Statistical Machine Learning

Christoph Lampert

Institute of Science and Technology

Spring Semester 2013/2014 // Lecture 3

Nonparametric Discriminative Model

Idea: split ${\mathcal X}$ into regions, for each region store an estimate $\hat p(y|x).$

Nonparametric Discriminative Model

Idea: split \mathcal{X} into regions, for each region store an estimate $\hat{p}(y|x)$.

For example, using a decision tree:

- training: build a tree
- prediction: for new example x, find its leaf
- output $\hat{p}(y|x) = \frac{n_y}{n}$, where
 - ightharpoonup n is the number of examples in the leaf,
 - lacksquare n_y is the number of example of label y in the leaf.

Nonparametric Discriminative Model

Idea: split \mathcal{X} into regions, for each region store an estimate $\hat{p}(y|x)$.

For example, using a decision tree:

- training: build a tree
- ullet prediction: for new example x, find its leaf
- output $\hat{p}(y|x) = \frac{n_y}{n}$, where
 - ightharpoonup n is the number of examples in the leaf,
 - $lacktriangleright n_y$ is the number of example of label y in the leaf.

Note: prediction rule

$$c(x) = \operatorname*{argmax}_{y} \hat{p}(y|x)$$

is predicts the most frequent label in each leaf (same as in first lecture).

Parametric Discriminative Model: Logistic Regression

Setting. We assume $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} = \{-1, +1\}$.

Definition (Logistic Regression (LogReg) Model)

Modeling

$$\hat{p}(y|x;w) = \frac{1}{1 + \exp(-y\langle w, x \rangle)},$$

with parameter vector $w \in \mathbb{R}^d$ is called a *logistic regression* model.

Parametric Discriminative Model: Logistic Regression

Setting. We assume $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} = \{-1, +1\}$.

Definition (Logistic Regression (LogReg) Model)

Modeling

$$\hat{p}(y|x;w) = \frac{1}{1 + \exp(-y\langle w, x \rangle)},$$

with parameter vector $w \in \mathbb{R}^d$ is called a *logistic regression* model.

Lemma

 $\hat{p}(y|x;w)$ is a well defined probability density w.r.t. y for any $w \in \mathbb{R}^d$.

Proof. elementary.

How to set the weight vector w (based on \mathcal{D})

Logistic Regression Training

Given a training set $\mathcal{D} = \{(x^1, y^1), \dots, (x^n, y^n)\}$, logistic regression training sets the free parameter vector as

$$w_{LR} = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \sum_{i=1}^n \log (1 + \exp(-y^i \langle w, x^i \rangle))$$

Lemma (Conditional Likelihood Maximization)

 w_{LR} from Logistic Regression training maximizes the conditional data likelihood w.r.t. the LogReg model,

$$w_{LR} = \underset{w \in \mathbb{R}^d}{\operatorname{argmax}} \hat{p}(y^1, \dots, y^n | x^1, \dots, x^n, w)$$

Proof.

Maximizing

$$\hat{p}(\mathcal{D}^Y|\mathcal{D}^X, w) \stackrel{i.i.d.}{=} \prod^n \hat{p}(y^i|x^i, w)$$

is equivalent to minimizing its negative logarithm

$$-\log \hat{p}(\mathcal{D}^Y|\mathcal{D}^X, w) = -\log \prod_{i=1}^n \hat{p}(y^i|x^i, w) = -\sum_{i=1}^n \log \hat{p}(y^i|x^i, w)$$

$$= -\sum_{i=1}^n \log \frac{1}{1 + \exp(-y^i \langle w, x^i \rangle)},$$

$$= -\sum_{i=1}^n [\log 1 - \log(1 + \exp(-y^i \langle w, x^i \rangle)],$$

$$= \sum_{i=1}^n \log(1 + \exp(-y^i \langle w, x^i \rangle)).$$

Alternative Explanation

Definition (Kullback-Leibler (KL) divergence)

Let p and q be two probability distributions (for discrete \mathcal{Z}) or probability densities with respect to a measure $d\lambda$ (for continuous \mathcal{Z}). The **Kullbach-Leibler (KL)-divergence** between p and q is defined as

$$\mathrm{KL}(p\,\|\,q) = \sum_{z\in\mathcal{Z}} p(z)\log\frac{p(z)}{q(z)}, \quad \text{or} \quad \mathrm{KL}(p\,\|\,q) = \int\limits_{z\in\mathcal{Z}} p(z)\log\frac{p(z)}{q(z)}\;\mathrm{d}\lambda\big(\mathbf{z}\big),$$

(with convention $0 \log 0 = 0$, and $a \log \frac{a}{0} = \infty$ for a > 0).

