

Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme

Skript zur Vorlesung

Datenbanksysteme I

Wintersemester 2017/2018

Kapitel 7: Normalformen

<u>Vorlesung:</u> Prof. Dr. Christian Böhm <u>Übungen:</u> Dominik Mautz

Skript © 2017 Christian Böhm ergänzt von Matthias Schubert

http://dmm.dbs.ifi.lmu.de/dbs

Relationaler Datenbank-Entwurf

• Schrittweises Vorgehen:

Informelle Beschreibung: Pflichtenheft

Konzeptioneller Entwurf: E/R-Diagramm

Relationaler DB-Entwurf: Relationenschema

• In diesem Kapitel:

Normalisierungstheorie als formale Grundlage für den relationalen DB-Entwurf

- Zentrale Fragestellungen:
 - Wie können Objekte und deren Beziehungen ins relationale Modell überführt werden
 - Bewertungsgrundlagen zur Unterscheidung zwischen "guten" und "schlechten" relationalen DB-Schemata

Motivation Normalisierung

Relation Lieferant:

LNr	LName	LStadt	LLand	<u>Ware</u>	Preis
103	Huber	Berlin	Deutschland	Schraube	50
103	Huber	Berlin	Deutschland	Draht	20
103	Huber	Berlin	Deutschland	Nagel	40
		•••			•••
762	Maier	Zürich	Schweiz	Nagel	45
762	Maier	Zürich	Schweiz	Schraube	55

Hier gibt es offensichtlich einige Redundanzen:

- Wenn bei mehreren Tupeln der Attributwert LNr gleich ist, dann müssen auch die Attributwerte von LName, LStadt und LLand gleich sein.
- Wenn (auch bei verschiedenen LNr) LStadt gleich ist, dann muss auch LLand gleich sein

Redundanzen durch funktionale Abhängigkeiten

 Wir sagen: Die Attribute LName, LStadt und LLand sind funktional abhängig vom Attrbut LNr (ebenso LLand von LStadt);
 Exakte Definition siehe Seite 8ff.

Motivation Normalisierung

Relation Lieferant:

LNr	LName	LStadt	LLand	<u>Ware</u>	Preis
103	Huber	Berlin	Deutschland	Schraube	50
103	Huber	Berlin	Deutschland	Draht	20
103	Huber	Berlin	Deutschland	Nagel	40
		•••			•••
762	Maier	Zürich	Schweiz	Nagel	45
762	Maier	Zürich	Schweiz	Schraube	55

- Redundanzen führen zu Speicherplatzverschwendung;
- Das eigentliche Problem sind aber Anomalien (Inkonsistenzen durch Änderungsoperationen) und dass das Schema nicht intuitiv ist:
 - **Update-Anomalie:** Änderung der Adresse (LName, LStadt, LLand) in

nur einem Tupel statt in allen Tupeln zu einer LNr.

Insert-Anomalie: Einfügen eines Tupels mit inkonsistenter Adresse;

Einfügen eines Lieferanten erfordert Ware.

Delete-Anomalie: Löschen der letzten Ware löscht die Adresse.

Verbesserung

Datenbanksysteme I Kapitel 7: Normalformen • Neues Datenbankschema:

LieferantAdr (<u>LNr</u>, LName, LStadt)

Stadt (<u>LStadt</u>, LLand) Angebot (<u>LNr</u>, <u>Ware</u>, Preis)

- Vorteile:
 - keine Redundanz
 - keine Anomalien
- Nachteil:
 - Um zu einer Ware die Länder der Lieferanten zu finden, ist ein zweifacher Join nötig (teuer auszuwerten und umständlich zu formulieren)

Ursprüngliche Relation

• Die ursprüngliche Relation Lieferant kann mit Hilfe einer View simuliert werden:

create view Lieferant as

select L.LNr, LName, L.LStadt, LLand, Ware, Preis

from LieferantAdr L, Stadt S, Angebot A

where L.LNr = A.LNr and L.LStadt = S.LStadt

- Dies spart die Schreibarbeit beim Formulieren von Anfragen und macht die Anfragen übersichtlicher.
- In diesem Fall ist die View *nicht updatable* (die Änderungsoperationen verursachen ja die Probleme).
- Da die View nur eine *virtuelle Relation* ist, muss der Join trotzdem ausgewertet werden (weniger effizient).

Schema-Zerlegung

- Anomalien entstehen durch Redundanzen
- Entwurfsziele:
 - Vermeidung von Redundanzen
 - Vermeidung von Anomalien
 - evtl. Einbeziehung von Effizienzüberlegungen
- Vorgehen:
 Schrittweises Zerlegen des gegebenen Schemas
 (Normalisierung) in ein äquivalentes Schema ohne
 Redundanz und Anomalien
- Formalisierung von Redundanz und Anomalien: Funktionale Abhängigkeit

Funktionale Abhängigkeit

(engl. Functional Dependency, FD)

- beschreibt Beziehungen zwischen den Attributen einer Relation
- Schränkt das Auftreten gleicher bzw. ungleicher Attributwerte innerhalb einer Relation ein
 - → spezielle Integritätsbedingung (nicht in SQL)

Wiederholung Integritätsbedingungen in SQL:

- Primärschlüssel
- Fremdschlüssel (referenzielle Integrität)
- not null
- check

Wiederholung Schlüssel

Definition:

- Eine Teilmenge *S* der Attribute eines Relationenschemas *R* heißt *Schlüssel*, wenn gilt:
 - Eindeutigkeit

Keine Ausprägung von *R* kann zwei verschiedene Tupel enthalten, die sich in *allen* Attributen von *S* gleichen.

