高等数学 A II 习题课讲义

龚诚欣

gongchengxin@pku.edu.cn

2024年6月6日

目录

1	第 1 次习题课: 二重积分	3
	1.1 问题	3
	1.2 解答	3
	1.3 补充 (不要求掌握!)	4
2	第 2 次习题课: 三重积分	4
	2.1 问题	4
	2.2 解答	4
	2.3 补充 (不要求掌握!)	5
3	第 3 次习题课: 曲线积分, 格林公式	6
	3.1 问题	6
	3.2 解答	6
	3.3 补充 (不要求掌握!)	7
4		7
	4.1 问题	7
	4.2 解答	8
	4.3 补充 (不要求掌握!)	9
5	第 5 次习题课: 高斯公式, 斯托克斯公式	9
	5.1 问题	9
	5.2 解答	9
	5.3 补充 (不要求掌握!)	10
6	第 6 次习题课: 初等积分法	10
	6.1 问题	10
	6.2 解答	11
	6.3 补充 (不要求掌握!)	12
7	第 7 次习题课:解的存在唯一性,高阶线性微分方程	12
	7.1 问题	12
	7.2 解答	12
	7.3 补充 (不要求掌握!)	13

8	第 8 次习题课: 常数变易法, 常系数线性微分方程组	13
	8.1 问题	13
	8.2 解答	13
	8.3 补充 (不要求掌握!)	14
9	第 9 次习题课: 数项级数	15
	9.1 问题	15
	9.2 解答	15
	9.3 补充 (不要求掌握!)	16
10	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
	10.1 问题	17
	10.2 解答	17
	10.3 补充 (不要求掌握!)	18
11	第 11 次习题课:幂级数,泰勒级数	18
	11.1 问题	18
	11.2 解答	19
	11.3 补充 (不要求掌握!)	20
12	第 12 次习题课: 广义积分	20
	12.1 问题	20
	12.2 解答	20
	12.3 补充 (不要求掌握!)	21
13	3 第 13 次习题课: 含参积分	21
	13.1 问题	21
	13.2 解答	22
	13.3 补充 (不要求掌握!)	22
1 4	第 14 次习题课: 傅里叶级数	22
	14.1 问题	22
	14.2 解答	23
	14.3 补充 (不要求掌握!)	24
15	。 6 致谢	24

第 1 次习题课: 二重积分

1.1 问题

- 1. 累次积分变序: $\int_0^1 dy \int_y^{\sqrt{y}} f(x,y) dx$, $\int_0^a dx \int_x^{\sqrt{2ax-x^2}} f(x,y) dy$.
- 2. 求 $z = 1 \frac{x^2}{a^2} \frac{y^2}{b^2}$ 与 xoy 平面所围的体积. 3. 计算积分 $I = \int_0^1 dx \int_x^{\sqrt{x}} \frac{\sin y}{y} dy$.
- 4. 区域 D 由 $y = x^3, y = 0, x = 1$ 围成, 计算积分 $I = \iint_D \sqrt{1 x^4} d\sigma$.
- 5. 区域 D 由 y = 0, x = 1, y = x 围成, 计算积分 $I = \iint_D \sqrt{4x^2 y^2} d\sigma$.
- 6. 区域 D 由 $x^2 + y^2 = 4$ 和 $y = -x^2 + 1, y = x^2 1$ 两线在 $|x| \le 2$ 部分所围成, 计算积分 $I = \iint_D (x^2 + y^3) d\sigma$.
- 7. $0 \le p(x) \in R[a,b], f(x), g(x)$ 于 [a,b] 单调递增, 证明 $\int_a^b p(x)f(x)dx \int_a^b p(x)g(x)dx \le \int_a^b p(x)dx \int_a^b p(x)f(x)g(x)dx$.
- 8. 计算极限 $\lim_{a \to +\infty} \int_{-a}^{a} e^{-x^2} dx$.
- 9. 区域 $D = \{(x,y): x^2 + y^2 \le 1, x \ge 0, y \ge 0\}$, 计算积分 $I = \iint_D \log(1 + x^2 + y^2) d\sigma$.
- 10. 区域 D 由 y = 0, y = 1, y = x, y = x + 1 围成, 计算积分 $I = \iint_D (4y 2x) d\sigma$.
- 11. 函数 f(x,y) 在有界闭区域 D 上连续, g(x,y) 在 D 上非负, 且 g(x,y), $f(x,y)g(x,y) \in R(D)$. 证明存在点 $(x_0,y_0) \in R(D)$ D 使得 $\iint_D f(x,y)g(x,y)d\sigma = f(x_0,y_0)\iint g(x,y)d\sigma$.
- 12. 函数 f(x,y) 在有界闭区域 D 上连续非负, 且 $\iint_D f(x,y)d\sigma = 0$, 证明 $f(x,y) \equiv 0, \forall (x,y) \in D$.

1.2 解答

- 1. 这种题最好画图. 答案是 $\int_0^1 dx \int_{x^2}^x f(x,y) dy$, $\int_0^a dy \int_{a-\sqrt{a^2-y^2}}^y f(x,y) dx$.
- 2. 区域 $D = \{(x,y): \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\}, D_0 = \{(x,y): 0 \le x \le a, 0 \le y \le \frac{b}{a} \sqrt{a^2 x^2}\}.$ 则体积 $V = \iint_D z d\sigma = 4 \iint_{D_0} z$ $4\int_0^a dx \int_0^{\frac{b}{a}\sqrt{a^2-x^2}} \left(1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}\right) dy = 4\int_0^a \frac{2}{3} \frac{b}{a^3} (a^2 - x^2)^{\frac{3}{2}} dx = \cdots (\cancel{\cancel{\cancel{4}}} \cancel{\cancel{7}} \cancel$
- 3. 区域 $D = \{(x,y): 0 \le x \le 1, x \le y \le \sqrt{x}\}$. 累次积分时先对 x 积分, 则 $I = \int_0^1 dy \int_{y^2}^y \frac{\sin y}{y} dx = \int_0^1 (\sin y y \sin y) dy = \int_0^1 (\sin y y \cos y) dy = \int_0^1 (\sin y y \cos$
- $4. \ I = \int_0^1 dx \int_0^{x^3} \sqrt{1 x^4} dy = \int_0^1 x^3 \sqrt{1 x^4} dx = -\frac{1}{6} (1 x^4)^{\frac{3}{2}} \Big|_0^1 = \frac{1}{6}.$ $5. \ I = \int_0^1 dx \int_0^x \sqrt{4x^2 y^2} dy = \int_0^1 dx \left[\frac{y}{2} \sqrt{4x^2 y^2} + \frac{4x^2}{2} \arcsin \frac{y}{2x} \right]_{y=0}^{y=x} = \int_0^1 (\frac{x}{2} \sqrt{3x^2} + 2x^2 \arcsin \frac{1}{2}) dx = \frac{1}{3} (\frac{\sqrt{3}}{2} + \frac{\pi}{3}).$
- 6. 首先, 因为积分区域关于 y=0 对称, 所以 $\iint_D y^3 d\sigma = 0$. 记 D_1 为 D 的第一象限部分, $D_2 = \{(x,y): x^2 + y^2 \le 1\}$ $4, x \ge 0, y \ge 0$, $D_3 = \{(x,y): 0 \le x \le 1, 0 \le y \le -x^2 + 1\}$. 因此 $I = 4 \iint_{D_2} x^2 d\sigma = 4 \iint_{D_2} x^2 d\sigma - 4 \iint_{D_2} x^2 d\sigma = 4 \iint_{D_2} x^2$ $4\int_0^2 dx \int_0^{\sqrt{4-x^2}} x^2 dy - 4\int_0^1 dx \int_0^{-x^2+1} x^2 dy = 4\int_0^2 x^2 \sqrt{4-x^2} dx - 4\int_0^1 x^2 (1-x^2) dx = 4\pi - \frac{8}{15}.$
- 7. 利用二重积分.

$$\begin{aligned} \text{RHS} - \text{LHS} &= \int_a^b p(x) dx \int_a^b p(x) f(x) g(x) dx - \int_a^b p(x) f(x) dx \int_a^b p(x) g(x) dx \\ &= \int_a^b p(y) dy \int_a^b p(x) f(x) g(x) dx - \int_a^b p(y) f(y) dy \int_a^b p(x) g(x) dx \\ &= \int_a^b \int_a^b [p(x) p(y) f(x) g(x) - p(x) p(y) f(y) g(x)] d\sigma = \int_a^b \int_a^b p(x) p(y) g(x) [f(x) - f(y)] d\sigma \end{aligned}$$

同理 RHS - LHS $=\int_a^b\int_a^bp(x)p(y)g(y)[f(y)-f(x)]d\sigma$. 两式相加得 $2(\text{RHS}-\text{LHS})=\int_a^b\int_a^bp(x)p(y)[g(x)-g(y)][f(x)-f(x)]d\sigma$. $f(y)|d\sigma \geq 0.$

- 8. $\exists I(a) = \int_{-a}^{a} e^{-x^2} dx$, $\bigcup I^2(a) = \int_{-a}^{a} e^{-x^2} dx \int_{-a}^{a} e^{-y^2} dy = \int_{-a}^{a} \int_{-a}^{a} e^{-x^2-y^2} d\sigma$. $\exists I \boxtimes J \boxtimes J \subseteq I$ 积分 $J(a)=\iint_{D(a)}e^{-x^2-y^2}d\sigma$. 由简单的二维区域包含关系知 $J(a)\leq I^2(a)\leq J(\sqrt{2}a)$. 再利用二重积分极坐标换元知 $J(a) = \int_0^a dr \int_0^{2\pi} r e^{-r^2} d\theta = -\pi e^{-r^2} \Big|_{r=0}^{r=a} = \pi (1 - e^{-a^2}).$ 因此 $\lim_{a \to +\infty} J(a) = \pi$. 由夹逼原理知 $\lim_{a \to +\infty} I(a) = \sqrt{\pi}$.
- 9. 作极坐标变换, $I = \int_0^{\frac{\pi}{2}} d\theta \int_0^1 \log(1+r^2) r dr = \frac{\pi}{4} [(1+r^2)\log(1+r^2) r^2]|_0^1 = \frac{\pi}{2} (\log 2 \frac{1}{2}).$
- 10. $I = \int_0^1 dy \int_{y-1}^y (4y 2x) dx = \int_0^1 (2y + 1) dy = 2.$
- 11. f(x,y) 在有界闭区域 D 上连续,由有界性可设 $m=\min_{(x,y)\in D}f(x,y),\max_{(x,y)\in D}f(x,y)=M$,由介值性知 $\forall \xi \in [m, M], \exists (x_0, y_0) \in D$ 使得 $f(x_0, y_0) = \xi$. 显然 $\iint_D g(x, y) d\sigma \ge 0$. 若 $\iint_D g(x, y) d\sigma = 0$ 则 $0 = m \iint_D g(x, y) d\sigma \le 0$

 $\iint_D f(x,y)g(x,y)d\sigma \leq M \iint_D g(x,y)d\sigma = 0, \text{ 任取 } (x_0,y_0) \in D \text{ 结论均成立. } \\ \ddot{\pi} \iint_D g(x,y)d\sigma > 0 \text{ 则 } m \leq \frac{\iint_D f(x,y)g(x,y)d\sigma}{\iint_D g(x,y)d\sigma}$ $\leq M$,利用介值性知存在 $(x_0, y_0) \in D$ 使得 $f(x_0, y_0) = \frac{\iint_D f(x, y)g(x, y)d\sigma}{\iint_D g(x, y)d\sigma} \Leftrightarrow \iint_D f(x, y)g(x, y)d\sigma = f(x_0, y_0) \iint_D g(x, y)d\sigma.$ 12. 用反证法. 若 $\exists (x_0, y_0) \in D$ 使得 $f(x_0, y_0) > 0$,则由连续性知 $\exists \epsilon > 0$ 使得 $\forall (x, y) \in B((x_0, y_0), \epsilon), f(x, y) > \frac{f(x_0, y_0)}{2}$, 从而 $\iint_D f(x,y)d\sigma \ge \iint_{B((x_0,y_0),\epsilon)} f(x,y)d\sigma \ge 4\pi\epsilon^2 \frac{f(x_0,y_0)}{2} > 0$, 矛盾.

1.3 补充 (不要求掌握!)

类似于累次极限和整体极限的关系,累次积分和二重积分也不具有相互决定性. 设 $\{x_k\}_{k=1}^\infty$ 是区间 [0,1] 上的有理数序列,定义区域 $D=[0,1]^2$ 上的函数 $f(x,y)=\begin{cases} \frac{1}{k}, & \text{if } x=x_k,y\in\mathbb{Q},k\in\mathbb{N}\\ 0, & \text{otherwise} \end{cases}$. $f(x,y)\in R(D), \iint_D f(x,y)d\sigma=0$. 由于

 $f(x_k,y) = \frac{1}{k}$ Dirichlet(y) 导致 $\int_0^1 f(x_k,y) dy$ 月,所以 $\iint_D f(x,y) d\sigma$ 不能用累次积分 $\int_0^1 dx \int_0^1 f(x,y) dy$ 计算. 若固定 y, f(x,y) 要么是 Riemann 函数要么恒为 0, 积分值都是 0, 因此 $\iint_D f(x,y)d\sigma$ 可以用累次积分 $\int_0^1 dy \int_0^1 f(x,y)dx$ 计算.

2 第 2 次习题课: 三重积分

2.1问题

- 1. 区域 Ω 由 x=0,y=0,z=0,x+2y+z=1 围成, 计算积分 $I=\iiint_{\Omega}xdv$.
- 2. 区域 $\Omega = \{(x,y,z): \sqrt{x^2+y^2} \le z \le \sqrt{R^2-(x^2+y^2)}\}$, 计算积分 $I = \iiint_{\Omega} z dv$.
- 3. 区域 $\Omega = \{(x,y,z) : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1\}$, 计算积分 $I = \iiint_{\Omega} (x+y+z)^2 dv$.
- 4. 区域 D 由 $(x-a)^2+y^2=a^2(y>0), (x-2a)^2+y^2=4a^2(y>0), y=x$ 围成, 计算积分 $I=\iint_D\sqrt{x^2+y^2}d\sigma$.
- 5. 计算椭圆抛物面 $z = x^2 + 2y^2$ 及抛物柱面 $z = 2 x^2$ 所围成立体的体积.
- 6. 区域 $D = \{(x,y): 0 \le x+y \le 1, 0 \le x-y \le 1\}$, 计算积分 $I = \iint_D (x+y)^2 e^{x^2-y^2} d\sigma_{xy}$.
- 7. 区域 Ω 是由 $z = \frac{x^2 + y^2}{m}, z = \frac{x^2 + y^2}{n}, xy = a^2, xy = b^2, y = \alpha x, y = \beta x (0 < m < n, 0 < a < b, 0 < \alpha < \beta)$ 围成的且在 第一卦限的部分, 计算积分 $I = \iiint_{\Omega} xyzdv$.
- 8. 设 $h = \sqrt{\alpha^2 + \beta^2 + \gamma^2}$, $f(x) \in C[-h, h]$, 证明 $\iiint_{x^2 + y^2 + z^2 \le 1} f(\alpha x + \beta y + \gamma z) dv_{xyz} = \pi \int_{-1}^{1} (1 \zeta^2) f(h\zeta) d\zeta$.
- 9. 区域 $\Omega = \{(x, y, z) : x^2 + y^2 + z^2 \le 2z\}$, 计算积分 $I = \iiint_{\Omega} (x^2 + y^2 + z^2) dv$.
- 10. 区域 $D = \{(x,y): -1 \le x \le 1, 0 \le y \le 1\}$, 计算积分 $I = \iint_D \max\{xy, x^3\} d\sigma$.
- 11. 区域 $\Omega = \{(x,y,z): 0 \le z \le x^2 + y^2 \le 1\}$, 计算积分 $I = \iiint_{\Omega} (y^2 + z^2) dv$,
- 12. 区域 V 由 x=0,y=0,z=0,x+y+z=1 围成, 计算积分 $I=\iiint_V \frac{1}{(1+x+y+z)^2} dv$.

2.2 解答

- 1. 记区域 $D_{xy} = \{(x,y): x \geq 0, y \geq 0, x+2y \leq 1\}$, 累次积分时依次对 z,y,x 积分, 有 $I = \iint_{D_{xy}} [\int_0^{1-x-2y} x dz] d\sigma_{xy} = \{(x,y): x \geq 0, y \geq 0, x+2y \leq 1\}$,
- $\iint_{D_{xy}} x(1-x-2y)d\sigma_{xy} = \int_0^1 dx \int_0^{\frac{1}{2}(1-x)} [x(1-x)-2xy]dy = \int_0^1 [\frac{1}{2}x(1-x)^2 \frac{1}{4}x(1-x)^2] = \frac{1}{48}.$ 2. 记区域 $D_{xy} = \{(x,y): x^2 + y^2 \leq \frac{R^2}{2}\}$, 累次积分时先对 z 积分再极坐标换元, 有 $I = \iint_{D_{xy}} [\int_{\sqrt{x^2+y^2}}^{\sqrt{R^2-(x^2+y^2)}} zdz]d\sigma_{xy} = \int_0^1 [\frac{1}{2}x(1-x)^2 \frac{1}{4}x(1-x)^2] = \frac{1}{48}.$

 $\iint_{D_{xy}} \frac{1}{2} [R^2 - 2(x^2 + y^2)] d\sigma_{xy} = \int_0^{2\pi} d\theta \int_0^{\frac{R}{\sqrt{2}}} \frac{1}{2} (R^2 - 2r^2) r dr = \frac{\pi R^4}{8}.$ 3. 由对称性, $I = \iiint_{\Omega} (x^2 + y^2 + z^2) dv + 2 \iiint_{\Omega} (xy + yz + zx) dv = \iiint_{\Omega} (x^2 + y^2 + z^2) dv.$ 解法 1 先计算 $I_1 = \iiint_{\Omega} z^2 dv$. 记区域 $D_z = \{(x,y) : \frac{x^2}{a^2(1-\frac{z^2}{c^2})} + \frac{y^2}{b^2(1-\frac{z^2}{c^2})} \le 1\}$, 累次积分时先对 σ_{xy} 积分再对 z 积分, 有 $I_1 = \int_{-c}^c dz \iint_{D_z} z^2 d\sigma_{xy} = \int_{-c}^c z^2 \pi ab(1-\frac{z^2}{c^2}) dz = \frac{4\pi abc^3}{15}$. 由轮换对称性知 $I = \frac{4\pi abc}{15} (a^2 + b^2 + c^2)$.

解法 2 作广义球坐标系变换 $\begin{cases} x = ar\sin\phi\cos\theta \\ y = br\sin\phi\sin\theta \end{cases}$, Jacobi 行列式为 $J = abcr^2\sin\phi$, 所以换元后 $z = cr\cos\phi$

$$I = \int_0^{2\pi} d\theta \int_0^{\pi} d\phi \int_0^1 dr [r^2 abc \sin\phi (a^2 r^2 \sin^2\phi \cos^2\theta + b^2 r^2 \sin^2\phi \sin^2\theta + c^2 r^2 \cos^2\phi)]$$

$$= \frac{abc}{5} \int_0^{2\pi} d\theta \int_0^{\pi} -[(a^2 \cos^2 \theta + b^2 \sin^2 \theta)(1 - \cos^2 \phi) + c^2 \cos^2 \phi] d\cos \phi$$
$$= \frac{abc}{5} \int_0^{2\pi} [\frac{4}{3}(a^2 \cos^2 \theta + b^2 \sin^2 \theta) + \frac{2}{3}c^2] d\theta = \frac{4abc\pi}{15}(a^2 + b^2 + c^2)$$

4. 令
$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$
, 有
$$\begin{cases} (x - a)^2 + y^2 = a^2 \Rightarrow r^2 - 2ar \cos \theta = 0 \Rightarrow r = 2a \cos \theta \\ (x - 2a)^2 + y^2 = 4a^2 \Rightarrow r = 4a \cos \theta \end{cases}$$
, 从而 $I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{2a \cos \theta}^{4a \cos \theta} r^2 dr = 0$

 $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{56}{3} a^3 \cos^3 \theta d\theta = \frac{112 - 70\sqrt{2}}{9} a^3$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{56}{3} a^3 \cos^3 \theta d\theta = \frac{112 - 70 \sqrt{2}}{9} a^3.$$
5. 联立方程
$$\begin{cases} z = x^2 + 2y^2 \\ z = 2 - x^2 \end{cases} \Rightarrow x^2 + y^2 = 1, \text{ 因此区域 } D = \{(x, y) : x^2 + y^2 \le 1\}, \text{ 体积 } V = \iint_D [(2 - x^2) - (x^2 + y^2)] dx = 0.$$

7. 令
$$\begin{cases} u = \frac{z}{x^2 + y^2} \\ v = xy \end{cases}$$
, 即
$$\begin{cases} x = \sqrt{\frac{v}{w}} \\ y = \sqrt{wv} \end{cases}$$
, Jacobi 行列式 $J = \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| = \frac{v}{2w}(w + \frac{1}{w})$, 区域 $\Omega \to \Omega_{uvw} = \{(u, v, w) : z = uv(w + \frac{1}{w})\}$

 $\frac{1}{n} \leq u \leq \frac{1}{m}, a^2 \leq v \leq b^2, \alpha \leq w \leq \beta \},$ 所以换元后 $I = \iiint_{\Omega_{uvw}} \sqrt{\frac{v}{w}} \sqrt{wv} uv(w + \frac{1}{w}) \frac{v}{2w}(w + \frac{1}{w}) du dv dw = \iiint_{\Omega_{uvw}} v^3 u(w + \frac{1}{w})^2 \frac{1}{w} du dv dw = \int_{\frac{1}{n}}^{\frac{1}{m}} u du \int_{a^2}^{b^2} v^3 dv \int_{\alpha}^{\beta} (w + \frac{2}{w} + \frac{1}{w^3}) dw = \frac{1}{32} (\frac{1}{m^2} - \frac{1}{n^2}) (b^8 - a^8) [(\beta^2 - \alpha^2)(1 + \frac{1}{\alpha^2 \beta^2}) + 4 \log \frac{\beta}{\alpha}].$

8. 作正交变换
$$\begin{cases} \xi = a_1 x + b_1 y + c_1 z \\ \eta = a_2 x + b_2 y + c_2 z \end{cases}$$
 (旋转),则 $\left| \frac{\partial(x,y,z)}{\partial(\xi,\eta,\zeta)} \right| = 1$,所以换元后 LHS = $\iiint_{\xi^2 + \eta^2 + \zeta^2 \le 1} f(h\zeta) d\xi d\eta d\zeta = \zeta = \frac{1}{h} (\alpha x + \beta y + \gamma z)$

 $\int_{-1}^{1} d\zeta \iint_{\xi^{2} + \eta^{2} \leq 1 - \zeta^{2}} f(h\zeta) d\xi d\eta = \pi \int_{-1}^{1} (1 - \zeta^{2}) f(h\zeta) d\zeta = \text{RHS}.$ 9. 作球坐标变换, 区域 $\Omega: 0 \leq r \leq 2\cos\phi$, 积分 $I = \int_{0}^{2\pi} d\theta \int_{0}^{\pi} d\phi \int_{0}^{2\cos\phi} r^{2} r^{2} \sin\phi dr = 2\pi \int_{0}^{\frac{\pi}{2}} \sin\phi d\phi \int_{0}^{2\cos\phi} r^{4} dr = 2\pi \int_{0}^{\frac{\pi}{2}} \sin\phi d\phi = -\frac{64}{5}\pi \int_{0}^{\frac{\pi}{2}} \cos^{5}\phi d\cos\phi = -\frac{64}{5}\frac{\cos^{6}\phi}{6}|_{0}^{\frac{\pi}{2}} = \frac{32}{15}\pi.$

