#### Introducción

Introducción y Objetivos

- Describir el rol de los protocolos de capa física
- Describe entre la codificación de bit y las tramas de capa 2
- Describir el propósito de señalización y codificación
- Identificar caraterísticas básica de los medios como cobre, fibra y wireless



#### Introducción

**Medios Magneticos** 

#### **Medios Magnéticos:**

- Almacenamiento en dispositivos cinta / discos
- Costo por bit a transportar es caro
- Cinta de Ultrium 200 Gb

"Nunca subestime el ancho de banda de una camioneta repleta de cintas que va a toda velocidad por la carretera"





#### Objetivo y Funcionamiento

Objetivo de la Capa Física

- Función Principal: Crear señales para representar los bits
- Controlar como los datos son puestos en el medio
- Codificar los bits para representar la tramas de capa 2
- Estos bits se transmiten por diferentes medio físicos



#### **Objetivo y Funcionamiento**

Objetivo de la Capa Física

- Crea una representación de los bits de cada trama
- En señales electricas, opticas o micro ondas

#### Elementos de la capa física:

- Medios Físicos y Conectores
- ❖Representación de Bits
- Codificación de datos y de la información de Control
- ❖Sistema de circuitos del receptor y transmisor en los dispositivos de red

(Recepción de bits)

Nodo de origen Nodo de destino Encapsulación Aplicación Aplicación Aplicación Datos Presentación Presentación PDU PDU Datos Sesión Datos Sesión Datos Transporte Segmento Transporte Segmento Encabezado de Datos red Paguete Paquete Red Red Encabezado Tráiler de Encabezado de Datos Trama Enlace de datos Enlace de datos Trama de trama 1 0 1 0 0 1 1 1 Bits Física Física Bits Bits

Transformación en bits de las comunicaciones de redes humanas

#### Objetivo y Funcionamiento

Funcionamiento de la Capa Física

- -Los medios no transportan la trama como una única entidad-
- Codificación = representación de señal según el medio.
  - Cables = Patrones de pulsos eléctricos
  - Fibra Optica = Patrones del luz
  - Inalámbricos = Patrones de señales de radio

Representaciones de señales en los medios físicos



Señales eléctricas de muestra transmitidas por cable de cobre

IDENTIFICACIÓN DE UNA TRAMA



Señales representativas de fibra de pulso de luz

> Señales de microondas (inalámbricas)

#### **Objetivo y Funcionamiento**

ESTANDARES de la Capa Física

Capas superiores principalmente software

☐ Capa física define caraterística del hardware: Conectores, pines, propiedades del medio, materiales etc)



Propiedades físicas y eléctricas de los medios

Propiedades mecánicas (materiales, dimensiones, diagrama de pines) de los conectores

Representación de los bits mediante señales (codificación)

Definición de las señales de la información de control

#### **Objetivo y Funcionamiento**

Principios Fundaménteles de la Capa Fisica

- Componentes físicos ( medio)
- Codificación (patrones ej: 10011 inicio trama)
- ☐ Señalización: Como representar "1" o "0"







Señalización

#### Señalización

La transmisión de la trama a través de los medios se realiza mediante un stream de bits que se envían uno por vez

Cada señal cuenta con un plazo específico de tiempo Tiempo de Bits. Fuente y destino deben sincronizarse (reloj)

#### Modo de Señalización

Los bits se representan en el medio al cambiar una o más de las siguientes características de una seña

Método de Señalización Método NRZ Método de Manchester



Métodos de Señalización

Física

#### Método de SEÑALIZACIÓN NRZ

Sin retorno a cero (NRZ,) el stream de bits se transmite como una secuencia de valores de voltaje

Voltaje bajo = 0 Voltaje alto = 1



Señalización y Codificación Manchester

Bits de señalización para la transmisión

Codificación Manchester

#### Método de Codificación MANCHESTER

Los valores de bit se representan como transiciones de voltaje

Un cambio de voltaje:

De bajo a alto = 1

Física

De alto a bajo = 0

# La codificación Manchester utiliza el cambio en el nivel de señal en el medio del tiempo de bit para representar los bits. TV O -V "1" bit "0" bit

### Codificación - Agrupación de Bit

Al utilizar el paso de codificación antes de ubicar las señales en los medios, **mejoramos la eficiencia** mediante una transmisión de datos de mayor velocidad.



