EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto)
Alunos Externos e Autopropostos — alunos que obtiveram aprovação
no ano de 1999/2000 no programa «antigo» do 12.º ano

Duração da prova: 120 minutos

2001

1.^a FASE 1.^a CHAMADA

PROVA ESCRITA DE MATEMÁTICA

COTAÇÕES

	Cada resposta certa+9	•
	Cada resposta errada3	
	Cada questão não respondida ou anulada)
	Nota: Um total negativo neste grupo vale 0 (zero) pontos.	
Grupo	II	119
	1	
	1.3. 12 2. 24 2.1. 12	
	2.2. 12 3. 22 3.1. 11	
	3.2.	
	4.2	
OTAL		200
		V.S.F.
		135/C

CRITÉRIOS DE CLASSIFICAÇÃO

Grupo I

Deverão ser anuladas todas as questões com resposta de leitura ambígua (letra confusa, por exemplo) e todas as questões em que o examinando dê mais do que uma resposta.

As respostas certas são as seguintes:

Questões	1	2	3	4	5	6	7	8	9
Versão 1	С	D	Α	С	Α	С	В	С	В
Versão 2	D	Α	С	Α	В	С	С	В	С

Na tabela seguinte indicam-se os pontos a atribuir, no primeiro grupo, em função do número de respostas certas e do número de respostas erradas.

Resp. erradas Resp. certas	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	9	6	3	0	0	0	0	0	0	
2	18	15	12	9	6	3	0	0		
3	27	24	21	18	15	12	9			
4	36	33	30	27	24	21				
5	45	42	39	36	33					
6	54	51	48	45						
7	63	60	57	Ι.,						
8	72	69								
9	81									

Grupo II

Critérios gerais

A cotação a atribuir a cada alínea deverá ser sempre um número inteiro de pontos.

O professor deverá valorizar o raciocínio do examinando em todas as questões.

Algumas questões da prova podem ser correctamente resolvidas por mais do que um processo. Sempre que um examinando utilizar um processo de resolução não contemplado nestes critérios, caberá ao professor corrector adoptar um critério de distribuição da cotação que julque adequado e utilizá-lo em situações idênticas.

Pode acontecer que um examinando, ao resolver uma questão, não explicite todos os passos previstos nas distribuições apresentadas nestes critérios. Todos os passos não expressos pelo examinando, mas cuja utilização e/ou conhecimento estejam implícitos na resolução da questão, devem receber a cotação indicada.

Erros de contas ocasionais, que não afectem a estrutura ou o grau de dificuldade da questão, não devem ser penalizados em mais de dois pontos.

Critérios específicos

1.1	12
$\lim_{x \to 0^+} f(x) = +\infty \dots 2$	
Concluir que a recta de equação $x=0$ é assimptota do gráfico de f 1	
Referir que, pelo facto de f ser contínua em \mathbb{R}^+ , o seu gráfico não tem outras assimptotas verticais	
$\lim_{x \to +\infty} \frac{f(x)}{x} = 3 \qquad3$	
$\lim_{x \to +\infty} [f(x) - 3x] = \lim_{x \to +\infty} (-2 \ln x) = -\infty 3$	
Concluir que não existe assimptota do gráfico de f quando $x \to +\infty$ 2	
Nota: O examinando pode, ao estudar a existência de assimptota do gráfico de f , que $x \to +\infty$, começar por estudar a existência de assimptota horizontal. Neste case cotações relativas às três últimas etapas passam a ser 2, 2 e 1 pontos, transitando pontos retirados para:	o, as
$\lim_{x \to +\infty} f(x) = +\infty \dots 2$	
Concluir que não existe assimptota horizontal do gráfico de f quando $x \to +\infty$ 1	
1.2	13
$f'(x) = 3 - \frac{2}{x} \qquad \qquad$	
$3 - \frac{2}{x} = 0 \Leftrightarrow x = \frac{2}{3} \dots 3$	
Estudar o sinal de f^{\prime} (ver nota)4	
Concluir que $f\left(rac{2}{3} ight)$ é o único mínimo de f (ver nota)2	
Nota:	
O examinando pode apresentar o estudo do sinal de f' e o estudo da monotonia de f , para concluir que $f\left(\frac{2}{3}\right)$ é o único mínimo de f , por	
meio de um quadro.	V.S.F.F.
	135/C/3

Equacionar o problema (
$$3x-2\ln x = 3x$$
)6

$$x = 1$$
.....4

Nota:

O examinando poderá não equacionar o problema, referindo que a abcissa pedida é 1, dado que $3 \times 1 - 2 \ln 1 = 3 \times 1$. Neste caso, deverá ser atribuída a cotação máxima (12 pontos).

