Basic Combinatorics - Spring, Home Assignment 3

Saar Barak

Problem 1.

claim. There is an integer n_0 such that for any $n \ge n_0$, in every 9-coloring of the integers $\{1, 2, 3, ..., n\}$, one of the 9 color classes contains 4 integers a, b, c, d such that a + b + c = d.

Proof. based on Ramsay Theorem Let $n_0 = K(4, ..., 4)$, where 4 appears k-1 times. and lets c be r-colouring s.t:

$$c: \{1, \dots, n\} \to \{1, \dots, k\}$$

For graph K_n and labelling of its edge $\{1, \ldots, n\}$, we can colour any edge e_{ij} with c(|i-j|), we got a k-1-colouring of K_n , then for n_0 , we must have a K_4 with all edges different. for vertices $x \leq y \leq z \leq w$ then

$$a = y - x, b = z - y, c = w - z, d = w - x$$

Gives a solution

Problem 2.

claim. every tournament on n vertices, contains a transitive tournament on $\lfloor \log_2 n \rfloor$ vertices.

Proof. Using induction for n = 0, 1, 2 its holds on empty. W.L.O.G¹ assume the claim holds for $n \le 2^k$ now lets look at some tournament on 2^{k+1} vertices and we can pick any vertex v, and define:

$$v_{in} = \{u : \text{ exsit edege } v \leftarrow u\}, v_{out} = \{u : \text{ exsit edege } v \rightarrow u\}$$

Hence $|v_{in}| + |v_{out}| = 2^{k+1} - 1$ and one of them contain $|2^k|$ edges, lets assume its v_{in}^2 by our assumption its contains transitive tournament T_{in} size |k|. now $T_{in} \cup \{v\}$ is sub tournament and any edge points to v hence its transitive tournament on |k+1| vertices.

¹we can modify any other tournament to to nearst power of 2 its will still hold for $|\log_2 n + 1|$ see (10)

²its equivalence for v_{out}

claim. there exists a tournament on n vertices that does not contain a transitive tournament on $2\log_2 n + 2$ vertices.

Proof. The number of Tournament on n vertices is $2^{\binom{n}{2}}$. The number of tournaments of size k is k!, and there are $\binom{n}{k}$ sets of size k, and the number of ways to choose the edges outside the transitive tournament is $2^{\binom{n}{2}-\binom{k}{2}}$. hence if we show that

$$k! \binom{n}{k} 2^{\binom{n}{2} - \binom{k}{2}} < 2^{\binom{n}{2}}$$

its yield that for some k the number of n-vertex tournaments with a transitive subtournament on k vertices is smaller than the total number of tournaments.

$$2^{\binom{n}{2}} > k! \binom{n}{k} 2^{\binom{n}{2} - \binom{k}{2}} \tag{1}$$

$$2^{\binom{k}{2}} > k! \binom{n}{k} \tag{2}$$

$$> k! \frac{n!}{k!(n-k)!} \tag{3}$$

$$> n(n-1)(n-2)\cdots(n-k+1)$$
 (4)
 $> n^k$ (5)

$$> n^k$$
 (5)

Taking \log_2 from (1)(5)

$$\binom{k}{2} > k \log_2(n) \tag{6}$$

$$\frac{k!}{k(k-2)!} > 2\log_2(n) \tag{8}$$

$$k - 1 > 2\log_2(n) \tag{9}$$

$$k > 2\log_2(n) + 1 \tag{10}$$

Problem 3.

claim. if an n-vertex graph G = (V, E) has no copy of $K_{2,t}^3$ then

$$|E| \le \frac{1}{2}(\sqrt{t-1}n^{\frac{3}{2}} + n)$$

Proof. W.L.O.G let $t \geq 1$. we can distinguish that any $e_1, e_2 \in E$ have at most³ t neighbours. and each one of them can be part of pair. we can consider it as the number of path length 2 in G. Let $d(v_i)$ be the deg of $v_i \in G$ and we get that:

$$t\binom{n}{2} \ge \sum_{v \in V} \binom{d(v)}{2} \ge n\binom{2|E|/n}{2} \tag{11}$$

