А. Ю. Пирковский

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ Лекция 10

10.1. Теорема Рисса

Мы уже знаем, как устроены пространства, сопряженные к гильбертову пространству (теорема 7.3) и к пространству L^p (теорема 8.7). Наша ближайшая цель — описать пространство, сопряженное к пространству C(X) непрерывных функций на компакте X. Сразу оговоримся, что соответствующая теорема для произвольного компакта будет лишь сформулирована; докажем мы ее в частном случае, когда X — отрезок на вещественной прямой.

10.1.1. Интегрирование по комплексной мере. Теорема Рисса-Маркова-Какутани

Наша ближайшая цель — научиться интегрировать функции по произвольной (вообще говоря, комплексной) мере. Для наших целей достаточно уметь интегрировать лишь ограниченные функции; этим случаем мы и ограничимся.

Пусть X — множество и \mathscr{A} — алгебра его подмножеств. Обозначим через $B_{\mathscr{A}}(X)$ множество всех ограниченных \mathscr{A} -измеримых функций из X в \mathbb{K} (как обычно, мы полагаем $\mathbb{K} = \mathbb{R}$ или $\mathbb{K} = \mathbb{C}$). Множество $B_{\mathscr{A}}(X)$ является векторным подпространством в $\ell^{\infty}(X)$ и, следовательно, может рассматриваться как нормированное пространство относительно равномерной нормы.

Напомним, что для $A \subseteq X$ через χ_A мы обозначаем характеристическую функцию множества A (т.е. функцию, равную 1 на A и 0 вне A). Положим

$$S_{\mathscr{A}}(X) = \operatorname{span}\{\chi_A : A \in \mathscr{A}\} \subset B_{\mathscr{A}}(X).$$

Функции из $S_{\mathscr{A}}(X)$ называются \mathscr{A} -простыми.

Доказательство следующего факта — простое упражнение.

Предложение 10.1. Подпространство $S_{\mathscr{A}}(X)$ плотно в $B_{\mathscr{A}}(X)$.

Через $M(\mathscr{A})$ мы будем обозначать множество всех \mathbb{K} -значных мер на \mathscr{A} (не обязательно σ -аддитивных), имеющих ограниченную вариацию. Легко убедиться (убедитесь!), что $M(\mathscr{A})$ — векторное пространство относительно поточечных операций, и что формула $\|\mu\| = |\mu|(X)$ задает норму на $M(\mathscr{A})$.

Предложение 10.2. Для кажсдой меры $\mu \in M(\mathscr{A})$ существует единственный функционал $I_{\mu} \in B_{\mathscr{A}}(X)^*$, удовлетворяющий условию $I_{\mu}(\chi_A) = \mu(A)$ для кажсдого $A \in \mathscr{A}$. При этом $||I_{\mu}|| = ||\mu||$.

Определение 10.1. Для любой функции $f \in B_{\mathscr{A}}(X)$ величина $I_{\mu}(f)$ называется un- тегралом f по μ и обозначается $\int_X f(x) d\mu(x)$.

Лекция 10 67

Схема доказательства предложения 10.2. На пространстве $S_{\mathscr{A}}(X)$ линейный функционал I_{μ} определяется очевидным и единственно возможным способом. Нетрудно убедиться (убедитесь), что I_{μ} ограничен и $||I_{\mu}|| = ||\mu||$. Остается воспользоваться предложением 10.1 и теоремой 4.1 о продолжении по непрерывности.

Следующая теорема показывает, что других непрерывных линейных функционалов на $B_{\mathscr{A}}(X)$, кроме описанных в предложении 10.2, не бывает.

Теорема 10.3 (Хильдебрандт, Канторович). Отображение

$$M(\mathscr{A}) \to B_{\mathscr{A}}(X)^*, \quad \mu \mapsto I_{\mu},$$

— изометрический изоморфизм.

Схема доказательства. Изометричность указанного отображения уже установлена в предложении 10.2. Для доказательства его сюръективности возьмем $F \in B_{\mathscr{A}}(X)^*$ и для каждого $A \in \mathscr{A}$ положим $\mu(A) = F(\chi_A)$. Нетрудно проверить (проверьте), что $\mu \in M(\mathscr{A})$. Применяя предложение 10.2, получаем $F = I_{\mu}$.

Следствие 10.4. Отображение $\mu \mapsto I_{\mu}$ устанавливает изометрический изоморфизм между $M(2^{\mathbb{N}})$ и $(\ell^{\infty})^*$.

