Group Rings of Infinite Groups

by Prof. Dr. Giles Gardam

notes by Stefan Albrecht

University Bonn – winter term 2023/24

Literature Passman: The algebraic structure of group rings

Contents

1	The Kaplansky Conjectures for Group Rings	2
	1.1 The Unit Conjecture	3
	1.2 Ordered Groups and related Properties	4
2	Hyperbolic Groups	7
3	Primality of group rings	9

1 The Kaplansky Conjectures for Group Rings

Definition 1.1. Let R be a ring and G be a group. The *group ring*

$$R[G] = \left\{ \sum_{i=1}^{n} r_{g_i} g_i \mid g_i \in G, r_{g_i} \in R \right\}$$

is the ring consisting of finite formal R-linear combinations of the group elements with multiplication

$$\left(\sum r_g g\right)\left(\sum s_h h\right) = \sum rg s_h g h = \sum_k \left(\sum_{gh=k} r_g s_h\right) k.$$

In this course, we will (almost) always have $R = \mathbb{Z}$ or R = K a field. In the latter case, K[G] is often called the group algebra.

Example 1.2. For $G = \mathbb{Z} = \langle t \rangle$, then R[G] is the ring of Laurent polynomials in t over R, usually denoted $R[t, t^{-1}]$.

Viewpoint of Noether: Representations of groups are modules over group rings.

Warning: K[G] is a non-commutative ring unless G is abelian. It is (left-)Noetherian only in special settings and it is never semisimple for infinite G. (cf. Masuhke's theorem).

Although group rings tend to have bad ring-theoretic properties, they conjecturally have nice elementary properties. Note first that for $k \in K^{\times}$ and $g \in G$, the element $kg \in K[G]$ is a unit, such units are called *trivial*. A group is called *torsion free* if it has no nontrivial elements of finite order.

Conjecture 1.3 (Kaplansky). Let K be a field and G be a torsion free group. Then K[G]

- has no nontrivial units,
- has no non-zero zero divisors,
- has no non-trivial idempotents.

Furthermore, for any group G (possibly with torsion), K[G] is directly finite (=von Neumann-finite =Dedekind-finite), i.e. if $\alpha\beta=1$, then $\beta\alpha=1$.

Remark 1.4. Torsion-freeness is essential. Assume $g \in G$ has order $n \ge 2$. Then $0 = (1 - g)(1 + g + \dots + g^{n-1})$

Remark 1.5. The unit conjecture is false, the others are open.

Remark 1.6. These conjectures are "local" in the sense that they only depend on the finitely generated subgroups of G.

Proposition 1.7. For a given field K and a group G, we have

unit conj. \Longrightarrow zero divisor-conj. \Longrightarrow idempotent conj. \Longrightarrow direct finite-conj.

Proof. The last 2 implications are easy ring theoretic statements. The first implication requires the following theorem by Connell (which we will prove later): K[G] is prime (meaning AB=0 implies A=0 or B=0 for two-sided ideals $A,B\subseteq K[G]$) if and only if G has no non-trivial finite normal subgroups. Since G is torsion-free, K[G] is prime. Now suppose $\alpha\beta=0$ for $\alpha,\beta\neq 0$. Then there exists some $\gamma\in K[G]$ with $\beta\gamma\alpha\neq 0$: Otherwise $(K[G]\beta K[G])\cdot (K[G]\alpha K[G])=0$. Now (1-

 $\beta\gamma\alpha)(1+\beta\gamma\alpha)=1$ and $1+\beta\gamma\alpha$ is a non-trivial unit, since if it were trivial then $\beta\gamma\alpha=kg-1$, but $0=(\beta\gamma\alpha)^2=k^2g^2-2kg+1$, which is absurd unless g=1, in which case $\beta\gamma\alpha=k-1$ again squares to zero, hence $\beta\gamma\alpha=0$.

Definition 1.8. A group G is residually finite if for all $1 \neq g \in G$ there exists a homomorphism $\varphi_g: G \to Q, Q$ finite, such that $\varphi_g(g) \neq 1$.

We will see later that the direct finiteness conjecture is true for $K = \mathbb{C}$. For now, we prove

Proposition 1.9. Let G be residually finite. Then K[G] is directly finite.

