- 1. Projects: Propagating the Iwasawa main conjecture via congruences
- 1.1. Goal of these projects. Let $f, g \in S_k(\Gamma_0(N))$ be normalized eigenforms (not necessarily newforms) of weight $k \ge 2$, say with rational Fourier coefficients $a_n, b_n \in \mathbf{Q}$ for simplicity, and assume that

$$f \equiv g \pmod{p}$$

in the sense that $a_n \equiv b_n \pmod{p}$ for all n > 0. Roughly speaking, the goal of these projects is to study how knowledge of the Iwasawa main conjecture for f can be "transferred" to q.

For k=2 and primes $p \nmid N$ of ordinary reduction, such study was pioneered by Greenberg-Vatsal [GV00], and in these projects we will aim to extend some of their results to:

- non-ordinary primes;
- certain anticyclotomic settings;
- (more ambitiously) some of the "residually reducible" cases which eluded the methods of [GV00], with applications to the p-part of the BSD formula in ranks 0 and 1.
- 1.2. The method of Greenberg-Vatsal. Before jumping into the specifics of each of those settings, let us begin with a brief outline of the method of Greenberg-Vatsal (which is beautifully explained in [GV00, §1]). Let F_{∞}/F be a \mathbb{Z}_p -extension of a number field F, and identify the Iwasawa algebra $\mathbf{Z}_p[[\operatorname{Gal}(F_{\infty}/F)]]$ with the one-variable power series ring $\Lambda = \mathbf{Z}_p[[T]]$ in the usual fashion.

Recall that Iwasawa's main conjecture for f over F_{∞}/F posits the following equality between principal ideals of Λ :

(1.1)
$$(L_p^{\text{alg}}(f)) \stackrel{?}{=} (L_p^{\text{an}}(f)),$$

where

- L_p^{alg}(f) ∈ Λ is a characteristic power series of a Selmer group for f over F_∞/F.
 L_p^{an}(f) ∈ Λ is a p-adic L-function interpolating critical values for L(f/F, s) twisted by certain characters of $Gal(F_{\infty}/F)$.

By the Weierstrass preparation theorem, we may uniquely write

$$L_p^{\mathrm{alg}}(f) = p^{\mu^{\mathrm{alg}}(f)} \cdot Q^{\mathrm{alg}}(f) \cdot U,$$

with $\mu^{\mathrm{alg}}(f) \in \mathbf{Z}_{\geq 0}$, $Q^{\mathrm{alg}}(f) \in \mathbf{Z}_p[T]$ a distinguished polynomial, and $U \in \Lambda^{\times}$ an invertible power series. Letting

$$\lambda^{\operatorname{alg}}(f) := \operatorname{deg} Q^{\operatorname{alg}}(f),$$

and similarly defining $\mu^{\rm an}(f)$ and $\lambda^{\rm an}(f)$ in terms $L_p^{\rm an}(f)$, the strategy of [GV00] is based on the following three observations:

- **O1**. The equality (1.1) amounts to having:
 - $(1) \ (L_p^{\mathrm{alg}}(f)) \supseteq (L_p^{\mathrm{an}}(f)),$
 - (2) $\mu^{\text{alg}}(f) = \mu^{\text{an}}(f),$
 - (3) $\lambda^{\text{alg}}(f) = \lambda^{\text{an}}(f)$.

We shall place ourselves in a situation where one expects that $\mu^{alg}(f) = \mu^{an}(f) = 0$.

O2. For Σ any finite set of primes $\ell \neq p, \infty$, the equality (1.1) is equivalent to the equality

$$(1.2) \qquad \qquad (L_{p,\mathrm{alg}}^\Sigma(f)) \stackrel{?}{=} (L_{p,\mathrm{an}}^\Sigma(f)),$$

where $L_{p,\text{alg}}^{\Sigma}(f)$ and $L_{p,\text{an}}^{\Sigma}(f)$ are the "imprimitive" counterparts of $L_{p}^{\text{alg}}(f)$ and $L_{p}^{\text{an}}(f)$ obtained (roughly speaking) by relaxing the local conditions/removing the Euler factors at the primes $\ell \in \Sigma$.

O3. For appropriate Σ , the objects involved in (1.2) are well-behaved under congruences. Letting $\mu_{\text{alg}}^{\Sigma}(f)$, $\lambda_{\text{alg}}^{\Sigma}(f)$, etc. be the obvious invariants from the above discussion, this translates into:

Expectation 1. Assume that $f \equiv g \pmod{p}$, and let $* \in \{\text{alg, an}\}$. If $\mu_*^{\Sigma}(f) = 0$, then $\mu_*^{\Sigma}(g) = 0$ and $\lambda_*^{\Sigma}(f) = \lambda_*^{\Sigma}(g)$.

