DM 29 : Corrigé.

Il s'agit d'un problème posé pour l'agrégation interne de 1993, avec quelques aménagements.

Partie I

1°) Soit $(\alpha, \beta) \in S_2(B)^2$. Il existe $(x, y, z, t) \in B^4$ tel que $\alpha = x^2 + y^2$ et $\beta = z^2 + t^2$. $\alpha\beta = (x^2 + y^2)(z^2 + t^2) = |x + iy|^2|z + it|^2$ $= |(x + iy)(z + it)|^2 = |(xz - yt) + i(yz + xt)|^2$ $= (xz - yt)^2 + (yz + xt)^2$,

or B étant un anneau, xz - yt et yz + xt sont des éléments de B, donc $\alpha\beta \in S_2(B)$, ce qui prouve que $S_2(B)$ est multiplicatif.

2°)

• D'après la résolution de la question précédente, dans l'anneau B,

$$(*) \iff (x^2 + y^2)(z^2 + t^2) = (xz - yt)^2 + (yz + xt)^2.$$

Démontrons que cette identité reste valable dans un anneau commutatif A quelconque. Soit $(x,y,z,t)\in A^4$. $(xz-yt)^2+(yz+xt)^2=x^2z^2+y^2t^2-2xzyt+y^2z^2+x^2t^2+2yzxt$, car A est commutatif, donc

$$(xz - yt)^2 + (yz + xt)^2 = x^2z^2 + y^2t^2 + y^2z^2 + x^2t^2 = (x^2 + y^2)(z^2 + t^2).$$

• Soit $(\alpha, \beta) \in S_2(A)^2$.

Il existe $(x, y, z, t) \in A^4$ tel que $\alpha = x^2 + y^2$ et $\beta = z^2 + t^2$. $\alpha\beta = (x^2 + y^2)(z^2 + t^2) = (xz - yt)^2 + (yz + xt)^2 \in S_2(A)$, donc $S_2(A)$ est multiplicatif.

3°)

a) Soit $n \in \mathbb{Z}$.

Si n est pair, il existe $h \in \mathbb{Z}$ tel que n = 2h, donc $n^2 \equiv 4h^2 \equiv 0$ [4].

Si n est impair, il existe $h \in \mathbb{Z}$ tel que n = 2h + 1, donc $n^2 \equiv 4h^2 + 4h + 1 \equiv 1$ [4]. Ainsi n^2 est congru à 0 ou à 1 modulo 4.

b) Pour tout $i\in\{1,2,3\}$, x_i^2 est congru à 0 ou à 1 modulo 4. Ainsi, si l'un des x_i au moins est pair, $x_1^2+x_2^2+x_3^2$ est congru à 0, 1 ou 2 modulo 4, ce qui est faux car $x_1^2+x_2^2+x_3^2=15\equiv 3$ [4]. On a donc montré que x_1 , x_2 et x_3 sont impairs.

c) Quitte à remplacer x_i par $-x_i$ et à intervertir l'ordre de x_1 , x_2 et x_3 , on peut supposer que $0 \le x_1 \le x_2 \le x_3$.

De plus, $x_3^2 \le x_1^2 + x_2^2 + x_3^2 = 15$, donc $x_3 \le \sqrt{15} < \sqrt{16} = 4$. Ainsi, $x_3 \in \{1, 3\}$. Etudions tous les cas possibles.

- \diamond Si $x_1 = 3$, alors $x_1 = x_2 = x_3 = 3$, donc $15 = x_1^2 + x_2^2 + x_3^2 = 27$, ce qui est
- \diamond Si $x_1 = 1$ et $x_2 = 3$, alors $x_3 = 3$ et $15 = x_1^2 + x_2^2 + x_3^2 = 19$, ce qui est faux.
- ♦ Si $x_1 = 1$, $x_2 = 1$ et $x_3 = 3$, alors $15 = x_1^2 + x_2^2 + x_3^2 = 11$, ce qui est faux. ♦ Enfin, si $x_1 = 1$, $x_2 = 1$ et $x_3 = 1$, alors $15 = x_1^2 + x_2^2 + x_3^2 = 3$, ce qui est encore faux.

On en déduit qu'il n'existe aucun triplet $(x_1, x_2, x_3) \in \mathbb{Z}^3$ tel que $15 = x_1^2 + x_2^2 + x_3^2$, c'est-à-dire que $15 \notin S_3(\mathbb{Z})$.

