Correctness of Dijkstra's algorithm

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Dijkstra's Algorithm

```
Function DIJKSTRA(G = \langle V, E, c, s \rangle)
 1: {The input to the algorithm is a directed graph G = \langle V, E \rangle, weighted by the cost function c: E \to Z^+; we assume
    that there are no zero-cost edges.}
 2: for (i = 1 \text{ to } n) do
       d[i] = \infty
 4: end for
 5: d[s] = 0
 6: Organize the vertices into a heap Q, based on their d values.
 7: S \leftarrow \phi.
 8: while (Q \neq \phi) do
       u \leftarrow \text{EXTRACT-MIN}(Q)
       for (each edge of the form e = (u, v)) do
          RELAX(e)
       end for
12:
       S \leftarrow S \cup \{u\}
14: end while
```

Algorithm 1.1: Dijkstra's Alorithm for the Single Source Shortest Path problem with postive weights

```
Function Relax(e = (u, v))

1: if (d[v] > d[u] + c(u, v)) then

2: d[v] = d[u] + c(u, v)

3: end if
```

Algorithm 1.2: Dijkstra's Alorithm for the Single Source Shortest Path problem with postive weights

2 Proof of Correctness

Let $\delta(v)$ denote the true shortest path distance of vertex v from the source s. Observe that Dijkstra's algorithm works by estimating an intial shortest path distance of ∞ from the source and gradually lowering this estimate.

Lemma 2.1 If $d[v] = \delta(v)$ for any vertex v, at any stage of Dijkstra's algorithm, then $d[v] = \delta(v)$ for the rest of the algorithm.

Proof: Clearly, d[v] cannot become smaller than $\delta(v)$; likewise, the test condition in the RELAX() procedure will always fail. \Box

Theorem 2.1 Let $\langle v_1 = s, v_2, \dots, v_n \rangle$ denote the sequence of vertices extracted from the heap Q, by Dijkstra's algorithm. When vertex v_i is extracted from Q, $d[v_i] = \delta(v_i)$.

Proof: Without loss of generality, we assume that every vertex is reachable from the source vertex s, either through a finite length path or an arc of length ∞ .

Clearly, the claim is true for $v_1 = s$, since $d[s] = \delta(s) = 0$ and all edge weights are positive.

Assume that the claim is true for the first k-1 vertices, i.e., assume that for each $i=2,3,\ldots,k-1$, when vertex v_i is deleted from $Q,d[v_i]=\delta(v_i)$.

We focus on the situation, when vertex v_k as it is deleted from Q. As per the mechanics of Dijkstra's algorithm, $d[v_k] \leq d[v_j], j = k+1, \ldots, n$. Observe that if the shortest path from $v_1 = s$ to v_k consisted entirely of vertices from the set $R = \{v_1, \ldots, v_{k-1}\}$, then $d[v_k] = \delta(v_k)$. (Why?) Assume that $\delta(v_k) < d[v_k]$. It follows that the shortest path from s to v_k involves vertices in the set V - R. Consider the first vertex $v_q \in V - R$, on the shortest path from s to v_k . Let v_p denote the vertex before v_q on this path; note that $v_p \in R$. Now, when v_p is deleted from Q, all its edges were relaxed, including the edge to v_q and therefore $d[v_q] = \delta(v_q)$. (See Lemma 2.1.) Since there are no zero-cost edges, $\delta(v_q) < \delta(v_k)$ and hence $d[v_q] < d[v_k]$. But this means that v_k could not have been chosen before v_q by Dijkstra's algorithm, contradicting the choice of v_k as a vertex for which $\delta(v_k) > d[v_k]$, when it is deleted from Q.