

Irakaslea: Jon Montalban Sanchez Teknologia Elektronikoko Saila 5I20 – Bilboko Ingeniaritza Eskola (II Eraikina) jon.montalban@ehu.eus

GAIAREN GAI-ZERRENDA

- 1. Karga elektrikoa (gogoratu)
- 2. Material elektriko motak
- 3. Korronte elektrikoa
- 4. Potentzial diferentzia: tentsio elektrikoa
- 5. Potentzial diferentzia eta korrontearen zentzua
- 6. Potentzia elektrikoa

1. KARGA ELEKTRIKOA

- Materialen oinarrizko ezaugarri intrintseko eta bat da (masa bezala) eta unitatea Coulomb [C]
- Bi motatako kargak : Karga positiboak eta Karga negatiboak
- Adierazpenak
 - Q = Karga konstantea
 - q = orokorrean, karga aldakor baten aldiuneko balioa
 - q(t) = denboran aldakorra den karga baten aldiuneko balioa
- Zirkuituetan, kargen mugimendua aztertzen da zirkuituetako elementuetatik igarotzean.
- Orokorrean, mugitzen dena elektroia da, atomoetako oinarrizko partikuletako bat, karga negatiboduna.
- \circ Elektroiaren karga: $e^- = -1.602 \cdot 10^{-19} \, C$

o Eroaleak

- Karga elektrikoaren mugimenduari oztopo txikia jartzen dion material bat
- Karga elektrikoak (e⁻) libreki mugitzen dira
- Beraien arteko indar elektrikoa zero izango da
- Eroaleak oreka elektrostatikoan daude
 - o Eremu elektrikoa eroalearen barruan zero da
 - o Eroale guztian zehar potentzial elektrikoa konstantea da
 - o Kargak eroalearen gainazalean kokatzen dira.

o Faraday's cage

o Isolatzaileak edo dielektrikoak

- Karga elektrikoaren mugimenduari eragozten dioten materialak → korronte elektriko igarotzea "ezinezkoa"
- Eremu bat aplikatzean elektroiak "apur" bat mugitzen dira eremuaren kontrako noranzkoan dipoloak sortuz
- Polarizazioa
 - Elektroiak mugitu egingo dira, atomoa utzi gabe.
 - Ez dira guztiz lerrokatuta egongo eremu elektriko bat sortuz.
 - o Eremu elektrikoaren murrizketa, dielektrikoaren ondorioz
 - o dielektrikoaren permitibitatearen bidez adierazten da

$$\varepsilon = \varepsilon_0 \varepsilon_r$$

o Erdieroaleak

- Eroankortasun elektrikoa tenperaturaren arabera aldatzen duen substantzia kristalinoa
- Giro-tenperaturan ez dira ez eroale ez isolatzaileak.
 - Tenperatura zero absoluturantz hurbilduz gero isolatzaileak dira.
 - Tenperatura altuetan berriz, eroale onak izatera hel daitezke.
- Gehien erabiltzen den material erdieroalea silizioa (Si) da eta ondoren germanioa (Ge).
- Horrez gain, AsGa, PIn, AsGaAl, TeCd, SeCd eta SCd konbinaketak (aleazioak) ere <u>erabiltzen dira.</u>
- Transistore /diodo funtsa

3. KORRONTE ELEKTRIKOA

- Kargen mugimendua material eroale baten zehar
- **Definizioa:** Eroale baten zeharkako azalera atetik (sinplifikatzeko, behatze-puntu batetik) denbora unitatean igarotzen diren karga elektrikoen kopurua da korrontearen intentsitatea.

o Adierazpena:

- I : korronte konstantearen intentsitatea
- i : oro har, korronte aldakorraren intentsitatearen aldiuneko balioa
- i(t):korrontea denboran zehar aldatzen dela adierazteko
- o Unitatea: Anperioa (A=C/s)

3. KORRONTE ELEKTRIKOA

o Adierazpen matematikoa:

$$I = \frac{\Delta Q}{\Delta t} \qquad i = \frac{dq}{dt}$$

$$I = \frac{\sum Q^{+} - \sum Q^{-}}{\Delta t} = \frac{\sum Q^{+} + \sum |Q^{-}|}{\Delta t}$$

o Oinarrizko ezaugarriak:

- Zeinua
- Norantza
 - Konbentzioz: Geziaren norantzak adierazten du karga positiboen norantza (e⁻-en kontrakoa)

$$\begin{array}{c} I < 0 \\ \hline \end{array}$$

Joined conductor is momentarily not in electrostatic equilibrium.

