

Project SMU

Slimme Meter Uitlezer

Docenten:

- Jan Kampen: <u>j.kampen@windesheim.nl</u>

- Anke Kuijk: <u>a.kuijk@windesheim.nl</u>

- Richard Rosing: <u>r.rosing@windesheim.nl</u>

Wat gaan we doen?

Week 1: Kennismaken met de Slimme Meter en de SMU

Week 2: Het meten van spanning en stroom

Week 3: Digitale signalen en schakelaars

Week 4: Booleaanse algebra en het 7-segmentsdisplay

Week 5: De microcontroller programmeren

Week 6: Seriële communicatie, het OLED display en de SD-kaart

Week 7: Alles afmaken

Week 8: Toetsing

Stroom en spanning meten

Hoe nauwkeurig is een meting?

Meters zijn nooit ideaal (inwendige weerstand)

• Tot hoeveel cijfers achter de komma je precies kunt meten staat in de datasheet van je meetapparaat.

Hoe nauwkeurig is een meting?

Range^[2]

600 mV

6 V

60 V

600 V

1000 V^[4]

600 µA

6 mA

60 mA

600 mA

SDM3045X Digital Multimeter

Specifications

DC Characteristic

Function

DC Voltage

DC Current

Kleinste wijziging die je op het scherm kunt aflezen.

0.01 mA

voltage

< 33 mV

< 330 mV

< 0.05 V

< 0.5 V

Relatieve en absolute nauwkeurigheid

Accuracy± (% of Reading + count)[1] Accuracy Test current or Load Resolution (one year; 25° +5°) 0.01 0.01 + 50.01 + 60.0001 V 0.001 V 0.02 + 40.02 + 60.01 V 0.1 V 0.02 + 60.05 + 30.01 LIA 0.0001 mA 0.05 + 30.05 + 30.001 mA

0.12 + 6

Hoe nauwkeurig is een meting? voorbeeld

Function	Range ^[2]	Test current or Load voltage	Resolution	Accuracy (one year; 23℃ ±5℃)
DC Voltage	600 mV		0.01 mV	0.01+5
	6 V		0.0001 V	0.01+6
	60 V		0.001 V	0.02+ 4
	600 V		0.01 V	0.02+ 6
	1000 V ⁽⁴⁾		0.1 V	0.02+ 6

Hoe nauwkeurig kunnen we een spanning van 7,5V meten?

1. Bepaal in welk bereik je gaat meten. 60 V

2. Lees de nauwkeurigheid af. 0,02 + 4

3. Vermenigvuldig de relatieve nauwkeurigheid met je meetwaarde. $\frac{7,5}{100\%} \times 0.02 = 0.0015$

4. Tel daar de absolute nauwkeurigheid maal resolutie bij op. $0,0015 + 4 \times 0,001 = 0,0055$

Wat heb je nodig voor een meting? DEMO

Diode en LED

- Stroom wordt in 1 richting doorgelaten en in de andere richting geblokkeerd.
- De diode heeft wel een spanningsverschil nodig om te gaan werken (threshold voltage).
 Er blijft dus minder spanning over voor de rest van de stroomkring.
- Een LED werkt op dezelfde manier als een gewone diode, maar geeft daarnaast ook nog licht. De spanningsval is wel wat hoger.

Hoe is een breadboard opgebouwd?

- Rode en blauwe lijnen geven verbonden gaatjes weer.
- Let op: horizontale lijnen zijn in het midden niet altijd doorverbonden!

Wat sluit je waar aan?

A en D: strip voor stroomvoorziening, wordt aangesloten op de voeding (+) en de ground (-). De gaatjes in deze strip zijn horizontaal met elkaar verbonden

B en C: raster voor componenten. De gaatjes in het raster zijn verticaal met elkaar verbonden.

De ruimte tussen B en C is precies groot genoeg voor een IC.

Voorbeelden van gebruik

Handigheidjes:

- Het is handig om in ieder geval de aardes onderling te verbinden. De plus kunnen we ook doorverbinden zodat je met 2 draden zowel de onder- als de bovenrails met de spanningsbron kan verbinden.
- Maak je verbindingsdraden niet te lang, dit kan storingen veroorzaken. Zorg er wel voor dat ze lang genoeg zijn om makkelijk mee te werken.
- Druk je IC (die je in het midden plaatst) goed aan, zodat alle pootjes goed contact maken met het bord.
- Voor het verwijderen van ICs hebben we een speciaal verwijdertangetje om het verbuigen van pootjes te voorkomen.

Tinkercad.com: thuis virtueel breadboard simuleren

Stel nou: het werkt niet zoals je had verwacht...

- Probeer systematisch te zoeken waar het fout gaat.
- Fouten zoeken is een vaardigheid die je moet ontwikkelen.
- Hulp: document 'het werkt niet' in map cursusinformatie op ELO.

Aan de slag!

- Ga naar leren.windesheim.nl
 (zoek de cursus EDPD.22, project SMU)
- Voer de opdrachten van week 2 uit.
- Ben je klaar? Ga vast verder met de voorbereiding van week 3!
- <u>Vóór</u> volgende week doen: Microchip
 Studio op je laptop installeren.

