

This is a Continuation application of USSN 09/112,774 filed on July 10, 1998

Title of the Invention

A PRINTHEAD ASSEMBLY FOR A PRINT ON DEMAND DIGITAL CAMERA SYSTEM

Field of the Invention

The present invention relates substantially to the concept of a disposable camera having instant printing capabilities and in particular, discloses a printhead assembly for a digital camera system.

Background of the Invention

Recently, the concept of a "single use" disposable camera has become an increasingly popular consumer item. Disposable camera systems presently on the market normally include an internal film roll and a simplified gearing mechanism for traversing the film roll across an imaging system including a shutter and lensing system. The user, after utilizing a single film roll returns the camera system to a film development center for processing. The film roll is taken out of the camera system and processed and the prints returned to the user. The camera system can then be re-manufactured through the insertion of a new film roll into the camera system, the replacement of any worn or wearable parts and the re-packaging of the camera system in accordance with requirements. In this way, the concept of a single use "disposable" camera is provided to the consumer.

Recently, a camera system has been proposed by the present applicant which provides for a handheld camera device having an internal print head, image sensor and processing means such that images sense by the image sensing means, are processed by the processing means and adapted to be instantly printed out by the printing means on demand. The proposed camera system further discloses a system of internal "print rolls" carrying print media such as film on to which images are to be printed in addition to ink to supplying the printing means for the printing process. The print roll is further disclosed to be detachable and replaceable within the camera system.

Unfortunately, such a system is likely to only be constructed at a substantial cost and it would be desirable to provide for a more inexpensive form of instant camera system which maintains a substantial number of the quality aspects of the aforementioned arrangement.

It would be further advantageous to provide for the effective interconnection of the sub components of a camera system.

Summary of the Invention

According to a first aspect of the invention, there is provided a printhead assembly for a

camera system having a chassis and a platen assembly that is mountable on the chassis, the platen assembly being configured to support passage of a print medium along a printing path, the printhead assembly comprising

an ink reservoir assembly that is mountable on the chassis and defines at least three ink reservoirs in which differently colored inks are received, the ink reservoir assembly defining an outlet;

a guide assembly that is positioned in the ink reservoir assembly to define at least three discrete ink paths that open at the outlet; and

at least one printhead ehipintegrated circuit that is positioned in the outlet to span the printing path, the, or each, printhead ehipintegrated circuit defining at least three sets of inlet apertures, each set of inlet apertures being aligned with a respective ink path.

The ink reservoir assembly may define three ink reservoirs and the guide assembly may define three discrete ink paths.

Both the ink reservoir assembly and the guide assembly may be elongate to span the printing path. The ink reservoir assembly may include an elongate base member and an elongate cover member, the cover member having a roof wall, a pair of opposed side walls and a pair of spaced inner walls, the side walls and the inner walls depending from the roof wall and being generally parallel to each other and the base member having a floor and a pair of opposed end walls and defining an elongate opening in which the printhead ehipintegrated circuits are mounted, the guide assembly being interposed between lower ends of the inner walls and the floor.

The guide assembly may include a pair of guide walls that extend from respective lower ends of the inner walls inwardly towards the elongate opening to define the three distinct ink paths that terminate at respective sets of inlet apertures of the printhead ehipintegrated circuits.

The base member, the cover member and the guide assembly may be molded of a plastics material.

One of the end walls may define a number of air inlet openings that are treated to be hydrophobic to permit the ingress of air into the ink reservoirs as ink is fed from the ink reservoirs and to inhibit the egress of ink.

A sponge-like member may be positioned in each ink reservoir to store the ink while inhibiting agitation of ink during general use of the camera system.

The invention extends to a camera system that includes a printhead assembly as described above.

In accordance with a second aspect of the present invention, there is provided in a camera system comprising: an image sensor device for sensing an image; a processing means

for processing the sensed image; a print media supply means for the supply of print media to a print head; a print head for printing the sensed image on the print media stored internally to the camera system; a portable power supply interconnected to the print head, the sensor and the processing means; and a guillotine mechanism located between the print media supply means and the print head and adapted to cut the print media into sheets of a predetermined size.

Further, preferably, the guillotine mechanism is detachable from the camera system. The guillotine mechanism can be attached to the print media supply means and is detachable from the camera system with the print media supply means. The guillotine mechanism can be mounted on a platen unit below the print head.

Brief Description of the Drawings

Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:

- Fig. 1 illustrates a front perspective view of the assembled camera of the preferred embodiment;
 - Fig. 2 illustrates a rear perspective view, partly exploded, of the preferred embodiment;
 - Fig. 3 is a perspective view of the chassis of the preferred embodiment;
 - Fig. 4 is a perspective view of the chassis illustrating mounting of electric motors;
- Fig. 5 is an exploded perspective of the ink supply mechanism of the preferred embodiment;
- Fig. 6 is rear perspective of the assembled form of the ink supply mechanism of the preferred embodiment;
- Fig. 7 is a front perspective view of the assembled form of the ink supply mechanism of the preferred embodiment;
 - Fig. 8 is an exploded perspective view of the platen unit of the preferred embodiment;
 - Fig. 9 is a perspective view of the assembled form of the platen unit;
 - Fig. 10 is also a perspective view of the assembled form of the platen unit;
- Fig. 11 is an exploded perspective view of the printhead recapping mechanism of the preferred embodiment;
- Fig. 12 is a close up exploded perspective of the recapping mechanism of the preferred embodiment:
- Fig. 13 is an exploded perspective of the ink supply cartridge of the preferred embodiment;
- Fig. 14 is a close up perspective, view partly in section, of the internal portions of the ink supply cartridge in an assembled form;

Fig. 15 is a schematic block diagram of one form of ehipintegrated circuit layer of the image capture and processing ehipintegrated circuit of the preferred embodiment;

Fig. 16 is an exploded view perspective illustrating the assembly process of the preferred embodiment;

Fig. 17 illustrates a front exploded perspective view of the assembly process of the preferred embodiment;

Fig. 18 illustrates a perspective view of the assembly process of the preferred embodiment;

Fig. 19 illustrates a perspective view of the assembly process of the preferred embodiment;

Fig. 20 is a perspective view illustrating the insertion of the platen unit in the preferred embodiment;

Fig. 21 illustrates the interconnection of the electrical components of the preferred embodiment;

Fig. 22 illustrates the process of assembling the preferred embodiment; and

Fig. 23 is a perspective view further illustrating the assembly process of the preferred embodiment.

