CHAPTER 6 BJT AMPLIFIERS

6-1 AMPLIFIER OPERATION

- Biasing a transistor is purely DC operation.
- It establishes the Q-point about which the AC voltage and current can change corresponding to an AC input signal.
- These changes in AC voltage and current seen at the output constitute the amplifier operation.
- When the voltages being handled are small then the amplifier is referred to as *small-signal amplifier*.

6.1.1 AC Quantities

- The difference between the symbols used for DC and AC quantities is that subscript of DC quantities have capital letters while the AC quantities have small letters. A summary of DC and AC quantities is listed in Table 1.
- Figure 1 shows the various values that can be attributed to V_{ce} . It can represent rms, average, peak or peak-to-peak value. RMS value is default.

Table 1 Symbol for DC and AC quantities

Description	DC Quantities	AC Quantities
Base-Emitter Voltage	V_{BE}	V_{be}
Collector-Emitter	V _{CE}	V_{ce}
Voltage		
Base-Collector Voltage	V _{CB}	V_{cb}
Base Current	I _B	I _b
Collector Current	Ic	I _c
Emitter Current	I _E	l _e
External Resistance	R_B , R_C , R_E	R_b , R_c , R_e
Internal Resistance		r_e', r_b', r_c'
internal Nesistance		l 'e, b, c

6.1.2 The Linear Amplifier

Figure 1 Vce representation

- Linear amplifier provides amplification of a signal without any distortion (that is there is no clipping from positive or negative half cycles).
- So the output signal of an amplifier has the exact shape and frequency as the input signal.
- A voltage divider biased transistor which acts as an amplifier is shown in Figure 2.

Figure 2 Voltage-divider biased transistor amplifier

- The circuit works in the following manner:
 - \circ The AC input signal V_s changes the DC base voltage above and below its DC level V_{BQ}.
 - This voltage change is shown in Figure 2 as V_b.
 - This changes the DC base current above and below its DC level I_{BQ}.
 - This current change is shown in Figure 2 as I_b.
 - \circ This change in I_{BQ} produces a large change in I_{CQ} because of the transistor current gain β_{DC} .
 - \circ The increase in I_{CQ} decreases the collector voltage V_C which in turns decreases the collector-emitter voltage V_{CEQ} .
 - \circ As shown in Figure 2, increase in the base voltage V_b corresponds to decrease in the collector-emitter voltage V_{ce} . Therefore the output of this amplifier is 180° out of phase with the input voltage.

6-2 TRANSISTOR AC MODELS

- An AC transistor model represents the transistor operation in terms of its internal parameters.
- This section describes these parameters based on resistance and hybrid parameters.
- Following is brief description of the AC parameters discussed.

6.2.1 r Parameters

There are 5 parameters commonly used in BJT listed in Table 2.

r Parameter	Description	Importance
α_{ac}	AC alpha (I_c/I_e)	
eta_{ac}	AC beta (I_c/I_b)	IMPORTANT
r_e'	AC emitter resistance	$r_e' = rac{25mV}{I_E}$ (MOST IMPORTANT)
r_b'	AC base resistance	Small enough to be ignored
r_c'	AC emitter resistance	Large enough to be taken as
		open circuit

Table 2 r Parameters

6.2.2 r-Parameter Transistor Model

- There are 2 parameters transistor models.
 - \circ Generalized r-parameter model All r-parameter are shown as in Figure 3(a).
 - \circ Simplified r-parameter model $-r_b{'}$ is ignored and $r_c{'}$ is open circuit to get as shown in Figure 3(b).
 - \circ Figure 4 shows the relation of r-parameter to the transistor symbol.

(a) Generalized *r*-parameter model for a BJT (b) Simplified *r*-parameter model for a BJT **Figure 3 r-parameter transistor model**

Figure 4 Relation of transistor symbol to r-parameter

6.2.3 Comparison of β_{ac} to β_{DC}

- The graph of I_C vs. I_B is nonlinear (curve, not line) as shown in Figure 5.
- If the base current changes by amount ΔI_B , then the collector current will change by amount ΔI_C .
- The ratio of these two quantities $\beta_{ac} = \Delta I_C/\Delta I_B$ is different at every point on the curve due to the nonlinear curve and may differ from the ratio $\beta_{DC} = I_C/I_B$ at the Q-point.

