IN THE CLAIMS

Fax:7132668510

1	1.	(currently amended) A method of estimating a property of interest relating to an		
2		earth formation comprising:		
3		(a)	conveying a Nuclear Magnetic Resonance (NMR) logging tool into a	
4			borehole in said earth formation;	
5		(b)	applying a first pulse sequence having a first associated measurement	
6			frequency and measuring first NMR signals corresponding to said first	
7			pulse sequence, said first NMR signals including non-formation signals	
8			resulting from (A) an excitation pulse, and (B) a refocusing pulse in said	
9			first pulse eche sequence;	
10		(c)	applying a plurality of additional pulse sequences having associated	
11			additional frequencies different from each other and from said first	
12			frequency;	
13		(d)	measuring additional NMR signals resulting from applying said plurality	
14			of additional pulse sequences; and	
15		(e)	determining from said first and said additional measured NMR signals a	
16			value an estimate of said property of interest, said value estimate	
17			substantially unaffected by said non-formation signals.	
18				
1	2,	(curre	ently amended) The method of claim 1 claim 40 wherein said first and said	
	10/675	5.187		

2 additional frequencies are related by an expression of the form

Fax:7132668510

$$nf \cdot \delta f = \frac{2}{TE} = \frac{1}{TE/2}$$

where TE is an interecho spacing.

5

- 1 3. (currently amended) The method of claim 1 claim 40 wherein said first and said
- 2 additional frequencies are related by an expression of the form:

$$3 nf \cdot \delta f = \frac{1}{TE}$$

4 where TE is an interecho spacing.

5

- 1 4. (original) The method of claim 1 wherein a phase of said non-formation signals
- resulting from said first pulse sequence and phases of non-formation signals 2
- 3 resulting from said additional pulse sequences are substantially evenly distributed
- around a unit circle.

5

- 1 5. (currently amended) The method of claim 1 wherein at least one of said first pulse
- 2 sequence and said additional pulse sequences each comprises comprises a CPMG
- 3 sequence.

4

- 1 6. (original) The method of claim 5 wherein said first and said additional frequencies
- 2 are related by an expression of the form:

$$nf \cdot \delta f = \frac{2}{TE} = \frac{1}{TE/2}$$

- where nf is the number of frequencies, δf is a separation of frequencies and TE is
- 5 an interecho spacing.

- 1 7. (original) The method of claim 5 wherein said first and said additional frequencies
- 2 are related by an expression of the form;
- $3 nf \cdot \delta f = \frac{1}{TE}$
- where nf is the number of frequencies, δf is a separation of frequencies and TE is
- 5 an interecho spacing.

6

- 1 8. (original) The method of claim 1 wherein at least one of said first pulse sequence
- and said additional pulse sequences comprises a modified CPMG sequence having
- a refocusing pulse with a tipping angle of less than 180°.

4

- 1 9. (original) The method of claim 8 wherein said first and said additional frequencies
- 2 are related by an expression of the form:
- $nf \cdot \delta f = \frac{2}{TE} = \frac{1}{TE/2}$
- 4 where nf is the number of frequencies, δf is a separation of frequencies and TE is
- 5 an interecho spacing.

6

- 1 10. (original) The method of claim 8 wherein said first and said additional frequencies
- 2 are related by an expression of the form:

 $3 nf \cdot \delta f = \frac{1}{TE}$

- where nf is the number of frequencies, δf is a separation of frequencies and TE is
- 5 an interecho spacing.

7

6

- 1 11. (original) The method of claim 1 wherein determining the value of said property
- 2 of interest further comprises summing said first and said additional measured
- 3 signals.

4

- 1 12. (original) The method of claim 1 wherein said first and said additional signals
- 2 have a signal loss of less than 0.8% relative to a signal that would be obtained at a
- 3 nominal frequency corresponding to said first and said additional frequencies.

4

- 1 13. (original) The method of claim 1 wherein the property of interest is at least one of
- 2 (i) a T₂ distribution, (ii) a T₁ distribution, (iii) a porosity, (iv) a bound fluid
- 3 volume, and (v) a bound volume irreducible.

