Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-2156-01-03/06 Date: 2006-10-13 Page 1 of 80

Recognized by the Federal Communications Commission

Anechoic chamber registration no.: 90462 (FCC) Anechoic chamber registration no.: 3463 (IC)

TCB ID: DE 0001

Accredited by the German Accreditation Council DAR–Registration Number

DAT-P-176/94-D1
Deutscher
Akkreditierungs
Rat

Independent ETSI compliance test house

Accredited Bluetooth® Test Facility (BQTF)

Test report No. : 4-2156-01-03/06 Applicant : Wavecom s. A.

Type : Q24 Plus Wireless CPU

Test Standard : FCC Part 22, 24

RSS-132, -133

FCC ID : OE9Q24PL001 Certification No. IC : 3651C-Q24PL001

The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Cetecom ICT is under license

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 2 of 80

Table of contents

1	GEN	NERAL INFORMATION	3
1	1.1.	ADMINISTRATIVE DATA OF THE TEST FACILITY	3
	1.1.1	Identification of the testing laboratory	3
1	1.2.	Notes	
1	1.3	DETAILS OF APPLICANT	4
1		APPLICATION DETAILS	
1	1.5	Test Item	5
1	1.6	TEST SETUP	6
1	1.7	Test Standards	6
2	STA	TEMENT OF COMPLIANCE	7
	2.1	SUMMARY OF MEASUREMENT RESULTS	7
-	2.1.1		
	2.1.2		
3	MEA	ASUREMENTS AND RESULTS	
3	3.1	PART PCS 1900	8
	3.1.1		
	3.1.2		
	3.1.3		
	3.1.4	Receiver Radiated Emissions	
	3.1.5		
	3.1.6	Block Edge Compliance	
	3.1.7		
3	3.2	PART GSM 850	43
	3.2.1	RF Power Output	
	3.2.2	Frequency Stability	
	3.2.3	Radiated Emissions	49
	3.2.4	Receiver Radiated Emissions	59
	3.2.5	Conducted Spurious Emissions	63
	3.2.6		
	3.2.7		
4	USE	D TESTEQUIPMENT	78

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 3 of 80

1 General information

1.1. Administrative data of the test facility

1.1.1 Identification of the testing laboratory

Company name: Cetecom ICT Services GmbH
Address: Untertürkheimerstr. 6-10

ddress: Untertürkheimerstr. 6-10
D-66117 Saarbruecken

Germany

Laboratory accreditation: DAR-Registration No. DAT-P-176/94-D1

Bluetooth Qualification Test Facility (BQTF)

Federal Communications Commission (FCC)

Identification/Registration No: 90462

Responsible for testing laboratory: M. Berg

Phone: +49 681 598 0 Fax: +49 681 598 9075 email: info@ict.cetecom.de

1.2. Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

Responsible for testing (D. Gillmann)

Responsible for laboratory (M. Berg)

CETECOM

1.3 **Details of Applicant**

RSC-Laboratory

Name : Wavecom s. A.

Address : 3 esplanade du Foncet

City : 92442 Issy-les-Moulineux Cedex

Country : France

Phone : +33 (0) 1 46 29 43 60 Fax : +33 (0) 1 46 29 43 70 Contact : Mr. Eric Michel Phone : +33 (0) 1 46 29 43 60

Fax : + 33 (0) 1 46 29 43 70 : eric.michel@wavecom.fr e-mail

1.4 **Application Details**

Date of receipt of application : 2006-09-20 Date of receipt of test item : 2006-09-25

Date(s) of test : 2006-09-26 to 2006-09-29

Date of report : 2006-10-13

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 5 of 80

1.5 Additional EUT information for IC Canada (appendix 2)

Type of equipment : Wireless CPU (900/1800/850/1900 MHz

Type name : Q24 Plus Wireless CPU

Manufacturer : Wavecom s.A.

Address : 3 esplanade du Fonecet

City : 94442 Issy – les Moulineux Cedex

Country : France

Frequency : 1850.2 – 1909.8 MHz and 824.2 – 848.8 MHz

Type of modulation : 300KGXW (GMSK)

Number of channels : 300 (PCS1900) and 125 (PCS850)

Antenna Type : Rod areal antenna (23 cm)

Power supply (normal) : 3.60V DC

Output power GSM 850 / GMSK : cond.: 31.8 dBm Peak

ERP: 32.9 dBm (Burst); cond: 29.9 dBm Peak

Output power GSM 1900 / GMSK : cond : 29.9 dBm Peak

EIRP: 32.1 dBm (Burst)

Transmitter Spurious (worst case) -41.7 dBm

Receiver Spurious (worst case)

No peaks detected (noise floor)

FCC ID : OE9Q24PL001 Certification No. IC : 3651C-Q24PL001

Open Area Test Site IC No. : 3463

IC Standards : RSS132, Issue 2, RSS133, Issue 3

ATTESTATION:

DECLARATION OF COMPLIANCE:

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Laboratory Manager:

2006-10-13 D. Gillmann

Date Name Signature

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 6 of 80

1.6 Test Setup

Hardware : 304

Software :

Mobile; (cond. measurements) : SN 177886250067 04 Mobile; (rad. measurements) : SN 177886250067 04

The radiated measurements were performed with Standard world wide charger.

