

Kernel Pooling for Convolutional Neural Networks

Yin Cui^{1,2} Feng Zhou³ Jiang Wang⁴ Xiao Liu³ Yuanqing Lin³ Serge Belongie^{1,2}

¹ Department of Computer Science, Cornell University ² Cornell Tech

Motivation

- > A Convolutional Neural Network (CNN) can be regarded as a feature extractor.
- > However, most CNN uses a simple linear classifier.
- ➤ Recent work have demonstrated the power of 2nd order information on a wide range of visual tasks.
- > Can we bring kernel classifier into CNNs?

Possible Solutions

Implicit feature mapping via kernel function.

- Both time and space complexity is O(n) w.r.t. the number of training data n.
- Need to construct a kernel matrix, hard to be trained with SGD.
- Explicit feature mapping.

Application

Small dataset. CNN learned feature is not good enough.

Kernel Pooling

Tensor Product

Tensor product (p-level), a generalization of outer product.

Taylor Series Kernel

- Taylor series kernel of order p: $\mathcal{K}_{Taylor}(\mathbf{x}, \mathbf{y}) = \sum_{i=0}^{p} \alpha_i^2 (\mathbf{x}^{\mathsf{T}} \mathbf{y})^i$
- Gaussian RBF (via approximation) and Polynomial are special cases of Taylor series kernel.
- The explicit feature map of Taylor series kernel can be represented by tensor product:

$$\phi_{\text{Taylor}}(\mathbf{x}) = [\alpha_0(\mathbf{x}^{(0)})^\top, \dots, \alpha_p(\mathbf{x}^{(p)})^\top]^\top \qquad (\mathbf{x}^\top \mathbf{y})^p = (\mathbf{x}^{(p)})^\top (\mathbf{y}^{(p)})$$

Compact Approximation

Approximating tensor product by Count Sketch:

$$\tilde{\mathbf{x}}^{(p)} = \text{FFT}^{-1}(\text{FFT}(\mathcal{C}_1(\mathbf{x})) \circ \cdots \circ \text{FFT}(\mathcal{C}_p(\mathbf{x})))$$

$$\mathcal{C}(\mathbf{x}) = [c_1, c_2, \dots, c_d]^{\top}$$
, where $c_i = \sum_{i:h(i)=j} s(i)\mathbf{x}_i$

h(.) and s(.) are two hash functions. Their outputs are uniformly drawn from {1,2, ...,d} and {+1, -1}

Experiments **Summary of Polling Strategies** $\frac{1}{hw}\sum_{i,j}X_{ij}$ $\sigma(W_2\sigma(W_1X))$ $rac{1}{hw}\sum_{i,j}X_{ij}X_{ij}^{ op}$ Strategy $\frac{1}{hw}\sum_{i,j}TS(X_{ij})$ Dimension $\mathcal{O}(hwc^2)$ $\mathcal{O}(hw(c+d\log d))$ $\int \mathcal{O}(hwp(c+d\log d))$ $\mathcal{O}(hwcd)$ Time $\mathcal{O}(hwcd)$ $\mathcal{O}(hwcd)$ Parameters

Back-propagating loss to learn the coefficient for each term in Taylor series kernel:

Visual Recognition Accuracy

Dataset	CNN	Original	BP [23]	CBP [11]	KP	Others	
CUB [43]	VGG-16 [38]	73.1*	84.1	84.3	86.2	82.0	84.1
	ResNet-50 [15]	78.4	N/A	81.6	84.7	[18]	[16]
Stanford Car [19]	VGG-16	79.8*	91.3	91.2	92.4	92.6	82.7
	ResNet-50	84.7	N/A	88.6	91.1	[18]	[14]
Aircraft [27]	VGG-16	74.1*	84.1	84.1	86.9	80.7	
	ResNet-50	79.2	N/A	81.6	85.7	[14]	
Food-101 [4]	VGG-16	81.2	82.4	82.4	84.2	50.76	
	ResNet-50	82.1	N/A	83.2	85.5	[4]	

Image size of 224x224 is marked by *, otherwise 448x448 (except 224x224 for Food-101). BP: Bilinear Pooling; CBP: Compact Bilinear Pooling; KP: Kernel Pooling

End-to-end Training with Kernel Pooling

