Block Chiffre und der *Data Encryption*Standard (DES)

Dozent: Prof. Dr. Michael Eichberg

Version: 2024-02-16

Basierend auf: Cryptography and Network Security - Principles and Practice, 8th

Edition, William Stallings

Stromchiffre

- Verschlüsselt einen digitalen Datenstrom ein Bit oder ein Byte nach dem anderen.
 - Beispiele: Autokeyed Vigenère-Chiffre und Vernam-Chiffre
- Im Idealfall wird eine One-Time-Pad-Version der Vernam-Chiffre verwendet, bei der der Schlüsselstrom genauso lang ist wie der Bitstrom des Klartextes.
 - Wenn der kryptografische Schlüsselstrom zufällig ist, kann diese Chiffre auf keine andere Weise als durch die Beschaffung des Schlüsselstroms geknackt werden
 - Der Schlüsselstrom muss beiden Nutzern im Voraus über einen unabhängigen und sicheren Kanal zur Verfügung gestellt werden.
 - Dies führt zu unüberwindbaren logistischen Problemen, wenn der vorgesehene
 Datenverkehr sehr groß ist.

Stromchiffre

- Aus praktischen Gründen muss der Bitstromgenerator als algorithmisches Verfahren implementiert werden, damit der kryptografische Bitstrom von beiden Benutzern erzeugt werden kann.
 - Es muss rechnerisch praktisch unmöglich sein, zukünftige Teile des Bitstroms auf der Grundlage früherer Teile des Bitstroms vorherzusagen.
 - Die beiden Benutzer müssen nur den erzeugenden Schlüssel sicher miteinander teilen damit jeder den Schlüsselstrom erzeugen kann.

Blockchiffre

- Ein Klartextblock wird als Ganzes behandelt und verwendet, um einen gleich langen Chiffretextblock zu erzeugen.
- In der Regel wird eine Blockgröße von 64 oder 128 Bit verwendet.
- Wie bei einer Stromchiffre teilen sich die beiden Benutzer einen symmetrischen Chiffrierschlüssel.
- Die meisten netzbasierten symmetrischen kryptografischen Anwendungen verwenden Blockchiffren.

Stromchiffre vs. Blockchiffre

Allgemeine n-Bit-n-Bit-Blocksubstitution (n = 4)

Verschlüsselungs- und Entschlüsselungstabelle für eine Substitutions-Chiffre

Verschlüsselungstabelle

Klartext	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Geheimtext	1110	0100	1101	0001	0010	1111	1011	1000	0011	1010	0110	1100	0101	1001	0000	0111

Entschlüsselungstabelle

Geheimtext	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Klartext	1110	0011	0100	1000	0001	1100	1010	1111	0111	1101	1001	0110	1011	0010	0000	0101

Feistel-Chiffre

Feistel schlug die Verwendung einer Chiffre vor, bei der sich Substitutionen und Permutationen abwechseln.

Substitutionen

Jedes Klartextelement oder jede Gruppe von Elementen wird eindeutig durch ein entsprechendes Chiffretextelement oder eine entsprechende Gruppe von Elementen ersetzt.

Permutation

Bei einer Permutation werden keine Elemente hinzugefügt, gelöscht oder ersetzt, sondern die Reihenfolge, in der die Elemente in einer Folge erscheinen, wird geändert.

Feistel-Chiffre - Hintergrund

- Hierbei handelt es sich um eine praktische Anwendung eines Vorschlags von Claude Shannon zur Entwicklung einer Chiffre, bei der sich Konfusions- und Diffusionsfunktionen abwechseln.
- Dieser Aufbau wird von vielen bedeutenden symmetrischen Blockchiffren verwendet, die derzeit im Einsatz sind.

Diffusion und Konfusion

- Begriffe, die von Claude Shannon eingeführt wurden, um die beiden grundlegenden Bausteine für jedes kryptografische System zu erfassen.
- Shannons Anliegen war es, die auf statistischer Analyse beruhende Kryptoanalyse zu vereiteln.

Diffusion

- Die statistische Struktur des Klartextes wird in weitreichende Statistiken des Chiffretextes überführt, d. h. die statistische Beziehung zwischen Klartext und Chiffretext wird so komplex wie möglich.
- Dies wird dadurch erreicht, dass jede Klartextziffer den Wert *vieler* Chiffretextziffern beeinflusst. ("Lawineneffekt")
- Die Diffusion kann z.B. durch *Permutationen* erreicht werden.

