Modélisation de motifs

Hélène Touzet helene.touzet@univ-lille.fr CNRS, Bonsai, CRIStAL

Définition

- suite de nucléotides ou d'acides aminés
- résultat d'une pression sélective : le motif est mieux conservé que le reste de la séquence
 - site actif
 - contrainte spatiale (structure 3D)
 - site de liaison
- caractériser ces motifs participent à l'analyse fonctionnelle des séquences qui les portent

Exemples de motifs nucléiques

- signaux liés à la structure d'un gène
 - codon d'initiation
 - codon de terminaison
 - signaux de transcription (TATA box, etc.)
 - signaux d'épissage
- sites de fixation de facteurs de transcription

Exemples de motifs protéiques

- signature de familles de protéines
- sites enzymatiques
- cystéines impliquées dans des ponts di-sulfures
- régions impliquées dans la liaison à un autre molécule ou une autre protéine

```
(ADP/ATP, GDP/GTP, calcium, ADN, etc.)
```

Comment modéliser un motif biologique?

Quatre types de modèle

- séquence consensus
- expression Prosite
- matrices positionelles
- profils HMM

Code IUPAC pour l'ADN

- International Union of Pure and Applied Chemistry
- alphabet à 15 lettres qui décrit toutes les combinaisons de nucléotides possibles
 - adenine
 - cytosine
 - guanine
 - thymine
 - uracile
 - G A (purine)
 - T C (pyrimidine)
 - G T (groupe keto)

- A C (groupe amino) G C (strong) W A T (weak)
- B G T C (pas A)
- D G A T (pas C)
 H A C T (pas G)
- V G C A (pas T)
- AGCT

sequence	1	С	С	T	Α	T	G	G	G	С	T	Α	С	Α	Α	G	С	С	Α	
sequence	2	С	Α	T	С	С	T	G	T	С	С	С	T	Α	T	G	G	Α	Α	
sequence	3	T	С	-	-	Α	Α	G	G	С	С	G	С	Α	T	G	-	Α	Α	
sequence	4	T	С	-	-	Α	Α	G	G	С	Α	G	С	Α	T	G	G	Α	Α	
IUPAC		Y	М	-	-	Н	D	G	K	С	Н	٧	Y	Α	W	G	-	M	Α	

Sequence logo

```
      sequence 1
      C C T A T G G G C T A C A A G C C A

      sequence 2
      C A T C C T G T C C C T A T G G A A

      sequence 3
      T C - A A G G C C G C A T G - A A

      sequence 4
      T C - A A G G C C G C A T G G A A

      IUPAC
      Y M - - H D G K C H V Y A W G - M A
```


https://weblogo.berkeley.edu

Exemple: site de fixation du facteur de transcription *c-Ets-1* chez les murins (15 séquences, TRANSFAC M00032)

GCCGGAAGTG ACCGGAAGCA GCCGGATGTA ACCGGAAGCT ACCGGATATA CCCGGAAGTG ACAGGAAGTC GCCGGATGCA TCCGGAAGTA ACAGGAAGCG ACAGGATATG TCCGGAAACC ACAGGATATC CAAGGACGAC TCTGGACCCT

Séquence consensus \rightarrow N C M G G A W G Y N

Expression Prosite

motifs protéiques

syntaxe

- : séparation des éléments

x : n'importe quel acide aminé

(3,5) : nombre d'occurrences (entre 3 et 5)

[NHG] : alternative (N, H ou G)

Matrices positionelles

Point de départ: alignement multiple

```
GCCGGAAGT
ACCGGAAGC
GCCGGAT
 CCGGAA
CCCGGAA
GCCGGATGCA
CCGGAA
ACAGGAT
CAAGGACGAC
```


sites de fixation du facteur de transcription c-Ets-1

CCGGAAGTG AGG ACGAC

matrice de comptage ligne : position de l'alignement colonne : acide nucléique

matrice de comptage

A C G T 7 2 3 3 1 14 0 0 5 9 0 1 0 0 15 0 0 15 0 15 0 0 0 8 2 0 5 4 1 10 0 1 6 0 8 5 4 4 2

>

$$F_{ij} = \frac{C_{ij} + f_i * pw}{\sum_i C_{ij} + pw}$$

i acide nucléique
 j position de l'alignement
 f fréquence génomique
 pw pseudo-poids

