5. 触发器

- 5.1 概 述
- 5.2 基本RS触发器
- 5.3 同步触发器
- 5.4 主从触发器
- 5.5 边沿触发器

5.1 概述

一、什么是触发器?

触发器是具有记忆功能的基本存储单元,可用来存储1位二进制信息。

- 二、基本特性
 - 具有两个能自行保持的稳定状态
 - 根据不同的输入信号置成1态或 ()态

5.1 概述

三、分类

1、根据逻辑功能分类

2、根据电路结构分类

一、电路结构

基本RS触发器

图形符号

$$Q=1$$
, $Q=0$, 触发器为 1 态; $Q=0$, $\overline{Q}=1$, 触发器为 0 态;

二、工作原理

功能表

 $R_D = 0$, $S_D = 0$ 后,若同时由0跳变至1,次态不确定。

思考: 此何避免?

约束条件:

$$\overline{R}_D + \overline{S}_D = 1$$

- 三、功能描述
 - 1、状态转移真值表

【问题】

- 1、什么是状态转移真值表?
- 2、

 状态转移真值表与第四章组合逻辑电路的

 真值表之间有何差别和联系?

【機会】

将触发器原来的状态Q^N,也作为一个变量列入真值表,这种含有状态变量Q^N的真值表,叫做触发器的状态转移真值表。

状态转移真值表

$\overline{R}_D \overline{S}_D$	Q n	Q n+1		
1 1	0	0	保持	
	1	1	J	$\overline{\mathbf{R}}_{\mathbf{D}}\overline{\mathbf{S}}$
0 1	0	0	造 0 简化	1 1
	1	0		0 1
1 0	0	1		1 (
	1	1		0 (
0 0	0	X	♣不确定	
	1	X		

 Q^{n+1}

 $\mathbf{Q}^{\mathbf{n}}$

不确定

2、状态方程(特征方程)

触发器的逻辑表达式, 称为状态方程或特征方程。

$\overline{\mathbf{R}}_{\mathbf{D}}\overline{\mathbf{S}}_{\mathbf{I}}$	Q n	Q n+1
1 1	. 0	0
	1	1
0 1	. 0	0
	1	0
1 0	0	1
	1	1
0 0	0	X
	1	X

状态方程

$$\begin{cases} Q^{n+1} = S_D + \overline{R}_D Q^n \\ \overline{R}_D + \overline{S}_D = 1 \text{ (约束条件)} \end{cases}$$

3、激励表

触发器由 当前状态 \mathbb{Q}^N 转移至 次态 \mathbb{Q}^{N+1} 时,对输入信号的要求。

$\overline{\mathbf{R}}_{\mathbf{D}}\overline{\mathbf{S}}_{\mathbf{D}}$	Q ⁿ	Q n+1
1 1	0	0
	1	1
0 1	0	0
	1	0
1 0	0	1
	1	1
0 0	0	X
	1	X

激励表

状态转移	激励输入	
$Q^n \rightarrow Q^{n+1}$	\overline{R}_{D} \overline{S}_{D}	
0 + 0	X 1	
0 → 1	1 0	
1 → 0	0 1	
1 + 1	1 X	

4、状态转移图

● 圆圈:FF的两个稳定状态

● 箭头: 状态转移的方向

● 标注: 状态转移的条件

激励表

状态转移	激励输入	
$Q^n \longrightarrow Q^{n+1}$	$\overline{\mathbf{R}}_{\mathbf{D}}$	\overline{S}_{D}
0 → 0	X	1
0 → 1	1	0
1 → 0	0	1
1 + 1	1	X

- 一、什么是同步触发器?
- 二、为什么要设计同步触发器?
- 三、如何由基本触发器得到同步触发器?

