water fluoridation \sim fluorosis caries 12 years_2003_2012_2019

Namhuynh

Preapre data from sav file

```
# 12 year-old
data_12 <- read.spss ("~/Library/Mobile Documents/com~apple~CloudDocs/Nam/New project/20 years of water
## re-encoding from latin1
data_12a \leftarrow data_12[-c(1,15,20,22,23,24)]
colnames(data_12a)[c(3,13,14,15,16,17,18)] <- c("fluoride_condition","caries","fluorosis_teeth","DEANin
colnames(data_12a)[c(5:12)] <- c("DT","MT","FT","DMFT","DS","MS","FS","DMFS")</pre>
data_12a$code <- as.character(data_12a$code)</pre>
data_12a$year <- as.factor(data_12a$year)</pre>
firstup <- function(x) {</pre>
  x <- tolower(x)
  substr(x, 1, 1) \leftarrow toupper(substr(x, 1, 1))
}
data_12a$DEANindex <- firstup(data_12a$DEANindex)</pre>
#data_12a$DEANindex[is.na(data_12a$DEANindex)] <- c("Normal")</pre>
data_12a$DEANindex <- recode_factor(data_12a$DEANindex, "Normal" = "Normal", "Questinable" = "Questiona"
                                     "Moderate" = "Moderate", "Serve" = "Severe")
\#data_12a\$fluoride_condition[is.na(data_12a\$fluoride_condition)] <- c("khong fluor hoa")
data_12a$fluoride_condition <- recode_factor(data_12a$fluoride_condition, `khong fluor hoa' = "none_flu
                                                `Fluor hoa khong on dinh` = "unstable_fluoridation",
                                                `Fluor hoa on dinh` = "stable_fluoridation")
data_12a$gender <- recode_factor(data_12a$gender, `NAM` = "male", `NU` = "female")
data_12a$caries <- recode_factor(data_12a$caries,</pre>
                       `CO`="TRUE", `KHONG`="FALSE")%>%as.logical()
\#data_12a\$fluorosis[is.na(data_12a\$fluorosis)] \leftarrow c("no")
data_12a$fluorosis <- recode_factor(data_12a$fluorosis,</pre>
                       `yes`="TRUE", `no`="FALSE")%>%as.logical()
data_12a$age <- c("12")
data_12a$age <- as.factor(data_12a$age)</pre>
# There were F+ in 1990
data_12a$fluoride_concentration <- as.factor(ifelse(data_12a$year == 2012 & data_12a$area == "F+", "0...
                                                        ifelse(data_12a$year == 2003 & data_12a$area == "F
```

```
# 2019
data_2019 <- read.spss ("~/Library/Mobile Documents/com~apple~CloudDocs/Nam/New project/20 years of wat
## Warning in read.spss("~/Library/Mobile Documents/com~apple~CloudDocs/Nam/New
## project/20 years of water fluoridation/Data/DATA2019/DATATPHCM1215tuoi2019-
## Phantich-WFProject.sav", : ~/Library/Mobile Documents/com~apple~CloudDocs/Nam/
## New project/20 years of water fluoridation/Data/DATA2019/DATATPHCM1215tuoi2019-
## Phantich-WFProject.sav: Long string value labels record found (record type 7,
## subtype 21), but ignored
## re-encoding from latin1
data_2019 \leftarrow data_2019[-c(1,3,6)]
colnames(data_2019)[c(4,5,9,10)] <- c("DEANindex","fluorosis_teeth","DMFT","caries")</pre>
data_2019$DEANindex <- firstup(data_2019$DEANindex)</pre>
data_2019$DEANindex <- recode_factor(data_2019$DEANindex, "Normal" = "Normal", "Questionnable" = "Quest
                                    "Moderate" = "Moderate", "Serve" = "Severe")
data_2019$district <- NA
data_2019$fluoride_condition <- NA
data_2019$year <- 2019
data_2019$year <- as.factor(data_2019$year)</pre>
data_2019$fluorosis <- as.factor(ifelse(data_2019$DEANindex == "Normal", "FALSE", "TRUE"))%>%as.logical()
data_2019$fluoride_concentration <- as.factor(ifelse(data_2019$area == "F+", "0.5_ppm","0_ppm"))</pre>
data_2019 \leftarrow data_2019[c(1,16,17,2,6:9,11:14,10,5,4,18,15,19,3,20)]
data_2019$age <- recode_factor(data_2019$age, "12 year-old" = 12, "15 year-old" = 15)
data_2019$gender <- recode_factor(data_2019$gender, "NAM
                                                            " = "male", "Nam
                                                                                        "="male",
                                   "NU
                                              " = "female","2
                                                                       "="female")
data_2019$caries <- recode_factor(data_2019$caries,</pre>
                       `Yes`="TRUE", `No`="FALSE")%>%as.logical()
data_2019$fluorosis_teeth <- ifelse(data_2019$DEANindex == "Normal",0,data_2019$fluorosis_teeth)
# 12 year old, 2019
data_12_2019 <- subset(data_2019, data_2019$age == "12")
# merge data
data <- rbind(data_12a, data_12_2019)</pre>
```

