Universidad Nacional Autónoma de México

Facultad de Ciencias

Bases de Datos (9123)

Semestre 2022-2

Práctica 04

Normalización y Dependencias Funcionales

Equipo 25

Integrantes:

Dorantes Inacua Gerardo David

García Guerra Mariana

Martínez Jacobo Mariana Abigail

Miguel Medrano Dereck Ariel

Ortega Solano Jonathan

Picazo Quiróz Ricardo

Villarreal Flores Jorge Bladimir

Docentes:

M. en I.A. Erick O. Matla Cruz

L. en CC. Anahí Quiroz Jiménez

L. en CC. Efraín Hipólito Chamú

L. en CC. Karen Zavala Correa

Fecha de entrega: 03 de marzo de 2022

Tabla persona

id_persona	domicilioid_d omicilio	nombre		apellido_ma terno	fecha_de_nacimien to	telefono	correo
1	1	Maria	Flores	Tellez	27-02-1989	5582532301	mftz@gmail.com
2	1	Juan	García	López	06-06-1990	5582532301	lynx@hotmail.com
3	2	Isela	Fuentes	Morales	23-03-2000	5560620002	ifntz@gmail.com
4	3	Miriam	Pineda	Torres	02-08-1999	5512719803	mipt@gmail.com

Primera forma normal: Todos los datos deben ser atómicos

Observemos que no todos los atributos de una persona son multivaluados, aunque una persona solo tiene un domicilio, un nombre, apellido materno y paterno, una fecha de nacimiento y un teléfono y correo asociado. Es posible que igual que en el caso del domicilio, una persona tenga más de un número de teléfono. Así que se cambiará el atributo teléfono por una entidad y se guardarán sus datos en una nueva tabla.

id_telefono	n_telefono	id_persona
1	5582532301	1
2	5582532302	1
3	5560620002	2
4	5512719803	3

id_persona	domicilioid_ domicilio	nombre	apellido_ materno	apellido_ paterno	fecha_de_nacimiento	correo
1	1	Maria	Flores	Tellez	27-02-1989	mftz@gmail.com
2	1	Juan	García	López	06-06-1990	lynx@hotmail.com
3	2	Isela	Fuentes	Morales	23-03-2000	ifntz@gmail.com
4	3	Miriam	Pineda	Torres	02-08-1999	mipt@gmail.com

Segunda forma normal: Todo atributo dependiente lo define el atributo determinante.

Primero tenemos que la tabla cumple con la FN1, ahora vemos que la llave primaria, id_persona, identifica a cada atributo de la tabla. Todos los atributos de la persona dependen de la llave id_persona. Sin embargo, por el diseño de la BD una persona solo puede tener un correo, por lo que correo también es un determinante de la tabla persona, así que la indicamos como una llave primaria.

Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

Notemos que dentro de nuestra tabla no hay dependencias entre los atributos dependientes, todos dependen únicamente de la persona a la que se asocian.

Forma normal Boyce-Codd: Todo determinante debe ser llave

La tabla persona tiene dos determinantes, id_persona y correo, y estos dos son llaves primarias.

Tabla cliente

<u>id_cliente</u>	persona_idpersona	
1	3	
2	4	

Primera forma normal: todos los atributos son atómicos

Solo tenemos dos atributos en *cliente* y es claro que no pueden ser descompuestos pues ambos son claves.

Segunda forma normal: todo atributo dependiente lo define el atributo determinante.

En esta tabla podemos determinar cuál es el id_persona del cliente al tener el id_cliente, pero la llave id_cliente no se puede obtener con sólo saber el id_persona.

Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

El único atributo dependiente es id_persona así que no hay dependencias transitivas.

Forma normal Boyce-Codd: Todo determinante debe ser llave

El determinante id cliente está indicado como una llave.

Tabla cuenta_cliente

<u>id_cuenta</u>	clienteid_cliente	usuario	password
1	1	isa123	namju123
2	2	miritellez	Quieropizza
3	3	narusasu	Bp444

-Primera forma normal: Todos los datos deben ser atómicos

Notemos que en nuestra tabla todos los datos pueden tener únicamente un solo valor en sus columnas, una cuenta solo puede tener un usuario y una contraseña, así como estar asociada a solo un cliente.

