52	Dichte und Leitfähigkeit eines Elektrolyten					
Name 2:	Aufbau	Nr.:				
Name 1:	Datur	Datum:				
ETH ZUI	Physikalisches Praktikum	D-USYS	v19-2			

1 Leitfähigkeit

FIH zürich

Ein Liter der vorhandenen Lösung enthält 800 g ZnSO₄·7 H₂O

Valenzwert der Ionen	z =
Molekulargewicht der Substanz ZnSO ₄	M =
Molekulargewicht der Substanz ZnSO ₄ ·7 H ₂ O	M' =
Molare Konzentration: Anzahl Mol ZnSO ₄ pro Liter Lösung	c =
Äquivalentkonzentration: Anzahl Mol Äquivalente pro Liter Lösung	$c_{\mathrm{e}q} =$
Anzahl Ionen einer Sorte pro Volumeneinheit	N =
Abstand der Elektroden	l =
Fläche der Elektroden	q =

c/c_0	$c_{ m eq}$	$R \pm \Delta R$	$a \pm \Delta a$	$b\pm\Delta b$	$\frac{b}{a} \pm \Delta \frac{b}{a}$	$W\pm\Delta W$	$\sigma \pm \Delta \sigma$	$\Lambda \pm \Delta \Lambda$
1/1								
9/10								
3/4								
6/10								
1/2								
1/4								
1/8								
1/16								
1/32								
1/64								
1/128								
1/256								

Graphische Darstellung: $\sigma = f(c_{eq}); \quad \Lambda = f(\sqrt{c_{eq}})$

Vergleich der Leitfähigkeiten

$$\frac{\sigma_{\mathrm{Cu}}}{(\sigma_{\mathrm{ZnSO_4}})_{\mathrm{max}}} =$$

2 Dichte

c/c_0	$T \pm \Delta T$	$\rho_{ m gem} \pm \Delta \rho$	$\sigma \pm \Delta \sigma$	$\sigma(20)$	$u_+ + u$	I	f_A	A
1/1								
9/10								
3/4								
6/10								
1/2								
1/4								
1/8								
1/16								
1/32								
1/64								
1/128								
1/256								

 $\mbox{Graphische Darstellung: } \rho_{\rm gem} = f(c); \quad u = f(c); \quad \sigma = f(A); \quad \rho_{\rm gem} = f(\sigma(20))$

Lineare Regression für den linearen Bereich von $\rho_{\mathrm{gem}} = f(\sigma(20))$:

Achsenabschnitt $\rho(20)_{\text{dest}}$ =

Steigung k =

Aus Gleichung (18): $\rho(c_0,20)$ =

Differenz $ho_{\mathrm{gem}}(c_0) -
ho(c_0, 20) =$

Vergleiche mit dem Messfehler der Dichtebestimmung: $\Delta
ho_{\mathrm{gem}} =$