USULAN PENELITIAN S1

IMPLEMENTASI DECISION TREE PADA EARLY WARNING SYSTEM BENCANA BANJIR BERBASIS IOT EDGE COMPUTING

PROGRAM STUDI S1 ELEKTRONIKA DAN INSTRUMENTASI DEPARTEMEN ILMU KOMPUTER DAN ELEKTRONIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA YOGYAKARTA

2024

HALAMAN PERSETUJUAN

USULAN PENELITIAN S1

Diusulkan Oleh

Anggit Satria Pamungkas 21/478677/PA/20763

Telah Disetujui Pada tanggal 8 Oktober 2024

Pembimbing

Dr. Agfianto Eko Putra, M.Si.

NIP. 19680224 1994 03 1 003

DAFTAR ISI

HALAM	AN JUDUL	i
HALAM	AN PERSETUJUAN	ii
DAFTAI	R ISI	. iii
DAFTAI	R TABEL	v
DAFTAI	R GAMBAR	. vi
BAB I Pl	ENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	3
1.3	Batasan Masalah	3
1.4	Tujuan Penelitian	3
1.5	Manfaat Penelitian	3
1.6	Metodologi Penelitian	3
1.7	Sistematika Penulisan	4
BAB II T	TINJAUAN PUSTAKA	6
BAB III	LANDASAN TEORI	11
3.1	Internet of Things	11
3.2	MPX5010DP	11
3.3	ESP32	12
3.4	SHT20	12
3.5	NEO-6M	13
3.6	Edge Computing	13
3.7	Decision Tree	13
BAB IV	METODE PENELITIAN	15
4.1	Analisis Sistem	15
4.2	Alat dan Bahan Penelitian	15
4.3	Tata Laksana Penelitian	16
4.4	Perancangan Sistem	19
4.4.1	Rancangan Perangkat Keras	20
4.4.2	Proses Akuisisi dan Pengambilan Data	21
4.5	Penerapan Metode Penelitian	22
4.6	Pengujian Sistem	22
4.6.1	Pengujian Akurasi	22
4.6.2	Penguijan Real-Time	24

BAB V JADWAL PENELITIAN	27
DAFTAR PUSTAKA	28

DAFTAR TABEL

Tabel 4.1 Daftar Alat	15
Tabel 4.2 Daftar Bahan	16
Tabel 4.3 Tahapan Penelitian	16
Tabel 4.4 Syarat Sistem Dapat Dikatakan Akurat	23
Tabel 4.5 Syarat Sistem Dapat Dikatakan <i>Real-Time</i>	

DAFTAR GAMBAR

Gambar 3.1 Sensor MPX5010DP	12
Gambar 3.2 ESP32	12
Gambar 3.3 Sensor SHT20	13
Gambar 3.4 Sensor NEO-6M	13
Gambar 3.5 Alur Kerja Decision Tree	14
Gambar 4.1 Alur Kerja Sistem	19
Gambar 4.2 Diagram Blok Master	20
Gambar 4.3 Diagram Blok Slave	
Gambar 4.4 Alur Pengujian Akurasi Sistem	
Gambar 4.5 Alur Pengujian <i>Real-Time</i> Sistem	

BABI

PENDAHULUAN

1.1 Latar Belakang

Perubahan iklim telah menjadi salah satu tantangan terbesar yang dihadapi oleh umat manusia saat ini, dengan dampaknya yang meluas pada berbagai aspek kehidupan. Salah satu konsekuensi yang paling meresahkan dari perubahan iklim adalah peningkatan frekuensi dan intensitas bencana alam, termasuk banjir. Di seluruh dunia, banjir telah menyebabkan kerugian ekonomi yang besar, kerusakan infrastruktur, dan kehilangan nyawa. Di Indonesia, banjir menjadi salah satu bencana alam yang paling sering terjadi dan paling merusak. Menurut laporan dari (Badan Nasional Penanggulangan Bencana (BNPB), 2022), frekuensi kejadian banjir di Indonesia terus meningkat, terutama di daerah perkotaan yang semakin padat penduduknya.

Urbanisasi yang pesat, khususnya di kota-kota besar seperti Jakarta, telah memperburuk dampak banjir. Proses urbanisasi sering kali terjadi tanpa perencanaan yang memadai, yang mengakibatkan perubahan besar dalam penggunaan lahan (Firman et al., 2011). Lahan hijau dan daerah resapan air berkurang secara signifikan, digantikan oleh bangunan, jalan raya, dan infrastruktur lainnya yang tidak memiliki kemampuan untuk menyerap air hujan (Rujio & Santosa, 2020). Hal ini menyebabkan sistem drainase kota sering kali kewalahan menghadapi volume air yang besar selama musim hujan, yang pada akhirnya memicu terjadinya banjir (Lasminto & Budiyanto, 2017).

Di sisi lain, perubahan penggunaan lahan juga berdampak negatif terhadap daerah aliran sungai (DAS). Deforestasi dan degradasi lahan di hulu DAS mengakibatkan penurunan kapasitas penyerapan air dan meningkatkan aliran permukaan (Anggraeni & Boer, 2018). Ini berarti bahwa selama curah hujan yang tinggi, lebih banyak air mengalir ke sungai-sungai dan meningkatkan risiko banjir di daerah hilir. Dampak dari perubahan ini sangat terasa di pulau-pulau besar di Indonesia seperti Jawa dan Sumatra, di mana tingkat deforestasi sangat tinggi (Hirabayashi et al., 2013).

Perubahan iklim juga telah mengubah pola curah hujan di Indonesia. Penelitian menunjukkan bahwa intensitas hujan ekstrem meningkat, sementara pola musiman menjadi semakin tidak menentu (Supari et al., 2017). Hujan yang sebelumnya berlangsung selama periode yang lebih lama sekarang cenderung terjadi dalam waktu yang lebih singkat tetapi dengan intensitas yang lebih tinggi, yang memperburuk risiko banjir bandang (Nugroho & Wulandari, 2019). Kondisi ini menuntut adanya pemahaman yang lebih baik mengenai dinamika iklim dan bagaimana hal tersebut mempengaruhi risiko banjir di berbagai wilayah (Kazakis et al., 2015).