– Minimalität

Keine echte Teilmenge von S erfüllt bereits die Bedingung der Eindeutigkeit

Konventionen zur Notation

Datenbanksysteme I Kapitel 7: Normalformen • Ab jetzt gilt die Notation:

$$-X, Y, Z$$
 bezeichnen Mengen von Attributen

• Zur Vereinfachung gilt außerdem:

$$-A, B \rightarrow C$$
 bezeichne $\{A, B\} \rightarrow \{C\}$

$$-X \rightarrow Y$$
, Z bezeichne $X \rightarrow Y \cup Z$

$$-t.X = r.X$$
 bezeichne $\forall A \in X : t.A = r.A$

Definition: funktional abhängig

Datenbanksysteme I Kapitel 7: Normalformen

• Gegeben:

- Ein Relationenschema R
- -X, Y: Zwei Mengen von Attributen von $R(X,Y\subseteq R)$

• Definition:

Y ist von *X* funktional abhängig $(X \rightarrow Y)$ gdw. \forall Tupel *t* und $r: t.X = r.X \Rightarrow t.Y = r.Y$

(für alle möglichen Ausprägungen von *R* gilt: Zu jedem Wert in *X* existiert genau ein Wert von *Y*.)

- Bsp.: Lieferant (LNr, LName, LStadt, LLand, Ware, Preis):
 - $LNr \rightarrow LName$
 - LNr \rightarrow LStadt
 - LStadt → LLand

- LNr, Ware → LName
- LNr, Ware \rightarrow LStadt
- LNr, Ware → Preis

Vergleich mit Schlüssel

- Gemeinsamkeiten zwischen dem *Schlüssel* im relationalen Modell und *Funktionaler Abhängigkeit*:
 - Für jeden Schlüsselkandidaten $S = \{A,B,...\}$ gilt: Alle Attribute der Relation sind von S funktional abhängig (wegen der Eindeutigkeit):

$$S \rightarrow R$$

- Jede Menge, von der R FD ist, ist Superschlüssel.
- Unterschied:
 - Aber es gibt u.U. weitere funktionale Abhängigkeiten:
 Ein Attribut B kann z.B. auch funktional abhängig sein
 - von Nicht-Schlüssel-Attributen
 - von nur einem Teil eines Schlüssels
- → FD ist Verallgemeinerung des Schlüssel-Konzepts.

Vergleich mit Schlüssel

- Wie der Schlüssel ist auch die funktionale Abhängigkeit eine semantische Eigenschaft des Schemas:
 - FD nicht aus aktueller DB-Ausprägung entscheidbar
 - sondern muss für alle möglichen Ausprägungen gelten

Prime Attribute

• Definition:

Ein Attribut heißt **prim**, wenn es Teil eines Schlüsselkandidaten ist

Partielle und volle FD

Ist ein Attribut B funktional von A abhängig, dann auch von jeder Obermenge von A.
Man ist interessiert, minimale Mengen zu finden, von denen B abhängt (vgl. Schlüsseldefinition)

• Definition:

- Gegeben: Eine funktionale Abhängigkeit $X \rightarrow Y$
- Wenn es keine echte Teilmenge $X' \subsetneq X$ gibt, von der Y ebenfalls funktional abhängt,
- dann heißt $X \rightarrow Y$ eine volle funktionale Abhängigkeit $(X \stackrel{\bullet}{\rightarrow} Y)$
- andernfalls eine partielle funktionale Abhängigkeit

Partielle und volle FD

Datenbanksysteme I Kapitel 7: Normalformen

• Beispiele:

LNr → LName voll funktional abhängig

(ein-elementige Menge ist immer minimal)

LNr, Ware → LName partiell funktional abhängig

(da schon LNr \rightarrow LName gilt)

Ware ? Preis nicht funktional abhängig (siehe Beispiel)

LNr? Preis nicht funktional abhängig (siehe Beispiel)

LNr, Ware → Preis voll funktional abhängig (weder von LNr

noch von Ware alleine funktional abhängig)

Volle FD vs Minimalität des Schlüssels

- Definitionen sehr ähnlich:
 Schlüssel: Minimale Menge, die Eindeutigkeit erfüllt
 Volle FD: Minimale Menge, von der ein Attribut abhängt
 (Und die Eindeutigkeit ist äquivalent zur FD, s. S. 12)
- Frage: Folgt aus der Minimalität des Schlüssels, dass alle Attribute (immer) voll funktional abhängig sind?
- Antwort: Leider nicht. (Warum eigentlich "leider"?)
- Aber wo liegt der Denkfehler?
 Der Allquantor ist bei beiden Definitionen verschieden:
 - Schlüssel: Minimale Menge, von der alle Attribute funktional abhängig sind.
 - Volle FD X → Y: Für jedes Attribut $A \in Y$ gilt: X ist die minimale Menge von der A funktional abhängig ist.

