1. kérdés

Helyes

1,00/1,00 pont

Feladat

(-1,-2), $(0,-\frac{1}{2})$, (1,0), (2,1) pontokra illeszkedő minimális fokszámú polinom értékét szeretnénk tudni az x vektorban felsorolt helyeken. Egészítse ki a lenti kódot úgy, hogy ezeket az értékeket adja vissza.

Ne feledkezzen meg a sorvégi pontosvesszőről!

Kiegészítő információk:

Ennél a feladatnál tilos használni ["for", "while", "do", "until", "if", "switch"]-re épülő konstrukciókat.

For example:

Test	Result	
disp(fun([-0.5,0.5]))	-1.03125 -0.21875	

Answer: (penalty regime: 0 %)

Reset answer

```
function y=fun(x)

t = [-1 0 1 2];

f = [-2 -0.5 0 1];

p = polyfit(t, f, 3);

y = polyval(p, x);

end

function y=fun(x)

t = [-1 0 1 2];

f = [-2 -0.5 0 1];

p = polyval(p, x);

end
```

	Test	Expected	Got	
~	<pre>disp(forbidden({'for','while','do','until','if','switch'}));</pre>	restrictions: passed	restrictions: passed	~
~	disp(fun([-0.5,0.5]))	-1.03125 -0.21875	-1.03125 -0.21875	~
~	disp(fun([-0.2,0.4,2.3]))	-0.672 -0.264 1.62175	-0.672 -0.264 1.62175	~

Passed all tests! <

► Show/hide question author's solution (Octave)

Helyes

A kérdésre 1,00 / 1,00 pontot kapott.

2. kérdés

Helyes

1,00/1,00 pont

Feladat

Az

$$f(x) = \cos^2(\pi x) + e^x$$

függvényre az xa vektorban felsorolt helyeken illeszkedő minimális fokszámú polinom együtthatóit szeretnénk tudni. Egészítse ki a lenti kódot úgy, hogy ezeknek az együtthatóknak a vektorát adja vissza (a felsorolást a főegyütthatóval kezdve).

Ne feledkezzen meg a sorvégi pontosvesszőről!

Kiegészítő információk:

Ennél a feladatnál tilos használni ["for", "while", "do", "until", "if", "switch"]-re épülő konstrukciókat.

For example:

Test	Result
disp(fun([0.1,0.2,0.3]))	-2.33964 -0.63579 2.09665

Answer: (penalty regime: 0 %)

Reset answer

	Test	Expected	Got	
~	<pre>disp(forbidden({'for','while','do','until','if','switch'}));</pre>	restrictions: passed	restrictions: passed	~
~	disp(fun([0.1,0.2,0.3]))	-2.33964 -0.63579 2.09665	-2.33964 -0.63579 2.09665	~
~	disp(fun([0.1,0.2,0.3,0.4]))	19.8866 -14.2716 1.55174 1.97734	19.8866 -14.2716 1.55174 1.97734	~
~	disp(fun([0.15,0.2,0.25,0.3,0.35]))	0.0535234 20.3264 -14.6229 1.64033 1.97006	0.0535234 20.3264 -14.6229 1.64033 1.97006	~
~	disp(fun([0.15,0.2,0.25,0.3]))	20.3746 -14.6388 1.64262 1.96994	20.3746 -14.6388 1.64262 1.96994	~