Selain faktor-faktor lingkungan, aspek sosial juga memainkan peran penting dalam kerentanan terhadap banjir. Banyak komunitas di Indonesia yang tinggal di daerah rawan banjir tidak memiliki akses yang memadai terhadap informasi dan peringatan dini (Ward et al., 2011). Akibatnya, mereka sering kali tidak siap menghadapi bencana, yang mengakibatkan kerugian yang lebih besar ketika banjir terjadi (Alfieri et al., 2017). Ketidakseimbangan sosial-ekonomi juga memperburuk situasi ini, di mana masyarakat miskin yang tinggal di permukiman kumuh di daerah rendah sering kali menjadi korban paling terdampak (Wang et al., 2020).

Dalam konteks ini, penelitian tentang penyebab dan dampak banjir menjadi sangat penting. Dengan memahami interaksi antara faktor lingkungan dan sosial, kita dapat mengembangkan strategi mitigasi yang lebih efektif (Singh et al., 2020). Penelitian ini bertujuan untuk mengidentifikasi pola-pola risiko banjir di Indonesia, dengan fokus pada pengaruh perubahan iklim, urbanisasi, dan dinamika sosial-ekonomi (Kibria et al., 2018). Selain itu, penelitian ini juga akan mengeksplorasi penggunaan teknologi modern seperti Internet of Things (IoT) dan edge computing untuk meningkatkan kemampuan prediksi dan respons terhadap banjir. Penggunaan teknologi ini tidak hanya penting untuk meningkatkan akurasi prediksi banjir, tetapi juga untuk mempercepat penyebaran informasi kepada masyarakat yang berada di daerah rawan.

1.2 Rumusan Masalah

Merujuk pada bagian latar belakang, dapat disimpulkan bahwa masalah utama dalam penelitian ini adalah keterlambatan dalam pengiriman data serta ketidakakuratan dalam prediksi sistem peringatan dini.

1.3 Batasan Masalah

Berikut batasan masalah yang digunakan dalam penelitian ini:

- 1. Machine learning menggunakan algoritma Decision Tree (DT)
- 2. Sistem monitoring berbasis website dan aplikasi mobile

1.4 Tujuan Penelitian

Tujuan dari penelitian ini adalah menerapkan algoritma *Decision Tree* (DT) dalam *Early Warning System* (EWS) bencana banjir berbasis *Internet of Things* (IoT) dengan menggunakan teknologi *edge computing* sehingga curah hujan dapat dipantau dengan akurat dan *real-time*.

1.5 Manfaat Penelitian

Dengan penerapan algoritma DT berbasis teknologi *edge computing*, latensi yang dihasilkan akan lebih rendah sehingga proses monitoring curah hujan dapat dilakukan secara *real-time*. Penggunaan algoritma ini juga mampu memberikan prediksi potensi banjir yang lebih presisi sehingga monitoring dapat dilakukan secara berkelanjutan dan lebih akurat.

1.6 Metodologi Penelitian

Tahapan yang dilalui dalam penelitian ini adalah sebagai berikut:

1. Identifikasi Masalah

Mengidentifikasi masalah yang dapat dijadikan sebagai topik penelitian. Proses identifikasi dilakukan dengan mencari permasalahan dan aspirasi untuk memajukan suatu bidang industri melalui internet. Validasi topik dilakukan dengan berkonsultasi dengan pembimbing proposal.

2. Analisis Masalah

Menganalisis permasalahan untuk ditemukan kemungkinan solusinya. Kemungkinan solusi yang ada dari permasalahan tersebut dapat digunakan untuk merumuskan tujuan dari sistem yang akan dibuat.

3. Studi Literatur

Memahami permasalahan secara lebih mendalam dengan membaca literatur yang terkait dengan topik permasalahan, dan mengembangkan solusi-solusi yang sudah diuji pada artikel penelitian yang lain.

4. Perancangan Sistem

Merancang *Early Warning System* dengan menentukan komponen yang akan diperlukan, menentukan sistem komunikasi antar komponen, dan penyusunan algoritma *Decision Tree*.

5. Pengaplikasian dan Percobaan Sistem

Melakukan implementasi rancangan sistem yang sebelumnya dibuat.

6. Pengujian Sistem

Menguji *Early Warning System*, Algoritma *Decision Tree*, dan melakukan evaluasi terhadap hasil dari sistem.

7. Penyusunan Laporan

Dilakukan penulisan laporan akhir tentang hasil dan proses penelitian.

1.7 Sistematika Penulisan

Sistematika penulisan dalam penyusunan proposal penelitian ini adalah sebagai berikut:

BAB I: PENDAHULUAN

Bab ini berisi latar belakang penelitian, rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, metodologi penelitian, dan sistematika penulisan proposal.

BAB II: TINJAUAN PUSTAKA

Bab ini berisi penelitian-penelitian terdahulu terkait dengan topik *Early Warning System* dan penerapan *Edge Computing*. Hasil penelitian akan dijadikan sebagai referensi dan bahan perbandingan terhadap penelitian ini.

BAB III: LANDASAN TEORI

Bab ini berisi tentang teori-teori yang mendukung proses penelitian serta teori yang berkaitan dengan ayam.

BAB IV: METODE PENELITIAN

Bab ini berisi penjelasan tentang alat dan bahan, proses perancangan sistem, dan arsitektur yang digunakan.

BAB V: JADWAL PENELITIAN

Bab ini berisi tabel yang menunjukkan rencana waktu penelitian. Rencana waktu penelitian dimulai dari penyusunan proposal sampai pembuatan laporan akhir. Jadwal penelitian dibutuhkan untuk mengetahui progres dari penelitian yang telah dilakukan.

BAB II

TINJAUAN PUSTAKA

Curah hujan merupakan faktor yang memengaruhi potensi terjadinya banjir. Curah hujan yang tinggi secara signifikan meningkatkan risiko banjir. Sebelumnya, pengukuran curah hujan dilakukan secara manual yang rentan terhadap *human error* dan kurang terstandarisasi. Untuk mengatasi kelemahan ini, berbagai penelitian telah mengembangkan teknologi berbasis Internet of Things (IoT) dan algoritma machine learning untuk memantau dan memprediksi potensi banjir secara otomatis dan lebih akurat.

