


```
nks Ex: "Discrete Time Convolution
                                                      Ex: Aliasing
                                                                       "A continuous - time signal
                                                                                                              Ex: "Block Diogram
54450860
"The impulse response of a discrete LTI
                                                      x(+) = 7cos(23 m+) + 7sin(24 m+) +4cos(46 m++ m/a)
                                                                                                               1) Find the transfer function H(Z)
System is given by hen] = UCN] - U[n-5].
                                                      is sampled at 24Hz. Determine w(+) reconstructed
Given that the input to the system is given by
                                                      using an ideal interpolator at a sampling rate
                                                                                                               3) State the Rolling of Convergence
XCN] = 3 (UEN] - UEN-67), Find yCN].
                                                      0 f 1/24 s
                                                                                                               (3) Find the values of Iki for
                                                                  1)7cos(231+1) 27sin(241+1)
                                                                                                              which the system is 8180 Stable
                                                      SOLUTION, 2Wm = 46TL 48T 2Wm = 48TT = 48TT
                             Steps:
YEN] = \(\sigma\) X[K]h[n-K]
                                                                   Reconstructed
                                                                                    : DC volve because
                                                       fs = 24
                           () For (+) values of
                                                                   completely
                                                                                     sine
                                                      Ws=48TT
                                                                                               SOLUTION
                            n, shift ht-k] to
                                                                 34 Cos (46 TT+ T/9)
                            the right
                                                       Ts = 1/24
h[n] = u[n] - u[n-5]
                                                                   2Wm= 92TT > 48TT
                           @ For (-) values shift
                                                                                              1) p(z) = 5x(z) + kz
                                                                                                                                                      P(2)
                                                                  : Aliosing
                            104+
                                                                                                                                                 2-1
                                                       4cos (46 m+ - k+(2 m(1/15)) + T/9)
                           3) For n=0, use h [-k]
                                                       "Choose integer value for k
                           (4) Sum over all K
                                                       that puts it within approist
                             X[k]·h[-k+n] and
                                                       range ie: 1"
                                                                                               Y(2) = p(2) + K2-1p(2)
                            that is the value for
                                                                                                                                   , H(z) = 5(2+ X)
                                                       4 cos (46TT+-48TT++ T/9)
h[-1] =
                                                                                                        54(2)
                                                        =4cos(-2m++1/9)
                            For n=0:
                                                                                                                    1-K2-1
                                                                                                                                  2 ROC: ( , 00)
                                                        :W(+) = 7cos(23TT+) +4cos(-2TT++T/q)
                            YC0] = (3)(1) = 3
                            For n=1:
                                                                                                                                  (3) BIBO: (0,5)
                                                        Ex: "LTI System Property
                                                                                                                  2(1- #2-1)
                                                                                                        1- 1 2-1
                                   h[-k+1]
                                                                                                X(2)
                                                                    15 -
                                                                                                                7 X2(+) = U(+)-U(+-0.35)
                                                                                              SOLUTION !
XCn] = 3(U[n]-U[n-6])
                                                                                                                \therefore \ y_2(+) = u(+) - u(+-0.35) - u(+-1) + u(+-0.35-2)
                                                                                             X1(4) = u(+)-u(+-1)
                             y(1] = (3)(1)+(3)(1) = 6
                                                                                                                   Y2'(+) = U(+)-U(+-0.35)+U(+-1)-U(+-0.35-1)
                                                                                             Y: (+) = X: (+) - X: (+-2)
                                                                                                                   Convolution Properties:
                             For n= 5: h (- K+5)
                                                                                  Find yz(+)
                                                           y, (+)
                                                                                             \lambda'_{1}(+) = \chi'_{1}(+) + \chi'_{1}(+-1) (i) \chi(+) * \chi(+) = \chi(+)
                                                                           X2(+)
                                                                                   and y2'(+)
                                                                                                               (ii) X(+-\alpha) * h(+-B) = X(+-\alpha-B)
                                                                                                               (iii) (x1(+)+x2(+)) *h(+)= x1(+)*h(+)+ x2(+) *h(+)
                                                                                             h'(+)= ((+)+6(+-1)
           y[5] = (3)(1) + (3)(1) + (3)(1) + (3)(1) + (3)(1) = 15
                                                                              0.35
                                                             Ex: "DT Fourier series coefficients"
Ex: "Different Cousalities
                                                   1 BIBO:
                     Loplace Transform : | ROC:
                                                                                    XCn]
Impulse Response:
                                                      NO
                                           (2, INF)
8e 4(+) +15e2+u(+)
                                           (-INF, -4)
-7e+u(-+)-15e2+u(-+)
                    (-17(544) (-1)(5-1)
19e-6+u(+)-13e-u(-+)
                                                       YES
                                           (-6,2)
                             (-1)(5-2)
                                                                                                    8 9 10 11
Ex: "State Space Circuit
                              Given
                                                                       Find the fourier coefficients
                                              Vc
                              R= 771
                                                                      XK for K #0.
