姜晓千 2023 年强化班笔记

数学笔记

Weary Bird

2025年7月11日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月11日

目录

第·	一章	函数极限连续	1
	1.1	函数的性态	1
	1.2	极限的概念	2
	1.3	函数极限的计算	3
	1.4	已知极限反求参数	5
	1.5	无穷小阶的比较	5
	1.6	数列极限的计算	6
	1.7	间断点的判定	6
<u> </u>	— *	二元米6处6人24	_
弗.	—早	一元函数微分学	7
	2.1	导数与微分的概念	7
	2.2	导数与微分的计算	8
	2.3	导数应用-切线与法线	9
	2.4	导数应用-渐近线	10
	2.5	导数应用-曲率	10
	2.6	导数应用-极值与最值	11
	2.7	导数应用-凹凸性与拐点	11
	2.8	导数应用-证明不等式	11
	2.9	导数应用-求方程的根	12
	2.10	微分中值定理证明题	12
<u> ታታ</u> ፡	- 土	二苯粉和八芒	1 1
弗.			14
	3.1	定积分的概念	14
	3.2	不定积分的计算	14

3.3	定积分的计算	15
3.4	反常积分的计算	15
3.5	反常积分敛散性的判定	15
3.6	变限积分函数	16
3.7	定积分应用求面积	16
3.8	定积分应用求体积	17
3.9	定积分应用求弧长	17
3.10	定积分应用求侧面积	17
3.11	一定积分物理应用	17
3.12	二证明含有积分的等式或不等式	18
第四章	常微分方程	19
4.1	一阶微分方程的解法	19
4.2	二阶常系数线性微分方程	21
4.3	高阶常系数线性齐次微分方程	21
4.4	二阶可降阶微分方程	22
4.5	欧拉方程	22
4.6	变量代换求解二阶变系数线性微分方程	22
4.7	微分方程综合题	22
第五章	多元函数微分学	24
5.1	多元函数的概念	24
5.2	多元复合函数求偏导数与全微分	25
5.3	多元隐函数求偏导数与全微分	25
5.4	变量代换化简偏微分方程	26
5.5	求无条件极值	26
5.6	求条件极值 (边界最值)	27
第六章	二重积分	2 8
6.1	二重积分的概念	28
6.2	交换积分次序	29
6.3	一重和分的计管	20

6.4	其他题型	30
第七章	无穷级数	31
7.1	数项级数敛散性的判定	31
7.2	交错级数	31
7.3	任意项级数	31
7.4	幂级数求收敛半径与收敛域	32
7.5	幂级数求和	32
7.6	幂级数展开	33
7.7	无穷级数证明题	33
7.8	傅里叶级数	34
第八章	多元函数积分学	35
8.1	三重积分的计算	35
8.2	第一类曲线积分的计算	35
8.3	第二类曲线积分的计算	36
8.4	第一类曲面积分的计算	36
8.5	第二类曲面积分的计算	36
第九章	行列式	38
9.1	数字行列式的计算	40
9.2	代数余子式求和	45
9.3	抽象行列式的计算	47
第十章	矩阵	51
10.1	求高次幂	51
10.2	逆的判定与计算	52
	秩的计算与证明	
	关于伴随矩阵	
	初等变换与初等矩阵	
第十一章	章 向量	62
	知识休系	63

11.2	线性表示的判定与计算	64
11.3	线性相关与线性无关的判定	67
11.4	极大线性无关组的判定与计算	70
11.5	向量空间(数一专题)	72
第十二章	章 线性方程组	74
12.1	知识体系	75
12.2	解的判定	76
12.3	求齐次线性方程组的基础解系与通解	78
12.4	求非齐次线性方程组的通解	81
12.5	解矩阵方程	85
12.6	公共解的判定与计算	87
第十三章	章 特征值与特征向量	91
13.1	特征值与特征向量的计算	91
13.2	相似的判定与计算	92
13.3	相似对角化的判定与计算	93
13.4	实对称矩阵的计算	93
第十四章	章 二次型 章 二次型	95
14.1	求二次型的标准形	95
	合同的判定	
14.3	二次型正定与正定矩阵的判定	97
第十五章	章 事件与概率论	98
15.1	事件的关系、运算与概率的性质	98
15.2	三大概型的计算	100
15.3	三大概率公式的计算	101
15.4	事件独立的判定	103
第十六章	章 一维随机变量	105
16.1	分布函数的判定与计算	105
	概率率度的判完与计算	

16.3	关于八大分布	 	. 109
16.4	求一维连续型随机变量函数的分布	 	. 114
第十七章	章 二维随机变量		117
17.1	联合分布函数的计算	 	. 117
17.2	二维离散型随机变量分布的计算	 	. 118
17.3	二维连续型随机变量分布的计算	 	. 119
17.4	关于二维正态分布	 	. 122
17.5	求二维离散型随机变量函数的分布	 	. 125
17.6	求二维连续型随机变量函数的分布	 	. 126
17.7	求一离散一连续随机变量函数的分布	 	. 129
第十八章	章 数字特征		131
18.1	期望与方差的计算	 	. 131
18.2	协方差的计算	 	. 136
18.3	相关系数的计算	 	. 138
18.4	相关与独立的判定	 	. 139
第十九章	章 大数定律与中心极限定理		142
第二十章	章 统计初步		145
20.1	求统计量的抽样分布	 	. 145
20.2	求统计量的数字特征	 	. 147
第二十-	一章 参数估计		148
21.1	求矩估计与最大似然估计	 	. 148
21.2	估计量的评价标准	 	. 150
21.3	区间估计与假设检验	 	. 152
第二十二	二章 补充知识-高等数学		153
22.1	平方数和的求和公式	 	. 153
22.2	莱布尼兹法则	 	. 153
쓸 □十=	三音 补充知识_线性代数		154

第二	二十四	9章 补充知识-概率论	;												1	155
	24.1	配对问题														155
	24.2	几个概率的不等式 .														156
	24.3	轮流射击模型														157
	24.4	补充: 随机变量的矩														158

第一章 函数极限连续

1.1 函数的性态

Remark. (有界性的判定)

连续函数在闭区间 [a,b] 上必然有界

连续函数在开区间 (a,b) 上只需要判断端点处的左右极限, 若 $\lim_{x\to a^+} \neq \infty$ 且 $\lim_{x\to b^-} \neq \infty$, 则连续函数在该区间内有界.

1. 下列函数无界的是

(A)
$$f(x) = \frac{1}{x}\sin x, x \in (0, +\infty)$$

(B)
$$f(x) = x \sin \frac{1}{x}, x \in (0, +\infty)$$

(C)
$$f(x) = \frac{1}{x} \sin \frac{1}{x}, x \in (0, +\infty)$$

(D)
$$f(x) = \int_0^x \frac{\sin t}{t} dt, x \in (0, 2022)$$

Solution.

- (A) $\lim_{x\to 0^+} f(x) = 1$, $\lim_{x\to +\infty} = 0$ 均为有限值, 故 A 在区间 $(0,+\infty)$ 有界
- (B) $\lim_{x\to 0^+} f(x) = 0$, $\lim_{x\to +\infty} = 1$ 均为有限值, 故 B 在区间 $(0,+\infty)$ 有界
- (C) $\lim_{x\to 0^+} f(x) = +\infty$, $\lim_{x\to +\infty} = 0$ 在 0 点的极限不为有限值, 故 C 在区间 $(0, +\infty)$ 无界
- (D) $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \int_0^x 1 dt = 0$, $\lim_{x\to 2022^-} f(x) = \int_0^{2022} \frac{\sin t}{t} dt =$ 有限值 故 D 在 区间 (0,2022) 有界

Remark. (导函数与原函数的奇偶性与周期性)

连续奇函数的所有原函数 $\int_0^x f(t)dt + C$ 都是偶函数

连续偶函数仅有一个原函数 $\int_0^x f(t) dt$ 为奇函数

2. (2002, 数二) 设函数 f(x) 连续,则下列函数中,必为偶函数的是

(A)
$$\int_0^x f(t^2)dt$$
(B)
$$\int_0^x f^2(t)dt$$
(C)
$$\int_0^x t[f(t) - f(-t)]dt$$
(D)
$$\int_0^x t[f(t) + f(-t)]dt$$

Solution. 这种题可以采用奇偶性的定义直接去做,如下面选项 A,B 的解法,也可以按照上述的函数奇偶性的性质判断

(A) $\Leftrightarrow F(x) = \int_0^x f(t^2) dt$

$$F(-x) = \int_0^{-x} f(t^2)dt = -\int_0^x f(t^2)dt = -F(x)$$

则 A 选项是奇函数

(B)

$$F(-x) = \int_0^{-x} f^2(t)dt = -\int_0^x f^2(-t)dt$$

推导不出B的奇偶性

- (C) t[f(t)-f(-t)] 是一个偶函数, 故 C 选项是一个奇函数
- (D) t[f(t) + f(-t)] 是一个奇函数, 故 D 选项是一个偶函数

1.2 极限的概念

Definition 1.2.1 (函数极限的定义). 设函数 f(x) 在点 x_0 的某去心邻域内有定义。 若存在常数 A,使得对于任意给定的正数 ϵ ,总存在正数 δ ,使得当 x 满足

$$0 < |x - x_0| < \delta$$

时,必有

$$|f(x) - A| < \epsilon$$

则称 A 为函数 f(x) 当 x 趋近于 x_0 时的极限,记作

$$\lim_{x \to x_0} f(x) = A$$

或

$$f(x) \to A \quad (x \to x_0).$$

3. (2014, 数三) 设 $\lim_{n\to\infty} a_n = a$, 且 $a \neq 0$, 则当 n 充分大时有

(A)
$$|a_n| > \frac{|a|}{2}$$
 (B) $|a_n| < \frac{|a|}{2}$ (C) $a_n > a - \frac{1}{n}$ (D) $a_n < a + \frac{1}{n}$

Solution. 由数列极限的定义可知当 n 充分大的时候有 $|a_n - a| < \epsilon$

考虑选项 C,D, 令
$$\epsilon = \frac{1}{n}$$
 则 $|a_n - a| < \frac{1}{n} \implies a - \frac{1}{n} < a_n < a + \frac{1}{n}$

1.3 函数极限的计算

这一个题型基本上是计算能力的考察, 对于常见未定式其实也没必要区分的那么明显, 目标都是往最简单 $\frac{0}{0}$ 或者 $\frac{1}{\infty}$ 模型上面靠, 辅助以 Taylor 公式, 拉格朗日中值定理结合夹逼准则来做就可以.

Remark. (类型 $-\frac{0}{0}$ 型)

4. (2000, 数二) 若
$$\lim_{x\to 0} \frac{\sin 6x + xf(x)}{x^3} = 0$$
, 则 $\lim_{x\to 0} \frac{6+f(x)}{x^2}$ 为

(A) 0 (B) 6 (C) 36 (D)
$$\infty$$

Solution. 这个题第一次见可能想不到, 但做多了就一个套路用 Taylor 就是了.

 $\sin 6x = 6x - 36x^2 + o(x^3)$, 带入题目极限有

$$\lim_{x \to 0} \frac{6x + xf(x) + o(x^3)}{x^3} = \lim_{x \to 0} \frac{6x + xf(x)}{x^3} = 36$$

5. (2002, 数二) 设 y=y(x) 是二阶常系数微分方程 $y''+py'+qy=e^{3x}$ 满足初始条件 y(0) = y'(0) = 0 的特解, 则当 $x \to 0$ 时, 函数 $\frac{\ln(1+x^2)}{y(x)}$ 的极限

- (A)不等于 (B)等于 1
- (C)等于 2

Solution. 由微分方程和 y(0) = y'(0) = 0 可知 y''(0) = 1, 则 $y(x) = \frac{1}{2}x^2 + o(x^2)$, 则

$$\lim_{x \to 0} \frac{\ln(1+x^2)}{y(x)} = \lim_{x \to 0} \frac{x^2}{\frac{1}{2}x^2} = 2$$

Remark. (类型二 ≈ 型)

6. (2014, 数一、数二、数三) 求极限

$$\lim_{x \to \infty} \frac{\int_1^x \left[t^2 \left(e^{\frac{1}{t}} - 1 \right) - t \right] dt}{x^2 \ln\left(1 + \frac{1}{x}\right)}$$

Solution.

$$\lim_{x \to \infty} \frac{\int_{1}^{x} \left[t^{2} (e^{\frac{1}{t}} - 1) - t \right] dt}{x} = \lim_{x \to \infty} x^{2} (e^{\frac{1}{x}} - 1) - x$$

$$= \lim_{t \to 0} \frac{e^{t} - 1 - x}{x^{2}}$$

$$= \frac{1}{2}$$

Remark. (类型三 $0 \cdot \infty$ 型)

7. 求极限 $\lim_{x\to 0^+} \ln(1+x) \ln \left(1+e^{1/x}\right)$

Solution.

Remark. (类型四 $\infty - \infty$ 型)

8. 求极限 $\lim_{x\to\infty} (x^3 \ln \frac{x+1}{x-1} - 2x^2)$

Remark. (类型五 0^0 与 ∞^0 型)

9. (2010, 数三) 求极限 $\lim_{x\to +\infty} (x^{1/x}-1)^{1/\ln x}$

Solution.【详解】 □

Remark. (类型六 1[∞] 型)

10. 求极限 $\lim_{x\to 0} \left(\frac{a^x+a^{2x}+\cdots+a^{nx}}{n}\right)^{1/x}$ $(a>0,n\in\mathbb{N})$

 \square

1.4 已知极限反求参数

Remark. (方法)

11. (1998, 数二) 确定常数 a, b, c 的值, 使 $\lim_{x\to 0} \frac{ax - \sin x}{\int_{b}^{x} \frac{\ln(1+t^{3})}{t} dt} = c$ $(c \neq 0)$

Solution.【详解】 □

1.5 无穷小阶的比较

Remark. (方法)

12. (2002, 数二) 设函数 f(x) 在 x = 0 的某邻域内具有二阶连续导数,且 $f(0) \neq 0, f'(0) \neq 0, f''(0) \neq 0$ 。证明:存在唯一的一组实数 $\lambda_1, \lambda_2, \lambda_3$,使得当 $h \to 0$ 时, $\lambda_1 f(h) + \lambda_2 f(2h) + \lambda_3 f(3h) - f(0)$ 是比 h^2 高阶的无穷小。

Solution.【详解】 □

13. (2006, 数二) 试确定 A, B, C 的值, 使得 $e^x(1 + Bx + Cx^2) = 1 + Ax + o(x^3)$, 其中 $o(x^3)$ 是当 $x \to 0$ 时比 x^3 高阶的无穷小量。

Solution. 【详解】 □

14. (2013, 数二、数三) 当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x$ 与 ax^n 为等价无穷小, 求 n 与 a 的值。

1.6 数列极限的计算

Remark. (方法)

- 15. (2011, 数一、数二)
 - (i) 证明: 对任意正整数 n, 都有 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$
 - (ii) 设 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \ln n \ (n = 1, 2, \dots)$, 证明数列 $\{a_n\}$ 收敛。

Solution.【详解】 □

16. (2018, 数一、数三、数三) 设数列 $\{x_n\}$ 满足: $x_1 > 0, x_n e^{x_{n+1}} = e^{x_n} - 1$ $(n = 1, 2, \cdots)$ 。 证明 $\{x_n\}$ 收敛, 并求 $\lim_{n\to\infty} x_n$ 。

Solution.【详解】 □

- 17. (2019, 数一、数三) 设 $a_n = \int_0^1 x^n \sqrt{1-x^2} dx \ (n=0,1,2,\cdots)$ 。
 - (i) 证明数列 $\{a_n\}$ 单调减少,且 $a_n = \frac{n-1}{n+2} a_{n-2} \ (n=2,3,\cdots)$
 - (ii) $\vec{X} \lim_{n\to\infty} \frac{a_n}{a_{n-1}}$

Solution.【详解】 □

18. (2017, 数一、数二、数三) 求 $\lim_{n\to\infty}\sum_{k=1}^n \frac{k}{n^2}\ln\left(1+\frac{k}{n}\right)$

Solution. 【详解】 □

1.7 间断点的判定

- 19. (2000, 数二) 设函数 $f(x) = \frac{x}{a + e^{bx}}$ 在 $(-\infty, +\infty)$ 内连续, 且 $\lim_{x \to -\infty} f(x) = 0$, 则常数 a, b 满足
 - (A) a < 0, b < 0 (B) a > 0, b > 0
 - (C) $a \le 0, b > 0$ (D) $a \ge 0, b < 0$

第二章 一元函数微分学

2.1 导数与微分的概念

1. (2000, 数三) 设函数 f(x) 在点 x=a 处可导, 则函数 |f(x)| 在点 x=a 处不可导的充分 条件是

$$(A) f(a) = 0 \perp f'(a) = 0$$

$$(B) f(a) = 0 \perp f'(a) \neq 0$$

$$(C) f(a) > 0 \coprod f'(a) > 0$$

$$(D) \ f(a) < 0 \ \underline{\exists} \ f'(a) < 0$$

Solution.【详解】 □

2. (2001, 数一) 设 f(0) = 0, 则 f(x) 在 x = 0 处可导的充要条件为

$$(A) \lim_{h\to 0} \frac{1}{h^2} f(1-\cos h)$$
 存在

(B)
$$\lim_{h\to 0} \frac{1}{h} f(1-e^h)$$
 存在

$$(C)$$
 $\lim_{h\to 0} \frac{1}{h^2} f(h-\sin h)$ 存在

$$(D) \lim_{h\to 0} \frac{1}{h} [f(2h) - f(h)]$$
存在

3. (2016, 数一) 已知函数
$$f(x) = \begin{cases} x, & x \le 0 \\ \frac{1}{n}, & \frac{1}{n+1} < x \le \frac{1}{n}, n = 1, 2, \cdots \end{cases}$$

- (A) x = 0 是 f(x) 的第一类间断点
- (B) x = 0 是 f(x) 的第二类间断点
- (C) f(x) 在 x=0 处连续但不可导
- (D) f(x) 在 x = 0 处可导

Solution. 【详解】

2.2 导数与微分的计算

Remark (类型一分段函数求导).

4. (1997, 数一、数二) 设函数 f(x) 连续, $\varphi(x) = \int_0^1 f(xt)dt$, 且 $\lim_{x\to 0} \frac{f(x)}{x} = A(A)$ 为常数), 求 $\varphi'(x)$, 并讨论 $\varphi'(x)$ 在 x=0 处的连续性。

Solution.【详解】 □

Remark (类型二复合函数求导).

5. (2012, 数三) 设函数
$$f(x) = \begin{cases} \ln \sqrt{x}, & x \ge 1 \\ & , y = f(f(x)), \ \vec{x} \ \frac{dy}{dx} \Big|_{x=e} \end{cases}$$

Solution.【详解】 □

Remark (类型三隐函数求导).

6. (2007, 数二) 已知函数 f(u) 具有二阶导数,且 f'(0)=1,函数 y=y(x) 由方程 $y-xe^{y-1}=1$ 所确定。设 $z=f(\ln y-\sin x)$,求 $\frac{dz}{dx}\Big|_{x=0}$ 和 $\frac{d^2z}{dx^2}\Big|_{x=0}$

Remark (类型四反函数求导).

- 7. (2003, 数一、数二) 设函数 y = y(x) 在 $(-\infty, +\infty)$ 内具有二阶导数, 且 $y' \neq 0, x = x(y)$ 是 y = y(x) 的反函数。
 - (i) 将 x = x(y) 所满足的微分方程 $\frac{d^2x}{dy^2} + (y + \sin x) \left(\frac{dx}{dy}\right)^3 = 0$ 变换为 y = y(x) 满足的 微分方程
 - (ii) 求变换后的微分方程满足初始条件 $y(0) = 0, y'(0) = \frac{3}{2}$ 的解

Solution. 【详解】

Remark (类型五参数方程求导).

8. (2008, 数二) 设函数 y = y(x) 由参数方程 $\begin{cases} x = x(t) \\ y = \int_0^{t^2} \ln(1+u) du \end{cases}$ 确定, 其中 x(t) 是初值问题 $\begin{cases} \frac{dx}{dt} - 2te^{-x} = 0 \\ x|_{t=0} = 0 \end{cases}$ 的解, 求 $\frac{d^2y}{dx^2}$

Solution. 【详解】

Remark (类型六高阶导数).

9. (2015, 数二) 函数 $f(x) = x^2 \cdot 2^x$ 在 x = 0 处的 n 阶导数 $f^{(n)}(0) = ____$

Solution. 【详解】

导数应用-切线与法线

Remark (类型一直角坐标表示的曲线).

10. (2000, 数二) 已知 f(x) 是周期为 5 的连续函数, 它在 x = 0 的某个邻域内满足关系式 $f(1+\sin x)-3f(1-\sin x)=8x+\alpha(x)$, 其中 $\alpha(x)$ 是当 $x\to 0$ 时比 x 高阶的无穷小, 且 f(x) 在 x = 1 处可导, 求曲线 y = f(x) 在点 (6, f(6)) 处的切线方程。

Remark (类型二参数方程表示的曲线).

11. 曲线
$$\begin{cases} x = \int_0^{1-t} e^{-u^2} du \\ y = t^2 \ln(2 - t^2) \end{cases}$$
 在 $(0,0)$ 处的切线方程为___

Solution. 【详解】

Remark (类型三极坐标表示的曲线).

12. (1997, 数一) 对数螺线 $r=e^{\theta}$ 在点 $(\frac{\pi}{2},\frac{\pi}{2})$ 处切线的直角坐标方程为__

Solution. 【详解】

2.4 导数应用-渐近线

13. (2014, 数一、数二、数三) 下列曲线中有渐近线的是

(A)
$$y = x + \sin x$$
 (B) $y = x^2 + \sin x$

(C)
$$y = x + \sin \frac{1}{x}$$
 (D) $y = x^2 + \sin \frac{1}{x}$

Solution. 【详解】

14. (2007, 数一、数二、数三) 曲线 $y=\frac{1}{x}+\ln(1+e^x)$ 渐近线的条数为

$$(A) \ 0 \quad (B) \ 1 \quad (C) \ 2 \quad (D) \ 3$$

Solution. 【详解】

2.5 导数应用-曲率

15. (2014, 数二) 曲线 $\begin{cases} x = t^2 + 7 \\ y = t^2 + 4t + 1 \end{cases}$ 对应于 t = 1 的点处的曲率半径是

(A)
$$\frac{\sqrt{10}}{50}$$
 (B) $\frac{\sqrt{10}}{100}$ (C) $10\sqrt{10}$ (D) $5\sqrt{10}$

2.6 导数应用-极值与最值

- 17. (2000, 数二) 设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = x$, 且 f'(0) = 0, 则
 - (A) f(0) 是 f(x) 的极大值
 - (B) f(0) 是 f(x) 的极小值
 - (C) 点(0, f(0)) 是曲线 y = f(x) 的拐点
 - (*D*) f(0) 不是 f(x) 的极值, 点(0, f(0)) 也不是曲线 y = f(x) 的拐点

Solution.【详解】 □

18. (2010, 数一、数二) 求函数 $f(x) = \int_1^{x^2} (x^2 - t)e^{-t^2} dt$ 的单调区间与极值

Solution. 【详解】 □

19. (2014, 数二) 已知函数 y = y(x) 满足微分方程 $x^2 + y^2y' = 1 - y'$, 且 y(2) = 0, 求 y(x) 的极大值与极小值

Solution.【详解】 □

2.7 导数应用-凹凸性与拐点

20. (2011, 数一) 曲线 $y = (x-1)(x-2)^2(x-3)^3(x-4)^4$ 的拐点是

(A) (1,0) (B) (2,0) (C) (3,0) (D) (4,0)

Solution. 【详解】 □

2.8 导数应用-证明不等式

21. (2017, 数一、数三) 设函数 f(x) 可导, 且 f(x)f'(x) > 0, 则

$$(A) f(1) > f(-1)$$
 $(B) f(1) < f(-1)$

 $(C) |f(1)| > |f(-1)| \quad (D) |f(1)| < |f(-1)|$

Solution. 【详解】

22. (2015, 数二) 已知函数 f(x) 在区间 $[a, +\infty)$ 上具有二阶导数, f(a) = 0, f'(x) > 0, f''(x) > 0。设 b > a,曲线 y = f(x) 在点 (b, f(b)) 处的切线与 x 轴的交点是 $(x_0, 0)$,证明 $a < x_0 < b$ 。

Solution.【详解】 □

2.9 导数应用-求方程的根

23. (2003, 数二) 讨论曲线 $y = 4 \ln x + k$ 与 $y = 4x + \ln^4 x$ 的交点个数。

Solution.【详解】 □

24. (2015, 数二) 已知函数 $f(x) = \int_x^1 \sqrt{1+t^2} dt + \int_1^{x^2} \sqrt{1+t} dt$, 求 f(x) 零点的个数。

Solution. 【详解】 □

2.10 微分中值定理证明题

Remark (类型一证明含有一个点的等式).

- 25. (2013, 数一、数二) 设奇函数 f(x) 在 [-1,1] 上具有二阶导数, 且 f(1) = 1。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$;
 - (ii) 存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$ 。

Solution. 【详解】 □

26. 设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,f(1) = 0,证明:存在 $\xi \in (0,1)$,使得 $(2\xi + 1)f(\xi) + \xi f'(\xi) = 0$ 。

Remark (类型二证明含有两个点的等式).

