Diskretna matematika 2

Zadaća 4 March 5, 2025 Borna Gojšić

- 1. a) Postoji li prirodan broj n > 1 takav da je $\varphi(n) = n$. Obrazložite!
 - b) Odredite sve prirodne brojeve n takve da je $\varphi(n) = n 1$.

Ri:

- a) Ne postoji, jer je za svaki prirodan broj n > 1, nzd(n, n) = n, pa je onda $\varphi(n) \le n 1$.
- b) Po prošlom zadtaku, znamo da je $\varphi(n) \leq n-1$ za sve n>1 te je $\varphi(1)=1$ pa to može vrijediti samo za n takve nemaju djelitelja 1< d< n, a to je točno definicija prostih brojeva.
- 2. Odredite sve prirodne brojeve n takve da je:
 - a) $\varphi(n) = 4$
 - b) $\varphi(n) = 20$
 - c) $\varphi(n) = 56$
 - d) $\varphi(n) = 66$
 - e) $\varphi(n) = 100$
 - f) $\varphi(n) = 162$

Rj: Neka je $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, tada je $\varphi(n) = p_1^{\alpha_1 - 1} (p_1 - 1) \cdots p_k^{\alpha_k - 1} (p_k - 1)$.

- a) $\varphi(n) = p_1^{\alpha_1-1}(p_1-1)\cdots p_k^{\alpha_k-1}(p_k-1) = 4$. Iz $p_i-1 \mid 4$ slijedi da je $p_i \in \{2,3,5\}$. Ako je $p_i=2$, onda je $\alpha_i \leq 3$, a ako je $p_i \neq 2$ je $\alpha_i=1$. Neka je $k=2^{\alpha_1}$ ili 1, onda imamo mogućnosti:
 - 1. $n=3\cdot k \implies \varphi(n)=2\cdot \varphi(k)=4 \implies \varphi(k)=2^{\alpha_1-1}=2 \implies n=2^2\cdot 3=12$
 - 2. $n=5 \cdot k \implies \varphi(n)=4 \cdot \varphi(k)=4 \implies \varphi(k)=2^{\alpha_1-1}=1 \implies n=5$ ili n=10
 - 3. $n=k \implies \varphi(n)=2^{\alpha_1-1}=4 \implies n=8$
- b) $\varphi(n) = p_1^{\alpha_1 1}(p_1 1) \cdots p_k^{\alpha_k 1}(p_k 1) = 20$. Iz $p_i 1 \mid 20$ slijedi da je $p_i \in \{2, 3, 5, 11\}$. Ako je $p_i = 2$, onda je $\alpha_i \leq 3$, ako je $p_i = 5$, onda je $\alpha_i \leq 2$, a ako je $p_i \neq 2, 5$ je $\alpha_i = 1$. Neka je $k = 2^{\alpha_1} \cdot 5^{\alpha_2}$ ili 1, onda imamo mogućnosti:
 - 1. $n = 3 \cdot k \implies \varphi(n) = 2 \cdot \varphi(k) = 20 \implies \varphi(k) = 10 \implies \emptyset$
 - 2. $n = 11 \cdot k \implies \varphi(n) = 10 \cdot \varphi(k) = 20 \implies \varphi(k) = 2 \implies n = 44$
 - 3. $n = 3 \cdot 11 \cdot k \implies \varphi(n) = 2 \cdot 10 \cdot \varphi(k) = 20 \implies \varphi(k) = 1 \implies n = 33$ ili n = 66
 - 4. $n = k \implies \varphi(n) = 20 \implies n = 25$ ili n = 50

