Lecture 4: Fixed-Parameter Intractability

(A Short Introduction to Parameterized Complexity)

Clemens Grabmayer

Ph.D. Program, Advanced Courses Period Gran Sasso Science Institute L'Aquila, Italy

June 14, 2024

ov motiv fpt-reductions para-NP XP W[P] why hierarchies logic prelims + W-hierarchy A-hierarchy W-vs. A-hierarchy summ course ex-sugg

Course overview

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14
Introduction & basic FPT results		Algorithmic Meta-Theorems		
motivation for FPT kernelization, Crown Lemma, Sunflower Lemma	GDA	1st-order logic, monadic 2nd-order logic, FPT-results by Courcelle's Theorems for tree and clique-width	GDA	GDA
Algorithmic Techniques		Formal-Method & Algorithmic Techniques		
	14.30 – 16.30 Notions of bounded graph width			14.30 – 16.30 FPT-Intractability Classes & Hierarchies
	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. widths	GDA	GDA	motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies

Overview

- Motivation for fixed-parameter intractability
- Fixed parameter reductions
- The classes para-NP and XP
- ▶ The class W[P]
- Logic preliminaries (continued)
- W-hierarchy
 - definitions
 - with Boolean circuits
 - as parameterized weighted Fagin definability problems
- A-hierarchy
 - definition as parameterized model-checking problems
- picture overview of these classes

ov motiv fpt-reductions para-NP XP W[P] why hierarchies logic prelims + W-hierarchy A-hierarchy W-vs. A-hierarchy summ course ex-sugg

Two classical problems

QUERIES

Instance: a relational database D, a conjunctive query α .

Compute: answer to query α from database D.

Two classical problems

QUERIES

Instance: a relational database D, a conjunctive query α .

Compute: answer to query α from database D.

▶ QUERIES ∈ NP-complete.

Two classical problems

QUERIES

Instance: a relational database D, a conjunctive query α .

Compute: answer to query α from database D.

■ QUERIES ∈ NP-complete.

LTL-MODEL-CHECKING

Instance: a Kripke structure (state space) \mathcal{K} , an LTL formula φ

Parameter: size $|\varphi|$ of formula φ **Question:** Does $\mathcal{K} \models \varphi$ hold?

Two classical problems

QUERIES

Instance: a relational database D, a conjunctive query α .

Compute: answer to query α from database D.

■ QUERIES ∈ NP-complete.

LTL-MODEL-CHECKING

Instance: a Kripke structure (state space) \mathcal{K} , an LTL formula φ

Parameter: size $|\varphi|$ of formula φ **Question:** Does $\mathcal{K} \models \varphi$ hold?

► LTL-MODEL-CHECKING ∈ PSPACE-complete.

Comparing their parameterizations

QUERIES

Instance: a relational database D, a conjunctive query α .

Parameter: size $k = |\alpha|$ of query α

Compute: answer to query α from database D.

QUERIES ∈ NP-complete.

LTL-MODEL-CHECKING

Instance: a Kripke structure (state space) K, an LTL formula φ

Parameter: size $k = |\varphi|$ of formula φ **Question:** Does $\mathcal{K} \models \varphi$ hold?

LTL-MODEL-CHECKING ∈ PSPACE-complete,

Comparing their parameterizations

QUERIES

Instance: a relational database D, a conjunctive query α .

Parameter: size $k = |\alpha|$ of query α

Compute: answer to query α from database D.

- QUERIES ∈ NP-complete.
- ▶ QUERIES $\in O(n^k)$ for n = ||D||, which does not give an FPT result.

LTL-MODEL-CHECKING

Instance: a Kripke structure (state space) K, an LTL formula φ

Parameter: size $k = |\varphi|$ of formula φ **Question:** Does $\mathcal{K} \models \varphi$ hold?

LTL-MODEL-CHECKING ∈ PSPACE-complete,

Comparing their parameterizations

QUERIES

Instance: a relational database D, a conjunctive query α .

Parameter: size $k = |\alpha|$ of query α

Compute: answer to query α from database D.

- QUERIES ∈ NP-complete.
- ▶ QUERIES $\in O(n^k)$ for n = ||D||, which does not give an FPT result.

LTL-MODEL-CHECKING

Instance: a Kripke structure (state space) K, an LTL formula φ

Parameter: size $k = |\varphi|$ of formula φ **Question:** Does $\mathcal{K} \models \varphi$ hold?

- ► LTL-MODEL-CHECKING ∈ PSPACE-complete,
- ▶ LTL-MODEL-CHECKING $\in O(k \cdot 2^{2k} \cdot n) \in \mathsf{FPT}$ for $n = ||\mathcal{K}||$.

Fixed-parameter intractability

'The purpose [...] is to give evidence that certain problems are not fixed-parameter tractable (just as the main purpose of the theory of NP-completeness is to give evidence that certain problems are not polynomial time computable.)

In classical theory, the notion of NP-completeness is central to a nice, simple, and far-reaching theory for intractable problems.

Unfortunately, the world of parameterized intractability is more complex: There is a big variety of seemingly different classes of intractable parameterized problems.'

(Flum, Grohe [2])

Fixed-Parameter tractable

Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is *fixed-parameter tractable* (is in FPT) if:

```
\exists f: \mathbb{N} \to \mathbb{N} \text{ computable } \exists p \in \mathbb{N}[X] \text{ polynomial} \exists \mathbb{A} \text{ algorithm, takes inputs in } \Sigma^* \forall x \in \Sigma^* \big[ \mathbb{A} \text{ decides whether } x \in Q \text{ holds} \text{in time } \leq f(\kappa(x)) \cdot p(|x|) \big]
```

The ℓ -th slice, for $\ell \in \mathbb{N}$, of a parameterized problem (Q, κ) is:

$$\langle Q, \kappa \rangle_{\ell} := \{ x \in Q \mid \kappa(x) = \ell \}$$
.

The ℓ -th slice, for $\ell \in \mathbb{N}$, of a parameterized problem (Q, κ) is:

$$\langle Q, \kappa \rangle_{\ell} := \{ x \in Q \mid \kappa(x) = \ell \}$$
.

Proposition (slices of FPT problems are in PTIME)

Let $\langle Q, \kappa \rangle$ be a parameterized problem, and $\ell \in \mathbb{N}$. If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle_{\ell} \in \mathsf{PTIME}$.

The ℓ -th slice, for $\ell \in \mathbb{N}$, of a parameterized problem $\langle Q, \kappa \rangle$ is:

$$\langle Q, \kappa \rangle_{\ell} := \{ x \in Q \mid \kappa(x) = \ell \}$$
.

Proposition (slices of FPT problems are in PTIME)

Let $\langle Q, \kappa \rangle$ be a parameterized problem, and $\ell \in \mathbb{N}$. If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle_{\ell} \in \mathsf{PTIME}$.

Proof

Let ℓ be fixed. Then for all $x \in \Sigma^*$: Decide $x \in Q$, $\kappa(x) = \ell$ in time $\leq f(\kappa(x)) \cdot p(|x|)$

The ℓ -th slice, for $\ell \in \mathbb{N}$, of a parameterized problem (Q, κ) is:

$$\langle Q, \kappa \rangle_{\ell} := \{ x \in Q \mid \kappa(x) = \ell \}$$
.

Proposition (slices of FPT problems are in PTIME)

Let $\langle Q, \kappa \rangle$ be a parameterized problem, and $\ell \in \mathbb{N}$. If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle_{\ell} \in \mathsf{PTIME}$.

Proof

Let ℓ be fixed. Then for all $x \in \Sigma^*$:

Decide $x \in Q$, $\kappa(x) = \ell$ in time $\leq f(\kappa(x)) \cdot p(|x|) = f(\ell) \cdot p(|x|) \in \mathsf{PTIME}$.

The ℓ -th slice, for $\ell \in \mathbb{N}$, of a parameterized problem $\langle Q, \kappa \rangle$ is:

$$\langle Q, \kappa \rangle_{\ell} := \{ x \in Q \mid \kappa(x) = \ell \}$$
.

