Concurrencia y Recuperabilidad Paradigma Optimista

Lic. Andrea Manna

2024

Introducción

Bibliografía y Definición

Bibliografía: Database Systems. The Complete Book.
 Second Edition. Hector García-Molina, J.D. Ullman y
 Jennifer Widom (Capítulo 18)

Bibliografía y Definición

- Bibliografía: Database Systems. The Complete Book.
 Second Edition. Hector García-Molina, J.D. Ullman y
 Jennifer Widom (Capítulo 18)
- Estos métodos asumen que no ocurrirá un comportamiento no serializable y actúan para reparar el problema sólo cuando ocurre una violación aparente.

Bibliografía y Definición

- Bibliografía: Database Systems. The Complete Book.
 Second Edition. Hector García-Molina, J.D. Ullman y
 Jennifer Widom (Capítulo 18)
- Estos métodos asumen que no ocurrirá un comportamiento no serializable y actúan para reparar el problema sólo cuando ocurre una violación aparente.
- Métodos:
 - TimeStamping
 - TimeStamping Multiversion
 - Validación

Timestamping

• Cada transacción T tiene un único número llamado **timestamp**: TS(T). Esta marca de tiempo es asignada en orden ascendente. Es decir si una transaccion T_1 ocurre, posee un timestamp $TS(T_1)$ y si luego una transaccion T_2 ocurre, posee un timestamp $TS(T_2)$ de manera tal que

$$TS(T_1) < TS(T_2)$$

• Cada transacción T tiene un único número llamado **timestamp**: TS(T). Esta marca de tiempo es asignada en orden ascendente. Es decir si una transaccion T_1 ocurre, posee un timestamp $TS(T_1)$ y si luego una transaccion T_2 ocurre, posee un timestamp $TS(T_2)$ de manera tal que

$$TS(T_1) < TS(T_2)$$

- Para generar los timestamps se puede:
 - Usar el reloj del sistema.
 - ② El scheduler o planificador mantiene un contador: Una transacción nueva que comienza siempre tiene un número mayor que una que comenzó antes.

• Cada transacción T tiene un único número llamado **timestamp**: TS(T). Esta marca de tiempo es asignada en orden ascendente. Es decir si una transaccion T_1 ocurre, posee un timestamp $TS(T_1)$ y si luego una transaccion T_2 ocurre, posee un timestamp $TS(T_2)$ de manera tal que

$$TS(T_1) < TS(T_2)$$

- Para generar los timestamps se puede:
 - Usar el reloj del sistema.
 - El scheduler o planificador mantiene un contador: Una transacción nueva que comienza siempre tiene un número mayor que una que comenzó antes.
- El planificador debe mantener una tabla de las transacciones y sus timestamps.

• Cada transacción T tiene un único número llamado **timestamp**: TS(T). Esta marca de tiempo es asignada en orden ascendente. Es decir si una transacción T_1 ocurre, posee un timestamp $TS(T_1)$ y si luego una transacción T_2 ocurre, posee un timestamp $TS(T_2)$ de manera tal que

$$TS(T_1) < TS(T_2)$$

- Para generar los timestamps se puede:
 - Usar el reloj del sistema.
 - El scheduler o planificador mantiene un contador: Una transacción nueva que comienza siempre tiene un número mayor que una que comenzó antes.
- El planificador debe mantener una tabla de las transacciones y sus timestamps.
- El planificador maneja la ejecución concurrente de tal manera que los timestamps determinan el orden de serialización

Cada elemento de la base de datos, X, debe asociarse a dos timestamp y un bit extra.

 RT(X): tiempo de lectura, el timestamp más alto de una transacción que ha leído X

Cada elemento de la base de datos, X, debe asociarse a dos *timestamp* y un bit extra.

- RT(X): tiempo de lectura, el timestamp más alto de una transacción que ha leído X
- WT(X): tiempo de escritura, el timestamp más alto de una transacción ha escrito X

Cada elemento de la base de datos, X, debe asociarse a dos *timestamp* y un bit extra.

- RT(X): tiempo de lectura, el timestamp más alto de una transacción que ha leído X
- WT(X): tiempo de escritura, el timestamp más alto de una transacción ha escrito X
- C(X): bit de commit para X, es verdadero si y sólo si la transacción más reciente que escribió X ha realizado commit

- El planificador asume que el orden de llegada de las transacciones es el orden serial en que deberían parecer que se ejecutan.
- El planificador además de asignar timestamps y actualizar RT,
 WT y C para cada elemento de una transacción, debe verificar que cuando ocurre una lectura o escritura también podría haber ocurrido si cada transacción se hubiera realizado instantáneamente al momento del timestamp.

Definición

Si eso no ocurre entonces el comportamiento se denomina: **físicamente irrealizable**.

Read too Late

- TS(T) < WT(X)
- Una transacción T intenta leer X pero el valor de escritura indica que X fue escrito después de que teóricamente debería haberlo leído T.

Read too Late

- TS(T) < WT(X)
- Una transacción T intenta leer X pero el valor de escritura indica que X fue escrito después de que teóricamente debería haberlo leído T.

