Méthodes itératives

Carola Kruse

Cours 2, 25/03/2024 Multigrid methods

Last week

- Classical iterative schemes might damp highly oscillating discrete error modes very quickly.
- There is only a slow damping of the smooth discrete error modes.
- The smoothness of an error mode depends on the grid. A smooth error mode on a given grid is generally on a coarser grid less smooth.

Weighted Jacobi damping

Case $\omega = 1$

- We obtain the non-weighted Jacobi method.
- Here, we see that for small k, but also for larger k close to N-1 in the oscillatory spectrum, the eigenvalues are close to 1.
- Convergence is thus also slow in these cases.
- This illustrates why the weighted Jacobi method is advantageous.

Choice of ω

- Recall: for $0 < \omega \le 1$, we have $|\lambda_k(R_\omega)| < 1$.
- Find the value ω that makes $|\lambda_k(R_\omega)|$ as small as possible for all k

For all values of ω , the eigenvalues associated to the 'smoothest' modes are close to 1.

We have

$$\lambda_1 = 1 - 2\omega \sin^2\left(\frac{\pi h}{2}\right) \approx 1 - \frac{\omega \pi^2 h^2}{2}$$

Thus λ_1 will always be close to one, no matter which ω . It's getting even worse, the smaller h!

/

Optimal choice of ω

To find the optimal value of ω , we search for the smallest interval $\left[-\bar{\lambda}, \overline{\lambda}\right]$ with $\lambda_k(R_{\omega}) \in \left[-\bar{\lambda}, \overline{\lambda}\right]$ for $\frac{N}{2} \leq k \leq N-1$. This can be done for example by

$$-\lambda_{N/2}(R_{\omega}) = \lambda_{N-1}(R_{\omega})$$

and we obtain

$$\omega = \frac{2}{3}$$

Definition: The multigrid smoothing factor

• The smoothing factor of a relaxation method R is the maximum magnitude of the upper half of the spectrum

$$\max_{k \in [\frac{N}{2}, N]} |\lambda_k(R_\omega)|$$

• In the example above, we have

$$\max_{k \ge N/2} |\lambda_k(R_{2/3})| = \max_{k \ge \frac{N}{2}} \left| 1 - \frac{4}{3} \sin^2 \left(\frac{k\pi}{2N} \right) \right| \le \frac{1}{3}$$

- ⇒ The oscillatory components are reduced at least by a factor of 3 at each relaxation.
- We thus see furthermore, that the bound is independent of the mesh size $h = \frac{1}{N}$.

A common feature:

Oscillatory modes are quick to converge

Smooth modes are slow to converge Multigrid methods

Fixed wave number on different grids

- Let us still see what happens for the fixed wave number k=6 on different grids.
- We use weighted Jacobi relaxation with $\omega=\frac{2}{3}$ and show the error for the first 100 iterations

Observation: For a fixed wave number, the error is reduced better on a coarser than on a finer grid.

Summary: Classification of modes

• Consider a fixed Fourier mode $\sin(k\pi x)$ and its discrete representation $\sin\left(\frac{jk\pi}{N}\right)$, $j=1,\ldots,N-1$.

Then the classification of this mode depends on the fineness of the grid.

- If the grid is sufficiently fine, i.e. $k < \frac{N}{2}$, it is a smooth mode.
- If the grid is sufficiently coarse, i.e. $\frac{N}{2} \le k < N-1$, then it is an oscillatory mode.

The damping property depends on the smoothness of the mode.

- If it is a smooth mode, then the weigthed Jacobi method will damp it only slowly.
- If it is an oscillatory mode, then the weigthed Jacobi method may damp it quickly.

Relaxation schemes

Gauss-Seidel method

• Calculate an entry u_k , with $u=(u_1,\ldots,u_n)$, of the new iteration and use it in the computation of $u_i, i=k+1,\ldots,n$.

$$\mathbf{u}^{(m+1)} = (D-L)^{-1}U \mathbf{u}^{(m)} + (D-L)^{-1}\mathbf{f}$$

Define $S_{GS} := (D - L)^{-1}U$

SOR method

$$\mathbf{u}^{(m+1)} = -(D - \omega L)^{-1}(-\omega U + (\omega - 1)D)\mathbf{u}^{(m)} + \omega(D - \omega L)^{-1}\mathbf{f}$$

$$S_{GS\omega} := (D - \omega L)^{-1} (-\omega U + (\omega - 1)D)$$

• If $\omega = 1$, then the Gauss-Seidel method is recovered.

Gauss-Seidel method

• The eigenvalues of $S_{GS} = (D - L)^{-1}U$ are given by

$$\lambda_k(S_{GS}) = \cos^2\left(\frac{k\,\pi}{N}\right)$$

• The eigenvectors of S_{GS} are given by

$$w_{k,j}(S_{GS}) = \left[\cos\left(\frac{k\pi}{N}\right)\right]^2 \sin\left(\frac{jk\pi}{N}\right)$$

• These are not the same as for A. The convergence analysis has thus to be done carefully. We do not want to get into further details here.

Gauss-Seidel method

• With the eigenvectors of A as initial guess, the damping behaviour of the Gauss-Seidel method is qualitatively the same as for the Jacobi method.

Fixed number of nodes *n*=64

Fixed wave number *k*=6

Summary: Relaxation schemes and damping

 Classical iterative schemes might damp highly oscillating discrete error modes very quickly.

There is only a slow damping of the smooth discrete error modes.

• The smoothness of an error mode depends on the grid. A smooth error mode on a given grid is generally on a coarser grid less smooth.

Improvements possible for all error components?

- We have seen that with a good initial guess, the relaxation scheme converges faster (e.g. k = 48 against k = 1). Some iterations on a coarse grid could help.
- Could we use this coarse grid idea otherwise?

