

SEQUENCE LISTING

<110> Lim, Moon Young
Edwards, Cynthia A.
Fry, Kirk E.
Bruice, Thomas W.
Starr, Douglas B.
Laurance, Megan E.
Kwok, Yan

<120> DNA Binding Compound-Mediated Molecular
Switch System

<130> 54600-8130.US00

<140> US 09/518,297
<141> 2000-03-03

<150> US 60/122,513
<151> 1999-03-03

<150> US 60/154,605
<151> 1999-09-17

<160> 77

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 11
<212> DNA
<213> Artificial Sequence

<220>
<223> DNA response element

<400> 1
cgttcgcact t

11

<210> 2
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> DNA response element

<400> 2
cggagtactg tcctccg

17

<210> 3
<211> 12
<212> DNA
<213> Artificial Sequence

<220>

<223> DNA response element

<221> misc_feature

<222> (1)...(12)

<223> n = A,T,C or G

<400> 3

taattanggg ng

12

<210> 4

<211> 551

<212> PRT

<213> Homo sapiens

<220>

<221> VARIANT

<222> (0)...(0)

<223> transcriptional regulatory protein

<400> 4

Met Asp Glu Leu Phe Pro Leu Ile Phe Pro Ala Glu Pro Ala Gln Ala
1 5 10 15
Ser Gly Pro Tyr Val Glu Ile Ile Glu Gln Pro Lys Gln Arg Gly Met
20 25 30
Arg Phe Arg Tyr Lys Cys Glu Gly Arg Ser Ala Gly Ser Ile Pro Gly
35 40 45
Glu Arg Ser Thr Asp Thr Thr Lys Thr His Pro Thr Ile Lys Ile Asn
50 55 60
Gly Tyr Thr Gly Pro Gly Thr Val Arg Ile Ser Leu Val Thr Lys Asp
65 70 75 80
Pro Pro His Arg Pro His Pro His Glu Leu Val Gly Lys Asp Cys Arg
85 90 95
Asp Gly Phe Tyr Glu Ala Glu Leu Cys Pro Asp Arg Cys Ile His Ser
100 105 110
Phe Gln Asn Leu Gly Ile Gln Cys Val Lys Lys Arg Asp Leu Glu Gln
115 120 125
Ala Ile Ser Gln Arg Ile Gln Thr Asn Asn Asn Pro Phe Gln Val Pro
130 135 140
Ile Glu Glu Gln Arg Gly Asp Tyr Asp Leu Asn Ala Val Arg Leu Cys
145 150 155 160
Phe Gln Val Thr Val Arg Asp Pro Ser Gly Arg Pro Leu Arg Leu Pro
165 170 175
Pro Val Leu Pro His Pro Ile Phe Asp Asn Arg Ala Pro Asn Thr Ala
180 185 190
Glu Leu Lys Ile Cys Arg Val Asn Arg Asn Ser Gly Ser Cys Leu Gly
195 200 205
Gly Asp Glu Ile Phe Leu Leu Cys Asp Lys Val Gln Lys Glu Asp Ile
210 215 220
Glu Val Tyr Phe Thr Gly Pro Gly Trp Glu Ala Arg Gly Ser Phe Ser
225 230 235 240
Gln Ala Asp Val His Arg Gln Val Ala Ile Val Phe Arg Thr Pro Pro
245 250 255
Tyr Ala Asp Pro Ser Leu Gln Ala Pro Val Arg Val Ser Met Gln Leu
260 265 270
Arg Arg Pro Ser Asp Arg Glu Leu Ser Glu Pro Met Glu Phe Gln Tyr
275 280 285
Leu Pro Asp Thr Asp Asp Arg His Arg Ile Glu Glu Lys Arg Lys Arg
290 295 300
Thr Tyr Glu Thr Phe Lys Ser Ile Met Lys Lys Ser Pro Phe Ser Gly

305	310	315	320
Pro Thr Asp Pro Arg Pro Pro Pro Arg Arg Ile Ala Val Pro Ser Arg			
325	330	335	
Ser Ser Ala Ser Val Pro Lys Pro Ala Pro Gln Pro Tyr Pro Phe Thr			
340	345	350	
Ser Ser Leu Ser Thr Ile Asn Tyr Asp Glu Phe Pro Thr Met Val Phe			
355	360	365	
Pro Ser Gly Gln Ile Ser Gln Ala Ser Ala Leu Ala Pro Ala Pro Pro			
370	375	380	
Gln Val Leu Pro Gln Ala Pro Ala Pro Ala Pro Ala Met Val			
385	390	395	400
Ser Ala Leu Ala Gln Ala Pro Ala Pro Val Pro Val Leu Ala Pro Gly			
405	410	415	
Pro Pro Gln Ala Val Ala Pro Pro Ala Pro Lys Pro Thr Gln Ala Gly			
420	425	430	
Glu Gly Thr Leu Ser Glu Ala Leu Leu Gln Leu Gln Phe Asp Asp Glu			
435	440	445	
Asp Leu Gly Ala Leu Leu Gly Asn Ser Thr Asp Pro Ala Val Phe Thr			
450	455	460	
Asp Leu Ala Ser Val Asp Asn Ser Glu Phe Gln Gln Leu Leu Asn Gln			
465	470	475	480
Gly Ile Pro Val Ala Pro His Thr Thr Glu Pro Met Leu Met Glu Tyr			
485	490	495	
Pro Glu Ala Ile Thr Arg Leu Val Thr Gly Ala Gln Arg Pro Pro Asp			
500	505	510	
Pro Ala Pro Ala Pro Leu Gly Ala Pro Gly Leu Pro Asn Gly Leu Leu			
515	520	525	
Ser Gly Asp Glu Asp Phe Ser Ser Ile Ala Asp Met Asp Phe Ser Ala			
530	535	540	
Leu Leu Ser Gln Ile Ser Ser			
545	550		

<210> 5
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> DNA response element