- $3 = 1^2 + 1^2 + 1^2 \in S_3(\mathbb{Z})$ et $5 = 0^2 + 1^2 + 2^2 \in S_3(\mathbb{Z})$, mais $3 \times 5 = 15 \notin S_3(\mathbb{Z})$, donc $S_3(\mathbb{Z})$ n'est pas multiplicatif.
- 4°)

$$\begin{aligned}
S_1(E) &= \{x^2/x \in \mathbb{Z}/8\mathbb{Z}\} = \{\overline{0}, \overline{1}, \overline{4}\}. \\
S_2(E) &= S_1(E) + S_1(E) = \{\overline{0}, \overline{1}, \overline{2}, \overline{4}, \overline{5}\}. \\
S_3(E) &= S_2(E) + S_1(E) = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\} = (\mathbb{Z}/8\mathbb{Z}) \setminus \{\overline{7}\}.
\end{aligned}$$

5°) Supposons que l'un de ces nombres est impair.

Quitte à réordonner a, b, c et d, on peut supposer qu'il s'agit de a. $\overline{a}^2 \in S_1(E)$ et a^2 est impair, donc $\overline{a}^2 = \overline{1}$.

Ainsi, $b^2 + c^2 + d^2 \equiv 7$ [8], donc, dans $\mathbb{Z}/8\mathbb{Z}$, $\overline{7} = \overline{b}^2 + \overline{c}^2 + \overline{d}^2 \in S_3(E)$, ce qui est faux. Ainsi, les quatre nombres a, b, c et d sont pairs.

- 6°) Soit *n* un entier relatif congru à -1 modulo 8.
- Supposons que $n \in S_3(\mathbb{Z})$. Il existe $(a,b,c) \in \mathbb{Z}^3$ tel que $n=a^2+b^2+c^2$, donc $a^2 + b^2 + c^2 \equiv -1 \equiv 7$ [8]. Ainsi, $\overline{7} \in S_3(E)$, ce qui est faux. On a donc montré que $n \notin S_3(\mathbb{Z}).$
- Supposons que $n \in S_3(\mathbb{Q})$. Il existe $(\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}) \in \mathbb{Q}^3$ tel que $n = \frac{a_1^2}{b_1^2} + \frac{a_2^2}{b_2^2} + \frac{a_3^2}{b_3^2}$.

En multipliant par $(b_1b_2b_3)^2$, on obtient : $n(b_1b_2b_3)^2 = a_1^2b_2^2b_3^2 + a_2^2b_1^2b_3^2 + a_3^2b_1^2b_2^2$, donc il existe $(a, b, c, d) \in \mathbb{Z}^4$ tel que $d \neq 0$ et $nd^2 = a^2 + b^2 + c^2$.

En divisant cette égalité par une puissance convenable de 2, on peut supposer que l'un des nombres a, b, c ou d est impair.

Or $a^2 + b^2 + c^2 \equiv -d^2$ [8]. C'est impossible d'après la question 5. On a donc montré que $n \notin S_3(\mathbb{Q})$.

7°)
$$15 \equiv -1$$
 [8], donc $15 \notin S_3(\mathbb{Q})$, or $3 \in S_3(\mathbb{Z}) \subset S_3(\mathbb{Q})$ et $5 \in S_3(\mathbb{Q})$, donc $S_3(\mathbb{Q})$ n'est pas multiplicatif.]

8°)

a) On suppose que f est de degré 2, donc il existe $(a,b,c) \in \mathbb{R}^* \times \mathbb{R} \times \mathbb{R}$ tel que $f(X) = aX^2 + bX + c.$

Au voisinage de $+\infty$, $f(t) \sim at^2$ et $f(t) \geq 0$, donc a > 0. De plus f possède au plus une racine réelle, donc $\Delta = b^2 - 4ac < 0$.

Ainsi,
$$f(X) = \left(\sqrt{a}X + \frac{b}{2\sqrt{a}}\right)^2 + c - \frac{b^2}{4a} = \left(\sqrt{a}X + \frac{b}{2\sqrt{a}}\right)^2 + \left(\frac{\sqrt{-\Delta}}{2\sqrt{a}}\right)^2 \in S_2(\mathbb{R}[X]).$$

b) Soit α une racine réelle de f. Notons m sa multiplicité.

Il existe $P \in \mathbb{R}[X]$ tel que $f(X) = (X - \alpha)^m P(X)$ avec $P(\alpha) \neq 0$.

