Traveling Politician Problem:

Outline: Start at the capital of lowa, want to travel through all states optimally by distance and end at Washington D.C.

Key Notes:

- Different from the Traveling Salesman problem in that we do not want to return to the start.
- Different from optimal path algorithms such as Djikstra's because we have to travel over every node.
- We are given a complete graph of 51 nodes (50 states plus D.C.).
- A naive solution would take 49! iterations (We know the start and end nodes)
- Distances are tracked in miles

Initial Thoughts:

- 1. Approach using clustering, breakdown to clusters and connect clusters as well as inner cluster.
- 2. Use state boundaries as the possible paths to explore when performing permutations.

Approach 1 seemed to minimize the problem more so that is the solution I started to implement.

Outline of Code:

- 1. Imports
- 2. Basic name & input handling (locations of state capitals)
- 3. Base functions (Input formatting, distance between states, calculating the n^th closest states)
- 4. Plotting
- 5. Plotting Clusters (w/o Hawaii and Alaska)
- 6. Optimization functions (cluster formatting, cluster ordering, inner-cluster distance optimization, cluster connection optimization, path output)
- 7. Optimal insertions of Alaska and Hawaii

Initial Assumptions:

- When performing the clustering, we leave Hawaii and Alaska out to prevent the two from being clusters individually.

Initial Plot:

Plot1. Positions of each capital plus D.C.

Plots including clustering:

Clustering was performed using K-Means clustering by coordinates.

Fig2. Capitals by cluster 2-15

Observations:

- We can see that for clusters 1-5, the split begins vertically. Multi-layered clusters occur from cluster 6 and onward.
- In clusters 13, 14, 15, the first individual state as a cluster occurs with Arizona.

To determine the order between clusters, I performed another permutative analysis over the number of clusters, disregarding the cluster that included lowa (start node) and the cluster that included D.C. (end node).

Since I did not optimize through Held-Karp algorithm, we can observe the following runtimes:

Cluster Size	Max Component	Cluster Size	Max Component	
2	32	9	8	
3	21	10	8	
4	16	11	7	
5	13	12	7	
6	13	13	7	
7	8	14	7	
8	8	15	7	

The tradeoff between component size and cluster size becomes most apparent at cluster size 7.

- 1. Within each cluster, we perform (Max Component 1)! operations since we know the start node.
- 2. Between the clusters, we perform (Cluster Size 2)! operations since we know the start and end clusters.

I examined cluster sizes of 7-12 to keep the permutation size under 10!.

Analysis:

Paths without Hawaii and Alaska

Cluster size 7:

- ['IA', 'KS', 'OK', 'NE', 'MN', 'SD', 'ND', 'ID', 'WA', 'OR', 'CA', 'NV', 'UT', 'MT', 'WY', 'CO', 'NM', 'AZ', 'TX', 'AR', 'MS', 'LA', 'AL', 'FL', 'GA', 'TN', 'KY', 'IN', 'IL', 'MO', 'WI', 'MI', 'OH', 'NJ', 'CT', 'RI', 'MA', 'NH', 'ME', 'VT', 'NY', 'PA', 'DE', 'MD', 'VA', 'NC', 'WV', 'SC', 'DC']
- Distance traveled: 12481.556954489908

Cluster size 8:

- ['IA', 'MN', 'NE', 'KS', 'MO', 'AR', 'OK', 'TX', 'NM', 'AZ', 'CO', 'WY', 'UT', 'MT', 'ID', 'NV', 'CA', 'OR', 'WA', 'ND', 'SD', 'WI', 'IL', 'IN', 'MI', 'OH', 'KY', 'TN', 'MS', 'LA', 'AL', 'FL', 'GA', 'SC', 'CT', 'RI', 'MA', 'NH', 'ME', 'VT', 'NY', 'NJ', 'PA', 'DE', 'MD', 'VA', 'NC', 'WV', 'DC']
- Distance traveled: 12380.665785460324

Cluster size 9:

- ['IA', 'KS', 'NE', 'MN', 'SD', 'ND', 'MT', 'ID', 'UT', 'NV', 'CA', 'OR', 'WA', 'WY', 'CO', 'AZ', 'NM', 'OK', 'TX', 'AR', 'MS', 'LA', 'AL', 'FL', 'GA', 'SC', 'WV', 'OH', 'IN', 'KY', 'TN', 'MO', 'IL', 'WI', 'MI', 'NY', 'VT', 'ME', 'NH', 'MA', 'RI', 'CT', 'NJ', 'PA', 'DE', 'MD', 'VA', 'NC', 'DC']
- Distance traveled: 11935.711327404602