Codificación agrupación de Bits

#### Ventajas de la utilización de Grupo de Código

- > Permite crear patrones para reconocer las partes de la trama
- > Reducción de error en el nivel de bits
- Limitación de la energía transmitida a los medios
- Distinción entre datos y control
- Mejora la detección de errores en los medios



Codificación agrupación de Bits

#### Codificación 4b / 5b

Física

Los grupos de códigos se utilizan actualmente en las redes modernas, si bien este proceso genera una sobrecarga en las transmisiones de bits, también incorpora características que ayudan a la transmisión de datos a velocidades superiores.

Símbolos de código 4B/5B

#### Códigos de datos

| Código 4B | Simbolo 5B |
|-----------|------------|
| 0000      | 11110      |
| 0001      | 01001      |
| 0010      | 10100      |
| 0011      | 10101      |
| 0100      | 01010      |
| 0101      | 01011      |
| 0110      | 01110      |
| 0111      | 01111      |
| 1000      | 10010      |
| 1001      | 10011      |
| 1010      | 10110      |
| 1011      | 10111      |
| 1100      | 11010      |
| 1101      | 11011      |
| 1110      | 11100      |
| 1111      | 11101      |

#### Códigos no válidos y de control

| Código 4B            | Símbolo 5B |  |
|----------------------|------------|--|
| inactivo             | 11111      |  |
| inicio del stream    | 11000      |  |
| inicio del stream    | 10001      |  |
| final del stream     | 01101      |  |
| final del stream     | 00111      |  |
| error de transmisión | 00100      |  |
| inválido             | 00000      |  |
| inválido             | 00001      |  |
| inválido             | 00010      |  |
| inválido             | 00011      |  |
| inválido             | 00100      |  |
| inválido             | 00101      |  |
| inválido             | 00110      |  |
| inválido             | 01000      |  |
| inválido             | 10000      |  |
| inválido             | 11001      |  |

Medidas de Transferencia de datos

Física

#### Capacidad para transportar datos – Ejemplo Ethernet ANCHO DE BANDA: Capacidad que posee un medio de transportar datos. En Ethernet 802.3 esta medida es de 100 Mbps

Unidades de ancho de banda, velocidad de transmisión (throughput) y capacidad de transferencia útil

| Unidad de ancho de banda | Abreviatura | Equivalencia                                 |
|--------------------------|-------------|----------------------------------------------|
| Bits por segundo         | bps         | 1 bps = unidad fundamental de ancho de banda |
| Kilobits por segundo     | kbps        | 1kbps = 1000bps = 10^3bps                    |
| Megabits por segundo     | Mbps        | 1Mbps = 1000000bps = 10^6bps                 |
| Gigabits por segundo     | Gbps        | 1Gbps = 1000000000bps = 10^9bps              |
| Terabits por segundo     | Tbps        | 1Tbps = 100000000000bps = 10^12bps           |

**RENDIMIENTO o Troughput**: Es la medida de transferencia de bits a través de los medios durante un período de tiempo determinado. En Ethernet el rendimiento medio es de 60 Mbps (IEEE 802.3)

Medidas de Transferencia de datos

#### Capacidad para transportar datos – Ejemplo Ethernet

**CAPACIDAD DE TRANSFERENCIA ÚTIL**: Es la medida de datos utilizables transferidos durante un período de tiempo determinado. Cantidad de datos tranferidos usables, sin encabezados 40 Mbps en ethernet IEEE

802.3.

Física



Capacidad de transferencia útil y velocidad de transmisión (throughput) de datos

Velocidad de transmisión (throughput)

La velocidad de transmisión (throughput) de datos es el rendimiento real de la red. La capacidad de transferencia útil es una medida de la transferencia de datos utilizables una vez que se ha eliminado el tráfico de encabezado de protocolo.

