1. Itratati cà ria de funcții $\sum_{n=1}^{\infty} \operatorname{arctg} \frac{2 \times 1}{x^2 + n^4}$ converge $\frac{1}{2}$ $\frac{1}$ $(\Rightarrow) 1 \ge \frac{2|x|^2}{x^2 + n^4} (\Rightarrow) \frac{1}{n^2} \ge \frac{2|x|}{x^2 + n^4} (\Rightarrow) \frac{2|x|}{x^2 + n^4} (\Rightarrow) \frac{1}{n^2} (\Rightarrow)$ $(\Rightarrow) -\frac{1}{n^2} \le \frac{2x}{x^2 + n^4} \le \frac{1}{n^2} + x \in \mathbb{R}^n, \forall n \in \mathbb{R}^n.$ Zevarece protag extrapolation (strict) exerciserare overn - puty \frac{1}{n^2} \le puty \frac{1\pi}{\pi^2 + n^4} \le puty \frac{1}{n^2} \tau \tau \tau \tau \tau. Du $\left| \text{outg} \frac{2x}{x^2 + n^4} \right| \leq \text{pactg} \frac{1}{n^2} + x \in \mathbb{R}, \forall n \in \mathbb{R}^+$ The $x_n = act y \frac{1}{n^2} + net*$ trotam så Zan ett convergenta. dm>0 themx. $\lim_{n\to\infty} \frac{d_n}{\beta_n} = \lim_{n\to\infty} \frac{\operatorname{arcts} \frac{1}{n^2}}{\frac{1}{n^2}} = 1 \in (0, \infty).$

Conform bit, de comparatre su limita aven ca

 $\lim_{n\to\infty} \sqrt{|a_n|} = \lim_{n\to\infty} \sqrt{\frac{1}{n \cdot 2^n}} = \lim_{n\to\infty} \frac{1}{(\sqrt[n]{n}) \cdot 2} = \frac{1}{2}.$

Deci $R = \frac{1}{1} = 2$.

a reriei de petiris din enent. Fie A multimer de sons. twem (-R,R)=AC[-R,R], i.e. (-2,2) c-Ac[-2,2].

Daca x=2 revia dervine $\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n} \cdot 2^n = \sum_{n=1}^{\infty} \frac{1}{n} din$ (ruis armonică generalione zotă cu d=1). Hadar 2 KA. Deca t=-2 revia derine $\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n} \cdot (-1)^n = \sum_{n=1}^{\infty} \frac{1}{n \cdot$ $=\sum_{n=1}^{\infty}(-1)^n\frac{1}{n}$ som, (bit, lui Librit). trader -2EA. Fin Mmare A=[-2,2). D $\frac{1}{N-1} \frac{N! \, 2^{N}}{(\alpha+1)(\alpha+2)..., (\alpha+n)}, \quad \alpha > 1.$ Sol: Dn = (a+1)...(a+n) +nEH*. $\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=\lim_{n\to\infty}\frac{(a+1)+(a+n+1)}{(a+1)+(a+n+1)}.$ $=\lim_{n\to\infty}\frac{n+1}{n+n+1}=1.$

 $\Re R = \frac{1}{1} = 1$

Fie A multimes de convergent, à seriei de petrei din twem (-R,R) C+C[-R,R], i.e. (-1,1) c+c[-1,1]. Data f = 1 ship allower $\sum_{n=1}^{\infty} \frac{n!}{(a+1)\cdots(a+n)}$, $\sum_{n=1}^{\infty} \frac{n!}{(a+1)\cdots(a+n)}$ $=\sum_{\infty}^{N=1}\frac{(\alpha+1)\cdots(\alpha+N)}{N!}.$ Fie xn= (a+1)... (a+n) + ne++. $\lim_{n\to\infty} n\left(\frac{x_n}{x_{n+1}}-1\right) = \lim_{n\to\infty} n\left(\frac{n+n+1}{n+1}-1\right) =$ $=\lim_{N\to\infty} n \cdot \frac{a+x_1+x_2-x_2-x_3}{x_1+x_2} = a > 1.$ Clonform bit. Faabe-Duhamel aven ia $\frac{5}{n=1}$ #n exte

convergentà. Assolar 1 \in A. Desà x = -1 seria devine $\sum_{n=1}^{\infty} \frac{n!}{(a+n) \cdot ... \cdot (a+n)} \cdot (-1)^n$.

$$\sum_{n=1}^{\infty} \left| \frac{n!}{(a+1) \cdot \cdot \cdot (a+n)} \cdot (-1)^n \right| = \sum_{n=1}^{\infty} \frac{n!}{(a+1) \cdot \cdot \cdot \cdot (a+n)} \quad \text{shair rus},$$

Dui
$$\sum_{n=1}^{\infty} \frac{n!}{(a+1) \cdot \cdot \cdot (a+n)} \left(-1 \right)^n \quad \text{shair teams}. \quad \text{Din}$$

Almall
$$\sum_{n=1}^{\infty} \frac{n!}{(a+1) \cdot \cdot \cdot (a+n)} \left(-1 \right)^n \quad \text{share}.$$

