BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE-PILANI, HYDERABAD CAMPUS

FIRST SEMESTER 2021-2022

Course Handout (Part II)

20-08-2021

In addition to part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : Phy F211

Course Title : Classical Mechanics Instructor-in-Charge : SOURI BANERJEE

<u>Course Description</u>: The course begins with Lagrangian dynamics which is followed by Hamiltonian Mechanics and covers Hamilton's equations of motion. It initiates Poisson's Bracket which is a gateway to Quantum Mechanics. It ends with a rigorous coverage of rotational dynamics and heavy symmetrical top

<u>Scope & Objectives</u>: This is an advanced course on classical mechanics which deals with some advanced techniques for solving problems of mechanics. It also deals with formulations of classical mechanics that find their use in quantum mechanics as well as classical statistical mechanics.

<u>Text Book</u>: H. Goldstein, C. Poole & J. Safko, Classical Mechanics, Third Edition, Pearson Education, Inc., 2002

<u>Reference Books</u>: 1) N. C. Rana and P S Joag, Classical Mechanics, Mc Graw Hill, 2006 <u>Course Plan:</u>

Lecture	Learning Objectives	Topics to be covered	Chapter in
No.			the Text
			Book
1-3	Drawbacks of Newtonian Mechanics	d'Alembert's principle of virtual work	1.1 to 1.3
4-6	Generalized Coordinate	Lagrange's equation	1.4
7-14	Illustration of the applications of	Various applications of Lagrangian	1.5 – 1.6
	Lagrange's equations.	formulation, Foucault's Pendulum	
15-19	To prove certain conservation	Cyclic coordinates and conservation	Class Notes
	theorem and introducing	theorems.	and 2.6-2.7
	Hamiltonian		
18-20	Hamiltonian	The Hamilton's equations of motion	Class Notes
		and its application	
21-23	Learn techniques of calculus of	Some techniques of calculus of	2.2 – 2.3
	variation in order to obtain	variation and derivation of	
	equations of motion by minimizing	Lagrange's equations from	
	action.	Hamilton's principle	
24-26	Canonical Transformation	The Poisson Brackets, the gateway to	Class notes or
		Quantum Mechanics	9.1-9.7
27-30	Hamilton-Jacobi formalism	Application to standard problems,	10.1-10.4 and
		Linking Quantum Mechanics	Class notes

31-34	To study rotation of coordinate	Orthogonal transformations and	4.1-4.3
	systems and orthogonal	their properties	
	transformations in order to		
	understand kinematics of rigid		
	bodies.		
35-42	To obtain the kinetic energy and	Angular momentum and kinetic	5.1 – 5.7
	angular momentum of a rotating	energy of motion about a point and	
	rigid body and introduce moment of	inertia tensor. The principal axis	
	inertia tensor. To introduce	transformation. The Euler equation of	
	principal axes of inertia. Euler	motion and torque-free motion of a	
	Angles	rigid body. Top Motion	

Evaluation Scheme:

EC	Evaluation	Duration.	Weight	Date, Time &	Nature of
No.	Component.		age	Venue.	Component.
1	Midsem	90 mins	35%	18/10/2021 9.00	Open book
				- 10.30AM	
2	Quiz	30 mins	25%	TBA	Open book (best 3 out
					of 4 to be taken)
4	Comprehensive	TBA	40%	11/12 FN	Open book
	Examination				

<u>Chamber Consultation Hour:</u> To be announced in the class.

Notices: Notices concerning the course will be put up on the **PHYSICS** notice board.

<u>Make-up Policy:</u> Make-up for the tests will be granted only for genuine cases of health problems or urgency for going out of town.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge PHY F211