

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Задание по практике

Методы обеспечения целостности информации

	(наименование дисциплины (модуля) в соответствии с учебным планом)	
Уровень	бакалавриат	
	(бакалавриат, магис	тратура, специалитет)
Форма		
обучения	очная	
	(очная, очно-заочная, заочная)	
Направление подготовки	09.03.02 «Информационные системы и технологии»	
(код(-ы) и наименование(-я))		именование(-я))
Институт	Кибербезопасности и цифровых технологий (ИКБ) (полное и краткое наименование)	
Кафедра	«Разработка программных решений и системное программирование»	
	(полное и краткое наименование кафедры, реализующей дисциплину (модуль))	
Лектор	к.т.н. Ермакова Алла Юрьевна	
	(сокращенно – ученая степень, ученое звание; полностью – ФИО)	
Иононгрупотов в	данной редакции с учебного года	2023/24
используются в	данной редакции с учеоного года	
п	2022	(учебный год цифрами)
Проверено и согласовано «»2023_г		
		(подпись директора Института/Филиала

Практическая работа 5.

Разработка криптографического протокола ЭЦП.

Цель работы: изучение способа построения и разработка криптографического протокола.

Протокол – совокупность правил, регламентирующих последовательность шагов, предпринимаемых двумя или большим количеством сторон для совместного решения некоторой задачи, а также регламентирующих форматы сообщений, пересылаемых между участниками обмена, и действия при возникновении сбоев.

Наиболее распространенными криптографическими протоколами являются:

- протоколы электронной подписи: RSA, DSA, DSS, Эль-Гамаля, ГОСТ-34.10-94, ГОСТ-34.10-2001, ГОСТ-34.10-2012.
- протоколы контроля целостности;
- протоколы электронных платежей.

Задание

Задание расписано на примере реализации протокола электронной подписи.

Реализовать на любом машинном языке (написать программу):

- 1. Процедуру генерации простых чисел. Результат должен вводится в окне программы.
- 2. Алгоритм проверки чисел на простоту. Результат должен вводится в окне программы. Проверку осуществить 2-3 тестами.
- 3. Алгоритм генерации ключей. Переслать участникам переписки (обмена) ключи для шифрования исходного документа и ключи для подписания документа. Исходный текст для шифрования должен вводится в окне программы.
- 4. Алгоритм зашифрования исходного сообщения и подписания его на секретном ключе. Зашифрованный текст должен выводится в окне программы.
- 5. Процедуру пересылки подписанного и зашифрованного сообщения получателю. Зашифрованный текс с подписью должен выводится в окне программы.

- 6. Алгоритм проверки правильности ЭЦП. Восстановленный исходный текс сообщения выводится в окне программы.
- 7. Сохранить в отчете экранные формы демонстрирующие: процесс генерации простых чисел и их проверку на простоту, процесс генерации и распространения ключей, процесс шифрования исходного документа и постановки ЭЦП, процесс восстановления исходного документа и проверки правильности ЭЦП, выводится в окне программы.
- 8. Вызывать любые встроенные библиотеки запрещено!!!

Под окном программы следует понимать пользовательский интерфейс.

Протоколы обмена ключами

Для передачи секретной информации по открытым каналам связи абонентам необходимо иметь ключи. Либо единый ключ в случае использования симметричного шифрования, либо пару ключей для каждого абонента при асимметричном шифровании. Использование одного и того же ключа при многократном общении между абонентами позволяет противнику накопить богатый материал для криптоанализа. Поэтому в целях повышения безопасности обмена секретной информации широко используются сеансовые ключи. Сеансовый (сессионный) ключ – ключ, используемый абонентами в рамках одного сеанса (сессии, раунда) общения. Более того, в некоторых криптосистемах предусматривается многократная смена ключа в рамках одного сеанса, временные метки¹, некоторая дополнительная информация, усиливающие безопасность криптосистемы. Использование сеансовых ключей позволяет решить также и вторую проблему - ограничить размер ущерба при компрометации ключа.

Возможны следующие разновидности протоколов обмена ключами в зависимости от стороны, вырабатывающей сеансовый ключ:

- ключ вырабатывается одним из абонентов и высылается второму для последующего информационного обмена;
- совместная выработка ключа абонентами;
- ключ вырабатывается и предоставляется абонентам третьей стороной (доверенным центром).

Кроме этого, обмен ключами может выполняться как с помощью симметричного, так и асимметричного шифрования.

Вызывать встроенные библиотеки запрещается.

Алгоритм генерации простых чисел и тесты проверки чисел на простоту разрабатывается самостоятельно. Тестов проверки чисел на простоту должно быть минимум два.

Реализация простейших алгоритмов: шифрования и генерации общего секретного ключа оценивается как «удовлетворительно».