TÍNH CHẤT CỦA TÍCH CHẬP

TÍNH CHẤT PHÉP TÍCH CHẬP

Continuous-time system

$$x(t) * h_1(t) + x(t) * h_2(t) =$$

$$x(t) * \{h_1(t) + h_2(t)\}$$

$$\{x(t) * h_1(t)\} * h_2(t) = x(t) * \{h_1(t) * h_2(t)\}$$

$$h_1(t) * h_2(t) = h_2(t) * h_1(t)$$

Discrete-time system

$$x[n] * b_1[n] + x[n] * b_2[n] = x[n] * \{b_1[n] + b_2[n]\}$$

$$\{x[n] * b_1[n]\} * b_2[n] = x[n] * \{b_1[n] * b_2[n]\}$$

$$b_1[n] * b_2[n] = b_2[n] * b_1[n]$$

CÔNG THỨC EULEUR

CÔNG THỨC EULEUR - LIÊN HỆ GIỮA MŨ PHỨC VÀ LƯỢNG GIÁC

$$x(t) = e^{j\omega t}$$

Công thức Euleur:

$$e^{i\varphi} = cos(\varphi) + i.sin(\varphi)$$

- $|e^{i\varphi}|=1$
- $e^{i0} = 1$, $e^{i\pi} = -1$, $e^{i.2\pi} = 1$
- $e^{i\pi/2} = i$, $e^{i.3\pi/2} = -i$
- $e^{i\varphi} = e^{i(\varphi+2\pi)}$

$$e^{\pm j\theta} = \cos \theta \pm i \sin \theta$$

$$\cos\theta = \frac{1}{2} (e^{j\theta} + e^{-j\theta})$$

$$\sin\theta = \frac{1}{2j} \left(e^{j\theta} - e^{-j\theta} \right)$$

MỘT SỐ CHUỖI CƠ BẢN

MỘT SỐ CHUỗI CƠ BẢN

$$\sum_{n=0}^{N-1} \alpha^n = \begin{cases} \frac{1-\alpha^N}{1-\alpha} & \alpha \neq 1\\ N & \alpha = 1 \end{cases}$$

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha} \qquad |\alpha| < 1$$

$$\sum_{n=k}^{\infty} \alpha^n = \frac{\alpha^k}{1-\alpha} \qquad |\alpha| < 1$$

$$\sum_{n=0}^{\infty} n\alpha^n = \frac{\alpha}{(1-\alpha)^2} \qquad |\alpha| < 1$$

$$\sum_{n=0}^{\infty} n^2 \alpha^n = \frac{\alpha^2 + \alpha}{(1-\alpha)^3} \qquad |\alpha| < 1$$

TÍNH CHẤT FOURIER LIÊN TỤC

BIỂU DIỄN TÍN HIỆU LIÊN TỤC KHÔNG TUẦN HOÀN

D. Tính chất

Property	Signal	Fourier transform
	x(t)	$X(\omega)$
	$x_1(t)$	$X_1(\omega)$
	$x_2(t)$	$X_2(\omega)$
Linearity	$a_1 x_1(t) + a_2 x_2(t)$	$a_1X_1(\omega) + a_2X_2(\omega)$
Time shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(\omega)$
Frequency shifting	$e^{j\omega_0 t}x(t)$	$X(\omega-\omega_0)$
Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Time reversal	x(-t)	$X(-\omega)$
Duality	X(t)	$2\pi x(-\omega)$
Time differentiation	$\frac{dx(t)}{dt}$	$j\omega X(\omega)$
Frequency differentiation	(-jt)x(t)	$\frac{dX(\omega)}{d\omega}$
Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\pi X(0)\delta(\omega) + \frac{1}{j\omega}X(\omega)$
Convolution	$x_1(t) * x_2(t)$	$X_1(\omega)X_2(\omega)$
Multiplication	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(\omega)*X_2(\omega)$
Real signal	$x(t) = x_e(t) + x_o(t)$	$X(\omega) = A(\omega) + jB(\omega)$ $X(-\omega) = X^*(\omega)$
Even component	$x_{e}(t)$	$Re\{X(\omega)\} = A(\omega)$
Odd component	$x_o(t)$	$j \operatorname{Im}\{X(\omega)\} = jB(\omega)$
VIETNAM NATIONAL UNIVERSITY, HANOI		

