Lec 42

- · Accurate Analysis of Feedback Circuits
 - Opening the Loop Properly
 - Calculation of the feedback factor
- · Find the feedback factor, K

V V	V2 o—√ otv,	k = $\frac{V_2}{V_1}$
IVI	12	K = 12
IV	J.S.	k = V2
II		$k = \frac{I_2}{I_1}$

Open-Loop Parameters:

Open-Loop Gain =
$$\frac{R_{P}}{\frac{1}{8m_{1}} + R_{P}} \cdot (R_{c}1/I r_{Ga}) \times R_{o}$$

Open-Loop Figure Inc. = $\frac{1}{4} \cdot (R_{c}1/I r_{Ga}) \times (R_{ca}/I/R_{P})$

Opening the loop:

$$\frac{V_{x}}{V_{M}} = \frac{-R_{C_{1}} / r_{R_{2}}}{\frac{1}{g_{m_{1}}} + \frac{1}{g_{m_{2}}} + \frac{R_{1} / R_{2}}{g_{+1}}} \frac{V_{out}}{V_{x}} = -g_{m_{2}} \left[\frac{R_{c_{2}} / (cR_{1} + R_{2})}{g_{+1}} \right]$$

