第 10 回 不均一分散 (7.4-7.5)

村澤 康友

2023年6月20日

今日のポイント

- 1. 回帰モデルで var(Y|X) が X に依存する ことを条件つき不均一分散という.
- 2. 条件つき不均一分散があるなら標準誤差 の修正が必要. White の標準誤差は条件 つき不均一分散があっても(なくても)漸 近的に正しい.
- 3. Breusch-Pagan の検定や White の検定で 条件つき不均一分散の有無を検定できる.

目次

1	不均一分散(p. 178)	1
2.1	標準誤差の修正 OLS 推定量の漸近分散(p. 180)	1
2.2	White の標準誤差(p. 180)	2
3	不均一分散の検定	3
3.1	Breusch-Pagan の検定(p. 182) .	3
3.2	White の検定(p. 183)	3
4	今日のキーワード	4
5	次回までの準備	4

1 不均一分散 (p. 178)

(Y,X) を確率ベクトルとする. Y の X 上への古典的線形回帰モデルは

$$E(Y|X) = \alpha + \beta X$$
$$var(Y|X) = \sigma^2$$

すなわち古典的線形回帰モデルでは, $\mathrm{E}(Y|X)$ のみ X に依存し, $\mathrm{var}(Y|X)$ は X に依存しないと仮定する.

定義 1. var(Y|X) が X に依存せず、一定であることを条件つき均一分散という.

定義 2. var(Y|X) が X に依存することを**条件つき** 不均一分散という.

2 標準誤差の修正

2.1 OLS 推定量の漸近分散 (p. 180)

 $((y_1,x_1),\ldots,(y_n,x_n))$ を無作為標本とする. 簡単化のため定数項のない単回帰モデルで考える. すなわち

$$y_i = \beta x_i + u_i$$
$$E(u_i|x_i) = 0$$

 β の OLS 推定量を b_n とすると

$$b_n = \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$$

定理 1.

$$\sqrt{n}(b_n - \beta) \xrightarrow{d} N\left(0, \frac{\operatorname{var}(x_i u_i)}{\operatorname{E}(x_i^2)^2}\right)$$

証明. b_n の式に $y_i = \beta x_i + u_i$ を代入すると

$$b_n = \frac{\sum_{i=1}^{n} x_i (\beta x_i + u_i)}{\sum_{i=1}^{n} x_i^2}$$
$$= \beta + \frac{\sum_{i=1}^{n} x_i u_i}{\sum_{i=1}^{n} x_i^2}$$

式変形すると

$$\sqrt{n}(b_n - \beta) = \frac{(1/\sqrt{n}) \sum_{i=1}^n x_i u_i}{(1/n) \sum_{i=1}^n x_i^2}$$

大数の法則より

$$\underset{n \to \infty}{\text{plim}} \frac{1}{n} \sum_{i=1}^{n} x_i^2 = \mathrm{E}\left(x_i^2\right)$$

 $\mathbf{E}(u_i|x_i)=0 \Longrightarrow \mathbf{E}(x_iu_i)=0$ なので中心極限定理 より

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_i u_i \xrightarrow{d} \mathcal{N}(0, \text{var}(x_i u_i))$$

スルツキーの定理とクラーメルの定理より

$$\frac{(1/\sqrt{n})\sum_{i=1}^{n}x_{i}u_{i}}{(1/n)\sum_{i=1}^{n}x_{i}^{2}} \stackrel{d}{\longrightarrow} N\left(0, \frac{\operatorname{var}(x_{i}u_{i})}{\operatorname{E}(x_{i}^{2})^{2}}\right)$$

注 1.
$$\mathrm{E}(u_i|x_i) = 0 \Longrightarrow \mathrm{E}(x_iu_i) = 0$$
 より $\mathrm{var}(x_iu_i) = \mathrm{E}\left((x_iu_i)^2\right)$ $= \mathrm{E}\left(x_i^2u_i^2\right)$

系 1. $var(u_i|x_i) = \sigma^2$ なら

$$\sqrt{n}(b_n - \beta) \stackrel{d}{\longrightarrow} N\left(0, \frac{\sigma^2}{E(x_i^2)}\right)$$