- 27. 设 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 f(0) = 0, f(1) = 1。证明:
 - (i) 存在两个不同的点 $\xi_1, \xi_2 \in (0,1)$, 使得 $f'(\xi_1) + f'(\xi_2) = 2$;
 - (ii) 存在 $\xi, \eta \in (0, 1)$, 使得 $\eta f'(\xi) = f(\eta) f'(\eta)$ 。

Solution.【详解】 □

Remark (类型三证明含有高阶导数的等式或不等式).

- 28. (2019, 数二) 已知函数 f(x) 在 [0,1] 上具有二阶导数, 且 $f(0) = 0, f(1) = 1, \int_0^1 f(x) dx = 1$ 。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$;
 - (ii) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) < -2$ 。

第三章 一元函数积分学

3.1 定积分的概念

1. 例 1 (2007, 数一、数二、数三) 如图, 连续函数 y = f(x) 在区间 [-3,-2],[2,3] 上的图形分别是直径为 1 的上、下半圆周, 在区间 [-2,0],[0,2] 的图形分别是直径为 2 的下、上半圆周. 设 $F(x) = \int_0^x f(t)dt$, 则下列结论正确的是:

$$(A)F(3) = -\frac{3}{4}F(-2)$$

Solution. 【详解】 □

2. 例 2 (2009, 数三) 使不等式 $\int_1^x \frac{\sin t}{t} dt > \ln x$ 成立的 x 的范围是

(A) (0,1) (B)
$$\left(1, \frac{\pi}{2}\right)$$
 (C) $\left(\frac{\pi}{2}, \pi\right)$ (D) $(\pi, +\infty)$

Solution.【详解】 □

3. 例 3 (2003, 数二) 设 $I_1 = \int_0^{\frac{\pi}{4}} \frac{\tan x}{x} dx, I_2 = \int_0^{\frac{\pi}{4}} \frac{x}{\tan x} dx,$ 则

$$(A)I_1 > I_2 > 1$$
 $(B)1 > I_1 > I_2$

$$(C)I_2 > I_1 > 1$$
 $(D)1 > I_2 > I_1$

Solution.【详解】 □

3.2 不定积分的计算

4. 例 5 (2009, 数二、数三) 计算不定积分 $\int \frac{1}{1+\sqrt{\frac{1+x}{x}}} dx(x>0)$

5. 例 6 求 $\int \frac{1}{1+\sin x+\cos x} dx$

Solution.【详解】 □

3.3 定积分的计算

6. 例 7 (2013, 数一) 计算 $\int_0^1 \frac{f(x)}{\sqrt{x}} dx$, 其中 $f(x) = \int_1^x \frac{\ln(t+1)}{t} dt$

Solution.【详解】 □

7. 例 8 求下列积分:

(1)
$$\int_0^{\frac{\pi}{2}} \frac{1}{1 + (\tan x)^{\sqrt{2}}} dx$$

Solution.【详解】 □

8. 例 9 求 $\int_0^{\frac{\pi}{4}} \ln(1 + \tan x) dx$

Solution.【详解】 □

3.4 反常积分的计算

9. 例 10 (1998, 数二) 计算积分 (题目内容缺失)

Solution. 【详解】 □

3.5 反常积分敛散性的判定

10. 例 11 (2016, 数一) 若反常积分 $\int_0^{+\infty} \frac{1}{x^a(1+x)^b} dx$ 收敛, 则

$$(A) \ a < 1 \ b > 1$$

$$(B) \ a > 1 \ b > 1$$

$$(C) \ a < 1 \ a + b > 1$$

(D)
$$a > 1$$
 $a + b > 1$

Solution. 【详解】

11. 例 12 (2010, 数一、数二) 设 m, n 均为正整数, 则反常积分 $\int_0^1 \frac{\sqrt[n]{\ln^2(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性

- (A) m
- (B) n
- (C) m, n
- (D) m, n

Solution. 【详解】

3.6 变限积分函数

12. 例 13 (2013, 数二) 设函数 $f(x) = \begin{cases} \sin x, & 0 \le x < \pi \\ & , F(x) = \int_0^x f(t) dt, \\ 2, & \pi \le x \le 2\pi \end{cases}$

$$(A) x = \pi \qquad F(x)$$

(B)
$$x = \pi$$
 $F(x)$

(C)
$$F(x)$$
 $x = \pi$

(D)
$$F(x)$$
 $x = \pi$

Solution. 【详解】

- 13. 例 14 (2016, 数二) 已知函数 f(x) 在 $[0,3\pi]$ 上连续, 在 $(0,3\pi)$ 内是函数的一个原函数, 且 f(0) = 0.
 - (i) 求 f(x) 在区间 $[0,\frac{3\pi}{2}]$ 上的平均值;
 - (ii) 证明 f(x) 在区间 $[0,\frac{3\pi}{2}]$ 内存在唯一零点.

Solution.【详解】 □

3.7 定积分应用求面积

14. 例 15 (2019, 数一、数二、数三) 求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间图形的面积.

3.8 定积分应用求体积

- 15. 例 16 (2003, 数一) 过原点作曲线 $y = \ln x$ 的切线, 该切线与曲线 $y = \ln x$ 及 x 轴围成平面图形 D.
 - (i) 求 D 的面积 A;
 - (ii) 求 D 绕直线 x = e 旋转一周所得旋转体的体积 V.

Solution.【详解】 □

16. 例 17 (2014, 数二) 已知函数 f(x,y) 满足 $\frac{\partial f}{\partial y} = 2(y+1)$, 且 $f(y,y) = (y+1)^2 - (2-y) \ln y$, 求曲线 f(x,y) = 0 所围图形绕直线 y = -1 旋转所成旋转体的体积.

Solution.【详解】 □

3.9 定积分应用求弧长

17. 例 18 求心形线 $r = a(1 + \cos \theta)(a > 0)$ 的全长.

Solution. 【详解】 □

3.10 定积分应用求侧面积

18. 例 19 (2016, 数二) 设 D 是由曲线 $y = \sqrt{1 - x^2} (0 \le x \le 1)$ 与 $x = \cos^3 t$ 围成的平面区域,求 D 绕 x 轴旋转一周所得旋转体的体积和表面积.

Solution. 【详解】 □

3.11 一定积分物理应用

19. 例 20 (2020,数二) 设边长为 2a 等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度为 g,水密度为 ρ ,则该平板一侧所受的水压力为

3.12 二证明含有积分的等式或不等式

- 20. 例 21 (2000, 数二) 设函数 $S(x) = \int_0^x |\cos t| dt$.
 - (i) 当 n 为正整数, 且 $n\pi \le x < (n+1)\pi$ 时, 证明 $2n \le S(x) < 2(n+1)$;
 - (ii) $\vec{X} \lim_{x \to +\infty} \frac{S(x)}{x}$

Solution. 【详解】 □

- 21. 例 22 (2014, 数二、数三) 设函数 f(x), g(x) 在区间 [a,b] 上连续, 且 f(x) 单调增加, $0 \le g(x) \le 1$. 证明:
 - (i) $0 \le \int_a^x g(t)dt \le x a, x \in [a, b];$
 - (ii) $\int_a^{a+\int_a^b g(t)dt} f(x)dx \le \int_a^b f(x)g(x)dx$.

第四章 常微分方程

1. 例 1 (1998, 数一、数二) 已知函数 y = y(x) 在任意点 x 处的增量 $\Delta y = \frac{y\Delta x}{1+x^2} + \alpha$, 其中 α 是 Δx 的高阶无穷小, $y(0) = \pi$,则 y(1) 等于

(A)
$$2\pi$$
 (B) π (C) $e^{\frac{\pi}{4}}$ (D) $\pi e^{\frac{\pi}{4}}$

Solution.【详解】 □

2. 例 2 (2002, 数二) 已知函数 f(x) 在 $(0,+\infty)$ 内可导, f(x)>0, $\lim_{x\to+\infty}f(x)=1$, 且满足

$$\lim_{h \to 0} \left(\frac{f(x+hx)}{f(x)} \right)^{\frac{1}{h}} = e^{\frac{1}{x}}$$

求 f(x)。

Solution.【详解】 □

4.1 一阶微分方程的解法

Remark (类型一可分离变量).

3. 例 3 (1999, 数二) 求初值问题

$$\begin{cases} (y + \sqrt{x^2 + y^2})dx - xdy = 0 & (x > 0) \\ y|_{x=1} = 0 & \end{cases}$$

Remark (类型二一阶齐次).

4. 例 4 (2010, 数二、数三) 设 y_1, y_2 是一阶线性非齐次微分方程 y' + p(x)y = q(x) 的两个特解。若常数 λ, μ 使 $\lambda y_1 + \mu y_2$ 是该方程的解, $\lambda y_1 - \mu y_2$ 是该方程对应的齐次方程的解,则

(A)
$$\lambda = \frac{1}{2}$$
, $\mu = \frac{1}{2}$ (C) $\lambda = \frac{2}{3}$, $\mu = \frac{1}{3}$

Solution. 【详解】

Remark (类型三一阶线性).

- 5. 例 5 (2018, 数一) 已知微分方程 y' + y = f(x), 其中 f(x) 是 \mathbb{R} 上的连续函数。
 - (i) 若 f(x) = x, 求方程的通解;
 - (ii) 若 f(x) 是周期为 T 的函数, 证明: 方程存在唯一的以 T 为周期的解。

Solution.【详解】 □

Remark (类型四伯努利方程 (数一掌握)).

6. 例 6 求解微分方程 $y' = \frac{y}{x} + \sqrt{\frac{y^2}{x^2} - 1}$.

Solution.【详解】 □

Remark (类型五全微分方程 (数一掌握)).

7. 例 7 求解下列微分方程:

(1)
$$(2xe^y + 3x^2 - 1)dx + (x^2e^y - 2y)dy = 0;$$

(2)
$$\frac{2x}{y^3}dx + \frac{y^2 - 3x^2}{y^4}dy = 0.$$

4.2 二阶常系数线性微分方程

8. 例 8 (2017, 数二) 微分方程 $y'' - 4y' + 8y = e^{2x}(1 + \cos 2x)$ 的特解可设为 $y^* =$

(A)
$$Ae^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$$

(B)
$$Axe^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$$

(C)
$$Ae^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$$

(D)
$$Axe^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$$

Solution. 【详解】

9. 例 9 (2015, 数一) 设 $y = \frac{1}{2}e^{2x} + (x - \frac{1}{3})e^{x}$ 是二阶常系数非齐次线性微分方程 $y'' + ay' + by = ce^{x}$ 的一个特解, 则

(A)
$$a = -3, b = 2, c = -1$$

(B)
$$a = 3, b = 2, c = -1$$

$$(C)$$
 $a = -3, b = 2, c = 1$

(D)
$$a = 3, b = 2, c = 1$$

Solution. 【详解】

10. 例 10 (2016, 数二) 已知 $y_1(x) = e^x, y_2(x) = u(x)e^x$ 是二阶微分方程 (2x-1)y'' - (2x+1)y' + 2y = 0 的两个解。若 u(-1) = e, u(0) = -1,求 u(x),并写出该微分方程的通解。

Solution.【详解】 □

- 11. 例 11 (2016, 数一) 设函数 y(x) 满足方程 y'' + 2y' + ky = 0, 其中 0 < k < 1。
 - (i) 证明反常积分 $\int_0^{+\infty} y(x) dx$ 收敛;
 - (ii) 若 y(0) = 1, y'(0) = 1, 求 $\int_0^{+\infty} y(x)dx$ 的值。

Solution.【详解】 □

4.3 高阶常系数线性齐次微分方程

12. 例 12 求解微分方程 $y^{(4)} - 3y'' - 4y = 0$ 。

4.4 二阶可降阶微分方程

Remark (方法数一、数二掌握数三大纲不要求).

13. 例 13 求微分方程 $y''(x+y'^2)=y'$ 满足初始条件 y(1)=y'(1)=1 的特解。

Solution.【详解】 □

4.5 欧拉方程

Remark (方法数一掌握数二、数三大纲不要求).

14. 例 14 求解微分方程 $x^2y'' + xy' + y = 2 \sin \ln x$ 。

Solution. 【详解】 □

4.6 变量代换求解二阶变系数线性微分方程

17. 例 17 (2005, 数二) 用变量代换 $x = \cos t (0 < t < \pi)$ 化简微分方程 $(1-x^2)y'' - xy' + y = 0$, 并求其满足 $y|_{x=0} = 1, y'|_{x=0} = 2$ 的特解。

Solution. 【详解】 □

4.7 微分方程综合题

Remark (类型一综合导数应用).

18. 例 18 (2001, 数二) 设 L 是一条平面曲线, 其上任意一点 P(x,y)(x>0) 到坐标原点的距离, 恒等于该点处的切线在 y 轴上的截距, 且 L 经过点 $(\frac{1}{2},0)$ 。求曲线 L 的方程。

Remark (类型二综合定积分应用).

19. 例 19 (2009, 数三) 设曲线 y = f(x), 其中 f(x) 是可导函数, 且 f(x) > 0。已知曲线 y = f(x) 与直线 y = 0, x = 1 及 x = t(t > 1) 所围成的曲边梯形绕 x 轴旋转一周所得的 立体体积值是该曲边梯形面积值的 πt 倍, 求该曲线的方程。

Solution.【详解】 □

Remark (类型三综合变限积分).

20. 例 20 (2016, 数三) 设函数 f(x) 连续, 且满足 $\int_0^x f(x-t)dt = \int_0^x (x-t)f(t)dt + e^{-x} - 1$, 求 f(x)。

Solution. 【详解】 □

Remark (类型四综合多元复合函数).

21. 例 21 (2014, 数一、数二、数三) 设函数 f(u) 具有二阶连续导数, $z = f(e^x \cos y)$ 满足

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y)e^{2x}$$

若 f(0) = 0, f'(0) = 0, 求 f(u) 的表达式。

Solution.【详解】 □

Remark (类型五综合重积分).

22. 例 22 (2011, 数三) 设函数 f(x) 在区间 [0,1] 上具有连续导数,f(0)=1, 且满足

$$\iint_{D_t} f'(x+y)dxdy = \iint_{D_t} f(t)dxdy$$

其中 $D_t = \{(x,y) | 0 \le y \le t - x, 0 \le x \le t\} (0 < t \le 1)$, 求 f(x) 的表达式。

第五章 多元函数微分学

5.1 多元函数的概念

1. 例 1 求下列重极限:

(1)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^{\alpha} y^{\beta}}{x^2 + y^2} \quad (\alpha \ge 0, \beta \ge 0);$$
(2)
$$\lim_{\substack{x \to 0 \\ x \to 0}} \frac{xy(x^2 - y^2)}{x^2 + y^2};$$

Solution. 【详解】

2. 例 2 (2012, 数一) 如果函数 f(x,y) 在点 (0,0) 处连续, 那么下列命题正确的是

$$(A)$$
 若极限 $\lim_{\substack{x\to 0\\x\to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在,则 $f(x,y)$ 在点 $(0,0)$ 处可微

(B) 若极限
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{x^2+y^2}$$
存在,则 $f(x,y)$ 在点 $(0,0)$ 处可微

$$(C)$$
 若 $f(x,y)$ 在点 $(0,0)$ 处可微,则极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在

$$(D)$$
 若 $f(x,y)$ 在点 $(0,0)$ 处可微, 则极限 $\lim_{\substack{x\to 0\\y\to 0}}\frac{f(x,y)}{x^2+y^2}$ 存在

Solution. 【详解】

3. 例 3 (2012, 数三) 设连续函数 z = f(x, y) 满足

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y-1)^2}} = 0$$

则 $dz|_{(0,1)} =$

5.2 多元复合函数求偏导数与全微分

4. 例 4 (2021, 数一、数二、数三) 设函数 f(x,y) 可微, 且

$$f(x+1, e^x) = x(x+1)^2,$$

 $f(x, x^2) = 2x^2 \ln x$

则 df(1,1) =

$$(A) dx + dy$$
 $(B) dx - dy$ $(C) dy$

Solution. 【详解】

5. 例 5 (2011, 数一、数二) 设 z = f(xy, yg(x)), 其中函数 f 具有二阶连续偏导数, 函数 g(x) 可导, 且在 x = 1 处取得极值 g(1) = 1, 求 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{x=1,y=1}$ 。

Solution.【详解】 □

5.3 多元隐函数求偏导数与全微分

- 6. 例 6 (2005, 数一) 设有三元方程 $xy z \ln y + e^{xz} = 1$, 根据隐函数存在定理, 存在点 (0,1,1) 的一个邻域, 在此邻域内该方程
 - (A) 只能确定一个具有连续偏导数的隐函数z = z(x,y)
 - (B) 可确定两个具有连续偏导数的隐函数x = x(y, z)和z = z(x, y)
 - (C) 可确定两个具有连续偏导数的隐函数y = y(x, z)和z = z(x, y)
 - (D) 可确定两个具有连续偏导数的隐函数x = x(y, z)和y = y(x, z)

Solution. 【详解】 □

7. 例 7 (1999, 数一) 设 y = y(x), z = z(x) 是由方程 z = xf(x+y) 和 F(x,y,z) = 0 所确 定的函数, 其中 f 和 F 分别具有一阶连续导数和一阶连续偏导数, 求 $\frac{dz}{dr}$ 。

5.4 变量代换化简偏微分方程

8. 例 8 (2010, 数二) 设函数 u = f(x, y) 具有二阶连续偏导数, 且满足等式

$$4\frac{\partial^2 u}{\partial x^2} + 12\frac{\partial^2 u}{\partial x \partial y} + 5\frac{\partial^2 u}{\partial y^2} = 0$$

确定 a,b 的值, 使等式在变换 $\xi=x+ay, \eta=x+by$ 下简化为 $\frac{\partial^2 u}{\partial \xi \partial \eta}=0$ 。

Solution. 【详解】 □

5.5 求无条件极值

9. 例 9 (2003, 数一) 已知函数 f(x,y) 在点 (0,0) 的某个邻域内连续, 且

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{f(x,y) - xy}{(x^2 + y^2)^2} = 1$$

则

- (A) 点(0,0)不是f(x,y)的极值点
- (B) 点(0,0)是f(x,y)的极大值点
- (C) 点(0,0)是f(x,y)的极小值点
- (D) 根据所给条件无法判别点(0,0)是否为f(x,y)的极值点

Solution. 【详解】 □

10. 例 10 (2004, 数一) 设 z = z(x,y) 是由 $x^2 - 6xy + 10y^2 - 2yz - z^2 + 18 = 0$ 确定的函数, 求 z = z(x,y) 的极值点和极值。

5.6 求条件极值 (边界最值)

11. 例 11 (2006, 数一、数二、数三) 设 f(x,y) 与 $\varphi(x,y)$ 均为可微函数, 且 $\varphi'_y(x,y) \neq 0$ 。已 知 (x_0,y_0) 是 f(x,y) 在约束条件 $\varphi(x,y)=0$ 下的一个极值点, 下列选项正确的是

$$(A) \stackrel{\text{def}}{=} f'_x(x_0, y_0) = 0, \quad \text{If } f'_y(x_0, y_0) = 0$$

$$(B)$$
 若 $f'_x(x_0, y_0) = 0$, 则 $f'_y(x_0, y_0) \neq 0$

Solution. 【详解】 □

12. 例 12 (2013, 数二) 求曲线 $x^3 - xy + y^3 = 1 (x \ge 0, y \ge 0)$ 上的点到坐标原点的最长距离与最短距离。

Solution.【详解】 □

13. 例 13 (2014, 数二) 设函数 u(x,y) 在有界闭区域 D 上连续, 在 D 的内部具有二阶连续偏导数, 且满足 $\frac{\partial^2 u}{\partial x^2 y} \neq 0$ 及 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, 则

(A) u(x,y)的最大值和最小值都在D的边界上取得

- (B) u(x,y)的最大值和最小值都在D的内部取得
- (C) u(x,y)的最大值在D的内部取得,最小值在D的边界上取得
- (D) u(x,y)的最小值在D的内部取得,最大值在D的边界上取得

Solution. 【详解】 □

14. 例 14 (2005, 数二) 已知函数 z=f(x,y) 的全微分 dz=2xdx-2ydy, 且 f(1,1)=2, 求 f(x,y) 在椭圆域 $D=\{(x,y)|x^2+\frac{y^2}{4}\leq 1\}$ 上的最大值和最小值。

第六章 二重积分

6.1 二重积分的概念

1. 例 1 (2010, 数一、数二)

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2+j^2)} =$$

$$(A) \int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y^2)} dy \quad (B) \int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y)} dy$$

$$(C) \int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y)} dy \quad (D) \int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y^2)} dy$$

Solution. 【详解】

2. 例 2 (2016, 数三) 设 $J_i = \iint_{D_i} \sqrt[3]{x-y} dx dy (i=1,2,3)$, 其中

$$D_1 = \{(x,y)|0 \le x \le 1, 0 \le y \le 1\},$$

$$D_2 = \{(x,y)|0 \le x \le 1, 0 \le y \le \sqrt{x}\},$$

$$D_3 = \{(x,y)|0 \le x \le 1, x^2 \le y \le 1\},$$

则

(A)
$$J_1 < J_2 < J_3$$
 (B) $J_3 < J_1 < J_2$

(C)
$$J_2 < J_3 < J_1$$
 (D) $J_2 < J_1 < J_3$

6.2 交换积分次序

3. 例 3 (2001, 数一) 交换二次积分的积分次序:

$$\int_{-1}^{0} dy \int_{2}^{1-y} f(x,y) dx =$$

Solution. 【详解】 □

4. 例 5 交换 $I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(r,\theta) dr$ 的积分次序。

Solution. 【详解】 □

6.3 二重积分的计算

6. 例 6 (2011, 数一、数二) 已知函数 f(x,y) 具有二阶连续偏导数, 且 $f(1,y) = 0, f(x,1) = 0, \iint_D f(x,y) dx dy = a$, 其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$, 计算二重积分

$$I = \iint_D xy f_{xy}''(x, y) dx dy.$$

Solution. 【详解】 □

7. 例 7 计算 $\iint_D \sqrt{|y-x^2|} dx dy$, 其中 $D = \{(x,y)| -1 \le x \le 1, 0 \le y \le 2\}$ 。

Solution.【详解】 □

8. 例 8 (2018, 数二) 设平面区域 D 由曲线 $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$ (0 $\leq t \leq 2\pi$) 与 x 轴围成, 计 算二重积分 $\iint_D (x + 2y) dx dy$ 。

Solution. 【详解】 □

9. 例 9 (2007, 数二、数三) 设二元函数

$$f(x,y) = \begin{cases} x^2, & |x| + |y| \le 1\\ \frac{1}{\sqrt{x^2 + y^2}}, & 1 < |x| + |y| \le 2 \end{cases}$$

计算二重积分 $\iint_D f(x,y) dx dy$, 其中 $D = \{(x,y)||x| + |y| \le 2\}$ 。

Solution. 【详解】

10. 例 10 (2014, 数二、数三) 设平面区域 $D = \{(x,y)|1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$, 计算

$$\iint_D \frac{x \sin(\pi \sqrt{x^2 + y^2})}{x + y} dx dy.$$

Solution.【详解】 □

11. 例 11 (2019, 数二) 已知平面区域 $D = \{(x,y)||x| \leq y, (x^2 + y^2)^3 \leq y^4\}$, 计算二重积分

$$\iint_D \frac{x+y}{\sqrt{x^2+y^2}} dx dy.$$

Solution.【详解】 □

6.4 其他题型

13. 例 12 (2010, 数二) 计算二重积分 $I = \iint_D r^2 \sin \theta \sqrt{1 - r^2 \cos 2\theta} dr d\theta$, 其中 (题目描述不完整)

Solution.【详解】 □

14. 例 13 (2009, 数二、数三) 计算二重积分 $\iint_D (x-y) dx dy,$ 其中

$$D = \{(x,y)|(x-1)^2 + (y-1)^2 \le 2, y \ge x\}.$$

Solution.【详解】 □

第七章 无穷级数

7.1 数项级数敛散性的判定

1. 例 1 (2015, 数三) 下列级数中发散的是

$$(A)\sum_{n=1}^{\infty} \frac{n}{3^n} \quad (C)\sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n} \quad (D)\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

Solution. 【详解】 □

2. 例 2 (2017, 数三) 若级数 $\sum_{n=1}^{\infty} \left[\sin \frac{1}{n} - k \ln \left(1 - \frac{1}{n} \right) \right]$ 收敛, 则 k =

$$(A) \ 1 \quad (B) \ 2 \quad (C) \ -1 \quad (D) \ -2$$

Solution.【详解】 □

7.2 交错级数

3. 例 3 判定下列级数的敛散性:

$$(1)\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n-\ln n} \quad (2)\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}.$$

Solution.【详解】 □

7.3 任意项级数

4. 例 4 (2002, 数一) 设 $u_n \neq 0 (n = 1, 2, 3, \cdots)$, 且 $\lim_{n \to \infty} \frac{n}{u_n} = 1$, 则级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}} \right)$

 $(A) \qquad (B) \qquad (C) \qquad (D)$

Solution. 【详解】

5. 例 5 (2019, 数三) 若 $\sum_{n=1}^{\infty} \frac{v_n}{n}$ 条件收敛, 则

$$(A)$$
 $\sum_{n=1}^{\infty} u_n v_n$ 条件收敛 (B) $\sum_{n=1}^{\infty} u_n v_n$ 绝对收敛

$$(C)$$
 $\sum_{n=1}^{\infty} (u_n + v_n)$ 收敛 (D) $\sum_{n=1}^{\infty} (u_n + v_n)$ 发散

Solution. 【详解】

7.4 幂级数求收敛半径与收敛域

- 6. 例 6 (2015, 数一) 若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛, 则 $x = \sqrt{3}$ 与 x = 3 依次为幂级数 $\sum_{n=1}^{\infty} n a_n (x-1)^n$ 的
 - (A) , (B) ,
 - (C) , (D) ,

Solution.【详解】 □

7. 例 7 求幂级数 $\sum_{n=1}^{\infty} \frac{3n}{2n+1} x^n$ 的收敛域.