The ℓ -th slice, for $\ell \in \mathbb{N}$, of a parameterized problem $\langle Q, \kappa \rangle$ is:

$$\langle Q, \kappa \rangle_{\ell} := \{ x \in Q \mid \kappa(x) = \ell \}$$
.

Slices of FPT problems are in PTIME

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle_{\ell} \in \mathsf{PTIME}$.

The ℓ -th slice, for $\ell \in \mathbb{N}$, of a parameterized problem $\langle Q, \kappa \rangle$ is:

$$\langle Q, \kappa \rangle_{\ell} := \{ x \in Q \mid \kappa(x) = \ell \}$$
.

Slices of FPT problems are in PTIME

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle_{\ell} \in \mathsf{PTIME}$.

p-COLORABILITY

Instance: A graph \mathcal{G} , and $\ell \in \mathbb{N}$.

Parameter: ℓ.

Problem: Decide whether \mathcal{G} is ℓ -colorable.

The ℓ -th slice, for $\ell \in \mathbb{N}$, of a parameterized problem $\langle Q, \kappa \rangle$ is:

$$\langle Q, \kappa \rangle_{\ell} := \{ x \in Q \mid \kappa(x) = \ell \}$$
.

Slices of FPT problems are in PTIME

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle_{\ell} \in \mathsf{PTIME}$.

p-Colorability

Instance: A graph \mathcal{G} , and $\ell \in \mathbb{N}$.

Parameter: ℓ.

Problem: Decide whether \mathcal{G} is ℓ -colorable.

Consequence: p-Colorability ∉ FPT (unless P = NP).

The ℓ -th slice, for $\ell \in \mathbb{N}$, of a parameterized problem $\langle Q, \kappa \rangle$ is:

$$\langle Q, \kappa \rangle_{\ell} := \{ x \in Q \mid \kappa(x) = \ell \}$$
.

Slices of FPT problems are in PTIME

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle_{\ell} \in \mathsf{PTIME}$.

p-Colorability

Instance: A graph \mathcal{G} , and $\ell \in \mathbb{N}$.

Parameter: ℓ.

Problem: Decide whether \mathcal{G} is ℓ -colorable.

Consequence: p-Colorability \notin FPT (unless P = NP).

It is well-known: 3-Colorability ∈ NP-complete.

The ℓ -th slice, for $\ell \in \mathbb{N}$, of a parameterized problem (Q, κ) is:

$$\langle Q, \kappa \rangle_{\ell} := \{ x \in Q \mid \kappa(x) = \ell \}$$
.

Slices of FPT problems are in PTIME

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, then $\langle Q, \kappa \rangle_{\ell} \in \mathsf{PTIME}$.

p-Colorability

Instance: A graph \mathcal{G} , and $\ell \in \mathbb{N}$.

Parameter: ℓ.

Problem: Decide whether \mathcal{G} is ℓ -colorable.

Consequence: p-Colorability \notin FPT (unless P = NP).

It is well-known: 3-Colorability \in NP-complete. Now since 3-Colorability is the third slice of p-Colorability, the proposition entails p-Colorability \notin FPT unless P = NP.

Definition

Let $\langle Q_1, \Sigma_1 \rangle$, $\langle Q_2, \Sigma_2 \rangle$ be classical problems.

An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R: \Sigma_1^* \to \Sigma_2^*$:

- R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. R is computable by a polynomial-time algorithm: there is a polynomial p(X) such that R is computable in time p(|x|).

Definition

Let $\langle Q_1, \Sigma_1 \rangle$, $\langle Q_2, \Sigma_2 \rangle$ be classical problems.

An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R: \Sigma_1^* \to \Sigma_2^*$:

- R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. R is computable by a polynomial-time algorithm: there is a polynomial p(X) such that R is computable in time p(|x|).
- $$\begin{split} \langle Q_1, \Sigma_1 \rangle \leq_{\text{pol}} \langle Q_2, \Sigma_2 \rangle \coloneqq \\ \text{there is a polynomial-time reduction from } \langle Q_1, \Sigma_1 \rangle \text{ to } \langle Q_2, \Sigma_2 \rangle. \end{split}$$

Definition

Let $\langle Q_1, \Sigma_1 \rangle$, $\langle Q_2, \Sigma_2 \rangle$ be classical problems.

An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R: \Sigma_1^* \to \Sigma_2^*$:

R1.
$$(x \in Q_1 \iff R(x) \in Q_2)$$
 for all $x \in \Sigma_1^*$.

R2. R is computable by a polynomial-time algorithm: there is a polynomial p(X) such that R is computable in time p(|x|).

$$\langle Q_1, \Sigma_1 \rangle \leq_{\text{pol}} \langle Q_2, \Sigma_2 \rangle :=$$
 there is a polynomial-time reduction from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$.

Proposition

If
$$\langle Q_1, \Sigma_1 \rangle \leq_{\mathsf{pol}} \langle Q_2, \Sigma_2 \rangle$$
, then: $\langle Q_1, \Sigma_1 \rangle \in \mathsf{P} \iff \langle Q_2, \Sigma_2 \rangle \in \mathsf{P}$. $\langle Q_1, \Sigma_1 \rangle \notin \mathsf{P} \implies \langle Q_2, \Sigma_2 \rangle \notin \mathsf{P}$.

Definition

Let (Q_1, Σ_1) , (Q_2, Σ_2) be classical problems.

An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R: \Sigma_1^* \to \Sigma_2^*$:

R1.
$$(x \in Q_1 \iff R(x) \in Q_2)$$
 for all $x \in \Sigma_1^*$.

R2. R is computable by a polynomial-time algorithm: there is a polynomial p(X) such that R is computable in time p(|x|).

$$\langle Q_1, \Sigma_1 \rangle \leq_{\mathsf{pol}} \langle Q_2, \Sigma_2 \rangle \coloneqq$$
 there is a polynomial-time reduction from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$.

Proposition

If
$$\langle Q_1, \Sigma_1 \rangle \leq_{\mathsf{pol}} \langle Q_2, \Sigma_2 \rangle$$
, then: $\langle Q_1, \Sigma_1 \rangle \in \mathsf{P} \iff \langle Q_2, \Sigma_2 \rangle \in \mathsf{P}$. $\langle Q_1, \Sigma_1 \rangle \notin \mathsf{P} \implies \langle Q_2, \Sigma_2 \rangle \notin \mathsf{P}$.

Let C be class of classical problems.

• $\langle Q, \Sigma \rangle$ is C-hard: if, for all $\langle Q', \Sigma' \rangle \in \mathbb{C}$, $\langle Q', \Sigma' \rangle \leq_{\text{pol}} \langle Q, \Sigma \rangle$.

Definition

Let (Q_1, Σ_1) , (Q_2, Σ_2) be classical problems.

An *polynomial-time reduction* from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$ is a mapping $R: \Sigma_1^* \to \Sigma_2^*$:

R1.
$$(x \in Q_1 \iff R(x) \in Q_2)$$
 for all $x \in \Sigma_1^*$.

R2. R is computable by a polynomial-time algorithm: there is a polynomial p(X) such that R is computable in time p(|x|).

$$\langle Q_1, \Sigma_1 \rangle \leq_{\mathsf{pol}} \langle Q_2, \Sigma_2 \rangle \coloneqq$$
 there is a polynomial-time reduction from $\langle Q_1, \Sigma_1 \rangle$ to $\langle Q_2, \Sigma_2 \rangle$.

Proposition

If
$$\langle Q_1, \Sigma_1 \rangle \leq_{\mathsf{pol}} \langle Q_2, \Sigma_2 \rangle$$
, then: $\langle Q_1, \Sigma_1 \rangle \in \mathsf{P} \iff \langle Q_2, \Sigma_2 \rangle \in \mathsf{P}$. $\langle Q_1, \Sigma_1 \rangle \notin \mathsf{P} \implies \langle Q_2, \Sigma_2 \rangle \notin \mathsf{P}$.

Let C be class of classical problems.

- ▶ $\langle Q, \Sigma \rangle$ is C-hard: if, for all $\langle Q', \Sigma' \rangle \in \mathbb{C}$, $\langle Q', \Sigma' \rangle \leq_{\text{pol}} \langle Q, \Sigma \rangle$.
- $\langle Q, \Sigma \rangle$ is C-complete: if $\langle Q, \Sigma \rangle$ is C-hard, and $\langle Q, \Sigma \rangle \in \mathbb{C}$.

