Esercizi fatti a lezione

Vittorio Zaccaria

16 ottobre 2018

Indice

In	dice	1
1	Esercizi Linguaggio C	3
	1.1 Conversione tempo	3
	1.2 Tracing di programma	
	1.3 Terna pitagorica	5
	1.4 Tracing di programma	
	1.5 Tracing di programma	
2	Esercizi Linguaggio C - Array semplici e stringhe	9
	2.1 Calcolo del valore massimo all'interno di un vettore	9
	2.2 Tabella caratteri ASCII	11
	2.3 Conversione stringa da caratteri minuscoli a maiuscoli	12
	2.4 Stringhe palindrome	13
	2.5 Conta i caratteri	15
3	Esercizi Linguaggio C - Numerica e ordinamento	17
	3.1 Stampa divisori di un numero	17
	3.2 Numeri di Fibonacci	19
	3.3 Bubble sort	21
4		23
	4.1 Memorizzazione di date	23
	4.2 Calcolo distanza tra due punti su piano cartesiano	24
5	Esercizi su linguaggio C consigliati	27
6	Informazioni utili	31

Esercizi Linguaggio C

1.1 Conversione tempo

Si scriva un programma in linguaggio C con la seguente firma:

$$(tempoSec) \rightarrow (h,m,s)$$

Si assuma che i dati in ingresso, se ve ne sono, siano introdotti da tastiera e che i valori elaborati siano stampati a video.

DATI IN INGRESSO

• tempoSec: intervallo di tempo espresso in secondi

DATI DA ELABORARE

- h: il numero intero di ore corrispondente all'intervallo introdotto
- m: il rimanente numero intero di minuti
- s: il rimanente numero di secondi

ESEMPIO

```
Inserisci il numero di secondi: 3661
Equivalgono a 1 ore, 1 minuti e 1 secondi
```

```
#include <stdio.h>
   int main()
3
        int sec, min, h;
        printf("Inserisci il numero di secondi:\n");
        scanf("%d", &sec);
       h = sec/3600;
        min = (sec - h*3600)/60;
        sec = sec - h*3600 - min*60;
10
11
        printf("Equivalgono a %d ore, %d minuti e %d secondi\n", h, min, sec);
        return 0;
13
  }
14
```

1.2 Tracing di programma

In questo esercizio, cosidetto *di tracing*, viene richiesto di simulare "mentalmente" il programma seguente e predire che cosa stamperà a terminale durante la sua esecuzione. In pratica, fate finta di essere voi il calcolatore ed eseguite le istruzioni partendo dalla prima fino a che non raggiungete l'ultima. Utilizzate un foglio di carta per annotare il valore corrente delle variabili e abbiate cura di tenerlo aggiornato ogni volta che eseguite "mentalmente" una istruzione.

PROGRAMMA DA STUDIARE:

```
main()
2
   {
        int i1 = 3, i2 = 4;
3
        float f1 = 15.45, f2 = 3.1415;
4
        char c1 = 'a', c2 = 'b';
5
7
        /*quanto valgono le seguenti operazioni eseguite in sequenza?*/
8
        i2 = i1 + 5;
9
        printf("i2 = %d\n", i2);
10
                         /* i1 convertito in float */
        f1 = i1 + 1.1;
11
        printf("f1 = %f\n", f1);
12
        f2 = f2 * f2;
13
        printf("f2 = %f\n", f2);
14
                                /* f2 convertito in intero */
        i1=f2+8;
15
        printf("i1 = %d\n", i1);
16
        i2 = i2 + c1; /* c1 = 97, i2 = 105 */
17
        printf("i2 = %d\n", i2);
18
                       /* 98 + 3 */
19
        c2 = c2 + 3;
        printf("c2 = %c (corrisponde al codice ASCII %d)\n", c2, c2);
20
        system("pause");
21
   }
22
```

```
1    i2 = 8
2    f1 = 4.100000
3    f2 = 9.869022
4    i1 = 17
5    i2 = 105
6    c2 = e (corrisponde al codice ASCII 101)
```

1.3. TERNA PITAGORICA 5

1.3 Terna pitagorica

In questo esercizio viene richiesta la scrittura di alcuni frammenti di programma in linguaggio C. A meno che non sia richiesto, non è necessario includere file headers di altre librerie o dichiarare un main. Inoltre, il testo non dichiara esplicitamente la firma dell'eventuale algoritmo da scrivere, il tipo dei dati in ingresso e di quelli da elaborare; tali informazioni sono infatti da dedurre dal testo stesso.

TESTO ESERCIZIO:

Scrivere un programma che verifica se una terna di numeri introdotti dall'utente rispetta il teorema di Pitagora:

$$x^2 + y^2 = z^2$$

```
#include <stdio.h>
    int main() {
            int cat1, cat2, ip;
3
            printf("Scrivi il valore del primo cateto:\n");
4
            scanf("%d", & cat1);
            printf("Scrivi il valore del secondo cateto:\n");
6
            scanf("%d", & cat2);
            printf("Scrivi il valore dell'ipotenusa:\n");
            scanf("%d", & ip);
            if(cat1*cat1 + cat2*cat2 == ip*ip) {
10
                    printf("La terna e' pitagorica\n");
11
            }
12
            else {
13
                    printf("La terna non e' pitagorica\n");
14
            }
   }
16
```

1.4 Tracing di programma

In questo esercizio, cosidetto *di tracing*, viene richiesto di simulare "mentalmente" il programma seguente e predire che cosa stamperà a terminale durante la sua esecuzione. In pratica, fate finta di essere voi il calcolatore ed eseguite le istruzioni partendo dalla prima fino a che non raggiungete l'ultima. Utilizzate un foglio di carta per annotare il valore corrente delle variabili e abbiate cura di tenerlo aggiornato ogni volta che eseguite "mentalmente" una istruzione.

PROGRAMMA DA STUDIARE:

```
int main() {
   int a = 0;
   if (a = 1) {
      printf("A è uguale a 1");
   } else {
      printf("A è uguale a 0");
   }
}
```

Soluzione

L'uso dell'operatore di assegnamento = porta ad eseguire il ramo *then* dell'istruzione di controllo if (il valore di un assegnamento è il valore assegnato) quindi viene stampato A è uguale a 1.

1.5 Tracing di programma

In questo esercizio, cosidetto *di tracing*, viene richiesto di simulare "mentalmente" il programma seguente e predire che cosa stamperà a terminale durante la sua esecuzione. In pratica, fate finta di essere voi il calcolatore ed eseguite le istruzioni partendo dalla prima fino a che non raggiungete l'ultima. Utilizzate un foglio di carta per annotare il valore corrente delle variabili e abbiate cura di tenerlo aggiornato ogni volta che eseguite "mentalmente" una istruzione.

PROGRAMMA DA STUDIARE:

```
int main() {
2
      int s, i, j;
3
      s = 0;
      for (i = 1; i <= 10; i++) {
4
        j = i * 2;
5
        /* Misura I e J */
7
        while (j > 0) {
          s = s + 1;
8
          j = j - 1;
9
10
        /* Misura S */
11
        if (s \% 2 == 0)
12
          printf("%d", s);
13
      }
14
    }
15
```

Soluzione

Per stabilire cosa (e quando) viene stampato alla linea 13, dobbiamo seguire l'andamento di s (la condizione alla riga 12 infatti dipende da s). A sua volta, s dipende da i e j; bisogna quindi ricavare l'andamento di i e j come prima cosa.

