Chương 6 Chuẩn hoá sơ đô quan hệ

Phạm Thị Ngọc Diễm Bộ môn HTTT - ĐHCT

Nội dung

- Khóa của sơ đô quan hệ
- Các dạng chuẩn của sơ đồ quan hệ
- Lợi ích của việc chuẩn hóa

Nội dung

- Khóa của sơ đô quan hệ
- Các dạng chuẩn của sơ đồ quan hệ
- Lợi ích của việc chuẩn hóa

Khóa của sơ đồ quan hệ

- Cho lược đồ quan hệ R(U), U={A1,A2,...,An} và tập PTH F
- Định nghĩa khóa : K ⊆ U được gọi là khóa của lược đồ quan hệ R(U) trên F nếu và chỉ nếu:
 - (1) Mọi thuộc tính đều PTH vào K tức là K → U
 - (2) Không tồn tại tập con thực sự $X \subset K$ mà $X \to U$
- Siêu khóa:
 - Nếu K chỉ thỏa mãn điều kiện (1) mà không thỏa mãn điều kiện (2) thì K được gọi là siêu khóa, ký hiệu S
- Nhận xét:
 - R có thể có nhiều khóa
- ^{2/21/19}– A ⊂ K được gọi là thuộc tỉnh khoa

Xác định khóa của sơ đồ quan hệ

- Cho lược đồ quan hệ R(U), U = {A1, A2,..., An} và tập PTH
- Giải thuật tìm một khóa K
 - − Bước 1: K=U, i = 1
 - Bước 2: Nếu U \subseteq (K A_j)_F + thì K = K − A_j i = i+1
 - Nếu i>n thì dừng, ngược lại lặp lại bước 2
 - Bước 3 : Kết quả là K

Xác định khóa của sơ đô quan hệ - Ví dụ

- Cho R(U)
 - U={A, B, C, D, E, F, G}
 - $F=\{B \rightarrow A, D \rightarrow C, D \rightarrow BE, DF \rightarrow G\}$
- Tìm khóa K của R?

Xác định khóa của sơ đô quan hệ - Ví dụ

Khóa K của R :

B1:
 K = ABCDEFG.

B2:

- Lặp 1: (BCDEFG)_F⁺ = BCDEFGA ⇒ K = BCDEFG.
- Lặp 2: (CDEFG)_F⁺ = CDEFGBA ⇒ K = CDEFG.
- Lặp 3: (DEFG)_F⁺ = DEFGCBA ⇒ K = DEFG.
- Lặp 4: (EFG)_F⁺ = EFG.
- Lặp 5: (DFG)_F⁺ = DFGCBEA ⇒ K = DFG.
- Lặp 6: (DG)_F⁺ = DGCBEA.
- Lặp 7: (DF)_F⁺ = DFCBEAG ⇒ K = DF.
- B3:

Khóa là K = DF.

Nội dung

- Khóa của sơ đô quan hệ
- Các dạng chuẩn của sơ đồ quan hệ
- Lợi ích của việc chuẩn hóa

Lịch sử / tổng quan

- Chuẩn hóa Cơ sở dữ liệu được đề xuất lần đầu tiên (1970) bởi Edgar F. Codd.
 - Codd định nghĩa ba dạng chuẩn đầu tiên.
 - Codd và Raymond F. Boyce định nghĩa dạng chuẩn BCNF vào năm 1974
- Để chuẩn hóa, chúng ta phải biết những yêu cầu cho mỗi một dạng chuẩn.
- Một trong những yêu cầu quan trọng cần nhớ là : để có 3 NF chúng ta phải có 2 NF và để có 2 NF chúng ta phải có 1 NF.

Chuẩn hóa CSDL

- Mục tiêu chính của chuẩn hóa cơ sở dữ liệu là để cơ cấu lại mô hình dữ liệu luận lý của một cơ sở dữ liệu để:
 - Loại bỏ sự dư thừa, nghĩa là không có các thông tin lặp lại
 - Tổ chức dữ liệu một cách hiệu quả
 - Giảm khả năng dị thường dữ liệu (data anomaly).
 - Tránh mất thông tin khi xóa.

