Approved For Release STAT 2009/08/19 :

CIA-RDP88-00904R000100120

Approved For Release 2009/08/19 :

CIA-RDP88-00904R000100120

Вторая Международная конференция Организации Объединенных Наций по применению атомной энергии в мирных целях

A/CONF.15/P/2197 USER ORIGINAL:RUSSIAN

Не подлежит оглашению до официального сообщения на Конференции

ВЗАИМОДЕЙСТВИЕ ПЛУТОНИЯ С ДРУГИМИ МЕТАЛЛАМИ В СВЯЗИ С ИХ РАСПОЛОЖЕНИЕМ В ПЕРИОДИЧЕСКОЙ СИСТЕМЕ Д.И. МЕНДЕЛЕЕВА

Бочвар А.А., Конобеевский С.Т., Кутайцев В.И., Меньшикова Т.С., Чеботарев Н.Т.

Развитие атомной энергетики сделало необходимым широкое изучение основных мат ериалов атомных реакторов и прежде всего ядерного горючего-урана, плутония и их сплавов.

По одному из основных ядерных материалов — урану опубликовано значительное количество исследований, по плутонию же количество опубликованных работ еще невелико и основные закономерности его поведения при взаимодействии с другими металлами остаются еще недостаточно освещенными в литературе.

В докладе авторы ставят своей эадачей изложить некоторые закономерности, установленные при изучении взаимодействия плутония с различными металлами.

Характер взаимодействия плутония с другими элементами в значительной степени опред еляется его структурой и основными физико-химическими свойствами, существенно отличными от структуры и свойств обычных металлов /1,2,3/.

Для изучения влияния легирующих элементов на свойства плутония большое значение имеет знание диаграмм состояния сплавов плутония с другими элементами.

Ввиду невозможности в кратком докладе дать полный анализ характера взаимодействия плутония со всеми элементами периодиче-25 YEAR RE-REVIEW ской системы ниже будут рассмотрены характерные примеры взаимодействия и некоторые типичные диаграммы состояния.

Сплавы с металлами І группы

С щелочными металлами плутоний в твердом состоянии не взаимодействует. Эти элементы являются активными восстановителями большинства соединений плутония.

С медью и её аналогами плутоний образует ряд соединений: $P_{\mathcal{U}}C_{\mathcal{U}_2}$, $P_{\mathcal{U}}C_{\mathcal{U}_4}$ и $P_{\mathcal{U}}C_{\mathcal{U}_5}$ (см. табл. I). Диаграмма состояния плутоний—медь представлена на рис. I.

Сплави с металлами П группы.

Из щелочно-земельных элементов этой группы плутоний образует химические соединения с бериллием и магнием, с остальными элементами в твердом состоянии плутоний не взаимодействует.

на рис.2 приведена диаграмма состояния плутоний-бериллий. В этой системе существует одно химическое соединение состава

 ρ_{u} $B_{e_{i3}}$, обладающее кубической структурой типа $NaZn_{i3}$ с нериодом решетки a=10,274 A. Температура плавления соединения около 1700° С.

Сплавы плутоний - бериллий обладают нейтронным излучением, максимальная интенсивность которого составляет 67.106 н/кг/сек.

С цинком и его аналогами плутоний образует ряд химических соединений.

Сплавы с элементами Ш группы

С элементами Ш группы плутоний образует области твердых растворов на основе \mathcal{E} и \mathcal{S} — фаз, причем растворимость элементов зависит от порядкового номера, изменяясь, например, для \mathcal{S} — фазы от 13,6 % (ат.) в системе плутоний — алюминий до 3 % (ат.) в системе плутоний — таллий.

Примером взаимодействия плутония с элементами Ш группы может служить система плутоний—алюминий (рис.3). Эта система характеризуется наличием 5-ти химических соединений — Pu_3Al , $PuAl_3$, $PuAl_4$, структура указанных соединений приведена в таблице I_*

Сплавы в состоянии δ —фазы легко фиксируются при комнатной температуре. При температуре около 175° С δ —фаза испытывает очень вяло идущий эвтектоидный распад $\delta \longrightarrow \beta + \rho_{u_3} \mathcal{A}\ell$

При комнатной температуре равновесному состоянию распавшихся сплавов отвечает структура $\mathcal{A} + \mathcal{P} \cup \mathcal{A} \ell$.