bar_missing

```
## Loading required package: reshape2
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
## smiths
```


Prepare data w/o NA or unnecessary variables

```
percent <- list() \ for \ (i \ in \ 1:ncol(data\_b)) \ \{ \ percent[[i]] <- \ tabyl(data\_b[[i]], \ sort = F) \ print(i) \\ print(percent[[i]]) \ \}
```

```
library(janitor)

##
## Attaching package: 'janitor'

## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test

library(RColorBrewer)

#remove 1990
data_b <- data[-c(1:3,14)]
data_b <- subset(data_b, !data_b$year == 1990)
bar_missing(data_b)</pre>
```


Fluoride condition **DMFS DMFT** 0.7_ppm 0.7_ppm -0.5_ppm 0.5_ppm · 0_ppm 0_ppm -0.5 1.0 1.5 0.00 0.25 0.50 0.75 1.00 1.25 0.0 DS DT fluoride concentration 0.7_ppm -0.7_ppm -••• 0.5_ppm 0.5_ppm fluoride_concentration 0_ppm 0_ppm -0.5 0.00 0.25 0.50 0.75 1.00 1.25 0.0 1.0 1.5 0_ppm 0.5_ppm FS FT 0.7_ppm -0.7_ppm -0.7_ppm 0.5_ppm 0.5_ppm -0_ppm - | 0_ppm 0.3 0.3 0.6 0.9 0.0 0.6 0.9 0.0 MS MT 0.7_ppm -0.7_ppm -0.5_ppm -0.5_ppm -0_ppm -0_ppm 1.0 0.5 0.2 0.6 0.0 0.4 log10(Value + 1)

k

```
#FS, FT, MS, MT are too low -> remove
#area is the same with fluoride_concentration
#remove age
data_b1 \leftarrow data_b[-c(3,4,7,8,13,15)]
#transformation
data_b2 <- data_b1</pre>
data_b2[,c(2:5)] \leftarrow log10(data_b1[,c(2:5)]+1)
scaled_data_b <- data_b2 %>%as.data.frame()
scaled_data_b[,c(2:5)] <- scale(scaled_data_b[,c(2:5)])</pre>
#remove the diagnosis variables
X_mat <- scaled_data_b %>% select(-c("caries", "fluorosis"))
Es <- numeric(10)
for(i in 1:10){
  kpres <- kproto(X_mat,</pre>
                   k = i, nstart = 5,
                   lambda = lambdaest(X_mat),
                   verbose = FALSE)
  Es[i] <- kpres$tot.withinss}</pre>
```

```
## Numeric variances:
## DT DMFT DS DMFS
```

```
1 1 1 1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
                   gender
                                       DEANindex
                                                                   year
##
                0.4986491
                                       0.4218530
                                                              0.6120228
## fluoride_concentration
                0.6311979
## Average categorical variation: 0.5409307
##
## Estimated lambda: 1.848666
##
## Numeric variances:
    DT DMFT DS DMFS
             1
          1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
                   gender
##
                                       DEANindex
                                                                   year
                0.4986491
                                       0.4218530
##
                                                              0.6120228
## fluoride_concentration
               0.6311979
## Average categorical variation: 0.5409307
## Estimated lambda: 1.848666
## Numeric variances:
   DT DMFT DS DMFS
     1
          1
              1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
##
                   gender
                                       DEANindex
                                                                   year
                0.4986491
                                       0.4218530
##
                                                              0.6120228
## fluoride_concentration
               0.6311979
## Average categorical variation: 0.5409307
##
## Estimated lambda: 1.848666
##
## Numeric variances:
##
    DT DMFT DS DMFS
          1
               1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
##
                   gender
                                       DEANindex
                                                                   year
##
                0.4986491
                                       0.4218530
                                                              0.6120228
## fluoride_concentration
               0.6311979
## Average categorical variation: 0.5409307
## Estimated lambda: 1.848666
##
```

```
## Numeric variances:
    DT DMFT DS DMFS
##
          1
              1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
                  gender
                                    DEANindex
                                                                  year
                                      0.4218530
                                                             0.6120228
##
               0.4986491
## fluoride_concentration
               0.6311979
## Average categorical variation: 0.5409307
## Estimated lambda: 1.848666
##
## Numeric variances:
    DT DMFT DS DMFS
##
      1
              1
          1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
##
                   gender
                                      DEANindex
                                                                  year
##
               0.4986491
                                      0.4218530
                                                             0.6120228
## fluoride_concentration
               0.6311979
## Average categorical variation: 0.5409307
## Estimated lambda: 1.848666
## Numeric variances:
    DT DMFT DS DMFS
     1
         1 1 1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
##
                  gender
                                      DEANindex
                                                                  vear
                                      0.4218530
##
               0.4986491
                                                             0.6120228
## fluoride_concentration
               0.6311979
## Average categorical variation: 0.5409307
##
## Estimated lambda: 1.848666
##
## Numeric variances:
   DT DMFT DS DMFS
          1 1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
                  gender
##
                                      DEANindex
                                                                  year
##
               0.4986491
                                      0.4218530
                                                             0.6120228
## fluoride_concentration
               0.6311979
## Average categorical variation: 0.5409307
```

