Expt. No. 04	Page No. 07
4 Build an Antificial Neunal Network by i the Backpropagation algorithm and test to appropriate dataset.	mplementing e same using
from math import exp from grandom import seed from grandom import grandom	
def intialize networks (n-inputs, n-hidder network = list() hidden - layer = [1' weights': [random((n-inputs+1)]] for lin rang network append (hidden layer) autput-layer = [1'weights': [random((n-hidden +1)] for i in r network append (output-layer) return network	for i in marge re(n-hiolden)]) for i in marge
def activate (weights, inputs): activation = weights [-1] for i in mange (len (weights)-1): activation += weight [i] + in meturn activation def transfer (activation): meturn 1.0 (1.0 + exp (-activation))	puts [i]

Teacher's Signature : _____

Expt. No.	Page No. 08
def forward propagate (network, now) %
inputs - 910W	
fonflagen in network:	
new in puts = []	
for neuron in layers	\
activation = activate (neuro	n ['weight '], inputs)
neumon ['outputs'] = toans	Jean (a chivation)
new-inputs append Enew	non ('outputs')
inputs = new_inputs	'
neturn inputs.	
def transfer dessivate dessivative (our	eput):
neturn output * (1.0 - output)	
def backward_propogate_enson (neho	wak expected):
for i in nevented (nange (len (net	oonk))):
layen = network [i]	•
consons = list()	
i) il = len(nehoork)-1:	
Jos j in narge Clenclay	091):
ennon = 0.0	
for neuron in netu	200k [i+i]:
TOSI NEUTION OF THESE	ak ['weights'][i]*
69,409 + - (1)Clus	('delta'])
engrogn append (essor	
else:	1)0
for j in nange (len Clayen)/ •
Deuzion = layen J	
ennons = append (expected[j].	reumon ('output')

Teacher's Signature:

Expt. No. Page No. 9
for in manne (len (loves)):
for j in range (len (layer)): neuron = layer [i]
neumon ['data'] = emmons[j] *tmansfer_demivate
(neumon ['output'])
def update_weights (netwoonk, now, L-nate):
for i in range (len (network)):
inputs = now [-1]
i) :1 = 0:
inputs = [neumon ['output'] for neumon in
netwoonk [i-1]]
for neumon in network [i]:
for j in nange (len(inputs)):
neumon frweights] [] + = 1 - mate *
neumon ['delta'] * inputs [j]
neuron['weights'][-1] +=1_nate *neuron['delta'
def train_network Chetwork, train, L-rate, n_epoch, n_outputs)
for epoch in range (n-epoch):
Sum conon = 0
for now in train:
outputs = forwand_propagate (network, now)
expected = [o for i in range (n_outputs)]
expected [now[-1]] = 1
Sum comon + - Sum ([expected li] - outputs [i])
**2 for i in mange (len (expected))])
**2 for i in nange (len (expected))]) back_propagate_erron (network, expected)
update weights (network, 9100, 1_91ate)
Teacher's Signature :

Date

Expt. No. Page No. 10
paint ('>epoch = /d, larate = 1.3f, caraon = %.3f
seed (1)
dataset = L
[2.7810836, 2.550537003,0],
[1465489372, 2362125076,0],
[3.396561688, 4.400093509,0],
[1.38807019, 1.850000317,0]
[3.06407232, 3.005305973,0],
[7.627531214, 0.759262235, 0],
[5.330441048, 0.088606775,1], [6.922596716, 1.77106367,1],
[8.67541865], -0.242068655, 1],
[+673756466, 3.508563011, 1]]
n-inputs = len (dataset [0]) -1
n-outputs = len(set ([910w [-1] for now in dataset]))
network = initialize _networks (n_inputs, 2, n_outputs) thain_network (network, olataset, 0.5, 20, n_outputs) for layer in network: print (layer)
Prairie etageni
Teacher's Signature :

output -

```
repoch =0 , lnate = 0 soo ,
                              ennon = 6.350
 >epoch = 1, lnate = 0.500, ennon = 5.531
 >epoch = 0 , lenate = 0.500 ,
                               CAMON = 5.021
 >epoch = 3 , Lenate = 0.500,
                               ennon = 4 951
 >epoch = 4, lenate = 0.500.
                               ennon = 4 519
 >epoch = 5, Lorate = 0.500,
                               C9309 = 4 173
 >epoch = 6, lnate = 0.500,
                               C9191091 = 3.835
>epoch = 7
            . lnate = 0.500,
                               C999091 = 3.506
 >epoch=8
            , lonate = 0.500,
                               egg 09 = 3.190
 >epoch=9
            , la ate = 0.500,
                               C991091 = 2.892
>epoch=10
             . Inate = 0.500,
                               C919109 = 2. 626
 >epoch = 11
             , lonate = 0.500,
                              ennon = 2.377
>epoch = 12
            , Inate = 0.500,
                              CA91091 = 2.153
>epoch = 13
            , lenate = 0.500 ,
                              ennon = 1.953
>epoch=14
            , lenate = 0.500,
                             ennon = 1.7 74
>epoch=15
            , lenate = 0.500,
                              1.614
>epoch=16
             , lnate = 0.500,
                              ennon = 1.470
>epoch = 17
            , lnate = 0.500,
                              ennon = 1.346
>epoch=18
            , lnate = 0.500 ,
                              Chaon = 1-233
>epoch = 19
            , lanate = 0.500,
                              ennon = 1.132
```

[{'weights':[-1.4688375095432327, 1.860887325439514, 1.80858178629550297], 'output':0.02998030560442685 'delta':-0.0059546604162323625',

\(\frac{\text{weights}}{\text{: [0.37711098142462157, -0.0625909894552989]}}\)

[{weight: [& 515394649397849, -0.339192750244 5985, -09674565426390275], 'output': 0.23648794202357587, 'delta': -0.042700592783648587], {weight: [-2.5584149848484263, 1.0036422106209202, 0.42383086467582715], 'output': 0.7790535202428367, 'delta': 0.03803132596437354}]