T debe abortar

Write too Late

- WT(X) < TS(T) < RT(X).
- T intenta escribir pero el tiempo de lectura de X indica que alguna otra transacción debería haber leído el valor escrito por T (lee otro valor en su lugar).

Write too Late

- WT(X) < TS(T) < RT(X).
- T intenta escribir pero el tiempo de lectura de X indica que alguna otra transacción debería haber leído el valor escrito por T (lee otro valor en su lugar).

T debe abortar

Dirty data (Lectura Sucia)

Definición: Una lectura sucia ocurre cuando se le permite a una transacción la lectura de un elemento que ha sido modificado por otra transacción concurrente pero que todavía no ha sido cometida (commit).

Dirty data (Lectura Sucia)

Definición: Una lectura sucia ocurre cuando se le permite a una transacción la lectura de un elemento que ha sido modificado por otra transacción concurrente pero que todavía no ha sido cometida (commit).

Dirty data (Lectura Sucia)

Definición: Una lectura sucia ocurre cuando se le permite a una transacción la lectura de un elemento que ha sido modificado por otra transacción concurrente pero que todavía no ha sido cometida (commit).

Dirty Data

Por lo tanto, aunque no hay nada **físicamente irrealizable** sobre la lectura de X por parte de T, es mejor retrasar la lectura hasta que U realice el commit o aborte

Dirty Data: Ejemplo

Transacción 1	Transacción 2	usuarios	
/* Query 1 */		nombre	edad
/* Leerá 20 */		José	20
		Juana	25
	/* Consulta 2 */ UPDATE usuarios SET edad = 21 WHERE id = 1; /* No se hace commit */		
/* Query 1 */ SELECT edad FROM usuarios WHERE id = 1; /* Leerá 21 */			

Dirty Data: Ejemplo

Dirty Data: Ejemplo

Thomas write rule

La escritura puede "saltearse" cuando ya existe una escritura de una transacción con un timestamp de mayor valor.

Es decir cuando WT(X) > TS(T)

Thomas write rule

La escritura puede "saltearse" cuando ya existe una escritura de una transacción con un timestamp de mayor valor. Es decir cuando WT(X) > TS(T)

Thomas write rule

La escritura puede "saltearse" cuando ya existe una escritura de una transacción con un timestamp de mayor valor. Es decir cuando WT(X) > TS(T)

¿Que sucede si U realiza abort en vez de commit?

Thomas write rule

La escritura puede "saltearse" cuando ya existe una escritura de una transacción con un timestamp de mayor valor. Es decir cuando WT(X) > TS(T)

¿Que sucede si U realiza abort en vez de commit?

Problema si U aborta

Cuando una transacción U escribe un elemento X, la escritura es **tentativa** y **puede ser deshecha si U aborta**. C(X) se pone falso y el planificador hace una copia de los valores de X y de WT(X) previos.

Thomas write rule

La escritura puede "saltearse" cuando ya existe una escritura de una transacción con un timestamp de mayor valor. Es decir cuando WT(X) > TS(T)

¿Oue sucede si U realiza abort en vez de commit?

Problema si U aborta

Cuando una transacción U escribe un elemento X, la escritura es **tentativa** y **puede ser deshecha si U aborta**. C(X) se pone falso y el planificador hace una copia de los valores de X y de WT(X) previos.

Ante la solicitud de una transacción T para una lectura o escritura, el planificador puede:

Ante la solicitud de una transacción T para una lectura o escritura, el planificador puede:

Conceder la solicitud

Ante la solicitud de una transacción T para una lectura o escritura, el planificador puede:

- Conceder la solicitud
- Abortar y reiniciar T con un nuevo timestamp (rollback)

Ante la solicitud de una transacción T para una lectura o escritura, el planificador puede:

- Conceder la solicitud
- Abortar y reiniciar T con un nuevo timestamp (rollback)
- Oemorar T y decidir luego si abortar o conceder la solicitud (si el requerimiento es una lectura que podría ser sucia).

El planificador recibe una solicitud de **lectura** $r_t(X)$.

Caso 1: Si TS(T) >= WT(X) - es físicamente realizable es decir, no sucede read too late

El planificador recibe una solicitud de **lectura** $r_t(X)$.

Caso 1: Si TS(T) >= WT(X) - es físicamente realizable es decir, no sucede read too late

El planificador recibe una solicitud de **lectura** $r_t(X)$.

Caso 1: Si TS(T) >= WT(X) - es **físicamente realizable** es decir, no sucede read too late

Si C(X) es True, conceder la solicitud. Si TS(T)>RT(X) hacer RT(X)=TS(T), de otro modo no cambiar RT(X).

El planificador recibe una solicitud de **lectura** $r_t(X)$.

Caso 1: Si TS(T) >= WT(X) - es físicamente realizable es decir, no sucede read too late

- Si C(X) es True, conceder la solicitud. Si TS(T)>RT(X) hacer RT(X)=TS(T), de otro modo no cambiar RT(X).
- 2 Si **C(X) es False** demorar T hasta que C(X) sea verdadero o la transacción que escribió a X aborte.

