# FEM Computational Aspects

Laboratori de Càlcul Numèric (LaCàN)
Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya (Barcelona)
http://www-lacan.upc.es



## Computation of matrices: assembly, reference element and numerical integration

We want to compute integrals as

$$K_{ij} = a(N_i, N_j) = \int_{\Omega} \nabla N_i \cdot (\mathbf{A} \nabla N_j) \ d\Omega$$

with element-by-element piece-wise polynomial functions.

$$K_{ij} = \sum_{e} \int_{\Omega_e} \nabla N_i \cdot (\mathbf{A} \nabla N_j) \ d\Omega = \dots$$

Gauss quadrature in each element.

#### **Elemental matrices**

Assembly of elemental matrices and vectors

$$\mathbf{K} = igwedge_e \mathbf{K}^e, \quad \mathbf{f} = igwedge_e \mathbf{f}^e$$

The elemental matrix **K**<sup>e</sup> has all the non-null integrals in the element  $\Omega_e$ 

$$K^e_{(i)(j)} = \int_{\Omega_e} \nabla N_{(i)} \cdot (\mathbf{A} \nabla N_{(j)}) \ d\Omega \qquad \begin{subarray}{l} (i) = 1, \dots, \mathtt{nnode} \\ (j) = 1, \dots, \mathtt{nnode} \end{subarray}$$

where (·) denotes the local numbering and nnode is the number of nodes in the element. The connectivity matrix gives the equivalence between local numbering and global numbering.



#### Computation of the elemental matrix

$$K_{(i)(j)}^e = \int_{\Omega_e} \nabla N_{(i)} \cdot (\mathbf{A} \nabla N_{(j)}) \ d\Omega \qquad \begin{subarray}{l} (i) = 1, \dots, \mathtt{nnode} \\ (j) = 1, \dots, \mathtt{nnode} \end{subarray}$$



Shape functions

$$N_i(x)=?$$

Numerical quadrature



Reference element





$$N_1(\xi, \eta) = \frac{1}{4}(\xi - 1)(\eta - 1)$$

$$N_2(\xi,\eta) = -\frac{1}{4}(\xi+1)(\eta-1)$$

$$N_3(\xi, \eta) = \frac{1}{4}(\xi + 1)(\eta + 1)$$

$$N_4(\xi,\eta) = -\frac{1}{4}(\xi-1)(\eta+1)$$





#### **ISOPARAMETRIC TRANSFORMATION**



Isoparametric transformation: change of variables from local coordinates (ξ,η) to physical coordinates (x,y)

 $[-1,1] \times [-1,1]$ 

#### **Isopatametric transformation**

$$x(\xi,\eta) = \sum_{i=1}^{\text{nnode}} x_i N_i(\xi,\eta), \quad y(\xi,\eta) = \sum_{i=1}^{\text{nnode}} y_i N_i(\xi,\eta)$$

$$\mathbf{J}(\xi,\eta) = \begin{pmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{pmatrix} = \begin{pmatrix} \frac{\operatorname{nnode}}{\sum_{i=1}^{n}} x_i \frac{\partial N_i}{\partial \xi} & \sum_{i=1}^{n \operatorname{nnode}} y_i \frac{\partial N_i}{\partial \xi} \\ \frac{\sum_{i=1}^{n \operatorname{nnode}} x_i \frac{\partial N_i}{\partial \eta} & \sum_{i=1}^{n \operatorname{nnode}} y_i \frac{\partial N_i}{\partial \eta} \end{pmatrix}$$

Properties: 
$$\nabla_{xy} = \mathbf{J}^{-1} \nabla_{\xi\eta} \quad dx \, dy = |\mathbf{J}| \, d\xi \, d\eta$$

$$dx \ dy = |\mathbf{J}| \ d\xi \ d\eta$$

#### **Examples**

1D linear element



$$u^{h} = u_{1}N_{1} + u_{2}N_{2}$$

$$N_{1}(\xi) = \frac{1}{2}(1 - \xi) \quad N_{2}(\xi) = \frac{1}{2}(1 + \xi)$$

Transformación isoparamétrica:

$$x(\xi) = x_1 N_1(\xi) + x_2 N_2(\xi) = \dots = \frac{x_1 + x_2}{2} + \frac{x_2 - x_1}{2} \xi$$

#### 1D quadratic element



$$u^{h} = u_{1}N_{1} + u_{2}N_{2} + u_{3}N_{3}$$

$$N_{1}(\xi) = \frac{1}{2}\xi(\xi - 1) \quad N_{2}(\xi) = \frac{1}{2}\xi(\xi + 1)$$

$$N_{3}(\xi) = (1 + \xi)(1 - \xi)$$

$$x(\xi) = x_1 N_1(\xi) + x_2 N_2(\xi) + x_3 N_3(\xi) = \dots$$
$$= x_3 + \frac{x_2 - x_1}{2} \xi + \left(\frac{x_1 + x_2}{2} - x_3\right) \xi^2$$



1D cubic element



### Q1: bi-linear









$$N_2(\xi,\eta) = -\frac{1}{4}(\xi+1)(\eta-1)$$

$$N_3(\xi,\eta) = \frac{1}{4}(\xi+1)(\eta+1)$$

$$N_4(\xi, \eta) = -\frac{1}{4}(\xi - 1)(\eta + 1)$$





## **Q2-biquadratic**















Linear hexahedra



### Change of variables for integration

 Change of variables to go from integrals in the physical element to integrals in the reference element [-1,1]×[-1,1]

$$\int_{\Omega_e} N_i f \, dx dy = \int_{\square} N_i f \, |\mathbf{J}| d\xi d\eta$$

$$\int_{\Omega_e} \nabla_{xy} N_i \cdot (\mathbf{A} \nabla_{xy} N_j) \ dxdy = \int_{\square} (\mathbf{J}^{-1} \nabla_{\xi\eta} N_i) \cdot (\mathbf{A} (\mathbf{J}^{-1} \nabla_{\xi\eta} N_j)) \ |\mathbf{J}| d\xi d\eta$$

