Mid Semester Theory Examination, Fourth Semester- B.Tech, February, 2023

Course code: COMTC13/CAMTCI3/CBMTCI3/CDMTCI3 Course title: Probability and Stochastic Process

Time: 1 hour 30 minutes

Maximum Marks. 25

Note: Missing data/information(if any), may be suitably assumed and mentioned in the answer.

Q. No.	Attempt all questions	Marks 2.5	COL
la	Sixty percent of the employees of the XYZ corporation are college graduates. Employees who did not graduate from the college, eighty percent are in sales whereas ten per cent are in sales given that they are graduates. What is the probability that an employee selected at random is neither in sales nor a college graduate?	2.5	COX
1b	Let (X_1, X_2) have the joint pmf as given below:	2.5	CO1
	$(x_1, x_2): (0,0) (0,2) (1,1) (1,2) (2,2)$ $p(x_1, x_2): \frac{2}{12} \frac{2}{12} \frac{3}{12} \frac{4}{12} \frac{1}{12}$		
	F(=1)=27 · 12 12 12 12 12		
	Find marginal probability function of X_1 . Further, calculate $E(2X_1 - 10)$.		
2a		2.5	COI
	The joint frequency function of (X,Y) is given to be $f(x,y)=Ae^{-x-y},\ 0\leq x\leq y\leq \infty$	100000	The same
1	(i) Determine A. (ii) Find the marginal density function of X.		
	t . V	2.5	COI
431.		4.0	1.101011
26	Let X be a random variable. The first four moments of X about origin are 2, 136, 320, and 40,000. Find out the Kurtosis. Further, conclude the shape of the curve for the distribution followed by X.	2.3	COL
2b 3a		2.5	
1	40,000. Find out the Kurtosis. Further, conclude the shape of the curve for the distribution followed by X . If the probability density function for a random variable X is given by		
-	40,000. Find out the Kurtosis. Further, conclude the shape of the curve for the distribution followed by X . If the probability density function for a random variable X is given by		
1	40,000. Find out the Kurtosis. Further, conclude the shape of the curve for the distribution followed by X.		
1	40,000. Find out the Kurtosis. Further, conclude the shape of the curve for the distribution followed by X . If the probability density function for a random variable X is given by $f_X(x) = \begin{cases} 630x^4(1-x)^4, & 0 < x < 1 \\ 0, & otherwise \end{cases}$ Find the probability that X will take on a value within two standard deviation about the mean.	2.5	CO1
1	40,000. Find out the Kurtosis. Further, conclude the shape of the curve for the distribution followed by X . If the probability density function for a random variable X is given by $f_X(x) = \begin{cases} 630x^4(1-x)^4, & 0 < x < 1 \\ 0, & otherwise \end{cases}$ Find the probability that X will take on a value within two standard deviation about the	2.5	COI
3a 3b 4a	40,000. Find out the Kurtosis. Further, conclude the shape of the curve for the distribution followed by X . If the probability density function for a random variable X is given by $f_X(x) = \begin{cases} 630x^4(1-x)^4, & 0 < x < 1 \\ 0, & otherwise \end{cases}$ Find the probability that X will take on a value within two standard deviation about the mean. A random variable Y is defined as $cog\pi(X)$, where X has a uniform pdf over $(-1/2, 1/2)$.	2.5	CO1

MID-SEMESTER EXAMINATION, FEBRUARY 2023

Course Code: COECC12/CAECC12/CDECC12 Course Title: DATA COMMUNICATION

Time: 1:30 Hours

Note: Attempt all questions. Missing data / information (if any), may be suitably assumed and mentioned in the answer.

Q.No.	Question	Marks	co
1	(a) Find the Fourier transform of a rectangular pulse 2 second long with a magnitude of 10 volts.	1	CO1
	(b) Find the Fourier series components of the periodic wave form shown in figure	2	CO1
	(a) What is Aperture Effect?	1	CO1
	(b) Find the Nyquist rate and Nyquist interval for the , signal i. $s(t) = 6\cos 50\pi t - 10\cos 100\pi t + 20\sin 300\pi t$ ii. $s(t) = \frac{\sin 200\pi t}{\pi t}$	2	
to	a) A PCM system uses a uniform quantizer followed by a bit binary encoder. The bit rate of the system is equal 50 Mbps. Determine the output signal-to-quantizing pise ratio when a full load sinusoidal modulating wave frequency 1MHz is applied to the input.	1	CO1
qu	Assume the quantization noise is uniformly istributed between $-\frac{\Delta}{2}$ to $\frac{\Delta}{2}$. If a sinusoidal signal of implitude A is quantized using L level uniform uantizer derive the expression for signal to uantization noise ratio.		co

FOURTH SEMESTER- B. TECH

MID-SEMESTER EXAMINATION, Feb-March, 2023

Course Code: CACSC10, CDCSC10, COCSC10, CMCSC10 Course Title: Theory of Automata and Formal Languages

Time: 1hr 30 mins.

