Initial Value Problem untuk PDB

Prajanto Wahyu Adi

prajanto@live.undip.ac.id +689 6263 57775

Teori Dasar Initial Value Problem (IVP)

- Initial Value Problem (IVP) atau Masalah Nilai Awal adalah salah satu bentuk persamaan diferensial biasa (PDB) di mana kondisi awal fungsi diketahui.
- Bentuk umum IVP:

$$dy/dt = f(t, y),$$
$$y(t_0) = y_0$$

• Artinya kita mencari fungsi y(t) yang memenuhi persamaan diferensial dengan nilai y yang sudah diketahui di titik t_0 .

Teori Dasar Initial Value Problem (IVP)

Jenis IVP	Bisa Diselesaikan Analitik?	Butuh Numerik?		
Sederhana & linier	Ya	Tidak wajib		
Kompleks / nonlinear	Umumnya tidak bisa	Ya		
Fenomena dunia nyata	Jarang bisa	Umumnya ya		

Solusi Analitik & Numerik

- Solusi Analitik (Exact Solution):
 - Merupakan solusi dalam bentuk ekspresi atau fungsi tertutup (misalnya: $y(t)=2e^{3t}$.
 - Diperoleh dengan metode kalkulus, seperti integrasi langsung, substitusi, faktor integrasi, dsb.
 - Tidak semua persamaan diferensial bisa diselesaikan secara analitik.
- Solusi Numerik:
 - Merupakan pendekatan (aproksimasi) nilai-nilai fungsi y(t) di titik-titik diskret $t_0,t_1,t_2,...$
 - Solusi analitik sulit atau tidak mungkin diperoleh.
 - Ingin menghitung solusi secara komputasi.
 - Diperoleh melalui algoritma iteratif berbasis diskretisasi interval.

Solusi Analitik & Numerik

Perbandingan	Solusi Analitik	Solusi Numerik (Taylor, Euler, RK)
Hasii		Aproksimasi nilai pada titik-titik tertentu
Kapan digunakan?		Jika sulit atau tidak bisa dicari secara simbolik
Contoh metode	Integrasi langsung, metode substitusi	Taylor, Euler, Runge-Kutta, dsb
Kelebihan	Akurat, tidak tergantung pada h	Fleksibel, bisa diterapkan pada persamaan kompleks
Kekurangan	Tidak selalu tersedia solusinya	Ada error aproksimasi, tergantung pada h dan metode

Solusi Analitik

Contoh:

Kita dapat menyelesaikan sebuah kasus pertumbuhan penduduk yang tak terbatas melalui sebuah model melalui persamaan diferensial dP/dt = rP with $P_0 = 100$ melalui solusi analitik untuk mendapatkan nilai tepat sebagai berikut:

$$\frac{1}{P}dP = rdt$$

$$\int \frac{1}{P}dP = \int rdt$$

$$\ln|P| = rt + C$$

$$e^{\ln|P|} = e^{rt+C}$$

$$|P| = e^{rt}e^{C}$$

$$= ke^{rt}$$

Solusi Analitik

• Secara umum, solusi untuk persamaan:

$$\frac{dP}{dt} = rP$$

Dengan populasi awal P₀ adalah:

$$P = P_0 e^{rt}$$

Solusi analitik digunakan jika memungkinkan

Solusi Numerik

- Metode Numerik untuk menyelesaikan PDB
 - Taylor
 - Euler
 - Runge-Kutta

Solusi Numerik

Metode Numerik untuk menyelesaikan PDB

Metode	Jenis	Keterangan		
lavior turunan		Menggunakan deret Taylor, butuh turunan orde lebih tinggi.		
Euler	orde 1	Sederhana, aproksimasi slope (kemiringan) di titik awal.		
Runge-Kutta (RK2, RK3, RK4, RKF45)	evaluasi slope berulang	Tidak perlu turunan tinggi, tapi mengevaluasi fungsi di beberapa titik dalam interval untuk meningkatkan akurasi.		

Nilai Tepat vs Pendekatan

Nilai Tepat vs Pendekatan

Persamaan Diferensial

- Misal, terdapat sebuah populasi dimana perubahan populasi hanya disebabkan oleh kelahiran dan kematian.
- Jika tidak ada faktor pembatas, dimana tingkat perubahan populasi berbanding lurus dengan jumlah individu dalam populasi

Persamaan Diferensial

• Jika P adalah populasi dan t adalah waktu, maka kita dapat menuliskan:

$$\frac{dP}{dt} \propto P$$

 Untuk tingkat pertumbuhan positif, semakin besar populasi maka semakin besar pula perubahan populasi.

$$\frac{dP}{dt} = rP$$

konstanta r adalah tingkat pertumbuhan, sedangkan dP/dt adalah tingkat perubahan populasi

