Rozkład Poissona – realizacja numeryczna Ustalamy λ $dla \ 0 \le x < 1$ $F_x(x) = P(k = 0) = e^{-\lambda}$ $q=exp(-\lambda), k=0, s=q, p=q$ $dla\ 1 \le x < 2$ $F_x(x) = P(k = 0) + P(k = 1) = e^{-\lambda} + \lambda e^{-\lambda}$ $dla \ 2 \le x < 3$ $F_X(x) = e^{-\lambda} + \lambda e^{-\lambda} + \frac{1}{2} \lambda^2 e^{-\lambda}$ $dla 3 \le x < 4$ $F_x(x) = e^{-\lambda} + \lambda e^{-\lambda} + \frac{1}{2} \lambda^2 e^{-\lambda} + \frac{1}{6} \lambda^3 e^{-\lambda}$ Generuj u(0,1) (rozkład jednorodny) $dla\,k=0\quad q=e^{-\lambda}\quad p=e^{-\lambda}\quad s=e^{-\lambda}$ $dla \ k=1 \quad p=\frac{p\lambda}{\cdot}=\lambda e^{-\lambda} \quad s=e^{-\lambda}+\lambda e^{-\lambda}\equiv F_{_X}(1)$ Zwróć k u>s dla k = 2 $p = \frac{1}{2} \lambda^2 e^{-\lambda}$ $s = e^{-\lambda} + \lambda e^{-\lambda} + \frac{1}{2} \lambda^2 e^{-\lambda} = F_x(2)$ k→k+1 dla k = 3 $p = \frac{1}{2} \lambda^2 e^{-\lambda} \frac{\lambda}{2} = \frac{1}{4} \lambda^3 e^{-\lambda} \quad s = F_x(2) + \frac{1}{4} \lambda^3 e^{-\lambda} = F_x(3)$ $p \to p^\star \, \lambda \, / \, k$ s → s+p Istnieja związki pomiędzy rozkładami: Przykład: rozkład Poissona jako granica rozkładu dwumianowego dla dużych n, małych p, i n \cdot p=const= λ . Stąd wynika przydatność rozkładu Poissona do opisu "zjawisk rzadkich". RPiS 2013/2014

Generatory rozkładu jednorodnego

- Rozkład jednorodny na przedziale (a,b) E(X)=(b+a)/2var(X)=(b-a)2/12
- Realizacja numeryczna:
- Najbezpieczniej używać sprawdzonych procedur (np. biblioteki
- 1) Metoda kongruencyjna generator liniowy

$$x_{n+1} = \underbrace{(a_0 x_n + a_1 x_{n-1} + \ldots + a_k x_{n-k})}_{k+1 \text{ propresentist}} + a_{k+1}) (\text{mod} M) \qquad a_i, x_i \in [0, M)$$

K=0 – generatory multiplikatywne $x_{n+1} = (a_0x_n) \pmod{M}$

 $\mathsf{K} \texttt{=} \mathsf{1} - \mathsf{generatory} \; \mathsf{Fibonacciego} \; \; x_{n+1} = (a_0 x_n + a_1 x_{n-1}) (\mathsf{mod} M)$

Generatory mieszane $x_{n+1} = (a_0x_n + a_1) \pmod{M}$ (W języku C funkcja srand daje a₁= liczba sekund od 1.1.1970) Np. a₀=69069 a₁=1 M=2³² (Marsaglia 1972)

> RPiS 2013/2014 2

Generatory rozkładu jednorodnego

- Przykład generator mieszany: $x_n = (5x_{n-1} + 1) \pmod{16}$
 - Okres = 16 x₁=x₁₇=10
- Dane wejściowe: x₀=5:
- Kolejne otrzymywane liczby: 10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5 10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5.
- Po podzieleniu przez 16:
- $0.6250,\, 0.1875,\, 0.0000,\, 0.0625,\, 0.3750,\, 0.9375,\, 0.7500,\, 0.8125,\,$ 0.1250, 0.6875, 0.5000, 0.5625, 0.8750, 0.4375, 0.2500, 0.3125, 0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500, 0.8125, 0.1250, 0.6875, 0.5000, 0.5625, 0.8750, 0.4375, 0.2500, 0.3125

RPiS 2013/2014

Generatory rozkładu jednorodnego

Uwagi do implementacji: musimy zachowywać odpowiednią precyzję i unikać przepełnienia

$$x_n = (7^5 x_{n-1} + 1) \pmod{2^{31} - 1}$$

- 231-1 = 2147483647 liczba pierwsza
- 7⁵ = 16807 jest jednym z 534600000 pierwotnych pierwiastków czyli w praktyce daje maksymalny okres.
- lloczyn a* x_n , może osiągnąć 16807× 2147483647≈ 1.03× 2⁴⁵ → potrzeba 46-bitowych integer $ay \mod m = a(x) + mh(x)$
- Pomocny może być wzór: (algorytm Schrage'a)

 $ax \mod m = g(x) + mh(x)$ $g(x) \equiv a(x \bmod q) - r(x \operatorname{div} q)$ $h(x) \equiv (x \operatorname{div} q) - (ax \operatorname{div} m)$