Definition

```
Let \langle Q_1, \Sigma_1, \kappa \rangle, \langle Q_2, \Sigma_2, \kappa_2 \rangle be parameterized problems. An fpt-reduction from \langle Q_1, \kappa_1 \rangle to \langle Q_2, \kappa_2 \rangle is a mapping R: \Sigma_1^* \to (\Sigma_2)^*:
```

- R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. R is computable by a fpt-algorithm (with respect to κ): there are f computable and p(X) polynomial such that R is computable in time $f(\kappa_1(x)) \cdot p(|x|)$.

Definition

```
Let \langle Q_1, \Sigma_1, \kappa \rangle, \langle Q_2, \Sigma_2, \kappa_2 \rangle be parameterized problems.
An fpt-reduction from \langle Q_1, \kappa_1 \rangle to \langle Q_2, \kappa_2 \rangle is a mapping
```

$$R: \Sigma_1^* \to (\Sigma_2)^*$$
:

- R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. R is computable by a fpt-algorithm (with respect to κ): there are f computable and p(X) polynomial such that R is computable in time $f(\kappa_1(x)) \cdot p(|x|)$.
- R3. $\kappa_2(R(x)) \le g(\kappa_1(x))$ for all $x \in \Sigma_1^*$, for some computable function $g: \mathbb{N} \to \mathbb{N}$.

Definition

- Let $\langle Q_1, \Sigma_1, \kappa \rangle$, $\langle Q_2, \Sigma_2, \kappa_2 \rangle$ be parameterized problems.
- An *fpt-reduction* from (Q_1, κ_1) to (Q_2, κ_2) is a mapping
- $R: \Sigma_1^* \to (\Sigma_2)^*$:
- R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. R is computable by a fpt-algorithm (with respect to κ): there are f computable and p(X) polynomial such that R is computable in time $f(\kappa_1(x)) \cdot p(|x|)$.
- R3. $\kappa_2(R(x)) \le g(\kappa_1(x))$ for all $x \in \Sigma_1^*$, for some computable function $g: \mathbb{N} \to \mathbb{N}$.
- $\langle Q_1, \kappa_1 \rangle \leq_{\text{fpt}} \langle Q_2, \kappa_2 \rangle := \text{there is an fpt-red. from } \langle Q_1, \kappa_1 \rangle \text{ to } \langle Q_2, \kappa_2 \rangle.$

Definition

Let $\langle Q_1, \Sigma_1, \kappa \rangle$, $\langle Q_2, \Sigma_2, \kappa_2 \rangle$ be parameterized problems.

An *fpt-reduction* from (Q_1, κ_1) to (Q_2, κ_2) is a mapping

$$R: \Sigma_1^* \to (\Sigma_2)^*$$
:

- R1. $(x \in Q_1 \iff R(x) \in Q_2)$ for all $x \in \Sigma_1^*$.
- R2. R is computable by a fpt-algorithm (with respect to κ): there are f computable and p(X) polynomial such that R is computable in time $f(\kappa_1(x)) \cdot p(|x|)$.
- R3. $\kappa_2(R(x)) \le g(\kappa_1(x))$ for all $x \in \Sigma_1^*$, for some computable function $g: \mathbb{N} \to \mathbb{N}$.
- $\langle Q_1, \kappa_1 \rangle \leq_{\text{fot}} \langle Q_2, \kappa_2 \rangle := \text{there is an fpt-red. from } \langle Q_1, \kappa_1 \rangle \text{ to } \langle Q_2, \kappa_2 \rangle.$

Proposition

If
$$\langle Q_1, \kappa_1 \rangle \leq_{\mathsf{fpt}} \langle Q_2, \kappa_2 \rangle$$
, then: $\langle Q_1, \kappa_1 \rangle \in \mathsf{FPT} \iff \langle Q_2, \kappa_2 \rangle \in \mathsf{FPT}$. $\langle Q_1, \kappa_1 \rangle \notin \mathsf{FPT} \implies \langle Q_2, \kappa_2 \rangle \notin \mathsf{FPT}$.

Comparing parameterizations

Proposition

For all parameterized problems (Q, κ_1) and (Q, κ_2) with $Q \subseteq \Sigma^*$:

$$\kappa_1 \succeq \kappa_2 \iff \langle Q, \kappa_1 \rangle \leq_{\text{fpt}} \langle Q, \kappa_2 \rangle \text{ via } R : \Sigma^* \to \Sigma^*, x \mapsto x.$$

Definition (computably bounded below)

Let $\kappa_1, \kappa_2 : \Sigma^* \to \mathbb{N}$ parameterizations.

- ▶ $\kappa_1 \succeq \kappa_2 : \iff \exists g : \mathbb{N} \to \mathbb{N}$ computable $\forall x \in \Sigma^* [g(\kappa_1(x)) \geq \kappa_2(x)].$
- $\blacktriangleright \kappa_1 \succ \kappa_2 : \iff \kappa_1 \succeq \kappa_2 \land \neg (\kappa_2 \succeq \kappa_1).$

Proposition

For all parameterized problems (Q, κ_1) and (Q, κ_2) with $\kappa_1 \geq \kappa_2$:

$$\langle Q, \kappa_1 \rangle \in \mathsf{FPT} \iff \langle Q, \kappa_2 \rangle \in \mathsf{FPT},$$

 $\langle Q, \kappa_1 \rangle \notin \mathsf{FPT} \implies \langle Q, \kappa_2 \rangle \notin \mathsf{FPT}.$

ov motiv fpt-reductions para-NP XP W[P] why hierarchies logic prelims + W-hierarchy A-hierarchy W-vs. A-hierarchy summ course ex-sugg

Fixed-parameter tractable reductions

Examples

- ▶ p-CLIQUE $\equiv_{\text{fot}} p$ -INDEPENDENT-SET.
- ▶ p-Dominating-Set $\equiv_{fpt} p$ -Hitting-Set.

Examples

- ▶ p-CLIQUE $\equiv_{\text{fot}} p$ -INDEPENDENT-SET.
- ▶ p-Dominating-Set $\equiv_{fot} p$ -Hitting-Set.

Non-Example

▶ For graphs $\mathcal{G} = \langle V, E \rangle$, and sets $X \subseteq V$:

X is independent set of $\mathcal{G} \iff V \setminus X$ is a vertex cover of \mathcal{G} yields a polynomial reduction between p-INDEPENDENT-SET and p-VERTEX-COVER, but does not yield an fpt-reduction.

Fpt-reduction closure / hardness / reducibility

Let C be a class of parameterized problems.

We define for all parameterized problems (Q, κ) :

• (Q, κ) is C-hard under fpt-reductions if every problem in C is fpt-reducible to (Q, κ)

Fpt-reduction closure / hardness / reducibility

Let C be a class of parameterized problems.

We define for all parameterized problems (Q, κ) :

- (Q, κ) is C-hard under fpt-reductions if every problem in C is fpt-reducible to (Q, κ)
- ▶ $\langle Q, \kappa \rangle$ is C-complete under fpt-reductions if $\langle Q, \kappa \rangle \in \mathbb{C}$ and $\langle Q, \kappa \rangle$ is C-hard under fpt-reductions,

Fpt-reduction closure / hardness / reducibility

Let C be a class of parameterized problems.

We define for all parameterized problems (Q, κ) :

- $\qquad \qquad [\langle Q, \kappa \rangle]^{\mathsf{fpt}} \coloneqq \{\langle Q', \kappa' \rangle \mid \langle Q', \kappa' \rangle \leq_{\mathsf{fpt}} \langle Q, \kappa \rangle \}.$
- ▶ $\left[\mathsf{C}\right]^{\mathsf{fpt}} \coloneqq \bigcup_{(Q,\kappa)\in\mathsf{C}} \left[\langle Q,\kappa\rangle\right]^{\mathsf{fpt}}$ is the *closure* of C under fpt-reductions.
- (Q, κ) is C-hard under fpt-reductions if every problem in C is fpt-reducible to (Q, κ)
- ▶ $\langle Q, \kappa \rangle$ is C-complete under fpt-reductions if $\langle Q, \kappa \rangle \in \mathbb{C}$ and $\langle Q, \kappa \rangle$ is C-hard under fpt-reductions,

Fpt-reduction closure / hardness / reducibility

Let C be a class of parameterized problems.

