Math 120TC Homework 5

Ethan Martirosyan

May 15, 2024

Problem 1

First, we note that

$$K_5 = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 5\}\}\}$$

Since $V((K_5)^{*2}_{\Delta}) = V(K_5) \sqcup V(K_5)$, we know that $|V((K_5)^{*2}_{\Delta})| = 10$. We may suppose that 5 of the vertices are in \mathbb{R}^5 at the vectors e_1 , e_2 , e_3 , e_4 , and e_5 . Then, there is a 4 dimensional hyperplane going through these five vectors, so we may consider them to be in \mathbb{R}^4 . Then, their negatives would be the other 5 vertices. Now, we will determine the geometric nature of $(K_5)^{*2}_{\Delta}$. We claim that it is the boundary of a convex 4-polytope in \mathbb{R}^4 . Let us write the 10 vertices as follows:

$$\{1\},\{2\},\{3\},\{4\},\{5\},\{-1\},\{-2\},\{-3\},\{-4\},\{-5\}$$

Notice that the vertex 1 is connected to 8 vertices; namely, the 8 vertices that aren't 1 or -1. Let us examine the link at 1. If we look at the vertex 2, we note that the link contains

$$\{\{2\},\{2,-3\},\{2,-4\},\{2,-5\},\{2,-3,-4\},\{2,-3,-5\},\{2,-4,-5\}\}$$

From this alone, we find that the link contains 2 complexes. We deduce that the boundary near the vertex 1 is a 3 dimensional object. Furthermore, this holds for every other vertex as well so that the deleted product $(K_5)^{*2}_{\Delta}$ must be the boundary of a convex 4 polytope. Let us examine this some more. Consider the below image:

In this picture, we have drawn the simplex corresponding to 2, 3, 4, 5. In accordance with our notation, we have put -2 on the opposite side and connected it to 3, 4, 5. From this picture, it is evident that the deleted join cannot be embedded into 3 space and that it must be in 4 space at least. This provides more evidence to support the assertion that the deleted join is the boundary of a 4 polytope. Just to be certain, we compute the deleted product below:

1				
6	C - C - 2	(P	(0.57
6	£13 £1, -23		11,43	{3,5}
-	{1, -3}		{1,4,-2,-3}	{3,5,-1,-23
1	£1,-43	24,-33	{1,4,-2,-53	{3,5,-1,-43
	{1,-53			{3,5,-2,-43
	£1,-2,-33		{1,53	£4,53
-	{1,-2,-43			[4,5,-1,-2]
-	{11-2,-53		{1,5,-2,-43	£4,5,-1,-33
19	{1,-3,-43		£1,5,-3,-43	£4,5,-2,-33
9		{4,-2,-5}		
	{1,-4,53	- - -	{2,3,-1,-4}	
٤٤		<i>{5} {5,-1}</i>	{2,3,-1,-53	
9 0	{2,-3}	{5,-23	{2,3,-4,-5}	
	{2,-4}	{5,-33	{2,43	
	£2,-53	{5,-43	{2,4,-1,-3}	
	{2,-1,-3}	{5,-1,-2}	{2,4,-1,-53	
	{2,-1,-43	{5,-1,-33	{2,4,-3,-53	
	{2,-1,-5}		{2,53	
		- 1 1 3	D	
	{2,-3,-5}	{5,-2,-33	12,5,-1,-33	
	{2,-3,-4}	{5,-2,-4}	[2,5,-1,-43	
	{2,-4,-5}	{5,-3,-43	[2,5,-3,-4]	
{33}	{3,-13	81,23	{3,43	
	[3,-23	E17 -3 -113	5211/1 23	1
	3,-43	(1/2) 3, 73	{3,4,-1,-23	
		21,2,-3,-59	{3,4,-1,-5}	
7	3,-5}	{1,2,-4,-53	[3,4,-2,-5]	
(1) {3,-11-23	{3,-4-4}	£1,33 £1,3,-1		
{3,-1,-5} {3,	2-117		11.02	
		{1,3,-2,-43		
[3,-2,-5] [3,	-4,-53	{1,3,-2,-53		
		103		

Problem 2

Let $f: S^k \to S^n$ and $g: S^\ell \to S^n$ be odd maps. Then, we know that the following diagrams commute:

$$S^{k} \xrightarrow{f} S^{n}$$

$$\downarrow^{\nu}$$

$$S^{k} \xrightarrow{f} S^{n}$$

and

$$S^{\ell} \xrightarrow{g} S^{n}$$

$$\downarrow^{\nu}$$

$$S^{\ell} \xrightarrow{g} S^{n}$$

where ν represents the antipodality map on S^k , S^ℓ , or S^n (that is, we have f(-x) = -f(x) and g(-x) = -g(x)). Now, we have a map $f * g : S^k * S^\ell \to S^n * S^n$ given by f * g(x,y,t) = (f(x),g(y),t). Let us assume that $f(S^k) \cap g(S^\ell) = \varnothing$. Then, we know that f * g maps $S^k * S^\ell$ into $(S^n)^{*2}_{\Delta}$, that is, the deleted join of S^n considered as a space. As in Lemma 5.5.4, we can construct a \mathbb{Z}_2 -map from $(S^n)^{*2}_{\Delta} \to S^n$ so that $\operatorname{ind}_{\mathbb{Z}_2}((S^n)^{*2}_{\Delta}) \le n$. However, we know that $S^k * S^\ell$ is homeomorphic to $S^{k+\ell+1}$ so that $\operatorname{ind}_{\mathbb{Z}_2}(S^k * S^\ell) = k+\ell+1 \ge n+1$. Thus, we have reached a contradiction, and we know that $f(S^k) \cap g(S^\ell) \ne \varnothing$.