Ceci n'est pas d'intelligence

Logica en formele systemen

Predikaatlogica

Afleidingen

Prof. dr. Marjon Blondeel Academiejaar 2024-2025

Inhoud predikaatlogica

- Inleiding
- Syntaxis
- Semantiek
- Geldig gevolg
- Afleidingen
- Metatheorie

Uitbreiden natuurlijke deductie

- afleidingsregels propositielogica blijven geldig
- bijkomende afleidingsregels ∀ en ∃
 - we beperken ons tot formules zonder vrije variabelen (in het boek zijn vrije variabelen toegelaten!!)

Afleidingsregels propositielogica

$$\frac{\Sigma \qquad \Phi}{\varphi \qquad \psi} \land I$$

Afleidingsregels: ∀-Eliminatie

∀-Eliminatieregel(regel vd instantiatie)

Pas op: eenvoudigere regel dat in het boek, daar wordt er een rijkere taal gebruikt!

Afleidingsregels: ∀-Introductie

mits d een constante die niet voorkomt in Σ of in $\forall x \ \varphi$

∀-Introductieregel(regel vd generalisatie)

Pas op: eenvoudigere regel dat in het boek, daar wordt er een rijkere taal gebruikt!

V-Introductie: foute toepassing

Volgende is niet toegestaan want d komt voor in $\forall x Rxd$

$$\frac{Rdd}{\forall x \ Rxd} \ \forall I$$

Afleidingsregels V: voorbeeld

$$\forall x (Ax \rightarrow Bx) \vdash \forall x Ax \rightarrow \forall x Bx$$

$$\frac{\forall x \ Ax}{Ad} \ \forall E \qquad \frac{\forall x \ (Ax \to Bx)}{Ad \to Bd} \ \forall E$$

$$\frac{Bd}{\forall x \ Bx} \ \forall I$$

$$\frac{\forall x \ Bx}{\forall x \ Ax \to \forall x \ Bx} \to I[-1]$$

Afleidingsregels V: voorbeeld

 $\forall x \, Ax \, \vee \, \forall x \, Bx \vdash \, \forall x \, (Ax \, \vee Bx)$

Afleidingsregels: 3-Introductie

Herinnner: Een term t heet vrij voor x in φ als in $[t/x]\varphi$ geen variabele van t gebonden wordt.

3-Introductieregel

3-Introductie: foute toepassing

Volgende is niet toegestaan want y is niet vrij voor x in $\forall y Ryx$

$$\frac{\forall y \ Ryy}{\exists x \ \forall y \ Ryx} \exists I$$

Afleidingsregels: 3-Eliminatie

Een conclusie uit een existentiële bewering moet los staan van een specifiek voorbeeld van die bewering.

Pas op: eenvoudigere regel dat in het boek, daar wordt er een rijkere taal gebruikt!

3-Eliminatie: foute toepassing

Volgende is niet toegestaan want d komt voor in $\exists z R dz$

$$\frac{Rdd}{Rdd} \exists I$$

$$\exists x Rxx \qquad \exists z Rdz$$

$$\exists z Rdz \qquad \forall I$$

$$\forall x \exists z Rxz$$

3-Eliminatie: voorbeeld

$$\exists x (Ax \land Bx) \vdash \exists x Ax \land \exists x Bx$$

Afleidingsregels 3: voorbeeld

$$\exists x \ \forall y \ Rxy \vdash \forall y \ \exists x \ Rxy$$

$$\frac{\exists x \ \forall y \ Rdy}{\exists x \ Rxy} \ \forall E$$

$$\frac{Rde}{\exists x \ Rxe} \ \forall I$$

$$\frac{\exists x \ \forall y \ Rxy}{\forall y \ \exists x \ Rxy} \ \exists E, [-1]$$

Alternatief bewijssysteem

- Herinner: propositielogica: axioma's en modus ponens
- Voor predikaatlogica hebben we een gelijkaardig system dat ook equivalent is met natuurlijke deductie.
- In de wiskunde zijn er veel voorbeelden van axiomatische bewijssystemen, een voorbeeld is Peano-rekenkunde: een theorie voor het optellen en vermenigvuldigen van natuurlijke getallen

niet te kennen voor het examen

Peano-rekenkunde

- constante: 0
- functieletters: 2 plaatsig +, 1 plaatsig S (opvolgfunctie)

voorbeelden termen: 0, S0, SS0, ..., $0 + x, x \cdot y, S(x + Sy)$

Axioma's:

PA1: $\forall x \neg 0 = Sx \ (0 \text{ is de opvolger van geen enkel getal})$

PA2: $\forall x \forall y \ (Sx = Sy \rightarrow x = y)$ (opvolgfunctie is injectief, elk getal is opvolger van max 1 getal)

PA3: $\forall x \ x + 0 = x$

 $\forall x \ \forall y \ x + Sy = S(x + y)$ (recursieve definitie +)

PA4: $\forall x \ x \cdot 0 = x$

 $\forall x \ \forall y \ x \cdot Sy = x \cdot y + x \ (recursieve \ definitie \cdot)$

PA5: $([0/x]\varphi \land \forall x(\varphi \rightarrow [Sx/x]\varphi)) \rightarrow \forall x\varphi$ voor elke formule φ (principe inductie op S)

niet te kennen voor het

examen