Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination May-2023

EC3CO16 Microwave Engineering

Programme: B.Tech. Branch/Specialisation: EC **Maximum Marks: 60 Duration: 3 Hrs.**

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

		should be written in full instead of or lotations and symbols have their usual		a i			
Q.1	 i. In a transmission line terminated by characteristic impedance- (a) There is no reflection of the incident wave (b) The reflection is maximum due to termination (c) The incident current is zero for any applied signal (d) None of these 						
	ii.						
		(a) Propagation problem	(b) Transmission problem				
		(c) Antenna problem	(d) Attenuation problem				
	iii.	The mode of wave propagation in a r	_	1			
		(a) TEM (b) TM	(c) Quasi-TEM (d) TE				
	iv.	The field of slot lines are distributed	in-	1			
		(a) Air	(b) Dielectric				
		(c) Both (a) & (b)	(d) None of these				
	v.	Circulators are created by-		1			
		(a) Two transmission line	(b) Two waveguide				
		(c) Two magic tee	(d) Two attenuators				
	vi.	A Bathe-Hole directional coupler has-					
		(a) Two holes	(b) A single hole				
		(c) Three holes	(d) No hole at all				
	vii.	Which of the following exhibits generation of microwave?	transferred electron effect for	1			
		(a) Silicon	(b) Germanium				
		(c) Metal-semiconductor junction	(d) Gallium arsenide				

P.T.O.

	viii.	The BARITT diode has-		1		
		(a) No drift region (b)	b) Short drift region			
		(c) Long drift region (c	d) None of these			
	ix.	Filters have characteristic similar to-		1		
		(a) Oscillator (b)	b) Mixer			
		(c) Amplifier (c	d) Periodic structure			
	х.	Wideband filters are constructed using-	-	1		
		(a) Microstrip lines (b)	b) Strip lines			
		(c) Tightly coupled lines (c	d) Slot lines			
Q.2	i.	Define VSWR and return loss in transmission line.				
	ii.	Explain the two circles on the smith chart.				
	iii.	Derive an expression for input imped line.	lance of a lossless transmission	5		
OR	iv.	In the circuit shown, all the transmis	ssion line sections are lossless	5		
OR	14.	Determine Voltage Standing Wave R				
		line.	tuto (15 Wit) on the 00 Omi			
		Short	-			
		$Z_0 = 30\Omega$	1 •			
		$Z_0 = 30\Omega$ $\lambda/8$				
		•	<u></u>			
		$Z_0 = 60\Omega$	$Z_0 = 30\sqrt{2} \Omega \square Z_L = 30\Omega$			
		o •	$\begin{array}{c} & \downarrow \\ & \downarrow \\ & \lambda/4 \end{array}$			
			← λ/4 →			
Q.3	i.	Compare micro-strip line and strip line) .	2		
	ii.	Explain slot lines.		3		
	iii.	When the dominant mode is propaga	ated in an air-filled rectangular	5		
		waveguide, the guide wavelength for a	a frequency 9000 MHz is 4 cm.			
		Calculate width of the guide.				
OR	iv.	Derive the Transverse component (E	x, E _y) in terms of longitudinal	5		
		component(Ez and Hz) using Maxwell'	s Curl Equation.			
Q.4	i.	What are the properties of scattering m	natrix?	2		
	ii.	Define Circulator, Isolator and Gyrator.				
	iii.	Define Magic Tee. Derive its Scattering matrix.				

