Package 'abc.n'

May 9, 2013

Version 1.0-0

Date 2013/02/15

nabc.chisqstretch.tau.low12nabc.chisqstretch.tau.lowup13NABC.DEFAULT.ANS14nabc.exprho.at.theta14nabc.generic.tost15nabc.get.pfam.pval16

Index		23
	nabc.mutost.pow	22
	nabc.mutost.onesample.tau.lowup.var	21
	nabc.mutost.onesample.tau.lowup.pw	20
	nabc.mutost.onesample.n.of.y.KL	18
	nabc.mutost.onesample.n.of.y	17
	nabc.mutost.onesample	16

```
integrand_KL_divergence_1D
```

Integrand of the Kullback-Leibler divergence for generic distribution

Description

Integrand of the Kullback-Leibler divergence for generic distribution

Usage

```
integrand_KL_divergence_1D(x, P_dist, Q_dist, P_arg,
   Q_arg)
```

Arguments

X	value at which integrand is evaluated. Can be a vector.
P_dist	name of the function that compute the density of P
Q_dist	name of the function that compute the density of Q
P_arg	list of arguments for P_dist
Q_arg	list of arguments for Q_dist

```
integrand_KL_divergence_1D_mutost
```

Integrand of the Kullback-Leibler divergence for mutost

Description

Integrand of the Kullback-Leibler divergence for mutost

Usage

```
integrand_KL_divergence_1D_mutost(rho, n.of.x, s.of.x,
  n.of.y, s.of.y, tau.u, alpha, lkl_norm = 1,
  pow_norm = 1)
```

Arguments

rho	value at which integrand is evaluated. Can be a vector.
tau.u	upper tolerance of the equivalence region
lkl_norm	constant for normalization for the truncated summary likelihood (default to 1)
pow_norm	constant for normalization for the truncated power (default to 1)

KL_divergence_1D 3

KL_divergence_1D	Compute the Kullback-Leibler divergence $D(P Q)$ from the 1D-
	distribution P and Q , when the density is available.

Description

Compute the Kullback-Leibler divergence D(P||Q) from the 1D-distribution P and Q, when the density is available.

Usage

```
KL_divergence_1D(P_dist, Q_dist, P_arg, Q_arg, lower,
    upper)
```

Arguments

upper upper bound for integration. Can be infinite.	
P_dist name of the function that compute the density of	P
Q_dist name of the function that compute the density of	Q
P_arg list of arguments for P_dist	
Q_arg list of arguments for Q_dist	

Examples

```
KL\_divergence\_1D(P\_dist="dexp",Q\_dist="dexp",P\_arg=list(rate=0.2),Q\_arg=list(rate=0.4),lower=0,upper=Inf) \\ \#theoretical\ divergence\ =\ log(0.2/0.4)+(0.4-0.2)-1\ =\ 1-log(2)\ =\ 0.307
```

```
KL\_divergence\_1D\_mutost
```

Compute the Kullback-Leibler divergence D(P||Q) where P is the summary likelihood and Q is the mutost power.

Description

Compute the Kullback-Leibler divergence D(P||Q) where P is the summary likelihood and Q is the mutost power.

```
KL_divergence_1D_mutost(n.of.x, s.of.x, n.of.y, s.of.y,
  tau.u, alpha, lkl_norm = 1, pow_norm = 1, lower, upper)
```

Arguments

tau.u	upper tolerance of the equivalence region
lkl_norm	constant for normalization for the truncated summary likelihood (default to 1)
pow_norm	constant for normalization for the truncated power (default to 1)
lower	lower bound for integration. Can be infinite.
upper	upper bound for integration. Can be infinite.
n.of.x	number of observed summary values
s.of.x	standard deviation of observed summary values
n.of.y	number of simulated summary values
s.of.y	standard deviation of simulated summary values
alpha	level of the equivalence test

 $KL_divergence_mutost_tau.u$

Compute Kullback-Leibler divergence between the summary likelihood and the power function of mutost after calibration of tau.u

Description

Compute Kullback-Leibler divergence between the summary likelihood and the power function of mutost after calibration of tau.u

Usage

```
KL_divergence_mutost_tau.u(n.of.x, s.of.x, n.of.y,
    s.of.y, mx.pw, tau.u.ub, alpha, debug = 0, plot = F)
```

