

การแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 20 ณ มหาวิทยาลัยศิลปากร วิทยาเขตพระราชวังสนามจันทร์ ข้อสอบข้อที่ 2 จากทั้งหมด 3 ข้อ วันพฤหัสบดีที่ 16 พฤษภาคม 2567 เวลา 8.00 - 13.00 น.

ทัวร์ลง (Tour)

ตุ๊กตา**น้องส้มโอหวาน**และตุ๊กตา<u>น้องข้าวสารขาว</u>ซึ่งเป็นมาสคอตตัวใหม่แห่งจังหวัดนครปฐม กลายเป็น Art Toy ที่ได้รับความนิยมอย่างมากและมีขายเฉพาะในจังหวัดนครปฐมเท่านั้น เนื่องด้วยความ นิยมที่มีอยู่อย่างมากจากกระแสและโพสต์ของเหล่าดาราเซเล็บ ทางมหาวิทยาลัยศิลปากรจึงได้จัดกิจกรรม พิเศษเพื่อส่งเสริมการท่องเที่ยว (Tour) ที่มาจากนานาชาติด้วยการแข่ง shopping ของคู่รัก ในกติกาของ การแข่งขันจะเป็นดังนี้

- 1. ร้านที่เข้าร่วมกิจกรรมแข่ง shopping จะแบ่งเป็นโซนต่าง ๆ ทั้งหมด L โซน เรียงต่อกันจาก ซ้ายไปขวาเพื่อความสะดวกจะเรียกโซนซ้ายมือสุดว่าโซนที่ 1 โซนถัดมาไปทางขวาว่าโซนที่ 2 แล้วเรียกอย่างนี้ไปเรื่อย ๆ จนถึงโซนขวามือสุดว่าเป็นโซนที่ L
- 2. แต่ละโซนจะมีร้านค้าได้หลากหลาย โดยโซนที่ 1 จะมีร้านค้าอยู่จำนวน n_1 ร้าน โซนที่ 2 จะมี ร้านค้าอยู่จำนวน n_2 ร้าน ดังนั้น โซนที่ t จะมีร้านค้าอยู่จำนวน n_i ร้าน และ โซนที่ t จะมี ร้านค้าอยู่ t ร้าน และแต่ละโซนต้องมีร้านค้า**อย่างน้อยหนึ่งร้าน**
- 3. เฉพาะโซนที่ 1 และ โซนที่ L มีร้านค้าอยู่ เพียง 1 ร้าน ($n_1=n_L=1$)
- 4. ดังนั้นเราจะมีร้านค้าทั้งหมด $N=n_1+n_2+\cdots+n_L$ ร้าน
- 5. เพื่อความสะดวกในการเรียกชื่อร้านค้าโซนที่ 1 จะมีร้านค้าหมายเลข 1 โซนที่ 2 จะมีร้านค้า ตั้งแต่หมายเลข 2 ไปเรื่อย ๆ จนถึงร้านค้าหมายเลข $n_1+n_2=1+n_2$ โซนที่ 3 จะมีร้านค้า ตั้งแต่หมายเลข n_1+n_2+1 ไปเรื่อย ๆ จนถึงร้านค้าหมายเลข $n_1+n_2+n_3$ แล้ว โซนที่ i จะ มีร้านค้าตั้งแต่หมายเลข $n_1+\cdots+n_{i-1}+1$ ไปเรื่อย ๆ จนถึงร้านค้าหมายเลข $n_1+\cdots+n_{i-1}+n_i$ ($i=1,\ldots,L$)
- 6. กติกาในการแข่งขันของคู่รักคนแรกจะเริ่ม shopping จากร้านค้าที่ 1 ซึ่งอยู่ในโซนที่ 1 จากนั้น จะไป shopping ต่อไปยังร้านค้าที่อยู่ในโซนถัดไป (โซนที่ 2) เพียง 1 ร้านเท่านั้น (สามารถเข้า shopping ได้เพียง 1 ร้านต่อ 1 โซนเท่านั้น) จากนั้นจะต้องเดินทางจากร้านดังกล่าวไป shopping ยังร้านถัดไปในโซนถัดไปเรื่อย ๆ จนกว่าจะถึงร้านค้าสุดท้ายในโซนที่ L โดยการ shopping จะต้อง shopping ภายใต้ M เส้นทางที่จัดสรรให้เท่านั้น
- 7. แต่ละเส้นทางที่จัดสรรให้จะมีรายละเอียดเส้นทางการเดินทางเป็นข้อมูลจัตุอันดับ (quadruple) (U_j, V_j, S_j, W_j) เมื่อ j = 1, ..., M แสดงข้อมูลเส้นทางระหว่างร้านค้า (ที่อยู่ต่าง โซนกัน) โดย