##

```
## Estimated lambda: 1.848666
##
## Numeric variances:
##
  DT DMFT DS DMFS
     1
          1
              1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
                  gender
                               DEANindex
##
                                                                  year
               0.4986491
                                                           0.6120228
##
                                    0.4218530
## fluoride_concentration
               0.6311979
## Average categorical variation: 0.5409307
## Estimated lambda: 1.848666
##
## Numeric variances:
## DT DMFT DS DMFS
          1 1
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
##
                                    DEANindex
                  gender
                                                                  year
               0.4986491
                                     0.4218530
                                                            0.6120228
## fluoride_concentration
               0.6311979
## Average categorical variation: 0.5409307
## Estimated lambda: 1.848666
tibble(Cluster = c(1:10), Es = Es) %>%
 ggplot(aes(x = Cluster, y = Es)) +
  geom_point(size = 3,
            col ="red3") +
 geom_path() +
 geom_vline(xintercept = 3,
            linetype = 2)+
 scale_x_continuous(breaks = c(1:10))
```


Clustering

```
k_opt1 <- validation_kproto(method="silhouette", data=X_mat, lambda=lambdaest(X_mat), k=2:5,
                             kp_obj="optimal", nstart = 5, verbose = FALSE)
## Numeric variances:
##
     DT DMFT
               DS DMFS
##
## Average numeric variance: 1
## Heuristic for categorical variables: (method = 1)
##
                   gender
                                        {\tt DEANindex}
                                                                     year
##
                0.4986491
                                        0.4218530
                                                                0.6120228
## fluoride_concentration
                0.6311979
##
## Average categorical variation: 0.5409307
##
## Estimated lambda: 1.848666
saveRDS(k_opt1,"~/Library/Mobile Documents/com~apple~CloudDocs/Nam/New project/20 years of water fluoric
```

k_opt1 <- readRDS("~/Library/Mobile Documents/com~apple~CloudDocs/Nam/New project/20 years of water flu


```
## Numeric variances:
## DT DMFT DS DMFS
## 1 1 1 1
## Average numeric variance: 1
##
## Heuristic for categorical variables: (method = 1)
## gender DEANindex year
```

```
0.4986491
                                         0.4218530
                                                                  0.6120228
##
## fluoride_concentration
                0.6311979
##
## Average categorical variation: 0.5409307
## Estimated lambda: 1.848666
## # NAs in variables:
                    gender
##
                                                 DT
                                                                       DMFT
##
                         0
                                                  0
                                                                          0
##
                        DS
                                              DMFS
                                                                  DEANindex
##
                         0
                                                                          0
##
                      year fluoride_concentration
                         0
## 0 observation(s) with NAs.
##
## # NAs in variables:
                                                                       DMFT
##
                    gender
                                                 DT
##
                         0
                                                  0
                                                                          0
                        DS
                                                                  DEANindex
##
                                              DMFS
##
                         0
                                                                          0
##
                      year fluoride_concentration
##
                         0
## 0 observation(s) with NAs.
##
## # NAs in variables:
##
                    gender
                                                 DT
                                                                       DMFT
##
                                                  0
                        DS
##
                                               DMFS
                                                                  DEANindex
##
##
                      year fluoride_concentration
##
                         0
   O observation(s) with NAs.
##
## # NAs in variables:
                    gender
                                                 DT
                                                                       DMFT
##
##
                         0
                                                  0
##
                        DS
                                              DMFS
                                                                  DEANindex
##
##
                      year fluoride_concentration
## 0 observation(s) with NAs.
## # NAs in variables:
                    gender
                                                 DT
                                                                       DMFT
##
                                                                          0
                         0
                                                  0
##
                        DS
                                              DMFS
                                                                  DEANindex
##
                         0
                                                  0
##
                      year fluoride_concentration
## 0 observation(s) with NAs.
```

