	Seminar 6		
Exist series around $f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} + \sum_{n=0}^{\infty} \frac{1}{n!}$		半 :	
wlan xo=0, f(x)=	$= \underbrace{\frac{1}{n}}_{n=0}^{(n)} \underbrace{\frac{1}{n}}_{n}^{(n)} \cdot x^{n}$ Uaclaurin series		
ex: f(x)=ex, f(n) = 1	1		
$e^{x} = \underbrace{\frac{x}{2}}_{N=0} \underbrace{\frac{x}{N!}}_{N!} = 1 + x + \underbrace{\frac{x^{2}}{2}}_{2}$			
→ for x=1: e=	2 <u>/</u> <u>u!</u>		
1) Take $x_0 = 0$ a^1) $f(x) = sin x$			
+(x)= cos x, +(0)=			= (-N)~ COD×
4''(x) = -8iux, 4'(0) = $4'(x) = -800x, 4(0) =$		(2m) + (x) = (-1) Siu x
f(x) = -000x, f(x) = -000x, f(x) = -000x	0 / 7 (0) = ($(-\Lambda)^{-1}$, $+$ (0)	1 = 0
$=) Ain x = \frac{8}{2} \frac{(-1)^n}{(2n+n)^n}$	$\frac{2u+1}{x} = x - \frac{x^3}{3!}$	+ × ⁵	
$Ain(-x) = -x + \frac{x^3}{3!} - \frac{x^3}{3!}$	$x^{5} + =) sin(-$	x) = -sin x	
211) f(x) = CBSx			

$$f''(x) = -\cos x, \quad f''(0) = -1$$

$$f(3) = \sin x, \quad f(3) = 0$$

$$2 \cos x = \frac{1}{2} + \frac{(2n+1)}{(x)} = (-1)^{n} \cos x, \quad f(3) = 0$$

$$2 \cos x = \frac{1}{2} + \frac{(2n+1)}{(2n)!} = (-1)^{n} \cos x, \quad f(3) = (-1)^{n}$$

$$2 \cos x = \frac{1}{2} + \frac{(-1)^{n}}{(2n)!} = -\frac{x^{n}}{2} + \frac{x^{n}}{4!}$$

$$2 \cos x = \frac{1}{2} + \frac{x^{n}}{2} + \frac{x^{n}}{4!} - \dots = \cos x$$

$$3 \cos x = \frac{1}{2} + \frac{x^{n}}{2} + \frac{x^{n}}{4!} - \dots = \cos x$$

$$3 \cos x = \frac{1}{2} + \frac{x^{n}}{2} + \frac{x^{n}}{4!} - \dots = \cos x$$

$$3 \cos x = \frac{1}{2} + \frac{x^{n}}{2} + \frac{x^{n}}{4!} - \dots = \cos x$$

$$3 \cos x = \frac{1}{2} + \frac{x^{n}}{2} + \frac{x^{n}}{4!} - \dots = \cos x$$

$$3 \cos x = \frac{1}{2} + \frac{x^{n}}{2} + \frac{x^{n}}{4!} - \dots = \cos x$$

$$3 \cos x = \frac{1}{2} + \frac{x^{n}}{2} + \frac{x^{n}}{4!} - \dots = \cos x$$

$$3 \cos x = \frac{1}{2} + \frac{x^{n}}{2} + \frac{x^{n}}{4!} - \dots = \cos x$$

$$3 \cos x = \frac{1}{2} + \frac{x^{n}}{2} + \frac{x^{n}}{4!} - \dots = \cos x$$

$$4 \cos x = \frac{1}{2} + \frac{x^{n}}{2} + \frac{x^{n}}{$$

· Radius of convergence is R=1 because the series couverges Las (A) 14151 Convergence set [-1,1) because the series converges + t∈ [-1,1) 2'') $\frac{1}{1+x} = \frac{2}{2}(-x^{2}) = \frac{2}{2}(-x^{2})^{2} = \frac{2}{$ Integrate teen by term from 0 to t (both sides): lne (n+t) = 3 (-1) n. 5 x n dx = 3 (-1) n + n+1 = $2 \ln(1+1) = 2 (-1)^{M+1} + 1$ $(-1)^{N+1}$ - converges = $\ln 2$ t=-1=7 $\frac{\infty}{2}$ $\frac{-1}{1}$ - diverges $\left[(-\Lambda)^{M+\Lambda}, (-\Lambda)^{M}=-\Lambda\right]$ 5. a) $(1+x)^2 = 2(x) \cdot x^k$, $d \in \mathbb{R} \to \text{Polinomial series}$ Recall Wervton's binomial formula: $(1+x)^{M} = \frac{2}{2} (x) x^{k}, n \in \mathbb{N}$ $\frac{n}{k} = \frac{n!}{(n-k)! \cdot k!} = \frac{n(n-1) \cdot \dots \cdot (n-k+1)}{k!}$ (d) = d(d-1):...(d-K+1) (factorial of real number doesn't make for d=1 - 11+x=... d=-1: 1 = --