Description of Preferred and Other Embodiments

Turning initially simultaneously to Fig. 1 and Fig. 2 there are illustrated perspective views of an assembled camera constructed in accordance with the preferred embodiment with Fig. 1 showing a front perspective view and Fig. 2 showing a rear perspective view. The camera 1 includes a paper or plastic film jacket 2 which can include simplified instructions 3 for the operation of the camera system 1. The camera system 1 includes a first "take" button 4 which is depressed to capture an image. The captured image is output via output slot 6. A further copy of the image can be obtained through depressing a second "printer copy" button 7 whilst an LED light 5 is illuminated. The camera system also provides the usual view finder 8 in addition to a CCD image capture/lensing system 9.

The camera system 1 provides for a standard number of output prints after which the camera system 1 ceases to function. A prints left indicator slot 10 is provided to indicate the number of remaining prints. A refund scheme at the point of purchase is assumed to be operational for the return of used camera systems for recycling.

Turning now to Fig. 3, the assembly of the camera system is based around an internal chassis 12 which can be a plastic injection molded part. A pair of paper pinch rollers 28, 29 utilized for decurling are snap fitted into corresponding frame holes eg. 26, 27.

As shown in Fig. 4, the chassis 12 includes a series of mutually opposed prongs eg. 13,

14 into which is snapped fitted a series of electric motors 16, 17. The electric motors 16, 17 can be entirely standard with the motor 16 being of a stepper motor type. The motor 16, 17 include cogs 19, 20 for driving a series of gear wheels. A first set of gear wheels is provided for controlling a paper cutter mechanism and a second set is provided for controlling print roll movement.

Turning next to Figs. 5 to 7, there is illustrated an ink supply mechanism 40 utilized in the camera system. Fig. 5 illustrates a back exploded perspective view, Fig. 6 illustrates a back assembled view and Fig. 7 illustrates a front assembled view. The ink supply mechanism 40 is based around an ink supply cartridge 42 which contains printer ink and a print head mechanism for printing out pictures on demand. The ink supply cartridge 42 includes a side aluminium strip 43 which is provided as a shear strip to assist in cutting images from a paper roll.

A dial mechanism 44 is provided for indicating the number of "prints left". The dial mechanism 44 is snap fitted through a corresponding mating portion 46 so as to be freely rotatable.

As shown in Fig. 6, the mechanism 40 includes a flexible PCB strip 47 which interconnects with the print head and provides for control of the print head. The interconnection between the Flex PCB strip and an image sensor and print head ehipintegrated circuit can be via Tape Automated Bonding (TAB) Strips 51, 58. A moulded aspherical lens and aperture shim 50 (Fig. 5) is also provided for imaging an image onto the surface of the image sensor ehipintegrated circuit normally located within cavity 53 and a light box module or hood 52 is provided for snap fitting over the cavity 53 so as to provide for proper light control. A series of decoupling capacitors eg. 34 can also be provided. Further a plug 45 (Fig. 7) is provided for replugging ink holes after refilling. A series of guide prongs eg. 55-57 are further provided for guiding the flexible PCB strip 47.

The ink supply mechanism 40 interacts with a platen unit 60 which guides print media under a printhead located in the ink supply mechanism. Fig. 8 shows an exploded view of the platen unit 60, while Figs. 9 and 10 show assembled views of the platen unit. The platen unit 60 includes a first pinch roller 61 which is snap fitted to one side of a platen base 62. Attached to a second side of the platen base 62 is a cutting mechanism 63 which traverses the platen unit 60 by means of a rod 64 having a screw thread which is rotated by means of cogged wheel 65 which is also fitted to the platen base 62. The screw threaded rod 64 mounts a block 67 which includes a cutting wheel 68 fastened via a fastener 69. Also mounted to the block 67 is a counter actuator which includes a pawl 71. The pawl 71 acts to rotate the dial mechanism 44 of Fig. 6 upon the return traversal of the cutting wheel. As shown previously in Fig. 6, the dial mechanism 44 includes a cogged surface which interacts with pawl 71, thereby maintaining a

count of the number of photographs by means of numbers embossed on the surface of dial mechanism 44. The cutting mechanism 63 is inserted into the platen base 62 by means of a snap fit via clips 74.

The platen unit 60 includes an internal recapping mechanism 80 for recapping the print head when not in use. The recapping mechanism 80 includes a sponge portion 81 and is operated via a solenoid coil so as to provide for recapping of the print head. In the preferred embodiment, there is provided an inexpensive form of printhead re-capping mechanism provided for incorporation into a handheld camera system so as to provide for printhead recapping of an inkjet printhead.

Fig. 11 illustrates an exploded view of the recapping mechanism whilst Fig. 12 illustrates a close up of the end portion thereof. The re-capping mechanism 80 is structured around a solenoid including a 16 turn coil 75 which can comprise insulated wire. The coil 75 is turned around a first stationery solenoid arm 76 which is mounted on a bottom surface of the platen base 62(Fig. 8) and includes a post portion 77 to magnify effectiveness of operation. The arm 76 can comprise a ferrous material.

A second moveable arm 78 of the solenoid actuator is also provided. The arm 78 is moveable and is also made of ferrous material. Mounted on the arm is a sponge portion surrounded by an elastomer strip 79. The elastomer strip 79 is of a generally arcuate cross-section and act as a leaf spring against the surface of the printhead ink supply cartridge 42 (Fig. 5) so as to provide for a seal against the surface of the printhead ink supply cartridge 42. In the quiescent position an elastomer spring unit 87, 88 acts to resiliently deform the elastomer seal 79 against the surface of the ink supply unit 42.

