2009 網際網路程式設計全國大賽高中組決賽

- 題目:本次比賽共八題(不含本封面共17頁)。
- 題目輸入:全部題目的輸入都來自輸入檔,請依題目以及下表指 示開啓指定的輸入檔讀取輸入。每個輸入檔中可能包含多組輸入, 依題目敘述分隔。
- 題目輸出:全部的輸出皆輸出到指定的輸出檔。檔名如下表,請注意都是小寫。
- 時間限制:裁判將限制每次執行時間為十秒。其間執行的電腦上不會有別的動作、也不會使用鍵盤或滑鼠。

表一、題目資訊

	題目名稱	輸入檔名	輸出檔名
題目A	秦始皇的字典	pa.in	pa.out
題目B	一筆劃問題	pb.in	pb.out
題目C	矢量星球	pc.in	pc.out
題目D	跑跑卡丁車	pd.in	pd.out
題目E	大風吹	pe.in	pe.out
題目F	飛機上有蛇	pf.in	pf.out
題目G	愛有等差	pg.in	pg.out
題目H	補習班的報名熱	ph.in	ph.out
		•	

題目 A 秦始皇的字典

輸入檔: pa.in / 輸出檔: pa.out

西元前 221 年,秦始皇以武力平定天下,成爲中國第一位皇帝。他進行了一系列的改革措施,包括政治、經濟和文化等等方面,都對後世有深遠的影響。在政治上,秦始皇廢除前代的分封制度,改設郡縣,實行中央集權。在經濟上,秦始皇推行重農抑商的政策,鼓勵開墾荒地,增加稅收。在文化思想上,秦朝統一度量衡,並制定了小篆,使得全中國「書同文,車同軌」。更進一步,爲了達成思想上的統一,秦始皇下令「焚書坑儒」,以鞏固秦朝的統治。

在秦始皇決定「書同文,車同軌」之後,他想要編一部大秦字典,收納所有 詞彙。同時,秦始皇不希望字典中出現任何反對他的字詞,因此要把所有包含這 種字詞片段的詞彙都丟掉。舉例來說,「抗秦」是一個反對秦始皇的字詞片段, 所以「合縱抗秦」、「抗秦軍歌」等等詞彙都不能收入字典。

在規劃好以後,秦始皇指派丞相李斯把這部字典完成。雖然李斯是著名的政治家、文學家,他還是遇到了一個問題:一個詞彙需要一卷竹簡,那總共需要多少卷竹簡才能編完這部字典呢?李斯爲這個問題思考良久,卻依然沒有答案。隨著秦始皇的駕崩,這本字典也不了了之了。

現在請你來解決這個千古問題。爲了簡化問題,我們以英文字母來代表中文字,也就是說只考慮 26 個中文字所組成的詞彙。相似的,一個中文詞彙是以一連串沒有空白的英文字母來代表,這串英文字母不能是空的。在這本字典中,我們只需要囊括所有長度不超過 L 個字母的詞彙就可以了。給定所有被視爲「反秦」的 N 個字詞片段,請找出字典裡的詞彙總數。

■ 輸入檔說明

第一行有一個整數 T,代表接下來有幾組測試資料。

每一組測試資料的第一行有兩個數字,N 和 L。接下來有 N 行,每行分別是一個「反秦」的字詞片段,以一連串沒有空白的英文字母表示。英文字母不用區分大小寫,而且輸入保證全部都是小寫字母。每一個字詞片段的長度都不超過 $20 \circ (0 \le N \le 10 \circ 1 \le L \le 1000000)$

■ 輸出檔說明

對每筆測試資料輸出一個整數,代表沒有出現任何「反秦」字詞片段而且長度不超過L的詞彙總數。由於這個數字可能很大,請輸出它除以10000019的餘數。

■ 範例輸入

1

1 3

a

■ 範例輸出

16275

題目 B 一筆畫問題

輸入檔: pb.in / 輸出檔: pb.out

我們小時候都玩過一個遊戲:給你一個圖案,問你有沒有辦法一筆畫畫完。當然, 這對你來講一定太基本,我們決定要多一些限制,將每一條線段都規定方向,這 樣難度自然上升一些,但我們仍不是要你做這件事情。

其實,我們出好了很多有方向的圖案,但重點是,我們不知道這些圖案有沒有解!! 所以,能請你幫忙檢查,這些圖案有沒有辦法將一些線段倒過來之後,就變成可以一筆畫畫完嗎?如果有,那至少要將幾條線段掉頭呢?

