

From: Tim UMT

Subject: Matriks dan Aplikasinya dalam Sistem Linear

Date: 23 Juni 2025

Eksplorasi Teori

Topik ini membahas konsep dasar matriks dan bagaimana ia digunakan untuk menyelesaikan sistem persamaan linear. Pendekatan yang digunakan mengutamakan **pemahaman**: bukan hanya mengetahui langkah-langkah, tapi juga mengapa langkah tersebut masuk akal secara matematis dan kontekstual.

Apa Itu Matriks? Mengapa Kita Menggunakannya?

Definisi: Matriks adalah susunan bilangan berbentuk persegi panjang (baris \times kolom). Contoh:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Mengapa matriks digunakan? Matriks menyederhanakan penyimpanan dan manipulasi data numerik, terutama dalam sistem persamaan linear dan transformasi.

Operasi Dasar Matriks

2.1 Penjumlahan dan Perkalian Skalar

Penjumlahan dilakukan elemen demi elemen. Perkalian skalar memperbesar setiap elemen.

2.2 Perkalian Matriks

Mengapa tidak seperti perkalian biasa? Karena dalam sistem linear, kita menggabungkan pengaruh dari setiap variabel ke setiap persamaan.

Jika:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

Maka:

$$AB = \begin{bmatrix} 1 \cdot 5 + 2 \cdot 6 \\ 3 \cdot 5 + 4 \cdot 6 \end{bmatrix} = \begin{bmatrix} 17 \\ 39 \end{bmatrix}$$

Apa artinya? Kita menjumlahkan kontribusi dari masing-masing variabel.

Sistem Persamaan Linear dan Matriks

3.1 Sistem Linear

Contoh sistem:

$$2x + y = 5$$

$$4x - y = 1$$

Kita tulis dalam bentuk matriks:

$$AX = B$$
, dengan $A = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \end{bmatrix}$, $B = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$

Pertanyaan penting: Kenapa ditulis sebagai matriks? Karena bentuk ini memungkinkan kita menggunakan operasi standar untuk menyelesaikan banyak sistem sekaligus, termasuk dengan komputer.

Penyelesaian: Eliminasi Gauss dan Invers Matriks

4.1 Eliminasi Gauss

Mengapa digunakan? Untuk menyederhanakan sistem menjadi bentuk yang mudah diselesaikan (segitiga bawah).

Langkah umum:

• Tukar baris jika perlu

- Eliminasi elemen di bawah pivot
- Substitusi mundur

4.2 Metode Matriks Invers

Jika A memiliki invers A^{-1} , maka solusi:

$$X = A^{-1}B$$

Pertanyaan: Mengapa ini berhasil? Karena jika kita kalikan kedua sisi dengan A^{-1} , maka:

$$A^{-1}AX = A^{-1}B \Rightarrow IX = A^{-1}B \Rightarrow X = A^{-1}B$$

Aplikasi dalam Dunia Nyata

- Ekonomi: Menyelesaikan model input-output antar industri.
- Fisika: Sistem gaya dalam benda tegar.
- Ilmu komputer: Grafik, jaringan, dan transformasi citra.

Inti Pemahaman: Matriks bukan hanya alat hitung—ia adalah bahasa yang efisien untuk menyatakan dan menyelesaikan sistem yang saling bergantung.

Refleksi UMT: Dari Matriks ke Makna

"Belajar matriks bukan sekadar menyelesaikan soal, tapi memahami keterkaitan antar variabel dan struktur sistem."

Pendekatan UMT mengajak kita untuk:

- Mengaitkan bentuk matriks dengan konteks nyata
- Memahami mengapa suatu teknik bekerja
- Menggunakan visual dan interpretasi, bukan hanya angka