Validation par analyse statique

Partie: Interprétation abstraite, cours 3/3

Pierre-Loïc Garoche (merci à Pierre Roux pour ses contributions à ce cours)

ONERA

ENSEEIHT 2A 2019-2020

Page du cours : http://garoche.enseeiht.fr/N7/VAS/

Abstractions relationnelles

Rappel

Polyèdres

Si le cours avait duré un semestre..

Domaines non numérique Virgule flottante Partitionnement Stratégies d'itération Invariants quadratiques

Outils existants

- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ en $\mathbb{V} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en un \mathcal{D}^{\sharp}
 - ▶ non relationnel : les valeurs de x et y sont indépendantes

- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ en $\mathbb{V} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en un \mathcal{D}^{\sharp}
 - ▶ non relationnel : les valeurs de x et y sont indépendantes
- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ directement en un \mathcal{D}^{\sharp}
 - ightharpoonup relationnel: certaines combinaisons de x et y sont impossibles

- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ en $\mathbb{V} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en un \mathcal{D}^{\sharp}
 - ▶ non relationnel : les valeurs de x et y sont indépendantes
- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ directement en un \mathcal{D}^{\sharp}
 - relationnel: certaines combinaisons de x et y sont impossibles
 - + plus précis
 - plus compliqué et plus coûteux

- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ en $\mathbb{V} \to \mathcal{P}(\mathbb{Z})$ puis $\mathcal{P}(\mathbb{Z})$ en un \mathcal{D}^{\sharp}
 - ▶ non relationnel : les valeurs de x et y sont indépendantes
 - le cours précédent
- ▶ Abstraire $\mathcal{P}(\mathbb{V} \to \mathbb{Z})$ directement en un \mathcal{D}^{\sharp}
 - relationnel: certaines combinaisons de x et y sont impossibles
 - + plus précis
 - plus compliqué et plus coûteux
 - maintenant!

Deux petits dessins valent mieux que de longs discours

Exemple précédent au point de programme 2 (invariant de boucle)

Deux petits dessins valent mieux que de longs discours

Exemple précédent au point de programme 2 (invariant de boucle)

Deux petits dessins valent mieux que de longs discours Exemple précédent au point de programme 2 (invariant de boucle)

Limitations des domaines non relationnels

- Pour borner y, on a besoin de l'invariant $2x + y \le 66$.
- Cet invariant de boucle ne peut être exprimé par aucun domaine non relationnel.

Abstractions relationnelles

Rappel

Polyèdres

Octogones

Si le cours avait duré un semestre...

Domaines non numérique Virgule flottante Partitionnement Stratégies d'itération Invariants quadratiques

Outils existants

Polyèdres

On s'intéresse aux polyèdres fermés convexes soit des ensembles de la forme $\left\{\rho \left| \bigwedge_i \left(\sum_j a_{ij} \rho(v_j) \geqslant b_i\right)\right.\right\}$ avec $a_{ij}, b_i \in \mathbb{Z}$ et $v_i \in \mathbb{V}$.

Remarque

Les polyèdres ne forment pas un treillis : une intersection d'une infinité de carrés peut donner un disque.

Remarque

Les polyèdres ne forment pas un treillis : une intersection d'une infinité de carrés peut donner un disque.

Remarque

Les polyèdres ne forment pas un treillis : une intersection d'une infinité de carrés peut donner un disque.

Remarque

Les polyèdres ne forment pas un treillis : une intersection d'une infinité de carrés peut donner un disque.

Polyèdres, meilleure abstraction

Remarque

De nombreux objets concrets n'ont pas de meilleure abstraction : un disque peut être approximé par un polygone régulier à n côtés, un polygone régulier à 2n côtés sera une meilleure abstraction.

En pratique, on ne considère que des polyèdres avec un nombre fini de côtés, donc ce n'est pas gênant.

ONERA

Polyèdres, meilleure abstraction

Remarque

De nombreux objets concrets n'ont pas de meilleure abstraction : un disque peut être approximé par un polygone régulier à n côtés, un polygone régulier à 2n côtés sera une meilleure abstraction.