Au voisinage de α , $f(x) \sim P(\alpha)(x-\alpha)^m$, or le signe de f est constant, donc m est nécessairement pair.

c) La décomposition de f en facteurs irréductibles est donc de la forme :

$$f(X) = a \prod_{i=1}^{k} (X - \alpha_i)^{2m_i} \prod_{j=1}^{h} (X^2 + b_j X + c_j)^{n_j}$$
, où $a > 0$, $(k, h) \in \mathbb{N}^{*2}$, pour tout $i \in \mathbb{N}_k$,

 $\alpha_i \in \mathbb{R}$ et $m_i \in \mathbb{N}^*$, et pour tout $j \in \mathbb{N}_h$, $n_i \in \mathbb{N}^*$ et $X^2 + b_i X + c_i$ est un polynôme de $\mathbb{R}[X]$ de discriminant strictement négatif.

- $a = \sqrt{a^2} \in S_1(\mathbb{R}[X]) \subset S_2(\mathbb{R}[X]),$
- \diamond pour tout $i \in \mathbb{N}_k$, $(X \alpha_i)^2 \in S_1(\mathbb{R}[X]) \subset S_2(\mathbb{R}[X])$,
- \diamond et, pour tout $j \in \mathbb{N}_h$, d'après le début de cette question, $X^2 + b_i X + c_i \in$ $S_2(\mathbb{R}[X]).$

Or, d'après la question 2, $S_2(\mathbb{R}[X])$ est multiplicatif, donc $f \in S_2(\mathbb{R}[X])$.

• On a donc montré que $\{g \in \mathbb{R}[X]/\forall x \in \mathbb{R} \mid g(x) \geq 0\} \subset S_2(\mathbb{R}[X]).$ Réciproquement, si $g \in S_2(\mathbb{R}[X])$, il existe $(P,Q) \in \mathbb{R}[X]^2$ tel que $g(X) = P(X)^2 +$ $Q(X)^2$, donc, pour tout $x \in \mathbb{R}$, $g(x) \geq 0$.

Ainsi, $\{g \in \mathbb{R}[X]/\forall x \in \mathbb{R} \mid g(x) \geq 0\} = S_2(\mathbb{R}[X]).$

9°)

• Soit $n \in \mathbb{N}$ avec n > 3.

Si $f \in S_2(\mathbb{R}[X])$, il existe $(P,Q) \in \mathbb{R}[X]^2$ tel que $f(X) = P(X)^2 + Q(X)^2$,

donc
$$f(X) = P(X)^2 + Q(X)^2 + \sum_{n=3}^{n} 0^2 \in S_n(\mathbb{R}[X]).$$

Réciproquement, si $f \in S_n(\mathbb{R}[X])$, pour tout $x \in \mathbb{R}$, $f(x) \geq 0$, donc, d'après la question précédente, $f \in S_2(\mathbb{R}[X])$.

On a ainsi montré que $S_2(\mathbb{R}[X]) = S_n(\mathbb{R}[X])$. • Soit $f \in S_2(\mathbb{R}(X))$. Il existe $(P,Q) \in \mathbb{R}(X)^2$ tel que $f(X) = P(X)^2 + Q(X)^2$, donc

$$f(X) = P(X)^2 + Q(X)^2 + \sum_{n=3}^n 0^2 \in S_n(\mathbb{R}(X))$$
, ce qui montre que $S_2(\mathbb{R}(X)) \subset S_n(\mathbb{R}(X))$.

Réciproquement, soit $F \in S_n(\mathbb{R}(X))$.

Il existe
$$(P_i)_{1 \le i \le n} \in \mathbb{R}[X]^n$$
 et $(Q_i)_{1 \le i \le n} \in (\mathbb{R}[X] \setminus \{0\})^n$ tels que $F = \sum_{i=1}^n \frac{P_i^2}{Q_i^2}$.

Ainsi,
$$\left(\prod_{i=1}^n Q_i\right)^2 F \in S_n(\mathbb{R}[X]) = S_2(\mathbb{R}[X])$$
, donc il existe $(P,Q) \in \mathbb{R}[X]^2$ tel que

$$\left(\prod_{i=1}^n Q_i\right)^2 F = P^2 + Q^2.$$
 Ainsi,
$$F = \left(\frac{P}{\prod_{i=1}^n Q_i}\right)^2 + \left(\frac{Q}{\prod_{i=1}^n Q_i}\right)^2 \in S_2(\mathbb{R}(X)).$$
 On a donc montré que
$$S_n(\mathbb{R}(X)) = S_2(\mathbb{R}(X)).$$

Partie II

1°)

• Dans \mathbb{R} ou \mathbb{C} , pour tout $n \geq 1$, $n.1 = n \neq 0$, donc $car(\mathbb{R}) = car(\mathbb{C}) = 0$.

