IT-Security (ITS) B1 DIKU, E2020

Lecture plan

```
| 36 | 31 Aug | 10-12 | TL
                              | Introduction, security concepts and the threat of hacking
                              I Buffer overflow
      04 Sep | 10-12 | TL
| 37 | 07 Sep | 10-12 | CJ
                              | Software security, Operating system security
                               User authentication and access control
      11 Sep | 10-12 | CJ
                              I Malicious software
 38 | 14 Sep | 10-12 | TL
     | 18 Sep | 10-12 | CJ
                              I Firewalls and denial-of-service attacks
                              I Cloud and IoT
 39 | 21 Sep | 10-12 | CJ
      25 Sep | 10-12 | TL
                              | Cryptography
 40 | 28 Sep | 10-12 | TL
                             | Internet security protocols
                              | Intrusion detection
      02 Oct | 10-12 | TL
 41 | 05 Oct | 10-12 | TL
                              | Forensics
      09 Oct | 10-12 | CJ
                              | IT security management
 42 l
                              | Fall Vacation - No lectures
 43 | 19 Oct | 10-12 | CJ
                               Privacy 1
     | 23 Oct | 10-12 | CJ
                              | Privacy 2
| 44 | 26 Oct | 10-11 | Guest | Final guest lecture
              | 11-12 | All
                               Recap and Q/A
| 45 | xx Nov |
                                Exam
```

Today's agenda

Memory forensics

Disk forensics

Log analysis

Malware analysis

Recap - Intrusion Detection

Host and network analysis

IOCs and anomalies

Forensics vs Incident Response

Formally, **digital forensics** is a branch of forensic science encompassing the recovery and investigation of material found on digital devices, often in relation to crimes

Incident response involves the execution of proper responses to computer intrusions

In practice, when responding to computer intrusions, they are used interchangeably

Add: Malware analysis

DFIRMA

Sidebar: Digital forensics

Digital forensics =

Computer forensics

Memory forensics

Network forensics

Mobile forensics

Etc. forensics

In practice, they coexist

```
while true:
    intrusion analysis

if intrusion suspected:
    preliminary analysis (triage)

if intrusion verified:
    repeat until incident fully grasped:
        incident analysis
        forensic analysis
        malware anaysis
```

incident response

update plans

A note on today's reading material

National Institute of Standards and Technology (NIST) SP 800-56

Spearphishing, revisited

Memory forensics

Situation: Evil code is running

Out job: Find it in memory

Memory forensics

From Wikipedia:

"Memory forensics is forensic analysis of a computer's memory dump.

Its primary application is investigation of advanced computer attacks which are stealthy enough to avoid leaving data on the computer's hard drive."

First, get a copy

Live acquisition

Different techiniques

Live analysis

Direct analysis of the running kernel

Dead acquisition

Hibernation files, page files

Virtualization - thank you

What to find in memory?

Running processes Credentials

Listening sockets Memory only malware

Open connections Closed connections

Loaded modules Terminated processes

Encryption keys Open file handles

Memory forensic process

- 1: Find rogue processes
- 2: Analyse DLLs
- 3: Review network artefacts
- 4: Look for evidence of code injections
- 5: Dump suspicious processes → further analysis

How to find it - process enumeration

Direct kernel objection manipulation (DKOM)

How to find it - scanning for processes

Key concepts in memory forensics

Walking a list, or

Scanning for objects

Walk a list vs scanning

Zeus infection

Zeus infection

Zeus infection

The life of a network connections struct

Socket()

Bind()

Listen()

Closesocket()

Deallocate

Example memory analyses

Volatility

Volatility is an open source memory analysis framework writtin in Python

Volatility and Zeus

```
Terminal
File Edit View Search Terminal Help
[zeus stux]$ python volatility/vol.py -f zeus.vmem --profile=WinXPSP2x86 connections
Volatility Foundation Volatility Framework 2.5
Offset(V) Local Address
                                  Remote Address
                                                           Pid
[zeus stux]$ python volatility/vol.py -f zeus.vmem --profile=WinXPSP2x86 connscan
Volatility Foundation Volatility Framework 2.5
Offset(P) Local Address
                                  Remote Address
                                                           Pid
0x02214988 172.16.176.143:1054 193.104.41.75:80
                                                           856
0x06015ab0 0.0.0.0:1056
                                  193.104.41.75:80
                                                           856
[zeus stux]$ python volatility/vol.py -f zeus.vmem --profile=WinXPSP2x86 pslist | grep 856
Volatility Foundation Volatility Framework 2.5
0x80ff88d8 sychost.exe 856
                                              29
                                                                     0 2010-08-11 06:06:24 UTC+0000
                                       676
[zeus stux]$
```

