<220>

10/516795 DT12 Rec'd PCT/PTO 0 3 DEC 2004 PCT/US03/17638

1/90 SEQUENCE LISTING

<110>	Susan M. Freier Brenda F. Baker Kenneth W. Dobie	
<120> EXPRES	ANTISENSE MODULATION OF STEROL REGULATORY ELEMENT-BINDING PROSSION)TEIN-1
<130>	ISIS0046-500	
<150>	US 10/161996	
<151>	2002/06/04	. •
<160>	273	
<210> <211> <212> <213>	20	
<220>		
<223>	Antisense Oligonucleotide	
<400> tccgt	· 1 catcg ctcctcaggg	20
<210> <211> <212> <213>	· 20	
<220>	> .	
<223>	> Antisense Oligonucleotide	
<400> gtgcg	> 2 gcgcga_gcccgaaatc	20
<220>	>	
<223	> Antisense Oligonucleotide	
<4000 atgc	> 3 attctg ccccaagga	20
<212	> 4 > 4154 > DNA > H. sapiens	

<221> CDS <222> (167)...(3610)

(222) (201) (10020)											
<400> 4 taacgaggaa cttttcgccg gcgccgggcc gcctctgagg ccagggcagg acacgaacgc	60										
geggagegge ggeggegaet gagageeggg geegeggegg egeteeetag gaagggeegt	120										
acgaggcggc gggcccggcg ggcctcccgg aggaggcggc tgcgcc atg gac gag Met Asp Glu 1											
cca ccc ttc agc gag gcg gct ttg gag cag gcg ctg ggc gag ccg tgc Pro Pro Phe Ser Glu Ala Ala Leu Glu Gln Ala Leu Gly Glu Pro Cys 5 10 15	223										
gat ctg gac gcg gcg ctg ctg acc gac atc gaa gac atg ctt cag ctt Asp Leu Asp Ala Ala Leu Leu Thr Asp Ile Glu Asp Met Leu Gln Leu 20 25 30 35	271										
atc aac aac caa gac agt gac ttc cct ggc cta ttt gac cca ccc tat Ile Asn Asn Gln Asp Ser Asp Phe Pro Gly Leu Phe Asp Pro Pro Tyr 40 45 50	319										
gct ggg agt ggg gca ggg ggc aca gac cct gcc agc ccc gat acc agc Ala Gly Ser Gly Ala Gly Gly Thr Asp Pro Ala Ser Pro Asp Thr Ser 55 60 65	367										
tcc cca ggc agc ttg tct cca cct cct gcc aca ttg agc tcc tct ctt Ser Pro Gly Ser Leu Ser Pro Pro Pro Ala Thr Leu Ser Ser Ser Leu 70	415										
gaa gcc ttc ctg agc ggg ccg cag gca gcg ccc tca ccc ctg tcc cct Glu Ala Phe Leu Ser Gly Pro Gln Ala Ala Pro Ser Pro Leu Ser Pro 85 90 95	463										
ccc cag cct gca ccc act cca ttg aag atg tac ccg tcc atg ccc gctPro Gln Pro Ala Pro Thr Pro Leu Lys Met Tyr Pro Ser Met Pro Ala100105	511										
ttc tcc cct ggg cct ggt atc aag gaa gag tca gtg cca ctg agc atc Phe Ser Prog.Gly Pro Gly Ile Lys Glu Glu Ser Val Pro Leu Ser Ile 120 125 130	559										
ctg cag acc ccc acc cca cag ccc ctg cca ggg gcc ctc ctg cca cag Leu Gln Thr Pro Thr Pro Gln Pro Leu Pro Gly Ala Leu Leu Pro Gln 135 140 145	607										
agc ttc cca gcc cca gcc cca ccg cag ttc agc tcc acc cct gtg tta Ser Phe Pro Ala Pro Ala Pro Pro Gln Phe Ser Ser Thr Pro Val Leu 150 155 160	655										
ggc tac ccc agc cct ccg gga ggc ttc tct aca gga agc cct ccc ggg Gly Tyr Pro Ser Pro Pro Gly Gly Phe Ser Thr Gly Ser Pro Pro Gly 165 170 175	703										
aac acc cag cag ccg ctg cct ggc ctg cca ctg gct tcc ccg cca ggg Asn Thr Gln Gln Pro Leu Pro Gly Leu Pro Leu Ala Ser Pro Pro Gly 180 185 190 195	751										
gtc ccg ccc gtc tcc ttg cac acc cag gtc cag agt gtg gtc ccc cag Val Pro Pro Val Ser Leu His Thr Gln Val Gln Ser Val Val Pro Gln 200 205 210	799										

·)

W	O 03/	1020	19						3/90						PCT/U	803/1763
cag Gln	cta Leu	ctg Leu	aca Thr 215	gtc Val	aca Thr	gct Ala	gcc Ala	ccc Pro 220	acg	gca Ala	gcc Ala	cct Pro	gta Val 225	acg Thr	acc Thr	847
act Thr	gtg Val	acc Thr 230	tcg Ser	cag Gln	atc Ile	cag Gln	cag Gln 235	gtc Val	ccg Pro	gtc Val	ctg Leu	ctg Leu 240	cag Gln	ccc Pro	cac His	895
			gca Ala													943
gcc Ala 260	act Thr	gtg Val	aag Lys	gcg Ala	gca Ala 265	ggt Gly	ctc Leu	agt Ser	ccc Pro	ctg Leu 270	gtc Val	tct Ser	ggc Gly	acc Thr	act Thr 275	991
			G] À āàà													1039
			cca Pro 295													1087
			ggc Gly													1135
-	_		gcc Ala			_			_	_		_				1183
	_		atc Ile				_	-	_						_	1231
_	_		aaa Lys		_	-	-	_	_	-		-			_	1279
	-		cac His 375	_		-			_	_				-	-	1327
			gtc Val													1375
_		_	gga Gly				_			_				_		1423
			gac Asp													1471
			agc Ser													1519
			agt Ser 455													1567

												,	15. T			
w	O 03/	10201	19						4/0.0						PCT/	US03/17638
aag Lys	gca Ala	aag Lys 470	cca Pro	gag Glu	cag Gln	cgg Arg	ccg Pro 475	tct	4/90 ctg Leu	cac His	agc Ser	cgg Arg 480	ggc Gly	atg Met	ctg Leu	1615
gac Asp	cgc Arg 485	tcc Ser	cgc Arg	ctg Leu	gcc Ala	ctg Leu 490	tgc Cys	acg Thr	ctc Leu	gtc Val	ttc Phe 495	ctc Leu	tgc Cys	ctg Leu	tcc Ser	1663
tgc Cys 500	aac Asn	ccc Pro	ttg Leu	gcc Ala	tcc Ser 505	ttg Leu	ctg Leu	Gly	gcc Ala	cgg Arg 510	G] À ààà	ctt Leu	ccc Pro	agc Ser	ccc Pro 515	1711
tca Ser	gat Asp	acc Thr	acc Thr	agc Ser 520	gtc Val	tac Tyr	cat His	agc Ser	cct Pro 525	ggg Gly	cgc Arg	aac Asn	gtg Val	ctg Leu 530	ggc Gly	1759
acc Thr	gag Glu	agc Ser	aga Arg 535	gat Asp	ggc Gly	cct Pro	ggc Gly	tgg Trp 540	gcc Ala	cag Gln	tgg Trp	ctg Leu	ctg Leu 545	ccc Pro	cca Pro	1807
gtg Val	gtc Val	tgg Trp 550	ctg Leu	ctc Leu	aat Asn	Gly	ctg Leu 555	ttg Leu	gtg Val	ctc Leu	gtc Val	tcc Ser 560	ttg Leu	gtg Val	ctt Leu	1855
ctc Leu	ttt Phe 565	gtc Val	tac Tyr	ggt Gly	gag Glu	cca Pro 570	gtc Val	aca Thr	cgg Arg	ccc Pro	cac His 575	tca Ser	ggc	ccc Pro	gcc Ala	1903
gtg Val 580	tac Tyr	ttc Phe	tgg Trp	agg Arg	cat His 585	cgc Arg	aag Lys	cag Gln	gct Ala	gac Asp 590	ctg Leu	gac Asp	ctg Leu	gcc Ala	cgg Arg 595	1951
gga Gly	gac Asp	ttt Phe	gcc Ala	cag Gln 600	Ala	gcc Ala	cag Gln	cag Gln	ctg Leu 605	tgg Trp	ctg Leu	gcc Ala	ctg Leu	cgg Arg 610	gca Ala	1999
ctg Leu	ggc Gly	cgg Arg	ccc Pro 615	Leu	ccc	acc Thr	tcc Ser	cac His 620	Leu	gac Asp	ctg Leu	gct Ala	tgt Cys 625	Ser	ctc Leu	2047
ctc Leu	tgg Trp	aac Asn 630	<u>.</u> Leu	ato Ile	cgt Arg	cac His	ctg Leu 635	Leu	cag Gln	cgt Arg	ctc Leu	tgg Trp 640	Val	ggc Gly	cgc Arg	2095
tgg Trp	ctg Leu 645	Ala	ggc Gly	c cgg 7 Arg	gca Ala	ggg Gly 650	Gly	ctg Leu	cag Gln	cag Gln	gac Asp 655	Cys	gct Ala	ctg Leu	cga	2143
gtg Val 660	Asp	gct Ala	ago a Sei	gcc Ala	ago Ser 665	: Ala	c cga Arg	a gac g Asp	gca Ala	gcc Ala 670	. Lev	gto Val	tac Tyr	cat His	aag Lys 675	2191
ctg Lev	cac His	caç Glr	g cto n Lei	g cad u His 680	Thi	ato Met	. Gl	g aag y Lys	g cac s His 685	Thr	ggc Gly	ggg Gly	g cac / His	cto Lev 690	act Thr	2239
gcc al=	acc	aac	c cto	g gcg	g cto	g agt ı Ser	gco Ala	c cto	g aac	cto Lev	g gca ı Ala	a gaç a Glu	g tgt ı Cys	gca s Ala	a ggg a Gly	2287

Ala Thr Asn Leu Ala Leu Ser Ala Leu Asn Leu Ala Glu Cys Ala Gly

gat gcc gtg tct gtg gcg acg ctg gcc gag atc tat gtg gcg gct gca Asp Ala Val Ser Val Ala Thr Leu Ala Glu Ile Tyr Val Ala Ala Ala

ttg Leu	aga Arg 725	gtg Val	aag Lys	acc Thr	agt Ser	ctc Leu 730	cca Pro	cgg Arg	gcc Ala	ttg Leu	cat His 735	ttt Phe	ctg Leu	aca Thr	cgc Arg	2383
ttc Phe 740	ttc Phe	ctg Leu	agc Ser	agt Ser	gcc Ala 745	cgc Arg	cag Gln	gcc Ala	tgc Cys	ctg Leu 750	gca Ala	cag Gln	agt Ser	ggc Gly	tca Ser 755	2431
gtg Val	cct Pro	cct Pro	gcc Ala	atg Met 760	cag Gln	tgg Trp	ctc Leu	tgc Cys	cac His 765	ccc Pro	gtg Val	ggc Gly	cac His	cgt Arg 770	ttc Phe	2479
ttc Phe	gtg Val	gat Asp	ggg Gly 775	gac Asp	tgg Trp	tcc Ser	gtg Val	ctc Leu 780	agt Ser	acc	cca Pro	tgg Trp	gag Glu 785	agc Ser	ctg Leu	2527
tac Tyr	agc Ser	ttg Leu 790	gcc Ala	Gly ggg	aac Asn	cca Pro	gtg Val 795	gac Asp	ccc Pro	ctg Leu	gcc Ala	cag Gln 800	gtg Val	act Thr	cag Gln	2575
cta Leu	ttc Phe 805	cgg Arg	gaa Glu	cat His	ctc Leu	tta Leu 810	gag Glu	cga Arg	gca Ala	ctg Leu	aac Asn 815	tgt Cys	gtg Val	acc Thr	cag Gln	2623
ccc Pro 820	aac Asn	ccc Pro	agc Ser	cct Pro	ggg Gly 825	tca Ser	gct Ala	gat Asp	G] À ààà	gac Asp 830	aag Lys	gaa Glu	ttc Phe	tcg Ser	gat Asp 835	2671
gcc Ala	ctc Leu	Gly	tac Tyr	ctg Leu 840	cag Gln	ctg Leu	ctg Leu	aac Asn	agc Ser 845	tgt Cys	tct Ser	gat Asp	gct Ala	gcg Ala 850	ggg	2719
gct Ala	cct Pro	gcc Ala	tac Tyr 855	agc Ser	ttc Phe	tcc Ser	atc Ile	agt Ser 860	tcc Ser	agc Ser	atg Met	gcc Ala	acc Thr 865	acc Thr	acc Thr	2767
ggc Gly	gta Val	gac Asp 870	ccg Pro	gtg Val	gcc Ala	aag Lys	tgg Trp 875	tgg Trp	gcc Ala	tct Ser	ctg Leu	aca Thr 880	gct Ala	gtg Val	gtg Val	2815
atc Ile	cac His 885	Trp	ctg Leu	cgg Arg	cgg Arg	gat Asp 890	gag Glu	gag Glu	gcg Ala	gct Ala	gag Glu 895	Arg	ctg Leu	tgc Cys	ccg Pro	2863
ctg Leu 900	Val	gag Glu	cac His	ctg Leu	ccc Pro 905	Arg	gtg Val	ctg Leu	cag Gln	gag Glu 910	Ser	gag Glu	aga Arg	ccc Pro	ctg Leu 915	2911
ccc Pro	agg Arg	gca Ala	gct Ala	ctg Leu 920	His	tcc Ser	ttc Phe	aag Lys	gct Ala 925	Ala	cgg Arg	gcc Ala	ctg Leu	ctg Leu 930	ggc Gly	2959
tgt Cys	gcc Ala	aaç Lys	g gca s Ala 935	Glu	tct Ser	ggt Gly	cca	gcc Ala 940	Ser	cto Leu	acc Thr	atc Ile	tgt Cys 945	Glu	ı aag ı Lys	3007
gcc Ala	agt Ser	ggg Gl ₂	/ Tyr	ctg Lev	caç Glr	gac Asp	ago Ser 955	Let	gct Ala	aco Thr	aca Thr	cca Pro	Ala	ago Ser	agc Ser	3055
tco Ser	att 116 965	e Asp	c aag o Lys	g gcc s Ala	gto Val	Gln 970	Lei	j tto i Ph∈	ctç Lev	g tgt i Cys	gac S Asp 975	Let	ctt Leu	ctt Lei	gtg Val	3103

WO 03/102019	PC	CT/US03/17638
6/90		2161
gtg cgc acc agc ctg tgg cgg cag cag Val Arg Thr Ser Leu Trp Arg Gln Gln Glr 980 985	Pro Pro Ala Pro Ala Pro 990	o
gca gcc cag ggc gcc agc agc agg ccc cag Ala Ala Gln Gly Ala Ser Ser Arg Pro Glr 1000 100	Ala Ser Ala Leu Glu Le	.g 3199 :u
cgt ggc ttc caa cgg gac ctg agc agc ctg Arg Gly Phe Gln Arg Asp Leu Ser Ser Leu 1015 1020	g agg cgg ctg gca cag ag n Arg Arg Leu Ala Gln Se 1025	rc 3247 er
ttc cgg ccc gcc atg cgg agg gtg ttc cta Phe Arg Pro Ala Met Arg Arg Val Phe Leu 1030 1035	a cat gag gcc acg gcc cg n His Glu Ala Thr Ala Ar 1040	rg 3295 eg
ctg atg gcg ggg gcc agc ccc aca cgg aca Leu Met Ala Gly Ala Ser Pro Thr Arg Thi 1045 1050	a cac cag ctc ctc gac co His Gln Leu Leu Asp Ar 1055	gc 3343 :g
agt ctg agg cgg cgg gca ggc ccc ggt ggc Ser Leu Arg Arg Arg Ala Gly Pro Gly Gly 1060 1065	y Lys Gly Gly Ala Val Al	cg 3391 .a)75
gag ctg gag ccg cgg ccc acg cgg cgg gag Glu Leu Glu Pro Arg Pro Thr Arg Arg Glu 1080 108	ı His Ala Glu Ala Leu Le	.g 3439 eu
ctg gcc tcc tgc tac ctg ccc ccc ggc ttc Leu Ala Ser Cys Tyr Leu Pro Pro Gly Pho 1095 1100		
cgc gtg ggc atg ctg gct gag gcg gcg cgc Arg Val Gly Met Leu Ala Glu Ala Ala Arg 1110 1115		
gat cgc cgg ctg ctg cac gac tgt cag cac Asp Arg Arg Leu Leu His Asp Cys Gln Gl 1125 1130	g atg ctc atg cgc ctg gg n Met Leu Met Arg Leu G 1135	gc 3583 Ly
ggt ggg acc act gtc act tcc agc tag acc Gly Gly Thr Thr Val Thr Ser Ser 1140 1145	eccgtgtc cccggcctca	3630
gcacccctgt ctctagccac tttggtcccg tgcag	cttct gtcctgcgtc gaagct	tga 3690
aggccgaagg cagtgcaaga gactctggcc tccac	agttc gacctgcggc tgctgtq	gtgc 3750
cttcgcggtg gaaggcccga ggggcgcgat cttga	cccta agaccggcgg ccatgai	tggt 3810
. gctgacctct ggtggccgat cggggcactg caggg	gccga gccattttgg ggggcc	ccc 3870
teettgetet geaggeacet tagtggettt tttee	tcctg tgtacaggga agagagg	gggt 3930
acatttccct gtgctgacgg aagccaactt ggctt	teceg gaetgeaage agggete	ctgc 3990
cccagaggcc tctctctccg tcgtgggaga gagac	gtgta catagtgtag gtcagc	gtgc 4050
ttagcctcct gacctgaggc tcctgtgcta ctttg	ccttt tgcaaacttt attttc	atag 4110
attgagaagt tttgtacaga gaattaaaaa tgaaa	ttatt tata	4154

WO 03/102019	7/90	PCT/US03/17638
<211> 19 <212> DNA <213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 5 gtcctgcgtc gaagctttg		19
<210> 6 <211> 19 <212> DNA <213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 6 aggtcgaact gtggaggcc		19
<210> 7 <211> 25 <212> DNA <213> Artificial Sequence	.:	
<220>		
<223> PCR Probe		
<400> 7 aggccgaagg cagtgcaaga gactc		25
<210> 8 <211> 19 <212> DNA <213> Artificial Sequence		
<220>		•
<223> PCR Primer		
<400> 8 gaaggtgaag gtcggagtc		19
<210> 9 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 9 gaagatggtg atgggatttc		20

