חשבון אינפיתיסימאלי למהנדסים

עפיף חלומה

2009 באוקטובר 16

תוכן עניינים

7	הרצאה מס.1	1
7	1.1 שדה	
10	1,2 שדה סדור	
12	ערך מוחלט 1.2.1	
15	2.סה הרצאה מס	2
16	שלמות 2.1	
19	תרגול מס.1	3
23	הרצאה מס.3	4
25	יון באון בוס. 4.1 חזקות עם מעריכים רציונאליים	7
27	???? מס.???	5
29	הרצאה מס.2	6
29	6.1 חזקות עם מערכים רציונאליים	_
30	6.2 פונקציות	
30	6.2.1 מה זה פומקציה!	
33	תרגול מס.3	7
33	7.1 צפיפות הרציונאליים	,
33	7.2 אקסיומת השלימות	
34	7.3 פונקציות	
34	7.3.1 פולינומים	
34	7.3.2 שוויון של פונקציות	
34	מונק' רציונליות	
35	7.4 פעולות על פונקציות	
35	7.5 תכונות של פונקציות	
37	?.סה הרצאה מס.?	8
37		Ŭ
37	8.2 תכונות גרף	
37	8.2.1 חד חד ערכיות	
37	על	
37	8.3 גבול של פונקציה בנקודה	
39	הרצאה מס.22	9
11	מון בווון בייוון	_

4	ינע ןכות	םיני
43	תרגול מס.??	10
45 45 45	הרצאה מס.?? 11.1 רציפות	11
4 7	??.מס.??	12
49	הרצאה מס.?	13
51 51	תרגול מס.? 14.1 נקודת השבת של Brower	14
53	?.סה.?	15
55 55	הרצאה מס.? 16.1 נגזרות	16
57 57	תרגול מס.? 17.1 משפט ווירשטראוס	17
59	?.סה.?	18
61	?.סה.?	19
63 63 63	הרצאה מס.? הרצאה מס.? 20.1 משפט הערך הממוצע(של קושי) 20.1 משפט לופיטאל $L'H\hat{o}pital$ 20.2	20
65 66	האצאה מס.? 21.1 פונקציות טריגונומטריות	21
69	תרגול מס.?	22
71 71 72	הרצאה מס.? 23.1 קשרים אלגברים של cos, sin במל קשרים אלגברים של 23.2	23
75 75 75 75	הרצאה מס.? 24.1 שיטות אינטגרציה	24
77	תרגול מס.?	25
79 79 80 81	הרצאה מס.? 26.1 סדרות	26

םיניינע ןכות	5	

27	הרצאה מס.?	83
	27.1 קריטריון קושי	83
28	?.סה.?	85
	טורים 28.1	86
29	?.סה.?	89
	מוקרים מוקרים 29.1	90
30	?.סה.?	91
	30.1 התכנסות בהחלט ובתנאי 30.1	91
31	תרגול מס.?	93
	31.1 תתי סדרות	93
32	?.סב	95

6 סיניינע ןכות

הרצאה מס.1

הקורס על היסודות של החשבון הדיפרנציאלי והאינטגרלי של פונקציות של משתנה אחד.

המספרים הממשיים הם שדה סדור שלם. בהמשך נגדיר מה הם שלושת התכונות האילו.

1.1

:שדה הוא קבוצה, נסמן אותה ב \mathbb{F} , שמקימת התכונות הבאות

1. על קבוצה מוגדרות שתי פעולות בינאריות: כפל וחיבור כך ש

$$\forall a, b \in \mathbb{F} : \begin{cases} a + b \in \mathbb{F} \\ a \cdot b \in \mathbb{F} \end{cases}$$

2. חוק הקיבוץ(דיסטריבוטיביות):

$$(a+b) + c = a + (b+c)$$

מחוק פשוט זה מקבלים את כל הזהיות הללו:

$$a+b+c+d = (a+b)+c+d$$

$$= a+(b+c)+d$$

$$= a+b+(c+d)$$

$$= (a+b)+(c+d)$$

$$= ((a+b)+c)+d$$

$$= a+((b+c)+d)$$

$$= a+(b+(c+d))$$

1, סמ האצרה . 1 קרפ

כך ש $0\in\mathbb{F}$ כך ש

 $\forall a \in \mathbb{F} : 0 + a = a + 0 = a$

8

ע כך ש $b\in\mathbb{F}$ כד איבר ניגדי (a
eq 0) כך ש.4

a+b=b+a=0

מכיוון שהאיבר הזה ייחיד נסמן אותו ב (-a) הערה: קבוצה שמקיימת את שלושת התכונות הנ"ל נקראת חבורה. טענה:

 $\forall a,b,c \in \mathbb{F}: a+b=a+c \Rightarrow b=c$

הוכתה:

$$a + b = a + c$$

$$(-a) + (a + b) = (-a) + (a + c)$$

$$((-a) + a) + b = ((-a) + a) + c$$

$$0 + b = 0 + c$$

$$b = c$$

:טענה

 $a + b = a \Rightarrow b = 0$

הוכתה:

$$a + b = a$$
 $a + b = a + 0$
 $(-a) + a + b = (-a) + a + 0$
 $b = 0$

(-a) = -a הערה: סימון מקוצר

1.1. штп 9

5. תוק תילוף:

 $\forall a,b \in \mathbb{F} : a+b=b+a$

:טענה

 $a - b \Rightarrow b - a$

הוכתה:

הערה: לא יכולים להתקדם משלב זה

6. אסוציאטיביות של כפל

 $(a \cdot b) \cdot c = a \cdot (b \cdot d)$

 $1\in\mathbb{F}$ קיום איבר ניטרלי כפלי איבר ניטרלי .7

 $\forall a \in \mathbb{F}: a \cdot 1 = 1 \cdot a = a$

 a^{-1} איבר נגדי לכפל איבר ($a \neq 0$) $\in \mathbb{F}$.8 איבר מענה: אם $a \neq 0$ טענה: אם

 $a\cdot b=a\cdot c\Rightarrow a=c$

:הוכתה

1. סמ האצרה 1, קרפ 1, סרפ

$$a \cdot b = a \cdot c$$

$$a^{-1} \cdot a \cdot b = a^{-1} \cdot a \cdot c$$

$$1 \cdot b = 1 \cdot c$$

$$b = c$$

- $a \cdot b = b \cdot a$.9
- $a \cdot (b+c) = a \cdot b + a \cdot c$ מוק הפלוג.

$$egin{array}{lll} a-b & = & b-a \\ a+a & = & b+b \\ 1\cdot a+1\cdot b & = & 1\cdot b+1\cdot b \\ (1+1)\cdot a & = & (1+1)\cdot b \end{array}$$

אבל עוד פעם א יכולים להתקדם כי אולי (1+1) אבל אבל אי יכולים א יכולים א אפשר לקחד דוגמה לשדה $\mathbb{F}=\{e,f\}$ אי נכתוב את שלהם שלהם

•	e	f
e	e	f
f	f	e

+	e	f
e	e	f
f	f	e

 $\mathbb{F} = \{e,f\}$ של וכפל חיבור חיבות טבלה ו.1.1 טבלה

1+1=0 אבל $1\cdot 0=0\cdot 1$ א וווא e=0,f=1 אזי אם איי אם

1.2

יכך שכ $P\subset\mathbb{F}$ השדה \mathbb{F} הוא סגור אם קיימת תת

- $a, b \in P \Rightarrow a + b \in P$.1
- $a,b\in P\Rightarrow a\cdot b\in P$.2
- :מתקיימת הבאות מהאפשרויות מתקיימת $a\in\mathbb{F}$ מתקיימת מחת מהאפשרויות .3

$$a \in P$$
 (N)

$$a^{-1} \in P$$
 (ع

$$a = 0$$
 (λ)

1,2, בודס הדש 11

מסמנים:

$$\begin{array}{ccc} a>0 & \Rightarrow & a\in P\\ & a< b & \Rightarrow & a-b\in P\\ \\ a=b \text{ in } a< b & \Rightarrow & a\leq b\\ \\ a=b \text{ in } a>b & \Rightarrow & a\geq b \end{array}$$

:טענה

:הבאות האפשרויות אחת ורק אחת משלושת מתקיימת מתקיימת לכל מתקיימת החת ורק אחת האפשרויות הבאות

a < b .1

a>b .2

a=b .3

:הוכתה

מה צריך להוכית בדיוק!

 $(b-a) \in P$.1

 $-(b-a)=a-b\in P$.2

a - b = 0 .3

כלומר מתבקש להוכיח כי a-b מקיים את הטריכוטומיה. כלומר מתנה:

 $a < b \Rightarrow a + c < b + c$

נונון:

 $b-a \in P$

צריך להוכית:

$$\underbrace{(b+c)-(a+c)}_{b-a} \in P$$

:טענה

 $a < c, a < b \Rightarrow a < c$ טרנזיטיביות של אי שוויון

נתון:

12. קרפ 1, קרפ 1, סמ האצרה 1, קרפ

$$b - a \in P$$

$$c - b \in P$$

צריך להוכית:

$$\underbrace{c-a}_{(c-b)+(b-a)} \in P$$

טענה

 $a<0,b<0\Rightarrow a\cdot b>0$ אם

הוכתה נתון:

הערה: אנחנו מניחים כי ל $(-a)\cdot(-b)=(-1)\cdot a\cdot(-1)\cdot b=ab$ זה דורש הוכחה הערה: אנחנו מניחים כי ונוכיח אותו בתרגול.

מסקנה:

 $a^2=a\cdot a>0$ in $a\neq 0$ dn

 $a\cdot a>0$ אם a>0 אם

 $a\cdot a>0$ אמ a<0 אם

1 > 0 טענה:

הוכתה:

נתון $0 \neq 1$ אזי

$$1^2 > 0$$
 $1 > 0$

1.2.1 ערך מוחלט

 $|a|=egin{cases} a&a\geq0\ -a&a<0 \end{cases}$ שדה סדור, אזי מגדירים הערך המוחלט. לכל $a\in\mathbb{F}$ מגדירים $a,b\in\mathbb{F}$ משפט: אי שוויון המשולש:לכל

$$|a+b| \le |a| + |b|$$

כדי להוכיח את זה מסתכלים בכל המקרים:

1.2, בודס הדש 13

(1)
$$a \ge 0$$
 , $b \ge 0$

(2)
$$a \ge 0$$
 , $b < 0$

(3)
$$a < 0$$
 , $b \ge 0$

$$(4) \ a < 0 \quad , \quad b < 0$$

במקרה 1:

$$a + b > 0 \Rightarrow |a + b| = a + b = |a| + |b|$$

$$a+b<0 \Rightarrow |a+b|=-(a+b)=(-a)+(-b)=|a|+|b|$$
 במקרה במקרה אזי יש שתי מקרים: $b\leq 0, a\geq 0$ אזי יש שתי מקרים:

 $a + b \ge 0$.1

$$|a+b| = a + (-b) \le |a| + |b|$$

a + b < 0 .2

$$|a+b| = -(a+b) = (-a) + (-b) \underbrace{\leq}_{(-a) < a} a + (-b) = |a| + |b|$$

מסקנות

- $|a-b| \leq |a| + |b|$ אזי (-b) אזי את נחליף את 1.
- להוכית אה אה וא $|\sum_i a_i| \leq \sum_i |a_i|$ כלומר ו $|a+b+c| \leq |a|+|b|+|c|$. באינדוקציה)
 - $\Big||a|-|b|\Big|\leq |a+b|$:3 אי משולש המשולש ההפוד.

$$|a+c| \le |a| + |c|$$

c = b - a נציב

$$|b| \le |a| + |b - a|$$

a=-a נציב

1. סמ האצרה . 1 קרפ 1. קרפ

$$|b| < |a| + |b + a|$$

 $|b| - |a| < |b + a|$

אזי קיבלנו אי שוויון המשולש השלם:

$$\Big||a|-|b|\Big| \leq |a+b| \leq |a|+|b|$$

2.סה הרצאה מס.2

```
הגדרה:
```

אם (Upper Bounded) יהא $\mathbb F$ שדה סדור. קבוצה $A\subset \mathbb F$ נקראת חסומה מלעיל $\mathbb F$ יהא $\mathbb F$ קיים $M\in \mathbb F$ קיים $M\in \mathbb F$ כך ש $M\in \mathbb F$ או $M\in \mathbb F$ או $M\in \mathbb F$

לכל $m \leq a$ כך אם קיים אונרע (Lower bounded) לכל מקראת אסומה מלרע א נקראת אסומה מלרע מ $a \in a$

. נקראת חסומה אם היא חסומה מלעיל ומלרעA

 $(\exists M\in\mathbb{F})\,(orall a\in A)\,(|a|\leq M)$ למה: $A\subset\mathbb{F}$ תסומה אם A

 $(\exists M_1)\,(\forall a\in A)\,(a< M_1)$ אזי אוי (חסומה לכן היא חסומה לכן היא קבוצה חסומה מלעל אזי הוכחה: נניח כי A קבוצה חסומה לכן $a\geq M_2$ אבל לכתוב A אבל לכתוב מלרע לכן A

 $.(-a)\leq (-M_2)$ אקסיומות סדר שווה ל. אקסיומות סדר שווה ל. אקסיומות סדר שווה ל. אקסיומות סדר שווה ל. $M=\max{(M_1,-M_2)}$ ניקרא $M=\max{(M_1,-M_2)}$

אזי $(\forall a \in A) \, (|a| \leq M)$ לא נוכיח את הכיוון השני כי זה קל.

a < b סימונים: אם a < b אזי

- קטע סגור $[a,b]=\{x\in\mathbb{F}:a\leq x\leq b\}$ •
- קטע פתוח $(a,b) = \{x \in \mathbb{F} : a < x < b\}$
- קטע חצי סגור או קטע (a,b] = $\{x \in \mathbb{F} : a < x \leq b\}$
 - קרן $[a,\infty)=\{x\in\mathbb{F}:x\geq a\}$
 - $(a,\infty) = \{x \in \mathbb{F} : x > a\} \bullet$
 - $(-\infty, a] = \{x \in \mathbb{F} : x \le a\} \bullet$

 \mathbb{N} טענה: לא קיים אבר ב \mathbb{N} שהוא חסם מלעל ל

 $n+1\in\mathbb{N}$ אבל $k\in\mathbb{N}$ לכל $n\geq k$ כך ש $n\in\mathbb{N}$ הוכחה: ננית בדרך השלילה שקיים הוא גם טבעי וגדול מn. סתירה.

האם גם נכון שלא קיים \mathbb{Q} כך ש $r \in \mathbb{Q}$ לכל $n \in \mathbb{N}$ התשובה: לא ניתן להוכית. אקסיומת השדה הארכימדי בוצת הטבעיים אנה חסומה מלעל

 $0<rac{1}{n}<\epsilon$ מסקמה: לכל $(\epsilon>0)\in\mathbb{F}$ קיים $n\in\mathbb{N}$ קיים

 $n>rac{1}{\epsilon}\Rightarrowrac{1}{n}<\epsilon$ כך ש $n\in\mathbb{F}$ כד הוכחה: על פי אקסיומת השדה הארכימדי קיים

nx>y טבעי כך טבעי הבעי קיים x,y>0 טענה: לכל

 $\frac{1}{n} < \frac{x}{u} \Rightarrow y < nx$ אבעי כך ש טבעי מהמסקנה נובע שקיים חוכתה:

אקסיומה זו זמנית. נוכית בהמשך ¹

2.1 שלמות

 $r^2=2$ טענה: א קיים $r\in\mathbb{Q}$ רציונאלי כך ש

ננית בשלילה שקיים $r=rac{a}{b}$ כאשר $a,b\in\mathbb{Z},b
eq 0$ כד שקיים $r=rac{a}{b}$ ננית בשלילה שקיים מנית בשלילה אזי מ $k\in\mathbb{N}$ אזי מוגי אזי מ $k\in\mathbb{N}$ כך ש $k\in\mathbb{N}$ ננית מצומצם. ב $k\in\mathbb{N}$ אזי מk=2

$$4k^2 = (2k^2) = 2b^2$$
$$2k^2 = b^2$$

אזי אזי לa,b מחלק משותף. סתירה

אזי צריכים להוסיף מספרים. אז נוסים $\sqrt{2}$ אל \mathbb{F} אבל אי אפשר לעצור בזה, צריך אזי צריכים להוסיף מספרים. אז וצריך להוסיף לזה עוד מספר. אזי אנחנו מוסיפים להוסיף ל $n\cdot\sqrt{2}$ (כאשר $\mathbb{Q}\cup\{q+r\sqrt{2}:q,r\in\mathbb{Q}\}$

נחזור לA האם הקבוצה הקבוצה האם אזי האם $\mathbb{F}=\mathbb{Q}$ לסומה מלעלי תשובה: כן 20 תסם מלעילווגם 24

A של 2 יקרא א יקרא יקרא בשדה. M קבוצה בשדה. A

- תסם מלעל M .1
- M'>M גם כן תסם מלעל אז M' 2.

