CODE: 20BST102

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Regular/Supplementary Examinations, July, 2023 **Differential Equations**

(Common to all Branches)

Time: 3 Hours Max Marks: 60

> Answer ONE Question from each Unit All Questions Carry Equal Marks

All parts of the Question must be answered at one place

Solve $(8ydx + 8xdy) + x^2y^3(4ydx + 5xdy) = 0$ 1. a) 5M

Water at temperature 100°C cools in 10 min to80°C in a room of temperature 25°C. (a) b) 5M Findthe temperature of water after 20 min. when is the temperature (b) 40°C.

(OR)

Solve y' + yCotx = 2x Cosec x. 2. a) 5M

Find the orthogonal trajectories of the family of curves $y = c(\sec x + \tan x)$. b) 5M

UNIT-II

Solve $(D^4 + 10D^2 + 9)y = Cos(2x + 3)$. 3. 10M

(OR)

Solve $(D^2 + 1)y = \log Cosxby$ the method of variation of parameters. 4. 10M

UNIT-III

Find the Fourier series expansion of $f(x) = x^2$ when $0 < x < 2\pi$. Hence deduce $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{2^2}$ 5. 10M $\frac{1}{3^2} + \dots = \frac{\pi^2}{6}$

Find the two half-range cosine series expansions of 6.

10M

$$f(x) = \begin{cases} \frac{2kx}{L}, & \text{when } 0 < x < \frac{L}{2} \\ \frac{2k(L-x)}{L}, & \text{when } \frac{L}{2} < x < L \end{cases}$$

Find the total differential coefficient of $x^2yw.r.t.$ x when x, y are connected by x^2+xy+ 7. a) 5M

Expand $f(x, y) = x^3 + y^3 + xy^2$ in powers of (x - 1) and (y - 2) using Taylor's series. 5M b)

10M

Find the shortest distance from origin to the surface $xyz^2 = 2$. 8.

UNIT-V

Form a partial differential equation by eliminating the arbitrary constants from 9. 5M $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

Solve the partial differential equation $z(x - y) = px^2 - qy^2$. b) 5M

Form a partial differential equation by eliminating the arbitrary functions from 10. a) 5M $F(ax + by + cz, x^2 + y^2 + z^2) = 0.$

b) Solve x(y-z) p + y(z-x)q = z(x-y). 5M

Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x, 0) = 6 e^{-3x}$ by the Method of Separation of 11. 10M variables.

(OR)

12. Find the displacement of a string stretched between two fixed points at a distance 2capart 10M

when the string is initially at rest in equilibrium position and points of the string are given initial velocities v wherev = $\begin{cases} \frac{x}{c}, & \text{when } 0 < x < c \\ \frac{2c-x}{c}, & \text{when } c < x < 2x \end{cases}$

x being the distance measured from one end.

1 of 1

CODE: 18BST103

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, July, 2023

Differential Equations

(Common to CE, ME, CSE, IT Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks

All parts of the Question must be answered at one place

UNIT-I

6M Solve $\frac{dy}{dx} + \frac{y}{x} = x^3$

If the temperature of the air is $20^{\circ} C$ and the substance cools from $80^{\circ} C$ to $50^{\circ} C$ 6M in 10 minutes, find when the temperature will be $30^{\circ} C$.

Solve $(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy = 0$ 6M

6M Find the orthogonal trajectories of the family $y = ax^3$

3. a) Solve $(D^2 - 2D + 10)y = 0$, y(0) = 4, y'(0) = 16M

b) Solve $(D^2 + 2D + 3) y = e^x \cos x$ 6M

(OR)

4. $(D^2 + 4)y = \sec 2x$ by the method of variation of parameters 12M

UNIT-III

5. Prove that $(1-2xt-t^2)^{-1/2} = \sum_{n=0}^{\infty} t^n P_n(x)$

(OR)

6. Prove that $J_{n-1}(x) = \frac{n}{n} j_n(x) + J_n^{\dagger}(x)$

12M

<u>UNIT-IV</u>
Form a partial differential equation by eliminating arbitrary constants from 7. a) 6M $z = ax + by + \frac{a}{b}$

Form a partial differential equation by eliminating arbitrary function from 6M $f(x^2 + 2yz, y^2 + 2xz) = 0$

8. a) Solve $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$.