- c) Iz $p_i-1 \mid 56=2^3 \cdot 7$ slijedi da je $p_i-1 \in \{1,2,4,7,8,14,28,56\}$, tj. $p_i \in \{2,3,5,29\}$. Nadalje, iz $p_i-1 \mid 7$ slijedi da je $n=29 \cdot m$, gdje je $\varphi(m)=2$. Dakle, $m \in \{3,4,6\}$, pa je $n \in \{87,116,174\}$.
- d) Iz $p_i-1\mid 66=2\cdot 3\cdot 11$ slijedi da je $p_i-1\in\{1,2,3,6,11,22,33,66\}$, tj. $p_i\in\{2,3,7,23,67\}$. Iz $p_i-1\mid 11$ slijedi:
 - 1. $p_i = 23 \implies n = 23 \cdot m$, gdje je $\varphi(m) = 3$. Ali, ne postoji m za koji je $\varphi(m)$ neparan broj veći od 1.
 - 2. $p_i = 67 \implies n = 67 \cdot m$, gdje je $\varphi(m) = 1$. Dakle, $m \in \{1, 2\}$ pa je $n \in \{67, 134\}$.
- e) Iz $p_i 1 \mid 100 = 2^2 \cdot 5^2$ slijedi $p_i 1 \in \{1, 2, 4, 5, 10, 20, 25, 50, 100\}$, tj. $p_i \in \{2, 3, 5, 11, 101\}$.
 - 1. Ako je $p_i = 101$, onda imamo n = 101 ili n = 202.
 - 2. Ako je $p_i = 11$, onda imamo $n = 11 \cdot m$, gdje je $\varphi(m) = 10$. Ali, to vrijedi samo za m = 11 i m = 22 pa nema rješenja u tom slučaju.
 - 3. Iz $p_i 1 \mid 5$ nemamo rješenja. Pa znamo da moramo imate $p_i = 5$. Dakle, $n = 5^3 \cdot m$, gdje je $\varphi(m) = 1$. Dakle, m = 1 ili m = 2 pa je n = 125 ili n = 250.
- f) Iz $p_i 1 \mid 162 = 2 \cdot 3^4$ slijedi $p_i 1 \in \{1, 2, 3, 6, 9, 18, 27, 54, 81, 162\}$, tj. $p_i \in \{2, 3, 7, 19, 163\}$.
 - 1. Ako je $p_i = 163$, onda imamo n = 163 ili n = 326.
 - 2. Ako je $p_i = 19$, onda imamo $n = 19 \cdot m$, gdje je $\varphi(m) = 9$, ali 9 je neparan broj veći od 1 pa nemamo rješenja u tom slučaju.
 - 3. Ako je $p_i = 7$, onda imamo $n = 7 \cdot m$, gdje je $\varphi(m) = 27$, ali 27 je neparan broj veći od 1 pa nemamo rješenja ni u tom slučaju.
 - 4. Ako je $p_i = 3$, onda imamo $n = 3^5 \cdot m$, gdje je $\varphi(m) = 1$. Dakle, m = 1 ili m = 2 pa je n = 243 ili n = 486.
- 3. Dokažite da ne postoji prirodan broj n takav da je $\varphi(n) = 14$.

Rj: Neka je $n=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$, tada je $\varphi(n)=p_1^{\alpha_1-1}(p_1-1)\cdots p_k^{\alpha_k-1}(p_k-1)$. Iz p_i-1 |14 slijedi $p_i-1\in\{1,2,7,14\}$, tj. $p_i\in\{2,3\}$. Dakle, imamo $n=2^{\alpha_1}\cdot 3^{\alpha_2}$, pa je $\varphi(n)=2^{\alpha_1-1}\cdot 1\cdot 3^{\alpha_2-1}\cdot 2=14\implies 2^{\alpha_1-1}\cdot 3^{\alpha_2-1}=7$. Desnu stranu jednadžbe dijeli 7, a lijevu ne pa nema rješenja. Analogno se ne dobije rješenje za $n=2^{\alpha_1}$ i $n=3^{\alpha_2}$.

4. Dokažite da ne postoje prirodni brojevi m i n takvi da je $\varphi(n) = 2 \cdot 7^m$. Uputa: Uočite da je $7^m \equiv 1 \pmod{3}$ za svaki $m \in \mathbb{N}$.

