Enrichment Course in Biology

Human Genetics

Dr Joanna Ho

Learning Outcomes

- Describe the Mendel's laws of inheritance
- List and describe the types and properties of inheritance in humans

Heritability of mutations

Heritable

• Not heritable

• Germline mutation

• Somatic mutation

Somatic mutations

- Occur in nongermline tissues
- Cannot be inherited

- Sporadic mutation
- Occur in a single body cell
- Cannot be inherited
- Only tissues derived from mutated cell are affected

Mutation in tumor only

- Occur in gametes
- Can be passed onto offspring
- Every cell in the entire organism will be affected.
- Can be due to sporadic mutation
 - Once developed, this mutation can be passed on to offspring

 such inherited
 mutation is described

Germline mutations

- Present in egg or sperm
- Can be inherited
- Cause cancer family syndrome

Mendel's laws of heredity

• Some traits of the sweat pea can only occur in one or the other form but no intermediate.

For example:

- colour of flowers —either white or purple
- Colour of peas either round or wrinkled

Conclusions from Mendel's experiments

- Alternative versions of genes account for variations in inherited characters (alleles)
- For each character trait (e.g. colour, height, etc in case of peas): the organism inherits
 2 genes, one from each parents.
- If 2 genes differs
 - The dominant allele is fully expressed in the organism's appearance
 - The other has no noticeable effect on the organism's appearance
- ➤ The 2 genes for each character segregate during gamete production

Types of inheritance

Autosome refers to chromosome 1-22 Chromosome 23 = X or Y = sex chromosome

- 1. Autosomal dominant
- 2. Autosomal recessive
- 3. X-linked dominant
 - Inheritance of x-linked dominant genes (on Xchromosome)
- 4. X-linked recessive
- 5. Co-dominance
 - The alleles are equally strong

Autosomal dominant

- Inheritance of autosomal dominant genes
- One allele is enough for the expression of a particular phenotype. e.g.
 - Detached Ear-lobe,
 - Huntington's disease
 - Von Willebrand disease

Punnett table

Let

A = affected

a = unaffected

	Father	
Mother	A	a
a	Aa	aa
a	Aa	aa

Chance for offspring to be affected is 2/4, ie 50%.

U.S. National Library of Medicine Dr Joanna Ho

Autosomal recessive

- Two alleles are required for the expression of a particular phenotype. e.g.
 - Albinism
 - Cystic fibrosis
 - Sickle cell disease

Properties of autosomal recessive inheritance

Recessive = need to have 2 recessive alleles to exhibit a particular phenotype

• Parents are unaffected (they are carriers of the recessive genes)

Autosomal recessive Carrier Carrier father mother Unaffected Affected Carrier Unaffected Carrier Carrier Affected son daughter daughter son U.S. National Library of Medicine

-	1 1	
Dunnatt	tah	1 -
Punnett	tai).	וכ

Let

A = unaffected

a = affected

	Father	
Mother	A	a
A	AA	Aa
a	Aa	aa

Chance for offspring to be affected is 1/4, ie 25%.

Dr Joanna Ho

Properties of autosomal recessive inheritance

If A = dominant allele (dark skin colour);a = recessive allele (no colouration)

Father

Mother

	A	a
A	AA	Aa
a	Aa	aa

25% homozygous dominant (AA) 50% carrier (Aa)

Normal dark skin 25% homozygous recessive (aa) → albino

Properties of autosomal recessive inheritance

- 1. Parents are unaffected (they are carriers of the recessive genes)
- 2.An affected individual will have approx.25% of siblings being affected
 - Ie. chance of having another affected child is 25%
- 3. Often resulted from consanguineous mating (between close relatives)
 - The number of recessive allele (esp. disease) in the whole gene pool is rare

Pedigree of autosomal recessive disease

Properties of Xlinked dominant inheritance

- X-linked means the allele is on chromosome X
- 1. Trait is never passed from father to son

