Relational Models

Slides are adopted from Aarne Ranta @ Chalmers University

Relational Data Model

* Relation:

$$R \subseteq D_1 \times ... \times D_n$$

 $D_1, D_2, ..., D_n$ are domains

Example: AddressBook ⊆ string x string x integer

❖ Tuple: t ∈ R

Example: t = ("Mickey Mouse", "Main Street", 4711)

Schema: associates labels to domains

Example:

AddrBook: {[Name: string, Address: string, Tel#:integer]}

Relational Data Model

AddrBook			
Name	Street	<u>Tel#</u>	
Mickey Mouse	Main Street	4711	
Minnie Mouse	Broadway	94725	
Donald Duck	Broadway	95672	

- Key: minimal set of attributes that identify each tuple uniquely
 - E.g., {Tel#}
- Primary Key: (marked in schema by underlining)
 - select one key
 - use primary key for references

Exercise1: Quiz

Why does every relation in a relational schema have at least one key?

- The tuples of a relation have to be differentiated
- Therefore, the set of all the attributes of a relation must uniquely identify every tuple
- However, most of the time, a key consisting of only one or a few attributes is enough
- A key is defined as:
 - A set of attributes that allow to uniquely identify a tuple
 - A set of attributes from which no further elements can be removed

Exercise2: Library System

Tasks to Complete

Task 1: Entities to relations:

- Reader (<u>ReaderNr</u>, FamilyName, FirstName, City, Birthday) (1)
 Book (<u>ISBN</u>, Title, Author, NumPages, PubYear, PubName) (2)
 Publisher (<u>Pubname</u>, Pubcity) (3)
 Category (<u>Catname</u>) (4)
 Copy (<u>ISBN</u>, <u>CopyNr</u>, Shelf, Position) (5)
- Task 2: Relationships to relations:
 - Borrows (ReaderNr, ISBN, CopyNr, ReturnDate)
 Available (ISBN, CopyNr)
 Contains (CatName, ContainedIn)
 InCat (ISBN, CatName)
 Publishes (ISBN, Pubname)
- * Task 3: Combine relations that are of type 1:1 or 1:N
 - (7)->(5), (8)->(4), (10)->(2)

Tasks to Complete...

- * Task 4: Complete Solution
 - Reader (<u>ReaderNr</u>, FamilyName, Firstname, City, Birthday)
 - Book (<u>ISBN</u>, Title, Author, NumPages, PubYear, PubName)
 - Publisher (Pubname, Pubcity)
 - Category (<u>Catname</u>, ContainedIn)
 - Copy (ISBN, CopyNr, Shelf, Position)
 - Borrows (ReaderNr, ISBN, CopyNr, ReturnDate)
 - InCat (ISBN, CatName)

Exercise3: Hospital

ER Translations: Relations

- Straightforward (Entities with 1:N Relationships)
 - Station (<u>StationNr</u>, Name)
 - Worker (<u>PersNr</u>, Name, StationNr)
 - Room (<u>StationNr</u>, <u>RoomNr</u>, NumBeds)
 - Patient (<u>PatientNr</u>, Name, Illness, RoomNr, StationNr, From, To)
- Additional Relation for N:M Relationship
 - Treats (<u>PatientNr</u>, <u>PersNr</u>)
- Generalization inherits attributes
 - Doctor (<u>PersNr</u>, Name, StationNr, Expertise, Degree)
 - Nurse (PersNr, Name, StationNr, Skills)

Relational Algebra

- What is Algebra?
 - It consist of Operators and Atomic Operands
 - E.g., (X+Y) * Z
- Relational Algebra
 - It is another example of an algebra
 - Relational Operators used with Relations as Operands
- Operation classification
 - Set Operations
 - Remove parts of relation
 - Combine tuples of relations
 - Modification, e.g., Renaming

Relational Algebra...

- Relational algebra is a formally defined algebra. This means:
 - We can prove, whether two algebraic expressions are equivalent.
- SQL is based on relational algebra.
- We can prove that two SQL queries are equivalent.
- The DB can rewrite a SQL query and prove its correctness.

