Chapter 5-1

Dynamic Programming

Dynamic Programming

- Dynamic Programming (DP) Algorithm
 - 입력 크기가 작은 부분 문제들을 해결한 후에,
 - 그 해들을 이용하여 보다 큰 크기의 부분 문제들을 해결하여,
 - 최종적으로 원래 주어진 입력의 문제를 해결

DP vs Divide and Conquer

• Divide and conquer 알고리즘과 DP 알고리즘의 전형적인 부분 문제들 사이의 관계

- Divide and conquer 알고리즘
 - A는 B와 C로 분할되고, B는 D와 E로 분할되는데, D와 E의 해를 취합하여 B의 해를 구함
 - 단, D, E, F, G는 각각 더 이상 분할할 수 없는 (또는 가장 작은 크기의) 부분 문제들임
 - 마찬가지로 F와 G의 해를 취합하여 C의 해를 구하고, 마지막으로 B와 C의 해를 취합하여 A의 해를 구함

DP vs Divide and Conquer

• Divide and conquer 알고리즘과 DP 알고리즘의 전형적인 부분 문제들 사이의 관계

- DP 알고리즘
 - 먼저 최소 단위의 부분 문제 D, E, F, G의 해를 각각 구함
 - 그 다음 D, E, F의 해를 이용하여 B의 해를 구함
 - E, F, G의 해를 이용하여 C의 해를 구함
 - B와 C의 해를 계산하는데 E와 F의 해 모두를 이용함

Dynamic Programming Algorithm

- DP 알고리즘에는 부분 문제들 사이에 의존적 관계가 존재
 - 작은 부분 문제의 해가 보다 큰 부분 문제를 해결하는데 사용되는 관계가 있음
 - 이러한 관계는 문제 또는 입력에 따라 다르고, 대부분의 경우 뚜렷이 보이지 않아서 '함축적 순서 ' (implicit order)라고 함

• Divide and conquer 알고리즘은 부분 문제의 해를 중복 사용하지 않음

- 모든 쌍 최단 경로 (All Pairs Shortest Paths) 문제
 - 각 쌍의 점 사이의 최단 경로를 찾는 문제

	서 울 Seoul	인 천 Incheon	수 원 Suwon	대 전 Daejeon	전 주 Jeonju	광주 Gwangju	대 구 Daegu	을 산 Ulsan	부 산 Busan
서 을 Seoul		40.2	41.3	154	232.1	320.4	297	407.5	432
인 천 Incheon			54.5	174	253.3	351.6	317.6	447	453
수 원 Suwon				132.6	189.4	299.6	268.1	356	390.7
대 전 Daejeon					96.9	185,2	148.7	259.1	283.4
전 주 Jeonju						105.9	219.7	331.1	322.9
광 주 Gwangju							219.3	329.9	268
됐 _~ 궃								111.1	135.5
올 산 Ulsan									52.9
부 산 Busan									

- 다익스트라의 최단 경로 알고리즘을 사용하면
 - 각 점을 시작점으로 정하여 다익스트라 알고리즘 수행
 - 시간 복잡도는 n X O(n²) = O(n³), 단, n은 점의 수

- Floyd-Warshall Algorithm
 - Floyd 알고리즘의 시간 복잡도는 O(n³)으로 Dijkstra 알고리즘을 n번 사용할때의 시간 복잡도와 동일
 - Floyd 알고리즘은 매우 간단하여 Dijkstra 알고리즘보다 효율적

- Floyd-Warshall Algorithm의 아이디어
 - 작은 그래프에서의 부분 문제
 - 3개의 점이 있는 경우, a에서 c까지의 최단 경로를 찾으려면 2가지 경로, 즉, a에서 c로 직접 가는 경로와 점 b를 경유하는 경로 중에서 짧은 것을 선택
 - 경유 가능한 점
 - 점 1인 경우,
 - 점 1, 2인 경우,
 - 점 1, 2, 3인 경우
 - ...
 - 점 1, 2, ..., n, 즉, 모든 점을 경유 가능한 점들로 고려하면서 모든 쌍의 최단 경로의 거리를 계산

