

Основы микроэкономики

Лекция 7: Теория игр

Константин Сонин Российская экономическая школа

План

- □ Стратегическое взаимодействие
- Игра двух олигополистов
- □ Модели Курно и Бертрана
- □ Примеры из теории игр

Стратегическое взаимодействие В

- □ «Игроки»: Билайн и МТС
- □ Каждая из компаний делает выбор
 - «Рекламировать новый тариф»
 - «Не рекламировать»
- Прибыли компаний
 - Каждая фирма получает по \$50 млн. от новых абонентов
 - Рекламная кампания стоит \$20 млн.
 - С помощью рекламной кампании у конкурента отнимается \$30 млн.

Игра

Игра

Общий случай несовершенной конкуренции

- Две фирмы с линейными издержками
- □ В динамике ключевую роль играют ограничения по мощностям (из-за быстрого роста предельных издержек)
 - анализ не сильно меняется

Случай линейного спроса

Дуополия Курно

- □ Стоимость производства единицы продукта равна *c*, то есть фиксированных издержек нет, а переменные *c*
- $lue{}$ Фирма 1 производит q_1 продукта, а фирма 2 q_2
- \square Всего на рынок попадает $Q=q_1+q_2$
- \square Спрос на продукт зависит от его количества на рынке; обратная функция спроса (зависимость цены от количества) есть p(Q)=a-Q
- □ Каждая фирма решает какое количество продукта ей производить
 - игроки: фирмы 1 и 2
 - \blacksquare стратегии: выпуск q_1 и q_2 , соответственно
 - платежи: прибыль фирмы k равна $\pi_k = q_k P(Q) cq_k$
- □ Наша задача найти равновесие по Нэшу
- □ Предполагается, что фирмы принимают свои решения
 - независимо и одновременно
 - зная, как будет рассуждать конкурент

Дуополия Курно: равновесиев

□ Перепишем еще раз платеж для 1-ой фирмы (для 2-ой все аналогично):

$$\pi_1(q_1,q_2)=q_1P(q_1+q_2)-cq_1$$

- По определению, пара стратегий (q_1^*, q_2^*) является равновесием, если q_1^* максимизирует прибыль фирмы 1, если выпуск фирмы 2 равен q_2^* ; а q_2^* максимизирует прибыль фирмы 2, если выпуск фирмы 1 равен q_1^* .
- □ Найдем максимум выражения

$$\pi_1(q_1,q_2^*)=q_1P(q_1+q_2^*)-cq_1=q_1(a-q_1-q_2^*)-cq_1$$

- \square Получим $q^*_1 = (a q^*_2 c)/2$
- \Box Точно также $q_2^* = (a q_1^* c)/2$
- \square Решая эти два уравнения, получим $q^*_1 = q^*_2 = (a-c)/3$
- □ Простая экономическая интуиция

Стимулы к отклонению

- □ Спрос: q=1-р
- □ Обратная функций спроса p=1-q₁-q₂
- □ Первая фирма решает задачу
 max (1-q₁-q₂)q₁-cq₁ при заданном поведении другой q₂
- □ Условие первого порядка q₁=(1-c-q₂)/2 ("наилучший ответ на q₂")
- Если вторая фирма производит половину монопольного выпуска q_2 =(1-c)/4 (картель) то q_1 =(1-c)*3/8>(1-c)/4

Решение

Perfect competition p=c, q=(1-c)

Функции наилучшего ответа

Равновесие

- Процесс наилучших ответов сходится к равновесию, в котором фирмы производят больше, чем при монополии
- □ Концепция равновесия: равновесие по Нэшу
 - Фирмы не выигрывают от одностороннего отклонения
 - \blacksquare q₁=BR₁(q₂) и q₂=BR₂(q₁)
 - Решение $q_1 = q_2 = (A-c)/3$
- □ Такая олигополия (когда конкуренты выбирают выпуски) называется олигополией по Курно
- □ Если бы фирм было больше, равновесие было бы еще ближе к конкурентному

Олигополия по Бертрану

- □ Компании часто выбирают не выпуск, а цену
 - товары полностью заменяют друг друга
- □ Стратегии: p₁,p₂
- □ Потребители выбирают более низкую цену
- □ Как устроены прибыли фирм:

■ Если
$$p_1 > p_2$$
 то $\Pi_1 = 0$ $\Pi_2 = (p_2 - c)D(p_2)$

■ Если
$$p_1 < p_2$$
 то $\Pi_1 = (p_1 - c)D(p_1)$ $\Pi_2 = 0$

■ Если
$$p_1=p_2$$
 то $\Pi_1=(p_1-c)D(p_1)/2$ $\Pi_2=(p_1-c)D(p_1)/2$

Равновесие

- □ Если р₂>с то оптимальный ответ «отобрать весь рынок» р₁<р₂
- \square Поэтому единственное возможное равновесие $p_1 = p_2 = c$
- □Даже если фирм всего две, этого достаточно для конкурентного равновесия
 - фирмы получают нулевую прибыль

Бертран или Курно?