                                                                                                                Sin ( KT/2)
                                              iL
                                                         1/7 -11
                              L=7H
                                                                       SOLUTION:
                              C= 1/196 F
                                            det(A-NI) = 10-x -196
                                                                       N=8
                                Known:
                                                                       W_0 = \frac{2\pi}{4} = \frac{\pi}{4}
                                i=cdve
                                            1-21(-11-2) +196 =0
Find:
                                                                                        -jk( 1/4) n
                                            x2+11x+196=0
Ostate space Representation
                                            N=-4, 12=->
[A, B, C, 0]
(2) Transfer function H(S)
                                                                                     Nar = 5(1-e jk( T/4).4
(3) State Transition Matrix (1)
                                      A=[4 -196][01]=[0]
                                                                        Known:
4) Time domain response with
                                                                       r=e-jk(TA)
                                                                                              1-e-3K(T/4)
Zero-input and initial conditions
                                         10,= 702
                                                                                               -jk( 7/2) [ jk( 7/2) -jk( 7/2)]
                                                                        N=3
X=(0)=4, X2(0)=5
                                            a, = 4902
SOLUTION
                                                                                              e-jk(T/8), [ = jk(T/8) -jk(T/8)
                                       LdiL - RoiL = 0
                                                                                             Ex: Diagonalization
                                                                                                                      of a 3x3 Matrix
                                                                                                         = (2-1)[(2-1)(20-1)-9]-(1)[(20-1)-9]-(1)
                                                                    +(3)[3-3(2-2)]
                                                                                                             = \(\lambda^2 - 24\lambda^2 + 65\lambda - 42\)
                                                                                                                                         0 0 9
                                                                                                             OGUES root (1-1)