Figure 5 I_C vs. I_B curve to show difference between β_{ac} and β_{DC}

6.2.4 *h* Parameter and its relation with *r* parameter

- The manufacturer's datasheet typically specifies h (hybrid) parameters.
- The most commonly used parameters are
 - $\circ h_{fe} = eta_{ac}$ Common Emitter Forward Current Gain
 - $\circ \quad h_{fb} = lpha_{ac}$ Common Base Forward Current Gain

6-3 THE COMMON-EMITTER AMPLIFIER

- There are 3 amplifier configurations:
 - Common-Emitter (CE) Amplifier
 - o Common-Collector (CC) Amplifier
 - o Common-Base (CB) Amplifier
- The CE configuration shows high voltage gain and high current gain.
- Figure 6 shows a CE amplifier with a voltage divider bias.
- The AC input signal V_{in} is applied to the base of the transistor while the AC output signal V_{out} is taken from the collector.
- The emitter is connected to ground or is common between base and collector, hence the name common-emitter amplifier.
- The output voltage is 180° out-of-phase with the input voltage.
- C₁ and C₃ are called coupling capacitor while C₂ is called a bypass capacitor.

Figure 6 CE amplifier with voltage divider bias

6.3.1 DC Analysis

- To analyze the amplifier in Figure 6, we have to do 2 types of analyses.
 - DC analysis to establish the DC bias i.e. Q-point. We have covered this in Chapter 4 and 5.
 - AC analysis to establish the voltage gain, input resistance and output resistance.
- DC analysis starts by developing the DC equivalent circuit of the amplifier in Figure 6.
- This is done by removing all components that depend on AC signal like capacitor (as they act as open circuit in DC).
- The DC equivalent circuit of Figure 6 is shown in Figure 7.
- Notice all capacitors are removed along with R_L (C3 is open).
- This results in the same circuit that has been analyzed in Chapter 5.
- All the DC values like V_B , V_C , V_E and I_E can be found through the equations in Chapter 4 and 5.
- Figure 6 shows these DC values.

Figure 7 DC equivalent circuit

6.3.2 AC Analysis

- AC analysis also requires the development of AC equivalent circuit.
- This is done by:
 - The capacitors C₁, C₂ and C₃ are replaced by short circuit.
 - DC source is replaced by 0V.
- Figure 8 shows the AC equivalent circuit.
- Note that R_E is also removed as it is bypassed through capacitor C₂.

Figure 8 AC equivalent circuit

6.3.2.1 AC Signal Voltage at the Base

- The AC signal source is given by V_S in Figure 8(b).
- In order to determine the AC voltage at the base, there can be 2 scenarios.
 - ο V_S has no internal resistance so $R_S = 0\Omega$. In this case $V_D = V_S$.
 - o If V_S has an internal resistance then, 3 resistances need to considered: source internal resistance R_S , bias resistances (R_1 , R_2) and AC input resistance at the base of the transistor ($R_{in(base)}$). These are shown in Figure 9(a).
 - o These resistances appear in parallel. So the total AC input resistance can be determined by

$$R_{in(tot)} = R_1 ||R_2|| R_{in(base)}$$

 \circ Therefore the AC base voltage V_b is given by

Figure 9 AC equivalent circuit

6.3.2.2 Input Resistance and Output Resistance

- The AC input resistance at the base is given by

$$R_{in(base)} = \beta_{ac} r_e'$$

- It is recommended to have high input resistance.
- The AC output resistance at the collector is given by

$$R_{out} \approx R_C$$

- It is recommended to have low output resistance.

6.3.3 Voltage Gain

- The voltage gain of any amplifier is given by the general formula

$$A_v = \frac{V_{out}}{V_{in}}$$

- In terms of the circuit of Figure 6, $V_{in}=V_b$ and $V_{out}=V_c$, so the voltage gain becomes

$$A_v = \frac{V_c}{V_h}$$

- After doing some mathematical manipulations, the voltage gain for a CE amplifier comes out to be

$$A_v = \frac{R_C}{r_e'}$$

6.3.3.1 Attenuation

- Attenuation is the reduction in signal voltage as it passes through a circuit whose gain is less than 1.
- For example if a signal voltage is reduced by half this means that the attenuation is 2. This corresponds to a gain of 0.5 because gain is the inverse of attenuation.
- This occurs in CE amplifier if the internal resistance R_S of AC source voltage is not zero.
- In this case the attenuation is given by

$$Attenuation = \frac{V_s}{V_b} = \frac{R_s + R_{in(tot)}}{R_{in(tot)}}$$

- Therefore the overall voltage gain of an amplifier, A'_v is voltage gain from base to collector, A_v , times the reciprocal of the attenuation.

$$A'_{v} = \left(\frac{V_{b}}{V_{c}}\right) \left(\frac{V_{c}}{V_{b}}\right) = \left(\frac{V_{b}}{V_{c}}\right) A_{v} = \left(\frac{V_{c}}{V_{c}}\right)$$

- Attenuation, voltage gain from base to collector and overall voltage gain are shown in Figure 10.

