5. Vehicle Platooning I

金力 Li Jin li.jin@sjtu.edu.cn

上海交通大学密西根学院 Shanghai Jiao Tong University UM Joint Institute

Recap

- Single-vehicle on an empty road
 - 1 dimensional
 - 2 dimensional
- Multi-vehicle planning
 - Policy-free approach
 - Policy-based approach

Outline

- Technological basis
 - Autonomous driving
 - Vehicle-to-vehicle coordination
- Classical approach
 - Modeling
 - Decision making
- Learning-based approach
 - Objective
 - Design

Platooning

- https://v.qq.com/x/page/i0877glx6c7.html
- https://v.youku.com/v_show/id_XNDQzNTQ2OTMzNg==

Platooning: Motivation

- Limited highway capacity -> more traffic jams
- A naïve solution: build wider roads.
- A smarter solution: reduce the intervehicle distance.

- Before the age of AI, human could not do that.
- But now, computers can do that! (time gap: 2s ->0.5s)

Platooning: Motivation

Reduces air drag; saves fuel (up to 15%)

Improved safety & working condition for drivers

Technological basis

- Cooperative adaptive cruise control
- Autonomous driving
- Vehicle-to-vehicle coordination

Cooperative adaptive cruise control

- CACC: 协同自适应巡航控制
- Two key words:
 - Cooperative (协同的): multiple vehicles share information and jointly make decisions
 - Adaptive (自适应的): control inputs are generated in response to real-time condition
- CACC drives better than human, since
 - vehicles talk to each other and can proactively and anticipatorily account for the behavior of other vehicles;
 - computers can respond faster than human
- Note: current platooning technology typically requires the leading vehicle to be human-driven. (Why?)

Autonomous driving

- Longitudinal: vehicle following
- Recall lecture 3
- Lateral: mostly lane keeping; sometimes lane changing

Vehicle-to-vehicle coordination

- Onboard unit (OBU)
- Broadcast information to neighboring vehicles:
 - Vehicle type
 - Latest position, speed, acceleration, orientation...
 - Intended position, speed, acceleration, orientation...

Classical Approach

• Ploeg, J., Van De Wouw, N., & Nijmeijer, H. (2013). L_p string stability of cascaded systems: Application to vehicle platooning. *IEEE Transactions on Control Systems Technology*, 22(2), 786-793.

Platoon dynamics

- Consider a platoon of m vehicles
- d_i = the distance between vehicle i and its preceding vehicle i-1
- v_i its velocity.
- The objective of each vehicle is to follow the preceding vehicle at a desired distance $d_{r,i}$

Platoon dynamics: Spacing policy

• The objective of each vehicle is to follow the preceding vehicle at a desired distance $d_{r,i}$

$$d_{r,i}(t) = r_i + hv_i(t), \qquad i \in S_m$$

- h =the time headway (assuming homogeneous platoon)
- r_i = the standstill distance.
- $S_m = \{i \in N \mid 1 \le i \le m\}$ is the set of all vehicles in a platoon of length $m \in \mathbb{N}$.
- ullet Note: $d_{r,i}$ is a spacing policy that specifies the desired spacing
- This particular controller is nominally stable: i.e., stable if perfectly implemented.
- Spacing policy is easier to design, since it is purely kinematic (运动学的).

Platoon dynamics: Spacing policy

Spacing error

$$e_i(t) = d_i(t) - d_{r,i}(t)$$

= $(q_{i-1}(t) - q_i(t) - L_i) - (r_i + hv_i(t))$

- q_i = rear-bumper(后保险杠) spacing of vehicle i
- L_i = length of vehicle i

• Control objective: $\lim_{t\to\infty}e_i(t)=0$ for all i

Platoon dynamics: Vehicle model

For each vehicle i

$$\begin{bmatrix} \dot{d}_i \\ \dot{v}_i \\ \dot{a}_i \end{bmatrix} = \begin{bmatrix} v_{i-1} - v_i \\ a_i \\ -\frac{1}{\tau} a_i + \frac{1}{\tau} u_i \end{bmatrix}$$

- d_i = inter-vehicle spacing
- v_i = vehicle speed
- a_i = vehicle acceleration
- u_i = control input (desired acceleration)
- au = time constant associated with driveline (传动) dynamics

