

Forelesning i Fysikk 12. Transistorer, logiske kretser.

Hans Jakob Rivertz IDI-avdeling-kalvskinnet 2. april 2019

Dioder a-N-Kinetish enegi etc. LEDER patensialet : enenjinivået minher. on ugia = -e·Va

NPN-Transistor

Forenklet struktur

Implementering på chip

Obs!

To dioder satt sammen blir ingen transistor. Basen må være et tynnt sjikt.

Enheten er **IKKE** symmetrisk

- "Tynn" basesjikt (mellom E & C)
- Sterkt dopet emitter
- Kollektor med stort område

Fire parametre karakteriserer en bipolar transistor

VBC = VBE - VCE $VBE , VCE , \hat{7}B , \hat{7}C$ $i_E = \hat{7}R + \hat{7}C$ $VBE , VCE , \hat{7}B , \hat{7}C$

ic = g (ig, VCE)

BJT aktiv modus

Ettersom Emitter er sterkt dopet, diffunderer et stort antall elektroner seg i basen (bare en liten brøkdel kombineres med hull)

med hull) som går fra Emitter Antall elektroner av v_{BE} som e^{v_{BE}/V_T} . (Diode)

Siden basen er "tynn", kommer elektronene fra emitter nær uttømmingsområdet for BC-overgangen og blir feid inn i kollektoren hvis $v_{CB} \geq 0$ ($v_{BC} \leq 0$: BC-overgangen er omvendt biased!)

$$i_C = I_S e^{v_{BE}/V_T} \leftarrow \Gamma$$
 = Tempente.

Basestrøm er også proporsjonal med e^{v_{BE}/V_T} og derfor $i_B=i_C/\beta$.

Mettet modus

Base hopen spenning enn hilleltor.

VBC 20 Forora biased BC. Likt som i aktiv mode: Et stort antall elektroner strømmer inn i basen.

 $v_{BC} \geq 0$: (BC-overgangen er forvover biased!)

$$i_C = I_S e^{v_{BE}/V_T}$$

Kollektor-Emitter spenning ligger mellom $0.10\mathrm{V}$ og $0.30\mathrm{V}$. Strøm avhengig av motstander i ytre krets.

 e^{v_{BE}/V_T} og derfor $i_B=i_C/\beta$ gjelder ikke nødvendigvis lenger.

Typith undi for metning $V_{CE} \approx 0.2 V$. ie < pig

