Ejemplo comparación de resultados predictores in sillico

Cambio de estudio CHEK2 c.1116C>T (chr22:28695853 C/T, rs79357544 o NM_007194.4:c.1116C>T)

Exón 11 e intrones adyacentes:

El cambio se encuentra en la primera fila del exón 7 (la segunda $\bf c$ en color verde).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

Donor splice s	sites, direc	t strand			Donor splice sites, direct strand						
	pos 5'->3' 465 496	phase strand 2 + 1 +	confidence 0.44 0.34	5' exon intron 3' TTTTTATCTG^GTAAGAAATA GCACAGACTG^GTAGGAGGTG		pos 5'->3' 465 496	phase strand 2 + 1 +	confidence 0.44 0.34	5' exon intron 3' TTTTTATCTG^GTAAGAAATA GCACAGACTG^GTAGGAGGTG		
Donor splice s					Donor splice s						
pos 3'->5' 375 371	pos 5'->3' 557 561	phase strand 0 - 1 -	confidence 0.63 0.59	5' exon intron 3' CAGGCGCCAA^GTAGGTGGGG CGCCAAGTAG^GTGGGGGTTC	pos 3'->5' 375 371		phase strand 0 - 1 -	confidence 0.60 0.55	5' exon intron 3' CAGGCGCCAA^GTAGGTGGGG CGCCAAGTAG^GTGGGGGTTC		
Acceptor splic	ce sites, di				Acceptor splice	e sites, dir	rect strand				
		ctions above th	nreshold.		No acceptor	site predic	ctions above th	nreshold.			
Acceptor splic	ce sites, co	mplement strand	d		Acceptor splice	-	•	H			
pos 3'->5' 462	pos 5'->3' 470	phase strand 0 -	confidence 0.27	5' intron exon 3' TTCTTACCAG^ATAAAAAGAA	pos 3'->5' 462		phase strand 0 -	confidence 0.27	5' intron exon 3' TTCTTACCAG^ATAAAAAGAA		

No cambios.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for 85.53.15.54.28126.0:

Donor site predictions for 85.53.15.54.27974.0:

Start	End	Score	Exon Intron				
3 car c	Liiu	Score		Start	End	Score	Exon Intron
176	190	0.64	atggcag gt gtgaat	176	190	0.64	atggcag gt gtgaat
458	472	1.00	ttatctg gt aagaaa	458	472	1.00	ttatctg gt aagaaa
489	503	0.74	cagactg gt aggagg	489	503	0.74	cagactg gt aggagg

Acceptor site predictions for 85.53.15.54.28126.0:

Acceptor site predictions for 85.53.15.54.27974.0:

Start	End	Score	Intron	Exon	Start	End	Score	Intron	Exon
280	320	0.81	cccttttgtactgaattt	t ag attactgattttgggcactc	280	320	0.81	cccttttgtactgaatttt	ag attactgattttgggcactc
525	565	0.53	gtgtcttgctctgttgtc	c ag gctggcatgcagtggcttga	525	565	0.53	gtgtcttgctctgttgtcc	aggctggcatgcagtggcttga
598	638	0.46	caagtgatcctcccacct	c ag cctcccgagtagctgggact	598	638	0.46	caagtgatcctcccacctc	agcctcccgagtagctgggact
664	704	0.98	taatttttctatttttg	t ag tgatggggttttgccatgtt	664	704	0.98	taatttttctatttttgt	agtgatggggttttgccatgtt

No hay cambios.

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)
cactc(c/t)aagat	actcca	actcta	28351	64%

CRYP-SKIP

Results for sequence wt

Exon length (bp)	164
PESS (<=-2.62) density	4.88
NN 5'ss score density	0.02
SF2/ASF score density	6.14
FAS-ESS (hex2) density	9.76
EIE score density	478.54
Probability of cryptic splice site activation (PcR-E)	0.10

No efecto.

Human Splicing Finder

Туре	↑↓	Interpretation	$\uparrow \downarrow$	
No significant impact on splicing signals.		No significant impact on splicing signals.		