如果要用較學術的口吻來說,就是給你個有向圖(directed graph),請問有沒有辦 法經由將一些邊反向的動作,而使之可以一筆畫走完?並且,至少要反向幾條邊 呢?

■ 輸入檔說明

測試資料的第一個數字T代表接下來有幾組測資。

對於每一筆測資,一開始會給兩個數字,N及E,代表著點數及有向邊數。接下來E行,每行有兩個數字,a及b,代表著有一條邊從a點連到b點。

請注意,2<=N<=50,在一筆測資內,不會有兩條邊以上重複從 a 點連到 b 點 (但可以同時存在 a 點連到 b 點的邊及 b 點連到 a 點的邊),且不會有自己連到自己的邊。點的編號由 1 開始計數。並且提醒你,就算你將給定的邊任意調頭,我們並不保證某個點一定有辦法走到另一個點。

■ 輸出檔說明

對於每個測資輸出一行,但分成以下兩種狀況:

- A. 輸出 "NO" 如果這個有向圖無法將一些邊反向而一筆畫走完。
- B. 輸出 "YES x",如果有辦法將一些邊反向而一筆畫走完,其中 x 代表的是需調頭的最小邊數。

■ 範例輸入

■ 範例輸出

YES 0 YES 1 NO

題目 C 矢量星球

輸入檔: pc.in / 輸出檔: pc.out

我們現在都生活在三維的世界裡,對更高維度的東西總是難以想像。但是在矢量星球中,他們的世界是個 n 個維度的空間。在這空間中,有種叫矢量的東西。它是一個 n-序對,代表一個點相對於星球中心的位置。

羅敷跟小瀠是矢量星球上的好朋友,他們最喜歡玩的遊戲就是「Orthogonoal Family」,這個遊戲要怎麼玩呢?規則如下:

因爲羅敷年紀比較小,所以從羅敷開始。接下來小瀠跟羅敷輪流做以下事情。 書一條矢量 v=(v1, v2, v3, ..., vn)。

檢查是否跟之前畫的矢量都垂直。如果是的話,就繼續。不然畫的那個人就輸了。 然而,他們已經大戰幾百回合,卻無法檢查是否遊戲已經結束了。看來檢查垂直 這件事情似乎沒有這麼容易,因此她們想要請你寫一支程式幫忙。

兩條矢量 u,v 垂直 [,]若寫成 v=(v1 , v2 , v3 , ... , vn), u=(u1 , u2 , u3 , ... , un) [,] v1 u1+ v2 u2+ ...vn un=0。

給你他們玩樂的紀錄,你要決定遊戲的結果。

■ 輸入檔說明

每一組遊戲由兩個整數 n,m 開頭的一行,代表在 n 維度的空間(0<n<100000),已經玩了 m 個回合。(0<m<500)。接下來是 m 行,每一行都由一個整數 k(0<k<1000)代表這條線 v 表成(v1, v2, v3, ..., vn)有幾個 vi 非零,接下來會依序給予空白分開之整數對"i:d"代表 vi=d。(0<i<=n, d=1 或-1) 一行中,後面的 i 一定比前面的大。

n=m=0,代表 input 結束。

■ 輸出檔說明

如果羅敷已經贏了,就印出一行 Rofu;如果小瀠已經贏了就印出一行 Yin;如果還無法決定,就印出一行 Hakuna matata。

■ 範例輸入

```
100 4
5 1:1 2:-1 3:1 4:1 5:1
2 1:1 2:1
1 6:1
1 7:-1
2 2
1 1:1
1 1:1
0 0
```

■ 範例輸出

Hakuna matata Rofu

題目 D 跑跑卡丁車

輸入檔: pd.in / 輸出檔: pd.out

你玩過跑跑卡丁車嗎?這是款遊戲橘子代理的線上賽車遊戲,分成道具賽跟競速 賽兩種模式,道具賽中可以丟水球、香蕉皮等等來擾亂對手,而競速賽則是純粹 的比誰快!

但你知道卡丁車是真的存在的東西嗎?

