МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

АДЫГЕЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Инженерно-физический факультет Кафедра автоматизированных систем обработки информации и управления

Отчет по практике

Программаная реализация численного метода $Te\kappa cm$ из задания по варианту.

1 курс, группа 1ИВТ АСОИУ

Выполнил:	
	В. А. Сапунов
«06» 06. 2024 г.	
Руководитель:	
	С.В. Теплоухов
«06» 06. 2024 г.	

Майкоп, 2024 г.

1. Введение

- 1) Вариант 5 Вычислить матрицу обратную заданной.
- 2) Пример кода, решающего данную задачу
- 3) График
- 4) Скриншот программы

2. Ход работы

2.1. Код приложения

```
#include <iostream>
#include <vector>
#include <iomanip>
#include <limits>
using namespace std;
void printMatrix(const vector<vector<double>>& matrix) {
    int rows = matrix.size();
    int cols = matrix[0].size();
    for (int i = 0; i < rows; i++) {
        for (int j = 0; j < cols; j++) {
            cout << setw(8) << matrix[i][j] << " ";</pre>
        cout << endl;</pre>
    }
}
vector<vector<double>> inverseMatrix(vector<vector<double>>& matrix) {
    int n = matrix.size();
    vector<vector<double>> extendedMatrix(n, vector<double>(2 * n));
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            extendedMatrix[i][j] = matrix[i][j];
        extendedMatrix[i][i + n] = 1;
    }
    for (int i = 0; i < n; i++) {
        int pivotRow = i;
        while (pivotRow < n && abs(extendedMatrix[pivotRow][i]) < 1e-6) {</pre>
```

```
pivotRow++;
    }
    if (pivotRow == n) {
        continue;
    if (pivotRow != i) {
        swap(extendedMatrix[i], extendedMatrix[pivotRow]);
    }
    double pivot = extendedMatrix[i][i];
    for (int j = i; j < 2 * n; j++) {
        extendedMatrix[i][j] /= pivot;
    }
    for (int k = i + 1; k < n; k++) {
        double factor = extendedMatrix[k][i];
        for (int j = i; j < 2 * n; j++) {
            extendedMatrix[k][j] -= factor * extendedMatrix[i][j];
        }
    }
}
for (int i = 0; i < n; i++) {
    bool allZero = true;
    for (int j = 0; j < n; j++) {
        if (abs(extendedMatrix[i][j]) > 1e-6) {
            allZero = false;
            break;
        }
    }
    if (allZero) {
        cout << "Матрица вырождена! Обратная матрица не существует." << endl;
        return {};
    }
}
for (int i = n - 1; i \ge 0; i--) {
    // Обнуление элементов над ведущим элементом
    for (int k = i - 1; k \ge 0; k--) {
        double factor = extendedMatrix[k][i];
        for (int j = i; j < 2 * n; j++) {
            extendedMatrix[k][j] -= factor * extendedMatrix[i][j];
        }
    }
```

```
}
   vector<vector<double>> inverse(n, vector<double>(n));
    for (int i = 0; i < n; i++) {
        for (int j = n; j < 2 * n; j++) {
            inverse[i][j - n] = extendedMatrix[i][j];
        }
    }
   return inverse;
}
int main() {
   setlocale(0, "ru");
   int choice;
    int n;
   vector<vector<double>> matrix;
    do {
        cout << "\nMeno:" << endl;
        cout << "1. Ввести новую матрицу" << endl;
        cout << "2. Найти обратную матрицу" << endl;
        cout << "3. Выход" << endl;
        cout << "Введите ваш выбор: ";
        cin >> choice;
        vector<vector<double>> inverse = inverseMatrix(matrix);
        switch (choice) {
        case 1:
            cout << "Введите размерность матрицы: ";
            cin >> n;
            if (n \le 0) {
                cout << "Некорректная размерность матрицы! Введите положительное число." <<
                break;
            }
            matrix.resize(n, vector<double>(n));
            cout << "Введите элементы матрицы:" << endl;
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                    if (!(cin >> matrix[i][j])) {
                        cout << "Ошибка ввода данных! Введите числовые значения." << endl;
                        cin.clear();
                        cin.ignore(numeric_limits<streamsize>::max(), '\n');
                        break;
                    }
```

```
}
            }
            cout << "Исходная матрица:" << endl;
            printMatrix(matrix);
            break;
        case 2:
            if (matrix.empty()) {
                cout << "Сначала введите матрицу." << endl;
                break;
            }
            if (inverse.empty()) {
                cout << "Обратная матрица не существует!" << endl;
            }
            else {
                cout << "Обратная матрица:" << endl;
                printMatrix(inverse);
            }
            break;
        case 3:
            cout << "Выход из программы." << endl;
            break;
        default:
            cout << "Неверный выбор!" << endl;
    } while (choice != 3);
    return 0;
}
```

2.2. Метод вычисления обратной матрицы

Вычисление обратной матрицы ([[1. -2. 1.] [2. 1. -1.] [3. 2. -2.]]):

Алгоритм нахождения обратной матрицы методом исключения неизвестных Гаусса:

- 1. К матрице А приписать единичную матрицу того же порядка.
- 2. Полученную сдвоенную матрицу преобразовать так, чтобы в левой её части получилась единич
- 3. Если в процессе преобразования матрицы А в единичную матрицу в какой-либо строке или в ка

3. Изображение с примером нахождения ранга матрицы и результат выполнения программы Primer.jpg

Рис. 1. Ранг матрицы

Пример вычисления обратной матрицы представлен на рис. 1. Результат выполнения программы представлен на рис. 2.

Рис. 2. Результат выполнения программы

4. Пример библиографических ссылок

Для изучения «внутренностей» Т_ЕХ необходимо изучить [1], а для использования L^AT_EX лучше почитать [2, 3].

Список литературы

- [1] Кнут Д.Э. Всё про Т
еX. Москва: Изд. Вильямс, 2003 г. 550 с.
- [2] Львовский С.М. Набор и верстка в системе І^AТ_EX. 3-е издание, исправленное и дополненное, 2003 г.
- [3] Воронцов К.В. ІАТЕХ в примерах. 2005 г.