PHY 431 Quantum Mechanics I Instructor Instructor: Prof. Joydeep Chakrabortty Model Question Paper 2 Submission Date - 20/09/2024

- 1. Consider the states $\psi = 3i |\phi_1\rangle 7i |\phi_2\rangle$ and $|\chi\rangle = -|\phi_1\rangle + 2i |\phi_2\rangle$, where $|\phi_1\rangle$ and $|\phi_2\rangle$ are orthonormal.
 - (a) Calculate $|\psi + \chi\rangle$ and $\langle \psi + \chi|$.
 - (b) Calculate the scalar products $\langle \psi | \chi \rangle$ and $\langle \chi | \psi \rangle$. Are they equal?
 - (c) Show that the states ψ and χ satisfy the Schwarz inequality.
 - (d) Show that the states ψ and χ satisfy the triangle inequality.
- 2. (a) Discuss the hermiticity of the operators $(\hat{A} + \hat{A}^{\dagger})$, $i(\hat{A} + \hat{A}^{\dagger})$, and $i(\hat{A} \hat{A}^{\dagger})$.
 - (b) Find the Hermitian adjoint of $f(\hat{A}) = (1 + i\hat{A} + 3\hat{A}^2)(1 2i\hat{A} 9\hat{A}^2)/(5 + 7\hat{A})$.
 - (c) Show that the expectation value of a Hermitian operator is real and that of an anti-Hermitian operator is imaginary.
- 3. Show that the operator $|\psi\rangle\langle\psi|$ is a projection operator only when $|\psi\rangle$ is normalized.
- 4. Consider a matrix A (which represents an operator \hat{A}), a ket $|\psi\rangle$, and a bra $\langle\phi|$:

$$A = \begin{pmatrix} 5 & 3+2i & 3i \\ -i & 3i & 8 \\ 1-i & 1 & 4 \end{pmatrix}, \quad |\psi\rangle = \begin{pmatrix} -1+i \\ 3 \\ 2+3i \end{pmatrix}, \quad \langle \phi| = \begin{pmatrix} 6 & -i & 5 \end{pmatrix}$$

- (a) Calculate the quantities $A | \psi \rangle$, $\langle \phi | A, \langle \phi | A | \psi \rangle$, and $| \psi \rangle \langle \phi |$.
- (b) Find the complex conjugate, the transpose, and the Hermitian conjugate of $A, |\psi\rangle$, and $\langle\phi|$.
- (c) Calculate $\langle \phi | \psi \rangle$ and $\langle \psi | \phi \rangle$; are they equal? Comment on the differences between the complex conjugate, Hermitian conjugate, and transpose of kets and bras.
- 5. Consider a two-dimensional space where a Hermitian operator \hat{A} is defined by $\hat{A} |\phi_1\rangle = |\phi_1\rangle$ and $\hat{A} |\phi_2\rangle = -|\phi_2\rangle$; $|\phi_1\rangle$ and $|\phi_2\rangle$ are orthonormal.
 - (a) Do the states $|\phi_1\rangle$ and $|\phi_2\rangle$ form a basis?
 - (b) Consider the operator $\hat{B} = |\phi_1\rangle \langle \phi_2|$. Is \hat{B} Hermitian? Show that $\hat{B}^2 = 0$.
 - (c) Show that the products $\hat{B}\hat{B}^{\dagger}$ and $\hat{B}^{\dagger}\hat{B}$ are projection operators.
 - (d) Show that the operator $\hat{B}\hat{B}^{\dagger} \hat{B}^{\dagger}\hat{B}$ is unitary.
 - (e) Consider $\hat{C} = \hat{B}\hat{B}^{\dagger} + \hat{B}^{\dagger}\hat{B}$. Show that $\hat{C}|\phi_1\rangle = |\phi_1\rangle$ and $\hat{C}|\phi_2\rangle = |\phi_2\rangle$.
- 6. Consider an operator \hat{A} so that $[\hat{A}, \hat{A}^{\dagger}] = 1$.
 - (a) Evaluate the commutators $[\hat{A}^{\dagger}\hat{A}, \hat{A}]$ and $[\hat{A}^{\dagger}\hat{A}, \hat{A}^{\dagger}]$.
 - (b) If the actions of \hat{A} and \hat{A}^{\dagger} on the states $\{|a\rangle\}$ are given by $\hat{A}|a\rangle = \sqrt{a}|a-1\rangle$ and $\hat{A}^{\dagger}|a\rangle = \sqrt{a+1}|a+1\rangle$ and if $\langle a'|a\rangle = \delta_{a'a}$, calculate $\langle a|\hat{A}|a+1\rangle$, $\langle a+1|\hat{A}^{\dagger}|a\rangle$, $\langle a|\hat{A}^{\dagger}\hat{A}|a\rangle$, and $\langle a|\hat{A}\hat{A}^{\dagger}|a\rangle$.
 - (c) Calculate $\langle a | (\hat{A} + \hat{A}^{\dagger})^2 | a \rangle$ and $\langle a | (\hat{A} \hat{A}^{\dagger})^2 | a \rangle$.
- 7. Consider an operator

$$\hat{A} = \left|\phi_1\right\rangle\left\langle\phi_1\right| + \left|\phi_2\right\rangle\left\langle\phi_2\right| + \left|\phi_3\right\rangle\left\langle\phi_3\right| - i\left|\phi_1\right\rangle\left\langle\phi_2\right| - \left|\phi_1\right\rangle\left\langle\phi_3\right| + i\left|\phi_2\right\rangle\left\langle\phi_1\right| - \left|\phi_3\right\rangle\left\langle\phi_1\right|$$

where $|\phi_1\rangle$, $|\phi_2\rangle$, and $|\phi_3\rangle$ form a complete and orthonormal basis.

- (a) Is \hat{A} Hermitian? Calculate \hat{A}^2 ; is it a projection operator?
- (b) Find the 3×3 matrix representing A in the $|\phi_1\rangle$, $|\phi_2\rangle$, $|\phi_3\rangle$ basis.
- (c) Find the eigenvalues and the eigenvectors of the matrix.

8. The Hamiltonian of a two-state system is given by

$$\hat{H} = E(|\phi_1\rangle \langle \phi_1| - |\phi_2\rangle \langle \phi_2| - i |\phi_1\rangle \langle \phi_2| + i |\phi_2\rangle \langle \phi_1|),$$

where $|\phi_1\rangle$, $|\phi_2\rangle$ form a complete and orthonormal basis; E is a real constant having the dimensions of energy.

- (a) Is \hat{H} Hermitian? Calculate the trace of \hat{H} .
- (b) Find the matrix representing \hat{H} in the $|\phi_1\rangle$, $|\phi_2\rangle$ basis and calculate the eigenvalues and the eigenvectors of the matrix. Calculate the trace of the matrix and compare it with the result you obtained in (a).
- (c) Calculate $[\hat{H}, |\phi_1\rangle \langle \phi_1|], [\hat{H}, |\phi_2\rangle \langle \phi_2|], \text{ and } [\hat{H}, |\phi_1\rangle \langle \phi_2|].$