Alternative Explanation

Definition (Kullback-Leibler (KL) divergence)

probability densities with respect to a measure $d\lambda$ (for continuous \mathcal{Z}). The **Kullbach-Leibler (KL)-divergence** between p and q is defined as

Let p and q be two probability distributions (for discrete \mathcal{Z}) or

$$\mathrm{KL}(p\,\|\,q) = \sum_{z\in\mathcal{Z}} p(z)\log\frac{p(z)}{q(z)}, \quad \text{or} \quad \mathrm{KL}(p\,\|\,q) = \int\limits_{z\in\mathcal{Z}} p(z)\log\frac{p(z)}{q(z)}\;\mathrm{d}\lambda(\mathbf{z}),$$

(with convention $0 \log 0 = 0$, and $a \log \frac{a}{0} = \infty$ for a > 0).

 ${\rm KL}$ is a similarity measure between probability distributions. It fulfills

$$0 \le KL(p \parallel q) \le \infty$$
, and $KL(p \parallel q) = 0 \Leftrightarrow p = q$.

However, KL is **not a metric**.

- it is in general not symmetric, $KL(q || p) \neq KL(p || q)$,
- it does not fulfill the triangle inequality.

Alternative Explanation of Logistic Regression Training

Definition (Expected Kullback-Leibler (KL) divergence)

Let p(x, y) be a probability distribution over $(x, y) \in \mathcal{X} \times \mathcal{Y}$ and let $\hat{p}(y|x)$ be an approximation of p(y|x).

We measure the approximation quality by the **expected KL-divergence** between p and q over all $x \in \mathcal{X}$:

$$\mathrm{KL}_{exp}(p \| q) = \mathbb{E}_{x \sim p(x)} \{ \mathrm{KL}(p(\cdot | x) \| q(\cdot | x)) \}$$

Theorem

The parameter w_{LR} obtained by logistic regression training approximately minimizes the KL divergence between $\hat{p}(y|x;w)$ and p(y|x).

Proof.

We show how maximimzing the conditional likelihood relates to $\mathrm{KL}_{\mathit{exp}}$:

$$\begin{split} \mathrm{KL}_{\exp}(p\|\hat{p}) &= \mathbb{E}_{x \sim p(x)} \sum_{y \in \mathcal{Y}} p(y|x) \log \frac{p(y|x)}{\hat{p}(y|x,w)} \\ &= \underbrace{\mathbb{E}_{(x,y) \sim p(x,y)} \log p(y|x)}_{\text{indep. of } w} - \mathbb{E}_{(x,y) \sim p(x,y)} \log \hat{p}(y|x,w) \end{split}$$

We can't maximize $\mathbb{E}_{(x,y)\sim p(x,y)}\log \hat{p}(y|x,w)$ directly, because p(x,y) is unknown. But we can maximize its empirical estimate based on \mathcal{D} :

$$\mathbb{E}_{(x,y) \sim p(x,y)} \log \hat{p}(y|x,w) \; \approx \underbrace{\sum_{(x^i,y^i) \in \mathcal{D}} \log \hat{p}(y^i|x^i,w)}_{\text{log of conditional data likelihood}} \; .$$

The approximation will get better the more data we have.

Solving Logistic Regression numerically - Optimization I

Theorem

Logistic Regression training,

$$w_{LR} = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \ \mathcal{L}(w) \quad \text{for} \quad \mathcal{L}(w) = \sum_{i=1}^n \log \left(1 + \exp(-y^i \langle w, x^i \rangle)\right),$$

is a C^{∞} -smooth, unconstrained, convex optimization problem.

Proof.

- 1. it's an optimization problem,
- 2. it's unconstrained,
- **3.** it's smooth (the objective function is C^{∞} differentiable),
- **4.** remains to show: the objective function is a *convex* function. Since \mathcal{L} is smooth, it's enough to show that its *Hessian matrix* (the matrix of 2nd partial derivatives) is everywhere *positive definite*.

