Decompose Right Hand Side Variables from Linear Regression

Fan Wang

2020-04-01

Contents

Decompose RHS	2	-
Decompose nns	3	

Decompose RHS

Go to the **RMD**, **R**, **PDF**, or **HTML** version of this file. Go back to fan's REconTools Package, R4Econ Repository (bookdown site), or Intro Stats with R Repository.

One runs a number of regressions. With different outcomes, and various right hand side variables.

What is the remaining variation in the left hand side variable if right hand side variable one by one is set to the average of the observed values.

• Dependency: R4Econ/linreg/ivreg/ivregdfrow.R

The code below does not work with categorical variables (except for dummies). Dummy variable inputs need to be converted to zero/one first.

```
ff_lr_decompose <- function(df, vars.y, vars.x, vars.c, vars.z, vars.other.keep,
                              list.vars.tomean, list.vars.tomean.name.suffix,
                              df.reg.out = NULL,
                              graph=FALSE, graph.nrow=2) {
    vars.xc <- c(vars.x, vars.c)</pre>
    # Regressions
    \# regf.iv from C: \Users fan \R4Econ \linreg \ivreg \ivregd frow . R
    if(is.null(df.reg.out)) {
      df.reg.out <- as_tibble(</pre>
        bind_rows(lapply(vars.y, regf.iv,
                          vars.x=vars.x, vars.c=vars.c, vars.z=vars.z, df=df)))
    }
    # Select Variables
    str.esti.suffix <- '_Estimate'</pre>
    arr.esti.name <- pasteO(vars.xc, str.esti.suffix)</pre>
    str.outcome.name <- 'vars_var.y'</pre>
    arr.columns2select <- c(arr.esti.name, str.outcome.name)</pre>
    # arr.columns2select
    # Generate dataframe for coefficients
    df.coef <- df.reg.out[,c(arr.columns2select)] %>%
      mutate_at(vars(arr.esti.name), as.numeric) %>% column_to_rownames(str.outcome.name)
```

```
# df.coef
# str(df.coef)
# Decomposition Step 1: gather
df.decompose <- df %>%
  filter(svymthRound %in% c(12, 18, 24)) %>%
  select(one_of(c(vars.other.keep, vars.xc, vars.y))) %>%
  drop na() %>%
  gather(variable, value, -one of(c(vars.other.keep, vars.xc)))
# Decomposition Step 2: mutate_at(vars, funs(mean = mean(.)))
# the xc averaging could have taken place earlier, no difference in mean across variables
df.decompose <- df.decompose %>%
  group_by(variable) %>%
  mutate_at(vars(c(vars.xc, 'value')), funs(mean = mean(.))) %>%
  ungroup()
# Decomposition Step 3 With Loop
for (i in 1:length(list.vars.tomean)) {
    var.decomp.cur <- (paste0('value', list.vars.tomean.name.suffix[[i]]))</pre>
    vars.tomean <- list.vars.tomean[[i]]</pre>
    var.decomp.cur
    df.decompose <- df.decompose %>%
      mutate((!!var.decomp.cur) :=
               ff_lr_decompose_valadj(., df.coef, vars.tomean, str.esti.suffix))
}
# Additional Statistics
df.decompose.var.frac <- df.decompose %>%
        select(variable, contains('value')) %>%
        group_by(variable) %>%
        summarize_all(funs(mean = mean, var = var)) %>%
        select(variable, matches('value')) %>% select(variable, ends_with("_var")) %>%
        mutate_if(is.numeric, funs( frac = (./value_var))) %>%
        mutate_if(is.numeric, round, 3)
# Graph
g.graph.dist <- NULL</pre>
if (graph) {
  g.graph.dist <- df.decompose %>%
      select(variable, contains('value'), -value_mean) %>%
      rename(outcome = variable) %>%
      gather(variable, value, -outcome) %>%
      ggplot(aes(x=value, color = variable, fill = variable)) +
          geom_line(stat = "density") +
          facet_wrap(~ outcome, scales='free', nrow=graph.nrow)
}
# Return
return(list(dfmain = df.decompose,
            dfsumm = df.decompose.var.frac,
            graph = g.graph.dist))
```

