These notes were made following the TOTAL: CompTIA Security+ Certification (SY0-501) course from Mike Meyers and Total Seminars.

Section 1: Risk Management

- CIA of Security
 - CIA Triad (Goals of Security)
 - Confidentiality
 - Integrity
 - Availability
 - Confidentiality: Keeping data secret from anyone who shouldn't be accessing it.
 - Integrity: Ensures data and systems is in an unaltered state when stored, transmitted, or received.
 - Availability: Ensures systems and data is available to authorized users when needed.
 - Also added:
 - Auditing & Accountability: Keeping track of what goes on (logs).
 - Non-Repudiation: Ties into accountability; making it to where users cannot deny an action.

Risk Management

- Identification, assessment, and prioritization of risk.
- Potential to harm organizations, people, systems.
 - Assets
 - Any part of our infrastructure that we protect.
 - Servers, routers, firewalls, systems.
 - People.
 - Server room doors, physical aspects.
 - Vulnerabilities
 - A weakness to an asset to be exploited.
 - Default passwords on equipment.
 - Server room that is unlocked.
 - Threats
 - A negative event or action that exploits a vulnerability.
 - An actual login attempt by hacker.
 - Threat agent
 - A person or entity that follows throw with the threat.
 - Likelihood
 - A level of certainty that a negative event will happen.
 - Often an annualized basis or percentage.
 - Two ways to measure likelihood:
 - Quantitative: A power supply for a Cisco device dying. (10%.)
 - Qualitative: Customer loyalty after a bad event. (Low, medium, high.)
 - Impact
 - Harm caused by a threat.
 - Preceded by a negative event happened.
 - Quantitative values: Cost, labor, time.
 - Qualitative values: Reputation, name recognition.
- Threats -> vulnerabilities = risk

their tasks?

■ NIST SP 800-30 is a standard document of risks and vulnerabilities and is an industry standard.

Threat actors

- Attributes:
 - Internal/external: Are these threat actors within the company or in a different country?
 - Level of sophistication: Threat actors can wreak havoc on basic levels or be very sophisticated and experiences.
 - and experiences.
 Resources and funding: How much funding and willingness exists for threat actors to carry out

- Intent: What is the intention? Money? White hat, black hat.
- Open-Source Intelligence (OSINT): Social media, public records.
- Types of threat actors:
 - Script kiddies (skiddies)
 - Trivial attack knowledge
 - Use scripts and pre-made tools
 - Most cases are easily preventable.
 - Hacktivist
 - Intent is motivation of activism
 - Organized Crime
 - Smart groups of hackers to make money
 - Nation states/Advanced Persistent Threat (APT)
 - Motivation is intelligence and sensitive information
 - Sophisticated toolsets.
 - APTs gain access to a system and stay put, continuing to funnel information.
 - Insiders
 - Not always an employee could be anyone within the infrastructure/organization.
 - Do they have access to information? (Usernames/passwords)
 - Competitors
 - Not as big of an issue in today's society due to private business laws.
- Keep in mind, what are the attributes to be applied to each threat actor?

Managing Risk

- Risk Identification/Assessment
 - Catalog and define all assets/Vulnerability Assessment
 - What are the vulnerabilities of our assets?
 - NIST SP 800-37 summarizes vulnerabilities of assets, but very broad.
 - cve.mitre.org
 - Common Vulnerabilities and Exposure Database
 - Administered by the Mitre Corporation
 - Goes into detail about vulnerabilities
 - Example: Mail application built-into Osx 8.0 or earlier vulnerable to sniffing.
 - Nessus, which is a program ran on the LAN that generates a report of vulnerabilities, is used guite often.
 - Penetration (pen) testing
 - Outside party of some sort looks for vulnerabilities and ways to exploit them, and reporting to the company.
 - Threat Assessment
 - Looking to define threats applicable to our infrastructure.
 - Adversarial threats:
 - Hacker, malware, etc.
 - Accidental threats:
 - User accidentally corrupts database.
 - Administrator accidentally reformats HDD on a server.
 - People who have permissions to cause damage, but done on accident.
 - Structural:
 - Power supply dies, camera goes out, equipment failure, software failure.
 - Environmental:
 - Fires, water, AC going out causing overheating.
 - Risk Response
 - Opportunities:
 - Mitigation: Applying a security control to a particular risk.

- Risk Transference: Offloading some likelihood, risk, and impact onto a third party.
 (Example: moving a server to the cloud.)
- Risk Acceptance: Where the likelihood and impact of a risk is less than the cost of mitigating the risk.
- Risk Avoidance: This particular combination of risk and likelihood is too high to even consider, so dropping the risk all together.

Frameworks

- A workflow or methodology, or an idea of a process to deal with risk management.
- Sources of two commonly used frameworks:
 - NIST Risk Management Framework Special Publication 800-37
 - ISACA Risk IT Framework
- Boils down to: assessment, applying security controls, monitor the situation, respond to any risks; then the process continues in a circular motion.
- Using guides for Risk Assessment
 - CompTIA views this as "How do we secure stuff?" in a broad stroke.
 - Types of guides:
 - Benchmark: A company who sells a router should tell you what percentage of CPU usage at any time.
 - We can do our own benchmarks, such as running a benchmarking tool on a machine to check network throughput, etc.
 - Use threshold values to verify expected throughput or action.
 - Secure Configuration Guides:
 - Routes, operating systems, wireless access points all of these devices have a "proper" or "recommended" configuration.
 - Platform and vendor guides.
 - Examples:
 - Apache Security Tips for their web server.
 - Windows guide for "Configure Web Server Security (IIS 7).
 - NIST provides guides for securing operating systems, such as "Guide to Securing Apple OS X 10.10 Systems for IT Professionals"
 - Network Infrastructure Devices:
 - Examples:
 - Beginner's Guide to EdgeRouter (for Ubiquiti)
 - NIST Guide SP 800-153 "Guidelines for Securing WLANs"
 - General Purpose Guides:
 - Lists of security controls, in a general sense, to apply.
 - Example:
 - NIST SP 800-123 "Guide to General Server Security"
 - Broad, less specific topics, such as: user accounts, password policies, intrusion protection, etc.

Security Controls

- A verb or action, a mechanism applied to our IT infrastructure to protect from security problems or remediate existing security problems.
- Not just IT security physical building security, phishing training for employees, etc.
- Apply, monitor, and applying security controls to IT infrastructure.
- Broken into categories:
 - Administrative Control (Management Control)
 - Controls actions people make towards IT security.
 - Laws
 - Policies
 - Guidelines
 - Best practices

- What do people do?
- Technical Control
 - Controls actions IT systems make towards IT security.
 - Computer stuff
 - Firewalls
 - Password links
 - Authentication
 - Encryption
- Physical Control
 - Controls actions in the real world.
 - Gates
 - Guards
 - Keys
 - Man traps
- Security Control Functions:
 - Deterrent
 - Deters the actor from attempting the threat
 - Preventative
 - Deters the actor from performing the threat
 - Detective
 - Recognizes an actor's threat, may or may not do anything about it.
 - Corrective
 - Mitigates the impact of a manifested threat
 - Compensating
 - Provides alternative or temporary fixes to any of the above functions.
- Interesting Security Controls
 - Mandatory Vacation
 - Requires individuals to take vacation used to detect fraud and unauthorized activity.
 - Job Rotation
 - Periodically switching people around to different positions, also avoids contempt of position.
 - Multi-Person Control
 - More than one person is needed to accomplish a task or function, and also allows multiple people to make sure it is done correctly.
 - Separation of Duties
 - Administrative control. Single individuals should not perform all critical or privileged duties across the board.
 - Principle of Least Privilege
 - Users granted only the level of privilege that is needed for their job.
- Defense in Depth
 - AKA, Layered Security.
 - Diversity vs. Redundancy
 - Redundancy is the same type of security control implemented over and over again.
 - Diversity is varying controls implemented at once.
 - Defense in depth is typically discussed in regards to a variety of physical, administrative, and technical controls.
 - Vendor diversity is a method of defense in depth with technical controls.
- Security Governance
 - Governance is a set of overarching rules that defines how an organization and its personnel conduct themselves.

- IT Security Governance is a set of overarching rules that defines how an organization and its personnel conduct IT security.
- Sources of Security Controls:
- Laws and Regulations
 - Example: HIPAA
- Standards
 - Government Standards: NIST or ISO
 - Industry Standards: PCI-DSS (Credit card standards)
- Best Practices
 - Microsoft Best Practices
- Common Sense & Experience
 - What has worked in the past? What do I think is the best way to do something?
- Creating policies:
 - Broad in nature
 - Used as directives
 - Define roles and responsibilities
- Organization standards define the acceptable level of performance of policy.
- Security controls come from the policies and standards.
- A procedure is a step-by-step process of how we do a task.

- Guidelines
 - A guideline is considered optional.
 - Not clearly defined.
 - Just an idea of how we should tend to do something.
- Security Policies
 - Acceptable Use Policy
 - Most well-known.
 - Defines what a person can or can not do when using company assets.
 - Uses very broad strokes.
 - Data Sensitivity and Classification Policies
 - Defines importance or nature of data.
 - Applying labels to types of data (top secret, secret, confidential, etc.)
 - Access Control Policies
 - Defines how someone gets access to data or resources.
 - Can cover passwords, fobs, smart cards, etc. Defines what type of data users have access to.
 - Addresses data access and classification restrictions.
 - Can be incorporated into Acceptable Use Policy, Data Classification Policy, etc.
 - Password Policy
 - Defines how we deal with passwords.
 - Typically incorporated into other documents.
 - Covers password recovery/loss.
 - Bad login attempts.
 - Password retention and reuse policies.
 - Care and Use of Equipment

- Often under Acceptable Use Policy.
- Covers maintenance of equipment, how to borrow/check out equipment, responsibility matrixes.
- Privacy Policies
 - Applied to customers and in-house.
 - Common among social media for customers of that media.
- Personnel Policies
 - Deals with the people dealing with our data.
 - Background checks, security clearances, etc.
 - "We will use job rotation and mandatory vacations."
 - If it has to do with a person, and a person dealing with data, it goes in a personnel policies.

Frameworks

- Nothing more than a process idea. Provides organization for good IT security infrastructure.
- Types of Frameworks:
 - Regulatory
 - Non-Regulatory
 - National standards
 - International standards
 - Industry-specific frameworks
- Examples of Frameworks:
 - NIST SP800-37 National standard and US federal regulatory.
 - ISACA IT Infrastructure Non-regulatory.
 - ISO 27000 International standard
- NIST Risk Management Framework

Risk Management Framework

- Categorize workflows, processes, vendors, organizational inputs/outputs.
- Select security controls look at what is taking place, and based on regulations/laws/best practices, etc. choose what to implement.
- Implement security controls.
- Assess security controls once implemented. Verify that everything works the way it is supposed to. Often done in a sandbox.
- Authorize information systems. Creates lessons learned, and establishes hierarchy of responsibility.
- Monitor security controls. Watch the controls and making sure it is mitigating/eliminating risk, not impacting users' lives too severely, etc.

Quantitative Risk Calculations

- Asset value
 - Not just the cost of an item. For example:
 - A router costs \$2500. Factor in cost of a technician to replace it, and how much money/productivity is lost during the downtime. (Router = \$2500, plus \$500/day for a technician, plus the \$2000 lost per day makes the asset value \$5000.)
- Exposure Factor

- Percentage of an asset that's lost as a result of an incident.
- A router that, if shorted, would be a full loss; would be an EF of 1.
- A server room that, if flooded, would only have some items damaged, could be an EF of .75.
- Asset Value x Exposure Factor = Single Loss Expectancy
 - The \$5000 asset value of the router example, at an exposure factor of 1 (5000 x 1 = 5000).
- Annualized Rate of Occurrence = in a given year, what are the chances of this particular instance taking place.
 - If it floods once every twenty years, that would be .05.
- SLE x ARO = Annualized Loss Expectancy

- MTTF Mean Time To Failure Usually applied to an item that cannot be repaired.
- MTTR Mean Time To Repair
- MTBF Mean Time Between Failures Usually applied to an item that can be repaired.

o Business Impact Analysis

- The study and analysis of the impact on the organization when a disruption occurs.
- BIA Basics:
 - Determine mission process. What are the things that we do within our IT infrastructure to perform our jobs?
 - Identify critical systems. If our modem is not working, we cannot do our jobs.
 - Single point-of-failure. Set up redundancy to minimize this.
 - Identify resource requirements. In order to access payroll files, we need the servers that store them to be available.
 - Identify recovery priorities. If everything goes down, what are the priorities to make the business recover best?
- Impact examples:
 - Monetary loss
 - Property loss
 - People
 - Safety
 - Life
 - Finance
 - Ability to create revenue. Cash flow. Credit. Payroll.
 - Reputation
- Privacy Impact Assessment (PIA)
 - What will the impact be to us if the private data we control were breached?
 - PII (Personally Identifiable Information)
 - PHI (Personal Health Information)
- Privacy Threshold Assessment (PTA)
 - What is this data? Where is this data? How are we storing this data?
- A PIA and PTA are both done in order to understand what the impact what the loss of personal information can do to a business.
- Recovery Time Objective (RTO)
 - The minimum time necessary to restore a critical system operation. The maximum time a critical system can be down without substantial impact.

- Recovery Point Objective (RPO)
 - Maximum amount data that can be lost without substantial impact.

Organizing Data

- Data Labeling allows recipients of the data to know if or how the data can be shared.
- Data types:
 - Public data is data that has no restriction, within the public domain.
 - Confidential data is data that one party offers to a second party, but only to that party. Limited to authorized viewing.
 - Private information is information that is limited to only the individual to whom the information is shared. Personally Identifiable Information (PII).
 - Proprietary is private information at a corporate level.
 - Protected Health Information (PHI) is any information pertaining to the health of a particular person. Health Insurance Portability and Accountability Act (HIPAA).

