1 nalen

. א. מהנתון, תהיB-A o B-A חד-חד-ערכית ועל

, $A = (A \cap B') \cup (A \cap B)$ (בעזרת פילוג החיתוך לגבי האיחוד) כידוע

. $B = (B-A) \cup (A \cap B)$ בדומה, $A = (A-B) \cup (A \cap B)$ כלומר כלומר

$$g(a) = \begin{cases} f(a) & a \in A - B \\ a & a \in A \cap B \end{cases} : \exists g : A \to B$$
 געדיר

g מעבירה את g מעבירה את ק באופן חד-חד-ערכי על g נקבל ש- g מעבירה את מעבירה את g באופן חד-חד-ערכי על עצמו. ומכיוון ש- g פועלת כזהות על g היא מעבירה את g היא חד-חד-ערכית ועל g בהתחשב בכך ש- g היא g הוכחה של טענה כללית יותר, ממנה זה נובע, ראו בפרק g, טענה g. g טענה g בהראינו פונקציה **חד-חד-ערכית** מ- g על g, לכן הן שוות-עוצמה.

יזר, זר, איחוד איחוד אר, $A = (A - B) \cup (A \cap B)$ כאמור, כללית

וזהו איחוד זר. $B = (B - A) \cup (A \cap B)$ וכן

A,B מכאן, אם A,B **סופיות**, ומתקיים

$$|A - B| = |A| - |A \cap B| = |B| - |A \cap B| = |B - A|$$

חיסרנו כאן עוצמות: זו פעולה שמוגדרת רק עבור עוצמות סופיות(!)

. לדוגמא נקח $A=\mathbf{N}$, ו- B היא קבוצת הטבעיים הזוגיים (השלימו הבדיקה).

2 nalen

ב.

$$B=A'=\left(igcap_{1\leq i\leq 100}A_i
ight)$$
' , א מהגדרת, א מהגדרת

 $= \bigcup_{1 \le i \le 100} (A_i')$ ולפי כללי דה-מורגן בתורת הקבוצות

לפי הנתון, זהו איחוד של 100 קבוצות בנות מניה.

לפי טענה שפורסמה בפורום, איחוד כזה הוא בר-מניה.

3 nalen

 $D' = (A' \cap B' \cap C')' = A \cup B \cup C$:D שלים של נתבונן במשלים יש

אגף ימין הוא איחוד של 3 קבוצות בנות מניה.

לפי טענה 2 שהוכחנו במהלך פתרון שאלה 2, איחוד כזה הוא קבוצה בת-מניה.

 $D = \mathbf{R} - D'$,כעת נשים לב שמהגדרת משלים,

. | D' | = $leph_0$ וכאמור , | \mathbf{R} | = $c
eq leph_0$

|D| = c ,ייפרק פיי, 12 בחוברת בעמי 15.13 בעמי לפי משפט 5.13 מכאן,

4 22167

 $A \times A$ א. יחס מעל קבוצה A הוא קבוצה חלקית של

 $P(A \times A)$ קבוצת כל היחסים מעל A היא אפוא

. $P(\mathbf{N} \times \mathbf{N})$ היא זה היא מדובר בסעיף לכן הקבוצה בה

 $|\mathbf{N} \times \mathbf{N}| = \aleph_0$ לפי שאלה 4.7 בעמי 123 בספר,

 $|P(\mathbf{N} \times \mathbf{N})| = 2^{\aleph_0}$, (ייפרק פול 21 עמי 21 בחוברת (עמי 5.23 עמי) אורת משפט 5.23 מכאן, בעזרת משפט

. $2^{\aleph_0}=C$, שם, 5.26 לפי משפט

.N ב. נסמן בK את קבוצת היחסים הסימטריים מעל

C אי עוצמתה סעיף אי שלפי מעל ,N חלקית כל היחסים להחסים אי עוצמתה K

 $|K| \le C$ (i) לכן

. N מעל I_A היחס את גראה את וראה בקבונן נתבונן מעל אל לכל אני, לכל

Kל- $P(\mathbf{N})$ של פונקציה אפוא היא אפוא ההתאמה ההתאמה לראות יחס סימטרי. לראות קל לראות פונקציה או היא חד-חד-ערכית (מדועי).

 $|P(\mathbf{N})| \leq |K|$, מהגדרת "קטן/שווה" בין עוצמות, לכן מהגדרת

. $C \! \leq \! \mid \! K \! \mid \! \,$ (ii) לפי משפט 5.25 קיבלנו

|K| = C, מתוך (ii) + (i) מתוך לפי משפט קנטור-שרדר-ברנשטיין (e) מתוך

5 nalen

 $k_2\,,m_2\,$ ההיינה $A_2\,,B_2\,$ קבוצות שעוצמותיהן בהתאמה $A_2\,,B_2\,$ א.

כדי לקצר מעט את ההוכחה ניעזר בטריק השימושי הבא: אנו חופשים לבחור כראות עינינו את הקבוצות המייצגות את העוצמות, כל עוד הקבוצות שנבחר הן בעלות העוצמות הנדרשות.

 $.\,B_2$ ל- הנתון היא והיא m_1 שעוצמתה נבחר , $m_1 \leq m_2$ הנתון הנתון בדומה, בדומה, נבחר ל

. $k_2 \cdot m_2 = |A_2 \times B_2|$, $k_1 \cdot m_1 = |A_1 \times B_1|$ בעת מהגדרת כפל עוצמות

. $A_1 \times B_1 \subseteq A_2 \times B_2$ מהגדרת מכפלה קרטזית וההנחה על ההכלה נקבל

. $k_1 \cdot m_1 \leq k_2 \cdot m_2$,בהסתמך על שאלה 5.1 לכן ,

. א $_0 \cdot C \le C \cdot C = C$, א ולכן בעזרת חלכן איל א $_0 \le C$, מצד אחד,

. $C = 1 \cdot C \le \aleph_0 \cdot C$, מצד שני $1 \le \aleph_0$ ולכן שוב בעזרת סעיף א

משני הכיוונים יחד, בעזרת קנטור-שרדר-ברנשטיין, נובע המבוקש.

איתי הראבן