```
In [38]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [39]: my_random_state = 10

bcw_data = pd.read_csv('./breast-cancer-prepared.csv')
bcw_data.sample(5)
```

Out[39]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points
296	10.91	12.35	69.14	363.7	0.08518	0.04721	0.012360	0.013690
361	13.30	21.57	85.24	546.1	0.08582	NaN	0.033440	0.024240
249	11.52	14.93	73.87	406.3	0.10130	0.07808	0.043280	0.029290
334	12.30	19.02	77.88	464.4	0.08313	NaN	0.007756	0.008535
400	17.91	21.02	124.40	994.0	0.12300	0.25760	0.318900	0.119800

5 rows × 31 columns

Random Forst Classification

```
In [40]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import train_test_split
         from sklearn.impute import SimpleImputer
         from sklearn.metrics import classification_report, confusion_matrix, accuracy_sc
In [41]: X = bcw_data[bcw_data.columns[:-1]]
         y = bcw_data['is_malignant']
         # Identify columns with missing values
         cols_with_missing_vals = [c for c in X.columns if X[c].isnull().any()]
In [ ]: # Split into train, validation, and test sets (70%-15%-15%)
         X train, X test full, y train, y test full = train test split(X, y,
                                                                       random_state=my_ran
                                                                       test size=0.3,
                                                                       stratify=y)
         X val, X test, y val, y test = train test split(X test full, y test full,
                                                         random_state=my_random_state,
                                                         test size=0.5,
                                                         stratify=y_test_full)
In [ ]: # Apply imputation with flags
         simple_imputer = SimpleImputer(strategy='mean')
```

```
X_train_imputed_plus = X_train.copy()
         X val imputed plus = X val.copy()
         X_test_imputed_plus = X_test.copy()
In [44]: # Add flag columns for missing values
         for curr_col in cols_with_missing_vals:
             X_train_imputed_plus[curr_col + '_was_missing'] = X_train_imputed_plus[curr_
             X_val_imputed_plus[curr_col + '_was_missing'] = X_val_imputed_plus[curr_col]
             X_test_imputed_plus[curr_col + '_was_missing'] = X_test_imputed_plus[curr_co
         # Impute missing values
         X_train_imputed_plus[cols_with_missing_vals] = simple_imputer.fit_transform(X_tr
         X_val_imputed_plus[cols_with_missing_vals] = simple_imputer.transform(X_val_impu
         X_test_imputed_plus[cols_with_missing_vals] = simple_imputer.transform(X_test_im
In [45]: # Create a function to find the best n_estimators (number of trees)
         def find_best_n_estimators(X_train, X_val, y_train, y_val, do_print=True):
             result = None
             accuracy max = -1
             for n trees in [10, 50, 100, 200, 300]:
                 rf_model = RandomForestClassifier(n_estimators=n_trees, random_state=my_
                 rf_model.fit(X_train, y_train)
                 y pred = rf model.predict(X val)
                 accuracy_score_val = accuracy_score(y_val, y_pred)
                 if accuracy_score_val >= accuracy_max:
                     accuracy_max = accuracy_score_val
                     result = n_trees
                 if do print:
                     print(f'n_estimators {n_trees}: {accuracy_score_val:.5%} accuracy on
             if do_print:
                 print('-' * 20)
                 print(f'Best n_estimators {result} has {accuracy_max:.5%} accuracy.')
             return result
         # Find the best number of trees
         best_n_estimators = find_best_n_estimators(X_train_imputed_plus, X_val_imputed_p
        n_estimators 10: 96.47059% accuracy on validation set.
        n estimators 50: 96.47059% accuracy on validation set.
        n estimators 100: 96.47059% accuracy on validation set.
        n_estimators 200: 96.47059% accuracy on validation set.
        n_estimators 300: 96.47059% accuracy on validation set.
        Best n_estimators 300 has 96.47059% accuracy.
In [46]: # Train the final Random Forest model with the best n estimators
         rf model = RandomForestClassifier(n estimators=best n estimators, random state=m
         rf model.fit(X train imputed plus, y train)
Out[46]:
                           RandomForestClassifier
         RandomForestClassifier(n estimators=300, random state=10)
```

```
In [47]: y val pred = rf model.predict(X val imputed plus)
         val accuracy = accuracy score(y val, y val pred)
         print(f"Validation accuracy: {val_accuracy:.2%}")
        Validation accuracy: 96.47%
In [48]: y_test_pred = rf_model.predict(X_test_imputed_plus)
         test_accuracy = accuracy_score(y_test, y_test_pred)
         print(f"Test accuracy: {test_accuracy:.2%}")
        Test accuracy: 91.86%
In [49]: dt accuracy = 0.9419 # Based on the notebook's conclusion
         print(f"\nRandom Forest test accuracy: {test accuracy:.2%}")
         print(f"Decision Tree test accuracy: {dt_accuracy:.2%}")
         print(f"Difference: {test_accuracy - dt_accuracy:.2%}")
        Random Forest test accuracy: 91.86%
        Decision Tree test accuracy: 94.19%
        Difference: -2.33%
In [50]: # Print detailed classification report
         print("\nClassification Report:")
         print(classification_report(y_test, y_test_pred))
        Classification Report:
                      precision recall f1-score
