Esercitazione 5

Differenze finite per equazioni di reazione - diffusione: equazioni di Kolmogorov-Fisher e di Nagumo in 1D

5.1) (Kolmogorov-Fisher) Estendere l'esercitazione precedente, sulla discretizzazione dell'equazione del calore 1D con differenze finite all'indietro in tempo (Eulero implicito) con passo Δt e differenze finite centrate in spazio con passo h, all'equazione di Kolmogorov-Fisher

$$u_t = \sigma u_{xx} + bu(1-u) + I_{app} \ su \ [0\ 1] \times [0\ T], \ con$$

- dati al bordo di Neumann omogenei: $u_x(0,t) = 0$, $u_x(1,t) = 0$,
- dato iniziale: $u(x,0) = u_0(x)$.

Utilizzare i parametri $\sigma = 1e - 3$, b = 5. Discretizzare come prima in termine di diffusione σu_{xx} in modo implicito (al tempo t_{k+1}), mentre il termine di reazione bu(1-u) in modo esplicito (al tempo t_k), in modo da evitare la risoluzione di un problema nonlineare ad ogni passo temporale.

- a) Studiare le soluzioni stazionarie del problema quando $I_{app}=0$ e $u_0=\alpha$ numero reale.
- b) Considerare invece $u_0=0$ e studiare le dinamiche generate da un impulso di "corrente applicata"

 $I_{app} = \begin{cases} \alpha, & \text{per } 0 \leq x \leq 0.04, \\ 0 & \text{altrimenti,} \end{cases}$ di durata $0 \leq t \leq 1$, per es. con i valori $\alpha = 0.1$, 1, 10 generando sia un'animazione in tempo della soluzione sull'intervallo [0 1] che un plot in tempo della soluzione nel punto centrale x = 0.5.

5.2) (Nagumo) Ripetere l'esercizio precedente per l'equazione di Nagumo

$$u_t = \sigma u_{xx} + bu(u - \beta)(\delta - u) + I_{app}$$
 su [0 1] × [0 T], con

- dati al bordo di Neumann omogenei: $u_x(0,t) = 0$, $u_x(1,t) = 0$,
- dato iniziale nullo: u(x,0)=0,

Utilizzare i parametri $\sigma = 1e - 3$, b = 5, $\beta = 0.1$, $\delta = 1$.