• Soit $n \in \mathbb{N}^*$. Pour tout $x \in S_n(\mathbb{R}), x \ge 0$, donc $-1 \notin S_n(\mathbb{R})$. Ainsi, $s(\mathbb{R}) = +\infty$.

• $-1 = i^2 \in S_1(\mathbb{C})$, donc $s(\mathbb{C}) = 1$.

2°)

a) Dans $\mathbb{Z}/p\mathbb{Z}$, pour tout $n \in \mathbb{N}^*$, $n.1 = 0 \iff \overline{n} = \overline{0} \iff n \in p\mathbb{Z}$, donc $car(\mathbb{Z}/p\mathbb{Z}) = p$. b)

• Soit k un corps de caractéristique 2. $1_k + 1_k = 0_k$, donc $-1_k = 1_k = 1_k^2 \in S_1(k)$, donc |s(k) = 1|.

• Soit k un corps de caractéristique 5. $1_k + 4.1_k = 0_k$, donc $-1_k = (2.1_k)^2 \in S_1(k)$, donc |s(k) = 1|.

3°) a) Notons $\varphi: \begin{picture}(0,0) \put(0,0){\line(0,0){15}} \put(0,0){\lin$

 $x \in Ke\underline{r(\varphi)} \iff x^2 = 1 \iff (x - 1)(x + 1) = 0 \iff x \in \{1, -1\}, \text{ car } \mathbb{F}_p \text{ est un corps.}$ Ainsi, $|Ker(\varphi) = \{-1, 1\}|$.

3°) b)

•
$$-A = \{\overline{-1}, \overline{-2}, \dots, \overline{\left(\frac{1-p}{2}\right)}\}, \text{ donc}$$

$$-A = \{\overline{p-1}, \overline{p-2}, \dots, \overline{p+\frac{1-p}{2}}\} = \{\overline{\left(\frac{p+1}{2}\right)}, \dots, \overline{p-2}, \overline{p-1}\}.$$

Ainsi, $A \cup (-A) = \{\overline{1}, \overline{2}, \dots, \overline{p-1}\} = \mathbb{F}_p^*$. De plus, A et -A sont non vides et $A \cap (-A) = \emptyset$, donc A et -A constituent une partition de \mathbb{F}_p^* .

• Notons $u: A \longrightarrow E$ $x \longmapsto x^2$.

Soit $x \in E$. Il existe $y \in \mathbb{F}_n^*$ tel que $y^2 = x$.

Si $y \in A$, alors $x = \varphi(y) = u(y)$.

Sinon, $y \in (-A)$, donc $x = (-y)^2 = u(-y)$.

Ainsi, dans tous les cas, x possède au moins un antécédent par u, ce qui prouve que u est surjective.

Soit $(x,y) \in A^2$ tel que u(x) = u(y). Ainsi, $x^2 = y^2$, donc (x-y)(x+y) = 0.

 \mathbb{F}_p étant un corps, on en déduit que x = y ou bien que x = -y.

Si x=-y, alors $x\in A\cap (-A)=\emptyset$, ce qui est impossible, donc x=y. On a ainsi prouvé l'injectivité de u.

u est donc une bijection de A dans E.

3°) c) L'application $S_1(\mathbb{F}_p) \longrightarrow T$ est surjective par définition de T et elle est injective, car, pour tout $(y,z) \in S_1(\mathbb{F}_p)^2$, $-1-y=-1-z \Longrightarrow y=z$.

On en déduit que $card(T) = card(S_1(\mathbb{F}_p))$.

Supposons que $T \cap S_1(\mathbb{F}_p) = \emptyset$. Alors, $p = card(\mathbb{F}_p) \ge card(T \cup S_1(\mathbb{F}_p)) = 2card(S_1(\mathbb{F}_p))$. Or $S_1(\mathbb{F}_p) = \{x^2/x \in \mathbb{F}_p\} = E \cup \{0\}$,

donc $card(S_1(\mathbb{F}_p)) = 1 + card(E) = 1 + card(A) = 1 + \frac{p-1}{2} = \frac{p+1}{2}$.

Ainsi, si $T \cap S_1(\mathbb{F}_p) = \emptyset$, $p \ge p + 1$, ce qui est faux.

On a donc montré que $T \cap S_1(\mathbb{F}_p)$ est non vide.

3°) d) Il existe $x \in T \cap S_1(\mathbb{F}_p)$.

 $x \in S_1(\mathbb{F}_p)$, donc il existe $x_1 \in \mathbb{F}_p$ tel que $x = x_1^2$.