Now, if we are given $f \equiv g \pmod{p}$ and the divisibilities

$$(L_p^{\mathrm{alg}}(f)) \supseteq (L_p^{\mathrm{an}}(f)) \quad \text{and} \quad (L_p^{\mathrm{alg}}(g)) \supseteq (L_p^{\mathrm{an}}(g)),$$

we see that the equivalence of O2 combined with Expectation 1 yields the implication

$$(1.4) \qquad \qquad (L_p^{\mathrm{alg}}(f)) = (L_p^{\mathrm{an}}(f)) \quad \Longrightarrow \quad (L_p^{\mathrm{alg}}(g)) = (L_p^{\mathrm{an}}(g)).$$

Note that this has interesting applications. Indeed, if for example the residual representation $\bar{\rho}_f$ is absolutely irreducible, then one can hope to establish (1.3) by an Euler/Kolyvagin system argument. Proving the opposite divisibility (either via Eisenstein congruences, or via a refined Euler/Kolyvagin system argument) often requires additional ramification hypotheses on $\bar{\rho}_f$ relative to the level of f (see below for specific examples), a restriction that could be ultimately removed thanks to (1.4).

1.3. On the cyclotomic main conjectures for non-ordinary primes. Here we let F_{∞}/F be the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} , let $p \nmid N$ be a non-ordinary prime for $f \in S_k(\Gamma_0(N))$, and let α, β be the roots of the p-th Hecke polynomial of f. In this setting, Lei–Loeffler–Zerbes [LLZ10], [LLZ11], formulated¹ "signed" main conjectures:

$$(1.5) (L_p^{\sharp}(f)) \stackrel{?}{=} \operatorname{Char}_{\Lambda}(\operatorname{Sel}_{\sharp}(f)^{\vee}), (L_p^{\flat}(f)) \stackrel{?}{=} \operatorname{Char}_{\Lambda}(\operatorname{Sel}_{\flat}(f)^{\vee}),$$

where $\operatorname{Sel}_{\sharp}(f)$ and $\operatorname{Sel}_{\flat}(f)$ are Selmer groups cut out by local condition at p more stringent that the usual ones, and $L_p^{\sharp}(f), L_p^{\flat}(f) \in \Lambda$ are related to the p-adic L-functions $L_p^{\alpha}(f), L_p^{\beta}(f)$ of Amice–Vélu and Vishik in the following manner:

$$\begin{pmatrix} L_p^{\alpha}(f) \\ L_p^{\beta}(f) \end{pmatrix} = Q_{\alpha,\beta}^{-1} M_{\log} \cdot \begin{pmatrix} L_p^{\sharp}(f) \\ L_p^{\flat}(f) \end{pmatrix},$$

where $Q_{\alpha,\beta} = \begin{pmatrix} \alpha & -\beta \\ -p & p \end{pmatrix}$ and M_{\log} is a certain "logarithm matrix".

Project A. Show Expectation 1 for the signed p-adic L-functions. More precisely, for each $\bullet \in \{\sharp, \flat\}$, show that if $f \equiv g \pmod{p}$, then

$$\mu(L_p^{\bullet}(f)) = 0 \quad \Longrightarrow \quad \mu(L_p^{\bullet}(g)) = 0$$

and the λ -invariants of Σ -imprimitive versions of $L_p^{\bullet}(f)$ and $L_p^{\bullet}(g)$ are equal.

Say k = 2 for simplicity. Similarly as in [GV00], the proof of this result would follow from the equality

$$L_p^{\Sigma, \bullet}(f) \equiv u L_p^{\Sigma, \bullet}(g) \pmod{p\Lambda},$$

for some unit $u \in \mathbf{Z}_p^{\times}$, which in turn would follow from establishing the congruence