matrice de fréquences corrigées

Α	C	G	T
0.47	0.13	0.2	0.2
0.07	0.93	0	0
0.33	0.6	0	0.07
0	0	1	0
0	0	1	0
1	0	0	0
0.53	0.13	0	0.33
0.27	0.07	0.67	0
0.07	0.4	0	0.53
0.33	0.27	0.27	0.13

matrice de fréquences corrigées

Α	С	G	T
0.47	0.13	0.2	0.2
0.07	0.93	0	0
0.33	0.6	0	0.07
0	0	1	0
0	0	1	0
1	0	0	0
0.53	0.13	0	0.33
0.27	0.07	0.67	0
0.07	0.4	0	0.53
0.33	0.27	0.27	0.13

$$\triangleright$$

$$P_{ij} = \log(\frac{F_{ij}}{f_i})$$

i acide nucléique j position de l'alignement f fréquence génomique

matrice de poids

Α	C	G	T
0.91	-0.94	-0.32	-0.32
-1.8	1.9	-2.3	-2.3
0.4	1.26	-2.3	-1.8
-2.3	-2.3	2	-2.3
-2.3	-2.3	2	-2.3
2	-2.3	-2.3	-2.3
1.1	-0.94	-2.3	0.4
0.11	0.07	1.42	-2.3
-1.8	0.4	0	1.1
0.4	0.11	0.11	-0.94

- poids positif: les bases plus fréquentes que la moyenne
- poids négatif: les bases moins fréquentes que la moyenne

Α	C	G	T
0.91	-0.94	-0.32	-0.32
-1.8	1.9	-2.3	-2.3
0.4	1.26	-2.3	-1.8
-2.3	-2.3	2	-2.3
-2.3	-2.3	2	-2.3
2	-2.3	-2.3	-2.3
1.1	-0.94	-2.3	0.4
0.11	0.07	1.42	-2.3
-1.8	0.4	0	1.1
0.4	0.11	0.11	-0.94

TACGGATACGTTGACCATGGTACCT

Α	C	G	T
0.91	-0.94	-0.32	-0.32
-1.8	1.9	-2.3	-2.3
0.4	1.26	-2.3	-1.8
-2.3	-2.3	2	-2.3
-2.3	-2.3	2	-2.3
2	-2.3	-2.3	-2.3
1.1	-0.94	-2.3	0.4
0.11	0.07	1.42	-2.3
-1.8	0.4	0	1.1
0.4	0.11	0.11	-0.94

Score de TACGGATACG

TACGGATACGTTGACCT

Α	C	G	T
0.91	-0.94	-0.32	-0.32
-1.8	1.9	-2.3	-2.3
0.4	1.26	-2.3	-1.8
-2.3	-2.3	2	-2.3
-2.3	-2.3	2	-2.3
2	-2.3	-2.3	-2.3
1.1	-0.94	-2.3	0.4
0.11	0.07	1.42	-2.3
-1.8	0.4	0	1.1
0.4	0.11	0.11	-0.94

Score de TACGGATACG

 on repère le poids de chaque position dans la matrice

T A C G G A T A C G T T G A C C A T G G T A C C T T A C G G A T A C G

Α	C	G	T
0.91	-0.94	-0.32	-0.32
-1.8	1.9	-2.3	-2.3
0.4	1.26	-2.3	-1.8
-2.3	-2.3	2	-2.3
-2.3	-2.3	2	-2.3
2	-2.3	-2.3	-2.3
1.1	-0.94	-2.3	0.4
0.11	0.07	1.42	-2.3
-1.8	0.4	0	1.1
0.4	0.11	0.11	-0.94

score de TACGGATACG

- on repère le poids de chaque position dans la matrice
- 2 le score est la somme des poids

