# Algorithm complexity – Big O notation

- **Definition:** A theoretical measure of the execution of an <u>algorithm</u>, usually the time or memory needed, given the problem size n, which is usually the number of items. Informally, saying some equation f(n) = O(g(n)) means it is less than some constant multiple of g(n). The notation is read, "f of n is big oh of g of n".
- Formal Definition: f(n) = O(g(n)) means there are positive constants c and k, such that  $0 \le f(n) \le cg(n)$  for all  $n \ge k$ . The values of c and k must be fixed for the function f and must not depend on n.



Source: NIST

#### Complexity ranking

| Function      | Common name  |
|---------------|--------------|
| n!            | factorial    |
| $2^n$         | exponential  |
| $n^d, d > 3$  | polynomial   |
| $n^3$         | cubic        |
| $n^2$         | quadratic    |
| $n\sqrt{n}$   |              |
| $n \log n$    | quasi-linear |
| $\mid n \mid$ | linear       |
| $\sqrt{n}$    | root - $n$   |
| $\log n$      | logarithmic  |
| 1             | constant     |

#### Big O examples

| T(n)                       | Complexity      |
|----------------------------|-----------------|
| $5n^3 + 200n^2 + 15$       | $O(n^3)$        |
| $3n^2 + 2^{300}$           | $O(n^2)$        |
| $\int \log_2 n + 15 \ln n$ | $O(\log n)$     |
| $\log n^3$                 | $O(\log n)$     |
| $4n + \log n$              | $\mathrm{O}(n)$ |
| $2^{64}$                   | O(1)            |
| $\log n^{10} + 2\sqrt{n}$  | $O(\sqrt{n})$   |
| $2^n + n^{1000}$           | $O(2^n)$        |

Slide credit: UPC

## Neural Network time complexity

Forward propagation – weighted sum & activation function

Total t training examples

$$Z_{jt} = W_{ji} X_{it}, Y_{it} = \sigma (Z_{it}) => O(j*i*t+j*t) = O(j*i*t)$$

$$Multiple layers$$

$$O(t*(ij+jk+kl+...)) => O(t*\sum_{all\ layers} (input\_dim \times output\_dim))$$

Backward propagation

$$dZ^{[1]} = W^{[2]T} dZ^{[2]} * \sigma^{[1]'}(Z^1) \qquad dW^{[1]} = dZX^T \qquad => O(j * t * i)$$
jxt jxk kxt jxt jxi jxt txi

Multiple layers

O(t\*
$$\sum_{all\ lavers}$$
 (input\_dim × output\_dim))

• n epochs O ( n\* t \*  $\sum_{all\ lavers}$  (input\_dim × output\_dim))

#### Nvidia GPU FLOPs measurement

```
• C:
    #include <cuda_profiler_api.h>
    cudaProfilerStart();
    myKernel<<<...>>(...);
    cudaProfilerStop();
• Python:
    import torch.cuda.profiler as profiler
    profiler.start()
    profiler.stop()

    Nsight profiler command
```

```
flop_count_sp:
smsp__sass_thread_inst_executed_op_fadd_pred_on.sum +
smsp__sass_thread_inst_executed_op_fmul_pred_on.sum +
smsp__sass_thread_inst_executed_op_ffma_pred_on.sum * 2
```

- ncu --profile-from-start off —-metrics <comma separated list> --target-processes all <original job command>
- nvprof command (predecessor of Nsight)
   nvprof --profile-from-start off -metrics flop\_count\_sp --profile-all-processes <original job command>
- Why different from the estimation?

# Neural network memory complexity

- Memory for parameters
  - Fully connected layers
    - #weights = #outputs x #inputs
    - #biases = #outputs
- Memory for layer outputs
  - #outputs
- Backward propagation specific
  - Memory for Errors
  - Memory for parameter gradients
  - Memory for hyperparameter-related (e.g., momentum)
- Implementation overhead

What about convolution layers? What about pooling layers? What about batch size?

## Model Summary in PyTorch

- pip install torchsummary
- MNIST

```
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
class Net(nn.Module):
              def init (self):
                            super(Net, self). __init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
                             self.conv2_drop = nn.Dropout2d()
                            self.fc1 = \overline{n}n.Linear(320, 50)
                             self.fc2 = nn.Linear(50, 10)
              def forward(self. x):
                            \dot{x} = \dot{F}.relu(F.max_pool2d(self.conv1(x), 2))

\dot{x} = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
                            x = x.view(-1, 320)
                             x = F.relu(self.fc1(x))
                             x = F.dropout(x, training=self.training)
                            x = self.fc2(x)
                             return F.log softmax(x, dim=1)
device = torch.device("cuda" if torch.cuda.is available() else "cpu") # PyTorch v0.4.0
```

Layer (type) Output Shape Param # Conv2d-1 [-1, 10, 24, 24] 260 Conv2d-2 [-1, 20, 8, 8] 5,020 Dropout2d-3 [-1, 20, 8, 8] Linear-4 [-1, 50] 16,050 Linear-5 [-1, 10] 510 Total params: 21,840 Trainable params: 21,840 Non-trainable params: 0 Input size (MB): 0.00 Forward/backward pass size (MB): 0.06 Params size (MB): 0.08 Estimated Total Size (MB): 0.15

summary(model, (1, 28, 28))

model = Net().to(device)

