

VERSION 1

SEP 18, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.q26g7yw79gwz/v1

Protocol Citation: Jason D Limberis, Alina Nalyvayko, Joel Ernst, john.metcalfe 2023. hissPCR: A simple, single-tube overlapping amplicon-targeted Illumina sequencing assay..

protocols.io

https://dx.doi.org/10.17504/p rotocols.io.q26g7yw79gwz/v1 Version created by Jason D Limberis

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

hissPCR: A simple, single-tube overlapping amplicontargeted Illumina sequencing assay. V.1

Jason D Alina

Limberis¹, Nalyvayko¹, Joel Ernst¹, john.metcalfe¹

¹University of California, San Francisco

Jason D Limberis

University of California, San Francisco

ABSTRACT

Targeted amplicon sequencing to identify pathogens, resistance-conferring mutations, and strain types is an important tool in diagnosing and treating infections. However, due to the short read limitations of Illumina sequencing, many applications require the splitting of limited clinical samples between two reactions. Here, we outline hairpin Illumina single-tube sequencing PCR (*hiss*PCR) which allows for the generation of overlapping amplicons containing Illumina indexes and adapters in a single tube, effectively extending the Illumina read length while maintaining reagent and sample input requirements.

ATTACHMENTS

hissPCR.png

Protocol status: Working We use this protocol and it's

working

Created: Mar 24, 2023

Last Modified: Sep 18,

2023

PROTOCOL integer ID:

79422

MATERIALS

Required

- Q5 Hot Start High-Fidelity DNA Polymerase 500 unitsNew England Biolabs Catalog #M0493L
- Agencourt AMPure XP Beckman
 Coulter Catalog #A63880
- PowerUp SYBR Green Master Mix Contributed by users Catalog #A25741

A thermocycler and a qPCR machine A magnetic rack

Primers

A	В	С
Primer Set	Direct ion	Sequence
Rv0678	F1	ACACTCTTTCCCTACACGACGCTCTTCCGATCTtcgatccgc tgtggcttggc
Rv0678	F2	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTgccgctcgg gatcacacac
Rv0678	R1	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTttgactcggtt ggcgggtcg
Rv0678	R2	ACACTCTTTCCCTACACGACGCTCTTCCGATCTcgacgagc gcctcgttgttg
Illumina adapter primer	F	AATGATACGGCGACCACCGAGATCTACAC[i5]ACACTCTT TCCCTACACGACGCTCTTCCGATCT
Illumina adapter primer	R	GATCGGAAGAGCACACGTCTGAACTCCAGTCAC[i7]ATCTCGTATGCCGTCTTCTGCTTG
Illumina_quan t_Inner	F	ACACTCTTTCCCTACACGACGCTCTTCCGATCT
Illumina_quan t_Inner	R	GACTGGAGTTCAGACGTGTGCTCTTCCGATCT
Illumina_quan t_Outer	F	CAAGCAGAAGACGGCATACGAGAT
Illumina_quan t_Outer	R	AATGATACGGCGACCACCGAGATC

^{*}e.g., [i5] = A501 = TGAACCTT; [i7] = A701 = ATCACGAC Lowercase bases are gene specific regions, change these if designing your own primer set

Primer design

Primers must be designed as shown in the figure below, if any amplicon is larger than the 2 x sequencing length, the inner portion of the amplicon will not be covered. We have developed a pipeline to assist in creating primers, which is available here: hisPCR primer design, and is used as follows.

hissPCR Primer design strategy

```
hisPCR_primer_designer.sh \
    --name "rpob_demo" \
    --seq_cycles 300 \
    --start 100 \
    --end 800 \
    --template
```

"ttgaccgatgaccccggttcaggcttcaccacagtgtggaacgcggtcgtctccgaacttaacggcg accctaaggttgacgacggacccagcagtgatgctaatctcagcgctccgctgacccctcagcaaagggcttggctcaatctcgtccagccattgaccatcgtcgaggggtttgctctgttatccgtgccgagcag ctttgtccaaaacgaaatcgagcgccatctgcgggccccgattaccgacgctctcagccgccgactcg ccgccttccgaaaatcctgctaccacatcgccagacaccacaaccgacaacgacgagattgatgacag cgctgcggcacggggcgataaccagcacagttggccaagttacttcaccgagcgcccgcacaataccg tccaaccggttcgcgcacgccgccttggcgatcgcagaagcacccgccgcgcttacaaccccctggttgttcccgggaatgcgggtcaaatatgtctccaccgaggaattcaccaacgacttcattaactcg $\verb|ctccgcgatgaccgcaaggtcgcattcaaacgcagctaccgcgacgtagacgtgctgttggtcgacga|\\$ catcca att cattga agg caa ag agg g tatt caa g agg ag tt cttc cac acctt caa cacctt g caca $\verb|ctgagaacccg| cttgagtgggggctgatcactgacgtacaaccacccgagctggagacccgcatcgc| \\$ catcttgcgcaagaagcacagatggaacggctcgcggtccccgacgatgtcctcgaactcatcgccag cag tatcgaacg caatatccgtgaactcgagggcgcgctgatccgggtcaccgcgttcgcctcattgaacaaaacaccaatcgacaaagcgctggccgagattgtgcttcgcgatctgatcgccgacgccaacac catgcaaatcagcgcgacgatcatggctgccaccgccgaatacttcgacactaccgtcgaagagc ttcgcgggcccggcaagacccgagcactggcccagtcacgacagattgcgatgtacctgtgtcgtgag $\verb|ctcaccgatctttcgttgcccaaaatcggccaagcgttcggccgtgatcacacaaccgtcatgtacgc|\\$ $\verb|ccaacgcaagatcctgtccgagatggccgagcgcgtgaggtctttgatcacgtcaaagaactcacca|\\$ ctcgcatccgtcagcgctccaagcgctag"