Rj: Neka je $n=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$. Ako $3\mid n$, onda imamo $3^2\nmid n$. Preptpostavimo suprotno, onda bismo imali $\varphi(n)\equiv 0\pmod 3$, ali $2\cdot 7^m\equiv 2\pmod 3$ što je kontradikcija. Neka je $n=2^\alpha\cdot 3^\beta\cdot p_1^{\alpha_1}\cdots p_k^{\alpha_k}$ za $\beta\in\{0,1\}$. Tada imamo dva različita slučaja (jer $2\cdot 7^m\not\equiv 0\pmod 4$):

1. Ako $2 \mid \varphi(n)$, onda imamo

$$(p_1-1)\cdot p_1^{\alpha_1-1}\cdots (p_k-1)\cdot p_k^{\alpha_k-1}=7^m$$

Budući da su svi $p_i > 3$, imamo $p_i = 6x_i \pm 1$. Točnije, moramo imati $p_i = 6x_i - 1$ za sve $i \in \{1, \ldots, k\}$ jer bi inače 6 dijelo lijevu stranu jednadžbe, ali ne bi dijeli desnu. Ali sada 2 dijeli lijevu stranu, ali ne dijeli desnu, što je kontradikcija. Dakle, nema rješenja u ovom slučaju.

2. Ako $2 \nmid \varphi(n)$, onda imamo $n = 2^{\alpha} \cdot p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ gdje je $\alpha \in \{0,1\}$. Tada imamo

$$(p_1-1) \cdot p_1^{\alpha_1-1} \cdots (p_k-1) \cdot p_k^{\alpha_k-1} = 2 \cdot 7^m$$

Budući da su svi $p_i > 3$, imamo $p_i = 6x_i \pm 1$. Točnije, moramo imati $p_i = 6x_i - 1$ za sve $i \in \{1, \dots, k\}$ jer bi inače 6 dijelo lijevu stranu jednadžbe, ali ne bi dijelio desnu. Sada vidimo da n mora imati samo jedan prosti faktor oblika 6x - 1 jer bi inače 4 dijelo lijevu stranu, ali ne bi dijelio desnu. Dakle, $\varphi(n) = 2(3x - 1) \cdot (6x - 1)^{\alpha_1} = 2 \cdot 7^m$, tj. $(3x - 1) \cdot (6x - 1)^{\alpha_1} = 7^m$. Dakle, $7 \mid 3x - 1$ i $7 \mid 6x - 1$, tj. $7 \mid 6(3x - 1) - 3(6x - 1) = 3$ što je kontradikcija. Dakle, nema rješenja ni u ovom slučaju.

5. Odredite sve prirodne brojeve n takve da je:

a)
$$\frac{\varphi(n)}{n} = \frac{2}{7}$$

b)
$$\frac{\varphi(n)}{n} = \frac{4}{11}$$

Rj: Neka je $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, tada je $\varphi(n) = p_1^{\alpha_1 - 1} (p_1 - 1) \cdots p_k^{\alpha_k - 1} (p_k - 1)$.

$$\frac{\varphi(n)}{n} = \frac{p_1^{\alpha_1 - 1}(p_1 - 1) \cdots p_k^{\alpha_k - 1}(p_k - 1)}{p_1^{\alpha_1} \cdots p_k^{\alpha_k}} = \frac{p_1 - 1}{p_1} \cdots \frac{p_k - 1}{p_k}$$

Ako je $\frac{\varphi(n)}{n} = \frac{a}{b}$ s nzd(a,b) = 1, i neka je $q_l \mid b$, onda je također $q_l \mid n$. Pretpostavimo da postoji neki $p_j > q_l$. To znači da se p_j skratio s nekim faktorom iz $(p_1 - 1) \cdots (p_k - 1)$. Ali $\varphi(p_j) = p_j - 1$ i $p_i - 1 < p_j$ za $i \in \{1, \dots, k\}$ pa se q_j nije mogao skratiti. Došli smo do kontradikcije, pa je $n = p_1^{\alpha_1} \cdots q_l^{\alpha_l}$. Također, ako za neki $1 vrijedi da nzd<math>(p, p_j - 1) = 1$ za sve $j \in \{1, \dots, k\}$ i $p \nmid b$, onda $p \nmid n$.