הגדרה: A קבוצה בשדה. M יקרא חסם תחתון של A אם

- תסם מלרע M .1
- $M' \leq M$ גם כן חסם מלרע אז M' .2

:טענה: $A\subseteq \mathbb{F}$ אס"ם אס"ט אס"ם אס"ם

- תסם מלעל M .1
- $a>M-\epsilon$ עך סכך פריים $\epsilon>0$ לכל .2

הוכחה: נתין $M=\sup A$ צ"ל Mחסם מלעל ($a>M-\epsilon$) נניח $m=\sup A$ נניח בשלילה ($a\leq M-\epsilon$) אזי M>0 אזי M אינו חסם עליון.

M הוכיח צריך אריך אריך ($\forall \epsilon>0) \ (\exists a\in A) \ (a>M-\epsilon)$ וגם וגם A אריך אריך מתון מחסם עליוו

 $(orall a\in A)\left(a\leq M-\underbrace{(M-M')}_{>0}
ight)$ אזי $(\exists M'< M)\,(orall a\in A)\,(a\leq M')$ אזי $(\exists a\in A)\,(a\leq M')$ אזי $(\exists a\in A)\,(a>M-(M-M'))$ בסתורה לכך ש

 $[\]sup A$ ומסמנים אותו Least upper bound, Supermum באנגלית 2

 $[\]inf A$ ומסמנים אותו Greatest lower bound, Infimum באנגלית 3

2,1, תומלש 17

הגדרה: $A\subseteq \mathbb{F}$ איבר M ירא המקסימום $A\subseteq \mathbb{F}$

- $M \in A$.1
- תסם מלעל M .2

 $^{ au}$ אם: איבר m ירא המינימום של

- $m \in A$.1
- תסם מלרע m .2

[5,19) דוגמה: הקבוצה

- חסומה מלעל(על ידי 100 למשל)
 - יש לה חסם עליון(19)
 - אין לה מקסימום
 - חסומה מלרע על ידי 2- למשל
 - יש לה חסם תחתון 5
 - יש מינימום 5

 $\sup A = \max A$ טענה: אם לא יש מקסימום אז יש לה חסם עליון ומתקיים

 $a\in A$ פיים $\epsilon>0$ קיים אז צ"ל כי לכל מלעל אזי א"ל מא $M=\max A$ הוכחה: הוכחה: $M=\max A$ אזי אזי אז מקיים את אר אזי $M\in A$ אזי אזי $M\in A$ מקיים את אר לכל משל

$$\mathbb{F}=\mathbb{Q}, A=\left\{r\in\mathbb{Q}:r\geq0,r^2<2
ight\}$$
 נגדיר:

טענה: A חסומה מלעל

. משל. r < 2 אזי $r^2 < 2 < 2^2$ מקיים $r \in A$ הוכחה:

אקסיומת השלמות: שדה סדור ייקרא שלם אם לכל קבוצה לא ריקה וחסומה מלעל קיים חסם עליון

 $(\mathbb{Q}$ טענה: אין לA חסם עליון ב

 $[\]max A$ מסומן 4

 $[\]min A$ מסומן 5

מרצים טוענים כי פירושה של "משל" הוא "מה שרצינו להוכיח" אבל סטודנטים טוענים כי פירושה הוא "מזל שהצלחנו להוכיח"

תרגול מס.1

prezma@math.huji.ac.il מתן פרזמה

 $(-x)\,y=x\,(-y)=-\,(xy)$ מתקיים $x,y\in\mathbb{F}$ לכל אז לכל שדה סדור הי יהי

הוכחה:

$$(-x) y + xy = (-x + x) y$$
$$= 0 \cdot y$$

-(xy) שוה שווה ל (-x) שוה ל מסקנה: ההפכי של xy שה שווה ל

xy < 0 אז x < 0 < y טענה:

הוכחה:

$$x < 0 \quad \Rightarrow \quad -x > 0$$

$$\Rightarrow \quad -xy = (-xy) > 0$$

$$\Rightarrow \quad xy < 0$$

xy>0 אז x,y<0 מסקנה:

$$\begin{array}{lll} x<0\Rightarrow -x>0, y<0\Rightarrow -y>0 \\ \forall xy=yx=-(-yx)=-y(-x)=0 \end{array}$$
 לכל
$$\begin{array}{lll} x<0\Rightarrow -x>0, y<0\Rightarrow -y>0 \\ -(-a)=a \end{array}$$
 מתקיים
$$\begin{array}{lll} a\in\mathbb{F} \\ (-y)(-x)>0 \end{array}$$

 $x^2>0$ מסקנה 3: לכל לכל (x
eq 0) מתקיים

דוגמה:

$$\mathbb{C} = \left\{ a + ib | a, b \in \mathbb{R}, i^2 = -1 \right\}$$

1.סמ לוגרת .3 קרפ 3.

שאלה: האם קיימת קבוצת חיוביים $P\subset\mathbb{C}$ שלגביה הפעולות קבוצת היות שאלה: האם קיימת קבוצת חיוביים על \mathbb{C} שלגביה של שדה סדור?

תשובה: $\,$ לא קיימת קבוצה $P\subset\mathbb{C}$ העונה על תנאי השאלה.

הוכחה: ננית בשלילה כי יש P כזו אז $1=1\cdot 1=1^2>0$ אזי ננית בשלילה כי יש ונית בשלילה כי יש $i^2=-1 \not\in P$ בסתירה למסקנה $i^2=-1 \not\in P$

 $q^2
eq 2$ מתקיים $q \in \mathbb{Q}$ טענה: לכל רציונל

הוכחה: ננית בשלילה שקיים $Q\in\mathbb{Q}$ כנ"ל אז $q\in\mathbb{Q}$, אזי נרשום הוכחה: ננית בשלילה שקיים $q\in\mathbb{Q}$ כנ"ל אז $q\in\mathbb{Q}$ כגורמים ראשוניים: $q\in\mathbb{Q}$ כנ"ל אזי $q\in\mathbb{Q}$ אזי אפשר לצמצם את m,n את המותפים ראשוניים m,n ומקבלים m,n ומקבלים m,n ללא מחלק משותף (ללא ראשוני משותף m ומקבלים m,n ומקבלים m ומקבלים m ומקבלים m ומקבלים m בהצגתם) אזי m

 $q=rac{m'}{n'}$ איי בהצגתם) איי $q=rac{m'}{n'}$ איי בהצגתם) איי איי $(m')^2$ איי במחלק את איי ב $(m')^2=2\Rightarrow m'=2n'$

m טענה: אם 2 מחלק m^2 אזי 2 מחלק את

הוכחה: 2 ראשוני אזי לכל m^2 אשר p^2 אשר p^2 את בפירוק של מכפלת למכפלת ($m=p_1^{r_1}\cdots p_k^{r_k}, m^2=p_1^{2r_1}\cdots p_k^{2r_k}$) איזי $p_i=2$ עבור $p_i=2$ עבור אזי לשהוא עם $p_i=2$ אזי אזי לוביר

אזי 2|m' אזי $2|\left(n'\right)^2$ אזי $2|\frac{\left(m'\right)^2}{2}$ אזי $4|\left(m'\right)$ הוכחנו כי 2|m' הוכחנו כי 2|m' אזי 2|n' אזי 2|n' הוכחנו כי 2|n'

טענה: לכל מספר $q\in\mathbb{Q}$ שאינו ריבוע של מספר שלם. אזי לא קיים $r\in\mathbb{N}$ שאינו לכל מספר לכל מספר לכל מספר $(\sqrt{r}\notin\mathbb{Q}$ אויים אוי לכל פר

A סימון: A קבוצה ו $z \in A$ אזי נומר כי $z \leq A$ אם A הוא חסם עליון של

סימון: יהי $A,B\in\mathbb{F}$ קבוצות לא ריקות. נאמר כי A גדולה מ $A,B\in\mathbb{F}$ יהי סימון: יהי $b\leq a$ מתקיים $b\in B$ ולכל $a\in A$

אקסיומת השלמות: אם $v \in \mathbb{F}$ קבוצות לא ריקות א $v \leq u$ קבוצות אם $u,v \in F$ אז קיים ע $v \leq z \leq u$

הנחה: \mathbb{R} מקיים אקסיומת השלמות

משפט החסם העליון: $(A
eq \emptyset) \subseteq \mathbb{R}$ 'משפט החסם העליון: לכל קב

הערה: \mathbb{Q} שדה סדור שאינו מקיים אקסיומת השלמות

 $\sup A \not\in A$ הערה: יתכן כי

 $\sup A=\{a_1,\ldots,a_n\}\subseteq \mathbb{F}$ דוגמא: $A=\{a_1,\ldots,a_n\}\subseteq \mathbb{F}$ אזי $\inf A=\min A=\min (a_1,\ldots,a_n)\ \mathrm{i}\ \max A=\max (a_1,\ldots,a_n)$

A = [0, 1] דוגמה:

 $[a,b]\equiv\{x\in\mathbb{R}|a\leq x\leq b\}$ נסמן $a,b\in\mathbb{R}$ לכל הגדרה:

A תסומה מלעיל ע"י A

 $1 \leq z$ ובפרט ובפרט $a \in A$ לכל הרי ש $a \leq z$ הרי שליון של חסם עליון כי אם 1

A = (0,1) דוגמה:

 $(a,b) \equiv \{x \in \mathbb{R} | a < x < b\}$ סימון:

A לפי הגדרה. מליון של A

 $a \in A$ לכל $a \leq z$ אם או לפי של אי לכל אל חסם מלעיל אם א

 $1-\epsilon<1$ ולכן $1-\epsilon<0$. היי $\sup{(0,1)}=1$ כי לראות מי נוכל לראות הטענה $1-\epsilon<0$ יהי היי $1-\frac{\epsilon}{2}\in(0,1)$

הוכחה:

 $a\in A$ כך שלכל $\epsilon>0$ כיוון ראשון: נניח תסם עליון. ונניח השלילה שקיים כיוון נניח כיוון מתקיים מתקיים בc>0 סתירה לבחירת לבחירת בחירה לבחירת

 $A+B\equiv\{a+b|a\in A,b\in B\}$ נגדיר (גדיר $A,B\in\mathbb{R}$ לא ריקות אר קבוצות עבור אבורה:

$$A+B=\left[\frac{1}{2},2\right]$$
 אזי $A=\left\{\frac{1}{2},1\right\}, B=\left[0,1\right]$ דוגמה:

טענה: אם A+B קבוצות סדורות חסומות מלעיל אזי גם A+Bחסומה מלעיל.

הוכחה: יהי x=a+b אזי יש קיימים $a\in A,b\in B$ כך ש $x\in (A+B)$ הוכחה: יהי יהי $a\in A+b$ אזי ש קיימים $a\in A+b$ אזי $a\le \sup A+\sup B$ אזי $a\le \sup A$ אזי קיים $a\le \sup A$

 $\sup A + \sup B =$ טענה: עבור קבוצה לא ריקה $A,B \subseteq \mathbb{R}$ וחסומות עבור קבוצה לא $\sup (A+B)$

הוכחה: עלינו להראות כי $\sup A + \sup B$ כי כי עלינו להראות עלינו הקריטריון מקיים $\sup A + \sup B$ כי עלינו להראות אלינו לA + B

עבור $\sup B$ ו און און הקריטריון את מקיימים או ו $\sup A$, $\epsilon'=\epsilon/2>0$ נסמן $\epsilon>0$ יהי יהי הקי $\sup B-\epsilon'< b$ ו $\sup A-\epsilon'< a$ ע לכן לכן ה $b\in B$, $a\in A$ לכן קיימים לכן אינ אינ הע

$$\sup A + \sup B - \widehat{2\epsilon'} < a+b = x$$
 יתקיים $x = a+b \in A+B$

הרצאה מס.3

הוכחה: באינדוקציה על איברי הקבוצה

טענה: לכל קבוצה ב $\, \mathbb{F} \,$ בעלת מספר סופי של איברים קיים מינימום ומקסימום

קיים שדה סדור(ארכימידי) ובו קבוצה חסומה מלעל שאין לה חסם עליון

1
טענה: $\mathbb{F}=\mathbb{Q}$ אזי ל A לא קיים חסם עליון $A=\left\{r\in\mathbb{Q}:r^{2}<2
ight\}$ אזי ל

הוכחה: ננית בשלילה כי קיים $\sup A$ כלומר ($\forall r\in A$) ($r\leq \sup A$) וגם כל חסם מלעל אונית בשלילה כי קיים אונית ($\exists r\in A$) ($T\leq \sup A$) ($T\leq \sup A$). אחר הוא גדול ממנו או

$$(\sup A)^2 = 2$$
 .1

 $r^2=2$ ש כך כך לא קיים $r\in\mathbb{Q}$ כי הוכחנו כי הוכחנו שעבר שבר שבר פסלנו בשיעור

$$(\sup A)^2 < 2$$
 .2

נשים לב כי בהכרת $1\le \sup A\le 2$ ת קבוצה לא חסומה ולכן מובטח לנו כי $\sup A\le 1\le \sup A$ וגם מובטח לנו כי $\exists n>\frac{1}{\sup A}$ כך ש1 = 0 וגם $n>\frac{1}{\sup A}$ ונוכיח כי זה איבר ב

$$\left(\sup A + \frac{1}{n}\right)^{2} = \left(\sup A\right)^{2} + \frac{2}{n}\sup A + \frac{1}{n^{2}}$$

$$\leq \left(\sup A\right)^{2} + \frac{2}{n}\sup A + \frac{1}{n}\sup A$$

$$\leq \left(\sup A\right)^{2} + \frac{6}{n}$$

$$\leq \left(\sup A\right)^{2} + \frac{6}{n}$$

$$\leq \left(\sup A\right)^{2} + \frac{6\left(2 - (\sup A)^{2}\right)}{6}$$

$$= 2$$

 $[\]sup A$ אז היה קיים $\mathbb{F}=\mathbb{R}$ ברור שאים

$$(\sup A)^2 > 2$$
 .3

ענית ש $n\in\mathbb{N}$ שוב ננצל העובדה כי $n\in\mathbb{N}$ לא חסומה נבחר ($\sup A)^2>2$ שוב ננית $n>\frac{2\sup A}{(\sup A)^2-2}$

24

$$\left(\sup A - \frac{1}{n}\right)^2 = (\sup A)^2 - \frac{2}{n}\sup A + \frac{1}{n^2}$$

$$> (\sup A)^2 - \frac{2}{n}\sup A$$

$$> (\sup A)^2 - \frac{2\sup A}{\left(\frac{2\sup A}{(\sup A)^2 - 2}\right)}$$

$$= (\sup A)^2 - \frac{2\sup A}{2\sup A}\left((\sup A)^2 - 2\right)$$

$$= 2$$

A אזי הראנו כי אין חסם עליון ל

הגדרה: יהי $\mathbb F$ שדה סדור. $\mathbb F$ יקרא שלם אם לכל קבוצה לא ריקה וחסומה מלעל קיים חסם עליון.

