

Detecția tranzițiilor de tip cut

| > etape generale de detecție: |
| > parametrizarea: [puterea discriminatorie];
| > la nivel de imagine sunt extrași o serie de parametri care evidențiază această discontinuitate, ex. histograme, statistici, etc.;
| → variația temporală: [cut ↗, restul ↘];
| > se evaluează variația acestora între imaginile la momentele k și k+l, unde k=1,...,N_{secv} (indicele temporal) iar l este pasul de analiză (l≥1);
| > se folosesc măsuri de distanță (măsuri de similaritate).
| → compararea cu un prag (thresholding): [~ optimal];
| > discontinuitate > prag atunci un cut are loc între momentele k și k+l (precizie ?)
| Analiza și Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU 14

Detecția tranzițiilor de tip cut

> principala sursă de erori este disimilaritatea imaginilor din cadrul aceluiași plan video (≠ definiție teoretică), cauze principale:

- mișcarea camerei video,
- mișcarea obiectelor din scenă,
- fluctuații ale intensității luminoase.

> soluții: folosirea altor surse de informație pe lângă valorile de discontinuitate, exemplu:

- compensarea mișcării [Marichal 98],
- divizarea imaginii în mai multe regiuni [Ionescu 06],
- detecția blițului aparatului foto [Heng 99].

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU 15

Detecția tranzițiilor de tip cut

metode bazate pe analiza intensității pixelilor (continuare)

- > calculul diferenței dintre imagini pe baza histogramelor color sau pe niveluri de gri:
 - [Yeo 95] măsura de discontinuitate: distanța dintre binii histogramelor imaginilor la momentele k şi k+l,
 - [Lienhart 01] [Kim 02] măsura de discontinuitate calculată în diverse spații de culoare HSV, YUV, Lab, etc.
 - [Nagasaka 92] divizarea imaginii în blocuri de pixeli:

$$D(i) = \sum_{j=0}^{63} \frac{[H_{k,i}(j) - H_{k+l,i}(j)]^2}{H_{k+l,i}(j)}$$

unde i este indicele blocului de pixeli, j este binul histogramei iar $H_{k,i}$ reprezintă histograma blocului i la momentul k.

Analiza și Prelucrarea Secventelor de Imagini, S.I. Bogdan IONESCU

Detecția tranzițiilor de tip cut

metode bazate pe analiza intensității pixelilor (continuare)

- [lonescu 07] detecție bazată pe histogramă (continuare):
- > imaginea este împărțită în 4 regiuni:

> obiectele de dimensiune > 1/4 din imagine pot schimba semnificativ valoarea histogramei şi astfel pot conduce la detecții false (valori importante ale distantei).

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip cut

metode bazate pe analiza intensității pixelilor (continuare)

- [lonescu 07] detecție bazată pe histogramă (continuare):
- > sunt calculate 4 distanțe (între histogramele corespunzătoare fiecărui bloc) și apoi reținută distanța medie:

$$D_{k}(i) = \sqrt{\sum_{j=1}^{N_{b}} \left[H_{k,i}(j) - H_{k+l,i}(j) \right]}$$

unde i este indicele blocului de pixeli, i=1,...,4, j este binul histogramei iar $H_{k,i}$ reprezintă histograma blocului i din imaginea la momentul k.

= funcția de discontinuitate;

$$D_k = \frac{1}{4} \sum_{i=1}^4 D_k(i)$$

- $D_k = \frac{1}{4} \sum_{i=1}^{4} D_k(i)$ > dacă doar o regiune se mod mediere D_k este puțin afectat; > dacă doar o regiune se modifică semnificativ, prin
 - > dacă marea parte a imaginii se modifică atunci se modifica semnificativ și D,

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

23

Detecția tranzițiilor de tip cut

metode bazate pe analiza intensității pixelilor (continuare)

- [lonescu 07] detecție bazată pe histogramă (continuare):
- > derivarea temporală a funcției de discontinuitate:
 - → un cut = succesiune de valori "Low-High-Low": • Low value: distanța dintre ultimele două imagini înainte de cut (acelaşi plan 1, imagini teoretic identice),
 - · High value: distanța între imaginile tranziției cut,
 - Low value: distanța dintre următoarele două imagini după cut (acelaşi plan 2, teoretic identice).

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip cut

metode bazate pe analiza intensității pixelilor (continuare)

- [lonescu 07] detecție bazată pe histogramă (continuare):
- > derivarea temporală a functiei de discontinuitate → diminuarea variatiilor continuue temporal generate de miscare, efecte vizuale, etc.