6M 6M

12M

b) Solve $p^2 + q^2 = x + y$

9. Solve $(D^2 + 4DD' + 4D'^2)z = e^{x-y}$ 12M

10. Solve $(D^3 - 7DD^{12} - 6D^{13})z = \sin(2x + y)$ 12M

CODE: 18BST102 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, July, 2023

DIFFERENTIAL EQUATIONS AND TRANSFORMTHEORY

(Common to EEE, ECE Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit

All Questions Carry Equal Marks

All parts of the Question must be answered at one place

UNIT-I

1. a) Solve $\frac{dy}{dx} = \frac{x(2 \log x + 1)}{\sin y + y \cos y}$ 6M

b) Solve $\frac{dy}{dx} = e^{3x-2y}$. 6M

(OR)

Solve $(1 + 2xy \cos x^2 - 2xy) dx + (\sin x^2 - x^2) dy = 0$ 2. 12M

Find a Fourier series to represent x^2 in the interval (-l, l)3. 12M

(OR)

Find the complex form of the Fourier series of Fourier series of $f(x) = e^{-x}$ in 6M 4. a) $-1 \le x \le 1$

Express f(x) = x as a half range size series in 0 < x < 2. 6M b)

Find the Fourier transform of $f(x) = \begin{cases} \frac{UNIT-III}{1 \text{ for } |x| < 1} < 1 \\ 0 \text{ for } |x| > 1 \end{cases}$ 5. 12M

Hence evaluated $\int_{0}^{\infty} \frac{\sin x}{x} dx$

Using finite Fourier transform, solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ givenand u(x,0)=2x u(0,t), u(4,t)=06. 12M 0 where 0 < x < 4, t > 0.

Find the Laplace transform of the function $f(t) = \begin{cases} E \sin \omega t, & 0 < t < \frac{\pi}{\omega} \\ 0, & \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}$ 7. a)6M

Evaluate $L^{-1} \left\{ \frac{e^{-s} - 3e^{-3s}}{s^2} \right\}$. b) 6M

Find the inverse transform of $\frac{2s^2-6s+5}{s^3-6s^2+11s-6}$ 8. a)

Find the Laplace transform of the function f(t) = |t - 1| + |t + 1|b) 6M

6M

Find the Z-transform of the following: (i) $3n - 4\sin\frac{n\pi}{4} + 5a$; (ii) $(n + 1)^2$ 9. a) 6M

Use convolution theorem to evaluate $Z^{-1}\left\{\frac{z^2}{(z-a)(z-b)}\right\}$ 6M b)

Find the inverse Z-transform of $\frac{z}{(z+1)^2}$ by division method. 10. a) 6M

b) 6M Find the inverse Z-transform of $\frac{2z}{[(z-1)(z^2+1)]}$

CODE: 16BS1002 SET

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, July, 2023

ENGINEERING MATHEMATICS – II

(Common to all branches)

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place

UNIT-I

1. a Determine f(1.6) using Newton's forward difference formula, from the following data 7M

х	1	1.4	1.8	2.2
f(x)	3.49	4.82	5.96	6.5

b Compute f(10) such that f(1) = 168, f(7) = 192, f(15) = 336 using Lagrange's 7M interpolation formula.

(OR)

2. a Compute a real root of $x^4 - 32 = 0$ correct to 4 decimal places by Regula Falsi 7M method

b Compute a real root of the equation $3x = \cos x + 1$ by Newton Raphson method

UNIT-II

3. a Evaluate $\int_{1}^{2} \frac{dx}{x}$ by using Simpson's $\frac{1}{3}$ rule with n = 10

s $\frac{1}{3}$ rule with n = 10

b Determine f'(25) using Newton's backward difference formula, from the following data

(OK)

4. a Solve $\frac{dy}{dx} = x(1+y)$ with y(1) = 1 at x = 1.1by Modified Euler's method taking h = 0.05

b Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0) = 1 at

x = 0.2, 0.4

UNIT-III

5. a Find the Laplace transform of $\sinh 3t \cos^2 t$

7M

7M

7M

7M

7M

b Find $L^{-1}\left\{\frac{s}{(s+3)^2+4}\right\}$

7M

6. a Evaluate $\int_0^\infty \frac{e^{-\sqrt{2}t}\sinh t\sin t}{t} dt$ by using Laplace transform

7M

7M

Solve $(D^2 + \omega^2)y = \cos \omega t$ given that y = Dy = 0 at t = 0 by using Laplace transform method.

