Föreläsning 4 - Naive Bayes, k-närmaste grannar, ensemblemetoder

Josef Wilzen

2022-08-30

Outline

Introduktion

- k-närmaste grannar
- Bayesianska klassificerare
- Ensemblemetoder

Introduktion

Ämnen

- K-närmaste grannar
- Naive Bayes
- Ensemblemetoder
 - Bagging
 - ► Random forest
 - Boosting
- Sammanfattning

K-närmaste grannar

- Icke-parameterisk metod
- Klassificering och regression

$$X = (x_1, \ldots, x_p), y$$

- ullet Prediktion av testpunkt X_{test} : beror bara på de k-närmaste grannarna till testpunkten
- Exempel på:
 - ► Lazy learning
 - Prototype learning
 - kernelmetod, med en uniform kernel
 - ▶ lokal metod

K-närmaste grannar

- Vi måste definera ett avståndsmått
 - Euklidiskt avstånd

$$d(\mathbf{x},\mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

Manhattan avstånd (Taxicab)

$$d(\mathbf{x},\mathbf{y}) = \sum_{k=1}^{n} |x_k - y_k|$$

Se kapitiel 2.4 i IDM för fler exempel

K-närmaste grannar klassificering

Algorithm 5.2 The k-nearest neighbor classification algorithm.

- 1: Let k be the number of nearest neighbors and D be the set of training examples.
- 2: for each test example $z = (\mathbf{x}', y')$ do
- 3: Compute $d(\mathbf{x}', \mathbf{x})$, the distance between z and every example, $(\mathbf{x}, y) \in D$.
- 4: Select $D_z \subseteq D$, the set of k closest training examples to z.
- 5: $y' = \operatorname{argmax} \sum_{(\mathbf{x}_i, y_i) \in D_z} I(v = y_i)$
- 6: end for

- Majoritet (majority) anges i algoritm 5.2
- Avstånd (weighted distance):

$$y' = \underset{v}{\operatorname{argmax}} \left(\sum_{(x_i, y_i) \in D_z} w_i I(v = y_i) \right)$$

Regression: medelvärde/viktat medelvärde av grannarna

k-närmarste grannar

K-närmaste grannar

- Målet med modellen är att prediktera nya observationer
- Påverkas stort av olika skalor Ett distansmått måste väljas för metoden
- Långsam anpassning Varje ny observation måste "skapa" en ny modell
- Känslig mot brus Lokal information används

K-närmaste grannar

- Val av K har stor betydelse!
 - lacktriangle Littet K ightarrow överanpassning, stort K ightarrow underanpassning
 - Vi kan använda korsvalidering för att bestämma k.
- Producerar godtyckligt utformade beslutsgränser
- Mer än 10 dimensioner i data:
 - problem
 - variabelreducerande tekniker, tex PCA

Bayesianska klassificerare

- Om man vill modellera en icke-deterministisk funktion:
 - (diet, träning) \rightarrow (hjärtinfarkt): svårt
 - (diet, träning) \rightarrow Pr(hjärtinfarkt)
- Bayes sats:

$$P(Y|X) = \frac{P(X|Y)}{P(X)} \cdot P(Y) \propto P(X|Y) \cdot P(Y)$$

$$posterior = \frac{\textit{likelihood}}{\textit{evidence}} \cdot \textit{prior} \propto \textit{likelihood} \cdot \textit{prior}$$

Kategoriska attribut

- P(Y = y) = (antalet rader där klassbeteckning är y) / (totala antalet rader)
- $P(X_i = x_i | Y = y) =$ (antalet rader där klassbeteckningen är y och attributet är x) / (antalet rader med klassbeteckningen y)

Tid	Home Owner	cates	cont	Defaulted Borrower
		Marital Status	Annual Income	
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No

Single

No

90K

Yes

Kontinuerliga attribut

- Diskretisera data i olika kategorier Problem:
 - ► För få intervall (breda gränser) och man kan missa mycket i aggregeringen.
 - För många intervall och det blir problem om intervallen har för få observationer.
- Anta en sannolikhetsfördelning för variabeln och skatta parametrarna från träningsmängden
 - Normalfördelning vanligt

