Digital Systems & Computer Architecture

SOFE2250U

Lecture 03

Gate-Level Minimization

Dr. Khalid A. Hafeez

Outline

- Review
- Combinational Gates
- The Map Method

Review -Logic Gates

Name	Graphic symbol	Algebraic function	Truth table
AND	<i>x</i>	$F = x \cdot y$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	xF	F = x'	$ \begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array} $
Buffer	x— F	F = x	$ \begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array} $

Name	Graphic symbol	Algebraic function		Trut tabl	
NAND	<i>x</i>	F = (xy)'	0 0 1 1	y 0 1 0 1	F 1 1 1 0
NOR	$x \longrightarrow F$	F = (x + y)'	0 0 1 1	y 0 1 0 1	1 0 0 0
Exclusive-OR (XOR)	$x \longrightarrow F$	$F = xy' + x'y$ $= x \oplus y$	0 0 1 1	y 0 1 0 1	0 1 1 0
Exclusive-NOR or equivalence	$x \longrightarrow F$	$F = xy + x'y'$ $= (x \oplus y)'$	0 0 1 1	y 0 1 0 1	1 0 0 1

Summary of Rules

Rule1

•
$$x + y = y + x$$

•
$$xy = yx$$

- Rule2
 - x + (y + z) = (x + y) + z
 - x(yz) = (xy)z
- Rule3
 - x(y+z) = xy + xz
 - x + (yz) = (x + y)(x + z)
 - (x+y)(z+w) = xz + xw + yz + yw
 - xy + zw = (x + z)(x + w)(y + z)(y + w)
- Rule4:
 - χ 0 = 0
 - $x \cdot 1 = x$
- Rule5
 - x+0=x
 - x+1=1

- Rule6
 - x + x = x
 - $\chi \bullet \chi = \chi$
- Rule7
 - $\chi \bullet \chi' = 0$
 - x + x' = 1
- Rule8:
 - x = (x')'
- Rule9
 - (x + y)' = x'y'
 - $\bullet \quad (xy)' = x' + y'$
- Rule10
 - x + xy = x
 - x(x + y) = x
- Rule11
 - $\bullet \quad x + x'y = x + y$
 - $\bullet \quad x' + xy = x' + y$

Introduction

Gate-level minimization

 refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit.

Combinational Logic

- Using two or more logic gates to perform a more useful, complex function
- A digital circuit built from gates is called a combinational logic circuit.
- The output of a combinational circuit depends on the combination of inputs.
- The three basic Boolean operations (OR, AND, NOT) can describe any logic circuit.
- We can describe a logic circuit through logic diagrams, or through Boolean expressions.
 - You should be able to convert one from the other.

Describing Logic Circuits Algebraically

• Example: Describe the Logic Circuit (Logic diagram) Algebraically and analyze that using truth table

_				
	X	y	Z	F1
	0	0	0	
	0	0	1	
	0	1	0	
	0	1	1	
	1	0	0	
	1	0	1	
	1	1	0	
	1	1	1	

A	В	C	X
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Describing Logic Circuits Algebraically

• Example: Describe the Logic Circuit (Logic diagram) Algebraically and analyze that using truth table

X	y	F2
0	0	
0	1	
1	0	
1	1	

X	y	Z	F1
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Describing Logic Circuits Algebraically

• Example: Describe the Logic Circuit (Logic diagram) Algebraically and analyze that using truth table

X	y	xy'	x'y	F
0	0			
0	1			
1	0			
1	1			

Simplification of Combinational Logic Circuits

- Equivalent circuits can be formed with fewer gates
 - Cost is reduced
 - Reliability is improved
- Two methods can be used to simplify a logic circuit:
 - Boolean algebra theorems;
 - A mapping technique.
- The methods of logic-circuit simplification that we will study require the logic expression to be in a sum-of-products (SOP) form.
- A Sum-of-products (SOP) expression will appear as two or more AND terms ORed together.
- Therefore, AND-OR-INVERT Gates are required for Implementing Sum-of-Products Expressions
 - ABC + ABC
 - AB + ABC + CD + D

Simplification of Combinational Logic Circuits: Using Boolean Algebra

- 1. Put your expression into SOP form using standard Boolean algebras and DeMorgan's Laws.
- 2. Once in SOP form, look for common factors to further reduce your expression.
- **Examples:** Simplify the logic circuit shown.