Platoon dynamics: Vehicle model*

ullet Ploeg et al. proposed a control law for u_i

$$h\dot{u}_{i} = -u_{i} + \begin{bmatrix} k_{p} & k_{d} & k_{dd} \end{bmatrix} \begin{bmatrix} e_{i} \\ \dot{e}_{i} \\ \ddot{e}_{i} \end{bmatrix} + u_{i-1}$$

Dynamic equation for feedback-controlled system:

$$\begin{pmatrix}
\dot{e}_{i} \\
\dot{v}_{i} \\
\dot{a}_{i} \\
\dot{u}_{i}
\end{pmatrix} = \begin{pmatrix}
0 & -1 & -h & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{\tau} & \frac{1}{\tau} \\
\frac{k_{p}}{h} & -\frac{k_{d}}{h} & -k_{d} - \frac{k_{dd}(\tau - h)}{h\tau} & -\frac{k_{dd}h + \tau}{h\tau}
\end{pmatrix} \begin{pmatrix}
e_{i} \\
v_{i} \\
a_{i} \\
u_{i}
\end{pmatrix}$$

$$+ \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & \frac{k_{d}}{h} & \frac{k_{dd}}{h} & \frac{1}{h}
\end{pmatrix} \begin{pmatrix}
e_{i-1} \\
v_{i-1} \\
a_{i-1} \\
u_{i-1}
\end{pmatrix} \tag{7}$$

Platoon dynamics: Vehicle model

- The dynamic equation can be compactly written as $\dot{x}_i = A_0 x_o + A_1 x_{i-1}$
- $\bullet x_i = [e_i \ v_i \ a_i \ u_i]^T$
- A_0 and A_1 defined accordingly
- For vehicle 1, it follows a virtual reference vehicle 0 such that

$$x_0 = \begin{bmatrix} e_0 \\ v_0 \\ a_0 \\ u_0 \end{bmatrix} = \begin{bmatrix} 0 \\ \bar{v}_0 \\ 0 \\ 0 \end{bmatrix}$$

• $ar{v}_0$ is the target & equilibrium speed of the platoon

Platoon dynamics: Asymptotic stability

 Recall: platoon is asymptotically stable if distance error approaches 0, i.e.

$$\lim_{t\to\infty}e_i(t)=0\ \forall i$$

Ploeg et al. proved that if the controller satisfies

$$k_p > 0, k_d > 0, k_{dd} > 1, (1 + k_{dd})k_d > k_p \tau,$$

then the platoon is asymptotically stable.

- Asymptotic stability: with constant reference speed & no disturbances, platoon will gradually converge to equilibrium state.
- What if there is disturbances?
- String stability: disturbances are not amplified as they propagate in the platoon. #

Platoon dynamics: String stability*

- How do we know whether disturbances are amplified in a dynamical system? -> Frequency domain response.
- Consider a linear time-invariant (LTI) single-inputsingle-output (SISO) system

$$\dot{x} = ax + bu$$
$$y = cx + du$$

Suppose the input is sinusoidal

$$u(t) = \bar{u}e^{j\omega t}$$

- For LTI SISO systems, the output is also sinusoidal $y(t) = \bar{y}e^{j\omega t + \phi}$
- Amplification is characterized by $\frac{\bar{y}}{\bar{u}}$

Platoon dynamics: String stability*

- $\frac{\bar{y}}{\bar{u}}$ determines whether disturbances are amplified or suppressed
 - If $\frac{\bar{y}}{\bar{u}} > 1$, disturbances are amplified, and the system will blow up.
 - If $\frac{\ddot{y}}{\eta} < 1$, disturbances are damped, and the system will converge.
- Mathematically, $\frac{\overline{y}}{\overline{u}}$ is equal to the magnitude of the system's frequency response function (FRF) $\Gamma(j\omega)$

$$\frac{\bar{y}}{\bar{u}} \le \sup_{\omega > 0} |\Gamma(j\omega)|$$

 For more information on frequency response functions, see e.g. Oppenheim, Alan, and George Verghese. Signals, Systems and Inference. Prentice Hall, 2015. ISBN: 9780133943283.

Platoon dynamics: String stability*

- Now let's go back to vehicle platooning
- Each vehicle can be modeled by an FRF $\Gamma_i(j\omega)$
- ullet Then, vehicle i damps disturbance if

$$\sup_{\omega>0} |\Gamma_i(j\omega)| < 1$$

A platoon is a cascaded system

$$\dot{x}_i = A_0 x_o + A_1 x_{i-1}$$

 Therefore, any disturbance will get damped as it propagates through the platoon if

$$\sup_{\omega>0} |\Gamma_i(j\omega)| < 1 \quad \text{for all } i$$

The above property is called string stability.