Proof. A group homomorphism $\varphi: G \to Q$ induces a ring homomorphism $K[G] \to K[Q]$. Thus K[Q] is a K[G]-module. Note that Q is a basis for the K-vector space K[Q], so if Q is finite this is a finite dimensional representation of G on V = K[Q].

Suppose $\alpha\beta=1$ in K[G]. Let $A=\operatorname{supp}(\alpha):=\{g\in G\mid (\alpha)_g\neq 0\},\ B=\operatorname{supp}(\beta).$ Let C=BA. By residual finiteness, there is a finite quotient $\varphi:G\to Q$ which is injective on C. Now the induced maps $\rho_\alpha,\rho_\beta\in\operatorname{End}(V)$ satisfy $\rho_\alpha\circ\rho_\beta=\rho_{\alpha\beta}=\operatorname{id}_V$ and thus – since V is finite-dimensional – we have $\rho_\beta\circ\rho_\alpha=\operatorname{id}_V$ as well. Write $\beta_\alpha=\sum_{c\in C}(\beta\alpha)_cc$ and thus

$$\rho_{\beta\alpha}(1_Q) = \varphi(\beta\alpha) = \sum_{c \in C} (\beta\alpha)_c \varphi(c) = 1_Q$$

forces $(\beta \alpha)_c = 1$ if c = 1 and 0 else.

1.1 The Unit Conjecture

There is only one known way to probe the unit conjecture for a given group G: the unique product property.

Definition 1.10. A group G has the *unique product property* (UPP, "has unique products", "has UP") if for all non-empty finite subsets $A, B \subseteq G$ there exists some $g \in G$ s.t. g = ab for a unique pair $(a,b) \in A \times B$.

Example 1.11. In $(\mathbb{Z}, +)$, given finite $A, B \subseteq \mathbb{Z}$, one can take $g = \max A + \max B$. Hence \mathbb{Z} has unique products.

Remark 1.12. A group with unique products is torsion-free: If $1 \neq H \leq G$, H finite, then take A = B = H. Each product now occurs exactly |H| times.

Remark 1.13. It's difficult to produce torsion-free groups that don't have UP.

Proposition 1.14. A group with UP satisfies the zero divisor conjecture for all fields K.

Proof. Let $\alpha, \beta \in K[G]$ with $\alpha, \beta \neq 0$, and set $A = \operatorname{supp}(\alpha)$, $B = \operatorname{supp}(\beta)$. Write $\alpha = \sum_{a \in A} \lambda_a a$ and $\beta = \sum_{b \in B} \mu_b b$. Then if $g = a_0 b_0$, $a_0 \in A$, $b_0 \in B$ is a unique product for A, B, then we have

$$(\alpha\beta)_g = \sum_{ab=g} \lambda_a \mu_b = \lambda_{a_0} \mu_{b_0} \neq 0.$$

Hence $\alpha\beta \neq 0$ in K[G].

For the unit conjecture, we need something that is a priori stronger.

Definition 1.15. A group G has the *two unique products property* if for all finite subsets $A, B \subseteq G$ with $|A| \cdot |B| \ge 2$, there exist $g_0 \ne g_1 \in G$, such that $g_0 = a_0b_0$ and $g_1 = a_1b_1$ for unique pairs $(a_0, b_0), (a_1, b_1) \in A \times B$.

Proposition 1.16 (Strognowski). The two unique products property is equivalent to the unique product property.

Proof. If G satisfies 2UPP, it clearly satisfies UPP (if |A| = |B| = 1, the product is clearly unique).

Conversely, assume that G has UP but that there exist finite sets $A, B \subseteq G$ with $|A||B| \ge 2$ with only 1 unique product. Without loss (by translating A on the left and B on the right), we may assume that $1=1\cdot 1$ is the unique unique product. Now let $C=B^{-1}A$ and $D=BA^{-1}$. We claim that now there is unique product for C and D. Every element of CD can be written as $b_1^{-1}a_1b_2a_2^{-1}$ for some $a_i\in A,b_i\in B$. If $(a_1,b_2)\ne (1,1)$ then by assumption there is another pair a_1',b_2' s.t. $a_1b_2=a_1'b_2'$ and thus $b_1^{-1}a_1b_2a_2^{-1}=b_1^{-1}a_1'b_2'a_2^{-1}$ is not a unique product for CD. If, on the other hand, $(a_1,b_2)=(1,1)$, then unless $(a_2,b_1)=(1,1)$, we find a_2',b_1' such that