A two-grid scheme?

25/03/24 Multigrid methods 13

Elements of multigrid

Grid transfer

Coarse grids

- Imagine all oscillatory modes are damped out and we are left only with smooth modes.
- Smooth modes look like oscillatory modes when sampled on a coarse grid.

4-mode of 15 versus 4-mode of 7

25/03/24

Coarse modes – Low frequency

We look at the *k*-th mode on the fine grid evaluated at the evennumbered grid points.

If $1 \le k \le \frac{N}{2}$, i.e. **lower part** of **spectrum**, then the components may be rewritten as

$$w_{k,2j}^h = \sin\left(\frac{2jk\pi}{N}\right) = \sin\left(\frac{jk\pi}{\frac{N}{2}}\right) = w_{k,j}^{2h}, \qquad 1 \le j \le \frac{N}{2}$$

- The k-th mode on Ω^h becomes the k-th mode on Ω^{2h}
- Passing from fine to coarse grid, a smooth mode becomes more oscillatory

Coarse modes – High frequency

For the **upper part** of the **spectrum**, i.e. $\frac{N}{2} < k \leq N-1$, compute:

$$-w_{N-k,j}^{2h} = -\sin\left(\frac{2j(N-k)\pi}{N}\right)$$

$$= -\sin\left(\frac{2jN\pi}{N} - \frac{2jk\pi}{N}\right)$$

$$= -\sin(2j\pi)\cos\left(\frac{2jk\pi}{N}\right) + \cos(2j\pi)\sin\left(\frac{2jk\pi}{N}\right)$$

$$= \sin\left(\frac{2jk\pi}{N}\right) = w_{k,2j}^{h}$$

- The k-th mode on Ω^h becomes the negative of the (N-k)-th mode on Ω^{2h} .
- The oscillatory modes on the fine grid appear relatively smooth on the coarse grid.
- It is advisable to damp out the oscillatory modes before passing to the coarser grid.
 Otherwise we obtain additional smooth modes on the coarser grid.

Coarse modes

Low modes -> k-modes are *preserved*

High modes -> k-modes are *aliased*

Some key observations so far

- 1. Relaxation may be extremely efficient for smoothing the error relative to the grid.
- 2. A smooth error can be approximated well on a coarser grid.
- 3. A coarser grid implies less variables, hence less computation.
- 4. On the coarser grid, the error is no longer as smooth relative to the grid, so relaxation may once again be efficient.

First strategy: Nested iterations

- Use coarse grids to obtain an initial guess for the next finer grid.
- Relax on $A{f u}^{h_0}={f f}^{h_0}$ on a very coarse grid to obtain an initial guess for the next finer grid

:

- Relax on $A{f u}^{4h}={f f}^{4h}$ on Ω^{4h} to obtain an initial guess for Ω^{2h}
- Relax on $A{f u}^{2h}={f f}^{2h}$ on Ω^{2h} to obtain an initial guess for Ω^h
- Relax on $A{f u}^h={f f}^h$ on Ω^h to obtain a final approximation to the solution.

Questions:

- What does it mean to relax on the coarser grid (i.e., how to define the equations to be solved thereon?)
- What if some smooth components remain? -> The algorithm will stall on the fine grid.

The residual equation

• An iterative method for Au = f can either be applied to this equation directly, or to an equation formulated for the error. The next iterate will then be corrected by the defect

$$\mathbf{v}^{(m+1)} = \mathbf{v}^{(m)} + \mathbf{e}^{(m)}$$

- Let $u^{(m)}$ be the approximation of u at the m-th iteration. The error is then given by $e^{(m)} = u u^{(m)}$.
- The error satisfies the equation

$$A\mathbf{e}^{(m)} = A\mathbf{u} - A\mathbf{u}^{(m)} = \mathbf{f} - A\mathbf{u}^{(m)} =: \mathbf{r}^{(m)}.$$

This equation is called the residual equation.

Second strategy: Coarse grid correction (Two-level method)

- We now use the residual equation and relax on the actual error.
- The new iterate is then an update of the previous iterate corrected with the new residual

Smooth $A^h u^h = f^h$ on Ω^h , call solution v^h .

Compute the residual $r^h = f^h - A^h v^h$.

Project (restrict) the residual to Ω^{2h} , called $R(\mathbf{r}^h)$.

Solve $A^{2h}e^{2h} = R(\mathbf{r}^h)$ on Ω^{2h}

Project (prolongate) e^{2h} to Ω^h , denoted $P(e^{2h})$.

Update the approximate solution on Ω^h by $\boldsymbol{v}^h = \boldsymbol{v}^h + P(\boldsymbol{e}^{2h})$

We obtain an approximation of the solution, that is to be updated.

Information is transferred to the coarse grid.

 \longrightarrow We obtain an approximation $oldsymbol{e}^{2h}$ of the error

Information is transferred back to fine grid

• How to define the system on the coarse grid?

25/0How to restrict and prolongate from one grid to the other?

Questions

- How to transfer between fine and coarse grid?
- Which equations do we want to solve on the coarse grid?
- We use superscripts h on the variable, indicating the grid they are defined on, e.g., u^h is defined on Ω^h and u^{2h} is defined on Ω^{2h} .

Grid transfer

As we have seen, we need to smooth the error on the fine grid first and only then solve the coarse-grid problem.

Hence, we need two types of intergrid transfer operators:

- A restriction operator (fine-to-coarse): I_h^{2h}
- A prolongation operator (coarse-to-fine): I_{2h}^h

Let us start with the prolongation operator first.

