Sample Solutions for Tutorial 2

Question 1. Let $K := \inf(A), L := \sup(A), M := \inf(B)$ and $N := \sup(B)$.

 $\mathbf{A} \cup \mathbf{B}$: Take $x \in A \cup B$, so that $x \in A$ or $x \in B$.

If $x \in A$, then $x \le L \le \max\{L, N\}$.

Otherwise, $x \in B$, and so $x \le N \le \max\{L, N\}$.

Hence, $x \leq N \leq \max\{L, N\}$ for all $x \in A \cup B$.

Thus, $A \cup B$ is bounded above by $max\{L, N\}$.

Take $S < max\{L, N\}$. Then either S < L or S < N.

In the former case, we can find $x \in A$, with $S < x \le L$, whence S is not an upper bound for $A \cup B$, as $A \subseteq A \cup B$.

In the latter case, we can find $x \in B$, with $S < x \le N$, whence S is not an upper bound for $A \cup B$, as $B \subseteq A \cup B$.

Hence is the least upper bound for (supremum of) $A \cup B$.

 $\mathbf{A} \cap \mathbf{B}$: Take $x \in A \cap B$, so that $x \in A$ and $x \in B$.

Since $x \in A$, we have $x \geq K$.

Since $x \in B$, we have $x \ge M$.

Since $x \ge K, M$, we have $x \ge \max\{K, M\}$.

Thus, $A \cap B$ is bounded below by $\max\{K, M\}$. Being a set of real numbers, that is bounded below, $A \cap B$ has an infimum and $\inf(A \cap B) \ge \max\{K, M\}$.

To see that equality need not hold, let $A := \{0, 2\}$ and $B := \{1, 2\}$.

Then $\inf(A) = 0$, $\inf(B) = 1$, so that $\max\{\inf(A), \inf(B)\} = \max\{0, 1\} = 1$.

On the other hand, $\inf(A \cap B) = \inf\{2\} = 2$.

Question 2. Plainly, the sum of two numbers is the same as the sum of their maximum and their minimum, so that for real numbers a, b,

$$\max\{a, b\} + \min\{a, b\} = a + b \tag{*}$$

Similarly, the absolute value of their difference is the smaller subtracted from the latter, or,

$$\max\{a, b\} - \min\{a, b\} = |a - b| \tag{**}$$

Adding (**) to (*) yields $2 \max\{a, b\} = a + b + |a - b|$, or

$$\max\{a, b\} = \frac{a + b + |a - b|}{2}.$$

Subtracting (**) from (*) yields $2\min\{a,b\} = a+b-|a-b|$, or

$$\min\{a, b\} = \frac{a + b - |a - b|}{2}.$$

Question 3.

(i): Take $n \in \mathbb{N}$. Then

$$\frac{1}{2^{n+1}} = \frac{1}{2} \frac{1}{2^n}$$

$$< \frac{1}{2^n}$$
 as $0 < \frac{1}{2} < 1$.

Hence we can arrange the elements of A in strictly decreasing order as

$$A := \{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\}$$

It follows immediately that 1 is the largest element of A, whence A is bounded above and has a supremum, 1, which is actually its maximum.

Since every element of A is positive, it follows immediately that A is bounded below by 0.

We now use the Principle of Mathematical Induction to show that, for every $n \in \mathbb{N}$, $2^n n$.

n = 0, 1: In these cases we have

$$2^0 = 1 > 0$$
 and $2^1 = 2 > 1$.

 $\mathbf{n} \geq \mathbf{1}$: We make the inductive hypothesis that $2^n > n$. Then

$$2^{n+1} = 2.2^n$$

> $2n$ by the Inductive Hypothesis
= $n+n$
> $n+1$ as $n > 1$.

This completes the proof by mathematical induction.

Take a>0. Then $\frac{1}{a}>0$. Since $2^n>n$, for every natural number $n, 2^n$ grows without bound as n increases. Hence we can find a natural number, say k, with $2^k>\frac{1}{a}$, or, equivalently, $0<\frac{1}{2^k}< a$.

Since $\frac{1}{2^k} \in A$, we have shown that a is not a lower bound for A. Thus $\sup(A) = 0$.

Since $\bar{0} \notin A$, A has an infimum, but not a minimum;

It follows from the Archimedean property of the real numbers that every integer n can be written in precisely in one of the forms 4k, 4k + 1, 4k + 2 or 4k + 3, where k is itself an integer. Then there are four possibilities for $\cos(b\frac{pi}{2})$, namely:

In this case $\cos(n\frac{\pi}{2}) = \cos(2k\pi) = \cos 0 = 1$ as $\cos(x + 2\pi) = \cos x$.