Solution.【详解】 □

7.5 幂级数求和

8. 例 8 (2005, 数一) 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \left[1 + \frac{1}{n(2n-1)}\right] x^{2n}$ 的收敛区间与和函数 f(x).

Solution.【详解】 □

9. 例 9 (2012, 数一) 求幂级数 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$ 的收敛域及和函数.

Solution. 【详解】 □

10. 例 10 (2004, 数三) 设级数 $\frac{x^4}{2\cdot 4} + \frac{x^6}{2\cdot 4\cdot 6} + \frac{x^8}{2\cdot 4\cdot 6\cdot 8} + \cdots$ $(-\infty < x < +\infty)$ 的和函数为 S(x)。求:

- (i) S(x) 所满足的一阶微分方程;
- (ii) S(x) 的表达式.

Solution.【详解】

7.6 幂级数展开

11. 例 11 (2007, 数三) 将函数 $f(x) = \frac{1}{x^2 - 3x - 4}$ 展开成 x - 1 的幂级数, 并指出其收敛区间.

Solution.【详解】 □

12. 例 12 将函数 $f(x) = \ln \frac{x}{x+1}$ 在 x = 1 处展开成幂级数.

Solution.【详解】 □

7.7 无穷级数证明题

- 13. 例 13 (2016, 数一) 已知函数 f(x) 可导, 且 $f(0) = 1,0 < f'(x) < \frac{1}{2}$ 。 设数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n)(n = 1, 2, \cdots)$ 。 证明:
 - (i) 级数 $\sum_{n=1}^{\infty} (x_{n+1} x_n)$ 绝对收敛;
 - (ii) $\lim_{n\to\infty} x_n$ 存在, 且 $0 < \lim_{n\to\infty} x_n < 2$.

Solution. 【详解】 □

- 14. 例 14 (2014, 数一) 设数列 $\{a_n\}$, $\{b_n\}$ 满足 $0 < a_n < \frac{\pi}{2}, 0 < b_n < \frac{\pi}{2}, \cos a_n a_n = \cos b_n$, 且级数 $\sum_{n=1}^{\infty} b_n$ 收敛。
 - (i) 证明 $\lim_{n\to\infty} a_n = 0$;
 - (ii) 证明级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛.

Solution.【详解】

7.8 傅里叶级数

15. 例 15 设函数

$$f(x) = \begin{cases} e^x, & -\pi \le x < 0\\ 1, & 0 \le x < \pi \end{cases}$$

则其以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于?, 在 $x = 2\pi$ 收敛于?.

Solution. 【详解】由狄利克雷收敛定理知,f(x) 以 2π 为周期的傅里叶级数在 $x=\pi$ 收敛于

$$S(\pi) = \frac{f(\pi - 0) + f(-\pi + 0)}{2} = \frac{1 + e^{-\pi}}{2}$$

在 $x = 2\pi$ 收敛于

$$S(2\pi) = S(0) = \frac{f(0-0) + f(0+0)}{2} = \frac{1+1}{2} = 1$$

16. 例 16 将 $f(x) = 1 - x^2, 0 \le x \le \pi$, 展开成余弦级数, 并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.

Solution. 【详解】对 $f(x) = 1 - x^2$ 进行偶延拓, 由 $f(x) = 1 - x^2$ 为偶函数, 知 $b_n = 0$ 。

$$a_0 = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) dx = 2\left(1 - \frac{\pi^2}{3}\right)$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) \cos nx dx = \frac{4(-1)^{n+1}}{n^2} \quad (n = 1, 2, \dots)$$

$$f(x) = 1 - x^{2} = \frac{a_{0}}{2} + \sum_{n=1}^{\infty} a_{n} \cos nx = 1 - \frac{\pi^{2}}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^{2}} \cos nx$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}$$

第八章 多元函数积分学

8.1 三重积分的计算

1. 例 1 (2013, 数一) 设直线 L 过 A(1,0,0),B(0,1,1) 两点,将 L 绕 z 轴旋转一周得到曲面

	Σ,Σ 与平面 $z=0,z=2$ 所围成的立体为 Ω .		
	(I) 求曲面 Σ 的方程;		
	(II) 求 Ω 的形心坐标.		
	Solution.【详解】 □		
2.	2. 例 2 (2019, 数一) 设 Ω 是由锥面 $x^2 + (y-z)^2 = (1-z)^2 (0 \le z \le 1)$ 与平面 $z=0$ 围成的锥体,求 Ω 的形心坐标.		
	Solution.【详解】 □		
	8.2 第一类曲线积分的计算		
3.	例 3 (2018, 数一) 设 L 为球面 $x^2+y^2+z^2=1$ 与平面 $x+y+z=0$ 的交线, 则 $\oint_L xyds=$		
	Solution.【详解】 □		
4.	例 4 设连续函数 $f(x,y)$ 满足 $f(x,y)=(x+3y)^2+\int_L f(x,y)ds$,其中 L 为曲线 $y=\sqrt{1-x^2}$,求曲线积分 $\int_L f(x,y)ds$.		
	Solution.【详解】 □		

8.3 第二类曲线积分的计算

Remark (类型一平面第二类曲线积分).

- 5. 例 5 (2021, 数一) 设 $D \subset \mathbb{R}^2$ 是有界单连通闭区域, $I(D) = \iint_D (4 x^2 y^2) dx dy$ 取得最大值的积分域记为 D_1 .
 - (I) 求 $I(D_1)$ 的值;
 - (II) 计算 $\oint_{\partial D_1} \frac{(xe^{x^2+4y^2}+y)dx+(4ye^{x^2+4y^2}-x)dy}{x^2+4y^2}$, 其中 ∂D_1 是 D_1 的正向边界.

Solution.【详解】 □

Remark (类型二空间第二类曲线积分).

6. 例 6 (2011, 数一) 设 L 是柱面 $x^2 + y^2 = 1$ 与平面 z = x + y 的交线,从 z 轴正向往 z 轴负向看去为逆时针方向,则曲线积分 $\oint_L xzdx + xdy + \frac{y^2}{2}dz =$

Solution. 【详解】 □

8.4 第一类曲面积分的计算

Remark (方法).

7. 例 7 (2010, 数一) 设 P 为椭球面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点,若 S 在点 P 的切平面与 xOy 面垂直,求 P 点的轨迹 C,并计算曲面积分

$$I = \iint_{\Sigma} \frac{(x+\sqrt{3})|y-2z|}{\sqrt{4+y^2+z^2-4yz}} dS,$$

其中 Σ 是椭球面 S 位于曲线 C 上方的部分.

Solution.【详解】 □

8.5 第二类曲面积分的计算

Remark (方法).

8. 例 8 (2009, 数一) 计算曲面积分

$$I = \oint_{\Sigma} \frac{xdydz + ydzdx + zdxdy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}},$$

其中 Σ 是曲面 $2x^2 + 2y^2 + z^2 = 4$ 的外侧.

Solution. 【详解】 □

9. 例 9 计算

$$\iint_{\Sigma} \frac{axdydz + (z+a)^2 dxdy}{(x^2 + y^2 + z^2)^2},$$

其中 Σ 为下半球面 $z = -\sqrt{a^2 - x^2 - y^2}$ 的上侧, a 为大于零的常数.

Solution.【详解】 □

10. 例 10 (2020, 数一) 设 Σ 为曲面 $z=\sqrt{x^2+y^2}(1\leq x^2+y^2\leq 4)$ 的下侧,f(x) 为连续函数,计算

$$I = \iint_{\Sigma} [xf(xy) + 2x - y] dy dz + [yf(xy) + 2y + x] dz dx + [zf(xy) + z] dx dy.$$

Solution. 【详解】 □

第九章 行列式

	行列式的概念	$\begin{cases} 定义 & n!$ 项不同行不同列元素乘积的代数和 性质
	重要行列式	上(或下)三角,主对角矩阵 副对角行列式 ab型行列式 拉普拉斯展开式 范德蒙行列式
行列式的主要内容。	展开定理	$\begin{cases} a_{i1}A_{j1} + a_{i2}A_{j2} + \dots + a_{in}A_{jn} = \begin{cases} A , & i = j \\ 0, & i = j \end{cases} \\ a_{1i}A_{1j} + a_{2i}A_{2j} + \dots + a_{ni}A_{nj} = \begin{cases} A , & i = j \\ 0, & i = j \end{cases} \\ 0, & i = j \end{cases}$
	行列式的公式	$\begin{cases} KA = K^n A \\ AB = A B \\ A^T = A \\ A^{-1} = A ^{-1} \\ A^* = A ^{n-1} \\ $ 设 A 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n, \ \ \mathbb{M} A = \prod_{i=1}^n \lambda_i \\ $ 若 A 与 B 相似, $\ \ \mathbb{M} A = B $
	Cramer 法则	$x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \dots, x_n \frac{D_n}{D}$

拉普拉斯展开式 (上, 下三角分块行列式的结论)

$$D = \begin{vmatrix} A & C \\ \mathbf{0} & D \end{vmatrix} = \begin{vmatrix} A & \mathbf{0} \\ C & D \end{vmatrix} = \det(A)\det(D)$$

对于一般分块矩阵

$$A = \begin{pmatrix} B & C \\ D & E \end{pmatrix}$$

若 B 可逆,则有如下结论

$$\det(A) = \det(B) \cdot \det(E - DB^{-1}C)$$

9.1 数字行列式的计算

Remark. 基本方法

- (1) 利用行列式的性质 (5条) 来化简
- (2) 要么出现重要行列式 (5组)
- (3) 要么展开定理 (0 比较多的时候)
 - 1. 设

$$f(x) = \begin{vmatrix} x-2 & x-1 & x-2 & x-3 \\ 2x-2 & 2x-1 & 2x-2 & 2x-3 \\ 3x-3 & 3x-2 & 4x-5 & 3x-5 \\ 4x & 4x-3 & 5x-7 & 4x-3 \end{vmatrix}$$

则方程 f(x) = 0 根的个数为 _____

Solution. 第一列乘 -1 加到其他列

$$f(x) \xrightarrow{\widehat{\mathfrak{A}}-\overline{\mathfrak{A}}, x-1} \frac{\widehat{\mathfrak{A}}-\overline{\mathfrak{A}}, x-1}{\widehat{\mathfrak{A}}} \frac{x-2}{2} \frac{1}{2x-2} \frac{0}{1} \frac{0}{2x-2} \frac{1}{3x-3} \frac{0}{1} \frac{x-2}{4x} \frac{1}{4x-3} \frac{0}{x-7} \frac{0}{-3}$$

$$\frac{\widehat{\mathfrak{A}}-\overline{\mathfrak{A}}, x-1}{2x-2} \frac{x-2}{1} \frac{1}{2x-2} \frac{0}{1} \frac{0}{3x-3} \frac{0}{1} \frac{x-2}{x-2} \frac{1}{1} \frac{0}{2x-2} \frac{0}{1} \frac{0}{2x-2} \frac{1}{1} \frac{x-2}{x-7} \frac{1}{-6}$$

$$\frac{\widehat{\mathfrak{A}}+\widehat{\mathfrak{A}+\widehat{\mathfrak{A}}+\widehat{\mathfrak{A}}+\widehat{\mathfrak{A}}+\widehat{\mathfrak{A}}+\widehat{\mathfrak{A}}+\widehat{\mathfrak{A}}+\widehat{\mathfrak{A}+\widehat{\mathfrak{A}}+$$

则
$$x = 0$$
 或 $x = 1$

2. 利用范德蒙行列式计算

范德蒙行列式
$$V(x_1, x_2, \dots, x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

$$\begin{vmatrix} a & a^2 & bc \\ b & b^2 & ac \\ c & c^2 & ab \end{vmatrix} = \underline{\qquad}$$

Solution.

41

3. 误
$$x_1x_2x_3x_4 \neq 0$$
,则
$$\begin{vmatrix} x_1 + a_1^2 & a_1a_2 & a_1a_3 & a_1a_4 \\ a_2a_1 & x_2 + a_2^2 & a_2a_3 & a_2a_4 \\ a_3a_1 & a_3a_2 & x_3 + a_3^2 & a_3a_4 \\ a_4a_1 & a_4a_2 & a_4a_3 & x_4 + a_4^2 \end{vmatrix} = \underline{\qquad}$$

Solution. 考虑加边法,为该行列式增加一行一列,变成如下行列式

原行列式 =
$$\begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ a_1 & x_1 + a_1^2 & a_1a_2 & a_1a_3 & a_1a_4 \\ a_2 & a_2a_1 & x_2 + a_2^2 & a_2a_3 & a_2a_4 \\ a_3 & a_3a_1 & a_3a_2 & x_3 + a_3^2 & a_3a_4 \\ a_4 & a_4a_1 & a_4a_2 & a_4a_3 & x_4 + a_4^2 \end{vmatrix}$$

$$= (x_1 x_2 x_3 x_4) (1 + \sum_{i=1}^4 \frac{a_i^2}{x_i})$$

爪型行列式

关键点在于**化简掉一条爪子**

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

4. 计算三对角线行列式

$$D_{n} = \begin{vmatrix} \alpha + \beta & \alpha & 0 & \cdots & 0 & 0 \\ \beta & \alpha + \beta & \alpha & \cdots & 0 & 0 \\ 0 & \beta & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha \\ 0 & 0 & 0 & \cdots & \beta & \alpha + \beta \end{vmatrix}$$

Solution.

(方法一) 递推法

$$D_{1} = \alpha + \beta$$

$$D_{2} = \alpha^{2} + \alpha\beta + \beta^{2}$$

$$\dots$$

$$D_{n} = (\alpha + \beta)D_{n-1} - \alpha\beta D_{n-2}$$

$$D_{n} - \alpha D_{n-1} = \beta(D_{n-1} - \alpha D_{n-2})$$

$$= \beta^{2}(D_{n-2} - \alpha D_{n-3})$$

$$\dots$$

$$= \beta^{n-1}(D_{2} - D_{1}) = \beta^{n}$$

$$D_{n} = \beta^{n} + \alpha D_{n-1} = \beta^{n} + \alpha(\beta^{n-1} + \alpha D_{n-2})$$

$$\dots$$

$$= \beta^{n} + \alpha\beta^{n-1} + \dots + \alpha^{n}$$

(方法二) 数学归纳法

if
$$\alpha = \beta, D_1 = 2\alpha, D_2 = 3\alpha^2, assume, D_{n-1} = n\alpha^{n-1}$$

then $D_n = D_n = (\alpha + \beta)D_{n-1} - \alpha\beta D_{n-2} = (n+1)\alpha^n$
when $\alpha \neq \beta, D_1 = \frac{\alpha^2 - \beta^2}{\alpha - \beta}, D_2 = \frac{\alpha^3 - \beta^3}{\alpha - \beta},$
Assume, $D_{n-1} = \frac{\alpha^n - \beta^n}{\alpha - \beta}, then,$
 $D_n = \dots = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$

(方法三) 二阶差分方程

$$D_n - (\alpha + \beta)D_{n-1} + \alpha\beta D_{n-2} = 0$$
$$D_{n+2} - (\alpha + \beta)D_{n+1} + \alpha\beta D_n = 0$$

类似于二阶微分方程解特征方程

$$r^{2} - (\alpha + \beta)r + \alpha\beta = 0$$

 $r_{1} = \alpha$ $r_{2} = \beta$

差分方程的关键 r^n 代换 e^{rx}

如果 $\alpha = \beta$

$$D_n = (C_1 + C_2 n)\alpha^n, D_1 = 2\alpha, D_2 = 3\alpha^2$$

得到 $C_1 = C_2 = 1, D_n = (n+1)\alpha^n$

如果 $\alpha \neq \beta$

$$D_n = C_1 \alpha^n + C_2 \beta^n, \, \text{th} D_1 = 2\alpha, D_2 = 3\alpha^2$$

$$C_1 = \frac{\alpha}{\alpha - \beta}, C_2 = \frac{-\beta}{\alpha - \beta}$$

$$D_n = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$$

Corollary 9.1.1. 如下行列式有和例题 4 完全相等的性质

$$D_{n} = \begin{vmatrix} \alpha + \beta & \alpha\beta & 0 & \cdots & 0 & 0 \\ 1 & \alpha + \beta & \alpha\beta & \cdots & 0 & 0 \\ 0 & 1 & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & 1 & \alpha + \beta \end{vmatrix}$$

$$D_n = \begin{cases} (n+1) \alpha^n, & \alpha = \beta \\ \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}, & \alpha \neq \beta \end{cases}.$$

9.2 代数余子式求和

Remark. 代数余子式求和的基本办法

- (1) 代数余子式的定义 (求一个的时候使用)
- (2) 展开定理 (求一行或者一列的时候使用)
- (3) 利用伴随矩阵的定义 (求全部代数余子式的时候使用)
 - 5. 已知

$$|A| = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 1 & 1 & 1 & 2 & 2 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix} = 27$$

(方法一) 利用展开定理构建新的矩阵来计算

$$A_{41} + A_{42} + A_{43} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 1 & 1 & 1 & 0 & 0 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix}$$

$$A_{44} + A_{45} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 0 & 0 & 0 & 1 & 1 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix}$$

但这样 |A|=27 的条件就没用到

(方法二)

直接对第四行使用展开定理,则

$$|A| = A_{41} + A_{42} + A_{43} + 2A_{44} + 2A_{45} = 27$$

直接对第二行使用展开定理,则

$$|A| = 2A_{41} + 2A_{42} + 2A_{43} + A_{44} + A_{45} = 0$$

相当于解 A+2B=27, 2A+B=0, 容易计算 $A_{41}+A_{42}+A_{43}=-9, A_{44}+A_{45}=18$ □

6. 设

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 \\ n & 0 & 0 & \cdots & 0 \end{pmatrix}$$

则 |A| 的所有代数余子式的和为______

Solution. 对于求所有代数余子, 基本都是考察 A^* 的定义, 即

$$A^* = \begin{pmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{pmatrix},$$

又由于 $A^* = |A| A^{-1}$, 对于这道题

$$|A| = (-1)^{(n+1)} n!$$

 A^{-1} 可以通过分块矩阵来求

$$|A|A^{-1} = |A| \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 \\ \hline n & 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$= |A| \begin{pmatrix} 0 & & \frac{1}{n} \\ \hline diag(1, \frac{1}{2}, \dots, \frac{1}{n-1}) & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & & \frac{1}{n}|A| \\ \hline diag(|A|, \frac{|A|}{2}, \dots, \frac{|A|}{n-1}) & 0 \end{pmatrix}$$

则所有代数余子式之和为

$$(-1)^{(n+1)}n!\sum_{i=1}^{n}\frac{1}{i}$$

9.3 抽象行列式的计算

Remark. 抽象行列式的计算方法

- (1) 通过行列式的性质
- (2) 行列式的公式 (7 个)
 - 7. (2005, 数一、二) 设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量, $A = (\alpha_1, \alpha_2, \alpha_3)$, $B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3)$.若 |A| = 1,则 |B| =______

Solution.

(方法一利用性质)

$$B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3)$$

$$= (\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + 3\alpha_3, \alpha_2 + 5\alpha_3)$$

$$= 2(\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + 3\alpha_3, \alpha_3)$$

$$= 2(\alpha_1, \alpha_2, \alpha_3)$$

$$|B| = 2|A| = 2$$

(方法二分块矩阵)

$$B = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 9 \end{pmatrix}$$
$$|B| = |A| \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 9 \end{vmatrix} = |A|(2-1)(3-1)(3-2) = 2$$

8. 设 A 为 n 阶矩阵, α, β 为 n 维列向量. 若 |A|=a, $\begin{vmatrix}A&\alpha\\\beta^T&b\end{vmatrix}=0$, 则 $\begin{vmatrix}A&\alpha\\\beta^T&c\end{vmatrix}=$

Solution. 这道题的关键在于巧妙构建行列式的和

$$\begin{vmatrix} A & \alpha \\ \beta^T & c \end{vmatrix} = \begin{vmatrix} A & \alpha + 0 \\ \beta^T & b + c - b \end{vmatrix}$$
$$= \begin{vmatrix} A & \alpha \\ \beta^T & b \end{vmatrix} + \begin{vmatrix} A & 0 \\ \beta^T & c - b \end{vmatrix}$$
$$= |A|(c - b) = a(c - b)$$

9. 设 A 为 2 阶矩阵,
$$B=2\left(\begin{array}{cc} (2A)^{-1}-(2A)^* & 0\\ 0 & A \end{array}\right)$$
 若 $|A|=-1$, 则 $|B|=$ ______

Solution. 这道题比较纯粹就是行列式公式的应用

$$|B| = 2^{4} |A| \cdot \left| (2A)^{-1} - (2A)^{*} \right|$$

$$= 2^{4} |A| \cdot \left| \frac{1}{2} A^{-1} - 2A^{*} \right|$$

$$= 2^{4} \left| \frac{1}{2} E - 2|A| \right| = 100$$

10. 设 n 阶矩阵 A 满足 $A^2 = A$, $A \neq E$, 证明 |A| = 0

易错点

由 $|A|^2 = |A| \implies |A| = 1$ 或 = 0,又 $A \neq E \implies |A| \neq 1$,故 |A| = 0 注意矩阵不等关系是无法推出行列式的不等关系的,矩阵式数表只要顺序不同就不一样,但不一样的矩阵其行列式完全有可能相等.

等于 1 的矩阵并非只能是 E

Solution.

(方法一, 反证法) 若 $|A| \neq 0$, 则 A 可逆, 对于等式 $A^2 = A$ 两边同乘 A^{-1} , 则 A = E 与 题设矛盾, 故 $|A| \neq 0$

(方法二, 秩) 由于 $A(A-E)=0 \implies r(A)+r(A-E) \le n$, 又 $A \ne E$, $r(A-E) \ge 1$, 故 $r(A) \le n$, 故 |A|=0

(方法三, 方程组) 由于 A(A-E) = 0, 且 $A \neq E$ 可知方程 AX = 0 有非零解即 (A-E) ,故 r(A) < n, |A| = 0

(方法四, 特征值与特征向量) 由于 $A(A-E)=0, A\neq E$, 取 A-E 的非零列向量 $\beta\neq 0, A\beta=0$ 故由特征值与特征值向量的定义,A 由特征值 0, 而 $|A|=\prod_{i=1}^n \lambda_i=0$

总结

若 AB = 0 有如下结论

- $(1) \ r(A) + r(B) \le n$
- (2)B 的列向量均为方程 AX = 0 的解
- (3) 若 $A_{n \times n}$, 则 B 的非零列向量均为 A 的特征值为 0 的特征向量

第十章 矩阵

10.1 求高次幂

Remark. 基本方法

- (1) 若 r(A) = 1, 则 $A^n = tr(A)^{n-1}A$, 关键点在于 $r(A) = 1 \implies A = \alpha \beta^T$
- (2) 若 A 可以分解为 E + B, 且 B 是类似于如下形式 (非零元素仅在对角线的上方或下方) 的矩阵则有如下结论.

$$A^n = C_n^n E + C_n^1 B + C_n^2 B^2$$

(3) 分块矩阵

$$A = \begin{pmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{C} \end{pmatrix}, A^n = \begin{pmatrix} \mathbf{B}^n & \mathbf{0} \\ \mathbf{0} & \mathbf{C}^n \end{pmatrix}$$

(4) 相似对角化

 $P^{-1}AP = \Lambda \text{ III } A = P\Lambda P^{-1},$

$$A^{n} = P\Lambda^{n}P^{-1} = Pdiag(\lambda_{1}^{n}, \dots, \lambda_{n}^{n})P^{-1}$$

1. 设
$$A = \begin{pmatrix} 2 & -1 & 3 \\ a & 1 & b \\ 4 & c & 6 \end{pmatrix}$$
, $B 为 3 阶矩阵, 满足 $BA = O$, 且 $r(B) > 1$, 则 $A^n = \underline{\hspace{1cm}}$.$

Solution. 由 BA = 0 知 $r(A) + r(B) \le n$, 又 r(B) > 1, $r(A) \ge 1$ 所以 $1 \le r(A) \le n$

$$1, \Longrightarrow r(A) = 1,$$

$$A = \begin{pmatrix} 2 & -1 & 3 \\ a & 1 & b \\ 4 & c & 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} 1, & -1, & 2 \end{pmatrix}$$

$$A^{n} = tr(A)^{n-1}\alpha\beta^{T} = 9^{n-1} \begin{pmatrix} 2 & -1 & 3 \\ -2 & 1 & -3 \\ 4 & -2 & 6 \end{pmatrix}$$

2. 设
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}$$
 则 $A^n =$ ______.

Solution.
$$A = 2E + B, B = \begin{pmatrix} 0 & 0 & 0 \\ -3 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix}, B^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -3 & 0 & 0 \end{pmatrix}, B^3 = \mathbf{0}, \text{ M}$$

$$A^n = 2^n E + 2^{n-1} nB + 2^{n-3} n(n-1)B^2$$

3. 设
$$A = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -3 & 6 & -3 \end{pmatrix}$$
 P 为 3 阶可逆矩阵, $B = P^{-1}AP$, 则 $(B + E)^{100} =$ _____

Solution.
$$r(A) = 1, A^2 = tr(A) \cdot A = -2A$$
 即 $A^2 + 2A = \mathbf{0}, (A+E)^2 = E$, 由题 $(B+E)^{100} = (P^{-1}AP + E)^{100} = (P^{-1}AP + P^{-1}EP)^{100} = (P^{-1}(A+E)P)^{100} = E$

逆的判定与计算 10.2

- 4. 设 n 阶矩阵 A 满足 $A^2 = 2A$, 则下列结论不正确的是:
 - (A) A 可逆
- (B) A E 可逆 (C)A + E 可逆
- (D)A 3E 可逆

5. 设 A, B 为 n 阶矩阵, a, b 为非零常数. 证明:

- (a) 若 AB = aA + bB, 则 AB = BA;
- (b) 若 $A^2 + aAB = E$, 则 AB = BA.