- Floyd-Warshall Algorithm의 부분 문제 정의
 - 그래프의 점이 1, 2, 3, ..., n일 때

 $D_{ij}^{k} = A \{1, 2, ..., k\}$ 를 경유 가능한 점으로 고려하여, A = A = A 에서 가장 짧은 경로의 거리

- [주의] 점 1에서 점 k까지의 모든 점을 반드시 경유하는 경로를 의미하는 것이 아님
- \mathcal{D}_{ij}^k 는 $\{1, 2, ..., k\}$ 을 하나도 경유하지 않으면서 점 i에서 직접 점 j에 도달하는 간선 (i, j)가 가장 짧은 거리일 수도 있음
- 단, k≠i, k≠j이고 k=0인 경우, 점 0은 그래프에 없으므로 어떤 점도 경유하지 않는다는 것을 의미
- 즉, 📭 = 간선 (i, j)의 가중치

- Floyd-Warshall Algorithm의 부분 문제 (📭 1)
 - 점 i에서 점 j까지 점 1을 경유하는 경우와 직접 가는 경로 중에서 짧은 경로의 거리
 - 모든 점 i와 j에 대해 P_{ii}^{-1} 를 계산하는 것이 가장 작은 부분 문제
 - i≠1, j≠1

- Floyd-Warshall Algorithm의 부분 문제 (📭²)
 - 점 i에서 점 j까지 점 2를 경유하는 경로와 D_{ij}^{-1} 중에서 짧은 경로의 거리
 - 단, 점 2를 경유하는 경로의 거리는 $D_{i2}^{1} + D_{2j}^{1}$
 - i≠2, j≠2

- Floyd-Warshall Algorithm의 부분 문제 (고; k)
 - 점 i에서 점 j까지 점 k를 경유하는 경로와 D_{ij}^{k-1} 중에서 짧은 경로의 거리
 - 점 k를 경유하는 경로의 거리는 $D_{ik}^{k-1} + D_{kj}^{k-1}$
 - i≠k, j≠k

- Floyd-Warshall Algorithm의 부분 문제 (🔎 ")
 - 모든 점을 경유 가능한 점들로 고려한 모든 쌍 i와 j의 최단 경로의 거리
 - Floyd의 모든 쌍 최단 경로 알고리즘은 k가 1에서 n이 될 때까지 D_{ij}^k 를 계산 해서 D_{ii}^n 를 찾음

Floyd-Warshall Algorithm

AllPairsShortest

- 입력: 2차원 배열 D, 단, D[i, j] = 간선 (i, j)의 가중치, 만일 간선 (i, j)가 없으면 D[i, j] = ∞, 모든 i에 대하여 D[i, i] = 0
- 출력: 모든 쌍 최단 경로의 거리를 저장한 2차원 배열 D

- 1. for k = 1 to n
- 2. for i = 1 to $n (i \neq k)$
- 3. for j = 1 to $n (j \neq k, j \neq i)$
- 4. $D[i, j] = min\{ D[i, k] + D[k, j], D[i, j] \}$

• Floyd-Warshall Algorithm (부분 문제 간의 함축적 순서)

• D[i, j]를 계산하기 위해서 미리 계산되어 있어야 할 부분 문제는 D[i, k]와 D[k, j]임

• Floyd-Warshall Algorithm 수행 과정

D	1	2	3	4	5
1	0	4	2	5	8
2	8	0	1	8	4
3	1	3	0	1	2
4	-2	∞	∞	0	2
5	∞	-3	3	1	0

- Floyd-Warshall Algorithm 수행 과정 (k = 1 일 때)
 - D[2, 3] = min{ D[2, 3], D[2, 1]+D[1, 3] } = min{1, ∞ +2} = 1
 - D[2, 4] = min{ D[2, 4], D[2, 1]+D[1, 4] } = min{ ∞ , ∞ +5} = ∞
 - $D[2, 5] = min\{ D[2, 5], D[2, 1] + D[1, 5] \} = min\{4, \infty + \infty\} = 4$
 - D[3, 2] = min{ D[3, 2], D[3, 1]+D[1, 2] } = min{3, 1+4} = 3
 - $D[3, 4] = min\{ D[3, 4], D[3, 1] + D[1, 4] \} = min\{1, 1+5\} = 1$
 - D[3, 5] = min{ D[3, 5], D[3, 1]+D[1, 5] } = min{2, $1+\infty$ } = 2
 - D[4, 2] = min{ D[4, 2], D[4, 1]+D[1, 2] } = min{∞, -2+4} = 2 // 갱신됨