משמע הוכחנו כי 🛈 הוא לא שדה שלם.

טענה: בשדה שלם לכל קבוצה חסומה מלרע קיים חסם תחתון.

 $(\exists m \in \mathbb{F}) \ (\forall a \in A) \ ((-m \geq -a))$ אזי $B = \{-a: a \in A\}$. נגדיר ($\exists m \in \mathbb{F}) \ (\forall a \in A) \ (m \leq a)$ אזי ($\forall b \in B) \ (M \geq b)$. מנגדיר (-m) קיים לB חסם עליון ($\forall b \in B) \ (M \geq b)$. אסיומר מלעל ע"י (-m) קיים לB חסם עליון ($\forall a \in A) \ ((-a) > M - \epsilon)$ ו ($\forall a \in A) \ ((-a) > M - \epsilon)$) זה כמו לאומר כי ($(\forall a \in A) \ ((-a) > M - \epsilon)$ ו ($(\forall a \in A) \ ((-a) \leq a)$ אם נעביר סימן מינוס לצד השני מקבלים ($(-a) \leq a) \ ((-a) \leq a) \ ((-a) \leq a)$

 $a\in A,b\in B,a\leq$ טענה: A,B שני קבוצות לא ריקות בשדה סדור שלם A נתון לכל מענה: $a\in A,b\in B$ לכל מענה: b לכל $a\leq M\leq b$ כך של קיים מערכה אז קיים ליים של היים מערכה ליים מערכה

הוכחה: הקבוצה A חסומה מלעל לכן נקח $b \in B$ מהנתון מאקסיומת הקבוצה הקבוצה האלמות נובע שקיים לA חסם עליון. נסמן און. נסמן בע שקיים ל

B נראה ש $\stackrel{\cdot}{M}$ תסם מלרע של

נניח בדרך השלילה שאין זר כך. כלומר קיים $b\in B, b< M$ נניח בדרך השלילה שאין זר כך. כלומר קיים אליון של $a\leq b$ שקיים $a\leq b$ בסתירה לכך ש $a\leq b$ בסתירה לכך בסתירה $a\in A, a>b$ נובע שקיים $a\in A, b\in B$

משפט: שדה הממשיים מקיים את תכונות הארכימידיות הטבעיים קבוצה לא חסומה מלעל)

הוכחה: נניח בשלילה שקיים $\mathbb R$ כך ש $n\in\mathbb N$ לכל $n\in\mathbb N$ מאקסיומת השלמות הוכחה: נניח בשלילה שקיים ל $n\in\mathbb N$ טופרמום נסמן $m\in\mathbb N$ אזי $m\in\mathbb N$ הוא החסם העליון.

Complete באנגלית²

 $(\forall x,y \in \mathbb{R}, x < y) \, (\exists r \in \mathbb{Q}) :$ משפט: בממשיים. "צפופים "צפופים "צפופים הרציונאליים המספרים הרציונאליים (x < r < y)

 $.\frac{1}{n} < y-x$ ע כך ש הוכחה: \mathbb{Z} נבתר ... $\exists m \in \mathbb{Z}: m < x$ אזיג הסומה מלעל אזי הוכחה: $m+\frac{j}{n}, 1 \leq$ טבעי בי הרציונאליים $m+\frac{j}{n}, 1 \leq m+\frac{j}{n}$. נתבונן במספרים הרציונאליים שבר $m+\frac{j}{n}$ טבעי כך ש $m+\frac{j}{n} > x$ אבל $m+\frac{j}{n}$ הוא הראשון שעבר $k \leq k$ ע כך און הראשון $k \leq k$

$$z\leq x+rac{1}{n}<\overbrace{x+(y-x)}$$
 את $z-rac{1}{n}\leq x$ אבל $z>x$ אבל אזי $z=m+rac{j}{n}$ את גוסמן.

4.1 חזקות עם מעריכים רציונאליים

על ידי $x^n,x\in\mathbb{Z}$ ונגדיר כבר $x^1=x,x^{k+1}=x\cdot x^k$ להיות להיות $x^n,x\in\mathbb{N}$ ונגדיר $x^0=1,x^{-n}=\frac{1}{x^n}=(x^n)^{-1}$

 $x,y
eq 0, m,n \in \mathbb{Z}$ טענה: לכל

$$x^m x^n = x^{m+n} .1$$

$$(x^m)^n = x^{nm} .2$$

$$x^n y^n = (xy)^n .3$$

$$\beta^n > \alpha^n$$
 in $0 < \alpha < \beta, n > 0$.4

$$\beta^n < \alpha^n$$
 ክአ $0 < \alpha < \beta, n < 0$.5

$$a^n > \alpha^m$$
 and $\alpha > 1, n > m$.6

$$a^n < \alpha^m$$
 እእ $mga < 1, n > m$.7

לא נוכיח את זה כי זה היה בעבודת בית שלכם:

[&]quot;פירושו של זה "אני יודע להוכית, אבל לא רוצה לבזבז זמן עליכם"

הרצאה מס. ???

 $y^n < x$ ננית השלילה נייח נוכית $y^n \geq x$ נוכית

יאא
$$\epsilon \leq 1 \wedge \epsilon \leq rac{x-y^n}{nx}$$
 אא $\epsilon = \min\left(1, rac{x-y^n}{nx}
ight)$ נגדיר

$$nx\epsilon < x - y^{n}$$

$$y^{n} < (1 - \epsilon n) x \le (1 - \epsilon)^{n} x$$

$$y^{n} < (1 - \epsilon)^{n} x$$

$$\left(\frac{y}{1 - \epsilon}\right)^{n} < x$$

 $\sup S$ אינו יכול להיות y

נוכית ש $0<\epsilon<\min\left(1,\frac{y^n-x}{ny^n}\right)$ נגדיר נגדיר שלילה בשלילה ננית בשלילה י $y^n\leq x$

$$ny^{n}\epsilon < y^{n} - x$$

$$x < (1 - n\epsilon) y^{n} \le (1 - \epsilon)^{n} y^{n}$$

$$x < (1 - \epsilon)^{n} y^{n}$$

$$x < ([1 - \epsilon] y)^{n}$$

עליון חסם אזינ yאזי $(1-\epsilon)\,y < y$ ו אזיS של חסם מלעל חסם אזינ נובע כי נובע נובע מלעל

$$a/b=c/d\Rightarrow x^{a/b}=x^{c/d}$$
 טענה:

הוכתה:

28 קרפ 5. קרפ 5. קרפ

$$\left(x^{a/b}\right)^{bd} = \left(\left(\left(x^a\right)\right)^{1/b}\right)^b \right)^d$$

$$= \left(x^a\right)^d$$

$$= x^{ad}$$

$$= x^{bc}$$

$$= \left(x^c\right)^b$$

$$= \left(\left(\left(x^c\right)^{1/d}\right)^d\right)^b$$

$$= \left(\left(x^{c/d}\right)^d\right)^b$$

$$= \left(x^{c/d}\right)^{bd}$$

?.סה הרצאה מס.?

6.1 חזקות עם מערכים רציונאליים

לכל r=m/n אזי אם $x^{rac{1}{n}}=\sup\left\{z\in\mathbb{R}:z^n< x
ight\}$ מגדירים $x>0,m\in\mathbb{N}$ אזי אז $x^r=(x^m)^{1/n}$

טענה: $x,y>0,r,s\in\mathbb{Q}$ אזי

$$x^r x^s = x^{r+s} .1$$

$$\left(x^{r}\right)^{s}=x^{\left(r\cdot s\right)}\text{ .2}$$

$$x^r y^r = (xy)^r .3$$

$$x > 0, x > y \Rightarrow x^r > y^r$$
 .4

$$x < 0, x > y \Rightarrow x^r < y^r$$
 .5

$$x > 1, r > s \Rightarrow x^r > x^s$$
 .6

$$x < 1, x > s \Rightarrow x^r < x^s$$
 .7

הוכיח איי צריך אאי $r+s=rac{ad+bc}{bd}$ איי איי אריך להוכיח כי רוכחת 1:

$$\underbrace{\sup\left\{z>0:z^b < x^a\right\}}_{x^r} \cdot \underbrace{\sup\left\{z>0,z^d < x^c\right\}}_{x^s} = \sup\left\{z>0:z^{bd} < x^{ad+bc}\right\}$$

אזי מוכיתים:

30 פרפ 6. קרפ?

$$(x^{r}x^{s})^{bd} = (x^{r})^{bd}(x^{s})^{bd}$$

$$= \left(\left((x^{a})^{\frac{1}{b}}\right)^{b}\right)^{d} \left(\left((x^{c})^{\frac{1}{f}}\right)^{d}\right)^{b}$$

$$= (x^{a})^{d} \cdot (x^{c})^{b}$$

$$= x^{ad} \cdot x^{cb}$$

$$= x^{ad+cb}$$

$$= x^{\frac{ad+bc}{bd}bd}$$

$$= \left((x^{ad+bd})^{\frac{1}{bd}}\right)^{bd}$$

$$= \left(x^{\frac{ad+bc}{bd}}\right)^{bd}$$

$$= (x^{\frac{ad+bc}{bd}})^{bd}$$

$$= (x^{\frac{ad+bc}{bd}})^{bd}$$

$$= (x^{r+s})^{bd}$$

משל

 $(x^a)^{\frac{1}{b}}>(y^a)^{\frac{1}{b}}$ כלומר $x^r>y^r$ אזי צ"ל $x>y, r>0, r=\frac{a}{b}, 0< a, b$:4 הוכחת מחוקי החזקות השלמות $y \Rightarrow x^a>y^a$ מחוקי החזקות השלמות $x>y \Rightarrow x^a>y^a$ מנת להוכיח את סעיף 4 מספיק להוכיח ש $x>y \Rightarrow x^a>y^b$ גורר $x^{\frac{1}{b}}>y^{\frac{1}{b}}$ מניח דרך השלילה ש $x^{\frac{1}{b}} \leq (y^{\frac{1}{b}})^b \Rightarrow x^a>y$ מניח דרך השלילה ש $x^{\frac{1}{b}} \leq x^{\frac{1}{b}}$ מחוקי החזקות במערך שלם $x \leq y$

6.2 פונקציות

?ה מה זה פומקציה?

פונקציה היא מבחינתנו מכונה שנותנים לה מספר ממשי ומחזירה מספר ממשי. אם נותנים לה a אז היא חמיד תחזיר b תחזיר לה a אז היא חמיד תחזיר מזורכבת מa חלקים:

- 1 ם קבוצת הקלט, התחום 1
 - 2 טווח קבוצת הפלט, טווח 2
- 3. העתקה, "חוק" שקובע מהוא הפלט לכל קלט

סימונים: פונקציות מסמנין באותיות לטיניות או ויווניות).

$$f: \underbrace{A}_{\mbox{gfor}}
ightarrow rac{B}{\mbox{gfor}}$$
 פלט $f(x) = 6x$

Domain באנגלית 1

Range באנגלית 2

6.2. תויצקנופ

 $f:x\mapsto 6x$ סימון אחר לחוק הוא ל $f:\mathbb{R} o 6x$ מותר העלאה בריבוע: $f:\mathbb{R} o 6x$ (מותר גם ל $f:\mathbb{R} o 8$) מותר העלאה בריבוע: $f:\mathbb{R} o 8$

 $\operatorname{Image}\left(f\right)=\left\{ y\in B:\exists x\in A,y=f\left(x
ight)
ight\}$ היא A היא f:A o B אזי התמונה של הגדרה:

 $(\forall y \in B)\,(\exists!x \in A):(y=f\,(x))$ אם ערכית חד-חד נקראת פונקציה פונקציה פונקציה אם

 $(\forall y \in B)\,(\exists x \in A):$ או $B = \mathrm{Image}\,(f)$ אם $f:A \to B$ או הגדרה: פונקציה $f:A \to B$ הגדרה: (y=f(x))

דוגמה לפונקציה: פונקציה המעתיקה את כל הממשיים $w \neq \pm 1$ דוגמה $w \neq \pm 1$ דוגמה $g: \mathbb{R} \setminus \{1,-1\} \to \mathbb{R}$ כותבים $g(t) = \frac{w^3 + 3w + 5}{w^2 - 1}$

⁴Dirichlet פונקצית דרכלי

$$f: \mathbb{R} \to \{0, 1\}$$

$$f(x) = \begin{cases} 0 & x \notin \mathbb{Q} \\ 1 & x \in \mathbb{Q} \end{cases}$$

עוד דוגמה לפונקציה:

$$f:\mathbb{R}
ightarrow \mathbb{N}$$
 מספר הופעת $f(x)=egin{cases} x > 10 \ 7 \end{array}$ ביצוג העשרוני $x < 10 \ 16 \end{array}$

עוד דוגמה: לכל $n\in\mathbb{N}$ נגדיר פונקציה

$$f_n: \mathbb{R} \to \mathbb{R}$$

 $f_n(x) = x^n$

 (ID) נקראת פונקצית הזהות בפרט f_1

הרכבת פונקציות היא הסוציאטיביות: $h\circ g)\circ f=h\circ (g\circ f)$ אפשר לראות בכלות על ידי כתיבת זה באופן יותר מפורט

Onto

³

בסוף t היה צרפתי לכן לא מבטים את ה 4

תרגול מס.3

7.1 צפיפות הרציונאליים

(a < q < b עם כך ער קבע יש $a,b \in \mathbb{R}$ לכל (a,b) מתקיים ש

דוגמה: $\{x|x\in\mathbb{Q},q<0\}$ היא חסומה מלעל אבל היא לא חסומה מלרע: יהי A . $A=\{x|x\in\mathbb{Q},q<0\}$ דוגמה: $x\in A$ אז $a\in A$ אז קיים $a\in \mathbb{N}$ כך שיח $a\in A$ אזי עובר $a\in A$ אזי יש $a\in A$ אזי $a\in A$ אזי יש $a\in A$ אזי יש $a\in A$ אזי יש $a\in A$ משל.

7.2 אקסיומת השלימות

דרגמה: $L=\{x\in\mathbb{R}|p\ (x\leq 0)\}$ נגדיר: על $p\ (x)=x^5-x-1$ נראה כי קיים ב $z\in\mathbb{R}$ נעדיר: על $p\ (x)=x^5-x-1$

 $(p\left(x
ight)\geq1^{5}+1-1=1$ א בי וועיל ע"י וולכל L

נראה $p\left(z\right) \neq 0$ מקיים את בשלילה נניח בשלילה ער מקיים את ב $z=\sup L$ נראה נראה נראה אז מחלקים למקרים:

יהי 0 < r < z יהי p(z) > 0 .1

$$p(z-r) = (z-r)^{5} + (z-r) - 1$$
$$= z^{5} \left(1 - \frac{r}{z}\right)^{5} + (z-r) - 1$$

 $\left(1+\alpha\right)^{n}<$ אזי משתמשים באי ח $\alpha>-1$ לכל כי שאומר ברנולי שוויון ברנולי שוויון אזי משתמשים באי ח $1+n\alpha$

$$z^{5} \left(1 - \frac{r}{z}\right)^{5} + (z - r) - 1 > z^{5} \left(1 - 5\frac{r}{z}\right) + (z - r) - 1$$

$$= z^{5} - 5rz^{4} + z - r - 1$$

$$= p(z) - r(5z^{4} + 1)$$

אם z-r אזי $\alpha>0 \Rightarrow p\left(z-r\right)>0$ אז $r< p\left(z\right)\left(5z^4+1\right)^{-1}$ אם הסח מלעל ל .