T A C G G A T A C G T T G A C C A T G G T A C C T T A C G G A T A C G score: 6.16

Α	C	G	T
0.91	-0.94	-0.32	-0.32
-1.8	1.9	-2.3	-2.3
0.4	1.26	-2.3	-1.8
-2.3	-2.3	2	-2.3
-2.3	-2.3	2	-2.3
2	-2.3	-2.3	-2.3
1.1	-0.94	-2.3	0.4
0.11	0.07	1.42	-2.3
-1.8	0.4	0	1.1
0.4	0.11	0.11	-0.94

on recommence à la position suivante

score de ACGGATACGT

 matrices nucléiques: sites de fixation de facteurs de transcription

JASPAR: http://jaspar.genereg.net

TRANSFAC

• matrices protéiques: signatures protéiques

 ${\sf PROSITE:https://prosite.expasy.org} \to {\sf InterPro}$

http://jaspar.genereg.net

Profils HMM

- HMM= Hidden Markov model
- modèle probabiliste plus fin que les matrices
- prise en compte des insertions, des délétions
- mis en œuvre dans PFAM et dans Interpro (motifs protéiques)

création d'un état par colonne

prise en compte des insertions

prise en compte des délétions

- émissions fréquences des acides aminés
- transitions
 circulation dans le modèle
 indels

En résumé

- Etats matchants : colonnes avec moins de 50% de -
- Etats d'insertion : majorité de -
- Etats de délétion : minorité de -
- Probabilités d'émission : on compte le nombre d'occurrences de chaque acide aminé
- Probabilités de transition : on compte le nombre de séquences empruntant la transition
- Correction avec les pseudo-poids : +1 à chaque compte

Modèle complet

Recherche avec un profil HMM

• score : probabilité maximale d'un mot dans le modèle

Score de VHKALARY

$$1 \times \frac{2}{5} \times 1 \times \frac{2}{5} \times 1 \times \frac{1}{5} \times \frac{1}{5} \times 1 \times 0.5 \times 1 \times 1 \times \frac{1}{5} \times 1 \times 1 \times \frac{1}{2} \times 1$$

 localisation d'un motif dans une séquence: algorithme de Viterbi

HMMER

- série d'utilitaires pour manipuler les profile HMM
 - recherche de motifs sur une séquence
 - construction d'un motif à partir d'un alignement multiple
 - etc.
- inteface web ou installation locale avec Conda
- https://www.ebi.ac.uk/Tools/hmmer

Pfam - protein families

- création en 1995
- version 33.1 (2020): 18 259 familles et 635 regroupements en clans
- · pour chaque famille
 - ensemble de séquences
 - alignement multiple
 - profile HMM (contruits avec HMMER)
 - liens extérieurs: PDB, etc.

Pfam 33.1 (May 2020, 18259 entries)

The Pfam database is a large collection of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs). More...

QUICK LINKS	YOU CAN FIND DATA IN PFAM IN VARIOUS WAYS
SEQUENCE SEARCH	Analyze your protein sequence for Pfam matches
VIEW A PFAM ENTRY	View Pfam annotation and alignments
VIEW A CLAN	See groups of related entries
VIEW A SEQUENCE	Look at the domain organisation of a protein sequence
VIEW A STRUCTURE	Find the domains on a PDB structure
KEYWORD SEARCH	Query Pfam by keywords
JUMP TO	enter any accession or ID Go Example Enter any type of accession or ID to jump to the page for a Pfam entry or clan, UniProt sequence, PDB structure, etc.
	Or view the help pages for more information

https://pfam.xfam.org

> protein

mvlspadktnvkaawgkvgahageygaealermflsfpttktyfphfdlshgsaqvkghg kkvadaltnavahvddmpnalsalsdlhahklrvdpvnfkllshcllvtlaahlpaeftp avhasldkflasvstvltskyr

InterPro

Protein sequence analysis & classification

- http://www.ebi.ac.uk/interpro
- developed at EBI since 1999 (version 70)
- signatures for protein families, domains and functional sites collected from 14 databases (PFAM, Prosite and many more)
 35 020 entries based on 48 938 signatures
- mappings of InterPro entries to Gene Ontology (GO) terms (InterPro2GO)

InterPro provides functional analysis of proteins by classifying them into families and pre proteins in this way, InterPro uses predictive models, known as signatures, provided by $\mathfrak s$ databases) that make up the InterPro consortium. We combine protein signatures from the resource, capitalising on their individual strengths to produce a powerful integrated databases.

Citing InterPro

https://www.ebi.ac.uk/interpro

> protein

 $\verb|mvlspad| ktnvkaawgkvgahageygaealermflsfpttktyfphfdlshgsaqvkghg| kkvadaltnavahvddmpnalsalsdlhahklrvdpvnfkllshcllvtlaahlpaeftp| avhasldkflasvstvltskyr|$