Data roles:

- Owner of the data. Person/entity who has the legal responsibility for the data.
- Steward/custodian, who is meant to maintain the accuracy and integrity of data.
- Privacy Officer is the person who is in charge of ensuring data adheres to privacy policies and procedures.

Data users:

- Users. Assigned standard permissions to complete task.
- Privileged users. Increased access and control relative to a user.
- Executive users. The user who makes strategic decisions, sets policies on data and incident response actions.
- System administrators. Has access to delete entire databases, set permissions on all others, etc.
- Data owner/system owner. People or organizations who have legal ownership of particular dataset or system.

Security Training

- Onboarding is the process that takes an entity outside of your infrastructure that brings that entity into your infrastructure.
 - Requires background check.
 - Non-disclosure agreement (NDA)
 - Standard operating procedures.
 - Specialized issues. (Requirement of clean desk, etc.)
 - Rules of behavior (Good acceptable use policy)
 - General security policies. (Social media use, etc.)
- Offboarding is the process in which someone leaves your infrastructure.
 - Disable accounts
 - Never delete.
 - Return credentials
 - Exit interview
 - Knowledge transfer
- PII is a huge part of training for legality's sake, stolen information, etc.
- NIST 800-122 goes into great detail on the concept of PII.
 - Information to watch out for:
 - Full name
 - Home address
 - Email address
 - National Identification number (social security)
 - Passport number
 - Vehicle registration plate number
 - Driver's license number

- Face, fingerprints, or handwriting
- Credit card numbers
- Digital Identity
- Date of birth
- Personnel Management Controls
 - What people do in terms of work to keep our infrastructure as secure as possible.
 - Examples:
 - Mandatory vacations
 - Verifies dependency issues
 - Prevents collusion
 - Makes fraud more difficult
 - Job rotation
 - Redundancy and backup
 - Makes fraud more difficult
 - Allows for cross-training
 - Separation of duties
 - Requires dual or more execution
- Role-based Data Controls
 - System owner
 - Management level
 - Maintains security of the system
 - Defines a system administrator
 - Works with all data owners to ensure data security
 - System administrator
 - Assigned by system owner to perform day-to-day administration
 - Implements security controls
 - Data owner
 - Defines sensitivity of data
 - Defines protection of the data
 - Works with system owner to protect data
 - Defines access to the data
 - User
 - Accesses and uses the assigned data responsibility
 - Monitors and reports security breaches
 - Privileged user
 - Has special access to the data beyond the user
 - Works closely with system administrators to adhere to security
 - Executive user
 - Read only access to all data on system
- Third party agreements
 - Business Partners Agreement (BPA)
 - Includes primary entities, time frame, financial issues, management.
 - Service Level Agreement (SLA)
 - Includes service to be provided, minimum up-time, response time (contacts), start and end date.
 - Interconnection Security Agreement (ISA)
 - NIST 800-47
 - Statements of requirement (Why are we interconnecting? Who is interconnecting?)
 - System security considerations (What information is interconnecting? Where is this information going? What services are involved? What encryption is needed?)
 - Topological drawings.
 - Signature authority (timeframe, technical reviews, security reviews)
 - Memorandum of Understanding/Agreements (MOU/MOA)
 - ISA's are typically reinforced by these.

- Not a contract, but looks like one.
- Includes purpose of the interconnection, relevant authorities, specify the responsibilities (downtime, billing, etc.), defines terms of the agreement (cost, etc.), termination/reconnection.

Section 2: Cryptography

- Cryptography Basics
 - Cryptography is the process of taking data, providing confidentiality to that data, and then outputting it again. The practice of disguising information in a way that looks random.
 - Obfuscation: To take data that looks like it makes sense and hide it.
 - Diffusion: Making an image blurry or fuzzy.
 - Confusion: Making an image stirred up or non-sensical.
 - Encryption/decryption
 - Ceaser Cipher
 - Includes substitution. One of the earliest known and simplest ciphers.
 - Example:

WeAttackatDawn

BJFYYFHPFYIFBS

- Easily decrypted with cryptanalysis.
- Vigenère Cipher
 - Like a Ceaser Cipher with more confusion involved.
 - Example:

We Attack at Dawn BECXYAEO FT FEBN

- Classic cryptography components:
 - Algorithm
 - Key for encryption
- Algorithms for binary data
 - Exclusive OR (XOR)
 - Example:

- Kerckhoffs' Principle
 - As long as you don't know what the key is to an encryption, you can understand the algorithm completely.
 - Today's algorithms are open standard.
 - By showing everyone the "lock", anyone can check the "lock" to see if it's pick-able.
 - Everyone knows the algorithm, but if you don't know the key, it doesn't do you any good.
- Data at rest
 - Thumb drive, DVD, CD, etc.
- Data in transit
 - VoIP call, text message, etc.
- Data in process
 - Calculating in database where it is sitting in RAM/CPU.
- Where do we encrypt/decrypt this data?
- Cryptographic methods
 - Symmetric Encryption is where the same key is used to encrypt and decrypt a piece of data.
 - In-band keys are sent with the encrypted data.
 - Out-of-band keys have a key sent separately from the encrypted data.
 - Symmetric encryption is the primary way that we encrypt data.
 - Ephemeral key is a key that is temporary. Provides perfect forward secrecy.
 - When a key is setup in a way that knowledge of a key used in a previous session keeps someone able to crack encryption in a current session, that is called perfect forward secrecy.
 - Asymmetric encryption does not use a key. It uses a key pair.
 - Public key
 - Given to anybody
 - Only used to encrypt
 - Private key
 - Kept by the sender of encrypted data
 - Only used to decrypt
 - Asymmetric encryption's big issue beyond key generations and exchanging, it is slow. It is mainly used to send a secure session key.
 - A cryptosystem is a highly defined piece of cryptography that programmers use to do their job and make cryptography work.
 - It defines key properties, communication requirements for the key exchange, and the actions taken through encryption/decryption.
- Symmetric Cryptosystems
 - Algorithms have to be known to everybody, and it has to have a key of different lengths that are kept secret.
 - Symmetric Key Algorithms is defined by the same key used for encrypting/decrypting.
 - A Symmetric Block Algorithm continues to take defined blocks of data, encrypting that data, and continuing to repeat the process until all of the target data is encrypted.
 - Data Encryption Standard (DES) was invented primarily by IBM and is still used by the US Government.

- 64-bit plain text
- Initial Permutation stirring of the data.
- Key, has last 8 bits dropped, split into two 28-bit chunks.
- The first 24-bits of each chunk is then combined to make a SubKey (48-bits).
- The initial data has a Feistel Function performed
 - Take the 64-bits and split into 32-bit halves.
 - A 32-bit half is expanded to 48-bit using an Expansion function.
 - An XOR function is applied, using the SubKey.
 - S Boxes are used. Each S Box takes in 64-bits and outputs 4-bits.
 - 8 different S Boxes with a different 4-bit output.
 - Apply all S Boxes to the data, creating a 32-bit output.
 - A final permutation is performed, where the two 32-bit pieces of data are put together but backwards.
- DES had issues with a short key. DES can be hacked in certain circumstances.
- Two alternatives to DES: Blowfish, and 3DES (Triple DES).
- Three things we look at regarding symmetric block encryptions.
 - Key size
 - Number of rounds
 - Block size
- DES:
 - Block Cipher
 - 64-bit Block Size
 - 16 Rounds
 - Key Size: 56-bit
- 3DES:
 - DES, but tripled.
 - Block Cipher
 - 64-bit Block Size
 - 16 Rounds
 - Key Size: 56-bit x 3 = 168-bit.
- Blowfish
 - 64-bit Block Size
 - 16 Rounds
 - Key Size: Variable 32 to 448-bits.
- AES
 - Advanced Encrypted Standard. Supported by NIST.
 - Symmetric Block Encryption
 - In essence, un-hackable.
 - Block Cipher
 - 128-bit Block Size
 - Key Size: 128, 192, or 256-bit.
 - Rounds: 10, 12, or 14.
- A streaming cipher is where each bit is encrypted once at a time, in a pseudo-random manner.
 - RC4 is one of the only streaming ciphers. It is asymmetric.
 - Rivest Cipher 4 (RC4):
 - 1-bit at a time.
 - 1 round.
 - Key Size: Variable from 40 to 2048-bits.

Symmetric Block Modes

- Electronic Code Book (ECB) can create patterns by using the same key to encrypt blocks repeatedly. Always outputs same results with the same input.
 - This can apply to voice, data, anything that is encrypted.
- A binary block is plain text converted into 16-bit, 64-bit, or 128-bit binary ciphertext.

- We use different Block Modes to obfuscate the data better.
- All Block Modes creates a chain of encryption.
- The following Block Modes use an Initialization Vector, which ensures the output block is uniquely different.
 - Cipher Block Chaining (CBC)
 - Uses an Initialization Vector.
 - First block has XOR ran onto it.
 - Cipher Feedback (CFB)
 - Uses an Initialization Vector, that is encrypted. The output of that encryption is XOR'd to the first block.
 - Output Feedback
 - One Initialization Vector, encrypted, and the output is XOR'd to the first block.
 Same Initialization Vector continues to be used.
 - Counter (CTR)
 - Uses a Nonce Value + Counter Value that continues to increment in binary. Then it is encrypted, and the first block of the plain text is XOR'd to create the first block of Cipher Text.
- Nobody uses ECB anymore.

RSA Cryptosystems

- RSA is an asymmetric algorithm.
- Two large prime numbers multiplied together to form a semiprime number to generate a key pair.
- Each public key has a single private key. Without the private key, the information can not be decrypted.
- RSA includes protocols to authenticate the intended recipient.
- RSA now uses a 2048-bit minimum for a key size in today's society.
- ECC: Elliptic Curve Cryptography
 - Provides very small keys to transfer with the same robustness as large RSA keys.
 - ECC is based on an Elliptic Curve formula:

$$y^2=x^3+ax+b$$

Key pair can be plotted on elliptic curve.

Diffie-Hellman

- An asymmetric algorithm, that is meant to provide a methodology for two parties to come up with the same session key.
- Key Exchange (Agreement) Protocol

Diffie-Hellman Groups				
	Group 1	768 bit modulus		
	Group 2	1024-bit modulus		
	Group 5	1536-bit modulus		
	Group 14	2048-bit modulus		
	Group 19	256-bit elliptic curve		
	Group 20	384-bit elliptic curve		
	Group 21	521-bit elliptic curve		

- Subject to cracking due to large integers.
- Groups help by defining the size or type of key structure to use.

■ PGP/GPG

■ Invented for e-mail encryption, originally.

- Used to sign files, encrypt individual files, partition/disk encryption.
 - PGP uses the idea of a random key generated by the encryptor.

PGP Decryption

■ Public Key Infrastructure (PKI)

- PGP Certificates
 - Symantec Corporation
 - Encrypts mass storage
 - Signing
 - Disk encryption
 - Bitlocker/Filevault
 - Designed for enterprise cloud solutions
 - OpenPGP
 - Free
 - Open-source
 - Encrypted e-mail
 - PKI support
 - Works with S/MIME
 - GPG (GNU Privacy Guard)
 - Free toolset

- File and disk encryption
- Hashing
 - A hash provides integrity in regards to the CIA triad.
 - An algorithm that takes an arbitrarily large amount of data that runs through the hash, and comes out in a fixed value each time.
 - Hashes are one-way. Once a hash is generated, it is impossible to figure out what the original data was.
 - Hashes are used to verify sources.
 - Types of Hashes:
 - Message Digest 5 (MD5)
 - Invented 1992 by Ron Rivest
 - Uses 128-bit hash
 - Can create collisions.
 - Secure Hash Algorithm (SHA)
 - Developed by National Institute of Standards
 - SHA-1 is the earliest type. 160-bit hash.
 - Can create collisions.
 - SHA-256 (SHA-512)
 - Newer version of SHA with 256-bit or 512-bit hashes.
 - RIPEMD (RACE Integrity Primitives Evaluation Message Digest)
 - Not very common.
 - Open standard
 - 128, 160, 256, 320-bit versions.
 - Examples of hashes:
 - Password storage. Password saved as hash onto hard drive, not the plain text of the password.
 - Encryption and authentication

HMAC

- Hash-based Message Authentication Code (HMAC)
- Takes one individual packet and adds information to the end of that packet.
- Generates hash, but not just a hash of the message; it also uses the key.
- <u>www.freeformatter.com</u> has an HMAC generator/tester tool.
- Provides message integrity.
- Requires each side of the conversation to have the same key.
- Based on standard hashes (MD5, SHA-1, etc.)

Steganography

- Process and science of taking data and hiding it in other data.
- The data itself may or not be encoded, but it is hidden in other data.
- Text hidden within graphic images, most commonly.
- Image Steganography: used to embeds data into .png, .jpeg, .bmp.
 - Tool used to input secret text into image.
 - In order to retrieve the data, the image must be decoded using the same tool by the recipient.

Certificates and Trust

- HTTPS websites will send public key to your system.
- Key exchange
 - How do we determine where the public key comes from? Or that it is legitimate?
 - Either key in a private and public pair can be the public key.
 - Different strings of ones and zeroes.

- A digital signature is just a hash. A webpage has its entire webpage encrypted and sent to the client, and the client hashes it and compares the hash with the server.
 - A public key can have the originator's digital signature as well as a third party's attached to it, used to verify trustworthiness.
- A digital certificate is a document that includes a public key, a digital signature from the generator, and the third party's digital signature.
 - Third parties create the digital certificate for the user.
- Ways of trust:
 - Generate your own certificate
 - Unsigned certificate
 - A web of trust requires maintenance and a lot of work.
 - This includes many end users certifying certificates.
 - PKI (Public Key Infrastructure)
 - A hierarchal structure.
 - CA (Certificate Authority)
 - An organization that issues certificates.
 - Intermediate Certificate Authorities meant to load balance the CA's themselves.