<400> 5
tccctatcag tgatagaga

19

<210> 6
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> response element

<400> 6
cttaacactc gcgagtgtta ag

22

<210> 7
<211> 13
<212> DNA
<213> Artificial Sequence

```

<220>
<223> response element

<221> misc_feature
<222> (3)...(3)
<223> n = G or T

<221> misc_feature
<222> (7)...(7)
<223> n = A,T,C or G

<221> misc_feature
<222> (12)...(12)
<223> n = A or C

<400> 7
rgntcantga cny

<210> 8
<400> 8
000

<210> 9
<400> 9
000

<210> 10
<211> 97
<212> PRT
<213> Artificial Sequence

<220>
<223> repressor sequence

<400> 10
Met Asp Ala Lys Ser Leu Thr Ala Trp Ser Arg Thr Leu Val Thr Phe
   1           5          10          15
Lys Asp Val Phe Val Asp Phe Thr Arg Glu Glu Trp Lys Leu Leu Asp
   20          25          30
Thr Ala Gln Gln Ile Val Tyr Arg Asn Val Met Leu Glu Asn Tyr Lys
   35          40          45
Asn Leu Val Ser Leu Gly Tyr Gln Leu Thr Lys Pro Asp Val Ile Leu
   50          55          60
Arg Leu Glu Lys Gly Glu Glu Pro Trp Leu Val Glu Arg Glu Ile His
   65          70          75          80
Gln Glu Thr His Pro Asp Ser Glu Thr Ala Phe Glu Ile Lys Ser Ser
   85          90          95
Val

<210> 11
<211> 36
<212> PRT
<213> Artificial Sequence

<220>
<223> repressor sequence

```

```

<400> 11
Met Ala Ala Ala Val Arg Met Asn Ile Gln Met Leu Leu Glu Ala Ala
   1           5           10          15
Asp Tyr Leu Glu Arg Arg Glu Arg Glu Ala Glu His Gly Tyr Ala Ser
   20          25          30
Met Leu Pro Tyr
   35

<210> 12
<211> 116
<212> DNA
<213> Escherichia coli

<220>
<221> misc_feature
<222> (0)...(0)
<223> partial promoter sequence

<400> 12
cgcggtcaga aaattatttt aaatttcctc ttgtcaggcc ggaataactc cctataatgc      60
gccaccactg acacggaaca acggcaaaca cgccgccccgg tcagcggggt tctccct      116

<210> 13
<211> 22
<212> DNA
<213> Escherichia coli

<220>
<221> misc_feature
<222> (0)...(0)
<223> partial promoter sequence

<400> 13
agaaaattat tttaaatttc ct                                22

<210> 14
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> modified promoter sequence

<400> 14
gactgcagtg gtaccttagga gg                                22

<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> modified promoter sequence

<400> 15
agaaaattat tttaaatttc ct                                22

<210> 16

```

```

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> modified promoter sequence

<400> 16
ggaaaatttt ttttcaaaag ta 22

<210> 17
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> modified promoter sequence

<400> 17
tgaaaattat tttgcgaaaag gg 22

<210> 18
<211> 11
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 18
tgttcgact t 11

<210> 19
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 19
catggacgcc actgagccgt ttttgtcgc acttgaggcg agtcgatgca cc 52

<210> 20
<211> 54
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 20
catggacgcc actgagccgt gttcgactt tttttgagg cgagtcgatg cacc 54

<210> 21
<211> 58
<212> DNA
<213> Artificial Sequence

```

```

<220>
<223> engineered DNA response element

<400> 21
catggacgcc actgagccgt ttttgttcgc actttttttt gaggcgagtc gatgcacc      58

<210> 22
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 22
cttaaaaata ac                                12

<210> 23
<211> 16
<212> DNA
<213> Artificial Sequence

|          

<220>
<223> engineered DNA response element

<400> 23
ttgaaaaatc aacgct                                16

<210> 24
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 24
ttttgttcg cactttttt t                                21

<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 25
tttttggat tttcctttt                                20

<210> 26
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 26

```

aaaaaaattgt gagcgctcac aatttttt	28
<210> 27	
<211> 6	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> tissue-specific transcription factor	
<400> 27	
acttta	6
<210> 28	
<211> 9	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> engineered DNA response element	
<400> 28	
taccgacat	9
<210> 29	
<211> 10	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> engineered DNA response element	
<400> 29	
gggactttcc	10
<210> 30	
<211> 10	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> engineered DNA response element	
<400> 30	
gggattttcc	10
<210> 31	
<211> 50	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> engineered DNA response element	
<400> 31	
cgaccgtgct cgagttAACG ggactttcca aaaACGATCG gactggactc	50
<210> 32	

<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> engineered DNA response element		
<400> 32		
cgaccgttgtct cgagtttaacg ggattttcca aaaacgatcg gactggactc	50	
<210> 33		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> engineered DNA response element		
<400> 33		
cgaccgttgtct cgagaaatttgg ggattttcca aaaacgatcg gactggactc	50	
<210> 34		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> engineered DNA response element		
<400> 34		
aaaaaaatttgt gagcgctcac aatttttt	28	
<210> 35		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> engineered DNA response element		
<400> 35		
tttttttttgt gagcggataa caaaaa	25	
<210> 36		
<211> 10		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> engineered DNA response element		
<400> 36		
tctgggatcc	10	
<210> 37		
<211> 14		
<212> DNA		
<213> Artificial Sequence		

```

<220>
<223> engineered DNA response element

<400> 37
gagtttttt taag 14

<210> 38
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 38
gagttttaaa agag 14

<210> 39
<211> 969
<212> PRT
<213> Homo sapiens

<220>
<221> VARIANT
<222> (0)...(0)
<223> transcriptional regulatory protein

<400> 39
Met Ala Glu Asp Asp Pro Tyr Leu Gly Arg Pro Glu Gln Met Phe His
   1           5          10          15
Leu Asp Pro Ser Leu Thr His Thr Ile Phe Asn Pro Glu Val Phe Gln
   20          25          30
Pro Gln Met Ala Leu Pro Thr Ala Asp Gly Pro Tyr Leu Gln Ile Leu
   35          40          45
Glu Gln Pro Lys Gln Arg Gly Phe Arg Phe Arg Tyr Val Cys Glu Gly
   50          55          60
Pro Ser His Gly Gly Leu Pro Gly Ala Ser Ser Glu Lys Asn Lys Lys
   65          70          75          80
Ser Tyr Pro Gln Val Lys Ile Cys Asn Tyr Val Gly Pro Ala Lys Val
   85          90          95
Ile Val Gln Leu Val Thr Asn Gly Lys Asn Ile His Leu His Ala His
  100          105         110
Ser Leu Val Gly Lys His Cys Glu Asp Gly Ile Cys Thr Val Thr Ala
  115          120         125
Gly Pro Lys Asp Met Val Val Gly Phe Ala Asn Leu Gly Ile Leu His
  130          135         140
Val Thr Lys Lys Val Phe Glu Thr Leu Glu Ala Arg Met Thr Glu
  145          150         155         160
Ala Cys Ile Arg Gly Tyr Asn Pro Gly Leu Leu Val His Pro Asp Leu
  165          170         175
Ala Tyr Leu Gln Ala Glu Gly Gly Asp Arg Gln Leu Gly Asp Arg
  180          185         190
Glu Lys Glu Leu Ile Arg Gln Ala Ala Leu Gln Gln Thr Lys Glu Met
  195          200         205
Asp Leu Ser Val Val Arg Leu Met Phe Thr Ala Phe Leu Pro Asp Ser
  210          215         220
Thr Gly Ser Phe Thr Arg Arg Leu Glu Pro Val Val Ser Asp Ala Ile
  225          230         235         240
Tyr Asp Ser Lys Ala Pro Asn Ala Ser Asn Leu Lys Ile Val Arg Met
  10

