CHURN DATA SET

Steps that we followed for selecting the variables are:

- Computed means of all x variables for churners and non-churners separately and then computed the percentage difference for each variable.
- Sorted the variables from high to low based on percentage difference in means.
- After that, we selected top 20 variables and then checked the correlation and eliminated those variables that have correlation>0.70.
- Then, we started dropping one of two variables that are highly correlated and kept on dropping and adding the variables based on next high percentage difference in means till we got top 10 variables for good candidates' selection.
- We then proceeded to run the logistic regression. The results of the logistic regression are given below:

These variables are selected that are mentioned in correlation table

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations										
	change_rev	drop_vce_Mean	hnd_price	ccrndmou_Mean	uniqsubs	eqpdays	mtrcycle	iwylis_vce_Mean	totmrc_Mean	avg3qt
change_rev	1.00000 69365	-0.02193 <.0001 69365	-0.00266 0.4862 68772	-0.03478 <.0001 69365	-0.00148 0.6974 69365	-0.00040 0.9162 69364	-0.00190 0.6196 68135	-0.03172 <.0001 69365	-0.02257 <.0001 69365	-0.0721 <.000 6936
drop_vce_Mean	-0.02193 <.0001 69365	1.00000 70000	0.14620 <.0001 69401	0.29707 <.0001 70000	-0.01909 <.0001 70000	-0.21542 <.0001 69999	-0.00980 0.0102 68759	0.40212 <.0001 70000	0.35080 <.0001 69750	0.6052 <.000 7000
hnd_price	-0.00266 0.4862 68772	0.14620 <.0001 69401	1.00000 69401	0.09782 <.0001 69401	-0.01349 0.0004 69401	-0.47846 <.0001 69401	-0.00762 0.0465 68178	0.17048 <.0001 69401	0.22134 <.0001 69152	0.2137 <.000 6940
ccrndmou_Mean	-0.03478 <.0001 69365	0.29707 <.0001 70000	0.09782 <.0001 69401	1.00000 70000	-0.04265 <.0001 70000	-0.18420 <.0001 69999	-0.00817 0.0323 68759	0.21722 <.0001 70000	0.19162 <.0001 69750	0.3380 <.000 7000
uniqsubs	-0.00148 0.6974 69365	-0.01909 <.0001 70000	-0.01349 0.0004 69401	-0.04265 <.0001 70000	1.00000 70000	-0.02581 <.0001 69999	0.00966 0.0113 68759	0.06062 <.0001 70000	-0.02411 <.0001 69750	-0.0059 0.118 7000
eqpdays	-0.00040 0.9162 69364	-0.21542 <.0001 69999	-0.47846 <.0001 69401	-0.18420 <.0001 69999	-0.02581 <.0001 69999	1.00000 69999	0.00051 0.8934 68758	-0.20580 <.0001 69999	-0.24588 <.0001 69749	-0.2990 <.000 6999
mtrcycle	-0.00190 0.6196 68135	-0.00980 0.0102 68759	-0.00762 0.0465 68178	-0.00817 0.0323 68759	0.00966 0.0113 68759	0.00051 0.8934 68758	1.00000 68759	0.00398 0.2971 68759	-0.00273 0.4749 68516	0.0006 0.866 6875
iwylis_vce_Mean	-0.03172 <.0001 69365	0.40212 <.0001 70000	0.17048 <.0001 69401	0.21722 <.0001 70000	0.06062 <.0001 70000	-0.20580 <.0001 69999	0.00398 0.2971 68759	1.00000 70000	0.30922 <.0001 69750	0.6531 <.000 7000
totmrc_Mean	-0.02257 <.0001 69365	0.35080 <.0001 69750	0.22134 <.0001 69152	0.19162 <.0001 69750	-0.02411 <.0001 69750	-0.24588 <.0001 69749	-0.00273 0.4749 68516	0.30922 <.0001 69750	1.00000 69750	0.5140 <.000 6975
avg3qty	-0.07213 <.0001 69365	0.60520 <.0001 70000	0.21374 <.0001 69401	0.33808 <.0001 70000	-0.00590 0.1184 70000	-0.29903 <.0001 69999	0.00064 0.8664 68759	0.65310 <.0001 70000	0.51407 <.0001 69750	1.0000 7000

1. Include a clean table of coefficients, t-values, and odds ratio only. I do not want the SAS output as it is. Interpret the logistic output explaining AIC/BIC, meaning of coefficients, significance of betas, prediction accuracy (percent concordance), odds-ratios etc.

