Supplementary materials for "Reevaluating Exponential Crossover in Differential Evolution"

Ryoji Tanabe and Alex Fukunaga $31/\mathrm{Mar}/2014$

Figure 1: Evaluation of exponential crossover (**standard DE**). The horizontal axis represents the dimensionality D, and the vertical axis represents: (**left**) the mean fitness evaluations (for successful runs) divided by success rate, (**right**) the success rate which is the number of "successes" divided by 50.

Figure 2: Evaluation of exponential crossover (\mathbf{jDE}). The horizontal axis represents the dimensionality D, and the vertical axis represents: (\mathbf{left}) the mean fitness evaluations (for successful runs) divided by success rate, (\mathbf{right}) the success rate which is the number of "successes" divided by 50.

Figure 3: Evaluation of exponential crossover (**JADE**). The horizontal axis represents the dimensionality D, and the vertical axis represents: (**left**) the mean fitness evaluations (for successful runs) divided by success rate, (**right**) the success rate which is the number of "successes" divided by 50.

Figure 4: Evaluation of exponential crossover (**SHADE**). The horizontal axis represents the dimensionality D, and the vertical axis represents: (**left**) the mean fitness evaluations (for successful runs) divided by success rate, (**right**) the success rate which is the number of "successes" divided by 50.

Table 1: Comparison of shuffle exponential crossover with binomial and exponential crossover in **standard DE** on the CEC2014 benchmark functions [1] (10 dimensions). For all problems, the maximum number of objective function evaluations is $D \times 10,000 = 100,000$. All results are the means of 51 runs.

F	shuffle exponential	exponential	binomial
	Mean±Std Dev	Mean±Std Dev	Mean±Std Dev
F_1	$0.00e+00\pm0.00e+00$	$0.00e+00\pm0.00e+00\approx$	$0.00e+00\pm0.00e+00\approx$
F_2	$0.00e+00\pm0.00e+00$	$0.00e+00\pm0.00e+00\approx$	$0.00e+00\pm0.00e+00\approx$
F_3	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$	$0.00e+00\pm0.00e+00\approx$
F_4	$6.48\mathrm{e}{+00}{\pm}1.25\mathrm{e}{+01}$	$9.46e + 00 \pm 1.43e + 01 \approx$	$7.58e + 00 \pm 1.37e + 01 \approx$
F_5	$1.97e + 01 \pm 1.16e + 00$	$1.96e + 01 \pm 3.00e + 00 +$	$1.91\mathrm{e}{+01}{\pm}4.68\mathrm{e}{+00}{+}$
F_6	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00{\pm}0.00\mathrm{e}{+00}}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$
F_7	$3.75e-02\pm2.64e-02$	$3.70e-02\pm4.61e-02\approx$	$2.91\text{e-}02 \!\pm\! 2.14\text{e-}02 \!\approx\!$
F_8	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}{+00}}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{\approx}$	$1.14e + 01 \pm 7.39e + 00 -$
F_9	$1.18\mathrm{e}{+01}{\pm}2.25\mathrm{e}{+00}$	$1.18e + 01 \pm 2.19e + 00 \approx$	$1.42e + 01 \pm 8.25e + 00 \approx$
F_{10}	$4.19\mathrm{e}{+00}{\pm}2.19\mathrm{e}{+00}$	$4.58e + 00 \pm 2.23e + 00 \approx$	$5.19e + 02 \pm 3.48e + 02 -$
F_{11}	$5.54\mathrm{e}{+02}{\pm}1.30\mathrm{e}{+02}$	$5.98e + 02 \pm 1.12e + 02 \approx$	$8.66e + 02 \pm 3.03e + 02 -$
F_{12}	$4.71e-01\pm9.08e-02$	$4.67\mathrm{e\text{-}01}{\pm}8.00\mathrm{e\text{-}02}{\approx}$	$6.55 \text{e-} 01 \pm 2.12 \text{e-} 01 -$
F_{13}	$1.25 \text{e-}01 \pm 3.07 \text{e-}02$	$1.26e-01\pm3.26e-02\approx$	$1.22\mathrm{e\text{-}}01{\pm}2.64\mathrm{e\text{-}}02{\approx}$
F_{14}	$1.43e-01\pm3.17e-02$	$1.34\mathrm{e\text{-}}01{\pm}3.54\mathrm{e\text{-}}02{\approx}$	$1.51e-01\pm3.02e-02\approx$
F_{15}	$1.36e + 00 \pm 2.12e - 01$	$1.32\mathrm{e}{+00}{\pm}1.79\mathrm{e}{-01}{pprox}$	$1.77e + 00 \pm 4.66e - 01 -$
F_{16}	$2.31\mathrm{e}{+00}{\pm}2.12\mathrm{e}{-01}$	$2.33e + 00 \pm 2.22e - 01 \approx$	$2.51e + 00 \pm 3.02e - 01 -$
F_{17}	$3.86e-01\pm2.49e-01$	$3.58\mathrm{e} ext{-}01\pm2.24\mathrm{e} ext{-}01+$	$4.88e-01\pm1.53e+00-$
F_{18}	$1.56e-01\pm1.47e-01$	$1.62 \text{e-}01 \pm 2.92 \text{e-}01 -$	$1.43\mathrm{e\text{-}}01{\pm}1.30\mathrm{e\text{-}}01{\approx}$
F_{19}	$2.94 \mathrm{e} ext{-}01 \pm 1.03 \mathrm{e} ext{-}01$	$3.21 \text{e-} 01 \pm 9.55 \text{e-} 02 \approx$	$3.26e-01\pm9.03e-02-$
F_{20}	$4.77\mathrm{e}\hbox{-}02 \pm 9.93\mathrm{e}\hbox{-}02$	$7.42 e-02 \pm 1.12 e-01 -$	$8.72 \text{e-} 02 \pm 1.44 \text{e-} 01 \approx$
F_{21}	$2.27\text{e-}01{\pm}2.55\text{e-}01$	$3.47e-01\pm2.69e-01-$	$3.09 \text{e-} 01 \pm 2.55 \text{e-} 01 \approx$
F_{22}	$1.16 ext{e-}01 \pm 1.11 ext{e-}01$	$1.97e-01\pm1.77e-01-$	$2.34 \text{e-}01 \pm 2.11 \text{e-}01 -$
F_{23}	$3.23\mathrm{e}{+02}{\pm}4.61\mathrm{e}{+01}$	$3.29e+02\pm0.00e+00\approx$	$3.29e+02\pm0.00e+00\approx$
F_{24}	$1.15e + 02 \pm 6.08e + 00$	$1.17e + 02 \pm 6.54e + 00 -$	$1.13\mathrm{e}{+02\pm7.86\mathrm{e}{+00}}$
F_{25}	$1.47e + 02 \pm 4.11e + 01$	$1.44e + 02 \pm 3.42e + 01 \approx$	$1.42\mathrm{e}{+02}{\pm}4.17\mathrm{e}{+01}{pprox}$
F_{26}	$1.00e + 02 \pm 2.25e - 02$	$1.00e + 02 \pm 3.57e - 02 \approx$	$1.00\mathrm{e}{+02}{\pm}2.57\mathrm{e}{-02}{pprox}$
F_{27}	$6.06e + 01 \pm 1.38e + 02$	$5.07e + 01 \pm 1.25e + 02 \approx$	$4.68\mathrm{e}{+01}{\pm}1.25\mathrm{e}{+02}{+}$
F_{28}	$3.66e + 02 \pm 1.72e + 01$	$3.63\mathrm{e}{+02}{\pm}5.93\mathrm{e}{+00}{\approx}$	$3.71e + 02 \pm 2.83e + 01 \approx$
F_{29}	$2.03e + 02 \pm 4.00e + 01$	$2.04e + 02 \pm 3.55e + 01 \approx$	$2.11e + 02 \pm 3.11e + 01 -$
F_{30}	$4.62\mathrm{e}{+02}{\pm}1.28\mathrm{e}{+00}$	$4.63e + 02 \pm 7.70e - 01 -$	$4.64e + 02 \pm 5.22e + 00 -$
	iffle exponential + (better)	2	2
(Wi	lcoxon rank-sum) — (worse)	6	11
	$p < 0.05$ \approx (no sig.)	22	17

Table 2: Comparison of shuffle exponential crossover with binomial and exponential crossover in **standard DE** on the CEC2014 benchmark functions [1] (30 dimensions). For all problems, the maximum number of objective function evaluations is $D \times 10,000 = 300,000$. All results are the means of 51 runs.