22

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip cut metode bazate pe analiza intensității pixelilor (continuare) > demonstrație: | Todor | Tod

Detecția tranzițiilor de tip cut

metode bazate pe analiza contururilor

- > ipoteză: un cut produce o discontinuitate structurală la nivel de imagine (contururile din imaginea dinaintea tranziției nu se vor mai regăsi în imaginea precedentă tranziției)
 - [Zabih 95] propune calculul unui raport de schimbare a contururilor din imagine ("Edge Change Ratio"):

$$D_{k,k+l} = ECR_{k+l} = \max\left(\frac{X_k^{out}}{\sigma_k}, \frac{X_{k+l}^{in}}{\sigma_{k+l}}, \frac{X_{k+l}^{in}}{\sigma_{k+l}}\right)$$

unde σ_k reprezintă numărul de puncte de contur existente în imaginea la momentul k iar X_k^{cut} și X_{k*l}^{in} reprezintă numărul de puncte de contur ce au dispărut din imaginea la momentul k și respectiv ce au apărut în imaginea la momentul k+l.

Analiza și Prelucrarea Secventelor de Imagini, S.I. Bogdan IONESCU

0.5

Detecția tranzițiilor de tip cut

metode bazate pe analiza contururilor (continuare)

- [Kim 02] folosește raportul de potrivire al contururilor (EMR Edge Matching Rate);
- > metode mai puţin eficiente datorită dependenţei de metodele de estimare a contururilor ~ sensibile la zgomot;
- > informația de contur este folosită de regulă împreună cu alte informații, precum intensitate sau mișcare;
- un avantaj al acestei abordări este dat de faptul că informaţia de contur poate fi folosită în acelaşi timp şi pentru detecţia tranziţiilor video graduale (fade sau dissolve);

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip cut

metode bazate pe analiza de mişcare

> ipoteză: un cut produce o discontinuitate a mişcării, metodele din acestă categorie bazându-se pe compensarea sau estimarea mişcării. (detalii M1 – Informaţia video şi M5 – Informaţia de mişcare)

 [Shahraray 95] imaginile sunt divizate în blocuri disjuncte pentru care se realizează compensarea mişcării folosind ca funcție de cost diferența între intensitățile pixelilor, iar funcția de discontinuitate este calculată astfel:

$$D_{k,k+l} = \sum_{i=1}^{N_b} c_i \cdot d_{k,k+l}(i)$$

unde $d_{k,k+l}$ reprezintă valorile normalizate între 0 și 1 ale funcției de cost minime între imaginile la momentele k și k+l, i este indicele blocului de pixeli iar c_i sunt ponderi.

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

_

Detecția tranzițiilor de tip cut

metode bazate pe analiza de mişcare (continuare)

- [Porter 00] folosește ca funcție de cost corelația dintre blocurile de pixeli calculată în domeniul frecvențial.
- [Zhong 96] [Lupatini 98] folosesc estimarea fluxului optic iar măsurile de similaritate între imagini sunt calculate pe baza vectorilor de mişcare şi a deplasărilor survenite în imagine.
- > metode cu o complexitate de calcul importantă datorată estimării mişcării;
- > mai puţin precise decât metodele bazate pe histograme, dar mai eficiente pentru secvenţele cu un conţinut predominant de mişcare;

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip cut

metode de detecție în domeniul comprimat

- > ipoteză: discontinuitatea informației vizuale trebuie să se reflecte și la nivelul coeficienților MPEG (DCT).
 - [Arman 93] folosește blocuri de pixeli codate DCT din care selectează 64 de coeficienți din componentele alternative $\Rightarrow V_k = (c_1, ..., c_{64})$:

64 de coeficienți din componentele alternative
$$\Rightarrow V$$

$$D_{k,k+l} = \frac{V_k \cdot V_{k+l}}{|V_k| \cdot |V_{k+l}|} \quad \text{produs scalar normalizat.}$$
 normă

- \rightarrow un cut este detectat dacă: $1-|D_{k,k+l}| > T$ (prag)
- > metode ce pot fi implementate cu uşurință în timp real deoarece nu necesită decompresia datelor.

