CSC165 Problem Set 2

Jonah Kisluk, Nick Pestov, Xuanqi Wei September 12, 2023

Contents

1	Q1: Number Theory	1
2	Q2: Floors and Ceilings	2
3	O3: Induction	4

1 Q1: Number Theory

(a) Fact from the worksheet:

 $\forall a, b, \in \mathbb{Z}, a \neq 0 \lor b \neq 0 \Rightarrow (\exists p_1, q_1 \in \mathbb{Z}, gcd(a, b) = p_1 a + q_1 b) \land (\forall d \in \mathbb{Z}^+, (\exists p_2, q_2 \in \mathbb{Z}, d = p_2 a + q_2 b) \Rightarrow d \geq gcd(a, b))$

Proof:

Let $n \in \mathbb{N}$

Since $n \in \mathbb{N}$, $n \in \mathbb{Z}$ and $n \geq 0$, gives,

$$9n + 1 \ge 1 \ and \ 10n + 1 \ge 1; 9n + 1 \in \mathbb{Z} \ and \ 10n + 1 \in \mathbb{Z}$$

Thus, $9n + 1 \neq 0$ and $10n + 1 \neq 0$.

By the fact form the worksheet (as listed above), we have,

$$\forall d \in \mathbb{Z}^+, (\exists p_2, q_2 \in \mathbb{Z}, d = p_2(9n+1) + q_2(10n+1)) \Rightarrow d \geq \gcd(9n+1, 10n+1))$$

Let $d_1 = 1$, which $d \in \mathbb{Z}^+$, gives

$$d_1 = 10(9n+1) + 9(10n+1)$$
 and $gcd(9n+1, 10n+1) \le d_1 = 1$

According to fact 4 in worksheet 4, gives,

$$\forall n, m \in \mathbb{N}, n \neq 0 \lor m \neq 0 \Rightarrow \gcd(n, m) \geq 1$$

Since $9n + 1 \neq 0$ and $10n + 1 \neq 0$, $gcd(9n + 1, 10n + 1) \geq 1$.

Since $gcd(9n + 1, 10n + 1) \ge 1$ and $gcd(9n + 1, 10n + 1) \le 1$, gives,

$$qcd(9n+1,10n+1)=1$$

Using the worksheet fact, and using a = 9n + 1, b = 10n + 1 and d = 1, we can conclude that gcd(9n + 1, 10n + 1) = 1.

(b) Proof:

Let $m, n \in \mathbb{Z}$, assume $n \mid m \land Prime(n)$

Given $\exists k_1 \in \mathbb{Z} \ s.t. \ m = k_1 n \ \text{according to} \ n \mid m$

Suppose $n \mid (m+1)$, then $\exists k_2 \in \mathbb{Z} \ s.t. \ m+1 = k_2 n$

Subtract two equations, gives,

$$k_2 n - k_1 n = (m+1) - m$$

 $n(k_2 - k_1) = 1$

Since n is a prime, n > 1; Since $k_1, k_2 \in \mathbb{Z}, (k_2 - k_1) \in \mathbb{Z}$

Therefore, $n \cdot (k_2 - k_1) \neq 1$ (for n > 1 but $0 < \frac{1}{k_2 - k_1} \leq 1$), gives,

It contradicts to $n(k_2 - k_1) = 1$

Thus, $n \nmid (m+1)$

2 Q2: Floors and Ceilings

(a) Proof

Let $x \in \mathbb{N}$. We'll separate the proof into two cases: Either x is even or x is odd.

Case 1: Let x be even

By definition: $\exists k \in \mathbb{Z}, x = 2k$ (Since floor functions have no effect on integers, and $\frac{x}{2}$ is an integer)

$$\left\lceil \frac{x-1}{2} \right\rceil = \left\lceil \frac{2k-1}{2} \right\rceil = \left\lceil k - \frac{1}{2} \right\rceil = k = \frac{x}{2} = \left\lfloor \frac{x}{2} \right\rfloor$$

Case 2: Let x be odd

By definition: $\exists k \in \mathbb{Z}, x = 2k - 1$

(b) (i) We want to prove $\forall x \in \mathbb{R}, \lceil x - 1 \rceil = \lceil x \rceil - 1$

Proof

Let $x \in \mathbb{R}$, gives,

$$x \le \lceil x \rceil < x + 1$$
$$x - 1 \le \lceil x \rceil - 1 < x$$

According to the fact that,

$$0 \le \lceil x \rceil - x < 1$$
$$0 \le \lceil x - 1 \rceil - (x - 1) < 1$$
$$x - 1 < \lceil x - 1 \rceil < x$$

We want to prove that $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z}, x - 1 \leq n < x$.

Let $x \in \mathbb{R}$. Assume there're two integers between x - 1 and x, which,

$$\exists n_1, n_2 \in \mathbb{Z}, x - 1 \le n_1 < n_2 < x, \text{ which } n_1 \ne n_2$$

Since $n_1 \neq n_2$, $n_1 < n_2$ and $n_1, n_2 \in \mathbb{Z}$, gives, $min(n_2 - n_1) = 1$

Since $n_2 < x$, gives, $x - n_2 > 0$

Thus, $min(x - n_1) > 1$, gives, min(x - (x - 1)) > 1

However, x - (x - 1) = 1, which contradicts to min(x - (x - 1)) > 1.