WO 03/102019 PCT/US03/17638 8/90

<210> 10 <211> 20 <212> DNA <213> Artificial Sequence				
<220>				
<223> PCR Probe				
<400> 10 caagetteee gtteteagee				20
<210> 11 <211> 3891 <212> DNA <213> M. musculus				•
<220>				
<400> 11 aaaatcggcg cggaagctgt cggggtagcg t	tctgcacgcc	ctaggggcgg	ggcgcggacc	60
acggagccat ggattgcaca tttcccagtt t	tccggggaac	ttttccttaa	cgtgggccta	120
gtccgaagcc gggtgggcgc cggcgccatg c	gacgagctgg	ccttcggtga	ggcggctctg	180
gaacagacac tggccgagat gtgcgaactg	gacacagegg	ttttgaacga	catcgaagac	240
atgctccagc tcatcaacaa ccaagacagt o	gacttccctg	gcctgtttga	cgccccctat	300
gctgggggtg agacagggga cacaggcccc a	agcagcccag	gtgccaactc	tcctgagagc	360
ttctcttctg cttctctggc ctcctctctg c	gaagccttcc	tgggaggacc	caaggtgaca	420
cctgcaccct tgtcccctcc accatcggca	cccgctgctt	taaagatgta	cccgtccgtg	480
teccetttt eccetgggee tgggateaaa	gaggagccag	tgccactcac	catcctacag	540
cctgcagcgc cacagccgtc accggggacc	ctcctgcctc	cgagcttccc	cgcaccaccc	600
gtacagetca gecetgegee egtgetgggt	tactcgagcc	tgccttcagg	cttctcaggg	660
accettecag gaaacaetea geageeacea	tctagcctgc	cgctggcccc	tgcaccagga	720
gtettgeeca cecetgeect geacacecag	gtccaaagct	tggcctccca	gcagccgctg	780
ccagcctcag cagcccctag aacaaacact	gtgacctcac	aggtccagca	ggtcccagtt	840
gtactgcagc cacacttcat caaggcagac	tcactgctgc	tgacagctgt	gaagacagat	900
gcaggagcca ccgtgaagac tgcaggcatc	agcaccctgg	ctcctggcac	agccgtgcag	960
gcaggtcccc tgcagaccct ggtgagtgga	gggaccatct	tggccacagt	acctttggtt	1020
gtggacacag acaaactgcc catccaccga	ctcgcagctg	gcagcaaggc	cctaggctca	1080
gctcagagcc gtggtgagaa gcgcacagcc	cacaatgcca	ttgagaagcg	ctaccggtct	1140
tctatcaatg acaagattgt ggagctcaaa	gacctggtgg	tgggcactga	agcaaagctg	1200
aataaatctg ctgtcttgcg caaggccatc	gactacatcc	gcttcttgca	gcacagcaac	1260
	atttatacac	2022220022	atcactgaag	1320

				_		
gacctggtgt	cagcttgtgg	cagtggagga	ggcacagatg	tgtctatgga	gggcatgaaa	1380
cccgaagtgg	tggagacgct	tacccctcca	ccctcagacg	ccggctcacc	ctcccagagt	1440
agccccttgt	cttttggcag	cagagctagc	agcagtggtg	gcagtgactc	tgagcccgac	1500
agtccagcct	ttgaggatag	ccaggtcaaa	gcccagcggc	tgccttcaca	cagccgaggc	1560
atgctggacc	gctcccgcct	ggccctgtgt	gtactggcct	ttctgtgtct	gacctgcaat	1620
cctttggcct	cgctgttcgg	ctggggcatt	ctcactccct	ctgatgctac	gggtacacac	1680
cgtagttctg	ggcgcagcat	gctggaggca	gagagcagag	atggctctaa	ttggacccag	1740
tggttgctgc	cacccctagt	ctggctggcc	aatggactac	tagtgttggc	ctgcttggct	1800
cttctctatg	tctatgggga	acctgtgact	aggccacact	ctggcccagc	tgtacacttc	1860
tggagacatc	gcaaacaagc	tgacctgaat	ttggcccggg	gagatgttcg	cccagctgct	1920
caacagctgt	ggctagccct	gcaagcgctt	ggccggcccc	tgcccacctc	aaacctggat	1980
ctggcctgca	gtctgctttg	gaacctcatc	cgccacctgc	tccagcgtct	ctgggtgggc	2040
cgctggctgg	caggccaggc	cgggggcctg	ctgagggacc	gtgggctgag	aaaggatgcc	2100
cgtgccagtg	cccgggatgc	ggctgttgtc	taccataagc	tgcaccagct	gcatgccatg	2160
'ggcaagtaca	caggaggaca	tcttgctgct	tctaacctgg	cactaagtgc	cctcaacctg	2220
gctgagtgcg	caggagatgc	tatctccatg	gcaacactgg	cagagatcta	tgtggcagcg	2280
tgcctgaggg	, tcaaaaccag	cctcccaaga	gecetgeact	tcttgacacg	tttcttcctg	2340
agcagcgccc	gccaggcctg	cctagcacag	agcggctcgg	tgcctcttgc	catgcagtgg	2400
ctctgccacc	ctgtaggtca	ccgtttcttt	gtggacgggg	actgggccgt	gcacggtgcc	2460
ccccggaga	gcctgtacag	, cgtggctggg	aacccagtgg	atccgctggc	ccaggtgacc	2520
cggctattcc	gtgaacatct_	: cctagagcga	gcgttgaact	gtattgctca	gcccagccca	2580
ggggcagct	g_acggagacag	ggagttctca	gatgcccttg	gatatctgca	gttgctaaat	2640
agctgttctg	g atgctgccgc	g ggctcctgcg	g tgcagtttct	ctgtcagctc	cagcatggct	2700
gccaccacto	g gcccagacco	c agtggccaag	g tggtgggcct	cactgacago	tgtggtgatc	2760
cactggctga	a ggcgggatga	a agaggcagct	gagcgcttgt	acccactggt	agagcatatc	2820
ccccaggtg	c tgcaggacad	c tgagagacco	ctgcccagg	g cagctctgta	ctccttcaag	2880
getgecegg	g ctctgctgga	a ccacagaaaq	g gtggaatcta	a gcccagccag	g cctggccatc	2940
tgtgagaag	g ccagtgggta	a cctgcgggad	c agcttagcct	t ctacaccaac	tggcagttcc	3000
attgacaag	g ccatgcagc	t gctcctgtgt	t gatctactt	c ttgtggccc	taccagtctg	3060
tggcagcgg	c agcagtcac	c agcttcagt	c caggtagct	c acggtaccaç	g caatggaccc	3120
caggcctct	g ctctggagc	t gcgtggttt	c caacatgac	c tgagcagcct	gcggcggttg	3180
gcacagagc	t tccggcctg	c tatgaggag	g gtattccta	c atgaggccad	c agctcggctg	3240

atggcaggag	caagtcctgc	ccggacacac	cagctcctgg	atcgcagtct	gaggaggagg	3300
gcaggttcca	gtggcaaagg	aggcactaca	gctgagctgg	agccacggcc	cacatggcgg	3360
gagcacaccg	aggccctgct	gttggcatcc	tgctatctgc	cccctgcctt	cctgtcggct	3420
cctgggcagc	gaatgagcat	gctggccgag	gcggcacgca	ccgtagagaa	gcttggcgat	3480
caccggctac	tgctggactg	ccagcagatg	ctcctgcgcc	tgggcggcgg	aaccaccgtc	3540
acttccagct	agaccccaaa	gctttccctt	gaggaccttt	gtcattggct	gtggtcttcc	3600
agagggtgag	cctgacaagc	aatcaggacc	atgccgacct	ctagtggcag	atctggaaat	3660
tgcagaggct	gcactggccc	gatggcaccc	tcttgctctg	taggcacctt	agtggctttt	3720
ccctagctga	ggctcaccct	gggagacctg	tacatagtgt	agatccggct	gggcctggct	3780
ccagggcagg	cccatgtact	actttgactt	ttgcaaactt	tattttcata	ggttgagaaa	3840
ttttgtacag	aatattaaaa	aatgaaatta	tttataaaaa	aaaaaaaaa	a	3891

<210> 12

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 12

ttggccacag tacctttggt t

21

<210> 13

<211> 19 <212> DNA

<213> Artificial Sequence

<220>

<223> PCR Primer

<400> 13

ctgagcctag ggccttgct

19

<210> 14

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR Probe

<400> 14

catccaccga ctcgcagctg g

21

WO 03/102019 PCT/US03/17638 11/90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PCR Primer <400> 15 20 ggcaaattca acggcacagt <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PCR Primer <400> 16 20 gggtctcgct cctggaagat <210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> PCR Probe <400> 17

27 aaggccgaga atgggaagct tgtcatc

<210> 18 <211> 27001 <212> DNA <213> H. sapiens

<220>

ttaattetgg tttattteaa cecaceteat tgggacecet teceteette etgececace 60 tggctctgtc cctaggccac agaaccaggt tcggtttcca gccctcttct caacagggct 120 gcctgctctg atctagtccc agcttgtgat gatccagggc agcctggctc tgatctaaag 180 cacagetace tetteettge ggeecetate etggetgete etgggaataa gtgecaaate 240 300 tggggtcaga cagccctggg gccagtcttc cttgggtact ggcttcctcc ttcaggagct gcactgggcc cactggtatc ctatccctac agctggatct gggaggaaac cagatgacga 360 aattccagcc tctttctttg gccactcctg tcctcaagag gccaatcttc tggtttcttt 420 gcagagagg ggcaggctga tctcacaggt catgctcccc tccacattgt cactagcctc 480 ccagcctgcc cgtgagaaag catcattagg cccatgttac aaatgaggaa aattgaggca 540

			12/90			
gagtgatgta	actggcccag	cagttacatc	aggcctgctc	acaacacagc	aggcctggga	600
cccctataac	ttggatcctg	gtctgtcttg	ttctaaagag	tcaaatctag	gaaatgagga	660
aatgaagttt	gggatgggcc	caggcctggg	gcttccactc	ggcttccttg	cttggtgctg	720
gagaaacaga	ggcccagaga	gggggctcgg	cttgcccgcg.	ttcccgcagc	agccggccag	780
aggccgctgc	cattgtgcgc	gaggctggat	aaaatgaatg	actggagggc	gctctggagg	840
aggggccggc	tgaggggaga	tttgtggcgc	agaccgggga	tcaggggtcc	cccgctctct	900
caaggtgggg	cggggccgtc	tatctgggag	ggcgggtcct	ccccgaaagg	ccccgcctcc .	960
gcctcgaccg	cccagcagag	ctgcggccgg	gggaacccag	tttccgagga	acttttcgcc	1020
ggcgccgggc	cgcctctgag	gccagggcag	gacaggaacg	cgcggagcgg	cggcggcgac	1080
tgagagccgg	ggccgcggcg	gcgctcccta	ggaagggccg	tacgaggcgg	cgggcccggc	1140
gggcctcccg	gaggaggcgg	ctgcgccatg	gacgagccac	ccttcagcga	ggcggctttg	1200
gagcaggcgc	tgggcgagcc	gtgcgatctg	gacgcggcgc	tgctgaccga	catcgaaggt	1260
gcgtcagggc	gggcagggct	tgaagctgcg	ccgggtggcg	cgagtagggg	gcgcgcaggt	1320
gtctccctgg	cctttgtctc	cccacgggc	gccagctccg	tgctgtgctc	gcgcgggact	1380
tcccggtgtc	tctgagctcg	gtgtcccgag	cctcaccgag	cctccctggt	tcccgcgcta	1440
gcgtctcggg	ccgcgcgctt	gtgggtgagg	gctcctgggc	cgggccgggg	tcccttggcg	1500
gctccgggcc	gggacacgtg	cgcctctacg	cgtcccaggc	cgggtgccgc	ccgaccggtg	1560
actctccagc	cctgtgatgg	ccacggctga	agctggggac	ccaggcgtcg	ccgaagctcc	1620
gececageee	cagccgtgac	gtaattgcga	ggttactcac	ggtcattccc	teeggeeega	1680
gagttcagct	cggcgtcgga	gctcttgcgc	atgcgcatgg	gegetgeete	gcgcccttcc	1740
cccgcctcgt	gtcgggttct	cccggtctgc	gacgggcaca	gcctccgcac	tcattcactg	1800
acatccaccg	aatgccaggc	cccgtcttag	gcaccgaggg	tttacagaca	gacctgggta	1860
cccctcttt	tagggaacac	aaaaatctcc	cgggaaacca	aacgggtatt	tagttgtacc	1920
ttgggtggag	cgaggctggg	ggagggcagg	gatgtggcta	ctttgggtag	agcggtcagg	1980
gacttctaag	ctgagacctg	agggtcaccc	ccaggaccag	ı caaggaaaga	tgttttccag	2040
gccacggcaa	ı gggaagggca	aaggcctcga	ggcagggcct	aagtgtgagg	agttagaggc	2100
ttgcaaagga	gtgaggtcag	ggaggaggag	gacgcaaaco	gacttggtcg	gccagggaaa	2160
gggcggagca	gaacagtggc	accggcttcc	atctttggag	g catcacccto	gctgtgatga	2220
gaaggggttt	ggggccaatg	gtggcaccaa	gtgccaatta	a ggaggcccgt	tgcttccatt	2280
ttgtagatag	g agcaaacgga	agcccctago	: aaattgcct	g catggtttct	gtgcaggagt	2340
tttagcagca	a ctagctaagt	tgcacttggt	: tgatgaggaa	a actgaggcca	a aggtcgcagg	2400
aacaagatgo	c ctagactcac	: agcctgaato	gacatgtcc	a tggaacccg1	ggccaccctg	2460

13/90 gggttggcaa aacagatata tctatgccac caccactcct gccctactgc agccttgcag 2520 atgageceag etggttgeea geeceagaag etteceagee eteceteett eeeeetgggg 2580 ctgggctagg ggaggacccc agaggagagg ccctgattgt gaggcttttc caaaacagcc 2640 toccctatec etggcacgag gggttgteet teactgeeet etggagtgat gaaccetgaa 2700 atcccaagcc ctagggagat ctgggcctga ctcaactacc agttccacat cactgggccc 2760 agtgagtgta gtcccaagag gcaacgtgac caagccagga ggacatgcgc tttggggtca 2820 gaacttgaac ctggacactc ctcacttcct ttgtcatcct gctcaagccc tctcaccctc 2880 taaaccttag tttccacctc cagaaaaatg atgcaaaccc tcccttcatg ggcaagttgg 2940 acaacagaac ccgttctggg ccacaggtct gatacagacc tttgtttgtt tgtttgtttg 3000 ttttctgcag tggcgcaatt ttggctcact gcaagctcct cctcctgggt tcacgccatt 3060 ctcctgcctt agtctcccaa gtagctggga ctacaggcgc cagccaccac gcctggctaa 3120 ttttttgtat ttttagtaga gacggggttt cactgtgcta gccaggatgg tctcgatctc 3180 ctgaccttgt gatccgcccg cctcagcctc ccaaagtgct gggattacag gtgtgagcca 3240 ccgctcccag cccagacctt tcttactgac agaatctggt ctgggccaga ggtctgatac 3300 agacctttct tactgactca tggataaaaa cattgtctct ccagaaccaa aggccaggca 3360 tgggcagcca tgtggcccaa ggtctagtct atgagagagt gggggcagtc ccagcccctt 3420 gaagactggg ggcagcccct tctcactagg cagggctcag ctttacccac ttcagtagag 3480 gatttttcag tttttattca aacttcctgt ttttcttccc aattacacac atctttttc 3540 3600 3660 ggggtggtgg ctcacaccta taatcccagc acttgggagg tcgaagcaag aggatgactt gtgtccagga gtttgagacc agcctgggca acatgacaaa atcctgtctc tacaaaaata 3720 aaaaattagc tgggtgtggg tgacatgtgc ctgtagtctc agctactctg gaggctgaag 3780 · tgggaggatt gcttgagcct ggacttagag gctgcagtga gctataacca tgccgttgca 3840 ctcagcctgg atgacagagt gagattctgt ttcaaaaaaa actttaaacc taccacccag 3900 agataagccc tgctaattat gtgaaagagc ttttcttctc tctctctc tctctctgtg 3960 tgtttatatg tgtttgggga tgggtgcaca ctcttcataa acttttttt ttttgagaca 4020 gggtctcgct cttttgccca tgctgtagtc cagtggcatg atctcagctc actgcaaact 4080 ctgcctctca ggttcaagag attctccagc tcccaagtag ctgggattac agtcatgcac 4140 cgccacgcct ggttaaattt tgtattttta gtagagatgg ccatgttggc caggctggtc 4200 togaactoot gagotoaggt gatotgooca cotoagcoto toaaaagtgo tgggattaca 4260 gggcatgaac caccatgccc ggccttcatc aattttttaa aaacgacttt attgaggtat 4320 actttatgta tcacaaaatt tacccatttt tagtatatca ttcaatgatt tttagttaac 4380

WO 03/102019 PCT/US03/17638

14/90 tttttgagtt gtgtgacaat tactagctgt cgaacatttt tatcacacag tgagatccct 4440 tatacttctt tagtcagttc ctgttcctgc tcccagcccc gggcagctgt ggatctgtat 4500 4560 ttttgagacg gagtcttgct ctgtcgccca ggctggagtg cagtggtgcg atcttggctc 4620 actgcaaget cegeetecea ggttcaaaca gttetgeete ageeteeega gtagetggga 4680 4740 ttacaggcac ctgccaccac gcccggctaa tttttttgta tttttagtag agatggggtt tcaccatgtt agccaggatg gtctcgatct cctgaccttg tgatctgccc acctcggcct 4800 cccaacgttc tggaattaca ggcgtgagcc accgcgcccg gctggatctg tattttata 4860 aattaaaata gggtccattg gttcacagct gattggaatc tgcttggttc catgtcaaca 4920 4980 qccaqacqac aqtaaqqttt cctcttatta cccacctgat tccctgtcga tggacaccta ggttgtttta tctttataaa ctgctgcagt ggacactgag gccggttttt ttctttgttt 5040 ttttttttt gtttgtttgt ttttgagaca gagtcttgct ctgtcaccca ggctggagtg 5100 5160 cagtggcgcg atctcggctc actgcaaact ccgcctcccg ggttcacacc attctcctgc 5220 ctcagcctcc cgagtagctt gggactatag gtgcgtgcca ccatgcctgg ctaatttttt gtatttttag tagagacggg gtttcaccgt gttagccagg atggtctcga tctcctgacc 5280 5340 tcatgatctg cccgcctcgg cctcccaaag tgctgggatt acaggcgtga gccactgtgc 5400 ctqqccactq aqqccaqtct ttqcccqgat cctcactqtq ttcctaggat gaggttctqq 5460 gaggggaatt gctggtcaga ggtcgagcct gcttttgaag cttcttctac caggagtgga gctgagcagg tttgataagg tctgaagatt tgggggtgga aatgccaggt cccttgagag 5520 5580 acatgaggga taagaggggg ccaggctggc cttgagtgcc agagtgcaga gctgggctag 5640 atgtqaqqac agtcgggggt cagagcaggg gcacaccgag cttcagttcc ctctggctgc ttggatggag gatcgtaatg tgaacagaaa acactaattg agtacttact gtgtttcaga 5700 cagtgtgttg ataatcccac ttaatcccct gacaacccca agtaggtaga catatgatga 5760 5820 agatgacggc cttgaggacc agagaggtta agtgatttgc ctgagatcac acagccagat 5880 gatggcaaag ccagaattca aacccaggct gtgggctcca gagcctagct cttaagctct taagcactgg gctcctaaga atggggatga ggggttgagg gaggctcctc cacaggggct 5940 actctggggg cctggaagtg ggtcacagag gggtcagagg ctatgtggct acctccccat 6000 6060 cccagtccag agcagtgttt gagtcattag actgggaacc agccctggtg agccagccaa gggccttggg ccccatccgg tcctgctgcc tgccacagcc aaactcttgt catgtgaatg 6120 gatttgggga tggagctgcc tccatgagtc cttgcatctg tgggtgaagg cactgccctg 6180 6240 qctatagtgt ccctgggttt gagtcctgca tctgcaccaa gacctcaggt gagcctgtct 6300 ccttctgggc ctcagagtac cttgcagctg tcgggggagg atggatcagg agatggccct