10. 引入辅助积分 $J=\iint_{D}\min\{xy,x^{3}\}d\sigma.$ $I+J=\iint_{D}(xy+x^{3})d\sigma=\int_{0}^{1}dy\int_{-1}^{1}(xy+x^{3})dx=0,$ $I-J=\iint_{D}|xy-x^{3}|d\sigma=\int_{0}^{1}dy\int_{-1}^{1}(xy+x^{3})dx=0,$ $\iint_{D} |x| |y - x^{2}| d\sigma = 2 \int_{0}^{1} dy \int_{0}^{1} x |y - x^{2}| dx \stackrel{u=x^{2}}{=} \int_{0}^{1} dy \int_{0}^{1} |y - u| du \stackrel{\text{Teff}}{=} \frac{1}{2} \int_{0}^{1} [y^{2} + (1 - y)^{2}] dy = \frac{1}{3} \Rightarrow I = \frac{1}{6}.$ 11. $I \stackrel{\text{Teff}}{=} \iint_{x^{2} + y^{2} \le 1} d\sigma_{xy} \int_{0}^{x^{2} + y^{2}} (\frac{x^{2} + y^{2}}{2} + z^{2}) dz = \iint_{x^{2} + y^{2} \le 1} [\frac{1}{3} (x^{2} + y^{2})^{3} + \frac{1}{2} (x^{2} + y^{2})^{2}] d\sigma_{xy} = \int_{0}^{2\pi} d\theta (\frac{1}{3} r^{6} + \frac{1}{2} r^{4}) r dr = \frac{\pi}{4}.$ 12. $I \stackrel{w=x+y+z}{=} \iiint_{x,y \ge 0, x+y \le w \le 1} \frac{1}{(1+w)^{2}} dx dy dw = \int_{0}^{1} \frac{1}{(1+w)^{2}} dw \iint_{x,y \ge 0, x+y \le w} d\sigma_{xy} = \int_{0}^{1} \frac{w^{2}}{2(1+w)^{2}} dw = \frac{3}{4} - \log 2.$

2.3 补充 (不要求掌握!)

n 维空间中的球坐标系: 一个向径 r, n-1 个角度 $\theta_1, \theta_2, \cdots, \theta_{n-1}$, 其中, 一个角度转一圈 $(\theta_{n-1}), n-2$ 个角度转半圈

$$n$$
 维空间中的球坐标系: 一个同径 $r, n-1$ 个角度 $\theta_1, \theta_2, \cdots, \theta_{n-1}$, 其中,一个角度转一圈 $(\theta_{n-1}), n-2$ 个角度转半圈
$$\begin{cases} x_1 = r \cos \theta_1 \\ x_2 = r \sin \theta_1 \cos \theta_2 \\ x_3 = r \sin \theta_1 \sin \theta_2 \cos \theta_3 \\ \dots \\ x_{n-2} = r \sin \theta_1 \cdots \sin \theta_{n-3} \cos \theta_{n-2} \\ x_{n-1} = r \sin \theta_1 \cdots \sin \theta_{n-2} \cos \theta_{n-1} \\ x_n = r \sin \theta_1 \cdots \sin \theta_{n-2} \sin \theta_{n-1} \end{cases}$$
,利用归纳法可以证明 Jacobi 行列式为
$$x_{n-1} = r \sin \theta_1 \cdots \sin \theta_{n-2} \cos \theta_{n-1} \\ x_n = r \sin \theta_1 \cdots \sin \theta_{n-2} \cos \theta_{n-1} \\ x_n = r \sin \theta_1 \cdots \sin \theta_{n-2} \sin \theta_{n-1} \end{cases}$$

,利用归纳法可以证明 Jacobi 行列式为

$$x_{n-2} = r\sin\theta_1 \cdots \sin\theta_{n-3}\cos\theta_{n-2}$$

$$x_{n-1} = r\sin\theta_1 \cdots \sin\theta_{n-2}\cos\theta_{n-2}$$

$$x_n = r\sin\theta_1 \cdots \sin\theta_{n-2}\sin\theta_{n-1}$$

 $|J| = r^{n-1} \sin^{n-2} \theta_1 \sin^{n-3} \theta_2 \cdots \sin \theta_{n-2}$

n 维空间中半径为 R 的球体 $\Omega: x_1^2 + \cdots + x_n^2 \leq R^2$ 的体积 V_n : 作球坐标变换知

$$V_{n} = \int \cdots \int_{\Omega} dx_{1} \cdots dx_{n} = \int_{0}^{2\pi} d\theta_{n-1} \int_{0}^{\pi} d\theta_{n-2} \cdots \int_{0}^{\pi} d\theta_{1} \int_{0}^{R} r^{n-1} \sin^{n-2}\theta_{1} \sin^{n-3}\theta_{2} \cdots \sin\theta_{n-2} dr$$

$$= \frac{R^{n}}{n} 2\pi \int_{0}^{\pi} \sin\theta_{n-2} d\theta_{n-2} \int_{0}^{\pi} \sin^{2}\theta_{n-3} d\theta_{n-3} \cdots \int_{0}^{\pi} \sin^{n-2}\theta_{1} d\theta_{1}$$

$$= \frac{R^{n}}{n} 2\pi \operatorname{Beta}(\frac{1}{2}, 1) \operatorname{Beta}(\frac{1}{2}, \frac{3}{2}) \cdots \operatorname{Beta}(\frac{1}{2}, \frac{n-2}{2}) \operatorname{Beta}(\frac{1}{2}, \frac{n-1}{2})$$

3 第 3 次习题课: 曲线积分, 格林公式

3.1 问题

- 1. 曲线 $\Gamma: x^2 + y^2 = x$, 计算积分 $I = \int_{\Gamma} \sqrt{1 x^2 y^2} ds$.
- 2. 曲线 C 是 $y=0,y=x(x\geq 0),x^2+y^2=a^2$ 所围成图形的边界, 计算积分 $I=\int_C e^{\sqrt{x^2+y^2}}ds$.

3. 曲线
$$L:$$

$$\begin{cases} x=a\cos t\\ y=a\sin t &, 0\leq t\leq 2\pi, \text{ 计算积分 }I=\int_L\frac{z^2ds}{x^2+y^2}.\\ z=at \end{cases}$$
 4. 曲线 $C:$
$$\begin{cases} x=a\cos\theta\\ y=a\sin\theta &, 0\leq \theta\leq 2\pi, \text{ 计算积分 }I=\int_C(x^2+y^2)^nds. \end{cases}$$

- 6. 曲线 \widehat{AB} 为单位圆周 $x^2 + y^2 = 1$ 的上半部分, 计算积分 $I = \int_{\widehat{AB}} -y dx + x dy$, 方向为从 A(1,0) 到 B(-1,0).
- 7. 曲线 Γ 是从 (0,0) 沿函数 $y=x^{\alpha}$ 到 (1,1) 的部分, 计算积分 $I=\int_{\Gamma}(x^2-y^2)dx-2xydy$.
- 8. 曲线 Γ 是球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 的交线, 计算积分 $\int_{\Gamma} x dx + y dy + z dz$, 方向是从 z 轴正向看 回来的逆时针方向.
- 9. 区域 D 是由点 $A(x_1,y_1), B(x_2,y_2), C(x_3,y_3)$ 围成的三角形, 计算积分 $I=\iint_D x^2 dx dy$.
- 10. 曲线 $C: 741x^8 + 886e^xy^2 + \sin(x^9\cos(y)) = 5$, 计算积分 $I = \oint_C \frac{xdy ydx}{x^2 + y^2}$.
- 11. 曲线 $E: x^2 + \frac{y^2}{4} = 1$, 计算积分 $I = \int_E |xy| ds$.
- 12. 证明或否定: 曲线积分 $I = \int_{\Gamma} \frac{xdy ydx}{x^2 + y^2} \frac{(x-1)dy ydx}{(x-1)^2 + y^2}$ 在 \mathbb{R}^2 内积分与路径无关.
- 13. (格林第二公式) 设闭区域 D 是由有限条逐段光滑曲线围成的, $u=u(x,y), v=v(x,y)\in C^2(D)$, 证明 $\iint_D (v\triangle u-v) dv$ $u\triangle v)d\sigma = \oint_{\partial D} (v\frac{\partial u}{\partial \overrightarrow{x}} - u\frac{\partial v}{\partial \overrightarrow{x}})ds$, 其中 \overrightarrow{n} 为 ∂D 的单位外法向量.
- 14. 求函数 u(x,y) 使得 $du = \frac{2x(1-e^y)}{(1+x^2)^2}dx + \frac{e^y}{1+x^2}dy$.
- 15. $L_n = \{(t, |\sin t|) : 0 \le t \le n\pi\}, \forall n \in \mathbb{N}_+,$ 计算极限 $\lim_{n \to +\infty} \int_{L_n} e^{y^2 x^2} \cos(2xy) dx + e^{y^2 x^2} \sin(2xy) dy$.

- 1. 曲线参数方程 $x = \frac{1}{2} + \frac{1}{2}\cos t$, $y = \frac{1}{2}\sin t$, $0 \le t \le 2\pi$, 则 $ds = \sqrt{\frac{1}{4}\sin^2 t + \frac{1}{4}\cos^2 t}dt = \frac{1}{2}dt$, 原积分 $I = \int_{\Gamma} \sqrt{1-x}ds = \int_{\Gamma}$ $\frac{1}{2} \int_0^{2\pi} \sqrt{\frac{1-\cos t}{2}} dt = \frac{1}{2} \int_0^{2\pi} |\sin \frac{t}{2}| dt = \int_0^{\pi} \sin \frac{t}{2} dt = 2.$
- 2. 记 C_1, C_2, C_3 分别为曲线 C 的下、右上、左上部分,则原积分 $I = \int_{C_1} e^{\sqrt{x^2 + y^2}} ds + \int_{C_2} e^{\sqrt{x^2 + y^2}} ds + \int_{C_3} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_3} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt{x^2 + y^2}} ds = \int_{C_4} e^{\sqrt{x^2 + y^2}} ds + \int_{C_4} e^{\sqrt$ $\int_0^a e^x dx + \int_0^{\frac{\pi}{4}} e^a a d\theta + \int_0^{\frac{\pi}{\sqrt{2}}} e^{\sqrt{2}x} \sqrt{2} dx = (e^a - 1) + \frac{\pi}{4} a e^a + e^{\sqrt{2}x} \Big|_0^{\frac{\pi}{\sqrt{2}}} = \frac{\pi}{4} a e^a + 2(e^a - 1).$ 3. 直接使用公式, $I = \int_0^{2\pi} \frac{a^2 t^2}{a^2 \cos^2 t + a^2 \sin^2 t} \sqrt{a^2 \sin^2 t + a^2 \cos^2 t + a^2} dt = \int_0^{2\pi} t^2 \sqrt{2} a dt = \frac{8\sqrt{2}}{3} a \pi^3.$
- 4. 直接使用公式, $I = \int_0^{2\pi} a^{2n} a d\theta = 2\pi a^{2n+1}$.
- 5. 曲线参数方程 $x = a\cos t, y = a\sin t$, 因此 $I = \oint \frac{a^2(\cos t + \sin t)(-\sin t) a^2(\cos t \sin t)\cos t}{a^2} dt = \int_0^{2\pi} (-1)dt = -2\pi$. 6. 由 $x^2 + y^2 = 1$ 知 $dy = -\frac{x}{y}dx$, 从而有 $\int_{\widehat{AB}} -ydx + xdy = \int_1^{-1} -ydx + x(-\frac{x}{y}dx) = \int_{-1}^1 (\frac{x^2 + y^2}{y})dx = \int_{-1}^1 \frac{dx}{\sqrt{1 x^2}} = \pi$.
- 7. 直接计算得 $I = \int_0^1 (x^2 x^{2\alpha}) dx 2xx^{\alpha} (\alpha x^{\alpha 1}) dx = \int_0^1 (x^2 (2\alpha + 1)x^{2\alpha}) dx = -\frac{2}{3}$.
- 8. 球面的单位法向量为 $\overrightarrow{n_1}=(x,y,z)$, 平面的单位法向量为 $\overrightarrow{n_2}=\frac{\sqrt{3}}{3}(1,1,1)$. 所以曲线 Γ 的单位切向量为 $\overrightarrow{r}=\overrightarrow{n_1}\times\overrightarrow{n_2}$. 从而积分为 $\int_{\Gamma} x dx + y dy + z dz = \int_{\Gamma} (x, y, z) \cdot \overrightarrow{\tau} ds = \int_{\Gamma} (x, y, z) \cdot (\overrightarrow{n_1} \times \overrightarrow{n_2}) ds = \int_{\Gamma} 0 ds = 0.$

- 9. AB 的方程为 $y = y_1 + \frac{y_2 y_1}{x_2 x_1}(x x_1)$, BC 的方程为 $y = y_2 + \frac{y_3 y_2}{x_3 x_2}(x x_2)$, CA 的方程为 $y = y_3 + \frac{y_1 y_3}{x_1 x_3}(x x_3)$. 由格林公式, 知原积分 $I = \iint_D \frac{\partial}{\partial x} (\frac{1}{3}x^3) d\sigma = \oint_{\partial D} \frac{1}{3}x^3 dy = \int_{\overline{AB}} \frac{1}{3}x^3 dy + \int_{\overline{BC}} \frac{1}{3}x^3 dy + \int_{\overline{CA}} \frac{1}{3}x^3 dy = \int_{x_1}^{x_2} \frac{1}{3}x^3 \frac{y_2 - y_1}{x_2 - x_1} dx + \int_{\overline{CA}} \frac{1}{3}x^3 dy = \int_{\overline{AB}} \frac{1}{3}x^3 dy = \int_{\overline{AB}} \frac{1}{3}x^3 dy + \int_{\overline{CA}} \frac{1}{3}x^3 dy = \int_{x_1}^{x_2} \frac{1}{3}x^3 dy = \int_{\overline{AB}} \frac{1}{3}x^3 dy + \int_{\overline{CA}} \frac{1}{3}x^3 dy = \int_{\overline{AB}} \frac{1}{3}x^3 dy = \int_{\overline{AB}} \frac{1}{3}x^3 dy + \int_{\overline{CA}} \frac{1}{3}x^3 dy = \int_{\overline{AB}} \frac{1}{3}x^3 dy + \int_{\overline{CA}} \frac{1}{3}x^3 dy = \int_{\overline{AB}} \frac{1}{3}x^3 dy = \int_{\overline{AB}} \frac{1}{3}x^3 dy = \int_{\overline{AB}} \frac{1}{3}x^3 dy + \int_{\overline{CA}} \frac{1}{3}x^3 dy = \int_{\overline{AB}} \frac{1}{3}x^3 dy + \int_{\overline{CA}} \frac{1}{3}x^3 dy = \int_{\overline{AB}} \frac{1}{$ $\int_{x_2}^{x_3} \frac{1}{3} x^3 \frac{y_3 - y_2}{x_3 - x_2} dx + \int_{x_3}^{x_1} \frac{1}{3} x^3 \frac{y_1 - y_3}{x_1 - x_3} dx = \frac{1}{12} [(y_2 - y_1)(x_2^2 + x_1^2)(x_2 + x_1) + (y_3 - y_2)(x_3^2 + x_2^2)(x_3 + x_2) + (y_1 - y_3)(x_1^2 + x_3^2)(x_1 + x_3)].$ 10. 容易验证圆点 O 是闭曲线 C 所围成区域的内点. 记 $C_{\epsilon}: x^2+y^2=\epsilon^2$, 取 ϵ 足够小使 C_{ϵ} 围成的区域完全在曲线 C内侧. 在 C 与 C_{ϵ} 围成的区域 D 上使用格林公式知 $\oint_{\partial D} \frac{xdy-ydx}{x^2+y^2} = \iint_{D} (\frac{\partial}{\partial x}(\frac{x}{x^2+y^2}) + \frac{\partial}{\partial y}(\frac{y}{x^2+y^2})) d\sigma = 0 \Rightarrow \oint_{C} \frac{xdy-ydx}{x^2+y^2} = \iint_{D} (\frac{\partial}{\partial x}(\frac{x}{x^2+y^2}) + \frac{\partial}{\partial y}(\frac{y}{x^2+y^2})) d\sigma = 0 \Rightarrow \oint_{C} \frac{xdy-ydx}{x^2+y^2} = \iint_{D} (\frac{\partial}{\partial x}(\frac{x}{x^2+y^2}) + \frac{\partial}{\partial y}(\frac{y}{x^2+y^2})) d\sigma = 0 \Rightarrow \oint_{C} \frac{xdy-ydx}{x^2+y^2} = \iint_{D} (\frac{\partial}{\partial x}(\frac{x}{x^2+y^2}) + \frac{\partial}{\partial y}(\frac{y}{x^2+y^2})) d\sigma = 0 \Rightarrow \oint_{C} \frac{xdy-ydx}{x^2+y^2} = \iint_{D} (\frac{\partial}{\partial x}(\frac{x}{x^2+y^2}) + \frac{\partial}{\partial y}(\frac{y}{x^2+y^2})) d\sigma = 0 \Rightarrow \oint_{C} \frac{xdy-ydx}{x^2+y^2} = 0$ $\oint_{C_{\epsilon}} \frac{xdy - ydx}{x^2 + y^2} \stackrel{x = \epsilon \cos \theta, y = \epsilon \sin \theta}{=} \int_0^{2\pi} d\theta = 2\pi.$
- 11. 利用变换 $x = \cos \theta, y = 2\sin \theta$ 知 $I = 4\int_0^{\frac{\pi}{2}} 2\cos \theta \sin \theta \sqrt{\sin^2 \theta + 4\cos^2 \theta} d\theta$ $t = \cos^2 \theta + 2\int_{-1}^1 \sqrt{\frac{3}{2}t + \frac{5}{2}} dt = \frac{56}{9}$. 12. 上述积分为两个曲线积分之差,即 $I = \int_{\Gamma} \frac{xdy ydx}{x^2 + y^2} \frac{(x-1)dy ydx}{(x-1)^2 + y^2} = \int_{\Gamma} \frac{xdy ydx}{x^2 + y^2} \int_{\Gamma} \frac{(x-1)dy ydx}{(x-1)^2 + y^2}$. $P_i = \frac{-y}{x^2 + y^2}$, $Q_i = \frac{-y}{x^2 + y^2}$ $\frac{(x-i)dy}{(x-i)^2+y^2}, i=0,1$,容易验证 $\frac{\partial P_i}{\partial y}=\frac{\partial Q_i}{\partial x}$. 但由于 P_0,Q_0 包含瑕点 $(0,0),P_1,Q_1$ 包含瑕点 (1,0), 且在包含瑕点的区域内 积分值可能为 2π (第 10 题结论), 不包含瑕点的区域内积分值必为 0, 因此原积分与路径有关, 结论不对.
- 13. 由格林公式, $\iint_{D} \nabla \cdot (P,Q) d\sigma = \iint_{D} (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}) d\sigma = \oint_{\partial D} P dy Q dx = \oint_{\partial D} (P,Q) \cdot (dy,-dx) = \oint_{\partial D} (P,Q) \cdot \overrightarrow{n} \, ds.$ 因此 $\oint_{\partial D} v \frac{\partial u}{\partial \overrightarrow{n}} ds = \oint_{\partial D} v \nabla u \cdot \overrightarrow{n} ds = \iint_{D} \nabla \cdot (v \nabla u) d\sigma = \iint_{D} (\nabla v \cdot \nabla u + v \triangle u) d\sigma,$ 类似有 $\oint_{\partial D} u \frac{\partial v}{\partial \overrightarrow{n}} ds = \iint_{D} (\nabla u \cdot \nabla v + u \triangle v) d\sigma.$ 两式相减即得结果.
- 14. 令 $P(x,y) = \frac{2x(1-e^y)}{(1+x^2)^2}$, $Q(x,y) = \frac{e^y}{1+x^2}$, 则有 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = -\frac{2xe^y}{(x^2+1)^2}$. $\int P(x,y)dx = \frac{e^y-1}{x^2+1} + C'$, Q(x,y) 删除掉含 x 的 项后为 0, 因此 $u(x,y) = \frac{e^y-1}{1+x^2} + C$.
- 15. 容易验证该曲线积分与路径无关,因此沿着 x 轴积分有 $I_n = \int_0^{n\pi} e^{-x^2} dx \to \int_0^{+\infty} e^{-x^2} = \frac{\sqrt{\pi}}{2}$.

格林公式的物理意义: 平面定常流体 (各点流速只与位置有关, 与时间无关) 于 (x,y) 点的流 速为 $\overrightarrow{v}(x,y) = P(x,y)\overrightarrow{i} + Q(x,y)\overrightarrow{j}$. 对于固定的 x, $\frac{\partial P}{\partial y}$ 决定了 x 方向向 y 方向的旋转, 所 以若以逆时针方向为正向,则 x 方向向 y 方向的旋转度量为 $-\frac{\partial P}{\partial y}$. 对于固定的 y, $\frac{\partial Q}{\partial x}$ 决定了 y 方向向 x 方向的旋转, 其度量为 $\frac{\partial Q}{\partial x}$. 从而, (x,y) 点的流体的旋转度的度量为 $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$, 命 名为 (平面流场的旋度), 记为 $rot \overrightarrow{v}$.

物理现象: 边界线 ∂D 上的环流量等于区域 D 上各点旋转量的迭加.

4 第 4 次习题课: 曲面积分

4.1 问题

- 1. 计算球面 $x^2 + y^2 + z^2 = 1$ 被柱面 $(x \frac{1}{2})^2 + y^2 = \frac{1}{4}$ 割下的部分的面积.
- 2. 求螺旋面 $\Sigma:$ $\begin{cases} x=u\sin v \\ y=u\cos v & \text{在 } 0\leq u\leq R, 0\leq v\leq 2\pi \text{ 部分的面积, 其中 } a>0 \text{ 是常数.} \end{cases}$
- 3. 求抛物面 $x^2 + y^2 = 2az$ 包含在柱面 $(x^2 + y^2)^2 = 2a^2xy(a > 0)$ 内的那部分面积.
- 4. Σ 为上半球面 $z = \sqrt{R^2 x^2 y^2}$, 计算积分 $I = \iint_{\Sigma} x^2 y^2 dS$.
- 5. Σ 是圆柱面 $x^2 + y^2 = R^2, 0 \le z \le H$, 计算积分 $I = \iint_{\Sigma} (x^2 + y^2 + z^2) dS$.
- 6. S 是圆锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $x^2 + y^2 = 1$ 截下的部分, 计算积分 $I = \iint_S (x^2 y^2 + y^2 z^2 + z^2 x^2) dS$.
- 7. 求均匀物质曲面 $\Sigma: z=2-(x^2+y^2), z\geq 0$ 的质心坐标.
- 8. Σ 是平面 2x+2y+z=6 于第一卦限部分上侧, 计算积分 $I=\iint_{\Sigma}\overrightarrow{F}\cdot\overrightarrow{n}dS$, 其中 $\overrightarrow{F}=(xy,-x^2,x+z)$.
- 9. $\Omega = \{(x, y, z) : x^2 + y^2 + z^2 \le 1, x \ge 0, y \ge 0\}, \Sigma$ 是 $\partial\Omega$ 的外侧, 计算积分 $I = \iint_{\Sigma} xyzdxdy$.
- 10. 流 $\overrightarrow{v} = xy\overrightarrow{i} + yz\overrightarrow{j} + xz\overrightarrow{k}$, 求穿出 $\frac{1}{8}$ 球面 $x^2 + y^2 + z^2 = 1$ (第一卦限) 的流量.
- 11. Σ 是 $z=\sqrt{x^2+y^2}(0\leq z\leq h)$ 外侧, 计算积分 $I=\iint_{\Sigma}xdydz+ydxdz+zdxdy$.
- 12. Σ 是由三个坐标平面及 x+y+z=1 所围成四面体外侧, 计算积分 $I=\iint_{\Sigma}xdydz+ydzdx+zdxdy$.
- 13. S 是曲面 $x^2 + y^2 = 1(0 \le z \le 2)$ 的外侧, 计算积分 $I = \iint_S x(y-z)dydz + (x-y)dxdy$.
- 14. S 是椭球 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的外表面, 计算积分 $I = \iint_S \frac{dxdy}{z}$.

