Quesito 4 – Progettazione del sistema di misura della posizione angolare dei vassoi

Si analizzi il sistema illustrato nella **Figura 5**, utilizzato per misurare la **posizione angolare** di ciascun vassoio, in rotazione attorno al punto D (vedi Figura 1).

Il sistema è composto dai seguenti elementi:

- Sensore di posizione angolare S con uscita analogica.
- Blocco di condizionamento c1 (posto vicino al sensore).
- Cavo di collegamento tra c1 e un secondo blocco di condizionamento.
- Blocco di condizionamento c2 (posto all'ingresso di un ADC).
- Sistema di elaborazione digitale dei campioni acquisiti (Processing).

Caratteristiche dei componenti:

- Il sensore S è lineare, con:
 - Intervallo di ingresso: [0°, 180°]
 - Offset $V_0=-0.2\,\mathrm{V}$
 - Sensibilità: 4 mV/°
- Il blocco c1 esegue un adattamento di scala:
 - ullet Offset V_{10}
 - Guadagno k_1
- Il blocco c2 esegue un secondo adattamento di scala:
 - Offset V_{20}
 - Guadagno k_2
 - Input range: [0 V, 4 V]

- L'ADC ha:
 - Intervallo di ingresso: [-8 V, +8 V]
 - Risoluzione: $B = 8 \, \mathrm{bit}$

Richieste:

- 1. Determinare l'intervallo di uscita del sensore S.
- 2. Determinare i valori ottimali di k_1 e V_{10} .
- 3. Determinare i valori ottimali di k_2 e V_{20} .
- 4. Determinare la risoluzione dell'ADC.
- 5. Determinare la risoluzione del sensore.
- 6. Scrivere la formula matematica che l'elaboratore (P) deve applicare ai campioni digitalizzati v_D per ottenere i corrispondenti valori angolari stimati x_D .
- 7. Disegnare un diagramma angolo-tempo relativo a una procedura di test/calibrazione in cui:
 - Il vassoio ruota da 30° a 150° e ritorna a 30° con velocità costante di ±40°/s.
 - Si ferma per 1 s alle posizioni 30°, 90° e 150°.
 - L'intera sequenza si ripete 3 volte.
- **8.** Determinare il numero di campioni acquisiti durante un ciclo completo (andata e ritorno) considerando una frequenza di campionamento dell'ADC pari a 20 campioni al secondo (20 S/s).

1. Intervallo di uscita del sensore S

Il sensore è lineare con:

• Intervallo di ingresso: $[0^{\circ}, 180^{\circ}]$

• Sensibilità: $4\,\mathrm{mV/°} = 0.004\,\mathrm{V/°}$

ullet Offset: $V_0=-0.2\,\mathrm{V}$

Formula dell'uscita:

$$V_{
m out} = V_0 + {
m sensibilit} {
m à} imes heta$$

Valori estremi:

ullet Per $heta=0^\circ$: $V_{
m out}=-0.2~{
m V}$

• Per $heta=180^\circ$: $V_{
m out}=-0.2+0.004 imes180=-0.2+0.72=0.52\,{
m V}$

Risultato:

L'intervallo di uscita del sensore è $[-0.2\,\mathrm{V},0.52\,\mathrm{V}]$

2. Valori ottimali di k_1 e V_{10}

Obiettivo: trasformare l'intervallo [-0,2,0,52] V in [0,4] V per l'ingresso del blocco c_2 . Trasformazione affine:

$$V_1 = k_1 \cdot V_S + V_{10}$$

Condizioni:

$$\left\{egin{aligned} V_S=-0,&2
ightarrow V_1=0\ V_S=0,&52
ightarrow V_1=4 \end{aligned}
ight.$$

Sistema:

$$\left\{egin{aligned} 0 &= k_1 \cdot (-0.2) + V_{10} \ 4 &= k_1 \cdot 0.52 + V_{10} \end{aligned}
ight.$$

Risoluzione:

- ullet Dalla prima equazione: $V_{10}=0.2k_1$
- Sostituisco nella seconda:

$$4=0{,}52k_1+0{,}2k_1=0{,}72k_1\Rightarrow k_1=rac{4}{0{,}72}=rac{100}{18}pprox 5{,}56$$
 $V_{10}=0{,}2\cdot 5{,}56pprox 1{,}11\,\mathrm{V}$

Risultato:

$$k_1 pprox 5,\!56$$
, $V_{10} pprox 1,\!11\,\mathrm{V}$

3. Valori ottimali di k_2 e V_{20}

Obiettivo: trasformare l'intervallo $[0,4]\,\mathrm{V}$ in $[-8,8]\,\mathrm{V}$, range dell'ADC.

