Teoría Geométrica de Grupos

Juan Camilo Camacho Parra

Diciembre 2023

1. Introducción

La teoría geométrica de grupos es una rama de las matemáticas interesada en las propiedades tanto geométricas como algebraicas de un grupo y cuales de ellas se relacionan entre sí.

Este documento tiene como objetivo dar una pequeña introducción a la teoría geométrica de grupos partiendo desde las nociones básicas de grupos, definiendo los grafos de Cayley, en particular se trabajará con grafos conexos. A continuación se estudia la acción de un conjunto de generadores sobre su grafo de Cayley y finalizamos con una relación entre espacios métricos y los grafos, en donde definiremos una métrica y así poder determinar algunos resultados que involucran las isometrías.

2. Preliminares

Definición 2.1. Sea G un conjunto no vació y * una operación binaria sobre G. Decimos que G es un **grupo** si satisface las siguientes condiciones:

- 1. Dados $a, b \in G$ entonces $a * b \in G$.
- 2. Dados $a, b, c \in G$ se cumple la igualdad:

$$a*(b*c) = (a*b)*c.$$

3. Existe un único elemento $e \in G$ tal que:

$$e * a = a * e = e \quad \forall a \in G.$$

4. Para todo $a \in G$, existe un único elemento $a^{-1} \in G$ tal que:

$$a * a^{-1} = a^{-1} * a = e$$
.

Ejemplo 2.2. Sea \mathbb{Z} el conjunto de los números enteros junto con la suma usual de números forma un grupo.

Definición 2.3. Sea G un grupo y sea H un subconjunto de G. Decimos que H es un **subgrupo** de G, si H es en si mismo un grupo bajo la operación binaria de G.

Ejemplo 2.4. El conjunto $2\mathbb{Z} = \{n \in \mathbb{Z} \mid n = 2m \text{ para algún } m \in \mathbb{Z}\}$ es un subgrupo de \mathbb{Z} bajo la suma.

Definición 2.5. Sea G un grupo y H un subgrupo. Si $gHg^{-1} = H$ para todo $g \in G$ entonces H es llamado subgrupo **normal** de G y denotado por $H \triangleleft G$.

Ejemplo 2.6. El subgrupo del Ejemplo 2.4 es un subgrupo normal de $\mathbb Z$ con la suma.

Definición 2.7. Sean G y H grupos y sea $f: G \to H$ una función de G en H. Decimos que f es un **homomorfismo de grupos** si cumple la siguiente condición:

$$f(ab) = f(a)f(b).$$

Para todo a, b en G.

Definición 2.8. Sea $f:G\to H$ un homomorfismo de grupos. Entonces el subgrupo

$$\ker f = \{ g \in G \mid f(g) = e \},\$$

de G es el kernel de f, el subgrupo

$$im f = \{ f(g) \in H \mid g \in G \},\$$

de H es la imagen de f.

Teorema 2.9. Sea $f: G \to H$ un homomorfismo de grupos

- 1. Decimos que f es inyectivo si y solo si ker $f = \{0\}$.
- 2. Decimos que f es sobreyectiva si y solo si $H = \operatorname{im} f$.
- 3. Decimos que f es un isomorfismo si y solo si es biyectiva.

Observación 2.10. Un homomorfismo de grupos $f: G \to H$ es un isomorfismo si existe un homomorfismo $g: H \to G$ tal que $f \circ g = id_H$ y $g \circ f = id_G$. Si existe un isomorfismo entre G y H, entonces G y H son isomorfos, y escribimos $G \cong H$.

Definición 2.11. Un homomorfismo $f:G\to G$ es un **automorfismo** de G si f es un isomorfismo. El conjunto de todos los automorfismos de G es denotado por Aut G.

Definición 2.12. Sea G un grupo. Un automorfismo $f: G \to G$ es un **automorfismo** interno de G si f es dado por la conjugación por un elemento de G, es decir, si existe un elemento $g \in G$ tal que

$$f(h) = ghg^{-1},$$

para todo $h \in G$. El conjunto de todos los automorfismos internos de G es denotado por Inn G.

Observación 2.13. El conjunto $\operatorname{Inn} G$ es un subgrupo normal de $\operatorname{Aut} G$.

