ELEC 3300 – Tutorial for LAB1

Department of Electronic and Computer Engineering **HKUST**

by WU Chi Hang 🏖

About LAB 1

- In LAB 1, you are required to familiar yourself with some basic equipment
 - Power Supply
 - Digital Multi-meter
 - Transistor

- What is a Power Supply?
- A Power Supply should give out ?
- Power =
- For HK Socket
 - Do you know the Voltage ?
 - Do you know the Current ?

Are they called power supply ?

- Do you know the Voltage ?
- Do you know the Current ?

Power Supply – POWER Switch

Display for SLAVE

Current Voltage

Display for MASTER

Current Voltage

Power Supply – OUPUT Switch OFF

Display for SLAVE

Current Voltage

Display for MASTER

Current Voltage

Power Supply – OUPUT Switch ON

Display for SLAVE

Current Voltage

Display for MASTER

Current Voltage

Actually the power supply consists of 3 different supply. Namely Master, Slave, Fixed.

	Max Voltage Output	Max Current Output
MASTER	Adjustable	Adjustable
	from 0 to 30	from 0 to 3
	Volts	Amperes
SLAVE	Adjustable	Adjustable
	from 0 to 30	from 0 to 3
	Volts	Amperes
FIXED	5 Volts	3 Amperes

- The Master and Slave Supply can be operated in 3 modes.
 - Independent
 - Series
 - Parallel
- Using your common understanding, what should they mapped to?
- Note that when the power supply is set to series or parallel, the voltage and current will be controlled by master's knob.

- Using your knowledge from other courses, what is the relationship of Voltage and Current in Parallel?
 - □ V_M = Voltage of Master
 - □ I_M = Current of Master
 - $V_S = Voltage of Slave$
 - \Box I_S = Current of Slave
 - $extstyle V_{OUT}$ = Voltage of the combined supply in Parallel
 - □ I_{OUT} = Current of the combined supply in Parallel

$$\Box$$
 $V_{OUT} = V_{M}$ V_{S}

$$\Box$$
 $I_{OUT} = I_{M}$ I_{S}

- Using your knowledge from other courses, what is the relationship of Voltage and Current in Series?
 - □ V_M = Voltage of Master
 - □ I_M = Current of Master
 - $V_S = Voltage of Slave$
 - □ I_S = Current of Slave

$$\Box$$
 $V_{OUT} = V_{M}$ V_{S}

$$\Box$$
 $I_{OUT} = I_{M}$ I_{S}

Slave

Master

Power Supply (CC and CV)

Constant Voltage : Green
Constant Current : Red

Power Supply (CC and CV)

- The CC and CV light indicate the mode that the power supply is operating.
 - CC Constant Current Mode
 - □ CV Constant Voltage Mode
- Think: What modes should our daily life devices operating at?
 - Mobile phone, Fan, Light, etc.
- In the LAB, you are required to use the different mode of the Power Supply and also you need to know how to read the current/voltage reading. Hence, you can calculate the power dissipated.

DMM – Measure Current

+ve terminal for measuring current < 0.5A

1. Press SHIFT

2. Press DCI

Question:

In this LAB, all the currents should be less than 0.5A, so, which terminal to use?

Should I connect it in Parallel / Series to my circuit?

- Will the Power Supply be able to give out the Voltage and Current in the following? If yes, what mode it should set to?
- 1. 48V 2A
- 2. 30V 5A
- 3. 4V 1A
- 4. 60V 5A
- 5. 5V 3A
- 6. +/- 10V, 1A

- In Digital Circuits and Systems course, you used several 7-segment LED.
- What is the difference between the two configurations?

What is the Voltage/Current needed in order to light up a LED to a normal brightness?

- If I want to turn on the LEDs using the configuration setting below
- I should set PA.0, PA.1, PA.2 to ? The common point to ?
- I should set PB.0, PB.1, PB.2 to ? The common point to ?
- What is the difference in intensity?

From the 74HC04 datasheet

Symbol	Parameter	Rating		
V _{CC}	Supply Voltage	-0.5V to +7.0V		
V _{IN}	DC Input Voltage	-0.5V to +7.0V		
V _{OUT}	DC Output Voltage	-0.5V to V _{CC} + 0.5V		
I _{IK}	Input Diode Current	-20mA		
I _{OK}	Output Diode Current	±20mA		
l _{out}	DC Output Current	±25mA		
Icc	DC V _{CC} /GND Current	±50mA		
T _{STG}	Storage Temperature	−65°C to +150°C		
T _L	Lead Temperature (Soldering, 10 seconds)	260°C		

- Input Diode Current I_{IK} The rated current of the input terminal at which an IC will
 not suffer breakdown due to latch-up.
- Output Diode Current I_{OK} The rated current of the output terminal at which an IC will not suffer breakdown due to latch-up.
- Output current I_{OUT} The rated current that can flow through one output terminal.

From the 74LS04 datasheet

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
V _{CC}	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	٧
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ІОН	Output Current — High	54, 74			-0.4	mA
loL	Output Current — Low	54 74			4.0 8.0	mA

- I_{OH} Output HIGH current. The leakage current flowing into a turned off open collector output with a specified HIGH output voltage applied. For devices with a pull-up circuit, the I_{OH} is the current flowing out of an output which is in the HIGH state.
- I_{OL} Output LOW current The current flowing into an output which is in the LOW state.

From the 74LS04 datasheet

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
I _{OH}	Output Current — High	54, 74			-0.4	mA
loL	Output Current — Low	54 74			4.0 8.0	mA

How much current can the IC pin provide?

How much current can go into the IC pin?

- A common misunderstanding.....
 - Most of the student would think that each pin of a microcontroller/IC can give out a power like a power supply !!
- In task 2 of the LAB, you are required to use the Digital Multi-meter to measure the output from the IC and the power supply.
- Please pay attention to the following
 - What is the maximum power that can give out by the power supply
 - What is the maximum power that can give out by the IC
 - What is the maximum power that can sink by the IC

Transistor

- In Electronic Circuit course, you learnt transistor. The role of transistor can be used for amplifier and also as a switch.
- If you forgot all the things in Electronic Circuits, please go back to revise a bit ☺

Transistor

IMPORTANT Notes for ALL LABS

- ALL the LABs should require more than 2-hour for you to finish, that includes your pre-lab study, hardware and coding (for later LABs).
- To facilitate your preparation for LAB2 to LAB6, you will be able to borrow the development board at your LAB1. You will then be able to prepare or complete the LAB2 to LAB6 at home BEFORE your LAB session.
- As a result, the 2-hour LAB session for LAB2 to LAB6 is only for you to DEMO.
- To encourage all of you finish your LAB early
 - 1 point bonus out of 10 points for each LAB will be given for those who finish their DEMO within 1.5 hour after the start of each session.
- The LAB sessions will END SHARP at 2 hours AFTER the scheduled time for each session.
- Please prepare your LAB early.

END