UK Patent Application (19) GB (17) 2 162 526 A

(43) Application published 5 Feb 1986

- (21) Application No 8518616
- (22) Date of filing 23 Jul 1985
- (30) Priority data (31) 8419311
- (32) 28 Jul 1984
- (33) GB
- (71) Applicant British Vita Plc (United Kingdom), Middleton, Manchester M24 2DB
- (72) Inventor lan Whittle
- (74) Agent and/or Address for Service Wilson Gunn & Ellis, 41 Royal Exchange, Manchester M2 7BD

- (51) INT CL4 CO8L 19/00 23/02 // 53/02
- (52) Domestic classification C3M 115 127AC 139 139C 140 143 144 146A 160 300 L U1S 1384 3048 3053 C3M
- (56) Documents cited EP A1 0018751 US 4203884
- (58) Field of search C3J C3L C3M

(54) Thermoplastic elastomer blends

(57) Thermoplastic elastomer blends of low hardness comprise a polynorbornene and polyolefin resin, the polynorbornene having been cured during blending by the addition to the blend of a curative. The compositions may also comprise selectively hydrogenated styrene/diene block copolymers.

SPECIFICATION

Thermoplastic elastomer blends

	_		
		This invention relates to thermoplastic elastomer blends. It is known to produce thermoplastic elastomer blends by dynamic valucanisation of a blend of EPDM rubber and polyolefin resin so that the rubber is substantially fully cured. Such thermoplastic elastomers have very useful properties and can advantageously be used in place of conventional thermosetting rubbers. However, it has been found difficult to produce by that	5
		process a thermoplastic elastomer of low hardness for example having a Shore A hardness less than 70. According to the present invention there is provided a thermoplastic elastomer comprising a blend of a polynorbornene and a polyolefin resin, the polynorbornene being cured during	10
	15	blending by the addition of a curative.	02.
	13	mechanically blending polynorbornene polymer and a polyolefin resin, and during said blending heating the mixture, and adding a curative to the mixture when said mixture is at least substantially molten and continuing said mechanical blending until the polynorbornene phase in said blend is substantially cured.	15
	20		20
	25	The polynorbornene is preferably produced by polymerising norbornene which is itself produced from ethylene and cylopentadiene by Diels-Alder Synthesis. The polynorbornene is preferably an amorphous polymer in powder form, having a molecular weight above	
	23	2,000,000. A commercially available polynorbornene which can be used in the invention is marketed as "Norsorex" has a real density of 0.96 and a second order vitreous transition temperature of 35°C.	25
	30	The polyolefin resin is preferably a high molecular weight polymer suitable examples of which are polyethylene, polypropylene, ethylene/vinyl acetate copolymers, and ethylene/propylene copolymers.	30
		The curative preferably comprises a phenolic resin which may be halogenated. A metal oxide such as zinc oxide may be included with the phenolic resin.	
		Curing of the polynorbornene phase of the blend during agitation thereof is known as "Dynamic Vulcanisation". Provided that sufficient polyolefin is present in the blend, generally	
	35	more than 35 parts by weight based on the total weight of polynorbornene and polyolefin, then the resultant products behaves as a thermoplastic but will feature elastic properties and retain good set resistance at room temperature and at elevated temperatures. Thermoplastic elastomer	35
		blends according to the invention of low hardness can be obtained by the addition of a softener if desired to relatively high loadings such as could not be accepted by known thermoplastic	
	40	elastomer blend formulations comprising a rubber and a plastic. The elastomer of the invention may include other ingredients. For example, a thermoplastic elastomer such as a styrene-ethylene-butylene-styrene (SEBS) resin preferably with a correspond-	40
		ing reduction in the amount of polyolefin resin in the blend can be added to produce products of low hardness, but still with good set resistance at low temperatures. Black and non-black	
•	45	fillers and extenders can also be added which may modify the physical properties such as hardness and modulus but without significantly affecting the set resistance. The products are preferably made by blending polynorhornene with molten polynolesin resigning.	45
		a suitable mixing unit e.g. Banbury mixer, adding required additional product modifiers, e.g. softeners, fillers, pigments, etc. With the blend at a temperature above the melting point of the	
Ę		polyoletin resin, typically 170°C for polypropylene, a curing resin and activator are added, and intimate mixing of the blend continued until cure of the polynorbornene is complete. At this	50
		time a suitable antidegradant is preferably added and mixing continued until the antidegradant has been dispersed fully in the blend. The material can be discharged from the mixer and, if desired, sheeted off by passing through a two roll mill.	
Ę	55	The following examples further illustrate the invention:- In the Examples a polynorbornene and a paraffinic oil were first mixed together to form a first	55
_		stage. The first stage was then mixed with the remaining ingredients except the curative and antidegradant. Afterr blending of the polymers and other ingredients for about seven minutes accompanied by an increase in temperature to from 165-170°C whereat the plastic resins	
6	50	softened and melted the curative was added. Mixing continued for a further ten minutes with the temperature being maintained at 165°C or above. The antidegradant was then added and after mixing for a further two minutes the mixture was discharged and formed into a sheet by passing it through a two roll mill.	60
6		In the following Table 1 Example 1 is a comparison example in which no phenolic curative	65