Grundläggande princip

- Träningsfas: Skatta sannolikheten P(Y|X) för alla möjliga X och Y
- ullet Klassificeringsfas: Givet X' skatta klass genom $Y' = \max_{Y} P\left(Y|oldsymbol{X}'
 ight)$

Naiv Bayes klassificerare

Modelantagande:

$$P(X|Y) = \prod P(X_i|Y)$$

- ullet Vi antar att X_i är oberoende: likelihooden faktoriserar över $oldsymbol{X}$
- Betingade sannolikheter skattas bara för varje X_i istället för varje kombination av X

$$P(Y|X) = \prod P(X_i|Y)P(Y)$$

Detta ger en enklare, mindre flexibel model, men som går att skatta

Exempel

- 1 kontinuerlig attribut –
 2 klasser
- Hitta beslutsgränsen

Figure 5.11. Comparing the likelihood functions of a crocodile and an alligator.

Exempel

Frukter: Y kan antingen vara äpple, banan eller apelsin

- Egenskaper: färg, form, diameter
- Vi antar att dessa bidrar oberoende till sannolikheten f\u00f6r att Y \u00e4r \u00e4pple:

$$P(Y = \ddot{a}pple|X) = P(X_{f\ddot{a}rg}|Y)P(X_{form}|Y)P(X_{diameter}|Y)P(Y)$$

Egenskaper

- Robusta mot isolerade bruspunkter
- Robusta mot irrelevanta attribut då $P(X_i|Y)$ blir nästan likformigt fördelad
- Lätt att skatta
- Korrelerade attribut kan väsentligt försämra prestanda
 - Då behöver vi en mer komplex modell
 - Simultan sannolikhetsfördelning för likelihooden

Ensemblemetoder

Två olika metodfamiljer

- Modellfokuserad
- Datafokuserad
 - Bootstrapping och Bagging
 - Boosting

Bagging och boosting

Skatta en funktion av den ursprungliga fördelningen F(P) , ersätts med $F(P^{st})$

Bootstrapping

- Skapa B stickprov med återläggning från datamängden
- ullet Beräkna $F\left(P_{k}^{*}
 ight)$ där $k=1,\ldots,B$
- Ex. Skatta $Var(e^{\bar{x}})$
 - Skapa B stickprov med återläggning
 - Skatta $T_k = e^{\overline{Z}_k}$, där k = 1, ..., B och Z_k är stickprov k
 - ▶ Beräkna $Var(T), T = (T_1, T_2, ..., T_B)$

Bagging

Bagging = Bootstrap aggregating

ldén:

- Givet en model $Y = f(X) + \varepsilon$, skatta $E_p(\hat{f}(X))$, där P är fördelningen av (X, y)
- Lösning: Ersätt P med P*
 - Skapa B bootstrap-urval och skatta $\hat{f}_b(X)$
 - Skatta $E_p\left(\hat{f}(m{X})\right)$ genom att ta medelvärdet av bootstrap-funktionerna

$$\hat{f}_{bag}(\boldsymbol{X}) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}(\boldsymbol{X})$$

Bagging – kommentarer

- Sänker variansen av den anpassade funktionen
- Påverkas starkt av kvalitén av modellen, en bra modell blir bättre men en dålig modell blir sämre
- En linjär funktion sammanfaller asymptotiskt med bootstrap-skattningarna då $B \to \infty$
- Den anpassade modellen ska vara global!

Bagging för klassificering

• Givet K klasser med $Z = \{Y_i, X_i, i = 1, ..., N\}$, beräkna indikatorfunktion alt. klass-sannolikheter.

$$\hat{f}(x) = \{p_1(x), \dots, p_K(x)\}$$

$$\hat{G}(x) = \underset{k}{\operatorname{argmax}} (p_k(x))$$

• Skatta baggingestimat $\hat{f}_{bag}(m{X}) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}(m{X})$ och prediktera klassbeteckning

Classification And Regression Trees

- CART: Partition the input space using recursive binary splitting
 - Classification: Majority vote within the region.
 - ▶ Regression: Mean of training data within the region.

