ARHITECTURA SISTEMELOR DE CALCUL - CURS 0x00

INFORMAȚII ADMINISTRATIVE

Cristian Rusu

CUPRINS

- cadre didactice
- organizare
- evaluare
- structura cursului
- · obiectivele cursului
- referințe bibliografice generale

STRUCTURA CURSULUI

- circuite digitale
 - teoria informației și abstractizarea digitală
 - funcții și circuite logice
- arhitecturi de calcul

 materia acoperită la laborator începe de aici
 - seturi de instrucțiuni
 - limbajul assembly
 - compilatoare
 - pipelining
 - ierarhia memoriei
- organizarea calculatoarelor
 - unitatea de procesare centrală
 - performanța calculatoarelor
 - dispozitive periferice şi întreruperi
 - calcul paralel
- potenţiale subiecte moderne la curs: RISC-V, WebAssembly, TockOS, hardware pentru machine learning (GPU, TPU, etc.), etc.
- laborator: progamare în limbajul Assembly x86

STRUCTURA CURSULUI

- laborator: progamare în limbajul Assembly x86
- nimeni (foarte puţină lume) programează doar/complet în Assembly
- assembly x86 este folositor pentru:
 - securitate informatică
 - Reverse Engineering (RE)
 - hacking
 - optimizare
 - dezvoltare jocuri
 - Machine Learning (ML/AI)
 - debugging
 - dezvoltare software low-level
 - dezvoltare pentru sisteme embedded
 - dezvoltare pentru sisteme de operare

POZIȚIONAREA CURSULUI

OBIECTIVELE CURSULUI

- să înțelegeți principile arhitecturii sistemelor de calcul
 - ce urmărim
 - ce limitări există
 - punerea în balanță a unor criterii de performanță contradictorii
- să înțelegeți ce există ca tehnologie acum
 - ce limitări există astăzi
 - ce execută un computer pe care îl programați voi
 - cum puteți optimiza execuția programelor
- să înțelegeți cum să folosiți ce ați învățat în viitor
 - design de hardware nou
- pentru a ne asigura că lucrurile merg bine, veţi avea posibilitatea să oferiţi feedback (anonim binenţeles) la jumătatea cursului
- pe parcurs, dacă sunt probleme sau neclarități vă rog sa mi le comunicați (e-mail, la clasă, fie direct sau anonim sau printr-un reprezentant, etc.)

"The purpose of computing is insight, not numbers." (Richard Hamming)

PROGRESUL TEHNOLOGIC FĂCUT

- înainte de al doilea război mondial, 1939, USA
- putere de calcul: 50 operații / secundă

- ENIAC
- 1947 1955, USA
- 1000 operaţii / secundă

- HPE CRAY, 2021, SUA
- core-uri: 8.699.904
- 1714 peta operații / secundă

- hardware pentru machine learning (învățare automată)
- DeepMind şi OpenAl vorbesc despre două lucruri:
 - algoritmi noi pentru modelare și antrenare
 - "compute" (infrastructura hardware pe care rulează algoritmii)

- AlphaZero: software bazat de ML
 - Stockfish (software clasic bazat pe metode de căutare – în principal alpha/beta pruning)
 - 3500 ELO
 - AlphaZero vs Stockfish:
 - +155 -6 =839
 - Magnus Carlsen (campionul mondial actual)
 - < 2900 ELO</p>
 - AlphaZero (alb)
 vs Stockfish (negru)

https://science.sciencemag.org/content/362/6419/1140.full , https://en.wikipedia.org/wiki/AlphaZero , https://www.youtube.com/watch?v=IFXJWPhDsSY

- hardware pentru machine learning (învățare automată)
- DeepMind şi OpenAl vorbesc despre două lucruri:
 - algoritmi noi pentru modelare și antrenare
 - "compute" (infrastructura hardware pe care rulează algoritmii)

AlphaZero: software bazat de ML

- Stockfish (software clasic bazat pe metode de căutare – în principal alpha/beta pruning)
 - 3500 ELO
- DeepMind spune că a antrenat acest algoritm 4 ore (învățat din self-play)
 - da, 4 ore pe platforma lor de calcul
 - un calcul rapid, aproximativ, arată că pe laptop-ul meu aceeași procedură de antrenare ar dura 30 de ani
 - costul? aproximativ 20\$ milioane
- cum scădem costul?
 - algoritmi mai eficienti
 - hardware special, dedicat

- ASC e importantă și pentru software-ul folosit de zi cu zi
- ce face următorul algoritm?

```
# varianta A
for (int i = 0; i < n; ++i)
  for (int j = 0; j < n; ++j)
    for (int k = 0; k < n; ++k)
        C[i][j] += A[i][k] * B[k][j];

# varianta B
for (int j = 0; j < n; ++j)
  for (int i = 0; i < n; ++i)
    for (int k = 0; k < n; ++k)
        C[i][j] += A[i][k] * B[k][j];</pre>
```

- înmulțește două matrice
- care este complexitatea numerică?
 - $O(n^3)$
 - 2n³ operații
- ce face varianta B?
- cei doi algoritmi sunt echivalenţi, matematic

pe sistemul meu de calcul varianta B este de 4 ori mai lentă decât varianta A cum este posibil așa ceva?

care este diferența dintre cele două variante?

ordinea în care se execută instrucțiunile este foarte importantă

- ASC e importantă și pentru software-ul folosit de zi cu zi
- ce face următorul algoritm?

```
# varianta A
for (int i = 0; i < n; ++i)
  for (int j = 0; j < n; ++j)
    for (int k = 0; k < n; ++k)
        C[i][j] += A[i][k] * B[k][j];

# varianta B
for (int j = 0; j < n; ++j)
  for (int i = 0; i < n; ++i)
    for (int k = 0; k < n; ++k)
        C[i][j] += A[i][k] * B[k][j];</pre>
```

- înmulțește două matrice
- care este complexitatea numerică?
 - $O(n^3)$
 - 2n³ operații
- există un algoritm care calculează rezultatul *C* în *O*(*n*^{2.8074})
 - din păcate, pe arhitecturile de calcul moderne, acest algoritm este mai lent decât metoda clasică (o formă de varianta A)

concluzii:

- complexitatea numerică este foarte importantă, dar nu este totul
- ce calculăm matematic și ce putem executa sunt două lucruri diferite
- câteodată progresul în lumea reală este surprinzător și complet neevident