В - фаза плутония способна растворять небольшие количества алюминия и может быть зафиксирована закалкой.

Сплавы плутония с алюминием являются слабыми излучателями нейтронов.

С элементами Ш группн — индием и таллием, характеризующими— ся значительно большим атомным радиусом, чем алюминий, количест— во химических соединений уменьшается. Каждый из этих элементов образует по 2 химических соединения состава $Pu_3 In$, $Pu In_3$ и $Pu_3 Il$, $Pu Il_3$. Характерно, что все образующиеся соединения со стороны плутония типа $Pu_3 X$ по существу являются изоструктурными (соединение $Pu_3 Al$ отличается лишь небольшой тетратональностью при том же характере расположения атомов в решетке). Соединения же со стороны других элементов типа $Pu X_3$ имеют различную кристаллическую структуру, что можно объяснить влиянием особенностей строения каждого из этих легирующих элементов.

Сплавы с металлами ІУ группы

С элементами четвертой группы — кремнием, германием, оловом и свинцом плутоний образует ряд химических соединений. Аналогично взаимодействию плутония с элементами $\mathbb R$ группы способность к образованию химических соединений понижается с увеличением атомного номера элементов. Для примера на рис. 4 приведена система сплавов $P_{\mathcal U}-P_{\mathcal E}$.

В этой системе имеются два соединения, одно из которых, соответствующее формуле $PuP6_3$, достаточно устойчиво, а второе соединение, лежащее в интервале концентраций 30-50 (ат.) %P6, неустойчиво в атмосферных условиях. О сплавах с переходными элемейтами ІУ группы, см. далее.

Сплавы с металлами У группы

Из элементов У группы изучено взаимодействие плутония с висмутом. Диаграмма состояния Ри-Ві приведена на рис.5.

Сплавы с металлами переходных групп

С переходными элементами ІУ группы \mathcal{J} і , \mathcal{Z} г , \mathcal{H} f плутоний образует твердые растворы на основе решеток \mathcal{E} и \mathcal{S} -фаз.

Примером взаимодействия плутония с этими элемэнтами может служить система плутоний — цирконий. На рис.6 приведена диаграмма состояния ρ_{ω} — Z_z в интервале концентраций от 0 до Ioo_{κ} (этомных) Z_z . Между ξ и δ —фазой плутония и цирконием существуют области твердых растворов.

В интервале концентраций 12,I-20,6 (ат.) % циркония \mathcal{S} -фаза при температуре ниже $350^{\circ}\mathrm{C}$ испытывает превращение в новию фазу со сложной кристаллической структурой. Эта фаза соответствует составу $\rho_{u_6} \mathbf{Z}_z$ и обладает ромбической решеткой с периодами a=10.39 A , b=10,44 A , c=11,18 A . Количество формульных единиц на одну элементарную ячейку B , рентгенографическая плотность 16,7 г/см 3 . Фаза $\rho_{u_6} \mathbf{Z}_z$ обладает областью гомогенности от 12,1 до 20,6 (ат.) %. В случае ускоренного охлаждения сплавов с 3,9-22,9 (ат.) % циркония из области δ - фазы образование $\rho_{u_6} \mathbf{Z}_z$ подавляется и при комнатной температуре фиксируется состояние δ -фазы. При содержании менее 12,1 (ат.) % циркония δ -фаза претерпевает очень вяло идущий эвтектоидный распад δ - δ + $\rho_{u_6} \mathbf{Z}_z$.

При содержании циркония более 21% (ат.), δ -фаза также претерпевает вяло идущий эвтектоидный распад $\delta - \rho_{u_6} Zz + \rho_{u_6} Zz_2$. Соединение $\rho_{u_6} Zz_2$ обладает гексагональной решеткой с периодами а=5,060±0,002 Å. C=3,II9 Å. Эта фаза устойчива до температуры 450°C.

