Project 2: Tree predictors for binary classification

+ Random Forest

Marcello Calza

31 May 2025

Contents

0.1	Introd	uction	2
0.2		redictor	2
	0.2.1	Theory and design	2
	0.2.2	tree.py module	3
	0.2.3	Results	4
0.3	Rando	om Forest	5
	0.3.1	Theory and design	5
	0.3.2	Implementation	5
	0.3.3	forest.py module	6
	0.3.4	Results	6
0.4	Cross-	Validation	7
	0.4.1	Single-level versus nested	7
	0.4.2	Hyper-parameter grid	7
	0.4.3	tuning.py module	8
0.5	Bias-V	Variance Diagnostics	8
	0.5.1	From the theoretical decomposition to practical proxies	8
	0.5.2	Interpreting the curves	9
	0.5.3	diagnostics.py module	10
Con	clusions		10

0.1 Introduction

The project implements, from scratch, a full predictive pipeline able to decide whether a mushroom is *poisonous* or *edible*. The workflow consists of

- 1. data wrangling and encoding of categorical attributes;
- 2. greedy decision-tree induction with three impurity measures;
- 3. random forest ensemble;
- 4. single-level 10-fold cross-validation (CV) for hyper-parameter tuning;
- 5. bias-variance diagnostics via empirical proxies.

The code is organised in five lean modules: criteria.py, tree.py, forest.py, tuning.py, diagnostics.py - plus a 200-line driver script run.py. Each section below integrates

- theoretical background,
- implementation highlights,
- experimental evidence.

0.2 Tree predictor

0.2.1 Theory and design

The predictor follows the recursive strategy of Shalev-Shwartz and Ben-David (2014, pp. 253-254). Starting from a single leaf predicting the majority label, the algorithm repeatedly replaces the leaf that yields the *largest impurity decrease*

$$\Delta \psi = \psi(S) - \frac{|S_L|}{|S|} \psi(S_L) - \frac{|S_R|}{|S|} \psi(S_R).$$

Here

- S is the multiset of training pairs reaching the current leaf;
- $S_L = \{(x,y) \in S : x_i = 1\}$ and $S_R = \{(x,y) \in S : x_i = 0\}$ are the left/right children produced by the candidate split on feature i;

• $\psi(\cdot)$ is any impurity surrogate (Gini, scaled entropy, square-root).

Three concave surrogates are implemented and selectable as the impurity criterion:

- ψ_2 : Gini impurity, 2p(1-p);
- ψ_3 : half-scaled Shannon entropy, $-\frac{1}{2}[p\log_2 p + (1-p)\log_2(1-p)];$
- ψ_4 : square-root impurity, $\sqrt{p(1-p)}$.

These were recommended in the lectures because they avoid the flat regions of $\min\{p, 1-p\}$.

Real-valued features are split by enumerating mid-points between consecutive sorted values (Shalev-Shwartz and Ben-David, 2014, p. 255). Early stopping controls the capacity:

- maximum depth d_{max} ;
- minimum samples per leaf m_{leaf} ;
- minimum impurity decrease ϵ .

0.2.2 tree.py module

tree.py contains the main building blocks for decision-tree induction:

Node Represents a single node in the tree, which can be either an internal split or a leaf prediction.

- __init__ Initializes the node as a split (with a decision rule) or as a leaf (with a class prediction).
- __call__ Applies the node's split rule to a batch of samples, returning which samples go left (if split node) or does nothing (if leaf).

DecisionTree Constructs and manages a binary classification tree using greedy impurity minimization and several stopping conditions.

__init__ Sets up the impurity criterion, stopping parameters, and feature handling.

- fit Builds the tree recursively from the training data, splitting nodes based on impurity reduction until stopping.
- predict Assigns class labels to new samples by traversing the fitted tree from root to leaf.
- **_grow** Recursively constructs each subtree, picking the best split at each node according to impurity gain and creating leaves when needed.
- _infer Follows the decision path for a single sample to retrieve its predicted label.
- _majority Finds the most frequent label in a set (used for majority vote at leaves).

Key points inside DecisionTree:

- column-wise caching of unique categories removes redundant np.unique calls in deep sub-trees;
- recursion passes **index masks** instead of slicing the whole feature matrix; avoids $O(n \log n)$ copying;
- optional max_features parameter so the same class can be used by the random forest.

0.2.3 Results

10-fold CV selected ψ_3 , $d_{\text{max}} = 25$, $m_{\text{leaf}} = 10$, $\epsilon = 10^{-4}$. Resulting 0-1 losses:

Table 1: Decision-Tree tuned performance.

model	train	CV	test
best tree	0.22%	0.36%	0.29%

Bias-variance sweep. Figure 1 plots training and CV loss while depth varies. Bias dominates for very shallow trees; variance takes over beyond depth 25, exactly where it was chosed to stop growing.