$$b_1^{-1}a_1b_2a_2^{-1} = b_1^{-1}a_2^{-1} = (a_2b_1)^{-1} = (a_2'b_1')^{-1} = b_1'^{-1}a_1b_2a_2'^{-1}$$

is not a unique product. Finally, if $a_2 = b_1 = 1$, then our element of CD is $1 = 1 \cdot 1 = b^{-1}b = aa^{-1}$ for any $a \in A, b \in B$, and A or B has an element other than 1, which gives more than one factorisation. \square

Corollary 1.17. A group with UP satisfies the unit conjecture.

Most examples of groups with UP are left-orderable.

1.2 Ordered Groups and related Properties

Definition 1.18. A group G is (*left-)orderable* if it admits a total order \prec that is left-invariant, i.e. if $g \prec h$, then $kg \prec kh$ for all $g, h, k \in G$.

Remark 1.19. Being left- and right-orderable are equivalent (define $g \prec' h$ iff $g^{-1} \prec h^{-1}$)) but admitting a bi-invariant total order is much stronger.

Proposition 1.20. A left-orderable group G has unique products.

Proof. Fix a left-order \prec . Given finite subsets $A, B \subseteq G$, we show that the maximum of AB is a unique product. Let $b_0 = \max B$. Then for all $a \in A$, $b \in B \setminus \{b_0\}$, we have $b \prec b_0$, so $ab \prec ab_0$. Thus the maximum of AB can only be written as ab_0 for some $a \in A$, and thus must be unique.

Remark 1.21. It is not necessarily true that $\max(AB) = \max A \cdot \max B$.

Definition 1.22. For a left-ordered group (G, \prec) , the set $\mathcal{P} = \{g \in G \mid 1 \prec g\}$ is called its *positive cone*.

The positive cone clearly satisfies $\mathcal{P}^2 \subseteq \mathcal{P}$ (i.e. it's a subsemigroup) and $G = \mathcal{P} \sqcup \{1\} \sqcup \mathcal{P}^{-1}$. The converse is also true:

Lemma 1.23. Left-orders are equivalent to choices of $\mathcal{P} \subseteq G$ satisfying $\mathcal{P}^2 \subseteq \mathcal{P}$ and $G = \mathcal{P} \sqcup \{1\} \sqcup \mathcal{P}^{-1}$.

Proof. Exercise. □

Lemma 1.24. A group G is left-orderable if and only if for all $g_1, \ldots, g_n \in G \setminus \{1\}$, there exists a choice of signs $\varepsilon_1, \ldots, \varepsilon_n \in \{1, -1\}$ such that $1 \notin S(g_1^{\varepsilon_1}, \ldots, g_n^{\varepsilon_n})$ (the subsemigroup generated by $g_1^{\varepsilon_1}, \ldots, g_n^{\varepsilon_n}$).

Proof. If G is left-ordered, set $\varepsilon_i = 1$ iff $g_i \in \mathcal{P}$.

For the other implication, we use compactness (slogan: the inverse limit of non-empty finite sets is non-empty). Let $X = \{1, -1\}^{G\setminus\{1\}}$ be the set of functions $G\setminus\{1\}\to\{1, -1\}$, and let $A\subseteq X$ be the set of those functions that define a positive cone. This is equivalent to satisfying (simultaneously) the condition on choice of sign for all possible $g_1, \ldots, g_n \in G\setminus\{1\}$ (for n=3). That is, if we denote such functions $A_{\{g_1,\ldots,g_n\}}\subseteq X$, then

$$A = \bigcap_{\substack{S \subseteq G \setminus \{1\} \\ S \text{ finite}}} A_S$$

But X is compact by Tychonoff and all the A_S are closed. Furthermore, all finite intersections of the A_S are non-empty by assumption. So $A \neq \emptyset$.

We apply the lemma to prove

Theorem 1.25 (Burns-Hale, 1972). Let G be a group. If every non-trivial finitely generated subgroup of G has a non-trivial left-orderable quotient, then G is left-orderable.

