brk-DESeq2

Upload packagaes

```
library(DESeq2)
library(apeglm)
library(dplyr)
library(tibble)
library(data.table)
library(ggplot2)
library(ggfortify)
library(ggrepel)
library(RColorBrewer)
library(pheatmap)
library(plotly)
library(magrittr)
library(AnnotationDbi)
library(org.Dm.eg.db)
```

Load data

```
counts <- fread(file ="rsem.merged.gene_counts.tsv", header=TRUE)
sample_info <- read.delim(file = "Data info/RN23010-sampleinfo_full.txt")</pre>
```

Prepare a matrix for DESeq:

Make first column row names, switch to integers, create a matrix object

```
info<-sample_info %>% column_to_rownames("Sample")
gcounts <- counts[,-2]</pre>
```

```
dt <- as.data.frame(gcounts) %>%
    column_to_rownames("gene_id")

dt[,1:9] <- lapply(dt[,1:9], as.integer)

mcountdata <- as.matrix(dt)

has_rownames(dt)

[1] TRUE

has_rownames(info)</pre>
```

Matching column order between the tables

```
all(rownames(info) == colnames(mcountdata))

[1] FALSE

mcountdata_s <- mcountdata[, rownames(info)]
all(rownames(info) == colnames(mcountdata_s))

[1] TRUE</pre>
```

Creating levels for samples.

It will read the first level to be compared with the rest.

```
info$Group <- factor(info$Group,levels = c("control","sal-brk", "ubi-brk"))
info$Repeat <- as.factor(info$Repeat)</pre>
```

Run deseq.

The object class used by the DESeq2 package to store the read counts and the intermediate estimated quantities during statistical analysis is the **DESeqDataSet**, which will usually be represented in the code here as an object **dds**.

Note: levels of factors in the design contain characters other than letters, numbers, '_' and '.'. It is recommended (but not required) to use only letters, numbers, and delimiters '_' or '.', as these are safe characters for column names in R. [This is a message, not a warning or an error]

```
dds <- DESeq(dds)
```

estimating size factors

Note: levels of factors in the design contain characters other than letters, numbers, '_' and '.'. It is recommended (but not required) to use only letters, numbers, and delimiters '_' or '.', as these are safe characters for column names in R. [This is a message, not a warning or an error]

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

Note: levels of factors in the design contain characters other than letters, numbers, '_' and '.'. It is recommended (but not required) to use only letters, numbers, and delimiters '_' or '.', as these are safe characters for column names in R. [This is a message, not a warning or an error]

final dispersion estimates

fitting model and testing

```
res <- results(dds)</pre>
  sum(res$padj < 0.01, na.rm=TRUE)</pre>
[1] 1173
  resultsNames(dds)
[1] "Intercept"
                                "Group_sal.brk_vs_control"
[3] "Group_ubi.brk_vs_control"
  res %>%
    as.data.frame() %>%
    filter(padj<0.01) ->dres
  dres$gene = mapIds(
    org.Dm.eg.db,
    keys = rownames(dres),
    column ="SYMBOL",
    keytype = "FLYBASE",
    multiVals = "first"
  )
'select()' returned 1:1 mapping between keys and columns
Data shrinkage
  ubiLFC <- lfcShrink(dds, coef="Group_ubi.brk_vs_control", type="apeglm")</pre>
using 'apeglm' for LFC shrinkage. If used in published research, please cite:
    Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions for
    sequence count data: removing the noise and preserving large differences.
    Bioinformatics. https://doi.org/10.1093/bioinformatics/bty895
  salLFC <- lfcShrink(dds, coef="Group_sal.brk_vs_control", type = "apeglm")</pre>
```

using 'apeglm' for LFC shrinkage. If used in published research, please cite: Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics. https://doi.org/10.1093/bioinformatics/bty895

Warning in nbinomGLM(x = x, Y = YNZ, size = size, weights = weightsNZ, offset = offsetNZ, : the line search routine failed, unable to sufficiently decrease the function value

plotMA(res, ylim=c(-4,4))

plotMA(ubiLFC, ylim=c(-4,4))

mean of normalized counts

```
ubiLFC %>%
  as.data.frame() %>%
  filter(padj<0.01) %>%
  arrange(log2FoldChange) -> ubiLFC_s
```

