电子科技大学

2006年攻读硕士学位研究生入学试题

科目名称: 413 计算机专业基础

第一部分 数据结构

	、单)	项选择	題: (每)	图1分,	共10分)								
1.	二义	、树层心	(遍历实	见时最适	合的数据	3结核	/ 是()。				188	
84	1	栈	92			2	队列			编				
	3	递归			4 9	4	广义表	iii			10			
2.	单钳	表中的	己指针数	(NIL) ソ	10时,	该链	長 为()。					
	1	双向	链表			2	广义表		16			(8 9 6) (8)		
	3	38787410	链表			XX20	哈希表						额	
3.	第i	趙处理	[是将 A[i+1], ····	···, A[n]	中关	建字最小	十者与	A[i]	(i=1	, 2, •	,	n-1)	进行
交	换的扩	非序算	法为().			- Sk	849						
	1	快速	排序			2	选择排	序						
27	3	冒泡	排序			4	插入排	序						
4.	设	T= (N, R),其中1	$I=\{A, B,$	C, D, E	, F,	G, H, 3	I, J}	, R={	< B,	D> ,	< B,	E>,	< B,
				H>, <										
			据结构是)		100 ₁₀₀							
	1	线性	表		## ## ##	2	树							
	30 A. Series (199	二叉	· . - :			4								
5.	用行	主顺序	存放一约	t数组 A,	岩A的	下限	为 1,元	素长	度为 L	,则	A 的	第i个	一元素	的存
放均	也址]	loc (Ai)为((3))					30	8	W		
	1	loc (/	41)+(i-1)*L		2	loc (A1))+i*[•				1.6%	
	(2000)	**	\1)+i*L+	1000		AG - 765	loc (A1)			×		12		
6.	设出	为带头	:结点单句	接的头	旨针,则	该表	为空的组	条件义	J (12) .		
	2202	H=NIL		2 F			3 H t			93. 35.	4	H†.n	ext=i	NIL
7.	设 m=	16, Ha	sh 函数》	JH (key) = key	mod	13,现到	K 用再	哈希	法Hi	=RH	(ke	y) 处	理冲
突,	RHi	分别)	9: H (ke	ey) + 1	,平方电	以中沒	移位	登加剂	去, ····	, 问	key	=55 ff	力第二	次冲
突均	也址 R	H ₂ 为()				66 3632	**************************************		8 8			
	① (j	2 (③ 03				4			100
3.	关键	字序	列为 22,	12, 13	3, 8, 9), 25	5, 33,	42,	44,	38,	24,	48,	60,	58,
74,	49,	86,	53,则	第二块	的指针工	页值.	为()			58	S 5	
	① 1		•	2 4	-		3 6	**	68	23 23	4	7	- SE	
). '				,稳定的	り算法是	() .	•				19692	62	<i>\$1</i>
		希尔排		96		2	快速排序	产	27.	60 62	85	. 10 10	88 88	
	•4	基数排	30 3 - NO			20.000	堆排序	16 44	·				**	
0.	在广	义表际	引层结点的	连存储结	构中,当	á tag	=0 时,	tp的	含义义) (x ())		
	er e			计算机	专业基础	试题	共6页	〔,第1	页	×.				

- ① 链接同层下一结点的指针域
- ③ 链接同层下一子表的指针域
- ② 表尾指针域
- ④ 表头指针域

	1年 ペク 日氏	(何如 八	++-	00	11
>	県 工	(每空2分,	大	44	75)

1.	设网中的顶点数为 n, 边的条数为 e, 则普里姆 (Prim) 最小生成树算法的时间复杂
	度为,适合于边的网,克鲁斯卡尔(Kruskal)最小生成树第
	法的时间复杂度为。
2.	树是以结点的分支定义
3.	程序设计是的选用和设计的组合。
4.	堆排序关键两步为和。
5.	广义表难以用存储结构,而适合编写递归算法的广义表的存储结构是
	· · · · · · · · · · · · · · · · · · ·

三、简答题: (每题6分,共30分)

