Termodinámica - Clase 17

Graeme Candlish

Institúto de Física y Astronomía, UV graeme.candlish@ifa.uv.cl

Contenido

Conceptos en esta clase

Equipartición de la energía

Teoría clásica de los calores específicos

Resumen

Conceptos en esta clase

- Equipartición de la energía
- Teoría clásica de los calores específicos

Contenido

Conceptos en esta clase

Equipartición de la energía

Teoría clásica de los calores específicos

Resumer

Mezcla de gases

Consideremos una mezcla de gases ideales inertes sin reacciones químicas de nuevo. Cada gas tiene como ecuación de estado:

$$p_j V = N_j k_B T$$

reemplazando R por k_B : $k_B = R/N_A$. De la teoría cinética:

$$p_j V = \frac{1}{3} N_j m_j \bar{v_j^2}.$$

Mezcla de gases

Igualando las dos expresiones anteriores tenemos

$$\frac{1}{2}m_i\bar{v_i^2} = \frac{3}{2}k_BT$$

- Lado izquierdo: energía cinética promedia por partícula (para cada gas).
- Lado derecho: energía térmica asociada a cada partícula del gas, que no depende de las propiedades del gas.

Energía cinética de traslación

Energía cinética para una partícula de masa m: $(1/2)mv_x^2$. El valor promedio de la velocidad total cuadrada de varias partículas es

$$\bar{v^2} = \bar{v_x^2} + \bar{v_y^2} + \bar{v_z^2}$$

Suponiendo isotropía:

$$\bar{v_x^2} = \bar{v_y^2} = \bar{v_z^2} \quad \Rightarrow \quad \bar{v^2} = 3\bar{v_x^2} = 3\bar{v_y^2} = 3\bar{v_z^2}$$

Por lo tanto, la energía cinética promedia (de un grupo de partículas) asociada al componente v_x de la velocidad es

$$\frac{1}{2}m\bar{v_x^2} = \frac{1}{6}m\bar{v^2} = \frac{1}{2}k_BT.$$

7

Energía cinética de traslación

La energía cinética de traslación total (por molécula/partícula) es $(3/2)k_BT$, así que la energía cinética de traslación asociada a cada componente de velocidad es un tercio de este total.

⇒ Este coincide con el **principio de equipartición**: cada partícula tiene 3 grados de libertad traslacional, así que cada grado corresponde a un tercio de la energía cinética traslacional total.

Principio de equipartición de la energía

Principio de equipartición de la energía: la energía total de un sistema se reparte en partes iguales entre todos los grados de libertad.

- Podemos asociar una coordenada a cada grado de libertad (e.g. posición, ángulo de rotación, etc.).
- Si la energía asociada es una función cuadrática de dicha coordenada, la energía promedia asociada es (1/2)k_BT.
- Ejemplo: la energía cinética traslacional.

Grados de libertad (valor medio de la energía en cada caso: $(1/2)k_BT$).

- Energía cinética traslacional: $(1/2)mv_x^2$, cuadrática en v_x .
- Energía cinética rotacional: $(1/2)I\omega^2$, cuadrática en ω .
- Energía potencial de oscilación: $(1/2)Kx^2$, cuadrática en x

La energía media *total* de una partícula con f grados de libertad (que cumplen el requerimiento de tener energía como una función cuadrática de las "coordenadas") está dada por

$$\bar{\epsilon} = \frac{f}{2} k_B T$$

y la energía total de N moléculas será:

$$N\bar{\epsilon} = \frac{f}{2}Nk_BT = \frac{f}{2}nRT$$

Contenido

Conceptos en esta clase

Equipartición de la energía

Teoría clásica de los calores específicos

Resumen

Energía interna y capacidad calorífica

Ahora, con un modelo microscópico de la energía interna, podemos escribir

$$U = \frac{f}{2}NkT = \frac{f}{2}nRT \qquad u = \frac{f}{2}RT$$

Podemos comprobar nuestro modelo por comparación experimental con las capacidades caloríficas:

$$c_{v} = \left(\frac{\partial u}{\partial T}\right)_{v} = \frac{d}{dT}\left(\frac{f}{2}RT\right) = \frac{f}{2}R.$$

Energía interna y capacidad calorífica

Para un gas ideal sabemos que

$$c_P = c_v + R = \frac{f}{2}R + R = \frac{f+2}{2}R$$

y también

$$\gamma = \frac{c_P}{c_V} = \frac{f+2}{f}$$

Ahora, finalmente, tenemos expresiones para los valores de las capacidades caloríficas!

Gas ideal monoatómico

Cada partícula tiene 3 grados de libertad traslacional:

$$c_{V} = \frac{f}{2}R = \frac{3}{2}R$$
$$c_{P} = \frac{5}{2}R$$
$$\gamma = \frac{5}{3}$$

Gas ideal diatómico

La molécula tiene 3 grados de libertad traslacional, 2 grados de libertad rotacional. También hay oscilación a lo largo del enlazo entre los átomos, así que hay energía cinética y energía potencial de oscilación. En total, una molécula diatómica tiene 7 grados de libertad:

$$c_{v}=rac{7}{2}R \qquad c_{P}=rac{9}{2}R \qquad \gamma=rac{9}{7}.$$

Gas ideal diatómico

En la realidad, los gases diatómicos reales (H_2 , O_2 , etc.) tienen $c_v \approx (5/2)R$ y $\gamma = 7/2$, que corresponde a 5 grados de libertad. Este es porque a temperaturas ambientales las moléculas tienen energía cinética de traslación y de rotación o oscilación, pero no ambas a la vez.

Comparando la teoría con los datos experimentales

Gas	γ	c_P/R	c_v/R	$\frac{c_P - c_v}{R}$
He	1,66	2,50	1,506	0,991
Ne	1,64	2,50	1,52	0,975
A	1,67	2,51	1,507	1,005
Kr	1,69	2,49	1,48	1,01
Xe	1,67	2,50	1,50	1,00
H ₂	1,40	3,47	2,47	1,00
O_2	1,40	3,53	2,52	1,01
N _o	1,40	3,50	2,51	1,00
co	1,42	3,50	2,50	1,00
NO	1,43	3,59	2,52	1,07
Cl_2	1,36	4,07	3,00	1,07
CO,	1,29	4,47	3,47	1,00
NH ₃	1,33	4,41	3,32	1,10
CH₄	1,30	4,30	3,30	1,00
Aire	1,40	3,50	2,50	1,00

Propiedades de gases reales a la temperatura ambiental.

Contenido

Conceptos en esta clase

Equipartición de la energía

Teoría clásica de los calores específicos

Resumen

Resumen

- Teoría de la equipartición de la energía: la energía total se reparte en partes iguales entre todos los grados de libertad de un sistema.
- Aplicando la equipartición a los átomos/moléculas tenemos la teoría clásica de las capacidades caloríficas.
- La concordancia entre la teoría y los datos experimentales no es perfecta, ya que la teoría es clásica (es decir, no cuántica).