Python interdisziplinär

Ein Anwendungsfall zwischen Geoinformatik und Geschichtswissenschaften

Digital Humanities? Was ist das?

ganz kurz: die interdisziplinäre Verwendung von Methoden aus der Informatik in den Geisteswissenschaften (in meinem Fall Geschichte)

Felder der Digital History (Auswahl)

Transkription alter Handschriften

https://www.compgen.de/wpcontent/uploads/2019/09/8176120393_64e2626e d9_b.jpg

Sammeldatenbanken

https://pecunia.zaw.uniheidelberg.de/ikmk/home?lang= de


```
Regressionsergebnisse Holocaust
MASSAKER
summary(holo model massaker red1)
glm(formula = massaker ~ Familie + Pol Debatte Rassis Antisem +
    Belletristik + Gerichtsverfahren + Israel Palästina Konflikt +
   Gedenkstätten + Polen_Ukraine_Russland + Abrahamitische_Rel +
   Frankreich Politik + Film + Entschädigungen + neue digitale Rechte +
   Kunst und Politik + Kath Kirche + zwanzigster Juli + Jugoslawien +
   Verlage + Armenien Genozid + Musik + Sudetendeutsche, family = "binomial",
   data = holo massaker)
Coefficients:
                          Estimate Std. Error z value Pr(>|z|)
                                      0.10127 -21.902 < 2e-16 ***
(Intercept)
Familie
                                               -0.102 0.918614
Pol Debatte Rassis Antisem -0.60722
                                               -3.534 0.000409 ***
Belletristik
                          -0.75875
                                               -2.542 0.011020 *
Gerichtsverfahren
                                               -3.650 0.000262 ***
                           -0.99387
Israel Palästina Konflikt 3.84126
                                               13.809 < 2e-16 ***
                                      0.27817
Gedenkstätten
                          -6.66632
                                               -8.199 2.42e-16 ***
Polen Ukraine Russland
                           4.28040
                                               9.438 < 2e-16 ***
                                      0.45353
Abrahamitische Rel
                           2.44663
                                      0.52923
                                               4.623 3.78e-06 ***
Frankreich Politik
                           2.37021
                                               4.020 5.82e-05 ***
                                      0.58960
                           1.63938
                                      0.74862
                                               2.190 0.028534 *
Film
Entschädigungen
                           -0.05062
                                      0.96737 -0.052 0.958269
neue digitale Rechte
                           2.01548
                                               2.452 0.014203 *
Kunst und Politik
                           0.34802
                                               0.360 0.718666
Kath Kirche
                           -4.47810
                                      1.35039
                                               -3.316 0.000913 ***
                                               1.524 0.127619
zwanzigster Juli
                           1.70516
                                      1.11920
                                               10.551 < 2e-16 ***
Jugoslawien
                           8.21174
                                      0.77832
Verlage
                           -0.21436
                                      0.87829
                                               -0.244 0.807180
Armenien Genozid
                           8.36796
                                      0.75748
                                               11.047 < 2e-16 ***
Musik
                           0.49544
                                               0.495 0.620528
                                      1.00068
Sudetendeutsche
                           0.92516
                                      1.46879
                                               0.630 0.528773
Signif. codes: 0 (***, 0.001 (**, 0.01 (*) 0.05 (., 0.1 ( , 1
```

Topic Modeling

Anwendungsfall: meine Bachelorarbeit

Die Sozialtopographie der Schwabenkinder. Eine GISgestützte Untersuchung jugendlicher Arbeitsmigration von Vorarlberg und Tirol nach Oberschwaben 1812-1938

Was sind Schwabenkinder?