			TABLE I			
_	EXAMPLE	(1)	(2)	(3)	(4)	5
5	Polynorbornene 1	65.00	65.00	65.00	65.00	
10	Paraffinic Oil ² 1st Stage	130.00 195.00	130.00 195.00	130.00 195.00	130.00 195.00	10
	1st Stage ^M /B	195.00	195.00	195.00	195.00	4.5
15	Polypropylene 3	35.00	35.00	35.00	35.00	15
•	Carbon Black	5.00	5.00	5.00	5.00	
20	Stearic Acid	0.58	0.58	0.58	0.58	20
	Zinc Oxide	2.90	2.90	2.90	2.90	
25	Antidegradants 5	1.15	1.15	1.15	1.15	25
20	Phenolic curing resi	n ⁶ -	9.75	9.75	9.75	
30	Chlorinated 7 Polyethylene	_	-	5.00	5.00	30
	Decabromodiphenyl 8 oxide	-	-	-	5.00	0.5
35	1. Norsorex supplied by C	CDF Chimie, 2	2. Enerpar 23 su	pplied by BP, 3.	Propathene GWM2	35 22"

Norsorex supplied by CDF Chimie, 2. Enerpar 23 supplied by BP, 3. Propathene GWM22" used, supplied by ICI, 4. Sterling SO" (N550) used, supplied by Cabot Carbon, 5. A blend of Irganox 1010 (Ciba Geigy) and Vulkanox MB2 (Bayer) used in ratio 0.15.1, 6. SP1055 Bromomethyl alkylated phenol-formadehyde resin supplied by Schenectady-Midland, 7.
 "CM3630" supplied by Bayer, 8. "Saytex 102" supplied by Saytech.

Injection moulded test plaques, were formed using a melt temperature of 175°C, from the

		<u>T7</u>	BLE II				
5	EXAMPLE	(1)	(2)	(3)	(4)		5
	Hardness (Shore A)	52	56	56	57		J
10	Hardness (IRHD)	56	60	60	62		
10	Modulus @ 100% (MPa)	2.9(1.3)	2.9(1.5)	2.6(1.7)	2.6	1	10
15	Elongation @ Break (%)	330 (580)	150 (280)	130 (180)	150	. 1	5
	Tensile Strength (MPa)	3.0(3.2)	3.0(2.5)	2.8(1.9)	2.9		
20	Compression Set, 22 hrs @ 23°C (%)	82	27	17	20	2	0
25	Compression Set, 22 hrs @ 70°C (%)	95	40	25	20	2	5

Stress-Strain values outside parenthesis measured in flow direction, values in parenthesis measured transverse to flow direction.

In Table III the effect of high levels of plastic to rubber is shown in Examples 5, 7 and 9. The effect of fillers can be seen in Examples 6 and 7.

