## Circuitos Digitais UFFS

**Docente: LUCIANO LORES CAIMI** 

Discente: Diego Leandro Mazega Duarte



Cada sub circuito foi criado de forma independente, sendo o multiplicador a unificação do Half Add e do Full Add. O circuito conta com oito entradas, separadas em dois conjuntos de 4 bits, sendo AO a A3 as quatro primeiras entradas para multiplicação e BO a B3 as outras quatro entradas.

Dentro do multiplicador é verificado os valores de entrada e feita sua multiplicação de forma a acionar as saídas de peso respectivo ao valor que irá aparecer no display de sete segmentos.

Nesse circuito foram usados, separados por sub circuito:

Half Add -> 1 porta AND e 1 porta XOR

Full Add -> 2 portas XOR, 2 portas AND e 1 porta OR

Multiply -> 16 portas AND, 8 Full Add e 4 Half Add.

**Entradas:** Sobre as Entradas, elas estão separadas em 2 fileiras de 4 entradas cada, a fileira A e a fileira B, tendo peso e configuração da seguinte forma:

Fileira A:

$$A0 -> 2^0 = 1$$

$$A1 -> 2^1 = 2$$

$$A2 -> 2^2 = 4$$

$$A3 -> 2^3 = 8$$

Fileira B:

$$B0 -> 2^0 = 1$$

$$B1 -> 2^1 = 2$$

$$B2 -> 2^2 = 4$$

$$B3 -> 2^3 = 8$$

**Multiplicação Binaria:** A multiplicação binária é feita fazendo adições. Produtos parciais são calculados multiplicando o resultado de cada bit do multiplicador e então somando os produtos parciais.

Multiplicador: Um multiplicador é um circuito combinacional usado para multiplicar N números binários, empregando uma matriz de somadores completos e meio somadores. Essa matriz é usada para a adição quase simultânea dos vários termos do produto envolvidos. Para formar os vários termos de produto, uma matriz de portas AND é usada antes da matriz Adder. Verificar os bits do multiplicador um de cada vez e formar produtos parciais é uma operação sequencial que requer uma sequência de micro operações de adição e observação do carry. A multiplicação dos números binários pode ser feita com uma micro operação por meio de um circuito combinacional que forma os bits do produto todos de uma vez. Esta é uma maneira rápida de multiplicar N números, pois tudo o que leva é o tempo para os sinais se propagarem através dos portões que formam a matriz de multiplicação.

Dessa forma, o circuito conta os somadores para realizar suas operações de multiplicação, assim se faz vital o uso correto de meio somadores e somadores completos, para podemos transportar o carry pelo circuito e não perder os excessos de bases que acontecem, nos permitindo assim, contar de 0 a 255, conforme mostrado no projeto em anexo.

Simplificação dos Somadores, Half & Full Add:

|             | hal                                     | 4 ADD    | )                     |                             |
|-------------|-----------------------------------------|----------|-----------------------|-----------------------------|
|             | A B CE                                  | RRY COO  | 5 Um 5<br>7<br>1<br>0 | Sum= ADB  CORRY= AB         |
|             | 4 W                                     | 1 ADD    |                       |                             |
|             | A B CIM<br>0 0 0<br>0 0 1               | Sum<br>0 | Caut /soido           | (Sum cintel At              |
| 1           | 7 7                                     | 7 0 1    | 0 1 0                 | Soido:<br>AB+Bcim+<br>Acim: |
| 7<br>7<br>1 | 0 7                                     | 0 1      | 1                     |                             |
| = cim       | CÍM + À B CIM<br>(À B+ AB)+C<br>(D(ADB) | + ABCIN  | n + ADcim.            |                             |
| saida: ĀB   | Cim + ABcim+<br>Bcin + Acimo            | ABCIM    | 4 AB cim =            |                             |