技術調査+自己紹介

目次

• 概要

• 手法

• 分析設定

• 分析結果

目次

• 概要

• 手法

• 分析設定

• 分析結果

概要

- 論文タイトル
 - ▶「大規模言語モデルによる投信ディスクロージャー資料の市況および見通 しコメントの自動生成」
- 論文概要
 - ▶資産運用会社においてディスクロージャー資料作成の負担大
 - ▶LLMを用いて運用報告書の市況コメント、見通しコメントを自動生成する ツール作成

市況コメント :ある期間の市場環境や経済状況についてのコメント

見通しコメント:将来の市場環境や経済状況に対する予測

ツールイメージ

目次

●背景

手法

• 分析設定

• 分析結果

提案手法

- ・分析の流れ
 - ▶Step1. リターン/利回り変化幅の算出
 - ➤Step2. 変動要因記事の抽出
 - ▶Step3. 変動要因の要約
 - ▶Step4. 市況コメントの生成
 - ▶Step5. 見通しコメントの生成

Step1. リターン/利回りの変化幅の算出

[株]

日次リターン

$$R_t = \frac{p_t - p_{t-1}}{p_{t-1}}$$

[債券]

• 日次リターン $R_t = Y_t - Y_{t-1}$

対象資産の価格 P_t ,債券の利回りを Y_t 対象期間を $t_0,t_1,...,t_n$ ただし、 t_0 :対象前月末、 t_1 :対象月初日、 t_n :対象月末日

Step2. 変動要因記事の抽出

- 各月の資産価格変動に影響を与えた記事を抽出
- 方法
 - 1. 月を上旬、中旬、下旬に分け、それぞれの期間のリターンを計算
 - 2. リターンが最も下落した日と上昇した日を特定

$$t_{\min}^{i} = \arg\min(R_t) \quad \text{for } t \in T_i, i = 1, 2, 3$$
 (1)

$$t_{\text{max}}^{i} = \arg \max(R_t) \quad \text{for } t \in T_i, i = 1, 2, 3$$
 (2)

3. 特定した日の市場動向について記載されたニュース記事を抽出

Step3. 変動要因の要約

- gpt-3.5は16000トークンという制限
 - ▶ニュース記事テキストをそのまま結合したものを入力とするのは困難
 - ▶入力記事を要約する必要あり
- 方法
 - 1. 抽出したニュース記事をChatGPTに入力し、要約を実行
 - 2. 上旬、中旬、下旬ごとにニュース記事から変動要因を要約

変動要因の要約のための「messages」

[system]

あなたはエコノミストです。

[user]

以下のニュース記事を参考に<u>2023 年 8 月上旬</u>の 東京株式市場の<u>下落</u>要因を抽出してください。 <3・2 節で抽出したニュース記事のテキスト>

Step4. 市況コメントの生成

- 月次リターンとstep3の変動要因の要約を使用し、コメント生成
- 生成方法
 - ➤ Zero-shot learning
 - ✓直接要約された情報を入力とし、コメント生成
 - > Few-shot learning
 - ✓過去の市況コメントを参考にしながら新たなコメントを生成

Step4. 市況コメントの生成

Zero-shot learning

市況コメント生成のための「messages」

[system]

あなたはファンドマネージャーです。

[user]

2023 年 8 月の東京株式市場の主な変動要因として 以下の情報が得られています。

<u>2023 年 8 月</u>の<u>東京株式</u>市 場 は<u>0.406</u>%<u>上昇</u>しました。

<3.3節で生成した上旬の変動要因の要約>

<3.3節で生成した中旬の変動要因の要約>

<3.3節で生成した下旬の変動要因の要約>

情報は以上となります。上記の情報を参考に以下のフォーマットのマーケットレポートを作成してください。

<u>2023 年 8 月</u>の<u>東京株式</u>市 場 は<u>0.406</u>%<u>上昇</u>しました。

月初は、、、月中は、、、月末は、、、

Few-shot learning

- 市況コメント生成のための「messages」(1-shot) -

[system]

あなたはファンドマネージャーです。

[user]

2023 年 7 月の東京株式市場の主な変動要因として 以下の情報が得られています。

~zero-shot と同様のため省略~

情報は以上となります。上記の情報を参考にマーケットレポートを作成してください。

[assistant]

<指定した投資信託の7月の市況コメント>

[user]

2023 年 8 月の東京株式市場の主な変動要因として 以下の情報が得られています。

~zero-shot と同様のため省略~

情報は以上となります。上記の情報を参考にマーケットレポートを作成してください。

Step5. 見通しコメントの生成

- Step4の「messages」を使用し、以下の3パターンの見通し作成
 - ▶楽観的な見通し
 - ▶中立的な見通し
 - ▶悲観的な見通し

見通しコメント生成のための「messages」

~市況コメント生成のための「messages」~ [assistant]