Penelitian Rancang Bangun Prototipe Peringatan Dini Banjir Menggunakan Raspberry Pi Berbasis IoT oleh (Priatim et al., 2023) mengembangkan sistem peringatan dini yang memantau ketinggian air menggunakan Sensor HC-SR04 dan Raspberry Pi sebagai alat akuisisi data. Sistem ini mengkategorikan ketinggian air ke dalam beberapa tingkat dan memberikan peringatan berupa suara alarm, serta mengirim notifikasi ke smartphone melalui aplikasi Blynk ketika kondisi dinilai berpotensi menyebabkan banjir. Sistem ini memungkinkan akses data secara realtime yang dapat diakses kapan saja dan di mana saja melalui jaringan internet.

Namun, pengembangan EWS banjir yang hanya didasarkan pada ketinggian air dinilai andal. Penelitian Monitoring Ketinggian Air dan Curah Hujan Dalam *Early Warning System* Bencana Banjir Berbasis IoT oleh (Wandi & Ashari, 2023) menciptakan sistem yang tidak hanya memantai ketinggian air, tetapi juga curah hujan. Penggunaan sensor HC-SR04 dan level sensor kapasitif untuk memantau ketinggian air. Sensor MH-RD digunakan untuk mengambil data curah hujan. Perangkat keras yang dirancang terhubung dengan laptop yang berfungsi untuk mengolah data lebih lanjut dan mengirim notifikasi peringatan dan lokasi terjadinya banjir melalui telegram dengan rata-rata *delay* 0,561 detik. Data yang dihasilkan diolah dan dikirimkan ke *cloud database*, memungkinkan pemantauan jarak jauh.

Meskipun sistem berbasis IoT dengan sensor telah banyak digunakan, pendekatan ini masih terbatas karena hanya mengandalkan ambang batas (threshold) tertentu untuk memicu peringatan. Oleh sebab itu, penelitian Treebased machine learning algorithms in the Internet of Things environment for

multivariate flood status prediction oleh (Aswad et al., 2021) mengembangkan model yang lebih canggih dengan memanfaatkan algoritma machine learning berbasis pohon keputusan (tree-based), termasuk Decision Tree (DT), Decision Jungle (DJ), dan Random Forest (RF). Model prediksi status banjir dengan algoritma tree-based machine learning terbukti mampu meningkatkan akurasi prediksi status banjir dengan klasifikasi data yang lebih baik, sehingga memungkinkan monitoring yang lebih efektif dan respon yang lebih cepat terhadap potensi banjir.

Algoritma Decision Tree (DT) telah banyak diterapkan di berbagai bidang selain EWS. Contohnya di bidang medis DT digunakan untuk mendukung diagnosis penyakit, seperti prediksi kanker payudara berdasarkan data kesehatan pasien. Penelitian oleh (Suresh et al., 2020) menunjukkan bahwa kombinasi DT dan jaringan saraf tiruan memberikan hasil yang presisi dalam membuat keputusan prognostik. Selain itu, di bidang keamanan siber, DT diterapkan untuk mendeteksi serangan jaringan dengan cara mengklasifikasikan data lalu lintas jaringan. Penelitian oleh (Abdulazeez et al., 2021) menunjukkan bahwa DT efektif dalam mengidentifikasi jenis serangan sehingga meningkatkan keamanan infrastruktur digital.

Untuk mempercepat respon sistem terhadap potensi banjir yang akan terjadi, peneliti mengusulkan penggunaan teknologi *edge computing*. Penelitian oleh (Moursi et al., 2021) menggunakan *edge computing* untuk melakukan pemantauan dan prediksi kualitas udara. Sistem yang dibuat menggunakan arsitektur prediksi campuran dengan beberapa algoritma *Machine Learning* dari *Nonlinear AutoRegression with eXogenous input* (NARX). Sistem ini terbukti dapat merespons polusi udara dengan cepat, bahkan di area dengan bandwidth rendah atau tanpa koneksi internet, yang berpotensi diterapkan pada sistem EWS banjir untuk meningkatkan keandalan dan kecepatan respon dalam berbagai kondisi jaringan.

Tabel 2.1.7 Korelasi Penelitian Terdahulu

No	Peneliti	Judul	Keterangan
1	(Priatim et al.,	Rancang Bangun	Mengembangkan sistem
	2023)	Prototipe	peringatan dini yang memantau
		Peringatan Dini	ketinggian air. Sistem ini
		Banjir	mengkategorikan ketinggian air ke
		Menggunakan	dalam beberapa tingkat dan
		Raspberry Pi	memberikan peringatan berupa
		Berbasis IoT	suara alarm, serta mengirim
			notifikasi ke smartphone melalui
			aplikasi <i>Blynk</i> ketika kondisi
			dinilai berpotensi menyebabkan
			banjir. Sistem ini memungkinkan
			akses data secara real-time yang
			dapat diakses kapan saja dan di
			mana saja melalui jaringan
			internet.
2	(Wandi & Ashari,	Monitoring	Menciptakan sistem yang tidak
	2023)	Ketinggian Air	hanya memantai ketinggian air,
		dan Curah Hujan	tetapi juga curah hujan.
		Dalam Early	Penggunaan sensor HC-SR04 dan
		Warning System	level sensor kapasitif untuk
		Bencana Banjir	memantau ketinggian air. Sensor
		Berbasis IoT	MH-RD digunakan untuk
			mengambil data curah hujan.
			Perangkat keras yang dirancang
			terhubung dengan laptop yang
			berfungsi untuk mengolah data
			lebih lanjut dan mengirim
			notifikasi peringatan dan lokasi

				terjadinya banjir melalui telegram
				dengan rata-rata delay 0,561 detik.
				Data yang dihasilkan diolah dan
				dikirimkan ke cloud database,
				memungkinkan pemantauan jarak
				jauh.
3	(Aswad	et al.,	Tree-based	Mengembangkan model yang
	2021)		machine learning	lebih canggih dengan
			algorithms in the	memanfaatkan algoritma machine
			Internet of Things	learning berbasis pohon keputusan
			environment for	(tree-based), termasuk Decision
			multivariate	Tree (DT), Decision Jungle (DJ),
			flood status	dan Random Forest (RF). Model
			prediction	prediksi status banjir dengan
				algoritma tree-based machine
				learning terbukti mampu
				meningkatkan akurasi prediksi
				status banjir dengan klasifikasi
				data yang lebih baik, sehingga
				memungkinkan monitoring yang
				lebih efektif dan respon yang lebih
				cepat terhadap potensi banjir.
4	(Suresh	et al.,	Hybridized	Menunjukkan bahwa kombinasi
	2020)		neural network	DT dan jaringan saraf tiruan di
			and decision tree	bidang medis memberikan hasil
			based classifier	yang presisi dalam membuat
			for prognostic	keputusan prognostik salah
			decision making	satunya untuk mendukung
			in breast cancers	diagnosis penyakit, seperti