We define for all parameterized problems (Q, κ) :

- $\qquad \qquad [\langle Q, \kappa \rangle]^{\mathsf{fpt}} \coloneqq \{\langle Q', \kappa' \rangle \mid \langle Q', \kappa' \rangle \leq_{\mathsf{fpt}} \langle Q, \kappa \rangle \}.$
- ▶ $\left[\mathsf{C}\right]^{\mathsf{fpt}} \coloneqq \bigcup_{(Q,\kappa)\in\mathsf{C}} \left[\langle Q,\kappa\rangle\right]^{\mathsf{fpt}}$ is the *closure* of C under fpt-reductions.
- $\langle Q, \kappa \rangle$ is C-hard under fpt-reductions if every problem in C is fpt-reducible to $\langle Q, \kappa \rangle$ that is: $\mathbf{C} \subseteq \left[\langle Q, \kappa \rangle \right]^{\mathrm{fpt}}$, and hence $\left[\mathbf{C} \right]^{\mathrm{fpt}} \subseteq \left[\langle Q, \kappa \rangle \right]^{\mathrm{fpt}}$.
- $\langle Q, \kappa \rangle$ is C-complete under fpt-reductions if $\langle Q, \kappa \rangle \in \mathbb{C}$ and $\langle Q, \kappa \rangle$ is C-hard under fpt-reductions, and then: $\left[\mathbb{C}\right]^{\mathsf{fpt}} = \left[\langle Q, \kappa \rangle\right]^{\mathsf{fpt}}$.

ov motiv fpt-reductions para-NP XP W[P] why hierarchies logic prelims + W-hierarchy A-hierarchy W-vs. A-hierarchy summ course ex-sugg

para-NP and XP

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f: \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

- ▶ A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.
- para-NP is closed under fpt-reductions.
- ▶ NP ⊆ para-NP.

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f: \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

▶ A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f: \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

- ▶ A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.
- para-NP is closed under fpt-reductions.

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f: \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

- ▶ A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.
- para-NP is closed under fpt-reductions.
- ▶ NP ⊆ para-NP.

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f: \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

- ▶ A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.
- para-NP is closed under fpt-reductions.
- ▶ NP ⊆ para-NP.

Example

▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET, p-COLORABILITY ∈ para-NP.

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f: \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

- ▶ A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.
- para-NP is closed under fpt-reductions.
- NP ⊆ para-NP.

- ▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET, p-COLORABILITY ∈ para-NP.
- FPT = para-NP if and only if PTIME = NP.

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f: \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

- ▶ A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.
- para-NP is closed under fpt-reductions.
- ▶ NP ⊆ para-NP.

- ▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET, p-COLORABILITY ∈ para-NP.
- ▶ FPT = para-NP if and only if PTIME = NP.
- ▶ A non-trivial problem (Q, κ) is para-NP-complete for fpt-reductions if and only if the union of finitely many slices of (Q, κ) is NP-complete.

Definition

A parameterized problem (Q, Σ, κ) is in para-NP if there is a computable function $f: \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

- ▶ A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.
- para-NP is closed under fpt-reductions.
- ▶ NP ⊆ para-NP.

- ▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET, p-COLORABILITY ∈ para-NP.
- ▶ FPT = para-NP if and only if PTIME = NP.
- ▶ A non-trivial problem (Q, κ) is para-NP-complete for fpt-reductions if and only if the union of finitely many slices of $\langle Q, \kappa \rangle$ is NP-complete. Hence a non-trivial problem with at least one NP-complete slice is para-NP-complete.

Definition

A parameterized problem $\langle Q, \Sigma, \kappa \rangle$ is in para-NP if there is a computable function $f: \mathbb{N} \to \mathbb{N}$, and a polynomial $p \in \mathbb{N}[X]$ such that there is a non-deterministic algorithm \mathbb{A} such that:

- ▶ A decides, for all $x \in \Sigma^*$, whether $x \in Q$ in $\leq f(\kappa(x)) \cdot p(|x|)$ steps.
- para-NP is closed under fpt-reductions.
- ▶ NP ⊆ para-NP.

- ▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET, p-COLORABILITY ∈ para-NP.
- ▶ FPT = para-NP if and only if PTIME = NP.
- A non-trivial problem (Q,κ) is para-NP-complete for fpt-reductions if and only if the union of finitely many slices of $\langle Q,\kappa\rangle$ is NP-complete. Hence a non-trivial problem with at least one NP-complete slice is para-NP-complete.
 - p-COLORABILITY ∈ para-NP-complete.

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , *non-uniform* XP: the class of parameterized problems (Q, κ) , whose slices $(Q, \kappa)_k$ are all in PTIME.

Recall: slices of FPT-problems are in PTIME. This suggests a class:

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , *non-uniform* XP: the class of parameterized problems (Q, κ) , whose slices $(Q, \kappa)_k$ are all in PTIME.

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , non-uniform XP: the class of parameterized problems (Q, κ) , whose slices $(Q, \kappa)_k$ are all in PTIME.

- But: XP_{nu} contains undecidable problems:
 - ▶ Let $Q \subseteq \{1\}^*$ be an undecidable set. Let $\kappa : \{1\}^* \to \mathbb{N}$, $x \mapsto \kappa(x) \coloneqq \max\{1, |x|\}$. Then $\langle Q, \kappa \rangle \in \mathsf{XP}_\mathsf{nu}$.

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , non-uniform XP: the class of parameterized problems (Q, κ) , whose slices $(Q, \kappa)_k$ are all in PTIME.

- ▶ But: XP_{nu} contains undecidable problems:
 - ▶ Let $Q \subseteq \{1\}^*$ be an undecidable set. Let $\kappa : \{1\}^* \to \mathbb{N}$, $x \mapsto \kappa(x) \coloneqq \max\{1, |x|\}$. Then $\langle Q, \kappa \rangle \in \mathsf{XP}_\mathsf{nu}$.

Definition

A parameterized problem (Q, Σ, κ) is in XP if there is a computable function $f: \mathbb{N} \to \mathbb{N}$ such that there is an algorithm \mathbb{A} such that:

▶ A decides $x \in Q$, for all $x \in \Sigma^*$, in $\leq f(\kappa(x)) + |x|^{f(\kappa(x))}$ steps;

Recall: slices of FPT-problems are in PTIME. This suggests a class:

 XP_{nu} , non-uniform XP: the class of parameterized problems (Q, κ) , whose slices $(Q, \kappa)_k$ are all in PTIME.

- But: XP_{nu} contains undecidable problems:
 - ▶ Let $Q \subseteq \{1\}^*$ be an undecidable set. Let $\kappa : \{1\}^* \to \mathbb{N}$, $x \mapsto \kappa(x) \coloneqq \max\{1, |x|\}$. Then $\langle Q, \kappa \rangle \in \mathsf{XP}_\mathsf{nu}$.

Definition

A parameterized problem (Q, Σ, κ) is in XP if there is a computable function $f: \mathbb{N} \to \mathbb{N}$ such that there is an algorithm \mathbb{A} such that:

- ▶ A decides $x \in Q$, for all $x \in \Sigma^*$, in $\leq f(\kappa(x)) + |x|^{f(\kappa(x))}$ steps; equivalently, if in addition to computable $f : \mathbb{N} \to \mathbb{N}$ there are polynomials $p_k \in \mathbb{N}[X]$ for all $k \in \mathbb{N}$ such that:
 - ▶ A decides $x \in Q$, for all $x \in \Sigma^*$, in $\leq f(\kappa(x)) \cdot p_{\kappa(x)}(|x|)$ steps.

Example

- ▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET ∈ XP.
- ▶ *p*-Colorability \(XP, because 3-Colorability \(\) NP-complete.

Proposition

If PTIME ≠ NP, then para-NP ⊈ XP.