Decomposition Program

```
# Library
library(tidyverse)
library(AER)

# Load Sample Data
setwd('C:/Users/fan/R4Econ/_data/')
df <- read_csv('height_weight.csv')</pre>
```

Prepare Decomposition Data

```
## Parsed with column specification:
## cols(
##
    S.country = col_character(),
##
    vil.id = col_double(),
##
     indi.id = col_double(),
##
    sex = col_character(),
##
    svymthRound = col_double(),
    momEdu = col_double(),
##
##
    wealthIdx = col_double(),
##
    hgt = col_double(),
##
    wgt = col_double(),
##
    hgt0 = col_double(),
##
    wgt0 = col_double(),
##
    prot = col_double(),
    cal = col_double(),
##
     p.A.prot = col_double(),
##
    p.A.nProt = col_double()
## )
# Source Dependency
source('C:/Users/fan/R4Econ/linreg/ivreg/ivregdfrow.R')
# Setting
options(repr.matrix.max.rows=50, repr.matrix.max.cols=50)
```

Data Cleaning.

```
# Convert Variable for Sex which is categorical to Numeric
df <- df
df$male <- (as.numeric(factor(df$sex)) - 1)
summary(factor(df$sex))</pre>
```

Female Male

```
## 16446 18619
summary(df$male)
            Min. 1st Qu. Median
                                                        Mean 3rd Qu.
##
                                                                                             Max.
                        0.000
                                        1.000 0.531 1.000
##
Parameters.
var.y1 <- c('hgt')</pre>
var.y2 <- c('wgt')</pre>
vars.y <- c(var.y1, var.y2)</pre>
vars.x <- c('prot')</pre>
vars.c <- c('male', 'wgt0', 'hgt0', 'svymthRound')</pre>
vars.other.keep <- c('S.country', 'vil.id', 'indi.id', 'svymthRound')</pre>
# Decompose sequence
vars.tomean.first <- c('male', 'hgt0')</pre>
var.tomean.first.name.suffix <- '_A'</pre>
vars.tomean.third <- c(vars.tomean.first, 'prot')</pre>
var.tomean.third.name.suffix <- '_B'</pre>
vars.tomean.fourth <- c(vars.tomean.third, 'svymthRound')</pre>
var.tomean.fourth.name.suffix <- '_C'</pre>
list.vars.tomean = list(vars.tomean.first,
                                                 vars.tomean.third,
                                                vars.tomean.fourth)
list.vars.tomean.name.suffix <- list(var.tomean.first.name.suffix,</pre>
                                                                           var.tomean.third.name.suffix,
                                                                           var.tomean.fourth.name.suffix)
df.use <- df %>% filter(S.country == 'Guatemala') %>%
    filter(svymthRound %in% c(12, 18, 24))
vars.z <- NULL</pre>
list.out <-
    ff_lr_decompose(df=df.use, vars.y, vars.x, vars.c, vars.z, vars.other.keep,
                                    list.vars.tomean, list.vars.tomean.name.suffix,
                                    graph=TRUE, graph.nrow=1)
options(repr.matrix.max.rows=10, repr.matrix.max.cols=50)
head(list.out$dfmain,10) %>%
    kable() %>%
    kable_styling_fc_wide()

        Scountry
        vilid
        indi.id
        symthRound
        prot
        male
        wgt0
        lgt0
        variable
        value
        prot
        mean
        mean

        Guatemala
        3
        1352
        18
        13.3
        1
        2545.2
        47.4
        lgt
        70.2
        20.64819
        0.5499276

        Guatemala
        3
        1352
        24
        46.3
        1
        2545.2
        47.4
        lgt
        75.8
        20.64819
        0.5499276

        Guatemala
        3
        1354
        12
        1
        1
        3634.3
        51.2
        lgt
        66.3
        20.64819
        0.5499276

        Guatemala
        3
        1354
        18
        9.8
        1
        3634.3
        51.2
        lgt
        69.2
        20.64819
        0.5499276

        Guatemala
        3
        1354
        18
        9.8
        1
        3634.3
        51.2
        lgt
        69.2
        20.64819
        0.5499276

        Guatemala
        3
        1354
        18
        9.8
        1
        3634.3
        51.2
        lgt
        69.2
        20.64819
        0.5499276</
```

```
        wynthRound_mean
        value_mean
        value_A
        value_B
        value_C

        18.42547
        73.41216
        71.37891
        71.70649
        71.9931

        18.42547
        73.41216
        76.97891
        75.83533
        72.07980

        18.42547
        73.41216
        65.24416
        66.12009
        70.44889

        18.42547
        73.41216
        68.14416
        68.62778
        68.91442

        18.9442
        73.41216
        73.41216
        73.41216
        73.7200

                                                                                             24 15.4
12 8.6
18 17.8
24 30.5
                                                                                                                                                                 3634.3 51.2 hgt
3634.3 51.2 hgt
3911.8 51.9 hgt
3911.8 51.9 hgt
3911.8 51.9 hgt

        73.41216
        74.24416
        74.47813
        70.72260

        73.41216
        66.63250
        67.16961
        71.49842

        73.41216
        72.63250
        72.75947
        73.04611

        73.41216
        75.63250
        75.19330
        71.43777

                                                                                                                                                                                                                                                                                                         20.64819
                                                                                                                                                                                                                                                                                                                                                                                                                     3312.297
                                                                                                                                                                                                                                                   75.3
68.1
74.1
77.1
71.5
                                                                                                                                                                                                                                                                                                        20.64819
20.64819
20.64819
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          69.62083
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               73.41216 | 75.92083 | 76.27517 | 76.56181
                                                                                                                                                                                                                                                           77.8 20.64819 0.5499276
3 1357
                                                                                                                                                    1 3791.4 52.6 hgt
```

```
options(repr.plot.width = 10, repr.plot.height = 4)
list.out$dfsumm %>%
 kable() %>%
 kable_styling_fc_wide()
```