-Segunda forma normal: Todo atributo dependiente lo define el atributo determinante.

Se cumple la FN1, y el atributo determinante que teníamos considerado es id_cuenta, pero el usuario de igual forma es un determinante pues tiene que ser único, por lo tanto, es claro que tanto clienteid_cliente como password dependen tanto de de id_cuenta como de usuario. Se cumple entonces la 2FN.

<u>id_cuenta</u>	clienteid_cliente	<u>usuario</u>	password

1	1	isa123	namju123
2	2	miritellez	Quieropizza
3	3	narusasu	Bp444

-Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

No existen relaciones transitivas, ni password o id_cliente pueden determinarse a través de otro atributo que no sea el id_cuenta o el usuario.

-Forma normal Boyce-Codd: Todo determinante debe ser llave

El atributo determinante id_cuenta y usuario son llaves, así que se cumple la FNBC.

Tabla empleado

Empleado					
id emplea do	personaid_pers ona	crol_emplead oid_crol	rfc		
1	5	23	SARM9006192BA		
2	6	24	HIJM951018KY5		
3	7	25	JIIG921222RV8		

Primera forma normal: Todos los datos deben ser atómicos.

En el caso de empleado observamos que todos sus datos son atómicos, cada uno sólo contiene un tipo de variable.

Segunda forma normal: todo atributo dependiente lo define el atributo determinante.

id_empleado determina id_persona, así como los demás elementos de la tabla, notemos que los demás elementos no son determinantes.

Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

 $id_empleado \rightarrow id_persona$

 $id_empleado \rightarrow id_crol$

id empleado \rightarrow rfc

Forma normal Boyce-Codd: Todo determinante debe ser llave.

El atributo determinante id empleado es llave, así que se cumple la FNBC.

Tabla catálogo rol de empleado

crol_empleado				
id_rol	nombre_rol			
23	Encargado de almacén Jr.			
24	Encargado de almacén Jr.			
	3			

Primera forma normal: Todos los datos deben ser atómicos.

Notemos que en nuestra tabla todos los datos pueden tener únicamente un solo valor en sus columnas. Pues el id_crol determina directamente al nombre, y es la única relación existente en el catálogo.

Segunda forma normal: todo atributo dependiente lo define el atributo determinante.

El atributo determinante es id_crol el cual define el atributo restante por lo que la condición es válida.

Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

No podemos tener dependencias transitivas, pues esta tabla únicamente tiene dos columnas.

Forma normal Boyce-Codd: Todo determinante debe ser llave.

El atributo determinante id crol es llave, así que se cumple la FNBC.

Tabla empleado orden compra.

empleado_orden_compra			
empleadoid_empleado orden_compraid_de_compr			
45	15		
46	25		

Primera forma normal: Todos los datos deben ser atómicos

La tabla cumple con que sus datos son atómicos, no hay atributos con más de un tipo de variable en ella, por lo tanto, se cumple la 1FN.

Segunda forma normal: todo atributo dependiente lo define el atributo determinante.

Nuestros atributos determinantes serán el empleadoid_empleado, orden compraid de compra.

Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

No podemos tener dependencias transitivas, pues esta tabla únicamente tiene dos columnas.

Forma normal Boyce-Codd: Todo determinante debe ser llave.

Ambos determinantes en nuestra tabla son llaves, por lo tanto, se cumple la FNBC.

Tabla de orden de compra

id_de_compra	clienteid_cliente	c_estatusid_estatus	fecha_de_orden	costo_total
1	11	21	2012-01-08	204.7
2	11	22	2011-09-30	608.35
3	13	23	2010-01-15	345.12
4	14	22	2010-06-15	323.98
5	15	21	2011-04-29	464.48

-Primera forma normal: Todos los datos deben ser atómicos

En este sentido podemos decir que nuestra tabla cumple con la primera forma normal pues las columnas de nuestra tabla no son multivaluadas, es decir, estas pueden tomar un sólo valor.

-Segunda forma normal: Todo atributo dependiente lo define el atributo determinante. Podemos observar que en el caso de nuestra tabla de Orden de Compra, el atributo determinante es id_de_compra, es decir, todos los demás atributos son dependiente de este.

-Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

Notemos que dentro de nuestra tabla no hay dependencias entre los atributos dependientes, pues ninguno de ellos es determinante del otro.

-Forma normal Boyce-Codd: Todo determinante debe ser llave

En este caso nuestro único terminante es id_de_compra, y ya es llave.

Tabla orden de devolución

id_devolucion	orden_compraid_de_compra	c_estatusid_cestatus	fecha_devolucion
101	6	31	2022-12-30
102	7	32	2022-08-13
103	8	33	2020-09-11
104	9	33	2019-05-13
105	10	32	2021-10-30

-Primera forma normal: Todos los datos deben ser atómicos

En este sentido podemos decir que nuestra tabla cumple con la primera forma normal pues si analizamos cada uno de los atributos nos damos cuenta que no pueden tener más de un valor para su columna.

-Segunda forma normal: Todo atributo dependiente lo define el atributo determinante. Podemos observar que en el caso de nuestra tabla de Orden de Compra, el atributo determinante es id_devolución, es decir, todos los demás atributos son dependientes de este.

-Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

Notemos que dentro de nuestra tabla no hay dependencias entre los atributos dependientes, pues ninguno de ellos es determinante del otro.

-Forma normal Boyce-Codd: Todo determinante debe ser llave

En este caso nuestro único terminante es id_devolucion, y ya es llave.

Tabla orden de envío

i <u>d envio</u>	c_estatusid_cestatus	orden_compraid_de_compra	fecha_de_envio	fecha_de_entrega
201	41	51	2022-01-31	2022-02-03
202	42	52	2021-02-11	2021-02-15
203	43	53	2020-08-12	2020-08-18
204	41	54	2022-09-29	2022-10-01
205	43	55	2021-05-30	2021-06-03

-Primera forma normal: Todos los datos deben ser atómicos

Notemos que en nuestra tabla todos los datos pueden tener únicamente un solo valor en sus columnas.

- **-Segunda forma normal: Todo atributo dependiente lo define el atributo determinante.** Nuestro atributo determinante, que en este caso es <u>id envio</u>, define a todos los atributos dependientes.
- -Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

Notemos que dentro de nuestra tabla no hay dependencias transitivas entre los atributos dependientes, pues ninguno de ellos es determinante del otro.

-Forma normal Boyce-Codd: Todo determinante debe ser llave

En nuestra tabla, el determinante es id_envio, y es llave, por lo que se cumple este requisito.

Tabla orden de pago

	orden_compraid	c_estatusid_	modo_de_pagoid_		
id_orden_de_pago	_de_compra	cestatus	modo_de_pago	no_de_tarjeta	fecha_hora_pago
15	65	1	1	7685423689426597	2022-01-31
16	66	4	2	5731984675455467	2021-02-11
17	67	6	5	1142557715439455	2020-08-12
18	68	3	4	1458964244545546	2022-09-29
19	69	4	3	9205668756880056	2021-05-30

-Primera forma normal: Todos los datos deben ser atómicos

Notemos que en nuestra tabla todos los datos pueden tener únicamente un solo valor en sus columnas.

-Segunda forma normal: Todo atributo dependiente lo define el atributo determinante. Nuestro atributo determinante, que es id_orden_de_pago, define a todos los demás atributos, por lo que se cumple esta condición.

-Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

En nuestra tabla tenemos que ningún atributo dependiente genera una dependencia transitiva, por lo que se cumple la tercera forma normal.

-Forma normal Boyce-Codd: Todo determinante debe ser llave

En esta tabla, nuestro atributo determinante que es id_orden_de_pago es llave, por lo que se cumple este requisito.

Tabla catálogo de Estatus

nombre_estatus	id_cestatus
Cancelado	21
En proceso	22
Realizado	23
Enviado	41
Entregado	42

-Primera forma normal: Todos los datos deben ser atómicos

Notemos que en nuestra tabla todos los datos pueden tener únicamente un solo valor en sus columnas. Pues el id_cestatus determina directamente al nombre, y es la única relación que tenemos.