```

245	250	255
Asp Arg Thr Ala Gly Cys Val Thr Gly	Gly Glu Glu Ile Tyr	Leu Leu
260	265	270
Cys Asp Lys Val Gln Lys Asp Asp Ile Gln Ile Arg Phe	Tyr Glu Glu	
275	280	285
Glu Glu Asn Gly Gly Val Trp Glu Gly Phe Gly Asp	Phe Ser Pro Thr	
290	295	300
Asp Val His Arg Gln Phe Ala Ile Val Phe Lys	Thr Pro Lys Tyr Lys	
305	310	315
Asp Ile Asn Ile Thr Lys Pro Ala Ser Val Phe Val Gln	Leu Arg Arg	
325	330	335
Lys Ser Asp Leu Glu Thr Ser Glu Pro Lys Pro Phe Leu	Tyr Tyr Pro	
340	345	350
Glu Ile Lys Asp Lys Glu Glu Val Gln Arg Lys Arg Gln	Lys Leu Met	
355	360	365
Pro Asn Phe Ser Asp Ser Phe Gly Gly Ser Gly Ala	Gly Ala Gly	
370	375	380
Gly Gly Gly Met Phe Gly Ser Gly Gly Gly Gly Thr	Gly Ser	
385	390	395
Thr Gly Pro Gly Tyr Ser Phe Pro His Tyr Gly Phe	Pro Thr Tyr Gly	
405	410	415
Gly Ile Thr Phe His Pro Gly Thr Thr Lys Ser Asn Ala	Gly Met Lys	
420	425	430
His Gly Thr Met Asp Thr Glu Ser Lys Lys Asp Pro	Glu Gly Cys Asp	
435	440	445
Lys Ser Asp Asp Lys Asn Thr Val Asn Leu Phe Gly	Lys Val Ile Glu	
450	455	460
Thr Thr Glu Gln Asp Gln Glu Pro Ser Glu Ala	Thr Val Gly Asn Gly	
465	470	475
Glu Val Thr Leu Thr Tyr Ala Thr Gly Thr Lys Glu	Glu Ser Ala Gly	
485	490	495
Val Gln Asp Asn Leu Phe Leu Glu Lys Ala Met Gln	Leu Ala Lys Arg	
500	505	510
His Ala Asn Ala Leu Phe Asp Tyr Ala Val Thr Gly	Asp Val Lys Met	
515	520	525
Leu Leu Ala Val Gln Arg His Leu Thr Ala Val Gln	Asp Glu Asn Gly	
530	535	540
Asp Ser Val Leu His Leu Ala Ile Ile His Leu His	Ser Gln Leu Val	
545	550	555
Arg Asp Leu Leu Glu Val Thr Ser Gly Leu Ile Ser Asp	Asp Ile Ile	
565	570	575
Asn Met Arg Asn Asp Leu Tyr Gln Thr Pro Leu His	Leu Ala Val Ile	
580	585	590
Thr Lys Gln Glu Asp Val Val Glu Asp Leu Leu Arg	Ala Gly Ala Asp	
595	600	605
Leu Ser Leu Leu Asp Arg Leu Gly Asn Ser Val Leu	His Leu Ala Ala	
610	615	620
Lys Glu Gly His Asp Lys Val Leu Ser Ile Leu Leu	Lys His Lys Lys	
625	630	635
Ala Ala Leu Leu Asp His Pro Asn Gly Asp Gly Leu	Asn Ala Ile	
645	650	655
His Leu Ala Met Met Ser Asn Ser Leu Pro Cys Leu	Leu Leu Val	
660	665	670
Ala Ala Gly Ala Asp Val Asn Ala Gln Glu Gln	Lys Ser Gly Arg Thr	
675	680	685
Ala Leu His Leu Ala Val Glu His Asp Asn Ile Ser	Leu Ala Gly Cys	
690	695	700
Leu Leu Leu Glu Gly Asp Ala His Val Asp Ser Thr	Thr Tyr Asp Gly	
705	710	715
		720

<210> 40
<211> 96
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered regulatory sequence

```
<400> 40
gctagccccg ccccgttgac gcaaatgggc ggttaggcgtg tacggtgttga ggtttatata 60
aqcagaqactc qtttaqtqaa ccgtcagatc agatct 96
```

```
<210> 41
<211> 154
<212> DNA
<213> Artificial Sequence
```

<220>
<223> engineered regulatory sequence

```
<400> 41
gctagcgccc aaattggat tttccaaaaa gccgaaattg ggattttcca aaaaccgccc      60
atcgcggcc ccgttgacgc aaatggcggt taggcgtgtt cggtggagg tttatataag    120
caqagctcq ttaqtqaacc qtcagatcaq atct                            154
```

<210> 42

```

<211> 212
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered regulatory sequence

<400> 42
acgcgtcccc aaattggat tttccaaaaa gccgaaattt ggattttcca aaaaccgcgc
tagcgcggaa attgggatt tccaaaaagc cgaaatttggg atttccaaa aaccgcgcgt
cgcccccccc gttgacgcaa atggcggtt ggcgtgtacg gtgggagggtt tatataagca
gagctcgttt agtgaacctt cagatcagat ct

<210> 43
<211> 96
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered regulatory sequence

<400> 43
gctagccccg ccccggttgac gcaaattggc ggttaggcgtt tacgggtggaa ggtcttatata
agcagagactc gtttagtggaa ccgtcagatc agatct 60
96

<210> 44
<211> 154
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered regulatory sequence

<400> 44
gctagcgccc aggtcggtt tttccgagga gccgagggtcg ggattttccg aggaccgcgc
atcgcccgcc ccgttgcacgc aaatgggcgg taggcgtgtt cgggtggagg cctatataag
cagagctcgt ttagtgaacc gtcagatcag atct 60
120
154

<210> 45
<211> 154
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered regulatory sequence

<400> 45
gctagcgccc aggtcggtt tttccgagga gccgagggtcg ggattttccg aggaccgcgc
atcgcccgcc ccgttgcacgc aaatgggcgg taggcgtgtt cgggtggagg cctatataag
cagagctcgt ttagtgaacc gtcagatcag atct 60
120
154

<210> 46
<211> 762
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered promoter construct

