PRACTICA 1. Hacer un programa que reciba como entrada un alfabeto Σ y un entero k para calcular Σ^k .

PRACTICA 2. Hacer un programa que reciba como entrada una cadena ω y calcule todos los sufijos y prefijos (incluyendo ε).

FECHA DE ENTREGA: Domingo 11 de Octubre

LENGUAJES

Un lenguaje es un conjunto de cadenas seleccionadas de Σ^* , donde Σ es un alfabeto.

Esta formado por cualquier cadena ω que cumpla con :

 ω esta formada por simbolos $\sigma_1, \sigma_2, ..., \sigma_k$ donde $\sigma_k \in \Sigma \forall k$.

Lenguaje Vacio. Lenguaje que no contiene cadenas.

Sea Σ un alfabeto y $L \subseteq \Sigma^*$, entonces L es un lenguaje de Σ .

 Σ^* es un lenguaje para cualquier alfabeto Σ .

$$L = \emptyset$$

DEFINICION DE LENGUAJES

 \rightarrow El lenguaje de todas las cadenas que constan de n "ceros" seguidos de n "unos", para cualquier n \geq 0.

 $\{\omega \mid algo \ acerca \ de \ \omega\}$ "El conjunto de palabras o cadenas ω tal que ..."

 $L = \{ \varepsilon, 01, 0011, 000111, 10, ... \}$

 $L = \{\varepsilon, 01, 0011, 000111, ...\}$

El conjunto de numeros binarios cuyo valor es un numero primo. | 3 $L = \{\varepsilon, 10, 11, 101, ...\}$

Ejemplos

$$L = \{\omega \mid \omega \text{ consta de un numero igual de ceros y de unos}\}$$

 $L = \{\omega \mid \omega \text{ es un entero binario primo}\}$

 $L = \{ \omega \mid \omega \text{ es un programa en lenguaje } C \text{ sintacticamente correcto } \}$

$$L = \left\{ 0^n 1^n \mid n \ge 0 \right\} \subset$$

$$L = \{0^i 1^j \mid 0 \le i \le j\} \qquad L = \{\varepsilon, 01, 011, 1, 11, 0011\}$$

OPERACIONES CON CADENAS

Concatenacion

 $Si\ \omega_1\ y\ \omega_2$ son cadenas, la concatenación de estas dos resulta en la cadena que se obtiene al agregar la segunda al final de la primera.

$$\begin{array}{ll} \omega_1 = mesa \\ \omega_2 = banco \end{array} \Rightarrow \begin{array}{ll} \omega_1 \omega_2 = mesabanco \\ \omega_2 = banco \end{array} \Rightarrow \begin{array}{ll} |\omega_1 \omega_2| = |\omega_1| + |\omega_2| \\ |\omega_2| = |\omega_1| + |\omega_2| + |\omega_2| \\ |\omega_2| = |\omega_1| + |\omega_2| + |\omega_$$

$$\omega \varepsilon = \omega$$

Si dos o mas cadenas tienen exactamente los mismos simbolos, entonces $\omega_1 = \omega_2$

Potencia de una Cadena

$$\omega^{n} = \begin{cases} \varepsilon & si \ n = 0 \\ \omega^{0} = \varepsilon \\ \omega \omega^{n-1} \ si \ n > 0 \end{cases}$$

$$\omega^{0} = \varepsilon$$

$$\omega^{1} = \omega \omega^{0} = ab\varepsilon = ab$$

$$\omega^{2} = \omega \omega^{1} = abab$$

$$\omega^{3} = \omega \omega^{2} = ababab$$
Ejemplo

Sea $\omega = ab$ sobre $\Sigma = \{a,b\}$, obtener ω^0 , ω^1 , ω^2 , ω^3

Subcadenas

Una cadena c, es una subcadena o subpalabra de otra cadena
$$\omega$$
, si existen cadenas x, y para las cuales $\omega=xc_3$
Ejemplo $c_1=23$ $c_2=12$ $x=\varepsilon$ $c_3=32$

Ejemplo
$$\omega = 1234$$

$$c_1 = 23$$

$$x = 1$$

$$y = 4$$

$$\omega = xc_1y$$

$$c_2 = 12$$

$$x = \varepsilon$$

$$y = 34$$

$$xc_1y = 1234$$

$$xc_2y = \varepsilon 1234 = \omega$$

$$c_3 = 32$$

$$x, y \text{ no existen}$$

Inversa de una cadena

La inversa o transpuesta de una cadena ω se denota como ω^I y se define como :

$$\omega^{I} = \begin{cases} \omega & \text{si } \omega = \varepsilon \\ y^{I} & \text{a si } \omega = ay \text{, con } a \in \Sigma, y \in \Sigma^{*} \end{cases}$$

Ejemplo.
$$\omega^I = (tabla)^I = (abla)^I t \qquad \qquad \omega^I = \varepsilon albat = albat$$

Sea
$$\omega = tabla$$
, calcular ω^I

$$(abla)^I = (bla)^I a$$

$$(bla)^I = (la)^I b$$

$$(la)^I = (a)^I l$$

$$(a)^I = (\varepsilon)^I a$$

$$(\varepsilon)^I = \varepsilon$$

Si g y h son cadenas y si x = gh, entonces $x^{I} = h^{I}g^{I}$. Ejemplo.

$$g = ab$$
 $x = gh = abcd$ $x^{I} = h^{I}g^{I} = dcba$ $x^{I} = dcba$

La inversa se anula a si misma, es decir, si a una cadena ω se le aplica la inversa dos veces seguidas, el resultado sera ω. $(\omega^I)^I = \omega$

$$-\omega$$

$$\omega = abcd$$
$$\omega^{I} = dcba$$

 $(\omega^I)^I = abcd$