- -Segunda forma normal: Todo atributo dependiente lo define el atributo determinante. El atributo determinante es id_cestatus el cual define el atributo restante por lo que la condición es válida.
- -Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

No podemos tener dependencias transitivas, pues esta tabla únicamente tiene dos columnas.

-Forma normal Boyce-Codd: Todo determinante debe ser llave

El atributo determinante que es id_cestatus es llave por lo que tenemos que se cumple la condición.

Tabla modo de Pago

id_modo_de_pago	tipo_de_tarjeta
61	debito
62	crédito
63	debito
64	visa debito

-Primera forma normal: Todos los datos deben ser atómicos

Notemos que en nuestra tabla todos los datos pueden tener únicamente un solo valor en sus columnas.

- -Segunda forma normal: Todo atributo dependiente lo define el atributo determinante. El atributo determinante es id_modo_de_pago el cual define el atributo restante por lo que la condición es válida.
- -Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

No podemos tener dependencias transitivas, pues esta tabla únicamente tiene dos columnas.

-Forma normal Boyce-Codd: Todo determinante debe ser llave

El atributo determinante que es id_modo_de_pago es llave por lo que tenemos que se cumple la condición.

Tabla cantidad de productos en la compra

orden_compraid _de_compra	productosku_producto	cantidad
1	1111	4
2	2222	2
3	3333	8
4	4444	7
5	5555	3

-Primera forma normal: Todos los datos deben ser atómicos

La tabla cumple con que sus datos son atómicos, no hay atributos con más de un tipo de variable en ella, por lo tanto se cumple la 1FN.

-Segunda forma normal: Todo atributo dependiente lo define el atributo determinante.

Nuestros atributos determinantes serán el orden_compraid_de_compra,productosku_producto, donde notemos que ambos atributos, son determinantes de la cantidad, por lo tanto, se cumple la 2FN.

-Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

Dentro de esta tabla no hay dependencias transitivas, ya que, por ejemplo: orden compraid de compra -> cantidad

pero

cantidad -/> productosku producto

donde, notemos que en ningún caso sucede así, por lo tanto tenemos que ya está en su 3FN.

-Forma normal Boyce-Codd: Todo determinante debe ser llave.

Ambos determinantes en nuestra tabla, son llaves, por lo tanto, se cumple la FNBC.

.

Tabla producto

sku_producto	c_formatoid _cformato	c_departamento _generoid_cdep artamento	cantidad	nombre	origen	precio
1234	1	1	40	temor	méxico	599
5678	2	1	50	never	canadá	375
1356	3	2	10	laik	usa	300
1567	2	4	50	stars	europa	499

-Primera forma normal: Todos los datos deben ser atómicos

La tabla cumple con que sus datos son atómicos, no hay atributos con más de un tipo de variable en ella, por lo tanto se cumple la 1FN.

-Segunda forma normal: Todo atributo dependiente lo define el atributo determinante. El atributo determinante de nuestra tabla es el <u>sku producto,</u> el cual se puede observar claramente que todos los atributos, son dependientes de este, por lo tanto se cumple la 2FN.

-Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

Entre atributos no existe transitividad, no existen dependencias entre los mismos atributos, solo dependen de la PK,por lo tanto cumple la 3FN.

Las tablas siguientes son catálogos asociados a producto y no necesitan de normalización alguna.

Tabla de c_formato :

tipo_de_formato	id_cformato
disco	1
vinil	2
cassette	3
digital	4

Tabla de **c_interprete**:

id_cinterprete		nombre_interprete
	1	La Rosalia
	2	El Faraón love shady
	3	Vicente Fernandez
	4	Bad Bunny
	5	Pink floyd

Tabla de **c_departamento_genero**:

id_cdepartamento_genero	tipo_de_tarjeta
5	К-рор
6	Banda
7	Reggaeton
8	Salsa
9	Rock

-Forma normal Boyce-Codd: Todo determinante debe ser llave.

El único atributo determinante, es el <u>sku producto,</u> el cual es la PK, por lo tanto cumple la FNBC.