variable	value_var	value_mean_var	value_A_var	value_B_var	value_C_var	value_var_frac	value_mean_var_frac	value_A_var_frac	value_B_var_frac	value_C_var_frac
hgt	21.864	NA	20.264	18.384	8.395	1	NA	0.927	0.841	0.384
wgt	2965693.245	NA	2863501.267	2659434.374	2346296.982	1	NA	0.966	0.897	0.791

Example Guatemala OLS

```
df.use <- df %>% filter(S.country == 'Guatemala') %>%
  filter(svymthRound %in% c(12, 18, 24))
vars.z <- c('vil.id')
list.out <- ff_lr_decompose(
  df=df.use, vars.y, vars.x, vars.c, vars.z, vars.other.keep,
  list.vars.tomean, list.vars.tomean.name.suffix,
  graph=TRUE, graph.nrow=1)</pre>
```

Example Guatemala IV = vil.id

```
## they will be dropped

## Warning: attributes are not identical across measure variables;
## they will be dropped

list out the form "\""
```

Warning: attributes are not identical across measure variables;

```
list.out$dfsumm %>%
kable() %>%
kable_styling_fc_wide()
```

variable	value_var	value_mean_var	value_A_var	value_B_var	value_C_var	value_var_frac	value_mean_var_frac	value_A_var_frac	value_B_var_frac	value_C_var_frac
hgt	21.864	NA	20.235	16.323	10.03	1	NA	0.926	0.747	0.459
wgt	2965693.245	NA	2876682.895	2676220.156	2583301.29	1	NA	0.970	0.902	0.871

```
options(repr.plot.width = 10, repr.plot.height = 2)
list.out$graph
```



```
df.use <- df %>% filter(S.country == 'Cebu') %>%
  filter(svymthRound %in% c(12, 18, 24))
vars.z <- NULL
list.out <- ff_lr_decompose(
  df=df.use, vars.y, vars.x, vars.c, vars.z, vars.other.keep,
  list.vars.tomean, list.vars.tomean.name.suffix,
  graph=TRUE, graph.nrow=1)
options(repr.matrix.max.rows=10, repr.matrix.max.cols=50)
head(list.out$dfmain, 10) %>%
  kable() %>%
  kable_styling_fc_wide()
```

