Conditional Logit

Categorical and Limited
Dependent Variables
Paul A. Jargowsky

Choice Characteristics

- Income is a characteristic of the person.
- Cost is a characteristic of the choice.
- Costs of the alternatives can vary by person, but each person has a cost for each alternative.
- The multinomial model as developed earlier only allows for individual characteristics.
- Surely choice characteristics should also matter!
- Conditional logit, developed next, allows you to analyze choices conditional on the choice characteristics.
- Later, we combine choice and individual characteristics.

Choice Characteristics

$$U_{1i} = \alpha_1 + \alpha_2 C_{1i} + \mathcal{E}_{1i}$$

$$U_{2i} = \alpha_1 + \alpha_2 C_{2i} + \mathcal{E}_{2i}$$
Notice to different

Notice the subscripts. How are they different from multinomial logit?

$$P_{1} = \Pr(Y_{i} = 1 | C_{1i}, C_{2i})$$

$$= \Pr[(\alpha_{1} + \alpha_{2}C_{1i} + \varepsilon_{1i}) > (\alpha_{1} + \alpha_{2}C_{2i} + \varepsilon_{2i})]$$

$$= \Pr[(\varepsilon_{1i} - \varepsilon_{2i}) > (\alpha_{1} + \alpha_{2}C_{2i} - \alpha_{1} - \alpha_{2}C_{1i})]$$

$$= \Pr[(\varepsilon_{1i} - \varepsilon_{2i}) > \alpha_{2}(C_{2i} - C_{1i})]$$

Question: is the model identified? Why or why not?

Yes, the model is identified, except the constant. The C's are known, and only α_2 needs to be estimated.

Generalizing

$$U_{1i} = \alpha_1 + \alpha_2 C_{1i} + \alpha_3 T_{1i} + \ldots + \varepsilon_{1i} = \mathbf{z}_{1i} \mathbf{\alpha} + \varepsilon_{1i}$$

$$U_{2i} = \alpha_1 + \alpha_2 C_{2i} + \alpha_3 T_{2i} + \ldots + \varepsilon_{2i} = \mathbf{z}_{2i} \mathbf{\alpha} + \varepsilon_{2i}$$

$$\vdots$$

$$U_{1i} = \alpha_1 + \alpha_2 C_{1i} + \alpha_3 T_{1i} + \ldots + \varepsilon_{1i} = \mathbf{z}_{1i} \mathbf{\alpha} + \varepsilon_{1i}$$

Assuming IID Type I extreme value distributions for the ε 's leads to the following form for the probability of outcome 1, and the other are analogous.

$$P_{1i} = \frac{e^{\mathbf{z}_{1i}\boldsymbol{\alpha}}}{\sum_{i=1}^{J} e^{\mathbf{z}_{ji}\boldsymbol{\alpha}}}$$

From here, construct the likelihood function and use MLE.

Creating a New Data Structure

person 1	income 11.26115	pcar 7.05	pbus	pwalk 0.00	choice	perso	on _n	
						1	1	
* trans	form data t 3	o perso	on/choic	ce record	s	1	2	
sort pe			_			1	3	
by pers	on: gen rec	type =	_n			2	1	
	ce = pcar i price = pl	_	_	2		2	2	
_	price = pv					2	3	
gen pic	ked = (choi	ce==rec	type)			3	1	
						:	:	
person	income	pcar	pbus	pwalk	choice	rectype	price	picked
1	11.26115	7.05	1.40	0.00	3	1	7.05	0
1	11.26115	7.05	1.40	0.00	3	2	1.40	0
1	11.26115	7.05	1.40	0.00	3	3	0.00	1

Now there is one record for each person/alternative combination.

Stata: asclogit

. as clogit picked price, case(person) alternatives(rectype) no cons

Case variable: person	Alternative-sp	pecific condi	tional logit	Number of	obs	=	3000
avg = 3.0 max = 3 Wald chi2(1) = 4.76 Log likelihood = -1096.2518 Prob > chi2 = 0.0291 picked Coef. Std. Err. z P> z [95% Conf. Interval] rectype	Case variable	: person		Number of	cases	=	1000
Dog likelihood = -1096.2518 Prob > chi2 = 0.0291	Alternative va	ariable: rect	ype	Alts per	av	g =	
rectype	Log likelihood	d = -1096.251	3				
	-	1			[95% C	onf.	Interval]
	rectype				.00232	02	.0431621