a) Znamo da je 7 najveći mogući prosti broj u rastavu od n. Također $p_i - 1 \in \{1, 2, 4, 6\}$ pa 5 nije prosti faktor od n. Dakle, imamo slučajeve:

1.
$$n = 2^{\alpha_1} \cdot 7^{\alpha_3} \implies \frac{\varphi(n)}{n} = \frac{1}{2} \cdot \frac{6}{7} = \frac{3}{7} \implies$$

2.
$$n = 3^{\alpha_2} \cdot 7^{\alpha_3} \implies \frac{\varphi(n)}{n} = \frac{2}{3} \cdot \frac{6}{7} = \frac{4}{7} \implies$$

3.
$$n = 2^{\alpha_1} \cdot 3^{\alpha_2} \cdot 7^{\alpha_3} \implies \frac{\varphi(n)}{n} = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{6}{7} = \frac{2}{7} \checkmark$$

Dakle, $\frac{\varphi(n)}{n} = \frac{2}{7}$ za $n = 2^{\alpha_1} \cdot 3^{\alpha_2} \cdot 7^{\alpha_3}$, gdje su $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{N}$.

b) Znamo da je 11 najveći prosti faktor od n. Također, $p_i - 1 \in \{1, 2, 4, 6, 10\}$ pa 7 nije prosti faktor od n te onda $p_i - 1 \in \{1, 2, 4, 10\}$ pa ni 3 nije prosti faktor od n. Imamo slučajeve:

1.
$$n = 2^{\alpha_1} \cdot 11^{\alpha_3} \implies \frac{\varphi(n)}{n} = \frac{1}{2} \cdot \frac{10}{11} = \frac{5}{11} \implies$$

2.
$$n = 5^{\alpha_2} \cdot 11^{\alpha_3} \implies \frac{\varphi(n)}{n} = \frac{4}{5} \cdot \frac{10}{11} = \frac{8}{11} \implies$$

3.
$$n = 2^{\alpha_1} \cdot 5^{\alpha_2} \cdot 11^{\alpha_3} \implies \frac{\varphi(n)}{n} = \frac{1}{2} \cdot \frac{4}{5} \cdot \frac{10}{11} = \frac{4}{11} \checkmark$$

Dakle, $\frac{\varphi(n)}{n}=\frac{4}{11}$ za $n=2^{\alpha_1}\cdot 5^{\alpha_2}\cdot 11^{\alpha_3}$, gdje su $\alpha_1,\alpha_2,\alpha_3\in\mathbb{N}$.

6. Dokažite da je $\varphi(3n) = \begin{cases} 3\varphi(n), & 3 \mid n \\ 2\varphi(n), & 3 \nmid n \end{cases}$

Rj:

1. Neka je $n \in \mathbb{N}$ takav da 3 | n, tj. $n = 3^{\alpha} \cdot p_1^{\alpha_1 - 1} \cdots p_k^{\alpha_k}$. tada imamo

$$\varphi(n) = 3^{\alpha - 1} \cdot 2 \cdot p_1^{\alpha_1 - 1} \cdot (p_1 - 1) \cdots p_k^{\alpha_k} \cdot (p_k - 1)$$

pa je

$$\varphi(3n) = \varphi(3^{\alpha+1} \cdot p_1^{\alpha_1 - 1} \cdots p_k^{\alpha_k}) = 3^{\alpha} \cdot 2 \cdot p_1^{\alpha_1 - 1} \cdot (p_1 - 1) \cdots p_k^{\alpha_k} \cdot (p_k - 1) = 3\varphi(n)$$

2. Neka je $n \in \mathbb{N}$ takav da $3 \nmid n$. Sada je nzd(3, n) = 1, pa je

$$\varphi(3n) = \varphi(3 \cdot n) = 2 \cdot \varphi(n) = 2\varphi(n)$$

- 7. Odredite sve prirodne brojeve n takve da
 - a) $\varphi(n) \mid 3n$
 - b) $\varphi(3n) \mid n$

Rj: Neka je $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, tada je $\varphi(n) = p_1^{\alpha_1 - 1} (p_1 - 1) \cdots p_k^{\alpha_k - 1} (p_k - 1)$.