S.country	vil.id	indi.id	svymthRound	prot	male	wgt0	hgt0	variable	value	prot_mean	male_mean	wgt0_mean	hgt0_mean	svymthRound_mean	value_mean	value_A	value_B	value_C
Cebu	1	1	12	11.3	1	2043.8	44.2	hgt	70.8	16.95957	0.5263013	2988.773	49.23897	17.87441	74.99584	72.12171	72.33074	76.35522
Cebu	1	2	12	5.9	0	2839.9	49.7	hgt	72.2	16.95957	0.5263013	2988.773	49.23897	17.87441	74.99584	72.64812	73.05659	77.08108
Cebu	1	2	18	0.5	0	2839.9	49.7	hgt	76.5	16.95957	0.5263013	2988.773	49.23897	17.87441	74.99584	76.94812	77.55604	77.47000
Cebu	1	2	24	14.1	0	2839.9	49.7	hgt	79.2	16.95957	0.5263013	2988.773	49.23897	17.87441	74.99584	79.64812	79.75374	75.55718
Cebu	1	3	12	21.4	0	3445.6	51.7	hgt	68.0	16.95957	0.5263013	2988.773	49.23897	17.87441	74.99584	67.70200	67.53800	71.56248
Cebu	1	3	18	23.6	0	3445.6	51.7	hgt	71.6	16.95957	0.5263013	2988.773	49.23897	17.87441	74.99584	71.30200	71.05674	70.97071
Cebu	1	3	24	20.6	0	3445.6	51.7	hgt	76.7	16.95957	0.5263013	2988.773	49.23897	17.87441	74.99584	76.40200	76.26754	72.07099
Cebu	1	4	12	0.7	0	3090.9	50.2	hgt	69.1	16.95957	0.5263013	2988.773	49.23897	17.87441	74.99584	69.36159	69.96212	73.98660
Cebu	1	4	18	7.2	0	3090.9	50.2	hgt	74.3	16.95957	0.5263013	2988.773	49.23897	17.87441	74.99584	74.56159	74.92205	74.83601
Cebu	1	4	24	10.3	0	3090.9	50.2	hgt	78.1	16.95957	0.5263013	2988.773	49.23897	17.87441	74.99584	78.36159	78.60755	74.41100

```
options(repr.plot.width = 10, repr.plot.height = 4)
list.out$dfsumm %>%
  kable() %>%
  kable_styling_fc_wide()
```

variable	value_var	value_mean_var	value_A_var	value_B_var	value_C_var	value_var_frac	value_mean_var_frac	value_A_var_frac	value_B_var_frac	value_C_var_frac
hgt	24.375	NA	22.561	21.309	10.001	1	NA	0.926	0.874	0.410
wgt	3337460.957	NA	3218987.397	3039513.634	2558514.368	1	NA	0.965	0.911	0.767

Example Cebu OLS

```
df.use <- df %>% filter(S.country == 'Cebu') %>%
  filter(svymthRound %in% c(12, 18, 24))
vars.z <- c('wealthIdx')
list.out <- ff_lr_decompose(
  df=df.use, vars.y, vars.x, vars.c, vars.z, vars.other.keep,
  list.vars.tomean, list.vars.tomean.name.suffix,
  graph=TRUE, graph.nrow=1)</pre>
```

