

1° Fridont Vout =? Then we make sure Michael M2 m Sat. 2Up Cox (6-4, 1-0.8). VB31= 0 = VTHIF 0.8 [H7 (5- VOOT)] 入キロ、ともの Vm=4. 1+0.00 | 8m(2Th00t) [1+7 VOOT] Vout = Vout + Vout = ?



3° Fridout Rm = ? Run = 00 4 Fridout Rout = ? Rout = 101/1/02 small for Rout Equivalent Small Signal Circuit Rout = Ve/et

Rm=00, Rout= +01/1802, Av= Jun (01/180)

Um of Mi Vout 5 Fond out available output swing tempe. Vout, max = 5-(5-4.1-0.8) VBS1 = 0 = VTH1 = 0.8 VSB2 = 0 = VTH2 = 0.7 = Upp- (Von) 入 ‡0、と ‡0 Vout, mm= 0.8-0.7 Vm=4. 1+0.0018m(2Thwot) = VGS2-UTH2 Vout = Voot + Vout =? overdrive = 0, | of U2.

#### Common-Source with Current-Source Load



 To achieve high A,, the output swing is severely limited in the CS stages with resistive load and diode-connected load.

 $v_{\rm sb1}$ gmb<sub>1</sub>

Here  $V_{out, max} = V_{DD} - (V_{SG2} - V_{TH2})$ , which can be quite close to  $V_{DD}$ .

 $r_{o1}$ 

 $v_{gs1}gm_1$ 



#### Common-Source with Current-Source Load

# Small-signal Analysis



- For high gm<sub>1</sub> and small (V<sub>GS1</sub> V<sub>TH1</sub>), W of M<sub>1</sub> needs to be large.
- For high r<sub>o1</sub> and r<sub>o2</sub>, L of M<sub>1</sub> and M<sub>2</sub> need to be large and L of M<sub>1</sub> and M<sub>2</sub> needs to be increased proportionally. The cost is the large parasitic drain junction capacitance at the output.

Degeneration

Common-Source with Source Degradation

## **Amplifier Equivalent Circuit**



- How to calculate  $G_m$ ?  $v_{out}$  shorted to ground.  $G_m = i_{out}/v_{in}$
- How to calculate  $R_{out}$ ?  $\upsilon_{in}$  shorted to ground and  $\upsilon_{out}$  connected to  $\upsilon_{test}$ .  $R_{out} = \upsilon_{test}/i_{test}$

#### Amplifier Equivalent Circuit



## **Amplifier Equivalent Circuit**



omplete りもの、トキロ Ro am = Dout on Vout Va + (Va - Vm) gm, + Va + gmb 1 Va = 0 Equivalent small Stona Voue Dour Gulm (Rout

## Common-Source with Source Degradation



$$\begin{cases} i_o = \frac{-v_a}{R_S} \\ (v_{in} - v_a)gm_1 + i_o = \frac{v_a}{r_{o1}} + v_agmb_1 \end{cases}$$

$$G_{\rm m} = \frac{i_{\rm o}}{v_{\rm in}} = \frac{-gm_1r_{\rm o1}}{R_{\rm S} + r_{\rm o1} + (gm_1 + gmb_1)r_{\rm o1}R_{\rm S}} \approx -\frac{1}{R_{\rm S}}$$

 $\approx -\frac{1}{R_S} \begin{array}{c} \text{if } g_{mb1} < g_{m1} \\ \text{if } (gm_1 + gmb_1)r_{o1}R_S \\ >> r_{o1} \text{ and } R_S \end{array}$