Prolongation: Linear interpolation

- Find a linear interpolation operator $I_{2h}^h: \mathbb{R}^{\frac{N}{2}-1} \to \mathbb{R}^{N-1}$.
- I_{2h}^h : coarse grid -> fine grid, with

$$v_{2j}^{h} = v_{j}^{2h},$$

$$v_{2j+1}^{h} = \frac{1}{2}(v_{j}^{2h} + v_{j+1}^{2h})$$

It can be written in matrix form (here for the case N=8):

$$I_{2h}^h v^{2h} = \frac{1}{2} \begin{bmatrix} 1 & & & \\ 2 & & & \\ 1 & 1 & & \\ & 2 & & \\ & 1 & 1 \\ & & 2 \\ & & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}_{2h} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \\ v_7 \end{bmatrix}_{h} = v^h$$

How well does interpolation work?

- Assume that the real error is smooth on the fine grid.
- Assume also that a coarse-grid approximation is given on Ω^{2h} and that it is exact on the coarse nodes.
- When this coarse grid correction is interpolated to the fine grid, the interpolant is also smooth.

We expect a relatively good approximation to the fine grid error.

Oscillatory real error

Assume that the real error is oscillatory

Even a very good coarse-grid approximation may produce an interpolant that is not very accurate.

Summary prolongation

- All in all, interpolation gives the best result, if the error on the fine grid is smooth.
- The prolongation is an appropriate complement to the smoother, that works most efficiently if the error is oscillating.

Restriction operator - Injection

- Want to find a good restriction operator $I_h^{2h}: \mathbb{R}^{N-1} \to \mathbb{R}^{\frac{N}{2}-1}$.
- The most obvious restriction operator I_h^{2h} is injection, where

$$v_j^{2h} = v_{2j}^h$$

25/03 However, the injection operator often does not lead to an efficient method.

Restriction operator – full weighting

• The full weighting restriction operator $I_h^{2h}: \mathbb{R}^{N-1} \to \mathbb{R}^{\frac{N}{2}-1}$. takes all grid points into account.

$$v_j^{2h} = \frac{1}{4}(v_{2j-1}^h + 2v_{2j}^h + v_{2j+1}^h)$$

Full weighting - matrix representation

For the case N = 8, we have

$$I_h^{2h}v^h = \frac{1}{4} \begin{bmatrix} 1 & 2 & 1 \\ & & 1 & 2 & 1 \\ & & & 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \\ v_7 \end{bmatrix}_h = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}_{2h} = v^{2h}$$

Note that $I_{2h}^h = c(I_h^{2h})^T$ for $c \in \mathbb{R}$, i.e.

- the full weighting operator is the transpose of the linear interpolation operator
- It is a linear operator and has a rank of $\frac{N}{2} 1$ and a null space of dimension $\frac{N}{2}$

Prolongation operator for 2D problem

- The interpolation operator may be defined in a similar way.
- Let $I_{2h}^h v^{2h} = v^h$. The components of v^h are given for $0 \le i, j \le \frac{N}{2} 1$ by

$$v_{2i,2j}^{h} = v_{ij}^{2h}$$

$$v_{2i+1,2j}^{h} = \frac{1}{2}(v_{ij}^{2h} + v_{i+1,j}^{2h})$$

$$v_{2i,2j+1}^{h} = \frac{1}{2}(v_{ij}^{2h} + v_{i,j+1}^{2h})$$

$$v_{2i+1,2j+1}^{h} = \frac{1}{4}(v_{ij}^{2h} + v_{i+1,j}^{2h} + v_{i,j+1}^{2h} + v_{i+1,j+1}^{2h})$$

Full weighting operator in 2D

• Let $I_h^{2h}\mathbf{v}^h=\mathbf{v}^{2h}$. The components of \boldsymbol{v}^h are given for $1\leq i,j,\leq \frac{N}{2}-1$ by

$$v_{i,j}^{2h} = \frac{1}{16} \left[v_{2i-1,2j-1}^h + v_{2i-1,2j+1}^h + v_{2i+1,2j-1}^h + v_{2i+1,2j+1}^h + 2(v_{2i,2j-1}^h + v_{2i,2j+1}^h + v_{2i-1,2j}^h + v_{2i+1,2j}^h) + 4v_{i,j}^h \right]$$

The two level method

- Smooth $A^h u^h = f^h$ on Ω^h .
- Compute the residual $r^h = f^h A^h u^h$.
- Project (restrict) the residual to Ω^{2h} , called $R(\boldsymbol{r}^h)$.
 - Solve $A^{2h}e^{2h} = R(r^h)$ on Ω^{2h}
- Project (prolongate) e^{2h} to Ω^h , called $P(e^{2h})$
- $oldsymbol{arphi}$ Update the approximation of the solution on Ω^h by ${f v}^h={m v}^h+P({m e}^{2h})$

How to construct the coarse grid matrix A^{2h} ?

Coarse grid matrix

Straightforward approach:

• Define A^{2h} by applying a discretization method for the differential operator on Ω^{2h} .

Second approach:

• Use the intergrid transfer operators to define the coarse grid matrix A^{2h} .