Demostración: Sean $f\in \operatorname{Aut} G$ y $g\in \operatorname{Inn} G,$ veamos que $fgf^{-1}=g.$ Sea $a\in G$

$$f \circ g \circ f^{-1}(a) = f(g(f^{-1}(a))))$$

$$= f(g(b)) \text{ para algún } b \in G$$

$$= f(xbx^{-1})$$

$$= f(x)f(b)f(x^{-1})$$

$$= f(x)a(f(x))^{-1}$$

$$= g(a).$$

Por lo tanto $\operatorname{Inn} G$ es un subgrupo normal de $\operatorname{Aut} G$.

Definición 2.14. Sean G y H grupos, entonces sobre el producto cartesiano $G \times H$ hay una estructura de grupo dada por

$$(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1h_2)$$

Es claro que (e_G, e_H) es el neutro de $G \times H$ y que $(g, h)^{-1} = (g^{-1}, h^{-1})$. A $G \times H$ se le llama el **producto directo** de G y H.

Ejemplo 2.15. Sea $G = H = \langle \mathbb{Z}, + \rangle$ entonces podemos considerar el grupo $\mathbb{Z} \times \mathbb{Z}$ con elemento neutro (0,0) y con elemento inverso $(a,b)^{-1} = (-a,-b)$ para todo $(a,b) \in \mathbb{Z} \times \mathbb{Z}$.

Observaci'on 2.16. Sean G,H grupos y sea $G\times H$ su producto directo, entonces las aplicaciones canónicas

$$\pi_{G}: G \times H \longrightarrow G$$

$$(g,h) \longmapsto g$$

$$\pi_{H}: G \times H \longrightarrow H$$

$$(g,h) \longmapsto h$$

$$i_{G}: G \longrightarrow G \times H$$

$$g \longmapsto (g,e_{H})$$

$$i_H: H \longrightarrow G \times H$$

 $h \longmapsto (e_G, h)$

Son homomorfismos y además se cumple que

$$\ker \pi_G = \{e_G\} \times H = \operatorname{im} i_H$$
$$\ker \pi_H = G \times \{e_H\} = \operatorname{im} i_G$$

La aplicación π_G es llamada la proyección de $G \times H$ sobre G y la función i_G es llamada la inclusión de G sobre $G \times H$.

Definición 2.17. Sean H y L grupos. Una extensión de L por H es una sucesión exacta de grupos

$$e_H \longrightarrow H \xrightarrow{\iota_H} G \xrightarrow{\pi_L} L \longrightarrow e_L$$

Si i_H es un homomorfismo inyectivo y π_L es un homomorfismo sobreyectivo e im $i_H = \ker \pi_L$.

Observación 2.18. En particular la sucesión

$$e_H \longrightarrow H \xrightarrow{\iota_H} H \times L \xrightarrow{\pi_L} L \longrightarrow e_L$$

es exacta.

Teorema 2.19. Si $f: G \to H$ y $g: G \to L$ son homomorfismos de grupos, entonces existe un único homomorfismo de grupos $(f,g): G \to H \times L$ tal que el diagrama

$$H \xrightarrow{f} H \times L \xrightarrow{\pi_{L}} L$$

conmuta, es decir, $\pi_H \circ (f,g) = f \ y \ \pi_L \circ (f,g) = g$.

Definición 2.20. Sean G, H grupos y sea $f: H \to \operatorname{Aut} G$ un homomorfismo. El producto semi-directo de H por G con respecto a f, es el grupo $G \rtimes_f H$ cuyo conjunto subyacente es el producto cartesiano $G \times H$ y cuya composición es

$$(G \rtimes_f H) \times (G \rtimes_f H) \longrightarrow (G \rtimes_f H)$$
$$((g,h),(g',h')) \longmapsto (gf(h)g',hh')$$

Ejemplo 2.21. Veamos que $\mathbb{Z}_n \rtimes_f \mathbb{Z}_2$ es isomorfo al grupo dihedral D_n , donde $f: \mathbb{Z}_2 \to \operatorname{Aut} \mathbb{Z}_n$ dada por f(0)a = a y $f(1)a = a^{-1}$ para todo $a \in \mathbb{Z}_n$.