El planificador recibe una solicitud de **lectura** $r_t(X)$.

Caso 2: Si TS(T) < WT(X) - es **físicamente irrealizable (read too late)**

El planificador recibe una solicitud de **lectura** $r_t(X)$.

Caso 2: Si TS(T) < WT(X) - es físicamente irrealizable (read too late)

El planificador recibe una solicitud de **lectura** $r_t(X)$.

Caso 2: Si TS(T) < WT(X) - es físicamente irrealizable (read too late)

Se hace **Rollback T** (abortar y reiniciar con un nuevo timestamp).

El planificador recibe una solicitud de **escritura** $w_t(X)$.

Caso 1: Si TS(T) >= RT(X) y TS(T) >= WT(X) - es **físicamente realizable**, es decir, no sucede write too late

El planificador recibe una solicitud de **escritura** $w_t(X)$.

Caso 1: Si TS(T) >= RT(X) y TS(T) >= WT(X) - es **físicamente realizable**, es decir, no sucede write too late

El planificador recibe una solicitud de **escritura** $w_t(X)$.

Caso 1: Si TS(T) >= RT(X) y TS(T) >= WT(X) - es **físicamente realizable**, es decir, no sucede write too late

- Escribir el nuevo valor para X
- \bigcirc WT(X) := TS(T), o sea asignar nuevo WT a X.
- C(X):= false, o sea poner en falso el bit de commit.

El planificador recibe una solicitud de **escritura** $w_t(X)$.

Caso 2: Si TS(T) >= RT(X) pero TS(T) < WT(X) - es **físicamente realizable**, pero ya hay un valor posterior en X.

El planificador recibe una solicitud de **escritura** $w_t(X)$.

Caso 2: Si TS(T) >= RT(X) pero TS(T) < WT(X) - es **físicamente** realizable, pero ya hay un valor posterior en X.

El planificador recibe una solicitud de **escritura** $w_t(X)$.

Caso 2: Si TS(T) >= RT(X) pero TS(T) < WT(X) - es **físicamente** realizable, pero ya hay un valor posterior en X.

- Si C(X) es true, ignora la escritura.
- 2 Si C(X) es falso demorar T hasta que C(X) sea verdadero o la transacción que escribió a X aborte

El planificador recibe una solicitud de **escritura** $w_t(X)$.

Caso 3: Si TS(T) < RT(X) - es **físicamente irrealizable**, es decir, write too late.

El planificador recibe una solicitud de **escritura** $w_t(X)$.

Caso 3: Si TS(T) < RT(X) - es **físicamente irrealizable**, es decir, write too late.

Se hace **Rollback T** (abortar y reiniciar con un nuevo timestamp).

El planificador recibe una solicitud de commit C(T).

Para cada uno de los elementos X escritos por T se hace:

El planificador recibe una solicitud de commit C(T).

Para cada uno de los elementos X escritos por T se hace:

- C(X) := true.
- Se permite proseguir a las transacciones que esperan a que X sea committed

El planificador recibe una solicitud de abort o rollback A(T) o R(T).

Cada transacción que estaba esperando por un elemento X que T escribió debe repetir el intento de lectura o escritura y verificar si ahora el intento es legal

Supongamos transacciones T_1 , T_2 y T_3 con los Timestamp como muestra la figura y suponer que el *commit* se realiza inmediatamente después del ultimo *write*.

T_1	T_{2}	T_3	A	\boldsymbol{B}	C
200	150	175			
$r_1(B)$;					
	$r_2(A);$	$r_3(C);$			
$w_1(B);$		13(5),			
$w_1(A);$	$w_2(C);$				
	$w_2(\mathcal{O}),$	(4)			
		$w_3(A);$			

Atención

T_1	T_{2}	T_3	A	B	C
200	150	175	RT=0	RT=0	RT=0
			WT=0	WT=0	WT=0
$r_1(B);$					
	$r_2(A);$				
		$r_3(C);$			
$w_1(B)$;					
$w_1(A);$	(0)				
	$w_2(C);$				
		$w_3(A);$			

Atención

T_1	T_{2}	T_3	A	\boldsymbol{B}	C	
200	150	175	RT=0	RT=0	RT=0	
			WT=0	WT=0	WT=0	
$r_1(B)$;				RT=200]	
	$r_2(A);$		RT=150			$TS(T) \ge WT(X)?Si! => como$
		$r_3(C);$			RT=175	TS(T)>RT(X) => RT(X)=TS(T)
$w_1(B);$						
$w_1(A);$						
	$w_2(C);$					
		$w_3(A);$				

Atención

T_1	T_{2}	T_3	A	\boldsymbol{B}	C	
200	150	175	BT=0	RT=0	RT=0	
			WT=0	WT=0	WT=0	
$r_1(B);$ $w_1(B);$ $w_1(A);$	$r_2(A);$ $w_2(C);$	$r_3(C);$	RT=150 WT=200	RT=200 WT=200	RT=175	TS(T) >= WT(X)?Si! => como TS(T) > RT(X) => RT(X) = TS(T) TS(T) >= RT(X) yTS(T) >= WT(X) => WT(X) = TS(T) C(A) = T, C(B) = T
		$w_3(A);$				