4

- 1 14. (original) The method of claim 1 wherein said first and said plurality of additional
- 2 frequencies are discretely sampled and wherein determining said value of said
- 3 parameter of interest further comprises forming a weighted summation of said
- 4 measurements at said first and said additional frequencies.

5

1	15.	(currently amended) The method of claim 14 wherein said forming of said			
2		weighted summation further comprises minimizing a noise in an echo			
3		measurement,			
4					
1	16.	(curre	ently amended) A Nuclear Magnetic Resonance (NMR) apparatus for use in a		
2		borehole in proximity to an earth formation comprising:			
3		(a)	a magnet for producing a static field in a region of said earth formation,		
4			said magnet aligning nuclear spins in said region substantially parallel to a		
5			direction of said static field;		
6		(b)	a transmitter for applying radio-frequency (RF) pulse sequences at at each		
7			of at least three different frequencies;		
8		(c)	a receiver for receiving at least three signals resulting from said at least		
9			three pulse sequences, said at least three signals comprising (A) non-		
10			formation signals, and, (B) the results of interactions of said RF pulses		
11			with the earth formation and with a non formation; and		
12		(d)	a processor for determining from said at least three received signals a		
13			value an estimate of corresponding to a property of interest of said earth		
14			formation, said value estimate substantially unaffected by the interactions		
15			with said non-formation signal.		
16					
1	17.	(currently amended) The apparatus of elaim 16 claim 42 wherein said at least			
2		three frequencies are related by an expression of the form:			

$$nf \cdot \delta f = \frac{2}{TE} = \frac{1}{TE/2}$$

- where nf is the number of frequencies, δf is a separation of frequencies and TE is
- 5 an interecho spacing.

- 1 18. (currently amended) The apparatus of olaim 16 claim 42, wherein at least three
- 2 frequencies are related by an expression of the form:

3
$$nf \cdot \delta f = \frac{1}{TE}$$

- where nf is the number of frequencies, δf is a separation of frequencies and TE is a
- 5 interecho spacing.

6

- 1 19. (original) The apparatus of claim 16, wherein phases of said non-formation
- 2 signals resulting from said at least three pulse sequences are substantially evenly
- 3 distributed around a unit circle.

4

- 1 20. (original) The apparatus of claim 16 wherein at least one of said three pulse
- 2 sequences comprises a CPMG sequence.
- 1 21. (original) The apparatus of claim 20 wherein said at least three frequencies are
- 2 related by an expression of the form:

$$nf \cdot \delta f = \frac{2}{TE} = \frac{1}{TE/2}$$

- where nf is the number of frequencies, δf is a separation of frequencies and TE is
- 5 an interecho spacing.

- 1 22. (original) The apparatus of claim 20, wherein at least three frequencies are related
- 2 by an expression of the form:

3
$$nf \cdot \delta f = \frac{1}{TE}$$

- where nf is the number of frequencies, δf is a separation of frequencies and TE is a
- 5 interecho spacing.

6

- 1 22.23 (currently amended) The apparatus of claim 16 wherein at least one of said at
- 2 least three pulse sequences comprises a modified CPMG sequence having a
- 3 refocusing pulse with a tipping angle less than 180°.

4

- 1 24. (original) The apparatus of claim 23 wherein said at least three frequencies are
- 2 related by an expression of the form:

$$nf \cdot \delta f = \frac{2}{TE} = \frac{1}{TE/2}$$

- 4 where nf is the number of frequencies, δf is a separation of frequencies and TE is
- 5 an interecho spacing.