Predictions for Person 1

$$\hat{U}_{1i} = \hat{\alpha}C_{1i} = .02274(7.05) = 0.1603$$

$$\hat{U}_{2i} = \hat{\alpha}C_{2i} = .02274(1.40) = 0.0318$$

$$\hat{U}_{3i} = \hat{\alpha}C_{3i} = .02274(0) = 0$$

$$\hat{P}_2 = \frac{1.032}{3.206} = 0.322$$
 $\hat{P}_3 = \frac{1}{3.206} = 0.312$

. predict prob

. list choice price picked prob if person==1

$$\hat{P}_{1} = \frac{e^{\hat{U}_{1}}}{e^{\hat{U}_{1}} + e^{\hat{U}_{2}} + e^{\hat{U}_{3}}}$$

$$= \frac{e^{0.1603}}{e^{0.1603} + e^{0.0318} + e^{0}}$$

$$= \frac{1.174}{1.174 + 1.032 + 1}$$

$$= \frac{1.174}{3.206}$$

$$= 0.366$$

What if all alternatives had the same price?

$$\hat{U}_{1i} = \hat{\alpha}C_{1i} = .02274(1) = 0.02274$$

$$\hat{U}_{2i} = \hat{\alpha}C_{2i} = .02274(1) = 0.02274$$

$$\hat{U}_{3i} = \hat{\alpha}C_{3i} = .02274(1) = 0.02274$$

$$\hat{P}_{1} = \frac{e^{\hat{U}_{1}}}{e^{\hat{U}_{1}} + e^{\hat{U}_{2}} + e^{\hat{U}_{3}}}$$

$$= \frac{e^{0.02274}}{e^{0.02274}}$$

$$\hat{P}_{2} = \frac{1.032}{3.206} = 0.322$$

$$\hat{P}_{3} = \frac{1}{3.206} = 0.312$$

$$\hat{P}_{4} = \frac{e^{\hat{U}_{1}}}{e^{\hat{U}_{1}} + e^{\hat{U}_{2}} + e^{\hat{U}_{3}}}$$

$$= \frac{1.023}{1.023 + 1.023 + 1.023}$$

$$= \frac{1}{3}$$

Implies that the probability for any option depends only on price, and that if two alternatives have the same price, they have the same probability. Not relatistic! We will fix this later.

	- <u>-</u>		.364305					
variable		_	Std. Err.			[95%	C.I.]	X
price								
							.010171	
							000133	
	3	002575	.001196	-2.15	0.031	004919	00023	(
variable		dp/dx	Std. Err.	z	P> z	[95%	C.I.]	Х
price								
PIICC	1	l - 002692	001306	-2 06	0 039	- 005251	000133	6 9902
							.009403	
							000441	
Pr(choice	= 3	1 selected	.) = .310762	226				
variable		-	Std. Err.			[95%	C.I.]	Х
price		 						
							00023	
							000441	
	3	.004871	.002143	2.27	0.023	.000671	.009071	(

Pr(choice = 1 1 selected) = .3537854								
variable	 	dp/dx	Std. Err.	z	P> z	[95%	C.I.]	Х
price	 							
	1	.005199	.002445	2.13	0.033	.000407	.009991	Ē
	2	002659	.001277	-2.08	0.037	005162	000155	2
	3	00254	.001168	-2.18	0.030	004829	000252	C
variable	 	dp/dx	Std. Err.	z	P> z	[95%	C.I.]	х
price	 							
-	1	002659	.001277	-2.08	0.037	005162	000155	5
	2	.005032	.002294	2.19	0.028	.000536	.009527	2
	3	002373	.001016	-2.33	0.020	004365	000381	(
Pr(choice	= 3	1 selected) = .315760	073				
variable		dp/dx	Std. Err.	z	P> z	[95%	C.I.]	Х
price	+							
	1	00254	.001168	-2.18	0.030	004829	000252	į
							000381	
	3	.004913	002184	2.25	0 024	.000633	.009194	(

Odds of Choice M vs. N

$$P_{mi} = \frac{e^{\mathbf{z}_{mi}\mathbf{\alpha}}}{\sum_{j=1}^{J} e^{\mathbf{z}_{ji}\mathbf{\alpha}}} \qquad P_{ni} = \frac{e^{\mathbf{z}_{ni}\mathbf{\alpha}}}{\sum_{j=1}^{J} e^{\mathbf{z}_{ji}\mathbf{\alpha}}} \qquad \text{Let } \mathbf{z}_{ji}\mathbf{\alpha} = \alpha C_{ji}$$

$$\Omega_{m|n} = \frac{P_{mi}}{P_{ni}} = \frac{e^{\alpha C_{mi}}}{e^{\alpha C_{ni}}} = e^{\alpha C_{mi} - \alpha C_{ni}} \qquad \text{Odds of m vs. n.}$$

$$\Omega'_{m|n} = \frac{P_{mi}}{P_{ni}} = \frac{e^{\alpha(C_{mi}+1)}}{e^{\alpha C_{ni}}} = e^{\alpha C_{mi} + \alpha - \alpha C_{ni}} \quad \text{Now increase cost of } m \text{ by $1.}$$

$$OR_{m|n} = rac{\Omega'_{m|n}}{\Omega_{m|n}} = rac{e^{lpha C_{mi} + lpha - lpha C_{ni}}}{e^{lpha C_{mi} - lpha C_{ni}}} = e^{lpha}$$

Suppose both increased by one dollar?