Chuẩn hoá CSDL

=> Có thể ngăn chặn dị thường dữ liệu bằng cách thực hiện các cấp độ khác nhau của chuẩn hóa thường được gọi là các dạng chuẩn (Normal Form – NF)

4 dạng chuẩn cơ bản

- Dạng chuẩn 1 (1 NF)
- Dạng chuẩn 2 (2 NF)
- Dạng chuẩn 3 (3 NF)
- Dạng chuẩn BCNF (Boyce Codd NF)

Dạng chuẩn 1

- Một quan hệ R được gọi là thỏa dạng chuẩn thứ nhất nếu và chỉ nếu :
 - Quan hệ bao gồm một khóa chính
 - Mọi thuộc tính của quan hệ R đều chứa các giá trị nguyên tử (thuộc tính đa trị không được phép).
 - Không có nhóm lặp lại: hai thuộc tính không lưu trữ thông tin tương tự trong cùng một quan hệ.

Dạng chuẩn 2

- Một quan hệ được gọi là thỏa dạng chuẩn thứ 2 nếu và chỉ nếu:
 - Quan hệ thỏa dạng chuẩn 1 và
 - Mọi thuộc tính không khóa đều PTH vào khóa (Nghĩa là không tồn tại PTH mà vế trái là con của khóa hay không tồn tại PTH từng phần).

Dạng chuẩn 2 – Ví dụ

- Xét quan hệ:
 - Các PTH:

MSSV \rightarrow hoten, tpho MSSV, Mon \rightarrow diem

MSSV	Hoten	tpho	Mon	Diem
123	James	Paris	CS123	7
123	James	Paris	UE111	6
124	Smith	London	UE111	6
124	Smith	London	CS123	7

- Khóa của quan hệ là {MSSV, Mon}
- => Quan hệ thỏa dạng chuẩn 1, dữ liệu trùng lặp
- Xét PTH MSSV → hoten, tpho
 - hoten, tpho là thuộc tính không khóa nhưng không PTH vào khóa
 - => vi phạm dạng chuẩn 2

Dạng chuẩn 2

- Để biết một lược đồ quan hệ ở dạng 1NF có thỏa dạng chuẩn 2 không:
 - Tìm khóa
 - Nếu khóa có từ 2 thuộc tính:
 - Tìm PTH mà vế trái là con của khóa (VP là thuộc tính không khóa).
 - Nếu tồn tại PTH như thế => không thỏa dạng chuẩn 2
 - Nếu không tồn tại PTH như thế => thỏa dạng chuẩn 2
 - Nếu khóa nhỏ hơn 2 thuộc tính => thỏa dạng chuẩn 2

Dạng chuẩn 2 – Ví dụ

=> Đưa về dạng chuẩn 2

F={MSSV → hoten, tpho MSSV, Mon → diem} Khóa {MSSV, Mon}

MSSV	Hoten	tpho	Mon	Diem
123	James	Paris	CS123	7
123	James	Paris	UE111	6
124	Smith	London	UE111	6
124	Smith	London	CS123	7

Phân rã thành 2 quan hệ

1.

MSSV	Hoten	tpho	
123	James	Paris	
124	Smith	London	

F = {MSSV → hoten, tpho} Khóa: {MSSV} 2.

MSSV	Mon	Diem
123	CS123	7
123	UE111	6
124	UE111	6
124	CS123	7

F = { MSSV, Mon → diem} Khóa : {MSSV, Mon}

Dạng chuẩn 3

- Một quan hệ được gọi là thỏa dạng chuẩn thứ 3 nếu và chỉ nếu:
 - Quan hệ thỏa dạng chuẩn 2 và
 - Mọi thuộc tính không khóa không phụ thuộc bắc cầu vào khóa chínhphần (Hay không có PTH truyền).

Dạng chuẩn 3 – Ví dụ

Xét quan hệ: SINHVIEN (MSSV, hoten, MLOP, tenlop, namvao)

MSSV	Hoten	MLOP	tenlop	namvao
123	James	CS04	Computer science 04	2004
124	Smith	SE03	Software 03	2003
125	Patrick	CS04	Computer science 04	2004

- Các PTH:
 - MSSV → hoten, MLOP
 - MLOP → tenlop, namvao
- Khóa {MSSV}
- Xét : MSSV → MLOPMLOP → tenlop, namvao

|=> MSSV → tenlop, namvao là PTH bắc cầu

tenlop, namvao là các thuộc tính không khóa phụ thuộc bắc cầu ²¹ vào khóa

Dạng chuẩn 3 – Ví dụ

- PTH bắc cầu là nguyên nhân dẫn đến trùng lặp dữ liệu
 => dị thường dữ liệu
- Ví dụ: thêm dòng cuối vào quan hệ SINHVIEN