总结

思结
$$(1)A_{n\times n}B_{n\times n} = E \implies \begin{cases} \overrightarrow{\text{可逆}} \\ \overrightarrow{\text{求逆}}, B = A^{-1}, A = B^{-1} \\ \overrightarrow{\text{满足交换律}}, AB = BA \end{cases}$$

$$(2)AB \overrightarrow{\text{可交换的充分条件}} \begin{cases} B = f(A), A^{-1}, A^* \\ AB = aA + bB(a, b \neq 0) \\ A^2 + aAB = E, (a \neq 0) \end{cases}$$

(2)
$$AB$$
 可交换的充分条件
$$\begin{cases} B = f(A), A^{-1}, A^* \\ AB = aA + bB(a, b \neq 0) \\ A^2 + aAB = E, (a \neq 0) \end{cases}$$

6. 设
$$A = \begin{pmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{pmatrix}$$
 满足 $A^3 = O$.

- (a) 求 a 的值;
- (b) 若矩阵 X 满足 $X XA^2 AX + AXA^2 = E$, 求 X.

10.3 秩的计算与证明

Remark. 秩

秩的定义: $\exists r$ 阶子式非零且 $\forall r+1$ 阶子式均为零秩的性质

(1) 设 A 为 $m \times n$ 阶矩阵, 则 $r(A) < \min\{m, n\}$

- (2) $r(A+B) \le r(A) + r(B)$
- $(3) r(AB) \le \min\{r(A), r(B)\}$
- (4) $\max\{r(A), r(B)\} \le r(A \mid B) \le r(A) + r(B)$
- $(5) r(A) = r(kA)(k \neq 0)$
- (6) 设 A 为 $m \times n$ 阶矩阵,P 为 m 阶可逆矩阵,Q 为 n 阶可逆矩阵, 则 r(A) = r(PA) = r(AQ) = r(PAQ)
- (7) 设 A 为 $m \times n$ 阶矩阵, 若 r(A) = n 则 r(AB) = r(B), 若 r(A) = m 则 r(CA) = r(C) 左乘列满秩, 右乘行满秩, 秩不变
- (8) $r(A) = r(A^T) = r(A^T A) = r(AA^T)$
- (9) 设 A 为 $m \times n$ 阶矩阵, B 为 $n \times s$ 阶矩阵, AB = 0, 则 $r(A) + r(B) \le n$
 - 7. (2018, 数一、二、三) 设 A, B 为 n 阶矩阵,(XY) 表示分块矩阵, 则:
 - (a) r(A AB) = r(A)
 - (b) r(A BA) = r(A)
 - (c) $r(A B) = \max\{r(A), r(B)\}$
 - (d) $r(A B) = r(A^T B^T)$

8. 设 A 为 n 阶矩阵, 证明:

- (II) 若 $A^2 = E$, 则 r(A + E) + r(A E) = n.

10.4 关于伴随矩阵

Remark. 伴随矩阵的性质

(1)
$$AA^* = A^*A = |A| \xrightarrow{|A| \neq 0} A^{-1} = \frac{1}{|A|}A^*, A^* = |A|A^{-1}$$

$$(2) (kA)^* = k^{n-1}A^*$$

(3)
$$(AB)^* = B^*A^*$$

$$(4) |A^*| = |A|^{n-1}$$

$$(5) (A^T)^* = (A^*)^T$$

(6)
$$(A^{-1})^* = (A^*)^{-1} = \frac{A}{|A|}$$

$$(7) (A^*)^* = |A|^{n-2} A$$

(8)
$$r(A) = \begin{cases} n, & r(A) = n \\ 1, & r(A) = n - 1 \\ 0, & r(A) < n - 1 \end{cases}$$

- 9. 设 n 阶矩阵 A 的各列元素之和均为 2, 且 |A|=6, 则 A^* 的各列元素之和均为:

 - (A) 2 (B) $\frac{1}{3}$ (C) 3
- (D)6

10. 设 $A = (a_{ij})$ 为 $n(n \ge 3)$ 阶非零矩阵, A_{ij} 为 a_{ij} 的代数余子式,证明:

(a)
$$a_{ij} = A_{ij}(i, j = 1, 2, \dots, n) \Leftrightarrow A^* = A^T \Leftrightarrow AA^T = E \perp |A| = 1;$$

(b)
$$a_{ij} = -A_{ij}(i, j = 1, 2, \dots, n) \Leftrightarrow A^* = -A^T \Leftrightarrow AA^T = E \perp |A| = -1.$$

10.5 初等变换与初等矩阵

Remark. 初等变换与初等矩阵的性质

- (1) |E(i,j)| = -1, |E(i(k))| = k, |E(ij(k))| = 1
- (2) $E(i,j)^T = E(i,j), E(i(k))^T = E(i(k)), E(ij(k))^T = E(ji(k))$
- (3) $E(i,j)^{-1} = E(i,j), E(i(k))^{-1} = E(i(\frac{1}{k})), E(ij(k)^{-1}) = E(ij(-k))$
- (4) 初等行(列)变换相当于左(乘)对应的初等矩阵
- (5) 可逆矩阵可以写成有限个初等矩阵的乘积
- 11. (2005, 数一、二) 设 A 为 $n(n \ge 2)$ 阶可逆矩阵, 交换 A 的第 1 行与第 2 行得到矩阵 B, 则:
 - (A) 交换 A^* 的第 1 列与第 2 列, 得 B^*
 - (B) 交换 A^* 的第 1 行与第 2 行, 的 B^*
 - (C) 交换 A^* 的第 1 列与第 2 列, 得 $-B^*$
 - (D) 交换 A 的第 1 行与第 2 行, 得 $-B^*$

12. 设

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \quad P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\text{III } (P^{-1})^{2023} A(Q^T)^{2022} = \underline{\hspace{1cm}}.$$

第十一章 向量

11.1 知识体系

11.2 线性表示的判定与计算

- 1. 设向量组 α, β, γ 与数 k, l, m 满足 $k\alpha + l\beta + m\gamma = 0$ $(km \neq 0)$,则
 - (A) α, β 与 α, γ 等价
 - (B) $\alpha, \beta 与 \beta, \gamma$ 等价
 - (C) α, γ 与 β, γ 等价
 - (D) α 与 γ 等价

- 2. (2004, 数三) 设 $\alpha_1 = (1,2,0)^T$, $\alpha_2 = (1,a+2,-3a)^T$, $\alpha_3 = (-1,-b-2,a+2b)^T$, $\beta = (1,3,-3)^T$ 。 当 a,b 为何值时,
 - (I) β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示
 - (II) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 唯一地线性表示,并求出表示式;
 - (III) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, 但表示式不唯一, 并求出表示式。

3. (2019, 数二、三) 设向量组 (I) $\alpha_1 = (1,1,4)^T$, $\alpha_2 = (1,0,4)^T$, $\alpha_3 = (1,2,a^2+3)^T$; 向量组 (II) $\beta_1 = (1,1,a+3)^T$, $\beta_2 = (0,2,1-a)^T$, $\beta_3 = (1,3,a^2+3)^T$ 。若向量组 (I) 与 (II) 等价,求 a 的值,并将 β_3 由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。

11.3 线性相关与线性无关的判定

- 4. (2014, 数一、二、三) 设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量,则对任意常数 $k, l, \alpha_1 + k\alpha_3, \alpha_2 + l\alpha_3$ 线性无关是 $\alpha_1, \alpha_2, \alpha_3$ 线性无关的
 - (A) 必要非充分条件
 - (B) 充分非必要条件
 - (C) 充分必要条件
 - (D) 既非充分又非必要条件

5. 设 A 为 n 阶矩阵, $\alpha_1,\alpha_2,\alpha_3$ 均为 n 维列向量,满足 $A^2\alpha_1=A\alpha_1\neq 0,$ $A^2\alpha_2=\alpha_1+A\alpha_2,$ $A^2\alpha_3=\alpha_2+A\alpha_3$,证明 $\alpha_1,\alpha_2,\alpha_3$ 线性无关。

6. 设 4 维列向量 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,与 4 维列向量 β_1,β_2 两两正交,证明 β_1,β_2 线性相 关。

11.4 极大线性无关组的判定与计算

- - (I) 当 a 为何值时,该向量组线性相关,并求其一个极大线性无关组;
 - (II) 当 a 为何值时,该向量组线性无关,并将 $\alpha = (4,1,6,10)^T$ 由其线性表示。

8. 证明:

- (I) 设 A, B 为 $m \times n$ 矩阵,则 $r(A+B) \le r(A) + r(B)$;
- (II) 设 A 为 $m \times n$ 矩阵,B 为 $n \times s$ 矩阵,则 $r(AB) \le \min\{r(A), r(B)\}$ 。

11.5 向量空间 (数一专题)

Remark. 向量空间

过度矩阵

由基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 到基 $\beta_1, \beta_2, \dots, \beta_n$ 的过渡矩阵为 $(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)C$ 即 $C = (\alpha_1, \alpha_2, \dots, \alpha_n)^{-1}(\beta_1, \beta_2, \dots, \beta_n)$

坐标转换公式

设向量 γ 在基 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 中的坐标为 $x = (x_1, x_2, \ldots, x_n)^T$, 在基 $\beta_1, \beta_2, \ldots, \beta_n$ 中的坐标为 $y = (y_1, y_2, \ldots, y_n)^T$ 则坐标转换公式为 x = Cy

- 8. (2015, 数一) 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 为 R^3 的一个基, $\beta_1 = 2\alpha_1 + 2k\alpha_3$, $\beta_2 = 2\alpha_2$, $\beta_3 = \alpha_1 + (k+1)\alpha_3$ 。
 - (a) (I) 证明向量组 β_1,β_2,β_3 为 R^3 的一个基:
 - (b) (II) 当 k 为何值时,存在非零向量 ξ 在基 $\alpha_1, \alpha_2, \alpha_3$ 与基 $\beta_1, \beta_2, \beta_3$ 下的坐标相同,并求所有的 ξ 。

第十二章 线性方程组

12.1 知识体系

12.2 解的判定

- 1. (2001, 数三) 设 A 为 n 阶矩阵, α 为 n 维列向量, 且 $\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} = r(A)$,则线性方程组
 - (A) $Ax = \alpha$ 有无穷多解
 - (B) $Ax = \alpha$ 有唯一解

(C)
$$\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$
 只有零解

(D)
$$\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$
 有非零解

- 2. 设 A 为 $m \times n$ 阶矩阵, 且 r(A) = m < n, 则下列结论不正确的是
 - (A) 线性方程组 $A^Tx = 0$ 只有零解
 - (B) 线性方程组 $A^TAx = 0$ 有非零解
 - (C) $\forall b$, 线性方程组 $A^T x = b$ 有唯一解
 - (D) $\forall b$, 线性方程组 Ax = b 有无穷多解

12.3 求齐次线性方程组的基础解系与通解

- 3. (2011, 数一, 二) 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 为 4 阶矩阵, $(1,0,1,0)^T$ 为线性方程组 Ax = 0 的基础解系,则 $A^*x = 0$ 的基础解系可为
 - (A) α_1, α_2
 - (B) α_1, α_3
 - (C) $\alpha_1, \alpha_2, \alpha_3$
 - (D) $\alpha_2, \alpha_3, \alpha_4$

4. (2005, 数一、二) 设 3 阶矩阵 A 的第 1 行为 (a,b,c), a,b,c 不全为零, $B=\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & k \end{pmatrix}$

满足 AB = O,求线性方程组 Ax = 0 的通解。

5. (2002, 数三) 设线性方程组

$$\begin{cases} ax_1 + bx_2 + bx_3 + \dots + bx_n &= 0 \\ bx_1 + ax_2 + bx_3 + \dots + bx_n &= 0 \\ bx_1 + bx_2 + ax_3 + \dots + bx_n &= 0 \\ \vdots && & \\ bx_1 + bx_2 + bx_3 + \dots + ax_n &= 0 \end{cases}$$

其中 $a \neq 0, b \neq 0, n \geq 2$ 。当 a, b 为何值时,方程组只有零解、有非零解,当方程组有非零解时,求其通解。

12.4 求非齐次线性方程组的通解

6. 设 A 为 4 阶矩阵, k 为任意常数, η_1, η_2, η_3 为非齐次线性方程组 Ax = b 的三个解, 满足

$$\eta_1 + \eta_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \quad \eta_2 + 2\eta_3 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}.$$

若 r(A) = 3 则 Ax = b 的通解为()

$$(A)\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} + k\begin{pmatrix} -1\\0\\1\\2 \end{pmatrix} (B)\begin{pmatrix} 2\\3\\4\\5 \end{pmatrix} + k\begin{pmatrix} 1\\2\\0\\1 \end{pmatrix} (C)\begin{pmatrix} 0\\1\\2\\3 \end{pmatrix} + k\begin{pmatrix} -1\\0\\1\\2\\3 \end{pmatrix} (D)\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + k\begin{pmatrix} 1\\2\\0\\1 \end{pmatrix}$$

- 7. (2017, 数一、三、三) 设 3 阶矩阵 $A=(\alpha_1,\alpha_2,\alpha_3)$ 有三个不同的特征值, 其中 $\alpha_3=\alpha_1+2\alpha_2$ 。
 - (I) 证明 r(A) = 2;
 - (II) 若 $\beta = \alpha_1 + \alpha_2 + \alpha_3$,求线性方程组 $Ax = \beta$ 的通解。

8. 设
$$A = \begin{pmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{pmatrix}, b = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$$
, 线性方程组 $Ax = b$ 有两个不同的解.

- (I) 求 λ , a 的值;
- (II) 求方程组 Ax = b 的通解。

- 9. 设 A 为 $m \times n$ 阶矩阵, 且 r(A) = r, 若 $\xi_1 \xi_2 \dots \xi_{n-r}$ 为齐次方程组 Ax = 0 的基础解系, η 为非其次线性方程组 Ax = b 的特解, 证明:
 - (I) $η, ξ_1, ξ_2, ..., ξ_{n-r}$ 线性无关
 - (II) $\eta, \eta + \xi_1, \eta + \xi_2, \cdots, \eta + \xi_{n-r}$ 线性无关;
 - (III) $\eta, \eta + \xi_1, \eta + \xi_2, \dots, \eta + \xi_{n-r}$ 为 Ax = b 所有解的极大线性无关组。

12.5 解矩阵方程

10. 设
$$A = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & -1 \\ -2 & 0 & 2 \end{pmatrix}$$
 矩阵 X 满足 $AX + E = A^{2022} + 2X$,求矩阵 X 。

11. (例 4.11) (2014, 数一、二、三) 设
$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix}$$

- (a) (I) 求线性方程组 Ax = 0 的一个基础解系;
- (b) (II) 求满足 AB = E 的所有矩阵 B。

12.6 公共解的判定与计算

12. (2007, 数三) 设线性方程组

(I)
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \end{cases}$$

与方程

$$(II)x_1 + 2x_2 + x_3 = a - 1$$

有公共解,求 a 的值及所有公共解。

13. 设齐次线性方程组

(I)
$$\begin{cases} 2x_1 + 3x_2 - x_3 = 0 \\ x_1 + 2x_2 + x_3 - x_4 = 0 \end{cases}$$

齐次线性方程组 (II) 的一个基础解系为 $\alpha_1 = (2, -1, a+2, 1)^T$, $\alpha_2 = (-1, 2, 4, a+8)^T$

- (1) 求方程组(I)的一个基础解系;
- (2) 当 a 为何值时, 方程组 (I) 与 (II) 有非零公共解, 并求所有非零公共解。

14. (2005, 数三) 设线性方程组

(I)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 3x_2 + 5x_3 = 0 \\ x_1 + x_2 + ax_3 = 0 \end{cases}$$

与 (II)

$$\begin{cases} x_1 + bx_2 + cx_3 = 0 \\ 2x_1 + b^2x_2 + (c+1)x_3 = 0 \end{cases}$$

同解,求a,b,c的值。

第十三章 特征值与特征向量

13.1 特征值与特征向量的计算

1. 设

求 A 的特征值与特征向量。

Solution. 【详解】

2. (2003, 数一) 设

$$A = \begin{pmatrix} 5 & -2 & 3 \\ 3 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \quad B = P^{-1}A^*P$$

求 B + 2E 的特征值与特征向量。

Solution. 【详解】

3. 设

$$A = \begin{pmatrix} 1 & 2 & 2 \\ -1 & 4 & -2 \\ 1 & -2 & a \end{pmatrix}$$

的特征方程有一个二重根, 求 A 的特征值与特征向量。

Solution. 【详解】 □

	E阵 A 满足 $A^2 = O$,则 A 的线性无关的特征向量的	个数是
--	--	-----

- (a) (A) 0
- (b) (B) 1
- (c) (C) 2
- (d) (D) 3

- 5. 设 $A = \alpha \beta^T + \beta \alpha^T$, 其中 α, β 为 3 维单位列向量,且 $\alpha^T \beta = \frac{1}{3}$,证明:
 - (a) (I) 0 为 A 的特征值;
 - (b) (II) $\alpha + \beta, \alpha \beta$ 为 A 的特征向量;
 - (c) (III) A 可相似对角化。

13.2 相似的判定与计算

6. (2019, 数一、二、三) 设

$$A = \begin{pmatrix} 2 & 2 & 1 \\ 2 & 0 & 0 \\ -1 & -1 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$

(I) 求 x,y 的值; (II) 求可逆矩阵 P,使得 $P^{-1}AP = B$ 。

7. 设 n 阶矩阵 A 与 B 相似,满足 $A^2 = 2E$,则 |AB + A - B - E| = ______。

13.3 相似对角化的判定与计算

8. (2005, 数一、二) 设 3 阶矩阵 A 的特征值为 1, 3, -2,对应的特征向量分别为 $\alpha_1, \alpha_2, \alpha_3$ 。 若

$$P = (\alpha_1, 2\alpha_2, -\alpha_3)$$

则 $P^{-1}AP =$ _____。

Solution.【详解】 □

9. 设 n 阶方阵 A 满足 $A^2 - 3A + 2E = O$, 证明 A 可相似对角化。

Solution. 【详解】 □

- 10. (2020, 数一、二、三) 设 A 为 2 阶矩阵, $P = (\alpha, A\alpha)$,其中 α 为非零向量且不是 A 的 特征向量。
 - (a) (I) 证明 P 为可逆矩阵;
 - (b) (II) 若 $A^2\alpha + 6A\alpha 10\alpha = 0$, 求 $P^{-1}AP$, 并判断 A 是否相似于对角矩阵。

Solution.【详解】 □

13.4 实对称矩阵的计算

11. (2010, 数二、三) 设

$$A = \begin{pmatrix} 0 & 1 & 4 & 1 \\ 1 & 3 & a & 1 \\ 4 & a & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

正交矩阵 Q 使得 Q^TAQ 为对角矩阵。若 Q 的第 1 列为 $\frac{1}{\sqrt{6}}(1,2,1,0)^T$,求 a,Q。

Solution.【详解】 □

12. 设 3 阶实对称矩阵 A 满足 $A^2 + A = O$, A 的各行元素之和均为零, 且 r(A) = 2。

- (a) (I) 求 A 的特征值与特征向量;
- (b) (II) 求矩阵 A。

Solution.【详解】

第十四章 二次型

14.1 求二次型的标准形

- 1. (2016,数二、三)设二次型 $f(x_1,x_2,x_3)=ax_1^2+ax_2^2+(a-1)x_3^2+2x_1x_3-2x_2x_3$ 的正、负惯性指数分别为 1, 2, 则
 - (a) a > 1
 - (b) a < -1
 - (c) -1 < a < 1
 - (d) a = 1 或 a = -1

Solution.【详解】 □

- 2. (2022, 数一) 设二次型 $f(x_1, x_2, x_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} ijx_i x_j$ 。
 - (a) 求 $f(x_1, x_2, x_3)$ 对应的矩阵;
 - (b) 求正交变换 x = Qy, 将 $f(x_1, x_2, x_3)$ 化为标准形;
 - (c) 求 $f(x_1, x_2, x_3) = 0$ 的解。

Solution.【详解】

- 3. (2020,数一、三)设二次型 $f(x_1,x_2)=4x_1^2+4x_2^2+4x_1x_2$ 经正交变换 $\begin{pmatrix} x_1\\x_2 \end{pmatrix}=Q\begin{pmatrix} y_1\\y_2 \end{pmatrix}$ 化为二次型 $g(y_1,y_2)=y_1^2+by_2^2$,其中 $b\geq 0$ 。
 - (a) 求 a,b 的值;
 - (b) 求正交矩阵 Q。

Solution.【详解】 □

14.2 合同的判定

- 4. (2008, 数二、三)设 $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$,与 A 合同的矩阵是
 - (a) $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$
 - (b) $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$
 - (c) $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$
 - (d) $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$

Solution. 【详解】

- 5. 设 A, B 为 n 阶实对称可逆矩阵,则存在 n 阶可逆矩阵 P,使得
 - (a) PAP = B;
 - (b) $P^{-1}ABP = BA$;
 - (c) $P^{-1}AP = B$;
 - (d) $P^T A P = B_{\circ}$

成立的个数是

- (a) 1
- (b) 2
- (c) 3
- (d) 4

Solution. 【详解】

14.3 二次型正定与正定矩阵的判定

6.	$(2017, 数一、二、三)$ 设 A 为 $m \times n$ 阶矩阵,且 $r(A) = n$,则下列结论	
	(a) $A^T A$ 与单位矩阵等价;	
	(b) $A^T A$ 与对角矩阵相似;	
	(c) $A^T A$ 与单位矩阵合同;	
	(d) A^TA 正定。	
	正确的个数是	
	(a) 1	
	(b) 2	
	(c) 3	
	(d) 4	
	Solution.【详解】	
7.	证明:	
	(a) 设 A 为 n 阶正定矩阵, B 为 n 阶反对称矩阵,则 $A-B^2$ 为正定矩阵;	
	(b) 设 A, B 为 n 阶矩阵,且 $r(A+B) = n$,则 $A^TA + B^TB$ 为正定矩阵。	
	Solution. 【详解】	

第十五章 事件与概率论

15.1 事件的关系、运算与概率的性质

- 1. 事件: 样本点的集合
- 2. 事件的关系 (3+1): 包含, 互斥, 对立 + 独立
- 3. 事件的运算 (3 个): 交, 并, 补

Remark. (事件的运算律)

- (1) 交換律 $A \cup B = B \cup A, AB = BA$
- (2) 结合律 $A \cup (B \cup C) = (A \cup B) \cup A, A(BC) = (AB)C$
- (3) 分配律 $A \cup (BC) = (A \cup B)(A \cup C), A(B \cup C) = (AB) \cup (AC)$
- (4) 摩根律 $\overline{A \cup B} = \overline{A}\overline{B}, \overline{(AB)} = \overline{A} \cup \overline{B}$
- (5) 吸收律 $A \cup (AB) = A, A(A \cup B) = A$
 - 1. 设 A, B 为随机事件, 且 $P(A) = P(B) = \frac{1}{2}, P(A \cup B) = 1$, 则

$$(A)\ A\cup B=\Omega\quad (B)\ AB=\varnothing\quad (C)\ P(\bar{A}\cup\bar{B})=1\quad (D)\ P(A-B)=0$$

Solution. 由加法公式 $P(A \cup B) = P(A) + P(B) - P(AB) \implies P(AB) = 0$

注意由概率并不能推断事件, 所以 (A)(B) 均不正确

对于 (C) 选项 $P(\bar{A} \cup \bar{B}) = 1 - P(\overline{AB}) = 1$ 正确

对于 (D) 选项, 由减法公式 $P(A - B) = P(A) - P(AB) = \frac{1}{2}$

总结

- (1) 必然事件发生的概率为 1, 但概率为一的事件不一定是必然事件
- (2) 不可能事件发生的概率为 0, 但概率为零的事件不一定是不可能事件 这两个结论考虑**连续型随机变量**即可
- 2. (2020, 数一、三) 设 A, B, C 为随机事件,且 $P(A) = P(B) = P(C) = \frac{1}{4}, P(AB) = 0, P(AC) = P(BC) = \frac{1}{12}, 则 <math>A, B, C$ 只有一个事件发生的概率为

(A)
$$\frac{3}{4}$$
 (B) $\frac{2}{3}$ (C) $\frac{1}{2}$ (D) $\frac{5}{12}$

Solution. 这种题一般考虑 Venn 图, 比用公式展开简单很多

则只有一个事件发生的概率为 $(\frac{1}{4} - \frac{1}{12}) \times 2 + \frac{1}{4} - 2 \times \frac{1}{12} = \frac{5}{12}$

3. 设随机事件 A,B 满足 $AB=\bar{A}\bar{B},$ 且 0< P(A)<1,0< P(B)<1, 则 $P(A|\bar{B})+P(B|\bar{A})=$ _____

Solution. 根据结论, 有
$$A, B$$
 互斥, 则 $P(A|\bar{B}) = P(B|\bar{A}) = 1$

Corollary 15.1.1. 若 $AB = \bar{A}\bar{B}$, 则 A, B 必然对立

Proof.

$$AB = \bar{A}\bar{B}$$

$$\iff AB \cup \bar{A}B = \bar{A}\bar{B} \cup \bar{A}B$$

$$\iff (A \cup \bar{A})B = \bar{A}(\bar{B} \cup B)$$

$$\iff B = \bar{A}$$

4. 设随机事件 A, B, C 两两独立, 满足 $ABC = \emptyset$, 且 P(A) = P(B) = P(C), A, B, C 至少有一个发生的概率为 $\frac{9}{16}$, 则 P(A) =

Solution. 由题意有 $P(A \cup B \cup C) = \frac{9}{16}$, 由加法公式与独立性有

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A)P(B)$$
$$- P(A)P(C) - P(B)P(C) - P(A)P(B)P(C)$$

由
$$P(A) = P(B) = P(C)$$
, 上式化为 $3P(A) - 3P(A)^2 = \frac{9}{16} \implies P(A) = \frac{1}{4}$ 或 $P(A) = \frac{3}{4}$, 显然 $P(A) \neq \frac{3}{4} > P(A \cup B \cup C)$, 故 $P(A) = \frac{1}{4}$

5. 设 A, B 为随机事件,且 $P(A) = \frac{2}{3}, P(B) = \frac{1}{2}$,则 P(A|B) + P(B|A) 的最大值为 ______,最小值为 _____.

