COMPILANDO CONOCIMIENTO

Análisis Númerico

MATEMÁTICAS

Oscar Andrés Rosas Hernandez

Noviembre 2018

Índice general

Ι	Raíces de Funciones	3
1.	Tolerancias	4
	1.1. Ideas	4
2.	Bisección	5
	2.1. Algoritmo	5
3.	Punto Fijo	6
	3.1. Ideas	7
	3.1.1. ¿Cómo eligo a $g(x)$?	8
	3.1.2. Propiedades	8
4.	Newton	9
	4.1. Definición	10
	4.1.1. De donde salio esta fórmula	10
	4.1.2. Porque funciona	11
	4.1.3. Geometría	12
	4.1.4. Usar Newton para calcular la $\sqrt[n]{A}$	12
5.	Secante	13
	5.1. Definición	13
6.	Regla Falsa	14
	6.1. Definición	14
	6.1.1 Iteración	14

ΙΙ	Aproximar Sistemas de Ecuaciones NO lineales	15
7.	Ideas generales de ceros de funciones	16
	7.1. Ideas	16
8.	Newton Generalizado	17
	8.1. Ideas	18
II	I Interpolantes	19
9.	Ideas Generales	20
	9.1. Definición	21
10	.Interpolante Lineal	22
	10.1. Definición	22
11	.Interpolante Grado N	23
	11.1. Definición	23
12	Interpolante de Lagrange	2 4
	12.1. Definición	25
	12.2. Polinomio de Langrange	25
13	Interpolante de Newton	26
	13.1. Definición	27
	13.2. Diferencias Divididas	28
IV	V Optimización	29
14	.Sección Áurea	30
	14.1. Unimodal	31
	14.2. Algoritmo	31

Parte I Raíces de Funciones

Tolerancias

1.1. Ideas

Lo que estamos haciendo es aproximar una raíz, no encontrarla, así que habrá que decidir cuando nuestra estimación ξ se parece suficiente a la raíz.

Tendremos 3 opciones:

- $f(\xi_k) < \epsilon$: Estamos muy cerca de que la función valga cero
- $\blacksquare \frac{\|\xi_k\| \|\xi_{k-1}\|}{\|\xi_k\|} < \epsilon: \text{Las estimaciones son muy parecidas y no podemos mejorar.}$
- \blacksquare El número de iteraciones k es mayor del que el número de iteraciones máximas.

Bisección

2.1. Algoritmo

Suponte que tienes una linda función f(x) = 0 y tienes dos números a, b tal que f(a) sea de un signo diferente al f(b) entonces estamos seguros de que existe una raíz ξ por ahí en medio.

Entonces, puedes tomar el punto intermedio de ambos $c = a + \frac{b-a}{2}$. Ahora pueden pasar 3 cosas:

- Si c es la raíz entonces ya estas
- Si [a, c] tienen signos diferentes entonces la raíz anda por ahí
- \blacksquare Si [c,b] tienen signos diferentes entonces la raíz anda por ahí

En general, basta con suponer que el signo de a es igual que el signo de c, de ser así, entonces c cumple el trabajo de a entonces el intervalo es [c, b]. De no ser así entonces tiene que hacer el trabajo de b y entonces el intervalo es [a, c].

Punto Fijo

3.1. Ideas

Sea una función g(x) entonces decimos que ξ es un punto fijo de g(x) si es que $g(\xi) = \xi$. Suponte que podemos escribir a f(x) = 0 como f(x) = g(x) - x = 0. Entonces cualquier punto fijo (ξ) de g(x) será una raíz de f(x).

La idea es entonces bastante intuitiva, toma un elemento inicial x_n entonces será una mejor aproximación a la raíz esto:

$$x_{k+1} = \boldsymbol{g}\left(x_k\right)$$

Mira como poco a poco nos vamos acercando al punto fijo de g(x) que es lo mismo que la raíz de f(x).

Figura 3.1: Paso de punto fijo

3.1.1. ¿Cómo eligo a g(x)?

Es muy sencillo, bueno, teorícamente. Sabes que f(x) = g(x) - x = 0, por lo tanto basta despejar y ver que: g(x) = x.

