CSC 206 Algorithms and Paradigms Solutions to Second Assignment Recursion Tree Method

(1)
$$T(n) = T(\frac{3n}{4}) + C$$

Height $H = \log n$
 $4/3$

Level 1 C

 $L = 1^{H} = 1$

Base cost = C1 x 1 = C1

Recursive cost = Clog n

 $4/3$

Total cost = C1 + clog $4/3$
 $= \Theta(\log n)$

Level H C1

same cost at all recursive levels

(2)
$$T(n) = T(\frac{n}{4}) + cn$$
 $H = \log_{4}n$
 $L = I^{H} = I$

Base cost = $C1 \times I = C1$

Rec. cost is not the same at all levels. So, we need a summation:

Cost at level $i = (cn/4i)$

Rec. cost = $\frac{H-1}{2}$ cn $(\frac{1}{4})^{i}$
 $= cn\left[\frac{(\frac{1}{4})^{i}-1}{(1/4)-1}\right]$
 $= \frac{4cn}{3}\left[1 - \frac{1}{n\log_{4}n}\right] = \frac{4cn}{3} - \frac{4c}{3}$

Total cost = $c1 + 4cn/3 - 4c/3 = \theta(n)$

(3)
$$T(n) = 5 T(\frac{n}{2}) + n^2$$

 $H = \log_2^n$
 $L = 5^H = 5^2 = n$
Base cost = c1. $n \log_2^5$

Cost is not the same at all levels. So, a summation is needed.

$$(\frac{n}{4})^2 \qquad --- \qquad \frac{25n^2}{16}$$

Rec. cost =
$$\sum_{i=0}^{H-1} (\frac{5}{4})^{i} n^{2}$$

= $n^{2} \left[\frac{(5/4)^{\log n}}{(5/4)^{-1}} \right]$

$$= 4n^{2} \left[\frac{5^{\log_{2}^{n}}}{4^{\log_{2}^{n}}} - 1 \right] = 4n^{2} \left[\frac{n^{\log_{2}^{5}}}{n^{2}} - 1 \right] = 4n^{2} - 4n^{2}$$

Total cost = n = 1095 + 4n log = 4n = 0 (n log =)

(4)
$$T(n) = 8 T(\frac{n}{2}) + n^3$$

$$H = \log_2^n$$

 $L = 8^H = 8 = \log_2^n \log_2^8 3$

Base cost = c1n3

Cost is the same at all

recursive levels. So, we simply multiply by H (no summation is needed)

Rec. cost =
$$n^3 H = n^3 \log_2^n$$

Total cost =
$$c1n^3 + n^3 \log n = \theta(n^3 \log n)$$

(5)
$$T(n) = 8T(\frac{n}{3}) + n^2$$

 $H = \log_3^n$
 $L = 8^H = 8 = n \log_3^8$
Base cost = c1 $n \log_3^8$

Cost is not the same at all levels. So, a summation is needed.

Cost at level
$$i = \frac{8^{i}}{9^{i}} n^{2}$$

Rec. cost = $\sum_{i=0}^{H-1} \left(\frac{8}{9}\right)^{i} n^{2}$
= $n^{2} \left[\frac{\left(\frac{8}{9}\right)^{i} - 1}{\left(\frac{8}{9}\right) - 1}\right]$
= $9n^{2} \left[1 - n^{\log \frac{8}{3}} / n^{\log \frac{9}{3}}\right]$

$$= 9n^2 - 9n^{\log 3}$$

$$= 9n^2 - 9n^{\log 3}$$

$$= \theta(n^2)$$
Total cost = c1 $n^{\log 3}$ + $9n^2 - 9n^{\log 3}$ = $\theta(n^2)$
Note that n^2 has a higher polynomial degree than $n^{\log 3}$