15. S 是抛物面 $z = x^2 + y^2$ 被平面 z = 4 所截取部分的外侧, 计算积分 $I = \iint_S x dy dz + y dz dx + z dx dy$.

4.2 解答

1. 割下部分
$$z = f(x,y) = \sqrt{1-x^2-y^2}, (x,y) \in D = \{(x,y): (x-\frac{1}{2})^2+y^2 \leq \frac{1}{4}\}.$$
 从而 $S = 2\iint_D \sqrt{1+f_x^2+f_y^2}d\sigma_{xy} = 2\iint_D \frac{1}{\sqrt{1-x^2-y^2}}d\sigma_{xy}.$ 利用极坐标变换知 $S = 4\int_0^{\frac{\pi}{2}}d\theta\int_0^{\cos\theta}\frac{rdr}{\sqrt{1-r^2}} = 4\int_0^{\frac{\pi}{2}}\sqrt{1-r^2}|_0^{\cos\theta}d\theta = 4\int_0^{\frac{\pi}{2}}(1-\sin\theta)d\theta = 2\pi-4.$

2.
$$\overrightarrow{\tau_1} = (\sin v, \cos v, 0), \overrightarrow{\tau_2} = (u \cos v, -u \sin v, a), |\overrightarrow{\tau_1} \times \overrightarrow{\tau_2}| = \sqrt{u^2 + a^2} \Rightarrow S = \iint_{\Sigma} |\overrightarrow{\tau_1} \times \overrightarrow{\tau_2}| d\sigma_{uv} = \int_0^{2\pi} dv \int_0^R \sqrt{u^2 + a^2} du = 2\pi \left[\frac{u}{2}\sqrt{u^2 + a^2} + \frac{a^2}{2}\log(u + \sqrt{u^2 + a^2})\right]_0^T = \pi R\sqrt{R^2 + a^2} + \pi a^2 \log(\frac{R + \sqrt{R^2 + a^2}}{a}).$$

3. 由抛物面方程,
$$\frac{\partial z}{\partial x} = \frac{x}{a}$$
, $\frac{\partial z}{\partial y} = \frac{y}{a}$, $dS = \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} d\sigma_{xy} = \frac{\sqrt{a^2 + x^2 + y^2}}{a} d\sigma_{xy}$. 从曲线方程
$$\begin{cases} (x^2 + y^2)^2 = 2a^2xy \\ z = 0 \end{cases}$$

知
$$(x,y)$$
 落在第一、四象限. 做极坐标变换,知柱面方程为 $r^2=a^2\sin 2\theta (0\leq \theta\leq \frac{\pi}{2}$ 或 $\pi\leq \theta\leq \frac{3\pi}{2})$. 因此由对称性知 $S=4\int_0^{\frac{\pi}{4}}d\theta\int_0^{a\sqrt{\sin 2\theta}}\frac{\sqrt{a^2+r^2}}{a}rdr=\frac{4}{3a}\int_0^{\frac{\pi}{4}}(a^2+r^2)^{\frac{3}{2}}|_0^{a\sqrt{\sin 2\theta}}d\theta=\frac{4a^2}{3}\int_0^{\frac{\pi}{4}}[(1+\sin 2\theta)^{\frac{3}{2}}-1]d\theta=\frac{4a^2}{3}\int_0^{\frac{\pi}{4}}(1+\sin 2\theta)^{\frac{3}{2}}d\theta-\frac{\pi a^2}{3}=\frac{8\sqrt{2}a^2}{3}\int_0^{\frac{\pi}{4}}\sin^3(\theta+\frac{\pi}{4})d\theta-\frac{\pi a^2}{3}=\frac{8\sqrt{2}a^2}{3}\int_{\frac{\pi}{4}}\sin^3udu-\frac{\pi a^2}{3}=\frac{8\sqrt{2}a^2}{3}(-\frac{1}{3}\sin^2u\cos u-\frac{2}{3}\cos u)|_{\frac{1}{4}\pi}^{\frac{1}{2}\pi}-\frac{\pi a^2}{3}=\frac{a^2}{9}(20-3\pi).$

4.
$$\Sigma$$
 在 xoy 平面的投影区域为 $D: x^2 + y^2 \le R^2$. 又有 $\frac{\partial z}{\partial x} = -\frac{x}{z}, \frac{\partial z}{\partial y} = -\frac{y}{z}$, 所以 $\sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} = \frac{R}{\sqrt{R^2 - x^2 - y^2}}$,

$$I = \iint_{\Sigma} x^2 y^2 dS = \iint_{D} x^2 y^2 \frac{R}{\sqrt{R^2 - x^2 - y^2}} d\sigma_{xy} = \int_{0}^{2\pi} d\theta \int_{0}^{R} r^4 \cos^2 \theta \sin^2 \theta \frac{R}{\sqrt{R^2 - r^2}} r dr = R \int_{0}^{2\pi} \cos^2 \theta \sin^2 \theta d\theta \int_{0}^{R} \frac{r^5}{\sqrt{R^2 - r^2}} dr.$$

分开计算:
$$\int_0^R \frac{r^5}{\sqrt{R^2-r^2}} dr = \frac{1}{2} \int_0^R \frac{r^4}{\sqrt{R^2-r^2}} dr^2 \stackrel{R^2-r^2=t}{=} \frac{1}{2} \int_0^{R^2} \frac{(R^2-t)^2}{\sqrt{t}} dt = \frac{1}{2} \int_0^{R^2} (R^4 t^{-\frac{1}{2}} - 2R^2 t^{\frac{1}{2}} + t^{\frac{3}{2}}) dt = \frac{1}{2} [2R^4 t^{\frac{1}{2}} - \frac{4}{3} r^2 t^{\frac{3}{2}} + \frac{2}{5} t^{\frac{5}{2}}] \Big|_0^{R^2} = \frac{8}{15} R^5, \int_0^{2\pi} \cos^2\theta \sin^2\theta d\theta = \frac{1}{4} \int_0^{2\pi} \sin^22\theta d\theta = \frac{1}{8} \int_0^{2\pi} (1 - \cos4\theta) d\theta = \frac{\pi}{4}.$$
 所以 $I = R\frac{\pi}{4} \frac{8}{15} R^5 = \frac{2}{15} \pi R^6.$

5.
$$\Sigma$$
 可以表示为 $x=\pm\sqrt{R^2-y^2}$, 其在 yoz 平面的投影区域为 $D_{yz}:-R\leq y\leq R, 0\leq z\leq H$. 又 $\frac{\partial x}{\partial y}=-\frac{y}{\sqrt{R^2-y^2}}, \frac{\partial x}{\partial z}=-\frac{y}{\sqrt{R^2-y^2}}$

5.
$$\Sigma$$
 可以表示为 $x = \pm \sqrt{R^2 - y^2}$, 其在 yoz 平面的投影区域为 $D_{yz} : -R \le y \le R, 0 \le z \le H$. 又 $\frac{\partial x}{\partial y} = -\frac{y}{\sqrt{R^2 - y^2}}, \frac{\partial x}{\partial z} = 0$, $\sqrt{1 + (\frac{\partial x}{\partial y})^2 + (\frac{\partial x}{\partial z})^2} = \frac{R}{\sqrt{R^2 - y^2}}$. 再考虑对称性, $I = 2 \iint_{D_{yz}} (R^2 + z^2) \frac{R}{\sqrt{R^2 - y^2}} d\sigma_{yz} = 2R \int_{-R}^{R} \frac{dy}{\sqrt{R^2 - y^2}} \int_{0}^{H} (R^2 + z^2) dz = 0$

$$2R\arcsin\frac{y}{R}\Big|_{-R}^{T}(R^{2}z + \frac{1}{3}z^{3})\Big|_{0}^{H} = 2RH\pi(R^{2} + \frac{H^{2}}{3}).$$

6.
$$I = \sqrt{2} \iint_{x^2+y^2 \le 1} [x^2y^2 + (x^2+y^2)^2] dxdy = \int_0^{2\pi} d\theta \int_0^1 (r^4 \cos^2\theta \sin^2\theta + r^4) r dr = \frac{3\sqrt{2}}{8}\pi$$

6.
$$I = \sqrt{2} \iint_{x^2+y^2 \le 1} [x^2y^2 + (x^2+y^2)^2] dxdy = \int_0^{2\pi} d\theta \int_0^1 (r^4 \cos^2 \theta \sin^2 \theta + r^4) r dr = \frac{3\sqrt{2}}{8}\pi$$
.
7. 设其质心坐标为 (x_0, y_0, z_0) ,由对称性有 $x_0 = y_0 = 0$, $z_0 = \frac{\iint_{\Sigma} z dS}{\iint_{\Sigma} dS}$. 易知 $\sqrt{1 + (z'_x)^2 + (z'_y)^2} = \sqrt{1 + 4x^2 + 4y^2}$,因

8.
$$\overrightarrow{n} = (\frac{2}{3}, \frac{2}{3}, \frac{1}{3}), z = 6 - 2x - 2y, D = \{(x, y) : x \ge 0, y \ge 0, x + y \le 3\}, dS = \sqrt{1 + (z_x')^2 + (z_y')^2} d\sigma_{xy} = 3d\sigma_{xy}, \ \ \overrightarrow{M} = \iint_{\Sigma} \overrightarrow{F} \cdot \overrightarrow{n} dS = \iint_{\Sigma} [\frac{2}{3}xy - \frac{2}{3}x^2 + \frac{1}{3}(x+z)]dS = \iint_{D} [\frac{2}{3}xy - \frac{2}{3}x^2 + \frac{1}{3}(x+6-2x-2y)] \cdot 3d\sigma_{xy} = \iint_{D} [2xy - 2x^2 - x - 2y + 6]d\sigma_{xy} = \int_{0}^{3} dx \int_{0}^{3-x} [2xy - 2x^2 - x - 2y + 6]dy = \frac{27}{4}.$$

9. 记
$$\Sigma_1, \Sigma_2$$
 分别为 Σ 在第一卦限和第五卦限的部分, $D = \{(x,y): x \geq 0, y \geq 0, x^2 + y^2 \leq 1\}$. 由对称性,可简化 $I = 2\iint_{\Sigma_1} xyzdxdy = 2\iint_D xy\sqrt{1-x^2-y^2}d\sigma_{xy} = 2\int_0^{\frac{\pi}{2}} d\theta \int_0^1 r^2\cos\theta\sin\theta\sqrt{1-r^2}rdr = \int_0^{\frac{\pi}{2}}\cos\theta\sin\theta d\theta \int_0^1 r^2\sqrt{1-r^2}dr^2 = \frac{1}{2}\int_0^1 u\sqrt{1-u}du \stackrel{t=\sqrt{1-u}}{=} \frac{1}{2}\int_1^0 (1-t^2)t(-2t)dt = \frac{2}{15}$.

10.
$$\overrightarrow{n} = (\cos \alpha, \cos \beta, \cos \gamma), Q = \iint_{\Sigma} \overrightarrow{v} \cdot \overrightarrow{n} dS = \iint_{\Sigma} P dy dz + Q dx dz + R dx dy = \iint_{\Sigma} xy dy dz + yz dx dz + xz dx dy \stackrel{\text{Niff}}{=} 3 \iint_{\Sigma} xz dx dy = 3 \iint_{\Sigma^2 + v^2 \le 1} x \ge 0 \xrightarrow{y \ge 0} x \sqrt{1 - x^2 - y^2} d\sigma_{xy} = \frac{3\pi}{16}.$$

$$3\iint_{\Sigma} xz dx dy = 3\iint_{x^2 + y^2 \le 1, x \ge 0, y \ge 0} x\sqrt{1 - x^2 - y^2} d\sigma_{xy} = \frac{3\pi}{16}.$$

$$11. \ I = \iint_{\Sigma} (x, y, z) \cdot \overrightarrow{n} dS = \iint_{\Sigma} (x, y, z) \cdot \frac{(x, y, -z)}{\sqrt{x^2 + y^2 + z^2}} dS = \iint_{\Sigma} \frac{x^2 + y^2 - z^2}{\sqrt{x^2 + y^2 + z^2}} dS = 0.$$

12. 记 Σ 在 xy,yz,zx 平面上的部分分别为 Σ_z,Σ_x 和 Σ_y , 在平面 x+y+z=1 上的部分为 Σ_1 . 在 Σ_z 上, z=0,dydz=0dzdx=0, 从而 $\iint_{\Sigma_z} xdydz+ydzdx+zdxdy=0$. 同理在 Σ_y 与 Σ_z 上的积分都为零. 因此 $I=\iint_{\Sigma_1} xdydz+ydzdx+$ zdxdy. 记 $D = \{(x,y): x \ge 0, y \ge 0, x+y \le 1\}$, 则由对称性 $I = 3\iint_D (1-x-y)d\sigma_{xy} = 3\int_0^1 dx \int_0^{1-x} (1-x-y)dy = \frac{1}{2}$. 13. 注意到曲面 S 在 O_{xy} 平面上的投影为一曲线, 所以 $\iint_S (x-y) dx dy = 0$. 为了计算另一个积分, 将曲面分成两部分

$$2\int_0^2 dz \int_{-1}^1 \sqrt{1 - y^2} (y - z) dy = -2\pi.$$

14. 由对称性,
$$I = 2 \iint_{\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1} \frac{dxdy}{c\sqrt{1 - x^2/a^2 - y^2/b^2}} = \frac{2}{c} \int_{-a}^{a} dx \int_{-b\sqrt{1 - x^2/a^2}}^{b\sqrt{1 - x^2/a^2}} \frac{dy}{\sqrt{(1 - x^2/a^2) - y^2/b^2}} = \frac{2}{c} \int_{-a}^{a} b\pi dx = \frac{4\pi ab}{c}.$$

15. 由对称性
$$\iint_S x dy dz + y dz dx = 0$$
. 从而 $I = \iint_S z dx dy = \iint_{x^2 + y^2 < 4} (x^2 + y^2) d\sigma_{xy} = \int_0^{2\pi} d\theta \int_0^2 r^2 r dr = 8\pi$.

事实上, 有些集合是不可求长的. 用 m(A) 表示集合 A 的 "长度", 在 [0,1] 中根据规则 " $x_1 \sim x_2$ 当且仅当 $x_1 - x_2 \in \mathbb{Q}$ " 划分等价类, 每个等价类选取一个元素 x_α (依赖于选择公理), 这样构成了集合 A. 假设 A 可求长, 那么 $A_q = (A+q) \cap [0,1], \forall q \in \mathbb{Q}$ 也可求长, 且对于 $q \neq p$ 有 $A_q \cap A_p = \emptyset$. 这表明 $1 = m([0,1]) = \sum_{q \in \mathbb{Q}} m(A_q)$, 即 A 不是零长度的. 注意 到对任意的 $q \in \mathbb{Q}$ 成立 $m(A_q) \geq m(A) - q$, 这样只需考虑所有在区间 $[0,\frac{1}{2}m(A)]$ 中的有理数便知矛盾! 这说明集合 A 是不可求长的. 因此, 不是所有的曲线都能求其长度, 不是所有的曲面都能求其面积.

5 第 5 次习题课: 高斯公式, 斯托克斯公式

5.1 问题

- 1. Σ 是锥面 $x^2 + y^2 = z^2 (0 \le z \le 1)$ 外侧, 计算积分 $I = \iint_{\Sigma} (y z) dy dz + (z x) dx dz + (x y) dx dy$.
- 2. S 是单位球面 $x^2+y^2+z^2=1$ 上半部分上侧, 计算积分 $I=\iint_S (\sin yz+x)dydz+(e^{xz}+y)dzdx+(xy+z)dxdy$.
- 3. 设 $S \subset \mathbb{R}^3$ 为一封闭光滑曲面,以它为边界的闭区域为 D, $(\xi, \eta, \zeta) \in \mathbb{R}^3$ 不在 S 上. 计算积分 $I = \iint_S \frac{\cos(\overrightarrow{r}, \overrightarrow{n})}{r^2}$, 其中 $\overrightarrow{r} = (x \xi, y \eta, z \zeta), r = |\overrightarrow{r}|, |\overrightarrow{n}|$ 是 S 的单位外法向量.
- 4. 设 f(x,y,z) 表示从原点到椭球面 $\Sigma: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 上点 P(x,y,z) 的切平面的距离, 计算积分 $I = \iint_{\Sigma} \frac{dS}{f(x,y,z)}$.
- 5. L 是平面 x+y+z=1 被三个坐标面所截得三角形 Σ 的边界, 其正向与此三角形上侧成右手系, 计算积分 $I=\oint_L z dx + x dy + y dz$.
- 6. L 为椭圆 $\begin{cases} x^2+y^2=a^2 \\ \frac{x}{a}+\frac{z}{h}=1 \end{cases}$,方向与椭圆面上侧构成右手系,计算积分 $I=\oint_L(y-z)dx+(z-x)dy+(x-y)dz.$
- 7. Γ_h 是平面 x + y + z = h 与球面 $x^2 + y^2 + z^2 = 1$ 的交线, 从 z 轴正向看去逆时针方向, 计算积分 $I = \oint_{\Gamma_h} (y^2 z^2) dx + (z^2 x^2) dy + (x^2 y^2) dz$.
- 8. C 是平面 $x + y + z = \frac{3}{2}a$ 切立方体 $\Omega = \{(x, y, z) : 0 \le x, y, z \le a\}$ 的表面所得的切痕, 方向是从 x 轴正向看去逆时针方向, 计算积分 $I = \oint_C (y^2 z^2) dx + (z^2 x^2) dy + (x^2 y^2) dz$.
- 9. S 是柱面 $x^2+y^2=R^2, -R\leq z\leq R$ 所围成的立体表面外侧, 计算积分 $I=\iint_S \frac{xdydz+z^2dxdy}{x^2+y^2+z^2}$.
- 10. S 是锥面 $z=\sqrt{x^2+y^2}$ 及平面 z=1,z=2 所围立体的表面外侧, 计算积分 $\iint_S \frac{e^z}{\sqrt{x^2+y^2}} dx dy.$
- 11. 函数 $P(x,y), Q(x,y) \in C^2(\mathbb{R}^2)$, 且曲线积分 $\int_{\Gamma} Pdx Qdy$ 和 $\int_{\Gamma} Pdy + Qdx$ 在 \mathbb{R}^2 中与路径无关, 求证 $P(x,y) = \frac{1}{2\pi} \int_0^{2\pi} P(x + \cos \theta, y + \sin \theta) d\theta$, $\forall (x,y) \in \mathbb{R}^2$.

- 1. 记 $\Omega = \{(x,y,z) : \sqrt{x^2 + y^2} \le z \le 1\}, \Sigma_0 = \{(x,y,z) : x^2 + y^2 \le 1, z = 1\}, \ \mathbb{M} \ I = \bigoplus_{\partial\Omega} (y-z) dy dz + (z-x) dx dz + (x-y) dx dy \iint_{\Sigma_0} (y-z) dy dz + (z-x) dx dz + (x-y) dx dy := I_1 I_2.$ 根据高斯公式, $I_1 = \iiint_{\Omega} [0+0+0] dv = 0$, 而 $I_2 = \iint_{\Sigma_0} (x-y) dx dy = \iint_{\Sigma_0} x d\sigma_{xy} \iint_{\Sigma_0} y d\sigma_{xy} = 0 0 = 0.$ 因此 I = 0.
- 2. 取 $S_1 = \{(x,y,z): x^2 + y^2 \le 1, z = 0\}$,方向向下,则 $S \cup S_1$ 构成了上班单位球体 D 的边界外侧。由高斯公式得 $\iint_{S \cup S_1} (\sin yz + x) dy dz + (e^{xz} + y) dz dx + (xy + z) dx dy = 3 \iiint_D dv = 2\pi$. 而 $\iint_{S_1} (xy + z) dx dy = -\iint_{x^2 + y^2 \le 1} xy d\sigma_{xy} = 0$. 因此 $I = 2\pi$.
- 3. $\cos(\overrightarrow{r},\overrightarrow{n}) = \frac{1}{r}\overrightarrow{r}\cdot\overrightarrow{n} \Rightarrow I = \iint_{S} \frac{\overrightarrow{r}}{r^{3}}\cdot\overrightarrow{n}dS = \iint_{S} \frac{x-\xi}{r^{3}}dydz + \frac{y-\eta}{r^{3}}dzdx + \frac{z-\zeta}{r^{3}}dxdy$. 由 $\frac{\partial}{\partial x}(\frac{x-\xi}{r^{3}}) = \frac{1}{r^{3}} \frac{3(x-\xi)^{2}}{r^{5}}, \frac{\partial}{\partial y}(\frac{y-\eta}{r^{3}}) = \frac{1}{r^{3}} \frac{3(y-\eta)^{2}}{r^{5}}, \frac{\partial}{\partial z}(\frac{z-\zeta}{r^{3}}) = \frac{1}{r^{3}} \frac{3(z-\zeta)^{2}}{r^{5}}$ 知 $\frac{\partial}{\partial x}(\frac{x-\xi}{r^{3}}) + \frac{\partial}{\partial y}(\frac{y-\eta}{r^{3}}) + \frac{\partial}{\partial z}(\frac{z-\zeta}{r^{3}}) = 0$. 当 $(\xi,\eta,\zeta) \notin D$ 时,根据高斯公式成立 $I = \iint_{D} [\frac{\partial}{\partial x}(\frac{x-\xi}{r^{3}}) + \frac{\partial}{\partial y}(\frac{y-\eta}{r^{3}}) + \frac{\partial}{\partial z}(\frac{z-\zeta}{r^{3}})]dv = 0$. 当 $(\xi,\eta,\zeta) \in D$ 时,取 ϵ 充分小使得球面 $S_{\epsilon} = \{(x,y,z) : (x-\xi)^{2} + (y-\eta)^{2} + (z-\zeta)^{2} = \epsilon^{2}\}$ 完全落在 D 的内部.如果取 S_{ϵ} 的内侧 S_{ϵ}^{-} ,设区域 D_{ϵ} 以 S 与 S_{ϵ}^{-} 为边界,则 $\iint_{S \cup S_{\epsilon}^{-}} \frac{\cos(\overrightarrow{r},\overrightarrow{n})}{r^{2}}dS = \iint_{C} 0dv = 0$. 注意到在 S_{ϵ} 上, \overrightarrow{r} 与 \overrightarrow{n} 平行,从而 $I = -\iint_{C_{\epsilon}} \frac{\cos(\overrightarrow{r},\overrightarrow{n})}{c}dS = \iint_{C} \frac{dS}{dz} = \frac{1}{2}4\pi\epsilon^{2} = 4\pi$.

5.
$$\begin{vmatrix} dydz & dzdx & dxdy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ z & x & y \end{vmatrix} = dydz + dzdx + dxdy,$$
 因此由斯托克斯公式, $I = \iint_{\Sigma} dydz + dxdz + dxdy = 3\iint_{\Sigma} dxdy = \frac{3}{2}.$

6. 记椭圆面上侧为
$$\Sigma$$
, $\begin{vmatrix} dydz & dzdx & dxdy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y-z & z-x & x-y \end{vmatrix} = -2dydz - 2dzdx - 2dxdy$, 因此由斯托克斯公式, $I = \iint_{\Sigma} -2dydz - 2dzdx - 2dxdy = -2 \iint_{\Sigma} dx + \iint_{\Sigma} dx + \iint_{\Sigma} dx = -2 (\pi ab + \pi a^2)$

 $2dzdx - 2dxdy = -2\iint_{\Sigma} dydz + dxdy = -2[\iint_{D_{uz}} d\sigma_{yz} + \iint_{D_{xy}} d\sigma_{xy}] = -2(\pi ah + \pi a^2).$

7. 设平面 x+y+z=h 被圆周 Γ_h 所围成部分为 S_h , 则 S_h 是一半径为 $\sqrt{1-\frac{h^2}{3}}$ 的圆盘. 由斯托克斯公式, I=

$$\iint_{S_h} \frac{dydz}{\frac{\partial}{\partial x}} \frac{dzdx}{\frac{\partial}{\partial y}} \frac{dxdy}{\frac{\partial}{\partial z}} = -\frac{4}{\sqrt{3}} \iint_{S_h} (x+y+z)dS = -\frac{4h}{\sqrt{3}} \iint_{S_h} dS = -\frac{4h}{\sqrt{3}} \pi (1-\frac{h^2}{3}).$$

$$|y^2 - z^2 - z^2 - x^2 - x^2 - y^2|$$
8. 令 Σ 是 C 所围的区域,方向为上侧,由斯托克斯公式知 $I = \iint_{\Sigma} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 - z^2 - z^2 - x^2 - x^2 - y^2 \end{vmatrix} dS = -\frac{4}{\sqrt{3}} \iint_{\Sigma} (x + y + y) dS = -\frac{4}{\sqrt{3}} \iint_{\Sigma} (x + y)$

 $z)dS = -\frac{4}{\sqrt{3}}\iint_{\Sigma}\frac{3}{2}adS = -2\sqrt{3}a\iint_{\Sigma}dS$. 最后,因为 Σ 是边长为 $\frac{\sqrt{2}}{2}a$ 的正六边形,面积为 $\frac{3\sqrt{3}}{4}a^2$,所以 $I = -\frac{9}{2}a^3$. 9. 记 S_1, S_2, S_3 分别为 S 的下表面、上表面和侧面,积分项拆分为 $I = \iint_{S}\frac{xdydz}{x^2+y^2+z^2} + \iint_{S}\frac{z^2dxdy}{x^2+y^2+z^2} := I_1+I_2$. 先看第一项, 显然 $\iint_{S_1} \frac{xdydz}{x^2+y^2+z^2} = \iint_{S_2} \frac{xdydz}{x^2+y^2+z^2} = 0$. 记 $D_{yz} = \{(y,z): -R \leq y, z \leq R\}$,从而 $\iint_{S_3} \frac{xdydz}{x^2+y^2+z^2} = 2 \iint_{D_{yz}} \frac{\sqrt{R^2-y^2}dydz}{R^2+z^2} = 2 \iint_{D_{yz$ 者是因为对称性,后者是因为 S_3 在 xoy 平面上的投影是一曲线). 因此 $I=\frac{1}{2}\pi^2R$. 请读者注意,本题由于区域内存在 瑕点 (0,0,0), 不可直接使用高斯公式.