We compute first the gradient and then the Hessian of

$$\mathcal{L}(w) = \sum_{i=1} \log(1 + \exp(-y^i \langle w, x^i \rangle).$$

$$\nabla_{w} \mathcal{L}(w) = \sum_{i=1}^{n} \nabla \log(1 + \exp(-y^{i} \langle w, x^{i} \rangle).$$

use the chain rule, $\nabla f(g(w)) = \frac{d}{dt}(g(w)\nabla g(w))$, and $\frac{d}{dt}\log(t) = \frac{1}{t}$

$$= \sum_{i=1}^{n} \frac{\nabla[1 + \exp(-y^{i}\langle w, x^{i}\rangle)]}{1 + \exp(-y^{i}\langle w, x^{i}\rangle)}$$

$$= \sum_{i=1}^{n} \underbrace{\frac{\exp(-y^{i}\langle w, x^{i}\rangle)}{1 + \exp(-y^{i}\langle w, x^{i}\rangle)}}_{=\hat{n}(-y^{i}|x^{i}, w)} \nabla(-y^{i}\langle w, x^{i}\rangle)$$

use the chain rule again, $\frac{d}{dt}\exp(t)=\exp(t)$, and $\nabla_{\!w}\langle w,x^i\rangle=x^i$

$$=-\sum_{i=1}^{n}[\hat{p}(-y^{i}|x^{i},w)]\ y^{i}x^{i}$$

$$H_w \mathcal{L}(w) = \nabla \nabla^{\top} \mathcal{L}(w) = -\sum_{i=1}^n [\nabla \hat{p}(-y^i | x^i, w)] y^i x^i$$
$$\nabla \hat{p}(-y^i | x^i, w) = \nabla \frac{1}{1 + \exp(y^i \langle w, x^i \rangle)}$$

$$= -\frac{\nabla[1 + \exp(y^i \langle w, x^i \rangle)]}{[1 + \exp(y^i \langle w, x^i \rangle)]^2}$$

use quotient rule, $\nabla \frac{1}{f(w)} = -\frac{\nabla f(w)}{f^2(w)}$, and chain rule,

$$= -\frac{\exp(y^i \langle w, x^i \rangle)}{[1 + \exp(y^i \langle w, x^i \rangle)]^2} \nabla y^i \langle w, x^i \rangle$$

= $-(\hat{p}(-y^i | x^i)) \hat{p}(y^i | x^i, w) y^i x^i$

insert into above expression for $H_w\mathcal{L}(w)$

$$H = \sum_{i=1}^{n} \underbrace{\hat{p}(-y^{i}|x^{i})\hat{p}(y^{i}|x^{i}, w)}_{\text{current}} \underbrace{x^{i}x^{i\top}}_{\text{current}}$$

A positively weighted linear combination of pos.def. matrices is pos.def.

Example plot: LogReg objective for three examples in \mathbb{R}^2

Numeric Optimization

Convex optimization is a well understood field. We can use, e.g., gradient descent will converge to the globally optimal solution!

Steepest Descent Minimization with Line Search

```
\begin{array}{ll} \text{input} & \epsilon > 0 \text{ tolerance (for stopping criterion)} \\ 1: & w \leftarrow 0 \\ 2: & \text{repeat} \\ 3: & v \leftarrow -\nabla_w \mathcal{L}(w) & \{\text{descent direction}\} \\ 4: & \eta \leftarrow \mathop{\mathrm{argmin}}_{\eta > 0} \mathcal{L}(w + \eta v) & \{\text{1D line search}\} \\ 5: & w \leftarrow w + \eta d \\ 6: & \text{until } \|v\| < \epsilon \\ \text{output} & w \in \mathbb{R}^d \text{ learned weight vector} \end{array}
```

Faster conference from methods that use second-order information, e.g., conjugate gradients or (L-)BFGS \rightarrow convex optimization lecture

Binary classification with a LogReg Models

A discriminative probability model, $\hat{p}(y|x)$, is enough to make decisions:

$$c(x) = \operatorname*{argmax}_{y \in \mathcal{Y}} \hat{p}(y|x) \quad \text{or} \quad c(x) = \operatorname*{argmin}_{y \in \mathcal{Y}} \mathbb{E}_{\bar{y} \sim \hat{p}(y|x)} \ell(\bar{y}, y).$$

For Logistic Regression, this is particularly simple:

Lemma

The LogReg classification rule for 0/1-loss is

$$c(x) = \operatorname{sign} \langle w, x \rangle.$$

For a loss function $\ell = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ the rule is

$$c_{\ell}(x) = \text{sign}[\langle w, x \rangle + \log \frac{c - d}{b - a}],$$

In particular, the decision boundaries is linear (or affine).