- Floyd-Warshall Algorithm 수행 과정 (k = 1 일 때)
 - D[4, 3] = min{ D[4, 3], D[4, 1]+D[1, 3] } = min{∞, -2+2} = 0 // 갱신됨

- $D[4, 5] = min\{ D[4, 5], D[4, 1] + D[1, 5] \} = min\{2, -2 + \infty\} = 2$
- D[5, 2] = min{ D[5, 2], D[5, 1]+D[1, 2] } = min{-3, ∞ +4} = -3
- D[5, 3] = min{ D[5, 3], D[5, 1]+D[1, 3] } = min{3, ∞ +2} = 3
- D[5, 4] = min{ D[5, 4], D[5, 1]+D[1, 4] } = min{1, ∞ +5} = 1

- Floyd-Warshall Algorithm 수행 결과 (k = 1 일 때)
 - k=1일 때, D[4, 2], D[4, 3]이 각각 2, 0으로 갱신, 다른 원소들은 변하지 않음

D	1	2	3	4	5
1	0	4	2	5	8
2	8	0	1	8	4
3	1	3	0	1	2
4	-2	∞	∞	0	2
5	∞	-3	3	1	0

D	1	2	3	4	5
1	0	4	2	5	∞
2	∞	0	1	∞	4
3	1	3	0	1	2
4	-2	2	0	0	2
5	∞	-3	3	1	0

• Floyd-Warshall Algorithm 수행 과정 (k = 2 일 때)

```
• D[1, 3] = min{ D[1, 3], D[1, 2]+D[2, 3] } = min{2, 4+1} = 2
• D[1, 4] = min{ D[1, 4], D[1, \frac{2}{2}] + D[\frac{2}{2}, 4] } = min{5, 4+\infty} = 5
• D[1, 5] = min{ D[1, 5], D[1, 2]+D[2, 5] } = min{∞, 4+4} = 8 // 갱신됨
• D[3, 1] = min{ D[3, 1], D[3, \frac{2}{2}]+D[\frac{2}{2}, 1] } = min{1, 3+\infty} = 1
• D[3, 4] = min{ D[3, 4], D[3, 2]+D[2, 4] } = min{1, 3+\infty} = 1
• D[3, 5] = min{ D[3, 5], D[3, 2]+D[2, 5] } = min{2, 3+4} = 2
• D[4, 1] = min{ D[4, 1], D[4, 2]+D[2, 1] } = min{-2, 2+\infty} = -2
• D[4, 3] = min\{D[4, 3], D[4, 2] + D[2, 3]\} = min\{0, 2+1\} = 0
• D[4, 5] = min{ D[4, 5], D[4, 2]+D[2, 5] } = min{2, 2+4} = 2
```

• Floyd-Warshall Algorithm 수행 과정 (k = 2 일 때)

```
• D[5, 1] = min{ D[5, 1], D[5, 2]+D[2, 1] } = min{\infty, -3+\infty} = \infty
```

- D[5, 3] = min{ D[5, 3], D[5, 2]+D[2, 3] } = min{3, -3+1} = -2 // 갱신됨
- D[5, 4] = min{ D[5, 4], D[5, 2]+D[2, 4] } = min{1, $-3+\infty$ } = 1

- Floyd-Warshall Algorithm 수행 결과 (k = 2 일 때)
 - D[1, 5]가 1 -> 2 -> 5의 거리인 8로 갱신
 - D[5, 3]이 5 -> 2 -> 3의 거리인 -2로 갱신