Per comodità, fissiamo alla riga 6 ed alla riga 11 i punti in cui "virtualmente" misuriamo il valore di i, j ed s. Ogni qualvolta che, eseguendo una istruzione alla volta, passeremo attraverso quelle righe, aggiungeremo i valori correnti delle variabili alla seguente tabella:

```
1  i alla riga 6 = 1 2 3 4 5 6 7 8 9 10
2  j alla riga 6 = 2 4 6 8 10 12 14 16 18 20
3  s alla riga 11 = 2 6 12 20 30 42 56 72 90 110
```

Dato l'andamento di s, l'istruzione printf verrà sempre eseguita (poiché s è sempre pari). Ciò significa che al terminale verrà stampato semplicemente il suo valore:

```
1 2 6 12 20 30 42 56 72 90 110
```

Esercizi Linguaggio C - Array semplici e stringhe

2.1 Calcolo del valore massimo all'interno di un vettore

Si scriva un programma in linguaggio C con la seguente firma:

$$(N, \mathsf{n}_1, \ldots, \mathsf{n}_N) \to (R)$$

Si assuma che i dati in ingresso, se ve ne sono, siano introdotti da tastiera e che i valori elaborati siano stampati a video.

DATI IN INGRESSO

- N: Rappresenta il numero di valori della sequenza inserita successivamente dall'utente
- n_i : Un valore intero inserito dall'utente come i -simo elemento

DATI DA ELABORARE

• R: Il massimo dei valori n_i

ESEMPIO

```
Di quanti valori vuoi calcolare il massimo? 3
Inserisci il valore 1: 7
Inserisci il valore 2: 3
Inserisci il valore 3: -1
Il valore massimo e': 7
```

 ${\it ulteriori\ vincoli\ e\ spiegazioni}$: Si crei un array che riesca a contenere 50 elementi e si memorizzino i valori inseriti in tale array. Si controlli che il valore di N sia maggiore di zero e inferiore a 50 prima di richiedere i numeri. Nel caso il valore di N sia maggiore di 50, richiederne il valore un'altra volta.

```
#include <stdio.h>

#define MAX 50

int main() {
   int N;
   int numeri[N];
   int i;
```

```
9
      int R;
      do {
10
        printf("Di quanti valori vuoi calcolare il massimo?");
11
        scanf("%d", &N);
12
      } while (N > 50 || N <= 0);
13
      for (i = 0; i < N; i++) {
14
        printf("Inserisci il valore %d:", i + 1);
15
16
        scanf("%d", &numeri[i]);
      }
17
      R = numeri[0];
18
19
      for (i = 1; i < N; i++) {
        if (numeri[i] > R) {
20
          R = numeri[i];
21
        }
22
23
      printf("Il valore massimo e': %d", R);
24
      return 0;
25
26
```

2.2 Tabella caratteri ASCII

Si scriva un programma in linguaggio C con la seguente firma:

$$() \rightarrow (l_1, l_2, \ldots)$$

Si assuma che i dati in ingresso, se ve ne sono, siano introdotti da tastiera e che i valori elaborati siano stampati a video.

DATI DA ELABORARE

• l_i : rappresente il carattere i-esimo dell'alfabeto

ESEMPIO

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ULTERIORI VINCOLI E SPIEGAZIONI: Non è possibile usare più di due printf nel codice. Si suggerisce di usare un ciclo for e di non introdurre arrays.

```
1  #include <stdio.h>
2
3  int main() {
4    char c;
5    for (c = 'A'; c <= 'Z'; c++) {
6       printf("%c", c);
7    }
8    return 0;
9  }</pre>
```

2.3 Conversione stringa da caratteri minuscoli a maiuscoli

In questo esercizio viene richiesta la scrittura di alcuni frammenti di programma in linguaggio C. A meno che non sia richiesto, non è necessario includere file headers di altre librerie o dichiarare un main. Inoltre, il testo non dichiara esplicitamente la firma dell'eventuale algoritmo da scrivere, il tipo dei dati in ingresso e di quelli da elaborare; tali informazioni sono infatti da dedurre dal testo stesso.

TESTO ESERCIZIO:

Scrivere un programma che converte una stringa di caratteri inseriti dall'utente in maiuscolo.

```
#include <stdio.h>
   #define MAX LEN 100
   int main() {
      int offset = 'A' - 'a';
5
      char s[MAX_LEN];
     int i = 0;
      printf(
          "Inserisci una stringa di caratteri minuscoli (no spazi, no numeri):\n");
      scanf("%s", s);
10
      while (s[i] != '\0') {
11
        if (s[i] >= 'a' && s[i] <= 'z') {
12
          s[i] += offset;
13
        }
15
16
      printf("La stringa ora e' %s\n", s);
17
18
      return 0;
19
   }
```

2.4. STRINGHE PALINDROME 13

2.4 Stringhe palindrome

Si scriva un programma in linguaggio C con la seguente firma:

```
(parola) \rightarrow (messaggio)
```

Si assuma che i dati in ingresso, se ve ne sono, siano introdotti da tastiera e che i valori elaborati siano stampati a video.

DATI IN INGRESSO

• parola: una stringa di massimo 50 caratteri

DATI DA ELABORARE

• messaggio: Si veda gli esempi sotto

ESEMPIO

```
Inserisci una parola: pippo
'pippo' NON è una parola palindroma

ESEMPIO
```

Inserisci una parola: anilina

'anilina' è una parola palindroma

ULTERIORI VINCOLI E SPIEGAZIONI: Una stringa è *palindroma* se, letta da destra a sinistra, equivale alla stessa letta da sinistra a destra.

```
#include <stdio.h>
2
   #include <string.h>
   #define MAX 50
4
   int main() {
      char parola[MAX];
      int i, palindroma, len;
      printf("Inserisci una parola: ");
10
      scanf("%s", parola);
11
12
      len = strlen(parola);
13
      palindroma = 1;
14
15
      for (i = 0; i < len / 2 && palindroma != 0; i++) {
16
        if (parola[i] != parola[len - 1 - i])
17
18
          palindroma = 0;
19
      }
20
      printf("'%s' ", parola);
21
22
      if (palindroma == 0)
23
        printf("NON ");
24
```

```
printf("è una parola palindroma\n");
return 0;
}
```

2.5. CONTA I CARATTERI 15

2.5 Conta i caratteri

In questo esercizio viene richiesta la scrittura di alcuni frammenti di programma in linguaggio C. A meno che non sia richiesto, non è necessario includere file headers di altre librerie o dichiarare un main. Inoltre, il testo non dichiara esplicitamente la firma dell'eventuale algoritmo da scrivere, il tipo dei dati in ingresso e di quelli da elaborare; tali informazioni sono infatti da dedurre dal testo stesso.