Adding gene names to all data for ubiLFC

```
ubiLFC %>%
   as.data.frame() %>%
   arrange(log2FoldChange) -> ubiLFC_all

ubiLFC_all$gene = mapIds(
   org.Dm.eg.db,
   keys = rownames(ubiLFC_all),
   column ="SYMBOL",
   keytype = "FLYBASE",
   multiVals = "first"
)
```

'select()' returned 1:1 mapping between keys and columns

Adding gene names to all data for salLFC

```
salLFC %>%
  as.data.frame() %>%
  arrange(log2FoldChange) -> salLFC_all

salLFC_all$gene = mapIds(
  org.Dm.eg.db,
  keys = rownames(salLFC_all),
  column ="SYMBOL",
  keytype = "FLYBASE",
  multiVals = "first"
)

'select()' returned 1:1 mapping between keys and columns
```

```
salLFC_all %>%
  filter(padj<0.1) %>%
  arrange(log2FoldChange)
```

```
baseMean log2FoldChange
                                            lfcSE
                                                        pvalue
FBgn0013679
           7170.627837 -7.254626e-01 0.22065818 3.443624e-05 2.402112e-02
FBgn0003996
             841.515644 -7.124847e-01 0.24615945 1.196960e-04 4.630463e-02
FBgn0035480
            1955.341925 -6.230745e-01 0.24592925 3.249310e-04 9.726134e-02
FBgn0020493 4826.397871 -5.691916e-01 0.09284659 3.984609e-11 8.323848e-08
             378.675990 -4.049670e-01 0.15527259 2.744043e-04 9.544069e-02
FBgn0259932
FBgn0037796 8009.063987 -3.432772e-01 0.13456638 3.259116e-04 9.726134e-02
FBgn0261648 7877.685535 -2.836156e-01 0.09066954 6.354353e-05 3.318561e-02
FBgn0028789
             825.587955 -4.592897e-03 0.01572004 3.449659e-05 2.402112e-02
FBti0019102
               13.600512 -9.383137e-04 0.01470714 2.648346e-08 4.610328e-05
               7.758252 -4.982460e-04 0.01467519 9.567574e-06 8.327776e-03
FBti0018937
FBgn0010295
              11.359199 -2.820077e-04 0.01466677 1.133996e-04 4.555609e-02
FBti0102102
             213.086870 -6.887191e-05 0.01466304 2.934387e-14 1.021656e-10
FBti0019471
               52.406155 2.971626e-03 0.01510991 3.264419e-08 4.870979e-05
FBgn0262139 4409.851710
                          2.526059e-01 0.07964731 5.376690e-05 3.231513e-02
FBgn0033159 3790.127816
                          3.334542e-01 0.13053239 3.208938e-04 9.726134e-02
FBgn0263256 1446.974131
                          3.798371e-01 0.09865126 4.545280e-06 4.315950e-03
FBgn0003130
                          4.580553e-01 0.17652278 2.891249e-04 9.544069e-02
             506.502226
                          5.514052e-01 0.18717627 1.068988e-04 4.466231e-02
FBgn0033232
            2148.372696
```

```
FBgn0038610
             6728.223984
                           5.955645e-01 0.19282199 8.081247e-05 3.550085e-02
                           6.274068e-01 0.15099963 1.283519e-06 1.489595e-03
FBgn0003137 20679.712869
              197.417698
FBgn0034045
                           6.323162e-01 0.20828762 8.157209e-05 3.550085e-02
FBgn0037000
                           6.883280e-01 0.21837135 5.693636e-05 3.231513e-02
              261.212738
                           7.107480e-01 0.27123674 2.633113e-04 9.483748e-02
FBgn0033520
              269.466774
FBgn0261649
             3533.114443
                           7.193516e-01 0.18531333 4.102217e-06 4.284765e-03
FBgn0265575
              102.341037
                           7.254217e-01 0.22924983 5.519523e-05 3.231513e-02
FBgn0038180
              581.146809
                           9.783684e-01 0.32135617 7.723785e-05 3.550085e-02
              307.369467
                           1.028502e+00 0.39134462 2.558714e-04 9.483748e-02
FBgn0263038
                           1.334324e+00 0.43880051 7.424787e-05 3.550085e-02
FBgn0039078
              342.075300
                           1.720919e+00 0.22587494 1.418838e-15 7.409880e-12
FBgn0039749
              170.770248
FBgn0024250 25897.896274
                           2.220270e+00 0.16223169 5.778255e-44 6.035387e-40
                           3.444483e+00 1.11165860 5.878290e-05 3.231513e-02
FBti0102111
               76.482349
                           3.701320e+00 0.82898100 3.489683e-07 4.556217e-04
FBgn0035300
               67.468663
                           4.967346e+00 0.81123836 3.641589e-11 8.323848e-08
FBgn0029804
              815.499625
FBti0019371
                7.547635
                           6.583595e+00 3.24100147 2.923985e-04 9.544069e-02
FBti0059691
               12.581896
                           6.835518e+00 2.80287473 2.570772e-05 2.065517e-02
                 gene
FBgn0013679
                  ND1
FBgn0003996
FBgn0035480
              CG14984
FBgn0020493
                  Dad
FBgn0259932
              CG42455
FBgn0037796
              CG12814
FBgn0261648
                 salm
FBgn0028789
                 Doc1
FBti0019102
                 <NA>
                 <NA>
FBti0018937
FBgn0010295
                  ng3
FBti0102102
                 <NA>
FBti0019471
                 <NA>
FBgn0262139
                  trh
FBgn0033159
               Dscam1
FBgn0263256
              CG43394
FBgn0003130
                 Poxn
FBgn0033232
              CG12159
               CG7675
FBgn0038610
FBgn0003137
                  Ppn
FBgn0034045
               CG8249
FBgn0037000
               ZnT77C
FBgn0033520 Prx2540-1
FBgn0261649
                 tinc
FBgn0265575
                  yin
```

```
FBgn0038180
                 Cht5
              CG43333
FBgn0263038
FBgn0039078
               CG4374
              CG11498
FBgn0039749
FBgn0024250
                  brk
FBti0102111
                 <NA>
FBgn0035300
               CG1139
FBgn0029804
               CG3097
FBti0019371
                 <NA>
FBti0059691
                 <NA>
```