Galerkin projection

- Here we use the prolongation and restriction operators to define the coarse grid matrix.
- Starting point is the residual equation

$$A^h \mathbf{e}^h = \mathbf{r}^h$$

• Let e^h be in the range of the prolongation operator I^h_{2h} , i.e.

$$\mathbf{e}^h = I_{2h}^h(\mathbf{e}^{2h})$$

• We substitute the latter equation into the first equation and obtain

$$A^h I_{2h}^h(\mathbf{e}^{2h}) = \mathbf{r}^h$$

Galerkin projection

Applying on both sides the restriction operator, we obtain

$$I_h^{2h} A^h I_{2h}^h(\mathbf{e}^{2h}) = I_h^{2h}(\mathbf{r}^h)$$

Remember that the coarse grid problem is given as

$$A^{2h}\mathbf{e}^{2h} = I_h^{2h}(\mathbf{r}^h)$$

We can thus conclude that

$$A^{2h} := I_h^{2h} A^h I_{2h}^h$$

Galerkin operator graphically – Poisson 1D

$$A = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & -1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 2 & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix}$$

• Assume that $e^h = I_{2h}^h e^{2h}$

Apply A^h to obtain $A^h I_{2h}^h e^{2h}$, then:

- The odd rows are 0
- The even rows correspond to the coarse grid nodes

Coarse grid matrix – 1D Poisson FDM

$$A = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & -1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 2 & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix}$$

• To obtain the coarse grid matrix, we apply the Galerkin operator to the j-th unit vector $\hat{m{e}}_i^{2h}$

	J-1		j		J+1
$\hat{m{e}}_{j}^{2h}$	0		1		0
$I^h_{2h} \hat{\boldsymbol{e}}^{2h}_j$	0	$\frac{1}{2}$	1	$\frac{1}{2}$	0
$A^h I_{2h}^h \hat{\boldsymbol{e}}_j^{2h}$	$-\frac{1}{2h^2}$	0	$\frac{1}{h^2}$	0	$-\frac{1}{2h^2}$
$I_h^{2h}A^hI_{2h}^h\hat{\boldsymbol{e}}_j^{2h}$	$-\frac{1}{4h^2}$		$\frac{1}{2h^2}$		$-rac{1}{4h^2}$

• This is the indeed the finite difference stiffness matrix A^{2h} on Ω^{2h} .

Galerkin projection

- The preceding argument is based on the assumption that $m{e}^h$ lies in the range of interpolation.
- In general, this is not the case.
- However, it gives a sensible definition for A^{2h} .
- Assume that e^h does lie in the range of iterpolation
- Then doing the two-grid correction would give the exact (direct) solution.

About the convergence of the two-level method

Two-level method

• We use the two-level method only with pre-smoothing (no post-smoothing).

• Remember that a stationary linear iteration scheme may be expressed in the form

$$v^{(m)} = (1 - BA)^m v^{(0)} + Bf = S^m v^{(0)} + C(f)$$

• We want to find the iteration matrix S_{2lev} of the two-level method

Let

- S_{sm} be the iteration matrix of the smoother
- $m{v}^{(m)}$ is the approximation before the pre-smoothing and $m{v}^{(m+1)}$ the result after the update
- $oldsymbol{v}_{
 u}^{(m)}$ is the approximation at step m after u pre-smoothing steps

Iteration matrix

We know that for the error in the pre-smoothing iterations holds

$$\mathbf{e}^{(\nu)} = S_{sm}^{\nu} \mathbf{e}^{(0)}$$

with

$$\mathbf{e}^{(0)} = \mathbf{u} - \mathbf{v}^{(m)}, \ \mathbf{e}^{(\nu)} = \mathbf{u} - \mathbf{v}_{\nu}^{(m)}$$

It follows that

$$\mathbf{v}_{\nu}^{(m)} = \mathbf{u} - S_{sm}^{\nu} (\mathbf{u} - \mathbf{v}^{(m)})$$

By substitution, we obtain

$$\mathbf{r} = \mathbf{f} - A^h \mathbf{v}_{\nu}^{(m)} = \mathbf{f} - A^h \mathbf{u} + A^h S_{sm}^{\nu} (\mathbf{u} - \mathbf{v}^{(m)}) = A^h S_{sm}^{\nu} (\mathbf{u} - \mathbf{v}^{(m)}).$$

Iteration matrix

• We develop the matrix starting from the update step

•
$$v^{(m+1)} = v_{v}^{(m)} + I_{2h}^{h}(e^{2h})$$

= $u - S_{sm}^{v}(u - v^{(m)}) + I_{2h}^{h}(A^{2h})^{-1}I_{h}^{2h}r$
= $S_{sm}^{v}v^{(m)} + (I - S_{sm}^{v})(A^{h})^{-1}f$
+ $I_{2h}^{h}(A^{2h})^{-1}I_{h}^{2h}A^{h}S_{sm}^{v}((A^{h})^{-1}f - v^{(m)})$
= $(I - I_{2h}^{h}(A^{2h})^{-1}I_{h}^{2h}A^{h})S_{sm}^{v}v^{(m)}$
+ $((I - S_{sm}^{v}) + I_{2h}^{h}(A^{2h})^{-1}I_{h}^{2h}A^{h}S_{sm}^{v})(A^{h})^{-1}f$

Def. $v_{\nu}^{(m)}$ on previous slide and coarse grid eqn $A^{2h} {\pmb e}^{2h} = I_h^{2h} {\pmb r}$

$$A^h\mathbf{u}=\mathbf{f}$$

Def. r on previous slide

Reordering.

Iteration matrix

The two-level iteration matrix is thus given by

$$S_{2lev} = (I - I_{2h}^h (A^{2h})^{-1} I_h^{2h} A^h) S_s^{\nu}$$

- To prove convergence, one could do a rigorous Fourier analysis (see Trottenberg, Osterley et al., Multigrid).
- We will follow an approach of Hackbusch (Multi-grid methods and applications) and show mesh-independent convergence.

Goal of the convergence analysis

• From last week, we know that convergence of the two level method is given, if and only if

$$\rho(S_{2lev}) < 1$$

This is in general hard to prove.

