BAB 11

INTEGRAL

Integral Tak Tentu

Integral (anti diferensial) adalah kebalikan (invers) dari diferensial/ turunan. Hubungan antara integral dengan turunan dapat dituliskan sebagai berikut:

$$F'(x) = f(x) \iff F(x) = \int f(x) dx$$

Keterangan:

 $\int f(x) dx$ dibaca integral fungsi x terhadap x

f(x) disebut integran

F(x) disebut fungsi asal

Dari sifat-sifat diferensial, dapat diturunkan sifat-sifat integral sebagai berikut:

$$\int (f(x)+g(x)) dx = \int f(x) dx + \int g(x) dx$$
$$\int k.f(x) dx = k.\int f(x) dx$$

dengan f(x) dan g(x) fungsi x dan k adalah konstanta.

1. Integral Fungsi Aljabar

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + C$$

Rumus tersebut berlaku untuk n ≠ 1.

2. Integral Fungsi Trigonometri

Rumus Integral Tak Tentu Fungsi Trigonometri

1)
$$\int \cos x \, dx = \sin x + C$$

2)
$$\int \sin x \, dx = -\cos x + C$$

3)
$$\int \sec^2 x \, dx = \tan x + C$$

4)
$$\int \csc^2 x \, dx = -\cot x + C$$

5)
$$\int \tan x \sec x \, dx = \sec x + C$$

6)
$$\int \cot x \csc x \, dx = -\csc x + C$$

Rumus Integral Tak Tentu Fungsi Trigonometri dengan Sudut ax + b

1)
$$\int \cos(ax+b) dx = \frac{1}{a}\sin(ax+b) + C$$

2)
$$\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C$$

3)
$$\int \sec^2(ax+b) dx = \frac{1}{a} \tan(ax+b) + C$$

4)
$$\int \csc^2(ax+b) dx = -\frac{1}{a}\cot(ax+b) + C$$

5)
$$\int \tan (ax+b) \sec (ax+b) dx$$
$$= \frac{1}{a} \sec (ax+b) + C$$

6)
$$\int \cot(ax+b) \csc(ax+b) dx$$

$$= -\frac{1}{2} \csc(ax+b) + C$$

dengan a dan b bilangan real dan a ≠ 0.

BIII

Integral Tentu

Gambar berikut ini menunjukkan suatu daerah yang dibatasi oleh kurva y = f(x), sumbu X, garis x = a, dan garis x = b.

Luas daerah tersebut didekati (diperkirakan) dengan jumlah semua persegi panjang dari x = a hingga x = b, yaitu:

$$L = \sum_{i=1}^{n} f(x_i) \cdot \Delta x_i \text{ dengan n = banyaknya persegi panjang.}$$

Luas daerah yang sebenarnya bisa diperoleh dengan cara membagi luas daerah L dengan persegi panjang yang jumlahnya sangat banyak $(n \rightarrow \infty)$. Ini berarti nilai Δx menjadi sangat kecil $(\Delta x \rightarrow 0)$ sehingga luas daerah ditentukan dengan:

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) . \Delta x_i \quad \text{atau} \quad L = \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(x_i) . \Delta x_i$$

Bentuk-bentuk limit di atas dapat disederhanakan dengan bentuk integral yaitu:

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i).\Delta x_i = \lim_{\Delta x \to 0} \sum_{i=1}^{n} f(x_i).\Delta x_i = \int_{a}^{b} f(x) dx$$

Dengan demikian, integral tentu $\int_{a}^{b} f(x) dx$ dapat ditafsirkan sebagai luas daerah di bidang datar yang dibatasi kurva y = f(x), sumbu X, garis x = a, dan garis x = b.

Untuk menentukan nilai integral tentu digunakan Teorema Dasar Integral Kalkulus berikut:

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

dengan F(x) adalah anti turunan atau pengintegralan dari f(x).

C Metode Pengintegralan

1 Integral Subtitusi

Teknik perhitungan pengintegralan dengan menggunakan rumus integral subtitusi memerlukan dua langkah sebagai berikut:

- a) Memilih fungsi u = g(x)Sehingga $\int f(g(x)).g'(x) dx$ dapat diubah menjadi $\int f(u) du$.
- b) Tentukan fungsi integral umum f(u) yang bersifat F'(u) = f(u).