Adding gene names to ubiLFC with padj<0.01

```
ubiLFC_s$gene = mapIds(
  org.Dm.eg.db,
  keys = rownames(ubiLFC_s),
  column ="SYMBOL",
  keytype = "FLYBASE",
  multiVals = "first"
)

'select()' returned 1:1 mapping between keys and columns

ubiLFC_s %>%
  filter(baseMean>100, log2FoldChange<(-0.2)) -> ubi_down001
fwrite(ubi_down001, file = "./ubi_down001.xlsx")

ubiLFC_s %>%
  filter(baseMean>100, abs(log2FoldChange)>1 & abs(log2FoldChange)<2)</pre>
```

```
baseMean log2FoldChange
                                           lfcSE
                                                       pvalue
FBgn0026061
               205.1062
                             -1.942218 0.21228910 3.789008e-21 2.395099e-18
FBti0019522
             6108.3701
                            -1.859857 0.26311392 9.835620e-14 2.457990e-11
FBgn0287423
              245.0981
                            -1.845286 0.64761762 1.388194e-04 1.944792e-03
                            -1.809787 0.18658344 1.556041e-23 1.194372e-20
FBgn0037181
             3518.5431
                            -1.780230 0.21742795 1.420713e-17 5.654436e-15
FBgn0259226
              920.0422
FBgn0036690
                            -1.746162 0.43876937 3.068703e-06 7.832845e-05
               149.1412
FBgn0040279
                            -1.552488 0.29997127 1.113078e-08 6.657712e-07
               908.6699
FBti0019633
             7461.7578
                            -1.490685 0.41428382 1.387849e-05 2.829947e-04
```

```
FBgn0037127
              2536.6073
                             -1.429363 0.16806968 1.017091e-18 4.752025e-16
FBgn0033483
                             -1.421129 0.21717652 2.975889e-12 5.076016e-10
               436.9711
FBgn0020493
              4826.3979
                             -1.399497 0.09148941 4.901729e-54 1.316849e-50
FBgn0038405
               763.3332
                             -1.381673 0.30867054 3.587209e-07 1.227648e-05
FBgn0027586
                             -1.378629 0.39381928 1.959630e-05 3.773868e-04
               165.8752
FBgn0031745
                             -1.353802 0.24931587 3.198580e-09 2.291462e-07
               175.0911
FBgn0038761
               140.1666
                             -1.324333 0.27534123 7.627962e-08 3.488089e-06
FBgn0032803
               317.5330
                             -1.316588 0.25555054 1.405364e-08 8.297823e-07
FBgn0045800
                             -1.281596 0.24126480 5.549525e-09 3.704049e-07
              1042.6826
                             -1.274766 0.36158310 2.028071e-05 3.884785e-04
FBgn0053542
               118.8783
                             -1.259147 0.23715010 5.867840e-09 3.892334e-07
FBgn0039297
               428.6658
FBgn0031630
                             -1.243588 0.26949519 2.055745e-07 7.889655e-06
               286.0658
                             -1.193532 0.17754977 1.048157e-12 1.976051e-10
FBgn0085354
               230.5502
FBgn0034861
                             -1.171022 0.28688154 2.522658e-06 6.676966e-05
               190.0041
                             -1.160352 0.17532931 2.116037e-12 3.727693e-10
FBgn0036821
               595.9706
FBgn0000179
                             -1.157927 0.15082046 1.773501e-15 5.955639e-13
              8091.0312
FBgn0035379
               258.9265
                             -1.125517 0.16627459 7.586843e-13 1.482331e-10
               762.6886
FBgn0283741
                             -1.111945 0.19016228 2.964396e-10 2.895945e-08
FBgn0004956
               949.7247
                             -1.092814 0.21949899 3.567285e-08 1.888377e-06
FBti0019154
               333.0366
                             -1.074841 0.25622167 1.420585e-06 4.103658e-05
FBgn0262563
               186.1847
                             -1.071498 0.26334350 2.621720e-06 6.854744e-05
                             -1.067770 0.35146273 1.074136e-04 1.561930e-03
FBgn0002868
               223.6053
FBgn0036589
               407.2687
                             -1.056655 0.43742491 6.020702e-04 6.203112e-03
FBgn0001233 149617.9827
                             -1.011731 0.11090185 4.785855e-21 2.857156e-18
FBgn0030183
               603.7885
                               1.003480 0.17276517 3.967499e-10 3.739890e-08
                               1.006214 0.35978110 2.359167e-04 2.972433e-03
FBgn0004512
              1114.2821
                               1.010078 0.20540256 5.174442e-08 2.504710e-06
FBgn0262353
               517.3457
                               1.012120 0.30425099 4.490106e-05 7.676662e-04
FBgn0260660
               547.3397
                               1.019412 0.14520305 1.203113e-13 2.873034e-11
FBgn0003137
             20679.7129
FBgn0037487
               316.6203
                               1.030165 0.21955257 1.607457e-07 6.643745e-06
FBgn0032402
               168.3651
                               1.034581 0.44404971 7.886897e-04 7.805136e-03
                               1.035453 0.23107999 4.148413e-07 1.397456e-05
FBgn0033574
               663.4265
FBgn0027843
               107.2237
                               1.039181 0.37054373 2.316345e-04 2.924964e-03
FBgn0034253
              1375.2643
