Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Science End Sem (Odd) Examination Dec-2019 BC3CO04 Physics-I

Branch/Specialisation: CS Programme: B.Sc. (CS)

Maximum Marks: 60 Duration: 3 Hrs.

Q.1 (N	MCQs	s) should be written in full in	stead of only a, b, c or d.	
Q.1	i.	The divergence of position	vector $\vec{r} = ?$	1
		(a) 1 (b) 0	(c) 3 (d) 2	
	ii.	Force is:		1
		(a) Polar vector	(b) Scalar	
		(c) Axial vector	(d) None of these	
	iii.	The laws of Newton are app	olicable:	1
		(a) In rotatory frame	(b) In inertial frame	
		(c) In non-inertial frame	(d) In accelerated frame	
	iv.	The strongest force is:		1
		(a) Nuclear force	(b) Gravitational force	
		(c) Weak force	(d) Electromagnetic force	
	v.	The coefficient of viscosity	of an ideal fluid is:	1
		(a) Zero (b) Infinite	(c) Negative (d) Positive	
	vi.	When a body is deformed, i	ts internal energy:	1
		(a) Increases	(b) Decreases	
		(c) Remains unchanged	(d) None of these	
	vii.	The radius of gyration of a l	oody does not depend on:	1
		(a) Its mass	(b) Distribution of its mass	
		(c) Axis of rotation	(d) None of these	
	viii.	In simple harmonic motion	of a particle, the acceleration is:	1
		(a) Always zero		
		(b) Always constant		
		(c) Maximum at extreme po	sition	
		(d) Minimum in equilibrium	n position	

P.T.O.

[2]

ix. The correct transformations connecting the two inertial frames are:

		(a) Galilean (b) Newtonian	
		(c) Lorentz (d) None of these	
	х.	The relativistic mass of a particle:	1
		(a) Decrease with velocity and become zero	
		(b) Decreases with velocity	
		(c) Increases or decreases with velocity	
		(d) Increases with velocity	
Q.2	i.	Prove that Curl of gradient of a scalar is zero.	2
	ii.	Explain the meaning of polar vector and unit vector.	3
	iii.	State and prove Gauss divergence theorem.	5
OR	iv.	State and prove Stokes' theorem.	5
Q.3	i.	Differentiate between the centripetal and centrifugal force.	2
	ii.	State the Kepler's laws of planetary motion. Derive the Kepler's second and third law.	8
OR	iii.	State whether the velocity and acceleration are scalars or vectors?	8
		Justify your answer. Draw and explain the importance of acceleration-	
		time graph, velocity-time graph and position - time graph for	
		uniformly accelerated motion.	
Q.4	i.	Prove that the Poisson's ratio has its values between -1 and +0.5	3
		theoretically.	
	ii.	State and prove Bernoulli's theorem.	7
OR	iii.	What is meant by surface tension? Explain the Jaeger's method for its	7
		determination.	
Q.5	i.		4
		vertical axis passing through its centre in a horizontal plane and	
		completes 10 revolutions in 5sec. Calculate:	
		(a) Angular momentum of ring	
		(b) Rotational kinetic energy.	
	ii.	Discuss the oscillations of two masses connected at the ends of a	6
		massless spring.	

[3]

OR	iii.	Deduce an expression representing the Euler's equations for the)
		rotatory motion of a rigid body.	

Q.6 Attempt any two:

- i. Describe Michelson's Morley's experiment? Discuss the negative 5 result of the experiment.
- ii. Explain the meaning of time dilation and establish the expression for it. 5
- iii. Deduce expression for the variation in mass with velocity. 5

Marking Scheme BC3CO04 Physics-I

Q.1	i.	The divergence of position vector $\vec{r} = ?$		1
	ii.	(c) 3 Force is:		1
	iii.	(a) Polar vector The laws of Newton are applicable:		1
	iv.	(b) In inertial frame The strongest force is:		1
	v.	(a) Nuclear force The coefficient of viscosity of an ideal fluid is:		1
	vi.	(a) ZeroWhen a body is deformed, its internal energy:(a) Increases		1
	vii.	The radius of gyration of a body does not depend or (a) Its mass	1:	1
	viii.	In simple harmonic motion of a particle, the acceler (c) Maximum at extreme position	ration is:	1
	ix.	The correct transformations connecting the two iner (c) Lorentz	rtial frames are:	1
	х.	The relativistic mass of a particle: (d) Increases with velocity		1
Q.2	i.	Curl of gradient of a scalar is zero.		2
		Formula of gradient Formula for Curl Proof	0.5 mark 0.5 mark 1 mark	
	ii.	Meaning of polar vector Meaning of unit vector	1.5 marks 1.5 marks	3
	iii.	Gauss divergence theorem Figure	1 mark	5
		Statement Proof	1 mark 3 marks	
OR	iv.	Stokes' theorem. Figure Statement Proof	1 mark 1 mark 3 marks	5

Q.3	i.	Difference b/w the centripetal and centrifugal force		2
		1 mark for each difference (1 mark * 2)		
	ii.	Kepler's laws of planetary motion, Kepler's second and third law		8
		Statement of three laws	3 marks	
		Second law proof	2.5 marks	
		Third law proof	2.5 marks	
OR	iii.	Velocity and acceleration are scalars or vectors	1 mark	8
		Justification	1 mark	
		Importance of acceleration-time graph	2 marks	
		Velocity-time graph	2 marks	
		Position-time graph	2 marks	
Q.4	i.	Relation b/w Poisson's ratio. Young's modulus,	bulk modulus and	3
		modulus of rigidity	1 mark	
		Proof	2 marks	
	ii.	Bernoulli's theorem		7
		Figure	1 mark	
		Statement	2 marks	
		Proof	4 marks	
OR	iii.	Definition of surface tension	2 marks	7
		Jaeger's method set-up	2 marks	
		Explanation	3 marks	
Q.5	i.	(a) Angular momentum of ring		4
		Formula for physical quantity	1 mark	
		Solution	1 mark	
		(b) Rotational kinetic energy		
		Formula for physical quantity	1 mark	
		Solution	1 mark	
	ii.	Oscillations of two masses connected at the ends of	f a massless spring	6
		Figure 2 marks		
		Discussion	4 marks	
OR	iii.	Expression representing the Euler's equations for of a rigid body	the rotatory motion	6
		Expression for Newton's second law, in inertial frame		
		in mortal in	1 mark	
		Principle components of angular velocity	2 marks	
		Final result and solution	3 marks	
		i mai robait and bolation	5 marks	

Q.6		Attempt any two:		
	i.	Michelson's Morley's experiment		5
		Figure	1 mark	
		Description	2 marks	
		Negative result	2 marks	
	ii.	Meaning of time dilation	2 marks	5
		Expression and derivation	3 marks	
	iii.	Expression for the variation in mass with velocity		5
		Proof	4 marks	
		Graph	1 mark	