Atención

T_1	T_{2}	T_3	A	\boldsymbol{B}	C	
200	150	175	RT=0	RT=0	RT=0	
			WT=0	WT=0	WT=0	
$r_1(B);$ $w_1(B);$ $w_1(A);$	$r_2(A);$ $w_2(C);$ _	$r_3(C);$	RT=150 0 WT=200	RT=200 WT=200	RT=175	Ts(T) >= WT(X)?Si! => como $TS(T) > RT(X) => RT(X) = Ts(T)$ $Ts(T) >= RT(X) y Ts(T) >= WT(X)$ $=> WT(X) = Ts(T)$ $C(A) = T, C(B) = T$
	Rollback!	$w_3(A);$			irre	T) < RT (X) => es fisicamente alizable , por lo tanto, lback!

Atención

Ejemplo 2: Enunciado

Dada la siguiente historia en un planificador con timestamp: st1, st2, r2(X), st3, st4, r1(Y), r4(Z), w3(X), w3(Y), w4(Z), w2(X), w1(Y), r3(Z) en donde los valores iniciales de X, Y, Z son 0 y sucede que: t1 escribe Y = 1 t2 escribe X = 2 t3 escribe X = 3, Y = 30 t4 escribe Z = 4

 Decir que pasa en cada acción y que valores quedan en X,Y,Z si el planificador no utiliza la técnica multiversión

st1, st2, r2(X), st3, st4, r1(Y), r4(Z), w3(X), w3(Y), w4(Z), w2(X), w1(Y), r3(Z)

Tiempo	T1	T2	T3	T4
1	st1=100			
2		st2=200		
3		r2(X)		
4			st3=300	
5				st4=400
6	r1(Y)			
7				r4(Z)
8			w3(X)	
9			w3(Y)	
10				w4(Z)
11		w2(X)		
12	w1(Y)			
13			r3(Z)	

Asumimos los bits de commit para cada elemento inicialmente en true.

Tiempo	T1	T2	T3	T4	X=0, Y=0, Z=0	RT(X)=0, RT(Y)=0, RT(Z)=0	WT(X)=0, $WT(Y)=0$, $WT(Z)$
1	st1=100						
2		st2=200					
3		r2(X)					
4			st3=300				
5				st4=400			
6	r1(Y)						
7				r4(Z)			
8			w3(X)				
9			w3(Y)				
10				w4(Z)			
11		w2(X)					
12	w1(Y)						
13			r3(Z)				

st1, st2, r2(X), st3, st4, r1(Y), r4(Z), w3(X), w3(Y), w4(Z), w2(X), w1(Y), r3(Z)

Tiempo	T1	T2	T3	T4	X
1	st1=100				s
2		st2=200			S
3		r2(X)			
4			st3=300		
5				st4=400	
6	r1(Y)				
7				r4(Z)	
8			w3(X)		
9			w3(Y)		
10				w4(Z)	
11		w2(X)			1
12	w1(Y)				
13			r3(Z)		

X=0, Y=0, Z=0 RT(X)=0, RT(Y)=0, RT(Z)=0

Se lanza T1 con timestamp=100

Se lanza T2 con timestamp=200

WT(X)=0, WT(Y)=0, WT(Z)=0

WT(X)=0, WT(Y)=0, WT(Z)=0

Ejemplo 2: Resolución

st1, st2, r2(X), st3, st4, r1(Y), r4(Z), w3(X), w3(Y), w4(Z), w2(X), w1(Y), r3(Z)

Tiempo	T1	T2	T3	T4	X=0, Y=0, Z=0
1	st1=100				Se lanza T1 o
2		st2=200			Se lanza T2 o
3		r2(X)			Ts (T2) >= W
4			st3=300		
5				st4=400	
6	r1(Y)				
7				r4(Z)	
8			w3(X)		
9			w3(Y)		
10				w4(Z)	
11		w2(X)			
12	w1(Y)				
13			r3(Z)		

Ts (T2) \geq WT(X) (200 \geq 0) y como Ts (T2) \geq RT(X) (200 \geq 0) =>

Tiempo	T1	T2	T3	T4	X=0, Y=0, Z=0 $RT(X)=200$, $RT(Y)=0, RT(Z)=0$ $WT(X)=0, WT(Y)=0, WT(Z)=0$
1	st1=100				Se lanza T1 con timestamp=100
2		st2=200			Se lanza T2 con timestamp=200
3		r2(X)			Ts (T2) >= WT(X) (200>=0) y como Ts (T2) >= RT(X) (200>=0) => RT(X)=200
4			st3=300		0 0 0 0 0 0
5				st4=400	
6	r1(Y)				
7				r4(Z)	
8			w3(X)		
9			w3(Y)		
10				w4(Z)	
11		w2(X)			
12	w1(Y)				
13			r3(Z)		