			prediksi kanker payudara
			berdasarkan data kesehatan pasien.
5	(Abdulazeez et	Intrusion	Menunjukkan bahwa DT dapat
	al., 2021)	detection and	diterapkan secara efektif di bidang
		attack classifier	keamanan siber dalam
		based on three	mengidentifikasi jenis serangan
		techniques: A	sehingga meningkatkan keamanan
		comparative	infrastruktur digital. DT
		study	diterapkan untuk mendeteksi
			serangan jaringan dengan cara
			mengklasifikasikan data lalu lintas
			jaringan.
6	(Moursi et al.,	An IoT enabled	Memanfaatkan edge computing
	2021)	system for	untuk melakukan pemantauan dan
		enhanced air	prediksi kualitas udara. Sistem
		quality	yang dibuat menggunakan
		monitoring and	arsitektur prediksi campuran
		prediction on the	dengan beberapa algoritma
		edge	Machine Learning dari Nonlinear
			AutoRegression with eXogenous
			input (NARX). Data yang
			digunakan untuk memprediksi
			kualitas udara jam berikutnya
			adalah data akumulasi polutan,
			kecepatan angin, dan curah hujan.
			Penelitian ini menghasilkan sistem
			yang dapat merespon polusi udara
			dengan cepat, bahkan pada tempat
			dengan bandwidth rendah atau
			tanpa koneksi internet.

BAB III

LANDASAN TEORI

3.1 Internet of Things

merupakan teknologi Internet of Things (IoT) yang mampu menghubungkan berbagai perangkat fisik untuk dapat terhubung ke internet dan berkomunikasi satu sama lain tanpa memerlukan interaksi manusia ke manusia atau manusia ke komputer. Prinsip kerja utama perangkat ini adalah mengintegrasikan sensor dan aktuator ke dalam perangkat sehingga memungkinkan mereka untuk merasakan lingkungan dan mengambil tindakan berdasarkan data yang dikumpulkan. Internet of Things (IoT) memiliki banyak arti yang berbeda dalam berbagai bidang (Jim, 2018) seperti dalam manufaktur, IoT berarti memasang instrumen dan mengumpulkan informasi sehingga data dapat digunakan untuk meningkatkan kualitas dan produktivitas dan dalam logistik, IoT berarti memberikan pengenal terhadap tiap item sehingga rantai pasokan dapat menjadi lebih cerdas. Salah satu contoh penerapan IoT adalah dalam smart home, yang memungkinkan berbagai perangkat rumah seperti termostat, lampu, kamera kemanan, dan peralatan rumah tangga lainnya terhubung dan dapat dikendalikan melalui smartphone atau komputer. Meskipun IoT menawarkan banyak keuntungan, ada juga tantangan yang harus dihadapi, terutama dalam hal keamanan dan privasi data. Karena banyak perangkat IoT yang mengumpulkan dan mengirim data pribadi. Dengan pendekatan yang hati-hati dan strategis, IoT memiliki potensi untuk merevolusi berbagai aspek kehidupan sehari-hari dan industri, menciptakan dunia yang lebih terhubung dan efisien.

3.2 MPX5010DP

MPX5010DP, seperti pada Gambar 3.1 adalah sensor tekanan diferensial yang dirancang untuk mengukur perbedaan tekanan antara dua *port* input, dengan rentang pengukuran hingga 10 kPa. Sensor ini menggunakan teknologi piezoresistif yang menghasilkan perubahan tegangan output proporsional dengan perbedaan tekanan yang terdeteksi. Dengan akurasi yang tinggi dan linearitas yang baik, MPX5010DP umumnya digunakan dalam aplikasi yang memerlukan pemantauan

tekanan udara atau fluida, seperti dalam sistem kontrol HVAC, pengukuran tekanan pada kendaraan, atau perangkat medis. Sensor ini beroperasi pada tegangan 5V dan memberikan output analog yang dapat langsung dibaca oleh ADC pada mikrokontroler untuk berbagai keperluan pengukuran dan kontrol. Sensor tekanan diferensial ini digunakan untuk mendeteksi curah hujan dengan cara mendeteksi tinggi air dalam pipa berdasarkan tekanan udara di dalam air pada pipa.

Gambar 3.1 Sensor MPX5010DP

3.3 ESP32

ESP32 adalah mikrokontroler yang dikembangkan oleh Espressif Systems, yang mendukung konektivitas Wi-Fi dan Bluetooth dual-mode. Ditenagai oleh prosesor dual-core Tensilica Xtensa LX6, ESP32 mampu menangani aplikasi berdaya rendah serta memiliki performa yang tinggi, dengan frekuensi operasi hingga 240 MHz. Mikrokontroler ini dilengkapi dengan berbagai periferal seperti GPIO, ADC, DAC, PWM, SPI, I2C, dan UART.

Gambar 3.2 ESP32

3.4 SHT20

SHT20 adalah sensor digital yang digunakan untuk mengukur kelembapan relatif dan suhu dengan akurasi tinggi. Sensor ini memanfaatkan teknologi CMOSens® yang memungkinkan pengukuran kapasitif untuk kelembapan dan termistor untuk suhu, serta memiliki kalibrasi pabrik untuk memastikan keakuratan data. Beroperasi pada tegangan 2.4V hingga 5.5V, SHT20 dapat mengukur kelembapan dari 0% hingga 100% RH dengan akurasi ±3% dan suhu dari -40°C

hingga 125°C dengan akurasi ±0.3°C. Data dikirim melalui antarmuka I2C, yang memudahkan integrasi dengan berbagai mikrokontroler.

Gambar 3.3 Sensor SHT20

3.5 NEO-6M

NEO-6M adalah modul GPS yang menyediakan informasi posisi berbasis sinyal satelit GPS. Dengan menggunakan prinsip trilaterasi, modul ini menghitung koordinat geografis, kecepatan, dan waktu dengan akurasi posisi sekitar 2.5 meter. Modul ini mendukung komunikasi melalui antarmuka UART atau SPI dan memiliki kecepatan pembaruan data hingga 5 Hz.