### Medios Físicos

MEDIOS FISICOS: Conexión de la Comunicación

#### Tipos de medios - Estándares

Muchas organizaciones que establecen estándares han contribuido con la definición de las propiedades mecánicas, eléctricas y físicas de los medios disponibles para diferentes comunicaciones de datos

|                                    | 10BASE-T                                          | 100BASE-TX                               | 100BASE-FX                  | 1000BASE-CX          | 1000BASE-T                                                  | 1000BASE-SX                                              | 1000BASE-LX                                                                       | 1000BASE-ZX                | 10GBASE-ZR                 |
|------------------------------------|---------------------------------------------------|------------------------------------------|-----------------------------|----------------------|-------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------|----------------------------|
| Medios                             | UTP Categoria<br>3, 4, 5 EIA/TIA,<br>cuatro pares | UTP Categoria<br>5 EIA/TIA, dos<br>pares | 50/62,5m<br>fibra multimodo | STP                  | UTP Categoria<br>5 (o superior)<br>EIA/TIA, cuatro<br>pares | fibra multimodo<br>de 50/62,5<br>micrones                | fibra multimodo<br>de 50/62,5<br>micrones o<br>fibra<br>monomodo de<br>9 micrones | fibra<br>monomodo de<br>9m | fibra<br>monomodo de<br>9m |
| Longitud<br>máxima del<br>segmento | 100m (328<br>pies)                                | 100m (328<br>pies)                       | 2km (6562<br>pies)          | 25m (82 pies)        | 100m (328<br>pies)                                          | Hasta 550m<br>(1804 pies)<br>según la fibra<br>utilizada | 550m<br>(MMF)10km<br>(SMF)                                                        | Aprox. 70km                | Hasta 80km                 |
| Topología                          | Estrella                                          | Estrella                                 | Estrella                    | Estrella             | Estrella                                                    | Estrella                                                 | Estrella                                                                          | Estrella                   | Estrella                   |
| Conector                           | ISO 8877 (RJ-<br>45)                              | ISO 8877 (RJ-<br>45)                     |                             | ISO 8877 (RJ-<br>45) |                                                             |                                                          |                                                                                   |                            |                            |

#### Medios inalámbricos

| Estándares   | Bluetooth 802.15                              | 802.11 (a, b, g, n),<br>HiperLAN 2 | 802, 11, MMDS,<br>LMDS          | GSM, GPRS, CDMA,<br>de 2,5 a 3G              |
|--------------|-----------------------------------------------|------------------------------------|---------------------------------|----------------------------------------------|
| Velocidad    | <1Mbps                                        | de 1 a 54+ Mbps                    | 22Mbps+                         | de 10 a 384Kbps                              |
| Rango        | Corto                                         | Medio                              | De medio a largo                | Largo                                        |
| Aplicaciones | Punto a punto<br>dispositivo a<br>dispositivo | Redes empresariales                | Fijo, acceso de última<br>milla | PDA, teléfonos<br>móviles, acceso<br>celular |

### Medios Físicos

**Medios Guiados** 

#### **Medios de Cobre - Guiados**

- □ Datos tranferidos como pulsos eléctricos
- ☐ Sensible a interferencia o ruido de motores
- □Escoger el medio apropiado según la ubicación física





Cable coaxial



Cable de par trenzado no blindado



Conexiones RJ-45



**Medios Guiados** 

#### Fuentes de interferencia externa

Los valores de voltaje y sincronización en estas señales son susceptibles a la interferencia o "ruido" que se genera fuera del sistema de comunicaciones.





**Medios Guiados** 

#### Cable par trenzado no blindado (UTP)

- □Cable se trenza para evita la interfencia entre hilos, codificado por colores
- □Conector RJ45
- □Su utilidad en redes Lan Ethernet
- □Crosstalk provocado por el campo magnético de los pares adyacentes





### Medios Físicos

Medios Guiados

#### Cable par trenzado no blindado (UTP)

- □ Alambre de 1mm de grueso trenzado entre sí para cancelación de interferencia
- ☐ Composición 4 pares, trenzado recubierto
- □ Categoría 3 Teléfono (hasta 4 teléfonos)
- □ Categoría 5 Datos mayor tranzado reduciendo la diafonía





**Medios Guiados** 

#### Tipos de cable UTP

Física

Según las diferentes situaciones, es posible que los cables UTP necesiten armarse según las diferentes convenciones.



#### Tipos de cables directo, de conexión cruzada

| Tipo de cable                                         | Estándar                                       | Aplicación                                                                                                             |  |  |
|-------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Cable directo de Ethernet                             | Ambos extremos T568A<br>o ambos extremos T568B | Conexión de un host de red a un dispositivo de red como un switch o un hub.                                            |  |  |
| Cruzado Ethernet Un extremo T568A, otro extremo T568B |                                                | Conexión de dos hosts de red.  Conexión de dos dispositivos intermediarios de red (switch a switch o router a router). |  |  |



**Medios Guiados** 

#### **Conectores de Medios - UTP**

Los estándares establecen las dimensiones mecánicas de los conectores y las propiedades eléctricas aceptables de cada tipo de implementación diferente en el cual se implementan.