б

- 1 25. (original) The apparatus of claim 23, wherein at least three frequencies are related
- 2 by an expression of the form:
- $nf \cdot \delta f = \frac{1}{TE}$

4		where	e nf is the number of frequencies, δf is a separation of frequencies and TE is a		
5		intere	echo spacing.		
6					
1	26.	(origi	nal) The apparatus of claim 16 wherein said processor determines said value		
2		by summing said at least three received signals.			
1	27.	(original) A system for estimating a property of interest of an earth formation			
2		comprising:			
3		(a)	a logging tool including a magnet for producing a static field in a region of		
4			said earth formation, said magnet aligning nuclear spins in said region		
5	٠		substantially parallel to a direction of said static field;		
6		(b)	a transmitter on said logging tool for applying radio frequency pulse		
7			sequences at each of at least three frequencies;		
8		(c)	a receiver on said logging tool for receiving signals resulting from		
9			interaction of said at least three pulse sequences with said earth formation,		
10			said signals indicative of a property of said earth formation, said signals		
11			including non-formation signals resulting from an excitation pulse and a		
12			refocusing pulse in said at least three pulse sequences;		
13		(d)	a conveyance device for conveying said logging tool into a borehole in		
14			said earth formation;		
15		(e)	a processor in electrical communication with the transmitter and the		
16			receiver, said processor programmed to perform steps for determining		
17			from said at least three received signals a value of a property of said earth		

- formation, said determined value of said property substantially unaffected
- by said non-formation signals.

- 1 28. (original) The system of claim 27 wherein said conveyance device comprises a
- wireline.

3

- 1 29. (original) The system of claim 27 wherein said conveyance device comprises a
- 2 drillstring.

3

- 1 30. (original) The system of claim 27 wherein said conveyance device comprises
- 2 coiled tubing.
- 1 31. (original) The system of claim 27 wherein said processor is programmed to select
- 2 the at least three frequencies according to an expression of the form:

$$nf \cdot \delta f = \frac{2}{TE} = \frac{1}{TE/2}$$

- where nf is the number of frequencies, δf is a separation of frequencies and TE is
- 5 an interecho spacing.

б

1 32. (original) The system of claim 27 wherein said processor is at a surface location.

2

- 1 33. (original) The system of claim 27 wherein said processor is at a downhole
- 2 location.

- 1 34. (original) The system of claim 27 wherein the processor is programmed to instruct
- 2 the transmitter to transmit at least one of said at least three pulse sequences as a
- 3 CPMG sequence.

4

- 1 35. (original) The system of claim 27 wherein the processor is programmed to instruct
- 2 the transmitter to transmit at least one of said at least three pulse sequences as a
- 3 modified CPMG sequence having a refocusing pulse with a tipping angle less than
- 4 180°.

5

- 1 36. (original) The system of claim 27 wherein said processor is programmed to
- 2 determine said value by summing said at least three received signals.

3

- 1 37. (original) The system of claim 27 wherein said property is at least one of (i) a
- 2 T₂ distribution, (ii) a T₁ distribution, (iii) a porosity, (iv) a bound fluid volume,
- and, (v) a bound volume irreducible.

4

- 1 38. (original) The system of claim 27 wherein said processor is at a surface
- 2 location

3

1

39. (original) The system of claim 27 wherein said processor is at a downhole location

2

- 1 40. (new) The method of claim 1 wherein said first and said additional frequencies
- 2 are related by an expression of the form:
- $3 nf \cdot \delta f = \frac{m}{t}$
- where, δf is a separation of frequencies, nf is the number of frequencies, m is any
- 5 integer that is not a multiple of nf, and t is a time over which a phase difference
- 6 evolves.

- 1 41. (new) The apparatus of claim 16 wherein said non-formation signal is at least one
- of (A) ringing resulting from an excitation pulse in said RF pulse sequences, and,
- 3 (B) a ringing resulting from a refocusing pulse in said RF pulse sequences.

4

- 1 42. (new) The apparatus of claim 16 wherein said first and said additional frequencies
- 2 are related by an expression of the form:
- $3 nf \cdot \delta f = \frac{m}{t}$
- where, δf is a separation of frequencies, nf is the number of frequencies, m is any
- integer that is not a multiple of nf, and t is a time over which a phase difference
- 6 evolves.

7