点集拓扑作业 (5)

Problem 1 设 X_1, X_2 是拓扑空间, x_2 是 X_2 中的一点, 通过 $\tau: X_1 \times \{x_2\} \to X_1, \tau((x_1, x_2)) = x_1$ 将 $X_1 \times \{x_2\} \to X_1$ 等同. 证明:在该等同下, $X_1 \times \{x_2\}$ 上关于 $X_1 \times X_2$ 的子拓扑与 X_1 的拓扑相同.

我们设 $X_1, X_2, X_1 \times X_2$ 上的拓扑分别为 $T_1, T_2, T, X_1 \times X_2$ 的基记为

 $\mathcal{B} = \{U \times V | U \in \mathcal{T}_1, V \in \mathcal{T}_2\}$. 记 $X_1 \times \{x_2\}$ 的子空间拓扑为 $\mathcal{T}_0 = \{U \cap (X_1 \times \{x_2\}) | U \in \mathcal{T}\}$, 基为 \mathcal{B}_0 . 接下来证明: $\mathcal{T}_0 = \mathcal{T}_1$.

一方面, $\forall U_0 \in \mathcal{T}_0, U = \{\tau((t, x_2)) | (t, x_2) \in U_0\}$. 于是需证明 $U \in \mathcal{T}_1$. 设

 $U_0 = V \cap (X_1 \times \{x_2\}), V \in \mathcal{T}_0$. 由基的性质可知,

 $\exists J, orall lpha \in J, B_lpha = W_{1,lpha} imes W_{2,lpha} \in \mathcal{B}, W_{i,lpha} \in \mathcal{T}_i (i=1,2)$ 有 $V = igcup_{lpha \in J} B_lpha.$

记 $J_0=\{lpha\in J|x_2\in W_{2,lpha}\}$. 从而:

$$egin{aligned} U_0 &= \left(igcup_{lpha \in J} B_lpha
ight) \cap (X_1 imes \{x_2\}) = igcup_{lpha \in J} ((W_{1,lpha} imes W_{2,lpha}) \cap (X_1 imes \{x_2\})) \ &= igcup_{lpha \in J} ((W_{1,lpha} \cap X_1) imes (W_{2,lpha} \cap \{x_2\})) = igcup_{lpha \in J_0} (W_{1,lpha} imes \{x_2\}) = \left(igcup_{lpha \in J_0} W_{1,lpha}
ight) imes \{x_2\}. \end{aligned}$$

在 au 等同意义下, 容易证明 (同样用 LHS 包含 RHS 反之也成立证明, 写出来太罗嗦了, 也不是重点直接显然跳过了) $U=\bigcup_{\alpha\in J_0}W_{1,\alpha}\in\mathcal{T}_1$. 于是 $\mathcal{T}_0\subseteq\mathcal{T}_1$.

另一方面, $\forall U \in \mathcal{T}_1$, 只需证明 $U_0 = \{(t,x_2)|t \in U\} = U \times \{x_2\} \in \mathcal{T}_0$ 即可. 这是显然的, 因为 $(U \times X_2) \cap (X_1 \times \{x_2\}) = (U \times X_1) \cap (X_2 \times \{x_2\}) = U \times \{x_2\} = U_0$, 而 $U \times X_2 \in \mathcal{B} \subseteq \mathcal{T}$. 于是 $U_0 \in \mathcal{T}_0, \mathcal{T}_1 \subseteq \mathcal{T}_0$.

综上, 在等同意义下, 命题成立.

Problem 2 拓扑空间之间的映射 f 若把开集映成开集,则称其为开映射. 设 X_1, X_2 是两个拓扑空间,在 $X_1 \times X_2$ 上赋予积拓扑. 定义 $\pi_i: X_1 \times X_2 \to X_i (i=1,2)$ 为 $\pi_i(x_1,x_2) = x_i$. 证明 π_i 是开映射.

只证明 i=1 且沿用上题的基本记号. 我们需要证明: $\forall W \in \mathcal{T}, \pi_1(W) \in \mathcal{T}_1$.