Solution. 关于概率的不等式基于如下事实, 对于任意一个概率其值均位于 [0,1] 之间, 事件 AB 的和事件不可能小于单独 A,B 发生概率之和, 事件 AB 的积事件不可能大于任意一个事件单独发生的概率.

$$P(A) + P(B) - 1 \le P(AB) \le \min(P(A), P(B)) \le P(A) + P(B) \le P(A \cup B)$$

15.2 三大概型的计算

Remark. 三大概率模型

经典概型 - 有限个等可能的样本点, 排列组合问题

几何概型 - 使用几何参数度量概率, 比如说长度, 面积, 体积等

伯努利概型 - 独立重复试验每次成功的概率为 p, 不成功的概率为 (1-p)

6. (2016, 数三) 设袋中有红、白、黑球各 1 个, 从中**有放回地**取球, 每次取 1 个, 直到三种 颜色的球都取到为止, 则取球次数恰好为 4 的概率为

Solution. (古典概型)

$$\frac{\binom{3}{1}\binom{2}{1}\binom{2}{3}}{3^4} = \frac{2}{9}$$

首先从 3 个颜色中选择一个为第四次抽的颜色, 再从剩下两个颜色中选择一个为出现两次的颜色, 在选择该颜色抽出的次序. □

7. 在区间 (0,a) 中随机地取两个数,则两数之积小于 $\frac{a^2}{4}$ 的概率为

Solution. (几何概型)

$$\frac{\frac{a}{4} \cdot a + \int_{\frac{a}{4}}^{a} \frac{a^2}{4x} dx}{a^2} = \frac{1}{4} + \frac{1}{2} \ln 2$$

8. 设独立重复的试验每次成功的概率为 p, 则第 5 次成功之前至多 2 次失败的概率为

Solution. 失败零次 $-p^5$, 失败一次 $-\binom{1}{5}p^4(1-p)p$, 失败两次 $-\binom{2}{6}p^4(1-p)^2p$ 故第 5 次成功之前至多 2 次失败的概率为

$$p^5 + {1 \choose 5} p^4 (1-p)p + {2 \choose 6} p^4 (1-p)^2 p$$

15.3 三大概率公式的计算

Remark. 三大概率公式

条件概率公式 $P(A \mid B) = \frac{P(AB)}{P(B)}$

推论 $P(AB) = P(B)P(A \mid B), P(A_1A_2...A_n) = P(A_1)P(A_2 \mid P(A_1))P(A_3 \mid P(A_1A_2))...$

全概率公式
$$P(A) = \sum_{i=1}^{n} P(AB_i) = \sum_{i=1}^{n} P(B_i)P(A \mid B_i)$$

贝叶斯公式 $P(B_j \mid A) = \frac{P(B_j)P(A|B_j)}{\sum_{i=1}^{n} P(B_i)P(A|B_i)}$

若称 $P(B_j)$ 为 B_j 的先验概率, 称 $P(B_j \mid A)$ 为 B_j 的后验概率. 则贝叶斯公式专门用于计算后验概率的公式.

9. 设 A, B 为随机事件, 且 $P(A \cup B) = 0.6, P(B|\bar{A}) = 0.2$, 则 P(A) =_____

Solution.

$$P(A \cup B) = P(A) + P(B) - P(AB) = 0.6, P(B \mid \bar{A}) = \frac{P(B) - P(AB)}{1 - P(A)} = 0.2$$

联立有

$$\frac{0.6 - P(A)}{1 - P(A)} = 0.2$$

,则
$$P(A) = 0.5$$

10. (2018, 数一) 设随机事件 A 与 B 相互独立, A 与 C 相互独立, 满足 $BC = \emptyset$, 且

$$P(A) = P(B) = \frac{1}{2}, \quad P(AC|AB \cup C) = \frac{1}{4},$$

则 $P(C) = _____$.

Solution.

$$P(AC|AB \cup C) = \frac{P(AC)}{P(AB \cup C)}$$
$$= \frac{P(A)P(C)}{P(AB) + P(C)}$$
$$= \frac{\frac{1}{2}P(C)}{\frac{1}{4} + P(C)} = \frac{1}{4}$$

则 $P(C) = \frac{1}{4}$

- 11. (2003, 数一) 设甲、乙两箱装有同种产品, 其中甲箱装有 3 件合格品和 3 件次品, 乙箱装有 3 件合格品。从甲箱中任取 3 件产品放入乙箱,
 - (1) 求乙箱中次品件数 X 的数学期望;
 - (2) 求从乙箱中任取一件产品是次品的概率.

Solution. (作为小题来考还可以)

方法一: 用概率

(1) 对于数字特征的题目, 先求概率分布再说, 由于 $P(X = k) = \frac{C_3^k C_3^{3-k}}{C_6^3}$

则所求数学期望 $EX = \frac{9}{20} + 2 \times \frac{9}{20} + \frac{3}{20} = \frac{3}{2}$

(2)

$$P(A) = \sum_{k=0}^{3} P(X = k)P(A \mid x = k)$$

$$= \frac{1}{20} \times 0 + \frac{9}{20} \times \frac{1}{6} + \frac{9}{20} \times \frac{2}{6} + \frac{1}{20} \times \frac{3}{6}$$

$$= \frac{1}{4}$$

方法二: 超几何分布

(1)
$$X \sim H(N, M, n), N = 6, M = 3, n = 3, \text{ M}$$
 $EX = \frac{nM}{N} = \frac{3}{2}$

(2)

$$P(A) = \sum_{k=0}^{3} P(X = k)P(A \mid x = k)$$

$$= \sum_{k=0}^{3} P(X = k)\frac{k}{6}$$

$$= \frac{1}{6}\sum_{k=0}^{3} P(X = k)k$$

$$= \frac{1}{6}EX$$

$$= \frac{1}{4}$$

15.4 事件独立的判定

Remark. (事件独立的充要条件)

$$P(AB) = P(A)P(B)$$

 $\iff P(A \mid B) = P(A)$
 $\iff P(A \mid \bar{B}) = P(A) \iff P(A \mid B) = P(A \mid \bar{B}) \quad (0 < P(B) < 1)$
 $\iff A 与 \bar{B}, \ \bar{x}\bar{A} 与 B, \ \bar{x}\bar{A} 与 \bar{B} \ \bar{H}$ 相互独立
 $\iff P(A \mid B) + P(\bar{A} \mid \bar{B}) = 1, \quad 0 < P(B) < 1$

- 12. 设 A, B 为随机事件, 且 0 < P(A) < 1, 则
 - (A) 若 $A \supset B$, 则 A, B 一定不相互独立
 - (B) 若 $B \supset A$, 则 A, B 一定不相互独立
 - (C) 若 $AB = \emptyset$, 则 A, B 一定不相互独立
 - (D) 若 $A = \overline{B}$, 则 A, B 一定不相互独立

Solution. (A)(B)(C) 考虑 Ø 则都不对

(D) 由于 A 不是必然事件, 则 B 不是不可能事件, 则 0 < P(A) < 1, 0 < P(B) < 1, 根据下面的总结 A, B 一定不独立

总结

- (1) 概率为 0 或 1 的事件与任意事件独立 特别的,不可能事件与必然事件与任意事件独立
- A, B 互不相容, 则 A, B 一定不独立
- A, B 独立, 则 A, B 一定不互不相容
- 13. 设 A, B, C 为随机事件,A 与 B 相互独立, 且 P(C) = 0, 则 $\bar{A}, \bar{B}, \bar{C}$

 - (A)相互独立 (B)两两独立, 但不一定相互独立

 - (C)不一定两两独立 (D)一定不两两独立

Solution. 由 P(C) = 0 知 A, B, C 相互独立, 则 $\bar{A}\bar{B}\bar{C}$ 也相互独立.

两两独立与相互独立

相互独立
$$\begin{cases} P(AB) = P(A)P(B) \\ P(AC) = P(A)P(C) \\ P(BC) = P(B)P(C) \\ P(ABC) = P(A)P(B)P(C) \end{cases}$$
 两两独立

第十六章 一维随机变量

16.1 分布函数的判定与计算

Remark. (分布函数的性质)

- (1) $0 \le F(x) \le 1, -\infty < x < +\infty, F(-\infty) = 0, F(+\infty) = 1$
- (2) (单调不减) 当 $x_1 < x_2$ 时, $F(x_1) < F(x_2)$
- (3) (右连续) F(x+0) = F(x)

上面三个性质为分布函数的定义, 只要满足上述性质的函数一定是某一个概率分布的分布函数

- (4) $P{a < X \le b} = F(b) F(a)$
- (5) $P{X < x} = F(x 0), P{X = x} = F(x) F(x 0)$

$$P\{a \le x \le b\} = P\{x \le b\} - P\{x < a\} = F(b) - F(a - 0)$$

$$P\{a < x < b\} = P\{x < b\} - P\{x \le a\} = F(b - 0) - F(a)$$

1. 设随机变量 X 的分布函数为 F(x),a,b 为任意常数,则下列一定不是分布函数的是

(A)
$$F(ax + b)$$
 (B) $F(ax^2 + b)$ (C) $F(ax^3 + b)$ (D) $1 - F(-x)$

总结

对于 F(ax+b), $F(ax^3+b)$, ... 只要 a>0 则这些函数都是分布函数

对于 $F(a^2x+b)$, $F(a^4+b)$, ... 都一定不是分布函数

对于 G(x) = 1 - F(-x)

若 X 是连续性随机变量则是, 否则不是 (F(x) 不满足左连续, 则 G(x) 不满足右连续)

2. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & \text{ 其他} \end{cases}$$

Solution.

(方法一变限积分)

$$f(x) = \begin{cases} 1+x, & -1 < x < 0 \\ 1-x, & 0 \le x < 1 \\ 0, & \text{其他情况} \end{cases}$$

根据 $F(x) = \int_{-\infty}^{x} f(t) dt$,有

$$F(x) = \begin{cases} 0, & x \le -1 \\ \int_{-1}^{x} (1+t) \, \mathrm{d}t, & -1 < x < 0 \\ \int_{-1}^{0} (1+t) \, \mathrm{d}t + \int_{0}^{x} (1-t) \, \mathrm{d}t, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

$$= \begin{cases} 0, & x \le -1 \\ x + \frac{x^{2}}{2} + \frac{1}{2}, & -1 < x < 0 \\ x - \frac{x^{2}}{2} + \frac{1}{2}, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

$$P\{-2 < X < \frac{1}{4}\} = F(\frac{1}{4}) - F(-2)$$

$$= \int_{-2}^{\frac{1}{4}} f(x) \, \mathrm{d}x$$

$$= \frac{23}{32}$$

(方法二定积分)

$$\int f(x) dx = \begin{cases} C_1, & x < -1 \\ x + \frac{x^2}{2} + C_2, & -1 \le x < 0 \\ x - \frac{x^2}{2} + C_3, & 0 \le x < 1 \\ C_4, & x \ge 1 \end{cases}$$

$$\frac{\text{由分布函数的定义}}{x - \frac{x^2}{2} + \frac{1}{2}, & -1 < x < 0}$$

$$x - \frac{x^2}{2} + \frac{1}{2}, & 0 \le x < 1$$

$$1, & x \ge 1$$

16.2 概率密度的判定与计算

Remark. (概率密度的性质)

- $(1) f(x) \ge 0, -\infty < x + \infty$
- (2) $\int_{-\infty}^{+\infty} f(x) dx = 1$

上面两条性质为概率密度的定义,任何满足上面的函数都是某个概率的概率密度函数

(3)
$$P{a < X \le b} = \int_a^b f(x) dx$$

推广 $P\{a < X \le b\} = P\{a \le X \le b\} = P\{a \le X < b\} = P\{a < X < b\} = \int_a^b f(x) dx$

- (4) 在 f(x) 连续点处有 F'(x) = f(x)
 - 3. 设随机变量 X 的概率密度为 f(x), 则下列必为概率密度的是

(A)
$$f(-x+1)$$
 (B) $f(2x-1)$ (C) $f(-2x+1)$ (D) $f(\frac{1}{2}x-1)$

Solution. 由于 f(x) 已经满足非负性,故选项的非负性都不需要考虑,只需要考虑正则性就可以.

(A)
$$\int_{-\infty}^{+\infty} f(-x+1)dx = \int_{-\infty}^{+\infty} f(u)du = 1$$

- (B) $\int_{-\infty}^{+\infty} f(2x-1)dx = \frac{1}{2} \int_{-\infty}^{+\infty} f(u)du = \frac{1}{2}$
- (C) $\int_{-\infty}^{+\infty} f(-2x+1)dx = \frac{1}{2} \int_{-\infty}^{+\infty} f(u)du = \frac{1}{2}$

(D)
$$\int_{-\infty}^{+\infty} f(\frac{1}{2} - 1) dx = 2 \int_{-\infty}^{+\infty} f(u) du = 2$$

总结

f(ax+b) 为概率密度 $\iff |a|=1$

- 4. (2011, 数一、三) 设 $F_1(x)$, $F_2(x)$ 为分布函数, 对应的概率密度 $f_1(x)$, $f_2(x)$ 为连续函数,则下列必为概率密度的是
 - (A) $f_1(x)f_2(x)$ (B) $2f_2(x)F_1(x)$ (C) $f_1(x)F_2(x)$ (D) $f_1(x)F_2(x) + f_2(x)F_1(x)$

总结

(1) 线性组合

$$af_1(x) + bf_2(x), a > 0, b > 0$$
 为概率密度 $\iff a + b = 1$

$$aF_1(x) + bF_2(x), a > 0, b > 0$$
 为分布函数 $\iff a + b = 1$

(2) 乘积

 F_1F_2 一定是分布函数

 f_1f_2 不一定是概率论密度

(3) 混搭

 $f_1F_2 + f_2F_1, 2f_1F_1, 2f_2F_2$ 是概率密度, 其余都不是.

5. (2000, 三) 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{3}, & x \in [0, 1] \\ \frac{2}{9}, & x \in [3, 6] \\ 0, & \sharp \text{ th} \end{cases}$$

若 $P\{X \ge k\} = \frac{2}{3}$, 则 k 的取值范围是 _____.

Solution. 如图所示, 当且仅当 $1 \le k \le 3$ 时候 $P(X \ge k) = \frac{2}{3}$

16.3 关于八大分布

Remark. (八大分布的概率分布与数字特征)

(1) 0-1 分布,
$$X \sim B(1,p) \frac{X \mid 0 \quad 1}{P \mid 1-p \quad p}$$
, $EX = p, DX = p(1-p)$

(2) 二项分布, $X \sim B(n,p)$

$$P\{X=k\} = C_n^k p^k (1-p)^{n-k}, k = 0, 1, \dots, n, EX = np, DX = np(1-p)$$

(3) 泊松分布, $X \sim P(\lambda)$

$$P\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda}, k = 0, 1, \dots, EX = \lambda, DX = \lambda$$

(4) 几何分布, $X \sim G(p)$

$$P = \{X = k\} = p(1-p)^{k-1}, k = 1, 2, ..., EX = \frac{1}{p}, DX = \frac{1-p}{p^2}$$

(5) 超几何分布, $X \sim H(N, M, n)$

$$P = \{X = k\} = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}, k = 0, 1, \dots, min(n, M), EX = \frac{nM}{N}$$

(6) 均匀分布 $X \sim U(a,b)$

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \sharp \text{ th} \end{cases}, F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b, EX = \frac{a+b}{2}, DX = \frac{(b-a)^2}{12} \\ 1, & x \ge b \end{cases}$$

(7) 指数分布 $X \sim E(\lambda)$

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}, \quad \lambda > 0 \quad F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}, \quad EX = \frac{1}{\lambda}, DX = \frac{1}{\lambda^2}$$

(8) 一般正态分布 $X \sim N(\mu, \sigma^2)$, $EX = \mu$, $DX = \sigma^2$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, F(\mu) = \frac{1}{2}, F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

标准正态分布 $X \sim N(0,1)$ $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$, $\Phi(0) = \frac{1}{2}$, $\Phi(-x) = 1 - \Phi(x)$

正态分布的标准化若 $X \sim N(\mu, \sigma^2)$, 则 $\frac{X-\mu}{\sigma} \sim N(0, 1)$.

拓展-负二项分布

在一系列独立重复的伯努利试验(每次试验只有"成功"或"失败"两种结果,成功概率为p)中,达到r次成功所需的试验总次数X服从负二项分布。

$$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}, \quad k = r, r+1, r+2, \dots, \quad EX = \frac{r}{p}, \quad DX = \frac{r(1-p)}{p^2}$$

6. 设随机变量 X 的概率分布为 $P\{X = k\} = C \frac{\lambda^k}{k!}, k = 1, 2, \dots, 则 C = _____.$

Solution.

(方法一: 级数) 由概率的规范性可知 $\sum_{k=1}^{\infty} C^{\lambda^k}_{k!} = 1$, 由于 $e^x = \sum_{i=0}^{\infty} \frac{x^n}{n!}$, 故 $C(e^{\lambda} - 1) = 1$, 故 $C = \frac{1}{e^{\lambda} - 1}$

(方法二: 泊松分布) 考虑泊松分布
$$P\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda}, k=0,1,\dots$$

7. 设随机变量 X 的概率密度为 $f(x) = Ae^{-\frac{x^2}{2} + Bx}$, 且 EX = DX, 则 $A = ___, B = ___.$

Solution.
$$f(x) = Ae^{\frac{B^2}{2}}e^{-\frac{(x-B)^2}{2}} \sim N(1,B^2)$$
,又 $D(x) = E(x)$ 故 $B^2 = 1$,对比正态分布的概率密度函数有 $Ae^{\frac{B^2}{2}} = \frac{1}{\sqrt{2\pi}}$ 故 $A = \frac{e^{-\frac{1}{2}}}{\sqrt{2\pi}}$

总结

形如 $f(x) = Ae^{ax^2+b+c}, a < 0$ 一定可以化成某一个正态分布的概率密度.

8. (2004, 数一、三) 设随机变量 $X \sim N(0,1)$, 对给定的 $\alpha(0 < \alpha < 1)$, 数 u_{α} 满足 $P\{X > u_{\alpha}\} = \alpha$ 。若 $P\{|X| < x\} = \alpha$,则 x 等于

(A)
$$u_{\frac{\alpha}{2}}$$
 (B) $u_{1-\frac{\alpha}{2}}$ (C) $u_{\frac{1-\alpha}{2}}$ (D) $u_{1-\alpha}$

Solution. 如图所示,x 右侧的面积为 $\frac{1-\alpha}{2}$ 故 x 是 $\frac{1-\alpha}{2}$ 上侧分位点

9. 设随机变量 $X \sim N(2, \sigma^2)$, 且 $P\{2 < X < 4\} = 0.3$, 则 $P\{X < 0\} = _____.$

Solution. 正态分布的基本套路就是遇事不决标准化 $P\{2 < X < 4\} = P\{0 < \frac{X-2}{\sigma} < \frac{2}{\sigma}\} = 0.3$,故 $P\{X < 0\} = P\{\frac{X-2}{\sigma} < \frac{-2}{\sigma}\} = \frac{1}{2} - 0.3 = 0.2$

10. 设随机变量 $X \sim N(\mu, \sigma^2)(\mu < 0), F(x)$ 为其分布函数,a 为任意常数,则

$$(A) F(a) + F(-a) > 1 (B) F(a) + F(-a) = 1$$

$$(C) F(a) + F(-a) < 1 (D) F(\mu + a) + F(\mu - a) = \frac{1}{2}$$

Solution. 这道题是比较隐晦的考察了正态分布的对称性, 具体直接看总结. 但要注意 先标准化再套结论! □

$$\Phi(a) + \Phi(b) = \begin{cases} 1, & a+b=1 \\ < 1, & a+b < 1 \\ > 1, & a+b > 1 \end{cases}$$

11. 设随机变量 X 与 Y 相互独立,均服从参数为 1 的指数分布,则 $P\{1 < \max\{X,Y\} < 2\} =$ _____.

Solution.

$$\begin{split} P\{1 < \max\{X,Y\} < 2\} &= P\{\max\{X,Y\} < 2\} - P\{\max\{X,Y\} \le 1\} \\ &= P\{X < 2,Y < 2\} - P\{X \le 1,Y \le 1\} \\ &\stackrel{\text{曲独立性}}{=\!=\!=\!=\!=}} P\{X < 2\} P\{Y < 2\} - P\{X \le 1\} P\{Y \le 1\} \\ &= (1 - e^{-2\lambda})^2 - (1 - e^{-\lambda})^2 \end{split}$$

12. 设随机变量 X 与 Y 相互独立,均服从区间 [0,3] 上的均匀分布,则 $P\{1 < \min\{X,Y\} < 2\} = _____.$

Solution.

$$\begin{split} P\{1 < \min\{X,Y\} < 2\} &= P\{\min\{X,Y\} > 1\} - P\{\min\{X,Y\} \geq 2\} \\ &= P\{X > 1\} P\{Y > 1\} - P\{X \geq 2\} P\{Y \geq 2\} \\ &= \frac{1}{3} \end{split}$$

总结

对于 min 和 max 问题基本按照如下思路:

$$P\{a < \min(X_1, X_2, \dots, X_n) < b\}$$

$$= P\{\min(X_1, X_2, \dots, X_n) > a\} - P\{\min(X_1, X_2, \dots, X_n) \ge b\}$$

$$P\{a < \max(X_1, X_2, \dots, X_n) < b\}$$

$$= P\{\max(X_1, X_2, \dots, X_n) < b\} - P\{\min(X_1, X_2, \dots, X_n) \le a\}$$

13. (2013, 数一) 设随机变量 $Y \sim E(1), a > 0,$ 则 $P\{Y \le a + 1 | Y > a\} = ____.$

Solution. 由指数分布的无记忆性,有
$$P\{Y \le a+1|Y>a\} = P\{0 < Y < 1\} = \int_0^1 e^{-x} dx = 1 - e^{-1}$$

- 14. 设随机变量 $X \sim G(p), m, n$ 为正整数, 则 $P\{X > m + n | X > m\}$
 - (A) 与 m 无关, 与 n 有关, 且随 n 的增大而减少
 - (B) 与 m 无关, 与 n 有关, 且随 n 的增大而增大
 - (C) 与 n 无关, 与 m 有关, 且随 m 的增大而减少
 - (D) 与 n 无关, 与 m 有关, 且随 m 的增大而增大

Solution. 由几何分布的无记忆性,有
$$P\{X > m + n | X > m\} = P\{X > n\} = \sum_{i=n+1}^{\infty} p(1-p)^{i-1}$$
,故随着 n 增大概率反而减少

总结

指数分布与几何分布具有无记忆性

$$X \sim E(\lambda)$$

$$P\{x > s + t \mid x > s\} = P\{x > t\}$$

$$P\{x < s + t \mid x > s\} = P\{0 < x < t\}$$

$$X \sim G(p)$$

$$P\{x > n + m \mid x > m\} = P\{x > t\}$$

$$P\{x = n + m \mid x = m\} = P\{x = n\} = p(1 - p)^{n-1}$$

16.4 求一维连续型随机变量函数的分布

Remark. 【方法】

设随机变量 X 的概率密度为 $f_X(x)$, 求 Y = g(X) 的分布.

分布函数法

- (1) 设 Y 的分布函数为 $F_Y(y)$, 则 $F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\}$.
- (2) 求 Y = g(X) 在 X 的正概率密度区间的值域 (α, β) , 讨论 y.

 $\stackrel{\text{def}}{=} \alpha \leq y < \beta \text{ iff}, F_Y(y) = \int_{a(x) \leq y} f_X(x) dx;$

(3) 若 Y 为连续型随机变量, 则 Y 的概率密度为 $f_Y(y) = F'_Y(y)$.

公式法

设 y = q(x) 在 X 的正概率密度区间单调, 值域为 (α, β) , 反函数为 x = h(y), 则 Y 的概 率密度为

$$f_Y(y) = \begin{cases} f_X(h(y)) |h'(y)|, \alpha < y < \beta \\ 0, \end{cases}$$

若 y = g(x) 在 X 的正概率密度区间 [a,b] 分段严格单调,则分段运用公式法,然后将概率 密度相加.

