

数据挖掘与数据仓库第六进模式挖掘(高级)

讲到15页

September 25, 2020

Outline

- 1. 模式挖掘线路图
- 2. 多层、多维空间中的模式挖掘
- 3. 基于约束的频繁模式挖掘
- 4. 挖掘高维数据和巨型模式
- 5. 挖掘压缩或近似模式

The Road Map

多层关联规则

TID

Table 7.1: Task-relevant data, D.

Items Purchased

T100	Apple-17"-MacBook-Pro Notebook, HP-Photosmart-Pro-b9180
T200	Microsoft-Office-Professional-2010, Microsoft-Wireless-Optical-Mouse-5000
T300	Logitech-VX-Nano Cordless Laser Mouse, Fellowes-GEL-Wrist-Rest
T400	Dell-Studio-XPS-16-Notebook, Canon-PowerShot-SD1400
T500	Lenovo-ThinkPad-X200 Tablet PC, Symantec-Norton-Antivirus-2010

Figure 7.2: A concept hierarchy for AllElectronics computer items.

寻哪类(层的式)

多层关联中的支持度

- 1. 每一层的支持度都相同:低层会有很多模式被遗漏? 高层模式是常识?
- 2. 较低层次采用较小支持度:

uniform support

reduced support

ustc

多层关联中的支持度

3. 分组/可变支持度: 专家给出/先验知识,

例如: {diamond, watch, camera}:

0.05%; {bread, milk}: 5%; ...

非一致的支持度

多层关联规则的冗余

- 两个不同层次间的关联规则可能存在冗余, 其中一个关联规则被另一个'蕴含',例如:
 - milk ⇒ wheat bread [support = 8%, confidence = 70%]
 - -2% milk \Rightarrow wheat bread [support = 2%, confidence = 72%]
 - 2% milk是milk的一部分/样本,期望其特点和milk一致,70%和72%很接近!
 - 第二条规则一般性不如前一条,删除第二条规则
 - 更高层的抽象更具一般性,但是也许太一般,变成了常识

多维关联规则

- 1. 单维: 购买记录
 - buys(X, "milk") \Rightarrow buys(X, "bread")
- 2. 多维: 购买记录, 顾客信息
 - age(X,"19-25") \land occupation(X,"student") \Rightarrow buys(X, "coke")
 - age(X,"19-25") ∧ buys(X, "popcorn") \Rightarrow buys(X, "coke")

多维关联: 数量属性

- 1. 关联规则: 标称属性
- 2. 数值型数据呢? 多维关联涉及的属性类型可能是多样的
 - 职业/品牌/颜色 VS 年龄/收入/价格
 - 数值型数据种类多,每一种出现次数可能极少

利用数据立方体

Measure/度量: 支持度

存在问题: 计算量/物化

- 1. 利用数据立方体/概念分层来挖掘量化关联
- 2. 思考: 我们为什么要从不同角度/粒度来观察数据?

多维关联: 聚类方法

- 自顶向下:每个数值属性独立聚类,每个类视为一个标称属性,重建交易数据集;然后使用标准的关联规则挖掘算法
- 2. 自底向上:在高维空间先聚类,满足最小支持度阈值的类就是频繁模式

多维关联: 找异常

1. 发现异常: 子集的行为显著区别于其补集

- (Sex = female) => Wage: mean=\$7/hr (overall mean = \$9)
- 需要进行统计检验:z-test

2. 规则的左边是某个集合的子集

- (Sex = female) ^ (South = yes) => mean wage = \$6.3/hr
- 规则类型: '标称=>数量'规则, '数量=>数量'规则,例如:
 Education in [14-18] (yrs) => mean wage = \$11.64/hr
- 3. 待研究问题:关联规则左边多个维度有效的生成方法,即子集的有效构造方法

稀有模式

1. 稀有模式: 支持度极低, 但是'有趣'

- 买劳力士钻石手表,稀少事件,但是令人感兴趣
- 分组/特殊物品的价值定义不同的支持度阈值
- 例如:将单位价值超过3000元的商品,其支持度设置为0.005%

