

Universidade Federal da Bahia

HARD SHADOW ANTI-ALIASING FOR SPOT LIGHTS IN A GAME ENGINE

MÁRCIO C. F. MACEDO (MARCIOCFMACEDO@GMAIL.COM)

ALMIR V. S. TEIXEIRA (A.VINICIUS.12@GMAIL.COM)

ANTONIO L. APOLINÁRIO JR. (APOLINARIO@DCC.UFBA.BR)

KARL A. AGUERO (KARL@DCC.UFBA.BR)

PGCOMP (UFBA -BRAZIL)

AGENDA

- Introduction;
- Shadow Mapping;
- Revectorization-based Shadow Mapping;
- Results and Discussion;
- Conclusion and Future Works.

INTRODUCTION

CONTEXT

- Shadows are important in games because:
 - they improve the visual perception of the player;

No Shadow

Shadows

CONTEXT

- Shadow Mapping [Williams1978]:
 - Default shadow technique for game engines;
 - Real-time performance;
 - Aliasing artifacts;

CONTEXT

- Revectorization-based Shadow Mapping [Macedo2016]:
 - Shadow anti-aliasing;
 - High visual quality;
 - Minimal overhead;

◦ Step 1 – Load the scene;

• Step 2 – Render the scene from light source's viewpoint;

o Step 3 − Generate a shadow map;

○ Step 4 − Compute the real-time shadows;

• This technique aims to solve the aliasing problem generated by shadow mapping;

○ Step 1 – Render the aliased shadow;

Step 2 – Evaluate visibility of neighbourhood;

• Step 3 – Detect aliasing directions;

o Step 4 − Traverse the aliased shadow boundary;

Step 5 – Normalize distance to aliasing;

• Step 6 – Revectorize the shadow boundary;

Step 7 − Render the anti-aliased shadow;

Shadow Mapping

RBSM

RESULTS AND DISCUSSION

EXPERIMENTAL SETUP

- Hardware:
 - NVIDIA GeForce GTX Titan X graphics card;
 - Intel CoreTM i7-3770K CPU (3.50 GHz);
 - 8GB RAM;
- Software:
 - Unity3D Pro version 5.6.0.f3;

• Visual Quality:

Shadow Mapping

RBSM

• Visual Quality:

Shadow Mapping

• Visual Quality:

26

• Visual Quality:

RBSM

27

• Rendering Time:

• Rendering Time:

• Rendering Time:

CONCLUSION AND FUTURE WORK

FINAL CONSIDERATIONS

• Conclusion:

- We have shown that, by the use of the proposed implementation of RBSM, we are able to minimize the aliasing artifacts, generating high-quality hard shadows at little additional cost;
- Due to the limited source code access provided by Unity, we were not able to implement RBSM for other types of light sources;
- We could not implement RBSM for soft shadows that simulate the penumbra effect;

• Future Work:

- The implementation of RBSM using the full Unity source code;
- The implementation of RBSM in other game engines;

REFERENCES

- [Williams1978] L. Williams. "Casting Curved Shadows on Curved Surfaces". In *Proceedings of the ACM SIGGRAPH*, pages 270-274, 1978;
- [Macedo 2016] M. Macedo and A. Apolinário. "Revectorization-based Shadow Mapping". In *Proceedings of the Graphics Interface*, pages 75-83, 2016.