Proof. Elementary, since $\log \frac{\hat{p}(+1|x;w)}{p(-1|x;w)} = \langle w, x \rangle$

Multiclass Logistic Regression

For $\mathcal{Y} = \{1, \dots, M\}$, we can do two things:

• Parametrize $\hat{p}(y|x;\vec{w})$ using M-1 vectors, $w_1,\ldots,w_{M-1}\in\mathbb{R}^d$, as

$$\hat{p}(y|x,w) = \frac{\exp(\langle w_y, x \rangle)}{1 + \sum_{j=1}^{M-1} \exp(\langle w_j, x \rangle)} \quad \text{for } y = 1, \dots, M-1,$$

$$\hat{p}(M|x,w) = \frac{1}{1 + \sum_{j=1}^{M-1} \exp(\langle w_j, x \rangle)}.$$

ullet Parametrize $\hat{p}(y|x;ec{w})$ using M vectors, $w_1,\ldots,w_M\in\mathbb{R}^d$, as

$$\hat{p}(y|x,w) = \frac{\exp(\langle w_y, x \rangle)}{\sum_{i=1}^{M} \exp(\langle w_i, x \rangle)} \quad \text{for } y = 1, \dots, M,$$

Second is more popular, since it's easier to implement and analyze.

Decision boundaries are still *piecewise linear*, $c(x) = \operatorname{argmax}_{y} \langle w_{y}, x \rangle$.

Summary: Discriminative Models

Discriminative models treats the input data, x, as fixed and only model the distribution of the output labels p(y|x).

Discriminative models, in particular LogReg, are popular, because

- they often need less training data than generative models,
- they provide an estimate of the uncertainty of a decision p(c(x)|x),
- training them is often efficient,
 e.g. Yahoo trains LogReg models routinely from billions of examples.

But: they also have drawbacks

- often $\hat{p}_{LR}(y|x) \not\rightarrow p(y|x)$, even for $n \rightarrow \infty$,
- they usually are good for *prediction*, but they do not reflect the actual *mechanism*.

Note: there are much more complex discriminative models than LogReg, e.g. Conditional Random Fields (maybe later).

Maximum Margin Classifiers

Let's use $\mathcal D$ to estimate a classifier $c:\mathcal X\to\mathcal Y$ directly.

Maximum Margin Classifiers

Let's use $\mathcal D$ to estimate a classifier $c:\mathcal X\to\mathcal Y$ directly.

For a start, we fix

•
$$\mathcal{D} = \{(x^1, y^1), \dots, (x^n, y^n)\},\$$

•
$$\mathcal{Y} = \{+1, -1\},$$

we look for classifiers with linear decision boundary.

Several of the classifiers we saw had linear decision boundaries:

- Perceptron
- Generative classifiers for Gaussian class-conditional densities with shared covariance matrix
- Logistic Regression

What's the **best linear classifier**?

Linear classifiers

Definition

Let

$$\mathcal{F} = \{ f : \mathbb{R}^d \to \{\pm 1\} \text{ with } f(x) = b + a_1 x_1 + \dots + a_d x_d = b + \langle w, x \rangle \}$$

be the set of linear (affine) function from $\mathbb{R}^d \to \mathbb{R}$.

A classifier $g:\mathcal{X}\to\mathcal{Y}$ is called **linear**, if it can be written as

$$g(x) = \operatorname{sign} f(x)$$

for some $f \in \mathcal{F}$.

We write $\mathcal G$ for the set of all linear classifiers.

A linear classifier, $g(x) = \operatorname{sign}\langle w, x \rangle$, with b = 0

A linear classifier $g(x) = \operatorname{sign}(\langle w, x \rangle + b)$, with b > 0

Linear classifiers

Definition

We call a classifier, g, **correct** (for a training set \mathcal{D}), if it predicts the correct labels for all training examples:

$$g(x^i) = y^i$$
 for $i = 1, \dots, n$.

Example (Perceptron)

- if the *Perceptron* converges, the result is an *correct* classifier.
- any classifier with zero training error is correct.

Linear classifiers

Definition

We call a classifier, g, **correct** (for a training set \mathcal{D}), if it predicts the correct labels for all training examples:

$$g(x^i) = y^i$$
 for $i = 1, \dots, n$.

Example (Perceptron)

- if the Perceptron converges, the result is an correct classifier.
- any classifier with zero training error is correct.