Arguments

n.ot.x	number of observed summary values
s.of.x	standard deviation of observed summary values
n.of.y	number of simulated summary values
s.of.y	standard deviation of simulated summary values
mx.pw	maximum power at the point of reference (rho.star=0)
tau.u.ub	guess on an upper bound on the upper tolerance of the equivalence region
alpha	level of the equivalence test
debug	flag if C implementation is used
plot	whether to plot the two distributions

Value

vector of length 3

KL_div	the Kullback Leibler divergence
tau.u	upper tolerance of the equivalence region
pw.cmx	actual maximum power associated with the equivalence region

KL_optimize 5

Examples

```
\label{eq:KL_divergence_mutost_tau.u} KL\_divergence\_mutost\_tau.u(n.of.x=60,s.of.x=0.1,n.of.y=60,s.of.y=0.3,\ mx.pw=0.9,\ tau.u.ub=1,\ alpha=0.01,plot=T)
```

KL_optimize	A wrapper to minimize KL_divergence_mutost_n over n.of.y using
	the function optimize

Description

A wrapper to minimize KL_divergence_mutost_n over n.of.y using the function optimize

Usage

```
KL_optimize(n.of.y, n.of.x, s.of.x, s.of.y, mx.pw,
tau.u.ub, alpha, debug = 0, plot = F)
```

Arguments

n.of.y	number of simulated summary values
n.of.x	number of observed summary values
s.of.x	standard deviation of observed summary values
s.of.y	standard deviation of simulated summary values
mx.pw	maximum power at the point of reference (rho.star=0)
tau.u.ub	guess on an upper bound on the upper tolerance of the equivalence region
alpha	level of the equivalence test
debug	flag if C implementation is used
plot	whether to plot the two distributions

nabc.acf.equivalence Perform the asymptotic equivalence test for autocorrelations at lag 1

Description

Perform the asymptotic equivalence test for autocorrelations at lag 1

```
nabc.acf.equivalence(sim, obs, args = NA,
  verbose = FALSE, alpha = 0, leave.out = 0,
  normal.test = "sf.test")
```

Arguments

sim simulated summary values obs observed summary values args argument that contains the equivalence region and the level of the test (see Ex-

amples). This is the preferred method for specifying arguments and overwrites

the dummy default values

verbose flag if detailed information on the computations should be printed to standard

out

alpha level of the equivalence test

thinning, how many values in the pair sequence (x_i,x_i-1) should be left out. leave.out

Defaults to zero.

name of function with which normality of the summary values is tested normal.test

Value

vector containing

test statistic. Here, instead of T we return the p-value of the TOST. error cil lower ABC tolerance. Here, instead of c^- we return 0. upper ABC tolerance. Here, instead of c^+ we return 'alpha'. cir free entry. Here set to c^-. al free entry. Here set to c^+ . ar mx.pw Maximum power at the point of equality

sample estimate of 'rho' rho.mc

Examples

```
leave.out<- 2</pre>
tau.u<- 0.09
alpha<- 0.01
n<- 5e3
sigma<- 1
a<- 0.1
args<- paste("acfequiv",leave.out,tau.u,alpha,sep='/')</pre>
x<-rnorm(n+1,0,sigma)
x < x[-1] + x[-(n+1)]*a
y<-rnorm(n+1,0,sigma)
y < -y[-1] + y[-(n+1)]*a
nabc.acf.equivalence(y,x,args)
```

nabc.acf.equivalence.abctol

Compute the ABC tolerances of the asymptotic equivalence test for autocorrelations at lag 1

Description

Compute the ABC tolerances of the asymptotic equivalence test for autocorrelations at lag 1

Usage

```
nabc.acf.equivalence.abctol(tau.l, tau.u, n, alpha)
```

Arguments

tau.1 lower tolerance of the equivalence region tau.u upper tolerance of the equivalence region

n number of pairs (x_i,x_i-1) after thinning of the time series $x_1, x_2, ...$

alpha level of the equivalence test

Value

vector of length 2, first entry is lower ABC tolerance, second entry is upper ABC tolerance

Examples

```
tau.u<- 0.09
tau.l<- -tau.u
sim.n<-5e3
leave.out<- 2
nabc.acf.equivalence.abctol(tau.l, tau.u, floor(sim.n / (1+leave.out)), 0.01)</pre>
```

```
nabc.acf.equivalence.cor
```

Compute the autocorrelation in a time series along with some other info

Description

Compute the autocorrelation in a time series along with some other info

Usage

```
nabc.acf.equivalence.cor(x, leave.out = 0)
```

Arguments

x time series (simply vector)

leave.out thinning, how many values in the pair sequence (x_i,x_i-1) should be left out.

