סיכומי הרצאות ⁻ אלגברה לינארית 2א

מיכאל פרבר ברודסקי

תוכן עניינים

2	ובים מלינארית 1	דברים חש	1
2	טריצות דומות	1.1	
2		לכסון	2
2	ָטורים עצמיים	2.1	
2	לינום אופייני	2.2 פו	

1 דברים חשובים מלינארית 1

1.1 מטריצות דומות

 $A=P^{-1}\cdot B\cdot P$ יהיו $A,B\in M_n\left(\mathbb{F}
ight)$ היו דומות אם קיימת מטריצה ו־B דומות כי $A,B\in M_n\left(\mathbb{F}
ight)$ משפט: נתון $A,B\in M_n\left(\mathbb{F}
ight)$ ריבועיות, הבאים שקולים:

- . דומות A, B
- $[T]_C=A,[T]_{C'}=B$ של על כך ש־C,C' ובסיסים T:V o V פיימת .2
- $[T]_{C'}=B^{-}$ ע כך של C' סיים בסיס אז קיים על עכך עד ער כך עד ער כך עד ער אז קיים בסיס אז לכל T:V o V.

ואם A,B דומות אז:

- $\operatorname{Rank}(A) = \operatorname{Rank}(B), \mathcal{N}(A) = \mathcal{N}(B)$.1
- .tr $(A)=\sum_{i=1}^{n}{(A)_{i,i}}$ באשר $\operatorname{tr}(A)=\operatorname{tr}(B)$.2
 - $\det(A) = \det(B)$.3

2 לכסון

נגדיר מטריצה אלכסונית להיות מטריצה ריבועית $A\in M_n\left(\mathbb{F}\right)$ שבה עבור להיות מטריצה להיות מטריצה היבועית לחיות מטריצה ריבועית היבועית Diag $(\lambda_1,\dots,\lambda_n)$

מטריצה לכסינה היא מטריצה שדומה למטריצה אלכסונית, ו
העתקה לכסינה היא מטריצה שדומה למטריצה אלכסונית. בסי
ס $[T]^B_B$ אלכסונית.

אם T העתקה לכסינה (כלומר מטריצה מייצגת כלשהי לכסינה) אז כל מטריצה מייצגת שלה היא לכסינה.

1.1 וקטורים עצמיים

נגדיר באופן הפוך, ערך עצמי של A להיות היות \overline{v} כך ש־ $abla \lambda \overline{v}$ באופן הפוך, ערך עצמי של $abla \lambda$ הוא ל כך שקיים וקטור עצמי $abla \lambda$ לערך עצמי ל לערך עצמי $abla \lambda$

הערכים העצמיים הם האיברים שנמצאים על האלכסון במטריצה האלכסונית שדומה ל-A, עד כדי סידורם על האלכסון.

המרחב של הוקטורים העצמיים הוא $V_{\lambda}=\{\overline{v}\in V\mid A\overline{v}=\lambda\overline{v}\}$ זה תמ"ו של המרחב של הוקטורים העצמיים הוא $V_{\lambda}=\{\overline{v}\in V\mid A\overline{v}=\lambda\overline{v}\}$ זה תמ"ו של .V

. הסכום של ה־ V_{λ} השונים הוא סכום ישר

2.2 פולינום אופייני

נסמן ב־ $|\lambda I - A|$ את הפולינום האופייני של $P_A(\lambda) = |\lambda I - A|$. מתקיים:

- זה פולינום מתוקן, כלומר המקדם המוביל הוא 1.
 - $P_A(\lambda)$ שורש של $\lambda \iff A$ שורש של $\lambda \bullet$
 - $.P_A=P_B$ אם A,B דומות אז

 $A\in M_{n}\left(\mathbb{F}
ight)$ משפט 1.2 המשפט המרכזי: תהא

נגדיר את הריבוי האלגברי של ρ_{α} (רו), להיות כמות הפעמים ש־ $(\lambda-\alpha)$ מופיע בפולינום (רו), להיות כמות הפעמים ש- $\rho_1=1, \rho_3=2$ אז $P_A(\lambda)=(\lambda-1)(\lambda-3)^2$ אם הפולינום הוא

 $\dim\left(V_{\lambda}\right)$ היות להיות את הריבוי הגיאומטרי את הריבוי הגיאומטרי את בנוסף נגדיר את

:מעל \mathbb{F} אמ"ם: A

- \mathbb{F} מתפרק לגורמים לינאריים מעל P $_{A}\left(\lambda
 ight)$.1
 - $ho_{\lambda}=\mu_{\lambda}$,A של λ ערך עצמי.

 $\mu_{\lambda} \leq
ho_{\lambda}$, משפט 2.2 לכל ערך עצמי

משפט 3.2 עבור $\lambda_1,\dots,\lambda_k$ הערכים העצמיים, $\lambda_1,\dots,\lambda_k$ ואם ואם P_A ($\lambda_1,\dots,\lambda_k$ מתפרק לגורמים לינאריים אז $\lambda_1,\dots,\lambda_k$ אם הערכים העצמיים, $\lambda_1,\dots,\lambda_k$

A שמורכב מוקטורים עצמיים של $B\subseteq \mathbb{F}^n$ פיים בסיס איים לכסינה לכסינה לכסינה אורכב מוקטורים של