                                                                                                             = ( \ -1) ( \ 2 - 23 \ + 42 )
                                                                                                                                       01=-303
                                                                         [49 28][e4+ 0
                                                               (x,(+) =
                                                                                                                                       a1 = -3 a3 a
                                                                                                              = (1 -1) (1 -2) (1 -21)
                                                                                   0 e 7+
                                                                                                                                       03 = 03
                                                                                                              For A = 21 prefice to fee
                                                  R
                                                                                                              A= (0 1 3) RREF (1 0 3 0 0 9
                                      is
                         +[0]is
                                           CLS2 + CRS+1
                                                                                               (I.C's)
```


Table 4.1 Basic	Properties of Fou	rier Series		Ta		l Laplace Transform		
Basic Properties o	-				Function	of time	Function of s, ROC	
Basic Properties o	r Fourier Series			(1)	δ(t)		1, whole s – plane	
Time Domai				(2)	u(t)		$\frac{1}{s}$, $\mathcal{R}e[s] > 0$	
Signals and constan	11 11 1	$x(t)$, $y(t)$ periodic X_k , Y_k with period T_0 , α , β		(3)	r(t)		$\frac{1}{2}$, $\mathcal{R}e(s) > 0$	
Linearity $\alpha x(t) + \beta y(t)$			$X_k + \beta Y_k$	(4)	$e^{-at}u(t)$, a	> 0	$\frac{1}{s+a}$, $\mathcal{R}e[s] > -a$	
Parseval's power relation $P_{x} = \frac{1}{T_{0}} \int_{T_{0}} x(t) ^{2} dt \qquad P_{x} = \sum_{k} X_{k} ^{2}$			(5)	$\cos(\Omega_0 t)u$		$\frac{s}{s^2 + \Omega^2}, \mathcal{R}e[s] > 0$		
Differentiation $F_{x} = \frac{1}{T_{0}} \int_{T_{0}} X(t) dt \qquad F_{x} = \sum_{k} X_{k} $			(6)			0 1 0		
Integration $\int_{-\infty}^{t} x(t')dt' \text{ only}$					$\sin(\Omega_0 t) u($		$\frac{\Omega_0}{s^2+\Omega_0^2}$, $\mathcal{R}e[s]>0$	
Time shifting	Time shifting $x(t-\alpha)$ $e^{-j\alpha x}$		$e^{-j\alpha\Omega_0}X_{\nu}$		$e^{-at}\cos(\Omega$	$u_0(t)u(t), a > 0$	$\frac{s+a}{(s+a)^2+\Omega_0^2}, \mathcal{R}e[s] > -a$	
Frequency shifting			- N	(8)	$e^{-at}\sin(\Omega_0)$	$_{0}t)u(t), a>0$	$\frac{\Omega_0}{(s+a)^2+\Omega_0^2}$, $\mathcal{R}e[s] > -a$	
Symmetry	x(t) real		$ X_{k} = X_{-k} $ even	(9)	2Ae ^{-at} cos	$G(\Omega_0 t + \theta) u(t), a > 0$	$\frac{A\angle\theta}{s+a-i\Omega_0}+\frac{A\angle-\theta}{s+a+i\Omega_0},\mathcal{R}\theta[s]>-a$	