Defaults to zero.

Value

cor autocorrelation in the thinned sequence

z Z-transformation of the autocorrelation (this is atanh of "cor")

n Number of pairs (x_i,x_i-1) after thinning

```
nabc.acf.equivalence.cor(rnorm(100,0,1), leave.out=2)
```

```
nabc.acf.equivalence.pow
```

Compute power of the asymptotic equivalence test for autocorrelations at lag 1

Description

Compute power of the asymptotic equivalence test for autocorrelations at lag 1

Usage

```
nabc.acf.equivalence.pow(rho, tau.u, alpha, s)
```

Arguments

rho	true difference in simulated and observed autocorrelation at lag 1
tau.u	upper tolerance of the equivalence region
alpha	level of the equivalence test
S	standard deviation of the test statistic

Value

power of the asymptotic test. this is approximate because the test is asymptotic

Examples

```
tau.u<- 0.09
tau.l<- -tau.u
sim.n<-5e3
rho<- seq(tau.l,tau.u,0.001)
pw<- nabc.acf.equivalence.pow(rho, tau.u, alpha, 1/sqrt(floor(sim.n/3)-3))</pre>
```

```
nabc.acf.equivalence.tau.lowup
```

Calibrate the equivalence region of the asymptotic equivalence test for autocorrelations at lag 1 for given maximum power

Description

Calibrate the equivalence region of the asymptotic equivalence test for autocorrelations at lag 1 for given maximum power

```
nabc.acf.equivalence.tau.lowup(mx.pw, tau.up.ub, n,
   alpha, rho.star = 0, tol = 1e-05, max.it = 100)
```

nabc.chisqstretch 9

Arguments

mx.pw	maximum power at the point of reference (rho.star).
tau.up.ub	guess on an upper bound on the upper tolerance of the equivalence region
n	number of pairs (x_i,x_i-1) after thinning of the time series $x_1, x_2,$
alpha	level of the equivalence test
rho.star	point of reference. Defaults to the point of equality rho.star=0.
tol	this algorithm stops when the actual maximum power is less than 'tol' from ' $mx.pw$ '
max.it	this algorithm stops prematurely when the number of iterations to find the equivalence region exceeds 'max.it'

Value

vector of length 4

1	lower tolerance of the equivalence region
2	upper tolerance of the equivalence region
3	actual maximum power associated with the equivalence region
4	error ie abs(actual power - mx.pw)

Examples

```
tau.u<- 0.09
tau.l<- -tau.u
sim.n<-5e3
leave.out<- 2
nabc.acf.equivalence.tau.lowup(0.9, 2, floor(sim.n / (1+leave.out)), 0.01)</pre>
```

Description

Perform the exact test for dispersion equivalence when the summary values are normally distributed

```
nabc.chisqstretch(sim, obs.mc, args = NA,
  verbose = FALSE, tau.l = 1, tau.u = 1, guess.tau.l = 0,
  alpha = 0, normal.test = "sf.test", for.mle = 0)
```

Arguments

sim simulated summary values

obs.mc variance of the observed summary values

args argument that contains the equivalence region and the level of the test (see Ex-

amples). This is the preferred method for specifying arguments and overwrites

the dummy default values

verbose flag if detailed information on the computations should be printed to standard

out

tau.1 lower tolerance of the equivalence region tau.u upper tolerance of the equivalence region

guess.tau.1 guess on the lower tolerance of the equivalence region. Used when the toler-

ances are annealed and calibration is numerically unstable.

alpha level of the equivalence test

leave.out thinning, how many values in the pair sequence (x_i, x_i-1) should be left out.

