Two-Player Game & Nash Equilibrium

Zhengyang Liu, BIT

	S	P	R
S	0,0	1,-1	-1,1
P	-1,1	0,0	1,-1
R	1,-1	-1,1	0,0

Our focus: Two-player games

Randomize

$$x_1$$
 \vdots
 x_i
 \vdots
 x_m

B

2-Nash Characterization

$$\longrightarrow \sum_{j} A_{ij} y_{j}$$

2-Nash Characterization

 \blacksquare For Alice, i^{th} strategy gives

2-Nash Characterization

Alice's expected payoff is

Randomize

NE: No unilateral deviation is beneficial

$$x^{T}Ay \ge z^{T}Ay$$
, $\forall z \in \Delta_{m}$
 $x^{T}By \ge x^{T}Bz$, $\forall z \in \Delta_{n}$

Two-Player Games

- A pair of payoff matrices (R, C) of size $m \times n$, where Row player has m actions and Column player has n actions. (action \iff pure strategy)
- So the meaning of $R_{i,j}$ and $C_{i,j}$?
- Mixed strategy: a distribution over pure strategies. Denote by Δ_n the set of all mixed strategies over n actions. That is,

$$\Delta_n := \{ \mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n \mid \sum_{i \in [n]} x_i = 1, x_i \ge 0 \} .$$

• Expected payoff: given $\mathbf{x} \in \Delta_m$, $\mathbf{y} \in \Delta_n$, they are $\mathbf{x}^T R \mathbf{y}$ and $\mathbf{x}^T C \mathbf{y}$, just calculation...

Nash Equilibrium

Two-player version

• A pair of strategies (x, y) is NE iff neither can increase her payoff by deviating from her strategy unilaterally. That is

$$\mathbf{x}^T R \mathbf{y} \ge \mathbf{x}^T R \mathbf{y}, \ \forall \mathbf{x}' \in \Delta_m;$$

 $\mathbf{x}^T C \mathbf{y} \ge \mathbf{x}^T C \mathbf{y}', \ \forall \mathbf{y}' \in \Delta_n.$

- Or an equivalent definition
 - Support of **x**: supp(**x**) := $\{i \in [n] \mid x_i \neq 0\}$.
 - Each action in the support of x (or y) should be the best response to the other.

$$x_i > 0 \Rightarrow \mathbf{e}_i^T R \mathbf{y} \ge \mathbf{e}_k^T R \mathbf{y}, \forall k \in [m]$$

 $y_i > 0 \Rightarrow \mathbf{x}^T C \mathbf{e}_i \ge \mathbf{x}^T C \mathbf{e}_k, \forall k \in [n]$

Zero-Sum Games

The game with absolute conflict...

	М	Т
Е	3, -3	-1, 1
S	-2, 2	1, -1

- Zero-Sum iff R+C=0, that is $R_{i,j}+C_{i,j}=0$.
- Given row player using (x_1, x_2) , we have
 - Column has $\mathbb{E}[M] = -3x_1 + 2x_2$, $\mathbb{E}[T] = x_1 x_2$ and gets the better one.
 - Since zero-sum, row will choose $(x_1, x_2) \in \arg\max_{x_1, x_2} \min(3x_1 2x_2, -x_1 + x_2).$

Some Observations

$\max z$

s.t.
$$3x_1 - 2x_2 \ge z$$

 $-x_1 + x_2 \ge z$
 $x_1 + x_2 = 1$
 $x_1, x_2 \ge 0$.

$$x_1 = 3/7, x_2 = 4/7, z = 1/7$$

$\max w$

s.t.
$$-3y_1 + y_2 \ge w$$

 $2y_1 - y_2 \ge w$
 $y_1 + y_2 = 1$
 $y_1, y_2 \ge 0$,

$$y_1 = 2/7, y_2 = 5/7, w = -1/7$$

Nash equilibrium!

LP & Duality
$$A = \begin{bmatrix} A^1 \\ A^2 \\ \vdots \\ A^m \end{bmatrix} = \begin{bmatrix} A_1, \dots, A_n \end{bmatrix}$$
Primal LP
$$\max \quad c^T \cdot x$$
s.t. $Ax \le b$

$$x \ge 0$$

$$c, x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n} \text{ and } b, y \in \mathbb{R}^m$$

$$c \mapsto x \text{ is the dual variable to the primal constraint } A^i x \le b$$

$$\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} & Ax \leq b \\ x \geq 0 \end{array}$$

min
$$b^T \cdot y$$

s.t. $A^T y \ge c$
 $y \ge 0$

- y_i is the dual variable to the primal constraint $A^i x \leq b_i$
- $A_i^T y \ge c_i$ is the dual constraint to the primal variable x_i
- Weak Duality: $c^T x \leq b^T y$
- Strong Duality: If either the primal or dual is feasible and bounded, then so is the other and OPT(primal) = OPT(dual).

