

Geometria Analitica

Videoaula 2.4

Resolução de sistemas lineares utilizando escalonamento

Departamento de Matemática (UF\$C)

Professora ALDA MORTARI

Professor CHRISTIAN WAGNER

Professor FELIPE TASCA

Professor GIULIANO BOAVA

Professor LEANDRO MORGADO

Professora MARÍA ASTUDILLO

Professor MYKOLA KHRYPCHENKO

Resolução de sistemas lineares por escalonamento

Dizemos que dois sistemas lineares são equivalentes se possuem o mesmo conjunto solução.

Situação 1

$$\begin{cases} x+y=10 \\ 3x-2y=15 \end{cases} \begin{cases} 3x-2y=15 \\ x+y=10 \end{cases}$$

Resolução de sistemas lineares por escalonamento

Dizemos que dois sistemas lineares são equivalentes se possuem o mesmo conjunto solução.

Situação 2

$$\begin{cases} x + y = 10 \\ 3x - 2y = 15 \end{cases} \begin{cases} 2x + 2y = 20 \\ 3x - 2y = 15 \end{cases}$$

Resolução de sistemas lineares por escalonamento

Dizemos que dois sistemas lineares são equivalentes se possuem o mesmo conjunto solução.

Situação 3

$$\begin{cases} x+y=5\\ 2x+4y=12 \end{cases} \begin{cases} x+y=5\\ 2y=2 \end{cases}$$

O que está por trás de tudo isso?

Fazendo operações elementares entre as linhas, não alteramos a solução do sistema!

Ideia: usando escalonamento, vamos transformar o sistema linear em outro sistema equivalente, mais fácil de resolver.

Vamos colocar a mão na massa ...

Vamos resolver o sistema
$$\begin{cases} x+y+z=6\\ 2x+y-3z=1\\ 3x-2y-2z=3 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -3 \\ 3 & -2 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -3 \\ 3 & -2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 6 \\ 2 & 1 & -3 & 1 \\ 3 & -2 & -2 & 3 \end{bmatrix}$$

Matriz dos coeficientes

Matriz ampliada

Agora sim, vamos escalonar ••• $\begin{cases} x+y+z=6\\ 2x+y-3z=1\\ 3x-2y-2z=3 \end{cases}$

 $egin{bmatrix} 1 & 1 & 1 & 6 \ 2 & 1 & -3 & 1 \ 3 & -2 & -2 & 3 \ \end{bmatrix}$

Balanço final do processo

Posto da matriz dos coeficientes

Posto da matriz ampliada

Número de variáveis

Mais um exemplo

Vamos resolver o sistema
$$\begin{cases} x+2y-z=3\\ 2x-y+3z=5\\ x-3y+4z=4 \end{cases}$$

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & -1 & 3 \\ 1 & -3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -1 \\ 2 & -1 & 3 \\ 1 & -3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & -1 & 3 & 5 \\ 1 & -3 & 4 & 4 \end{bmatrix}$$

Matriz dos coeficientes

Matriz ampliada

Escalonando ...

$$\begin{bmatrix}
 1 & 2 & -1 & 3 \\
 2 & -1 & 3 & 5 \\
 1 & -3 & 4 & 4
 \end{bmatrix}$$

$$\begin{cases} x + 2y - z = 3 \\ 2x - y + 3z = 5 \\ x - 3y + 4z = 4 \end{cases}$$

Balanço final do processo

Posto da matriz dos coeficientes

Posto da matriz ampliada

Seguimos firme nos exemplos ...

Vamos resolver o sistema
$$\begin{cases} x-2y+z=3\\ 2x-y+4z=5\\ x+y+3z=2 \end{cases}$$

$$\left[egin{array}{cccc} 1 & -2 & 1 \ 2 & -1 & 4 \ 1 & 1 & 3 \end{array}
ight]$$

$$\begin{bmatrix} 1 & -2 & 1 \\ 2 & -1 & 4 \\ 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 & 3 \\ 2 & -1 & 4 & 5 \\ 1 & 1 & 3 & 2 \end{bmatrix}$$

Matriz dos coeficientes

Matriz ampliada

Escalonando ...

$$\begin{bmatrix}
 1 & -2 & 1 & 3 \\
 2 & -1 & 4 & 5 \\
 1 & 1 & 3 & 2
 \end{bmatrix}$$

$$\begin{cases} x - 2y + z = 3 \\ 2x - y + 4z = 5 \\ x + y + 3z = 2 \end{cases}$$

Como fica a solução geral? $\begin{cases} x-2y+z=3\\ 2x-y+4z=5\\ x+y+3z=2 \end{cases}$

$$\begin{cases} x - 2y + z = 3\\ 2x - y + 4z = 5\\ x + y + 3z = 2 \end{cases}$$

$$\left[\begin{array}{ccc|ccc} 1 & -2 & 1 & 3 \\ 2 & -1 & 4 & 5 \\ 1 & 1 & 3 & 2 \end{array}\right]$$

Como fica a solução geral? $\begin{cases} x-2y+z=3\\ 2x-y+4z=5\\ x+y+3z=2 \end{cases}$

$$\begin{cases} x - 2y + z = 3\\ 2x - y + 4z = 5\\ x + y + 3z = 2 \end{cases}$$

Balanço final do processo

Posto da matriz dos coeficientes

Posto da matriz ampliada

Número de variáveis

Mais um exemplo com $\begin{cases} 2x-y+3z-w=2\\ x-3y-2z+2w=4 \end{cases}$

$$\begin{cases} 2x - y + 3z - w = 2\\ x - 3y - 2z + 2w = 4 \end{cases}$$

Mais um exemplo com variáveis livres

$$\begin{cases} 2x - y + 3z - w = 2\\ x - 3y - 2z + 2w = 4 \end{cases}$$

Resumão dos resultados

Posto da matriz dos coeficientes, posto da matriz aumentada e número de variáveis são iguais.

Posto da matriz dos coeficientes é igual ao posto da matriz aumentada, mas menor que o número de variáveis.

SPI

Posto da matriz dos coeficientes é menor que o posto da matriz aumentada.