 $x \in T$, donc il existe $y \in S_1(\mathbb{F}_p)$ tel que x = -1 - y. De plus, $y \in S_1(\mathbb{F}_p)$, donc il existe $x_2 \in \mathbb{F}_p$ tel que $y = x_2^2$.

Ainsi, $x_1^2 = -1 - x_2^2$, ce qui prouve que $-1 = x_1^2 + x_2^2 \in S_2(\mathbb{F}_p)$.

On en déduit que $s(\mathbb{F}_p) \leq 2$.

4°) a) \diamond Posons $\frac{f}{h} \stackrel{\longrightarrow}{\longmapsto} \frac{\mathbb{Z}/n\mathbb{Z}}{h.1}$ et montrons d'abord que f est correctement défini,

c'est-à-dire que si $h, \ell \in \mathbb{Z}$ vérifient $\overline{h} = \overline{\ell}$, alors $h.1 = \ell.1$: en effet, il existe $\alpha \in \mathbb{Z}$ tel que $h = \ell + \alpha n$, donc $h.1 = \ell.1 + \alpha n.1$, mais par définition de la caractéristique de k, n.1 = 0, donc $h.1 = \ell.1$.

- \diamond On a clairement $f(\overline{1}) = 1.1 = 1$, $f(\overline{h} + \overline{\ell}) = f(\overline{h}) + f(\overline{\ell})$ et $f(\overline{h}.\overline{\ell}) = f(\overline{h}).f(\overline{\ell})$, donc f est un morphisme d'anneaux.
- \diamond Si $f(\overline{h}) = 0$, alors h.1 = 0. Ecrivons la division euclidienne de h par n: h = nq + r où $0 \le r < n$. On a r.1 = h.1 qn.1 = h.1 = 0, mais r < n, donc par définition de la caractéristique de k, r = 0. Ainsi h = nq puis $\overline{h} = 0$. On a montré que $Ker(f) = \{0\}$, donc f est un morphisme injectif.
- b) Soit $h, \ell \in \mathbb{Z}$ tel que, dans $\mathbb{Z}/n\mathbb{Z}$, $\overline{h}.\overline{\ell} = 0$. Alors $0 = f(0) = f(\overline{h}.\overline{\ell}) = f(\overline{h})f(\overline{\ell})$, mais k étant un corps, il est intègre, et $f(\overline{h}), f(\overline{\ell}) \in k$, donc $f(\overline{h}) = 0$ ou bien $f(\overline{\ell}) = 0$, or f est injectif, donc $\overline{h} = 0$ ou bien $\overline{\ell} = 0$. Ainsi $\mathbb{Z}/n\mathbb{Z}$ est un anneau intègre, donc d'après le cours, n est un nombre premier.
- c) Si n=2, d'après la question II.2, $s(k)=1 \le 2$.

Supposons que $n \ge 3$. n est premier, donc d'après la question II.3.d,

il existe $(x_1, x_2) \in \mathbb{F}_n^2$ tel que $-\overline{1} = x_1^2 + x_2^2$.

L'image par f de cette égalité donne : $-1_k = -f(\overline{1}) = f(-\overline{1}) = f(x_1)^2 + f(x_2)^2$, donc $s(k) \leq 2$.

 5°)

- Supposons que x = 0. Alors, $-1 = x + \sum_{h=n+1}^{s} x_h^2 = \sum_{h=n+1}^{s} x_h^2$, donc $-1 \in S_{s-n}(k)$, ce qui implique que $s \le s n$, donc que n = 0. Or $s \ge 1 = 2^0$, donc $n \ge 1$. Ainsi, $x \ne 0$.
 $-1 = x + \sum_{i=n+1}^{s} x_i^2$, donc $-x = 1^2 + \sum_{i=n+1}^{s} x_i^2 \in S_{s-n+1}(k)$.

Or, par définition de n, 2n > s, donc s - n < n. On en déduit que $s - n + 1 \le n$, puis

- $x = \sum_{i=1}^{n} x_i^2 \in S_n(k)$ et $-x \in S_n(k)$, or, n étant une puissance de 2 et k étant de caractéristique nulle, d'après un résultat admis par l'énoncé à la fin de la première partie, $S_n(k)$ est multiplicatif. On en déduit que $-x^2 = (-x)x \in S_n(k)$.
- Il existe donc $(y_1, \ldots, y_n) \in k^n$ tel que $-x^2 = \sum_{i=1}^n y_i^2$.

De plus, $x \neq 0$, donc $-1 = \sum_{i=1}^{n} \left(\frac{y_i}{x}\right)^2 \in S_n(k)$.

