Lesson 8: Generalised Least Squares

Assumptions of linear models

$$y_{ijk} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + e_{ijk}$$

Linear models make many assumptions, including:

- 1. The model makes biological sense/ physical sense
- 2. Additivity (terms are added together)
- 3. Linearity
- 4. Independence of errors
- 5. Homoscedasticity equal variance of errors
- 6. Normality of errors.

Two situations where GLS is useful

- 1. Data heteroscedasticity (unclear mean-variance relationships)
- Autocorrelation between data points (nonindependence)

Linear model with 'good' errors (IID)

$$y = X\beta + \varepsilon$$
 where $\varepsilon \sim N(0, V)$

Where $V = Cov[\underline{\varepsilon}|X]$, the covariance matrix of errors. Ideally:

- 1. ε_i have even range across predicted y (homoscedasticity)
- 2. off-diagonal elements of **V** are zero (no autocorrelation)

Linear model with heteroscedasticity and/ or error covariance

In reality $\underline{\varepsilon} \sim N(0, \mathbf{V})$, where :

- 1. ε_i are heteroscedastic
- 2. Off-diagonal elements are non-zero (covariance)

Generalised least squares models

• The problem: $y = X\beta + \varepsilon$ where $\varepsilon \sim N(0, V)$

• OLS solution:
$$\hat{\beta} = (X'X)^{-1}X'y \quad \because V = I\sigma^2$$

- The GLS solution: $\widehat{\beta} = (X'V^{-1}X)^{-1}X'V^{-1}y$
- You might recall this from the mixed models lecture.

 We will deal with heteroscedasticity and error covariance separately in the remaining problems

To be clear:

- Heteroscedasticity is about the diagonal elements (homoscedastic residuals should be ~equal in size)
- Error covariance is about the off-diagonal elements (should be close to zero i.e. uncorrelated)

1. Heteroscedascity

1. Dealing with heteroscedascity

- Usually we try to define relationships between means and variances, e.g. Poisson, Binomial or Gamma distributions.
- Sometimes we might need more flexibility if we are uncertain about the mean-variance relationship
- CAVEAT: I find it quite difficult to decide when to apply these methods UNLESS I already know that the meanvariance relationship is systematically skewed and cannot be described by a known distribution

Generalised Least Squares

GLS extends the linear model to address complex error relationships

$$y = X\beta + \varepsilon$$
 where $\varepsilon \sim N(0, Iw_i\sigma^2)$

- We aim to apply inverse weights, $1/w_i$, that are the inverse of the relationship $Iw_i\sigma^2$))
- Can model these w_i using the weights argument in the gls() function

The gls() function

• mod <- gls(y~x, data=dat, weights=varFixed(form=~1/w²))

Variance function. Options include:

- 1) varFixed: weights are linear
- 2) varPower: weights are powerlaw
- 3) varldent: weights differ by factor level

Express the weights in terms of the covariate

The lme () function

 The Ime() function allows one to include random effects into the mix as well

Code 8.1 Heteroscedastic models

Exercise 8.1

- Return to the plantdamage data.
- Fit a random effects model with lme to test whether damage, light and their interaction affects growth.
- Use growth in untransformed form.
- First, run the model assuming no covariance structure (mod 1) and plot the residuals.
- Inspect the Ime model for evidence of heteroscedasticity. Try this command
 Ps: plot(mod, resid(.)~fitted(.)|light, abline=0, layout=c(2, 1))
- Then try varident and varExp models (mod 1b, mod 1c) and compare them against your first model using AIC and plot their residuals.
- Second, assume growth is exponentially distributed. Transform it and run the model assuming no co-variance structure (mod 2), and plot the residuals.
- Then try varIdent and varExp models with the transformed growth and compare them using AIC. (mod 2b, mod 2c)
- Finally compare the summaries from mod 1c and mod 2.

2. Autocorrelation

2. Dealing with auto-correlation

 Data points that are close together in space, time or phylogeny are not independent.

2. Dealing with auto-correlation

- Data points that are close together in space, time or phylogeny are not independent.
- Difficult to turn these relationships into discrete blocks (as we did for LMMs).
- Possible to model the auto-correlation directly with gls()and lme() using the correlation argument.

Covariance structures in gls

- All linear models have the form
- $Y = X\beta + \varepsilon$ such that $\varepsilon \sim N(0, V)$

Where sigma is a n x n matrix.

- Each value, from row i and column j is the covariance of the errors of replicates i and j
- OLS models assume that $V \sim I\sigma^2$ (in other words: off-diagonal covariances are close to zero)
- In GLS we essentially describe the relationships in V using an assumed covariance structure

Covariance between data

- Consider the correlation between plant communities in space.
- In the figure, it is clear that closer communities are more similar.
- This could be because of geology
- But it could also be because
 plants have a higher chance of
 establishing offspring closer to a mother tree
- This relatedness effect falls off as two points move further apart..
- i.e. the correlation between points decreases with distance

Covariance between data

Take homes:

- 1. Spatial autocorrelation is due to some process that we may find difficult to diagnose properly
- The autocorrelation process often has a spatial limit e.g. max distance of seed dispersal
- 3. The autocorrelation-dist relationship has a shape!

Describing covariance between data points: Semivariograms

Semi-variograms describe differences (variance) between data points in terms of some distance measure (space, time, DNA).

$$\hat{\gamma}(h\pm\delta):=rac{1}{2|N(h\pm\delta)|}\sum_{(i,j)\in N(h\pm\delta)}|z_i-z_j|^2$$

Range: distance over which points are correlated in space/ time

Sill: average distance between uncorrelated data points = variance

Nugget: some variance at small scale (stochasticity?/ measurement error?)

Fitting a correlation structure

Distance correlation relationships have pattern;

```
mod <- gls(y~x, data=dat, correlation=corExp(form=~x+y))
```

Dependency decreases as an exponential function of distance.

- Other options:
 - corSpher
 - corGaus
 - corLin
 - corRatio

Correlation structures for shapes

Pinheiro and Bates 2004, p. 233

Approach

- 1) fit a basic model without a correlation structure,
- 2) examine a variogram of the residuals (i.e., their correlation with respect to distance),
- 3) choose an appropriate corStruct class based on the variogram shape (maybe test a few..), and
- 4) test whether addition of the correlation term significantly improves model fit via AICs or LRTs (anova function).
- Use Variogram function in nlme to diagnose the type:

```
plot(Variogram(gls1,form=~lon+lat))
```

Code 8.2 Spatial correlation structures

Exercise 8.2

- The data in the file trees.csv come from an analysis of tree growth in an Austrian forest.
- The response of Relative growth rate (RGR) to light was compared between two species (beech and spruce)
- Determine if there is an interaction between species and light in their effects on RGR
- Are the residuals independent?
- Modify the models to deal with any spatial dependence