Defaults to zero.

normal.test name of function with which normality of the summary values is tested

for.mle calibrate so that the mode of the power is at the MLE

Value

vector containing

error test statistic, here var(sim)/obs.mc

cil lower ABC tolerance c^cir upper ABC tolerance c^+

mx.pw Maximum power at the point of equality

rho.mc $\log(\text{var}(\text{sim}) / \text{obs.mc})$

Examples

```
alpha<- 0.01; xn<- yn<- 60; xsigma2<- 1; tau.u<- 2.2
tau.l<- nabc.chisqstretch.tau.low(tau.u, yn-1, alpha)
args<- paste("chisqstretch",tau.l,tau.u,alpha,sep='/')
x<- rnorm(xn,0,sd=sqrt(xsigma2))
y<- rnorm(yn,0,sd=sqrt(xsigma2))
nabc.chisqstretch(y, var(x), args=args, verbose= 0)</pre>
```

```
nabc.chisqstretch.n.of.y
```

Calibrate the number of simulated summary values and the equivalence region for the test of dispersion equivalence

Description

Calibrate the number of simulated summary values and the equivalence region for the test of dispersion equivalence

Usage

```
nabc.chisqstretch.n.of.y(n.of.x, s.of.Sx, mx.pw, alpha,
tau.u.ub = 2, tol = 1e-05, max.it = 100, for.mle = 0)
```

Arguments

n.of.x	number of observed summary values
s.of.Sx	standard deviation in the observed summary likelihood
mx.pw	maximum power at the point of reference (rho.star).
alpha	level of the equivalence test
tau.up.ub	guess on an upper bound on the upper tolerance of the equivalence region
tol	this algorithm stops when the actual variation in the ABC approximation to the summary likelihood is less than 'tol' from 's.of.Sx*s.of.Sx' $$
max.it	this algorithm stops prematurely when the number of iterations to calibrate the number of simulated data points exceeds 'max.it'
for.mle	calibrate so that the mode of the power is at the MLE

Value

vector of length 8

1	number of simulated summary values
2	lower tolerance of the equivalence region
3	upper tolerance of the equivalence region
4	lower ABC tolerance c^-
5	upper ABC tolerance c^+
6	actual variation of the power
7	actual maximum power associated with the equivalence region
8	error ie abs(actual variation - variation in the observed summary likelihood)

```
xn<- 60; alpha <- 0.01; prior.u <- 3; prior.l <- 1/3; tau.u<- 2.5; xsig2 <- 1
#summary likelihood of sigma2 given sample mean and sum of squares
th <- seq(prior.l,prior.u,length.out=1e3)</pre>
shape <- (xn-2)/2
scale <- xsig2*xn*xn/(xn-1)/2</pre>
y <- densigamma(th, shape, scale)</pre>
var.Sx <- scale*scale/((shape-1)*(shape-1)*(shape-2))</pre>
#abc approximation to summary likelihood
nabc.chisqstretch.n.of.y(xn, sqrt(var.Sx), 0.9, alpha, tau.u.ub=tau.u)
yn <- tmp[1]</pre>
tau.1 \leftarrow tmp[2]
tau.u \leftarrow tmp[3]
c.1 \leftarrow tmp[4]
c.u <- tmp[5]
y2 <- nabc.chisqstretch.pow(th, yn-1, yn-1, c.l, c.u)
#plot the summary likelihood and the abc approximation
plot(th,y/mean(y),ylim=range(c(y/mean(y),y2/mean(y2))),type='l')
lines(th,y2/mean(y2),col="blue")
```

nabc.chisqstretch.pow Compute power of the exact equivalence test for dispersion

Description

Compute power of the exact equivalence test for dispersion

Usage

```
nabc.chisqstretch.pow(rho, scale, df, cl, cu)
```

Arguments

rho	true ratio in simulated variance / observed variance
scale	scaling of T apart from rho, either n-1 for unbiased ABC or n for exact MAP
df	degrees of freedom
cl	lower ABC tolerance
cu	upper ABC tolerance

Value

power of the exact test. this is exact.