UNIT-IV

7. a Determine the Fourier series for $f(x) = |x| \text{ in } (-\pi, \pi)$

7M

b Determine the half range sine series $f(x) = e^x$ in (0,1)

7M

7M

- 8. a Obtain the Fourier series for $f(x) = \begin{cases} -\pi & for \pi < x < 0 \\ x & for 0 < x < \pi \end{cases}$ in $(-\pi, \pi)$
 - b
 Express $f(x) = \begin{cases} x, & for \ 0 < x < \frac{\pi}{2} \\ \pi x & for \ \frac{\pi}{2} < x < \pi \end{cases}$ as Fourier cosine series in $(0, \pi)$

UNIT-V

- 9. a Solve the partial differential equation $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$
 - **7M**
 - Solve $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$ and $u = e^{-5y}$ when x = 0 for all values of y
- **7M**

(OR)

Solve the one dimensional wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ subject to $y(0,t) = 0, \ y(\pi,t) = 0, \ y(x,0) = \sin 2x \ \text{and} \ \frac{\partial y}{\partial t}(x,0) = 0, \text{ where } 0 \le x \le \pi \text{ and } t \ge 0$

2 of 2

CODE: 13BS1003 ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI

(AUTONOMOUS)

I B.Tech II Sem Supplementary Examinations, July, 2023 **ENGINEERING MATHEMATICS -III**

(Common to CE, ME, CSE, IT, ECE & EEE)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- Reduce the matrix $\begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}$ to echelon form 1. a)
 - b)
 - Determine the rank of the matrix $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ If the sum of the eigen values of $\begin{bmatrix} 3 & 4 & 5 \\ 2 & a & 4 \\ 1 & 2 & 5 \end{bmatrix}$ is 10, then find 'a'. c)
 - d) Write the real symmetric matrix of the Quadratic form $x_1^2 + 3x_2^2 + 3x_3^2 2x_2x_3$
 - Define Fourier transform e)
 - Find the Fourier coefficient a_0 in the Fourier series expansion of f) $f(x) = |\cos x|, -\pi < x < \pi$.
 - Determine the Z-transform of $n^2 3^n$
 - State Damping rule of Z- transform h)
 - i) Determine the value of $\Gamma(\frac{5}{2})$
 - Define Beta function j)

PART-B

Answer one question from each unit

[5x12=60M]

6M

6M

UNIT-I

- Reduce the matrix $\begin{bmatrix} 8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4 \end{bmatrix}$ into normal form. Hence find its rank 2. a)
 - b) Find the value of 'b' such that the system **6M** 2x + y + 2z = 0, x + y + 3z = 0, 4x + 3y + bz = 0 has non trivial solutions (OR)
- Apply Gauss elimination method to solve the system of equations 3. a) 2x + 4y + z = 3, 3x + 2y - 2z = -2, x - y + z = 6
 - Solve the equations 3x + 2y + 7z = 4, 2x + 3y + z = 5, 3x + 4y + z = 7 by Gaussb) **6M** Jordan method

UNIT-II

4. a) If $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$, find A^{-1} using Cayley-Hamilton theorem

b) Find Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ 6M

(OR)

5. Reduce the quadratic form $3x^2 + 3y^2 + 3z^2 + 2xy + 2xz - 2yz$ to canonical form by an orthogonal transformation

UNIT-III

6. a) Find the Fourier series for $f(x)=e^x$, $0 < x < 2\pi$.

Find Fourier sine transform of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{\pi e^{-m}}{2}$

(OR)

7. a) Find the half-range sine series for $f(x) = \pi x - x^2$, in $0 < x < \pi$

Find the Fourier transform of $f(x) = \begin{cases} 1, & \text{for } |x| < 1 \\ 0, & \text{for } |x| > 1 \end{cases}$ and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$

UNIT-IV

8. a) Find $Z[n\sin n\theta]$ 6M

b) If $\overline{f}(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$, find the values of f(2) and f(3) by Initial value

theorem

(OR)

9. a) Determine the inverse Z-transform of $\frac{z^2}{z^2 - 4z + 3}$ by convolution theorem

b) Using Z – transform, solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0$, $u_1 = 1$ 6M

UNIT-V

10. a) Show that $\beta(p,q) = \int_{0}^{1} \frac{x^{p-1} + x^{q-1}}{(1+x)^{p+q}} dx$

b) Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

(OR)

11. a) Show that $\Gamma(n)\Gamma\left(n+\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2n-1}}\Gamma(2n)$ for suitable value of n

b) $\frac{\pi}{2}$ Compute $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta} \ d\theta$ using Beta and Gamma functions