- 1. 对弗洛伊德(Floyed) 每一对顶点之间的最短路径算法试回答: 算法时间复杂度,A^[k][i,j] 的含义和如何用该算法米判断图是否有回路。

	先序	中序	后序	层次
先序	X			
中序		X		
后序			X	
层次				X

3. 完全二叉树和 AVL 树, 用 、 X和具体数字回答下表三列问题。

	树的路径长度最短	树的带权路径长度最短	结点平衡囚子的取值
完全二叉树			
AVL 树			

- 4. 设有 n 个结点的二叉树,度为 2 的结点数为 n₂, 度为 1 的结点数为 n₁, 叫结点数为 n₂, 试分别写出哈夫曼树、完全二叉树和单枝二叉树 n₁ 的取值。
- 5. 回答 AOV 网和 AOE 网能解决的主要问题。

四、算法题: (共 13 分)

- 1. 二义树的结点度表示规定为:
- (1)将二叉树中所有结点按后序序列排列,
- (2)在每个结点中附加一个0~3的整数,以表示结点的分支状态:
- 0为叶结点, 1为只有左孩子, 2为只有右孩子, 3为有左右两个孩子。如下图的二叉树的结点度表示为:

试编写将二义树的结点度表示转换为二义树的二义链表表示的算法。

PROC change (r[1...n], n, t):

{r 为二义树的结点度表示向量,有两个分量: data 用米存放结点信息,num 存放结点的分支状态,n 是结点数,t 是二义树的二叉链表表示的根指针。二叉链结点结构为lchild、data 和 rchild 三个域。可以使用栈的基本运算: init(s)初始化栈操作,push(s,i)入栈操作,pop(s)出栈函数和 EMPTY(s)判栈空函数。}

ENDP: {change}

第二部分 操作系统

五	、 单项选择题(在每小题 2 分, 共 20 分)	
1.	下面关于检测死锁的叙述错误的是(3 3
	A. 检测死锁方法对系统资源的分配不加限制,只要有则可以进行分配	
	B. 检测死锁中系统需要反复检测各进程资源中请利分配情况	
	C. 检测死锁是预防系统卷入了死锁	
	D. 检测死锁只能发现死锁, 而不能消除死锁	
2.	在单处理器的多进程系统中,进程什么时候占用处理器和能占用多长时间,取得	人丁
	().	
	A. 进程相应的程序段的长度 B. 进程总共需要运行时间多少	
*	C. 进程自身和进程调度策略 D. 进程完成什么功能	
3.	进程状态由就绪状态转化到运行状态是由()引起的。	
	A. 中断事件 B. 进程状态转换	
	C. 进程调度 D. 程序被创建为进程	
4.	实时系统()。	
	A. 是依赖人为干预的监督和控制系统	
	B. 必须既要及时响应、快速处理,又要有高可粘性和安全性	
22	C. 强调系统资源的利用率	
72000-00	D. 实质上是批处理系统和分时系统的结合	
5.	下面有关选择进程调度算法的准则错误的是()。	
	A. 尽量提高处理器利用率	
	B. 尽可能提高系统吞吐量	
	B. 适当增长进程在就绪队列中的等待时间	
	D. 尽快响应交互式用户的请求	
6.	UNIX 系统中的 trap()指令()。	
	A. 是可能影响系统安全的一类指令	
	B. 即允许操作系统程序使用,又允许用户程序使用	
	C. 是系统态和用户态运行的基本单位	
_	D. 是一种存储保护方法	
7.	关于 I/O 中断使用中不正确的描述是()	12.
	A. I/O 中断是中央处理器和通道协调工作的一种手段	
	8. 当议奋战阵时可形成操作开闭 1/0 中国	
	C. I/O 中断可用于表示输入输出操作正常结束	
	D. 通道根据 I/O 中断了解输入输出操作的执行情况	
8.	能实现存器保护方法()。	
	A. 当"基址寄存器值=访问地址=限长寄存器值"时不允许访问	
	B. 每次地址访问需修改基址寄存器和限长寄存器的值	

