123. Let $X_1, X_2, ..., X_n$ be a random sample from a normal population with unknown mean μ and unknown variance σ^2 . Define the sample mean \bar{X} and sample variance S^2 as

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$.

- (a) Prove the sample variance S^2 is ancillary for μ .
- (b) Prove $T(\mathbf{X}) = \left(\sum_{j=1}^{n} X_j, \sum_{j=1}^{n} X_j^2\right)$ is a complete minimal sufficient statistic for $\boldsymbol{\theta} = (\mu, \sigma^2)$.
- (c) Are \bar{X} and S^2 independent? Why? (Use a result other than the sample is from a normal distribution).