	MSSV	Hoten	MLOP	tenlop	namvao	
	123	James	CS04	Computer science 04	2004	Trùng lặp dữ
	124	Smith	SE03	Software 03	2003	liêu
	125	Patrick	CS04	Computer science 04	2004	ııça
•	126	Nathalie	CS04	System information 04	2005	

Dị thường dữ liệu

=> Dạng chuẩn 3 là dạng chuẩn tối thiểu mà một thiết kế CSDL phải thỏa mãn

Dạng chuẩn 3

- Để biết một lược đồ quan hệ ở dạng 2NF có thỏa dạng chuẩn 3 không:
 - Tìm khóa
 - Tìm PTH bắc cầu vào khóa.
 - Nếu tồn tại PTH như thế => không thỏa dạng chuẩn 3
 - Nếu không tồn tại PTH như thế => thỏa dạng chuẩn 3

Dạng chuẩn 3 – Ví dụ

=> Đưa SINHVIEN về dạng chuẩn 3

F={MSSV → hoten, MLOP MLOP → tenlop, namvao} Khóa {MSSV}

MLOP

CS04

SE03

MSSV	Hoten	MLOP	tenlop	namvao
123	James	CS04	Computer science 04	2004
124	Smith	SE03	Software 03	2003
125	Patrick	CS04	Computer science 04	2004
126	Nathalie	CS04	System information 04	2005

namvao

2004

2003

2

MSSV	Hoten	MLOP
123	James	CS04
124	Smith	SE03
125	Patrick	CS04
126	Nathalie	CS04

MLOP → tenlop, namvao Khóa {MLOP}

tenlop

Computer science 04

Software 03

MSSV → hoten, MLOP Khóa {MSSV}

- Một một quan hệ ở dạng chuẩn BCNF nếu:
 - Quan hệ thỏa dạng chuẩn 3 và
 - Các PTH có vế trái đều là siêu khóa.
- Định nghĩa 3NF không xử lý trường hợp một quan hệ:
 - Có nhiều khóa ứng viên, trong đó
 - Những khóa ứng viên này là nhiều thuộc tính, và
 - Các khóa ứng viên chồng chéo lên nhau (nghĩa là, có ít nhất một thuộc tính chung)

Xét quan hệ:

PHIM (tua, nam, dodai, loaiphim, nsx, dienvien)

tua	nam	dodai	loaiphim	NSX	dienvien
Star Wars	1977	124	color	Fox	Fisher
Star Wars	1977	124	color	Fox	Hamill
Star Wars	1977	124	color	Fox	Ford
Mighty Ducks	1991	104	color	Disney	Esteves
Wayne's World	1992	95	color	Paramount	Carvey
Wayne's World	1992	95	color	Paramount	Meyers

Xét quan hệ:

PHIM (tua, nam, dodai, loaiphim, nsx, dienvien)

• PTH:

tua, nam \rightarrow dodai, loaiphim, nsx

{tua, nam, dienvien} là một khóa ứng viên

=> PTH này vi phạm dạng chuẩn BCNF vì {tua, nam} không xác định được dienvien

(nói cách khác, vế trái PTH không phải là siêu khóa)

=> Đưa về BCNF: Phân rã PHIM thành 2 quan hệ:

PHIM (tua, nam, dodai, loaiphim, nsx, dienvien)

PTH: tua, nam \rightarrow dodai, loaiphim, nsx

1. Quan hệ bao gồm các thuộc tính của PTH {**tua, nam**, dodai, loaiphim, NSX} 2. Quan hệ gồm tất cả các thuộc tính của PHIM trừ đi các thuộc tính đã xuất hiện ở vế phải của PTH {**tua**, **nam**, **dienvien**}

Một ví dụ khác:

NGUOI(id, hoten, diachi, sothich)

- PTH : id \rightarrow hoten, diachi
- Khóa {id, sothich}
- => Quan hệ NGUOI không thỏa BCNF vì **id** không xác định được sothich (nói cách khác, vế trái PTH không phải là siêu khóa)

Tóm tắt

- Để xác định dạng chuẩn của một lược đồ quan hệ:
 - B0: Tìm khóa
 - B1: Kiểm tra tính nguyên tố của các thuộc tính => kiểm tra
 1NF
 - B2: Tìm PTH không PTH vào khóa => kiểm tra 2NF
 - B3: Tìm PTH bắc cầu vào Khóa => kiểm tra 3NF
 - B4: Kiểm tra các PTH có vế trái là siêu khóa => Kiểm tra BCNF