Armstrong Axiome

• Reflexivität (R): Falls Y eine Teilmenge von X ist

 $(Y \subseteq X)$, dann gilt immer $X \rightarrow Y$.

Insbesondere gilt also immer $X \rightarrow X$.

• Verstärkung (VS): Falls $X \rightarrow Y$ gilt, dann gilt auch

 $XZ \rightarrow YZ$. Hierbei steht XZ für $X \cup Z$.

• Transitivität (T): Falls $X \rightarrow Y$ und $Y \rightarrow Z$ gilt,

dann gilt auch $X \rightarrow Z$.

Diese Axiome sind vollständig und korrekt:

Sei F eine Menge von FDs:

- Es lassen sich nur FDs von F ableiten, die von jeder Relationen-Ausprägung erfüllt werden, für die auch F erfüllt ist.
- Es sind alle FDs ableitbar, die durch F impliziert sind.

Triviale funktionale Abhängigkeit:

- Wegen Reflexivität ist jedes Attribut funktional abhängig:
 - von sich selbst
- von jeder Obermenge von sich selbst
 Solche Abhängigkeiten bezeichnet man als trivial.

Symmetrieeigenschaften funktionaler Abhängigkeiten

- Bei den funktionalen Abhängigkeiten gibt es kein Gesetz zur Symmetrie oder Antisymmetrie, d.h. bei zwei bel. Attribut (-Mengen) *X*, *Y* sind alle 4 Fälle möglich:
 - Es gilt nur $X \to Y$, Es gilt $X \to Y$ und $Y \to X$,
 - Es gilt nur $Y \rightarrow X$, Es gibt keine FD. zw. X und Y.

Hülle einer Attributmenge

- Eingabe: eine Menge F von FDs und eine Menge von Attributen *X*.
- Ausgabe: die vollständige Menge von Attributen X^+ , für die gilt $X \rightarrow X^+$.

```
AttrHülle(F,X)
Erg := X
while(Änderungen an Erg) do
foreach FD Y→Z ∈ F do
    if Y ⊆ Erg then Erg:=Erg ∪ Z
Ausgabe X+ = Erg
```


Hülle einer Attributmenge

Datenbanksysteme I Kapitel 7: Normalformen

```
    Beispiel: AttrHülle(F, {LNr}) mit
    F = {LNr → LName; LNr → LStadt; LStadt → LLand;
LNr, Ware → Preis}
```

- $\text{Erg}_i = \text{Erg nach } i\text{-tem Durchlauf der while-Schleife}$
- $\operatorname{Erg}_0 = \{ \operatorname{LNr} \}$
- Erg₁ = { LNr, LName, LStadt }
- Erg₂ = { LNr, LName, LStadt, LLand }
- $Erg_3 = \{ LNr, LName, LStadt, LLand \} = Erg_2$

Weitere Axiome

- Vereinfachen Herleitungsprozess, aber nicht notwendig (da Armstrong-Axiome vollständig)
- Vereinigungsregel (VE): Falls $X \rightarrow Y$ und $X \rightarrow Z$ gilt, dann gilt auch $X \rightarrow YZ$.
- Dekompositionsregel (D): Falls $X \rightarrow YZ$ gilt, dann gilt auch $X \rightarrow Y$ und $X \rightarrow Z$.
- Pseudotransitivitätsregel (P): Falls $X \rightarrow Y$ und $ZY \rightarrow V$ gilt, dann gilt auch $XZ \rightarrow V$.

Beispiel: Zeige, dass (LNr, Ware) Schlüsselkandidat ist.

- Gegeben: $F = \{ LNr \rightarrow LName; LNr \rightarrow LStadt; LStadt \rightarrow LLand; LNr, Ware \rightarrow Preis \}.$
- Zu zeigen: (LNr, Ware) eindeutig und minimal.
- Beweis:
 - (I) (LNr, Ware) eindeutig gdw. (LNr, Ware \rightarrow LNr, LName, LStadt, LLand, Ware, Preis) \in F⁺, d.h. ist aus F herleitbar.
 - (a) $(LNr \rightarrow LName) \in F \subseteq F^+ \stackrel{\text{VS}}{\Rightarrow} (LNr, Ware \rightarrow LName, Ware) \in F^+$
 - (b) $(LNr \rightarrow LStadt) \in F^{+} \stackrel{VS}{\Rightarrow} (LNr, Ware \rightarrow LStadt, Ware) \in F^{+}$
 - (c) $(LNr \rightarrow LStadt) \in F^+$ und $(LStadt \rightarrow LLand) \in F^+$ $\stackrel{\text{T}}{\Rightarrow} (LNr \rightarrow LLand) \in F^+ \stackrel{\text{VS}}{\Rightarrow} (LNr, Ware \rightarrow LLand, Ware) \in F^+$
 - (d) Wegen R gilt (LNr \rightarrow LNr) \in F⁺ $\stackrel{\text{VS}}{\Rightarrow}$ (LNr, Ware \rightarrow LNr, Ware) \in F⁺
 - (e) aus (a) bis (e) und (LNr, Ware \rightarrow Preis) folgt (I) nach VE, qed.

