CS & IT

ENGINEERING

Combinational Circuit

Lecture No. 2

By- CHANDAN SIR

TOPICS TO
BE
COVERED

01 MULTIPLEXER

02 QUESTION PRACTICE

03 DISCUSSION

DESIGNING OF COMBINATIONAL CIRCUIT

2. Design a two-Bit comparator?

DESIGNING OF COMBINATIONAL CIRCUIT

Step 2. Truth table

		A		B	AZB	AKB	A=B
	A ₁	A ₀	B ₁	\mathbf{B}_{0}	x	у	z
	0	0	0	0	0	0	1
	0	0	0	1	0	1	0
	2 0	0	1	0	0	L	0
	3 0	0	1	1	0	L	0
	0	1	0	0	1	0	0
	0	1	0	1	0	0	1
	0	1	1	0	0	L	8
	0	1	1	1	0	L	O
	1	0	0	0	T	0	0
	1	0	0	1	L	0	0
1	1	0	1	0	0	0	L
	1	0	1	1	0	1	Ò
1	1	1	0	0	+	0	0
	3 1	1	0	1	2	0	0
	4 1	1	1	0	7	0	0
'	1	1	1	1	0	0	2

DESIGNING OF COMBINATIONAL CIRCUIT

Step 3. Logical expression

$$X(A > B) = \sum m(4,6,9,12,13,14)$$

$$Y(A < B) = \sum m(1,2,3,6,7,11)$$

$$Z(A = B) = \Sigma m(0,5,0,15)$$

DESIGNING OF COMBINATIONAL CIRCUIT

Step 4. Minimization

Semiminimized

X(A7B) = AIBI + AIAOBIBO + AIAOBIBO

= AIBI + (AIBI+AIB) AOBO

= AIBI + (AIBI+AIB) AOBO

MINIMIZED

$$\chi(A7B) = A_1B_1 + A_0B_1B_0 + A_1A_0B_0$$

= $A_1B_1 + (A_1+B_1)A_0B_0$

Semiminimized Expression

Y (A<B)= AIBI+ AIBI+ AIBI) AOBO

=A1B1+ (A10B1) A0B0

Minimized

4 (MB) = AB1+ (AT+B1) ABBO

DESIGNING OF COMBINATIONAL CIRCUIT

Step 4. Minimization

Steps Hardware Implement

Pw

COMPARATOR

FOR ONE BIT COMPARATOR

Total condition = 4

Equal condition = 2

Unequal condition = 2

Greater = Less condition = 1

Pw

COMPARATOR

FOR TWO BIT COMPARATOR

Total condition = 16

Equal condition = 4

Unequal condition = 12

Greater = Less condition = 6

FOR THREE BIT COMPARATOR

Equal =
$$2^n$$

Longual = $2^n - 2^n$
Greater= Less = $\frac{2^n - 2^n}{2}$

'N' BIT COMPARATOR

Total condition = 2^{2n}

Equal condition $= 2^n$

Unequal condition = $2^{2n} - 2^n$

Greater = Less condition = $(2^{2n} - 2^n)/2$

$$X(A7B) = A_1B_1 + (A_1OB) A_0B_0$$

 $Y(AXB) = \overline{A_1B_1} + (A_1OB) \overline{A_0B_0}$
 $Z(A=B) = (A_1OB) \cdot (A_0OB)$

$$X(A7B) = A_2B_2 + (A_2OB_2)A_1B_1 + (A_2OB_2)(A_1OB_1)A_0B_0$$

 $Y(A
 $X(A=B) = (A_2OB_2)(A_1OB_1)(A_0OB_0)$$

MULTIPLEXER - 200%