- U_j, V_j เป็นหมายเลขร้านค้า โดยถ้า U_j เป็นหมายเลขร้านค้าที่อยู่ในโซน i แล้ว V_j เป็น หมายเลขร้านค้าที่อยู่ในโซน i+1 (ดังนั้นรับประกันว่า $U_i < V_j$ เสมอ)
- S_j เป็นสถานะว่าเมื่อผ่านเส้นทางนี้แล้วจะได้ตุ๊กตาตัวใดระหว่าง $S_j=1$ ได้ตุ๊กตา**น้องส้ม** โอหวาน หรือ $S_j=2$ ได้ตุ๊กตา<u>น้องข้าวสารขาว</u>
- W_j แทนจำนวนของตุ๊กตาที่คู่รักได้รับ เพื่อจะนำไปใช้ในการคำนวณการให้รางวัลการ แข่งขันต่อไป
- 8. คู่รักคนแรกที่ได้ทำการ shopping ตามกติกาในข้อที่ 6. และ 7. จนเสร็จสิ้นจะนำจำนวนของ ตุ๊กตา**น้องส้มโอหวาน**ทั้งหมดที่ได้รับ<u>มารวม</u>กันเป็นจำนวน *F* ตัว ส่วนจำนวน<u>รวมทั้งหมด</u>ของ ตุ๊กตา<u>น้องข้าวสารขาว</u>ที่ได้รับคิดเป็น *G* ตัว
- 9. คู่รักอีกคนจะต้องทำการ shopping ในรูปแบบเดียวกับข้อ 6. แต่เปลี่ยนเป็นจะเริ่ม shopping จากร้านค้าที่ N ซึ่งอยู่ในโซนที่ L จากนั้นจะไป shopping ย้อนกลับไปยังร้านค้าที่อยู่ในโซน ก่อนหน้า (โซนที่ L-1) เพียง 1 ร้านเท่านั้น จากนั้นจะต้องไป shopping ย้อนยังร้านถัดไป<u>ใน โซนก่อนหน้า</u>เรื่อย ๆ จนกว่าจะถึงร้านค้าแรกในโซนที่ 1 โดยการ shopping จะต้อง shopping ภายใต้ M เส้นทางที่จัดสรรให้เป็นไปตามข้อมูลในข้อที่ 7.
- 10. หลังจากได้ทำการ shopping ตามกติกาในข้อที่ 9. จนเสร็จสิ้นจะนำจำนวนของตุ๊กตา**น้องส้ม** โอหวานทั้งหมดที่ได้รับมารวมกันเป็นจำนวน F' ตัว ส่วนจำนวนรวมทั้งหมดของตุ๊กตา<u>น้อง</u> ข้าวสารขาวที่ได้รับคิดเป็น G' ตัว
- 11. คู่รักที่จะได้รับรางวัลในการแข่งขัน shopping ในครั้งนี้คือคู่รักที่สามารถทำให้ค่า**ความต่างใจ** $D = (F F')^2 + (G G')^2$

มีค่าที่**น้อยที่สุด** เพราะถือว่าคู่รักทั้งคู่มีใจตรงกันมาก แต่อย่างไรก็ตามหากค่าความต่างใจ ดังกล่าว**มีค่าเป็น 0** กรรมการจะทำการตรวจสอบเส้นทาง shopping ของคู่รักทั้งคู่ หากพบว่า คู่รักทั้งคู่ในเส้นทางรูปแบบเดียวกัน 100% ในการ shopping การแข่งขันดังกล่าวถือว่าไม่ สุจริตจะ**ไม่อนุญาต**ให้รับรางวัลในกรณีนี้

12. เพื่อลดความซับซ้อนในการจัดการแข่งขันจะกำหนดให้

$$\prod_{i=1}^{L} n_i \le 1,000,000$$

(ผลคูณของ $n_1, n_2, ..., n_L$ น้อยกว่าหรือเท่ากับ 1,000,000)

งานนี้ให้คุณช่วยดูว่าหากจะชน⁻ - การแข่งขั้น ค่า**ความต่างใจ**ที่น้อยที่สุดจะมีค่าเท่าใด (ทั้งนี้<u>ไม่อนุญาต</u>ให้ คู่รักใช้เส้นทางในรูปแบบเดียวกัน 100% ในการ shopping)

งานของคุณ

ต้องการให้หาว่าค่า**ความต่างใจ**ที่**น้อยที่สุด**จะมีค่าเท่าใด

ภาพที่ 1: (ซ้าย) ภาพ**น้องส้มโอหวาน** (ขวา) ภาพ<u>น้องข้าวสารขาว</u>

ข้อมูลนำเข้า (Input)

