CS57300 PURDUE UNIVERSITY SEPTEMBER 13, 2021

DATA MINING

ELEMENTS OF DATA MINING ALGORITHMS

OVERVIEW

- Task specification
- Knowledge representation
- Learning technique
 - Search + scoring
- Prediction and/or interpretation

EXPLORATORY DATA ANALYSIS

- Goal
 - Interact with data without clear objective
 - Summarize the main characteristics of the data
- Techniques
 - Mostly visualization

EXPLORATORY DATA ANALYSIS EXAMPLE

What influences the amount of tip that a dining party will give to the waiter?

Cook, D. And Dwayne, D. F. Interactive and Dynamic Graphics for Data Analysis: With R and GGobi

PREDICTIVE MODELING

- Goal
 - Learn model to predict the unknown value of a variable of interest given observed attribute values
- Techniques
 - Classification, regression

Also known as: supervised learning

PREDICTIVE MODELING EXAMPLE

- Zestimate: House sales price prediction!
- Predicting loan repayment (and thus decide whether to provide a loan)

DESCRIPTIVE MODELING

- Goal
 - Summarize the data or the underlying generative process
- Techniques
 - Density estimation, cluster analysis and segmentation, probabilistic graphical model

Also known as: unsupervised learning

DESCRIPTIVE MODELING EXAMPLE

Video/scene clustering

PATTERN DISCOVERY

- Goal
 - Detect patterns and rules that describe subsets of examples
- Techniques
 - Association rules, anomaly detection, etc.

Model: global summary of a data set

Pattern: local to a subset of the data

WHAT TASKS ARE THEY?

Sales and inventory forecast

Customer segmentation

OVERVIEW

- Task specification
- Knowledge representation
- Learning technique
 - Search + scoring
- Prediction and/or interpretation

KNOWLEDGE REPRESENTATION

- Underlying structure of the model or patterns that we seek from the data
 - Specifies the models/patterns that could be returned as the results of the data mining algorithm
 - Defines space of possible models/patterns for algorithm to search over

KNOWLEDGE REPRESENTATION EXAMPLE: PREDICTIVE MODELING

- If-then rule
 - If (personal income > \$70k) AND (criminal record = 'no'), then loan=yes
- Decision tree
 - Each node corresponds to an attribute
 - Each leaf is a class label

KNOWLEDGE REPRESENTATION EXAMPLE: PREDICTIVE MODELING

- \triangleright Conditional probability distributions (i.e., P(Y | X))
 - Logistic regression: $log \frac{P(Y=1|x)}{1-P(Y=1|x)} = \beta_0 + \beta x$
 - Model the log-odds as a linear combination of predictors
- Linear regression
 - $y = \beta_1 x_1 + \beta_2 x_2 ... + \beta_0$
 - y is the response variable, x is the predictor variable

KNOWLEDGE REPRESENTATION EXAMPLE: DESCRIPTIVE MODELING

Mixture model: Instances represented as a weighted combination of mixture distributions

DESCRIPTIVE MODELING

KNOWLEDGE REPRESENTATION EXAMPLE: PATTERN DISCOVERY

- Association rules
 - $I = \{i_1, i_2, ..., i_n\}$ is a set of n items
 - $T = \{t_1, t_2, ..., t_m\}$ is a set of m transactions

Example database with 5 transactions and 5 items

transaction ID	milk	bread	butter	beer	diapers	
1	1	1	0	0	0	
2	0	0	1	0	0	
3	0	0	0	1	1	
4	1	1	1	0	0	
5	0	1	0	0	0	

- An association rule has the form $X \rightarrow Y$, where X and Y are subsets of I, which means if items in X appear in a transaction, then items in Y are likely to appear in that transaction
 - ► E.g., {beer} → {diaper}; {bread} → {milk}

OVERVIEW

- Task specification
- Knowledge representation
- Learning technique
 - Search + scoring
- Prediction and/or interpretation

LEARNING TECHNIQUE

Method to construct model or patterns from data

Model space

Choice of knowledge representation defines a set of possible models or patterns

Scoring function

Associates a numerical value (score) with each member of the set of models/patterns

Search technique

Defines a method for generating members of the set of models/patterns, determining their score, and identifying the ones with the "best" score

MODEL SPACE

- Defined by the choice of knowledge representation
- Decision tree:

MODEL PARAMETERS AND STRUCTURE

Models have both parameters and structure

Parameters:

- Feature values in classification tree
- Coefficients in regression model
- Probability estimates in graphical model

Structure:

- Nodes in classification tree
- Variables in regression model
- Edges in graphical model