负模式

- 1. 负相关: 独自频繁的项, 却几乎不同时出现
 - 福特征服者 (SUV) 和丰田普锐斯 (混动车) 不会被一个人买走
 - 经典可口可乐和无糖可乐基本不会被人同时买
 - sup(X U Y) < sup(X) * sup(Y), X和Y负相关
- 2. 问题:缝纫店销售针A和B,只有一个交易 同时销售了A和B各100
 - 若共有200个交易记录,则s(A U B) = 0.005, s(A) * s(B) = 0.25, s(A U B) < s(A) * s(B)
 - 若有10⁵个交易记录,则s(A U B) = 1/10⁵, s(A) * s(B) = 1/10³ * 1/10³, s(A U B) > s(A) * s(B)
 - 零事务/ Null transactions,零不变性

负模式: Kulczynski

1. 零不变度量

- (P(X|Y) + P(Y|X))/2 < ε, 其中 ε 负模式阈值, X和Y负相关

2. 问题: 缝纫店销售针A和B

- 不管其它事务的数量是多少,我们有
- $\epsilon = 0.05$, $(P(A|B) + P(B|A))/2 = (0.01 + 0.01)/2 < \epsilon$
- 课本例子7.4~7.6:包括A和B的事务只有一条,只出现了一次,交易中的数量100视为100次出现,其它交易事务中没有A或B的出现

基于约束的频繁模式

- 通常挖掘出来的规则太多,大多数是"无趣的",能否预先定义一些条件,去掉这些"无趣的",既得到更好的结果又有更快的挖掘速度?
 - 交互式的过程,用户人工来指导挖掘
 - 基于约束的频繁模式挖掘:用户提供约束,找到满足约束的所有 频繁模式

约束是什么?

约束是什么?

1. 知识型约束

一待挖掘的知识类型,如关联、相关、分类或聚类

2. 数据约束

指定任务相关的数据集,如在京东今年的销售记录中寻找同时被购买的产品对/组

3. 维/层次约束

- 指定任务使用的数据维或概念分层

约束是什么?

4. 规则约束

- 指定要挖掘的规则形式或条件
- 如:规则左边必须是两个维
- 如:一种廉价商品的销售会促进另一种昂贵商品的销售

5. 兴趣度约束

- 指定最小支持度,执行度和相关性的计算方法或值
- 如:强规则满足 min_support ≥ 3%, min_confidence ≥ 60%

元规则指导的挖掘

1. 找顾客的两个特点,这些顾客会购买ipad

- P1(X, Y) ^ P2(X, W) => buys(X, "iPad")
- X表示顾客,Y和W表示某两个顾客的属性的取值
- 元规则就是描述上述规则的"指定形式"
- age(X, "15-25") ^ profession(X, "student") => buys(X, "iPad")

2. 元规则的一般形

- $P_1 \wedge P_2 \wedge ... \wedge P_1 \Rightarrow Q_1 \wedge Q_2 \wedge ... \wedge Q_r$

3. 挖掘方法/过程

- 首先找到频繁项集L_(l+r)
- Push约束到挖掘过程中
- 利用兴趣度,相关性,置信度等

TDB $(min_sup=2)$

TID	Transaction		
10	a, b, c, d, f		
20	b, c, d, f, g, h		
30	a, c, d, e, f		
40	c, e, f, g		

Item	Profit	Price	
а	40	15	
b	0	23	
С	-20	41	
d	10	22	
е	-30	10	
f	30	3	
g	20	1	
h	-10	20	

1. 约束: 反单调性/ anti-monotonicity

- sum(s.price) < = 30</pre>
- range(s.profit) < = 15</pre>
- 支持度
- 若当前项集s违背了约束,则可以将当前 项集删除,不再扩展;若s没有违背约束, 则考察事务/元组中其它频繁项/集的价格 与s的价格和,超过则可以删除元组
- 约束具有反单调性是指:约束被某个项 集满足,则这个项集的任何子集也满足 该约束

 $TDB (min_sup=2)$

TID	Transaction		
10	a, b, c, d, f		
20	b, c, d, f, g, h		
30	a, c, d, e, f		
40	c, e, f, g		

Item	Item Profit		
а	40	15	
b	0	23	
С	-20	41	
d	10	22	
е	-30	10	
f	30	3	
g	g 20 1		
h	-10	20	

2. 约束: 单调性/monotonicity

- sum(s.price)>=30
- ab价格和超过30,所以任何ab的超集都 满足上述条件,因此不需要再ab的超集 上进行该约束的进一步检查
- 约束具有单调性是指:约束被某个项集 满足,则这个项集的任何超集也满足该 约束
- 单调性约束对于剪枝作用有限