Растворимость циркония в β -фазе плутония составляет око-ло 6.3 (эт.) %. Эта фаза может быть зафиксирована при комнатной тем-пературе закалкой.

При взаимодействии с элементами У-УШ групп переходных металлов в отличие от элементов ІУ группы плутоний не образует значительных областей твердых растворов и проявляет способность к образованию интерметаллических фаз, количество которых возрастает по
мере увеличения порядкового номера элемента в данном периоде. Так,
например, в четвертом периоде с ванадием и хромом плутоний не образует интерметаллических соединений, с марганцем же и элементами железной группы он образует ряд интерметаллических фаз, число
которых возрастает от одного у марганца до пяти у никеля. На рис,
7 и 8 приведены диаграммы состояния плутония с хромом и железом.

ж) Опубликованная диаграмма состояния ρ_{ω} - \mathcal{F}_{e} /4/полностью совпадает с диаграммой состояния, построенной в СССР.

Сплавы плутоний-хром дают простую диаграмму состояния эвтектического типа с точкой эвтектики при темлературе 615^{0} С и концентрации хрома менее 2,2 (ат.) %.

В системе сплавов $P \omega - F e$ имеются два интерметалличес-ких соединения — $P \omega_6 F e$ и $P \omega_6 F e^2$. Со стороны плутония наблюдается растворимость железа в E и \mathcal{S} — фазах.

С марганцем и элементами железной группы плутоний образует интерметаллические соединения типа $P\omega X_2$, образующиеся из жидкого состояния, кроме фазы $P\omega Ni_2$. Остальные соединения образуются по перитектическим реакциям, исключая $P\omega Ni_5$, дающее на диаграмме открытый максимум. Аналогичные закономерности наблюдаются и в случае взаимодействия плутония с переходными металлами у и УІ периода. Например, с переходными элементами у периода-ни-обием и молибденом плутоний также не образует интерметаллических соединений, в то время как с последующими элементами, в частности с рутением, образуются интерметаллические фазы.

На рис.9 приведена диаграмма состояния сплавов плутоний-молибден. На рис.10 приведена диаграмма состояния плутония с одним из переходных элементов шестого периода-осмием.

Диаграмма $\rho_{\mathcal{U}}$ - $O_{\mathcal{S}}$ в приведенной области концентраций характеризуется наличием ряда соединений: трех промежуточных фаз переменного состава γ , θ , θ' и двух фаз, отвечающих стехиометрическому составу $\rho_{\mathcal{U}_{\mathcal{S}}}O_{\mathcal{S}_{\mathcal{S}}}$ и $\rho_{\mathcal{U}}O_{\mathcal{S}_{\mathcal{Z}}}$. Осмий обладает заметной растворимость θ — до θ , θ (ат.) θ — в θ — фазе плутония. Растворимость θ — фазе оценена около θ , θ и в θ , θ , θ — менее θ , θ — Сопоставляя растворимость θ плутонии осмия и других элементов УШ группы, можно видеть большую растворимость переходных элементов УІ периода по сравнению с переходными эдементами Іу периода. Это можно объяснить уменьшением разницы в величине атомных радиусов этих элементов по сравнению с плутонием.

Сплавы с металлами актинидной группы-торием и ураном.

С этими элементами актинидной группы плутоний образует области твердых растворов. Такой характер взаимодействия является следствием близкой химической природы этих металлов, принадлежащих к группе 5 — элементов и обладающих сходным строением внешней части электронного облака. На рис. II приведена диаграмма состояния плутоний-торий. В системе имеется одно интерметаллическое

соединение состава $Pa_2Th \stackrel{*}{=}$, образующееся по перитектической реакции при температуре 595°C.

