Improving Topic Models with Latent Feature Word Representations

Dat Quoc Nguyen

Joint work with Richard Billingsley, Lan Du and Mark Johnson

Department of Computing Macquarie University Sydney, Australia

September 2015

Introduction

- Topic models take a corpus of documents as input, and
 - learn a set of latent topics for the corpus
 - infer document-to-topic and topic-to-word distributions from co-occurrence of words within documents
- If the corpus is small and/or the documents are short, the topics will be noisy due to the limited information of word co-occurrence
- Latent word representations learnt from large external corpora capture various aspects of word meanings
 - ▶ We used the pre-trained word2vec (Mikolov et al., 2013) and Glove (Pennington et al., 2014) word representations

High-level idea

- Use the word representations learnt on a large external corpus to improve the topic-word distributions in a topic model
 - we combine Latent Dirichlet Allocation (Blei et al., 2003) and Dirichlet Multinomial Mixture (Nigam et al., 2000) with the distributed representations
 - ▶ the improvement is greatest on small corpora with short documents

LDA and DMM

Latent Dirichlet Allocation (LDA)

$$egin{aligned} m{ heta}_d &\sim \mathsf{Dir}(lpha) & & z_{d_i} &\sim \mathsf{Cat}(m{ heta}_d) \ m{\phi}_z &\sim \mathsf{Dir}(eta) & & w_{d_i} &\sim \mathsf{Cat}(m{\phi}_{z_{d_i}}) \end{aligned}$$

Dirichlet Multinomial Mixture (DMM) model: one-topic-per-document

$$egin{aligned} m{ heta} \sim \mathsf{Dir}(lpha) & z_d \sim \mathsf{Cat}(m{ heta}) \ m{\phi}_z \sim \mathsf{Dir}(eta) & w_{d_i} \sim \mathsf{Cat}(m{\phi}_{z_d}) \end{aligned}$$

• Inference is typically performed with a *Gibbs sampler*, integrating out θ and ϕ (Griffiths et al., 2004; Yin and Wang, 2014)

Latent-feature topic-to-word distributions

- We assume that each word w is associated with a word vector ω_w
- We learn a *topic vector* au_t for each topic t
- We use these to define a latent feature topic-to-word distribution CatE(w) over words:

$$\mathsf{CatE}(w \mid oldsymbol{ au}_t oldsymbol{\omega}^{ op}) \; \propto \; \mathsf{exp}(oldsymbol{ au}_t \cdot oldsymbol{\omega}_w)$$

- lacktriangledown $oldsymbol{ au}_t oldsymbol{\omega}^ op$ is a vector of unnormalized scores, one per word
- In our topic models, we mix the CatE distribution with a multinomial distribution over words
 - combine information from a large, general corpus (via the CatE distribution) and a smaller but more specific corpus (via the multinomial distribution)
 - use a Boolean indicator variable that records whether a word is generated from CatE or the multinomial distribution

The Latent Feature LDA (LF-LDA) model

$$\begin{array}{ll} \boldsymbol{\theta}_{d} \sim \mathsf{Dir}(\alpha) & z_{d_{i}} \sim \mathsf{Cat}(\boldsymbol{\theta}_{d}) \\ \boldsymbol{\phi}_{z} \sim \mathsf{Dir}(\beta) & s_{d_{i}} \sim \mathsf{Ber}(\lambda) \\ w_{d_{i}} \sim (1 - s_{d_{i}})\mathsf{Cat}(\boldsymbol{\phi}_{z_{d_{i}}}) + s_{d_{i}}\mathsf{CatE}(\boldsymbol{\tau}_{z_{d_{i}}} \boldsymbol{\omega}^{\top}) \end{array}$$

- Replace the topic-to-word Dirichlet multinomial component in LDA with a two-component mixture of a topic-to-word Dirichlet multinomial component and a latent feature topic-to-word component
- s_{d_i} is the Boolean indicator variable indicating whether word w_{d_i} is generated from the latent feature component
- λ is a user-specified hyper-parameter determining how often words are generated from the latent feature component
 - ightharpoonup if we estimated λ from data, we expect it would never generate through the latent feature component