Figure 1: Bias-variance proxies versus tree depth.

0.3 Random Forest

0.3.1 Theory and design

Following Shalev-Shwartz and Ben-David (2014, p.,256), each decision tree in the random forest is trained on a distinct bootstrap sample of the original dataset S (that is, a random sample of size |S| drawn with replacement). At every split, each tree considers only a randomly selected subset of k features rather than the full feature set. After all B trees are trained, predictions are aggregated by majority vote, which serves to significantly reduce variance without increasing bias.

Choice of k. Two canonical rules are evaluated:

- 1. $k = \lceil \sqrt{d} \rceil$ original Breiman recommendation for classification; also default in scikit-learn (Pedregosa *et al.*, 2011).
- 2. $k = \lfloor d/3 \rfloor$ alternative giving trees more freedom on high-dimensional data.

0.3.2 Implementation

forest.py wraps DecisionTree. A single numpy.default_rng(seed) is reused so experiments are repeatable.

0.3.3 forest.py module

forest.py implements random forest ensembles on top of decision trees:

RandomForest Creates an ensemble of decision trees, each trained on a bootstrapped dataset and a random feature subset, to reduce variance by majority vote.

- __init__ Initializes the forest with the desired number of trees, feature sampling strategy, and tree settings.
- fit Trains each tree on a different resampled version of the data, ensuring diversity across the ensemble.
- predict Predicts labels for new data by aggregating predictions from all trees and using the majority vote.

0.3.4 Results

CV over $B \in \{10, 25, 50\}$ and the two k rules picked $B^* = 50$, $k^* = 6$. Test loss drops to **0.11** % (Table 2); variance proxy shrinks ten-fold (Fig. 2).

Figure 2: Bias-variance proxies versus ensemble size.

Table 2: Random-forest tuned performance.

model	train	CV	test
B = 50, k = 6	0.010%	0.021%o	0.11%o

0.4 Cross-Validation

0.4.1 Single-level versus nested

Nested K-fold CV produces an unbiased estimate of

$$E_S\left[\min_{\theta} \ell_D(A_{\theta}(S))\right],$$

but its cost is *quadratic* because the folds are looped over twice (inner and outer). For this project the cheaper "flat" single-level procedure is adopted:

- 1. Split the *entire* training set into K = 10 folds.
- 2. For every hyper-parameter tuple θ run one 10-fold CV and compute

$$\widehat{\ell}_{cv}(A_{\theta}) = \frac{1}{K} \sum_{k=1}^{K} \underbrace{\ell_{S_k} (A_{\theta}(S \setminus S_k))}_{\text{error of } h_k \text{ on its own test fold}}.$$

3. Select the winner

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \widehat{\ell}_{\mathrm{cv}}(\theta).$$

0.4.2 Hyper-parameter grid

Depths 15-25, leaf sizes 10-20 and impurity thresholds 10^{-2} – 10^{-4} were chosen after small pilot runs: they are high enough to allow a very pure tree yet small enough that CV completes in minutes on a laptop.

This cross-validation grid search is used not only for decision tree tuning but also for random forest hyper-parameters (such as B and k), with the same procedure applied: every combination in the parameter grid is evaluated by K-fold CV, and the combination yielding the lowest average validation error is selected.

Soundness. $\hat{\ell}_{cv}(A_{\theta})$ is an *unbiased* estimator of $\ell_D(A_{\theta}(S))$. Hence minimising $\hat{\ell}_{cv}$ is a consistent proxy for the unknown risk. Reusing the same folds for many θ values introduces only mild optimism. That is removed by retraining on the *full* training split with $\hat{\theta}$ and evaluating once on a held-out test set, keeping the final estimate unbiased while saving an order of magnitude in runtime compared with nested CV.

0.4.3 tuning.py module

tuning.py provides model-agnostic routines for hyper-parameter selection using cross-validation:

k_fold_indices Splits a dataset's indices into K mutually exclusive, shuffled blocks for reproducible K-fold cross-validation.

cv_tune Searches all combinations of a hyper-parameter grid, running single-level K-fold cross-validation for each. For each parameter set, it trains models and computes mean validation error, returning the configuration with the lowest average error.

0.5 Bias-Variance Diagnostics

0.5.1 From the theoretical decomposition to practical proxies

For a fixed training set S let h_S be the model picked by the learning algorithm A. The lectures decompose the true risk into

$$\ell_D(h_S) = \underbrace{\ell_D(h_S) - \ell_D(h^{\star})}_{\text{estimation error / variance}} + \underbrace{\ell_D(h^{\star}) - \ell_D(f^{\star})}_{\text{approximation error / bias}} + \ell_D(f^{\star}),$$

where

- $h^* = \arg\min_{h \in \mathcal{H}} \ell_D(h)$ is the best model in our hypothesis class;
- f^* is the Bayes-optimal predictor.