1.7 Test Standards

FCC:	CFR Part 22 H	
	CFR Part 24 E	
IC:	RSS 132, Issue 2	
	RSS 133, Issue 3	

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

2 Statement of Compliance

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

2.1 Summary of Measurement Results

2.1.1 PCS 1900

Section in	Test Name	Verdict
this Report		
3.1.1	RF Power Output	pass
3.1.2	Frequency Stability	pass
3.1.3	Radiated Emissions	pass
3.1.4	Receiver Radiated Emissions	pass
3.1.5	Conducted Spurious Emissions	pass
3.1.6	Block Edge Compliance	pass
3.1.7	Occupied Bandwidth	pass

2.1.2 GSM 850

Section in this Report	Test Name	Verdict
3.2.1	RF Power Output	pass
3.2.2	Frequency Stability	pass
3.2.3	Radiated Emissions	pass
3.2.4	Receiver Radiated Emissions	pass
3.2.5	Conducted Spurious Emissions	pass
3.2.6	Block Edge Compliance	pass
3.2.7	Occupied Bandwidth	pass

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 8 of 80

3 Measurements and results

For Part 24/22 we use the substitution method (TIA/EIA 603).

All measurements in this report are done in GSM mode. The device is able to transmit data in GPRS mode also. But because the current measurements are performed in PEAK mode no other results from GPRS mode are possible. The only different is the modulation average power, which is 3 dB higher (by using 2 timeslots in the Up-link). All relevant tests have been repeated in 8-PSK Modulation if EDGE Mode is supported.

3.1 PART PCS 1900

3.1.1 RF Power Output

Reference

FCC:	CFR Part 24.232, 2.1046
IC:	RSS 133, Issue 3, Section 4.3

Summary:

This paragraph contains both average/peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

This measurements were done at 3 frequencies, 1850.2 MHz, 1880.0 MHz and 1909.8 MHz (bottom, middle and top of operational frequency range).

Limits:

Power Step	Nominal Peak Output Power (dBm)	Tolerance (dB)
0	+30	± 2

Test Results: Output Power (conducted)

		Peak	Average
Frequency	Power Class	Output Power	Output Power
(MHz)		(dBm)	(dBm)
1850.2	0	29.8	29.7
1880.0	0	29.9	29.8
1909.8	0	29.8	29.7
Measurement uncertainty		±0.5 dB	

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 9 of 80

EIRP Measurements

Description:

This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

- (a) The measurements was performed with full rf output power and modulation.
- (b) Test was performed at listed 3m test site (listed with FCC, IC).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (1) Repeat for all different test signal frequencies

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 Fax: -9075 RSC-Laboratory Phone: +49 (0) 681 598-0 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 10 of 80

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency : equal to the signal source

Resolution BW : 10 kHz
Video BW : same
Detector Mode : positive
Average : off

Span : 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E(dBuV/m) = Reading(dBuV) + Total Correction Factor(dB/m)

(c) Select the frequency and E-field levels for ERP/EIRP measurements.

(d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):

DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.

(e) Mount the transmitting antenna at 1.5 meter high from the ground plane.

(f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.

- (g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (k) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1

EIRP = P + G1 = P3 + L2 - L1 + A + G1

ERP = EIRP - 2.15 dB

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
- (p) Repeat step (d) to (o) for different test frequency
- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
- (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 11 of 80

Limits:

Power Step	Burst PEAK EIRP (dBm)
0	<33

Test Results: Output Power (radiated)

Untertürkheimer Str. 6-10, 66117 Saarbruecken

Frequency		BURST PEAK EIRP
(MHz)	Power Class	(dBm)
1850.2	0	31.9
1880.0	0	32.1
1909.8	0	31.9
Measurement uncertainty	±3 dB	

Sample Calculation:

Freq	SA	SG	Ant.	Dipol	Cable	EIRP			
	Reading	Setting	gain	gain	loss	Result			
MHz	dΒμV	dBm	dBi	dBd	dB	dBm			
1880.0	143.2	27.0	8.4	0.0	3.3	32.1			

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

Fax: -9075 Fax: -9075

3.1.2 Frequency Stability

Reference

FCC:	CFR Part 24.235, 2.1055
IC:	RSS 133, Issue 3, Section 4.2

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER..

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with Vnom. Vary supply voltage from Vmin to Vmax, in 12 steps re-measuring carrier frequency at each voltage. Pause at Vnom for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.
- 6. Subject the mobile station to overnight soak at +60 C.
- 7. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

Measurement Limit:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block..

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test Results: AFC FREQ ERROR vs. VOLTAGE

Voltage	Frequency Error	Frequency Error	Frequency Error
(V)	(Hz)	(%)	(ppm)
3.3	-38	-0,00000202	-0,0202
3.5	-40	-0,00000213	-0,0213
3.5	-42	-0,00000223	-0,0223
3.7	-38	-0,00000202	-0,0202
3.9	-40	-0,00000213	-0,0213
4.1	-41	-0,00000218	-0,0218
4.3	-44	-0,00000234	-0,0234
4.5	-42	-0,00000223	-0,0223
4.7	-40	-0,00000213	-0,0213
4.9	-38	-0,00000202	-0,0202
5.1	-39	-0,00000207	-0,0207
5.3	-38	-0,00000202	-0,0202

Test Results: AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE	Frequency Error	Frequency Error	Frequency Error
(°C)	(Hz)	(%)	(ppm)
-30	-30	-0,00000160	-0,0160
-20	-35	-0,00000186	-0,0186
-10	-33	-0,00000176	-0,0176
±0.0	-39	-0,00000207	-0,0207
+10	-42	-0,00000223	-0,0223
+20	-43	-0,00000229	-0,0229
+30	-48	-0,00000255	-0,0255
+40	-50	-0,00000266	-0,0266
+50	-49	-0,00000261	-0,0261
+60	-53	-0,00000282	-0,0282

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 14 of 80

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 15 of 80

3.1.3 Radiated Emissions

Reference

FCC:	CFR Part 24.238, 2.1053
IC:	RSS 133, Issue 3, Section 4.4

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded.
- e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Fax: -9075

Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 16 of 80

Measurement Results: Radiated Emissions

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (1850.2 MHz, 1880.0 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next table.

