```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import statsmodels.formula.api as smf
    import statsmodels.api as sm
    from statsmodels.graphics.regressionplots import influence_plot
```

In [2]: # import dataset
 toyo=pd.read_csv('ToyotaCorolla.csv',encoding='latin1')
 toyo

Out[2]:

	ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	НР	Met_Col
0	1	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13500	23	10	2002	46986	Diesel	90	
1	2	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13750	23	10	2002	72937	Diesel	90	
2	3	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13950	24	9	2002	41711	Diesel	90	
3	4	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	14950	26	7	2002	48000	Diesel	90	
4	5	TOYOTA Corolla 2.0 D4D HATCHB SOL 2/3- Doors	13750	30	3	2002	38500	Diesel	90	
1431	1438	TOYOTA Corolla 1.3 16V HATCHB G6 2/3- Doors	7500	69	12	1998	20544	Petrol	86	
1432	1439	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	10845	72	9	1998	19000	Petrol	86	

	ld	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	HP	Met_Col
1433	1440	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	8500	71	10	1998	17016	Petrol	86	
1434	1441	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	7250	70	11	1998	16916	Petrol	86	
1435	1442	TOYOTA Corolla 1.6 LB LINEA TERRA 4/5- Doors	6950	76	5	1998	1	Petrol	110	
1436 r	ows ×	38 column	าร							
4										•

EDA

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1436 entries, 0 to 1435
Data columns (total 38 columns):

# Column Non-Null Count Dtype 0 Id 1436 non-null int64 1 Model 1436 non-null object	t
1 Model 1436 non-null object	t
2 Price 1436 non-null int64	
3 Age_08_04 1436 non-null int64	
4 Mfg_Month 1436 non-null int64	
5 Mfg_Year 1436 non-null int64	
6 KM 1436 non-null int64	
7 Fuel_Type 1436 non-null object	t
8 HP 1436 non-null int64	
9 Met_Color 1436 non-null int64	
10 Color 1436 non-null object	t
11 Automatic 1436 non-null int64	
12 cc 1436 non-null int64	
13 Doors 1436 non-null int64	
14 Cylinders 1436 non-null int64	
15 Gears 1436 non-null int64	
16 Quarterly_Tax 1436 non-null int64	
17 Weight 1436 non-null int64	
18 Mfr_Guarantee 1436 non-null int64	
19 BOVAG_Guarantee 1436 non-null int64	
20 Guarantee_Period 1436 non-null int64	
21 ABS 1436 non-null int64	
22 Airbag_1 1436 non-null int64	
23 Airbag_2 1436 non-null int64	
24 Airco 1436 non-null int64	
25 Automatic_airco 1436 non-null int64	
26 Boardcomputer 1436 non-null int64	
27 CD_Player 1436 non-null int64	
28 Central_Lock 1436 non-null int64	
29 Powered_Windows 1436 non-null int64	
30 Power_Steering 1436 non-null int64	
31 Radio 1436 non-null int64	
32 Mistlamps 1436 non-null int64	
33 Sport_Model 1436 non-null int64	
34 Backseat_Divider 1436 non-null int64	
35 Metallic_Rim 1436 non-null int64	
36 Radio_cassette 1436 non-null int64	
37 Tow_Bar 1436 non-null int64	

dtypes: int64(35), object(3)
memory usage: 426.4+ KB

In [4]: toyo2=pd.concat([toyo.iloc[:,2:4],toyo.iloc[:,6:7],toyo.iloc[:,8:9],toyo.iloc[:,1
toyo2

Out[4]:

	Price	Age_08_04	KM	HP	СС	Doors	Gears	Quarterly_Tax	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1431	7500	69	20544	86	1300	3	5	69	1025
1432	10845	72	19000	86	1300	3	5	69	1015
1433	8500	71	17016	86	1300	3	5	69	1015
1434	7250	70	16916	86	1300	3	5	69	1015
1435	6950	76	1	110	1600	5	5	19	1114

1436 rows × 9 columns

In [5]: toyo3=toyo2.rename({'Age_08_04':'Age','cc':'CC','Quarterly_Tax':'QT'},axis=1)
toyo3

Out[5]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1431	7500	69	20544	86	1300	3	5	69	1025
1432	10845	72	19000	86	1300	3	5	69	1015
1433	8500	71	17016	86	1300	3	5	69	1015
1434	7250	70	16916	86	1300	3	5	69	1015
1435	6950	76	1	110	1600	5	5	19	1114

1436 rows × 9 columns

In [6]: toyo3[toyo3.duplicated()]

Out[6]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
113	24950	8	13253	116	2000	5	5	234	1320

