既約元

環 R において、単元でない $a \in R$ $\{0\}$ が既約であるとは a = bc となる $b, c \in R$ が存在 すれば b または c が単元となるときをいう。

a = bc となる $b, c \in R$ がともに単元でないのであれば可約という。

 $f \in \mathbb{Z}[x]$ を次のように定める。f が $\mathbb{Z}[x]$ において既約か否かを判定せよ。

- 1. 2x 4
- 2. -3x + 1
- 3. $x^2 + 2x + 10$
- 4. $x^2 + 3x + 6$
- 5. $x^2 + 6x + 9$
- 6. $x^2 + 9$
- 7. $x^3 + 8$
- 8. $x^4 + 12$
- 9. $x^4 + 64$

.....

- 1. 2x-4=2(x-2) であり、 $2\in\mathbb{Z}[x]$ も $x-2\in\mathbb{Z}[x]$ も単元ではないので可約である。
- 2. -3x+1 は次数 1 の多項式である。もし可約であれば、 $f=ag~(a,g\in\mathbb{Z}[x])$ で $\deg a=0,\deg g=1$ と分けられる。
 - -3 と 1 の最大公約数は 1 であるので、a=1 である。1 は単元であるので、-3x+1 は既約である。
- 3. $x^2+2x+10$ が可約であるとする。つまり、f=gh となる単元でない $g,h\in\mathbb{Z}[x]$ が存在するとする。

 $(\deg g, \deg h) = (0, 2), (2, 0)$ の場合と $(\deg g, \deg h) = (1, 1)$ の場合を考える。

f の係数は 1,2,10 であるので、最大公約数は 1 であり単元となるので、 $(\deg g,\deg h)=(0,2),(2,0)$ となる分解はできない。

 $(\deg g, \deg h) = (1,1)$ の場合を考える。

アイゼンシュタインの定理より、2,10 を割り切る素数 2 は x^2 の係数を割り切れず、 2^2 も定数 10 を割り切れない。よって、 $\mathbb{Q}[x]$ において f は既約であり、 $\mathbb{Z}[x]$ ($\mathbb{Q}[x]$) においても f は既約である。

4. $x^2 + 3x + 6$

係数 1,3,6 の最大公約数は 1 である。 よって、 $f=ag\;(a\in\mathbb{Z},g\in\mathbb{Z}[x])$ という分解はできない。

3,6 を割り切る素数 3 は x^2 の係数を割り切れず、 3^2 も定数 6 を割り切れない。よって、アイゼンシュタインの定理より、 $\mathbb{Q}[x]$ において f は既約であり、 $\mathbb{Z}[x](\subset \mathbb{Q}[x])$ においても f は既約である。

- 5. $x^2 + 6x + 9 = (x+3)^2$ より可約。
- 6. $x^2 + 9$

係数 1,9 を割り切る素数はないので、 $f=ag~(a\in\mathbb{Z},g\in\mathbb{Z}[x])$ という分解はできない。

 $x^2+9=(x+a)(x+b)\;(a,b\in\mathbb{Z})$ と割り切れるとする。 $(x+a)(x+b)=x^2+(a+b)x+ab\;$ であるので、 $a,b\in\mathbb{Z}$ は $a+b=0,\;ab=9$ を

満たす。a+b=0 より b=-a であるので、ab=9 より $-a^2=9$ となるが、これを満たす整数 a は存在しない。

よって、 $x^2+9=(x+a)(x+b)$ $(a,b\in\mathbb{Z})$ と分けられない。 これにより既約であることがわかる。

- 7. $x^3 + 8 = (x+2)(x^2 2x + 4)$ より可約。
- 8. $f(x) = x^4 + 12$ とする。 x^4 の係数が 1 であるので整数と多項式の積に分けられない。 そこで、 $f(x+3) = (x+3)^4 + 12$ について既約かどうかを考える。

$$f(x+3) = x^4 + 12x^3 + 54x^2 + 108x + 93 \tag{1}$$

最高次数の項以外の係数は 12,54,108,93 でありこれらの最大公約数は 3 である。 x^4 の係数は 3 で割り切れず 93 は 3^2 で割り切れない。このため、アイゼンシュタインの既約判定法により f(x+3) は既約である。よって、平行移動する前の多項式 f(x) も既約である。

9. $x^4 + 64 = (x^2 + 4x + 8)(x^2 - 4x + 8)$ より可約。