OR	iv.	Write short note on the following:		5	
		(a) Rectangular cavity resonator	(b) Directional couplers		
Q.5	i.	Explain the process of domain forma	ntion in the slice of n-type GaAs.	2	
	ii.	An IMPATT diode has the following parameters:			
		Carrier drift velocity, v_d	$= 2 \times 10^7 \text{ cm/sec}$		
		Drift region length, L	= 6μm		
		Maximum Operating voltage, Vomax	= 100 V		
		Maximum Operating Current, Iomax	= 200 mA		
		Efficiency, η	= 15%		
		Breakdown Voltage, Vbd	= 90 V		
		Compute the following:			
		(a) Maximum CW output power in v	vatt		
		(b) The resonant frequency in GHz			
iii. Explain working of TRAPATT diode with waveform.			e with waveform.	5	
OR	iv.	Explain the working of parametric amplifier. Obtain the condition for up conversion and down conversion.			
Q.6		Attempt any two:			
	i.	Explain periodic structures in detail.			
	ii.	Explain image parameter method of filter design.			
	iii.	Explain insertion loss method of filter	er design.	5	

Marking Scheme

EC3CO16 Microwave Engineering

Q.1	i.	In a transmission line terminated by characteristic impedance, (a)There is no reflection of the incident wave	1
	ii	A smith chart is used for solving (b)Transmission problem	1
	iii	The mode of wave propagation in a microstrip line is (c)Quasi-TEM	1
	iv	The field of slot lines are distributed in (c)Air and Dielectric	1
	v	Circulators are created by (c)Two magic tee	1
	vi	A Bathe-Hole directional coupler has (b)A single hole	1
	vii	Which of the following exhibits transferred electron effect for generation of microwave? (d)Gallium arsenide	1
	viii	The BARITT diode has (c)Long drift region	1
	ix	Filters have characteristic similar to	1
	X	(d)Periodic structure Wideband filters are constructed using (c)Tightly coupled lines	1
Q.2	i	Define VSWR and return loss in transmission line. VSWR - 1 mark	2
	ii	Return loss - 1 mark Explain the two circles on the smith chart. R circle -1.5 mark X circle -1.5 mark	3

- Derive an expression for input impedance of a lossless transmission 5
- OR iv In the circuit shown, all the transmission line sections are lossless. 5 Determine Voltage Standing Wave Ratio (VSWR) on the 60 Ohm line. VSWR = 1.64

Compare micro-strip line and strip line. Q.3 i

0.5 mark for each comparison

2

2

3

ii Explain Slot lines. 3 When the Dominant mode is propagated in an air filled rectangular 5 waveguide, the guide wavelength for a frequency 9000MHz is 4cm.

Calculate width of the guide.

Calculation of λο - 1 mark Calculation of λc - 2 mark Calculation of width - 2 mark

a=3.01 cm

Derive the Transverse component (E_x, E_y) in terms of longitudinal 5 OR iv component(E_z and H_z) using Maxwell's Curl Equation.

> E_x component -2.5 marks E_y component -2.5 marks

Q.4 i What are the properties of scattering matrix?

-0.5 mark for each property Define circulator, Isolator and Gyrator.

-1 mark for each

Define Magic Tee. Derive its Scattering matrix. 5

> -defination -1mark Derivation -4mark

OR	iv	Write short note on the following: (a) Rectangular cavity resonator (b) Directional Couplers -2.5 mark -2.5 mark	
Q.5	i ii	Explain the process of domain formation in the slice of n-type GaAs. An IMPATT diode has the following parameters:	
		Carrier drift velocity: $v_d = 2 \times 10^7 \text{ cm/sec}$ Drift region length: $L = 6 \mu \text{m}$ Maximum Operating voltage $V_{\text{omax}} = 100 \text{ V}$ Maximum Operating Current $I_{\text{omax}} = 200 \text{mA}$ Efficiency $\eta = 15\%$ Breakdown Voltage $V_{\text{bd}} = 90 \text{ V}$ Compute:	
	iii	(a) Maximum CW output power in 3 watt (b) The resonant frequency in 16.67 GHz Explain working of TRAPATT diode with waveform. Working -4 mark Waveform -1 mark	5
OR	iv	Explain the working of parametric amplifier. Obtain the condition for up conversion and down conversion. Working -3mark Condition -2mark	
Q.6	i ii iii	Attempt any two: Explain periodic structures in detail. Explain Image parameter method of filter design Explain Insertion loss method of filter design	5 5 5

j			
<u>.</u>			
;			
5			
; ;			