All measurements were done in horizontal and vertical polarization, the plots show the worst case. As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch512	Level	Tx ch661	Level	Tx ch810	Level
	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)
2	3700.4	-	3760	-	3819.6	-
3	5550.6	- 45.6	5640	- 46.8	5729.4	- 41.7
4	7400.8	-	7520	-	7639.2	-
5	9251.0	-	9400	-	9549.0	-
6	11101.2	-	11280	- 43.5	11458.8	-
7	12951.4	-	13160	-	13368.6	-
8	14801.6	-	15040	-	15278.4	-
9	16651.8	-	16920	-	17188.2	-
10	18502.0	-	18800	-	19098.0	-

No peaks found < 20 dB below limit.

Sample calculation:

Freq	SA	SG	Ant.	Dipol	Cable	EIRP		
	Reading	Setting	gain	gain	loss	Result		
MHz	dΒμV	dBm	dBi	dBd	dB	dBm		
1880.0	143.2	27.0	8.4	0.0	3.3	32.1		

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 512 (30 MHz - 4 GHz)

 $f < 1 \; GHz : RBW/VBW : \; 100 \; kHz \qquad \qquad f \geq 1 GHz : RBW \; / \; VBW \; 1 \; MHz$

Carrier suppressed with a rejection filter

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 19 of 80

Channel 512 (4 GHz – 12.5 GHz)

 $f \ge 1GHz : RBW / VBW 1 MHz$

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 512 (12 GHz - 25 GHz) valid for all 3 channels

Date: 26.SEP.2006 13:33:58

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 661 (30 MHz - 4 GHz)

 $f < 1 \ GHz : RBW/VBW : 100 \ kHz$ $f \ge 1 GHz : RBW / VBW \ 1 \ MHz$ Carrier suppressed with a rejection filter

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 661 (4 GHz – 12.5 GHz)

 $f \ge 1GHz : RBW / VBW 1 MHz$

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 810 (30 MHz - 4 GHz)

 $f < 1 \ GHz : RBW/VBW : 100 \ kHz$ $f \ge 1 GHz : RBW / VBW \ 1 \ MHz$ Carrier suppressed with a rejection filter

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 810 (4 GHz – 12.5 GHz)

 $f \ge 1GHz : RBW / VBW 1 MHz$

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 CETEC

Fax: -9075

Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 25 of 80

3.1.4 Receiver Radiated Emissions

Reference

FCC: CFR Part 15.109, 2.1053 IC: RSS 133, Issue 3, Section 4.5

Measurement Results

	SPURIOUS EMISSIONS LEVEL (μV/m)							
	Idle mode							
f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)
-	no	-	-	-	ı	-	-	-
-	spurious	-	-	-	ı	-	-	-
-	or more	-	-	-	-	-	-	-
-	than 20	-	-	-	-	-	-	-
-	dB under	-	-	-	1	-	-	-
-	limit	-	-	-	-	-	-	-
-		-	-	-	1	-	-	-
-		-	-	-	-	-	-	-
Measu	Measurement uncertainty				±3 (iΒ		

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW: 1 \text{ MHz}$

H = Horizontal; V= Vertical

For measurement distance see table below

Limits: § 15.109

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 26 of 80

IDLE MODE (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1 \text{ GHz} : RBW / VBW 1 \text{ MHz}$

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 27 of 80

Idle Mode (4 GHz – 12.0 GHz)

 $f \ge 1GHz : RBW / VBW 1 MHz$

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Idle Mode (12 GHz - 25 GHz)

Date: 26.SEP.2006 13:38:07

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

3.1.5 Conducted Spurious Emissions

Reference

FCC: CFR Part 24.238, 2.10.51
IC: RSS 133, Issue 3, Section 4.4

Measurement Procedure:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.

For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.

2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

USPCS Transmitter Channel Frequency:

512 1850.2 MHz

661 1880.0 MHz

810 1909.8 MHz

Measurement Limit:

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Measurement Results:

Harmonic	Tx ch512	Level	Tx ch661	Level	Tx ch810	Level
	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)
2	3700.4		3760		3819.6	
3	5550.6		5640		5729.4	
4	7400.8	no spurious	7520	no spurious	7639.2	no spurious
5	9251.0	or more than 20 dB under	9400	or more than 20 dB under	9549.0	or more than 20 dB under
6	11101.2	limit	11280	limit	11458.8	limit
7	12951.4		13160		13368.6	1111110
8	14801.6		15040		15278.4	
9	16651.8		16920		17188.2	
10	18502.0		18800		19098.0	

