Inferenza Statistica

Esame del 26 maggio 2015

Tempo a disposizione 2 ore.

Tra parentesi quadre i punteggi massimi attribuibili per ciascun quesito (Totale: 34).

- 1. Nella popolazione X è distribuita secondo una legge esponenziale di media μ . Si voglia verificare il seguente sistema di ipotesi $H_0: \mu=150$ contro $H_1: \mu=200$. Si immagini di poter disporre di un campione casuale semplice di ampia dimensione n.
 - **a.** [5] Quanto grande è n se voglio $\alpha = .01$ e $\beta = .02$?
 - **b.** [2] Se il campione ha fornito $\bar{x} = 175$, si accetta H_0 ?
 - c. [2] Quanto vale il p-value per il test?
- 2. Gli incidenti automobilistici in Italia in un periodo festivo di 72 ore avvengono secondo un processo di Poisson di paramatro $\lambda = 10$ per ora. Sia Y il tempo che trascorre fino al primo incidente dall'inizio del periodo festivo.
 - a. [3] Si dica quanto valgono media e varianza di Y.
 - b. [3] Si calcoli la probabilità che il primo incidente avvenga dopo 15 minuti.
 - c. [3] Sia V il tempo che trascorre fino al 10° incidente. Qual è la media di V?
- 3. Vi sono numerosi studi il cui obiettivo è quello di comparare il comportamento di consumo di uomini e donne. Si vuole valutare se ci siano differenze nella spesa mensile (in euro) media per abbigliamento maschile e femminile. La presenza di numerosi studi sullo stesso argomento consente di avere informazioni sulla varianza nella popolazione. I risultati di un recente studio sono riportati sotto:

	Uomini	Donne
dimensione campionaria	34	28
media campionaria	212	256
varianza delle due popolazioni	1656	1540

- a. [4] Si fornisca un intervallo di confidenza al livello $1 \alpha = .98$ per la differenza fra le medie delle spese di consumo di uomini e donne essendo le variante note.
- b. [4] Si calcoli l'intervallo di confidenza per la differenza di cui sopra al livello del 99% immaginando le varianze ignote e uguali, e i valori di S^2 pari a quelli dati nella tabella.
- 4. Sia X_1 una variabile aleatoria con media pari a $\mu_1=5$ e varianza pari a $\sigma_1^2=25$ e sia X_2 una variabile aleatoria con media pari a $\mu_2=2$ e varianza $\sigma_2^2=1$. La correlazione fra le due variabili è ρ . Si definiscano $Y_1=a_1X_1+a_2X_2$ e $Y_2=b_1X_1+b_2X_2$.
 - **a.** [4] Per quali valori di a_1 e a_2 la media di Y_1 e pari a 0?
 - **b.** [4] Per quali valori di a_1 , a_2 , b_1 e b_2 , risultano incorrelate Y_1 e Y_2 ?