

(CSE111) Logic Design Sophomore CESS

FALL 2022

Team (20)

Major Task

Name	ID
Ahmed Ehab Mohamed El-Baramony	21P0261
Ahmed Mohamed Mohamed	22P0283
Ahmed Mohamed Hassan El-Henawy	21P0298

Phase (1) Combinational Circuit

Overview:

ALU (Arithmetic Logical Unit) that have 2 inputs **4-Bit** each A $\{A_0, A_1, A_2, A_3\}$ & B $\{B_0, B_1, B_2, B_3\}$ that can perform:

- 2 Arithmetic Operations:
 - o **A + B** (Addition)
 - o A + 1 (Increment)
- 2 Logical Operations:
 - o **A AND B** (Bitwise AND)
 - o **A OR B** (Bitwise OR)

Addition:

	Addition Operation (A+B)												
C_{In}	A_3	A_2	A_1	A_0	B_3	B_2	B_1	B_0	S_3	S_2	S_1	S_0	C_{Out}
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	1	0	0	1	0	0
0	0	0	1	0	0	0	1	0	0	1	0	0	0
0	0	0	1	1	0	0	1	1	0	1	1	0	0
0	0	1	0	0	0	1	0	0	1	0	0	0	0
0	0	1	0	1	0	1	0	1	1	0	1	0	0
0	0	1	1	0	0	1	1	0	1	1	0	0	0
0	0	1	1	1	0	1	1	1	1	1	1	0	0
0	1	0	0	0	1	0	0	0	0	0	0	0	1
0	1	0	0	1	1	0	0	1	0	0	1	0	1
0	1	0	1	0	1	0	1	0	0	1	0	0	1
0	1	0	1	1	1	0	1	1	0	1	1	0	1
0	1	1	0	0	1	1	0	0	1	0	0	0	1
0	1	1	0	1	1	1	0	1	1	0	1	0	1
0	1	1	1	0	1	1	1	0	1	1	0	0	1
0	1	1	1	1	1	1	1	1	1	1	1	0	1

In the Addition Operation we used a 4-Bit Adder 7483 IC with a C_{ln} = 0

Increment:

	Increment By 1												
C_{ln}	A_3	A_2	A_1	A_0	S_3	S_2	S_1	S ₀	C_Out				
1	0	0	0	0	0	0	0	1	0				
1	0	0	0	1	0	0	1	0	0				
1	0	0	1	0	0	0	1	1	0				
1	0	0	1	1	0	1	0	0	0				
1	0	1	0	0	0	1	0	1	0				
1	0	1	0	1	0	1	1	0	0				
1	0	1	1	0	0	1	1	1	0				
1	0	1	1	1	1	0	0	0	0				
1	1	0	0	0	1	0	0	1	0				
1	1	0	0	1	1	0	1	0	0				
1	1	0	1	0	1	0	1	1	0				
1	1	0	1	1	1	1	0	0	0				
1	1	1	0	0	1	1	0	1	0				
1	1	1	0	1	1	1	1	0	0				
1	1	1	1	0	1	1	1	1	0				
1	1	1	1	1	0	0	0	0	1				

In the Increment Operation we used a 4-Bit Adder 7483 IC with a C_{ln} = 1

Bitwise AND:

	Bitwise AND (A AND B)												
A_3	A_2	A_1	A_0	B_3	B ₂	B_1	B_0	S ₃	S_2	S_1	S_0		
0	0	0	0	0	0	0	0	0	0	0	0		
0	0	0	1	0	0	0	1	0	0	0	1		
0	0	1	0	0	0	1	0	0	0	1	0		
0	0	1	1	0	0	1	1	0	0	1	1		
0	1	0	0	0	1	0	0	0	1	0	0		
0	1	0	1	0	1	0	1	0	1	0	1		
0	1	1	0	0	1	1	0	0	1	1	0		
0	1	1	1	0	1	1	1	0	1	1	1		
1	0	0	0	1	0	0	0	1	0	0	0		
1	0	0	1	1	0	0	1	1	0	0	1		
1	0	1	0	1	0	1	0	1	0	1	0		
1	0	1	1	1	0	1	1	1	0	1	1		
1	1	0	0	1	1	0	0	1	1	0	0		
1	1	0	1	1	1	0	1	1	1	0	1		
1	1	1	0	1	1	1	0	1	1	1	0		
1	1	1	1	1	1	1	1	1	1	1	1		