When it is desired to operate the printhead unit, upon the insertion of paper, the solenoid coil 75 is activated so as to cause the arm 78 to move down to be adjacent to the end plate 76. The arm 78 is held against end plate 76 while the printhead is printing by means of a small "keeper current" in coil 75. Simulation results indicate that the keeper current can be significantly less than the actuation current. Subsequently, after photo printing, the paper is guillotined by the cutting mechanism 63 of Fig. 8 acting against Aluminium Strip 43, and rewound so as to clear the area of the re-capping mechanism 80. Subsequently, the current is turned off and springs 87, 88 return the arm 78 so that the elastomer seal is again resting against the printhead ink supply cartridge.

It can be seen that the preferred embodiment provides for a simple and inexpensive means of re-capping a printhead through the utilisation of a solenoid type device having a long rectangular form. Further, the preferred embodiment utilises minimal power in that currents are only required whilst the device is operational and additionally, only a low keeper current is required whilst the printhead is printing.

Turning next to Fig. 13 and 14, Fig. 13 illustrates an exploded perspective of the ink supply cartridge 42 whilst Fig. 14 illustrates a close up sectional view of a bottom of the ink supply cartridge with the printhead unit in place. The ink supply cartridge 42 is based around a pagewidth printhead 102 which comprises a long slither of silicon having a series of holes etched on the back surface for the supply of ink to a front surface of the silicon wafer for subsequent ejection via a micro electro mechanical system. The form of ejection can be many different forms such as those set out in the tables below.

Of course, many other inkjet technologies, as referred to the attached tables below, can also be utilised when constructing a printhead unit 102. The fundamental requirement of the ink supply cartridge 42 is the supply of ink to a series of colour channels etched through the back surface of the printhead 102. In the description of the preferred embodiment, it is assumed that a three colour printing process is to be utilised so as to provide full colour picture output. Hence, the print supply unit includes three ink supply reservoirs being a cyan reservoir 104, a magenta reservoir 105 and a yellow reservoir 106. Each of these reservoirs is required to store ink and includes a corresponding sponge type material 107 - 109 which assists in stabilising ink within the corresponding ink channel and inhibiting the ink from sloshing back and forth when the printhead is utilised in a handheld camera system. The reservoirs 104, 105, 106 are formed through the mating of first exterior plastic piece 110 and a second base piece 111.

At a first end 118 of the base piece 111 a series of air inlet 113 – 115 are provided. Each air inlet leads to a corresponding winding channel which is hydrophobically treated so as to act as an ink repellent and therefore repel any ink that may flow along the air inlet channel. The air inlet channel further takes a convoluted path assisting in resisting any ink flow out of the chambers 104 - 106. An adhesive tape portion 117 is provided for sealing the channels within end portion 118.

At the top end, there is included a series of refill holes (not shown) for refilling corresponding ink supply chambers 104, 105, 106. A plug 121 is provided for sealing the refill holes.

Turning now to Fig. 14, there is illustrated a close up perspective view, partly in section through the ink supply cartridge 42 of Fig. 13 when formed as a unit. The ink supply cartridge includes the three colour ink reservoirs 104, 105, 106 which supply ink to different portions of the back surface of printhead 102 which includes a series of apertures 128 defined therein for carriage of the ink to the front surface.

The ink supply cartridge 42 includes two guide walls 124, 125 which separate the various ink chambers and are tapered into an end portion abutting the surface of the printhead

102. The guide walls 124, 125 are further mechanically supported by block portions eg. 126 which are placed at regular intervals along the length of the ink supply unit. The block portions 126 leave space at portions close to the back of printhead 102 for the flow of ink around the back surface thereof.

The ink supply unit is preferably formed from a multi-part plastic injection mould and the mould pieces eg. 110, 111 (Fig. 13) snap together around the sponge pieces 107, 109. Subsequently, a syringe type device can be inserted in the ink refill holes and the ink reservoirs filled with ink with the air flowing out of the air outlets 113 - 115. Subsequently, the adhesive tape portion 117 and plug 121 are attached and the printhead tested for operation capabilities. Subsequently, the ink supply cartridge 42 can be readily removed for refilling by means of removing the ink supply cartridge, performing a washing cycle, and then utilising the holes for the insertion of a refill syringe filled with ink for refilling the ink chamber before returning the ink supply cartridge 42 to a camera.

Turning now to Fig. 15, there is shown an example layout of the Image Capture and Processing Chipintegrated circuit (ICP) 48.

The Image Capture and Processing Chipintegrated circuit 48 provides most of the electronic functionality of the camera with the exception of the print head ehipintegrated circuit. The ehipintegrated circuit 48 is a highly integrated system. It combines CMOS image sensing, analog to digital conversion, digital image processing, DRAM storage, ROM, and miscellaneous control functions in a single ehipintegrated circuit.

The <u>chipintegrated circuit</u> is estimated to be around 32 mm² using a leading edge 0.18 micron CMOS/DRAM/APS process. The <u>chipintegrated circuit</u> size and cost can scale somewhat with Moore's law, but is dominated by a CMOS active pixel sensor array 201, so scaling is limited as the sensor pixels approach the diffraction limit.

The ICP 48 includes CMOS logic, a CMOS image sensor, DRAM, and analog circuitry. A very small amount of flash memory or other non-volatile memory is also preferably included for protection against reverse engineering.

Alternatively, the ICP can readily be divided into two ehipintegrated circuits: one for the CMOS imaging array, and the other for the remaining circuitry. The cost of this two ehipintegrated circuit solution should not be significantly different than the single ehipintegrated circuit ICP, as the extra cost of packaging and bond-pad area is somewhat cancelled by the reduced total wafer area requiring the color filter fabrication steps.

The ICP preferably contains the following functions:

1	. •
Fun	ction
ı un	CLICI

Function 1.5 megapixel image sensor **Analog Signal Processors** Image sensor column decoders Image sensor row decoders Analogue to Digital Conversion (ADC) Column ADC's Auto exposure 12 Mbits of DRAM **DRAM Address Generator** Color interpolator Convolver Color ALU Halftone matrix ROM Digital halftoning Print head interface 8 bit CPU core Program ROM Flash memory Scratchpad SRAM Parallel interface (8 bit) Motor drive transistors (5) Clock PLL JTAG test interface Test circuits Busses Bond pads

The CPU, DRAM, Image sensor, ROM, Flash memory, Parallel interface, JTAG interface and ADC can be vendor supplied cores. The ICP is intended to run on 1.5V to minimize power consumption and allow convenient operation from two AA type battery cells.