Examples

```
alpha<- 0.01
tau.up<- 1.09
yn<- 5e3
tau.low<- nabc.chisqstretch.tau.low(tau.up, yn-1, alpha)
rej<- .Call("abcScaledChiSq",c(yn-1,yn-1,tau.low,tau.up,alpha,1e-10,100,0.05) )
rho<- seq(tau.low,tau.up,by=0.001)
nabc.chisqstretch.pow(rho,yn-1,yn-1,rej[1],rej[2])</pre>
```

```
nabc.chisqstretch.tau.low
```

Calibrate the lower tolerance interval of the equivalence region for the test of dispersion equivalence

Description

Calibrate the lower tolerance interval of the equivalence region for the test of dispersion equivalence

```
nabc.chisqstretch.tau.low(tau.up, df, alpha,
  rho.star = 1, tol = 1e-05, max.it = 100, for.mle = 0)
```

Arguments

tau.up	upper tolerance of the equivalence region
df	degrees of freedom
alpha	level of the equivalence test
rho.star	point of reference. Defaults to the point of equality rho.star=1
tol	this algorithm stops when the actual point of reference is less than 'tol' from 'rho.star' $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
max.it	this algorithm stops prematurely when the number of iterations to find the equivalence region exceeds 'max.it'
for.mle	calibrate so that the mode of the power is at the MLE

Value

tau.low, lower tolerance of the equivalence region

Examples

```
tau.u<- 2.2
yn<- 60
tau.l<- nabc.chisqstretch.tau.low(tau.u, yn-1, 0.01)</pre>
```

```
nabc.chisqstretch.tau.lowup
```

Calibrate the equivalence region for the test of dispersion equivalence for given maximum power

Description

Calibrate the equivalence region for the test of dispersion equivalence for given maximum power

Usage

```
nabc.chisqstretch.tau.lowup(mx.pw, tau.up.ub, df, alpha,
    rho.star = 1, tol = 1e-05, max.it = 100, for.mle = 0)
```

Arguments

mx.pw	maximum power at the point of reference (rho.star).
tau.up.ub	guess on an upper bound on the upper tolerance of the equivalence region
df	degrees of freedom
alpha	level of the equivalence test
rho.star	point of reference. Defaults to the point of equality rho.star=1.
tol	this algorithm stops when the actual maximum power is less than 'tol' from 'mx.pw'
max.it	this algorithm stops prematurely when the number of iterations to find the equivalence region exceeds 'max.it'
for.mle	calibrate so that the mode of the power is at the MLE

14 nabc.exprho.at.theta

Value

vector	of	length	6
--------	----	--------	---

1	lower tolerance of the equivalence region
2	upper tolerance of the equivalence region
3	actual maximum power associated with the equivalence region
4	error ie abs(actual power - mx.pw)
5	lower point of critical region
6	upper point of critical region

Examples

```
yn<- 60 nabc.chisqstretch.tau.lowup(0.9, 2.5, yn-1, 0.01)
```

NABC.DEFAULT.ANS

this file contains all R functions of the abc-n package

Description

this file contains all R functions of the abc-n package

Usage

```
NABC.DEFAULT.ANS
```

Format

Named num [1:17] 0 50 1 NA NA NA 0 0 0 0 ... - attr(*, "names")= chr [1:17] "lkl" "error" "pval" "link.mc.obs" ...

nabc.exprho.at.theta

Estimate summary parameter errors rho from unbiased Monte Carlo estimates rho.mc for all proposed theta including rejections

Description

Estimate summary parameter errors rho from unbiased Monte Carlo estimates rho.mc for all proposed theta including rejections

```
nabc.exprho.at.theta(df, theta.names, rho.names,
thin = 1)
```

nabc.generic.tost 15

Arguments

df data frame with all proposed theta and corresponding rho.mc for each summary

of interest

theta.names vector of theta names (columns in df)
rho.names vector of rho names (columns in df)

thin thinning factor in case there are many rows in df

Value

matrix containing the estimated rho (per column). The ith row corresponds to the ith theta in df.

nabc.generic.tost

Perform a generic two one sided test. This is an internal function.

Description

Perform a generic two one sided test. This is an internal function.

