

Two small spheres (mass, m) are attached to insulating strings (length, L) and hung from the ceiling as shown.

How does the angle (with respect of the vertical) that the string attached to the -q charge (θ_1) compare to that of the -2q charge (θ_2)?

A.
$$\theta_1 > \theta_2$$

$$B. \theta_1 = \theta_2$$

$$C. \theta_1 > \theta_2$$

D. ????

MORE SHAMING

REGISTER YOUR CLICKER

CLASSICAL ELECTROMAGNETISM

 $\sim 10^8 \text{m} \longrightarrow \longrightarrow \longrightarrow \longrightarrow \sim 10^{-16} \text{m}$

24 orders of magnitude

ELECTROSTATICS

5 charges, q, are arranged in a regular pentagon, as shown. What is the E field at the center?

A. Zero

B. Non-zero

C. Really need trig and a calculator to decide

1 of the 5 charges has been removed, as shown. What's the E field at the center?

A.
$$+(kq/a^2)\hat{y}$$

B. $-(kq/a^2)\hat{y}$

B.
$$-(kq/a^2)\hat{y}$$

- C. 0
- D. Something entirely different!
- E. This is a nasty problem which I need more time to solve

If all the charges live on a line (1-D), use:

$$\lambda \equiv \frac{\text{charge}}{\text{length}}$$

Draw your own picture. What's $\mathbf{E}(\mathbf{r})$?

To find the E-field at P from a thin line (uniform charge density λ):

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\lambda dl'}{\Re^2} \hat{\Re}$$
What is \Re ?

C.
$$\sqrt{dl'^2 + x^2}$$

D.
$$\sqrt{x^2 + y'^2}$$

E. Something else

$$\mathbf{E}(\mathbf{r}) = \int \frac{\lambda dl'}{4\pi\varepsilon_0 \Re^3} \vec{\Re}, \text{so:} E_x(x, 0, 0) = \frac{\lambda}{4\pi\varepsilon_0} \int \dots$$

A.
$$\int \frac{dy'x}{x^3}$$

A.
$$\int \frac{dy'x}{x^3}$$
B. $\int \frac{dy'x}{(x^2 + y'^2)^{3/2}}$

c.
$$\int \frac{dy'y'}{x^3}$$

D.
$$\int \frac{dy'y'}{(x^2 + y'^2)^{3/2}}$$

E. Something else

What do you expect to happen to the field as you get really far from the rod?

$$E_x = \frac{\lambda}{4\pi\varepsilon_0} \frac{L}{x\sqrt{x^2 + L^2}}$$

A. E_x goes to 0.

B. E_x begins to look like a point charge.

 $C. E_x$ goes to ∞ .

D. More than one of these is true.

E. I can't tell what should happen to E_x .