Test report No.: 4-2156-01-03/06

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel: 512

Date: 26.SEP.2006 10:57:57

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 661

Date: 26.SEP.2006 10:56:50

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 32 of 80

Channel 810

Date: 26.SEP.2006 10:55:06

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 33 of 80

3.1.6 Block Edge Compliance

Reference

FCC:	CFR Part 24.238
IC:	RSS 133, Issue 3, Section 6.5

Measurement Limit:

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Block 1 Channel 512

Date: 26.SEP.2006 10:24:15

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 35 of 80

Block 6 Channel 810

Date: 26.SEP.2006 10:24:12

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 36 of 80

3.1.7 Occupied Bandwidth

Reference

FCC:	CFR Part 24.238, 2.1049
IC:	RSS 133, Issue 3, Section 6.5

Occupied Bandwidth Results

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table 8.2 below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Normal mode

Frequency	99% Occupied Bandwidth kHz	-26 dBc Bandwidth kHz
1850.2 MHz	278.846	314.102
1880.0 MHz	277.243	312.500
1909.8 MHz	269.230	312.500

Part 24.238 (a) requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 300.0 kHz, this equates to a resolution bandwidth of at least 3.0 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 37 of 80

Channel 512 99% (-20 dB) Occupied Bandwidth

Date: 26.SEP.2006 09:57:46

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 38 of 80

Channel 512 -26 dBc Bandwidth

Date: 26.SEP.2006 09:58:51

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 39 of 80

Channel 661 99% (-20 dB) Occupied Bandwidth

Date: 26.SEP.2006 10:10:39

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 40 of 80

Channel 661 -26 dBc Bandwidth

Date: 26.SEP.2006 10:13:16

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 41 of 80

Channel 810 99% (-20 dB) Occupied Bandwidth

Date: 26.SEP.2006 10:49:53

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 42 of 80

Channel 810 -26 dBc Bandwidth

Date: 26.SEP.2006 10:50:39

Fax: -9075

Fax: -9075

Test report No.: 4-2156-01-03/06 Date: 2006-10-13 Page 43 of 80

3.2 PART GSM 850

3.2.1 RF Power Output

Reference

FCC: CFR Part 22.9.1.3, 2.1046

IC: RSS 132, Issue 2, Section 4.4 and 6.4

Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

This measurements were done at 3 frequencies, 824.2 MHz, 836.2 MHz and 848.8 MHz (bottom, middle and top of operational frequency range).

Limits:

Power Step	Nominal Peak Output Power (dBm)	Tolerance (dB)
5	+33	± 2

Measurements Results Output Power (conducted)

		Peak	Average
Frequency	Power Class	Output Power	Output Power
(MHz)		(dBm)	(dBm)
824.2	5	31.8	31.7
836.4	5	31.6	31.5
848.8	5	31.7	31.6
Measurement uncertainty		±0.5 dB	

 Untertürkheimer Str. 6-10, 66117 Saarbruecken
 Phone: +49 (0) 681 598-0
 Fax: -9075

 RSC-Laboratory
 Phone: +49 (0) 681 598-0
 Fax: -9075

Test report no.: 4-2156-01-03/06 Date: 2006-10-13 Page 44 of 80

ERP Measurements

Description: This is the test for the maximum radiated power from the phone. Rule Part 22.913 specifies that "Mobile/portable stations are limited to 7 watts ERP.

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

- (a) The measurements was performed with full rf output power and modulation.
- (b) Test was performed at listed 3m test site (listed with FCC, IC).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
- (h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- (1) Repeat for all different test signal frequencies

Measuring the ERP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring ERP) as follows:

Center Frequency : equal to the signal source

Resolution BW : 10 kHz
Video BW : same
Detector Mode : positive
Average : off

Span : 3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(c) Select the frequency and E-field levels for ERP/EIRP measurements.

(d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):

.DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.

- (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
- (f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.
- (g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (k) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.
- (l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1

 $\t 155\t 4_PROJEKTE\t 06\t 2156_1\t Task 3(SRD)\t 4-2156_01-03_06.doc$

Phone: +49 (0) 681 598-0 Fax: -9075 **RSC-Laboratory** Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-2156-01-03/06 Page 45 of 80 Date: 2006-10-13

EIRP = P + G1 = P3 + L2 - L1 + A + G1

ERP = EIRP - 2.15 dB

Total Correction factor in EMI Receiver #2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction ERP: ERP after correction

- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)
- (p) Repeat step (d) to (o) for different test frequency
- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
- (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Po	wer Step	Burst Peak
		(dBm)
0		<33

Measurement Results Output Power (Radiated)

		BURST Peak			
Frequency	Power Class	(dBm)			
(MHz)					
		ERP			
824.2	5	32.8			
836.4	5	32.8			
848.8	5	32.9			
Measurement uncertainty: 1.5%					

Sample calculation:

~							
Freg	SA	SG	Ant.	Dipol	Cable	ERP	Substitution Antenna
	Reading	Setting	gain	gain	loss		
ИHz	dΒμV	dBm	dBi	dBd	dB	dBm	
848.8	156.1		45.1	-10.50	1.67	32.9	UHAP Schwarzbeck S/N 460

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

^{*}ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi

Untertürkheimer Str. 6-10, 66117 Saarbruecken Phone: +49 (0) 681 598-0 RSC-Laboratory Phone: +49 (0) 681 598-0

Fax: -9075

Fax: -9075

Test report no.: 4-2156-01-03/06 Date: 2006-10-13 Page 46 of 80

3.2.2 Frequency Stability

Reference

FCC: CFR Part 22.355, 2.1055

IC: RSS 132, Issue 2, Section 4.3 and 6.3

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER..