The effect on compression set by the vulcanisation of the polynorbornene rubber is demonstrated by comparison of the properties of the products of Examples 2 to 4 with the product of Example 1.

	•		/ TABLE III				
	EXAMPLE	. (5)	(6)	(7)	(8)	(9)	
5	Polynorbornene (Norsorex Powder)	65.00	30.00	65.00	65,00	65.00	5
	Paraffinic Oil	130.00	45.00	130.00	97.50	130.00	
10	(Enerpar 23)	195.00	75.00	195.00	162.50	195.00	10
10						•	
	1st Stage M/B	180.00	75.00	195.00	162.50	195.00	15
15	Polypropylene	40.00	70.00	35.00	35.00	35.00	15
	Carbon Black	5.00	3.00	5.00	50.00	50.00	
20	Stearic Acid	0.58	-	0.58	0.58	0.58	20
	Zinc Oxide	2.70	1.50	2.90	2.90	2.90	
25	Chlorinated Polyethylene	5.00	3.00	5.00		5.00	25
	Phenolic curing resin (SP1055)	9.00	4.50	9.75	7.80	9.75	
30	Antidegradents	1.15	1.15	1.15	1.15	1.15	30
	Calcium Carbonate	9 -	25.0	-	-	-	
35	Precipitated Sili	ca ¹⁰ -	-	10.0	-	-	35
	Decabromodiphenyl oxide		-	-	-	5.00	
40	(9. "calmote UF";	supplied b	y Tarmac Roadst	tone, 10. '	'VN3" supj	plied by	40
	ID Chemicals)		•				
45	Hardness (Shore A) 62	95	55	70	66	45
	Hardness (IRHD)	68	(Shore D-42)	60	75	70	
50	Modulus @ 100% (M	Pa) 3.3(1.9	10.4	2.7(1.7)	5.4	3.2	50
	Elongation @ Brea (%)	k 140 (210	100 (80)	140 (260)	180	140	
55	Tensile strength	MPa)3.6(2.4	10.4 (7.0)	2.9(2.6)	7.1	3.4	55
	Compression Set, 22. hrs @ 23°C. (%)	22	-	18	-	-	
60	Compression Set, 22 hrs @ 70°C (%)	28	48	32	40	21	60
	In the following Exam	ples 10 to 13	the effect of using	different poly	olefins is ill	ustrated.	

Delich.

		TABI	E IV				
							
5			(10)	(11)	(12)	(13)	· -
		olynorbornene	65.0	65.0	60.0	65.0	5
	Pa	araffinic Oil	97.5	97.5	90.0	97.5	
10)	•	162.5	162.5	150.0	162.5	10
	BI	lends of polynorbornen	e and par	affinic o	oil mixed a	s	
		st stage $^{M}/_{B}$. This t	hen added	to the s	second stag	e as	
15	fc	ollows:				·	. 15
	1 s	st stage ^M / _B	162.5	162.5	150.0	162.5	
20	Po	olypropylene 1	35.0	-	20.0	20.0	20
	CO	olypropylene 2 polymer 2	-	15.0	-	-	
25	Hi Po	gh density lyethylene 3	-	20.0	-	-	25
		hylene propylene 4 polymer	-	-	20.00	-	
30	Et Ace	hylene Vinyl etate copolymer ⁵	-	-	-	15.0	30
	Ca	rbon black 6	5.0	5.0	5.0	5.0	•
35	St	earic Acid	0.58	0.58	0.60	0.58	35
	Zi	nc Oxide	2.9	2.9	2.4	2.9	
4.0	Ph	enolic curing resin ⁷	7.8	7.8	9.0	9.75	•
40		orinated Polyethylene 8	5.0	5.0	5.0	5.0	40
	Ant	idegradant ⁹	0.1	0.1	0.1	0.1	
45	1.	Polypropylene homopolyme	r - Propath supplie	ene GWM22 t d by ICI	used,		45
	2.	Polypropylene copolymer	- Propath supplie	ene GWM101 d by ICI	used,		
50	3.	High density polyethylene	e - Vestole by Chem	n A6016 use işche Werke	ed, supplied Huls AG		50
	4.	Ethylene-propylene copolymer	- Vistalo	n 719 used,	, supplied by	Esso	
55	5.	Ethylene vinyl acetate copolymer	- Evatane	18-02 used	l, supplied b	y ICI	55
	6.	Carbon black	- Sterling		used, suppl	ied	
60	7.	Phenolic curing resin		used, suppl cady-Midlan			60
	в.	Chlorinated polyethylene	- CM3630 u	used, suppl	ied by Bayer		
65	9.	Antidegradant	- Irganox Ciba-Gei		supplied by		65
ים		rosona L		= = :	- 1-		- -