### El conector **RJ-45** definido por ISO 8877

Conectores de medios de cobre Terminación RJ-45



Conector defectuoso: Los hilos están sin trenzar en un trecho demasiado largo.



Conector correcto: Los hilos están sin trenzar sólo en el trecho necesario para unir el conector.

Las terminaciones de cableado inadecuadas pueden afectar el rendimiento de la transmisión.





Bloque de inserción a presión 110



Conectores UTP RJ-45





Socket UTP RJ-45



**Otros Medios Guiados** 

#### **Cables COAXIAL**

Física

- □Inicialmente para señales de cable TV en una dirección
- □ISP's ahora usan dos vías para proveer Internet
- □Usan un sistema hibrido: Fibra en unos puntos y Coaxial hacia el cliente

(hybrid fiber coax HFC)

□Estructura





#### **Medios Físicos**

**Otros Medios Guiados** 

#### Par trenzado blindado (STP)

- □Cable trenzado con blindaje
- □ Provee mayor protección contra el ruido que afecta al UTP
- ☐ Se usa cuando hay crostalk (cables de cobre adyacentes)

El nuevo estándar de 10 GB para Ethernet incluye una disposición para el uso del cableado STP.



#### **Medios Físicos**

**Otros Medios Guiados** 

#### Medios de Fibra Óptica

El núcleo (es de plástico o de vidrio) para guiar los impulsos de luz desde el origen hacia el destino.

#### Ventaja:

- ➤Inmune a interferencia eletromagnética EMI
- >Inmnune a interfecencia de radio frecuencias RFI
- ➤ Longitudes mayores que UTP antes de regenerar la señal.
- ➤ Baja perdida de la señal debido a su delgadez y composición física.

#### Desventaja:

- ✓ Más costoso en comparación que el UTP.
- ✓Se necesitan diferentes habilidades y equipos.
- ✓ Manejo mas cuidadoso.





Conectores de fibra



**Otros Medios Guiados** 

#### Medios de Fibra Óptica

☐ Limite practico actual de señalización es aproximadamente 100 Gbps. Sistema de transmisión óptico:

La fuente de luz

Medio de transmisión

Detector

Los láseres o diodos de emisión de luz (LED) generan impulsos de luz que se utilizan para representar los datos transmitidos como bits en los medios.

Los **Fotodiodos**, detectan los impulsos de luz y los convierten en voltajes que pueden reconstruirse en tramas de datos.



**Figura 2-5.** (a) Tres ejemplos de un rayo de luz procedente del interior de una fibra de sílice que incide sobre la frontera de la sílice y el aire con diferentes ángulos. (b) Luz atrapada por reflexión interna total.

**Otros Medios Guiados** 

#### Medios de Fibra Óptica

#### Fuentes de luz:

- LEDs (diodos emisores de luz)
- Láseres semiconductores
- Receptor de una fibra (FOTODIODO) la luz debe llevar suficiente impulso para ser detectado-

| Elemento                      | LED       | Láser semiconductor  |
|-------------------------------|-----------|----------------------|
| Tasa de datos                 | Baja      | Alta                 |
| Tipo de fibra                 | Multimodo | Multimodo o monomodo |
| Distancia                     | Corta     | Larga                |
| Tiempo de vida                | Largo     | Corto                |
| Sensibilidad a la temperatura | Menor     | Considerable         |
| Costo                         | Bajo      | Elevado              |

Figura 2-8. Comparación de diodos semiconductores y LEDs como fuentes de luz.

### Medios Físicos

**Otros Medios Guiados** 

#### Medios de Fibra Óptica

#### Medio de Comunicación



#### **Medios Físicos**

**Otros Medios Guiados** 

#### Medios de Fibra Óptica

La fibra óptica **MONOMODO** transporta un sólo rayo de luz, generalmente emitido desde un láser. Puede transmitir distancias mu largas.

La fibra óptica **MULTIMODO** normalmente utiliza emisores LED que no generan una única ola de luz coherente.





