

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

Correction Série d'Exercices N° 2

A. Théorème de Thévenin

Le théorème de Thévenin s'énonce de la façon suivante: "En courant continu, tout réseau linéaire bilatéral à 2 bornes peut être remplacé par un générateur constitué d'une source de tension et d'une résistance série avec cette source."

Générateur de Thévenin

les étapes à suivre pour déterminer les valeurs correctes de R_{Th} et U_{Th} :

- 1. Retirer du réseau la branche à laquelle sera raccordé le générateur.
- 2. Repérer les 2 bornes du réseau.
- 3. Calculer R_{Th} . Pour ce faire, <u>court-circuiter toutes les sources de tension et mettre en circuit ouvert toutes les sources de courant</u>; déterminer ensuite la résistance équivalente totale présente aux 2 bornes repérées.
- **4.** Calculer U_{Th} . Pour ce faire, restituer au réseau ses sources de tension et de courant puis déterminer la tension en circuit ouvert aux bornes repérées.
- 5. Remplacer le réseau par le générateur et raccorder aux bornes de ce dernier la branche qui avait été retirée du réseau.

Faculté des sciences et de la technologie

Département : Génie Electrique

2^{éme} Année ST

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

B. Théorème de Norton

Le théorème de Norton s'énonce de la façon suivante : "En courant continu, tout réseau linéaire bilatéral à 2 bornes peut être remplacé par un générateur constitué d'une source de courant et d'une résistance en parallèle avec cette source."

Générateur de Norton

les étapes à suivre pour déterminer les valeurs correctes de R_N et de I_N :

- 1. Retirer du réseau la branche à laquelle sera raccordé le générateur.
- 2. Repérer les 2 bornes du réseau.
- **3.** Calculer R_N . Pour ce faire, <u>court-circuiter toutes les sources de tension et mettre en circuit ouvert toutes les sources de courant</u>; déterminer ensuite la résistance équivalente totale présente aux 2 bornes repérées.
- **4.** Calculer I_N . Pour ce faire, restituer au réseau ses sources de tension et de courant puis déterminer l'intensité de courant qui passerait dans un court-circuit reliant les 2 bornes repérées.
- 5. Remplacer le réseau par le générateur et raccorder aux bornes de ce dernier la branche qui avait été retirée du réseau.

Faculté des sciences et de la technologie

Département : Génie Electrique

2^{éme} Année ST

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

Exercice nº1

L'équivalent des générateurs de Thévenin et de Norton vus par la charge R_c

✓ <u>Le courant circulant dans la branche AB par l'application des théorèmes de Thévenin</u>

Etapes 1 et 2

- Retirer du réseau la branche à laquelle sera raccordé le générateur. Dans notre cas, il s'agit de la branche contenant AB.
- Repérer les 2 bornes du réseau.

Faculté des sciences et de la technologie

Département : Génie Electrique

2^{éme} Année ST

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

Etape 3: Calculons la résistance de Thévenin

court-circuiter les sources de tension et ouvrir la source de courant

$$R_{Th} = \frac{R_3 R_4}{R_3 + R_4}$$

Etape 4 : il s'agit de déterminer la tension U_{Th} en circuit ouvert.)

$$\begin{cases}
U_{Th} = E_2 - R_4 I_2 \\
U_{Th} = R_3 I_2 + E_1
\end{cases} \Rightarrow \frac{U_{Th} = \frac{1}{R_3 + R_4} (R_3 E_2 + R_4 E_1)$$

Faculté des sciences et de la technologie

Département : Génie Electrique

2^{éme} Année ST

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

Le courant circulant dans la branche AB par application des théorèmes de Norton

Etapes 1 et 2

Etape 3

court-circuiter les sources de tension et ouvrir la source de courant

Calculons la résistance de Norton : $R_N = \frac{R_3 R_4}{R_3 + R_4}$

Département : Génie Electrique

2^{éme} Année ST

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante : S.Ouarhlent

<u>Etape 4</u> Calculons le courant de Norton (déterminer l'intensité de courant qui passerait dans un court-circuit reliant les AB bornes repérées.)