Gambar 3.4 Sensor NEO-6M

3.6 Edge Computing

Edge computing merupakan paradigma komputasi yang melakukan pemrosesan atau komputasi pada tepi jaringan. Ide utama dari pengembangan edge computing adalah dnegan melakukan komputasi sedekat mungkin dengan sumber data (Cao et al., 2020) berbeda dengan cloud computing yang memproses data di pusat data yang terpusat. Edge computing muncul untuk mengatasi masalah yang dihadapi cloud computing seperti beban bandwidth yang besar, kecepatan respons yang lambat, dan keamanan data yang tidak aman.

3.7 Decision Tree

Decision Tree adalah salah satu algoritma pembelajaran mesin yang digunakan untuk klasifikasi dan regresi. Algoritma ini bekerja dengan membagi dataset menjadi subset yang lebih kecil berdasarkan fitur-fitur yang paling relevan,

membentuk struktur berbentuk pohon dengan simpul (nodes) dan cabang (branches). Setiap simpul internal mewakili pengujian terhadap suatu fitur, sedangkan cabang-cabangnya mewakili hasil dari pengujian tersebut. Daun (leaf nodes) di akhir cabang mewakili keputusan akhir atau output. Algoritma ini sangat mudah dipahami dan diinterpretasikan, karena strukturnya yang menyerupai alur keputusan manusia.

Gambar 3.5 Alur Kerja Decision Tree

BAB IV METODE PENELITIAN

4.1 Analisis Sistem

Penelitian ini bertujuan untuk membangun sistem monitoring curah hujan cerdas berbasis *Internet of Things* (IoT) dan *edge computing* yang dapat memberikan peringatan bencana banjir melalui parameter curah hujan, suhu, dan kelembapan. Sistem ini terdiri dari perangkat sensor yang meliputi sensor suhu dan kelembapan udara SHT20, sistem takar debit hujan dengan sensor tekanan diferensial MPX5010, dan sensor GPS untuk menentukan lokasi geografis pengukuran. Data yang didapat dari sensor kemudian akan diproses pada jaringan *edge* sekaligus memanfaatkan komputasi *edge* menggunakan algoritma Decision Tree untuk menentukan potensi banjir berdasarkan data yang sudah ada. Integrasi IoT memungkinkan sensor-sensor ini mengirim data secara real-time ke sistem *edge computing*, di mana data diproses dan dianalisis untuk memberikan informasi cepat dan akurat tentang kondisi air. *Edge computi*ng memastikan pemrosesan data dilakukan dekat dengan sumber data, mengurangi latensi, dan meningkatkan tingkat responsif sistem. Ini memungkinkan pengambilan keputusan yang lebih cepat dan tepat dalam pendeteksian potensi banjir.

4.2 Alat dan Bahan Penelitian

Penelitian ini menggunakan komponen yang ditunjukkan pada Tabel Bahan dan Tabel Alat untuk membuat sebuah alat monitoring curah hujan yang dapat mengidentifikasikan potensi banjir berdasarkan data yang sudah tersedia. Untuk itu, diperlukan perangkat seperti pada tabel 4.1 dan tabel 4.2

Tabel 4.1 Daftar Alat

No	Alat	Fungsi		
1	Laptop	Perangkat yang digunakan untuk menulis		
		naskah program sekaligus uji coba		
		program.		

2	Visual Studio Code	Text	editor	untuk	menulis	dan
		menja	lankan na	skah prog	gram.	
3	Google Colab	Text editor untuk menulis dan merancang				
		algoritma klasifikasi.				

Tabel 4.2 Daftar Bahan

No	Nama	Fungsi	
1	Mikrokontroller ESP32	Mengendalikan sekaligus memproses data yang didapat dari sensor, melakukan klasifikasi, dan menghubungkan semua komponen pada sistem.	
2	Sensor MPX5010	Mendeteksi curah hujan	
3	Sensor SHT20	Mendeteksi suhu dan kelembapan	
4	Sensor GPS	Menentukan lokasi geografis pengukuran.	

4.3 Tata Laksana Penelitian

Penelitian ini dilakukan melalui beberapa tahapan yang terbagi seperti yang ditunjukkan pada tabel 4.3

Tabel 4.3 Tahapan Penelitian

No	Kegiatan	Indikator Penelitian	Indikator Keberhasilan
110	Penelitian		
1	Analisis	Menganalisis permasalahan	Telah diidentifikasi
	Permasalahan	yang sudah ditentukan	masalah utama dan
		dengan mencari solusi yang	dirumuskan minimal dua
		memungkinkan. Solusi-	solusi yang relevan dengan
		solusi yang sudah	perancangan sistem.
		dikembangkan dapat	
		digunakan untuk	
		merumuskan tujuan sistem	
		yang akan dibuat.	

2	Studi	Mempelajari literatur terkait	Tinjauan literatur telah
	Literatur	metode identifikasi potensi	disusun mencakup metode
		banjir dari parameter-	identifikasi potensi banjir
		parameter yang sudah	menggunakan Decision
		ditentukan menggunakan	Tree dan implementasinya
		algoritma Decision Tree dan	dengan edge computing.
		implementasinya	
		menggunakan edge	
		computing	
3	Perancangan	Merancang sistem	Desain sistem monitoring
	Sistem	monitoring curah hujan	curah hujan yang
		cerdas menggunakan	terintegrasi dengan model
		kombinasi dari sensor sensor	Decision Tree telah
		curah hujan, sensor suhu, dan	disusun dengan jelas.
		sensor GPS, sekaligus	
		menyiapkan model Decision	
		Tree yang akan digunakan	
		untuk proses klasifikasi.	
4	Implementasi	Mengimplementasikan	Semua perangkat keras,
	Hardware	hardware yang terdiri dari	termasuk sensor dan
		sensor dan mikrokontroler.	mikrokontroler, berhasil
			diimplementasikan dan
			berfungsi dengan baik.
5	Pengujian	Melakukan pengujian	Pengujian hardware
	Hardware	terhadap hardware termasuk	menunjukkan sensor
		pengambilan data melalui	bekerja dengan akurasi
		sensor-sensor serta menguji	tinggi dan ESP32 mampu
		kualitas pengolahan data	memproses data dengan
		pada ESP32.	cepat.