Es decir, toma a f(x) = 0 y empieza a manipularla la expresión hasta que llegues de un lado la identidad y del otro lado lo que tendrás será a g(x).

Es decir tienes que llegar a x = blob ó x = g(x).

3.1.2. Propiedades

- Sea f(x) = 0 escrita de forma f(x) = g(x) x = 0, es decir g(x) = x. Entonces si $\forall x \in [a, b]$ se cumple que:
 - \bullet $g(x) \in [a,b]$
 - g(x) toma todos los valores entre a y b
 - g'(x) existe en (a,b) y existe una constante 0 < r < 1 tal que $||g'(x)|| \le r$

Va a pasar que:

- Existe un único punto fijo $x = \xi \operatorname{de} g(x)$ entre [a, b]
- La sequencia $x_{k+1} = g(x_k)$ converge siempre a ξ

Newton

4.1. Definición

Resulta ser que el método de Newton se basa en el de punto fijo, es solo que podemos elegir una g(x) muy especial, $g(x) = x - \frac{f(x)}{f'(x)}$.

Suponte que f''(x) existe, es continua sobre [a,b] y ξ una raíz simple de f(x) (es decir $f(\xi) = 0$ y $f''(\xi) \neq 0$). Entonces usar el método de punto fijo funcionará para hallar la raíz.

4.1.1. De donde salio esta fórmula

Busquemos un punto x_0 y supongamos que por ahí esta la raíz, entonces podemos sacar la ecuación de la recta tangente a ese punto como:

$$y - y_0 = f'(x_0)(x - x_0)$$

$$f(x) - f(x_0) = f'(x_0)(x - x_0)$$

$$f(x) = f'(x_0)(x - x_0) + f(x_0)$$

Ahora busquemos el punto en el que y = 0, entonces:

$$f(x) = f'(x_0)(x - x_0) + f(x_0)$$

$$0 = f'(x_0)(x - x_0) + f(x_0)$$

$$-f(x_0) = f'(x_0)(x - x_0)$$

$$-\frac{f(x_0)}{f'(x_0)} = (x - x_0)$$

$$(x - x_0) = -\frac{f(x_0)}{f'(x_0)}$$

$$x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Con esto llegamos la iteración de Newton:

$$x_{k+1} = x_k - \frac{\mathbf{f}(x_k)}{\mathbf{f}'(x_k)}$$

4.1.2. Porque funciona

Elegimos a:

$$g(x) = x - \frac{f(x)}{f'(x)}$$

Entonces:

$$g'(x) = 1 - \frac{f'(x)^2 - f(x)f''(x)}{f'(x)^2}$$
$$= \frac{f(x)f''(x)}{f'(x)^2}$$

Entonces:

$$g'(\xi) = \frac{f(\xi)f''(\xi)}{f'(\xi)^2}$$
$$= \frac{0f''(\xi)}{f'(\xi)^2}$$
$$= 0$$

Donde tenemos que $f(\xi) = 0$ y $f'(\xi) \neq 0$. Entonces como g'(x) es continua, entonces eso nos dice que existe una pequeña región cerca de la raíz en que ||g'(x)|| < 1.

Entonces si tomamos un punto inicial x_0 suficientemente cerca de la raíz, entonces las iteraciones de punto fijo estan garantizada a converger.

4.1.3. Geometría

La interpretación de este método es tomar una estimación x_k entonces lo que hacemos es tomar la recta tangente a ese punto y ver donde es que la recta toca al eje X, ese será nuestra x_{k+1} y ve viendo que poco a poco lo que vamos haciendo es aproximarnos a la raíz.

Figura 4.1: Paso de punto fijo

4.1.4. Usar Newton para calcular la $\sqrt[n]{A}$

Si quieres calcular $\sqrt[n]{A}$ entonces puedes solucionar la ecuación $f(x) = x^n - A = 0$.

