Trip Duration Prediction and CO₂ Optimization: A Data Science Approach to Urban Sustainability

Soumaya Kasri 21/08/2025

SUSTAINABLE GALS DEVELOPMENT

1. Motivation & Problem

NYC taxis emit 450,000 tons CO₂ annually

Inefficient routes result in 15–25x more emissions per mile

Green Rides Initiative at 100% zero-emission by 2030

UN Sustainable Development Goals

SDG Alignment

SDG 11: Sustainable Cities and Communities

SDG 13: Climate Action

SDG 9: Industry, Innovation and Infrastructure

2. Research Questions

- Can ML models accurately predict trip durations?
- 2. Which features best explain variability (time, weather, geography?
- 3. How much CO₂ can optimized routing save?
- 4. Can we operationalize via a real-time dashboard?

3. Data Sources

www.kaggle.com/c/nyc-taxi-trip-duration

www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/USW00094728/detail www.opm.gov/policy-data-oversight/pay-leave/federal-holidays
Endpoint: router.project-osrm.org/route/v1/car/{coordinates}

4. Methodology

Feature Engineering

- time cycles
- distances (Haversine/Manhattan)
- weather
- clustering

CO₂ Framework

- 0.15 kg/km
- · route reduction scenarios

Final RMSLE

stacked ensemble

Table 1. RMSLE values

Model	RMSLE
XGBoost	0.26267
LightGBM	0.29127
CatBoost	0.30160
Stacked Model	0.27662

Table 2. Kaggle Competition Scores

Model	Public score	Private score
Final model	0.39228	0.39228

Table3. CO2 impact after reduction scenarios

Optimization Level	Route Reduction	CO ₂ Saved	Distance Saved	Business Impact
Conservative (3%)	3%	18,068 kg	150,570 km	Immediate implementation
Moderate (6%)	6%	36,137 kg	301,140 km	Recommended target
Advanced (10%)	10%	60,228 kg	501,900 km	Maximum potential

https://github.com/kasriS/TripDurationCO2SustainabilityDashboard/tree/main

7. Future Directions

- Integrate real-time traffic APIs
- · Pilot test with taxi flests
- Expansion to ride-sharing and last-mile delivery
- API integration for smart cities