Les réseaux de neurones récurrents

Sonia Gharsalli

Applications

Many to One
Sentiment Classification

One to Many

Image Captioning

Many to Many

Machine Translation

Apply a recurrence relation at every time step to process a sequence:

Note: the same function and set of parameters are used at every time step

code RNN

Output Vector

$$\widehat{y}_t = \boldsymbol{W}_{hy}^T h_t$$

Update Hidden State

$$h_t = \tanh(\boldsymbol{W}_{hh}^T h_{t-1} + \boldsymbol{W}_{xh}^T x_t)$$

Input Vector

 \boldsymbol{x}

Mise à jour des états de RNN et de la sortie

→ Forward pass

On somme toutes les pertes pour avoir un coût totale

RNNs from Scratch


```
class MyRNNCell(tf keras layers Layer):
  def init (self, rnn units, input dim, output dim):
    super(MyRNNCell, self) init ()
    self W xh = self add weight([rnn units, input dim])
    self W hh = self add weight([rnn units, rnn units])
    self W hy = self add weight([output dim, rnn units])
    self h = tf zeros([rnn units, 1])
  def call(self, x):
    self h = tf math tanh( self W hh * self h * self W xh * x )
    output = self.W hy * self.h
    return output, self h
```


RNN Implementation in TensorFlow


```
tf.keras layers SimpleRNN(rnn_units)
```


Les critères de conception

Les modèles de séquence doivent :

- Traiter les séquences de longueur variable.
- Prendre en considération les dépendances qui apparaissent loin dans le texte.
- Détecter l'ordre d'apparition des termes

Problème de prédiction du terme suivant:

"This morning I took my cat for a walk."

given these words

predict the

next word

Representing Language to a Neural Network

Neural networks require numerical inputs

Représentation vectorielle des termes:

Embedding: transform indexes into a vector of fixed size.

I. Vocabulary:Corpus of words

2. Indexing: Word to index

3. Embedding: Index to fixed-sized vector

Traiter des séquences de longueur variable

The food was great

VS.

We visited a restaurant for lunch

VS.

We were hungry but cleaned the house before eating

Traiter les dépendances

"France is where I grew up, but I now live in Boston. I speak fluent ____."

We need information from **the distant past** to accurately predict the correct word.

Détecter l'ordre d'apparition des termes

The food was good, not bad at all.

VS.

The food was bad, not good at all.

Backpropagation through time (BPTT)

- 1) On calcule la fonction de perte pour chaque sortie
- 2) On met à jour les paramètres de façon à minimiser la perte

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

Le clipping des gradients consiste à limiter la norme des gradients pendant l'entraînement à un seuil. Si la norme des gradients dépasse ce seuil, ils sont réduits proportionnellement pour respecter cette limite, sans en modifier la direction.

• Tensorflow: tf.clip_by_global_norm

ithout clipping

With clipping

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values < 1: vanishing gradients

- I. Activation function
- Weight initialization
- 3. Network architecture

Choix de la fonction d'activation

Initialisation des poids et des biais autrement

Initialize **weights** to identity matrix
$$I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

This helps prevent the weights from shrinking to zero.

Ajout de la cellule Gate

Idea: use gates to selectively add or remove information within each recurrent unit with

Long Short Term Memory (LSTMs) networks rely on a gated cell to track information throughout many time steps.

LSTM and GRU: les cellules d'état

LSTM: Long Short Term Memory

LSTM contrôle le passage du flux d'information

=> Elle peut capter une dépendance qui vient dans le début du texte et ceci grâce à plusieurs étapes:

- forget
- input
- Output

Fonction sigmoid

Fonction tanh

- Cы previous cell state
 - forget gate output
- input gate output
- candidate
- c new cell state

- C₁₁ previous cell state
 - forget gate output
- input gate output
- candidate
- c new cell state
- output gate output
- h hidden state

LSTM from Scratch

```
def LSTMCELL(prev_ct, prev_ht, input):
    combine = prev_ht + input
    ft = forget_layer(combine)
    candidate = candidate_layer(combine)
    it = input_layer(combine)
    Ct = prev_ct * ft + candidate * it
    ot = output_layer(combine)
   ht = ot * tanh(Ct)
    return ht, Ct
ct = [0, 0, 0]
ht = [0, 0, 0]
for input in inputs:
   ct, ht = LSTMCELL(ct, ht, input)
```


Fonction sigmoid

Fonction tanh

Limitations

- Pas assez longue mémoire pour les dépendances lointaines dans le texte
- Des algorithmes très long lors de l'apprentissage => difficulté de faire un codage en parallèle