En pratique, on ne considère que des polyèdres avec un nombre fini de côtés, donc ce n'est pas gênant.

ONERA

Polyèdres, meilleure abstraction

Remarque

De nombreux objets concrets n'ont pas de meilleure abstraction : un disque peut être approximé par un polygone régulier à n côtés, un polygone régulier à 2n côtés sera une meilleure abstraction.

En pratique, on ne considère que des polyèdres avec un nombre fini de côtés, donc ce n'est pas gênant.

ONERA

Représentation des polyèdres

Deux représentations duales :

Contraintes

$$(M,c)$$
 avec $M \in \mathbb{Z}^{m \times n}$ et $c \in \mathbb{Z}^m$:

$$\gamma(M,c) = \{v \mid Mv \geqslant c\}$$

avec $v = (v_1, \dots, v_n)$ vecteur des variables $(v_i \in \mathbb{V})$.

Représentation des polyèdres

Deux représentations duales :

Contraintes

(M,c) avec $M \in \mathbb{Z}^{m \times n}$ et $c \in \mathbb{Z}^m$:

$$\gamma(M,c) = \{ v \mid Mv \geqslant c \}$$

avec $v = (v_1, \ldots, v_n)$ vecteur des variables $(v_i \in \mathbb{V})$.

Générateurs

(P,R) avec $P \in \mathbb{Z}^{n \times p}$ et $R \in \mathbb{Z}^{n \times r}$:

$$\gamma(P,R) = \left\{ \left(\sum_{i=1}^{p} a_i P_{.i} \right) + \left(\sum_{i=1}^{r} b_i R_{.i} \right) \left| \begin{array}{c} \forall i, a_i \geqslant 0, b_i \geqslant 0 \\ \sum_{i=1}^{p} a_i = 1 \end{array} \right. \right\}$$

P est nommé ensemble de points et R ensemble de rayons.

Contraintes

Contraintes

Générateurs

Contraintes

Générateurs

Définition

Une représentation est *minimale* si elle ne contient pas de contrainte (resp. point ou rayon) redondante (i.e. aucune contrainte (resp. point, rayon) ne peut être enlevée sans changer la concrétisation).

Définition

Une représentation est *minimale* si elle ne contient pas de contrainte (resp. point ou rayon) redondante (i.e. aucune contrainte (resp. point, rayon) ne peut être enlevée sans changer la concrétisation).

Remarques

- La représentation minimale n'est pas unique.
 - contraintes

Définition

Une représentation est *minimale* si elle ne contient pas de contrainte (resp. point ou rayon) redondante (i.e. aucune contrainte (resp. point, rayon) ne peut être enlevée sans changer la concrétisation).

Définition

Une représentation est *minimale* si elle ne contient pas de contrainte (resp. point ou rayon) redondante (i.e. aucune contrainte (resp. point, rayon) ne peut être enlevée sans changer la concrétisation).

Remarques

La représentation minimale n'est pas unique.

générateurs

▶ Il est intéressant de garder une représentation minimale pour minimiser la complexité spatiale et temporelle.

Remarques sur la dualité

Remarques

- Les opérations sont souvent plus faciles sur une des représentations que sur l'autre.
- On a un algorithme (Chernikova) pour passer d'une représentation à l'autre.
- Complexité au pire cas exponentielle en n (l'hypercube de dimension n a 2n faces et 2ⁿ sommets).