Public Key Infrastructure

- PLI is a trust model.
- The infrastructure that we use for every real world application that uses public keys/digital certificates.
- Root certificate is the top of the hierarchy, distributes certificates to intermediate systems.
- PKI is NOT a standard.
- PKCS is the de facto "standard" for most systems.
 - Public Key Cryptography Standards = PKCS
- PKI is based off of X.509, which defines organization through hierarchy to access data on a timely basis.
- PKCS #7 is used to export certificates to an individual without private keys.
- PKCS #12 is used to export certificates with private keys encrypted within it as a package.
- CRL (Certificate Revocation List) Distribution Points
 - Gives your system the opportunity to audit trail the certificate.
 - CRLs can take up to 24-hours to react to "bad" certificates.
 - An expired certificate is not a "bad" certificate.
- Since CRLs take so long, the modern era uses OCSP (Online Certificate Status Protocol).
 - OCSP is real-time in terms of checking if a certificate is bad.

Cryptographic Attacks

- Interpreted as cracking passwords.
- Passwords are traditionally hashed.
- Password attacks are typically cracking hashes.
- One of the hardest aspects of attacking is how to get into a server or system in which passwords are stored.
- If the password is stored in a hash, there's no way to reverse the hash.
 - Hashing attacks are comparative attacks. Generating hashes over and over until one matches the hash found.

- Brute Force Attack is when a hash is put into a program and ran repeatedly to generate a match.
 - Takes a lengthy amount of time.
 - Generating, based on predefined character range, hashes to find a match.
- Dictionary Attack uses a text file with dictionary words that manipulates them in an attempt to crack commonly-used human passwords.
 - Text files with hundreds of thousands of dictionary words can be downloaded and used to reference in an attack.
 - Takes advantage of the fact that human beings use words they are familiar with for passwords.
- Rainbow-Table Attack
 - A rainbow-table is a pre-generated bunch of hashes.
 - An indexed hash table.
 - Uses reduction formula.
 - Already has hashes in it.
 - A rainbow-table is massive. Small rainbow tables are over 10GB.
 - A hash table is nothing more than a bunch of words with a hash in it.
- Most good password storage obfuscates the password hash to make it harder to crack.
 - OpenSSH, for example, adds two random bytes to the end of a password hash.
- Salt
 - An arbitrary value
 - A salt situation example:
 - Password = Timmy
 - Password with salt 3456 = Timmy3456
 - This means that the password is altered BEFORE it is hashed.
 - Salted hash tables are very hard to crack.
- With wireless, key stretching is used.
 - A passphrase and SSID together generates a combined hash that is much harder to crack.
 - WPA for wireless uses PBKDF2
 - Key stretching technique bcrypt
 - Proper key stretching is basically unhackable, with proper password precautions.
- Complex passwords are used to make cryptographic attacks harder.

Section 3: Identity and Access Management

- Identification
 - Identification, Authorization, Authentication
 - Identification just proves who the user is to the authenticating systems.
 - Authentication is the user proving they have rights to that system.
 - Authorization is what rights the user has to the system once authenticated.
 - Authentication Factors
 - Something you know.
 - Passwords, PIN codes, CAPTCHA, security questions.
 - Something you have.
 - Smart card.
 - Embedded somewhere on the smart card has a chip with a unique identifying code.
 - RSA key (token)
 - Can be software based or hardware based.
 - Stores a secret code of some form.
 - Generates a value that changes every so often.
 - Something about you.
 - Retinal scanners. Finger print scanners. Iris patterns.
 - Something you do.
 - Rhythm of typing, typing style.
 - Somewhere you are.

- A credit/debit card detecting an interaction out-of-state, entering zip code for gas station.
- Federated Trust
 - Trust inherited from a different trusted system.
 - Used in Windows Active Directory
 - Domains trusting other domains
- Multi-factor Authentication (2FA/MFA)
 - Fingerprint scanner + username and password.
 - Password + hardware token.

Authorization Concepts

- Authentication is used to access a system, while authorization is used to determine what a user can do within a system.
- Concepts:
 - Permissions
 - What are the things assigned to a user?
 - Administrators assign permissions
 - Groups/OUs are often assigned permissions as opposed to individual users.
 - Rights/Privileges
 - Rights or privileges are assigned to systems as a whole.
 - Do you have the right to change your password, or desktop wallpaper?
 - Least Privilege/Separation of Duties
 - Least privilege always says give your users the least amount of privilege to get their jobs done.
 - Separation of Duties
 - Keeping different people, groups, and permissions separated from conflict of interest areas.
- Access Control List (ACL)
 - Authorization Models
 - How over time have we developed the concepts of authorization?
 - Mandatory Access Control (MAC)
 - Label-based
 - "Secret/Top Secret" clearances
 - Classified/Unclassified
 - Discretionary Access Control (DAC)
 - Whoever created the resource is the owner/creator
 - The creator/owner defines access/permissions
 - Role-based Access Control
 - Applies access controls to a resource by a role.
 - Used by most all modern operating systems.
 - Groups are used to define roles.
 - Any good ACL will have an implicit deny.
 - An implicit deny is unless you specifically allow something to happen, it isn't going to happen.
 - Anything that needs to control access will have an ACL.

Password Security

- An example of a good security policy:
 - Complexity Length and character requirements
 - Expiration or age Reset and time triggers
 - Password History Reusage and retention
- GPOs can be used to create password security requirements applied within domains.
 - Also can be applied to sites, groups, OUs.

- GPOs are only used within a Windows AD environment.
- Linux File Permissions
 - File and folder permissions
 - Is -I lists permissions within a directory.

- R = Read
 - Opens a file, or views contents of a directory.
- W = Write
 - Edit a file, or add/delete files within a directory.
- X = Execute
 - Run a file, or change to a different directory.
- chmod = short for change mode
 - Command example: chmod o= RunMe
 - Changes permission for others to have no rights, on the file RunMe.
 - Command example: chmod g=rx RunMe
 - Changes permission for group to have read/execute permissions, on the file RunMe.
 - Command example: chmod a=rwx RunMe
 - Changes permission for all to have read/write/execute permissions, on the file RunMe.
 - chmod can be used with binary/numbers instead of letters.

OCATAL	BINARY	PERMISSIONS
0	000	
	001	н
2	0 0	-ш-
3	Oll	-WH
4	100	r-
5	101	F-H
6	IIO	Lm-
7	III	гшн

- chown is used to change ownership
 - Needs sudo to work.
 - Command example: sudo chown root RunMe
 - Changing the owner to root for the file RunMe.
- passwd is used to change users password
 - Needs sudo to work.

- Command example: sudo passwd
 - Changes password on logged in account. Requires the new password to be typed in and confirmed.

Windows File Permissions

- NTFS Permissions
 - Read & execute is for running files.
 - Read is only for viewing data files.
 - Full control is allowing all permissions.
 - List folder contents is where the files can be viewed directly, but the user (without the permission) cannot view the files within the parent folder.
 - Modify is for editing/saving files within the folder.
- The best practice is following:
 - Create users, put the users into groups, and then permissions are put onto folders in terms of groups.
- Inheritance
 - When NTFS permissions are set for an object, anything created within that object receives those permissions.
- Copying and moving objects within NTFS formatted partitions
 - Copy from source drive will take on the NTFS permissions of the destination drive.
 - Copying within the same drive will lose its NTFS permissions.
 - Moving within the same with will keep its NTFS permissions.

User Account Management

- Continuous Access Monitoring
 - Monitor 24/7 what users are able to get into.
 - Track log on/log off activity.
 - Track file access.
- Shared Accounts
 - Shared accounts are bad.
 - Biggest example is a workgroup with one account on each machine.
 - Don't share accounts.
- Multiple Accounts (for one user)
 - Sometimes is a necessity.
 - If it happens, use different usernames/passwords across the accounts.
 - Use different groups. Monitor which users belong with which groups.
 - Use least privilege enough necessary to complete a task.
 - If you give someone a second account with elevated privileges, make sure they only use that account for what is necessary and then log off.
 - Monitor and log activity of users with multiple accounts.
- Default and Generic Usernames/Passwords
 - Use dedicated service accounts.
 - Makes it easy to log and track.

AAA

- Authentication, Authorization, and Accounting (AAA)
 - Remote Authentication Dial-In User Service (RADIUS)
 - Designed to support Dial-in Networking.
 - Uses RADIUS server within a LAN that is trying to be accessed.
 - A RADIUS client is the gateway being used.
 - A RADIUS Supplicant is the system trying to be authenticated.
 - Supplicant -> RADIUS Client -> RADIUS server
 - Used for wireless authentication (mainly corporate networks)

- Every wireless access point can be used as a RADIUS client to send off to a RADIUS server for authentication.
- Mainly used for network access.
- Can use 4 UDP ports:
 - **1812**
 - **1813**
 - **1645**
 - **1646**
- Does not handle authorization, only authorization.
- Terminal Access Controller Access-Control System Plus (TACACS+)
 - Form of AAA
 - Proficient at managing a bunch of devices.
 - Takes care of the authorization aspect.
 - Decouples authorization from the authentication.
 - Once you are in (authorization), it defines in real time what you can do (authentication).
 - Uses TCP port 49.
- Both TACACS+ and RADIUS do auditing (accounting) for log files.

Authentication Methods

- The process of Authentication requires encryption.
- Password Authentication Protocol (PAP)
 - Oldest authentication method.
 - Client system sends username/password in clear text to server system.
- Challenge-Handshake Authentication Protocol (CHAP)
 - First authentication protocol used in the PC world to protect authentication process.
 - Server and client have password key stored in them.
 - Client system sends "May I authenticate?" message to the server, in which the server makes a "Challenge Message" of the two keys (hashed). The client then generates the same hash and is sent to the server.
 - No passwords being passed, only hashes.
- NT LAN Manager (NTLM)
 - Isn't used in advanced Windows authentication methods.
 - Still used with Windows systems in a workgroup.
 - Currently NTLM v2.
 - Starts initial hello between client and server, and then each side takes a challenge message (which is hashed), and challenge message each other.
 - Similar to a double CHAP.

Kerberos

- Only used in authenticating to Windows domain controllers.
- Domain controller is known as the Key Distribution Center (KDC).
 - Authentication service
 - Ticket granting service
 - Use TCP/UDP Port 88
 - Ticket Granting Ticket (TGT) shows that user is authenticated to the domain. Also knows as SID (Security Identifier) Not authorized at this point.
 - TGT generates a Session Key is what authorizes what resources the user can access. If the user wants to go anywhere else on the domain, a new session key is generation.
- Security Assertion Markup Language (SAML) and Lightweight Directory Access Protocol (LDAP)
 - Neither one of these are authentication methods, but similar.
 - SAML is used exclusively for web applications.
 - LDAP is used to access someone else's directory. A structured language used to allow one computer to go into someone else's directory.
 - Main process to access file resources in Windows is based on LDAP.

- TCP/UDP port 389.
- Single Sign-On (SSO)
 - LAN uses Windows Active Directory for SSO tools.
 - Once a domain is established, the client PCs join the domain.
 - Once this is established, a trust situation and federated system is established.
 - Security Assertion Markup Language (SAML)
 - Designed for web applications.
 - Allows a single person in a single place to log onto multiple devices.
 - Starts with having an Identity Provider (IP).
 - Once a user signs onto an Identify Provider, all of the connected applications are called Service Providers.
 - The IP provides a token to log onto all the individual devices (service providers).
 - What type of security needs will be necessary?
 - Example: A local area network for folders/files will need Windows AD.
 - Example: Any wide area networks/public items will need SAML.

Section 4: Tools of the Trade

- OS Utilities Part 1:
 - ping
 - Used often to checking DNS, such as pinging a FQDN to check if it replies. If it replies, it shows DNS is working.
 - Used to check if an IP address can be connected to.
 - -4 is a switch used to make the command only respond in IPv4.
 - Used to check hardware/network issues and intermittent connection with the switch -t for a persistent ping.
 - Linux does not need a -t as it always uses a persistent ping.
 - netstat
 - Used to check sessions a computer has open.
 - -n displays addresses and port numbers.
 - -a displays hosted server ports.
 - tracert
 - If the trace route fails on the first two hops (internal router and machine interface) that shows the issue is in-house.
 - Everything after the second hop is ISP-related.
 - ARP
 - Address Resolution Protocol. Used to resolve ethernet MAC address from an IP address.
 - arp -a command shows cached ARP table.
 - Windows generations static ARP entries.
 - Dynamic ARP entries change based off ARP commands that the host picks up.
- OS Utilities Part 2:
 - ipconfig
 - Ipconfig /all displays all data for "Who am I?"
 - Typically best server used in a known network.
 - -all finds MAC address.
 - ip addr
 - Linux command. Not used in Windows.
 - Ifconfig is depreciated.
 - nslookup
 - DNS servers have learned to not respond to these queries since they are exploited so often.
 - nslookup www.google.com

- Makes query "What server am I using for DNS?" and the IP address of that server.
- Running nslookup in interactive mode and changing the DNS server to another can be used to troubleshoot issues.
- digg
 - Used in Linux, not Windows.
 - Also checks DNS entries similar to nslookup.
 - @192.168.0.1 added will change DNS server to the IP address.
 - dig mx google.com will query MX record of the website.
- netcat
 - Can open/listen on ports, and can open/act as a client on any port.
 - Tool for aggressive use.

