

TIME SERIES 501

Lesson 4: AR-MA

Learning Objectives

You will be able to do the following:

- Describe the autocorrelation function (ACF).
- Describe the partial autocorrelation function (PACF).
- Explain how autoregressive and moving average models work.
- Use Python* to fit autocorrelation models.

ACF AND PACF

Autocorrelation Function (ACF)

- Measures the correlation of a signal with a delayed copy of itself.
- It is used to find repeating patterns in a signal, such as the presence of a periodic signal.

$$R(\tau) = \frac{E[(X_t - \mu)(X_{t+\tau} - \mu)]}{\sigma^2}$$

where μ is the mean and σ^2 is the variance

Autocorrelation Function (ACF)

Observed Data

ACF Plot

Partial Autocorrelation Function

The partial autocorrelation at lag k is the autocorrelation between X_t and X_{t-k} that is not accounted for by lags 1 through k-1

$$\alpha(1) = Cor(x_{t+1}, x)$$

$$\alpha(k) = Cor(x_{t+k} - P_{t,k}(x_{t+k}), x_t - P_{t,k}(x_t))$$

where $P_{t,k}(x)$ denotes the projection of x onto the space spanning x_{t+1} , x_{t+k-1}

AUTOREGRESSIVE MODELS

Autoregressive Models (AR)

- A common approach to model univariate time series is to use autoregressive models (AR).
- An AR model is a linear regression of the current value of the series against one or more prior values of the series.
- Uses maximum likelihood estimators to determine coefficients instead of least squares.

Autoregressive Models (AR)

The notation AR(p) indicates an autoregressive model of order p.

$$X_t = \sum_{i=1}^p \varphi_i X_{t-i} + \varepsilon_t$$

where ϕ_i are the parameters of the model and ϵ_t is white noise.

Autoregressive Models (AR)

- Useful for short term forecasts
- This model can forecast up to p values

Steps for Forecasting with AR

Step 1: Model the trend and/or seasonality of a time series and subtract it from the data (X_t = Observed_t – Trend_t – Seasonality_t)

Step 2: Calculate AR on X_t to obtain X_{t+1}

Step 3: Forecast = X_{t+1} + Trend_t + Seasonality_t

ACF Plot Details

Observed Data

ACF Plot

https://commons.wikimedia.org/wiki/File:Acf_new.svg

PACF Plot

- Let's say we generated the PACF plot to the right.
- We see a single significant spike at lag1.
- This means that all other significant spikes in the ACF plot are explained by the spike at lag 1.
- Therefore, we would choose the model AR(1).

PACF Plot

Source: https://people.duke.edu/~rnau/411arim3.htm

MOVING AVERAGE MODELS

- Another common approach to modeling univariate time series is the moving average (MA) model.
- MA models are conceptually a linear regression of the current value of the series against the white noise of one or more of the previous values of the series.
- The noise at each point is assumed to come from a normal distribution with mean 0 and constant variance.

- Fitting MA estimates is more complicated than AR models because the error terms are not observable.
- As a result, iterative nonlinear fitting procedures need to be used.
- MA models are less interpretable than AR models.

The notation MA(q) indicates a moving average model of order q.

$$X_t = \varepsilon_t + \sum_{i=1}^q \theta_i \varepsilon_{t-i}$$

where θ_i are the parameters of the model and ϵ_t is white noise.

- We talked about smoothing with a moving average in Lesson 3.
- Moving average models are not the same as smoothing.
- Please don't confuse the two.

AR or MA Model?

- If the PACF drops sharply at a given lag or the first lag autocorrelation is positive, then use an AR model with order p equal to the lag just before the sharp decline.
- If the ACF drops sharply at a given lag or the first lag autocorrelation is negative, then use an MA model with order q equal to the lag just before the sharp decline.

APPLICATIONS IN PYTHON

Use Python to Fit Autocorrelation Models

Next up is a look at applying these concepts in Python.

See notebook entitled Autocorrelation_student.ipynb

Learning Objectives Recap

In this session you learned how to do the following:

- Describe the autocorrelation function (ACF)
- Describe the partial autocorrelation function (PACF).
- Explain how autoregressive and moving average models work.
- Use Python to fit autocorrelation models.

Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more at intel.com.

Sample source code is released under the Intel Sample Source Code License Agreement.

Intel, the Intel logo, the Intel. Experience What's Inside logo, and Intel. Experience What's Inside are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2018, Intel Corporation. All rights reserved.