In particular, a locally indicable group (i.e. every nontrivial finitely generated subgroup surjects onto \mathbb{Z}) is left-orderable.

Corollary 1.26 (Higman, 1940). *Loally indicable groups satisfy the unit conjecture.*

Example 1.27 (of locally indicable groups).

- Free groups (Niedsen-Schreier)
- Fundamental groups of closed surfaces of non-positive Euler characteristic
- Torsion-free nilpotent groups
- Torsion-free one-relator groups, i.e. groups of the form $\langle X \mid r \rangle$, $r \in F(X)$, where r is not a proper power in F(X) (Brodski-Howie)

Proof. (of 2.16) Suppose G is not left-orderable and let n be minimal such that $\exists g_1,\ldots,g_n\in G\setminus\{1\}$ such that $1\in S(g_1^{\varepsilon_1},\ldots,g_n^{\varepsilon_n})$ for all choices of $\varepsilon_i\in\{-1,1\}$. Let $H=\langle g_1,\ldots,g_n\rangle\neq 1$, so by assumption H has a non-trivial left-orderable quotient $q:H\twoheadrightarrow Q$. By relabelling, assume $g_1,\ldots,g_t\in\ker(q)$ and $g_{t+1},\ldots,g_n\notin\ker(q)$. As t< n, we can assign $\varepsilon_1,\ldots,\varepsilon_t$ such that $1\notin S(g_1^{\varepsilon_1},\ldots,g_t^{\varepsilon_t})$. and since Q is left-orderable, we can assign $\varepsilon_{t+1},\ldots,\varepsilon_n$ such that $1\notin S(q(g_{t+1})^{\varepsilon_{t+1}},\ldots,q(g_n)^{\varepsilon_n})$. But this implies $1\notin S(g_1^{\varepsilon_1},\ldots,g_n^{\varepsilon_n})$ as every product of othese elements either only uses $g_1^{\varepsilon_1},\ldots,g_t^{\varepsilon_t}$, hence lies in $S(g_1^{\varepsilon_1},\ldots,g_t^{\varepsilon_t})$ or has image under q in $S(g_1^{\varepsilon_1},\ldots,g_n^{\varepsilon_n})$.

Proposition 1.28. Homeo⁺(\mathbb{R}) *is left-orderable.*

Proof. Let $\{x_0, x_1, \ldots\} \subseteq \mathbb{R}$ be dense. Define the order \prec on $f \in \operatorname{Homeo}^+(\mathbb{R})$ via the lexiographic order on $(f(x_0), f(x_1), \ldots)$. The map $f \mapsto (f(x_0), f(x_1), \ldots)$ is injective (because continuous functions are determined by their values on a dense set), so the order descends.

Proposition 1.29. A countable group is left-orderable if and only if it is a subgroup of $\mathrm{Homeo}^+(\mathbb{R})$.

Proof. Exercise. □

Proposition 1.30. Let G be a group. Suppose $N \leq G$ such that N and G/N both have unique products. Then G has unique products.

Proof. Let $A, B \subseteq G$ be non-empty finite subsets. Write $\varphi: G \to G/N$. Suppose $\varphi(a) \cdot \varphi(b)$ is a unique product in G/N, $a \in A$, $b \in B$. By replacing A with $a^{-1}A$ and B with Bb^{-1} , we may assume the unique product in G/N is $1 \cdot 1 = 1$. Thus $a, b \in N$. Hence the unique product of $A \cap N$ and $B \cap N$ is a unique product for A and B.

Definition 1.31. Let $A \subseteq G$ be a finite subset. An element $a \in A$ is called *extremal* (for A) if for all $s \in G \setminus \{1\}$ we have $as \notin A$ or $as^{-1} \notin A$. G is called *diffuse* if every non-empty finite subset $A \subseteq G$ has at least one extremal point.

Remark 1.32. $a \in A$ is extremal iff $a^{-1}A \cap A^{-1}a = \{1\}$

Proposition 1.33. For any group G we have the implications

left-orderable \implies diffuse \implies unique products.

Proof. Suppose (G, <) is a left-ordered group and let $\emptyset \neq A \subseteq G$ a finite subset. Then let $a = \max A$. For any $s \in G \setminus \{1\}$ either s > 1 or $s^{-1} > 1$, hence as > a or $as^{-1} > a$, i.e. a is extremal.