- 15. 设随机变量 $X \sim E(\lambda)$, 则 $Y = \min\{X, 2\}$ 的分布函数
 - (A) 为连续函数 (B) 为阶梯函数

 - (C) 至少有两个间断点 (D) 恰好有一个间断点

Solution. 这是一道比较简单的题目, 主要是用于演示所谓图像法讨论 y 的具体操作, 注意画的是 X - Y 图像

故 $F_Y(y) = \min\{X, 2\} < y$, 当 y < 0 时候 $F_Y(y) = 0, y \ge 2, F_Y(y) = 1$, 当 $0 \le y < 2$ 时候, 有 $\int_0^y f(x) dx = 1 - e^{-\lambda y}$, 综上

$$F_Y = \begin{cases} 0, & y < 0 \\ 1 - e^{-\lambda y}, & 0 \le y < 2 \\ 1, & y \ge 2 \end{cases}$$

容易发现 $F(2-0) \neq 1$ 故存在一个跳跃间断点

16. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x^2}{a}, & 0 < x < 3 \\ 0, & 其他 \end{cases}$ $Y = \begin{cases} 2, & X \le 1 \\ X, & 1 < X < 2 \\ 1, & X \ge 2 \end{cases}$

- (a) 求 Y 的分布函数;
- (b) $\Re P\{X \leq Y\}$.

Solution. 带参数的概率密度第一步就应该根据正则性把这个参数求出来.

$$\int_0^3 f(x)dx = 1 \implies a = 9$$

然后和上一题一样画 X-Y 图像, 求 $F_Y(y)$, 注意分区域就是.

$$\stackrel{\text{def}}{=} y < 1, F_Y(y) = 0; y > 2, F_Y(y) = 1$$

$$1 \le y < 2, F_Y(y) = \int_1^y f(x)dx + \int_2^3 f(x)dx = \frac{y^3}{27} + \frac{2}{3}$$

- 17. $(2021, 数 \sqrt{2})$ 在区间 (0,2) 上随机取一点,将该区间分成两段,较短一段的长度记为X,较长一段的长度记为Y。
 - (a) 求 X 的概率密度;
 - (b) 求 $Z = \frac{Y}{X}$ 的概率密度;
 - (c) $\vec{x} E\left(\frac{Y}{X}\right)$.

Solution. 有题设容易得到 $X \sim U(0,1), Y = 2 - X$

(1) 则
$$f(x) = \begin{cases} 1, & x \in (0,1) \\ 0, & 其他 \end{cases}$$

(2) $Z = \frac{Y}{X} = \frac{2}{X} - 1$, 显然 Z 关于 X 是单调的, 可以用公式法直接求出 $f_Z(z)$, 即

$$f_Z(z) = 1 \cdot \frac{2}{(y+1)^2} = \frac{2}{(y+1)^2}, z \in (1, +\infty)$$

(3)

$$E(Z) = \int_{1}^{\infty} z f_Z(z) dz = 2 \ln 2 - 1$$

或者也可以用

$$E(\frac{2}{x} - 1) = \int_0^1 (\frac{2}{x} - 1) dx = 2\ln(2) - 1$$

第十七章 二维随机变量

17.1 联合分布函数的计算

Remark. (联合分布函数的性质)

(1) $0 \le F(x,y) \le 1, -\infty < x < +\infty, F(-\infty,y) = F(x,-\infty) = F(-\infty,-\infty) = 0, F(+\infty,+\infty) = 1$

- (2) F(x,y) 关于 x 和 y 均单调不减
- (2) F(x,y) 关于 x 和 y 均右连续
- (4) $P{a < X \le b, c < Y \le b} = F(b,d) F(b,c) F(a,d) + F(a,c)$
- (5) $F_X(x) = F(x, +\infty), F_Y(y) = F(+\infty, y)$
 - 1. 设随机变量 X 与 Y 相互独立, $X \sim B(1,p),Y \sim E(\lambda)$, 则 (X,Y) 的联合分布函数 $F(x,y) = ____.$

Solution. 由 X 和 Y 相互独立,则有 $F_{XY}(x,y) = F_X(x)F_Y(y), f(x,y) = f_X(x)F_Y(x), X$ 的概率分布如下:

$$\begin{array}{c|cc} X & 0 & 1 \\ \hline P & 1-p & p \end{array}$$

则 X 的分布函数为

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1 - p, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

而 $Y \sim E(\lambda)$, 故

$$F_{XY}(x,y) = F_X(x)F_Y(y) = \begin{cases} (1-p)(1-e^{-\lambda y}), & 0 \le x < 1, y > 0 \\ 1-e^{-\lambda y}, & x \ge 1, y > 0 \\ 0, & \sharp \text{ } \end{cases}$$

17.2 二维离散型随机变量分布的计算

- 2. 设随机变量 X 与 Y 相互独立, 均服从参数为 p 的几何分布。
 - (a) 求在 $X + Y = n(n \ge 2)$ 的条件下,X 的条件概率分布;
 - (b) $\Re P\{X + Y \ge n\} (n \ge 2)$.

Solution.

(1)

$$P\{X+Y=n\} = \frac{\square \text{ 阿尔布从 1 开始}}{\sum_{k=1}^{n-1} P\{X=k,Y=n-k\}}$$

$$= \frac{\text{独立性}}{\sum_{k=1}^{n-1} P\{X=k\}P\{Y=n-k\}}$$

$$= \sum_{k=1}^{n-1} (1-p)^{k-1} p \cdot (1-p)^{n-k-1} p$$

$$= \sum_{k=1}^{n-1} (1-p)^{n-2} p^2$$

$$= (n-1)(1-p)^{n-2} p^2$$

在 X + Y = n 的条件下,X 的条件概率为

$$P\{X = k \mid X + Y = n\} = \frac{P\{X = k, Y = n - k\}}{P\{X + Y = n\}}$$
$$= \frac{p^2(1 - p)^{n-2}}{(n - 1)p^2(1 - p)^{n-2}}$$
$$= \frac{1}{n - 2}$$

 $k = 1, 2 \dots n - 1$ 这个范围千万别忘喽!

(2)

$$P\{X+Y \ge n\} = P\{X+Y=n\} + P\{X+Y=n+1\} + \dots$$
$$= \sum_{k=n}^{+\infty} P\{X+Y=k\}$$
$$= \sum_{k=n}^{+\infty} (k-1)p^2(1-p)^{k-2}$$

不妨先计算级数 $\sum_{k=n}^{\infty} (k-1)x^{k-2}$

$$\sum_{k=n}^{\infty} (k-1)x^{k-2} = \sum_{k=n}^{\infty} (x^{k-1})'$$

$$= \left(\frac{\sum_{n=k}^{\infty}}{x}\right)'$$

$$= \frac{(n-1)x^{n-2}(1-x) + x^{n-1}}{(1-x)^2}$$

故当 x = 1 - p 的时有

$$P\{X+Y \ge n\} = p^2 \frac{(n-1)(1-p)^{n-2}p + (1-p)^{n-1}}{p^2}$$
$$= (1-p)^{n-2}(np-2p+1)$$

17.3 二维连续型随机变量分布的计算

Remark. 主要内容

联合概率密度的性质

- (1) $f(x,y) \ge 0, -\infty < x < +\infty, -\infty < y < +\infty$;
- (2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \, dx dy = 1 \; ;$
- (3) $P\{(X,Y) \in D\} = \iint_D f(x,y) dxdy$;
- (4) 在 f(x,y) 的连续点处有 $\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$. 边缘概率密度

- (1) (X,Y) 关于 X 的边缘概率密度 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$
- (2) (X,Y) 关于 Y 的边缘概率密度 $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$ 条件概率密度
- (1) 在 Y = y 的条件下, X 的条件概率密度 $f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)}$
- (2) 在 X = x 的条件下, Y 的条件概率密度 $f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)}$
- 3. (2010, 数一、三) 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = Ae^{-2x^2 + 2xy - y^2}, \quad -\infty < x < +\infty, -\infty < y < +\infty$$

求常数 A 及条件概率密度 $f_{Y|X}(y|x)$.

Solution.

(方法一正常求) 首先通过规范性求出参数 A

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} A e^{-2x^2 + 2xy - y^2} dx dy$$
$$= A \int_{-\infty}^{+\infty} e^{-x^2} dx \int_{-\infty}^{+\infty} e^{-(y-x)^2} dy$$
$$\xrightarrow{\text{Possion } \mathbb{A} / \mathbb{C}} A \pi = 1 \implies A = \frac{1}{\pi}$$

X 的边缘分布函数为

$$\int_{-\infty}^{+\infty} f(x,y)dy = \int_{-\infty}^{+\infty} \frac{1}{\pi} e^{-2x^2 + 2xy - y^2} dy$$
$$= \frac{1}{\pi} e^{-x^2} \int_{-\infty}^{+\infty} e^{-(y-x)^2}$$
$$= \frac{1}{\sqrt{\pi}} e^{-x^2}, x \in \mathbf{R}$$

则在 X = x 的条件下,Y 的条件概率为

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)}$$
$$= \frac{1}{\sqrt{\pi}}e^{-(y-x)^2}$$

(方法二, 通过二维正态分布) 形如 $f(x,y) = Ae^{ax^2+bxy+cy^2}$ 的函数如果是概率密度, 则其一定是某个二维正态的概率密度函数, 故

$$(X,Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$$

通过下一节讲的确定系数的办法, 可以很快的确定

- 4. 设随机变量 $X \sim U(0,1)$, 在 X = x(0 < x < 1) 的条件下, 随机变量 $Y \sim U(x,1)$ 。
 - (a) 求 (X,Y) 的联合概率密度;
 - (b) 求 (X,Y) 关于 Y 的边缘概率密度 $f_Y(y)$;
 - (c) $\vec{x} P\{X + Y > 1\}.$

Solution.

(1) 在 X = x 的条件下,Y 的条件概率密度为

$$f_Y(y) = \begin{cases} \frac{1}{1-x}, & x \le y \le 1\\ 0, & \sharp \text{ th} \end{cases}$$

故
$$f(x,y) = f_{Y|X}(y \mid x) f_X(x) = \begin{cases} \frac{1}{1-x}, & 0 < x < 1, x < y < 1 \\ 0, & 其他 \end{cases}$$

(2) 通过概率密度求边缘密度的时候,需要画出 x-y 图, 并且确定要求的那个参数的范围,比如说这里是 $y \in (0,1)$, 让后再从 [0,1] 上面去做偏积分, 具体如图所示

$$f_Y(y) = \int_{+\infty}^{-\infty} f(x, y) dx = \begin{cases} -\ln(1 - y), & 0 < y < 1 \\ 0, & \text{ 其他} \end{cases}$$

(3) 根据性质 (3) 有 $P\{X + Y > 1\} = \iint_{x+y<1} f(x,y) dxdy$ 此时 x-y 的可行范围为

原式 =
$$\int_{1/2}^{1} dy \int_{1-y}^{y} \frac{1}{1-x} dx$$

= $\int_{1/2}^{1} [\ln y - \ln(1-y)] dy$
= $[y \ln y - (1-y) \ln(1-y)] \Big|_{1/2}^{1}$
= $\ln 2$

17.4 关于二维正态分布

Remark. 二维正态分布的性质 设 $(X,Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$, 则

(1) $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$, 反之不成立 (独立的时候反之成立);

(2) X 与 Y 相互独立 \Leftrightarrow X 与 Y 不相关 $(\rho = 0)$;

(3) $aX + bY \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2 + 2ab\rho\sigma_1\sigma_2)$; 特别地, 若 X 与 Y 相互独立, $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$, 则 $aX + bY \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$;

(4) 若
$$U = aX + bY, V = cX + dY$$
,即 $\begin{pmatrix} U \\ V \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$,则 (U,V) 服

从二维正态分布 $\Leftrightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$.

5. 设二维随机变量 $(X,Y) \sim N(1,2;1,4;-\frac{1}{2})$, 且 $P\{aX+bY\leq 1\}=\frac{1}{2}$, 则 (a,b) 可以为

$$(A) \ \left(\frac{1}{2}, -\frac{1}{4}\right) \quad (B) \ \left(\frac{1}{4}, -\frac{1}{2}\right) \ (C) \ \left(-\frac{1}{4}, \frac{1}{2}\right) \quad (D) \ \left(\frac{1}{2}, \frac{1}{4}\right)$$

Solution. 由性质 (3) 可知 $aX + bY \sim N$, 而由正态分布的对称性可知, $\mu = 1 \implies a + 2b = 1$ 故选择 (D)

6. (2020, 数三) 设二维随机变量 $(X,Y) \sim N(0,0;1,4;-\frac{1}{2})$, 则下列随机变量服从标准正态分布且与 X 相互独立的是

$$(A) \ \frac{\sqrt{5}}{5}(X+Y) \quad (B) \ \frac{\sqrt{5}}{5}(X-Y) \ (C) \ \frac{\sqrt{3}}{3}(X+Y) \quad (D) \ \frac{\sqrt{3}}{3}(X-Y)$$

Solution. 这道题选择出来并不困难, 但要证明其与 X 相互独立还是有点说法的.

第一步, 先求 X + Y 和 X - Y 的标准化

由性质三可知 $X+Y \sim N(0,3), X-Y \sim N(0,7),$ 故 $\frac{\sqrt{3}}{3}(X+Y)\sin N(0,1); \frac{\sqrt{7}}{7} \sim N(0,1);$ 这里其时就已经可以选出答案喽

第二步证明独立性

考虑
$$(X+Y,X) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$
,且 $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1 \neq 0$

由性质 (4) 可知,(X + Y, X) 服从二维正态分布,由性质 (2) 可知,只需要证明二者的相关系数为 (2) 即可,证明二者独立.

7. (2022, 数一) 设随机变量 $X \sim N(0,1)$, 在 X = x 的条件下, 随机变量 $Y \sim N(x,1)$, 则 X 与 Y 的相关系数为

(A)
$$\frac{1}{4}$$
 (B) $\frac{1}{2}$ (C) $\frac{\sqrt{3}}{3}$ (D) $\frac{\sqrt{2}}{2}$

Solution.

(方法一传统方法计算)

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}} = \frac{EXY - EXEY}{\sqrt{DX}\sqrt{DY}}$$

问题转换为求 EXY, DY, 由题设可知, 在 X = x 的条件下, Y 的概率密度函数为

$$f_{Y|X}(y \mid x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-x)^2}{2}}$$

故 (X,Y) 的概率密度函数为

$$f(x,y) = \frac{1}{2\pi} e^{-x^2 + xy - \frac{y^2}{2}}$$

故y的边缘分布函数为

$$\int_{+\infty}^{-\infty} f(x,y)dx = \frac{1}{2\sqrt{\pi}}e^{-\frac{y^2}{4}}$$

即 $Y \sim N(0,2)$, 故 EY = 0, DY = 2 而 EXY 根据方差的定义可以计算

TODO: 计算 EXY

$$EXY = \int_{+\infty}^{-\infty} \int_{+\infty}^{-\infty} xy f(x, y) dx dy = 1$$

故
$$\rho = \frac{\sqrt{2}}{2}$$

(2) 通过二维正态参数的结论直接求出 ρ , 由上述可知 $f(x,y) = \frac{1}{2\pi} e^{-x^2 + xy - \frac{y^2}{2}}$, 对比二维正态概率密度的公式

$$f(x,y) = \frac{1}{2\sigma_1\sigma_2\sqrt{1-\rho^2}}exp\left\{\frac{-1}{2(1-\rho^2)}\left[\frac{(x_1-\mu_1)^2}{\sigma_1^2} - \frac{2(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2-\mu_2)}{\sigma_2^2}\right]\right\}$$

容易得出
$$(X,Y) \sim N(0,0;1,2;\frac{\sqrt{2}}{2})$$
, 具体如总结所示.

总结

对于形如 $Ae^{-ax^2+bxy+cy^2}$ 的式子, 若其是概率密度, 则必然是某个二维正态的概率密度 (由规范性) 且满足

(1)
$$b^2 = 4\rho^2 a^2 c^2 \implies \rho^2 = \frac{b^2}{4a^2c^2}$$

(2) rho 的符号与 xy 系数的符号一致

17.5 求二维离散型随机变量函数的分布

8. 设随机变量 X 与 Y 相互独立, $X \sim P(\lambda_1),Y \sim P(\lambda_2)$, 求 Z = X + Y 的概率分布.

Solution. 这道题是参数可加性的直接考察, 可以先证明一下

$$\begin{split} P\{Z=n\} &= P\{X+Y=n\} \\ &= \sum_{k=0}^{n} P\{X=k,Y=n-k\} \\ &= \underbrace{\frac{2k\pm n!}{2}} \sum_{k=0}^{n} P\{X=k\} P\{Y=n-k\} \\ &= \sum_{k=0}^{n} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{1}} \frac{\lambda_{2}^{n-k}}{(n-k)!} e^{-\lambda_{2}} \\ &= e^{-(\lambda_{1}+\lambda_{2})} \sum_{k=0}^{n} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{k!(n-k)!} \\ &= \underbrace{\frac{2k\pm n!}{n!}} e^{-(\lambda_{1}+\lambda_{2})} \sum_{k=0}^{n} \frac{n(n-1)\dots(n-k+1)}{k!} \lambda_{1}^{k} \lambda_{2}^{n-k} \\ &= e^{-(\lambda_{1}+\lambda_{2})} \frac{1}{n!} \sum_{k=0}^{n} C_{n}^{k} \lambda_{1}^{k} \lambda_{2}^{n-k} \\ &= \underbrace{\frac{2n\pi \pi n!}{n!}} \frac{(\lambda_{1}+\lambda_{2})^{n}}{n!} e^{-(\lambda_{1}+\lambda_{2})} \end{split}$$

参数可加性

当 X,Y 独立的时候

(1) $X \sim B(m, p), Y \sim B(n, p) \implies X + Y \sim B(n + m, p)$

(2)
$$X \sim P(\lambda_1), Y \sim P(\lambda_2) \implies X + Y \sim P(\lambda_1 + \lambda_2)$$

(3)
$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2) \implies X + Y \sim (\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

(4)
$$X \sim \chi^2(m), Y \sim \chi^2(n), \Longrightarrow X + Y \sim \chi^2(n+m)$$

(5)
$$X \sim E(\lambda_1), Y \sim E(\lambda_2) \implies \min(X, Y) \sim E(\lambda_1 + \lambda_2)$$

17.6 求二维连续型随机变量函数的分布

Remark. 问题描述

设二维随机变量 (X,Y) 的联合概率密度为 f(x,y), 求 Z = g(X,Y) 的概率密度 $f_Z(z)$.

分布函数法

- (1) 设 Z 的分布函数为 $F_Z(z)$, 则 $F_Z(z) = P\{Z \le z\} = P\{g(X,Y) \le z\}$.
- (2) 求 Z = g(X,Y) 在 (X,Y) 的正概率密度区域的值域 (α,β) , 讨论 z.

$$z < \alpha$$
 时, $F_Z(z) = 0$;

 $\stackrel{\ }{\underline{}}$ $\alpha \leq z < \beta$ 时, $F_Z(z) = \iint_{q(x,y) \leq z} f(x,y) dxdy$;

当 $z \geq \beta$ 时, $F_Z(z) = 1$.

(3) Z 的概率密度为 $f_Z(z) = F'_Z(z)$.

卷积公式

- (1) 设 Z = aX + bY, 则 $f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{|b|} f\left(x, \frac{z ax}{b}\right) dx = \int_{-\infty}^{+\infty} \frac{1}{|a|} f\left(\frac{z by}{a}, y\right) dy$;
- (2) 读 Z = XY,则 $f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) dx = \int_{-\infty}^{+\infty} \frac{1}{|y|} f\left(\frac{z}{y}, y\right) dy$;
- (3) 设 $Z = \frac{Y}{X}$, 则 $f_Z(z) = \int_{-\infty}^{+\infty} |x| f(x, xz) dx$;
- (4) 设 $Z = \frac{X}{Y}$, 则 $f_Z(z) = \int_{-\infty}^{+\infty} |y| f(yz, y) dy$
- 9. 设二维随机变量 (X,Y) 的联合概率密度为 $f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 2x \\ 0, & 其他 \end{cases}$
 - (a) (X,Y) 的联合分布函数 F(x,y);
 - (b) (X,Y) 的边缘概率密度 $f_X(x), f_Y(y)$;
 - (c) 条件概率密度 $f_{X|Y}(x|y), f_{Y|X}(y|x)$;
 - (d) $P\left\{Y \le \frac{1}{2} | X \le \frac{1}{2}\right\}, P\left\{Y \le \frac{1}{2} | X = \frac{1}{2}\right\};$
 - (e) Z = 2X Y 的概率密度 $f_Z(z)$.

Solution.

(1) 由定义可知 $F(x,y)=\int_{-\infty}x\int_{-\infty}yf(u,v)\mathrm{d}u\mathrm{d}v$, 其中 x,y 的可行域如下图所示, 分为五个部分故

$$F(x,y) = \begin{cases} \int_0^y \mathrm{d}v \int_{\frac{v}{2}}^x \mathrm{d}u, & 0 < x < 1, 0 < y < 2x \\ \int_0^x \mathrm{d}u \int_0^{2u} \mathrm{d}v, & 0 < x < 1, y \ge 2x \\ \int_0^y \mathrm{d}v \int_{\frac{v}{2}}^1 \mathrm{d}u, & x > 1, 0 < y < 2 \end{cases} = \begin{cases} \frac{y^2}{4} - xy, & 0 < x < 1, 0 < y < 2x \\ x^2, & 0 < x < 1, y \ge 2x \\ y - \frac{y^2}{4}, & x > 1, 0 < y < 2 \\ 1, & x \ge 1, y \ge 2x \\ 0, & \not\equiv \emptyset, \end{cases}$$

(2) 由定义可知

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} 2x, & 0 < x < 1; \\ 0, & \text{ i.t.} \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} 1 - \frac{y}{2}, & 0 < y < 2 \\ 0, & \text{ i.t.} \end{cases}$$

(3) 当0 < x < 1在 X = x 的条件下,Y 的条件概率密度为

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{2x}, & 0 < y < 2x \\ 0, & \text{ 其他} \end{cases}$$

当0 < y < 2在 Y = y 的条件下,X 的条件概率密度为

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{2}{2-y}, & \frac{y}{2} < x < 1\\ 0, & \text{其他} \end{cases}$$

(4) 对于 $P\left\{Y \leq \frac{1}{2} | X \leq \frac{1}{2}\right\}$ 可以采用条件概率公式,

$$P\left\{Y \le \frac{1}{2}|X \le \frac{1}{2}\right\} = \frac{\iint\limits_{y \le \frac{1}{2}, x \le \frac{1}{2}} f(x, y) dx dy}{\int_{0}^{\frac{1}{2}} f_X(x) dx} = \frac{3}{4}$$

而对于 $P\left\{Y \leq \frac{1}{2} | X = \frac{1}{2}\right\}$ 则不能采用条件概率公式,因为 $P\{X = \frac{1}{2}\} = 0$ 不能做分母,此时就体现出来条件概率的用处

$$P\left\{Y \le \frac{1}{2}|X = \frac{1}{2}\right\} = \int_0^{\frac{1}{2}} f_{Y|X}(y \mid x) dy$$

将 $X = \frac{1}{2}$ 带入, 求出该条件概率为 $\frac{1}{2}$

(5) 方法一: 分布函数法

$$F_Z(z) = \begin{cases} 0, & z < 0 \\ z - \frac{z^2}{4}, & 0 \le z < 2 \\ 1, & z \ge 2 \end{cases}$$

方法二: 卷积公式

由卷积公式有 $f_Z(z)=-\int_{-\infty}^{+\infty}f(x,2x-z)dx$, 此时把 f(x,y) 中的 y 全部转换为 z 并确定 z 的取值范围即

$$f(x, 2x - z) = \begin{cases} 1, & 0 < x < 1, 0 < 2x - z < 2x \implies 0, 0 < x < 1, 0 < z < 2x \\ 0, & \not\equiv \emptyset \end{cases}$$

此时再对 x 进行偏积分即可, 绘制 x-z 图像, 首先确认 z 的范围, 再从 z 上对 x 进行积分

如图,最终

$$f_Z(z) = \begin{cases} 1 - \frac{z}{2}, & 0 \le z < 2; \\ 0, & \end{cases}$$

17.7 求一离散一连续随机变量函数的分布

- 10. (2020, 数一) 设随机变量 X_1, X_2, X_3 相互独立, X_1 与 X_2 均服从标准正态分布, X_3 的概率分布为 $P\{X_3=0\}=P\{X_3=1\}=\frac{1}{2},Y=X_3X_1+(1-X_3)X_2$ 。
 - (1) 求 (X_1,Y) 的联合分布函数 (结果用标准正态分布函数 $\Phi(x)$ 表示);
 - (2) 证明 Y 服从标准正态分布.