Learning-based approach

- Neural networks
- Learning-based adaptive control

Online model identification

 Recall that the classical control synthesis was based on the linear model

$$\begin{bmatrix} \dot{d}_i \\ \dot{v}_i \\ \dot{a}_i \end{bmatrix} = \begin{bmatrix} v_{i-1} - v_i \\ a_i \\ -\frac{1}{\tau} a_i + \frac{1}{\tau} u_i \end{bmatrix}$$

The controller was also given by linear ODE (PD control*)

$$h\dot{u}_i = -u_i + \begin{bmatrix} k_p \ k_d \ k_{dd} \end{bmatrix} \begin{bmatrix} e_i \\ \dot{e}_i \\ \ddot{e}_i \end{bmatrix} + u_{i-1}$$

- In practice, such linearization may not be perfect:
 - How do you know that the system is perfectly linear? What if nonlinear? (For example, if τ is state dependent.)
 - How do you know that a linear controller is sufficiently good? What if a nonlinear controller can do much better than a linear one?

Learning-based approach: Neural networks

A simple but usually useful solution: use neural networks to approximate the dynamics or the controller!

- Artificial neural networks have displayed promising performance and flexibility in other domain.
 characterized by high degrees of noise and variability
- Neural networks are nothing but a class of functions that provide strong approximation capability.

History

https://medium.com/analytics-vidhya/brief-history-of-neural-networks-44c2bf72eec

Why were neural networks not hot until quite recently?

Evolution of computers

Evolution of data technology

Evolution of communication technology

Basic idea

- A class of learning methods that was developed separately in different fields—statistics and artificial intelligence—based on essentially identical models.
- The central idea is to extract linear combinations of the inputs as derived features, and then model the target as a nonlinear function of these features.
- The result is a powerful learning method, with widespread applications in many fields.
- Used in everywhere in smart cities: autonomous driving, intelligent transportation systems, smart grids, urban informatics...

Background

- The term neural network has evolved to encompass a large class of models and learning methods.
- Here we describe the most widely used neural net, sometimes called the single hidden layer backpropagation network, or single layer perceptron.
- There has been a great deal of hype surrounding neural networks, making them seem magical and mysterious.
- As we make clear in this course, they are just nonlinear statistical models.

Introduction

- A two-stage regression or classification model
- Instead of directly feeding predictor variables into a regression/classification function, we put a set of intermediate derived features or hidden units in between.

NN regression: 1-dimensional output

- Suppose we have a p-dimensional input vector $X = \begin{bmatrix} X_1 \ X_2 \ \dots X_p \end{bmatrix}^T$
- Our objective is to predict an output scalar Y from X
- Hidden units: an M-dimensional vector $Z = [Z_1 \ Z_2 \ ... \ Z_M]^T$
- *Z* is given by the sigmoid function:

$$\bullet Z_1 = \frac{1}{1 + \exp(\alpha_{01} + \alpha_1^T X)}$$

•
$$m = 1, 2, ..., M$$

NN regression: 1-dimensional output

•
$$Z_m = \frac{1}{1 + \exp(\alpha_{0m} + \alpha_m^T X)}, \ m = 1, 2, ..., M$$

- α_{0m} is a scalar
- α_m is a p-dimensional vector
- Output $Y = \beta_0 + \beta^T Z$
- β_0 is scalar, β is M-dimensional vector
- Thus, we have constructed a neural network.
- The NN is essentially a nonlinear regression.

Example: 1 input, 1 hidden unit

Example: 1 input, 1--3 hidden units

Hidden units

- The units in the middle of the network, computing the derived features Z_m , are called hidden units because the values Z_m are not directly observed.
- In general there can be more than one hidden layer: deep neural networks.
- We can think of the \mathbb{Z}_m as a basis expansion of the original inputs X; the neural network is then a standard linear model, or linear multilogit model, using these transformations as inputs.
- There is, however, an important enhancement over the standard basis expansion techniques discussed; here the parameters of the basis functions are learned from the data.