Definición 2.22. Sea X un conjunto y G un grupo. Una acción de G sobre X es una función $*: G \times X \to X$ tal que

- 1. ex = x para todo $x \in X$ y $e \in G$.
- 2. $(g_1g_2)x = g_1(g_2x)$ para todo $x \in X$ y todo $g_1, g_2 \in G$.

Ejemplo 2.23. Sea el grupo simétrico $G = S_n$ y sea $X = \{1, 2, \dots, n\}$ entonces G actúa sobre X por permutaciones, es decir, $\rho * x = \rho(x)$ para $\rho \in S_n$ y $x \in X$.

Definición 2.24. Sea G un grupo el cual actúa sobre un conjunto X. Dado $x \in X$ podemos definir el conjunto de los elementos en G los cuales pueden mover a x. Definimos este conjunto es llamado **órbita** x

$$G * x := \{g * x \mid g \in G\}.$$

De igual forma podemos definir el **cociente** de X por la G-acción (espacio orbita)

$$G/X =: \{G * x \mid x \in X\}.$$

Definición 2.25. Sea G un grupo el cual actúa sobre un conjunto X. Podemos definir el conjunto de los elementos $g \in G$ que dejan fijo a x

$$G_x := \{ g \in G \mid g * x = x \}.$$

Este conjunto es llamado el **estabilizador** o el **grupo de isotropía** de x, el cual forma un subgrupo de G.

Definición 2.26. Sea G un grupo el cual actúa sobre un conjunto X. Dado $g \in G$ podemos definir el conjunto de todos los elementos $x \in X$ tales que x es un **punto fijo** de g, es decir, g * x = x.

$$X^g := \{ x \in X \mid q * x = x \}.$$

Ejemplo 2.27. Para un cuadrado fijo. Sea L_1 la perpendicular que biseca a los lados arriba y abajo del cuadrado y sea L_2 la perpendicular que biseca a los lados izquierdo y derecho. Veamos que $X = \{L_1, L_2\}$ actúa sobre el grupo D_4 .

Por ejemplo consideremos la acción de rotar 180° el cuadrado sobre L_1 y L_2 las deja en su misma posición.

Ahora si consideramos la acción de rotar 90° el cuadrado sobre L_1 y L_2 las cambia de posición.

Así que veamos quien es el estabilizador de L_1 , es decir $(D_4)_{L_1} = \{R_0, R_{180}, H, V\}$ donde R_0, R_{180} es la rotación del cuadrado 0° y 180^0 , H es la reflexión respecto al eje x y V es la reflexión respecto al eje y.

Teorema 2.28 (Teorema de orbita estabilizador). Sea G un grupo finito el cual actúa sobre un conjunto finito X. Entonces para cada $x \in X$, $|G*x| = |G|/|G_x|$.

Ejemplo 2.29. Del Ejemplo 2.27 tenemos que $|(D_4)_{L_1}| = 4$ y por otro lado $|D_4| = 8$. Por el teorema de orbita estabilizador tenemos que $|D_4L_1| = 2$.

Definición 2.30. Sea G un grupo, sea X un conjunto, y sea $G \times X \to X$ una acción de G sobre X. Esta acción es libre si

$$g \cdot x \neq x$$

para todo $g \in G \setminus \{e\}$ y toda $x \in X$.

Ejemplo 2.31. Si G es un grupo, entonces la acción de trasladar a izquierda

$$G \longrightarrow \operatorname{Aut} G$$

$$g \longmapsto f_g : G \longrightarrow G$$

$$h \longmapsto gh$$

es una acción libre de G sobre si mismo.

Definición 2.32. Una acción de grupo es transitiva si tiene exactamente una órbita.

Definición 2.33. Sea G un grupo

- 1. Sea $S \subset G$. El subgrupo generado por S en G es el subgrupo más pequeño de G que contiene a S. El subgrupo generado por S en G es denotado por $\langle S \rangle_G$. El conjunto S genera a G si $\langle S \rangle_G = G$.
- 2. G es finitamente generado si este contiene un subconjunto finito que lo genera.

Definición 2.34. Sea X un conjunto no vacío, adjuntamos un elemento a X denotado por e. Entonces una **palabra** sobre X es cualquier e o una expresión formal $x_1^{\xi_1} x_2^{\xi_2} \cdots x_n^{\xi_n}$ donde $n \in \mathbb{N}, x_i \in X$ y $\xi_i \in \{-1, 1\}$.

