M339W: February 14th, 2012. Value@ Risk. p... probability of an <u>adverse</u> event you're still willing to live with (e.g., the probability of experiencing a loss) R... return random variable (i.e., one benefits of the value of R is high, and the values of R being low constitutes the adverse event) Defin. Valp(R) is the value such that TP[R (s(VaRp(R))] = p TIp ... 100pth quantile Example. Consider an R which is a continuous random variable. Let the graph of its pdf fe look like this: Generally, with continuous random variables, we solve for Varp(R) in FR(Varp(R))=p If fr>0, then Varp(R) = Fr-1(p) In particular, for normal returns we can use the Arometric calculator or the standard normal tables or software (P). Note: In classical insurance, we wormy about the upper tail of the loss r.v. One way to look @ this is: VaR1-p(X)

Sample IFM: Part I

- Let X be the random gain from operations of a company. You are given:

 He PROFIT (.V.
 - (i) X is normally distributed with mean 42 and variance 6400.
 - (ii) *p* is the probability that *X* is negative.
 - (iii) K is the amount of capital such that the Value-at-Risk (VaR) at the 5th percentile for X + K is zero.

(i) $X \sim Normal (mean = 42, var = 80²)$

Calculate p and K.

$$(A)$$
 $p = 0.7; K = 157$

X (B)
$$p = 0.7; K = 131$$

$$\chi$$
 (C) $p = 0.5; K = 115$

(D)
$$p = 0.3; K = 115$$

(E)
$$p = 0.3; K = 90$$

(ii)
$$p = P[X < 0] = (\text{rewrite in std units})$$

$$= P[\frac{X-42}{80} < \frac{0-42}{80}] =$$

$$= P[Z < -0.525] =$$

$$= pnorm(-0.525) = 0.30$$

Val_{0.05} (X+K) = 0

By day'n, P[X+K<0] = 0.05 P[X<-K] = 0.05Since X is normal, it can be witten as $X=42+80\cdot Z$ W/ $Z\approx N(0,1)$ Let $x_{0.05}^{1}$ be the 5th percentile of N(0,1)Then, $x_{0.05}^{1}$ = qnorm (0.05) = -1.645 $X=42+80\cdot (-1.645) = -90 = 7$ X=90

Tail Probabilities.
Example. You are considering an investment in a
Example. You are considering an investment in a continuous dividend paying stock. You want to compare it to the visle free investment. a: What is the probability that the stock outperforms the visle free account @ time . T?
isk-free account @ time.T: The invested amount: 5(0)
(• If it's the nisk free investment, the balance @ time. To
• If it's the stock investment, the number of shares owned @ time. T is:
=> The wealth @ time: T is: SCT).es.T
P[ests(t)) > s(o)et] = ?
This question is equivalent to the question of whether the profit from purchase of stockis positive.
In the Black Scholes model:
S(T) = S(0) e (d-8-92).T+ of (T·Z ω/ Z~N(0,1)