34. 5.סמ לוגרת ד, קרפ 7. סמל לוגרת 7. קרפ

אוי
$$0 < r < z$$
 יהי $p(z) < 0$.2

(N)

$$p(z+r) = (z+r)^{5} + (z+r) - 1$$

$$\geq z^{5} + 5z^{4}r + z + r - 1$$

$$= p(z) + r(5z^{4} + 1)$$

$$\geq p(z) + 6r$$

 $r<rac{1}{6}\left| p\left(z
ight)
ight|$ ניקת (ב)

7.3

סימון: $a\in A$ אזי $(A,B\neq\emptyset)\subseteq\mathbb{R}$ פונקציה מf - $f:A\to B$ אזי אזי ($A,B\neq\emptyset)\subseteq\mathbb{R}$ ויחיד ויחיד $b\in B$ המקיים

7.3.1 פולינומים

$$f\left(x\right) = \sum_{n=0}^{k} a_n x^n$$

 $a_k \neq 0$ ע כך אהמקסימאלי היא דרגת הפולינום היא דרגת הפולינום היא לדוכמה:

$$p(x) = c \Rightarrow \deg p = 0$$

 $\deg p = -\infty$ אומרים c=0 אם $c \neq 0$ אם זה נכון אם הערה:

7.3.2 שוויון של פונקציות

שתי פונקציות שוות אם

- 1. התתום אותו תתום
 - 2. הטוות אותו טוות
- $\forall a \in A : f(a) = g(a)$.3

דוגמה לפונקציות לא שוות:

$$f: [0, \infty) \to [0, \infty) \neq r: [0, \infty) \to \mathbb{R}$$
$$f: x \mapsto \sqrt{x}$$

7.3.3 פונק' רציונליות

 $f\left(x
ight)=rac{p\left(x
ight)}{q\left(x
ight)}$ ע כך ע $p\left(x
ight),q\left(x
ight)$ פונקציה שעבורה קיימים פולינומים $q\left(x
ight)
eq 0$ כך ע $x\in\mathbb{R}$ הוא כל

7.4 פעולות על פונקציות

עם f+g אזי נניח f+g אזי נניח $f:A\to B,g:A\to B'$ גדיר פונקציה שתסומן אזי נגדיר אז נגדיר המוגדרת על ידי f+g המוגדרת על ידי f+g אז נגדיר גם f+g על ידי f+g על ידי f+g על ידי f+g

$$\left(f\circ g\right)\left(x
ight)=f\left(g\left(x
ight)
ight)$$
 הרכבה:

7.5 תכונות של פונקציות

 $f\left(a
ight)
eq f\left(a'
ight)$ מתקיים $a
eq a' \in A$ אם לכל תקרא חח"ע אם $f\left(f:A
ightarrow B$ מתקיים

טענה: תהי $A\subseteq\mathbb{R}$ ולכל $A\subseteq\mathbb{R}$ היא חח"ע אם"ם לכל $f:X\to Y$ ולכל 2 פונק היא חח"ע אם"ם לכל $f:X\to Y$ מתקיים וולכל g=h מתקיים משמאל) מהקיימות לימות המקיימות המקיים וולכל משמאל

 $f\circ g=f\circ h$ כך ע $A\subseteq\mathbb{R},g,h:A o X$ הוכחה בכיוון נניח בייוון נניח הח"ע ותהיינה בייוון כייוון ראשון: נניח בייוון ותהיינה צ"ל כי

מחד חד $f\left(g\left(a\right)\right)=f\left(h\left(a\right)\right)$ אזי $\left(f\circ g\right)\left(a\right)=\left(f\circ h\right)\left(a\right)$ מחד חד $\forall a\in A$ ערכיות של f נובע כי $g\left(a\right)=h\left(a\right)$

הוכחה בכיוון שני: $\$ נניח כי לכל $A\subseteq\mathbb{R}$ ו ו $A\subseteq G$ מתקיים נניח כי לניח שני: נניח כי לכל תa=h

נניח בשלילה ש f(x)=f(y) עז קיימין אז קיימין אז קא כך ש לא מרא נניח בשלילה ש $g:X \to X, g(t)=t$, A=X נגדיר $h:X \to X$

$$h(t) = \begin{cases} t & t \neq x, y \\ y & t = x \\ x & t = y \end{cases}$$

אז לכל $g \neq h$ אבל $f \circ g = f \circ g$ אזי אזי $f\left(g\left(t\right)\right) = g\left(h\left(t\right)\right)$ מתקיים $t \in X$ אבל לנתון.

?.סה מס.?

8.1 פונקציות

 $A imes B = \{(x,y) \, | x \in A, y \in B\}$ אם A imes B אזי המכפלה הקרטזית $A,B \subseteq \mathbb{R}$ אם לכן אם $f:A \to B$ אזי $f:A \to B$

Graph $(x) = \{(x, y) | x \in A, y = f(x)\}$ הגדרה:

8.2 תכונות גרף

אזי תמונה לכל מקור לכל אזי $\operatorname{Graph}\,(f)\ni(x,\psi)$ ו ה $\operatorname{Graph}\,(f)\ni(x,y)$ אם אם אחת ויחידה)

אד חד מד ערכיות 8.2.1

 $x=\vartheta$ אזי Graph $(f)\ni (\vartheta,y)$ ו Graph אור Graph אור

8.2.2 על

 $(x,y)\in {
m Graph}\,(f)$ ער כך ש $x\in A$ לכל $y\in B$

8.3 גבול של פונקציה בנקודה

נגדיר מה זה:

$$\lim_{x \to a} f(x) = l$$

x את שמכיל את מביבה פתוח (a,b) הוא קטע הוא $x\in\mathbb{R}$ שמכיל את

a < x < b ע כך ע (a,b) $\setminus \{x\}$ היא קבוצה x היא מנוקבת טביבה סביבה הגדרה:

הגדרה: נקודה שמוכלת לה אם קיימת לA אם נקודה מקרא נקודה מקרא מקרא מקרא מקרא מוכלת $a\in A\subseteq \mathbb{R}$

דוגמה: $1/2 \in [0,1)$ נקודה פנימית. 1 אפילו לא בקבוצה. $1/2 \in [0,1)$

. טענה: $\mathbb{Q} \subseteq \mathbb{R}$ אזי ל \mathbb{Q} אין נקודה פנימית

9.סמ האצרה .8 קרפ?

 $\mathbb{Q}\supseteq(a,b)\ni r$ אזי קיים קטע אזי פביבה מוכלת ב אזי אזי יש אזי יש אזי אזי אזי אזי אזי אזי אזי אזי אזי יש נקודות אי רציונליות גם ל \mathbb{Q} אין נקודות פנימיות גם ל $\mathbb{Q}\setminus\mathbb{R}\setminus\mathbb{Q}$

אז סוף סוף נוכל להגדיר את הגבול שכתבנו למעלה

הגדרה לא פורמלית: נאמר שהפונקציה f שואפת לx כאשר א שואף לa ניתן נאמר להגדרה לא כרצוננו ל כרצוננו על ידי כך שx תהיה מספיק קרובה ל להגדיר ל להיות קרובה ל

 $\lim_{x \to 5} f\left(x
ight) = 15$ אזי נראה כי $f: \mathbb{R} \to R, f: x \mapsto 3x$ אם דוגמה לא פורמאלית: ענית שרוצים

$$|f(x) - 15| < \frac{1}{100}$$

$$-\frac{1}{100} < 3x - 15 < \frac{1}{100}$$

$$-\frac{1}{300} < x - 5 < \frac{1}{300}$$

$$|x - 5| < \frac{1}{300}$$

 $\frac{1}{100}$ א יותר מ15 מרוחק אם לא יהיה אז $f\left(x\right)$ אז $\frac{1}{300}$ יותר מ3 יותר אם אם כלומר כלומר אם לא

 $\lim_{x o 3}f\left(x
ight)=9$ נראה כי $f:x\mapsto x^2$ דוגמה: $x\mapsto x^2$ נראה כי $0<|x-3|<\delta\Rightarrow\left|x^2-9\right|<\epsilon$ כך ש

$$\begin{aligned} \left| x^2 - 9 \right| &< \epsilon \\ \left| x - 3 \right| \left| x + 3 \right| &< \epsilon \\ \left| x - 3 \right| &< \frac{\epsilon}{\left| x + 3 \right|} \end{aligned}$$

 $\left|x^2-9\right|<7\left|x-3\right|$ אזי $\left|x+3\right|<7$ ו 2 < x<4 אזי $\left|x-3\right|<1$ אזי ווער בואו נדרוש עו $\left|x^2-9\right|<7\cdot\frac{\epsilon}{7}$ אזי ווער איזי ווער אזי ווער אזי ווער אזי ווער אזי ווער איזי ווער איי ווער איזי ווער אי

[!]a כולל את הנקודה 1

??.מס.??

למה:

$$|(x+y)-(x_0+y_0)|<\varepsilon \Leftarrow |x-x_0|<\frac{\varepsilon}{2}, |y-y_0|<\frac{\varepsilon}{2}$$
 .1

$$|xy-x_0y_0|<\varepsilon \Leftarrow |x-x_0|<\min\left(1,\frac{\varepsilon}{2(|y_0|+1)}\right),|y-y_0|<\min\left(1,\frac{\varepsilon}{2(|x_0|+1)}\right) . 2$$

$$\left|rac{1}{y}-rac{1}{y_0}
ight|אני אם $|y-y_0|<\min\left(rac{|y|}{2},rac{arepsilon y_0^2}{2}
ight)$ ז אם $y_0
eq 0$ אם 3.$$

הוכחה:

$$|y_{0}| = |y + (y_{0} - y)|$$

$$|y_{0}| \leq |y| + |y_{0} + y|$$

$$|y_{0}| \leq |y| + \frac{|y_{0}|}{2}$$

$$|y| > \frac{|y_{0}|}{2} > 0$$

$$\left|\frac{1}{y} - \frac{1}{y_{0}}\right| = \frac{y - y_{0}}{|y| |y_{0}|}$$

$$< \frac{|y - y_{0}|}{\frac{|y_{0}|}{2} |y_{0}|}$$

$$< \frac{\varepsilon \frac{|y_{0}|^{2}}{2}}{|y_{0}| |y_{0}|} = \varepsilon$$

אי $\lim_{x o a}f\left(x
ight)=l,\lim_{x o a}g\left(x
ight)=m$, f,g:A o R משפט:

$$\lim_{x\to a} (f+g)(x) = l+m$$
 .1

הוכחה: מהנתון על הגבולות של
$$f$$
 ו g אז נובע כי לכל $\varepsilon>0$ קיים $\delta_1>0$ קיים $0<|x-a|<\delta_1\Rightarrow|f\left(x\right)-l|<\frac{\varepsilon}{2}$ ע $0<|x-a|<\delta_2\Rightarrow|g\left(x\right)-m|<\frac{\varepsilon}{2}$ כך $\delta_2>0$ כד וגם קיים $\delta_2>0$

9. סמ האצרה, 9 קרפ.??

$$\left|\underbrace{\left(f\left(x
ight)-g\left(x
ight)
ight)}_{(f+g)(x)}-(l+m)
ight|<$$
ט בחר נבחר של הלמה נובע כי $\delta=\min\left(\delta_{1},\delta_{2}
ight)$ נבחר ϵ

$$\lim_{x\to a} (f\cdot g)(x) = l\cdot m$$
 .2

כך ש כל
$$\delta_1>0$$
 קיים $\epsilon>0$ קיים לובע שלכל f,g נובע של כל כך ש הוכחה: מהנתון על הגבולות של $|f\left(x\right)-l|<\min\left(1,\frac{\varepsilon}{2(|m|+1)}\right)$ גורר $0<|x-1|<\delta_1$

$$|g\left(x
ight)-m|<\min\left(1,rac{\epsilon}{2(|l|+1)}
ight)$$
 גורר $0<|x-a|<\delta_2$ ע ל $\delta_2>0$ וגם קיים $\delta_2>0$

$$|f\left(x
ight)-l|<\min\left(1,rac{arepsilon}{2(|m|+1)}
ight)$$
 גורר כי $0<|x-a|<\delta$ אז $\delta=\min\left(\delta_1,\delta_2
ight)$ נבתר $|g\left(x
ight)-m|<\min\left(1,rac{\epsilon}{2(|l|+1)}
ight)$ ו

$$\left|\underbrace{f\left(x
ight)\cdot g\left(x
ight)}_{(f\cdot g)(x)}-l\cdot m
ight| אוי מסעיף 2 מהלמה נובע כי$$

$$\lim_{x\to a} \left(\frac{1}{f}\right)(x) = \frac{1}{l}$$
 אא $l \neq 0$ אם 3.3

 $0<|x-a|<\delta$ כך ש $\delta>0$ כך קיים $\varepsilon>0$ לכל נובע נובע ל מהגבול של אונר אורר $|f\left(x
ight)-l|<\min\left(rac{|l|}{2},rac{|l|^2}{2}
ight)$ גורר

$$\left|rac{1}{f(x)}-rac{1}{l}
ight| אזי מסעיף 3 של הלמה נובע$$

הערה: אם קיים a גבול בa הערה: אם $\lim_{x\to a}\left(f+g\right)(x)$ אז לא $f\left(x\right)=1+\frac{1}{x},g\left(x\right)=1-\frac{1}{x}$

הגבול a הגבול בנקודה a הגבול מקודה בנקודה מנימית. נאמר בנקודה a הגבול a הגבול בנקודה ו $\lim_{x\to a}f(x)=f(a)$

$$f:x\mapsto x\cdot\sin\left(rac{1}{x}
ight)$$
 ו $f:\mathbb{R}\setminus\{0\} o\mathbb{R}$

9.1, תורעה

 $\lim_{x\to 0} f(x) = 0$ אזי הפונקציה

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \begin{cases} x = 0 & 0 \\ x \neq 0 & x \sin(x) \end{cases}$$

 $x \in \mathbb{R}$ רציפה לכל

f אז $f\left(3\right)=9$ ומכיוון וו $\lim_{x\to3}f\left(x\right)=9$ מקיימת ווו $f:x\mapsto x^2$ וומכיוון דוגמה: רציפה.

אזי $\lim_{x \to a} f\left(x\right) = \frac{1}{a}$ מתקיים $a \neq 0$ אזי הוכחנו אזי $f: x \mapsto \frac{1}{x}$ דוגמה: בכל נקודה חוץ מאפס.

9.1 הערות

 $a < x < a+\delta$ כך ש $\delta > 0$ כך פיים $\varepsilon > 0$ כאמר שהגבול מימין של d ב a הוא d הוא d ב d בורר גורר $\lim_{x' \to a^+} f(x) = f(a)$ ומסמנים וומסמנים וומ $\lim_{x' \to a^+} f(x) = f(a)$ נאמר ש d רציפה מימין בנקודה d אם: d

משפט: $a\in A$ נקודה פנימית. אם f ו g רציפות ב $a\in A$ נקודה פנימית. אם $a\in A$ בנוסף $a\in A$ בנוסף אז $a\in A$ רציפה בa רציפה בa אם a רציפה ב

הוכחה: נתון $\lim_{x \to a} g\left(x\right) = g\left(a\right)$ ו ו $\lim_{x \to a} f\left(x\right) = f\left(a\right)$ ממשפט האריתמטיקה

 $a\in\mathbb{R}$ מסקנה: $f\left(x
ight)=rac{x^{3}+7x^{5}}{1+x^{2}}$ אציפה בכל נקודה

 $\lim_{x\to a} (f+g)(x) = f(a) + g(a) = (f+g)(a)$ של הגבולות

9. סמ האצרה ,9 קרפ 9. ??.

שאלה: האם $f\left(x
ight)=\sin\left(x^{2}
ight)$ רציפהי

משפט: f(a) , A נקודה פנימית של $f:A\to B, g:B\to C$ משפט: $g\circ f$ אם $g\circ f$ אז $g\circ f$ רציפה ב $g\circ f$ רציפה ב $g\circ f$ רציפה ב $g\circ f$

תרגול מס.??

