
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: Wed Oct 17 11:21:43 EDT 2007

Validated By CRFValidator v 1.0.3

Application No: 10578183 Version No: 1.0

Input Set:

Output Set:

Started: 2007-10-01 17:37:57.438

Finished: 2007-10-01 17:37:59.043

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 605 ms

Total Warnings: 55

Total Errors: 0

No. of SeqIDs Defined: 56

Actual SeqID Count: 56

Error code		Error Descript	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(21)

Input Set:

Output Set:

Started: 2007-10-01 17:37:57.438

Finished: 2007-10-01 17:37:59.043

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 605 ms

Total Warnings: 55

Total Errors: 0

No. of SeqIDs Defined: 56

Actual SeqID Count: 56

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

<110)>	Sugi	yama	, Ha:	ruo										
<120)>	HLA-DR-BINDING ANTIGEN PEPTIDE DERIVED FROM WT1													
<130)>	290673US0PCT													
<140 <141		10578183 2007-10-01													
<150 <151		PCT/JP04/016336 2004-11-04													
<150 <151		JP 2003-375603 2003-11-05													
<160)>	56													
<170)>	Pate:	ntIn	ver	sion	3.3									
<210 <211 <212 <213	L> 2>	1 449 PRT Homo	sap:	iens											
<400)>	1													
Met 1	GlΣ	ser Ser	Asp	Val 5	Arg	Asp	Leu	Asn	Ala 10	Leu	Leu	Pro	Ala	Val 15	Pro
Ser	Leu	ı Gly	Gly 20	Gly	Gly	Gly	Суз	Ala 25	Leu	Pro	Val	Ser	Gly 30	Ala	Ala
Gln	Trp	Ala 35	Pro	Val	Leu	Asp	Phe 40	Ala	Pro	Pro	Gly	Ala 45	Ser	Ala	Tyr
Gly	Ser	Leu	Gly	Gly	Pro	Ala 55	Pro	Pro	Pro	Ala	Pro 60	Pro	Pro	Pro	Pro
Pro 65	Pro	Pro	Pro	His	Ser 70	Phe	Ile	Lys	Gln	Glu 75	Pro	Ser	Trp	Gly	Gly 80
Ala	Glu	ı Pro	His	Glu 85	Glu	Gln	Cys	Leu	Ser 90	Ala	Phe	Thr	Val	His 95	Phe
Ser	Gly	, Gln	Phe	Thr	Gly	Thr	Ala	Gly	Ala	Cys	Arg	Tyr	Gly	Pro	Phe

Gly	Pro	Pro 115	Pro	Pro	Ser	Gln	Ala 120	Ser	Ser	Gly	Gln	Ala 125	Arg	Met	Phe
Pro	Asn 130	Ala	Pro	Tyr	Leu	Pro 135	Ser	Суз	Leu	Glu	Ser 140	Gln	Pro	Ala	Ile
145			Gly	_	150					155					160
			Pro	165					170					175	
_			Asp 180 Pro					185					190		
_		195	Ser				200					205			
_	210		Gln			215					220	_			_
225		_	Gly		230					235					240
Ser	Val	Lys	Trp	245 Thr	Glu	Gly	Gln	Ser	250 Asn	His	Ser	Thr	Gly	255 Tyr	Glu
Ser	Asp	Asn	260 His	Thr	Thr	Pro	Ile	265 Leu	Cys	Gly	Ala	Gln	270 Tyr	Arg	Ile
His		275 His	Gly	Val	Phe	_	280 Gly	Ile	Gln	Asp		285 Arg	Arg	Val	Pro
_	290 Val	Ala	Pro	Thr		295 Val	Arg	Ser	Ala		300 Glu	Thr	Ser	Glu	_
305 Arg	Pro	Phe	Met	Cys 325	310 Ala	Tyr	Pro	Gly	Cys 330	315 Asn	Lys	Arg	Tyr	Phe	320 Lys
				J2J					550					JJJ	

Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro

345 350 340

Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Ser Arg Ser Asp 355 360

Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln 375

Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr 385 390 395 400

His Thr Arg Thr His Thr Gly Lys Thr Ser Glu Lys Pro Phe Ser Cys 415 405 410

Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val 420 425 430

Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala 435 440

Leu

<210> 2

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 2

Leu Val Arg His His Asn Met His Gln 1 5

<210> 3

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Peptide

<400> 3

Leu Tyr Gln Met Thr Ser Gln Leu Glu 5

```
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 4
Phe Lys His Glu Asp Pro Met Gly Gln
<210> 5
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 5
Leu Val Arg Ser Ala Ser Glu Thr Ser
<210> 6
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 6
Met Gly Gln Gln Gly Ser Leu Gly Glu
<210> 7
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 7
Val Tyr Gly Cys His Thr Pro Thr Asp
```

