#### **Parse Tree-**

- The process of deriving a string is called as derivation.
- The geometrical representation of a derivation is called as a parse tree or derivation tree.



## 1. Leftmost Derivation-

- The process of deriving a string by expanding the leftmost non-terminal at each step is called as leftmost derivation.
- The geometrical representation of leftmost derivation is called as a leftmost derivation tree.

### **Example-**

Consider the following grammar-

 $S \rightarrow aB / bA$ 

 $S \rightarrow aS / bAA / a$ 

 $B \rightarrow bS / aBB / b$ 

(Unambiguous Grammar)

Let us consider a string w = aaabbabbba

Now, let us derive the string w using leftmost derivation.

#### **Leftmost Derivation-**

#### $S \rightarrow a\mathbf{B}$

- $\rightarrow$  aa**B**B (Using B  $\rightarrow$  aBB)
- $\rightarrow$  aaa**B**BB (Using B  $\rightarrow$  aBB)
- $\rightarrow$  aaab**B**B (Using B  $\rightarrow$  b)
- $\rightarrow$  aaabb**B** (Using B  $\rightarrow$  b)
- $\rightarrow$  aaabba**B**B (Using B  $\rightarrow$  aBB)
- $\rightarrow$  aaabbab**B** (Using B  $\rightarrow$  b)
- $\rightarrow$  aaabbabb**S** (Using B  $\rightarrow$  bS)
- $\rightarrow$  aaabbabbb (Using S  $\rightarrow$  bA)
- $\rightarrow$  aaabbabbba (Using A  $\rightarrow$  a)



# 2. Rightmost Derivation-

- The process of deriving a string by expanding the rightmost non-terminal at each step is called as rightmost derivation.
- The geometrical representation of rightmost derivation is called as a **rightmost derivation tree**.

#### **Example-**

Consider the following grammar-

 $S \rightarrow aB / bA$ 

 $S \rightarrow aS / bAA / a$ 

 $B \rightarrow bS / aBB / b$ 

(Unambiguous Grammar)

Let us consider a string w = aaabbabbba

Now, let us derive the string w using rightmost derivation.

### **Rightmost Derivation-**

 $S \to a \boldsymbol{B}$ 

- $\rightarrow$  aaB**B** (Using B  $\rightarrow$  aBB)
  - $\rightarrow$  aaBaB**B** (Using B  $\rightarrow$  aBB)
  - $\rightarrow$  aaBaBb**S** (Using B  $\rightarrow$  bS)
  - $\rightarrow$  aaBaBbb**A** (Using S  $\rightarrow$  bA)
  - $\rightarrow$  aaBa**B**bba (Using A  $\rightarrow$  a)
  - $\rightarrow$  aa**B**abbba (Using B  $\rightarrow$  b)
  - $\rightarrow$  aaaB**B**abbba (Using B  $\rightarrow$  aBB)
  - $\rightarrow$  aaa**B**babbba (Using B  $\rightarrow$  b)
  - $\rightarrow$  aaabbabbba (Using B  $\rightarrow$  b)



**Rightmost Derivation Tree** 

#### **NOTES**

- For unambiguous grammars, Leftmost derivation and Rightmost derivation represents the same parse tree.
- For ambiguous grammars, Leftmost derivation and Rightmost derivation represents different parse trees.

#### Here,

- · The given grammar was unambiguous.
- That is why, leftmost derivation and rightmost derivation represents the same parse tree.

# Leftmost Derivation Tree = Rightmost Derivation Tree

Also Read- Ambiguous Grammar

## **Properties Of Parse Tree-**