Syrintody	λ(ι) ισω		function of k		$\frac{1}{(N-1)!}t^{N-1}$	$-t^{N-1}u(t)$	$\frac{1}{N}N$ an integer, $\Re e[s] > 0$	
		4	$X_k = -\angle X_{-k}$ odd	(11			•	
		fu	function of k		(N-1)!*		$\frac{1}{(s+a)^N}N$ an integer, $\Re[s] > -a$	
Convolution in time $z(t) = [x*y](t)$		(t) Z_{i}	$_{k}=X_{k}Y_{k}$	(12	$\frac{2A}{(N-1)!}t^{N-1}$	$e^{-at}\cos(\Omega_0 t + \theta)u(t)$	$\frac{A \ell \theta}{(s+a-j\Omega_0)^N} + \frac{A \ell - \theta}{(s+a+j\Omega_0)^N}, \mathcal{R}\theta[s] > -\delta$	
Table 3.1 Basic	Properties of One-	sided Laplace Tra	nsforms	No.	$x_1(t)$	$x_2(t)$	$x_1(t) * x_2(t) = x_2(t) * x_1(t)$)
Causal functions and	$\alpha f(t), \beta g(t)$	αF(s	$(s), \beta G(s)$	1	x(t)	$\delta(t-T)$	x(t-T)	
constants							to the second of the	
Linearity	$\alpha f(t) + \beta g(t)$		$(s) + \beta G(s)$	2	$e^{\lambda t}u(t)$	u(t)	$\frac{1-e^{\lambda t}}{-\lambda}u(t)$	
Time shifting	$f(t-\alpha)U(t-\alpha)$	$e^{-\alpha s}$ $F(s-$	- 7 - 6				The light data of	
Frequency shifting Multiplication by <i>t</i>	$e^{\alpha t}f(t)$ $tf(t)$	$-\frac{dF}{dt}$		3	u(t)	u(t)	tu(t)	
Derivative	$\frac{df(t)}{dt}$		$\frac{(s)}{s}$ (s) - f(0-)		lu en	200	$e^{\lambda_1 t} - e^{\lambda_2 t}$	
Second derivative	$\frac{dt}{d^2 f(t)}$,	f(s) - f(0-) $f(s) - sf(0-) - f^{(1)}(0)$	4	$e^{\lambda_1 t} u(t)$	$e^{\lambda_2 t}u(t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2} u(t) \qquad \lambda_1 \neq \lambda_2$	
	$\int_{0-}^{t} f(t') dt'$		S = S (0-) - I (0)		$e^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$te^{\lambda t}u(t)$	
Integral		F(s) s	(5)	5	e-u(r)	$e^{-u(t)}$	re-u(t)	
Expansion/contraction Initial value	$f(\alpha t), \alpha \neq 0$ $f(0-) = \lim_{s \to \infty}$	$\frac{1}{ \alpha }F$ $sF(s)$	(a)	6	$te^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$\frac{1}{2}t^2e^{\lambda t}u(t)$ L2.4 p	
2020							2 L2.4 p	17
Table 5.1 Basic Pr	operties of Fourier T	SECURE SERVICE SERVICES			A S S S S S S S S S S S S S S S S S S S	- Control of		
Signals and an incident	Time Domain	Frequency Domain	Ta	ble 5.2	Fourier Transfo	rm Pairs		
Signals and constants Linearity	$x(t), y(t), z(t), \alpha, \beta$ $\alpha x(t) + \beta y(t)$	$(t) + \beta y(t) = X(\Omega) + \beta Y(\Omega)$ $(t) + \beta y(t) \qquad \alpha X(\Omega) + \beta Y(\Omega)$			Function of Time		Function of Ω	
Expansion/contraction	$x(\alpha t), \alpha \neq 0$	$\frac{1}{ \alpha }X\left(\frac{\Omega}{\alpha}\right)$	(1)		G(t)		1	
in time			(2)	· ·	$S(t-\tau)$	And the state of t	$e^{-j\Omega\tau}$	
Reflection Parseval's energy relation	x(-t)	$X(-\Omega)$			I(t)			
Parseval's energy relation	$E_x = \int_{-\infty}^{\infty} x(t) ^2 dt$	$E_{x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) ^{2} dt$					$\frac{1}{j\Omega} + \pi \delta(\Omega)$	
Duality	X(t)	$2\pi x(-\Omega)$	(4)		u(-t)	1.51	$\frac{-1}{j\Omega} + \pi \delta(\Omega)$	
Time differentiation		$(j\Omega)^n X(\Omega)$	(5)		sign(t) = 2[u(t) - 0]	0.0]	$\frac{2}{j\Omega}$	
Frequency differentiation	$\frac{\frac{d^n x(t)}{dt^n}, n \ge 1, \text{ integer}}{-jtx(t)}$	$\frac{dX(\Omega)}{d\Omega}$	(6)		$A_{t} - \infty < t < \infty$		$2\pi A\delta(\Omega)$	
