

مرور جلسه قبل

RADIX SORT مرتبسازی خطی

اطلاعات مازاد: اعداد دارای d رقم و هر رقم k مقدار متفاوت

329 457	720 355	720 329	329 355	RADIX-SORT (A, d) 1 for $i = 1$ to d	
657	436	436	436	2 use a stable sort to sort array A on digit i	
839յր. 436	- 457)நட 657	839)III-	457 657		
720	329	457	720		
355	839	657	839	0(4(1.1-1)	

 $\theta(d(n+k))$ زمان اجرا: $\theta(d(n+k))$

اگر $\theta(n)$ radix sort باشد زمان اجرای d=O(1) و k=O(n) خواهد بود

درخت تصمیم برای مرتبسازی مقایسهای

Theorem 8.1

Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

- مرتبسازی ه ه ۱۰ عدد که مقدار هرکدام میتواند بین ه تا ۹۹،۹۹۹ باشد؟
- اطلاعات مازاد: اعداد داخل آرایه دارای d رقم که هر رقم k مقدار متفاوت به خود میگیرد \cdot
 - ایده اصلی: مرتبسازی کل از طریق مرتبسازی رقم به رقم

روش شهودی – غلط

329	839	839
457	720	720
657	657	657
839	457	457
436	436	436
720	329	329
355	355	355

- مرتبسازی از رقم با ارزش بیشتر
- در بدترین حالت چندبار تابع sort فراخوانی میشود؟

رقم که هر رقم k مقدار متفاوت d

رقم که هر رقم k مقدار متفاوت d

روش شهودی – غلط

329	839	839
457	720	720
657	657	657
839	457	457
436	436	436
720	329	329
355	355	355

 $\Theta(k^{d-1})$ در بدترین حالت چندبار تابع sort فراخوانی میشود ${f \cdot}$

تعداد فراخوان sort در بدترین حالت

$$\leq \sum_{i=0}^{d-1} k^i = \frac{k^d - 1}{k - 1} = \Theta(k^{d-1})$$

به تعداد رقمها d بار تکرار

$$\sum_{i=0}^{d-1} k^i = \frac{k^d - 1}{k - 1} = \Theta(k^{d-1})$$

• در بدترین حالت چندبار تابع sort فراخوانی میشود؟

تعداد n=16 عدد d=3 عدد رقمی با d=3 عدد رقم

به تعداد رقمها d بار تکر از

مرتبسازی مبنایی radix sort

$$\sum_{i=0}^{d-1} k^i = \frac{k^d - 1}{k - 1} = \Theta(k^{d-1})$$

• در بدترین حالت چندبار تابع sort فراخوانی میشود؟

تعداد n=16 عدد d=3 عدد n=16 رقمی با

برای حل الگوریتم، می بایست در هر لحظه ماکسیمم اطلاعات چند دسته در حافظه نگهداری شود؟

عکس روش شهودی

- مرتبسازی از رقم با ارزش کمتر
- مرتبسازی هر رقم باید پایدار باشد! → استفاده از counting sort

329		720		720		329
457		355		329		355
657		436		436		436
839	mijjp-	457	jjj)	839	j)p-	457
436		657		355		657
720		329		457		720
355		839		657		839

بیادهسازی radix sort و زمان اجرا

RADIX-SORT(A, d)

- 1 **for** i = 1 **to** d
- 2 use a stable sort to sort array A on digit i

329		720		720		329
457		355		329		355
657		436		436		436
839	ապիթ	457	jjp-	839	ուսվիթ-	457
436		657		355		657
720		329		457		720
355		839		657		839

- $\theta(d(n+k))$ زمان اجرا: •
- و $\theta(n)$ radix sort باشد زمان اجرای d=O(1) و k=O(n) خواهد بود $\delta(n)$

radix sort تحلیل دقیقتر مرتبه زمانی

اگر n عدد b بیتی داشته باشیم، برای هر عدد مثبت دلخواه $t \leq b$ خواهیم داشت:

زمان اجرایی $\operatorname{radix\ sort}$ برای این اعداد $\operatorname{radix\ sort}$ خواهد بود

به شرطی که مرتبسازی پایدار استفاده شده heta(n+k) باشد

• اثبات:

 $d=\lceil b/r
ceil$ برای $r\leq b$ فرض کیند که هر رقم r بیتی باشد و تعداد ارقام برابر $r\leq b$ برای در این صورت هر رقم یک عدد صحیح بین r=1 خواهد بود و میتوان از counting sort با r=2

$$b = 32, r = 8, k = 2^{r} - 1 = 255, \text{ and } d = b/r = 4$$

 $\Theta(n+k) = \Theta(n+2^r)$:counting sort زمان

 $\Theta(d(n+2^r)) = \Theta((b/r)(n+2^r))$:radix sort زمان اجرای

تحلیل دقیقتر مرتبه زمانی radix sort

اگر n عدد b بیتی داشته باشیم، برای هر عدد مثبت دلخواه $r \leq b$ خواهیم داشت:

رمان اجرایی $\operatorname{radix\ sort}$ برای این اعداد $\operatorname{radix\ sort}$ خواهد بود

به شرطی که مرتبسازی پایدار استفاده شده heta(n+k) باشد

برای اعداد n و b تعیین $t \leq b$ بگونهای که زمان اجرای $(b/r)(n+2^r)$ را کمینه کند •

 $(b/b)(n+2^b)=\Theta(n)$ خواهیم داشت: r=b خواهیم داشت $(n+2^r)=\Theta(n)$ خواهیم داشت: حالت اول:

 $(b/\lfloor \lg n \rfloor)(n+n) = \Theta(bn/\lg n)$ حالت دوم: $b \geq \lfloor \lg n \rfloor$ برای $r = \lfloor \lg n \rfloor$ خواهیم داشت:

radix sort یا انواع مرتبسازی مقایسهای؟

- O(n) برابر radix sort رمورتی که $b=O(\lg n)$ باشد با انتخاب $b=O(\lg n)$ برابر $t=\log n$
 - در این صورت، تعداد فراخوانهای radix sort به مراتب کمتر از quick sort خواهد بود
 درحالی که زمان اجرای هر فراخوان radix sort به مراتب طولانی تر از دیگری است

- اینکه کدام روش مرتبسازی بهتر است بستگی به نحوه پیادهسازی و سختافزار دارد
 - برای مثال quick sort از نسبت به radix از حافظه نهفته بهتر استفاده میکند
 - radix sort درجا عمل نمیکند (درصورت استفاده از counting sort)
 - در حالی که اکثر مرتبسازیهای مقایسهای درجا عمل میکنند

مرتبسازی سطلی bucket sort

- اطلاعات مازاد: اعداد آرایه در یک فرایند تصادفی با توزیع یکنواخت تولید شده باشد
 - ایده اصلی: مشابه مرتبسازی شمارشی اما با آزادی عمل بیشتر

 $\left[\frac{n-1}{n},1\right)$

|nA[i]|

مثال bucket sort

(b)

• ساختار آرایه B بصورت Iinked-list

(a)

شىم كد bucket sort

BUCKET-SORT(A)

- let B[0..n-1] be a new array
- n = A.length
- **for** i = 0 **to** n 1
- make B[i] an empty list
- for i = 1 to n
- insert A[i] into list B[|nA[i]|]
- **for** i = 0 **to** n 1
- sort list B[i] with insertion sort
- concatenate the lists $B[0], B[1], \ldots, B[n-1]$ together in order

• ساختار آرایه B بصورت linked-list

$$A[i] \leq A[j] \longrightarrow \lfloor nA[i] \rfloor \leq \lfloor nA[j] \rfloor \longrightarrow \lfloor nA[i]$$
 سطل $A[i] = \lfloor nA[i] \rfloor$ کوچکتر است یا برابر

تحلیل زمانی bucket sort

- به غیر از خط ۸ شبه شد، همگی با O(n) اجرا می شود ullet
- برای تحلیل زمانی الگوریتم باید مجموع تعداد اجرای خط ۸ محاسبه شود

BUCKET-SORT(A)

- 1 let B[0..n-1] be a new array
- $2 \quad n = A.length$
- 3 **for** i = 0 **to** n 1
- 4 make B[i] an empty list
- 5 **for** i = 1 **to** n
- 6 insert A[i] into list B[|nA[i]|]
- 7 **for** i = 0 **to** n 1
- 8 sort list B[i] with insertion sort
- 9 concatenate the lists $B[0], B[1], \ldots, B[n-1]$ together in order

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$

 B_i متغیر تصادفی نشانگر تعداد المانها در سطل n_i

ا INTRODUCTION TO ALGORITHM | (۱۳۹۹) وال ۱۳۹۹) ا

تحلیل متوسط زمان اجرای bucket sort

7 **for** i = 0 **to** n - 1

sort list B[i] with insertion sort

_____ امیدریاضی و برخی خواص آن

$$E(X) = \sum_{i=1}^{n} p_i x_i$$

 $lpha_i$ تعریف امیدریاضی برای متغیر تصادفی

$$E(aX+b) = aE(X) + b$$

ویژگی خطی بودن امیدریاضی

Letting g(x) = ax, we have for any constant a,

$$E[aX] = aE[X].$$

$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$

 B_i متغیر تصادفی نشانگر تعداد المانها در سطل n_i

$$E[T(n)] = E\left[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} E\left[O(n_i^2)\right]$$