TESTO ESERCIZIO:

Si supponga di avere una stringa str contenente al massimo 100 caratteri alfabetici, senza spazi, ad esempio:

```
char str[100] = "aadddfffzzzzdd";
```

Scrivere una porzione di codice che, per ogni carattere c *a partire dall'ultimo fino ad arrivare al primo*, stampi senza lasciare spazi il carattere c, seguito dal numero di volte che questo compare consecutivamente in str. Ad esempio, per la stringa di cui sopra, il programma deve stampare:

d2z4f3d3a2

RISPOSTA/SOLUZIONE:

```
char c;
int freq = 1, i, n = strlen(str) - 1;
c = str[n];
for (i = n - 1; i >= 0; i--) {
   if (str[i] == c) {
      freq++;
   } else {
      printf("%c%d", c, freq);
      freq = 1;
      c = str[i];
}
printf("%c%d\n", c, freq);
```

Esercizi Linguaggio C - Numerica e ordinamento

3.1 Stampa divisori di un numero

Si scriva un programma in linguaggio C con la seguente firma:

$$(numero) \rightarrow (d_1, d_2, \ldots, d_k)$$

Si assuma che i dati in ingresso, se ve ne sono, siano introdotti da tastiera e che i valori elaborati siano stampati a video.

DATI IN INGRESSO

• numero: numero intero, maggiore di 0, di cui bisogna trovare i k divisori

DATI DA ELABORARE

• d_i: i-esimo divisore di numero

ESEMPIO

```
Inserisci un numero: 10
I divisori sono:
2
```

ESEMPIO

```
Inserisci un numero: 20
I divisori sono:
2
4
5
10
```

ULTERIORI VINCOLI E SPIEGAZIONI: Si ricordi che uno dei modi in cui e' possibile verificare se un numero (positivo) e' divisibile per un altro e' verificare se il resto della divisione tra il primo e il secondo numero sia nullo; ovvero, n e' divisibile per i se (n % i) e' uguale a 0.

```
1 #include <stdio.h>
1 int main() {
   int n, i;
   printf("Inserisci un numero: ");
   scanf("%d", &n);
    printf("I divisori sono: ");
6
     i = 1;
   while (i <= n) {}
     if (n % i == 0)
10
       printf("%d ", i);
     i++;
11
    }
12
    printf("\n");
13
14
    return ⊖;
  }
15
```

3.2. NUMERI DI FIBONACCI

3.2 Numeri di Fibonacci

Si scriva un programma in linguaggio C con la seguente firma:

$$(n) \rightarrow (f_0, \ldots f_n)$$

Si assuma che i dati in ingresso, se ve ne sono, siano introdotti da tastiera e che i valori elaborati siano stampati a video.

DATI DA ELABORARE

• f_j : il numero della serie di fibonacci in posizione j

DATI IN INGRESSO

• n: l'indice dell'ultimo numero della serie da stampare. Si assuma che l'utente inserisca un numero maggiore o uguale a 1

ESEMPIO

Indice dell'ultimo numero della serie da stampare: 5

0

1

_

3

5

ULTERIORI VINCOLI E SPIEGAZIONI:

Ricordiamo che la successione dei numeri di Fibonacci

$$[f_0, f_1, \ldots f_j \ldots]$$

è definita come segue:

$$f_{j} = \begin{cases} 0 & \text{se la posizione } j = 0\\ 1 & \text{se la posizione } j = 1\\ f_{j-1} + f_{j-2} & \text{se la posizione } j > 1 \end{cases}$$

$$(3.1)$$

Ulteriori vincoli sono i seguenti:

- La sequenza di valori f_j deve essere prodotta con un ciclo
- Non è possibile utilizzare array.
- Il massimo numero di variabili int utilizzabili è 5.

Suggerimento: si consiglia, per ciascuna iterazione j di utilizzare due variabili f1 ed f2, che contengano, rispettivamente, i valori di f_{j-1} ed f_{j-2} , da aggiornare ad ogni iterazione.

```
#include <stdio.h>
    main() {
     int f0, f1, f2, j, n;
      printf("Indice dell'ultimo numero della serie da stampare (>1): ");
      scanf("%d", &n);
5
6
      printf("0\n");
7
      printf("1\n");
10
     f2 = 0;
     f1 = 1;
11
     j = 2;
12
     while (j <= n) {
13
14
      f0 = f1 + f2;
      printf("%d\n", f0);
15
      f2 = f1;
16
      f1 = f0;
17
        j = j + 1;
18
    }
19
   }
20
```

3.3. BUBBLE SORT 21

3.3 Bubble sort

In questo esercizio viene richiesta la scrittura di alcuni frammenti di programma in linguaggio C. A meno che non sia richiesto, non è necessario includere file headers di altre librerie o dichiarare un main. Inoltre, il testo non dichiara esplicitamente la firma dell'eventuale algoritmo da scrivere, il tipo dei dati in ingresso e di quelli da elaborare; tali informazioni sono infatti da dedurre dal testo stesso.

TESTO ESERCIZIO:

Si scriva un programma che richieda una sequenza di numeri interi all'utente e la stampi ordinata in modo crescente. Si usi l'algoritmo del Bubble Sort.

```
#include <stdio.h>
    #define DIMENSIONE_ARRAY 10
    int main() {
      int elenco[DIMENSIONE_ARRAY];
      int i, j, temporaneo, n;
      do {
        printf("Inserisci il numero di elementi: ");
        scanf("%d", &n);
8
      } while (n >= DIMENSIONE_ARRAY);
      for (i = 0; i < n; i++) {
10
        printf("Inserisci elemento numero %d: ", i);
11
        scanf("%d", &elenco[i]);
12
13
      for (i = 0; i < n; i++) {
14
        for (j = 0; j < n - 1; j++) {
15
16
          if (elenco[j] > elenco[j + 1]) {
17
            temporaneo = elenco[j + 1];
            elenco[j + 1] = elenco[j];
18
            elenco[j] = temporaneo;
19
20
        }
21
22
      printf("Array ordinato: ");
23
      for (i = 0; i < n; i++) {
24
        printf("%d ", elenco[i]);
25
      }
26
   }
27
```

Esercizi Linguaggio C - Strutture dati e array

4.1 Memorizzazione di date

In questo esercizio viene richiesta la scrittura di alcuni frammenti di programma in linguaggio C. A meno che non sia richiesto, non è necessario includere file headers di altre librerie o dichiarare un main. Inoltre, il testo non dichiara esplicitamente la firma dell'eventuale algoritmo da scrivere, il tipo dei dati in ingresso e di quelli da elaborare; tali informazioni sono infatti da dedurre dal testo stesso.

TESTO ESERCIZIO:

Si chiede di estendere i tipi del C per rappresentare, in forma organica, i seguenti tipi:

- un tipo di dato tipo_orario atto a rappresentare un classico orario di ore, minuti e secondi.
- un tipo di dato tipo_data atto a rappresentare una classica data dell'anno.
- (usando i tipi definiti precedentemente) un tipo di dato tipo_evento atto a rappresentare un'evento caratterizzato da data e orario.
- un tipo di dato tipo_programma atto a rappresentare l'evento della trasmissione di un programma di cui si conosce il nome.
- due variabili, palinsesto e primaserata, di tipo array di 30 elementi di tipo_programma.

Si chiede inoltre di scrivere una parte di programma C che copi in primaserata tutti gli elementi di palinsesto che sono trasmessi tra le 20 e le 22.

4.2 Calcolo distanza tra due punti su piano cartesiano

Si scriva un programma in linguaggio C che implementi un algoritmo con la seguente firma:

$$(a_x, a_y, b_x, b_y) \rightarrow (dist(a,b))$$

Si assuma che i dati in ingresso, se ve ne sono, siano introdotti da tastiera e che i valori elaborati siano stampati a video. Il programma deve *ripetutamente* eseguire l'algoritmo finchè una *particolare condizione* di uscita non è verificata.

