Applications of BCIs in Performance Art

Brain Painting, Brain Sculpting and Brain Dancing

Lars Schwabe - May 12, 2020 lars.schwabe@lhind.dlh.de

ARIC Brown Bag Session

aric-hamburg.de

Lars Schwabe

Director AI, Data Analytics, Blockchain Lufthansa Industry Solutions

Background

Education <u>TU Berlin</u> (Informatik & Philosophie)

PhD TU Berlin (Neuroinformatik)

Research MIT, Univ of Utah, EPFL, U Rostock

Industries

Digital & Online Marketing Aviation & MRO Energy, Media, Transport & Logistics

Awards

<u>INNS Young Investigator</u>, Best Paper Awards, DFG Fellowships

Publications

Google Schoolar (active research until ~2013)

The Artist Behind these Projects

https://retrogradist.com (Adi Hoesle)

Background: Neuroscience

In neuroscience and neuroscience-inspired machine learning we believe that...

- ...neural activity in sensory systems reflects both i)
 representations and ii)
 computations
- ...the learning of representation is driven by principles + constraints

Example 1: Sparsity seems to matter

(Model: Olshausen, B., Field, D., Nature 381, 607–609, 1996)

Example 2: Bayesian inference seems to matter

(Many behavioural & imaging studies, models + interpretations)

$$\hat{x}_{bimod} = argmaxP(x|r_{vis},r_{aud})$$

$$= \frac{1/\sigma_{vis}^2}{1/\sigma_{vis}^2 + 1/\sigma_{aud}^2} \hat{x}_{vis} + \frac{1/\sigma_{aud}^2}{1/\sigma_{vis}^2 + 1/\sigma_{aud}^2} \hat{x}_{aud}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

Consequence for BCIs:

We are decoding brain activity that we currently do not fully understand from a scientific point of view!

Of course, this should not stop us.

Background: EEG-based BCIs

EEG reflects the electrical activity of many neurons in the brain.

We have to develop paradigms and tricks to make EEG-based BCIs work, because there are so many confounding factors and the signals are only macroscopic signals (but with a good temporal resolution).

Example: P300 Spelling

Image Source:

https://psyenceblog.wordpress.com/2014/11/25/neuroimaging-as-lie-detection-detecting-retrieval-of-individual-memories-using-eeg-recordings/

Impressions: pingo-ergo-sum.com (Brain Painting)

Impressions: pingo-ergo-sum.com (Brain Painting)

Impressions: Brain Sculpting @ Ars Electronica, 2012

- Plain OpenGL
- Stereo via Quad Buffer
- Bullet Physics Engine

Selector +Z	Rotate -90°	Elevate +22.5°	Enlarge Selector	Selector On	STL	Push 75%	Pull 75%
Selector -X	Rotate -45°	Elevate -22.5°	Shrink Selector	Selector Off	Save	Push 50%	Pull 50%
Selector +X	Rotate -15°			New		Push 25%	Pull 25%
Selector –Y	Rotate +15°						Load
Selector +Y	Rotate +45°						Lock Selector
Selector –Z	Rotate +90°	Undo					Unlock Selector

The Brain Dancing Project: Switch on the SSVEP-listening mode with your brain...

The Brain Dancing Project: The Effect of Colors

The Brain Dancing Project: The Final Setup (EU VERE Competition, 2012)

The Brain Dancing Project: Demo

Summary: BCI is an exciting, promising, but difficult field for AI. It is the next big thing.

Reading thoughts has always been part of the scifi literature and deemed not possible. But it is possible!

Research can be pushed – as it was done for ML in the last decade – by objective measures and competitions.

Words of caution: Many confounding factors (e.g. artifacts) and wishful thinking in certain communities (e.g. <u>Niels Birbaumer</u> case).

Current hardware technology is still the major limitation. But Neuralink's work (Mr. Musk) is a good indicator of future advances: We need to push BCI hardware development and go deeper (into the brain)

AI/ML & Neuroscience are ready-to-go once the sensor/actor technology is more mature.

We will be cyborgs...

Thanks for your attention.

Contact information: lars.schwabe@lhind.dlh.de