F	shuffle exponential	exponential	binomial
	Mean±Std Dev	Mean±Std Dev	Mean±Std Dev
F_1	$6.74e + 04 \pm 6.78e + 04$	$1.05e + 05 \pm 8.05e + 04 -$	$3.29\mathrm{e}{+0.4\pm2.47\mathrm{e}{+0.4+}}$
F_2	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}{+00}}$	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}{\approx}$	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}{\approx}$
F_3	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}{+00}}$	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}{\approx}$	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}{\approx}$
F_4	$9.38\text{e-}02{\pm}1.01\text{e-}01$	$4.79 e-01\pm3.63 e-01-$	$2.06 \text{e-} 01 \pm 1.35 \text{e-} 01 -$
F_5	$2.05e + 01 \pm 3.99e - 02$	$2.05\mathrm{e}{+01}{\pm}3.85\mathrm{e}{-02}{pprox}$	$2.07e + 01 \pm 1.87e - 01 -$
F_6	$5.36e-01\pm7.07e-01$	$3.85 \text{e-}01 \pm 7.94 \text{e-}01 \approx$	$3.74 \text{e-}01 {\pm} 5.56 \text{e-}01 +$
F_7	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}{pprox}$
F_8	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$	$1.88e + 01 \pm 5.59e + 00 -$
F_9	$8.81e + 01 \pm 9.61e + 00$	$9.14e+01\pm9.01e+00\approx$	$3.60\mathrm{e}{+01}{\pm}2.29\mathrm{e}{+01}{+}$
F_{10}	$2.30\mathrm{e}{+01}{\pm}4.92\mathrm{e}{+00}$	$2.66e + 01 \pm 4.31e + 00 -$	$1.16e + 03 \pm 1.43e + 03 -$
F_{11}	$3.83\mathrm{e}{+03}{\pm}2.45\mathrm{e}{+02}$	$3.83e + 03 \pm 2.11e + 02 \approx$	$3.89e + 03 \pm 1.70e + 03 -$
F_{12}	$7.04\text{e-}01{\pm}1.02\text{e-}01$	$7.35e-01\pm7.55e-02\approx$	$7.54 \text{e-} 01 \pm 6.35 \text{e-} 01 -$
F_{13}	$2.89 \text{e-}01 \pm 8.40 \text{e-}02$	$3.15 \text{e-}01 \pm 7.03 \text{e-}02 \approx$	$2.77\mathrm{e\text{-}}01{\pm}7.15\mathrm{e\text{-}}02{\approx}$
F_{14}	$2.54\text{e-}01{\pm}3.20\text{e-}02$	$2.54 \text{e-} 01 \pm 2.63 \text{e-} 02 \approx$	$2.59 \text{e-} 01 \pm 3.63 \text{e-} 02 \approx$
F_{15}	$9.73e + 00 \pm 8.17e - 01$	$9.60e + 00 \pm 8.70e - 01 \approx$	$6.64\mathrm{e}{+00}{\pm}3.33\mathrm{e}{+00}{+}$
F_{16}	$1.09\mathrm{e}{+01}{\pm3.29\mathrm{e}}{-01}$	$1.09e + 01 \pm 2.66e - 01 \approx$	$1.09e+01\pm1.34e+00\approx$
F_{17}	$1.86e + 02 \pm 1.71e + 02$	$1.83e + 02 \pm 1.21e + 02 \approx$	$1.25\mathrm{e}{+02}{\pm}1.08\mathrm{e}{+02}{pprox}$
F_{18}	$1.00e + 01 \pm 4.63e + 00$	$1.12e + 01 \pm 4.06e + 00 \approx$	$\mathbf{7.78e} {+} 00 {\pm} \mathbf{3.52e} {+} 00 {+}$
F_{19}	$3.32e+00\pm1.09e+00$	$3.40\mathrm{e}{+00}{\pm}7.08\mathrm{e}{-01}{\approx}$	$3.08\mathrm{e}{+00}{\pm}7.66\mathrm{e}{-01}{pprox}$
F_{20}	$9.98e + 00 \pm 6.40e + 00$	$9.39e+00\pm3.80e+00\approx$	$7.58\mathrm{e}{+00}{\pm}4.44\mathrm{e}{+00}{+}$
F_{21}	$9.29e + 01 \pm 1.02e + 02$	$7.98e + 01 \pm 9.69e + 01 \approx$	$6.33\mathrm{e}{+01}{\pm}8.86\mathrm{e}{+01}{+}$
F_{22}	$3.32e+01\pm2.42e+01$	$3.65e + 01 \pm 3.04e + 01 \approx$	$2.81\mathrm{e}{+01}{\pm}5.03\mathrm{e}{+00}{+}$
F_{23}	$3.15\mathrm{e}{+02}{\pm0.00\mathrm{e}}{+00}$	$3.15\mathrm{e}{+02{\pm}0.00\mathrm{e}}{+00}{\approx}$	$3.15\mathrm{e}{+02{\pm}0.00\mathrm{e}}{+00}{\approx}$
F_{24}	$2.16e + 02 \pm 9.54e + 00$	$2.15\mathrm{e}{+02}{\pm}1.00\mathrm{e}{+01}{pprox}$	$2.18e + 02 \pm 8.97e + 00 \approx$
F_{25}	$2.03e + 02 \pm 1.38e - 01$	$2.03e + 02 \pm 2.27e - 01 -$	$2.03\mathrm{e}{+02}{\pm}1.51\mathrm{e}{-01}{pprox}$
F_{26}	$1.00e + 02 \pm 7.29e - 02$	$1.00e + 02 \pm 7.76e - 02 \approx$	$1.00\mathrm{e}{+0.2\pm7.07\mathrm{e}{-0.2}}$
F_{27}	$3.64e + 02 \pm 4.85e + 01$	$3.64e + 02 \pm 4.59e + 01 \approx$	$3.47\mathrm{e}{+02}{\pm}4.78\mathrm{e}{+01}{+}$
F_{28}	$7.90e + 02 \pm 2.06e + 01$	$\mathbf{7.85e} {+} 02 {\pm} 3.20 \mathrm{e} {+} 01 {+}$	$8.00e + 02 \pm 2.34e + 01 -$
F_{29}	$6.52e + 02 \pm 1.56e + 02$	$6.63e + 02 \pm 1.65e + 02 \approx$	$5.72\mathrm{e}{+02}{\pm}2.45\mathrm{e}{+02}{+}$
F_{30}	$5.92e + 02 \pm 1.72e + 02$	$6.27\mathrm{e}{+02}{\pm}2.28\mathrm{e}{+02}{\approx}$	$5.25\mathrm{e}{+02}{\pm}1.78\mathrm{e}{+02}{+}$
vs. shu	iffle exponential + (better)	1	11
(Wi	lcoxon rank-sum) – (worse)	4	7
	$p < 0.05 \approx \text{(no sig.)}$	25	12

Table 3: Comparison of shuffle exponential crossover with binomial and exponential crossover in **standard DE** on the CEC2014 benchmark functions [1] (50 dimensions). For all problems, the maximum number of objective function evaluations is $D \times 10,000 = 500,000$. All results are the means of 51 runs.

F	shuffle exponential Mean±Std Dev	exponential Mean±Std Dev	binomial Mean±Std Dev
E	5.62e+05±2.49e+05	6.57e+05±3.11e+05≈	3.85e+05±1.78e+05+
F_1 F_2	$9.65e+00\pm1.60e+01$	$6.78 + 0.00 \pm 0.00 \approx 6.73 = +0.00 \pm 0.00 = +0.00 \approx 6.73 = +0.00 \pm 0.00 \approx 6.73 = +0.00 \approx 6.73 =$	$3.83e + 0.05 \pm 1.78e + 0.05 + 0.08e + 0.02 \pm 6.43e + 0.02 \approx$
F_3	$1.30 ext{e-}05 \pm 1.14 ext{e-}05$	$3.12e-04\pm2.65e-04-$	1.93e-01±3.55e-01-
F_4	$7.50e+01\pm3.26e+01$	$8.40e+01\pm2.52e+01\approx$	$7.06e+01\pm2.99e+01\approx$
F_5	$2.06e+01\pm3.20e+01$ $2.06e+01\pm3.03e-02$	$8.40e+01\pm2.52e+01\approx$ $2.06e+01\pm3.01e-02\approx$	7.00e+01±2.99e+01≈ 2.08e+01±1.27e-01−
F_6	$2.40e+01\pm3.03e+02$ $2.40e+00\pm1.93e+00$	$2.06e + 01 \pm 3.01e - 02 \approx$ $3.05e + 00 \pm 2.26e + 00 \approx$	$2.08e+01\pm1.27e-01-$ $1.50e+00\pm1.67e+00+$
F_6	$0.00e+00\pm1.95e+00$ $0.00e+00\pm0.00e+00$	$0.00e+00\pm2.20e+00\approx$ $0.00e+00\pm0.00e+00\approx$	1.45e-04±1.04e-03≈
	·	•	
F_8	$0.00e+00\pm0.00e+00$	$0.00e+00\pm0.00e+00\approx$	$3.46e + 01 \pm 7.07e + 00 -$
F_9	$1.97e + 02 \pm 1.33e + 01$	$2.00e + 02 \pm 1.14e + 01 \approx$	$5.85e+01\pm1.45e+01+$
F_{10}	$3.49e+01\pm5.71e+00$	4.28e+01±6.64e+00-	$1.60e + 03 \pm 1.22e + 03 -$
F_{11}	$7.61e+03\pm2.96e+02$	$7.69e + 03 \pm 2.68e + 02 \approx$	$6.98e + 03 \pm 3.04e + 03 +$
F_{12}	$8.13e-01\pm 8.02e-02$	$8.10e-01\pm7.04e-02\approx$	$5.46 \mathrm{e} ext{-}01 \pm 4.20 \mathrm{e} ext{-}01 +$
F_{13}	$4.30e-01\pm8.04e-02$	$4.42e-01\pm7.68e-02\approx$	$3.96 \mathrm{e} ext{-}01 \pm 7.35 \mathrm{e} ext{-}02 +$
F_{14}	$2.75\text{e-}01{\pm}3.65\text{e-}02$	$2.81e-01\pm3.34e-02\approx$	$3.17e-01\pm6.58e-02-$
F_{15}	$2.14e+01\pm1.37e+00$	$2.10e+01\pm1.51e+00\approx$	$9.11\mathrm{e}{+00}{\pm}4.66\mathrm{e}{+00}{+}$
F_{16}	$1.96e + 01 \pm 3.18e - 01$	$1.97e + 01 \pm 3.00e - 01 \approx$	$1.93\mathrm{e}{+01}{\pm}1.12\mathrm{e}{+00}{+}$
F_{17}	$1.46e + 04 \pm 9.23e + 03$	$1.65e + 04 \pm 1.51e + 04 \approx$	$1.25\mathrm{e}{+04}{\pm}6.44\mathrm{e}{+03}{pprox}$
F_{18}	$4.40e+01\pm1.87e+01$	$4.93e + 01 \pm 1.80e + 01 \approx$	$2.35\mathrm{e}{+01}{\pm}8.63\mathrm{e}{+00}{+}$
F_{19}	$8.15\mathrm{e}{+00}{\pm}2.06\mathrm{e}{+00}$	$8.61e + 00 \pm 1.97e + 00 \approx$	$9.12e + 00 \pm 2.35e + 00 -$
F_{20}	$4.55\mathrm{e}{+01}{\pm}2.89\mathrm{e}{+01}$	$5.83e + 01 \pm 2.43e + 01 -$	$4.90e+01\pm3.37e+01\approx$
F_{21}	$1.02e + 03 \pm 8.02e + 02$	$1.18e + 03 \pm 1.19e + 03 \approx$	$\mathbf{7.16e} {+} 02 {\pm} \mathbf{4.44e} {+} 02 {+}$
F_{22}	$5.09\mathrm{e}{+02}{\pm}2.65\mathrm{e}{+02}$	$5.64e + 02 \pm 2.10e + 02 \approx$	$5.91e + 02 \pm 3.61e + 02 \approx$
F_{23}	$3.44\mathrm{e}{+02}{\pm0.00\mathrm{e}}{+00}$	$3.44\mathrm{e}{+02}{\pm0.00\mathrm{e}}{+00}{\approx}$	$3.44\mathrm{e}{+02}{\pm0.00}\mathrm{e}{+00}{pprox}$
F_{24}	$2.62\mathrm{e}{+02}{\pm3.65\mathrm{e}{+00}}$	$2.63e + 02 \pm 3.76e + 00 \approx$	$2.70e + 02 \pm 2.36e + 00 -$
F_{25}	$2.06e + 02 \pm 6.71e - 01$	$2.06e + 02 \pm 5.72e - 01 \approx$	$2.05\mathrm{e}{+02}{\pm4.10}\mathrm{e}{-01}{+}$
F_{26}	$1.00e + 02 \pm 4.37e - 02$	$1.00e + 02 \pm 1.01e - 01 +$	$1.00\mathrm{e}{+02\pm7.98\mathrm{e}{-02}}{+}$
F_{27}	$3.56\mathrm{e}{+02}{\pm}3.49\mathrm{e}{+01}$	$3.74e + 02 \pm 2.75e + 01 -$	$3.69e + 02 \pm 3.80e + 01 -$
F_{28}	$1.08\mathrm{e}{+03}{\pm}5.54\mathrm{e}{+01}$	$1.10e + 03 \pm 4.72e + 01 -$	$1.08e + 03 \pm 3.65e + 01 \approx$
F_{29}	$8.87\mathrm{e}{+02}{\pm}6.75\mathrm{e}{+01}$	$1.15e + 03 \pm 2.49e + 02 -$	$9.13e + 02 \pm 2.15e + 02 \approx$
F_{30}	$7.93\mathrm{e}{+03}{\pm}9.66\mathrm{e}{+01}$	$7.98e + 03 \pm 1.27e + 02 -$	$8.27e + 03 \pm 3.22e + 02 -$
vs. shu	affle exponential + (better)	1	12
(Wilcoxon rank-sum) - (worse)		8	9
	$p < 0.05 \approx (\text{no sig.})$	21	9

Table 4: Comparison of shuffle exponential crossover with binomial and exponential crossover in \mathbf{jDE} on the CEC2014 benchmark functions [1] (10 dimensions). For all problems, the maximum number of objective function evaluations is $D \times 10,000 = 100,000$. All results are the means of 51 runs.