FOURIER LIÊN TỤC THƯỜNG GẶP

BIỂU DIỄN TÍN HIỆU LIÊN TỤC KHÔNG TUẦN HOÀN

E. Các cặp biến đổi Fourier thông dụng

			The same of the sa	
	x(t)	$X(\omega)$	x(t)	$X(\omega)$
	$\delta(t)$	1	$e^{-a t }, a>0$	
	$\delta(t-t_0)$	$e^{-j\omega t_0}$,	$a^2 + \omega^2$
	1	$2\pi\delta(\omega)$	1	$e^{-a \omega }$
	$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$\overline{a^2+t^2}$	-
	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	e^{-at^2} , $a>0$	$\sqrt{\frac{\pi}{a}} e^{-\omega^2/4a}$
	$\sin \omega_0 t$	$-j\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$,	V a
	u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$	$p_a(t) = \begin{cases} 1 & t < a \\ 0 & t > a \end{cases}$	$2a\frac{\sin \omega a}{\omega a}$
	u(-t)	$\pi\delta(\omega)-\frac{1}{j\omega}$	$\frac{\sin at}{\pi t}$	$p_a(\omega) = \begin{cases} 1 & \omega < a \\ 0 & \omega > a \end{cases}$
	$e^{-at}u(t), a>0$	$\frac{1}{j\omega+a}$	sgn t	$\frac{2}{j\omega}$
	$te^{-at}u(t), a>0$	$\frac{1}{(j\omega+a)^2}$	$\sum_{k=-\infty}^{\infty} \delta(t-kT)$	$\omega_0 \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_0), \omega_0 = \frac{2\pi}{T}$
noc mant	VIETNAM NATIONAL UNIVERSITY, HANOI VNU UNIVERSITY OF ENGINEERING & TECHNOLOGY			FACULTY OF ELECTRONICS & TELECOMMUNICATIONS

TÍNH CHẤT FOURIER RỜI RẠC

BIỂU DIỄN CHUỐI KHÔNG TUẦN HOÀN

D. Tính chất

Property	Sequence	Fourier transform
	x[n]	$X(\Omega)$
	$x_1[n]$	$X_1(\Omega)$
	$x_2[n]$	$X_2(\Omega)$
Periodicity	x[n]	$X(\Omega+2\pi)=X(\Omega)$
Linearity	$a_1x_1[n] + a_2x_2[n]$	$a_1X_1(\Omega) + a_2X_2(\Omega)$
Time shifting	$x[n-n_0]$	$e^{-j\Omega n_0}X(\Omega)$
Frequency shifting	$e^{j\Omega_0 n}x[n]$	$X(\Omega - \Omega_0)$
Conjugation	x*[n]	$X^*(-\Omega)$
Time reversal	x[-n]	$X(-\Omega)$
Time scaling	$x_{(m)}[n] = \begin{cases} x[n/m] & \text{if } n = km \\ 0 & \text{if } n \neq km \end{cases}$	$X(m\Omega)$
Frequency differentiation	nx[n]	$j \frac{dX(\Omega)}{d\Omega}$
First difference	x[n]-x[n-1]	$(1 - e^{-j\Omega})X(\Omega)$
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\pi X(0)\delta(\Omega) + \frac{1}{1 - e^{-/\Omega}} X(\Omega)$
		$ \Omega \leq \pi$
Convolution	$x_1[n] * x_2[n]$	$X_1(\Omega)X_2(\Omega)$
Multiplication	$x_1[n]x_2[n]$	$\frac{1}{2\pi}X_1(\Omega)\otimes X_2(\Omega)$
Real sequence	$x[n] = x_c[n] + x_o[n]$	$X(\Omega) = A(\Omega) + jB(\Omega)$
		$X(-\Omega) = X^{*}(\Omega)$
Even component	$x_{\varepsilon}[n]$	$Re\{X(\Omega)\} = A(\Omega)$
Odd component	$x_o[n]$	$j \operatorname{Im} \{X(\Omega)\} = jB(\Omega)$