In [7]: toyo4=toyo3.drop_duplicates().reset_index(drop=True)
toyo4

Out[7]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1430	7500	69	20544	86	1300	3	5	69	1025
1431	10845	72	19000	86	1300	3	5	69	1015
1432	8500	71	17016	86	1300	3	5	69	1015
1433	7250	70	16916	86	1300	3	5	69	1015
1434	6950	76	1	110	1600	5	5	19	1114

1435 rows × 9 columns

In [8]: toyo4.describe()

Out[8]:

	Price	Age	KM	НР	СС	Doors	G
count	1435.000000	1435.000000	1435.000000	1435.000000	1435.000000	1435.000000	1435.00
mean	10720.915679	55.980488	68571.782578	101.491986	1576.560976	4.032753	5.020
std	3608.732978	18.563312	37491.094553	14.981408	424.387533	0.952667	0.18
min	4350.000000	1.000000	1.000000	69.000000	1300.000000	2.000000	3.000
25%	8450.000000	44.000000	43000.000000	90.000000	1400.000000	3.000000	5.00
50%	9900.000000	61.000000	63451.000000	110.000000	1600.000000	4.000000	5.00
75%	11950.000000	70.000000	87041.500000	110.000000	1600.000000	5.000000	5.00
max	32500.000000	80.000000	243000.000000	192.000000	16000.000000	5.000000	6.00
4							•

Correlation Analysis

In [9]: toyo4.corr()

Out[9]:

		Price	Age	KM	HP	СС	Doors	Gears	QT	W
	Price	1.000000	-0.876273	-0.569420	0.314134	0.124375	0.183604	0.063831	0.211508	0.57
	Age	-0.876273	1.000000	0.504575	-0.155293	-0.096549	-0.146929	-0.005629	-0.193319	-0.46
	KM	-0.569420	0.504575	1.000000	-0.332904	0.103822	-0.035193	0.014890	0.283312	-0.02
	HP	0.314134	-0.155293	-0.332904	1.000000	0.035207	0.091803	0.209642	-0.302287	30.0
	СС	0.124375	-0.096549	0.103822	0.035207	1.000000	0.079254	0.014732	0.305982	0.33
I	Doors	0.183604	-0.146929	-0.035193	0.091803	0.079254	1.000000	-0.160101	0.107353	0.30
(Gears	0.063831	-0.005629	0.014890	0.209642	0.014732	-0.160101	1.000000	-0.005125	0.02
	QT	0.211508	-0.193319	0.283312	-0.302287	0.305982	0.107353	-0.005125	1.000000	0.62
W	/eight	0.575869	-0.466484	-0.023969	0.087143	0.335077	0.301734	0.021238	0.621988	1.00

4

•

In [10]: sns.set_style(style='darkgrid')
sns.pairplot(toyo4)

Out[10]: <seaborn.axisgrid.PairGrid at 0x28277a52e50>

Model Building

```
In [11]: model=smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight',data=toyo4).fit()
```

Model Testing

```
In [12]: # Finding Coefficient parameters
         model.params
Out[12]: Intercept
                      -5472.540368
         Age
                       -121.713891
         ΚM
                         -0.020737
         ΗP
                         31.584612
         \mathsf{CC}
                         -0.118558
         Doors
                         -0.920189
         Gears
                        597.715894
         QΤ
                          3.858805
         Weight
                         16.855470
         dtype: float64
```

```
In [13]: # Finding tvalues and pvalues
         model.tvalues , np.round(model.pvalues,5)
Out[13]: (Intercept
                       -3.875273
          Age
                      -46.551876
          KM
                      -16.552424
          HP
                      11.209719
          CC
                      -1.316436
          Doors
                      -0.023012
          Gears
                       3.034563
          QΤ
                        2.944198
          Weight
                       15.760663
          dtype: float64,
          Intercept
                       0.00011
          Age
                       0.00000
          ΚM
                       0.00000
          HP
                       0.00000
          CC
                       0.18824
          Doors
                       0.98164
          Gears
                       0.00245
          QΤ
                       0.00329
          Weight
                       0.00000
          dtype: float64)
In [14]: # Finding rsquared values
         model.rsquared , model.rsquared_adj # Model accuracy is 86.17%
Out[14]: (0.8625200256946999, 0.8617487495415145)
In [15]: # Build SLR and MLR models for insignificant variables 'CC' and 'Doors'
         # Also find their tvalues and pvalues
In [16]: | slr_c=smf.ols('Price~CC', data=toyo4).fit()
         slr_c.tvalues , slr_c.pvalues # CC has significant pvalue
Out[16]: (Intercept
                       24.879592
          CC
                       4.745039
          dtype: float64,
          Intercept 7.236022e-114
          CC
                        2.292856e-06
          dtype: float64)
In [17]: | slr_d=smf.ols('Price~Doors',data=toyo4).fit()
         slr_d.tvalues , slr_d.pvalues # Doors has significant pvalue
Out[17]: (Intercept
                       19.421546
          Doors
                       7.070520
          dtype: float64,
          Intercept 8.976407e-75
          Doors
                       2.404166e-12
          dtype: float64)
```