Definition (Linear Separability)

A training set \mathcal{D} is called **linearly separable**, if it allows a correct linear classifier (i.e. the classes can be separated by a hyperplane).

A linearly separable dataset and a correct classifier

A linearly separable dataset and a correct classifier

A linearly separable dataset and a correct classifier

An incorrect classifier

Linear Classifiers

Definition

The **robustness** of a classifier g (with respect to \mathcal{D}) is the largest amount, ρ , by which we can perturb the training samples without changing the predictions of g.

$$g(x^i + \epsilon) = g(x^i),$$
 for all $i = 1, \dots, n$.

for any $\epsilon \in \mathbb{R}^d$ with $\|\epsilon\| < \rho$.

Example

- constant classifier, e.g. $c(x) \equiv 1$: very robust $(\rho = \infty)$, (but it is not *correct*, in the sense of the previous definition)
- robustness of the *Perceptron*: can be arbitrarily small (see Exercise...)

Robustness, ρ , of a linear classifier

Definition (Margin)

Let $f(x) = \langle w, x \rangle + b$ define a *correct* linear classifier.

Then the smallest (Euclidean) distance of any training example from the decision hyperplane is called the **margin** of f (with respect to \mathcal{D}).

Lemma

We can compute the margin of a linear classifier $f = \langle w, x \rangle + b$ as

$$\rho = \min_{i=1,\dots,n} \left| \left\langle \frac{w}{\|w\|}, x^i \right\rangle + b \right|.$$

Proof.

High school maths: distance between a points and a hyperplane in *Hessian normal form.*

Theorem

The robustness of a linear classifier function $g(x) = \operatorname{sign} f(x)$ with $f(x) = \langle w, x \rangle + b$ is identical to the margin of f.

Correction: this only works for classifiers with b=0 for now:

Proof (blackboard). For any i = 1, ..., n and any $\epsilon \in \mathbb{R}^d$

$$f(x^i + \epsilon) = \langle w, x^i + \epsilon \rangle = \langle w, x^i \rangle + \langle w, \epsilon \rangle = f(x^i) + \langle w, \epsilon \rangle,$$

so it follows (Cauchy-Schwarz inequality) that

$$f(x^i) - ||w|| ||\epsilon|| \le f(x^i + \epsilon) \le f(x^i) + ||w|| ||\epsilon||.$$

Checking the cases $\epsilon = \pm \frac{\|\epsilon\|}{\|w\|} w$, we see that these inequalities are sharp.

To ensure $g(x^i+\epsilon)=g(x^i)$ for all training samples, $f(x^i)$ and $f(x^i+\epsilon)$ have the same sign for all ϵ , i.e. $|f(x^i)|\geq \|w\|\|\epsilon\|$ for $i=1,\ldots,n$.

This inequality holds for all samples, so in particular it holds for the one of minimal score. \Box

Proof by Picture

Maximum-Margin Classifier

Theorem

Let $\mathcal D$ be a linearly separable training set. Then the **most robust**, correct classifier is given by $g(x) = \operatorname{sign}\langle w^*, x \rangle + b^*$ where (w^*, b^*) are the solution to

$$\min_{w \in \mathbb{R}^d} \ \frac{1}{2} \|w\|^2$$

subject to

$$y^i(\langle w, x^i \rangle + b) \ge 1$$
, for $i = 1, \dots, n$.

Remark

- The classifier defined above is call Maximum (Hard) Margin Classifier, or Hard-Margin Support Vector Machine (SVM)
- It is unique (follows from strictly convex optimization problem).

Proof.

- **1.** All (w, b) that fulfill the inequalities yield *correct* classifiers.
- **2.** Since \mathcal{D} is linearly separable, there exists some (v,b) with

$$\operatorname{sign}(\langle v, x^i \rangle + b) = y_i, \quad \text{i.e.} \quad y_i(\langle v, x^i \rangle + b) \ge \gamma > 0.$$

for $\gamma=\min_i y_i(\langle v,x^i\rangle+b)$. So $\tilde{v}=v/\gamma$, $\tilde{b}=b/\gamma$ fulfills the inequalities and we see that the constraint set is at least not empty.

Proof.