Integration	$\int_{-\infty}^{t} x(t')dt'$	$\frac{X(\Omega)}{\Omega} + \pi X(0)\delta(\Omega)$	(7)		$Ae^{-at}u(t), a > 0$		$\frac{A}{j\Omega+a}$	
Time shifting	$x(t - \alpha)$	$-\alpha$) $e^{-j\alpha\Omega}X(\Omega)$		-	$Ate^{-at}u(t), a > 0$		$\frac{A}{(j\Omega+a)^2}$	
Frequency shifting	$e^{i\Omega_0 t}x(t)$	$X(\Omega - \Omega_0)$	(9)	6	a-a t , a>0		$\frac{2a}{a^2+\Omega^2}$	
Modulation Periodic signals	$x(t)\cos(\Omega_c t)$			(10) $\cos(\Omega_0 t), -\infty < t < \infty$: ∞	$\pi[\delta(\Omega-\Omega_0)+\delta(\Omega+\Omega_0)]$	
Symmetry	$x(t) = \sum_{k} X_{k} e^{ik\Omega_{0}t}$ x(t) real			(11) $\sin(\Omega_0 t), -\infty < t < \infty$			$-j\pi \left[\delta(\Omega - \Omega_0) - \delta(\Omega + \Omega_0)\right]$	
7721-01	T RIF M Tit	$\angle X(\Omega) = -\angle X(-\Omega)$	- A TO 1 TO 1 TO 1					/1
Convolution in time	z(t) = [x * y](t)	$Z(\Omega) = X(\Omega)Y(\Omega)$	(12		$o(t) = A[u(t + \tau) -$	$-u(t-\tau)], \tau>0$	$2A\tau \frac{\sin(\Omega\tau)}{\Omega\tau)}$	
Windowing/Multiplicatio Cosine transform	n $x(t)y(t)$ x(t) even	$\frac{1}{2\pi}[X * Y](\Omega)$ $X(\Omega) = \int_{-\infty}^{\infty} X(t) \cos(t)$	Ot)dt real (13) <u>s</u>	$\frac{\sin(\Omega_0 t)}{\pi t}$		$P(\Omega) = u(\Omega + \Omega_0) - u(\Omega - \Omega_0)$	- Ω ₍
Sine transform	x(t) odd	$X(\Omega) = \int_{-\infty}^{\infty} X(t) \cos(t)$ $X(\Omega) = -i \int_{-\infty}^{\infty} X(t) \sin(t)$			$\kappa(t)\cos(\Omega_0 t)$		$0.5[X(\Omega-\Omega_0)+X(\Omega+\Omega_0$)]
				perties of	f the DTFT			
	crete-time Periodic sign		7.	ransform:	x[n], X(z), z	= 1 ∈ <i>ROC</i>	$X(e^{j\omega}) = X(z) _{z=e^{j\omega}}$	1
x[n] periodic signal of period N		riod X[k] periodic FS period N	X[X] periodic i o cocincionto oi		x[n], x(2), 2		$X(e^{j\omega}) = X(2) _{z=e^{j\omega}}$ $X(e^{j\omega}) = X(e^{j(\omega+2\pi k)}), k \text{ integer}$	
		$= x[n](u[n] - u[n - N]) X[k] = \frac{1}{N} \mathcal{Z}(x_1[n]) _{z=e^{Rxk/N}}$		iodicity: earity:	$\alpha x[n] + \beta y[n]$			
		$X(e^{j\omega}) = \sum_{k} 2\pi \lambda$	$\langle k \delta(\omega - 2\pi k/N) \rangle$	earity: ne-shifting:	$\alpha x[n] + \beta y[n]$ x[n-N]		$\alpha X(e^{j\omega}) + \beta Y(e^{j\omega})$ $e^{-j\omega N} X(e^{j\omega})$	
LTI response input $x[n] = \sum_k X[k] e^{j2\pi nk/N}$		output: $y[n] = \sum_{k} X[k]H$	Output. Kons Pπrk/N				$X(e^{j(\omega-\omega_0)})$	
		$H(e^{j\omega})$ (frequency	response of	quency-shi	X[II]O			1
		system)		nvolution:	(x*y)[n]		$X(e^{j\omega})Y(e^{j\omega})$	
					VI nl vi nl		1 10 10 -10 10 -10	- 1
	x[n-M]	$X[k]e^{-j2\pi kM/N}$					$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	
shift)	$x[n-M]$ $x[n]e^{j2\pi Mn/N}$	$X[k]e^{-j2\pi kM/N}$ $X[k-M]$		Itiplication: nmetry:	x[n]y[n] x[n] real-value	ed	$\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\omega})Y(e^{j\omega})d\theta$ $X(e^{j\omega})$ even function of ω	

Parseval's relation: $\sum_{n=\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$