$$I_N = \frac{E_1}{R_3} + \frac{E_2}{R_4}$$

✓ Vérification :

$$\underbrace{\frac{1}{R_3 + R_4} (R_3 E_2 + R_4 E_1)}_{U_{Th}} = \underbrace{\left(\frac{E_1}{R_3} + \frac{E_2}{R_4}\right)}_{I_N} \underbrace{\frac{R_3 R_4}{R_3 + R_4}}_{R_N}$$

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

Exercice n°2(Supplémentaire)

✓ Le courant circulant dans la branche AB par application des théorèmes de **Thévenin**

Etapes 1 et 2

- 1. Retirer du réseau la branche à laquelle sera raccordé le générateur. Dans notre cas, il s'agit de la branche contenant AB.
- 2. Repérer les 2 bornes du réseau.

Etape 3 Calculons la résistance de Thévenin

court-circuiter les sources de tension et ouvrir la source de courant

$$: R_{Th} = 6 + \frac{6*12}{6+12} = 6 + 4 = 10\Omega$$

Faculté des sciences et de la technologie

Département : Génie Electrique

2^{éme} Année ST

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

$$R_{Th} = 10\Omega$$

Etape 4 Calculons la tension de Thévenin U_{Th}

$$U_{Th} = 72 - 6i = 72 - 6\Omega(\frac{(U_{Th})}{12\Omega} - 6A)$$

$$\Rightarrow U_{Th} = 36 - \frac{1}{2}E_{Th} + 72 \Rightarrow U_{Th} = 72V$$

Calculons le courant I_{AB}

$$I_{AB} = \frac{72 - 8}{10 + 6} = 4A$$

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

 \checkmark Le courant circulant dans la branche AB par application des théorèmes de \underline{Norton}

Etapes 1 et 2

Etape 3

court-circuiter les sources de tension et ouvrir la source de courant

Calculons la résistance de Norton

$$R_N = 6 + \frac{6 * 12}{6 + 12} = 6 + 4 = 10\Omega$$

$$R_N = 10\Omega$$

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

Etape 4

Calculons le courant de Norton

 \checkmark Appliquer le théorème de superposition : $I_N = I_{N_1} + I_{N_2}$

✓ Transformer la source de tension 72v en source de courant, nous pouvons calculer un diviseur de courant entre les résistances : 6Ω , 12Ω , 6Ω

$$I_{N_1} = 4.8A$$

✓ La source de courant 6A est remise en circuit et nous pouvons calculer un diviseur de courant entre les résistances : 6Ω, 12Ω, 6Ω

Faculté des sciences et de la technologie

Département : Génie Electrique

2^{éme} Année ST

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

$$I_{N_1} = \frac{\frac{6 \times 12}{6 + 12}}{\frac{6 \times 12}{6 + 12} + 6} 6A = \frac{4}{4 + 6} 6A = 2.4A$$

$$I_{N_1}=2.4A$$

$$I_N = 4.8A + 2.4A = 7.2A$$

Calculons le courant I_{AB}

$$8 - 6I_{AB} = 10I$$
 or $I = I_N + I_{AB} \Rightarrow I_{AB} = \frac{10I_N - 8}{16} = 4A$

$$I_{AB_Norton} = I_{AB_Tévenin}$$

Faculté des sciences et de la technologie

Département : Génie Electrique

2^{éme} Année ST

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

Département : Génie Electrique

2^{éme} Année ST

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante : S.Ouarhlent

Exercice n°3 théorème de Millman.