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661 (centre channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal 3.7 Volts. Vary supply voltage from minimum 3.3 Volts to maximum 4.4 Volts, in 13 steps re-measuring carrier frequency at each voltage. Pause at 3.7 V ac Volts for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.
- 6. Subject the mobile station to overnight soak at +60 C.
- 7. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

Measurement Limit:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 22.355, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.. This transceiver is specified to operate with an input voltage of between 3.3 V dc and 4.4 V dc, with a nominal voltage of 3.7 V dc.

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075 CETECOM

Test report no.: 4-2156-01-03/06 Date: 2006-10-13 Page 47 of 80

Measurement Results: AFC FREQ ERROR vs. VOLTAGE

Voltage	Frequency Error	Frequency Error	Frequency Error
(V)	(Hz)	(%)	(ppm)
3.3	20	0,00000235	0,0235
3.5	22	0,00000259	0,0259
3.7	21	0,00000247	0,0247
3.9	25	0,00000294	0,0294
4.1	24	0,00000282	0,0282
4.3	26	0,0000306	0,0306
4.5	25	0,00000294	0,0294
4.7	28	0,00000329	0,0329
4.9	30	0,0000353	0,0353
5.1	31	0,0000365	0,0365
5.3	32	0,00000235	0,0235

Measurement Results: AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE	Frequency Error	Frequency Error	Frequency Error
(°C)	(Hz)	(%)	(ppm)
-30	33	0,00000388	0,0388
-20	36	0,00000424	0,0424
-10	32	0,00000376	0,0376
±0.0	30	0,00000353	0,0353
+10	35	0,00000412	0,0412
+20	30	0,00000353	0,0353
+30	26	0,00000306	0,0306
+40	22	0,00000259	0,0259
+50	20	0,00000235	0,0235
+60	19	0,00000224	0,0224

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

 Untertürkheimer Str. 6-10, 66117 Saarbruecken
 Phone: +49 (0) 681 598-0
 Fax: -9075

 RSC-Laboratory
 Phone: +49 (0) 681 598-0
 Fax: -9075

Test report no.: 4-2156-01-03/06 Date: 2006-10-13 Page 49 of 80

3.2.3 Radiated Emissions

Reference

FCC: CFR Part 22.917, 2.1053

IC: RSS 132, Issue 2, Section 4.5 and 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below: e)Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 22.917 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Fax: -9075 Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-2156-01-03/06 Date: 2006-10-13 Page 50 of 80

Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (824.2 MHz, 836.4 MHz and 848.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

All measurements were done in horizontal and vertical polarization, the plots shows the worst case. As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch128	Level	Tx ch189	Level	Tx ch251	Level
	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)
2	1648.4		1672.8		1697.6	
3	2472.6		2509.2		2546.4	
4	3296.8	no spurious or more than 20 dB under limit	3345.6	no spurious or more than 20 dB under limit	3395.2	no spurious or more than 20 dB under limit
5	4121.0		4182.0		4244.0	
6	4945.2		5018.4		5092.8	
7	5769.4		5854.8		5941.6	
8	6593.6		6691.2		6790.4	
9	7417.8		7527.6		7639.2	
10	8242.0	1	8364.0	1	8488.0	

Sample calculation:

Freg	SA	SG	Ant.	Dipol	Cable	ERP	Substitution Antenna
	Reading	Setting	gain	gain	loss		
MHz	dΒμV	dBm	dBi	dBd	dB	dBm	
848.8	156.1		45.1	-10.50	1.67	32.9	UHAP Schwarzbeck S/N 460

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

^{*}ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Traffic mode up to 30 MHz (Valid for all 3 channels)

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 128 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter $f \ge 1GHz : RBW / VBW 1 MHz$

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 128 (4 GHz – 12.5 GHz)

 $f \ge 1GHz : RBW / VBW 1 MHz$

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 128 (12 GHz - 25 GHz) valid for all 3 channels

Date: 26.SEP.2006 13:33:58

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 189 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1 \text{ GHz} : RBW / VBW 1 \text{ MHz}$

Carrier suppressed with a rejection filter

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 189 (4 GHz – 12.5 GHz)

 $f \ge 1GHz : RBW / VBW 1 MHz$

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 251 (30 MHz - 4 GHz)

f < 1 GHz : RBW/VBW : 100 kHz $f \ge 1 \text{GHz} : \text{RBW / VBW 1 MHz}$

Carrier suppressed with a rejection filter

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 251 (4 GHz – 12.5 GHz)

 $f \ge 1GHz : RBW / VBW 1 MHz$

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

3.2.4 Receiver Radiated Emissions

Reference

FCC: CFR Part 15.109, 2.1053

IC: RSS 132, Issue 2, Section 4.6 and 6.6

		5	SPURIOUS I	EMISSIONS I	LEVEL (µV/m)		
	Idle Mode							
f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)	f (MHz)	Detector	Level (µV/m)
-		-	-	-	-	ı	-	1
-	no	-	-	-	-	-	-	-
-	spurious	-	-	-	-	1	-	-
-	or more	-	-	-	=	ı	-	ı
-	than	-	-	-	=	ı	-	ı
-	20 dB	-	-	-	=	-	-	ı
-	under	-	-	-	-	-	-	-
-	limit	-	-	-	-	-	-	-
-		-	-	-	-	-	-	-
-		-	-	-	-	ı	-	-
-		_	-	-	=	-	-	ı
Meas	urement uncer	tainty			±3 c	lB		