Fig. 15 illustrates a layout of the ICP 48. The ICP 48 is dominated by the imaging array 201, which consumes around 80% of the ehipintegrated circuit area. The imaging array is a CMOS 4 transistor active pixel design with a resolution of 1,500 x 1,000. The array can be divided into the conventional configuration, with two green pixels, one red pixel, and one blue pixel in each pixel group. There are 750 x 500 pixel groups in the imaging array.

The latest advances in the field of image sensing and CMOS image sensing in particular can be found in the October, 1997 issue of IEEE Transactions on Electron Devices and, in particular, pages 1689 to 1968. Further, a specific implementation similar to that disclosed in the present application is disclosed in Wong et. al, "CMOS Active Pixel Image Sensors Fabricated Using a 1.8V, 0.25 µm CMOS Technology", IEDM 1996, page 915

The imaging array uses a 4 transistor active pixel design of a standard configuration. To minimize ehipintegrated circuit area and therefore cost, the image sensor pixels should be as small as feasible with the technology available. With a four transistor cell, the typical pixel size scales as 20 times the lithographic feature size. This allows a minimum pixel area of around 3.6 μ m x 3.6 μ m. However, the photosite must be substantially above the diffraction limit of the lens. It is also advantageous to have a square photosite, to maximize the margin over the diffraction limit in both horizontal and vertical directions. In this case, the photosite can be specified as 2.5 μ m x 2.5 μ m. The photosite can be a photogate, pinned photodiode, charge modulation device, or other sensor.

The four transistors are packed as an 'L' shape, rather than a rectangular region, to allow both the pixel and the photosite to be square. This reduces the transistor packing density slightly, increasing pixel size. However, the advantage in avoiding the diffraction limit is greater than the small decrease in packing density.

The transistors also have a gate length which is longer than the minimum for the process technology. These have been increased from a drawn length of 0.18 micron to a drawn length of 0.36 micron. This is to improve the transistor matching by making the variations in gate length represent a smaller proportion of the total gate length.

The extra gate length, and the 'L' shaped packing, mean that the transistors use more area than the minimum for the technology. Normally, around 8 μm^2 would be required for rectangular packing. Preferably, 9.75 μm^2 has been allowed for the transistors.

The total area for each pixel is $16 \mu m^2$, resulting from a pixel size of $4 \mu m \times 4 \mu m$.

With a resolution of 1,500 x 1,000, the area of the imaging array 101 is 6,000 μ m x 4,000 μ m, or 24 mm².

The presence of a color image sensor on the ehipintegrated circuit affects the process required in two major ways:

-The CMOS fabrication process should be optimized to minimize dark current

Color filters are required. These can be fabricated using dyed photosensitive polyimides, resulting in an added process complexity of three spin coatings, three photolithographic steps, three development steps, and three hardbakes.

There are 15,000 analog signal processors (ASPs) 205, one for each of the columns of the sensor. The ASPs amplify the signal, provide a dark current reference, sample and hold the signal, and suppress the fixed pattern noise (FPN).

There are 375 analog to digital converters 206, one for each four columns of the sensor array. These may be delta-sigma or successive approximation type ADC's. A row of low column ADC's are used to reduce the conversion speed required, and the amount of analog signal degradation incurred before the signal is converted to digital. This also eliminates the hot spot (affecting local dark current) and the substrate coupled noise that would occur if a single high speed ADC was used. Each ADC also has two four bit DAC's which trim the offset and scale of the ADC to further reduce FPN variations between columns. These DAC's are controlled by data stored in flash memory during ehipintegrated circuit testing.

The column select logic 204 is a 1:1500 decoder which enables the appropriate digital output of the ADCs onto the output bus. As each ADC is shared by four columns, the least significant two bits of the row select control 4 input analog multiplexors.

A row decoder 207 is a 1:1000 decoder which enables the appropriate row of the active pixel sensor array. This selects which of the 1000 rows of the imaging array is connected to analog signal processors. As the rows are always accessed in sequence, the row select logic can be implemented as a shift register.

An auto exposure system 208 adjusts the reference voltage of the ADC 205 in response to the maximum intensity sensed during the previous frame period. Data from the green pixels is passed through a digital peak detector. The peak value of the image frame period before capture (the reference frame) is provided to a digital to analogue converter(DAC), which generates the global reference voltage for the column ADCs. The peak detector is reset at the beginning of the reference frame. The minimum and maximum values of the three RGB color components are also collected for color correction.

The second largest section of the ehipintegrated circuit is consumed by a DRAM 210 used to hold the image. To store the $1,500 \times 1,000$ image from the sensor without compression,

1.5 Mbytes of DRAM 210 are required. This equals 12 Mbits, or slightly less than 5% of a 256 Mbit DRAM. The DRAM technology assumed is of the 256 Mbit generation implemented using $0.18\mu m$ CMOS.

Using a standard 8F cell, the area taken by the memory array is 3.11 mm². When row decoders, column sensors, redundancy, and other factors are taken into account, the DRAM requires around 4 mm².

This DRAM 210 can be mostly eliminated if analog storage of the image signal can be accurately maintained in the CMOS imaging array for the two seconds required to print the photo. However, digital storage of the image is preferable as it is maintained without degradation, is insensitive to noise, and allows copies of the photo to be printed considerably later.

A DRAM address generator 211 provides the write and read addresses to the DRAM 210. Under normal operation, the write address is determined by the order of the data read from the CMOS image sensor 201. This will typically be a simple raster format. However, the data can be read from the sensor 201 in any order, if matching write addresses to the DRAM are generated. The read order from the DRAM 210 will normally simply match the requirements of a color interpolator and the print head. As the cyan, magenta, and yellow rows of the print head are necessarily offset by a few pixels to allow space for nozzle actuators, the colors are not read from the DRAM simultaneously. However, there is plenty of time to read all of the data from the DRAM many times during the printing process. This capability is used to eliminate the need for FIFOs in the print head interface, thereby saving ehipintegrated circuit area. All three RGB image components can be read from the DRAM each time color data is required. This allows a color space converter to provide a more sophisticated conversion than a simple linear RGB to CMY conversion.

