

The Half Wave Plate Rotator for the BLAST-TNG Balloon-borne Telescope c I R A

H. Setiawan^{1,2}, P. C. Ashton², G. A. Novak², F. E. Angilè³, M. J. Devlin³, N. Galitzki³, P. A. R. Ade⁴, S. Doyle⁴, E. Pascale⁴, G. Pisano⁴, C. E. Tucker⁴

¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI USA ²Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, IL USA ³University of Pennsylvania, Philadelphia, PA USA ⁴Cardiff University, Cardiff, Wales UK

BLAST Collaboration and the BLAST-TNG Telescope^[1]

- (Balloon-borne Large Aperture Submillimeter BLAST Telescope) is an international collaboration studying the roles of magnetic fields in star formation processes by observing polarized light from molecular clouds.
- The group has successfully launched two telescopes from Antarctica: *BLAST* (2005, 2006) and *BLAST-Pol* (2010, 2012).
- BLAST-TNG ("The Next Generation") is currently indevelopment and testing in preparation for a 2016 launch.

- wavelengths (250, 350, and submillimeter 500 μm).
- The telescope has **polarization capability**, using a rotating Half Wave Plate (HWP) and polarizationsensitive detectors.
- The light we are seeking to observe is **blocked by** Earth's atmospheric water vapor. The telescope's float altitude is above 99.5% of the Earth's atmosphere.

Polarimetry Method and the Half Wave Plate Rotator (HWPr)

Polarization states of the incoming light waves will be measured. The detectors at the end of the path have 4 different configurations: $(+)(\times)$. HWP will be rotated in four 22.50 steps using a HWP rotator (HWPr).

- The differences in signal power in different detectors will determine the polarization angle. Data from different HWPr angles will be compared to *minimize* systematic errors.
- The HWPr will be mounted inside BLAST-TNG optic box.
- The HWPr consists of several parts and mechanisms, as shown in this exploded view:

The exploded view of the current design of the Half Wave Plate rotator (HWPr). The Optics box of BLAST-TNG and HWPr dimension

HWPr Cold Testing

- To reduce noise in data, HWPr will operate at 4 K to avoid internal thermal radiation.
- Thus, a **cold-test is necessary** to make sure that *thermal* contraction, due to the low temperature, will not affect the functionality of HWPr.
- We used liquid Nitrogen and Helium to reduce the temperature.

Image by: BLAST Group

Electronics set-up to test the temperature inside cryostat.

- We designed a system to test the HWPR independently, adapting the SPARO cryostat and reading out thermometry with the EDAS-CE.
- The EDAS-CE reads in analog voltage signal, digitizes it, calculates the temperature associated with the voltage, and allows user to access the data remotely.
- The test results were **positive**: As it reaches 77 K and 4 K, the HWPr still turns and functions properly.

HWPr Torque and Friction Calculations

Preload arm of HWPr. Images by: BLAST Group

Preload Arm friction

- One ball bearing is attached to a spring loaded pivoting 'preload arm' to account for thermal contraction.
- The friction between the ball bearing and the geared rotor changes as the position of the spring is changed.
- The friction is accommodated by having sufficient input torque applied (next calculations).

Torque and Gear friction

Free body diagram of the gear ring (pointing horizon):

 $F_f = \mu \sum_{n} F_n = 3.64 N$

The relationship between input torque (M₁), applied to the driving rod, and output torque (M_2) in a worm gear:

• $y = lead angle = 4.77^{\circ}$

- M₁ increases linearly as µ increases, which is expected.
- Friction coefficient may change with temperature, causing uncertainty in the exact values. It also depends on the material (Phosphor Bronze).
- Based on some preliminary tests and references, the expected and realistic value is about 0.25 <u>+</u> 0.05.
- Test results have been positive. The HWPr still functions properly at low temperature.

Next Steps

- The HWP from Cardiff University (UK) will be installed in HWPr at UPenn.
- The HWPr will be integrated with the BLAST-TNG control system and will be employed for detector tests in coming months.
 - BLAST-TNG is on-schedule to launch December 2016.

[1] Galitzki, N., et al. [2006] "The next generation BLAST experiment," Journal of Astronomical Instrumentation **Vol. 3, Issue 2**, id. 1440001

• μ = friction coefficient between worm and gear