Model Validation Techniques

Two Techniques: 1. Collinearity Check & 2. Residual Analysis

```
In [19]: # 1) Collinearity Problem Check
         # Calculate VIF = 1/(1-Rsquare) for all independent variables
         rsq age=smf.ols('Age~KM+HP+CC+Doors+Gears+QT+Weight',data=toyo4).fit().rsquared
         vif_age=1/(1-rsq_age)
         rsq_KM=smf.ols('KM~Age+HP+CC+Doors+Gears+QT+Weight',data=toyo4).fit().rsquared
         vif_KM=1/(1-rsq_KM)
         rsq_HP=smf.ols('HP~Age+KM+CC+Doors+Gears+QT+Weight',data=toyo4).fit().rsquared
         vif_HP=1/(1-rsq_HP)
         rsq_CC=smf.ols('CC~Age+KM+HP+Doors+Gears+QT+Weight',data=toyo4).fit().rsquared
         vif_CC=1/(1-rsq_CC)
         rsq_DR=smf.ols('Doors~Age+KM+HP+CC+Gears+QT+Weight',data=toyo4).fit().rsquared
         vif_DR=1/(1-rsq_DR)
         rsq_GR=smf.ols('Gears~Age+KM+HP+CC+Doors+QT+Weight',data=toyo4).fit().rsquared
         vif_GR=1/(1-rsq_GR)
         rsq_QT=smf.ols('QT~Age+KM+HP+CC+Doors+Gears+Weight',data=toyo4).fit().rsquared
         vif QT=1/(1-rsq QT)
         rsq WT=smf.ols('Weight~Age+KM+HP+CC+Doors+Gears+QT',data=toyo4).fit().rsquared
         vif WT=1/(1-rsq WT)
         # Putting the values in Dataframe format
         d1={'Variables':['Age','KM','HP','CC','Doors','Gears','QT','Weight'],
             'Vif':[vif_age,vif_KM,vif_HP,vif_CC,vif_DR,vif_GR,vif_QT,vif_WT]}
         Vif_df=pd.DataFrame(d1)
         Vif df
```

Out[19]:

	Variables	Vif
0	Age	1.876236
1	KM	1.757178
2	HP	1.419180
3	CC	1.163470
4	Doors	1.155890
5	Gears	1.098843
6	QT	2.295375
7	Weight	2.487180

In [20]: # None variable has VIF>20, No Collinearity, so consider all varaibles in Regress

In [21]: # 2) Residual Analysis
Test for Normality of Residuals (Q-Q Plot) using residual model (model.resid)
sm.qqplot(model.resid,line='q') # 'q' - A line is fit through the quartiles # lir
plt.title("Normal Q-Q plot of residuals")
plt.show()


```
In [22]: list(np.where(model.resid>6000)) # outliar detection from above QQ plot of resid
Out[22]: [array([109, 146, 522], dtype=int64)]
In [23]: list(np.where(model.resid<-6000))
Out[23]: [array([220, 600, 959], dtype=int64)]
In [24]: # Test for Homoscedasticity or Heteroscedasticity (plotting model's standardized def standard_values(vals) : return (vals-vals.mean())/vals.std() # User defined</pre>
```

```
In [25]: plt.scatter(standard_values(model.fittedvalues), standard_values(model.resid))
    plt.title('Residual Plot')
    plt.xlabel('standardized fitted values')
    plt.ylabel('standardized residual values')
    plt.show()
```


In [26]: # Test for errors or Residuals Vs Regressors or independent 'x' variables or pred # using Residual Regression Plots code graphics.plot_regress_exog(model,'x',fig)

In [27]: fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'Age',fig=fig)
plt.show()

In [28]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model,'KM',fig=fig)
 plt.show()

In [29]: fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model, 'HP', fig=fig)
plt.show()

In [30]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model,'CC',fig=fig)
 plt.show()

In [31]: fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'Doors',fig=fig)
plt.show()

In [32]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model, 'Gears', fig=fig)
 plt.show()

In [33]: fig=plt.figure(figsize=(15,8))
 sm.graphics.plot_regress_exog(model,'QT',fig=fig)
 plt.show()


```
In [34]: fig=plt.figure(figsize=(15,8))
sm.graphics.plot_regress_exog(model,'Weight',fig=fig)
plt.show()
```


Model Deletion Diagnostics (checking Outliers or Influencers)

Two Techniques: 1. Cook's Distance & 2. Leverage value


```
In [37]: # Index and value of influencer where C>0.5
np.argmax(c) , np.max(c)
```

Out[37]: (80, 78.7295058224556)