มีจำนวน M+2 บรรทัด

บรรทัดที่ 1	ระบุจำนวนเต็มสามตัวคือ N,M และ L แต่ละจำนวนคั่นด้วยช่องว่าง โดย N หมายถึง จำนวนร้านค้าทั้งหมด และ $4 \leq N \leq 200,000$ M หมายถึง จำนวนเส้นทาง และ $3 \leq M \leq 300,000$ L หมายถึง จำนวนโซน และ $3 \leq L \leq 10$
บรรทัดที่ 2	ระบุจำนวนเต็มบวก L จำนวน คือ $n_1,n_2,,n_L$ ซึ่งหมายถึงจำนวนร้านค้าของ โซนที่ $1,2,,L$ แต่ละจำนวนคั่นด้วยช่องว่าง โดย $\sum_{i=1}^L n_i = N, \prod_{i=1}^L n_i \leq 1,000,000$ และ $n_1 = n_L = 1$
บรรทัดที่ 3 ถึง M + 2	ระบุจำนวนเต็มสี่จำนวน แต่ละจำนวนคั่นด้วยช่องว่าง โดยในบรรทัดที่ $j+2$ จะระบุ U_j,V_j,S_j,W_j เมื่อ $1\leq U_j < V_j \leq N$ $S_j=1$ หรือ $S_j=2$ เพียงอย่างใดอย่างหนึ่ง $1\leq W_j \leq 10^8, j=1,,M$

หมายเหตุ

รับประกันว่าไม่มีเส้นทางสองเส้นที่เชื่อมระหว่างร้านค้าคู่เดียวกัน และมีเส้นทางที่คู่รักสามารถทำกิจกรรม shopping ได้โดยเส้นทางดังกล่าว**ไม่ซ้ำกันแบบ 100%**

ข้อมูลส่งออก (Output)

มี 1 บรรทัด

|--|

ตัวอย่าง

ตัวอย่างที่	ข้อมูลนำเข้า	ข้อมูลส่งออก
1	674 1221 1212 1323 2414 2523 3521 4622 5611	5
2	8 10 5 1 1 3 2 1 6 8 1 9 7 8 2 5 5 7 1 7 4 7 2 2 4 6 1 2 3 6 2 4 1 2 1 8 2 4 1 4 2 3 2 5 2 5 1 1	17

ภาพที่ 1: ภาพเส้นทางการ shopping ของคู่รักประกอบตัวอย่างที่ 1

คำอธิบายตัวอย่างที่ 1

คู่รักคนแรกเริ่ม shopping จากร้านที่ 1 โซนที่ 1 แล้วต่อไปยังร้านที่ 2 โซนที่ 2 ได้ตุ๊กตา**น้องส้มโอหวาน 2 ตัว** จากนั้นทำการ shopping ต่อที่ร้านที่ 5 โซนที่ 3 ได้ตุ๊กตา<u>น้องข้าวสารขาว 3 ตัว</u> จากนั้นเดินทางต่อไปยัง ร้านที่ 6 โซนที่ 4 ตุ๊กตา**น้องส้มโอหวาน**เพิ่มอีก **1 ตัว** คู่รักคนแรกได้ตุ๊กตา**น้องส้มโอหวาน** รวม **3 ตัว** และ ได้ตุ๊กตา<u>น้องข้าวสารขาว 3 ตัว</u>

ส่วนคู่รักอีกคนเริ่ม shopping จากร้านที่ 6 โซนที่ 4 จากนั้นไปยังร้านที่ 5 โซนที่ 3 ได้ตุ๊กตา**น้องส้มโอหวาน 1 ตัว** แล้วไป shopping ต่อร้านที่ 3 โซนที่ 2 ได้ตุ๊กตา<u>น้องข้าวสารขาว 1 ตัว</u> และไปสิ้นสุดการ shopping ที่ ร้านที่ 1 โซนที่ 1 ได้ตุ๊กตา<u>น้องข้าวสาร</u>เพิ่มอีก 3 ตัว คู่รักอีกคนได้ตุ๊กตา**น้องส้มโอหวาน 1 ตัว** และได้ตุ๊กตา น้องข้าวสารขาว รวม 4 ตัว

ดังนั้นค่า**ความต่างใจ**คือ
$$(3-1)^2 + (3-4)^2 = 5$$

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1.5 วินาที
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล	512 MB
คะแนนสูงสุดของโจทย์	100 คะแนน

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ

ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

กลุ่ม ชุดทดสอบที่	คะแนนสูงสุด ของกลุ่มชุดทดสอบนี้	เงื่อนไข
1	15%	$L=3$ เส้นทางระหว่างโซน 1 และ 2 จะมี $S_j=1$ ทั้งหมด และเส้นทางระหว่างโซน 2 และ 3 จะมี $S_j=2$ ทั้งหมด นอกจากนี้เส้นทางทุกเส้นที่มี $S_j=2$ จะมี W_j เท่ากันทั้งหมด
2	20%	เส้นทางทุกเส้นจะมี $\mathit{S}_{j} = 1$ ทั้งหมด
3	15%	$L=3$, เส้นทางระหว่างโซน 1 และ 2 จะมี $S_j=1$ ทั้งหมด และเส้นทางระหว่างโซน 2 และ 3 จะมี $S_j=2$ ทั้งหมด
4	10%	$L=3$ และ $n_2 \leq 2{,}000$
5	10%	$\prod_{i=1}^{L} n_i \le 2,000$
6	13%	$\prod_{i=1}^{L} n_i \le 200,000$
7	17%	ไม่มีเงื่อนไขเพิ่มเติม