· |SOLUTIONS /

SET II

(a)
$$8x-3$$

(b) $3x+4y-4$
(c) $11x+22y-22$

$$2) V = 400 \mathcal{I} r - \frac{$000 \mathcal{I}}{3}$$

$$DP = -\frac{2\dot{e}_{0}\dot{e}_{0}}{\dot{e}_{0}}\left(1 + \frac{\dot{p} - \dot{p}_{1}}{\dot{p}_{0}} + \frac{\dot{e}_{0} - \dot{e}_{0}}{\dot{e}_{0}} - \frac{\dot{e}_{0} - \dot{e}_{0}}{\dot{e}_{0}}\right)$$

(4)
$$f(0)=0$$
; $f(0)=15$
(3) $f(0)=3$
 $(1,13+4)^{2}+19(13+4)$

(e)
$$\frac{5^2+25+1}{5(5^2+25+4)}$$
; (d) $\frac{55}{5^3+1}$

(e)
$$\frac{3^2+5+1}{3(3^2+1)(3^4+3^3+63^2+123+1)}$$

7. (e) (i)
$$\frac{1}{3^{2}+75+10}$$
 ; (ii) $\frac{1}{5+12}$; (iii) $\frac{1}{3^{2}+25+6}$; (iv) $\frac{1}{3^{2}+65+25}$; (v) $\frac{1}{3^{2}+75+12}$
(b) (i) $\frac{4}{3}e^{-5t}$ $\frac{1}{3}e^{-2t}$) $u(t)$
(ii) $\frac{1}{51}e^{-12t}$ $\frac{1}{51}e^{25}$ (34) $-\frac{1}{51}\sin(3t)$ $u(t)$
(iii) $\frac{1}{4}e^{t}\sin(\sqrt{5}t)$ $u(t)$
(iv) $\frac{1}{15}e^{t}\sin(\sqrt{5}t)$ $u(t)$
(iv) $\frac{1}{20}e^{t}$ $\frac{\sqrt{5}}{40}e^{-3t}$ $\sin(4t+9)$ $u(t)$, $9=\frac{1}{2}e^{-4t}$ $\frac{1}{3}e^{-3t}$ $u(t)$

8. a)
$$g(t) = \frac{1}{3} \left[1 - \frac{1}{2} (3e^{t} - e^{-3t}) \right] u(t)$$

6) $\alpha(t) = -4 \delta(t)$

[SET II]

(D) System I: a)
$$\frac{k_1 + k_2}{k_1 k_2}$$
; b) $\frac{1}{k_2}$; c) $\frac{k_1}{k_2 k_2}$

System II: a) $\frac{1 + \frac{k_2}{k_2}}{k_3}$; b) $\frac{1}{k_2}$; c) $\frac{c_3}{k_1 + c_3}$

System III a) $\frac{M_2 s^2 + k_2 + k_2}{M_1 M_2 s^2 + s^2 \left[k_1 M_2 + (k_1 + k_2) M_2\right] + k_1 k_2}$

(b) $\frac{M_1 M_2 s^2 + s^2 \left[k_1 M_2 + (k_1 + k_2) M_2\right] + k_1 k_2}{M_2 s^2 + k_1 + k_2}$

(c) $\frac{k_2}{M_2 s^2 + k_2 + k_2}$

(d) $\frac{c_3 s^2 + c_4 + c_4}{c_4 s^2 + c_5 + c_4}$ (e) $\frac{1}{c_4 s^2 + c_5 + c_5}$

(c)
$$\frac{1}{C_{1}C_{2}P_{1}P_{2}S^{2}+(C_{1}P_{1}+C_{2}P_{1}+C_{2}P_{2})S+1}$$
(d)
$$\frac{(1+C_{1}L_{3}^{2})P}{(1+C_{2}L_{3}^{2})P+(1+C_{2}P_{3})L_{3}}$$

$$\hat{\mathcal{D}} \hat{\mathcal{D}}_3 = \frac{col \Gamma}{V_1 \left(m_2 c^2 + m_3 ol^2 \right)}$$

)
$$J^{2}(\frac{1}{a} + I_{2} \frac{a}{6^{2}}) + 3(\frac{c}{a} + c_{1} \frac{a}{6^{2}}) + 2ak$$