Solution. 一离散加一连续的基本方法就是"全概率公式+独立性"

(1)

$$\begin{split} F(X_1,Y) &= P\{X \leq x, Y \leq y\} \\ &= P\{X_1 \leq x, X_3 X_1 + (1-X_3) X_2 \leq y\} \\ &\stackrel{\underline{\text{ 全概率公式 }}}{===} P\{X_1 \leq x, X_2 \leq y, X_3 = 0\} + P\{X_1 \leq x, X_1 \leq y, X_3 = 1\} \\ &\stackrel{\underline{\text{ #立性 }}}{===} P\{X_1 \leq x\} P\{X_2 \leq y\} \frac{1}{2} + \frac{1}{2} P\{X_1 \leq \min{(x,y)}\} \\ &= \frac{1}{2} \Phi(x) \Phi(y) + \frac{1}{2} \Phi(\min{(x,y)}) \end{split}$$

(2) 方法一, 通过 Y 的分布函数确定

$$F_Y(y) = P\{Y \le y\} = P\{X_3X_1 + (1 - X_3)X_2 \le y\}$$

= (和 (1) 完全一致省去)...
= $\Phi(y)$

方法二, 直接求边缘分布函数

$$F_X(x) = P\{X \le x\} = F(X, +\infty)$$

$$F_Y(y) = P\{Y \le y\} = F(+\infty, Y)$$

$$F_Y(y) = F(\infty, y) = \frac{1}{2}\Phi(y) + \frac{1}{2}\Phi(y) = \Phi(y)$$

故
$$Y \sim N(0,1)$$

第十八章 数字特征

18.1 期望与方差的计算

Remark. 期望与方差

期望的定义

- (1) 设随机变量 X 的概率分布为 $P\{X = x_i\} = p_i, i = 1, 2, ..., 则 EX = \sum_i x_i p_i$ 推广: 若 Y = g(X) 则 $EY = \sum_i g(x_i) p_i$
- (2) 设随机变量 X 的概率密度为 f(x) 则 $EX = \int_{-\infty}^{+\infty} f(x) dx$ 推广: 若 Y = g(X) 则 $EY = \int_{-\infty}^{+\infty} g(x) f(x) dx$
- (3) 设二维随机变量 (X,Y) 的联合概率分布为 $P\{X=x_i,Y=y_j\}=p_{ij}, i,j=1,2,...$ 则 $EZ=\sum_i\sum_j g(x_i,y_j)p_{ij}$
- (4) 设二维随机变量 (X,Y) 的联合概率密度为 f(x,y), Z = g(X,Y) 则 $EZ = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$ 特别的 $EX = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x,y) dx dy$ 期望的性质
- (1) E(aX + bY + c) = aE(X) + bE(Y) + c
- (2) $EXY = EX \cdot EY \iff X 与 Y 不相关$ 特别的若 X 与 Y 相互独立, 由 EXY = EXEY 方差的定义
- (1) $DX = E(X EX)^2 = EX^2 (EX)^2$ 方差的性质
- $(1) D(aX + c) = a^2 DX$

(2) $D(X \pm Y) = DX + DY \pm 2Cov(X, Y)$

推论 $D(X \pm Y) = D(X) + D(Y) \iff X 与 Y 不相关$

特别的, 若 X 与 Y 独立, 则有 $D(X \pm Y) = D(X) + D(Y)$

- (3) 若X与Y独立,则 $DXY = DXDY + (EX)^2DY + (EY)^2DX$
 - 1. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty,$ 则 $E[\min\{|X|,1\}] =$ ______

Solution.

$$E\left[\min\left(|X|,1\right)\right] = \int_{-\infty}^{+\infty} \min\left(|x|,1\right) f(x) dx$$

$$= 2 \int_{0}^{+\infty} \min\left(|x|,1\right) f(x) dx$$

$$= 2 \left(\int_{0}^{1} x f(x) dx + \int_{1}^{+\infty} f(x) dx\right)$$

$$= \frac{1}{\pi} \ln\left(1 + x^{2}\right) \Big|_{0}^{1} + \frac{2}{\pi} \arctan x \Big|_{1}^{+\infty}$$

$$= \frac{1}{\pi} \ln 2 + \frac{1}{2}$$

2. (2016, 数三) 设随机变量 X 与 Y 相互独立, $X \sim N(1,2),Y \sim N(1,4)$, 则 D(XY) =

$$(A) \ 6 \qquad (B) \ 8 \qquad (C) \ 14 \qquad (D) \ 15$$

Solution.

(方法一) 通过计算方法做

$$DXY = E(XY)^{2} - (EXY)^{2}$$

$$= EX^{2} \cdot EY^{2} - (EXEY)^{2}$$

$$= [DX + (EX)^{2}][DY + (EY)^{2}] - (EXEY)^{2}$$

$$= 3 \times 5 - 1 = 14$$

(方法二) 用结论

$$DXY = DXDY + (EX)^2DY + (EY)^2DX$$

= 8 + 4 + 2 = 14

3. 设随机变量 X 与 Y 同分布, 则 $E\left(\frac{X^2}{X^2+Y^2}\right) = _____$

Solution. 由轮换对称性有

$$E\left(\frac{X^2}{X^2 + Y^2}\right) = E\left(\frac{Y^2}{X^2 + Y^2}\right) = \frac{1}{2}E\left(\frac{X^2 + Y^2}{X^2 + Y^2}\right) = \frac{1}{2}$$

总结

若 X,Y 同分布, 则 X,Y 具有相同的 F,f,E,D, 上题的推广结论

若
$$X_1, X_2, \dots, X_n$$
同分布,则 $E\left(\frac{X_1^2}{X_1^2 + \dots + X_n^2}\right) = \frac{1}{n}$

4. 设随机变量 X 与 Y 相互独立, $X \sim P(\lambda_1),Y \sim P(\lambda_2)$, 且 $P\{X+Y>0\}=1-e^{-1}$, 则 $E(X+Y)^2=$ _____.

Solution. 利用参数可加性可知, $X + Y \sim P(\lambda_1 + \lambda_2)$, 由 $P\{X + Y > 0\} = 1 - e^{-1} = 1 - P\{X = 0\}$ $\Longrightarrow \lambda_1 + \lambda_2 = 1$, 则 $E(X + Y)^2 = D(X + Y) + (E(X + Y))^2 = 1 + 1 = 2$ □

5. 设随机变量 X 与 Y 相互独立, $X \sim E(\frac{1}{3}), Y \sim E(\frac{1}{6}),$ 若 $U = \max\{X,Y\},$ $V = \min\{X,Y\},$ 则 $EU = _____, EV = ____.$

Solution. EV 是比较好求的, 由参数可加性有 $V \sim E(\frac{1}{2})$

方法一利用二维概率密度计算:

由 X, Y 独立, 知 $f(x,y) = f_X(x)f_Y(y)$, 则

$$EU = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \max(x, y) f(x, y) dx dy = \dots = 7$$

方法二求 U 的概率密度:

由 $U = \max(X, Y)$ 知 $F_U(u) = F_1 F_2 \implies f_u = f_1 F_2 + F_1 f_2$

$$EU = \int_{-\infty}^{+\infty} u f_u du = \dots = 7$$

方法三利用性质

$$E(U+V) = E(X+Y) = EX + EY = 3 + 6 = 9$$

$$EV = 2 \implies EU = 7$$

总结

若 $U = \max\{X,Y\}, V = \min\{X,Y\},$ 则 E(U+V) = E(X+Y), E(UV) = E(XY) 独立同分布随机变量的最大值与最小值的分布函数, 由如下结果

$$\diamondsuit Z = \max(X_1, X_2, \dots, X_n), \, \mathbb{M}$$

$$F_Z z = F_{X_1} F_{X_2} \dots F_{X_n}$$

$$\diamondsuit Z = \min(X_1, X_2, \dots, X_n), \, \mathbb{U}$$

$$F_Z z = 1 - [(1 - F_{(X_2)})][(1 - F_{(X_2)})] \dots [(1 - F_{(X_n)})]$$

6. (2017, 数一) 设随机变量 X 的分布函数为 $F(x) = 0.5\Phi(x) + 0.5\Phi\left(\frac{x-4}{2}\right)$, 其中 $\Phi(x)$ 为标准正态分布函数,则 $EX = _____$

Solution.

(方法一)
$$f(x) = \frac{1}{2}\phi(x) + \frac{1}{2}\phi(\frac{x-4}{2})$$
, 则 $EX = \int_{-\infty}^{+\infty} f(x) dx = 2$

(方法二) 考虑 $F(X_1) = 0.5\Phi(x), F(X_2) = 0.5\Phi(\frac{x-4}{2}),$ 则由第二章的结论 $aF_1 + bF_2, (a, b > 0, a+b=1)$ 的时候也是分布函数, 故 $EX = \frac{1}{2}EX_1 + \frac{1}{2}EX_2 = 0 + \frac{4}{2} = 2$

7. 设随机变量 $X \sim N(0,1)$, 则 $E|X| = _____, D|X| = _____$

Solution.

$$E|X| = \int_{-\infty}^{+\infty} |x|\phi(x)dx$$

$$= 2\int_{0}^{+\infty} x\phi(x)dx$$

$$= \frac{-2}{\sqrt{2\pi}} \int_{0}^{+\infty} e^{-\frac{x^2}{2}} d(-\frac{x^2}{2})$$

$$= \sqrt{\frac{2}{\pi}}$$

$$D|X| = E(|X|)^{2} - (E|X|)^{2}$$

$$= EX^{2} - (E|X|)^{2}$$

$$= DX + (EX)^{2} - (E|X|)^{2}$$

$$= 1 - \frac{2}{\pi}$$

(1) 若
$$X \sim N(0,1)$$
, 则 $E|X| = \sqrt{\frac{2}{\pi}}, D|X| = 1 - \frac{2}{\pi}$

(2) 若
$$X \sim N(0, \sigma^2)$$
, 则 $E|X| = \sqrt{\frac{2}{\pi}} \cdot \sigma$, $D|X| = (1 - \frac{2}{\pi}) \cdot \sigma^2$

(2) 若
$$X \sim N(0, \sigma^2)$$
, 则 $E|X| = \sqrt{\frac{2}{\pi}} \cdot \sigma$, $D|X| = (1 - \frac{2}{\pi}) \cdot \sigma^2$
(3) 若 $X \sim N(\mu, \sigma^2)$, 则 $E|X - \mu| = \sqrt{\frac{2}{\pi}} \cdot \sigma$, $D|X| = (1 - \frac{2}{\pi}) \cdot \sigma^2$

8. 设随机变量 X 与 Y 相互独立, 均服从 $N(\mu, \sigma^2)$, 求 $E[\max\{X,Y\}]$, $E[\min\{X,Y\}]$.

Solution. 由 X, Y 独立, 有 $X - Y \sim N(0, 2\sigma^2), E|X - Y| = \frac{2\sigma}{\sqrt{\pi}}$ 由下述总结, 可知所求期望为

$$\begin{split} E\left[\max\{X,Y\}\right] &= \frac{1}{2}\left[E(X) + E(Y) + E\left|X - Y\right|\right] = \mu + \frac{\sigma}{\sqrt{\pi}} \\ E\left[\min\{X,Y\}\right] &= \frac{1}{2}\left[E(X) + E(Y) - E\left|X - Y\right|\right] = \mu - \frac{\sigma}{\sqrt{\pi}} \end{split}$$

关于最大值最小值函数的拆法

$$\max\{X,Y\} = \frac{X+Y+|X-Y|}{2}$$

$$max\{X,Y\} = \frac{X+Y+|X-Y|}{2}$$
 $min\{X,Y\} = \frac{X+Y-|X-Y|}{2}$

9. 设独立重复的射击每次命中的概率为 p,X 表示第 n 次命中时的射击次数, 求 EX,DX.

Solution. Pascal 分布 (负二项分布), 关键在于<mark>分解随机变量</mark>, 设 X_i 表示第 i-1 次 命中到 i 命中所需要的射击次数,则有 X_1, X_2, \ldots 之间相互独立,且 $X_i \sim G(p)$,对于 $X = X_1 + X_2 \dots X_n$, ix

$$EX = EX_1 + EX_2 + \dots + EX_n = \frac{n}{p}$$

 $DX = DX_1 + DX_2 + \dots + DX_n = \frac{n(1-p)}{p^2}$

10. (2015, 数一、三) 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2^{-x} \ln 2, & x > 0 \\ 0, & x \leq 0 \end{cases}$,对 X 进行独 立的观测, 直到第2个大于3的观测值出现时停止, 记Y 为观测次数

135

- (a) 求 Y 的概率分布;
- (b) 求 EY.

Solution. 不妨令 $p = P\{X > 3\} = \int_3^{+\infty} 2^{-x} \ln 2 dx = \frac{1}{8}$

(1)

$$P{Y = k} = C_{k-1}^{1} p^{2} (1-p)^{k-2}$$
$$= (k-1)(\frac{1}{8})^{2} (\frac{7}{8})^{k-2}, k = 2, 3, \dots$$

(2)

$$EY = \sum_{k=2}^{\infty} kP\{Y = k\}$$

$$= p^2 \sum_{k=2}^{\infty} k(k-1)(1-p)^{k-2}$$

$$= \frac{888 \times 10^{-2}}{16} \dots$$

$$= 16$$

也可以用 Pascal 分布的结论直接得出 $EX = \frac{2}{\frac{1}{8}} = 16$

18.2 协方差的计算

Remark. 协方差

协方差的定义 $Cov(X,Y) = E[(X - EX)(Y - EY)] = E(XY) - EX \cdot EY$ 协方差的性质

- $(1) \ Cov(X,Y) = Cov(Y,X), Cov(X,X) = DX$
- (2) Cov(aX + bY + c, Z) = aCov(X, Z) + bCov(Y, Z)
- 11. 设 X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本。若 DX = 4, 正整数 $s \le n, t \le n$, 则

$$\operatorname{Cov}\left(\frac{1}{s}\sum_{i=1}^{s}X_{i}, \frac{1}{t}\sum_{j=1}^{t}X_{j}\right) =$$

(A)
$$4 \max\{s,t\}$$
 (B) $4 \min\{s,t\}$ (C) $\frac{4}{\max\{s,t\}}$ (D) $\frac{4}{\min\{s,t\}}$

Solution.

$$\operatorname{Cov}\left(\frac{1}{s}\sum_{i=1}^{s} X_{i}, \frac{1}{t}\sum_{j=1}^{t} X_{j}\right) = \frac{1}{st}\left[\operatorname{Cov}(X_{1}, X_{1}) + \operatorname{Cov}(X_{1}, X_{2}) + \dots + \operatorname{Cov}(X_{2}, X_{1}) + \dots + \operatorname{Cov}(X_{s}, X_{t})\right]$$

$$= \frac{\operatorname{Cov}(X_{i}, X_{i}) = DX_{i}, \operatorname{Cov}(X_{i}, X_{j}) = 0}{st} = \frac{\min(s, t)}{st} \cdot DX$$

$$= \frac{4}{\max(s, t)}$$

来自总体 X 的简单随机样本必然是独立同分布的.

- 12. (2005, 数三) 设 $X_1, X_2, \dots, X_n (n > 2)$ 为来自总体 $N(0, \sigma^2)$ 的简单随机样本,样本均值 为 \bar{X} 。记 $Y_i = X_i \bar{X}, i = 1, 2, \dots, n$ 。
 - (1) 求 Y_i 的方差 DY_i , $i = 1, 2, \dots, n$;
 - (2) 求 Y_1 与 Y_n 的协方差 $Cov(Y_1, Y_n)$;
 - (3) 若 $c(Y_1 + Y_n)^2$ 为 σ^2 的无偏估计量, 求常数 c.

Solution.

(1) 方法一:

$$DY_i = D(X_i - \bar{X})$$

$$= DX_i + D\bar{X} - 2Cov(X_i, \bar{X})$$

$$= \frac{E\bar{X} = \mu, D\bar{X} = \sigma^2/n}{n} \sigma^2 + \frac{\sigma^2}{n} - 2Cov(X_i, \frac{1}{n} \sum_{i=1}^n X_i)$$

$$= \frac{n-1}{n} \sigma^2$$

方法二:

$$DY_i = D\left(\frac{n-1}{n}X_i - \frac{1}{n}\sum_{i=j}^n X_j(j \neq i)\right)$$
$$= \left(\frac{n-1}{n}\right)^2 \sigma^2 - \frac{n-1}{n^2}\sigma^2$$
$$= \frac{n-1}{n}\sigma^2$$

(2)

$$Cov(Y_1, Y_n) = Cov(X_1, \bar{X}, X_n - \bar{X})$$

$$= Cov(X_1, X_n) - Cov(X_1, \bar{X}) - Cov(X_n - \bar{X}) + D\bar{X}$$

$$= \frac{-\sigma^2}{n}$$

(3) 由无偏性有 $cE(Y_1 + Y_n)^2 = \sigma^2 \implies c = \frac{\sigma^2}{E(Y_1 + Y_n)^2}$

$$E(Y_1 + Y_n)^2 = D(Y_1 + Y_n) + (EY_1EY_n)^2$$

$$= DY_1 + DY_n + 2Cov(Y_1, Y_n) + 0$$

$$= \frac{2(n-2)}{n}\sigma^2$$

故
$$c = \frac{n}{2(n-2)}$$

18.3 相关系数的计算

Remark. 相关系数

相关系数的定义 $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}} = \frac{EXY - EXEY}{\sqrt{DX}\sqrt{DY}}$ 相关系数的性质

- $(1) |\rho_{XY}| \le 1$
- (2) $\rho_{XY} = 0 \iff Cov(X, Y) = 0 \iff EXY = EXEY \iff D(X + Y) = DX + DY$
- (3) $\rho_{XY} = 1 \iff P\{Y = aX + b\} = 1(a > 0); \rho_{XY} = -1 \iff P\{Y = aX + b\} = 1(a < 0)$
 - 13. (2016, 数一) 设试验有三个两两互不相容的结果 A_1, A_2, A_3 , 且三个结果发生的概率均为 $\frac{1}{3}$ 。将试验独立重复地做两次,X 表示两次试验中 A_1 发生的次数,Y 表示两次试验中 A_2 发生的次数, 则 X 与 Y 的相关系数为

$$(A) - \frac{1}{2}$$
 $(B) - \frac{1}{3}$ $(C) \frac{1}{3}$ $(D) \frac{1}{2}$

Solution.

(方法一) 由题意有 X,Y 均服从 $B(2,\frac{1}{3})$,而 $P\{XY=1\}=PX=1,Y=1=C_2^1(\frac{1}{3})^2$,且 $P\{XY=0\}=\frac{7}{9}$,故 XY 的概率分布如下所示

$$\begin{array}{c|cc} XY & 0 & 1 \\ \hline P & \frac{7}{9} & \frac{2}{9} \end{array}$$

故 $EXY = \frac{2}{9}$,进而可以求出 $\rho_{XY} = \frac{-\frac{2}{9}}{\frac{4}{9}} = -\frac{1}{2}$

(方法二) 设 Z 为"A3 在两次试验中发生的次数"

由題意有 $Z \sim B(2, \frac{1}{3}), X + Y + Z = 2$ 而 $D(X + Y) = DX + DY + 2Cov(X, Y) = \frac{8}{9} + 2Cov(X, Y),$ 其中 $D(X + Y) = D(2 - Z) = DZ = \frac{4}{9}$, 故 $Cov(X, Y) = \frac{-2}{9}$

(方法三)

$$Cov(X, X + Y + Z) = DX + Cov(X, Y) + Cov(X, Z)$$

$$\frac{\text{轮换对称性}}{9} \frac{4}{9} + 2Cov(X, Y)$$

$$= Cov(X, 2) = 0 \implies Cov(X, Y) = -\frac{2}{9}$$

14. 设随机变量 $X \sim B\left(1, \frac{3}{4}\right), Y \sim B\left(1, \frac{1}{2}\right),$ 且 $\rho_{XY} = \frac{\sqrt{3}}{3}$ 。

- (a) 求 (X,Y) 的联合概率分布;
- (b) $\Re P\{Y=1|X=1\}.$

Solution. 这道颢比较简单, 直接给答案

$$P{Y = 1|X = 1} = \frac{2}{3}$$

18.4 相关与独立的判定

Remark. 相关与独立性

- (1) 一般来说独立是强于不相关的条件,即 独立 ⇒ 不相关
- (2) 对于二维正态分布有 独立 ↔ 不相关
- (3) 对于 0-1 分布有 独立 ← 不相关

Remark. 判断是否独立的基本方法

- (1) P(AB) = P(A)P(B), 对于离散型选点, 对于连续型选区间
- (2) 三个充要条件 $\forall (x,y)$ 或 $(i,j)F(x,y) = F_X F_Y, f(x,y) = f_X f_Y, P(ij) = P_{ii} P_{ii}$
- (3) $\rho_{XY} \neq 0 \implies X, Y$ 不独立
 - 15. 设二维随机变量 (X,Y) 服从区域 $D = \{(x,y)|x^2 + y^2 < a^2\}$ 上的均匀分布,则
 - (A) X 与 Y 不相关, 也不相互独立 (B) X 与 Y 相互独立

- (C) X 与 Y 相关
- (D) X 与 Y 均服从 U(-a,a)

Solution. 这道题可以记结论, 对于均匀分布若其区域不为 $(a,b) \times (c,d)$ 的矩形, 则必 然不独立, 其中 $X \in (a,b), Y \in (c,d)$

正常来做的话, 步骤如下

$$f(x,y) = \begin{cases} \frac{1}{\pi a^2}, & (x,y) \in D\\ 0, & (x,y) \notin D \end{cases}$$
$$EX = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x,y) dx dy \xrightarrow{\text{where } 0} 0$$

同理根据对称性可知 EXY = EX = EY = 0, 故 X,Y 一定不相关, 现在求 X,Y 的边 缘分布概率密度,有

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \frac{2}{\pi a^2} \sqrt{a^2 - x^2}, & x \in (-a, a) \\ 0, & x \notin (-a, a) \end{cases}$$

同理可以求出

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \frac{2}{\pi a^2} \sqrt{a^2 - y^2}, & y \in (-a, a) \\ 0, & y \notin (-a, a) \end{cases}$$

显然 $f_Y f_X \neq f(x,y)$ 故 X,Y 不独立.

- 16. 设随机变量 *X* 的概率密度为 $f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < +\infty$ 。
 - (a) 求 X 的期望与方差;
 - (b) 求 X 与 |X| 的协方差, 问 X 与 |X| 是否不相关?
 - (c) $\bigcap X = |X|$ 是否相互独立? 并说明理由.

Solution.

(1)

$$EX = \int_{-\infty}^{+\infty} x f(x) dx = 0$$

$$EX^2 = \int_{-\infty}^{+\infty} x^2 f(x) dx = \int_0^{+\infty} x^2 e^{-x} dx = 2$$

$$DX = EX^2 - (EX)^2 = 2$$

(2)

$$E(X|X|) = \int_{-\infty}^{+\infty} |X|Xf(x)dx = 0 = EXE|X| \implies \rho_{X|X|} = 0, Cov(X, |X|) = 0$$

(3) 设 $A = \{0 < X < 1\}, B = \{|X| < 1\},$ 故

$$P(AB) = P\{0 < X < 1, |X| < 1\} = P\{0 < X < 1\} = P(A)$$

而 P(B) < 1 是显然的, 故 $P(AB) \neq P(A)P(B)$, 即 X|X| 不独立

第十九章 大数定律与中心极限定理

Remark. 相美知识

依概率收敛设 Y_1, Y_2, \ldots 是一个随机变量的序列,a 是一个常数,对于任意的给定正数若有 $\lim_{n\to\infty} P\{|Y_n-a|<\epsilon\}=1$,则称该随机变量的序列依概率收敛与 a,记作 $Y_n\stackrel{P}{\to}a$

切比雪夫大数定律设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立, 数学期望 EX_i 和方差 DX_i 都存在, 并且方差有公共上界, 即 $DX_i \leq c, i = 1, 2, \cdots$,则对任意给定的 $\varepsilon > 0$,都有 $\lim_{n \to \infty} \mathbf{P} \left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{n} \sum_{i=1}^n \mathbf{E} X_i \right| < \varepsilon \right\} = 1.$

伯努利大数定律设随机变量 X_n 服从参数为 n 和 p 的二项分布, 即 $X_n \sim B(n,p)$, μ_n 是 n 次试验中事件 A 发生的次数 $(n=1,2,\cdots)$,则对任意 $\varepsilon>0$,都有 $\lim_{n\to\infty} \mathbf{P}\left\{\left|\frac{\mu_n}{n}-p\right|<\varepsilon\right\}=1$.

辛钦大数定律设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立同分布, 期望存在, 记 μ 为它们共同的期望, 则对任意 $\varepsilon > 0$,都有 $\lim_{n \to \infty} \mathbf{P} \left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \mu \right| < \varepsilon \right\} = 1.$

Remark. 三个考点

(1) 切比雪夫不等式

$$P\{|X - EX| \ge \epsilon\} \le \frac{DX}{\epsilon^2}$$
,或者 $P\{|X - EX| < \epsilon\} > 1 - \frac{DX}{\epsilon^2}$

(2) 大数定理

$$\frac{1}{n} \sum_{i=1}^{n} \overline{X_i} \xrightarrow{P} E\overline{X_i}$$

(3) 中心极限定理

$$\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

(4) 不同定理的成立条件的差别

切比雪夫大数定理要求 X_i 相互独立, 均值方差存在, 且方差具有公共上界

伯努利大数定理要求 $X_i \sim B(n, p)$

辛钦大数定律要求 X_i 独立同分布, 期望存在

列维-林德伯格定理要求 X_i 独立同分布, 且期望方差均存在

棣莫弗-拉普拉斯定理要求 $X_i \sim B(n, p)$

- 1. 设随机变量 $X_1, X_2 ... X_n$ 相互独立, 令 $S_n = X_1 + X_2 + ... + X_n$, 则根据列维-林德伯格 定理, 当 n 充分大的时候 S_n 近似服从正态分布, 则要求 X_1, X_2, \ldots, X_n 满足 ()
 - (A) 有相同的期望与方差
- (B) 服从同一离散型分布
- (C) 服从同一均匀分布 (D) 服从同一连续型分布

Solution. 答案选 C

2. (2022, 数一) 设随机变量 X_1, X_2, \dots, X_n 相互独立同分布, $\mu_k = E(X_i^k)(k=1,2,3,4)$ 。由 切比雪夫不等式, 对任意 $\varepsilon > 0$, 有 $P\left\{\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} - \mu_{2}\right| \geq \varepsilon\right\} \leq$

$$(A) \frac{\mu_4 - \mu_2^2}{n\varepsilon^2} \quad (B) \frac{\mu_4 - \mu_2^2}{\sqrt{n}\varepsilon^2} \quad (C) \frac{\mu_2 - \mu_1^2}{n\varepsilon^2} \quad (D) \frac{\mu_2 - \mu_1^2}{\sqrt{n}\varepsilon^2}$$

Solution. 首先需要确定 $E(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2})$ 是否等于 μ_{2} 显然, 所以这个式子满足切比雪夫 不等式, 故根据切比雪夫不等式有

原式
$$\geq \frac{D(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2})}{\epsilon^{2}} = \frac{\mu_{4} - \mu_{2}^{2}}{n\epsilon^{2}}$$

3. (2022, 数一) 设随机变量 X_1, X_2, \cdots, X_n 相互独立同分布, X_i 的概率密度为

$$f(x) = \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & \text{其他} \end{cases}$$

则当 $n \to \infty$ 时, $\frac{1}{n} \sum_{i=1}^{n} X_i^2$ 依概率收敛于?.