```

<400> 46

ggta	cctcaa	tattggccat	tagccatatt	attcattgg	tatata	gcat	aaattaat	60
tgg	catttgg	ccattgcata	cgttatct	atatacataat	atgtacattt	atattgg	ctc	120
atgt	ccaata	tgaccgccc	atgtttcata	gttggcattt	attattgact	agttat	taat	180
tacgg	gggtca	ttagttcata	gcccataat	ggagttccgc	gttacataac	ttacgg	aaa	240
tgg	ccgcct	ggctgaccgc	ccaacgaccc	ccgcccattt	acgtcaataa	tgacgtatgt		300
tccc	atagta	acgcaaata	ggatttcca	ttaacgtcaa	tgggtggagt	atttacgg	ta	360
aact	gcccac	ttggcagtac	atcaagtgt	tcatatgcca	agtccgcccc	ctattgacgt		420
caat	gacggt	aatggccc	cctggcatta	tgcccagtac	atgactttat	gggat	ttcc	480
tattt	ggcag	tacatctac	tattagtcat	cgctattacc	atgggtatgc	gttttggca		540
gtaca	cccaat	ggggttggat	agcggttga	ctcacggg	tttccaagtc	tccacccat		600
tgacg	tcataat	gggagttgt	tttggcacca	aggtaaaagg	gat	ttccaa	aatgtcgtaa	660
caact	tcgat	cgccgcccc	gttacgcaa	atgggcggta	ggcgtgtacg	gtgggagg	tt	720
tatataa	gagctcg	ttt	agtgaaccgt	cagatcaagc	tt			762

<210> 47
<211> 762
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered promoter construct

<400> 47

ggta	cctcaa	tattggccat	tagccatatt	attcattgg	tatata	gcat	aaattaat	60
tgg	catttgg	ccattgcata	cgttatct	atatacataat	atgtacattt	atattgg	ctc	120
atgt	ccaata	tgaccgccc	atgtttcata	gttggcattt	attattgact	agttat	taat	180
tacgg	gggtca	ttagttcata	gcccataat	ggagttccgc	gttacataac	ttacgg	aaa	240
tgg	ccgcct	ggctgaccgc	ccaacgaccc	ccgcccattt	acgtcaataa	tgacgtatgt		300
tccc	atagta	acgcaaata	tcccggaaa	ttaacgtcaa	tgggtggagt	atttacgg	ta	360
aact	gcccac	ttggcagtac	atcaagtgt	tcatatgcca	agtccgcccc	ctattgacgt		420
caat	gacggt	aatggccc	cctggcatta	tgcccagtac	atgactttat	tctcgaggaa		480
tattt	ggcag	tacatctac	tattagtcat	cgctattacc	atgggtatgc	gttttggca		540
gtaca	cccaat	ggggttggat	agcggttga	ctcacggg	tttccaagtc	tccacccat		600
tgacg	tcataat	gggagttgt	tttggcacca	aggtaaaatt	acgcgtaaaa	aatgtcgtaa		660
caact	tcgat	cgccgcccc	gttacgcaa	atgggcggta	ggcgtgtacg	gtgggagg	tt	720
gctagccgca	gagctcg	ttt	agtgaaccgt	cagatcaagc	tt			762

<210> 48
<211> 762
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered promoter construct

<400> 48

ggta	cctcaa	tattggccat	tagccatatt	attcattgg	tatata	gcat	aaatcaat	60
tgg	catttgg	ccattgcata	cgttatct	atatacataat	atgtacattt	atattgg	ctc	120
atgt	ccaata	tgaccgccc	atgtttcata	gttggcattt	attattgact	agttat	taat	180
tacgg	gggtca	ttagttcata	gcccataat	ggagttccgc	gttacataac	ttacgg	aaa	240
tgg	ccgcct	ggctgaccgc	ccaacgaccc	ccgcccattt	acgtcaataa	tgacgtatgt		300
tccc	atagta	acgcaata	ggacttcca	ttgacgtcaa	tgggtggagt	atttacgg	ta	360
aact	gcccac	ttggcagtac	atcaagtgt	tcatatgcca	agtccgcccc	ctattgacgt		420
caat	gacggt	aatggccc	cctggcatta	tgcccagtac	atgaccttac	gggacttcc		480
tattt	ggcag	tacatctac	tattagtcat	cgctattacc	atgggtatgc	gttttggca		540
gtaca	cccaat	ggggttggat	agcggttga	ctcacggg	tttccaagtc	tccacccat		600
tgacg	tcataat	gggagttgt	tttggcacca	aaatcaacgg	gacttccaa	aatgtcgtaa		660
caact	tcgat	cgccgcccc	gttacgcaa	atgggcggta	ggcgtgtacg	gtgggagg	tc	720

tatataagca gagctcgttt agtgaaccgt cagatcaagc tt	762
<210> 49	
<211> 12	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> wild type regulatory sequence	
<400> 49	
gactgttgtt tt	12
<210> 50	
<211> 12	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> wild type regulatory sequence	
<400> 50	
aggactcttg ga	12
<210> 51	
<211> 46	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> wild type regulatory sequence	
<400> 51	
tactaggagg ctgttaggcat aaattggtct ggcgcaccaggc accatg	46
<210> 52	
<211> 46	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> engineered regulatory sequence	
<400> 52	
tactaggagg ctgttaggcat aaatttagtct ggcgcaccaggc accatg	46
<210> 53	
<211> 46	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> engineered regulatory sequence	
<400> 53	
tactaggatt agtgcttaag cccttggtct ggcgcaccaggc accatg	46
<210> 54	