Also, to allow two dimensional filtering of the image data without requiring line buffers, data is re-read from the DRAM array.

The address generator may also implement image effects in certain models of camera. For example, passport photos are generated by a manipulation of the read addresses to the DRAM. Also, image framing effects (where the central image is reduced), image warps, and kaleidoscopic effects can all be generated by manipulating the read addresses of the DRAM.

While the address generator 211 may be implemented with substantial complexity if effects are built into the standard ehipintegrated circuit, the ehipintegrated circuit area required for the address generator is small, as it consists only of address counters and a moderate amount of random logic.

A color interpolator 214 converts the interleaved pattern of red, 2 x green, and blue ZF190US

pixels into RGB pixels. It consists of three 8 bit adders and associated registers. The divisions are by either 2 (for green) or 4 (for red and blue) so they can be implemented as fixed shifts in the output connections of the adders.

A convolver 215 is provided as a sharpening filter which applies a small convolution kernel (5 \times 5) to the red, green, and blue planes of the image. The convolution kernel for the green plane is different from that of the red and blue planes, as green has twice as many samples. The sharpening filter has five functions:

- -To improve the color interpolation from the linear interpolation provided by the color interpolator, to a close approximation of a sinc interpolation.
 - -To compensate for the image 'softening' which occurs during digitization.
- -To adjust the image sharpness to match average consumer preferences, which are typically for the image to be slightly sharper than reality. As the single use camera is intended as a consumer product, and not a professional photographic products, the processing can match the most popular settings, rather than the most accurate.
- -To suppress the sharpening of high frequency (individual pixel) noise. The function is similar to the 'unsharp mask' process.
 - -To antialias Image Warping.

These functions are all combined into a single convolution matrix. As the pixel rate is low (less than 1 Mpixel per second) the total number of multiplies required for the three color channels is 56 million multiplies per second. This can be provided by a single multiplier. Fifty bytes of coefficient ROM are also required.

A color ALU 113 combines the functions of color compensation and color space conversion into the one matrix multiplication, which is applied to every pixel of the frame. As with sharpening, the color correction should match the most popular settings, rather than the most accurate.

A color compensation circuit of the color ALU provides compensation for the lighting of the photo. The vast majority of photographs are substantially improved by a simple color compensation, which independently normalizes the contrast and brightness of the three color components.

A color look-up table (CLUT) 212 is provided for each color component. These are three separate 256 x 8 SRAMs, requiring a total of 6,144 bits. The CLUTs are used as part of the color correction process. They are also used for color special effects, such as stochastically selected "wild color" effects.

A color space conversion system of the color ALU converts from the RGB color space of the image sensor to the CMY color space of the printer. The simplest conversion is a 1's

complement of the RGB data. However, this simple conversion assumes perfect linearity of both color spaces, and perfect dye spectra for both the color filters of the image sensor, and the ink dyes. At the other extreme is a tri-linear interpolation of a sampled three dimensional arbitrary transform table. This can effectively match any non-linearity or differences in either color space. Such a system is usually necessary to obtain good color space conversion when the print engine is a color electrophotographic

However, since the non-linearity of a halftoned ink jet output is very small, a simpler system can be used. A simple matrix multiply can provide excellent results. This requires nine multiplies and six additions per contone pixel. However, since the contone pixel rate is low (less than 1 Mpixel/sec) these operations can share a single multiplier and adder. The multiplier and adder are used in a color ALU which is shared with the color compensation function.

Digital halftoning can be performed as a dispersed dot ordered dither using a stochastic optimized dither cell. A halftone matrix ROM 216 is provided for storing dither cell coefficients. A dither cell size of 32 x 32 is adequate to ensure that the cell repeat cycle is not visible. The three colors – cyan, magenta, and yellow – are all dithered using the same cell, to ensure maximum co-positioning of the ink dots. This minimizes 'muddying' of the mid-tones which results from bleed of dyes from one dot to adjacent dots while still wet. The total ROM size required is 1 KByte, as the one ROM is shared by the halftoning units for each of the three colors.

The digital halftoning used is dispersed dot ordered dither with stochastic optimized dither matrix. While dithering does not produce an image quite as 'sharp' as error diffusion, it does produce a more accurate image with fewer artifacts. The image sharpening produced by error diffusion is artificial, and less controllable and accurate than 'unsharp mask' filtering performed in the contone domain. The high print resolution (1,600 dpi x 1,600 dpi) results in excellent quality when using a well formed stochastic dither matrix.

Digital halftoning is performed by a digital halftoning unit 217 using a simple comparison between the contone information from the DRAM 210 and the contents of the dither matrix 216. During the halftone process, the resolution of the image is changed from the 250 dpi of the captured contone image to the 1,600 dpi of the printed image. Each contone pixel is converted to an average of 40.96 halftone dots.

The ICP incorporates a 16 bit microcontroller CPU core 219 to run the miscellaneous camera functions, such as reading the buttons, controlling the motor and solenoids, setting up the hardware, and authenticating the refill station. The processing power required by the CPU is very modest, and a wide variety of processor cores can be used. As the entire CPU program is run from a small ROM 220[.], program compatibility between camera versions is not important,

as no external programs are run. A 2 Mbit (256 Kbyte) program and data ROM 220 is included on ehipintegrated circuit. Most of this ROM space is allocated to data for outline graphics and fonts for specialty cameras. The program requirements are minor. The single most complex task is the encrypted authentication of the refill station. The ROM requires a single transistor per bit.