Network Scanners

- Can be used to detect open ports, protocols, hardware and rogue systems.
- Resource intensive, and intrusion prevention systems will be alerted.
- Nmap
 - Useful for hardware inventory and reconnaissance.
 - nmap -v -sn 192.168.0.0/24
 - Searched local network for IP addresses and what they correspond to.
 - Nmap -v -A scanme.nmap.org
 - Verbose output, -A symbolizes listing operating systems.
 - Discovers open ports.
 - Zenmap is a GUI that runs nmap. It comes with the nmap download.
- Wireshark SB Network Inventory

Protocol Analyzers

- Used to analyze network traffic in/out of specific host computer.
- Any protocol analyzer has two main sections:
 - Sniffer
 - Like pcap, tools that actually grab data going out of a particular interface.
 - Analyzer
 - Reads pcap data, and analyzes/formats it in a way we can read.
- Wireshark
 - Free and powerful tool used to scan network traffic.
 - Filters data by services and protocols.
 - Displays tremendous amount of information.
 - Information can be filtered by categories.
 - Helps find Broadcast Storms
 - When a NIC breaks and begins broadcasting huge amount of data.
 - Can be used with different sniffers than what comes with it.
 - An often-used one is TCPDump, which runs only on Linux.

SNMP

- Simple Network Management Protocol
- A tool which allows administration and management of network devices from a single source.
- Ports UDP 161 (unencrypted) and TLS 10161 (encrypted) are the ports the agent of the device listens on.
- An SNMP Manager is the system that manages the managed devices.
- A Network Management Station (NMS) is an SNMP Manager with the proper SNMP management software on it.
 - An NMS uses ports UDP 162 and TLS 10162 for listening.

- Management Information Base (MIB) is a factory built-in database within a device that can be queried for communication.
- Types of communication/queries:
 - Get
 - NMS sents "get" to managed device, in which the managed device sends a response.
 - Trap
 - Set up on the managed devices themselves.
 - A "trap" is set once a value meets a threshold.
 - Walk
 - Batch process of "gets".
 - More commonly referred to as SNMPWalk.
- SNMP has three versions.
 - Version 1:
 - First version with a limited command set, no supported encryption.
 - Version 2:
 - Uses basic encryption, slightly expanded command set.
 - Version 3:
 - Uses TLS encryption.
- An SNMP community is an organization of managed devices.
- Read Only (RO) vs. Read Write (RW) can be added on the command to turn on the SNMP service.
- Cacti is an open-source NMS for graphing SNMP data.
 - Nagios, Zabbix, and Spiceworks are also NMS brands.

Logs

- Event logs, security logs, device logs, audit logs.
- Exist anywhere on a system, depending on the system.
- Non-Network and Network Logs
 - Non-Network Events happen on a host even though it's not connected to a network.
 - Typically have a date or time, process/source, account, event number, description.
 - Operating System Events
 - Starting, shutdown, updates, service events.
 - Application Events
 - Application installation, stop/start/crash
 - Security Events
 - Logons, success/failure.
 - Network Events deal with the communication between the host and network.
 - OS/system-level events
 - Remote logons (fail/success)
 - Application-level events
 - Activity on web server, firewall.
 - Decentralized Logging is where each host has its own set of logs.
 - Centralized Logging uses a central repository, which can cause a drag on the network.
 - SNMP systems are utilized here.
 - Third-parties Monitoring as a Service (MaaS) are sourced for this often.

Section 5: Securing Individual Systems

- Denial of Service
 - Designed to deny service in some form.
 - Types of DoS Attacks:
 - Volume attack
 - Ping floods
 - UDP floods
 - Protocol attack
 - SYN flood/TCP SYN attack

- Client continues sending SYN repeatedly with client never responding with SYN/ACK.
- Application attack
 - Slow Loris Attack
 - Client initiates conversation, and does not give a response. Client continues initiating conversations without a response.
- Amplification Attack
 - Smurf attack
 - Attacker spoofs IP address, sending out an ICMP which causes all clients on the network to respond to a spoofed target.
- Distributed Denial-of-Service Attacks (DDoS)
 - Uses multiple systems to attack a host.
 - Typically a BotNet (malware) is deployed.
 - Client machines infected with malware (zombies) report to a single machine controlling them all.

Host Threats

- Spam
 - Unsolicited e-mail. Normally not considered a threat, but more of an irritant.
- Phishing
 - Simply spam but trying to obtain information from you.
 - Spear phishing obtains personal information before contacting you for more, such as name.
- Whaling
 - Phishing targeting a high-level employee.
- Spim
 - To receive spam via instant messaging.
 - Again, more of an irritant.
- Vishing
 - Unsolicited use of voice to obtain information.
- Clickjacking
 - When a website tricks you into clicking somewhere you didn't intend.
 - Typically referred to authorizing something, such as a download.
- Typo Squatting & Domain Hijacking
 - Typo Squatting takes advantage of people mistyping URLs.
 - People buy domains and websites hoping people make typos.
 - Domain Hijacking
 - When a domain expires and someone buys that domain quickly to put offensive or obscene content on it, then contacts you to buy it back from them.
- Privilege Elevation
 - Not truly a threat, but listed as one on the test.

Man-in-the-Middle

- On any TCP/IP network, communication exists between two computers. A third party sneaking between this communication is a Man-in-the-Middle Attack.
- Uses the information to the third party's advantage.
- Wireless communications (802.11 WiFi, Bluetooth, NFC) are susceptible to Man-in-the-Middle attacks.
 - Encryption is needed within wireless.
- Wired Man-in-the-Middle Attacks often require IP or MAC address spoofing to trick networks to sending the attacker its information.
- MAC Spoofing = Port Stealing
- ARP Poisoning = IP Spoofing
- The number one reason for deploying a Man-in-the-Middle attack is to gather data.

- Replay Attack is best used for secure connections.
 - By obtaining the username and password hash, you can "replay" that information to the server to log in.
- Downgrade Attack is querying a web server for a lesser protocol version, and then exploiting that weaker protocol.
- Session Hijacking is getting in the middle and injecting information of a current open session between machines in real time.

System Resiliency

- Scalability
 - Adding more of a resource to service demand.
- Elasticity
 - Going from a large amount of resources to a smaller amount as needed to fit demand that changes.
- Redundancy
 - More than one of the exact same thing for failover purposes.
 - Doesn't define much more than having more than one.
- Distributive Allocation
 - Having redundancy in terms of multiple locations such as offsite backups, or servers in different locations.
- Non-Persistence
 - Not persistent/permanent.
 - Snapshot Take the current state of an item, on a binary level, and saving it as a backup/copy.
 - Known state While a snapshot talks about an entire machine, a known state is referencing one aspect of a machine.
 - Windows Update is an example, where reverting to a type of system build (Windows 10.x.x) is used to fix the state of a machine.
 - Configuration files for networking devices is another example.
 - Rollback
 - Tends to zero in on a very small part of a system, such as Windows drivers.
 - Live-CD
 - Not limited to only a CD, also a thumb drive or any bootable media.
 - You can boot into an OS off of the media and "try" something on that instead of writing to a hard drive.
- RAID (Random Array of Independent Devices)
 - Primary way that we provide security to stored data.
 - Instead of using one hard drive, use multiple hard drives to work together as one hard drive.
 - Provides integrity and improves data access, or both.
 - Types of RAID:
 - RAID 0
 - Known as striping.
 - Designed to increase data speed, provides no data integrity.
 - Disperses data across multiple drives.
 - Minimum of two drives.
 - Downside to striping is that losing any drive means the data is lost.
 - RAID 1
 - Requires an even number of drives.
 - Known as mirroring.
 - Provides data integrity with no speed increase (actually slows things down)
 - RAID 2
 - Minimum of three drives.

- Data is saved in sections on two drives and the third drive (dedicated parity drive) saves the parity equation to it.
- RAID 2-4 uses two or more data drives that store individual pieces of data (stripes) and then a dedicated drive that only handles parity.

■ RAID 5

- Minimum of three drives.
- Parity is spread out across all drives.
- Downside is that one drive can be lost, but more than one drive cannot be lost.
- Was the most popular RAID configuration for a long time.

RAID 6

- Minimum of four drives.
- Two parities are created, therefore two drives could be lost without data loss.

■ Raid 0+1

- Referred to as RAID 01, it is a mirror of stripes.
- Two hard drives working as one mirror, two hard drives working as the other side of the mirror.
- One data mirrored to both drives, striped on both drives.
- Generating a mirror of stripes.

RAID 1+0

- Referred to as RAID 10.
- Data is striped and mirrored on each drive.

Proprietary RAID

- A big issue with established RAID levels is waste.
 - RAID 5 for example requires same size drives for all drives, otherwise the bigger drives will have their sizes reduced to meet the smallest.
- Companies such as Synology have proprietary RAID configurations.

NAS and SAN

- Network Attached Storage
 - File-based sharing protocol.
 - File-level.
 - RAID arrays, formatted and partitioned, treated as a network share like Samba.
 - Usually running some type of OS.
 - Runs over a standard network, using TCP/IP.
 - Uses well-known protocols, showing as shares on a network.
 - Used often in small workgroups.

Storage Area Networking

- Relies on some kind of technology to transfer data between systems and storage.
- Work on the block-level.
 - Considered "Block-level storage".
- The best SANs use Fibre Channel
 - Fibre Channel (FC) is its own network to move data around.
 - Requires Host Bus Adapter (HBA) into computer.
 - Fibre Channel switch connects to Fibre Channel Controller on a SAN.
- Poor man's version of SAN is called iSCSI
 - Uses existing network, interconnecting to different devices showing as a physical hard drive (block-level)
 - Initiator and Target terms used in an iSCSI network.
 - Initiator looks for targets and makes the target one of its hard drives.
 - Once a target is made, the Extent of that target has to be made.
 - Once the target and extent is put together into a group with a LUN ID, it is able to be accessed via iSCSI initiator.

Physical Hardening

- Removable Media Controls
 - Not referring to USB. Refers to optical media.
 - CD/DVD
 - Local computer policies can dictate what users are able to do with their removable media.
 - Can be configured system-wide or user-based.
- Data Execution Prevention (DEP)
 - Used to be a problem where programs could be executed in memory that isn't supposed to be accessed.
 - Under System > Advanced System Settings > Performance in Windows, DEP can be turned on/off.
 - DEP should always be turned on.
- Disabling Ports
 - BIOS/UEFI can have specific ports turned off.
 - USBs can be turned off as a whole depending on the motherboard's BIOS/UEFI.
 - USB Mass Storage Driver Support can be turned off, which means devices such as keyboards/mouse will work but drives which transfer data will not.
 - Serial/Parallel ports can be turned off as well, among others.

RFI, EMI, and ESD

- Electromagnetic Interference
 - AKA Electromagnetic Pulse
 - When radiation of a device interferes with other devices as a whole.
- Radio Frequency Interference
 - Radiation interfering with devices in the radio range, like wireless access ports.
- Electrostatic Discharge
 - Based on electricity.
 - Staying at the same potential to avoid charges.
- Ways to protect against the above:
 - Isolate move devices away from each other.
 - Shield shielded ethernet cable.
 - Separate circuits keeping currents on different circuits.

Host Hardening

- Disabling Services
 - Going through process of disabling unnecessary services.
 - Some programs also do not have an interface or service running on them, but they act as a service.
 - For example, a machine running a web server or SSH server, do those need to be running?
 - This is technically not a service but essentially is.
- Default Passwords
 - Typically Internet of Things (IoT) devices have default passwords turned on, which is the biggest issue with botnets.
- Disabling Unnecessary Accounts
 - Domain Groups and Domain Users within those groups are unnecessary.
 - Having multiple groups or accounts with the same privileges/permissions instead of one bottleneck is an issue.
 - Too much group/user division can create attack surfaces.
- Patch Management
 - Any modern OS has patches/updates.
 - This applies to any type of device. Switches, desktops, cameras, etc.
 - Patch Management Steps:
 - Monitor Monitor new patches and their implications.

- Small devices may not get reminders or automatic updates.
- Test Use a sandbox environment to test first before deploying.
- Evaluate Is this an important patch? Does this apply to us?
- Deploy Deploy the patch. Schedule the process in large environments.
- Document Take note of what patches have gone out/been skipped and their consequences.

Anti-Malware

- Keep Anti-Malware as updated as possible.
- Train users, as they are the number one line of defense.
- Procedures should be in place once users encounter and recognize anti-malware.
- Recognize and enforce good practices.
- Monitor security logs, network flow diagrams, check DNS logs.
- Intrusion Detection Systems (IDS) could be used as well.

Host Firewalls

- Every computer in the network should have a host firewall.
- Firewalls work on an application-level basis.
- Enterprise environments should have white/blacklisted applications.
- Centralized Management Tools should apply here in order to keep things tight and not allow users to alter any policy.

Data and System Security

- Data Security
 - Data integrity
 - Speed/quick access
 - High availability
 - Types of Data Security:
 - RAID
 - Provides integrity
 - Provides speed
 - Affordable
 - Only applies to drives/storage within a system.

Clustering

- Simply means having more than one computer doing the same job, sharing resources/data.
- If one system dies, the other kicks in and takes its spot.
- The downside is each computer has to keep the other one updated.
- Very expensive. One cluster machine typically does the work, while the others are backups.
- Load balancing can also take place with clustering.
 - Workload distributed across clustered servers.

Virtualization

■ If one server were to "die" or become corrupted, a snapshot can simply be spun up to remedy the issue.