C. 基址寄存器+限长寄存器的值是访问的有效地址

D. 采用基址寄存器和限长寄存器可以实现存储保护

9. 牙	E结构文件的含义是()
	A. 变长记录的文件 B. 索引文件
	C. 流式文件 D. 索引顺序文件
	一个正在访问临界资源的进程由于中请等待 1/0 操作而被中断时(
	A. 可以允许其他进程进入与该进程相关的临界区
	B. 不允许其他进程进入任何临界区
	C. 可以允许其他就绪进程抢占处理器,继续运行
	D. 不允许任何进程抢占处理器
六、	多项选择题(在每小题2分,共10分)
1.	下面有关分区存储管理的正确说法是(
	A. 一个分区的存储管理又称单近续存储管理
	B. 多分区存储管理可以为固定分区方式
	C. 固定分区管理采用静态重定位方法把作业装入到分区中
	D. 可变分区管理采用动态重定位需要硬件支持,即下限寄存器和上限寄存器
	E. 多分区存储管理可以为可变分区方式
2.	屈多级反馈队列调度算法的性能(
	A. 该算法采用动态优先级
	B. 能满足各类型用户的需要
	C. 不同的队列运行不同长度的时间片
	D. 各就绪队列运行的时间片长度相同
	E. 由于是多个就绪队列, 所以采用的是静态优先级
3. 1	能正确描述进程和线程的概念(
	A. 线程可以是进程中独立执行的实体,一个进程可以包含一个或多个线程
10	B. 线程又称为轻型进程,因为线程都比进程小
	C. 多线程技术具有明显的优越性,如速度快、通信简便、设备并行性高
	D. 由于线程不作为资源分配单位,线程之间可以无约束地并行执行。
	E. 一个线程可以属于一个或多个进程
4.	屈面向对象技术的基本概念()
	A. 在现实世界中具有相同属性
	B. 服从相同规则的一系列事物的抽象
	C. 在面向对象系统中的具体事物称为对象的实例
	D. 一个对象是由数据结构和一组操作构成
	E. 对象中的数据结构和操作对外都是公开的
5.	SPOOLing 系统的输入井和输出井表示()
	A. 磁盘上的两个存储器
	B. 内存中的两个缓冲区
	C. 输入进程和输出进程
	D. 输入设备和输出设备

E. 存放用户的输入数据和输出数据的外存空间

七、判断改错题(将正确的划上"√".错误的划上"X".每小题2分,共10分	七、	判断改错题	(将正确的划上	" \".	错误的划上"	'X".	每小题 2 分,	共10分
---------------------------------------	----	-------	---------	-------	--------	------	----------	------

- 1. () 死锁一旦出现,则存在的四个条件是完全独立的。
- 2. () 在虚拟存储管理中, 其虚拟性是以多次性和对换性为基础的。
- 3. () 系统设置一张逻辑设备表能实现设备的独立性。
- 4. () 采用软件工程的目的是为了解决在软件开发中所出现的编程随意、软件质量不可保证以及维护困难等问题。
- 5. () UNIX 系统中采用成组链接法便丁管理一个文件占有地址空间和提高检索速度。

八、填空题(每小题2分,共10分)

1.	在引入线程的 0.8 系统中,则把作为调度和分派的基本单位,而把	
	作为资源的拥有的基本单位。	
2.	在程序的链接中,	旧标
	模块的拷贝。	
3.	设备管理的基本任务是:,及。	
	UNIX 系统, 使文件描述信息单独形成一个数据结构叫。在文件日录中	"的每
个	日录项,仅由文作名和构成。	52
5.	操作系统的基本特征有:	

九、简答题 (3个小题,共25分)

1. 假设有一组作业,它们的提交时间及运行时间如下表所示,在单道程序管理系统中, 采用高响应比优先调度算法,请给出调度顺序,各作业的周转时间,并计算出平均周 转时间和平均带权周转时间(按十进制计算)。(8分)

	作业号	提交时间	运行时间	**************************************
	1	10	0. 50	** **
	2	10. 20	0.30	
	3	10. 30	0.10	
	4	10. 50	0. 20	
dreathain r oce	t i totata till engelse i i til togge på til ett i state til attatationer i Massachada som.	A STATE OF THE PARTY OF THE PAR		totomera di Richard R. H. H.

2. 为满足 2⁶⁴ 地址空间的作业运行,采用页式存储管理,假设页面为 4K,在页表中的每个表目需占 8 个字节,则应满足系统的页式管理运行,则至少应采用多少级页表?(8 分)

3. 某系统有同类资源 M 个供 N 个进程共享,进程一次只能保留或释放一个单元。如果每个进程最多申请 X 个资源(1≤X≤M),且各进程的最大需求量之和小丁(M+N),说明该系统不会发生死锁。(9分)