Theory of Computation

MIEIC, 2nd Year

João M. P. Cardoso

Email: jmpc@acm.org

Outline

- ► Regular Expressions
- \triangleright Conversion of regular expressions into ϵ -NFAs
- Conversions of FAs into regular expressions

Regular Expressions

- ► Useful for searching in text (e.g., grep and sed of Linux/Unix), in compiler generators (Lex, Flex, lexical analyzers)
- ► Useful in applications that need to search for patterns (e.g., intrusion detection systems, anti-virus)
- Built-in in some programming languages (e.g., Perl)
 - ▶ <u>PCRE</u> (Perl-compatible regular expressions) format
 - ► POSIX regex format
- Supported by using APIs such as in Java (java.util.regex)
- ► And...

Regular Expressions

- \triangleright Alternative to NFAs (including ϵ -NFAs) and DFAs
- \blacktriangleright Equivalent to NFAs (including ϵ -NFAs) and DFAs
- ► Algebraic characteristics allow the use of expressions to specify the strings of the language
- Regular expressions define languages
 - **Example: 01*+10***
 - L(01*+10*): Language of the binary strings starting with a 0 followed by zero or more 1s, or starting with a 1 followed by zero or more 0s

Operators over Languages

- ▶ Union of two languages L and M ($L \cup M$), is the set of the strings that belong to L, to M, or to both
 - ►L = {001, 10, 111} M = { ϵ , 001} L \cup M = { ϵ , 001, 10, 111}
- ► Concatenation of two languages L and M (LM or L.M), is the set of strings obtained by concatenating any string in L with any string in M
 - ►LM = {001, 10, 111, 001001, 10001, 111001}
- ► Closure of a language L (L*) is the set of strings obtained concatenating na arbitrary number of strings of L, including repetitions, i.e., L* = $\cup_{i>0}$ Lⁱ, in which L⁰={ ε }
 - ► L= {0,1}, L* is the language of the binary strings

Closure Examples

```
L = \{0, 11\}
     \{3\} = 0 
     L^1 = L = \{0, 11\}

ightharpoonup L^2 = LL = \{00, 011, 110, 1111\}

ightharpoonup L* = {\epsilon , 0, 11, 00, 011, 110, 1111, ...}
     ▶ Although L is a finite language, as well as each Li, L* is infinite
► L = {all strings with only 0s}
     ► L* = L
     L is infinite, such that L*
▶ L = Ø
     L^* = L^0 = \{\epsilon\}
```

Construction of Regular Expressions

Basis

- ▶ The special symbols ε e \varnothing are regular expressions
 - ► $L(\varepsilon) = \{\varepsilon\}$ and $L(\emptyset) = \emptyset$
- If a is a symbol, **a** is a regular expression
 - ► L(a) = {a}
- A variable (e.g., L) is a regular expression
 - ▶ Represents any language specified by regular expressions

► Induction

- ► IF E and F are regular expressions, E + F is a regular expression
 - ightharpoonup L(E + F) = L(E) \cup L(F)
- ▶ If E and F are regular expressions, EF is a regular expression
 - ► L(EF) = L(E)L(F)
- ▶ If E is a regular expression, E* is a regular expression
 - ► L(E*) = (L(E))*
- ▶ If E is a regular expression, (E) is a regular expression
 - ► L((E)) = L(E)

Regular Expressions Operators

- * (zero or more)
- . (concatenation: symbol can be omitted)
- **▶** + (or | or ∪)
- Operator precedence (from highest to lowest)
 - *

 - +
- ▶ Parenthesis can be used to "force" a certain order
- + used to represent 1 or more

Example

Write a regular expression for the set of strings consisting of alternating 0s and 1s

```
Example: 01 L(01) = {01}
First tentative: (01)*
≠ 01*
L((01)*) = {ε, 01, 0101, 0101, ...}
We miss many!
Second tentative:
(01)*+(10)*+0(10)*+1(01)*
Right?
(ε+1)(01)*(ε+0)
Right?
```

