

Motivation

- Personal interest in finance
- Technical analysis of stocks and its ability to beat the market
- Are financial results being priced in

Research Question

- Importance of the question
 - Assess whether funds are allocated efficiently
 - Technical analysts and analysis based on past behavior
 - Determine which trading strategies are lucrative

- Uniqueness
 - Panel data with 2015-2019 stock prices
 - Considering impact of financial metrics on returns

Data

- Weak form
 - Time series of S&P 500 daily close prices
 - From 01/01/2015 to 30/12/2019
 - > 1,257 observations

- Semi-strong form
 - Panel data of top 10 S&P 500 firms daily close prices and standardized transaction volume
 - ➤ CBOE Volatility Indicator VIX
 - > 10-year treasury rate as of 24/02/2020
 - From 01/01/2015 to 30/12/2019

Data

- Financial Metrics
 - Panel data of EPS, ROE, current ratio, and debt to equity ratio observed quarterly for same firms as semi-strong form
 - Time series of CBOE Volatility Index, VIX to act as control
 - From 01/01/2015 to 31/12/2019
 - > 20 observations for each firm

Literature Review

- Khan Masood Ahmad, 2006. Testing Weak Form Efficiency for Indian Stock Markets
 - Explores weak form in Indian stock market
 - Conducts non-parametric test and unit root tests to assess weak form efficiency
 - Provides detailed methodology and rigorous interpretation of results
 - Concludes Indian stock market does not resemble a random walk

Literature Review

- Malkiel, Burton G, 1989. Is the Stock Market Efficient?
 - Provides an excellent description of market functions and EMH
 - Debates empirical analysis conducted previously and laying the foundation of some arguments presented
 - Expounds historical findings exploring the weak form, providing arguments which reason with and against the evidence

Literature Review

- Wooldridge, Jeffrey M, 2016. Introductory Econometrics: A Modern Approach
 - ECO375 textbook
 - Easy to understand mathematical reasoning behind ADF test and conducting serial correlation tests
 - Focusses on autoregressive models of order one with added controls
 - Introduces testing random walk hypothesis

- Weak form
 - Non-parametric test (runs test)
 - Unit root tests (ADF and PP tests)
 - ADF test conducted using two models

- Semi-strong form
 - Regression of stock excess return on market's excess return
 - > Truncated regression of standardized transaction volume on VIX
 - Regression of abnormal returns on fitted values from truncated regression

• First model includes a drift term (intercept) to show the data evolves around a trend instead of a constant and can be shown $E(y_t) = t\beta_0 + y_0$

$$\Delta y_{t} = \beta_{0} + \beta_{1} y_{t-1} + \sum_{i=1}^{p} \gamma_{i} \Delta y_{t-i} + u_{t}$$

$$\Delta y_{t} = \beta_{0} + \beta_{1} y_{t-1} + \beta_{2} t + \sum_{i=1}^{p} \gamma_{i} \Delta y_{t-i} + u_{t}$$

- Second model includes a drift term and a time term to control for the rising trend observed in the graph
- Optimal lag p chosen by minimizing Akaike information criterion (AIC)
- For the market to be weak-form efficient, must fail to reject the null hypothesis that β_1 =0 at the 5% significance level (unit root exists) and implies data is stochastic (is a function of time)

- Calculate stock's beta
 - A stock's beta is defined as $\beta_i = \frac{cov(R_i, R_M)}{VAR(R_M)}$
 - Easily obtained from regression of stock's excess return on market's excess return
 - Regression equation is $R_{it} = \alpha_{it} + \beta_i R_{mt} + u_{it}$ and coefficient β_i measures a stock's beta

- Calculate stock's abnormal return
 - Use CAPM to calculate stock's expected return
 - Abnormal return calculated from $r_{a_{it}} = r_{it} [r_{f_t} + \beta_i (r_{m_t} r_{f_t})]$ where β_i is same estimate obtained from previous regression