Opérations abstraites

Grâce à la dualité, on peut calculer simplement :

► $x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp}$: chaque générateur de x^{\sharp} vérifie toutes les contraintes de y^{\sharp}

Opérations abstraites

Grâce à la dualité, on peut calculer simplement :

- ► $x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp}$: chaque générateur de x^{\sharp} vérifie toutes les contraintes de y^{\sharp}
- $ightharpoonup x^{\sharp} = ^{\sharp} y^{\sharp} : x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp} \text{ et } y^{\sharp} \sqsubseteq^{\sharp} x^{\sharp}$

Opérations abstraites

Grâce à la dualité, on peut calculer simplement :

- ► $x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp}$: chaque générateur de x^{\sharp} vérifie toutes les contraintes de y^{\sharp}
- $\triangleright x^{\sharp} = {}^{\sharp}y^{\sharp} : x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp} \text{ et } y^{\sharp} \sqsubseteq^{\sharp} x^{\sharp}$
- $\triangleright x^{\sharp} \sqcap^{\sharp} y^{\sharp}$: union des ensembles de contraintes

Opérations abstraites

Grâce à la dualité, on peut calculer simplement :

- ► $x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp}$: chaque générateur de x^{\sharp} vérifie toutes les contraintes de y^{\sharp}
- $\triangleright x^{\sharp} = {}^{\sharp} y^{\sharp} : x^{\sharp} \sqsubseteq {}^{\sharp} y^{\sharp} \text{ et } y^{\sharp} \sqsubseteq {}^{\sharp} x^{\sharp}$
- $> x^{\sharp} \sqcap^{\sharp} y^{\sharp} : union des ensembles de contraintes$
- $ightharpoonup x^{\sharp} \sqcup^{\sharp} y^{\sharp}$: union des ensembles de générateurs

Opérations abstraites

Grâce à la dualité, on peut calculer simplement :

- ► $x^{\sharp} \sqsubseteq^{\sharp} y^{\sharp}$: chaque générateur de x^{\sharp} vérifie toutes les contraintes de y^{\sharp}
- $\triangleright x^{\sharp} = {}^{\sharp}y^{\sharp} : x^{\sharp} \sqsubseteq {}^{\sharp}y^{\sharp} \text{ et } y^{\sharp} \sqsubseteq {}^{\sharp}x^{\sharp}$
- $> x^{\sharp} \sqcap^{\sharp} y^{\sharp} : union des ensembles de contraintes$
- $ightharpoonup x^{\sharp} \sqcup^{\sharp} y^{\sharp}$: union des ensembles de générateurs
- Gardes : on ajoute des contraintes :

$$\left[\sum_{i} a_{i}v_{i} + b > 0 \right]_{C}^{\sharp} (M, c) = \left(\left(\begin{array}{c} M \\ a_{1} \dots a_{n} \end{array} \right), \left(\begin{array}{c} c \\ 1 - b \end{array} \right) \right)$$

Opérations abstraites, affectation

On applique simplement l'affectation aux générateurs :

$$\left[\!\!\left[v_i = \sum_i a_i v_i + b\right]\!\!\right]_{\mathrm{C}}^{\sharp} (P, R) = (AP + B, AR)$$

avec

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 & 0 \\ a_1 & \cdots & a_i & \cdots & a_n \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 \\ \vdots \\ b \\ \vdots \\ 0 \end{pmatrix}$$

Opérations abstraites, affectation

On applique simplement l'affectation aux générateurs :

$$\left[\!\!\left[v_i = \sum_i a_i v_i + b\right]\!\!\right]_{\mathrm{C}}^{\sharp} (P, R) = (AP + B, AR)$$

avec

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 & 0 \\ a_1 & \cdots & a_i & \cdots & a_n \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 \\ \vdots \\ b \\ \vdots \\ 0 \end{pmatrix}$$

Remarques

- Malgré l'absence de correspondance de Galois, toutes ces opérations sont optimales (et même exactes, sauf □[♯]).
- Dans le cas non linéaire, il faudrait abstraire par du linéaire...

Exemple (x = 2y)

Exemple (x = 2y)

$$P = \left(\begin{array}{ccc} -2 & 2 & 2 \\ -1 & -1 & 1 \end{array} \right)$$

Exercice (*)

Définir l'opérateur abstrait d'affectation sur les contraintes.

Élargissement

On a des chaînes croissantes infinies donc il nous faut un élargissement (widening).