- **1.** All (w, b) that fulfill the inequalities yield *correct* classifiers.
- **2.** Since \mathcal{D} is linearly separable, there exists some (v, b) with

$$\operatorname{sign}(\langle v, x^i \rangle + b) = y_i$$
, i.e. $y_i(\langle v, x^i \rangle + b) \geq \gamma > 0$. for $\gamma = \min_i y_i(\langle v, x^i \rangle + b)$. So $\tilde{v} = v/\gamma$, $\tilde{b} = b/\gamma$ fulfills the inequalities and we see that the constraint set is at least not empty.

3. Now we check (for all i = 1, ..., n):

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 \text{ sb.t. } y^i \langle w, x^i \rangle \ge 1$$

$$\Leftrightarrow \quad \max\nolimits_{w \in \mathbb{R}^d} \frac{1}{\|w\|} \quad \text{ sb.t. } y^i \langle w, x^i \rangle \geq 1$$

$$\Leftrightarrow \quad \max\nolimits_{\{w': |w'| = 1\}, \rho \in \mathbb{R}} \quad \rho \quad \text{ sb.t. } y^i \langle \frac{w'}{\rho}, x^i \rangle \geq 1$$

$$\Leftrightarrow \quad \max\nolimits_{\{w':|w'||=1\},\rho\in\mathbb{R}} \quad \rho \quad \text{ sb.t. } y^i\langle w',x^i\rangle \geq \rho$$

$$\Leftrightarrow \max_{\{w':|w'||=1\},\rho\in\mathbb{R}} \rho \quad \text{sb.t. } |\langle w',x^i\rangle| \geq \rho \text{ and } \operatorname{sign}\langle w',x^i\rangle = y_i$$

Proof.

- 1. All (w, b) that fulfill the inequalities yield *correct* classifiers.
- 2. Since $\mathcal D$ is linearly separable, there exists some (v,b) with

$$\mathrm{sign}(\langle v, x^i \rangle + b) = y_i, \quad \text{i.e.} \quad y_i(\langle v, x^i \rangle + b) \geq \gamma > 0.$$
 for $\gamma = \min_i y_i(\langle v, x^i \rangle + b).$ So $\tilde{v} = v/\gamma$, $\tilde{b} = b/\gamma$ fulfills the inequalities and we see that the constraint set is at least not empty.

3. Now we check (for all i = 1, ..., n):

$$\min_{w \in \mathbb{R}^d} rac{1}{2} \|w\|^2$$
 sb.t. $y^i \langle w, x^i
angle \geq 1$

$$\Leftrightarrow \quad \mathbf{max}_{w \in \mathbb{R}^d} \, rac{1}{\|w\|} \quad ext{ sb.t. } \ y^i \langle w, x^i
angle \geq 1$$

$$\Leftrightarrow \quad \max\nolimits_{\{w':|w'||=1\},\rho\in\mathbb{R}} \quad \rho \quad \text{ sb.t. } y^i\langle\frac{w'}{\rho},x^i\rangle\geq 1$$

$$\Leftrightarrow \max_{\{w':|w'|=1\}, \rho \in \mathbb{R}} \quad \rho \quad \text{ sb.t. } y^i \langle w', x^i \rangle \geq \rho$$

$$\Leftrightarrow \max_{\{w': |w'|=1\}, \rho \in \mathbb{R}} \quad \rho \quad \text{sb.t. } |\langle w', x^i \rangle| \geq \rho \text{ and } \operatorname{sign}\langle w', x^i \rangle = y_i$$

maximal robustness and correct

Non-Separable Training Sets

Observation (Not all training sets are linearly separable.)

Definition (Maximum Soft-Margin Classifier)

Let \mathcal{D} be a training set, not necessarily linearly separable. Let C > 0. Then the classifier $q(x) = \operatorname{sign}\langle w^*, x \rangle$ where (w^*, b^*) are the solution to

$$\min_{w \in \mathbb{R}^d, \xi \in \mathbb{R}^n} \ \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi^i$$

subject to

$$y^i(\langle w, x^i \rangle + b) \ge 1 - \xi^i, \quad \text{for } i = 1, \dots, n.$$
 $\xi^i \ge 0, \quad \text{for } i = 1, \dots, n.$

is called Maximum (Soft-)Margin Classifier or Linear Support Vector Machine.

Theorem

The maximum soft-margin classifier exists and is unique for any C>0.

Proof. optimization problem is strictly convex

Remark

The constant C > 0 is called **regularization** parameter.

It balances the wishes for robustness and for correctness

- $C \rightarrow 0$: mistakes don't matter much, emphasis on short w
- $C \to \infty$: as few errors as possible, might not be robust

We'll see more about this tomorrow.

