Department of Computer Science and Engineering BRAC University CSE 260: Digital Logic Design

Experiment # 3

Parity Generator and Checker

Objective:

■ To design and implement an Even parity Generator and Even parity checker using XOR gates) (IC-7486).

Required Components and Equipments

- 1. AT-700 Portable Analog/Digital Laboratory
- 2. 7486

Diagram of Circuit:

Even Parity generator

Even Parity Checker

Procedure:

- Construct the Circuit of Figure 1, on the breadboard of AT-700.
- Remember each IC's pin 14 connected to "+5V" position of DC Power Supply of AT-700, and pin 7 connected to "GND" position.
- Connect the inputs to Data switches and outputs to any position of LED Display.
- Determine the parity generator's output for each of the following sets of input data, $D_3D_2D_1D_0$; (a) 0111; (b) 1001; (c) 0000; (d) 0100
- Determine the parity checker's output for each of the following sets of data from the transmitter

P	\mathbf{D}_3	$\mathbf{D_2}$	\mathbf{D}_1	\mathbf{D}_0	Error (E)
0	1	0	1	0	
1	1	1	1	0	
1	1	1	1	1	
1	0	0	0	0	

Report:

The report should cover the followings

- 1. Name of the Experiment
- 2. Objective
- 3. Required Components and Equipments
- 4. Experimental Setup (You must draw the diagrams)
- 5. Results in Tabulated form (Create table for truth table generator and checker).
- 6. Discussions (Explanation of the results)