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

28

Detecția tranzițiilor de tip cut

alte metode

- > folosesc alte surse de informație decât cele descrise anterior:
 - [Boreczky 98] transformă problema detecţiei într-o problemă de clasificare (modele Markov ascunse HMM);
 - [Hanjalic 02] abordare generică a segmentării (statistică: minimizarea probabilității erorii medii de detecție);
 - [Guimaraes 03] folosește noțiunea de ritm vizual al secvenței;
- > sunt abordări în general particulare ce nu au fost studiate suficient.

Analiza și Prelucrarea Secventelor de Imagini, S.I. Bogdan IONESCU

Detecția tranzițiilor de tip cut

estimarea pragului de detecție

- > similaritatea a două imagini se reduce în cele din urmă la compararea unei măsuri de distantă cu un anumit prag τ :
 - $> \tau \Rightarrow$ sunt disimilare,
 - $< \tau \Rightarrow$ sunt similare.
- > alegerea pragului:
- A. metode euristice ([Otsuji 91] [Nagasaka 92] [Arman 93])
 - > pragul este ales ca rezultat al expertizei manuale a datelor folosite. [nu este valabil pentru orice secvență!]
- → B. metode statistice ([Zhang 93])
 - > funcția de discontinuitate este modelată cu o distribuție Gaussiană
 - $\rightarrow \tau = \mu + r \cdot \sigma$ [adaptat global!]

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

21

Detecția tranzițiilor de tip cut

estimarea pragului de detecție (continuare)

- > alegerea pragului (continuare):
- C. metode adaptive ([Yeo 95])
 - > valoarea pragului este adaptată la conținutul local al secvenței (fereastră de analiză), exemplu un cut este detectat dacă:

$$D_{k,k+1} = \max |_{i \in w} \{ D_{k+i,k+i+1} \}$$
 şi

$$D_{k,k+1} \ge \alpha \cdot D_{s \max}$$

unde $D_{k,k+1}$ este funcția de discontinuitate, w este fereastra de analiză, α este un parametru iar D_{smex} reprezintă a doua valoare maximă a funcției de discontinuitate.

[care este dimensiunea ferestrei pentru a fi relevantă?]

Analiza și Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip cut

estimarea pragului de detecție (continuare)

- > alegerea pragului (continuare):
- D. metode mixte ([Hanjalic 97])
 - > combină abordările de mai sus, de exemplu alegerea parametrului α folosit la metoda adaptivă pe baza modelării statistice cu funcții Gausiene.
- →E. metode optimale ([Vasconcelos 00])
- > inspirate de teoria detecției statistice, folosesc informații statistice despre distribuția tranzițiilor cut obținute în urma experimentărilor pe un număr semnificativ de secvențe.

[setul de experimentare trebuie să fie suficient de diversificat!]

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

> M4. Structura temporală [Detecția de "fades"]

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip fade

[Lienhart 01]

> formal un fade este definit ca fiind transformarea intensităților pixelilor secvenței $S_1(x,y,t)$ printr-o funcție monotonă f(t):

$$F(x, y, t) = f(t) \cdot S_1(x, y, t), \quad 0 \le t \le T$$

unde (x,y) sunt coordonate spațiale, t coordonata temporală, F(x,y,t) reprezintă secvența de fade, T reprezintă durata tranziției iar f(t) este definită astfel:

• fade-in:

$$f_{fade-in}(t) = \frac{t}{T}, f(0) = 0 \text{ si } f(T) = 1$$

fade-out:

frade-out:

$$f_{fade-in}(t) = 1 - \frac{t}{T}, f(0) = 1 \text{ si } f(T) = 0$$

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip fade

metode bazate pe analiza intensității pixelilor (continuare)

> o abordare uzuală constă în analiza schimbării intensității luminoase, exemplu analiza dispersiei acesteia:

$$\sigma\{F(x,y,t)\} = f(t) \cdot \sigma\{S_1(x,y)\}$$

(în condiții de ergodicitate: momentele statistice = momentele temporale) unde σ reprezintă dispersia, F(x,y,t) este secvența de fade iar $S_1(x,y)$ reprezintă secvența inițială.