kpres

```
## Numeric predictors: 4
## Categorical predictors: 4
## Lambda: 1.848666
##
## Number of Clusters: 3
## Cluster sizes: 1345 1841 1008
## Within cluster error: 6219.54 4860.473 2856.019
## Cluster prototypes:
                           DMFT DS
## gender DT
                                                DMFS DEANindex year
## 1 female 1.2625421 1.2281913 1.2575552 1.2259739 Normal 2012
## 2 male -0.6298630 -0.6119791 -0.6229753 -0.6065016
                                                       Normal 2012
## 3 female -0.5342672 -0.5210951 -0.5401926 -0.5281403 Normal 2003
## fluoride_concentration
## 1
                    0_ppm
## 2
                  0.5_ppm
## 3
                  0.7_ppm
summary(kpres)
```

```
## gender
##
## cluster male female
    1 0.400 0.600
##
##
       2 0.569 0.431
##
       3 0.400 0.600
## -----
## DT
        Min. 1st Qu. Median
                                   Mean 3rd Qu.
## 1 -0.7715461 0.9163978 1.3584019 1.2625421 1.7012470 3.5814956
## 2 -0.7715461 -0.7715461 -0.7715461 -0.6298630 -0.7715461 1.3584019
## 3 -0.7715461 -0.7715461 -0.7715461 -0.5342672 -0.7715461 0.9163978
## -----
## DMFT
         Min. 1st Qu. Median Mean 3rd Qu.
##
## 1 -0.8536977 0.7652349 1.1891678 1.2281913 1.5179957 3.321371
## 2 -0.8536977 -0.8536977 -0.8536977 -0.6119791 -0.8536977 1.786668
## 3 -0.8536977 -0.8536977 -0.8536977 -0.5210951 0.1677351 1.189168
## DS
         Min. 1st Qu. Median Mean
                                           3rd Qu.
## 1 -0.7507042 0.6763264 1.0500080 1.2575552 1.7769148 3.623208
## 2 -0.7507042 -0.7507042 -0.7507042 -0.6229753 -0.7507042 1.339858
## 3 -0.7507042 -0.7507042 -0.7507042 -0.5401926 -0.7507042 1.050008
##
## DMFS
         Min. 1st Qu. Median Mean 3rd Qu.
##
## 1 0.02846731 0.5294851 1.1606928 1.2259739 1.57645871 3.529361
## 2 -0.82802821 -0.8280282 -0.8280282 -0.6065016 -0.82802821 1.576459
## 3 -0.82802821 -0.8280282 -0.8280282 -0.5281403 0.02846731 2.597954
```

```
##
## -----
##
## cluster Normal Questionable Very mild Mild Moderate Severe
                 1 0.793
      2 0.762
                 0.017 0.137 0.069 0.015 0.000
      3 0.653
                 0.061 0.135 0.086 0.062 0.004
##
## -
## year
## cluster 1990 2003 2012 2019
      1 0.000 0.294 0.501 0.205
##
      2 0.000 0.033 0.777 0.190
##
      3 0.000 0.898 0.004 0.098
## fluoride_concentration
## cluster 0_ppm 0.5_ppm 0.7_ppm
      1 0.529 0.322 0.149
      2 0.152 0.848 0.000
##
      3 0.161 0.043 0.797
##
##
```

saveRDS(kpres,"~/Library/Mobile Documents/com~apple~CloudDocs/Nam/New project/20 years of water fluorid kpres <- readRDS("~/Library/Mobile Documents/com~apple~CloudDocs/Nam/New project/20 years of water fluorid</pre>

