

DUAL J-FET INPUT OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2082 is JFET input dual operational amplifiers. The NJM2082 features low input offset and bias current, high input impedance. The NJM2082 ideally suits for fast integrator, DA converter, sample & hold and audio applications. The NJM2082 is improved version of the NJM082.

■ FEATURES

• Operating Voltage $(\pm 4V \sim \pm 18V)$ • High Input Resistance $(10^{12}\Omega \text{ typ.})$ • High Slew Rate $(20V/\mu \text{s typ.})$

• Package Outline DIP8,DMP8,SIP8,SSOP8

• Bipolar Technology

■ PACKAGE OUTLINE

NJM2082D

NJM2082M

NJM2082V

NJM2082L

■ PIN CONFIGURATION

NJM2082D NJM2082M NJM2082V

NJM2082L

PIN FUNCTION
1.A OUTPUT
2.A -INPUT
3.A +INPUT
4.V
5.B +INPUT
6.B -INPUT
7.B OUTPUT
8.V

■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ /V ⁻	± 18	V
Differential Input Voltage	V _{ID}	± 30	V
Input Voltage	V _{IC}	± 15 (note)	V
Power Dissipation	P _D	(DIP8) 500 (DMP8) 300 (SIP8) 800 (SSOP8) 250	mW
Operating Temperature Range	T _{opr}	-40~+85	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

(note) For supply voltage less than ± 15 V. the absolute maximum input voltage is equal to the supply voltage.

■ ELECTRICAL CHARACTERISTICS

(Ta=+25°C,V⁺/V⁻=±15V)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _S =50Ω	-	2	10	mV
Input Offset Current	I _{IO}		-	5	200	pА
Input Bias Current	I_{B}		-	30	400	pА
Input Resistance	R _{IN}		-	10 ¹²	-	Ω
Large Signal Voltage Gain	A_{V}	R _L ≥2kΩ,V _O =±10V	86	110	-	dB
Maximum Output Voltage Swing	V_{OM}	$R_L=2k\Omega$	± 12	+13.5,-13.0	-	V
Input Common Mode Voltage Range	V_{ICM}		± 12	+15.0,-12.5	-	V
Common Mode Rejection Ratio	CMR	R _S ≤10kΩ	70	90	-	dB
Supply Voltage Rejection Ratio	SVR	R _S ≤10kΩ	76	100	-	dB
Operating Current	Icc		-	4	6	mA
Slew Rate	SR		-	20	-	V/µs
Gain Bandwidth Product	GB	f=10kHz	-	5	-	MHz
Equivalent Input Noise Voltage 1	e_n	R_S =100 Ω ,f=1kHz	-	13	-	nV/√Hz
Equivalent Input Noise Voltage 2	V_{NI}	RIAA R _S =2.2kΩ,30kHz LPF	-	1.6	-	μVrms

■ TYPICAL CHARACTERISTICS

Voltage Gain vs. Frequency

Maximum Output Voltage Swing vs. Frequency

Equivalent Input Noise Voltage vs. Source Resistance

Maximum Output Voltage Swing vs. Load Resistence

Equivalent Input Noise Voltage vs. Frequency

Voltage Follower Palse Response

■ TYPICAL CHARACTERISTICS

Operating Current vs. Temperature

Maximum Output Voltage Swing vs. Temperature

Input Offset Voltage vs. Temperature

Input Bias Current vs. Temperature

Operating Current vs. Operating Voltage

Maximum Output Voltage Swing vs. Operating Voltage

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.