VLSI - Very Large Scale Integration

Combinatorial Decision Making and Optimization Module 1

Dahesh, Parsa (dahesh.parsa@studio.unibo.it)
Granata, Ludovico (ludovico.granata@studio.unibo.it)
Persiani, Simone (persiani.simone2@studio.unibo.it)

Academic year 2020-2021

Abstract

VLSI (Very Large Scale Integration) refers to the trend of integrating circuits into silicon chips. A typical example is the smartphone. The modern trend of shrinking transistor sizes, allowing engineers to fit more and more transistors into the same area of silicon, has pushed the integration of more and more functions of cellphone circuitry into a single silicon die (i.e. plate). This enabled the modern cellphone to mature into a powerful tool that shrank from the size of a large brick-sized unit to a device small enough to comfortably carry in a pocket or purse, with a video camera, touchscreen, and other advanced features.

1 Constraint Programming

1.1 Variables

1.1.1 Problem parameters

First, let's define the problem parameters:

- width, the width of the board;
- n_circuits, defines the total number of circuits;
- hor_dim and ver_dim, arrays that store the horizontal and vertical dimensions of each circuit (e.g. the height and width of circuit i are stored in hor_dim[i] and ver_dim[i]).

We also sorted the circuits by their total area in order to exploit this ordering in the searching process (see section 1.3). Therefore, in many of the constraints that will be described in the following section, it is assumed that the circuits are sorted.

1.1.2 Decision variables

Now, let's define the decision variables:

- X_pos, x coordinate of the bottom left corner of each circuit;
- Y_pos, y coordinate of the bottom left corner of each circuit.

The goal is to minimize and find the optimal *height* of the board while fitting all the given circuits.

It is important to properly define the domain of each decision variable in order to improve the performance of the searching process. This has to be done without excluding any valid solution from the search space. Therefore, we have that:

$$height \in [min_height, max_height]$$

where:

- $min_height = (\sum_i ver_dim_i * hor_dim_i)/width$, i.e. the sum of the circuit areas divided by the board's width;
- $max_height = \sum_{i} ver_dim_i$, i.e. the sum of the vertical dimension of each circuit.

and

$$X pos \in [0, width - min(hor dim)]$$

 $Y pos \in [0, max height - min(ver dim)]$

1.2 Constraints

In this section, we will discuss all the constraints that we have tested including the less successful ones. We will later on compare the different variants to establish the best model.

1.2.1 Main Constraints

The border constraints check that no circuit is partially or completely positioned outside of the grid and are implemented as follows:

```
constraint forall (c in CIRCUITS)
   (X_pos[c] + hor_dim[c] <= width)::domain;
constraint forall (c in CIRCUITS)
   (Y_pos[c] + ver_dim[c] <= height)::domain;</pre>
```

Then we introduce the diffn global constraint to avoid circuits overlapping each other:

```
constraint diffn(X_pos, Y_pos, hor_dim, ver_dim)::domain;
```

1.2.2 Implied constraints

To improve the searching process we added an implied constraint, namely the cumulative global constraint. The definition of cumulative is the following:

"It requires that a set of tasks given by start times s, durations d, and resource requirements r, never require more than a global resource bound b at any one time."

We can use it by imagining that the start times are the positions $X_{-}pos$ (resp. $Y_{-}pos$) of our circuits, the durations are the horizontal dimensions $hor_{-}dim$ (resp. vertical dimensions $ver_{-}dim$), the resource requirements are the vertical dimensions $ver_{-}dim$ (resp. horizontal dimensions $hor_{-}dim$) and the global resource is the width (resp. height). We implemented them as:

```
constraint cumulative(X_pos, hor_dim, ver_dim, height);
constraint cumulative(Y_pos, ver_dim, hor_dim, width);
```

1.2.3 Symmetry breaking constraints

The first symmetry breaking constraint consists in placing the *largest circuit on the bottom left* of the board. In this way, we remove the solution in which the board is rotated by 180° or reflected along the central horizontal/vertical line (see figure 1). This circuit has index 1 since the circuits are sorted by dimension. The constraint is implemented as follows:

```
constraint X_{pos}[1] == 0 / Y_{pos}[1] == 0;
```


Figure 1: Largest block on the bottom left

The second constraint imposes a lexicographic ordering to break symmetries on the X and Y axis. To do so, we first have to obtain the symmetric coordinates of each circuits:

```
X\_pos\_sym_i = width - X\_pos_i - hor\_dim_i

Y\_pos\_sym_i = height - Y\_pos_i - ver\_dim_i
```

Then we can apply the lex_lesseq constraints:

```
constraint symmetry_breaking_constraint (
  lex_lesseq(X_pos, X_pos_sym)
);
constraint symmetry_breaking_constraint (
  lex_lesseq(Y_pos, Y_pos_sym)
);
```

The last symmetry breaking constraint is called two_stack. In the vertical variant, given two blocks with the same width that are placed one on top of the other, the larger block – namely the one with the greater vertical dimension – will be placed on the bottom as shown in fig. 2.

