Resolución de singularidades y Equisingularidades

Carlos Alonso Aznarán Laos Universidad Nacional de Ingeniería March 8, 2017

Indicaciones

Teoremas importantes

Teorema de los ceros de Hilbert-Rückert

Sea $\mathbb K$ un campo algebraicamente cerrado e $\mathcal I\subset k[x]$ un ideal. Entonces $I(V(I))=\sqrt{I}$.

Teorema de funciones implícitas

Si $f_1, f_2, \ldots, f_k \in \mathcal{O}(U), U$ abierto de \mathbb{C}^n , y en un punto $\mathbf{z}_0 = (z_{01}, z_{02}, \ldots, z_{0n}) \in U$ con $f_i(\mathbf{0})$ se tiene

$$rg(\frac{\partial(f_1,f_2,\ldots,f_k)}{\partial(z_1,z_2,\ldots,z_k)}(z_0))=k$$

entonces existe una única función holomorfa $g=(g_1,g_2,\ldots,g_k)$ definida en un entorno de $(z_{0,k+1},\ldots,z_{0,n})$ en \mathbb{C}^{n-k} , verificando $g_i(z_{0,k+1},\ldots,z_{0,n})=z_{0,i}$

Radical de un ideal

Sea $\mathcal R$ un anillo conmutativo y sea $\mathcal I$ un ideal de un anillo. El conjunto $\sqrt{\mathcal I}=rad\mathcal I:=\{r\in\mathcal R|\exists\,n\in\mathbb N,r^n\in\mathcal I\}$ Germen de conjunto analítica en $(\mathbb C^n,0)$

Es el conjunto de ceros de un ideal $a \subseteq \mathcal{O}_n$.

Gérmen analítico reducible

Un germen de conjunto analítico $\mathcal V$ se llamada reducible si existen gérmenes $V_i \neq V$, i=1,2, con $V=V_1 \cup V_2$. Codimensión

Si W es un subespacio vectorial finito de V, entonces la codimensión de W en V es la diferencia entre las dimensiones, es decir: codim(W)=dim(V)-dim(W). Separatriz

Llamaremos separatriz de \mathcal{F} a una hipersuperficie analítica $V\subseteq (\mathbb{C}^n,0)$, tal que $V\setminus Sing\mathcal{F}$ es una hoja de foliación

Definiciones
Hoja de foliación
Propiedades
Es conexa por caminos

Figure: La imagen no es conexa por caminos

Variedad compleja

Es una variedad topológica que tiene la estructura que nos permite definir la noción de función holomorfa $f: \mathcal{M} \to \mathbb{C}$.

Atlas foliado

Un atlas foliado de codimensión uno sobre \mathcal{M} (variedad compleja) es un atlas $(U_i, \varphi_i)_{i \in I}: U_i \to D_i$, disco en \mathbb{C}^n , tal que si $U_i \cap U_j \neq \emptyset$, la aplicación $\varphi_{ij} = \varphi_i \circ \varphi_j^{-1}$ es de la forma $\varphi_{ij}(z', z_n) = (\varphi_{ij}^{-1}(z', z_n), \varphi_{ij}^{-2}(z_n)) \in \mathbb{C}^{n-1} \times \mathbb{C}$, con $z' = (z_1, z_2, \ldots, z_{n-1})$. Se llaman cartas distinguidas. Clasificación de singularidades

Pre-simple: Si al menos un autovalor es no nulo (esto, es, la parte lineal es no nilpotente).

Simple: Si es pre-simple, y si $\lambda_1 \neq 0$, entonces $\lambda_2/\lambda_1 \notin \mathbb{Q}_{>0}$

Gérmen de foliación

Dada una l-forma diferencial

$$\omega = \sum_{i=1}^n a_i(\mathbf{z}) dz_i,$$

denotaremos \mathcal{F}_{ω} el gérmen de foliación singular definido por ω' , donde $\omega=h\cdot\omega'$. $h=mcd(a_1,a_2,\ldots,a_n)$. Pull-Back

Si $f:N\to M$ es un morfismo diferenciable entre variedades analíticas, y ω define una foliación \mathcal{F}_{ω} sobre M, denotaremos $f^*\mathcal{F}_{\omega}$ la foliación sobre N definida por $f^*\omega$. Esta foliación es la contraimagen o pull-back de la foliación \mathcal{F}_{ω} .

Variedad Analítica

Un ejemplo de variedad analítica es el espacio afín \mathbb{R}^n y el espacio proyectivo $\mathbb{R}P^n$ (pregunta: el plano proyectivo complejo $\mathbb{P}_\mathbb{C}$ será una variedad analítica, pero todas las variedades complejas son variedades analíticas).

Explosión

Es la aplicación π que tiene una representación local

$$\pi:\mathbb{C}^2\to\mathbb{C}^2$$

en coordenadas (x, t)

$$\pi(x.t) = (x, xt)$$

y una explosión centrada en $0\in\mathbb{C}^2$ consiste en reemplazar el origen por un espacio proyectivo $\mathbb{P}^1_{\mathbb{C}}$ que deje a los otros puntos invariantes en un sentido Biholomorfo.

Función Biholomorfa

Es aquella función ϕ definida sobre un subconjunto abierto U del espacio complejo n-dimensional \mathbb{C}^n hacia sí mismo. Es holomórfica e inyectiva, ta Divisor excepcional Transformada total Transformado estricto