F	shuffle exponential	exponential	binomial
I'	Mean±Std Dev	Mean±Std Dev	Mean±Std Dev
F_1	$1.45 \text{e-}05 \pm 2.46 \text{e-}05$	$1.09e-03\pm4.60e-03\approx$	$0.00e + 00 \pm 0.00e + 00 +$
F_2	$9.28e-07\pm1.99e-06$	$3.21 \text{e-}05 \pm 5.32 \text{e-}05 -$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{+}$
F_3	$1.70e-07\pm5.00e-07$	$2.54 e - 09 \pm 7.04 e - 09 +$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{+}$
F_4	$3.93e+00\pm1.04e+01$	$1.29\mathrm{e}{+00}{\pm}5.01\mathrm{e}{+00}{pprox}$	$1.42e + 01 \pm 1.67e + 01 \approx$
F_5	$1.86e + 01 \pm 3.49e + 00$	$1.81\mathrm{e}{+01}{\pm}3.60\mathrm{e}{+00}{pprox}$	$1.98e + 01 \pm 1.30e + 00 -$
F_6	$1.52 \text{e-} 01 \pm 1.74 \text{e-} 01$	$1.07e-02\pm2.69e-02+$	$3.25 \mathbf{e}\text{-}06 \!\pm\! 1.70 \mathbf{e}\text{-}05 \!+\!$
F_7	$2.16e-02\pm1.11e-02$	$1.90e-02\pm1.09e-02\approx$	$\mathbf{1.89e\text{-}02} {\pm} \mathbf{1.38e\text{-}02} {\approx}$
F_8	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$	$0.00\mathrm{e}{+00{\pm}0.00\mathrm{e}{+00}}$
F_9	$5.67e + 00 \pm 1.21e + 00$	$5.62\mathrm{e}{+00}{\pm}1.23\mathrm{e}{+00}{pprox}$	$5.99e + 00 \pm 1.25e + 00 \approx$
F_{10}	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$	$0.00\mathrm{e}{+00{\pm}0.00\mathrm{e}{+00}}$
F_{11}	$2.67e + 02 \pm 8.70e + 01$	$2.48\mathrm{e}{+02}{\pm}1.09\mathrm{e}{+02}{\approx}$	$2.96e + 02 \pm 9.12e + 01 \approx$
F_{12}	$3.31\mathrm{e}\text{-}01{\pm}6.11\mathrm{e}\text{-}02$	$3.37e-01\pm6.28e-02\approx$	$3.87 \text{e-} 01 \pm 6.99 \text{e-} 02 -$
F_{13}	$1.64 \text{e-} 01 \pm 2.62 \text{e-} 02$	$1.61 \text{e-}01 \pm 2.96 \text{e-}02 \approx$	$\bf 1.42e\text{-}01 \pm 2.83e\text{-}02 +$
F_{14}	$1.60e-01\pm3.35e-02$	$1.66e-01\pm3.55e-02\approx$	$1.56\mathrm{e\text{-}01}{\pm}4.28\mathrm{e\text{-}02}{\approx}$
F_{15}	$9.40 e01 \pm 1.66 e01$	$\mathbf{8.92\text{e-}01} {\pm} \mathbf{1.52\text{e-}01} {\approx}$	$9.94 \text{e-} 01 \pm 1.78 \text{e-} 01 \approx$
F_{16}	$2.08\mathrm{e}{+00}{\pm}2.70\mathrm{e}{-01}$	$2.08e + 00 \pm 2.50e - 01 \approx$	$2.12e + 00 \pm 2.66e - 01 \approx$
F_{17}	$4.81e + 01 \pm 2.31e + 01$	$4.87e + 01 \pm 2.80e + 01 \approx$	$1.15\mathrm{e}{+01}{\pm}1.03\mathrm{e}{+01}{+}$
F_{18}	$3.22e+00\pm1.04e+00$	$4.16e + 00 \pm 1.32e + 00 -$	$1.37\mathrm{e}{+00}{\pm}6.87\mathrm{e}{-01}{+}$
F_{19}	$3.49 \text{e-}01 \pm 1.09 \text{e-}01$	$3.78e-01\pm1.18e-01\approx$	$3.32\mathrm{e\text{-}01}{\pm}1.05\mathrm{e\text{-}01}{\approx}$
F_{20}	$4.80e-01\pm1.92e-01$	$1.07e + 00 \pm 4.40e - 01 -$	$\mathbf{2.06e\text{-}01} \!\pm\! 1.07 \mathrm{e\text{-}01} \!+\!$
F_{21}	$3.88e + 00 \pm 2.69e + 00$	$1.04e + 01 \pm 7.82e + 00 -$	$\bf 4.99e\text{-}01 \!\pm\! 3.93e\text{-}01 \!+\!$
F_{22}	$3.58e-01\pm4.19e-01$	$7.02 \text{e-}01 \pm 5.70 \text{e-}01 -$	$\bf 1.72e\text{-}01 \pm 9.86e\text{-}02 +$
F_{23}	$3.29\mathrm{e}{+02}{\pm0.00\mathrm{e}}{+00}$	$3.29\mathrm{e}{+02}{\pm0.00\mathrm{e}}{+00}{\approx}$	$3.29\mathrm{e}{+02{\pm}0.00\mathrm{e}{+00}}$
F_{24}	$1.13e + 02 \pm 2.19e + 00$	$1.13e + 02 \pm 1.89e + 00 \approx$	$1.13\mathrm{e}{+02}{\pm}2.29\mathrm{e}{+00}{pprox}$
F_{25}	$1.27\mathrm{e}{+02}{\pm}1.44\mathrm{e}{+01}$	$1.31e + 02 \pm 2.18e + 01 \approx$	$1.27e + 02 \pm 2.82e + 01 -$
F_{26}	$1.00e + 02 \pm 2.62e - 02$	$1.00e + 02 \pm 2.81e - 02 \approx$	$1.00\mathrm{e}{+02{\pm}3.17\mathrm{e}{-02}}{+}$
F_{27}	$4.68\mathrm{e}{+01}{\pm}1.12\mathrm{e}{+02}$	$6.18e + 01 \pm 1.21e + 02 \approx$	$7.94e + 01 \pm 1.42e + 02 -$
F_{28}	$3.57\mathrm{e}{+02}{\pm}1.76\mathrm{e}{+00}$	$3.58e + 02 \pm 4.62e + 00 -$	$3.61e + 02 \pm 6.03e + 00 \approx$
F_{29}	$2.23e + 02 \pm 7.81e - 01$	$2.24e + 02 \pm 6.59e - 01 \approx$	$\bf 2.22e{+}02{\pm}5.15e\text{-}01{+}$
F_{30}	$4.73e+02\pm1.17e+01$	$4.77e + 02 \pm 1.39e + 01 -$	$\mathbf{4.66e} {+} 02 {\pm} \mathbf{9.19e} {+} 00 {+}$
vs. shu	ffle exponential + (better)	2	13
(Wil	lcoxon rank-sum) – (worse)	7	4
•	$p < 0.05 \approx \text{(no sig.)}$	21	13

Table 5: Comparison of shuffle exponential crossover with binomial and exponential crossover in **jDE** on the CEC2014 benchmark functions [1] (30 dimensions). For all problems, the maximum number of objective function evaluations is $D \times 10,000 = 300,000$. All results are the means of 51 runs.