- □Выбор цен более реалистичное предположение
 - бывает, что стратегиями являются именно выпуски
- □ Как дополнить модель
 - разные издержки
 - неоднородные товары
 - сначала выбор мощности, потом конкуренция по ценам

Пример. Враждебное поглощение

- □ 1988 год, борьба за фирму Federated Department Stores, Inc.
- □ Цена акции до поглощения ≈ \$60
- □Ожидаемая цена после поглощения ≈ \$60

- □Фирма Macy's предложила заплатить \$70 за каждую акцию
 - при условии, что получит 50% акций
- □Вы бы стали продавать свои акции Macy's?

Другой игрок

- □Роберт Кампо (Robert Campeau) предложил \$74 за акцию по следующей схеме
 - если менее 50% акций куплено, то каждый продавец получает \$74 за акцию
 - если куплено X% акций и X>50, то каждый продавец получает цену, вычисленную по следующей формуле

$$\left(\frac{50\%}{X\%}\right) \times \$74 + \left(\frac{X\% - 50\%}{X\%}\right) \times \$60$$

Выбор продавца

□ Что будет делать
продавец?

Остальные

продавец?				
, ,, ,		Macy's	Campeau	никому
	Macy's	\$70	\$60	\$60
Продавец	Campeau	\$74	\$67	\$74
	никому	\$60	\$60	\$60

$$\left(\frac{50\%}{X\%}\right) \times \$74 + \left(\frac{X\% - 50\%}{X\%}\right) \times \$60$$

$$\left(\frac{50\%}{100\%}\right) \times \$74 + \left(\frac{100\% - 50\%}{100\%}\right) \times \$60 = \$67$$

Результат

- Чтобы ни делали остальные, лучше продать Campeu
- □ Итоговая цена:

$$\left(\frac{50\%}{100\%}\right) \times \$74 + \left(\frac{100\% - 50\%}{100\%}\right) \times \$60 = \$67$$

- □ Разве это не удивительно?
 - ■Масу's предлагали больше (\$70)!

Игра

		MTC	
		Нет	Реклама
Билайн	Нет	50,50	20,60
	Реклама	60,20	30,30

- □ Равновесие?
- □ Эффективность?

«Встреча»

МИКРОЭКОНОМИКА Константин Сонин (ВШЭ)

Эксперимент Шеллинга

Пенальти

24

□ равновесие [по Нэшу]?

Равновесие по Нэшу

□ Набор стратегий называется равновесием по Нэшу, если для каждого игрока его стратегия является наилучшим ответом на стратегии остальных (из этого набора)

Примеры 2×2

	L	R
T	101,0	1,1
В	100,100	0,0

	L	R
Т	-1,1	1,-1
В	1,-1	-1,1

	L	R
Т	-6,-6	0,-9
В	-9,0	-1,-1

	L	R
Т	5,4	1,1
В	0,0	2,3

Равновесие в смешанных стратегиях

- □ Существует всегда (в конечных играх)
- □ Часто реалистичнее, чем равновесие в чистых «несмешанных» стратегиях
- Эмпирические работы (Левитт, "Фриканомике")
 - пенальти
 - **теннис**

История: очень краткий курс

- О-500 Брачные контракты, описанные в Талмуде (кооперативная теория)
- 1713 Waldgrave минимаксная стратегия
- □ 1838 Cournot равновесие Курно (первая версия равновесия Нэша)
- □ 1928 von Neumann игра двух лиц с нулевой суммой и развёрнутая форма
- □ 1944 von Neumann, Morgenstern стратегическое поведение
- 1950 Kuhn, Tucker Теория игр
- 1950-1953 Nash, Shapley равновесие Нэша, задача торга и кооперативные игры
- 1960 Schelling "Стратегия конфликта"
- 1970-е Hurwiz, Maskin, Myerson дизайн механизмов
- ☐ 1970-e Rosenthal, Myerson revelation principle
- 1980-е Rubinstein задача некооперативного торга
- □ 1990-е Milgrom, Roth, Cramton, Binmore... дизайн рынков
- 1994 Нобелевская премия Нэшу, Зелтену и Харшаньи
- □ 2002 "The Beautiful Mind" («Игры разума») получает Оскар
- 2005 Шантаж, блеф и чумазые девушки (Нобелевская премия Ауманну и Шеллингу)
- 2007 Нобелевская премия Гурвицу. Маскину и Майерсону

Пример «неодновременной» игры

МИКРОЭКОНОМИКА Константин Сонин (ВШЭ)

Шахматы, шашки, hex

□ Шахматы, шашки – сколько стрелок из «корня»?

■ NxN: Hein (1942), Nash (1948)

МИКРОЭКОНОМИКА Константин Сонин (ВШЭ)

Пример из жизни, 1960-е.

Что имел в виду Хрущёв?

Хрущёв: "Если вы хотите войны, вы ее получите - но это будет ваша война. Наши ракеты полетят автоматически".

Россия

Америка

J,

Россия

см. Томас Шеллинг, «Стратегия конфликта» и «Шантаж, блеф и чумазые девушки»

1,1

Яков II и Вильгельм Оранский

Пример: сам с собой

МИКРОЭКОНОМИКА Константин Сонин (ВШЭ)

Игра с ультиматумом

Двум игрокам дают 100 рублей

МИКРОЭКОНОМИКА Константин Сонин (ВШЭ)