VE215 2023Su Assignment 5

Due Date: 23:59, July.4th, 2023

In order to get full marks, you shall write all the intermediate steps of calculation or proof unless otherwise indicated.

Exercise 3.1 (30%)

- (a) (10%) Find the equivalent admittance of the circuits at $\omega = 50 \ rad/s$.
- (b) (10%) Find the equivalent admittance of the circuits at $\omega = 50 \ rad/s$.
- (c) (10%) Find the equivalent impedance Z_{ab} .

VE215 2023Su Assignment 5

Exercise 3.2 (30%)

(a) (15%) Determine v_0 in the circuit below.

(b) (15%) Use nodal analysis to find V in the circuit below.

VE215 2023Su Assignment 5

Exercise 3.3 (40%)

(a) (20%) Find the Thevenin equivalent at terminal a-b of the circuit below. And also draw the phasor diagram of the Thevenin equivalent impedance.

(b) (20%) Find the Norton equivalent at terminal a-b of the circuit below. And also draw the phasor diagram of the Norton equivalent impedance. Take $\omega = 10 \ rad/s$.