- Schwabenkinder sind eine
 Migrationsbewegung von Kindern zwischen ~1600 bis ~1945
- Sie gingen vom mittleren Alpenraum nach Oberschwaben im Frühjahr, um sich dort als Hirte oder Dienstbote zu verdingen

https://www.schwabenkinder.eu/media/filer_thumbnails/2012/02/20/k arlstrasse_fn1.jpg__800x0_q85.jpg

Die Schwabenkinder-Datenbank

- https://www.schwabenkinder.eu/de/ Datenbank/datenbank-suche/
- Enthält 7.040 Schwabengänge von insgesamt 5.425 Kindern
- Basiert auf
 Dienstbotenverzeichnissen im LK
 Bodensee und RV
- Problem: keine Arbeit mit Normdaten
 > keine Auswertung der Daten

Schritt 1: Scraping

 Daten aus der DB scrapen und in eine Excel-Tabelle abspeichern

```
import requests
       import os
       import pandas as pd
       # Schritt 1: Herunterladen der XLS-Dateien
       download_folder = "D:\schwabenkinder"
       url_template = "https://www.schwabenkinder.eu/de/Datenbank/datenbank-suche/export/xls/{}"
10
11
       num_files = 7000 # Anzahl der herunterzuladenden Dateien
12
       for i in range(1, num_files + 1):
13
           url = url_template.format(i)
14
           filename = os.path.join(download_folder, f"datei_{i}.xls")
15
           response = requests.get(url)
           if response.status code == 200:
               with open(filename, "wb") as file:
18
                   file.write(response.content)
19
               print(f"Datei {i} heruntergeladen.")
20
           else:
21
               print(f"Fehler beim Herunterladen der Datei {i}.")
22
23
       # Schritt 2: Kombinieren der Daten
       # Ordnerpfad mit den XLS-Dateien
25
       folder_path = "D:\schwabenkinder"
26
       # Kombinierte Daten initialisieren
27
28
       combined data = pd.DataFrame()
29
30
       # Durch alle Dateien im Ordner iterieren
31
       for filename in os.listdir(folder_path):
32
           if filename.endswith(".xls") or filename.endswith(".xlsx"):
33
               file_path = os.path.join(folder_path, filename)
34
                   df = pd.read_excel(file_path)
                   # Dateinamen als neue Spalte hinzufügen
37
                   df.insert(0, "Dateiname", filename)
38
                   combined_data = pd.concat([combined_data, df])
                   print(f"Datei {filename} kombiniert.")
               except Exception as e:
41
                   print(f"Fehler beim Kombinieren der Daten aus Datei {filename}: {str(e)}")
42
43
       # Kombinierte Daten in eine neue Excel-Datei speichern
44
       combined_data.to_excel("kombinierte_daten.xlsx", index=False)
       print("Alle Daten kombiniert und in kombinierte daten.xlsx gespeichert.")
```

Schritt 2: Geoparsing der Ortsnamen (mithilfe der GeoNames-API)


```
18 ∨ def query geonames api(place):
19
20
           # Überprüfen, ob Ort bereits abgefragt wurde
21
           if place in queried places:
22
               print(f'API-Anfrage für {place} übersprungen (bereits abgefragt)')
23
               return None
24
25
           endpoint = 'http://api.geonames.org/searchJSON'
26
           api kev = 'xeilian'
27
28
           # API-Anfrage senden
29
           anfrage = endpoint + "?q=" + place + "&MaxRows=1&featureClass=P&username=" + api key
30
           print(anfrage)
31
           response = requests.get(anfrage)
32
           print(f'API-Anfrage für {place} gesendet')
33
34
           # Ergebnis verarbeiten
           if response.status_code == 200:
35
36
               data = response.ison()
37
               if 'geonames' in data and len(data['geonames']) > 0:
                   result = data['geonames'][0]
38
39
                   return (
40
                        'adminname1': result.get('adminName1', ''),
41
                        'lat': result.get('lat', ''),
42
                       'lng': result.get('lng', ''),
                        'population': result.get('population', ''),
                        'toponym_name': result.get('toponymName', '')
45
47
           return None
```