Figure 10 Base circuit with overall gain

NOTE: REFER EXAMPLE 6-3 PAGE 266

6.3.3.2 Effect of Emitter Bypass Capacitor on Voltage Gain

- The emitter bypass capacitor C₂ shorts the emitter resistor R_E. Therefore it does not appear in the AC equivalent model.
- This results in the maximum voltage gain.

$$A_v = \frac{R_C}{r_e'}$$

6.3.3.3 Voltage Gain without Bypass Capacitor

- If the bypass capacitor is removed then RE will not be shorted out of the AC equivalent circuit.
- This results in the voltage gain to change as

$$A_v = \frac{R_C}{r_e' + R_E}$$

- This reduces the voltage gain of the amplifier.

NOTE: REFER EXAMPLE 6-5 PAGE 269

6.3.3.4 Effect of Load on the Voltage Gain

- A **load** is the amount of current drawn from the output of an amplifier through a load resistance.
- Connecting a load resistor R_L through a coupling capacitor C₃ puts the load resistor in parallel with the collector resistor R_C as shown in the Figure 11.
- This changes the total AC collector voltage and is given by

$$R_c = R_C || R_L = \frac{R_C R_L}{R_C + R_L}$$

So the voltage gain will change to

$$A_v = \frac{R_c}{r_e'}$$

- If $R_c < R_C$ then the voltage gain is reduced because R_L is small.
- If $R_L \gg R_C$ then there is very little effect on the voltage gain.

Figure 11 CE amplifier with load

NOTE: REFER EXAMPLE 6-6 PAGE 270

6.3.4 Stability of Voltage Gain

- Stability is a measure of how well an amplifier maintains its design values over changes in temperature or a transistor with different β .
- Bypassing R_E does produce the maximum voltage gain but then the voltage gain depends upon r'_e $(A_v = R_c/r'_e)$.
- r_e' depends upon I_E ($r_e' = 25mV/I_E$) which can change with temperature and β .
- This leads to an unstable CE amplifier.
- Without bypassing the RE the voltage gain becomes $A_v = \frac{R_c}{r_o' + R_E}$.
- If $R_E\gg r_e'$, then the voltage gain would be independent of r_e' and can be expressed as

$$A_v \approx \frac{R_C}{R_E}$$

- But this reduces the voltage gain to its minimum value. The solution to the problem is **Swamping**.

6.3.4.1 Swamping r'_e to Stabilize the Voltage Gain

- **Swamping** is a method used to minimize the effect of r'_e without reducing the voltage gain of the amplifier.
- In a swamped amplifier, $R_{\rm E}$ is partially bypassed so that reasonable gain can be achieved and effect of r_e' is greatly reduced.
- The $R_{\rm E}$ is split into 2 resistors such that $R_E=R_{E1}+R_{E2}$ as shown in Figure 12.
- One of the resistors R_{E2} is bypassed and the other one R_{E1} is not.
- Both resistors $R_{E1}+R_{E2}$ effects the DC bias while only R_{E1} effects the AC voltage gain i.e.

$$A_v = \frac{R_C}{r_e' + R_{E1}}$$

Figure 12 Swamped amplifier with partial R_F bypass

- If R_{E1} is at least ten times larger than r_e^\prime then the effect of is greatly reduced and the voltage gain for the swamped amplifier is

$$A_v \approx \frac{R_C}{R_{E1}}$$

6.3.4.2 Effect of Swamping on Amplifier's Input Resistance

- If R_E is completely bypassed then the input resistance at the base of an amplifiers is given by $R_{in(base)} = \beta_{ac} r'_e$.
- With partial bypass in swamped amplifier, the input resistance at the base is given by

$$R_{in(base)} = \beta_{ac}(r_e' + R_{E1})$$

NOTE: REFER EXAMPLE 6-7 & 6-8 PAGE 272

6.3.4 Current Gain & Power Gain

- The current gain from base to collector is I_c/I_b or β_{ac} .
- However the overall current gain of a CE amplifier is

$$A_i = \frac{I_c}{I_s}$$

- I_s is the total signal input current produced by the source and is given by

$$I_s = \frac{V_s}{R_s + R_{in(tot)}}$$

- The overall power gain is the product of overall voltage gain, A'_{ij} , and the overall current gain, A_{ij}

$$A_p = A_v' A_i$$

6-4 THE COMMON-COLLECTOR AMPLIFIER

- The common-collector (CC) amplifier is usually referred to as an emitter-follower (EF).
- The ac input voltage is applied to the base and output is taken from the emitter.
- Its voltage gain is approximately equal to 1.
- The phase of input voltage and output voltage is the same i.e. phase difference is 0.
- Its main advantage is high input resistance and high current gain.
- The emitter-follower circuit with voltage divider bias is shown in Figure 13.

