Math 111: Practice with derivatives

1. In each case find $\frac{dy}{dx}$

(a)
$$y = \frac{x}{\sqrt{x^2 + 1}}$$

(b)
$$y = \sec^2(3x)$$

(c)
$$y = x^2 e^{\sqrt{x}}$$

(d)
$$y = (4^x + 1)^{\pi}$$

(e)
$$\sqrt{x+y} = 1 + x^2y^2$$

(f)
$$e^{2y} \tan x = \cos xy$$

(g)
$$y = \log_{10} (x - 10^{-x})$$

(h)
$$y = \ln\left(\frac{x}{4e^{2x} + 3}\right)^3$$

(i)
$$y = \tan^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)$$

- 2. The graph of $y = (x^2)^x$ has two horizontal tangent lines. Find equations for both of them.
- 3. The lateral surface area of a cone with radius r and height h is given by $A = \pi r \sqrt{r^2 + h^2}$. Find $\frac{dr}{dh}$ in terms of r and h when $A = 1500\pi$
- 4. The values of f(x) and f'(x) are given in the table.

x	-2	-1	0	1	2
f(x)	-8	-5	-2	-2	0
f'(x)	2	4	2	3	-3

If
$$H(x) = f(f(x) + x)$$
, what is the value of $H'(1)$?

5. Suppose f with a graph that passes through the point (1,4) and that the line tangent to the graph at (1,4) is y=3x+1. If $g(x)=f(x^2)$, find g(1) and g'(1).