6	Pengumpulan	Melakukan pengumpulan	Data curah hujan, suhu,								
	Data	data menggunakan sistem	dan GPS berhasil								
		yang sudah dirancang.	dikumpulkan dengan								
			jumlah dan kualitas yan								
			memadai.								
7	Preprocessing	Melakukan preprocessing	Data berhasil diproses dan								
	data	data, termasuk pemrosesan	dinormalisasi sehingga								
		dan normalisasi data untuk	siap digunakan untuk								
		mempersiapkan data	pelatihan model Decision								
		pelatihan dan pengujian	Tree.								
		algoritma Decision Tree									
8	Pelatihan	Melakukan pelatihan	Model Decision Tree								
	algoritma	Decision Tree menggunakan	berhasil dilatih dengan								
		data curah hujan yang sudah	akurasi minimal 85% pada								
		diproses untuk	data pelatihan.								
		mengembangkan model									
		klasifikasi curah hujan dan									
		potensi banjir.									
9	Validasi	Menguji model yang sudah	Model berhasil diuji								
	model	dikembangkan	dengan data uji dan								
	machine	menggunakan data uji yang	mencapai akurasi minimal								
	learning	sudah ada untuk	80% dalam prediksi								
		mengevaluasi kinerja model.	potensi banjir.								
10	Evaluasi	Mengevaluasi keseluruhan	Sistem secara keseluruhan								
	Sistem	kinerja sistem dari	menunjukkan kinerja yang								
		pengambilan data yang	stabil dengan waktu respon								
		dilakukan oleh sensor hingga	maksimal 5 detik.								
		tingkat pemrosesan dan									
		komputasi klasifikasi yang									

		terjadi pada perangkat	
		ESP32.	
11	Penyusunan	Penulisan laporan akhir	Laporan akhir penelitian
	Laporan	mengenai hasil dan proses	telah disusun dengan
	Penelitian	penelitian pada sistem yang	lengkap dan siap untuk
		telah dirancang.	diseminasi.

4.4 Perancangan Sistem

Sistem monitoring curah hujan dan prediksi bencana banjir yang dirancang pada penelitian ini dibangun dari sistem perangkat keras sebagai media proses pengambilan data serta sistem perangkat lunak untuk perancangan, pelatihan, dan pengujian sistem klasifikasi menggunakan algoritma *Decision Tree*. Sistem ini bekerja dengan mengambil data parameter curah hujan, suhu, dan kelembapan melalui sensor yang terhubung pada mikrokontroler, kemudian diproses pada jaringan *edge* untuk mengklasifikasikan tingkat curah hujan dan mengidentifikasikan potensi terjadinya banjir.

Terdapat dua komponen penting dalam sistem yang akan dibangun yaitu sistem perangkat keras sebagai media dalam proses akuisisi data dan sistem perangkat lunak yang meliputi perancangan, pelatihan, dan pengujian sistem klasifikasi dengan algoritma *Decision Tree*.

Gambar 4.1 Alur Kerja Sistem

Gambar 4.1 menunjukkan alur sistem yang menggunakan tiga parameter utama, yaitu curah hujan, suhu, dan kelembapan, yang diperoleh dari sensor-sensor terkait. Data yang diambil dari sensor akan melalui proses normalisasi dan penghapusan noise untuk memastikan bahwa data yang digunakan bersih dan siap untuk diolah. Setelah itu, data tersebut diklasifikasikan menggunakan model

Decision Tree (DT) untuk menghasilkan tiga kelas output, yaitu tingkat potensi terjadinya banjir: rendah, sedang, dan tinggi.

Proses dimulai dari pengambilan data oleh sensor, yang kemudian diproses melalui normalisasi untuk menyesuaikan skala data dan mengurangi pengaruh anomali atau outlier. Setelah data disiapkan, model DT yang sebelumnya telah dilatih dengan data latih, digunakan untuk mengklasifikasikan potensi banjir berdasarkan input data sensor terbaru. Hasil klasifikasi ini memberikan informasi mengenai tingkat risiko banjir pada waktu tersebut, yang kemudian dapat digunakan untuk memberikan peringatan dini. Rancangan sistem ini memastikan prediksi yang lebih akurat dan real-time dalam memberikan informasi potensi banjir kepada pengguna.

4.4.1 Rancangan Perangkat Keras

Gambar 4.2 Diagram Blok Master

Gambar 4.2 menggambarkan peran perangkat keras dalam proses pengambilan data dari berbagai sensor. Sistem ini terdiri dari beberapa komponen utama, di antaranya sensor tekanan diferensial yang digunakan untuk mendeteksi curah hujan, sensor suhu dan kelembapan yang berfungsi untuk mengukur kondisi lingkungan sekitar, serta sensor GPS yang bertugas mendeteksi titik lokasi sistem. Semua data yang dihasilkan oleh sensor-sensor ini dikumpulkan oleh mikrokontroler ESP32, yang tidak hanya mengumpulkan data tetapi juga melakukan pemrosesan dengan metode *edge computing*.

Setelah data sensor diklasifikasikan menggunakan algoritma yang tertanam di ESP32, hasil klasifikasi mengenai potensi banjir akan dikirimkan ke server. Dari server, data ini kemudian didistribusikan ke perangkat monitoring, yang memungkinkan pengguna untuk menerima informasi secara real-time mengenai kondisi yang terpantau oleh sistem.

4.4.2 Proses Akuisisi dan Pengambilan Data

Gambar 4.3 Diagram Blok Slave

Gambar 4.3 menggambarkan proses akuisisi data dalam early warning system bencana banjir dengan algoritma decision tree berbasis IoT edge computing melibatkan langkah-langkah seperti pengaturan perangkat keras, pemasangan sistem, pengambilan data curah hujan menggunakan sensor diferensial tekanan, pengukuran suhu dan kelembapan dengan sensor suhu dan kelembapan, pendeteksian lokasi saat ini dengan sensor GPS, dan penyimpanan data parameter sensor. Data yang diperoleh akan digunakan untuk melatih model DT dan menguji

model yang telah dilatih untuk menghindari overfitting, di mana model mementingkan "hafalan" training data dan tidak bisa mengklasifikasi data baru. Selanjutnya dilakukan preprocessing data untuk seluruh data yang sudah diambil, pelatihan algoritma dan validasi model untuk training data, terakhir pengujian data menggunakan testing data yang sudah diproses ke dalam model dan training data yang telah dilakukan preprocessing sebelumnya, sehingga sistem dapat mengidentifikasi potensi terjadinya banjir dengan akurasi yang tinggi berdasarkan data yang telah diakuisisi.

