Semaine du 13/05/2024

Chapitre T4 – Transition de phase

Plan du cours

I Corps pur diphasé

- I.1 Vocabulaire
- **I.2** Diagramme de phase (P, T)
 - \rightarrow Analyser un diagramme de phase expérimental (P, T).
 - \rightarrow Proposer un jeu de variables d'état suffisant pour caractériser l'état d'équilibre d'un corps pur diphasé soumis aux seules forces de pression.
 - \rightarrow Positionner les phases dans les diagrammes (P,T) et (P,v).
- I.3 Cas de l'eau dans une atmosphère inerte

II Équilibre liquide – vapeur

- II.1 Diagramme de Clapeyron
 - \rightarrow Positionner les phases dans les diagrammes (P,T) et (P,v).
- II.2 Titre en vapeur
 - \rightarrow Déterminer la composition d'un mélange diphasé en un point d'un diagramme (P, v).

III Bilans

III.1 Bilan d'énergie

 \rightarrow Exploiter l'extensivité de l'enthalpie et réaliser des bilans énergétiques en prenant en compte des transitions de phases.

III.2 Bilan d'entropie

 \rightarrow Exploiter la relation entre les variations d'entropie et d'enthalpie associées à une transition de phase.

Questions de cours

- \rightarrow Tracer l'allure générale d'un diagramme (P,T) et y placer les phases. Nommer les lignes et les points particuliers.
- \rightarrow Tracer l'allure générale d'un diagramme de Clapeyron (P,v) pour un équilibre liquide vapeur et y placer les phases. Nommer les lignes et le point particuliers. Tracer l'allure de quelques isothermes.
- → Énoncer le théorème des moments et expliquer son interprétation graphique dans le diagramme de Clapevron.
- $\rightarrow\,\,$ Conduire un bilan d'énergie et/ou d'entropie simple pour un système qui subit une transition de phase.

Chapitre T5 – Machines thermiques

Plan du cours

I Machine thermique

- I.1 Machine thermique ditherme
- I.2 Diagramme de Clapeyron
 - \rightarrow Donner le sens des échanges énergétiques pour un moteur ou un récepteur thermique ditherme.
 - \rightarrow Analyser un dispositif concret et le modéliser par une machine cyclique ditherme.
 - \rightarrow Définir un rendement ou une efficacité et les relier aux énergies échangées au cours d'un cycle. Justifier et utiliser le théorème de Carnot.
 - ightarrow Citer quelques ordres de grandeur des rendements des machines thermiques réelles actuelles.
 - → Expliquer le principe de la cogénération.

II Moteur ditherme

- II.1 Impossibilité d'un moteur thermique monotherme
- II.2 Sens réel des échanges d'énergie
- II.3 Rendement

III Récepteur ditherme

- III.1 Sens réel des échanges d'énergie
- III.2 Efficacité
- III.3 Pompe à chaleur

Questions de cours

- → Donner le sens réel des échanges d'énergie dans un moteur, une pompe à chaleur, un réfrigérateur.
- → Citer quelques ordres de grandeur des rendements des machines thermiques réelles actuelles.
- → Définir le rendement ou l'efficacité de chaque type de machine en fonction des énergies échangées au cours du cycle et établir la formulation associée au théorème de Carnot.

Chapitre I1 – Champ magnétique

Plan du cours

I Champ magnétique

I.1 Représentation graphique d'un champ magnétique

→ Exploiter une représentation graphique d'un champ vectoriel, identifier les zones de champ uniforme, de champ faible et l'emplacement des sources.

I.2 Sources de champ magnétique

- → Tracer l'allure des cartes de champs magnétiques pour un aimant droit, une spire circulaire et une bobine longue.
- \rightarrow Citer des ordres de grandeur de champs magnétiques : au voisinage d'aimants, dans un appareil d'IRM, dans le cas du champ magnétique terrestre.
- \rightarrow Évaluer l'ordre de grandeur d'un champ magnétique à partir d'expressions fournies.

I.3 Obtention d'un champ uniforme

 $\rightarrow~$ Décrire un dispositif permettant de réaliser un champ magnétique quasi uniforme.

II Moment magnétique

II.1 Moment magnétique d'une boucle de courant

→ Définir le moment magnétique associé à une boucle de courant plane.

II.2 Moment magnétique d'un aimant

- \rightarrow Associer à un aimant un moment magnétique par analogie avec une boucle de courant.
- \rightarrow Citer un ordre de grandeur du moment magnétique associé à un aimant usuel.

III Action d'un champ magnétique

III.1 Force de Laplace

- \rightarrow Différencier le champ magnétique extérieur subi du champ magnétique propre créé par le courant filiforme.
- → Établir et exploiter l'expression de la résultante et de la puissance des forces de Laplace dans le cas d'une barre conductrice placée dans un champ magnétique extérieur uniforme et stationnaire.
- \rightarrow Exprimer la puissance des forces de Laplace.

III.2 Couple magnétique

- → Établir et exploiter l'expression du moment du couple subi en fonction du champ magnétique extérieur et du moment magnétique.
- → Exprimer la puissance des actions mécaniques de Laplace.

III.3 Action d'un champ magnétique sur un aimant

Questions de cours

- → Représenter les lignes de champ au voisinage d'une spire, d'une bobine longue, d'un aimant.
- \rightarrow Expliquer comment s'identifie une zone de champ uniforme sur une carte de champ magnétique et décrire un dispositif permettant de réaliser un tel champ.
- \to En s'appuyant sur un schéma, donner l'expression de la force de Laplace qui s'exerce sur un élément de fil conducteur de longueur d ℓ .
- → Établir les expressions de la résultante et de la puissance des force de Laplace pour une barre conductrice dans un champ magnétique uniforme (App. ??).
- → Établir l'expression du moment du couple subi par une spire rectangulaire (App. ??).