a) Imamo $\varphi(1)=\varphi(2)=1$ pa imamo $\varphi(1)\mid 3\cdot 1$ i $\varphi(2)\mid 3\cdot 2$. Neka je n>2, onda imamo $2\mid \varphi(n)\implies 2\mid n$. Dakle, $p_1=2$. Sada imamo $n=2^{\alpha_1}\cdot p_2^{\alpha_2}\cdots p_k^{\alpha_k}$. Pretpostavimo sad da n ima 2 neparna prosta faktora, p_i i p_j . Tada imamo $2\mid p_i-1$ i $2\mid p_j-1$. Dakle, imamo $2^{\alpha_1-1}\cdot 2\cdot 2=2^{\alpha_1+1}\mid 2^{\alpha_1-1}(p_i-1)(p_j-1)$, što je kontradikcija, jer bismo onda imali $2^{\alpha_1+1}\mid 3n$. Dakle, $n=2^{\alpha_1}p^{\alpha_2}$ gdje je p neparan prost broj. Dakle, imamo $\varphi(n)=2^{\alpha_1-1}\cdot (p-1)\cdot p^{\alpha_2-1}\mid 3\cdot 2^{\alpha_1}\cdot (p-1)\cdot p^{\alpha_2}$. Dakle, imamo $p-1\mid 3\cdot 2\cdot p$, tj. $6p\equiv 6\equiv 0\pmod{p-1}$, tj. $p-1\mid 6$ pa imamo $p-1\in\{1,2,3,6\}$. Dakle, $p\in\{3,7\}$. Neka je $n=2^{\alpha_1}3^{\beta_1}$, tada imamo $\varphi(n)=2^{\alpha-1}\cdot 2\cdot 3^{\beta-1}=2^{\alpha_1}3^{\beta-1}\mid 3\cdot 2^{\alpha_1}3^{\beta_2}$ što vrijedi za sve $\alpha,\beta\in\mathbb{N}$. Neka je sad $n=2^{\alpha_1}\cdot 7^{\gamma_1}$, tada imamo $\varphi(n)=2^{\alpha-1}\cdot 6\cdot 7^{\gamma-1}=2^{\alpha_1}\cdot 3\cdot 7^{\gamma-1}\mid 3\cdot 2^{\alpha_1}\cdot 7^{\gamma_1}$ što vrijedi za sve $\alpha,\gamma\in\mathbb{N}$. Dakle, općenito rješenje su svi $n=2^{\alpha_1}3^{\beta_2}\cdot 7^{\gamma_1}$ za $\alpha,\beta,\gamma\in\mathbb{N}_0$ i $s\in\{0,1\}$.

- b) Imamo 2 slučaja:
 - 1. Ako je nzd(3,n)=1, tada je $\varphi(3n)=2\varphi(n)\mid n$ pa imamo $2\mid n$, tj. $n=2^{\alpha}\cdot p_1^{\alpha_1}\cdots p_k^{\alpha_2}$. Onda imamo $\varphi(3n)=2^{\alpha}\cdot (p_1-1)\cdot p_1^{\alpha_1-1}\cdots p_k^{\alpha_2-1}\cdot (p_k-1)\mid 2^{\alpha}\cdot p_1^{\alpha_1}\cdots p_k^{\alpha_2}=n$. To znači da $(p_1-1)\cdots (p_k-1)\mid p_1\cdots p_k$. Budući da su svi $p_i>3$ znamo da se mogu zapisati kao $6x_i\pm 1$. Dakle, imamo

$$(6x_1 \pm 1) \cdots (6x_k \pm 1) = (6x_1 \pm 1 - 1) \cdots (6x_k \pm -1) \cdot m \tag{1}$$

Ako je neki p_i oblika $6x_i+1$, onda je $p_i-1=6x_i$ pa 6 dijeli desnu stranu, ali ne dijeli lijevu. Dakle, to je nemoguće. Ako je neki p_i oblika $6x_i-1$, onda je $p_i-1=6x_i-2$ pa 2 dijeli desnu stranu, ali ne dijeli lijevu. Dakle, to je nemoguće pa je $n=2^{\alpha}$, $\alpha\in\mathbb{N}$.