控制输入: 决定状态转移的方向, 解决"如何翻"; 时钟输入: 决定状态转移的时刻, 解决"何时翻";

四、同步RS触发器

1、电路结构

输入控制电路 基本RS触发器

2、工作原理

- (1) CP = 0 期间, FF 状态保持不变;
- (2) CP = 1 期间, FF 状态随 R、S 改变;

3、功能描述

(1) 状态转移真值表

CP	RS	Q ⁿ	Q n+1
0	XX	0	0
		1	1
	0 0	0	0
		1	1
100	1 0	0	0
1		1	0
	0 1	0	1
		1	1
	1 1	0	X
		1	X

(3) 状态转移图

状态转移表

R	S	Qn	Qn+1
0	0	0	0
		1	1
0	1	0	1
		1	1
1	0	0	0
		1	0
1	1	0	X
		1	X

例2、同步RS触发器输出波形分析

空 制 : 是指在一个时钟周期里,触发器状态变化多于一次的现象。

五、同步D触发器

1、为什么要设计D触发器?

解决RS-FF在R=S=1时的次态不确定问题

2、如何解决次态不确定问题?

$$\Leftrightarrow S = R = D$$

D-FF是RS-FF在 S=R 条件下的特例

3、电路结构

同步D楓麦昂S触发器

4、特征方程

$$\mathbf{Q^{N+1}} = \mathbf{S} + \mathbf{\bar{R}}\mathbf{Q^{N}}$$

$$\mathbf{S=D}$$

$$\mathbf{D} + \mathbf{D}\mathbf{Q^{N}} = \mathbf{D}$$

状态转移表

CP	D	Q n+1	
0	X	Q ⁿ	
1	0	0	
	1	1	

D一FF又叫锁存器

六、同步JK触发器

- 1、为什么要设计 JK 触发器?
- 2、电路结构

&

$$\begin{cases} \mathbf{S} = \mathbf{J} \cdot \overline{\mathbf{Q}}^{\mathbf{n}} \end{cases}$$

同步IK触发器

3、工作原理

给论: J=K=1时, $Q^{n+1}=\overline{Q}^n$ (触发器翻转)

4、特征方程

$$Q^{n+1} = S + \overline{R} Q^{n} \qquad (S = J \overline{Q}^{n}, R = KQ^{n})$$

$$= J \overline{Q}^{n} + \overline{KQ}^{n} \cdot Q^{n}$$

$$= J \overline{Q}^{n} + (\overline{K} + \overline{Q}^{n}) \cdot Q^{n}$$

$$= J \cdot \overline{Q}^{n} + \overline{K} \cdot Q^{n}$$

约束条件

$$\mathbf{R} \bullet \mathbf{S} = \mathbf{K} \mathbf{Q}^{\mathbf{n}} \bullet \mathbf{J} \, \overline{\mathbf{Q}}^{\mathbf{n}} \equiv \mathbf{0}$$

结论:

无论J、K如何变化,约束条件始终得到满足。

状态转移表

CP	J K	Q n+1	
0	XX	Q n	← CP=0, 保持
	0 0	Q n	保持
1	0 1	0	← 清 0
	1 0	1	二 置 1
	1 1	Q n	一翻转

