

6 January 2020

Production Planning & Inventory Control:

Making a single product e.g. windows,

Estimated demand for hent month 1000 - Ist Month 7 Make, 800 - IInd 11 C Minimum 1200 - IIInd 11 No. Of 900 - IV m 1, Products

(3) Regular time production = 720 per unit Ountime " = 725 " " (Intra time)

(4) Storage Costs 5 Inhentory cost = 3 pu unit pu manth

(5) Regular time gty (Total) = 300, Entra Time (200) Formulate LPP for this problem.

Variables: $R_1, R_2, R_3, R_4 = \#$ of quantities produced using Regular time in month j. E_1, E_2, E_3, E_4 $(E_j, j=1,2,3,4) \rightarrow \#$ of quantities

produced using Entra time in month j

II, Iz, I3 -> No inventory in starting, how to Shush out inventory in 4th time

:. 3 variables

Croal - Minimize Cost for (3) (Z)

DATE PAGE

(Objective 20 5 Rg + 25 5 Eg + 3 = Ij 5n) Constraints RI + EI 7, 1000 7 R2 + Ez+ I, 7,800 P3 1 E3 + F2 >/ 1200 Ry + 64 + I3 = 900 If quantity or in last Month produced is we have to don't > 1000 thin have to store in we stone it inventory In inventory RI+E, = 1000 + I, E II+R2+ 62 = 800 + I2 I2 + P3 + E3 = 1200 + I3 I3 + Ry + Ey = 900 11 1 R2 1 R3 1 R4 (800 ; E, 1 tz 1 tz 1 ty 5200 Ij, Rj, Ej >0 Methods: Craphical Methods Dut broblem on with 2 food; apple & Min Z = 8A + 10B subject to 0.4A+1.2B>,70-(1) GA + 10B > 50 (2) A, B>10

0.49 + 0.68 > 12-(3)

			PAGE	
B				
	" Lear to	munimism	Ind, the	· works
9	Plot the conditions			
	2 find the			
Craph	(common region			
	11/	IOBEK 10		19019
	//			
	1			1
		A		1(20)
> 3 3	141 W W 131	* K = Would	7	
	58.3		20 /1	The state of the
Cookb	B	Cn	ruph	
ssapre		180		/
			-	1
	4) 300) 10	Variable Hou	750 000	/-
		A	(ammain	8.2
		175,0))	- S
macrod d		4.77	N. C.	A.
(3)	D A		1	
Craph	1/1/		11/11	1
20			71/	1/
	13	1		1
			1	
	30			
	1 30	1		
Comm	ron Region	VII A		
B				
58-	3 7	Common Region O	n Frasible	
20	(A)	Region O	2000	
Sotisfyire, Constraints				
_	8.3 30	100	a voy(y	a pus

Now find, the minimum of cost on 8A+10B= K Plotting 8A110B = K with K=80 (0,8) K = increase as we more Slope = -8 for other values of K Now we will move the cost on Common graph H of bornaras ", A=0,B=(58.3) Zmin = 8A+10B 4 The Min. Value of Cost & n out corner (In general, the min. of cost &" occurs at wener points