Beispiel: Zeige, dass (LNr, Ware) Schlüsselkandidat ist.

- Gegeben: $F = \{ LNr \rightarrow LName; LNr \rightarrow LStadt; LStadt \rightarrow LLand; LNr, Ware \rightarrow Preis \}.$
- Zu zeigen: (LNr, Ware) eindeutig und minimal.
- <u>Beweis</u>:
 - (II) (LNr, Ware) minimal gdw.
 (LNr → LNr, LName, LStadt, LLand, Ware, Preis) und
 (Ware → LNr, LName, LStadt, LLand, Ware, Preis) gelten nicht.
 - (a) Preis ist nur von LNr und Ware gemeinsam funktional abhängig.
 - (b) Weder LNr kann aus Ware hergeleitet werden, noch Ware von LNr.
 - (c) aus (a) und (b) folgt (LNr, Ware) minimal, qed.

Normalisierung

- In einem Relationenschema sollen also möglichst keine funktionalen Abhängigkeiten bestehen, außer vom gesamten Schlüssel
- Verschiedene Normalformen beseitigen unterschiedliche Arten von funktionalen Abhängigkeiten bzw. Redundanzen/Anomalien
 - 1. Normalform
 - 2. Normalform
 - 3. Normalform
 - Boyce-Codd-Normalform
 - 4. Normalform
- Herstellung einer Normalform durch verlustlose Zerlegung des Relationenschemas

- Keine Einschränkung bezüglich der FDs
- Ein Relationenschema ist in erster Normalform, wenn alle Attributwerte *atomar* sind
- In relationalen Datenbanken sind nicht-atomare Attribute ohnehin nicht möglich
- Nicht-atomare Attribute z.B. durch group by

A	B	C	D	
1	2	3	4	
1		4	5	"nested relation"
2	3	3	4	non first normal for In SQL nur tempor
3	3	4	5	erlaubt
		6	7	

• Motivation:

Man möchte verhindern, dass Attribute nicht vom gesamten Schlüssel voll funktional abhängig sind, sondern nur von einem Teil davon.

• Beispiel:

<u>LNr</u>	LName	LStadt	LLand	<u>Ware</u>	Preis
103	Huber	Berlin	Deutschland	Schraube	50
103	Huber	Berlin	Deutschland	Draht	20
103	Huber	Berlin	Deutschland	Nagel	40
	• • •		•••		• • •
762	Maier	Zürich	Schweiz	Nagel	45
762	Maier	Zürich	Schweiz	Schraube	55

Konsequenz: In den abhängigen Attributen muss dieselbe Information immer wiederholt werden

Datenbanksysteme I Kapitel 7: Normalformen • Dies fordert man vorerst nur für Nicht-Schlüssel-Attribute (für die anderen z.T. schwieriger, siehe Seite 44ff)

- Definition
 - Ein Schema ist in zweiter Normalform, wenn jedes Attribut
 - voll funktional abhängig von *allen* Schlüsselkandidaten oder
 - prim ist
- Beobachtung:

Zweite Normalform kann nur verletzt sein, wenn...

...ein zusammengesetzter Schlüssel (-Kandidat) existiert ...und wenn nicht-prime Attribute existieren

- Zur Transformation in 2. Normalform spaltet man das Relationenschema auf:
 - Attribute, die voll funktional abhängig vom Schlüssel sind, bleiben in der Ursprungsrelation R
 - Für alle Abhängigkeiten $X_i \rightarrow Y_i$ von einem Teil eines Schlüssels $(X_i \subsetneq S)$ geht man folgendermaßen vor:
 - Lösche die Attribute Y_i aus R
 - Gruppiere die Abhängigkeiten nach gleichen linken Seiten X_i
 - Für jede Gruppe führe eine neue Relation ein mit allen enthaltenen Attributen aus X_i und Y_i
 - X_i wird Schlüssel in der neuen Relation

• Beispiel: partielle Abhängigkeiten Lieferant (LNr, LName, LStadt, LLand, Ware, Preis)

- Vorgehen:
 - LName, LStadt und LLand werden aus Lieferant gelöscht
 - Gruppierung:
 Nur eine Gruppe mit LNr auf der linken Seite
 - es könnten Attribute von Ware abhängen (2. Gruppe)
 - Erzeugen einer Relation mit <u>LNr</u>, LName, LStadt und LLand
- Ergebnis: Lieferung (<u>LNr</u>, <u>Ware</u>, Preis)
 LieferAdr (<u>LNr</u>, LName, LStadt, LLand)

Grafische Darstellung

Datenbanksysteme I Kapitel 7: Normalformen

Datenbanksysteme I Kapitel 7: Normalformen Motivation:
 Man möchte zusätzlich verhindern, dass Attribute von nicht-primen Attributen funktional abhängig sind.

