Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

КАФЕДРА ОБЩЕЙ ФИЗИКИ Вопрос по выбору, 3 семестр

Измерение удельного сопротивления воздуха

Студент Ушаков Роман 513 группа

18 января 2017 г.

Цель работы

Измерение удельного сопротивления воздуха.

Оборудование

Линейка, карандаш, нить, два шарика для настольного тенниса, секундомер, резиновый или пластиковый предмет, который удобно электризовать (воздушный шарик «ФАКИ»).

Теория

Заряд уединенного заряженного шарика, подвешенного на тонкой нити в воздухе, с течением времени уменьшается. Это связано с конечной величиной удельного сопротивления воздуха ρ . Запишем закон Ома в дифференциальной форме:

$$\vec{j} = \vec{E}/\rho. \tag{1}$$

Теперь найдём величину тока разрядки:

$$I = \iint_{S} \vec{j} \, d\vec{S} = \frac{1}{\rho} \iint_{S} \vec{E} \, d\vec{S} = \frac{4\pi q}{\rho}. \tag{2}$$

Во втором переходе применена теорема Гаусса: $\iint_S \vec{E} \, d\vec{S} = 4\pi q$. Учитывая, что $I = -\dot{q}$, получаем дифференциальное уравнение:

$$\frac{dq}{dt} = -\frac{q}{\rho\varepsilon_0},\tag{3}$$

решением которого является функция $q(t) = q_0 e^{-t/\tau}$, где q_0 — начальный заряд шарика, $\tau = \varepsilon_0 \rho$ — время, за которое заряд мячика уменьшается в e раз.

Тогда ρ выражается через время $nonypaspsd\kappa u$ $T_{1/2}$:

$$\rho = \frac{T_{1/2}}{\varepsilon_0 \ln 2}.\tag{4}$$

Заметим, что закон Кулона неприменим в данных условиях вследствие неравномерности распределения индуцированных зарядов на шариках.

Эксперимент

Покроем теннисные шарики слоем графита (используя карандаш и упорство), затем подвесим их так, чтобы расстояние между нитями равнялось диаметру шарика $d_0 = 2R = 40$ мм. Длина нитей L = 140 см. Незаряженные шарики должны слегка соприкасаться. С помощью линейки будем измерять расстояние между шариками.

Калибровка установки

Заряжаем теннисные мячики с помощью воздушного шарика «ФАКИ» и измеряем расстояние между нитями на высоте 10 см от шариков d_1 . Затем разряжаем один из шариков, касаясь его рукой. После соударения шарики снова расходятся (их заряды при этом вдвое меньше, чем изначально), но на этот раз расстояние составляет d_2 . Калибровка проведена.

Вновь заряжаем шарики так, что расстояние между нитями, отсчитанное по линейке, было равным d_1 , и с помощью секундомера измеряем время $T_{1/2}$, за которое расстояние между нитями уменьшается до d_2 .

Измерения

I серия опытов: $d_1=73$ мм $\longrightarrow d_2=41$ мм.

№	1	2	3	4	5	6	7	8	9
$T_{1/2}, c$	468	471	474	490	463	453	448	501	451
ρ , 10^{13} Om · m	7.6	7.6	7.7	8.0	7.5	7.4	7.3	8.2	7.4

II серия опытов: $d_1 = 78$ мм $\longrightarrow d_2 = 43$ мм.

№	1	2	3	4	5	6	7	8	9
$T_{1/2}, c$	498	546	489	462	473	476	489	457	486
ρ , 10^{13} Om · M	8.1	8.9	8.0	7.5	7.7	7.8	8.0	7.5	8.0

III серия опытов: $d_1 = 76$ мм $\longrightarrow d_2 = 42$ мм.

Nº €	1	2	3	4	5	6	7
$T_{1/2}, c$	475	467	474	497	435	449	478
ρ , 10^{13} Om · M	7.8	7.6	7.7	8.1	7.0	7.3	7.8

В результате имеем

$$\rho = 7.7 \cdot 10^{13} \text{ Om} \cdot \text{M}, \tag{5}$$

$$\rho = 7.7 \cdot 10^{13} \text{ Om} \cdot \text{M},$$

$$\sigma_{T_{1/2}} = 23 \text{ c} \Rightarrow \sigma_{\rho} = 0.4 \cdot 10^{13} \text{ Om} \cdot \text{M}.$$
(5)
(6)

Следует отметить, что реальная величина удельного сопротивления воздуха существенно зависит от температуры и влажности и колеблется в диапазоне $\rho = 10^{13} \div 10^{15}$ Ом · м.

Вывод

В данной работе был продемонстрирован способ измерения удельного сопротивления воздуха. Однако данный способ применим не только к воздуху, но и к любым слабо ограниченным средам, в которых выполняется закон Ома.

Важно заметить, что при анализе результатов эксперимента не используется закон Кулона, поскольку заряженные шарики нельзя считать точечными зарядами: поверхностные заряды на них имеют сложную конфигурацию.

Источники

- [1] Д. В. Сивухин. Общий курс физики. Электричество
- [2] А. В. Гуденко. Удельное сопротивление воздуха // Т2–11А. IEPhO, 2015