• However, for some induced matrix norm

$$\rho(S_{2lev}) \le ||S_{2lev}||$$

• We thus aim to show

$$||S_{2lev}|| \le \rho < 1$$

Convergence analysis

• The analysis is based on a splitting of S_{2lev} as

$$S_{2lev} = \left(\left(A^h \right)^{-1} - I_{2h}^h \left(A^{2h} \right)^{-1} I_h^{2h} \right) A^h S_{sm}^{\nu}$$

• Hence,

$$||S_{2lev}|| \le ||(A^h)^{-1} - I_{2h}^h(A^{2h})^{-1}I_h^{2h}|| \cdot ||A^hS_{sm}^{\nu}||$$

Approximation property

Smoothing property

- Approximation property: This is the effect of the coarse grid approximation.
- Smoothing property: The efficiency of the smoothing step.

Smoothing and approximation properties

Definition 1: The matrix S_{sm} is said to possess the smoothing property, if there exist functions $\eta(v)$ and $\bar{v}(t)$ independent of h, such that

$$||A^h S_{sm}^{\nu}|| \le \eta(\nu) h^{-\alpha}$$

for some number $\alpha > 0$ and for all $1 \le \nu \le \bar{\nu}(h)$, with $\eta(\nu) \to 0$ as $\nu \to \infty$

Definition 2: The approximation property holds if there is a constant C_{α} , which is independent of h, such that

$$\|(A^h)^{-1} - I_{2h}^h(A^{2h})^{-1}I_h^{2h}\| \le C_\alpha h^\alpha$$

with the same α as in the smoothing property.

Convergence of the two-level method

Theorem

Suppose that the smoothing and the approximation property hold. Let $\rho > 0$ be a fixed number. Then there exists a number ν^* , such that

$$||S_{2lev}|| \le C_{\alpha}\eta(v) \le \rho$$
,

whenever $\nu \geq \nu^*$.

Proof

Since we required that α is the same for the approximation as well as the smoothing property, we get

$$||S_{2lev}|| \le C_{\alpha} h^{\alpha} \eta(\nu) h^{-\alpha} = C_{\alpha} \eta(\nu)$$

Since $\eta(\nu) \to 0$ as $\nu \to \infty$, the right hand side can be smaller than any given ρ , namely as ν is sufficiently large.

Convergence of the two-level method

- Note that the constant $C_{\alpha}\eta(\nu)$ is independent of the mesh size h
- It converges, if sufficiently many smoothing steps are applied
- In practice only a few pre-smoothing steps (1 to 3) are often sufficient

• The estimate above is however often not very tight.

50

V(2,1)-cycle for 2D Poisson

	n = 16			n = 32			n = 64			n = 128						
V-cycle	$\ \mathbf{r}^h\ _h$	ratio	e _h	ratio	$\ \mathbf{r}^h\ _h$	ratio	e _h	ratio	$\ \mathbf{r}^h\ _h$	ratio	$\ \mathbf{e}\ _h$	ratio	$\ \mathbf{r}^h\ _h$	ratio	$\ \mathbf{e}\ _{\hbar}$	ratio
0	6.75e+02		5.45e-01		2.60e+03		5.61e-01		1.06e+04		5.72e-01		4.16e+04		5.74e-01	
1	4.01e+00	0.01	1.05e - 02	0.02	1.97e+01	0.01	1.38e - 02	0.02	7.56e + 01	0.01	1.39e - 02	0.02	2.97e+02	0.01	1.39e-02	0.02
2	1.11e-01	0.03	4.10e - 04	0.04	5.32e-01	0.03	6.32e - 04	0.05	2.07e+00	0.03	6.87e - 04	0.05	8.25e+00	0.03	6.92e - 04	0.05
3	3.96e - 03	0.04	1.05e - 04	0.26	2.06e-02	0.04	4.41e - 05	0.07	8.30e - 02	0.04	4.21e - 05	0.06	3.37e - 01	0.04	4.22e-05	0.06
4	1.63e-04	0.04	1.03e - 04	0.98*	9.79e - 04	0.05	2.59e - 05	0.59	4.10e-03	0.05	7.05e - 06	0.17	1.65e-02	0.05	3.28e - 06	0.08
5	7.45e-06	0.05	1.03e - 04	1.00*	5.20e-05	0.05	2.58e - 05	1.00*	2.29e-04	0.06	6.45e - 06	0.91*	8.99e-04	0.05	1.63e - 06	0.50
6	3.75e - 07	0.05	1.03e - 04	1.00*	2.96e-06	0.06	2.58e - 05	1.00*	1.39e - 05	0.06	6.44e - 06	1.00*	5.29e-05	0.06	1.61e - 06	0.99*
7	2.08e-08	0.06	1.03e-04	1.00*	1.77e-07	0.06	2.58e - 05	1.00*	8.92e-07	0.06	6.44e - 06	1.00*	3.29e-06	0.06	1.61e - 06	1.00*
8	1.24e-09	0.06	1.03e-04	1.00*	1.10e-08	0.06	2.58e - 05	1.00*	5.97e - 08	0.07	6.44e - 06	1.00*	2.14e-07	0.06	1.61e - 06	1.00*
9	$7.74e{-11}$	0.06	1.03e - 04	1.00*	$7.16e{-10}$	0.06	2.58e - 05	1.00*	4.10e-09	0.07	6.44e - 06	1.00*	1.43e-08	0.07	1.61e - 06	1.00*
10	4.99e - 12	0.06	1.03e - 04	1.00*	4.79e - 11	0.07	2.58e - 05	1.00*	2.87e - 10	0.07	6.44e - 06	1.00*	$9.82e{-10}$	0.07	1.61e - 06	1.00*
11	$3.27e{-13}$	0.07	1.03e-04	1.00*	$3.29e{-12}$	0.07	2.58e - 05	1.00*	$2.04e{-11}$	0.07	6.44e - 06	1.00*	$6.84e{-11}$	0.07	1.61e - 06	1.00*
12	$2.18e{-14}$	0.07	1.03e-04	1.00*	$2.31e{-13}$	0.07	2.58e - 05	1.00*	$1.46e{-12}$	0.07	6.44e - 06	1.00*	$4.83e{-12}$	0.07	1.61e - 06	1.00*
13	$2.33e{-15}$	0.11	1.03e - 04	1.00*	$1.80e{-14}$	0.08	2.58e - 05	1.00*	$1.08e{-13}$	0.07	6.44e - 06	1.00*	$3.64e{-13}$	0.08	1.61e - 06	1.00*
14	$1.04e{-15}$	0.45	1.03e - 04	1.00*	6.47e - 15	0.36	2.58e - 05	1.00*	$2.60e{-14}$	0.24	6.44e - 06	1.00*	$1.03e{-13}$	0.28	1.61e - 06	1.00*
15	$6.61e{-16}$	0.63	1.03e-04	1.00*	$5.11e{-15}$	0.79	2.58e - 05	1.00*	$2.30e{-14}$	0.88	6.44e - 06	1.00*	$9.19e{-14}$	0.89	1.61e - 06	1.00*

