Grundlagen: Teil 2

Andreas Henrici

MANIT1 IT18ta_ZH

24. September 2018

Überblick

- 1
- Gleichungen und Ungleichungen
- Äquivalenzumformungen
- Lineare Gleichungen
- Quadratische Gleichungen
- Wurzelgleichungen
- Substitutionstechniken
- Gleichungen mit Betragsausdrücken

Äquivalenzumformungen

	Gleichungen	Ungleichungen
Addition/Subtraktion	des gleichen Wertes auf beiden Seiten	
Multiplikation auf beiden Seiten mit	einem <i>beliebigen</i> Wert ≠ 0	einem Wert > 0
Division auf beiden Seiten durch	einen <i>beliebigen</i> Wert ≠ 0	einen Wert > 0
	Bilden des Kehrwertes (falls beide Seiten \neq 0 sind)	

Vorsicht:

Keine Division durch 0!

Lineare Gleichungen

• Grundmuster:

$$ax + b = 0$$

Lösungsmenge:

Satz

Die Lösungsmenge der linearen Gleichung ax + b = 0 ist:

- falls $a \neq 0$: $\mathbb{L} = \{-\frac{b}{a}\}$
- falls a = 0, $b \neq 0$: $\mathbb{L} = \emptyset$
- falls a = b = 0: $\mathbb{L} = \mathbb{R}$
- Vorschau auf die lineare Algebra: Die Anzahl Lösungen eines linearen Gleichungssystems ist 0,1 oder ∞ .

Quadratische Gleichungen

Satz

Die reellen Lösungen der quadratischen Gleichung ax $^2 + bx + c = 0$ (mit a, b, $c \in \mathbb{R}$ und a $\neq 0$) sind

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Die Anzahl Lösungen lässt sich also am Vorzeichen der Diskriminante $D = b^2 - 4ac$ ablesen:

- D > 0: 2 reelle Lösungen
- D = 0: 1 reelle Lösung
- D < 0: keine reelle Lösung</p>

Herleitung der Formel: Quadratisches Ergänzen

Gleichungen mit Wurzelausdrücken

Allgemeines:

- Vorgehen zur Lösung: Wurzelausdrücke auf einer Seite isolieren, dann quadrieren
- Vorsicht: Diese Operation ist keine Äquivalenzumformung
- Durch Quadrieren vergrössert sich die Lösungsmenge, man erhält "Scheinlösungen"
- Notwendiger Zusatzschritt: Am Ende bei allen erhaltenen Lösungen prüfen, ob sie die Gleichung erfüllen!

Beispiel

Die Lösungsmenge der Gleichung

$$x - 3 = 0$$

ist $\mathbb{L} = \{3\}$, aber die Lösungsmenge der Gleichung

$$x^2 - 9 = 0$$

ist $\mathbb{L} = \{3, -3\}.$

Gleichungen mit Substitution lösen

- Biquadratische Gleichungen
 - Biquadratische Gleichungen:

$$ax^4 + bx^2 + c = 0$$

- Substitution: $u = x^2$
- Neue Gleichung: $au^2 + bu + c = 0$
- Die Lösungen der biquadratischen Gleichung sind $x_{1,2,3,4} = \pm \sqrt{u_{1,2}}$, falls $u_{1,2}$ nichtnegative Lösungen von $au^2 + bu + c = 0$ sind.
- Exponentialgleichungen
 - Gleichungen von folgendem Typ:

$$ap^{2x} + bp^{x} + c = 0$$
 $(p > 0)$

- Substitution: $u = p^x$
- Neue Gleichung: $au^2 + bu + c = 0$
- Die Lösungen der Exponentialgleichung sind $x_{1,2} = \frac{\ln(u_{1,2})}{\ln(p)}$, falls $u_{1,2}$ positive Lösungen von $au^2 + bu + c = 0$ sind.

Betrag: Konzept

Definition

Für eine Zahl a bezeichnet der Betrag (Schreibweise: |a|) den Abstand von a zum Nullpunkt der Zahlengeraden.

Um den Betrag durch eine Formel auszudrücken, braucht man eine Fallunterscheidung:

$$|a| = \left\{ egin{array}{ll} a, & ext{falls } a \geq 0 \ -a, & ext{falls } a < 0 \end{array}
ight.$$

Bemerkung

Formel für |a| ohne Fallunterscheidung:

$$|a| = \sqrt{a^2}$$
.

Gleichungen mit Betragsausdrücken

Vorgehen bei Gleichungen mit Beträgen:

• Fallunterscheidungen durchführen!