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1 \text{ GHz} : RBW/VBW: 1 \text{ MHz}$

H = Horizontal; V= Vertical

Measurement distance see table

Limits: § 15.109

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
above 960	500	3

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Idle-Mode (30 MHZ - 4 GHZ)

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1 \text{GHz} : \text{RBW / VBW 1 MHz}$

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

IDLE-MODE (4 GHz – 12.0 GHz)

f≥1GHz:RBW/VBW1MHz

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

IDLE-MODE (12 GHz - 25 GHz)

Date: 26.SEP.2006 13:37:10

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

3.2.5 Conducted Spurious Emissions

Reference

FCC: CFR Part 22.917, 1.1051

IC: RSS 132, Issue 2, Section 4.5 and 6.5

Measurement Procedure

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.
- 2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

USPCS Transmitter Channel Frequency

128 824.2 MHz

189 836.4 MHz

251 848.8 MHz

Measurement Limit

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Measurement Results

Harmonic	Тх сн128	Level	Тх сн189	Level	Тх сн251	Level
	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)	Freq. (MHz)	(dBm)
2	1648.4		1672.8		1697.6	
3	2472.6	no spurious or more than 20 dB under limit	2509.2		2546.4	
4	3296.8		3345.6	no spurious or more than 20 dB under limit	3395.2	no spurious or more than 20 dB under limit
5	4121.0		4182.0		4244.0	
6	4945.2		5018.4		5092.8	
7	5769.4		5854.8		5941.6	
8	6593.6		6691.2		6790.4	
9	7417.8		7527.6		7639.2	
10	8242.0		8364.0		8488.0	

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel: 128

Date: 26.SEP.2006 13:27:49

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 189

Date: 26.SEP.2006 13:28:52

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

CETECOMTM

Channel 251

Date: 26.SEP.2006 13:29:40

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 251 (12 GHz - 25 GHz) valid for all 3 channels

Date: 26.SEP.2006 13:34:43

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-2156-01-03/06 Date: 2006-10-13 Page 68 of 80

3.2.6 Block Edge Compliance

Reference

FCC: CFR Part 22.917

IC: RSS 132, Issue 2, Section 6.5

Measurement Limit:

Sec. 22.917(b) Emission Limits.

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +33 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Block 1 Channel 128

Date: 26.SEP.2006 11:16:16

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Block 4 Channel 251

Date: 26.SEP.2006 11:14:59

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-2156-01-03/06 Page 71 of 80

Occupied Bandwidth 3.2.7

Reference

FCC:	CFR Part 22.917, 2.1049
IC:	RSS 132, Issue 2, Section 4.2

Occupied Bandwidth Results

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Normal mode

Frequency	99% Occupied Bandwidth	-26 dBc Bandwidth		
	(kHz)	(kHz)		
824.2 MHz	276.052	298.016		
836.4 MHz	272.044	296.032		
848.8 MHz	254.028	312.044		

Part 22 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 300 kHz, this equates to a resolution bandwidth of at least 3 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 128 99% (-20 dB) Occupied Bandwidth

Date: 26.SEP.2006 11:05:37

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 128 -26 dBc Bandwidth

Date: 26.SEP.2006 11:06:41

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 189 99% (-20 dB) Occupied Bandwidth

Date: 26.SEP.2006 11:03:24

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 189 -26 dBc Bandwidth

Date: 26.SEP.2006 11:02:18

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 251 99% (-20 dB) Occupied Bandwidth

Date: 26.SEP.2006 10:59:17

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Channel 251 -26 dBc Bandwidth

