ECEN 5613 Lab-2 Report

Course Name: Embedded System Design Student Name: RUSHI JAMES MACWAN

This submission is created by Rushi James Macwan. Credits and courtesy to the TAs (Tristan and Kiran) for their immense help and support.

Lab-1 Part-1

1. Bytes of code space my program requires in the NVRAM – 35 Bytes

Explanation:

Based on the code provided in this lab write-up and the listing file associated with the submission, the code space usage in the NVRAM looks as given below:

NVRAM Address	Pu	rpose for using it	Equivalent memory space used in terms of Bytes
Range			v
0000H to 0005H	ini lor the	itial Accumulator itialization and the ng jump performed to e MAIN loop	5 Bytes
000BH to 001AH	uti rou tha des spa coo str add (ex int as (pl	discode space was alized for the ISR attine. I acknowledge at this is not the ideal sign/usage of the code acce since the given de space utilization de ictly overlaps with the dress location for IE1 external interrupt 1) derrupt vector address given in the datasheet dease see the below thage) which begins at 13H.	15 Bytes
0040H to 004FH		nis code space was clized for the MAIN op.	15 Bytes
Total code s	pace	utilization:	35 Bytes

Interrupt Sources and their Corresponding Interrupt Vectors

Source (Request Flags)	Vector	Vector Address
IE0	External interrupt 0	0003 _H
TF0	Timer 0 interrupt	000BH
IE1	External interrupt 1	0013 _H
TF1	Timer 1 interrupt	001B _H
RI + TI	Serial port interrupt	0023 _H
TF2 + EXF2	Timer 2 interrupt	002BH

Credits: Siemens (C501 Datasheet)

2. The ISR routine execution took the following time durations (theoretically and practically):

Code vs Oscillator Cycles breakup:

1.	ISR:	CPL P1.7	Osc Period: 12
2.		CLR TF0	Osc Period: 12
3.		INC A	Osc Period: 12
4.		CJNE A, #07H, REPEAT	Osc Period: 24
5.		MOV A, #00H	Osc Period: 12
6.		CPL P1.5	Osc Period: 12
7.	REPEAT:	PL P1.7	Osc Period: 12
8.		RETI	Osc Period: 24

Note: Here, the red part is not practically present in the lab DSO output as the code will toggle the test pin (P1.7) only after the initial "CPL P1.7" instruction is successfully executed. Similarly, the test pin will be toggled before the RETI instruction is executed and so the practical calculation of the ISR timing based on the DSO output will exclude the first and last lines of the ISR code. For more, please refer to the entire assembly code attached with the submission. The submitted code file contains all the appropriate explanation for the code.

ISR Execution Time (Theoretical)	ISR Execution Time (Practical)
For full ISR execution (i.e. when the	For full ISR execution, based on the
Timer 0 has overflowed for 7 times in	practical DSO output, it took 7.72 usec.
a row which equals to a period of 0.5	This is because the DSO will only see the
seconds and passes the execution	code execution of lines 2-7 which
through the CJNE instruction), the time	theoretically amounts into 84 oscillator
consumed will be from line 1 to 8 of the	cycles which corresponds to 7.595 usec.
ISR code which sums up to a total	The practical value differs a little from the
oscillator period of 120 cycles. For, one	theoretical value due to the inaccuracies of
oscillator cycle, the time period will be	the DSO, the inaccuracies in the
0.0904 usec and therefore for 120	measurement and the measuring probes.

cycles, the time duration will be 10.850	
usec.	
For incomplete ISR execution (cases	For incomplete ISR execution, the
where Timer 0 has not overflowed for	practical DSO output was 5.42 usec . This
7 times and the CJNE jump is	is because the DSO will only see the code
performed), the oscillator periods will	execution of lines 2-4 and 7 which
be equal to that of 96 cycles (code lines	amounts to period of 60 oscillator cycles
1 to 4 and 7 to 8) which corresponds to	which theoretically corresponds to 5.425
8.680 usec.	usec. Again the slight variance might be
	due to the above mentioned reasons.

Short ISR timing based on P1.7 toggling

Long ISR timing based on P1.7 toggling

SPLD WinSim Code Comments:

The SPLD code takes the following parameters as inputs and outputs for the chip select logic:

Inputs	Outputs
A15 – the address pin on 8051. As this	/OE – The output enable pin of the
pin goes low, the NVRAM is activated	NVRAM is held low (meaning that the
because of the reason that the first	NVRAM can send code data to the 8051)
32kB in the memory map starting from	only when the chip is active and /PSEN
0000H to 7FFFH should correspond to	goes low (meaning only when 8051 is
the NVRAM address space. This	actually reading the code from NVRAM).
directly requires that the A15 pin must	
be held low in order for the NVRAM to	
be selected.	
/PSEN – the program store enable	/CE – The chip enable signal goes low
active-low pin. As this pin goes low,	(which means that NVRAM becomes
8051 will be reading code from the	active for usage) only when all the input
internal/external code space	signals go low. The reason for this is
(whichever is specified through	already mentioned on the left: to consume
hardware or software means). In our	as less power as possible.
case, since we are holding the /EA line	
low, it means that 8051 will read code	
from the external code space only (in	
our case NVRAM) as it happens to be	

the external code storage device. Also,	
the NVRAM will be activated only	
when all of the three signals: A15,	
/PSEN and /EA go low.	
/EA – Although the /EA line is	
externally grounded so that it always	
remains low and has no decision	
making in the SPLD output, it is kept	
in order for future labs. While /EA line	
is not low, the external storage	
NVRAM will not be turned on to save	
power while it will be turned on only	
and only when all of the three input	
signals are low to ensure that the board	
consumes as less power as possible.	

Please, refer to the SPLD code provided in the submission for more information.

SPLD WinSim Output

Schematic Diagram:

The schematic diagram has been included in the submission, both in image format and the KiCad project file format.

Wiring Description:

Wire Colour	Purpose
RED	5V Power (Vcc)
BLACK	Ground (GND)
BLUE	Control Signals (e.g. ALE)
YELLOW	Address Bus (A0-A7 and A8-A15)
GREEN	Multiplexed Address and Data Bus (ADO-AD7)
ORANGE	Buffered Data (D0-D7)
GREY	Other necessary connections across the board

Lab-1 Part-2

MSP432 Codes:

The MSP432 Codes have been successfully modified based on the example codes. The screenshots folder contains the LED on-off timing of 200 ms as per the requirement (which is included here). The submitted code files include all the appropriate explanation for the code.

MSP432 LED blinking timing (200 ms on/off timing)