Formula:

$$V_2 = k_2 \cdot V_1 + V_{20}$$

Condizioni:

$$\begin{cases} V_1 = 0 \to V_2 = -8 \\ V_1 = 4 \to V_2 = 8 \end{cases}$$

Sistema:

Risultato:

$$k_2 = 4$$
, $V_{20} = -8 \, \mathrm{V}$

4. Risoluzione dell'ADC

Risoluzione:

$$\mbox{Risoluzione} = \frac{\mbox{Intervallo}}{2^B} = \frac{16\mbox{ V}}{256} = 0.0625\mbox{ V} = 62.5\mbox{ mV}$$

Risultato:

Risoluzione ADC: $62,5\,\mathrm{mV}$

5. Risoluzione del sensore

Sensibilità: $0,\!004\,\mathrm{V}/\degree$ Ris. ADC: $0,\!0625\,\mathrm{V}$

Corrisponde a:

$$\frac{0,\!0625}{0,\!004}=15,\!625^\circ$$

Ma attenzione: questo è il passo equivalente all'**uscita diretta del sensore**, non a valle dei blocchi di condizionamento. Dato che l'intera catena è progettata per sfruttare tutta la gamma dell'ADC, la risoluzione angolare effettiva può essere ricavata da:

Intervallo angolare: 180° Numero livelli ADC: 256

$$Risoluzione \ angolare = \frac{180}{256} \approx 0{,}703^{\circ}$$

Risultato:

Risoluzione del sensore (sistema completo): circa 0.703°

6. Formula per ottenere x_D da v_D

Catena inversa:

$$ullet v_D = V_2 = k_2 \cdot (k_1 V_S + V_{10}) + V_{20}$$

• Invertire fino a heta

Ricaviamo:

1.
$$V_S=rac{v_D-V_{20}}{k_2}-V_{10}$$
 diviso k_1

$$V_S = rac{1}{k_1} \left(rac{v_D - V_{20}}{k_2} - V_{10}
ight)$$

2. Poi da $V_S = -0.2 + 0.004 \cdot heta$ si ottiene:

$$\theta = \frac{V_S+0,\!2}{0,\!004}$$

Componendo:

$$x_D = rac{1}{0,004} \left[rac{1}{k_1} \left(rac{v_D - V_{20}}{k_2} - V_{10}
ight) + 0,2
ight]$$

Risultato:

$$x_D = rac{1}{0,004} \left[rac{1}{k_1} \left(rac{v_D - V_{20}}{k_2} - V_{10}
ight) + 0,2
ight]$$

7. Diagramma angolo-tempo del ciclo di test

Sequenza:

- Da 30° a 150° a 40°/s ightarrow durata: $rac{120\degree}{40\degree/s}=3\,\mathrm{s}$
- Da 150° a 30° → altri 3 s
- Fermate di 1 s a 30°, 90°, 150° (sia in andata che ritorno)
- Totale fasi statiche per andata: 3 s
- Totale fasi statiche per ritorno: 3 s
- Totale: $3+3+3+3=12\,\mathrm{s}$ per un ciclo

Tre cicli: $3 \times 12 = 36\,\mathrm{s}$

Il grafico è un'onda trapezoidale (avanti e indietro), con rampe lineari da 30° a 150° e fermate piatte ai punti chiave.

8. Numero di campioni acquisiti in un ciclo

Campionamento: $R_S=20~\mathrm{S/s}$

Un ciclo completo: $12\,\mathrm{s}$

Campioni per ciclo:

$$N = R_S \cdot T = 20 \cdot 12 = 240$$

Risultato:

Numero di campioni per un percorso andata e ritorno: 240