<211> 46		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> engineered regulatory sequence		
<400> 54		
tacttaggagg ctgtaggcat aaagctcgag tataacaacgc accatg		46
<210> 55		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> engineered regulatory sequence		
<400> 55		
tacttaggagg ctgtaggcat aaatgcgtaa aagcaccagc accatgcaac		50
<210> 56		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> engineered regulatory sequence		
<400> 56		
tacttaggagg ctgtaggcat aaattaaaaa acgcaccagc accatgcaac		50
<210> 57		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> engineered regulatory sequence		
<400> 57		
tacttaggagg ctgtaggcat aaattaatcc ggcaccagc accatgcaac		50
<210> 58		
<211> 51		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> engineered regulatory sequence		
<400> 58		
accttgaggc atacttcaaa gactgttgat ttagcgaata agaggagttg g		51
<210> 59		
<211> 51		
<212> DNA		
<213> Artificial Sequence		

```

<220>
<223> engineered regulatory sequence

<400> 59
acctttagggc atacttcaaa gactgtttat ttataataacg ggaggagttg g 51

<210> 60
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered regulatory sequence

<400> 60
acctttagggc atacttcaaa gactgtttat ttaaggactg ggaggagttg g 51

<210> 61
<211> 6513
<212> DNA
<213> Artificial Sequence

<220>
<223> heterologous nucleic acid construct

<400> 61
tcaatattgg ccatttagcca tattattcat tggttatata gcataaaatca atattggcta 60
ttggccatttgc catacggtgt atctatatca taatatgtac atttatatttgc gctcatgtcc 120
aatatgaccg ccatgttggc attgattatt gactagttat taatagtaat caattacggg 180
gtcatttagtt catagcccat atatggagtt ccgcgttaca taacttacgg taaatggccc 240
gcctggctga ccggcccaacg accccccccc attgacgtca ataatgacgt atgttcccat 300
agtaacgcca atagggactt tccatttgc acgttgcataatgggttgc ggtttaactgc 360
ccacttggca gtacatcaag tgtatcatat gccaagtccg ccccttatttgc acgtcaatga 420
cggttaatgg cccgccttgc attatggcca gtacatgacc ttacgggact ttccttacttg 480
gcagtacatc tacgttatttgc tcattcgctat taccatgggttgc atgcgggtttt ggcagtacac 540
caatgggcgttgc ggatagcggt ttgacttgc acgttgcataatgggttgc agtctccacc 600
caatgggagt ttgttttgc accaaaatca acgggactttt cccaaatgtc gtaacaactg 660
cgatcgcccg ccccggttgc gccaatggc ggttgcgttgc tacgggtgggacttgc 720
agcagagctc gtttagtggaa cgcgttgcacttgc acgttgcgttgc ttatttgcgttgc 780
agttaaatttgc ctaacgcgttgc cgttgcgttgc acgttgcgttgc ttcatttgcgttgc 840
gactcttgc acgttgcgttgc gtcgttgcgttgc actgggcagg taatgttgc 900
ggttacaaga caggttaag gagaccaata gaaactggc ttgtcgagac agagaagact 960
cttgcgttgc acgttgcgttgc ttcatttgcgttgc ttcatttgcgttgc ttctctccac 1020
agggtgtccac tcccggttgc attacagctc ttaaggcttgc agtacttgc acgttgcgttgc 1080
ataggcttgc caggttgc acgttgcgttgc gtcgttgcgttgc acgttgcgttgc 1140
ccggccgagac ggaggaggttgc ggttgcgttgc tccgggttgc gatgtcgcc 1200
cggttgcgttgc ttcatttgcgttgc ttcatttgcgttgc ttctctccac 1260
tttaccttgc gtttgcgttgc gtcgttgcgttgc acgttgcgttgc 1320
tatttcggcg gatctatgc cactacgttgc acgttgcgttgc acgttgcgttgc 1380
gagagcttgc gtcgttgcgttgc ctggccggcc ccttgcgttgc acgttgcgttgc 1440
tgttgcgttgc cagcaccatg gtcgttgcgttgc ttcatttgcgttgc 1500
ggaggacctt cggccggccgttgc gtcgttgcgttgc acgttgcgttgc 1560
tgcgttgcgttgc gtttgcgttgc acgttgcgttgc acgttgcgttgc 1620
aaggccgttgc gtcgttgcgttgc acgttgcgttgc acgttgcgttgc 1680
agacggacca cggccggccgttgc ttcatttgcgttgc acgttgcgttgc 1740
tggccaaaatgc acgttgcgttgc ttcatttgcgttgc acgttgcgttgc 1800
caatcggtggc gtttgcgttgc acgttgcgttgc acgttgcgttgc 1860
agctgtacgc ccttgcgttgc acgttgcgttgc acgttgcgttgc 1920
gcgttgcgttgc acgttgcgttgc acgttgcgttgc acgttgcgttgc 1980

