Heat stress and Dutch dairy cattle

Jeremie Vandenplas, Mario Calus, Mathijs van Pelt, Han Mulder

March 1, 2023

Table of contents

- Introduction
- Data
- Models
- TD and weather data
- Effect of THI on milk production traits and SCS
- Genetic-by-THI on milk production traits and SCS
- Conclusions and next steps

RUMIGEN

EU project (www.rumigen.eu)

Title

"Towards improvement of ruminant breeding through genomic and epigenomic approaches"

Main aim

 To produce robust and efficient cattle able to manage the trade-offs between production and adaptation to extreme climate conditions

Partners from Belgium, Denmark, France, Italy, the Netherlands, Norway, Spain , Sweden, and United Kingdom

Introduction

Part of WP3

Collaboration between

- France (Idele, INRAE)
 - Holstein, Montbeliarde
- Spain (INIA—CSIC, IRIAF)
 - Holstein
- the Netherlands (Wageningen University and Research)
 - Holstein, MRY

General aim

- Evaluation of impact of heat-stress on performances of dairy cattle
- Definition of new traits related to heat tolerance

Aim

To investigate

- 1. the impact of heat-stress
- 2. genetic-by-THI interactions

on milk production traits and SCS of Dutch Holstein and MRY cows

Weather data

Extracted from the KNMI website

■ 34 Dutch weather stations

Many measurements (min., max., average temperature and relative humidity)

⇒ Summarized in daily THI:

$$THI = (1.8 * T + 32) - (0.55 - 0.0055RH) * (1.8 * T - 26)$$

T: daily average temperature (degrees Celsius)

RH: daily average relative humidity

THI: insight

Temp.	Min. THI	Max. THI	
-10	14	38	
0	32	46	
5	41	50	
10	50	54	
30	70	86	

Test-day records

Milk production traits and SCS

First & second parities

Each herd associated with the closest weather station (partial ZIP code)

■ Average distance: 14.6 km

Based on preliminary investigations, each TD record associated with the average of the THI at one to three days before (3-day average THI)

Effect of THI on performances

$$y = Xb + Za + Wp + e$$

Fixed effects b:

- Herd year of test (contemporary group)
- DIM
- Age at calving (months) year of calving season of calving
- Age at calving (months) year of calving season of calving lactation stage
- Stadium of gestation
- THI (class)

Random effects:

- Animal (a)
- Permanent environment (p)
- residual (e)

Genetic-by-THI interactions

$$y = Xb + ZQu + WQp_r + e$$

Fixed effects b:

- Herd test-day (contemporary group)
- DIM
- Age at calving (months) year of calving season of calving
- Age at calving (months) year of calving season of calving lactation stage
- Stadium of gestation

Random effects:

- Animal additive genetic regression coefficients (u)
- lacktriangle Permanent environment regression coefficients (\mathbf{p}_r)
- residual (e)
 - Heterogeneous residual variances (33 classes)

Genetic-by-THI interactions

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{Q}\mathbf{u} + \mathbf{W}\mathbf{Q}\mathbf{p}_r + \mathbf{e}$$

Standardized Legendre coefficients Q:

- Intercept
- DIM: first and second order (range(DIM): 5 305)
- THI: first and second order (range(THI): 10 83)

TD records - after editing

MRY: 2010-2022

Holstein:

■ Population level: 2010-2022

■ GxTHI: 2016-2022

Table: Descriptive statistics for milk yield and first parity cows

	MRY	Holstein (2010-)	Holstein (2016-)
Pedigree (3 gen.)	21,490	835,874	562,815
Phenotyped animals	12,257	493,997	259,128
Herds	87	1582	1579
TD records	93,099	3,923,062	1,948,762

Number of TD records per THI/month - Holstein

Period: 2010 - 2022

Some numbers

Milk yield

Period: 2010 - 2022

	MRY	Holstein
Min. THI	28	20
Max. THI	70	75
$\#$ TD records ≥ 70	533	35,775

Effect of THI on milk production traits and SCS

Traits

- MY, PY, FY
- SCS
- Protein content, Fat content
- Urea
- Lactose content

Effect of THI on MY, FY, PY, and SCS

Effect of THI on MY, FY, PY, and SCS

Optimal THI

- Similar for Holstein and MRY
- Different across traits
- MY: around 60-65
- FY and PY: around 50-55
- SCS: unclear

Effect of THI on FC, PC, urea and lactose

Effect of THI on FC, PC, urea and lactose

Optimal THI

- Similar for Holstein and MRY
- Different across traits
- FC and PC: around 30
 - Impact of yields?
- Urea: around 40
- Lactose: around 55

Genetic-by-THI on milk production traits and SCS

Traits

- MY, PY, FY
- SCS
- Protein content, Fat content
- Urea
- Lactose content

Heritability at THI = 50 (first parity)

Heritability at DIM = 150 (first parity)

Genetic correlations between different THI (DIM =150)

Similar results for other other DIM, parity, trait Most genetic correlations $>0.90\,$

⇒ (No)Weak genetic-by-THI interactions

EBV changes between THI = 50 and THI = 70

Top 100 HOL sires with \geq 20 daughters with records

■ Based on EBV for MY at THI = 50 and DIM = 150

$$Corr(THI=50, THI=70) = 0.79$$

$$Corr(THI=50, THI=70) > 0.99$$

Level and slope

Level = Breeding value at THI = 50 and at DIM = 150 Slope = First derivative at THI = 70

Genetic correlations between level and slope

- Mainly negative moderate
 - ⇒ Detrimental of production traits

Breed	Parity	MY	FY	PY	SCS
Holstein	1	-0.40	-0.10	-0.16	-0.05
	2	-0.35	-0.03	-0.08	-0.14
MRY	1	-0.44	-0.19	-0.28	0.33
	2	-0.24	-0.02	-0.06	-0.25

Conclusions

Similar impact of heat-stress for Holstein and MRY Optimal THI different across traits

■ MY: around 60-65

■ FY, PY: around 50-55

■ SCS: unclear

No/weak G-by-THI interactions

■ Small re-ranking of Top 100 sires for MY

Next steps

Production traits

- EAAP
- Paper (to be written)

Fertility traits

- CR for first-parity MRY cows (Han)
- CR for first-parity Holstein cows (Mario)
- Other traits (MSc student Mario)

GWAS & meta-analysis across countries

- Milk production traits
- CR1

