

Homework Unsupervised Learning

Team 2 phpMyFeeling:

- Arya Octavian
- Athalla Dewanto
- Bagoes Fikri
- Intan Denovita
- Jose Christian
- Jovian Aditya
- Muhammad Hazim
- Nur Almar
- Syafwan Giffari

Data Frame Information:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 62988 entries, 0 to 62987
Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
0	MEMBER_NO	62988 non-null	int64
1	FFP_DATE	62988 non-null	object
2	FIRST_FLIGHT_DATE	62988 non-null	object
3	GENDER	62985 non-null	object
4	FFP_TIER	62988 non-null	int64
5	WORK_CITY	60719 non-null	object
6	WORK_PROVINCE	59740 non-null	object
7	WORK_COUNTRY	62962 non-null	object
8	AGE	62568 non-null	float64
9	LOAD_TIME	62988 non-null	object
10	FLIGHT_COUNT	62988 non-null	int64
11	BP_SUM	62988 non-null	int64
12	SUM_YR_1	62437 non-null	float64
13	SUM_YR_2	62850 non-null	float64
14	SEG_KM_SUM	62988 non-null	int64
15	LAST_FLIGHT_DATE	62988 non-null	object
16	LAST_TO_END	62988 non-null	int64
17	AVG_INTERVAL	62988 non-null	float64
18	MAX_INTERVAL	62988 non-null	int64
19	EXCHANGE_COUNT	62988 non-null	int64
20	avg_discount	62988 non-null	float64
21	Points_Sum	62988 non-null	int64
22	Point_NotFlight	62988 non-null	int64
dtyp	es: float64(5), int	64(10), object(8)
memoi	ry usage: 11.1+ MB		

Handling Missing Values (Categorical Column):

Dapat dilihat bahwa missing values terdapat di kolom yang bertipe data numerik maupun kategorikal. Untuk kolom-kolom data kategorikal diputuskan membuang kolom tersebut karena tidak akan digunakan ketika membuat clustering.

CHECK & HANDLING MISSING VALUES

df = df.drop(['WORK CITY','WORK PROVINCE','WORK COUNTRY','GENDER'],axis=1)

Handling Missing Values (Numerical Column):

Sebelum memutuskan untuk mengganti missing value dengan mean/median, cek terlebih dahulu bentuk distribusinya:

```
Untuk kolom Sum YR 1, Sum YR 2, AGE akan dicek terlebih dahulu bentuk distribusinya sebelum memutuskan mengganti nilai NULL dengan
cek_null = ['SUM_YR_1', 'SUM_YR_2', 'AGE']
plt.figure(figsize=(18, 4))
for i in range(len(cek null)):
    plt.subplot(1,4,i+1)
    sns.distplot(df[cek null[i]],color='g')
    plt.tight layout()
                                                  0.00014
   0.00014
                                                                                                   0.04
   0.00012
                                                  0.00012
                                                  0.00010
                                                                                                   0.03
                                                ∯ n nnnns
   0.00006
                                                  0.00006
   0.00004
                                                 0.00004
                                                                                                   0.01
   0.00002
                                                  0.00002
                50000 100000 150000 200000 250000
                                                               50000 100000 150000 200000
#Bentuk Distribusi untuk kolom SUM YR 1 & SUM YR 2 --> Right Skewness
```

#Bentuk Distribusi untuk kolom SUM_YR_1 & SUM_YR_2 --> Right Skewness
#Bentuk Distribusi kolom AGE --> Multinodal
#Diputuskan untuk mengganti semua milai MULI pada ketiga kolom tersebut dengan Media
dff [AGE] - Billna(dff [AGE] - Billna(dff

df.isna().any() MEMBER NO False FFP DATE False FIRST_FLIGHT_DATE False FFP TIER False False LOAD TIME False FLIGHT COUN False False SUM YR 1 False SUM YR 2 False False False LAST TO END False MAX INTERVAL False EXCHANGE COUNT False avg discount False Points Sum Point NotFlight dtype: bool

Bentuk Distribusi ada yang right skewness, ada yg multimodal. Akhirnya diputuskan mengganti semuanya dengan median

Check Duplicated Values:

df.duplicated().any()

False

Descriptive Statistics:

df[nums].describe()

