Programowanie w języku Python – ćwiczenia 9

Zagadnienia: własności liczb całkowitych

Liczby doskonałe to takie liczby naturalne, które są sumą wszystkich swoich dzielników właściwych (tj. liczb mniejszych od dzielnej). Są nimi np. 6 = 1 + 2 + 3, oraz

```
28 = 1 + 2 + 4 + 7 + 14.
```

Liczby zaprzyjaźnione to para **różnych** liczb całkowitych dodatnich takich, że suma dzielników właściwych każdej z tych liczb równa się drugiej liczbie. Pierwszą parę takich liczb podał Pitagoras – to 220 i 284.

```
220 = 1 + 2 + 4 + 71 + 142 (dzielniki 284)

284 = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 (dzielniki 220)
```

Zadanie 1

Zdefiniuj jednoparametrową funkcję logiczną czy_doskonala(liczba), zwracającą True jeśli liczba jest doskonała, oraz False w przeciwnym przypadku.

Zadanie 2

Zdefiniuj jednoparametrową funkcję wypisz_doskonale(n), gdzie n oznacza zakres, w którym będą wypisywane liczby doskonałe. Skorzystaj z napisanej wcześniej funkcji czy doskonala(liczba).

Zadanie 3

Napisz program, który wyznaczy wszystkie trzycyfrowe liczby doskonałe.

Zadanie 4

Zdefiniuj funkcję logiczną zaprzy (a,b), która w wyniku zwróci True, jeśli para liczba a i b podanych jako parametry będzie zaprzyjaźniona, lub False – jeśli nie będzie.

Zadanie 5

Zdefiniuj jednoparametrową funkcję wypisz_zaprzy(n), gdzie n oznacza zakres, w którym będą wypisywane liczby zaprzyjaźnione. Dla n=10000 istnieje pięć par liczb zaprzyjaźnionych: 220 i 284, 1184 i 1210, 2620 i 2924, 5020 i 5564 oraz 6232 i 6368.

Zadanie 6

Liczba jest k-doskonała, jeśli różni się od sumy wszystkich swoich dzielników właściwych o k. Dzielniki właściwe liczby to dzielniki mniejsze od tej liczby. Na przykład, liczba 10 jest 2-doskonała, bo suma jej dzielników właściwych 1+2+5=8, różni się od niej o 2. Napisz funkcję logiczną $k_doskonala(n,k)$, która sprawdzi, czy podana liczba naturalna n jest liczbą k-doskonałą. Funkcja zwróci odpowiednio True lub False.

Zadanie 7

Zdefiniuj funkcję logiczną czy_pierwsza(n), której parametrem jest liczba naturalna n, a wynikiem wartość True, gdy jest ona liczbą pierwszą, albo False, gdy nią nie jest.

Zadanie 8

Zdefiniuj funkcję pierwsza (n), której parametrem będzie liczba naturalna n, a wynikiem – n-ta liczba pierwsza.

Zadanie 9

Napisz program, który wyznaczy wszystkie trzycyfrowe liczby pierwsze.

Zadanie 10

Napisz funkcję, która zwróci największą liczbę pierwszą mniejszą od dodatniej liczby całkowitej podanej jako argument funkcji.

Zadanie 11

Napisz funkcję, która zwróci w tablicy wszystkie dzielniki pierwsze liczby podanej jako argument funkcji.

Zadanie 12

Dwie liczby pierwsze różniące się o 2 nazywamy bliźniaczymi. Zdefiniuj funkcję blizniacze(n), której parametrem jest liczba naturalna n, a wynikiem – pierwsza liczba z n-tej pary liczb bliźniaczych.

Zadanie 13

Liczbę naturalną nazywamy super-pierwszą, jeśli jest liczbą pierwszą oraz suma jej cyfr (w systemie dziesiętnym) jest też liczbą pierwszą. Taką liczbą jest np. 101. Napisz funkcję logiczną super_piewsza(n), która sprawdzi, czy podana liczba naturalna n jest liczbą superpierwszą. Funkcja zwróci odpowiednio True lub False.

Zadanie 14

Liczby czworacze to cztery liczby pierwsze postaci n, n+2, n+6, n+8, np. 5, 7, 11, 13 lub 11, 13, 17, 19 lub 101, 103, 107, 109. Zdefiniuj funkcję czworacze (n), której parametrem będzie liczba naturalna n, a wynikiem pierwsza liczba z liczb czworaczych, większa od podanego parametru.

Zadanie 15

Napisz program wyświetlający liczby, których pierwiastki mieszczą się w podanym przez użytkownika przedziale. Na przykład dla przedziału [5;6] są to liczby: 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36.

Zadanie 16

Liczba 362881 ma tę własność, że przy dzieleniu przez 2, 3, 4, 5, 6, 7, 8, 9 daje resztę 1. Znajdź najmniejszą liczbę o tej własności.

Zadanie 17

Ciąg liczb Collatza zdefiniowany jest następująco: pierwsza liczba ciągu jest dowolną liczbą naturalną x, każda kolejna wartość ciągu obliczana jest na podstawie poprzedniej według poniższej zasady

- jeśli poprzednia wartość była parzysta, to należy podzielić ją przez 2,
- jeśli poprzednia wartość była nieparzysta, to należy pomnożyć ją przez 3 i dodać 1.

Wobec tego dla wartości początkowej x=10 kolejne liczby to: 5, 16, 8, 4, 2, 1. Zdefiniuj funkcję collatz (x), której parametrem będzie liczba naturalna x, czyli wartość początkowa ciągu liczb Collatza, a wynikiem – liczba kroków, po których w ciągu pojawi się liczba 1.