Claims

We claim:

A batch or continuous process for the polymerization of olefins, comprising contacting one or more monomers selected from compounds of the formula RCH=CHR¹ with a Group 8-10 transition metal complex of a ligand of the formula VI, XII, IX, XIII, XIV, XV, or XXII and optionally a Bronsted or Lewis acid.

10

15

wherein R and R are independently H, hydrocarbyl, fluoroalkyl, or R and R1 may be linked to form a cyclic olefin;

R³ is hydrocarbyl of substituted hydrocarbyl;

R⁴ is H, hydrocarbyl, substituted hydrocarbyl, or silyl;

R⁵ is hydrocarbyl or substituted hydrocarbyl;

Z is O or S;

10

15

20

Ŋ	is -OR 10 , -SR 10 , -SeR 10 or -NR 10 R 8 , wherein R 10 and R 8 are each
independ	ently selected from H, hydrocarbyl, substituted hydrocarbyl, or
silyl, and	in addition R ¹⁰ and R ⁸ may collectively form a ring with nitrogen;

G¹ s hydrocarbyl or substituted hydrocarbyl and may comprise a carbocyclic or heterocyclic ring, thereby forming a 5-membered or 6-membered heterocyclic ring comprising G¹, C, and N;

G² is hydrocarbyl or substituted hydrocarbyl and may comprise a carbocyclic or heterocyclic ring, thereby forming a 5-membered or 6-membered heterocyclic ring comprising G², V, N, and N;

V is -CR⁶, N, or -PR⁶R⁹; wherein, R⁶ and R⁹ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, silyl or heteroatom connected hydrocarbyl, and in addition, R⁶ and R⁹ may collectively form a ring with phosphorus;

 Ω is hydrocarbyl or substituted hydrocarbyl; and, n is an integer between 2 and 6.

- 2. The process of claim 1 wherein the monomer of the formula RCH=CHR¹ is selected from ethylene, propylene, 1-butene, 1-hexene, and 1-octene.

3. The process of claim 1 wherein the group 8-10 transition metal is nickel.

4. The process of claim 3 wherein a Lewis acid is used, and said Lewis acid is methylaluminoxane.

30

5. The process of claim 4 wherein the ligand of formula **VI** is selected from:

wherein R³ is hydrocarbyl or substituted hydrocarbyl;

R⁴ is H, hydrocarbyl, substituted hydrocarbyl, or silyl;

R⁵, R⁶ and R¹¹ are independently H, hydrocarbyl, or substituted hydrocarbyl;

R⁷ is H, hydrocarbyl, substituted hydrocarbyl, or NO₂.

6. The process of claim 5 wherein the ligand of formula **VI** is selected from:

$$R^4$$
 and R^4 R^{11} R^3 N N N

5

10

wherein R³ is hydrocarbyl or substituted hydrocarbyl;
R⁴ is H, hydrocarbyl, substituted hydrocarbyl, or silyl; and,
R⁵ and R¹¹ are independently H, hydrocarbyl, or substituted hydrocarbyl.

7. The process of claim 6 wherein the ligand of formula VI is

wherein ${\rm Ar}^1$ is 2,6-dimethylphenyl or 2,6-diisopropylphenyl; and, ${\rm Ar}^2$ is phenyl or 1-naphthyl.

8. The process of claim 4 wherein the ligand of formula **XII** is selected from:

10

wherein R³ is hydrocarbyl or substituted hydrocarbyl;

U is -OR¹⁰, -SR¹⁰, -SeR¹⁰ or -NR¹⁰R⁸, wherein R¹⁰ and R⁸ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R¹⁰ and R⁸ may collectively form a ring with nitrogen;

R⁵, R⁶ and R¹¹ are independently H, hydrocarbyl, or substituted hydrocarbyl

R⁷ is H, hydrocarbyl, substituted hydrocarbyl, or -NO₂.

9. The process of claim 8 wherein the ligand of formula **XII** is selected from:

wherein R is hydrocarbyl or substituted hydrocarbyl;

U is -OR¹⁰, -SR¹⁰, -SeR¹⁰ or -NR¹⁰R⁸, wherein R¹⁰ and R⁸ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R¹⁰ and R⁸ may collectively form a ring with nitrogen;

R⁵ and R¹¹ are independently H, hydrocarbyl, or substituted hydrocarbyl.