 $\sum_{m=0}^{N-1} X[m] Y[k-m] \text{ periodic}$ convolution

NX[k]Y[n]

 $\sum_{m=0}^{N-1} x[m]y[n-m]$

Periodic convolution

Cole Shanks 54950860					
One-sided Z-transforms		Table 1	3.2 Basic Prope	erties of One-sided Z-tr	ransform
Function of Time	Function of z, ROC	Causal sig	nals and	$\alpha x[n], \beta y[n]$	$\alpha X(z), \ \beta Y(z)$
(1) $\delta[n]$	1, Whole z-plane	constants Linearity		$\alpha x[n] + \beta y[n]$	$\alpha X(z) + \beta Y(z)$
(2) <i>u[n]</i>	$\frac{1}{1-z^{-1}}, z > 1$	Convolution	on sum	$(x*y)[n] = \sum_{k} x[n]y[n-1]$	
	$nu[n]$ $\frac{z^{-1}}{(1-z^{-1})^2}, z > 1$		ng - causal	x[n-N] N integer	$z^{-N}X(z)$
$(4) n^2 u[n]$	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}, z > 1$	Time shifti	ng – non-causal	x[n-N]	$z^{-N}X(z) + x[-1]z^{-N+1}$
(5) $\alpha^n u[n], \alpha < 1$	$\frac{1}{1-\alpha z^{-1}}, z > \alpha $	Time rever	real	x[n] non-causal, N integer $x[-n]$	$+x[-2]z^{-N+2} + \cdots + x[-N]$ $X(z^{-1})$
(6) $n\alpha^n u[n], \ \alpha < 1$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}, Z > \alpha $	Multiplicat		nx[n]	$-z\frac{dX(z)}{dz}$
(7) $\cos(\omega_0 n) u[n]$	$\frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}, Z > 1$	Multiplicat		$r^2x[n]$	$z^2 \frac{d^2 X(z)}{dz^2} + z \frac{dX(z)}{dz}$
(8) $\sin(\omega_0 n) u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}, z > 1$	Finite diffe		x[n]-x[n-1]	$(1-z^{-1})X(z)-x[-1]$
(9) $\alpha^n \cos(\omega_0 n) u[n], \ \alpha $		Accumula	tion	$\sum_{k=0}^{n} x[k]$	$\frac{X(z)}{1-z^{-1}}$
(10) $\alpha^n \sin(\omega_0 n) u[n], \alpha <$	alac va-1	Initial value		$x[0]$ $\lim_{n\to\infty} x[n]$	$\lim_{z \to \infty} X(z)$ $\lim_{z \to 1} (z - 1)X(z)$
Discrete-time Fourier Transforms (DTF	THE RESERVE AND THE PARTY OF TH		No. f(t)		END DOMESTIC
Discrete-time signal	DTFT $X(e^{i\omega})$, periodic of period 2π				Equation (1.5)
	1, $-\pi \le \omega < \pi$		1. 1	$\frac{1}{s}$, $s > 0$	Equation (1.5)
(2) A QUENTI - Ne-in	$2\pi A\delta(\omega), -\pi \leq \omega < \pi$		2. t*	$\frac{n!}{s^{n+1}}$, $s>0$	Equation (1.8)
(3) $e^{j\omega_0 n}$	$2\pi\delta(\mathbf{W}-\omega_0), -\pi \leq \omega < \pi$				
(4) $\alpha^n u[n], \alpha < 1$	$\frac{1}{1-\alpha} e^{-j\omega}, -\pi \leq \omega < \pi$		3. sin a	$\frac{a}{s^2 + a^2}, s >$	0 Example 1.9
(5) $n \alpha^n u[n], \alpha < 1$ (6) $\cos(\omega_0 n) u[n]$	$n \alpha^{n} u[n], \alpha < 1$ $\frac{\alpha e^{-j\alpha}}{(1-\alpha e^{-j\alpha})^{2}}, -\pi \leq \omega < \pi$ $\cos(\omega_{0}n) u[n]$ $\pi \left[\delta(\omega - \omega_{0}) + \delta(\omega + \omega_{0})\right], -\pi \leq \omega$		4. cos a	$\frac{s}{s^2 + a^2}$, $s >$	0 Equation (1.10)
(7) $\sin(\omega_0 n) u[n]$	$-j\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)\right], -\pi \le \omega$ $-j\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)\right], -\pi \le \omega$			1	Francis III
(8) $\alpha^{ n }, \alpha < 1$	$\frac{1-\alpha^2}{1-2\alpha\cos(\omega)+\alpha^2}, -\pi \le \omega < \pi$		5. e ^{at}	$\frac{1}{s-a}$, $s>a$	Example 1.4
