Лабораторная работа № 7

Эффективность рекламы

Абакумов Егор Александрович

Содержание

Теоретическое введение	5
Задание	6
Ход работы	7
Ответы на контрольные вопросы	12
Вывод	14

List of Tables

List of Figures

0.1	Код для первого случая	7
0.2	График для первого случая	8
0.3	Код для второго случая	9
0.4	График для второго случая	10
0.5	Код для третьего случая	11
0.6	График для третьего случая	11

Теоретическое введение

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

Задание

Вариант 50

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.66 + 0.00006n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.000066 + 0.6n(t))(N - n(t))$$

3.
$$\frac{dn}{dt} = (0.66t + 0.6 \cdot t \cdot n(t))(N - n(t))$$

При этом объем аудитории N=2010, в начальный момент о товаре знает 29 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Ход работы

Напишем код для первого случая (иллюстр. 0.1). Здесь N - популяция, u0 - количество осведомленных о товаре людей в начальный момент времени, t
 временной промежуток наблюдения, foo - функция решения, u - рабочая переменная, переменные temp и graph - временные переменные для хранения промежуточных результатов.

```
source_1.jl

1  using Plots
2  using DifferentialEquations
3

4  N = 2010
5  u0 = 29
6  t = (0.0, 8.0)
7

8  foo(u, p, t) = (0.66 + 0.00006 * u) * (N - u)
9

10  temp = ODEProblem(foo, u0, t)
11  graph = solve(temp)
12
13  plot(graph, label = "")
```

Figure 0.1: Код для первого случая

2. В результате получим график для первого случая (иллюстр. 0.2).

Figure 0.2: График для первого случая

3. Далее поменяем коэффициенты α_1 и α_2 , получив тем самым второе уравнение (иллюстр. 0.3).

```
source_2.jl

1  using Plots
2  using DifferentialEquations
3

4  N = 2010
5  u0 = 29
6  t = (0.0, 0.006)
7

8  foo(u, p, t) = (0.000066 + 0.6 * u) * (N - u)
9

10  temp = ODEProblem(foo, u0, t)
11  graph = solve(temp)
12
13  plot(graph, label = "")
```

Figure 0.3: Код для второго случая

4. В результате получим следующий график, по которому вычислим момент максимальной скорости распространения рекламы: $t=0.0035;\ n=1000$ (иллюстр. 0.4).

Figure 0.4: График для второго случая

5. Теперь снова изменим ситуацию, добавив влияние внешних условий на коффициенты α_1 и α_2 для получения третьего уравнения (иллюстр. 0.5).

```
source_3.jl

1  using Plots
2  using DifferentialEquations
3

4  N = 2010
5  u0 = 29
6  t = (0.0, 0.2)
7

8  foo(u, p, t) = (0.66 * t + 0.6 * t * u) * (N - u)
9

10  temp = ODEProblem(foo, u0, t)
11  graph = solve(temp)
12
13  plot(graph, label = "")
```

Figure 0.5: Код для третьего случая

6. В результате получим следующий график (иллюстр. 0.6).

Figure 0.6: График для третьего случая

Ответы на контрольные вопросы

1. Записать модель Мальтуса (дать пояснение, где используется данная модель).

Модель Мальтуса имеет следующий вид:

$$P(t) = P_0 e^{rt},$$

где $P_0 = P(0)$ — численность, r — темп прироста населения (т. н. «мальтузианский параметр»), а t — время.

2. Записать уравнение логистической кривой (дать пояснение, что описывает данное уравнение).

Уравнение логистической кривой имеет следующий вид:

$$\frac{dP}{dt} = rP(1 - \frac{P}{K}),$$

где P — численность популяции, r — скорость роста популяции, а K — поддерживающая ёмкость среды (верхняя граница численности популяции).

3. На что влияет коэффициент $\alpha_1(t)$ и $\alpha_2(t)$ в модели распространения рекламы? Коэффициент $\alpha_1(t)$ характеризует интенсивность рекламной компании. Коэффициент $\alpha_2(t)$ характеризует эффект "сарафанного радио".

4. Как ведет себя рассматриваемая модель при $\alpha_1(t) >> \alpha_2(t)$?

Модель принимает вид модели Мальтуса.

_	**	_				(.)		(.)	٠.
5.	Как ведет	себя	рассматриваемая	модель 1	при	$\alpha_1(t)$	<<	$\alpha_2(t)$) ?

Модель принимает вид логистической кривой.

Вывод

В ходе работы мы успешно промоделировали распространение рекламы в трех различных ситуациях, построили графики для каждой и ответили на все контрольные вопросы.