Primera No-Tarea

Conjuntos Abstractos

Los ejercicios de esta sección se deben resolver en la categoría de conjuntos abstractos, \mathcal{S} , a menos que se indique lo contrario.

Ejercicio 1 Demuestra que $f: A \rightarrow B$ es mono si y sólo si f es inyectiva.

Ejercicio 2 Una flecha $f: A \to B$ es constante si se puede factorizar a través del terminal, es decir, existe $b: 1 \to B$ que hace conmutar al siguiente diagrama

Muestra que $f: A \to B$ es constante si y sólo si para cualesquiera $a_1, a_2: 1 \to A$ se satisface $fa_1 = fa_2$.

Ejercicio 3 Sean $f: A \to B$ y $g: B \to C$ flechas. Demuestra lo siguiente:

- 1) Si f y g son epi, entonces gf es epi. II) Si gf es epi, entonces g es epi.
- **Ejercicio 4** Sea P la categoría generada por el orden parcial (P, \leq) . Muestra que toda flecha en P es mono y epi. Con esto, da un ejemplo de una categoría en la que no se cumple que mono y epi implica iso.

Ejercicio 5 Dadas una categoría A y un objeto $A \in A$, se define la categoría rebanada A/A mediante lo siguiente: los objetos son flechas en A de la forma $f: X \to A$ y dados dos objetos $f: X \to A$ y $g: Y \to A$, una flecha de f a g es una flecha $h: X \to Y$ en A tal que g = hf. Demuestra que A/A es una categoría.

Ejercicio 6 Muestra que para cualquier objeto A, la rebanada \mathcal{S}/A tiene objetos terminal e inicial.

Ejercicio 7 Sea $m: S \rightarrow A$ un subobjeto y considera su flecha característica $\chi_m: A \rightarrow \Omega$. Demuestra que para cualquier elemento generalizado $x: X \rightarrow A$ se satisface:

$$x \in_A \mathfrak{m} \iff \chi_{\mathfrak{m}} x = \nu_{X}$$

donde v_X es la composición de $!_X: X \to 1$ con $v: 1 \to \Omega$.

Ejercicio 8 Sean $f: A \to B$ y $n: T \to B$. Usa el lema del producto fibrado para encontrar la característica de la imagen inversa $f^{-1}n$.

ZFC

Ejercicio 9 Demuestre las siguientes equivalencias o implicaciones. En cada inciso indique claramente qué axiomas de ZFC se utilizan durante la prueba.

- I) El axioma de extensionalidad implica el enunciado $\forall x \forall y (\forall w (x \in w \leftrightarrow y \in w) \rightarrow x = y)$.
- II) El enunciado $\forall x \forall y \exists p \forall w ((w = x \lor w = y) \rightarrow w \in p)$ es equivalente al axioma del par.
- III) El enunciado $\forall x \exists p \forall w (\forall z (z \in x \to z \in w) \to w \in p)$ es equivalente al Axioma de potencia.
- $\text{iv) El enunciado } \forall x \forall y \exists p \forall w (w \in p \leftrightarrow (p \in x \lor p = y)) \text{ implica el axioma del par.}$

Ejercicio 10 Los siguientes enunciados son versiones "débiles" de los axiomas de par y potencia, respectivamente. Demuestra que éstos son equivalentes a sus contrapartes, los axiomas "no débiles" del par y potencia, respectivamente. En cada inciso indica claramente cuáles axiomas de ZFC se utilizan para probar la equivalencia.

- 1) $\forall x \forall y \exists p \forall w ((w = x \lor w = y) \rightarrow w \in p)$ es al axioma débil del par.
- II) $\forall x \exists p \forall w (\forall z (z \in x \to z \in w) \to w \in p)$ es el axioma débil del potencia.

Ejercicio 11 Sea A un conjunto. Da condiciones necesarias y suficientes sobre cómo debe ser A para que la cualesquiera $\{x \mid \forall z \forall y ((z \in A \land y \in z) \rightarrow x \in y)\}$ sea conjunto.

Ejercicio 12 Para cada inciso escribe una fórmula de primer orden en la teoría de conjuntos que describa el correspondiente concepto. En las fórmulas *únicamente* se pueden utilizar símbolos lógicos, paréntesis, cuantificadores, variables y el símolo ' \in '; sin abreviaturas de lenguaje como ' \subseteq ', ' $x = \emptyset$ ', ' $x = \{y\}$ ', etcétera. Se puede abreviar una fórmula sólo si ésta ya se escribió en un inciso anterior.