Example Cebu IV

```
## Warning: attributes are not identical across measure variables;
## they will be dropped

## Warning: attributes are not identical across measure variables;
## they will be dropped

list.out$dfsumm %>%
    kable() %>%
    kable_styling_fc_wide()
```

variable	value_var	value_mean_var	value_A_var	value_B_var	value_C_var	value_var_frac	value_mean_var_frac	value_A_var_frac	value_B_var_frac	value_C_var_frac
hgt	24.375	NA	22.625	22.194	14.392	1	NA	0.928	0.911	0.590
wgt	3337460.957	NA	3237415.252	3385814.742	3158659.340	1	NA	0.970	1.014	0.946

```
options(repr.plot.width = 10, repr.plot.height = 2)
list.out$graph
```


Examples Line by Line The examples are just to test the code with different types of variables.

```
df.use <- df %% filter(S.country == 'Guatemala') %>%
  filter(svymthRound %in% c(12, 18, 24))
dim(df.use)
```

[1] 2022 16

Setting Up Parameters.

```
# Define Left Hand Side Variables
var.y1 <- c('hgt')</pre>
var.y2 <- c('wgt')</pre>
vars.y <- c(var.y1, var.y2)</pre>
# Define Right Hand Side Variables
vars.x <- c('prot')</pre>
vars.c <- c('male', 'wgt0', 'hgt0', 'svymthRound')</pre>
# vars.z <- c('p.A.prot')
vars.z <- c('vil.id')</pre>
# vars.z <- NULL
vars.xc <- c(vars.x, vars.c)</pre>
# Other variables to keep
vars.other.keep <- c('S.country', 'vil.id', 'indi.id', 'svymthRound')</pre>
# Decompose sequence
vars.tomean.first <- c('male', 'hgt0')</pre>
var.tomean.first.name.suffix <- '_mh02m'</pre>
```

```
vars.tomean.second <- c(vars.tomean.first, 'hgt0', 'wgt0')</pre>
var.tomean.second.name.suffix <- '_mh0me2m'</pre>
vars.tomean.third <- c(vars.tomean.second, 'prot')</pre>
var.tomean.third.name.suffix <- '_mh0mep2m'</pre>
vars.tomean.fourth <- c(vars.tomean.third, 'svymthRound')</pre>
var.tomean.fourth.name.suffix <- '_mh0mepm2m'</pre>
list.vars.tomean = list(
                           vars.tomean.first,
                         vars.tomean.second,
                         vars.tomean.third,
                         vars.tomean.fourth
list.vars.tomean.name.suffix <- list(</pre>
                                         var.tomean.first.name.suffix,
                                       var.tomean.second.name.suffix,
                                       var.tomean.third.name.suffix,
                                       var.tomean.fourth.name.suffix
# Regressions
\# regf.iv from C: \Users fan \R4Econ \linreg \ivreg \ivregd frow . R
df.reg.out <- as_tibble(</pre>
  bind_rows(lapply(vars.y, regf.iv,
                    vars.x=vars.x, vars.c=vars.c, vars.z=vars.z, df=df)))
Obtain Regression Coefficients from somewhere
## Warning: attributes are not identical across measure variables;
## they will be dropped
## Warning: attributes are not identical across measure variables;
## they will be dropped
# Regressions
\# reg1 \leftarrow regf.iv(var.y = var.y1, vars.x, vars.c, vars.z, df.use)
# reg2 <- regf.iv(var.y = var.y2, vars.x, vars.c, vars.z, df.use)</pre>
# df.reg.out <- as_tibble(bind_rows(reg1, reg2))</pre>
# df.reg.out
# Select Variables
str.esti.suffix <- '_Estimate'</pre>
arr.esti.name <- paste0(vars.xc, str.esti.suffix)</pre>
str.outcome.name <- 'vars_var.y'</pre>
arr.columns2select <- c(arr.esti.name, str.outcome.name)</pre>
arr.columns2select
## [1] "prot_Estimate"
                                                         "wgt0_Estimate"
                                                                                  "hgt0_Estimate"
                                "male_Estimate"
                                                                                                           "svy
# Generate dataframe for coefficients
df.coef <- df.reg.out[,c(arr.columns2select)] %>% mutate_at(vars(arr.esti.name), as.numeric) %>% column
df.coef %>%
 kable() %>%
 kable_styling_fc()
```