Suppose G is diffuse and let $A, B \subseteq G$ be non-empty finite subsets. Consider C = AB. Let $c = ab \in C$ be extremal. Suppose $c = a_1b_1$ with $b \neq b_1$. Then $c(b_1^{-1}b_2) = a_1b_2 \in C$ and $c(b_2^{-1}b_1) = a_2b_1 \in C$, in contradiction to extremity.

Remark 1.34. Given a finite set $B \subseteq G$, we can easily decide if all $\emptyset \neq A \subseteq B$ have an extremal point, because if $a \in A_0 \subseteq A_1$ is extremal in A_1 , then it is also extremal in A_0 . Thus we can run a greedy algorithm, starting with A = B and throwing out the extremal points at each step.

We can establish diffuseness geometrically, specifically for many hyperbolic groups.

2 Hyperbolic Groups

Geodesic triangles in the hyperbolic plane \mathbb{H}^2 resemble tripods.

Given three points in a metric space, they embed isometrically as the vertices of a unique tripod T_{Δ} . The length d(0,a) must be $\frac{1}{2}(d(a,b)+d(a,c)-d(b,c))=:(b\cdot c)_a$ which we call the Gromov product. Morally, this is the distance to the incircle. Let X be a geodesic 1 metric space. For a geodesic triangle $\Delta=\Delta(a,b,c)$, define $\mathcal{X}_{\Delta}:\Delta\to T_{\Delta}$ by mapping the geodesics isometrically. Δ is called δ -thin if $p,q\in\mathcal{X}_{\Delta}^{-1}(t)$, then $d_X(p,q)\leq\delta$ for all $t\in T_{\Delta}$.

Definition 2.1. X is called δ -hyperbolic if allgeodesic triangles are δ -thin. X is called (Gromov) hyperbolic if it is δ -hyperbolic for some $\delta \geq 0$.

There are multiple equivalent definitions, e.g. slim triangles, but the constant δ needs to change.

Definition 2.2. A group G is called *hyperbolic* if it acts properly cocompactly by isometries on a proper hyperbolic space.

An action of a group G on a topological space X is proper, if for all compact $K \subseteq X$, the set $\{g \in G \mid gK \cap K \neq \emptyset\}$ is finite. It is cocompact, if there exists a compact $K \subseteq X$ such that $X = G \cdot K$. A metric space X is called proper, if $\bar{B}_r(x)$ is compact for all $x \in X$, $r \ge 0$.

Remark 2.3. For a proper metric space, an action $G \curvearrowright X$ is proper iff for all $x \in X, r \ge 0$, the set $\{g \in G : d(gx, x) \le r\}$ is finite. The action is cocompact iff $X = G\bar{B}_r(x)$ for some $x \in X, r > 0$.

Example 2.4. A tree is 0-hyperbolic.

Corollary 2.5. $F_2 = \pi_1(S^1 \vee S^1)$ acts on the universal cover of $S^1 \vee S^1$, which is a locally finite graph. Hence F_2 is a hyperbolic group.

Lemma 2.6. Let $G \cap X$ be a proper cocompact isometric action on a proper metric space. Let r > 0. Then

$$\{g \in G \mid \exists x \in X : d(gx, x) \le r\}$$

consists of finitely many conjugacy classes

Proof. By cocompactness, $X = G\bar{B}_{r_0}(x_0)$ for some $x_0 \in X, r_0 > 0$. Suppose $g \in G$ and $x \in X$ s.t. $d(gx,x) \le r$. There exist $h \in G$ s.t. $x \in h\bar{B}_r(x_0)$, i.e. $d(x_0,h^{-1}x) \le r_0$. Then

$$d(g^h h^{-1}x, h^{-1}x) = d(h^{-1}gx, h^{-1}x) = d(gx, x) \le r.$$

Thus

$$d(g^h x_0, x_0) \le d(g^h x_0, g^h h^{-1} x) + d(g^h h^{-1} x, h^{-1} x) + d(h^{-1} x, x_0) \le 2r_0 + r.$$

By properness, there are only finitely many possibilities for g^h .

An alternative definition for hyperbolic spaces is the four-point condition.