Logit w/ Both Individual and Choice Characteristics

$$U_{1i} = \mathbf{x}_i \mathbf{\beta}_1 + \mathbf{z}_{1i} \mathbf{\alpha} + \boldsymbol{\varepsilon}_{1i}$$
$$U_{2i} = \mathbf{x}_i \mathbf{\beta}_2 + \mathbf{z}_{2i} \mathbf{\alpha} + \boldsymbol{\varepsilon}_2$$

 $U_{1i} = \mathbf{x}_i \mathbf{\beta}_1 + \mathbf{z}_{1i} \mathbf{\alpha} + \mathbf{\mathcal{E}}_{1i}$ The utility functions for the choices have two types of variables. Note that \mathbf{z}_{ii} has a double subscript, $U_{2i} = \mathbf{x}_i \mathbf{\beta}_2 + \mathbf{z}_{2i} \mathbf{\alpha} + \boldsymbol{\varepsilon}_{2i}$ because choice characteristics vary by *choice* (i) and by person (i). α has no subscript. Why?

$$Pr(Y_{i} = 1 \mid \mathbf{x}_{i}, \mathbf{z}_{ji}) = Pr(U_{1i} > U_{2i})$$

$$= Pr[(\mathbf{x}_{i}\boldsymbol{\beta}_{1} + \mathbf{z}_{1i}\boldsymbol{\alpha} + \boldsymbol{\varepsilon}_{1i}) > (\mathbf{x}_{i}\boldsymbol{\beta}_{2} + \mathbf{z}_{2i}\boldsymbol{\alpha} + \boldsymbol{\varepsilon}_{2i})]$$

$$= Pr[(\boldsymbol{\varepsilon}_{1i} - \boldsymbol{\varepsilon}_{2i}) > (\mathbf{x}_{i}(\boldsymbol{\beta}_{2} - \boldsymbol{\beta}_{1}) + \boldsymbol{\alpha}(\mathbf{z}_{2i} - \mathbf{z}_{1i}))]$$

Are the betas identified? Are the alphas identified?

$$P_{1i} = \frac{e^{\mathbf{x}_{i}\beta_{1} + \mathbf{z}_{1i}\alpha}}{e^{\mathbf{x}_{i}\beta_{1} + \mathbf{z}_{1i}\alpha} + e^{\mathbf{x}_{i}\beta_{2} + \mathbf{z}_{2i}\alpha}} \qquad P_{2i} = \frac{e^{\mathbf{x}_{i}\beta_{2} + \mathbf{z}_{2i}\alpha}}{e^{\mathbf{x}_{i}\beta_{1} + \mathbf{z}_{1i}\alpha} + e^{\mathbf{x}_{i}\beta_{2} + \mathbf{z}_{2i}\alpha}}$$

Generalizing

$$U_{1i} = \mathbf{x}_{i} \boldsymbol{\beta}_{1} + \mathbf{z}_{1i} \boldsymbol{\alpha} + \boldsymbol{\varepsilon}_{1i}$$

$$U_{2i} = \mathbf{x}_{i} \boldsymbol{\beta}_{2} + \mathbf{z}_{2i} \boldsymbol{\alpha} + \boldsymbol{\varepsilon}_{2i}$$

$$\vdots$$

$$U_{Ji} = \mathbf{x}_i \mathbf{\beta}_J + \mathbf{z}_{Ji} \mathbf{\alpha} + \boldsymbol{\varepsilon}_{Ji}$$

Assuming IID Type I extreme distributions for the ε 's leads to the following form for the probability of outcome 1, and the other are analogous.

Identifying assumption:

$$\beta_1 = 0$$

$$P_{ji} = \frac{e^{\mathbf{x}_{i}\mathbf{\beta}_{j} + \mathbf{z}_{ji}\mathbf{\alpha}}}{\sum_{j=1}^{J} e^{\mathbf{x}_{i}\mathbf{\beta}_{j} + \mathbf{z}_{ji}\mathbf{\alpha}}}$$

From here, construct the likelihood function and use MLE to get the estimates of β_i and α .