                               1.047778 0.23424161 4.492989e-07 1.499430e-05
                               1.061409 0.24431937 7.520919e-07 2.384065e-05
FBgn0003285
              1909.3386
FBgn0265575
               102.3410
                               1.074793 0.21413154 3.209246e-08 1.732993e-06
                               1.079947 0.19673432 2.391704e-09 1.822784e-07
FBgn0002633
              1185.9644
FBgn0267041
               228.4824
                               1.097837 0.25256393 7.681349e-07 2.413561e-05
FBgn0052843
               250.9056
                               1.132434 0.29575335 6.674907e-06 1.513261e-04
                               1.134353 0.32016530 1.943672e-05 3.763368e-04
FBgn0000108
               117.0334
FBgn0039938
               641.2609
                               1.164764 0.24100876 7.360743e-08 3.394787e-06
                               1.167253 0.21012053 1.591738e-09 1.305711e-07
FBgn0000180
              3384.4735
FBgn0003326
              3734.1292
                               1.172314 0.25523486 2.810433e-07 1.006697e-05
```

```
FBgn0032022
               464.7526
                               1.180003 0.16892179 1.773026e-13 4.053816e-11
FBgn0015011
                               1.182992 0.21789944 3.164646e-09 2.282368e-07
               251.4749
FBgn0261526
               143.6292
                               1.186881 0.36948094 6.031426e-05 9.746422e-04
FBgn0267029
                               1.196769 0.40065901 1.181379e-04 1.697206e-03
               128.5551
                               1.197039 0.22598535 6.103990e-09 3.999602e-07
FBgn0031678
              2494.5680
FBgn0263380
                               1.201263 0.35654538 3.431470e-05 6.084914e-04
               302.0143
FBgn0000022
               655.9389
                               1.208257 0.20977526 4.713626e-10 4.329284e-08
               291.4756
FBgn0037126
                               1.248545 0.29828177 1.447571e-06 4.159249e-05
                               1.251567 0.23651670 6.500282e-09 4.182756e-07
FBgn0004170
               887.4590
FBgn0003499
               174.9473
                               1.278754 0.44117997 1.528842e-04 2.090196e-03
                               1.309289 0.17087259 1.075884e-15 3.729501e-13
FBgn0033232
              2148.3727
FBgn0003089
                               1.338278 0.61911598 9.430356e-04 8.950271e-03
               196.6421
FBgn0004003
               794.1917
                               1.349053 0.40179848 3.350211e-05 5.983006e-04
                               1.360697 0.24375408 1.271335e-09 1.050905e-07
FBgn0033520
               269.4668
FBgn0027844
               411.2421
                               1.370269 0.22632413 7.640040e-11 8.463904e-09
FBgn0002632
               430.5362
                               1.378386 0.33232980 1.584434e-06 4.516268e-05
FBgn0063127
               742.4218
                               1.416048 0.33952984 1.439318e-06 4.146625e-05
FBgn0032283
               801.5836
                               1.426283 0.38897704 1.090335e-05 2.275096e-04
FBgn0025525
              1080.2904
                               1.433208 0.20870379 3.615181e-13 7.617399e-11
FBgn0284244
               460.3946
                               1.435434 0.38782749 9.482128e-06 2.036241e-04
FBti0019364
               169.1228
                               1.441761 0.59595576 5.090547e-04 5.448508e-03
                               1.538489 0.17723248 3.143271e-19 1.535345e-16
FBgn0038610
              6728.2240
FBgn0032405
               346.5463
                               1.542115 0.38876445 3.189513e-06 8.102720e-05
FBgn0261649
                               1.607768 0.17561147 2.940838e-21 1.975141e-18
              3533.1144
FBgn0038180
               581.1468
                               1.630686 0.29954334 2.594611e-09 1.909705e-07
FBti0019523
                               1.666853 0.66409373 3.753684e-04 4.384467e-03
              3021.7647
FBgn0033518
                               1.669167 0.45549589 1.064750e-05 2.226031e-04
               109.3588
                               1.706850 0.55684909 8.082457e-05 1.246113e-03
FBgn0035522
               167.6700
               124.9687
                               1.730263 0.24501846 8.572126e-14 2.302902e-11
FBgn0014469
FBgn0285970
               330.4999
                               1.740045 0.35508045 4.428318e-08 2.223678e-06
FBgn0033405
               309.4204
                               1.765642 0.17537091 4.135903e-25 3.703701e-22
FBgn0037000
               261.2127
                               1.789185 0.19794165 9.478692e-21 5.360949e-18
                               1.811680 0.41582428 5.832618e-07 1.910894e-05
FBgn0039078
               342.0753
                      gene
FBgn0026061
                     Mipp1
FBti0019522
                      <NA>
FBgn0287423
                     Nplp2
FBgn0037181
                   CG11370
FBgn0259226
                   CG42326
FBgn0036690
                      Ilp8
FBgn0040279
                     Osi14
FBti0019633
                      <NA>
FBgn0037127
                   CG14566
```