Замечание 10.1. Отметим, что пространство ℓ^1 изометрически вкладывается в $M(2^{\mathbb{N}})$: каждой последовательности $x \in \ell^1$ отвечает мера $\mu_x(A) = \sum_{n \in A} x_n$. Таким образом, пространство $M(2^{\mathbb{N}})$, сопряженное к ℓ^{∞} , содержит в себе ℓ^1 , однако не совпадает с ℓ^1 (ср. предостережение 7.4). Через некоторое время мы дадим общую интерпретацию явлениям такого рода.

Пусть теперь X — компактное хаусдорфово топологическое пространство. Обозначим через $\mathscr{B}or(X)$ его борелевскую σ -алгебру, т.е. наименьшую σ -алгебру, содержащую все открытые подмножества X.

Определение 10.2. *Борелевская мера* на X — это σ -аддитивная комплексная мера на $\mathscr{B}or(X)$.

Среди всех борелевских мер выделяют те, которые «хорошо согласованы» с топологией:

Определение 10.3. Борелевская мера μ на X называется регулярной (или мерой Pa-dona), если для каждого борелевского множества $B\subseteq X$ и каждого $\varepsilon>0$ найдутся открытое множество $U\supseteq B$ и компактное множество $K\subseteq B$ такие, что $|\mu|(U\setminus K)<\varepsilon$.

Замечание 10.2. Известно, что если компакт X метризуем, то любая борелевская мера на X регулярна (см., например, В. И. Богачев, «Теория меры», М.: РХД, 2003). Пользоваться этим фактом мы не будем.

Обозначим через M(X) подмножество в $M(\mathscr{B}or(X))$, состоящее из регулярных мер. Нетрудно проверить (проверьте), что M(X) — векторное подпространство в $M(\mathscr{B}or(X))$. Теорема 10.5 (Рисс, Марков, Какутани). Отображение

$$M(X) \to C(X)^*, \qquad \mu \mapsto I_{\mu},$$

$$\operatorname{ide} I_{\mu}(f) = \int_X f \, d\mu \qquad (f \in C(X))$$

— изометрический изоморфизм.

Теорема Рисса—Маркова—Какутани имеет долгую историю. Ее первоначальную версию доказал Ф. Рисс в 1909 г. для случая, когда X — отрезок вещественной прямой. Интеграл Лебега в то время еще не существовал, поэтому в первоначальной формулировке теоремы Рисса меры как таковые отсутствуют, а вместо интеграла Лебега используется интеграл Римана—Стилтьеса. В 1919 г. И. Радон обобщил теорему Рисса на случай компактов в \mathbb{R}^n . В 1937—1938 гг. С. Банах и С. Сакс доказали ее для метризуемых компактов. Наконец, в общем случае теорема 10.5 была доказана А. А. Марковым в 1938 г. и С. Какутани в 1941 г. (так что правильнее было бы называть ее «теоремой Рисса—Радона—Банаха—Сакса—Маркова—Какутани»).

Доказательство теоремы 10.5 (в отличие от сходной по формулировке теоремы 10.3 Хильдебрандта—Канторовича) довольно нетривиально. С ним можно познакомиться, например, по книге Н. Данфорда и Дж. Шварца «Линейные операторы», т. І, М.: ИЛ, 1962. Существует также альтернативное и существенно более короткое доказательство, основанное, однако, на ином подходе к теории интегрирования (так называемой схеме Даниэля); см. по этому поводу второй том цитированной выше книги В. И. Богачева.

Мы докажем теорему 10.5 в частном случае, когда X — отрезок вещественной прямой, т.е. фактически в той же общности, в какой ее доказал Рисс, но с использованием более современной терминологии. Для этого нам понадобятся некоторые конструкции из действительного анализа.

10.1.2. Функции ограниченной вариации. Теорема Рисса

Определение 10.4. Вариацией функции $\varphi \colon [a,b] \to \mathbb{K}$ на отрезке [a,b] называется величина

$$V_a^b(\varphi) = \sup \left\{ \sum_{i=1}^n |\varphi(t_i) - \varphi(t_{i-1})| : a = t_0 < \dots < t_n = b, \ n \in \mathbb{N} \right\} \in [0, +\infty].$$

Предложение 10.6. Если $a\leqslant x\leqslant y\leqslant b,\ mo\ V_a^y(\varphi)=V_a^x(\varphi)+V_x^y(\varphi).$

Доказательство. Упражнение.

Определение 10.5. Функция $\varphi \colon [a,b] \to \mathbb{K}$ называется функцией ограниченной вариации, если $V_a^b(\varphi) < \infty$.