20

10

10. The process of claim 4 wherein the ligand of formula IX is selected from:

where n R³ is hydrocarbyl or substituted hydrocarbyl;

R¹¹ is hydrocarbyl, or substituted hydrocarbyl;

U is -OR¹⁰, -SR¹⁰, -SeR¹⁰ or -NR¹⁰R⁸, wherein R¹⁰ and R⁸ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R¹⁰ and R⁸ may collectively form a ring with nitrogen; and

Z is oxygen or sulfur.

11. The process of claim 4 wherein the ligand is of formula XXII and Ω is selected from

10

15

20

12. The process of claim 11 wherein the ligand of formula XXII is selected from

wherein, R³ is 2,6-disubstituted phenyl.

- 13. A process for the polymerization of olefins comprising contacting one or more monomers of the formula RCH=CHR 1 with a binucleating or multinucleating ligand complexed to a Group 8-10 transition metal M and one or more Lewis acids, wherein the Lewis acid or acids are bound to one or more heteroatoms which are π -conjugated to the donor atom or atoms bound to the transition metal M; and R and R 1 are each, independently selected from hydrogen, hydrocarbyl, fluoroalkyl, or may be linked to form a cyclic olefin.
 - 14. The process of Claim 13 wherein the transition metal M is nickel.
- 15. The process of claim 14 wherein the Lewis acid is a boron or aluminum containing Lewis acid.
 - 16. The process of claim 4 wherein the polymerization is conducted in an inert solvent.

15

20

- The process of claim 5, 8, 10 or 11 wherein the polymerization is conducted in an inert solvent.
- 18. The process of claim 4 wherein the transition metal olefin polymerization catalyst system is attached to a solid support.
 - 19. The process of claim 5, 8, 10, or 11 wherein the transition metal olefin polymerization catalyst system is attached to a solid support.
 - 20. The process of claim 18 wherein the polymerization is conducted in an inert solvent.
 - 21. The process of claim 19 wherein the polymerization is conducted in an inert solvent.
 - 22. The process of claim 18 wherein the polymerization is conducted in the gas phase.
 - 23. The process of claim 19 wherein the polymerization is conducted in the gas phase.
 - 24. An olefin polymerization catalyst comprising (a) a Group 8-10 transition metal, (b) a ligand of the formula VI, XII, IX, XIII, XIV, XV, or XXII and optionally (c) a Bransted or Lewis acid,

10

15

wherein R³ is hydrocarbyl or substituted hydrocarbyl; R⁴ is H, hydrocarbyl, substituted hydrocarbyl, or silyl; R⁵ is hydrocarbyl or substituted hydrocarbyl; Z is O or S:

U is -OR¹⁰, -SR¹⁰, -SeR¹⁰ or -NR¹⁰R⁸, wherein R¹⁰ and R⁸ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R¹⁰ and R⁸ may collectively form a ring with nitrogen;

G¹ is hydrocarbyl of substituted hydrocarbyl and may comprise a carbocyclic or heterocyclic ring, thereby forming a 5-membered or 6-membered heterocyclic ring comprising G¹, C, and N;

G² is hydrocarbyl or substituted hydrocarbyl and may comprise a carbocyclic or heterocyclic ring, thereby forming a 5-membered or 6-membered heterocyclic ring comprising G², V, N, and N;

10

15

V is -CR⁶, N, or -PR⁶R⁹; wherein, R⁶ and R⁹ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, silyl or heteroatom connected hydrocarbyl, and in addition, R⁶ and R⁹ may collectively form a ring with phosphorus;

n is an integer between 2 and 6.

25. The datalyst of claim 24 wherein the Group 8-10 transition metal is Ni.

26. The catalyst of claim 25 wherein a Lewis acid is used, and said Lewis acid is methylaluminoxane.

27. The catalyst of claim 26 wherein the ligand of formula **VI** is selected from:

wherein R³ is hydrocarbyl or substituted hydrocarbyl;

Rt is H, hydrocarbyl, substituted hydrocarbyl, or silyl;

R⁵, R⁶ and R¹¹ are independently H, hydrocarbyl, or substituted

hydrocarby

5

10

15

20

R⁷ is N, hydrocarbyl, substituted hydrocarbyl, or NO₂.

28. The catalyst of claim 27 wherein the ligand of formula VI is selected from:

$$R^4$$
 and R^4 R^3 R^3 R^3

wherein R³ is hydrocarbyl or substituted hydrocarbyl,

R⁴ is H, hydrocarbyl, substituted hydrocarbyl, or silyl; and,

R⁵ and R¹¹ are independently H, hydrocarbyl, or substituted hydrocarbyl.

