Práctica 3 - Determinismo - LFAC

Philips

1er Cuatrimestre 2025

Esquema

¿Como pasar de un AFND a un AFD?

- i. Si en AFND puedo saltar, desde un estado, a otros x estados. Entonces, en el AFD debería poder hacer un solo salto hacia un conjunto que tenga los x estados mencionados.
- ii. Sea un AFND $M = (Q, \Sigma, \delta, q_0, F)$ defino $M' = (\mathcal{P}(Q), \Sigma, \delta', q'_0, F')$
- iii. Ejemplo de estados:

$$p \xrightarrow{\alpha} r, p \xrightarrow{\alpha} s, p \xrightarrow{\alpha} t \Rightarrow \{p\} \xrightarrow{\alpha} \{r, s, t\}$$
$$p \xrightarrow{\alpha} s, q \xrightarrow{\alpha} s \Rightarrow \{p, q\} \xrightarrow{\alpha} \{s\}$$

iv. F' son los subconjuntos que contienen los estados finales del autómata original.

Algoritmo

i. Defino Mover (move) para saber donde puedo saltar, desde cada estado de T, utilizando una transición α .

$$Mover :: \mathcal{P}(Q)x\Sigma \to \mathcal{P}(Q)$$

 $Mover(T, a) = \bigcup_{t \in T} \delta(t, a)$

- ii. Defino $q'_0 = \{q_0\}$
- iii. Inicializo Q' con $\{q_0\}$ y lo marco como no-visitado.
- iv. Mientras que exista $T \in Q'$ no-visitado quiero:
 - \bullet Marcar T visitado.
 - Para cada símbolo $a \in \Sigma$:
 - -U = Mover(T, a)
 - Si $U \notin Q' \to \text{agrego } U$ a Q' como no-visitado
 - Defino $\delta'(T, a) = U$
- v. Defino $F' = \{T \in Q' \mid T \cap F \neq \emptyset\}$. Es decir, los conjuntos de estados que contengan algún estado final.

¿Como pasar de un AFND- λ a un AFD?

- i. Definir $cl_{\lambda} :: \mathcal{P}(Q) \to \mathcal{P}(Q)$ tal que: $cl_{\lambda}(k) = \{r \in Q \mid \exists p \in k, (p, \lambda) \vdash^{*} (r, \lambda)\}$ \to Tener en cuenta que: $k \subseteq cl_{\lambda}(k)$ y $cl_{\lambda}(c1 \cup c2) = cl_{\lambda}(c1) \cup cl_{\lambda}(c2)$
- ii. Usar el **algoritmo** pero con $q_0'=cl_\lambda(\{q_0\})$ y $Mover(T,a)=cl_\lambda(\bigcup_{t\in T}\delta(t,a))$

1

Ejercicio 1

Para los siguientes autómatas finitos no determinísticos, dar un autómata determinístico que reconozca el mismo lenguaje:

$$M_{0} = (\{q_{0}, q_{1}, q_{2}, q_{3}\}, \{a, b\}, \delta_{0}, q_{0}, \{q_{3}\}),$$

$$\delta_{0} = \begin{vmatrix} a & b & \lambda \\ \hline q_{0} & \{q_{0}, q_{1}\} & \{q_{0}\} & \emptyset \\ q_{1} & \{q_{2}\} & \{q_{0}\} & \emptyset \\ q_{2} & \{q_{3}\} & \{q_{0}\} & \emptyset \\ q_{3} & \{q_{3}\} & \{q_{3}\} & \emptyset \end{vmatrix}$$

i.
$$M'_0 = (Q', \{a, b\}, \delta', \{q_0\}, F')$$

ii. defino a la función de transición δ' :

$Q'x\Sigma$	a	b
$\{q_0\}$	$move(\{q_0\}, a) = \{q_0, q_1\}$	$move(\{q_0\}, b) = \{q_0\}$
$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$	$\{q_0\}$
$\{q_0,q_1,q_2\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0,q_3\}$
$\{q_0,q_3\}$	$\{q_0,q_1,q_3\}$	$\{q_0,q_3\}$
$\{q_0,q_1,q_3\}$	$\{q_0, q_2, q_1, q_3\}$	$\{q_0,q_3\}$

iii. Gráfico:

$$M_1 = (\{0,1,2,3,4,5,6\}, \{a,b\}, \delta_0, 0, \{6\}),$$

$$\delta_{0} = \begin{cases} a & b & \lambda \\ \hline 0 & \{1\} & \{2\} & \{4\} \\ 1 & \emptyset & \emptyset & \{0, 3\} \\ 2 & \emptyset & \emptyset & \{0, 3\} \\ 3 & \{4\} & \emptyset & \emptyset \\ 4 & \emptyset & \emptyset & \{5\} \\ 5 & \{6\} & \{6\} & \emptyset \\ 6 & \emptyset & \emptyset & \{5\} \end{cases}$$

i.
$$M_0' = (Q', \{a, b\}, \delta', cl_{\lambda}(\{0\}) = \{0, 4, 5\}, F')$$

ii. defino a la función de transición δ' :

$Q'x\Sigma$	a	b
$\overline{\{q_0\}}$	$move(\{q_0\}, a) = \{1, 2\}$	$move(\{q_0\}, b) = \{q_0\}$
$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$	$\{q_0\}$
$\{q_0,q_1,q_2\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0,q_3\}$
$\{q_0,q_3\}$	$\{q_0,q_1,q_3\}$	$\{q_0,q_3\}$
$\{q_0,q_1,q_3\}$	$\{q_0, q_2, q_1, q_3\}$	$\{q_0, q_3\}$

iii. Gráfico: