Examenul de bacalaureat național 2014 **Proba E. c) – 2 iulie 2014** Matematică M_mate-info Barem de evaluare și de notare

Varianta 5

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	(* * * F *	
1.	$2 \cdot (x+5) = 4^2$	2p
	x=3	3 p
2.	$\Delta = 1 - 16 = -15$	2p
	$a=1>0$ și $\Delta<0\Rightarrow$ parabola asociată funcției f este situată deasupra axei Ox	3 p
3.	$x^2 - 1 = 8 \Leftrightarrow x^2 - 9 = 0$	3p
	$x_1 = -3$ și $x_2 = 3$	2p
4.	Sunt 7 numere de două cifre care au suma cifrelor egală cu 7, deci sunt 7 cazuri favorabile	2p
	Sunt 90 de numere de două cifre, deci sunt 90 de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{1} = \frac{7}{1}$	
	$p = {\text{nr. cazuri posibile}} = {90}$	2p
5.	M(0,3)	2p
	OM = 3	3 p
6.	$x = \frac{\pi}{}$	2p
	$\begin{bmatrix} x-6 \end{bmatrix}$	_ 2p
	$\sin 2x = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$	3р
	$\frac{\sin 2\lambda - \sin 3 - 2}{2}$	J.P

1.a)	$\det(A(0)) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} =$	2p
	=1+0+0-0-0-0=1	3р
b)	$A(x) \cdot A(y) = \begin{pmatrix} 1 & 2x & 0 \\ 0 & 4x+1 & 0 \\ 0 & 3x & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2y & 0 \\ 0 & 4y+1 & 0 \\ 0 & 3y & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2x+2y+8xy & 0 \\ 0 & 4x+4y+16xy+1 & 0 \\ 0 & 3x+3y+12xy & 1 \end{pmatrix}$	3p
	$= \begin{pmatrix} 1 & 2(x+y+4xy) & 0 \\ 0 & 4(x+y+4xy)+1 & 0 \\ 0 & 3(x+y+4xy) & 1 \end{pmatrix} = A(x+y+4xy) \text{ pentru orice numere reale } x \text{ si } y$	2p
c)	$A(x) \cdot A(x) = I_3 \Rightarrow A(2x + 4x^2) = A(0) \Rightarrow 2x + 4x^2 = 0$	3p
	$x_1 = 0$ și $x_2 = -\frac{1}{2}$	2p
2.a)	$f(0) = 0^3 + 0^2 - 4 \cdot 0 + 2a =$	2 p
	=2a	3 p
b)	$x_1 = 1 + i \Rightarrow x_2 = 1 - i$	1p

 $x_1x_2x_3 = -2a \Rightarrow a = 3$

 $x_1 + x_2 + x_3 = -1 \Rightarrow x_3 = -3$

SUBIECTUL al II-lea

2p

2p

(30 de puncte)

c)	$x_1^3 + x_2^3 + x_3^3 = (1+i)^3 + (1-i)^3 + (-3)^3 =$	3 p
	=(2i-2)+(-2i-2)-27=-31	2 p

SURIE	ECTUL al III-lea (30 de pu	ncte)
1.a)	$f'(x) = \frac{\left(x^2\right)' \cdot (x-2) - x^2 \cdot (x-2)'}{\left(x-2\right)^2} =$	2p
	$= \frac{2x(x-2)-x^2}{(x-2)^2} = \frac{x(x-4)}{(x-2)^2}, \ x \in (2,+\infty)$	3р
b)	y - f(4) = f'(4)(x-4)	2p
	f(4) = 8, $f'(4) = 0$, deci ecuația tangentei este $y = 8$	3p
c)	$f'(x) = 0 \Leftrightarrow x = 4$	1p
	$f'(x) \le 0$ pentru orice $x \in (2,4] \Rightarrow f$ este descrescătoare pe $(2,4]$	2p
	$f'(x) \ge 0$ pentru orice $x \in [4, +\infty) \Rightarrow f$ este crescătoare pe $[4, +\infty)$	2p
2.a)	$I_2 = \int_0^1 \frac{x^2}{x^3 + 1} dx = \frac{1}{3} \int_0^1 \frac{3x^2}{x^3 + 1} dx =$	2p
	$= \frac{1}{3} \ln \left(x^3 + 1 \right) \Big _0^1 = \frac{1}{3} \ln 2$	3p
b)	$I_{n+3} + I_n = \int_0^1 \frac{x^{n+3}}{x^3 + 1} dx + \int_0^1 \frac{x^n}{x^3 + 1} dx = \int_0^1 \frac{x^n (x^3 + 1)}{x^3 + 1} dx =$	3р
	$= \int_{0}^{1} x^{n} dx = \frac{x^{n+1}}{n+1} \Big _{0}^{1} = \frac{1}{n+1} \text{ pentru orice număr natural nenul } n$	2p
c)	Pentru orice $n \in \mathbb{N}^*$ și $x \in [0,1]$ avem $x^n \ge 0$, $x^3 + 1 > 0 \Rightarrow I_n \ge 0$	2p
	$I_{n+3} \ge 0$ și $I_{n+3} + I_n = \frac{1}{n+1} \Rightarrow 0 \le I_n \le \frac{1}{n+1} \Rightarrow \lim_{n \to +\infty} I_n = 0$	3р