# Digital Electronics and Microprocessors

Class 6

CHHAYADEVI BHAMARE

#### Exclusive OR and Exclusive NOR Circuits

- □ The exclusive OR (XOR) produces a HIGH output whenever the two inputs are at opposite levels.
- □ The exclusive NOR (XNOR) produces a HIGH output whenever the two inputs are at the same level.
- □ XOR and XNOR outputs are opposite.

(a) Exclusive-OR circuit and truth table; (b) traditional XOR gate symbol; (c) IEEE/ANSI symbol for XOR gate.



## (a) Exclusive-NOR circuit; (b) traditional symbol for XNOR gate; (c) IEEE/ANSI symbol.



## XOR Timing Diagram



## Basic Identities of XOR Operation:

- $X \oplus 0 = X$
- $X \oplus 1 = X'$
- $X \oplus X = 0$
- $X \oplus X' = 1$
- $X \oplus Y' = X' \oplus Y = (X \oplus Y)' = X \odot Y$

Graphical presentation of important XOR/XNOR rules and gate equivalence.

$$A \oplus B = A \oplus \overline{B} = A \oplus \overline{B} = A \oplus \overline{B} = A \oplus B$$

$$A \oplus B = \overline{A} \oplus \overline{B} = \overline{A} \overline{B} + AB$$

$$A \oplus B = A \oplus \overline{B} = \overline{A} \overline{B} + AB = A \oplus B$$

#### **Example:**

Show that  $(\mathbf{A} \odot \mathbf{B}) \oplus (\mathbf{C} \odot \mathbf{D}) = \mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C} \oplus \mathbf{D}$ 



#### Applications of X-OR/X-NOR

- □ Odd function/Even function
- □ Even/Odd parity generator and checker
- □ Binary to gray/Gray to binary

#### **ODD Function:**

As shown in the K-map,  $X \oplus Y \oplus Z = 1$ , IFF (if and only if) the number of 1's in the input combination is odd.

| Х | Υ | Z | ODD |  |
|---|---|---|-----|--|
| 0 | 0 | 0 | 0   |  |
| 0 | 0 | 1 | 1   |  |
| 0 | 1 | 0 | 1   |  |
| 0 | 1 | 1 | 0   |  |
| 1 | 0 | 0 | 1   |  |
| 1 | 0 | 1 | 0   |  |
| 1 | 1 | 0 | 0   |  |
| 1 | 1 | 1 | 1   |  |

| z<br>xy | Z' | Z |
|---------|----|---|
| X'Y'    | 0  | 1 |
| X'Y     | 1  | 0 |
| XY      | 0  | 1 |
| XY'     | 1  | 0 |

 $ODD = X \bigoplus Y \bigoplus Z$ 

## Parity Generation and checking



#### Even Parity Generation (Odd Function)

| Х | Υ | Z | P(E) |  |
|---|---|---|------|--|
| 0 | 0 | 0 | 0    |  |
| 0 | 0 | 1 | 1    |  |
| 0 | 1 | 0 | 1    |  |
| 0 | 1 | 1 | 0    |  |
| 1 | 0 | 0 | 1    |  |
| 1 | 0 | 1 | 0    |  |
| 1 | 1 | 0 | 0    |  |
| 1 | 1 | 1 | 1    |  |

| z<br>xy | Z' | Z |
|---------|----|---|
| X'Y'    | 0  | 1 |
| X'Y     | 1  | 0 |
| XY      | 0  | 1 |
| XY'     | 1  | 0 |



$$P(E) = X \oplus Y \oplus Z$$

#### Parity Generator and Checker

□ XOR and XNOR gates are useful in circuits for parity generation and checking.

Even Parity Generator truth table

| D3 | <b>D2</b> | D1 | <b>D</b> 0 | Parity |
|----|-----------|----|------------|--------|
| 0  | 0         | 0  | 0          | 0      |
| 0  | 0         | 0  | 1          | 1      |
| 0  | 0         | 1  | 0          | 1      |
| 0  | 0         | 1  | 1          | 0      |
| 0  | 1         | 0  | 0          | 1      |
| 0  | 1         | 0  | 1          | 0      |
| 0  | 1         | 1  | 0          | 0      |
| 0  | 1         | 1  | 1          | 1      |
| 1  | 0         | 0  | 0          | 1      |
| 1  | 0         | 0  | 1          | 0      |
| 1  | 0         | 1  | 0          | 0      |
| 1  | 0         | 1  | 1          | 1      |
| 1  | 1         | 0  | 0          | 0      |
| 1  | 1         | 0  | 1          | 1      |
| 1  | 1         | 1  | 0          | 1      |
| 1  | 1         | 1  | 1          | 0      |

#### Even Parity Generator Ckt for 4-bit data



### Odd parity generation for 4 bit data

Add an inverter at the output of the previous(even parity generator ckt) ckt



#### 3-bit even parity checker (4-input, 3 data inputs 1 parity input)

| Four Bits |   |   | Parity Error |   |
|-----------|---|---|--------------|---|
| Received  |   |   | Check        |   |
| Х         | Υ | Z | Р            | С |
| 0         | 0 | 0 | 0            | 0 |
| 0         | 0 | 0 | 1            | 1 |
| 0         | 0 | 1 | 0            | 1 |
| 0         | 0 | 1 | 1            | 0 |
| 0         | 1 | 0 | 0            | 1 |
| 0         | 1 | 0 | 1            | 0 |
| 0         | 1 | 1 | 0            | 0 |
| 0         | 1 | 1 | 1            | 1 |
| 1         | 0 | 0 | 0            | 1 |
| 1         | 0 | 0 | 1            | 0 |
| 1         | 0 | 1 | 0            | 0 |
| 1         | 0 | 1 | 1            | 1 |
| 1         | 1 | 0 | 0            | 0 |
| 1         | 1 | 0 | 1            | 1 |
| 1         | 1 | 1 | 0            | 1 |
| 1         | 1 | 1 | 1            | 0 |

|      | Z'P' | Z'P | ZP | ZP' |
|------|------|-----|----|-----|
| X'Y' | 0    | 1   | 0  | 1   |
| X'Y  | 1    | 0   | 1  | 0   |
| XY   | 0    | 1   | 0  | 1   |
| XY'  | 1    | 0   | 1  | 0   |



C=0 (No Error) C=1(Error)

### 3-bit parity generator/checker ckt



For Generator P input of this circuit should be zero always and output will be parity bit

For checker the P input is the parity bit Input and output will be checked ouput(error/no error)

#### **Enable/Disable Circuits**



#### Enable/Disable Circuits cont.

Example: Design a logic circuit that will allow a signal to pass to the output only when control inputs B and C are both HIGH; otherwise, the output will stay LOW.



Refer example 4-23 of T1

## Example:- Design a logic circuit that controls the passage of the signal A according to the following requirements:

- 1. Output X will equal A when control inputs B and C are same.
- 2. X will remain HIGH when B and C are Different

X=A when B=C and X=1 when B Not Equal to C



## Take home problems

4-2,4-3,4-5,4-7,4-8,4-16,4-22,4-25,4-38