Plot

```
# Whole population: "Negative"
mean(valid_df$DEANweight)
## [1] 0.3655222
# For each cluster
table(valid_df$Cluster, valid_df$CFI)
##
       0.288104089219331 0.32753938077132 0.53819444444444
##
##
     1
                   1345
##
     2
                       0
                                     1841
                                                           0
##
     3
                       0
                                                       1008
table(valid_df$Cluster, valid_df$Significance)
##
##
       Border line Negative
                 0
                       1345
##
                       1841
##
     2
                 0
##
    3
              1008
valid_df %>%gather(c(DT:DMFS),
                   key = "Parameter",
                   value="Value")%>%
  ggplot(aes(x = Cluster, y=Value, fill = Cluster))+
  geom_boxplot(alpha=0.5,col="black")+
  facet_wrap(~Parameter,ncol=2,scales = "free")+
  coord_flip()+
  scale_fill_manual(values = brewer.pal(n = 4, name = "Set2"))+ theme_classic()
```


Plot

Warning: attributes are not identical across measure variables; ## they will be dropped

#grid.col = c(1 = "#f7286d", 2 = "#1faae0", TRUE= "#2968c2", FALSE= "#97c425",)

library(circlize)

```
## circlize version 0.4.13
## CRAN page: https://cran.r-project.org/package=circlize
## Github page: https://github.com/jokergoo/circlize
## Documentation: https://jokergoo.github.io/circlize_book/book/
## If you use it in published research, please cite:
## Gu, Z. circlize implements and enhances circular visualization
    in R. Bioinformatics 2014.
##
## This message can be suppressed by:
    suppressPackageStartupMessages(library(circlize))
#caries, fluoride_concentration
xtb_y <- valid_df %>%
   mutate(Id=rownames(valid_df))%>%
   gather(caries,
          key="Pathology",
          value="Diagnosis")%>%
 group_by(fluoride_concentration,Diagnosis,Pathology)%>%
 summarise(frequency = n())
```

'summarise()' has grouped output by 'fluoride_concentration', 'Diagnosis'. You can override using th

'summarise()' has grouped output by 'Cluster', 'Diagnosis'. You can override using the '.groups' arg

'summarise()' has grouped output by 'Cluster', 'Dose'. You can override using the '.groups' argument
xtb_y <- xtb_y%>%.[,c(1,2,4)]

chordDiagram(as.data.frame(xtb_y),

```
transparency = 0.4,

# grid.col = grid.col,

column.col ="black")
```


 $xtb_y \leftarrow xtb_y\%\%.[,c(1,2,4)]$

```
# grid.col = grid.col,
column.col ="black")
```


'summarise()' has grouped output by 'fluoride_concentration', 'Diagnosis'. You can override using th

'summarise()' has grouped output by 'Cluster', 'Diagnosis'. You can override using the '.groups' arg


```
library(ggalluvial)
library(pals)
#
xtb_y2 <- valid_df %>%
   dplyr::group_by(caries, fluorosis, fluoride_concentration)%>%
   summarise(frequency = n())
```

'summarise()' has grouped output by 'caries', 'fluorosis'. You can override using the '.groups' argu

```
xtb_y2 %>% ggplot(aes(y = frequency,
                 axis1= fluoride_concentration,
                 axis2 = caries,
                 axis3= fluorosis,
                 )) +
  geom_alluvium(aes(fill = frequency), width = 0.3) +
  geom_stratum(width = 1/10,
               fill = "white",
               color = "grey") +
  geom_label(stat = "stratum",
             infer.label = TRUE) +
  scale_x_continuous(breaks = 1:3,
                     labels = c("Fluoride concentration", "Caries", "Fluorosis")) +
  scale_fill_gradientn(colours = pals::parula(n=500))+
  theme_bw()+theme(legend.position="bottom") +
  ggtitle("Fluoride concentration by caries and fluorosis diagnosis")
```

```
## Warning in to_lodes_form(data = data, axes = axis_ind, discern =
## params$discern): Some strata appear at multiple axes.

## Warning in to_lodes_form(data = data, axes = axis_ind, discern =
## params$discern): Some strata appear at multiple axes.

## Warning in to_lodes_form(data = data, axes = axis_ind, discern =
## params$discern): Some strata appear at multiple axes.

## Warning: The parameter 'infer.label' is deprecated.

## Use 'aes(label = after_stat(stratum))'.
```