Usage

```
nabc.generic.tost(tost.args, tau.l, tau.u, alpha,
  tost.distr = "t")
```

Arguments

tost.args vector of arguments for generic TOST
tau.l lower tolerance of equivalence region
tau.u upper tolerance of equivalence region
alpha level of equivalence test
tost.distr name of distribution of tost

Value

vector of length 7

nabc.get.pfam.pval

Test if summary values are normally distributed

Description

Test if summary values are normally distributed

Usage

```
nabc.get.pfam.pval(x, normal.test)
```

Arguments

x summary values

norma.test name of function with which normality of the summary values is tested

Value

p value of the test

Examples

```
nabc.get.pfam.pval(rnorm(1e4), "shapiro.test")
```

 ${\it nabc.mutost.onesample} \begin{tabular}{ll} \textit{Perform the exact TOST for location equivalence when the summary}\\ \textit{values are normally distributed} \end{tabular}$

Description

Perform the exact TOST for location equivalence when the summary values are normally distributed

Usage

```
nabc.mutost.onesample(sim, obs, obs.n = NA, obs.sd = NA,
    args = NA, verbose = FALSE, tau.u = 0, tau.l = -tau.u,
    alpha = 0, mx.pw = 0.9, annealing = 1,
    normal.test = "sf.test", plot = 0, legend.txt = "")
```

Arguments

sim	simulated summary values
obs	observed summary values
args	argument that contains the equivalence region and the level of the test (see Examples). This is the preferred method for specifying arguments and overwrites the dummy default values
verbose	flag if detailed information on the computations should be printed to standard out
s.of.x	standard deviation of the observed summary values

tau.u	upper tolerance of the equivalence region
tau.l	lower tolerance of the equivalence region

alpha level of the equivalence test

mx.pw maximum power at the point of equality

annealing inflation factor of tolerances of the equivalence region

normal.test name of function with which normality of the summary values is tested

Value

vector containing

error test statistic, here p-value of TOST

cil lower ABC tolerance, here 0

cir upper ABC tolerance, here alpha

mx.pw Maximum power at the point of equality

rho.mc mean(sim) - obs.mean

Examples

```
tau.u<- 0.5; tau.l<- -tau.u; alpha<- 0.01; xn<- yn<- 60; xmu<- ymu<- 0.5; xsigma2<- 2
args<- paste("mutost",1,tau.u,alpha,sep='/')
x<- rnorm(xn,xmu,sd=sqrt(xsigma2))
y<- rnorm(yn,ymu,sd=sqrt(ysigma2))
nabc.mutost.onesample(y, x, args= args, verbose= 0)</pre>
```

```
nabc.mutost.onesample.n.of.y
```

Calibrate the number of simulated summary values and the equivalence region for the test of location equivalence

Description

Calibrate the number of simulated summary values and the equivalence region for the test of location equivalence

Usage

```
nabc.mutost.onesample.n.of.y(n.of.x, s.of.Sx, mx.pw,
    s.of.y, alpha, tau.u.ub = 2, tol = 1e-05, max.it = 100,
    debug = 0)
```

Arguments

n.of.x	number of observed summary values
s.of.Sx	standard deviation in the observed summary likelihood
mx.pw	maximum power at the point of reference (rho.star).
s.of.y	standard deviation in the simulated summary values
alpha	level of the equivalence test

tau.up.ub	guess on an upper bound on the upper tolerance of the equivalence region
tol	this algorithm stops when the actual variation in the ABC approximation to the summary likelihood is less than 'tol' from 's.of. $Sx*s.of.Sx$ '
max.it	this algorithm stops prematurely when the number of iterations to calibrate the number of simulated data points exceeds 'max.it'
debug	Flag if C implementation is used.

Value

vector of length 6

1	number of simulated summary values
2	lower tolerance of the equivalence region
3	upper tolerance of the equivalence region
4	actual variation of the power
5	actual maximum power associated with the equivalence region
6	error ie abs(actual variation - variation in the observed summary likelihood)

Examples

```
prior.u<- 2; prior.l<- -prior.u; tau.u<- 0.75; xn<- yn<- 60; xmu<- 0.5; xsigma2<- ysigma2<- 2; alpha<- 0.0
rho<- seq(prior.1,prior.u,length.out=1e3)</pre>
#summary likelihood
y<-dnorm(rho,0,sqrt(xsigma2/xn))
y<- y / diff(pnorm(c(prior.l,prior.u),0,sqrt(xsigma2/xn)))</pre>
#abc approximation to summary likelihood based on equivalence test
tmp <- nabc.mutost.onesample.n.of.y(xn, sqrt(xsigma2/xn), 0.9, sqrt(ysigma2), alpha, tau.u.ub=2*tau.u )</pre>
yn <- tmp[1]</pre>
tau.u \leftarrow tmp[3]
y2<- nabc.mutost.pow(rho, yn-1, tau.u, sqrt(ysigma2/yn), alpha)
rho2<- rho[which(y2!=0)]</pre>
y2 < - y2[which(y2!=0)]
y2 <- y2/sum(diff(rho2)*y2[-1])
#plot summary likelihood and abc approximation thereof
plot(1,1,type='n',xlim=range(rho),ylim=range(c(y,y2)),xlab=expression(rho))
lines(rho,y,col="red")
lines(rho2,y2,col="blue")
abline(v=0,col="red")
```

