L1 ISM. 2021-2022. Semestre 2. Mathématiques. DEVOIR MAISON A RENDRE (28 - 04 - 2022)

Exercice 1.

Soit (U_n) définie par $U_0 = 1$ et la relation de récurrence $U_{n+1} = \frac{U_n + 8}{2U_n + 1}$ et soit (V_n) définie par $V_n = \frac{U_n - 2}{U_n + 2}$, on pose $S_n = \sum_{k=0}^n V_k$

- 1. Montrer que (V_n) est une suite géométrique.
- 2. Exprimer V_n , U_n et S_n en fonction de n.
- 3. Déterminer le 20^e terme de U_n et de V_n .
- 4. Montrer que (U_n) converge et déterminer sa limite.

Exercice 2.

On considère la suite (U_n) définie sur \mathbb{N} par : $U_0 = 2$ et $U_{n+1} = \frac{U_n + 2}{2U_n + 1}$.

On admet que pour tout entier naturel $n, U_n > 0$.

- 1) a) Déterminer le $5^{i i m e}$ terme de (U_n) . On pourra en donner une valeur approchée à 10^{-3} près.

 - b) Vérifier que si n est l'un des entiers 0, 1, 2, 3 et 4 alors $U_n 1$ a le même signe que $(-1)^n$. c) Etablir que pour tout entier naturel n, $U_{n+1} 1 = \frac{-U_n + 1}{2U_n + 1}$.
- 2) On pose $V_n = \frac{U_n 1}{U_n + 1}$

n

- a) Etablir que pour tout entier naturel $n V_{n+1} = \frac{-U_n + 1}{3U_n + 3}$.
- b) Démontrer que la suite (V_n) est une suite géométrique. En déduire l'expression de V_n en fonction de
 - c) Exprimer V_n en fonction de n et déterminer la limite de la suite (U_n) .

Exercice 3.

On considère les deux suites (x_n) et (y_n) définies par $x_0 = 1$ et $x_{n+1} = \frac{2x_n + 3y_n}{5}$, $y_0 = 2 \text{ et } y_{n+1} = \frac{3x_n + 2y_n}{5}.$

- 1) On donsidère la suite (W_n) définie par $W_n = y_n x_n$ pour tout $n \in \mathbb{N}$. Démontrer que (W_n) est géométrique, convergente et déterminer sa limite.
- 2) Etudier le sens de variations des suites (x_n) et (y_n) .
- 3) Mintrer que les suites (x_n) et (y_n) convergent vers la même limite que nous noterons L.
- 4) Calculer $x_n + y_n$ pour tout $n \in \mathbb{N}$. En déduire la valeur de L.