10. 记 S_1, S_2, S_3 分别为 S 的下表面、上表面和侧面, 积分项拆分为 $(\iint_{S_1} + \iint_{S_2} + \iint_{S_3}) \frac{e^z}{\sqrt{x^2 + y^2}} dx dy$. 投影 $D_1 = \{(x, y) : y \in S_1, y \in S_2, y \in S_3\}$

11. 积分与路径无关意味着 $\frac{\partial P}{\partial y} = -\frac{\partial Q}{\partial x}$, $\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y} \Rightarrow \frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} = 0$. 由格林公式知 \forall 区域 D, $\oint_{\partial D} \frac{\partial P}{\partial \vec{r}} ds = \iint_D \triangle P d\sigma = 0$. 从而 $0 = \oint_{\partial B((x,y),r)} \frac{\partial P}{\partial \vec{r}} ds = \oint_{\partial B((x,y),r)} \frac{\partial P}{\partial r} ds = \int_0^{2\pi} \frac{\partial P(x+r\cos\theta,y+r\sin\theta)}{\partial r} r d\theta = r \frac{\partial}{\partial r} (\int_0^{2\pi} P(x+r\cos\theta,y+r\sin\theta) d\theta) \Rightarrow \int_0^{2\pi} P(x+r\cos\theta,y+r\sin\theta) d\theta = C$. $\diamondsuit r \to 0$ 知 $\int_0^{2\pi} P(x+r\cos\theta,y+r\sin\theta) d\theta \to 2\pi P(x,y) \Rightarrow P(x,y) = \frac{1}{2\pi} \int_0^{2\pi} P(x+r\cos\theta,y+r\sin\theta) d\theta$ $\cos \theta, y + \sin \theta) d\theta (\diamondsuit r = 1 \ \Box \Box).$

5.3 补充 (不要求掌握!)

高斯公式的物理意义: 类似于之前 3.3 节的讨论, 对于流速 $\overrightarrow{F}=(P,Q,R)$, 定义其散度为 $\operatorname{div}\overrightarrow{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=\nabla\cdot\overrightarrow{F}$. $\operatorname{div}\overrightarrow{F}>0$ 表示点为 "源", 即能生流; $\operatorname{div}\overrightarrow{F}<0$ 表示点为 "汇", 即能"吸流"; $\operatorname{div}\overrightarrow{F}=0$ 表示点非源非汇. 因此高斯公 式的向量形式为 $\iint_{\Sigma^+} \overrightarrow{F} \cdot \overrightarrow{n} dS = \iiint_{\Omega} \operatorname{div} \overrightarrow{F} dv$, 即: 流在某区域 Ω 上的总散度等于流通过 Ω 的边界的总流量.

斯托克斯公式的物理意义: 类似于之前 3.3 节的讨论, 对于流速 $\overrightarrow{F}=(P,Q,R)$, 定义其旋度为 $\cot \overrightarrow{F}=(\frac{\partial R}{\partial n}-\frac{\partial Q}{\partial z})\overrightarrow{i}+$

$$(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x})\overrightarrow{j} + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})\overrightarrow{k} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \nabla \times \overrightarrow{F},$$
 因此斯托克斯公式的向量形式为 $\iint_{\Sigma} \operatorname{rot} \overrightarrow{F} \cdot \overrightarrow{n} dS = \oint_{L} \overrightarrow{F} \cdot d\overrightarrow{s},$

即:流在闭路 L 上的循环量 (环流量),就是旋度在以 L 为边界的光滑曲面上的流量 (旋流量).

第 6 次习题课: 初等积分法

6.1 问题

1. 求解微分方程 $(2x\sin y + 3x^2y)dx + (x^3 + x^2\cos y + y^2)dy = 0$.

- 2. 求解微分方程 $(x^2+1)(y^2-1)dx + xydy = 0$.
- 3. 质量为 m 的物体在空中下落, 初速度为 v_0 , 空气阻力与物体速度的平方成正比, 阻尼系数为 k > 0. 沿垂直地面向下 的方向取定坐标轴 x, 计算 t 时刻的速度.
- 4. 求解微分方程 $\frac{dy}{dx} + \frac{1}{x}y = x^3(x \neq 0)$.
- 5. 设微分方程 $\frac{dy}{dx} + ay = f(x)$, 其中 a > 0 为常数, 而 f(x) 是以 2π 为周期的连续函数. 试求方程的 2π 周期解.
- 6. 求解微分方程 $\frac{dy}{dx} = \frac{x+y}{x-y}$.
- 7. 求解微分方程 y' = xy + 3x + 2y + 6.
- 8. 考虑里卡蒂方程 $\frac{dy}{dx} + ay^2 = bx^m$, 其中 $a \neq 0, b, m$ 都是常数, $x \neq 0, y \neq 0$. 证明当 $m = 0, -2, \frac{-4k}{2k+1}, \frac{-4k}{2k-1}(k=1,2,\cdots)$ 时,方程可通过适当的变换化为变量分离的方程.
- 9. 证明: 若 $\mu = \mu(x,y)$ 是方程 P(x,y)dx + Q(x,y)dy = 0 的一个积分因子使得 $\mu P(x,y)dx + \mu Q(x,y)dy = d\Phi(x,y)$, 则 $\mu(x,y)g(\Phi(x,y))$ 也是一个积分因子, 其中 $g(\cdot)$ 是任一可微的非零函数.
- 10. 求解微分方程 $(x^3y 2y^2)dx + x^4dy = 0$.
- 11. 证明: 若 P(x,y)dx + Q(x,y)dy = 0 是齐次方程, 则 $\mu(x,y) = \frac{1}{xP(x,y)+yQ(x,y)}$ 是一个积分因子.
- 12. 求解微分方程 $(3x^2y + 2xy + y^3)dx + (x^2 + y^2)dy = 0$.
- 13. 微分方程 $\frac{dy}{dx} = H(x,y)$ 在 (x,y) 平面上给出了一个以 C 为参数的曲线族 \mathscr{C} . 试求另一个微分方程, 其给出了曲线 族 \mathcal{K} , 并且 \mathcal{C} 中的每一条曲线和 \mathcal{K} 中的每一条曲线相交成定角 $\alpha(-\frac{\pi}{2} < \alpha \leq \frac{\pi}{2})$ 以逆时针方向为正).

- 1. $\frac{\partial P}{\partial y} = 2x \cos y + 3x^2 = \frac{\partial Q}{\partial x}$, 因此是恰当方程. 注意到 $d(x^2 \sin y + x^3 y + \frac{1}{3}y^3) = (2x \sin y + 3x^2 y) dx + (x^3 + x^2 \cos y + y^2) dy$, 因此通积分为 $x^2 \sin y + x^3 y + \frac{1}{3} y^3 = C$.
- 2. 当因子 $x(y^2-1) \neq 0$ 时, 用它除方程两端, 得到等价方程 $\frac{x^2+1}{x}dx + \frac{y}{y^2-1}dy = 0$. 积分得到 $x^2 + \log |y^2-1| = 1$ $C_1 \Rightarrow x^2 e^{x^2} |y^2 - 1| = e^{C_1} \Rightarrow y^2 = 1 + C \frac{e^{-x^2}}{x^2}$, 其中 $C \neq 0$. 当因子 $x(y^2 - 1) = 0$ 时, 得到特解 x = 0 和 $y = \pm 1$. 因此 通积分为 $y^2 = 1 + C \frac{e^{-x^2}}{x^2}$ 或 x = 0.
- 3. 由牛顿第二运动定律知 $m\ddot{x}=mg-k\dot{x}^2\Rightarrow \frac{dv}{dt}=g-\frac{k}{m}v^2$. 定义 $v_m=\sqrt{\frac{mg}{k}}$ 为微分方程不动点. 当 $v_0=v_m$ 时, $\frac{dv}{dt}=v_0$ $0 \Rightarrow v_t = v_m$. 当 $v_0 > v_m$ 时, $\frac{dv}{g - \frac{k}{m}v^2} = dt \Rightarrow v = \sqrt{\frac{mg}{k}} \frac{Ce^{2\sqrt{kg/mt}} + 1}{Ce^{2\sqrt{kg/mt}} - 1}$, 代入初值条件知 $C = (v_0 - \sqrt{\frac{mg}{k}})^{-1}(v_0 + \sqrt{\frac{mg}{k}})$. 当 $v_0 < v_m$ 时, $\frac{dv}{g - \frac{k}{m}v^2} = dt \Rightarrow v = \sqrt{\frac{mg}{k}} \frac{Ce^{2\sqrt{kg/mt}} - 1}{Ce^{2\sqrt{kg/mt}} + 1}$,代入初值条件知 $C = (\sqrt{\frac{mg}{k}} - v_0)^{-1}(\sqrt{\frac{mg}{k}} + v_0)$. 4. 积分因子是 $e^{\int \frac{1}{x} dx} = |x|$. 用它乘方程两侧得到 $\frac{d}{dx}(xy) = x^4 \Rightarrow y = \frac{1}{5}x^4 + \frac{C}{x}$.
- 5. 方程通解为 $y(x) = Ce^{-ax} + \int_0^x e^{-a(x-s)} f(s) ds$, 现在选择常数 C, 使 y(x) 成为 2π 周期函数. 代入 $y(2\pi) = y(0)$ 得 到 $y(x) = \frac{1}{e^{2a\pi}-1} \int_{x}^{x+2\pi} e^{-a(x-s)} f(s) ds$, 容易验证它确实是 2π 周期解.
- 6. $\diamondsuit y = ux$, 则 $x \frac{du}{dx} + u = \frac{1+u}{1-u} \Rightarrow \frac{1-u}{1+u^2} du = \frac{dx}{x} \Rightarrow \arctan u \log \sqrt{1+u^2} = \log|x| \log C$. 从而 $|x|\sqrt{1+u^2} = Ce^{\arctan u}$. 以 u = y/x 代回得到通积分 $\sqrt{x^2 + y^2} = Ce^{\arctan \frac{y}{x}}$.
- 7. 原方程等价于 $\frac{dy}{y+3} = (x+2)dx$. 两边积分知 $y = Ce^{\frac{1}{2}x^2+2x} 3$ (特解 y = -3 已包含在内).
- 8. 不妨设 a = 1(否则作变换 $\bar{x} = ax$). 因此考虑 $\frac{dy}{dx} + y^2 = bx^m$. m = 0 时显然是一个变量分离的方程. 当 m = -2 时, 作变换 z = xy, 代入方程得到 $\frac{dz}{dx} = \frac{b+z-z^2}{x}$, 这也是一个变量分离的方程. 当 $m = \frac{-4k}{2k+1}$, 作变换 $x = \xi^{\frac{1}{m+1}}$, $y = \frac{b}{m+1}\eta^{-1}$, 则方程变为 $\frac{d\eta}{dt} + \eta^2 = \frac{b}{(m+1)^2} \xi^n$, 其中 $n = \frac{-4k}{2k-1}$. 再作变换 $\xi = \frac{1}{t}, \eta = t - zt^2$, 方程变为 $\frac{dz}{dt} + z^2 = \frac{b}{(m+1)^2} t^l$, 其中 $l=\frac{-4(k-1)}{2(k-1)+1}$. 比较 m 与 l 对 k 的依赖关系知只要将上述变换的过程重复 k 次, 就能把原方程化为 m=0 的情形. 当 $m = \frac{-4k}{2k-1}$ 时, 注意上述过程中 n 对 k 的依赖关系知可以化归到 m = 0 的情形.
- 9. 直接验证 $\frac{\partial}{\partial y}[\mu(x,y)g(\Phi(x,y))P(x,y)] = \frac{\partial}{\partial x}[\mu(x,y)g(\Phi(x,y))Q(x,y)]$ 即可.
- 10. 改写为 $(x^3ydx + x^4dy) 2y^2dx = 0$. 前一组有积分因子 x^{-3} 和通积分 xy = C, 后一组有积分因子 y^{-2} 和通积分 x=C. 根据上一题结果, 只需找可微函数 g_1,g_2 使得 $\frac{1}{x^3}g_1(xy)=\frac{1}{y^2}g_2(x)$. 只需取 $g_1(xy)=\frac{1}{(xy)^2}$ 和 $g_2(x)=\frac{1}{x^5}$, 得到 原方程的积分因子 $\frac{1}{x^5y^2}$. 用它乘原方程得到全微分方程 $\frac{1}{(xy)^2}d(xy) - \frac{2}{x^5}dx = 0$, 因此通积分为 $y = \frac{2x^3}{2Cx^4+1}$. 注意到方程 还有特解 x = 0 和 y = 0, 它们实际上是在用积分因子乘方程时丢失的解.
- 11. 代入 $P(x,y) = x^m P_1(\frac{y}{x}), Q(x,y) = x^m Q_1(\frac{y}{x})$ 直接验证即可.
- 12. $\frac{\partial P}{\partial y} \frac{\partial Q}{\partial x} = 3x^2 + 3y^2$, 因此不是恰当方程, 但是 $\frac{1}{Q}(\frac{\partial P}{\partial y} \frac{\partial Q}{\partial x}) = 3$ 不依赖于 y, 因此有积分因子 e^{3x} , 用它乘原方程 得到 $e^{3x}(3x^2y + 2xy + y^3)dx + e^{3x}(x^2 + y^2)dy = d[e^{3x}(x^2y + \frac{1}{3}y^3)] = 0$, 因此通积分为 $e^{3x}(x^2y + \frac{1}{3}y^3) = C$.

13. 设曲线族 $\mathscr C$ 中过点 (x,y) 的线素斜率为 y_1' ,与它相交成 α 角的线素斜率记为 y'. 当 $\alpha\neq\frac{\pi}{2}$ 时,有 $\tan\alpha=\frac{y'-y_1'}{1+y'y_1'}$,即 $y_1'=\frac{y'-\tan\alpha}{y'\tan\alpha+1}$ 因为 $y_1'=H(x,y)$,所以等角轨线的微分方程为 $\frac{y'-\tan\alpha}{y'\tan\alpha+1}=H(x,y)$,即 $\frac{dy}{dx}=\frac{H(x,y)+\tan\alpha}{1-H(x,y)\tan\alpha}$. 当 $\alpha=\frac{\pi}{2}$ 时有 $y' = -\frac{1}{y'}$, 即微分方程为 $\frac{dy}{dx} = -\frac{1}{H(x,y)}$.

6.3 补充 (不要求掌握!)

皮亚诺存在定理: 设函数 f(x,y) 在矩形区域 $|x-x_0| \leq a, |y-y_0| \leq b$ 内连续, 则初值问题 $\frac{dy}{dx} = f(x,y), y(x_0) = y_0$ 在 区间 $|x-x_0| \le \min\{a, \frac{b}{M}\}(M > \max_{(x,y)\in\mathbb{R}} |f(x,y)|)$ 上至少有一个解 y=y(x).

证明过程较为复杂,有兴趣的同学可以参考《常微分方程教程》(丁同仁、李承治) 第二版 3.2 节.

第7次习题课:解的存在唯一性,高阶线性微分方程

7.1 问题

1. 设初值问题
$$\frac{dy}{dx} = F(x,y), y(0) = 0$$
, 其中函数 $F(x,y) = \begin{cases} 0, & \exists x = 0, -\infty < y < \infty \\ 2x, & \exists 0 < x \le 1, -\infty < y < 0 \\ 2x - \frac{4y}{x}, & \exists 0 < x \le 1, 0 \le y < x^2 \\ -2x, & \exists 0 < x \le 1, x^2 \le y < \infty \end{cases}$. 考虑区域 $S: 0 \le x$

 $x \le 1, -\infty < y < \infty$, 求其皮卡序列.

- 2. 设函数 f(x,y) 在 (x_0,y_0) 的某个邻域上关于 y 单调下降, 证明初值问题 $\frac{dy}{dx} = f(x,y), y(x_0) = y_0$ 至多有一个右行解.
- 3. 设函数 f(x,y) 在区域 G 内连续,且满足不等式 $|f(x,y_1)-f(x,y_2)| \leq F(|y_1-y_2|)$,其中 F(r)>0 是 r>0 的连续
- 函数,且 $\lim_{\epsilon \to 0+0} \int_{\epsilon}^{r_1} \frac{dr}{F(r)} = +\infty (r_1 > 0$ 是常数). 证明微分方程 $\frac{dy}{dx} = f(x,y)$ 在 G 内经过每一点的解都是唯一的.

 4. 设函数 p(x), q(x), f(x) 在区间 [a,b] 上连续,证明初值问题 $\begin{cases} y'' + p(x)y' + q(x)y = f(x) \\ y(x_0) = c, y'(x_0) = d \quad (x_0 \in (a,b)) \end{cases}$ 在区间 [a,b] 内 存在唯一的解.
- 5. 考虑线性齐次方程 $y^{(n)} + p_1(x)y^{(n-1)} + \cdots + p_{n-1}(x)y'(x) + p_n(x)y = 0$, 其中 $p_i(x) \in C(\mathbb{R})$, 证明其有且仅有 n 个 线性无关的解.
- 6. 求解微分方程 y''' y'' 2y' = 0.
- 7. 求解微分方程 $y^{(5)} 3y^{(4)} + 4y''' 4y'' + 3y' y = 0$.
- 8. 求解微分方程 $y''' + 3y'' + 3y' + y = e^{-x}(x-5)$.
- 9. 求解微分方程 $y'' + 4y' + 4y = \cos 2x$.
- 10. 求解微分方程 $y'' 4y' + 3y 4e^x = 0$.

- 1. $y_1(x) = \int_0^x F(t,0)dt = x^2, y_2(x) = \int_0^x F(t,t^2)dt = -x^2$, 由数学归纳法知 $y_n(x) = (-1)^{n+1}x^2$.
- 2. 假设不然. 则设方程有两个右行解 $y_1(x), y_2(x)$, 且至少存在一个值 $x_1 > x_0$ 使得 $y_1(x_1) \neq y_2(x_1)$. 不妨设 $y_1(x_1) > x_0$ $y_2(x_1)$. 令 $\bar{x} = \sup_{x \in [x_0, x_1]} \{x : y_1(x) = y_2(x)\}$,显然有 $x_0 \leq \bar{x} < x_1$,而且 $r(x) := y_1(x) - y_2(x) > 0$, $\forall \bar{x} < x \leq x_1$ 和 $r(\bar{x}) = 0$. 因此, 我们有 $r'(x) = y_1'(x) - y_2'(x) = f(x, y_1(x)) - f(y_2(x)) < 0$, 进而 $r(x_1) = \int_{\bar{x}}^{x_1} r'(t) dt < 0$, 矛盾.
- 3. 假设不然, 则 $\exists (x_0, y_0) \in G$ 使得方程有两个解 $y = y_1(x)$ 和 $y = y_2(x)$ 都经过 (x_0, y_0) , 且至少存在一个值 $x_1 \neq x_0$ 使 得 $y_1(x_1) \neq y_2(x_1)$. 不妨设 $x_1 > x_0$, 且 $y_1(x_1) > y_2(x_1)$. 令 $\bar{x} = \sup_{x \in [x_0, x_1]} \{x : y_1(x) = y_2(x)\}$, 显然有 $x_0 \leq \bar{x} < x_1$, 而 且 $r(x) := y_1(x) - y_2(x) > 0, \forall \bar{x} < x \le x_1$ 和 $r(\bar{x}) = 0$. 因此, 我们有 $r'(x) = y_1'(x) - y_2'(x) = f(x, y_1(x)) - f(x, y_2(x)) \le x_1 + x_2 + x_3 + x_3 + x_4 + x_3 + x_4 + x_$ $F(|y_1(x)-y_2(x)|) = F(r(x)),$ 即 $\frac{dr(x)}{F(r(x))} \leq dx(\bar{x} < x \leq x_1)$. 从 \bar{x} 到 x_1 积分上式,得到 $\int_0^{r_1} \frac{dr}{F(r)} \leq x_1 - \bar{x}$,其中
- $r_1 = r(x_1) > 0$. 但这不等式左端是 $+\infty$, 右端是一个有限的数, 矛盾. 4. 令 $y_1 = y, y_2 = y'$, 则原微分方程可改写为 $\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -q(x) & -p(x) \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} 0 \\ f(x) \end{pmatrix} (y_1(x_0) = c, y_2(x_0) = d)$, 即 是 $\frac{dy}{dx} = \mathbf{A}(x)\mathbf{y} + \mathbf{f}(x)(\mathbf{y}(x_0) = (c, d)^T)$. 固定 x, 等式右边显然对 \mathbf{y} 满足 Lipschitz 条件, 因此解存在唯一.

- 5. 令 $y_1 = y, y_2 = y', \dots, y_n = y^{(n-1)}$, 可以将原微分方程改写为 $\frac{dy}{dx} = A(x)y$. 固定 x_0 , 由存在唯一性定理知对于任何常数向量 $y_0 \in \mathbb{R}^n$, 存在唯一的元素 y(x) 使得 $y(x_0) = y_0$. 这样得到一个映射 $H: y_0 \mapsto y(x), \mathbb{R}^n \to S$ (记解空间为 S). 显然对于任何 $y(x) \in S$, 我们有 $y(x_0) \in \mathbb{R}^n$, $H(y(x_0)) = y(x)$, 所以 H 是满的. 由唯一性又知 H 是单的. 容易验证 H 是线性的. 因此 H 是一个从 \mathbb{R}^n 到 S 的同构映射, 从而 S 是 n 维的, 即原微分方程有且仅有 n 个线性无关的解.
- 6. 特征方程 $\lambda^3 \lambda^2 2\lambda = \lambda(\lambda + 1)(\lambda 2) = 0$, 因此有通解 $y = C_1 + C_2 e^{-x} + C_3 e^{2x}$.
- 7. 特征方程 $\lambda^5 3\lambda^4 + 4\lambda^3 4\lambda^2 + 3\lambda 1 = (\lambda 1)^3(\lambda^2 + 1) = 0$, 因此有通解 $y = (C_1 + C_2 x + C_3 x^2)e^x + C_4 \cos x + C_5 \sin x$.
- 8. 特征方程 $\lambda^3 + 3\lambda^2 + 3\lambda + 1 = (\lambda + 1)^3 = 0$, 因此齐次方程通解为 $(C_1 + C_2 x + C_3 x^2)e^{-x}$. 设有特解 $y^* = x^3(a + bx)e^{-x} = (ax^3 + bx^4)e^{-x}$,代入微分方程得 $a = -\frac{5}{6}, b = \frac{1}{24}$. 因此原方程通解为 $y = (C_1 + C_2 x + C_3 x^2 \frac{5}{6}x^3 + \frac{1}{24}x^4)e^{-x}$.
- 9. 特征方程 $\lambda^2 + 4\lambda + 4 = (\lambda + 2)^2 = 0$, 因此齐次方程通解为 $(C_1 + C_2 x)e^{-2x}$. 设有特解 $y^* = a\cos 2x + b\sin 2x$, 代入 微分方程得 $a = 0, b = \frac{1}{8}$. 因此原方程通解为 $y = (C_1 + C_2 x)e^{-2x} + \frac{1}{8}\sin 2x$.
- 10. 特征方程是 $\lambda^2 4\lambda + 3 = 0$, 因此齐次方程通解为 $C_1e^x + C_2e^{3x}$. 设有特解 $y^* = Axe^x$, 代入微分方程得 A = -2. 因此原方程通解为 $y = C_1e^x + C_2e^{3x} 2xe^x$.

皮卡存在唯一性定理的另一种证明方法: 考虑连续函数空间上的映射 $F: y \mapsto y_0 + \int_{x_0}^x f(x,y) dx$, 由于 $|F(y_1) - F(y_2)| = |\int_{x_0}^x [f(x,y_1) - f(x,y_2)] dx| \le \int_{x_0}^x |f(x,y_1) - f(x,y_2)| dx \le \int_{x_0}^x L|y_1 - y_2| dx = L|x - x_0||y_1 - y_2|$. 回顾连续函数空间上的度量为 $\rho_{[a,b]}(y_1,y_2) = \max_{x \in [a,b]} |y_1(x) - y_2(x)|$, 因此当 $|x - x_0| < \frac{1}{L}$ 时, 映射 F 是一个压缩映射. 由压缩映像原理,F 的不动点存在且唯一,这就意味着 $y = y_0 + \int_{x_0}^x f(x,y) dx$ 的解存在且唯一.