Example

- ▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET ∈ XP.
- ▶ *p*-Colorability \(XP, because 3-Colorability \(\) NP-complete.

Proposition

If PTIME ≠ NP, then para-NP ⊈ XP.

Proof.

If para-NP \subseteq XP, then p-COLORABILITY \in XP. But then it follows that 3-COLORABILITY \in PTIME, and as 3-COLORABILITY is NP-complete, that PTIME = NP.

Example

- ▶ p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, p-HITTING-SET ∈ XP.
- ▶ *p*-Colorability \(XP, because 3-Colorability \(\) NP-complete.

Proposition

If PTIME ≠ NP, then para-NP ⊈ XP.

Proof.

If para-NP \subseteq XP, then p-COLORABILITY \in XP. But then it follows that 3-COLORABILITY \in PTIME, and as 3-COLORABILITY is NP-complete, that PTIME = NP.

Proposition

 $\mathsf{FPT} \subsetneq \mathsf{XP}$.

Model checking

The *model checking problem* for a class Φ of first-order formulas:

 $\mathsf{MC}(\Phi)$

Instance: A structure \mathcal{A} and a formula $\varphi \in \Phi$.

Problem: Decide whether $A \vDash \varphi$ (that is, $\varphi(A) \neq \emptyset$).

Theorem

MC(FO) can be solved in time $O(|\varphi| \cdot |A|^w \cdot w)$, where w is the width of the input formula φ (max. no. of free variables in a subformula of φ).

Model checking

The *model checking problem* for a class Φ of first-order formulas:

 $\mathsf{MC}(\Phi)$

Instance: A structure \mathcal{A} and a formula $\varphi \in \Phi$.

Problem: Decide whether $A \vDash \varphi$ (that is, $\varphi(A) \neq \emptyset$).

Theorem

MC(FO) can be solved in time $O(|\varphi| \cdot |A|^w \cdot w)$, where w is the width of the input formula φ (max. no. of free variables in a subformula of φ).

The *parameterized model checking problem* for a class Φ of formulas:

 $p\text{-MC}(\Phi)$.

Instance: A structure \mathcal{A} and a formula $\varphi \in \Phi$.

Parameter: $|\varphi|$.

Problem: Decide whether $A \models \varphi$.

Theorem

 $p\text{-MC}(\Phi) \in XP$.

FPT versus para-NP and XP

Proposition

- FPT ⊆ para-NP, and:
 FPT = para-NP if and only if PTIME = NP.
- ► FPT ⊊ XP.

W[P]

'There is no definite single class that can be viewed as "the parameterized NP". Rather, there is a whole hierarchy of classes playing this role.

The class W[P] can be placed on top of this hierarchy. It is one of the most important parameterized complexity classes.' (Flum, Grohe [2])

W[P] and limited non-determinism

```
\begin{split} \langle Q, \Sigma \rangle &\in \mathsf{NP}[f] \text{ means:} \\ &\iff \exists p(X) \text{ polynomial } \exists \mathbb{M} \text{ non-deterministic Turingmachine} \\ & \left( \forall x \in \Sigma^* \big( \left( x \in Q \iff \mathbb{M} \text{ accepts } x \right) \right. \\ & \land \text{ on input } x, \, \mathbb{M} \text{ halts in } \leq p(|x|) \text{ steps, of which} \\ & \text{at most } \leq f(|x|) \text{ are non-deterministic} \end{split}
```

W[P] and limited non-determinism

```
\begin{split} \langle Q, \Sigma \rangle \in \mathsf{NP}[f] \text{ means:} \\ \iff \exists p(X) \text{ polynomial } \exists \mathbb{M} \text{ non-deterministic Turingmachine} \\ \left( \forall x \in \Sigma^* \big( (x \in Q \iff \mathbb{M} \text{ accepts } x) \right. \\ \land \text{ on input } x, \, \mathbb{M} \text{ halts in } \leq p(|x|) \text{ steps, of which} \\ \text{ at most } \leq f(|x|) \text{ are non-deterministic} \end{split} \mathsf{NP}[\mathcal{F}] \coloneqq \bigcup_{f \in \mathcal{F}} \mathsf{NP}[f] \text{ for class of functions } \mathcal{F}. \end{split}
```

W[P] and limited non-determinism

```
\begin{split} \langle Q, \Sigma \rangle &\in \mathsf{NP}[f] \text{ means:} \\ \iff &\exists p(X) \text{ polynomial } \exists \mathbb{M} \text{ non-deterministic Turingmachine} \\ & \left( \forall x \in \Sigma^* \big( (x \in Q \iff \mathbb{M} \text{ accepts } x) \right. \\ & \land \text{ on input } x, \, \mathbb{M} \text{ halts in } \leq p(|x|) \text{ steps, of which} \\ & \text{ at most } \leq f(|x|) \text{ are non-deterministic} \end{split}
```

 $\mathsf{NP}[\mathcal{F}] \coloneqq \bigcup_{f \in \mathcal{F}} \mathsf{NP}[f]$ for class of functions \mathcal{F} .

Fact

$$NP[\log n] = P$$
, $NP[n^{O(1)}] = NP$.

ov motiv fpt-reductions para-NP XP W[P] why hierarchies logic prelims + W-hierarchy A-hierarchy W-vs. A-hierarchy summ course ex-sugg

W[P]

Definition

Let Σ be an alphabet, and $\kappa: \Sigma^* \to \mathbb{N}$ a parameterization. A nondeterministic Turing machine \mathbb{M} with input alphabet Σ is κ -restricted

Definition

▶ Let Σ be an alphabet, and $\kappa : \Sigma^* \to \mathbb{N}$ a parameterization. A nondeterministic Turing machine \mathbb{M} with input alphabet Σ is κ -restricted if there are computable functions $f, h : \mathbb{N} \to \mathbb{N}$ and a

polynomial $p \in \mathbb{N}_0[x]$ such that on every run with input $x \in \Sigma^*$ the machine M performs

 \triangleright at most $f(\kappa(x)) \cdot p(|x|)$ steps,

$\mathsf{W}[\mathsf{P}]$

Definition

- ▶ Let Σ be an alphabet, and $\kappa : \Sigma^* \to \mathbb{N}$ a parameterization.
 - A nondeterministic Turing machine $\mathbb M$ with input alphabet Σ is κ -restricted if there are computable functions $f,h:\mathbb N\to\mathbb N$ and a polynomial $p\in\mathbb N_0[x]$ such that on every run with input $x\in\Sigma^*$ the machine $\mathbb M$ performs
 - ightharpoonup at most $f(\kappa(x)) \cdot p(|x|)$ steps,
 - ightharpoonup at most $h(\kappa(x)) \cdot \log |x|$ of them being nondeterministic,

W[P]

Definition

- Let Σ be an alphabet, and $\kappa: \Sigma^* \to \mathbb{N}$ a parameterization. A nondeterministic Turing machine \mathbb{M} with input alphabet Σ is κ -restricted if there are computable functions $f,h:\mathbb{N}\to\mathbb{N}$ and a polynomial $p\in\mathbb{N}_0[x]$ such that on every run with input $x\in\Sigma^*$ the machine \mathbb{M} performs
 - \triangleright at most $f(\kappa(x)) \cdot p(|x|)$ steps,
 - ightharpoonup at most $h(\kappa(x)) \cdot \log |x|$ of them being nondeterministic,
- W[P] contains all problems (Q, κ) that can be decided by a κ-restricted nondeterministic Turing machine.

W[P] (properties)

Theorems

- T1. $FPT \subseteq W[P] \subseteq XP \cap para-NP$
- T2. W[P] is closed under fpt-reductions.
- T3. p-CLIQUE, p-INDEPENDENT-SET, p-DOMINATING-SET, and p-HITTING-SET are in W[P].