Figure 2: two_stack_ver

Respectively, the same approach is applied to the horizontal variant.

To check whether two circuits are stacked, we implemented the following predicates:

```
predicate two_stack_ver(int: i, int: j) = (
    X_pos[i] == X_pos[j] /\ hor_dim[i] == hor_dim[j] /\
    ver_dim[i] + ver_dim[j] ==
        max([Y_pos[i]+ver_dim[i],Y_pos[j]+ver_dim[j]])
        - min([Y_pos[i],Y_pos[j]])
);

predicate two_stack_hor(int: i, int: j) = (
    Y_pos[i] == Y_pos[j] /\ ver_dim[i] == ver_dim[j] /\
    hor_dim[i] + hor_dim[j] ==
        max([X_pos[i]+hor_dim[i],X_pos[j]+hor_dim[j]])
        - min([X_pos[i],X_pos[j]])
);
```

For example, in the two_stack_ver case, two circuits i and j are vertically stacked if besides having the same width and x coordinate, the sum of their vertical dimensions equals to the difference between the upper side of the top circuit and the bottom of the second circuit.

To these two constraints, we added a second layer of circuit stacking which follows the same reasoning of the previously mentioned constraints and addresses the issue showed in fig. 3.

Figure 3: three_stack_ver

The stacking constraints were implemented as:

```
constraint symmetry_breaking_constraint (
    forall ( i,j in CIRCUITS where i<j /\ two_stack_ver(i,j)) (</pre>
      Y_pos[i] <= Y_pos[j]</pre>
                               % Larger block on the bottom
      % Note: the circuits are ordered by total area so
      % circuit i is larger that circuit j with i<j
    % Three stack layer:
    % we already checked if circuits i and j are stacked.
    % Now we check for circuit k
      forall( k in CIRCUITS where i!=k /\ j!=k /\
            ver_dim[k] == ver_dim[i] + ver_dim[j] /\
            hor_dim[k] + hor_dim[i] ==
            max([X_pos[k]+hor_dim[k], X_pos[i]+hor_dim[i]]) -
            min([X_pos[k],X_pos[i]]) ) (
          X_{pos[k]} < X_{pos[i]} / X_{pos[k]} < X_{pos[j]}
      )
    )
  );
constraint symmetry_breaking_constraint (
    forall ( i,j in CIRCUITS where i<j /\ two_stack_hor(i,j)) (
       Y_pos[i] <= Y_pos[j]</pre>
    /\ forall( k in CIRCUITS where i!=k /\ j!=k /\
            hor_dim[k] == hor_dim[i] + hor_dim[j] /\
            ver_dim[k] + ver_dim[i] ==
            max([Y_pos[k]+ver_dim[k],Y_pos[i]+ver_dim[i]]) -
            min([Y_pos[k],Y_pos[i]])) (
            Y_pos[k] < Y_pos[i] / Y_pos[k] < Y_pos[j]
    )
  );
```

Note: when using the largest circuit on the bottom left constraint, we check that in the stacking constraints the indexes i,j,k are NOT equal to 1 (i.e. the index of the largest circuit). This is done to avoid excluding valid solutions.

1.3 Searching

Search annotations have an important role in improving the performances. We compared different searching strategies on the same model: to do so, we selected a minibatch of 5 arbitrarily-chosen instances over which we ran each searching configuration

and obtained the following results:

Variable	Choice	Restart	Solved	Avg solving time [ms]
input_order	random	luby	5/5	10064
first_fail	random	luby	5/5	11253
smallest	random	luby	4/5	25087
$\operatorname{domw_deg}$	random	luby	5/5	1133
dom_w_{deg}	min	luby	5/5	2001
dom_w_{deg}	median	luby	3/5	1076
dom_w_{deg}	split	luby	5/5	1235
dom_w_{deg}	random	geometric	5/5	1163
dom_w_{deg}	random	linear	5/5	25376
dom_w_{deg}	random	constant	4/5	34407

Table 1: Mini-batch of instances: 5, 8, 10, 12, 14. The best configuration is highlighted in bold.

In addition to the best configuration we also added the $relax_and_reconstruct$ annotation for X_pos .