Со стороны плутония образуются области твердых растворов на основе \mathcal{E} и \mathcal{S} — фаз. Максимальная растворимость в \mathcal{E} — фазе составляет 5,6 % (ат.) $\mathcal{T}h$, а в \mathcal{S} фазе — 3,3% (ат,) $\mathcal{T}h$. При темпе ратуре $\sim 300^{\circ}$ С \mathcal{S} — фаза испытывает эвтектоидный распад \mathcal{S} — \mathcal{S} + $\mathcal{P}u_2\mathcal{T}h$. В сплавах, содержащих более двух процентов тория, \mathcal{S} — фаза способна фиксироваться при комнатной температуре. Со стороны тория образуются значительные области твердых растворов на основе \mathcal{S} и \mathcal{S} — тория. При температуре около 600° С \mathcal{S} — фаза тория испытывает эвтектоидный (дистектоидный) распад \mathcal{S} — $\mathcal{P}u_2\mathcal{T}h$ + $\mathcal{T}h$. Появившаяся в литературе диаграмма состояния $\mathcal{P}u$ — $\mathcal{T}h$ Уолдрона $\mathcal{T}h$ в основных чертах подобна, однако, в этой диаграмме отсутствуют область растворимости плутония в \mathcal{S} — фазе тория и области, связанные с превращениями \mathcal{S} — \mathcal{S} — \mathcal{S} — \mathcal{S} плутония. Имеется также некоторое отличие в интервалах растворимости плутония в \mathcal{S} — тории.

При взаимодействии плутония с ураном, имеющам более близкое по сравнению с T строение атома и меньшее отличие в величине атомного радиуса, возникают широкие области твердих растворов как на основе модификаций плутония и урана, так и на основе новых фаз. Как видно из диаграммы (рис.12) \mathcal{E} — фаза плутония и \mathcal{F} — фаза урана, образуют непрерывный ряд твердых растворов. В области высоких температур в интервале концентраций 2-70 % \mathcal{U} образуется твердый раствор на основе \mathcal{K}' — фазы со сложной кристаллической структурой. При комнатной температуре имеется широкая область (25-80 % \mathcal{U}) твердых растворов на основе \mathcal{F}' —фазоводами а=10,73 \mathcal{K} ,

^{%)} По данным /5/ Коффеносри и Уолдрон фаза Pu_2Th обладает условно ромоической решеткой с периодами a=9.820, b=8,164, c=6,681A $\alpha=14,0$ г/см³. Расчет рентгенограмм, проведенный в СССР, не подтвердил указанные данные.

жж) По данным /5/ /в' - фаза (по обозначениям американских авторов дзета - фаза) обладает кубической структурой.

C = 10,44 Å, с 56 этомэми на одну элементарную ячейку. Рентгенографическая плотность этой фазы 18,5 г/см 3 (при содержании урана 20%).

Сплавы, содержащие до 17% урана, при охлаждении проходят через область твердого раствора на основе , ф фазы плутония. При комнатной температуре равновесному состоянию сплавов содержащих до 25% урана соответствует структуре & + p'.

Растворимость урана в 🗸 -фазе плутония менее 🛮 🏖 .

Фазы 6 и 6 — плутония в сплавах до 25% урана обладают высокой способностью фиксироваться при комнатной температуре даже при весьма медленном охлаждении. При охлаждении сплавов с 9-17% урана до комнатной температуры структура их соответствует 6 -фазе плутония.

х / -фаза и твердый раствор на основе 🔊 -фазы урана могут быть зафиксированы при комнатной температуре путем закалки.

В заключение следует отметить, что сплавы на основе плутония изучены не хуже чем сплавы большинства основных технических метал-лов.

Настоящий доклад составлен на основании материалсв авторов, а так же сотрудников Багровой В.И., Иванова О.С Смотрицкого Г.С., Смотрицкой Е.С. и др.

12197

JI N T E P A T Y P A

І. Конобеевский С.Т.

Диаграммы состояния некоторых систем на основе плутония. Сессия АН СССР по мирному использованию этомной энергии I—5 июля 1955 г. Заседания отделения химических наук 362 Москва (1955).

2. Jette E.R.

I. chem. Phys. 23 (2) 365 (1955).

3. Ball J.G.

- Nature 173 535 (1954).
- 4. Waldron M.B.
- Atomics and Nucl. Eng. 8 (10), 383 (1957)
- 5. Coffinberry A.S. and Waldron M.B.
- Progress in Nuclear Energy Ser V 1 Metallurgy and Fuels 354-410 (1956).