(1.7)
$$L_p^{\Sigma, \bullet}(f, \zeta - 1) \equiv u L_p^{\Sigma, \bullet}(g, \zeta - 1) \pmod{p \mathbf{Z}_p[\zeta]},$$

for all $\zeta \in \mu_{p^{\infty}}$ and some $u \in \mathbf{Z}_p^{\times}$ independent of ζ . However, a point of departure here from the p-ordinary setting is that (unless $a_p = b_p = 0$) the signed p-adic L-functions $L_p^{\bullet}(f), L_p^{\bullet}(g)$ are not directly related to twisted L-values, and so the arguments of [GV00, §3] do not suffice to cover this case. Nonetheless, it should be possible to exploit the result of [Vat99, Prop. 1.7], which amounts to the congruence

$$L_p^{\Sigma,\star}(f,\zeta-1) \equiv uL_p^{\Sigma,\star}(g,\zeta-1) \pmod{p\mathbf{Z}_p[\zeta]}$$

for both $\star \in \{\alpha, \beta\}$, together with (1.6) to establish (1.7). This will involve a detailed analysis of the values of M_{\log} at p-power roots of unity, for which some of the calculations in [LLZ17] (see esp. [loc.cit., Lem. 3.7]) might be useful.

¹Extending earlier work of Kobayashi, Pollack, Lei, and Sprung

Remark 1.1. The algebraic analogue of Project A has recently been established by Hatley–Lei (see [HL16, Thm. 4.6]). On the other hand, as shown in [LLZ11, Cor. 6.6], either of the main conjectures (1.5) is equivalent to Kato's main conjecture (see [LLZ11, Conj. 6.2]). Thus from the discussion of §1.2 and the main result of [KKS17], we see that a successful completion of Project A would yield² cases of the signed main conjectures beyond those covered by [Wan14] or [CCSS17, Thm. B], where the following hypothesis is needed:

there exists a prime $\ell \neq p$ with $\ell || N$ such that $\bar{\rho}_f$ is ramified at ℓ .

(cf. [KKS17, §1.2.3]).

1.4. On the anticyclotomic main conjecture of Bertolini–Darmon–Prasanna. Here we let F_{∞}/F be the anticyclotomic \mathbb{Z}_p -extension of an imaginary quadratic field K in which

$$p = \mathfrak{p}\overline{\mathfrak{p}}$$
 splits,

let $f \in S_k(\Gamma_0(N))$, and let $p \nmid N$ be a prime. Assume also that every prime factor of N splits in K; so K satisfies the Heegner hypothesis, and $N^- = 1$ with the standard notation.

The Iwasawa–Greenberg main conjecture for the *p*-adic *L*-function $L_{\mathfrak{p}}(f) \in \overline{\mathbf{Z}}_{p}[[\operatorname{Gal}(F_{\infty}/F)]]$ introduced in [BDP13] predicts that

(1.8)
$$\operatorname{Char}_{\Lambda}(\operatorname{Sel}_{\mathfrak{p}}(f)^{\vee})\Lambda_{\overline{\mathbf{Z}}_{n}} \stackrel{?}{=} (L_{\mathfrak{p}}(f)),$$

where $\Lambda_{\overline{\mathbf{Z}}_p} = \overline{\mathbf{Z}}_p[[T]]$ and $\mathrm{Sel}_{\mathfrak{p}}(f)$ is a Selmer group defined by imposing local triviality (resp. no condition) at the primes above \mathfrak{p} (resp. $\overline{\mathfrak{p}}$).

Project B. Show Expectation 1 for the p-adic L-functions of [BDP13]. That is, if $f \equiv g \pmod{p}$, then $\mu(L_{\mathfrak{p}}(f)) = \mu(L_{\mathfrak{p}}(g)) = 0^3$ and the λ -invariants of Σ -imprimitive versions of $L_{\mathfrak{p}}(f)$ and $L_{\mathfrak{p}}(g)$ are equal.

Similarly as for Project A, in weight k=2 this problem can be reduced to establishing the congruence

(1.9)
$$L_{\mathfrak{p}}^{\Sigma}(f,\zeta-1) \equiv uL_{\mathfrak{p}}^{\Sigma}(g,\zeta-1) \pmod{p\overline{\mathbf{Z}}_{p}[\zeta]}$$

for all $\zeta \in \mu_{p^{\infty}}$ and some $u \in \overline{\mathbf{Z}}_p^{\times}$ independent of ζ . Now, by the p-adic Waldspurger formula of [BDP13, Thm. 5.13], the congruence of [KL16, Thm. 2.9] amounts to (1.9) for $\zeta = 1$, and so a promising approach to Project B would be based on extending the result of [KL16, Thm. 2.9] to ramified characters.