DATI IN INGRESSO

- a_x : coordinata x del punto cartesiano a
- a_y : coordinata y del punto cartesiano a
- b_x : coordinata x del punto cartesiano b
- b_y : coordinata y del punto cartesiano b

DATI DA ELABORARE

• dist(a,b): distanza euclidea fra a e b

CONDIZIONE DI USCITA: Il programma deve terminare se tutte e 4 le coordinate in ingresso sono pari a 0. **ULTERIORI VINCOLI E SPIEGAZIONI**: Deve essere definito ed utilizzato un nuovo tipo Punto atto a rappresentare in maniera organica un punto bidimensionale.

```
#include <math.h>
    #include <stdio.h>
2
    typedef struct {
4
5
      float x;
      float y;
    } Punto;
7
    int main() {
9
      Punto a, b;
10
11
      int uscita = 0;
      float distanza;
12
13
      do {
14
        printf("punto 1, coord x: ");
15
        scanf("%f", &a.x);
16
17
        printf("punto 1, coord y: ");
18
        scanf("%f", &a.y);
19
20
21
        printf("punto 2, coord x: ");
22
        scanf("%f", &b.x);
23
        printf("punto 2, coord y: ");
24
        scanf("%f", &b.y);
25
26
        if (a.x == 0 \&\& a.y == 0 \&\& b.x == 0 \&\& b.y == 0) {
27
          uscita = 1;
28
```

```
printf("Esco dal programma...\n");
29
        } else {
30
          distanza = sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
31
          printf("distanza: %f\n", distanza);
32
33
     } while (uscita == 0);
34
35
36
     return ⊖;
  }
37
```

Esercizi su linguaggio C consigliati

I seguenti sono esercizi semplici che possono essere verificati direttamente al calcolatore. Fallire i primi esercizi indica problemi gravi con la preparazione per l'esame.

1. Qual'è il valore della variabile b al termine di questo frammento di programma C?

```
int a;
int b;
a a = 3;
b = 2*a;
a = 6;
```

2. Qual'è il valore della variabile b al termine di questo frammento di programma C?

```
1 int a;
2 int b;
3 a = 3;
4 b = 2*a;
5 a = 6;
6 b = b*a;
```

3. Qualè il valore della variabile b al termine di questo frammento di programma C?

```
int a;
int b=0;
a a = 3;
while(a--) b++;
```

4. Qual'è il valore della variabile b al termine di questo frammento di programma C?

```
int a;
int b=0;
a a = 3;
while(--a) b++;
```

5. Qual'è il valore della variabile b al termine di questo frammento di programma C?

```
int a;
int b=1;
a = 3;
while(--a && b) b--;
```

6. Qual'è il problema con questo programma C?

```
int a;
int b;
a a = 3;
b = 2*b*a;
a = 6;
b = b*a;
```

7. Qual'è il valore della variabile b al termine di questo frammento di programma C?

```
int a;
int b=1;
for(a=4; a>0; a--) b++;
```

8. Qual'è il valore della variabile b al termine di questo frammento di programma C?

```
int a;
int b=1;
for(a=4; a>=0; a--) b++;
```

- 9. Scrivere un programma che data una stringa s da tastiera, la copia in un'altra stringa d senza usare la funzione strcpy.
- 10. Scrivere un programma che data una stringa s da tastiera, ne calcola e stampa la lunghezza senza usare la funzione strlen.
- 11. Scrivere un programma che date due stringhe nome e cognome lette da tastiera, le concatena in un unica stringa nome ECognome la stampa a video senza usare la funzione strcat.
- 12. Scrivere un programma che dato un vettore di 5 stringhe lette da tastiera, lo ordina usando bubble sort, strcmp e strcpy (si ricordi che non è possibile assegnare fra di loro stringhe con l'operatore di assegnamento).
- 13. Modificare il programma che determina se una stringa è palindroma in modo tale che ignori spazi eventualmente presenti nella stringa stessa. Ad esempio la stringa occorre portar aratro per rocco è palindroma se gli spazi vengono
- 14. Scrivere un programma che data una stringa s calcoli la frequenza di tutti i caratteri e la stampi a video.
- 15. Scrivere un programma che legga una serie di caratteri da tastiera e, solo se questi sono tutti numeri, converta il numero corrispondente in una variabile di tipo int e la stampi (non si considerino numeri negativi).
- 16. Scrivere un programma come quello precedente ma considerando che può essere presente un meno (-) prima della prima cifra e che quindi il numero possa essere negativo.

- 17. Scrivere un programma come quello precedente ma considerando che può essere un separatore di decimali e che quindi scriva il numero corrispondente in una variabile di tipo float.
- 18. Scrivere un programma che lette le dimensioni di una matrice ed il valore di ciascun suo elemento determini se questa sia "diagonale".
- 19. Scrivere un programma che lette le dimensioni di una matrice ed il valore di ciascun suo elemento determini se questa sia "simmetrica".

Informazioni utili

In questo capitolo sono riportate alcune tabelle e guide di riferimento utili alla soluzione degli esercizi.

Regular ASCII Chart (character codes 0-127)

