CHAPTER 3

Distribuzioni di probabilità multidimensionali

3.1 Probabilità per variabili aleatorie in più dimensioni

Quando un evento è identificato da un vettore \underline{x} , si parla di di distribuzioni di probabilità multidimensionali. Per cui risultano verificati gli assiomi di Kolgomorov.

$$f(\underline{x}): \mathbb{R}^n \to \mathbb{R}^+$$

e la cdf per estensione della definizione mono-dimensionale è:

$$cdf(\underline{x}) = \int_{-\infty}^{\underline{x}} f(\underline{x}) \cdot d\underline{x}$$

la porbabilià di un evento per una variabile continua \underline{x} è definita su una regione di spazio $A\subseteq\mathbb{R}^n$:

$$P(\underline{x} \in A) = \int_{A} f(\underline{x}) \cdot d\underline{x}$$

3.2 Distribuzione di probabilità marginale

Data una distribuzione di probabilità multidimensionale $pdf(x_1, \dots x_n)$ si definisce distribuzione di probabilità marginale:

$$f_{x_i}(x_1,\dots,x_i,\dots,x_n) = \int pdf(x_1,\dots,x_i,\dots,x_n)dx_1\dots dx_n \qquad (3.1)$$

Figure 3.1: Distribuzione di probabilità marginale per una pdf(x,y)

3.3 Distribuzione di probabilità condizionata

Per semplicità consideriamo una distribuzione di probabilità rispetto a due variabili aleatorie x ed y e le rispettive distribuzioni marginali f_x e f_y . Vogliamo determinare la probabilità che $P(x|y=y_0)$ o $P(y|x=x_0)$. Consideriamo due eventi $A, B \subset \Omega$ disgiunti. Possiamo identificare le pdf come:

- $P(A \cap B) \rightarrow \text{joint pdf}$
- $P(A) \rightarrow pdf$ marginale
- $P(A|B) \to pdf$ condizionata

Definiamo L'evento A = $\{y \mid x \in [x_0, x_0 + dx], y \in \mathbb{R}\}$ e l'evento B = $\{x \mid y \in [y_0, y_0 + dx], x \in \mathbb{R}\}$. Le probabilità associate ai singoli

eventi sono $P(A) = f_x$ e $P(B) = f_y$. Mentre la probabilità congiunta è $P(A \cap B) = \int pdf(x_0, y_0)dxdy$.

Di conseguenza possiamo scrivere la probabilità condizionata come:

$$pdf(x|y = y_0) = P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{pdf(x, y_0)}{fx(y_0)}$$
(3.2)

Tale risultato ci riconduce al fatto che le componenti di \underline{x} possono essere statisticamente indipendenti tra di loro e dunque nel caso lo fossero possiamo riscrivere la $pdf(\underline{x})$ come:

$$pdf(x_1, x_2, \cdots, x_n) = pdf(x_1) \cdot pdf(x_2) \cdots pdf(x_n)$$
(3.3)

3.4 Varianza di una pdf multidimensionale

Nel caso della Varianza, le componenti di una variabile aleatoria multidimensionale \underline{x} possono essere legate tra loro, ovvero avere una relazione nel modo in cui variano, tale legame prende il nome di **covarianza**. Per due componenti x_i e x_j con $i \neq j$ si ha che:

$$\sigma_{i,j}^2 = E[(x_i - \mu_i)]E[(x_j - \mu_j)] = E[(x_i - \mu_i)(x_j - mu_j)]$$
 (3.4)

mentre

$$\sigma_{i,i}^2 = E[(x_i - \mu_i)^2] \tag{3.5}$$

di conseguenza la varianza di una $pdf(\underline{x})$ multidimensionale è rappresentata da una matrice che prende il nome di **matrice di covarianza** ed ha dimensione $n \times n$ nel caso \underline{x} abbiamo dimensione n.

$$V[\underline{x}] = \begin{bmatrix} V[x_1] & \cdots & Cov[x_1, x_n] \\ \vdots & \ddots & \vdots \\ Cov[x_n, x_1] & \cdots & V[x_n] \end{bmatrix}$$
(3.6)

Nel caso in cui le componenti della variabile aleatoria \underline{x} siano indipendenti tra loro si ha che la covarianza è nulla e dunque la (3.3) diventa una matrice

4CHAPTER3. DISTRIBUZIONI DI PROBABILITÀ MULTIDIMENSIONALI diagonale.

$$V[\underline{x}] = \begin{bmatrix} V[x_1] & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & V[x_n] \end{bmatrix}$$
(3.7)

La covarianza gode delle seguenti proprietà:

- Avere $Cov[x_i, x_j] = 0$ non implica necessariamente che le due variabili aleatorie siano statisticamente indipendenti.
- Se due variabili aleatorie sono statisticamente indipendenti $\Rightarrow Cov[x_i,x_j]=0$
- Se due variabili aleatorie sono linearmente dipendenti $\Rightarrow Cov[x_i,x_j]=0$

Figure 3.2: Esempi di come la covarianza si presenta in una distribuzione

3.5 Correlazione

Gli elementi V_{ij} della matrice di covarianza misurano il grado di correlazione tra le variabili x_i e x_j . Dato che ogni variabili mostra una varianza finita e positiva è utile confrontare la covarianza rispetto alle loro rispettive varianze,

per farlo si introduce il coefficiente di correlazione:

$$\rho_{ij} = \frac{Cov[x_i, x_j]}{\sigma_i \sigma_j} \tag{3.8}$$

tale grandezza $\rho_{ij} \in [-1, 1].$

Figure 3.3: Indice di correlazione di Pearson per un campione di misure.

