WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2020/2021

MATEMATYKA

Informacje dla ucznia

- 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod ustalony przez komisję.
- 2. Sprawdź, czy arkusz konkursowy zawiera 12 stron (zadania 1-16).
- 3. Czytaj uważnie wszystkie teksty i zadania.
- 4. Rozwiązania zapisuj długopisem lub piórem. Nie używaj korektora.
- 5. W zadaniach zamkniętych podane są cztery odpowiedzi: A, B, C, D. Wybierz tylko jedną odpowiedź i zaznacz ją znakiem "X" bezpośrednio na arkuszu.
- 6. Staraj się nie popełniać błędów przy zaznaczaniu odpowiedzi, ale jeśli się pomylisz, błędne zaznaczenie otocz kółkiem ⊗ i zaznacz inną odpowiedź znakiem "X".
- 7. W zadaniach od 7. do 11. postaw "X" przy prawidłowym wskazaniu PRAWDY lub FAŁSZU.
- **8.** Rozwiązania zadań otwartych zapisz czytelnie w wyznaczonych miejscach. Pomyłki przekreślaj.
- **9.** Przygotowując odpowiedzi na pytania, możesz skorzystać z miejsc opatrzonych napisem *Brudnopis*. Zapisy w brudnopisie nie będą sprawdzane i oceniane.
- 10. Podczas rozwiązywania zadań nie wolno Ci korzystać z kalkulatora.

KOD UCZNIA

Stopień: trzeci

Czas pracy: 120 minut

WYPEŁNIA KOMISJA KONKURSOWA

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Razem
Liczba punktów możliwych do zdobycia	21	1	1	1	1	1	3	3	3	3	3	4	5	4	3	3	60
Liczba punktów uzyskanych przez uczestnika konkursu																	

Liczba punktów umożliwiająca uzyskanie tytułu laureata: 54.

Podpisy członków komisji:

- 1. Przewodniczący
- Członek komisji sprawdzający pracę
- 3. Członek komisji weryfikujący pracę

Zadanie 1. (0-21)

Rozwiąż krzyżówkę, wpisując cyfry w odpowiednie pola. Hasło w zacieniowanych okienkach, to kolejne cyfry rozwinięcia dziesiętnego liczby $\sqrt[3]{2021}$. Hasło nie jest oceniane.

				_	
			1		
			2,		
		a)			
b)					
		c)			
		d)			•
	e)				
		f)			
	g)				
		h)			
	i)				
		j)			
		k)			
	l)				
		m)			_
n)					
	0)	0,			
	p)				
q)					
r)				l	
	s)				
	t)				
u)					
	<u> </u>			<u> </u>	I

- a) Mediana liczb: 0, 2, 5, 7, 1, 7, 8, 9.
- b) Najmniejsza wspólna wielokrotność liczb 101 i 4.
- c) Największy wspólny dzielnik liczb 217, 341.
- d) Ostatnia cyfra liczby 2021²⁰²¹.
- e) 11% liczby 500.
- f) Wynik działania $\left(\sqrt{111} \sqrt{107}\right)\left(\sqrt{111} + \sqrt{107}\right)$.
- g) Liczba, której 85% wynosi 78,2.
- h) Długość przekątnej prostopadłościanu o wysokości $2\sqrt{5}$, którego podstawa jest kwadrat o przekątnej długości $2\sqrt{11}$.
- i) Pole trapezu o sumie podstaw równej 14 i wysokości równej średniej arytmetycznej długości tych podstaw.
- j) $\frac{1}{512}$ dwukrotności liczby 4⁵.
- **k)** Cyfra, która znajduje się na 28 miejscu po przecinku w rozwinięciu dziesiętnym liczby 2,(42387).
- **l)** Różnica liczby trzycyfrowej i jednocyfrowej większej od 1, których iloczyn jest równy 749.
- **m)** Liczba ścian bocznych ostrosłupa prawidłowego o 18 krawedziach.
- n) Iloczyn wszystkich liczb pierwszych ze zbioru liczb {2,3,4,9,15,17,27}.
- o) Przybliżenie dziesiętne liczby $\frac{2}{3}$ z dokładnością do trzech cyfr po przecinku.
- **p)** Wartość wyrażenia: $-(x-5)(x^2+7)$ dla x=2.
- **q)** Największa liczba trzycyfrowa podzielna przez 7.
- r) Miara kąta wewnętrznego sześciokąta foremnego.
- **s)** Miara kąta przy podstawie w trójkącie równoramiennym, w którym miara kąta między ramionami jest równa 76°.
- t) Pole prostokąta, w którym iloraz długości boków jest równy 6:5, a obwód równa się 88 cm.
- **u)** Rok, w którym Jaś, mający obecnie (w roku 2021) 11 lat, będzie 6 razy starszy niż teraz.