nabc.mutost.onesample.n.of.y.KL

Calibrate the number of simulated summary values and the equivalence region for the test of location equivalence by minimising the Kullback-Leibler divergence between the power function and the summary likelihood.

Description

Calibrate the number of simulated summary values and the equivalence region for the test of location equivalence by minimising the Kullback-Leibler divergence between the power function and the summary likelihood.

Usage

```
nabc.mutost.onesample.n.of.y.KL(n.of.x, s.of.x, n.of.y,
    s.of.y, mx.pw, alpha, tau.u.ub = 2, max.it = 100,
    debug = 0, plot = F)
```

Arguments

plot	if TRUE, the summary likelihood and abc approximation are plotted
max.it	this algorithm stops prematurely when the number of iterations to calibrate the number of simulated data points exceeds 'max.it'
debug	Flag if C implementation is used.
n.of.x	number of observed summary values
s.of.x	standard deviation of observed summary values
n.of.y	number of simulated summary values
s.of.y	standard deviation of simulated summary values
mx.pw	maximum power at the point of reference (rho.star=0)
alpha	level of the equivalence test
tau.u.ub	guess on an upper bound on the upper tolerance of the equivalence region

Value

vector of length 4

n.of.y	number of simulated summary values
KL_div	the Kullback Leibler divergence
tau.u	upper tolerance of the equivalence region
pw.cmx	actual maximum power associated with the equivalence region

```
prior.u<- 2; prior.l<- -prior.u; tau.u<- 0.75; xn<- yn<- 60; xmu<- 0.5;
xsigma2<- ysigma2<- 2; alpha<- 0.01
rho<- seq(prior.1,prior.u,length.out=1e3)</pre>
#summary likelihood
y<-dnorm(rho,0,sqrt(xsigma2/xn))
y<- y / diff(pnorm(c(prior.l,prior.u),0,sqrt(xsigma2/xn)))</pre>
#abc approximation to summary likelihood based on equivalence test
tmp <- nabc.mutost.onesample.n.of.y.KL(xn, sqrt(xsigma2/xn), yn,</pre>
sqrt(ysigma2),0.9, alpha, tau.u.ub=2*tau.u,plot=T)
yn <- tmp["yn"]</pre>
tau.u <- tmp["tau.u"]</pre>
y2<- nabc.mutost.pow(rho, yn-1, tau.u, sqrt(ysigma2/yn), alpha)
rho2<- rho[which(y2!=0)]</pre>
y2 < - y2[which(y2!=0)]
y2 <- y2/sum(diff(rho2)*y2[-1])
#plot summary likelihood and abc approximation thereof
plot(1,1,type='n',xlim=range(rho),ylim=range(c(y,y2)),xlab=expression(rho))
lines(rho,y,col="red")
lines(rho2,y2,col="blue")
abline(v=0,col="red")
```

```
nabc.mutost.onesample.tau.lowup.pw
```

Calibrate the equivalence region for the test of location equivalence for given maximum power

Description

Calibrate the equivalence region for the test of location equivalence for given maximum power

Usage

```
nabc.mutost.onesample.tau.lowup.pw(mx.pw, df, s.of.T,
  tau.up.ub, alpha, rho.star = 0, tol = 1e-05,
  max.it = 100, debug = 0)
```

Arguments

mx.pw	maximum power at the point of reference (rho.star).
df	degrees of freedom
s.of.T	standard deviation of the test statistic
tau.up.ub	guess on an upper bound on the upper tolerance of the equivalence region
alpha	level of the equivalence test
rho.star	point of reference. Defaults to the point of equality rho.star=0.
tol	this algorithm stops when the actual maximum power is less than 'tol' from 'mx.pw' $$
max.it	this algorithm stops prematurely when the number of iterations to find the equivalence region exceeds 'max.it'
debug	Flag if C implementation is used.