Disk Encryption

- Encrypts data stored on mass storage.
- Can slow systems down, such as a large file server.
- Disk Encryption Usage
 - Mobile and portable devices.
 - Laptops, smartphones, tablets.
 - Desktop systems with limited security.
- All encryption tools can be broken into two camps:
 - Trusted Platform Module (TPM)

- A TPM chip that houses a public private key.
- The private key cannot be removed from the TPM.
- A hard drive encrypted with a TPM, for example, cannot be decrypted unless it is connected to the TPM chip.
- Non-TMP Platforms
- Activating TPMs often are done at the BIOS level.
- PGP (Pretty Good Privacy) disk, TrueCrypt, BitLocker are all examples of encryption tools.
- The recovery key must be recorded in some fashion, as the encrypted data cannot be viewed without it.

Hardware/Firmware Security

- Full Disk Encryption (FDE)
 - Best security for mass storage is to encrypt it.
 - Software or firmware-based tools are typically discussed here.
 - BitLocker takes advantage of TPM.
 - The TPM has to be turned on in order for BitLocker to run.
 - A recovery key must be documented in order to prevent data loss in the event of a motherboard dying.
- Self-Encrypting Drive (SED)
 - A hard drive that has a TPM module built-in, which requires a password to be applied to the hard drive. Upon boot, the password must be entered to "unlock" the drive and boot.
- Secure Boot
 - TPM 2.0 includes Secure Boot.
 - The OS will check the quality of all encompassing firmware and applications for signatures.
 - Secure Boot establishes the following:
 - Hardware Root of Trust
 - Secure Supply Chain
- Hardware Security Module (HSM)
 - A HSM's only job is to calculate and check signage, store keys, etc. to make sure everything on a system is secure.

Secure OS Types

- What type of OS do I use in a particular situation?
- Server OS: An OS version designed to support servers.
 - More hardware support, programs (DNS, DHCP, AD), support for server software, etc.
- Workstation (Desktop) OS: Windows 10, Ubuntu, Mac OS.
 - Workhorse systems, good network functionality, good support for hardware, doesn't support full-blown RAID.
- Embedded Systems: Routers, cameras, doorbells.
 - Individual devices that cannot be built-upon. No screen, keyboard, mouse.
 - Full-blown computers running operating systems.
 - Come with their own OS.
- Kiosk: Some big screen (touch screen) with customized interfaces to display.
 - Slimmed-down versions of Linux.
 - A few dedicated Kiosk operating systems.
- Mobile OS: Mainly iOS or Android.
 - Custom designed for smart devices such as phones and tablets.
 - Provides a good level of security compared to Windows 10.
- Which OS has the least functionality but enough to do the job that it needs to do?
- Any OS has a high degree of security, but some operating systems are set up for specifically security

- Trusted Operating Systems, made by the Secure Computing Group, are operating systems certified (often for the government) to be at the highest level of current security.
- Securing Peripherals
 - Wired vs. wireless peripherals
 - Blue Jacking
 - Rare today
 - Definition: Connecting to Bluetooth device to use.
 - Bluesnarfing
 - Connecting to a Bluetooth device to steal data.
 - Grabbing and stealing data is bluesnarfing.
 - Bluetooth comes in three different classes.
 - Class 1: 328' connection distance.
 - Class 2: 33' connection distance.
 - Most phones, headsets are this class.
 - Class 3: 3" connection distance.
 - 802.11 feature WPS is used on some devices.
 - WPS is Wi-Fi Protected Setup
 - Press WPS button on device, press WPS button on router, and they will automatically connect.
 - WPS is insecure and a big problem.
 - Hidden Wi-Fi
 - Many devices have SD slots, and attackers will use Wi-Fi SD NICs to plug into these devices' SD card slots to take data.
 - Displays/Monitors
 - Relatively secure devices, with the exception of the USB ports on the device.
 - Think about what you are buying. Are these SD card slots or USB port necessary? Turn off unneeded ports. Don't forget peripherals need patches and updates too.

Malware

- Nothing more than malicious software running on your system.
- Types of Malware:
 - Virus
 - Piece of software that is placed on your system and attach to other files, then propagate itself to other media and spread.
 - Activates execution, like removing files.
 - Adware
 - Programs that try to put ads up. Web-centric.
 - Spyware
 - Some form of malware hiding from you that reaches out to a central location.
 - Trojan Horse/RATs
 - Trojan is a piece of software that runs on a system that is compelling to have been downloaded, that is malicious.
 - Remote Access Trojans (RATs) aren't malicious until someone in a remote location turns it on.
 - Ransomware/Crypto-malware
 - Locks the system files/encrypts them in order to extort money.
 - Logic Bomb
 - Similar to a RAT.
 - Program sitting on a computer that has to be activated, but is triggered by an event.
 - Rootkit/Backdoor
 - A rootkit grabs admin privileges to propagate to other pieces of a system.
 Notorious to detect.

- A backdoor is a piece of software that has an intention to be accessed again.
- Polymorphic Malware
 - Malware that changes itself. Anti-Malware programs use digital signatures, and polymorphic viruses change their digital signature to avoid detection.
 - An armored virus is designed to make it hard for the anti-malware to recognize.
- Keylogger
 - Records key strokes to capture data/information.

Analyzing Output

- Anti-Malware/Anti-Virus
 - Check logs for virus type and location on program.
 - Can compare on databases.
 - All software these days update definition databases automatically.
- Host-Based Firewalls
 - Any firewall installed on an individual host.
 - Access Control List (ACL)/Rules List.
- File Integrity
 - Can be system-based, application-based.
 - Checks file versions, dates, names.
- Application Whitelist
 - Their job is to make sure everyone is running a standard program/version/application on individual enterprise systems.

IDS and IPS

- The firewall is the first line of defense.
- Firewalls are imperfect, which is where Intrusion Detection Systems on the inside of the network come into play.
- An IDS watches internal network traffic and sends alerts on suspicious activity.
- An IDS can be software on a machine or a network appliance.
- Once IDS became "active" where it began communication with the firewall to take action, is called Intrusion Prevention System (IPS).

Automation Strategies

- Automation makes repetitive tasks easier.
- Automation is consistent.
- Template restoration is a scenario in which automation is important. Applying the same base image to all machines in an enterprise.
- Continuous monitoring is a scenario in which automation is important. SNMP, for example.
- Windows Update is an example of automation.
- Monitoring application whitelists automating continuous monitoring on hosts for application whitelisting and installations.
- Automated application development is used widely in a modern sense.
- Built-in Tools vs. Shells
 - Most modern OS's have shells, like PowerShell.

Data Destruction

- Media Sanitation is another term for Data Destruction they are synonymous.
- Three levels:
 - Clearing
 - Use some internal command within the mass storage device to erase data from the media.
 - Example: An erase command on the HDD.
 - Wiping

- Begins at the beginning of the drive to the end of the drive, writing random binary to remove all data.
- Purge
 - To do something to the device, externally, to make the data go away.
 - Crypto Erase
 - Destroying the keys for the encrypted drive, which in essence purges the drive because it's useless.
- Destroy
 - To ruin the media in such a way that it is no longer functional.
 - Paper media, tape media, floppy disks.
 - Burning, pulping (soak in water, grind it up), shredding, pulverizing.

Section 6: The Basic LAN

- LAN Review
 - Switches
 - Filter and forward data based on layer 2 (MAC addresses)
 - VLAN
 - Virtual LAN
 - Splitting single broadcast domain into multiple broadcast domains.
 - Layer 2 separation of networks.
 - Flood Guarding
 - Also known as Spanning Tree Protocol (STP).
 - Prevents floods or loops.
 - Router
 - Filter and forward based on layer 3 (IP addresses)
 - Gateway router (interface between internet and network) will always run NAT.
 - Firewall
 - Piece of software commonly run on a gateway router for security purposes.
- Network Topologies Review
 - Local Area Network (LAN)
 - All computers on a broadcast domain.
 - A broadcast domain is when individual computers sends out a broadcast, all other computers that hear that broadcast are on a broadcast domain.
 - Wide Area Network (WAN)
 - Local Area Networks connected together with routers between them creates a Wide Area Network.
 - WANs can connect to one another.
 - Metropolitan Area Network (MAN)
 - Multiple WANs that span entire cities.
 - The protocol which runs the internet is TCP/IP.
 - Intranet is a private network which still runs on TCP/IP.
 - Extranet is a private connection into an intranet.
- Network Zone Review
 - DMZ (Demilitarized Zone)
 - Usage of two different routers in between the LAN and internet.

Demilitarized Zone (DMZ)

- Wireless Networks
 - A wireless connection is essentially the same as plugging in ethernet from a switch.
 - Guest Networks Does not have LAN zone access. Separate VLAN.
- Virtualization
 - Using a virtualized network.
- Air Gap
 - Two LANs with a disconnect between them to provide real isolation to each LAN.

Network Access Controls

- Wireless access
- Remote access
- VPN access
- These cases have some form of system acting as a gatekeeper to allow you to become a part of the target network.
- This started with Point-to-Point Protocol (PPP) which was designed for dial-up networks.
 - Designed primarily to take a computer with a phone line to connect to a service provider.
 - Transport layer protocol
 - Initiates connection
 - Obtain address information
 - Make connection
 - Had very rudimentary authentication methods
 - Password Authentication Protocol (PAP)
 - Passwords in clear text
 - Challenge Handshake Authentication Protocol (CHAP)
 - Comparing hashes after a target creates a challenge.
 - Extensible Authentication Protocol (EAP)
 - More of a framework designed to run inside transport layer protocols, handling strictly authentication.
 - Was developed initially as an extension for just the authentication portion of PPP.

■ EAP Methods:

- EAP-MD5
 - Basically MSCHAP. Takes passwords and hashes them into an MD5 hash.
- EAP-PSK
 - Uses pre-determined symmetric keys.
 - Similar to WPA/WPA-2
- EAP-TLS
 - EAP handles full blown TLS.
 - Needs a server and client certificate.
- EAP-TTLS
 - Uses TLS exchange method.
 - Only requires server certificate.
- 802.1X is a full blown authentication standard that allows connections between client system (supplicant) and the network itself.

- Also known as EAP over Ethernet or EAP 802.11.
- Creates some form of connection between supplicant and the authenticator, then runs EAP within that for the authentication itself.
- RADIUS lives on 802.1X.
- LEAP was invented by Cisco before 802.11i standards. Cisco's high security wireless standard.
 - EAP with a password within a TLS tunnel. Not used anymore.
 - Supplanted by EAP-FAST.
- PEAP was Microsoft's standard of EAP before EAP. EAP communication within a TLS tunnel. Not used anymore.

The Network Firewall

- Stateful vs. Stateless
 - A stateless firewall will filter and block stuff no matter the situation. Setting a rule to block a port or IP or any content, with no other context, is a stateless firewall setting. Stored into an ACL.
 - A stateful firewall doesn't have an access control list it looks at what is going on and then makes a decision on what to do. For an example, a stateful firewall that seems a ping flood coming in would then decide to block pings.

Proxy Servers

- Proxies are often application specific, such as a Web Proxy, and FTP Proxy.
- A transparent proxy has to be in-line to go out to the internet.
- Two kinds of Proxy Servers:
 - Forward Proxy Server: Hides the clients.

Forward Proxy

- Dedicated boxes within a network.
- Provides caching, content filtering, acts as a firewall.
- A nefarious forward proxy:

- It is easy to figure out who is using this proxy due to the internet connecting to the proxy.
 - An encrypted tunnel (VPN) from the client to the internet to the proxy will fix this concern.
- Reverse Proxy Server: Hides the servers.

Reverse Proxy

 High security, handles DoS attacks, can provide load-balancing, caching, handles encryption acceleration (like HTTPS encryption/decryption).

Honeypots

- Nothing more than devices that are designed to emulate a host/network to allow you to let the bad guys in and then track what they're doing.
- The idea of a honeypot is the emulate services that you'd find on a typical server.
- Need to sit out on the public internet. Often, people put honeypots within a DMZ.
- A sophisticated honeypot logs every single keystroke.
- A network can be emulated by using a honeynet.
 - Honeynets are used often in a virtualized environment.

Virtual Private Networks (VPN)

- Connection Options for VPN:
 - Leased line (T3 line, very expensive)
 - Leveraging the internet itself (VPN)
- A VPN Tunnel is a connection between two VPN endpoints (client and firewall/server)
- Remote Access VPN one computer connecting to a LAN.
- Site-to-site VPN Two LANs connecting together.
- A VPN is slow compared to being within a LAN.
- Split vs. Full Tunnel
 - A full tunnel is where all requests travel through the VPN.
 - A split tunnel is where traffic going to the LAN goes through the VPN tunnel, but any other traffic routes normally through the network card.
- VPN Setup Steps:
 - Protocol to set up tunnel.
 - Protocol to handle authentication and encryption.
- VPN Protocols:
 - Point-to-Point Tunneling Protocol (PPTP)
 - Oldest
 - Uses PPP for tunnel
 - Password only.
 - TCP Port 1723.
 - Layer 2 Tunneling Protocol (L2TP)
 - Cisco proprietary
 - Similar to PPTP
 - L2TP tunnel
 - IPsec Encryption (Fast)
 - UDP ports 500, 4500.
 - IPsec VPN
 - Uses IPsec for tunnel and encryption
 - UDP ports 500, 4500.
 - Great for IPv6.
 - SSL/TLS
 - TCP Port 443
 - Works within web browser, clientless.

- TUN/TAP (Virtual Network Driver) Tunnel
- TLS encryption
- OpenVPN
 - Program with its own unique tunnel.
 - Encryption based on SSL/TLS.
 - TCP 1194, can be changed easily.