_	7Fh	127 <i>d</i>	0	6Fh	111 <i>d</i>	ı	5Fh	095 <i>d</i>	0	4Fh	079 <i>d</i>	٠.	3Fh	063 <i>d</i>	\	2Fh	047 d	(us)	4	1Fh	031 d	(si)	٠	0Fh	015d
,	7Eh	126 <i>d</i>	n	6Eh	110 <i>d</i>	>	5Eh	094 d	N	4Eh	078d	~	3Eh	062 <i>d</i>	•	2Eh	046 <i>d</i>	(rs)	٠	1Eh	030 d	(so)	70	0Eh	014d
ب	7Dh	125 <i>d</i>	Ħ	6Dh	109 <i>d</i>	_	5Dh	093 <i>d</i>	≊	4Dh	077 <i>d</i>	II	3Dh	061 <i>d</i>	İ	2Dh	045 <i>d</i>	(gs)	‡	1Dh	029 <i>d</i>	(cr)	5	0Dh	013d
_	7Ch	124 <i>d</i>	1	6Ch	108 <i>d</i>	/	5Ch	092 <i>d</i>	г	4Ch	076d	٨	3Ch	060 <i>d</i>	,	2Ch	044 d	(fs)	_	1Ch	028 <i>d</i>	(np)		0Ch	012d
_	7Bh	123 <i>d</i>	አ	6Bh	107 <i>d</i>	_	5Bh	091 d	×	4Bh	075 <i>d</i>	٠.	3Bh	059 <i>d</i>	+	2Bh	043 <i>d</i>	(esc)	†	1Bh	027 d	(vt)	o,	0Bh	011d
N	7Ah	122d	٠.	6Ah	106 <i>d</i>	Z	5Ah	090 d	J	4Ah	074 <i>d</i>	••	3Ah	058 <i>d</i>	*	2Ah	042 <i>d</i>	(eof)		1Ah	026 d	(lf)	0	0Ah	010d
ч	79h	121 <i>d</i>	μ.	69h	105 <i>d</i>	Υ	59h	b 680	Н	49h	073 <i>d</i>	9	39h	057 <i>d</i>	\cup	29h	041 d	(em)	←	19h	025 <i>d</i>	(tab)		09h	p600
×	78h	120 <i>d</i>	ф	68h	104 <i>d</i>	×	58h	088 <i>d</i>	Η	48h	072 <i>d</i>	o	38h	056 <i>d</i>	^	28h	040 <i>d</i>	(can)	→	18h	024 d	(bs)	0	08h	008 <i>d</i>
W	77h	119d	œ	67h	103 <i>d</i>	V	57h	087 d	ଦ	47h	071 <i>d</i>	7	37h	055 <i>d</i>	-	27h	039 <i>d</i>	(etb)	↔	17h	023 <i>d</i>	(bel)	•	07h	007d
۷	76h	118d	н	66h	102 <i>d</i>	٧	56h	086 d	T	46h	070 <i>d</i>	6	36h	054 <i>d</i>	80	26h	038 <i>d</i>	(syn)	1	16h	022 <i>d</i>	(ack)	*	06h	006 <i>d</i>
ц	75h	117 <i>d</i>	Ф	65h	101 <i>d</i>	П	55h	085 <i>d</i>	H	45h	<i>p</i> 690	5	35h	053 <i>d</i>	%	25h	037 d	(nak)	Ś	15h	021 d	(enq)	*	05h	005d
t	74h	116d	ф	64h	100 <i>d</i>	Н	54h	084 d	D	44h	068 <i>d</i>	4	34h	052 <i>d</i>	↔	24h	036 <i>d</i>	(dc4)	Д	14h	020 d	(eot)	*	04h	004 <i>d</i>
Ø	73h	115d	C	63h	099 <i>d</i>	ß	53h	083 <i>d</i>	C	43h	067 <i>d</i>	ω	33h	051 <i>d</i>	#	23h	035 <i>d</i>	(dc3)	:=	13h	019d	(etx)	4	03h	003d
н	72h	114d	Ъ	62h	098 <i>d</i>	æ	52h	082 <i>d</i>	В	42h	066 <i>d</i>	Ŋ	32h	050 <i>d</i>	=	22h	034 d	(dc2)	+	12h	018 <i>d</i>	(stx)	Θ	02h	002d
Д	71h	113d	ည	61h	097 <i>d</i>	Ð	51h	081 d	Α	41h	065 <i>d</i>	_	31h	049 <i>d</i>		21h	033 <i>d</i>	(dc1)	A	11h	017 d	(soh)	©	01h	001d
ק	70h	112d	-	60h	0960	Ъ	50h	080 d	0	40h	064 <i>d</i>	0	30h	048 <i>d</i>	E	20h	032 <i>d</i>	(dle)	•	10h	016d	(Lun)	,co*	00h	0000

EXTENDED
ASCII CH/
Chart
(character
r codes
128 –
255)
) Latin1/CP12
52

	Ž		æ	^	СX	%	,	++	→	:	;	f	•		Ф
159d	158 <i>d</i>	157 d	156 d	155 <i>d</i>	154 d	153 <i>d</i>	152 <i>d</i>	151 d	150 d	149 <i>d</i>	148 <i>d</i>	147 d	146 <i>d</i>	145 d	144 d
9Fh	9Eh	9Dh	9Ch	9Bh	9Ah	99h	98h	97h	96h	95h	94h	93h	92h	91h	90h
Ÿ	N		8	~	ζΩ<	₹	ł	1	1	•	;	"	•	•	
175 <i>d</i>	174 <i>d</i>	173 <i>d</i>	172 <i>d</i>	171 <i>d</i>	170 <i>d</i>	169d	168 <i>d</i>	167 d	166d	165 d	164 <i>d</i>	163 <i>d</i>	162d	161 d	160 d
AFh	AEh	$\mathtt{AD}h$	ACh	ABh	AAh	A9h	A8h	A7h	A6h	A5h	A4h	A3h	A2h	A1h	A0h
ı	Ø		١	*	ΙÞ	0	:	ဏ		*	¤	ь	0		p.
191d	190 <i>d</i>	189 <i>d</i>	188 <i>d</i>	187 <i>d</i>	186 <i>d</i>	185 <i>d</i>	184 <i>d</i>	183 <i>d</i>	182 <i>d</i>	181d	180 <i>d</i>	179 <i>d</i>	178 <i>d</i>	177 <i>d</i>	176 <i>d</i>
BFh	BEh	BDh	BCh	BBh	$\mathbb{B} A h$	B9h	B8h	B7h	B6h	B5h	B4h	B3h	B2h	B1h	B0h
<i>د</i> .	ଥାକ	ИH	4 4	٧	10	ц	r		_	μ	,	ω	Ŋ	#	٥
207 <i>d</i>	206 <i>d</i>	205 <i>d</i>	204 <i>d</i>	203 <i>d</i>	202 <i>d</i>	201 <i>d</i>	200 <i>d</i>	199 <i>d</i>	198 <i>d</i>	197 <i>d</i>	196 <i>d</i>	195 <i>d</i>	194d	193 <i>d</i>	192 <i>d</i>
GFh	$\mathbb{C}\mathbf{E}h$	$\mathbb{C}\mathbb{D}h$	CCh	$\mathbb{CB}h$	CAh	C9h	C8h	C7h	C6h	C5h	C4h	C3h	C2h	C1h	COh
H :	н	н,	н,	[T]:	(T)	Ħ	H	Ś	Ħ	₩	A	×	A	Á	Α
223 d	222 <i>d</i>	221 d	220 d	219 <i>d</i>	218 <i>d</i>	217 d	216 <i>d</i>	215 <i>d</i>	214 d	213 <i>d</i>	212 <i>d</i>	211 d	210 <i>d</i>	209 d	208 <i>d</i>
$\mathrm{DF}h$	$ ext{DE} h$	$\mathtt{DD} h$	DCh	$\mathtt{DB} h$	$\mathrm{DA}h$	D9 h	D8h	D7h	D6 h	D5 h	D4h	D3h	D2h	D1h	DO h
₽	Ф	Y	₫	Û	ď	ď	6	×	o:	Õ	ô	<u> </u>	oʻ	×	Ð
239 <i>d</i>	238 <i>d</i>	237 <i>d</i>	236 <i>d</i>	235 <i>d</i>	234 <i>d</i>	233 <i>d</i>	232 <i>d</i>	231 <i>d</i>	230 <i>d</i>	229d	228 <i>d</i>	227 <i>d</i>	226 <i>d</i>	225d	224 <i>d</i>
\mathbb{H}^h	EEh	${ m ED} h$	ECh	$\mathbb{E}\mathbb{B}h$	EAh	E9h	E8h	E7h	E6h	E5h	E4h	E3h	E2h	E1h	E0h
:	ᅡ	۲,	μ,	Φ:	ው	ውነ	۵,	S	88	ညႋ	ည:	ρx	ρ»	ימ	p,
255d	254 <i>d</i>	253 <i>d</i>	252 <i>d</i>	251 <i>d</i>	250 <i>d</i>	249 <i>d</i>	248 <i>d</i>	247 <i>d</i>	246d	245d	244d	243 <i>d</i>	242 <i>d</i>	241 <i>d</i>	240 <i>d</i>
FFh	FEh	${ m FD} h$	FCh	FBh	FAh	F9h	F8h	F7h	F6h	F5h	F4h	F3h	F2h	F1h	F0h
<;	ф	Ý	다	ú	Ľ,	ù	10.	4.	0:	Oì.	0)	0,	٥	ñ	ø