Множество всех функций ограниченной вариации на отрезке [a,b] будем обозначать через BV[a,b]. Нетрудно проверить (проверьте), что BV[a,b] — векторное подпространство в пространстве всех функций на [a,b], и что V_a^b — полунорма на BV[a,b].

Пример 10.1. Любая монотонно неубывающая функция $\varphi:[a,b]\to \mathbb{R}$ имеет ограниченную вариацию, и $V_a^b(\varphi)=\varphi(b)-\varphi(a).$

Лекция 10 69

Пример 10.2. Из теоремы Лагранжа легко следует, что любая $\varphi \in C^1[a,b]$ имеет ограниченную вариацию. С другой стороны, существуют непрерывные (и даже дифференцируемые) функции неограниченной вариации (см. листок 8).

Предложение 10.7. Функция $\varphi: [a,b] \to \mathbb{R}$ имеет ограниченную вариацию тогда и только тогда, когда она является разностью двух монотонно неубывающих функций.

Схема доказательства. Достаточность очевидна (см. пример 10.1). Для доказательства необходимости положим $v_1(x) = V_a^x(\varphi)$ и $v_2 = v_1 - \varphi$. Из предложения 10.6 следует, что v_1 монотонна. Монотонность v_2 также легко вывести из предложения 10.6.

Следствие 10.8. Множество точек разрыва функции $\varphi: [a,b] \to \mathbb{K}$ ограниченной вариации не более чем счетно, и все они являются разрывами 1-го рода (т.е. в каждой точке φ имеет пределы слева и справа).

Доказательство. Если φ монотонна, то это утверждение — хорошо известное упражнение по действительному анализу. Если $\varphi \in BV[a,b]$ вещественна, то утверждение следует из предложения 10.7. Общий случай сводится к рассмотрению действительной и мнимой частей функции φ .

Установим теперь взаимосвязь между функциями ограниченной вариации и мерами на отрезке. Положим

$$BV_0[a,b] = \{ \varphi \in BV[a,b] : \varphi(a) = 0, \ \varphi$$
 непрерывна справа на $(a,b) \}.$

Очевидно, $BV_0[a,b]$ — векторное подпространство в BV[a,b], и $\|\varphi\|=V_a^b(\varphi)$ — норма на $BV_0[a,b]$.

Определение 10.6. *Функцией распределения* меры $\mu \in M[a,b]$ называется функция

$$arphi_{\mu} \colon [a,b] o \mathbb{K}, \quad arphi_{\mu}(t) = egin{cases} \mu([a,t]) & \text{при } t > a, \\ 0 & \text{при } t = a. \end{cases}$$

Предложение 10.9. $\varphi_{\mu} \in BV_0[a,b], \ u \ V_a^b(\varphi_{\mu}) = \|\mu\|.$

Схема доказательства. Обозначим через $\mathscr A$ алгебру подмножеств [a,b], порожденную отрезками вида [a,t], где $a < t \leqslant b$. Легко видеть, что $\mathscr A$ состоит из всевозможных дизъюнктных объединений конечного числа множеств вида $(\alpha,\beta]$ (где $a < \alpha \leqslant \beta \leqslant b$) и [a,t] (где $a < t \leqslant b$). Пусть $\mu_{\mathscr A}$ — ограничение меры μ на алгебру $\mathscr A$. Из определений вариации меры и функции немедленно следует, что $V_a^b(\varphi_\mu) = |\mu_{\mathscr A}|([a,b])$. В частности, φ_μ — функция ограниченной вариации. С другой стороны, из регулярности μ следует, что для каждого борелевского множества $B \subseteq [a,b]$ и каждого $\varepsilon > 0$ существует такое $A \in \mathscr A$, что $|\mu|(A \triangle B) < \varepsilon$. Отсюда нетрудно вывести (сделайте это), что $|\mu_{\mathscr A}|([a,b]) = |\mu|([a,b]) = |\mu|$. Следовательно, $V_a^b(\varphi_\mu) = |\mu|$, как и требовалось. Непрерывность φ_μ справа на (a,b) легко выводится из σ -аддитивности меры μ .

Итак, каждой мере на отрезке мы сопоставили некоторую функцию ограниченной вариации. В итоге получилось изометрическое линейное отображение

$$M[a,b] \to BV_0[a,b], \qquad \mu \mapsto \varphi_{\mu}.$$
 (10.1)

Покажем теперь, что это отображение биективно.

Предложение 10.10. Для каждой функции $\varphi \in BV_0[a,b]$ существует единственная мера $\mu_{\varphi} \in M[a,b]$, удовлетворяющая условию $\mu_{\varphi}([a,t]) = \varphi(t)$ для всех t > a (т.е. мера, функция распределения которой совпадает с φ).

