PROBLEM-SOLVING MASTERCLASS WEEK 7

- **1.** Find the smallest term in the sequence $\{a_n\}$ where $a_1=1993^{1994^{1995}}$, $a_{n+1}=a_n/2$ if a_n is even, and a_n+7 if a_n is odd. (Dragos Oprea)
- **2.** For a given positive integer m, find all triples (n, x, y) of positive integers, with n relatively prime to m, which satisfy $(x^2 + y^2)^m = (xy)^n$. (Kiyoto Tamura, 1992A3)
- **3.** Choose n arbitrary points A_1, A_2, \ldots, A_n on the circumference of a circle (n > 1). Let M be their geometric center of mass. Extend each line segment A_iM to its second point of intersection with the circle and call these points B_i for each i. Prove that the sum over all i of the A_iM/MB_i is equal to n, where A_iM is the length of the line segment A_iM and MB_i is the length of the line segment MB_i . (Boris Hanin)
- **4.** Let G be a finite set of real $n \times n$ matrices $\{M_i\}$, $1 \le i \le r$, which form a group under matrix multiplication. Suppose that $\sum_{i=1}^r \operatorname{tr}(M_i) = 0$, where $\operatorname{tr}(A)$ denotes the trace of the matrix A. Prove that $\sum_{i=1}^r M_i$ is the $n \times n$ zero matrix. (Jackson Gorham, 1985B6)
- **5.** Let ABC be a triangle. Points D, E, F are on sides BC, CA, AB respectively, such that DC + CE = EA + AF = FB + BD. Prove that

$$\mathsf{DE} + \mathsf{EF} + \mathsf{DF} \geq \frac{\mathsf{AB} + \mathsf{BC} + \mathsf{CA}}{2}.$$

6. For any natural number \mathfrak{n} , let $S_\mathfrak{n}$ denote the set of all numbers \mathfrak{m} such that the fractional part of $\mathfrak{n}/\mathfrak{m}$ is at least 1/2. Prove that the sum of $\varphi(\mathfrak{m})$ over all elements of $S_\mathfrak{n}$ equals \mathfrak{n}^2 . (Mark Lucianovic; Sound's problem heard from Terry Tao)