卡丁車是賽車界最初級的賽事,所有有名的車手小時候都是從這項賽事中開始學習的,有名的 F1 世界冠軍舒馬赫退休後甚至重溫童年時光以參加卡丁車賽事爲樂。

可別小看小小的一台車,輕量化的車身加上強力引擎的搭配,能夠輕鬆跑出百公里的時速,刺激度不輸一般賽車,能否良好的駕馭這小怪獸也是對車手的考驗。

國內的卡丁車賽事通常分爲測時賽、複賽 1、複賽 2、決賽四個階段,測時賽不需同時出發,每個車手必須在有限的時間內盡量達到最快的單圈時間,測時賽的排名決定複賽 1 的起跑位置,從複賽 1 開始則都是同時起跑,複賽 1 的排名決定複賽 2 的起跑位置,複賽 2 的排名決定決賽的起跑位置。

根據研究發現,如果能在測時賽中拿到前 1/3 的排名,則贏得比賽的機率會大增, 身爲 NPSC 車隊技術員的你,找出測時賽前 1/3 的車手提供給車隊研究吧!

假設有 N 個車手,前 1/3 的定義是排名前(N/3, 無條件捨去)的車手,例外條件是當有未列入前 1/3 的車手成績與第 N/3 名的車手成績相同的話,也必須將他算入前 1/3

■ 輸入檔說明

測資會有多組,每組測資的第一行是一個整數 N,3<=N<=100000,當 N=0 的時候表示測資結束,接下來的 N 行分別是車手的姓名及測時賽的最佳單圈成績,姓名只會包含大小寫英文字母,成績的格式爲 HH:MM:SS.SSS(小數點後可能有 0 到 3 個位數),秒數精確到三位數,姓名與成績用一個空白隔開。

■ 輸出檔說明

對每組測資,請先輸出一行 LIST START,接下來輸出符合條件的車手名稱,輸出順序請依照出現在測資的順序,車手輸出完畢後請輸出一行 LIST END。

■ 範例輸入

```
3
Schumacher 00:01:46.532
Alonso 00:01:47.581
DE 00:01:46.531
3
Schumacher 00:01:00
Alonso 00:01:00
DE 00:01:00
0
```

■ 範例輸出

LIST START

DE

LIST END

LIST START

Schumacher

Alonso

DE

LIST END

題目 E 大風吹

輸入檔: pe.in / 輸出檔: pe.out

A跟他的朋友們很喜歡玩團康遊戲,今天他們玩的遊戲是大風吹。規則是這樣的,假設有N個人編號從1到N,一開始每個人會坐在一張編號與自己相同的椅子上,椅子的位置在座標(xi,yi),當遊戲開始時你必須離開你的椅子,找到另一把與自己編號不同的椅子坐下,沒找到的人就算輸了。因爲A的朋友都是小孩子思想很單純,所以每一次玩的時候,一定會去搶離自己最近的椅子。所以A想知道離每一個人最近的椅子分別是哪一些,這樣他就可以不費力氣地贏得遊戲。

■ 輸入檔說明

第一行有一個整數代表總共有幾筆測試資料。

每一筆測試資料的第1行有一個整數 N 代表總共有幾個人。

第2行到第N+1行每一行有2個整數x,y,代表每張椅子的座標。

0 < N < 50000, 0 <= x, y < 1000000

每組測試資料之間會有一個空白行。

■ 輸出檔說明

對每一筆測試資料輸出N行,第i行輸出一個整數代表離第i個人最近椅子的編號,如果一樣近,輸出編號最小的那一個。

■ 範例輸入

•		
2		
3		
0		
1		
2	!	
3		
0		
2	!	
3	3	

■ 範例輸出

		٠
	2	
	1	
	2	
	2	
	3	
-	2	
ş		

題目 F 飛機上有蛇

輸入檔: pf.in / 輸出檔: pf.out

世界上的蛇分成兩種,貪食的,和不貪食的。傳說中的貪食蛇王「貪食鯨」引領著各式各樣的蛇群們,佔領一架架的飛機,讓飛機上的人們產生恐懼。爲什麼貪食蛇王要以鯨魚命名呢?這點到現在都還是個謎,說不定是他們想要越變越大隻,向海洋中體型最大的鯨魚看齊吧!他們每天都在研究,該如何佔領一架飛機,使得飛機上的人們恐懼的總和最深。蛇群中最聰明的,當然就屬眼鏡蛇啦(說不定是因爲牠們有戴眼鏡的關係...)。不過在眼鏡蛇群中,最最厲害的,則是一隻沒有戴眼鏡、叫做「大蛇丸」的傢伙。經過大蛇丸一番仔細地研究,牠發現,若要引發人們的恐懼,則必須要把飛機上能站的地方通通佔據,讓人們的腳沒有辦法踩到地上,進而讓人類自我感覺恐怖。於是,牠們決定派出特種部隊進攻機艙,並將此次的任務命名爲「貪食蛇的崛起」...