Cluster size 10:

- ['IA', 'MO', 'KS', 'NE', 'MN', 'SD', 'ND', 'MT', 'ID', 'UT', 'NV', 'CA', 'OR', 'WA', 'WY', 'CO', 'AZ', 'NM', 'OK', 'TX', 'LA', 'MS', 'AR', 'TN', 'GA', 'AL', 'FL', 'SC', 'KY', 'IN', 'IL', 'WI', 'MI', 'OH', 'NY', 'VT', 'ME', 'NH', 'MA', 'RI', 'CT', 'NJ', 'PA', 'DE', 'MD', 'VA', 'NC', 'WV', 'DC']
- Distance traveled: 12047.958869039592

Cluster size 11:

- ['IA', 'NE', 'KS', 'MO', 'IL', 'WI', 'MN', 'SD', 'ND', 'MT', 'UT', 'ID', 'OR', 'WA', 'NV', 'CA', 'AZ', 'NM', 'CO', 'WY', 'OK', 'TX', 'AR', 'MS', 'LA', 'AL', 'FL', 'SC', 'GA', 'TN', 'KY', 'IN', 'MI', 'OH', 'WV', 'NY', 'VT', 'ME', 'NH', 'MA', 'RI', 'CT', 'NJ', 'PA', 'DE', 'MD', 'VA', 'NC', 'DC']
- Distance traveled: 11185.821676023299

Cluster size 12:

- ['IA', 'NE', 'KS', 'OK', 'MO', 'IL', 'WI', 'MN', 'SD', 'ND', 'WY', 'UT', 'MT', 'ID', 'OR', 'WA', 'NV', 'CA', 'AZ', 'NM', 'CO', 'TX', 'AR', 'MS', 'LA', 'AL', 'FL', 'SC', 'GA', 'TN', 'KY', 'IN', 'MI', 'OH', 'WV', 'NY', 'VT', 'ME', 'NH', 'MA', 'RI', 'CT', 'NJ', 'PA', 'DE', 'MD', 'VA', 'NC', 'DC']
- Distance traveled: 11651.032003958166

Paths with Hawaii and Alaska

Cluster size 7:

- ['IA', 'KS', 'OK', 'NE', 'MN', 'SD', 'ND', 'ID', 'WA', 'OR', 'AK', 'HI', 'CA', 'NV', 'UT', 'MT', 'WY', 'CO', 'NM', 'AZ', 'TX', 'AR', 'MS', 'LA', 'AL', 'FL', 'GA', 'TN', 'KY', 'IN', 'IL', 'MO', 'WI', 'MI', 'OH', 'NJ', 'CT', 'RI', 'MA', 'NH', 'ME', 'VT', 'NY', 'PA', 'DE', 'MD', 'VA', 'NC', 'WV', 'SC', 'DC']
- Distance traveled: 18348.595379770297

Cluster size 8:

- ['IA', 'MN', 'NE', 'KS', 'MO', 'AR', 'OK', 'TX', 'NM', 'AZ', 'CO', 'WY', 'UT', 'MT', 'ID', 'NV', 'CA', 'HI', 'AK', 'OR', 'WA', 'ND', 'SD', 'WI', 'IL', 'IN', 'MI', 'OH', 'KY', 'TN', 'MS', 'LA', 'AL', 'FL', 'GA', 'SC', 'CT', 'RI', 'MA', 'NH', 'ME', 'VT', 'NY', 'NJ', 'PA', 'DE', 'MD', 'VA', 'NC', 'WV', 'DC']
- Distance traveled: 18247.704210740714

Cluster size 9:

- ['IA', 'KS', 'NE', 'MN', 'SD', 'ND', 'MT', 'ID', 'UT', 'NV', 'CA', 'HI', 'AK', 'OR', 'WA', 'WY', 'CO', 'AZ', 'NM', 'OK', 'TX', 'AR', 'MS', 'LA', 'AL', 'FL', 'GA', 'SC', 'WV', 'OH', 'IN', 'KY', 'TN', 'MO', 'IL', 'WI', 'MI', 'NY', 'VT', 'ME', 'NH', 'MA', 'RI', 'CT', 'NJ', 'PA', 'DE', 'MD', 'VA', 'NC', 'DC']
- Distance traveled: 17802.749752684995