- Truncated regression
 - Want to estimate $r_{a_{it}} = \beta_0 + \beta_1 \widetilde{V_{it}} + u_t$ but there is a restriction on values that $\widetilde{V_{it}}$ can take and violates random sampling assumption of OLS
 - Use VIX as an IV since unrelated to stock returns (p-values all greater than 0.05) but related to transaction volume (p-values all less than 0.05)
 - Regress observed standardized transaction volume on 30-year bond yields so the regression equation is $\widetilde{V}_{it} = \beta_0 + \beta_1 VIX + u_t$
 - $\widetilde{V_{it}}$ is defined to be $\widetilde{V_{it}} \left\{ \widetilde{V_{it}}^* if \ \widetilde{V_{it}}^* > x_i \text{ where } x_i \text{ is chosen to minimize the random noise in standardized transaction volume over time and } \widetilde{V_{it}}^* \text{ is } -otherwise} \right\}$

the observed standardized trading volume

- The figure shows AAPL's standardized trading volume over time
- x_i is chosen such that the random noise is eliminated whilst including spikes in standardized trading volume
- At a minimum, $x_i > 0$ since new information being released into the market is represented by trading volume being greater than the average trading volume

- Assessing semi-strong form
 - Regress abnormal returns onto fitted values from truncated regression so the regression equation is $r_{ait} = \beta_0 + \beta_1 \widetilde{V}_{it} + u_t$
 - For a given stock to be semi-strong efficient, $\beta_1 < 0$ and statistically significant at the 5% significance level
- Impact of financial metrics on abnormal returns
 - Abnormal returns same as the ones calculated previously
 - Regression equation is $r_{a_{it}} = \pi_{0i} + \pi_{1i}EPS + \pi_{2i}ROE + \pi_{3i}Curr + \pi_{4i}DeEq + \pi_{5i}VIX + \tau$

Results – Runs Test

- Weak form
 - Market is weak form efficient in both models according to unit root tests
 - Runs test results implies market is weak form inefficient
 - Runs test conducted during a bull market so it is unlikely to see multiple runs

N	1257
N0	649
N1	608
R	14
E(R)	628.8313445
VAR	313.3315014
STD	17.70117232
Z	-34.7339336
p	1.2116E-264

Results – ADF Test

Augmented Dick	ey-Fuller test	for unit ro	ot	Number	of obs =	1255
	Test Statistic	1% Critic Value	al	has t-dis 5% Criti Valu		Critical Value
Z(t)	-0.191	-2.3	29	-1.	646	-1.282
p-value for Z(t) = 0.4244					
D. Market_Close_N	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
Market_Close_N L1. LD.	0003101 0217703	.0016256 .0282665	-0.19 -0.77		0034993 0772253	.0028791 .0336847
_cons	1.737561	4.025912	0.43	0.666	-6.160717	9.635839

Augmented Dick	key-Fuller te	st for unit	root	Numb	er of obs	= 1255
			— Inte	rpolated	Dickey-Fulle	r ——
	Test Statistic	1% Crit			tical 10 lue	0% Critical Value
Z(t)	-3.140	-3	.960	-	3.410	-3.120
MacKinnon appr	roximate p-va	lue for Z(t)	= 0.0970	0		
D.Market_C~N	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
Market_Clo~N						
L1.	0162987	.0051903	-3.14	0.002	0264813	006116
LD.	0144702	.0282496	-0.51	0.609	069892	.0409517
_trend	.0165287	.0050978	3.24	0.001	.0065275	.0265298
_cons	30.5337	9.744913	3.13	0.002	11.41553	49.65188

Results – PP Test

Phillips-Perr	on test for u	nit root			er of obs = /-West lags =	
			— Inte	rpolated [Dickey-Fuller	
	Test	1% Crit	ical	5% Crit	tical 10	% Critical
	Statistic	Val	lue	Val	lue	Value
Z(rho)	-0.310	-20	.700	-14	1.100	-11.300
Z(t)	-0.153	-3	.430	-2	2.860	-2.570
MacKinnon app Close		Std. Err.		P> t	[95% Conf.	Interval]
Close L1.	.9997174	.0016238	615.66	0.000	.9965317	1.002903

Phillips-Perro	on test for u	nit root			er of obs : /-West lags :	
			— Inte	rpolated (Dickey-Fulle	r ——
	Test	1% Crit	ical	5% Crit	tical 10	0% Critical
	Statistic	Val	ue.	Va	lue	Value
Z(rho)	-21.026	-29	.500	-2:	1.800	-18.300
Z(t)	-3.264	-3	.960	-3	3.410	-3.120
MacKinnon app	roximate p-va	lue for Z(t)	= 0.072	4		
Close	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
Close						
L1.	.9830296	.0051642	190.36	0.000	.9728982	.993161
_trend	.0172653	.0050742	3.40	0.001	.0073104	.0272201
_cons	31.67626	9.699497	3.27	0.001	12.64721	50.7053