WO 03/102019 PCT/US03/17638 15/90

gtacctgtgt tggggattat tgttaagccc gtggcagtct tcacctccct gctgaggatt 6360 aatttatcca attttgcaca agcttatgag tgcagaagag gcagacggaa acagagttct 6420 ggccaagagc ctggaacagg gcctcggggt ctctttccta tgcctggacc ccgtcatgtc 6480 6540 tqctctttqt ctqtcqqacc ccagatqtct gccaagcccc gtcagaggct gcttcccaga aagcccttct gggtgtcacc ttgccccgag cagtgcgttc tcagagttct cccgccctga 6600 tgtccctccc agcatgccca gcccagccac aacagggcct tgcttctagt catgtgtctg 6660 gctgtttgct gggtccaggc cagccctggt agggcacaat gggggcccgc tctgccaccc 6720 catacctctc cccaggatat ctcatgcccc agttctctcc ctagttccac caagcactgg 6780 cactccttag aaaacacagc tctagactag ttactgccct agcttacagc acagaactcc 6840 -cctggtctcc aaccattcat ggctccctag tgctccaaga taaagttccc ttgtctcagc 6900 6960 cgggttggga gttaccttct gcccaacatt cacctagctg gacacaaaca tcctgagtga cccggtcagc tccaggcagg agtcactgcc agcagaggcc tgggatctgg actttgcctg 7020 7080 ctgacaggtg gagccaggc cggccagagg aagtgcctct gaccttgtct cctagcagcc 7140 acqqqccatq tqqacatqcc ttttqaccct gggcactgac agtgtgtgac agcctgcacc atgtgctcca caggggcggc tgtgtgtgtc gggggtgagg tggggaaagc cttaactggc 7200 tcaggggtga gaggtcaggg agccattgag actggctcca ggtgtgggtc ccctgctggg 7260 ttggggcttg tgggaggtgg gacggggctg ggggtccatc cccctagggg gaatttgtgg 7320 7380 cctacccga accetgtttg agetecttte ctaactgact eccegteect geacetgtet eccageagge ettgeetetg catgetgeee etgeeagget etggggteee tgtgeteeet 7440 7500 gcagctagaa ggctgggatc aggggtctta acaagcagcc ctactgtatg accttggaca agtccaagaa ccttcaggtt cttaacaatg taaagggagc agtactaaaa gcagcttctt 7560 ggaattgtgg ggatccgatg agtgaaggct taagcagtgc atggcacata gtaggccctg 7620 aaccaatgcc agttagtgtt attattatca ccatttagcc agatgcagtg gctcacgcct 7680 7740 ataatcttat tgactttaga ggctgaggtt ggaggattgc ttgagaccag gagttcaaga 7800 ccagcctggg caacatagca aggccctgtt tgttttagag aaaacaaaca aatcaccatt "tagagcacct aaccagtacc tggcacgcga taggtttagc tcaacaaatg ttagcagcaa 7860 7920 ttacccaagg agcctgtgct ggaagtttct aggatgtacc aggctatggt tccaagttct 7980 gagcatctac catgtggtgg tctggagttg gtgagagaca ggatggggct gactaggcca gtggggagca cccccccca tggggaacaa gcaccctatc cttggcttcc atggaagata 8040 8100 attgatgctq qqcacaqtqq ctcacqcctq taatcccagc actttgggag gctgaggcag ggggatcgct tgagtctggg agttcaagac cagcctgggc aacattgtga gacccaaact 8160 aaaaaaatta gcttggcatg gtggagtgtg cctgtcgtcc cagctactca ggaggctgag 8220

W O 05/1020	,1,		16/90			
gctaaagctg	gaggattgct	tgagcccagg		tgcagtgagc	catgatcata	8280
ccactacact	ccagcctggg	caacatagtg	aggccctgtc	tcaaaacaaa	caaacaaaaa	8340
gaacctgctg	aggaagcagt	gtttctggct	gggggaggac	gggcagagtg	gccatctggc	8400
cacagatggc	ggtttctgtg	caaaacacat	caaggcagcc	ttggaaatgt	gagtgaaagc	8460
accttcaaag	ttctggtcac	agccttggga	ctaagcaaag	ccaccaaaag	tacataaaag	8520
acaatgacca	tcacccagtg	ccggtgatgc	tagaaggaaa	gggaatacgt	tgtagggaag	8580
gttgtaaagg	gctttatctt	ttccagactg	gagcctggca	gctcgaaaac	atcttgctgc	8640
cttcatatga	gctttaaaac	aagctgcaga	gaaacaactc	aagagggaga	aatatatata	8700
tatatgtgtg	tgtgtgtgta	tgtgtgagtg	tgtgtgtgtg	tgtgtataca	tatatatata	8760
tatatatata	tatatatatt	tttttttt	tttaagatgg	agtctcgttc	tgtcaccagg	8820
ctggagtgca	gtggtacaat	ctcggctcac	tgcaacctcc	gcctcctggg	ttcaaatgat	8880
tctcctgcgt	cagcctccca	agcagctggg	actataggca	cataccacca	cgcccagcta	8940
atttttgtat	ttttagtaga	ggctggattt	caccatgttg	gccaggatgg	ttttgatctc	9000
ctgacctcgt	gatctgcctg	ccttagcctc	ccaaagtgtt	gggattacag	gcgtgagcca	9060
gtttgtttt	agagacgggg	tcttgctctg	tcacccaggc	tggaatacca	tggcacaatc	9120
acageteget	gcaatgttga	actcccgggt	tcaagggatc	ctcccacctc	agcctccaga	9180
gtaatggaga	ctacaggctc	atgccaccat	gcccagctat	ttttaaaact	ttgtagagat	9240
ggggccttgc	tacattgccc	aggctggtct	tgaactcctg	ggctcaagtg	atctgcctgc	9300
ctttgcctcc	caaagtgctg	ttattacagg	tgtgagcccc	tgcgcctaac	cttagcactg	9360
ccattttgac	: tgaaaacagg	tgcccagcag	caggggctac	teccagaatt	gccactgcat	9420
caggcccgtg	ggttgtttc	agctgccagt	gataagtatg	tgöcetgggo	cacctctcgg	9480
acaaggtgtc	tgaattggtg	ccgaccagca	tcacatgtaa	ttgccatctc	gcaggtgctg	9540
ctgagggtaa	ttccgcacac	ctgtagctcc	gggaagagco	: tagtggggag	gaggaaacgt	9600
ggctctgagg	g.tttatagggt	cagacggtca	gtatgttggg	g agctggcatç	tggaggggca	9660
cagacaagg	g aagaatggga	ggtggcatca	gagcaagttt	tgatggagga	ataggaattc	9720
accaggtgga	a aagggcatto	ctggtggagg	gaacageete	g gccttcaata	gcttgtggtg	9780
ttcagaaago	c aggcagggaa	agggaggccc	agggagacad	cagttaggg	g atgggggtgg	9840
aggcagacga	a gggtggagga	agccatggct	ggagtctgca	a cggcctctga	a ctggggtccc	9900
tgctgtggt	c agccctgtgc	: tgggtgaggo	tggggtcaca	a gctggttca	g gccctgacag	9960
gaggggccc	c cagctgaggo	ccagcctcta	a atttggcag	g gcaggtgga	t aggtctgggg	10020
gggtggtgg	t taggaagcct	ccaggaggag	g gcagtgccg	g agctgagcc	t taaagagctt	10080
cgtgttgtc	c tctctgtctt	tgcactctgo	c acacactca	c tgaactgcg	a caaatgagga	10140

tagetggtca gggcagaggc aggccggagt tggggctcac tgctgtccc cacaggctgg 10200 ggctgaaggg caggctctgg ggccgcagaa tggggtttgt gtaccagatt cttcatatgg 10260 cagctgtggg actttgggca cgaggcctcc gtctgagcct tagtttcctc aagaggacct 10320 gcgcccaggt gcacctgggg ctccagccat gggtgcgtcc cattccggga agagctggca 10380 cacacttgtg cccccggggc agccatgagt gcacaaaggg cagcctgtgc cactgctgga 10440 tacacgacca gctgagaaca cgaggaccgc cgactccagt taggaggatc aaggaagtgc 10500 ctggtgggag cagaacagca ggtggggtgc agcccagctc cctggaggga tggtgggcac 10560 ccatcctcac cctgctgcct ccattagcag gccgagaggg tgtgctctgg aatcccatga 10620 gcacctgtgc cacatcctcc cctgtggctg accettcttc acagttggtg cagetttgtg 10680 gtctgtagtg cagggatcaa ttggcaaatc cctttcccac ccattccctg gagaattggg 10740 gtccttggct cagatgacag accaacctga gttggaatcc cagctccttg gtggccgtcc 10800 tggcctccac cccctcactg cctccgctcc tcctatcctg cccacgccca ctgcagggcc 10860 tttgcacaca ctgtttcttc tgccctccct tccggcccac tccctcatat cattcagtcc 10920 teettteaga tgteacetee taagatggge tgeeetgace aceteateta taatggeece 10980 agtgcctggc acaggattgg cacacagtag atattgtcag agatggatct gggttctgtg 11040 gacaaggctg tgggggcagg tgaagagctc cctcttccag gaggttgttt ggggttcaag 11100 gccttgtttg ggttgtaggc ttctgtgctg gtcagcgttg ggccctacaa gcgcatgcca 11160 tgaggcctgc ccaggatttc cctcatggcc tcacagaata catcggccag agtcattaaa 11220 gggcgcctgc.atctgccttc agagagaggt ttgaaggtag aactggggag ggatgccagg 11280 tgggggttca ggtttcctgt tgggtcctga tagaatcagg gcaggagagg aagaagaaga 11340 gggaagagga ggaacccagg cttggggagg ggtggcaggg cttcacaagc ctggggaagg 11400 tgaactaggg agcagttggg gccaccatgg cccagagtct atgcctcctc ttccttcctg 11460 tgttcagagt gtgtgtggga accacaaggg ccttctcagt gttcataggg aagcccggtt 11520 cacccatggg tgggccgcaa tttgggtgcc acagtgagcc cctagagacc agctctccca 11580 gcttccagga cagggactag gggaggcaag agaggctctt ccttaaattg tgcacccaag 11640 gtgcctcage tgccttacte tagactggce cegttaacte ceettaaaaa aaaaaaaaaa 11700 aagactcagt cgaatggtaa tggagctcca acgtgaatac tgcaagtatc aggcaactca 11760 ctacctgact ttccagttct aaaccattct aattgctgta gagagaacta acctttgttg 11820 agactgttga gtgatggatg ttttacacac ttgctttccc agaattccca cctctggaga 11880 tcgtaggtgt gggagctcag agggtgggga gtggactgtc cccatcacac agcaagggag 11940 gggctaaagg aagagcaggg cctggcatgc agccccagat agcccacttg ggtgtgtctc 12000 tgagggaggc tgcagggctg gctctagagt ttcctttttc agtcttaacc tggtgaccag 12060

			18/90			
cttccacaga	aattggcacg	gtgactcatg	cctgtaatcg	caacacattg	ggaggccgag	12120
gtgggaggat	cacctgaggt	caggagttcg	agaccagcct	ggccaacgtg	gtgaaaccct	12180
gtctctacta	aaaatacaaa	aattacattt	cattacaggt	gtggtggcgc	acacctgtaa	12240
tcccagctac	tcaggaggct	gaggcaggag	agtcacttga _.	acccgggagg	tagaggttgc	12300
agtgagctga	gatcgtgtca	ctgcactcca	gcctgggtga	cagagccaga	ctctgtctca	12360 ·
aaaaaaaaa	aaaaaaaaa	agaaattggc	cagtagatca	gccccagggg	agagtgagcc	12420
agggtttggc	caggccttga	gtttcagagg	ctggccatgg	ccagtggcac	ccaggccctt	12480
ccccttcct	cggggcatct	tagcttagtc	tgtgccctct	gcccaagggc	cagccctctg	12540
ttcccaggtc	acaccccctc	ctcttggaag	gcccccccg	cccaccccc	atcagagtct	12600
ttaatgactc	tgctgcccct	ggggctcaga	gagcaaccgc	cctctcccat	cgcgcttcct	12660
cagtgggatg	ggagggggtt	agagcaggaa	gatgagacaa	ataaagacac	aataagaggc	12720
aggaatatgt	ggtaaagcca	agatgggtaa	ggggaggga	caggcttgac	tgttcacagt	12780
ggccctggcc	ctgctgtctc	aggctagtat	ctgcttgttg	gtctcaccac	attctaggct	12840
cagaaactgg	ggagcaaagt	aatgaaagaa	ccaggctggg	aggccatggg	gaactcatgc	12900
ctggagttca	gctctcagtg	tgcttttggg	tcaaggacgc	ttccctgtct	taagtcactc	12960
atgtcagagc	ctttgccaag	agcaatgctg	tgttttgttt	tgggggtgag	ggaacacccg	13020
cgggctgagg	ggagggttgg	gccatgctag	agaggccgtc	tgttgtcctt	gaacctccca	13080
aagctgggaa	ataagggcct	gggctggacg	gcggtggcga	ggacaggttg	cgagagagac	13140
atggctgggt	tttcttgctt	agggtcctga	atagagagca	aggttgaggc	cgcagggacc	13200
ccagccccca	atggactgct	gagtcgctgg	gtctgcccag	ggttcaggca	ccctctcagg	13260
ttgcagccaa	ctggggtgtg	gaccaggcag	aggcgctggc	ctgcagtttg	gggcagaggc	13320
aggctttgct	ggtggtctac	ttggctgcaa	aatcaactgg	ccaggctctg	atcactttgt	13380
gtgtgtgtgt	gtgtgtaact	tttacctttg	acaaaagagg	gaagacaggo	ccaggcacct	13440
cctcaaaaga	accctagage	ctgtcacccc	ttccttaccc	: atcttctgtc	ctagggactg	13500
cagcccttcc	: tggcttccca	gggccctaca	atgaatagtg	ggtcgggact	: cacttggtga	13560
ctgctgggtt	gtgaggcctt	gagggggagg	ggcagactto	acccatctg	g cagagggaca	13620
tcggtgctgg	g cagtcaggaa	acccttattt	ccaggcctca	gtttcccgga	a agtgacctgt	13680
tttcaggagt	ggcctcatcc	: cagaccatca	gccccgctgt	ggtgaggggl	ggccccttcc	: 13740
tggggctgc	ctagaagggg	gaggtccctg	g cacccaccgo	agctgccact	t cggcagccct	13800
tggccttaat	taaacgcttc	ttgcgtacta	agtgctgcad	c ccatattate	c țecettetad	13860
cattcgacgo	c cagggagata	atgactgtco	tgttttctg	g aggagtaaa	c ggagggttgg	j 13920
agcggttaa	g gctcgctcac	g ggtgccagc	g aaccagtgat	t ttcgaacac	a gagttctggt	13980
						•