Remark

 $Sometimes, \ a \ soft \ margin \ is \ better \ even \ for \ linearly \ separable \ datasets!$

Left: small margin, no errors)

Right: large margin, but 1 error

Nonlinear Classifiers

What, if a linear classifier is really not a good choice?

Nonlinear Classifiers

What, if a linear classifier is really not a good choice?

Change the data representation, e.g. Cartesian \rightarrow polar coordinates

Nonlinear Classifiers

Definition (Max-margin Generalized Linear Classifier)

Let C>0. Assume a necessarily linearly separable training set

$$\mathcal{D} = \{(x^1, y^1), \dots x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}.$$

Let $\phi: \mathcal{X} \to \mathcal{H}$ be a feature map from \mathcal{X} into a Hilbert space \mathcal{H} .

Then we can form a new training set

$$\mathcal{D}^{\phi} = \{ (\phi(x^1), y^1), \dots, (\phi(x^n), y^n) \} \subset \mathcal{H} \times \mathcal{Y}.$$

The maximum-(soft)-margin linear classifier in \mathcal{H} ,

$$g(x) = \operatorname{sign}\langle w, \phi(x) \rangle_{\mathcal{H}} + b,$$

for $w \in \mathcal{H}$ and $b \in \mathbb{R}$ is called max-margin generalized linear classifier.

It is still *linear* w.r.t w, but (in general) nonlinear with respect to x.

Example (Polar coordinates)

Left: dataset $\ensuremath{\mathcal{D}}$ for which no good linear classifier exists.

Right: dataset \mathcal{D}^ϕ for $\phi:\mathcal{X} o\mathcal{H}$ with $\mathcal{X}=\mathbb{R}^2$ and $\mathcal{H}=\mathbb{R}^2$

$$\phi(x,y) = (\sqrt{x^2 + y^2}, \arctan \frac{y}{x})$$
 (and $\phi(0,0) = (0,0)$)

Example (Polar coordinates)

Left: dataset \mathcal{D} for which no good linear classifier exists.

Right: dataset
$$\mathcal{D}^\phi$$
 for $\phi:\mathcal{X}\to\mathcal{H}$ with $\mathcal{X}=\mathbb{R}^2$ and $\mathcal{H}=\mathbb{R}^2$

$$\phi(x,y) = (\sqrt{x^2 + y^2}, \arctan \frac{y}{x})$$
 (and $\phi(0,0) = (0,0)$)

Any classifier in ${\mathcal H}$ induces a classifier in ${\mathcal X}$.

Other popular feature mappings, ϕ

Example (d-th degree polynomials)

$$\phi: (x_1, \dots, x_n) \mapsto (1, x_1, \dots, x_n, x_1^2, \dots, x_n^2, \dots, x_1^d, \dots, x_n^d)$$

Resulting classifier: d-th degree polynomial in $x.g(x) = \operatorname{sign} f(x)$ with

$$f(x) = \langle w, \phi(x) \rangle = \sum_{j} w_{j} \phi(x)_{j} = \sum_{i} a_{i} x_{i} + \sum_{ij} b_{ij} x_{i} x_{j} + \dots$$

Example (Distance map)

For a set of prototype $p_1, \ldots, p_N \in \mathcal{H}$:

$$\phi: \vec{x} \mapsto \left(e^{-\|\vec{x} - \vec{p}_i\|^2}, \dots, e^{-\|\vec{x} - \vec{p}_N\|^2}\right)$$

Classifier: combine weights from close enough prototypes

$$g(x) = \operatorname{sign}\langle w, \phi(x) \rangle = \operatorname{sign} \sum_{i=1}^{n} a_i e^{-\|\vec{x} - \vec{p}_i\|^2}.$$

Finding the Maximum Margin Classifier numerically – Optimization II

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}\xi \in \mathbb{R}^n} \ \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi^i$$

subject to

$$\begin{split} y^i\langle w,\phi(x^i)\rangle &\geq 1-\xi^i, \quad \text{for } i=1,\dots,n, \\ \xi^i &\geq 0. \quad \text{for } i=1,\dots,n. \end{split}$$

How to solve numerically?

- off-the-shelf Quadratic Program (QP) solver only for small dimensions and training sets (a few hundred),
- variants of gradient descent,
 high dimensional data, large training sets (millions)
- by convex duality, for very high dimensional data and not so many examples $(d \gg n)$