I=הגדרה: נאמר כי הפונקציה f מוגדרת בסביבת $x_0\in\mathbb{R}$ אם קיים קטע פתוח מוכללו הגדרה: $I\setminus\{x_0\}$ כך שf מוגדרת ב $((a,b),a< b,(a,b)\in(\mathbb{R}\cup\{\pm\infty\})$ נאמר שהגבול של f בf בf הוא f אם לכל פרל סיים f כך שלכל שלכל שלכן בf המקיים f בf מתקיים f מתקיים f בf מתקיים f בי מוגדרת בינות מוכללום.

f אאז f אאגבול שהגבול אל הגדרה: נניח $b>x_0$ אאז f אא אוגדרת אוגדרה: נניח הגדרה: $x\in(x_0,b)$ או אם אם $\delta>0$ כף שאם $\delta>0$ קיים לכל y אום מימין ב x_0 הוא אם מימין וגס ווס או אם לכל וגס או ווסמן אחם אוו $|f(x)-y|<\varepsilon$ מתקיים מתקיים אוו $|f(x)-y|<\varepsilon$

??.מס.??

www.math.huji.ac.il/~razk אתר הבית של המרצה

11.1 רציפות

הגדרנו רציפות בנקודה וראינו כי הפונרציה $f\left(x
ight)=egin{cases} x&x\in\mathbb{Q}\\0&x
ot\in\mathbb{Q} \end{cases}$ רציפה באפס ורק שם.

 $0 < f\left(x
ight)$ שבה של a שבה של a איז קיימת סביבה של a שבה בנקודה a ו

f שבה $[a,a+\delta)$ בסביבה קיימת ה $0 < f\left(a\right)$ ו בaב ו רציפה מימין אם הערה: אם חיובית.

משפט ערך הביניים 11.1.1

a < c < b אז קיימת נקודה א
 $f\left(a\right) < 0, f\left(b\right) > 0$ ומתקיים ומתקיים הציפה ל $f\left(c\right) = 0$ כד ש

 $f\left(b
ight)<0$ ו $f\left(a
ight)>0$ הערה: המשפט תקף גם אם

מסקנה: אם f רציפה על [a,b] ו [a,b] אזי קיימת נקודה a < c < b מסקנה: אם f רציפה על f

f-lpha נפעיל את משפט ערך הביניים עבור נפעיל

0 < ו a בנקודה בנקודה אז עכשיו נוכיח המשפט שהצגנו בתחילת השיעור: אם $0 < f\left(x\right)$ שבה של a שביבה של קיימת סביבה של $0 < f\left(x\right)$

f של הנקודות א (כל הנקודות מאם) $A=\{x\in[a,b]:f(y)<0, \forall y\in[a,x]\}$ הנקודות הדיר קבוצה: עבור נקודות משמאלה) הקבוצה a היא א ריקה(היא מכילה מקבלת ערכים שליליים עבור נקודות משמאלה) הקבוצה $b\notin A$. $a+\delta\in A$ כך ש $b\in A$ מהמשפט הקודם נובע שקיימת b0 כף ש $b\in A$ 0 כף שb1 מרכים נובע שקיימת בימת בb3 כף של מחמשפט הקודם

בפרט איש נובע נובע איס מלעל. מאכסיומת חסומה לא ריקה לא ריקה לא בפרט בפרט ג $\sup A = c$ וסמן עליון בקטע עליון בקטע

 $f\left(c
ight)>1$ ו (c) $f\left(c
ight)<0$ גוכיח כי $f\left(c
ight)=0$ נוכיח נשתמש בטריכוטומיה ונפסול את האפשרות האפשרות נשתמש בטריכוטומיה ו

 $\delta>0$ נניח תחלה ש f(c)>0 ולכן אינו שייך לf(c)>0 מהמשפט נניח תחלה על היים $c=\sup A$ לסם מלעל של בסתירה לזה כי $c=\sup A$ מסקנה: $0 \geq f(c)$

A מוכל ב x < c מכיוון של A נובע שכל a מכיוון של a מכיוון של a מוכל ב א נייח עתה של ערכה ערכה אין איז מכיוון של א בייח ערכה ערכה ערכה איז מכיוון של איז מכיוון איז מכיוון של איז מכיוון א

 $\forall x \leq c+\delta$: אוי א $f\left(x\right)<0$ $c-\delta \leq x \leq c+\delta$ עף על $\delta>0$ קיים קיים מהמשפט הקודם אוי אינו חסם עליון. $c+\delta \in A$ אוי אינו ה $c+\delta \in A$

a אם אז קיימת סדרה של a אם f רציפה בa אז קיימת סדרה של למה: a ו ו $f:A\to B$ שהב למה: שהב f חסומה מלעל.

 $f\left(a\right)-1<$ לך ש $(a-\delta,a+\delta)$ הוכחה: aב נובע הובע של מהרציפות מהרציפות הובaב הובע לכל $f\left(a\right)-1<$ לכל הארציפות הובע הובע הארציפות הארציפ

משפט: $f:[a,b] o \mathbb{R}$ אז לסומה מלעל על קטע זה $f:[a,b] o \mathbb{R}$

a את מכילה A . $A=\{a\leq x\leq b: f$ אקטע חסומה חסומה $[a,x]\}$ מכילה גדיר הוכחה: bידי לסומה לסומה לידי לא ריקה. A

b=c נוכיח ניב ני השלמות מאקסיומת מאקסיומת נובע כי לA יש מכי מי $c=\sup A$ מחסם עליון. מחסם מתקיימת קטנה כי ידוע כי לכל נקודה c קטנה מc מתקיימת כי לכל נקודה א

 $c \in A$ נראה ש

 $\ldots [c-\delta,c]$ קיימת $\delta < 0$ כך ש $\delta < 0$

משפט: פונקציה רציפה על קטע סגור מקבלת בו מקסמום(ומנימום)

??.מס.??

משפט: עיקרון המקסיום: אם $a \leq c \leq b$ אז קיימת אור קטע סגור רציפה על רציפה משפט: $f(x) \geq f(x)$ מתקיים $\forall x \in [a,b]$ ש

הוכחה: $\operatorname{Image}(f) = \{f(x) : a \leq x \leq b\}$ הוכחה: נתבונן ב $f\left(a
ight)$ היא מכילה אל ריקה לא קבוצה או תסומה מלעיל או היא קבוצה לא חסומה

ע"ל כי קיימת נקודה אויים איימת $\operatorname{Image}(f) = \alpha$ עליון נסמן איימת נקודה $\operatorname{Image}(f)$ $f\left(c
ight)=lpha$ עד ש $a\leq c\leq b$

xלכל $f\left(x\right)<\alpha$ ע בשלילה ננית ננית ננית בשלילה בשלילה ע גדיר פונקציה $g\left(x\right)=\frac{1}{\alpha-f\left(x\right)}$ $g:\left[a,b\right]\to\mathbb{R}$

מוגדרת המשפט על אריכמטיקה אחת מתאפס(על אריכמטיקה שהמכנה אריכמטיקה מפני שהמכנה לא מתאפס [a,b] של רציפות נובע שg רציפה על קטע

 $\alpha-\frac{1}{M}<$ ע כך שלכל מכיוון ש $a\leq x\leq b$ קיים שלכל הרי שלכל $\alpha=\sup\operatorname{Image}\left(f\right)$ עבור x הנ"ל $f(x) \leq \alpha$

$$g(x) = \frac{1}{\alpha - f(x)} > \frac{1}{\alpha - (\alpha - \frac{1}{M})} = M$$

לכן התמונה אינה חסומה מלעיל בסתירה למשפט הקודם.

טענה: יהי $n\in\mathbb{N}$ אי זוגי נתבונן בפונקציה:

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$

כאשר מספרים מספרים $a_0, a_1, \dots a_{n-1}$ כאשר

אוית קיים ממעלה אי ווגית קיים (לכל פולינום מדעלה אי אוגית קיים כך ע
 $f\left(c\right)=0$ ע כך כל כל אוי קיימת איי אוגית קיים לפתות שורש אחד)

הוכחה:

 $x<-M\Rightarrow$ ו $x>M\Rightarrow f(x)>0$ ע ס כף ש 0<M הרעיון: להוכית ש קיים להוכית ש קיים $c\in[-M,M]$ נובע שקיים -M,M נובע ל קטע א רציפה על קטע ל f(x)<0 ומכיוון ש f(c)=0

$$f(x) = x^{n} \left[1 + \frac{a_{n-1}}{x} + \dots + \frac{a_1}{x^{n-1}} + \frac{a_0}{x^n} \right]$$

ננית כי x>0 אזי

$$f(x) \ge x^n \left[1 - \frac{|a_{n-1}|}{x} - \dots - \frac{|a_1|}{x^{n-1}} - \frac{|a_0|}{x^n} \right]$$

x > 1 נדרוש

$$f(x) \ge x^n \left[1 - \frac{|a_{n-1}|}{x} - \dots - \frac{|a_1|}{x} - \frac{|a_0|}{x} \right]$$

אם נדרוש $x>rac{1}{2n|a_k|}$ לכל איי

$$f(x) \ge x^n \left\{ 1 - \frac{1}{2n} - \frac{1}{2n} \dots \frac{1}{2n} \right\} \ge \frac{1}{2} x^n > 0$$

 $M=\max\left(1,2n\left|a_{0}\right|,2n\left|a_{n-1}\right|
ight)$ מסקנה: נבחר x<-M אז

$$f(x) = x^{n} \left[1 + \frac{a_{n-1}}{x} + \dots + \frac{a_{0}}{x^{n}} \right]$$

$$\leq x^{n} \left[1 - \frac{|a_{n-1}|}{|x|} - \dots - \frac{|a_{0}|}{|x|} \right]$$

$$\leq x^{n} \left[1 - \frac{|a_{n-1}|}{|x|} - \dots - \frac{|a_{0}|}{|x|} \right]$$

$$\leq x^{n} \frac{1}{2} < 0$$

?.סה הרצאה מס.?

הגדרה: תהא $a\in A$ תהא $f:A\to B$ נקודה פנימית. נאמר שהגבול של $f:A\to B$ הוא הגדרה: תהא אינסוף ונסמן $f:A\to B$ אזי אינסוף ונסמן ווסמן $f(x)=\infty$ אווי אם לכל f(x)>M

תהא $a\in A$ תהא $a\in A$ תהא $a\in A$ נקודה פנימית. נאמר שהגבול של $a\in A$ תהא $a\in A$ תהא $a\in A$ תהא $a\in A$ תהא $a\in A$ עלנסוף ונסמן $a\in A$ אינסוף ונסמן $a\in A$ אינסוף ונסמן $a\in A$ אוי $a\in A$ על אוי

דוגמה:

$$\begin{array}{ccc} f:x & \mapsto & \begin{cases} \frac{1}{|x-3|} & x \neq 3 \\ 17 & x = 3 \end{cases} \\ f:\mathbb{R} & \to & \mathbb{R} \end{array}$$

נראה ש $0<|x-3|<\delta$ אז $\delta=\frac{1}{|M|}$ נבחר $\lim_{x\to 3}=\infty$ אז $\lim_{x\to 3}=\infty$ כלומר $f\left(x\right)>|M|\geq M$ כי כי $\frac{1}{|x-3|}>M$ אזי $0<|x-3|<\frac{1}{|M|}$

גורר גורר אמר כי אx>Mע כך $\varepsilon>0$ לכל לכל $\lim_{x\to\infty}f\left(x\right)=l$ כי אמר גורר גורר גורר ווא $|f\left(x\right)-l|<\varepsilon$

משפט: אם f:[a,b] o B את היא מונוטונית. f:[a,b] o B

 $f^{-1}:$ אז (אפשר גם יורדת) אם ארכית עולה אין רציפה וחד אז וורדת הפינה $f:[a,b] \to \mathbb{R}$ אם אם משפט: אם $[f(a),f(b)] \to [a,b]$

תרגול מס.?

Brower נקודת השבת של 14.1

 $f\left(x_{0}
ight)=x_{0}$ עד כך א $x_{0}\in\left[0,1
ight]$ האי קיימת לייפה אז $f:\left[0,1
ight]
ightarrow\left[0,1
ight]$

הרצאה מס.?

הגדרה: $x\in A$ ולכל שווה אם במידה במידה נקראת ולכל $f:A\to B$ הגדרה: $|y-x|<\delta,y\in A\Rightarrow |f(x)-f(y)|<\epsilon$ כף ט $\delta=\delta\left(\epsilon\right)$

הערה: $f_n\left(x\right)$ סדרה של פונקציות רציפות על $\left[0,1\right]$ אומרים ש $f_n\left(x\right)$ סדרה של פונקציות רציפות על $f_n\left(x\right) < M$ לכל ש אם קיים קבוע אם קיים קבוע על סדרה שווה(על ח

דוגמה: $f_{n}\left(x\right)=\sin\left(nx\right)$ אבל שווה, אבל במידה לא לא לא $f_{n}\left(x\right)=n$ דוגמה:

משפט: אם $\mathbb{R} \to \mathbb{R}$ רציפה אז היא רציםה במידה שווה(פונקציה רציפה בקטע $f:[a,b] \to \mathbb{R}$ סגור היא רציפה במידה שווה)

הוכחה: מה צריך להוכית!

 $|x-y|<\delta\Rightarrow|f\left(x
ight)-f\left(y
ight)|<arepsilon$ כך ש $\delta>>0$ קיים $\varepsilon>0$ קיים $\varepsilon>0$ בהנתן ε נאמר שf היא $\varepsilon>0$ טובה על [a,b] אם קיים $\delta>0$ כף ש $\delta>0$ כף שר [a,b] היא $\varepsilon>0$ טובה על [a,b] לכל [a,b] כלומר צ"לש f היא f טובה על [a,b]

טובה ε אז f אז [b,c] או היא ε טובה על וגם ε טובה אם f היא טובה טענת עזר: אם [a,c] אל

הוכחה: נגדיר A:[a,x] אינה ריקה כי A:[a,x] הוכחה: נגדיר (a:[a,b] כך ש a:[a,a] היא טובה על נידי a:[a,a] מסמן a:[a,a] לסומה מלעל על ידי a:[a,a] מאקסיומת השלמות קיים a:[a,b] אוֹ a:[a,b] כלומר קיים a:[a,b] כך ש a:[a,b] כי אם a:[a,b] אוֹי ע כּ a:[a,b] ובהכרת a:[a,b] ובהכרת a:[a,b] ובהכרת a:[a,b] וגם a:[a,b] ווגם a:[a,b] ווגם a:[a,b] ווגם a:[a,b] ווגם a:[a,b] ווגם a:[a,a] ווגם a:[a,a] ווגם a:[a,a] ווגם a:[a,a] ווגם a:[a,a] ווגם a:[a,a]

?.סה מס.?

 $\lim_{x\to a}f\left(x
ight)$ נקודה פנימית $a\in A$. $f:A\to B$. $\lim_{x\to a}f\left(x
ight)$ נקודה פנימית של מגדירים $g\left(x
ight)=f\left(x+a
ight)$. פווח ההגדרה $\lim_{x\to a}g\left(x
ight)=\lim_{x\to a}f\left(x
ight)$ פנימית של תחום ההגדרה של g אזי $g\left(x
ight)=\lim_{x\to a}g\left(x
ight)$

0<|x-a|< ע כך ש $\delta>0$ קיים $\epsilon>0$ קיים $\lim_{x\to a}f\left(x
ight)=l$ הוכחה: $|g\left(y
ight)-l|<\varepsilon$ גורר $|f\left(y+a
ight)-l|<\varepsilon$ גורר גדיר $|f\left(x-l
ight)|<\varepsilon$ גורר כלומר $|f\left(x-l
ight)|<\varepsilon$ גורר כלומר ב $|f\left(x-l
ight)|<\varepsilon$

 $f\circ(x\mapsto x+a)=l$ בצורה בצורה $\lim_{x o 0}f\left(x+a
ight)=l$ סימון: אפשר לסמן

16.1 נגזרות

ההגדרה של נגזרת נובעת מהצורך להגדיר קצב השינוי.