2. Ako 3 | n, onda imamo 2 | $\varphi(3n)$ | n pa je $n=2^{\alpha}\cdot 3^{\beta}\cdot p_1^{\alpha_1}\cdots p_k^{\alpha_k}$ i $\varphi(3n)=2^{\alpha}\cdot 3^{\beta}\cdot (p_1-1)\cdot p_1^{\alpha_1-1}\cdots (p_k-1)\cdot p_k^{\alpha_k-1}$ | $2^{\alpha}\cdot 3^{\beta}\cdot p_1^{\alpha_1}\cdots p_k^{\alpha_k}$, tj. imamo $(p_1-1)\cdots (p_k-1)$ | $p_1\cdots p_k$ te analogno prvom slučaju dobijemo da je $n=2^{\alpha}\cdot 3^{\beta}$ za $\alpha,\beta\in\mathbb{N}$.

Dakle, općenito rješenja su svi $n = 2^{\alpha} \cdot 3^{\beta}$ za $\alpha \in \mathbb{N}$ i $\beta \in \mathbb{N}_0$.

8. Dokažite da je $\sum_{\substack{k=1\\ \operatorname{nzd}(k,n)=1}} k = \frac{n}{2} \varphi(n).$

<u>Uputa</u>: Zadanoj sumi pribrojite $\sum_{\substack{k=1\\ \text{nzd}(k,n)=1}} n-k.$

Rj:

$$\sum_{\substack{k=1\\ \operatorname{nzd}(k,n)=1}} k + \sum_{\substack{k=1\\ \operatorname{nzd}(k,n)=1}} n - k = \sum_{\substack{k=1\\ \operatorname{nzd}(k,n)=1}} n = \varphi(n) \cdot n$$

Ako je $k \in \mathbb{N}$ takav da je nzd(k, n) = 1, tada je i nzd(n - k, n) = 1, pa je

$$2\sum_{\substack{k=1\\ \operatorname{nzd}(k,n)=1}} k = \varphi(n) \cdot n \implies \sum_{\substack{k=1\\ \operatorname{nzd}(k,n)=1}} k = \frac{n}{2} \cdot \varphi(n)$$

- 9. a) Izračunajte τ (16669800).
 - b) Koliko parnih djelitelja ima broj 16669800?
 - c) Koliko djelitelja broja 16669800 su potpuni kvadrati?

Rj:

- a) Imamo $16669800 = 2^3 \cdot 2083725 = 2^3 \cdot 3^5 \cdot 8575 = 2^3 \cdot 3^5 \cdot 5^2 \cdot 343 = 2^3 \cdot 3^5 \cdot 5^2 \cdot 7^3$. Dakle, $\tau(16669800) = (3+1) \cdot (5+1) \cdot (2+1) \cdot (3+1) = 4 \cdot 6 \cdot 3 \cdot 4 = 288$.
- b) Broj neparnih djelitelja broja 16669800 je broj djelitelja broja 2083725, tj. $\tau(2083725) = (5+1)\cdot(2+1)\cdot(3+1) = 6\cdot3\cdot4 = 72$. Dakle, broj parnih djelitelja je 288 72 = 216. To smo mogli dobiti i tako da moramo ukljičiti bar jedan faktor 2 u svaki djelitelj, pa imamo $3\cdot6\cdot3\cdot4 = 216$.

- c) Broj djelitelja koji su potpuni kvadrati je $\left\lfloor \frac{3+1}{2} \right\rfloor \cdot \left\lfloor \frac{5+1}{2} \right\rfloor \cdot \left\lfloor \frac{2+1}{2} \right\rfloor \cdot \left\lfloor \frac{3+1}{2} \right\rfloor = 2 \cdot 3 \cdot 2 \cdot 2 = 24.$
- 10. a) Dokažite da je $\tau(n^2)$ neparan za svaki $n \in \mathbb{N}$.
 - b) Dokažite da je $\prod_{d|n} d = n^{\frac{\tau(n)}{2}}$ za svaki $n \in \mathbb{N}$.