Operators

Operator	Name
σ	Selection
π	Projection
×	Cartesian Product
\bowtie	Join
ho	Rename
_	Set Minus
<u>÷</u>	Relational Division
U	Union
\cap	Intersection
×	Semi-Join (Left)
\bowtie	Semi-Join (Right)
\bowtie	Left outer Join
\bowtie	Right outer Join
M	Full outer Join

- ▲ A minimal set of operators are:
 - Projection
 - Selection
 - Cartesian Product
 - Union
 - Set Minus
 - Rename

Exercise 4

Consider the following relational schema:

```
Reader (RDNR, Surname, Firstname, City, Birthday)
Book (ISBN, Title, Author, NoPages, PubYear, PublisherName)
Publisher (PublisherName, PublisherCity)
Category (CategoryName, BelongsTo)
Copy (ISBN, CopyNumber, Shelf, Position)
Loan (ReaderNr, ISBN, Copy, ReturnDate)
BookCategory (ISBN, CategoryName)
```

* Formulate the following queries in relational algebra: Which are the last names of the readers in Kazan? Π_{surname} ($\sigma_{\text{City=Kazan}}$ (Reader))

Which Books (Author, Title) are from publishers in Kazan, Moscow, or St. Petersburg?

 $\Pi_{\text{author,title}}$ (Book $\bowtie (\sigma_{\text{City=KazanORCity=MoscowORCity=St.Petersburg}}(\text{Publisher})))$

Exercise 5 (1/3)

Consider the following relational schema:

```
Cities (Name, State)
Stations (Name, NoPlatforms, CityName, State)
Itinerary (ItNr, Length, StartStation, DestinationStation)
Connections (FromStation, ToStation, ItNr, Departure, Arrival)
```

- Suppose that the relation "Connections" already contains the transitive closure.
- For example, if there is a train from Kazan via Moscow and St. Petersburg to Vladivostok, then there exists a relation tuple for Kazan -> Moscow, Kazan->St. Petersburg and Kazan->Vladivostok.
- Formulate the following queries in relational algebra:

Exercise 5 (2/3)

- Cities (<u>Name</u>, <u>State</u>)
 Stations (<u>Name</u>, NoPlatforms, CityName, State)
 Itinerary (<u>ItNr</u>, Length, StartStation, DestinationStation)
 Connections (<u>FromStation</u>, <u>ToStation</u>, <u>ItNr</u>, Departure, Arrival)
- → Find all the direct connections from Kazan to Vladivostok

```
\rho_{\mathsf{FromName} < -\mathsf{Name}}(\Pi_{\mathsf{Name}}(\sigma_{\mathsf{CityName} = \mathsf{Kazan}}(\mathsf{Stations})))) \\ \bowtie_{\mathsf{FromName} = \mathsf{FromStation}} \mathsf{Connections} \\ \bowtie_{\mathsf{ToName} = \mathsf{ToStation}} \\ (\rho_{\mathsf{ToName} < -\mathsf{Name}}(\Pi_{\mathsf{Name}}(\sigma_{\mathsf{CityName} = \mathsf{Vladivostok}}(\mathsf{Stations}))))
```

Exercise 5 (3/3)

- Cities (<u>Name</u>, <u>State</u>)
 Stations (<u>Name</u>, NoPlatforms, CityName, State)
 Itinerary (<u>ItNr</u>, Length, StartStation, DestinationStation)
 Connections (<u>FromStation</u>, <u>ToStation</u>, <u>ItNr</u>, Departure, Arrival)
- → Find all the single-transfer connections from Kazan to Yekaterinburg. The transfer station can be any of the stations but the connecting trains should run on the same day. (You can use a function DAY() on the attributes Departure and Arrival in order to determine the day)

```
\rho_{\mathsf{FromName} \leftarrow \mathsf{Name}}(\Pi_{\mathsf{Name}}(\sigma_{\mathsf{CityName} = \mathsf{Kazan}}(\mathsf{Stations}))))
\bowtie_{\mathsf{FromName} = \mathsf{c1.FromStation}} \rho_{\mathsf{c1}}(\mathsf{Connections})
\bowtie_{\mathsf{c1.ToStation} = \mathsf{c2.FromStation}} \rho_{\mathsf{c1}}(\mathsf{Arrival}) \rho_{\mathsf{c2}}(\mathsf{Ca.Arrival}) \rho_{\mathsf{c2}}(\mathsf{c2.Departure}) \rho_{\mathsf{c2}}(\mathsf{c3.ItNr}) \rho_{\mathsf{c2}}(\mathsf{Connections})
\bowtie_{\mathsf{ToName} = \mathsf{ToStation}} \rho_{\mathsf{c3}}(\mathsf{Connections}) \rho_{\mathsf{c3}}(\mathsf{Connections})
```

