REGOLAMENTO GDPR

SDL e il principio SD3+C

citati nella GDPR

Secure By Design

• Architettura, progettazione e implementazione devono essere pensati per essere sicuri

Secure by Default

• I componenti devono offrire <u>minore superficie di attacco</u> e usare il <u>minor numero di privilegi</u>

Secure in Deployment

- Evidenziare le condizioni necessarie in fase di installazione
- Documentazione per evitare errori nell'infrastruttura

Communications

- Architetti e sviluppatori devono essere pronti ad eseguire modifiche a seguito della scoperta di vulnerabilità
- Organizzare frequenti riunioni periodiche e documentare vulnerabilità e contromisure

GDPR Le prescrizioni 'tecniche'

GENERAL DATA PROTECTION REGULATION

REGOLAMENTO (UE) 2016/679

http://eur-lex.europa.eu/legal-content/it/TXT/?uri=celex:32016R0679

I dati da proteggere

- Devono essere adeguati, pertinenti e limitati alla finalità
 - La limitazione implica la segregazione dei dati nel caso siano condivisi
 - Esempio: Due applicazioni (con utenze diverse) condividono lo stesso database, ma solo una usa il numero cellulare
- Deve essere possibile cancellare o <u>rettificare</u> i dati inesatti rispetto alle finalità
- L'utente deve poter disporre dei dati in tempo utile per le finalità indicate nel trattamento
 - Attenzione ai Denial of Service, mancanza di backup, corruzione dei dati

Possiamo registrare dati di privacy se ...

- · L'utente ha espresso il consenso per determinate finalità
- I dati sono necessari all'esecuzione di un contratto con l'utente
- Se esiste <u>un obbligo legale</u> per registrare i dati
 - Fatture, DDT, etc.
- Se è necessario per <u>interessi vitali</u> di qualcuno
- Nel caso manchi un esplicito consenso per una data finalità
 - È necessario fornire garanzie aggiuntive come la cifratura o la pseudonimizzazione

Cifratura

- Si usa per rendere illeggibile il dato nello storage
 - Chi apre il database non riesce a riconoscere i dati dell'utente
- La chiave crittografica deve essere custodita separatamente
- La crittografia può essere fatta da:
 - Database sull'intero file: relativamente semplice, inefficace per la protezione dagli amministratori di sistema
 - Database solo sulle anagrafiche: complessa, richiede modifiche all'app
 - Sistema operativo (bitlocker): protegge solo dal furto fisico del disco

Pseudonimizzazione

- È un processo applicativo che usa pseudonimi al posto dei dati veri
- Deve essere prevista/gestita a livello applicativo
- Può comportare problemi nelle ricerche/filtri
- Per essere efficace i dati veri dovrebbero essere conservati su un database diverso
 - Questo complica di parecchio la logica applicativa
 - Gli ORM non sono in grado di gestire questa casistica (a meno di custom provider)

Condizioni per il consenso

• Il titolare del trattamento deve dimostrare che l'interessato ha prestato il proprio consenso al trattamento dei propri dati personali.

- Interpretazione garante:
 - http://www.garanteprivacy.it/fondamenti-di-liceita-del-trattamento

Considerazioni

- Nel consenso "digitale", il problema è dimostrare che il consenso sul database non sia stato alterato
 - Una possibile soluzione potrebbe essere un "timestamp" la cui chiave viene conservata altrove

Trattamento dei dati

- Esiste un periodo di conservazione dei dati personali
 - Viene chiesto all'utente o ricavati tramite un 'criterio'
- L'utente può chiedere di ottenere i dati e di essere cancellato (diritto all'oblio)
- I dati possono essere trattati con finalità diverse rispetto a quella per cui sono stati raccolti, ma <u>l'utente deve essere</u> informato
 - L'utente potrà chiedere come conseguenza di essere cancellato
- Se i dati sono stati ottenuti da terzi, è necessario <u>informare l'utente</u> sulla loro origine prima di poterli trattare
- L'utente può opporsi a diverse tipologie di trattamento
 - alla cancellazione dei dati e richiederne invece una limitazione di utilizzo.
 - al cambio di soggetto del trattamento
 - o ad una o più finalità del trattamento

Data protection by design and by default

Protezione dei dati fin dalla progettazione e protezione per impostazione predefinita

- «... il titolare del trattamento mette in atto misure tecniche e organizzative adeguate, quali la pseudonimizzazione, volte ad attuare in modo efficace i principi di protezione dei dati, quali la minimizzazione, e a integrare nel trattamento le necessarie garanzie al fine di soddisfare i requisiti del presente regolamento ...»
- «Il titolare del trattamento mette in atto misure tecniche e organizzative adeguate per garantire che siano trattati, per impostazione predefinita, solo i dati personali necessari per ogni specifica finalità del trattamento»
 - · Si applica a quantità, portata del trattamento periodo di conservazione e accessibilità