Max.Marks:25 Note: - Attempt all questions. Missing data information (if any), may be suitably assumed and mentioned in the

Q1 /	b) Con	sider the fo	llowing NF	the difference	FA and ε-NFA. Consider the language between L* and L ⁺ . able. Convert the given NFA to ps.	2.5+2.5	CO1, CO2
		State	0	11			
		→A	A	A, C			
		В	D	C, D			
		C	E	****			
		*D	E	****			
		*E					
Q2	b) Dras as A	ression for the NFA for the B. C and	each symbo the same, regular expi so on, Conv	l over input n ression (an*+:	thing strings that contain at least one phabets $\Sigma = \{a,b,c\}$. Write the regular aba*). Consider the states name in NFA mentioned NFA into DFA	2.5+2.5	CO1. CO2
Q3	Find Is thi	s grammar do you t	B bCa A ε crivation, ri ambiguous anderstand	? Justify your by the closur	ation and tree for the string abaaaba. answer. re properties of Regular Languages, der which operations and how.	2.5+2.5	CO2
Q4	b) State	whether the	n n≥ 1 is e Regular E nples of str	xpression (a+i	gular using Pumping Lemma b)* = a*+b* is equivalent or not. Prove	2.5+2.5	CO2
Q5	L(G)= Derive b) Constr "001"	={w ∈ {a, b e the string ruct a Mea) w starts w abbb using Iv Machine	that gives or	ends with blobs	2.5+2.5	CO2

COCSC09/CACSC09/CDCSC09/CMCSC09

Time: 1:30 Hrs.

Max. Marks: 15

			uestion	T	Marks	CO	
Q. No.	batch proce	anamatan watam W	hat are the underlying p m, multiprogramming ope	orinciples for: rating system	2	CO1	
**	what are th	1	CO1				
1b -	Define a thr ofseparate	2	CO2				
2b	What happe	. 1	CO2				
3a	How the p	2	CO2				
3b	A system u follows.	m scheduler in an operating system that uses preemptive scheduling? system uses preemptive priority scheduling and has five processes as					
1	Process	Arrival time (ms)	CPU burst time (ms)	Priority			
-	P1	0	20	5			
	P2	1	10	7			
	- P3	4	10	3		-	
	P4	10	5	0 (highest)	1		
	P5	12	10	1	1		
	Determine	2 2	COZ				
4a	What are	the use of binary s	emaphores and countin nitors over semaphores?	g semaphores		COZ	
4b	There are accessing						
5a,	How dead		1 00				
5b /	Available =	[1 0 1], Max = 2 2 1	and three resource type: 2 2 2 4 and Allocation =		4		
	system in c	leadlock?					

5a	Five coins are tossed and the following distribution	n is obtained:	(BIAD)	EEC CO.	11	e exp	perim	ent i	s repeated 128 times and	2.5	CO2
		No. of heads	0	1	2	9	-		1		
		No. of heads Frequencies	8	13	19	35	30	23			1
	The second second second second			282774					+		1
	Fit a binomial distribut	ion assuming, ti	ne o	aised	coir	wit	h the	pro	bability of tail is 1/3.	1	1

Standard Normal Table $P(Z \leq z)$

Table 1: Table entry for z is the area under the standard normal curve to the left of z.

75	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.102	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.123	0.121	0.119	0.117
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.166	0.1635	0.1611
-0.5	0.3085	0.305	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.281	0.2776
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633

4	(a) The source generated the bit stream 101101101. Draw the waveform for the following line codes. i. AMI ii. Manchester	1	CO2
	(b) A parity check code has the parity check matrix given as \[\begin{array}{cccccccccccccccccccccccccccccccccccc	2	CO2
	(a) Assume a BFSK system is being used for transmission of signals. Evaluate the performance of this modulation scheme in presence of additive white Gaussian noise with mean zero and power spectral density η_0 .	2	CO1
	(b) Check whether the following signals shown in figure below are orthonormal or not. $S_{1}(t) \qquad \qquad S_{2}(t) \qquad \qquad S_{2}(t) \qquad \qquad S_{3}(t) \qquad \qquad S_{4}(t) \qquad \qquad S_{4}(t) \qquad \qquad S_{5}(t) \qquad \qquad S_{5}(t$	1	CO1
	$-\frac{1}{\sqrt{2}}$		