Solution. 由大数定理有 $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\overset{P}{\rightarrow}EX_{i}^{2}$, 又期望的定义有

$$EX_i^2 = 2\int_0^1 x^2(1-x)dx = \frac{1}{6}$$

4. (2020, 数一) 设 X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本, $P\{X = 0\} = P\{X = 1\} = \frac{1}{2}, \Phi(x)$ 表示标准正态分布函数。利用中心极限定理得 $P\left\{\sum_{i=1}^{100} X_i \leq 55\right\}$ 的近似值为

$$(A) \ 1 - \Phi(1) \quad (B) \ \Phi(1) \quad (C) \ 1 - \Phi(0.2) \quad (D) \ \Phi(0.2)$$

Solution. 由中心极限定理有 $\sum_{i=1}^{100} X_i \sim N(50, 25)$ 标准化后所求概率为

$$P\{\frac{X-50}{5} \le 1\} \implies \Phi(1)$$

第二十章 统计初步

20.1 求统计量的抽样分布

Remark. 样本均值与方差

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} nX_i, S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

 $E\bar{X} = \mu, D\bar{X} = \frac{\sigma^2}{n}, ES^2 = \sigma^2$ 来自同一总体的样本均值与方差是独立的

有偏估计量 $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ 其 $ES_n^2 = \frac{n-1}{n} \sigma^2$

统计的三大分布

 χ^2 分布的定义

设随机变量 X_1, X_2, \ldots, X_n 相互独立, 均服从 N(0,1) 称 $\chi^2 = X_1^2 + X_2^2 + \ldots + X_n^2$ 服从自由度为 n 的 χ^2 分布, 记 $\chi^2 \sim \chi^2(n)$, 特别的若 $X \sim N(0,1)$, 则 $\chi^2 \sim \chi^2(1)$

 χ^2 分布的性质

- (1) 参数可加性 设 χ_1^2 与 χ_2^2 相互独立,且 $\chi_1^2 \sim \chi^2(n)$, $\chi_2^2 \sim \chi^2(m)$ 则 $\chi_1^2 + \chi_2^2 \sim \chi^2(n+m)$
- (2) 设 $\chi^2 \sim \chi^2(n)$ 则 $E\chi^2 = n, D\chi^2 = 2n$

F 分布的定义

设随机变量 X 和 Y 相互独立,且 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$,称 $F = \frac{X/n_1}{Y/n_2}$ 服从自由度为 n_1, n_2 的 F 分布,记作 $F \sim F(n_1, n_2)$

F 分布的性质

- (1) 设 $F \sim F(n_1, n_2)$, 则 $\frac{1}{F} \sim F(n_2, n_1)$
- (2) $F_{1-\alpha}(n_2, n_1) = \frac{1}{F_{\alpha}(n_1, n_2)}$

t 分布的定义 设随机变量 X 和 Y 相互独立, $X\sim N(0,1), Y\sim \chi^2(n)$,则称 $T=\frac{X}{\sqrt{Y/n}}$ 服从自由度为 n 的 t 分布,记作 $T\sim t(n)$

t 分布的性质

(1) 设 $T \sim t(n)$, 则 $T^2 \sim F(1,n), \frac{1}{T^2} \sim F(n,1)$

$$(2) t_{1-\alpha}(n) = -t_{\alpha}(n)$$

Remark. 单正态总体与双正态总体

单正态总体

设 X_1, X_2, \ldots, X_n 为来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本, \bar{X} 与 S^2 分别为样本均值与样本方差,则

- (1) $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$, $\mathbb{R} \bar{X} \sim N(\mu, \sigma^2/n)$
- (2) $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ 即 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i \bar{X})^2 \sim \chi^2(n-1)$,且 \bar{X} 与 S^2 相互独立
- (3) $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$

双正态总体

设总体 $X \sim N(\mu_1, \sigma_1^2)$,总体 $Y \sim N(\mu_2, \sigma_2^2), X_1, X_2, \cdots, X_{n_1}$ 与 $Y_1, Y_2, \cdots, Y_{n_2}$ 分别为来自总体 X 与 Y 的简单随机样本且相互独立,样本均值分别为 \bar{X}, \bar{Y} ,样本方差分别为 S_1^2, S_2^2 ,则

- (4) $\frac{\bar{X} \bar{Y} (\mu_1 \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1);$
- (5) $\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 1, n_2 1)$;

(6)
$$\stackrel{\text{def}}{=} \sigma_1^2 = \sigma_2^2 \text{ ID}, \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S_\omega \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t \left(n_1 + n_2 - 2 \right), \not\equiv \mathcal{P} S_\omega = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}.$$

1. (2013, 数一) 设随机变量 $X \sim t(n), Y \sim F(1,n)$ 。给定 $\alpha(0 < \alpha < 0.5)$,常数 c 满足 $P\{X>c\} = \alpha, \, 则 \, P\{Y>c^2\} =$

(A)
$$\alpha$$
 (B) $1-\alpha$ (C) 2α (D) $1-2\alpha$

Solution. 这道题考察的是 t 分布的对称性, 由题有

$$Y = \frac{\chi^2(1)}{\chi^2(n)}$$
 $X = \frac{N(0,1)}{\sqrt{\chi^2(n)/n}}$

则有 $X^2=Y$, 所求概率就变成 $P\{X^2>c^2\}$ 由 t 分布的对称性有 $P\{X^2>c^2\}=2\alpha$

总结

正态分布与 t 分布具有相似的概率密度图像,F 分布与 χ^2 分布也有类似的图像.

2. 设 X_1, X_2, \dots, X_9 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, $Y_1 = \frac{1}{6}(X_1 + X_2 + \dots + X_6), Y_2 = \frac{1}{3}(X_7 + X_8 + X_9), S^2 = \frac{1}{2}\sum_{i=7}^9 (X_i - Y_2)^2$, 求 $\frac{\sqrt{2}(Y_1 - Y_2)}{S}$ 的分布.

Solution. 这种题就是一步一步反推, 注意凑题目要求的结果即可

$$Y_1 = \frac{1}{6} \sum_{i=1}^6 X_i \sim N(\mu, \frac{\sigma^2}{6})$$
 同理 $Y_2 \sim N(\mu, \frac{\sigma^2}{3})$

曲 Y_1, Y_2 独立, 知道 $Y_1 - Y_2 \sim N(0, \frac{\sigma^2}{2}) \implies \frac{Y_1 - Y_2}{\sigma/\sqrt{2}} \sim N(0, 1)$

又有 $\frac{2s^2}{\sigma^2} \sim \chi^2(2)$, 故

$$\frac{Y_1 - Y_2}{\sqrt{\sigma^2/2}\sqrt{\frac{2s^2}{\sigma^2}/2}} = \frac{\sqrt{2}(Y_1 - Y_2)}{s} \sim t(2)$$

20.2 求统计量的数字特征

3. 设 X_1, X_2, \cdots, X_n 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, 则

$$E\left[\sum_{i=1}^{n} X_i \cdot \sum_{j=1}^{n} \left(nX_j - \sum_{k=1}^{n} X_k\right)^2\right] =$$

Solution. 这道题就是个凑系数化简, 过程省去 原式 = $n^3(n-1)\mu\sigma^2$

- 4. 设 X_1, X_2, \dots, X_9 为来自总体 $N(0, \sigma^2)$ 的简单随机样本, 样本均值为 \bar{X} , 样本方差为 S^2 。
 - (1) 求 $\frac{9\bar{X}^2}{S^2}$ 的分布
 - (2) $Rightarrow E[(\bar{X}^2S^2)^2];$

Solution.

- (1) 和例题 3 一致, 过程省去 $\frac{9\bar{X}^2}{S^2} \sim F(1,8)$
- (2) 对于这种高幂次的一般都需要考虑用 χ^2 的结论

$$E [(\bar{X}^2 S^2)^2] = E \bar{X}^4 \cdot E S^4$$

$$= [D\bar{X}^2 + (E\bar{X}^2)^2] [DS^2 + (ES^2)^2]$$

$$= \frac{5}{107} \sigma^8$$

又
$$\frac{9\bar{X}^2}{\sigma^2} \sim \chi^2(1) \implies D\bar{X}^2 = \frac{2\sigma^4}{81}$$
 同理有 $DS^2 = \frac{\sigma^4}{4}$

第二十一章 参数估计

21.1 求矩估计与最大似然估计

Remark. 矩估计与最大似然估计

矩估计

令 $EX^k = \frac{1}{n} \sum_{i=1}^n X_i^k$ 或者 $E(X - EX)^k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k, k = 1, 2, \dots$ 得到 $\theta_1, \theta_2 \dots$ 的矩估计量

最大似然估计

- (1) 对样本点 x_1, x_2, \dots, x_n , 似然函数为 $L(\theta)$ $\begin{cases} \prod_{i=1}^n p(x_i; \theta) \\ \prod_{i=1}^n f(x_i; \theta) \end{cases}$
- (2) 似然函数两端取对数求导
- (3) 令 $\frac{d \ln L(\theta)}{d \theta} = 0$ 就可以得到 θ 的最大似然估计值 一个关于规范的小提示, 如果问估计值用小写字母 (样本值), 问估计量用大写字母 (随机变量)
 - 1. (2002, 数一) 设总体 X 的概率分布为

其中 $0 < \theta < \frac{1}{2}$ 为未知参数,利用总体 X 的如下样本值 3,1,3,0,3,1,2,3,求 θ 的矩估计值与最大似然估计值。

Solution.

(矩估计) 这道题只有一个参数,只需要用一阶矩估计 $EX = 2\theta(1-\theta) + 2\theta^2 + 3 - 6\theta = \bar{X}$, 其中 $\bar{X} = \frac{16}{8} = 2$, 故 θ 的矩估计值 $\hat{\theta} = \frac{1}{4}$

(最大似然估计) 对于样本 3,1,3,0,3,1,2,3, 似然估计函数为

$$L(\theta) = 4\theta^{6}(1-\theta)^{2}(1-2\theta)^{4}$$

$$\Leftrightarrow \frac{d \ln \theta}{d \theta} = 0$$
 有 $\theta = \frac{7 + \sqrt{13}}{12}$ 又 $0 < \theta < \frac{1}{2}$, 故最终 $\theta = \frac{7 - \sqrt{13}}{12}$

- 2. (2011, 数一) 设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本, 其中 μ 已 $\mathfrak{A}, \sigma^2 > 0$ 未知, 样本均值为 \bar{X} , 样本方差为 S^2 。
 - (1) 求 σ^2 的最大似然估计量 $\hat{\sigma}^2$;
 - (2) $\not \exists E(\hat{\sigma}^2) = D(\hat{\sigma}^2)$.

Solution.

(1) 对于样本 X_1, \ldots, X_n 其最大似然函数为

$$L(\sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

注意参数为 σ^2 , 令 $\frac{\mathrm{d} \ln \sigma^2}{\mathrm{d} \sigma^2} = 0$, 有 $\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n n(X_i - \mu)^2$

(2) 这种题优先考虑 χ^2 分布的期望与方差结论, 有题 (1) 有

$$\frac{X_i - \mu}{\sigma} \sim N(0, 1) \implies \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(n)$$

故
$$E(\hat{\sigma}^2) = \sigma^2, D(\hat{\sigma}^2) = \frac{2\sigma^4}{n}$$

- 3. (2022, 数一、三) 设 X_1, X_2, \dots, X_n 为来自期望为 θ 的指数分布总体的简单随机样本, Y_1, Y_2, \dots, Y_m 为来自期望为 2θ 的指数分布总体的简单随机样本,两个样本相互独立。利用 X_1, X_2, \dots, X_n 与 Y_1, Y_2, \dots, Y_m ,
 - (1) 求 θ 的最大似然估计量 $\hat{\theta}$;
 - (2) 求 $D(\hat{\theta})$ 。

Solution. 这是双总体, 但基本上和单总体一致, 不要被唬住了哦!

(1) 由题有 $X \sim E(\frac{1}{\theta}), Y \sim E(\frac{1}{2\theta})$, 故其概率密度分别为

$$f_X(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & x \le 0 \end{cases} \qquad f_Y(y) = \begin{cases} \frac{1}{2\theta} e^{-\frac{y}{2\theta}}, & y > 0 \\ 0, & x \le 0 \end{cases}$$

则对于样本 X_1, X_2, \ldots, X_n 与 Y_1, Y_2, \ldots, Y_n , 最大似然估计函数为

$$L(\theta) = (\frac{1}{2})^m \theta^{-(m+n)} e^{-\frac{1}{\theta}(\sum_{i=1}^n X_i + \frac{1}{2} \sum_{j=1}^m Y_j)}$$

則令 $\frac{\mathrm{d}\ln\theta}{\mathrm{d}\theta} = 0$, 有 $\hat{\theta} = \frac{1}{n+m} \left(\sum_{i=1}^{n} X_i + \frac{1}{2} \sum_{j=1}^{m} Y_j \right)$

(2)

$$D(\hat{\theta}) = (\frac{1}{m+n})^2 D(\sum_{i=1}^n X_i + \frac{1}{2} \sum_{j=1}^m Y_j)$$
$$= \frac{\theta^2}{m+n}$$

21.2 估计量的评价标准

Remark. 估计量的评价标准

- (1) (无偏性) 设 $\hat{\theta}$ 为 θ 的估计量, 若 $E\hat{\theta} = \theta$ 则称其为 θ 无偏估计量
- (2) (有效性) 设 $\hat{\theta}_1, \hat{\theta}_2$ 为 θ 的无偏估计, 若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$ 则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 更有效
- (3) 设 $\hat{\theta}$ 为 θ 的估计量, 若 $\hat{\theta}$ 依概率收敛于 θ , 则称 $\hat{\theta}$ 为 θ 一致 (相合) 估计量 一致性的考点在于— $\frac{1}{n}\sum_{\square}\stackrel{P}{\to}E_{\square}$
 - 4. 设总体 X 的概率密度为

$$f(x) = \begin{cases} 2e^{-2(x-\theta)}, & x > \theta \\ 0, & x \le \theta \end{cases}$$

其中 $\theta > 0$ 为未知参数, X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本。

- (1) 求 θ 的最大似然估计量 $\hat{\theta}$;
- (2) 问 $\hat{\theta}$ 是否为 θ 的无偏估计量? 并说明理由。

Solution.

(1) 对于样本 X_1, X_2, \ldots, X_n 的最大似然估计函数为

$$L(\theta) = \prod_{i=1}^{n} 2e^{-2(x_i - \theta)} = 2^n e^{-\sum_{i=1}^{n} (x_i - \theta)}$$

显然 $L(\theta)$ 关于 θ 是单调递增的,则根据最大似然的定义,应该取使得 $L(\theta)$ 最大的值,而由题目有 $X_1 > \theta, X_2 > \theta, \ldots$,故 $\hat{\theta} = \min \{X_1, X_2, \ldots, X_n\}$

(2) 由概率密度函数有 $F_X(x) = \int_{-\infty}^x f(t)dt$, 故

$$F_X(x) = \int_{-\infty}^x f(t)dt = \begin{cases} 1 - e^{-2(x-\theta)}, & x > \theta \\ 0, & x \le \theta \end{cases}$$

故 $F_{min} = 1 - [1 - F_X(x)]^n$ 即

$$F_{min} = \begin{cases} 1 - e^{-2n(x-\theta)}, & x > \theta \\ 0, x \le \theta \end{cases}$$

故

$$f_{min} = \begin{cases} 2ne^{-2n(x-\theta)}, & x > \theta \\ 0, & x \le \theta \end{cases}$$

由期望的定义有

$$E\hat{\theta} = \int_{\theta}^{+\infty} 2nxe^{-2n(x-\theta)} = \theta + \frac{1}{2n}$$

5. (2010, 数一) 设总体 X 的概率分布为

其中参数 $\theta \in (0,1)$ 未知, N_i 表示来自总体 X 的简单随机样本 (样本容量为 n) 中等于 i 的个数 (i=1,2,3) 求常数 a_1,a_2,a_3 使得 $T=\sum_{i=1}^3 a_i N_i$ 为 θ 的无偏估计量, 并求 T 的方差.

Solution. 由题可知 $N_i \sim B(n,p)$, 具体来说有

$$\begin{cases} N_1 \sim B(n, 1 - \theta) \\ N_2 \sim B(n, \theta - \theta^2) \\ N_3 \sim B(n, \theta^2) \end{cases}$$

且有 $N_1 + N_2 + N_3 = n$

故
$$ET = \sum_{i=1}^{3} a_i EN_i = n \left[a_1 + (a_2 - a_1)\theta + (a_3 - a_2)\theta^2 \right] = \theta$$
, 只需要令

$$\begin{cases} a_1 = 0 \\ a_2 = \frac{1}{n} \\ a_3 = \frac{1}{n} \end{cases}$$

$$Rrightarrow DT = \frac{1}{n^2}D(n - N_1) = \frac{1}{n^2}DN_1 = \frac{\theta(1-\theta)}{n}$$

21.3 区间估计与假设检验

第二十二章 补充知识-高等数学

补充知识来自于

- (1) 菲砖
- (2) 做题总结

22.1 平方数和的求和公式

$$\sum_{k=1}^{n} k^2 = \frac{n(n-1)(n-2)}{6}$$

22.2 莱布尼兹法则

$$F(x) = \int_{a(x)}^{b(x)} f(x, t) dt$$

那么 F(x) 的导数为

$$F'(x) = f(x, b(x)) \cdot b'(x) - f(x, a(x)) \cdot a'(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x, t) dt$$

特别的, 若上下限为常数有

$$F'(x) = \int_a^b \frac{\partial}{\partial x} f(x, t) dt$$

例如对于 $F(x) = \int_1^0 e^{-x^2t^2} dt$,则

$$F'(x) = 2x \int_0^1 t^2 e^{-x^2 t^2} dt$$

第二十三章 补充知识-线性代数

补充知识来自于

- (1) 线性代数入门
- (2) 做题总结

第二十四章 补充知识-概率论

补充知识来自于

- (1) 概率论与数理统计 茆诗松
- (2) 做题总结

24.1 配对问题

问题描述: 在一个有 n 个人参加的晚会,每个人带来一件礼物,且规定每个人带的礼物都不相同. 晚会期间各人从放在一起的 n 件礼物中随机抽取一件,问至少有一个人自己抽到自己的礼物的概率是多少?

Solution. (配对问题)

设 A_i 为事件: 第 i 个人自己抽到自己的礼物, i = 1, 2, ..., n 所求概率为

$$P(A_1) = P(A_2) = \dots = P(A_n) = \frac{1}{n}$$

$$P(A_1 A_2) = P(A_1 A_3) = \dots = P(A_{n-1} A_n) = \frac{1}{n(n-1)}$$

$$P(A_1 A_2 A_3) = P(A_1 A_2 A_4) = \dots = P(A_{n-2} A_{n-1} A_n) = \frac{1}{n(n-1)(n-2)}$$

. . .

$$P(A_1 A_2 A_3 \dots A_n) = \frac{1}{n!}$$

再由概率的加法公式(容斥原理)得

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i=1}^{n-1} P(A_i A_{i+1}) + \sum_{i=1}^{n-2} P(A_i A_{i+1} A_{i+2})$$

$$+ \ldots + (-1)^{n-1} P(A_1 A_2 \ldots A_n)$$

$$= C_n^1 \frac{1}{n} - C_n^2 \frac{1}{n(n-1)} + \ldots + (-1)^{n-1} C_n^n \frac{1}{n!}$$

$$= 1 - \frac{1}{2!} + \frac{1}{3!} + \ldots + (-1)^{n-1} \frac{1}{n!}$$

当 $n \to \infty$, 上述概率由 $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, 则

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = 1 - e^{-1} \approx 0.6321$$

24.2 几个概率的不等式

- 1. $P(AB) \ge P(A) + P(B) 1$
- 2. $P(A_1A_2...A_n) \ge P(A_1) + P(A_2) + ... + P(A_n) (n-1)$ (Boole 不等式)
- 3. $|P(AB) P(A)P(B)| \le \frac{1}{4}$

Proof. 相关证明如下:

- (1) 由于 $P(A \cup B) = P(A) + P(B) P(AB) \le 1 \implies P(AB) \ge P(A) + P(B) 1$
- (2) 采用数学归纳法证明, 对于 n = 2, 即不等式 (1) 已经证明, 不妨假设对于 n = k 个事件, 不等式成立, 即

$$P(A_1 A_2 \dots A_k) \ge P(A_1) + P(A_2) + \dots + P(A_k) - (k-1)$$

考虑 n = k + 1 个事件 $A_1 A_2 ... A_{k+1}$, 不妨令 $B = A_1 A_2 ... A_k$, 则

$$P(A_1 A_2 \dots A_k A_{k+1}) = P(B A_{k+1}) \ge P(B) + P(A_{k+1}) - 1 \ge P(A_1) + P(A_2) + \dots + P(A_{k+1}) - (k)$$

由数学归纳法可知, 原不等式成立

(3) $\pm P(A) \ge P(AB), P(B) \ge P(AB),$ $\cup P(A)P(B) \ge P(AB)^2,$ $\cup P(AB)$

$$P(AB) - P(A)P(B) \le P(AB) - P(AB)^2 = P(AB)(1 - P(AB))$$

令 x = P(AB), 则 f(x) = x(1-x), 当 $x = \frac{1}{2}$ 时, 取得 $f(x)_{max} = \frac{1}{4}$ 即

$$P(AB) - P(A)P(B) \le \frac{1}{4}$$

由于 $P(AB) + P(A\overline{B}) = P(A)$, 即 $P(AB) = P(A) - P(A\overline{B})$ 则

$$P(A)P(B) - P(AB) = P(A)P(B) - P(A) + P(A\bar{B}) = P(A\bar{B}) - P(A)P(\bar{B}) \le \frac{1}{4}$$

即

$$P(AB) - P(A)P(B) \ge \frac{1}{4}$$

综上原不等式成立

24.3 轮流射击模型

问题描述: 有两名选手比赛设计, 轮流对同一个目标进行射击, 甲命中目标的概率为 α , 乙命中的概率为 β . **甲先射**, 谁先设中谁获胜. 问甲乙两人获胜的概率各是多少?

Solution.

(方法一) 记事件 A_i 为第 i 次射中目标, i = 1, 2, ...,因为甲先射,所以甲获胜可以表示为

$$A_1 \cup \bar{A}_1 \bar{A}_2 A_3 \cup \dots$$

由于事件独立,则甲获胜的概率为

$$P(甲获胜) = \alpha + (1 - \alpha)(1 - \beta)\alpha + (1 - \alpha)^{2}(1 - \beta)^{2}\alpha^{2}\dots$$

$$= \alpha \sum_{i=0}^{\infty} (1 - \alpha)^{i}(1 - \beta)^{i}$$

$$= \frac{\alpha}{1 - (1 - \alpha)(1 - \beta)}$$

同理, 乙获胜的概率为

$$P(乙获胜) = (1 - \alpha)\beta + (1 - \alpha)(1 - \beta)(1 - \alpha)\beta + \dots$$
$$= \beta(1 - \alpha)\sum_{i=0}^{\infty} (1 - \alpha)^{i}(1 - \beta)^{i}$$
$$= \frac{\beta(\alpha - 1)}{1 - (1 - \alpha)(1 - \beta)}$$

(方法二) 由于射击是独立, 所有有如下条件

$$P($$
 甲获胜 $) = \alpha + (1 - \alpha)(1 - \beta)P($ 甲获胜 $)$

前面失败的情况并不影响后续获胜(无记忆性),则可以直接解出甲获胜的概念

$$P(甲获胜) = \frac{\alpha}{1 - (1 - \alpha)(1 - \beta)}$$

$$P(乙获胜) = 1 - P(甲获胜) = \frac{\beta(\alpha - 1)}{1 - (1 - \alpha)(1 - \beta)}$$

24.4 补充: 随机变量的矩

设 (X,Y) 是二维随机变量,如果 $E(X^kY^l)$ 存在,则称 $E(X^k)$,(k=1,2...) 为 X 的 k 阶原点矩;称 $E(X-EX)^k$,k=(2,3,...) 为 X 的 k 阶中心矩;称 $E(X^kY^l)$,(k,l=1,2,...) 为 X 与 Y 的 k+l 阶混合原点矩;称 $E[(X-EX)^k(Y_EY)^l$,(k,l=1,2,...)] 为 X,Y 的 k+l 阶混合中心矩