\overline{F}	shuffle exponential	exponential	binomial
	Mean±Std Dev	Mean±Std Dev	Mean±Std Dev
F_1	$3.17e + 05 \pm 1.91e + 05$	$3.75e + 05 \pm 2.30e + 05 \approx$	$6.54\mathrm{e}{+04}{\pm}4.95\mathrm{e}{+04}{+}$
F_2	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}$	$3.38e-09\pm1.58e-08-$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$
F_3	$7.75 \text{e-} 06 \pm 1.25 \text{e-} 05$	$7.25 e - 05 \pm 1.04 e - 04 -$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{+}$
F_4	$5.74e + 01 \pm 2.87e + 01$	$5.35e + 01 \pm 2.93e + 01 \approx$	$5.08\mathrm{e}{+00}{\pm}1.60\mathrm{e}{+01}{+}$
F_5	$2.03e + 01 \pm 3.00e - 02$	$2.03\mathrm{e}{+01}{\pm}3.42\mathrm{e}{-02}{pprox}$	$2.03e + 01 \pm 4.29e - 02 -$
F_6	$1.36e + 01 \pm 9.86e - 01$	$1.31e + 01 \pm 1.11e + 00 +$	$3.84\mathrm{e}{+00}{\pm}4.37\mathrm{e}{+00}{+}$
F_7	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$3.67e-10\pm2.62e-09\approx$	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}{pprox}$
F_8	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}{pprox}$
F_9	$5.05e + 01 \pm 6.47e + 00$	$5.09e+01\pm6.67e+00\approx$	$4.25\mathrm{e}{+01}{\pm}6.64\mathrm{e}{+00}{+}$
F_{10}	$4.08\text{e-}04{\pm}2.92\text{e-}03$	$8.16e-04\pm4.08e-03\approx$	$2.04 \text{e-} 03 \pm 6.25 \text{e-} 03 \approx$
F_{11}	$2.25\mathrm{e}{+03}{\pm}2.36\mathrm{e}{+02}$	$2.26e + 03 \pm 2.71e + 02 \approx$	$2.43e + 03 \pm 2.68e + 02 -$
F_{12}	$3.87\mathrm{e} ext{-}01 ext{\pm}4.13\mathrm{e} ext{-}02$	$3.91 \text{e-} 01 \pm 4.20 \text{e-} 02 \approx$	$4.63 e-01\pm5.13 e-02-$
F_{13}	$3.46e-01\pm3.25e-02$	$3.47 \text{e-}01 \pm 3.93 \text{e-}02 \approx$	$2.97 \mathbf{e}\text{-}01 \!\pm\! 3.60 \mathbf{e}\text{-}02 +$
F_{14}	$2.64\text{e-}01{\pm}2.81\text{e-}02$	$2.66e-01\pm3.00e-02\approx$	$2.76e-01\pm3.22e-02-$
F_{15}	$6.97e + 00 \pm 5.98e - 01$	$6.77e + 00 \pm 8.12e - 01 \approx$	$5.66\mathrm{e}{+00}{\pm}7.18\mathrm{e}{-01}{+}$
F_{16}	$9.75\mathrm{e}{+00}{\pm}3.88\mathrm{e}{-01}$	$9.79e + 00 \pm 2.69e - 01 \approx$	$9.89e + 00 \pm 3.65e - 01 \approx$
F_{17}	$5.30e + 04 \pm 5.19e + 04$	$5.65e + 04 \pm 4.53e + 04 \approx$	$1.61\mathrm{e}{+03}{\pm}1.46\mathrm{e}{+03}{+}$
F_{18}	$6.66e + 02 \pm 6.64e + 02$	$7.03e + 02 \pm 6.86e + 02 \approx$	$1.78\mathrm{e}{+01}{\pm}1.19\mathrm{e}{+01}{+}$
F_{19}	$6.94e + 00 \pm 5.47e - 01$	$6.97e + 00 \pm 6.14e - 01 \approx$	$4.49\mathrm{e}{+00}{\pm}6.49\mathrm{e}{-01}{+}$
F_{20}	$5.40e + 01 \pm 1.40e + 01$	$5.12e+01\pm1.31e+01\approx$	$1.16\mathrm{e}{+01}{\pm3.15}\mathrm{e}{+00}{+}$
F_{21}	$3.69e + 03 \pm 2.02e + 03$	$3.20e+03\pm1.71e+03\approx$	$3.03\mathrm{e}{+02}{\pm}1.36\mathrm{e}{+02}{+}$
F_{22}	$2.31e + 02 \pm 6.96e + 01$	$2.13e + 02 \pm 8.10e + 01 \approx$	$9.91\mathrm{e}{+01}{\pm}5.98\mathrm{e}{+01}{+}$
F_{23}	$3.15\mathrm{e}{+02}{\pm0.00\mathrm{e}}{+00}$	$3.15\mathrm{e}{+02}{\pm0.00\mathrm{e}}{+00}{\approx}$	$3.15\mathrm{e}{+02}{\pm0.00\mathrm{e}}{+00}{pprox}$
F_{24}	$2.26e + 02 \pm 6.35e - 01$	$2.26e + 02 \pm 6.79e - 01 \approx$	$\mathbf{2.24e} {+} 02 {\pm} \mathbf{1.46e} {+} 00 {+}$
F_{25}	$2.04e + 02 \pm 5.70e - 01$	$2.04e + 02 \pm 6.14e - 01 \approx$	$2.03\mathrm{e}{+02}{\pm}6.34\mathrm{e}{-01}{+}$
F_{26}	$1.00e + 02 \pm 3.90e - 02$	$1.00e + 02 \pm 4.51e - 02 \approx$	$1.00\mathrm{e}{+02{\pm}3.67\mathrm{e}{-02}}{+}$
F_{27}	$4.08e + 02 \pm 5.20e + 00$	$4.11e + 02 \pm 8.88e + 00 -$	$3.56\mathrm{e}{+02}{\pm}4.86\mathrm{e}{+01}{+}$
F_{28}	$8.53e + 02 \pm 1.67e + 01$	$8.53e + 02 \pm 1.99e + 01 \approx$	$7.88\mathrm{e}{+02}{\pm3.10\mathrm{e}}{+01}{+}$
F_{29}	$1.30e + 03 \pm 9.66e + 01$	$1.30e + 03 \pm 1.06e + 02 \approx$	$8.07\mathrm{e}{+02}{\pm}7.49\mathrm{e}{+01}{+}$
F_{30}	$1.78e + 03 \pm 4.68e + 02$	$1.61\mathrm{e}{+03}{\pm}4.34\mathrm{e}{+02}{+}$	$\bf 1.49e{+}03{\pm}6.80e{+}02{+}$
vs. shu	iffle exponential + (better)	2	20
	lcoxon rank-sum) – (worse)	3	4
	$p < 0.05$ \approx (no sig.)	25	6

Table 6: Comparison of shuffle exponential crossover with binomial and exponential crossover in **jDE** on the CEC2014 benchmark functions [1] (50 dimensions). For all problems, the maximum number of objective function evaluations is $D \times 10,000 = 500,000$. All results are the means of 51 runs.

F	shuffle exponential Mean±Std Dev	exponential Mean±Std Dev	binomial Mean±Std Dev
F_1	$1.34e + 06 \pm 6.59e + 05$	1.38e+06±6.40e+05≈	$4.91\mathrm{e}{+05}{\pm2.37\mathrm{e}}{+05}{+}$
F_2	$1.49e + 03 \pm 9.54e + 02$	$1.63e + 03 \pm 1.40e + 03 \approx$	$\bf 8.17e\text{-}09 \pm 3.61e\text{-}08 +$
F_3	$5.28e + 01 \pm 4.38e + 01$	$3.94e+01\pm3.44e+01\approx$	$7.18 ext{e-}09 ext{\pm}2.27 ext{e-}08+$
F_4	$9.48e + 01 \pm 4.31e + 00$	$9.12e+01\pm1.68e+01\approx$	$8.91e+01\pm1.26e+01\approx$
F_5	$2.04\mathrm{e}{+01}{\pm}2.90\mathrm{e}{-02}$	$2.04e + 01 \pm 2.76e - 02 \approx$	$2.04e + 01 \pm 2.99e - 02 -$
F_6	$2.87e + 01 \pm 1.83e + 00$	$2.90e+01\pm1.67e+00\approx$	$8.33e+00\pm6.88e+00+$
F_7	$1.82 \text{e-}05 \pm 4.91 \text{e-}05$	$8.07e-05\pm1.53e-04-$	$0.00\mathrm{e}{+00\pm0.00\mathrm{e}{+00}}$
F_8	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$	0.00e+00±0.00e+00
F_9	$1.22e + 02 \pm 9.66e + 00$	$1.24e + 02 \pm 1.21e + 01 \approx$	$9.34\mathrm{e}{+01}{\pm}9.11\mathrm{e}{+00}{-}$
F_{10}	$9.80 \mathrm{e} ext{-}04 \pm 3.39 \mathrm{e} ext{-}03$	$1.22e-03\pm3.75e-03\approx$	$3.43e-03\pm6.65e-03-$
F_{11}	$4.95e + 03 \pm 3.04e + 02$	$4.90\mathrm{e}{+03}{\pm3.01\mathrm{e}}{+02}{\approx}$	$5.21e + 03 \pm 3.70e + 02 -$
F_{12}	$4.17e-01\pm4.30e-02$	$4.09\text{e-}01{\pm}5.17\text{e-}02{\approx}$	$4.94 \text{e-}01 \pm 5.80 \text{e-}02 -$
F_{13}	$4.05e-01\pm4.22e-02$	$3.99e-01\pm3.77e-02\approx$	$3.90\mathrm{e\text{-}01}{\pm}4.56\mathrm{e\text{-}02}{\approx}$
F_{14}	$3.14e-01\pm1.83e-02$	$3.13 ext{e-}01 \pm 2.23 ext{e-}02 ext{pprox}$	$3.40e-01\pm9.84e-02\approx$
F_{15}	$1.56e + 01 \pm 1.51e + 00$	$1.56e + 01 \pm 1.67e + 00 \approx$	$1.21\mathrm{e}{+01}{\pm}1.15\mathrm{e}{+00}{+}$
F_{16}	$1.82e + 01 \pm 3.54e - 01$	$1.82\mathrm{e}{+01}{\pm3.30}\mathrm{e}{-01}{pprox}$	$1.82e + 01 \pm 4.21e - 01 \approx$
F_{17}	$7.26e + 05 \pm 5.12e + 05$	$6.73e + 05 \pm 4.09e + 05 \approx$	$2.15\mathrm{e}{+04}{\pm}1.43\mathrm{e}{+04}{+}$
F_{18}	$9.80e + 02 \pm 5.90e + 02$	$1.08e + 03 \pm 6.24e + 02 \approx$	$4.56\mathrm{e}{+0.2\pm5.59\mathrm{e}{+0.2\pm0.000000000000000000000000000000000$
F_{19}	$1.78e + 01 \pm 2.02e + 00$	$1.78e + 01 \pm 2.64e + 00 \approx$	$1.43\mathrm{e}{+01}{\pm}6.16\mathrm{e}{+00}{+}$
F_{20}	$6.85e + 02 \pm 3.46e + 02$	$9.12e + 02 \pm 4.63e + 02 -$	$5.17\mathrm{e}{+01}{\pm}2.18\mathrm{e}{+01}{+}$
F_{21}	$1.28e + 05 \pm 6.78e + 04$	$1.28e + 05 \pm 6.10e + 04 \approx$	$8.36\mathrm{e}{+03\pm7.71\mathrm{e}{+03}}$
F_{22}	$7.53e + 02 \pm 1.33e + 02$	$7.29e + 02 \pm 1.63e + 02 \approx$	$5.46\mathrm{e}{+02}{\pm}1.52\mathrm{e}{+02}{+0}$
F_{23}	$3.44\mathrm{e}{+02}{\pm0.00\mathrm{e}}{+00}$	$3.44\mathrm{e}{+02}{\pm0.00}\mathrm{e}{+00}{pprox}$	$3.44\mathrm{e}{+02\pm0.00\mathrm{e}{+00}}$
F_{24}	$2.61\mathrm{e}{+02}{\pm3.44}\mathrm{e}{+00}$	$2.62e+02\pm3.64e+00\approx$	$2.68e + 02 \pm 2.07e + 00 -$
F_{25}	$2.11e+02\pm1.42e+00$	$2.12e+02\pm1.49e+00\approx$	$2.07\mathrm{e}{+02}{\pm}1.97\mathrm{e}{+00}{+}$
F_{26}	$1.00e + 02 \pm 3.89e - 02$	$1.00e + 02 \pm 4.59e - 02 \approx$	$1.00\mathrm{e}{+02{\pm}3.52\mathrm{e}}{-02{+}}$
F_{27}	$9.69e + 02 \pm 1.84e + 02$	$1.03e + 03 \pm 9.84e + 01 \approx$	$4.33\mathrm{e}{+02}{\pm}5.33\mathrm{e}{+01}{-}$
F_{28}	$1.29e + 03 \pm 3.44e + 01$	$1.29e + 03 \pm 3.67e + 01 \approx$	$1.11\mathrm{e}{+03\pm3.62\mathrm{e}{+01}}$
F_{29}	$1.66e + 03 \pm 2.05e + 02$	$1.70e + 03 \pm 2.13e + 02 \approx$	$1.08\mathrm{e}{+03}{\pm}1.95\mathrm{e}{+02}{+}$
F_{30}	$8.64\mathrm{e}{+03}{\pm}2.51\mathrm{e}{+02}$	$8.66e + 03 \pm 2.57e + 02 \approx$	$8.65e + 03 \pm 4.68e + 02 \approx$
vs. shu	ıffle exponential + (better)	0	18
(Wi	lcoxon rank-sum) – (worse)	2	5
	$p < 0.05 \approx (\text{no sig.})$	28	7

Table 7: Comparison of shuffle exponential crossover with binomial and exponential crossover in **JADE** on the CEC2014 benchmark functions [1] (10 dimensions). For all problems, the maximum number of objective function evaluations is $D \times 10,000 = 100,000$. All results are the means of 51 runs.

