UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i MAT1100 — Kalkulus

Eksamensdag: Torsdag 7. oktober 2010.

Tid for eksamen: 12:15-13:03.

Oppgavesettet er på 2 sider.

Vedlegg: Ingen

Tillatte hjelpemidler: Alle

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1. Den deriverte til funksjonen $f(x) = x \ln(\cos^2 x)$ er:

- $\Box \ln(\cos^2 x) + \frac{x}{\cos^2 x}$
- $\Box -2x \tan x$
- $\Box \ln(\cos^2 x)$
- $\Box \ln(\cos^2 x) + x \tan x$
- $\int \ln(\cos^2 x) 2x \tan x$

Oppgave 2. Det komplekse tallet $i/(1-\sqrt{3}i)$ blir på polarform

- $\Box \frac{1}{2}e^{2\pi i/3}$
- \square $2e^{-i\pi/6}$
- $\Box \ \ \tfrac{1}{2}e^{i\pi/3}$
- $\Box \ \ \frac{1}{2}e^{-i\pi/3}$
- $\checkmark \qquad \frac{1}{2}e^{5i\pi/6}$

Oppgave 3. Polynomet $z^3 - 2z^2 + z - 2$ har røtter

- \square 1, 2 og i
- $\checkmark i, -i \text{ og } 2$
- \square 1, 2 og 2
- \square 2, $1 i\sqrt{3}$ og $1 + i\sqrt{3}$
- \Box 1, 1 i og 1 + i

Oppgave 4. Grenseverdien

$$\lim_{x\to 0^+}\frac{x}{\sqrt{\sin^2(x)+x^2}-\sin(x)} \text{ blir }$$

- \square 2
- $1 + \sqrt{2}$
- \Box $\pi/2$

(Fortsettes på side 2.)

☐ Grensen eksisterer ikke
Oppgave 5. En kasse med en kvadratisk grunnflate med sider x og høyde r skal kunne romme $1m^3$. Hva må x være for at det totale overflatearealet (bunn og sidevegg, vi regner ikke med toppen) skal bli minst mulig?
\square 2
$\square 2^{-2/3}$
\square $\frac{1}{2}$ $ \checkmark$ $2^{1/3}$
\square 1
Oppgave 6. La
$a_n = e^{n^2(1-\cos(\frac{1}{n}))}, \ n = 1, 2, 3, 4, \dots$
Da er $\lim_{n\to\infty} a_n$ lik
$\square e^2$
\square 1
☐ Ingenting, følgen divergerer.
$ \checkmark$ $e^{1/2}$
\square e
Oppgave 7. En konkav og to ganger kontinuerlig deriverbar funksjon f er slik at $f(x) > 0$ for alle x med i definisjonsområdet til f , D_f . Sett $g(x) = \ln(f(x))$. Hvilket av følgende utsagn må da være sant?
\square g er konveks på D_f
\square g er verken konveks eller konkav på D_f
\square g er voksende på D_f
\square g er avtagende på D_f
Oppgave 8. Når $x \to \infty$ har funksjonen
$f(x) = \sqrt{4x^2 + 4x}$
asymptote:
y = 3x
$\square \ y = 3x - 1$
y = x + 1
y = 2x - 1
SLUTT