                                                      support
                   0
                           0.94
                                     0.93
                                               0.93
                                                           54
                   1
                           0.88
                                     0.91
                                               0.89
                                                           32
            accuracy
                                               0.92
                                                           86
                                   0.92
                                               0.91
                                                           86
           macro avg
                           0.91
        weighted avg
                           0.92
                                     0.92
                                               0.92
                                                           86
In [51]: # Plot confusion matrix
         plt.figure(figsize=(8, 6))
         cm = confusion_matrix(y_test, y_test_pred)
         sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
                     xticklabels=['Benign', 'Malignant'],
                     yticklabels=['Benign', 'Malignant'])
         plt.xlabel('Predicted')
         plt.ylabel('True')
         plt.title('Confusion Matrix')
         plt.show()
         # Feature importance
         feature importances = pd.DataFrame({
             'Feature': X train imputed plus.columns,
              'Importance': rf_model.feature_importances_
         }).sort_values(by='Importance', ascending=False)
         # Plot top 15 features
         plt.figure(figsize=(10, 6))
         sns.barplot(x='Importance', y='Feature', data=feature_importances.head(15))
         plt.title('Top 15 Feature Importances')
         plt.tight layout()
         plt.show()
```



```
axes = axes.flatten()
    for i, ax in enumerate(axes):
        if i < n trees:</pre>
            tree.plot tree(
                forest.estimators_[i],
                feature_names=feature_names,
                class_names=class_names,
                filled=True,
                ax=ax
            )
            ax.set title(f'Tree #{i+1} in Random Forest')
        else:
            ax.set_visible(False)
    plt.tight_layout()
    plt.show()
# After training the Random Forest model:
# Visualize a sample of trees
feature_names = X_train_imputed_plus.columns.tolist()
class_names = ['Benign', 'Malignant']
plot_forest_sample(rf_model, feature_names, class_names, n_trees=4)
```



```
In [53]: from sklearn.decomposition import PCA
    from mlxtend.plotting import plot_decision_regions

# Use PCA to reduce to 2 dimensions for visualization
    pca = PCA(n_components=2)
    X_train_pca = pca.fit_transform(X_train_imputed_plus)
    X_test_pca = pca.transform(X_test_imputed_plus)

# Train a new Random Forest on the reduced dataset for visualization
    rf_viz = RandomForestClassifier(n_estimators=best_n_estimators, random_state=my_
    rf_viz.fit(X_train_pca, y_train)

# Prepare a meshgrid for visualization
    def plot_decision_boundary(X, y, model, title):
        plt.figure(figsize=(10, 6))

# Plot decision boundary
```



```
In [ ]: # Function to visualizse prediction differences between tree
        def visualize_tree_differences(forest, X_sample, n_trees=10):
            tree_predictions = []
            # Get predictions from individual trees
            for i in range(min(n_trees, len(forest.estimators_))):
                tree pred = forest.estimators [i].predict(X sample)
                tree predictions.append(tree pred)
            # Convert to DataFrame for easier visualization
            tree_preds_df = pd.DataFrame(tree_predictions).T
            tree_preds_df.columns = [f'Tree #{i+1}' for i in range(tree_preds_df.shape[1
            # Add majority vote (ensemble prediction)
            majority vote = np.array([np.bincount(row.astype(int)).argmax() for row in t
            tree_preds_df['Ensemble'] = majority_vote
            # Add actual labels
            tree preds df['True Label'] = y test.iloc[:len(X sample)].values
            # Create heatmap - use .astype(int) to ensure integer formatting works
```

```
plt.figure(figsize=(12, 8))
    sns.heatmap(tree_preds_df.iloc[:20, :-1].astype(int),
                cmap='coolwarm',
                annot=True,
                fmt='d', # Now safe to use 'd' since we converted to int
                cbar kws={'label': 'Prediction'})
    plt.title('Predictions from Individual Trees vs. Ensemble')
    plt.ylabel('Sample Index')
    plt.tight_layout()
    plt.show()
    # Show comparison between ensemble prediction and true labels
    comparison_df = tree_preds_df[['Ensemble', 'True Label']].copy()
    comparison_df['Correct'] = comparison_df['Ensemble'] == comparison_df['True
    plt.figure(figsize=(10, 6))
    sns.heatmap(comparison_df.iloc[:20, :2].astype(int),
                cmap='coolwarm',
                annot=True,
                fmt='d',
                cbar_kws={'label': 'Class'})
    plt.title('Ensemble Prediction vs True Labels')
    plt.ylabel('Sample Index')
    plt.tight layout()
    plt.show()
    return tree_preds_df
# Sample a few test observations and visualize different tree predictions
tree_diff_df = visualize_tree_differences(rf_model, X_test_imputed_plus.iloc[:20
```