X-linked dominant, affected mother

Dr Joanna Ho

Properties of Xlinked dominant inheritance

- 2. If an affected male mates with a normal female
 - All daughters are affected
 - All sons are normal

Properties of X-linked dominant inheritance

Mother

- 3. If an affected female mates with a normal male
 - > 50% children are affected (no sex difference)

If $X^A = dominant x$ -linked allele

X = normal

Father

	X^{A}	Y
X	XX ^A	XY
X	XX ^A	XY

All females are affected

All males are unaffected

Father

	X	Y
X	XX	XY
X ^A	XX ^A	X ^A Y

50% females are affected

50% males are affected

Mother

A pedigree of X-linked dominant inheritance

Properties of Xlinked recessive inheritance

- Common examples:
 - G6PD deficiency
 - Red-green colour blindness
- Rare examples:
 - Haemophilia
 - Duchenne muscular dystrophy

U.S. National Library of Medicine

Properties of Xlinked recessive inheritance

- 1. Males are more likely affected
- 2. Trait never pass from father to son.
- 3. Trait can pass from an affected grandfather to half of his grandsons through his carrier daughters, i.e. it skips a generation.

Properties of X-linked recessive inheritance

If $X^A = dominant x$ -linked allele

X = normal

Affected grandfather

Grandmather

	X ^A	Y
X	XX ^A	XY
X	XX ^A	XY

All females are carriers

All males are unaffected

Normal Father

Carrier Mother

	X	Y
X	XX	XY
X^{A}	XX ^A	X ^A Y

50% affected grandsons

50% carrier granddaughters

A pedigree of X-linked recessive inheritance

Co-dominance

- Equally strong alleles and the characteristics defined each allele are shown equally
- 3 alleles control ABO blood grouping
 - A: an enzyme that make antigen A (dominant)
 - B: an enzyme that make antogen B (dominant)
 - O: an non-functional enzyme → no antigen (recessive)

Co-dominance

Blood group (phenotype)	Antigen(s) on RBC	Genotype (combination of alleles)
A	A	AA, AO
В	В	BB, BO
AB	A and B	AB
0	None	00

Non-Mendelian inheritance - exemplified by mtDNA heritability

Characteristics of Mitochondrial Inheritance

- During fertilization only the head of the sperm, without mitochondria, penetrates the egg, hence the human zygote receives almost all of its mitochondria from the oocyte.
- Mitochondrial inheritance is, thus, purely maternal.
- Unlike the nuclear genome, mtDNA does not have a controlled segregation mechanism. mtDNA is replicated independently of the cell cycle, and the individual copies are randomly distributed to the daughter cells during mitosis.

Typical Pedigree with Mitochondrial Inheritance of a Disorder.

Mitochondrial Inheritance of Mutation

- A mitochondrial DNA mutation can result in
 - absence of enzymes involved in the respiratory chain, or enzymes that are impaired and do not work properly.
- This leads to a reduction in the supply of ATP
- Mutation may affect the normal body's functions.

Vocabulary

- Gamete
- Zygote
- Allele
- Loci
- Phenotype
- Genotype
- Homozygote
- Heterozygote
- Hybrid
- Dominant
- Recessive
- Mendelian inheritance

- Chromosome
- Consanguineous mating
- Pedigree chart
- Autosomal dominant
- Autosomal recessive
- X-linked dominant
- X-linked recessive
- Co-dominance
- Mitochondrial inheritance

Suggested reading

- Martini, F. H., Nath, J. L., & Bartholomew, E.F. (2012).
 Fundamentals of anatomy and physiology. (9th Ed.). San Francisco: Pearson/Benjamin Cummings (Chapter 29-, p1102-1108)
- http://anthro.palomar.edu/mendel/mendel_1.htm
- http://www.uic.edu/classes/bms/bms655/lesson9.html
- http://www.genome.gov/Glossary/index.cfm?id=1