TABANLA Nº1

КРИСТИЛЛИЧЕСКАЯ СТРУКТУРА НЕКОТО-РЫХ ДВОЙНЫХ СОЕДИНЕНКИ ПЛУТОНИЯ.

Обозначения:

тоц-тепр объемноцентр. СССР гемс-гемсфеоналомая ромб-ромбичесная ч.р.

Якадемия наук СССР Лос-Япамос Чёк-Ривер

75	7120HL 428/YY 0H38L	בססם המטט	10.39	11.63	11.62	Γ-	T		S S	12.30	4.35		01.10	00	5	T	12.59	12.53			17.0e	17.77		_	071		13.		
1	מאשם האאסו האאסו	fidz ngwo	Fm3m 16	Frn 3m 1	"					Fd3m 1	7		1 mom 1	1		_	Fd3m 1				74 mcm		1		0321		Fazn		
,	HDOL.	NOOL) HOUE G HOUEN	4 6	4 15	-	-	+	-	+	8	_	-	7 7	+	-	1	8				7	+	+	1	11	`	В		-
	e e paros pe	Wernku, P. S.	4-5,855 20,004	20022826	0 0 0.6.350:0.00		-		0.6.183:0,004	CCCP 502 A. 0: 129	5cz 2, 017,292:CD	0.7.290:0,005			7000:63-5-0	5,345-0,05	0.7,178		(6) 0: 7.150:0005	6x A.: 0 = 7.18 tack	0 - 10 45:001		C. 5,33130		508 DU: 0.1 508-0.00		See A	200000000000000000000000000000000000000	W H (See Let US)
`	אחאה		A.A	000	0	200	333	2.5	NA	333	80	0	,,,,	3	40	×	SSS	A.A.	9	×	Ŀ		90	nA.		71. 14	2		* :
	באנגאים משעראי	amad Londy	Ken	+			7		жзц	x24				700			KEU					707				Sexc	1,6%	1	_
	(прпи- Стоиктир	הטת ניסיד	NaCe		T	- C-2-CF/CHCTC/C-	40 METOMORPOP		Na Cĉ	CL3 Ma				U6:n			Cus Mo					C6 Mn		accommode.		Fez P(yonobus) ZENC.		60000	
	Copou-	нение	0.00		70 07	,	PU B12		Dute					Due Fe			0	20.02				Pueco		Duelo		PuzCo	, c	20707	_
		Merann	1000	COMPONE	Buchym				Tong	26.	ויוטיטיטיין			Xeneso								Kobantr							===
	CTD ACH	ASTAGO SANTON CHION	LUZZ Z	1			-			11 32		2,30	4,35						1	13,45	13,45				8	6,03	8,06		
	HOS HOS	JUPOZ HHƏGI JUDOCI	2							D6. D6. m	JE 50 25	Fm3c					,	D63/mm								Fd3m			L
	340 1043 1100 -000	ank Ho uegnr a Houl	17. 27. 15 17. 27. 27. 27. 27. 27. 27. 27. 27. 27. 2							Т	\exists	в			1.2	‡		2/2	-		7		-	+		O RE	58	_	_
_		і Івриод ре- шетки, Я								1000000	C = 9,402 = 0.005	0=10,274±0,002	J. A. 60e Be a 19282400	BOR A. O. 19 278: GOO	Ca Be, O. / 20 0/	0-7,3410,01	G = 9,7:0,1		1		G = 4,499 ±0.002	0:4.530		O= 10, 76±0,0±		δοε Αια-7,840:0.001 δοε Αί, σ-7,836 ταρού	50e Ar. 0.7,838:0.00 52e Ar. 0.7,848:0.00	20,02120,005	0=7,832
לסדום!	УГ	HHOL	\neg	n.A.	A.A.	A.A	000	3	SSS	8	4.0	dooo	A.A.	0 ::		71.71	J.A.	J.A.	J.A.	memo CCCP	J.A.	,		CCCD	ARURX	CCC	11.9	00	×
<i>בס</i> וקס:	DS-	יחפעט חכנוס ט ו					T				20HC	KEY CCCP		I		אפת	<i>зекс</i>	2BKC	200	meno	L			×		Key			
тетр- тетрагоналоная		Соеди: Структур-		PUCU 2 HEDDOLLUGEDOD.	"				""	DEVICE HORDOWNG		NO Zn,3				Вероятно Са Яг		UH93	UH94					(0.900)	podpriodky	Cu2 Mg			
mem	` - 	Coegui)	בינה הי	D.C. 2	200	70007	Pucus	ρυση	Pu Cue	PU Ags					PURMBS	PUM92?		PuHa					Pr. Al (yapobo)		PURC	-	-	<u> </u>
		Merann		Medo	+-						Cepedoo					MORNU		Drawno		Acres									