IPsec

- Type of IP security that works on a host-to-host basis.
- A bunch of protocols that work together that come up with an idea of two hosts having a secure connection.
- Two different modes:
 - Authentication Headers
 - Only provides integrity
 - Runs integrity check, inserts Authentication Header before TCP -> Data -> IP Address.
 - This is an HMAC.
 - Encapsulating Security Payload (ESP)
 - Goes through process of encrypting TCP -> Data -> IP Address.
 - Uses AES, 3DES, etc.
- When referencing keeping the original IP address, we are referencing Transport Mode.
 - Transport Mode in the real world doesn't work well.
- Instead, we use Tunnel Mode.
 - Get rid of IP header, add new IP address to the data. (AH)
 - The original IP header is encrypted, then a new IP address is added to the outside of the data. (ESP)
- In IPsec, we use ISAKMP. Internet Security Agreement Key Management Protocol.
 - Its only job is to create a Security Agreement (SA) between two hosts.
 - Two hosts use a negotiation protocol, ISAKMP, to begin talking.
 - Provides Initial Authentication
 - Certificates
 - Key Exchange
 - Preshared keys
- IPsec examples:
 - VPNs
 - Pure IPSec
 - IPsec with L2TP
 - RADIUS/TACACS+
 - No native encryption, so IPsec is used to create a VPN tunnel between hosts.
 - IPsec with IPv6
 - IPsec header information can be placed within an IPv6 header.
 - Not used often.
 - Using IPsec with non-secure protocols
 - Could be used, theoretically, with an insecure connection like telnet. It can be used to encrypt the telnet data.

NIDS/NIPS

- Network Intrusion Detection System
 - Passive
 - Often setup as "Out-of-band" which means out of the main LAN.
- Network Intrusion Prevention System
 - Often setup as "In-Band", which means all network traffic goes through the device to the internet.
 - Active/inline
 - Block ports/username/IP addresses from router.
 - Detection methods

- Behavioral/anomaly based
- Signature based
- Rule-based
- Heuristic (signature files, behavior/anomaly, learns over time.)
- How to set this up?
 - Sensors, like a Network Tap. Has In/Out port, which checks every single packet In/Out.
 - Port mirroring, where a switch can be configured to grab data from particular ports/VLANs.
 - Collectors, which are computers that take data from sensors and storing it into a single database.
 - Correlation Engines, which is a tool that does the behavioral anomalies, rule checks, signature checks, heuristic checks.

SIEM

- Security Information and Event Management (SIEM)
 - Aggregation Grabbing data from different places and storing it.
 - Time synchronization, event deduplication, normalization, logs.
 - Correlation Analyzing and reporting the data that is collected.
 - Alerting/triggering.
- Write Once, Read Many (WORM)
 - WORM drives are dated.
 - Not used, most logs are stored on HDDs.
- Popular SIEM software:
 - Splunk
 - ArcSight
 - ELK (Elastic Search, Log Stash, Kibana) Open-source/freeware.

Section 7: Beyond the Basic LAN

- Wireless Review
 - 802.11 Infrastructure Mode
 - Begins and ends with WAP.
 - WAP is a bridge between an 802.11 network and an Ethernet network.
 - Every WAP has a MAC address.
 - Configured with a Service Set Identifier (SSID)
 - SSID is broadcast out, and we associate the MAC address of the WAP with the SSID to create a Basic Service Set Identifier (BSSID).
 - Client sends request to WAP to join SSID, and once it is accepted the client becomes a part of the Associated List.
 - If multiple WAPs are connected to the same common Ethernet broadcast domain, they become known as an Extended Service Set Identifier (ESSID)
 - Wireless Equivalent Policy (WEP) provides basic authentication and encryption.
 - Uses RC4 streaming protocol, using an initialization vector like all streaming protocols.
 - Shared key concept (64-bit or 128-bit)
 - WEP has initialization vector issues and can be easily hacked to obtain the key.
 - Wireless Protected Access (WPA)
 - The draft 802.11i standard, not full. Predated WPA2.
 - Dumped concept of RC4 and replaces it with AES encryption.
 - WEP was replaced with Temporal Key Integrity Protocol (TKIP)
 - Still uses RC4 but fixes the Initialization Vector issue.
 - 802.11i became known as WPA2, once the industry caught up.
- Living in Open Networks
 - Cookies, like session cookies, with authentication information within it can be exploited.

- Even though the HTTPS website will secure data, the cookie itself causes a security vulnerability.
- The cookies itself are not sent over a secure connection.
- Replay attacks (SSL stripping) can be used when cookies are sniffed.
- How do we protect our assets?
 - Use secure protocols on unsecure networks.
 - Use HTTPS on websites that collect information.
 - HTTP Strict Transport Security (HSTS) requires users to constantly use HTTPs.
 - Use VPN in non-secure networks.
- Vulnerabilities with Wireless Access Points
 - A Rogue AP is nothing more than an unauthorized access point.
 - An Evil Twin is a Rogue AP with the same intentional SSID the same of a private.
 - 802.11 jammers are illegal in the US. They can create denial of service attacks, or jam wireless channels that makes clients jump to the Evil Twin. This is now a Man in the Middle attack.
 - In the absence of an 802.11 jammer, someone can use a De-Authentication Attack.
 - Running a program to show all clients on a particular SSID, and then sending deauth commands to kick everyone off the network. Then, have all clients connect to the Evil Twin.
- Cracking 802.11 WEP
 - WEP is the oldest 802.11 standard.
 - The initialization vector generation is susceptible to IV attacks within WEP.
 - Aircrack can be used to crack WEP keys.
 - Kali Linux listening on WLAN NIC using Airodump, selecting the target SSID, listening on that SSID and then using the dumpfile to crack the key for it.
 - Can mathematically be cracked by looking at packets.
- Cracking 802.11 WPA
 - WPA is using RC4 but TKIP with it. WPA2 is using AES with CCMP.
 - The initial connection between a device and WAP using WPA/WPA2 uses a 4-way handshake.
 - This is the most vulnerable aspect of WPA/WPA2.
 - WPA/WPA2 crackers require a dictionary file in order to be cracked.
 - Once the handshakes are captured and put into a dumpfile while being monitored, the network can attempted to be cracked using a dictionary file.
 - Use long, complex private shared keys when using WPA/WPA2.
- Cracking 802.11 WPS
 - WiFi Protected Setup (WPS) which is push-button configuration.
 - WPS Weaknesses:
 - 8 digit key for WPS is actually 7
 - 2 to the 7th power.
 - One of the eight digits is just redundancy check for the other seven.
 - Key exchange is first processed in 4-bits then 3-bits.
 - That means only 11,000 iterations are needed to crack it.
 - WPS capable access points can detect an attack and shut down or turn off WPS.
 - Prevention:
 - Get rid of older routers.
 - Firmware updates.
 - Consider a modern wireless router.
- Wireless Hardening
 - Survey/Installation Issues
 - Survey tools

- Site survey programs find SSIDs, MAC addresses, bands/channels/signals.
- Documents all of the above information.
- Often has a heatmap, which shows the signal strength of all access points within an environment.
- Maintaining existing wireless networks/Monitoring wireless networks
 - Good wireless documentation.
 - Take advantage of survey tools and continue to keep it documented.
 - AP isolation enabling
 - All wireless devices on that SSID can see the access point and get to the network, but they cannot see each other.
 - Implement 802.1X for encryption and crackability.
 - Scan the network. A wireless intrusion detection system will accomplish this constantly.
 - A WIDS can be software or physical systems.
 - Monitors wireless radios.
 - Watches for rogue access points.
 - Knows MAC addresses of authorized equipment
 - Watches working protocols
- Defend wireless clients
 - Hardening wireless clients include training users to detect rogue access points/evil twins by simply looking at SSID lists.

Wireless Access Points

- Thick (Fat) client Standalone wireless access point.
 - Device that has to be configured by itself.
- Thin client Centrally managed and configured. Controller-based.
- Many wireless access points have the ability to have an external antenna plugged into it.
 - Antennas have their strength measured in Decibels, or DBI.
- Antenna Types:
 - Omni/Omni-Directional
 - Signal goes every direction.
 - Dipole
 - Meant to be used on a single level or floor.
 - Has little adjustments.
 - Extremely common.
 - Directionals
 - Long beam signal.
 - Yagi Designed to pick up and send a pointed signal.
 - Parabolics Radar dishes, more powerful than a Yagi.
 - Patch
 - Half of an omni.
 - Half of a sphere. Sends signal in one direction 180 degrees, none behind it.
- Antenna Placement:
 - Big basketball stadium, use an Omni.
 - Outdoors, use a Dipole.
 - Against wall, use a Patch.
 - Long distances between buildings, use a Directional.
- Band Selections:
 - 2.4GHz or 5GHz bands.
 - How to choose? Determine the following: Technology used, speed wanted, and how crowded the area is.
 - With a 5GHz band, channel width is an issue.
 - Generally, the wider the channel, the better the throughput.
 - The channel width being wider makes it harder to hop channels as the options become limited.

Automated channel selection is common.

Virtualization Basics

- Virtualization simply means to virtualize everything about a computer into a virtual system.
- The idea behind virtualization:
 - Host system with real hardware, virtualizing it.
 - A virtual computer takes advantage of the real hardware by using it.
- Emulation uses software to imitate hardware.
- Virtualization provides power saving, space saving (multiple virtual servers on one physical device), better system recovery, better duplication, research.
- Hypervisor Virtual Machine Monitor (VMM)
 - Hypervisor, type 2 Runs on top of Host OS.
 - Hypervisor, type 1 Runs directly on top of hardware, independent of host OS.

Virtual Security

- Virtualization by itself is a security feature.
 - Patch management
 - Centralized hardware maintenance
 - Resilient and high availability
 - Great testing and sandboxing environment
 - Network separation
 - Virtual switching allows this to happen.
 - VLANs
 - Snapshots and backups
- Virtual threats
 - Anything that can happen to a physical machine, can happen to a virtual machine.
 - Malware
 - Bad patch management
 - Policy management
- Cloud-based infrastructure providers will provide their own security-as-a-service (SaaS)
- VM sprawl is where, within one network, multiple types of hypervisors and VMs are deployed with multiple means.
- VM escape is where a hacker is able to "get out" of the VM itself and cause damage to the hypervisor.
- Virtualization Hardening
 - Remove remnant data
 - Make good policies
 - Define user privileges
 - Within the hypervisor itself, who can create/edit/delete VMs?
 - Patch everything
 - Cloud Access Security Brokers (CASB)
 - A CASB acts as an intermediary between your infrastructure and the cloud.
 - Typically a cloud-based service.
 - Makes sure policies are controlled, watches for malware.

Containers

- A container is an application and all of its libraries and binaries running on top of a kernel.
- A container runs isolated instances of programs and services.
- Containers are self-contained applications that can communicate with network resources that have been explicitly allowed.
- Whatever is inside a container can only see what is inside its container. No access to any underlying operating system's files or folders, cannot see any networking information, etc.

■ The container stays isolated, therefore there is less attack surface. If a container is compromised, they would not have access to anything else but what is inside the container.

■ laaS

- Infrastructure-as-a-Service
 - An entity sets up a virtual infrastructure to sell to an administrator.
 - Physical equipment hosted by another company.
 - Examples:
 - Microsoft Azure
 - Amazon Web Services
 - Ability to create an infrastructure of an entire network, server setup, public IP address, firewall/security policies, etc. all at the click of a button.

PaaS

- Platform-as-a-Service
 - Usually has some laaS aspect within it.
 - Typically meant for developers to create and deploy applications.
 - Examples:
 - Heroku
 - Google App Engine
 - OpenShift
 - Program/code that is written will be uploaded within the PaaS, check the code, bring libraries, etc. and then create a URL to be deployed.

SaaS

- Software-as-a-Service
 - Predates virtualization.
 - A subscription-based license.
 - Gets rid of optical media
 - Examples:
 - Microsoft 365/Office 365
 - Google Apps
 - DocuSign

Deployment Models

- Referencing deploying applications once created.
- Examples:
 - On-Premise Deployment
 - Using physical servers in an environment to continue to scale with the application's scale.
 - Hosted Application
 - Using resources from another company to host the application.
 - This turned into cloud-based hosting, through virtualization.
- Types of Clouds:
 - Private Cloud
 - Virtual machines built within an organization, for that organization. It is private.
 - Public Cloud
 - Open-for-business virtual machines, like Microsoft Azure or Amazon AWS.
 - Hybrid Cloud
 - Partially segregated as private, with some as public to be resold.
 - Community Cloud
 - Differing organizations putting in money to build one cloud shared amongst those organizations.
- Virtual Desktop Environment (VDE)

- Local client that is controlling a remote system.
- RDP within Windows, for example, is a type of VDE.
- The local client essentially becomes a terminal to send commands to the target machine.
- Virtual Desktop Integration (VDI)
 - Complete operating systems that are deployed in a cloud environment to be accessed by a terminal client.
 - Accessing a virtualized environment within the cloud.

Static Hosts

- Refers to devices that have embedded OS and some type of network awareness, from a Google Home to a Nest Thermostat, to a game controller, etc.
- A static host is typically referred to as a device designed for a specific (single) purpose.
- Also referred to as an Internet-of-Things (IoT) device.
- Industrial Control Systems (ICS) is a general term that encompasses control systems for process control, like an HVAC unit that has a specialized single-purpose.
- Supervisory Control and Data Acquisition Systems (SCADA) are just like ICS but typically have a cellular WAN connection and have autonomy to accomplish their tasks.
- Securing Static Hosts
 - Change default passwords
 - Turn off unnecessary services
 - Monitor security and firmware updates
 - Defense-in-depth, or creating layers of protection around that device.
 - Network segmentation
 - Treat a static host like any regular host.