None of the three terms is observable: there is only one sample S, not the whole distribution D. The goal is therefore to construct **cheap surrogates** whose *shape* mirrors the hidden quantities while a capacity parameter (depth or ensemble size) gets sweeped.

What *can* be measured on each sweep point.

observable	symbol	meaning
training loss	$\widehat{\ell}_{ ext{train}}$	$\ell_S(h_{\hat{ heta}})$
external CV loss $(K$ -fold)	$\widehat{\ell}_{ m cv}$	$\frac{1}{K} \sum_{k=1}^{K} \ell_{S_k} (A(S \setminus S_k))$

Because each validation fold S_k is i.i.d. from D and independent of the model fitted on $S \setminus S_k$, $\mathrm{E}[\widehat{\ell}_{\mathrm{cv}}] = \ell_D(h_S)$. Therefore

variance proxy =
$$\hat{\ell}_{cv} - \hat{\ell}_{train} \approx \ell_D(h_S) - \ell_S(h_S)$$

captures how much the empirical loss *jumps* when the same model faces fresh data, exactly like the estimation error.

Similarly, if the variance proxy is small it is empirically observed that $\ell_D(h_S) \approx \tilde{\ell}_{\text{cv}}$. Because ERM guarantees $\ell_S(h_S) \leq \ell_S(h)$ for every h in the class, and all empirical losses concentrate around their risks, $\ell_S(h_S)$ sits close to $\ell_D(h^*)$ — apart from the (unknown but *constant*) Bayes risk $\ell_D(f^*)$ that shifts every curve by the same amount. Hence

bias proxy =
$$\hat{\ell}_{\text{train}} \approx \ell_S(h_S)$$

every point in the sweep is trained until no further impurity decrease is possible, so it is already *close* to the smallest empirical loss attainable at that model capacity. If CV and train curves nearly touch, any remaining error comes from the hypothesis class itself: the chosen approximation bias ℓ_{train} .

Test set is excluded Using the reserved test set to *compute* the proxies would leak information and bias the final generalisation estimate. It is purely used for the once-per-experiment sanity check reported in Tabs. 1-2.

0.5.2 Interpreting the curves

Figures 1 and 2 show the typical patterns:

Shallow region depth < 10 (or B < 5): training loss high and close to CV loss \Rightarrow large bias, small variance \Rightarrow under-fitting (better observable in 1).

- **Sweet-spot** depth $\approx 15\text{-}25$ or $(B \approx 25\text{-}50)$: bias keeps dropping while the variance proxy is still below 5×10^{-4} . (better observable in 1) This is where it was chosed to stop growing.
- **Deep/large region** beyond depth 25 or B > 50: training loss saturates near zero; the CV-train gap starts *increasing*, signalling rising variance (better observable in 2). No dramatic over-fitting is observed, but gains become negligible.

For the tuned configurations the variance proxy is below 5×10^{-4} and the test error matches CV to four decimals (Tab. 2), confirming that neither learner is over-fitting nor under-fitting.

The gap between CV and test is within one standard error, validating the single-level CV tuning procedure discussed in Sec. 0.4.1.

0.5.3 diagnostics.py module

diagnostics.py supports empirical bias/variance analysis. Only one hyperparameter (the "sweep" parameter, such as tree depth or number of estimators) is varied at a time; all other model parameters are kept fixed during the sweep.

- sweep_bias_variance For each value of the chosen sweep parameter, trains a model (with all other hyper-parameters fixed), computes the training error, performs K-fold CV to estimate average validation error, and computes test error. Results are saved for later analysis.
- plot_bias_variance Reads the results from the sweep, computes empirical proxies for bias (training error) and variance (CV error minus training error), and plots these as curves to visualize the bias-variance trade-off across the sweep parameter.

Figure generation is scripted in run.py; plots are saved under plots/.

Conclusions

 \bullet Greedy depth-controlled trees already reach 0.3 % test error on the Mushroom dataset.

- \bullet Random forests lowers the CV error by one order of magnitude and reach 0.1 % test error.
- Single-level 10-fold CV is sufficient; bias-variance curves explain the chosen hyper-parameters and confirm neither learner over nor under fits.

Bibliography

- S. Shalev-Shwartz and S. Ben-David. *Understanding Machine Learning:* From Theory to Algorithms. Cambridge University Press, 2014.
- F. Pedregosa, G. Varoquaux, A. Gramfort et al. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825-2830, 2011.
- N. Nicolo' Cesa-Bianchi. Lectures files on Statistical Learning, Tree predictors, Tuning and Risk Analysis. Statistical Methods for Machine Learning course Università degli Studi di Milano, 2023-2024.