Figure 13 Emitter-follower with voltage divider bias

6.4.1 Voltage Gain

 Due to the circuit configuration (AC equivalent shown in Figure 14), the voltage gain of EF amplifier is given as

$$A_v = \frac{V_{out}}{V_{in}} = \frac{V_e}{V_h} \approx 1$$

6.4.2 Input Resistance

- One of the advantages of EF circuit is that it provides high input resistance.
- In the case of EF amplifier the R_E is never bypassed as the output is taken across $R_e = R_E || R_L$.
- Therefore the AC input resistance to the base of the amplifier is given as

$$R_{in(base)} \approx \beta_{ac}(r'_e + R_e)$$

- If $R_{\rho} \gg r_{\rho}'$, then the input resistance at the base is simplified to

$$R_{in(base)} \approx \beta_{ac} R_e$$

- As R₁, R₂ and $R_{in(base)}$ all appear in parallel therefore the total input resistance is given by

$$R_{in(base)} = R_1 ||R_2|| R_{in(base)}$$

Figure 14 EF AC equivalent circuit

6.4.3 Output Resistance

- The output resistance of the EF amplifier is given as

$$R_{out} \approx \left(\frac{R_s}{\beta_{ac}}\right) ||R_E$$

6.4.4 Current Gain and Power Gain

- The current gain of the EF amplifier is given as

$$A_i = \frac{I_e}{I_{in}}$$

where $I_{in} = V_{in}/R_{in(tot)}$.

The power gain is the product of voltage gain and current gain i.e.

$$A_{v} = A_{v}A_{i}$$

- As the voltage gain is approximately equal to 1 therefore power gain becomes

$$A_p \approx A_i$$

NOTE: REFER EXAMPLE 6-9 PAGE 279

6-5 THE COMMON-BASE AMPLIFIER

- Common-base (CB) amplifier provides high voltage gain with a maximum current gain of 1.
- Its input resistance is low so it's not good for certain applications.
- A common-base amplifier is shown in Figure 15.

Figure 15 Common-base (CB) amplifier

- In CB amplifier, base is the common terminal.
- The input voltage is applied to the emitter while output is taken through the collector terminal.
- There is no phase difference between the input voltage and output voltage signals.

6.5.1 Voltage Gain

- The voltage gain of a CB amplifier is given by (if $R_E \gg r_e'$)

$$A_v = \frac{V_{out}}{V_{in}} = \frac{V_e}{V_c} = \frac{R_c}{r_e'}$$

Where $R_c = R_C || R_L$.

6.5.2 Input Resistance

- As the input terminal is emitter, we are going to find out $R_{in(emitter)}$ which is given by

$$R_{in(emitter)} \approx r_e'$$

- As r_e' is usually small therefore the input resistance of CB amplifier is low.

6.5.3 Output Resistance

The output resistance of a CB amplifier is give by

$$R_{out} \approx R_C$$

6.5.4 Current Gain and Power Gain

- The current gain of the CB amplifier is approximately equal to 1.
- As $I_{in} = I_e$ and $I_{out} = I_c$ and we know that $I_c \approx I_e$, so

$$A_i = \frac{I_e}{I_c} \approx 1$$

- Since current gain of CB is approximately equal to 1, the power gain of the CB is then given by

$$A_p \approx A_v$$

NOTE: REFER EXAMPLE 6-11 PAGE 285

6-6 MULTISTAGE AMPLIFIERS

- Two or more amplifiers can be connected in a **cascaded** arrangement.
- The output of the first becomes the input of the second.
- Each amplifier is known as a stage.
- The main function of multistage amplifiers is to increase the overall voltage gain.

6.6.1 Multistage Voltage Gain

The overall voltage gain of cascaded amplifiers is the product of the individual voltage gains.

$$A'_{v} = A_{v1}A_{v2}A_{v3} \dots A_{vn}$$

Where n is the number of stages.

Figure 16 Cascaded amplifiers

- Amplifier voltage gain is often expressed in decibels (dB) as

$$A_{v(dB)} = 20 \log A_v$$

6.6.2 Capacitively-Coupled Multistage Amplifier

- Each stage in capacitively-coupled multistage amplifier is connected with a coupling capacitor.
- Figure 17 shows a 2-stage amplifier where both stages are connected through coupling capacitor C₃.