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

 $rac{df}{dx}\left(a
ight)$ הוא בימון של:Leibniz סימון

 $g:h\mapsto rac{f(a+h)-f(a)}{h}=rac{c-c}{h}=$ אוי a .a הוגזרת בנקודה $f:x\mapsto c$. בוגמה: $f:x\mapsto c$. h
eq 0 . Him h o 0 f(h)=0 אוי f(h)=0 .

f'(a) נחשב $f:x\mapsto x^2$

$$g:h \mapsto \frac{f(a+h) - f(a)}{h}$$

$$= \frac{(a+h)^2 - a^2}{h}$$

$$= \frac{a^2 + 2ah + h^2 - a^2}{h}$$

$$= 2a + h$$

$$\lim_{h \to 0} g(h) = 2a$$

56 קרפ. 16. קרפ?

a מכיוון שזה נכון לכל $f'\left(a
ight)=2a$

תרגול מס.?

17.1 משפט ווירשטראוס

דוגמה: $g\left(x
ight)=rac{1}{f\left(x
ight)}$ ו $orall x\in I, f\left(x
ight)>0$ רציפה $f\left(a,b
ight) o\mathbb{R}$ חסומה מלרע על ידי .0

נראה בשתי שיטות שונות כי g חסומה מלעיל

g אז $\forall x \in I, f\left(x
ight)
eq 0$ שיטה א: מאריטמטיקה של פונקציות רציפות מאריטמטיקה ב ו

ממשפט ווירשטראוס הראשון, מפני שg רציפה בקטע סגור חסומה ובפרט חסומה מלעיל.

שיטה ב: f רציפה ב I ולכן ממשפט ווירשטראוס השני מקבלת מינימום גלובאלי. $0 < m = f\left(x_0\right)$ אבל אבל $f\left(x\right) \geq f\left(x_0\right)$ מתקיים $x \in I$ שלכל אבל לכן לכל $f\left(x\right) \geq m > 0$ מתקיים $x \in I$ מתקיים לכן לכל לכן לכל אוריים מחקיים משכל משכל אבל לכן לכל אבל מחקיים מחקיים מחקיים מחקיים מחקיים מחקיים לכן לכל לכן לכל אבל מחקיים מחקיי

דוגמה: $f:(a,b)\to\mathbb{R}$ רציפה ו $\lim_{x\to b^-}f(x)=\infty$ ו ו $\lim_{x\to a^+}f(x)=\infty$ אז נוכיח כי ל f יש מינימום גלובאלי

יסמ לוגרת . 17 קרם?

fאיור 17.1: דוגמה ל

גורר $a < x < a + \delta$ ע קיים δ כך שMלכל $.y_0 = f\left(x_0\right)$ ו ו ו I = (a,b) גורר . ניקח $.f\left(x\right) > M$

 $f\left(x
ight) > \delta' < x < b$ אז $\delta' < \delta'$ כך שאם איז $\delta' = \delta'$ כלומר לכל $\lim_{x \to b^-} f\left(x
ight) = \infty$. M'

d< x < b, אל לכל לכל $d=b-\delta'$ ו גיקח בין את ל δ' את לקטין את ל $m'=y_0$ ו לכל $m'=y_0$ לכל $f\left(x\right)>y_0$

 $m=f\left(x_{1}
ight)$. x_{1} פונקציה בקטע סגור אז היא מקבלת מינימום ב $\left[c,d
ight]$ ב f

 $\lim_{x\to-\infty}f\left(x
ight)=\lim_{x\to\infty}f\left(x
ight)=0$. הוגמה $f:\mathbb{R}\to\mathbb{R}$ רוגים להוכיח כי $f:\mathbb{R}\to\mathbb{R}$ מקבלת מקסימום .0

 $arepsilon=y_0$ ניקח ניקח . $y_0=f\left(x_0
ight)>0$ ער כך ע

 $|f\left(x
ight)|<arepsilon$ מקיים x>b תהי

 $|f\left(x
ight)|<arepsilon$ מקיים x< a מקיים מעבור

ם בקטע הזה. אפשר לראות השמקסימום בקטע הזה. אפשר לראות השמקסימום [a,b]ב בקטע הזה חסומה אזי הוא מקסימום עבור כל $\mathbb R$

?.סה מס.?

משפט: איירה פונקציה הגזירה בנקודה $a\in\mathbb{R}$ ננית בנוסף כי g אז אז g אז איירה משפט: אהי $a\in\mathbb{R}$ משפט: $\left(\frac{1}{g(x)}\right)'(a)=-\frac{g'(x)}{g^2(x)}$ ב ומתקיים ומתקיים

הוכחה:

$$\lim_{h \to 0} \frac{\frac{1}{g(a+h)} - \frac{1}{g(a)}}{h} = \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{g(a+h)} - \frac{1}{g(a)} \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{g(a) - g(a+h)}{g(a+h)g(a)} \right)$$

$$= -\lim_{h \to 0} \frac{1}{h} \cdot \frac{g(a+h) - g(a)}{g(a+h)g(a)}$$

$$= -\lim_{h \to 0} \underbrace{\frac{1}{g(a+h)g(a)}}_{\frac{1}{g^2(a)}} \cdot \underbrace{\frac{g(a+h) - g(a)}{h}}_{g^2(a)}$$

מהיות g גזירה ב מתקיים

$$\lim_{h\to 0} \frac{g\left(a+h\right) - g\left(a\right)}{h} = g'\left(a\right)$$

 $\lim_{h\to 0}g\left(a+h\right)=g\left(a\right)$ ומכיוון ש g רציפה

 $\frac{f}{g}$ אזי $g\left(a\right)\neq0$ כי תהיינה נניח בנוסף בנק' משפט: $a\in\mathbb{R}$ אזירות אזירות פונקציות עזירה בf,g בומתקיים עזירה בa

$$\left(\frac{f}{q}\right)'(a) = \frac{f'(a)g(a) - g'(a)f(a)}{q^2(a)}$$

הערה: על מנת שהפונקציה $\frac{f}{g}$ זהיה גזירה בנק' aיש לדרוש כי היה להיה בסביבה של מנת שהפונקציה של $\frac{f}{g}$

נשים לב כי מהיות g גזירה ב g רציפה ב מהיות g מטעבה שלמדנו נשים לב כי מהיות g גזירה ב g אוגדרת בסביבה קיימת סביבה של g שעבורה g עבורה g לכל g בסביבה או ולכן g מוגדרת בסביבה אונכי המכנה g

 $\left(\frac{f}{g}\right)'(a)=\left(f\cdot\frac{1}{g}\right)'(a)$ ולכן הקודם ב $\left(\frac{1}{g}\right)'(a)=-\frac{g'(a)}{g^2(a)}$ ו ב $\frac{1}{g}$ גזירה ב $\frac{1}{g}$ גזירה אזי לפי נגזרת של מכפלה

$$\left(\frac{f}{g}\right)'(a) = f'(a)\frac{1}{g(a)} + f(a)\left(\frac{1}{g}\right)'(a)$$

$$= f'(a)\frac{1}{g(a)} - f(a)\frac{g'(a)}{g^2(a)}$$

$$= \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}$$

?.סס.?

f:A o B הגדרה

 $f\left(a\right)\geq f\left(x\right)$ אם של מקסימום נקודת נקודת נקודה פנימית) נקראת נקודה פנימית) לכל $a\in A$ לכל לכל גישור לכל אינימית

- הוכחנו כי לפונקציה רציפה בקטע סגור נקראת מקסימום
- (0,1) ל אין נקודת מקסימום ב $f:(0,1) o\mathbb{R}, f:x\mapsto x^2$
- (דוגמה קיצונית: פונקציה קבועה) אחת. מקסימום מקסימום יותר מנקודת מקסימום f

 $f'\left(a\right)=0$ אז aב א גזירה בfב של מקסימום נקודת היא $a\in A$ היא משפט: אם משפט: היא נקודת מקסימום אז

:הערות

- ו. התנאי כי f גזירה הוא הכרתי
- נק' מקסימום a נק' לא גוררת כי a נק' מקסימום a .2

משפט Rolle משפט וגזירה ב [a,b] תהי ווא הי $f:[a,b] \to \mathbb{R}$ תהי היימת תהי אזי היימת נקודה בתוך בתוך ל $c\in(a,b)$ בתוך אזי היימת נקודה בתוך לf

?.סס.?

משפט הערך הממוצע(של קושי) 20,1

יהו a< c< b אז קיים a< c< b וגזירות ב (a,b) וגזירות ב $f,g:[a,b] o \mathbb{R}$ יהו $f'(c)\left[g\left(b\right)-g\left(a\right)\right]=g'\left(c\right)\left[f\left(b\right)-f\left(a\right)\right]$

 $h\left(x\right)=f\left(x\right)\left[g\left(b\right)-g\left(a\right)\right]+g\left(x\right)\left[f\left(b\right)-f\left(a\right)\right]$ הוכחה: נגדיר מארכמיטיקה של רציפות וגזירות h רציפה ב[a,b] וגזירה בh וגזירה ביפות הקטע

$$h(a) = f(a) [g(b) - g(a)] - g(a) [f(b) - f(a)]$$

$$= f(a) g(b) - g(a) f(b)$$

$$f(b) = f(b) [g(b) - g(a)] - g(b) [f(b) - f(a)]$$

$$= -f(b) g(a) + g(b) f(a)$$

איי א $h'\left(c\right)=0$ שבה a < c < bנקודה נקודה חול ממשפט אוו $h\left(a\right)=h\left(b\right)$ איי

$$f'(c) [g(b) - g(a)] - g'(c) [f(b) - f(a)] = 0$$

משל.

$L'H\hat{o}pital$ משפט לופיטאל 20.2

מקימות: f,g

- של הסביבה הטביבה בפרט בפרט בוו
 $\lim_{x\rightarrow a}f\left(x\right)=\lim_{x\rightarrow a}g\left(x\right)=0$.1
- אינה g'ו אינה בסביבה של גאירות בפרט ווgו קיים (כלומר בפרט ווו $\max_{x \to a} \frac{f'(x)}{g'(x)}$ אינה .2 מתאפסת בסביבה של מ

$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$$
 in

f,g של בערכים של פאל נשתמש בערכים של הוכחה: נתון של g ו f ו g קיים גבול הg ק קיים גבול הא מניח של g,f רציפות בa ולכן כלליות אם נניח של g,f אוי גם g לא מתאפסת בסביבה מנוקבת של g אזי גם g לא מתאפסת בסביבה מנוקבת של g' (g) של של g' של g' של g' של מנוקבת של g'

 $g'\left(x
ight)=a< c_{x}< x$ אז היה שכן $g\left(x
ight)=0$ הו x
eq a שבו $a< c_{x}< x$ אז היה שכן בסתירה $\frac{g\left(x
ight)-g\left(0
ight)}{x}=0$

ממשפט קושי קיימת נקודה $a < c_x < x$ בינתיים מסתכל על סביבה ימנית)

$$\frac{f'\left(c_{x}\right)}{f'\left(c_{x}\right)} = \frac{f\left(x\right) - 0}{f\left(x\right) - 0}$$

נשאף את x לa ימן

$$\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = \lim_{x \to a^{+}} \frac{f'(x)}{g'(x)}$$
$$= \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

נחזור על זה משמאל

$$\lim_{x \to a^{-}} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(a)}{g'(a)}$$

האצאה מס.?

איור 21.1: אינטגרל

$$L(f,P) \le \int_{a}^{b} f \le U(f,P)$$

 $\int_{a}^{b}f=F\left(b\right)-F\left(a\right)=F|_{a}^{b}$ אזי F'=f מי אומר אומר המשפט היסודי אומר אומר אזי

דוגמה:

$$f: x \mapsto e^{-x^2}$$

 $\operatorname{diam} P = \max_{i=1,n} (x_i - x_{i-1})$ הגדרה: קוטר של חלוקה P הוא

 $\left|\sum_{i=1}^n f\left(t_i\right)(x_i-x_1)-\int f\right|<$ כך ש $\delta>0$ כך לכל $\varepsilon>0$ לכל [a,b] לכל אינטגרבילית על משפט: תהיא אינטגרבילית לכל ו(a,b]לכל המקיימת לכל חלוקה לכל המקיימת המקיימת לכל ה

 $\mathrm{diam} P < \delta$ כך ש לכל P כך ש לכל $\delta > 0$ קיים $\varepsilon > 0$ קיים להוכיח מספיק להוכיח מספיק $|U(f,P)-L(f,P)|<\varepsilon$ an

פונקציות טריגונומטריות 21.1

sin, cos רוצים להגדיר

$$\varphi = \sqrt{1-x^2}$$
 הגדרה:

$$^{1}\pi=2\int_{-1}^{1}\sqrt{1-x^{2}}dx$$
 :הגדרה: נרצה גם להגדיר את השטח של חלק ממעגל:

$$A\left(x\right)=\frac{x\sqrt{1-x^{2}}}{2}+\int_{x}^{1}\varphi=-\int_{1}^{x}\varphi$$
:הגדרה מה יודעים על $A\left(x\right)$ על

$$A'(x) = \frac{\sqrt{1-x^2}}{2} + \frac{x(-2x)}{2 \cdot 2\sqrt{1-x^2}} - \varphi(x)$$

$$= \frac{\sqrt{1-x^2}}{2} - \frac{x^2}{2\sqrt{1-x^2}} - \sqrt{1-x^2}$$

$$= \dots$$

$$= -\frac{1}{2\sqrt{1-x^2}}$$

 $\sin x = \sqrt{1-\cos^2 x}$ וגם $\cos x = A^{-1}\left(rac{x}{2}
ight)$ נגדיר $0 < x < \pi$ לכל

משפט:

$$\sin' = \cos \cos \cos' = -\sin \cos'$$

 $\cos' x = \frac{1}{2} \left(A^{-1}\right)' \left(\frac{x}{2}\right)$ הוכחה מכלל השרשרת נגזרת של פונקציה רציפה

$$\frac{1}{2} (A^{-1})' \left(\frac{x}{2}\right) = \frac{1}{2} \frac{1}{A' \left(A^{-1} \left(\frac{x}{2}\right)\right)}$$

$$= \frac{1}{2} \cdot \frac{1}{-\frac{1}{2\sqrt{1 - \left(A^{-1} \left(\frac{x}{2}\right)\right)^2}}}$$

$$= -\sqrt{1 - (\cos x)^2} = -\sin(x)$$

 $[\]pi\cdot 1^2=\pi$ היחידה מעגל שטח ב2 לקבל כופלים מעגל ואז מעגל היחידה הפונקציה מגדירה הצי המגל החידה ב

$$\sin(x) = \sqrt{1 - \cos^2 x}$$

$$\sin'(x) = \frac{-2\cos x (-\sin(x))}{2\sqrt{1 - \cos^2 x}}$$

$$= \cos x$$

מה יודעים!

$$\begin{array}{ll} \cos\left(\pi\right) = A^{-1}\left(\frac{\pi}{2}\right) = -1 \\ \cos\left(0\right) = A^{-1}\left(0\right) = 1 \end{array} \Rightarrow \begin{array}{l} \sin\left(\pi\right) = 0 \\ \sin\left(0\right) = 0 \end{array}$$

 $0 < x < \pi$ עבור \sin פונקציה חיובית \cos

תרגול מס.?