- · Núcleo pequeño
- · Menor dispersión
- Adecuado para aplicaciones de larga distancia (hasta 100km, 62,14 millas)
- Utiliza láser como fuente de luz, a menudo en backbones de campus, para distancias de varios miles de metros
- Núcleo mayor que el del cable monomodo (50 micrones o superior)
- Permite mayor dispersión y, por lo tanto, pérdida de señal
- Usado para aplicaciones de larga distancia, pero para menores distancias que el monomodo (hasta ~2km, 6560pies)
- Usa LED como fuente de luz a menudo en las LAN o para distancias de unos doscientos metros dentro de una red de campus



**Otros Medios Guiados** 

#### Medios de Fibra Óptica - Conectores de fibra



#### **Transciver Fibra Optica**



#### **Medios Físicos**

**Otros Medios Guiados** 

Medios de Fibra Óptica - Conectores de fibra

- □ Compuesta (Núcleo de Vidrio o Plástico, Revestimiento exterior de PVC mas materiales de refuerzo
- ☐ Colocación a metro y medio, en zanjas sobre el lecho o las transoceánanicas sobre el fondo
- □ Formas de Unir Fibra:
  - ❖Usando conectores (enchufes de fibra), perdida de 10 y 20 % + o −
  - ❖Empalmes de forma mecánica (se alinean los dos extremos), se puede utilizar una manga especial, pérdida del 10 %
  - Fucionar para formar una sola conexión (muy poca perdida o atenuación)

#### **Medios Físicos**

**Otros Medios Guiados** 

#### Errores comunes de empalme y terminación de fibra óptica.

- ➤ **Desalineación**: los medios de fibra óptica no se alinean con precisión al unirlos.
- >Separación de los extremos: no hay contacto completo de los medios en el empalme o la conexión.
- Acabado final: los extremos de los medios no se encuentran bien pulidos o puede verse suciedad en la terminación.

El **OTDR** calculará la distancia aproximada en la que se detectan estas fallas en toda la longitud del cable



**Otros Medios Guiados** 

Física

#### Redes de Fibra óptica

- Utilización en LANs y Transmisiones de largo alcance
- Red Anillo: Colección de enlace punto a punto
  - ❖ Interfaz pasiva consiste en dos derivaciones fusionadas a la fibra principal
  - ❖ Repetidor activo, la luz entrante se convierte en señal eléctrica



**Otros Medios Guiados** 

#### Comparación de la fibra óptica y el alambre de cobre

- Mayor ancho de banda
- Baja atenuación (necesidad de menos repetidores)
- □ No hay interferencia electromagnéticas o correcciones debido al ambiente
- Delgada y ligera.
- □ NEGATIVO: se requiere de habilidades técnicas como así también de elementos.

### Medios Físicos

**Otros Medios Guiados** 

#### Comparación de la fibra óptica y el alambre de cobre

#### COMPARATIVA DE CABLES

En el siguiente cuadro se presenta una comparativa de los distintos tipos de cables descritos.

|                                   | Par Trenzado   | Par Trenzado Blindado | Coaxial            | Fibra Óptica                    |
|-----------------------------------|----------------|-----------------------|--------------------|---------------------------------|
| Tecnología ampliamente<br>probada | ✓ Sí           | ✓ Sí                  | ✓ Sí               | ✓ Sſ                            |
| Ancho de banda                    | Medio          | Medio                 | Alto               | Muy Alto                        |
| Full Duplex                       | ✓ Sí           | ✓ Sí                  | ✓ Sí               | Sí por pares                    |
| Distancias medias                 | 100 m - 65 Mhz | 100 m - 67 Mhz        | 500 m - (Ethernet) | 2 km (Multi.)<br>100 km (Mono.) |
| Inmunidad<br>Electromagnética     | Limitada       | Media                 | Media              | Alta                            |
| Seguridad                         | Baja           | Baja                  | Media              | Alta                            |
| Coste                             | Bajo           | Medio                 | Medio              | Alto                            |



#### **Medios Físicos no Guiados**

Medios Físicos Inalámbricos

#### Medios Inalámbricos - Wireless -

- □ Representa bits como radio frecuencias y microondas.
- □El medio es el aire por donde se mueven las señales.
- ☐Se requiere mejorar las seguridad.



