

CONSERVACIÓN DE GRANOS

EXPLOSIONES DE POLVO DE GRANOS

¿Que es una explosión?

Es un súbito cambio, físico o químico, en el estado de una masa, que produce una importante liberación de energía y movimiento.

¿Qué es una explosión de polvo?

Es una combustión rápida e incontrolada, que se propaga por sí misma, con generación de calor y gases a altas temperaturas y presiones.

Importancia de las explosiones:

Cuando aparecen partículas en forma de polvo de los materiales combustibles diseminados por el aire en una determinada concentración y con un determinado tamaño puede llegar a producirse una explosión si un punto caliente se encuentra presente.

Cuando dichas explosiones se producen, los resultados suelen ser desastrosos tanto para personas como para las instalaciones.

Algunas de las explosiones más importantes:

AÑO	LUGAR	INDUSTRIA	MUERTOS
1977	Lousiana (E.E.U.U.)	Silo de grano	36
1977	Texas (E.E.U.U.)	Silo de grano	18
1979	Lérida (España)	Silo de grano	10
1979	Bremen (Alemnania)	Harinera	14
1980	Missouri (E.E.U.U.)	Silo de grano	1
1981	Texas (E.E.U.U.)	Silo de grano	9
1982	Metz (Francia)	Silo de grano	12
1985	Bahía Blanca (Argentina)	Silo de grano	9
1997	Blaye (Francia)	Silo de grano	13
1998	Kansas (E.E.U.U.)	Silo de grano	7

Explosión de polvo.

Las explosiones son la causa de enormes pérdidas humanas y económicas, si bien en nuestro país no hay estadísticas al respecto, en EE.UU. se han producido en el período 1987-1997 una media de 13 explosiones al año con un balance de 18 muertos, más de 115 heridos y 77 millones de dólares de pérdidas según datos del Profesor W. Schoeff de la Universidad de Kansas y el USDA (Departamento de Agricultura de los EE.UU.) en Washington.

Orígenes de la explosión:

Para que ocurra una explosión de polvo es necesaria la presencia de tres componentes en un momento dado y dentro de un ambiente confinado.

Si uno de los componentes falta, la explosión no se produce; si en cambio, si los tres componentes ocurren en un instante dado pero el ambiente no es confinado, lo que ocurre es un incendio.

Ahora describiremos cada uno de estos componentes:

• **Combustible:** hacemos referencia al polvo de granos. Es prácticamente imposible trabajar con granos sin generar polvo, el cual se acumula en los sucesivos procesos. Las plagas del almacenamiento también colaboran, junto a la fracción orgánica y mineral que acompaña a los granos desde la trilla.

Con una baja cantidad de polvo (30 gr/m3) es posible el inicio de la explosión.

El polvo debe ser oxidable (combustible) capaz de pasar a la atmósfera en forma de suspensión por lo que debe tener un tamaño inferior a 120 micras y un bajo contenido de humedad para considerarlo peligroso.

- **Oxígeno:** está siempre presente en la atmósfera del acopio. Existen sistemas que inertizan la atmósfera, pero no son muy utilizados en el país por su elevado costo.
- **Calor:** o también llamdo fuente de ignición, esta caracterizada en general por la presencia de llamas o arcos de soldadura o combustión espontánea o chispa por fricción o cargas electrostáticas o recalentamiento de algún mecanismo.

La temperatura de inflamación, es decir, aquella que deben alcanzar los arcos de chispas, debe ser superior a 400°C y hasta suelen llegar a los 1000°C.

Fuente de ignición	Nº	%
Desconocida	103	41,2
Soldadura	43	17,2
Avería eléctrica	10	4
Trozos de metal desprendido	10	4
Fuego distinto a soldadura	10	4
Objetos extraños	9	3,6
Rozamiento con transportador	8	3,2
Recalentamiento con rodamientos	7	2,8
Chispas por rodamiento	7	2,8
Otras chispas	7	2,8
Rayos	6	2,4
Otros	30	12

FUENTES DE IGNICIÓN. Fuente: Prof. Robert W (Kansas State University).

Localización	Nº.	%
Desconocida	107	42,8
Elevador de cangilones	58	23,2
Molino de mazas	17	6,8
Depósito contenedores	13	5,2
Cuarto de control	9	3,6
Molino de pienso auxiliar	8	3,2
Otros	28	9,6

LOCALIZACIÓN DE EXPLOSIONES. Prof. Robert W (Kansas State Universit).

Efectos de la explosión:

Las explosiones provocan un aumento en la presión y temperatura que culmina con la destrucción parcial o total de las instalaciones de acopios e industrias; normalmente, la presión alcanzada oscila entre 2 y 8 kg/cm2 según el material y diseño de construcción de la instalación.

MECÁNICA DE LAS EXPLOSIONES

Cuando ocurren estos siniestros no se desata una, sino una serie de explosiones que, a los fines didácticos, separamos en explosiones primarias y secundarias.

La explosión primaria es la primera explosión de una pequeña nube de polvo, de no excesiva importancia, que genera ondas de presión que aumentan la turbulencia y aumenten el pasaje a suspensión del polvo depositado y así sucesivamente generan explosiones secundarias, éstas mucho más destructivas que las primeras.

