## REVIEW DAY 3: TRIGONOMETRY REVIEW

## Three Views of Trigonometric Functions

- graphs in the *xy*-plane
- sides of a right triangle
- points on the unit circle

## The Graphs

On the axes below, graph at least two cycles of  $f(x) = \sin x$ ,  $f(x) = \cos x$ , and  $f(x) = \tan x$ . Label all x- and y-intercepts, any asymptotes, and all maximums and minimums.







## The Triangle Defintion

Sketch a right triangle with side a adjacent to an angle  $\theta$ , o opposite of the angle  $\theta$  and hypotenuse h. Define each of the six trigonometric functions in terms of that triangle.

a) 
$$\sin \theta$$

b) 
$$\cos \theta$$

c) 
$$\tan \theta$$

d) 
$$\sec \theta$$

e) 
$$\csc \theta$$

f) 
$$\cot \theta$$

$$=\frac{1}{\cos \theta}$$

The Unit Circle Approach

Using a 45-45-90 triangle and a 30-60-90 triangle find the coordinates of ALL of the points on the unit circle.



Each of the problems below can be solved using one of the approaches above: graphs, triangles, or unit circle. When you solve each problem, think about which method is the best one.

1. An isosceles triangle has a height of 10 ft and its base is 8 feet long. Determine the sine, cosine and tangent of the base angle  $\alpha$ .





$$Sin(a) = \frac{0}{h} = \frac{10}{\sqrt{116}}$$

$$\cos(a) = \frac{a}{h} = \frac{4}{116}$$

(-2)(Z)

2. Without a calculator evaluate:





(c) 
$$\tan(\frac{-\pi}{4})$$
 = -







3. Solve for x.

(a) 
$$\cos x = 1$$



$$X = 2\pi K, Kinteger$$
or
 $x = ... - 2\pi, 0, 2\pi, 4\pi, 6\pi,...$ 

(b) 
$$\sin x = 1$$

(c) 
$$\tan x = 0$$

(d)  $\sin x = 1/2$  (Find all solutions in  $[0, 2\pi]$ .)

$$X = \frac{\pi}{6}, \frac{5\pi}{6}$$



4. Find the domain of 
$$f(x) = \csc(x/2)$$
.  $= \frac{1}{\sin(x)}$ 

We need to find where  $Sin(\frac{x}{2}) = 0$ 



We know  $\sin(\theta)=0$  when  $\theta=\pi.k$ , k integer. So we find X where  $\frac{X}{2}=\pi k$  or  $x=2\pi k$ 

Answer: Domain for is all real numbers except X=211k, Kintgu ...  $(-2\pi, 0) \cup (0, 2\pi) \cup (2\pi, 4\pi) \cup ...$ 

5. Solve the equation  $2 + 2\cos(x) = 0$ .

$$2 \cos x = -2$$

$$\cos x = -1$$



ans:  $X = 2\pi K + \pi$  for Kintyr or  $X = \dots - \pi, \pi, 3\pi, 5\pi, \dots$ 

6. Find the domain of  $g(x) = \sqrt{\sin(x-1) - 1}$ .

We need Sin(x-1)-1>0 or Sin(x-1)>1

(But  $SIN(\theta) \le 1$  (!!)) So we need SIN(X-1) = 1. We know  $SIN(\theta) = 1$ . When  $\theta = \frac{\pi}{2} + \frac{4\pi}{k}$ .

So we need  $X-1 = \frac{\pi}{2} + 2\pi k$  or  $X = \frac{\pi}{2} + 1 + 2\pi k$ , k integer

 $y = s \cdot n(x-1)$ UAF Calculus 1

Day 3 Trigonometry