七、同步 T触发器和 T'触发器

- 1、同步T触发器
 - ① 电路结构

② 特征方程

$$Q^{n+1} = J \cdot \overline{Q}^{n} + \overline{K} \cdot Q^{n}$$

$$\xrightarrow{J=K=T} T \cdot \overline{Q}^{n} + \overline{T} \cdot Q^{n}$$

$$A$$
、 $T=0$, $Q^{n+1}=Q^n$,状态保持

$$B$$
、 $T=1$, $Q^{n+1}=\bar{Q}^n$, 状态翻转

2、同步T'触发器

① 电路结构

② 特征方程

$$Q^{n+1} = T \cdot \overline{Q}^{n} + \overline{T} \cdot Q^{n}$$

$$\xrightarrow{T=1} T \cdot \overline{Q}^{n} + \overline{T} \cdot Q^{n}$$

$$= \overline{Q}^{n}$$

常于计数器电路

RS JK S=R=D D-FF **RS-FF** JK-T'-FF FF 增加反馈线 T = 1J = K = T

七、同步触发器的空翻现象

1、触发方式及其分类

触发方式:是指FF在时钟脉冲的什么阶段,才能够接受控制输入信号。改变状态。

图形表示

- 2、同步触发器的触发方式 属于电平触发方式
- 3、电平触发方式的根本缺陷 空翻

例题说明

- ◆ 什么是空翻?
- ❷ 空翻有何危害?
- 空翻产生的原因?
- 解决空翻的办法?

例3、同步JK-FF 波形分析 (空翻现象)

功能表

CP	J	K	Q ⁿ⁺¹
0	X	X	Qn
	0	0	Qn
	0	1	0
1	1	0	1
	1	1	Q ⁿ

- 如何解决空翻问题?
 - (1) 限制CP宽度 (操作困难)
 - (2) 采用其他电路结构形式

5.4 主从触发器

一、 为什么要设计主从触发器? 解决空翻问题

- 二、采用什么结构,才能避免空翻? 两个同步触发器级联,分时工作
- 三、主从触发器的基本原理

以主从RS触发器为例

1、电路结构

整个触发器有没有可能只在这两个触发器分时工作的 交界处, 才发生状态翻转?

2、工作原理

- (1) CP=1期间, 主触发器接受控制输入信号R、S, 改变Q主; 从触发器状态保持不变。
- (2) CP ▼时刻,从触发器向主触发器看齐。

例4、主从RS触发器波形分析

功能表

30310-70				
CP	R	S	$Q_{\stackrel{\bullet}{=}}^{n+1}$	
0	X	X	Q _± ⁿ	
1	0	0	Q≞n	
	0	1	1	
	1	0	0	
	1	1	不确定	

画主从触发器输出波形的步骤

- ☞ 根据功能表,分段画出()。的波形;
- 伊 根据CP+时刻的Q_±,画出Q的波形;

思考: 主从触发方式的特点?

四、主从JK触发器

1、电路演变

复习:由同步RS-FF构成同步JK-FF的方法

同步KK触发器

如何由主从RS触发器构成主从JK触发器?

2、主触发器的一次翻转特性(主从JK触发器特有) CP=1期间,一旦J、K使Q_±发生一次翻转后,无论J、K 再如何变化,都不会使Q_±再次翻转。

例5、主从JK触发器波形分析

五、集成主从JK触发器

Rd	Sd	CP	J	K	Q ⁿ⁺¹
0	1	X	X	X	0
1	0	X	X	X	1
1	1	T	0	0	Qn
1	1	Ţ	0	1	0
1	1	Ţ	1	0	1
1	1	T	1	1	Qn

Rd、Sd 优先级最高

例6、 $\#R_D$ 、 \overline{S}_D 的主从JK触发器波形分析

有多输入端 J_1 、 J_2 和 K_1 、 K_2

$$J_{1} = \underbrace{\mathbb{Z}_{1} \cdot \mathbb{Z}_{2}}_{\mathbf{K}_{1}} - Q$$

$$K_{1} = \underbrace{\mathbb{Z}_{1} \cdot \mathbb{Z}_{2}}_{\mathbf{K}_{2}} \cdot Q^{n+1} = \underbrace{J_{1} \cdot J_{2} \cdot \overline{Q}^{n} + \overline{K_{1} \cdot K_{2}} \cdot Q^{n}}_{\mathbf{K}_{1} \cdot \mathbf{K}_{2}} \cdot Q^{n}$$

一、为什么要设计边沿触发器?

提高抗干扰能力 在CP上升沿或下降沿触发

二、维持一阻塞触发器

以维持一阻塞 RS触发器为例

1、电路结构 (维持-阻塞RS触发器)

2、工作原理 (略)

由于维持-阻塞线的作用,触发器只在 CP↑时刻 才发生状态变化,而在其余所有时间状态均保持不变。

例7、如何实现2分频?

