Model features

- Job-specific human capital accumulation combined with on-the-job search
- Infinite horizon dynamic programming with one state variable and two controls

Model setup

- Let x_t denote the time-t-job-specific human capital of a worker employed at a given firm
- Let w_tdenote current wages
- Let $w_t = x_t(1 s_t \phi_t)$ where
 - ullet ϕ_t is investment in job-specific human capital for the current role
 - ullet s_t is search effort, devoted to obtaining new offers from other firms

April 7, 2015 2 / 6

Model setup

- If the worker remains in the current job, evolution of $\{x_t\}$ is given by $x_{t+1} = G(x_t, \phi_t)$
- When search effort at t is s_t , the worker receives a new job offer with probability $\pi(s_t) \in [0,1]$
- Value of offer is U_{t+1} , where $\{U_t\}$ is idd with common distribution F
- Worker has the right to reject the current offer and continue with existing job
- In particular, $x_{t+1} = U_{t+1}$ if accepts, and $x_{t+1} = G(x_t, \phi_t)$ if rejects.

• The Bellman equation:

$$V(x) = \max_{s+\phi<1} \{x(1-s-\phi) + \beta(1-\pi(s))V(G(x,\phi)) + ... + \beta\pi(s) \int V(\max\{G(x,\phi),u\})F(du)\}$$

Parameterizations:

$$G(x, \phi) = A(x\phi)^{\alpha}$$

 $\pi(s) = \sqrt{s}$
 $F = Beta(2, 2)$

• where:

$$A = 1.4$$

 $\alpha = 0.6$
 $\beta = 0.96$

April 7, 2015 5 / 6

- Roadmap:
 - Construct the Bellman operator
 - Do value function iterations