• Deret Taylor adalah ekspansi fungsi y(t) di sekitar titik t_0 dalam bentuk jumlah turunan

$$y(t_0 + \Delta t) = \sum_{n=0}^{\infty} \frac{y^{(n)}(t_0)}{n!} (\Delta t)^n$$

Pada masalah IVP:

$$\frac{dy}{dt} = f(t, y)$$

deret Taylor digunakan untuk menghitung $y(t+\Delta t)$ secara numerik berdasarkan orde atau turunan

 Metode Euler, RK2, RK3, dan RK4 adalah bentuk pendekatan deret Taylor yang menghindari turunan eksplisit, namun tetap berbasis ide deret tersebut

• Misal pada kasus pertumbuhan populasi, kita ingin menghitung nilai P(t) pada titik titik t_n berdasarkan persamaan diferensial

$$\frac{dP}{dt} = f(t, P) = rP$$

dengan kondisi awal $P(t_0) = P_0$

• Kita kembangkan P(t) disekitar t_0 menggunakan deret Taylor, diperoleh:

$$P(t_0 + \Delta t) = \frac{P(t_0)}{0!} \Delta t^0 + \frac{P'(t_0)}{1!} \Delta t^1 + \frac{P''(t_0)}{2!} \Delta t^2 + \frac{P'''(t_0)}{3!} \Delta t^3 + \dots$$

Setiap suku ke-n dari deret Taylor:

$$\frac{P^{(n)}(t_0)}{n!}(\Delta t)^n$$

Contoh:

- Diketahui populasi awal P(0) adalah 100 dengan fungsi pertumbuhan adalah 0.1P(0) dan $\Delta t = 1$, Hitung populasi saat t=3 dengan deret Taylor:
 - Orde 1
 - Orde 2

Orde 1

$$P_1 = P_0 + 0.1P_0 \cdot 1$$

= 100+0.1(100)
= 110
 $P_2 = P_1 + 0.1P_1 \cdot 1$
= 110+0.1(110)
= 121
 $P_3 = P_2 + 0.1P_2 \cdot 1$
= 121+0.1(121)
= 133.1

• Orde 2

$$\begin{split} P_1 &= 100 + 0.1(100)1 + \frac{1}{2} \cdot 0.1^2(100)1^2 \\ &= 100 + 10 + 0.5 \\ &= 110.5 \end{split}$$

$$P_2 &= 110.5 + 0.1(110.5)1 + \frac{1}{2} \cdot 0.1^2(110.5)1^2 \\ &= 110.5 + 11.05 + 0.5525 \\ &= 122.1025 \end{split}$$

$$P_3 &= 122.1025 + 0.1(122.1025)1 + \frac{1}{2} \cdot 0.1^2(122.1025)1^2 \\ &= 122.1025 + 12.21025 + 0.6105125 \\ &= 134.9232625 \end{split}$$

Diketahui sebuah PDB

$$y' = \frac{dy}{dx} = f(x, y)$$
 dan nilai awal $y(x_o) = y_o$

Metode Euler diturunkan dari deret Taylor

$$y_{i+1} = y_i + y_i' \frac{\Delta x}{1!} + y_i'' \frac{\Delta x^2}{2!} + y_i''' \frac{\Delta x^3}{3!} + \dots$$

dimana $\Delta x = x_{i+1}$ - x_i , Apabila nilai Δx kecil maka suku Δx^2 , Δx^3 , ... akan sangat kecil dan dapat diabaikan. Sehingga untuk deeret Taylor orde 1 diperoleh

$$y_{i+1} = y_i + y_i' \Delta x$$
Atau
$$y_{i+1} = y_i + f(x_i, y_i) \Delta x$$

• Solusi y_{i+1} ini disebut solusi dari metode Euler. Nilai y_{i+1} diprediksi dengan menggunakan kemiringan untuk diekstrrapolasikan secara linier pada luasan Δx

- Metode Euler merupakan metode numerik orde pertama untuk menyelesaikan persamaan diferensial biasa
- Jika P(t) adalah populasi pada waktu t dengan fungsi pertumbuhan f(t,r) adalah tingkat pertumbuhan r terhadap populasi $P(t-\Delta t)$, maka:

$$\frac{dP}{dt} = f(t, P) = rP$$
$$P(t) = P(t - \Delta t) + \frac{dP}{dt} * \Delta t$$

Contoh:

Estimasikan pertumbuhan tak terbatas dan populasi jika populasi awal adalah 100 dengan fungsi pertumbuhan adalah populasi dikali tingkat pertumbuhan sebesar 10%, dan $\Delta t = 0.005$

t	P(t)	f(P,r)
0.000	100	10
0.005	100.05	

Contoh:

Estimasikan pertumbuhan tak terbatas dan populasi jika populasi awal adalah 100 dengan fungsi pertumbuhan adalah populasi dikali tingkat pertumbuhan sebesar 10%, dan $\Delta t = 0.005$

t	P(t)	f(P,r)	
0.000	100	10	
0.005	100.05	10.005	
0.010	100.10003	10.010003	
0.015	100.15008	10.015008	
0.020	100.20015	10.020015	
0.025	100.25025	10.025025	
0.030	100.30038		

Latihan:

Estimasikan pertumbuhan tak terbatas dan populasi jika populasi awal adalah 100 dengan fungsi pertumbuhan adalah populasi dikali tingkat pertumbuhan sebesar 10%, dan

- $-\Delta t = 1$
- $-\Delta t = 0.5$

- Metode Runge Kutta 2 merupakan perbaikan dari Metode Euler
- Menggunakan metode Euler sebagai predictor lalu menghitung garis miring (slope of the cord) untuk mendapatkan nilai yang lebih baik (corrected)
- Metode Runge Kutta 2 juga disebut sebagai Euler's Predictor Corrector (EPC)

• Pada contoh kasus sebelumnya dengan metode Euler, diketahui bahwa $P_0 = 100 \text{ dan } dP/dt = 0.1P$, sehingga:

```
fungsi pertumbuhan f(tn, Pn)
pada (t, P) = (0,100)
adalah f(0, 100) = 0.1(100) = 10
```

- Jika $t_0 = 0$ and $\Delta t = 8$ perkiraan nilai pada $t_1 = 8$ berupa titik pada garis singgung 100 + 8(10) = 180
- Nilai tepat $(8, P(8)) = (8, 100e^{0.10(8)}) \approx (8, 223)$

Metode Numerik

• Untuk memperoleh perkiraan yang lebih akurat, kita dapat menggunakan garis singgung pada (0,P(0)) dan (8,P(8)) ?

Metode Numerik

• Tidak, karena kita belum mengetahui nilai P(8)

 Sebagai solusi kita dapat menggunakan metode Euler terlebih dahulu, sebagai nilai predictor (Y)

Yakni
$$Y = P(8) = 180$$

- Dengan pertumbuhan f(8, 180) = 0.1(180) = 18
- Sehingga diperoleh garis miring antara (0, P(0)) and (8, P(8)) yang merupakan nilai rata-rata:

$$(10 + 18)/2 = 0.5(10 + 18) = 14$$

• Dan diperoleh nilai pendekatan yang lebih baik (corrected estimate) $P_1 = 100 + 14(8) = 212$

Rumus Metode RK2 (Heun):

$$k_1 = f(t_n, P_n) = r \cdot P_n$$

 $k_2 = f(t_n + \Delta t, P_n + \Delta t \cdot k_1) = r(P_n + \Delta t \cdot k_1)$
 $P_{n+1} = P_n + \left(\frac{k_1 + k_2}{2}\right) \Delta t$

Contoh:

• Diketahui populasi awal P(0) adalah 100 dengan fungsi pertumbuhan adalah 0.1P dan $\Delta t = 0.5$, Hitung populasi saat t=3 dengan metode RK2:

t	P(t)	Predictor (k1)	Corrector (k2)	Slope $\cdot \Delta t$
0.0	100	$0.1 \cdot 100 = 10$	0.1·(100+10·0.5)=10.5	(10+10.5)/2·0.5=5.125
0.5	105.125	0.1·105.125 = 10.5125	0.1·(105.125+10.5125·0.5)=11.38125	21.550625
1.0	110.51265	•••		
1.5				
2.0				
2.5				
3.0	134.96963			

Latihan:

- Diketahui populasi awal P(0) adalah 100 dengan fungsi pertumbuhan adalah 0.1P dan $\Delta t = 1$, maka:
 - Hitung populasi pada saat t=3 dengan metode Euler
 - Hitung dengan metode Rungge Kutta 2
 - Hitung relative error dari kedua metode tersebut terhadap nilai tepat: 100 $e^{0.10(3)}$ ≈ 134.986

Turunan vs Tanpa Turunan

- Jika kita perhatikan dengan teliti pada kasus sebelumnya dimana P(0)=100, dP/dt=0.1P, $\Delta t=1$, dan t=3, dapat kita rangkumkan hasil P(3) sebagai berikut
 - Taylor Orde 1 (Euler) = 133.1
 - Taylor Orde 2 = 134.9233
 - Runge Kutta 2 (Heun) = 134.9233
- Hasil yang diperoleh melalui metode deret Taylor (turunan eksplisit) dan Runge Kutta (tanpa turunan eksplisit) menghasilkan nilai yang sama pada setiap orde
- Jadi?