128*d*129*d*130*d*131*d*131*d*133*d*133*d*133*d*133*d*133*d*135*d*135*d*135*d*136*d*136*d*137*d*138*d*138*d*134*d*141*d*142*d*1441*d*1441*d*

Hexadecimal to Binary

3 2 1 0

0000 0001 0010 0011

0100 0101 0110 0111

Groups of ASCII-Code in Binary

1	Ľ	0	0	Bit 6
1	0	1	0	Bit 5
Lower Case and Special	Upper Case and Special	Digits and Punctuation	Control Characters	Group

② 2009 Michael Goerz This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/

C Reference Card (ANSI)

Constants

((-2:)			
Program Structure/Functions	nctions	suffix: long, unsigned, float exponential form	65536L, -1U, 3.0F 4.2e1	
type $fnc(type_1,);$	function prototype variable declaration	prefix: octal, hexadecimal 0, Example. 031 is 25, 0x31 is 49 decimal	0, 0x or 0X 49 decimal	
int main(void) {	main routine	character constant (char, octal,	hex) 'a', '\000', '\xhh'	
declarations	local variable declarations	newline, cr, tab, backspace	\n, \r, \t, \b	
statements		special characters //, \?, \', \"	" \?, \	
_		string constant (ends with '\0')	"abcde"	
type $fnc(arg_1, \ldots)$ { $declarations$	function definition local variable declarations	Pointers, Arrays & Structures	Structures	
statements		declare pointer to type	type *name;	
return value;		declare function returning pointer to type type *f();	er to type type *f();	
_		declare pointer to function returning type type (*pf)();	ning type type (*pf)();	
/* */	comments	generic pointer type	* pion	
int main(int argc, char *argv□)	main with args	null pointer constant	NULL	
<pre>exit(arg);</pre>	terminate execution	object pointed to by pointer	*pointer	
C Droprocessor		address of object name	kname	
O I lebi ocessoi		array	name[dim]	
include library file	#include <filename></filename>	multi-dim array	$name[dim_1][dim_2]$	
include user file	#include "filename"	Structures		
replacement text	#define name text	struct tag { stru	structure template	
replacement macro	#define name(var) text	declarations decl	declaration of members	
Evample #define may(A R) ((A)>(R) ? (A) · (R))	A)>(B) ? (A) · (B))	نہ		

type $fnc(arg_1, \ldots)$ \downarrow	function definition
declarations	local variable declara
statements	
return value;	
_	
/* */	comments
int main(int argc, char *argv□)	main with args
exit(arg);	terminate execution
C Preprocessor	
include library file	#include <filename></filename>
include user file	#include "flename"
replacement text	#define name text
replacement macro #	#define name(var) text
Example. #define max(A,B) ((A)>(B) ? (A) : (B)))>(B)?(A):(B))
undefine	#undef name
quoted string in replace	#
Example. #define msg(A) printf("%s = %d", #A, (A))	f("%s = %d", #A, (A))
concatenate args and rescan	##
conditional execution #if,	#if, #else, #elif, #endif
is name defined, not defined?	#ifdef, #ifndef
name defined?	defined(name)
line continuation char	/

Data Types/Declarations

character (1 laste)	in a
aracter (1 type)	Circuit
integer	int
real number (single, double precision)	float, double
short (16 bit integer)	short
long (32 bit integer)	long
double long (64 bit integer)	long long
positive or negative	signed
non-negative modulo 2^m	unsigned
pointer to int, float,	int*, float*,
enumeration constant enum tag	enum tag {name_1=value_1,};
constant (read-only) value	type const name;
declare external variable	extern
internal to source file	static
local persistent between calls	static
no value	void
structure	struct tag {};
create new name for data type	typedef type name;
size of an object (type is size_t)	sizeof object
size of a data type (type is size_t)	sizeof(type)

Initialization

type name=value;	type name \square ={value ₁ ,};	char $name \square = "string"$;	Permissions on back, v2.2
initialize variable	initialize array	initialize char string	© 2007 Joseph H. Silverman Permissions on back, v2.2

Flow of Control

; { } break; continue;	<pre>goto label; label: statement return expr</pre>	<pre>if (expr₁) statement₁ else if (expr₂) statement₂ else statement₃</pre>	epr)	for $(expr_1; expr_2; expr_3)$ statement	statement $(expr);$	<pre>tch (expr) { case const₁: statement₁ break; case const₂: statement₂ break; default: statement</pre>
statement terminator block delimiters exit from switch, while, do, for next iteration of while, do, for	go to label return value from function Flow Constructions	if statement if (expr ₁) state else if (expr ₂) else statement ₃	while statement while (expr) statement	for statement for $(expr_1; statement)$	<pre>do statement do statemen while(expr);</pre>	<pre>switch statement switch (expr) { case const; case const; default: stat }</pre>

ANSI Standard Libraries

acreate structure from template name.

member of structure from template name.member

Example. (*p). x and p->x are the same single object, multiple possible types union unsagned member: b;

Operators (grouped by precedence)

struct member operator struct member through pointer

increment, decrement
plus, minus, logical not, bitwise not
t, -, 1,
plus, minus, logical not, bitwise not
t, -, 1,
size of upper size of an object
size of an object

multiply, divide, modulus (remainder)

left, right shift [bit ops]

String Operations <string.h> convert to upper case

<, >> >, >=, <, <

', '-', ', '-' s is a string; cs, ct are constant strings	==, != length of s strlen(s)		ter s	only first n chars strucmp(cs,ct,n)	&& pointer to first c in cs strchr(cs,c)	pointer to last c in cs strrchr(cs,c)	expr ₁ ? expr ₂ : expr ₃ convergence from ct to s memcpy(s, ct, n)	+=, -=, *=, compare n chars of cs with ct memcmp(cs.ct.n)	s of cs
relational comparisons	equality comparisons	and [bit op]	exclusive or [bit op]	or (inclusive) [bit op]	ogical and	ogical or	conditional expression	assignment operators	expression evaluation separator

pointer to mist c in mist n cha put c into first n chars of s

C Reference Card (ANSI)

Input/Output <stdio.h>

r donois (bring) s	single char	d,i integer u	h short, 1 long,	m conversion character:	p precision	w min field width	0 pad with leading zeros	space print space if no sign	+ print with sign	 left justify 	Codes for Formatted I/O: "%-+ 0w.pmc"	write string s	read line to string s (< max chars)	non-zero if already reached EOF	non-zero if error	close file	write n elts from *ptr to file fw:	read and store n elts to *ptr f:	read from file fscan	write to file fprint	write a character	get a character	modes: r (read), w (write), a (append), b (binary)	pointer to named file	declare file pointer	File I/O	print string s	read from string s sscanf(read formatted data scan	print to string s sprin	print formatted data pr		get a character	end of file (type is int)	standard error stream	
e, E exponential	char string	unsigned	g, L long double								0w.pmc"	fputs(s, fp)	fgets(s,max,fp)	feof(fp)	ferror(fp)	fclose(fp)	fwrite(*ptr,eltsize,n,fp)	fread(*ptr,eltsize,n, fp)	$fscanf(fp,"format",arg_1,)$	$fprintf(fp,"format",arg_1,)$	putc(chr,fp)	getc(fp)	ppend), b (binary)	fopen("name", "mode")	FILE $*fp$;		puts(s)	$sscanf(s, "format", &name_1,)$	$scanf("format", &name_1,)$	sprintf(s, "format", arg1,)	printf("format", arg1,)	putchar(chr)	getchar()	EOF	stderr	

