

Trabajo Práctico 1 - Análisis y visualización

Una vez que entendimos el dataset y visualizamos su conjunto de datos, estamos listos para adentrarnos en su exploración. Esto es, interpretar los datos sacando conclusiones más complejas y menos visibles a simple vista. Iremos descubriendo más información de nuestro dataset a los largo del trabajo práctico y sus preguntas.

Actividades

1. Entender el dominio del dataset

- Comentar el conjunto de datos, ¿Qué tipo de datos son?¿Qué uso tienen?¿De donde provienen? ¿Con qué fin se almacenan?
- Escribir un apartado describiendo los datos y por qué es interesante analizarlos. ¿Qué representan cada una de las variables?¿Qué tipo de variables son?
- ¿Por qué hay dos dataset?¿ Cual corresponde al que un data scientist debería usar?

2. Visualización básica: Necesitamos entender cómo es el comportamiento a gran escala de los precios de nuestra acción a analizar.

- Graficar la serie temporal de los precios de cierre.
- Graficar la serie temporal de los precios de apertura.
- o Graficar la serie temporal del volumen de acciones negociadas.

3. Visualización avanzada

 Hacer un gráfico de velas OHLC (open, high, low, close) comúnmente usado en el mundo financiero, mediante el uso de la librería plotly.graph_objects

4. Análisis de volatilidad

- o Calcular la volatilidad diaria de los precios de cierre.
- o Graficar la volatilidad a lo largo del tiempo.

5. Análisis de retornos

- Calcular los retornos diarios de los precios de cierre.
- o Graficar los retornos diarios.
- Calcular la media y la desviación estándar de los retornos diarios.

6. Construcción de datos valiosos (opcional)

- Downsampling: Evaluar las precios en un marco temporal más grande (semanal, mensual, anual). Usar timestamps para esto.
- Upsampling: Evaluar las precios en un marco temporal menor (cada 12hs, cada 8hs, etc).
 Usar timestamps para esto.

Analizando los datos obtenidos

Características que debe cumplir el entregable

- El proyecto debe ser escrito en un *jupyter notebook* (.ipynb), siguiendo las convenciones PEP8 (https://peps.python.org/pep-0008/).
- El Notebook debe ser claro y estar bien organizado: debe contar con un índice, apartados, código fácil de leer, probado y comentado (no abusar de los comentarios).
- El archivo .ipynb debe compartirse a través de un Google Collab con permisos de edición habilitados al mentor. A su vez, una copia del archivo debe enviarse a la casilla de correo emmanuel.tassone@unc.edu.ar
- Tener en cuenta que el archivo entregable debe contener solo las resoluciones pedidas, dejando de lado análisis adicionales que se hayan hecho.
- Es importante que luego de cada código y gráfico haya una conclusión o interpretación de lo obtenido.