D	1	2	3	4	5
1	0	4	2	5	∞
2	∞	0	1	∞	4
3	1	3	0	1	2
4	-2	2	0	0	2
5	∞	-3	3	1	0

D	1	2	3	4	5
1	0	4	2	5	8
2	∞	0	1	∞	4
3	1	3	0	1	2
4	-2	2	0	0	2
5	∞	-3	-2	1	0

• Floyd-Warshall Algorithm 수행 과정 (k = 3 일 때)

```
• D[1, 2] = min{ D[1, 2], D[1, 3]+D[3, 2] } = min{4, 2+3} = 4
• D[1, 4] = min{ D[1, 4], D[1, 3]+D[3, 4] } = min{5, 2+1} = 3 // 갱신됨
• D[1, 5] = min{ D[1, 5], D[1, 3]+D[3, 5] } = min{8, 2+2} = 4  // 갱신됨
• D[2, 1] = min{ D[2, 1], D[2, 3]+D[3, 1] } = min{∞, 1+1} = 2 // 갱신됨
• D[2, 4] = min{ D[2, 4], D[2, 3]+D[3, 4] } = min{∞, 1+1} = 2 // 갱신됨
• D[2, 5] = min{ D[2, 5], D[2, 3]+D[3, 5] } = min{4, 1+2} = 3 // 갱신됨
• D[4, 1] = min\{ D[4, 1], D[4, 3] + D[3, 1] \} = min\{-2, 0+1\} = -2
• D[4, 2] = min\{ D[4, 2], D[4, 3] + D[3, 2] \} = min\{2, 0+3\} = 2
• D[4, 5] = min{ D[4, 5], D[4, 3]+D[3, 5] } = min{2, 0+2} = 2
```

• Floyd-Warshall Algorithm 수행 과정 (k = 3 일 때)

```
D[5, 1] = min{ D[5, 1], D[5, 3]+D[3, 1] } = min{∞, -2+1} = -1 // 갱신됨
D[5, 2] = min{ D[5, 2], D[5, 3]+D[3, 2] } = min{-3, -2+3} = -3
D[5, 4] = min{ D[5, 4], D[5, 3]+D[3, 4] } = min{1, -2+1} = -1 // 갱신됨
```

- Floyd-Warshall Algorithm 수행 결과 (k = 3 일 때)
 - 총 7개의 원소가 갱신

D	1	2	3	4	5
1	0	4	2	5	8
2	∞	0	1	∞	4
3	1	3	0	1	2
4	-2	2	0	0	2
5	∞	-3	-2	1	0

D	1	2	3	4	5
1	0	4	2	3	4
2	2	0	1	2	3
3	1	3	0	1	2
4	-2	2	0	0	2
5	-1	-3	-2	-1	0

• Floyd-Warshall Algorithm 수행 과정 (k = 4 일 때)

```
• D[1, 2] = min{ D[1, 2], D[1, 4]+D[4, 2] } = min{4, 3+2} = 4
• D[1, 3] = min{ D[1, 3], D[1, 4]+D[4, 3] } = min{2, 3+0} = 2
• D[1, 5] = min{ D[1, 5], D[1, 4]+D[4, 5] } = min{4, 3+2} = 4
• D[2, 1] = min{ D[2, 1], D[2, 4]+D[4, 1] } = min{2, 2-2} = 0 // 갱신됨
• D[2, 3] = min{ D[2, 3], D[2, 4]+D[4, 3] } = min{1, 2+0} = 1
• D[2, 5] = min\{ D[2, 5], D[2, 4] + D[4, 5] \} = min\{3, 2+2\} = 3
• D[3, 1] = min{ D[3, 1], D[3, 4]+D[4, 1] } = min{1, 1-2} = -1  // 갱신됨
• D[3, 2] = min{ D[3, 2], D[3, 4]+D[4, 2] } = min{3, 1+2} = 3
• D[3, 5] = min{ D[3, 5], D[3, 4]+D[4, 5] } = min{2, 1+2} = 2
```

• Floyd-Warshall Algorithm 수행 과정 (k = 4 일 때)

```
• D[5, 1] = min{ D[5, 1], D[5, 4]+D[4, 1] } = min{-1, -1-2} = -3 // 갱신됨
```

- $D[5, 2] = min\{ D[5, 2], D[5, 4] + D[4, 2] \} = min\{-3, -1+2\} = -3$
- $D[5, 3] = min\{D[5, 3], D[5, 4] + D[4, 3]\} = min\{-2, -1+0\} = -2$