 $^{{}^1 \}forall x,y \in X \; \exists \text{geodesic} \; [x,y], \text{ i.e. an isometric embedding} \; i:[0,d(x,y)] \to X \; \text{with} \; i(0)=x, i(d(x,y))=y$

Definition 2.7. Let $\delta \geq 0$. A metric space X is (δ) -hyperbolic if $(xy)_w \geq \min\{(xz)_w, (yz)_w\} - \delta$ for all $x, y, z, w \in X$

Remark 2.8. This definition is arguably less intuitive, but it also works for non-geodesic metric spaces such as discrete spaces.

Proposition 2.9. Let X be a geodesic metric space. Then

- (i) X is (δ) -hyperbolic $\Rightarrow X$ is 4δ -hyperbolic.
- (ii) X is δ -hyperbolic $\Rightarrow X$ is (δ) -hyperbolic.

Proof. (i) Exercise.

(ii) Let $x, y, z, w \in X$. Pick $x' \in [w, x], y' \in [w, y]$ and $z' \in [w, z]$ such that $d(w, x') = d(w, y') = d(w, z') = \min\{(x \cdot z)_w, (z \cdot y)_w\}$. By δ -thinness of $\Delta(w, x, z)$, we have $d(x', y') \leq \delta$. Similarly, $d(y', z') \leq \delta$, hence $d(x', z') \leq 2\delta$. Thus

$$d(x,y) \le d(x,x') + 2\delta + d(y,y') = d(w,x) + d(w,y) + 2\delta - 2\min\{(xz)_w, (yz)_w\},\$$

which is equivalent to $(xy)_w \ge \min\{(xz)_w, (yz)_w\} - \delta$

The 4 point condition can also be phrased symetrically: We have either $(xy)_w \ge (xz)_w - \delta$ or $(xy)_w \ge (yz)_w - \delta$, that is, $d(x,y) + d(z,w) \le d(x,z) + d(y,w) + 2\delta$ or $d(x,y) + d(z,w) \le d(x,w) + d(y,z) + 2\delta$, together

$$d(x,y) + d(w,z) \le \max\{d(x,z) + d(y,w), d(x,w) + d(y,z)\} + 2\delta.$$

There are 3 ways to pair up $\{x,y,z,w\}$. Suppose $S \leq M \leq L$ are the corresponding sums of pair-distances. Then the above inequality is equivalent to $L \leq M + 2\delta$.

Theorem 2.10 (Delzant). Let X be a δ -hyperbolic geodesic metric space. Suppose $G \curvearrowright X$ by isometries s.t. for all $g \in G \setminus \{1\}$ and $x \in X$, we have $d(gx, x) > 3\delta$. Then G is diffuse.

Proof. We claim that for all $g \in G$, $1 \neq h \in G$ and $p \in X$ we have either d(ghp,p) > d(gp,p) or $d(gh^{-1}p,p) > d(gp,p)$. Then we are done because for finite $A \subseteq G$ and any $p \in X$, an element $a \in A$ achieving $\max\{d(gp,p) \mid g \in A\}$ will be extremal.

Suppose that $d(gp, p) \ge d(ghp, p), d(gh^{-1}p, p)$ for some $g, h \in G, h \ne 1, p \in X$. Consider the symmetric 4-point condition for these four points as described above. The three possible distances are

$$d(gp, p) + d(ghp, gh^{-1}p) = d(gp, p) + d(h^{2}p, p)$$
$$d(ghp, p) + d(gp, gh^{-1}p) = d(ghp, p) + d(hp, p)$$
$$d(gh^{-1}p, p) + d(gp, ghp) = d(gh^{-1}p) + d(hp, p)$$

If we assume $d(h^2p,p) \geq d(hp,p)$, then the first of these three is the largest and thus by the 4-point condition $d(gp,p) + d(h^2p,p) \leq d(gh^{\pm 1}p,p) + d(hp,p) + 2\delta \leq d(gp,p) + d(hp,p) + 2\delta$. In either case, $d(h^2p,p) \leq d(hp,p) + 2\delta$. Thus $(hp,h^{-1}p)_p \geq \frac{1}{2}d(hp,p) - \delta$. If we let q be the midpoint of $[h^{-1}p,p]$, and let q',q'' on [q,p] and [hq,p] at distance δ from q, resp. hq. Then $d(q',q'') \leq \delta$ by δ -thinness of $\Delta(p,hp,h^{-1}p)$. (Pick the geodesic [p,hp] so that it contains hq.) Together,

$$d(hq, q) \le d(q, q') + d(q, q'') + d(q'', hq) \le 3\delta,$$

in contradiction to the assumption $d(hq, q) > 3\delta$.