Test plaques were formed from the products of Examples 10 to 13 by injection moulding at a melt temperature of 175°C and the properties measured. The results are shown in Table V.

5		TABLE V			•	5
		(10)	(11)	(12)	(13)	
10	Hardness (Shore A)	64	63	55	52	10
	Hardness (IRHD)	70	69	60	56	
15	Modulus @ 100% (MPa)	3.7 (2.6)	3.2 (2.2)	2.9 (1.9)	2.5	15
*	Elongation @ Break (%)	130 (230)	140 (270)	170 (320)	140	
20	Tensile Strength (MPa)	3.9 (3.5)	3.5 (3.8)	3.2 (4.0)	2.7	20
25	Compression Set 22 hrs @ 23°C (%)	17	1 8	18	18	25
	Compression Set 22 hrs @ 70°C (%)	30	28	40	50	
30	Stress-strain values outside paren measured transverse to flow direct	thesis measur	red in flow dire	ection, Values ins	side parenthesis	30
35	The above Examples show that the use of polypropylene high density polyethylene copolymer tends to produce slightly lower hardness products, than when using straight polypropylene homo-polymer with also higher elongation at break and lower modulus figures. The ethylene-propylene copolymer used in Example II has a very high ethylene content (approx. 77%) and alone can be processed as a thermoplastic. The incorporation of that material improves processability, by increasing the plastic phase level, whilst maintaining a low product					
40	hardness. The compression set at elevated temperatures suffers slightly, whilst elongation and tensile strength at break shown some improvement. Ethylene vinyl acetate copolymer used in Example 13, being a much softer, lower softening point material than polypropylene, produces low hardness products, but with rather inferior set resistance at elevated temperatures. The effect of using a non-halogenated phenolic curing resin is illustrated in the following Example 14. For comparison with a halogenated phenolic resin Example 10 is set out again with					
	Example 14. For comparison with	g		•		45

TABLE VI

45 Example 14 in the following Table.

To illustrate the effect of substituting a non-halogenated phenolic resin for a halogenated one, recipe (10) is again listed for reference.

7 			GB 2 162 5	526A 7
		(10)	(14)	
5	Polynorbornene	65.0	65.0	
3	Paraffinic Oil	97.5	97.5	. 5
	Blends of polynorbornene and paraffinic	oil mixed as	s 1st stage M/n	
10	This then added to the second stage as f		A	10
	1st Stage M/R	162.5	162.5	
5	Polypropylene	35.0	35.0	15
	Carbon Black	5.0	5.0	
0	Stearic Acid	0.58		
	Zinc Oxide		0.58	20
	Halogenated phenolic curing resin 1	2.9	2.9	
5	Non-halogenated phenolic curing resin 2	7.8	-	25
		-	7.8	
0	Chlorinated Polyethylene Antidegradant	5.0	5.0	30
2	 SP1055—Bromo-methyl alkylated phenol-formalde Midland SP1045—Dimethylol-p-nonyl phenol-resin supplied All other ingredients as listed in the original table for r The following properties were measured on the prodeniection moulding test plaques using a melt temperature 	by Schenectac	ly-Midland	35
0	TABLE VII	re of 175 C.		40
	, , , , , , , , , , , , , , , , , , ,	(10)	(14)	
	dardness (Shore A)	64	63	45
	ardness (IRHD)	70	70	
	odulus @ 100% (MPa)	3.7 (2.6)	3.6 (2.4)	50
E]	longation @ Break (%)	130 (230)	110 (260)	
Te	ensile Strength (MPa)	3.9 (3.5)	3.7 (3.6)	55
Co	mpression Set 22 hrs @ 23°C (%)	17	19	60
Co	mpression Set 22 hrs @ 70°C (%)	30	39	
Stı	ress-strain values outside parenthesis measured in flov	v direction Valu	es inside parenthesis	65

5

measured transverse to flow direction.