En ese caso $f'(x) = nx^{n-1}$ y nuestra iteración es:

$$x_{k+1} = x_k - \frac{(x_k)^n - A}{n(x_k)^{n-1}} = \frac{(n-1)(x_k)^n + A}{n(x_k)^{n-1}}$$

Secante

5.1. Definición

Resulta ser que evaluar derivadas no suele ser super fácil :v Por lo tanto podemos aproximar la derivada como:

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

Entonces basta con esto para llegar a la iteración del método de secante:

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Regla Falsa

6.1. Definición

Aqui tenemos como dos estilos, bisección es perfecto en sentido de que una vez elegidos puntos iniciales validos, la raíz ya esta "encerrada" y con cada iteración solo mejoramos.

Mientras que Newton y Secante con mucho mas rápidos pero si tomas puntos iniciales feos estos métodos divergen y nunca tendrás una respuesta, de hecho cada iteración será peor.

Así que este método es como un DLC en Secante con el objetivo de siempre estar seguro de que va a converger:

6.1.1. Iteración

- 1. Tienes dos puntos iniciales (x_0, x_1) que encapsulen la raíz, puntos válidos para el método de bisección.
- 2. Ahora crea x_2 usando la iteración de la secante
- 3. Ahora tienes 3 puntos, para elegir con cuales dos quedarte usa la idea de bisección. Así de sencillo.
- 4. Regresa al principio

Parte II

Aproximar Sistemas de Ecuaciones NO lineales

Ideas generales de ceros de funciones

7.1. Ideas

Esto es sencillo, lo que tienes que hacer si es que tienes un montón de ecuaciones raras a las que quieres encontrar solución basta con tomar tu sistema e igualarlo a cero.

Y ahora lo que estas viendo es nada más y nada menos que una función vectorial, que toma todos tus parametros y te regresa un vector columna de todas tus ecuaciones evaluadas en ese punto.

Así que resolverlas es tan sencillo como encontrar una raíz dentro de una función vectorial.

Newton Generalizado

8.1. Ideas

Recuerda que la iteración de Newton es:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - f'(x_k)^{-1}f(x_k)$$

Por lo tanto la idea de Newtons generalizado es que si $F(x): \mathbb{R}^n \to \mathbb{R}^n$:

$$\overline{x_{k+1}} = \overline{x_k} - J_F(\overline{x_k})^{-1} F(\overline{x_k})$$

Espera, espera, que demonios es J_F te preguntaras, pues, es el Jacobiano, es una matriz que representa "la derivada de la función $\mathbf{F}(x)$ ".

Pero, como te darás cuenta no solo hay que calcular el Jacobiano, sino que hay que evaluarlo y después invertir la matriz que nos da, y eso, pequeño ser humano no es fácil, así que podemos expresar la iteración de otra manera:

$$\overline{x_{k+1}} = \overline{x_k} + \overline{S}_k$$

Donde \overline{S}_k como la solución al sistema:

$$J_F(\overline{x_k})\overline{S}_k = -\boldsymbol{F}(\overline{x_k})$$

Parte III Interpolantes

Ideas Generales

9.1. Definición

Suponte que existe una función (f(x)) que queremos conocer, pero que no conocemos : (Lo único que tienes es un montón de puntos (x_i) y el valor de la función en ese punto (y_i) .

Lo que haremos en este cápitulo será aproximar a esa función en un intervalo.

Interpolante Lineal

10.1. Definición

Lo único que hacemos es aproximar la función como un montón de lineas, y bueno, no hay mucho más que decir.

El interpolante esta dado por:

$$I(x) := I(x_i) = y_i + \frac{x_{i+1} - x_i}{y_{i+1} - y_i}(x - x_i)$$

Figura 10.1: Ejemplo de como se ve

Interpolante Grado N

11.1. Definición

Es la idea clásica, es suponer que la función que estamos buscando es un polinomio de grado n, en cuyo caso basta con hacer la clásica matriz de Vandermonde y resolver por mínimo cuadrados y obtendremos los coeficientes que estamos buscando.

Interpolante de Lagrange

12.1. Definición

La idea es basicamente la misma, si tenemos n puntos y sus valuaciones entonces podemos facilmente ver que existe un solo polinomio de grado n que pasa por esos puntos. Justo como en el interpolante pasado, pero la diferencia en como obtenemos dicho polinomio.