Partitioning of input space

Tree representation

Förbättra CART

Flexibiliteten/komplexiteten för trädmodeller beror på träddjupet

- För att få liten bias så vill vi ha ett djupt träd
- Men det leder till hög varians!

Prestationsförmågan av (vanliga) CART är ofta otillräcklig!

Förbättra CART

- Efterbeskärning:
 - ightharpoonup Skapa djupt träd (liten bias) ightharpoonup beskär till ett mindre (reducera variansen)
- Ensemblemetoder: ta genomsnitt över många trädmodeller
 - Bagging och Random Forest
 - Boosted trees

Random forests

- Bagging kan ge stora förbättringar för trädmodeller!
- Men...
 - ightharpoonup De B bootstrap-urvalen är korrelerade (stort överlapp av observationer)
 - Reduktionen i varians blir liten när vi tar medelvärde över korrelerade dataset
- Idé: avkorrelera (decorrelate) de B trädmodellerna genom att göra slumpmässiga ändringar på modellerna.

Random forests

- Använd bagging för att skatta B träd
 - ▶ Vid varje uppdelning/regel: endast en slumpmässig delmänd $q \le p$ av de förklarande variablerna används.
- Tumregel: $q = \sqrt{p}$ vid klassificering, q = p/3 vid regression¹.
- Vad händer om q = p?

Random forests

Algorithm Random forest for regression

- 1. For b = 1 to B (can run in parallel)
 - (a) Draw a bootstrap data set $\widetilde{\mathcal{T}}$ of size n from \mathcal{T} .
 - (b) Grow a regression tree by repeating the following steps until a minimum node size is reached:
 - i. Select q out of the p input variables uniformly at random.
 - ii. Find the variable x_j among the q selected, and the corresponding split point s, that minimizes the squared error.
 - iii. Split the node into two children with $\{x_j \leq s\}$ and $\{x_j > s\}$.
- 2. Final model is the average the *B* ensemble members,

$$\widehat{y}_{\star}^{\mathsf{rf}} = \frac{1}{B} \sum_{b=1}^{B} \widetilde{y}_{\star}^{b}.$$

Random forest

Slumpmässigt val av variabler:

- - Minskar bias, men ofta mycket långsamt
- Lägger till varians till varje träd
- + Avkorrelerar träden

Ofta dominerar den avkorrelerarand effekten o MSE minskar på testdata

Random forest

Beräkningsmässiga fördelar:

- Lätt att parallellisera
- q < p minskar kostnad vid varje uppdelning
 - Bra vid många variabler!
- Inte så många hyperparameterar: funkar ofta bra!
- Kan ibland bli problem med starkt korrelerade variabler

Boosting

En enkel modell kan vanligtvis fånga vissa aspekter av input-output-relationen.

Kan vi sedan lära oss en ensemble av "svaga modeller", som var och en beskriver någon del av X-Y förhållandet och sedan kombinera dessa till en "stark modell"?

Hur gör vi då?

Boosting

- Lär sig sekventiellt en ensemble av "svaga modeller"
- Kombinera dessa till en "stark modell"
- Generel approach, kan användas till godtycklig metod inom övervakad inlärning.
- Mycket framgångsrik idé inom maskininlärning!

Boosting

Modellerna skattas sekventiellt, på ett sådan sätt att vajre model försöker fixa misstagen som har gjorts med tidigare modeller.

Binary classification

We will restrict our attention to binary classification.

- Class labels are -1 and 1, i.e. $y \in \{-1, 1\}$.
- We have access to some (weak) base classifier, e.g. a classification tree.