Untuk menentukan fungsi integral umum f(u) yang bersifat F'(u) = f(u) dapat diperoleh dengan mengembangkan rumus integral tak tentu dari fungsi aljabar sebagai berikut:

$$\int u^{n} du = \frac{1}{n+1} u^{n+1}, n \neq -1$$

Dari rumus integral subtitusi di atas, dapat diturunkan beberapa rumus singkat yaitu:

$$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + C$$

$$\int f(x) \Big[g(x) \Big]^n dx = \frac{f(x)}{g'(x)} \cdot \frac{1}{n+1} \Big[g(x) \Big]^{n+1} + C$$

$$\int \sin x \cdot \cos x dx = \frac{1}{n+1} \sin^{(n+1)} x + C$$

$$\int \cos^n x \cdot \sin x dx = \frac{-1}{n+1} \cos^{(n+1)} x + C$$

$$\int f(x) \cdot \cos(g(x)) dx = \frac{f(x)}{g'(x)} \cdot \sin g(x) + C$$
Keterangan: Konsepnya sama untuk fungs trigonometri lain

2 Integral Parsial

Misalkan u(x) dan v(x) masing–masing adalah fungsi dalam variabel x, maka pengintegralan $\int u \ dv$ dapat ditentukan oleh:

$$\int u \, dv = uv - \int v \, du$$

Berhasil atau tidaknya pengintegralan dengan menggunakan rumus integral parsial ditentukan oleh dua hal berikut:

- a) Memilih bagian dv sehingga v dapat ditentukan dengan rumus $v = \int dv$
- b) $\int v \, du$ harus lebih mudah diselesaikan dibanding dengan $\int u \, dv$.

Integral parsial juga dapat diselesaikan dengan tabel differensial, dengan mendifferensialkan u(x) hingga diperoleh nilai 0 dan mengintegralkan dv. Kemudian mengalikan hasil differensial dan integral tersebut dengan mengubah tanda positif dan negatifnya secara bergantian.

Perhatikan contoh pengintegralan berikut:

$$\int x^2 \sin 2x dx = ...$$

Misal $u(x) = x^2$ dan $dv = \sin 2x dx$

Tabel differensialnya:

Tanda	Differensial u(x)	Integral dv
\oplus	X ²	sin2xdx
-	2x	$-\frac{1}{2}\cos 2x$
•	2	$-\frac{1}{4}$ sin2x
_	0	$\frac{1}{8}$ cos2x

Sehingga hasil dari

$$\int x^{2} \sin 2x dx = x^{2} \left(-\frac{1}{2} \cos 2x \right) - 2x \left(-\frac{1}{4} \sin 2x \right)$$

$$+ 2 \left(\frac{1}{8} \cos 2x \right) + C$$

$$= -\frac{1}{2} x^{2} \cos 2x + \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + C$$

3 Integral Bentuk $\sqrt{a^2-x^2}$ dan $\sqrt{a^2+x^2}$

Untuk bentuk $\sqrt{a^2-x^2}$ caranya yaitu dengan memisalkan:

$$x = a \sin \theta$$

$$dx = a \cos \theta d\theta$$

$$\sqrt{a^2 - x^2} = a \cos \theta$$

Untuk bentuk $\sqrt{a^2 + x^2}$ caranya yaitu dengan memisalkan:

$$x = a \tan \theta$$
$$dx = a \sec^2 \theta \ d\theta$$
$$\sqrt{a^2 + x^2} = a \sec \theta$$
$$a^2 + x^2 = a^2 \sec^2 \theta$$

D Luas Daerah

Luas Daerah yang Dibatasi oleh Kurva dengan Sumbu X

Jika kurva y = f(x) berada di atas sumbu X (sumbu Y positif)

Luas daerah di atas:
$$L = \int_{a}^{b} f(x) dx$$

 Jika kurva y = f(x) berada di bawah sumbu X (sumbu Y negatif)

Luas daerah di atas:
$$L = -\int_a^b f(x) dx = \int_b^a f(x) dx$$

2. Luas Daerah yang Dibatasi oleh Kurva dengan Sumbu Y

Jika kurva x = f(y) berada di sumbu X positif

- Jika kurva x = f(y) berada pada sumbu X negatif

3. Luas Daerah yang Dibatasi oleh Beberapa Kurva

dengan $f(x) \ge g(x)$ dalam interval tertutup $a \le x \le b$.