- [Lienhart 99] sunt localizate imaginile monocromatice şi este analizată creşterea pozitivă a intensității luminoase şi a dispersiei acesteia în sensul pozitiv al axei temporale;
- [Alattar 97] determină punctele de extrem negativ ale derivatei a doua a valorilor varianței intensității luminoase,
- → fade dacă valoarea derivatei întăi a intensității luminoase medii este constantă între două puncte de extrem negativ;

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip fade

metode bazate pe analiza intensității pixelilor (continuare)

- > folosirea informației de crominanță:
- [Fernando 99] definește următorul parametru în spațiul YC_bC_r:

$$R_{k} = \begin{cases} \frac{\Delta_{k}^{Y}}{\Delta_{k}^{C}} & k < L_{1} \text{ sau } k \geq (L_{1} + T) \\ \frac{|C_{0} - m_{k+1}^{Y} + (L_{1} - k) \cdot \Delta_{k}^{Y}|}{|C_{0} - m_{k+1}^{C} + (L_{1} - k) \cdot \Delta_{k}^{C}|} & L_{1} \leq k < (L_{1} + T) \end{cases}$$

unde Δ^{γ}_{k} şi Δ^{c}_{k} reprezintă schimbările incrementale ale mediei semnalului Y şi respectiv ale semnalului $C=(C_{b}+C_{d})/2$, m^{γ}_{k+1} şi m^{c}_{k+1} sunt valorile medii ale lui Y şi C calculate la momentul k+1, L_{1} reprezintă momentul de început al tranziției, T este durata totală a acesteia, iar C_{0} reprezintă nivelul semnalului video pentru începutul tranziției \rightarrow fade = valori \sim constante ale R_{ν}

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip fade

metode bazate pe analiza contururilor

- > ipoteză: pe durata unei tranziții de tip fade contururile obiectelor din imagine fie dispar (fade-out), fie apar gradual (fade-in).
- [Zabih 99] foloseşte mărimea ECR (vezi detecția de cut), pe durata unei tranziții de tip fade-in, numărul de pixeli de contur ce apar în imagine, ECR_{in}, > numărul pixelilor de contur ce dispar din imagine, ECR_{out} (ECR_{in}>ECR_{out});
- > pe durata unui fade-out este invers ECR_{in}<ECR_{out}
- •[Yu 97] [Lupatini 98] abordări similare, contabilizarea punctelor de contur ce apar sau dispar.
- > ca şi în cazul detecției de cut, aceste metode sunt mai sensibile la mişcare şi schimbări ale intensității din imagine.

Analiza și Prelucrarea Secventelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip fade

metode bazate pe alte surse de informație

> de exemplu:

42

- [Porter 01] se folosește de informația de mișcare pentru a reduce falsele detectii;
- [Guimaraes 03] se folosește de ritmul vizual bazat pe histogramă pentru a reduce influența zgomotului;
- [Miene 01] parametrii sunt calculați în domeniul frecvențial al coeficienților FFT;
- [Heng 01] o abordare generică statistică a detecției tranzițiilor graduale.

> valabilă concluzia de la detecția de cut: sunt abordări particulare nu suficient de robuste

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

43

> M4. Structura temporală [Detecția de "dissolves"]

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip dissolve

[Lienhart 01]

> formal, secvența unui dissolve D(x,y,t) de durată T este definită pe baza secvențelor $S_1(x,y,t)$ și $S_2(x,y,t)$ astfel:

$$D(x, y, t) = f_1(t) \cdot S_1(x, y, t) + f_2(t) \cdot S_2(x, y, t)$$

unde (x,y) sunt coordonate spațiale și t coordonata temporală, t=0,...,T iar f1, și f2 sunt două funcții.

- > în funcție de $f_1(t)$ și respectiv $f_2(t)$ întâlnim:
 - cross-dissolve (suprapunere fade-out cu fade-in):

$$f_1(t) = 1 - \frac{t}{T}, \quad f_2(t) = \frac{t}{T}$$

 $f_1()$ $\xrightarrow{1}$ $f_2()$ \downarrow $f_2()$

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

45

Detecția tranzițiilor de tip dissolve

- > în funcție de $f_1(t)$ și respectiv $f_2(t)$ întâlnim (continuare):
- additive-dissolve (suma unui fade-out cu fade-in):

$$f_1(t) = \begin{cases} 1 & t \le c_1 \\ \frac{T - t}{T - c_1} & altfel \end{cases} \qquad f_2(t) = \begin{cases} \frac{t}{c_2} & t \le c_2 \\ 1 & altfel \end{cases}$$

unde $c_1, c_2 \in (0, T)$, $c_2 < c_1$ şi $0 \le t \le T$.