不過,就在進攻之前,牠們發現了一件相當恐怖的事情:最近的飛機上都安裝了偵測危險生物的「哇沙米系統」。如果在蛇群佔滿機艙之後,機艙地板上仍有空位,那麼「哇沙米系統」就會檢測出空地與被蛇群佔據地板的不同,而引發警鈴大作。此外,如果同一個位置上疊了兩條蛇的高度,也會因爲高低落差太大而引起「哇沙米系統」的特別關注,所以規劃任務的時候必須徹底避免這樣的事情發生。因此,安排這些蛇的佔領位置就成了進攻是否能夠成功的最大關鍵。如同一開始所說的,世界上的蛇,分成兩種:貪食的,或不貪食的。貪食的蛇總喜歡咬住自己的尾巴,不貪食的蛇比較自閉,他的頭和尾巴一定要碰到飛機最外層的牆壁才會覺得安心。不過因爲不貪食的蛇實在是太自閉了,並沒有辦法足夠引發大家的恐懼。

飛機的機艙恰好可以分成 N 乘以 M 個小格子,如下圖所示,而被塗黑的格子代表的是座椅的位置,並沒有空地。而 N 乘以 M 個小格子的最外圍則是機艙的牆壁。每一隻蛇都佔領某些連續的格子。而且一個格子的空間只能夠容納一條蛇的 寬度。

如上圖所示,機艙內總共有三條蛇,其中兩條貪食的蛇由於咬住了自己的尾巴,因此形成了一個圈,第三條不貪食的蛇則是頭和尾巴緊貼著牆壁。由於不貪食的蛇對人類毫無威脅可言,派出太多條不貪食的蛇,反而會影響了進攻的成效。「大蛇丸」很想要知道至少得派出多少條不貪食的蛇,才能讓任務圓滿成功。於是牠威脅你儘快在五個鐘頭以內寫出程式,要不然牠就要罰你唸繞口令「抱著灰雞上飛機,飛機起飛灰雞要飛」或者是「叫我大蛇王,不是大蛇丸」一萬次了。

■ 輸入檔說明

輸入可能包含相當多筆測試資料。

第一行有一個正整數T代表測試資料的組數。

每一筆測試資料的第一行有兩個整數 N, M (1<= N, M<= 20),接下來有 N 行每一行有 M 個字元,代表機艙裡面的地形,我們以 '#'標記座椅的位置,以 ''標記空地的位置。

■ 輸出檔說明

對於每一筆測試資料,若「大蛇丸」所帶領的特種部隊有辦法成功佔領整個機艙,請輸出至少要派出的不貪食的蛇的數量。如果無論如何安排所有蛇的位置都沒有辦法成功佔領機艙,那麼請輸出 -1。你可以假設所有的蛇長度至少爲 2,而且特種部隊中有各式各樣不小於 2 且爲整數長度的蛇供「大蛇丸」挑選,而且要幾條有幾條,貪食的、或不貪食的都有。

■ 範例輸入

```
3
4 5
##..#
....
```

##	 	
##		

■ 範例輸出

1 0 -1

題目 G 愛有等差

輸入檔: pg.in / 輸出檔: pg.out

子曰:「親親而仁民,仁民而愛物。」此話展現出儒家愛有等差的精神。具有懷疑精神的歷史學家 S.A.S., 想要驗證古聖先賢的思考是否在現代尙能應驗。

全台灣有 2500 萬人左右,而每個人對其他人都有一個喜好的程度,如果這些喜好程度可以排成一等差數列,那我們就說愛有等差。S.A.S.決定隨便抓幾個路人來實驗是否愛有等差。

■ 輸入檔說明

輸入資料中有多組測試資料。

每一組都是由一個整數 n (0<n<50001)開始,代表有幾個人。

接下來是 n 個數字 Ki (-1000000001</br>

Ki
1000000001
,代表這位路人對 n 個人分別的喜好程度。如果 n=0,就代表輸入結束。

■ 輸出檔說明

如果愛有等差,就輸出 Yes,不然輸出 No。

■ 範例輸入

■ 範例輸出

es	
0	

題目 H 補習班的報名熱

輸入檔: ph.in / 輸出檔: ph.out

近年來,由於各式各樣的升學壓力,幾乎很多家長們都會把孩子送到補習班裡面去學習,增加孩子們的競爭力。當然,今年也不例外。NPSC (Nobel Prize So Cool)就是在這樣的環境底下成立的一個補習班。它打著培養孩子們發展科學和資訊能力結合的潛力,美其名『諾貝兒程式設計練才專班』,實際上卻是專門招收有才華的學生把他們組成一隊一隊的送進 NPSC 來比賽的可怕組織。