Beispiel:LieferAdr

(LNr, LName, LStadt, LLand)

001	Huber	München	Deutschland
002	Meier	Berlin	Deutschland
003	Müller	Berlin	Deutschland
004	Hinz	Salzburg	Österreich
005	Kunz	Salzburg	Österreich

- Redundanz: Land mehrfach gespeichert
- Anomalien?

- Abhängigkeit von Nicht-Schlüssel-Attribut bezeichnet man häufig auch als *transitive* (d.h. durch Armstrong-Transitivitätsaxiom hergeleitete) *Abhängigkeit* vom Primärschlüssel
 - weil Abhängigkeit *über* ein drittes Attribut besteht:

$$\underline{LNr} \rightarrow LStadt \rightarrow LLand$$

- Definition:
 - Ein Relationenschema ist in 3. Normalform, wenn für jede nicht-triviale funktionale Abhängigkeit $X \rightarrow A$ gilt:
 - X enthält einen Schlüsselkandidaten
 - oder *A* ist prim.

Anmerkungen zum Verständnis dieser Definition:

- Wieder Beschränkung auf die FDs, bei denen die rechte Seite nicht-prim ist (Abhängigkeiten unter Schlüsselkandidaten sind schwieriger, siehe Boyce-Codd-Normalform S. 44ff)
- Intuitiv möchte die Definition sagen: Nicht-prime Attribute sind nur von (ganzen) Schlüsselkandidaten funktional abhängig, also: Für jede FD gilt: Linke Seite *ist* ein Schlüsselkandidat.
 - Keine Partiellen FDs von Schlüsselkandidaten:
 → 2. Normalform ist mit 3. Normalform impliziert
 - Keine FDs, bei denen linke Seite kein Schlüssel ist bzw. Teile enthält, die nicht prim sind.

Anmerkungen zum Verständnis dieser Definition:

- Intuitiv möchte die Definition sagen:
 Nicht-prime Attribute sind nur vom (ganzen)
 Schlüsselkandidaten funktional abhängig, also:
 Für jede FD gilt: Linke Seite *ist* ein Schlüsselkandidat.
- Wegen Reflexivitäts- und Verstärkungsaxiom und Allquantor bei den FDs muss man aber berücksichtigen:
 - Es gelten immer auch die trivialen FDs, z.B. $A \rightarrow A$ (für jedes beliebige Attribut A). Deshalb Ergänzung der Definition: "Für jede nicht-triviale FD gilt…"
 - Ist S Schlüssel, dann gilt immer auch S → R für jede Obermenge S \supseteq S. Deshalb heißt es in der Definition: X enthält einen Schlüssel. (statt X ist ein Schlüssel.)

- Transformation in 3. Normalform wie vorher
 - Attribute, die voll funktional abhängig vom Schlüssel sind, und nicht abhängig von Nicht-Schlüssel Attributen sind, bleiben in der Ursprungsrelation R
 - Für alle Abhängigkeiten $X_i \rightarrow Y_i$ von einem Teil eines Schlüssels ($X_i \subseteq S$) oder von Nicht-Schlüssel-Attribut:
 - Lösche die Attribute Y_i aus R
 - Gruppiere die Abhängigkeiten nach gleichen linken Seiten X_i
 - Für jede Gruppe führe eine neue Relation ein mit allen enthaltenen Attributen aus X_i und Y_i
 - X_i wird Schlüssel in der neuen Relation

Grafische Darstellung

Datenbanksysteme I Kapitel 7: Normalformen

Verlustlosigkeit der Zerlegung

• Die Zerlegung einer Relation R in die beiden Teilrelationen R_1 und R_2 heißt *verlustlos* (oder auch *verbundtreu*), wenn gilt:

$$R = R_1 \triangleright \triangleleft R_2$$

- Man kann zeigen, dass die Zerlegung verlustlos ist, wenn mindestens eine der beiden folgenden FDs gilt:
 - $-(R_1 \cap R_2) \rightarrow R_1$
 - $-(R_1 \cap R_2) \rightarrow R_2$
- Intuitiv ist klar, dass Verlustlosigkeit von größter Wichtigkeit ist, weil andernfalls gar nicht dieselbe Information in den Relationenschemata R_1 und R_2 gespeichert werden kann, wie in R.

Abhängigkeitserhaltung

• Die Zerlegung einer Relation R in die beiden Teilrelationen R_1 und R_2 heißt *abhängigkeitserhaltend* (oder auch *hüllentreu*), wenn gilt:

$$F_R = (F_{R_1} \cup F_{R_2})$$
 bzw. $F_R^+ = (F_{R_1} \cup F_{R_2})^+$

- Das heißt, jede funktionale Abhängigkeit soll mindestens einer der Teilrelationen vollständig zugeordnet sein (also alle Attribute der linken Seite und das Attribut der rechten Seite müssen in einer der Teilrelationen enthalten sein).
- Zwar führt die Verletzung der Abhängigkeitserhaltung nicht zu einer Veränderung der speicherbaren Information, aber eine "verlorene" FD ist nicht mehr überprüfbar, ohne dass der Join durchgeführt wird.
 - → Verschlechterung der Situation (Redundanzen)

Synthesealgorithmus für 3NF

- Der sogenannte *Synthesealgorithmus* ermittelt zu einem gegebenen Relationenschema R mit funktionalen Abhängigkeiten F eine Zerlegung in Relationen R_1, \ldots, R_n die folgende Kriterien erfüllt:
- $R_1, ..., R_n$ ist eine verlustlose Zerlegung von R.
- Die Zerlegung ist abhängigkeitserhaltend.
- Alle R_i $(1 \le i \le n)$ sind in dritter Normalform.