WO 03/102019 19/90 gtgttgggcc aggacttctc tgctttgacc ctttaacgaa gggggcggga gctgagggcc 14040 agtgaccgcc agtaaccccg gcagacgctg gcaccgagcg ggttaaaggc ggacgtccgc 14100 tagtaacccc aaccccattc agcgccgcgg ggtgaaactc gagcccccgc cgccgtgggg 14160 aggtgggggg ggggccgggg ccgggcccta gcgaggcggc agcgcggccg ctgattggcc 14220 aggcggggcg gggctgggc ggggctgggg gcggggcggg gcggggcggg cgcgccgcag 14340 cgctcaacgg cttcaaaaat ccgccgcgcc ttgacaggtg aagtcggcgc ggggaggggt 14400 agggccaacg gcctggacgc cccaagggcg ggcgcagatc gcggagccat ggattgcact 14460 ttcgaaggta tttttggagg cctccccacc agccctttat acaatgcctc cgtctcctgc 14520 aggttctcct ggggtgggcg ggcatgcggg ctacgcaact tgagcaggaa agagccctt 14580 cccgagggag aaggtgtgac agttaccagc tcgctgggga agtggagggc tacctccaac 14640 caaattagtg tcccctgcaa ctcaaggggg aagggtttgc ttagagaccc aaaagcagca 14700 tcccgaccta agagggtttg gagggagagg gtggtcttct ctacattctc tgcacccgct 14760 ttgggacagg accaggagga agcagggagg agggcccgtt gtccctctgc cacagcgtct 14820 gccctattca gcaccctgc ctattgtggg catcttagac ttttcaggaa gacagtggga 14880 gccctagatt gtcaaaattg tcagtttttc tttcaggcct cagtttcccc catctatcga 14940 agaggeteae aeggaetggg gtaaagggat gggaaaceet geagttgaaa gteeattatg 15000 acttgatgac ttgtgacctg gggggtccac aaaccaggag agtttctact tgagaagcca 15060 ggaagactgg ggctgccacc ccatcctgtt ctgccaactg ctctaggaaa ttcccctcct 15120 gcagtagctt ccctgcctgg gtacctgtca gtaggcaatg ttgggtctcc actcggtgcc 15180 agctgcctgc caagcaaagc ctcgggcagc cgtaccaaaa ggggtttagt cttttctgtt 15240 gtacagatga ggaaactggg gccagtgaga ggaggctgtt ggtccaggct ccacttcaag 15300 ctggtggtgg gcagggctgg gagctcaggc tggggatcct gagagcactg gaggccccca 15360 tgggtcctgt agagcattct gacccagtgg gtgccaccac gagtgggtta gagggccctg 15420 ggctgagcca gataggctgc tagtcaccag ctgggggaga gggcccttgg ccaggtgggg 15480 ctgaggtggg agtgtgtccc agtctgtatg aggaggaagg agtcaggaca gacagcactt 15540 gcttttacag agatgaaatc aaagccctga gtggccaggc ctgggtcttg aggctacttg 15600 gctgcaggca aagcctggac ttgagcccag aactctacac agagacacac tggttggcca 15660 tgtggccagc agctggcttg gccctaagcc ttggtctgtt ccactgagta atgggttggt 15720 gatggcagcc tggctcttgg cttcttagtg gggcaagaaa aggcagagag acaatagatt 15780

tgggattttg tagacctggg tttgaacccc actgcatgct cttgggctgc ttgtggtcct 15840

ccctgagcct cagtgtcttt tcttgtctcc aagatgaggt gagctaatct tttgaggtag 15900

			20/90			
tctagggtag	tggccagtgg	ttggggcatt	ggagtcaaaa	tagggtctgg	actcagttga	15960
gtctctgact	ctataagaac	ttaggccagt	aagtcacctc	tctacagctc	agtttcttca	16020
cgtgtagaat	ggggccaatg	atcacatcac	cctctcagct	gtgggtgagg	attaggggtc	16080
tagcctggcc	ccatcaatgt	gggtagcccc	acagcgggcc	tggcttttgg	accagaccca	16140
cccttctgac	atgggccccc	acccttagag	tccttctagt	gtggatgagg	accctgctct	16200
gatctggggt	cctcttgggg	gacttccctg	tctgccattc	tctttgggga	tcctgcgctg	16260
ccctaggaag	agtgggccca	ggctgcacag	ttggtccttg	gtcacagagg	atcccaccac	16320
ttcttcaggg	cctcaaggca	atcctgcctc	tctctgcacc	cctcttcccc	ctgtaaactg	16380
aggggagggg	aaaatcaccc	actcctcagc	agtttctaag	ttgctttgtc	aaattcagtg	16440
cccagaggat	cctgctgggg	gtgcgtttta	ggatgagacc	aggagtggcc	aatggtgggg	16500
tgtggggccc	atcgctccta	tatgaagacc	ccctctgccc	tagactgctc	ctccctcccc	16560
atccccatct	ccatcccaaa	gactggagct	gctggatctg	tggatggagg	cgtgcccccc	16620
gtttcacaca	ttgagaaaca	ggccccaagt	ggagccaggg	aaggctgcac	ctgggcctct	16680
ggattccttt	tgttctgtgt	ggggttgggg	gtgatggact	gtggagaggg	caggagagct	16740
gtctggaagg	gttggtcacc	tcatgggcaa	atgcttggaa	gctggtctga	gtccacggtg	16800
cagtgtgtat	gtgtgtgtgt	gtgtgtgtgt	gtatgtgtgt	ggactcagag	gtggatgtct	16860
tgtagaatgc	atgccccatg	aagacaggag	taaaagttta	ccaccatcca	catcaagcta	16920
caggacactc	ccagctcccc	agaaagttgc	ttagttctag	gcagggattt	cccttattca	16980
cagccgggag	cagtgcctgg	catagtgtgg	gcactcagca	ctcagcacat	gctcactgga	17040
tgagtgaatg	aatgtgagcc	tgctgtttgc	tgtggactaa	ggatgtttct	. agatgtttgg	17100
gcaaataccg	gatggtggga	agagctcagg	ctctgaagtc	: tgcagtcttg	ggcccgacco	: 17160
tgggctcagc	cccagcctag	ctgtggggca	agattgtgag	ccttgtggtg	cccaccttgt	17220
ccaggtatto	, tgatgcactc	gcagcagcag	gcattgcttt	agacagcaca	a ggtgctcgca	a 17280
aaatggctgt	atgtccggga	acaccagete	ctgtgggtg	g ctttctgtco	c tggtggcatt	17340
gcccacacat	acagctgtgt	gccaacaagg	gttgtgcaaa	a taaggttgto	g tttggatgtg	17400
tgtgatgcc	tgtttggggg	tcagtctctg	cctcactcac	gcaccctct1	ctcctttca	a 17460
cagacatgct	tcagcttato	aacaaccaag	g acagtgacti	coctggoot	a tttgaccca	17520
cctatgctg	g gagtggggca	gggggcacag	g accetgeca	g ccccgatac	c agctcccca	g 17580
gcagcttgt	c tccacctcct	gccacattga	a gctcctctct	t tgaagcctt	c ctgagcggg	c 17640
cgcaggcag	c gccctcacco	ctgtcccct	c cccagcctg	c acceacted	a ttgaagatg	t 17700
acccgtcca	t gcccgctttc	tcccctggg	c ctggtatca	a ggaagagtc	a gtgccactg	a 17760
gcatcctgc	a gacccccac	ccacagece	c tgccagggg	c cctcctgcc	a cagagcttc	c 17820

cagccccagc cccaccgcag ttcagctcca cccctgtgtt aggctacccc agccctccgg 17880 gaggettete tacaggtaag ggggatgtgt ggegggaggg gaeacceggg gtggggette 17940 caggagcaca ggaagaagct tctgctgtga tgtgagtaga ggtctgtgca ggctttagaa 18000 actggggctc cactcggctg cttgagatgc cctgttacta gcagtcctgg tgtgcttgtt 18060 gccggggtag gcgcaacctc gcactggagg cctggcttga agccagtgca tttgcatcag 18120 agcccaggca gggactgtcc ataggaagcc acatggggca atgactcatc caaggccagt 18180 cggtgataga gacctgaaga gcaggttgaa agtgggagag ggaggtctgt gtctgcagcc 18240 ccactggctt ccccgccagg ggtcccgccc gtctccttgc acacccaggt ccagagtgtg 18360 gtccccagc agctactgac agtcacagct gccccacgg cagcccctgt aacgaccact 18420 gtgacctcgc agatccagca ggtcccggtg agggggtctg gccaggggtt ggggaggggg 18480 cagececage ecagaeacae agettaeage caageetete ecaceeteag gteetgetge 18540 agccccactt catcaaggca gactcgctgc ttctgacagc catgaagaca gacggagcca 18600 ctgtgaaggc ggcaggtctc agtcccctgg tctctggcac cactgtgcag acagggcctt 18660 tgccggtggg tgacgtgggc agggcataag ggagtggggt ctacacacac acacacatgc 18720 ccacctggta acatgtgcct ggccctgcag accctggtga gtggcggaac catcttggca 18780 acagtcccac tggtcgtaga tgcggagaag ctgcctatca accggctcgc agctggcagc 18840 aaggccccgg cctctgccca gagccgtgga gagaagcgca cagcccacaa cgccattgag 18900 aagcgctacc gctcctccat caatgacaaa atcattgagc tcaaggatct ggtggtgggc 18960 actgaggcaa aggtgtggag aggcctgcag gggcacagac cggggtgtcc ctaggaagga 19020 acagatcagg ggcaactgga aggaagagag ggagtgagac tgagcctgga caagcaggga 19080 attggaattc agcctcccca ggcctggcca gcctcgttta tttagttaaa ctggtttgca 19140 ggcctcttca ataaaggtgg ggctgtgcta ggcattgggg atgcagcaat gaacaagaca 19200 gacaaaaatt gtccctcaaa gaagagccga ccttctggtg ggggagatgg acagtaggca 19260 ggatgaataa gtgctcgaga ccaccacgtt tggctcgttg cagagaaagc aggaagagga 19320 tggtgagggt cccctggtgg tagccaggga aggcctccct gagatggcgg caggcacagc 19380 agcagetage cagaceetge tgtetgeate ttacatteta accetatgee eggeetggga 19440. ggtgggtgct actaggcgag gaacggttca ggtagaagga acaagtgcaa aggtcctgag 19500 gcagtaatgt tgcaaagcag ctccgcaccc ccttgctagg gctctccaac cccacaaccc 19560 ccgacctgac aggccacctg tgcgctcccc ctccctccca caccgtgcag ctgaataaat 19620 ctgctgtctt gcgcaaggcc atcgactaca ttcgctttct gcaacacagc aaccagaaac 19680 tcaagcagga gaacctaagt ctgcgcactg ctgtccacaa aagcagtgag tcctggcttt 19740

WO 03/102019 22/90 attgagetee agtetggeet ettetetage ettgeteeae eteceggeee eaccecatee 19800 ctagececae eccaecettg gttetggeee accetetgee etgeceaect eaccettgge 19860 tgtagccctg cattcagctc tagtcccttg gttacctctg gtcctgaaag agacctggtg 19920 cctccctttg gccctaaccc agccccatca aagcgtcctg ggctagcttt aggagctaca 19980 gtagtcccta ggcctccaag ggcctaggct ctgatttggg gtcacatatc cagcctttac 20040 tcctggctct gttcctttcg gcccacagaa tctctgaagg atctggtgtc ggcctgtggc 20100 agtggaggga acacagacgt gctcatggag ggcgtgaaga ctgaggtgga ggacacactg 20160 accccaccc cctcggatgc tggctcacct ttccagagca gccccttgtc ccttggcagc 20220 aggggcagtg gcagcggtgg cagtggcagt gactcggagc ctgacagccc agtctttgag 20280 gacagcaagg ttgggccctg ccacggtgcc cccttcccca ctcccagcca tatcctctga 20340 gcctcatgac agggccggga agaccctaac agatcctacc tcccatttca tagacagaat 20400 aactgaggcc tggagccacg tggggtccca cagtaaggtg ggcagaatcc tgacccccc 20460 cttcccagcc ccatgctctc tggggtccct ccgattctgc cctcaccacc ctgcccaacc 20520 ccaccaggca aagccagagc agcggccgtc tctgcacagc cggggcatgc tggaccgctc 20580 ccgcctggcc ctgtgcacgc tcgtcttcct ctgcctgtcc tgcaacccct tggcctcctt 20640 gctgggggcc cgggggcttc ccagcccctc agataccacc agcgtctacc atagccctgg 20700 gcgcaacgtg ctgggcaccg agagcagagg tgggaccggc cagcctgggc atctttggga 20760 gggacactcg gggtgagccc ccaggcttgt gaacttgggg ctctggattt cctgggagct 20820 gtgtccccag ctttccctct gtccatagat ggccctggct gggcccagtg gctgctgccc 20880 ccagtggtct ggctgctcaa tgggctgttg gtgctcgtct ccttggtgct tctctttgtc 20940 tacggtgagc cagtcacacg gccccactca ggccccgccg tgtacttctg gaggcatcgc 21000 aagcaggctg acctggacct ggcccgggta aggggctggc cccggcagag tgggcagggc 21060 agggacccca ggctgtgaag gtgctgggtg tcaacccttg ttcctgctcc ctgtgcacac 21120 catgaatctg tecegteete eetgtgeeta gecaegeate egeagaeece caecaeceet 21180 ccagagectg etgtggaegg etettetgag etttggggea getgetetga eeteaetttt 21240 ctcacctgga aaaccctcat ccacagggag actttgccca ggctgcccag cagctgtggc 21300 tggccctgcg ggcactgggc cggccctgc ccacctccca cctggacctg gcttgtagcc 21360 tcctctggaa cctcatccgt cacctgctgc agcgtctctg ggtgggccgc tggctggcag 21420

gccgggcagg gggcctgcag caggactgtg ctctgcgagt ggatgctagc gccagcgccc 21480

gagacgcagc cctggtctac cataagctgc accagctgca caccatgggt aggactgagc 21540

gtggggcggg ctccgaggtg ctccctgctg cctgtgctcc acccacagcc tcatgcctgc 21600

ttgccttcca gggaagcaca caggcgggca cctcactgcc accaacctgg cgctgagtgc 21660

	•		23/90			
cctgaacctg	gcagagtgtg	caggggatgc	cgtgtctgtg	gcgacgctgg	ccgagatcta	21720
tgtggcggct	gcattgagag	tgaagaccag	tctcccacgg	gccttgcatt	ttctgacagt	21780
gagtgggttg	gggggatggc	gggagtgggg	agggtggggc	gcctgaggct	ccctgggtaa	21840
gagctacacg	ggatgtggca	gtggttacca	gggggactcc	aggccaagct	gggactcggc	21900
ccggggtctg	gccccaggct	gtgtccactg	tgacagccca	gtacccaccc	ctacagcgct	21960
tcttcctgag	cagtgcccgc	caggcctgcc	tggcacagag	tggctcagtg	cctcctgcca	22020
tgcagtggct	ctgccacccc	gtgggccacc	gtttcttcgt	ggatggggac	tggtccgtgc	22080
tcagtacccc	atgggagagc	ctgtacagct	tggccgggaa	cccaggtgct	ctcttacccc	22140
ttccctgtcc	cctctcctgt	ccctcatcct	cattcctgtc	ctgtcccttg	tcgcctgaat	22200
ctctggctgt	ctctggccac	cccagtcctt	ctccctgcca	tgggttgttg	ctgtgggggt	22260
tgcaggaagg	gaaaggcctg	ggtgcctctc	gttcccattg	gggctttcag	aagcacatgc	22320
agggattgat	gggcagatgg	ctaattggag	aagtgacccc	aggcagtgcc	gctgtggagt	22380
aaggaagcgg	agccaacaat	ggcatcttct	caagtcggtt	ttcctttgga	agcagtgtag	22440
ggcaggcctc	agtgttgtct	cctggccaag	gctggtgctg	gtgatagtta	tgtccacccg	22500
ctttcccctg	tccttggcag	gggctgcacc	caggggcatg	ccggcacttc	ccagtggccc	22560
taggtgtggc	cccagcccac	ccaggaaaaa	gcccttagct	tggagaggag	ggtggggccc	22620
tgctccccac	cccactcacc	tectectete	cacagtggac	ccctggccc	aggtgactca	22680
gctattccgg	gaacatctct	tagagcgagc	actgaactgt	gtgacccagc	ccaaccccag	22740
ccctgggtca	gctgatgggg	acaagtaagt	gtcgttgtgc	cctcctccag	gcaaggcccc	22800
tccggcggga	ttctgagaat	agctctggcc	tcaaccctgt	ggagagagcc	cagagctggg	22860
ctaccgtgcg	tgccatgcac	gcttcattcc	tctctgagtt	tectetecee	accagcctgt	22920
gggaggagac	agtggcactt	tgcagagcca	ggggccaggc	tgtactctgg	agggcaggtg	22980
gggagcaccc	tcctaggacc	cctgccatct	gttccgacag	ccagctctct	ccttccacag	23040
ggaattctcg	gatgccctcg	ggtacctgca	gctgctgaac	agctgttctg	atgctgcggg	23100
ggctcctgcc	tacagettet	ccatcagttc	cagcatggcc	accaccaccg	gtgagtcccc	23160
ggcccctgtc	ctggctccct	tctcagctcc	cccgtgcagc	gtgactgagg	gttcagggga	23220
ccctccctct	tctgcaggcg	tagacccggt	ggccaagtgg	tgggcctctc	tgacagctgt	23280
ggtgatccac	tggctgcggc	gggatgagga	ggcggctgag	cggctgtgcc	cgctggtgga	23340
gcacctgccc	cgggtgctgc	aggagtctga	gtgagtgcac	ggcaggttcc	: tcctgcctgg	23400
tecegggete	: agccttcctc	atcccctggg	cactgtgcct	cactcagcct	ttgttctgtg	23460
caggaggagt	caccaccttt	tttcctcagg	gaactcgago	: cagggaagtg	gggggcactc	23520
agccagggct	: tgtggactgg	tctgactggc	actcttctgc	cctggtccca	acaggagaco	23580

WO 03/102019 24/90 cctgcccagg gcagctctgc actccttcaa ggctgcccgg gccctgctgg gctgtgccaa 23640 ggcagagtet ggtecageca geetgaecat etgtgagaag geeagtgggt aeetgeagga 23700 cagcctggct accacaccag ccagcagctc cattgacaag gtgaggggtg gggtcagggg 23760 cctggcaggg ctgggggatt cagctttcca ttccctggtt cctctcccca gcccccaggg 23820 gctgcagaag accatggggt tagcccaagc agcacaggat agggggtcca gcagaccctg 23880 ctttttggct aaggettetg tecagaggag aggggttgee ectatetgge etcagtttee 23940 ccatccctgg gaggagggg gtggatggtg tggtaggatc cctttggagg ccctgcatca 24000 ggagggctgg acagctgctc ccgggccggt ggcgggtgtg ggggccgaga gaggcgggcg 24060 gccccgcggt gcattgctgt tgcattgcac gtgtgtgagg cgggtgcagt gcctcggcag 24120 tgcagcccgg agccggcccc tggcaccacg ggcccccatc ctgcccctcc cagagctgga 24180 gccctggtga cccctgccct gcctgccacc cccaggccgt gcagctgttc ctgtgtgacc 24240 tgcttcttgt ggtgcgcacc agcctgtggc ggcagcagca gcccccggcc ccggccccag 24300 cagcccaggg caccagcagc aggccccagg cttccgccct tgagctgcgt ggcttccaac 24360 gggacctgag cagcctgagg cggctggcac agagcttccg gcccgccatg cggagggtga 24420 gtgcccgatg gccctgtcct caagacgggg agtcaggcag tggtggagat ggagagccct 24480 gagcctccac tctcctggcc cccaggtgtt cctacatgag gccacggccc ggctgatggc 24540 gggggccagc cccacacgga cacaccagct cctcgaccgc agtctgaggc ggcgggcagg 24600 ccccggtggc aaaggaggtg agggggcagc tgctgaccag ggatgtgctg tctgctcagc 24660 agggaagggc gcacatggga tgtgatacca agggaggctg tgtgtgtgtc agacgggaca 24720 gacaggectg gegeagtgge teacacetag caetttggga ggeteagttg ggaggacage 24780 ttgagcccag gagttggagg ccgcagtgag cctgagtgac agggagagtc cctgtctcaa 24840 aaaaaaaaaa agaccaagca tettettgat ggttacetga tgacaattee ttteacaagg 24900 aatcagtggg gtgactgtca tttgtgggat acatgactgc acgtgcgtga ctcagtctgt 24960 ggactttgtg tgtgggctga gactagggtg gggagagggg aacccgccag gcccccgcca 25020 ggtacctgtg tgccaggtac aggcggctgg tgccgtggct tgtgtgtggg cagggctccc 25080 gcgggggcgt ggccagcttg agacccatcc ctgacacatc ctcgtgtgcg caggcgcggt 25140 ggcggagctg gagccgcggc ccacgcggcg ggagcacgcg gaggccttgc tgctggcctc 25200 ctgctacctg cccccggct tcctgtcggc gcccgggcag cgcgtgggca tgctggctga 25260 ggcggcgcgc acactcgaga agcttggcga tcgccggctg ctgcacgact gtcagcagat 25320 gctcatgcgc ctgggcggtg ggaccactgt cacttccagc tagaccccgt gtccccggcc 25380 tcagcacccc tgtctctagc cactttggtc ccgtgcagct tctgtcctgc gtcgaagctt 25440