証明. 繰り返し期待値の法則より

$$var(x_i u_i) = E(x_i^2 u_i^2)$$

$$= E(x_i^2 E(u_i^2 | x_i))$$

$$= E(x_i^2 var(u_i | x_i))$$

$$= E(x_i^2 \sigma^2)$$

$$= \sigma^2 E(x_i^2)$$

したがって前定理の漸近分散は

$$\frac{\operatorname{var}(x_i u_i)}{\operatorname{E}(x_i^2)^2} = \frac{\sigma^2 \operatorname{E}(x_i^2)}{\operatorname{E}(x_i^2)^2}$$
$$= \frac{\sigma^2}{\operatorname{E}(x_i^2)}$$

2.2 White の標準誤差 (p. 180)

条件つき不均一分散の下で $\operatorname{var}(x_iu_i) = \operatorname{E}\left(x_i^2u_i^2\right)$ を推定したい. OLS 残差を e_i とすると

$$e_i := y_i - b_n x_i$$

= $y_i - \beta x_i - (b_n x_i - \beta x_i)$
= $u_i - (b_n - \beta) x_i$

定義 3. $var(x_iu_i)$ の White **の**推定量は

$$\hat{\text{var}}(x_i u_i) := \frac{1}{n} \sum_{i=1}^n x_i^2 e_i^2$$

定理 2.

$$\operatorname{plim}_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} x_i^2 e_i^2 = \operatorname{E}\left(x_i^2 u_i^2\right)$$

証明. e_i と u_i の関係式より

$$e_i^2 = [u_i - (b_n - \beta)x_i]^2$$

= $u_i^2 - 2(b_n - \beta)x_iu_i + (b_n - \beta)^2x_i^2$

したがって

$$\frac{1}{n} \sum_{i=1}^{n} x_i^2 e_i^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 \left[u_i^2 - 2(b_n - \beta)x_i u_i + (b_n - \beta)^2 x_i^2 \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 u_i^2 - 2(b_n - \beta) \frac{1}{n} \sum_{i=1}^{n} x_i^3 u_i$$

$$+ (b_n - \beta)^2 \frac{1}{n} \sum_{i=1}^{n} x_i^4$$

 $n \to \infty$ とすると、第1項は大数の法則より

$$\operatorname{plim}_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} x_i^2 u_i^2 = \operatorname{E}\left(x_i^2 u_i^2\right)$$

 $\mathrm{plim}_{n \to \infty} b_n = \beta$ なのでスルツキーの定理より第 2 項と第 3 項は 0 に確率収束.

注 2. したがって

$$\sqrt{n}(b_n - \beta) \stackrel{a}{\sim} N\left(0, \frac{(1/n)\sum_{i=1}^n x_i^2 e_i^2}{[(1/n)\sum_{i=1}^n x_i^2]^2}\right)$$

または

$$b_n \stackrel{a}{\sim} N\left(\beta, \frac{\sum_{i=1}^n x_i^2 e_i^2}{(\sum_{i=1}^n x_i^2)^2}\right)$$

定義 4. White の推定量を用いた標準誤差を White の標準誤差という.

注 3. 条件つき不均一分散があっても(なくても) 漸近的に正しい標準誤差.

3 不均一分散の検定

3.1 Breusch-Pagan の検定(p. 182)

(1+k) 変量データを $((y_1, x_1), \dots, (y_n, x_n))$ とする. 次のような y_i の x_i 上への条件つき不均一分散をもつ線形回帰モデルを仮定する.

$$y_i = \mathbf{x}_i' \boldsymbol{\beta} + u_i$$
$$E(u_i | \mathbf{x}_i) = 0$$
$$var(u_i | \mathbf{x}_i) = \sigma^2 f(\mathbf{x}_i' \boldsymbol{\gamma})$$

ただし f(.)>0, f(0)=1. また γ は (β,σ^2) に依存しない. 条件つき不均一分散の検定問題は

$$H_0: \boldsymbol{\gamma} = \mathbf{0}$$
 vs $H_1: \boldsymbol{\gamma} \neq \mathbf{0}$