$$\overline{FG}=1$$
1

$$\cos x = \frac{1}{EG} \qquad 2$$

$$\overline{EG} = \frac{1}{\cos x} \qquad 2$$

$$\text{Area lateral } = \frac{4}{\cos x}$$

$$Area total = 4 + \frac{4}{\cos x}$$

$$Area total = \frac{4\cos x + 4}{\cos x} \dots 1$$

$$\lim_{x \to \frac{\pi}{2}^-} A(x) = +\infty \dots 6$$

F '	$(5!)^3 \times 3!$	
Escrita da fracção	15!	(ver notas 1, 2, 3, 4 e 5) 8

Probabilidade pedida = 0.0000079 (ver notas 6, 7, 8 e 9).....3

Notas:

- 1. O examinando pode começar por indicar o número de casos possíveis e o número de casos favoráveis e só depois escrever a fracção. No entanto, se não o fizer, isto é, se escrever directamente a fracção, não deverá ser penalizado.
- 2. Indicam-se a seguir possíveis respostas do examinando, no que respeita à escrita da fracção, com a respectiva cotação a atribuir.

$$(5!)^3 \times 3!$$
 (fracção correcta)
 8

 $\frac{(5!)^3}{15!}$
 5

 $\frac{3! \times 5!}{15!}$
 4

 Outras fracções com denominador $15!$
 2

- 3. Se o examinando indicar o número de casos possíveis e o número de casos favoráveis, mas não escrever a fracção, deverá ser atribuído à sua resposta menos 1 ponto do que nas situações atrás referidas.
- 4. Se o examinando indicar (correctamente) apenas o número de casos possíveis, deverá ser atribuído 1 ponto à sua resposta.
- 5. Se o examinando indicar (correctamente) apenas o número de casos favoráveis, deverão ser atribuídos 6 pontos à sua resposta.
- **6.** Se o examinando apresentar o resultado 0,000007 ou 0,000008, deverá ser penalizado em 1 ponto.
- 7. Se o examinando apresentar o resultado correcto na forma de dízima, mas com mais de sete casas decimais, também deverá ser penalizado em 1 ponto.

V.S.F.F.

	8.	Se o examinando apresentar o resultado correcto, mas na forma de notação científica (tal como é apresentado na calculadora), deverá ser penalizado em 2 pontos.
	9.	Qualquer outra forma de apresentação do resultado final deverá ser cotada com 0 pontos.
3.2		11
	Núr	mero de casos possíveis $={}^{15}C_3$
		mero de casos favoráveis $=5 imes4 imes3$
	Pro	babilidade pedida $=rac{12}{91}$
	As	cotações devem ser atribuídas de acordo com o seguinte critério:
	Esc	crita da fracção $\frac{5 imes4 imes3}{^{15}C_3}$ (ver notas 1, 2, 3, 4 e 5)
	Res	sultado final1
	No	as:
	1.	O examinando pode começar por indicar o número de casos possíveis e o
		número de casos favoráveis e só depois escrever a fracção.
		No entanto, se não o fizer, isto é, se escrever directamente a fracção, não
		deverá ser penalizado.
	2.	Indicam-se a seguir possíveis respostas do examinando, no que respeita à
		escrita da fracção, com a respectiva cotação a atribuir.
		$\frac{5 imes4 imes3}{^{15}C_3}$ (fracção correcta)10
		Outras fracções com denominador $^{15}C_3$ 3
	3.	Se o examinando indicar o número de casos possíveis e o número de casos
		favoráveis, mas não escrever a fracção, deverá ser atribuído à sua resposta
		menos 1 ponto do que nas situações atrás referidas.
	4.	Se o examinando indicar (correctamente) apenas o número de casos
	₹.	possíveis, deverão ser atribuídos 2 pontos à sua resposta.

5. Se o examinando indicar (correctamente) apenas o número de casos

135/C/6 favoráveis, deverão ser atribuídos 7 pontos à sua resposta.

4.1.		12
	Este exercício pode ser resolvido por, pelo menos, dois processos:	
	1.º Processo:Referir que o ponto $(1, -1, 0)$ pertence às rectas r e s 4Mostrar que as rectas r e s não têm a mesma direcção4Concluir que as rectas r e s são concorrentes3Concluir que as rectas r e s definem um plano1	
	2.º Processo: Escrever uma condição cartesiana que defina a recta s	
	Concluir que as rectas r e s são concorrentes	
4.2.		12
	Encontrar um vector normal às rectas r e s (ou mostrar que o vector $(1,-1,1)$ é perpendicular às rectas r e s)7	
	Justificar que o plano definido pelas rectas $ r {\rm e} s $ é paralelo ao plano de equação $ x - y + z = 10 $	
4.3.	······································	12
	$\cos \alpha = \frac{ 2 \times 2 + 3 \times 1 + 1 \times (-1) }{\sqrt{2^2 + 3^2 + 1^2} \times \sqrt{2^2 + 1^2 + (-1)^2}} $ 4	
	$\cos lpha pprox 0,65$ 4	
	$lpha pprox 49^{ m o}$	
	Nota: Se o examinando não apresentar o resultado arredondado às unidades, ou se o arredondamento estiver incorrecto, deverá ser penalizado em 1 ponto.	