	prot_Estimate	male_Estimate	wgt0_Estimate	hgt0_Estimate	svymthRound_Estimate
hgt	-0.2714772	1.244735	0.0004430	0.6834853	1.133919
wgt	-59.0727542	489.852902	0.7696158	75.4867897	250.778883

```
str(df.coef)
```

```
## 'data.frame':
                  2 obs. of 5 variables:
## $ prot_Estimate : num -0.271 -59.073
## $ male_Estimate
                       : num 1.24 489.85
## $ wgt0 Estimate
                       : num 0.000443 0.769616
## $ hgt0_Estimate
                       : num 0.683 75.487
## $ svymthRound_Estimate: num 1.13 250.78
# Decomposition Step 1: gather
df.decompose_step1 <- df.use %>%
                      filter(svymthRound %in% c(12, 18, 24)) %>%
                      select(one_of(c(vars.other.keep, vars.xc, vars.y))) %>%
                      drop_na() %>%
                      gather(variable, value, -one_of(c(vars.other.keep, vars.xc)))
```

Decomposition Step 1

dim(df.decompose_step1)

```
## [1] 1382 10
head(df.decompose_step1, 10) %>%
  kable() %>%
  kable_styling_fc()
```

options(repr.matrix.max.rows=20, repr.matrix.max.cols=20)

S.country	vil.id	indi.id	svymthRound	prot	male	wgt0	hgt0	variable	value
Guatemala	3	1352	18	13.3	1	2545.2	47.4	hgt	70.2
Guatemala	3	1352	24	46.3	1	2545.2	47.4	hgt	75.8
Guatemala	3	1354	12	1.0	1	3634.3	51.2	hgt	66.3
Guatemala	3	1354	18	9.8	1	3634.3	51.2	hgt	69.2
Guatemala	3	1354	24	15.4	1	3634.3	51.2	hgt	75.3
Guatemala	3	1356	12	8.6	1	3911.8	51.9	hgt	68.1
Guatemala	3	1356	18	17.8	1	3911.8	51.9	hgt	74.1
Guatemala	3	1356	24	30.5	1	3911.8	51.9	hgt	77.1
Guatemala	3	1357	12	1.0	1	3791.4	52.6	hgt	71.5
Guatemala	3	1357	18	12.7	1	3791.4	52.6	hgt	77.8

Decomposition Step 2

```
## [1] 1382 16
```

```
head(df.decompose_step2,10) %>%
kable() %>%
kable_styling_fc_wide()
```

S.country	vil.id	indi.id	svymthRound	prot	male	wgt0	hgt0	variable	value	prot_mean	male_mean	wgt0_mean	hgt0_mean	svymthRound_mean	value_mean
Guatemala	3	1352	18	13.3	1	2545.2	47.4	hgt	70.2	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216
Guatemala	3	1352	24	46.3	1	2545.2	47.4	hgt	75.8	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216
Guatemala	3	1354	12	1.0	1	3634.3	51.2	hgt	66.3	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216
Guatemala	3	1354	18	9.8	1	3634.3	51.2	hgt	69.2	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216
Guatemala	3	1354	24	15.4	1	3634.3	51.2	hgt	75.3	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216
Guatemala	3	1356	12	8.6	1	3911.8	51.9	hgt	68.1	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216
Guatemala	3	1356	18	17.8	1	3911.8	51.9	hgt	74.1	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216
Guatemala	3	1356	24	30.5	1	3911.8	51.9	hgt	77.1	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216
Guatemala	3	1357	12	1.0	1	3791.4	52.6	hgt	71.5	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216
Guatemala	3	1357	18	12.7	1	3791.4	52.6	hgt	77.8	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216

```
ff_lr_decompose_valadj <- function(df, df.coef, vars.tomean, str.esti.suffix) {
    new value <- (df$value +
                  rowSums((df[paste0(vars.tomean, '_mean')] - df[vars.tomean])
                           *df.coef[df$variable, paste0(vars.tomean, str.esti.suffix)]))
    return(new_value)
}
# # Decomposition Step 3: mutate_at(vars, funs(mean = mean(.)))
# var.decomp.one <- (pasteO('value', list.vars.tomean.name.suffix[[1]]))</pre>
# var.decomp.two <- (pasteO('value', list.vars.tomean.name.suffix[[2]]))</pre>
# var.decomp.thr <- (pasteO('value', list.vars.tomean.name.suffix[[3]]))</pre>
# df.decompose_step3 <- df.decompose_step2 %>%
                          mutate((!!var.decomp.one) := f_decompose_here(., df.coef, list.vars.tomean[[1
#
                                  (!!var.decomp.two) := f_decompose_here(., df.coef, list.vars.tomean[[2
#
                                  (!!var.decomp.thr) := f_decompose_here(., df.coef, list.vars.tomean[[3]
# options(repr.matrix.max.rows=10, repr.matrix.max.cols=20)
# dim(df.decompose_step3)
# df.decompose step3
```

