任课教师姓名

紪

K

 \mathbb{E}

[涨

理工大学试卷(A卷) 明

勤奋求学 诚信考试

考试科目: 大学物理B(2) 考试日期: 2021年1月5日 命题教师:

题号	选择题	填空题	计算题			总分
/\sigma_ \frac{1}{3}			1	2	3	7E /J
评分						
阅卷人						

物理基本常量

 $\mu_0 = 4 \pi \times 10^{-7} \text{H/m}$; 真空的电容率: $\varepsilon_0 = 8.85 \times 10^{-12} \text{F/m}$; 真空的磁导率: 电子静止质量: $m_e = 9.11 \times 10^{-31}$ kg; $1 \text{nm} = 10^{-9} \text{m}$; $1 \text{ eV} = 1.602 \times 10^{-19}$ J; 基本电荷: $e = 1.602 \times 10^{-19}$ C; 普朗克常数: $h = 6.63 \times 10^{-34}$ J·s; 1 atm = 1.013×10^5 Pa; 玻尔兹曼常数: $k = 1.38 \times 10^{-23}$ J/K

总分:

鼠

袔

考试座位号

选择题(共11题,每题3分,共33分)答案请填在"[

11、一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状 态,则它们

- - (B) 温度、压强都不同

(A) 温度相同、压强相同

- (C) 温度相同, 但氦气的压强大于氦气的压强
- (D) 温度相同, 但氦气的压强小于氦气的压强
- [2]、在压强不变的条件下,气体分子的平均碰撞次数 \overline{Z} 与温度T的关系为
- (A) 与T 无关
- (B) 与 \sqrt{T} 成正比
- (C) 与 \sqrt{T} 成反比
- (D) 与*T* 成反比
- 13、请判断下面正确的说法
- (A) 若可逆卡诺热机工作在温差愈大的两热源之间,其效率愈高
- (B) 若可逆卡诺致冷机工作在温差愈大的两热源之间, 其致冷系数愈大
- (C) 为提高卡诺热机效率可增大卡诺循环曲线所包围的面积
- (D) 一切可逆热机的效率都可写成 $\eta = 1 \frac{T_2}{T_1}$

第1页共6页

学院

計

铋

[]4、	质点做简谐振动,	周期为 T,	振幅为 A	。当它在一次打	振动中由 $-\frac{A}{2}$	运动到 $\frac{A}{2}$ 位	置所
花	时间)						2	2	
	(A)	<i>T</i> /4	(B) T	7/12	(C) T	7/8	(D) T/6		
[]5、	在弹性介质中传播	番的机械波,	其任意质え	元的能量			
	(A)	动能		目同,但总能:	量随时间多	变化			
	(B)	动能	经和势能变化规律	下同,但总能:	量不变				
	(C)	动能	经和势能不随时间	乏化					
	(D)	动能	 能和势能变化规律	下同,且总能	量也随时门	可变化			
[]6、	在平面简谐波的表	長达式 $y = Ac$	$\cos\omega(t-\frac{1}{2})$	$(\frac{x}{u})$ 中,下列说	法哪个正确?		
	(A)	$\frac{x}{u}$ \bar{z}	長示在距离波源 x タ	业的位相					
	(B)	$\frac{\omega x}{u}$	表示在距离波源 x	处的位相					
	(C)	$\frac{\omega x}{u}$	表示在 x 处的质元	比波源落后的	勺位相差				
	(D)	$\omega(t)$	$(-\frac{x}{u})$ 表示波源的(立相					
[]7、	关于光的相干有了	下列说法,其中	中正确的是	是			
	(A)	从-	一个单色光源发射的	的同一波面上 [。]	任意选取的	的两点光源为村	目干光源;		
	(B)	从同	同一单色光源所发射	付的任意两束	光,可视为	为两相干光束;			
	(C)	只要	更是频率相同的两数	由立光源都可	拠为相干 き	光源 ;			
	(D)	两札	目干光源发出的光源	支在空间任意 [。]	位置相遇	都会产生干涉现	见象。		
[]8、	在单缝夫琅禾费衍	射实验中,波	长为 λ 的	J单色光垂直入	射在宽度为 α	$a=4\lambda$ 的单组	逢上,
对	·应于符	行射1	角为 30°的方向,单	单缝处波阵面	可分成的学	半波带数目为			
	(A)	2	(B) 4		(C) 6	i	(D) 8		
[]9、	用频率为火的单色	色光照射一金月	属表面产生	上光电效应, 用	频率为 ν_2 的	单色光照射该	金属
表	面也产	生生さ	光电效应,而且测	得它们的光电	子有 E _{k1} >	<i>E_{k2}</i> 的关系,则			
	(A)	ν. >	v_2 (B)	$V_1 \leq V_2$	(C)	$V_{\cdot} = V_{\circ}$	(D) 不能	备 定	