Figure 17 Two-stage common-emitter amplifier

6.6.2.1 Voltage gain of the First Stage

- To determine the voltage gain of the first stage, we need to understand that the bias resistors of the second stage R₅ and R₆ appear as load to the first stage.
- Also the input resistance to the base of Q_2 , $R_{in(base2)}$ will also be considered as load to the first stage.
- This creates a loading effect for the amplifier of the first stage (therefore will reduce gain of first stage).
- Q1 of the first stage sees R_3 , R_5 , R_6 and $R_{in(base2)}$ all in parallel as shown in Figure 18.
- So the ac collector resistance of the first stage is

$$R_{c1} = R_3 ||R_5||R_6||R_{in(base2)}|$$

- The voltage gain of first stage is therefore given as

$$A_{v1} = \frac{R_{c1}}{r_e'}$$

Input resistance of second stage $V_{in} \circ \bigvee_{in} Q_1$ $R_3 \qquad R_5 \qquad R_6 \qquad R_{in(base 2)} \qquad R_{in(base 2)}$

Figure 18 AC equivalent of first stage

6.6.2.2 Voltage gain of the Second Stage

- As the second stage has no load resistance so the gain is

$$A_{v2} = \frac{R_7}{r_e'}$$

6.6.2.3 Overall Voltage Gain

- The overall voltage gain the amplifier in Figure 17 will be $A_{v}'=A_{v1}A_{v2}$.

KEY FORMULAS OF THE CHAPTER

	Configuration			
Quantity	Common Emitter Common Collector Common Base			
AC emitter resistance	$r'_e = \frac{25mV}{I_E}$	$r_e' = \frac{25mV}{I_E}$	$r'_e = \frac{25mV}{I_F}$	
AC voltage at the base	With internal source resistance:	With internal source resistance:	I _E	
	$V_b = \left(\frac{R_{in(total)}}{R_s + R_{in(total)}}\right) V_s$ Without internal source	$V_b = \left(\frac{R_{in(total)}}{R_s + R_{in(total)}}\right) V_s$		
	$\frac{\text{resistance:}}{V_b = V_s}$	$\frac{\text{Without internal source}}{\text{resistance:}}$ $V_b = V_s$		
AC voltage at the collector	$V_c = A_v' V_s$	$v_b - v_s$	$V_c = A_v' V_s$	
Input Resistance	$R_{in(base)} \approx \beta_{ac} r'_e$ <u>Swamped Amplifier:</u> $R_{in(base)} \approx \beta_{ac} (r'_e + R_{E1})$	$R_{in(base)} pprox eta_{ac}(r'_e + R_e)$ $If R_e \gg r'_e$ $R_{in(base)} pprox eta_{ac}R_e$ Where $R_e = R_E R_L$	$R_{in(emitter)} \approx r_e'$	
Output Resistance	$R_{out} \approx R_C$	$R_{out} \approx \left(\frac{R_s}{\beta_{ac}}\right) R_E $	$R_{out} \approx R_C$	
Voltage Gain	$\frac{\text{Without Load:}}{A_v = \frac{V_C}{V_b} = \frac{R_C}{r'_e}}$ $\frac{\text{With Load:}}{A_v = \frac{R_C R_L}{r'_e} = \frac{R_C}{r'_e}}$ $\frac{\text{Without Bypass Capacitor:}}{A_v = \frac{R_C}{r'_e + R_E}}$ $\frac{\text{Swamped Amplifier:}}{A_v = \frac{R_C}{r'_e + R_{E1}}}$ $\frac{\text{If } R_{E1} > 10r'_e\text{:}}{A_v \approx \frac{R_C}{R_{E1}}}$ $\frac{\text{Attenuation:}}{Attenuation} = \frac{V_s}{V_b} = \frac{R_s + R_{in(tot)}}{R_{in(tot)}}$ $\frac{\text{Overall Voltage Gain:}}{A'_v = \left(\frac{V_b}{V_s}\right) \left(\frac{V_c}{V_b}\right) = \left(\frac{V_b}{V_s}\right) A_v = \frac{V_c}{V_s}}$ $A_i = \frac{I_c}{I_s}$	$A_vpprox 1$	$A_v = rac{V_c}{V_e} = rac{R_c}{r_e'}$ Where $R_c = R_C R_L$	
Current Gain	$A_i = \frac{I_c}{I_s}$ Where $I_s = \frac{V_s}{R_s + R_{in(tot)}}$	$A_i = \frac{I_e}{I_{in}}$	$A_i = \frac{I_c}{I_e} \approx 1$	
Power Gain	$A_p = A_v' A_i$	$A_p \approx A_i$	$A_p \approx A_v$	