- On en déduit que $s \le n$, or $n \le s$. Ainsi s = n, ce qui prouve que s est une puissance de 2.
- **6°)** Soit k un corps commutatif de niveau $s \neq +\infty$.

Premier cas. Supposons que k est de caractéristique non nulle. Alors, d'après la question II.4, $s(k) \in \{1, 2\}$, donc s(k) est une puissance de 2.

Deuxième cas. Supposons que k est de caractéristique nulle. Alors, d'après la question II.5, s(k) est une puissance de 2.

Partie III

1°)

• Soit $P \in S_1(A)$. Il existe $Q \in A$ tel que $P = Q^2$.

 $A \subset K$, donc $Q \in K$ et $P = Q^2 \in S_1(K)$. Ainsi, $P \in A \cap S_1(K)$.

On a donc prouvé que $S_1(A) \subset A \cap S_1(K)$.

• Réciproquement, soit $P \in A \cap S_1(K)$.

Il existe $F \in K$ tel que $P = F^2$,

et il existe $(Q, Q') \in A^2$ tel que $F = \frac{Q}{Q'}$, Q et Q' étant premiers entre eux.

 $Q'^2P=Q^2$, donc Q' est un diviseur commun de Q' et de Q^2 , or Q' et Q^2 sont premiers entre eux, donc $Q' \in k \setminus \{0\}$.

Ainsi,
$$F = \frac{1}{Q'}Q \in A$$
 et $P = F^2 \in S_1(A)$.

On a donc prouvé que $A \cap S_1(K) \subset S_1(A)$.

$$2^{\circ}$$

$$(b+1)^2 + \sum_{i=1}^{n-1} (a_i(b-1))^2 = (b+1)^2 + (b-1)^2 \sum_{i=1}^{n-1} a_i^2$$
$$= (b+1)^2 - (b-1)^2 = 4b.$$
On a donc montré que
$$(b+1)^2 + \sum_{i=1}^{n-1} (a_i(b-1))^2 = 4b$$
.

3°) Supposons qu'il existe $n \ge 2$ tel que $-1 \in S_{n-1}(k)$.

Il existe donc $(a_1, \ldots, a_{n-1}) \in k^{n-1}$ tel que $-1 = \sum_{n=1}^{n-1} a_i^2$.

Soit
$$b \in K$$
. k est un sous-corps de \mathbb{C} , donc $4.1_k \neq 0$. Ainsi,
$$b = \frac{1}{4.1_k} (4b) = \frac{1}{4.1_k} \left[(b+1)^2 + \sum_{i=1}^{n-1} (a_i(b-1))^2 \right]$$

$$= \left(\frac{b+1}{2.1_k} \right)^2 + \sum_{i=1}^{n-1} \left(\frac{a_i(b-1)}{2.1_k} \right)^2.$$

La relation précédente montre que,

- \diamond si $b \in k$, alors $b \in S_n(k)$,
- \diamond si $b \in A$, alors $b \in S_n(A)$
- \diamond et si $b \in K$, alors $b \in S_n(K)$.

Ainsi, $k \subset S_n(k)$, $A \subset S_n(A)$ et $K \subset S_n(K)$.

Les inclusions réciproques sont claires.

- **4°)** Pour n = 1, $S_n(\mathbb{C}(X)) = \{F^2/F \in \mathbb{C}(X)\}$, donc $S_n(\mathbb{C}(X))$ est multiplicatif. Pour $n \geq 2$, $-1 \in S_1(\mathbb{C}) \subset S_{n-1}(\mathbb{C})$, donc $S_n(\mathbb{C}(X)) = \mathbb{C}(X)$ est aussi multiplicatif.
- **5**°) Soient $a \in k$ et $(R_1, \dots, R_n) \in A^n$ tels que $aX = \sum_{i=1}^n R_i^2$.

Supposons qu'il existe $i_0 \in \mathbb{N}_n$ tel que $R_{i_0} \neq 0$.

Pour tout $i \in \mathbb{N}_n$, notons $R_i = \sum_{i=1}^n a_{i,j} X^j$ et posons $J = \{j \in \mathbb{N}/\exists i \in \mathbb{N}_n \ a_{i,j} \neq 0\}.$

J est non vide car $R_{i_0} \neq 0$, et \mathring{J} est une partie de \mathbb{N} , donc J admet un minimum, que l'on notera h. Par définition de h, il existe $i_1 \in \mathbb{N}_n$ tel que $a_{i_1,h} \neq 0$,

et, pour tout $j \in \{0, ..., h-1\}$, pour tout $i \in \mathbb{N}_n$, $a_{i,j} = 0$.