A Flash memory 221 may be used to store a 128 bit authentication code. This provides higher security than storage of the authentication code in ROM, as reverse engineering can be made essentially impossible. The Flash memory is completely covered by third level metal, making the data impossible to extract using scanning probe microscopes or electron beams. The authentication code is stored in the chipintegrated circuit when manufactured. At least two other Flash bits are required for the authentication process: a bit which locks out reprogramming of the authentication code, and a bit which indicates that the camera has been refilled by an authenticated refill station. The flash memory can also be used to store FPN correction data for the imaging array. Additionally, a phase locked loop rescaling parameter is stored for scaling the clocking cycle to an appropriate correct time. The clock frequency does not require crystal accuracy since no date functions are provided. To eliminate the cost of a crystal, an on chipintegrated circuit oscillator with a phase locked loop 224 is used. As the frequency of an on-ehipintegrated circuit oscillator is highly variable from ehipintegrated circuit to ehipintegrated circuit, the frequency ratio of the oscillator to the PLL is digitally trimmed during initial testing. The value is stored in Flash memory 221. This allows the clock PLL to control the ink-jet heater pulse width with sufficient accuracy.

A scratchpad SRAM is a small static RAM 222 with a 6T cell. The scratchpad provided temporary memory for the 16 bit CPU. 1024 bytes is adequate.

A print head interface 223 formats the data correctly for the print head. The print head interface also provides all of the timing signals required by the print head. These timing signals may vary depending upon temperature, the number of dots printed simultaneously, the print medium in the print roll, and the dye density of the ink in the print roll.

The following is a table of external connections to the print head interface:

Connection	Function	Pins
DataBits[0-7]	Independent serial data to the eight segments of the print head	8
BitClock	Main data clock for the print head	1
ColorEnable[0-2]	Independent enable signals for the CMY actuators, allowing different pulse times for each color.	3
BankEnable[0-1]	Allows either simultaneous or interleaved actuation of two banks of nozzles. This allows two different print speed/power consumption tradeoffs	2
NozzleSelect[0-4]	Selects one of 32 banks of nozzles for simultaneous actuation	5
ParallelXferClock	Loads the parallel transfer register with the data from the shift registers	1
Total		20

There is no connection between the segments on the print head ehipintegrated circuit. Any connections required are made in the external TAB bonding film, which is double sided. The division into eight identical segments is to simplify lithography using wafer steppers. The segment width of 1.25 cm fits easily into a stepper field. As the print head ehipintegrated circuit is long and narrow (10 cm x 0.3 mm), the stepper field contains a single segment of 32 print head ehipintegrated circuits. The stepper field is therefore 1.25 cm x 1.6 cm. An average of four complete print heads are patterned in each wafer step.

A single BitClock output line connects to all 8 segments on the print head. The 8 DataBits lines lead one to each segment, and are clocked into the 8 segments on the print head simultaneously (on a BitClock pulse). For example, dot 0 is transferred to segment₀, dot 750 is transferred to segment₁, dot 1500 to segment₂ etc simultaneously.

The ParallelXferClock is connected to each of the 8 segments on the print head, so that on a single pulse, all segments transfer their bits at the same time.

The NozzleSelect, BankEnable and ColorEnable lines are connected to each of the 8 segments, allowing the print head interface to independently control the duration of the cyan, magenta, and yellow nozzle energizing pulses. Registers in the Print Head Interface allow the accurate specification of the pulse duration between 0 and 6 ms, with a typical duration of 2 ms to 3 ms.

A parallel interface 125 connects the ICP to individual static electrical signals. The CPU is able to control each of these connections as memory mapped I/O via a low speed bus.

The following is a table of connections to the parallel interface:

Connection	Direction	Pins
Paper transport stepper motor	Output	4
Capping solenoid	Output	1
Copy LED	Output	1
Photo button	Input	1
Copy button	Input	1
Total		8

Seven high current drive transistors eg. 227 are required. Four are for the four phases of the main stepper motor, two are for the guillotine motor, and the remaining transistor is to drive the capping solenoid. These transistors are allocated 20,000 square microns (600,000 F) each. As the transistors are driving highly inductive loads, they must either be turned off slowly, or be provided with a high level of back EMF protection. If adequate back EMF protection cannot be provided using the ehipintegrated circuit process chosen, then external discrete transistors should be used. The transistors are never driven at the same time as the image sensor is used. This is to avoid voltage fluctuations and hot spots affecting the image quality. Further, the transistors are located as far away from the sensor as possible.

A standard JTAG (Joint Test Action Group) interface 228 is included in the ICP for testing purposes and for interrogation by the refill station. Due to the complexity of the ehipintegrated circuit, a variety of testing techniques are required, including BIST (Built In Self Test) and functional block isolation. An overhead of 10% in ehipintegrated circuit area is assumed for ehipintegrated circuit testing circuitry for the random logic portions. The overhead for the large arrays the image sensor and the DRAM is smaller.

The JTAG interface is also used for authentication of the refill station. This is included to ensure that the cameras are only refilled with quality paper and ink at a properly constructed refill station, thus preventing inferior quality refills from occurring. The camera must authenticate the refill station, rather than vice versa. The secure protocol is communicated to the refill station during the automated test procedure. Contact is made to four gold plated spots on the ICP/print head TAB by the refill station as the new ink is injected into the print head.

Fig. 16 illustrates a rear view of the next step in the construction process whilst Fig. 17 illustrates a front view.

Turning now to Fig. 16, the assembly of the camera system proceeds via first assembling the ink supply mechanism 40. The flex PCB is interconnected with batteries 84 only one of which is shown, which are inserted in the middle portion of a print roll 85 which is wrapped around a plastic former 86. An end cap 89 is provided at the other end of the print roll

85 so as to fasten the print roll and batteries firmly to the ink supply mechanism.

The solenoid coil is interconnected (not shown) to interconnects 97, 98 (Fig. 8) which include leaf spring ends for interconnection with electrical contacts on the Flex PCB so as to provide for electrical control of the solenoid.

Turning now to Figs. 17 - 19 the next step in the construction process is the insertion of the relevant gear trains into the side of the camera chassis. Fig. 17 illustrates a front view, Fig. 18 illustrates a rear view and Fig. 19 also illustrates a rear view. The first gear train comprising gear wheels 22, 23 is utilised for driving the guillotine blade with the gear wheel 23 engaging the gear wheel 65 of Fig. 8. The second gear train comprising gear wheels 24, 25 and 26 engage one end of the print roller 61 of Fig. 8. As best indicated in Fig. 18, the gear wheels mate with corresponding pins on the surface of the chassis with the gear wheel 26 being snap fitted into corresponding mating hole 27.

