Instrucciones:

- Fecha de publicación: 30 de Septiembre de 2019.
- Fecha límite de entrega: 8 de Octubre de 2019 a las 11:59:59 p.m.
- Medio de entrega: Los puntos realizados en R se deben enviar por correo a martin.andrade@urosario.edu.co
- La tarea debe realizarse en grupos de mínimo dos o máximo tres personas.
- Formato de entrega para los puntos resueltos en R: un solo archivo comprimido (.zip, .rar., .tgz) cuyo nombre debe tener el formato: APELLIDOS_tarea2.xxx. Por cada punto debe haber un archivo cuyo nombre tenga el formato APELLIDOS_tarea2_puntoX.xxx.
- No deje espacios en los nombres de los archivos.
- La solución de los puntos que no requieran R deben ser enviada en Latex o escaneada.
- 1. Un método probabilístico para determinar el área de un subconjunto $S \subset R^{[0,1]\times[0,1]}$ (del cuadrado unitario) consiste en generar una sucesión de números aleatorios en el cuadrado unitario con distribución uniforme. Definimos variables aleatorias X_i , donde X_i toma el valor 1 si el *i*-ésimo número generado está dentro del conjunto S, y 0 de lo contrario. A partir de la sucesión de variables aleatorias X_1, X_2, \ldots , definimos los promedios parciales para cualquier n,

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Demuestre que el valor esperado $E[S_n]$ es igual al área del conjunto S y que la varianza $V(S_n)$ decrece a cero en la medida que n crece.

- 2. Demuestre que para calcular S_n es suficiente con conocer S_{n-1} y X_n , tal que los valores X_k para $k = 1, \ldots, n-1$ no requieren ser almacenados.
- 3. Utilizando la función runif y la fórmula del punto anterior, escriba un programa computacional en R que genere S_n , para cualquier entero n, para el caso en que el subconjunto S es el disco inscrito en el cuadrado unitario con radios internos y externos r_1 y r_2 respectivamente, donde $0 \le r_1 < r_2 \le 1$ (debería ser una función que recibe n, r_1 y r_2 como parámetros).
- 4. Utilice el programa anterior para estimar experimentalmente el valor de π . ¿Aproximadamente con cuál n se obtiene una aproximación de π con un error menor a 0,001?
- 5. Modifique el anterior programa para estimar el área del subconjunto $S = \{(x, y) : 0 \le \cos(\pi x) + \sin(\pi y) \le 1\}$. Grafique los resultados de su programa (los X_i generados con diferente color dependiendo del valor).

- 6. Sea X variable aleatoria distribuída normal con media 1 y varianza 4. Calcule: $P(0 \le X < 1)$ y $P(X^2 > 4)$.
- 7. Sea X variable aleatoria distribuída normal con media 12 y varianza 4. Calcule: el valor de c para el cual P(X > c) = 0,1.
- 8. Suponga que los puntajes de un examen tienen distribución normal con media 76 y desviación estándar 15. El 15 % de los estudiantes con los mejores puntajes obtuvieron A y el 10 % de los estudiantes con los peores puntajes perdieron el examen. Determine el mínimo puntaje para sacar A y el mínimo puntaje para pasar el examen.
- 9. Sean X, Y variables aleatorias con densidad conjunta:

$$f_{X,Y}(x,y) = \begin{cases} x+y & 0 < x < 1; 0 < y < 1, \\ 0 & dlc \end{cases}$$

Encuentre la función acumulada (cumulativa) conjunta de X y Y y las densidades marginales.

10. Sean X, Y variables aleatorias con densidad conjunta:

$$f_{X,Y}(x,y) = \begin{cases} k & 0 < x, \ y < 1; \ 3y \le x \\ 0 & dlc \end{cases}$$

Encuentre el valor de k, la función acumulada (cumulativa) conjunta de X y Y, las densidades marginales y la probabilidad de $2Y \le X \le 5Y$.