Zadania testowe: np. poprawna implementacja x₁₀₀₀₀= 1043618065

 $q \equiv m \operatorname{div} a$ $r = m \mod a$

RPiS 2013/2014

Generatory rozkładu jednorodnego

2) Uogólnione generatory Fibonacciego (przypominają ciąg Fibonacciego f_0 = f_1 =1 f_n = f_{n-2} + f_{n-1} dla n>1)

$$x_n = (a_0 x_{n-2} + a_1 x_{n-1}) \pmod{M} \rightarrow$$

$$x_n = (a_0 x_{n-r} + a_1 x_{n-s}) (\operatorname{mod} M) \longrightarrow x_n = (a_0 x_{n-r} \oplus a_1 x_{n-s}) (\operatorname{mod} M)$$

gdzie \oplus = +,-,·, xor,... jest działaniem modulo M (nie może wyprowadzać poza zakres [0,M)

Inny zapis: $F(r, s, \oplus)$

F(17,5,+) dla M=232 ma okres (217-1)231 F(17,5,*) dla M=232 ma okres (217-1)229

RPiS 2013/2014

Generatory rozkładu jednorodnego

3) Generatory oparte na mnożeniu z przeniesieniem Inicjujemy podając wartości $x_1, x_2, \dots, x_k \in (0,M)$ i c=0 c-parametr przeniesienia.

 $x_n = (c + a_1 x_{n-1} + ... + a_k x_{n-k}) \pmod{M}$ gdzie w kolejnych iteracjach

gozie w kolejnych iteracjach
$$c \rightarrow Int \left[(c + a_1 x_{n-1} + a_2 x_{n-2} + \ldots + a_k x_{n-k}) / M \right]$$

ryp.
$$x_n = (c+1941x_{n-1}+1860x_{n-2}+1812x_{n-3}+1776x_{n-4}+1492x_{n-5}+1215x_{n-6}+1066x_{n-7}+12013x_{n-8}) \mod 2^{16}$$

4) Generatory nieliniowe np. $x_n = (a_1(x_{n-1})^{-1} + c) \pmod{M}$

 $x_n = (a(n+b)+c)^{-1} (\text{mod} M)$ x_n nie zależy od poprzednich x_k → dobry do programowania $x_n = (x_{n-1})^2 \pmod{M}$ równoległego

RPiS 2013/2014

Generatory rozkładu jednorodnego

5) Generatory oparte na rejestrach przesuwnych

$$x_n = (a_1 x_{n-1} + \ldots + a_k x_{n-k}) \pmod{2}$$

$$a_i, x_i \in \{0,1\}$$
Ponieważ (a+b) mod 2 = a xorb to
$$a_i, x_i \in \{0,1\}$$
Ponieważ (a+b) mod 2 = a xorb to
$$a_i, x_i \in \{0,1\}$$

$$a_i, x_i \in \{0,1\}$$

 $X_n = X_{n-j1} xor X_{n-j2} xor \dots xor X_{n-jl}$ $a_{im} = 0 dla m > l$ Tworzymy ciąg bitów x_n i z niego liczby pseudolosowe $u_i=0.x_{i.s+1}x_{i.s+2}\dots x_{i.s+L}$ $dla\ s\leq L\ oraz\ i=0,1,\dots$ gdzie s i L to wybrane parametry.

Np. L=8,s=3
$$u_0 = 0.x_1x_2...x_8$$

$$u_1 = 0.x_2x_3...x_3...x_3...x_3...x_11$$

$$u_2 = 0.x_{6,1}x_{6,2}...x_{6,8} = 0.x_2x_8...x_{14}$$

$$u_3 = 0.x_{6,1}x_{6,2}...x_{16} = 0.x_{7,8}...x_{16}$$

Konstrukcja ta zwana jest również schematem Tausworha.

RPiS 2013/2014

Generatory rozkładu jednorodnego

Przykład: generator MZT (Marsaglia, Zaman, Tsang 1990), okres 2144. Składa się z dwóch generatorów:

$$V_n = V_{n-97} \oplus V_{n-33} \qquad x \oplus y \equiv \begin{cases} x - y & dla & x \ge y \\ x - y + 1 & dla & x < y \end{cases}$$

Inicjalizacja polega na nadaniu wartości liczbom $V_1, \ldots, V_{97}.$ Robimy to generując ich bity \boldsymbol{b}_{n} generatorami $\mbox{ liczb całkowitych }$

$$y_n = (y_{n-3} \cdot y_{n-2} \cdot y_{n-1}) \mod(179)$$

$$z_n = (52z_{n-1} + 1) \mod(169)$$

$$b_n = \begin{cases} 0 & dla & (y_n \cdot z_n) \mod(64) < 32 \\ 1 & dla & (y_n \cdot z_n) \mod(64) \ge 32 \end{cases}$$

Czyli użytkownik podaje $y_1, y_2, y_3 \in \{1, 2, ..., 178\}, z_1 \in \{1, 2, ..., 168\}$