(9) $p[n] = u[n + N/2] - u[n - N/2]$	$\frac{\sin(\omega(N+1)/2)}{\sin(\omega/2)}, -\pi \le \omega < \pi$		6. $e^{at} \sin$	$\frac{b}{(s-a)^2+b^2}, s$	$> a$ Prop. 2.12 with $f = \sin bt$
(10) $\alpha^n \cos(\omega_0 n) u[n]$	$\frac{1 - \alpha \cos(\omega_0) e^{-j\omega}}{1 - 2\alpha \cos(\omega_0) e^{-j\omega} + \alpha^2 e^{-2j\omega}}, -\pi \le \omega < \pi$		7. e ^{at} cos	$(s-a)^2+b^2$	
(11) $\alpha^n \sin(\omega_0 n) u[n]$	$\frac{\alpha\sin(\omega_0)e^{-j\omega}}{1-2\alpha\cos(\omega_0)e^{-j\omega}+\alpha^2e^{-2j\omega}}, -\pi \leq \omega < \pi$	s. A ptota	8. t*e ^a	$\frac{n!}{(s-a)^{n+1}}, s:$	Prop. 2.14 with $f = e^{at}$
Discrete Fourier Transform (DFT) (Fo	urier Series Coefficients)			jθ	-(0) + : -:-(0)
x[n] finite-length N aperiodic s		of Eu	ler's formula	$e^s = cc$	$\cos(\theta) + j \sin(\theta)$
Tall Tall Bank/L	period $L \ge N$	//			$e^{j\theta} + e^{-j\theta}$
$\begin{split} \tilde{x}[n] &= \tfrac{1}{N} \sum_{k=0}^{L-1} \tilde{X}[k] e^{j2\pi nk/L} \\ \text{IDFT/DFT} & x[n] &= \tilde{x}[n] W[n], W[n] = u[n] \end{split}$	$\tilde{X}[k] = \sum_{n=0}^{L-1} \tilde{x}[n] e^{-j2\pi nk}$ - $u[n-N]$ $X[k] = \tilde{X}[k]W[n], W[k]$		for cosine	$\cos(\theta) =$	$=\frac{e^{j\theta}+e^{-j\theta}}{2}$
$\chi_{[ij]} = \chi_{[ij]} \chi_{[ij]}, \chi_{[ij]} = g_{[ij]}$	= u[k] - u[k - N]				
Circular $(x \otimes_L y)[n]$	X[k]Y[k]	- 1.8	for sine	$\sin(\theta) =$	$=\frac{e^{j\theta}-e^{-j\theta}}{2j}$
convolution	N D D D D D D D D D D D D D D D D D D D		TOT BITTO		2j
Circular and $(x \otimes_L y)[n] = (x * y)[n], L \geq M$ linear $M = \text{length of } x[n], K = \text{length}$		0			$\sin(\pi \theta)$
convolution	V=0	sin	c function	$\operatorname{sinc}(\theta)$:	$=\frac{\sin(\pi\theta)}{\pi\theta}$
3. Sum-Difference Formulas	10 to 1 to 100 - 27,4170000	IR.	ecap of Train	-12	DT
$\sin(x+y) = \sin x \cos y + \cos x \sin y \qquad \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$					00
$\sin(x-y) = \sin x \cos y - \cos x \sin y$			LT: X(5) =	(x(+)e d+ Z	ZT ; $X(z) = \sum_{n=-\infty}^{\infty} X[n]Z^{-n}$
$\cos(x+y) = \cos x \cos y - \sin x \sin y$	$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$		ILT: X(+)= -	X(s) est ds	[ZT: X[n] = 1 6 X(2) 2 dz
$\cos(x-y) = \cos x \cos y + \sin x \sin y$			2	TT -00	121. ACIS 27 7 ACIT 02
7. Double Angle Formulas		A Days	ET A VII A	50 - jut	OTFT: X(W) = 2 X[n]e-jwn
$\sin(2x) = 2\sin x \cos x$			F 1 : X(W)=	X(+)e dT	NE-40
$\cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 x - 1$	$=1-2\sin^2 x$		- C. T. C. V/	00 jw+.	- numer + less
$\tan(2x) = \frac{2\tan x}{1-\tan^2 x}$			L F T : X(+)=1	T x(w)e dw	IDTFT: X[n] = 1 TT X(w)e do
3. Power-Reducing/Half Angle Formulas					~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
5,	property of the second				N-1 - VVIII
$\sin^2 x = \frac{1 - \cos 2x}{2}$ $\cos^2 x = \frac{1 + \cos 2x}{2}$	$\tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}$		FS: Xx=+	(x(+)e + d+	DFT: XX = T \sum_{N=1}^{N=0} X [N] e - 3KM0

IFS: X(+) = \sum_{k=-00}^{\infty} \text{Xke} \(\text{inwo+} \)

IDFT: XCAJ = N-1 XKe jkwon

Where $W_0 = \frac{2\pi}{N}$