Ainsi, pour tout $i \in \mathbb{N}_n$, il existe $Q_i \in A$ tel que $R_i = a_{i,h}X^h + Q_iX^{h+1}$.

$$aX = \sum_{i=1}^{n} R_i^2 = X^{2h} \sum_{i=1}^{n} a_{i,h}^2 + 2X^{2h+1} \sum_{i=1}^{n} a_{i,h} Q_i + X^{2h+2} \sum_{i=1}^{n} Q_i^2.$$

Ainsi, le coefficient de degré 2h de aX vaut $\sum_{i,h}a_{i,h}^2$. On a donc : $\sum_{i,h}a_{i,h}^2=0$.

Or
$$a_{i_1,h} \neq 0$$
, donc $-1 = \sum_{\substack{1 \leq i \leq n \\ i \neq i_1}} \left(\frac{a_{i,h}}{a_{i_1,h}} \right)^2 \in S_{n-1}(k)$, ce qui est faux.

On en déduit que, pour tout $i \in \mathbb{N}_n$, $R_i = 0$.

6°) a) On suppose que la relation (1) est vérifiée.

$$\sum_{i=1}^{n} P_i^{2} = \sum_{i=1}^{n} (4Q_i^2 T^2 + P_i^2 S^2 - 4Q_i T P_i S)$$

$$= 4T^2 \sum_{i=1}^{n} Q_i^2 + S^2 \sum_{i=1}^{n} P_i^2 - 4TS \sum_{i=1}^{n} P_i Q_i$$

$$= 4T^2 (P - S) + S^2 P Q^2 - 4TS (PQ - T)$$

$$= 4T^2 P + S^2 Q^2 P - 4TS Q P$$

$$= (2T - SQ)^2 P = Q^2 P,$$
ce qui démontre la relation (2).

$$\sum_{i=1}^{n} (P_i - QQ_i)^2 = \sum_{i=1}^{n} (P_i^2 + Q^2Q_i^2 - 2QP_iQ_i)$$

$$= Q^2P + Q^2(P - S) - 2Q(PQ - T)$$

$$= -Q^2S + 2QT$$

$$= Q(2T - QS) = QQ',$$
ce qui démontre la relation (3).

6°) b)
$$\sum_{i=1}^{n} (P_i - QQ_i)^2 = QQ' = 0$$
, donc, si l'on pose $a = 0$, $\sum_{i=1}^{n} (P_i - QQ_i)^2 = aX$.

D'après la question III.5, pour tout $i \in \mathbb{N}_n$, $P_i = QQ_i$.

Ainsi,
$$Q^2P = \sum_{i=1}^n P_i^2 = \sum_{i=1}^n Q^2Q_i^2 = Q^2\sum_{i=1}^n Q_i^2$$
, or $Q \neq 0$, donc $P = \sum_{i=1}^n Q_i^2$.

7°) Pour tout $i \in \mathbb{N}_n$, notons Q_i et R_i le quotient et le reste de la division euclidienne de P_i par Q. Ainsi, $P_i = Q_iQ + R_i$ et $deg(R_i) < deg(Q)$.

En reprenant les notations introduites par l'énoncé à la question III.6,

on obtient :
$$Q'^2P = \sum_{i=1}^{n} P_i'^2$$
.

De plus,
$$QQ' = \sum_{i=1}^{n} (P_i - QQ_i)^2 = \sum_{i=1}^{n} R_i^2$$
, donc $deg(QQ') \le \max_{1 \le i \le n} deg(R_i^2) < 2deg(Q)$, ce qui prouve que $deg(Q') < deg(Q)$.

Si
$$Q' \neq 0$$
, on a bien : $Q'^2P = \sum_{i=1}^n P_i'^2$, $PQ' \neq 0$ et $deg(Q') < deg(Q)$.

Si
$$Q' = 0$$
, d'après la question III.6.b, $P = \sum_{i=1}^{n} Q_i^2$. De plus, $P.1 \neq 0$ et $deg(1) = 0 < deg(Q)$,

donc, en posant Q" = 1 et, pour tout $i \in \mathbb{N}_n$, P" $i = Q_i$, on obtient encore le résultat attendu.

 8°) Le cas où n=1 a déja été prouvé à la question III.1. Supposons maintenant que $n \geq 2$.

L'inclusion $S_n(A) \subset (A \cap S_n(K))$ est claire.

Réciproquement, soit $P \in A \cap S_n(K)$.

Premier cas. Supposons que P = 0. Alors $P = \sum_{i=1}^{n} 0^{2} \in S_{n}(A)$.