RPiS 2013/2014

Generatory rozkładu jednorodnego

2) Generator liniowy o okresie 2^{24} -3 generuje liczby $c_n \in (0,1)$

 $C_n = C_{n-1} \oplus a, \quad n \ge 2$ gdzie a=7654321/16777216, C₄=362436/16777216.

$$x \oplus y \equiv \begin{cases} x - y & dla \ x \ge y \\ x - y + 16777213/16777216 & dla \ x < y \end{cases}$$

Ostatecznie generator MZT zwraca liczbę

 $U_n = V_n \oplus C_n$

gdzie ponownie

$$x \oplus y \equiv \begin{cases} x - y & dla \quad x \ge y \\ x - y + 1 & dla \quad x < y \end{cases}$$

Powyższe przykłady i więcej informacji: R.Wieczorkowski, R.Zieliński "Komputerowe generatory liczb losowych", WN-T 1997

RPiS 2013/2014 9

Rozkład wykładniczy (ekspotencjalny)

 Jest to rozwinięcie rozkładu geometrycznego na ciągłe zmienne losowe

$$f_X(x) = \lambda e^{-\lambda x}$$
 $x \in [0,+\infty)$

 λ – parametr rozkładu, λ >0

Gdy x interpretujemy jako czas to rozkład wykładniczy opisuje prawdopodobieństwo zajścia zdarzenia, które zachodzi ze stałym prawdopodobieństwem w jednostce czasu. Zdarzeniem może być przejście układu do nowego stanu.

Zastosowania: czas dostępu do serwera promieniowanie kosmiczne czas wezwania karetki pogotowia czas obsługi klienta w banku

RPiS 2013/2014

Rozkład wykładniczy -własności

Normalizacja

$$\int_{x}^{+\infty} \lambda e^{-\lambda x} dx = \lambda \int_{0}^{+\infty} e^{-\lambda x} dx = \lambda \frac{1}{(-\lambda)} e^{-\lambda x} \Big|_{0}^{+\infty} = (-1) \left(e^{-\lambda x} - e^{-\lambda 0} \right) = (-1)(0-1) = 1$$

Dystrybuanta (prawdopodobieństwo, że zaszła zmiana)

 $\forall s, t > 0: P_X(X > t + s \mid X > t) = P_X(X > s)$

(dowód analog. do rozkładu geometrycznego, zastosowanie: metoda datowania węglem 14C)

Wartość oczekiwana E(X)=1/ λ var(X)=1/(λ²)

RPiS 2013/2014

Rozkład Weibulla

- Rozszerzenia rozkładu wykładniczego to
- Rozkład Erlanga (ile trzeba czekać na n-te zdarzenie)

Rozkład Weibulla (prawdopodobieństwo zajścia zdarzenia nie jest stałe w czasie) – wyprowadzenie z rozkładu dwumianowego

Rozkład Weibulla

Funkcja gęstości prawdopodobieństwa

$$f_{\scriptscriptstyle X}(x) = \alpha \sigma^{-\alpha} x^{\alpha-1} e^{-(x/\sigma)^\alpha} \qquad x \in [0,+\infty), \quad \alpha > 0, \sigma > 0$$

 Parametr α decyduje o kształcie, σ o położeniu i wysokości (skali). dla α=1 - rozkład wykładniczy,

dla α=2,3 - rozkład zbliżony do normalnego

Dystrybuanta

$$F_X(x) = 1 - e^{-(x/\sigma)^{\alpha}}$$

Wartość oczekiwana i wariancja

$$E(X) = \sigma \Gamma(1 + \alpha^{-1}) \qquad \text{var}(X) = \sigma^2 \left\{ \Gamma(1 + 2\alpha^{-1}) - (\Gamma(1 - \alpha^{-1}))^2 \right\}$$
• Funkcja Gamma Eulera

$$\Gamma(p) = \int_{0}^{+\infty} x^{p-1} e^{-x} dx$$

$$\Gamma(1) = 1$$
$$\Gamma(0.5) = \sqrt{\pi}$$

$$\Gamma(p) = (p-1)\Gamma(p-1)$$

$$\Gamma(n) = (n-1)!$$
 $n \in N$

RPiS 2013/2014 13

Rozkład Weibulla

- $\int_{0}^{\sigma} f_X(x) dx \approx 0.6321$
 - → 63,21% populacji umiera do czasu σ (niezależnie od α).
- Zastosowania: czas życia (ubezpieczenia), zużywanie się elementów w technice, czas dostawy produktu (logistyka), rozkład siły wiatru.
- Generowanie:
 - 1) Jeżeli zmienna losowa X ma rozkład wykładniczy o parametrze σ to zmienna losowa Y= $X^{(1/\alpha)}$ ma rozkład Weibulla $f_Y(y)$
 - o parametrach α i σ .
 - 2) Jeżeli zmienna losowa X ma rozkład jednorodny na przedziale (0,1) to zmienna losowa Y= $\sigma(-ln(X))^{(1/\alpha)}$ ma rozkład Weibulla $f_{\gamma}(y)$ o parametrach α i σ .

RPiS 2013/2014 14