Fluoride concentration by caries and fluorosis diagnosis


```
## Warning in to_lodes_form(data = data, axes = axis_ind, discern =
## params$discern): Some strata appear at multiple axes.

## Warning in to_lodes_form(data = data, axes = axis_ind, discern =
## params$discern): Some strata appear at multiple axes.

## Warning in to_lodes_form(data = data, axes = axis_ind, discern =
## params$discern): Some strata appear at multiple axes.

## Warning: The parameter 'infer.label' is deprecated.

## Use 'aes(label = after_stat(stratum))'.
```

% Fluoride concentration by caries and fluorosis diagnosis


```
#
xtb_y3 <- valid_df %>%
dplyr::group_by(caries, fluorosis, fluoride_concentration, Cluster)%>%
summarise(frequency = n())
```

'summarise()' has grouped output by 'caries', 'fluorosis', 'fluoride_concentration'. You can overrid

```
xtb_y3 %>% ggplot(aes(y = frequency,
                 axis1 = Cluster,
                 axis2= fluoride_concentration,
                 axis3 = caries,
                 axis4= fluorosis,
                 )) +
  geom_alluvium(aes(fill = frequency), width = 0.3) +
  geom_stratum(width = 1/10,
              fill = "white",
              color = "grey") +
  geom_label(stat = "stratum",
             infer.label = TRUE) +
  scale_x_continuous(breaks = 1:4,
                     labels = c("Cluster", "Fluoride concentration", "Caries", "Fluorosis")) +
  scale_fill_gradientn(colours = pals::parula(n=500))+
  theme_bw()+theme(legend.position="bottom") +
  ggtitle("Clusters by fluoride concentration caries and fluorosis diagnosis")
## Warning in to_lodes_form(data = data, axes = axis_ind, discern =
## params$discern): Some strata appear at multiple axes.
## Warning in to_lodes_form(data = data, axes = axis_ind, discern =
## params$discern): Some strata appear at multiple axes.
## Warning in to_lodes_form(data = data, axes = axis_ind, discern =
## params$discern): Some strata appear at multiple axes.
## Warning: The parameter 'infer.label' is deprecated.
## Use 'aes(label = after_stat(stratum))'.
```

Clusters by fluoride concentration caries and fluorosis diagnosis


```
xtb_y3 <- xtb_y3 %>%
  dplyr::group_by(Cluster)%>% mutate(percent = frequency/sum(frequency))
xtb_y3$sum <- xtb_y3$frequency/xtb_y3$percent</pre>
xtb_y3 %>% ggplot(aes(y = percent,
                 axis1 = Cluster,
                 axis2= fluoride_concentration,
                 axis3 = caries,
                 axis4= fluorosis,
                 )) +
  geom_alluvium(aes(fill = percent), width = 0.3) +
  geom_stratum(width = 1/10,
               fill = "white",
               color = "grey") +
  geom_label(stat = "stratum",
             infer.label = TRUE) +
  scale_x_continuous(breaks = 1:4,
                     labels = c("Cluster", "Fluoride concentration", "Caries", "Fluorosis")) +
  scale_fill_gradientn(colours = pals::parula(n=500))+
  theme_bw()+theme(legend.position="bottom") +
  ggtitle("% Clusters by fluoride concentration caries and fluorosis diagnosis")
```

Warning in to_lodes_form(data = data, axes = axis_ind, discern =

```
## Warning in to_lodes_form(data = data, axes = axis_ind, discern =
## params$discern): Some strata appear at multiple axes.
## Warning in to_lodes_form(data = data, axes = axis_ind, discern =
## params$discern): Some strata appear at multiple axes.
## Warning: The parameter 'infer.label' is deprecated.
## Use 'aes(label = after_stat(stratum))'.
```

% Clusters by fluoride concentration caries and fluorosis diagnosis


```
#
xtb_y3 <- valid_df %>%
dplyr::group_by(caries, Significance, fluoride_concentration, Cluster)%>%
summarise(frequency = n())
```

'summarise()' has grouped output by 'caries', 'Significance', 'fluoride_concentration'. You can over

0.1 0.2 0.3 0.4 0.5

Warning: The parameter 'infer.label' is deprecated
Use 'aes(label = after_stat(stratum))'.

Clusters by fluoride concentration, caries and CFI significance

Warning: The parameter 'infer.label' is deprecated.
Use 'aes(label = after_stat(stratum))'.

% Clusters by fluoride concentration, caries and CFI significance