Mobile Connectivity

- SATCOM
 - Satellite Communication
- Bluetooth
- Near-field Communication (NFC)
 - Very short range wireless connectivity, similar to Bluetooth.
 - Physical contact/near-physical contact needed.
 - When it's turned on, no security.
- ANT/ANT+
 - Simple form of wireless communication.
 - Slow, but well-protected.
- Infrared
 - Often times, Android phones have Infrared transmitters. Not receivers
- USB
 - USB On-The-Go (OTG) is a two-way USB type that can be ingoing or outgoing, which isn't part of the USB standard itself.
 - This is a security vulnerability.
- Wi-Fi Direct/Tethering
 - 802.11 Ad Hoc mode Rare connection type, where two devices (such as smartphones) connecting to one another.
 - Wi-Fi Direct is used on many streaming devices today, such as Roku. It uses WPS, which is a security vulnerability.
 - Tethering Linking a computer to a smartphone or vice versa in a wired connection, to leverage the resources of either or.
 - Wireless Tethering A mobile hotspot, that needs to be secure.

Deploying Mobile Devices

Mobile Device Management Tools - A central management device for mobile devices linked to that software.

- Mobile Application Management Containerized management scoped to only the applications on the mobile device.
- Corporate vs. Personal Use
 - Corporate Owned, Business Only (COBO)
 - Company Owned
 - Company decides what to do, such as:
 - Encryption
 - Applications
 - Wireless types
 - Corporate Owned, Personally Enabled (COPE)
 - Everyone has the same device.
 - Devices are controlled by company
 - People will still want to use their own devices
 - Learning curve
 - Choose Your Own Device (CYOD)
 - Users select from approved devices
 - Less of a learning curve
 - Bring Your Own Device (BYOD)
 - Users choose based on their experiences.
 - Learning curve decreased
 - Heavy device/application management

Mobile Enforcement

- Sideloading
 - Process of getting around an application store (Google Play, Apple Store) to upload product to consumers.
 - Often times, developers use this to test products.
 - Extremely difficult to do on Apple platform, easy on Android.
 - Android devices can have this limited through mobile management.
- Carrier Unlocking
 - In the US, companies are required by law to allow phones to be unlocked.
 - Small security issue is really only when the device is being managed, and the user unlocks that phone from the carrier.
- Rooting/Jailbreaking
 - You do not have root access when you purchase a phone.
 - This makes it harder for users to reformat firmware, install malware, or abuse the system.
 - The manufacturer retains root access.
 - Issues with rooting:
 - Auto updates are disabled.
 - Trouble access the store, such as Google Play.
 - Exposure to malware
- "Big Brother" monitor points when managing mobile devices:
 - Firmware OTA updates
 - Camera Use
 - SMS/MMS (Texting)
 - External media
 - Microphone/GPS tagging
 - Payment methods
- Mobile Device Management
 - Content Management
 - Applications management
 - Databases

- Documents
- Geolocation
- Geofencing
 - Geolocation with a geographic trigger to take action
- Push notification services
 - Applications will push notifications if you want
- Passwords/PINs
 - Set requirement of use.
 - Can recover passwords.
- Biometrics
 - Fingerprints
 - Facial recognition
 - Vocal recognition
 - Can be used to configure applications, lock/unlock devices
- Screen locks
- Remote wipe
- Application Management (MAM)
 - Versioning
 - Updates
 - Patches
 - Specific to application
 - Context-aware authentication
 - Where is the user?
 - What time of day are they trying to authenticate?
 - What OS is being used?
 - Storage Segmentation
 - Dedicated a storage space of the mobile device for our applications
 - Full device encryption
 - Encrypting entire storage of the device.
 - Containerization
 - One container for an application or group of applications to keep them separate
- Physical Controls
 - Deterrent Physical Controls
 - Designed to prevent malicious access to physical infrastructure.
 - Outside lighting
 - Signage
 - Security guards
 - Preventative Controls
 - Fences
 - Barricades
 - K-Ratings Super strong fences meant to stop vehicles.
 - K4 30mph
 - K8 40mph
 - K12 50mph
 - Mantrap
 - Entry system that consists of two-doors.
 - Airgap
 - Separating important cabling infrastructure from everything else.
 - Safe
 - Locked cabinets/enclosures
 - Faraday Cages
 - Meant to block EMI/radio frequency to protect sensitive electronic equipment.
 - Locks/Key Management

- Cable locks
- Screen filters
- Detective Tools
 - Detects malicious intent being carried out.
 - Alarms
 - Cameras
 - Infrared detectors
 - Log files
- Compensating and Corrective Controls
 - Example: Extra security guards in the middle of a breach.
 - Not as detailed or important for physical controls.

■ HVAC

- The cooler a piece of electronic is, the better it runs.
- Infrared Cameras (Thermal Imagers) are important within HVAC systems, to detect hot zones and leaks.
- Zone-based HVAC is used in office environments in which specific areas have their own thermostat.
- Hot and Cold Aisles

Contained System

- Securing HVAC
 - Leave an air gap keep the HVAC system separated from the network.
 - Use VLAN for isolation, if an air gap cannot be used.
 - MAC filtering can be used here.
 - Remote monitoring This can be a security concern. Work with vendors/suppliers for SLA, to make sure VPNs are being used.
- Fire Suppression

- Fire Extinguisher Classes
 - Class A: Designed for ordinary solid combustibles, like wood.
 - Class B: Designed for flammable liquids and gases.
 - Class C: Designed for energized electrical equipment.
 - Class D: Designed for combustible metals.
 - Class K: Designed for oils and fats.
- Do not use water to put out an electrical fire.
- FM-200 is the golden standard today for server room fire suppression.
- Seal off the server room.

o Section 8: Secure Protocols

- Secure Applications and Protocols
 - SSH Protocol
 - Secure Shell. Port 22.
 - Always has the server pass the key for a key exchange for encryption.
 - SSH applications have built-in encryption.
 - HTTP protocol
 - The webpage itself is not encrypted.
 - TLS acts as an intermediary between the web page and web browser to perform the encryption.
 - TLS was invented for websites, but can work with multiple other applications.
 - Anything on the internet will either be an application with encryption built-in, or taking advantage of protocols.
- Network Models
 - OSI Seven-Layer Model
 - 7 Application
 - 6 Presentation
 - 5 Session
 - 4 Transport
 - 3 Network
 - 2 Data Link
 - 1 Physical
 - TCP/IP Model
 - 4 Application
 - 3 Transport
 - 2 Internet
 - 1 Network Interface
- Know Your Protocols TCP/IP
 - IP addressing
 - IPv4
 - Four octets separated by three dots, each octet is a binary value of 8. This makes a 32-bit address.
 - Private vs. Public IP addressing
 - An ISP will assign a public IP address for internet access for a network, and all the devices within the internal network will have private IP addresses
 - A private LAN will have a router separated from the internet using Network Address Translation (NAT).
 - Private Ranges:
 - **1**0.0.0.0 10.255.255.255
 - **172.16.0.0 173.31.255.255**
 - **1**92.168.0.0 192.168.255.255

- IPv6
 - Up to 128-bits.
 - A device will have two IPv6 addresses:
 - Link Local FE80
 - Generated automatically by individual hosts.
 - Internet address
- Transport Protocols:
 - TCP
 - Does most of the work on the internet.
 - Connection-oriented protocol
 - A client sends a "Hello" to the server, the server will "ACK", and then the client sends its data.
 - This is a three-way-handshake.
 - UDP
 - Connectionless
 - No acknowledgment
 - Sends lots of packets
 - Used with a high degree of confidence that the target is listening.
 - ICMP
 - Main job is to handle ARP, Pings, and small things.
 - One packet.
- Know Your Protocols Applications
 - Hypertext Transfer Protocol (HTTP)
 - Port 80
 - Secure Hypertext Transfer Protocol (HTTPS)
 - Port 443
 - Telnet
 - Port 23
 - Secure Shell (SSH)
 - Port 22
 - File Transfer Protocol (FTP)
 - Port 20 and 21
 - FTP/SSH
 - Port 22
 - FTPS
 - FTP with SSL/TLS security.
 - Port 20 and 21
 - Secure File Transfer Protocol (SFTP)
 - Port 22
 - Secure Copy (SCP)
 - Port 22
 - Trivial File Transfer Protocol (TFTP)
 - Port 69
 - NETBIOs
 - Port 137, 138, 139
 - Server Message Block (SMB)
 - Port 445
 - Simple Mail Transfer Protocol (SMTP)
 - Port 25
 - IMAP
 - Port 143
 - POP
 - Port 110

- Domain Name System (DNS)
 - Port 53
- DHCP
 - UDP Port 67/68
- Simple Network Management Protocol (SNMP)
 - Port 161/162
- LDAP
 - Port 389
- Remote Desktop Protocol (RDP)
 - Port 3389
- Transport Layer Security (TLS)
 - Originally invented for websites, but it is used all over the internet.
 - Secure Sockets Layer (SSL)
 - Series of security protocols
 - Been around for a long time
 - Usurped by TLS
 - TLS is newer than SSL, but accomplishes the same things.
 - TLS is more secure than SSL.
- Secure Connection (SSL/TLS key points):
 - Encryption
 - A symmetric encryption, which is faster than asymmetric.
 - Key exchange
 - Authentication (SSL/TLS uses RSA certificates)
 - HMAC (Hashing)
- Internet Service Hardening
 - Using secure protocols are always preferable to insecure protocols.
 - DNS (Domain Name Services)
 - Runs on port 53.
 - Nonsecure protocol.
 - DNSSEC
 - In the 90s, DNSSEC was forwarded as a tool to make DNS servers have some form of security/authentication.
 - DNS server generates a key pair and the upstream DNS server signs them, creating new DNS records for each zone.
 - One key is a Public Signing Key.
 - Not an encryption, it is purely an authentication tool.
 - Popular for public DNS servers, like Google's 8.8.8.8.
 - Email
 - SMTP/POP/IMAP have always been insecure, but secure versions of them all have become more secure.
 - SMTP
 - Secure SMTP creates a TLS connection between the client and server, so the data is sent with authentication and encryption.
 - SMTP uses 25. Secure SMTP does 465 or 587.
 - IMAP/POP
 - Now, StartTLS is used. It is an extension to IMAP/POP.
 - An encrypted TLS tunnel is created.
 - IMAP uses port 143, SSL/TLS IMAP uses 993.
 - POP uses 110, but SSL/TLS POP uses 995.
- Protecting your servers
 - SSL Accelerator

- If a lot of asymmetric encryption is used, SSL/TLS will be used a lot. This is a burden for CPUs.
- A special card can be installed into each server, and their only job is to encrypt/decrypt asymmetric encryption on the fly.
 - Or, a special SSL Accelerator device can be installed behind the router facing the servers that serves the same purpose.
 - This is better for environments with large amounts of servers.

Load Balancer

- Actually like a proxy, as it takes all incoming requests from the router and sends them to the servers.
 - This can be determined by workload, DNS names, IP, etc.
- DDoS Mitigator
 - A device placed between the router and servers.
 - Detects when DDoS attacks come through.
 - Reaches out to a third party like CloudFlare upon detection, which then those CloudFlare servers on the internet acts as a proxy to filter out the bad data.
- Secure Code Development
 - Waterfall Model (Old fashioned and rigid model)
 - Requirements
 - Design
 - Implementation
 - Verification
 - Maintenance
 - Agile Model (New and common model today)

- Toolsets within the Agile Philosophy
 - Sprint: A short time period of deadline where whatever can be achieved, is.
 - Scrum: A short meeting about work done, roadblocks, next tasks.

DevOps

Methodologies and tools allowed for development and operations to get a product out of the door.

- Just because a product is delivered doesn't mean that the development on it has ceased.
- Secure DevOps
 - Run security automation tools.
 - Fuzzer tools, static testers, Intrusion Detection
 - Always look for vulnerabilities in code.
 - Change management/version control
 - Change will happen.
 - Organization, authorization, documentation
 - Continuous integration
 - Baselining
 - Baselining critical security objectives
 - Encryption
 - Input validation
 - Any baseline set forth
 - Consider immutable systems
 - An immutable system has interchangeable parts
 - Embedded firmware device
 - Virtual machine
 - Infrastructure as code
 - Create preset definition files
- Secure Deployment Concepts
 - Compiled vs. Runtime Code
 - Most applications ran today are Runtime Applications.
 - Runtime code is not compiled; it is not executable. It is read by whatever you are running, like a web browser, and shown to you.
 - Compiled code is executable code.
 - Proper error handling
 - Any application generates errors.
 - The application should recognize errors and put up a screen saying "Oops!" or similar.
 - Proper input validation
 - Validating an input in a type box to display to the user that it does not meet the requirements somehow.
 - Normalization
 - Avoid replication of data.
 - Tools like indexing are used for databases that are normalized.
 - Stored Procedures

- Encryption/Code Signing
 - Digitally signing code to ensure it is good order.
- Obfuscation (Camouflaged)
 - Not a full blown encryption of code, but the desire is to keep it from being copied.
 - A minifier tool can be used to remove all spaces and excess carriage returns to leave just the code itself.
- Code reuse/Dead code
 - If known-good code can be reused, do it.
 - Dead code is also referred to code that is no longer being used. A good rule of good code is to cut it out; it can be taken advantage of.
- Server-side vs. Client-side Execution/Validation
 - Client-side execution puts a lot of code and security on the client.
 - Security is only as good as the client's security.
 - Server-side execution puts a lot of work and load on the server.
- Memory Management
 - All applications use memory.
 - The process of memory management is involved and requires testing.
- Third-Party Libraries
 - Security issues can arise from these.
 - A backdoor can be found in a weakness within a third-party library to exploit the application.
- Data exposure
 - If data is a part of your application, that data is always at risk of exposure.
 - Today, we always go through aggressive encryptions client-side and server-side to protect data that is exposed.
- Code Quality and Testing
 - Static Code Analyzers
 - Look at actual code for standard types of errors that happen often.
 - Not running code, just reading it.
 - Dynamic Analysis
 - Runs the code.
 - Looks for logic errors, security holes, memory leaks, fuzzing ability.
 - Staging
 - Staging is the point where more realistic environments are created to see how the code holds up.
 - Stress Test
 - Putting the code under load to check for security/stability vulnerabilities.
 - Often times in a sandbox environment.
 - Model Verification
 - Verifying the "model" is this code doing what we envisioned it to do at the beginning?