Схема доказательства. Единственность меры μ_{φ} следует из изометричности отображения (10.1). Для доказательства ее существования рассмотрим алгебру множеств \mathscr{A} , использованную в доказательстве предложения 10.9, и зададим меру μ_{φ} на \mathscr{A} формулами

$$\mu_{\varphi}((\alpha, \beta]) = \varphi(\beta) - \varphi(\alpha) \qquad (a < \alpha \leqslant \beta \leqslant b);$$

$$\mu_{\varphi}([a, t]) = \varphi(t) \qquad (a < t \leqslant b).$$

Очевидно, μ_{φ} — мера на \mathscr{A} . Из непрерывности справа функции φ на (a,b) нетрудно вывести, что μ_{φ} σ -аддитивна. Согласно теореме о продолжении меры (см. курс анализа), μ_{φ} единственным образом продолжается до σ -аддитивной меры на σ -алгебре μ_{φ} -измеримых множеств, содержащей в себе борелевскую σ -алгебру $\mathscr{B}or([a,b])$. Регулярность μ_{φ} проверяется точно так же, как и для обычной меры Лебега.

Определение 10.7. Мера μ_{φ} , построенная в предложении 10.10, называется *мерой* Лебега-Стилтьеса.

Пример 10.3. Если $\varphi(t) = t$ для всех $t \in [a, b]$, то μ_{φ} — это мера Лебега. Если $\varphi = \chi_{(a,b]}$, то μ_{φ} — это мера Дирака δ_a , заданная формулой

$$\delta_a(B) = \begin{cases} 1 & \text{при } a \in B, \\ 0 & \text{при } a \notin B. \end{cases}$$

Объединяя предложения 10.9 и 10.10, получаем следующую теорему.

Теорема 10.11. Отображения

$$M[a, b] \xrightarrow{\alpha} BV_0[a, b],$$

 $\alpha(\mu) = \varphi_{\mu}, \quad \beta(\varphi) = \mu_{\varphi},$

— взаимно обратные изометрические изоморфизмы.

Теперь мы почти готовы к доказательству теоремы Рисса. Следующая несложная лемма позволяет «нормализовать» произвольную функцию ограниченной вариации, т.е. сделать ее непрерывной справа на интервале (a,b).

Лемма 10.12. Пусть $\varphi \in BV[a,b]$. Положим

$$\psi(t) = \begin{cases} \varphi(t+0), & ecnu \ a < t < b; \\ \varphi(t), & ecnu \ t = a \ unu \ t = b. \end{cases}$$
 (10.2)

Тогда справедливы следующие утверждения:

- (i) $\psi \in BV[a,b];$
- (ii) $V_a^b(\psi) \leqslant V_a^b(\varphi)$;

Лекция 10 71

(iii) ψ непрерывна справа на (a,b).

Доказательство. Упражнение.

Теорема 10.13 (Рисс). Отображение

$$M[a,b] \to C[a,b]^*, \qquad \mu \mapsto I_{\mu},$$
 (10.3)
 $e \partial e \ I_{\mu}(f) = \int_{[a,b]} f \ d\mu \qquad (f \in C[a,b])$

- изометрический изоморфизм.

Доказательство. Докажем сначала инъективность отображения (10.3). Предположим, что $I_{\mu}=0$. Зафиксируем произвольный промежуток $J\subseteq [a,b]$ и построим последовательность функций (f_n) в C[a,b], удовлетворяющих условию $0\leqslant f_n\leqslant 1$ и поточечно сходящуюся к функции χ_J . Применяя теорему Лебега о мажорированной сходимости, получаем

$$\mu(J) = \int_{[a,b]} \chi_J d\mu = \lim_{n \to \infty} \int_{[a,b]} f_n d\mu = 0.$$

Отсюда с учетом регулярности μ следует, что $\mu=0$. Следовательно, (10.3) — инъекция. Покажем теперь, что отображение (10.3) сюръективно и изометрично. Зафиксируем произвольный $F \in C[a,b]^*$ и, пользуясь теоремой Хана—Банаха, продолжим его до функционала $\tilde{F} \in \ell^{\infty}([a,b])^*$ так, чтобы $\|\tilde{F}\| = \|F\|$. Определим функцию $\varphi \colon [a,b] \to \mathbb{K}$ формулой

$$\varphi(t) = \begin{cases} \tilde{F}(\chi_{[a,t]}) & \text{при } t > a, \\ 0 & \text{при } t = a. \end{cases}$$

