第1章 モデルの概要

1.1 系の設定と基礎方程式

 $_3$ 次元球殻上の $_3$ 次元球殻上の $_3$ 次元球殻上の大気大循環モデル DCPAM $_5$ を用いて数値実験を行った。

DCPAM の力学過程で用いられている基礎方程式は以下の通りである。

$$\frac{\partial \pi}{\partial t} + v_H \cdot \nabla_{\sigma} \pi = -D - \frac{\partial \dot{\sigma}}{\partial \sigma},\tag{1.1}$$

$$\frac{\partial \Phi}{\partial \sigma} = -\frac{RT_v}{\sigma},\tag{1.2}$$

$$\frac{\partial \zeta}{\partial t} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial V_A}{\partial \lambda} - \frac{\partial U_A}{\partial \mu} \right) + \mathcal{D}[\zeta], \tag{1.3}$$

$$\frac{\partial D}{\partial t} = \frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial U_A}{\partial \lambda} \right) - \nabla_{\sigma}^2 (\Phi + R\bar{T}\pi + KE) + \mathcal{D}[D], \tag{1.4}$$

$$\frac{\partial T}{\partial t} = -\frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial UT'}{\partial \lambda} + \frac{\partial VT'}{\partial \mu} \right) + T'D - \dot{\sigma} \frac{\partial T}{\partial \sigma}$$

$$+ \kappa T_v \left(\frac{\partial \pi}{\partial t} + v_H \cdot \nabla_\sigma \pi + \frac{\dot{\sigma}}{\sigma} \right) + \frac{Q}{C_v} + \mathcal{D}[T] + \mathcal{D}'[v], \tag{1.5}$$

$$\frac{\partial q}{\partial t} = -\frac{1}{a} \left(\frac{1}{1 - \mu^2} \frac{\partial U_q}{\partial \lambda} + \frac{\partial V_q}{\partial \mu} \right) + qD - \dot{\sigma} \frac{\partial q}{\partial \sigma} + S_q + \mathcal{D}[q]. \tag{1.6}$$

ここで、それぞれ、連続の式 (1.1)、静水圧の式 (1.2)、運動方程式 (1.3), (1.4)、熱力学の式 (1.5)、水蒸気の式 (1.6) の式である。各記号の意味は 1.1 に記した。

放射過程には地球用放射モデルを用いている。考慮している大気成分は N_2 , CO_2 , H_2O である。 紫外・可視光・近赤外 (2600–57142.85 cm $^{-1}$) は Chou and Lee (1996) に従って分割し、Toon et al. (1989) の手法を用いて放射伝達方程式を計算する。 H_2O の透過率は Chou and Lee (1996) による k 分布法のパラメータを利用して計算する。雲の消散係数、単一散乱アルベド、非対称因子は Chou et al. (1998) の値を使用する。レイリー散乱係数は Chou and Lee (1996) の値を使用する。赤外 (0-3000 cm $^{-1}$) は Chou et al. (2001) に従って 9 バンドに分割し、散乱を無視した放射伝達方程式により計算する。 H_2O の透過率は Chou et al. (2001) の方法に基づき計算し、 CO_2 の低高度の透過率は Chou et al. (2001)、高高度の透過率は Chou and Kouvaris (1991) の方法に基づいて、計算する。雲の消散係数、単一散乱アルベド、非対称因子は Chou et al. (2001) の値を使用する。

サブグリッドスケールの混合・凝縮に関して、乱流混合は Mellor and Yamada level 2.5 (Mellor and Yamada, 1982) を使用する。また、Manabe et al. (1965) の乾燥対流調節スキームを用い、積雲

$$\varphi,\lambda$$
 緯度経度
$$\sigma:=p/p_s \quad \sigma \, \text{座標高度} \quad V_A:=(\zeta+f)V - \dot{\sigma} \frac{\partial U}{\partial \sigma} - \frac{RT_v'}{a} \frac{\partial \pi}{\partial \lambda} + \mathcal{F}_\lambda \cos \phi$$

$$\sigma:=p/p_s \quad \sigma \, \text{座標高度} \quad V_A:=-(\zeta+f)U - \dot{\sigma} \frac{\partial V}{\partial \sigma} \frac{RT_v'}{a} (1-\mu^2) \frac{\partial \pi}{\partial \mu} + \mathcal{F}_\phi \cos \phi$$