F	shuffle exponential	exponential	binomial
<i>I</i> '	Mean±Std Dev	Mean±Std Dev	Mean±Std Dev
F_1	$2.78e + 04 \pm 1.96e + 04$	$7.13e + 04 \pm 3.24e + 04 -$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{+}$
F_2	$5.94e + 01 \pm 5.06e + 01$	$9.72e + 01 \pm 9.41e + 01 \approx$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{+}$
F_3	$3.71e+01\pm5.31e+01$	$2.53e+01\pm2.38e+01\approx$	$3.52 \mathrm{e} ext{-}05 \pm 2.07 \mathrm{e} ext{-}04 +$
F_4	$2.32e+00\pm6.57e+00$	$1.32\mathrm{e}{+00}{\pm}3.39\mathrm{e}{+00}{pprox}$	$2.34e + 01 \pm 1.62e + 01 -$
F_5	$1.74\mathrm{e}{+01}{\pm}4.82\mathrm{e}{+00}$	$1.77e + 01 \pm 4.45e + 00 \approx$	$1.77e + 01 \pm 4.42e + 00 \approx$
F_6	$1.15e + 00 \pm 3.25e - 01$	$4.86e-01\pm1.61e-01+$	$9.92 \text{e-} 02 {\pm} 1.34 \text{e-} 01 +$
F_7	$1.87e-02\pm6.88e-03$	$2.01 \text{e-} 02 \pm 8.58 \text{e-} 03 \approx$	$1.05\text{e-}02{\pm}5.37\text{e-}03{+}$
F_8	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$
F_9	$4.13e + 00 \pm 9.57e - 01$	$4.21e + 00 \pm 8.75e - 01 \approx$	$3.29\mathrm{e}{+00}{\pm}8.73\mathrm{e}{-01}{+}$
F_{10}	$2.45 \text{e-} 03 \!\pm\! 1.22 \text{e-} 02$	$4.90e-03\pm1.70e-02\approx$	$9.80e-03\pm2.29e-02-$
F_{11}	$1.17e + 02 \pm 5.99e + 01$	$1.34e + 02 \pm 8.31e + 01 \approx$	$8.83\mathrm{e}{+01}{\pm}5.47\mathrm{e}{+01}{+}$
F_{12}	$2.34\text{e-}01{\pm}4.96\text{e-}02$	$2.38e-01\pm5.18e-02\approx$	$2.55e-01\pm5.56e-02\approx$
F_{13}	$1.33e-01\pm2.63e-02$	$1.29 \text{e-}01 \pm 2.47 \text{e-}02 \approx$	$8.16\text{e-}02{\pm}1.98\text{e-}02{+}$
F_{14}	$1.13e-01\pm3.19e-02$	$1.14 \text{e-}01 \pm 3.60 \text{e-}02 \approx$	$1.02\mathrm{e\text{-}}01{\pm}3.64\mathrm{e\text{-}}02{\approx}$
F_{15}	$6.71 \text{e-} 01 \pm 1.36 \text{e-} 01$	$6.38e-01\pm1.26e-01\approx$	$5.54 \mathrm{e} ext{-}01 \pm 9.35 \mathrm{e} ext{-}02 +$
F_{16}	$1.82e + 00 \pm 3.25e - 01$	$1.85e + 00 \pm 1.99e - 01 \approx$	$1.63\mathrm{e}{+00}{\pm}2.93\mathrm{e}{-01}{+}$
F_{17}	$7.37e + 03 \pm 6.39e + 03$	$1.10e + 04 \pm 1.03e + 04 \approx$	$3.14\mathrm{e}{+00}{\pm}1.71\mathrm{e}{+01}{+}$
F_{18}	$1.92e + 02 \pm 2.47e + 02$	$5.38e + 02 \pm 4.43e + 02 -$	$\mathbf{4.00e\text{-}01} \!\pm\! 5.10\text{e\text{-}01} \!+\!$
F_{19}	$2.69\text{e-}01{\pm}7.46\text{e-}02$	$3.05 \text{e-}01 \pm 9.07 \text{e-}02 -$	$2.71 \text{e-}01 \pm 1.72 \text{e-}01 \approx$
F_{20}	$9.93 \text{e-} 01 \pm 6.15 \text{e-} 01$	$8.75e + 01 \pm 1.04e + 02 -$	$3.25 \text{e-}01 {\pm} 8.75 \text{e-}02 +$
F_{21}	$7.03e + 02 \pm 6.99e + 02$	$8.54e + 02 \pm 8.34e + 02 \approx$	$8.45 \mathrm{e}\hbox{-}01 \pm 1.53 \mathrm{e} + 00 +$
F_{22}	$1.93e-01\pm1.03e-01$	$2.35 \text{e-}01 \pm 8.86 \text{e-}02 -$	$1.87\mathrm{e\text{-}}01{\pm}8.77\mathrm{e\text{-}}02{\approx}$
F_{23}	$3.04\mathrm{e}{+02}{\pm}8.78\mathrm{e}{+01}$	$3.17e + 02 \pm 6.17e + 01 -$	$3.29e + 02 \pm 0.00e + 00 -$
F_{24}	$1.11e + 02 \pm 2.03e + 00$	$1.13e + 02 \pm 1.89e + 00 -$	$1.09\mathrm{e}{+02}{\pm}1.71\mathrm{e}{+00}{+}$
F_{25}	$1.26e + 02 \pm 5.55e + 00$	$1.28e + 02 \pm 1.11e + 01 \approx$	$1.25\mathrm{e}{+02}{\pm}2.30\mathrm{e}{+01}{+}$
F_{26}	$1.00e + 02 \pm 3.07e - 02$	$1.00e + 02 \pm 3.17e - 02 \approx$	$1.00\mathrm{e}{+02}{\pm}1.45\mathrm{e}{-02}{+}$
F_{27}	$4.94e + 01 \pm 1.13e + 02$	$4.28\mathrm{e}{+01}{\pm}1.06\mathrm{e}{+02}{pprox}$	$6.55e + 01 \pm 1.39e + 02 -$
F_{28}	$3.68\mathrm{e}{+02}{\pm}2.76\mathrm{e}{+01}$	$3.74e + 02 \pm 3.46e + 01 -$	$4.03e + 02 \pm 5.10e + 01 -$
F_{29}	$3.12e+02\pm3.49e+01$	$3.19e+02\pm3.91e+01\approx$	$\mathbf{2.33e} {+} 02 {\pm} \mathbf{2.83e} {+} 01 {+}$
F_{30}	$5.43e + 02 \pm 3.44e + 01$	$5.58\mathrm{e}{+02}{\pm}4.32\mathrm{e}{+01}{\approx}$	$4.76\mathrm{e}{+02}{\pm}2.13\mathrm{e}{+01}{+}$
vs. shu	iffle exponential + (better)	1	19
(Wil	lcoxon rank-sum) – (worse)	8	5
,	$p < 0.05$ \approx (no sig.)	21	6

Table 8: Comparison of shuffle exponential crossover with binomial and exponential crossover in **JADE** on the CEC2014 benchmark functions [1] (30 dimensions). For all problems, the maximum number of objective function evaluations is $D \times 10,000 = 300,000$. All results are the means of 51 runs.