SET
$$[V]$$
 $D(0)(i)$
 2
 $3\ddot{a}$
 3

(ii)
$$L = \ddot{Z} + C_4 \ddot{Z} + R_0 \dot{Z} + C_4 P_0 \dot{Z}$$

(iii) $L_1 L_3 \dot{R}_0 + (L_3 R_1 + L_1 R_2 + L_3 R_2) \dot{R}_0 + R_1 R_2 \dot{R}_0 = L_1 L_3 R_2 \dot{Z}_0 + L_3 R_1 R_2 \dot{Z}_0$

(2) (1)
$$\frac{4}{5+6}$$
; (11) $\frac{43+5}{5^2+65+5}$
(3) (1) $\frac{2}{3}(1-e^{6\xi})u(\xi)$; (11) $(1-\frac{1}{4}e^{-\frac{1}{3}}e^{-5\xi})u(\xi)$
(3) (2) $\frac{K_1K_2}{2}$; $\frac{C}{1+K_1K_2}$; $\frac{K_2}{1+K_1K_2}$
(4) (1) $K_1 = 9$, $K_2 = 1$; (11) $K_1 = 99$, $K_2 = 1$
(4) $\frac{C}{2} = \frac{G_1G_3}{1+G_2H_2+G_2G_3H_3+(G_3+H_1)G_1G_2}$
 $\frac{C}{2} = \frac{G_2G_3}{1+G_2H_2+G_2G_3H_3+(G_3+H_1)G_1G_2}$

$$\frac{G_{2}G_{3}}{D} = \frac{G_{2}G_{3}}{1+G_{2}H_{2}+G_{2}G_{3}H_{3}+(G_{3}+H_{1})G_{2}G_{2}}$$

$$\frac{G_{*}(G_{2}G_{3}+G_{4})}{1+H_{2}(G_{2}G_{3}+G_{4})+G_{*}G_{*}G_{2}H_{2}+G_{*}(G_{2}G_{3}+G_{4})}$$

SET
$$\overline{y}$$
 0.05
 $5+0.18$

Capproximate values)

 $25ee$
 $36=60$, $T=0.0069$ ser. (approximate values)

 \overline{y}
 $\overline{$

D 6= 7.86 sec, p=-32.9 kPa

(B) 0.01 (3+0.1)2

(9) 0.097 3°+0.2/5+0.11

(Da), 6), c), d), a), i) stable e), e), g), j) (2) jes;) -0.52 K 2 0.101 and 9.8982 K2 + 00 K=0.101 K=9.89 3 = -1.55 1=-6.45 $\frac{K(33+1)}{605^2+235+12k+1};c) \quad k > 1.58$ ol) 59.95 km

5) for OLK 22 unstable

for K=2 neutrally stable

for 22 K = 2.25 exponentially stable

for 225 LK 2 + 000 oscillatory stable

(3) $\frac{K(3+2)}{(3+1)(3+4)}$ unstable

c) $\frac{K(3+6)}{J(3^{2}+63+13)}$ neutrally stable

PAST EXAMS ! a) LM = + (RM+LC) = + (RC+21K) = +2RK== -10 6) C= 8MK d) 23.3V 3) 51°C 4) 81.6 °C (3) 1) AR25+11 2) St (1-e x2) 3) 14.4 lit. 4) 14.4 sec. (4) a) VI (4 e 37) 9= ten 1 RCT T[3, (4)] 6) VI (1+(2CT) · C + V1+(2CT) · Sin(=1-4) + + T1+(200) sin [=(4-7)-9]

(5) 1)
$$\frac{K_{1}U}{R} = M \dot{x} + C \dot{x} + K \dot{x} = 2$$
 $\frac{V_{1}K_{1}}{R}$
 $\frac{V_{1}K_{2}}{R} = \frac{V_{1}K_{2}}{R} + \frac{V_{1}K_{2}}{R}$
 $\frac{V_{1}K_{2}}{R} = \frac{C}{R} + \frac{C$

 $\frac{Z(3)}{L(3)} = \frac{K_1 K_2 x}{M_3^2 (L_3^2 + K_1^2)}$

9
$$\frac{g}{g}$$
:

 $\frac{g}{g}$:

 $\frac{$