# ECON675: Assignment 2

Anirudh Yadav

October 7, 2018

## 1 Question 1: Kernel Density Estimation

#### 1.1 Density derivatives

I follow the derivation in Hansen's notes. We are interested in estimating

$$f^{(s)}(x) = \frac{d^s}{dx^s} f(x).$$

The natural estimator is

$$\hat{f}^{(s)}(x) = \frac{d^s}{dx^s} \hat{f}(x)$$

Now, we know that  $\hat{f}(x) = \frac{1}{nh} \sum_{i} K\left(\frac{X_i - x}{h}\right)$ . Thus,

$$\hat{f}^{(1)}(x) = \frac{-1}{nh^2} \sum_{i=1}^n K^{(1)} \left( \frac{X_i - x}{h} \right),$$

$$\hat{f}^{(2)}(x) = \frac{1}{nh^3} \sum_{i=1}^n K^{(2)} \left( \frac{X_i - x}{h} \right),$$

:

$$\hat{f}^{(s)}(x) = \frac{(-1)^s}{nh^{1+s}} \sum_{i=1}^n K^{(s)} \left( \frac{X_i - x}{h} \right).$$

Now,

$$\mathbb{E}[\hat{f}^{(s)}(x)] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\frac{(-1)^{s}}{h^{1+s}} K^{(s)} \left(\frac{X_{i} - x}{h}\right)\right]$$

$$= \mathbb{E}\left[\frac{(-1)^{s}}{h^{1+s}} K^{(s)} \left(\frac{X_{i} - x}{h}\right)\right], \text{ since } X_{i} \text{ are iid.}$$

$$= \int_{-\infty}^{\infty} \frac{(-1)^{s}}{h^{1+s}} K^{(s)} \left(\frac{z - x}{h}\right) f(z) dz$$

Next, we want to use integration by parts:  $\int u dv = uv - \int v du$ . Define

$$dv = \frac{(-1)^s}{h^s} \frac{1}{h} K^{(s)} \left( \frac{z - x}{h} \right) \implies v = \frac{(-1)^s}{h^s} K^{(s-1)} \left( \frac{z - x}{h} \right)$$

And

$$u = f(z) \implies du = f^{(1)}(z)$$

Thus,

$$\mathbb{E}[\hat{f}^{(s)}(x)] = \left[\frac{(-1)^s}{h^s} K^{(s-1)} \left(\frac{z-x}{h}\right) f^{(1)}(z)\right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{(-1)^s}{h^s} K^{(s-1)} \left(\frac{z-x}{h}\right) f^{(1)}(z) dz.$$

$$= -\int_{-\infty}^{\infty} \frac{(-1)^s}{h^s} K^{(s-1)} \left(\frac{z-x}{h}\right) f^{(1)}(z) dz.$$

Repeating this s times give

$$\mathbb{E}[\hat{f}^{(s)}(x)] = (-1)^s \int_{-\infty}^{\infty} \frac{(-1)^s}{h} K\left(\frac{z-x}{h}\right) f^{(s)}(z) dz$$
$$= \int_{-\infty}^{\infty} \frac{1}{h} K\left(\frac{z-x}{h}\right) f^{(s)}(z) dz$$

Next, use the following change of variables:  $u = \frac{z-x}{h}$ , which implies  $z = x + hu \implies dz = hdu$ . Thus,

$$\mathbb{E}[\hat{f}^{(s)}(x)] = \int_{-\infty}^{\infty} K(u)f^{(s)}(x+hu)du \tag{1}$$

The next step is to take a Taylor expansion of  $f^{(s)}(x + hu)$  around x + hu = x, which is valid if  $h \to 0$ . We get

$$f^{(s)}(x+hu) = f^{(s)}(x) + f^{(s+1)}(x)hu + \frac{1}{2}f^{(s+2)}(x)h^2u^2 + \dots + \frac{1}{P!}f^{(s+P)}(x)h^Pu^P + o(h^P).$$

Substituting this expression back into (1), integrating over each term, and using the fact that  $\int_{-\infty}^{\infty} K(u)du = 1$  and the notation

$$\mu_{\ell}(K) = u^{\ell}K(u)$$

gives

$$\mathbb{E}[\hat{f}^{(s)}(x)] = f^{(s)}(x) + f^{(s+1)}(x)h\mu_1(K) + \frac{1}{2}f^{(s+2)}(x)h^2\mu_2(K) + \dots + \frac{1}{P!}f^{(s+P)}(x)h^P\mu_P(K) + o(h^P).$$

Finally, noting that since K is a P-order kernel,  $\mu_{\ell}(K) = 0$  for all  $\ell < P$ , gives the desired result

$$\mathbb{E}[\hat{f}^{(s)}(x)] = f^{(s)}(x) + \frac{1}{P!} f^{(s+P)}(x) h^P \mu_P(K) + o(h^P). \tag{2}$$

Next we consider the variance of the derivative estimator.