8 第8次习题课:常数变易法,常系数线性微分方程组

8.1 问题

- 1. 用常数变易法求解一阶线性微分方程 $\frac{dy}{dx} + p(x)y = q(x)$.
- 2. 求解微分方程 $x^2y'' + xy' + 4y = 10$.

3. 求解微分方程组
$$\begin{cases} \frac{dx}{dt} = 3x - 2y \\ \frac{dy}{dt} = 2x - y \end{cases}$$
4. 求解微分方程组
$$\begin{cases} \frac{dx}{dt} = \sin t - 2x - y \\ \frac{dy}{dt} = \cos t + 4x + 2y \end{cases}$$
5. 求解微分方程组
$$\begin{cases} \frac{d^2x}{dt^2} = y \\ \frac{d^2y}{dt^2} = x \end{cases}$$

- 6. 设有一理想的柔软而不能伸缩的细线, 把它悬挂在两个定点 P_1 和 P_2 之间, 且只受重力作用, 试求悬链线的形状.
- 7. 利用牛顿第二定律和万有引力定律推导行星运动轨道方程.
- 8. 求解微分方程组 $\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$.
- 9. 平面直角坐标系第一象限中有一条曲线 $L = \{(x,y(x)): x \geq 0\}$, 其中 y(0) = 1, y(x) 严格递减、可导. L 上任意一点 M 的切线交 x 轴于点 A 都满足 $\overline{MA} \equiv 1$. 求 y = y(x) 所满足的一阶常微分方程, 并且解出该初值问题.
- 10. (1) 设 $D = \mathbb{R}^2 \{(x,0) : x \ge 0\}$. 写出一个函数 $T : D \to \mathbb{R}$ 满足 T 在 D 中每点可微, 并且 $\frac{\partial T}{\partial x} = -\frac{y}{x^2 + y^2}, \frac{\partial T}{\partial y} = \frac{x}{x^2 + y^2}$. (2) 设 $\Omega = \mathbb{R}^2 \{(0,0)\}$. 证明不存在函数 $U : \Omega \to \mathbb{R}$ 满足 U 在 Ω 中每点可微, 并且 $\frac{\partial U}{\partial x} = -\frac{y}{x^2 + y^2}, \frac{\partial U}{\partial y} = \frac{x}{x^2 + y^2}$.

- 1. 对应齐次方程通解为 $Ce^{-\int p(x)dx}$. 设原微分方程通解为 $C(x)e^{-\int p(x)dx}$, 代入得 $C'(x)e^{-\int p(x)dx} C(x)p(x)e^{-\int p(x)dx} + C(x)p(x)e^{-\int p(x)dx} = q(x) \Rightarrow C'(x) = q(x)e^{\int p(x)dx} \Rightarrow C(x) = C + \int q(x)e^{\int p(x)dx} dx$.
- 2. 作代换 $y = y \frac{5}{2}$, 仍记为 y, 得到 $x^2y'' + xy' + 4y = 0$. 设 $x = e^t$, 得到 y'' + 4y = 0, 特征方程 $\lambda^2 + 4 = 0$, 从而通解是 $y = C_1 \cos(2t) + C_2 \sin(2t) = C_1 \cos(2\log|x|) + C_2 \sin(2\log|x|)$. 因此原方程通解为 $y = C_1 \cos(2\log|x|) + C_2 \sin(2\log|x|) + \frac{5}{2}$.

3. 第二式可写为 $x = \frac{1}{2}(\frac{dy}{dt} + y)$, 求导得 $\frac{dx}{dt} = \frac{1}{2}(\frac{d^2y}{dt^2} + y)$. 代入第一式得 $\frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y = 0$, 特征方程 $\lambda^2 - 2\lambda + 1 = 0$,

因此有通解 $y = (C_1 + C_2 t)e^t$. 反代入 $x = \frac{1}{2}(\frac{dy}{dt} + t)$, 可求出 $x = \frac{1}{2}(2C_1 + C_2 + 2C_2 t)e^t$.

4. 对第一式两端求导得 $\frac{d^2x}{dt^2} = \cos t - 2\frac{dx}{dt} - \frac{dy}{dt}$. 由于 $y = \sin t - 2x - \frac{dx}{dt}$,代入第二式得 $\frac{dy}{dt} = \cos t + 4x + 2(\sin t - 2x - \frac{dx}{dt}) = \cos t + 4x + 2(\sin t - 2x - \frac{dx}{dt})$ $\cos t + 2\sin t - 2\frac{dx}{dt} \Rightarrow \cos t - 2\frac{dx}{dt} - \frac{dy}{dt} = -2\sin t \Rightarrow \frac{d^2x}{dt^2} = -2\sin t \Rightarrow x = 2\sin t + C_1t + C_2.$ 再代回原方程第一式知 $y = -3\sin t - 2\cos t - 2C_1t - C_1 - 2C_2.$

5. 对第一式两端求二阶导再代入第二式,得到 $\frac{d^4x}{dt^4}=x$,特征方程 $\lambda^4-1=0$,从而通解是 $x=C_1e^t+C_2e^{-t}+C_3\cos t+C_3\cos t$ $C_4 \sin t, y = C_1 e^t + C_2 e^{-t} - C_3 \cos t - C_4 \sin t.$

6. 任取悬链线 y=y(x) 上的一小段 \widehat{PQ} , 设 P 和 Q 的坐标分别为 (x,y(x)) 和 $(x+\Delta x,y(x+\Delta x))$, 长度为 Δs , 其中 s表示弧段 $\widehat{P_1P}$ 的长度. 则 \widehat{PQ} 所受的重力为 $W=\gamma\cdot\Delta s$, 方向竖直向下. 除重力外还有张力 F_1 和 F_2 , 它们分别为 P 点 和 Q 点沿着切线方向. 令 F_1 和 F_2 的水平分量分别为 $H_1=H(X)$ 和 $H_2=H(x+\Delta x)$, 而垂直分量分别为 $V_1=V(x)$ 和 $V_2 = V(x + \Delta x)$. 利用平衡条件有 $H_2 - H_1 = 0$, $V_2 - V_1 - W = 0$. 因此 $H(x) \equiv H_0$, $V(x + \Delta) - V(x) = \gamma \cdot \Delta s$. 再 利用拉格朗日微分中值定理得到 $V'(x+\theta\cdot\Delta x)\cdot\Delta x=\gamma\cdot\Delta s(0<\theta<1)$. 令 $\Delta x\to 0$ 就有 $V'(x)=\gamma\frac{ds}{dx}$. 由弧长公式 知 $\frac{ds}{dx} = \sqrt{1 + (y'(x))^2}$. 由张力的方向知 $V(x) = H(x)y'(x) = H_0 \cdot y'(x)$. 因此 $H_0 \cdot y''(x) = \gamma \sqrt{1 + (y'(x))^2}$. 令 z = y', 则降为一阶方程 $z' = \frac{\gamma}{H_0} \sqrt{1+z^2}$, 通解为 $z = \sinh[\frac{\gamma}{H_0}(x+C_1)]$. 再积分得到通解 $y = \frac{H_0}{\gamma} \cosh[\frac{\gamma}{H_0}(x+C_1)] + C_2$.

7. 设太阳 S 位于惯性坐标系 (x,y,z) 的原点 O, 地球 E 的坐标向量为 $\mathbf{r}(t)=(x(t),y(t),z(t))$. 由牛顿第二定律和万有引力定律知 $m_e\ddot{\mathbf{r}}(t)=-\frac{Gm_sm_e}{|\mathbf{r}(t)|^2}\frac{\mathbf{r}(t)}{|\mathbf{r}(t)|}$, 即 $\ddot{x}=-\frac{Gm_sx}{(\sqrt{x^2+y^2+z^2})^3}$, $\ddot{y}=-\frac{Gm_sy}{(\sqrt{x^2+y^2+z^2})^3}$, $\ddot{z}=-\frac{Gm_sz}{(\sqrt{x^2+y^2+z^2})^3}$. 显然 $z\ddot{y}-y\ddot{z}=0$, 即 $\frac{d}{dt}(z\dot{y}-y\dot{z})=0 \Rightarrow z\dot{y}-y\dot{z}=C_1$. 类似地有 $x\dot{z}-z\dot{x}=C_2, y\dot{x}-x\dot{y}=C_3$. 因此 $C_1x+C_2y+C_3z=0$, 这证明了地球运动 轨道永远在同一平面上. 不妨设永远在平面 z=0 上, 则方程改写为 $\ddot{x}+\mu x(\sqrt{x^2+y^2})^{-3}=0, \ddot{y}+\mu y(\sqrt{x^2+y^2})^{-3}=0,$ 其中常数 $\mu=Gm_s$. 由此可得 $(\dot{x}\ddot{x}+\dot{y}\ddot{y})+\mu(x\dot{x}+y\dot{y})(\sqrt{x^2+y^2})^{-3}=0$, 即 $\frac{d}{dt}(\dot{x}^2+\dot{y}^2)-2\mu\frac{d}{dt}(\frac{1}{\sqrt{x^2+y^2}})=0$. 由此 有 $\dot{x}^2 + \dot{y}^2 - \frac{2\mu}{\sqrt{x^2 + y^2}} = C_4$. 利用极坐标变换, 改写为 $(\frac{dr}{dt})^2 + (r\frac{d\theta}{dt})^2 - \frac{2\mu}{r} = C_4$. 注意到 $y\dot{x} - x\dot{y} = C_3$ 也可类似改写 为 $r^2 \frac{d\theta}{dt} = -C_3$. 从而 $(\frac{dr}{dt})^2 = C_4 + (\frac{\mu}{C_3})^2 - (\frac{C_3}{r} - \frac{\mu}{C_3})^2 \Rightarrow \frac{dr}{dt} = \pm \sqrt{C_4 + (\frac{\mu}{C_3})^2 - (\frac{C_3}{r} - \frac{\mu}{C_3})^2}$. 再利用 $r^2 \frac{d\theta}{dt} = -C_3$ 可知 $\frac{dr}{d\theta} = \pm \frac{r^2}{C_3} \sqrt{C_4 + (\frac{\mu}{C_3})^2 - (\frac{C_3}{r} - \frac{\mu}{C_3})^2}$, 即是 $\frac{d(\frac{C_3}{r})}{\pm \sqrt{C_4 + (\frac{\mu}{C_3})^2 - (\frac{C_3}{r} - \frac{\mu}{C_3})^2}} = d\theta$. 由此, 我们得到 $\arccos \frac{\frac{C_3}{r} - \frac{\mu}{C_3}}{\sqrt{C_4 + (\frac{\mu}{C_3})^2}} = \theta - C_5$. 从上式接出 r 关于 θ 的函数,得到 $r = \frac{p}{1 + e\cos(\theta - \theta_0)}$,其中常数 $e = \frac{C_3}{\mu} \sqrt{C_4 + (\frac{\mu}{C_3})^2} > 0$, $e = C_5$. 由平面解析几何知识知 e < 1 时为椭圆,e = 1 时为抛物线,e > 1 时为双曲线.

8. 传统方法很容易, 但这里笔者希望使用另一种方法. 设 $\boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, 原方程可写为 $\boldsymbol{y}' = \boldsymbol{A}\boldsymbol{y}$, 其中 $\boldsymbol{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. 回顾 一元情形 y' = ay 的解为 Ce^{ax} , 启发式地, 似乎我们也可以把现在这个方程的解写为 $e^{\mathbf{A}x}\mathbf{C}$. 运用一点线性代数知识可知 $\mathbf{A} = \mathbf{P}\mathbf{\Lambda}\mathbf{P}^{-1}$, 其中 $\mathbf{\Lambda} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$, $\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. 冥冥之中, $e^{\mathbf{A}x} = \mathbf{P}e^{\mathbf{\Lambda}x}\mathbf{P}^{-1} = \begin{pmatrix} \frac{1}{2}e^{3x} + \frac{1}{2}e^{-x} & \frac{1}{2}e^{3x} - \frac{1}{2}e^{-x} \\ \frac{1}{2}e^{3x} - \frac{1}{2}e^{-x} & \frac{1}{2}e^{3x} + \frac{1}{2}e^{-x} \end{pmatrix}$.

因此,通解可以写成 $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} C_1(e^{3x} + e^{-x}) + C_2(e^{3x} - e^{-x}) \\ C_1(e^{3x} - e^{-x}) + C_2(e^{3x} + e^{-x}) \end{pmatrix}$. 由此可见,这是一个多么和谐的数学世界啊!

9. 设 $M=(x_0,y_0)$, 则切线方程为 $y-y_0=y'(x_0)(x-x_0)$, 从而 $\stackrel{\cdot}{A}=(x_0-\frac{y_0}{y'(x_0)},0)$. 则 $\overline{MA}=\sqrt{(\frac{y}{y'})^2+y^2}=1$, 意味 着 $y'^2 = \frac{y^2}{1-y^2}$,由严格递减知 $y' = -\frac{y}{\sqrt{1-y^2}}$.从而 $\frac{\sqrt{1-y^2}}{y}dy = -dx$,两边积分得到 $x = -\sqrt{1-y^2} + \log(1+\sqrt{1-y^2}) - \log(1+\sqrt{1-y^2})$ $\log y + C$, 代入初值条件知 C = 0.

10. (1) T 是极坐标系里的 θ . (2) 设函数 U(x,y) 满足题意, 则对单位圆周 C 有 $\int_C \frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial u} dy = \int_0^{2\pi} dU (\cos t, \sin t) = \int_0^{2\pi} dt dt$ U(1,0) - U(1,0) = 0,而另一方面又有 $\int_C \frac{\partial U}{\partial x} dx + \frac{\partial y}{\partial y} = \int_0^{2\pi} (-\sin t)(-\sin t) dt + \cos t \cos t dt = 2\pi$,矛盾.

补充 (不要求掌握!)

适当了解一些常微分方程定性分析的内容, 可以理解为方程解对初值的敏感性. 由微分方程驱动的系统可能会由于初值 的微扰引发极端变化. 一个正面的例子是 $\frac{dx}{dt} = x$: 如果 x(0) = 0, 那它就一直为 0; 如果 x(0) = 1, 那对不起, $x(t) = e^t$, 越走越远. 一个反面的例子是 $\frac{dx}{dt} = -x$: 如果 x(0) = 1, 那很幸运, $x(t) = e^{-t}$, 和 x(0) = 0 的情形殊途同归.

我们一般研究在不动点周围的动力系统随时间的变化形态, 根据稳定性和渐进行为可以分为鞍点、双向结点、单向节 点、焦点和中心点. 相关的方法有线性展开法和李雅普诺夫函数法.

一个好用的画相图的网站: https://anvaka.github.io/fieldplay.

第 9 次习题课: 数项级数

9.1 问题

- 1. 设 $F_n = F_{n-1} + F_{n-2}, n \in \mathbb{N}, n \geq 3$, 且 $F_1 = 1, F_2 = 2$, 讨论级数 $\sum_{n=1}^{+\infty} \frac{1}{F_n}$ 的收敛性.
- 2. 讨论级数 $\sum_{n=0}^{+\infty} \log \cos \frac{\pi}{n}$ 的收敛性.
- 3. 讨论级数 $\sum_{n=1}^{+\infty} (1 \sqrt[k]{\frac{n-1}{n+1}})^p$ 的收敛性, 其中 k > 0, p > 0 为常数.
- 4. 讨论级数 $\sum_{n=0}^{+\infty} \frac{n^{n-2}}{e^n n!}$ 的收敛性.
- 5. 设 $\{a_n\}_{n=1}^{\infty}$ 是单调递减数列, 证明 $\sum_{n=1}^{+\infty} a_n$ 收敛 $\Rightarrow \lim_{n\to+\infty} na_n = 0$.
- 6. 讨论级数 $\sum_{n=1}^{+\infty} \frac{x^n n!}{n^n}$ 的收敛性 $(x \ge 0)$.
- 7. 讨论级数 $\sum_{n=1}^{+\infty} (\sqrt[n]{n} \sin \frac{1}{n})^{n^2}$ 的收敛性.
- 8. 设 $\sum_{n=1}^{+\infty} a_n$ 为收敛的正项级数, 记余项 $r_n = \sum_{k=n}^{+\infty} a_k, n \in \mathbb{N}$, 讨论级数 $\sum_{n=1}^{+\infty} \frac{a_n}{r_n^p}$ 的收敛性, 其中 p > 0.
- 9. 讨论级数 $\sum_{n-\log n}^{+\infty} \frac{(-1)^n}{n-\log n}$ 的收敛性.
- 10. 讨论级数 $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha+\frac{1}{n}}} (\alpha > 0)$ 的收敛性.
- 11. 数列 $\{a_n\}$ 单调趋于 0, 且 $\sum_{n=0}^{+\infty} a_n$ 发散, 讨论级数 $\sum_{n=0}^{+\infty} a_n \sin nx (x \neq k\pi)$ 的绝对收敛性.
- 12. $f: \mathbb{N}_+ \to \mathbb{N}_+$ 是双射, 且 $\exists M > 0$ 使得 $|f(n) n| \le M$. 证明 $\sum_{n=1}^{+\infty} a_n$ 收敛当且仅当 $\sum_{n=1}^{+\infty} a_{f(n)}$ 收敛, 且收敛值相等.
- 13. 讨论级数 $\sum_{n^p \log^q n}^{+\infty}$ 的收敛性和绝对收敛性.

9.2 解答

- 1. 易证 $F_n \uparrow, \frac{1}{F_n} \downarrow$. 由 $F_{n-1} = F_{n-2} + F_{n-3} < 2F_{n-2}$ 知 $F_{n-2} > \frac{1}{2}F_{n-1}$ 从而 $F_n = F_{n-1} + F_{n-2} > \frac{3}{2}F_{n-1} \Rightarrow \frac{1}{F_n} < \frac{2}{3}\frac{1}{F_{n-1}}$.
- 故 $\frac{1}{F_n} < (\frac{2}{3})^{n-1} \frac{1}{F_1} = (\frac{2}{3})^{n-1}, \forall n \geq 2 \Rightarrow S_N = \sum_{n=1}^N \frac{1}{F_n} < 1 + \sum_{n=2}^N (\frac{2}{3})^{n-1} < \frac{1}{1-\frac{2}{3}} = 3.$ 而 S_N 单调上升,因此原级数收敛. 2. 因为 $0 \leq \cos \frac{\pi}{n} \leq 1, n \geq 3$,所以 $u_n = \log \cos \frac{\pi}{n} \leq 0$,即级数为定号级数.由于 $\log \cos \frac{\pi}{n} = \log[1 + (\cos \frac{\pi}{n} 1)] \sim \cos \frac{\pi}{n} 1 \sim -\frac{\pi^2}{2n^2}(n \to +\infty)$,故 $\sum_{n=3}^{+\infty} \log \cos \frac{\pi}{n} = \sum_{n=3}^{+\infty} \frac{1}{n^2}$ 同敛散,因此原级数收敛.
- 3. 因为 $\sqrt[k]{\frac{n-1}{n+1}} = (1-\frac{2}{n+1})^{\frac{1}{k}} = 1 \frac{1}{k} \frac{2}{n+1} + o(\frac{1}{n+1})(n \to +\infty)$,所以 $1 \sqrt[k]{\frac{n-1}{n+1}} \sim \frac{2}{k} \frac{1}{n+1}(n \to +\infty)$,因此有 $(1 \sqrt[k]{\frac{n-1}{n+1}})^p \sim 1$
- $(\frac{2}{k}\frac{1}{n+1})^p = (\frac{2}{k})^p \frac{1}{(n+1)^p} (n \to +\infty), \text{ 故原级数与} \sum_{n=1}^{+\infty} \frac{1}{(n+1)^p} \text{ 同敛散, 即 } p > 1 \text{ 时收敛, } p \le 1 \text{ 时发散.}$ 4. 记 $u_n = \frac{1}{n^2} \frac{n^n}{e^n n!} := \frac{1}{n^2} a_n, \text{ 则 } \frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{e^{n+1}(n+1)!} \cdot \frac{e^n n!}{n^n} = \frac{1}{e} \cdot (\frac{n+1}{n})^n \le 1. \text{ 因此 } a_n \text{ 单调下降, 故 } a_n \le a_1 = \frac{1}{e}. \text{ 从而成立}$ $0 \le u_n \le \frac{1}{e} \cdot \frac{1}{n^2}, \forall n \in \mathbb{N}. \text{ 由} \sum_{n=1}^{+\infty} \frac{1}{n^2} \text{ 收敛知原级数收敛.}$
- 5. 显然 $a_n \downarrow 0$. 因为 $\sum_{n=1}^{+\infty} a_n$ 收敛, 由 Cauchy 准则, 存在 N_1 使得 $\sum_{k=m+1}^{m+p} a_k < \frac{\epsilon}{4}, \forall m > N_1, \forall p \in \mathbb{N}$. 任取 $n > N_1, p = n$,

成立 $\frac{1}{2}(2n)a_{2n}=na_{2n}=\sum\limits_{k=-1}^{2n}a_{2n}\leq\sum\limits_{k=-n+1}^{2n}a_{k}<\frac{\epsilon}{4}\Rightarrow(2n)a_{2n}<\frac{\epsilon}{2}.$ 由于 $\lim_{n\to+\infty}a_{n}=0,$ 因此 $\exists N_{2},$ 使得 $\forall n>N_{2}$ 成立

6. 记 $a_n = \frac{x^n n!}{n^n}$, 则 $\frac{a_{n+1}}{a_n} = x(\frac{n}{n+1})^n \to \frac{x}{e}(n \to +\infty)$. 因此 x > e 时级数发散, $0 \le x < e$ 时级数收敛. 当 x = e 时, 由于 $\frac{a_{n+1}}{a_n} = \frac{e}{(1+\frac{1}{n})^n} > 1$, 从而 $a_n \uparrow$, 而 $a_1 = e$, 故 $\lim_{n \to +\infty} a_n \ne 0$, 级数发散.

7. 记 $a_n = (\sqrt[n]{n} - \sin\frac{1}{n})^{n^2}, n \in \mathbb{N}$,则 $\sqrt[n]{a_n} = (\sqrt[n]{n} - \sin\frac{1}{n})^n$.利用 Taylor 展开有估计 $\sqrt[n]{n} - \sin\frac{1}{n} = e^{\frac{1}{n}\log n} - \sin\frac{1}{n} = e^{\frac{1}{n}\log n} - \sin\frac{1}{n} = e^{\frac{1}{n}\log n} + \frac{1}{2}(\frac{\log n}{n})^2 + o(\frac{\log^2 n}{n^2}) - \left\{ \frac{1}{n} - \frac{1}{6n^3} + o(\frac{1}{n^3}) \right\} = 1 + \frac{\log n - 1}{n} + o(\frac{1}{n}) := 1 + u_n$,其中 $\lim_{n \to +\infty} u_n = 0$, $\lim_{n \to +\infty} n u_n = 0$, $\lim_{n \to +\infty} n u_n = 0$,从而原级数发散.

8. 因为 $\sum_{n=1}^{+\infty} a_n$ 为收敛的正向级数, 所以 r_n 单调下降趋于 0. 注意到 $a_n = r_n - r_{n+1}$, 所以 $0 < \frac{a_n}{r^p} \le \int_{r_{n+1}}^{r_n} \frac{dx}{x^p}$, $\forall n \in \mathbb{N}$. 当 $0 时, <math>\sum_{n=1}^{N} \frac{a_n}{r_n^n} \le \sum_{n=1}^{N} \int_{r_{n+1}}^{r_n} \frac{dx}{x^p} = \int_{r_{N+1}}^{r_1} \frac{dx}{x^p} \le \int_0^S \frac{dx}{x^p} < +\infty \Rightarrow \sum_{n=1}^{+\infty} \frac{a_n}{r_n^n}$ 收敛. 当 p = 1 时, 对于任意固定的 $n \in \mathbb{N}$, 成立 $\sum_{k=n}^{n+m} \frac{a_k}{r_k} \ge \frac{1}{r_n} \sum_{k=n}^{n+m} a_k = \frac{r_n - r_{n+m}}{r_n} = 1 - \frac{r_{n+m}}{r_n}$, $\forall m \in \mathbb{N}$, 因此 $\lim_{m \to +\infty} \sum_{k=n}^{n+m} \frac{a_k}{r_k} \ge 1$. 根据 Cauchy 收敛准则知 $\sum_{n=1}^{+\infty} \frac{a_n}{r_n}$ 发散. 当 p > 1 时, $\frac{a_n}{r_n^p} \ge \frac{a_n}{r_n}$, $\forall n \in \mathbb{N}$, 所以 $\sum_{n=1}^{+\infty} \frac{a_n}{r_n}$ 发散. 本题告诉我们, 若定义 $b_n = \frac{a_n}{r_n}$ $(0 , 虽然 <math>\frac{b_n}{a_n} = \frac{1}{r_n^p} \to +\infty$, 但依然有 $\sum_{n=1}^{+\infty} b_n$ 收敛. 即, 对任何一个收敛的正项级数 $\sum_{n=1}^{+\infty} a_n$, 总有另一个收敛的正项级数 $\sum_{n=1}^{+\infty} b_n$ 满足 $\lim_{n \to +\infty} \frac{b_n}{a_n} = +\infty$. 9. 显然是交错级数,且 $\lim_{n \to +\infty} \frac{1}{n - \log n} = 0$. 用导数知识可以证明 $f(x) = x - \log x$ 在 $x \ge 1$ 时单调上升,从而 $\frac{1}{f(x)}$ 在 $x \ge 1$ 对 $x \ge 1$ $x \ge 1$ x

 $x \ge 1$ 时单调下降, 使用 Leibniz 判别法立得. 10. 令 $a_n = \frac{(-1)^n}{n^{\alpha}}, b_n = \frac{1}{\sqrt[n]{n}},$ 则 $\sum_{n=1}^{+\infty} a_n$ 收敛, $\{b_n\}$ 单调有界 (使用 $y = x^{\frac{1}{x}}$ 的单调性), 由 Abel 判别法知原级数收敛.