#### Medios Físicos no Guiados

Medios Físicos Inalámbricos

#### Medios Inalámbricos - Wireless -

#### Tipos de redes inalámbricas

- ►IEEE estándar 802.11 Wi-Fi CSMA/CD
- ►IEEE estándar 802.15 Bluetooth
- >IEEE estándar 802.16 WiMax
- ➤ Sistema global para comunicaciones móviles (GSM)
- ➤ (GPRS -permiten la transferencia de datos entre estaciones terrestres y enlaces satelitales-)





Medios Físicos Inalámbricos

### LAN Inalámbricas

- ➤ Punto de acceso inalámbrico (AP)
- ➤ Adaptadores NIC inalámbricos
- > Reuters Inalámbricos



Medios Físicos Inalámbricos

# Estándares Inalámbricos

**IEEE 802.11a**: Opera en una banda de frecuencia de 5 GHz y ofrece velocidades de hasta 54 mbps. es menos efectivo al penetrar estructuras edilicias ya que opera en frecuencias superiores.

**IEEE 802.11b**: opera en una banda de frecuencia de 2.4 GHz y ofrece velocidades de hasta 11 mbps. mayor alcance y pueden penetrar mejor las estructuras edilicias que los dispositivos basados en 802.11a.

**IEEE 802.11g**: opera en una frecuencia de banda de 2.4 GHz y ofrece velocidades de hasta 54 mbps. Por lo tanto, los dispositivos que implementan este estándar operan en la misma radiofrecuencia y tienen un alcance de hasta 802.11b pero con un ancho de banda de 802.11a.

**IEEE 802.11n**: define la frecuencia de 2.4 Ghz o 5 GHz. La velocidad típica de transmisión de datos que se espera es de 100 mbps a 210 mbps, con un alcance de distancia de hasta 70 metros.

Medios Físicos Inalámbricos

### Física

### Estándares Inalámbricos

#### CARCTERISTICAS DEL ESTÁNDAR IEEE 802.11a

| CARCTERISTICAS DEL ESTANDAR IEEE 002.11a                            |                                                                                                                 |  |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
|                                                                     | IEEE 802.11a                                                                                                    |  |
| Frecuencia longitud de onda                                         | 5 Ghz                                                                                                           |  |
| Ancho de banda de datos                                             | 54 Mbps, 48 Mbps, 36 Mbps, 24 Mbps, 12 Mbps, 6 Mbps                                                             |  |
| Medidas de seguridad                                                | WEP, OFPM                                                                                                       |  |
| Rango de operación óptima                                           | 50 en interiores y 100 en exteriores                                                                            |  |
| Adaptado para un propósito especifico o para un tipo de dispositivo | Computadoras portátiles móviles en entornos corporativos, puestos de trabajo donde cablear sea un inconveniente |  |

| CARACTERISTICAS DEL ESTANDAR IEEE 802.110                                 |                                                                                       |  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
|                                                                           | IEEE 802.11b                                                                          |  |
| Frecuencia longitud de onda                                               | 2,4 Ghz (2.400 – 2.4835 en America del Norte)                                         |  |
| Ancho de banda de datos                                                   | 11 Mbps, 5 Mbps, 2 Mbps, 1 Mbps                                                       |  |
| Medidas de seguridad                                                      | WEP (Wireless Equivalency Protocol) en combinación con espectro de dispersión directa |  |
| Rango de operación óptima                                                 | 50 metros interiores y 100 metros exteriores                                          |  |
| Adaptado para un propósito<br>especifico o para un tipo de<br>dispositivo | Computadoras portátiles, puestos de trabajo donde cablear presenta dificultades, PDAs |  |

# **Medios Físicos no Guiados**

**Medios Físicos Inalámbricos** 

### Estándares Inalámbricos

| Estándar | Velocidad máxima        | Frecuencia               | Compatible con modelos anteriores |
|----------|-------------------------|--------------------------|-----------------------------------|
| 802.11a  | 54Mb/s                  | 5 GHz                    | No                                |
| 802.11b  | 11 Mb/s                 | 2,4 GHz                  | No                                |
| 802.11g  | 54Mb/s                  | 2,4 GHz                  | 802.11b                           |
| 802.11n  | 600 Mb/s                | 2,4GHz o 5GHz            | 802.11a/b/g                       |
| 802.11ac | 1,3 Gb/s<br>(1300 Mb/s) | 2,4GHz y 5GHz            | 802.11a/n                         |
| 802.11ad | 7 Gb/s<br>(7000 Mb/s)   | 2,4GHz, 5GHz y 60<br>GHz | 802.11a/b/g/n/ac                  |