```

acatcatcct	ggaggcggcg	ctgtcgagc	tccccaccga	ggcctggccc	atgatgcagg	2040
ggccgtgaa	ctttagcacc	ctaataa	gaaatgcac	gatgcacca	2100	
aaaagaagag	aaaggtat	gaattcccg	ggatctcgac	ggcccccccg	2160	
gcctgggga	cgagctccac	ttagacggcg	aggacgtggc	gatggcgcac	2220	
tagacgattt	cgatctggac	atgttgggg	acggggattc	cccggtccg	2280	
ggatccgtcg	acttgacgcg	ttgatata	ctagagcggc	cgcaggtacc	2340	
aggccgcttc	ccttagtga	gggtaatgc	ttcagcaga	catgataaga	2400	
agtttggaca	aaccacaact	agaatgcagt	aaaaaaaatg	ctttatttgc	2460	
atgctattgc	tttatttgc	accattataa	gctgcaataa	acaagttAAC	2520	
gcattcattt	tatgttcag	gttcaggggg	agatgtggg	gttttttaa	2580	
acctctacaa	atgtggtaaa	atccgataag	gatcgattcc	ggagcctgaa	2640	
acgcgcctg	tagcggcgca	ttaagcgcgg	cgggtgtgg	gttacgcgc	2700	
tacacttgcc	agcgcctag	cggccgtcc	tttcgccttc	ttcccttcct	2760	
gttcgcggc	tttcccggtc	aagctctaaa	tcgggggctc	cctttagggt	2820	
tgcttacgg	caccccgacc	ccaaaaaaact	tgattagggt	gatggttcac	2880	
atcgccctga	tagacggttt	ttcgccttt	gacgttggag	tccacgttct	2940	
actcttggtc	caaactggaa	caacactcaa	ccatatctcg	gtctatttctt	3000	
agggattttg	ccgatttcgg	cctattgggt	aaaaaatgg	ctgatTTAAC	3060	
cgcgaatttt	aacaaaat	taacgcttac	aatttcgcct	gtgtaccc	3120	
agaaccagct	gtgaatgtg	tgtcagttag	ggtgtggaaa	gtccccaggc	3180	
gcagaagtat	gcaagcgt	catctcaatt	agtcagcaac	cagggtggaa	3240	
gctccccagc	aggcagaagt	atgcaaaagca	tgcatactcaa	ttagtcagca	3300	
cgcgcctaaac	tccgcctac	ccgcccctaa	ctccgcggc	ttccgcctat	3360	
atggctgact	aattttttt	atttatgcag	aggccgaggc	cgcctcgcc	3420	
tccagaagta	gtgaggaggc	ttttttggag	gcttaggctt	ttgcaaaaag	3480	
ctgacacaac	agtctcgaa	ttaaggctag	agccaccatg	attgaacaag	3540	
cgcagggtct	ccggccgctt	gggtggagag	gctattcgcc	tatgactggg	3600	
aatcggtgc	tctgtatgc	ccgtgttccg	gctgtcagcg	cagggcgcc	3660	
tgtcaagacc	gacctgtccg	gtgcccgtaa	tgaactgcag	gacgaggcag	3720	
gtggctggcc	acgacggg	ttccttgcgc	agctgtgctc	gacgttgc	3780	
aagggactgg	ctgttattgg	gccaagtgc	ggggcaggat	ctcctgtcat	3840	
tcctgcgag	aaagtatcca	tcatggctga	tgcaatgcgg	cggtgcata	3900	
ggctacctgc	ccattcgacc	accaagcgaa	acatcgcatc	gagcagac	3960	
ggaagccggt	cttgcgtatc	aggatgtatc	ggacgaagag	catcaggggc	4020	
cgaactgttc	gccaggctca	aggcgcgc	gcccgcacggc	gaggatctcg	4080	
tggcgatgcc	tgcttgcga	atatcatgtt	ggaaaatggc	cgctttctg	4140	
ctgtggccgg	ctgggtgtgg	cggtcgct	tcaggacata	gcgttggcta	4200	
tgctgaagag	cttggcggcg	aatggctga	ccgcttcctc	gtgctttacg	4260	
tcccatttc	cagcgatcg	ccttctatcg	cottcttgc	gagttttct	4320	
ctgggttgc	aaatgaccga	ccaagcgac	cccaacctgc	catcacatgc	4380	
aatatctta	ttttcattac	atctgtgtgt	tggttttttgc	tgtgaagatc	4440	
gcactctcag	tacaatctgc	tctgtatgc	catagttaa	ccagccccga	4500	
cacccgctga	cgcgcctga	cgggctgtc	tgctcccg	atccgcttac	4560	
tgaccgtctc	cggagctgc	atgtgtcaga	ggttttcacc	gtcatcacc	4620	
gacgaaaggg	cctcgtata	cgcctat	tataggtt	tgtcatgata	4680	
cttagacgtc	agggtggact	tttcgggaa	atgtgcgcgg	aacccttatt	4740	
tctaaataca	ttcaaaat	tatccgtca	ttagacaata	accctgataa	4800	
aatattggaa	aaggaaagat	atgatattc	aacatttccg	tgtgcctt	4860	
ttgcggcatt	ttgccttc	gttttgc	acccagaaac	gctggtggaa	4920	
ctgaagatca	gttgggtgca	cgagtgggt	acatcgac	ggatctcaac	4980	
tccttgagag	tttcgc	gaagaacgtt	ttccaatgt	gagcacttt	5040	
tatgtggcgc	ggtattatcc	cgtattgc	ccgggcaaga	gcaactcggt	5100	
actattctca	gaatgacttgc	gttgagttact	caccagtac	agaaaagcat	5160	
gcatgacagt	aagagaatta	tgcagtgc	ccataaccat	gagtgataac	5220	
acttacttct	gacaacgtac	ggaggaccga	aggagctaac	cgcttttttgc	5280	
gggatcatgt	aactcgcc	gatcg	tttgggg	aaccggagct	5340	
acgagcgtga	caccacgt	cctgtacaa	ttgcaaca	gttgcgaaa	5400	
cgactact	tactctag	tcccgcaac	aattaataga	ctggatggag	5460	

ttgcaggacc	acttctgcgc	tcggcccttc	cggctggctg	gtttattgct	gataaatctg	5520
gagccggta	gcgtgggtct	cgcgttatca	ttcagcact	ggggccagat	ggtaagccct	5580
cccgtatcg	agttatctac	acgacgggaa	gtcaggcaac	tatggatgaa	cgaaatagac	5640
agatcgctga	gatagggtcc	tcactgatta	agcattggta	actgtcagac	caagtttact	5700
cataataact	ttagattgat	ttaaaacttc	atttttaatt	taaaaggatc	taggtgaaga	5760
tccttttga	taatctcatg	accaaaatcc	cttaacgtga	gttttcgttc	cactgagcgt	5820
cagaccccg	agaaaagatc	aaaggatctt	cttgagatcc	ttttttctg	cgcgtaatct	5880
gctgcttgca	aacaaaaaaaaa	ccaccgtac	cagcgggtgg	ttgtttgccc	gatcaagagc	5940
taccaactct	ttttccgaag	gtaactggct	tcagcagagc	gcagatacca	aatactgtcc	6000
ttctagtgt	gccgttagtta	ggccaccact	tcaagaactc	tgtagcaccg	cctacatacc	6060
tcgctctgt	aatcctgtta	ccagtggctg	ctgcccagtgg	cgataagtgc	tgtcttaccg	6120
ggttggactc	aagacgatag	ttaccggata	aggcgcagcg	gtcgggctga	acggggggtt	6180
cgtgcacaca	gccccagctt	gagcgaacga	cctacaccga	actgagatac	ctacagcgt	6240
agctatgaga	aagcgcacg	cttcccgaag	ggagaaaggc	ggacaggtat	ccggtaagcg	6300
gcagggtcgg	aacaggagag	cgcacgaggg	agcttccagg	gggaaacgcc	tggtatctt	6360
atagtccctgt	cgggtttcgc	cacctctgac	ttgagcgtcg	attttgtga	tgctcgctag	6420
ggggggcggag	cctatggaaa	aacgccagca	acgcggcctt	tttacggttc	ctggcctttt	6480
gctggcctt	tgctcacatg	gctcgacaga	tct			6513