- > d.p.d.v. al diferenței vizuale dintre secvențele $S_1(x,y,t)$ și $S_2(x,y,t)$, avem următoarele situații:
 - S₁ şi S₂ au distribuţii de culoare suficient de diferite
 → uşor de confundat cu o tranziţie cut;
- y uşor de comundat cu o tranziție cut

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip dissolve

- > d.p.d.v. al diferenței vizuale dintre secvențele $S_1(x,y,t)$ și $S_2(x,y,t)$, avem următoarele situații (continuare):
 - S₁ și S₂ au distribuții de culoare similare
 - → greu de detectat pe baza discontinuității vizuale dintre histograme,
 - + diferențe structurale importante;
 - S_1 și S_2 au distribuții de culoare + structură similare (caz particular de morphing);
- > metodele de detecție existente:
 - bazate pe analiza intensității pixelilor,
 - bazate pe trăsături (feature-based),
 - bazate pe transformări,
 - bazate pe alte surse de informație.

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip dissolve

metode bazate pe analiza intensității pixelilor

> dacă mişcarea este neglijabilă, atunci pentru un cross-dissolve:

$$\frac{\partial D(x, y, t)}{\partial t} = \frac{S_2(x, y) - S_1(x, y)}{T}, \ 0 \le t \le T$$

- [Hampapur 95] localizarea în secvență a tuturor schimbărilor liniare ale intensității pixelilor.
- > pornind de la definitia matematică putem scrie altfel:

 $Var\{D(x, y, t)\} = f_1^2(t) \cdot Var\{S_1(x, y)\} + f_2^2(t) \cdot Var\{S_2(x, y)\}$ unde S_1 şi S_2 sunt independente de timp.

$$\Rightarrow Var\{D(x, y, t)\} = \frac{(T - t)^{2}}{T^{2}} \cdot Var\{S_{1}(x, y)\} + \frac{t^{2}}{T^{2}} \cdot Var\{S_{2}(x, y)\}$$

Analiza și Prelucrarea Secventelor de Imagini, S.I. Bogdan IONESCU

Detecția tranzițiilor de tip dissolve

metode bazate pe analiza intensității pixelilor (continuare)

$$Var\{D(x,y,t)\} = \frac{(T-t)^2}{T^2} \cdot Var\{S_1(x,y)\} + \frac{t^2}{T^2} \cdot Var\{S_2(x,y)\}$$

$$\Rightarrow Var\{D(x, y, t)\} = c \cdot (t - a)^2 - b$$

unde
$$a$$
, b , \S i c sunt constante:
$$a = \frac{T \cdot Var\{S_1(x,y)\}}{Var\{S_1(x,y)\} + Var\{S_2(x,y)\}}$$

$$b = \frac{Var\{S_1(x, y)\} \cdot Var\{S_2(x, y)\}}{Var\{S_1(x, y)\} + Var\{S_2(x, y)\}}$$

$$c = \frac{Var\{S_1(x, y)\} + Var\{S_2(x, y)\}}{T^2}$$

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip dissolve

metode bazate pe analiza intensității pixelilor (continuare)

$$Var\{D(x,y,t)\} = c \cdot (t-a)^2 - b$$

$$\Rightarrow \frac{\partial Var\{D(x,y,t)\}}{\partial t} = 2 \cdot c \cdot (t-a) \Rightarrow \frac{\partial^2 Var\{D(x,y,t)\}}{\partial t^2} = 2 \cdot c$$

- > pe parcursul unei tranziții de tip dissolve evoluția temporală a varianței intensității pixelilor are un comportament parabolic:
- → derivata secundă ~ 0 (înainte şi după dissolve) + valori constante pozitive pe durata tranziției.
- [Alattar 93] exploata prezența a două puncte de extrem negativ în derivata secundă (corespund începutului și sfârșitului tranziției

Analiza și Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip dissolve

metode bazate pe analiza intensității pixelilor (continuare)

- [Truong 00] foloseste următoarele considerații:
- derivata întâi a varianței intensității pixelilor pe parcursul unui crossdissolve trebuie să fie monoton crescătoare (valoare negativă → valoare pozitivă),
- varianța intensității pixelilor pentru cele două secvențe S₁ și S₂ trebuie să fie superioară unui anumit prag.
- durata unui dissolve nu trebuie să depășească un anumit interval de valori $[T_{min}; T_{max}]$.
- > metode ce nu pornesc de la definiția matematică:
- [Su 05] analizează pixelii ce prezintă o creștere / descreștere monotonă a intensității luminoase pentru o anumită fereastră de analiză, 7 dissolve.

