Grupo 10	Control de Xarxes d	e Computadors 2	Q2: 22-05-2015
Nombre:	Apellidos:		
Test. 5 puntos. (Tiempo est Todas las preguntas pueden Una respuesta correcta cuer Una respuesta parcialmente Si hay 2 o más errores, 0 pu	ser multirespuesta. nta 0.5 puntos. correcta (es decir un solo error) 0.2	5 puntos.	
✓ Hay un árbol multicast por	ribución para todos los orígenes	C 1	

 En encaminamiento multicast entre routers en source-based tree ✓ Hay un árbol multicast por cada origen ☐ Hay un único árbol de distribución para todos los orígenes ☐ Se necesitan Rendezvous Point (RP) ✓ Utiliza flood and prune 	2. Si un grupo multicast se define con la dirección IPv4 224.1.1.3 , en la red Ethernet la dirección MAC serà (01:00:5E) □ 1 0000001 00010001 00000010 □ 1 0000001 00000011 00000011 ✓ 0 0000001 00000001 00000011 □ 0 0010001 100000001 00000010
3. En BGP	4. En iBGP
 ✓ Se abre una sesión TCP entre peers (speakers) ☐ Las rutas aprendidas tienen un tiempo de vida ✓ Hay un control de conexión activa ☐ El protocolo está basado en link-state 	 ✓ Los speakers utilizan los mismos mensajes que en eBGP □ Los iBGP speakers anuncian los prefijos que aprenden de los eBGP y de otros iBGP ✓ Un AS con 4 speakers necesita 6 iBGP entre routers □ No se puede utilizar el loopback para la sesión iBGP
5. Un router BGP mantiene la base de datos Loc-RIB que contiene: ☐ Los prefijos que este router anuncia a sus peers ☐ Los atributos recibidos de los peers ✓ La información de encaminamiento local seleccionada ☐ La tabla de encaminamiento	6. En BGP un Hold Time a 0 indica que: ✓ No se puede detectar una sesión BGP caída ✓ No se envían mensajes KEEPALIVE □ El mensaje OPEN es inválido □ El mensaje UPDATE no tiene atributos
 7. El atributo AS-path en BGP ☐ Es la secuencia de speakers por los que ha pasado un prefijo ✓ Sirve para elegir el camino con el AS-path más corto ✓ Sirve para descartar mensajes con un AS-path que contiene su propio ASN ☐ No es obligatorio 	8. En el proceso de selección de rutas en BGP se usan múltiples atributos con un orden de prioridades. Por orden los cuatro primeros son: ☐ Metric-LP-ASpath-Origin ☐ LP-Metric-Origin-ASpath ✓ LP-ASpath-Origin-Metric ☐ Origin-Metric-LP-ASpath
 9. En BGP, un AS stub No permite tránsito y tiene varias conexiones con otro AS con balanceo de carga Permite tránsito con una sola conexión con otro AS ✓ No permite tránsito y solo tiene una conexión con otro AS Mantiene dos o más eBGP con dos o más AS 	10. En BGP, una comunidad ☐ Usa etiquetas de 48 bits para identificarla ✓ Permite agrupar destinos/prefijos a los que se les aplican las mismas políticas ✓ No-export se usa en stub multi-homed ☐ No-advertise anuncia siempre todos los BGP (eBGP y iBGP)

Problema 1. (3 puntos).

Tiempo de resolución estimado: 15 minutos.

En la red de la figura se ha activado el BGP.

Se supone que R1 y R2 del AS1 aceptan el atributo MED (metric) de AS2. El AS2 y el AS1 están conectados con dos enlaces A y B. En AS2 el router del enlace A introduce metric 100 y el del enlace B metric 50.

a) Indicar la tabla LocRIB de R2 con el siguiente formato (Marcar la ruta elegida con 6):

	Prefijo	Next-Hop	Metric
	170.10.0.0/16	10.0.0.1	100
\$		10.0.1.1	50
	180.10.0.0/16	10.0.0.1	100
&		10.0.1.1	50

b) Indicar la tabla de encaminamiento de R2 con el siguiente formato:

Red	gw
170.10.0.0/16	10.0.1.1
180.10.0.0/16	10.0.1.1

c) Si quisiéramos discriminar la ruta por prefijo para que elija enlace A o B *en función del prefijo* indicar los BGP-update que se enviarían por enlace A y enlace B de AS2 a AS1.

Por enlace A se enviaría un BGP Update con 180.10.0.0/16 MED = 100 y otro con 170.10.0.0/16 MED = 50 Por enlace B se enviaría un BGP Update con 180.10.0.0/16 MED = 50 y otro con 170.10.0.0/16 MED = 100

d) ¿En el caso anterior, cómo cambiarían las tablas de los apartados a y b de R2?

	Prefijo	Next-Hop	Metric
8	170.10.0.0/16	10.0.0.1	50
		10.0.1.1	100
	180.10.0.0/16	10.0.0.1	100
&		10.0.1.1	50
	Red	gw	
	170.10.0.0/16	150.0.0.1	
	180.10.0.0/16	10.0.1.1	

Problema 2. (2 puntos).

Tiempo de resolución estimado: 10 minutos.

Según la figura se desea que el AS1 no anuncie ningún prefijo que reciba de AS3.

a) ¿Cómo se puede realizar esto? (0,5 puntos)

Utilizando community no-export

b) Según el dibujo indicar el script de programación del router R1 para obtener el resultado deseado. (0,75 puntos)

R1# router bgp 3 network 170.10.0.0/16 neighbor 1.1.1.1 remote-as 1 neighbor 1.1.1.1 send-community neighbor 1.1.1.1 route-map COM out ip access-list 1 permit 170.10.0.0/16 route-map COM permit 10 match ip address 1 set community no-export

c) La solución genérica propuesta es utilizada en stub multi-homed para resolver el caso de que haya algún fallo en uno de los dos enlaces existentes. Explicar el problema que se puede generar en este caso y cómo se puede resolver. Utilizad un dibujo de red como soporte de la explicación. (0,75 puntos)

El problema es que si hay dos enlaces y hay un fallo en uno de ellos si se ha dividido el anuncio de prefijos en dos, la mitad no llega. Para resolverlo se anuncia también (además) el prefijo entero y se añade la community no-export al prefijo dividido.