Exercise 1

- ► Write regular expressions for the following languages:
 - a) the set of the strings over {a,b,c} with at least one a and at least one b
 - b) that all the pairs of adjacent 0s appear before all the pairs of adjacent 1's
- ▶ Describe the language given by the regular expression:
 - ► (1+ε)(00*1)*0*

FA – RE Equivalence

- ► Show that all the languages defined by FAs can be also defined by regular expressions (DFA → RE)
- Show that all the languages defined by REs can be also defined by FAs (RE \rightarrow ϵ -NFA)

From REs to FAs

From REs to FAs

- ► Theorem: every language defined by a regular expression is also defined by an FA.
- ► Proof: structural induction over the definition of the regular expression
 - ▶ Basis step: ε , \varnothing and a
 - ► Induction step: union, concatenation and closure
 - ► L = L(R) = L(E), E is a ε -NFA with
 - Exactly one accept state
 - Without input transitions to the start state
 - ▶ Without output transitions from the final state

Basis Step

Inductive Step

Concatenation: RS

Union: R+S

□ Closure: R*

Example

- ▶ Draw an ε -NFA for the RE (0+10)*11(0+1)*
 - ► Try to simplify the FA

3

Example (cont.)

From DFAs to REs

- ► **Theorem**: If L=L(A) for a DFA A then it exists a regular expression R such that L=L(R)
- Two methods:
 - ➤ Construction of Paths: Enumerate the states from 1 to n; build the REs that successively describe paths more complex in the DFA, until they describe all the paths from the start state to each accept state
 - ➤ State Elimination: Consider the transitions labeled by REs; eliminate the internal states substituting their "behavior" by REs

FAs to REs

Construction of Paths

Construction of Paths

- Numerate the nodes (states) from 1 to n
- $ightharpoonup R_{ij}^{(k)}$
 - ▶ Regular expression defining the language consisting of the set of strings such that w is the label of a path between nodes i and j, without passing in any intermediate node higher than k
- ► Induction in the number of nodes (k)

Construction of Paths

- **▶** Basis
 - ▶ k=0 means without intermediate nodes (the lowest is 1)
 - ▶ Edge from i to j (RE is the respective symbol; or \emptyset , if does not exist; or $a_1+a_2+...+a_m$, if there are m edges)
 - Node i (i to i) (RE is $\varepsilon + a_1 + a_2 + ... + a_m$)
- ► Induction
 - ▶ Hypothesis: the paths that use nodes until k-1 are already converted
 - Exist a path from i to j without passing in node k
 - ► R_{ii}(k-1)
 - The path passes one or more times in k:
 - ► End: R_{ij}⁽ⁿ⁾ paths between i and j considering all the nodes
- ► The RE of the language of the FA is the union of the regular expressions R_{1j}⁽ⁿ⁾ such that j is na accept state.

Example DFA \Rightarrow RE

- ► FA that recognizes strings with at least one 0
- $ightharpoonup R_{ii}^{(k)} = R_{ii}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)}) R_{ki}^{(k-1)}$
- $ightharpoonup R_{ij}^{(1)} = R_{ij}^{(0)} + R_{i1}^{(0)} (R_{11}^{(0)}) * R_{1j}^{(0)}$

R ₁₁ ⁽⁰⁾	ε+1
R ₁₂ ⁽⁰⁾	0
R ₂₁ ⁽⁰⁾	Ø
R ₂₂ ⁽⁰⁾	ε+0+1

R ₁₁ ⁽¹⁾	$\epsilon+1+(\epsilon+1)(\epsilon+1)^*(\epsilon+1)$	1*
$R_{12}^{(1)}$	$0+(\epsilon+1)(\epsilon+1)*0$	1*0
R ₂₁ ⁽¹⁾	\varnothing + \varnothing (ϵ +1)*(ϵ +1)	Ø
R ₂₂ ⁽¹⁾	ε+0+1+∅(ε+1)*0	ε+0+1