Tabla domicilio

domicilio						
<u>id_domicilio</u>	c_estadoid_cestado	$c_coloniaid_ccolonia$	numero_exterior	numero_interior	codigo_postal	calle
1	1	1	10	5	21520	El Balcón
2	2	2	65	7	51200	Cañitas
3	3	3	705	5	51230	Barracuda
4	4	4	39	2	32650	San Benito
5	2	2	84	7	51200	España
6	2	5	53	1	04000	16 de septiembre
7	2	6	156	9	04010	Vicente Guerrero
8	2	7	169	5	04120	Sor Juana Ines
9	2	5	4	12	04000	20 de noviembre
10	2	8	87	8	04040	Carlos V

c_colonia				
id_colonia	nombre_colonia			
1	El Molino			
2	Cine Mexicano			
3	Del Mar			
4	Isabel la Catolica			
5	Churubusco			
6	Ajusco			
7	Candelaria			
8	del Carmen			

c_estado				
id_estado	nombre_estado			
1	Aguascalientes			
2	Ciudad de México			
3	Puebla			
4	Queretaro			

-Primera forma normal: Todos los datos deben ser atómicos

Cada columna tiene valores atómicos, teniendo un solo valor por registro, por lo que está normalizada a la primera forma normal.

-Segunda forma normal: Todo atributo dependiente lo define el atributo determinante.

no existe en la tabla domicilio una clave candidata dentro de la tabla, por lo que la tabla está en su segunda forma normal

-Tercera forma normal: No existen dependencias transitivas entre atributos dependientes.

existen dependencias transitivas entre atributos dependientes, específicamente de código postal, que depende de colonia, que a su vez depende de domicilio. Así, para normalizarse a su tercer forma normal necesitamos agregar en el directorio colonia una nueva columna, donde esté también el código postal.

Así, la tabla domicilio queda dividida de la siguiente manera:

- 4		-	٠,	-81	н	÷
- 0	u	ш	к		ш	u

		domicilio			
id_domicilio	c_estadoid_cestado	c_coloniaid_ccolonia	numero_exterior	numero_interior	calle
1	1	1	10	5	El Balcón
2	2	2	65	7	Cañitas
3	3	3	705	5	Barracuda
4	4	4	39	2	San Benito
5	2	2	84	7	España
6	2	5	53	1	16 de septiembre
7	2	6	156	9	Vicente Guerrero
8	2	7	169	5	Sor Juana Ines
9	2	5	4	12	20 de noviembre
10	2	8	87	8	Carlos V

c colonia

id_colonia	nombre_colonia	codigo_postal
1	El Molino	21520
2	Cine Mexicano	51200
3	Del Mar	51230
4	Isabel la Catolica	32650
5	Churubusco	04000
6	Ajusco	04010
7	Candelaria	04120
8	del Carmen	04040

c_estado				
id_estado	nombre_estado			
1	Aguascalientes			
2	Ciudad de México			
3	Puebla			
4	Queretaro			

También, existe transitividad entre id colonia, que depende del Código Postal, y a su vez el Código postal depende del Estado. Esta transitividad se puede corregir creando una nueva tabla con los datos del Código postal, y además permite que agreguemos la información del municipio.

De tal manera que la organización de la tablas sería la siguiente:

domicilio

id_domicilio	c_coloniaid_ccolonia	numero_exterior	numero_interior	calle
1	1	10	5	El Balcón
2	2	65	7	Cañitas
3	3	705	5	Barracuda
4	4	39	2	San Benito
5	2	84	7	España
6	5	53	1	16 de septiembre
7	6	156	9	Vicente Guerrero
8	7	169	5	Sor Juana Ines
9	5	4	12	20 de noviembre
10	8	87	8	Carlos V

COL	lon	10
COL	ш	ıa

	c_colonia			c_codigo_postal	
id_colonia	c_codigo_postalcodigo_p	oostal nombre_colonia	codigo postal		
1	21520	El Molino	21520	c_manicipiota_cmanicipio	1
2	51200	Cine Mexicano	51200		2
3	51230	Del Mar	51230		3
4	32650	Isabel la Catolica	32650		4
5	04000	Churubusco			
6	04010	Ajusco	04000		5
7	04120	Candelaria	04010		5
8	04040	del Carmen	04120		5
			04040		5

c municipio

_	
id_municipio	c_estadoid_cest nombre_municipio
1	1 Tecate
2	2 Valle de Bravo
3	2 Colorines
4	3 Ciudad Juarez
5	4 Coyoacan

c_estado

id_estado	nombre_estado
1	Baja California
2	Estado de México
3	Chihuahua
4	Ciudad de México

Así, teniendo a las colonias como directorio, que a su vez está conectado con el código postal, que a su vez está conectado por el municipio, que conecta con el estado, los atributos pierden la propiedad de transitividad y están normalizadas a la tercera forma normal.