In [38]: # 2. Leverage Value using High Influence Points : Points beyond Leverage_cutoff v
fig,ax=plt.subplots(figsize=(20,20))
fig=influence_plot(model,ax = ax)


```
In [39]: # Leverage Cuttoff Value = 3*(k+1)/n; k = no.of features/columns & n = no. of do
k=toyo4.shape[1]
n=toyo4.shape[0]
leverage_cutoff = (3*(k+1))/n
leverage_cutoff
```

Out[39]: 0.020905923344947737

In [40]: toyo4[toyo4.index.isin([80])]

Out[40]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
80	18950	25	20019	110	16000	5	5	100	1180

Improving the Model

In [41]: # Creating a copy of data so that original dataset is not affected
toyo_new=toyo4.copy()
toyo_new

Out[41]:

	Price	Age	KM	HP	cc	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
1430	7500	69	20544	86	1300	3	5	69	1025
1431	10845	72	19000	86	1300	3	5	69	1015
1432	8500	71	17016	86	1300	3	5	69	1015
1433	7250	70	16916	86	1300	3	5	69	1015
1434	6950	76	1	110	1600	5	5	19	1114

In [42]: # Discard the data points which are influencers and reassign the row number (reset toyo5=toyo_new.drop(toyo_new.index[[80]],axis=0).reset_index(drop=True) toyo5

Out[42]:

	Price	Age	KM	HP	CC	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
									•••
1429	7500	69	20544	86	1300	3	5	69	1025
1430	10845	72	19000	86	1300	3	5	69	1015
1431	8500	71	17016	86	1300	3	5	69	1015
1432	7250	70	16916	86	1300	3	5	69	1015
1433	6950	76	1	110	1600	5	5	19	1114

1434 rows × 9 columns

Model Deletion Diagnostics and Final Model

```
In [43]: while np.max(c)>0.5 :
    model=smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight',data=toyo5).fit()
    (c,_)=model.get_influence().cooks_distance
    c
    np.argmax(c) , np.max(c)
    toyo5=toyo5.drop(toyo5.index[[np.argmax(c)]],axis=0).reset_index(drop=True)
    toyo5
else:
    final_model=smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight',data=toyo5).fi
    final_model.rsquared , final_model.aic
    print("Thus model accuracy is improved to",final_model.rsquared)
```

Thus model accuracy is improved to 0.8882395145171204

```
In [44]: if np.max(c)>0.5:
    model=smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight',data=toyo5).fit()
    (c,_)=model.get_influence().cooks_distance
    c
    np.argmax(c) , np.max(c)
    toyo5=toyo5.drop(toyo5.index[[np.argmax(c)]],axis=0).reset_index(drop=True)
    toyo5
elif np.max(c)<0.5:
    final_model=smf.ols('Price~Age+KM+HP+CC+Doors+Gears+QT+Weight',data=toyo5).fi
    final_model.rsquared , final_model.aic
    print("Thus model accuracy is improved to",final_model.rsquared)</pre>
```

Thus model accuracy is improved to 0.8882395145171204

In [45]: final_model.rsquared

Out[45]: 0.8882395145171204

In [46]: toyo5

Out[46]:

	Price	Age	KM	HP	cc	Doors	Gears	QT	Weight
0	13500	23	46986	90	2000	3	5	210	1165
1	13750	23	72937	90	2000	3	5	210	1165
2	13950	24	41711	90	2000	3	5	210	1165
3	14950	26	48000	90	2000	3	5	210	1165
4	13750	30	38500	90	2000	3	5	210	1170
							•••		
1426	7500	69	20544	86	1300	3	5	69	1025
1427	10845	72	19000	86	1300	3	5	69	1015
1428	8500	71	17016	86	1300	3	5	69	1015
1429	7250	70	16916	86	1300	3	5	69	1015
1430	6950	76	1	110	1600	5	5	19	1114

1431 rows × 9 columns

Model Predictions

```
In [47]: # say New data for prediction is
new_data=pd.DataFrame({'Age':12,"KM":40000,"HP":80,"CC":1300,"Doors":4,"Gears":5,
new_data
```

Out[47]:

Age		KM	HP	CC	Doors	Gears	QT	Weight
0	12	40000	80	1300	4	5	69	1012

```
In [48]: # Manual Prediction of Price
         final_model.predict(new_data)
Out[48]: 0
              14341.570181
         dtype: float64
In [49]: # Automatic Prediction of Price with 90.02% accurry
         pred_y=final_model.predict(toyo5)
         pred_y
Out[49]: 0
                 16345.352610
         1
                 15886.635544
         2
                 16328.224968
         3
                 15996.318854
         4
                 15883.424182
                     . . .
         1426
                  9161.230587
         1427
                  8536.091326
         1428
                  8681.531063
         1429
                 8793.668694
         1430
                 10860.695492
         Length: 1431, dtype: float64
In [ ]:
```