Élargissement

On a des chaînes croissantes infinies donc il nous faut un élargissement (widening).

Idée

Toujours la même : ne conserver que les contraintes stables.

Élargissement

On a des chaînes croissantes infinies donc il nous faut un élargissement (widening).

Idée

Toujours la même : ne conserver que les contraintes stables.

Élargissement (suite et fin)

Plus formellement:

Définition

Pour x^{\sharp} et y^{\sharp} sous forme d'ensemble de contraintes minimaux,

$$x^{\sharp} \nabla y^{\sharp} =$$

$$\left\{c \in x^{\sharp} \mid y^{\sharp} \in \{c\}\right\} \cup \left\{c \in y^{\sharp} \mid \exists c' \in x^{\sharp}, x^{\sharp} =^{\sharp} \left(x^{\sharp} \setminus c'\right) \cup \left\{c\right\}\right\}$$

ox = rand(0, 12);
$$y = 42$$
; $y = x - 2$ 3
while $2(x > 0)$ {
 $3x = x - 2$; $4x = x - 2$ 3
 $y = y + 4$; $y = y + 4$; $y = y + 4$; $y = y + 4$ $y = y + 4$; $y = y + 4$; $y = y + 4$ $y = y + 4$; $y = y + 4$ $y = y + 4$; $y = y + 4$ $y =$

Т

$$0x = rand(0, 12);_{1}y = 42; \qquad 4 \xleftarrow{x = x - 2} 3$$
while $_{2}(x > 0)$ {
$$_{3}x = x - 2;$$

$$_{4}y = y + 4; \qquad y = y + 4$$

$$\begin{cases} 0 & \text{if } y = 42 \\ 0 & \text{if } y = 42 \end{cases}$$

$$\begin{cases} 0 & \text{if } y = 42 \\ 0 & \text{if } y = 42 \end{cases}$$

$$0x = rand(0, 12);_{1}y = 42;$$

$$while _{2}(x > 0) \{$$

$$3x = x - 2;$$

$$4y = y + 4;$$

$$y = y + 4$$

$$x = x - 2$$

$$x > 0$$

$$x = rand(0, 12)$$

$$y = 42$$

$$x \le 0$$

$$0x = rand(0, 12);_{1}y = 42;$$

$$4 \leftarrow x = x - 2$$

$$3x = x - 2;$$

$$4y = y + 4;$$

$$y = y + 4$$

$$x > 0$$

$$x = rand(0, 12)$$

$$y = 42$$

$$x \le 0$$

$$0x = rand(0, 12);_{1}y = 42;$$

$$while _{2}(x > 0) \{$$

$$3x = x - 2;$$

$$4y = y + 4;$$

$$3x = x - 2;$$

$$4y = y + 4;$$

$$4y$$

24 / 46

$$0x = rand(0, 12);_{1}y = 42;$$

$$4 = x - 2$$

$$3x = x - 2;$$

$$4y = y + 4;$$

$$y = y + 4$$

$$x = x - 2$$

$$x = rand(0, 12)$$

$$y = 42$$

$$x = x - 2$$

$$x > 0$$

$$0x = rand(0, 12);_{1}y = 42; \qquad 4 \xleftarrow{x = x - 2} 3$$
while $_{2}(x > 0)$ {
$$_{3}x = x - 2;$$

$$_{4}y = y + 4; \qquad y = y + 4$$
}
$$0 \xrightarrow{x = rand(0, 12)} 1 \xrightarrow{y = 42} 2 \xrightarrow{x \le 0} 5$$

Exemple (suite et fin)

$$0x = rand(0, 12);_{1}y = 42; 4 = x - 2
while $_{2}(x > 0)$ {

$$3x = x - 2;
$$_{4}y = y + 4; y = y + 4;$$
}

$$0 = rand(0, 12)$$
 $y = 42$ $x \le 0$$$$$

Exemple (suite et fin)

$$0x = rand(0, 12);_{1}y = 42;$$

$$while _{2}(x > 0) \{$$

$$3x = x - 2;$$

$$4y = y + 4;$$

$$y = y + 4$$

$$x = x - 2$$

$$x > 0$$

$$y = 42$$

$$x \le 0$$

Exemple (suite et fin)

$$_{0}x = rand(0, 12);_{1}y = 42;$$

while $_{2}(x > 0)$ {
 $_{3}x = x - 2;$
 $_{4}y = y + 4;$
}₅

x = x - 2

Abstractions relationnelles

Rappel

Polyèdres

Octogones

Si le cours avait duré un semestre...