Stage 1 PCR

2

/	Ą	В
	COMPONENT	Volume (µl)
	5X Q5 Reaction Buffer	10
	5X Q5 High GC Buffer	10
	10 mM dNTPs	1
	Q5 High-Fidelity DNA Polymerase	0.5

A	В
10μM Forward primer 1	1
10μM Reverse primer 2	1
20 mg/ml BSA	5
Template DNA (~1ng/ul)	5
Nuclease-Free Water	18.5

The total volume is 50ul at this stage

A	В	С	D
Step	Temp (C)	Time (s)	Cycles
Denaturation	98	120	1
Denaturation	98	10	
Annealing	64	15	10
Extension	72	45	
Extension	4	Forever	1

Cycle parameters

Stage 2 PCR

3 Add the below into the reaction while at [4 °C and proceed to the second PCR cycling

A	В
COMPONENT	Volume (µl)
10μM Forward primer 2	0.15
10µM Reverse primer 1	0.15
10μM Forward Illumina adapter primer	0.35
10μM Reverse Illumina adapter primer	0.35

The total volume is 51ul at this stage

A	В	С	D
Step	Temp (C)	Time (s)	Cycles
Denaturation	98	10	1
Denaturation	98	10	
Annealing	65	15	20
Extension	72	30	
Extension	72	120	1

Cycle parameters

Bead cleanup

4 Add Add L 40 µL of resuspended AMPure XP beads to each reaction in a PCR tube

10m 30s

Mix by pipetting 10x

Incubate 00:05:00 at 8 Room temperature

Place on magnet

Wash 2x with 🔼 200 µL freshly-prepared [M] 70 % (V/V) ethanol

Air dry for 00:00:30 , don't allow the beads to become cracked

Remove the tubes from the magnetic rack

Add \perp 50 μ L 10 mM Tris-HCl pH 8.0 with 50 mM NaCl

NOTE: The BSA in the reaction causes the beads to clump.

Flick the tubes to partially resuspend the beads

Mix by pipetting 10x

Incubate 00:05:00 at 8 Room temperature

Place on the magnet, aspirate \bot 50 μ L of the eluant into a new tube

Run \perp 10 μ L on a 0.8% agarose gel

Optional: Determine the proportion of amplicons with both II...

5 Library quantification can be done using a commercial kit such as the KAPA Library Quantification Kits or using the below custom protocol.

Dilute the cleaned up amplicons 1:100.

Make the master mix below using Illumina_quant_Inner primer set and a second master mix for Illumina_quant_Outer primer set.

A	В
COMPONENT	Volume (µl)
PowerUp SYBR Green Master Mix (2X)	5
10μM Forward primer	0.5
10μM Reverse primer	0.5
Diluted amplicon	2
Nuclease-Free Water	2

qPCR master mix

6

A	В	С	D	Е
Step	Temp (C)	Time (s)	Cycles	Ramp Rate (C/s)
UDG activation	50	120	1	2.73
Denaturation	95	120		2.73
Denaturation	95	1	1	2.73
Amplification	60	30		2.11
Capture	60	0	_	
	95	1	1	2.73
Melt Curve	60	20	1	2.11
- wieit Gurve	95	_	1	0.15
-	Capture	_	1	_

Cycle parameters for QuantStudio 3

The ratio of the Illumina _quant_Inner primer set to the Illumina _quant_Outer primer set will give the proportion of the DNA in the tube that contain both Illumina adapters and is sequencable (use this for pooling). While the melt curve will provide information on the proportion of each amplicon in the sample.

8

A) hissPCR generated amplicons using two forward and two reverse overlapping primers in a single tube. Amplicons contain either no Illumina adapter, one Illumina adapter, or two Illumina adapters per amplicon. B) The relative proportion of amplicons in the sample containing both Illumina adapters. C) Melt curves showing the expected amplicons for each primer set and the ratio of amplicons containing both Illumina adapters. D) An output from the *hiss*PCR analysis pipeline showing the expected read coverage over the target area using 250bp Illumina sequencing. (see step 10 in protocol)

Depth and Pooling Calculations

The amount of amplicon to be pooled and loaded can be calculated using the Illumina Sequencing Coverage Calculator by selecting DNA input then custom content and depends on numerous factors, including the amplicon size and number, and the kit and device

used. An example output is shown below.

A	В
Application or product:	Custom Content
Genome or region size (Mbases)	0.001
Read length	600
On target (%)	95
Coverage (x)	50000
Duplicates (%)	0
Instrument	MiSeq
Run type	v3 Reagents
Clusters	25,000,000 per flow cell
Output per unit (flow cell or lane)	15,000,000,000 per flow cell
Exceeds maximum read length?	Does not exceed maximum (2x300)
Number of units per sample (flow cell or lane)	0.004 flow cells
Samples per unit (flow cell or lane)	285/flow cell Most Illumina library prep kits enable up to 96 indexes; Nextera XT up to 384 indexes.
Comments	Upgraded software; MCS v2.3 or later; MiSeq Reagent Kit v3 (150/600)
Product	MiSeq Reagent Kit v3
Link	http://www.illumina.com/products/miseq-reagent-kit-v3.html

Illumina coverage estimator output.

Data Analysis

The sequence data can be performed using most amplicon processing pipelines; however, the primer sequences must be trimmed from the reads to eliminate their effect on mutation identification. We have developed a pipeline to process data which is available at hissPCR analysis with further details, below is its basic usage command.

```
bash hissPCR.sh \
--R1 "test_data/read_R1_001.fastq.gz" \
--R2 "test_data/read_R2_001.fastq.gz" \
--ref "refs/BDQ_duplex.fasta" \
--primers "refs/primers.bed" \
```