Value

vector of length 4

1	lower tolerance of the equivalence region
2	upper tolerance of the equivalence region
3	actual maximum power associated with the equivalence region
4	error ie abs(actual power - mx.pw)

```
nabc.mutost.onesample.tau.lowup.var
```

Calibrate the equivalence region for the test of location equivalence for given variance of the summary likelihood

Description

Calibrate the equivalence region for the test of location equivalence for given variance of the summary likelihood

Usage

```
nabc.mutost.onesample.tau.lowup.var(s.of.Sx, df, s.of.T,
  tau.up.ub, alpha, rho.star = 0, tol = 1e-05,
  max.it = 100, debug = 0)
```

Arguments

s.of.Sx	standard deviation of the summary likelihood
df	degrees of freedom
s.of.T	standard deviation of the test statistic
tau.up.ub	guess on an upper bound on the upper tolerance of the equivalence region
alpha	level of the equivalence test
rho.star	point of reference. Defaults to the point of equality rho.star=0.
tol	this algorithm stops when the actual maximum power is less than 'tol' from 'mx.pw'
max.it	this algorithm stops prematurely when the number of iterations to find the equivalence region exceeds 'max.it'
debug	Flag if C implementation is used.

Value

vector of length 4

1	lower tolerance of the equivalence region
2	upper tolerance of the equivalence region
3	actual variance associated with the power
4	error ie abs(actual var(power) - var(summary likelihood))

```
yn<- 60; ysigma2<- 1; alpha<- 0.01 nabc.mutost.onesample.tau.lowup.var(0.002, yn-1, sqrt(ysigma2/yn), 2, alpha )
```

22 nabc.mutost.pow

nabc.mutost.pow	Compute power of the equivalence test for population means of normal summary values
	summary values

Description

Compute power of the equivalence test for population means of normal summary values

Usage

```
nabc.mutost.pow(rho, df, tau.u, s.of.T, alpha,
  rtn.fun = FALSE, force = FALSE)
```

Arguments

rho	true difference in simulated and observed population means
df	degrees of freedom of the simulated summary values
tau.u	upper tolerance of the equivalence region
s.of.T	standard deviation of the test statistic
alpha	level of the equivalence test
rtn.fun	indicator if a function to compute the power should be returned. Defaults to 0.
force	if TRUE, enforce power computation outside of acceptance region

Value

approximate power of the exact test. this is approximate because the standard deviation of the normal model for the simulated summary values is not known.

```
prior.u<- 5; prior.l<- -prior.u; tau.u <- 0.75; yn<- 60; ysigma2<- 1; alpha<- 0.01
rho <- seq(prior.l,prior.u,length.out=1e3)
nabc.mutost.pow(rho, yn-1, tau.u, sqrt(ysigma2/yn), alpha)</pre>
```

Index

```
*Topic datasets
    NABC. DEFAULT. ANS, 14
integrand_KL_divergence_1D, 2
integrand_KL\_divergence\_1D\_mutost, 2
KL_divergence_1D, 3
KL_divergence_1D_mutost, 3
KL_divergence_mutost_tau.u, 4
KL_optimize, 5
nabc.acf.equivalence, 5
nabc.acf.equivalence.abctol, 6
nabc.acf.equivalence.cor, 7
nabc.acf.equivalence.pow, 8
nabc.acf.equivalence.tau.lowup, 8
nabc.chisqstretch, 9
nabc.chisqstretch.n.of.y, 10
nabc.chisqstretch.pow, 12
nabc.chisqstretch.tau.low, 12
nabc.chisqstretch.tau.lowup, 13
NABC.DEFAULT.ANS, 14
nabc.exprho.at.theta, 14
nabc.generic.tost, 15
nabc.get.pfam.pval, 16
nabc.mutost.onesample, 16
nabc.mutost.onesample.n.of.y, 17
nabc.mutost.onesample.n.of.y.KL, 18
nabc.mutost.onesample.tau.lowup.pw, 20
nabc.mutost.onesample.tau.lowup.var,
        21
nabc.mutost.pow, 22
```