Domaines non numériques

Virgule flottante

Partitionnement

Stratégies d'itération

Invariants quadratiques

Outils existants

Octogones

Similaire aux polyèdres mais en autorisant seulement les pentes multiples de 45°.

Octogones

Similaire aux polyèdres mais en autorisant seulement les pentes multiples de 45°.

- moins précis
- + meilleure complexité : chaque opération est en $O(n^3)$ (complexité au pire cas exponentielle pour les polyèdres)

Octogones, exercice

Exercice

```
On considère le programme suivant :
 _{0}x = rand(0, 12);_{1}y = 0;
 while _{2}(x > 0) {
      _{3}if (rand(0, 1) > 0) {
            _{4}x = x - 1:
       } else {
            5x = x - 2;
      _{6}y = y + 1;
 }<sub>7</sub>
```

- 1. Dessiner le graphe de flot de contrôle.
- 2. Calculer le point fixe.
- 3. Le raffiner par une itération descendante (avec \triangle).

Il existe bien d'autres domaines relationnels :

Il existe bien d'autres domaines relationnels :

• égalités affines (2x + 3y = 5)

Il existe bien d'autres domaines relationnels :

- égalités affines (2x + 3y = 5)
- ightharpoonup congruences (x + 2y congru à 3 modulo 5)

Il existe bien d'autres domaines relationnels :

- égalités affines (2x + 3y = 5)
- ▶ congruences (x + 2y congru à 3 modulo 5)
- polyèdres tropicaux (polyèdres sur une algèbre (max, +))

Abstractions relationnelles

Rappel

Polyèdres

Octogones

Si le cours avait duré un semestre...

Domaines non numériques

Virgule flottante

Partitionnement

Stratégies d'itération

Invariants quadratiques

Outils existants

Domaines non numériques

Tous les domaines abstraits ne sont pas numériques.

Exemple (listes)

On peut abstraire une liste en retenant si elle est vide (nil) ou non (non_nil).

Domaines non numériques

Tous les domaines abstraits ne sont pas numériques.

Exemple (listes)

On peut abstraire une liste en retenant si elle est vide (nil) ou non (non_nil).

Exemple : concaténation de deux listes

@	nil	non_{nil}
nil	nil	non_nil
non_nil	non_nil	non_nil

Domaines non numériques

Tous les domaines abstraits ne sont pas numériques.

Exemple (listes)

On peut abstraire une liste en retenant si elle est vide (nil) ou non (non_nil).

Exemple : concaténation de deux listes

@	nil	non_nil
nil	nil	non_nil
non_nil	non_nil	non_nil

Exemple d'utilisation : prouver qu'on n'essaye jamais d'acceder à la tête d'une liste vide (List.hd [] en Caml).

Si le cours avait duré un semestre...

Les nombres réels ne sont pas représentable en machine.

- Les nombres réels ne sont pas représentable en machine.
- ▶ On utilise donc des nombres à virgule flottante.

- Les nombres réels ne sont pas représentable en machine.
- ▶ On utilise donc des nombres à virgule flottante.
- D'où des erreurs d'arrondi (démo).

- Les nombres réels ne sont pas représentable en machine.
- On utilise donc des nombres à virgule flottante.
- D'où des erreurs d'arrondi (démo).
- Problème : comment abstraire correctement ces arrondis.

- Les nombres réels ne sont pas représentable en machine.
- On utilise donc des nombres à virgule flottante.
- D'où des erreurs d'arrondi (démo).
- Problème : comment abstraire correctement ces arrondis.