<3.4節で生成した市況コメント>

[user]

これまでのマーケットレポートを踏まえて、<u>東京株式</u>市場の「楽観的な見通し」、「中立的な見通し」、「悲 観的な見通し」を教えてください。

目次

●背景

• 手法

• 分析設定

• 分析結果

データセット

時系列データ (右図)

▶Refinitiv Datastreamから取得

表 1	分析に使用する市場データ	
地域資産	国内(日本)	国外(米国)
株式	TOPIX	S&P 500
債券	Nomura BPI 総合指数 最終利回り (単利)	米国債 10 年物 利回り

• ニュース記事

▶期間 :2022年1月1日~2023年9月30日

▶元データ:ロイターニュース記事

▶件数 : 市場サマリー or マーケットサマリーを含む記事990件

• 市況コメント、見通しコメント

▶期間:2023年4月~2023年9月

▶資料:各資産運用会社の月次投信ディスクロージャー資料

▶評価:各市場ごと3ファンド、合計12ファンドのデータを使用

精度評価指標(市況コメント)

- 定性評価
 - ▶実際の市況コメントと自動生成されたコメントにトピックを付与
 - ▶以下の評価指標を計算

一致率 =
$$\frac{|A \cap B|}{|A \cup B|}$$
, 適合率 = $\frac{|A \cap B|}{|A|}$, 再現率 = $\frac{|A \cap B|}{|B|}$

A:生成した市況コメントに含まれるトピックの集合、B:実際の市況コメントに含まれるトピックの集合

- 定量評価
 - ▶コサイン類似度
 - ✓2つのテキスト全体の類似性を測る指標(範囲:[-1,1])
 - ➤ BERT Score
 - ✔テキスト間の意味的類似性を測る指標(範囲:[-1,1])
 - ✔コサイン類似度より詳細なトークンレベルの類似性を評価

Hallucinationの影響評価(市況コメント)

- 市況コメントに対して行う▶各トピックを以下のように人手で分類
 - (1)要因が起こっていない、または、事実と異なる
 - (2)要因は起こっているが、一般的に因果関係がない
 - (3)要因は起こっており、一般的に因果関係があることが知られているが、極性が事実と一致していない
 - (4)要因は起こっており、一般的に因果関係があり、極 性が一致している

精度評価指標(見通しコメント)

- 「自動生成コメント」と「実際の見通しコメント」の識別テスト
 - ▶社員(運用部社員と若手社員、各6名)が実際のものか自動生成されたものか判別
 - ▶実際の見通しコメント2問、自動生成コメント2問
 - ▶「楽観的」、「中立的」、「悲観的」な見通しから1つ抽出

目次

●背景

• 手法

• 分析設定

• 分析結果

結果:定性(市況コメント)

- 実際のコメント同士の一致率が精度が最も高い(国外債券市場除く)
- zero-shotよりfew-shotの方が精度が高い
 - ▶過去のトピックと似たコメントを生成するため
 - ▶債券市場は変動要因が少ないので、 過去データを与えると精度向上

表 2 市況コメントの定性評価結果				
市場	評価指標	zero-shot	few-shot	人手作成間
国内株式	一致率	0.108	0.124	0.176
	適合率	0.207	0.235	-
	再現率	0.171	0.197	-
	一致率	0.044	0.114	0.319
国内債券	適合率	0.052	0.172	-
	再現率	0.200	0.245	-
	一致率	0.110	0.123	0.190
国外株式	適合率	0.160	0.223	-
	再現率	0.230	0.213	-
国外債券	一致率	0.138	0.224	0.207
	適合率	0.188	0.287	-
	再現率	0.395	0.350	-

結果:定量(市況コメント)

- Zero-shotよりもfew-shotの方が精度が高い ▶定性と同じ結果
- 人手よりもfew-shotが精度が良い市場が存在
 - ▶国内株式市場以外は有用
 - ▶株式市場は変動要因が多く一致率が低い傾向

人手作成間
0.797
0.799
0.682
0.696
-
0.739
0.768
-
0.675
0.704
-
_

結果:Hallucination (市況コメント)