tgaaggccga aggcagtgca agagactctg gcctccacag ttcgacctgc ggctgctgtg 25500

	WO 03/1020	119		35/00		101/0	/303/1/030
	tgccttcgcg	gtggaaggcc	cgaggggcgc	25/90 gatcttgacc	ctaagaccgg	cggccatgat	25560
	ggtgctgacc	tctggtggcc	gatcggggca	ctgcaggggc	cgagccattt	tggggggccc	25620
•	ccctccttgc	tctgcaggca	ccttagtggc	ttttttcctc	ctgtgtacag	ggaagagagg	25680
	ggtacatttc	cctgtgctga	cggaagccaa	cttggctttc	ccggactgca	agcagggctc	25740
	tgccccagag	gcctctctct	ccgtcgtggg	agagagacgt	gtacatagtg	taggtcagcg	25800
	tgcttagcct	cctgacctga	ggctcctgtg	ctactttgcc	ttttgcaaac	tttattttca	25860
	tagattgaga	agttttgtac	agagaattaa	aaatgaaatt	atttataatc	tgggttttgt	25920
	gtcttcagct	gatggatgtg	ctgactagtg	agagtgcttg	ggccctcccc	cagcacctag	25980
	ggaaaggctt	ccctcccc	tccggccaca	aggtacacaa	cttttaactt	agctcttccc	26040
	gatgtttgtt	tgttagtggg	aggagtgggg	agggctggct	gtatggcctc	cagoctacct	26100
	gttccccctg	ctcccagggc	acatggttgg	gctgtgtcaa	cccttagggc	ctccatgggg	26160
	tcagttgtcc	cttctcacct	cccagctctg	tccccatcag	gtccctgggt	ggcacgggag	26220
	gatggactga	cttccaggac	ctgttgtgtg	acaggagcta	cagcttgggt	ctccctgcaa	26280
	gaagtctggc	acgtctcacc	tececcatee	cggcccctgg	tcatctcaca	gcaaagaagc	26340
	ctcctccctc	ccgacctgcc	gccacactgg	agaggggca	caggggcggg	ggaggtttcc	26400
	tgttctgtga	aaggccgact	ccctgactcc	attcatgccc	cccccccag	cccctccctt	26460
	cattcccatt	ccccaaccta	aagcctggcc	cggctcccag	ctgaatctgg	tcggaatcca	26520
	cgggctgcag	attttccaaa	acaatcgttg	tatctttatt	gactttttt	ttttttttt	26580
	tctgaatgca	atgactgttt	tttactctta	aggaaaataa	acatctttta	gaaacagctc	26640
	gatacacaca	atcttcagtg	tgaagcaata	tactaataag	aacactagtc	gtcttaacat	26700
	ttacagtctt	catatatatt	atatatatgt	atatgtatac	atätatatac	actatataac	26760
	gaggccagat	ataatacaca	cgtttaccat	tttacagtca	tatgtacagg	aagttgctag	26820
					gtggacagag		
	ggacggacag	gcggacggac	tggcagggac	tggcccgggc	: cggtggtggc	tgcgtggaca	26940

<220>

<400> 19
ccttgacagg tgaagtcggc gcggggaggg gtagggccaa cggcctggac gccccaaggg 60
cgggcgcaga tcgcggagcc atggattgca ctttcgaaga catgcttcag cttatcaaca 120

agtggcgtcg cggtagcccc ttacccggca aaggcccggt tggggctctg ttgcgggcgc 27000

27001

<210> 19

<211> 698

<212> DNA

<213> H. sapiens

			•	
accaagacag tga	acttecet ggeef	tatttg acccaccc	ta tgctgggagt	ggggcagggg 180
gcacagaccc tgo	cagcccc gata	ccagct ccccaggc	ag ctagtctcca	cctcctgcca 240
cattgagete etc	ctcttgaa gccti	tcctga gcgggccg	ca ggcagcgccc	tcaccctgt 300
cccctcccca gcc	ctgcaccc acto	cattga agatgtac	cc gtccatgccc	gctttctccc 360
ctgggcctgg tat	caaggaa gagto	cagtgc cactgage	at cctgcagacc	cccaccccac 420
agcccctgcc ago	gggccctc ctgc	cacaga gcttccca	gc cccagcccca	cctgagttca 480
gctccacccc tgt	gttaggc tacco	ccagcc ctcctgga	gg ctactctaca	ggaagccctc 540
ccgggaacac cca	agcageeg etge	etggee tgeeactg	gc ttccccgaca	ggggtcccgc 600
ccgtctcctt gca	acaccegg gteca	agagtg tggtcccc	ca gtagctactg	acagtcacag 660
ctggccccac tgc	cagocoot tgaad	cgacca ctgtgact		698
<210> 20 <211> 4154 <212> DNA <213> H. sapic <220> <221> CDS <222> (167)			. . .	
<400> 20	ttcacca acac	raaace acctetaa	aa ccaaaacaaa	acacgaacga 60
taacgaggaa ctt		egggee geetetgag		
taacgaggaa ctt	eggegaet gagaç	accada accacadco	gg cgctccctag	gaagggccgt 120
taacgaggaa ctt	eggegaet gagaç		gg cgctccctag	gaagggccgt 120
taacgaggaa ctt gcggagcggc ggc acgaggcggc ggc	eggegaet gagae geeeggeg ggeet ge gag geg get	geeggg geegegge eeeegg aggaggegg t ttg gag eag go a Leu Glu Gln Al	gg cgctccctag gc tgcgcc atg Met 1 cg ctg ggc gag	gaagggccgt 120 gac gag 175 Asp Glu ccg tgc 223
taacgaggaa ctt gcggagcggc ggc acgaggcggc ggc cca ccc ttc ac Pro Pro Phe Se 5	eggegaet gagae geeeggeg ggeet ge gag geg get er Glu Ala Ala 10	geeggg geegeggegeegeeggeggeggeggeggeggeg	gg cgctccctag gc tgcgcc atg Met 1 cg ctg ggc gag la Leu Gly Glu 15	gaagggccgt 120 gac gag 175 Asp Glu ccg tgc 223 Pro Cys cag ctt 271
cca ccc ttc ace Pro Pro Phe Se 5 gat ctg gac gc Asp Leu Asp Al 20 atc aac aac ca	gccggcg gcct gc gag gcg gct gc gag gcg gct gc gag gcg gct gc gcg ctg ctg a Ala Leu Leu 25	geeggg geegeggegeegeeggeggeggeggeggeggeg	gg cgctccctag gc tgcgcc atg Met 1 cg ctg ggc gag la Leu Gly Glu 15 aa gac atg ctt lu Asp Met Leu 30	gaagggccgt 120 gac gag 175 Asp Glu ccg tgc 223 Pro Cys cag ctt 271 Gln Leu 35 ccc tat 319
cca ccc ttc ace Pro Pro Phe Se gat ctg gac gc Asp Leu Asp Al 20 atc aac aac ca Ile Asn Asn Gl gct ggg agt gg Ala Gly Ser Gl	gccggcg gcg gct gc gag gcg gct gr Glu Ala Ala 10 gg gcg ctg ctg a Ala Leu Leu 25 a gac agt gac an Asp Ser Asp 40	cccgg gccgcggcg ttg gag cag gc Leu Glu Gln Al g acc gac atc ga Thr Asp Ile Gl ttc cct ggc ct	gg cgctccctag gc tgcgcc atg	gaagggccgt 120 gac gag 175 Asp Glu 223 Pro Cys 223 cag ctt 271 Gln Leu 35 ccc tat 319 Pro Tyr 50 acc agc 367 Thr Ser 367
cca ccc ttc ace Pro Pro Phe Se gat ctg gac gc Asp Leu Asp Al 20 atc aac aac ca Ile Asn Asn Gl gct ggg agt gg Ala Gly Ser Gl	gcccggcg gcct gccggcg gcg gct gc gag gcg gct gc gag gcg ctg ctc a Ala Leu Leu 25 a gac agt gac an Asp Ser Asp 40 gg gca ggg ggc y Ala Gly Gly	cccgg gccgcggcg ttg gag cag gc Leu Glu Gln Al gacc gac atc ga Thr Asp Ile Gl ttc cct ggc ct Phe Pro Gly Le 45 c aca gac cct gc Thr Asp Pro Al	gc cgctcctag gc tgcgcc atg Met 1 cg ctg ggc gag la Leu Gly Glu 15 aa gac atg ctt lu Asp Met Leu 30 ta ttt gac cca eu Phe Asp Pro cc agc ccc gat la Ser Pro Asp 65 ca ttg agc tcc	gaagggccgt 120 gac gag 175 Asp Glu ccg tgc 223 Pro Cys cag ctt 271 Gln Leu 35 ccc tat 319 Pro Tyr 50 acc agc 367 Thr Ser tct ctt 415

ccc Pro 100	cag Gln	cct Pro	gca Ala	ccc Pro	act Thr 105	cca Pro	ttg Leu	aag Lys	atg Met	tac Tyr 110	ccg Pro	tcc Ser	atg Met	ccc Pro	gct Ala 115	511	-
ttc Phe	tcc Ser	cct Pro	GJ Y ggg	cct Pro 120	ggt Gly	atc Ile	aag Lys	gaa Glu	gag Glu 125	tca Ser	gtg Val	cca Pro	ctg Leu	agc Ser 130	atc Ile	559)
ctg Leu	cag Gln	acc Thr	ccc Pro 135	acc Thr	cca Pro	cag Gln	ccc Pro	ctg Leu 140	cca Pro	ggg Gly	gcc Ala	ctc Leu	ctg Leu 145	cca Pro	cag Gln	607	7
agc Ser	ttc Phe	cca Pro 150	gcc Ala	cca Pro	gcc Ala	cca Pro	ccg Pro 155	cag Gln	ttc Phe	agc Ser	tcc Ser	acc Thr 160	cct Pro	gtg Val	tta Leu	655	5
ggc Gly	tac Tyr 165	ccc Pro	agc Ser	cct Pro	ccg Pro	gga Gly 170	ggc Gly	ttc Phe	tct Ser	aca Thr	gga Gly 175	agc Ser	cct Pro	ccc Pro	ggg Gly	703	3
aac Asn 180	acc Thr	cag Gln	cag Gln	ccg Pro	ctg Leu 185	cct Pro	ggc Gly	ctg Leu	cca Pro	ctg Leu 190	gct Ala	tcc Ser	ccg Pro	cca Pro	ggg Gly 195	753	1
gtc Val	ccg Pro	ccc Pro	gtc Val	tcc Ser 200	ttg Leu	cac His	acc Thr	cag Gln	gtc Val 205	cag Gln	agt Ser	gtg Val	gtc Val	ccc Pro 210	cag Gln	799	9
cag Gln	cta Leu	ctg Leu	aca Thr 215	gtc Val	aca Thr	gct Ala	gcc Ala	ccc Pro 220	acg Thr	gca Ala	gcc Ala	cct Pro	gta Val 225	acg Thr	acc Thr	84	7
											ctg Leu					89	5
ttc Phe	atc Ile 245	aag Lys	gca Ala	gac Asp	tcg Ser	ctg Leu 250	ctt Leu	ctg Leu	aca Thr	gcc Ala	atg Met 255	aag Lys	aca Thr	gac Asp	gga Gly	94	3
gcc Ala 260	Thr	gtg Val	_aag Lys	gcg Ala	gca Ala 265	ggt Gly	ctc Leu	agt Ser	ccc Pro	ctg Leu 270	gtc Val	tct Ser	Gly	acc Thr	act Thr 275	99	1
gtg Val	cag Gln	aca Thr	Gly	cct Pro 280	Leu	ccg Pro	acc Thr	ctg Leu	gtg Val 285	agt Ser	ggc	gga Gly	acc Thr	atc Ile 290	ttg Leu	103	9
gca Ala	aca Thr	gtc Val	cca Pro 295	Leu	gtc Val	gta Val	gat Asp	gcg Ala 300	Glu	aag Lys	ctg Leu	cct Pro	atc Ile 305	Asn	cgg Arg	108	7
ctc Leu	gca Ala	gct Ala 310	Gly	agc Ser	aag Lys	gcc Ala	ccg Pro 315	Ala	tct Ser	gcc Ala	cag Gln	agc Ser 320	Arg	gga Gly	gag Glu	113	5
aag Lys	cgc Arg 325	Thr	gcc Ala	cac His	aac Asn	gcc Ala 330	Ile	gag Glu	aag Lys	cgc	tac Tyr 335	Arg	tcc Ser	tcc Ser	atc Ile	118	:3
	Asp					Leu					. Val				gca Ala 355	123	;1

												•				
_	_		aaa Lys		_	-	_	_	_	-		_			_	1279
	_		cac His 375	-		_			_	_				_	_	1327
_		-	gtc Val			_			-	_	-	_		_	-	1375
			gga Gly													1423
			gac Asp													1471
			agc Ser													1519
			agt Ser 455													1567
			cca Pro													1615
gac Asp	cgc Arg 485	tcc Ser	cgc Arg	ctg Leu	gcc Ala	ctg Leu 490	tgc Cys	acg Thr	ctc Leu	gtc Val	ttc Phe 495	ctc Leu	tgc Cys	ctg Leu	tcc Ser	1663
			ttg Leu													1711
			acc Thr													1759
			aga Arg 535													1807
			ctg Leu													1855
			tac Tyr													1903
			tgg Trp													1951
			gcc Ala													1999

ctg Leu	ggc Gly	cgg Arg	ccc Pro 615	ctg Leu	ccc Pro	acc Thr	tcc Ser	cac His 620	ctg Leu	gac Asp	ctg Leu	gct Ala	tgt Cys 625	agc Ser	ctc Leu	2047
ctc Leu	tgg Trp	aac Asn 630	ctc Leu	atc Ile	cgt Arg	cac His	ctg Leu 635	ctg Leu	cag Gln	cgt Arg	ctc Leu	tgg Trp 640	gtg Val	ggc Gly	cgc Arg	2095
tgg Trp	ctg Leu 645	gca Ala	ggc Gly	cgg Arg	gca Ala	ggg Gly 650	ggc Gly	ctg Leu	cag Gln	cag Gln	gac Asp 655	tgt Cys	gct Ala	ctg Leu	cga Arg	2143
gtg Val 660	gat Asp	gct Ala	agc Ser	gcc Ala	agc Ser 665	gcc Ala	cga Arg	gac Asp	gca Ala	gcc Ala 670	ctg Leu	gtc Val	tac Tyr	cat His	aag Lys 675	2191
ctg Leu	cac His	cag Gln	ctg Leu	cac His 680	acc Thr	atg Met	Gly ggg	aag Lys	cac His 685	aca Thr	ggc Gly	ggg Gly	cac His	ctc Leu 690	act Thr	2239
[^] gcc Ala	acc Thr	aac Asn	ctg Leu 695	gcg Ala	ctg Leu	agt Ser	gcc Ala	ctg Leu 700	aac Asn	ctg Leu	gca Ala	gag Glu	tgt Cys 705	gca Ala	Gly ggg	2287
gat Asp	gcc Ala	gtg Val 710	tct Ser	gtg Val	gcg Ala	acg Thr	ctg Leu 715	gcc Ala	gag Glu	atc Ile	tat Tyr	gtg Val 720	gċg Ala	gct Ala	gca Ala	2335
ttg Leu	aga Arg 725	gtg Val	aag Lys	acc Thr	agt Ser	ctc Leu 730	cca Pro	cgg Arg	gcc Ala	ttg Leu	cat His 735	ttt Phe	ctg Leu	aca Thr	cgc Arg	2383
ttc Phe 740	Phe	ctg Leu	agc Ser	agt Ser	gcc Ala 745	cgc Arg	cag Gln	gcc Ala	tgc Cys	ctg Leu 750	gca Ala	cag Gln	agt Ser	ggc Gly	tca Ser 755	2431
														cgt Arg 770		2479
ttc Phe	gtg Val	ga <u>t</u> Asp	ggg Gly 775	gac Asp	tgg Trp	tcc Ser	gtg Val	ctc Leu 780	agt Ser	acc Thr	cca Pro	tgg Trp	gag Glu 785	agc Ser	ctg Leu	2527
tac Tyr	agc Ser	ttg Leu 790	gcc Ala	Gly	aac Asn	cca Pro	gtg Val 795	gac Asp	ccc Pro	ctg Leu	gcc Ala	cag Gln 800	Val	act Thr	cag Gln	2575
		Arg												acc Thr		2623
	Asn										Lys			tcg Ser		2671
					Gln					Cys				gcg Ala 850	Gly	2719
				Ser					Ser					Thr	acc Thr	2767

ggc Gly	gta Val	gac Asp 870	ccg Pro	gtg Val	gcc Ala	aag Lys	tgg Trp 875	tgg Trp	gcc Ala	tct Ser	ctg Leu	aca Thr 880	gct Ala	gtg Val	gtg Val	2815
atc Ile	cac His 885	tgg Trp	ctg Leu	cgg Arg	cgg Arg	gat Asp 890	gag Glu	gag Glu	gcg Ala	gct Ala	gag Glu 895	cgg Arg	ctg Leu	tgc Cys	ccg Pro	2863
	gtg Val															2911
ccc Pro	agg Arg	gca Ala	gct Ala	ctg Leu 920	cac His	tcc Ser	ttc Phe	aag Lys	gct Ala 925	gcc Ala	cgg Arg	gcc Ala	ctg Leu	ctg Leu 930	ggc Gly	2959
tgt Cys	gcc Ala	aag Lys	gca Ala 935	gag Glu	tct Ser	ggt Gly	cca Pro	gcc Ala 940	agc Ser	ctg Leu	acc Thr	atc Ile	tgt Cys 945	gag Glu	aag Lys	3007
gcc Ala	agt Ser	ggg Gly 950	tac Tyr	ctg Leu	cag Gln	gac Asp	agc Ser 955	ctg Leu	gct Ala	acc Thr	aca Thr	cca Pro 960	gcc Ala	agc Ser	agc Ser	3055
	att Ile 965															3103
	cgc Arg															3151
gca Ala	gcc Ala	cag Gln	ggc Gly	gcc Ala 1000	Ser	agc Ser	agg Arg	ccc Pro	cag Gln 100	Ala	tcc Ser	gcc Ala	ctt Leu	gag Glu 101	Leu	3199
	ggc Gly		Gln 101	Arg					Leu					Gln		3247
ttc Phe	cgg Arg	cc <u>c</u> Pro 103	Ala	atg Met	cgg Arg	agg Arg	gtg Val 103	Phe	cta Leu	cat His	gag Glu	gcc Ala 104	Thr	gcc Ala	cgg Arg	3295
	atg Met 104	Ala					Thr					Leu				3343
agt Ser 106	ctg Leu 0	agg Arg	cgg Arg	cgg Arg	gca Ala 106	Gly	ccc Pro	ggt Gly	ggc Gly	aaa Lys 107	Gly	ggc Gly	gcg Ala	gtg Val	gcg Ala 1075	3391
	ctg Leu				Pro					His					Leu	3439
	gcc Ala			Tyr					Phe					Gly		3487
	gtg Val		Met					Ala					Lys		ggc Gly	3535

