НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Лабораторна робота № 1

з дисципліни «Прикладні задачі машинного навчання» **Tema:** «Введення в data science»

 Перевірив:
 Виконав:

 Нестерук А. О.
 Ал Хадам М. Р.

Завдання:

- 1. На сайті http://www.ukrstat.gov.ua/ обрати дані які для Вас є цікавими, можна використати будь-який ресурс з відкритими даними.
- 2. Знайти математичне сподівання, медіану, моду, дисперсію, середньоквадратичне відхилення (поясніть їх зміст)
 - 3. Візуалізувати завантажені дані за допомогою гістограми
- 4. Для цих даних проробити всі дії з пункту колекції Series i DataFrame бібліотеки pandas
 - 5. Прочитати набір даних катастрофи «Титаніка»
- 6. Завантажити набір даних катастрофи «Титаніка» за URLадресою
 - 7. Переглянути рядки набору даних катастрофи «Титаніка»
 - 8. Налаштувати назви стовпців
 - 9. Провести простий аналіз даних
 - 10. Побудувати гістограму віку пасажирів

Виконання:

1.

При виконанні роботи було використано набір даних, присвячений загальної кількості зароблених грошей різних кіберспортивних спортсменів в різних дисциплінах. Імпортуємо бібліотеку Pandas та завантажимо дані:

Виконаємо первинну обробку даних (видалимо з кожного датасету по непотрібному стовпцю зовнішніх ключів):

Знайдемо математичне сподівання загальної кількості турнірів у певної команди:

```
In 145  1   round(df_teams['TotalTournaments'].mean(), 4)
Out 145     31.6961
```

Знайдемо медіану (значення, яке розділяє масив загальної кількості турнірів для певної команди на дві рівні частини: половина значень масиву більша за медіану, а інша половина – менша):

Знайдемо моду (це значення, яке зустрічається найбільшу кількість разів у масиві даних):

Для знаходження дисперсії та середньоквадратичного відхилення використаємо модуль statistics та знайдемо дисперсію (міра розсіяння числових даних у вибірці):

Знайдемо середньоквадратичне відхилення (квадратний корінь з вище знайденної дисперсії):

```
In 182 1 # standard deviation

round(statistics.pstdev(df_teams['TotalTournaments']), 4)

Out 182 61.0429
```

3.

Візуалізуємо завантажені дані за допомогою гістограми:

4. Виконаємо усі дії з пункту колекції Series і DataFrame бібліотеки pandas:

Створимо Series, використавши дані зі стовпця 'total_prize' попереднього датафрейму:

А зараз створимо Series за допомогою функції range():

Звернемося до 99-го елементу:

```
Звертання за індексом

In 39 1 total_prize[99]

Out 39 232167.42
```

Обчислимо описові статистики:

```
Описова статистика
In 45 1 total_prize.describe()
0ut 45 ✓ |< < 8 rows ✓ > >| Length: 8, dtype: float64
               1.00e+03
          count
                            3.98e+05
          mean
                            6.91e+05
          std
                            2.42e+04
          min
          25%
                            8.38e+04
                            1.68e+05
          50%
          75%
                            3.94e+05
                            6.95e+06
          max
```

Створимо колекцію з нестандартними індексами:

Звернемося до елементу з використанням нестандартного індексу:

```
In 48 1 test['ind10']
Out 48 10
```

Використаємо в якості ініціалізатора словник:

Створимо колекцію DataFrame на базі словника:

```
Створюємо DataFrame зі словника
In 51 1 data = {'country': ['Ukraine', 'France', 'Spain', 'Germany'],
                'capital': ['Kyiv', 'Paris', 'Madrid', 'Berlin'],
                'population': [42.4, 66.9, 46.7, 83.2]}
     4 test_df = pd.DataFrame(data)
     5 test_df
             country = capital = population =
             0 Ukraine Kyiv
                                                   42.4
             1 France
                          Paris
                                                   66.9
             2 Spain
                           Madrid
                                                   83.2
             3 Germany
                           Berlin
```

Звернемося до стовпця 'country':

Виберемо рядки за допомогою loc та iloc:

Використаємо зріз за індексами:

А для вибору конкретних рядків використаємо синтаксис списку:

Створимо новий датафрейм для більш зручної демонстрації логічного індексування:

Виберемо усі значення у яких поле вік більше 25:

test_df[test_df['Age'] > 25]							
\$	Name ÷	Age ÷	City ÷	Salary ÷			
ind2	Alice	30	London	60000			
ind4	Emily	28	Tokyo	70000			
ind5	David	35	Sydney	55000			

Або значення, які одночасно старші за 25 та мають зарплатню менше 70000:

In 55 1	<pre>In 55 1 test_df[(test_df['Age'] > 25) & (test_df['Salary'] < 70000)]</pre>							
Out 55 🗸	⟨ ⟨ 2 rows ∨ ⟩ ⟩ 2 rows × 4 columns							
	ind2	Name ÷		City ÷	Salary ÷ 60000			
	ind5	David		Sydney	55000			

Звернемося до конкретного осередку DataFrame по рядку і стовпцю:

Використаємо метод describe(), щоб отримати описову статистику:

Транспонуємо наш датафрейм, скориставшись атрибутом Т:

Та отримаємо його описову статистику:

Відсортуємо рядки датафрейму за індексами:

<pre>In 60 1 test_df.sort_index(ascending=False)</pre>								
0ut 60 ✓ < 5 rows ✓ > > 5 rows × 4 columns								
	÷	Name ÷	Age ÷	City ÷	Salary ÷			
	ind5	David	35	Sydney	55000			
	ind4	Emily	28	Tokyo	70000			
	ind3	Bob	22	Paris	45000			
	ind2	Alice	30	London	60000			
	ind1	John	25	New York	50000			

Або за стовпцями, вказавши параметр axis=1:

Відсортуємо датафрейм за значенням стовпця 'age'

5. Прочитаємо та 6. Завантажимо набір даних катастрофи Титаніка:

7. Переглянемо рядки набору даних, використавши функції head() i tail():

8. Налаштуємо назви стовпців:

9. Проведемо простий аналіз даних:

Спочатку виокремимо пасажирів, яким вдалося вижити:

• Визначимо наймолодшого пасажира серед них:

• Найстаршого:

• Середній вік:

```
average_age = survived['age'].mean()
average_age

28.918228103072597
```

Знайдемо жінок-пасажирів першого класу, яким вдалося вижити, та відсортуємо їх за віком:

Знайдемо наймолодшу та найстаршу серед них:

Загальна кількість виживших жінок, які були пасажирками першого класу:

```
In 46  1    survived_by_class = by_class_sorted[by_class_sorted['survived'] == 'yes'].shape[0]
    print("Amount of survived women in 1st class is", survived_by_class)

Amount of survived women in 1st class is 139
```

11. Побудуємо гістограму віку пасажирок:

Висновок

Виконуючи цю лабораторну роботу я ознайомився з бібліотеками pandas та matplotlib. Також було проведено невеликий аналіз даних, присвячених катастрофі лайнера «Титанік».