3.5.1 Cambiamento di variabili per una pdf multidimensionale

La matrice della varianza (3.6) è diagonalizzabile, questo vuol dire che esiste un cambio di base che la diagonalizza, in fisica è equivalente ad avere un cambio di variabile. Sperimentalmente raccolto un campione di misure esiste sempre un cambio di variabile tale per cui la matrice di covarianza è diagonalizzabile. Anche se con un cambio di variabili le grandezze diventano decorrelate $Cov[x_i, x_j] = 0$ questo non vuol dire che siano statisticamente indipendenti.

Analogamente al caso mono-dimensionale per il cambio di variabili si ha che date delle funzioni:

$$\begin{cases} x = u(\alpha, \beta) \\ y = w(\alpha, \beta) \end{cases}$$

la join pdf nelle nuove coordinate sarà data da:

$$pdf(\alpha, \beta) = pdf(x, y) \cdot |detJ| \tag{3.9}$$

dove J è la matrice Jacobiana associata alla trasformazione.

3.5.2 Propagazione degli errori

Ipotizziamo di avere un insieme di N misure $\{x_i\}_i^N$ e usiamo tali valori come componenti di un vettore $\underline{x} \in \mathbb{R}^N$, descritto da una $\mathrm{pdf}(\underline{x})$ di cui conosciamo $\underline{\mu}$ e matrice di covarianza $V[\underline{x}]$, vogliamo calcolare $y = u(\underline{x})$. Per Farlo approssimiamo $u(\underline{x})$ con un sviluppo di Taylor al primo ordine in un intorno di μ :

$$u(\underline{x}) \approx u(\mu) + \nabla u \big|_{x=\mu} \cdot (\underline{x} - \mu)$$

Dunque i momenti della pdf(y) sono:

•
$$E[y] = E[u(\underline{\mu})] + \sum_{i=1}^{n} \frac{\partial}{\partial x_i} u(\underline{\mu}) E[(x_i - \mu_i)] = u(\underline{\mu})$$

$$\bullet \ \sigma_y^2 = E[y^2] - E[y]^2 = E[(\underline{x} - \underline{\mu})^T H(u(\underline{x}))\big|_{x = \underline{\mu}} (\underline{x} - \underline{\mu})] =$$

$$= \sum_{i,j=1}^{n} \frac{\partial u(\underline{x})}{\partial x_i} \cdot \frac{\partial u(\underline{x})}{\partial x_j} \Big|_{x=\mu} \cdot V_{ij}$$

Per un caso bidimensionale l'incertezza su y = f(x,y) è data da:

$$\sigma_y^2 = \left(\frac{\partial f(x,y)}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f(x,y)}{\partial y}\right)^2 \sigma_y^2 + 2\frac{\partial f(x,y)}{\partial x} \cdot \frac{\partial f(x,y)}{\partial y} Cov[x,y] \quad (3.10)$$

3.6 Distribuzione di Gauss Multidimensionale

L'espressione di una Gaussiana in più dimensioni è data da:

$$f(\underline{x} \mid \underline{\mu}, V) = \frac{1}{(2\pi)^{\frac{n}{2}} det V^{\frac{1}{2}}} \cdot \exp\left[-\frac{1}{2} < (\underline{x} - \underline{\mu}), V^{-1}(\underline{x} - \underline{\mu}) > \right] \quad (3.11)$$

Figure 3.4: Gaussiana in due variabili (x,y) e le sue distribuzioni marginali

La gaussiana in due dimensioni in generale ha un profilo ellittico per 1σ . L'angolo d'inclinazione del semiasse maggiore è legato al coefficiente di correlazione:

$$\theta = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 - \sigma_y^2} \tag{3.12}$$

Se esplicitiamo l'equazione (3.11) per due variabili si ha:

$$f(x,y \mid \mu_x, \mu_y, V) =$$

$$= \frac{1}{(2\pi)\sigma_x\sigma_y\sqrt{1-\rho^2}} \exp\Big\{-\frac{1}{2(1-\rho^2)}\Big[\Big(\frac{x-\mu_x}{\sigma_x}\Big)^2 - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y} + \Big(\frac{y-\mu_y}{\sigma_y}\Big)^2\Big]\Big\}$$

8CHAPTER 3. DISTRIBUZIONI DI PROBABILITÀ MULTIDIMENSIONALI

Se il coefficiente di correlazione di Pearson $\rho=0$ possiamo riscrivere l'equazione precedente come:

$$f(x, y \mid \mu_x, \mu_y, V) = \frac{1}{(2\pi)\sigma_x \sigma_y} \exp\left\{-\frac{1}{2} \left[\left(\frac{x - \mu_x}{\sigma_x}\right)^2 + \left(\frac{y - \mu_y}{\sigma_y}\right)^2 \right] \right\} =$$
$$= G(x, \mu_x, \sigma_x) \cdot G(y, y, \sigma_y)$$

In generale è solo vero che due variabili statisticamente indipendenti sono anche decorrelate, nel caso Gaussiano vale anche il viceversa, ovvero se due variabili sono decorrelate allora sono anche statisticamente indipendenti.