當然,經營了兩、三年後,經歷了各式各樣口碑的考驗,成功在補習業界闖出一 片天。隨著大家口耳相傳,來報名的家長和孩子們也越來越多,今年甚至有多達 近萬名的家長帶著學生來報名。因此,NPSC 爲了應付如此龐大的報名熱潮,做 出了以下三點規範:

其一,今年特別規劃『家長排隊區』專門讓家長們排隊,如此一來孩子們便可以 省下排隊的時間,專心寫程式。

其二,每一位家長必須一次幫兩位孩子報名,因爲這樣補習班才能夠收到兩份的報名費用。如果出現了重複報名的現象,就視同報名失敗。

其三,如果報名失敗了,本年度將不得再度報名。

在某間高中的程式設計社裡面,有N個成員,他們決定今年一起報名NPSC,目標是打進決賽。於是他們找了M個路人,打算請這些路人幫忙排隊報名。不過為了避免有人報不到名,或者重複報名,每個路人都只會幫兩個成員排隊。你很湊巧地,是這個程式設計社當中的副社,而這個社團的社長早就已經寫ACM寫到完全忘我的境界了,重責大任於是落在你的身上。因此你很想知道,是不是真的能夠從這M個路人中請一些人出來排隊,最終能夠讓所有的N名成員都成功地報名了NPSC練才專班。你很開心地寫了一個程式讓它放著慢慢跑,然後開心地跑去睡覺了。

不過你做了一個夢。

在夢境中,費盡了千辛萬苦,終於,從這 M 個路人裡面挑了一些人請他們幫忙排隊報名。但是,這些人裡面有人卻出現了不平之鳴。「爲什麼是我要排隊?」「我比較想在家裡看電視啦!」「早知道就不幫忙出主意了!」「如果我沒有幫忙的話,明明有別種方案的啊,爲什麼要找我!」

你驚醒。

你快速地檢查了程式,它還在慢跑,一點回應也沒有。你擔心,如果除了從這 M 個路人中找出某些人幫忙以外,如果還存在著另外一種讓 N 名成員都報名成功的方案,那麼這些人可能會吵架,會壞了大事的,因此這樣的報名方案不算是順利完成。換句話說,就像是 36+45=79 一樣,如果解法不是唯一的,那麼勢必會有很多人感到新奇、溫馨、誇張、難過、實用、高興、無聊,或者生氣。

「這真是個盲點呀華生!」

你大夢初醒。決定趕快生出一份程式,判斷到底有沒有辦法從這 M 個路人裡面 唯一地找出一些人讓他們可以很順利地幫社團全部的 N 名成員完成報名呢?

■ 輸入檔說明

輸入的第一行包含一個正整數T代表測試資料的筆數。

接下來的每一筆測試資料,其第一行包含兩個正整數 N, M 依序代表社團的人數和路人的個數(1<=N<=1000, 0<=M<=10000)。而社團當中的成員也被編號戶 1, 2, ..., N。

接下來有 M 行,每一行有兩個數字 Ai, Bi, 代表第 i 個路人想要幫社團裡面編號爲 Ai 和 Bi 的兩名成員一起報名補習班。對於所有的 i, Ai 不會等於 Bi。

■ 輸出檔說明

對於每一筆測試資料,如果不管怎麼挑路人都無法達成目標的話,請輸出 NO。否則請輸出 YES,而且要輸出那唯一的一種報名方案。

每一行輸出以一個空白隔開的兩個數字 a, b(其中 a<b),代表有某個路人會幫編號爲 a, b 的兩名成員一起報名。請將這些數對由小到大輸出,也就是說,如果 a, b 比 c, d 還要早輸出,那麼一定有 a < c。

■ 節例輸入

		41147
2		
4	4	
1	2	
2	3	
3	4	
4	1	
4	3	
1	2	
2	3	
3	4	

■ 範例輸出

NO YES 1 2 3 4