- Semi-strong form
 - Only firms showing some degree of semi-strong efficiency are JPM and PG
 - Results can be justified by weakness of CAPM in predicting returns
 - > Stock buybacks and bull market are another reason for observed results

	(1) AbnormalRe~N
PS_N	0.116
	(2.30)
OE_N	-0.00790
	(-1.07)
urrentRat~N	0.563
	(1.45)
ebttoEqui~N	0.0578
	(0.20)
IX_N	0.00536
	(0.58)
cons	-0.303
	(-0.56)
	1256

t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001

AAPL

	(1) AbnormalRe~N
EPS_N	0.115 (1.82)
ROE_N	-0.0291 (-1.83)
CurrentRat~N	-0.640 (-0.38)
DebttoEqui~N	0.473 (1.52)
VIX_N	-0.0180 (-1.73)
_cons	1.447 (0.77)
N	1256

t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001

AMZN

	(1)
	AbnormalRe~N
EPS_N	0.0109*
	(2.01)
ROE_N	0.00596
	(0.85)
CurrentRat~N	0.178
	(0.83)
ebttoEqui~N	0
	(.)
/IX_N	-0.00147
	(-0.34)
_cons	-0.154
	(-1.50)
I	1256

BRK-B

	(1) AbnormalRe~N
PS_N	0.00687
	(0.05)
ROE_N	-0.000816
	(-0.06)
CurrentRat~N	-0.0366
	(-1.34)
)ebttoEqui~N	-3.312
	(-1.35)
/IX_N	-0.00593
	(-0.55)
_cons	0.890*
	(2.10)
I	1256

t statistics in parentheses

FB

t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001

^{*} p<0.05, ** p<0.01, *** p<0.001

	(1) AbnormalRe~N
	ADITOT IIIaTKE~N
EPS_N	0.00890
	(0.90)
ROE_N	-0.0168
	(-1.00)
CurrentRat~N	-0.0363
	(-0.89)
DebttoEqui~N	-2.781
	(-1.16)
VIX_N	-0.00969
	(-1.17)
_cons	0.961**
	(2.70)
N	1256

t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001

GOOGL

	(1) AbnormalRe~N
EPS N	0.00241
_	(0.10)
ROE N	0.00729*
_	(2.09)
urrentRat~N	0.0627
	(1.19)
ebttoEqui~N	-0.111
	(-0.50)
IX_N	0.000492
	(0.08)
cons	-0.795***
	(-3.71)
ı	1256
	in parentheses p<0.01, *** p<0.

JNJ

	(1) AbnormalRe~N
EPS_N	-0.0175
_	(-0.26)
ROE_N	-0.00369
	(-0.88)
CurrentRat~N	0.0605
	(0.60)
DebttoEqui~N	0.308*
	(2.31)
/IX_N	0.00118
_	(0.17)
cons	0.297
_	(1.01)
ı	1256

t statistics in parentheses * p<0.05, ** p<0.01, *** p<0.001

MSFT

	(1) AbnormalRe~N
EPS_N	0.146
	(0.87)
ROE_N	-0.00537
	(-0.62)
CurrentRat~N	-0.0342
	(-1.22)
DebttoEqui~N	-0.0256
	(-0.22)
VIX_N	0.0000992
	(0.02)
_cons	0.364
	(2.54)
Ê	1256

- AAPL, BRK-B, and JNJ displayed importance of at least one financial metric on abnormal returns
- Statistical insignificance in T-tests and F-tests of independent variables can be explained by stock buybacks and bull market leading to overvaluation of stocks
- No statistical significance observed for debt to equity ratio, except MSFT, due to firms' desire to maintain a stable and invariant amount of debt to prevent risk of financial distress

Conclusion

- Market is weak form efficient
- Safe to conclude market does not evidence of semi-strong efficiency
- Semi-strong efficiency can be explained by bull market and stock buybacks fuelling appreciation in stock prices leading to gains greater than those dictated by CAPM
- Could have improved calculation of abnormal returns by using a more complicated model relative to CAPM