(i) Printed Pages: 7]

Roll No.

(ii) Questions

Sub. Code : 0 8 7 : 14]

Exam. Code : 0 0 2

B.B.A. 3rd Semester Examination

1127 tom aminiM x'roaM

OPERATION RESEARCH Paper: BBA-202

Time: 3 Hours

[Max. Marks: 80

- Note: (i) Attempt any four questions from Section A. Each question carries 5 marks.
 - (ii) Attempt any two questions each from Section B and Section C. Each question carries 15 marks.

Section-A

- 1. Explain the following terms in relation to linear programming problem:
 - (a) Optimum solution
 - (b) Alternate solution

NA-122

- 2. What is an unbalanced transportation problem ? How is such a problem handled and solution obtained?
- 3. Solve the following transportation problem using Matrix Minima method:

Consumers

		A	В	С	Available
Suppliers	I	6	8	4	14
	II	4	9	8	12
	III	1 quesdo	2	6	5 (ii)
Required	stion c	6	10	15	bns

4. Solve the game:

NA-122

- A firm manufactures two types of products A and B and sells them at a profit of Rs. 12 on product A and Rs. 13 on product B. Each product is processed on 2 machines G and H. Product A requires one minute of processing on G and 2 minutes on H; Product B requires one minute on G and one minute on H. The machine G is available for not more than 6 minutes while machine H is available for 10 minutes during any working day. Formulate as a linear programming problem.
- 6. Determine the assignment schedule and minimum cost for the following problem. The assignment costs are given below:

NA-122

 Job

 1
 2
 3
 4
 5

 A
 8
 4
 2
 6
 1

 B
 0
 9
 5
 5
 4

 Person
 C
 3
 8
 9
 2
 6

 D
 4
 3
 1
 0
 3

 E
 9
 5
 8
 9
 5

Section-B

- 7. What is operations research? Discuss the scope of operations research.
- 8. Max. :

$$z = 2x_1 + 3x_2 + 4x_3$$

Subject to:

$$3x_1 + x_2 + 4x_3 \le 600$$

$$2x_1 + 4x_2 + 2x_3 \ge 480$$

$$2x_1 + 3x_2 + 3x_3 = 540$$

whereas x_1 , x_2 , $x_3 \ge 0$.

9. Solve the following travelling salesman problem:

	d become	2	3	4	5
1	-	16	12	26	43
2	8	id uossi8	12	14	12
3	9	15	Trghour.	10	17
4	13	16	32	istogner h	19
5 .	8	10	14	18	em j <u>e</u> d

10. Find optimal solution to the following transportation problem in which the cells contain the transportation cost in rupees:

	\mathbf{W}_{1}	W_2	W_3	W_4	W_5	Available
F ₁	7	6	4	5	9	40
F ₂	5	7	7	8	6	10
F_3	6	8	9	6	5	20
F ₄	8	5	6	10 7 12	8	30
Requirement	30	30	15	20	5	Machine
NA-122			(5)			Turn Over

Section-C

- 11. Customers arrive at a sales counter named by a single person according to Poisson process with a mean rate of 20 per hour. The time required to serve a customer has an exponential distribution with a mean of 100 seconds. Find the average waiting time of a customer in the queue and system.
- 12. Explain M/M/I and M/M/S queuing models in detail.
- 13. Seven jobs are to be processed through two machines

 A and B in the order AB. Processing time

 (in hours) are given below:

Jobs	1	2	3	48	5	6	7
Machine A	10	12	13	7∂	14	5	16
Machine B	15	11	8	9	6 0	7	16

14. Solve the following game by dominance method:

		Player Q						
		I	II	III	IV			
	I	6	4	8	0			
	II	6	8	4	8			
Player P	III	8	4	8	0			
ni i 3 Flori	IV	0	8	0	16			