Chapter 7: Electron Structure of the Atom

November 1, 2022

Chemistry Department, Cypress College

Class Announcements

Lecture

- Share previous UCI Teaching Evaluation
- Hold off on reviewing the Exam and homework 8
- Review material from Chs 3 6
- Quiz and Homework assignment released Fri, Nov 4th at 3pm

Making the Most of It

Questions to consider:

- Why am I taking this course?
- What would I like to achieve?
- What methods/tools/resources work for me?

Your feedback, questions, participation are vital:

- Attend lectures and discussions, if possible
- Give on-going feedback to instructors through facial expression, emojis, chat, email, during office hours etc.
- Fill out evaluations
- Own your education
- Be proactive, do not hesitate to speak up or get help

Outline

Review: Electromagnetic Radiation

Rydberg Formula

Review: Identifying Types of Compounds and Naming Compounds

- Ionic Compounds
- Molecular Compounds
- Acids and Bases

Revisit: Radiation Energy

$$E = \frac{hc}{\lambda} = h\nu \tag{1}$$

- High frequency and larger wavelengths lead to higher radiation energy
- Energy are contained in packages known as photons; Eqn 1 computes the energy for 1 photon

Atomic Spectra

- Continuous spectra is given at the top and discrete lines are emitted by atoms
- Q: Why are there discrete lines for the atomic spectra?

Bohr Model of the H Atom

$$\Delta E = E_{\text{final}} - E_{\text{initial}} \tag{2}$$

Note: Keep in mind of sign conventions ($\Delta E > 0$ and $\Delta E < 0$)

Bohr Model

- Energy is quantized
- Electrons orbit the nucleus in orbits that have a set size and energy
- The energy of the orbit is related to its size; the lowest energy is found in the smallest orbit
- Radiation is absorbed or emitted when an electron moves from one orbit to another

Limitation of the Bohr Model

- Violates the Heisenberg Uncertainty Principle
- Poor predictions regarding the spectra of larger atoms
- Does not predict the relative intensities of spectral lines

Example: H atom spectra

Q: According to the image, which energy level transition is the lowest energy? Which one has the largest energy?

Outline

Review: Electromagnetic Radiation

Rydberg Formula

Review: Identifying Types of Compounds and Naming Compounds

- Ionic Compounds
- Molecular Compounds
- Acids and Bases

Rydberg Formula

Mathematical formula to compute the wavelength between energy levels \boldsymbol{n} of a hydrogen atom

Rydberg Formula

$$\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \tag{3}$$

where n_f and n_i are the final and initial energy state, λ is the wavelength, and R is the Rydberg constant $(1.097 \times 10^7 \text{ m}^{-1})$

Practice: Using Rydberg Formula

Calculate the wavelength of light emitted when a hydrogen atom relaxes from n=6 to n=2. Is this light in the visible region of electromagnetic spectrum? If so, what color is it?

Practice: Using Rydberg Formula

Calculate the wavelength of light emitted when a hydrogen atom relaxes from n=6 to n=2. Is this light in the visible region of electromagnetic spectrum? If so, what color is it?

Practice: Using Rydberg Formula

What is the energy of the wavelength when a hydrogen atom relaxes from n = 6 to n = 2?

Outline

Review: Electromagnetic Radiation

Rydberg Formula

Review: Identifying Types of Compounds and Naming Compounds

Ionic Compounds

Molecular Compounds

Acids and Bases

Properties of Ionic Compounds

Ionic Compounds

- Highly conductive and strong electrolyte ability to carry electricity (electrons)
- High melting and boiling points, high density

Properties of Molecular Compounds

Molecular Compounds

- Not conductive and weak electrolyte
- Low melting and boiling points, low density

Practice: Determine the following as Ionic or Molecular

- CaCl₂
- Ca₃P₂
- MgO
- FeCl₂
- Co₂O₃
- V₂O₅
- NH₄F
- H₃PO₄

Naming Ionic Compounds

The metal cation is named first, followed by the nonmetal anion. The word ion is dropped from both parts.

Special: Certain metals

Element	Stem	Charge	Modern Name	Common Name
iron	ferr-	2+	iron(II) ion	ferrous ion
		3+	iron(III) ion	ferric ion
copper	cupr-	1+	copper(I) ion	cuprous ion
		2+	copper(II) ion	cupric ion
tin	stann-	2+	tin(II) ion	stannous ion
		4+	tin(IV) ion	stannic ion
lead	plumb-	2+	lead(II) ion	plumbous ion
		4+	lead(IV) ion	plumbic ion
chromium	chrom-	2+	chromium(II) ion	chromous ion
		3+	chromium(III) ion	chromic ion
gold	aur-	1+	gold(I) ion	aurous ion
gold		3+	gold(III) ion	auric ion

Practice: Name the Ionic Compound

- CaCl₂
- Ca₃P₂
- MgO
- FeCl₂
- Co₂O₃
- V₂O₅

Practice: Determining Molecular Formula

- Vandium(V) Oxide
- Chromium(VI) Oxide
- Iron(III) Oxide
- Sodium chloride
- Barium fluoride
- Lead(IV) fluoride
- Ammonium sulfate
- Calcium phosphate
- Aluminum perchlorate
- Sodium bicarbonate

Naming Molecular Compounds

Prefix	Number	Prefix	Number	Prefix	Number
mono-	1	penta-	5	octa-	8
di-	2	hexa-	6	nona-	9
tri-	3	hepta-	7	deca-	10
tetra-	4				

- 1. Use numerical prefix for the element (usually ignore the first when using "mono")
- 2. Add "-ide" to the second element

Practice: Naming Binary Molecular Compounds

- H₂O
- N₂O₄
- CO
- CH₄
- PF₅
- BF₃
- SiO₂
- XeF₄

Practice: Determining Molecular Formula

- Sulfur trioxide
- Nitrogen trihydride
- Dihydrogen monoxide
- Carbon tetrafluoride
- Selenium dichloride
- Dinitrogen pentaoxide
- Sulfur hexafluoride
- Phosphorus trifluoride

Naming Acids and Bases

- 1. If anion ends in "-ide," add "hydro" before the root of the anion name followed by "-ic acid"
- If anion ends in "-ate," use the root of the anion name followed by "-ic acid"
- 3. If anion ends in "-ite," use the root of the anion name followed by "-ous acid"

Practice: Naming the Acid

- HCI
- HNO₃
- H₂CO₃
- H₂SO₃
- H₃PO₄
- HCIO₂
- HBr
- HNO₂
- H₂SO₃
- H₂S

Practice: Determining Molecular Formula

- Cloric acid
- Phosphoric acid
- Sulfurous acid
- Hydrosulfuric acid
- Chromic acid
- Nitric acid
- Hypochlorous acid
- Hydrobromic acid