Analysis of Maximum Likelihood Estimates						
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > Chi Sq	
Intercept	1	-0.0991	0.0346	8.1847	0.0042	
change_rev	1	0.000302	0.000189	2.5520	0.1102	
drop_vce_Mean	1	0.00637	0.00111	32.7602	<.0001	
hnd_price	1	-0.00198	0.000147	180.1549	<.0001	
ccrndmou_Mean	1	-0.00319	0.000696	21.0804	<.0001	
uniqsubs	1	0.1061	0.00901	138.6612	<.0001	
eqpdays	1	0.000600	0.000036	272.2664	<.0001	
mtrcycle	1	0.1396	0.0648	4.6396	0.0312	
iwylis_vce_Mean	1	-0.00352	0.000658	28.5687	<.0001	
totmrc_Mean	1	-0.00343	0.000392	76.4992	<.0001	
avg3qty	1	0.000219	0.000068	10.3603	0.0013	

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation
Intercept	1	0.49343	0.00806	61.24	<.0001	0
change_rev	1	0.00005977	0.00003564	1.68	0.0935	1.00709
drop_vce_Mean	1	0.00153	0.00027013	5.68	<.0001	1.61543
hnd_price	1	-0.00049326	0.00003593	-13.73	<.0001	1.32066
ccrndmou_Mean	1	-0.00080772	0.00016464	-4.91	<.0001	1.15877
uniqsubs	1	0.01615	0.00166	9.73	<.0001	1.01194
eqpdays	1	0.00014462	0.00000882	16.40	<.0001	1.38796
mtrcycle	1	0.03506	0.01586	2.21	0.0271	1.00043
iwylis_vce_Mean	1	-0.00076438	0.00015744	-4.86	<.0001	1.76287
totmrc_Mean	1	-0.00085549	0.00009541	-8.97	<.0001	1.39879
avg3qty	1	0.00005033	0.00001654	3.04	0.0023	2.78573

Odds Ratio Estimates					
Effect	Point Estimate	95% Wald Confidence Limits			
change_rev	1.000	1.000	1.001		
drop_vce_Mean	1.006	1.004	1.009		
hnd_price	0.998	0.998	0.998		
ccrndmou_Mean	0.997	0.995	0.998		
uniqsubs	1.112	1.092	1.132		
eqpdays	1.001	1.001	1.001		
mtrcycle	1.150	1.013	1.306		
iwylis_vce_Mean	0.996	0.995	0.998		
totmrc_Mean	0.997	0.996	0.997		
avg3qty	1.000	1.000	1.000		

Interpretations of all the variables with odd ratios and beta coefficients:

• Change_rev

Coefficient of change_rev = 0.0003

tvalue= 1.68. This value is smaller than the critical value = 1.96 at 95% confidence. Hence, this coefficient is not statistically different from zero with more than 95% confidence level.

Interpreting the percent change in revenue, a 1% change in revenue will result in an 0.0003 increase probability that a person will have churn. From an odds ratio estimate of 1.00, this is interpreted as increasing the percent change in revenue by 1% changes the odds of a customer churning is 1 times as likely for having someone churn.

• Drop_vce_mean

Coefficient of drop_vce_mean = 0.00637

tvalue= 5.68. This value is greater than the critical value = 1.96 at 95% confidence. Hence, this coefficient is statistically different from zero with more than 95% confidence level.

Interpreting the number of dropped voice calls, for each additional dropped call increases the probability of someone churning by 0.00637. From an odds ratio estimate of 1.06, an increase in dropped calls by 1 makes the odds 1x more likely for someone to churn.

hnd_price

Coefficient of $hnd_price = -0.00198$

tvalue = -13.73. This value is less than the critical value = -1.96 at 95% confidence. Hence, this coefficient is statistically different from zero with more than 95% confidence level.

The odds ratio estimates of *hnd_price* is 0.998. This means that when the handset price increases by one unit, the odds of the customer churning over odds of the customer not churning changes 0.998 times keeping other factors the same.In other words, for a one unit increase in the handset price, we expect to see about 0.2% decrease in the odds of customer churn.

• Ccrndmou_mean

Coefficient of ccrndmou mean = -0.000807

tvalue=|-4.91| = 4.91. This value is greater than the critical value = 1.96 at 95% confidence. Hence, this coefficient is statistically different from zero with more than 95% confidence level.

Interpreting the rounded estimate index of customer care, for each increase in the average customer care index, results in a 0.000807 probability that a person will not churn (since the

coefficient is negative). From an odds ratio estimate of 0.997, an increase in the index mean of customer care results in the odd of 0.997 x more likely to churn.

eqpdays

Coefficient of eqpdays = 0.0006

tvalue = 16.4. This value is greater than the critical value = 1.96 at 95% confidence. Hence, this coefficient is statistically different from zero with more than 95% confidence level.