Volatility and Stuxnet

					Teri	ninal			- 0
Edit View Search Termin					111.11.11.11	1900			
eus_stux]\$ python v				rofile=Wi	nXPSP3x	86 pslist			
latility Foundation									
fset(V) Name	PID		Thds	Hnds		Wow64 Start		Exit	
		0							
323c8830 System	4 376	4	59 3			0	17.00.F3 UTC.0000		
320df020 smss.exe 321a2da0 csrss.exe		376	11	395	0		9 17:08:53 UTC+0000 9 17:08:54 UTC+0000		
31da5650 winlogon.e:		376	19	570	Θ		9 17:08:54 UTC+0000		
32073020 wintogon.e.		624	21	431	9		9 17:08:54 UTC+0000 9 17:08:54 UTC+0000		
320/3020 services.e: 31e70020 lsass.exe	te 668	624	19	342	0		9 17:08:54 UTC+0000		
31870020 (sass.exe 323315d8 vmacthlp.e:		668	19	25	Θ		9 17:08:54 UTC+0000 9 17:08:55 UTC+0000		
31db8da0 svchost.ex		668	17	193	0		9 17:08:55 UTC+0000 9 17:08:55 UTC+0000		
Ble61da0 svchost.ex		668	17	312	0		9 17:08:55 UTC+0000		
322843e8 svchost.ex		668	61	1169	9		9 17:08:55 UTC+0000		
322843e8 svchost.ex 31e18b28 svchost.ex		668	5	80	0		9 17:08:55 UTC+0000 9 17:08:55 UTC+0000		
31ff7020 svchost.ex		668	14	197	9		9 17:08:55 UTC+0000		
31fee8b0 spoolsv.ex		668	10		Θ				
	1412	668	5	118 148			9 17:08:56 UTC+0000		
le0eda0 jqs.exe		668	5	284	0		9 17:09:05 UTC+0000		
Blfe52d0 vmtoolsd.e							9 17:09:05 UTC+0000		
321a0568 VMUpgradeH		668 668	3	96	Θ		9 17:09:08 UTC+0000		
3205ada0 alg.exe	188		16	107	0		9 17:09:09 UTC+0000		
320ec7e8 explorer.e		1728		582			9 17:11:49 UTC+0000		
320ecc10 wscntfy.ex		1032	1	28	Θ		9 17:11:49 UTC+0000		
31e86978 TSVNCache.		1196		54	0		9 17:11:49 UTC+0000		
Blfc5da0 VMwareTray		1196		50	Θ		9 17:11:50 UTC+0000		
31e6b660 VMwareUser		1196		251	0		9 17:11:50 UTC+0000		
3210d478 jusched.ex		1196		26			9 17:11:50 UTC+0000		
32279998 imapi.exe	756	668		116			9 17:11:54 UTC+0000		
322b9a10 wuauclt.ex		1032		133			9 17:12:03 UTC+0000		
1c543a0 Procmon.ex		1196	13	189			3 04:25:56 UTC+0000		
1fa5390 wmiprvse.e		856		134			3 04:25:58 UTC+0000		
31c498c8 lsass.exe	868	668		23	0		3 04:26:55 UTC+0000		
31c47c00 lsass.exe	1928	668		65			3 04:26:55 UTC+0000		
1c0cda0 cmd.exe	968	1664					3 04:31:35 UTC+0000	2011-06-03 04:31:36	
31f14938 ipconfig.e:		968			Θ		3 04:31:35 UTC+0000	2011-06-03 04:31:36	UTC+0000
eus_stux]\$ python v				rofile=Wi	nXPSP3x	86 pslist grep	lsass		
atility Foundation									
31e70020 lsass.exe	680	624	19	342			9 17:08:54 UTC+0000		
31c498c8 lsass.exe	868	668		23			3 04:26:55 UTC+0000		
31c47c00 Lsass.exe	1928	668		65	Θ	0 2011-06-0	3 04:26:55 UTC+0000		