Parseval's relations

$$\sum_{n=-\infty}^{\infty} x_1[n] x_2[n] = \frac{1}{2\pi} \int_{2\pi} X_1(\Omega) X_2(-\Omega) d\Omega$$
$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(\Omega)|^2 d\Omega$$

FOURIER RÒI RẠC THƯỜNG GẶP

BIỂU DIỄN CHUỐI KHÔNG TUẦN HOÀN

E. Các cặp biến đổi Fourier thông dụng

x[n]	$X(\Omega)$
$\delta[n]$	1
$\delta[n-n_0]$	$e^{-j\Omega n_0}$
x[n] = 1	$2\pi\delta(\Omega), \Omega \leq \pi$
$e^{j\Omega_0 n}$	$2\pi\delta(\Omega-\Omega_0), \Omega , \Omega_0 \leq \pi$
$\cos \Omega_0 n$	$\pi[\delta(\Omega-\Omega_0)+\delta(\Omega+\Omega_0)], \Omega , \Omega_0 \leq \pi$
$\sin \Omega_0 n$	$-j\pi[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)], \Omega , \Omega_0 \leq\pi$
u[n]	$\pi\delta(\Omega)+\frac{1}{1-e^{-j\Omega}}, \Omega \leq\pi$
-u[-n-1]	$-\pi\delta(\Omega)+\frac{1}{1-e^{-j\Omega}}, \Omega \leq \pi$
$a^nu[n], a < 1$	$\frac{1}{1 - ae^{-j\Omega}}$
$-a^nu[-n-1], a >1$	$\frac{1}{1 - ae^{-j\Omega}}$

x[n]	$X(\Omega)$	
$(n+1)a^nu[n], a <1$	$\frac{1}{\left(1-ae^{-j\Omega}\right)^2}$	
$a^{[n]}, a < 1$	$\frac{1-a^2}{1-2a\cos\Omega+a^2}$	
$x[n] = \begin{cases} 1 & n \le N_1 \\ 0 & n > N_1 \end{cases}$	$\frac{\sin\left[\Omega\left(N_1+\frac{1}{2}\right)\right]}{\sin(\Omega/2)}$	
$\frac{\sin Wn}{\pi n}, 0 < W < \pi$	$X(\Omega) = \begin{cases} 1 & 0 \le \Omega \le W \\ 0 & W < \Omega \le \pi \end{cases}$	
$\sum_{k=-\infty}^{\infty} \delta[n-kN_0]$	$\Omega_0 \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_0), \Omega_0 = \frac{2\pi}{N_0}$	

TÍNH CHẤT LAPLACE

TÍNH CHẤT CỦA BIẾN ĐỔI LAPLACE

Property	Signal	Transform	ROC
	x(t)	X(s)	R
	$x_1(t)$	$X_{\mathfrak{l}}(s)$	R_1
	$x_2(t)$	$X_2(s)$	R_2
Linearity	$a_1x_1(t) + a_2x_2(t)$	$a_1 X_1(s) + a_2 X_2(s)$	$R' \supset R_1 \cap R_2$
Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R' = R
Shifting in s	$e^{s_0t}x(t)$	$X(s-s_0)$	$R' = R + \operatorname{Re}(s_0)$
Time scaling	x(at)	$\frac{1}{ a }X(s)$	R' = aR
Γime reversal	x(-t)	X(-s)	R' = -R
Differentiation in t	$\frac{dx(t)}{dt}$	sX(s)	$R'\supset R$
Differentiation in s	-tx(t)	$\frac{dX(s)}{ds}$	R' = R
Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$	$R'\supset R\cap \{\operatorname{Re}(s)>0\}$
Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	$R' \supset R_1 \cap R_2$