Therefore, we've proved that $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z}, x-1 \leq n < x$

Since $\lceil x \rceil - 1 \in \mathbb{Z}$ and $x - 1 \leq \lceil x \rceil - 1 < x$, gives, $\lceil x \rceil - 1$ is the only integer between x and x - 1.

Since $\lceil x-1 \rceil \in \mathbb{Z}$ and $x-1 \le \lceil x-1 \rceil < x$, gives, $\lceil x-1 \rceil$ is the only integer between x and x-1

Therefore, we have $\forall x \in \mathbb{R}, \lceil x - 1 \rceil = \lceil x \rceil - 1$ as needed.

(ii) We want to disprove the statement and prove: $\exists x, y \in \mathbb{R}, \lceil xy \rceil \neq \lceil x \rceil \lfloor y \rfloor$ Proof

Let x = 0.5, y = 2, gives:

$$\lceil xy \rceil = \lceil 0.5 \cdot 2 \rceil = \lceil 1 \rceil = 1 \neq 2 = 1 \cdot 2 = \lceil 0.5 \rceil \lfloor 2 \rfloor = \lceil x \rceil \lfloor y \rfloor$$

Therefore, we have $\exists x, y \in \mathbb{R}, \lceil xy \rceil \neq \lceil x \rceil \lfloor y \rfloor$ as needed.

3 Q3: Induction

a) Proof: We want to prove $\forall n \in \mathbb{N}, 9 \mid 11^n - 2^n$.

Base Case: Let n = 0. We want to prove $9 \mid 11^0 - 2^0$, meaning $\exists k_0 \in \mathbb{Z}, 11^0 - 2^0 = 9k_0$:

$$11^0 - 2^0 = 1 - 1 = 0 = 9 \cdot 0$$

when $k_0 = 0$, $11^0 - 2^0 = 9k_0$, saying that:

Therefore,
$$\exists k_0 \in \mathbb{Z}$$
, when $n = 0, 9 \mid 11^0 - 2^0$

Hence, we've proven the base case.

Induction Hypothesis: Let $n \in \mathbb{N}$. Assume $9 \mid 11^n - 2^n$ which, gives,

$$\exists k \in \mathbb{Z}, 11^n - 2^n = 9k$$

Induction Step: Want to prove $9 \mid 11^{n+1} - 2^{n+1}$, meaning $\exists k_1 \in \mathbb{Z}, 11^{n+1} - 2^{n+1} = 9k_1$ Let $w = 11^n + 2k$

$$11^{n+1} - 2^{n+1}$$
= $11(11^n) - 2(2^n)$
= $9(11^n) + 2(11^n) - 2(2^n)$
= $9(11^n) + 2(11^n - 2^n)$
= $9(11^n) + 2(9k)$ By Induction Hypothesis
= $9 \cdot (11^n + 2k)$
= $9 \cdot w \ (9 \mid 9 \cdot w \ is \ True)$

when $k_1 = w$, $11^{n+1} - 2^{n+1} = 9k_1$.

Thus,
$$\exists k_1 \in \mathbb{Z}, \ 9 \mid 11^{n+1} - 2^{n+1}$$

b) Proof: We want to prove $\forall n \in \mathbb{N}, P_n = \prod_{i=0}^{n-1} P_i + 2$

Base Case: Let n = 0. We want to prove $P_0 = \prod_{i=0}^{0-1} P_i + 2$ where P_n is a Pierre Number. By Pierre Number Definition,

$$P_0 = 2^{2^0} + 1 = 2 + 1 = 3$$

Since, when n < j, then $\prod_{i=j}^{n} f(i) = 1$, gives,

$$\prod_{i=0}^{0-1} P_i + 2 = \prod_{i=0}^{-1} P_i + 2 = 1 + 2 = 3$$

Therefore, when n = 0, $P_0 = \prod_{i=0}^{0-1} P_i + 2$.

Hence, we've proven the base case.

Induction Hypothesis: Let $n \in \mathbb{N}$. Assume $P_n = \prod_{i=0}^{n-1} P_i + 2$

Induction Step: Want to prove $P_{n+1} = \prod_{i=0}^{(n+1)-1} P_i + 2$

$$\prod_{i=0}^{(n+1)-1} P_i + 2$$

$$= \prod_{i=0}^{n} P_i + 2$$

$$= \prod_{i=0}^{n-1} P_i \cdot P_n + 2$$

$$= (P_n - 2) \cdot P_n + 2$$

$$= P_n^2 - 2P_n + 2 \text{ (By the I.H.)}$$

$$= (P_n - 1)^2 + 1$$

$$= (2^{2^n} + 1 - 1)(2^{2^n} + 1 - 1) + 1 \text{ (By definition of } P_n = 2^{2^n} + 1)$$

$$= 2^{2(2^n)} + 1$$

$$= 2^{2^{n+1}} + 1$$

Since, by Pierre Number Definition, $P_{n+1} = 2^{2^{n+1}} + 1$, gives,

$$P_{n+1} = \prod_{i=0}^{(n+1)-1} P_i + 2$$

Hence, we've proven the induction successfully.

Thus,
$$\forall n \in \mathbb{N}, P_n = \prod_{i=0}^{n-1} P_i + 2$$