$$v_A:=\ln[p_s] \quad v_H \cdot \nabla_\sigma \pi := \frac{U}{a(1-\mu^2)} \frac{\partial \lambda}{\partial \lambda} + \frac{V}{a} \frac{\partial \pi}{\partial \lambda}$$

$$\nabla^2_\sigma := \frac{1}{a^2(1-\mu^2)} \frac{\partial^2}{\partial \lambda^2} + \frac{1}{a^2} \frac{\partial}{\partial \mu} \left[(1-\mu^2) \frac{\partial}{\partial \mu} \right]$$

$$\pi := \ln[p_s] \quad \nabla^2_\sigma := \frac{1}{a^2(1-\mu^2)} \frac{\partial^2}{\partial \lambda^2} + \frac{1}{a^2} \frac{\partial}{\partial \mu} \left[(1-\mu^2) \frac{\partial}{\partial \mu} \right]$$

$$\pi := \frac{1}{a^2(1-\mu^2)} \frac{\partial^2}{\partial \lambda^2} + \frac{1}{a^2} \frac{\partial}{\partial \mu} \left[(1-\mu^2) \frac{\partial}{\partial \mu} \right]$$

$$\pi := \frac{U^2 + V^2}{2(1-\mu^2)} \quad \mathcal{F}_\sigma := \frac{U^2 + V^2}{2(1-\mu^2)} \quad \mathcal{F}_\sigma := \frac{U^2 + V^2}{2(1-\mu^2)}$$

$$\mathcal{F}_\sigma := \frac{1}{a} \left(\frac{1}{1-\mu^2} \frac{\partial U}{\partial \lambda} + \frac{\partial V}{\partial \mu} \right)$$

$$\mathcal{F}_\sigma := \frac{U}{a^2(1-\mu^2)} \frac{\partial V}{\partial \lambda^2} + \frac{1}{a^2} \frac{\partial}{\partial \mu} \left[(1-\mu^2) \frac{\partial}{\partial \mu} \right]$$

$$\mathcal{F}_\sigma := \frac{U^2 + V^2}{2(1-\mu^2)} \quad \mathcal{F}_\sigma := \frac{U^2 + V^2}{2(1-\mu^2)}$$

対流調節に関しては Relaxed Arakawa-Schubert (Moorthi and Suarez, 1992) を使用する。

雲に関しては、移流・乱流混合・凝結による生成、時定数による消滅を考慮して雲水混合比を予報する。惑星表面はスラブオーシャンであるとして、表面温度を計算する。

1.2 実験設定

表 1.2 に示す設定で実験を行った。本研究で行う計算の水平分解能は、三角形切断の T_{42} に対応する、 128×64 であり、鉛直座標には σ 座標系を用い、その層数は 26 である。実験で用いたモデルパラメータの値を、表 1.3 に示す。

初期状態は、どの太陽定数においても、静止・等温 (280 K)・比湿は o で一様とした。

表 1.2: 実験リスト

実験名	太陽定数 S [W/m²]	雲時定数 [s]	積分期間 [年]	計算結果を示す年度 [年度]
S1366	1366	13500	50	41
S1500	1500	13500	20	11
S1600	1600	13500	20	11
S1800	1800	13500	20	11
S2000	2000	13500	30	21

表 1.3: モデルパラメータの値

モデルパラメータ	值
惑星半径	$a = 6.37 \times 10^7 \mathrm{m}$
自転角速度	$\omega = 7.292 \times 10^{-5} / \mathrm{s}$
重力加速度	$g = 9.8 \mathrm{m/s^2}$
乾燥空気の気体定数	$R_n = 287.1 \mathrm{J/kg/K}$
水蒸気の気体定数	$R_v = 461.5 \mathrm{J/kg/K}$
乾燥空気の定圧比熱	$c_{pn} = 1004 \mathrm{J/kg/K}$
水蒸気の定圧比熱	$c_{pv} = 1810 \mathrm{J/kg/K}$
乾燥空気の分子量	$m_n = 28.96 \times 10^{-3} \mathrm{kg/mol}$
水蒸気の分子量	$m_v = 18.02 \times 10^{-3} \mathrm{kg/mol}$
水の潜熱	$L = 2.50 \times 10^6 \mathrm{J/kg}$
海のアルベド	A = 0.1