Considerazioni

- È una analisi di rischio e tutte le scelte devono essere verbalizzate con relative motivazioni
- In termini di threat model queste sono buoni esempi di "mitigazioni"

Sicurezza del trattamento

«Tenendo conto dello stato dell'arte e dei costi di attuazione, nonché della natura, dell'oggetto, del contesto e delle finalità del trattamento, come anche del rischio di varia probabilità e gravità per i diritti e le libertà delle persone fisiche, il titolare del trattamento e il responsabile del trattamento mettono in atto misure tecniche e organizzative adeguate per garantire un livello di sicurezza adeguato al rischio, che comprendono, tra le altre, se del caso ...»

Considerazioni:

- Anche questi sono concetti tipici delle analisi di rischio
- Non applicare le security updates può essere considerata una violazione
- Le mitigazioni devono avere un «level of security appropriate to the risk»
- La mancanza di verbalizzazione o la sottovalutazione del rischio sono un'aggravante

Articolo 32.1 a

Sicurezza dei dati personali

- «..., tra le altre, se del caso:»
 - la pseudonimizzazione e la cifratura dei dati personali
 - La cifratura dei file dell'intero DB è relativamente semplice
 - Uso di Bitlocker
 - Uso di TLS (es: HTTPS) per movimentare i dati

Sicurezza dei dati personali

- «la capacità di assicurare su base permanente la riservatezza, l'integrità, la disponibilità e la resilienza dei sistemi e dei servizi di trattamento;»
 - ∘ riservatezza → "Confiendentiality"
 - integrità → "Integrity"
 - o disponibilità, resilienza → "Availability"

Le categorie di rischio usate nei threat models

C, I, A

- Considerazioni: l'articolo continua evidenziando la necessità di poter
 - Ripristinare tempestivamente da eventuali malfunzionamenti
 - Backup? Backup in luoghi fisici diversi!
 - Un processo per testare regolarmente l'efficacia delle procedure tecniche

Sicurezza dei dati personali

 «Nel valutare <u>l'adeguato livello di sicurezza</u>, si tiene conto in special modo dei <u>rischi presentati dal trattamento</u> che derivano in particolare dalla distruzione, dalla perdita, dalla modifica, dalla divulgazione non autorizzata o dall'accesso, in modo accidentale o illegale, a dati personali trasmessi, conservati o comunque trattati.»

Considerazioni:

- Si parla di hacking o perdita di dati (assenza di backup)
- I boundary dei diagrammi DFD nel Threat Model evidenziano:
 - Dove sia necessaria la protezione del trasporto (HTTPS) → la gestione dei certificati è importante!
 - L'implementazione di una adeguata policy sulle password
 - Ma <u>non</u> parlano esplicitamente di pratiche "IT" (ma SDL raccomanda i backup)

Valutazione d'impatto sulla protezione dei dati

 «Quando un tipo di trattamento, ..., può presentare un rischio elevato per i diritti e le libertà delle persone, ..., il titolare del trattamento effettua, ..., una valutazione dell'impatto dei trattamenti previsti sulla protezione dei dati personali»

Considerazioni

- La conservazione di password in chiaro può consentire ad un intruso di entrare in possesso di dati anche su altri siti/banche dati/etc. da cui può derivare un "rischio elevato" e una lesione della libertà del soggetto.
- La conservazione di un hash delle password è un elemento fondamentale per evitare questo rischio
- L'uso di un sistema di 2FA (eventualmente fatto scegliere all'utente) è auspicabile
- Se la valutazione di impatto è necessaria, è auspicabile imponga meccanismi di protezione **superiori** a quelle dei dati non a rischio.

Valutazione di impatto secondo il garante

http://www.garanteprivacy.it/DPIA

Articolo 35.7

Valutazione d'impatto sulla protezione dei dati

- «La valutazione contiene almeno:
 - a) una descrizione sistematica dei trattamenti ...
 - b) una valutazione della **necessità e proporzionalità** dei trattamenti ...
 - c) una valutazione dei rischi per i diritti e le libertà degli interessati ...
 - d) le misure previste per affrontare i rischi, includendo le garanzie, le misure di sicurezza e i meccanismi per garantire la protezione dei dati personali ...»
- Considerazioni:
 - Il Threat Model copre quasi tutti questi punti
 - Resta fuori la finalità del trattamento e il punto (b)

Il Threat Model secondo la SDL

- Il Threat Model (modello delle minacce) è un processo che consente di comprendere le potenziali vulnerabilità di un sistema informatico
 - Guida all'analisi dell'architettura dell'applicazione
 - Evidenzia i rischi
 - Suggerisce le mitigazioni
- Gli speciali diagrammi DFD aiutano a visualizzare i flusso di dati
 - DFD = Data Flow Diagram
- È paragonabile ad una classica "analisi di rischio"
 - Fornisce una classificazione comprensibile
 - Al minimo otteniamo dei numeri oggettivi: Rischio = Probabilità * Impatto