Tiempo	T1	T2	T3	T4	X=0, Y=0, Z=0 RT(X)=200 , RT(Y)=0, RT(Z)=0 WT(X)=0, WT(Y)=0, WT(Z)=0
1	st1=100				Se lanza T1 con timestamp=100
2	2	st2=200			Se lanza T2 con timestamp=200
3		r2(X)			Ts (T2) >= WT(X) (200>=0) y como Ts (T2) >= RT(X) (200>=0) => RT(X)=200
4	ı		st3=300		Se lanza T3 con timestamp=300
	5			st4=400	Se lanza T4 con timestamp=400
6	r1(Y)				
7	7			r4(Z)	
8	3		w3(X)		
9			w3(Y)		
10				w4(Z)	
11		w2(X)			
12	w1(Y)				
13			r3(Z)		

Tiempo	T1	T2	T3	T4	X=0, Y=0, Z=0	RT(X)=200	, RT(Y)=0, RT(Z)=0	WT(X)=0, $WT(Y)=0$, $WT(Z)=0$
1	st1=100				Se lanza T1 con time	estamp=100		
2		st2=200			Se lanza T2 con time	estamp=200		
3		r2(X)			Ts (T2) >= WT(X) (20	0>=0) y com	no Ts (T2) >= RT(X) (200>:	=0) => RT(X)=200
4			st3=300		Se lanza T3 con time	estamp=300		
5				st4=400	Se lanza T4 con time	estamp=400		
6	r1(Y)				Idem tiempo 3 =>	(100 >= 0)	
7				r4(Z)	Idem tiempo 3 =>	(400 >= 0)	
8			w3(X)					
9			w3(Y)					
10				w4(Z)				
11		w2(X)						
12	w1(Y)							
13			r3(Z)					

Tiempo	T1	T2	T3	T4	X=0, Y=0, Z=0	RT(X)=200, RT(Y)=100, RT(Z)=400	WT(X)=0, WT(Y)=0, WT(Z)=0
1	st1=100				Se lanza T1 con time	estamp=100	
2		st2=200			Se lanza T2 con time	estamp=200	
3		r2(X)			Ts (T2) >= WT(X) (20	0>=0) y como Ts (T2) >= RT(X) (200>	>=0) => RT(X)=200
4			st3=300		Se lanza T3 con time	estamp=300	
5				st4=400	Se lanza T4 con time	estamp=400	
6	r1(Y)				Idem tiempo 3 =>	(100 >= 0) => RT(Y)=100	
7	'			r4(Z)	Idem tiempo 3 =>	(400 >= 0) => RT(Z)=400	
8			w3(X)				
9			w3(Y)				
10				w4(Z)			
11		w2(X)					
12	w1(Y)						
13			r3(Z)				

Tiempo	T1	T2	T3	T4	X=0, Y=0, Z=0 RT(X)=200, RT(Y)=100, RT(Z)=400 WT(X)=0, WT(Y)=0, WT(Z)=0
1	st1=100				Se lanza T1 con timestamp=100
2		st2=200			Se lanza T2 con timestamp=200
3		r2(X)			Ts (T2) >= WT(X) (200>=0) y como Ts (T2) >= RT(X) (200>=0) => RT(X)=200
4			st3=300		Se lanza T3 con timestamp=300
5				st4=400	Se lanza T4 con timestamp=400
6	r1(Y)				Idem tiempo 3 => (100 >= 0) => RT(Y)=100
7	'			r4(Z)	Idem tiempo 3 => (400 >= 0) => RT(Z)=400
8			w3(X)		Ts (T3) >= RT(X) (300>=200) y Ts (T3) >= WT (X) (300>=0) =>
9			w3(Y)		
10				w4(Z)	
11		w2(X)			
12	w1(Y)				
13			r3(Z)		

Tiempo	T1	T2	T3	T4	X=3, Y=0, Z=0	RT(X)=200, RT(Y)=	100, RT(Z)=400	WT(X)= 300, WT(Y)=0, WT(Z)=0
1	st1=100				Se lanza T1 con time	stamp=100		
2		st2=200			Se lanza T2 con time	stamp=200		
3		r2(X)			Ts (T2) >= WT(X) (200	0>=0) y como Ts	(T2) >= RT(X) (20)	00>=0) => RT(X)=200
4			st3=300		Se lanza T3 con time	stamp=300		
5				st4=400	Se lanza T4 con time	stamp=400		
6	r1(Y)				Idem tiempo 3 =>	(100 >= 0) =>	RT(Y)=100	
7				r4(Z)	Idem tiempo 3 =>	(400 >= 0) =>	RT(Z)=400	
8			w3(X)		Ts (T3) >= RT(X) (300:	>=200) y Ts (T3)	>= WT (X) (300)	>=0) => x:= 3, WT(X)= 300, C(X)=false
9			w3(Y)					
10				w4(Z)				
11		w2(X)						
12	w1(Y)							
13			r3(Z)					