Decomposition Step 3 Non-Loop

Decomposition Step 3 With Loop

```
## [1] 1382 19
```

```
head(df.decompose_step3, 10) %>%
  kable() %>%
  kable_styling_fc_wide()
```

S.country	vil.id	indi.id	svymthRound	prot	male	wgt0	hgt0	variable	value	prot_mean	male_mean	wgt0_mean	hgt0_mean	svymthRound_mean	value_mean	value_mh0me2m	value_mh0mep2m	value_mh0mepm2m
Guatemala	3	1352	18	13.3	1	2545.2	47.4	hgt	70.2	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216	73.19390	71.19903	71.68148
Guatemala	3	1352	24	46.3	1	2545.2	47.4	hgt	75.8	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216	78.79390	85.75778	79.43671
Guatemala	3	1354	12	1.0	1	3634.3	51.2	hgt	66.3	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216	63.61689	58.28285	65.56882
Guatemala	3	1354	18	9.8	1	3634.3	51.2	hgt	69.2	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216	66.51689	63.57185	64.05430
Guatemala	3	1354	24	15.4	1	3634.3	51.2	hgt	75.3	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216	72.61689	71.19213	64.87106
Guatemala	3	1356	12	8.6	1	3911.8	51.9	hgt	68.1	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216	64.33707	61.06626	68.35222
Guatemala	3	1356	18	17.8	1	3911.8	51.9	hgt	74.1	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216	70.33707	69.56385	70.04630
Guatemala	3	1356	24	30.5	1	3911.8	51.9	hgt	77.1	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216	73.33707	76.01161	69.69055
Guatemala	3	1357	12	1.0	1	3791.4	52.6	hgt	71.5	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216	66.83353	61.49949	68.78545
Guatemala	3	1357	18	12.7	1	3791.4	52.6	hgt	77.8	20.64819	0.5499276	3312.297	49.75137	18.42547	73.41216	73.13353	70.97578	71.45823

```
df.decompose_step3 %>%
    select(variable, contains('value')) %>%
    group_by(variable) %>%
    summarize_all(funs(mean = mean, var = var)) %>%
    select(matches('value')) %>% select(ends_with("_var")) %>%
    mutate_if(is.numeric, funs( frac = (./value_var))) %>%
    mutate_if(is.numeric, round, 3) %>%
    kable() %>%
    kable_styling_fc()
```

value_var	value_mean_var	value_mh0me2m_var	value_mh0mep2m_var	value_mh0mepm2m_var	value_va
21.864	NA	25.35	49.047	23.06	
2965693.245	NA	2949187.64	4192769.518	3147506.60	

