Overlap - Save method:

Let M L → length of longer sequence

M → " Smaller "

NI → " leach lectioned convolution sequence

Step 1: Split the longer sequence into sequences of

longheep: $\chi(n) = \{1, 2, 3, 4, 5, 6, 7, 8, 3\}$ walled L=8, L=2, $x_3(n)=\{5,6\}$, $x_4(n)=\{3,4\}$

Step 2: determine the no. of samples that will be obtained in the output of linear convolution of each section. ie N= 1+M-1/4 [Na=M+N1 -1]

for above eg: $N_2 = 2 + 2 - 1 = 3$; $N_2 = 3$

Step3: Convert the Smaller Sequence into No - Sample Sequence by appending zeros at the end.

 $f(x) = \{1, 2\}, \Rightarrow f(x) = \{1, 2, 0\}$

81.

Step4: Convert the each sectioned sequence into N_2 -sample sequences wring the samples of original longer sequence.

Two niethods of Step 4:

nuthod 1:

the overlapping samples are placed at the beginning of the sections. is first sample of $x_2(n)$ is placed as the overlapping sample at the end of $x_1(n)$. Similarly, the first sample of $x_3(n)$ is placed as the overlapping sample at the end of $x_2(n)$. and so on.

From: $\alpha_1(n) = \{1, 2, 3\}$ $\alpha_2(n) = \{3, 4, 5\}$ $\alpha_3(n) = \{5, 6, 7\}$ $\alpha_4(n) = \{7, 8, 0\}$ no next sequence, so it is o

Staps: perform circular convolution of each section with h(n). is /y.(n)= x.(n) & h(n)

will $y_2(n) = \chi_2(n) \oplus h(n)$ Contain $y_3(n) = \dot{\chi}_3(n) \oplus h(n)$ $N_2 - no. \circ h$ $y_4(n) = \chi_4(n) \oplus h(n)$ flower:

$$\lambda_{(n)} = \{1, 2, 3\}, f_{(n)} = \{1, 2, 0\}$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1+6+0 \\ 2+2+0 \\ 3+4+0 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ 7 \end{bmatrix}$$

$$\chi_{2(n)} = \{3,4,5\}, h(n) = \{1,2,0\}$$

$$\begin{bmatrix} 3 & 5 & 4 \\ 4 & 3 & 5 \\ 5 & 4 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 + 10 + 0 \\ 4 + 6 + 0 \\ 5 + 8 + 0 \end{bmatrix} = \begin{bmatrix} 13 \\ 10 \\ 13 \end{bmatrix}$$

$$y_2(n) = \{13, 10, 13\}$$

$$\chi_3(n) = \{5,6,7\}, h(n) = \{1,2,0\}$$

$$\begin{bmatrix} 5 & 7 & 6 \\ 6 & 5 & 7 \\ 7 & 6 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 6 + 10 + 0 \\ 7 + 12 + 0 \end{bmatrix} = \begin{bmatrix} 19 \\ 16 \\ 19 \end{bmatrix}$$

$$2 \times 4(n) = \{7, 8, 0.3, f_{(n)} = \{1, 2, 0\}$$

Step6: Enter the output sequences y, (n), y2(n)....
in the table as shown below. to combine the
output of the convolution of each Section.

	, ,									-	11
9	n	0	1	2	3	4	5	6	7	8	-
	y1(n)	X	(4 7							
214	y2 (n)			13	. 10	13				Ĩ,	
	y3(n)	1		o vertop	in .	19	16	19		11 14	
	44(n)		i _{,AB}	1	,)	9 1	1	X	ેરર	46	v 1.0 11
PA	y(n)	*	4	7	10	13	16	19	22	16	
L	12 1		4 - 5	7.7	and the				17 .		and hims

En can be observed that, the last samples in an output sequence overlaps with the first (No-1) samples of next output sequence in the table above. While combining the outputs, the first (No-1) samples of every output sequence is discarded and the remaining non-overlapping samples are simply saved as samples of y(n).

Ans: y(n)= {*,4,7,10,13,16,19,22;16} to that methods.

Sy.

homeward Perform. linear convolution of the following sequences by overlap-add method & overlap save method. (I & I)

 $x(n) = \{1/2/3, -1/-2/-3/4/5/6\}, h(n) = \{2, 1/-1\}$

method 2:

first 3-steps are same as that of overlap-same I method. Steps: the overlapping samples are placed at the end of the section. ie. last sample of xi(n) is placed as overlapping sample at the end of x2(n). The last

sample of $\dot{x}_2(n)$ is placed as overlapping sample

at the end of x3(n) and so on. Since there is no

previous Section for xicn), the overlapping sample of

XI(n) is taken as zero.

Let $\chi(n) = \{1,2,13,4,5,6,7,8\}$, $-h(n) = \{1,2\}$ $\{1,2\}$, $\chi_{2}(n) = \{3,4\}$, $\chi_{3}(n) = \{5,6\}$, $\chi_{4}(n) = \{7,8\}$ $\{1,2\}$, $\chi_{2}(n) = \{3,4\}$, $\chi_{3}(n) = \{5,6\}$, $\chi_{4}(n) = \{7,8\}$

a kor.

Step3: h(n)={112,0} no previous hetion

Step4: $\chi_1(n) = \begin{cases} 1, 2, 6 \end{cases}$ $\chi_2(n) = \begin{cases} 3, 4, 2 \end{cases}$ $\chi_3(n) = \begin{cases} 5, 6, 4 \end{cases}$ $\chi_4(n) = \begin{cases} 7, 8, 6 \end{cases}$

Steps: Ciscular convalution computation: $y(n) = x(n) \mathcal{A} h(n)$

$$\begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1+0+0 \\ 2+2+0 \\ 0+4+0 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix}
 3 & 2 & 4 \\
 4 & 3 & 2
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 4 & 3 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 4 & 4 & 6 & +0 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & 2 \\
 2 & 4 & 3
 \end{bmatrix}$$

$$y_2(x) = \{7,10,10\}$$

$$\begin{bmatrix} 5 & 4 & 6 \\ 6 & 5 & 4 \\ 4 & 6 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 5+8+0 \\ 2+10+0 \\ 4+12+0 \end{bmatrix} = \begin{bmatrix} 13 \\ 16 \\ 16 \end{bmatrix}$$

$$y_{h}(n) = x_{h}(n) + x_{h}(n)$$

 $\begin{bmatrix} 7 & 6 & 8 \\ 8 & 7 & 6 \\ 6 & 8 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 6 & 16 + 16 + 0 \end{bmatrix} = \begin{bmatrix} 19 \\ 22 \\ 82 \end{bmatrix}$

- Combine the output of the Convolution of each Section.

				86		1	1	1	
n	0	1 :-	12	3.1	4	5	6	7	8
yich		4	R	-		331.79	i i	Jan a ha	
y2(n)			7	10	10		6		
					13	16	16		
93(10)			OV	erlap	ping		19	22	22
Yu(n)	<u> </u>		57	10	13	16	19	22	*
repty(n)	1	4	1 +				-		1

the last (N2-1) samples in output sequence overlaps with the first (N2-1) samples of next output sequence.

While combining the outputs, the last (N2-1) samples of every output sequence is discarded and the seemaining non-overlapping samples are simply saved as Samples of y(n)

Ans: y(n) = {1,4,7,10,13,16,19,22,*3

Note: Answer is similar to that of overlap-add method except last (N2-1) Samples