29. The catalyst of claim 28 wherein the ligand of formula VI is

$$Ar^{2}$$
 Ar^{1}
 N
 N
 Ar^{1}
 Ar^{1}
 N

wherein Ar¹ is 2,6-dimethylphenyl or 2,6-diisopropylphenyl; and, Ar² is phenyl or 1-naphthyl.

30. The catalyst of claim 26 wherein the ligand of formula XII is selected from:

- 96 -

wherein R³ is hydrocarbyl;

U is -OR¹⁰, -SR¹⁰, -SeR¹⁰ or -NR¹⁰R⁸, wherein R¹⁰ and R⁸ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R¹⁰ and R⁸ may collectively form a ring with nitrogen;

R⁵, R⁶ and R¹¹ are independently H, hydrocarbyl, or substituted hydrocarbyl;

R⁷ is H, hydrocarbyl, substituted hydrocarbyl, or -NO₂.

10

5

31. The catalyst of claim 30 wherein the ligand of formula **XII** is selected from:

10

15

U is -OR¹⁰, -SR¹⁰, -SeR¹⁰ or -NR¹⁰R⁸, wherein R¹⁰ and R⁸ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R¹⁰ and R⁸ may collectively form a ring with nitrogen;

R⁵ and R¹¹ are independently H, hydrocarbyl, or substituted hydrocarbyl

32. The calalyst of claim 26 wherein the ligand of formula IX is selected from:

wherein R³ is hydrocarbyl or substituted hydrocarbyl;

R¹¹ is hydrocarbyl or substituted hydrocarbyl;

U is -OR¹⁰, -SR¹⁰, -SeR¹⁰ or -NR¹⁰R⁸, wherein R¹⁰ and R⁸ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, or silyl, and in addition R¹⁰ and R⁸ may collectively form a ring with nitrogen; and

Z is oxygen or sulfur.

33. The catalyst of claim 26 wherein the ligar d is of formula XXII and Ω is selected from:

34. The catalyst of claim 33 wherein the ligand of formula **XXII** is selected from:

35. A composition comprising (a) a group 8-10 transition metal M, (b) one or more Lewis acids, and (c) a binucleating or multinucleating ligand of the formula VI

$$\begin{array}{c|c}
R^4 & G^2 \\
R^3 - N & N = V
\end{array}$$

5

wherein the Lewis acid or acids are bound to one or more heteroatoms which are π -conjugated to the donor atoms bound to the transition metal M

R³ is hydrocarbyl or substituted hydrocarbyl;

R⁴ is H, hydrocarbyl substituted hydrocarbyl, or silyl;

10

15

G² is hydrocarbyl or substituted hydrocarbyl and may comprise a carbocyclic or heterocyclic ring, thereby forming a 5-membered or 6membered heterocyclic ring comprising G2, V, N and N;

V is -CR⁶, N, or PR⁶R⁹, wherein, R⁶ and R⁹ are each independently selected from H, hydrocarbyl, substituted hydrocarbyl, silyl or heteroatom connected hydrocarby and in addition, R⁶ and R⁹ may collectively form a

ring with phosphorus.

36. The composition of claim 35 wherein the transition metal M is Ni(II), and the Lewis acid is a boron or aluminung containing acid.

20

37. The composition of claim 36 wherein the compound of formula VI is selected from:

wherein the Lewis pid or acids are bound to one or more

- heteroatoms which are t-conjugated to the donor atom or atoms bound to the transition metal M;
 - R³ is hydrocarbyl or substituted hydrocarbyl;
 - R⁴ is H, hydrocarbyl, substituted hydrocarbyl, or silyl;
 - R⁵ and R⁶ are independently H, hydrocarbyl, or substituted
- 10 hydrocarbyl;
 - R⁷ is H, hydrocarbyl, substituted hydrocarbyl, or -NO₂.
 - 38. The composition of claim 37 wherein the ligand of formula VI is

$$R^4$$
 N N

wherein R³ is hydrocarby, or substituted hydrocarbyl, and, R⁴ is H, hydrocarbyl, substituted hydrocarbyl, or silyl.

39. The composition of claim 38 wherein the ligand of formula VI is

wherein Ar¹ is 2,6-dimethylphenyl or 2,6-diisopropylphenyl; and, Ar² is phenyl or 1-naphthyl.

5

10

15

- 40. The catalyst of claim 24 wherein the catalyst is attached to a solid support.
- 41. The catalyst of claim 27 wherein the catalyst is attached to a solid support.
- 42. The catalyst of claim 30 wherein the catalyst is attached to a solid support.
- 43. The catalyst of claim 32 wherein the catalyst is attached to a solid support.
- 44. The catalyst of claim 33 wherein the catalyst is attached to a solid support.