### **Numerical integration**

- Numerical quadrature in the reference element (Gauss, quadrature or quadrature for simplexes):
  - Integration points  $oldsymbol{z}_q = (\xi_q, \eta_q)$  and weights  $\omega_g$

$$\int_{\Omega_e} N_i f \, dx dy \simeq \sum_{g=1}^{n_{\text{gauss}}} N_i(\boldsymbol{z}_g) f(x(\boldsymbol{z}_g), y(\boldsymbol{z}_g)) \, |\mathbf{J}(z_g)| \omega_g$$

$$\int_{\Omega_e} \nabla_{xy} N_i \cdot (\mathbf{A} \nabla_{xy} N_j) \ dx dy \simeq$$

 $n_{\tt gauss}$ 

$$\sum_{\mathbf{J}} \left( \mathbf{J}^{-1}(\boldsymbol{z}_g) \nabla_{\xi \eta} N_i(\boldsymbol{z}_g) \right) \cdot \left( \mathbf{A}(\boldsymbol{z}_g) \left( \mathbf{J}^{-1}(\boldsymbol{z}_g) \nabla_{\xi \eta} N_j(\boldsymbol{z}_g) \right) \right) |\mathbf{J}(\boldsymbol{z}_g)| \omega_g$$

Integration points





#### Triangles:

- Cubature rules for integration
- Linear (P1, {1, x, y}),
   quadratic (P2, {1, x, y,
   xy, x², y²}) ...



# FEM for Computational Mechanics

Laboratori de Càlcul Numèric (LaCàN)
Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya (Barcelona)
http://www-lacan.upc.es



## Mechanical problem: principle of virtual work

$$abla \cdot \boldsymbol{\sigma} + \rho \boldsymbol{b} = \mathbf{0} \qquad \text{en } \Omega \\
\boldsymbol{u} = \boldsymbol{u}_d \qquad \text{en } \Gamma_d \\
\boldsymbol{\sigma} \cdot \boldsymbol{n} = \boldsymbol{t} \qquad \text{en } \Gamma_n$$

$$\Gamma_d \cup \Gamma_n = \partial \Omega$$



$$\int_{\Omega} \boldsymbol{\varepsilon}(\boldsymbol{v}) : \boldsymbol{\sigma}(\boldsymbol{u}) \ d\Omega = \int_{\Omega} \rho \boldsymbol{v} \cdot \boldsymbol{b} + \int_{\Gamma_n} \boldsymbol{v} \cdot \boldsymbol{t} \ d\Gamma$$

for all virtual displacement v (with v=0 on  $\Gamma d$ )

#### **Deduction with weighted residuals**

PDE

$$\nabla \cdot \boldsymbol{\sigma} + \rho \boldsymbol{b} = \boldsymbol{0}$$

• Multipliying by v such taht v=0 on  $\Gamma_d$ 

$$-\int_{\Omega} \boldsymbol{v} \cdot (\nabla \cdot \boldsymbol{\sigma}) \ d\Omega = \int_{\Omega} \rho \boldsymbol{v} \cdot \boldsymbol{b} \ d\Omega$$

Using  $abla \cdot (oldsymbol{v} \cdot oldsymbol{\sigma}) = 
abla oldsymbol{v} : oldsymbol{\sigma} + oldsymbol{v} \cdot (
abla \cdot oldsymbol{\sigma})$ 

$$\int_{\Omega} \nabla \boldsymbol{v} : \boldsymbol{\sigma} \ d\Omega - \int_{\Omega} \nabla \cdot (\boldsymbol{v} \cdot \boldsymbol{\sigma}) \ d\Omega = \int_{\Omega} \rho \boldsymbol{v} \cdot \boldsymbol{b} \ d\Omega$$

and the Gauss divergence theorem (integration by parts)

$$\int_{\Omega} \nabla \boldsymbol{v} : \boldsymbol{\sigma} \ d\Omega - \int_{\partial \Omega} \boldsymbol{v} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \ d\Gamma = \int_{\Omega} \rho \boldsymbol{v} \cdot \boldsymbol{b} \ d\Omega$$

$$\int_{\Omega} \nabla \boldsymbol{v} : \boldsymbol{\sigma} \ d\Omega - \int_{\Gamma_d} \boldsymbol{v} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \ d\Gamma = \int_{\Omega} \rho \boldsymbol{v} \cdot \boldsymbol{b} \ d\Omega + \int_{\Gamma_n} \boldsymbol{v} \cdot \boldsymbol{t} \ d\Gamma$$

• Given that v=0 on  $\Gamma_d$ ,  $\sigma$ ·n=t on  $\Gamma_n$  and  $\sigma$  is a symmetric tensor

$$\int_{\Omega} \boldsymbol{\varepsilon}(\boldsymbol{v}) : \boldsymbol{\sigma} \ d\Omega = \int_{\Omega} \rho \boldsymbol{v} \cdot \boldsymbol{b} \ d\Omega + \int_{\Gamma_n} \boldsymbol{v} \cdot \boldsymbol{t} \ d\Gamma$$