74LS74 (双D触发器)

动手连线

【思考】如何实现4分频?

3、维持一阻塞D触发器

触发翻转特点

- I CP↑时刻,状态改变,QN+1=D
- 其余所有时间,状态保持不变

例8、维持阻塞D触发器波形分析

- 特别说明

- → 若 CP ◆ 时刻, R_D、 S_D 同时无效, 则 Qⁿ⁺¹
 取决于 CP ◆ 时刻 D 的状态;

三、下降沿触发的边沿触发器

1、电路结构

2、工作原理 (略)

在稳定的CP=0及CP=1期间,触发器状态保持不变,只有在CP↓时刻。触发器状态才发生转移。

JK-FF 功能表

Rd	S d	CP	J	K	Q ⁿ⁺¹
0	1	X	X	X	0
1	0	X	X	X	1
1	1	7_	0	0	Qn
1	1	7_	0	1	0
1	1	1_	1	0	1
1	1	Ţ	1	1	Q n

- - Rd、Sd**优先级最高**

例8、下降沿触发的JK触发器波形分析

例9、已知某触发器的真值表,试用JK触发器和少量门实现。

解1:

$$Q^{n+1} = \overline{A} \overline{B} \overline{Q^n} + \overline{AB} + A \overline{B} Q^n + AB \cdot 0$$

$$= \overline{A} \overline{B} \overline{Q^n} + \overline{AB} (\overline{Q^n} + Q^n) + A \overline{B} Q^n$$

$$= (\overline{A} \overline{B} + \overline{AB}) \overline{Q^n} + (\overline{AB} + A \overline{B}) Q^n$$

$$= \overline{A} \overline{Q^n} + (A \oplus B) Q^n$$

АВ	Qn+1
0 0	Qn
0 1	1
1 0	Qn
1 1	0

电路:

$$Q^{n+1} = J \overline{Q^n} + \overline{K}Q^n$$

$$\therefore \quad \boldsymbol{J} = \boldsymbol{A}$$

$$\boldsymbol{K} = \overline{\boldsymbol{A} \oplus \boldsymbol{B}}$$

解2:

由JK触发器特性表可知,

 Q^{n+1} 和J、K的关系如表所示。

由此可求得J、K的表达式如下:

АВ	Qn+1	J K
0 0	Qn	1 1
0 1	1	1 0
1 0	Qn	0 0
1 1	0	0 1

B 0 1 0 1 1 0 0

K B	0	1
0	1	0
1	0	1

$$J = A$$

$$K = \overline{A} \overline{B} + AB = \overline{A \oplus B}$$

电路:

同步触发器: 电平触发 → 空翻

主从触发器:脉冲触发 --- 触发时刻非边沿

边沿触发器: 边沿触发 — 触发器仅在边沿时刻翻转

CP控制 输入约束 S=D, R=D 周步RS 7 同步D S=KQ, R=KQ J=K=T空 '周步.IK — 周步T — 周步T'翻 同 步 RS 输入约束 CP控制主、从触发器翻转 加四 根维 持阻 塞线 输入约束 维持一阻塞. K

加二根反馈线 维持一阻塞】

本章重点

- ◆ 触发器的基本特性
- ◆ 触发器的分类
 - ◆ 按逻辑功能 RS、D、JK、T、T'触发器
 - 按电路结构基本、同步、主从、边沿触发器

本章重点

- ◆触发翻转特点
 - 主从JK触发器的一次翻转特性
 - ፟ 空翻现象
- ◆ 状态转移表、特征方程
- ●画波形图

本章作业

5.9, 5.11, 5.13, 5.14, 5.15,

5.16, 5.17, 5.18, 5.19, 5.20, 5.21,