Date: 26.SEP.2006 11:00:15

Untertürkheimer Str. 6-10, 66117 Saarbruecken RSC-Laboratory

Phone: +49 (0) 681 598-0 Phone: +49 (0) 681 598-0 Fax: -9075 Fax: -9075

Test report no.: 4-2156-01-03/06 Date: 2006-10-13 Page 78 of 80

4 Used Test Equipment

No.	Instrument/ Ancillary	Manufacturer	Туре	Serial-No.	Internal ID No.		
	Anechoic chamber						
1.	Anechoic chamber	MWB		87400/02	300000996		
2.	Bi conical antenna	EMCO	3104C	9909-4868	300002590		
3.	Log. Per. antenna	EMCO	3146	2130	300001603		
4.	Double ridge horn	EMCO	3115P	3088	300001032		
5.	Active loop antenna	EMCO	6502	2210	300001015		
6.	Loop antenna	Rohde & Schwarz	HFH2-Z2	891847-35	300001169		
7.	Spectrum analyzer	Hewlett-Packard	8566B	2747A05306	3000011000		
8.	Spectrum analyzer	Hewlett-Packard	85662A	2816A16541	300002297		
0.	display	Trewiett Tuekara		2010/1103 11			
9.	Quasi peak adapter	Hewlett-Packard	85650A	2811A01131	300000999		
10.	RF pre selector	Hewlett-Packard	85685A	2833A00768	400000081		
11.	Workstation	Hewlett-Packard	Vectra VL		300001688		
12.	Software	Hewlett-Packard	EMI Halle C		300000983		
13.	Power attenuator	Byrd	8325	1530	300001595		
14.	Band reject filter	Wainwright	WRCG1855/1910		300003350		
15.	Band reject filter	Wainwright	WRCG2400/2483	11	300003351		
16.	Power supply unit	Hewlett-Packard	6032A	2818A03450	300001040		
17.	Universal communication tester	Rohde & Schwarz	CMU 200	103992	300003231		
	T 1 (1 G)	, p. p. 1					
	Laboratories Short		1		1		
18.	Amplifier	Parzich GMBH	js42-00502650- 28-5a	928979	300003143		
19.	Analog-/Digital multi- meter		DF-971A	438309, 438320, 438361	400000082		
20.	Audio Analyzer 2Hz - 300 kHz	Rohde & Schwarz	UPD	841074/009	300001236		
21.	Bit error analyzer	Hewlett-Packard	37732A	3606U03073	300001446		
22.	Communication tester	Rohde & Schwarz	CMD55	831050/082	300003018		
23.	Communication test Set	Schlumberger	4040	1725117	300001387		
24.	Directional coupler	Amplifier Research	DC 3010	12709	300001226		
25.	Directional coupler	EMV	DC3010	12306	300001429		
26.	Field strength meter (Near field probe)	EMCO	7405	9202-2150	300001203		
27.	Frequency Counter	Hewlett-Packard	5386A	2704A01243	300000998		
28.	Climatic chamber	Heraeus Voetsch	VT 4002	5,8566E+13	300003019		
29.	Climatic chamber	Heraeus Voetsch	VT 4002	521/83761	300002326		
30.	Power sensor	Hewlett-Packard	8484A	2237A10156	300001140		
31.	Power sensor	Hewlett-Packard	8482A	2237A06016	300001139		
32.	Power sensor	Hewlett-Packard	8484A	2237A10494	300001666		
33.	Power sensor	Hewlett-Packard	8482A	1925A04674	300001667		
34.	Power sensor	Hewlett-Packard	8485A	2238A00849	300001668		
35.	Power sensor	Hewlett-Packard	8482A	2237A06009	300001267		
36.	Power sensor (attenuator)	Hewlett-Packard	8482B	2703A02586	300001492		
37.	Local Oscillator	Hewlett-Packard	70900A	2842A02221	300002019		
38.	Measurement Receiver	Rohde & Schwarz	ESH 2	871921/095	300002505		
39.	Multi-meter (Hand)	Siemens	Multizet		300001102		
40.	Multi-meter (Hand)	Goerz	6EP		300001102		
41.	Multi-meter (Hand)	MetraWatt	MA4S		300001740		
42.	Multi-meter digital	Rohde & Schwarz	UDS 5	872677/042	300001740		
43.	Power supply	Hewlett-Packard	6038A	3122A11097	300001323		
44.	Power supply	Hewlett-Packard	6038A	2848A07027	300001204		
45.	Power supply	Zentro	2X30V	2007	300001174		
46.	Power supply	Hewlett-Packard	6038A	2752A04866	300001103		
47.	Power supply	Heiden	1108-32	1701	300001101		
48.	Power supply	Heiden	1108-32	1802	300001392		
49.	Power supply	Heiden	1108-32	3202	300001187		<u> </u>

Phone: +49 (0) 681 598-0 Fax: -9075 **RSC-Laboratory** Phone: +49 (0) 681 598-0 Fax: -9075

NT.	Instrument/	M 64	T	C I N.	Internal ID	
No.	Ancillary	Manufacturer	Type	Serial-No.	No.	
50.	Power supply	Zentro	LA 2x30/5GB2	2012	300001275	
51.	Power supply	Systron	M5P 40/15A	828233	300001291	
52.	V-network AC	Rohde & Schwarz	ESH3-Z5	828576/020	300001210	
53.	Oscilloscope	Hewlett-Packard	54502A	2934A01917	300001374	
54. 55.	Power meter Power meter	Hewlett-Packard Hewlett-Packard	436A 436A	2101A12378 2031U01461	300001136 300001105	
56.	Precision – frequency –	Hewlett-Packard	70310A	2736A00707	300001103	
50.	reference	Ticwicti-i ackaiu	70310A	2730A00707	300002018	
57.	Radio communication analyzer	Rohde & Schwarz	CMTA 54	894043/010	300001175	
58.	Radio communication analyzer	Rohde & Schwarz	CMTA 84	894199/012	300001176	
59.	Radio communication analyzer	Rohde & Schwarz	CMTA 84	894581/013	300001355	
60.	Signal generator	Hewlett-Packard	8111A	2215G00867	300001117	
61.	Signal generator	Rohde & Schwarz	SMPC	882416/019	300001162	
62.	Function signal	Rohde & Schwarz	AFGU	862490/032	300001201	
	generator					
63.	Function signal generator	Rohde & Schwarz	APN-04	894326/014	300001184	
64.	Signal generator 0.01- 1280 MHz	Hewlett-Packard	8662A	2224A01012	300001110	
65.	Signal generator 0.01- 1280 MHz	Hewlett-Packard	8662A	2232A01038	300001264	
66.	Signal generator 0.1- 2000 MHz	Rohde & Schwarz	SMH	864219/033	300001410	
67.	Signal generator 0.1- 2000 MHz	Rohde & Schwarz	SMH	883909/010	300001183	
68.	Signal generator 0.1- 2060 MHz	Hewlett-Packard	8657A	2838U00736	300001009	
69.	Signal generator 0.1- 4200 MHz	Hewlett-Packard	8665A	2833A00109	300001177	
70.	Signal generator 0.1- 4200 MHz	Hewlett-Packard	8665A	2833A00112	300001373	
71.	Signal generator 0.1- 4320 MHz	Rohde & Schwarz	SMHU	2790575	300001404	
72.	Signal generator 0.1- 4320 MHz	Rohde & Schwarz	SMHU	894055/005	300001190	
73.	Signal generator DC- 600 KHz	Hewlett-Packard	8904A	2822A01213	300001157	
74.	Signal generator DC- 600 KHz	Hewlett-Packard	8904A	2822A01214	300001158	
75.	Signal generator DC- 600 KHz	Hewlett-Packard	8904A	2822A01203	300001367	
76.	Function signal generator	Rohde & Schwarz	APN 04	2273637	300001395	
77.	Signal generator NF	Rohde & Schwarz	SPN	880139/068	300001142	
78.	Spectrum Analyzer	Rohde & Schwarz	FSiQ26	835111/0004	300002678	
79.	Spectrum analyzer	Hewlett-Packard	71210A (70000)	2731A02347	300000321	
80.	Spectrum analyzer	Rohde & Schwarz	FSMS	826067/004	300001223	
81.	Spectrum analyzer 2	Hewlett-Packard	85660B	3138A07614	300001207	
82.	Spectrum analyzer 3	Hewlett-Packard	8566A	1925A00257	300001098	
83.	Spectrum analyzer Display	Hewlett-Packard	70206A	2840A01553	300002017	
84.	Spectrum analyzer Display 2	Hewlett-Packard	85662A	3144A20627	300001208	
85.	Spectrum analyzer Display 3	Hewlett-Packard	85662	1925A00860	300002306	
86.	Isolating transformer	Erfi	913501		300001205	
87.	Isolating transformer	Erfi	MPL	91350	300001155	
88.	Isolating transformer	Erfi	MPL	91350	300001151	
89.	Isolating transformer	Erfi	6210		300001179	
90.	Isolating transformer	Grundig	RT5A	8781	300001277	
91.	Isolating transformer	Grundig	RT5A	9242	300001263	
92.	Amplifier	Hewlett-Packard	8447D	2648A04780	300001360	
93.	Amplifier	EMV	10W1000	9549	300001377	

Phone: +49 (0) 681 598-0 Fax: -9075 RSC-Laboratory Phone: +49 (0) 681 598-0 Fax: -9075

Test report no.: 4-2156-01-03/06 Page 80 of 80 Date: 2006-10-13

No.	Instrument/ Ancillary	Manufacturer	Туре	Serial-No.	Internal ID No.			
94.	Amplifier	EMV	25W1000	12948	300001440			
95.	Amplifier 5W	Amplifier Research	5W1000	9725	300001592			
	•							
	Laboratory Bluetooth							
96.	Power splitter	Inmet Corp.	1499382		300002841			
97.	Power sensor	Rohde & Schwarz	NRV-Z1	833894/011	300002681-			
					0010			
98.	Signal generator	Rohde & Schwarz	SMIQ03	836206/0092	300002680			
99.	Bluetooth RF-test system	Rohde & Schwarz	TS8960		300002681- 0000			
100.	Signal generator	Rohde & Schwarz	SMIQ03	835541/055	300002681-			
100.	Signal generator	Ronde & Schwarz	3111Q03	8333417033	0001			
101.	Signal generator	Rohde & Schwarz	SMIQ03	835541/056	300002681-			
					0002			
102.	Signal generator	Rohde & Schwarz	SMP02	835133/011	300002681-			
					0003			
103.	Power meter	Rohde & Schwarz	NRVD	835430/044	300002681-			
104	0 1	D 1 1 0 C 1	EGIO	025540/010	0004			
104.	Spectrum - analyzer	Rohde & Schwarz	FSIQ	835540/018	300002681- 0005			
105.	Switch unit	Rohde & Schwarz	SSCU		300002681-			
103.	Switch unit	Ronde & Schwarz	3300		0006			
106.	Attenuator-step	Rohde & Schwarz	RSP	834500/010	300002681-			
	•				0007			
107.	Frequency normal	Rohde & Schwarz	Rubidium		300002681-			
					0009			
108.	Power sensor	Rohde & Schwarz	NRV-Z1	833894/012	300002681-			
					0013			
	Conducted emission	n on AC line Dee	···· 006					
109.	Measurement receiver	Rohde & Schwarz	ESH3	881515/002	300002490		I	
110.	Measurement receiver	Rohde & Schwarz	ESVP	881487/021	300002490			
111.	Measurement receiver	Rohde & Schwarz	ESH3	890174/002	300002491			
112.	V-network AC	Rohde & Schwarz	ESH3 Z5	892475/017	300002209			
113.	V-network AC	Rohde & Schwarz	ESH3-Z5	892239/020	300002506			
114.	Software	Rohde & Schwarz	ESK-1					
115.	DC power supply	Hewlett-Packard	6032A	2743A02600	300001498			
116.	V-network AC	Rohde & Schwarz	ESH3-Z5	861189/014	300001458			
117.	V-network DC	Rohde & Schwarz	ESH3-Z6	893689/012	300001504			
118.	V-network DC	Rohde & Schwarz	ESH3-Z6	861406/005	300001518			
119.					1			
120. 121.					+			
121.					1			
123.					1			
124.					1			
125.								
126.								
127.								
128.								
129.					1			
130.					1			
131. 132.					1			
132.					+			
134.					1		 	
154.	1	1	l .		1			