SVM-BPfinder

seq i	d agez	ss dis	t bp seq bp scr	v cont ppt off	F ppt len ppt scr	r svm scr				seg id	agez	ss dist	t bp seg bp scr	y cont ppt off	ppt len ppt scr	svm scr			
wt	33	484	ggctcagga		0.526096033403		9	20	-6.7437695	mut	33	484	ggctcagga		0.526096033403		9	20	-6.7437695
wt	33	475	attttaatt	-4.8626284941	0.527659574468	103	9	20	-7.6651626	mut	33	475	attttaatt	-4.8626284941	0.527659574468	103	9	20	-7.6651626
wt	33	474	ttttaattt	-0.995102413301	0.528784648188	102	9	20	-6.0871817	mut	33	474	ttttaattt	-0.995102413301	0.528784648188	102	9	20	-6.0871817
wt	33	470	aatttaagc	-3.75943326416	0.52688172043	98	9	20	-6.9169692	mut	33	470	aatttaagc	-3.75943326416	0.52688172043	98	9	20	-6.9169692
wt	33	469	atttaagca	-1.62647998171	0.528017241379	97	9	20	-6.0181521	mut	33	469	atttaagca	-1.62647998171	0.528017241379	97	9	20	-6.0181521
wt	33	460	aaattaaat	-3.05381608375	0.531868131868	88	9	20	-6.006093	mut	33	460	aaattaaat	-3.05381608375	0.531868131868	88	9	20	-6.006093
wt	33	459	aattaaatg	-0.734047569933	0.533039647577	87	9	20	-5.0341173	mut	33	459	aattaaatg	-0.734047569933	0.533039647577	87	9	20	-5.0341173
wt	33	450	tcctaactt	2.53660466385	0.532584269663	78	9	20	-3.1839646	mut	33	450	tcctaactt	2.53660466385	0.532584269663	78	9	20	-3.1839646
wt	33	435	acatgaatc	-1.69367963902	0.537209302326	63	9	20	-3.8893522	mut	33	435	acatgaatc	-1.69367963902	0.537209302326	63	9	20	-3.8893522
wt	33	427	ctgtaaatt	-0.485796759865	0.537914691943	55	9	20	-2.9097946	mut	33	427	ctgtaaatt	-0.485796759865	0.537914691943	55	9	20	-2.9097946
wt	33	416	agattaatg	-3.29544668823	0.537712895377	44	9	20	-3.313689	mut	33	416	agattaatg	-3.29544668823	0.537712895377	44	9	20	-3.313689
wt	33	415	gattaatgg	0.90935737182	0.539024390244	43	9	20	-1.6035876	mut	33	415	gattaatgg	0.90935737182	0.539024390244	43	9	20	-1.6035876
wt	33	403	gtgtgaatt	-0.955994067854	0.545226130653	31	9	20	-1.572378	mut	33	403	gtgtgaatt	-0.955994067854	0.545226130653	31	9	20	-1.572378
wt	33	384	aactgatct	1.39746682692	0.554089709763	12	9	20	0.55464395	mut	33	384	aactgatct	1.39746682692	0.554089709763	12	9	20	0.55464395
wt	33	345	atgttaatc	-3.32740454133	0.55 2	14	31	-0.561		mut	33	345	atgttaatc	-3.32740454133	0.55 2	14	31	-0.56	122983
wt	33	344	tgttaatct	0.741542252947	0.551622418879	1	14	31	1.0957775	mut	33	344	tgttaatct	0.741542252947	0.551622418879	1	14	31	1.0957775
wt	33	336	tttttattt	-4.34020649867	0.543806646526	1	6	13	-1.0641769	mut	33	336	tttttattt	-4.34020649867	0.543806646526	1	6	13	-1.0641769
wt	33	331	attttatgg	-3.558387177	0.539877300613	15	14	29	-1.4964497	mut	33	331	attttatgg	-3.558387177	0.539877300613		14	29	-1.4964497