Definition 2.11. Let X be a property of groups. Then G is *virtually* X if there exists a finite index subgroup $G_0 \le G$ such that G_0 has X.

Corollary 2.12. *Let* G *be a residually finite hyperbolic group. Then* G *is virtually diffuse.*

Remark 2.13. It is a famous open problem whether every hyperbolic group is residually finite.

Proof. Let $G \curvearrowright X$ properly cocompactly by isometries on a proper δ -hyperbolic space. By Lemma 2.6, there exists $1 = g_0, \ldots, g_n \in G$ s.t. for all $g \in G$, if there is $x \in X$ with $d(gx, x) \leq 3\delta$, then g is conjugate to some g_i . By residual finiteness, we can find $\varphi : G \to Q$ finite such that $\varphi(g_1), \ldots, \varphi(g_n) \neq 1$. Then $G_0 = \ker(\varphi)$ satisfies the assumption of Delzant's theorem.

3 Primality of group rings

Our aim is to give a complete proof of the following, which was used to show that the unit conjecture for K[G] implies the zero-divisor conjecture K[G].

Theorem 3.1 (Connell). K[G] is prime if and only if G has no nontrivial finite normal subgroup.

Recall that a ring R is prime if for all $0 \neq \alpha, \beta \in R$ there exists $\gamma \in R$ such that $\alpha \gamma \beta \neq 0$. (i.e. the zero ideal is a prime ideal in the sense of noncommutative ring theory.) For the proof, we need some more group ring basics, a fair bit of group theory and an ingenious trick of Passman.

Definition 3.2. Let $H \leq G$. Then there is a *projection* $\pi_H : K[G] \to K[H]$ defined by $\sum_{g \in G} a_g g \mapsto \sum_{g \in H} a_g g$.

Warning: This is never a ring homomorphism unless G = H. But we do have

Lemma 3.3. π_H is a homomorphism of (K[H], K[H])-bimodules.

Proof. Exercise.

Corollary 3.4. Let $H \leq G$. If $\alpha \in K[H]$ is a unit in K[G], then it is a unit in K[H].

Proof. For $\beta \in K[G]$ with $\alpha\beta = \beta\alpha = 1$ we have $\alpha\pi_H(\beta) = \pi_H(\alpha\beta) = \pi_H(1) = 1 = \pi_H(\beta)\alpha$, so in fact $\alpha^{-1} = \beta = \pi_H(\beta) \in K[H]$.

Recall that a left transversal for $H \leq G$ is a set X containing exactly one representative x of each coset of H, so that $G = \bigsqcup_{x \in X} xH$

Lemma 3.5. Let X be a left transversal for $H \leq G$. Then every element $\alpha \in K[G]$ can be written uniquely as a finite sum $\alpha = \sum_{x \in X} x \alpha_x$ with $\alpha_x \in H[X]$. In fact, $\alpha_x = \pi_H(x^{-1}\alpha)$. Thus K[G] is a free right K[H]-module with X as basis.

Let $M_n(R)$ denote the ring of $n \times n$ -matrices over the ring R.

Lemma 3.6. Let $[G:H] = n < \infty$. Then $K[G] \hookrightarrow M_n(K[H])$.

Proof. Let $X = \{x_1, \ldots, x_n\}$ be a left transversal for $H \leq G$. Then V = K[G] is a free right K[H]-module with basis X. It is also a left K[G]-module and since left and right multiplication commute, K[G] acts by K[H]-linear transformations of $V \cong K[H]^n$. Since for each $\alpha \in K[G]$ and each index $1 \leq j \leq n$ we have $\alpha x_j = \sum_{i=1}^n x_i \pi_H(x_i^{-1} \alpha x_j)$, sending α to the matrix

$$\eta_X(\alpha) = \left(\pi_H(x_i^{-1}\alpha x_j)\right)_{i,j=1,\dots,n}$$

defines an embedding (for choice of basis X).