ПРОДОЛЖЕНИЕ ТЯБЛИЦЫ №1

					 -	-		_			1			Τ.,	1-	Т				_	٦,		-			10		40					
-OHASMHSQ SOOQLASCH DIDOHMOND			10.10		1	13,1				 		6.5	_	10,3							;	\ ?i	i -	31.5			(3)	40		1			
гырынаг сиреннаг			2			Fd3m					Γ.	E L		ľ								1						1			!		
-HDCLDOC[]			063			Fd	\dashv	\perp		L	Ļ	Ç	_	10	_	_		ļ	_	_	- 1	607	-			. 0	49	145	<u> </u>	-	_		
anuang Mondanang Monda M			N			B						*1		c/I								1 0	ú	ů		525	Secret	580000			-	:	
Период ре- шетки, Й	0.7,005:40.005		Q = 8.325 :0.002			0.7,14	See Par Or T. Inter Cox	002.91.7.00			See 2. Dem. 872 : 257	200 % 30 - Bote C. 22	3: - 8:5: acct	0.8.29:0.02	0 - 8.50 : 0.02	רו סינה ב ריכי					7 . 6. 49.7	C 8 : 683	6.6.3 C. T.	6 - 6, 164 C - 6, 661		P. U 9: 13 5 20.5	CCO 00 0 10,73: GCI	Pur dorasticam					
רוכזסטואטא	40.	J.A.	BU		811	SCC	RU	d.	7.9	80	_	400	0	, c1	i n		83	6000		83	8	ردده	2000	×	000	90	000	G. C.			-		
рницупад			200	+~		KeyC		+		+	-	Sexc	Ť	2040	_	\dagger	· <u>'</u>	1	+	ا		Sexc.	326	como	1	5		•		-			
HOUCIONIN		0.		b	\dashv	X	\dashv	+	91	1.	+	2	\vdash	1	3	+	, <u>P</u>	· tun	7	9	D	2	द्	<u> </u>	_ '	9	1 6	3		1	1		
Структур Най тип		Heponycoo.	The Nen	HEDOCULUADOS		CU2 Mg		Accept to	рикотонатичес подражения	epocharoce.	-	Cazns		74. A.	7	000	Devreencescommo	Нерогитаров	odio-asumiao	Centeencesonna	DENTER CEDON	- 1	הכטבבה		HECOCONOCIO	Cert (Concession)		Character Person					
Соеди-		Puco, 6		_		PUNIO			Pu Vi.			Pusis		0	7. 75		25.0		(~PU2 3s)	8,600s	Pus 053	000052	ن د د		(d000),X		(9,7,7)	(80) 2	3				
Металл				Huxenb												ļ	טכאיט	i .					7034			rod/s							
-0H951H9-025 2D04D40010 0120H10010	6,89	6,67		6,11	6.02			13,28	13,3	0)	14.5	12,4	3,6		25,73			10,15		q	0,10	2,6		85'0;	10,07	9,96	12,86		16,7		10,1	9,87	
HOQTOOQ[] RDHH9GTO DUNLAS	263/mmc			Этта									Fm 3m		5-30			mu 90'		, , , ,	14/000				Pm 3m	Pin 3m	Fm3m					Fm3	
אסט ססט אלטטף - מסט פסט אלטטף אלטטף אלטטף אלטטף אלטטף אלטטף אלטטף אלטטף	9			77		T			7	7	7		-4		В			4		,		*		7	-7	,	7		8		-	7	