E Volume Benda Putar

1. Daerah yang Diputar terhadap Sumbu X

Jika daerah yang dibatasi oleh kurva y = f(x), sumbu X, garis x = a, dan garis x = b diputar sejauh 360° mengelilingi sumbu X, maka volume benda putar yang terjadi adalah:

$$V = \pi \int_a^b y^2 dx \quad \text{atau} \quad V = \pi \int_a^b \left\{ f(x) \right\}^2 dx$$

2. Daerah yang Diputar terhadap Sumbu Y

Jika daerah yang dibatasi oleh kurva x = g(y), sumbu Y, garis y = c dan garis y = d diputar sejauh 360° mengelilingi sumbu Y, maka volume benda putar yang terjadi adalah:

$$V = \pi \int_{c}^{d} x^{2} dy \quad atau \quad V = \pi \int_{c}^{d} \left\{ g(y) \right\}^{2} dy$$

3. Dua Daerah yang Diputar terhadap Sumbu X

Jika daerah yang dibatasi oleh kurva $y_1 = f(x)$, kurva $y_2 = g(x)$, garis x = a, garis x = b, diputar sejauh 360° mengelilingi sumbu X, maka volume benda putar yang terjadi adalah:

$$V = \pi \int_{a}^{b} (y_{1}^{2} - y_{2}^{2}) dx \text{ atau } V = \pi \int_{a}^{b} \{f^{2}(x) - g^{2}(x)\} dx$$

4. Dua Daerah yang Diputar terhadap Sumbu Y

Jika daerah yang dibatasi oleh kurva $x_1 = f(y)$, kurva $x_2 = g(y)$, garis y = c, garis y = d, diputar sejauh 360° mengelilingi sumbu Y, maka volume benda putar yang terjadi adalah:

$$V = \pi \int_{c}^{d} (x_{1}^{2} - x_{2}^{2}) dy \text{ atau } V = \pi \int_{c}^{d} \{f^{2}(y) - g^{2}(y)\} dy$$

Rumus Praktis

b = batas atas integral

 $p = koefisien x^2 atau y^2$

- khusus untuk bentuk kurva $y = px^2$ atau $x = py^2$

CONTOH SOAL DAN PEMBAHASAN

1. Misalkan A(t) menyatakan luas daerah di bawah kurva $y=bx^2$, $0 \le x \le t$. Jika titik $P(x_0,0)$, sehingga $A(x_0)$: A(1)=1: 8, maka perbandingan luas trapesium

 $\mathsf{ABPQ}: \mathsf{DCPQ} = \dots \text{ (SOAL SBMPTN SAINTEK)}$

- A. 2:1
- B. 3:1 C. 6:1
- D. 8:1
- E. 9:1

Pembahasan SMART:

Diketahui
$$\frac{A(x_0)}{A(1)} = \frac{1}{8}$$
, maka:

$$\int_{0}^{x_{0}} bx^{2} dx = \frac{1}{8} \Leftrightarrow \frac{\frac{1}{3}bx^{3}}{\frac{1}{3}bx^{3}} \Big|_{0}^{x_{0}} = \frac{1}{8}$$
$$\Leftrightarrow \frac{x_{0}^{3}}{1} = \frac{1}{8}$$
$$\Leftrightarrow x_{0} = \frac{1}{2}$$

$$PQ = bx^2 \Rightarrow PQ = b\left(\frac{1}{2}\right)^2 = \frac{b}{4}$$

Perhatikan trapesium ABPQ dan CDPQ!

$$\frac{\text{Luas ABPQ}}{\text{Luas CDPQ}} = \frac{\frac{\left(\text{AB+PQ}\right) \times \text{BP}}{2}}{\frac{\left(\text{CD+PQ}\right) \times \text{PC}}{2}}$$
$$= \frac{\left(\text{AB+PQ}\right) \times \text{BP}}{\left(\text{CD+PQ}\right) \times \text{PC}}$$
$$= \frac{\left(b + \frac{b}{4}\right) \times \frac{3}{2}}{\left(b + \frac{b}{4}\right) \times \frac{1}{2}} = \frac{3}{1}$$

Jadi, perbandingan luas ABPQ dan luas CDPQ adalah 3:1.