由基的性质: $\exists J, orall \alpha \in J, B_{lpha} = U_{lpha} imes V_{lpha} \in \mathcal{B}, U_{lpha} \in \mathcal{T}_1, V \in \mathcal{T}_2,$ 有 $W = \bigcup_{lpha \in J} B_{lpha} = \bigcup_{lpha \in J} (U_{lpha} imes V_{lpha}).$

由于映射保集合并,故 $\pi_1(W)=\pi_1\left(\bigcup_{\alpha\in J}(U_\alpha\times V_\alpha)\right)=\bigcup_{\alpha\in J}\pi_1(U_\alpha\times V_\alpha)=\bigcup_{\alpha\in J}U_\alpha\in\mathcal{T}_1.$ 于是命题得证.

Problem 3 设 $\mathcal{T}_i, \mathcal{T}_i'$ 都是 X_i 上的拓扑, i=1,2. 证明: 若 $\mathcal{T}_i' \subseteq \mathcal{T}_i$, 则 $\mathcal{T}_1, \mathcal{T}_2$ 的积拓扑细于 $\mathcal{T}_1', \mathcal{T}_2'$ 的积拓扑. 并判断其逆命题是否成立.

记 $\mathcal{T}_1, \mathcal{T}_2$ 的积拓扑为 \mathcal{T} ,基为 $\mathcal{B} = \{U \times V | U \in \mathcal{T}_1, V \in \mathcal{T}_2\}.$ $\mathcal{T}_1', \mathcal{T}_2'$ 的积拓扑为 \mathcal{T}' ,基为 \mathcal{B}' . $\forall W \in \mathcal{T}', \exists J, \forall \alpha \in J, B_\alpha' = U_\alpha' \times V_\alpha' \in \mathcal{B}', U_\alpha' \in \mathcal{T}_1', V_\alpha' \in \mathcal{T}_2', W = \bigcup_{\alpha \in J} B_\alpha' = \bigcup_{\alpha \in J} (U_\alpha' \times V_\alpha').$ 由于 $\mathcal{T}_i' \subseteq \mathcal{T}_i, \text{ 于是 } W = \bigcup_{\alpha \in J} (U_\alpha' \times V_\alpha') \subseteq \left(\bigcup_\alpha U_\alpha'\right) \times \left(\bigcup_\alpha V_\alpha'\right) \subseteq \mathcal{B} \subseteq \mathcal{T}.$ 所以 \mathcal{T}' 粗于 \mathcal{T} . 另一方面,由于 $\mathcal{T}' \subseteq \mathcal{T}, \forall U_t' \in \mathcal{T}_1',$ 假设其不为空集,则: $\exists (t_1, t_2) \in B_t' = U_t' \times V_t' \in \mathcal{B}', \exists B_t = U_t \times V_t \in \mathcal{B}, (t_1, t_2) \in B_t \subseteq B_t'.$ 于是 $t_1 \in U_t \subseteq U_t'.$ 于是 $U_t' = \bigcup_{t_1 \in U_t'} \{t_1\} \subseteq \bigcup_{t_1 \in U_t'} U_t \subseteq U_t'.$ 因此 $U_t' = \bigcup_{t_1 \in U_t'} U_t \in \mathcal{T}_1.$ 同理可证 $\mathcal{T}_2' \subseteq \mathcal{T}_2.$

Problem 4 设 L 是平面上的直线, 描述 L 作为 $\mathbb{R}_l \times \mathbb{R}$ 与 $\mathbb{R}_l \times \mathbb{R}_l$ 的子空间拓扑.

注意到 $\mathbb{R}_l \times \mathbb{R}$ 和 $\mathbb{R}_l \times \mathbb{R}_l$ 的基分别为 $\{[a,b) \times (c,d) | a,b,c,d \in \mathbb{R}\}$ 与 $\{[a,b) \times [c,d) | a,b,c,d \in \mathbb{R}\}$. 子空间拓扑的基是 L 与这些矩形区域的交,是直线上的一段区间,和 \mathbb{R} 上的区间是等同的. 根据直线倾斜程度的不同,得到的基也不同. 记 \mathbb{R}_c 是以所有闭区间为基生成的拓扑. 其中需要注意到 $\mathbb{R} \subseteq \mathbb{R}_l \subseteq \mathbb{R}_c$.

	$\mathbb{R}_l imes \mathbb{R}$	$\mathbb{R}_l imes \mathbb{R}_l$
$lpha \in [0,rac{\pi}{2})$	\mathbb{R}_l	\mathbb{R}_l
$lpha = rac{\pi}{2}$	\mathbb{R}	\mathbb{R}_l
$lpha=(rac{\pi}{2},\pi)$	\mathbb{R}_l	\mathbb{R}_c