Simplification of Combinational Logic Circuits: Using Boolean Algebra

• Simplify the following expressions:

1.
$$A\overline{B}D + A\overline{B}\overline{D}$$

2.
$$(\bar{A} + B)(A + B)$$

3.
$$A(CD) + \bar{A}B(CD)$$

4.
$$\overline{x+y+z}$$

5.
$$\overline{(A \, \overline{B}) + C}$$

6.
$$\overline{(\bar{A}+C)(B+\bar{D})}$$

Minterms

X	y	z	Term	Designation
0	0	0	x'y'z'	m_0
0	0	1	x'y'z	m_1
0	1	0	x'yz'	m_2
0	1	1	x'yz	m_3
1	0	0	xy'z'	m_4
1	0	1	xy'z	m_5
1	1	0	xyz'	m_6
1	1	1	xyz	m_7

• Examples

X	y	z	Function f_1	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$f_I = x'y'z + xy'z' + xyz$$

$$f_2 = x'yz + xy'z + xyz' + xyz$$

How to design a logic circuit?

Design procedure

- 1. Interpret the problem, determine the number of inputs and outputs and assign a symbol to each.
- 2. Derive the truth table that defines the relationship between inputs and outputs.
- 3. Obtain the Boolean function for each output as a function of input variables by writing the AND (product) term for each case where the output equals 1, then combine the terms in SOP form.
- 4. Simplify the function if possible.
- 5. Draw the logic circuit.

How to design a logic circuit?

• Design Example 1

- There are three judges, each have a push-button and would push the button whenever they would like to vote. Design a logic circuit that turns on a light when the majority of the judges vote.
- 1. How to describe the problem
- 2. Truth table:
- 3. Simplify the function
- 4. Implementation

X	y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	(1)
1	0	0	0
1	0	1	(1)
1	1	0	(1)
1	1	1	(1)

$$F = x'yz + xy'z + xyz' + xyz$$

$$= x'yz + xy'z + xy$$

$$= x'yz + x(y'z + y)$$

$$= x'yz + x(y+y')(y+z)$$

$$= x'yz + xy + xz$$

$$= y(x'z + x) + xz$$

$$= y(x+z)(x+x') + xz$$

$$= xy + yz + xz$$

How to design a logic circuit?

Interpreting

Truth table

X	y	F	ABCD
0	0	$0^2 = 0$	0000
0	1	$1^2 = 1$	0001
1	0	$2^2 = 4$	0100
1	1	$3^2 = 9$	1001

F needs 4 digits

Boolean Function

$$A = xy$$

$$B = xy$$

$$C=0$$

$$B=xy'$$
 $C=0$ $D=x'y+xy=y(x+x')=y$

- Simplifying
- Implementation

The Map Method

- Logic minimization
 - Algebraic approaches: lack specific rules
 - The Karnaugh map (K-Map)
 - A simple straight forward procedure
 - A pictorial form of a truth table
 - Applicable if the number of variables < 7
- A diagram made up of squares, where each square represents one minterm
- Boolean function
 - It is the sum of minterms
 - Or it is the sum of products (or product of sum) in the simplest form
 - Use the minimum number of terms and the minimum number of literals
- Note: The simplified expression may not be unique

Two-Variable Map

		• ,	
_	Four	· mintern	ns

$$- x' = \text{row } 0; x = \text{row } 1$$

$$-y' = \text{column } 0; y = \text{column } 1$$

_	A truth	table in	square	diagram
---	---------	----------	--------	---------

X	y	Designation
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

		xy	0	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
m_0	m_1		m_0 $x'y'$	m_1 $x'y$
m_2	m_3	$x \left\{ 1 \right\}$	m_2 xy'	m_3 xy
(3	a)	,	(t	o)

Figure 3.1 Two-variable Map

• Examples:

- Fig. 3.2(a): $xy = m_3$
- Fig. 3.2(b): $x+y = x'y+xy'+xy = m_1+m_2+m_3$

Figure 3.2 Representation of functions in the map

Two-Variable Map

Karnaugh Mapping (K-Map)

The simplification process:

- 1. Construct a K-map. Place the appropriate 1's and 0's.
- 2. Look for adjacent 1's. Connect them with a loop.
 - Loops must encircle groups of 2^m 1's.
 - Make your loops as large as possible.
 - Loops are allowed to wrap around the sides/edges.
 - Cover the 1's with the MINIMUM number of loops.
- 3. Use these loops to define a minimum realization in SOP form.

Don't Care Conditions:

- Logic circuits can have output levels that don't matter. These correspond to input levels that are unused. Entries for these DON'T CARE outputs are marked with an X.
- When creating loops in a K-map you can choose whether or not to include these in your loops.

