人工神经网络

Artificial Neural Network: ANN

ANN的起源和结构

■■ 起源

历史上,科学家一直希望模拟人的大脑,造出可以思考的机器。人为什么能够思考?科学家发现,原因在于人体的神经网络。

- ◆ 外部刺激通过神经末梢,转化为电信号,转导到神经细胞(又叫神经元)。
- 无数神经元构成神经中枢。
- 神经中枢综合各种信号,做出判断。
- 人体根据神经中枢的指令,对外部刺激做出反应。

■ 人造神经元-感知器

逻辑回归

$$z = \theta_0 + \theta_1 x_1 + \theta x_2$$

$$y = g(z) = \frac{1}{1 + e^{-z}}$$

感知器

■ 人造神经元-感知器

逻辑回归

$$z = \theta_0 + \theta_1 x_1 + \theta x_2$$

$$y = g(z) = \frac{1}{1 + e^{-z}}$$

感知器

激活函数

• S函数(Sigmoid)

$$f(x) = \frac{1}{1 + e^{-x}}$$

• 双S函数

$$f(x) = \frac{1 - e^{-x}}{1 + e^{-x}}$$

••• 神经网络结构

▮浅层网络

添加少量隐层 浅层神经网络

hidden layer 1 hidden layer 2

深度神经网络

增多中间隐层 → 深度神经网络(DNN)

线性逼近

■ 线性分割

单层的感知机, 也是我们最常用的神经网络组成单元啦. 用它可以划出一条线, 把平面分割开。

$$y = w_1 x_1 + w_2 x_2 + b$$

$$w_1 = 1, w_2 = 1, b = -2$$

■北线性问题

● 异或问题

■週逻辑与

$$x_1, x_2 \in \{0, 1\}$$

$$\rightarrow y = x_1 \text{ AND } x_2$$

x_1	x_2	$h_{\Theta}(x)$	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

■■最优化目标

■週逻辑或

Example: OR function

x_1	x_2	$h_{\Theta}(x)$
0	0	0
0	1	1
1	0	1
1	1	1

线性组合

- 对线性分类器的『与』和『或』的组合
- 完美对平面样本点分布进行分类

■■最大间隔

结构	决策区域类型	区域形状	异或问题
无隐层	由一超平面分成两个		B A
单隐层	开凸区域或闭凸区域		A B B
双隐层	任意形状(其复杂度由单元数目确定)	٠ ئ	B A

训练参数

■■ BP算法

- "正向传播"求损失, "反向传播"回传误差
- 根据误差信号修正每层的权重

■ BP算法

● BP算法,也叫δ算法

● 以3层的感知器为例

■■ BP算法

● 输出层

$$E = \frac{1}{2}(d - O)^2 = \frac{1}{2} \sum_{k=1}^{\ell} (d_k - o_k)^2$$

● 误差展开至隐层

$$E = \frac{1}{2} \sum_{\kappa=1}^{\ell} [d_{\kappa} - f(net_{\kappa})]^{2} = \frac{1}{2} \sum_{\kappa=1}^{\ell} [d_{\kappa} - f(\sum_{j=0}^{m} \omega_{j\kappa} y_{j})]^{2}$$

● 误差展开至输入层

$$E = \frac{1}{2} \sum_{\kappa=1}^{\ell} d_{\kappa} - f[\sum_{j=0}^{m} \omega_{j\kappa} f(net_{j})]^{2} = \frac{1}{2} \sum_{\kappa=1}^{\ell} d_{\kappa} - f[\sum_{j=0}^{m} \omega_{j\kappa} f(\sum_{j=0}^{n} v_{ij} \chi_{i})]^{2}$$

■ 继续求解

- 误差E有了,怎么调整权重让误差不断减小
- (随机)梯度下降,梯度怎么算?

$$\Delta \omega_{j\kappa} = -\eta \frac{\partial E}{\partial \omega_{j\kappa}} j = 0, 1, 2, \dots, m; \qquad \kappa = 1, 2, \dots, \ell$$

$$\Delta v_{ij} = -\eta \frac{\partial E}{\partial v_{ii}} i = 0, 1, 2, \dots, n; \qquad j = 1, 2, \dots, m$$

● 更新权重

$$w_{jk} = w_{jk} + \Delta w_{jk}$$
$$v_{ij} = v_{ij} + \Delta v_{ij}$$

代码实例

■■ 生成数据集

```
1.0
                                       0.5
                                       0.0
                                       -0.5
import numpy as np
                                       -1.0
from sklearn.datasets import make moons -1.5 -1.0
                                                       0.0
                                                           0.5
                                                                1.0
                                                                         20
                                                                    1.5
import matplotlib.pyplot as plt
# 手动生成一个随机的平面点分布,并画出来
np.random.seed(0)
X, y = make\_moons(200, noise=0.20)
plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral)
plt.show()
```

■■逻辑回归


```
from sklearn.linear_model import LogisticRegressionCV
#咱们先来瞄一眼逻辑斯特回归对于它的分类效果
clf = LogisticRegressionCV()
clf.fit(X, y)

# 画一下决策边界
plot_decision_boundary(lambda x: clf.predict(x))
plt.title("Logistic Regression")
plt.show()
```

■ ANN:一个隐层,不同节点数

```
# 不同的隐层个数对结果的影响
# 那咱们来一起看看吧
plt.figure(figsize=(16, 32))
hidden_layer_dimensions = [1, 2, 3, 4, 5, 20, 50]
for i, nn_hdim in enumerate(hidden_layer_dimensions):
   plt.subplot(5, 2, i+1)
   plt.title('Hidden Layer size %d' % nn hdim)
   ann=MLPClassifier(alpha=0.01,epsilon = 0.01,solver='lbfgs',
                     hidden layer sizes=(nn hdim,),activation='tanh')
   ann.fit(X, y)
   # 画一下决策边界
   plot decision boundary(lambda x: ann.predict(x))
plt.show()
```


■ 案列分析

MNIST图片数据手写识别

- 图片数据:
 - 包含手写0到9的图片
 - 可以将图片信息转化为向量信息
 - 进行分类