In [1]: import pandas as pd
 import numpy as np
 import seaborn as sns
 import matplotlib.pyplot as plt

In [2]: df=pd.read_csv(r"C:\Users\HP\Downloads\used_cars_data.csv")
df

Out[2]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Se
7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	
7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	
7250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	
7251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	
7252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	

7253 rows × 14 columns

In [3]: df.head()

Out[3]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second
4								

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	S.No.	7253 non-null	int64
1	Name	7253 non-null	object
2	Location	7253 non-null	object
3	Year	7253 non-null	int64
4	Kilometers_Driven	7253 non-null	int64
5	Fuel_Type	7253 non-null	object
6	Transmission	7253 non-null	object
7	Owner_Type	7253 non-null	object
8	Mileage	7251 non-null	object
9	Engine	7207 non-null	object
10	Power	7207 non-null	object
11	Seats	7200 non-null	float64
12	New_Price	1006 non-null	object
13	Price	6019 non-null	float64

dtypes: float64(2), int64(3), object(9)

memory usage: 793.4+ KB

In [5]: df.dropna(inplace=True)

```
In [6]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         Index: 823 entries, 2 to 6014
         Data columns (total 14 columns):
                                   Non-Null Count
              Column
                                                     Dtype
          0
              S.No.
                                   823 non-null
                                                     int64
          1
              Name
                                   823 non-null
                                                     object
          2
              Location
                                   823 non-null
                                                     object
          3
              Year
                                   823 non-null
                                                     int64
          4
              Kilometers Driven 823 non-null
                                                     int64
          5
              Fuel_Type
                                   823 non-null
                                                     object
          6
              Transmission
                                   823 non-null
                                                     object
          7
              Owner_Type
                                   823 non-null
                                                     object
          8
                                   823 non-null
                                                     object
              Mileage
          9
                                   823 non-null
                                                     object
              Engine
          10
             Power
                                   823 non-null
                                                     object
                                                     float64
          11
              Seats
                                   823 non-null
          12
              New Price
                                   823 non-null
                                                     object
          13
              Price
                                   823 non-null
                                                     float64
         dtypes: float64(2), int64(3), object(9)
         memory usage: 96.4+ KB
In [7]: df.describe()
Out[7]:
                      S.No.
                                  Year
                                       Kilometers_Driven
                                                             Seats
                                                                        Price
                 823.000000
                             823.000000
                                              823.000000 823.000000
                                                                   823.000000
          count
                3017.058323
                           2015.869988
                                            40498.402187
                                                          5.304982
                                                                    13.647606
          mean
                1775.572600
                               2.378709
                                            28791.171759
                                                          0.795707
                                                                    14.860539
            std
           min
                   2.000000
                           2001.000000
                                              600.000000
                                                          2.000000
                                                                     0.700000
           25%
                1522.000000
                           2015.000000
                                            20487.500000
                                                          5.000000
                                                                     5.000000
                2916.000000
           50%
                           2016.000000
                                            34895.000000
                                                          5.000000
                                                                     8.200000
                4650.500000
           75%
                           2017.000000
                                            53829.000000
                                                          5.000000
                                                                    17.500000
           max 6014.000000 2019.000000
                                           215000.000000
                                                          8.000000
                                                                   160.000000
In [8]: df.columns
Out[8]: Index(['S.No.', 'Name', 'Location', 'Year', 'Kilometers_Driven', 'Fuel_Typ
         e',
                 'Transmission', 'Owner Type', 'Mileage', 'Engine', 'Power', 'Seats',
                 'New_Price', 'Price'],
               dtype='object')
```

Exploratory Data Analysis:

In [9]: sns.pairplot(df)

Out[9]: <seaborn.axisgrid.PairGrid at 0x1c1b9256110>


```
In [10]: sns.displot(df['Price'])
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x1c1bd4a3ee0>


```
In [11]: sns.displot(df['Seats'])
```

Out[11]: <seaborn.axisgrid.FacetGrid at 0x1c1bd54f190>


```
In [13]: sns.heatmap(carsdf.corr())
         ValueError
                                                   Traceback (most recent call last)
         Cell In[13], line 1
         ---> 1 sns.heatmap(carsdf.corr())
         File ~\AppData\Roaming\Python\Python310\site-packages\pandas\core\frame.py:1
         0059, in DataFrame.corr(self, method, min periods, numeric only)
           10057 cols = data.columns
           10058 idx = cols.copy()
         > 10059 mat = data.to numpy(dtype=float, na value=np.nan, copy=False)
           10061 if method == "pearson":
           10062
                     correl = libalgos.nancorr(mat, minp=min periods)
         File ~\AppData\Roaming\Python\Python310\site-packages\pandas\core\frame.py:1
         838, in DataFrame.to_numpy(self, dtype, copy, na_value)
            1836 if dtype is not None:
                     dtype = np.dtype(dtype)
            1837
         -> 1838 result = self._mgr.as_array(dtype=dtype, copy=copy, na_value=na_valu
         e)
            1839 if result.dtype is not dtype:
            1840
                     result = np.array(result, dtype=dtype, copy=False)
         File ~\AppData\Roaming\Python\Python310\site-packages\pandas\core\internals
         \managers.py:1732, in BlockManager.as_array(self, dtype, copy, na_value)
            1730
                         arr.flags.writeable = False
            1731 else:
         -> 1732 arr = self. interleave(dtype=dtype, na value=na value)
                     # The underlying data was copied within _interleave, so no need
            1733
                     # to further copy if copy=True or setting na value
            1736 if na_value is not lib.no_default:
         File ~\AppData\Roaming\Python\Python310\site-packages\pandas\core\internals
         \managers.py:1794, in BlockManager. interleave(self, dtype, na value)
            1792
                    else:
            1793
                         arr = blk.get_values(dtype)
                     result[rl.indexer] = arr
         -> 1794
            1795
                     itemmask[rl.indexer] = 1
            1797 if not itemmask.all():
         ValueError: could not convert string to float: 'Honda Jazz V'
In [ ]: x=carsdf[['S.No.', 'Name', 'Location', 'Year', 'Kilometers_Driven', 'Fuel_Type
                'Transmission', 'Owner_Type', 'Mileage', 'Engine', 'Power', 'Seats',
                'New Price', 'Price']]
         y=df['Price']
 In [ ]: from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=
```

In []:	<pre>from sklearn.linear_model import LinearRegression lm=LinearRegression lm.fit(x_train,y_train)</pre>
In []:	<pre>print(lm.intercept_)</pre>
In []:	