31/90`

gat cgc cgg ctg ctg cac gac tgt cag cag atg ctc atg cgc ctg ggc Asp Arg Arg Leu Leu His Asp Cys Gln Gln Met Leu Met Arg Leu Gly 1125 1130 1135	3583
ggt ggg acc act gtc act tcc agc tag acccegtgtc cccggcctca Gly Gly Thr Thr Val Thr Ser Ser 1140 1145	3630
gcacccctgt ctctagccac tttggtcccg tgcagcttct gtcctgcgtc gaagctttga	3690
aggccgaagg cagtgcaaga gactctggcc tccacagttc gacctgcggc tgctgtgtgc	3750
cttcgcggtg gaaggcccga ggggcgcgat cttgacccta agaccggcgg ccatgatggt	3810
gctgacctct ggtggccgat cggggcactg caggggccga gccattttgg ggggccccc	3870
teettgetet geaggeacet tagtggettt ttteeteetg tgtacaggga agagaggggt	3930
acatttccct gtgctgacgg aagccaactt ggctttcccg gactgcaagc agggctctgc	3990
cccagaggcc tctctctccg tcgtgggaga gagacgtgta catagtgtag gtcagcgtgc	4050
ttagcctcct gacctgaggc tcctgtgcta ctttgccttt tgcaaacttt attttcatag	4110
attgagaagt tttgtacaga gaattaaaaa tgaaattatt tata	4154
<210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide	
<400> 21	
tgtctgcaca gtggtgccag	20
<210> 22 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 22 ctccgagtca ctgccactgc	20
<210> 23 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	

<400> 23

WO 03/102019	32/90	PCT/US03/17638
tgaagcatgt cttcgaaagt	32/90	20
<210> 24 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 24 gtcactgtct tggttgttga		20
<210> 25 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide	. :	
<400> 25 gggaagtcac tgtcttggtt		. 20
<210> 26 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 26 ggccagggaa gtcactgtct		20
<210> 27 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		•
<400> 27 gagtctgcct tgatgaagtg		. 20
<210> 28 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		

WO 03/102019	33/90	PCT/US03/17638
<400> 28 gccttgctgc cagctgcgag		20
<210> 29 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 29 gcagatttat tcagctttgc		20
<210> 30 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	.:	
<223> Antisense Oligonucleotide <400> 30 agacagcaga tttattcagc		20
<210> 31 <211> 20 <212> DNA <213> Artificial Sequence		
<220> <223> Antisense Oligonucleotide		
<400> 31 gcgcaagaca gcagatttat		20
<210> 32 <211> 20 <212> DNA <213> Artificial Sequence	·.	
<220>		
<223> Antisense Oligonucleotide		
<400> 32 gccttgcgca agacagcaga		20
<210> 33 , <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		

÷

WO 03/102019	34/90	PCT/US03/17638
<400> 33 cgatggcctt gcgcaagaca		20
<210> 34 <211> 20 <212> DNA <213> Artificial Sequence	·	
<220>		
<223> Antisense Oligonucleotide		
<400> 34 gtagtcgatg gccttgcgca		20
<210> 35 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	. 1	
<223> Antisense Oligonucleotide		
<400> 35 aggcgggagc ggtccagcat	•	20
<210> 36 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide <400> 36 ggcagagcca_ctgcatggca		20
<210> 37 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 37 gaggcccacc acttggccac		20
<pre> <210> 38 <211> 20 <212> DNA <213> Artificial Sequence</pre>		
<220>		

WO 03/102019	35/90	PCT/US03/17638
<223> Antisense Oligonucleotide		
<400> 38 gccagtggat caccacaget		20
<210> 39 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		- •
<400> 39 ccgggcagcc ttgaaggagt		20
<210> 40 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	. :	
<223> Antisense Oligonucleotide		
<400> 40 actggccttc tcacagatgg		20
<210> 41 <211> 20 <212> DNA <213> Artificial Sequence	•	
<220>	·	
<223> Antisense Oligonucleotide		
<400> 41 gcaggtaccc actggccttc		20
<210> 42 <211> 20 <212> DNA <213> Artificial Sequence	·.	
<220>		
<223> Antisense Oligonucleotide		
<400> 42 ctatgaaaat aaagtttgca		20
<210> 43 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		

<210> 48 <211> 20 <212> DNA

<213> Artificial Sequence

WO 03/102019	37/90	PCT/US03/17638
<220>		
<223> Antisense Oligonucleotide		
<400> 48 ccctgtggaa ggagagagct		20
<210> 49 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 49 gggtctacgc ctgcagaaga		20
<pre><210> 50 <211> 20 <212> DNA <213> Artificial Sequence</pre>	.:	
<220>		
<223> Antisense Oligonucleotide		
<400> 50 gggcactcac cctccgcatg		20
<210> 51 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide	·	
<400> 51 gtccaggccg ttggccctac		20
<210> 52 <211> 20 <212> DNA <213> Artificial Sequence	·.	
<220>		
<223> Antisense Oligonucleotide		
<400> 52 agtgcaatcc atggctccgc		20
<210> 53 <211> 20 <212> DNA <213> Artificial Sequence		

WO 03/102019 PC 1/0503/17

<220> <223> Antisense Oligonucleotide <400> 53 20 gataagctga agcatgtctt <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide <400> 54 20 gtcctgccct ggcctcagag <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide <400> 55 20 tggctcgtcc atggcgcagc <210> 56 <211> 20 <212> DNA <213> Artificial Sequence -<223> Antisense Oligonucleotide <400> 56 20 cgcctcgctg aagggtggct <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Antisense Oligonucleotide <400> 57 20 ctgaagcatg tcttcgatgt

<210> 58 <211> 20

<212> DNA

WO 03/102019	39/90	PCT/US03/17638
<213> Artificial Sequence	37170	
<220>		
<223> Antisense Oligonucleotide		
<400> 58 ctcaatgtgg caggaggtgg		20
<210> 59 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 59 tgggaagctc tgtggcagga		20
<210> 60 <211> 20 <212> DNA <213> Artificial Sequence	. :	
<220>		
<223> Antisense Oligonucleotide		
<400> 60 ccagtggcag gccaggcagc		20
<210> 61 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 61 agggtcggca aaggccctgt		20
<210> 62 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 62 tgcgagccgg ttgataggca		20
<210> 63 <211> 20		

WO 03/102019	40/90	PCT/US03/17638
<212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 63 gctgtgcgct tctctccacg		20
<210> 64 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 64 tgcccaccac cagateettg	,	20
<210> 65 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 65 cgcagactta ggttctcctg		20
<210> 66 <211> 20 <212> DNA <213> Artificial Sequence <220>		
12207		
<223> Antisense Oligonucleotide <400> 66		
tgcttttgtg gacagcagtg		20
<210> 67 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 67 ctgccacagg ccgacaccag		20

<210> 68

WO 03/102019	41/90	PCT/US03/17638
<211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide	•	
<400> 68 cagectgett gegatgeete		20
<210> 69 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 69 ccaggtccag gtcagcctgc	.:	20
<210> 70 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 70 gcttatggta gaccagggct		20
<210> 71 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 71 gtgtgcttcc ccatggtgtg		20
<210> 72 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	•	•
<223> Antisense Oligonucleotide		
<400> 72 cgccacatag atctcggcca	,	20

WO 03/102019	42/90		PCT/US03/17638	
<210> 73	42/90	-		
<211> 20				
<212> DNA				
<213> Artificial Sequence				
<220>				
<223> Antisense Oligonucleotide	·			-
<400> 73				
atgcagccgc cacatagatc			20	
<210> 74				
<211> 20				
<212> DNA				
<213> Artificial Sequence				
				Ē
<220>				•
<223> Antisense Oligonucleotide				
<400> 74				
ctcgctctaa gagatgttcc		.:	20	
<210> 75				
<211> 20				
<212> DNA				
<213> Artificial Sequence				
<220>				
<223> Antisense Oligonucleotide				
<400> 75				
atcagctgac ccagggctgg			20	
<210> 76				
<211> 20				
<212> DNA <213> Artificial Sequence				
<220>				
<223> Antisense Oligonucleotide				
<400> 76				
ggcatccgag aattccttgt			20	
-				
<210> 77				
<211> 20				,
<212> DNA				
<213> Artificial Sequence				
<220>				
<223> Antisense Oligonucleotide				
<400> 77			00	
tacgccggtg gtggtggcca			20	

À

:. :.e 43/90

	45/70	•	
<210> 78 <211> 20 <212> DNA <213> Artificial Sequence			
<220>	·		
<223> Antisense Oligonucleotide			
<400> 78 gctggaccag actctgcctt			20
<210> 79 <211> 20 <212> DNA <213> Artificial Sequence			
<220>			
<223> Antisense Oligonucleotide			
<400> 79 agctgctggc tggtgtggta		.:	20
<210> 80 <211> 20 <212> DNA <213> Artificial Sequence			
<220>			
<223> Antisense Oligonucleotide			
<400> 80 . cgcagctcaa gggcggaagc			20
<210> 81 <211> 20 <212> DNA <213> Artificial Sequence			
<220>		•.	
<223> Antisense Oligonucleotide			
<400> 81 tetgetgaca gtegtgeage			20
<210> 82 <211> 20 <212> DNA <213> Artificial Sequence			
<220>			
<223> Antisense Oligonucleotide			
<400> 82 aggcgcatga gcatctgctg			20

44/90

<210> 83 <211> 20 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 83 ggaagtgaca gtggtcccac	20
<210> 84 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 84 gggtctagct ggaagtgaca	20
<210> 85 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 85 cacgggacca aagtggctag	20
<210> 86 (211> 20 (21)) 20 (211> 20 (211> 20 (21	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 86 caggacagaa gctgcacggg	20
<210> 87 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 87	

WO 03/102019	45/90	PCT/US03/17638
ggcacacagc agccgcaggt		. 20
<210> 88 <211> 20 <212> DNA <213> Artificial Sequence	·	-
<220>		
<223> Antisense Oligonucleotide		
<400> 88 cttccaccgc gaaggcacac		20
<210> 89 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide	• . :	
<400> 89 atggccgccg gtcttagggt		20
<210> 90 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		•
<223> Antisense Oligonucleotide		
<400> 90 cagcaccatc atggccgccg		20
<210> 91 <211> 20 <212> DNA <213> Artificial Sequence		·
<220>		<i></i>
<223> Antisense Oligonucleotide		
<400> 91 ctaaggtgcc tgcagagcaa		20
<210> 92 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	·	
<223> Antisense Oligonucleotide		

WO 03/102019	46/90	PCT/US03/17638
<400> 92 acagggaaat gtacccctct		20
<210> 93 <211> 20 <212> DNA <213> Artificial Sequence		·
<220>		
<223> Antisense Oligonucleotide		
<400> 93 tggcttccgt cagcacaggg	•	20
<210> 94 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	. :	
<223> Antisense Oligonucleotide		
<400> 94 tccgggaaag ccaagttggc		20
<210> 95 <211> 20 <212> DNA <213> Artificial Sequence <220>		
<223> Antisense Oligonucleotide		
<400> 95 tcaggaggct aagcacgctg		20
<210> 96 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 96 agtttgcaaa aggcaaagta		20
<210> 97 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		•

;

47/90 <400> 97 20 ttaattctct gtacaaaact <210> 98 <211> 616 <212> DNA <213> M. musculus <220> <400> 98 ggatccagaa ctggatcatc agccccccc tccttgaaac aagtgttctc atcctggggc 60 gctctgctag ctagatgacc ctgcaccacc aactgccact atctaaaggc agctattggc 120 cttcctcaga ctgtaggcaa atcttgctgc tgccattcga tgcgaagggc caggagtggg 180 taaactgagg ctaaaatggt ccaggcaagt tctgggtgtg tgcgaacgaa ccagcggtgg 240 300 gaacacagag cttccgggat caaagccaga cgccgtccgg attccggacc caggctcttt tcggggatgg ttgcctgtgc ggcaggggtt gggacgacag tgaccgccag taaccccagc 360 gcgcgctggc gcagacgcgg ttaaaggcgg acgccgcta gtaaccccgg ccccattcag 420 agcaccggga gaaacccgag ctgccgccgt cgggggtggg cggggcccta atggggcgcg 480 gcgcggctgc tgattggcca tgtgcgctca cccgaggggc ggggcacgga ggcgatcggc 540 gggctttaaa gcctcgcggg gcctgacagg tgaaatcggc gcggaagctg tcggggtagc 600 616 gtctgcacgc cctagg <210> 99 <211> 491 <212> DNA <213> M. musculus ----<220> <221> unsure <222> 352 <223> unknown <221> unsure <222> 415 <223> unknown <223> <400> 99 aaaatcggcg cggaagctgt cggggtagcg tctgcacgcc ctaggggcgg ggcgcggacc 60 acggagccat ggattgcaca tttgaagaca tgctccagct catcaacaac caagacagtg 120 acttcccggg cctgtttgac gccccctatg ctgggggtga gacaggggac acaggcccca 180

gcagcccagg tgccaactct cctgagagct tctcttctgc ttctctggcc tcctctctgg

240

			48/90	-		
aagccttcct	gggaggaccc	aaggtgacac	ctgcaccctt	gtcccctcca	ccatcggcac	300
ccgctgcttt	aaagatgtac	ccgtccgtgt	ccccttttc	ccctgggcct	gngatcaaag	360
aggagccagt	gccactcacc	atcctacagc	ctgcagcgcc	acagccgtca	ccggngaccc	420
tcctgcctcc	gagcttcccc	gcaccacccg	tacagctcag	ccctgcgccc	gtgctgggtt	480
actcgagcct	g					491
<210> 100 <211> 8128					-	
<212> DNA						
<213> M. m	usculus					
<220>						

<221> unsure

<222> 3861

<223> unknown

<221> unsure

<222> 3862

<223> unknown

<221> unsure

<222> 3863

<223> unknown

<221> unsure

<222> 3864

<223> unknown

<221> unsure

<222> 3865.

<223> unknown

<221> unsure

<222> 3866

<223> unknown

<221> unsure

<222> 3867

<223> unknown

<221> unsure

<222> 3868

<223> unknown

<221> unsure

<222> 3869

<223> unknown

<221> unsure

<222> 3870

<223> unknown

<221> unsure

<222> 3871

<223> unknown

PCT/US03/17638

- <222> 3872 <223> unknown
- <221> unsure
- <222> 3873
- <223> unknown
- <221> unsure
- <222> 3874
- <223> unknown
- <221> unsure
- <222> 3875
- <223> unknown
- <221> unsure
- <222> 3876
- <223> unknown
- <221> unsure
- <222> 3877
- <223> unknown
- <221> unsure
- <222> 3878
- <223> unknown
- <221> unsure
- <222> 3879
- <223> unknown
- <221> unsure
- <222> 3880
- <223> unknown
- <221> unsure
- <222> 3881.
- <223> unknown
- <221> unsure
- <222> 3882 <223> unknown
- <221> unsure
- <222> 3883
- <223> unknown
- <221> unsure
- <222> 3884
- <223> unknown
- <221> unsure
- <222> 3885
- <223> unknown
- <221> unsure
- <222> 3886
- <223> unknown
- <221> unsure
- <222> 3887
- <223> unknown
- <221> unsure

WO 03/102019 PCT/US03/17638

<222>	3888
-------	------

- <223> unknown
- <221> unsure
- <222> 3889
- <223> unknown
- <221> unsure
- <222> 3890
- <223> unknown
- <221> unsure
- <222> 3891
- <223> unknown
- <221> unsure
- <222> 3892
- <223> unknown
- <221> unsure
- <222> 3893
- <223> unknown
- <221> unsure
- <222> 3894
- <223> unknown
- <221> unsure
- <222> 3895
- <223> unknown
- <221> unsure
- <222> 3896
- <223> unknown
- <221> unsure
- <222> 3897
- <223> unknown
- <221> unsure
- <222> 3898 ...
- <223> unknown
- <221> unsure
- <222> 3899
- <223> unknown
- <221> unsure
- <222> 3900
- <223> unknown
- <221> unsure
- <222> 3901
- <223> unknown
- <221> unsure
- <222> 3902
- <223> unknown
- <221> unsure
- <222> 3903
- <223> unknown
- <221> unsure

PCT/US03/17638 WO 03/102019

<222> 3904

<223> unknown

<221> unsure

<222> 3905

<223> unknown

<221> unsure

<222> 3906

<223> unknown

<221> unsure

<222> 3907

<223> unknown

<221> unsure

<222> 3908

<223> unknown

<221> unsure

<222> 3909

<223> unknown

<221> unsure

<222> 3910

<223> unknown

<221> unsure

<222> 3911

<223> unknown

<221> unsure

<222> 3912

<223> unknown

<221> unsure

<222> 3913

<223> unknown

<221> unsure <222> 3914

<223> unknown

<221> unsure

<222> 3915

<223> unknown

<221> unsure

<222> 3916

<223> unknown

<221> unsure

<222> 3917

<223> unknown

<221> unsure

<222> 3918

<223> unknown

<221> unsure

<222> 3919

<223> unknown

WO 03/102019 PCT/US03/17638

<222> 3920

<223> unknown

<221> unsure

<222> 3921

<223> unknown

<221> unsure

<222> 3922

<223> unknown

<221> unsure

<222> 3923

<223> unknown

<221> unsure

<222> 3924

<223> unknown

<221> unsure

<222> 3925

<223> unknown

<221> unsure

<222> 3926

<223> unknown

<221> unsure

<222> 3927

<223> unknown

<221> unsure

<222> 3928

<223> unknown

<221> unsure

<222> 3929

<223> unknown

<221> unsure

<222> 3930

<223> unknown

<221> unsure

<222> 3931

<223> unknown

<221> unsure

<222> 3932

<223> unknown

<221> unsure

<222> 3933

<223> unknown

<221> unsure

<222> 3934

<223> unknown

<221> unsure

<222> 3935

<223> unknown

WO 03/102019 PCT/US03/17638 53/90

<222> 3936

<223> unknown

<221> unsure

<222> 3937

<223> unknown

<221> unsure

<222> 3938

<223> unknown

<221> unsure

<222> 3939

<223> unknown

<221> unsure

<222> 3940

<223> unknown

<221> unsure

<222> 3941

<223> unknown

<221> unsure

<222> 3942

<223> unknown

<221> unsure

<222> 3943

<223> unknown

<221> unsure

<222> 3944

<223> unknown

<221> unsure

<222> 3945

<223> unknown

<221> unsure

<222> 3946

<223> unknown

<221> unsure

<222> 3947

<223> unknown

<221> unsure

<222> 3948

<223> unknown

<221> unsure

<222> 3949

<223> unknown

<221> unsure

<222> 3950

<223> unknown

<221> unsure

<222> 3951

<223> unknown

WO 03/102019 PCT/US03/17638 54/90

<222>	3952
	unknown
1225	4
<221>	unsure
<222>	3953
	unknown
<221>	unsure
<222>	3954
	unknown
<221>	unsure
<222	> 3955
<223	unknown
<221	unsure
<222	> 3956
<223	> unknown
	> unsure
<222	> 3957
<223	> unknown
	> unsure
	> 3958
<223	> unknown
	> unsure
	> 3959
<223	> unknown
Z221	Sungura