wt	33	320	agttcaaca	-1.5039769505	0.542857142857		14	29	0.0051929858	mut	33	320	agttcaaca	-1.5039769505	0.542857142857		14	29	0.0051929858
wt	33	314	acattattc	-3.24790672016		1	11	25	-0.52473759	mut	33	314	acattattc		0.543689320388		11	25	-0.52473759
wt	33	298	tactgaatt	0.591670668885			10	20	-1.8567056	mut	33	298	tactgaatt		0.532423208191		10	20	-1.8567056
wt	33	292	attttagat	-5.17290259882	0.529616724739	39	10	20	-3.7349249	mut	33	292	attttagat	-5.17290259882	0.529616724739	39	10	20	-3.7349249
wt	33	287	agattactg	-1.3389265645	0.531914893617		10	20	-1.9165083	mut	33	287	agattactg	-1.3389265645			10	20	-1.9165083
wt	33	283	tactgattt	0.990758475835			10	20	-0.75098487	mut	33	283	tactgattt		0.532374100719		10	20	-0.75098487
wt	33	245	ctctcatga	0.97307688348	0.529166666667		13	21	-0.053346584	mut	33	268	ctctaagat		0.528517110266		10	20	-0.07592655
wt	33	242	tcatgagaa	-2.54842163591			13	21	-1.2414841	mut	33	245	ctctcatga	0.97307688348	0.529166666667		13	21	-0.05334658
wt	33	234	accttatgt	-1.15931800217	0.532751091703	_	13	21	-0.19084075	mut	33	242	tcatgagaa		0.53164556962		13	21	-1.2414841
wt	33	205	gcctgaagt	0.65582503996	0.525 3	14	30	0.9177		mut	33	234	accttatgt		0.532751091703		13	21	-0.19084075
wt	33	172	gtataaccg	1.71913595622	0.520958083832		15	33	-0.3483717	mut	33	205	gcctgaagt	0.65582503996	0.525 3	14	30	0.917	
wt	33	147	agtttagga	-5.285122617	0.521126760563		15	33	-1.5083574	mut	33	172	gtataaccg	1.71913595622	0.520958083832		15	33	-0.3483717
wt	33	140	gagttattc	-2.8039058943	0.533333333333	_	12	29	-0.31697161	mut	33	147	agtttagga	-5.285122617	0.521126760563	_	15	33	-1.5083574
wt	33	131	tttttatct		0.507936507937		13	22	-1.4255946	mut	33	140	gagttattc	-2.8039058943	0.533333333333		12	29	-0.31697161
wt	33	123	tggtaagaa		0.508474576271		13	22	0.024970455	mut	33	131	tttttatct		0.507936507937		13	22	-1.4255946
wt	33	111	ttttcattg		0.509433962264		20	30	-2.4475967	mut	33	123	tggtaagaa		0.508474576271		13	22	0.024970455
wt	33	85	aggtgatta	-1.17766320873		20	30	-0.741		mut	33	111	ttttcattg		0.509433962264		20	30	-2.4475967
wt	33	82	tgattagat	-3.29528255368			20	30	-1.3823147	mut	33	85	aggtgatta	-1.17766320873		20	30		159349
wt	33	77	agatgaagt		0.569444444444		20	30	-0.60933585	mut	33	82	tgattagat		0.545454545455		20	30	-1.3823147
wt	33	72	aagtcacaa		0.582089552239		20	30	-0.10998281	mut	33	77	agatgaagt		0.56944444444		20	30	-0.60933585
wt	33	26	gcttgatct		0.666666666667		0	0	-0.72153728	mut	33	72	aagtcacaa		0.582089552239		20	30	-0.10998281
wt	33	16	ggctaactg	3.0387153898	0.727272727273	11	0	0	1.1301848	mut	33	26	gcttgatct		0.666666666667		0	0 0	-0.72153728
										mut	33	16	ggctaactg	3.0387153898	0.727272727273	11	0	Ø	1.1301848