BRUDNOPIS

W zadaniach od 2. do 6. tylko jedna odpowiedź jest poprawna.

Zadanie 2. (0-1)

Cyfra jedności liczby, która jest iloczynem wszystkich liczb nieparzystych mniejszych od 100, to

- A. 7
- B. 5
- C. 3
- D. 1

Zadanie 3. (0-1)

Pole powierzchni bocznej ostrosłupa prawidłowego czworokątnego, którego każda krawędź ma długość 5 cm, wynosi

A.
$$\frac{5\sqrt{3}}{2}$$
 cm²

B.
$$\frac{25\sqrt{3}}{4}$$
 cm²

C.
$$25\sqrt{3} \text{ cm}^2$$

D.
$$(25\sqrt{3} + 25)$$
 cm²

Zadanie 4. (0-1)

Wyrażenie $\frac{2-\sqrt{2}}{\sqrt{2}}$ jest równe

A.
$$\sqrt{2} - 1$$

B.
$$\frac{\sqrt{2}}{2}$$

C.
$$\frac{2\sqrt{2}}{4} - 1$$

D.
$$\frac{1-\sqrt{2}}{2}$$

Zadanie 5. (0-1)

Suma dwóch liczb wynosi 56. Jedna z nich jest o 18 większa od drugiej. Szukane liczby, to

- A. 38, 20
- B. 37, 19
- C. 36, 20
- D. 36, 18

Zadanie 6. (0-1)

Prosta poprowadzona przez wierzchołek kwadratu dzieli go na trójkąt o polu 18 cm² i trapez o polu 63 cm². Długość krótszej podstawy tego trapezu wynosi

- A. 2 cm
- B. 4 cm
- C. 5 cm
- D. 9 cm

						_
D	RI	\mathbf{T}	M	$\boldsymbol{\alpha}$	DΙ	C
1)	1 7 () II /		,		

czy fałszywe.	Zaznacz właściwą odpowiedź.
Zadanie 7. (0.	-3)

W zadaniach od 7. do 11. oceń, czy podane zdania są prawdziwe,

Zadanie 7. (0-3)

W celu dokonania opłaty pocztowej pan X dysponuje tylko następującymi nominałami: 20 zł, 10 zł i 5 zł.

I	Kwotę opłaty o wysokości 15 zł pan X może utworzyć na 3 sposoby.	PRAWDA □	FAŁSZ □
II	Kwotę opłaty o wysokości 30 zł pan X może utworzyć na 6 sposobów.	PRAWDA □	FAŁSZ □
III	Kwotę opłaty o wysokości 45 zł pan X może utworzyć na 9 sposobów.	PRAWDA □	FAŁSZ □

Zadanie 8. (0-3)

Pan Jan przejechał trasę z Katowic do Warszawy w ciągu 3 godzin i 20 minut. Na całej trasie średnia prędkość jazdy wynosiła 90 km/h.