- 2D Poisson on unit square and homogeneous Dirichlet conditions
- Results taken from Briggs et al, A multigrid tutorial, Table 4.1

The Multigrid Method

Multigrid method

What is the best method to solve the coarse grid equation $A^{2h}e^{2h}=r^{2h}$?

- We could use a direct method. But what if the coarse grid problem is still very large?
- Let us think recursively: The coarse-grid problem is not much different from the original problem.
- We can apply the two-level method to the coarse grid problem, thus going to a grid on Ω^{4h} .
- We can repeat this process until a direct solution of the residual equation is possible.

In the following

- let L be the number of levels,
- for simplicity of the notation, we will call the restriction of the residual

$$f^{2^k h} := I_{kh}^{2^k h} r^{kh}.$$

It is in fact only a new right-hand side.

V-cycle scheme

$$v^h \leftarrow V^h(v^h, f^h)$$

- Relax v_1 times on $A^h u^h = f^h$ with initial guess v^h . The result is denoted by v^h .
- Compute $f^{2h} = I_h^{2h} r^h = I_h^{2h} (f^h A^h v^h)$.
 - Relax v_1 times on $A^{2h}u^{2h} = f^{2h}$ with initial guess $v^{2h} = 0$. The results is denoted by v^{2h} .
 - Compute $f^{4h} = I_{2h}^{4h}r^{2h} = I_{2h}^{4h}(f^{2h} A^{2h}v^{2h}).$

- Solve
$$A^{Lh} u^{Lh} = f^{Lh}$$

Coarsest grid solve

- Correct $v^{2h} := v^{2h} + I_{4h}^{2h} v^{4h}$
- Apply smoother v_2 times to $A^{2h}u^{2h} = f^{2h}$ with the initial guess v^{2h}
- Correct $v^h := v^h + I_{2h}^h v^{2h}$
- Apply smoother v_2 times to $A^h u^h = f^h$ with the initial guess v^h

Remarks

In terms of the error:

- Remember what we said about the frequency components on different grids. Here, we do the following:
 - By applying smoothing iterations on Ω^h , we cause the h high-frequency components to decrease rapidly. The smooth ones stay visible.
 - We then restrict the h low-frequency components to Ω^{2h} , where they become more high-frequent.
 - We then apply again a smoother and damp out the 2h high-frequency components.
 - By continuing to the coarsest grid, we obtain a very fast overall reduction of the error.

Furthermore:

- The best number of pre-relaxation and post-relaxation iterations is normally 1 to 3.
- The boundary conditions for the coarse grid problem are 0 (because the coarse-grid variable is the error).
- The initial guess for the coarse-grid solution must be 0.

Multigrid with γ -cycle

- The previous V-cycle scheme is just one possibility to perform a multigrid method.
- It belongs to a family of multigrid methods, the so-called multigrid methods with γ -cycle.
- In these cases, the cycle does not necessarily have a shape of a 'V'.
- It has a compact recursive definition (see next slide).

We use some new notation:

- Number of levels L, thus giving (L + 1) grids.
- Let k = 0, ..., L be the numbering of the grids. Then k = 0 corresponds to the coarsest one, and k = L to the finest one.

Multigrid with γ -cycle

Multigrid Cycle
$$u_k^{(m+1)} = MGC(k, \gamma, u_k^{(m)}, L_k, f_k, \nu_1, \nu_2)$$

- 1. Pre smoothing: Compute $\bar{u}_k^{(m)}$ by applying v_1 smoothing steps to $u_k^{(m)}$.
- 2. Coarse grid correction:

Compute the residual and restrict it to the next coarser grid $r_{k-1}^{(m)} = I_k^{k-1} \left(f_k - A_k r_l^{(m)} \right)$

If k = 1:

We are on the coarsest grid, then solve the problem directly and go to step 3.

If k > 1:

Apply $\gamma \ge 1$ k – grid cycles using the zero initial guess v = 0:

$$v_{k-1}^{(m)} = MGC^{\gamma}(k-1,\gamma,0,A_{k-1},r_{k-1}^{(m)},\nu_1,\nu_2)$$

- 3. Prolongation and update: Compute $u_k^{(m)} = \bar{u}_k^{(m)} + I_{k-1}^k v_{k-1}^{(m)}$
- 4. **Post smoothing:** Apply the smoother v_2 times on $A_k u_k^m = f^h$ and obtain $u_k^{(m+1)}$.