4.5 Penerapan Metode Penelitian

Penelitian ini menggunakan metode *Decision Tree* (DT) dalam pembangunan sistem klasifikasi. Sistem diterapkan pada ESP32 yang berjalan secara *real-time* dengan pembaruan data setiap lima detik.

4.6 Pengujian Sistem

Pengujian sistem merupakan langkah penting dalam memastikan bahwa sistem yang dibangun mampu bekerja dengan baik dalam memprediksi potensi banjir secara akurat dan real-time. Pengujian dilakukan melalui dua pendekatan utama: pengujian akurasi dan pengujian real-time. Kedua jenis pengujian ini saling melengkapi untuk mengevaluasi kinerja sistem dalam berbagai kondisi, baik dari sisi ketepatan prediksi maupun kecepatan respons.

4.6.1 Pengujian Akurasi

Gambar 4.4 Alur Pengujian Akurasi Sistem

Gambar 4.4 menggambarkan proses pengujian akurasi sistem dalam memprediksi potensi banjir. Pengujian akurasi dilakukan melalui serangkaian langkah yang bertujuan untuk mengevaluasi performa sistem dalam memprediksi potensi banjir.

Langkah pertama adalah mempersiapkan data dengan mengumpulkan data dari sensor-sensor yang ada, yaitu sensor curah hujan, suhu, kelembapan, dan GPS. Data yang terkumpul kemudian dibagi menjadi dua kelompok: data latih (*training*

data) dan data uji (*testing data*). Sebanyak 70% dari data digunakan untuk melatih model, sementara sisanya 30% digunakan untuk menguji model.

Setelah data dipersiapkan, langkah berikutnya adalah melakukan pelatihan model. Algoritma *Decision Tree* dilatih dengan data latih untuk mempelajari pola yang ada antara parameter sensor dan potensi banjir. Setiap sampel data dari sensor digunakan untuk membangun pohon keputusan yang mampu mengklasifikasikan risiko banjir (rendah, sedang, tinggi).

Setelah pelatihan selesai, model yang sudah dilatih diuji menggunakan data uji. Tujuannya adalah untuk mengevaluasi seberapa baik model mampu memprediksi potensi banjir pada data yang belum pernah dilihat sebelumnya. Evaluasi ini dilakukan dengan menghitung metrik-metrik seperti akurasi, *precision*, *recall*, dan F1-score. Sistem dapat dikatakan akurat jika memenuhi syarat pada tabel 4.4.

Kriteria PengujianSyarat SistemAkurasi Prediksi $\geq 80\%$ Tingkat Precision dan Recall $\geq 70\%$

> 0.75

Tabel 4.4 Syarat Sistem Dapat Dikatakan Akurat

Evaluasi Kinerja (F1-score)

Syarat akurasi prediksi di atas 80% dipilih karena menurut (Hastie et al., 2009) dalam *The Elements of Statistical Learning*, model yang memiliki akurasi di atas 80% menunjukkan bahwa model mampu mempelajari pola yang relevan dari data dan dapat diandalkan untuk membuat prediksi yang tepat dalam konteks penerapan di dunia nyata. Dalam kasus sistem peringatan dini banjir, akurasi yang lebih rendah dari 80% dapat menyebabkan banyak prediksi salah, baik itu false positives (peringatan yang salah) atau false negatives (banjir yang tidak terdeteksi), yang berisiko besar terhadap keselamatan publik.

Selanjutnya, syarat *precision* dan *recall* yang tinggi, khususnya pada klasifikasi risiko banjir tinggi, sangat penting. (Powers, 2011) menekankan bahwa *precision* tinggi diperlukan untuk menghindari terlalu banyak peringatan palsu, yang dapat mengganggu kepercayaan pengguna terhadap sistem. Sementara itu, *recall* tinggi penting untuk memastikan bahwa sistem tidak gagal mendeteksi

potensi banjir yang sebenarnya terjadi. Dalam sistem yang bertujuan untuk menyelamatkan nyawa atau mengurangi dampak banjir, *recall* yang tinggi lebih diutamakan untuk meminimalkan risiko banjir yang tidak terdeteksi. Dalam kasus ini, nilai *precision* dan *recall* yang ideal adalah minimal 70%. Jika *precision* dan *recall* di bawah 70%, maka perlu dilakukan optimasi lebih lanjut pada model dan *preprocessing* data.

Terakhir, F1-score minimal 0,75 dipilih untuk mengukur keseimbangan antara precision dan recall. (Sokolova & Lapalme, 2009) menunjukkan bahwa F1-score digunakan ketika penting untuk mencapai keseimbangan antara kemampuan sistem untuk menghindari prediksi salah (precision) dan mendeteksi semua kejadian yang penting (recall). Dalam kasus peringatan dini bencana banjir, F1-score yang lebih tinggi menunjukkan bahwa model tersebut mampu memberikan kinerja yang konsisten dan andal untuk berbagai kondisi cuaca.

Langkah terakhir pengujian akurasi sistem adalah validasi hasil prediksi dengan membandingkannya dengan data aktual, memastikan bahwa model mampu memberikan hasil yang akurat.

4.6.2 Pengujian Real-Time

Gambar 4.5 Alur Pengujian Real-Time Sistem

Gambar 4.5 menjelaskan langkah-langkah pengujian *real-time* yang dilakukan untuk menilai apakah sistem dapat merespons secara cepat dan tepat dalam situasi sebenarnya. Pengujian ini dilakukan dengan memasang seluruh perangkat keras yang terlibat, termasuk sensor curah hujan, suhu, kelembapan, dan GPS yang terhubung dengan mikrokontroler ESP32.

