Récursivité. Paradigme diviser pour régner.

Développeur Python

Sommaire

- 1. Récursivité.
- 2. Paradigme "diviser pour régner".

Définition et principe

- Un sous-programme (procédure ou fonction) est dit récursif s'il s'appelle luimême.
- Pour effectuer une tâche ou un calcul, on se ramène donc à la réalisation d'une tâche similaire mais de complexité moindre.
- On recommence ainsi jusqu'à obtenir une tâche élémentaire.

Principe

- En pratique un sous-programme récursif va s'appeler lui-même avec un paramètre plus "petit".
- Cet appel en induira un autre, puis un autre, etc. D'appel en appel, la taille du paramètre va ainsi diminuer.
- On s'arrêtera quand cette taille sera celle d'un problème immédiatement résolvable.

Principe

 Les différents problèmes intermédiaires, ceux permettant de passer du problème initial au problème élémentaire, seront stockés successivement en mémoire dans une pile.

• On utilisera ainsi en premier le résultat du problème élémentaire, puis de proche en proche on arrivera à celui du problème initial.

Exemple: la fonction factorielle

Rappelons que

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1$$

On a donc la formule de récurrence

$$n! = n \times (n-1)!$$

Exemple: la fonction factorielle

• Implémentation récursive :

```
def factorielleRecursive(n):
   if n==0 or n==1:
      return 1
   else:
      return n*factorielleRecursive(n-1)
```

Exemple: la fonction factorielle

• Exécution de la fonction pour n=4:

$$facto(4) = 4 \times facto(3)$$

$$facto(3) = 3 \times facto(2)$$

$$facto(2) = 2 \times facto(1)$$

$$facto(1) = 1$$

$$facto(4) = 4 \times 6 = 24$$

$$facto(3) = 3 \times 2 = 6$$

$$facto(2) = 2 \times 1 = 2$$

Remarque fondamentale

- Il est indispensable de prévoir une condition d'arrêt à la récursion sinon le programme va s'appeler une infinité de fois.
- Exemple à ne pas suivre :

```
def factorielleRecursiveBadJob(n):
return n*factorielleRecursiveBadJob(n-1)
```

Récursivité versus itération

- Par opposition, on qualifiera d'itératif un sous-programme qui ne s'appelle pas.
- On peut démontrer qu'il est toujours possible de transformer un algorithme récursif en un algorithme itératif et inversement.
- L'algorithme itératif sera plus rapide une fois implémenté dans un langage de programmation mais souvent plus complexe à écrire.

Exemple: la fonction factorielle

• Implémentation itérative :

```
def factorielleIterative(n):
    resultat = 1
    for i in range(2,n+1):
        resultat *= i
    return resultat
```

Intérêts de la récursivité

• Technique de programmation très élégante et lisible (elle évite souvent le recours à de nombreuses structures itératives).

• Elle est très utile pour concevoir des algorithmes sur des structures complexes comme les listes, les arbres et les graphes.

Inconvénient majeur de la récursivité

• Une fois implémentée dans un langage de programmation, cette technique est très gourmande en mémoire.

• Elle peut même provoquer des débordements de capacité.

Récursivité croisée : définition

• C'est un cas bien particulier de récursivité où une fonction appelle une autre fonction qui elle-même appelle la première.

Récursivité croisée : exemple

• Fonction récursive testant la parité d'un nombre :

```
def pair(n):
    if n == 0:
        return True
    else:
        return impair(n-1)
def impair(n):
    if n == 0:
        return False
    else:
        return pair (n-1)
```

Récursivité multiple : définition

• Cas de figure où un sous-programme récursif réalise plusieurs appels à luimême.

Récursivité multiple : exemple

• Formule de récurrence des coefficients binomiaux

$$\binom{n}{k} = \begin{cases} 1 & \text{si } k = 0\\ 1 & \text{si } k = n\\ \binom{n-1}{k-1} + \binom{n-1}{k} & \text{sinon} \end{cases}$$

Récursivité multiple : exemple

• Fonction récursive calculant les coefficients binomiaux :

```
def coeffs(n,k):
   if k == 0 or k == n:
      return 1
   else:
      return coeffs(n-1,k-1) + coeffs(n-1,k)
```

Récursivité imbriquée : définition

• Cas de figure où l'appel à lui-même d'un sous-programme récursif contient un autre appel à lui-même.

Récursivité imbriquée : exemple

La fonction 91 de McCarthy, définie sur Z par

$$f(n) = \begin{cases} n - 10 & si \quad n > 100 \\ f(f(n+11)) & si \quad n \le 100 \end{cases}$$

Récursivité imbriquée : exemple

• Fonction récursive de McCarthy :

```
def f91(n):
    if n > 100:
        return n-10
    else:
        return f91(f91(n+11))
```


Principe

- Les algorithmes de la partie précédente étaient basés pour la plupart sur la simple exploitation d'une formule de récurrence.
- Mais beaucoup de problèmes plus complexes se résolvent aussi naturellement de façon récursive, avec des algorithmes s'appelant eux-mêmes une ou plusieurs fois sur des données de tailles inférieures.
- Il faudra alors combiner les résultats issus de chacun de ces appels.