The W-hierarchy – Boolean circuits

A (Boolean) circuit is a DAG in which nodes are labeled:

- ▶ nodes of in-degree > 1 as and-node or as or-node,
- ▶ nodes of in-degree = 1 as negation nodes,

The W-hierarchy – Boolean circuits

A (Boolean) circuit is a DAG in which nodes are labeled:

- nodes of in-degree > 1 as and-node or as or-node,
- ▶ nodes of in-degree = 1 as negation nodes,
- nodes of in-degree = 0 as Boolean constants 0 or 1, or input node (we assume input nodes to be numbered 1,...,n),

The W-hierarchy – Boolean circuits

A (Boolean) circuit is a DAG in which nodes are labeled:

- nodes of in-degree > 1 as and-node or as or-node,
- nodes of in-degree = 1 as negation nodes,
- nodes of in-degree = 0 as Boolean constants 0 or 1, or input node (we assume input nodes to be numbered 1,...,n),
- one node of out-degree 0 is labeled as output node.

The W-hierarchy – Boolean circuits

A (Boolean) circuit is a DAG in which nodes are labeled:

- nodes of in-degree > 1 as and-node or as or-node,
- nodes of in-degree = 1 as negation nodes,
- nodes of in-degree = 0 as Boolean constants 0 or 1, or input node (we assume input nodes to be numbered 1,...,n),
- one node of out-degree 0 is labeled as output node.

A circuit \mathcal{C} with n input nodes defines a function $\mathcal{C}(\cdot) : \{0,1\}^n \to \{0,1\}$ (a Boolean function) in the natural way.

Definition

We say that C is k-satisfiable if C is satisfied by a tuple of weight k.

The W-hierarchy - Boolean circuits

A (Boolean) circuit is a DAG in which nodes are labeled:

- nodes of in-degree > 1 as and-node or as or-node,
- nodes of in-degree = 1 as negation nodes,
- nodes of in-degree = 0 as Boolean constants 0 or 1, or input node (we assume input nodes to be numbered 1,...,n),
- one node of out-degree 0 is labeled as output node.

A circuit \mathcal{C} with n input nodes defines a function $\mathcal{C}(\cdot) : \{0,1\}^n \to \{0,1\}$ (a Boolean function) in the natural way.

▶ If C(x) = 1, for $x \in \{0,1\}^n$, we say that x satisfies C.

Definition

We say that C is k-satisfiable if C is satisfied by a tuple of weight k.

The W-hierarchy - Boolean circuits

A (Boolean) circuit is a DAG in which nodes are labeled:

- nodes of in-degree > 1 as and-node or as or-node,
- nodes of in-degree = 1 as negation nodes,
- nodes of in-degree = 0 as Boolean constants 0 or 1, or input node (we assume input nodes to be numbered 1,...,n),
- one node of out-degree 0 is labeled as output node.

A circuit \mathcal{C} with n input nodes defines a function $\mathcal{C}(\cdot) : \{0,1\}^n \to \{0,1\}$ (a Boolean function) in the natural way.

- ▶ If C(x) = 1, for $x \in \{0,1\}^n$, we say that x satisfies C.
- ▶ The *weight* of a tuple $x = \langle x_1, \dots, x_n \rangle \in \{0, 1\}^*$ is $\sum_{i=1}^n x_i$.

Definition

We say that C is k-satisfiable if C is satisfied by a tuple of weight k.

W[P] complete problems

p-WSAT(CIRC)

Instance: A circuit C and $k \in \mathbb{N}$

Parameter: k.

Problem: Decide whether C is k-satisfiable.

Theorem

p-WSAT(CIRC) is W[P]-complete under fpt-reductions.

Definition

The depth of the circuit is the max. length of a path from an input node to the output node. Small nodes have indegree at most 2 while large nodes have indegree > 2. The weft of a circuit is the max. number of large nodes on a path from an input node to the output node. We denote by $CIRC_{t,d}$ the class of circuits with $weft \le t$ and $depth \le d$.

Application

p-DOMINATING-SET \in W[P], since it reduces to p-WSAT(CIRC_{2,3}).

Limited non-determinism (classically)

```
\begin{split} \langle Q, \Sigma \rangle &\in \mathsf{NP}[f] \text{ means:} \\ &\iff \exists p(X) \text{ polynomial } \exists \mathbb{M} \text{ non-deterministic Turingmachine} \\ & \left( \forall x \in \Sigma^* \big( (x \in Q \iff \mathbb{M} \text{ accepts } x) \right. \\ & \land \text{ on input } x, \, \mathbb{M} \text{ halts in } \leq p(|x|) \text{ steps, of which} \\ & \text{at most } \leq f(|x|) \text{ are non-deterministic} \end{split}
```

Limited non-determinism (classically)

```
\begin{split} \langle Q, \Sigma \rangle &\in \mathsf{NP}[f] \text{ means:} \\ &\iff \exists p(X) \text{ polynomial } \exists \mathbb{M} \text{ non-deterministic Turingmachine} \\ & \left( \forall x \in \Sigma^* \big( (x \in Q \iff \mathbb{M} \text{ accepts } x) \right. \\ & \land \text{ on input } x, \, \mathbb{M} \text{ halts in } \leq p(|x|) \text{ steps, of which} \\ & \text{ at most } \leq f(|x|) \text{ are non-deterministic} \end{split} \mathsf{NP}[\mathcal{F}] \coloneqq \bigcup_{f \in \mathcal{F}} \mathsf{NP}[f] \text{ for class of functions } \mathcal{F}. \end{split}
```

Limited non-determinism (classically)

```
\begin{split} \langle Q, \Sigma \rangle \in \mathsf{NP}[f] \text{ means:} \\ \iff \exists p(X) \text{ polynomial } \exists \mathbb{M} \text{ non-deterministic Turingmachine} \\ \left( \forall x \in \Sigma^* \big( \left( x \in Q \iff \mathbb{M} \text{ accepts } x \right) \right. \\ \land \text{ on input } x, \, \mathbb{M} \text{ halts in } \leq p(|x|) \text{ steps, of which} \\ \text{ at most } \leq f(|x|) \text{ are non-deterministic} \end{split}
```

 $NP[\mathcal{F}] := \bigcup_{f \in \mathcal{F}} NP[f]$ for class of functions \mathcal{F} .

Fact

$$NP[\log n] = P$$
, $NP[n^{O(1)}] = NP$.

Theorem (Cai, Chen, 1997)

The following are equivalent:

- (i) FPT = W[P].
- (ii) There is a computable, nondecreasing, unbounded function $\iota : \mathbb{N} \to \mathbb{N}$ such that $\mathsf{P} = \mathsf{NP}[\iota(n) \cdot \log n]$.

FPT and W[P] versus para-NP and XP

Proposition

 $\mathsf{FPT} \subseteq \mathsf{W}[\mathsf{P}] \subseteq \mathsf{XP} \cap \mathsf{para}\text{-}\mathsf{NP}$.

Why is the theory of W[P]/W/A-hardness important?

- Prevents from wasting hours tackling a problem which is fundamentally difficult;
- Finding results on a problem is always a ping-pong game between trying to design a hardness/FPT result;
- There is a hierarchy on parameters and it is worth knowing which is the smallest one such that the problem remains FPT;
- There is a hierarchy on complexity classes and it is worth noting to which extent a problem is hard.

Logic preliminaries (continued)

- atomic formulas/atoms: a formula x = y or $Rx_1 \dots x_n$
- literal: an atom or a negated atom
- quantifier-free formula: a formula without quantifiers
- formula in negation-normal form: negations only occur in front of atoms
- formula in *prenex normal form*: formula of the form $Q_1x_1 \dots Q_kx_k \psi$, where ψ is quantifier-free and $Q_1, \dots, Q_k \in \{\exists, \forall\}$

Logic preliminaries (continued)

- atomic formulas/atoms: a formula x = y or $Rx_1 \dots x_n$
- literal: an atom or a negated atom
- quantifier-free formula: a formula without quantifiers
- formula in negation-normal form: negations only occur in front of atoms
- formula in *prenex normal form*: formula of the form $Q_1x_1 \dots Q_kx_k \psi$, where ψ is quantifier-free and $Q_1, \dots, Q_k \in \{\exists, \forall\}$
- \triangleright Σ_0 and Π_0 : the class of quantifier-free formulas
- ▶ Σ_{t+1} : class of all formulas $\exists x_1 \dots \exists x_k \varphi$ where $\varphi \in \Pi_t$
- ▶ Π_{t+1} : class of all formulas $\forall x_1 \dots \forall x_k \varphi$ where $\varphi \in \Sigma_t$

Weighted Fagin definability

Let $\varphi(X)$ be a f-o formula with a free relation variable X with arity s. Let τ be a vocabulary for φ , plus a relation symbol R of arity s.