- 1) x es el conjunto par de y y z.
- II) x es el par ordenado de y y z.
- III) x es par ordenado.
- iv) x es la primera entrada del par ordenado y.
- v) x es la segunda entrada de un par ordenado.
- vi) x es una relación.
- vII) x es el dominio de la relación y.

vIII) x es el campo de la relación y.

- IX) x = 0.
- x) x = 1.
- xi) x = 4.
- xII) x es la intersección de y.
- xIII) x es elemento de la intersección de y.
- xiv) x es la intersección de la intersección de y.

Sólo hay que dar las fórmula, no es necesario ningún tipo de justificación.

Ejercicio 13 Es un hecho que todas las colecciones de este ejercicio son conjuntos. Demuestra o refuta (con un contraejemplo) cuatro de los siguientes incisos, prueba todas tus afirmaciones.

I)
$$\bigcup \{\{x\}, \{y\}\} = \{x, y\}.$$

II)
$$\bigcup\bigcup\bigcup\{\{\{x\}\}\}=x.$$

III)
$$\bigcup \{x\} = \emptyset$$
 y $x = \emptyset$ son equivalentes.

IV) Se da la igualdad (x,y) = (a,b) únicamente si x = a y y = b.

v)
$$\{x,y\} = \{a,b\}$$
 si y sólo si $x = a$ y

$$y = b$$
.

$$\mathbf{vi}) \ \mathscr{P}(\varnothing) = \{\varnothing\}.$$

VII)
$$\{\emptyset, \{\emptyset\}\} \notin \{\emptyset, \{\emptyset\}\}.$$

viii) Se tiene
$$\{\{x\}, \{x, y\}, \{x, y, z\}\} = \{\{a\}, \{a, b\}, \{a, b, c\}\} \text{ sólo cuando } x = a, y = b, y = c.$$

Ejercicio 14 Determina cuales de las siguientes afirmaciones son verdaderas, justifica tu respuesta con una demostración o un contraejemplo. Demuestra todas tus afirmaciones.

- 1) Para todo conjunto x existe un conjunto y tal que $x \not\subseteq y$
- 11) Para todo conjunto x existe un conjunto y tal que $x \notin y$

Ejercicio 15 Todas las colecciones de este ejercicio son conjuntos. Prueba dos de los siguientes incisos:

- I) $x \subseteq \mathcal{P}(y)$ si y sólo si $\bigcup x \subseteq y$.
- II) Si $x \neq \emptyset$, $y \in \bigcap \{ \mathscr{P}(a) \mid a \in x \}$ ocurre sólo si $y \subseteq \bigcup x$.
- III) $\bigcup \{\mathscr{P}(\mathfrak{a}) \mid \mathfrak{a} \in \mathfrak{X}\} \subseteq \mathscr{P}(\bigcup \mathfrak{X})$ pero no siempre $\bigcup \{\mathscr{P}(\mathfrak{a}) \mid \mathfrak{a} \in \mathfrak{X}\} \neq \mathscr{P}(\bigcup \mathfrak{X}).$
- IV) $(\bigcup x) \cap (\bigcup y) = \bigcup \{a \cap b \mid (a, b) \in x \times y\}.$

Ejercicio 16 Sean X, Y, \mathscr{F} conjuntos tales que $\mathscr{F} \neq \varnothing$ y f: X \rightarrow Y una función. Demuestra que las siguientes clases son conjuntos

- I) $\langle \bigcup \mathcal{G} \mid \mathcal{G} \in \mathcal{F} \rangle$
- II) $\langle x \mid \exists v \exists w \exists y \exists z (v \in \mathscr{F} \land w \in v \land y \in w \land z \in y \land x \in z) \rangle$
- III) $\langle x \mid \forall \mathscr{G} \in \mathscr{F} \exists A \in \mathscr{G}(x \in A) \rangle$
- iv) $\langle \mathscr{P}(A) | A \in \mathscr{F} \rangle$
- v) $\langle A \times \mathscr{P}(A) | A \in \mathscr{F} \rangle$
- v_I) $\langle B \setminus (f[A]) | A \subseteq X \land B \in \mathscr{F} \rangle$