M3228.000300 SLAM 101

Lecture 02 State Representation

Ayoung Kim

State

- How to describe the robot pose
 - Position = x,y,z
 - Orientation = ?
 - Pose = position and orientation
- Prior to everything
 - Define coordinate frame

Rotation

Rotation matrix

▶ Rotation can be expressed as a matrix

- ▶ Rotation matrix R, and translation t
- R = matrix, t = vector
- ▶ 2D rotation matrix = 2x2 matrix

$$[1,0] \to [\cos \theta, \sin \theta] \& [0,1] \to [-\sin \theta, \cos \theta]$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- ▶ 3D rotation matrix = 3x3 matrix
 - Not straightforward
 - ► Euler angles, quaternion, screw param

Rotation Matrix

Properties

Inverse is transpose

$$R^{\top}R = RR^{\top} = I$$

- \blacktriangleright Determinant of proper R is +1
 - \rightarrow $det(R)=\pm 1$ from equation above
- Rotation matrices are orthogonal matrix
 - ► (=orthonormal matrix)
- $R \in SO(3)$

Special orthogonal group

3D Rotation Matrix

Euler angle

- Separate three rotation matrices w.r.t. (x-axis, y-axis, z-axis)
- Matrix multiplication to compose rotations

Screw parameter

Generalized representation using screw theory

Quaternion

Four parameters instead of three

- Rotation matrix using Euler angle α, β, γ
 - Separate three rotation matrices w.r.t. (x-axis, y-axis, z-axis)
 - Combination order may differ

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c(\theta) & -s(\theta) \\ 0 & s(\theta) & c(\theta) \end{bmatrix}$$

$$R_y(\theta) = \begin{bmatrix} c(\theta) & 0 & s(\theta) \\ 0 & 1 & 0 \\ -s(\theta) & 0 & c(\theta) \end{bmatrix}$$

$$R_z(\theta) = \begin{bmatrix} c(\theta) & -s(\theta) & 0 \\ s(\theta) & c(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

[Image courtesy] https://devforum.roblox.com/

- Rotation matrix using Euler angle
 - ▶ Z-Y-X Euler angle, Z-Y-Z Euler angles...
- Example: Z-Y-X Euler angle
 - ▶ Rotate around $z \rightarrow y \rightarrow x$

$$R = Rot(z, \alpha) \cdot Rot(y, \beta) \cdot Rot(x, \gamma)$$

Example: Z-Y-X Euler angle

$$R = Rot(z,\alpha) \cdot Rot(y,\beta) \cdot Rot(x,\gamma)$$

$$= \begin{bmatrix} c(\alpha) & -s(\alpha) & 0 \\ s(\alpha) & c(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c(\beta) & 0 & s(\beta) \\ 0 & 1 \\ -s(\beta) & 0 & c(\beta) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c(\gamma) & -s(\gamma) \\ 0 & s(\gamma) & c(\gamma) \end{bmatrix}$$

$$= \begin{bmatrix} c(\alpha)c(\beta) & c(\alpha)s(\beta)s(\gamma) - s(\alpha)c(\gamma) & c(\alpha)s(\beta)c(\gamma) + s(\alpha)s(\gamma) \\ s(\alpha)c(\beta) & s(\alpha)s(\beta)s(\gamma) + c(\alpha)c(\gamma) & s(\alpha)s(\beta)c(\gamma) - c(\alpha)s(\gamma) \\ -s(\beta) & c(\beta)s(\gamma) & c(\beta)c(\gamma) \end{bmatrix}$$

What is the camera pose w.r.t the vehicle

What is the camera pose w.r.t the vehicle

- ▶ I) Use imagination
 - Align z → 90 degree
 - What next?
 - ► Alight $x \rightarrow 90$ degree

$$\alpha = 90 \ \beta = 0 \ \gamma = 90$$

▶ 2) Use formula

$$R_{vc} = \left[egin{array}{ccc} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{array}
ight]$$

$$\alpha = \tan^{-1}(R_{21}, R_{11})$$

$$\beta = \tan^{-1}(-R_{31}, R_{11}\cos(\alpha) + R_{21}\sin(\alpha))$$

$$\gamma = \tan^{-1}(R_{13}\sin(\alpha) - R_{23}\cos(\alpha), -R_{12}\sin(\alpha) + R_{22}\cos(\alpha)))$$

▶ This has ambiguity (singularity) at +/- 90!