Medios Físicos Inalámbricos

### Radiotransmisión

- Son fáciles de generar, viajar larga distancia y penetrar edificios sin problemas.
- Omnidireccionales: Que viajan en todas direcciones a partir de la fuente.
- La ondas de radio depende de la frecuencia; A bajas frecuencias la ondas cruzan cualquier obstáculo. A frecuencias altas las ondas tienden a viajar en línea recta y a rebotar en los obstáculos.

Medios Físicos Inalámbricos

### Física

### Radiotransmisión



**Figura 2-12.** (a) En las bandas VLF, LF y MF, las ondas de radio siguen la curvatura de la Tierra. (b) En la banda HF las ondas rebotan en la ionosfera.

Medios Físicos Inalámbricos - Microondas

# Transmisión por microondas

- ☐ Frecuencia por encima de los 100 Mhz, viajan en línea recta.
- Relación señal a ruido más alta.
- ☐ Durante décadas formaron el corazón de la transmisión de la telefonía a distancia.
- Se necesitan repetidores si la distancia entre antenas es muy amplia (una torre de 100m, el repetidor puede estar a 80 Km. De distancia aproximadamente)



Medios Físicos Inalámbricos - Microondas

# Transmisión por microondas

# Medios de Transmisión No Guiados Transmisión por Microondas



Medios Físicos Inalámbricos - Microondas

Física

# Transmisión por microondas

### Desventaja

- No atraviesan bien a los edificios
- ❖ Divergencia en el espacio: Algunas ondas pueden refractarse en las capas atmosféricas más bajas.
- Problemas a causa del clima y de frecuencia
- Gran demanda de este espectro (ahora se utilizan en 10 Ghz)

### Ventaja

- No se necesita derecho de paso.
- ❖ Costo menor en la implementación de antenas en comparación al tendido de fibra.

### Medios Físicos no Guiados

Transmisión Inalámbrica espectro electromagnético

# Políticas del espectro electromagnético

- Organización que regula (Comisión Nacional de Comunicaciones)
- Asignación de espectro.



# Medios Físicos no Guiados

Medios Físicos Inalámbricos - infrarroja

## Ondas infrarrojas y milimétricas.

- Comunicación de corto alcance
- □ No atraviesan objetos sólidos
- ☐ Uso limitado en un entrono de escritorio. No necesita la obtención de licencia

# Ondas infrarrojas y milimétricas





 Se usan mucho para la comunicación de corto alcance. Todos los controles remotos de los televisores, grabadoras de video y estéreos utilizan comunicación infrarroja.

Medios Físicos Inalámbricos - ondas de luz

### Fisica

## Transmisión por ondas de luz

- ☐ Señalización óptica por medio de laser
- ☐ Se necesita que cada edificio tenga su propio laser y fotodetector
- Ancho de banda elevado a bajo costo; Fácil de instalar.
- ☐ No se requiere de licencia de algún órgano de comunicaciones.

### **Medios Físicos no Guiados**

Medios Físicos Inalámbricos - ondas de luz

### Transmisión por ondas de luz

- ☐ El sistema tiene que estar alineado (alineación a 500 mt, se suele utilizar lentes)
- No penetra la lluvia ni la niebla.



Figura 2-14. Las corrientes de convección pueden interferir los sistemas de comunicación por láser. Aquí se ilustra un sistema bidireccional con dos láseres.

### Resumen

Resumen

### Resumen

- Explicar la función que cumplen los servicios y protocolos de la capa <u>física al admitir la c</u>omunicación a través de redes de datos.
- Describir el objetivo de la codificación y señalización de la capa física de la manera en que se utilizan.
- > Describir la función de las señales utilizadas para representar bits a medida que se transporta una trama a través de los medios locales.
- ➤ Identificar las características básicas de los medios de red inalámbricos, de fibra y de cobre.
- Describir los usos comunes de los medios de red inalámbricos, de fibra y de cobre.
- Describir los conceptos de usos comunes de los medios inalámbricos (Microondas, Laser y Ondas de luz)