Three-grid methods

- In practice, mostly $\gamma=1$ and $\gamma=2$ are used.
- The following figures show one iteration step of a multigrid method with 3 grid levels

 $\gamma = 1$: V-cycle scheme

 $\gamma = 2$: W-cycle scheme

Four-grid methods

• Here we see a four-grid V-cycle

 $\gamma = 1$: V-cycle scheme

59

Multigrid W-cycle

• Four-grid W-cycle scheme

Iteration operator of γ -cycle

Remeber that the two-grid iteration operator from grid h to 2h is given by

$$(S_{2lev})_h^{2h} = (I - I_{2h}^h (A^{2h})^{-1} I_h^{2h} A^h) S_{sm}^{\nu}$$

What changes in the γ -cycle multigrid method?

 $(A^{2h})^{-1}$ is now an recursive loop of two-level operators.

Let L be the number of levels and k = L, ..., 0 the grid level. The multigrid iteration operator M_k is given for k = 1, ..., L by

$$M_0 = 0$$

$$M_k = S_k^{\nu_2} (I - I_{k-1}^k (I_{k-1} - (M_{k-1})^{\gamma}) (A_{k-1})^{-1} I_k^{k-1} A_k) S_k^{\nu_1}$$

The γ –cycle multigrid method also shows mesh independent convergence as the two-level method.

25/03/24 Multigrid methods 61

Computational work

Computational work of multigrid cycle

- Earlier, we have seen that the convergence speed of the two-level method does not depend on the mesh size of the finest grid (mesh-independent convergence).
- The same is true for the multigrid algorithm.
- But just knowing that its convergence is independent of the mesh size says nothing about its efficiency (e.g. a direct method always needs only 'one' iteration).
- We thus want to estimate the computational work of a multigrid method.
- We follow the description in the book 'Multigrid' of Trottenberg et al.

Computational costs of V-Cycle

• From the recursive definition of a multigrid cycle, it follows that the computational work W_l per multigrid cycle on Ω_l is given recursively by

$$W_1 = W_1^0 + W_0, \qquad W_{k+1} = W_{k+1}^k + \gamma W_k, \qquad k = 1, ..., L-1$$

- Here, W_{k+1}^k denotes the computational work of one (h_{k+1}, h_k) two-grid cycle, excluding the work needed to solve the residual equation.
- W_0 denotes the work needed to compute the exact solution on the coarsest grid Ω_0 .
- By computational work, we mean some reasonable measure, typically the number of arithmetic operations.

We obtain for level $L \ge 1$

$$W_{L} = \sum_{k=1}^{L} \gamma^{L-k} W_{k}^{k-1} + \gamma^{L-1} W_{0}$$

Computational costs

• We use standard coarsening in 2D, i.e. $h \to 2h \to 4h \to ...$, which gives in terms of grid points

$$N_k = 4N_{k-1}, \qquad (k = 1, 2, ..., L)$$

with equality up to lower order terms (boundary effects).

• We assume that the multigrid components (relaxation, computation of residuals, fine-to-coarse and coarse-to-fine grid transfer) require a number of arithmetic operations per point of the respective grids, which is bounded by a small constant *C*, independent of *k*:

$$W_k^{k-1} \le C N_k, \qquad (k = 1, 2, ..., L),$$

with, again, $' \leq '$ up to lower order terms.

The constant C

 W_k^{k-1} or, in other words the constant C, is determined by the computational work of the multigrid components of the (h_k, h_{k-1}) two grid method, namely

$$W_k^{k-1} = ((\nu_1 + \nu_2)w_0 + w_1 + w_2)N_k$$

Here, w_0, w_1, w_2 are measures for the computational work per grid point of Ω_k needed for the single components

- w_0 : one smoothing step on Ω_k
- w_1 : computation of the residual and its transfer to Ω_{k-1}
- w_2 : interpolation of the correction to Ω_k and its addition to the previous approximation.
- v_1, v_2 : number of pre- and postsmoothing steps

In practice, interpolation and restriction are often negligible and only the cost of one smoothing step in Multigrid methods

Multigrid methods

Computational costs

We then obtain

$$W_l \le \begin{cases} \frac{4}{3}CN_L, & \text{for } \gamma = 1\\ 2CN_L & \text{for } \gamma = 2\\ 4CN_L & \text{for } \gamma = 3\\ \mathcal{O}(N_L \log N_L) & \text{for } \gamma = 4 \end{cases}$$

- This estimate shows that the computational work needed for one 2D multigrid cycle is proportional to the number of grid points on the finest grid for $\gamma \leq 3$ and standard coarsening.
- Together with the h- independent convergence, this means that multigrid methods achieve a fixed reduction of the error in $\mathcal{O}(N)$ operations.
- The constant C depends on γ , the type of coarsening and the other multigrid components.

Practical aspects

Coarsening

Coarse grids – standard coarsening

• So far, we have only talked about standard coarsening, i.e. we assume a number of 2^n elements and divide these for each coarser grid by 2.

• In *d* dimensions, the relation between the number of grid points (neglecting boundary effects) is thus given by

$$\# \Omega_{2h} \approx \frac{1}{2^d} \# \Omega_h$$

There are however other choices...

Coarse grids – red-black and 4h

Also of interest:

Red-black (or checkerboard) coarsening

4h-coarsening

Coarse grids – semi-coarsening

• For some aninsotropic problems, it might be more appropriate to coarsen only in the x- or y-direction (we will see an example next). This is called semi-coarsening.

