Laboratorio 4

Curso de Verano 2025

Normas de Seguridad para el trabajo en el curso

Pablo Cobelli

Departamento de Física, FCEN UBA

Propósito de las medidas de seguridad

Preventivo

Proteger la salud frente a riesgos, minimizar peligros y evitar accidentes con potencial impacto

Acción en caso de emergencia

Salvaguardar la integridad física frente a un incidente declarado

Normas de seguridad

- Normas generales
- Seguridad en el uso de electricidad
- Seguridad en el trabajo con láseres
- Seguridad en la manipulación de líquidos criogénicos

Normas generales

- Leer las Reglas básicas de higiene y seguridad (era tarea)
- No comer ni beber en el laboratorio
- No bloquear rutas de escape o pasillos de salida
- Conocer la ubicación de los elementos de seguridad más comunes
 - Salidas de emergencia
 - Extintores (matafuegos)
 - Lavaojos
 - Botiquín

Seguridad en el uso de electricidad (parte 1)

Corriente alterna

I_{AC} [mA]	Efecto en el cuerpo humano	
< 25	contracción muscular local	
25-80	contracción muscular + parálisis temporal cardíaca y/o respiratoria	
80 - 4000	fibrilación ventricular*	
> 4000	parálisis cardíaca, quemaduras graves	

Corriente directa

Contracción muscular contínua, electrólisis (daño a tejidos u órganos), niveles más altos por condiciones de operación, posibilidad de sostener arcos, etc.

Seguridad en el uso de electricidad (parte 2)

Rol de la tensión

- Cuánto vale aproximadamente la resistencia del cuerpo humano?
- A bajo voltaje, la corriente circula por la piel
- Nivel de riesgo está determinado por la impedancia del contacto
- Si toda la corriente pasa por el cuerpo, 70 V es un buen estimado de la máxima tensión de contacto
- Para tensiones entre 300-800 V se produce fibrilación

Seguridad en el uso de electricidad (parte 3)

Sugerencias generales

- Arme su experimento con suficiente espacio
- Controle la calidad de los cables y la aislación de las conexiones
- Al concluir, descargar el circuito (e.g., descargar capacitores)
- Nunca desenchufe un equipo antes de apagarlo

Acerca del conexionado de tierras

- Controle la calidad de la tierra (ground) de su circuito
- Si utiliza adaptadores de enchufes, chequee que no se *levante* la tierra (por qué?)
- Tenga cuidado si usa un auto-transformador o un variac (por qué?)
- Si trabaja con un variac, chequee que el borne común quede conectado al neutro de la línea (por que?)

Seguridad en el trabajo con láseres (parte 1)

Clase	Condición	Daño por luz directa	Daño por luz difusa
1	seguro	No	NO
2	< 1 mW	Sólo si $\Delta t >$ 0.25 s	NO
3a	1 mW - 5 mW	SI	NO
3b	5 - 500 mW	SI	Sólo cerca de 0.5 W
4	> 500 mW	SI	SI

Cuidado

Exposiciones accidentales pueden provocar, con láseres en el visible, daño retinal irreversible con pérdida parcial o total de la visión

Tener en cuenta

Es obligatorio el uso de antiparras de protección al trabajar con láseres tipo 3a, 3b y 4

Seguridad en el trabajo con láseres (parte 2)

- Verifique o consulte la clasificación del láser y determine si debe usar antiparras de protección
- Nunca mire directamente al haz, sin importar su clase y aún si se encuentra utilizando antiparras
- Evite usar objetos metálicos o altamente reflectivos (relojes, anillos, etc.) que puedan producción reflexión directa o difusa del haz
- Extremar los cuidados en las etapas de alineación
- Bloquear siempre el haz en una pantalla o barrera; trabajar siempre con el haz confinado

Seguridad en la manipulación de líquidos criogénicos (parte 1)

Los líquidos criogénicos son sustancias que se encuentran en estado líquido a temperaturas extremadamente bajas, generalmente por debajo de -150°C (-123.15 °K)

Sustancia	Peso molecular [g/mol]	T _{boil} [°C] @ 1 atm	L_{vapor} [J/g]
He	4	-268.9	21
N_2	28	-195.8	200
O_2	32	-183.0	213
H_2O	18	100.0	2200

Qué implicancias físicas tienen, para la seguridad en el laboratorio, los bajos valores de calor latente de vaporización de estos líquidos criogénicos?

Seguridad en la manipulación de líquidos criogénicos (parte 2)

En el uso de líquidos criogénicos hay 4 aspectos fundamentales en los que es necesario prevenir accidentes

- efectos térmicos asociados al contacto
- efectos asociados a la presión
- efectos asociados a la humedad
- efectos asociados a la combustión

Seguridad en la manipulación de líquidos criogénicos (parte 3)

Efectos asociados al contacto térmico

- Quemaduras (?) por salpicado
- Contacto de la piel con superficies frias (agravado por la adherencia por humedad)
- Tener protección no adecuada es igual de riesgoso que no tenerla
- El contacto con los ojos produce daño permanente

Protección

- Resguardar el rostro con máscara
- Usar guantes sueltos no absorbentes (de cuero o PVC)
- Usar calzado cerrado

Primeros auxilios

- enguajar con agua de la canilla para restablecer temperatura normal
 no usar calor directo

Seguridad en la manipulación de líquidos criogénicos (parte 4)

Efectos asociados a la presión

- Tienen bajos calores de vaporización*
- Su evaporación puede ser muy rápida, elevando bruscamente la presión en reservorios cerrados
- Ejemplo: 1 litro de N₂ (líquido) equivale a 680 litros de gas a CNPT!

Seguridad en la manipulación de líquidos criogénicos (parte 5)

Efectos asociados a la humedad

 Los termos de almacenaje/transporte deben estar cerrados y soplando para evitar condensación de agua en cuellos (formación de hielo)

Efectos asociados a la combustión

• En Laboratorio 4 vamos a usar exclusivamente N₂ líquido (inerte y no-inflamable)

No obstante

Un termo de N_2 (líquido) dejado abierto un lapso prolongado (≈ 1 h) se enriquecerá en oxígeno, su temperatura aumentará y saturará en la composición de aire líquido, comportándose como oxígeno líquido ... que sí es peligroso!

En caso de accidente

- Dar aviso a docentes y al pañolero
- Seguir instrucciones proporcionadas por ellos
- Proveer a las personas afectadas los primeros auxilios
- Llamar al interno 58311 o bien al 5285-8311; explicando el accidente y la ubicación y estado del accidentado

5285-8311 // 58311 Servicio de Higiene y Seguridad FCEN UBA

En caso de incendio

- Mantener la calma, dar aviso
- Accionar alarma
- Evite gritar para alertar
- Llamar al interno 58311 o bien al 5285-8311
- Si sabe usar extintores: usarlo
- Si no sabe usar extintores: evacúe la zona
- Camine siguiendo las señales de SALIDA del edificio
- Diríjase al punto de encuentro designado para el DF

5285-8311 // **58311** Servicio de Higiene y Seguridad FCEN UBA