LAPLACE THƯỜNG GẶP

MỘT SỐ CẶP BIẾN ĐỔI LAPLACE THÔNG DỤNG

x(t)	X(s)	ROC	$\overline{x(t)}$	X(s)	ROC
$\delta(t)$	1	All s			
u(t)	$\frac{1}{s}$	Re(s) > 0	$te^{-at}u(t)$	$\frac{1}{\left(s+a\right)^{2}}$	Re(s) > -Re(a)
-u(-t)	$\frac{1}{s}$	Re(s) < 0	$-te^{-at}u(-t)$	$\frac{1}{(s+a)^2}$	Re(s) < -Re(a)
tu(t)	$\frac{1}{s^2}$	Re(s) > 0	$\cos \omega_0 t u(t)$	$\frac{s}{s^2 + \omega_0^2}$	Re(s) > 0
$t^k u(t)$	$\frac{k!}{s^{k+1}}$	Re(s) > 0	$\sin \omega_0 t u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	Re(s) > 0
$e^{-at}u(t)$	$\frac{1}{s+a}$	Re(s) > -Re(a)	$e^{-at}\cos\omega_0tu(t)$	$\frac{s+a}{\left(s+a\right)^2+\omega_0^2}$	Re(s) > -Re(a)
$-e^{-at}u(-t)$	$\frac{1}{s+a}$	Re(s) < -Re(a)	$e^{-at}\sin\omega_0 t u(t)$	$\frac{\omega_0}{\left(s+a\right)^2+\omega_0^2}$	Re(s) > -Re(a)

TÍNH CHẤT LAPLACE 1 PHÍA

TÍNH CHẤT CỦA BIẾN ĐỔI LAPLACE MỘT PHÍA

Tương tự như biến đổi Laplace hai phía, ngoại trừ:

Phép vi phân trong miền thời gian:

$$\frac{dx(t)}{dt} \longleftrightarrow sX_{I}(s) - x(0^{-})$$

$$\frac{d^{2}x(t)}{dt^{2}} \longleftrightarrow s^{2}X_{I}(s) - sx(0^{-}) - x'(0^{-})$$

$$\frac{d^{n}x(t)}{dt^{n}} \longleftrightarrow s^{n}X_{I}(s) - s^{n-1}x(0^{-}) - s^{n-2}x'(0^{-}) - \cdots - x^{(n-1)}(0^{-})$$
Với:
$$x^{(r)}(0^{-}) = \frac{d^{r}x(t)}{dt^{r}}\Big|_{t=0^{-}}$$

SO SÁNH LAPLACE 1 PHÍA VÀ 2 PHÍA

SO SÁNH GIỮA BIẾN ĐỔI MỘT PHÍA VÀ HAI PHÍA

	Unilateral Transform	Bilateral Transform	ROC
	$x(z) \xleftarrow{\mathcal{L}_{x}} X(s)$ $y(z) \xleftarrow{\mathcal{L}_{x}} Y(s)$	$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$ $y(t) \stackrel{\mathcal{L}}{\longleftrightarrow} Y(s)$	$s \in R_x$
Signal	$y(t) \stackrel{\mathcal{L}_s}{\longleftarrow} Y(s)$	$y(t) \stackrel{\mathcal{L}}{\longleftrightarrow} Y(s)$	s ∈ R _y
ax(t) + by(t)	aX(s) + bY(s)	aX(s) + bY(s)	At least $R_x \cap R_y$
x(t- au)	$e^{-s\tau}X(s)$ if $x(t-\tau)u(t) = x(t-\tau)u(t-\tau)$	$e^{-s\tau}X(s)$	R _x
$e^{s_0t}x(t)$	$X(s-s_o)$	$X(s-s_o)$	$R_x + \text{Re}\{s_o\}$
x(at)	$\frac{1}{a}X\left(\frac{s}{a}\right), a>0$	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	$\frac{R_x}{ a }$
x(t) * y(t)	if x(t) = y(t) = 0 for t < 0	X(s)Y(s)	At least $R_x \cap R_y$
-tx(t)	$\frac{d}{ds}X(s)$	$\frac{d}{ds}X(s)$	R _x
$\frac{d}{dt}x(t)$	$sX(s) - x(0^-)$	sX(s)	At least R _x
$\int_{-\infty}^t x(\tau)d\tau$	$\frac{1}{s}\int_{-\infty}^{0^{-}}x(\tau)d\tau+\frac{X(s)}{s}$	X(s)	At least $R_x \cap \{\text{Re}\{s\} > 0\}$