Variable Argument Lists <stdarg.h> f float (scanf) 1f double (scanf) o octal x,X hexadecimal p pointer n number of chars written g,G same as f or e,E depending on exponent

declaration of pointer to arguments va_list ap; initialization of argument pointer va_start(op, lastary); intaleation of argument pointer va_start(op, lastary); interface in the function access next unnamed arg, update pointer va_arg(op, type) call before exiting function va_end(op);

Standard Utility Functions <stdlib.h>

convert string s to double convert string s to integer atoi(s) convert string s to integer atoi(s) convert string s to long atol(s)	pseudo-random integer [O,FAND_MAX] rand() set random seed to n srand(n) terminate program execution exit(status) pass string s to system for execution system(s)	absolute value of Int n abs(n) absolute value of long n labs(n) quotient and remainder of ints n,d dav(n,d) returns structure with dav_t.quot and dav_t.rem quotient and remainder of longs n,d ldav(n,d) returns structure with ldav_t.quot and ldav_t.rem
---	--	---

sort array ascending order	search array for key	Array Functions	deallocate storage	change size of storage	allocate storage	Storage Allocation	same, but unsigned long
	bsearch(key,			newptr =	malloc(size),		ed long
qsort(array,n,size,cmpf)	bsearch(key,array,n,size,cmpf)		free(ptr);	newptr = realloc(ptr,size);	malloc(size), calloc(nobj,size)		strtoul(s, &endp, b)

Time and Date Functions <time.h> bsearch(key,array,n,size,cmpf) qsort(array,n,size,cmpf)

	ent calendar time	Example. clock().	essor time used by program	
+ :- :- :- :- :- :- :- :- :- :- :- :-	time()	Example. clock()/CLOCKS_PER_SEC is time in seconds	program clock()	

convert local time to calendar convert time in 'p to string convert calendar time in to GMT convert calendar time to GMT convert calendar time to local format date and time info se the is a pointer to a structu	tm_sec tm_min tm_hour tm_mday tm_mon tm_year tm_yday tm_yday tm_ydat	current calendar time time2-time1 in secon arithmetic types representations.
convert local time to calendar time matima (tp convert calendar time in tp to string convert calendar time in tp to local time crime(tp) convert calendar time to GMT convert calendar time to local time format date and time info strictime(s, smax," for tp is a pointer to a structure of type tm	seconds after minute sater hour hours since midnight day of mouth month since January years since 1900 days since Sanuary 1 Daylight Savings Time flag	ds (double) senting times
ar time mktime(tp) to local time ctime(tp) (If gmtime(tp) all time localtime(tp) strittime(s,smax,"formal",tp) cture of type tm	a flag	<pre>time() difftime(time2,time1)</pre>

Arguments and returned values are double Mathematical Functions <math.h>

sin(x), cos(x), tan(x) asin(x), acos(x), atan(x) atan2(y,x)

value of int n value of long n t and remainder of ints n,d	abs(n) labs(n) div(n,d)	Arguments and returned values a trig functions inverse trig functions
t and remainder of ints n,d	div(n,d)	inverse trig functions
urns structure with div_t.quot and div_t.rem	d div_t.rem	arctan(y/x)
t and remainder of longs n,d	ldiv(n,d)	hyperbolic trig functions
urns structure with ldiv_t.quot and ldiv_t.rem	nd ldiv_t.rem	exponentials & logs
random integer [0,RAND_MAX]	rand()	exponentials & logs (2 power)
lom seed to n	srand(n)	division & remainder
to program or oution	owi + (a+a+wa)	TO OTTOWN

Integer Type Limits inits.h> rounding sinh(x), cosh(x), tanh(x) exp(x), log(x), log(0,x)) ldexp(x,n), frexp(x,ke) modd(x,ip), fmod(x,y) pow(x,y), sqrt(x) ceil(x), floor(x), fabs(x)

	_		_	_							•	•				•	•		
1	ULONG_MAX	UINT_MAX	USHRT_MAX	UCHAR_MAX	LONG_MIN	LONG_MAX	NIM_MIN	INT_MAX	SHRT_MIN	SHRT_MAX	SCHAR_MIN	SCHAR_MAX	CHAR_MIN	CHAR_MAX	CHAR_BIT	quired values (if significantly different).	constants on a 32-bit Unix system, followed by minimum re-	The numbers given in parentheses are typical values for the	
-		MAX	XAM	MAX	MIN	MAX	MIN	MAX	MIN	XAM	MIN	XAM	MIN	XAM		value	ıts oı	ımbe	(
	$_{\rm max}$	\max	$_{\rm max}$	$_{\rm max}$	\min	$_{\text{max}}$	\min	$_{\text{max}}$	min	$_{\rm max}$	min	$_{\rm max}$	min	$_{\rm max}$	bits	s (if	1 a 3	rs giv	
•	max unsigned long	max unsigned int	max unsigned short	max unsigned char	min value of long	max value of long	min value of int	max value of int	min value of short	max value of short	min signed char	max signed char	min value of char	max value of char	bits in char	signifi	2-bit	en in	٠
•	med :	med :	gned :	gned o	of lor	of lo	of in	of in	of sho	of sh	d cha	d ch	of cha	of ch	н	cantly	Unix	pare	
	long	int	short	char	e G	ğ	-	i+	ř	ort	R	E,	ar.	ar		diffe	syste	nthes	
3		(4,					(-2,14)	(+2,14)						(SCH		rent).	n, foll	s are	
		(4,294,967,295) (65,535)			·	÷	-2,147,483,648) ($-32,767$	+2,147,483,647) (+32,767					_	(SCHAR_MAX or UCHAR_MAX)			owed	typic	
	(4,294,967,295)	37,295			(-2,147,483,648)	(+2,147,483,647)	,648)	,647)					(SCHAR_MIN or 0)	X or U			by m	al val	
	4,967,) (65,	(65,	_	7,483,	7,483,	(-32,	(+32,	(-32,768)	(+32,767)	$\widehat{}$	Ŧ	MIM	CHAR_			inimu	ues fo	
	295)	535)	(65,535)	(255)	648)	647)	767)	767)	768)	767)	(-128)	(+127)	or (0)	(XAM	8		m re-	or the	

Float Type Limits <float.h>

The numbers given in parentheses are typical values for the

DBL_MAX_EXP r DBL_MIN r DBL_MIN_EXP r	DBL_MAX I		FLT_MIN_EXP r DBL_DIG c	FLT_MIN I	FLT_MAX_EXP I	FLT_MAX 1	FLT_MANT_DIG I	FLT_EPSILON s	FLT_DIG c	FLT_ROUNDS f	FLT_RADIX r	onstants on a 32-bit Unix system.
maximum exponent min double number minimum exponent	max double number	smallest x so $1.0 + x \neq 1.0$	minimum exponent decimal digits of precision	minimum float number	maximum exponent	maximum float number	number of digits in mantissa	smallest x so $1.0f + x \neq 1.0f$	decimal digits of precision	floating point rounding mode	radix of exponent rep	it Unix system.
(2.2E - 308)	(1.8E308)	(2.2E - 16)	(15)	(1.2E - 38)		(3.4E38)		(1.1E - 7)	(6)	_	(2)	

January 2007 v2.2. Copyright © 2007 Joseph H. Silverman Permission is granted to make and distribute copies of this cord pro-vided the copyright notice and this permission notice are preserved on all copies.