The Latent Feature DMM (LF-DMM) model

$$\begin{array}{ll} \boldsymbol{\theta} \sim \mathsf{Dir}(\alpha) & z_d \sim \mathsf{Cat}(\boldsymbol{\theta}) \\ \boldsymbol{\phi}_z \sim \mathsf{Dir}(\beta) & s_{d_i} \sim \mathsf{Ber}(\lambda) \\ w_{d_i} \sim (1 - s_{d_i}) \mathsf{Cat}(\boldsymbol{\phi}_{z_d}) + s_{d_i} \mathsf{CatE}(\boldsymbol{\tau}_{z_d} \, \boldsymbol{\omega}^{\scriptscriptstyle \top}) \end{array}$$

- Replace the topic-to-word Dirichlet multinomial component in DMM with a two-component mixture of a topic-to-word Dirichlet multinomial component and a latent feature topic-to-word component
- s_{d_i} is the Boolean indicator variable indicating whether word w_{d_i} is generated from the latent feature component
- λ is a user-specified hyper-parameter determining how often words are generated from the latent feature component

Inference for the LF-LDA model

- We integrate out θ and ϕ as in the Griffiths et al. (2004) sampler, and interleave MAP estimation for τ with Gibbs sweeps for the other variables
- Algorithm outline: initialize the word-topic variables z_{d_i} using the LDA sampler repeat:

```
for each topic t: use LBFGS to optimize the L2-regularized log-loss 	au_t = \arg\max_{	au_t} \mathsf{P}(	au_t \mid z, s) for each document d and each word location i: sample z_{d_i} from \mathsf{P}(z_{d_i} \mid z_{\neg d_i}, s_{\neg d_i}, 	au) sample s_{d_i} from \mathsf{P}(s_{d_i} \mid z, s_{\neg d_i}, 	au)
```

Inference for the LF-DMM model

- We integrate out θ and ϕ as in the Yin and Wang (2014) sampler, and interleave MAP estimation for τ with Gibbs sweeps
- Algorithm outline: initialize the word-topic variables z_{di} using the DMM sampler repeat:

```
for each topic t: use LBFGS to optimize the L2-regularized log-loss 	au_t = \arg\max_{	au_t} \mathsf{P}(	au_t \mid z, s) for each document d: sample z_d and s_d from \mathsf{P}(z_d, s_d \mid z_{\neg d}, s_{\neg d}, \tau)
```

- Note: $P(z_d, s_d \mid z_{\neg d}, s_{\neg d}, \tau)$ is computationally expensive to compute exactly, as it requires summing over all possible values for s_d
- We approximate these probabilities by assuming that the topic-word counts are "frozen", i.e., they don't increase within a document ⇒We are able to integrate out s_d

Goals of evaluation

- A topic model learns document-topic and topic-word distributions:
 - topic coherence evaluates the topic-word distributions
 - document clustering and document classification evaluate the document-topic distribution
- Do the word2vec and Glove word vectors behave differently in topic modelling? (w2v-LDA, glove-LDA, w2v-LDA, glove-DMM)
- We expect that the latent feature component will have *the greatest impact on small corpora*, so our evaluation focuses on them:

Dataset		# labels	# docs	words/doc	# types
N20	20 newsgroups	20	18,820	103.3	19,572
N20short	\leq 20 words	20	1,794	13.6	6,377
N20small	400 docs	20	400	88.0	8,157
TMN	TagMyNews	7	32,597	18.3	13,428
TMNtitle	TagMyNews titles	7	32,503	4.9	6,347
Twitter		4	2,520	5.0	1,390

Topic coherence evaluation

- Lau et al. (2014) showed that human scores on a word intrusion task are highly correlated with the normalized pointwise mutual information (NPMI)
- We found latent feature vectors produced a significant improvement of NPMI scores on all models and corpora
 - greatest improvement when $\lambda=1$ (unsurprisingly)

NPMI scores on the N20short dataset, varying the mixture weight λ from 0.0 to 1.0.

w2v-DMM on TagMyNews titles corpus

Topic 1		Topic 3		Topic 4	
DMM	w2v-DMM	DMM	w2v-DMM	DMM	w2v-DMM
japan	japan	u.s.	prices	egypt	libya
nuclear	nuclear	oil	sales	<u>china</u>	egypt
u.s.	u.s.	japan	oil	u.s	iran
crisis	plant	prices	u.s.	mubarak	mideast
plant	quake	stocks	profit	<u>bin</u>	opposition
<u>china</u>	radiation	sales	stocks	libya	protests
libya	earthquake	profit	japan	<u>laden</u>	leader
radiation	tsunami	<u>fed</u>	rise	<u>france</u>	syria
<u>u.n.</u>	nuke	rise	gas	bahrain	u.n.
<u>vote</u>	crisis	growth	growth	<u>air</u>	tunisia
<u>korea</u>	disaster	<u>wall</u>	shares	report	chief
europe	power	street	price	rights	protesters
government	oil	<u>china</u>	profits	court	mubarak
election	japanese	<u>fall</u>	rises	u.n.	crackdown
<u>deal</u>	plants	shares	earnings	<u>war</u>	bahrain