LP for zero-sum games

$$z'' = -z', C = -R$$

s.t.
$$\mathbf{x}^T R \geq z \mathbf{1}^T$$
 $\mathbf{x}^T \mathbf{1} = 1$ $\forall i, \ x_i \geq 0.$

$$\max \min \boldsymbol{x}^T R \boldsymbol{y}.$$

s.t.
$$-\mathbf{y}^T R^T + z' \mathbf{1}^T \geq \mathbf{0}$$

 $\mathbf{y}^T \mathbf{1} = 1$
 $\forall j, \ y_j \geq 0.$

s.t.
$$C\mathbf{y} \ge z''\mathbf{1}$$

 $\mathbf{y}^T\mathbf{1} = 1$
 $\forall j \ y_j \ge 0$.

$$\max_{\boldsymbol{y}} \min_{\boldsymbol{x}} \boldsymbol{x}^T C \boldsymbol{y} = -\min_{\boldsymbol{y}} \max_{\boldsymbol{x}} \boldsymbol{x}^T R \boldsymbol{y}.$$

Theorem 1

If (\mathbf{x}, z) is optimal for LP(1), and (\mathbf{y}, z'') is optimal for LP(3), then (\mathbf{x}, \mathbf{y}) is a Nash equilibrium of (R, C). Moreover, the payoffs of the row/column player in this Nash equilibrium are z and z'' = -z respectively.

LP ← NE

s.t.
$$\mathbf{x}^T R \geq z \mathbf{1}^T$$
 s.t. $C \mathbf{y} \geq z'' \mathbf{1}$ $\mathbf{x}^T \mathbf{1} = 1$ $\mathbf{y}^T \mathbf{1} = 1$ $\forall i, \ x_i \geq 0.$ $\forall j \ y_j \geq 0.$

- By def of NE, it is sufficient to show that $\mathbf{x}^T R \mathbf{y} \ge z \ge \mathbf{x}^T R \mathbf{y}$.
- There exists a Nash equilibrium in every two-player zero-sum game.
- The Minimax Theorem: $\max_{x} \min_{y} x^{T} R y = \min_{x} \max_{x} x^{T} R y$.

Theorem 2

If (\mathbf{x}, \mathbf{y}) is a Nash equilibrium of (R, C), then $(\mathbf{x}, \mathbf{x}^T R \mathbf{y})$ is an optimal solution of LP(1), and $(\mathbf{y}, -\mathbf{x}^T C \mathbf{y})$ is an optimal solution of LP (2).

Normal Form Games

- NFG: $\langle n, (S_p)_{p \in [n]}, (u_p)_{p \in [n]} \rangle$
 - Number of players in the game, $[n] = \{1,...,n\}$
 - A set S_p of pure strategies of player $p \in [n]$
 - A utility function $u_p: \times_{p \in [n]} S_p \to \mathbb{R}$
- Recall RSP game...

More math...

- The set Δ^{S_p} of mixed strategies to player p over S_p
- The set $S := \times_{p \in [n]} S_p$ of all the pure strategy profile. $\mathbf{s} = (s_1, ..., s_n) \sim S$
- The set $\Delta:=\mathbf{x}_{p\in[n]}\,\Delta^{S_p}$ of all the mixed strategy profile. $\mathbf{x}=(\mathbf{x_1},...,\mathbf{x_n})\sim\Delta$
- Given $\mathbf{x} \in \Delta$, we define the expected payoff of player p is

$$u_p(\mathbf{x}) = \sum_{\mathbf{s} \in S} u_p(\mathbf{s}) \prod_{q \in [n]} \mathbf{x}_q(s_q) = \mathbb{E}_{\mathbf{s} \sim \mathbf{x}} \left[u_p(\mathbf{s}) \right].$$

• NE $\mathbf{x} \in \Delta$ in multi-player games iff given any $\mathbf{x}_p' \in \Delta^{S_p}$

$$u_p(\mathbf{x}) \ge u_p(\mathbf{x}_p'; \mathbf{x}_{-p})$$

"As far as I can see, there could be no theory of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax Theorem was proved"

John von Neumann

Nash's Theorem: "Every (finte) game has a Nash equilibrium."