Screw parameter

Euler's rotation theorem

Any rotation of a rigid body about a fixed point is equivalent to a single rotation by a given angle θ about a fixed axis

- Euler axis = unit vector $\hat{w} = [w_1, w_2, w_3]$
- How can we compose 3x3 rotation matrix from these screw parameters?

Screw parameter

- Screw parameters to SO(3)
 - Skew-symmetry of a matrix $[\hat{w}]$

$$[\hat{w}] = \begin{bmatrix} 0 & -w_3 & w_2 \\ w_3 & 0 & -w_1 \\ -w_2 & w_1 & 0 \end{bmatrix}$$

 $\quad \textbf{Skew-symmetric} \quad -[\hat{w}] = [\hat{w}]^\top$

Conversion

$$R = \cos(\theta)I_{3\times3} + (1-\cos(\theta))\hat{w}\hat{w}^{\top} - \sin(\theta)[\hat{w}]$$

Quaternion

lacktriangle A quaternion q is defined as a complex number

$$q = [q_1, q_2, q_3, q_4] = q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k} + q_4$$

 \mathbf{i} , \mathbf{j} and \mathbf{k} are three orthogonal unit vectors

- Same idea as the screw parameter $q = [q_1, q_2, q_3]$ and q_4 is the scalar
- Unit quaternion (Euler parameters)

$$|q|^2 = q_1^2 + q_2^2 + q_3^2 + q_4^2 = 1$$

Relation to the screw parameter

$$q_0 = \sin(\theta/2) \cdot w_1$$

$$q_1 = \sin(\theta/2) \cdot w_2$$

$$q_2 = \sin(\theta/2) \cdot w_3$$

$$q_3 = \cos(\theta/2)$$

Rotation Representation

- Why Use Different Rotation Parameter?
 - They have different singularity
 - But not all are intuitive

	Pros	Cons	Application
Euler	Intuitive	Gimbal lock Slow to compute	Mobile robotics
Screw parameter	Forward kinematics		Manipulators
Quaternion	No Gimbal lock Fast to compute	Not intuitive	Computer graphics

Rotation + Translation

Motion Representation

- Move
- Interact

Q.Where is the robot?

- Reach
- maintain posture

▶ Q. In what orientation?

Coordinate Representation

- Coordinate Representation = rotation + translation
 - Transformation matrix T = [R and t]
 - State X
 - Special Euclidean group
- 2 dimensional 3 DOF state representation
 - SE(2): 3x3 matrix that belongs to SE(2) group $[x, y, \theta]$
 - Vector form: x,y and heading
- 3 dimensional 6 DOF state representation
 - \blacktriangleright SE(3): 4x4 matrix that belongs to SE(3) group [x,y,z,r,p,h]
 - Vector form: x,y,z and roll, pitch, yaw

Coordinate Representation

- ▶ SE(3): Special Euclidean Group
 - ▶ 4x4 matrix

$$T = \left[\begin{array}{cc} R & t \\ 0 & 1 \end{array} \right] \in SE(3)$$

R is 3×3 rotation matrix t is 3×1 translation vector

$$T_{vc} = \begin{bmatrix} R_{vc} & t_{vc} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & \Delta x \\ 1 & 0 & 0 & \Delta y \\ 0 & 1 & 0 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Coordinate Representation

6 DOF Vector form

Use three Euler angle for orientation description

$$X = [x, y, z, r, p, h]$$

$$T_{vc} = \begin{bmatrix} 0 & 0 & 1 & \Delta x \\ 1 & 0 & 0 & \Delta y \\ 0 & 1 & 0 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$X_{vc} = [\Delta x, \Delta y, \Delta z, 90^{\circ}, 0, 90^{\circ}]$$