Note. Using labels -1 and 1 is mathematically convenient as it allows us to express a majority vote between B classifiers $\widehat{y}^1(\mathbf{x}), \ldots, \widehat{y}^B(\mathbf{x})$ as

$$\mathrm{sign}\left(\sum_{b=1}^B \widehat{y}^b(\mathbf{x})\right) = \begin{cases} +1 & \text{if more plus-votes than minus-votes,} \\ -1 & \text{if more minus-votes than plus-votes.} \end{cases}$$

Boosting procedure (for classification)

Boosting procedure:

- 1. Assign weights $w_i^1 = 1/n$ to all data points.
- 2. For b = 1 to B
 - (a) Train a weak classifier ŷ^b(x) on the weighted training data {(x_i, y_i, w_i^b)}ⁿ_{i=1}.
 - (b) Update the weights $\{w_i^{b+1}\}_{i=1}^n$ from $\{w_i^b\}_{i=1}^n$:
 - i. Increase weights for all points misclassified by $\widehat{y}^b(\mathbf{x})$.
 - ii. Decrease weights for all points correctly classified by $\widehat{y}^b(\mathbf{x})$.

The predictions of the *B* classifiers, $\hat{y}^1(\mathbf{x}), \ldots, \hat{y}^B(\mathbf{x})$, are combined using a **weighted** majority vote:

$$\widehat{y}_{\text{boost}}^{B}(\mathbf{x}) = \operatorname{sign}\left(\sum_{b=1}^{B} \alpha^{b} \widehat{y}^{b}(\mathbf{x})\right).$$

Tekniska detaljer

- Hur ska vi vikta om data?
- 4 Hur ska vi vikta koefficienterna $\alpha^1, \alpha^2, \dots, \alpha^B$?

Olika boostingalgoritmer svarar olika på dessa frågor. AdaBoost: var den

första praktiska algoritmen, svarade på (1) och (2) genom att minimera exponentialförslut

AdaBoost pseudo-code

AdaBoost:

- 1. Assign weights $w_i^1 = 1/n$ to all data points.
- 2. For b = 1 to B
 - (a) Train a weak classifier $\hat{y}^b(\mathbf{x})$ on the weighted training data $\{(\mathbf{x}_i, y_i, w_i^b)\}_{i=1}^n$.
 - (b) Update the weights $\{w_i^{b+1}\}_{i=1}^n$ from $\{w_i^b\}_{i=1}^n$:
 - i. Compute $E_{\mathrm{train}}^b = \sum_{i=1}^n w_i^b \mathbb{I}\{y_i \neq \widehat{y}^b(\mathbf{x}_i)\}$
 - ii. Compute $\alpha^b = 0.5 \log((1 E_{\mathrm{train}}^b)/E_{\mathrm{train}}^b)$.
 - iii. Compute $w_i^{b+1} = w_i^b \exp(-\alpha^b y_i \hat{y}^b(\mathbf{x}_i)), i = 1, \dots, n$
 - iv. Normalize. Set $w_i^{b+1} \leftarrow w_i^{b+1} / \sum_{j=1}^n w_j^{b+1}$, for $i = 1, \dots, n$.
- 3. Output $\widehat{y}_{boost}^B(\mathbf{x}) = sign\left(\sum_{b=1}^B \alpha^b \widehat{y}^b(\mathbf{x})\right)$.

Y. Freund and R. E. Schapire. **Experiments with a New Boosting Algorithm**. Proceedings of the 13th International Conference on Machine Learning (ICML) Bari, Italy, 1996.

2003 Gödel Prize

Boosting för regressionsträd

Algorithm 8.2 Boosting for Regression Trees

- 1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set.
- 2. For b = 1, 2, ..., B, repeat:
 - (a) Fit a tree f^b with d splits (d+1 terminal nodes) to the training data (X, r).
 - (b) Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x).$$
 (8.10)

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i). \tag{8.11}$$

3. Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x).$$
 (8.12)

Boosting

Andra varianter:

- Gradient boosting
 - ► XGboost
 - ► Light GB M

Bagging	Boosting
Learns base models in parallel	Learns base models sequentially
Uses bootstrapped datasets	Uses reweighted datasets
Does not overfit as B becomes large	Can overfit as B becomes large
Reduces variance but not bias (requires deep trees as base models)	Also reduces bias! (works well with shallow trees)

Avslut

- Frågor? Kommentarer?
- Kurshemsidan
- Labben