Then when $a + = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\sum_{n=1}^{\infty} \frac{3^n}{3^n} \left(+ \frac{1}{3} \right)^n,$$

Deturninam multimula de convergentà a serie de putri
$$\sum_{n=1}^{\infty} \frac{3^n}{3^n} \quad y^n,$$

$$\sum_{n=1}^{\infty} \frac{3^n}{3^n} \quad y^n,$$

$$\sum_{n=1}^{\infty} \frac{3^n}{3^n} \quad y^n,$$

$$\sum_{n=1}^{\infty} \frac{3^n}{3^n} \quad y^n,$$

$$\sum_{n=1}^{\infty} \frac{3^n}{3^n} \quad y^n \in \mathbb{H}^*.$$

Dui $l = \frac{1}{3}$,

The B multimer de cons. a suit de jutini $\sum_{n=1}^{\infty} \frac{3^n}{3^n} y^n$ trem (-R,R) $\subset B \subset [-R,R]$, i.e. $(-\frac{1}{3},\frac{1}{3})$ $\subset B \subset [\frac{1}{3},\frac{1}{3}]$. Daca $y = \frac{1}{3}$ seria devine $\sum_{n=1}^{\infty} \frac{3^n}{7^n}$. $\frac{1}{3^n} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{3}}}$ div. (serie armonica genera-lizzatia en d= 13). theolar \$\frac{1}{3} \notin B. Daca $y=-\frac{1}{3}$ seria adevine $\sum_{n=1}^{\infty} \frac{3^n}{3^n} \cdot \frac{(-1)^n}{3^n} =$ $= \sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{3n} \text{ court.} \left(\text{ bit. lui disbrite} \right).$ tradar - 3 EB. Jim remare $B = \left[-\frac{1}{3}, \frac{1}{3} \right]$ Fie + multimea de cons. a seriei de puteri $\sum_{n=1}^{3} \frac{3}{7} (2+3)$ 46B(=) - 13 = y < 13 (=) - 13 = ¥+3 < 13 | -3 (=)

 $\lim_{n\to\infty} \frac{2n-1}{|a_{2n-1}|} = \lim_{n\to\infty} \frac{2n-1}{0} = 0.$ tradar lim Magi = 1. Dei $R = \frac{1}{1} = 1$. Fie A multimes de consegentée à seriei de putei din ement. trem (-R,R) < Ac[-R,R], i.e. (-1,1) c Ac[-1,1]. Data x=1 revia derine $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n}$. $\sum_{n=1}^{2n} \frac{(-1)^n}{2n}$ conv. (Prit. Lui deibniz). thadar LEA.

Decai x=-1 revia plavine $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n} (-1)^{2n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{2n}$ conv. (but, lui deibniz).

trader - 16 A.

Tim Almore A = [-1, 1].

3. Sa re dezvolte in revie de petri ale lui x functiile de mai jos:

a) f: (R-) R, f(x) = sin x.

$$f(t) = xint = 0.$$

$$f''(t) = xint = 0.$$

$$f''(t) = -xint = 0.$$

bondom termi lui Toylo en netul sub forma lui dagrange $+ \pm \in \mathbb{R}^* (i.e. \pm i.e.)$, \exists \subseteq intre O si \pm $(i.e. \in (0, \pm)$ san $\in (\pm, o)$ \triangleright \triangleright .

$$\mathsf{EW}(\mathcal{X}) = \frac{(w+v)i}{\mathsf{f}(w+t)(\mathsf{r})} \, \mathcal{X}_{w+1}$$

Aratam en lim Pn(x) =0 + XER.

Ju tek.

 $0 \leq |R_{m}(x)| = \frac{|X_{m+1}|}{|X_{m+1}|} + m \in \mathbb{R}.$ $|X_{m}| = \frac{|X_{m+1}|}{|X_{m+1}|} + m \in \mathbb{R}.$ (Vitis parte interest positive) Dei lim $|F_n(X)| = 0$, i.e. $\lim_{n \to \infty} |F_n(X)| = 0$. Tim remare $f(x) = \sum_{n=1}^{\infty} \frac{f(n)(0)}{n!} (x-0)^n + x \in \mathbb{R}^*$. Dei $f(x) = \sum_{n=1}^{\infty} \frac{f_{(n)}(n)}{f_{(n)}(n)} x^n = 0 + \frac{1}{1!} x^1 + 0 - \frac{1}{3!} x^3 + 0 + \frac{1}{3!}$ $+\frac{1}{5!} x^5 + ... = \frac{\sqrt{2n+1}!}{(2n+1)!} \cdot x^{2n+1} + x + x + x^*$ Din ulmare $\sin x = \sum_{n=-\infty}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} + x \in \mathbb{R}^+$ $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot o^{2n+1} = 0 \qquad \Rightarrow \qquad \int_{0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot o^{2n+1}$

Die
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^n + x \in \mathbb{R}$$
. Die $\lim x$

b) f: R-> R, f(x) = cost.

Sol: Resolvati-l voi! []