 $\begin{bmatrix} \mathbf{n} = 4\mathbf{k} + \mathbf{1} : & \text{In this case } \cos(n\frac{\pi}{2}) = \cos(2k\pi + \frac{\pi}{2}) = \cos\frac{\pi}{2} = 0 \text{ as } \cos(x + 2\pi) = \cos x. \\ \mathbf{n} = 4\mathbf{k} + \mathbf{2} : & \text{In this case } \cos(n\frac{\pi}{2}) = \cos(2k\pi + \pi) = \cos\pi = -1 \text{ as } \cos(x + 2\pi) = \cos x. \\ \mathbf{n} = 4\mathbf{k} + \mathbf{3} : & \text{In this case } \cos(n\frac{\pi}{2}) = \cos(2k\pi + \frac{3\pi}{2}) = \cos\frac{3\pi}{2} = 0 \text{ as } \cos(x + 2\pi) = \cos x.$

Thus $B = \{-1, 0, 1\}$ which is, plainly, bounded, with -1 as minimum and 1 as maximum.

In order for the inequality $\frac{x}{1+x} \ge 0$, we must have $1+x\ne 0$, or, equivalently, $x\ne -1$. If $x \ ne - 1$, then either x < -1 or x > 1.

In the former case,

$$\frac{x}{1+x} \le 0 \iff x \le 0(1+x) = 0,$$

which is clearly always the case, since -1 < 0.

In the latter case

$$\frac{x}{1+x} \ge 0 \iff x \ge 0(1+x) = 0,$$

which is only the case when $x \geq 0$.

Hence $C = \{x \in \mathbb{R} \mid x < -1 \text{ or } x \geq 0\}$, and this is plainly bounded neither below nor above.

Observe that for $x \neq -1$ (iv):

$$\frac{x}{1+x} = \frac{1+x-1}{1+x} = \frac{1+x}{1+x} - \frac{1}{1+x} = 1 - \frac{1}{1+x}.$$

Since $x \ge 0, 1 + x \ge 1 > 0$, whence $0 < \frac{1}{1+x} \le 1$. Thus, $0 \le 1 - \frac{1}{1+x} < 1$, or, equivalently,

$$0 \le \frac{x}{1+x} < 1.$$

It follows immediately that D is bounded above by 1 and below by 0.

Moreover, since $\frac{0}{1+0} = 0$ and $0 \ge 0$, we see that $0 \in D$, whence $\min(D) = 0$.

Choose a real number, r, with 0 < r < 1. Then 0 < 1 - r < 1, whence $\frac{1}{1-r} > 1$.

Choose a real number, t, with $t > \frac{1}{1-r} - 1 > 0$.

Then $1+t > \frac{1}{1-r} > 1$, whence $0 < \frac{1}{1+t} < 1-r < 1$, or equivalently, $-1 < -(1-r) < -\frac{1}{1+t} < 0$. Thus $0 < r = 1 - (1-r) < 1 - \frac{1}{1+t} = \frac{t}{1+t} < 1$. Since $\frac{t}{1+t} \in D$, we see that r is not an upper bound for D.

We conclude that $\sup(D) = 1$, but D has no maximum.

Question 4.

(i)
$$(2-i)(2i) = 2^2 - i^2 = 4 - (-1) = 5 = 5 + 0i$$
.
Thus $|(2-i)(2i)| = |5+0i| = 5$ and $\overline{(2-i)(2i)} = \overline{5+i0} = 5 - 0i = 5$.

(ii)
$$(6+5i)(2-7i) = (12-(-35)+i(-12+10) = 47-2i$$
.
Thus $|(6+5i)(2-7i)| = \sqrt{(47^2+(-2)^2)} = \sqrt{2213}$ and $\overline{(6+5i)(2-7ii)} = 47+2i$.

(iii)
$$\frac{2-i}{1+2i} = \frac{(2-i)(1-2i)}{(1+2i)(1-2i)} = \frac{(2.1-(-1)(-2))+i(2(-2)+(-1)(1))}{1+22} = \frac{0-3i}{5} = 0-i\frac{3}{5}.$$
Thus $|\frac{2-i}{1+2i}|-i\frac{3}{5}| = \frac{3}{5}$ and $\overline{\frac{2-i}{1+2i}} = \frac{3}{5}i$

(iv)
$$\frac{1-3i}{(2+i)^2} + \frac{1+i^3}{1+i} = \frac{(1-3i)(2-i)^2}{((2+i)(2-i))^2} + \frac{(1-i)(1-i)}{(1+i)(1-i)}$$
$$= \frac{(1-3i)(5-2i)}{25} + \frac{2-2i}{2}$$
$$= \frac{-1-17i}{25} + 1 - i$$
$$= \frac{24}{25} - \frac{42}{25}i$$

Thus
$$\left| \frac{1-3i}{(2+i)^2} + \frac{1+i^3}{1+i} \right| = \left| \frac{24}{25} - \frac{42}{25}i \right| = \frac{6}{25} |4-7i| = \frac{4\sqrt{65}}{5} = 4\sqrt{\frac{13}{5}}$$
 and

$$\frac{1-3i}{(2+i)^2} + \frac{1+i^3}{1+i} = \frac{24}{25} + \frac{42}{25}i$$