FBgn0033483	egr
FBgn0020493	Dad
FBgn0038405	CG8927
FBgn0027586	CG5867
FBgn0031745	rau
FBgn0038761	CG17190
FBgn0032803	CG13082
FBgn0045800	Uhg1
FBgn0053542	upd3
FBgn0039297	CG11852
FBgn0031630	CG15629
FBgn0085354	CG34325
FBgn0034861	CG9815
FBgn0036821	CG3961
FBgn0000179	bi
FBgn0035379	spz5
FBgn0283741	prage
FBgn0004956	upd1
FBti0019154	<na></na>
FBgn0262563	CG43103
FBgn0002868	MtnA
FBgn0036589	CG13067
FBgn0001233	Hsp83
FBgn0030183	Ypel
FBgn0004512	Mdr49
FBgn0262353	CG43051
FBgn0260660	Mp
FBgn0003137	Ppn
FBgn0037487	thw
FBgn0032402	PLCXD
FBgn0033574	Spn47C
FBgn0027843	CAH2
FBgn0034253	CG10936
FBgn0003285	rst
FBgn0265575	yin
FBgn0002633	E(spl)m7-HLH
FBgn0267041	asRNA:CR45485
FBgn0052843	Dh31-R
FBgn0000108	Appl
FBgn0039938	Sox102F
FBgn0000180	bib
FBgn0003326	sca
FBgn0032022	CG14275