From the odds ratio estimate table, the odds ratio estimate of *eqpdays* is 1.001. This means that when the number of days of the current equipment (measured as *eqpdays*) increases by one unit, the odds of the customer churning over odds of the customer not churning increases 1.001 times keeping other factors the same.

In other words, we can say for a one unit increase in the number of days of the current equipment, we expect to see about 0.06% increase in the odds of customer churn.

uniqsubs

Coefficient of uniques = 1.061

From the odds ratio estimate table, the odds ratio estimate of *uniqsubs* is 1.112. This means that when uniqsubs increases by one unit, the odds of the customer churning over odds of the customer not churning increases 1.112 times keeping other factors the same.

In other words, we can say for a one unit increase in unique we expect to see about 1.112% increase in the odds of customer churn.

• mtrcvcle

Coefficients of mtrcycle: 0.1396

The logistic regression model can be written as follows:

From the odds ratio estimate table, the odds ratio estimate of *mtrcycle* is 1.112. This means that when mtrcycle increases by one unit, the odds of the customer churning over odds of the customer not churning increases by 0.1396 times keeping other factors the same.

In other words, we can say for a one unit increase in *mtrcycle*. we expect to see about 0.1396% increase in the odds of customer churn.

• iwylis_vce_Mean

Coefficients of iwylis_vce_Mean: -0.00352

From the odds ratio estimate table, the odds ratio estimates of iwylis_vce_Mean is -0.00352. This means that when iwylis_vce_Mean increases by one unit, the odds of the customer churning over odds of the customer not churning decreases by 0. 00352 times keeping other factors the same.

In other words, we can say for a one unit increase in iwylis_vce_Mean we expect to see about 0.00352% decrease in the odds of customer churn.

• totmrc_Mean

Coefficients of totmrc Mean: -0.00343

From the odds ratio estimate table, the odds ratio estimates of totmrc_Mean is -0. 00343. This means that when totmrc_Mean increases by one unit, the odds of the customer churning over odds of the customer not churning decreases by 0. 00343 times keeping other factors the same. In other words, we can say for a one unit increase in totmrc_Mean we expect to see about 0.00343% decrease in the odds of customer churn.

• Avg3qty

Coefficients of avg3qty: 0.000219

From the odds ratio estimate table, the odds ratio estimate of avg3qty is 0.000219. This means that when avg3qty increases by one unit, the odds of the customer churning over odds of the customer not churning increases by 0.000219times keeping other factors the same.

In other words, we can say for a one unit increase in avg3qty we expect to see about 0.000219% increase in the odds of customer churn.

Percentage Concordance and Somers' D Interpretation:

Association of Predicted Probabilities and Observed Responses					
Percent Concordant 58.4 Somers' D 0.169					
Percent Discordant	41.6	Gamma	0.169		
Percent Tied	0.0	Tau-a	0.084		
Pairs	1140948524	С	0.584		

A pair of observations with different response variables is said to be concordant if the observation with the lower ordered response value has a lower predicted mean score than the observation with the higher ordered response value. A better model is defined by a higher corresponding concordance percentage. We want the model with the value to be more than 50% as 50% can be looked at as a pure chance and our model should be able to perform better than random chance.

For our model, the percentage concordant is 58.4% meaning that our model is able to perform better than the pure chance model.

Out of 100% possible pairs, whatever pairs are not concordant are said to be discordant pairs. The percentage of discordant pairs for our model is 41.6%.

Somers' D helps to determine the strength and the direction of relation between pair of variables. It can take any value between -1 and 1 and is defined as the difference between concordance and discordant pairs divided by the total number of pairs with different responses. For our model, since we already have % of concordance and discordance, we can substitute these into the formula and take the total pairs to be 100. The corresponding Somers' D value will be:

(58.4 - 41.6)/100 = 0.168. From the output table, we can see that the actual value is 0.169, meaning there was some rounding off done else we would've got the exact match.

AIC /BIC Interpretation:

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	93651.765	92345.712			
sc	93660.886	92446.040			
-2 Log L	93649.765	92323.712			

Looking at the model fit statistics, we can see that the AIC for the intercept only model is:93651.765 while the corresponding values for the intercept and covariates model is slightly lower that is: 92345.712. Lower the AIC, the better is the model. This means the variables that we have included to predict the churn status are good as they are able to perform better than a model which has only the intercept that is, the null model.

Similarly, BIC / SC for the intercept only model is:93660.886 while the corresponding values for the intercept and covariates model is slightly lower that is: 92446.040. SC is a model fit criterion which penalizes the addition of more variables in the model. Since the SC is slightly higher than the corresponding AIC value, when compared to the values for the intercept only model, we can interpret this as a model being penalized for including more variables.