<222> 3960 <223> unknown

<223>

<400> 100 60 cagctcacaa attgactaca aaggcagttt ggccatcaaa caaggaatgt ccttgtgcag cccctcagac ctgagattat aagcatcagc tgtcataccc ggttccccca ccccacctcc 120 180 ccctgctttt taaatttatt ttttgcttct ttatttttct atacctggct ttttgtgggg 240 gttaaactcg ggtccctccc tttgcctgca cagcaagcac ccactaatgg agctgtcttc ccagcccctc tgcataagtg gggcttgctg tgtaagtggt tgaggcccag atgactgtgg 300 gccttttcgg aggcctgcca cagcaccctg tgctgtctct ctgcatatac gaaggcgata 360 aaggctgctt ggcccagggc tcacctcagg ccgtgactga ctatatagga gcagactgta 420 480 taggcaccgt ggatcagcag aactgagcca gggtctcaag tgcttcccga ggccactgag ggctcttgat ccttctctgg accttggtgt cctcactggg aagaggtcct gagcacaagc 540 600 gtgactgttt catcagcctg cgtgtagcct atccccttcc aggaagaacc acattctttt 660 aatgccctgg agcagggcct ttgagtgcac aaaaggcagt ctatacccct gtgccctggc 720 acccatacga cagccaagga ccagagtgcc tgccagggac ttctgaggag taagggcctg

			55/90	_		
gggagcagca	gggcaggctg	catgcctgaa	aaaacagtga	gccatagccc	agtcctctaa	780
cctgcaagtc	cccaagcagg	gggcactgtc	ctgtgtcctc	ggtgggaggt	ggtgccactt	840
ctctatgcag	cctgctcccc	ttctctctcc	tgcgctcctt	caggggatgg	gataggttgg	900
aaatcctgta	ggctcactgg	gatcccagca	taacctgtcc.	ttacccgagc	cactgtttct	960
gcctctgccc	tcacacctag	cttgtacggt	ttccgtcttt	ggctttgcct	tttcttctgg	1020
ccagagagtt	ttccttccct	tgtagcccta	tttattcaga	ctacactcaa	gtgtcacgtc	1080
cccaggcagc	cttgataccc	acctgtcttt	gcttgcccag	cctctcacct	ctgccactcg .	1140
tctcacatcc	ctcccccaac	cccaccccga	gcatgtgcgc	agctggttcc	ttggtggagt	1200
ggaagtatcc	accaggggct	ggatctctcg	tgttgtcccc	agcaagtggc	tttcacctag	1260
gatggtcctt	tgattctgtt	ggggagggc	agccgaggct	tcaggtttcc	ggttgaagcc	1320
agataggatc	agggcttgag	aagggagtat	aggaggcttg	tgcccgggtc	cccttttgtc	1380
cttttgcttc	aaatcacata	tgtgacctgg	aagtctgtgc	acggttgtga	gaagtcagta	1440
ttcagcatgc	cctgatggct	cgtagcttgg	ttactgtggt	gcccctttcc	agactgcagg	1500
acctactgag	ccctagtcct	tcctagggtg	aggcaaggaa	cactctcacg	ttaggtgtgt	1560
agcgtgttag	gtgtgtagcg	tgctggctga	tgtctcccct	cagttcttgg	gtggccctac	1620
tcattccctt	taaaatgtta	aaaacctacc	aggtgcccag	gactgactca	gtcctgcagc	1680
tcagggtcta	gtttgcaggt	ctagccaatt	ccagcggctg	ttgagaggaa	acacctttgc	1740
tgaaaccttt	ttgagtgggt	agattcttta	ttaacttgtt	ctggaatcgc	caccccaggg	1800
aggggtagag	tctggacctg	ggggctctta	gaggcatccg	gctcccgatg	catagctggt	1860
ggggaaaaga	aaagaaaggc	cgcagcacac	agctgcagat	ccttggcaag	gcttattctc	1920
aaggagcttg	caaagctggc	tttaaggtcc	cgtttcctct	caagacttcc	ccctggccac	1980
cagcatctac	agacatgagc	tagcgacccg	gctcagaagg	tggtgagggg	ggaggccagg	2040
cagcatggac	acacattctg	ctagttgtca	ggcctgccc	: cggtccagtg	cttgactaag	2100
gcttttgtac	tcacaagcgt	gcccacatgc	ttgggtcaca	cttgtccagt	gtccagatac	2160
ggacaggggt	ggggagacgt	gaccccacct	gtacggagtt	tcgatgagcc	tccccgcctc	2220
tgcaagtctt	tctgtattcg	ggactcagat	gtcagaagga	a gcagagtagg	gtcaacactg	2280
ggaagcctca	tgcctggact	ccagccccc	cccccccc	cgtgttgggg	tcagggctct	2340
tccctgcctt	: cagttgggtg	aggtcagagg	ttttcccago	g agctgtgcat	ggtttgggga	2400
ctctcgagca	a cttgcaggct	ggacagaaco	g gtgtcataaa	a aagatgtttt	ctttggaatg	2460
aacctcctat	gaggatgtga	aaagacctag	g aaaggggato	aggggaatgt	cagacacacg	2520
tgtctgttt	c ccagacaaga	ctctgaaaag	g agagatggg	cacaagtccc	: tgacacacat	2580
aaggtgacta	a cttggtcgct	ggacccctca	a cagactgtgt	gagtccctgc	g tctgccaact	2640

			56/90			
aggctgccag	accttgctgg	gccactgcca	cagaagctag	gttgctggcc	atcactgtgt	2700
ggtgatggta	atggcgggag	tatgtgtgtg	cacatgcttg	tgtgtgcaca	ggtatgaaag	2760
ctttcaattt	gccagcaagg	gacagggaca	gatttggcat	acccttaata	tccactgcct	2820
ttcccttctg	tcccagagac	tggttcctgt	gcaggccttt.	gcagagtgct	ataagagaat	2880
cgagtaaggc	ttcacttgtt	gactgctggg	ggctgtgata	cctggaggga	agacactgac	2940
ccagcctagg	ggcatcagag	ctgagagcag	gatatcctgg	acgcgtgatt	tgaggaagga	3000
tttccctagc	tcactcctga	aggcagtttc	atgagggatc	cagaactgga	tcatcagccc .	3060
cccctcctt	gaaacaagtg	ttctcatcct	ggggcgctct	gctagctaga	tgaccctgca	3120
ccaccaactg	ccactatcta	aaggcaacta	ttggccttcc	tcagactgta	ggcaaatctt	3180
gctgctgcca	ttcgatgcga	agggccagga	gtgggtaaac	tgaggctaaa	atggtccagg	3240
caagttctgg	gtgtgtgcga	acgaaccagc	ggtgggaaca	cagagettee	gggatcaaag	3300
ccagacgccg	tccggattcc	ggacccaggc	tcttttcggg	gatggttgcc	tgtgcggcag	3360
gggttgggac	gacagtgacc	gccagtaacc	ccagcgcgcg	ctggcgcaga	cgcggttaaa	3420
ggcggacgcc	cgctagtaac	cccggcccca	ttcagagcac	cgggagaaac	ccgagctgcc	3480
gccgtcgggg	gtgggcgggg	ccctaatggg	gcgcggcgcg	gctgctgatt	ggccatgtgc	3540
gctcacccga	ggggcggggc	acggaggcga	tcggcgggct	ttaaagcctc	gcggggcctg	3600
acaggtgaaa	teggegegga	agctgtcggg	gtagcgtctg	cacgccctag	gggcggggcg	3660
cggaccacgg	agccatggat	tgcacatttg	aaggtacttt	ggggaggacc	ctgcactcta	3720
ttactttgc	agggtctctg	cagcggactg	cagtacggtg	ttctaacaga	gaatgcagga	3780
cggcccttcc	ccaccttggg	ctggaaattg	gtgggcctct	ttatcctgct	taaggaccga	3840
caccttgcaa	tttgcaactt	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	3900
nnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnn	nnnnnnnnn	3960
gageetgeet	tcaggcttct	caggtgagcg	agtgatggaa	gaagagtggc	cgctgtgctc	4020
ttacagagga	a attcccaggo	ttcagaagtt	aggtggtcat	cctgcgacct	gagatgccct	4080
ttggttctg	g gcccagtgca	tececceae	ccccagttgt	gcagctggaa	ggtgacatgt	4140
gcagggtct	g tcctgctatg	aagtaatggg	gatagttatg	, tgaggccagt	cggggtaaag	4200
gtcggcaag	g cagcctgtgc	cagcaacctt	aaactctgto	tctgcaggga	cccttccagg	4260
aaacactca	g cagccaccat	ctageetgee	gctggcccct	gcaccaggag	g tcttgcccac	4320
ccctgccct	g cacacccago	g tccaaagctt	ggcctcccag	g cagccgctgo	c cagcctcagc	4380
agcccctag	a acaaacacto	g tgacctcaca	ggtccagcag	g gtcccagtga	a gtgggtctga	4440
ccaggaagg	t ggggggtgg	g gacgcctggc	ttggatgctg	g ctcgcttaca	a gcttggcccc	4500
tcccatcca	g gttgtactgo	agccacactt	catcaaggc	a gactcactg	c tgctgacagc	4560

57/90 tgtgaagaca gatgcaggag ccaccgtgaa gactgcaggc atcagcaccc tggctcctgg 4620 cacagccgtg caggcaggtc ccctgcaggt agatggctca ggcacaaggg agactatggg 4680 ggggggggga gggttggctg cgcatgtgtc tgtccacctg gtgagatgca tctgacccca 4740 cagaccctgg tgagtggagg gaccatcttg gccacagtac ctttggttgt ggacacagac 4800 aaactgccca tccaccgact cgcagctggc agcaaggccc taggctcagc tcagagccgt 4860 ggtgagaagc gcacagccca caatgccatt gagaagcgct accggtcttc tatcaatgac 4920 aagattgtgg agctcaaaga cctggtggtg ggcactgaag caaaggtacg gccaaaggcc 4980 Egcgagactc aggtcagggt gaccagggaa gaaatggggc acatcagcca gccggggatg 5040 ggattaggtc agtcctcgtc acttagtcat atgcatcaac ttgtctgggt ctaggcagtc 5100 ccgtttgcgg agttaggtct tatcaagggc agcctggata aagaaagctg gtctatgcat 5160 tgaggggggg tggtgatgaa gcacagaaat cctgtcctgg aggaactgac tccctagggg 5220 agtagtggga attgcagcgg ctggctccca tgttcgggga agaaaccagg accagtgaaa 5280 gttgtggttg tgaactgggt ggtcaaggaa ggtctcaccg tagagagctg agggtgtagg 5340 gaatgtgagg tggagacagc aggggccgca gctgggagac accgttgtga gtattcacag 5400 ggtgactttt atctctgccc tgtggagtgg gtactgtcag gagacagcag cataggagag 5460 ttgtagtcag aaggaaccgt cccgtccaga ggccccgagg cagctgtgac gcagagcggc 5520 tettacetge tetegtacet gtggtcaggt ceaettgget ggetgageee tetecetete 5580 ctcacagctg aataaatctg ctgtcttgcg caaggccatc gactacatcc gcttcttgca 5640 5700 gcacagcaac cagaagctca agcaggagaa cctgacccta cgaagtgcac acaaaagcag tgagtcccag cccctcccc ccgcccccc cccctgctg tcctggccac tatgccgttg 5760 ctgtgaagac actatgacca tggtcaggtt tattaaaggc ttacagtttc aggggtgaac 5820 ccatgaccac agtggtggcg gcaggcagac aggcttggcg cttggagcag tagccgagag 5880 ctcaaatatt gagacagcca caaggccaag agaaagagct agctgagaat agtgtggggt 5940 6000 tttgaaattt caaagcctac cacagtgaca cccctcctcc agcaaggcca cacctcccaa tectteccaa acaggaatgg gaaccaageg gteaaaeggg accetetgaa agecattete 6060 6120 atteagatty ccaecetgat getgeettet ctatecetge ccaacettgt etetggetet caccctacct tggcccctgt tttgagcata acagaaccat ccaagtcctg gcgcttggcg 6180 gccaggcctc tctcaccagc cctgttcttt ctgcctacag aatcactgaa ggacctggtg 6240 tcagcttgtg gcagtggagg aggcacagat gtgtctatgg agggcatgaa acccgaagtg 6300 6360 gtggagacgc ttacccctcc accctcagac gccggctcac cctcccagag tagccccttg tcttttggca gcagagctag cagcagtggt ggtagtgact ctgagcccga cagtccagcc 6420 tttgaggata gccaggttgg actctgcaat atggcccctt ccctctccca gcagccctgc 6480

90

agtctcctcc	accttttagc	ctcgcctttg	gggctagctg	agctctatgc	ccttacctcc	6540
cttgctccct	gccaggtcaa	agcccagcgg	ctgccttcac	acagccgagg	catgctggac	6600
cgctcccgcc	tggccctgtg	tgtactggcc	tttctgtgtc	tgacctgcaa	tcctttggcc	6660
tcgcttttcg	gctggggcat	tctcactccc	tctgatgcta	cgggtacaca	ccgtagttct	6720
gggcgcagca	tgctggaggc	agagagcaga	ggtgagtcag	gtcagcccag	gtgttgtcgg	6780
cagagacctt	tgggactttg	gatttccgga	gaactgagtt	ctcagacctt	ttctttgcct	6840
gtagatggct	ctaattggac	ccagtggttg	ctgccacccc	tagtctggct	ggccaatgga	6900
ctactagtgt	tggcctgctt	ggctcttctc	tttgtctatg	gggaacctgt	gactaggcca	6960
cactctggcc	cggctgtaca	cttctggaga	catcgcaaac	aagctgacct	ggatttggcc	7020
cgggtaaggg	gctgaccctg	aggaggcggg	gtggggcccc	gggcctggaa	ggtgctgggt	7080
gcctctgctc	acttcatttt	ctccagtctg	tctcatcccc	cgccttcaga	gctcctgact	7140
ctaggggccc	agacaagggg	gtaccctgct	gccatccctg	ctgccatttt	tcttactgag	7200
aatcttttct	ctagggagat	ttcccccagg	ctgctcaaca	gctgtggctg	gccctgcaag	7260
cgctgggccg	gcccctgccc	acctcaaacc	tggatctggc	ctgcagtctg	ctttggaacc	7320
tcatccgcca	cctgctccag	cgtctctggg	tgggccgctg	gctggcaggc	caggccgggg	7380
gcctgctgag	ggaccgtggg	ctgaggaagg	atgcccgtgc	cagtgcccgg	gatgcggctg	7440
ttgtctacca	taagctgcac	cagctgcatg	ccatgggtat	ggctggctgg	gagctgggct	7500
ccgagggtcc	ccaccacacc	gtcacctcct	gtcctcatgc	ctcacccact	ttgcaggcaa	7560
gtacacagga	ggacatcttg	ctgcttctaa	cctggcacta	agtgccctca	acctggctga	762,0
gtgcgcagga	gatgctatct	ccatggcaac	actggcagag	atctatgtgg	cageggeeet	7680
gagggtcaaa	accagcetee	caagagccct	gcacttcttg	acagtgagta	ggctgatggg	7740
gacagggctg	ggggctcctc	tttacaactc	tcaacctgtc	acttccaggg	caaggggcta	7800
aacaggatgt	ggcagtggtt	agcaggtggg	ctgtaggccc	tcctgggatc	caactgggag	7860
ccagtgtgac	agttctgttc	cttccctaca	gcgtttcttc	ctgagcagcg	cccgccaggc	7920
ctgcctagca	cagagcggct	cggtgcctct	tgccatgcag	tggctctgcc	accctgtagg	7980
tcaccgtttc	tttgtggacg	gggactgggc	cgtgcacggt	gccccccgg	agagcctgta	8040
cagcgtggct	gggaacccag	gtgctttctc	gttctgttct	tacccctgcc	tcatccctgt	8100
ccctatgtca	cattgcactg	teecetet				8128

<210> 101 <211> 20 <212> DNA

<213> Artificial Sequence

WO 03/102019	59/90	PCT/US03/17638
<223> Antisense Oligonucleotide		
<400> 101 tggagcatgt cttcaaatgt		20
<210> 102 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide	•	
<400> 102 tgtgcaatcc atggctccgt		20
<210> 103 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 103 aagagaagct ctcaggagag		20
<210> 104 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 104 ccttgggtcc tcccaggaag		20
<210> 105 <211> 20 <212> DNA <213> Artificial Sequence	· · · · · · · · · · · · · · · · · · ·	
<220>	•	
<223> Antisense Oligonucleotide		
<400> 105 ggacaagggt gcaggtgtca		20
<210> 106 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		

WO 03/102019	60/90	PCT/US03/17638
<223> Antisense Oligonucleotide		
<400> 106 gatggtgagt ggcactggct		20
<210> 107 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 107 ggatgggcag tttgtctgtg		20
<210> 108 <211> 20 <212> DNA <213> Artificial Sequence	.:	
<220>		
<223> Antisense Oligonucleotide		
<400> 108 gctgtgcgct tctcaccacg		20
<210> 109 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 109 gcttctcaat ggcattgtgg		20
<210> 110 <211> 20 <212> DNA <213> Artificial Sequence		
<220> `		·
<223> Antisense Oligonucleotide		
<400> 110 cactgccaca agctgacacc		20
<210> 111 <211> 20 <212> DNA <213> Artificial Sequence		

<213> Artificial Sequence

WO 03/102019	61/90	PCT/US03/17638
<220>		
<223> Antisense Oligonucleotide		
<400> 111 ccatagacac atctgtgcct		20
<210> 112 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		•
<223> Antisense Oligonucleotide		
<400> 112 gctcagagtc actgccacca		20
<210> 113 <211> 20 <212> DNA <213> Artificial Sequence	. :	
<220>		
<223> Antisense Oligonucleotide		
<400> 113 gggctttgac ctggctatcc		20
<210> 114 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 114 ttagagccat ctctgctctc		20
<210> 115 <211> 20 <212> DNA <213> Artificial Sequence	•	
<220>		
<223> Antisense Oligonucleotide		
<400> 115 gcagcaacca ctgggtccaa		20
<210> 116 <211> 20 <212> DNA <213> Artificial Sequence		