(A) 粒子的动量不能确定	子的动量不能确定 (B) 粒子的位置不能确定					
(C) 粒子的位置和动量不能同时确定	(D) 粒子的位置和动量都不能确定					
[11 、若 α 粒子(电量为 $2e$)在磁感应则 α 粒子的德布罗意波长是	立强度为 B 的均匀磁	场中沿半径为 <i>R</i> 的圆形	形轨道运动,			
(A) $\frac{1}{eRBh}$ (B) $\frac{h}{eRB}$	(C) $\frac{1}{2eRBh}$	(D) $\frac{h}{2eRB}$				
总分: 二、填空题(共 12 题,	每题3分,共36	5分)				
1、今有质量为M,摩尔质量为μ	的双原子分子(刚性) 理想气体处于温度;	为T的平衡			
态,则其分子的平均平动动能为。 的内能为。						
2、图示的曲线分别表示了氢气和的麦克斯韦分子速率的分布情况。由图可知然速率为	1,氦气分子的最概					
为。		o 1000	$\overline{v/m \cdot s}$			
3、热力学第二定律的统计意	意义是: 在孤立系	统内部所发生的过	程,都向着			
的方向进行	行,从宏观上说,一	一切与热现象有关的实	以际过程都是			
o						
4、两个同方向同频率的简谐振动	力,其振动方程分别。	为:				
$x_1 = 6 \times 10^{-2} \cos(5t + \pi/2)(SI)$ 和 $x_2 = 2$	$\times 10^{-2} \sin(\pi - 5t) (SA$	I),则它们的合抗	辰动的振幅			
为, 初相位为	0					
	平面简谐波方程式为	$J y = A\cos(bt - cx)$	式中 A 、 b 、			

[]10、不确定关系式 $\Delta x \Delta p_x \geq \hbar/2$ 表示在x方向上

三、计算题(共3题,第一题11分,第二题10分,第三题10分,共31分)

1、如图所示,有一定量的理想气体,从初态 $a(p_1,V_1)$ 开始,经过一个等容过程达到压

强为 $p_1/4$ 的 b 态,再经过一个等压过程达到状态 c,最后经等温过程而完成一个循环。求该循环过

程中系统对外作的功W和所吸收的热量Q。

2、如图所示为一平面简谐波在 t=0 时刻的波形图,设此简谐波的频率为 250 Hz,且此时质点 P 的运动方向向下,求:

- (1)判定该波的传播方向;
- (2)0处质点的振动方程;
- (3) 该波的波函数;
- (4) 在距原点 O 为 100 m 处质点的振动方程.

3、某种单色光垂直入射到每厘米有 8000 条刻线的光栅上,如果第一级谱线的衍射角为 30°,试求:

- (1) 该光栅的光栅常数;
- (2) 入射光的波长;
- (3) 已知衍射条纹无缺级, 求实际可观察到的光谱线的最高级次? 共有几条谱线?