Konfusion

- Versucht, die Beziehung zwischen den Statistiken des Chiffriertextes und dem Wert des Chiffrierschlüssels so komplex wie möglich zu gestalten, d.h. eine einzige Änderung des Chiffrierschlüssels sollte viele Bits des Chiffriertextes beeinflussen.
- Selbst wenn der Angreifer die Statistik des Chiffretextes einigermaßen in den Griff bekommt, ist die Art und Weise, wie der Schlüssel verwendet wurde, um diesen Chiffretext zu erzeugen, so komplex, dass es schwierig ist, den Schlüssel abzuleiten.
- Die Verwirrung kann z.B. durch *Substitutionen* realisiert werden.

Feistel-Chiffre

Verschlüsselung und Entschlüsselung

Feistel Chiffre - Beispiel

Ver- und Entschlüsselung mit n Runden

[F(03A6,12DE52) ⊕ DE7F] ⊕ F(03A6,12DE52) = DE7F

Feistel Chiffre - Eigenschaften

Rundenfunktion F:

Größere Komplexität bedeutet in der Regel größere Resistenz gegen Kryptoanalyse.

Schnelle Ver-/Entschlüsselung in Software:

Häufig ist die Verschlüsselung so in Anwendungen oder Dienstprogramme eingebettet, dass eine Hardwareimplementierung nicht möglich ist; dementsprechend ist die Geschwindigkeit des Algorithmus relevant.

Einfachheit der Analyse:

Wenn der Algorithmus kurz und klar erklärt werden kann, ist es einfacher den Algorithmus auf kryptoanalytische Schwachstellen hin zu analysieren und somit ein höheres Maß an Sicherheit in Bezug auf seine Stärke zu entwickeln.

Algorithmus für die Ableitung der (Unter-)Schlüssel:

Eine höhere Komplexität dieses Algorithmus sollte zu einer größeren Schwierigkeit der Kryptoanalyse führen.

Blockgröße: Größere Blockgrößen bedeuten mehr Sicherheit, aber eine geringere

Verschlüsselungs-/Entschlüsselungsgeschwindigkeit für einen bestimmten

Algorithmus

Schlüsselgröße: Ein größerer Schlüssel bedeutet mehr Sicherheit, kann aber die

Verschlüsselungs-/Entschlüsselungsgeschwindigkeit verringern.

Anzahl der Runden:

Das Wesen der Feistel-Chiffre besteht darin, dass eine einzige Runde unzureichende Sicherheit bietet, während mehrere Runden zunehmende

Sicherheit bieten.

Data Encryption Standard (DES)

- Wurde 1977 vom National Bureau of Standards (heute NIST) als Federal Information Processing Standard 46 herausgegeben.
- War das am häufigsten verwendete Verschlüsselungsverfahren bis zur Einführung des Advanced Encryption Standard (AES) im Jahr 2001
- Der Algorithmus selbst wird als Data Encryption Algorithm (DEA) bezeichnet:
 - Die Daten werden in 64-Bit-Blöcken mit einem 56-Bit-Schlüssel verschlüsselt.
 - Der Algorithmus wandelt die 64-Bit-Eingabe in einer Reihe von Schritten in eine 64-Bit-Ausgabe um.
 - Dieselben Schritte werden mit demselben Schlüssel verwendet, um die Verschlüsselung rückgängig zu machen.

DES - Design

DES Rundenfunktion

Legende

R ist die rechte Hälfte der Nachricht.

E ist eine Expansionsfunktion.

S sind Substitutionsboxen.

P ist eine Permutation.

Round	Ki	Li	Ri
IP		5a005a00	3cf03c0f
1	1e030f03080d2930	3cf03c0f	bad22845
2	0a31293432242318	bad22845	99e9b723
3	23072318201d0c1d	99e9b723	0bae3b9e
4	05261d3824311a20	0bae3b9e	42415649
5	3325340136002025	42415649	18b3fa41
6	123a2d0d04262a1c	18b3fa41	9616fe23
7	021f120b1c130611	9616fe23	67117cf2
8	1c10372a2832002b	67117c12	c11bfc09
9	04292a380c341103	c11bfc09	887fbe6c
10	2703212607280403	887fbc6c	60017e8b
11	2826390c31261504	60017e8b	f596506e
12	12071c241a0a0108	f596506e	738538b8
13	300935393c0d100b	73853868	c6a62c4e
14	311e09231321182a	c6a62c4e	56b0bd75
15	283d3e0227072528	56b0bd75	75e8fd8f
16	2921080b13143025	75e8fd8f	25896490
IP-1		da02ce3a	89ecac3b