Les trois étapes du paradigme "diviser pour régner"

- 1. Diviser : on divise les données initiales en plusieurs sous-parties.
- **2. Régner** : on résout récursivement chacun des sous-problèmes associés (ou on les résout directement si leur taille est assez petite).
- 3. Combiner : on combine les différents résultats obtenus pour obtenir une solution au problème initial.

Premier exemple : calcul du maximum d'une liste de nombres

- Idée de base : calculer récursivement le maximum de la première moitié de la liste et celui de la seconde, puis les comparer.
- Le plus grand des deux sera le maximum de toute la liste.
- La condition d'arrêt à la récursivité sera l'obtention d'une liste à un seul élément, son maximum étant bien sûr la valeur de cet élément.

Premier exemple : calcul du maximum d'une liste de nombres

Résolution:

- 1. Diviser la liste en deux sous-listes en la "coupant" par la moitié.
- 2. Calculer récursivement le maximum de chacune de ces sous-listes. Arrêter la récursion lorsque les listes n'ont plus qu'un seul élément.
- 3. Retourner le plus grand des deux maximums précédents.

Premier exemple : calcul du maximum d'une liste de nombres

La fonction récursive :

```
def maximumRecursive(l,d,f):
    if d == f:
        return l[d]
    m = (d+f) // 2
    x = maximumRecursive(l,d,m)
    y = maximumRecursive(l,m+1,f)
    return x if x > y else y
```

Premier exemple : calcul du maximum d'une liste de nombres

• La fonction réalisant le premier appel de la fonction récursive :

```
def maximum(l):
    return maximumRecursive(l,0,len(l)-1)
```

Second exemple : recherche d'un élément dans une liste

- Idée de base : rechercher récursivement l'élément dans la première moitié de la liste et dans la seconde, puis de combiner les résultats via l'opérateur logique or.
- En effet, l'élément recherché sera dans la liste s'il est dans la première moitié ou dans la seconde.
- La condition d'arrêt à la récursivité sera l'obtention d'une liste à un seul élément, car il est alors immédiat de conclure si l'élément recherché appartient à une telle liste ou non.

Second exemple : recherche d'un élément dans une liste

Résolution:

- 1. Diviser la liste en deux sous-listes en la "coupant" par la moitié.
- 2. Rechercher la présence de l'élément dans chacune de ces sous-listes. Arrêter la récursion lorsque les listes n'ont plus qu'un seul élément.
- 3. Combiner avec l'opérateur logique or les résultats obtenus.

Second exemple : recherche d'un élément dans une liste

• La fonction récursive :

```
def rechercheRecursive(l,x,d,f):
   if d == f:
      return l[d] == x
   m = (d+f) // 2
   return rechercheRecursive(l,x,d,m) or rechercheRecursive(l,x,m+1,f)
```

Second exemple : recherche d'un élément dans une liste

• La fonction réalisant le premier appel de la fonction récursive :

```
def recherche(l,x):
   return rechercheRecursive(l,x,0,len(l)-1)
```

Troisième exemple : recherche d'un élément dans une liste triée

- Idée de base : utiliser une recherche dichotomique.
- La liste étant triée, après comparaison avec l'élément du "milieu" il est en effet facile de voir dans quelle moitié peut éventuellement se trouver l'élément cherché.
- On aura plus alors qu'à recommencer récursivement la recherche.

Troisième exemple : recherche d'un élément dans une liste triée

• Réduction de la recherche à une seule moitié de la liste, par exemple pour -4:

• La valeur —4 étant plus petite que la valeur centrale 3, on va donc continuer la recherche uniquement dans la première moitié de la liste.

Troisième exemple : recherche d'un élément dans une liste triée

Résolution:

- 1. Diviser la liste en deux sous-listes en la "coupant" par la moitié.
- 2. Rechercher récursivement la présence de l'élément recherché dans la "bonne" des deux sous-listes après l'avoir comparé à l'élément situé au milieu de la liste.
- 3. Pas de résultats à combiner puisque l'on ne "travaille" que sur l'une des deux sous-listes.

Troisième exemple : recherche d'un élément dans une liste triée

- Il est facile de voir que la recherche dichotomique est moins gourmande en nombre d'opérations que la recherche "classique".
- Pour la première méthode, si un élément n'appartient pas à une liste de n éléments il faudra n comparaisons pour le détecter. En effet, tous les éléments de la liste seront testés un par un.
- Alors qu'avec une recherche dichotomique il faudra seulement effectuer environ $\log(n)$ comparaisons.

Troisième exemple : recherche d'un élément dans une liste triée

• Avec 3 comparaisons, on s'aperçoit que l'élément -4 n'appartient pas à cette liste :