- Eight minterms
- The Gray code sequence
- Any two adjacent squares in the map differ by only one variable
 - Primed in one square and unprimed in the other
 - e.g., m_5 and m_7 can be simplified
 - $m_5 + m_7 = xy'z + xyz = xz(y'+y) = xz$

x	y	z	Designation
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

- m_0 and m_2 (m_4 and m_6) are adjacent

$$-m_0+m_2=x'y'z'+x'yz'=x'z'(y'+y)=x'z'$$

$$- m_4 + m_6 = xy'z' + xyz' = xz'(y'+y) = xz'$$

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

(a) Three-variable Map

$$- F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$$

• Example 3.2: simplify $F(x, y, z) = \Sigma(3, 4, 6, 7)$

$$- F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$$

Note: xy'z' + xyz' = xz'

- Consider **four** adjacent squares
 - 2, 4, and 8 squares

$$- m_0 + m_2 + m_4 + m_6 = x'y'z' + x'yz' + xy'z' + xyz' = x'z'(y'+y) + xz'(y'+y) = x'z' + xz' = z'$$

$$- m_1 + m_3 + m_5 + m_7 = x'y'z + x'yz + xy'z + xyz = x'z(y'+y) + xz(y'+y) = x'z + xz = z$$

$$- F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$$

Note: y'z' + yz' = z'

- Example 3.4: let F = A'C + A'B + AB'C + BC
 - a) Express it in sum of minterms.
 - b) Find the minimal sum of products expression.

Ans:

$$F(A, B, C) = \Sigma(1, 2, 3, 5, 7) = C + A'B$$

Sum-of-Minterm Procedure

$$F(x, y, z) = \sum (1, 3, 4, 6)$$

• In sum-of-maxterm:

$$F'(x, y, z) = \Pi(0, 2, 5, 7)$$

• Taking the complement of F'

$$F(x, y, z) = (x' + z')(x + z)$$

Combine the 1's:

$$F(x, y, z) = x'z + xz'$$

Combine the 0's :

$$F'(x, y, z) = xz + x'z'$$

Table 3.2 *Truth Table of Function F*

X	y	z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Map for the function of Table 3.2

Don't-Care Conditions

- The value of a function is not specified for certain combinations of variables
- The don't-care conditions can be utilized in logic minimization
 - Can be implemented as 0 or 1

• **Example 3.9:**

- Simplify $F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$ which has the don't-care conditions $d(w, x, y, z) = \Sigma(0, 2, 5)$.
- F = yz + w'x'; or F = yz + w'z
- $-F = \Sigma(0, 1, 2, 3, 7, 11, 15)$; or $F = \Sigma(1, 3, 5, 7, 11, 15)$
- Either expression is acceptable

NAND and NOR Implementation

- NAND gate is a universal gate
 - Can implement any digital system
- Two graphic symbols for a NAND gate

Logic Operations with NAND Gates

Two-level Implementation

- Two-level logic
 - NAND-NAND = sum of products
 - Example: F = AB + CD
 - F = ((AB)'(CD)')' = AB + CD
 - Three ways to implement F = AB + CD

NOR Implementation

• Two Graphic Symbols for NOR Gate

- NOR function is the dual of NAND function.
- The NOR gate is also universal.

Example: F = (A + B)(C + D)E

NOR Implementation

Example: Implementing F = (AB' + AB)(C + D') with NOR gates

Exclusive-OR Function

• Exclusive-OR (XOR)

$$-x \oplus y = xy' + x'y$$

• Exclusive-NOR (XNOR)

$$- (x \oplus y)' = xy + x'y'$$

- Some identities
 - $-x\oplus 0=x$
 - $-x\oplus 1=x'$
 - $x \oplus x = 0$
 - $-x \oplus x' = 1$
 - $-x \oplus y' = (x \oplus y)'$
 - $-x'\oplus y=(x\oplus y)'$
- Commutative and associative
 - $-A \oplus B = B \oplus A$
 - $-(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$

A	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

Truth Table

Input A	Input B	Output
0	0	1
0	1	0
1	0	0
1	1	1

Exclusive-OR Implementations

• Exclusive-OR Implementations

$$-(x'+y')x + (x'+y')y = xy'+x'y = x \oplus y$$

Odd Function

- $A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C = AB'C' + A'BC' + ABC + A'B'C = \Sigma(1, 2, 4, 7)$
- **XOR** is an odd function \rightarrow an odd number of 1's, then F = 1.
- **XNOR** is an even function \rightarrow an even number of 1's, then F = 1.

Figure 3.33 Map for a Three-variable Exclusive-OR Function

XOR and XNOR

• Logic diagram of odd and even functions