In the Bitwise AND Operation we used a 7408 IC

Equations:

 $A_0 . A_0 = S_0$

 A_1 . $A_1 = S_1$

 A_2 . $A_2 = S_2$

 $A_3 . A_3 = S_3$

Bitwise OR:

	Bitwise OR (A OR B)												
A_3	A_2	A_1	A_0	B_3	B ₂	B_1	B_0	S ₃	S_2	S_1	S_0		
0	0	0	0	0	0	0	0	0	0	0	0		
0	0	0	1	0	0	0	1	0	0	0	1		
0	0	1	0	0	0	1	0	0	0	1	0		
0	0	1	1	0	0	1	1	0	0	1	1		
0	1	0	0	0	1	0	0	0	1	0	0		
0	1	0	1	0	1	0	1	0	1	0	1		
0	1	1	0	0	1	1	0	0	1	1	0		
0	1	1	1	0	1	1	1	0	1	1	1		
1	0	0	0	1	0	0	0	1	0	0	0		
1	0	0	1	1	0	0	1	1	0	0	1		
1	0	1	0	1	0	1	0	1	0	1	0		
1	0	1	1	1	0	1	1	1	0	1	1		
1	1	0	0	1	1	0	0	1	1	0	0		
1	1	0	1	1	1	0	1	1	1	0	1		
1	1	1	0	1	1	1	0	1	1	1	0		
1	1	1	1	1	1	1	1	1	1	1	1		

In the Bitwise OR Operation we used a 7432 IC

Equations:

$$A_0 + A_0 = S_0$$

$$A_1 + A_1 = S_1$$

$$A_2 + A_2 = S_2$$

$$A_3 + A_3 = S_3$$

<u>Control Truth Table:</u>

Control Truth Table (2)									
Control 0 Control 1 Operation									
0	0	A AND B	AND						
1	0	A OR B	OR						
0	1	A + B	Sum						
1	1	A + 1	Increment						

We used a dip switch to control the operations that is displayed on 7-Segment Display using this table.

Logic Circuit (Logisim):

Addition Simulation:

Increment Simulation:

AND Simulation:

OR Simulation:

<u>Hardware Implementation:</u>

ICs Used In Hardware:

7483 (4-Bit Full Adder)

74157 (Quad 2-1 MUX)

7432 (Quad 2-Input OR Gate)

7448 (BCD To 7-Segment Decoder "Common Cathode")

7408 (Quad 2-Input AND)

Phase (2) Sequential Circuit

Overview:

Sequential circuit with **JK-type flip-flops** and logic gates to count the sequence:

 $\{1\ , 6\ , 0\ , 2\ , 7\ , 3\ , 4\ , 1\},$ and repeat; then display it on 7-segment.

State Diagram:

State Table:

	present state			1	S.S lapats							
	A	B	C	A(±+1)	Blt+11	c(t+1)	JA	KA	23	14B	I	Ke
0	0	0	0	0	1	0	0	X	1	χ	0	X
1	0	0	1	1	1	0	1	X	1	X	X	1
1	0	1	0	1	1	1	1	X	X	0	1	X
3	0	1	1	1	0	0	1	X	Х	1	X	1
4	1	0	0	0	0	1	Х	1	0	χ	1	X
5	1	0	1	X	X	X	X	X	X	X	×	X
6	1	1	0	0	0	0	Х	1	χ	1	0	X
7	1	1	1	0	1	1	X	1	X	0	X	0

K-Maps:

State Equations:

<u>Logic Circuit:</u>

<u>Logic Circuit (Logisim):</u>

<u>Hardware Implementation:</u>

ICs Used In Hardware:

7476 (JK Flip-Flop)

7486 (Quad XOR Gate)

7432 (Quad 2-Input OR Gate)

7448 (BCD To 7-Segment Decoder "Common Cathode")

555 Timer

We used **555 Calculator** to calculate the Capacitance & Resistance needed to implement a **1 Hz Clock** using 555 Timer.

Link: https://ohmslawcalculator.com/555-astable-calculator

N.B. Videos & Logisim Circuits Are Attached With The Report In The Zip File