F	shuffle exponential	exponential	binomial
I'	Mean±Std Dev	Mean±Std Dev	Mean±Std Dev
F_1	$1.68e + 07 \pm 5.71e + 06$	$1.51e + 07 \pm 4.72e + 06 \approx$	$1.81\mathrm{e}{+03}{\pm}2.42\mathrm{e}{+03}{+}$
F_2	$5.37e + 01 \pm 5.32e + 01$	$2.43e + 02 \pm 2.61e + 02 -$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{+}$
F_3	$4.28e + 02 \pm 5.30e + 02$	$6.94e + 02 \pm 8.97e + 02 \approx$	$\bf 8.40e\text{-}05 {\pm} 5.03e\text{-}04 {+}$
F_4	$5.99e + 01 \pm 2.17e + 01$	$5.10e + 01 \pm 2.30e + 01 +$	$\bf 7.82e\text{-}02 {\pm} 5.58e\text{-}01 {+}$
F_5	$2.02e + 01 \pm 2.92e - 02$	$2.02\mathrm{e}{+01}{\pm}3.83\mathrm{e}{-02}{pprox}$	$2.03e + 01 \pm 3.10e - 02 -$
F_6	$1.33e+01\pm1.11e+00$	$1.30e+01\pm1.08e+00\approx$	$9.01\mathrm{e}{+00}{\pm}2.71\mathrm{e}{+00}{+}$
F_7	$1.53 \mathrm{e} ext{-}04 \pm 1.07 \mathrm{e} ext{-}04$	$2.24 e-04 \pm 1.86 e-04 -$	$5.32 \text{e-} 04 \pm 2.22 \text{e-} 03 -$
F_8	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{\approx}$
F_9	$4.29e+01\pm5.73e+00$	$4.41e+01\pm5.70e+00\approx$	$2.56\mathrm{e}{+01}{\pm}4.47\mathrm{e}{+00}{+}$
F_{10}	$2.45\text{e-}03{\pm}6.77\text{e-}03$	$2.45\text{e-}03{\pm}6.77\text{e-}03{\approx}$	$6.94 \text{e-} 03 \pm 1.15 \text{e-} 02 -$
F_{11}	$1.65\mathrm{e}{+03}{\pm}2.05\mathrm{e}{+02}$	$1.70e + 03 \pm 2.20e + 02 \approx$	$1.67e + 03 \pm 2.16e + 02 \approx$
F_{12}	$2.27e-01\pm2.96e-02$	$2.19\text{e-}01 {\pm} 3.50 \text{e-}02 {\approx}$	$2.52 \text{e-} 01 \pm 3.60 \text{e-} 02 -$
F_{13}	$2.94 \text{e-} 01 \pm 3.83 \text{e-} 02$	$3.00 \text{e-} 01 \pm 4.07 \text{e-} 02 \approx$	$\bf 2.05e\text{-}01 \pm 2.90e\text{-}02 +$
F_{14}	$\mathbf{2.16e\text{-}01} \!\pm\! \mathbf{2.26e\text{-}02}$	$2.20 \text{e-} 01 \pm 2.09 \text{e-} 02 \approx$	$2.24 \text{e-} 01 \pm 3.48 \text{e-} 02 \approx$
F_{15}	$5.29e + 00 \pm 5.84e - 01$	$5.14e + 00 \pm 6.60e - 01 \approx$	$3.12\mathrm{e}{+00}{\pm}3.91\mathrm{e}{-01}{+}$
F_{16}	$9.51e + 00 \pm 3.28e - 01$	$9.53e + 00 \pm 3.79e - 01 \approx$	$9.39\mathrm{e}{+00}{\pm}3.07\mathrm{e}{-01}{pprox}$
F_{17}	$2.54e + 06 \pm 1.18e + 06$	$2.83e + 06 \pm 1.35e + 06 \approx$	$1.12\mathrm{e}{+03}{\pm}3.69\mathrm{e}{+02}{+}$
F_{18}	$1.62e + 04 \pm 9.81e + 03$	$1.69e + 04 \pm 9.15e + 03 \approx$	$9.06\mathrm{e}{+01}{\pm}1.17\mathrm{e}{+02}{+}$
F_{19}	$7.21e + 00 \pm 7.23e - 01$	$7.20e + 00 \pm 8.24e - 01 \approx$	$4.47\mathrm{e}{+00}{\pm}7.11\mathrm{e}{-01}{+}$
F_{20}	$5.28e + 03 \pm 2.16e + 03$	$5.44e + 03 \pm 2.31e + 03 \approx$	$\mathbf{2.38e} {+} 03 {\pm} \mathbf{2.28e} {+} 03 {+}$
F_{21}	$4.33e+05\pm2.30e+05$	$5.03e + 05 \pm 1.90e + 05 -$	$1.07\mathrm{e}{+04}{\pm}4.42\mathrm{e}{+04}{+}$
F_{22}	$2.07e + 02 \pm 8.65e + 01$	$2.09e + 02 \pm 6.98e + 01 \approx$	$1.60\mathrm{e}{+02}{\pm}6.56\mathrm{e}{+01}{+}$
F_{23}	$3.15e + 02 \pm 4.42e - 02$	$3.15e + 02 \pm 6.44e - 02 \approx$	$3.15\mathrm{e}{+02}{\pm0.00\mathrm{e}}{+00}{+}$
F_{24}	$2.28e + 02 \pm 7.51e - 01$	$2.28e + 02 \pm 6.55e - 01 \approx$	$\mathbf{2.26e} {+} 02 {\pm} \mathbf{3.90e} {+} 00 {+}$
F_{25}	$2.08e + 02 \pm 8.08e - 01$	$2.08e + 02 \pm 1.06e + 00 -$	$\mathbf{2.05e} {+} 02 {\pm} \mathbf{2.31e} {+} 00 {+}$
F_{26}	$1.00\mathrm{e}{+02}{\pm}5.38\mathrm{e}{-02}$	$1.00e + 02 \pm 4.77e - 02 \approx$	$1.02e + 02 \pm 1.40e + 01 -$
F_{27}	$4.04e + 02 \pm 5.69e + 01$	$4.13e + 02 \pm 4.06e + 00 \approx$	$3.42e + 02 \pm 4.97e + 01 +$
F_{28}	$8.71e + 02 \pm 3.48e + 01$	$8.68e + 02 \pm 2.82e + 01 \approx$	$7.93e + 02 \pm 4.17e + 01 +$
F_{29}	$1.71e + 03 \pm 1.32e + 02$	$1.67e + 03 \pm 1.45e + 02 \approx$	$7.28e + 02 \pm 1.50e + 01 +$
F_{30}	$4.10e+03\pm8.39e+02$	$4.13\mathrm{e}{+03}{\pm}1.11\mathrm{e}{+03}{\approx}$	$\bf 1.48e{+}03{\pm}4.78e{+}02{+}$
vs. shu	ffle exponential + (better)	1	21
(Wil	lcoxon rank-sum) – (worse)	4	5
	$p < 0.05 \approx \text{(no sig.)}$	25	4

Table 9: Comparison of shuffle exponential crossover with binomial and exponential crossover in **JADE** on the CEC2014 benchmark functions [1] (50 dimensions). For all problems, the maximum number of objective function evaluations is $D \times 10,000 = 500,000$. All results are the means of 51 runs.

F	shuffle exponential Mean $\pm \mathrm{Std}$ Dev	exponential Mean±Std Dev	binomial Mean±Std Dev
F_1	$1.60e + 07 \pm 3.46e + 06$	1.73e+07±3.95e+06≈	$1.86\mathrm{e}{+04}{\pm}1.45\mathrm{e}{+04}{+}$
F_2	$4.19e + 04 \pm 1.70e + 04$	$4.26e+04\pm2.45e+04\approx$	$0.00e+00\pm0.00e+00+$
F_3	$5.81e + 03 \pm 2.99e + 03$	$6.68e + 03 \pm 2.47e + 03 \approx$	$3.66\mathrm{e}{+03}{\pm}2.17\mathrm{e}{+03}{+}$
F_4	$8.53e+01\pm1.59e+01$	$8.69e + 01 \pm 1.43e + 01 \approx$	$5.47\mathrm{e}{+00}{\pm}2.06\mathrm{e}{+01}{+}$
F_5	$2.03e + 01 \pm 3.42e - 02$	$2.03\mathrm{e}{+01}{\pm}2.98\mathrm{e}{-02}{pprox}$	$2.04e + 01 \pm 3.42e - 02 -$
F_6	$2.58e + 01 \pm 1.88e + 00$	$2.56e + 01 \pm 1.87e + 00 \approx$	$1.67\mathrm{e}{+01}{\pm}6.39\mathrm{e}{+00}{+}$
F_7	$5.49e-03\pm2.20e-03$	$6.06e-03\pm2.81e-03\approx$	$\textbf{4.88e-03} {\pm} \textbf{5.94e-03} {\approx}$
F_8	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}$
F_9	$1.00e + 02 \pm 9.96e + 00$	$1.02e + 02 \pm 1.06e + 01 \approx$	$5.41\mathrm{e}{+01}{\pm}7.49\mathrm{e}{+00}{+}$
F_{10}	$3.43 \mathrm{e} ext{-}03 \pm 6.65 \mathrm{e} ext{-}03$	$6.61e-03\pm9.13e-03≈$	$8.57e-03\pm8.47e-03-$
F_{11}	$3.82e + 03 \pm 2.88e + 02$	$3.83e + 03 \pm 3.18e + 02 \approx$	$3.82\mathrm{e}{+03}{\pm}3.11\mathrm{e}{+02}$
F_{12}	$2.07e-01\pm2.34e-02$	$2.05\mathrm{e\text{-}01}{\pm}2.33\mathrm{e\text{-}02}{\approx}$	$2.61e-01\pm2.75e-02-$
F_{13}	$3.71e-01\pm4.09e-02$	$3.73 \text{e-}01 \pm 3.61 \text{e-}02 \approx$	$3.17 \mathrm{e} ext{-}01 \pm 4.59 \mathrm{e} ext{-}02 +$
F_{14}	$2.72 \text{e-}01 {\pm} 2.04 \text{e-}02$	$2.72e-01\pm2.45e-02\approx$	$2.95e-01\pm6.33e-02-$
F_{15}	$1.25e + 01 \pm 1.23e + 00$	$1.25e+01\pm1.13e+00\approx$	$7.48\mathrm{e}{+00}{\pm}9.07\mathrm{e}{-01}{+}$
F_{16}	$1.78e + 01 \pm 3.44e - 01$	$1.79e + 01 \pm 3.09e - 01 \approx$	$1.77\mathrm{e}{+01}{\pm4.16}\mathrm{e}{-01}{pprox}$
F_{17}	$6.64e + 06 \pm 1.79e + 06$	$6.55e + 06 \pm 1.69e + 06 \approx$	$2.47\mathrm{e}{+03}{\pm}6.84\mathrm{e}{+02}{+}$
F_{18}	$1.41e + 04 \pm 5.86e + 03$	$1.41e + 04 \pm 6.93e + 03 \approx$	$1.63\mathrm{e}{+02}{\pm}4.75\mathrm{e}{+01}{+}$
F_{19}	$1.80e + 01 \pm 2.30e + 00$	$1.86e + 01 \pm 2.94e + 00 \approx$	$1.55\mathrm{e}{+01}{\pm}7.24\mathrm{e}{+00}{+}$
F_{20}	$2.16e + 04 \pm 5.63e + 03$	$2.16e + 04 \pm 6.10e + 03 \approx$	$6.23\mathrm{e}{+03}{\pm}6.29\mathrm{e}{+03}{+}$
F_{21}	$3.38e+06\pm1.44e+06$	$3.57e + 06 \pm 1.32e + 06 \approx$	$4.63\mathrm{e}{+04}{\pm}2.30\mathrm{e}{+05}{+}$
F_{22}	$5.79e + 02 \pm 1.72e + 02$	$5.69e + 02 \pm 1.41e + 02 \approx$	$4.95\mathrm{e}{+02}{\pm}1.53\mathrm{e}{+02}{+}$
F_{23}	$3.45e + 02 \pm 8.14e - 01$	$3.46e + 02 \pm 1.48e + 00 -$	$3.44\mathrm{e}{+02\pm0.00\mathrm{e}{+00}}$
F_{24}	$2.58e + 02 \pm 7.57e - 01$	$2.58\mathrm{e}{+02}{\pm}5.80\mathrm{e}{-01}{pprox}$	$2.74e + 02 \pm 2.59e + 00 -$
F_{25}	$2.16\mathrm{e}{+02}{\pm}1.46\mathrm{e}{+00}$	$2.16e + 02 \pm 1.34e + 00 -$	$2.22e+02\pm3.82e+00-$
F_{26}	$1.00\mathrm{e}{+02}{\pm4.12}\mathrm{e}{-02}$	$1.00e + 02 \pm 4.93e - 02 -$	$1.02e + 02 \pm 1.40e + 01 -$
F_{27}	$8.77e + 02 \pm 2.52e + 02$	$8.59e + 02 \pm 2.70e + 02 \approx$	$4.55\mathrm{e}{+02}{\pm}5.63\mathrm{e}{+01}{+}$
F_{28}	$1.42e + 03 \pm 5.76e + 01$	$1.43e + 03 \pm 6.32e + 01 \approx$	$1.14\mathrm{e}{+03}{\pm}5.45\mathrm{e}{+01}{+}$
F_{29}	$2.66e + 03 \pm 4.30e + 02$	$2.61e + 03 \pm 3.46e + 02 \approx$	$9.04\mathrm{e}{+02}{\pm}8.26\mathrm{e}{+01}{+}$
F_{30}	$1.07e + 04 \pm 9.80e + 02$	$1.05e + 04 \pm 8.04e + 02 \approx$	$1.00\mathrm{e}{+04}{\pm}9.22\mathrm{e}{+02}{+0}$
vs. shu	ıffle exponential + (better)	0	19
(Wi	ilcoxon rank-sum) — (worse)	3	7
	$p < 0.05 \approx (\text{no sig.})$	27	4

Table 10: Comparison of shuffle exponential crossover with binomial and exponential crossover in **SHADE** on the CEC2014 benchmark functions [1] (10 dimensions). For all problems, the maximum number of objective function evaluations is $D \times 10,000 = 100,000$. All results are the means of 51 runs.