Schritt 3: Datenbereinigung

Schritt 4: Auswertung

А	В	С	
Herkunft: Ort 🖃	Anzahl: Kinder	Anzahl: Dienste	
[AT: VB, unbekannt]	4	4	
[CH: ApI, unbekannt]	1	1	
[CH: Grb, unbekannt]	3	3	
[CH: Stg, unbekannt]	6	7	
[Dial]	1	1	
[IT: Süd, unbekannt]	7	7	
[St. Ulrich]	1	1	
[Wolfach]	1	1	
Agums	1	1	
Alberschwende	69	93	
Almens	5	6	
Altach	5	5	
Altdorf	1	1	
Altenstadt	47	49	
Altstätten	32	36	
Alvaneu	9	9	
Alvaschein	4	4	
Andelsbuch	117	177	
Andiast	7	10	
Angedair	16	23	
Appenzell	60	76	
Arzl	22	40	
Au (SG)	1	1	
Au (VB)	131	171	
Ausserbraz	1	1	
Azmoos-Wartau	1	1	
Bach	1	1	
Balzers	7	7	
Bangs	1	1	
Bartholomäberg	27	30	
Ratechiine	1	1	

А	В	С	D	E	F
Arbeit: Gem. alt	VB ▼	Tirol 🔻	Südtirol/Trentino ▼	Dienste VB/Tirol Ges. 🔻	Dienste DB Ges. 🔻
[Allmannshofen?]	1	0	0	1	1
[Bayern?]	1	0	0	1	1
[Heglbach?]	1	0	0	1	1
[Schwaben?]	895	0	0	895	895
[unbekannt]	398	1	1	400	402
[Württemberg?]	24	0	0	24	24
~Kißlegg~	7	0	0	7	15
~Wangen im Allgäu~	10	0	0	10	10
Achberg	34	6	2	42	46
Ailingen	54	67	36	157	229
Altmannshofen	65	13	2	80	92
Amtzell	67	53	10	130	132
Arnach	2	2	4	8	8
Aulendorf	0	5	3	8	14
Berg	0	21	12	33	34
Beuren	6	0	0	6	7
Blitzenreute	17	42	17	76	106
Bodnegg	1	27	3	31	32
Deggenhausen	1	1	2	4	5
Deuchelried	110	6	0	116	118
Diepoldshofen	41	57	2	100	200
Dietmanns	2	2	2	6	6
Ebersbach-Musbach	0	1	0	1	3
Eglofs	161	2	1	164	196
Eichstegen	0	10	3	13	13
Eisenharz	15	0	0	15	26
Emmelhofen	175	17	3	195	347
Eriskirch	1	107	24	132	1 40
Eschach	24	63	26	113	150
Esenhausen	2	47	6	55	61
Frickingen	0	1	1	2	2

Schritt 5: GIS (endlich ©)

GIS = **G**eoInformation**S**ysteme

Herkunftsorte (Vorarlberg)

Herkunftsorte (Nordtirol)

Herkunftsorte (Südtirol)

Arbeitsorte
(nach heutigen
Landkreisen)

Arbeitsorte (nach alten Verwaltungsgrenzen)

Aber warum? Pushfaktoren

- Dichte Bevölkerung v.a. in VB, weniger in Nordtirol und Südtirol
- Topographie: Vorarlberger Kinder haben eine kurze Strecke.
 Nordtiroler müssen den Arlberg, Südtiroler auch den Reschenpass überqueren
- Kulturelle Gemeinsamkeiten zw. Vorarlberg und Oberschwaben
- Starke Zersiedelung durch Realteilung: Besitz wird auf alle Kinder verteilt + hohe Geburtenrate führt zu Zersiedelung und Verarmung durch Aufteilung des Vermögens

Aber warum? Pullfaktoren

- Oberschwaben hat auch eine hohe Bevölkerungsdichte, jedoch verteilt sie sich viel besser durch die Hügellandschaft (in VB/Tirol Verteilung auf wenige Täler wegen Hochgebirge)
- Hoher agrarischer Bedarf
- Ebenfalls hohe Zersiedelung, ABER: Anerbenrecht: der Erstgeborene bekommt alles, dadurch bleibt das Vermögen an einem Ort konzentriert -> relativ reiche bäuerliche Oberschicht

Wege und Infrastruktur: zu Fuß oder per Fuhrwerk

Wanderwege bis zum Bodensee

Straßennetz in Oberschwaben

Wege und Infrastruktur: per Zug

 Ab den 1850er-Jahren: Aufbau eines Eisenbahnnetzes in den Herkunfts- und Arbeitsorten

Bahnlinien in den Herkunftsregionen

https://github.com/xeilian/schwabenkinder

Vielen Dank für Eure Aufmerksamkeit!