 $oldsymbol{eta}$ の OLS 推定量を $oldsymbol{b}$, OLS 残差を $e_i := y_i - oldsymbol{x}_i'oldsymbol{b}$ とする. H_0 の下での誤差分散の推定量は

$$\hat{\sigma}^2 := \frac{1}{n} \sum_{i=1}^n e_i^2$$

定理 3. H_0 の下で

$$\mathrm{E}\left(u_i^2 - \sigma^2 | \boldsymbol{x}_i\right) = 0$$

証明. $\mathrm{E}(u_i|\boldsymbol{x}_i)=0$ より $\mathrm{var}(u_i|\boldsymbol{x}_i)=\mathrm{E}\left(u_i^2|\boldsymbol{x}_i\right)$. したがって H_0 の下で

$$\mathrm{E}\left(u_i^2|\boldsymbol{x}_i\right) = \sigma^2$$

注 4. すなわち H_0 の下で $u_i^2-\sigma^2$ は x_i で予測できない. u_i を e_i , σ^2 を $\hat{\sigma}^2$ に置き換えると, H_0 の下で

$$E\left(e_i^2 - \hat{\sigma}^2 | \boldsymbol{x}_i\right) \approx 0$$

これを回帰モデルとみなして「 H_0 :全ての回帰係数=0」を検定すればよい.ただし古典的正規線形回帰モデルでないので F検定でなく漸近 χ^2 検定を用いる.

定義 5. $e_i^2 - \hat{\sigma}^2$ の x_i 上への線形回帰モデルにおける「 H_0 :全ての回帰係数= 0」の漸近 χ^2 検定をBreusch-Pagan の検定という.

注 5. 正確には Breusch-Pagan の検定の Koenker による改良版.

定理 4. Breusch-Pagan の検定統計量を LM とすると, H_0 の下で

$$LM \stackrel{a}{\sim} \chi^2(k)$$

証明. 省略.

3.2 White の検定 (p. 183)

(1+k) 変量データを $((y_1, x_1), \dots, (y_n, x_n))$ とする. y_i の x_i 上への線形回帰モデルは

$$y_i = \mathbf{x}_i' \mathbf{\beta} + u_i$$
$$E(u_i | \mathbf{x}_i) = 0$$

条件つき不均一分散の検定問題は

$$H_0 : \text{var}(u_i|\mathbf{x}_i) = \sigma^2$$

vs $H_1 : \text{var}(u_i|\mathbf{x}_i) = \sigma^2(\mathbf{x}_i)$

$$E(u_i|\mathbf{x}_i) = 0 \Longrightarrow E(\mathbf{x}_i u_i) = \mathbf{0} \ \ \, \mathbf{0}$$

$$var(\mathbf{x}_i u_i) = E(\mathbf{x}_i u_i (\mathbf{x}_i u_i)')$$

$$= E(u_i^2 \mathbf{x}_i \mathbf{x}_i')$$

繰り返し期待値の法則より

$$E(u_i^2 \boldsymbol{x}_i \boldsymbol{x}_i') = E(E(u_i^2 \boldsymbol{x}_i \boldsymbol{x}_i' | \boldsymbol{x}_i))$$
$$= E(E(u_i^2 | \boldsymbol{x}_i) \boldsymbol{x}_i \boldsymbol{x}_i')$$
$$= E(var(u_i | \boldsymbol{x}_i) \boldsymbol{x}_i \boldsymbol{x}_i')$$

したがって条件つき不均一分散の検定問題は

$$H_0 : \operatorname{var}(\boldsymbol{x}_i u_i) = \sigma^2 \operatorname{E}(\boldsymbol{x}_i \boldsymbol{x}_i')$$
vs $H_1 : \operatorname{var}(\boldsymbol{x}_i u_i) = \operatorname{E}(u_i^2 \boldsymbol{x}_i \boldsymbol{x}_i')$

以下の行列を定義する.

$$egin{aligned} oldsymbol{V}_0 &:= \sigma^2 \operatorname{E}(oldsymbol{x}_i oldsymbol{x}_i') \ oldsymbol{V}_1 &:= \operatorname{E}\left(u_i^2 oldsymbol{x}_i oldsymbol{x}_i'
ight) \end{aligned}$$

