

Solution of Linear Set of Equations – 04

Dr. Serhat Hosder

Associate Professor of Aerospace Engineering

Mechanical and Aerospace Engineering

290B Toomey Hall

Missouri S&T

Rolla, MO 65409

Phone: 573-341-7239

E-mail: hosders@mst.edu

AE/ME 5830 Spring 2019 1

Outline

In the previous lectures, we discussed direct methods for solving linear problems in which A was full. We will now consider the special case in which A is tri-diagonal.

Tri-diagonal equations is discussed in Section 6.6 in the textbook

We will learn Thomas algorithm for the solution of tridiagonal system of linear equations.

AE/ME 5830 Spring 2019

Tri-diagonal Matrices

b_1	c_1	0	0	0	0	0	•••	•••	0
a_2	b_2	c_2	0	0	0	0	•••	•••	0
0	a_3	b_3	c_3	0	0	0	•••	•••	0
0	0	a_4	b_4	c_4	0	0	•••	•••	0
0	0	0	a_5	b_5	c_5	0	•••	•••	0
0	0	0	0	a_6	b_6	c_6	•••	•••	0
•••	•••	•••	•••	•••	•••	•••	•••	•••	0
•••	•••	•••	•••	•••	•••	•••	•••	•••	0
0	0	0	0	0	0	0	a_{n-1}	b_{n-1}	C_{n-1}
0	0	0	0	0	0	0	0	a_n	b_n

A matrix in the form shown is tridiagonal. These matrices are of special interest due to their application in engineering problems.

The elements along the main diagonal are labeled b_i , the elements one below the main diagonal are labeled a_i and the elements one above the main diagonal are labeled c_i .

The **Thomas algorithm** can be used if the coefficient matrix is in tri-diagonal form.

AE/ME 5830 Spring 2019 3

Solution to Tri-Diagonal Systems (1)

The system of equations in matrix form is Ax = d.

In **Thomas Algorithm**, the coefficient matrix A in tri-diagonal form is decomposed into LU form: A=LU

The *i*th equation of the system is:

$$a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i$$
 (1)

AE/ME 5830

Solution to Tri-Diagonal Systems (2)

By the LU decomposition method,

$$Ax = d$$
 (But $A = LU$)

$$(LU)x = d$$

$$(LU)x = d \Rightarrow L(Ux) = d$$

$$\Rightarrow L x^* = d \text{ where } U x = x^*$$

Recall that the *i*th equation of the system is

$$a_{i}x_{i-1} + b_{i}x_{i} + c_{i}x_{i+1} = d_{i}$$

From LU decomposition,

$$x_i + \gamma_i x_{i+1} = x_i^*$$
 (i.e. $Ux = x^*$)

(i.e.
$$Ux = x^*$$
)

$$x_{i-1} + \gamma_{i-1} x_i = x_{i-1}^*$$

Substitute (3) into (1)

$$a_{i}(x_{i-1}^{*} - \gamma_{i-1}x_{i}) + b_{i}x_{i} + c_{i}x_{i+1} = d_{i}$$

 $(b_{i} - a_{i}\gamma_{i-1})x_{i} + c_{i}x_{i+1} = d_{i} - a_{i}x_{i-1}^{*}$

$$x_{i} + \left(\frac{c_{i}}{b_{i} - a_{i}\gamma_{i-1}}\right)x_{i+1} = \left(\frac{d_{i} - a_{i}x_{i-1}^{*}}{b_{i} - a_{i}\gamma_{i-1}}\right)$$
(4)

Solution to Tri-Diagonal Systems (3)

Comparing equations (2) and (4),

$$\gamma_i = \left(\frac{c_i}{b_i - a_i \gamma_{i-1}}\right) \text{ and } x_i^* = \left(\frac{d_i - a_i x_{i-1}^*}{b_i - a_i \gamma_{i-1}}\right) \longrightarrow (5)$$

Substituting i = 1 and noting that $a_1 = 0$, we have

$$\gamma_1 = \frac{c_1}{b_1} \text{ and } x_1^* = \frac{d_1}{b_1}$$

Starting with i = 1, equation (5) is solved for i = 2, 3, 4, ..., n

Then solve (2) for x_i , i.e., $x_i=x_i^*-\gamma_i x_{i+1}$ Starting with $x_n=x_n^*$ (since $\gamma_n=c_n=0$) and for i=n-1,n-2,...,1

The operation count for Thomas algorithm varies linearly as a function of n – the number of unknown variables.

AE/ME 5830 Spring 2019 6