FBgn0015011	AhcyL2
FBgn0261526	NT1
FBgn0267029	lncRNA:CR45473
FBgn0031678	Nepl3
FBgn0263380	lncRNA:CR43432
FBgn0000022	ac
FBgn0037126	CG14567
FBgn0004170	sc
FBgn0003499	sr
FBgn0033232	CG12159
FBgn0003089	pip
FBgn0004003	wbl
FBgn0033520	Prx2540-1
FBgn0027844	CAH1
FBgn0002632	E(spl)m6-BFM
FBgn0063127	lncRNA:CR33938
FBgn0032283	CG7296
FBgn0025525	bab2
FBgn0284244	1(2)k05911
FBti0019364	<na></na>
FBgn0038610	CG7675
FBgn0032405	firl
FBgn0261649	tinc
FBgn0038180	Cht5
FBti0019523	<na></na>
FBgn0033518	Prx2540-2
FBgn0035522	CG1273
FBgn0014469	Cyp4e2
FBgn0285970	CG32500
FBgn0033405	CG13954
FBgn0037000	ZnT77C
FBgn0039078	CG4374

Data transformation

```
vsd <- vst(dds)
head(assay(vsd), 3)</pre>
```

3h_Sal-Brk-dark_1 3h_Sal-Brk-light_1 3h_Ubi-Brk-light_1 FBgn0000003 8.390974 7.914333 8.277769 FBgn0000008 11.656992 11.696456 11.782049

```
FBgn0000014
                     8.260044
                                        8.136115
                                                            7.914333
            3h_Sal-Brk-light_3 3h_Ubi-Brk-light_3 3h_Sal-Brk-dark_2
FBgn000003
                      8.707625
                                         8.511504
                                                            8.725605
FBgn0000008
                     11.737912
                                        11.662655
                                                           11.803065
FBgn0000014
                      8.064303
                                         8.000241
                                                            8.135127
            3h_Sal-Brk-light_2 3h_Ubi-Brk-light_2 3h_Sal-Brk-dark_3
FBgn0000003
                      8.513593
                                         8.584759
                                                            8.806269
FBgn0000008
                     11.661077
                                        11.850823
                                                           11.749082
FBgn0000014
                      8.106995
                                         8.063072
                                                            7.914333
```

QC

```
plot(
   assay(vsd)[,1],
   assay(vsd)[,8]
)
```



```
sampleDists <- dist(t(assay(vsd)))
sampleDistMatrix <- as.matrix(sampleDists)
rownames(sampleDistMatrix) <- paste(vsd$Group, vsd$Repeat, sep="-")</pre>
```


plotPCA(vsd, intgroup="Group")

using ntop=500 top features by variance

plotPCA(vsd, intgroup="Group", pcsToUse=2:3)

using ntop=500 top features by variance

Normalized counts for some genes

```
plotCounts(dds, gene="FBgn0024250", intgroup="Group") #Brk
```

FBgn0024250

plotCounts(dds, gene="FBgn0000179", intgroup="Group") #omb norm counts

FBgn0000179

FBgn0261648

plotCounts(dds, gene="FBgn0025360", intgroup="Group") #optix

FBgn0025360

plotCounts(dds, gene="FBgn0011706", intgroup="Group") #reaper

plotCounts(dds, gene="FBgn0262656", intgroup="Group") #myc

FBgn0262656

plotCounts(dds, gene="FBgn0004394", intgroup="Group") #pdm2

FBgn0035954

Checking cell cycle genes

Upload the table with cell cycle genes first

```
cycle <- fread(file ="cellcycle_genes.csv", header=TRUE)

ubi_cycle<-subset(ubiLFC_all, gene %in% cycle$gene)

merge(ubi_cycle, cycle, by="gene") %>%
    column_to_rownames("gene") %>%
    filter(padj<0.05, log2FoldChange<(-0.3)) %>%
    arrange(log2FoldChange) ->ubi_cycle_005

as.matrix(ubi_cycle_005[,-c(3:5,7)]) -> ubi_cycle_m
```

```
#heatmap(ubi_cycle_m)
```

Yifans data to compare

```
yifan <-read.delim(file = "yifan_bulk_RNAseq_96_VS_104_FlyBase_Fields.txt", header=TRUE)</pre>
```