I	Gdyby średnia prędkość na tej trasie była równa $100 \frac{\mathrm{km}}{\mathrm{h}}$, to czas jazdy byłby o 20 minut krótszy.	PRAWDA □	FAŁSZ □
II	Gdyby pan Jan pokonał tę trasę w czasie 4 godzin, to uzyskałby średnią prędkość równą $75 \frac{\text{km}}{\text{h}}$.	PRAWDA □	FAŁSZ □
III	Gdyby pan Jan na trasie o 30 km dłuższej osiągnął średnią prędkość 90 km/h, to czas jego przejazdu byłby o pół godziny dłuższy.	PRAWDA □	FAŁSZ □

Zadania 9. (0-3)

Przy ocenie zdań od I. do III. przyjmij założenie: zdarzenie polegające na tym, że przypadkowo wybrana osoba ma urodziny w pewnym dniu roku jest tak samo prawdopodobne dla każdego dnia roku.

Ι	Prawdopodobieństwo, że dzień urodzin przypadkowo wybranej osoby wypada w drugim kwartale, jest takie samo jak prawdopodobieństwo, że wypada w trzecim.	PRAWDA □	FAŁSZ □
II	Prawdopodobieństwo, że dzień urodzin przypadkowo wybranej osoby wypada w miesiącu o numerze nieparzystym, jest większe niż prawdopodobieństwo, że wypada w miesiącu o numerze parzystym.	PRAWDA □	FAŁSZ □
III	Prawdopodobieństwo, że dzień urodzin przypadkowo wybranej osoby wypada w pierwszym lub drugim kwartale, jest takie samo jak prawdopodobieństwo, że wypada w trzecim lub czwartym.	PRAWDA □	FAŁSZ □

Zadania 10. (0-3)

Narysowano równoramienny trójkąt prostokątny o przyprostokątnych długości 1. Następnie rysowano kolejne trójkąty prostokątne tak, że jedną z przyprostokątnych była przeciwprostokątna poprzedniego trójkąta, a drugą odcinek o długości 1. Wśród takich trójkątów

I	co drugi ma przeciwprostokątną o długości, która wyraża się liczbą całkowitą.	PRAWDA □	FAŁSZ □
II	istnieje taki, który jest połową trójkąta równobocznego.	PRAWDA □	FAŁSZ □
III	istnieje taki, który jest połową kwadratu.	PRAWDA □	FAŁSZ □

Zadania 11. (0-3)

Dla każdej dodatniej liczby naturalnej n, wartość wyrażenia $n^3 + n^2 - 1$ jest liczbą

I	nieparzystą.	PRAWDA □	FAŁSZ □
II	podzielną przez 3.	PRAWDA □	FAŁSZ □
III	która przy dzieleniu przez 5 daje resztę 1.	PRAWDA □	FAŁSZ □

Zadanie 12. (0-4)

Co roku w szkole jest organizowany pewien konkurs. W ustalonym terminie zgłosiła się pewna liczba uczniów, z których połowa przystępowała do konkursu po raz pierwszy. Ponieważ były jeszcze wolne miejsca, wyznaczono drugi termin zgłoszeń, po którym liczba uczestników wzrosła o dokładnie 8%. Ilu uczniów zgłosiło się do konkursu w pierwszym terminie, jeśli wszystkich uczestników mogło być co najwyżej 100?

Zadania 13. (0-5)

Z trójkąta równobocznego ABC odcięto dwa trójkąty równoboczne, każdy o wysokości $h=5\sqrt{3}$. Odległość między punktami G i H wynosi 4 cm. Oblicz pole powstałego pięciokąta GHECD.

Zadanie 14. (0-4)

Dwa jednakowe sześciany sklejono ścianami, w sposób przedstawiony na rysunku. Oblicz objętość powstałej bryły, jeżeli długość odcinka AB wynosi $7\sqrt{6}$.

Zadanie 15. (0-3)

Wśród 3000 klocków Lego 30% stanowią klocki koloru białego. Do budowy igloo Michał używał tylko białych klocków. Po zakończeniu budowy wśród niewykorzystanych klocków białe stanowiły 20%. Ilu klocków użył Michał do zbudowania igloo?

Zadanie 16. (0-3)

Środkowa trójkąta to odcinek łączący wierzchołek trójkąta ze środkiem przeciwległego boku. Uzasadnij, że jeśli w trójkącie długość pewnej środkowej jest równa połowie długości boku, do którego została poprowadzona, to ten trójkąt jest prostokątny.

BRUDNOPIS