Turunan vs Tanpa Turunan

- Deret Taylor memerlukan kita menghitung:
 - f(t,y), f'(t,y), f''(t,y), ... hingga $f^{(n)}(t,y)$
 - Untuk fungsi f(t,y) yang kompleks (misalnya bersifat non-linear, piecewise, atau hasil simulasi), turunan tidak selalu tersedia atau mudah dihitung.
- Runge-Kutta menghindari turunan:
 - Hanya mengevaluasi fungsi f(t,y)di beberapa titik terpilih.
 - Tidak perlu simbolik atau analitik turunan, sehingga dapat diterapkan untuk model numerik/simulasi atau fungsi black-box.

Turunan vs Tanpa Turunan

Taylor	Runge-Kutta		
Akurat jika turunan mudah	Akurat tanpa perlu turunan		
Cocok untuk simulasi matematis	Cocok untuk komputasi numerik umum		
Jarang dipakai untuk fungsi rumit	Sering dipakai di dunia nyata (default di MATLAB, Python, dll)		

- Istilah orde tinggi umumnya digunakan untuk metode RK dengan orde ≥ 3
- Metode RK3 memiliki akurasi yang lebih baik dibanding RK2 melalui 3 evaluasi fungsi pada setiap langkah / iterasi

$$k_{1} = f(t_{n}, y_{n})$$

$$k_{2} = f\left(t_{n} + \frac{\Delta t}{2}, y_{n} + \frac{k_{1}\Delta t}{2}\right)$$

$$k_{3} = f(t_{n} + \Delta t, y_{n} - k_{1}\Delta t + 2k_{2}\Delta t)$$

$$y_{n+1} = y_{n} + \frac{\Delta t}{6}(k_{1} + 4k_{2} + k_{3})$$

- RK4 sering disebut sebagai metode RK orde tinggi standar karena efisiensinya dalam praktik
- Memiliki keseimbangan antara akurasi dan biaya komputasi.

$$k_{1} = f(t_{n}, y_{n})$$

$$k_{2} = f\left(t_{n} + \frac{\Delta t}{2}, y_{n} + \frac{k_{1}\Delta t}{2}\right)$$

$$k_{3} = f\left(t_{n} + \frac{\Delta t}{2}, y_{n} + \frac{k_{2}\Delta t}{2}\right)$$

$$k_{4} = f(t_{n} + \Delta t, y_{n} + k_{3}\Delta t)$$

$$y_{n+1} = y_{n} + \frac{\Delta t}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

- RKF45 arau RK Fehlberg adalah metode numerik adaptif untuk menyelesaikan PDB
- Menggunakan dua metode Runge-Kutta sekaligus yaitu orde 4 dan orde 5 untuk:
 - Menghasilkan solusi numerik y_{n+1}
 - Mengestimasi galat (error) lokal
 - Menyesuaikan langkah (Δt) secara otomatis
- Sering digunakan dalam solver ODE modern:
 - ode 45 (MATLAB),
 - scipy.integrate.solve ivp(..., method='RK45') (Python)
- Konstanta diperoleh dari Tableau Butcher

K	A(K)	B(K,1)	B(K,2)	B(K,3)	B(K,4)	B(K,5)	C(K)	CH(K)	CT(K)
1	0	0	_	_	_	_	1/6	1/24	1/8
2	1/2	1/2	_	_	_	_	0	0	0
3	1/2	1/4	1/4	_	_	_	2/3	0	2/3
4	1	0	-1	2	_	_	1/6	5/48	1/16
5	2/3	7/27	10/27	0	1/27	_	27/56	27/56	-27/56
6	1/5	28/625	-1/5	546/625	54/625	-378/625	125/336	125/336	-125/336

- Kolom B(K,L) digunakan untuk membentuk y_k
- C(K) = bobot solusi orde 5 (lebih akurat)
- CT(K) = bobot solusi orde 4 (digunakan untuk estimasi error lokal)
- CH(K) = bobot tambahan (kadang digunakan untuk error estimator tambahan)
- Pada implementasi numerik (seperti solver ode45), selisih antara solusi orde-5 dan orde-4 inilah yang digunakan untuk mengatur langkah adaptif

Tugas

- 1. Diketahui nilai sebuah persamaan diferensial $\frac{dy}{dt} = ay$; $y_0 = 100$; $t_0 = 0$; a = 0.2; $\Delta t = 0.3$. Hitung nilai y saat t = 0.6 dengan metode RK4
- 2. Diketahui nilai sebuah persamaan diferensial $\frac{dy}{dt}=a+y$; $y_0=100$; $t_0=0$; a=2; $\Delta t=0.3$. Hitung nilai y saat t=0.6 dengan metode RK4

- Kumpulkan tugas dalam bentuk tulis tangan pada kertas ukuran A4 atau F4 bergaris.
- Pindai hasil pekerjaan anda dan unggah melalui Kulon

Sekian

TERIMAKASIH