Remark 3.7. If G is finite, H = 1, this is just the regular representation of G.

Example 3.8. Let $D_{\infty} = \langle r, t \mid r^2, t^r t \rangle = \mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ and take $X = \{1, r\}$ as traversal for $\langle t \rangle \cong \mathbb{Z}$ in D_{∞} . Then we calculate $\alpha x_i = x_j \eta_X(\alpha)$ for $\alpha = r, t$. Since

$$r \cdot 1 = r \cdot 1, \ r \cdot r = 1 \cdot 1, \ t \cdot 1 = 1 \cdot t, \ t \cdot r = r \cdot t^{-1},$$

the map $\eta_X: K[D_\infty] \to M_2(K[t,t^{-1}])$ is given by extending

$$r \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$

Lemma 3.9 (Schur). If $[G:Z(G)] < \infty$, then $|G'| < \infty$.

Definition 3.10. Let $H \leq G$ and $[G:H] = n < \infty$. Pick a left transversal $\{x_1, \ldots, x_n\}$ for H. For each $g \in G$ and $1 \leq j \leq n$ we have $gx_j = x_ih_j$ for some unique i and $h_j \in H$. The *transfer* is defined as the map $G/G' \to H/H'$ given by $gG' \mapsto h_1h_2 \cdots h_nH'$.

Lemma 3.11. The transfer is a group homomorphism and doesn't depend on the choice of transversal.

Proof. Map $K[G] \to M_n(K[H])$ by lemma 3.6, $M_n(K[H]) \to M_n(K[H/H'])$ extending $H \to H/H'$ and $M_n(K[H/H']) \to H/H'$ by taking the determinant. For given g and $1 \le j \le n$, $gx_j = x_ih_j$, i.e. $h_j = x_i^{-1}gx_j$, so $\eta_X(g)_{ij} = h_j$ and $\eta_X(g)_{i'j} = 0$ for $i' \ne i$. Letting $\mathrm{sgn}(g) \in \{\pm 1\}$ denote the sign of the permutation g induces on the set G/H, we have that the composition of our maps sends g to $\mathrm{sgn}(g)h_1h_2\cdots h_n \in K[H/H']$. As $\mathrm{sgn}: G \to \{\pm 1\}$ is a homomorphism, so is the map $G \to H/H': g \mapsto h_1\cdots h_n$. As the image is abelian, it factors through G/G' to define the transfer. It is independent of the choice of transversal X, since change of basis of K[G] produces similar matrices. \square

Proof. (Schur) Let Z=Z(G) and [G:Z]=n. Consider the transfer $G/G'\to Z/Z'=Z$. By centrality of Z, this is just $g\mapsto g^n$. Hence if $g\in G'$, then $g^n=1$. If $\{x_1,\ldots,x_n\}$ is a transversal, then every commutator is of the form $[x_iz_1,x_jz_2]=[x_i,x_j]$ and thus G' is finitely generated. Now $[G':G'\cap Z]\le n$, so $G'\cap Z$ is finitely generated, has finite exponent and is abelian, hence finite. Therefore G' is also finite.

Definition 3.12. The FC-center ("finite conjugacy") of a group G is

$$\Delta(G) = \{g \in G \mid |g^G| < \infty\},$$

that is, the set of elements whose conjugacy class is finite. This is alternatively the set of elements whose zentralizer $C_G(g)$ has finite index (by the orbit-stabilizer theorem for $G \curvearrowright G$ by conjugating). As $C_G(gh) \ge C_G(g) \cap C_G(h)$, we see that $\Delta(G)$ is in fact a (characteristic) subgroup of G. We call G an FC-group if $G = \Delta(G)$.

Lemma 3.13. An FC-group is locally finite-by-(free abelian), i.e. all finitely generated subgroups are extensions of a finite by a free abelian group.

Proof. Let $H = \langle h_1, \dots, h_n \rangle \leq G$, G an FC-group. Then $C_G(H) = \bigcap_{i=1}^n C_G(h)$ is finite index in G and thus $Z(H) = C_G(H) \cap H$ is finite index in G. Thus Schur's lemma applies and G is finite. Now G is a finitely generated abelian group, so of the form G is finite. Thus the kernel of the torsion-free abelianization G is finite.