- The mesh size is doubled in one direction only, and is left constant in the other, i.e. $H = (2h_x, h_y)$ or $H = (h_x, 2h_y)$
- The number of degrees of freedom do not decrease as fast as for standard coarsening. Some more levels might be needed to have a small coarse-grid problem.
- In this case, we have

$$\# \Omega_{2h} \approx \frac{1}{2} \# \Omega_h$$

Anisotropic Poisson equation

• Let us assume that we have a model problem with $0 < \epsilon \ll 1$

$$-u_{xx} - \epsilon u_{yy} = f$$
 + Bdy conditions

• This leads to the same five-point as the Poisson equation ($\epsilon = 1$)

$$A^{h} = \frac{1}{h^{2}} \begin{pmatrix} -1 & 2 + 2\epsilon & -1 \\ -\epsilon & -\epsilon \end{pmatrix}$$

• We have only a weak connection in y-direction. This is best visible in the limiting case $\epsilon=0$.

$$A^{h} = \frac{1}{h^{2}} \begin{pmatrix} 0 \\ -1 & 2 & -1 \\ 0 & 0 \end{pmatrix} \leftarrow \text{This is the 1D-Poisson 3-Point stencil in x-direction}$$

• Thus, Gauss-Seidel or weighted Jacobi would smooth well in x-direction (they do so in 1D), but each line is not well connected to the x-line above.

Semi-coarsening and point relaxation

- For this problem, it makes sense to use semi-coarsening.
- Point relaxation (standard Gauss-Seidel or weighted Jacobi that acts on each point), will not smoothen well in y-direction. So it makes sense to keep every point also on the coarse grid to have a good resolution of the error.

- We thus only coarsen in x-direction, where the smoother works well as in 1D.
- Interpolation and restriction are done in a one-dimensional way.

Full coarsening and line relaxation

• If we order the unknowns in the direction of constant x, i.e. the direction of strong coupling, we obtain

$$A^{h} = \begin{pmatrix} \widetilde{D} & -cI & & & \\ -cI & \widetilde{D} & -cI & & & \\ & -cI & \widetilde{D} & \ddots & & \\ & & \ddots & \ddots & -cI \\ & & & -cI & \widetilde{D} \end{pmatrix} \quad \text{with} \quad \widetilde{D} = \begin{pmatrix} 2+2\epsilon & -1 & & & \\ -1 & 2+2\epsilon & -1 & & & \\ & & -1 & \ddots & \ddots & \\ & & & \ddots & \ddots & -1 \\ & & & & -1 & 2+2\epsilon \end{pmatrix} \quad \text{and} \quad c = \frac{\epsilon}{h^{2}}$$

- Each block is associated with an individual horizontal grid line.
- We can apply weighted Jacobi in the sense of a block-matrix, i.e.

$$D^{-1} = \begin{pmatrix} \widetilde{D}^{-1} & & & \\ & \widetilde{D}^{-1} & & \\ & & \ddots & \\ & & & \widetilde{D}^{-1} \end{pmatrix}$$

- The matrices \widetilde{D} are tridiagonal and can thus be efficiently solved using some kind of Gaussian elimination.
- This method is called line-relaxation, as it treats one line together.

Practical aspects

Parallelization

Parallel properties of smoothers - Jacobi

• With growing problem sizes, we are interested in parallel implementations of the multigrid method. One important ingredient are the smoothers.

Weighted Jacobi:

- This smoother is fully parallel, as we need for the next iterate only the values of the previous iterate.
- The new values do not depend on each other, thus it can be applied to all grid points simultaneously.
- The degree of parallelism is the number of grid points, thus

Par-deg(
$$\omega$$
-JAC) = $\# \Omega_h$

Parallel properties of smoothers – Gauss-Seidel

- The classical Gauss-Seidel smoother is not parallel, as for each new value in a line, we access the already computed ones.
- However, there are special cases.

- For the 2D Poisson problem with a 5-point stencil, the entries on a diagonal are independent from each other. These can be relaxed in parallel.
- From one diagonal to the other is sequential.
- The number of points in one diagonal varies.
- The degree of parallelism is restricted by

Par-deg(GS) =
$$(\# \Omega_h)^{\frac{1}{2}}$$

(These are the grid-points, not the matrix entries.)

Red-black Gauss-Seidel smoother

- The red-black Gauss-Seidel smoother consiste of two halfsteps:
 - 1. All red grid points are treated simultaneously
 - 2. All black grid points are treated, using the updated red grid point values.
- The degree of parallelism is thus

Par-deg(RB-GS) =
$$\frac{1}{2}$$
 (# Ω_h)

Smoothing vs Parallelism

Relaxation	Smoothing factor	Smoothing	Parallel degree		
ω -Jacobi, $\omega=1$	1	No	N		
ω -Jacobi, $\omega=0.5$	0.75	Unsatisfactory	N		
ω -Jacobi, $\omega=2/3$	0.33	Very good	N		
Gauss-Seidel	0.5	Good	$\leq \sqrt{N}$		
GS-RB	0.25	Very good	$\frac{1}{2}N$		

Measure multigrid convergence factor

- In order to analyze a multigrid iteration, one often wants to determine its convergence factor ρ empirically.
- The only quantities that are available for the determination of ρ are the residuals on each level.
- For example, we can compute

$$q^{(m)} \coloneqq \frac{\left\| r_h^{(m)} \right\|_2}{\left\| r_h^{(m-1)} \right\|_2}$$

Or as a product of all previous residuals

$$\hat{q}^{(m)} := \sqrt[m]{q^{(m)}q^{(m-1)} \dots q^{(1)}} = \sqrt[m]{\frac{\|r_h^m\|_2}{\|r_h^0\|_2}}$$

- The quantity $\hat{q}^{(m)}$ represents an average defect reduction factor over m iterations.
- In general, for $r_h^0 \neq 0$, we have $\hat{q}^{(m)} \rightarrow \rho$ for m sufficiently large.
- The convergence history for $q^{(m)}$ might also be of interest.