Decomposition Step 4 Variance

Graphical Results Graphically, difficult to pick up exact differences in variance, a 50 percent reduction in variance visually does not look like 50 percent. Intuitively, we are kind of seeing standard deviation, not variance on the graph if we think about he x-scale.

```
head(df.decompose_step3 %>%
    select(variable, contains('value'), -value_mean), 10) %>%
kable() %>%
kable_styling_fc_wide()
```

variable	value	value_mh0me2m	value_mh0mep2m	value_mh0mepm2m
hgt	70.2	73.19390	71.19903	71.68148
hgt	75.8	78.79390	85.75778	79.43671
hgt	66.3	63.61689	58.28285	65.56882
hgt	69.2	66.51689	63.57185	64.05430
hgt	75.3	72.61689	71.19213	64.87106
hgt	68.1	64.33707	61.06626	68.35222
hgt	74.1	70.33707	69.56385	70.04630
hgt	77.1	73.33707	76.01161	69.69055
hgt	71.5	66.83353	61.49949	68.78545
hgt	77.8	73.13353	70.97578	71.45823

```
options(repr.plot.width = 10, repr.plot.height = 4)
df.decompose_step3 %>%
    select(variable, contains('value'), -value_mean) %>%
    rename(outcome = variable) %>%
    gather(variable, value, -outcome) %>%
    ggplot(aes(x=value, color = variable, fill = variable)) +
        geom_line(stat = "density") +
        facet_wrap(~ outcome, scales='free', nrow=2)
```



```
head(df.decompose_step2[vars.tomean.first],3)
```

Additional Decomposition Testings

```
## # A tibble: 3 x 2
## male hgt0
## <dbl> <dbl>
## 1     1 47.4
## 2     1 47.4
## 3     1 51.2
head(df.decompose_step2[paste0(vars.tomean.first, '_mean')], 3)
```

```
## # A tibble: 3 x 2
## male_mean hgt0_mean
## <dbl> <dbl>
## 1 0.550 49.8
## 2 0.550 49.8
## 3 0.550 49.8
```

```
head(df.coef[df.decompose_step2$variable,
            paste0(vars.tomean.first, str.esti.suffix)], 3)
##
         male Estimate hgt0 Estimate
## hgt
              1.244735
                           0.6834853
## hgt.1
              1.244735
                           0.6834853
## hgt.2
              1.244735
                           0.6834853
df.decompose.tomean.first <- df.decompose_step2 %>%
   mutate(pred_new = df.decompose_step2$value +
        rowSums((df.decompose step2[paste0(vars.tomean.first, ' mean')]
                 - df.decompose step2[vars.tomean.first])
            *df.coef[df.decompose_step2$variable,
                     paste0(vars.tomean.first, str.esti.suffix)])) %>%
        select(variable, value, pred_new)
head(df.decompose.tomean.first, 10)
## # A tibble: 10 x 3
##
     variable value pred_new
##
      <chr>
             <dbl>
                        <dbl>
## 1 hgt
               70.2
                        71.2
               75.8
                        76.8
## 2 hgt
               66.3
                        64.7
## 3 hgt
               69.2
## 4 hgt
                        67.6
## 5 hgt
               75.3
                        73.7
               68.1
                        66.1
## 6 hgt
## 7 hgt
               74.1
                       72.1
## 8 hgt
               77.1
                        75.1
                        69.0
## 9 hgt
               71.5
## 10 hgt
               77.8
                        75.3
df.decompose.tomean.first %>%
        group by (variable) %>%
        summarize_all(funs(mean = mean, sd = sd)) %>%
  kable() %>%
  kable_styling_fc()
```

variable	value_mean	pred_new_mean	$value_sd$	pred_new_sd
hgt	73.41216	73.41216	4.675867	4.534947
wgt	8807.87656	8807.87656	1722.118824	1695.221845

Note the r-square from regression above matches up with the 1 - ratio below. This is the proper decomposition method that is equivalent to r2.

kable_styling_fc()

variable	value_mean	pred_new_mean	value_var	pred_new_var	ratio
hgt	73.41216	73.41216	2.186374e+01	25.3504	1.1594724
wgt	8807.87656	8807.87656	2.965693e+06	2949187.6357	0.9944345