Simplification:

$$(\epsilon+1)^* = 1^*$$

$$\emptyset R = R\emptyset = \emptyset$$

$$\emptyset$$
+R = R+ \emptyset = R

$$\begin{array}{lllll} R_{11}^{(2)} & 1^* + 1^*0(\varepsilon + 0 + 1)^* \varnothing & 1^* \\ \\ R_{12}^{(2)} & 1^*0 + 1^*0(\varepsilon + 0 + 1)^*(\varepsilon + 0 + 1) & 1^*0(0 + 1)^* \\ \\ R_{21}^{(2)} & \varnothing + (\varepsilon + 0 + 1)(\varepsilon + 0 + 1)^* \varnothing & \varnothing \\ \\ R_{22}^{(2)} & \varepsilon + 0 + 1 + (\varepsilon + 0 + 1)(\varepsilon + 0 + 1)^*(\varepsilon + 0 + 1) & (0 + 1)^* \end{array}$$

$$R = 1*0(0+1)*$$

FAs to REs

State Elimination

State Elimination

- ► The construction of paths has many repetitions, is onerous, and may provide long/complex REs if we don't simplify them
- ► State elimination technique
 - ▶ Build REs representing all the implicit strings in the part of the diagram we are substituting
 - ▶ Simplify the diagram making more complex the labels of the edges that remain
- State to eliminate: s
 - States q_i include all the source states of s
 - States p_i include all the sink states of s (they can intersect the states q_i)
 - ▶ Remove s and all the edges that connect s, adding in all the edges from q_i to p_j a part of the eventual path from q_i to p_j , over s, including the cycle in s: $Q_iS^*P_i$

State Elimination

► Eliminating state s:

 $\rm R_{\rm 1m}$

Strategy

- ► Eliminate the intermediate states, maintaining the start and the accept states, until you have a single edge with the respective RE from the start to each accept state
- Union of the alternatives
- If q≠q0, we obtain an FA with 2 states
 (R+SU*T)*SU*
- ► If not we obtain na FA with a single state ► R*

Example

- ▶ **①**Start by substituting the labels in the transitions to REs
- Successively eliminate the nodes that are neither start nor accept and substitute each node eliminated by the respective RE
- Note: consider one FA for each accept state and the final RE is obtained by the union of the individual REs (one per FA)

- $Q_1 = 1, P_1 = 0+1, R_{02} = \emptyset, S = \emptyset$
- □ New edge q_0 - q_2 : \emptyset + 1 \emptyset *(0+1) = 1(0+1)
 - Since: $L(\emptyset^*)=\{\varepsilon\}\cup L(\emptyset)\cup L(\emptyset)$ $L(\emptyset)...$

Example (cont.)

• Start by substituting the labels in the transitions to REs

②Successively eliminate the nodes that are neither start nor accept and substitute each node eliminated by the respective RE

Consider one FA for each accept state:

The final RE is obtained by the union of the individual REs (one per FA):

$$Arr RE = (0+1)*1(0+1)(0+1) + (0+1)*1(0+1) = (0+1)*1(0+1)(\epsilon+0+1)$$

Exercise 2

- Consider a DFA with the transition table given below
 - 1. Calculate all the expressions $R_{ii}^{(0)}$ (i is the number of state q_i)
 - 2. Calculate all the expressions R_{ii}⁽¹⁾ and simplify them
 - 3. Obtain a regular expression for the language of the DFA
 - 4. Draw the transition (state) diagram of the DFA and obtain a regular expression for its language using the state elimination technique

	0	1
$\rightarrow q_1$	q_2	q_1
q_2	q_3	q_1
*q ₃	q_3	q_2

Algebraic Rules for REs

Algebraic Rules for REs

- ► Two REs are equivalent if they define the same language
 - Two REs with variables are equivalent if, whatever the languages substituting the variables, both REs define the same language
- ► Main interest: simplify REs
- Commutativity
 - ► Union: L + M = M + L
 - ► Concatenation: does not exist!
- Associativity
 - ightharpoonup Union: (L + M) + N = L + (N + M)
 - ► Concatenation: (LM)N = L(MN)

Algebraic Laws for REs (cont.)