すると検定問題は

$$H_0: V_0 = V_1$$
 vs $H_1: V_0 \neq V_1$

または

$$H_0: V_1 - V_0 = \mathbf{O}$$
 vs $H_1: V_1 - V_0 \neq \mathbf{O}$

ここで

$$V_1 - V_0 = \mathrm{E}\left(u_i^2 \boldsymbol{x}_i \boldsymbol{x}_i'\right) - \sigma^2 \, \mathrm{E}(\boldsymbol{x}_i \boldsymbol{x}_i')$$
$$= \mathrm{E}\left(\left(u_i^2 - \sigma^2\right) \boldsymbol{x}_i \boldsymbol{x}_i'\right)$$

ただし

$$egin{aligned} oldsymbol{x}_i oldsymbol{x}_i' = egin{bmatrix} x_{i,1}^2 & \dots & x_{i,1} x_{i,k} \ dots & \ddots & dots \ x_{i,k} x_{i,1} & \dots & x_{i,k}^2 \end{bmatrix} \end{aligned}$$

この $k \times k$ 行列は対角線を挟んで対称なので,異なる成分は k(k+1)/2 個.これらを並べたベクトルを $\mathbf{z}_i := \mathrm{vech}(\mathbf{x}_i \mathbf{x}_i')$ とする.ただし $\mathrm{vech}(.)$ は正方行列の下三角部分の成分を取り出して並べる関数.すると H_0 の下で

$$E\left(\left(u_i^2 - \sigma^2\right) \boldsymbol{z}_i\right) = \boldsymbol{0}$$

 $oldsymbol{eta}$ の OLS 推定量を $oldsymbol{b}$, OLS 残差を $e_i := y_i - oldsymbol{x}_i'oldsymbol{b}$ とする. H_0 の下での誤差分散の推定量は

$$\hat{\sigma}^2 := \frac{1}{n} \sum_{i=1}^n e_i^2$$

定理 5. H_0 の下で

$$cov\left(u_i^2 - \sigma^2, \boldsymbol{z}_i\right) = \boldsymbol{0}$$

証明. $\mathrm{E}(u_i|\boldsymbol{x}_i) = 0$ より $\mathrm{var}(u_i|\boldsymbol{x}_i) = \mathrm{E}\left(u_i^2|\boldsymbol{x}_i\right)$. したがって H_0 の下で

$$\mathrm{E}\left(u_i^2|\boldsymbol{x}_i\right) = \sigma^2$$

両辺の期待値をとると、繰り返し期待値の法則より

$$E\left(u_{i}^{2}\right)=\sigma^{2}$$

したがって H₀ の下で

$$\operatorname{cov}(u_i^2 - \sigma^2, \boldsymbol{z}_i) = \operatorname{E}((u_i^2 - \sigma^2) \boldsymbol{z}_i)$$

既に見た通り右辺は 0.

注 6. u_i を e_i , σ^2 を $\hat{\sigma}^2$ に置き換えると, H_0 の下で

$$\operatorname{cov}\left(e_i^2 - \hat{\sigma}^2, \boldsymbol{z}_i\right) \approx 0$$

 $e_i^2 - \hat{\sigma}^2$ の z_i 上への線形回帰モデルを考えると, H_0 の下で全ての回帰係数= 0.

定義 6. $e_i^2 - \hat{\sigma}^2$ の $z_i := \text{vech}(x_i x_i')$ 上への線形回帰モデルにおける「 H_0 :全ての回帰係数= 0」の漸近 χ^2 検定を White の検定という.

定理 6. White の検定統計量を W とすると, H_0 の下で

$$W \stackrel{a}{\sim} \chi^2 \left(\frac{k(k+1)}{2} \right)$$

П

証明. 省略.

注 7. どのような不均一分散でも使えるが,自由度が大きいため検出力が低い.

4 今日のキーワード

条件つき均一分散,条件つき不均一分散,White の推定量,White の標準誤差,Breusch-Pagan の検定,White の検定

5 次回までの準備

提出 宿題 5

復習 教科書第7章4-5節,復習テスト10

予習 教科書第8章