The use of a non-halogenated phenolic resin produces slightly lower hardness and modulus values with higher set values at elevated temperatures, indicating a lower state of cure of the polynorbornene phase, than that obtained with the halogenated material. Nevertheless the 5 products thus obtained are still interesting.

The following Examples illustrate the use of a sulphur based cure system.

					_
10				10	ວ ວ
	•	(15)	(16)		
15	Polynorbornene 1	65.0	65.0	1	5
15	Paraffinic Oil 2	48.75	97.5		
		113.75	162.5		
20	Blends of polynorbornene and paraffinic oil	mixed as 1s	t stage ^M / _B	2	0
٠	This then added to the second stage as follows:	ws:		2	:5
25	1st Stage M/B	113.75	162.5		J .
	Polypropylene ³	35.0	35.0		
30	Carbon Black ⁴	5.0	5.0	3	0
	Stearic Acid	0.65	0.65		
35	Zinc Oxide	3.25	3.25	3	35
	Sulphur	0.325	0.325	•	
40	4,4'-Dithiodimorpholine 5	0.975	0.975	4	10
40	Sulphonamide derivative 6	0.65	0.65		
	Tellurium Diethyldithiocarbamate 7	0.52	0.52		45
45	Dimethyl-diphenyl-thiuram disulphide 8	0.975	0.975	-	10
	Antidegradant 9	0.15	0.15		

	.1.	Norsorex powder	- supplied by Manchem, produced by CDF Chemie	
	2.	Enerpar 23	- supplied by RP Chemicals :	
5	3.	Propathene GWM 22	- supplied by ICI	5
	4.	Sterling SO (N550)	- Cabot Carbon	
10	5.	Sulfasan R	- supplied by Monsanto	10
	6.	Vulkalent E/C	- supplied by Bayer	
15	7.	Tellurac	- supplied by Vanderbilt	15
	8.	Vulkalent I	- supplied by Bayer	
	9.	Irganox 1010	- supplied by Ciba-Geigy	

65

The following properties were measured on the above after injection moulding test plaques using a melt temperature of 175°C.

TABLE IX

	11	IDLE IV			5
5			(15)	(16)	5
	Hardness (Shore A)		76	63	
10	Hardness (IRHD)		80	69	.10
	Modulus @ 100% (MPa)		6.3	3.1	
15	Elongation @ Break (%)		210	150	15
	Tensile Strength (MPa)		7.5	3.2	
20	Compression Set 22 hrs @ 70°C	C (%)	49.0	48.3	20
	Stress-strain values measure	d in flow dire	ection		
25	The following Examples illustrate the (polypropylene) by an "S.E.B.S." typtomer.	effect of replacing (styrene-ethyles	g a portion of the ne-butylene-styren	plastic resin e) thermoplastic elas-	25
	TAE	LE X			
30					30
		(17)	(18)	(19)	
35	Polynorbornene ¹	65.0	65.0	65.0	35
	Paraffinic Oil ²	130.0	130.0	130.0	
40	1st stage	195.0	195.0	195.0	40
40					
	1st stage	150.0	150.0	150.0	4.5
45	Polypropylene ³	40.0	30.0	20.0	45
	sebs ⁴	-	10.0	20.0	
50	Stearic Acid	0.5	0.5	0.5	50
	Zinc Oxide	3.0	3.0	3.0	
55	Chlorinated Polyethylene ⁵	5.0	5.0	5.0	55
	Magnesium Oxide	0.5	0.5	0.5	
00	Phenolic Curing Resin ⁶	7.2	7.2	7.2	60
60	Antidegradant ⁷	0.1	0.1	0.1	00