A solution for φ in a τ -structure \mathcal{A} is a relation $S \subseteq A^s$ such that $\mathcal{A} \vDash \varphi(\overline{S})$.

The weighted Fagin definability problem for $\varphi(X)$ is:

 WD_{φ}

Instance: A structure A and $k \in \mathbb{N}$.

Problem: Decide whether there is a solution $S \subseteq A^s$ for φ

of cardinality |S| = k.

 WD_{Φ} : the class of all problems WD_{φ} with $\varphi \in \Phi$, where Φ is a class of first-order formulas with free relation variable X.

W-Hierarchy

W-Hierarchy

 $p\text{-WD}_{\varphi}$ (φ a fo-formula with free relation variable X of arity s)

Instance: A structure A and $k \in \mathbb{N}$.

Parameter: k.

Problem: Is there a relation $S \subseteq A^s$ of cardinality |S| = k

with $\mathcal{A} \vDash \varphi(S)$.

 $p ext{-WD-}\Phi$: the class of all problems $p ext{-WD-}\varphi$ with $\varphi\in\Phi$, Φ is a class of first-order formulas.

Definition (Downey-Fellows, 1995)

 $W[t] := [p\text{-WD-}\Pi_t]^{\text{fpt}}$, for $t \ge 1$, form the *W-hierarchy*.

 $p\text{-WD}_{\varphi}$ (φ a fo-formula with free relation variable X of arity s)

Instance: A structure A and $k \in \mathbb{N}$.

Parameter: k.

Problem: Is there a relation $S \subseteq A^s$ of cardinality |S| = k with $A \models \varphi(S)$.

 $p\text{-WD-}\Phi$: the class of all problems $p\text{-WD-}\varphi$ with $\varphi \in \Phi$, Φ is a class of first-order formulas.

Definition (Downey-Fellows, 1995)

$$W[t] := [p\text{-WD-}\Pi_t]^{\text{fpt}}$$
, for $t \ge 1$, form the W-hierarchy.

Examples

- ▶ p-CLIQUE \in W[1].
- ▶ p-Dominating-Set \in **W**[2].
- ▶ p-HITTING-SET \in W[2].

 $p\text{-WD}_{\varphi}$ (φ a fo-formula with free relation variable X of arity s)

Instance: A structure A and $k \in \mathbb{N}$.

Parameter: k.

Problem: Is there a relation $S \subseteq A^s$ of cardinality |S| = k

with $A \vDash \varphi(S)$.

 $p ext{-WD-}\Phi$: the class of all problems $p ext{-WD-}\varphi$ with $\varphi\in\Phi$, Φ is a class of first-order formulas.

Definition (Downey-Fellows, 1995)

$$W[t] := [p\text{-WD-}\Pi_t]^{\text{fpt}}$$
, for $t \ge 1$, form the W-hierarchy.

Examples

▶ p-CLIQUE \in W[1].

 $p\text{-WD}_{\varphi}$ (φ a fo-formula with free relation variable X of arity s)

Instance: A structure A and $k \in \mathbb{N}$.

Parameter: k.

Problem: Is there a relation $S \subseteq A^s$ of cardinality |S| = k

with $A \vDash \varphi(S)$.

 $p ext{-WD-}\Phi$: the class of all problems $p ext{-WD-}\varphi$ with $\varphi\in\Phi$, Φ is a class of first-order formulas.

Definition (Downey-Fellows, 1995)

$$W[t] := [p\text{-WD-}\Pi_t]^{\text{fpt}}$$
, for $t \ge 1$, form the W-hierarchy.

Examples

▶ p-Dominating-Set \in W[2].

 $p\text{-WD}_{\varphi}$ (φ a fo-formula with free relation variable X of arity s)

Instance: A structure A and $k \in \mathbb{N}$.

Parameter: k.

Problem: Is there a relation $S \subseteq A^s$ of cardinality |S| = k

with $\mathcal{A} \vDash \varphi(S)$.

 $p ext{-WD-}\Phi$: the class of all problems $p ext{-WD-}\varphi$ with $\varphi\in\Phi$, Φ is a class of first-order formulas.

Definition (Downey-Fellows, 1995)

$$W[t] := [p\text{-WD-}\Pi_t]^{\text{fpt}}$$
, for $t \ge 1$, form the W-hierarchy.

Examples

▶ p-HITTING-SET \in W[2].

Definition

(W-hierarchy) For $t \ge 1$, a parameterized problem $\langle Q, \kappa \rangle$ belongs to the class W[t] if there is a parameterized reduction from $\langle Q, \kappa \rangle$ to p-WSAT(CIRC $_{t,d}$) (with parameter t) for some $d \ge 1$.

$$\mathsf{FPT} \subseteq \mathsf{W}[1] \subseteq \mathsf{W}[2] \dots$$

- ▶ p-CLIQUE, p-INDEPENDENT-SET are W[1]-Complete.
- ▶ *p*-DOMINATING-SET, *p*-HITTING-SET are W[2]-Complete.

Hypothesis: W[1] ≠ FPT

Definition

(W-hierarchy) For $t \ge 1$, a parameterized problem $\langle Q, \kappa \rangle$ belongs to the class W[t] if there is a parameterized reduction from $\langle Q, \kappa \rangle$ to p-WSAT(CIRC $_{t,d}$) (with parameter t) for some $d \ge 1$.

$$\mathsf{FPT} \subseteq \mathsf{W}[1] \subseteq \mathsf{W}[2] \dots$$

- ▶ *p*-CLIQUE, *p*-INDEPENDENT-SET are W[1]-Complete.
- ▶ *p*-Dominating-Set, *p*-Hitting-Set are W[2]-Complete.

Hypothesis: W[1] ≠ FPT

Proposition

This definition of the W-hierarchy is equivalent to the one here before. That is, it holds, for all $t \ge 1$:

$$W[t] = [\{p\text{-WSAT}(CIRC_{t,d}) \mid d \ge 1\}]^{fpt}.$$

W-Hierarchy (properties)

Immediate from definition follows: $[p\text{-WD-FO}]^{\text{fpt}} = \bigcup_{i=1}^{\infty} W[i]$.

Theorems

- T1. p-WD-FO \subseteq W[P], and hence W[t] \subseteq W[P] for all $t \ge 1$.
- **T2.** p-WD- $\Sigma_1 \subseteq FPT$.
- **T3**. p-WD- $\Sigma_{t+1} \subseteq p$ -WD- Π_t , for all $t \ge 1$.
- T4. $W[t] = [p\text{-WD-}\Sigma_{t+1}]^{\text{fpt}}$ for all $t \ge 1$.

W-Hierarchy versus para-NP and XP

A-Hierarchy (definition and examples 1,2)

The parameterized model checking problem for a class Φ of formulas:

```
p	ext{-MC}(\Phi)
```

Instance: A structure A and a formula $\varphi \in \Phi$.

Parameter: $|\varphi|$.

Problem: Decide whether $\varphi(A) \neq \emptyset$.

```
Definition (Flum, Grohe, 2001)
```

```
A[t] := [p-MC(\Sigma_t)]^{fpt}, for t \ge 1, form the A-hierarchy.
```

A-Hierarchy (definition and examples 1,2)

The parameterized model checking problem for a class Φ of formulas:

```
p\text{-MC}(\Phi)
```

Instance: A structure A and a formula $\varphi \in \Phi$.

Parameter: $|\varphi|$.

Problem: Decide whether $\varphi(A) \neq \emptyset$.

Definition (Flum, Grohe, 2001)

```
A[t] := [p\text{-MC}(\Sigma_t)]^{\text{fpt}}, for t \ge 1, form the A-hierarchy.
```

Examples

- ▶ p-CLIQUE \in A[1].
- ▶ p-DOMINATING-SET \in A[2].