Datenbanksysteme I Kapitel 7: Normalformen Der Synthese-Algorithmus arbeitet in 4 Schritten:

- 1. Bestimme die kanonische Überdeckung F_c zu F, d.h. eine minimale Menge von FDs, die dieselben (partiellen und transitiven) Abhängigkeiten wie F beschreiben
- 2. Erzeuge neue Relationenschemata aus F_c
- 3. Rekonstruiere einen Schlüsselkandidaten
- 4. Eliminiere überflüssige Relationen

- 1. Bestimme die **kanonische Überdeckung** F_c zu einer gegebenen Menge F von funktionalen Abhängigkeiten (FDs):
- a) Führe für jede FD $X \rightarrow Y \in F$ die Linksreduktion durch, also:
 - Überprüfe für alle $A \in X$, ob A überflüssig ist, d.h. ob $Y \subseteq AttrH\"ulle(F, X A)$ gilt. Falls dies der Fall ist, ersetze $X \to Y$ durch $(X A) \to Y$.
- b) Führe für jede (verbliebene) FD $X \rightarrow Y$ die Rechtsreduktion durch, also:
 - Überprüfe für alle $B \in Y$, ob $B \subseteq AttrH\"ulle((F (X \to Y)) \cup (X \to (Y B)), X)$ gilt. In diesem Fall ist B auf der rechten Seite überflüssig und kann eliminiert werden, d.h. $X \to Y$ wird durch $X \to (Y B)$ ersetzt.
- c) Entferne die FDs der Form $X \rightarrow \{\}$, die in (b) möglicherweise entstanden sind.
- d) Fasse FDs der Form $X \to Y_1, \dots, X \to Y_n$ zusammen, so dass $X \to (Y_1 \cup \dots \cup Y_n)$ verbleibt.

- 2. Für jede FD $X \rightarrow Y \in F_c$
 - Erzeuge ein Relationenschema $R_X := X \cup Y$.
 - Ordne R_X die FDs $F_X := \{X' \to Y' \in F_c \mid X' \cup Y' \in R_X\}$ zu.
- 3. Rekonstruiere einen Schlüsselkandidaten
 - Falls eines der in Schritt 2 erzeugten Schemata einen Schlüsselkandidaten von R bzgl. F_c enthält, sind wir fertig.
 - Andernfalls wähle einen Schlüsselkandidaten $S \subseteq R$ aus und definiere folgendes zusätzliche Schema:
 - $R_S := S$
 - $F_S := \{ \}$
- 4. Eliminiere überflüssige Relationen
 - Eliminiere diejenigen Schemata R_X , die in einem anderen Relationenschema $R_{X'}$ enthalten sind, d.h.
 - $R_X \subseteq R_{X'}$

Beispiel: Einkauf (Anbieter, Ware, WGruppe, Kunde, KOrt, KLand, Kaufdatum) Es gelten folgende FDs: $F = {$ Kunde, Ware \rightarrow KLand Kunde, WGruppe → Anbieter Anbieter → WGruppe Ware \rightarrow WGruppe Kunde \rightarrow KOrt KOrt → KLand Schritte des Synthesealgorithmus: 1. Kanonische Überdeckung F_c der funktionalen Abhängigkeiten: a) Linksreduktion: Kunde, $\frac{\text{Ware}}{\text{Ware}} \rightarrow \text{KLand}$, $\{KLand\} \subseteq AttrH\"ulle(F, \{Kunde, Ware\} - \{Ware\})$ weil KLand von Kunde alleine (transitiv) funktional abhängig ist b) Rechtsreduktion: Kunde \rightarrow KLand, $\{KLand\} \subseteq AttrH\"ulle(F - (Kunde \rightarrow KLand) \cup (Kunde \rightarrow \{\}), Kunde)$ weil KLand transitiv von Kunde funktional abhängig ist Kunde $\rightarrow \{\}$ wird eliminiert c)

nichts zu tun.

