CIS 452 - Operating Systems Concepts Nathan Bowman Images taken from Silberschatz book

Introduction to Memory

OS is a resource manager

Probably the most important resource is the CPU

Previously studied how processes are managed and scheduled

Next resource we will investigate is **memory**

Terminology: for our purposes,

memory == main memory == RAM

Any code we wish to run or operand our program uses must be in memory

We have previously discussed importance of multiprogrammming -- keeping more than one process in memory

This is critical for improving system resource utilization and decreasing response time for users

Two major complications arise when dealing with memory:

- must protect memory from unauthorized processes
- want to make access simple for programmers
 - Techniques to acheive this will typically rely on hardware support

Fundamentally, memory is a very long array of bytes

Each byte has its own address

Both data and instructions are stored in this large array

Most of what a program does is load, modify, and store memory

a = a + 5;

We are not going to concern ourselves with caches
They are extremely important for performance, but
they are mostly run by the hardware itself, not the OS

Two major complications arise when dealing with memory:

- must protect memory from unauthorized processes
- want to make access simple for programmers
- OS does not have time to monitor every single memory access of every single process on the system
 - We will look at a very simple way this can be implemented with the help of hardware

Each process is assigned a separate space in memory

Processes may access only their own memory space

Must determine range of legal addresses for a process to

access

Use registers: base register and limit register If b is value in base register and v is value in limit register, current process can access memory locations [b, b + v]

Memory accesses checked only when in user mode --OS can access whatever memory it needs

Changing base and limit registers must be a kernel-mode instruction