Mixing and moulding methods were used as in the previous examples and the following test

65 results obtained:-

TAB	LE XI				
5	(17)	(18)	(19)	5
Hardness (Shore A)	70	. 65	!	51	
Hardness (IRHD)	70	68	!	53	
¹⁰ Modulus @ 100% (MPa)	3.6 (1.8)	3.2 (2	2.0) 1	.4 (1.2)	10
Elongation @ break (%)	110 (200)	170 (22	20) 19	0 (200)	
15 Tensile strength (MPa)	3.9 (2.5)	3.8 (2.	8) 2.	1 (2.2)	15
Compression set 22 hrs @ 70°C (%)	41	41	36		
Examples 17 to 19 show that "SEBS plastic phase of the blend and product good set resistance at elevated temperature."	e low hardness, ru ratures.	bbery produ	ıcts, whilst s	till retaining	20
The following examples illustrate th 25 reinforcing filler;		black loadi	ngs, as a por	tential	25
TABL	E XII				
30	(20)	(21)	(22)	(23)	30
Polynorbornene	65.0	65.0	65.0	65.0	
Paraffinic Oil	130.0	130.0	130.0	130.0	
lst stage	195.0	195.0	195.0	195.0	35
1st stage 40	162.5	162.5	162.5	162.5	40
Polypropylene	35.0	35.0	35.0	35.0	
Carbon Black ⁸	, -	15.0	25.0	40.0	
Stearic Acid	0.58	0.58	0.58	0.58	45
Zinc Oxide	2.9	2.9	2.9	2.9	
50 Chlorinated Polyethylene	5.0	5.0	5.0	5.0	50
Phenolic Curing Resin	7.8	7.8	7.8	7.8	
55 Magnesium Oxide	0.5	0.5	0.5	0.5	55
Antidegradant	0.1	0.1	0.1	. 0.1	
60 The following test results were obtained	d:-				60

	TABLE XIII									
	· ·	(20)	(21)	(22)	(23)					
5	Hardness (Shore A)	64	66	68	71	5				
	Hardness (IRHD)	64	71	72	74					
10	Modulus @ 100% (MPa)	3.2(2.5)	4.2(2.6)	3.5(3.0)	-	10				
	Elongation @ break (%)	100(120)	120(90)	110(120)	90(90)					
15	Tensile Strength (MPa)	3.2(2.9)	4.4(2.6)	3.8(4.4)	3.6(4.2)	15				
	Compression set 22 hrs @ 70°C (%)	33	33	31	30					
20	Examples 20 to 23 illustrate the effect of increased loadings of carbon black. This material can be used as an 'extender' (cheapener), increasing hardness, modulus, and tensile strength values, while retaining good set resistance at elevated temperatures. The following examples show the effects of incorporating a non-black 'filler':-									
25	TABLE XIV	<u>u</u>	•			25				
		(24)	(25)	(26)	(27)					
30	Polynorbornene	65.0	65.0	65.0	65.0	30				
	Paraffinic Oil	130.0	130.0	130.0	130.0					
35	1st stage	195.0	195.0	195.0	195.0	35				
	1st stage	162.5	162.5	162.5	162.5					
40	Polypponylene	35.0	35.0	35.0	35.0	40				
	Treated Calcined Clay	-	15.0	25.0	40.0					
45	Stearic Acid	0.58	0.58	0.58	0.58	45				
	Zinc Oxide	2.9	2.9	2.9	2.9	45				
50	Chlorinated Polyethylene	5.0	5.0	5.0	5.0	50				
	Phenolic curing resin	7.8	7.8	7.8	7.8					
	Magnesium Oxide	0.5	0.5	0.5	0.5					
55	5 Antidegradant	0.1	0.1	0.1	0.1	55				