Beispiel:

Einkauf (Anbieter, <u>Ware</u>, WGruppe, <u>Kunde</u>, KOrt, KLand, <u>Kaufdatum</u>) **Schritte des Synthesealgorithmus:**

1. Kanonische Überdeckung $F_{\rm c}$ der funktionalen Abhängigkeiten:

Kunde, WGruppe → Anbieter Anbieter → WGruppe Ware → WGruppe

Kunde \rightarrow KOrt

KOrt → KLand

2. Erzeugen der neuen Relationenschemata und ihrer FDs:

Bezugsquelle (Kunde, WGruppe, Anbieter) $\{\text{Kunde, WGruppe} \rightarrow \text{Anbieter}, \\ \text{Anbieter} \rightarrow \text{WGruppe}\}$ Lieferant (Anbieter, WGruppe) $\{\text{Anbieter} \rightarrow \text{WGruppe}\}$ Produkt (Ware, WGruppe) $\{\text{Ware} \rightarrow \text{WGruppe}\}$ Adresse (Kunde, KOrt) $\{\text{Kunde} \rightarrow \text{KOrt}\}$ Land (KOrt, KLand) $\{\text{KOrt} \rightarrow \text{KLand}\}$

3. Da keine dieser Relationen einen Schlüsselkandidaten der ursprünglichen Relation enthält, muß noch eine eigene Relation mit dem ursprünglichen Schlüssel angelegt werden:

Einkauf (Ware, Kunde, Kaufdatum)

4. Da die Relation *Lieferant* in *Bezugsquelle* enthalten ist, können wir *Lieferant* wieder streichen.

Boyce-Codd-Normalform

• Welche Abhängigkeiten können in der dritten Normalform noch auftreten?

Abhängigkeiten unter Attributen, die prim sind, aber noch nicht vollständig einen Schlüssel bilden

• Beispiel:

Autoverzeichnis (Hersteller, HerstellerNr, ModellNr)

- es gilt 1:1-Beziehung zw. Hersteller und HerstellerNr:
 Hersteller → HerstellerNr
 HerstellerNr → Hersteller
- Schlüsselkandidaten sind deshalb: {Hersteller, ModellNr} {HerstellerNr, ModellNr}
- Schema in 3. NF, da alle Attribute prim sind.

Boyce-Codd-Normalform

Datenbanksysteme I Kapitel 7: Normalformen • Trotzdem können auch hier Anomalien auftreten

• Definition:

Ein Schema R ist in Boyce-Codd-Normalform, wenn für alle nichttrivialen Abhängigkeiten $X \rightarrow Y$ gilt:

- X enthält einen Schlüsselkandidaten von R
- <u>Verlustlose</u> Zerlegung ist generell immer möglich.
- Abhängigkeitserhaltende Zerlegung nicht immer möglich.

Mehrwertige Abhängigkeiten (MVD)

• Mehrwertige Abhängigkeiten entstehen, wenn mehrere unabhängige 1:*n*-Beziehungen in einer Relation stehen (was nach Kapitel 6 eigentlich nicht sein darf):

```
    Mitarbeiter (<u>Name, Projekte, Verwandte</u>)
    Huber, {P1, P2, P3} {Heinz, Hans, Hubert}
    Müller, {P2, P3} {Manfred}
```

• In erster Normalform müsste man mindestens 3 Tupel für Huber und 2 Tupel für Müller speichern:

• Mitarbeiter (Name, Proj	ekte, Verwandte)
Huber, P1,	Heinz,
Huber, P2,	Hans,
Huber, P3,	Hubert,
Müller, P2,	Manfred
Müller, P3,	NULL

Mehrwertige Abhängigkeiten (MVD)

Datenbanksysteme I Kapitel 7: Normalformen • Um die Anfrage zu ermöglichen, wer die Verwandten von Mitarbeitern in Projekt P2 sind, müssen pro Mitarbeiter sogar sämtliche Kombinationstupel gespeichert werden:

Mitarbeiter (Name,	Projekte,	Verwandte)
Huber,	P1,	Heinz,
Huber,	P1,	Hans,
Huber,	P1,	Hubert,
Huber,	P2,	Heinz,
Huber,	P2,	Hans,
Huber,	P2,	Hubert,
Huber,	P3,	Heinz,
Huber,	P3,	Hans,
Huber,	P3,	Hubert,
Müller,	P2,	Manfred,
Müller,	P3,	Manfred.

• Wir nennen dies eine Mehrwertige Abhängigkeit (engl. Multivalued Dependency, MVD)

Mehrwertige Abhängigkeiten (MVD)

Datenbanksysteme I Kapitel 7: Normalformen Gegeben: $X,Y \subseteq R$, und es sei $Z = R \setminus (X \cup Y)$ d.h. der Rest Y ist *mehrwertig abhängig* von $X (X \longrightarrow Y)$, wenn für jede gültige Ausprägung von R gilt:

- Für jedes Paar aus Tupeln t_1 , t_2 mit $t_1.X=t_2.X$, aber $t_1 \neq t_2$, existieren die (nicht immer zu t_1 und t_2 verschiedenen) Tupel t_3 und t_4 mit den Eigenschaften:

$$t_{1}.X = t_{2}.X = t_{3}.X = t_{4}.X$$
 $t_{3}.Y = t_{1}.Y$
 $t_{3}.Z = t_{2}.Z$
 $t_{4}.Y = t_{2}.Y$
 $t_{4}.Z = t_{1}.Z$

D.h. jedem X ist eine Menge von Y-Werten zugeordnet. Jede FD ist auch MVD (diese Menge ist dann jeweils ein-elementig und $t_3=t_2$, $t_4=t_1$)