Next, as illustrated in Fig. 20, the assembled platen unit 60 is then inserted between the print roll 85 and aluminium cutting blade 43.

Turning now to Fig. 21, by way of illumination, there is illustrated the electrically interactive components of the camera system. As noted previously, the components are based around a Flex PCB board and include a TAB film 58 which interconnects the printhead 102 with the image sensor and processing ehipintegrated circuit 48. Power is supplied by two AA type batteries 83, 84 and a paper drive stepper motor 16 is provided in addition to a rotary guillotine motor 17.

An optical element 31 is provided for snapping into a top portion of the chassis 12. The optical element 31 includes portions defining an optical view finder 32, 33 which are slotted into mating portions 35, 36 in view finder channel 37. Also provided in the optical element 31 is a lensing system 38 for magnification of the prints left number in addition to an optical pipe element 39 for piping light from the LED 5 for external display.

Turning next to Fig. 22, the assembled unit 90 is then inserted into a front outer case 91 which includes button 4 for activation of printouts.

Turning now to Fig. 23, next, the unit 90 is provided with a snap-on back cover 93 which includes a slot 6 and copy print button 7. A wrapper label containing instructions and advertising (not shown) is then wrapped around the outer surface of the camera system and pinch clamped to the cover by means of clamp strip 96 which can comprise a flexible plastic or rubber strip.

Subsequently, the preferred embodiment is ready for use as a one time use camera system that provides for instant output images on demand. It will be evident that the preferred embodiment further provides for a refillable camera system. A used camera can be collected and its outer plastic cases removed and recycled. A new paper roll and batteries can be added and the ink cartridge refilled. A series of automatic test routines can then be carried out to ensure that the printer is properly operational. Further, in order to ensure only authorised refills are conducted so as to enhance quality, routines in the on-chipintegrated circuit program ROM can be executed such that the camera authenticates the refilling station using a secure protocol. Upon authentication, the camera can reset an internal paper count and an external case can be fitted on the camera system with a new outer label. Subsequent packing and shipping can then take place.

It will be further readily evident to those skilled in the art that the program ROM can be modified so as to allow for a variety of digital processing routines. In addition to the digitally enhanced photographs optimised for mainstream consumer preferences, various other models can readily be provided through mere re-programming of the program ROM. For example, a

sepia classic old fashion style output can be provided through a remapping of the colour mapping function. A further alternative is to provide for black and white outputs again through a suitable colour remapping algorithm. Minimum colour can also be provided to add a touch of colour to black and white prints to produce the effect that was traditionally used to colourize black and white photos. Further, passport photo output can be provided through suitable address remappings within the address generators. Further, edge filters can be utilised as is known in the field of image processing to produce sketched art styles. Further, classic wedding borders and designs can be placed around an output image in addition to the provision of relevant clip arts. For example, a wedding style camera might be provided. Further, a panoramic mode can be provided so as to output the well known panoramic format of images. Further, a postcard style output can be provided through the printing of postcards including postage on the back of a print roll surface. Further, cliparts can be provided for special events such as Halloween, Christmas etc. Further, kaleidoscopic effects can be provided through address remappings and wild colour effects can be provided through remapping of the colour lookup table. Many other forms of special event cameras can be provided for example, cameras dedicated to the Olympics, movie tie-ins, advertising and other special events.

The operational mode of the camera can be programmed so that upon the depressing of the take photo a first image is sampled by the sensor array to determine irrelevant parameters. Next a second image is again captured which is utilised for the output. The captured image is then manipulated in accordance with any special requirements before being initially output on the paper roll. The LED light is then activated for a predetermined time during which the DRAM is refreshed so as to retain the image. If the print copy button is depressed during this predetermined time interval, a further copy of the photo is output. After the predetermined time interval where no use of the camera has occurred, the onboard CPU shuts down all power to the camera system until such time as the take button is again activated. In this way, substantial power savings can be realized.

Ink Jet Technologies

The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.

The most significant problem with thermal inkjet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in

thermal inkjet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.

The most significant problem with piezoelectric inkjet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewide print heads with 19,200 nozzles.

Ideally, the inkjet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new inkjet technologies have been created. The target features include:

low power (less than 10 Watts)
high resolution capability (1,600 dpi or more)
photographic quality output
low manufacturing cost
small size (pagewidth times minimum cross section)
high speed (< 2 seconds per page).

All of these features can be met or exceeded by the inkjet systems described below with differing levels of difficulty. 45 different inkjet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part of separate applications assigned to the present Assignee as set out in the table below.

The inkjet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems

For ease of manufacture using standard process equipment, the print head is designed to be a monolithic 0.5 micron CMOS ehipintegrated circuit with MEMS post processing. For color photographic applications, the print head is 100 mm long, with a width which depends upon the inkjet type. The smallest print head designed is IJ38, which is 0.35 mm wide, giving a ehipintegrated circuit area of 35 square mm. The print heads each contain 19,200 nozzles plus data and control circuitry.

Ink is supplied to the back of the print head by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched

through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The print head is connected to the camera circuitry by tape automated bonding.

