Руководство по использованию программы для расчета центробежной форсунки для аппаратов мокрой очистки газов

В аппаратах мокрой очистки промышленных выбросов распыление воды для орошения осуществляется с помощью механических и пневматических форсунок. Механические центробежные форсунки нашли наибольшее распространение. Их общим отличием является достаточно большой диапазон изменения угла раскрытия вытекающей струи α – om 8 до 180°.

Большинство центробежных форсунок формирует полый факел. Для его образования в вихревой камере (рис. 12.2) поток, подаваемый через тангенциально расположенные отверстия (число отверстий от 1 до 4)

Рис. 12.2. Механическая центробежная форсунка с тангенциальным вводом воды: 1 – корпус; 2 – вихревая камера; 3 – подводящие патрубки; 4 – сопло

Качество распыливания воды форсункой определяется размером образующихся капель, который по данным исследований рекомендуется принимать $d_{\kappa} \leq 0.06d_o$. Установлено, что в диапазоне чисел Рейнольдса $2280 \leq R \leq 18280$ между средним размером капель и диаметром сопла существует зависимость вида

$$d_{\kappa}/d_{o}=18,3/(Re_{3})^{0.59}$$
 (12.7)

где $Re_3 = \omega_3 d_3 \rho_3 / \mu_{\mathcal{H}}$;

Коэффициент заполнения сопла $0 < \varphi < 1$ определяется по эмпирической формуле по заданному углу α .

В качестве исходных данных вводится:

- общий расход воды на орошение (предварительное значение) V_{∞} , M^3/c ;
- избыточное давление воды перед форсункой $P_{\mathcal{H}}$, Πa ;
- плотность воды на орошение $\rho_{\mathcal{H}}$, $\kappa \epsilon/m^3$;
- коэффициент динамической вязкости воды $\mu_{\text{ж}}$, $\Pi a^*c;$
- рекомендуемый оптимальный диаметр капель распыливаемой воды d_{κ} , m;
- заданный угол раскрытия факела форсунки α, град;
- заданное число входных каналов вихревой камеры n_{ϕ} ;
- заданный диаметр входного канала вихревой камеры d_{ex} , m; заданное число рядов форсунок n_p .

Данные для примера рассчёта:

 $V_{\mathcal{H}} = 0.034 \text{ m}^3/c$; $P_{\mathcal{H}} = 20000\Pi a$; $d_K = 0.4 \ 10^{-3} \text{ m}$; $\rho_{\mathcal{H}} = 998.2 \ \text{ke/m}^3$; $n_p = 4$; $\alpha = 120^\circ$; $n_\phi = 2$; $d_{\text{ex}} = 0.02 \text{ m}$; $\mu_{\mathcal{H}} = 1.004 \ 10^{-3}$, $\Pi a \cdot c$.

Скорость истечения жидкости из сопла форсунки:

$$\omega = 4V_w / (\pi \cdot d_o^2 \cdot \varphi) \, M/c, \qquad (12.1)$$

Условная скорость истечения:

$$\omega_{3} = \sqrt{2P_{\pi}/\rho_{\pi}}, \qquad (12.2)$$

где V_{**} — расход воды на форсунку, $м^3/c$; P_{**} — давление воды, Па; ρ_{**} — плотность воды, кг/ $м^3$; d_{\circ} — диаметр сопла, m; ϕ — коэффициент заполнения сопла.

Расход воды на форсунку:

$$V_{\dot{\Phi}} = K_{\dot{\Phi}} \cdot \pi \cdot d_{o}^{2} \cdot \omega_{3}/4, \qquad (12.3)$$

где K_{Φ} — коэффициент расхода воды через сопло, определяемый по формуле

$$K_{\phi} = \left(\sqrt{A_{\phi}^2/(1-\phi)+1/\phi^2}\right)^{-1},$$
 (12.4)

Геометрическую характеристику форсунки ${f A}_{f \varphi}$ находят из выражения

$$A_{\Phi} = \pi \cdot d_{\circ} \cdot R / 2 \cdot n_{\Phi} \cdot F_{gx} = (1 - \phi) \sqrt{2} / \phi \sqrt{\phi}, \qquad (12.5)$$

где R — эксцентриситет форсунки, M;

n_ф – число входных каналов вихревой камеры;

 $F_{\text{Ex}} = \pi d_{\text{ex}}^2/4$ - площадь сечения входного канала с заданным диаметром d_{ex} , M^2 .

Коэффициент заполнения сопла $0 < \phi < 1$ определяется по эмпирической формуле по заданному углу α :

$$\phi = 1 - 0.001134 \alpha^{1.322}$$
. (12.6)

$$d_{\kappa}/d_{o}=18,3/(Re_{3})^{0.59}$$
 (12.7)

где Re_э = $\omega_3 d_3 \rho_3 / \mu_{\infty}$;

 μ_{*} — коэффициент динамической вязкости воды, $\Pi a c$.

Определив по формуле (12.7) значение d_o , находят эксцентриситет форсунки

$$R = A_{\phi} n_{\phi} d_{\text{Ex}}^2 / 2 d_{\phi}, M, \qquad (12.8)$$

внутренний диаметр вихревой камеры

$$D = 2K + d_{EX}, M, \qquad (12.9)$$

высоту вихревой камеры

$$H = 1.2d_{EX}, M,$$
 (12.10)

и принимают угол конусности на входе потока в сопло $y = 90 \div 120^\circ$.

По заданному общему расходу воды на орошение (V_{∞}) определяется необходимое количество форсунок

$$N_{\phi}=V_{x}/V_{\phi}$$
 (12.11)

и число форсунок, приходящихся на 1 ряд

$$N_{\phi,p} = N_{\phi}/n_p,$$
 (12.12)

где n_p - число заданных рядов форсунок.