- Table shows the 15 most probable topical words found by 20-topic w2v-DMM on the TMNtitle corpus
- Words found by DMM but not by w2v-DMM are underlined
- Words found by w2v-DMM but not DMM are in bold

Document clustering evaluation (1)

- Cluster documents by assigning them to the highest probability topic
- Evaluate clusterings by purity and normalized mutual information (NMI) (Manning et al., 2008)

Purity and NMI results on the N20short dataset, varying the mixture weight λ from 0.0 to 1.0.

- In general, best results with $\lambda = 0.6$
- \Rightarrow Set $\lambda = 0.6$ in all further experiments

Document clustering evaluation (2)

Data	Method	Purity		NMI	
		T=4	T=20	T=4	T=20
	LDA	0.559 ± 0.020	0.614 ± 0.016	0.196 ± 0.018	0.174 ± 0.008
Twitter	w2v-LDA	0.598 ± 0.023	0.635 ± 0.016	0.249 ± 0.021	0.191 ± 0.011
	glove-LDA	0.597 ± 0.016	0.635 ± 0.014	0.242 ± 0.013	0.191 ± 0.007
	Improve.	0.039	0.021	0.053	0.017
	DMM	0.523 ± 0.011	0.619 ± 0.015	0.222 ± 0.013	0.213 ± 0.011
Twitter	w2v-DMM	0.589 ± 0.017	0.655 ± 0.015	0.243 ± 0.014	0.215 ± 0.009
	glove-DMM	0.583 ± 0.023	0.661 ± 0.019	0.250 ± 0.020	0.223 ± 0.014
	Improve.	0.066	0.042	0.028	0.01

- On the short, our models obtain better clustering results than the baseline models:
 - lacktriangle on N20small, we get 6.0% improvement on NMI at T=6
 - on TMN and TMNtitle, we obtain 6.1% and 2.5% higher Purity at T=80

Document clustering evaluation (3)

- For small $T \le 7$, on the large datasets of N20, TMN and TMNtitle, our models and baseline models obtain similar clustering results
- With larger T, our models perform better than baselines on the short TMN and TMNtitle datasets. On the N20 dataset, the baseline LDA model obtains slightly higher clustering results than ours
- No reliable difference between word2vec and Glove vectors

Document classification (1)

 Use SVM to predict the ground truth label from the topic-proportion vector of each document

 F_1 scores on the N20short dataset, varying the mixture weight λ from 0.0 to 1.0.

Data	Method	$\lambda = 0.6$			
Data		T=6	T=20	T=40	T=80
	LDA	0.204 ± 0.020	0.392 ± 0.029	0.459 ± 0.030	0.477 ± 0.025
N20small	w2v-LDA	0.213 ± 0.018	0.442 ± 0.025	0.502 ± 0.031	0.509 ± 0.022
	glove-LDA	0.181 ± 0.011	0.420 ± 0.025	0.474 ± 0.029	0.498 ± 0.012
	Improve.	0.009	0.05	0.043	0.032

Document classification (2)

Data	Method	$\lambda = 0.6$				
	Ivietilou	T=7	T=20	T=40	T=80	
	DMM	0.607 ± 0.040	0.694 ± 0.026	0.712 ± 0.014	0.721 ± 0.008	
TMN	w2v-DMM	0.607 ± 0.019	0.736 ± 0.025	0.760 ± 0.011	0.771 ± 0.005	
	glove-DMM	0.621 ± 0.042	0.750 ± 0.011	0.759 ± 0.006	0.775 ± 0.006	
	Improve.	0.014	0.056	0.048	0.054	
	DMM	0.500 ± 0.021	0.600 ± 0.015	0.630 ± 0.016	0.652 ± 0.005	
TMNtitle	w2v-DMM	0.528 ± 0.028	0.663 ± 0.008	0.682 ± 0.008	0.681 ± 0.006	
	glove-DMM	0.565 ± 0.022	0.680 ± 0.011	0.684 ± 0.009	0.681 ± 0.004	
	Improve.	0.065	0.08	0.054	0.029	
Data	Method	$\lambda = 0.6$				
Data		T=4	T=20	T=40	T=80	
	LDA	0.526 ± 0.021	0.636 ± 0.011	0.650 ± 0.014	0.653 ± 0.008	
Twitter	w2v-LDA	0.578 ± 0.047	0.651 ± 0.015	0.661 ± 0.011	0.664 ± 0.010	
	glove-LDA	0.569 ± 0.037	0.656 ± 0.011	0.662 ± 0.008	0.662 ± 0.006	
	Improve.	0.052	0.02	0.012	0.011	
	DMM	0.469 ± 0.014	0.600 ± 0.021	0.645 ± 0.009	0.665 ± 0.014	
Twitter	w2v-DMM	$ 0.539 \pm 0.016 $	0.649 ± 0.016	0.656 ± 0.007	0.676 ± 0.012	
	glove-DMM	0.536 ± 0.027	0.654 ± 0.019	0.657 ± 0.008	0.680 ± 0.009	