Remark 1.2. When p is a good ordinary prime, the algebraic analogue of Project B has recently been established by Hatley–Lei (see [HL17, Prop. 4.2 and Thm. 5.4]). On the other hand, one can show that Howard's divisibility towards Perrin-Riou's Heegner point main conjecture implies one of the divisibilities predicted by (1.8) (see [How04, Thm. B] and [Cas17b, App. A]). Similarly as in [KKS17], it should be possible to show (this is work in progress) that a suitable refinement of the Kolyvagin system arguments of [How04] combined with Wei Zhang's proof of Kolyvagin's conjecture [Zha14]⁴ yields the full equality (1.8). In particular, this would yield new cases of conjecture (1.8) with $N^- = 1$ (not currently available in the literature), and even more cases (under a somewhat weaker version of Hypothesis \spadesuit in [Zha14], still with $N^- = 1$) after a successful completion of Project B.

Finally, in line with the previous remark, we note that the following should be possible:

Project C. Extend the results of [HL17] to the non-ordinary case.

²Subject to the nonvanishing mod p of some "Kurihara number"

³Note that in this case the vanishing of μ -invariants is known under mild hypotheses by [Hsi14, Thm. B] and [Bur17, Thm. B]

⁴Which can be seen as proving "primitivity" in the sense of [MR04] of the Heeger point Kolyvagin system

1.5. On the *p*-part of the Birch–Swinnerton-Dyer formula for residually reducible **primes.** Here we consider the primes p > 2 for which the associated residual representation $\bar{\rho}_f$ is reducible. For simplicity, assume that f corresponds to an elliptic curve E/\mathbf{Q} (admitting a rational *p*-isogeny with kernel Φ). The combination of [GV00, Thm. 3.12] (with a key input from [Kat04, Thm. 17.4]) and [Gre99, Thm.4.1] yields the *p*-part of the BSD formula for E in analytic rank 0, i.e., when $L(E, 1) \neq 1$, provided the following holds:

(GV) the
$$G_{\mathbf{Q}}$$
-action on $\Phi \subset E[p]$ is either $\left\{ \begin{array}{l} \text{ramified at } p \text{ and even, or} \\ \text{unramified at } p \text{ and odd.} \end{array} \right.$

Similarly as in the residually irreducible cases considered in [JSW17], the above result (applied to a suitable quadratic twist of E) would be an important ingredient in the following:

Project D. Prove the p-part of the BSD formula in analytic rank 1 for elliptic curves E and primes p > 2 for which (GV) does not hold.

Following the strategy of [JSW17] and [Cas17a], a key ingredient toward this⁵ would be the proof of the relevant cases of the anticyclotomic main conjecture (1.8). By the discussion in §1.2, this could be approached in the following steps:

- (1) establish the divisibility " \supseteq " in (1.8) (possibly after inverting p), based on a suitable refinement of the Kolyvagin system argument in [How04].
- (2) show that $\mu(L_{\mathfrak{p}}(f)) = 0$ based on the congruence of [Kri16, Thm. 3] between $L_{\mathfrak{p}}(f)$ and an anticyclotomic Katz *p*-adic *L*-function, and Hida's results on the vanishing of μ for the latter.
- (3) letting $L_{\mathfrak{p}}^{\mathrm{alg}}(f)$ be a generator of the characteristic ideal in (1.8), show that $\mu(L_{\mathfrak{p}}^{\mathrm{alg}}(f)) = 0$ and $\lambda(L_{\mathfrak{p}}^{\mathrm{alg}}(f)) = \lambda(L_{\mathfrak{p}}(f))$ based on an algebraic counterpart of [Kri16, Thm. 3] and the known cases of the main conjecture for the anticyclotomic Katz *p*-adic *L*-function.

After this is carried out, we could try to study the missing cases:

Project E. Prove the p-part of the BSD formula for elliptic curves E/\mathbf{Q} at residually reducible primes p > 2 when:

- $L(E,1) \neq 0$ and (GV) doesn't hold (complementing the cases that follow from [GV00]).
- $\operatorname{ord}_{s=1}L(E,s)=1$ and (GV) holds (complementing the cases covered by Project D).

Finally, we should note that p=2 has been neglected throughout the above discussion, but one would of course like to understand this case as well. (See e.g. [CLZ17] for recent results in this direction.)