Покажем, что $\varphi \in BV[a,b]$. Для этого возьмем разбиение $a=t_0 < \ldots < t_n=b$ отрезка [a,b] и для каждого $i=1,\ldots,n$ найдем $\lambda_i \in \mathbb{K}, \ |\lambda_i|=1,$ так, чтобы

$$|\varphi(t_i) - \varphi(t_{i-1})| = \lambda_i(\varphi(t_i) - \varphi(t_{i-1})).$$

Тогда

$$\sum_{i=1}^{n} |\varphi(t_i) - \varphi(t_{i-1})| = \lambda_1 \tilde{F}(\chi_{[a,t_1]}) + \sum_{i=2}^{n} \lambda_i \tilde{F}(\chi_{(t_{i-1},t_i]})$$
$$= \tilde{F}(\lambda_1 \chi_{[a,t_1]} + \sum_{i=2}^{n} \lambda_i \chi_{(t_{i-1},t_i]}) \leqslant ||\tilde{F}|| = ||F||.$$

Следовательно, $\varphi \in BV[a,b]$, и $V_a^b(\varphi) \leqslant \|F\|$. Определим теперь функцию $\psi \colon [a,b] \to \mathbb{K}$ формулой (10.2). Согласно лемме 10.12, $\psi \in BV_0[a,b]$ и $V_a^b(\psi) \leqslant V_a^b(\varphi) \leqslant \|F\|$.

Положим теперь $\mu = \mu_{\psi} \in M[a,b]$. Мы утверждаем, что $F = I_{\mu}$. В самом деле, пусть A — множество точек непрерывности функции φ на (a,b]. В силу следствия 10.8, множество $[a,b] \setminus A$ не более чем счетно. Для любых $\alpha, \beta \in A$, $\alpha < \beta$, имеем

$$\int_{[a,b]} \chi_{(\alpha,\beta]} d\mu = \mu((\alpha,\beta]) = \psi(\beta) - \psi(\alpha) = \varphi(\beta) - \varphi(\alpha) = \tilde{F}(\chi_{(\alpha,\beta]}).$$

Аналогично проверяется, что

$$\int_{[a,b]} \chi_{[a,\beta]} d\mu = \tilde{F}(\chi_{[a,\beta]}).$$

Следовательно, функционалы \tilde{F} и I_{μ} совпадают на подпространстве

$$S = \operatorname{span}\{\chi_{(\alpha,\beta]}, \ \chi_{[a,\beta]} : a < \alpha < \beta \leq b, \ \alpha, \beta \in A\} \subset \ell^{\infty}([a,b]).$$

С другой стороны, замыкание S в $\ell^{\infty}([a,b])$ содержит C[a,b] (почему?). Отсюда получаем требуемое равенство $F=I_{\mu}$. Наконец,

$$\|\mu\| = V_a^b(\psi) \leqslant \|F\| = \|I_\mu\| \leqslant \|\mu\|,$$

поэтому $\|\mu\| = \|F\|$. Следовательно, (10.3) — изометрический изоморфизм.

Замечание 10.3. Вы, вероятно, заметили, что «трудная» часть теоремы Рисса — это доказательство сюръективности отображения $M[a,b] \to C[a,b]^*$. То же самое относится и к более общей теореме Рисса—Маркова—Какутани. Может возникнуть искушение доказать сюръективность этого отображения следующим образом. Начнем так же, как и в приведенном выше доказательстве теоремы Рисса, а именно, продолжим произвольный функционала $F \in C(X)^*$ до функционала $\tilde{F} \in \ell^\infty(X)^*$, имеющего ту же норму, а затем определим борелевскую меру μ на X формулой $\mu(A) = \tilde{F}(\chi_A)$. Проблема в том, что так определенная мера вовсе не обязана быть ни σ -аддитивной, ни регулярной, и приходится как-то ее «подправлять». Для отрезка нам удалось это сделать с помощью функций ограниченной вариации: дело в том, что «подправить» функцию ограниченной вариации так, чтобы она задавала именно σ -аддитивную меру, не составляет труда — надо применить лемму 10.12.

Отметим также, что для произвольного компакта X оператор, сопряженный к вложению C(X) в пространство $B(X) = B_{\mathscr{B}or(X)}(X)$ ограниченных борелевских функций на X, может быть отождествлен (в силу теорем Хильдебрандта–Канторовича и Рисса–Маркова–Какутани) с некоторым оператором из $M(\mathscr{B}or(X))$ в M(X). Нетрудно проверить, что этот оператор тождествен на M(X), т.е. является проектором, который в некотором смысле «регуляризует» каждую меру ограниченной вариации.