Solutions:

pour les intervalles : arrondir les bornes vers l'extérieur;

- Les nombres réels ne sont pas représentable en machine.
- On utilise donc des nombres à virgule flottante.
- D'où des erreurs d'arrondi (démo).
- Problème : comment abstraire correctement ces arrondis.

Solutions:

- pour les intervalles : arrondir les bornes vers l'extérieur;
- ▶ plus généralement : on peut abstraire une opération flottante $\operatorname{round}(a+b)$ par une opération réelle $(1+\epsilon)(a+b)$ puis utiliser des domaines sur les réels ;
- reste alors à implémenter correctement des domaines sur les réels, c'est un autre problème (on peut utiliser des rationnels par exemple).

Si le cours avait duré un semestre...

Partitionnement

```
_{0}x = rand(-12, 12);
_{1}if(x > 0) \{
_{2}x = x + 1;
_{3}x = x - 1;
_{4}y = 1 / x;
```

```
_{0}x = rand(-12, 12);
_{1}if (x > 0) \{
_{2}x = x + 1;
_{3}x = x - 1;
_{3}x = x - 1;
_{4}y = 1 / x;_{5}

Après 2, on a a x \in [2, 13]
Après 3, on a a x \in [-13, -1]
```

```
_{0}x = rand(-12, 12);
_{1}if (x > 0) \{
_{2}x = x + 1;
\} else \{
_{3}x = x - 1;
\}
_{4}y = 1 / x;_{5}
```

- ▶ Après 2, on a a $x \in [2, 13]$
- ightharpoonup Après 3, on a a $x \in \llbracket -13, -1
 rbracket$
- ▶ D'où en 4, $x \in \llbracket -13, 13 \rrbracket$ et une fausse alarme division par 0

```
_{0}x = rand(-12, 12);
_{1}if (x > 0) \{
_{2}x = x + 1;
_{3}x = x - 1;
_{4}y = 1 / x;_{5}

Après 2, on a a x \in [2, 13]
Après 3, on a a x \in [-13, -1]
_{1}x = x - 1;
_{2}x = x + 1;
_{3}x = x - 1;
_{4}x = x - 1;
_{5}x = x - 1;
_{7}x = x - 1;
_{1}x = x - 1;
_{1}x = x - 1;
_{2}x = x + 1;
_{3}x = x - 1;
_{4}x = x - 1;
_{5}x = x - 1;
_{7}x = x - 1;
_{7}x = x - 1;
_{7}x = x - 1;
_{8}x = x - 1;
_{9}x = x - 1;
_{1}x = x - 1;
_{2}x = x - 1;
_{3}x = x - 1;
_{4}x = x - 1;
_{1}x = x - 1;
_{2}x = x - 1;
_{3}x = x - 1;
_{4}x = x - 1;
_{2}x = x - 1;
_{3}x = x - 1;
_{4}x = x -
```

Solution : déplacer le calcul de la borne supérieure des intervalles après l'affectation $y:=1\ /\ x.$

$$0 \xrightarrow{\times = \text{rand}(0, 12)} 1 \qquad 0 \xrightarrow{\times = \text{rand}(0, 12)} 1 \qquad \times > 0 / \searrow x \le 0$$

$$2 \qquad 3 \qquad 2 \qquad 3$$

$$x = x + 1 \searrow / x = x - 1$$

$$y = 1 / x \downarrow \qquad y = 1 / x \searrow y = 1 / x$$

$$5 \qquad 0 \xrightarrow{\times = \text{rand}(0, 12)} 1 \qquad \times > 0 / \searrow x \le 0$$

$$x = x + 1 \downarrow \qquad y = x - 1$$

$$y = 1 / x \searrow y = 1 / x$$

Abstractions relationnelles

Rappel

Polyèdres

Octogones

Si le cours avait duré un semestre...

Domaines non numériques

Virgule flottante

Partitionnement

Stratégies d'itération

Invariants quadratiques

Outils existants

Stratégies d'itération

Le widening/narrowing marche plutôt bien.