יהי [a,b]=I בקטע סגור

- $x_0 = .i = 0, 1 \dots n-1$ ל ל $x_i < x_{i+1}$ של ל $\{x_0, \dots, x_n\}$ היא והיא וחלוקה A של A היא ווא היא $a, x_n = b$
 - $P \subseteq P'$ אם P אם העדנה של P' מאמר של I נאמר של P,P' אם .2
- כאשר $U\left(f,P\right)=\sum_{i=1}^n M_i\left(x_i-x_{i-1}\right)$ נסמן: $f:[a,b]\to\mathbb{R}$ עבור $f:[a,b]\to\mathbb{R}$ נסמן $f:[a,b]\to\mathbb{R}$ נסמן גם $f:[a,b]\to\mathbb{R}$ נסמן גם $f:[a,b]\to\mathbb{R}$ כאשר $f:[a,b]\to\mathbb{R}$ נסמן גם $f:[a,b]\to\mathbb{R}$ כאשר $f:[a,b]\to\mathbb{R}$ נסמן גם $f:[a,b]\to\mathbb{R}$ נסמן גם $f:[a,b]\to\mathbb{R}$ כאשר $f:[a,b]\to\mathbb{R}$ נסמן גם $f:[a,b]\to\mathbb{R}$

 $\mathcal{L}\left(f,P\right)=\left\{ L\left(f,P\right)|I
ight.$ של חלוקה של $P\}$, $\mathcal{U}\left(f,P\right)=\left\{ U\left(f,P\right)|I
ight.$ של חלוקה של בדיר:

$$\overline{\int_{a}^{b}} f(x) dx \stackrel{def}{=} \inf \mathcal{U}(f)$$

$$\int_{a}^{b} f(x) dx \stackrel{def}{=} \sup \mathcal{L}(f)$$

 $\overline{\int_a^b} f = \underline{\int_a^b} f$ כאשר [a,b] אינטגרבילית ב (דרבו) .4

דוגמה: אילו פונק' \mathbb{R} לכל חלוקה חסומות מקיימות $f[a,b] \to \mathbb{R}$ לכל חלוקה דוגמה: אילו פונק' $\mathcal{L}(f,P) = \mathcal{U}(f,P)$ איז $P = \{a,b\}$ איז וויאלית פריוויאלית $P = \sup_{x \in [a,b]} f(x) \cdot (b-a)$ איז $P = \{a,b\}$ קבוצה בעחת $P = \inf_{x \in [a,b]} f(x) \cdot (b-a)$ איבר אחד אזי $P = \{a,b\}$ קבועה.

נטען ש $x\in[a,b]$ לכל $g\left(x\right)\leq h\left(x\right)$, $\left[a,b\right]$ אינטגרביליות אינטגרביליות ב . $\int_{a}^{b}g\left(x\right)dx\leq\int_{a}^{b}h\left(x\right)dx$

 $0\leq m\,(b-a)\leq x$ ראינו כי $x\in[a,b]$ לכל לכל $f(x)\geq 0$ אזי f=h-g אזי f=h-g אזי $0\leq \int_a^b f$ אזי f=h-g אזי f=h-g כאשר f=h-g כאשר אזי f=h-g כאשר f=h-g כאשר f=h-g כאשר f=h-g משל.

?.סה מס.?

נרצה להרחיב את הגדרת הפונקציות הטריגונומטריות:

$$\pi < x \le 2\pi$$

$$\sin\left(x\right) = -\sin\left(2\pi - x\right)$$

$$\cos\left(x\right) = \cos\left(2\pi - x\right)$$

 $\cos{(x+2\pi k)}=\sin{(x+2\pi k)}=\sin{(x)}$ מתקיים $k\in\mathbb{Z}$ מתקיים כי לכל $\cos{(x+2\pi k)}=\sin{(x+2\pi k)}$

אבל זה שעסינו אבל $\sin' = \cos, \cos' = -\sin$ אפשר לוודא כי הקשרים אבל $\sin' = \cos, \cos' = -\sin$ קל.

כס, או של מלגברים של 23.1

נרצה להוכית כי

הוכחה:

- $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y) \bullet$
- $\cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y) \bullet$

f=0 אזי אז $f\left(0
ight)=f'\left(0
ight)=0$ וגם f''+f=0 אזי ומקיימת איירה פעמיים ומקיימת

$$f'' + f = 0$$

$$2f'(f'' + f) = 0$$

$$((f')^2 + f^2)' = 0$$

$$(f')^2 + f^2 = c$$

c=0 מזה ש $f\left(0
ight)=f'\left(0
ight)=0$ נובע כי

$$(f')^2 + f^2 = 0$$
$$f = 0$$

כי סכום שני ביטויים אי שליליים שווה לאפס גורר ששני הביטויים הם 0.

f=אז $f\left(0
ight)=a,f'\left(0
ight)=b$, f''+f=0 משפט: אם אם אם גזירה פעמיים ומקיימת $a\cos+b\sin$

אזי $g=f-a\cos-b\sin$ נתבונן ב

$$g'' = f'' - a\cos'' - b\sin''$$
$$= -f + a\cos + b\sin$$
$$= -g$$

g=0 ומהלמה $g\left(0\right)=0,g'\left(0\right)=0$ ו g+g''=0 כלומר

$$0 = f - a\cos - b\sin f = a\cos + b\sin f$$

 $\sin{(x+y)} = \sin{(x)}\cos{(y)} + \cos{(x)}\sin{(y)}$ משפט: עבור כל $x,y \in \mathbb{R}$ משפט:

הוכחה: נקבע את y אזי

$$\varphi: x \mapsto \sin(x+y)$$

$$\varphi': x \mapsto \cos(x+y)$$

$$\varphi': x \mapsto -\sin(x+y)$$

MI

$$\varphi'' + \varphi = 0$$

$$\varphi(0) = \sin(y) = a$$

$$\varphi(0) = \cos(y) = b$$

מהמשפט הקודם:

$$\varphi(x) = \sin(y)\cos(x) + \cos(y)\sin(x)$$

$$\sin(x+y) = \sin(y)\cos(x) + \cos(y)\sin(x)$$

23.2 אקספוננטים ולוגריתמים

 \log_{10} וגם ההופכית את הפונקציה וגם $x\in\mathbb{R}:10^x$ נרצה נרצה נרצה עבור $n\in\mathbb{N}$ יש הגדרה אינדוקטיבית יש הגדרה $n\in\mathbb{N}$

 $10^m \cdot 10^n = 10^{m+n}$ מתקיים $m,n \in \mathbb{N}$ לכל כי ויודעים

ניתן להרחיב את 10^x ארגומנטים שלמים תוך שימור אל התכונה הקודמת אם $10^{-n}=\frac{1}{10^n}, 10^0=0$

$$.10^{1/n} = \sqrt[n]{10}$$
 אזי $10^{1/n} \cdot 10^{1/n} \cdot 10^{1/n} \cdot 10^{1/n} \cdots 10^{1/n} = 10^1 = 10$

$$f\left(x\right)=10^{x}\quad\text{:}$$
 נגדיר:
$$f\left(x+y\right)=f\left(x\right)f\left(y\right)$$
 אזי

שאלה: האם קיימת פונקציה f גזירה המקיימת את התנאים!

$$\log{(1)}=0$$
 ו $\log'{(x)}=rac{1}{x}$ כי יודעים כי וועים (x) בהררה: הגדרה:

 $\log (x \cdot y) = \log (x) + \log (y)$ מתקיים 0 < y, x לכל

הוכחה: נתבונן ב

$$\varphi : x \mapsto \log(xy)$$

$$\varphi' : x \mapsto \frac{1}{xy} \cdot y = \frac{1}{x}$$

$$\varphi' = \log'$$

אזי

$$\varphi(x) = \log(x) + c$$

$$\varphi(1) = \log(y) = c$$

$$\varphi(x) = \log(x) + \log(y)$$

 $\log{(x^n)} = n\log{(x)}$ מסקנה: לכל $n \in \mathbb{N}$ מתקיים

הוכחה: באינדוקציה על n^1 מכותה: באינדוקציה או $\log'(x) = \frac{1}{x} > 0$ מכיוון מכיוון כי $\log'(x) = \frac{1}{x} > 0$ איי אוי מכיוון מכיוון מי גזירה.

 $\mathrm{Image}\left(\mathrm{log}\right)=\mathbb{R}$ טענה:

 \mathbb{R} התחום את מחסה ווה $\log{(2^n)} = n\log{(2)}$ הוכחה:

$$\exp = \log^{-1}$$
 ע כך $\exp : \mathbb{R} \to \mathbb{R}$ הגדרה:

 $\exp' = \exp$ משפט:

הוכחה:

$$\exp'(x) = (\log^{-1})'(x)$$

$$= \frac{1}{\log'(\log^{-1}(x))}$$

$$= \frac{1}{\left(\frac{1}{\log^{-1}(x)}\right)}$$

$$= \log^{-1}(x)$$

$$= \exp(x)$$

זה קל, תעשה לבד!

74 פרפ 23. קרפ?

$$\exp\left(x+y\right)=\exp\left(x\right)\exp\left(y\right)$$
 :משפט:

$$x=\log\left(t
ight),y=\log\left(s
ight)$$
 אזי $\exp\left(x
ight)=t,\exp\left(y
ight)=s$ הוכחה: נגדיר

$$x + y = \log(t) + \log(s)$$
$$= \log(ts)$$
$$ts = \exp(x + y)$$

$$1=\log\left(e
ight)=\int_{1}^{e}rac{dt}{t}$$
 אאי $e=\log^{-1}\left(1
ight)$, $\exp\left(1
ight)=e$ הגדרה:

?.סס.?

שיטות אינטגרציה 24.1

24.1.1 אינטגרציה בחלקים

(a,b] אזי: אזיי אינה [a,b] פונקציות רציפות וגזירות פונקציות ווקציות $u,v:[a,b]
ightarrow \mathbb{R}$

$$\int_a^b u'v = uv|_a^b - \int_a^b uv'$$

 $\left. uv \right|_a^b = u\left(b \right) v\left(b \right) - u\left(a \right) v\left(a \right)$ כאשר

הוכחה: מתקיים כי uv' = u'v + uv' אזי בקצת מסחקים אלגבריים זה יפתר.

ת זכורת: נוסחת ניוטון-לייבניץ $\int_a^b f'\left(x\right)dx=f\left(b\right)-f\left(a\right)=f|_a^b$ אזי [a,b]א ברציפות גזירה ברציפות fיהי אונקציה היירה ברציפות ב

אינטגרל של נגזרת פנימית 24.1.2

אזי $g:\mathbb{R} o \mathbb{R}, f:[a,b] o \mathbb{R}$, אזי מונקציות אירות ברציפות f,g

$$\int_{a}^{b} g(f) f' = \int_{f(a)}^{f(b)} g$$

תרגול מס.?

 $F\left(x
ight)=c\in[a,b]$, [a,b]המשפט היסודי של חדו"א: תהי אינטגרבילית ב $c\in[a,b]$, ונגדיר של המשפט היסודי של חדו"א: דייה אינטגרבילית אינטגרבילית אינט היסודי של היסודי של היסודי אינט אינטגרבילית אינט אינט היסודי של חדו"א: f

 $\int_{a}^{b}=g\left(b\right)-$ אז f=g' , $g:\left[a,b\right]\to\mathbb{R}$, $\left[a,b\right]$ רציפה ב fרציפה הסודית: הנוסחה הטודית: $g\left(a\right)$

רוגמה 1:

$$R\left(x\right) = \begin{cases} 0 & x \notin \mathbb{Q} \\ \frac{1}{q} & x = \frac{p}{q} \end{cases}$$

כאשר הוא שבר מצומצם כאשר $rac{p}{q}$

 $\int_a^b = 0$ ו ו [a,b] אינטגרבילית בכל אינטגרבילית R

את זה יהיה להוכיח בתרגיל. אנחנו פשוט נסתמך על זה.

$$F\left(x
ight)=\int_{a}^{x}f=0$$
 לכן אם נבתר $a\in\mathbb{R}$ ונגדיר

$$F'\left(x
ight)
eq R\left(x
ight)$$
 ובפרט ובפרט $R\left(x
ight)
eq 0$ אז $x\in\mathbb{Q}$

:2 דוגמה

$$f(x) = \begin{cases} \cos\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

$$G\left(x
ight)=\int_{0}^{x}g\left(t
ight)dt$$
ו נגדיר בכל $G\left(x
ight)=egin{cases} 2x\sin\left(rac{1}{x}
ight) & x
eq 0 \ 0 & x=0 \end{cases}$ ונגדיר דיפה לכל $G\left(x
ight)$ ולכן $G\left(x
ight)$ גזירה בכל $G\left(x
ight)$

78

$$\begin{split} H\left(x\right) &= G\left(x\right) - F\left(x\right) \\ H\left(x\right) &= \int_{a}^{x} g\left(t\right) - f\left(t\right) dt \\ &= \int_{a}^{x} 2t \sin\left(\frac{1}{t}\right) - \cos\left(\frac{1}{t}\right) dt \\ &= \int_{a}^{x} \left(t^{2} \sin\left(\frac{1}{t}\right)\right)' dt \\ &\qquad \qquad t^{2} \sin\left(\frac{1}{t}\right) \end{split}$$

הרצאה מס.?

יש למשפט היסודי של חדו"א גרסה יותר חזקה:

 $\int_a^b f = F|_a^b$ אז F' = f מקיימת אזי אזי בהכרח רציפה בהכרח אינטגרבילת(ולא בהכרח רציפה)

26.1 סדרות

כל הסדרות שנתעסק בהם הם סדרות אינסופית

 $a_i \in \mathbb{R}$ כאשר $a_1, a_2, a_3 \dots$ אוספ בן מניה סדור של מספרים ממשיים למשל מספר בן מניה סדור הגדרה: a_n מותאם מספר ממשי

 $\mathbb{N} \to \mathbb{R}$ הגדרה יותר מתמטית: סדרה היא פונקציה

:הערות

- a_4 נהוג לכתוב $a\left(4
 ight)$ נהוג לכתוב מקום אזי במקום לכתוב $a:\mathbb{N}
 ightarrow \mathbb{R}$.1
- $a:\mathbb{N} o\mathbb{R}$ מוקבל לסמן כתחליף $(a_n)_{n=1}^\infty$ או a_n .2

$$n\mapsto rac{1}{n}\Leftrightarrow rac{1}{n}$$
 הסדרה

:דוגמאות

- $a_n = n$.1
- $b_n = (-1)^n .2$
 - $c_n = \frac{1}{n}$.3

איור 26.1: הצגה גרפית של הסדרות

גבול של סדרה 26.2

$$\lim_{x \to \infty} f\left(x\right) = l$$

arepsilon>0 אם לכל אם $\lim_{n\to\infty}a_n=l$ מסומן מספר ממשי למספר מתכנסת מדרה: סדרה מתכנסת אם אם לכל n>N לכל ו $|a_n-l|<arepsilon$ כך ש

הגדרה: סדרה נקראת מתכנסת¹ אם היא מתכנסת לאיזשהו מספר ממשי. אחרת היא נקראת מתבדרת²

דוגמא:

$$a_n = \frac{1}{n}$$

$$\lim_{n\to\infty}a_n=0$$
טענה: $n>N$ לכל אלכל פיים א $N\in\mathbb{N}$ כך ש $\varepsilon>0$ לכל לכל צ"ל שלכל אלכל איים אוים אוים אוי $N=\lceil\frac{1}{\varepsilon}\rceil$ ניקח בהנתן $\varepsilon>0$

$$a_n = \frac{1}{n} < \frac{1}{N} \le \varepsilon$$

משל.