A-Hierarchy (definition and examples 3,4)

The parameterized model checking problem for a class Φ of formulas:

```
p	ext{-MC}(\Phi)
```

Instance: A structure A and a formula $\varphi \in \Phi$.

Parameter: $|\varphi|$.

Problem: Decide whether $\varphi(A) \neq \emptyset$.

```
Definition (Flum, Grohe, 2001)
```

```
A[t] := [p-MC(\Sigma_t)]^{fpt}, for t \ge 1, form the A-hierarchy.
```

A-Hierarchy (definition and examples 3,4)

The parameterized model checking problem for a class Φ of formulas:

```
p	ext{-MC}(\Phi)
```

Instance: A structure A and a formula $\varphi \in \Phi$.

Parameter: $|\varphi|$.

Problem: Decide whether $\varphi(A) \neq \emptyset$.

Definition (Flum, Grohe, 2001)

```
A[t] := [p\text{-MC}(\Sigma_t)]^{\text{fpt}}, for t \ge 1, form the A-hierarchy.
```

Examples

- ▶ p-HITTING-SET \in A[2].
- ▶ p-SUBGRAPH-ISOMORPHISM \in A[1].

A-Hierarchy (example 5)

The parameterized model checking problem for a class Φ of formulas:

 $p\text{-MC}(\Phi)$

Instance: A structure \mathcal{A} and a formula $\varphi \in \Phi$.

Parameter: $|\varphi|$.

Problem: Decide whether $\varphi(A) \neq \emptyset$.

Definition (Flum, Grohe, 2001)

 $A[t] := [p-MC(\Sigma_t)]^{fpt}$, for $t \ge 1$, form the A-hierarchy.

Examples

▶ p-Subgraph-Isomorphism \in A[1].

p-Subgraph-Isomorphism

Instance: Graphs \mathcal{G} and \mathcal{H} .

Parameter: The number of vertices of \mathcal{H} .

Problem: Does \mathcal{G} have a subgraph isomorphic to \mathcal{H} .

A-Hierarchy (example 6)

The parameterized model checking problem for a class Φ of formulas:

 $p\text{-MC}(\Phi)$

Instance: A structure A and a formula $\varphi \in \Phi$.

Parameter: $|\varphi|$.

Problem: Decide whether $\varphi(A) \neq \emptyset$.

Definition (Flum, Grohe, 2001)

 $A[t] := [p-MC(\Sigma_t)]^{fpt}$, for $t \ge 1$, form the *A-hierarchy*.

Examples

▶ p-Vertex-Deletion \in A[2].

p-Vertex-Deletion

Instance: Graphs \mathcal{G} and \mathcal{H} , and $k \in \mathbb{N}$.

Parameter: $k + \ell$, where ℓ the number of vertices of \mathcal{H} .

Problem: Is it possible to delete at most k vertices from \mathcal{G} such that the resulting graph has no subgraph isomorphic to \mathcal{H} ?

A-Hierarchy (example 7)

The parameterized model checking problem for a class Φ of formulas:

```
p	ext{-MC}(\Phi)
```

Instance: A structure A and a formula $\varphi \in \Phi$.

Parameter: $|\varphi|$.

Problem: Decide whether $\varphi(A) \neq \emptyset$.

Definition (Flum, Grohe, 2001)

$$A[t] := [p\text{-MC}(\Sigma_t)]^{\text{fpt}}$$
, for $t \ge 1$, form the A-hierarchy.

Examples

▶ p-CLIQUE-DOMINATING-SET \in A[2].

p-CLIQUE-DOMINATING-SET

Instance: Graphs \mathcal{G} , and $k, \ell \in \mathbb{N}$.

Parameter: $k + \ell$, where ℓ the number of vertices of \mathcal{H} .

Problem: Decide whether $\mathcal G$ contains a set of k vertices from $\mathcal G$ that dominates every clique of ℓ elements.

A-Hierarchy (properties)

Theorems

- T1. $A[1] \subseteq W[P]$.
- T2. $W[t] \subseteq A[t]$, for all $t \in \mathbb{N}$.
 - ▶ Unlikely: $A[t] \subseteq W[t]$, for t > 1.
 - Reason:
 - the A-hierarchy are parameterizations of problems that are complete for the levels of the polynomial hierarchy
 - the W-hierarchy is a refinement of NP in parameterized complexity
 - ▶ Unlikely: $[p\text{-MC}(\mathsf{FO})]^{\mathsf{fpt}} = \bigcup_{i=1}^{\infty} \mathsf{A}[i],$ contrasting with: $[p\text{-WD-FO}]^{\mathsf{fpt}} = \bigcup_{i=1}^{\infty} \mathsf{W}[i].$

W-Hierarchy and A-Hierarchy versus para-NP and XP

W-Hierarchy and A-Hierarchy versus para-NP and XP

Revisiting the two problems at start today

QUERIES

Instance: a relational database D, a conjunctive query α .

Parameter: size $k = |\alpha|$ of query α

Compute: answer to query α from database D.

- QUERIES ∈ NP-complete.
- ▶ QUERIES $\in O(n^k)$ for n = ||D||, which does not give an FPT result.

LTL-MODEL-CHECKING

Instance: a Kripke structure (state space) K, an LTL formula φ

Parameter: size $k = |\varphi|$ of formula φ

Question: Does $\mathcal{K} \models \varphi$ hold?

- ► LTL-MODEL-CHECKING ∈ PSPACE-complete,
- ▶ LTL-MODEL-CHECKING $\in O(k \cdot 2^{2k} \cdot n) \in \mathsf{FPT}$ for $n = ||\mathcal{K}||$.

Revisiting the two problems at start today

QUERIES

Instance: a relational database D, a conjunctive query α .

Parameter: size $k = |\alpha|$ of query α

Compute: answer to query α from database D.

- QUERIES ∈ NP-complete.
- ▶ QUERIES $\in O(n^k)$ for n = ||D||, which does not give an FPT result.
- ► QUERIES ∈ W[1] (= strong evidence for it likely not to be in FPT).

LTL-MODEL-CHECKING

Instance: a Kripke structure (state space) K, an LTL formula φ

Parameter: size $k = |\varphi|$ of formula φ

Question: Does $\mathcal{K} \models \varphi$ hold?

- ► LTL-MODEL-CHECKING ∈ PSPACE-complete,
- ► LTL-MODEL-CHECKING $\in O(k \cdot 2^{2k} \cdot n) \in \mathsf{FPT}$ for $n = ||\mathcal{K}||$.

Summary

- Motivation for fixed-parameter intractability
- Fixed parameter reductions
- The classes para-NP and XP
- ▶ The class W[P]
- Logic preliminaries (continued)
- W-hierarchy
 - definitions
 - with Boolean circuits
 - as parameterized weighted Fagin definability problems
- A-hierarchy
 - definition as parameterized model-checking problems
- picture overview of these classes

Course overview

Monday, June 10 10.30 – 12.30	Tuesday, June 11	Wednesday, June 12 10.30 – 12.30	Thursday, June 13	Friday, June 14
Introduction & basic FPT results		Algorithmic Meta-Theorems		
motivation for FPT kernelization, Crown Lemma, Sunflower Lemma	GDA	1st-order logic, monadic 2nd-order logic, FPT-results by Courcelle's Theorems for tree and clique-width	GDA	GDA
Algorithmic Techniques		Formal-Method & Algorithmic Techniques		
	14.30 – 16.30 Notions of bounded graph width			14.30 – 16.30 FPT-Intractability Classes & Hierarchies
	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. widths	GDA	GDA	motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies

Example suggestions

Examples

- 1. FPT results transfer backwards over fpt-reductions: If $(Q_1, \kappa_1) \leq_{\text{fpt}} (Q_2, \kappa_2)$, then $Q_2 \in \text{FPT}$ implies $Q_1 \in \text{FPT}$.
- 2. Find the idea for: $p ext{-}\mathsf{DOMINATING-SET} \equiv_{\mathsf{fpt}} p ext{-}\mathsf{HITTING-SET}.$
- 3.

References

Parameterized Algorithms. Springer, 1st edition, 2015.

Jörg Flum and Martin Grohe.

Parameterized Complexity Theory.

Springer, 2006.