$$= \Theta(n) + \sum_{i=0}^{n-1} O\left(E\left[n_i^2\right]\right)$$

درس طراحی الگوریتم(ترم اول ۹ ۱۳۹) INTRODUCTION TO ALGORITHM |

تحلیل متوسط زمان اجرای bucket sort

7 **for**
$$i = 0$$
 to $n - 1$

sort list B[i] with insertion sort

آمار و احتمالات

$$I(A) = \left\{ egin{array}{ll} 1, & ext{if A happen} \ 0, & ext{if A not happen} \end{array}
ight.$$

متغير تصادفي شاخص

$$E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2])$$

ثابت خواهیم کرد:

$$E[n_i^2] = 2 - 1/n$$
 for $i = 0, 1, ..., n-1$

تعریف یک متغیر تصادفی شاخص جدید:

$$X_{ij} = I\{A[j] \text{ falls in bucket } i\}$$

$$n_i = \sum_{j=1}^n X_{ij}$$
 for $i = 0, 1, ..., n-1$ and $j = 1, 2, ..., n$

 B_i متغیر تصادفی نشانگر تعداد المانها در سطل n_i

تحلیل متوسط زمان اجرای bucket sort

ثابت خواهیم کرد:

$$E[n_i^2] = 2 - 1/n$$
 for $i = 0, 1, ..., n-1$

for
$$i = 0, 1, ..., n -$$

$$E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2])$$

$$n_i = \sum_{j=1}^n X_{ij}$$

$$E[n_i^2] = E\left[\left(\sum_{j=1}^n X_{ij}\right)^2\right]$$

$$= E\left[\sum_{j=1}^n \sum_{k=1}^n X_{ij} X_{ik}\right]$$

$$= E\left[\sum_{j=1}^n X_{ij}^2 + \sum_{1 \le j \le n} \sum_{\substack{1 \le k \le n \\ k \ne j}} X_{ij} X_{ik}\right]$$

$$= \sum_{j=1}^n E[X_{ij}^2] + \sum_{1 \le j \le n} \sum_{\substack{1 \le k \le n \\ k \ne j}} E[X_{ij} X_{ik}]$$

تحلیل متوسط زمان اجرای bucket sort

ثابت خواهیم کرد:

$$E[n_i^2] = 2 - 1/n$$
 for $i = 0, 1, ..., n-1$

$$E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2])$$

امیدریاضی و برخی خواص آن

$$E(X) = \sum_{i=1}^{n} p_i x_i$$

 x_i تعریف امیدریاضی برای متغیر تصادفی

$$E(XY)=E(X)E(Y)$$
 برای متغیر تصادفی مستقل X و Y داریم:

$$E[n_i^2] = \sum_{j=1}^n E[X_{ij}^2] + \sum_{1 \le j \le n} \sum_{\substack{1 \le k \le n \\ k \ne j}} E[X_{ij}X_{ik}]$$

$$\begin{bmatrix}
\mathbf{E}[X_{ij}^2] \\
 = 1^2 \cdot \frac{1}{n} + 0^2 \cdot \left(1 - \frac{1}{n}\right)$$

$$= \frac{1}{n}.$$

When $k \neq j$, the variables X_{ij} and X_{ik} are independent

$$\begin{bmatrix} \mathbf{E}[X_{ij}X_{ik}] \\ = \frac{1}{n} \cdot \frac{1}{n} \\ = \frac{1}{n^2}.$$

تحلیل متوسط زمان اجرای bucket sort

ثابت خواهیم کرد:

$$E[n_i^2] = 2 - 1/n$$
 for $i = 0, 1, ..., n-1$

for
$$i = 0, 1, ..., n -$$

$$E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(E[n_i^2])$$

$$E[n_i^2] = \sum_{j=1}^n E[X_{ij}^2] + \sum_{1 \le j \le n} \sum_{\substack{1 \le k \le n \\ k \ne j}} E[X_{ij} X_{ik}]$$

$$E[n_i^2] = \sum_{j=1}^n \frac{1}{n} + \sum_{1 \le j \le n} \sum_{\substack{1 \le k \le n \\ k \ne j}} \frac{1}{n^2}$$

$$= n \cdot \frac{1}{n} + n(n-1) \cdot \frac{1}{n^2}$$

$$= 1 + \frac{n-1}{n}$$

$$= 2 - \frac{1}{n},$$

$$E[T(n)] = \Theta(n) + \sum_{i=0}^{n-1} O(2 - \frac{1}{n}) = \Theta(n)$$

