Formulari PDS

TABLE 3.2 Properties of the z-Transform

Property	Time Domain	z-Domain	ROC
Notation	x(n)	X(z)	ROC: $r_2 < z < r_1$
	$x_1(n)$	$X_1(z)$	ROC_1
	$x_2(n)$	$X_2(z)$	ROC ₂
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1 X_1(z) + a_2 X_2(z)$	At least the intersection of ROC ₁ and ROC ₂
I'me shifting	x(n-k)	$z^{-k}X(z)$	That of $X(z)$, except $z = 0$ if $k > 0$ and $z = \infty$ if $k < 0$
Scaling in the	$a^n x(n)$	$X(a^{-1}z)$	$ a r_2 < z < a r_1$
Time reversal	x(-n)	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$
Conjugation	$x^*(n)$	$X^*(z^*)$	ROC
Real part	$\text{Re}\{x(n)\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Includes ROC
lmaginary part	$\operatorname{Im}\{x(n)\}\$	$\frac{1}{2}j[X(z)-X^*(z^*)]$	Includes ROC
Differentiation in the z-domain	nx(n)	$-z\frac{dX(z)}{dz}$	$r_2 < z < r_1$
Convolution	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	At least, the intersection of ROC_1 and ROC_2
Correlation	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$R_{x_1x_2}(z) = X_1(z)X_2(z^{-1})$	At least, the intersection of ROC of $X_1(z)$ and $X_2(z^{-1})$
Initial value theorem	If $x(n)$ causal	$x(0) = \lim_{z \to \infty} X(z)$	
Multiplication	$x_1(n)x_2(n)$	$\frac{1}{2\pi j} \oint_C X_1(v) X_2\left(\frac{z}{v}\right) v^{-1} dv$	At least, $r_{1l}r_{2l} < z < r_{1u}r_{2u}$
Parseval's relation	$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n)$	$= \frac{1}{2\pi j} \oint_C X_1(v) X_2^*(1/v^*) v^{-1} dv$	

TABLE	3.3 Some Common	z-Transform Pairs	
Signal, $x(n)$		z-Transform, $X(z)$	ROC
1	$\delta(n)$	1	All z
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1
3	$a^nu(n)$	$\frac{1}{1-az^{-1}}$	z > a
4	$na^nu(n)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5	$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7	$(\cos \omega_0 n)u(n)$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
8	$(\sin \omega_0 n) u(n)$	$\frac{z^{-1}\sin\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
9	$(a^n\cos\omega_0 n)u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a
10	$(a^n \sin \omega_0 n) u(n)$	$\frac{az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a

TABLE 4.4 Symmetry Properties of the Discrete-Time Fourier Transform

Sequence	DTFT
x(n)	$X(\omega)$
$x^*(n)$	$X^*(-\omega)$
$x^*(-n)$	$X^*(\omega)$
$x_R(n)$	$X_e(\omega) = \frac{1}{2} [X(\omega) + X^*(-\omega)]$
$jx_I(n)$	$X_o(\omega) = \frac{1}{2} [X(\omega) - X^*(-\omega)]$
$x_e(n) = \frac{1}{2}[x(n) + x^*(-n)]$	$X_R(\omega)$
$x_o(n) = \frac{1}{2}[x(n) - x^*(-n)]$	$jX_I(\omega)$
	Real Signals
	$X(\omega) = X^*(-\omega)$
Any real signal	$X_R(\omega) = X_R(-\omega)$
x(n)	$X_I(\omega) = -X_I(-\omega)$
	$ X(\omega) = X(-\omega) $
	$\angle X(\omega) = -\angle X(-\omega)$
$x_e(n) = \frac{1}{2}[x(n) + x(-n)]$	$X_R(\omega)$
(real and even)	(real and even)
$x_o(n) = \frac{1}{2}[x(n) - x(-n)]$	$jX_I(\omega)$
(real and odd)	(imaginary and odd)

TABLE 4.5 Properties of the Fourier Transform for Discrete-Time Signals

Property	Time Domain	Frequency Domain
Notation	x(n)	$X(\omega)$
	$x_1(n)$	$X_1(\omega)$
	$x_2(n)$	$X_2(\omega)$
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(\omega)+a_2X_2(\omega)$
Time shifting	x(n-k)	$e^{-j\omega k}X(\omega)$
Time reversal	x(-n)	$X(-\omega)$
Convolution	$x_1(n) * x_2(n)$	$X_1(\omega)X_2(\omega)$
Correlation	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$S_{x_1x_2}(\omega) = X_1(\omega)X_2(-\omega)$
		$= X_1(\omega) X_2^*(\omega)$
		[if $x_2(n)$ is real]
Wiener-Khintchine theorem	$r_{xx}(l)$	$S_{xx}(\omega)$
Frequency shifting	$e^{j\omega_0 n}x(n)$	$X(\omega-\omega_0)$
Modulation	$x(n)\cos\omega_0 n$	$\frac{1}{2}X(\omega+\omega_0)+\frac{1}{2}X(\omega-\omega_0)$
Multiplication	$x_1(n)x_2(n)$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\lambda) X_2(\omega - \lambda) d\lambda$
Differentiation in		
the frequency domain	nx(n)	$j\frac{dX(\omega)}{d\omega}$
Conjugation	$x^*(n)$	$X^*(-\omega)$
Parseval's theorem	$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi}$	$X_1(\omega)X_2^*(\omega)d\omega$

Figure 4.3.1 Summary of analysis and synthesis formulas.

Font: Digital Signal Processing, J. Proakis, D. Manolakis, Pearson Prentice Hall, 2007