TDB $(min_sup=2)$

TID	Transaction		
10	a, b, c, d, f		
20	b, c, d, f, g, h		
30	a, c, d, e, f		
40	c, e, f, g		

Item	item Profit Price		
а	40	5	
b	0	12	
С	-20	5	
d	10	2	
е	-30	10	
f	30	3	
g	20	1	
h	-10	20	

3. 约束:数据反单调性/ data anti-monotonicity

- sum(s.price)>=30
- cf的的价格和是8,T30中的其它频繁项的价格和相加不可能超过30,故T30可以删除
- 约束具有数据反单调性是指:一个模式的某个约束不能被一个交易事务满足,那么模式的超集也不能被满足,可以删掉该事务数据

TDB $(min_sup=2)$

TID	Transaction		
10	a, b, c, d, f		
20	b, c, d, f, g, h		
30	a, c, d, e, f		
40	c, e, f, g		

Item	Profit	Price	
a	40	15	
b	0	23	
С	-20	41	
d	10	22	
е	-30	10	
f	30	3	
g	20	1	
h	-10	20	

4. 约束: 简洁性

- min(i.price)>=30
- 将项的集合约简,只包括价格大于等于30的项
- 约束的简洁性是指可以在统计支持度之前就约简项集

TDB $(min_sup=2)$

TID	Transaction		
10	a, b, c, d, f		
20	b, c, d, f, g, h		
30	a, c, d, e, f		
40	c, e, f, g		

Item	Profit	Price
а	40 15	
b	0 23	
С	-20	41
d	10	22
е	-30	10
f	30	3
g	20	1
h	-10	20

5. 约束:可转变的

- avg(s.price)<=20 是不是单调的,也不 是不反单调的
- 若把事务中的项按price增序排序,添加 到项集中去时,按该序添加,则上述约 束被转变为了反单调的
- 约束是可转变的,是指通过某种对项/事务的操作,可以把约束变成单调的或反单调的

可转变的约束

Constraint	Convertible anti- monotone	Convertible monotone	Strongly convertible
$avg(S) \le , \ge v$	Yes	Yes	Yes
$median(S) \le , \ge v$	Yes	Yes	Yes
sum(S) \leq v (items could be of any value, $v \geq 0$)	Yes	No	No
sum(S) \leq v (items could be of any value, $v \leq 0$)	No	Yes	No
sum(S) \geq v (items could be of any value, $v \geq 0$)	No	Yes	No
sum(S) \geq v (items could be of any value, $v \leq 0$)	Yes	No	No

总结: 约束

Constraint	Anti-monotone	Monotone	Succinct
v ∈ S	no	yes	yes
S⊇V	no	yes	yes
S⊆V	yes	no	yes
min(S) ≤ v	no	yes	yes
min(S) ≥ v	yes	no	yes
max(S) ≤ v	yes	no	yes
max(S) ≥ v	no	yes	yes
count(S) ≤ v	yes	no	weakly
count(S) ≥ v	no	yes	weakly
$sum(S) \le v (a \in S, a \ge 0)$	yes	no	no
$sum(S) \ge v (a \in S, a \ge 0)$	no	yes	no
range(S) ≤ v	yes	no	no
range(S) ≥ v	no	yes	no
$avg(S)\;\theta\;v,\;\theta\in\{=,\leq,\geq\}$	convertible	convertible	no
support(S) ≥ $ξ$	yes	no	no
support(S) ≤ ξ	no	yes	no

高维数据/巨型模式

1. 属性很多,如何挖掘?

- 垂直数据格式: 列多, 行少时, 如基因表达分析
- 模式融合

2. 挑战

- 如果一个频繁模式长度为n则其任何子集都是频繁模式,不管是 Apriori还是FP-tree方法,模式都是增长的,在找到该频繁的长度 为n的模式前,要探索指数个小一些的模式!
- 模式融合的想法: 先构建完全的长度不超过k (=3)的模式集合, 然后直接每次多个小模式合并为大模式,而不是逐步合并越来越 大的模式
- 模式融合的问题:不具备完备性,模式的质量等不可靠!

压缩/近似模式

1. 找到模式太多,如何控制?

- 增大最小支持度: 可能获得常识
- 兴趣度
- 基于约束的频繁模式
- Top-k频繁闭模式

2. 压缩表示

- 一组频繁模式,用一个频繁模式来代表/表示
- 闭频繁项集/极大频繁项集
- 聚类的方法,距离计算: $D(P_1, P_2) = 1 \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}$