- Floyd-Warshall Algorithm 수행 결과 (k = 4 일 때)
 - 총 3개의 원소가 갱신

D	1	2	3	4	5
1	0	4	2	3	4
2	2	0	1	2	3
3	1	3	0	1	2
4	-2	2	0	0	2
5	- 1	-3	-2	- 1	0

D	1	2	3	4	5
1	0	4	2	3	4
2	0	0	1	2	3
3	-1	3	0	1	2
4	-2	2	0	0	2
5	-3	-3	-2	-1	0

• Floyd-Warshall Algorithm 수행 과정 (k = 5 일 때)

```
• D[1, 2] = min{ D[1, 2], D[1, 5]+D[5, 2] } = min{4, 4-3} = 1 // 갱신됨
• D[1, 3] = min{ D[1, 3], D[1, 5]+D[5, 3] } = min{2, 4-2} = 2
• D[1, 4] = min{ D[1, 4], D[1, 5]+D[5, 4] } = min{3, 4-1} = 3
• D[2, 1] = min{ D[2, 1], D[2, 5]+D[5, 1] } = min{0, 3-3} = 0
• D[2, 3] = min{ D[2, 3], D[2, 5]+D[5, 3] } = min{1, 3-2} = 1
• D[2, 4] = min\{D[2, 4], D[2, 5] + D[5, 4]\} = min\{2, 3-1\} = 2
• D[3, 1] = min{ D[3, 1], D[3, 5]+D[5, 1] } = min{-1, 2-3} = -1
• D[3, 2] = min{ D[3, 2], D[3, 5]+D[5, 2] } = min{3, 2-3} = -1  // 갱신됨
• D[3, 4] = min{ D[3, 4], D[3, 5]+D[5, 4] } = min{1, 2-1} = 1
```

- Floyd-Warshall Algorithm 수행 과정 (k = 5 일 때)
 - D[4, 1] = min{ D[4, 1], D[4, 5]+D[5, 1] } = min{-2, 2-3} = -2
 - D[4, 2] = min{ D[4, 2], D[4, 5]+D[5, 2] } = min{2, 2-3} = -1 // 갱신됨
 - $D[4, 3] = min\{ D[4, 3], D[4, 5] + D[5, 3] \} = min\{0, 2-2\} = 0$

- Floyd-Warshall Algorithm 수행 결과 (k = 5 일 때)
 - 총 3개의 원소가 갱신되고, 이것이 주어진 입력에 대한 최종 해

D	1	2	3	4	5
1	0	4	2	3	4
2	0	0	1	2	3
3	-1	3	0	1	2
4	-2	2	0	0	2
5	-3	-3	-2	-1	0

D	1	2	3	4	5
1	0	1	2	3	4
2	0	0	1	2	3
3	-1	-1	0	1	2
4	-2	-1	0	0	2
5	-3	-3	-2	-1	0

- Floyd-Warshall Algorithm 시간 복잡도
 - 각 k에 대해서 모든 i, j 쌍에 대해 계산되므로, 총 n X n X n = n^3 회 계산이 이루어지고, 각 계산은 O(1) 시간 소요

• 시간 복잡도는 O(n³)

- 연속 행렬 곱셈 (Chained Matrix Multiplications) 문제
 - 연속된 행렬들의 곱셈에 필요한 원소 간의 최소 곱셈 횟수를 찾는 문제
 - 10 X 20 행렬 A와 20 X 5 행렬 B를 곱하는데 원소 간의 곱셈 횟수는 10 X 20 X 5 = 1,000
 - 두 행렬을 곱한 결과, 행렬 C는 10 X 5

- 행렬 곱셈
 - 3개의 행렬을 곱해야 하는 경우
 - 연속된 행렬의 곱셈에는 결합 법칙 허용
 - A X B X C = (A X B) X C = A X (B X C)

- A X B를 계산한 후에 C를 곱하기
 - A X B를 계산하는 데, 10 X 20 X 5 = 1,000 번
 - 결과 행렬의 크기가 10 X 5이고, 이에 행렬 C를 곱하면 10 X 5 X 15 = 750 번
 - 1,000 + 750 = 1,750 회의 원소의 곱셈 필요

- B X C를 계산한 후에 A를 곱하기
 - B X C를 계산하는 데, 20 X 5 X 15 = 1,500 번
 - 그 결과 20 X 15 행렬이 만들어지고, 이를 행렬 A와 곱하면 10 X 20 X 15 = 3,000 번
 - 1,500 + 3,000 = 4,500 회의 곱셈 필요
 - 곱셈의 순서에 따라 결과가 달라짐 => 곱셈 횟수 최소화를 위한 곱셈 순서 발견 필요 _____

