CSL 356 July 24
Compating Fibonacci Nos.
given n, comprote Fy
where $F_0 = OF_1 = 1$ $F_i = F_{i-1} + F_{i-2}$ otherwise
Method I: Write the equivalent recursive program
Method II $F_2 = 0 + 1 = 1$ $F_3 = F_2 + F_1$ $F_n = 0 + 1 = 1$ $F_n = 1$
Time for Method 2
TI(n): the no. of steps (#instructions essecuted for compailing In using MelliTI
About niterations where in each iteration we sum two previously conducted Fib nos
previously computed Fib nos. (n) additions Space: 2 nos.

 F_{n-1} F_{n-2} F_{n-2} F_{n-3} F_{n-4} f_{n-4}

 F_{i} F_{i} ... F_{i} ... F_{i} ... F_{i} ... F_{i} F_{i

is roughly (1.6)" addiln

Cost 4 additum? In Method II, if you consider the last m iterations, we are adding nor. I six $\frac{\eta}{2}$ lits Adding tons blit nor takes 0(b) steps The last of iteration cost O(r) steps \Rightarrow $\Omega(n^2)$ steps achally (m2) stips overall What is - the min time to compute Fy? Any algorithm mest take time of input size + ord put size Il (n) is a lower bound for Fn

$$\begin{bmatrix}
F_{i-1} \\
F_{i-1}
\end{bmatrix} : \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix} \begin{bmatrix}
F_{i-2} \\
F_{i-2}
\end{bmatrix} \\
= \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix} \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix} \begin{bmatrix}
F_{i-2} \\
F_{i-3}
\end{bmatrix} \\
A \cdot A \cdot A \cdot \dots \quad \begin{bmatrix}
F_{i} \\
F_{i}
\end{bmatrix} \\
F_{n} : A^{n-1} \begin{bmatrix}
1 \\
0
\end{bmatrix} \\
What is the time to compute χ^{n}

$$\chi^{n} : (\chi^{\frac{n}{2}})^{2} ((\chi^{\frac{n}{2}})^{2} \cdot f \text{ no even}) \\
\chi(\chi^{\frac{n-1}{2}})^{2} \cdot f \text{ otherwise}$$

$$for multiplications: Int what | \chi^{n}| = n \log_{2} \chi$$$$