Deuxième cas. Supposons que $-1 \in S_{n-1}(k)$.

Alors, d'après la question III.3, $P \in A \cap K = A = S_n(A)$.

Troisième cas. Supposons que $-1 \notin S_{n-1}(k)$ et que $P \neq 0$.

Il existe $(F_1, \ldots, F_n) \in K^2$ tel que $P = \sum_{i=1}^n F_i^2$. De plus, pour tout $i \in \mathbb{N}_n$, il existe

$$(R_i, Q_i) \in A \times (A \setminus \{0\})$$
 tel que $F_i = \frac{R_i}{Q_i}$.

Ainsi,
$$\left(\prod_{i=1}^{n} Q_i\right)^2 P = \sum_{i=1}^{n} \left[\left(\prod_{\substack{1 \le j \le n \\ i \ne i}} Q_j\right) R_i \right]^2$$
.

Posons
$$Q = \prod_{i=1}^n Q_i \in A$$
 et, pour tout $i \in \mathbb{N}_n$, $P_i = \left(\prod_{\substack{1 \le j \le n \\ j \ne i}} Q_j\right) R_i \in A$.

Ainsi,
$$Q^2P = \sum_{i=1}^n P_i^2$$
, avec $PQ \neq 0$ et $deg(Q) \geq 0$.

Soit $h \in \mathbb{N}$. Notons R(h) l'assertion suivante : il existe $(P_{i,h})_{1 \leq i \leq n} \in A^n$ et $Q'_h \in A$ tels

que
$${Q'_h}^2 P = \sum_{i,h}^n P_{i,h}^2$$
, avec $PQ'_h \neq 0$ et $deg(Q'_h) \leq h$.

R(deg(Q)) est vérifiée et, d'après la question III.7, pour tout $h \in \mathbb{N}^*$, $R(h) \Longrightarrow R(h-1)$. Le principe de la récurrence descendante prouve ainsi R(0).

Or
$$Q'_0 \in k \setminus \{0\}$$
 et $P = \sum_{i=1}^n \left(\frac{P_{i,0}}{Q'_0}\right)^2 \in S_n(A)$.

Ainsi, dans chacun des trois cas, on a montré que $P \in S_n(A)$.

On a bien prouvé que $S_n(A) = (A \cap S_n(K))$.

9°) a) Soit $n \in \mathbb{N}^*$ tel que $-1 \in S_n(K)$.

$$-1 \in A \cap S_n(K) = S_n(A)$$
, donc il existe $(R_1, \dots, R_n) \in A^n$ tel que $-1 = \sum_{i=1}^n R_i^2$.

En particulier, $-1 = \sum_{i=1}^{n} R_i(0)^2$ et pour tout $i, R_i(0) \in k$, donc $-1 \in S_n(k)$.

Réciproquement, si $-1 \in S_n(k)$, k étant inclus dans K, $-1 \in S_n(K)$.

On a donc montré que, pour tout $n \in \mathbb{N}^*$, $-1 \in S_n(k) \iff -1 \in S_n(K)$.

Ainsi, $\{n \in \mathbb{N}^*/-1 \in S_n(k)\} = \{n \in \mathbb{N}^*/-1 \in S_n(K)\}$, ce qui prouve que k et K ont le même niveau.

9°) b) Supposons que $S_s(K) = S_{s+1}(K)$.

 $-1 \in S_s(K)$, donc, d'après la question III.3, $S_{s+1}(K) = K$. Ainsi, $S_s(K) = K$.

Si s=1, ceci signifie que $K=\{F^2/F\in K\}$. En particulier, toute fraction rationnelle est de degré pair, ce qui est faux.

Si $s \geq 2$, $X \in K = S_s(K)$, donc il existe $(R_1, \ldots, R_s) \in A^s$ tel que $X = R_1^2 + \cdots + R_s^2$. Or, par définition de $s, -1 \notin S_{s-1}(k)$, donc, d'après la question III.5, $R_1 = \cdots = R_s = 0$. Ceci entraı̂ne que X = 0, ce qui est faux.

Ainsi, dans tous les cas, $S_s(K) \neq S_{s+1}(K)$.

10°) Soit $(P,Q) \in S_n(A)^2$. P et Q sont dans $S_n(K)$, or, K étant un corps de caractéristique nulle, d'après une propriété admise par l'énoncé à la fin de la première partie, $S_n(K)$ est multiplicatif. On en déduit que $PQ \in S_n(K)$.

Donc $PQ \in (A \cap S_n(K)) = S_n(A)$, ce qui prouve que $S_n(A)$ est multiplicatif.