Observación 2.35. Dos palabras son equivalentes si una se puede obtener de la otra cancelando o insertando términos repetidamente de la forma $x^{-1}x$ o xx^{-1} donde $x \in X$. La palabra en la cual todos los términos se cancelan simultáneamente es definida como la "palabra vacía" e.

Definición 2.36. La **yuxtaposición** de dos palabras $w=x_1^{\xi_1}x_2^{\xi_2}\cdots x_n^{\xi_n}$ y $w'=y_1^{\xi_1'}y_2^{\xi_2'}\cdots y_m^{\xi_m'}$ es la palabra

$$w#w' = x_1^{\xi_1} x_2^{\xi_2} \cdots x_n^{\xi_n} y_1^{\xi_1'} y_2^{\xi_2'} \cdots y_m^{\xi_m'}.$$

Además definimos w#e = e#w = w para toda palabra w.

Definición 2.37. El **grupo libre** F(X) sobre un conjunto $X \neq \emptyset$ es el conjunto de todas las clases de equivalencia de las palabras sobre X con la operación

$$[w][w'] = [w \# w'].$$

Definición 2.38. Sea S un conjunto. Un grupo F conteniendo S es libremente generado por S si F tiene la siguiente propiedad universal: Para cada grupo G y cada función $\psi:S\to G$ existe un único homomorfismo de un grupo $\overline{\psi}:F\to G$ extendiendo

Un grupo es libre si este contiene un conjunto generador libre.

Proposición 2.39. Sea S un conjunto. Entonces, salvo isomorfismo canónico, existe al menos un grupo libremente generado por S.

Teorema 2.40. Sea S un conjunto. Entonces existe un grupo G libremente generado por S.

3. Grafos

Definición 3.1. Un grafo es un par X = (V, E) de conjuntos no vacíos donde

$$E \subseteq \{x \in \mathcal{P}(V) : |x| = 2\}$$

Los elementos de V son los vértices y los elementos de E son las aristas de X.

Ejemplo 3.2. Sea $V = \{1, 2, 3, 4, 5\}$ y $E = \{\{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 5\}, \{3, 5\}\}$ cuyo gráfico es:

Definición 3.3. Sea X = (V, E) un grafo

- 1. Decimos que dos vértices $a, b \in V$ son vecinos o adyacentes si están unidos por una arista, es decir, $\{a, b\} \in E$.
- 2. El número de vecinos de un vértice es el grado del vértice.

Ejemplo 3.4. Del ejemplo anterior podemos ver que cada vértice tiene grado

Definición 3.5. Sea X = (V, E) un grafo

- 1. Sea $n \in \mathbb{N} \cup \{\infty\}$. Un **camino** en X de longitud n es una sucesión de diferentes vértices v_0, \cdots, v_n con la propiedad $\{v_i, v_{i+1}\} \in E$ para todo $1 \le i \le n-1$, si $n < \infty$ decimos que este camino conecta a los vértices v_0 y v_n .
- 2. El grafo X es llamado **conexo** si cada par de vértices pueden ser conectados por un camino en X.
- 3. Sea $n \in \mathbb{N}$ con n > 2. Un **ciclo** en X de longitud n es un camino v_0, \dots, v_{n-1} en X con $\{v_{n-1}, v_0\} \in E$.

Ejemplo 3.6. Considere el grafo X

Note que:

- 1. el grafo X es conexo.
- 2. X tiene un ciclo de longitud 4 con camino 4, 5, 6, 7.
- 3. Existen dos caminos que conectan a los vértices 1 y 7, el primero con longitud 4 y el segundo con longitud 6.

Definición 3.7. Un árbol es un grafo conexo que no contiene ciclos.

Ejemplo 3.8. Un grafo el cual es un árbol, es:

Proposición 3.9. Un grafo es un árbol si, y solo si, para cada par de vértices existe exactamente un camino conectando estos vértices.