Professor			
PersID	Name	Level	Room
2125	Sokrates	FP	226
2126	Russel	FP	232
2127	Kopernikus	AP	310
2133	Popper	AP	52
2134	Augustinus	AP	309
2136	Curie	FP	36
2137	Kant	FP	7

requires		
Prerequisite	Follow-up	
5001	5041	
5001	5043	
5001	5049	
5041	5216	
5043	5052	
5041	5052	
5052	5259	

tests			
StuID	LecID PersII		Grade
28106	5001	2126	1
25403	5041	2125	2
27550	4630	2137	2

Student			
StuID	Name	Semester	
24002	Xenokrates	18	
25403	Jonas	12	
26120	Fichte	10	
26830	Aristoxenos	8	
27550	Schopenhauer	6	
28106	Carnap	3	
29120	Theophrastos	2	
29555	Feuerbach	2	

_			
	attends		
	StuID	LecID	
	26120	5001	
	27550	5001	
	27550	4052	
	28106	5041	
	28106	5052	
	28106	5216	
	28106	5259	
	29120	5001	
	29120	5041	
	29120	5049	
	29555	5022	
	25403	5022	

Lecture			
LecID	Title	СР	PersID
5001	Grundzüge	4	2137
5041	Ethik	4	2125
5043	Erkenntnistheorie	3	2126
5049	Mäeutik	2	2125
4052	Logik	4	2125
5052	Wissenschaftstheorie	3	2126
5216	Bioethik	2	2126
5259	Der Wiener Kreis	2	2133
5022	Glaube und Wissen	2	2134
4630	Die 3 Kritiken	4	2137

Researcher			
PersID	Name	Area	Supervisor
3002	Platon	<u>Ideenlehre</u>	2125
3003	Aristoteles	Syllogistik	2125
3004	Wittgenstein	Sprachtheorie	2126
3005	Rhetikus	Planetenbewegung	2127
3006	Newton	Keplersche Gesetze	2127
3007	Spinoza	Gott und Natur	2126

Relational Calculus

Queries have the following form:

$$\{t \mid P(t)\}$$

with t a variable, P(t) a predicate.

Examples:

All full professors

```
\{p \mid p \in Professor \land p.Level = 'FP'\}
```

Students who attend at least one lecture of Curie

```
\{s \mid s \in Student\}
```

```
\land \exists a \in attends(s.StuID=a.StuID)
```

$$\land \exists p \in Professor(p.PersID=I.PersID)$$

→ Who attends all lectures with 4 CP?

```
{s | s ∈ Student \land \forall I \in Lecture (I.CP=4 \Rightarrow \exists a \in attends(a.LecID=I.LecID \land a.StuID= s.StuID))}
```

There are two variants of relational calculus: tuple relational calculus (as in examples above, tuple vars) domain relational calculus (variables iterate over domains).