12.2. Polinomio de Langrange

El polinomio de Langrange esta asociado a un punto en especial de nuestro conjunto de puntos. Tiene que cumplir que:

- Para un x_i tenemos que $L_i(x_i) = 1$
- Para un x_j tal que $i \neq j$, entonces $L_j(x_i) = 0$

Veamos como sería para el caso de los puntos:

Ejemplo:

Suponte que tenemos dos puntos (x_0, y_0) y (x_1, y_1) . Entonces lo que queremos es un polinomio que evaluado en esos puntos de lo que tiene que dar y de grado 2. Es sencillo:

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 $L_1(x) = \frac{x - x_0}{x_1 - x_0}$

Entonces el interpolante es tan sencillo como:

$$I(x) := f(x_0) L_0(x) + f(x_1) L_1(x)$$

Siendo generales tenemos que:

■ Un polinomio de Lagrange:

$$L_k(x) := \prod_{i=0, i \neq k} \frac{x - x_i}{x_k - x_i}$$

• Nuestro interpolante:

$$I(x) := f(x_0) L_0(x) + f(x_1) L_1(x) + \cdots + f(x_n) L_n(x)$$

Interpolante de Newton

13.1. Definición

La idea es basicamente la misma, si tenemos n puntos y sus valuaciones entonces podemos facilmente ver que existe un solo polinomio de grado n que pasa por esos puntos. Justo como en el interpolante pasado, pero la diferencia en se vera dicho interpolante.

Queremos que se vea como:

$$I(x) := a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Ahora todo lo que necesitamos saber es como sacar esos coeficientes.

13.2. Diferencias Divididas

Decimos que la i-ésima diferencia dividida de orden cero es:

$$f[x_i] = f(x_i)$$

Denotamos la i-ésima diferencia dividida de primer orden como:

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$

Por lo tanto podemos generalizar y decir que:

$$f[x_i, \dots, x_j] := \frac{f[x_{i+1}, \dots, x_j] - f[x_i, \dots, x_{j-1}]}{f(x_i) - f(x_j)}$$

Y lo mas genial ahora es que podemos mostrar el interpolante es:

$$I(x) := f[x_0] + \sum_{k=i}^{n} f[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1})$$

Parte IV Optimización

Sección Áurea

14.1. Unimodal

Tomemos una función unimodal $f(x) : \mathbb{R} \to \mathbb{R}$ dentro de un rango [a, b].

Decir que es unimodal es decir que la función antes del mínimo siempre decrece y después del mínimo siempre crece.

O más formalmente tenemos que:

- $\forall x_1, x_2 \text{ tal que } x_1 < x_2 < minimo \text{ entonces } \boldsymbol{f}(x_1) > \boldsymbol{f}(x_2)$
- $\forall x_1, x_2 \text{ tal que } minimo < x_1 < x_2 \text{ entonces } \boldsymbol{f}(x_1) < \boldsymbol{f}(x_2)$

14.2. Algoritmo

Toma un segmento en el que nuestra función f(x) es unimodal. Llamemoslo [a,b]. Entonces definimos:

$$\tau = \frac{\sqrt{5} - 1}{2} = 0.618$$

$$1 - \tau = 0.382$$

$$x_1 = a + (1 - \tau)(b - a)$$

$$x_2 = a + (\tau)(b - a)$$

Con esta definición creo que es fácil probar que a < b

Ahora, pueden pasar dos cosas:

•
$$f(x_1) < f(x_2)$$
:

Entonces estamos seguros de que el mínimo no puede estar en el segmento $[x_2, b]$ porque como vimos es una función unimodal.

Por esto mismo tomamos que:

$$\bullet$$
 $b = x_2$

•
$$x_2 = x_1$$

•
$$x_1 = a + (1 - \tau)(b - a)$$

•
$$f(x_1) > f(x_2)$$
:

Entonces estamos seguros de que el mínimo no puede estar en el segmento $[a, x_1]$ porque como vimos es una función unimodal.

Por esto mismo tomamos que:

•
$$a = x_1$$

•
$$x_1 = x_2$$

$$\bullet \ x_2 = \mathbf{a} + (\tau)(\mathbf{b} - \mathbf{a})$$