Definición 3.10. (Grafo de Cayley) Sea G un grupo y sea $S \subset G$ un conjunto generando a G. Entonces el **Grafo de Cayley de** G con respecto al conjunt generador S es el grafo Cay(G,S) donde

- 1. El conjunto de vértices es V = G
- 2. el conjunto de aristas es $E = \{\{g, gs\} \mid g \in G, S \in (S \cup S^{-1}) \setminus \{e\}\}.$

Ejemplo 3.11. Sea $G = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ con conjunto generador $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ entonces su grafo de Cayley es:

Proposición 3.12. Sea G un grupo $y \in G$

- 1. Los grafos de Cayley son conexos ya que cada vértice g se puede alcanzar desde el vértice del elemento neutro.
- 2. Los grafos de Cayley son regulares en el sentido en que cada vértice tiene el mismo número de vecinos.

3. Un grafo de Cayley es localmente finito si y solo si el conjunto de generadores es finito. Un grafo es llamado **localmente finito** si cada vértice tiene un número finito de vecinos.

Anteriormente estudiamos como actúa un conjunto X sobre un grupo G, así que una pregunta interesante es ¿Cómo actúa el conjunto de generadores S de un grupo G sobre su grafo de Cayley Cay (G, S)?.

Definición 3.13. Sea G un grupo y S un conjunto de generadores de G, entonces la acción de G sobre $\mathrm{Cay}\,(G,S)$ esta dada por

$$\begin{split} G &\longrightarrow \operatorname{Aut} \operatorname{Cay} \left(G, S \right) \\ g &\longmapsto t_g : \operatorname{Cay} \left(G, S \right) \longrightarrow \operatorname{Cay} \left(G, S \right). \\ h &\longmapsto gh \end{split}$$

Proposición 3.14. Sea G un grupo y sea S un conjunto de generadores de G. Entonces la acción de trasladar a izquierda sobre el grafo de Cayley Cay (G,S) es libre si y solo si S no contiene ningún elemento de orden 2.

4. Isometrías

Definición 4.1. Un **espacio métrico** es un par (X, d) donde X es un conjunto no vacío y una función $d: X \times X \longrightarrow \mathbb{R}$ que satisface las siguientes condiciones:

- 1. Para todo $x, y \in X$ se tiene d(x, y) = 0 si y solo si x = y,
- 2. Para todo $x, y \in X$ se tiene $d(x, y) \ge 0$,
- 3. Para todo $x, y \in X$ se tiene d(x, y) = d(y, x),
- 4. Para todo $x, y, z \in X$ la desigualdad triangular se cumple:

$$d(x,z) \le d(x,y) + d(y,z).$$

Ejemplo 4.2. Sea X=(V,E) un grafo conexo. Entonces la función $d:V\times V\to\mathbb{R}$ dada por $d(x,y)=\min\{n\in\mathbb{N}\mid \text{ existe un camino de longitud }n\text{ conectando }x\text{ con }y\text{ en }X\}$ es una métrica sobre V asociado con X.

Ejemplo 4.3. Sea G un grupo y sea $S \subset G$ un conjunto de generadores de G. La **métrica de palabras** d_S sobre G con respecto de S es la métrica sobre G asociada con el grafo de Cayley Cay (G, S)

$$d_S(g,h) = \min\{n \in \mathbb{N} \mid \exists s_1, ..., s_n \in S \cup S^{-1} : g^{-1}h = s_1 \cdots s_n\},\$$

para todo $g, h \in G$. La distancia $d_S(g, e)$ es la longitud de palabra de g con respecto de S.

Definición 4.4. Sea $f: X \to Y$ una función entre espacios métricos (X, d_X) y (Y, d_Y) .

1. Decimos que f es un **embebimiento isométrico** si

$$d_Y(f(x), f(x')) = d_X(x, x'),$$

para toda $x, x' \in X$.

2. La función f es una **isometría** si este es un embebimiento isomético y si existe un embebimiento isomético $g:Y\to X$ tal que

$$f \circ g = id_Y$$
 y $g \circ f = id_X$.

3. Dos espacios son isométricos si existe una isometría entre ellos.

Proposición 4.5. Sea G un grupo con conjunto de generadores S y sea Cay(G, S). G actúa sobre Cay(G, S) bajo isometrias.

Referencias

- [1] Clara Löh. Geometric group theory. Springer, 2017.
- [2] Karlheinz Spindler. Abstract Algebra with Applications: Volume 1: Vector Spaces and Groups. CRC Press, 2018.
- [3] Audrey Terras. Abstract algebra with applications. Cambridge University Press, 2019.