Conclusions and future directions

- Latent feature vectors induced from large external corpora can be used to improve topic modelling
 - latent features significantly improve topic coherence across a range of corpora with both the LDA and DMM models
 - document clustering and document classification also significantly improve, even though these depend directly only on the document-topic distribution
- The improvements were greatest for small document collections and/or for short documents
- We did not detect any reliable difference between word2vec and Glove vectors
- Retrain the word vectors to fit the topic-modeling corpus
- More sophisticated latent-feature models of topic-word distributions
- More efficient training procedures

Thank you for your attention!

- Software:
 - http://jldadmm.sourceforge.net
 - https://github.com/datquocnguyen/LFTM

Related work

- Phan et al. (2011) assumed that the small corpus is a sample of topics from a larger corpus like Wikipedia, and use the topics discovered in the larger corpus to help shape the topic representations in the small corpus
 - if the larger corpus has many irrelevant topics, this will "use up" the topic space of the model
- Petterson et al. (2010) proposed an extension of LDA that uses external information about word similarity, such as thesauri and dictionaries, to smooth the topic-to-word distribution
- Sahami and Heilman (2006) employed web search results to improve the information in short texts
- Neural network topic models of a single corpus have also been proposed (Salakhutdinov and Hinton, 2009; Srivastava et al., 2013; Cao et al., 2015).

Latent Dirichlet Allocation (LDA)

$$egin{aligned} m{ heta}_d &\sim \mathsf{Dir}(lpha) & & z_{d_i} &\sim \mathsf{Cat}(m{ heta}_d) \ m{\phi}_z &\sim \mathsf{Dir}(m{eta}) & & w_{d_i} &\sim \mathsf{Cat}(m{\phi}_{z_{d_i}}) \end{aligned}$$

- Latent Dirichlet Allocation (LDA) is an admixture model, i.e., each document d is associated with a distribution over topics θ_d
- Inference is typically performed with a Gibbs sampler over the z_{d_i} , integrating out θ and ϕ (Griffiths et al., 2004)

$$P(z_{d_i}=t \mid \boldsymbol{Z}_{\neg d_i}) \propto (N_{d_{\neg i}}^t + \alpha) \frac{N_{\neg d_i}^{t,w_{d_i}} + \beta}{N_{\neg d_i}^t + V\beta}$$

The Dirichlet Multinomial Mixture (DMM) model

$$\begin{array}{ll} \boldsymbol{\theta} \sim \mathsf{Dir}(\alpha) & \boldsymbol{z}_d \sim \mathsf{Cat}(\boldsymbol{\theta}) \\ \boldsymbol{\phi}_{\boldsymbol{z}} \sim \mathsf{Dir}(\beta) & \boldsymbol{w}_{d_i} \sim \mathsf{Cat}(\boldsymbol{\phi}_{\boldsymbol{z}_d}) \end{array}$$

- The Dirichlet Multinomial Mixture (DMM) model is a *mixture model*, i.e., each document d is associated with a single topic z_d (Nigam et al., 2000)
- Inference can also be performed using a collapsed Gibbs sampler in which θ and ϕ_z are integrated out (Yin and Wang, 2014)

$$P(z_{d} = t \mid \mathbf{Z}_{\neg d}) \propto (M_{\neg d}^{t} + \alpha) \frac{\Gamma(N_{\neg d}^{t} + V\beta)}{\Gamma(N_{\neg d}^{t} + N_{d} + V\beta)}$$
$$\prod_{w \in W} \frac{\Gamma(N_{\neg d}^{t,w} + N_{d}^{w} + \beta)}{\Gamma(N_{\neg d}^{t,w} + \beta)}$$