$$\mathbb{V}[\hat{f}^{(s)}(x)] = \mathbb{V}\left[\frac{(-1)^s}{nh^{1+s}} \sum_{i=1}^n K^{(s)}\left(\frac{X_i - x}{h}\right)\right]$$
$$= \frac{1}{nh^{2+2s}} \mathbb{V}\left[K^{(s)}\left(\frac{X_i - x}{h}\right)\right],$$

since  $\{X_i\}$  are iid there are no covariance terms and each term has the same variance. Continuing,

$$\mathbb{V}[\hat{f}^{(s)}(x)] = \frac{1}{nh^{2+2s}} \left\{ \mathbb{E}\left[K^{(s)}\left(\frac{X_i - x}{h}\right)^2\right] - \mathbb{E}\left[K^{(s)}\left(\frac{X_i - x}{h}\right)\right]^2 \right\}$$

$$= \frac{1}{nh^{2+2s}} \mathbb{E}\left[K^{(s)}\left(\frac{X_i - x}{h}\right)^2\right] - \frac{1}{n} \mathbb{E}\left[\frac{1}{h^{1+s}}K^{(s)}\left(\frac{X_i - x}{h}\right)\right]^2 \tag{3}$$

Now, from above we know that

$$\mathbb{E}\left[\frac{1}{h^{1+s}}K^{(s)}\left(\frac{X_i - x}{h}\right)\right] = f^{(s)}(x) + \frac{1}{P!}f^{(s+P)}(x)h^P\mu_P(K) + o(h^P)$$
$$= f^{(s)}(x) + o(1)$$

since the remainder goes to zero as  $h \to 0$ . Thus, the second term in (3) is  $O(\frac{1}{n})$ ; i.e. the same order as 1/n. Furthermore  $O(\frac{1}{n})$  is of smaller order than  $O(\frac{1}{nh^{1+2s}})$  since  $h \to 0$  and  $n \to \infty$ . Accordingly, we can write

$$\mathbb{V}[\hat{f}^{(s)}(x)] = \frac{1}{nh^{2+2s}} \mathbb{E}\left[K^{(s)} \left(\frac{X_i - x}{h}\right)^2\right] + o\left(\frac{1}{nh^{1+2s}}\right),$$

Thus,

$$\mathbb{V}[\hat{f}^{(s)}(x)] = \frac{1}{nh^{1+2s}} \int_{-\infty}^{\infty} \frac{1}{h} K^{(s)} \left(\frac{z-x}{h}\right)^2 f(z) dz + o\left(\frac{1}{nh^{1+2s}}\right)$$

Again we use the change of variables  $u = \frac{z-x}{h}$  so that

$$\mathbb{V}[\hat{f}^{(s)}(x)] = \frac{1}{nh^{1+2s}} \int_{-\infty}^{\infty} K^{(s)}(u)^2 f(x+hu) du + o\left(\frac{1}{nh^{1+2s}}\right)$$

With the usual Taylor expansion of f(x + hu) we can write

$$V[\hat{f}^{(s)}(x)] = \frac{1}{nh^{1+2s}} \int_{-\infty}^{\infty} K^{(s)}(u)^{2} (f(x) + O(h)) du + o\left(\frac{1}{nh^{1+2s}}\right)$$

$$= \frac{f(x)}{nh^{1+2s}} \int_{-\infty}^{\infty} K^{(s)}(u)^{2} du + o\left(\frac{1}{nh^{1+2s}}\right)$$

$$= \frac{1}{nh^{1+2s}} f(x) \vartheta_{s}(K) + o\left(\frac{1}{nh^{1+2s}}\right),$$

where  $\vartheta_s(K) = \int_{-\infty}^{\infty} K^{(s)}(u)^2 du$  as required.

#### 1.2 Optimal bandwidth

We have

$$AIMSE[h] = \int_{-\infty}^{\infty} \left[ \left( h^P \mu_P(K) \cdot \frac{f^{(P+s)}(x)}{P!} \right)^2 + \frac{1}{nh^{1+2s}} \vartheta_s(K) f(x) \right] dx$$
$$= h^{2P} \left( \frac{\mu_P(K)}{P!} \right)^2 \vartheta_{s+P}(f) + \frac{1}{nh^{1+2s}} \vartheta_s(K),$$

since f(x) integrates to 1 and where  $\vartheta_{s+P}(f) = \int (f^{(P+s)}(x))^2 dx$ . Thus,

$$\frac{d}{dh} \text{AIMSE}[h] = 2Ph^{2P-1} \left(\frac{\mu_P(K)}{P!}\right)^2 \vartheta_{s+P}(f) - (1+2s) \frac{1}{nh^{2+2s}} \vartheta_s(K) = 0$$

$$\implies 2Ph^{1+2P+2s} \left(\frac{\mu_P(K)}{P!}\right)^2 \vartheta_{s+P}(f) = (1+2s) \frac{1}{n} \vartheta_s(K),$$

which gives the optimal bandwidth

$$h^* = \left[ \frac{1+2s}{2Pn} \left( \frac{P!}{\mu_P(K)} \right)^2 \frac{\vartheta_s(K)}{\vartheta_{s+P}(f)} \right]^{\frac{1}{1+2P+2s}}.$$

A fully data-driven method for estimating  $h^*$  is cross-validation. This procedure attempts to directly estimate the mean-squared error, and then choose the bandwidth which minimizes this estimate. From the lecture notes the cross-validation bandwidth is the value h which minimizes the criteria

$$\hat{h}_{CV} = \arg\min_{h} CV(h) = \frac{1}{n^2 h} \sum_{i=1}^{n} \sum_{j=1}^{n} (K * K) \left( \frac{X_i - X_j}{h} \right) - \frac{2}{n} \sum_{i=1}^{n} \hat{f}_{(i)}(X_i)$$

where  $\hat{f}_{(i)}(x_i)$  is the density estimate computed without observation  $X_i$ .

### 1.3 Monte Carlo experiment