In [1]:

```
#import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
import plotly.express as px
```

2. Load the dataset into the tool

In [3]:

```
data = pd.read_csv('abalone.csv')
data
```

Out[3]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

3. Perform Below Visualizations.

· Univariate Analysis

In [4]:

```
data['Rings'].value_counts()
data.hist()
```

Out[4]:

· Bi-Variate Analysis

In [5]:

```
plt.scatter(data.Rings, data.Sex)
plt.title('The Gender of Abalone vs Number of Rings')
plt.xlabel('No. of Rings')
plt.ylabel('Gender')
```

Out[5]:

Text(0, 0.5, 'Gender')

· Multi-Variate Analysis

In [6]:

sb.heatmap(data.corr(),annot=True)

Out[6]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fde9e451b90>

4. Perform descriptive statistics on the dataset.

In [7]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
	(7) (4 / 7)		141

dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

In [8]:

data.describe()

Out[8]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.0
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.1
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.0
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.1
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.0
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.0
4							•

5. Check for Missing values and deal with them.

There is no missing values

In [9]:

```
data.isnull().any()
```

Out[9]:

Sex False Length False Diameter False Height False Whole weight False Shucked weight False False Viscera weight Shell weight False Rings False

dtype: bool

6. Find the outliers and replace them outliers

The dataset does not have a outliers

In [10]:

```
fig = px.histogram(data, x='Whole weight')
fig.show()
```

7. Check for Categorical columns and perform encoding.

There is one Categorical column SEX is replaced by an Integer

```
In [11]:
```

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
data["Sex"] = le.fit_transform(data["Sex"])
data["Sex"]
Out[11]:
0
        2
        2
1
2
        0
3
        2
        1
4172
       0
4173
       2
4174
        2
4175
        0
4176
Name: Sex, Length: 4177, dtype: int64
```

8. Split the data into dependent and independent variables.

```
In [12]:
```

```
x=data.iloc[:,0:8].values
y=data.iloc[:,8:9].values
```

```
In [13]:
```

```
x
```

Out[13]:

```
In [14]:
У
Out[14]:
array([[15],
       [7],
       [ 9],
       [ 9],
       [10],
       [12]])
```

9. Scale the independent variables

```
In [15]:
x=data.iloc[:,0:8]
print(x.head())
                         Height Whole weight Shucked weight \
   Sex Length Diameter
    2
       0.455
                        0.095
                                       0.5140
0
                  0.365
                                                       0.2245
    2
       0.350
                  0.265
                          0.090
                                       0.2255
                                                       0.0995
2
                          0.135
    0
       0.530
                  0.420
                                       0.6770
                                                       0.2565
3
    2
       0.440
                  0.365
                          0.125
                                       0.5160
                                                       0.2155
        0.330
                  0.255
                          0.080
                                       0.2050
                                                       0.0895
  Viscera weight Shell weight
0
          0.1010
                         0.150
1
          0.0485
                         0.070
2
          0.1415
                         0.210
3
          0.1140
                         0.155
4
          0.0395
                         0.055
```

10. Split the data into training and testing

```
In [16]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=0)
In [17]:
x_train.shape
Out[17]:
(2923, 8)
In [18]:
x_test.shape
Out[18]:
(1254, 8)
```

11. Build the Model

```
In [19]:
```

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
```

12. Train the Model

```
In [20]:
```

```
lr.fit(x_train, y_train)
Out[20]:
LinearRegression()
```

13. Test the Model

```
In [21]:
```

```
y_pred = lr.predict(x_test)
print((y_test)[0:6])
print((y_pred)[0:6])
[[13]
[ 8]
[11]
[ 5]
[12]
[11]]
[[13.11640829]
[ 9.65691091]
[10.35350972]
 [ 5.63648715]
 [10.67436485]
 [11.95341338]]
```

14. Measure the performance using Metrics.

```
In [22]:
```

```
# RMSE(Root Mean Square Error)
from sklearn.metrics import mean squared error
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print("RMSE value : {:.2f}".format(rmse))
```

RMSE value : 2.26

In [23]:

```
from sklearn.model_selection import cross_val_score
cv_scores = cross_val_score(lr, x, y, cv=5)
sco=cv_scores.round(4)
print(cv_scores.round(4))
print("Average",sco.sum()/5)
```

[0.4113 0.1574 0.4807 0.5046 0.4362] Average 0.398039999999995