

MOTEUR A COURANT CONTINU ET CARTE DE PUISSANCE.

DOCUMENTS RESSOURCES

Table des matières

F	che 1 Présentation Générale	. 2
	Le système	. 2
	Pilotage en utilisant Arduino	
	Pilotage en utilisant Matlab Simulink	
_	the 2 Description structurelle et technologique	
r	Moteur à courant continu	
	Réducteur	
	Grandeurs mécaniques	
	Capteur	. 3
	Shield de commande moteur	3

Fiche 1 Presentation Generale

Le système

- Raccorder le câble USB.
- Raccorder le câble d'alimentation sur le SHIELD MOTEUR.

Pilotage en utilisant Arduino

- En utilisant la document Ressource « Arduino », déployer la carte le fichier MCC_BO_quad.ino.
- Visualiser la console série et l'affichage des données.
- Visualiser les courbes.

Pilotage en utilisant Matlab Simulink

- Créer un dossier TP MCC sur le Bureau du PC.
- Copier dans ce répertoire le fichier CommandePWM_Mesure.
- Ouvrir le fichier.
- Dans les blocs PWM et PWM1, vérifier que les bonnes sorties Arduino sont saisies.
- Double cliquer sur le bloc Encoder.
- Vérifier que les valeurs des Pin A et Pin B correspondent bien aux entrées du codeur.
- Cliquer sur OpenEditor puis sur Build.
- Fermer alors la fenêtre.

Fiche 2 DESCRIPTION STRUCTURELLE ET TECHNOLOGIQUE

Moteur à courant continu

- Résistance de l'induit : $R_m = 3 \Omega$.
- Inductance de l'induit : $L_m = 4 \text{ mH}$.
- Inertie du motoréducteur ramené à l'arbre moteur (à vérifier) : $J_m = 3 \times 10^{-6} \text{ kg. m}^2$.
- Constante du moteur K = 0.009 V/(rad/s) = 0.009 Nm/A.

Réducteur

• Rapport de réduction : 34.

Grandeurs mécaniques

- Coefficient de frottement visqueux en sortie du réducteur f = 0.0014 Nms/rad;
- Couple de frottement statique : -0.027 Nm.

Capteur

Codeur: 48 tops/tour (12 « fentes » sur 2 voies de mesures).

Shield de commande moteur