	MEMBER_NO	FFP_TIER	AGE	FLIGHT_COUNT	BP_SUM	SUM_YR_1	SUM_YR_2	SEG_KM_SUM	LAST_TO_END	AVG_INTERVAL
count	62988.000000	62988.000000	62988.000000	62988.000000	62988.000000	62988.000000	62988.000000	62988.000000	62988.000000	62988.00000
mean	31494.500000	4.102162	42.466502	11.839414	10925.081254	5333.022406	5597.823538	17123.878691	176.120102	67.74978
std	18183.213715	0.373856	9.853632	14.049471	16339.486151	8077.407958	8694.832417	20960.844623	183.822223	77.51786
min	1.000000	4.000000	6.000000	2.000000	0.000000	0.000000	0.000000	368.000000	1.000000	0.00000
25%	15747.750000	4.000000	35.000000	3.000000	2518.000000	1020.000000	785.000000	4747.000000	29.000000	23.370370
50%	31494.500000	4.000000	41.000000	7.000000	5700.000000	2800.000000	2773.000000	9994.000000	108.000000	44.66666
75%	47241.250000	4.000000	48.000000	15.000000	12831.000000	6524.250000	6826.250000	21271.250000	268.000000	82.00000
max	62988.000000	6.000000	110.000000	213.000000	505308.000000	239560.000000	234188.000000	580717.000000	731.000000	728.00000

df[cats].describe()

	FFP_DATE	FIRST_FLIGHT_DATE	LOAD_TIME	LAST_FLIGHT_DATE
count	62988	62988	62988	62988
unique	3068	3406	1	731
top	1/13/2011	2/16/2013	3/31/2014	3/31/2014
freq	184	96	62988	959

Univariate Analysis (1/3):

Untuk sementara step handling outlier akan diskip terlebih dahulu., akan dilakukan pada saat telah menentukan fitur apa saja yang akan digunakan agar lebih efisien.

Univariate Analysis (2/3):

sns.distplot(df['avg_discount'],color='g')
plt.tight_layout()
plt.show()

Terlihat sedikit janggal karena ada yang mendapat avg_discount > 1. Dimana asumsi avg_discount 1 = 100%

#buang data yang diskon > 100% df = df[df['avg_discount']<=1]

```
plt.figure(figsize = (50,10))
sns.countplot(x=df['AGE'],color='g')
plt.tight_layout()
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
plt.show()
```


Dapat dilihat bahwa distribusi umur terbesar pada rentang 27-56 tahun. Pada umur tersebut merupakan usia produktif sehingga banyak perjalanan yang dilakukan oleh kelompok usia tersebut.

Univariate Analysis (3/3):

Dapat dilihat bahwa setiap pelanggan setidaknya pernah melakukan penerbangan sebanyak 2x.

Multivariate Analysis:

Setelah melihat dari matriks korelasi dan melihat definisi dari setiap feature diputuskan akan membuang feature berikut ini karena dirasa tidak akan berguna dalam membentuk model clustering: `age`, `MEMBER_NO`, `SUM_YR_1`, `SUM_YR_2`, `Point_NotFlight`, `AVG INTERVAL`, `MAX INTERVAL`, **`EXCHANGE COUNT`. Sepertinya** `BP SUM` & `Points Sum` & `SEG_KM_SUM` merupakan feature yang redundan maka diputuskan hanya akan mengambil salah satunya. Sebenarnya `FLIGHT_COUNT` juga tergolong redundan terhadap 'BP SUM' tetapi feature tersebut merupakan feature yang penting sehingga tidak dibuang.

FEATURE SELECTION & EXTRACTION

Feature Selection:

Feature yang dipilih sementara:

- FLIGHT_COUNT
- SEG_KM_SUM
- LAST_FLIGHT_DATE
- LAST_TO_END
- FIRST_FLIGHT_DATE
- · avg_discount
- LOAD_TIME
- FFP_DATE

df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 60041 entries, 0 to 62987
Data columns (total 8 columns):
    Column
                       Non-Null Count Dtype
    FLIGHT COUNT
                      60041 non-null int64
    SEG KM SUM
                       60041 non-null int64
    FIRST FLIGHT DATE 60041 non-null object
    LAST FLIGHT DATE
                      60041 non-null object
    LAST TO END
                       60041 non-null int64
    avg discount
                      60041 non-null float64
    LOAD TIME
                      60041 non-null object
    FFP DATE
                      60041 non-null object
dtypes: float64(1), int64(3), object(4)
memory usage: 4.1+ MB
```

Feature Extraction:

1. Buat Flight / Year Column:

```
# rata-rata penerbangan dalam 1 tahun
df['FLIGHT_PER_YEAR'] = df['FLIGHT_COUNT'] / ((df['LAST_FLIGHT_DATE'] - df['FIRST_FLIGHT_DATE']) / np.timedelta64(1, 'Y'))
```

2. Buat Join Month Column:

(sudah berapa lama jadi member frequent flyer agar lebih mudah interpretasinya bikin dalam bulan saja. Karena kalau hasilnya misal 2.35 tahun akan jadi sulit diinterpretasi)

```
# Sudah berapa lama join program frequent flyer
df['JOIN_MONTH'] = (df['LOAD_TIME'] - df['FFP_DATE']) / np.timedelta64(1,'M')
```

Final Feature for Clustering:

```
Int64Index: 60041 entries, 0 to 62987

Data columns (total 5 columns):

# Column Non-Null Count Dtype
--- 0 SEG_KM_SUM 60041 non-null int64
1 LAST_TO_END 60041 non-null int64
2 avg_discount 60041 non-null float64
3 FLIGHT_PER_YEAR 60041 non-null float64
4 JOIN MONTH 60041 non-null float64
```

<class 'pandas.core.frame.DataFrame'>

dtypes: float64(3), int64(2)

memory usage: 2.7 MB

HANDLING OUTLIER:

Cek Distribusi Boxplot:

Outlier hanya terdapat pada kolom `SEG_KM_SUM`, `LAST_TO_END`, avg_discount & `FLIGHT_PER_YEAR`

Handling Outlier IQR Method:

```
#SEG KM SUM (1)
Q1 1 = df['SEG KM SUM'].quantile(0.25)
Q3 1 = df['SEG KM SUM'].quantile(0.75)
IOR = 03 1 - 01 1
batas_bawah_1 = Q1_1 - (IQR * 1.5)
batas atas 1 = Q3 1 + (IQR * 1.5)
#LAST TO END (2)
Q1 2= df['LAST TO END'].quantile(0.25)
Q3 2= df['LAST TO END'].quantile(0.75)
IQR = 03 2 - 01 2
batas_bawah_2 = Q1_2 - (IQR * 1.5)
batas atas 2 = Q3 2 + (IQR * 1.5)
#avg discount (3)
Q1 3 = df['avg discount'].quantile(0.25)
Q3 3 = df['avg discount'].quantile(0.75)
IOR = 03 3 - 01 3
batas_bawah_3 = Q1_3 - (IQR * 1.5)
batas atas 3 = Q3 \ 3 + (IQR * 1.5)
#AVG PER YEAR (4)
Q1 4 = df['FLIGHT PER YEAR'].quantile(0.25)
Q3 4 = df['FLIGHT PER YEAR'].quantile(0.75)
IOR = 03 4 - 01 4
batas bawah 4 = 01 4 - (IOR * 1.5)
batas atas 4 = 03 4 + (IOR * 1.5)
df_cluster = df[((df['SEG_KM_SUM'] >= batas_bawah_1) & (df['SEG_KM_SUM'] <= batas_atas_1)) &
                 ((df['LAST TO END'] >= batas bawah 2) & (df['LAST TO END'] <= batas atas 2)) &
                 ((df['avg_discount'] >= batas_bawah_3) & (df['avg_discount'] <= batas_atas_3)) &</pre>
                 ((df['FLIGHT PER YEAR'] >= batas bawah 4) & (df['FLIGHT PER YEAR'] <= batas atas 4))]
```

STANDARDIZATION:

Final Data Frame for Clustering:

df_cluster

			avg_uiscount	FLIGHT_PER_YEAR	JOIN_MONTH
0	42885	92	0.998753	14.030381	31.967802
1	44965	38	0.947906	6.265920	62.095731
2	43488	122	0.979314	3.312080	111.049508
3	43823	353	0.964519	2.024305	67.713916
4	44132	23	0.955218	9.838182	49.512310
48877	368	471	0.750000	0.664077	51.582168
48878	368	492	0.750000	1.466837	32.460625
48879	368	252	0.750000	0.232639	111.443767
48880	368	418	0.750000	0.478693	63.804185
48881	368	89	0.710000	0.239346	106.745518

48882 rows × 5 columns

Standardization:

EXTERNAL EVALUATION:

ELBOW METHOD:

	Inertia Reduction (%)
0	21.436055
1	16.995433
2	15.030147
3	12.051583
4	11.740894
5	7.838495
6	6.854494
7	6.227758
8	4.938600
9	NaN

Dapat dilihat bahwa merubah k=3 ke k=4 masih memberikan inertia reduction 15% sedangkan ketika merubah k=4 menjadi k=5 inertia reduction berkurang menjadi 12%. Oleh sebab itu digunakan k=4

CLUSTERING & VISUALIZATION:

CLUSTERING USING K-MEANS:

kmeans = KMeans(n_clusters=4,random_state=42).fit(df_cluster_std)
kmeans.fit(df_cluster_std)

KMeans(n_clusters=4, random_state=42)

	SEG_KM_SUM	LAST_TO_END	avg_discount	FLIGHT_PER_YEAR	JOIN_MONTH	k_label
0	2.946823	-0.433412	2.186105	2.364728	-0.640830	1
1	3.151836	-0.776593	1.816499	0.441358	0.463661	1
2	3.006257	-0.242755	2.044803	-0.290352	2.258308	2
3	3.039276	1.225298	1.937261	-0.609352	0.669624	2
4	3.069732	-0.871921	1.869654	1.326259	0.002352	1
48877	-1.243816	1.975213	0.377943	-0.946301	0.078233	0
48878	-1.243816	2.108672	0.377943	-0.747445	-0.622763	0
48879	-1.243816	0.583422	0.377943	-1.053174	2.272762	2
48880	-1.243816	1.638387	0.377943	-0.992223	0.526293	0
48881	-1.243816	-0.452477	0.087187	-1.051513	2.100524	2

48882 rows × 6 columns

VISUALIZATION WITH PCA:

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(df_cluster_std)
df pca = pca.transform(df cluster std)

df_pca = pd.DataFrame(data = df_pca, columns = ['PC 1', 'PC 2'])
df_pca['cluster'] = kmeans.labels_
df_pca.head()

	PC 1	PC 2	cluster
0	0.055138	3.595867	1
1	-0.292964	1.747790	1
2	-0.540565	0.016185	2
3	0.335833	0.406766	2
4	-0.320742	2.600534	1

DATAFRAME CLUSTERING + RESULT

	SEG_KM_SUM	LAST_TO_END	avg_discount	FLIGHT_PER_YEAR	JOIN_MONTH	k_label
0	42885	92	0.998753	14.030381	31.967802	1
1	44965	38	0.947906	6.265920	62.095731	1
2	43488	122	0.979314	3.312080	111.049508	2
3	43823	353	0.964519	2.024305	67.713916	2
4	44132	23	0.955218	9.838182	49.512310	1
48877	368	471	0.750000	0.664077	51.582168	0
48878	368	492	0.750000	1.466837	32.460625	0
48879	368	252	0.750000	0.232639	111.443767	2
48880	368	418	0.750000	0.478693	63.804185	0
48881	368	89	0.710000	0.239346	106.745518	2

48882 rows × 6 columns

SUMMARY DATAFRAME FOR INTERPRETATION:

```
df_cluster_interpretation = df_cluster.groupby('k_label').agg({'SEG_KM_SUM' : 'mean',
                                                                    'LAST_TO_END': 'mean',
                                                                    'avg discount': 'mean',
                                                                    'FLIGHT PER YEAR': 'mean',
                                                                    'JOIN MONTH' : ['mean', 'count']})
df cluster interpretation
        SEG_KM_SUM_LAST_TO_END_avg_discount_FLIGHT_PER_YEAR
                                                                     JOIN MONTH
 k label
          5893.962479
                         424.865803
                                       0.732073
                                                         2.899471 52.099532
                                       0.710630
         22115 375624
                         103 976374
      2 16713.563620
                          86.593455
                                       0.710196
          8204.876703
                         113.025091
                                       0.661233
```

CLUSTERING RESULTS INTERPRETATION:

	SEG_KM_SUM	LAST_TO_END	avg_discount	FLIGHT_PER_YEAR	JOIN_MONT	
	mean	mean	mean	mean	mean	count
k_label						
0	5893.962479	424.865803	0.732073	2.899471	52.099532	8875
1	22115.375624	103.976374	0.710630	10.600567	29.370775	9608
2	16713.563620	86.593455	0.710196	2.274904	80.757342	14178
3	8204.876703	113.025091	0.661233	3.659461	32.523818	16221

Cluster 0

Tipe pelanggan ini adalah pelanggan yang telah melakukan total jarak penerbangan dengan rata-rata 5900 km (paling rendah dibandingkan kelompok pelanggan pada cluster lain), dan sudah cukup lama tidak melakukan penerbangan dilihat dari kolom `LAST_TO_END` yang sangat besar dibandingkan dengan cluster lainnya, hal ini juga dapat terlihat bahwa pelanggan ini dalam 1 tahun rata-rata hanya melakukan penerbangan sebanyak hampir 3x. Pelanggan ini juga terlihat sudah lumayan lama menjadi member frequent flyer dengan durasi rata-rata lama menjadi member selama 52 bulan.

Cluster 1

Tipe pelanggan ini adalah pelanggan yang telah melakukan total jarak penerbangan dengan rata-rata 22000km (terbesar dibandingkan kelompok pelanggan pada cluster lain), dan terlihat pelanggan ini memiliki jarak waktu penerbangan terbaru terhadap penerbangan terakhir cukup pendek dimana rata2 kolom `LAST_TO_END` yang cukup pendek dibandingkan kelompok Cluster 0. Hal ini juga dapat dibuktikan bahwa kelompok pelanggan ini dalam 1 tahun rata-rata melakukan penerbangan sebanyak hampir 11x (terbesar dibandingkan cluster lainnya). Kelompok pelanggan ini jika dilihat merupakan member baru dari frequent flyer dimana kelompok pelanggan ini baru bergabung menjadi member selama 29 bulan.

CLUSTERING RESULTS INTERPRETATION:

	SEG_KM_SUM	LAST_TO_END	avg_discount	FLIGHT_PER_YEAR	JOIN_N	MONTH
	mean	mean	mean	mean	mean	count
k_label						
0	5893.962479	424.865803	0.732073	2.899471	52.099532	8875
1	22115.375624	103.976374	0.710630	10.600567	29.370775	9608
2	16713.563620	86.593455	0.710196	2.274904	80.757342	14178
3	8204.876703	113.025091	0.661233	3.659461	32.523818	16221

Cluster 2

Tipe pelanggan ini adalah pelanggan yang telah melakukan total jarak penerbangan dengan rata-rata 16000 km (tergolong besar walaupun masih dibawah Cluster 1), pelanggan ini meskipun memiliki jarak waktu penerbangan terbaru terhadap penerbangan terakhir paling pendek dibandingkan cluster lainnya namun kelompok pelanggan ini dalam 1 tahun rata-rata hanya melakukan penerbangan sebanyak 2x. Kelompok pelanggan ini terlihat sudah lama menjadi member frequent flyer dimana terlihat dari durasi rata-rata lama menjadi member sudah selama 81 bulan (terlama dibandingkan cluster lainnya).

Cluster 3 Tipe pelanggan ini adalah pelanggan yang telah melakukan total jarak penerbangan dengan rata-rata 8200 km (meskipun bukan yang terendah, tetapi tergolong rendah dibandingkan cluster 1 & cluster 2). Tipe pelanggan ini memiliki jarak waktu penerbangan terbaru terhadap penerbangan terakhir relatif pendek namun kelompok pelanggan ini dalam 1 tahun rata-rata hanya melakukan penerbangan sebanyak hampir 4x. Kelompok pelanggan ini juga tergolong masih baru menjadi member dari frequent flyer (sama halnya seperti cluster 1) dimana kelompok pelanggan ini telah menjadi member selama 32 bulan.

BUSINESS RECOMMENDATION:

- 1. Terlihat bahwa masih ada kelompok pelanggan yang memiliki jumlah penerbangan per tahun cukup rendah. Untuk meningkatkan jumlah penerbangan per tahun untuk para kelompok tersebut selain dengan memberikan promo cara yang cukup penting adalah meningkatkan kualitas pelayanan yang dimiliki. Karena dalam industri penerbangan seperti ini kualitas pelayanan merupakan salah satu aspek yang penting.
- 2. Terlihat bahwa dari ke 4 cluster tersebut ada yg tergolong sebagai member frequent flyer baru dan member frequent flyer lama. Kepada member lama maupun member baru dapat diberikan promo-promo yang sesuai. Misal kepada member yang sudah lama berlanggan diberikan diskon/promo yang lebih besar sebagai bentuk apresiasi, namun kepada member baru juga tetap diberikan diskon/promo meskipun tidak sebesar member lama dengan harapan bahwa member baru akan tetap aktif dan meningkatkan jumlah penerbangan.