

Day 2: Single cell RNA sequencing: The bioinformatic downstream analysis

Geert van Geest, Rachel Marcone, Tania Wyss

Integration

Integration analysis

• Why do we integrate?

Same tissue from different donors

Cross condition comparisons

Integration analysis

• 8 maps from the human pancreas (Seurat tutorial)

Baron et al. 2016, *Cell Syst.*Lawlor et al. 2017, *Genome Res.*Grun et al. 2016, *Cell Stem Cell*Muraro et al. 2016, *Cell Syst.*

Integration analysis

• 8 maps from the human pancreas (Seurat tutorial)

Integration analysis: Confounders and batch effect

- 1. Technical variability
 - Changes in sample quality/processing
 - Library prep or sequencing technology

Technical 'batch effects' confound downstream analysis

- 2. Biological variability
 - Patient differences
 - Evolution! (cross-species analysis)

Biological 'batch effects' confound comparisons of scRNA-seq data

Integration analysis: Confounders and batch effect

Confounded design

Not confounded design

Good experimental design *does not remove batch effects*, it prevents them from biasing your results.

Integration analysis: Batch correction method

- MNNcorrect (https://doi.org/10.1038/nbt.4091)
- CCA +anchors (Seurat v3) (https://doi.org/10.1101/460147)
- CCA +dynamic time warping (Seurat v2)
 (https://doi.org/10.1038/nbt.4096)
- LIGER (https://doi.org/10.1101/459891)
- Harmony (https://doi.org/10.1101/461954)
- Conos (https://doi.org/10.1101/460246)
- Scanorama (https://doi.org/10.1101/371179)
- scMerge (https://doi.org/10.1073/pnas.1820006116)

Integration analysis: Batch correction method

- MNNcorrect (https://doi.org/10.1038/nbt.4091)
- CCA +anchors (Seurat v3) (https://doi.org/10.1101/460147)
- CCA +dynamic time warping (Seurat v2)
 (https://doi.org/10.1038/nbt.4096)
- LIGER (https://doi.org/10.1101/459891)
- Harmony (https://doi.org/10.1101/461954)
- Conos (https://doi.org/10.1101/460246)
- Scanorama (https://doi.org/10.1101/371179)
- scMerge (https://doi.org/10.1073/pnas.1820006116)

Haghverdi (https://doi.org/10.1038/nbt.4091)

Cell j from Batch A 1) For each MNN pair, a pair-specific batch-correction vector is computed as the vector difference between the expression profiles of the paired cells.

$$V_x = \begin{pmatrix} gene1_a - gene1_b \\ gene2_a - gene2_b \\ gene3_a - gene3_b \\ \dots \\ geneN_a - geneN_b \end{pmatrix}$$

 A cell-specific batchcorrection vector is then calculated as a weighted average of these pair-specific vectors, as computed with a Gaussian kernel.

Batch Correction vector for each cell

+ Batch Correction Vector for each cell

Integration analysis: CCA +anchors (Seurat v3)

- 1. Find corresponding cells across datasets
- 2. Compute a data adjustment based on correspondences between cells
- 3. Apply the adjustment

Integration analysis: CCA +anchors (Seurat v3)

1. Find corresponding cells across datasets

CCA captures correlated sources of variation between two datasets

Integration analysis: CCA +anchors (Seurat v3)

1. Find corresponding cells across datasets

L2-normalization corrects for differences in scale

Integration analysis: CCA +anchors (Seurat v3)

1. Find corresponding cells across datasets

Anchors: Mutual nearest neighbors

Seurat(v3)::FindIntegrationAnchors()

Integration analysis: CCA +anchors (Seurat v3)

2. Data integration

1) For each MNN pair, a pair-specific batch-correction vector is computed as the vector difference between the expression profiles of the paired cells.

$$V_x = \begin{pmatrix} gene1_a - gene1_b \\ gene2_a - gene2_b \\ gene3_a - gene3_b \\ \dots \\ geneN_a - geneN_b \end{pmatrix}$$

2) A cell-specific batchcorrection vector is then calculated as a weighted average of these pair-specific vectors, as computed with a Gaussian kernel.

Seurat(v3)::IntegrateData()

Integration analysis: CCA +anchors (Seurat v3)

Retinal bipolar datasets: 51K cells, 6 technologies, 2 Species