Estimating the topic vectors au_t

- Both the LF-LDA and LF-DMM associate each topic t with a topic vector τ_t , which must be learnt from the training corpus
- After each Gibbs sweep:
 - the topic variables z identify which topic each word is generated from
 - ► the indicator variables *s* identify which words are generated from the latent feature distributions CatE
- We use LBFGS to optimize the L2-regularized log-loss (MAP estimation)

$$L_t = -\sum_{w \in W} K^{t,w} \left(oldsymbol{ au}_t \cdot oldsymbol{\omega}_w - \log(\sum_{w' \in W} \exp(oldsymbol{ au}_t \cdot oldsymbol{\omega}_{w'}))
ight) + \mu \parallel oldsymbol{ au}_t \parallel_2^2$$

$$\mathsf{NPMI\text{-}Score}(t) = \sum_{1 \leqslant i < j \leqslant N} \frac{\log \frac{\mathsf{P}(w_i, w_j)}{\mathsf{P}(w_i) \mathsf{P}(w_j)}}{-\log \mathsf{P}(w_i, w_j)}$$

Sampling equations for inference in LF-LDA

$$P(z_{d_{i}} = t \mid Z_{\neg d_{i}}, \tau, \omega)$$

$$\propto (N_{d \rightarrow i}^{t} + K_{d \rightarrow i}^{t} + \alpha)$$

$$\left((1 - \lambda) \frac{N_{\neg d_{i}}^{t, w_{d_{i}}} + \beta}{N_{\neg d_{i}}^{t} + V\beta} + \lambda \mathsf{CatE}(w_{d_{i}} \mid \tau_{t} \omega^{\top}) \right)$$
(1)

$$P(s_{d_i}=s \mid z_{d_i}=t) \propto \begin{cases} (1-\lambda) \frac{N_{-d_i}^{t,w_{d_i}} + \beta}{N_{-d_i}^t + V\beta} \text{ for } s = 0\\ \lambda \operatorname{CatE}(w_{d_i} \mid \tau_t \omega^\top) \text{ for } s = 1 \end{cases}$$
 (2)

Sampling equations for inference in LF-DMM

$$P(z_{d} = t, s_{d} \mid Z_{\neg d}, S_{\neg d}, \tau, \omega)$$

$$\propto \lambda^{K_{d}} (1 - \lambda)^{N_{d}} (M_{\neg d}^{t} + \alpha) \frac{\Gamma(N_{\neg d}^{t} + V\beta)}{\Gamma(N_{\neg d}^{t} + N_{d} + V\beta)}$$

$$\prod_{w \in W} \frac{\Gamma(N_{\neg d}^{t,w} + N_{d}^{w} + \beta)}{\Gamma(N_{\neg d}^{t,w} + \beta)} \prod_{w \in W} CatE(w \mid \tau_{t} \omega^{\top})^{K_{d}^{w}}$$
(3)

$$Q(z_{d} = t, s_{d} \mid Z_{\neg d}, S_{\neg d}, \tau, \omega)$$

$$\propto \lambda^{K_{d}} (1 - \lambda)^{N_{d}} (M_{\neg d}^{t} + \alpha)$$

$$\prod_{w \in W} \left(\frac{N_{\neg d}^{t,w} + \beta}{N_{\neg d}^{t} + V\beta}\right)^{N_{d}^{w}} \prod_{w \in W} \mathsf{CatE}(w \mid \tau_{t} \omega^{\top})^{K_{d}^{w}}$$
(4)

$$Q(z_{d} = t \mid Z_{\neg d}, \tau, \omega)$$

$$\propto (M_{\neg d}^{t} + \alpha) \prod_{w \in W} \left(\frac{(1 - \lambda) \frac{N_{\neg d}^{t,w} + \beta}{N_{\neg d}^{t} + V\beta}}{+ \lambda \operatorname{CatE}(w \mid \tau_{t} \omega^{\top})} \right)^{(N_{d}^{w} + K_{d}^{w})}$$
(5)

$$Q(s_{d_i} = s \mid z_d = t) \propto \begin{cases} (1 - \lambda) \frac{N_{-d}^{t, w_{d_i}} + \beta}{N_{-d}^t + V\beta} \text{ for } s = 0\\ \lambda \operatorname{CatE}(w_{d_i} \mid \tau_t \omega^\top) \text{ for } s = 1 \end{cases}$$
 (6)