11. 书上例题已经证明 $\sum_{n=1}^{+\infty} a_n \sin nx$ 收敛. 由于当 $x \neq k\pi$ 时, $|a_n \sin nx| \geq a_n \sin^2 nx = \frac{a_n}{2} (1 - \cos 2nx)$. $\sum_{n=1}^{+\infty} a_n \cos(2nx)$ 收敛, $\sum_{n=1}^{+\infty} a_n$ 发散, 所以 $\sum_{n=1}^{+\infty} |a_n \sin nx|$ 发散, 即 $\sum_{n=1}^{+\infty} a_n \sin nx$ 条件收敛.

12. 记 $\sum_{n=1}^{+\infty} a_n$ 部分和序列为 S_n , $\sum_{n=1}^{+\infty} a_{f(n)}$ 部分和序列为 S_n' . 由于重排有界, $\{a_{f(k)}\}_{k=1}^n$ 只能在 $\{a_k\}_{k=1}^{n+M}$ 中, $\{a_k\}_{k=1}^{n-M}$ 必在 $\{a_{f(k)}\}_{k=1}^n$ 中, 从而 $|S_n' - S_n| \le \sum_{j=-M}^M |a_{n+j}|, \forall n > M$. 由于 $\sum_{n=1}^{+\infty} a_n$ 收敛 $\Rightarrow \lim_{n \to +\infty} |a_n| = 0$, 故 $\lim_{n \to +\infty} \sum_{j=-M}^M |a_{n+j}| = 0$. 而 $\lim_{n \to +\infty} S_n \exists$,所以 $\lim_{n \to +\infty} S_n' = \lim_{n \to +\infty} S_n$. 反之,若 $\sum_{n=1}^{+\infty} a_{f(n)}$ 收敛,则 $\sum_{n=1}^{+\infty} a_n$ 是 $\sum_{n=1}^{+\infty} a_{f(n)}$ 的一个有界重排,由上知 $\sum_{n=1}^{+\infty} a_n$ 收敛.

13. (i) 当 p>0 时,原级数收敛,因为函数 $f(x)=x^p\log^q x$ 在 x 充分大后单调递增且趋于 $+\infty$,从而 $\frac{1}{n^p\log^q n}$ 单调下降趋于 0. (ii) p=0,q>0 时, $\frac{1}{\log^q n}$ 单调下降趋于 0,原级数收敛.(iii) 当 p=0,q=0 时, $a_n=(-1)^n \not\to 0 (n\to +\infty)$,从而原级数发散.(iv) 当 p<0 或 p=0,q<0 时,由于 $\lim_{n\to +\infty} \frac{(-1)^n}{n^p\log^q n}=+\infty$,因此原级数发散.(v) 当 p>1 时,显然原级数绝对收敛.(vi) 当 p=1,q>1 时,由积分判别法知原级数绝对收敛.(vii) 当 $p=1,q\leq 1$ 时,由积分判别法知原级数条件收敛.(viii) 当 $0< p<1,q\in \mathbb{R}$ 时, $\frac{1}{n^p\log^q n}>\frac{1}{n^{\frac{1+p}{2}}}$ 且 $\sum_{n=2}^{+\infty}\frac{1}{n^{\frac{1+p}{2}}}$ 发散,所以原级数条件收敛.综上所述,我们

有以下结论:
$$\sum_{n=2}^{+\infty} \frac{(-1)^n}{n^p \log^q n} \begin{cases} p < 0, & \text{发散} \\ p = 0, \begin{cases} q \le 0, & \text{发散} \\ q > 0, & \text{条件收敛} \end{cases} \\ 0 1, & \text{绝对收敛} \\ q \le 1, & \text{条件收敛} \end{cases} \\ p > 1, & \text{绝对收敛} \end{cases}$$

9.3 补充 (不要求掌握!)

Riemann 重排定理: 设 $\sum\limits_{n=1}^{+\infty}a_n$ 条件收敛,则 $\forall S\in\mathbb{R}\cup\{\pm\infty\}$,存在重排 $\{f(n)\}$ 使得 $\sum\limits_{n=1}^{+\infty}a_{f(n)}=S$. 证明思路: 记 $a_n^+=\max\{0,a_n\}, a_n^-=\max\{0,-a_n\},$ 则 $a_n^+\geq 0, a_n^-\geq 0, a_n=a_n^+-a_n^-,$ $\lim\limits_{n\to +\infty}a_n^+=\lim\limits_{n\to +\infty}a_n^-=0,$ 并且 有 $\sum\limits_{n=1}^{+\infty}a_n^+=\sum\limits_{n=1}^{+\infty}a_n^-=+\infty.$ 然后运用放多少拿多少的原则,超过 S 就开始放另一项,低于 S 又开始放另一项,如此在 S 附近反复震荡 ($\lim\limits_{n\to +\infty}a_n^+=\lim\limits_{n\to +\infty}a_n^-=0$ 保证了震荡越来越小),以至无穷.

第 10 次习题课: 函数项级数 **10**

10.1 问题

- 1. 证明或否定: $f_n(x) \Rightarrow f(x), g_n(x) \Rightarrow g(x), 则 f_n(x)g_n(x) \Rightarrow f(x)g(x)$.
- 2. $f(x) \in C[0,1]$ 且 f(1) = 0, 证明 $x^n f(x) \Rightarrow 0, x \in [0,1]$.
- 3. 证明 $\sum_{n=1}^{+\infty} \frac{(2n+1)x}{[1+(n+1)^2x][1+n^2x]}$ 在 $[a,+\infty)(a>0)$ 上一致收敛, 在 $(0,+\infty)$ 上不一致收敛.
- 4. 讨论 $\sum_{k=1}^{+\infty} x^k e^{-nx} (k > 1)$ 为常数) 在 $[0, +\infty)$ 上的一致收敛性.
- 5. 证明 $\sum_{n=1}^{+\infty} \frac{a_n}{n^x}$ 在 $[1,+\infty)$ 一致收敛 $\Leftrightarrow \sum_{n=1}^{+\infty} \frac{a_n}{n}$ 收敛.
- $\overline{n=1}^{n-1}$ " " $\overline{n=1}^{n}$ " 6. 设函数列 $\{f_n(x)\}_{n=1}^{+\infty}, \{u_{1,n}(x)\}_{n=1}^{+\infty}, \{u_{2,n}(x)\}_{n=1}^{+\infty}, \cdots, \{u_{2023,n}(x)\}_{n=1}^{+\infty}$ 在区间 $I \in \mathbb{R}$ 上有定义并且满足条件: (1) 级
- 数 $\sum_{i=1}^{+\infty} f_n(x)$ 在 I 上一致收敛; (2) 对每个 $x \in I, k \in \{1, 2, \cdots, 2023\}, \{u_{k,n}(x)\}$ 关于 n 都是单调且一致有界的 (对于

不同的 k, $u_{k,n}(x)$ 单调性可能不同). 讨论级数 $\sum_{n=1}^{+\infty} \left(f_n(x) \prod_{k=1}^{2023} u_{k,n}(x) \right)$ 在区间 I 上的一致收敛性.

- 7. 证明 $\sum_{n=0}^{+\infty} (-1)^n \frac{x^2+n}{n^2}$ 在任意区间 $[a,b] \subset \mathbb{R}$ 上一致收敛.
- 8. 讨论 $\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{n+\frac{\cos nx}{n}} \arctan nx$ 在 \mathbb{R} 上的一致收敛性.
- 9. 设数列 $\{a_n\}$ 单调趋于 0, 证明 $\sum_{n=0}^{+\infty} a_n \cos nx$ 在 $(0, 2\pi)$ 上连续.
- 10. 证明当 $x \in (-1,1)$ 时, $\frac{1}{2} \log \frac{1+x}{1-x} = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$.
- 11. 证明 $\sum_{1}^{+\infty} \frac{1}{n^x} \in C^{\infty}(1, +\infty)$.
- 12. 试构造一个函数, 它仅在 $\{x_n\}_{n=1}^{+\infty} \subset \mathbb{R}$ 处间断.
- 13. 证明 $f_n(x) = n^2(e^{\frac{1}{nx}} 1)\sin{\frac{1}{nx}}$, 证明 $f_n(x)$ 对 $x \in (0, +\infty)$ 不一致收敛, 但对 $x \in [\delta, +\infty)$ 一致收敛, 其中 $\delta > 0$.
- 14. 求函数项级数 $\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n^n + n}$ 的收敛域.

10.2 解答

- 1. 结论不对. $f_n(x) = \frac{1}{1-x}, g_n(x) = (1-x)x^n, x \in (0,1), 则 f_n(x) \Rightarrow \frac{1}{1-x}, g_n(x) \Rightarrow 0,$ 但是 $f_n(x)g_n(x) \not \Rightarrow 0.$
- 2. 显然 $\lim_{n \to +\infty} f_n(x) = 0, x \in [0,1]$. 记 $M = \max_{x \in [0,1]} |f(x)|$. 由连续性, $\exists \delta > 0$ 使得 $|f(x)| < \epsilon, \forall x \in (1-\delta,1)$. 这样

就有
$$\begin{cases} x \in [0, 1 - \delta] \text{时}, |x^n f(x)| \le M(1 - \delta)^n \\ x \in (1 - \delta, 1] \text{时}, |x^n f(x)| \le |f(x)| < \epsilon \end{cases}$$
. 取 n 足够大使 $M(1 - \delta)^n < \epsilon$ 即可.

3. $S_n(x) = \sum_{k=1}^n \frac{(2k+1)x}{[1+(k+1)^2x][1+k^2x]} = \sum_{k=1}^n \left[\frac{1}{1+k^2x} - \frac{1}{1+(k+1)^2x} \right] = \frac{1}{1+x} - \frac{1}{1+(n+1)^2x} \Rightarrow \lim_{n \to +\infty} S_n(x) = \frac{1}{1+x} = S(x), x \in (0, +\infty).$

$$\exists x \in [a, +\infty) \text{ 时}, |S_n(x) - S(x)| = \frac{1}{1+(n+1)^2x} \le \frac{1}{(n+1)^2a} \to 0 \\ (n \to +\infty) \Rightarrow S_n(x) \Rightarrow S(x), x \in [a, +\infty).$$

$$\exists x \in [a, +\infty) \text{ F}, \exists x_n = \frac{1}{1+x} \Rightarrow 0 \\ (n \to +\infty) \Rightarrow S_n(x) \Rightarrow S_n(x)$$

- 时, $\forall n \in \mathbb{N}, \exists x_n = \frac{1}{(n+1)^2} \in (0,+\infty)$ 使得 $|S_n(x_n) S(x_n)| = \frac{1}{2}$, 从而 $S_n(x)$ 在 $(0,+\infty)$ 上不一致收敛于 S(x). 4. $u_n(0) = 0, u_n(x) > 0 (\forall x > 0), \lim_{x \to +\infty} u_n(x) = 0, u_n(x) \in C^2[0,+\infty), \ \diamondsuit \ u'_n(x) = 0$ 得到唯一驻点 $x = \frac{k}{n}$. 容易验证此

为最大值点, $M_n = u_n(x_n) = (\frac{k}{e})^k \frac{1}{n^k}$, 所以 $\sum_{n=1}^{+\infty} M_n$ 收敛, 从而原级数在 $[0, +\infty)$ 上一致收敛.

- 5. "⇒": 显然. "←": 已知 $\sum\limits_{n=1}^{+\infty} \frac{a_n}{n}$ 收敛, 即 $\sum\limits_{n=1}^{+\infty} \frac{a_n}{n}$ 在 $[1,+\infty)$ 上一致收敛. 又有 $\frac{1}{n^{x-1}}$ 关于 n 单调下降且 $|\frac{1}{n^{x-1}}|$ ≤
- $1, \forall x \in [1, +\infty), \forall n \in \mathbb{N}$. 由 Abel 判别法, $\sum_{n=1}^{+\infty} \frac{a_n}{n^x} = \sum_{n=1}^{+\infty} \frac{a_n}{n} \frac{1}{n^{x-1}}$ 在 $[1, +\infty)$ 一致收敛.
- 6. 由 Abel 判别法知 $\sum_{n=1}^{+\infty} f_n(x)u_{1,n}(x)$ 一致收敛, $\sum_{n=1}^{+\infty} [f_n(x)u_{1,n}(x)]u_{2,n}(x)$ 一致收敛, 依此类推知原级数一致收敛.
- 7. 记 $u_n(x) = (-1)^n, v_n(x) = \frac{x^2 + n}{n^2}$, 则 $|\sum_{k=1}^n u_k(x)| \le 1, \forall x \in [a, b], \forall n \in \mathbb{N}, v_n(x) = \frac{x^2}{n^2} + \frac{1}{n}$ 固定 x 后关于 n 单调下降, 且 $v_n(x) \leq \frac{\max\{|a|,|b|\}+n}{n^2} \downarrow 0 (n \to +\infty)$, 即 $v_n(x) \Rightarrow 0, x \in [a,b]$. 根据 Dirichlet 判别法, 原级数在 [a,b] 上一致收敛.

- 8. 由于 $|\sum_{k=1}^{n} (-1)^{k+1}| \le 1, \frac{1}{n+\frac{\cos nx}{n}}$ 当 $n \ge 3$ 时对 n 单调递减且一致收敛到 0,由 Dirichlet 判别法知 $\sum_{n=2}^{+\infty} \frac{(-1)^{n+1}}{n+\frac{\cos nx}{n}}$ 一致 收敛. 又由于 $\arctan nx$ 对 n 单调且 $|\arctan nx| \leq \frac{\pi}{2}$ 恒成立 (i.e. 一致有界), 由 Abel 判别法知原级数一致收敛.
- 9. 往证级数在 $(0,2\pi)$ 上内闭一致收敛. 不妨设 a_n 非负单调下降. 记 $u_n(x) = a_n, v_n(x) = \cos nx$. 则任意 $\delta > 0$, 对于 $x \in [\delta, 2\pi \delta], \ u_n(x) \Rightarrow 0$, 且关于 n 单调. 另一方面, $|\sum_{k=1}^n v_k(x)| = |\sum_{k=1}^n \cos kx| = \frac{|\sin(n+\frac{1}{2})x \sin\frac{\pi}{2}|}{2\sin\frac{\pi}{2}} \leq \frac{1}{\sin\frac{\delta}{2}}$, 因此一致有
- 界. 根据 Dirichlet 判别法, 原级数在 $[\delta, 2\pi \delta]$ 上一致收敛, 所以 $\sum_{n=1}^{+\infty} a_n \cos nx \in C(0, 2\pi)$.
- $10. \ \sum_{n=0}^{+\infty} t^{2n} \ \text{在} \ [-x,x] \ \bot$ 致收敛,所以积分求和可交换,即 $\int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \int_0^x t^{2n} dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{而} \ \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{The } \int_0^x (\sum_{n=0}^{+\infty} t^{2n}) dt = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}. \ \text{Th$ $\int_0^x \frac{dt}{1-t^2} = \frac{1}{2} \log \frac{1+x}{1-x}$. 从而当 $x \in (-1,1)$ 时, LHS = RHS.
- 11. $\forall k \in \mathbb{N}, (\frac{1}{n^x})^{(k)} = \frac{(-1)^k \log^k n}{n^x}$,因此只需证明 $\sum_{n=1}^{+\infty} \frac{(-1)^k \log^k n}{n^x}$ 在 $(1, +\infty)$ 上内闭一致收敛即可,而这是显然的.
- 12. $f(x) = \sum_{n=-1}^{+\infty} \frac{\operatorname{sgn}(x-x_n)}{2^n}$.
- 13. 容易证明 $f_n(x) \to \frac{1}{x^2} = f(x)(n \to +\infty)$. 对于 $x \in (0, +\infty)$, 取 $x_n = \frac{1}{n}$, 则 $|f_n(x_n) f(x_n)| = |n^2(e-1)\sin 1 1| \to \infty$ $+\infty(n \to +\infty)$,因此对于 $x \in (0,+\infty)$, $f_n(x) \not \supset f(x)$.对于 $x \in [\delta,+\infty)$, $|f_n(x) - f(x)| = \frac{1}{x^2} \left| \frac{e^{\frac{1}{nx}} - 1}{nx} \frac{\sin \frac{1}{nx}}{nx} - 1 \right| \stackrel{t = \frac{1}{nx}}{= x} \left| \frac{1}{x^2} \left| \frac{1}{t^2} (t + \frac{e^{\theta_1 t}}{2!} t^2) (t - \frac{\cos(\theta_2 t)}{3!} t^3) - 1 \right| = \frac{1}{x^2} \left| \frac{e^{\theta_1 t}}{2!} t - \frac{\cos(\theta_2 t)}{3!} t^2 + \frac{e^{\theta_1 t}}{2!} \frac{\cos(\theta_2 t)}{3!} t^3 \right|$. 因此存在常数 C,当 n 充分大时,成立如下估
- 14. 设 $f(y) = y^x + y$. 当 $x \ge 0, y \ge 1$ 时, $f'(y) = xy^{x-1} + 1 \ge 0 + 1 > 0$. 当 x < 0 时且 y 足够大时, $f'(y) = xy^{x-1} + 1 \ge 0 + 1 > 0$. $xy^{x-1}+1>-\frac{1}{2}+1>0$. 所以任意给定 $x\in\mathbb{R},$ 当 n 充分大后 $n^x+n \uparrow \Rightarrow \frac{1}{n^x+n} \downarrow 0$. 由 Leibniz 判别法知收敛域为 \mathbb{R} .

等度连续: 设 $\{f_n(x)\}$ 是定义在区间 I 上的函数列, 若 $\forall \epsilon > 0$, $\exists \delta > 0$ 使得 $|f_n(x') - f_n(x'')| < \epsilon, \forall n \in \mathbb{N}, \forall x', x'' \in I$ 满 足 $|x'-x''| < \delta$, 则称函数列 $\{f_n(x)\}$ 在区间 I 上等度连续.

定理 1: 设 $\{f_n(x)\}$ 在 [a,b] 上一致收敛, 若 $f_n(x) \in C[a,b], n = 1,2,\cdots$, 则 $\{f_n(x)\}$ 在 [a,b] 上等度连续.

定理 2: 设 $\{f_n(x)\}$ 在 [a,b] 上等度连续, 且 $\lim_{n\to+\infty} f_n(x) = f(x), \forall x \in [a,b], 则 f_n(x) \Rightarrow f(x), x \in [a,b].$

Ascoli 引理: X 为紧致 Hausdorff 空间, Y 为度量空间, 则 $F \subset C(X,Y)$ 在紧开拓扑下是紧集的充要条件是 F 等度连 续, 逐点列紧且为闭集. 证明留给读者思考. (编辑透露: 笔者不懂) (笔者透露: 编辑和笔者是同一人)

第 11 次习题课: 幂级数, 泰勒级数

11.1 问题

- 1. 求幂级数 $\sum_{n=1}^{+\infty} \frac{\log(n+1)}{n^2} (x-3)^n$ 的收敛半径和收敛域.
- 2. 设 $a_i \ge 0, i = 1, 2, \dots, S_n = \sum_{i=1}^n a_i$. 已知 $n \to +\infty$ 时, 有 $S_n \to +\infty$, 且 $\frac{a_n}{S_n} \to 0$. 求幂级数 $\sum_{i=1}^{+\infty} a_i x^i$ 的收敛半径.
- 3. 计算 $\sum_{n=1}^{+\infty} \frac{(-1)^n}{(3n-2)(3n+1)}$.
- $4. 计算 \sum_{n=0}^{+\infty} \frac{n}{(n+2)!}.$
- 5. 求级数 $\sum_{n=1}^{+\infty} xe^{-nx}$ 的收敛域与和函数.
- 6. 求 $\sum_{n=1}^{+\infty} \frac{x^{2n+1}}{n(2n+1)}$ 的收敛半径、收敛域与和函数, 并求 $\sum_{n=1}^{+\infty} \frac{1}{n(2n+1)}$.
- 7. 对 $f(x) = \frac{x^2}{(1+x^2)^2}$ 在 x = 0 处做泰勒展开. 8. 对 $f(x) = \log^2(1+x)$ 在 x = 0 处做泰勒展开.
- 9. 证明 $\int_0^1 x^{-x} dx = \sum_{n=1}^{+\infty} \frac{1}{n^n}$.
- 10. 证明 $x = \sin x + \sum_{n=1}^{+\infty} \frac{(2n-1)!!}{(2n)!!} \frac{\sin^{2n+1} x}{2n+1}, x \in [0, \frac{\pi}{2}],$ 并由此计算 $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.

- 11. 试构造 $\{f_n(x)\}_{n=1}^{+\infty}$ 满足 $\lim_{n\to+\infty} f_n(x) = f(x), f_n(x) \not \Rightarrow f(x), x \in [0,1], \lim_{n\to+\infty} \int_0^1 f_n(x) dx = \int_0^1 [\lim_{n\to+\infty} f_n(x)] dx.$
- 12. $a_n > 0, n = 1, 2, \dots, f(x) = \sum_{n=0}^{+\infty} a_n x^n$, 且 $\sum_{n=0}^{+\infty} a_n n!$ 收敛, 证明 $\int_0^{+\infty} e^{-x} f(x) dx = \sum_{n=0}^{+\infty} a_n n!$.

11.2 解答

1. 记 $a_n = \frac{\log(n+1)}{n^2}$, 则 $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{n^2}{(n+1)^2} \frac{\log(n+2)}{\log(n+1)} = 1$, 所以收敛半径为 r = 1. 当 x - 3 = -1 即 x = 2 时, 级

数为 $\sum_{n=1}^{+\infty} \frac{\log(n+1)}{n^2} (-1)^n$, 绝对收敛. 当 x-3=1 即 x=4 时, 级数为 $\sum_{n=1}^{+\infty} \frac{\log(n+1)}{n^2}$, 绝对收敛. 所以收敛区域为 [2,4].