1.4 Results

We tried the following combinations of constraints with the best searching strategy found in the previous section because the X, Y s.b. constraint and largest circuit on the bottom left are not compatible with each other:

- (1) X, Y s.b. constraint + two_stack + three_stack
- (2) largest circuit on the bottom left + two_stack + three_stack

Finally, we obtained the following results:

Model	Solved instances	Average solving time		
1	32/40	$4.502 \mathrm{\ s}$		
2	32/40	$8.370 \; s$		

The model with the best performances is number ①.

1.5 Rotations

It is possible to make some small changes to the models to allow the blocks to be rotated. The idea is to add an array of boolean variables that tells if a block is rotated or not. We can define the horizontal and vertical dimension of each block in the following way:

$$\bigwedge_{i} rotated_{i} \longrightarrow (dim1_{i} = ver_dim_{i} \wedge dim2_{i} = hor_dim_{i}) \wedge
\neg rotated_{i} \longrightarrow (dim1_{i} = hor_dim_{i} \wedge dim2_{i} = ver_dim_{i})$$
(1)

where $dim1_i$ and $dim2_i$ indicate the horizontal and vertical dimensions of the rotation model, while hor_dim_i and ver_dim_i are constants read from the input instance files (i.e. they represent the original non-rotated dimensions of the i^{th} block).

2 Results and Tables

Here are the tables with the final results 1 (timeout is set to 5 minutes, results are computed as the average of 3 runs):

Standard model							
Ins.	CP	SMT	SAT	Ins.	CP	SMT	SAT
1	0.295s	0.016s	0.294s	21	1.162s	timeout	timeout
2	0.297s	0.018s	0.572s	22	1.377s	timeout	timeout
3	0.300s	0.032s	2.158s	23	2.071s	8.942s	timeout
4	0.311s	0.039s	3.363s	24	0.655s	7.399s	timeout
5	0.307s	0.046s	6.707s	25	timeout	timeout	timeout
6	0.316s	0.071s	11.254s	26	2.020s	57.975s	timeout
7	0.308s	0.070s	11.510s	27	0.901s	20.394s	timeout
8	0.320s	0.100s	15.745s	28	0.956s	53.038s	timeout
9	0.317s	0.086s	23.150s	29	2.261s	65.314s	timeout
10	0.352s	0.332s	45.351s	30	timeout	timeout	timeout
11	22.743s	timeout	timeout	31	0.861s	8.249s	timeout
12	0.452s	0.688s	170.593s	32	timeout	timeout	timeout
13	0.409s	0.541s	timeout	33	0.668s	21.927s	timeout
14	0.435s	1.772s	timeout	34	timeout	timeout	timeout
15	0.456s	0.983s	timeout	35	40.135s	timeout	timeout
16	9.154s	timeout	timeout	36	43.464s	timeout	timeout
17	1.377s	5.479s	timeout	37	timeout	timeout	timeout
18	0.565s	6.516s	timeout	38	timeout	timeout	timeout
19	1.045s	timeout	timeout	39	timeout	timeout	timeout
20	1.400s	133.834s	timeout	40	timeout	timeout	timeout

 $^{^{-1}\}mathrm{Run}$ with CPU: AMD Ryzen 5 3600; GPU: NVIDIA GeForce GTX 1660 Super; RAM: 16GB; OS: Windows 10

Rotation model							
Ins.	CP	SMT	SAT	Ins.	CP	SMT	SAT
1	0.300s	0.019s	1.902s	21	timeout	timeout	timeout
2	0.311s	0.027s	3.998s	22	timeout	timeout	timeout
3	0.315s	0.047s	11.905s	23	timeout	timeout	timeout
4	0.318s	0.149s	23.888s	24	2.910s	timeout	timeout
5	0.325s	0.476s	186.306s	25	timeout	timeout	timeout
6	0.352s	0.781s	270.830s	26	timeout	timeout	timeout
7	0.446s	1.045s	timeout	27	7.723s	timeout	timeout
8	0.350s	0.826s	137.327s	28	timeout	timeout	timeout
9	18.657s	2.784s	timeout	29	timeout	timeout	timeout
10	1.774s	133.357s	timeout	30	timeout	timeout	timeout
11	timeout	timeout	timeout	31	timeout	timeout	timeout
12	2.256s	timeout	timeout	32	timeout	timeout	timeout
13	1.739s	timeout	timeout	33	timeout	timeout	timeout
14	timeout	timeout	timeout	34	timeout	timeout	timeout
15	3.192s	timeout	timeout	35	timeout	timeout	timeout
16	timeout	timeout	timeout	36	timeout	timeout	timeout
17	timeout	timeout	timeout	37	timeout	timeout	timeout
18	timeout	timeout	timeout	38	timeout	timeout	timeout
19	timeout	timeout	timeout	39	timeout	timeout	timeout
20	timeout	timeout	timeout	40	timeout	timeout	timeout