UNISONIC TECHNOLOGIES CO., LTD

ULN2804

LINEAR INTEGRATED CIRCUIT

EIGHT HIGH VOLTAGE, HIGH CURRENT DARLINGTON ARRAYS

DESCRIPTION

The **ULN2804** is a high voltage, high current Darlington array comprised of eight NPN Darlington pairs. The device features open-collector outputs with suppression diodes for inductive loads and is ideally suited for interfacing between low-level logic circuitry and high power loads. Typical loads including relays DC motors, filament lamps, LED displays, printer hammers and high power buffers.

SOP-18

■ FEATURE

- * Eight Darlingtons with common emitters
- * TTL, PMOS or CMOS Compatible inputs
- * Peak output current to 500mA
- * Output voltage to 50V
- * Clamp diodes for transient suppression
- * DIP-28 and SOP-18 packages

ORDERING INFORMATION

Order Number	Package	Packing
ULN2804G-D18-T	DIP-18	Tube
ULN2804G-S18-R	SOP-18	Tape Reel
ULN2804G-S18-T	SOP-18	Tube

MARKING

<u>www.unisonic.com.tw</u> 1 of 5

■ PIN CONFIGURATIONS

■ SCHEMATICS

ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Input Voltage		V_{IN}	30	٧
Output Voltage		V_{OUT}	50	V
Collector Current – Continuous		I _C	500	mA
Base Current – Continuous		I_{B}	25	mA
Dawer Dissination	DIP-18		1.5	W
Power Dissipation	SOP-18	P_{D}	0.95	W
Junction Temperature		TJ	+120	ç
Operating Ambient Temperature		T_OPR	0 ~ +70	ç
Storage Temperature		T _{STG}	-55 ~ + 150	°C

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied

■ THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT	
Thermal resistance from junction to Ambient	DIP-18	0	60	°C /W
	SOP-18	θ_{JA}	80	°C /W

■ ELECTRICAL CHARACTERISTICS (Ta = 25°C, unless otherwise specified.)

PARAMETER		SYMBOL	TEST FIGURE	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Collector-Emitter Saturation Voltage		V _{CE(SAT)}	1	I _{OUT} =350mA, I _{IN} =500μA			1.3	1.6	V
				I _{OUT} =200mA, I _{IN} =350μA			1.1	1.3	V
				I _{OUT} =100mA,I _{IN} =250μA			0.9	1.1	V
					I _{OUT} =125mA			5.0	V
Input Voltage		V _{IN(ON)}	2	V _{CE} =2.0V	I _{OUT} =200mA			6.0	V
					I _{OUT} =275mA			7.0	V
					I _{OUT} =350mA			8.0	V
Clamp Diode Forward Voltage	Э	V_{F}	3	I _F =350mA			1.5	2.0	V
Output Leakage Current		I _{CEX}	4a	V _{OUT} =50V,Ta=70°C				100	
			4b	V _{OUT} =50V,Ta=70°C,V _{IN} =1.0V				500	μΑ
Input Current	ON	I _{IN(ON)}	5	V _{IN} =5V			0.35	0.5	mA
	ON			V _{IN} =12V			1.0	1.45	mA
	OFF	I _{IN(OFF)}	6	I _{OUT} =500μA, Ta=70°C		50	100		μΑ
Clamp Diode Reverse Current		I _R	7	V _R =50V, Ta=25°C				50	μΑ
				V _R =50V, Ta=70°C				100	μΑ
DC Current Gain		h _{FE}		V _{OUT} =2V, I _{OUT} =350mA		1000			
Input Capacitance		C _{IN}					15	25	pF
Turn-On Delay		t _{ON}	8				0.25	1	μS
Turn-Off Delay		t _{OFF}	8				0.25	1	μS

■ TEST FIGURES

Figure 1.

Figure 2.

Figure 3.

Figure 4a.

Figure 4b.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Note1: Pulse width $50\mu s$, duty cycle 10%

Output impedance 50Ω, t_R≤5ns, t_F≤10ns

Note2: R1: 0, V_{IH}: 3V

Note3: C_L includes probe and jig capacitance.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.