 $^{{\}rm Convergent}^1$ Divergent²

דוגמה:

$$a_n = \sqrt{n+1} - \sqrt{n}$$

זה עוזר להכפיל ב"צמוד" של זה:

$$a_n = \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} \left(\sqrt{n+1} + \sqrt{n} \right)$$
$$= \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}}$$

דוגמא:

$$a_n = \frac{3n^2 + 7n^2 + 1}{4n^3 - 8n + 63}$$

 $\lim_{n \to \infty} a_n \stackrel{?}{=} \frac{3}{4}$

 $:\!n^3$ אפשר לחלק מונה ומכנה ב

$$a_n = \frac{3 + \frac{7}{n} + \frac{1}{n^3}}{4 - \frac{8}{n^2} + \frac{63}{n^3}}$$

אז המונה הוא סכום של 3 סדרות. אחת קבועה ושתי האחרות שואפות ל0 אבל אין משפט שאומר משהוא על סכום הגבול של סדרות:

26.3 אריכמטיקה של גבולות

אם מתכנסות סדרות a_n,b_n אם

$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$$
 .1

$$\lim_{n\to\infty} (a_n \cdot b_n) = (\lim_{n\to\infty} a_n) \cdot (\lim_{n\to\infty} b_n)$$
.2

$$\lim_{n \to \infty} rac{a_n}{b_n} = rac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$
 אם $\lim_{n \to \infty} b_n
eq 0$.3

סדרות ופונקציות 26.4

בהינתן סדרה a_n מיתן להגדיר

$$f:(0,\infty) \rightarrow \mathbb{R}$$

 $f(x) = a_n + (a_{n+1} - a_n)(x - n)$

n < x < n+1 עבור

 $\lim_{x \to \infty} f\left(x
ight) = l$ אם ורק אם $\lim_{x \to \infty} f\left(x
ight) = l$

 $\lim_{x\to\infty}f\left(x
ight)=l$ אם הוכחה:

אז לכל x>M לכל |f(x)-l|<arepsilon כך ש
 $1<\overline{M}$ בפרט לכל בפרט לכל האז לכל ח $\varepsilon>0$ לכל האז לכל הח $|M|< n\in \mathbb{N}$

$$\left|\underbrace{\underbrace{f\left(n\right)}_{a_{n}} - l}\right| < \varepsilon$$

ומכאן ש $n\leq x\leq n+1$ נמכאן ש $a_n=l$ נניח עתה ש $a_n=l$ נוניח עתה ש $a_n=l$ נמצאת בין a_n-l לכל a_n+l לכל a_n+l נמצאת בין a_n+l לכל a_n+l לכל a_n+l מתקיים a_n+l מתקיים a_n+l מתקיים a_n+l לכל a_n+l משל

 $\lim_{x \to c} f\left(x
ight) = l$ משפט: תהיא a_n מוגדרת על סביבה מנוקבת של נקודה c ומתקיים ו a_n לכל $a_n \neq c$ ערכים בתחום ההגדרה של c כך ש $a_n \neq c$ לכל $a_n \neq c$ וגם תהא המקבלת ערכים בתחום ההגדרה של $\lim_{n \to \infty} f\left(a_n\right) = l$ אז $\lim_{n \to \infty} f\left(a_n\right) = l$ ולהפך אם $\lim_{n \to \infty} f\left(x\right) = l$ לכל סדרה כנ"ל אז $\lim_{n \to \infty} f\left(x\right) = l$

?.סה הרצאה מס.?

משפט בולצנור-ויירשטראס: לכל סדרה חסומה קיימת תת-סדרה מתכנסת

הוכחה: הוכתנו:

- 1. שלכל סדרה קיימת תת-סדרה מונוטונית במובן חלש
 - 2. סדרה מונוטונית וחסומה מתכנסת

אז נובע כי לכל סדרה קיימת תת סדרה מתכנסת

27.1 קריטריון קושי

סדרה (a_n)

ע כך א כך א קיים $\varepsilon>0$ לכל קושי סדרת קושי סדרה היא הגדרה: אמר אמר א סדרה היא א כך א N < n, mלכל ו $|a_n - a_m| < \varepsilon$

משפט: סדרה מתכנסת אם ורק אם היא סדרת קושי

הוכחה: נניח כי a_n מתכנסת לa נוכיח כי היא סדרת קושי. מאי שוויון המשולש:

$$|a_n - a_m| \le |a_n - a| + |a_m - a|$$

ויודעיים כי $|a_m-a|<rac{arepsilon}{2}$ ו $|a_n-a|<rac{arepsilon}{2}$ משל

?.סה מס.?

 $|a_n-a_m| <$ ע כך א קיים $\varepsilon>0$ קיים אם סדרת קושי סדרת סדרת סדרת סדרה: סדרה אגדרה: N< n, m לכל ε

 $a_{n,m o \infty} |a_n - a_m| = 0$ הערה: דרך נוספת לסמן שסדרה היא סדרת קושי לסמן הערה: הערה: תנאי קושי אות כנסות כלומר: תנאי קושי הערכנסות

הוכחה: הוכח בשיעור שעבר כי התכנסות גוררת תנאי קושי. נשאר להוכיח הכיוון השני.

שלבי ההוכתה:

- 1. נוכית שהסדרה תסומה
- נסתמך על משפט בולצנו ויירשטרס לטעון כי קיימת ל (a_n) תת סדרה מתכנסת נקרא .2 לגבול שלה (aשלה שלה לגבול שלה שלה ל
 - נראה כיa הוא הגבול של הסדרה כולה.

מהלך ההוכחה:

- N<לכל $|a_n-a_m|<1$ כד ער כל קיים על כל פובע כי קושי נובע (a_n) אזי .1 מהנתון כי n>N לכל $|a_n-a_{N+1}|<1$ אזי m=N+1 לכל m>N בפרט אם ניקח בפרט אם לכל $a_{N+1}-1<2$ אזי $a_n>N$ סדרה חסומה
- (כאשר או סדרה חדרה מסוימת) ממשפט בולצנו ויירשטרס קימת הת n_k סדרה מסוימת פו $\lim_{k\to\infty}a_{n_k}=a$ עד סדר כד
 - $\lim_{n\to\infty}a_n=a$ 2.3

$$|a_n-a|=|a_n-a_{n_k}+a_{n_k}-a|\leq |a_n-a_{n_k}|+$$
מתקיים $n,k\in\mathbb{N}$ מתקיים (א) מתקיים $|a_{n_k}-a|$

או מקיימת תנאי קושי 1א

אבל אנחנו עדיין לא הגדרנו מה זה גבול עם שני אינדקסים ²

הערה: הוכתנו כי בעולם המספרים הממשיים(שדות סדורים ושלמים) כל סדרת קושי מתכנסת.

28.1

יש סדרה (a_n) סכום שלו הוא

$$a_1 + a_2 + a_3 + \dots + a_n = \sum_{n=1}^{\infty} a_n$$

 $:a_n$ של החלקיים את נגדיר את הסכומים החלקיים של

$$S_n = \sum_{k=1}^n a_k$$

הגדרה: נאמר שסדרה היא סכימה³ אם סדרת הסכומים החלקיים מתכנסים ונסמן:

$$\lim_{n \to \infty} S_n = \sum_{n=1}^{\infty} a_n$$

-במקרה והסדרה אחרת שהוא שהטור של שהטור שהטור סכימה מתכנס מתכנס a_n הסדרה במקרה דר

אזי 0 < q < 1 אם $a_n = q^n$ אזי הסדרה הסדרה הסדרה הדוגמה:

$$S_n = \sum_{k=1}^n q^k$$

$$= q \frac{1 - q^n}{1 - q}$$

$$\lim_{n \to \infty} S_n = \frac{q}{1 - q}$$

 $-1 < q < 1: \sum_{n=1}^{\infty} q^n = rac{q}{1-q}$ אזי ניתן לסמן

. דוגמא: לטור $\frac{1}{n}$ קוראים טור הרמוני

$$1 + \underbrace{\frac{1}{2} + \frac{1}{3}}_{> \frac{1}{2}} + \underbrace{\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{> \frac{1}{7}} + \underbrace{\frac{1}{9}}_{}$$

מתבדר $\sum_{n=1}^{\infty} rac{1}{n}$ מתבדר

 $Summable^3$

28.1. סירוט

משפט: תהינה $\left(a_{n}
ight),\left(b_{n}
ight)$ סדרות סכמות אז

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$
$$\sum_{n=1}^{\infty} (ca_n) = c \sum_{n=1}^{\infty} a_n$$

כך $N\in\mathbb{N}$ משפט: תהא $\varepsilon>0$ לכל אם ורק אם טכימה אז היא סדרה. אז היא סכימה אם אם שלכל תהא $|a_{n+1}+a_{n+2}\cdots+a_m|<\varepsilon$ מתקיים מתקיים שלכל שלכל מ

מסקנה: אם סדרה סכימה אז היא שואפת לאפס

משפט: סדרה אי שלילית היא סכימה אם ורק אם סדרת הסכומים החלקיים חסומה.

הוכחה: עבור איברים אי שליליים סדרת הסכומים החלקיים מונוטונית. הוכחנו כי כל סדרה מונוטונית וחסומה מתכנסת

?.סה מס.?

משפט: תהינה (a_n) , (a_n) סדרות חיוביות כך ש

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c \neq 0$$

אזי $\sum_{n=1}^{\infty} a_n$ מתכנס אם $\sum_{n=1}^{\infty} a_n$ אזי

 $\lim_{n o \infty} rac{1}{a_n} = rac{1}{a}$ אא $\lim_{n o \infty} a_n = a > 0$ ו $a_n
eq 0$ מסקנה: אם

משפט: מבחן המנה משפט: מבחן המנה חיובית כך או $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=r$ עדיה חיובית כך אוי a_n

- מתכנס $\sum^\infty a_n$ אז הטור r < 1 מת
- מתבדר $\sum^\infty a_n$ אז הטור r>1 מתבדר .2
- אז אם לא ידי אם לגבוע לגבוע אז אז r=1 משפט זה .3

כך ש $0 < \frac{a_{n+1}}{a_n} < S < 1$ מתקיים n > Nכך שלכל אזי קיים אזי נניח נניח וניח הוכחה:

אאי $.a_{N+k}$ < S^ka_N כלומר a_{N+2} < Sa_{N+1} < Sa_N $.a_{N+1}$ < Sa_N הפרט מחלקים את הטור לחלקים:

$$\sum_{k=1}^{n} a_{k} = \sum_{k=1}^{N} a_{k} + \sum_{k=N+1}^{n} a_{k}$$

$$\leq \sum_{k=1}^{N} a_{k} + a_{N} \sum_{k=N+1}^{n} S^{k}$$

הסכומים החלקיים של הטור מתכנסים¹ לכן הטור מתכנס

^{0 &}lt; S < 1יכי 1

29.1 טורים מוקרים

מתכנס מתכנס
$$\sum_{n=1}^\infty \frac{1}{n^2}$$
 מתבדר $\sum_{n=1}^\infty \frac{1}{n}$ מה לגבי $\sum_{n=1}^\infty \frac{1}{n^p}$ עבור $p>0$

הגדרה:

$$\int_{a}^{\infty} f = \lim_{x \to \infty} \int_{a}^{x} f$$

השפט: מבחן האינטגרל תבחן האינטגרל $\sum_{n=1}^\infty a_n$ אז $a_n=f\left(n\right)$ ונגדיר על יורדת אונית יורדת אם f קיים אם ורק אם ורק אם $\int_1^\infty f$ קיים אם ורק אם אם ורק אם אם יורק אם יורק

דוגמה: נתבונן ב $f\left(x
ight)=rac{1}{x^{p}}$ אז

$$\int_{1}^{x} \frac{1}{x^{p}} = \begin{cases} \frac{1}{1-p} \left[\frac{1}{x^{p-1}} - 1 \right] & p \neq 1\\ \log(x) & p = 1 \end{cases}$$

p>1 קיים אם"ם אם אזי $\sum_{n=1}^{\infty} \frac{1}{n^p}$ אזי אי

הרצאה מס.?

התכנסות בהחלט ובתנאי 30.1

 $\sum_{n=1}^{\infty}|a_n|$ סדרה הטור שלה מתכנס בהחלט אם סדרה נאמר הגדרה: תהי (a_n) הגדרה מתכנס. טור מתכנס אך אינו מתכנס בהחלט נקרא מתכנס בתנאי.

דוגמה:

$$a_n = \left\{1, -\frac{1}{2}, +\frac{1}{3}, -\frac{1}{4}, +\frac{1}{5}\dots\right\}$$

$$a_n = \frac{(-1)^{n+1}}{n}$$

lpha משפט רימן: בטור תנאי לכל $lpha\in\mathbb{R}$ קיים "סידור מחדש" של הטור שמתכנס ל (לא נוכית את זה)

משפט: התכנסות בהחלט = התכנסות.

 $|a_{n+1}|+$ ע כך א קיים $\varepsilon>0$ קיים קושי מקריטריון קיים. קיים $\sum_{n=1}^{\infty}|a_n|$ ידוע הוכחה: הוכחה $|a_{n+1}| + \cdots + |a_m| < \varepsilon$ $|a_{n+1}+\cdots+a_m|\leq |a_{n+1}|+\cdots+|a_m|<arepsilon$ אבל אזי מקיים את קריטריון קושי להתכנסות טורים

-משפט: טור בהערכים מהערכים שני הטורים שני מתכנס בהחלט אם הערכים מתכנס מתכנס בהחלט אם הערכים מתכנס בהחלט אם משפט: ים ומהערכים השלילים מתכנסים.

$$a_n^+ = \begin{cases} a_n & a_n > 0 \\ 0 & a_n < 0 \end{cases}$$
 $a_n^- = \begin{cases} a_n & a_n < 0 \\ 0 & a_n > 0 \end{cases}$

נשים לב

$$a_{n} = a_{n}^{+} + a_{n}^{-}$$

$$|a_{n}| = a_{n}^{+} - a_{n}^{-}$$

$$a_{n}^{+} = \frac{1}{2}(a_{n} + |a_{n}|)$$

$$a_{n}^{-} = \frac{1}{2}(a_{n} - |a_{n}|)$$

המשפט נובע מאריכמטיקה של טורים

תרגול מס.?

31.1 תתי סדרות

תהי $b_k=a_{n_k}$ סדרה, ממש של הטבעיים נגדיר ($a_n)_{n=1}^\infty$ אז סדרה, סדרה, ($a_n)_{n=1}^\infty$ אז ($a_n)_{n=1}^\infty$ תת סדרה של ($a_n)_{n=1}^\infty$

ו $n_1=1$ כלומר $n_k=1,2,4,5,7,8,10\ldots$ תהי $a_n=-1,0,1,-1,0,1\ldots$ דוגמה: $a_n=-1,0,1,-1,0,1\ldots$ אזי $b_k=a_{n_k}$ אם $n_{k+1}=n_k+1+rac{1+(-1)^k}{2}$

$$b_k = -1, 0, -1, 0, -1, 0 \dots$$

 $orall k:n_k\geq k$ טענה: תהי $(n_k)_{n=1}^\infty$ סדרה של טבעיים עולה ממש אז

משפט: משפט הירושה

L אם מתכנסת ל אם כל תת-סדרה מתכנסת ל ל מדרה מתכנסת ל סדרה מתכנסת ל

-הוכחה: אם כל תת-סדרה מתכנסת אז גם (a_n) מתכנסת כי כל סדרה היא תת-הוכחה: $n_k = k$ עצמו

 $\lim_{x \to x_0} f\left(x
ight) = L$ משפט: f מוגדרת בסביב מנוקבת של x_0 נסמן אותה ב f מוגדרת בסביב מנוקבת של $\lim_{x \to \infty} f\left(a_n
ight) = L$ אם"ם לכל סדרה a_n המתכנסת ל

?.סה הרצאה

משפט: טוכ מתכנס בהחלט אם"ם שני הטורים המתקבלים מהאיברים החיוביים והשליליים של הסדרה מתכנסים.

 $\lim_{n \to \infty} a_n =$ משפט: תהי ((a_n) סדרה אי שלילית יורדת (במובן החלש, כלומר כוגם תהי תהי תהי $\sum_{n=1}^\infty (-1)^{n+1} a_n$ מתכנס 0 אזי הטר