Esempio di threat modeling

- Esistono diversi tool.
- Il TMT di SDL fa uso di 6 semplici simboli
 - Descrive i flussi all'interno di un sistema
 - I flussi più complessi possono essere "esplosi" in altri TM

SDL: Le categorie delle minacce STRIDE

• Threat	Descrizione	Esempi di mitigazione	Categoria C, I, A
S poofing	Uso di falsa identità per entrare nel sistema	AutenticareFiltrare gli IP non validi	Integrity
Tampering	Modifica dei dati tra due sistemi (man in the middle)	Proteggere il trasporto dei dati	Integrity
Repudiation	Esecuzione di azioni nel sistema senza poterne provare la paternità	AutenticareAdottare politiche di auditing	Integrity
Information Disclosure	Rivelazione di informazioni sensibili	Autorizzazione (SSL, etc.)Hash credenziali	Confidentiality
Denial of Service	Rendere il sistema inutilizzabile (anche se con richieste legittime)	Filtrare le richieste per IPControllare l'uso della banda	Availability
Elevation of Privilege	Eseguire azioni con privilegi maggiori di quello assegnati	 Eseguire i servizi con il minimo privilegio 	Integrity

SDL: Quantificare il rischio

Si parte assegnando i valori DREAD

- <u>D</u>amage potential [Impatto]
 - Quanto danno provoca il successo di un attacco?
- <u>R</u>eproducibility [Probabilità]
 - Quanto è facile replicare l'attacco?
- <u>Exploitability</u> [Probabilità]
 - Quanto è semplice compiere l'attacco?
- Affected users [Impatto]
 - Quanti utenti (percentualmente) sono colpiti dall'attacco?
- <u>D</u>iscoverability [Probabilità]
 - Quanto è semplice scoprire la vulnerabilità?

Nota: La scala è Alto, Medio, Basso

Si calcola il fattore di rischio

Metodo 1
 Rischio = Probabilità * Impatto

Metodo 2

Rischio = Min(D, (D+R+E+A+D) / 5)

Damage

Potential

61

22/02/16

Da dove si inizia

- Verbalizzare un «data protection impact assessment» (art 35)
 - È una analisi di rischio per valutare se fare una analisi di rischio più dettagliata
- Verificare (con un legale) i moduli di raccolta dati (finalità, etc.)
 - Audit o altre garanzie di inalterabilità
- Se possibile, separare i dati sensibili in un database differente
 - Gestire questi dati dentro un token come "Claim" è una buona soluzione
- Imbastire tutta la gestione del trattamento: categorie, oblio, storia, ...
 - Eventualmente chiedere una conferma dei dati alla successiva logon

Se il software esiste già, iniziare da modifiche meno invasive

- Analizzare tutte le possibili path rispetto agli entry-point
 - Una analisi statica del codice aiuta in modo significativo
- Redigere un threat model
 - Ordinare i rischi e mitigare da subito quelli più gravi
 - Produrre il documento di analisi dei rischi tramite i tool (TMT, etc.)
- Continuare a mantenere il threat model aggiornato ad ogni rilascio
 - Incrementare il dettaglio del threat model man mano che si va avanti
- Fare l'enforcing da codice delle modalità di deploy (https, ...)
 - I container sono una soluzione ottimale

Cosa ne esce?

- Il Threat Model evidenzia molte delle possibili mancanze:
 - https, input validation, output encoding, repudiation dei dati, etc.
- In alcuni casi serve di più:
 - Le deleghe della gestione dei dati sono delicate: la login con 2FA o fingerprint aiutano
- Nei casi peggiori, se il software è vecchio, può non esserci soluzione
 - Es: VB6, privilegi troppo elevati
 - Pianificare una migrazione a nuove tecnologie
- Se il problema è di vulnerabilità del canale e la fix è difficile
 - Mitigare con una VPN, anche all'interno della LAN

I cambiamenti all'architettura possono essere dolorosi

- Evitare la login con username-password a favore di un IP esterno
- Crittografia e pseudonimizzazione sono complesse da implementare
- La separazione del DB utenti è valida ma non sempre facilmente conciliabile con l'architettura
- Implementare la segregazione dei dati è complesso, ma aiuta
 - L'audit è funzionale alla buona riuscita
- Il diritto all'oblio può essere molto complesso
 - Sovrascrivere i dati utente in modo irreversibile è accettabile
 - Nel caso di fotografie o video ovviamente è più complesso o non realizzabile
- · L'utente deve poter fare il download di tutto ciò che lo riguarda

Domande?