Allowing Different Intercepts . asclogit picked price, case(person) alternatives(rectype) Alternative-specific conditional logit Number of obs 3,000 Number of cases Case variable: person Alternative variable: rectype Alts per case: min = 3 avg = 3.0 Wald chi2(1) = Log likelihood = -1094.2186 Prob > chi2 0.4211 picked | Coef. Std. Err. z P>|z| [95% Conf. Interval] rectype price | -.0476118 .0591766 -0.80 0.421 -.1635958 .0683722 | (base alternative) _cons | -.2788324 .3065368 -0.91 0.363 -.8796335 .3219686 _cons | -.5446558 .4203867 -1.30 0.195 -1.368599 .2792869

Predictions for Person 1

$$\hat{U}_{1i} = \hat{\alpha}C_{1i} = 0 - 0.0476(7.05) = -0.336$$

$$\hat{U}_{2i} = \hat{\alpha}C_{1i} = -0.279 - 0.0476(1.40) = -0.345$$

$$\hat{U}_{3i} = \alpha C_{1i} = -0.545 - 0.0476(0) = -0.545$$

$$\hat{P}_1 = \frac{e^{\hat{U}_1}}{e^{\hat{U}_1} + e^{\hat{U}_2} + e^{\hat{U}_3}}$$

 $\hat{P}_1 = \frac{e^{\hat{U}_1}}{e^{\hat{U}_1} + e^{\hat{U}_2} + e^{\hat{U}_3}}$ Etc., etc. Verify the results below. Note: if price is the same, the probabilities will be different because each alternative has a different intercept.

. predict prob

. list choice price picked prob if person==1

	+			+
	choice	price	picked	prob
1.	Walk	7.050649	0	.3569322
2.	Walk	1.400565	0	.3534437
3.	Walk	0	1	.2896242
	+			+

Now add in individual characteristics

. asclogit picked price, case(person) alternatives(rectype) casevars(income)

Alternative-sp	pecific condit	Number of obs = 3000					
Case variable:	: person		Number o	f cases	=	1000	
Alternative va	Alts per	3					
					avg	=	3.0
					max	=	3
				Wald	chi2(3)	=	282.79
Log likelihood	1 = -829.8960	5		Prob :	> chi2	=	0.0000
- '	Coef.						
rectype							
	0883262						
rectype2	 						
income	1870799	.0139695	-13.39	0.000	2144597	7	1597001
	3.865813						
rectype3	 						
income	2799832	.0168107	-16.66	0.000	3129316	5	2470349
_cons							

Predicted Utilities for
$$income = $20$$
, $P_{car} = 7.00 , $P_{bus} = 2.00 , $P_{walk} = 0

$$\hat{U}_{1i} = \mathbf{x}_i \hat{\boldsymbol{\beta}}_1 + \mathbf{z}_{1i} \hat{\boldsymbol{\alpha}}$$

$$\hat{U}_{2i} = \mathbf{x}_i \hat{\boldsymbol{\beta}}_2 + \mathbf{z}_{2i} \hat{\boldsymbol{\alpha}}$$

$$\hat{U}_{2i} = \mathbf{x}_i \hat{\boldsymbol{\beta}}_2 + \mathbf{z}_{2i} \hat{\boldsymbol{\alpha}}$$

$$\hat{U}_{3i} = \mathbf{x}_i \hat{\boldsymbol{\beta}}_3 + \mathbf{z}_{3i} \hat{\boldsymbol{\alpha}}$$

Probabilities

$$\hat{P}_1 = \frac{e^{-0.616}}{e^{-0.616} + e^{-0.050} + e^{-0.621}} = \frac{0.540}{2.029} = 0.266$$

$$\hat{P}_2 = \frac{e^{-0.050}}{e^{-0.616} + e^{-0.050} + e^{-0.621}} = \frac{0.951}{2.029} = 0.469$$

$$\hat{P}_{3} = \frac{e^{-0.621}}{e^{-0.616} + e^{-0.050} + e^{-0.621}} = \frac{0.537}{2.029} = 0.265$$

$$\sum_{j=1}^{J} \hat{P}_{ji} = 1$$

$$\sum_{i=1}^{J} \hat{P}_{ji} = 1$$

Summary

- Binomial logit can be derived from a random utility framework.
- Binomial logit is a special case of multinomial logit
- Multinomial logit is based on individual characteristics
- Conditional logit conditions on choice characteristics (or both individual and choice characteristics)
- All these models implicitly assume IIA (see Alvarez and Nagler)