## Nvidia GPU memory utilization measurement

- nvidia-smi
- Pytorch CUDA API
  - cat gpumem.py

```
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type == 'cuda':
    print(torch.cuda.get_device_name(0))
    print('Memory Usage:')
    print('Allocated:', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB')
    print('Reserved: ', round(torch.cuda.memory_reserved(0)/1024**3,1), 'GB')
```

Python3 gpumem.py

Memory Usage: Allocated: 0.0 GB Reserved: 0.0 GB

## Nvidia GPU memory utilization measurement

- GPUtil python package
   pip3 install gputil psutil humanize
  - cat memreport.py # Import packages import torch import os, sys, humanize, psutil, GPUtil import torchvision.models as models def mem report(): print("CPU RAM Free: " + humanize.naturalsize( psutil.virtual memory().available )) GPUs = GPUtil.getGPUs() for i, gpu in enumerate(GPUs): print('GPU {:d} ... Mem Free: {:.0f}MB / {:.0f}MB | Utilization {:3.0f}%'.format(i, gpu.memoryFree, gpu.memoryTotal, gpu.memoryUtil\*100)) wide resnet50 2 = models.wide resnet50 2(pretrained=True) if torch.cuda.is available(): wide resnet50 2.cuda() mem report()
  - python3 memreport.py
     CPU RAM Free: 244.9 GB
     GPU 0 ... Mem Free: 44246MB / 45556MB | Utilization 3%

### NYU Greene cluster setup

- Greene cluster info: https://sites.google.com/nyu.edu/nyu-hpc/hpc-systems/greene/gettingstarted?authuser=0
- Login into Greene cluster login node:

ssh greene.hpc.nyu.edu

Launch an interactive job on a GPU node using slurm

srun -n4 -t2:00:00 --mem=4000 --gres=gpu:1 --pty /bin/bash

- Setup the env
  - Load the modules module load cuda/11.1.74 python/intel/3.8.6
  - Setup virtualenv
     python3 –m venv pytorch\_env (only first time)
     source pytorch\_env/bin/activate
  - Install torch packages (only first time)
     pip3 install torch torchvision torchsummary
     pip3 install –U numpy

#### GCP cluster

- Each user is assigned 100 GPU hours.
- To access GCP cluster, please first login to Greene cluster login node, then login to burst login node
- ssh burst
- From here to start interactive jobs, users are allowed to access these partition
- srun --account=csci\_ga\_3033\_085\_2022sp --partition=n1s8-v100-1 --gres=gpu:1 --pty /bin/bash
- srun --account=csci\_ga\_3033\_085\_2022sp --partition=n1s16-v100-2 --gres=gpu:2 --pty /bin/bash
- srun --account=csci\_ga\_3033\_085\_2022sp --partition=c12m85-a100-1 --gres=gpu:1 --pty /bin/bash
- srun --account=csci\_ga\_3033\_085\_2022sp --partition=c24m170-a100-2 --gres=gpu:2 -- pty /bin/bash

## CIMS cuda[1-5].cims.nyu.edu setup

- Server info: <a href="https://cims.nyu.edu/webapps/content/systems/resources/computeservers">https://cims.nyu.edu/webapps/content/systems/resources/computeservers</a>
- Login into the cuda node:

ssh cuda3.cims.nyu.edu

- Setup the env
  - Load the modules module load cuda-10.2 python-3.8
  - Setup virtualenv
     python3 –m venv pytorch\_env (only first time)
     source pytorch\_env/bin/activate
  - Install torch packages (only first time)
     pip3 install torch torchvision torchsummary

#### Code and data

Pytorch examples:

git clone <a href="https://github.com/pytorch/examples">https://github.com/pytorch/examples</a>

- ImageNet data
  - 1k class data set is sufficient
  - http://www.image-net.org/
  - Location on Greene cluster: /scratch/work/public/imagenet
  - Create a directory of your own using symbolic links for a small subset of training/test data

#### Homework 2 – Performance study a layer of a Neural Network

#### Assignment: Estimate and measure, time (compute operations) and space (memory) complexity, of the inference (forward) execution of any of these models:

- Torch.nn.transformer: <a href="mailto:examples/word\_language\_model.at-main.pytorch/examples(github.com">examples/word\_language\_model.at-main.pytorch/examples(github.com)</a>
- DistillBERT from huggingface (may take time to find a Linear layer to play with)
- a convolution layer (Conv2d-2) of MNIST CNN, reference code: <a href="https://github.com/pytorch/examples/tree/master/mnist">https://github.com/pytorch/examples/tree/master/mnist</a>
- Huggingface/gpt2 (117m) model.

#### Notes:

- 1. Pen and paper method to estimate the complexity
- 2. Use NCU or other tools to measure the time (ops) and memory aspects of the execution of the layer under inspection.
- 3. Add one more dimension: batch sizes, draw a scalability chart/plot (x axis: batch size, y axis: flops and/or mem) and analyze potential trends.
- 4. Analysis: there are 3 dimensions of potential comparisons: time-vs-space, estimation-vs-measurement, batch-size variations, make it clean.
- 5. Due on 20, 2023 at 11:59pm