John Forbes Nash Jr.

Proof of Nash's Theorem

An reduction to fixed point.

- The idea is to construct a reduction from the problem of finding an NE in a NFG to the problem of finding a fixed point in a welldefined domain.
- [Brouwer's Fixed Point Thm] Let D be a good (convex, compact) subset of \mathbb{R}^n . If a function $f:D\to D$ is continuous, then there exists an $x\in D$ such that f(x)=x.

- Let's make a mapping between these two problems.
- So the question is how to construct the continuous function f.
 - It's a good choice to set $f: \Delta \to \Delta$.
- We define a gain function $G_{p,s_p}(\mathbf{x}) := \max\{u_p(s_p; \mathbf{x}_{-p}) u_p(\mathbf{x}), 0\}.$
 - Can you increase your utility when only using s_p instead of \mathbf{x}_p ?

• We define
$$\mathbf{y} = f(\mathbf{x})$$
, where $y_{p,s_p} := \frac{x_{p,s_p} + G_{p,s_p}(\mathbf{x})}{1 + \sum_{s_p' \in S_p} G_{p,s_p'}(\mathbf{x})}$.

- f is well-defined, continuous and Δ is good enough \Rightarrow Bingo!
- Next we will show that any fixed point of f is an NE of the game.

$$y_{p,s_p} := \frac{x_{p,s_p} + G_{p,s_p}(\mathbf{x})}{1 + \sum_{s'_p \in S_p} G_{p,s'_p}(\mathbf{x})}$$

- Given $\mathbf{x} = f(\mathbf{x})$, sufficient to show that $G_{p,s_p}(\mathbf{x}) = 0$, $\forall p, s_p$
- Proof by contradiction!
 - Assume that there exists p, s_p such that $G_{p,s_p}(\mathbf{x}) > 0$
 - $x_{p,s_p} > 0$, otherwise $x_{p,s_p} = 0$ but $y_{p,s_p} > 0$
 - There exists some other pure strategy s_p' such that $x_{p,s_p'}>0$ and $u_p(s_p';\mathbf{x}_{-p})-u_p(\mathbf{x})<0$

By
$$u_p(\mathbf{x}) = \sum_{s \in S_p} x_{p,s} \cdot u_p(s; \mathbf{x}_{-p})$$

• We have $y_{p,s_p'} < x_{p,s_p'}$, so **x** is not a fixed point!

Algorithms for 2-player NE

We will never discuss the multi-player case in the future...

Overview

- Support Enumeration Algorithm
- The Lipton-Markakis-Mehta (LMM) Approximation Algorithm
- The Lemke-Howson (LH) Algorithm (Not mentioned)

Support Enumeration Algorithm

What if we know the supports of an NE?

- Let (R, C) be a two-player game, where $R, C \in \mathbb{R}^{m \times n}$.
- Someone tells us the supports S_R and S_C of their NE (\mathbf{x}, \mathbf{y}) , that is $S_R = \operatorname{supp}(\mathbf{x})$ and $S_C = \operatorname{supp}(\mathbf{y})$.
- How many possible pairs of S_R and S_C ? So the running time is not good...

$$\max 0$$
s.t. $\mathbf{e}_{i}^{T}R\mathbf{y} \geq \mathbf{e}_{j}^{T}R\mathbf{y}, \forall i \in S_{R}, j \in [m]$

$$\mathbf{x}^{T}C\mathbf{e}_{i} \geq \mathbf{x}^{T}C\mathbf{e}_{j}, \forall i \in S_{C}, j \in [n]$$

$$\mathbf{x}^{T}\mathbf{1} = 1, \mathbf{y}^{T}\mathbf{1} = 1$$

$$x_{i} = 0, \forall i \notin S_{R}, y_{j} = 0, \forall j \notin S_{C}$$

Relax the goal!

