作业十三

Noflowerzzk

2025.5.22

8 - 5

极值点为 $v=50 \mathrm{m/s}$ 约为 3.6×10^8 平均速率为 $31.25 \mathrm{m/s}$

8 - 6

曲线 1 对应的为 $v=\sqrt{\frac{2k_BT_1}{m}}.$ 百分比之差为 $1-S_0.$

8 - 8

- (1) 约为 1.44×10¹⁰
- (2) 约为 6.4×10^8
- (3) 平均速率约为 54m/s
- (4) 平均速率为 80m/s

8 - 9

单位冲量为 $dI = \int_0^{+\infty} 2mv_x nf(v) dvv_x dt dS$, 故计算得压强为 $nk_B T$.

8 - 10

- (1) $T_1 = 300$ K 时 v = 394m/s, $T_2 = 600$ K 时 v = 588m/s
- (2) 代入分布函数得占比为 0.15%
- (3) 同理为 0.042%

8 - 11

$$\mathrm{d}m = |p_1 - p_2| \, S\sqrt{\frac{M_{\mathrm{mol}}}{2\pi RT}}$$

作业十三 2025.5.22

8 - 14

$$f(\varepsilon) = \frac{2}{\sqrt{\pi}} \left(k_B T \right)^{-\frac{3}{2}} \sqrt{\varepsilon} \mathrm{e}^{-\frac{\varepsilon}{k_B T}}$$

最概然动能为 0, 平均动能为 $\frac{3}{2}k_BT$

8 - 12

需要 3600s

8 - 13

$$p_1 = \frac{p_0}{2} \left(e^{-\frac{S}{2V} \sqrt{\frac{8k_B T}{\pi m}} t} + 1 \right)$$
$$p_2 = \frac{1}{2} p_0 \left(1 - e^{-\frac{S}{2V} \sqrt{\frac{8k_B T}{\pi m}} t} \right)$$

8 - 15

- (1) 刚性: $U = \frac{5}{4}v_p^2$. 非刚性双原子分子, $U = \frac{7}{4}v_p^2$.
- (2) 刚性 $E = \frac{5}{4}mv_p^2$, 非刚性 $E = \frac{7}{4}mv_p^2$.

8 - 22

内能增加 $\frac{3}{4}nk_BT$

8 - 23

氢气分子的平均速度较大, 易从大气层中逃逸, 故大气中氢气含量不断减少

8 - 25

2308m