- 2. 当 x=1 时级数 $\sum_{n=1}^{+\infty} a_n x^n$ 发散, 故收敛半径 $r \leq 1$. 记幂级数 $\sum_{n=1}^{+\infty} S_n x^n$ 的收敛半径为 R, 由于 $\lim_{n \to +\infty} \frac{a_n}{S_n} = 0$, 因此
- $r \geq R. \quad \text{又有} \lim_{n \to +\infty} \frac{S_{n-1}^{n-1}}{S_n} = \lim_{n \to +\infty} \frac{S_n a_n}{S_n} = \lim_{n \to +\infty} (1 \frac{a_n}{S_n}) = 1, \text{ 从而} R = 1.$ 综上 r = 1. $3. \quad \sum_{n=1}^{+\infty} \frac{(-1)^n}{3n-2} (3n+1) = \frac{1}{3} \sum_{n=1}^{+\infty} \left[\frac{(-1)^n}{3n-2} \frac{(-1)^n}{3n+1} \right] = \frac{1}{3} \sum_{n=1}^{+\infty} \frac{(-1)^n}{3n-2} \frac{1}{3} \sum_{n=1}^{+\infty} \frac{(-1)^n}{3n-1} = \frac{1}{3} \sum_{n=1}^{+\infty} \frac{(-1)^n}{3n-2} \frac{1}{3} \sum_{n=2}^{+\infty} \frac{(-1)^{n-1}}{3n-2} = \frac{2}{3} \sum_{n=1}^{+\infty} \frac{(-1)^n}{3n-2} + \frac{1}{3}.$

虑幂级数 $f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{3n-2} x^{3n-2}, |x| \le 1.$ 逐项求导,知 $f'(x) = \sum_{n=1}^{+\infty} (-1)^n x^{3n-3} = -\frac{1}{1+x^3}, |x| < 1.$ 因此有 $f(x) = f(0) + \frac{1}{2}$

 $\int_0^x f'(t)dt = \int_0^x \frac{1}{1+t^3} dt, |x| \le 1.$ 所以 $f(1) = \int_0^1 \frac{1}{1+t^3} dt = -\frac{1}{3} \log 2 - \frac{\sqrt{3}}{9} \pi.$ 因此原级数求和为 $-\frac{1}{27} (6 \log 2 + 2\sqrt{3}\pi - 9).$

4. 引入幂级数 $f(x) = \sum_{n=1}^{+\infty} \frac{nx^{n+2}}{(n+2)!}$, 易知其收敛半径为 $+\infty$. 从而逐项求导知 $f''(x) = \sum_{n=1}^{+\infty} \frac{x^n}{(n-1)!} = x \sum_{n=1}^{+\infty} \frac{x^{n-1}}{(n-1)!} = xe^x \Rightarrow$

 $f(x) = (x-2)e^x + x + 2 \Rightarrow \sum_{n=0}^{+\infty} \frac{n}{(n+2)!} = f(1) = 3 - e.$

5. $\sum_{n=1}^{+\infty} xe^{-nx} = x \sum_{n=1}^{+\infty} e^{-nx} = x \sum_{n=1}^{+\infty} (e^{-x})^n$, 由于 $\sum_{n=1}^{+\infty} t^n$ 的收敛域为 (-1,1), 且 x=0 时原级数为 0, 知 x 的收敛域为

 $[0,\infty)$. 和函数为 $S(x) = \begin{cases} 0, & x=0\\ \frac{xe^x}{x^{-x-1}}, & x>0 \end{cases}$.

6. 利用 $\overline{\lim}_{n \to +\infty} \sqrt[n]{a_n} = 1$ 可知收敛半径为 1, 收敛域为 [-1,1]. 记 $f(x) = \sum_{n=1}^{+\infty} \frac{x^{2n+1}}{n(2n+1)}, x \in [-1,1]$, 则 f(0) = 0, f'(x) = 0

 $\sum_{n=1}^{+\infty} \frac{x^{2n}}{n} (x \in (-1,1)), f'(0) = 0, f''(x) = \sum_{n=1}^{+\infty} 2x^{2n-1} = \frac{2x}{1-x^2}, x \in (-1,1). \text{ Minkin} f'(x) = f'(x) - f'(0) = \int_0^x \frac{2t}{1-t^2} dt = \int_0^x \frac{x^{2n}}{1-t^2} dt$

 $-\log(1-x^2), f(x) = f(x) - f(0) = -\int_0^x \log(1-t^2) dt = -t \log(1-t^2)|_0^x + \int_0^x t \frac{(-2t)}{1-t^2} dt = -x \log(1-x^2) + 2\int_0^x \frac{-t^2}{1-t^2} dt = -x \log(1-x^2) + 2\int$

7. $\frac{1}{(1+t)^2}$ 的展开式为 $1 + \sum_{n=1}^{+\infty} \frac{(-2)(-2-1)\cdots(-2-n+1)}{n!} t^n = 1 + \sum_{n=1}^{+\infty} (-1)^n (n+1) t^n$, 因此 $\frac{x^2}{(1+x^2)^2} = \sum_{n=1}^{+\infty} (-1)^{n-1} n x^{2n}$, |x| < 1.

8. $\log(1+x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} x^{n+1} \Rightarrow \log^2(1+x) = \left[\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} x^{n+1}\right]^2 = x^2 \sum_{n=0}^{+\infty} c_n x^n, \not\exists \vdash a_n = \frac{(-1)^n}{n+1}, c_n = \sum_{k=0}^{n} a_k a_{n-k} = \sum_{k=0}^$

9. $x^{-x} = e^{-x\log x} = 1 + \sum_{n=1}^{+\infty} \frac{(-1)^n (x\log x)^n}{n!}$. 由于 $x\log x \in [-\frac{1}{e}, 0]$, 且级数 $\sum_{n=1}^{+\infty} \frac{(-1)^n (x\log x)^n}{n!}$ 在此范围内一致收敛, 因此积

分求和顺序可交换. 再利用 $\int_0^1 x^n \log^n x dx = \frac{(-1)^n n!}{(n+1)^{n+1}}$ 知 $\int_0^1 x^{-x} dx = \sum_{n=1}^{+\infty} \frac{1}{n^n}$.

10. 对 $\arcsin t$ 做泰勒展开知 $\arcsin t = t + \sum_{n=1}^{+\infty} \frac{(2n-1)!!}{(2n)!!} \frac{t^{2n+1}}{2n+1}$, 换元 $x = \arcsin t$ 立得. 由一致收敛性, 两边从 x = 0 积分

到 $x = \frac{\pi}{2}$ 得到 $\frac{\pi^2}{8} = \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2}$. 由于 $\sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2} + \sum_{n=1}^{+\infty} \frac{1}{(2n)^2} = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2} + \frac{1}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2}$, 因此 $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

12. $-\dot{\pi}$ $\bar{\mathbf{m}}$, $\forall N \in \mathbb{N}$, $\int_0^{+\infty} e^{-x} f(x) dx \ge \int_0^{+\infty} e^{-x} (\sum_{n=0}^N a_n x^n) dx = \sum_{n=0}^N a_n n!$. \diamondsuit $N \to +\infty$ $\bar{\mathbf{m}}$ $\int_0^{+\infty} e^{-x} f(x) dx \ge \sum_{n=0}^{+\infty} a_n n!$.

另一方面, $\forall M>0, \int_0^M e^{-x}f(x)dx=\sum_{n=0}^{+\infty}\int_0^M e^{-x}x^ndx\leq \sum_{n=0}^{+\infty}\int_0^{+\infty}e^{-x}x^ndx=\sum_{n=0}^{+\infty}a_nn!.$ 令 $M\to +\infty$ 知 $\int_0^{+\infty}e^{-x}f(x)dx$

 $\leq \sum_{n=0}^{+\infty} a_n n!$. 综上所述 $\int_0^{+\infty} e^{-x} f(x) dx = \sum_{n=0}^{+\infty} a_n n!$. 请读者注意, 我们没有 $\sum_{n=0}^{+\infty} a_n x^n$ 在 $[0, +\infty)$ 上的一致收敛性.

命题: 存在处处连续但处处不可导的函数. 一个构造是 $S(x) = \sum_{n=1}^{+\infty} \frac{u(4^n x)}{4^n}$, 其中 u(x) 是 $|x|(-\frac{1}{2} \le x \le \frac{1}{2})$ 的周期延拓. 证明: 显然 S(x) 一致收敛, 且每一项都是连续函数, 因此 S(x) 连续. 下面证明 $\forall x_0 \in \mathbb{R}, S'(x_0) \exists$. 不妨设 $x_0 \in (0,1)$. 注意到 $u_n(x) = \frac{u(4^n x)}{4^n}$ 以 $\frac{1}{4^n}$ 为周期, 在 $[\frac{m}{4^n}, \frac{m}{4^n} + \frac{1}{2}\frac{1}{4^n}]$ 上斜率为 1, 在 $[\frac{m}{4^n} + \frac{1}{2}\frac{1}{4^n}, \frac{m+1}{4^n}]$ 上斜率为 -1. 对于每个 $n \geq 1$, 存在 m_n 使得 $\frac{m_n}{2\cdot 4^{n-1}} \le x_0 < \frac{m_n+1}{2\cdot 4^{n-1}}$. 因此在 $I_n = \left[\frac{m_n}{2\cdot 4^{n-1}}, \frac{m_n+1}{2\cdot 4^{n-1}}\right]$ 内, 存在 x_n 使得 $|x_n - x_0| = \frac{1}{2}|I_n| = \frac{1}{4^n}$. 于是 $\frac{S(x_n)-S(x_0)}{x_n-x_0} = \sum_{k=1}^{+\infty} \frac{u_k(x_n)-u_k(x_0)}{x_n-x_0}$. 对于 $k \ge n, T_k = \frac{1}{4^k}$ 整除 $|x_n-x_0|$, 因此相应项为 0. 当 $k \le n-1$ 时,相应项为 1 或 -1, 故 $\frac{S(x_n)-S(x_0)}{x_n-x_0} = \sum_{k=1}^{n-1} a_k$, 其中 $a_k = 1$ 或 -1. 当 $n \to +\infty$ 时, $x_n \to x_0$, 但 $\sum_{k=1}^{+\infty} a_k$ 不可能存在. 故 $S'(x_0)$ 不存在.

第 12 次习题课: 广义积分

12.1 问题

- 1. 计算积分 $I = \int_{1}^{+\infty} \frac{dx}{x\sqrt{1+x^2}}$. 2. 计算积分 $I = \int_{1}^{+\infty} \frac{\arctan x}{x^3} dx$. 3. 计算积分 $I_1 = \int_{0}^{+\infty} e^{-ax} \sin bx dx$, $I_2 = \int_{0}^{+\infty} e^{-ax} \cos bx dx$, 其中 $a > 0, b \in \mathbb{R}$.
- 4. 讨论积分 $\int_{1}^{+\infty} \left[\frac{1}{x^{p}} \log(1 + \frac{1}{x^{p}}) \right] dx(p > 0)$ 的敛散性.
- 5. 证明或否定: $\int_a^{+\infty} f(x)dx$ 收敛, 则 $\lim_{x \to +\infty} f(x) = 0$.
- 6. 讨论积分 $I = \int_1^{+\infty} \frac{\sin x}{x^{\alpha}} dx (\alpha > 0)$ 的收敛性和绝对收敛性.
- 7. 讨论积分 $I = \int_{1}^{+\infty} \log(1 + \frac{\sin x}{x^p}) dx (p > 0)$ 的收敛性. 8. 讨论积分 $I = \int_{0}^{1} \frac{1}{(1-x^2)^p} dx$ 的收敛性.
- 9. 讨论积分 $I = \int_0^1 (2x \sin \frac{1}{x^2} \frac{2}{x} \cos \frac{1}{x^2}) dx$ 的收敛性.
- 10. f(x) 于 $[a, +\infty)$ 单调, $g(x) \in C(\mathbb{R})$, $g(x) \not\equiv 0$, g(x) = g(x+T). 求证 $\int_a^{+\infty} f(x) dx$ 收敛 $\Leftrightarrow \int_a^{+\infty} f(x) |g(x)| dx$ 收敛.
- 11. 计算积分 $I_1 = \int_0^{+\infty} \frac{\sin x}{x} dx$ 和 $I_2 = \int_0^{+\infty} (\frac{\sin x}{x})^2 dx$.
- 12. 设 $f(x) \in C[0, +\infty)$, $\lim_{x \to +\infty} f(x) = L$, 证明对 0 < a < b, 成立 $\int_0^{+\infty} \frac{f(ax) f(bx)}{x} dx = (f(0) L) \log \frac{b}{a}$.

12.2 解答

- 1. $I = \int_{1}^{+\infty} \frac{dx}{x\sqrt{1+x^2}} \stackrel{x=\frac{1}{t}}{=} \int_{0}^{1} \frac{\frac{1}{t^2}dt}{\frac{1}{t} \cdot \sqrt{1+\frac{1}{t^2}}} = \int_{0}^{1} \frac{dt}{\sqrt{1+t^2}} = \log(t+\sqrt{1+t^2})|_{0}^{1} = \log(1+\sqrt{2}).$ 2. $I = \int_{1}^{+\infty} \frac{\arctan x}{x^3} dx = -\frac{1}{2} \int_{1}^{+\infty} \arctan x d\frac{1}{x^2} = -\frac{1}{2x^2} \arctan x|_{1}^{+\infty} + \frac{1}{2} \int_{1}^{+\infty} \frac{1}{x^2(1+x^2)} dx = \frac{\pi}{8} + \frac{1}{2} \int_{1}^{+\infty} (\frac{1}{x^2} \frac{1}{1+x^2}) dx = \frac{\pi}{8} + \frac{1}{8} \int_{1}^{+\infty} (\frac{1}{x^2} \frac{1}{1+x^2}) dx = \frac{\pi}{8} + \frac{$ $\frac{\pi}{8} + \frac{1}{2} \left[-\frac{1}{x} - \arctan x \right] \Big|_{1}^{+\infty} = \frac{1}{2}.$
- 3. 由分部积分有 $aI_1 = -\int_0^{+\infty} \sin bx de^{-ax} = -\sin bx \cdot e^{-ax}|_0^{+\infty} + b\int_0^{+\infty} e^{-ax} \cos bx dx = bI_2, aI_2 = -\int_0^{+\infty} \cos bx de^{-ax} = -\cos bx \cdot e^{-ax}|_0^{+\infty} b\int_0^{+\infty} e^{-ax} \sin bx dx = 1 bI_1.$ 解出 $I_1 = \frac{b}{a^2 + b^2}, I_2 = \frac{a}{a^2 + b^2}.$
- 4. $t \to 0$ 时 $\log(1+t) = t \frac{t^2}{2} + o(t^2)$. 故 $x \to +\infty$ 时, $\frac{1}{x^p} \log(1 + \frac{1}{x^p}) \sim \frac{1}{2x^{2p}}$. 而 $\int_1^{+\infty} \frac{1}{x^{2p}} dx$ 于 $p > \frac{1}{2}$ 时收敛, 于 $p \leq \frac{1}{2}$ 时发散. 所以原积分于 $p > \frac{1}{2}$ 时收敛, 于 $p \leq \frac{1}{2}$ 时发散.
- 5. 结论不对,例如 $f(x) = \begin{cases} n, & x \in \left[n \frac{1}{2n^3}, n + \frac{1}{2n^3}\right], n \in \mathbb{N}, n > 1\\ 0, & \text{otherwise} \end{cases}$.
- 6. 当 $\alpha>0$ 时, 由于 $\frac{1}{x^{\alpha}}$ 在 $[1,+\infty)$ 单调递减趋于 0, 而 $|\int_1^x \sin t dt| \leq 2$, 所以由 Dirichlet 判别法, 此无穷积分收敛. 当 $\alpha>1$ 时, $|\frac{\sin x}{x^{lpha}}|<\frac{1}{x^{lpha}}$,而 $\int_{1}^{+\infty}\frac{1}{x^{lpha}}$ 收敛,所以积分绝对收敛.当 $0<lpha\leq 1$ 时, $\int_{\pi}^{N\pi}\frac{|\sin x|}{x^{lpha}}dx=\sum_{n=1}^{N-1}\int_{n\pi}^{(n+1)\pi}\frac{|\sin x|}{x^{lpha}}dx\geq 1$

$$\sum\limits_{n=1}^{N-1}rac{1}{(n+1)\pi}\int_{n\pi}^{(n+1)\pi}|\sin x|dx=\sum\limits_{n=1}^{N-1}rac{2}{(n+1)\pi},$$
 所以积分条件收敛.

7. 泰勒展开知 $I = \int_{1}^{+\infty} \left[\frac{\sin x}{x^{p}} - \frac{\sin^{2} x}{2x^{2p}} + o\left(\frac{\sin^{2} x}{x^{2p}}\right) \right] dx = \int_{1}^{+\infty} \frac{\sin x dx}{x^{p}} - \int_{1}^{+\infty} \frac{\frac{1-\cos 2x}{2}}{2x^{2p}} dx + \int_{1}^{+\infty} \frac{\sin^{2} x}{x^{2p}} o(1) dx = \int_{1}^{+\infty} \frac{\sin x dx}{x^{p}} + o\left(\frac{\sin^{2} x}{x^{2p}}\right) dx$ $\int_{1}^{+\infty} \frac{\cos 2x dx}{4x^{2p}} - \int_{1}^{+\infty} \frac{1 - 4o(1)\sin^{2}x}{4x^{2p}} dx := I_{1} + I_{2} + I_{3}. \quad \text{当} \quad p > 1 \text{ 时, 三者都绝对收敛.} \quad \text{当} \quad \frac{1}{2}$ I_3 绝对收敛, 故原积分收敛. 当 $0 时, <math>I_1$ 和 I_2 收敛. 又 $\exists A > 1$ 使得 $\frac{1}{2} \le 4o(1)\sin^2 x \le 2, \forall x > A$, 所以 $\frac{1-4o(1)\sin^2 x}{4x^{2p}} > \frac{1}{8x^{2p}}, \forall x > A.$ 而 $\int_1^{+\infty} \frac{dx}{x^{2p}} (p \le \frac{1}{2})$ 发散, 因此原积分发散.

- 8. 容易看出原积分与 $\int_0^1 \frac{1}{(1-x)^p} dx$ 同敛散, 因此 p < 1 时收敛, $p \ge 1$ 时发散.
- 9. $I = \int_0^1 (2x \sin \frac{1}{x^2} \frac{2}{x} \cos \frac{1}{x^2}) dx = \stackrel{t = \frac{1}{x^2}}{=} \int_1^{+\infty} \frac{\sin t}{t^2} dt \int_1^{+\infty} \frac{\cos t}{t} dt$, 因此收敛.

10. f(x) 于 $[a, +\infty)$ 单调, 所以可认为其定号, 不妨设 $f(x) \ge 0. g(x)$ 是连续周期函数, 因此存在 M 使得 $|g(x)| \le M$. "⇒": 因为 $0 \le \int_{x'}^{x''} f(x)|g(x)|dx \le M \int_{x'}^{x''} f(x)dx, \forall x', x'',$ 所以由 Cauchy 收敛原理立得.

" \leftarrow ": 记 $m = \frac{1}{T} \int_0^T |g(x)| dx$. 由于 $\int_a^x f(t) dt$ 单调上升, 故只需证明存在 $x_n \uparrow$, $\lim_{n \to +\infty} x_n = +\infty$ 使得 $\int_a^{x_n} f(x) dx$ 有界即 可. 取合适的 n_0 使得 $a \le n_0 T$ 和 $x_n = (n_0 + n)T$, 往证 $\int_{n_0 T}^{(n_0 + n)T} f(x) dx$ 有界 ($\Leftrightarrow \int_a^{x_n} f(x) dx$ 有界). 首先, 利用反证 法知 f(x) 单调下降趋于 0. 其次,

$$\begin{split} \int_{(n_0+1)T}^{(n_0+n+1)T} f(x) dx &= \sum_{k=n_0+1}^{n_0+n} \int_{kT}^{(k+1)T} f(x) dx \leq \sum_{k=n_0+1}^{n_0+n} f(kT) T = \frac{1}{m} \sum_{k=n_0+1}^{n_0+n} f(kT) \cdot mT \\ &= \frac{1}{m} \sum_{k=n_0+1}^{n_0+n} f(kT) \int_{(k-1)T}^{kT} |g(x)| dx \leq \frac{1}{m} \sum_{n_0+1}^{n_0+n} \int_{(k-1)T}^{kT} f(x) |g(x)| dx = \frac{1}{m} \int_{n_0T}^{(n_0+n)T} f(x) |g(x)| dx \end{split}$$

令 $n \to +\infty$, 由 $\int_a^{+\infty} f(x)|g(x)|dx$ 收敛知 $\frac{1}{m} \int_{n_0 T}^{(n_0+n)T} f(x)|g(x)|dx$ 极限存在. 这意味着 $\int_{(n_0+1)T}^{(n_0+n+1)T} f(x)dx$ 有界, 也就是 $\int_{n_0 T}^{+\infty} f(x)dx$ 收敛 $\Leftrightarrow \int_a^{+\infty} f(x)dx$ 收敛, 结论成立.

11. 由 $2\sin\frac{x}{2}(\frac{1}{2}+\sum_{k=1}^{n}\cos kx)=\sin(n+\frac{1}{2})x$ 知 $\int_{0}^{\pi}(\frac{1}{2}+\sum_{k=1}^{n}\cos kx)dx=\int_{0}^{\pi}\frac{\sin(n+\frac{1}{2})x}{2\sin\frac{x}{2}}dx=\frac{\pi}{2}$. 定义函数 $f(x)=\frac{1}{x}-\frac{1}{2\sin\frac{x}{2}}$, 容 易计算出 $\lim_{x\to 0+0} f(x) = 0$. 因此 $f(x) \in R[0,\pi]$, 由 Riemann-Lebesgue 引理知 $\lim_{n\to +\infty} \int_0^{\pi} f(x) \sin(n+\frac{1}{2})x dx = 0$, 所以我们 成立 $I_1 = \lim_{n\to +\infty} \int_0^{\pi} \frac{\sin(n+\frac{1}{2})x}{x} dx = \int_0^{+\infty} \frac{\sin x}{x} dx = \lim_{n\to +\infty} \int_0^{\pi} \frac{\sin(n+\frac{1}{2})x}{2\sin\frac{x}{2}} dx = \frac{\pi}{2}$, $I_2 = \int_0^{+\infty} (\frac{\sin x}{x})^2 dx = \int_0^{+\infty} \sin^2 x d(-\frac{1}{x}) = -\frac{\sin^2 x}{x} \Big|_0^{+\infty} + \int_0^{+\infty} \frac{\sin 2x}{x} dx = \int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$.

12. 对于 $\forall 0 < \delta < A$, 我们有 $\int_0^A \frac{f(ax) - f(bx)}{x} dx = \int_{a\delta}^{AA} \frac{f(t)}{t} dt - \int_{b\delta}^{AA} \frac{f(t)}{t} dt = \int_{a\delta}^{b\delta} \frac{f(t)}{t} dt - \int_{aA}^{bA} \frac{f(t)}{t} dt = \int_{a\delta}^{b\delta} \frac{f(t) - f(0)}{t} dt - \int_{aA}^{bA} \frac{f(t) - f(0)}{t} dt = \int_{a\delta}^{bA} \frac{f(t) - f(0)}{t}$

 $\int_{aA}^{bA} \frac{f(t) - L}{t} dt + (f(0) - L) \log \frac{b}{a}. \Leftrightarrow \delta \to 0 + 0, A \to +\infty$ 知前两项都趋于 0, 从而 LHS = RHS.

补充 (不要求掌握!)

我们来了解一下 Lebesgue-Stieltjes 积分. 首先设 μ 是 σ 域 $\mathscr F$ 上的非负可列可加函数, 满足 $\mu(\emptyset)=0$.

X 的可测划分: $\{A_i\}_{i=1}^{+\infty} \subset \mathscr{F}$ 满足 $\mu(A_i \cap A_j) = 0, \forall i \neq j$ 且 $\mu((\cup_i A_i)^c) = 0$.

非负简单函数的积分: $\{A_i, i=1,2,\cdots,n\}$ 为 X 的划分, $a_i \geq 0, \forall i, f = \sum_{i=1}^n a_i I_{A_i}, \, \bigcup_{X} f d\mu := \sum_{i=1}^n a_i \mu(A_i).$

非负可测函数的积分: $\int_{Y} f d\mu := \sup \{ \int_{Y} g d\mu : g$ 非负简单且 $g \leq f \}$

可测函数的积分: 若 $\min\{\int_X f^+d\mu, \int_X f^-d\mu\} < \infty$, 则称 f 的积分存在; 若 $\max\{\int_X f^+d\mu, \int_X f^-d\mu\} < \infty$, 则称 f 可 积; 上述两种情况下, 将 f 的积分定义为 $\int_X f d\mu := \int_X f^+ d\mu - \int_X f^- d\mu$.

13 第 13 次习题课: 含参积分

13.1 问题

- 1. 设 0 < a < b, 计算积分 $I = \int_0^1 \frac{x^b x^a}{\log x} dx$.
- 2. 设 $f(x,y) \in C(\mathbb{R}^2)$, $F(x) = \int_x^{x^2} ds \int_s^x f(s,t)dt$, 计算 F'(x).
- 2. 设 $f(x,y) \in C(\mathbb{N})$, $I(x) = \int_{x}^{+\infty} ds \int_{s}^{+\infty} f(s,t)dt$, V(x) = I(x).

 3. 设 $f(x) \in C[0,+\infty)$, 证明 $\int_{0}^{+\infty} e^{-\alpha x} f(x)$ 对 $\alpha \in (0,+\infty)$ 一致收敛的充要条件是 $\int_{0}^{+\infty} f(x)dx$ 收敛.

 4. 讨论含参变量积分 $I(x) = \int_{0}^{+\infty} \frac{\sin xy}{y} dy$ 在 $x \in [\alpha_{0},+\infty)(\alpha_{0}>0)$ 和 $x \in (0,+\infty)$ 的一致收敛性.