Cluster size 10:

- ['IA', 'MO', 'KS', 'NE', 'MN', 'SD', 'ND', 'MT', 'ID', 'UT', 'NV', 'CA', 'HI', 'AK', 'OR', 'WA', 'WY', 'CO', 'AZ', 'NM', 'OK', 'TX', 'LA', 'MS', 'AR', 'TN', 'GA', 'AL', 'FL', 'SC', 'KY', 'IN', 'IL', 'WI', 'MI', 'OH', 'NY', 'VT', 'ME', 'NH', 'MA', 'RI', 'CT', 'NJ', 'PA', 'DE', 'MD', 'VA', 'NC', 'WV', 'DC']
- Distance traveled: 17914.997294319983

Cluster size 11:

['IA', 'NE', 'KS', 'MO', 'IL', 'WI', 'MN', 'SD', 'ND', 'MT', 'UT', 'ID', 'OR', 'WA', 'AK', 'HI', 'NV', 'CA', 'AZ', 'NM', 'CO', 'WY', 'OK', 'TX', 'AR', 'MS', 'LA', 'AL', 'FL', 'SC', 'GA', 'TN', 'KY', 'IN', 'MI', 'OH', 'WV', 'NY', 'VT', 'ME', 'NH', 'MA', 'RI', 'CT', 'NJ', 'PA', 'DE', 'MD', 'VA', 'NC', 'DC']

- Distance traveled: 16905.85597768493

Cluster size 12:

['IA', 'NE', 'KS', 'OK', 'MO', 'IL', 'WI', 'MN', 'SD', 'ND', 'WY', 'UT', 'MT', 'ID', 'OR', 'WA', 'NV', 'CA', 'AZ', 'NM', 'CO', 'TX', 'AR', 'MS', 'LA', 'AL', 'FL', 'SC', 'GA', 'TN', 'KY', 'IN', 'MI', 'OH', 'WV', 'NY', 'VT', 'ME', 'NH', 'MA', 'RI', 'CT', 'NJ', 'PA', 'DE', 'MD', 'VA', 'NC', 'DC']

- Distance traveled: 17371.0663056198

Cluster Size	Distance w/o HI and AK	Distance w/ HI and AK	
7	12481.556954489908	18348.595379770297	
8	12380.665785460324	18247.704210740714	
9	11935.711327404602	17802.749752684995	
10	12047.958869039592	17914.997294319983	
11	11185.821676023299	16905.85597768493	
12	11651.032003958166	17371.0663056198	

We can observe that the optimal clustering is with **cluster size 11** with a total distance traveled of **16905.855978 miles**.

Computational Time Analysis:

Permutations w/ Hawaii and Alaska

- Refer back to the runtime table with specific regarding component sizes per cluster size.
- Inner-Cluster Iterations calculated by obtaining a list of states in each cluster
 - If the cluster is the last one including D.C. (we know start and end nodes), we add (numElements 2)! to the iteration count
 - Else, we add (numElements 1)! to the iteration count

Cluster Size	Computation Time (seconds)	Inner-Cluster Iterations	Cluster Iterations	Total Iterations
7	32.465	12384	5! = 120	12504
8	25.109	7465	6! = 720	8185
9	28.364	6062	7! = 5040	11102
10	145.888	1647	8! = 40320	41967
11	1498.054	1721	9! = 362880	364601
12	15068.588	1006	10! = 3628800	3629806

The approximation for computation time by total iterations is:

Computation Time = 0.004156704 * Total Iterations - 18.449704893

We can see that as the cluster size grows, the total iterations is more dependent on iterations from between clusters. Therefore, for a large number of clusters,

Total Iterations \approx (Cluster Size - 2)!

Permutations w/ Hawaii and Alaska

- I iterated over all possible insertions of Hawaii and Alaska into a list of 49 elements.
- Given constraints, Iowa must be first and D.C. must be last, there are 48 * 49 = 2352 iterations necessary to be performed
- Time process took on average **42.861 seconds** per round

Conclusions:

- Through analysis, it is possible to break this problem down and perform manageable analysis.
- The longest execution time took about 4 hrs for cluster size 12 which demonstrates the factorial growth in execution time required and did not result in the optimal solution. This shows that a tradeoff between speed does not correlate to any increases in accuracy.
- I am unsure if my solution is optimal and I am unsure if there is a way to prove that clustering would result in the optimal solution.