F	shuffle exponential	exponential	binomial
<i>I</i>	Mean±Std Dev	Mean±Std Dev	Mean±Std Dev
F_1	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}{pprox}$	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}{\approx}$
F_2	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{\approx}$	$0.00\mathrm{e}{+00{\pm}0.00\mathrm{e}{+00}}$
F_3	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}{pprox}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{\approx}$
F_4	$1.34\mathrm{e}{+01}{\pm}1.67\mathrm{e}{+01}$	$1.67e + 01 \pm 1.72e + 01 \approx$	$2.87e + 01 \pm 1.32e + 01 -$
F_5	$1.63e + 01 \pm 6.64e + 00$	$1.75e + 01 \pm 5.46e + 00 \approx$	$1.54\mathrm{e}{+01}{\pm}7.08\mathrm{e}{+00}{pprox}$
F_6	$1.58e-01\pm3.07e-01$	$2.64 \text{e-} 03 \pm 6.68 \text{e-} 03 +$	$0.00\mathrm{e}{+00{\pm}0.00\mathrm{e}{+00}{+}}$
F_7	$4.89 \text{e-} 03 \pm 5.31 \text{e-} 03$	$4.72\mathrm{e}\text{-}03{\pm}6.25\mathrm{e}\text{-}03{\approx}$	$7.75 \text{e-} 03 \pm 1.16 \text{e-} 02 \approx$
F_8	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}{\approx}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$
F_9	$3.40e+00\pm1.15e+00$	$3.45e+00\pm1.16e+00\approx$	$2.92\mathrm{e}{+00}{\pm}8.18\mathrm{e}{-01}{+}$
F_{10}	$2.45 e-03 \pm 1.22 e-02$	$1.22\mathrm{e\text{-}}03{\pm}8.75\mathrm{e\text{-}}03{\approx}$	$1.47e-02\pm2.95e-02-$
F_{11}	$9.26e + 01 \pm 7.14e + 01$	$9.62e + 01 \pm 7.10e + 01 \approx$	$7.57\mathrm{e}{+01}{\pm}5.16\mathrm{e}{+01}{pprox}$
F_{12}	$1.54e-01\pm3.19e-02$	$1.56e-01\pm3.22e-02\approx$	$\mathbf{1.42e\text{-}01} {\pm} \mathbf{3.80e\text{-}02} {\approx}$
F_{13}	$1.20e-01\pm2.47e-02$	$1.21e-01\pm2.74e-02\approx$	$7.15 \text{e-} 02 \!\pm\! 1.80 \text{e-} 02 \!+\!$
F_{14}	$9.97e-02\pm2.56e-02$	$1.00e-01\pm2.49e-02\approx$	$9.95 \mathrm{e} ext{-}02 \pm 3.09 \mathrm{e} ext{-}02 pprox$
F_{15}	$5.31e-01\pm9.03e-02$	$5.00e-01\pm9.39e-02\approx$	$4.92 ext{e-}01 \pm 8.10 ext{e-}02 ext{pprox}$
F_{16}	$1.86e + 00 \pm 2.35e - 01$	$1.86e + 00 \pm 2.36e - 01 \approx$	$1.52\mathrm{e}{+00}{\pm}2.75\mathrm{e}{-01}{+}$
F_{17}	$1.34e + 00 \pm 2.32e + 00$	$1.26\mathrm{e}{+00}{\pm}2.39\mathrm{e}{+00}{pprox}$	$1.66e + 00 \pm 3.18e + 00 \approx$
F_{18}	$1.79\text{e-}01{\pm}2.35\text{e-}01$	$3.71e-01\pm4.07e-01-$	$2.67e-01\pm3.38e-01\approx$
F_{19}	$1.92\text{e-}01{\pm}4.92\text{e-}02$	$2.37e-01\pm1.44e-01\approx$	$2.16e-01\pm2.44e-01-$
F_{20}	$1.91\mathrm{e} ext{-}01\pm7.01\mathrm{e} ext{-}02$	$4.03e-01\pm1.73e-01-$	$2.04 \text{e-} 01 \pm 1.59 \text{e-} 01 \approx$
F_{21}	$4.09e-01\pm2.74e-01$	$4.04 \text{e-}01 \pm 2.69 \text{e-}01 \approx$	$3.10\mathrm{e\text{-}}01{\pm}2.48\mathrm{e\text{-}}01{\approx}$
F_{22}	$1.58\text{e-}01{\pm}6.70\text{e-}02$	$2.61e-01\pm1.28e-01-$	$2.57 \text{e-} 01 \pm 8.25 \text{e-} 02 -$
F_{23}	$3.29e + 02 \pm 0.00e + 00$	$3.23\mathrm{e}{+02}{\pm}4.61\mathrm{e}{+01}{pprox}$	$3.29e + 02 \pm 0.00e + 00 \approx$
F_{24}	$1.10e + 02 \pm 1.91e + 00$	$1.11e+02\pm2.01e+00\approx$	$1.09\mathrm{e}{+02}{\pm}1.86\mathrm{e}{+00}{+}$
F_{25}	$1.16\mathrm{e}{+02}{\pm}2.23\mathrm{e}{+01}$	$1.17e + 02 \pm 1.77e + 01 \approx$	$1.22e + 02 \pm 2.74e + 01 -$
F_{26}	$1.00e + 02 \pm 2.31e - 02$	$1.00e + 02 \pm 2.50e - 02 \approx$	$1.00\mathrm{e}{+02}{\pm}1.93\mathrm{e}{-02}{+}$
F_{27}	$4.70\mathrm{e}{+01}{\pm}1.25\mathrm{e}{+02}$	$8.02e+01\pm1.60e+02\approx$	$1.07e + 02 \pm 1.60e + 02 -$
F_{28}	$3.72\mathrm{e}{+02}{\pm}2.44\mathrm{e}{+01}$	$3.79e + 02 \pm 3.36e + 01 \approx$	$3.97e + 02 \pm 4.58e + 01 -$
F_{29}	$2.22e + 02 \pm 6.04e - 01$	$2.22e + 02 \pm 5.73e - 01 \approx$	$2.22\mathrm{e}{+02{\pm}5.07\mathrm{e}}{-01}{pprox}$
F_{30}	$4.66\mathrm{e}{+02}{\pm}1.35\mathrm{e}{+01}$	$\mathbf{4.64e}{+02}{\pm}6.82\mathrm{e}{+00}{\approx}$	$4.71\mathrm{e}{+02}{\pm2.12}\mathrm{e}{+01}{\approx}$
vs. shu	iffle exponential + (better)	1	6
(Wil	lcoxon rank-sum) – (worse)	3	7
•	$p < 0.05 \approx \text{(no sig.)}$	26	17

Table 11: Comparison of shuffle exponential crossover with binomial and exponential crossover in **SHADE** on the CEC2014 benchmark functions [1] (30 dimensions). For all problems, the maximum number of objective function evaluations is $D \times 10,000 = 300,000$. All results are the means of 51 runs.