Don't pull the plug

Further reading

Disk (or, file system) forensics

Situation

- Evil file has reached disk
- Persistence is achieved

Our job: Find the malware

A closer look at files

File name layer

Metadata layer

File system layer

Data layer

Physical layer

- File names, directories
- Structure information about files/directories
- Partition information
- Sectors, blocks, clusters
- The drive itself, and partitions

Physical layer

 DOS-based partitions, primary partition table, extended partitions

MBR and EBR

- Primary = Master Boot Record (MBR)
- Extended = Extended Boot Record (EBR)
- Same layout, 512 bytes or 1 sector

Bytes	Content
0-445	Upstart code, disk signature
446-461	Partition entry 1
462-477	Partition entry 2
478-493	Partition entry 3
494-509	Partition entry 4
510-511	MBR/EBR signature (0xAA55)

Partitions

Bytes	Content
0	0x00 not boot, 0x80 boot
1-3	Cylinder-head-sector (CHS) of start sector
4	Partition type
5-7	Cylinder-head-sector (CHS) of end sector
8-11	Logical block addressing (LBA) of start sector
12-15	Number of sectors in partition

Туре	FAT12	FAT16			Linux swap		NFTS
	0x01	0x0E	0x0C	0x83	0x82	0x05	0x07

Data layer

- 512-byte sectors
- 1 or more sectors = clusters (Windows) or blocks (Unix)

- Blocks either allocated
 - Actively being used by a file
- Or unallocated
 - Not being used by a file
 - May contain deleted or unused data

Deleted != destroyed

- When a file is deleted, data exists on disk until overwritten
- If overwritten, remnants may still exist in
 - page/swap/hibernation file, or
 - elsewhere on the disk due to (de)fragmentation
 - extra copies
- If disk wiped, only just once, recovery infeasible

Think libraries

For NTFS

- An entry in the Master File Table describes a file
- Each entry contains the filename and metadata like permissions, timestamps
- Entries are 1024 bytes
- For files > 1024, socalled non-resident files, entry contains an allocation map of clusters allocated to the file

Format is not wiping

- Formats create and replace file system structures
- Files are not overwritten
- Regular formats take more time as the disk is scanned for bad sectors
- Use wiping software for wiping

Slack space

Create bit-by-bit copy

Forensic workstation

Seized harddrive

Write blocker

Timelines

MAC = Modified+Accessed+Changed

File types

Certain file types may be of interest

Further reading

Log analysis

Wrap-up

Lecture plan

```
| 36 | 31 Aug | 10-12 | TL
                              | Introduction, security concepts and the threat of hacking
                              I Buffer overflow
      04 Sep | 10-12 | TL
| 37 | 07 Sep | 10-12 | CJ
                              | Software security, Operating system security
                               User authentication and access control
      11 Sep | 10-12 | CJ
                              I Malicious software
 38 | 14 Sep | 10-12 | TL
     | 18 Sep | 10-12 | CJ
                              I Firewalls and denial-of-service attacks
                              I Cloud and IoT
 39 | 21 Sep | 10-12 | CJ
      25 Sep | 10-12 | TL
                              | Cryptography
 40 | 28 Sep | 10-12 | TL
                             | Internet security protocols
                              | Intrusion detection
      02 Oct | 10-12 | TL
 41 | 05 Oct | 10-12 | TL
                              | Forensics
      09 Oct | 10-12 | CJ
                              | IT security management
 42 l
                              | Fall Vacation - No lectures
 43 | 19 Oct | 10-12 | CJ
                               Privacy 1
      23 Oct | 10-12 | CJ
                              | Privacy 2
| 44 | 26 Oct | 10-11 | Guest | Final guest lecture
              | 11-12 | All
                               Recap and Q/A
| 45 | xx Nov |
                                Exam
```