Hidden units

General form of hidden unit:

$$Z_m = \sigma(\alpha_{0m} + \alpha_m^T X)$$

- Notice that if σ is the identity function, then the entire model collapses to a linear model in the inputs.
- Hence a neural network can be thought of as a nonlinear generalization of the linear model, both for regression and classification.
- By introducing the nonlinear transformation σ , it greatly enlarges the class of linear models.
- Typical choice: sigmoid function

$$Z_m = \sigma(\alpha_{0m} + \alpha_m^T X) = \frac{1}{1 + \exp(\alpha_{0m} + \alpha_m^T X)}$$

Impact of α_m

$$Z_m = \frac{1}{1 + \exp(\alpha_{0m} + \alpha_m^T X)}$$

• The rate of activation of the sigmoid depends on the norm of α_m , and if $\|\alpha_m\|$ is very small, the unit will indeed be operating in the linear part of its activation function.

38

- Let's look at the two objects to be approximated:
 - Dynamics
 - Controller
- Note: both of the above are nothing but mappings (functions). Hence, we can approximate them using neural networks.
- Both of the above are in the form of ODEs:

$$\dot{\xi}(t) = f(\xi(t))$$

- Input: state variables $\xi(t)$ on the right
- ullet Output: time derivatives $\dot{\xi}(t)$ on the left
- Train an NN \hat{f} by minimizing $\sum_{s=0}^{t} \|\dot{\xi}(s) \hat{f}(\xi(s))\|_{2}^{2}$

Dynamics

$$\begin{bmatrix} d_i \\ v_i \\ a_i \\ u_i \end{bmatrix} \rightarrow NN \rightarrow \begin{bmatrix} \dot{d}_i \\ \dot{v}_i \\ \dot{a}_i \end{bmatrix} \text{ instead of } \begin{bmatrix} \dot{d}_i \\ \dot{v}_i \\ \dot{a}_i \end{bmatrix} = \begin{bmatrix} v_{i-1} - v_i \\ a_i \\ -\frac{1}{\tau}a_i + \frac{1}{\tau}u_i \end{bmatrix}$$

Controller

$$\begin{bmatrix} e_i \\ \dot{e}_i \\ \ddot{e}_i \\ u_i \\ u_{i-1} \end{bmatrix} \rightarrow NN \rightarrow \dot{u}_i \text{ instead of } h\dot{u}_i = -u_i + \begin{bmatrix} k_p \ k_d \ k_{dd} \end{bmatrix} \begin{bmatrix} e_i \\ \dot{e}_i \\ \ddot{e}_i \end{bmatrix} + u_{i-1}$$

- In fact, the NN can be updated in an online manner.
- Suppose that we have no prior knowledge about the system dynamics.
- We want to learn the dynamics $\dot{\xi} = f(\xi)$
- We begin with an initial guess $\hat{f}^0(\xi)$, i.e. an NN
- \bullet At time t, we update our estimate via

$$\min \sum_{s=0}^{s} \left\| \dot{\xi}(s) - \hat{f}^t(\xi(s)) \right\|_2^2$$

• Thus, \hat{f}^t should converge to the "true" dynamics as t increases.

- Such an approach is adaptive in the sense that it can track non-stationarity.
- We begin with an initial model $\hat{f}^0(\xi)$, i.e. an NN
- \bullet At time t, we update our estimate via

$$\min \sum_{s=0}^{t} \rho^{t-s} \|\dot{\xi}(s) - \hat{f}^{t}(\xi(s))\|_{2}^{2}$$

- Thus, if the system dynamics varies over time, \hat{f}^t should track the time-variant dynamics as t increases.
- For example, a learning-based adaptive driver can adjust itself in response to changes in # of passengers, weather, road surface, etc.

Course project #1: vehicle platooning

- Study the performance of a CACC algorithm in Ploeg, J., Van De Wouw, N., & Nijmeijer, H. (2013). L_p string stability of cascaded systems: Application to vehicle platooning. *IEEE Transactions on Control Systems Technology*, 22(2), 786-793.
- Good: replicate the results in Section VI and explore further a little bit.
- Excellent: add learning-based adaptivity to the controller.

Summary

- Technological basis
 - Autonomous driving
 - Vehicle-to-vehicle coordination
- Classical approach
 - Modeling
 - Decision making
- Learning-based approach
 - Objective
 - Design

Next time

- Background
 - Connected & autonomous vehicles
 - Vehicle-to-infrastructure connectivity
- Control in nominal case
 - Centralized approach
 - Decentralized approach
 - Hierarchical control
 - HW2
- Control in face of disruptions
 - How to address latency
 - How to address packet loss
 - How to address malicious attacks