- Production
 - Taking code off the sandbox, putting it onto production servers.

Section 9: Testing Your Infrastructure

- Vulnerability Scanning Tools
 - Tracert
 - Used to gather network information as part of an assessment.
 - Advanced IP Scanner
 - Freeware tool used to scan an internal network for NIC types, MAC addresses, IP addresses, shared folders.
 - Nmap
 - A powerful network discovery tool.
 - Finds clients on a LAN and discovers open ports.
 - Microsoft Baseline Security Analyzer
 - Uses the Microsoft Knowledge Base to check for patches, security vulnerabilities, Windows firewall status on an individual system.
 - To check entire infrastructures, Vulnerability Assessment tools are needed.
 - Nessus
 - Nexpos
 - OpenVAS
- Vulnerability Scanning Assessment
 - Vulnerability assessments require authorization from management.
 - Credentialed vs. Non-Credentialed
 - A credentialed VA means you have the usernames and passwords, from an insider perspective.
 - Non-credentialed is not having any usernames and passwords, from an outsider perspective.
 - Intrusive vs. Non-Intrusive
 - Intrusive is trying to exploit and actually perform an action to corrupt something, whereas non-intrusive is just scanning and assessing.
 - Misconfigurations
 - Often times, a misconfiguration (like a default username/password) can present a vulnerability.
 - False positives
 - When an assessment flags a problem, but in reality it isn't a problem.
 - Compliance
 - PCIDSS, for example, monitor credit card usage.
 - These compliance rules have to be applied to items that handle credit card data.
 - Remember to get authorized!
- Social Engineering Principles
 - Social engineering is simply people tricking people.
 - Social engineering principles:
 - Authority
 - To impersonate or imply a position of authority
 - Intimidation
 - To frighten by threat
 - Consensus
 - To convince of a general group agreement
 - Scarcity
 - To describe a lack of something
 - Familiarity
 - To imply a closer relationship

- Trust
 - To assure reliance on their honesty and integrity
- Urgency
 - To call for immediate action
- Social Engineering Attacks
 - Types of attacks:
 - Physical Attacks
 - Tailgating
 - Waiting for someone with access to a building/door and following them.
 - Shoulder surfing
 - Dumpster diving
 - Virtual Attacks
 - Phishing
 - E-mails
 - Spear Phishing
 - Directed towards specific person or organization.
 - Whaling
 - Spear phishing directed towards executives
 - Vishing
 - Uses telephone system to steal private information.
 - Hoax
 - Warns someone that something bad is happening when it's not.
 - Watering hole attack
 - An attempt to infect websites that a group of end users frequent to gain access to their information or network.
- Attacking Web Sites
 - In order to recognize an attack, you need to be able to read log files.
 - Common Log Format (CLF)
 - All web servers generate logs in the same format.

127.0.0.1 - - [10/0ct/2017:10:05:24 -0600] "GET /CompTIA09_small.gif HTTP/1.0" 200 42213

- This log has, in order from left to right:
 - Host IP address: 127.0.0.1
 - Ident (Identity Check): -
 - Authuser
 - Date/time
 - Request (within quotes)
 - Also known as the data payload.
 - Status (three digit HTTP status code): 200
 - Bytes (excludes HTTP headers): 42213
- Some websites have a central control panel, like cPanel, that monitor connections to it that it views as malicious.
 - Here is an example of an email that cPanel can send to the administrator:

Time: Sun Jan 22 00:01:04 2017 -0600 PID: 3948 (Parent PID: 2934) Account: Admin25

Uptime: 62 seconds

Executable:

/usr/local/bin/php

Command Line (often faked in exploits):

/usr/local/bin/php/home/totalcentral/public_html/generator/runcrawl.php

Nework connections by the process (if any):

TCP: 74.26.29.16: 36864 -> 74.26.29.16: 80

■ Web site attack types:

- Cross-site scripting
 - Also known as XSS.
 - Client-side script injected into trusted web sites.
- XML injections
 - Inserts XML information that shouldn't be there altering the logic of the program.
- Attacking Applications
 - Typically there are web-based applications, or local applications.
 - Types of attacks:
 - Injection Attacks
 - Adding extra information into an input/application that causes malicious intent.
 - Code injections: adding extra code to manipulate the program.
 - Command injections: using the application to get to the underlying OS.
 - SQL (Structured Query Language) Injection
 - Using SQL commands to access SQL database.
 - SQL query terms:
 - Inner join
 - Select from
 - Insert into
 - LDAP Injections
 - LDAP is based on X.500 and uses TLS encryption.
 - Poorly formed applications can be taken advantage of by putting LDAP information into them and creating LDAP injections.
 - Buffer Overflow
 - Anytime data is entered into an application, it enters a buffer.
 - A buffer is a reserved part of memory to store data before it is input into the application itself.
 - Locking a system up by repeating the same action so much that the buffer crashes.
 - Integer Overflow
 - Any variable within an application usually is declared at the beginning of the program itself.
 - Generating errors based on exploiting a fixed value limit, such as multiplying a number on a calculator to be too large to calculate.
- Exploiting a Target
 - A vulnerability assessment is from an insider perspective, never trying to grab any data. A penetration test is from an outsider perspective in which data is obtained.

- Pen Test Steps:
 - Get authorization
 - Define targets
 - Attack model
 - Discover vulnerabilities
 - Reconnaissance
 - Try to get information
 - Exploit vulnerabilities
 - Grab user names and passwords
 - Take data from a database
 - Corrupt webpage
 - An attack model defines what an attacker knows before starting the penetration test.
 - White box:
 - Attackers have extensive knowledge of the target.
 - Attackers are more like trusted insiders.
 - Cheapest and fastest.
 - Black box:
 - Attackers know nothing about the target.
 - Attackers are more like stranger outsiders.
 - External hacking.
 - Potentially expensive and slow.
 - Gray box
 - Somewhere between the two.
 - Reconnaissance
 - Passive discovery
 - Not putting any packets on the target; just making phone calls, just doing WHOIS lookups.
 - Semi-passive discovery
 - Putting packets onto the target, but nothing that will raise alarms.
 - Active discovery
 - Putting packets onto the target, running scanners, running actions that could potentially flag alarms.
 - Exploiting the target
 - Banner grabbing
 - Pivot: Uses compromised system to attack other systems.
 - Persistence: To connect again easily with your target with open timelines.
 - Privilege Escalation: Ability to gain access to data and resources.
 - Metasploit, for example, is a framework tool that uses banner grabs to gain information on a system and make listings of the known vulnerabilities with that system from databases.
 - The tool can then be used to scan and inject systems.
- Vulnerability Impact

- Embedded System
 - An immutable system that never changes. They are easily forgotten and can often be behind on patches.
 - Lack of vendor support
 - Big issue with primarily hardware.
 - Typically happens when the vendor tries to move on, or if the vendor company no longer exists.
 - The issue is the device/system will not have any patches/new parts.
 - Misconfiguration
 - A default configuration is a misconfiguration and massive vulnerability.
 - There are massive databases of default credentials that can be leveraged.
 - Could also refer to a misstep, such as turning on/off a service that needs to be off/on and is now vulnerable.
 - Improperly configured account
 - A user/system account with the incorrect permissions, for example.
 - It is not just permissions, it is also rights.
 - Potential for too much privilege or too little.
 - Vulnerable business processes
 - Unconsidered business processes that cause vulnerabilities.
 - An example is onboarding/offboarding processes of employees/clients, or incorrect storage of sensitive information.
 - Memory/buffer vulnerabilities
 - Resource exhaustion, memory leak, DLL injection, buffer/integer overflow, pointer dereference.
 - Running out of memory: Resource exhaustion or memory leak.
 - Either get more RAM or stop the process doing this.
 - Overflows: Buffer or integer overflows will cause systems to behave unintentionally.
 - Backdoors: Pointer dereference/DLL injection.
 - System sprawl/Undocumented assets
 - A system/device being undocumented or unknown means it is not being controlled and/or protected as an asset, which means it is vulnerable due to lack of administration.

Section 10: Dealing with Incidents

- Incident Response
 - The CompTIA Security+ is heavily based on the <u>NIST 800-61 Computer Security Incident Handling Guide</u>.
 - Incident Response Process:
 - Preparation
 - The big plan.
 - Who is doing what?
 - Organize the types of incidents that might happen.
 - Reporting
 - What reports go to whom?
 - Escalation
 - Practice Scenarios
 - Identification
 - Recognize what incident has occurred.
 - Check monitoring tools, alerts, logs.
 - Expect reports from users.
 - Assess the impact.
 - Define who is involved.
 - Containment
 - Mitigate the damage

- Stop the attack
- Segregate the network, shutdown the system, turn off a service.
- Eradication
 - Remove the malware, close off the vulnerability.
 - Add new controls.
- Recovery
 - Restore from backups, pull snapshots
 - Hire replacement personnel
 - Monitor to ensure good operations
- Documentation
 - What failed?
 - What worked?
 - Generate final report.
- Incident Response Plan
 - Cyber Incident Response Team (CIRT)
 - A group of people whose job is to respond to all cyber incidents.
 - Consists of an IT Security Team
 - Includes IT department and HR.
 - Legal matters may be included, as well as PR.
 - Document incident types/category definitions
 - Physical access
 - Malware
 - Phishing
 - Data access
 - Social engineering
 - Roles and responsibilities
 - Users: How do they report an issue?
 - Help desk
 - Human Resources
 - Database manager
 - Incident hotline: A hotline used to report incidents.
 - IR Manager/Officer
 - IR Team
 - Reporting requirements/escalation
 - Determine severity/level
 - Have a clear chain of escalation.
 - Informing law enforcement
 - Practice
 - Annual scenario drills.
- Digital Forensics
 - Typically forensics occurs within IT Security for the following reasons:
 - Incident occurs
 - Legal hold
 - Chain of Custody
 - Gathering evidence
 - Presenting evidence with data of high integrity
 - Chain of Custody Form:

Property Record Number:

Anywhere Police Department EVIDENCE CHAIN OF CUSTODY TRACKING FORM

Case Number:	Offense:	
Submitting Officer: (Name/ID#)		
Victim:		
Suspect:		
Date/Time Seized:	Location of Seizure:	

Description of Evidence		
Item #	Quantity	Description of Item (Model, Serial #, Condition, Marks, Scratches)

- Chain of Custody
- Define the evidence
- Document collection method
- Date/time collected
- Person(s) handling the evidence, with contact information.
- Function of person handling evidence
- All locations of the evidence
- Order of volatility
 - Memory
 - Process/services, caches, routing tables, ARP tables
 - Data on the disc
 - Applies to optical/flash drives
 - Cache files, temp files, swap files
 - Write blocker enabled tools
 - Remotely logged data
 - Web site data
 - Remote file server logs
 - Backups
 - Identifying trends
 - Low volatility takes time to gather data
- Checklist for digital forensic data acquisition:
 - Capture the system image
 - Write-blocking tools are preferred here.
 - Network traffic and logs
 - Capture video
 - Taking video of physical surroundings of system.
 - Capture files of video/audio on system.
 - Security cameras nearby.
 - Record time offset.
 - Take hashes
 - Hash every file and image.
 - Most forensic tools use built-in hashing.
 - Take screenshots
 - Interview witnesses
 - Track man hours

- Contingency Planning
 - Disaster Recovery
 - How do we recover from a specific disaster?
 - Evacuation plan
 - Backup site
 - Cold site
 - Takes weeks to bring online. Basic office space.
 - Warm site
 - Takes days to bring online. Has some operational equipment, but little to no data.
 - Hot site
 - Takes hours to bring online. Real-time synchronization.
 - Almost all data ready to go. Often a quick update.
 - Distance and location should be considered for a backup site.
 - Internet requirements need to be considered.
 - Housing and entertainment for employees.
 - Legal issues
 - Business Continuity
 - How do we keep our business churning?
 - Order of Restoration
 - Check power. All outlets, checking AC power.
 - Check wired LAN.
 - ISP link
 - Active Directory/DNS/DHCP servers
 - Accounting servers
 - Sales and accounting workstations
 - Production servers
 - Production workstations
 - Wireless
 - Peripherals (Printers, cameras, scanners)
 - Annual exercises
 - Can be tabletop exercises, or physical drills.
 - Failover tests
 - Alternative processing sites
 - Larger organizations may have different processing sites for specific departments. Sharing spaces.
 - Alternative business practices
 - How do we take credit card information?
 - Sales taxes for being in a different state in a disaster.
 - After action reports
 - Clear and detailed documentation of everything that happened for future preparation.
 - Backups
 - Backup methods:
 - External HDDs, tapes, clouds.
 - Full backup: Backup everything.
 - File systems have features to know when files have been changed.
 - Differential backup: Backup all of the changes since the last full backup.
 - Less backup sets, but a larger size.
 - Incremental backup: Only backs up changes made from last backup of any type.
 - More backup sets, but a smaller size.
 - Snapshots
 - Typically under virtual machines.
 - Making a copy of something that happened in the past.

- Typically not stored on separate media.
- Backup media:
 - Local
 - Tapes, NAS, hard drives, etc.
 - Offsite
 - Backed up in a different location
 - Cloud backups
 - Take larger time to get full backup, however once it is made, most do a continuous incremental backup.