Tiempo	T1	T2	T3	T4	K=3, Y=0, Z=0 RT(X)=200, RT(Y)=100,	RT(Z)=400 $WT(X)=300$, $WT(Y)=0$, $WT(Z)=0$
1	st1=100				Se lanza T1 con timestamp=100	
2		st2=200			Se lanza T2 con timestamp=200	
3		r2(X)			Ts (T2) >= WT(X) (200>=0) y como Ts (T2)	>= RT(X) (200>=0) => RT(X)=200
4			st3=300		Se lanza T3 con timestamp=300	
5				st4=400	Se lanza T4 con timestamp=400	
6	r1(Y)				dem tiempo 3 => (100 >= 0) => RT(Y)=100
7				r4(Z)	dem tiempo 3 => (400 >= 0) => RT(2	Z)=400
8			w3(X)		Ts (T3) >= RT(X) (300>=200) y Ts (T3) >= W	/T(X)(300>=0) => x:= 3, WT(X)= 300, C(X)=false
9			w3(Y)		dem tiempo 8 =>	Y:=30, WT(Y)=300, C(Y)=false
10				w4(Z)	dem tiempo 8 =>	Z:= 4, WT(Z)= 400, C(Z)=true
11		w2(X)				
12	w1(Y)					
13			r3(7)			

Tiempo	T1	T2	T3	T4	X=3, Y=30, Z=4 RT(X)=200), RT(Y)=100 , RT(Z)=400	WT(X)=300, WT(Y)=300, WT(Z)=400
1	st1=100				Se lanza T1 con timesta	mp=100	
2		st2=200			Se lanza T2 con timesta	mp=200	
3		r2(X)			Ts (T2) >= WT(X) (200>=	0) y como Ts (T2) >= RT	(X) (200>=0) => RT(X)=200
4			st3=300		Se lanza T3 con timesta	mp=300	
5				st4=400	Se lanza T4 con timesta	mp=400	
6	r1(Y)				Idem tiempo 3 => (100 >= 0) => RT(Y)=10	0
7	'			r4(Z)	Idem tiempo 3 => (400 >= 0) => RT(Z)=40	0
8			w3(X)		Ts (T3) >= RT(X) (300>=2	200) y Ts (T3) >= WT (X)	(300>=0) => x:= 3, WT(X)= 300, C(X)=false
9			w3(Y)		Idem tiempo 8 =>		Y:=30, WT(Y)=300, C(Y)=false
10				w4(Z)	Idem tiempo 8 =>		Z:= 4, WT(Z)= 400, C(Z)=true
11		w2(X)					
12	w1(Y)						
13			r3(7)		1		

Tiempo	T1	T2	T3	T4	X=3, Y=30, Z=4 RT(X)=200	0, RT(Y)=100, RT(Z)=400	WT(X) = 300, $WT(Y) = 300$, $WT(Z) = 400$
1	st1=100				Se lanza T1 con timesta	amp=100	
2		st2=200			Se lanza T2 con timesta	amp=200	
3		r2(X)			Ts (T2) >= WT(X) (200>=	=0) y como Ts (T2) >= RT	(X) (200>=0) => RT(X)=200
4			st3=300		Se lanza T3 con timesta	amp=300	
5				st4=400	Se lanza T4 con timesta	amp=400	
6	r1(Y)				Idem tiempo 3 => ((100 >= 0) => RT(Y)=10	0
7				r4(Z)	Idem tiempo 3 => ((400 >= 0) => RT(Z)=40	0
8			w3(X)		Ts (T3) >= RT(X) (300>=2	200) y Ts (T3) >= WT (X)	(300>=0) => x:= 3, WT(X)= 300, C(X)=false
9			w3(Y)		Idem tiempo 8 =>		Y:=30, WT(Y)=300, C(Y)=false
10				w4(Z)	Idem tiempo 8 =>		Z:= 4, WT(Z)= 400, C(Z)=true
11		w2(X)			Ts (T2) >= RT(X) (200>=200)	pero Ts (T2) < WT (X) (200<	800) =>
12	w1(Y)						
13			r3(Z)				

Tiempo	T1	T2	T3	T4	X=3, Y=30, Z=4 RT(X)=200, RT(Y)=100, RT(Z)=400 WT(X)=300, WT(Y)=300, WT(Z)=400
1	st1=100				Se lanza T1 con timestamp=100
2	2	st2=200			Se lanza T2 con timestamp=200
3	3	r2(X)			Ts (T2) >= WT(X) (200>=0) y como Ts (T2) >= RT(X) (200>=0) => RT(X)=200
4	ı		st3=300		Se lanza T3 con timestamp=300
5	5			st4=400	Se lanza T4 con timestamp=400
6	r1(Y)				Idem tiempo 3 => (100 >= 0) => RT(Y)=100
7	7			r4(Z)	Idem tiempo 3 => (400 >= 0) => RT(Z)=400
8	3		w3(X)		Ts (T3) >= RT(X) (300>=200) y Ts (T3) >= WT (X) (300>=0) => $x:=3$, $wt(x)=300$, $c(x)=false$
9	9		w3(Y)		Idem tiempo 8 => Y:=30, WT(Y)=300, C(Y)=false
10)			w4(Z)	Idem tiempo 8 => Z:= 4, WT(Z)= 400, C(Z)=true
11	ı	w2(X)			Ts (T2) >= RT(X) (200>=200) pero Ts (T2) < WT (X) (200<300) => Se demora la escritura hasta que T3 finalice o aborte
12	w1(Y)				
12	,		r2/7)		