\overline{F}	shuffle exponential	exponential	binomial
<i>I</i>	Mean±Std Dev	Mean±Std Dev	Mean±Std Dev
F_1	$1.32e + 03 \pm 2.15e + 03$	$1.62e + 03 \pm 2.34e + 03 \approx$	$8.53\mathrm{e}{+02}{\pm}1.85\mathrm{e}{+03}{+}$
F_2	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}$	$0.00\mathrm{e}{+00{\pm}0.00\mathrm{e}}{+00{\approx}}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{\approx}$
F_3	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}$	$0.00\mathrm{e}{+00{\pm}0.00\mathrm{e}}{+00{\approx}}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{\approx}$
F_4	$1.24e + 00 \pm 8.88e + 00$	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}{pprox}$	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}{\approx}$
F_5	$2.01e + 01 \pm 2.44e - 02$	$2.01e+01\pm1.91e-02\approx$	$2.01\mathrm{e}{+01}{\pm}1.39\mathrm{e}{-02}{+}$
F_6	$1.19e + 01 \pm 1.22e + 00$	$1.12e + 01 \pm 1.15e + 00 +$	$5.82 \mathrm{e} ext{-}01 \pm 7.23 \mathrm{e} ext{-}01 +$
F_7	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$	$1.45e-04\pm1.04e-03\approx$
F_8	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}{pprox}$
F_9	$4.11e+01\pm5.39e+00$	$4.00e+01\pm5.15e+00\approx$	$1.51\mathrm{e}{+01}{\pm}2.54\mathrm{e}{+00}{+}$
F_{10}	$5.31e-03\pm1.01e-02$	$4.90\mathrm{e}\text{-}03{\pm}9.84\mathrm{e}\text{-}03{\approx}$	$1.02 e-02 \pm 1.58 e-02 -$
F_{11}	$1.70e + 03 \pm 2.35e + 02$	$1.75e + 03 \pm 1.75e + 02 \approx$	$1.44\mathrm{e}{+03}{\pm}2.20\mathrm{e}{+02}{+}$
F_{12}	$1.79e-01\pm2.85e-02$	$1.83 \text{e-} 01 \pm 2.28 \text{e-} 02 \approx$	$1.61\mathrm{e}\hbox{-}01 {\pm} 2.19\mathrm{e}\hbox{-}02 +$
F_{13}	$3.02e-01\pm3.98e-02$	$3.05e-01\pm4.19e-02\approx$	$2.16 \text{e-} 01 \!\pm\! 3.26 \text{e-} 02 +$
F_{14}	$2.13e-01\pm2.32e-02$	$2.10\text{e-}01{\pm}2.61\text{e-}02{\approx}$	$2.39 \text{e-} 01 \pm 3.56 \text{e-} 02 -$
F_{15}	$3.15e + 00 \pm 3.55e - 01$	$3.20e+00\pm4.11e-01\approx$	$2.53\mathrm{e}{+00}{\pm}2.74\mathrm{e}{-01}{+}$
F_{16}	$9.72e + 00 \pm 3.72e - 01$	$9.66e + 00 \pm 3.44e - 01 \approx$	$9.05\mathrm{e}{+00}{\pm}4.26\mathrm{e}{-01}{+}$
F_{17}	$8.63\mathrm{e}{+02}{\pm}2.91\mathrm{e}{+02}$	$1.02e + 03 \pm 3.33e + 02 -$	$1.02e + 03 \pm 3.40e + 02 -$
F_{18}	$3.14e + 01 \pm 2.25e + 01$	$2.85\mathrm{e}{+01}{\pm}2.23\mathrm{e}{+01}{pprox}$	$5.54e + 01 \pm 3.01e + 01 -$
F_{19}	$4.06\mathrm{e}{+00}{\pm}5.09\mathrm{e}{-01}$	$4.15e + 00 \pm 5.99e - 01 \approx$	$4.37e + 00 \pm 6.91e - 01 -$
F_{20}	$1.32\mathrm{e}{+01}{\pm}5.04\mathrm{e}{+00}$	$1.36e + 01 \pm 5.09e + 00 \approx$	$1.36e+01\pm8.45e+00\approx$
F_{21}	$2.01\mathrm{e}{+02}{\pm}9.83\mathrm{e}{+01}$	$2.35e + 02 \pm 9.67e + 01 \approx$	$2.39e+02\pm1.28e+02\approx$
F_{22}	$1.06\mathrm{e}{+02}{\pm}6.88\mathrm{e}{+01}$	$1.28e + 02 \pm 6.75e + 01 \approx$	$1.08e + 02 \pm 6.69e + 01 \approx$
F_{23}	$3.15\mathrm{e}{+02}{\pm0.00\mathrm{e}}{+00}$	$3.15\mathrm{e}{+02\pm0.00\mathrm{e}{+00}}$	$3.15\mathrm{e}{+02}{\pm0.00\mathrm{e}}{+00}{pprox}$
F_{24}	$2.25e + 02 \pm 1.01e + 00$	$2.24\mathrm{e}{+02}{\pm}1.56\mathrm{e}{+00}{+}$	$2.26e+02\pm3.38e+00\approx$
F_{25}	$2.03\mathrm{e}{+02}{\pm}3.43\mathrm{e}{-01}$	$2.03e + 02 \pm 4.07e - 01 \approx$	$2.04e + 02 \pm 8.06e - 01 -$
F_{26}	$1.00e + 02 \pm 4.11e - 02$	$1.00\mathrm{e}{+0.2\pm5.21\mathrm{e}{-0.2}}$	$1.02e + 02 \pm 1.40e + 01 -$
F_{27}	$4.04e + 02 \pm 5.26e + 00$	$4.06e + 02 \pm 4.33e + 00 -$	$3.23\mathrm{e}{+02}{\pm}3.63\mathrm{e}{+01}{+}$
F_{28}	$8.14\mathrm{e}{+02}{\pm}1.57\mathrm{e}{+01}$	$8.21e + 02 \pm 1.75e + 01 \approx$	$8.28e + 02 \pm 3.87e + 01 -$
F_{29}	$7.26e + 02 \pm 1.91e + 01$	$7.23e + 02 \pm 5.29e + 01 \approx$	$7.16\mathrm{e}{+02}{\pm3.92\mathrm{e}}{+01}{pprox}$
F_{30}	$1.26\mathrm{e}{+03}{\pm}4.48\mathrm{e}{+02}$	$\bf 1.17e{+}03{\pm}3.35e{+}02{\approx}$	$1.56\mathrm{e}{+03}{\pm7.59\mathrm{e}}{+02}{\approx}$
vs. shu	iffle exponential + (better)	2	10
(Wi	lcoxon rank-sum) – (worse)	2	8
	$p < 0.05 \approx \text{(no sig.)}$	26	12

Table 12: Comparison of shuffle exponential crossover with binomial and exponential crossover in **SHADE** on the CEC2014 benchmark functions [1] (50 dimensions). For all problems, the maximum number of objective function evaluations is $D \times 10,000 = 500,000$. All results are the means of 51 runs.

F	shuffle exponential Mean±Std Dev	exponential Mean±Std Dev	binomial Mean±Std Dev
F_1	$3.97e + 04 \pm 2.14e + 04$	6.02e+04±2.63e+04-	$1.74\mathrm{e}{+04}{\pm}1.00\mathrm{e}{+04}{+}$
F_2	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{\approx}$
F_3	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$1.29e-06\pm9.12e-06-$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{\approx}$
F_4	$1.55\mathrm{e}{+01}{\pm3.60\mathrm{e}}{+01}$	$2.52e + 01 \pm 4.31e + 01 -$	$2.28e + 01 \pm 4.10e + 01 \approx$
F_5	$2.02e + 01 \pm 2.26e - 02$	$2.02e+01\pm1.80e-02\approx$	$2.01\mathrm{e}{+01}{\pm}1.93\mathrm{e}{-02}{+}$
F_6	$2.52e+01\pm1.70e+00$	$2.57e + 01 \pm 1.67e + 00 \approx$	$5.27\mathrm{e}{+00}{\pm}2.05\mathrm{e}{+00}{+}$
F_7	$3.48e-03\pm6.36e-03$	$3.09e-03\pm5.09e-03\approx$	$1.55\text{e-}03{\pm}3.45\text{e-}03{\approx}$
F_8	$0.00\mathrm{e}{+00}{\pm0.00\mathrm{e}}{+00}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{pprox}$	$0.00\mathrm{e}{+00}{\pm}0.00\mathrm{e}{+00}{\approx}$
F_9	$9.63e + 01 \pm 8.72e + 00$	$1.01e + 02 \pm 9.22e + 00 -$	$3.31e+01\pm4.45e+00+$
F_{10}	$7.59e-03\pm1.09e-02$	$7.35 ext{e-} 03 \pm 8.35 ext{e-} 03 pprox$	$1.10e-02\pm1.21e-02\approx$
F_{11}	$3.76e + 03 \pm 2.96e + 02$	$3.81e + 03 \pm 3.45e + 02 \approx$	$3.38e + 03 \pm 3.36e + 02 +$
F_{12}	$1.77e-01\pm2.16e-02$	$1.71e-01\pm1.98e-02\approx$	$1.60 ext{e-}01 \pm 1.89 ext{e-}02 +$
F_{13}	$3.87e-01\pm3.44e-02$	$3.77e-01\pm3.39e-02\approx$	$3.12 \mathrm{e} ext{-}01 \pm 5.14 \mathrm{e} ext{-}02 +$
F_{14}	$2.41\text{e-}01{\pm}3.31\text{e-}02$	$2.46e-01\pm2.54e-02\approx$	$2.88e-01\pm4.11e-02-$
F_{15}	$6.92e + 00 \pm 8.56e - 01$	$6.88e + 00 \pm 6.65e - 01 \approx$	$5.79\mathrm{e}{+00}{\pm}6.53\mathrm{e}{-01}{+}$
F_{16}	$1.82e + 01 \pm 4.73e - 01$	$1.82e + 01 \pm 3.86e - 01 \approx$	$1.75\mathrm{e} + 01 \pm 4.16\mathrm{e} - 01 +$
F_{17}	$2.87e + 03 \pm 8.34e + 02$	$2.89e + 03 \pm 9.35e + 02 \approx$	$2.58e + 03 \pm 7.50e + 02 \approx$
F_{18}	$1.25e + 02 \pm 5.26e + 01$	$1.14\mathrm{e}{+02}{\pm}4.41\mathrm{e}{+01}{\approx}$	$1.49e + 02 \pm 3.78e + 01 -$
F_{19}	$1.15e + 01 \pm 9.13e - 01$	$1.16e + 01 \pm 1.22e + 00 \approx$	$9.68\mathrm{e}{+00}{\pm}2.29\mathrm{e}{+00}{+}$
F_{20}	$9.08\mathrm{e}{+01}{\pm3.34\mathrm{e}}{+01}$	$1.20e + 02 \pm 4.48e + 01 -$	$1.98e + 02 \pm 6.83e + 01 -$
F_{21}	$1.23e + 03 \pm 3.35e + 02$	$1.35e + 03 \pm 5.27e + 02 \approx$	$1.27e + 03 \pm 3.61e + 02 \approx$
F_{22}	$4.65e + 02 \pm 1.14e + 02$	$4.81e + 02 \pm 1.55e + 02 \approx$	$3.77\mathrm{e}{+02}{\pm}1.64\mathrm{e}{+02}{+}$
F_{23}	$3.44\mathrm{e}{+02}{\pm0.00\mathrm{e}}{+00}$	$3.44\mathrm{e}{+02}{\pm0.00}\mathrm{e}{+00}{pprox}$	$3.44\mathrm{e}{+02\pm0.00\mathrm{e}{+00}}$
F_{24}	$2.59e + 02 \pm 3.55e + 00$	$2.60e + 02 \pm 3.51e + 00 \approx$	$2.74e + 02 \pm 2.42e + 00 -$
F_{25}	$2.06\mathrm{e}{+02}{\pm}1.00\mathrm{e}{+00}$	$2.06e + 02 \pm 1.07e + 00 \approx$	$2.12e + 02 \pm 7.08e + 00 -$
F_{26}	$1.00\mathrm{e}{+0.2}{\pm4.21\mathrm{e}{-0.2}}$	$1.00e + 02 \pm 4.69e - 02 \approx$	$1.02e + 02 \pm 1.40e + 01 \approx$
F_{27}	$7.94e + 02 \pm 2.51e + 02$	$8.81e + 02 \pm 2.22e + 02 \approx$	$4.49e + 02 \pm 5.15e + 01 +$
F_{28}	$1.18e + 03 \pm 2.72e + 01$	$1.19e + 03 \pm 3.77e + 01 \approx$	$1.14\mathrm{e}{+03\pm6.05\mathrm{e}{+01+}}$
F_{29}	$9.08e + 02 \pm 7.61e + 01$	$9.22e + 02 \pm 9.16e + 01 \approx$	$8.89\mathrm{e}{+02\pm5.30\mathrm{e}{+01}}$
F_{30}	$8.59\mathrm{e}{+03}{\pm}4.26\mathrm{e}{+02}$	$8.60e + 03 \pm 4.15e + 02 \approx$	$9.43e + 03 \pm 7.18e + 02 -$
vs. sh	ıffle exponential + (better)	0	13
(Wi	ilcoxon rank-sum) — (worse)	5	6
	$p < 0.05 \approx (\text{no sig.})$	25	11

References

[1] J. J. Liang, B. Y. Qu, and P. N. Suganthan. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Technical report, Zhengzhou University and Nanyang Technological University, 2013.