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

50

Detecția tranzițiilor de tip dissolve metode bazate pe analiza intensității pixelilor (continuare) • [lonescu 10] (adaptare [Su 05] [Zhang 93]): $FP_{k} FP_{i} = \frac{FadeOut_{i} + FadeIn_{i}}{FadeIn_{i}}$ eşant. spaţială $X \cdot Y$ FP_N dissolve prag dublu FP, >CT & max dissolve FP_i >TT & ∠ & ⅃ [film de animație François le Vaillant, CITIA-Anneo Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip dissolve

metode bazate pe analiza intensității pixelilor (continuare)

- [lonescu 10] (adaptare [Su 05] [Zhang 93]):
- > detecție folosind un prag dublu:
- A. dacă $FP_k > \tau_{CT}$ (Certain Threshold) și FP_k este maxim local, \rightarrow se declară dissolve în $[k - t_{max}/2; k + t_{max}/2]$ $(t_{max}$ reprezintă durata maximă a unui dissolve).
- B. dacă $FP_k > \tau_{TT}$ (Tolerant Threshold) dar $FP_k < \tau_{CT}$, atunci k este pontențial imaginea de mijloc a unui dissolve,

→ dacă D_{left} >0.5FP_k

D_{left}>0.5FP_k

→ dissolve (adaptare la formă semnal)

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip dissolve

metode bazate pe trăsături

- > ipoteză: pe durata tranziției contururile obiectelor din imaginea de început dispar progresiv în timp ce contururile obiectelor din imaginea finală apar progresiv.
 - [Zabih 99] folosește raportul ECR (pe parcursul tranziției acesta are valori semnificative);
 - [Lienhart 99] defineşte contrastul contururilor, EC (edge contrast):

$$EC(I_E) = 1 + \frac{s(I_E) - w(I_E) - 1}{s(I_E) + w(I_E) + 1}$$

unde $I_E(x,y,k)$ reprezintă harta de contururi a imaginii curente la momentul k, $s(I_E)$ și $w(I_E)$ reprezintă numărul total de puncte de contur semnificative și respectiv "slabe".

→ dissolve = minim local EC mărginit de variații abrupte.

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip dissolve

metode bazate pe trăsături (continuare)

 SIFT - Scale-Invariant Feature Transform, SURF - Speeded Up Robust Features, etc.

metode bazate pe transformări

- > detecția este realizată într-un domeniu transformat, de regulă în spațiul FFT sau DCT:
 - [Gu 97] calculează procentul de blocuri de pixeli pentru care diferența absolută între coeficienții DCT rămâne superioară unui anumit prag pe durata a 10 până la 60 de imagini (durata medie max. dissolve).
 - [Boccignone 00] dissolve când numărul de blocuri de pixeli ce prezintă o modificare semnificativă a coeficienților DCT precum şi gradul stocastic (aleator) al vectorilor de mişcare > prag.
- > avantaje implementare timp real.

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

Detecția tranzițiilor de tip dissolve

metode bazate pe alte surse de informație

- > similar detecției de cut și fade:
 - [Boreczky 98] structura secvenței este modelată cu rețele Markov ascunse (HMN);
 - [Park 05] foloseşte spectrul ritmului vizual (Visual Rhythm Spectrum);
 - [Das 08] foloseşte histograme fuzzy şi matrice de co-ocurență fuzzy;
- > metode mai puțin specializate care de cele mai multe ori abordează detecția mai multor tipuri de tranziții graduale simultan.

concluzii

- metodele de detecție de cut destul de robuste, rate uzuale ~ 95%;
- detecția de fade şi în special de dissolves mult mai complexă, rate de detecție medii [70-80]%;
- tendință dezvoltare metode de detecție generică a pasajelor de tranziție.

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

-

> M4. Structura temporală [Activitate inter-plan] Analiza și Prelucrarea Secvențelor de Imagini, ș.I. Bogdan IONESCU 58

Activitate inter-plan: ritm

> ipoteză: conținutul de acțiune este în general corelat cu o rată semnificativă de schimbări de plan,

 $\xi_T(i) \quad \text{numărul de schimbări de plan ce au loc în fereastra temporală de dimensiune } \mathcal{T} \text{ (ex. 5s) începând cu cadrul la momentul } i;$

> evaluând valorile lui $\xi_T(i)$ pentru întreaga secvență (ex. ferestre suprapuse cu un pas 1), determinăm ritmul vizual mediu al secvenței:

$$\overline{v}_T = E\{\xi_T(i)\}$$
 ~ tempo mediu.

Analiza şi Prelucrarea Secvențelor de Imagini, Ş.I. Bogdan IONESCU