SCORING FUNCTION

- A numeric score assigned to each possible model in a search space, **given a reference/input** dataset
 - Used to judge the quality of a particular model for the domain
- > Score function are statistics—estimates of a population parameter based on a sample of data
- Examples:
 - Misclassification
 - Squared error
 - Likelihood

PARAMETER ESTIMATION VS. STRUCTURE LEARNING

Parameters:

- Feature values in classification tree
- Coefficients in regression model
- Probability estimates in graphical model

Structure:

- Nodes in classification tree
- Variables in regression model
- Edges in graphical model

Search: Convex/smooth optimization techniques

Search: Heuristic approaches for combinatorial optimization

EXAMPLE LEARNING PROBLEM

Task: Devise a rule to classify items based on the attribute **X**

Knowledge representation:

If-then rules

Example rule:

Else -

What is the model space?

All possible thresholds

What score function?

Prediction error rate

SCORE FUNCTION OVER MODEL SPACE

Search procedure?

Try all thresholds, select one with lowest score

OVERVIEW

- Task specification
- Knowledge representation
- Learning technique
 - Search + Evaluation
- Prediction and/or interpretation

INFERENCE AND INTERPRETATION

- Prediction technique
 - Method to apply learned model to new data for prediction/analysis
 - Only applicable for predictive and some descriptive models
 - Prediction is often used during learning (i.e., search) to determine value of scoring function
- Interpretation of results
 - Objective: significance measures
 - Subjective: importance, interestingness, novelty

EXAMPLE: IDENTIFYING EMAIL SPAM

- Task
 - Design automatic spam detector that can differentiate between labeled emails
- Data
 - Table of relative word/ punctuation frequencies
- Knowledge representation
 - If/then rules with conjunctions of features

TABLE 1.1. Average percentage of words or characters in an email message equal to the indicated word or character. We have chosen the words and characters showing the largest difference between spam and email.

	george	you	your	hp	free	hpl	!	our	re	edu	remove
spam	0.00	2.26	1.38	0.02	0.52	0.01	0.51	0.51	0.13	0.01	0.28
email	1.27	1.27	0.44	0.90	0.07	0.43	0.11	0.18	0.42	0.29	0.01

if (%george
$$< 0.6$$
) & (%you > 1.5) then spam else email.

- Learning technique
 - > Search over set of rules, select rule with maximum accuracy on training data

EXPLORATORY DATA ANALYSIS

EXPLORATORY DATA ANALYSIS

- Data analysis approach that employs a number of (mostly graphical) techniques to:
 - Maximize insight into data
 - Uncover underlying structure
 - Identify important variables
 - Detect outliers and anomalies
 - Test underlying modeling assumptions
 - Develop parsimonious models
 - Generate hypotheses from data

DATA VISUALIZATION

VISUALIZATION

- Human eye/brain have evolved powerful methods to detect structure in nature
- Display data in ways that exploit human pattern recognition abilities
- Limitation: Can be difficult to apply if data size (number of dimensions or instances) is large

VISUALIZING/SUMMARIZING DATA

- Low-dimensional data
 - Summarizing data with simple statistics
 - Plotting raw data (1D, 2D, 3D)
- Higher-dimensional data
 - Dimensionality reduction: e.g., principal component analysis

DATA SUMMARIZATION

- Measures of location
 - Mean:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x(i)$$

- Median: value with 50% of points above and below
- Quartile: value with 25% (75%) points below
- Mode: most common value

DATA SUMMARIZATION

- Measures of dispersion or variability
 - Variance: $\hat{\sigma}_k^2 = \frac{1}{n} \sum_{i=1}^n (x(i) \mu)^2$
 - Standard deviation: $\hat{\sigma}_k = \sqrt{\frac{1}{n} \sum_{i=1}^n (x(i) \mu)^2}$
 - Range: difference between max and min point
 - Interquartile range: difference between 1st and 3rd Q
 - > Skew: $\frac{\sum_{i=1}^{n} (x(i) \hat{\mu})^3}{(\sum_{i=1}^{n} (x(i) \hat{\mu})^2)^{\frac{3}{2}}}$

DATA VISUALIZATION

- Serve for different purposes
 - Composition: e.g., see for a discrete dimension x_i , the fraction of each values
 - Distribution: e.g., see the distribution of a continuous dimension of data x_i
 - Comparison:
 - \triangleright Compare values of two continuous dimensions of the data, x_i and x_j
 - Given discrete x_i , compare the values of x_j when x_i takes different values.
 - Relationship: e.g., examine the relationship between x_i and x_j

COMPOSITION

- Pie charts
- Stacked bars
 - Temporal trends
 - Compare across groups

Regional medians of adults who report owning a ...