Tiempo	T1	T2	T3	T4	X=3, Y=30, Z=4 RT(X)=200, RT(Y)=100, RT(Z)=400 WT(X)=300, WT(Y)=300, WT(Z)=400
1	st1=100				Se lanza T1 con timestamp=100
2		st2=200			Se lanza T2 con timestamp=200
3		r2(X)			Ts (T2) >= WT(X) (200>=0) y como Ts (T2) >= RT(X) (200>=0) => RT(X)=200
4			st3=300		Se lanza T3 con timestamp=300
5				st4=400	Se lanza T4 con timestamp=400
6	r1(Y)				Idem tiempo 3 => (100 >= 0) => RT(Y)=100
7	'			r4(Z)	Idem tiempo 3 => (400 >= 0) => RT(Z)=400
8			w3(X)		Ts (T3) >= RT(X) (300>=200) y Ts (T3) >= WT (X) (300>=0) => $x:=3$, $wT(X)=300$, $C(X)=false$
9			w3(Y)		Idem tiempo 8 => Y:=30, WT(Y)=300, C(Y)=false
10				w4(Z)	Idem tiempo 8 => Z:= 4, WT(Z)= 400, C(Z)=true
11		w2(X)			Ts (T2) >= RT(X) (200>=200) pero Ts (T2) < WT (X) (200<300) => Se demora la escritura hasta que T3 finalice o aborte
12	w1(Y)				Ts (T1) >= RT(Y) (100>=100) pero Ts (T1) < WT (Y) (100<300) => Se demora la escritura hasta que T3 finalice o aborte
13			r3(Z)		

Tiempo	T1	T2	T3	T4	X=3, Y=30, Z=4 RT(X)=	200, RT(Y)=100, RT(Z)=400	WT(X)=300, WT(Y)=300, WT(Z)=400
1	st1=100				Se lanza T1 con time	stamp=100	
2		st2=200			Se lanza T2 con time	stamp=200	
3		r2(X)			Ts (T2) >= WT(X) (200)>=0) y como Ts (T2) >= R7	$\Gamma(X) (200>=0) => RT(X)=200$
4			st3=300		Se lanza T3 con time	stamp=300	
5				st4=400	Se lanza T4 con time	stamp=400	
6	r1(Y)				Idem tiempo 3 =>	(100 >= 0) => RT(Y)=10	00
7				r4(Z)	Idem tiempo 3 =>	(400 >= 0) => RT(Z)=40	00
8			w3(X)		Ts (T3) >= RT(X) (300	>=200) y Ts (T3) >= WT (X) (300>=0) => x:= 3, WT(X)= 300, C(X)=false
9			w3(Y)		Idem tiempo 8 =>		Y:=30, WT(Y)=300, C(Y)=false
10				w4(Z)	Idem tiempo 8 =>		Z:= 4, WT(Z)= 400, C(Z)=true
11		w2(X)			Ts (T2) >= RT(X) (200>=200) per	ro Ts (T2) < WT (X) (200<300) => Se d	emora la escritura hasta que T3 finalice o aborte
12	w1(Y)				Ts (T1) >= RT(Y) (100>=100) per	ro Ts (T1) < WT (Y) (100<300) => Se d	emora la escritura hasta que T3 finalice o aborte
13			r3(Z)		TS(T3) < WT(Z) (300<	(400) =>	

st1, st2, r2(X), st3, st4, r1(Y), r4(Z), w3(X), w3(Y), w4(Z), w2(X), w1(Y), r3(Z)

Tiempo	T1	T2	T3	T4	X=3, Y=30, Z=4 RT(X)=2	:00, RT(Y)=100, RT(Z)	=400 WT(X)=300, WT(Y)=300, WT	Γ(Z)= 400
1	st1=100				Se lanza T1 con times	tamp=100		
2		st2=200			Se lanza T2 con times	tamp=200		
3		r2(X)			Ts (T2) >= WT(X) (200	>=0) y como Ts (T2)	>= RT(X) (200>=0) => RT(X)=200	
4			st3=300		Se lanza T3 con times	tamp=300		
5				st4=400	Se lanza T4 con times	tamp=400		
6	r1(Y)				Idem tiempo 3 =>	(100 >= 0) => RT	(Y)=100	
7	,			r4(Z)	Idem tiempo 3 =>	(400 >= 0) => RT	(Z)=400	
8			w3(X)		Ts (T3) >= RT(X) (300>	=200) y Ts (T3) >= 1	WT (X) $(300>=0) => x:= 3, WT(X)= 300,$	C(X)=false
9			w3(Y)		Idem tiempo 8 =>		Y:=30, WT(Y)=300, C(Y)=fals	se
10				w4(Z)	Idem tiempo 8 =>		Z:= 4, WT(Z)= 400, C(Z)=true	e
11		w2(X)			Ts (T2) >= RT(X) (200>=200) perd	Ts (T2) < WT (X) (200<300)	⇒ Se demora la escritura hasta que T3 finalica	e o aborte
12	w1(Y)				Ts (T1) >= RT(Y) (100>=100) perd	Ts (T1) < WT (Y) (100<300)	⇒ Se demora la escritura hasta que T3 finalica	e o aborte
13			r3(Z)		TS(T3) < WT(Z) (300<400) =>			