2. Which are the top three factors that affect churn in your model.

We have decided the three top factors that affect churn in your model depending upon the significance and coefficients of variables used in the model. So, the three variables that are significant with high coefficient values are:

Mtrcycle - Coefficient of mtrcycle = 0.03506. Also, tvalue= 2.21. This value is greater than the critical value = 1.96 at 95% confidence. Hence, this coefficient is statistically different from zero with more than 95% confidence level.

Interpretation - Interpreting whether a person owns a motorcycle, for each person who ownes a motorcycle, they have a 0.03506 increase in probability that a person will churn. From an odds ratio estimate of 1.150, if a person ownes a motorcycle, their odds are 1.15x more likely to churn.

Uniquest - Coefficient of uniques = 0.01615. Also, the tvalue = 9.73. This value is greater than the critical value = 1.96 at 95% confidence. Hence, this coefficient is statistically different from zero with more than 95% confidence level.

Interpretation - Interpreting the number of unique subs, for each increase in unique subs, results in a 0.01615 increase in probability that a person will churn. From an odds ratio estimate of 1.112, an increase in the unique subs will result in the odds of 1.112 x more likely to churn.

Drop_vce_mean - Coefficient of drop_vce_mean = 0.00637. Also, the tvalue= 5.68. This value is greater than the critical value = 1.96 at 95% confidence. Hence, this coefficient is statistically different from zero with more than 95% confidence level.

Interpretation - Interpreting the number of dropped voice calls, for each additional dropped call increases the probability of someone churning by 0.00637. From an odds ratio estimate of 1.06, an increase in dropped calls by 1 makes the odds 1x more likely for someone to churn.

3. What other variables (that if collected) would help to improve the fit of the model.

Apart from the variables that are present in the dataset, there can be several other key factors which if included could enhance the model and help in more accurate prediction of churn. Few of these are:

- a) **Customer Plan**: Whether the customer has an individual plan or a family plan. A customer might find a better individual plan with the competing telecom firms and hence churn out, but if it's a family plan, the customers are more likely to stay.
- b) **Customer Priority**: We are not told if a customer is a Premium customer or Standard customer. A Premium customer is less likely to get churned compared to a Standard customer.
- c) **Market competition**: Competition against other telecom firms are not captured in the data. Market competition is one key factor to decide why a customer churned out from a telecom firm.
- 4. Compute the hit ratio for your model. Hit ratio is defined as the percentage of correct predictions using the logit model. Use the model to predict 1 or 0 using the same data.

The table here gives the frequency distribution for the predicted vs actual values for our model.

The hit ratio (% events correctly classified) of our model for training data set with the top 10 variables is 0.55.9. It implies that our model successfully predicts churn with an accuracy of 55.9%. It is meaningful as several features are not captured in the top selected variables. Several important factors are not available in the data. With those factors, the hit ratio is likely to improve with respect to the current performance.

There are 21430 that are correctly classified out of 67560 which has a value of 0. Also, there are 16348 that are correctly classified out of 67560 which has a value of 1.

Frequency	Table of churn by _INTO_				
Percent Row Pct Col Pct		_INTO_(Formatted Value of the Predicted Response)			
COLLCE	churn	0	1	Total	
	0	21430	12724	34154	
		31.72	18.83	50.55	
		62.75	37.25		
		55.68	43.77		
	1	17058	16348	33406	
		25.25	24.20	49.45	
		51.06	48.94		
		44.32	56.23		
	Total	38488	29072	67560	
		56.97	43.03	100.00	
		Frequency N	/lissing = 24	40	

5. Using the model parameters predict the churn for the holdout sample as well and compute the hit ratio.

The hit ratio (% events correctly classified) of our model for testing sample with the top 10 variables is 0.56. It implies that our model successfully predicts churn with an accuracy of 56%. It is meaningful as several features are not captured in the top selected variables. Several important factors are not available in the data. With those factors, the hit ratio is likely to improve with respect to the current performance.

There are 9176 that are correctly classified out of 29014 which has a value of 0. Also, there are 7093 that are correctly classified out of 29014 which has a value of 1.

Frequency		Table of churn by _INTO_				
Percent Row Pct Col Pct		_INTO_(Formatted Value of the Predicted Response)				
COLFCE	churn	0	1	Total		
	0	9176	5478	14654		
		31.63	18.88	50.51		
		62.62	37.38			
		55.80	43.58			
	1	7267	7093	14360		
		25.05	24.45	49.49		
		50.61	49.39			
		44.20	56.42			
	Total	16443	12571	29014		
		56.67	43.33	100.00		