Stratégies d'itération

- Le widening/narrowing marche plutôt bien.
- ► Mais il est difficile de concevoir un bon widening.

Stratégies d'itération

- Le widening/narrowing marche plutôt bien.
- ► Mais il est difficile de concevoir un bon widening.
- D'où l'intérêt pour d'autres méthodes d'itération :
 - accélération ;
 - itération sur les stratégies (policy iteration).

Abstractions relationnelles

Rappel

Polyèdres

Octogones

Si le cours avait duré un semestre...

Domaines non numériques

Virgule flottante

Partitionnement

Stratégies d'itération

Invariants quadratiques

Outils existants

Invariants quadratiques

 Certains systèmes n'ont pas de bon invariant linéaire mais ont de bons invariants quadratiques (ellipsoïdes).

Invariants quadratiques

- Certains systèmes n'ont pas de bon invariant linéaire mais ont de bons invariants quadratiques (ellipsoïdes).
- On peut calculer ce genre d'invariants avec des outils d'optimisation (programmation semi définie).

Exemple


```
node coupled mass(u0, u1 : real)
returns (x0, x\overline{1}, x2, x3 : real)
  assert(u0 >= -1.0 and u0 <= 1.0);
  assert(u1 >= -1.0 and u1 <= 1.0);
  x0 = 0.0 \rightarrow 0.6227*pre(x0) + 0.3871*pre(x1)
     -0.1130*pre(x2)+0.0102*pre(x3)
     +0.3064*pre(u0)+0.1826*pre(u1);
  \times 1 = 0.0 \rightarrow -0.3407 * pre(\times 0) + 0.9103 * pre(\times 1)
     -0.3388*pre(x2)+0.0649*pre(x3)
     -0.0054*pre(u0)+0.6731*pre(u1);
  \times 2 = 0.0 \rightarrow 0.0918 * pre(\times 0) - 0.0265 * pre(\times 1)
     -0.7319*pre(x2)+0.2669*pre(x3)
     -0.0494*pre(u0)+1.6138*pre(u1);
  \times 3 = 0.0 \rightarrow 0.2643 * pre(\times 0) - 0.1298 * pre(\times 1)
     -0.9903*pre(x2)+0.3331*pre(x3)
     -0.0531*pre(u0)+0.4012*pre(u1);
tel
```

Abstractions relationnelles

Rappel

Polyèdres

Octogones

Si le cours avait duré un semestre..

Domaines non numériques Virgule flottante Partitionnement

Invariants quadratiques

Outils existants

Astrée

- Développé par l'équipe de Patrick Cousot à l'ÉNS Ulm.
- Preuve d'absence d'erreur à l'exécution dans du code temps réel embarqué.
- Utilisé pour les commandes de vol des Airbus (plusieurs centaines de milliers de lignes de C).

http://www.astree.ens.fr/

IKOS: Inference Kernel for Open Static Analyzers

- Développé par la NASA.
- Objectifs similaires à Astrée.
- Prédécesseur (CGS) utilisé sur les contrôleurs de vols de : Mars Pathfinder, Deep Space One,...

http://ti.arc.nasa.gov/opensource/ikos/

Fluctuat

- Développé par l'équipe d'Éric Goubault au CEA.
- Analyse des erreurs d'arrondi en virgule flottante.
- Utilisé par divers industriels.

http:

//www-list.cea.fr/labos/fr/LSL/fluctuat/index.html

Polyspace

- Vendu par MathWorks.
- Plus généraliste.
- ► Moins précis.
- Utilisé par divers industriels.

http://www.polyspace.com/

Apron

- Librairie de domaines relationnels développée par Bertrand Jeannet (INRIA Rhône-Alpes) et Antoine Miné (CNRS, ÉNS).
- Polyèdres.
- Octogones.
- ► Implémenté en C.
- Interface en OCaml.

http://apron.cri.ensmp.fr/library/