Aborta T3, se produce un Rollback Al abortar T3, las escrituras en el tiempo 11 y 12 que estaban demoradas continuan y T1 y T2 terminan normalmente

También termina T4

st1, st2, r2(X), st3, st4, r1(Y), r4(Z), w3(X), w3(Y), w4(Z), w2(X), w1(Y), r3(Z)

Tiempo	T1	T2	T3	T4	X=3, Y=30, Z=4 RT(X)=200, RT(Y)=100, RT(Z)=400 WT(X)=300, WT(Y)=300, WT(Z)=400
1	st1=100				Se lanza T1 con timestamp=100
2		st2=200			Se lanza T2 con timestamp=200
3		r2(X)			Ts (T2) >= WT(X) (200>=0) y como Ts (T2) >= RT(X) (200>=0) => $RT(X)=200$
4			st3=300		Se lanza T3 con timestamp=300
5				st4=400	Se lanza T4 con timestamp=400
6	r1(Y)				Idem tiempo 3 => (100 >= 0) => RT(Y)=100
7	'			r4(Z)	Idem tiempo 3 => (400 >= 0) => RT(Z)=400
8			w3(X)		Ts (T3) >= RT(X) (300>=200) y Ts (T3) >= WT (X) (300>=0) => $x:=3$, $wT(X)=300$, $C(X)=false$
9			w3(Y)		Idem tiempo 8 => Y:=30, WT(Y)=300, C(Y)=false
10				w4(Z)	Idem tiempo 8 => Z:= 4, WT(Z)= 400, C(Z)=true
11		w2(X)			Ts (T2) >= RT(X) (200>=200) pero Ts (T2) < WT (X) (200<300) => Se demora la escritura hasta que T3 finalice o aborte
12	w1(Y)				Ts (T1) >= RT(Y) (100>=100) pero Ts (T1) < WT (Y) (100<300) => Se demora la escritura hasta que T3 finalice o aborte
13			r3(Z)		TS(T3) < WT(Z) (300<400) =>

Aborta T3, se produce un Rollback

Al abortar T3, las escrituras en el tiempo 11 y 12

que estaban demoradas continuan y T1 y T2 terminan normalmente

También termina T4

Valores finales: X=2, Y=1, Z=4

st1, st2, r2(X), st3, st4, r1(Y), r4(Z), w3(X), w3(Y), w4(Z), w2(X), w1(Y), r3(Z)

Tiempo	T1	T2	T3	T4	X=2, Y=1, Z=4 RT(X)=200, RT(Y)=100, RT(Z)=400 WT(X)= 200, WT(Y)=100, WT(Z)= 400		
1	st1=100				Se lanza T1 con timestamp=100		
2		st2=200			Se lanza T2 con timestamp=200		
3		r2(X)			Ts (T2) >= WT(X) (200>=0) y como Ts (T2) >= RT(X) (200>=0) => RT(X)=200		
4			st3=300		Se lanza T3 con timestamp=300		
5				st4=400	Se lanza T4 con timestamp=400		
6	r1(Y)				Idem tiempo 3 => (100 >= 0) => RT(Y)=100		
7	'			r4(Z)	Idem tiempo 3 => (400 >= 0) => RT(Z)=400		
8			w3(X)		Ts (T3) >= RT(X) (300>=200) y Ts (T3) >= WT (X) (300>=0) => $x:=3$, $wT(X)=300$, $C(X)=false$		
9			w3(Y)		Idem tiempo 8 => Y:=30, WT(Y)=300, C(Y)=false		
10				w4(Z)	Idem tiempo 8 => Z:= 4, WT(Z)= 400, C(Z)=true		
11		w2(X)			Ts (T2) >= RT(X) (200>=200) pero Ts (T2) < WT (X) (200<300) => Se demora la escritura hasta que T3 finalice o aborte		
12	w1(Y)				Ts (T1) >= RT(Y) (100>=100) pero Ts (T1) < WT (Y) (100<300) => Se demora la escritura hasta que T3 finalice o aborte		
13			r3(Z)		TS(T3) < WT(Z) (300<400) =>		

Aborta T3, se produce un Rollback

Al abortar T3, las escrituras en el tiempo 11 y 12 que estaban demoradas continuan y T1 y T2 terminan normalmente

También termina T4

Valores finales: X=2, Y=1, Z=4

Optimista vs. Pesimista

Compromiso

- Generalmente el timestamping es mejor cuando la mayoría de las transacciones son de lectura o es raro que haya transacciones que traten de leer y escribir el mismo elemento.
- En situaciones de mucho conflicto, locking suele comportarse mejor.
- Se establece entonces un compromiso utilizado en los sistemas comerciales:
 - Transacciones read-only vs. Transacciones read-write.
 - Transacciones read-write se manejan con locking pero crean versiones de los elementos.
 - Transacciones read-only se manejan con versiones creadas por transacciones read-write