Homework 3

ECON 8050: Macroeconomics II Tate Mason

Problem 1: Dynamic Programming

Consider the following model with a disability shock. There are three sources of uncertainty:

- Out-of-pocket medical shock evolving according to transition matrix $\Psi(x_t|x_{t-1})$.
- Productivity evolving according to $T(z_t|z_{t-1})$.
- Disability shock.

The timing of events is as follows: At the beginning of the period, an individual with savings k_t learns their productivity z_t and medical shock x_t . Then they decide whether to work ($l_t = 0$ or $l_t > 0$). If working, labor income is wz_tl_t . Then, they decide about consumption c_t and savings k_{t+1} .

At the end of the period, the disability shock is realized with probability d. Disabled individuals stay permanently disabled, do not work, receive constant benefits DI, and make only consumption/savings decisions. Medical spending for disabled individuals is fully covered by public insurance.

- (1) Write down the dynamic programming problem of a non-disabled individual, denoting the value function as V_t .
- (2) Write down the dynamic programming problem of a disabled individual, denoting the value function as V_t^d .
- (3) Modify the problem assuming disabled individuals can recover with probability f. Recovered individuals draw new productivity realizations from the invariant distribution.
- (4) Extend the model to allow non-disabled individuals to falsely claim disability benefits, introducing the value function for falsely disabled V_t^{fd} .

Problem 2: Consumption-Savings Model

A consumer with infinite life maximizes quadratic utility:

$$u(c_t) = -\frac{1}{2}(c_t - \bar{c})^2$$

where future utility is discounted at rate β and borrowing/savings occur at interest rate r with $\beta(1+r)=1$.

The consumer's endowment y_t is i.i.d. with values y_H and y_L occurring with probabilities p_H and p_L respectively. The budget constraint is:

$$c_t = a_t(1+r) + y_t - a_{t+1}.$$

(1) Solve for the consumption and saving functions. Provide intuition on when savings are positive or negative.

ECON - 8050 Tate Mason

(2) Introduce a borrowing constraint $a_{t+1} \ge 0$. Solve the consumer's problem in recursive form numerically using given parameters.

- (3) Plot policy functions a_{t+1} and c_t as functions of current assets a_t for cases with and without borrowing constraints.
- (4) Simulate the income process and optimal decision rules over T=100 periods. Compare results with and without borrowing constraints.

Homework 3 2