COMPUTER ORGANIZATION (IS F242)

LECT 06: COMPUTER ORGANIZATION

Driving force for CISC

- Increasingly complex high level languages
- Semantic gap Leads to:
 - Large instruction sets
 - More addressing modes
- Intension of CISC
 - Ease compiler writing
 - Compiler simplification?
 - Complex machine instructions harder to exploit
 - Optimization is more difficult
 - Improves execution efficiency

RISC-Reduced Instruction Set Computing

Features

- Large number of general purpose registers
 - Use compiler to optimize the register use
- Limited and simple [but powerful] instruction set
- Emphasis on optimizing the instruction pipeline

Characteristics

- One instruction per cycle [high clock speed]
- Register to register operations
- Few simple addressing modes & instruction formats
- Hardwire (no micro code) control unit design
- Fixed instruction format

Motivation for RISC Design

- Focuses on reducing the number and complexity of instructions
- Reduces the number of cycles needed per instruction
 - Goal: at least one instruction completed per clock cycle
- Designed with CPU instruction pipelinng in mind
- Fixed length instruction encoding
- Only load and store instructions access memory
- Simplified addressing modes
 - Usually limited to immediate, register indirect, register displacement and indexed
- Delayed loads and branches
- Prefetch and speculative execution

CISC Vs RISC

CISC vs. RISC. CISC emphasizes hardware complexity. RISC emphasizes compiler complexity.

Figure taken from ARM System Developer's Guide by Andrew N Sloss

CISC Vs RISC

- Not clear cut
- Many designs borrow from both philosophies
- Examples
 - PowerPC
 - □ Pentium II IV
 - AMD Athlon

CISC

- Instructions are complex
 - PUSHA, CALLP
- Motivated by high cost of memory
- Backward compatibility
- Large addressing modes
- Variable instruction format

RISC

- Instructions are simple
- Reduced number of cycles per instruction
- More general purpose registers
- Load Store architecture
- Simplified addressing modes
- Fixed instruction format
- Pipelining easier
- Faster execution of instructions