- [주의] 주어진 행렬의 순서를 지켜서 반드시 이웃하는 행렬끼리 곱해야 함
 - AXBXCXDXE일때,
 - A X C를 수행하거나, A X D를 먼저 수행할 수 없음

• 부분 문제

부분 문제 크기		부분 문제 개수
1	A B C D E	5개
2	AxB BxC CxD DxE	4개
3	AxBxC BxCxD CxDxE	3개
4	AxBxCxD BxCxDxE	2개
5	$A \times B \times C \times D \times E$	1개

• 알고리즘

```
입력: 연속된 행렬 A<sub>1</sub> X A<sub>2</sub> X ··· X A<sub>n</sub>, 단, A<sub>1</sub>은 d<sub>0</sub> X d<sub>1</sub>, A<sub>2</sub>는 d<sub>1</sub> X d<sub>2</sub>, ···, A<sub>n</sub>은 d<sub>n-1</sub> X d<sub>n</sub> 임
출력: 입력의 행렬 곱셈에 필요한 원소의 최소 곱셈 횟수
      1. for i = 1 to n
      2. C[i, i] = 0
      3. for L = 1 to n-1 // L은 부분 문제의 크기를 조절하는 인덱스
         for i = 1 to n-L
                                         C[i, j]: A<sub>i</sub> X A<sub>i+1</sub> X ··· X A<sub>i</sub> 에 필요한 원소 간의 최소 곱셈 횟수
      5.
          j = i + L
         C[i, j] = \infty
      6.
      7. for k = i to j-1
      8.
                      temp = C[i, k] + C[k+1, j] + d_{i-1}d_kd_i
      9.
                      if (temp < C[i, j])
                           C[i, j] = temp
      10.
      11. Return C[1, n]
```

39

• Line 3의 for-loop

С	1	2	3			n-1	n
1	0						
2		0			10.		
3			0				
				0		Ť	
					0		
n-1						0	
n							0

L = 2

С	1	2	3			n-1	n
1	0						
2		0				(1) 2)	
3			0			1	
				0			
					0		
n-1				,		0	
n							0

$$L = 3$$

С	1	2	3			n-1	n
1	0					1	
2		0				(n.	
3			0				
				0			
					0		
n-1						0	
n							0

L = n-2

С	1	2	3			n-1	n
1	0						
2		0			\		
3	'		0				
				0			
					0		
n-1						0	
n							0

L = n-1

С	1	2	3			n-1	n
1	0					_	
2		0			=	1/4	
3			0				
				0			
					0		
n-1						0	
n							0

• Line 7의 for-loop

• 알고리즘 수행 순서

• 알고리즘 수행 과정

• 알고리즘 수행 과정 (L = 1 일 때)

•
$$C[1, 2] = d_0d_1d_2 = 10 \times 20 \times 5 = 1,000$$
 $i = 1$

- C[2, 3] = 20 X 5 X 15 = 1,500
- $C[3, 4] = 5 \times 15 \times 30 = 2,250$

2,25	O				i = 3
L =	1				
С	1	2	3	4	
1	0	K			
2		0	K		
3			0	K	
4		,		0	

i = 2

 $d_0 x d_1 = 10 x 20$

 $d_1 x d_2 = 20 x 5$

Tensor (1,750이 4,500 보다 작으므로 X A₂ X A₃ 1,750 A₂ A₂ X A₃ 1,750

• 알고리즘 수행 과정 (L = 2, i = 2 일 때)

• A₂A₃A₄ 를 계산한다. C[2, 4] = 5,250

 $d_2xd_3=5x15$

 $d_1xd_2=20x5$

 $d_0 x d_1 = 10 x 20$

• 알고리즘 수행 과정 (L = 3 일 때)

 $d_3xd_4=15x30$

• 알고리즘 수행 결과

С	1	2	3	4
1	0	1,000	1,750	4,750
2		0	1,500	5,250
3			0	2,250
4				0

- Time Complexity
 - 총 부분 문제 수: (n-1)+(n-2)+...+2+1 = n(n-1)/2
 - 하나의 부분 문제는 k-loop가 최대 (n-1)번 수행
 - Time Complexity: $O(n^2) \times O(n) = O(n^3)$