Lightning stroke (a)	$10^4 \mathrm{A}$
High-tension power line (b)	10 ³
Large transformer (c)	10 ³
Large electromagnet	200
Starter motor of automobile (d)	100
Alternator of automobile	30
Fuse blows	30
Defibrillation treatment for heart	20
Air conditioner	12
Hair dryer	10
Ordinary lightbulb	1
Flashlight bulb	0.5
Lethal fibrillation of heart	0.1
Barely perceptible by skin	$1 imes 10^{-3}$
Electronic calculator (e)	1×10^{-4}
Scanning tunneling microscope	1×10^{-12}

4. Potentzial diferentzia: tentsio elektrikoa

- Kargak potentzial-diferentzia (tentsio elektrikoa) bat dagoenean mugituko dira
- o Definizioa: Potentzial-diferentzia bi punturen artean (A eta B), karga-unitate positiboa potentzial baxuko puntutik (B) potentzial altuko puntura (A) eramateko egin behar den lana da, edo beste hitzetan esanda, karga-unitate positiboari eman behar zaion energia-kantitatea

$$\Delta V_{AB} = V_{AB} = V_A - V_B = \frac{W_{BA}}{q}$$
 $W_{AB} = -q(V_B - V_A)$

o Unitateak: Boltioa edo Volt (V)

4. POTENTZIAL DIFERENTZIA: TENTSIO ELEKTRIKOA

o Oinarrizko ezaugarriak:

- Zeinua
- Noranzkoa
 - + potentzial handiena
 - o potentzial txikiena
- Unitateak [V=J/C]
- Bi punturen arteko potentzial-diferentzia edo tentsioa adierazteko, + eta ikurrak erabiltzen dira, + ikurrak potentzial altuko puntua eta ikurrak potentzial baxuko puntua adierazten dutelarik.

$$A \xrightarrow{V_{BA} < 0} B \qquad A \xrightarrow{V_{AB} > 0} B$$

5. POTENTZIAL DIFERENTZIA ETA KORRONTEAREN ZENTZUA

6. Potentzia elektrikoa

- Energia nola aldatzen duen denboran zehar
- o Definizioa: karga elektrikoak mugitzen direnean ematen den energia aldaketa
- o Adierazpen matematikoa:

$$P_{AB} = \frac{W_{BA}}{t} = \frac{V_{AB} \cdot q}{t} = V_{AB} \cdot \left(\frac{q}{t}\right) = V_{AB} \cdot I_{AB}$$

- o Unitateak: Watio edo Watt (W)
- o Zirkuitu-osagai bateko potentzia elektrikoa:
 - Xurgatutakoa: P_x
 - Emandakoa: P_e

DYING UNCLE'S ADVICE.

 $P = V \cdot I$

6. POTENTZIA ELEKTRIKOA

o Emandako potentzia:

$$V > 0$$
 eta $I > 0$ edo $V < 0$ eta $I < 0$ \downarrow $P_e = V \cdot I > 0$ Osagai aktiboa

o Xurgatutako potentzia:

$$V > 0$$
 eta $I > 0$
edo
 $V < 0$ eta $I < 0$
 \downarrow
 $P_x = V \cdot I > 0$
Osagai pasiboa

6. Potentzia elektrikoa

o Potentzien balantzea

• Energiaren kontserbazio printzipioa

$$\sum_{\text{osagai aktiboak}} P_{emandakoa} = \sum_{\text{osagai pasiboak}} P_{xurgatutakoa}$$

- Beraz, zirkuitu guztietan elementu aktibo bat behar da gutxienez, elementu pasiboek energia jaso dezaten.
- Zirkuitu batean elementu guztiak osagai aktibo/pasibo bihurtzen baditugu balantzea zero izango da.

$$\sum_{\text{osagai aktiboak}} P_{emandakoa} = 0$$

$$\sum_{\text{osagai pasiboak}} P_{\textit{xurgatutakoa}} = 0$$

Irakaslea: Jon Montalban Sanchez Teknologia Elektronikoko Saila 5I20 – Bilboko Ingeniaritza Eskola (II Eraikina) jon.montalban@ehu.eus