Kleine Änderung im Klartext

Round		δ	Round		δ	
	02468aceeca86420	1	9	c11bfc09887fbc6c	32	
	12468aceeca86420		9	996911532eed7d94	32	
1	3cf03c0fbad22845	1	10	887fbc6c60017e8b	34	
	3cf03c0fbad32845		10	2eed7d94d0f23094	J 4	
2	bad2284599e9b723	5	11	600f7e8bf596506e	37	
	bad3284539a9b7a3	ر		d0f23094455da9c4	37	
3	99e9b7230bae3b9e	18	12	1596506e738538b8	31	
ی	39a9b7a3171cb8b3	10	12	455da9c47f6e3cf3	71	
4	0bae3b9e42415649	34	13	738538b8c6a62c4e	29	
4	171cb8b3ccaca55e	54		7f6e3cf34bc1a8d9	23	
5	4241564918b3fa41	37	14	c6a62c4e56b0bd75	33	
J	ccaca55ed16c3653	37	14	4bc1a8d91e07d409		
6	18b3fa419616fe23	33	15	56b0bd7575e8fd81	31	
U	d16c3653cf402c68	دد	13	1e07d4091ce2e6dc	31	
7	9616fe2367117cf2	32	16	75e8fd8625896490	32	
/	cf402c682b2cefbc	32	10	1ce2e6dc365e5f59	32	
8	67117cf2c11bfc09	33	IP-1	da02ce3a89ecac3b	32	
0	2b2cefbc99191153	ى ا	11-1	057cde97d7683f2a	32	

Kleine Änderung des Schlüssels: 0f1571c947d9e859 → 1f1571c947d9e859

Round		δ	Round		δ	
	02468aceeca86420	0	9	c11bfe09887fbe6c	34	
	02468aceeca86420	U	9	548f1de471f64dfd	34	
1	3cf03c0fbad22845	3	10	8876be6c60067e8b	36	
1	3cf03c0f9ad628c5	ر	10	71664dfd4279876c	30	
2	bad2284599e9b723	11	11	60017e8bf596506e	32	
	9ad628c59939136b	11	11	4279876c399fdc0d	32	
3	99e9b7230bae3b9e	25	12	f596506e738538b8	28	
ر	9939136676806767	23	12	399fde0d6d208dbb	20	
4	0bae3b9e42415649	29	13	738538b8c6a62c4e	33	
4	768067b75a8807c5	29	13	6d208dbbb9bdeeaa	رر	
5	4241564918b3fa41	26	14	c6a62c4e56b0bd75	30	
ر	5a8807c5488bde94	20	14	b9bdeeaad2c3a56f		
6	18b3fa419616fe23	26	15	56b0bd7575e8fd8f	33	
U	488dbe94aba7fe53	20	13	d2c3a5612765c1fb	33	
7	9616fe2367117cf2	27	16	75e8fd8f25896490	20	
/	aba7fe53177d21e4	21	10	2765c1fb01263dc4	30	
8	67117cf2c11bfc09	32	IP-1	da02ce3a89ecac3b	30	
0	177d21e4548f1de4	32	11-1	ee92b50606b6260b	שכ	

Durchschnittliche Zeit für erschöpfende Schlüsselsuche

Schlüsselgröße (bits)	Chiffre	Anzahl der alternativen Schlüssel	Zeit benötigt bei 10 ⁹ Entschlüsselungen/s	Zeit benötigt bei 10^{13} Entschlüsselungen/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	1.125 Jahre	1 Stunde
128	AES	$2^{128} \approx 3.4 \times 10^{38}$	$5.3 \times 10^{21} \text{Jahre}$	5.3 x 10 ¹⁷ Jahre
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	5.8 x 10 ³³ Jahre	$5.8 imes 10^{29}$ Jahre
192	AES	$2^{192} \approx 6.3 \times 10^{57}$	2^{191} ns = 9.8×10^{40} Jahre	9.8×10^{36} Jahre
256	AES	$2^{256} \approx 1.2 \times 10^{77}$	2^{255} ns = 1.8 x 10^{60} Jahre	1.8 x 10 ⁵⁶ Jahre
26 Zeichen (Permutation)	Monoalphabetisch	$26! = 4 \times 10^{26}$	6.3 x 10 ⁹ Jahre	$6.3 imes 10^6$ Jahre

Stärke von DES - Timing-Angriffe

- Ein Verfahren, bei dem Informationen über den Schlüssel oder den Klartext gewonnen werden, indem beobachtet wird, wie lange eine bestimmte Implementierung für die Entschlüsselung verschiedener Chiffretexte benötigt.
- Dabei wird die Tatsache ausgenutzt, dass ein Verschlüsselungs- oder Entschlüsselungsalgorithmus für verschiedene Eingaben oft leicht unterschiedliche Zeit benötigt.
- Bislang scheint es unwahrscheinlich, dass diese Technik jemals gegen DES oder leistungsfähigere symmetrische Chiffren wie Triple DES und AES erfolgreich sein wird.