Variant Effect Predictor tool

ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	synonymous_variant	CHEK2	ENSG00000183765 Transcript	ENST00000348295.7	protein_coding	10/14	1101	1029	343	S	TCC/TCT	<u>rs79357544</u>
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	synonymous_variant	CHEK2	ENSG00000183765 Transcript	ENST00000382580.6	protein_coding	12/16	1321	1245	415	S	TCC/TCT	rs79357544
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	synonymous_variant	CHEK2	ENSG00000183765 Transcript	ENST00000402731.5	protein_coding	9/13	1029	1029	343	S	TCC/TCT	<u>rs79357544</u>
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	synonymous_variant	CHEK2	ENSG00000183765 Transcript	ENST00000403642.5	protein_coding	8/12	843	843	281	S	TCC/TCT	rs79357544
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	synonymous_variant	CHEK2	ENSG00000183765 Transcript	ENST00000404276.6	protein_coding	11/15	1174	1116	372	S	TCC/TCT	<u>rs79357544</u>
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	synonymous_variant	CHEK2	ENSG00000183765 Transcript	ENST00000405598.5	protein_coding	12/16	1308	1116	372	S	TCC/TCT	rs79357544
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	3 prime_UTR_variant, NMD_transcript_variant	CHEK2	ENSG00000183765 Transcript	ENST00000416671.5	nonsense_mediated_decay	12/16	1890	-	-	-	-	<u>rs79357544</u>
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	3 prime UTR variant,	CHEK2	ENSG00000183765 Transcript	ENST00000417588.5	nonsense_mediated_decay	9/13	1025	-	-	-	-	rs79357544
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	downstream gene variant	CHEK2	ENSG00000183765 Transcript	ENST00000425190.6	protein_coding	-	-	-	-	-	-	<u>rs79357544</u>
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	downstream_gene_variant	CHEK2	ENSG00000183765 Transcript	ENST00000433028.6	nonsense_mediated_decay	-	-	-	-	-	-	rs79357544
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	3_prime_UTR_variant, NMD_transcript_variant	CHEK2	ENSG00000183765 Transcript	ENST00000433728.5	nonsense_mediated_decay	9/13	1054	-	•	-		rs79357544
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	synonymous_variant	CHEK2	ENSG00000183765 Transcript	ENST00000434810.5	protein_coding	6/10	347	348	116	S	TCC/TCT	rs79357544
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	downstream_gene_variant	CHEK2	ENSG00000183765 Transcript	ENST00000439346.5	nonsense_mediated_decay	-	•	-	•	-		rs79357544
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	downstream_gene_variant	CHEK2	ENSG00000183765 Transcript	ENST00000447421.5	protein_coding	-	-	-	•	-	-	rs79357544
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	3_prime_UTR_variant, NMD_transcript_variant	CHEK2	ENSG00000183765 Transcript	ENST00000448511.5	nonsense_mediated_decay	10/14	1006	-	•	-	-	<u>rs79357544</u>
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	intron_variant	CHEK2	ENSG00000183765 Transcript	ENST00000456369.5	protein_coding	-	-	-	•	-	-	rs79357544
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	downstream_gene_variant	CHEK2	ENSG00000183765 Transcript	ENST00000464581.5	protein_coding	-	-	-	•	-	-	<u>rs79357544</u>
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	downstream_gene_variant	CHEK2	ENSG00000183765 Transcript	ENST00000491919.5	retained_intron	-	-	-	-	-	-	rs79357544
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	non_coding_transcript_exon_variant	CHEK2	ENSG00000183765 Transcript	ENST00000648295.1	processed_transcript	7/11	668	-	•	-	-	<u>rs79357544</u>
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	synonymous_variant	CHEK2	ENSG00000183765 Transcript	ENST00000649563.1	protein_coding	8/12	562	453	151	S	TCC/TCT	rs79357544
ENST00000404276.6:c.1116C>T	22:28695853- A 28695853	synonymous_variant	CHEK2	ENSG00000183765 Transcript	ENST00000650281.1	protein_coding	12/16	1276	1116	372	S	TCC/TCT	<u>rs79357544</u>

ESEfinder

Comparando la única predicción con valores positivos para 3'SS con su correspondiente en la secuencia mutante, los valores se reducen minimamente, por lo que no tendrá efecto en el *splicing*.