Beispiel MVD

Datenbanksysteme I Kapitel 7: Normalformen

R		
X	Y	Z
A_1A_i	$A_{1+1}A_{j}$	$A_{j+1}A_n$
$\mathbf{a_1a_i}$		$-a_{j+1}a_n$
$\mathbf{a_1a_i}$	$igg \mathbf{b_{i+1}}\mathbf{b_{j}}$	$\mathbf{b_{j+1}b_n}$
a_1a_i	$a_{i+1}a_{j}$	$\mathbf{b}_{\mathbf{j+1}}\mathbf{b}_{\mathbf{n}}$
$\mathbf{a_1a_i}$	$L\mathbf{b}_{i+1}\mathbf{b}_{j}$	$\bigsqcup_{a_{j+1}\dots a_n}$

Weiteres Beispiel

Datenbanksysteme I Kapitel 7: Normalformen Relation: Modelle

ModellNr	Farbe	Leistung
E36	blau	170 PS
E36	schwarz	198 PS
E36	blau	198 PS
E36	schwarz	170 PS
E34	schwarz	170 PS

 $\{ModellNr\} \rightarrow \{Farbe\} \text{ und } \{ModellNr\} \rightarrow \{Leistung\}$

Farben

ModellNr	Farbe
E36	blau
E36	schwarz
E34	Schwarz

Leistung

ModellNr	Leistung
E36	170 PS
E36	198 PS
E34	170 PS

Modelle = $\Pi_{\text{ModellNr,Sprache}}$ (Farben) $\Pi_{\text{ModellNr,Leistung}}$ (Leistung)

Verlustlose Zerlegung MVD

Datenbanksysteme I Kapitel 7: Normalformen Ein Relationenschema R mit einer Menge D von zugeordneten funktionalen mehrwertigen Abhängigkeiten kann genau dann verlustlos in die beiden Schemata R_1 und R_2 zerlegt werden, wenn gilt:

- $R = R_1 \cup R_2$
- mindestens eine von zwei MVDs gilt:
 - 1. $R_1 \cap R_2 \longrightarrow R_1$ oder
 - $2. \quad R_1 \cap R_2 \longrightarrow R_2$

Triviale MVD und 4. Normalform

Eine MVD $X \to Y$ bezogen auf $R \supseteq X \cup Y$ ist *trivial*, wenn jede mögliche Ausprägung r von R diese MVD erfüllt. Man kann zeigen, dass $X \to Y$ trivial ist, genau dann wenn:

- $-Y\subseteq X$ oder
- -Y=R-X.

Eine Relation R mit zugeordneter Menge F von funktionalen und mehrwertigen Abhängigkeiten ist in 4. Normalform (**4NF**), wenn für jede MVD $X \rightarrow Y \in F^+$ eine der folgenden Bedingungen gilt:

- Die MVD ist trivial oder
- − *X* ist ein Superschlüssel von *R*.

Beispiel

Datenbanksysteme I Kapitel 7: Normalformen

Assistenten:

{[PersNr,Name,Fachgebiet, Boss,Sprache,ProgSprache]}

- Assistenten: {[PersNr,Name,Fachgebiet, Boss]}
- Sprachen:{[PersNr, Sprache]}
- ProgSprach:{[PersNr,ProgSprache}

Schlussbemerkungen

- Ein gut durchdachtes E/R-Diagramm liefert bereits weitgehend normalisierte Tabellen
- Normalisierung ist in gewisser Weise eine Alternative zum E/R-Diagramm
- Extrem-Ansatz: Universal Relation Assumption:
 - Modelliere alles zunächst in einer Tabelle
 - Ermittle die funktionalen Abhängigkeiten
 - Zerlege das Relationenschema entsprechend
 (der letzte Schritt kann auch automatisiert werden:
 Synthesealgorithmus für die 3. Normalform)

Schlussbemerkungen

- Normalisierung kann schädlich für die Performanz sein, weil Joins sehr teuer auszuwerten sind
- Nicht jede FD berücksichtigen:
 - Abhängigkeiten zw. Wohnort, Vorwahl, Postleitzahl
 - Man kann SQL-Integritätsbedingungen formulieren,
 um Anomalien zu vermeiden (Trigger, siehe später)
- Aber es gibt auch Konzepte, Relationen so abzuspeichern, dass Join auf bestimmten Attributen unterstützt wird
 - ORACLE-Cluster

Zusammenfassung

Datenbanksysteme I Kapitel 7: Normalformen

- 1. Normalform: Alle Attribute atomar
- 2. Normalform: Keine funktionale Abhängigkeit eines Nicht-Schlüssel-Attributs von Teil eines Schlüssels
- 3. Normalform: Zusätzlich keine nichttriviale funktionale Abhängigkeit eines Nicht-Schlüssel-Attributs von Nicht-Schlüssel-Attributen
- Boyce-Codd-Normalform:
 Zusätzlich keine nichttriviale funktionale
 Abhängigkeit unter den Schlüssel-Attributen
- 4. Normalform: keine Redundanz durch MVDs.