<210> 4

```
<210> 8
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 8
Leu Arg Thr Pro Tyr Ser Ser Asp Asn
    5
<210> 9
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 9
Phe Ile Lys Gln Glu Pro Ser Trp Gly
<210> 10
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 10
Trp Gly Gly Ala Glu Pro His Glu Glu
<210> 11
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 11
Phe Lys Leu Ser His Leu Gln Met His
```

```
<210> 12
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 12
Tyr Phe Lys Leu Ser His Leu Gln Met
             5
<210> 13
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 13
Leu Glu Cys Met Thr Trp Asn Gln Met
              5
<210> 14
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 14
Phe Arg Gly Ile Gln Asp Val Arg Arg
<210> 15
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 15
Leu Leu Pro Ala Val Pro Ser Leu Gly
              5
```

```
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 16
Leu Ser Ala Phe Thr Val His Phe Ser
<210> 17
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 17
Met Asn Leu Gly Ala Thr Leu Lys Gly
<210> 18
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 18
Val Arg Ser Ala Ser Glu Thr Ser Glu
<210> 19
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 19
Leu Pro Ala Val Pro Ser Leu Gly Gly
<210> 20
```

<211> 9

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 20
Tyr Gly Cys His Thr Pro Thr Asp Ser
<210> 21
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 21
Phe Ser Gly Gln Phe Thr Gly Thr Ala
<210> 22
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 22
Phe Met Cys Ala Tyr Pro Gly Cys Asn
<210> 23
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 23
Tyr Gln Met Thr Ser Gln Leu Glu Cys
<210> 24
<211> 16
```

<212> PRT

```
<220>
<223> Synthetic Peptide
<400> 24
Lys Arg Tyr Phe Lys Leu Ser His Leu Gln Met His Ser Arg Lys His
                           10
<210> 25
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 25
Pro Asn His Ser Phe Lys His Glu Asp Pro Met Gly Gln Gln Gly
    5
                   10
<210> 26
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 26
Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln
                                 10
Met Asn Leu
<210> 27
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 27
Cys Met Thr Trp Asn Gln Met Asn Leu
```

<213> Artificial Sequence

```
<210> 28
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 28
Cys Tyr Thr Trp Asn Gln Met Asn Leu
<210> 29
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 29
Arg Met Phe Pro Asn Ala Pro Tyr Leu
<210> 30
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 30
Arg Tyr Pro Ser Cys Gln Lys Lys Phe
<210> 31
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 31
Ala Tyr Thr Trp Asn Gln Met Asn Leu
```

```
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 32
Ala Tyr Thr Trp Asn Gln Met Asn Leu
<210> 33
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<220>
<221> MISC_FEATURE
<222> (1)..(1)
\langle 223 \rangle Xaa = Abu
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa is Abu
<400> 33
Xaa Tyr Thr Trp Asn Gln Met Asn Leu
<210> 34
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 34
Arg Tyr Thr Trp Asn Gln Met Asn Leu
<210> 35
<211> 9
<212> PRT
<213> Artificial Sequence
```

```
<223> Synthetic Peptide
<400> 35
Lys Tyr Thr Trp Asn Gln Met Asn Leu
<210> 36
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 36
Arg Tyr Phe Pro Asn Ala Pro Tyr Leu
<210> 37
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 37
Arg Tyr Pro Gly Val Val Pro Thr Leu
<210> 38
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 38
Ala Tyr Leu Pro Ala Val Pro Ser Leu
              5
<210> 39
<211> 9
<212> PRT
<213> Artificial Sequence
```

<220>

```
<223> Synthetic Peptide
<400> 39
Asn Tyr Met Asn Leu Gly Ala Thr Leu
<210> 40
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 40
Arg Val Pro Gly Val Ala Pro Thr Leu
<210> 41
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 41
Arg Tyr Pro Ser Ser Gln Lys Lys Phe
<210> 42
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 42
Arg Tyr Pro Ser Ala Gln Lys Lys Phe
<210> 43
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
```

```
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa = Abu
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa is Abu
<400> 43
Arg Tyr Pro Ser Xaa Gln Lys Lys Phe
              5
<210> 44
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 44
Ser Leu Gly Glu Gln Gln Tyr Ser Val
<210> 45
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 45
Asp Leu Asn Ala Leu Leu Pro Ala Val
              5
<210> 46
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 46
```

Tyr Arg Ile His Thr His Gly Val Phe

1 5

```
<210> 47
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 47
Leu Val Arg His His Asn Met His Gln
<210> 48
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 48
Tyr Gln Met Thr Ser Gln Leu Gly Cys
<210> 49
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 49
Leu Gln Met His Ser Arg Lys His Thr
<210> 50
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 50
Tyr Phe Lys Leu Ser His Leu Gln Met
```

```
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 51
Val Lys Pro Phe Gln Cys Lys Thr Cys
<210> 52
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 52
Leu Lys Arg His Gln Arg Arg His Thr
<210> 53
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 53
Leu Lys Thr His Thr Arg Thr His Thr
<210> 54
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 54
Tyr Gly Pro Phe Gly Pro Pro Pro
```

<210> 51

```
<210> 55
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 55
Val Arg His His Asn Met His Gln Arg
<210> 56
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic Peptide
<400> 56
Phe Pro Asn Ala Pro Tyr Leu Pro Ser
```