Few-shotの方がHallucinationが多い
 ▶トピックが少ない市場(債券市場)において、
 過去の市況コメントを参考にし、
 生成を行うことが原因

表 3 市況コメントの Hallucination 割合			
市場	トピック分類	zero-shot	few-shot
	(1) 事実ではない	0.017 (=1/59)	0.114 (=20/175)
	(2) 因果関係なし	0.136 (=8/59)	0.086 (=15/175)
国内株式	(3) 極性不一致	0.000 (=0/59)	0.097 (=17/175)
	(1)+(2)+(3)	0.153 (=9/59)	0.297 (=52/175)
	(4) 正しい記述	0.847 (=50/59)	0.703 (=123/175)
	(1) 事実ではない	0.020 (=1/51)	0.022 (=2/91)
	(2) 因果関係なし	0.098 (=5/51)	0.066 (=6/91)
国内債券	(3) 極性不一致	0.020 (=1/51)	0.055 (=5/91)
	(1)+(2)+(3)	0.137 (=7/51)	0.143 (=13/91)
	(4) 正しい記述	0.863 (=44/51)	0.857 (=78/91)
	(1) 事実ではない	0.017 (=1/58)	0.029 (=3/105)
	(2) 因果関係なし	0.034 (=2/58)	0.048 (=5/105)
国外株式	(3) 極性不一致	0.069 (=4/58)	0.038 (=4/105)
	(1)+(2)+(3)	0.121 (=7/58)	0.114 (=12/105)
	(4) 正しい記述	0.879 (=51/58)	0.886 (=93/105)
	(1) 事実ではない	0.023 (=1/44)	0.033 (=3/90)
	(2) 因果関係なし	0.136 (=6/44)	0.156 (=14/90)
国外債券	(3) 極性不一致	0.000 (=0/44)	0.000 (=0/90)
	(1)+(2)+(3)	0.159 (=7/44)	0.189 (=17/90)
	(4) 正しい記述	0.841 (=37/44)	0.811 (=73/90)

結果:判別精度評価(見通しコメント)

• 運用年数が長いほど、正解率が高い

	表 4 見通し	コメントの定性評価の約	店果
	運用部の	運用部以外 (若手)	全体の
	正解率	の正解率	正解率
Q1	1.000	0.833	0.917
Q2	1.000	0.833	0.917
Q3	0.667	0.500	0.583
Q4	0.667	1.000	0.833
全体	0.833	0.792	0.813

• Hallucinationが生じている

▶誤ったまま生成する可能性があるので、現段階では運用は厳しい

見通しコメントは作成&評価が難しい

まとめ

• 市況及び見通しコメントを自動生成するツールを作成

- ▶課題は盛沢山
- 市況・見通しコメントを書く際の参考にできる
 - ▶Hallucinationのチェックは必須
- 感想
 - ▶適切な評価指標を考えるのが難しい
 - ▶GPT4.0にしたらかなり有用そう
 - ▶RAGに変更したら精度高まりそう

付録:コサイン類似度

- ベクトル同士の向きの類似度を測る指標
 - 今回は、2つのテキスト間の意味的な近さを測る

定義(コサイン類似度)

ベクトルxとyは、 \mathbb{R}^n において、

$$egin{aligned} oldsymbol{x} = egin{pmatrix} oldsymbol{x}_1 \ dots \ oldsymbol{x}_n \end{pmatrix}, & oldsymbol{y} = egin{pmatrix} oldsymbol{y}_1 \ dots \ oldsymbol{y}_n \end{pmatrix} \end{aligned}$$

とする。 コサイン類似度 $\cos(x,y)$ は以下のように定義される。

$$\cos(x,y) = rac{\langle x,y
angle}{\|x\| \|y\|} = rac{\sum_{k=1}^n x_k y_k}{\sqrt{\sum_{k=1}^n x_k^2} \sqrt{\sum_{k=1}^n y_k^2}}$$

付録:BERT Scoreの計算方法

• F1がBERT Score

Step 1:正解となるテキスト、生成したテキストのそれぞれを、BERT に入力することで各トークンの分散表現を取得

Step 2:正解となるテキストの各トークンと生成したテキストの各トークンの全てのペアのコサイン類似度を計算 Step 3:トークンごとに得られたコサイン類似度の最大値 を用いて、適合率、再現率、Fl スコアを計算

正解となるテキストを BERT に入力することで得られた分散表現を $x = \langle x_1, ..., x_k \rangle$ とし、生成したテキストを BERT に入力することで得られた分散表現を $\hat{x} = \langle \hat{x}_1, ..., \hat{x}_l \rangle$ とすると、以下に示す式で計算される.

再現率 =
$$\frac{1}{|x|} \sum_{x_i \in x} \max_{\hat{x}_j \in \hat{x}} x_i^T \hat{x}_j$$
 (3)

適合率 =
$$\frac{1}{|\hat{x}|} \sum_{\hat{x}_j \in \hat{x}} \max_{x_i \in x} x_i^T \hat{x}_j$$
 (4)

$$Fl$$
 スコア = $\frac{2 \times 再現率 \times 適合率}{再現率 + 適合率}$ (5)

付録:トピックのつけ方

[ニュース記事]

「上旬の国内株式市場は、米国市場の好調やドル高/円安の傾向を受けて上昇しました」

↓トピック化

「米株高,ポジティブ」、「円安,ポジティブ」