Set Theory Problems

Extra problems about sets.

Problem 1 Indicate the number of elements in each set:

- (a) The set $\{3, 5, 6, 9, 10\}$ has $\boxed{5}$ element(s).
- (b) The set $\{\{3,2,7\},\{4,5\},\{2\},\emptyset\}$ has $\boxed{4}$ element(s).
- (c) The set $\{\{\}\}$ has $\boxed{1}$ element(s).
- (d) The set $\{\}$ has $\boxed{0}$ element(s).
- (e) The set \emptyset has $\boxed{0}$ element(s).
- (f) The set $\{\emptyset\}$ has $\boxed{1}$ element(s).

Problem 2 Indicate whether each statement is true or false:

- (a) $2 \in \{3, 2, 5\}$. (True \sqrt{False})
- (b) $2 \subseteq \{3, 2, 5\}$. (True/False \checkmark)
- (c) $\{2\} \in \{3, 2, 5\}$. (True/False \checkmark)
- (d) $\{2\} \subseteq \{3, 2, 5\}$. (True \checkmark / False)
- (e) $\emptyset = \{\}$. (True \checkmark / False)
- (f) $\emptyset = {\emptyset}$. (True/False \checkmark)
- (g) $\{\emptyset\} = \{\{\}\}$. (True \checkmark / False)
- (h) $\emptyset \in \{\emptyset\}$. (True \checkmark / False)
- (i) $\emptyset \subseteq \{\emptyset\}$. (True \checkmark / False)
- (j) $2 \in \{\{3,2,7\}, \{4,5\}, \{2\}, \emptyset\}$. (True/False \checkmark)
- (k) $2 \subseteq \{\{3,2,7\}, \{4,5\}, \{2\}, \emptyset\}$. (True/False \checkmark)

Learning outcomes:

 $\operatorname{Author}(s)$: Bart Snapp and Brad Findell

- (1) $\{2\} \in \{\{3,2,7\}, \{4,5\}, \{2\}, \emptyset\}$. (True \checkmark / False)
- (m) $\{2\} \subseteq \{\{3,2,7\},\{4,5\},\{2\},\emptyset\}$. (True/False \checkmark)
- (n) $\{\{2\}\}\in\{\{3,2,7\},\{4,5\},\{2\},\emptyset\}$. (True/False \checkmark)
- (o) $\{\{2\}\}\subseteq \{\{3,2,7\},\{4,5\},\{2\},\emptyset\}$. (True \checkmark / False)

Problem 3 Explain the difference between the symbols \in and \subseteq .

Free Response: Hint: The symbol \in means "is an element of," whereas \subseteq means "is a subset of." The notation $X \in Y$ means that X is a single element in the set Y. In this case, X is typically not a set. The notation $X \subseteq Y$, in contrast, requires that both X and Y are sets and, furthermore, that every element of X is also in Y.

Problem 4 How is $\{\emptyset\}$ different from \emptyset ?

Free Response: Hint: The empty set, \emptyset , is a set that contains no elements. That is, $\emptyset = \{\}$. The set $\{\emptyset\}$ contains one element that is itself a set—and that element happens to be the empty set. We could instead write $\{\{\}\}$, but that looks ugly.