Jawaban: B

2. Jika
$$y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}}$$
 dan $f(x) = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ maka
$$\int_{0}^{3} f(x)dx =$$
A. 8 D. 11

Pembahasan SMART:

$$y = \frac{1}{3} (x^2 + 2)^{\frac{3}{2}} \Rightarrow \frac{dy}{dx} = x(x^2 + 2)^{\frac{1}{2}}$$

$$f(x) = \sqrt{1 + (\frac{dy}{dx})^2} = \sqrt{1 + (x(x^2 + 2)^{\frac{1}{2}})^2}$$

$$= \sqrt{1 + x^2(x^2 + 2)}$$

$$= \sqrt{x^4 + 2x^2 + 1} = ((x^2 + 1)^2)^{\frac{1}{2}} = x^2 + 1$$

$$\int_{0}^{3} f(x) dx = \left[\frac{1}{3}x^3 + x\right]^3 = 12$$

Jawaban: E

3. Diketahui $\int f(x)dx = \frac{1}{4}ax^2 + bx + c dan a \neq 0$ jika $f(a) = \frac{a+2b}{2}$ dan f(b) = 6, maka fungsi f(x) = ...

A. $\frac{1}{2}x + 4$ D. x + 4

B. 2x+4 E. $-\frac{1}{2}x+4$

C. $\frac{1}{2}x - 4$

Pembahasan SMART:

$$-\int f(x) dx = ax^n + b \Rightarrow f(x) = anx^{n-1}$$

•
$$\int f(x)dx = \frac{1}{4}ax^2 + bx + c; a \neq 0$$

$$\Rightarrow f(x) = 2 \cdot \frac{1}{4} \cdot ax^{2-1} + 1 \cdot bx^0 = \frac{1}{2}ax + b$$

$$\Rightarrow f(x) = \frac{ax + 2b}{2}$$

•
$$f(a) = \frac{a+2b}{2} \Rightarrow f(x) = \frac{x+2b}{2} \Rightarrow a=1$$

•
$$f(b)=6 \Rightarrow \frac{b+2b}{2}=6 \Rightarrow \frac{3b}{2}=6 \Rightarrow b=\frac{6.2}{3}=4$$

Jadi,
$$f(x) = \frac{ax+2b}{2} = \frac{x+2.4}{2} = \frac{x+8}{2} = \frac{1}{2}x+4$$

Jawaban: A

- 4. Jika L(a) adalah luas daerah yang dibatasi oleh sumbu x dan parabola $y = ax + x^2, 0 < a < 1$, maka peluang nilai a sehingga $L(a) \ge \frac{1}{48}$ adalah

Pembahasan SMART:

Luas daerah yang dibatasi grafik f(x) dan sumbu x:

Luas daerah yang dibatasi oleh grafik $y = ax + x^2$, 0 < a < 1 dan sumbu-x adalah:

$$\frac{b^2 - 4ac\sqrt{b^2 - 4ac}}{6a^2} = \frac{a^2 - 4.1.0\sqrt{a^2 - 4.1.0}}{6(1)^2}$$
$$= \frac{a^2\sqrt{a^2}}{6} = \frac{a^3}{6}$$

$$L(a) \ge \frac{1}{48} \Rightarrow \frac{a^3}{6} \ge \frac{1}{48}$$
$$\Rightarrow a^3 \ge \frac{1}{8} \Rightarrow a \ge \sqrt[3]{\frac{1}{8}} \Rightarrow a \ge \frac{1}{2}$$

Sehingga, peluang a adalah $1-\frac{1}{2}=\frac{1}{2}$

Jawaban: E

5.
$$\int 2\cos(1-2x)\sin x \, dx = ...$$

A.
$$\cos(x-1) + \frac{1}{3}\cos(3x-1) + c$$

B.
$$\cos(x-1) - \frac{1}{3}\cos(3x-1) + c$$

C.
$$-\sin(x-1) + \frac{1}{3}\sin(3x-1) + c$$

D.
$$-\sin(x-1) - \frac{1}{3}\sin(3x-1) + c$$

E.
$$\sin(x-1) + \frac{1}{3}\sin(3x-1) + c$$

Pembahasan SMART:

ingat! ingat!

$$2\sin A \cdot \cos B = \sin (A + B) + \sin (A - B)$$

$$2\cos A.\sin B = \sin(A+B) - \sin(A-B)$$

Nilai dari,
$$\int 2\cos(1-2x) \cdot \sin x \, dx$$

= $\int 2\sin x \cdot \cos(1-2x) \, dx$
= $\int \sin(x+(1-2x)) + \sin(x-(1-2x)) \, dx$
= $\int \sin(-x+1) + \sin(3x-1) \, dx$
= $-\cos(x-1) - \frac{1}{3}\cos(3x-1) + C$
= $\cos(x-1) + \frac{1}{3}\cos(3x-1) + C$

Jawaban: A

••••
•••••
••••
••••
••••
••••
••••