310 (-622) TTTGGGCACTCCAAGATTTTGGGAGAGACC -10	0.46370 (-6	310 TTTGGGCACTCCAAGATTTTGGGAGAGACC	3.75060	310 TTTGGGCACTCCAAGATTTTGGGAGAGACC	-10.85920	310 (-622) TTTGGGCACTCCAAGATTTTGGGAGAGACC	3.58190
310 (-622)	1.28110 (-	310 622) TTTGGGCACTCTAAGATTTTGGGAGAGACC	3.28600	310 (-622)	C-11.66820	310 (-622)	C 3.10620

Si hacemos lo mismo para la búsqueda de ESE, pasa lo mismo, por lo que no habrá cambios en los ESE.

315 (-617) GCA	стсс -	7.32534	315 (-617)	CACTCC	-5.23164	315 (-617)	CCACTCCA:	1.55132	315 GCACTCC (-617)	2.42608
316 (-616)	TCCA 1	1.56048	316 (-616)	ACTCCA	2.09305	316 (-616)	CACTCCAA	2.35844	316 CACTCCA (-616)	-5.50352
317 (-615) ACT	CCAA -3	3.52285	317 (-615)	CTCCAA	-2.66920	317 (-615)	ACTCCAAG	-0.20533	317 ACTCCAA (-615)	-0.45903
318 (-614)	CAAG -1	1.35523	318 (-614)	TCCAAG	0.43451	318 (-614)	CTCCAAGA	-0.74364	318 CTCCAAG (-614)	2.69227
319 (-613) TCC:	AAGA -0	0.61058	319 (-613)	CCAAGA	-0.29850	319 (-613)	TCCAAGAT	-5.00321	319 TCCAAGA (-613)	-0.02191
320 (-612) CCA	AGAT -0	0.98147	320 (-612)	CAAGAT	0.74058	320 (-612)	CCAAGATT	-5.75640	320 CCAAGAT (-612)	-1.10544
321 (-611)	GATT -3	3.62650	321 (-611)	AAGATT	-1.76918	321 (-611)	CAAGATTT	-4.10813	321 (-611)	-2.42761
	=				•	-				•
315 (-617) GCA(CTCT -5	5.47194	315 (-617)	CACTCT	-4.03494	315 (-617)	GCACTCTA	2.19576	315 (-617) GCACTCT	0.88698
316 (-616)	ICTA 2	2.01819	316 (-616)	ACTCTA	2.19705	316 (-616)	CACTCTAA	0.62943	316 (-616) CACTCTA	-7.22045
317 (-615)	CTAA -6	5.04658	317 (-615)	CTCTAA	-4.48099	317 (-615)	ACTCTAAG	-0.96457	317 ACTCTAA (-615)	1.03222
318 (-614)	ΓAAG -2	2.81255	318 (-614)	ICTAAG	-0.82024	318 (-614)	CTCTAAGA	-0.97449	318 (-614)	0.30764
319 (-613)	AAGA -2	2.92060	319 (-613)	CTAAGA	-2.36736	319 (-613)	TCTAAGAT	-5.57214	319 TCTAAGA (-613)	1.32637
320 (-612)	AGAT -0	37854	320 (-612)	TAAGAT	0.98936	320 (-612)	CTAAGATT	-4.36800	320 CTAAGAT (-612)	-1.41750
321 (-611)	GATT -6	5.57699	321 (-611)	AAGATT	-4.87423	321 (-611)	TAAGATTT	-4.12926	321 (-611) TAAGATT	-2.07092

EX-SKIP

EX-SKIP - Results for submitted sequences

Seq	PESS (count)	FAS-ESS hex2 (count)	FAS-ESS hex3 (count)	IIE (count)	IIE (sum)	NI-ESS trusted (count)	NI-ESS all (sum)	PESE (count)	RESCUE -ESE (count)	EIE (count)	EIE (sum)	NI-ESE trusted (count)	NI-ESE all (sum)	ESS (total)	ESE (total)	ESS/ESE (ratio)
wt	8	15	9	65	1236.5415	41	-51.3624	9	11	58	759.7814	50	62.0857	138	128	1.08
mut	8	15	9	65	1236.5415	41	-51.3624	9	10	57	735.3937	46	58.4881	138	122	1.13

Allele mut has a higher chance of exon skipping than allele wt.

HOT-SKIP

>wt

>mut

No efecto.