Gestion de Portefeuille

Ex 5: Modèle Black-Litterman

Version: 22 févr. 2024

library(xts)
library(kableExtra)
library(quadprog)
library(fPortfolio)
library(BLCOP)

L'objet de cet exercice est de combiner l'approche de Black-Litterman et le modèle moyenne-variance classique pour imposer des contraintes à la solution.

Rappel

Distribution ex-ante des rendements:

 $r \sim \mathcal{N}(\mu, \Sigma)$

Rendements espérés d'équilibre

 $\Pi = \delta \Sigma w_{eq}$

Distribution de l'espérance de rendement:

 $\mu = \Pi + \epsilon^{(e)}$

avec

 $\epsilon^{(e)} \sim \mathcal{N}(0, \tau \Sigma)$

Expression des vues:

 $P\mu = Q + \epsilon^{(v)}$

avec

$$\epsilon^{(v)} \sim \mathcal{N}(0, \Omega)$$

Solution *ex-post*:

Espérance de rendement

$$\boldsymbol{\mu}^* = \left[(\tau \boldsymbol{\Sigma})^{-1} + \boldsymbol{P}^T \boldsymbol{\Omega}^{-1} \boldsymbol{P} \right]^{-1} \left[(\tau \boldsymbol{\Sigma})^{-1} \boldsymbol{\Pi} + \boldsymbol{P}^T \boldsymbol{\Omega}^{-1} \boldsymbol{Q} \right]$$

Covariance des rendements

$$M^{-1} = \left[(\tau \Sigma)^{-1} + P^T \Omega^{-1} P \right]^{-1}$$

Distribution *ex-post* des rendements:

$$r \sim \mathcal{N}(\mu^*, \Sigma^*)$$

avec $\Sigma^* = \Sigma + M^{-1}$.

Données

Données de He & Litterman:

Rendements d'équilibre

```
# risk aversion parameter
delta = 2.5
Pi = delta * Sigma %*% w.eq
```

Assets	Std Dev	Weq	PI
Australia Canada	16 20.3	1.6 2.2	3.9 6.9
France	24.8	5.2	8.4
Germany Japan	27.1 21	$5.5 \\ 11.6$	$\frac{9}{4.3}$
UK USA	20 18.7	12.4 61.5	6.8 7.6

Questions

En utilisant la librairie BLCOP, calculez l'espérance et la covariance ex-post des rendements en imposant la vue #1 (le marché allemand sur-performe de 5%).

Attention à bien observer la signification des paramètres de BLViews et posteriorEst de librairie BLCOP.

Table 1: Espérances de rendement ex-ante et ex-post

	$\mu_{ex-ante}$	$\mu_{ex-post}$
Australia	0.039	0.043
Canada	0.069	0.076
France	0.084	0.093
Germany	0.090	0.110
Japan	0.043	0.045
UK	0.068	0.070
USA	0.076	0.081

Avec les résultats de la question précédente, calculer les poids optimaux (Table 4 de l'article de Litterman et He).

```
w.star <- (1/delta) * solve(p.dist@posteriorCovar, p.dist@posteriorMean)
names(w.star) <- asset.names</pre>
```

On reproduit les résultats de Litterman et He.

Table 2: Poids optimum, modèle MV

Australia 1.5
Canada 2.1
France -3.9
Germany 35.4
Japan 11.0
UK -9.5
USA 58.6

Calculer le portefeuille tangent avec $w_i >= 0$.

On prendra $R_f = 2\%$.

On pose le problème d'optimisation que l'on résoud directement.

```
r.f <- .02
r.star = .06
mu <- matrix(p.dist@posteriorMean, nrow=n, ncol=1)
Amat <- mu-r.f
Amat <- cbind(Amat, diag(n))
bvec <- c(r.star, rep(0,n))
dvec <- rep(0,n)
sol <- solve.QP(p.dist@posteriorCovar, dvec, Amat, bvec, meq=1)
w.nom <- sol$solution
w.den <- sum(w.nom)
w.t <- w.nom/sum(w.nom)
r.bar = sum(w.t * mu)</pre>
```

Table 3: Portefeuille tangent (solve.QP) $R_f=2\%$.

	weight
Germany	44.65
USA	55.35

On peut également utiliser, par exemple, le package f Portfolio. Comme on dispose déjà du vecteur μ et de la matrice de covariance, il faut écrire sa propre fonction de calcul de la moyenne et de la covariance des rendements.

```
BLCov <- function(x, spec=NULL, ...) {
    x.mat = as.matrix(x)
    list(mu=p.dist@posteriorMean, Sigma=p.dist@posteriorCovar)
}

spec <- portfolioSpec()
setEstimator(spec) <- "BLCov"
setRiskFreeRate(spec) <- .02

# dummy data for returns
ts <- timeSeries(matrix(1, nrow=10, ncol=length(asset.names)))
colnames(ts) <- asset.names
tgPortfolio <- tangencyPortfolio(
    data=ts,
    spec=spec)</pre>
```

On retouve le même portefeuille tangent:

Table 4: Portefeuille tangent (f Portfolio) $R_f{=}2\%.$

	weight
Germany USA	$44.65 \\ 55.35$