	G = 6.08×20.001	C = 14,47:0,02	G : 0,00 = 0,01	0 - 4, 337:0,002 6 - 6, 262:10,002 C - 13,714:10,00-	6:6.29	0.64425002	6 6 26 10.02 C 13, 66 2 0.03	0 = 4,702:0,001	0 = 4,703 ± 0,002	0 - 4,607 : 0,001	0 - 4,723 = 2,001	C • 5, 519 : 0,002	a = 4,566±0,00-	20,0:78,2.0,01	0.12910,001			G = 5,727 = 0,005 6 = 7,933 = 0,003 C = 3,847 ± 0,005	CERCO AJELHO 0 3,975:0.002	3. 3.884 : accs	Ser S. 0.3, 96719,001	Cally 7230,03	C - 4, 090 - 0,008	500.60, 0.4,102:000	0.4,223:0,001	0-4,630:000	0-4.01	0 - 4,288:000	0 = 10,33 6 = 10,44 C = 11,18		5.060:002 C. 3,419:0002	a 5,664±0,004	
רוכנסמאחא	$\overline{}$		d D	6000	A.A.	- -	ζ, Ω	ردده	J. A.	כככם	כככם	ووون	ccca	1. A.	F 1	7.4	5.0	7.7.	E' U		7 0		7	0.0	J. 9	ם ע	сссь	A.A	כככם	A.Y.	وووه	J.A.	
המחבת מאנה המחבת מאנה	્ર			powo (Ť		7		-		-	Kzyl		צסח			2000			28KC	700	(26:40)	TO.	X	X	תפת		gwad		2BHC.	x 2 L	
Структур- ный тип	Pu Als			*				הסבורה שיים הושם		gover Aucus	AUCU	Heynopspower.				26	pertencepare	FeB	nceboo AlB.	7	74 62	10362	ncetgo HCD2	Th S.2	graph and graph	ynopsporenus Au Cus	DOS TOPOSONON-			HEDDENUTEDOOD.		NaCl	
2,0				42/		:	=	_			_	1			:	. 0	Pus Siz	S.	Pus Si.		D-PUSE	4362	HU2 GB3	PuGez	PU GE3	Pusn,	Pu Db.		Puezz	Duz Er(x>)	PUZZZ	pup	
Соеди- нение	Pu AL			PU AR		:		ρ_{U_3} 7 n		Pu Jas	A. 16	Putes	$\rho_{\nu C}$		PuzC3	Moemmin Pus		Pu Si	9	١,	0 3		Epinama Huz	ρ_{ν}	ģ	$\sigma_{\mathcal{I}}$	à	L	yupmani Pr	Pur	9	ď	

Рис. 1. Диаграмма состояния плутоний-медь.

Рис. 2. Диаграмма состояния плутоний-бериллий.

Рис. З. Диаграмма состояния плутоний-алюминий.

Рис. 4. Диаграмма состояния дутоний-свинец.

Рис. 5. Диаграмма состояния плутоний-висмут.

Рис. 6. Диаграмма состояния плутоний-цирконий.

Рис.7. Диаграмма состояния плутоний-хром.

Рис. 8. Диаграмма состояния плутоний-железо.

Рис. 9. Диаграмма состояния плутоний-молибден.

Рис. 10. Диаграмма состояния плутоний-осмий.

Ц

Рис. 11. Диаграмма состояния плутоний-торий.

Рис. 12. Диаграмма состояния плутоний-уран.

Вторая Международная конференция Организации Объединенных Наций по применению атомной энергии в мирных целях

A/Conf./I5/P/2197 USCR Corrections 23 July 1958

№ стр	. № строки	Н а печатан о	Следует читать
3	2 свержу	L + Pu Al	d + Puz Al
10	Табл.№ 1 Раздел "Уран"	(20-70% u)	(2-70% u).
6	2 сверху	5 95°c	610°C

25 YEAR RE-REVIEW