<400> 118 tgcgatgtct ccagaagtgt

20

<211> 20 <212> DNA <213> Artificial Sequence <220> ---<223> Antisense Oligonucleotide <400> 119

20 gccagatcca ggtttgaggt

<210> 120 <211> 20 <212> DNA <213> Artificial Sequence

<223> Antisense Oligonucleotide <400> 120 tggcctgcca gccagcggcc

20

<210> 121 <211> 20 <212> DNA

<220>

<210> 119

WO 03/102019	(2)00	PCT/US03/17638
<213> Artificial Sequence	63/90	
<220>		
<223> Antisense Oligonucleotide		
<400> 121 gtgtacttgc ccatggcatg		20
<210> 122 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 122 agatototgo cagtgttgco		20
<210> 123 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		·
<400> 123 gacctacagg gtggcagagc		20
<210> 124 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	·	
<223> Antisense Oligonucleotide		
<400> 124 ctgggttccc agccacgctg	·.	20
<210> 125 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 125 ggcatctgag aactccctgt		20
<210> 126 <211> 20		

WO 03/102019	64/90	PCT/US03/17638
<212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 126 ccacttggcc actgggtctg		20
<210> 127 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 127 agccttgaag gagtacagag		20
<210> 128 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 128 caccttctg tggtccagca		20
<210> 129 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide	·	
<400> 129 atggccaggc tggctgggct		20
<210> 130 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 130 tcacacagga gcagctgcat	•	20
.010, 101		

<210> 131

WO 03/102019	65/90	PCT/US03/17638
<211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 131 caagaagtag atcacacagg		20
<210> 132 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 132 cattgctggt accgtgagct	. :	20
<210> 133 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 133 ctccagagca gaggcctggg		20
<210> 134 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	•	
<223> Antisense Oligonucleotide		
<400> 134 aaccacgcag ctccagagca		20
<210> 135 <211> 20 <212> DNA <213> Artificial Sequence		
<220>	•	
<223> Antisense Oligonucleotide		
<400> 135 tcatgttgga aaccacgcag		20

WO 03/102019	66/90	PCT/US03/17638
<210> 136 <211> 20 <212> DNA <213> Artificial Sequence	·	
<220>		
<223> Antisense Oligonucleotide	•	
<400> 136 gctgctcagg tcatgttgga		20
<210> 137 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 137 gctgtggcct catgtaggaa	. :	20
<210> 138 <211> 20 <212> DNA <213> Artificial Sequence		·
<220>		
<223> Antisense Oligonucleotide		
<400> 138 catcagooga gotgtggoot		20
<210> 139 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 139 ccgggcagga cttgctcctg		20
<210> 140 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 140 tttgccactg gaacctgccc		20

67/90	
<210> 141 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 141 gtgtgctccc gccatgtggg	20
<210> 142 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 142 caggagcatc tgctggcagt	20
<210> 143 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 143 gggtctagct ggaagtgacg	20
<210> 144 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 144 tetgecaeta gaggteggea	20
<210> 145 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 145 gcctacagag caagagggtg	20

PCT/US03/17638 WO 03/102019 68/90

<210> 146 <211> 20 <212> DNA <213> Artificial Sequence <220>	
<223> Antisense Oligonucleotide	
<400> 146 aaaatttctc aacctatgaa	20
<210> 147 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 147 tgagaacact tgtttcaagg	20
<210> 148 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 148 gccaatagct gcctttagat	20
<210> 149	
•	
<223> Antisense Oligonucleotide	
<400> 149 gtgttcccac cgctggttcg	20
<210> 150 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	
<223> Antisense Oligonucleotide	
<400> 150	

WO 03/102019	69/90	PCT/US03/17638
ttactggcgg tcactgtcgt		20
<210> 151 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 151 ttggccgtac ctttgcttca		20
<210> 152 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide	.:	
<400> 152 ccacactatt ctcagctagc		20
<210> 153 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 153 agaaggcagc atcagggtgg		20
<210> 154 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 154 ttcagtgatt ctgtaggcag		20
<210> 155 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		

WO 03/102019	70/90	PCT/US03/17638
<400> 155 agagtccaac ctggctatcc		20
<210> 156 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide		
<400> 156 cttacccggg ccaaatccag		20
<210> 157 <211> 20 <212> DNA <213> Artificial Sequence		
<220>		
<223> Antisense Oligonucleotide	.;	
<400> 157 gggatgagac agactggaga		20
<210> 158 <211> 20 <212> DNA <213> Artificial Sequence		·
<220>		
<223> Antisense Oligonucleotide		
<400> 158 gtgtacttgc ctgcaaagtg		20
<210> 159 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 159 ctggcaccac tgtgcagaca		20
<210> 160 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 160 gcagtggcag tgactcggag		20

WO 03/102019	PCT/US03/17638
WU 03/102019	1 C1/0303/17030

71/90 <210> 161 <211> 20 <212> DNA <213> H. sapiens <220> <400> 161 20 tcaacaacca agacagtgac <210> 162 <211> 20 <212> DNA <213> H. sapiens <220> <400> 162 20 aaccaagaca gtgacttccc <210> 163 <211> 20 <212> DNA <213> H. sapiens <220> <400> 163 20 agacagtgac ttccctggcc <210> 164 <211> 20 <212> DNA . <213> H. sapiens <220> <400> 164 20 cacttcatca aggcagactc <210> 165 <211> 20 <212> DNA <213> H. sapiens <220> <400> 165 20 ctcgcagctg gcagcaaggc

<210> 166 <211> 20 <212> DNA <213> H. sapiens <220> <400> 166

WO 03/102019	72/00	PCT/US03/17638
gcaaagctga ataaatctgc	72/90	20
<210> 167 <211> 20 <212> DNA <213> H. sapiens		
<220>	·	
<400> 167 gctgaataaa tctgctgtct		20
<210> 168 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 168 ataaatctgc tgtcttgcgc	. 5	20
<210> 169 <211> 20 <212> DNA <213> H. sapiens	·	
<220>		·
<400> 169 tetgetgtet tgegeaagge		20
<210> 170 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 170 tgtcttgcgc aaggccatcg		20
<210> 171 <211> 20 <212> DNA <213> H. sapiens	·	
<220>		
<400> 171 tgcgcaaggc catcgactac		20
<210> 172 <211> 20 <212> DNA <213> H. sapiens		

<220>

WO 03/102019	73/90	PCT/US03/17638
<400> 172 atgctggacc gctcccgcct		20
<210> 173 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 173 tgccatgcag tggctctgcc		. 20
<210> 174 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 174 gtggccaagt ggtgggcctc	. :	20
<210> 175 <211> 20 <212> DNA <213> H. sapiens		
<220>		·
<400> 175 agctgtggtg atccactggc		20
<210> 176 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 176 actccttcaa ggctgcccgg	·.	20
<210> 177 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 177 ccatctgtga gaaggccagt		20
<210> 178 <211> 20 <212> DNA <213> H. sapiens		

WO 03/102019	74/90	PCT/US03/17638
<220>		
<400> 178 gaaggccagt gggtacctgc		20
<210> 179 <211> 20 <212> DNA <213> H. sapiens	·	
<220>		
<400> 179 tgcaaacttt attttcatag		20
<210> 180 <211> 20 <212> DNA <213> H. sapiens		
<220>	.:	
<400> 180 ccttgacagg tgaagtcggc	·	20
<210> 181 <211> 20 <212> DNA <213> H. sapiens		
<220>	•	
<400> 181 atttctgcag gaagccctcc		20
<210> 182 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 182 caccgtgcag ctgaataaat		20
<210> 183 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 183 ctcctggcca aggctggtgc		20
<210> 184 <211> 20		

· ()

WO 03/102019	75/90	PCT/US03/17638
<212> DNA <213> H. sapiens		
<220>		
<400> 184 catgcggagg gtgagtgccc		20
<210> 185 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 185 gtagggccaa cggcctggac		20
<210> 186 <211> 20 <212> DNA <213> H. sapiens	. :	
<220>	·	
<400> 186 gcggagccat ggattgcact		20
<210> 187 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 187 aagacatgct tcagcttatc		20
<210> 188 <211> 20 <212> DNA <213> H. sapiens		• .
<220>	·.	
<400> 188 ctctgaggcc agggcaggac		20
<210> 189 <211> 20 <212> DNA <213> H. sapiens		
<220>	•	
<400> 189 gctgcgccat ggacgagcca		20

WO 03/102019	76/90	PCT/US03/17638
<210> 190 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 190 agccaccett cagegaggeg	·	20
<210> 191 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 191 acatcgaaga catgcttcag		20
<210> 192 <211> 20 <212> DNA <213> H. sapiens	. . .	
<220>		
<400> 192 ccacctcctg ccacattgag		20
<210> 193 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 193 tectgecaca gagettecca		20
<210> 194 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 194 gctgcctggc ctgccactgg		20
<210> 195 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 195 acagggcctt tgccgaccct		20

77/90

<220>

<210> 196		
<211> 20		
<212> DNA		
<213> H. sapiens		
<220>		
<400> 196		00
tgcctatcaa ccggctcgca		20
•	·	
<210> 197		
<211> 20		
<212> DNA		
<213> H. sapiens		
<220>		
(220)		
<400> 197		
cgtggagaga agcgcacagc		20
<210> 198	. 5	
<211> 20	•	
<212> DNA		
<213> H. sapiens		
<220>		
<400> 198		20
caaggatctg gtggtgggca		20
<210> 199		
<211> 20		
<212> DNA		•
<213> H. sapiens		
•		
<220>		
<400> 199		
caggagaacc taagtctgcg		20
101.0		
<210> 200	•	
<211> 20		
<212> DNA <213> H. sapiens		
(213) N. Saptens		
<220>		
<400> 200		
cactgctgtc cacaaaagca		20
<210> 201	•	
<211> 20		
<212> DNA		
<213> H. sapiens		
-220>		

WO 03/102019	78/90	PCT/US03/17638
<400> 201 ctggtgtcgg cctgtggcag		20
<210> 202 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 202 gaggcatcgc aagcaggctg		20
<210> 203 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 203 gcaggctgac ctggacctgg		. :
<210> 204 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 204 agccctggtc taccataagc		20
<210> 205 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 205 tggccgagat ctatgtggcg		20
<210> 206 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 206 gatctatgtg gcggctgcat		20
<210> 207 <211> 20 <212> DNA <213> H. sapiens		

WO 03/102019	79/90	PCT/US03/17638
<220>		
<400> 207 ggaacatctc ttagagcgag		20
<210> 208 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 208 ccagccctgg gtcagctgat		20
<210> 209 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 209 aaggcagagt ctggtccagc	.;	20
<210> 210 <211> 20 <212> DNA <213> H. sapiens		·
<220>		
<400> 210 taccacacca gccagcagct		20
<210> 211 <211> 20 <212> DNA <213> H. sapiens		
<220>	•	
<400> 211 gcttccgccc ttgagctgcg		20
<210> 212 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 212 cagcagatge teatgegeet		20
<210> 213 <211> 20 <212> DNA	,	

WO 03/102019	2012	PCT/US03/17638
<213> H. sapiens	80/90	
<220>		
<400> 213 gtgggaccac tgtcacttcc		20
<210> 214 <211> 20 <212> DNA <213> H. sapiens		
<220>		- •
<400> 214 tgtcacttcc agctagaccc		20
<210> 215 <211> 20 <212> DNA <213> H. sapiens		
<220>	.:	
<400> 215 ctagccactt tggtcccgtg		20
<210> 216 <211> 20 <212> DNA <213> H. sapiens	•	
<220>		
<400> 216 cccgtgcagc ttctgtcctg		20
<210> 217 <211> 20 = <212> DNA <213> H. sapiens		
<220>		
<400> 217 acctgegget getgtgtgee		20
<210> 218 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 218 gtgtgccttc gcggtggaag		20

<210> 219

WO 03/102019	81/90	PCT/US03/17638
<211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 219 cggcggccat gatggtgctg		20
<210> 220 <211> 20 <212> DNA <213> H. sapiens	·	
<220>		
<400> 220 ttgctctgca ggcaccttag		20
<210> 221 <211> 20 <212> DNA <213> H. sapiens	.:	
<220>		
<400> 221 agaggggtac atttccctgt		20
<210> 222 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 222 ccctgtgctg acggaagcca		20
<210> 223 <211> 20 <212> DNA <213> H. sapiens	·.	
<220>		
<400> 223 gccaacttgg ctttcccgga		20
<210> 224 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 224 cagcgtgctt agcctcctga		20

WO 03/102019	82/90	PCT/US03/17638
<210> 225 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 225 tactttgcct tttgcaaact		20
<210> 226 <211> 20 <212> DNA <213> H. sapiens		
<220>		
<400> 226 agttttgtac agagaattaa		20
<210> 227 <211> 20 <212> DNA <213> M. musculus	.:	
<220>	,	
<400> 227 acggagccat ggattgcaca		20
<210> 228 <211> 20 <212> DNA <213> M. musculus	_	
<220>		
<400> 228 cttcctggga ggacccaagg		20
<210> 229 <211> 20 <212> DNA <213> M. musculus	·.	
<220>		
<400> 229 tgacacctgc acccttgtcc		20
<210> 230 <211> 20 <212> DNA <213> M. musculus		

<220>

<400> 230

WO 03/102019		PCT/US03/17638
annest acc act caccat c	83/90	20
agccagtgcc actcaccatc		
<210> 231 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 231 cacagacaaa ctgcccatcc		20
<210> 232 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 232 cgtggtgaga agcgcacagc	. :	20
<210> 233 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 233 ccacaatgcc attgagaagc		20
<210> 234 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 234 ggtgtcagct tgtggcagtg		20
<210> 235 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 235 aggcacagat gtgtctatgg		20
<210> 236 <211> 20 <212> DNA <213> M. musculus		
<220>		

WO 03/102019	84/90	PCT/US03/17638
<400> 236 tggtggcagt gactctgagc		20
<210> 237 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 237 ggatagccag gtcaaagccc	·	. · 20
<210> 238 <211> 20 <212> DNA <213> M. musculus		·
<220>		
<400> 238 ttggacccag tggttgctgc	.:	20
<210> 239 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 239 gtctggctgg ccaatggact		20
<210> 240 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 240 actagtgttg gcctgcttgg		. 20
<210> 241 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 241 acacttctgg agacatcgca		20
<210> 242 <211> 20 <212> DNA <213> M. musculus		

WO 03/102019	85/90	PCT/US03/17638
<220>		
<400> 242 acctcaaacc tggatctggc		20
<210> 243 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 243 ggccgctggc tggcaggcca		20
<210> 244 <211> 20 <212> DNA <213> M. musculus		
<220>	_	
<400> 244 catgccatgg gcaagtacac		20
<210> 245 <211> 20 <212> DNA <213> M. musculus	·	
<220>		
<400> 245 ggcaacactg gcagagatct		20
<210> 246 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 246 gctctgccac cctgtaggtc		20
<210> 247 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 247 cagcgtggct gggaacccag		20

<210> 248 <211> 20

WO 03/102019	86/90	PCT/US03/17638
<212> DNA <213> M. musculus		
<220>		
<400> 248 acagggagtt ctcagatgcc		20
<210> 249 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 249 cagacccagt ggccaagtgg		20
<210> 250 <211> 20 <212> DNA <213> M. musculus	. 5	
<220>		
<400> 250 ctctgtactc cttcaaggct		20
<210> 251 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 251 tgctggacca cagaaaggtg		20
<210> 252 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 252 atgcagctgc tcctgtgtga		20
<210> 253 <211> 20 <212> DNA <213> M. musculus		
<220>	•	
<400> 253 cctgtgtgat ctacttcttg		20

WO 03/102019	87/90	PCT/US03/17638
<210> 254 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 254 agctcacggt accagcaatg		20
<210> 255 <211> 20 <212> DNA <213> M. musculus		-
<220>		
<400> 255 tgctctggag ctgcgtggtt		20
<210> 256 <211> 20 <212> DNA <213> M. musculus	. :	
<220>		
<400> 256 ctgcgtggtt tccaacatga		20
<210> 257 <211> 20 <212> DNA <213> M. musculus		
<220>	•	
<400> 257 ttcctacatg aggccacagc		20
<210> 258 <211> 20 <212> DNA <213> M. musculus		u.
<220>		
<400> 258 aggccacagc tcggctgatg		20
<210> 259 <211> 20 <212> DNA <213> M. musculus		
<220>		
<400> 259 caggagcaag tootgcccgg		20

88/90

<210> 260 <211> 20 <212> DNA <213> M. musculus	
<220>	
<400> 260 gggcaggttc cagtggcaaa	20
<210> 261 <211> 20 <212> DNA <213> M. musculus	
<220>	
<400> 261 cccacatggc gggagcacac	20
<210> 262 <211> 20 <212> DNA <213> M. musculus	
<220>	
<400> 262 tgccgacctc tagtggcaga	20
<210> 263 <211> 20 <212> DNA <213> M. musculus	
<220>	
<400> 263 caccctcttg ctctgtaggc	20
<210> 264 <211> 20 <212> DNA <213> M. musculus	
<220>	
<400> 264 ttcataggtt gagaaatttt	20
<210> 265 <211> 20 <212> DNA	

<213> M. musculus

<220>

WO 03/102019	89/90	PCT/US03/17638
<400> 265	·	20
ccttgaaaca agtgttctca		20
<210> 266		•
<211> 20		
<212> DNA		
<213> M. musculus		
<220>		
.400> 066		
<400> 266		20
atctaaaggc agctattggc		
<210> 267		
<211> 20		
<212> DNA		
<213> M. musculus		
<220>		
<400> 267		
acgacagtga ccgccagtaa		20
acgacagega cogocageaa	. :	
<210> 268		
<211> 20		
<212> DNA		
<213> M. musculus		
1000		
<220>	·	
<400> 268		
tgaagcaaag gtacggccaa		20
<210> 269	•	
<211> 20		
<212> DNA		
<213> M. musculus	•	
<220>		
\ZZU>		
<400> 269		
gctagctgag aatagtgtgg		20
<210> 270		
<211> 20		
<212> DNA		
<213> M. musculus		
<220>		
<400> 270		•
ccaccctgat gctgccttct		20
<210> 271		
<211> 20		
<212> DNA <213> M. musculus		
NZIS/ M. MUSCULUS		

<u>...</u>

WO 03/102019 PCT/US03/17638 90/90 <220> <400> 271 20 ggatagccag gttggactct <210> 272 <211> 20 <212> DNA <213> M. musculus <220> <400> 272 20 ctggatttgg cccgggtaag <210> 273 <211> 20 <212> DNA <213> M. musculus <220> <400> 273 20 cactttgcag gcaagtacac