<u>EA</u>

Încărcare → lentă →orice acumulator cu Ni • rapidă

Încărcarea rapidă

- încărcare în curent mare, de regulă curent cu valori cuprinse între 0,5÷3,4 din valoarea numerică a capacității acumulatorului.
- durează puțin de la 15 min la 2, 3 ore.
- se face cu încărcătoare speciale cu mai mulți parametrii. Datorită curentului mare apare o încălzire semnificativă a acumulatorului. Prin încărcare rapidă acumulatorul capata 80-90% din capacitatea nominală.

Între NiCd şi NiMH metoda de încărcare diferă prin criteriul de terminare a încărcării. Față de încărcarea lentă supraîncărcarea rapidă distruge acumulatorul.

Încărcarea rapidă pentru NiCd

Pentru NiCd încărcarea rapidă trebuie terminată la atingerea oricărei dintre urmatoarelor condiții:

1)
$$-\frac{du}{dt}$$

Când elementul este aproape complet încărcat (în curent constant) tensiunea pe element atinge un maxim și apoi scade cu o valoare de $5 \div 10$ mV.

Scăderea tensiunii cu această valoare întrerupe încărcarea rapidă.

$$\frac{\Delta U}{\Delta U} = U_n - U_{n-1}$$

$$\frac{\Delta U}{\Delta t}$$

EA Curs 4

2) $\frac{dT}{dt}$ - criteriul creșterii temperaturii

Pe măsură ce se încarcă crește temperatura.

Temperatura crește între 0.5° și 1.5° /min. Această creștere duce la terminarea încărcării rapide.

Valoarea exactă depinde de intensitatea curentului de încărcare și de tipul acumulatorului.

3) T temperatura

Încărcarea rapidă trebuie terminată când temperatura elementului depășește $45^{\circ} - 50^{\circ}C$. Acumulatoarele cu Ni au gama limitată la $50^{\circ}C$.

4) t timpul

Încărcătoarele rapide posedă un cronometru. Încărcarea rapidă se întrerupe cel mai târziu după transferul unei sarcini electrice egala cu 105% din capacitatea acumulatorului.

Criteriul de timp nu e niciodată folosit drept criteriu principal, el fiind doar o măsură de protecție.

Acumulatoare NiMH

Pot fi încărcate cu terminarea încărcării rapide conform celor prezentate la NiCd. Curbele de variație sunt asemănătoare. Totuși anumiți producători nu le comandă criteriul $-\frac{du}{dt}$ deoarece la NiMH scăderea tensiunii este mult mai mică $\approx 1 \div 2$ mV/elem.

În loc de $\frac{du}{dt}$ este folosit criteriul de inflexiune, încărcătorul calculează numeric derivata I a tensiunii si apoi derivata a II-a.

Schimbarea semnului derivvatei a doua, marchează stoparea încărcării rapide. Se păstrează în orice caz criteriile 3 și 4.

pentru transferul de sarcina astfel încât acumulatorul să fie încărcat complet, la terminarea încărcării rapide se continuă cu o încărcare lentă $(0.05 \div 0.1)$ din capacitatea acumulatorului.

Se numește încărcare de completare (de întreținere) – TRICKLE CHARGE.

Încărcarea lentă poate dura oricat.

Descărcare acumulatoarelor

În general acumulatoarele cu Ni pot fi descarcate la 0. Totuși păstrarea acumulatoarelor complet descărcate le poate distruge.

Curentul maxim de descărcare trebuie aflat de la producător ; un curent prea mare poate duce la supraîncălzirea elementului si defectarea acestuia. Pachetele de acumulatoare au prevazute dispozitive de protecție.

Acumulatoarele cu Li

Sunt acumulatoare bune din punct de vedere electric dar sensibile la exploatarea incorectă – elementele de acumulator sau pachetele cu mia mulți acumulatori au montate din fabrică microcontrolere pentru supravegherea funcționării.

TF – siguranță termică

T – termistor

SW - întrerupător

Microcontrolerul are funcție de protecție, supraveghează tensiunea și curentul prin acumulator putând închide sau deschide circuitul prin întrerupătorul SW.

SW – format din unul sau mai multe tranzistoare MOS – FET.

În exploatarea normală încărcarea acumulatoarelor cu Li se face în zonele β și γ , respectiv: zona - β este o încărcare în curent constant, relativ mare, deci o încărcare rapidă. Când tensiunea pe acumulator crește la atingerea unei tensiunii maxime, tensiunea pe element trebuie limitată, urmând ca intensitatea să scadă treptat (zona γ). Încărcarea este terminată cand curentul de încărcare scade la un anumit prag.

Pentu acumulatoarele foarte descărcate se face o încărcare inițială în curent mic și după depășirea unui prag de tensiune se cintinuă cu încărcarea rapidă. Se poate aplica o încărcare de completare (curent mic).

În cursul încărcării sunt supravegheate suplimentar temperatura elementului și timpul de încărcare. Încărcarea rapidă trebuie oprită dacă temperatura depaşeşte 45° *C* sau dacă se scurge timpul prestabilit.

Descărcarea acumulatorilor cu Li – se recomandă ca intensitatea curentului să nu depașească o valoare egală numeric cu capacitatea acumulatorului. Se recomandă ca acumulatorul să nu fie descărcat sub valoarea de 2,9 V.