Coordinate Representation – 2D

- Example: Simpler one
 - 2D 3DOF representation

$$T_{vc} = \begin{bmatrix} \cos \theta & -\sin \theta & \Delta x \\ \sin \theta & \cos \theta & \Delta y \\ 0 & 0 & 1 \end{bmatrix}$$

$$X_{vc} = [\Delta x, \Delta y, \theta]$$

State Representation Preference

Mobile robots

$$X = [x, y, z, r, p, h]$$

Manipulators

$$T = \left[\begin{array}{cc} R & p \\ 0 & 1 \end{array} \right] \in SE(3)$$

Rigid Body Transformation

Review: Rigid Body Transformation

- Review "Introduction to robotics" from SNUON
- Coordinate {a} to coordinate {b}

Example - Rotation + Translation

▶ What is the SE(3) between {0} and {2} ?

Example - Coordinate Basis Change

Consider 2D rotation

Rotation R from {v} to {v'} $[1,0] \to [\cos \theta, \sin \theta] \& [0,1] \to [-\sin \theta, \cos \theta]$ $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

lacktriangle Two basis vectors e_1, e_2 transformed to e_1', e_2'

$$\begin{bmatrix} e_1' \\ e_2' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

$$v' = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} v = Rv$$

Example – Three Frames

$$R_{ac} = R_{ab}R_{bc}$$

$$w_a = u_a + v_a$$

$$v_a = R_{ab}v_b$$

$$w_a = u_a + R_{ab}v_b$$

$$\left[\begin{array}{cc} R_{ac} & w_a \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} R_{ab} & u_a \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} R_{bc} & v_b \\ 0 & 1 \end{array}\right]$$

Example - Change of Basis

$$\begin{aligned} \mathbf{v} &= v_{a,1}\mathbf{e}_1 + v_{a,2}\mathbf{e}_2 + v_{a,3}\mathbf{e}_3 \\ &= v_{b,1}\mathbf{f}_1 + v_{b,2}\mathbf{f}_2 + v_{b,3}\mathbf{f}_3 \end{aligned}$$

$$v_a &= (v_{a,1}, v_{a,2}, v_{a,3}), \ v_b = (v_{b,1}, v_{b,2}, v_{b,3})$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix} v_a$$
$$= \begin{bmatrix} \mathbf{f}_1 & \mathbf{f}_2 & \mathbf{f}_3 \end{bmatrix} v_b$$

$$\left[\begin{array}{ccc} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{array}\right] = \left[\begin{array}{ccc} \mathbf{f}_1 & \mathbf{f}_2 & \mathbf{f}_3 \end{array}\right] R_{ba}$$

Example - Change of Basis

Root shifting

$$\begin{bmatrix} R_{ac} & w_a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_{ab} & u_a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{bc} & v_b \\ 0 & 1 \end{bmatrix}$$
$$w_a = u_a + R_{ab}v_b$$

Example - Change of Basis

Root shifting

$$\begin{bmatrix} R_{ac} & w_a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_{ab} & u_a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{bc} & v_b \\ 0 & 1 \end{bmatrix}$$
$$w_a = u_a + R_{ab}v_b$$
$$P_v = t_{vg} + R_{vg}P_g$$

P_g: given from data
Point cloud in the global coordinate

R_vg & t_vg from inverse transform

$$\left[\begin{array}{cc} R & t \\ 0 & 1 \end{array}\right]^{-1} = \left[\begin{array}{cc} R^{\top} & -R^{\top}t \\ 0 & 1 \end{array}\right]$$

$$\left[\begin{array}{cc} R_{gv} & t_{gv} \\ 0 & 1 \end{array} \right]^{-1} = \left[\begin{array}{cc} R_{_}\mathsf{vg} \\ R_{gv}^\top & -R_{gv}^\top t_{gv} \\ 0 & 1 \end{array} \right]$$

$$P_v = -R_{gv}^{\top} t_{gv} + R_{gv}^{\top} P_g = R_{gv}^{\top} (P_g - t_{gv})$$

Thank you very much !!