<210> 62
<211> 6439
<212> DNA
<213> Artificial Sequence

<220>
<223> heterologous nucleic acid construct

<400> 62						
tcaatattgg	ccattagcca	tattattcat	tggttatata	gcataaatca	atattggcta	60
ttggccattg	catacggtt	atctatatca	taatatgtac	atttatattg	gctcatgtcc	120
aatatgaccg	ccatgttggc	attgattatt	gactagttat	taatagtaat	caattacggg	180
gtcattagtt	catagccat	atatggagtt	ccgcgttaca	taacttacgg	taaatggccc	240
gcctggctga	ccgccccaaacg	accccccggcc	attgacgtca	ataatgacgt	atgttcccat	300
agtaacgcca	atagggactt	tccattgacg	tcaatgggtg	gagtatttac	ggtaaaactgc	360
ccacttggca	gtacatcaag	tgtatcatat	gccaagtccg	ccccctattg	acgtcaatga	420
cggtaaatgg	ccgccttggc	attatggcca	gtacatgacc	ttacgggact	ttcctacttg	480
gcagttacatc	tacgtattag	tcatcgctat	taccatggtg	atgcggttt	ggcagttacac	540
caatgggcgt	ggatagcggt	ttgactcag	gggatttcca	agtctccacc	ccattgacgt	600
caatgggagt	ttgttttggc	acccaaatca	acgggacttt	ccaaaatgtc	gtaacaactg	660
cgatcgcccc	ccccgttgcac	gcaaatagggc	ggtaggcgtg	tacgtggga	ggtctatata	720
agcagagctc	gttttagtggaa	ccgtcagatc	actagaagct	ttattgcgtt	agtttatcac	780
agttaaatttgc	ctaacgcagt	cagtgccttct	gacacaacag	tctcgaaactt	aagctgcagt	840
gactctcttgc	aggttagcctt	gcagaagttg	gtcgtgaggc	actgggcagg	taagtatcaa	900
ggttacaaga	cagggttaag	gagacaata	gaaactgggc	ttgtcgagac	agagaagact	960
cttgcgttgc	tgatagggcac	ctattggct	tactgacatc	cactttgcct	ttctctccac	1020
agggtgtccac	tcccagttca	attacagctc	ttaaggctag	agtacttaat	acgactctact	1080
ataggcttagc	cagcttgaag	caagccctt	gaaagatgga	ggcgtcgctg	ccggcccccagg	1140
ccgcccggagac	ggaggagggt	ggtctttcg	tcaaaaaata	cctccggtcc	gatgtcgccgc	1200
ccggcggaaat	tgtcgcgtc	atgcgcacc	tcaacagcc	gatgggacgc	acgcgggtta	1260
tttacctggc	gttgctggag	gcctgtctcc	gcgttcccat	ggccacccgc	agcagcgcca	1320
tatattcgccg	gatctatgac	cactaccca	cggcggtcat	ccccacgatc	aacgtcaccg	1380
gagagctgga	gctcgtggcc	ctgccccca	ccctgaacgt	aaccccccgtc	tgggagctgt	1440
tgtgcctgt	cagcaccatg	gccgcgcgccc	tgcattggga	ctcgccggcc	gggggatctg	1500
ggaggacctt	cggccccgat	gacgtgtgg	acctactgac	cccccaactac	gaccgctaca	1560
tgcagctgg	gttcgaactg	ggccactgta	acgttaaccga	cggacttctg	ctctcgagg	1620
aagccgtcaa	gcccgtcgcc	gacgcctaa	gcccgtgtcc	cccgccgggg	tccgttagcg	1680
agacggacca	cgcgggtggcg	ctgtcaaga	taatctgggg	cgaactgttt	ggcgtgcaga	1740

tggccaaaag	cacgcagacg	tttccccggg	cggggcgcgt	taaaaacctc	accaaacaga	1800
caatcggtgg	gttgttggac	gcccaccaca	tcgaccacag	cgcctgccgg	acccacaggc	1860
agctgtacgc	cctgcttatg	gcccacaaggc	gggagtttgc	gggcgcgcgc	ttcaagctac	1920
gcgtccccgc	gtgggggcgc	tgttgcgca	cgcactcatc	cagcgccaac	cccaacgctg	1980
acatcatctt	ggaggcggcg	ctgtcggagc	tccccaccga	ggcctggccc	atgatgcagg	2040
gggcggtgaa	ctttagcacc	ctacaaaaaa	agaagagaaa	ggtagatcgg	acactggta	2100
ccttcaagga	tgtatttgtg	gacttcacca	gggaggagtg	gaagctgctg	gacactgctc	2160
agcagatcgt	gtacagaaat	gtgatgctgg	agaactataa	gaacctggtt	tccttgggtt	2220
attgtatgaga	tatcatctag	agcggccgca	ggtacctgaa	taactaaggc	cgctccctt	2280
tagtgagggt	taatgctcg	agcagacatg	ataagataca	ttgatgagtt	tggacaaacc	2340
acaactagaa	tgcagtgaaa	aaaatgctt	atttgtgaaa	tttgtgatgc	tattgcttta	2400
tttgtAACCA	ttataagctg	caataaacaa	gttacaaca	acaattgcat	tcattttatg	2460
tttcagggtt	agggggagat	gtgggagggtt	ttttaagca	agtaaaacct	ctacaaatgt	2520
ggtaaaatcc	gataaggatc	gattccggag	cctgaatggc	gaatggacgc	gccctgttagc	2580
ggcgcattaa	gchgccccgg	tgtggtggtt	acgcgcacgt	gaccgcatac	cttgcagcg	2640
ccctagcgcc	cgctcccttc	gttttttcc	cttcctttct	cgccacgttc	gccggctttc	2700
cccgtcaagc	tctaaatcg	gggctccctt	tagggttccg	atttagtgc	ttacggcacc	2760
tcgaccccaa	aaaacttgc	tagggtgatg	gttcacgtag	tggccatcg	ccctgataga	2820
cggtttttcg	cccttgacg	ttggagttca	cgttctttaa	tagtggactc	tttgtccaaa	2880
ctggaacaac	actcaaccct	atctcggtct	attcttttg	tttataaggg	attttgcgcg	2940
tttcggccct	ttggttaaaa	aatgagctga	tttacaaaaa	atthaacgcg	aatttttaaca	3000
aaatattaac	gcttacaatt	tcgcctgtgt	accttctgag	gcggaaaagaa	ccagctgtgg	3060
aatgtgtgtc	agttagggtg	tggaaagtcc	ccaggctccc	cagcaggcag	aagtatgca	3120
agcatgcac	tcaattagtc	agcaaccagg	tgtggaaaagt	ccccaggctc	cccagcaggc	3180
agaagtatgc	aaagcatgca	tctcaattag	tcagcaacca	tagtcccgcc	cctaactccg	3240
cccatccccgc	ccctaactcc	gcccagtcc	gcccattctc	cgccccatgg	ctgactaatt	3300
tttttattt	atgcagagggc	cgaggccgccc	tcggcctctg	agctattcca	gaagtagtga	3360
ggaggctttt	ttggaggcct	aggctttgc	aaaaagctt	attcttctga	cacaacagtc	3420
tcgaacttaa	ggctagagcc	accatgattt	aacaagatgg	attgcacgc	ggttctccgg	3480
ccgcttgggt	ggagaggcta	tgcggctatg	actgggcaca	acagacaatc	ggctgctctg	3540
atgccggcgt	gttccggctg	tcagcgccagg	ggcgccccgt	tctttttgtc	aagaccgacc	3600
tgtccgggtc	cctgaatgaa	ctgcaggacg	aggcagcgcg	gctatcggtt	ctggccacga	3660
cgggcggtcc	ttgcgcagct	gtgctcgacg	ttgtcaactga	agcggaaagg	gactggctgc	3720
tattggcga	agtgcggggg	caggatctcc	tgtcatctca	ccttgcctt	gccgagaaag	3780
tatccatcat	ggctgatgca	atgcggccgc	tgcatatacg	tgatccggct	acctgcccatt	3840
tcgaccacca	agcgaaacat	cgcatcgacg	gagcacgtac	tcggatggaa	gccggctttg	3900
tcgatcagga	tgatctggac	gaagagcatc	aggggctcgc	gccagccaa	ctgttcgcca	3960
ggctcaaggc	gcgcacgtccc	gacggcgagg	atctcgctgt	gaccatggc	gatgcctgct	4020
tgccgaatat	catggtgaa	aatggccgct	tttctggatt	catcgactgt	ggccggctgg	4080
gtgtggcgga	ccgttatcag	gacatagcgt	tgcgtaccgg	tgatattgt	gaagagctt	4140
gccccgaaatg	ggctgaccgc	ttcctcgatgc	tttacggat	cgccgctccc	gattcgacgc	4200
gcatcgccct	ctatcgccct	cttgcacgat	tcttctgagc	gggactctgg	ggttcgaaat	4260
gaccgaccaa	gcgcacgtccc	acctgcacatc	acatggccg	caataaaaata	tcttttattt	4320
cattacatct	gtgtgttgg	tttttgcgt	aagatccgc	tatggtgcac	tctcagtgaca	4380
atctgctctg	atggcgatca	gttaagccag	ccccgacacc	cgccaaacacc	cgctgacgc	4440
ccctgacgggg	tttgtctgt	cccgccatcc	gcttacagac	aagctgtgac	cgtctccggg	4500
agctgcatgt	gtcagagggtt	ttcaccgtca	tcaccgaaac	gcgcgagacg	aaagggccctc	4560
gtgatacgcc	tattttata	gtttaatgtc	atgataataa	tggttctt	gacgtcaggt	4620
ggcactttt	ggggaaatgt	gcccggaaacc	ccattttgtt	tattttcta	aatacatca	4680
aatatgtatc	cgctcatgag	acaataaccc	tgataaaatgc	ttcaataata	ttaaaaaagg	4740
aagagtatga	gtattcaaca	tttccgtgtc	gcccattttt	cctttttgtc	ggcattttgc	4800
cttcctgttt	ttgctcaccc	agaaacgctg	gtgaaaagtaa	aagatgctga	agatcagg	4860
ggtgacacgag	ttggtttacat	cgaaactggat	ctcaacagcg	gtaagatcct	tgagagttt	4920
cggccccgaa	aacgttttcc	aatgatgagc	acttttaaag	ttctgctatg	tggcgcggta	4980
ttatcccgta	ttgacgcccgg	gcaagagcaa	ctcgggtcgcc	gcatacacta	ttctcagaat	5040
gacttggtt	agtactcacc	agtcacagaa	aagcatctta	cgatggcat	gacagtaaga	5100
gaattatgca	gtgtgtccat	aaccatgagt	gataacactg	cggccaaactt	acttctgaca	5160
acgatcgagg	gaccgaagga	gctaaccgct	tttttgcaca	acatggggga	tcatgtact	5220