Énoncé

Dans un réseau électrique de branches en parallèle, comprenant chacune un générateur de tension parfait en série avec un élément linéaire, la tension aux bornes des branches est égale à la somme des forces électromotrices respectivement multipliées par l'<u>admittance</u> de la branche, le tout divisé par la somme des admittances.

$$V_{AB} = \frac{\frac{E_1}{R_1} - \frac{E_2}{R_2} + \frac{E_3}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} = \frac{\frac{4}{16} - \frac{24}{4} + \frac{0}{6}}{\frac{1}{16} + \frac{1}{4} + \frac{1}{6}}$$

$$V_{AB} = -12V \Longrightarrow I = \frac{-12}{6} = -2A$$

Département : Génie Electrique

2^{éme} Année ST

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante : S.Ouarhlent

Exercice nº4

Le théorème de Kennelly (en hommage à Arthur Edwin Kennelly), ou transformation triangle-étoile, ou transformation $Y-\Delta$, ou encore transformation $T-\Pi$, est une technique mathématique qui permet de simplifier l'étude de certains réseaux électriques.

Tableau des formules de transformation (étoile vers triangle)

rablead des formules de transformation (etolie vers triangle)	
Avec les impédances	Avec les admittances
La somme des produits des impédances divisée par l'impédance opposée.	Le produit des admittances adjacentes divisé par la somme totale des admittances.
$Z_{AB} = rac{Z_{AT}.Z_{BT} + Z_{BT}.Z_{CT} + Z_{CT}.Z_{AT}}{Z_{CT}}$	$Y_{AB} = rac{Y_{AT}.Y_{BT}}{Y_{AT}+Y_{BT}+Y_{CT}}$
$Z_{BC} = rac{Z_{AT}.Z_{BT} + Z_{BT}.Z_{CT} + Z_{CT}.Z_{AT}}{Z_{AT}}$	$Y_{BC} = rac{Y_{BT}.Y_{CT}}{Y_{AT}+Y_{BT}+Y_{CT}}$
$Z_{AC} = rac{Z_{AT}.Z_{BT} + Z_{BT}.Z_{CT} + Z_{CT}.Z_{AT}}{Z_{BT}}$	$Y_{AC} = rac{Y_{CT}.Y_{AT}}{Y_{AT}+Y_{BT}+Y_{CT}}$

Tableau des formules de conversion (triangle vers étoile)

Avec les impédances	Avec les admittances
Le produit des impédances adjacentes divisé par la somme totale des	La somme des produits des admittances divisée par l'admittance
impédances.	opposée.
$Z_{AT} = rac{Z_{AB}.Z_{AC}}{Z_{AB}+Z_{BC}+Z_{AC}}$	$Y_{AT} = rac{Y_{AB}.Y_{BC} + Y_{CA}.Y_{AB} + Y_{BC}.Y_{CA}}{Y_{BC}}$
$Z_{BT} = rac{Z_{AB}.Z_{BC}}{Z_{AB}+Z_{BC}+Z_{AC}}$	$Y_{BT} = rac{Y_{AB}.Y_{BC} + Y_{CA}.Y_{AB} + Y_{BC}.Y_{CA}}{Y_{CA}}$
$Z_{CT} = rac{Z_{AC}.Z_{BC}}{Z_{AB} + Z_{BC} + Z_{AC}}$	$Y_{CT} = rac{Y_{AB}.Y_{BC} + Y_{CA}.Y_{AB} + Y_{BC}.Y_{CA}}{Y_{AB}}$

Activer Windows

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante : S.Ouarhlent

La résistance équivalente au réseau dipolaire passif AB par la méthode de kennely

ACD est un triangle, CDB aussi. On peut transformer l'un des deux en étoile.

$$R_{eq_1} = r + R = \frac{R}{3} + R = \frac{4R}{3}$$

Faculté des sciences et de la technologie

Département : Génie Electrique

2^{éme} Année ST

Matière : Electronique Fondamentale 1

Année Universitaire 2020-2021

Enseignante: S.Ouarhlent

$$\mathbf{A} \qquad \qquad \mathbf{B} \qquad \qquad \frac{R}{3} + \frac{2R}{3} = R$$