Langkah pertama dalam pengujian ini adalah menyiapkan seluruh perangkat keras yang terlibat, termasuk memasang sensor MPX5010, SHT20, dan GPS serta menghubungkannya dengan mikrokontroler ESP32. Setelah perangkat siap, sistem mulai mengambil data sensor secara *real-time*, di mana setiap data yang dihasilkan diperbarui secara berkala setiap lima detik. Data yang dikumpulkan dari sensor kemudian langsung diolah oleh mikrokontroler ESP32 menggunakan algoritma Decision Tree untuk mengklasifikasikan potensi banjir berdasarkan parameter yang diukur. Tahapan ini dilakukan dengan cepat untuk memastikan bahwa hasil prediksi dapat segera dikirimkan kepada pengguna.

Sistem juga diuji stabilitasnya dalam berbagai kondisi, seperti variasi curah hujan atau gangguan jaringan. Pengujian ini dilakukan untuk memastikan bahwa sistem dapat tetap berfungsi optimal meskipun dalam kondisi real-time yang dinamis. Selain itu, ada beberapa syarat pada tabel 4.5 yang harus dipenuhi agar sistem dikatakan real-time.

Tabel 4.5 Syarat Sistem Dapat Dikatakan Real-Time

Kriteria Pengujian	Syarat Sistem							
Waktu Respon	Latensi maksimal 5 detik sejak data							
Wakta Respon	diambil hingga notifikasi							
Stabilitas dan Konsistensi	Stabil dalam kondisi bervariasi							
Pembaharuan Data Berkala	Data diperbarui setiap 5 detik sekali							

Syarat latensi maksimal 5 detik dipilih untuk memastikan bahwa sistem mampu memproses dan merespons data sensor secara cepat dan sesuai dengan kebutuhan real-time. (Shi et al., 2016) dalam penelitian tentang *Edge Computing* menyatakan bahwa dalam aplikasi yang memerlukan pengambilan keputusan cepat seperti sistem peringatan bencana, latensi rendah sangatlah penting. Sistem peringatan dini harus merespons dalam waktu yang sangat singkat untuk memberikan pengguna waktu yang cukup untuk mengambil tindakan. Jika latensi lebih dari 5 detik, ada risiko informasi yang dikirim tidak lagi relevan dengan kondisi sebenarnya di lapangan.

Stabilitas dan konsistensi juga merupakan syarat penting karena sistem yang dirancang untuk peringatan banjir harus berfungsi dalam berbagai kondisi cuaca dan lingkungan. (Dastjerdi & Buyya, 2016) dan (Yi et al., 2015) menyebutkan dalam penelitian mereka bahwa aplikasi IoT dan edge computing harus mampu beroperasi dengan baik meskipun terjadi gangguan jaringan atau variasi beban kerja. Sistem peringatan dini yang tidak stabil akan menurunkan kepercayaan pengguna dan dapat menyebabkan kegagalan dalam memberikan peringatan yang tepat waktu selama kondisi krisis.

Syarat pembaharuan data secara berkala (setiap 5 detik) memastikan bahwa data yang diambil dari sensor selalu *up-to-date* dan dapat memberikan informasi yang relevan kepada pengguna. Dalam penelitian oleh (Shi et al., 2016) dan (Shi & Dustdar, 2016), mereka menekankan pentingnya pembaruan data yang cepat dalam aplikasi IoT dan *edge computing* untuk menjaga responsivitas sistem dalam waktu nyata. Jika data diperbarui terlalu lambat, ada risiko besar bahwa kondisi aktual di lapangan tidak tercermin dengan tepat dalam hasil yang dikirimkan ke pengguna, yang bisa menyebabkan peringatan yang salah atau tertunda.

Langkah terakhir pengujian *real-time* adalah validasi akhir yang dilakukan dengan memastikan bahwa prediksi yang diberikan oleh sistem sesuai dengan kondisi nyata yang terjadi di lapangan, sehingga sistem dapat diandalkan dalam situasi darurat banjir.

BAB V JADWAL PENELITIAN

No	Nama Kegiatan	September			Oktober			November				Desember					
	ivalila Kegiatali		2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Analisis Permasalahan																
2	Studi Literatur																
3	Perancangan Sistem																
4	Implementasi Hardware																
5	Pengujian Hardware																
6	Pengumpulan Data																
7	Preprocessing data																
8	Pelatihan Algoritma																
9	Validasi Model Machine Learning																
10	Evaluasi Sistem																
11	Penyusunan Laporan Penelitian																

DAFTAR PUSTAKA

Badan Pusat Statistik, 2021. *Populasi Ayam Ras Pedaging menurut Provinsi* (*Ekor*), s.l.: Badan Pusat Statistik.

Borges, S. A. et al., 2004. Effects of diet and cyclic daily heat stress on electrolyte, nitrogen and retention by colostomized male broiler chickens.. *Int J Poult Sci*, 3(5), pp. 313-321.

Czarick, M. & Fairchild, B. D., 2008. Poultry housing for hot climates. *Poultry Production hot Climates Second Edition. Trowbridge (UK). Cromwell Press.*

Etches, R. J., John, T. M. & Gibbins, A. M. V., 2008. Behavioural, physiological, neuroendocrine and molecular responses to heat stress.. *Poultry production in hot climates*, 1(2), pp. 48-79.

Kasim, A. A., Maulana, R. & Setyawan, G. E., 2019. Implementasi Otomasi Kandang dalam Rangka Meminimalisir Heat Stress. *Pengembangan Teknologi Informasi dan Ilmu Komputer*, 3(2), pp. 1403-1410.

Liu, L. et al., 2020. Heat stress impacts on broiler performance: a systematic review and meta-analysis. *Poult Sci*, 99(11), pp. 6205-6211.

Prasetyaningtyas, K., 2023. *BMKG*. [Online] Available at: https://www.bmkg.go.id/iklim/dinamika-atmosfir.bmkg [Diakses 20 September 2023].

Putra, C. G. N., Maulana, R. & Fitriyah, H., 2018. Otomasi Kandang Dalam Rangka Meminimalisir Heat Stress Pada Ayam. *Pengembangan Teknologi Informasi dan Ilmu Komputer*, 2(1), pp. 387-394.

Tamzil, M. H., 2014. Stres Panas pada Unggas: Metabolisme, Akibat dan. 24(2), pp. 57-66.

Teeter, R. G. et al., 1985. Chronic heat stress and respiratory alkalosis: occurrence and treatment in broiler chicks. *Polt. Sci*, 64(6), pp. 1060-1064.

Zhang, C. et al., 2017. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. *Poult. Sci*, 96(12), pp. 4325-4332.