The following test results were obtained:-

**************************************			•	B 2 102 520A	13
TABLE XV	<u> </u>				
	(24)	(25)	(26)	(27)	
5 Hardness (Shore A)	64	67	67	72	5
Hardness (IRHD)	64	67	67	74	
10 Modulus @ 100% (MPa)	3.2(2.5)	3.5(2.4)	2.7(2.6)	3.6(2.5)	10
Elongation @ break (%)	100(120)	100(100)	100(130)	150(160)	, 5
Tensile strength (MPa)	3.2(2.9)	3.6(2.5)	3.2(3.0)	4.1(3.0)	
Compression set (%) 22 hrs @ 70°C	33	33	33	37	15
20 Examples 24 to 27 show the effect of increases harness, slightly increases tensile at higher loadings.	creased loadi strength, wit	ngs of a non- th some sligh	-black 'filler'. it sacrifice of	This material set resistance	20
Key to the materials of Examples 17 to 27					
1. Norsorex Powder	-	produced	by CDF Che	emie	25
2. Enerpar 23	_	supplied	by B.P. Ch	emicals	
3. Propathene GWM 22	-	supplied	by ICI		30
4. Kraton ^G 1651	_	supplied	by Shell		
5 5. CM 3630	_	supplied	by Bayer		35
6. SP 1055	-	supplied Midland	by Schenec	tady-	
7. Irganox 1010	_	supplied b	oy Ciba-Ge:	i ev	40
8. Sterling SO (N550)			by Cabot Ca		
5 9. Translink 37			y Croxton		45
In the Examples the test methods used we				u dan y	
O Shore A hardness	ASTM D	2240			50
IRHD hardness	B.S.90	3 Part A26			
Modulus @ 100%)					
Elongation @ Break)	B.S.90	3 Part A2			55
Tensile Strength)					
O Compression Set		3 Part A6 A Type l			60

	 A thermoplastic elastomer comprising a blend of a polynorbornene and a polyolefin resin, the polynorbornene being cured during blending by the addition of a curative. A thermoplastic elastomer as claimed in Claim 1, wherein the polynorbornene has a 	
5	molecular weight above 2,000,000. 3. A thermoplastic elastomer as claimed in Claim 1 or Claim 2, wherein the polyolefin comprises polyethylene, polypropylene, an ethylene/vinyl acetate copolymer or an ethylene/pro-	5
	pylene copolymer. 4. A thermoplastic elastomer as claimed in any preceding claim, wherein the curative comprises a phenolic resin.	
10	5. A thermoplastic elastomer as claimed in Claim 4, wherein the phenolic resin is	10
	halogenated. 6. A thermoplastic elastomer as claimed in Claim 4 or Claim 5, wherein the curative also	
15	comprises a metal oxide. 7. A thermoplastic elastomer as claimed in any preceding claim, wherein the blend contains more than 35 parts by weight of polyolefin resin based on the total weight of polynorbornene	15
	and polyolefin. 8. A thermoplastic elastomer as claimed in any preceding claim, wherein the blend also	
•	includes, a softener, a filler, an extender or mixtures thereof. 9. A thermoplastic elastomer as claimed in any preceding claim, wherein the blend also	20
20	includes added thermoplastic elastomer. 10. A thermoplastic elastomer as claimed in Claim 9, wherein the added thermoplastic	20
25	elastomer comprises a styrene-ethylene-butylene-styrene resin. 11. A process for producing a thermoplastic elastomer blend comprising the steps of mechanically blending a polynorbornene polymer and a polyolefin resin, heating the mixture during blending, adding a curative to the mixture when the mixture is at least substantially molten, and continuing the mechanical blending until the polynorbornene phase in said blend is	25
30		30
•	the addition of the curative. 14. A process as claimed in any of Claims 11 to 13, wherein the polynorbornene is mixed wit a paraffinic oil before blending with the polyolefin resin.	
35	 15. A thermoplastic elastomer substantially as described herein with reference to any one of Examples 2 to 27. 16. A process for producing a thermoplastic elastomer substantially as described herein with 	35
	reference to any one of Examples 2 to 27.	

Printed in the United Kingdom for Her Majesty's Stationery Office, Dd 8818935, 1986, 4235.
Published at The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.