TÍNH CHẤT Z

TÍN<u>H CHẤT CỦA BIẾN ĐỔI Z</u>

Property	Sequence	Transform	ROC
	x[n]	X(z)	R
	$x_1[n]$	$X_{l}(z)$	R_1
	$x_2[n]$	$X_2(z)$	R_2
Linearity	$a_1x_1[n] + a_2x_2[n]$	$a_1 X_1(z) + a_2 X_2(z)$	$R' \supset R_1 \cap R_2$
Time shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	$R'\supset R\cap\{0< z <\infty\}$
Multiplication by z_0^n	$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	$R' = z_0 R$
Multiplication by $e^{j\Omega_0 n}$	$e^{j\Omega_0 n}x[n]$	$X(e^{-j\Omega_0}z)$	R' = R
Time reversal	x[-n]	$X\left(\frac{1}{z}\right)$	$R'=\frac{1}{R}$
Multiplication by n	nx[n]	$-z\frac{dX(z)}{dz}$	R' = R
Accumulation	$\sum_{k=-\infty}^{n} x[n]$	$\frac{1}{1-z^{-1}}X(z)$	$R'\supset R\cap\{ z >1\}$
Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	$R' \supset R_1 \cap R_2$

Z THƯỜNG GẶP

MỘT SỐ CẶP BIẾN ĐỔI Z THÔNG DỤNG

x[n]	X(z)	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}, \frac{z}{z-1}$	(z) > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}, \frac{z}{z-1}$	z < 1
$\delta[n-m]$	z - m	All z except 0 if $(m > 0)$ or ∞ if $(m < 0)$
$a^n u[n]$	$\frac{1}{1-az^{-1}}, \frac{z}{z-a}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}, \frac{z}{z-a}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}, \frac{az}{(z-a)^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}, \frac{az}{(z-a)^2}$	z < a

MỘT SỐ CẶP BIẾN ĐỔI Z THÔNG DỤNG

x[n]	X(z)	ROC
$(n+1)a^nu[n]$	$\frac{1}{\left(1-az^{-1}\right)^2}, \left[\frac{z}{z-a}\right]^2$	z > a
$(\cos \dot{\Omega}_0 n) u[n]$	$\frac{z^2 - (\cos \Omega_0) z}{z^2 - (2\cos \Omega_0) z + 1}$	z > 1
$(\sin \Omega_0 n)u[n]$	$\frac{(\sin\Omega_0)z}{z^2 - (2\cos\Omega_0)z + 1}$	z > 1
$(r^n \cos \Omega_0 n) u[n]$	$\frac{z^2 - (r\cos\Omega_0)z}{z^2 - (2r\cos\Omega_0)z + r^2}$	z > r
$(r^n \sin \Omega_0 n) u[n]$	$\frac{(r\sin\Omega_0)z}{z^2 - (2r\cos\Omega_0)z + r^2}$	z > r
$\begin{cases} a^n & 0 \le n \le N - 1 \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z >0
VIETNAM NATIONAL UNIVERSITY, HANDI VNU UNIVERSITY OF ENGINEERING & TECHNOLOGY		FACULTY OF EI

SO SÁNH Z 1 PHÍA VÀ 2 PHÍA

SO SÁNH GIỮA BIẾN ĐỔI MỘT PHÍA VÀ HAI PHÍA

	Unilateral Transform	Bilateral Transform	ROC
	$x[n] \stackrel{z_u}{\longleftrightarrow} X(z)$	$x[n] \stackrel{z}{\longleftrightarrow} X(z)$	$z \in R_x$
Signal	$y[n] \stackrel{z_n}{\longleftrightarrow} Y(z)$	$y[n] \stackrel{z}{\longleftrightarrow} Y(z)$	$z \in R_{\gamma}$
ax[n] + by[n]	aX(z) + bY(z)	aX(z) + bY(z)	At least $R_x \cap R_y$
x[n-k]	See below	$z^{-k}X(z)$	R_x , except possibly $ z =0,\infty$
$\alpha^n x[n]$	$X\left(\frac{z}{\alpha}\right)$	$X\left(\frac{z}{\alpha}\right)$	$ lpha R_x$
x[-n]	_	$x\left(\frac{1}{z}\right)$	$\frac{1}{R_x}$
x[n] * y[n]	X(z)Y(z) if $x[n] = y[n] = 0$ for $n < 0$	X(z)Y(z)	At least $R_x \cap R_y$
nx[n]	$-z\frac{d}{dz}X(z)$	$-z\frac{d}{dz}X(z)$	R_x , except possibly addition or deletion of $z = 0$