Approximate NE

- In the literature, we have two different definition of approximate NE. (We assume that $R, C \in [0,1]^{n \times n}$)
- " ϵ -Approximate" NE: given any $\epsilon > 0$,

$$\mathbf{x}^T R \mathbf{y} \ge \mathbf{x}^T R \mathbf{y} - \epsilon, \ \forall \mathbf{x}' \in \Delta_n;$$

 $\mathbf{x}^T C \mathbf{y} \ge \mathbf{x}^T C \mathbf{y}' - \epsilon, \ \forall \mathbf{y}' \in \Delta_n.$

• " ϵ -Well-Supported" NE: given any $\epsilon > 0$,

$$x_i > 0 \Rightarrow \mathbf{e}_i^T R \mathbf{y} \ge \mathbf{e}_k^T R \mathbf{y} - \epsilon, \forall k \in [n]$$
$$y_i > 0 \Rightarrow \mathbf{x}^T C \mathbf{e}_i \ge \mathbf{x}^T C \mathbf{e}_k - \epsilon, \forall k \in [n]$$

• ϵ -WSNE $\Rightarrow \epsilon$ -ANE; one can prove that $\epsilon^2/8$ -ANE $\Rightarrow \epsilon$ -WSNE

The LMM Algorithm

Lipton, R. J., Markakis, E., and Mehta, A. (2003). Playing large games using simple strategies. (EC'03)

Theorem 1 (Liption et al.)

For any $\epsilon \in (0,1)$, there exists an ϵ -ANE where each player plays only $k = O(\log n/\epsilon^2)$ actions with positive probability.

- We use probabilistic method, that is, $Pr[A] > 0 \Rightarrow A$ exists.
- Idea: approximating the original NE (x, y) with large enough samples from x, y. What is the sample complexity?

Theorem 2 (Chernoff Bound)

Let $X_1, ..., X_m$ be m random variables over [0,1]. For any $\epsilon > 0$ and X be the mean of $\{X_i\}_{i \in [m]}$, we have $\Pr\left[|X - \mathbb{E}[X]| \ge \epsilon\right] \le 2\exp\left(-2m\epsilon^2\right)$.

Proof of Theorem 1

- Let (\mathbf{x}, \mathbf{y}) be any NE of our instance.
- Take k i.i.d. samples (actions) $(r_1, ..., r_k)$ from the distribution \mathbf{x} .
- Let $\tilde{\mathbf{x}}$ be the "empirical" strategy which plays r_i uniformly at random. Similarly with $\tilde{\mathbf{y}}$.
- We will show, when k is large enough, below could happen: $|\mathbf{e}_i^T R \mathbf{y} \mathbf{e}_i^T R \tilde{\mathbf{y}}| \le \epsilon/2$ and $|\mathbf{x}^T C \mathbf{e}_j \tilde{\mathbf{x}}^T C \mathbf{e}_j| \le \epsilon/2$ where $i, j \in [n]$.
- If so, we have

$$\mathbf{e}_i^T R \tilde{\mathbf{y}} \le \mathbf{e}_i^T R \mathbf{y} + \epsilon/2 \le \frac{1}{k} \sum_{j=1}^k \mathbf{e}_{r_j}^T R \mathbf{y} + \epsilon/2 \le \frac{1}{k} \sum_j \mathbf{e}_{r_j}^T R \tilde{\mathbf{y}} + \epsilon = \tilde{\mathbf{x}}^T R \tilde{\mathbf{y}} + \epsilon$$

Proving that $|\mathbf{e}_i^T R \mathbf{y} - \mathbf{e}_i^T R \tilde{\mathbf{y}}| \le \epsilon/2$

Theorem 3 (The Union Bound)

 $\Pr[A_1 \cup A_2] \le \Pr[A_1] + \Pr[A_2]$

- We focus on a bad case that $|\mathbf{e}_i^T R \mathbf{y} \mathbf{e}_i^T R \tilde{\mathbf{y}}| > \epsilon/2$ for fixed i
- By Chernoff bound, we have (by setting $X_j = \mathbf{e}_i^T R \mathbf{e}_{r_j}$) $\Pr[|\mathbf{e}_i^T R \mathbf{y} \mathbf{e}_i^T R \tilde{\mathbf{y}}| > \epsilon/2] \le 2 \exp(-k\epsilon^2/2).$
- By the union bound, we have 2n bad cases, so the probability that any of the bad cases happens is at most $4n \exp(-ke^2/2)$.
- For $k > 2\log(4n)/\epsilon^2$, the probability above is less than 1!

Remark for LMM algo

One can approximate any NE w.r.t. ANE

. The running time is
$$\binom{n}{k}^2 = n^{O(\frac{\log n}{\epsilon^2})}$$
.

• With reasonable assumption (ETH for PPAD), Rubinstein (FOCS'16) proved that LMM is optimal, that is, finding an ϵ -ANE needs at least $n^{\log^{1-o(1)}n}$.

zhengyang@bit.edu.cn