-Forma normal Boyce-Codd: Todo determinante debe ser llave.

id_ domicilio es la llave primaria de nuestra tabla, por lo que cumple con la forma normal Boyce-Codd.

Dependencias funcionales

Tabla persona

 $id_persona \rightarrow correo$

correo → id_persona

id_persona→ domicilioid_domicilio

 $id_persona$, correo \rightarrow nombre

id_persona, correo → apellido_paterno

id_persona, correo → apellido_materno

id_persona, correo → fecha_de_nacimiento

Tabla empleado

```
id\_empleado \rightarrow id\_persona
id\_empleado \rightarrow id\_crol
id\_empleado \rightarrow rfc
```

Tabla catálogo rolempleado

```
id\_crol \rightarrow nombre\_rol
```

Tabla empleado orden compra.

```
empleado id_empleado \rightarrow orden_compraid_de_compra.

orden_compraid_de_compra \rightarrow empleado id_empleado.

{empleadoid_empleado,orden_compraid_de_compra} \rightarrow empleado_orden_compra
```

Tabla teléfono

```
    id_telefono → n_telefono
    id_telefono → personaid_persona
    n_telefono -/→ id_telefono
```

Tabla cliente

```
cliente(<u>id_cliente</u>, id_persona)
id_cliente → id_persona
id_persona -/→ id_cliente
```

Tabla cuenta_cliente

```
cuenta_cliente(<u>id_cuenta</u>, usuario<u>,</u> id_cliente, password)
id_cuenta → usuario
usuario → id_cuenta
```

```
id_cuenta→ id_cliente
id_cuenta → password
Tabla orden_de_compra
id de compra → clienteid cliente
id de compra → c estatusid cliente
id_de_compra → fecha_de_orden
id\_de\_compra \rightarrow costo\_total
Tabla orden de devolución
id devolucion → orden compraid de compra
id devolucion \rightarrow c estatusid estatus
id_devolucion → fecha_devolucion
Tabla orden de envío
id_envio → orden_compraid_de_compra
id envio \rightarrow c estatusid estatus
id envio → fecha de envio
id_envio → fecha_de_entrega
Tabla orden de pago
id_orden_de_pago → orden_compraid_de_compra
id_orden_de_pago → c_estaudid_cestatus
id_orden_de_pago → modo_de_pagoid_modo_depago
id_orden_de_pago → no_de_tarjeta
id orden de pago → fecha de pago
Tabla producto orden compra
{orden_compraid_de_compra,productosku_producto} → cantidad
Tabla producto
sku producto → cantidad
sku producto → nombre
sku producto → origen
sku_producto → precio
c_formato
id_cformato → tipo_formato
c_interprete
```

c_departamento_genero

id_cdepartamento → departamento_genero

id_cinterprete → nombre_interprete

Tabla domicilio

```
\label{eq:coloniad_ccoloniad} \begin{split} & \text{id\_domicilio} \to \text{c\_coloniaid\_ccolonia} \\ & \text{id\_domicilio} \to \text{numero\_exterior} \\ & \text{id\_domicilio} \to \text{numero\_interior} \end{split}
```

c_colonia

```
\begin{array}{l} id\_colonia \rightarrow c\_codigopostal\_codigo\_postal\\ id\_colonia \rightarrow nombre\_colonia \end{array}
```

c_codigo_postal

 $codigo_postal \rightarrow c_municipioid_municipio$

c_municipio

```
\begin{array}{l} id\_municipio \rightarrow c\_estadoid\_estado \\ id\_municipio \rightarrow nombre\_municipio \end{array}
```

c_estado

 $id_estado \rightarrow nombre_estado$