Entwurfsprinzipien für Blockchiffre - Anzahl der Runden

- Je größer die Anzahl der Runden ist, desto schwieriger ist es, eine Kryptoanalyse durchzuführen.
- Im Allgemeinen sollte das Kriterium sein, dass die Anzahl der Runden so gewählt wird, dass bekannte kryptoanalytische Bemühungen mehr Aufwand erfordern als ein einfacher Brute-Force-Schlüsselsuchangriff.
- Hätte DES 15 oder weniger Runden, würde die differentielle Kryptoanalyse weniger Aufwand erfordern als eine Brute-Force-Schlüsselsuche.

Entwurfsprinzipien für Blockchiffre - Funktion F

- Das Herzstück einer Feistel-Blockchiffre ist die Funktion F.
- Je nichtlinearer F ist, desto schwieriger wird jede Art von Kryptoanalyse sein.
- Der Algorithmus sollte einen großen Lawineneffekt (■ Avalanche-Property) haben.

Strict Avalanche Criterion (SAC)

Besagt, dass sich jedes Ausgangsbit j einer S-Box mit der Wahrscheinlichkeit 1/2 ändern sollte, wenn ein einzelnes Eingangsbit i invertiert wird und dies für alle Paare i,j gelten muss.

Bit Independence Criterion (BIC)

Besagt, dass sich die Ausgangsbits j und k unabhängig voneinander ändern sollten, wenn ein einzelnes Eingangsbit i invertiert wird und dies für alle i, j und k gelten muss.

 Das Einhalten der SAC- und BIC-Kriterien scheint die Wirksamkeit der Verwirrungsfunktion zu stärken.

Entwurfsprinzipien für Blockchiffre - Schlüsselableitung

- Bei jeder Feistel-Blockchiffre wird der Hauptschlüssel verwendet, um einen Unterschlüssel für jede Runde zu erzeugen.
- Im Allgemeinen möchten wir die Unterschlüssel so wählen, dass die Schwierigkeit, einzelne Unterschlüssel abzuleiten, und die Schwierigkeit, den Hauptschlüssel wieder zurück zu erhalten, maximiert werden.
- Es wird vorgeschlagen, dass die Schlüsselableitungsfunktion für die Unterschlüssel (■ Key Schedule) zumindest das Strenge Lawinenkriterium und das Bit-Unabhängigkeitskriterium für Schlüssel/Ciphertext garantieren sollte.

Übung - Feistelchiffre Implementieren

Implementieren Sie eine Feistel Chiffre in einer Programmiersprache Ihrer Wahl (z.B. Java, Scala, Python, C, JavaScript ...), die es Ihnen ermöglicht:

- Nachrichten zu ver- und entschlüsseln
- Blöcke von 128 Bit zu verschlüsseln
- lacktriangle die Funktion f einfach auszutauschen, um die Wirkung von f zu testen (je nach Sprache Ihrer Wahl können Sie z.B. native Funktionen höherer Ordnung oder einen Funktionszeiger verwenden)
- Für die Ableitung der Rundenschlüssel können Sie eine Funktion verwenden, die ein einfaches Verschieben des Schlüssels durchführt

Hinweis

Kümmern Sie sich nicht um Nachrichten, die größer oder kleiner als die Blockgröße sind. Dies ist nicht notwendig, um die Auswirkungen von "f" oder der Verwendung eines runden Schlüssels zu verstehen. Kümmern Sie sich nicht um einen Schlüssel, der nicht die richtige Größe hat. d.h. verwenden Sie eine Nachricht und einen Schlüssel mit der entsprechenden Größe.

Übung - Feistelchiffre Evaluieren

- 1. Was passiert, wenn f nur 0x00-Werte zurückgibt (unabhängig vom Rundenschlüssel)?
- 2. Was passiert, wenn f nur 0x01-Werte zurückgibt (unabhängig vom Rundenschlüssel)?
- 3. Was passiert, wenn f einfach die entsprechende Hälfte mit dem Ergebnis der Verschiebung des Schlüssels xor?
- 4. Teste, was passiert, wenn du deine Nachricht änderst. Testen Sie insbesondere, was passiert wenn die Nachricht nur aus 0x00 besteht (und Sie eine "vernünftigere" f-Funktion verwenden.)
- 5. Teste, was passiert, wenn du deinen Schlüssel änderst. Was passiert in extremen Fällen (z.B. wenn das Passwort nur aus "0 "s besteht?