References

- [BDP13] Massimo Bertolini, Henri Darmon, and Kartik Prasanna, Generalized Heegner cycles and p-adic Rankin L-series, Duke Math. J. **162** (2013), no. 6, 1033–1148.
- [Bur17] Ashay A. Burungale, On the non-triviality of the p-adic Abel-Jacobi image of generalised Heegner cycles modulo p, II: Shimura curves, J. Inst. Math. Jussieu 16 (2017), no. 1, 189–222. MR 3591965
- [Cas17a] Francesc Castella, On the p-part of the Birch-Swinnerton-Dyer formula for multiplicative primes, Camb. J. Math., to appear (2017).
- [Cas17b] _____, p-adic heights of Heegner points and Beilinson-Flach classes, J. Lond. Math. Soc. (2) 96 (2017), no. 1, 156–180. MR 3687944
- [CÇSS17] Francesc Castella, Mirela Çiperiani, Christopher Skinner, and Florian Sprung, On two-variable main conjectures for modular forms at non-ordinary primes, preprint (2017).
- [CLZ17] Li Cai, Chao Li, and Shuai Zhai, On the 2-part of the Birch and Swinnerton-Dyer conjecture for quadratic twists fo elliptic curves, preprint, arXiv:1712.01271 (2017).
- [Gre99] Ralph Greenberg, *Iwasawa theory for elliptic curves*, Arithmetic theory of elliptic curves (Cetraro, 1997), Lecture Notes in Math., vol. 1716, Springer, Berlin, 1999, pp. 51–144.

⁵Note that there are other points where the residually irreducible hypothesis is used in [JSW17], e.g. in the "anticyclotomic control theorem" of [loc.cit., §3.3], but handling these should be relatively easy.

- [GV00] Ralph Greenberg and Vinayak Vatsal, On the Iwasawa invariants of elliptic curves, Invent. Math. 142 (2000), no. 1, 17–63. MR 1784796
- [HL16] Jeffrey Hatley and Antonio Lei, Arithmetic properties of signed Selmer groups at non-ordinary primes, preprint, arXiv:1608.00257 (2016).
- [HL17] ______, Comparing anticyclotomic Selmer groups of positive coranks for congruent modular forms, preprint, arXiv:1706.04531 (2017).
- [How04] Benjamin Howard, The Heegner point Kolyvagin system, Compos. Math. 140 (2004), no. 6, 1439–1472. MR 2098397 (2006a:11070)
- [Hsi14] Ming-Lun Hsieh, Special values of anticyclotomic Rankin-Selberg L-functions, Doc. Math. 19 (2014), 709–767. MR 3247801
- [JSW17] Dimitar Jetchev, Christopher Skinner, and Xin Wan, The Birch and Swinnerton-Dyer formula for elliptic curves of analytic rank one, Camb. J. Math. 5 (2017), no. 3, 369–434. MR 3684675
- [Kat04] Kazuya Kato, p-adic Hodge theory and values of zeta functions of modular forms, Astérisque (2004), no. 295, ix, 117–290, Cohomologies p-adiques et applications arithmétiques. III. MR 2104361 (2006b:11051)
- [KKS17] Chan-Ho Kim, Myoungil Kim, and Hae-Sang Sun, On the indivisibility of derived Kato's Euler systems and the main conjecture for modular forms, preprint, arXiv:1709.05780 (2017).
- [KL16] Daniel Kriz and Chao Li, Congruences between Heegner points and quadratic twists of elliptic curves, preprint, arXiv:1606.03172 (2016).
- [Kri16] Daniel Kriz, Generalized Heegner cycles at Eisenstein primes and the Katz p-adic L-function, Algebra Number Theory 10 (2016), no. 2, 309–374. MR 3477744
- [LLZ10] Antonio Lei, David Loeffler, and Sarah Livia Zerbes, Wach modules and Iwasawa theory for modular forms, Asian J. Math. 14 (2010), no. 4, 475–528.
- [LLZ11] _____, Coleman maps and the p-adic regulator, Algebra Number Theory 5 (2011), no. 8, 1095–1131. MR 2948474
- [LLZ17] _____, On the asymptotic growth of Bloch-Kato-Shafarevich-Tate groups of modular forms over cyclotomic extensions, Canad. J. Math. **69** (2017), no. 4, 826–850. MR 3679697
- [MR04] Barry Mazur and Karl Rubin, *Kolyvagin systems*, Mem. Amer. Math. Soc. **168** (2004), no. 799, viii+96. MR 2031496 (2005b:11179)
- [Vat99] V. Vatsal, Canonical periods and congruence formulae, Duke Math. J. 98 (1999), no. 2, 397–419. MR 1695203
- [Wan14] Xin Wan, Iwasawa main conjecture for supersingular elliptic curves, preprint, arXiv:1411.6352 (2014).
- [Zha14] Wei Zhang, Selmer groups and the indivisibility of Heegner points, Camb. J. Math. 2 (2014), no. 2, 191–253. MR 3295917