Uputa: Promatrajte parove djelitelja d i $\frac{n}{d}$.

Rj:

a)

$$\tau(n^2) = \sum_{\substack{d \mid n^2 \\ d < n}} 1 = \sum_{\substack{d \mid n^2 \\ d > n}} 1 + 1 + \sum_{\substack{d \mid n^2 \\ d > n}} 1 = 2\tau(n) + 1 \equiv 1 \pmod{2}$$

b) Ako je $n = m^2$, imamo

$$\prod_{\substack{d \mid n \\ d < m}} d = \prod_{\substack{\substack{d \mid n \\ d < m \\ d > m}}} d \cdot m \cdot \prod_{\substack{\substack{d \mid n \\ d < m \\ d < m}}} d \cdot m \cdot \prod_{\substack{\substack{d \mid n \\ d < m \\ d < m}}} \frac{n}{d} = m \cdot \prod_{\substack{\substack{d \mid n \\ d < m \\ d < m}}} n = m \cdot n^{\frac{\tau(n) - 1}{2}} = n^{\frac{\tau(n)}{2}}$$

Ako pak n nije potpuni kvadrat, imamo:

$$\prod_{d|n} d = \prod_{\substack{d|n\\d < \sqrt{n}}} d \cdot \prod_{\substack{d|n\\d > \sqrt{n}}} d = \prod_{\substack{d|n\\d < \sqrt{n}}} d \cdot \prod_{\substack{d|n\\d < \sqrt{n}}} \frac{n}{d} = \prod_{\substack{d|n\\d < \sqrt{n}}} n = n^{\frac{\tau(n)}{2}}$$

- 11. a) Dokažite da je $\sigma(n)$ neparan broj ako je n potencija broja 2.
 - b) Odredite sve prirodne brojeve n takve da je $\sigma(n)$ neparan broj.

Rj:

a) Neka je $n=2^k$, tada je

$$\sigma(n) = \frac{2^{k+1} - 1}{2 - 1} = 2^{k+1} - 1 \equiv 1 \pmod{2}$$

b) Ako je p neparan prost broj, onda je $\sigma(p^{\alpha}) = \sum_{k=0}^{\alpha} p^k \equiv \sigma(p^{\alpha}) = \sum_{k=0}^{\alpha} 1 \equiv \alpha + 1 \pmod{2}$. Dakle, $\sigma(p^{\alpha})$ je neparan ako je α paran, tj. p^{α} je potpuni kvadrat. Stoga, općenito $\sigma(n)$ je neparan ako i samo ako je n potpuni kvadrat ili dvostruki potpuni kvadrat.

12. Dokažite da je $\sum_{d|n} \frac{1}{d} = \frac{\sigma(n)}{n}$.

<u>Uputa</u>: Uočite da je funkcija $f(n) = \frac{1}{n}$ multiplikativna.

Rj: Očito je f(1) = 1, a ako imamo $m, n \in \mathbb{Z}$ takve da je nzd(m, n) = 1, tada je

$$f(mn) = \frac{1}{mn} = \frac{1}{m} \cdot \frac{1}{n} = f(m) \cdot f(n)$$

pa je f(n) multiplikativna funkcija. Sada je i $\sum_{d|n} f(n)$ multiplikativna funkcija. Stoga je dovoljno provjeriti tvrdnju za $n=p^k$, gdje je p prost broj. Imamo

$$\sum_{d|p^k} \frac{1}{d} = 1 + \frac{1}{p} + \dots + \frac{1}{p^k} = \frac{1 - \frac{1}{p^{k+1}}}{1 - \frac{1}{p}} = \frac{p^{k+1} - 1}{p^k(p-1)} = \frac{1}{p^k} \cdot \frac{p^{k+1} - 1}{p-1} = \frac{1}{p^k} \cdot \sigma(p^k) = \frac{\sigma(p^k)}{p^k}$$

Dakle, tvrdnja vrijedi za sve $n \in \mathbb{N}$.