- Identity
 - ▶ Union: \emptyset +L = L+ \emptyset = L
 - ► Concatenation: $\varepsilon L = L\varepsilon = L$
- **►** Absorption
 - ightharpoonup Concatenation: $L\varnothing = \varnothing L = \varnothing$
 - ► Union: does not exist
- Distributive
 - Of the concatenation over the union
 - left: L(M + N) = LM + LN
 - ▶ right: (M + N)L = ML + NL

Algebraic Laws for REs (cont.)

- ► Idempotent
 - **▶** Union: L + L = L
 - ► Concatenation: don't exist
- ► Example: simplify 0 + 01*
 - $\mathbf{0} + 01^* =$
 - ► $0\varepsilon + 01^* =$ identity of the concatenation
 - \triangleright 0(ε + 1*) = distributive of the concatenation over the union
 - ▶01* because ε belongs to the language 1*

Exercise 3

- Let's use the previous example:
 - $Arr RE = (0+1)*1(0+1)(0+1) + (0+1)*1(0+1) = (0+1)*1(0+1)(\epsilon+0+1)$
- ► How to simplify using RE rules?
 - (0+1)*1(0+1)(0+1) + (0+1)*1(0+1)
 - (0+1)*(1(0+1)(0+1) + 1(0+1)) [rule?]
 - (0+1)*1((0+1)(0+1) + (0+1)) [rule?]
 - \triangleright (0+1)*1(0+1)((0+1) + ϵ) [rule?]
 - $(0+1)*1(0+1)(\varepsilon+0+1)$ [rule?]

Algebraic Laws Involving Closure

- ►(L*)* = L*
- $\triangleright \varnothing^* = \varepsilon$ Why?
- 3 = *3
- $L^{+} = LL^{*} = L^{*}L$
- $L^* = L^+ + \epsilon$
- \mathbb{L} ? = ε + \mathbb{L}

Exercise: in which conditions we obtain L* = L+?

Discovering New Laws

- ightharpoonup Example: $(L + M)^* = (L^*M^*)^*$ is a law?
- \triangleright Proof: \rightarrow
 - ► Supposing $w \in (L+M)^*$
 - \triangleright w = $w_1w_2...w_k$, where $w_i \in L$ or $w_i \in M$
 - ► Then w_i is also in L*M*, because if it is in L then it is also in L* and if we take M* = ε ...
 - ► Needed to prove ← (TPC)
- ► Alternative: transform the expression in a concrete RE and analyze the languages
 - ► (L + M)* can be transformed in the concrete (a+b)* and (L*M*)* to (a*b*)*
 - ▶ In both cases we conclude that $L(E) = \Sigma^*$

Test for Algebraic Laws

- ► To test if E = F, where E and F are REs with the same set of variables
 - Convert E and F in the concrete REs C and D, substituting each variable by a symbol
 - ► Test if L(C) = L(D); if true then E=F is a law, else if not a law.
- Examples:
 - $IS L^* = L^*L^*$?
 - ► Converting: C=a* and D=a*a*; both are the set of all strings over {a}
 - ► Then L(C) = L(D) and "the concatenation of a closure language with itself produces the same language" is a law
 - \triangleright Is L + ML = (L+M)L?
 - ightharpoonup C= a+ba, D= (a+b)a = aa + ba then L(C) \neq L(D) and the statement is not a law

Limits of the Test

- ► The test becomes invalid if we consider other operators than the ones of the REs
- Example: add the interception operator to the algebra of the REs
 - Note: the ∩ operator does not empower the language (the languages we can define are the same)
 - ▶ Is L \cap M \cap N = L \cap M ? The interception of 3 is the same as 2? Obviously false, but:
 - Substituting L=a, M=b, N=c we get $\{a\} \cap \{b\} \cap \{c\} = \{a\} \cap \{b\} = \emptyset$ and the test would give true.

Exercise 4

▶ Proof or give a counter-example for the following:

- $(R+S)^* = R^* + S^*$
- (RS+R)*R = R(SR+R)* (homework)
- ► (RS+R)*RS = (RR*S)*

Conclusions

Conclusions

- ► Regular Expressions (REs) provide a way to specify languages (named as regular languages)
- \triangleright REs can be converted in ϵ -NFAs
- ► FAs can be converted into REs