The right-hand side hold from Jensen's Inequality and since its minimized⁴ the binomial when all the degrees are equal, $d_i = 2|E|/|V|$.

$$n\binom{2|E|/n}{2} = n\frac{(2|E|/n)(2|E|/n-1)}{2} \ge n\frac{(2|E|/n-1)^2}{2}$$
 (12)

And

$$t\binom{n}{2} = t\frac{n^2 - n}{2} \le t\frac{n^2}{2} \tag{13}$$

. We conclude from (11)(12)(13) that

$$n\frac{(2|E|/n-1)^2}{2} \le t\frac{n^2}{2} \tag{14}$$

$$(2|E|/n-1)^2 \leq tn \tag{15}$$

$$2|E|/n \leq \sqrt{tn} + 1 \tag{16}$$

$$|E| \le \frac{1}{2} (\sqrt{t} n^{\frac{3}{2}} + n)$$
 (17)

³I will use t+1 for the proof i.e $K_{2,t+1}$

⁴convex property

Problem 4.

claim. Let $S_1, \ldots, S_n \in [n]$ such that $|S_i \cap S_j| \leq 1$ for all $1 \leq i < j \leq n$ then.

$$\frac{1}{n}\sum_{i=1}^{n}|S_i|=O(\sqrt{n})$$

Proof. Let define G = (V, E) such that

$$S = \{S_i : S_i \in [n]\}, U = \{i \in n\} \text{ and } E = \{e_{S_k,m} : m \in S_k\}, V = S \cup U$$

Its immediate |V| = 2n and G is Bipartite since we can dived V into 2 disjoint independent sets S and U, that is any $e \in E$ connects a vertex in S to one in U. hence G has no copy of $K_{2,2}$, using **Problem 3** we can get that

$$|E| \le \frac{1}{2}(\sqrt{2-1}(2n)^{\frac{3}{2}} + 2n)$$
 (18)

$$\sum_{i=1}^{n} |S_i| \le \sqrt{2}n^{\frac{3}{2}} + n \tag{19}$$

$$\frac{1}{n}\sum_{i=1}^{n}|S_i| \leq \sqrt{2}\sqrt{n} + 2 \tag{20}$$

$$\frac{1}{n} \sum_{i=1}^{n} |S_i| = O(\sqrt{n}) \tag{21}$$

Problem 5.

Theorem. if G = (V, E) has no copy of K_{t+1} then $|E| \leq (1 - \frac{1}{t}) \frac{n^2}{2}$. (Turan's Theorem)

Proof. Let $x = (x_1, ..., x_n) \in \mathbb{R}^n$ and f to be vector and weight function satisfying

$$\forall i \ 0 < x_i \le 1, \sum_{i=1}^n x_i = 1, f(x) = \sum_{i,j \in E} x_i x_j$$

By taking $x = (\frac{1}{n}, \dots, \frac{1}{n})$ we get

$$f(x) \ge \sum_{i,j \in E} \frac{1}{n^2} \ge \frac{|E|}{n^2}$$
 (22)

The "weight shifting" method yield to shift the weight between any neighbours x_i, x_j if $e_{i,j} \notin E$.

We can notice that the sum is maximized when all the weight is concentrated on a clique. Since any shift is does not decrease the value of f we can repeat the processes. since G = (V, E) has no copy of K_{t+1} we can have at most t size clique, let name it [T]. we can get lower bound on f:

$$f(x) \le \sum_{i,j\in[T]} x_i x_j = \sum_{i,j\in[T]} \frac{1}{t^2}$$
 (23)

$$\leq \frac{t(t-1)}{2} \frac{1}{t^2} \tag{24}$$

$$\leq (1 - \frac{1}{t}) \frac{1}{2}$$
(25)

Combining (25) and (22) to finish the proof

$$\frac{|E|}{n^2} \le (1 - \frac{1}{t})\frac{1}{2} \tag{26}$$

$$|E| \le (1 - \frac{1}{t}) \frac{n^2}{2} \tag{27}$$