cgccttgate	gttgggaacc	ggagactaat	gaagccatac	caaacgacga	gcgtgacacc	5280
acgatgcctg	tagcaatggc	aacaacgttg	cgaaactat	taactggcga	actacttact	5340
ctagttccc	ggeaacaatt	aatagactgg	atggaggcgg	ataaaagtgc	aggaccactt	5400
ctgcgctcgg	cccttcggc	tggctggttt	attgctgata	aatctggagc	cggtgagcgt	5460
gggtctcgcg	gtatcattgc	agcactgggg	ccagatggta	agccctcccg	tatcgtagtt	5520
atctacacga	cggggagtca	ggcaactatg	gatgaacgaa	atagacagat	cgctgagata	5580
ggtgtcctcac	tgattaagca	ttggtaactg	tcagaccaag	tttactcata	tatactttag	5640
attgatttaa	aacttcattt	ttaatttaaa	aggatctagg	tgaagatcct	ttttgataat	5700
ctcatgacca	aaatcccta	acgtgagttt	tcgttccact	gagcgtcaga	ccccgtagaa	5760
aagatcaaag	gatcttctt	agatcctttt	tttctgcgcg	taatctgctg	cttgcaaaca	5820
aaaaaaaccac	cgttaccagg	ggtgtttgt	ttggccggatc	aagagctacc	aactctttt	5880
ccgaaggtaa	ctggcttcag	cagagcgcag	ataccaaata	ctgtccttct	agtgtagccg	5940
tagtttaggcc	accacttcaa	gaactctgta	gcaccgccta	catacctcgc	tctgctaattc	6000
ctgttaccag	tggctgctgc	cagtggcgat	aagtctgtgc	ttaccgggtt	ggactcaaga	6060
cgatagttac	cggataaggc	gcagcggtcg	ggctgaacgg	ggggttcgtg	cacacagccc	6120
agcttggagc	gaacgaccta	caccgaactg	agataacctac	agcgtgagct	atgagaaaagc	6180
gccacgcctc	ccgaaggggag	aaaggcggac	aggtatccgg	taagcggcag	ggtcggaaca	6240
ggagagcgc	cgagggagct	tccaggggaa	aacgcctgg	atctttatag	tcctgtcggg	6300
tttcgcacc	tctgacttga	gcgtcgattt	ttgtgatgct	cgtcagggggg	gcccggccta	6360
tggaaaaaacg	ccagcaacgc	ggcctttta	cggttcctgg	cctttgctg	gcctttgct	6420
cacatggctc	gacagatct					6439

<210> 63

<400> 63
000

<210> 64

<400> 64
000

<210> 65

<211> 10
<212> DNA
<213> Artificial Sequence

<220>

<223> engineered DNA response element

<400> 65

actttatttt

10

<210> 66

<211> 10
<212> DNA
<213> Artificial Sequence

<220>

<223> engineered DNA response element

<400> 66

gagtttttcc

10

<210> 67

<211> 10
<212> DNA
<213> Artificial Sequence

```

<220>
<223> engineered DNA response element

<400> 67
gatgggattt                                         10

<210> 68
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 68
tcttttgtt                                         10

<210> 69
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 69
gagttggcgg                                         10

<210> 70
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 70
tctgggtt                                         10

<210> 71
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 71
gagttttgtt                                         10

<210> 72
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

```

<400> 72
ccagggcccc ga 12

<210> 73
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 73
gccgcggtct gt 12

<210> 74
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 74
cgtccgcggt ga 12

<210> 75
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 75
tttacttatt tt 12

<210> 76
<211> 7
<212> DNA
<213> Artificial Sequence

<220>
<223> engineered DNA response element

<400> 76
gagtttt 7

<210> 77
<211> 9
<212> DNA
<213> Artificial Sequence

<220>
<223> sequence complementary to SEQ ID No:33

<400> 77

aaaacttta 9