Tuple Relational Calculus

Atoms

- s is a tuple variable, R is a name of a relation
- s.A \(\phi \) t.B or s. A \(\phi \) c
 s and t tuple variables, A and B attribute names
 \(\phi \) a comparison (i.e., =, ≠, ≤, ...)
 c is a constant (i.e., 25)

Formulas

- All atoms are legal formulas
- If P is a formula, then
 ¬P and (P) are also formulas
- $^{\perp}$ If P₁ and P₂ are formulas, then P₁ ∧ P₂ , P₁ ∨ P₂ and P₁ ⇒ P₂ are also formulas
- ✓ If P(t) is a formula with a free variable t, then $\forall t \in R(P(t))$ and $\exists t \in R(P(t))$ are also formulas

Safety

- ★ Restrict formulas to queries with finite answers
 Semantic not syntactic property!
- Example: The following expression is not safe

$$\{n \mid \neg (n \in Professor)\}\$$

- Definition of safety
 - >result must be subset of the "domain of the formula"
 - >"domain of the formula"
 - All constants used in the formula
 - All domains of relations used in the formula

Domain Relational Calculus

An expression has the following form

$$\{[v_1, v_2, ..., v_n] | P(v_1, ..., v_n)\}$$

each $v_1, ..., v_n$ is either a domain variable or a constant.

P is a formula.

Example: StuID and Name of all students tested by Curie:

$$\{[I, n] \mid \exists s ([I, n, s] \in Student \land \exists v, p, g ([I, v, p, g] \in tests \land \exists a,r, b([p, a, r, b] \in Professor \land a = 'Curie')))\}$$

Safety in the DRC

Defined in same way as for tuple relational calculus

Example: The following expression is not safe

$$\{[p,n,r,o] \mid \neg ([p,n,r,o] \in Professor) \}$$

(see text book for exact definition of safety in DRC)

Codd's Theorem

The three languages

- 1. relational algebra,
- 2. tuple relational calculus (safe expressions only)
- 3. domain relational calculus (safe expressions only) are equivalent

Impact of Codd's theorem

- SQL is based on the relational calculus
- SQL implementation is based on relational algebra
- Codd's theorem shows that SQL implementation is correct and complete.

Assignment

- 1. Translate the given ER diagram to relational data model.
- 2. Formulate following queries in relational algebra.
 - a) Find all employees who are taking care of patients in room 107.
 - b) Find all the nurses that Dr.Alex is not working with.
 - c) Find all employees who has more salary than at least one doctor.
 - d) Find all the rooms that has at least one patient.

Symbol	Meaning	
	One—Mandatory	Exactly one
	Many—Mandatory	At least one
	One—Optional	At most one
— <u></u>	Many—Optional	From 0 to many

3. Formulate the queries in relational algebra and compute the results.

Flights (<u>flight#</u>, from, to, distance)
Aircraft (<u>aid</u>, aname, range)
Certified (<u>eid</u>, <u>aid</u>)
Employees (<u>eid</u>, ename, salary)

```
flight = {(112, Moscow, Kazan, 600), (111, Kazan, Moscow, 600), (100, Kazan, Istanbul, 1300), (300, Kazan, St. Petersburg, 1000)} aircraft = {(B747, a, 1000), (B997, b, 1200), (B1100, c, 3000), (B970, d, 800)} certified = {(1, B747), (1, B997), (2, B747), (3, B1100), (3, B747), (4, B747), (4, B970), (4, B1100)} employees= {(1, Mike, $50,000), (2, Andrew, $80,000), (3, Alex, $60,000), (4,Sam, $40,000), (5, Dmitry, $150,000)}
```

- a) Find an employee with the third highest salary.
- b) Find employees who can fly the flight 100.
- c) Find flights that are certified only by employees with salary more than \$70,000.

- 4. Given relations R and S, compute range of the number of resulting tuples for R \bowtie S, where |R|=m and |S|=n.
- 5. Determine if $\Pi_N(R-S)$ and $\Pi_N(R)$ $\Pi_N(S)$ are equivalent. If not, give an example.
- 6. Consider relations R(A,B,C) and S(C,D). Determine the equivalence of given expressions and show reasons.
- a) $R \bowtie S$ and $\sigma_{R,C=S,C}(R \times S)$
- b) $\Pi_{\mathbb{C}}(\mathbb{R} \bowtie \mathbb{S})$ and $\Pi_{\mathbb{C}}(\mathbb{R}) \bowtie \Pi_{\mathbb{C}}(\mathbb{S})$