 5. 计算积分 $I = \int_{0}^{+\infty} \frac{\arctan bx \arctan ax}{x} dx (b > a > 0)$.

 6. 计算积分 $I = \int_{0}^{+\infty} \frac{e^{-ax^{2}} e^{-bx^{2}}}{x^{2}} dx$, 其中 b > a > 0.

- 7. f(t) 是区间 $[0,2\pi]$ 上的连续函数, 求函数 $F(x_0,x_1,\cdots,x_n,y_1,\cdots,y_n) = \frac{1}{\pi} \int_0^{2\pi} [f(t) \frac{x_0}{2} \sum_{k=1}^n (x_k \cos kt + y_k \sin kt)]^2 dt$ 的最小值点.
- 8. 计算积分 $I(\alpha) = \int_0^{+\infty} \frac{dx}{(1+x^2)(1+x^\alpha)}$. 9. 求极限 $\lim_{\alpha \to +\infty} \int_0^{+\infty} e^{-x^\alpha} dx$.

- 10. 计算积分 $I = \int_0^{+\infty} \sqrt{x} e^{-x} dx$. 11. 计算积分 $I = \int_0^1 \frac{1}{\sqrt{x(1-x)}} dx$.
- 12. 任意取定 r>0, 证明含参变量 y 的无穷积分 $\int_0^{+\infty} e^{-xy^2} \cos x dx$ 对于 $y\in [r,+\infty)$ 是一致收敛的.

13.2 解答

- 1. $I = \int_0^1 (\int_a^b x^y dy) dx = \int_a^b (\int_0^1 x^y dx) dy = \int_a^b \frac{dy}{y+1} = \log \frac{1+b}{1+a}$.
- 2. 直接用公式, $F'(x) = \int_x^{x^2} \frac{\partial}{\partial x} \left[\int_s^x f(s,t) dt \right] ds + \int_{x^2}^x f(x^2,t) dt 2x \int_x^x f(x,t) dt = \int_x^{x^2} f(s,x) ds + 2x \int_{x^2}^x f(x^2,t) dt.$
- 3. 充分性由 Abel 判别法立得. 必要性使用反证法. 如果 $\int_0^{+\infty} e^{-\alpha x} f(x) dx$ 对 $\alpha \in (0, +\infty)$ 一致收敛而 $\int_0^{+\infty} f(x) dx$ 发 散,则 $\exists \epsilon_0 > 0$,对于 $\forall A_0 > 0$, $\exists A_2 > A_1 > A_0$ 使得 $|\int_{A_1}^{A_2} f(x) dx| > 2\epsilon_0$. $F(\alpha, x) = e^{-\alpha x} f(x)$ 在 $(x, \alpha) \in [A_1, A_2] \times [0, 1]$ 上连续,从而 $\lim_{\alpha \to 0+0} \int_{A_1}^{A_2} e^{-\alpha x} f(x) dx = \int_{A_1}^{A_2} f(x) dx$. 因此 $\exists \alpha' > 0$ 使得 $|\int_{A_1}^{A_2} e^{-\alpha' x} f(x) dx| \geq \frac{1}{2} |\int_{A_1}^{A_2} f(x) dx| > \frac{1}{2} \cdot 2\epsilon_0 = 0$
- 4. (1) 对于 $\forall x \in [\alpha_0, +\infty)$ 及 A > 0, 有 $|\int_0^A f(x, y) dy| = |\int_0^A \sin xy dy| = |\frac{1}{x}(1 \cos xA)| \le \frac{2}{\alpha_0}$. 而 $g(x, y) = \frac{1}{y}$ 关于 y 单调,且对 $x \in [\alpha_0, +\infty)$ 一致趋于 0. 由 Dirichlet 判别法知 $\int_0^{+\infty} \frac{\sin xy}{y} dy$ 在 $[\alpha_0, +\infty)$ 一致收敛. (2) 取 $x = \frac{1}{2k}(k \in \mathbb{N})$, 则 $|\int_{2k\pi}^{3k\pi} \frac{\sin xy}{y} dy| = |\int_{2k\pi}^{3k\pi} \frac{\sin \frac{y}{2k}}{y} dy| \ge \frac{1}{3k\pi} |\int_{2k\pi}^{3k\pi} \sin \frac{y}{2k} dy| = \frac{2}{3\pi}$. 这与一致 Cauchy 准则矛盾,所以不一致收敛. 5. $I = \int_0^{+\infty} \frac{\arctan bx \arctan ax}{x} dx = \int_0^{+\infty} \left(\int_a^b \frac{dt}{1+t^2x^2}\right) dx$. 由于 $\int_0^{+\infty} \frac{dx}{1+t^2x^2}$ 对 $t \in [a,b]$ 一致收敛,所以积分可交换顺序,
- 因此有 $I = \int_a^b dt \int_0^{+\infty} \frac{dx}{1+t^2x^2} = \int_a^b \frac{\pi}{2t} dt = \frac{\pi}{2} \log \frac{b}{a}.$ 6. $I = \int_0^{+\infty} \frac{e^{-ax^2} e^{-bx^2}}{x^2} dx = \int_0^{+\infty} \left[\int_a^b e^{-tx^2} dt \right] dx.$ 由于 $\int_0^{+\infty} e^{-tx^2}$ 对 $t \in [a, b]$ 一致收敛,所以积分可交换顺序,因此有 $I = \int_a^b dt \int_0^{+\infty} e^{-tx^2} dx = \int_a^b \frac{\sqrt{\pi}}{2\sqrt{t}} dt = \sqrt{\pi}(\sqrt{b} \sqrt{a}).$
- 7. 直接求导即可,最小值点是 $x_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx dx, k = 0, 1, \dots, n.$ $y_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin kx dx, k = 1, 2, \dots, n.$ 8. $I(\alpha) + I(-\alpha) = \int_0^{+\infty} \frac{dx}{(1+x^2)(1+x^{\alpha})} + \frac{dx}{(1+x^2)(1+x^{-\alpha})} = \int_0^{+\infty} \frac{dx}{1+x^2} = \frac{\pi}{2}.$ 作换元 $t = \frac{1}{x}$ 又知道 $I(\alpha) = \int_0^{+\infty} \frac{dt}{(1+t^2)(1+t^{-\alpha})} = \int_0^{+\infty} \frac{dx}{(1+x^2)(1+x^{-\alpha})} = \int_0^{+\infty} \frac{dx}{(1+x^{-\alpha})} = \int_0^{+\infty} \frac{dx}{(1+x^{-\alpha})} = \int_0^{+\infty} \frac{dx}{(1+x^{-\alpha$
- 9. 在区间 $[0,1-\frac{\epsilon}{6}]$ 上 $e^{-x^{\alpha}}$ \Rightarrow $\uparrow 1(\alpha \to +\infty)$, 因此 $\lim_{\alpha \to +\infty} \int_0^{1-\frac{\epsilon}{6}} e^{-x^{\alpha}} dx = 1-\frac{\epsilon}{6}$, 存在足够大的 α_1 使得 $\forall \alpha > \alpha_1, 1-\frac{\epsilon}{3} < 1$ $\int_0^{1-\frac{\epsilon}{6}}e^{-x^\alpha}dx<1. \ \text{在区间}\ [1+\frac{\epsilon}{6},+\infty)\ \bot\ e^{-x^\alpha} \implies 0 (\alpha\to+\infty),\ \text{因此}\ \lim_{\alpha\to+\infty}\int_{1+\frac{\epsilon}{6}}^{+\infty}e^{-x^\alpha}dx=0,\ \text{存在足够大的}\ \alpha_2$ 使得 $\forall \alpha > \alpha_2, 0 < \int_{1+\frac{\epsilon}{6}}^{+\infty} e^{-x^{\alpha}} dx < \frac{\epsilon}{3}$. 在区间 $[1-\frac{\epsilon}{6},1+\frac{\epsilon}{6}]$ 上总有 $e^{-x^{\alpha}} < 1$, 因此 $0 < \int_{1-\frac{\epsilon}{6}}^{1+\frac{\epsilon}{6}} < \frac{\epsilon}{3}$. 综上所述,当 $\alpha > \max\{\alpha_1,\alpha_2\}$ 时, $1-\epsilon < 1-\frac{\epsilon}{3} < \int_0^{+\infty} e^{-x^{\alpha}} < 1+\frac{2\epsilon}{3} < 1+\epsilon$,由极限定义知 $\lim_{\alpha \to +\infty} \int_0^{+\infty} e^{-x^{\alpha}} dx = 1$.
- 10. $I = \Gamma(\frac{3}{2}) = \frac{1}{2}\Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2}$.
- 11. $I = \text{Beta}(\frac{1}{2}, \frac{1}{2}) = \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2})}{\Gamma(1)} = \pi$. 12. 在 $y \in [r, +\infty)$ 上, e^{-xy^2} 单调递减一致趋于 0, 变上限积分 $\int_0^N \cos x dx$ 一致有界, 用 Dirichlet 判别法知一致收敛.

13.3 补充 (不要求掌握!)

其实, 笔者已经不太记得积分求导可交换的条件了, 因为如果按照 12.3 节定义的积分, 这个是自然成立的. Fubini 定理: 给定 \mathbb{R}^d 上的可积函数 f(x,y), 则: (1) 对几乎所有的 x, 作为 y 的函数 f(x,y) 是 \mathbb{R}^{d_2} 上的可积函数; (2) 对 y 的积分 $\int_{\mathbb{R}^{d_2}} f(x,y)$ 定义了 \mathbb{R}^{d_1} 上的可积函数; (3) 积分满足关系 $\int_{\mathbb{R}^d} f(x,y) dx dy = \int_{\mathbb{R}^{d_1}} (\int_{\mathbb{R}^{d_2}} f(x,y) dy) dx$. Tonelli 定理: 给定 \mathbb{R}^d 上的非负可测函数 f(x,y), 则: (1) 对几乎所有的 x, 作为 y 的函数 f(x,y) 是 \mathbb{R}^{d_2} 上的可测函数; (2) 对 y 的积分 $\int_{\mathbb{R}^{d_2}} f(x,y)$ 定义了 \mathbb{R}^{d_1} 上的可测函数; (3) 积分满足关系 $\int_{\mathbb{R}^d} f(x,y) dx dy = \int_{\mathbb{R}^{d_1}} (\int_{\mathbb{R}^{d_2}} f(x,y) dy) dx$ (可 以是无穷).

14 第 14 次习题课: 傅里叶级数

14.1 问题

- 1. 求以 T 为周期的周期函数 $f(t) = \begin{cases} 0, & t \in [-\frac{T}{2}, 0) \\ E \sin \frac{2\pi t}{T}, & t \in [0, \frac{T}{2}) \end{cases}$ 的傅里叶级数.
- 2. 求定义在 [0,1] 上的函数 f(x) = x + 1 的余弦级数和正弦级数.

- 3. 求函数 $f(x) = \cos \alpha x, x \in [-\pi, \pi), \alpha \in (0, 1)$ 的傅里叶级数.
- 4. 求函数 $f(x) = \frac{q \sin x}{1 2q \cos x + q^2}, x \in [-\pi, \pi], |q| < 1$ 的傅里叶级数.
- 5. 求函数 $f(x) = x^2, x \in [-\pi, \pi]$ 的傅里叶级数, 并计算 $\sum_{n=1}^{+\infty} \frac{1}{n^2}, \sum_{n=1}^{+\infty} \frac{1}{n^4}$.
- 6. 证明余元公式 Beta $(p, 1-p) = \Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin p\pi}$,并计算积分 $I_1 = \int_0^{+\infty} \frac{x^{\alpha}}{1+x^{\beta}} dx$ 和 $I_2 = \int_0^{+\infty} \frac{\sin x}{x} dx$. (提示: 不一定要用前面这个结论)
- 7. 设 $f(x), g(x) \in L^{2}[-\pi, \pi]$, 傅里叶级数 $f(x) \sim \frac{a_{0}}{2} + \sum_{n=1}^{+\infty} (a_{n} \cos nx + b_{n} \sin nx), g(x) \sim \frac{\alpha_{0}}{2} + \sum_{n=1}^{+\infty} (\alpha_{n} \cos nx + \beta_{n} \sin nx)$ (不
- 一定有收敛性), 证明 $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x)dx = \frac{1}{2}a_0\alpha_0 + \sum_{n=1}^{+\infty} (a_n\alpha_n + b_n\beta_n).$
- 8. f(x) 是 \mathbb{R} 上周期为 2π 的可导函数,且导函数连续,证明其傅里叶级数系数 $a_n = o(\frac{1}{n}), b_n = o(\frac{1}{n})$.
- 9. 证明存在无穷多个傅里叶级数 $\sum_{n=0}^{+\infty} (a_n \cos nx + b_n \sin nx)$ 在 [-1,1] 上一致收敛到 0.

14.2 解答

- 1. $f(t) \sim \frac{E}{\pi} + \frac{E}{2} \sin \frac{2\pi t}{T} \frac{2E}{\pi} \sum_{n=1}^{+\infty} \frac{1}{4n^2 1} \cos \frac{4\pi nt}{T}$.
- 2. 余弦级数: $f(x) \sim \frac{3}{2} \frac{4}{\pi^2} \sum_{n=1}^{+\infty} \frac{\cos(2n-1)\pi x}{(2n-1)^2}$. 正弦级数: $f(x) = \frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{1-2(-1)^n}{(2n-1)^2} \sin n\pi x$.
- 3. $f(x) = f(-x) \Rightarrow b_n = 0$. $a_0 = \frac{2}{\pi} \int_0^{\pi} \cos \alpha x dx = \frac{2}{\pi \alpha} \sin \alpha \pi, a_n = \frac{2}{\pi} \int_0^{\pi} \cos \alpha x \cos nx dx = \frac{1}{\pi} \int_0^{\pi} [\cos(\alpha n)x + \cos(\alpha + n)x] dx = \frac{1}{\pi} [\frac{\sin(\alpha n)x}{\alpha n} + \frac{\sin(\alpha + n)x}{\alpha + n}]_0^{\pi} = (-1)^n \frac{2\alpha \sin \alpha \pi}{\pi (\alpha^2 n^2)}, n \in \mathbb{N}_+$. $\exists x \cos \alpha x \sim \frac{\sin \alpha \pi}{\pi} [\frac{1}{\alpha} + \sum_{n=1}^{+\infty} \frac{(-1)^n 2\alpha}{\alpha^2 n^2} \cos nx].$
- 4. $f(x) = \frac{1}{2i} \left(\frac{1}{1 qe^{ix}} \frac{1}{1 qe^{-ix}} \right) = \frac{1}{2i} \left[\sum_{n=0}^{+\infty} (qe^{ix})^n \sum_{n=0}^{+\infty} (qe^{-ix})^n \right] = \sum_{n=0}^{+\infty} \frac{q^n (e^{inx} e^{-inx})}{2i} = \sum_{n=0}^{+\infty} q^n \sin nx$. 由于上述级数一致收敛到 f(x), 故一定为 f(x) 的傅里叶级数.
- 5. $f(x) = f(-x) \Rightarrow b_n = 0$. $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2}{3} \pi^2, a_n = \frac{2}{\pi} \int_0^{\pi} x^2 \cos nx dx = (-1)^n \frac{4}{n^2}, n \in \mathbb{N}_+$. x^2 可导 $\Rightarrow x^2 = \frac{1}{3} \pi^2 + \sum_{n=1}^{+\infty} \frac{(-1)^n 4}{n^2} \cos nx$. $\Rightarrow x = \pi$ 得 $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. 由帕塞瓦尔等式知 $\frac{1}{2} (\frac{2}{3} \pi^2)^2 + \sum_{n=1}^{+\infty} \frac{16}{n^4} = \frac{1}{\pi} \int_{-\pi}^{\pi} x^4 dx = \frac{2}{5} \pi^4$, 因此 $\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$. 6. Beta $(p, 1-p) = \int_0^{+\infty} \frac{x^{p-1}}{1+x} dx$, 利用变量替换 $x = \frac{1}{t}$ 有 $\int_1^{+\infty} \frac{x^{p-1}}{1+x} dx = \int_0^1 \frac{x^{-p}}{1+x} dx$, 因此 Beta $(p, 1-p) = \int_0^1 \frac{x^{p-1} + x^{-p}}{1+x} dx$. 将 $\frac{1}{1+x}$ 展成幂级数有

$$\operatorname{Beta}(p, 1 - p) = \lim_{r \to 1 - 0} \int_0^r \frac{x^{p-1} + x^{-p}}{1 + x} dx = \lim_{r \to 1 - 0} \int_0^r \left[\sum_{k=0}^{+\infty} (-1)^k x^{k+p-1} + \sum_{k=0}^{+\infty} (-1)^k x^{k-p} \right] dx$$

$$= \lim_{r \to 1 - 0} \int_0^r \left[\sum_{k=0}^{+\infty} \frac{(-1)^k}{k + p} r^{k+p} + \sum_{k=0}^{+\infty} \frac{(-1)^k}{k - p + 1} r^{k-p+1} \right] = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k + p} + \sum_{k=0}^{+\infty} \frac{(-1)^k}{k - p + 1}$$

$$= \frac{1}{p} + \sum_{k=1}^{+\infty} (-1)^k \left(\frac{1}{k + p} + \frac{1}{p - k} \right) = \frac{1}{p} + \sum_{k=1}^{+\infty} (-1)^k \frac{2p}{p^2 - k^2}$$

由于 $\cos px$ 的傅里叶级数 $\cos p\pi = \frac{\sin p\pi}{\pi} \left[\frac{1}{p} + \sum_{k=1}^{+\infty} (-1)^k \frac{2p}{p^2 - k^2} \cos kx \right]$ 在 $|x| \le \pi$ 处处收敛, 令 x = 0 得 $\operatorname{Beta}(p, 1 - p) = \frac{1}{p} + \sum_{k=1}^{+\infty} (-1)^k \frac{2p}{p^2 - k^2} = \frac{\pi}{\sin p\pi}$.

$$I_{1} = \int_{0}^{+\infty} \frac{x^{\alpha}}{1+x^{\beta}} dx \stackrel{t = \frac{1}{1+x^{\beta}}}{=} \frac{1}{\beta} \int_{0}^{1} t^{-\frac{\alpha+1}{\beta}} (1-t)^{\frac{\alpha+1}{\beta}-1} dt = \frac{1}{\beta} \operatorname{Beta}(1-\frac{\alpha+1}{\beta},\frac{\alpha+1}{\beta}) = \frac{1}{\beta} \frac{\pi}{\sin\frac{\alpha+1}{\beta}\pi}.$$

令 $p = \frac{x}{\pi}, 0 < x < \pi$,得到 $\frac{\pi}{\sin x} = \frac{\pi}{x} + \sum_{n=1}^{+\infty} (-1)^n \frac{2x\pi}{x^2 - n^2\pi^2}$,即 $1 = \frac{\sin x}{x} + \sum_{n=1}^{+\infty} (-1)^n \frac{2x \sin x}{x^2 - n^2\pi^2}$.两边积分有 $\pi = \int_0^\pi \frac{\sin x}{x} dx + \sum_{n=1}^{+\infty} (-1)^n \int_0^\pi \frac{2x \sin x}{x^2 - n^2\pi^2} dx$.从而

$$I_{2} = \int_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\sin x}{x} dx = \frac{1}{2} \sum_{n=0}^{+\infty} \left[\int_{n\pi}^{(n+1)\pi} \frac{\sin x}{x} dx + \int_{-(n+1)\pi}^{-n\pi} \frac{\sin x}{x} dx \right]$$

$$= \frac{1}{2} \sum_{n=0}^{+\infty} \left[\int_{0}^{\pi} \frac{\sin(t+n\pi)}{t+n\pi} dt + \int_{0}^{\pi} \frac{\sin[t-(n+1)\pi]}{t-(n+1)\pi} dt \right] = \frac{1}{2} \left[\int_{0}^{\pi} \frac{\sin t}{t} dt + \sum_{n=1}^{+\infty} (-1)^{n} \int_{0}^{\pi} \frac{2t \sin t}{t^{2} - n^{2}\pi^{2}} dt \right] = \frac{\pi}{2}$$

- 7. 将 f + g 和 f g 的帕塞瓦尔等式相减即得.
- 8. $a_n \simeq \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{n} \int_{-\pi}^{\pi} f(x) d\sin nx = \frac{1}{n} [f(x) \sin nx]_{-\pi}^{\pi} \frac{1}{n} \int_{-\pi}^{\pi} f'(x) \sin nx dx = 0 \frac{1}{n} \int_{-\pi}^{\pi} f'(x) \sin nx dx = 0$ $o(\frac{1}{n})$. 类似过程可知 $b_n = o(\frac{1}{n})$.
- 9. 存在无穷多个以 2π 为周期的光滑函数在 [-1,1] 上取零值.

 $\frac{1}{\sqrt{2\pi}}$, $\{\frac{\cos nx}{\sqrt{\pi}}\}_{n=1}^{+\infty}$, $\{\frac{\sin nx}{\sqrt{\pi}}\}_{n=1}^{+\infty}$ 本质上是 $L^2[-\pi,\pi]$ 空间上的一组单位正交基,该空间有范数 $||f||_2 = \left(\int_{-\pi}^{\pi} f^2(x)dx\right)^{\frac{1}{2}}$, 有内积 $\langle f,g \rangle = \int_{-\pi}^{\pi} f(x)g(x)dx$, 是 Hilbert 空间. 计算傅里叶级数系数就是求各分量坐标,帕塞瓦尔等式就是勾股定理. 顺便一提, 课本上似乎没有下面这几个定理, 但笔者感觉很重要, 故补充在这里.

傅里叶级数的逐项积分定理: 设函数 $f(x) \in R[0, 2\pi]$, 且以 2π 为周期, 设 $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos nx + b_n \sin nx)$, 则 $\int_0^x f(t)dt = \frac{a_0}{x} + \sum_{n=1}^{+\infty} \left[\frac{a_n}{n} \sin nx + \frac{b_n(1-\cos nx)}{n} \right] \, 在 \, [0,2\pi] \, 成立.$

证明: 对于 $x \in [0, 2\pi]$,构造函数 $g(t) = \begin{cases} \frac{\pi}{2}, & t = 0, t = x \\ \pi, & t \in (0, x) \end{cases}$. 然后用第 7 题结论立得. $0, \quad t \in (x, \pi)$

傅里叶级数的一致收敛性: 设 2π 周期函数 $f(x) \in D[-\pi,\pi]$, 且导函数 f'(x) 在区间 $[-\pi,\pi]$ 上可积, 则 f(x) 的傅里叶 级数一致收敛到 f(x).

证明: 设 $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos nx + b_n \sin nx), f'(x)$ 的傅里叶级数为 $f'(x) \sim \frac{a'_0}{2} + \sum_{n=1}^{+\infty} (a'_n \cos nx + b'_n \sin nx),$ 分部积分

可证 $a'_0 = 0, a'_n = nb_n, b'_n = -na_n, n = 1, 2, \cdots$. 因此 $\sum_{n=1}^{N} (|a_n| + |b_n|) = \sum_{n=1}^{N} \frac{|a'_n| + |b'_n|}{n} \le \left[\sum_{n=1}^{N} (a'_n^2 + b'_n^2)\right]^{\frac{1}{2}} \left(\sum_{n=1}^{N} \frac{2}{n^2}\right)^{\frac{1}{2}} < \sum_{n=1}^{N} \left(\frac{a'_n^2}{n^2} + \frac{b'_n^2}{n^2}\right)^{\frac{1}{2}}$

 $\begin{bmatrix} \frac{1}{\pi} \int_{-\pi}^{\pi} (f'(x))^2 dx \end{bmatrix}^{\frac{1}{2}} \left(\frac{\pi^2}{3} \right)^{\frac{1}{2}}$, 因此绝对一致收敛. **傅里叶级数逐项微分定理**: 设 2π 周期函数 f(x) 二阶可导,且二阶导函数 f''(x) 在区间 $[-\pi,\pi]$ 上可积,并设 $f(x)\sim \frac{a_0}{2}+\sum_{n=1}^{+\infty} (a_n\cos nx+b_n\sin nx)$,则 $f'(x)=\sum_{n=1}^{+\infty} (nb_n\cos nx-na_n\sin nx), x\in\mathbb{R}$. 证明:利用一致收敛性和函数项级数逐项微分定理.

致谢 15

感谢北京大学数学科学学院的王冠香教授和刘培东教授, 他们教会了笔者数学分析的基本知识, 他们的课件和讲义也成 为了笔者的重要参考. 感谢一位不愿意透露姓名的同学, 他提供了大量精彩的题目. 感谢选修 2023 春高等数学 A II 习 题课9班的全体同学,他们提供了很多有意思的做法和反馈.