Send comments and corrections to J.H. Silverman, Math. Dept., Brown Univ., Providence, RI 02912 USA. (jhs@math.brown.edu)

Ainto!		tori			Programmazione	
help x	mostra la documentazione su x		moltiplicazione elemento per elemento	relemento	ومامافيوامان	
doc	apre la documentazione di matlab		divisione elemento per elemento	ento	π/elseπ/else	
docsearch x	cerca x nella documentazione	x+y somr	somma elemento per elemento sottrazione elemento ner elemento	to	Esegue bodyTrue1 se cond1	Esegue bodyTrue1 se cond1!=0, altrimenti se cond2!=0 esegue bodyTrue2, al- trimonti occano bodyEalag12, al conf.como al colò enzionale
omandi se	Comandi denerali di matlah		trasposta		if(cond1)	100000000000000000000000000000000000000
Informating		_	[righe, colonne] di x	. 2	bodyTrue1	
	mostra tutte le variabili nel workspace				elseif cond2	
	mostra l'ultimo risultato	x(x>5) gli	gli elementi di x maggiori di 5 cambia di alamanti di x maggiori di 5 in 0	15	bodyTrue2	
Pulizia		_	trova gli indici degli elementi di A maggiori di 5	aggiori di 3	else	
clc	pulisci il contenuto della finestra comandi		2		bodyFalse12	
	cancella tutte le variabili dal workspace		concatena orizzontalmente A e B		end	
	cancella solo × dal workspace		concatena verticalmente A e B		for	
_	chiude le ngure	in other on O			Esegue body n volte; ad ogni	Esegue body n volte; ad ogni iterazione la variabile 1 viene incrementata di 1fino
crose(H)	Chiude la ligura n	operatori logici	.		ad arrivare ad n:	
Caricamento e salvataggio		Semplici valori logici	:0	-	for i=1:n	
save filename	•,	88	0 && 1 == 0 etc	2	hody	
save filename x,y	•	=	0 1 == 1 etc	8	end	
save -append filename x	•		NOT			
Load filename	e carica le variabili da file	Vettori di valori logici	jg.		while	
Sistema		«	AND elemento per elemnto	r elemnto	Esegue body ripetutamente fi	Esegue body ripetutamente finche' l'espressione cond non vale 0:
addpath(string)		_	OR elemento per elemento	elemento 1	while(cond)	
bwd	directory corrente	. 1	NOT elemento per elemento	r elemento 2	body	
mkdir	crea una directory		•	8	end	
tempdir	crea una directory temporanea	Operatori relazionali	zionati			
exit	esci da matlab	== Uguaglianza			switch/case	
dir	stampa contenuto directory corrente	~= Vero se sono differenti	differenti		Esegue bodyA se exp è ugual	Esegue body A se exp è uguale ad a; oppure esegue bodyB se exp è uguale ad b.
nzioni e v:	Finzioni e variabili già presenti in matlab	>= Maggiore uguale	nale		Se nessun caso è verificato esegue bodyDefault.	egue bodyDefault.
:		<= Maggiore uguale	nale		switch exp	
2	a manager les januaries anno con	Stampa		2	case a	
	onima etementi del vettore x	nd in the		3	bodyA	
	prodotto degli elementi del Vettore x	format short	Usa 4 cifre dopo la virgola	ola	case b	
_	direrenze rra etementi adiacenti di x	format long	Usa 16 cifre dopo la virgola	gola	bodyB	
abs(x) vd	Valore assoluto; abs(-5) = 5	disp(x)	Mostra la stringa x		:	
Arroto nd amento		num2str(x)	Converte il numero x in una stringa	una stringa	otherwise	
+Loor(x)	tronca x (floor(0.7) = 0)	mat2str(x)	Converte una matrice in una stringa	n una stringa	bodvDefault	
ceil(x)	tronca per eccesso x (ceil(0:1) = 1)	int2str(x)	Converte un intero in una stringa	na stringa	end	
round(x)	arrotonda x	sprintf(x)	Converte un oggetto generico in stringa	nerico in stringa		
round(x,n)	arrotonda x alla n-esima cifra decimale	Grafici			Data import/export	
iabili			. 9		xlsread/xlswrite	Spreadsheets (.xls,.xlsm)
	15	Creazione/Manipolazione Grand			readtable/writetable	Spreadsheets (.xlsxlsm)
inf ∞		fig1 = plot(x,y)		crea plot 2d e assegna handle a ng1	dlmread/dlmwrite	text files (txt csv)
ebs floa	floating point accuracy	fig1 = gcf()	assegi	assegna handle figura corrente a fig1] Oad (0ax) = 100011	text files (txt.csv)
1e6 10 ⁶		fig1 = figure	creau	crea una nuova figura vuota	load/save -ascil	rext nies (rxtrsv)
•	•	hold on	abilita	abilita sovrascrittura immagini	intood/immitte	matian mes (mi)
Vettori e matrici	itrici	hold off		chiude la figura corrente	TILL ead/ TIMP TCe	اللمروط اللحة
Creazione		Modifica stili grafici			Copyright ©2015—2017 Vittorio Zaccaria	caria
j:k	vettore riga [j, j + 1,, k]	set(fig1, 'LineWidth', 2)	eWidth', 2)	cambia dimensione linea	Revision: 0.7 - November 20, 2017	
j:i:k		set(fig1, 'Lin	eStyle', '-')	cambia stile linea		
ones(a,b)	matrice a×b di 1	-,,,		possibili stili di linea		
zeros(a,b)	matrice a×b di 0	set(fig1, 'Marker', '.')	ker', '.')	cambia il marker per i punti		
x[1, 2, 3]=	vettore riga 1x3	, +, *, ×, o,	square	possibili markers		
x[1; 2; 3]=	vettore colonna 3x1	set(fig1, 'color', 'red')	or', 'red')	cambia colore della linea		
x[1, 2; 3, 4]=	matrice 2x2	red, blue, gre	red, blue, green, yellow, black	possibili colori		
Accesso e modifica	2	set(fig1, 'MarkerSize', 10)	kerSize', 10)	cambia la dimensione dei markers		
x(2)=4	scrivi 4 nel secondo elemento di x	set(fig1, 'FontSize', 14)	tSize', 14)	cambia la dimensione del font		
(:)×	tutti gli elementi di x	Assi, griglie e leggende	ande			
×(j: end)	gli elementi di x da j fino alla fine	xlabel('\mu li	xlabel('\mu line','FontSize',14)	assegna un nome all'asse X		
x(2:5)	dal secondo al quinto elemento di x	ylim([a b])		assegna dei limiti all'asse y		
x([3,2,5])	sottovettore di x (3°, poi 2° poi 5° elemento di x)	title('name','fontsize',22)	fontsize',22)	assegna un titolo al grafico		
×(j,:)	tutti gli elementi della riga j	grid on/off;		aggiunge/toglie una griglia		
x(:,j)	tutti gli elementi della colonna j	legend('y1','y2')	2,)	aggiunge una legenda per i plot y1 e y2	1e y2	