- c:\Users\fabia\anaconda3\Lib\site-packages\sklearn\base.py:486: UserWarning: X ha
 s feature names, but DecisionTreeClassifier was fitted without feature names
 warnings.warn(
- c:\Users\fabia\anaconda3\Lib\site-packages\sklearn\base.py:486: UserWarning: X ha
 s feature names, but DecisionTreeClassifier was fitted without feature names
 warnings.warn(
- $\verb|c:\Users\fabia\anaconda3\Lib\site-packages\sklearn\base.py:486: UserWarning: X ha| \\$
- s feature names, but DecisionTreeClassifier was fitted without feature names warnings.warn(
- c:\Users\fabia\anaconda3\Lib\site-packages\sklearn\base.py:486: UserWarning: X ha
- s feature names, but DecisionTreeClassifier was fitted without feature names warnings.warn(
- s feature names, but DecisionTreeClassifier was fitted without feature names warnings.warn(
- c:\Users\fabia\anaconda3\Lib\site-packages\sklearn\base.py:486: UserWarning: X ha
- s feature names, but DecisionTreeClassifier was fitted without feature names warnings.warn(
- c:\Users\fabia\anaconda3\Lib\site-packages\sklearn\base.py:486: UserWarning: X ha
- s feature names, but DecisionTreeClassifier was fitted without feature names warnings.warn(
- c:\Users\fabia\anaconda3\Lib\site-packages\sklearn\base.py:486: UserWarning: X ha
- s feature names, but DecisionTreeClassifier was fitted without feature names warnings.warn(
- c:\Users\fabia\anaconda3\Lib\site-packages\sklearn\base.py:486: UserWarning: X ha
- s feature names, but DecisionTreeClassifier was fitted without feature names warnings.warn(
- c:\Users\fabia\anaconda3\Lib\site-packages\sklearn\base.py:486: UserWarning: X ha
- s feature names, but DecisionTreeClassifier was fitted without feature names warnings.warn(

Conclusion

We have a general accuracy of

- Random Forest test accuracy: 91.86%
- Decision Tree test accuracy: 94.19%
- Validation accuracy: 96.47%

Compared to the other approach, we can't really see a difference, other than that the approach is a bit more complex. Even through we don't have to prepare the data as much as we did in the other approach, since we combine multiple descision trees.