Cross-Referenced Applications

The following table is a guide to cross-referenced patent applications filed concurrently herewith and discussed hereinafter with the reference being utilized in subsequent tables when referring to a particular case:

Docket	Reference	Title
No.		
IJ01US	IJO1	Radiant Plunger Ink Jet Printer
IJ02US	IJ02	Electrostatic Ink Jet Printer
IJ03US	IJ03	Planar Thermoelastic Bend Actuator Ink Jet
IJ04US	IJ04	Stacked Electrostatic Ink Jet Printer
IJ05US	IJ05	Reverse Spring Lever Ink Jet Printer
IJ06US	IJ06	Paddle Type Ink Jet Printer
IJ07US	IJ07	Permanent Magnet Electromagnetic Ink Jet Printer
IJ08US	IJ08	Planar Swing Grill Electromagnetic Ink Jet Printer
IJ09US	IJ09	Pump Action Refill Ink Jet Printer
IJ10US	IJ10	Pulsed Magnetic Field Ink Jet Printer
IJ11US	IJ11	Two Plate Reverse Firing Electromagnetic Ink Jet Printer
IJ12US	IJ12	Linear Stepper Actuator Ink Jet Printer
IJ13US	IJ13	Gear Driven Shutter Ink Jet Printer
IJ14US	IJ14	Tapered Magnetic Pole Electromagnetic Ink Jet Printer
IJ15US	IJ15	Linear Spring Electromagnetic Grill Ink Jet Printer
IJ16US	IJ16	Lorenz Diaphragm Electromagnetic Ink Jet Printer
IJ17US	IJ17	PTFE Surface Shooting Shuttered Oscillating Pressure Ink Jet Printer
IJ18US	IJ18	Buckle Grip Oscillating Pressure Ink Jet Printer
IJ19US	IJ19	Shutter Based Ink Jet Printer
IJ20US	IJ20	Curling Calyx Thermoelastic Ink Jet Printer
IJ21US	IJ21	Thermal Actuated Ink Jet Printer
IJ22US	IJ22	Iris Motion Ink Jet Printer
IJ23US	IJ23	Direct Firing Thermal Bend Actuator Ink Jet Printer
IJ24US	IJ24	Conductive PTFE Ben Activator Vented Ink Jet Printer
IJ25US	IJ25	Magnetostrictive Ink Jet Printer
IJ26US	IJ26	Shape Memory Alloy Ink Jet Printer
IJ27US	IJ27	Buckle Plate Ink Jet Printer
IJ28US	IJ28	Thermal Elastic Rotary Impeller Ink Jet Printer
IJ29US	IJ29	Thermoelastic Bend Actuator Ink Jet Printer
IJ30US	IJ30	Thermoelastic Bend Actuator Using PTFE and Corrugated Copper
		Ink Jet Printer
IJ31US	IJ31	Bend Actuator Direct Ink Supply Ink Jet Printer
IJ32US	IJ32	A High Young's Modulus Thermoelastic Ink Jet Printer
IJ33US	IJ33	Thermally actuated slotted chamber wall ink jet printer
IJ34US	IJ34	Ink Jet Printer having a thermal actuator comprising an external
		coiled spring
IJ35US	IJ35	Trough Container Ink Jet Printer
IJ36US	IJ36	Dual Chamber Single Vertical Actuator Ink Jet
IJ37US	IJ37	Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet

IJ38US	IJ38	Dual Nozzle Single Horizontal Actuator Ink Jet
IJ39US	IJ39	A single bend actuator cupped paddle ink jet printing device
IJ40US	IJ40	A thermally actuated ink jet printer having a series of thermal actuator units
IJ41US	IJ41	A thermally actuated ink jet printer including a tapered heater element
IJ42US	IJ42	Radial Back-Curling Thermoelastic Ink Jet
IJ43US	IJ43	Inverted Radial Back-Curling Thermoelastic Ink Jet
IJ44US	IJ44	Surface bend actuator vented ink supply ink jet printer
IJ45US	IJ45	Coil Acutuated Magnetic Plate Ink Jet Printer

Tables of Drop-on-Demand Inkjets

Eleven important characteristics of the fundamental operation of individual inkjet nozzles have been identified. These characteristics are largely orthogonal, and so can be elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee.

The following tables form the axes of an eleven dimensional table of inkjet types.

Actuator mechanism (18 types)

Basic operation mode (7 types)

Auxiliary mechanism (8 types)

Actuator amplification or modification method (17 types)

Actuator motion (19 types)

Nozzle refill method (4 types)

Method of restricting back-flow through inlet (10 types)

Nozzle clearing method (9 types)

Nozzle plate construction (9 types)

Drop ejection direction (5 types)

Ink type (7 types)

The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of inkjet nozzle. While not all of the possible combinations result in a viable inkjet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain inkjet types have been investigated in detail. These are designated IJ01 to IJ45 above.

Other inkjet configurations can readily be derived from these 45 examples by substituting alternative configurations along one or more of the 11 axes. Most of the IJ01 to IJ45 examples can be made into inkjet print heads with characteristics superior to any currently available inkjet technology.

Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The IJ01 to IJ45 series are also listed in the examples column. In some cases, a printer may be listed more than once in a table, where it shares characteristics with more than one entry.

Suitable applications include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.

The information associated with the aforementioned 11 dimensional matrix are set out in the following tables.

ACTUATOR MECHANISM (APPLIED ONLY TO SELECTED INK DROPS)

Actuator Mechanism	Description	Advantages	Disadvantages	Examples
Thermal bubble	An electrothermal heater heats the ink to above boiling point, transferring significant heat to the aqueous ink. A bubble nucleates and quickly forms, expelling the ink. The efficiency of the process is low, with typically less than 0.05% of the electrical energy being transformed into kinetic energy of the drop.	Large force generated Simple construction No moving parts Fast operation Small ehipintegrated circuit area required for actuator	6) High power 7) Ink carrier limited to water 8) Low efficiency 9) High temperatures required 10) High mechanical stress 11) Unusual materials required 12) Large drive transistors 13) Cavitation causes actuator failure 14) Kogation reduces bubble formation 15) Large print heads are difficult to fabricate	16) Canon Bubblejet 1979 Endo et al GB patent 2,007,162 17) Xerox heat¢r-in- pit 1990 Hawkins et al USP 4,899,181 18) Hewlett- Packard TIJ 1982 Vaught et al USP 4,490,728
Piezoelectric	A piezoelectric crystal such as lead lanthanum zirconate (PZT) is electrically activated, and either expands, shears, or bends to apply pressure to the ink, ejecting drops.	 19) Low power 20) Many ink types can be used 21) Fast operation 22) High efficiency 	actuator 24) Difficult to integrate with electronics 25) High voltage drive transistors required 26) Full pagewidth print heads impractical due to actuator size 27) Requires electrical poling in high field strengths during manufacture	28) Kyser et al USP 3,946,398 29) Zoltan USP 3,683,212 30) 1973 Stemme USP 3,747,120 31) Epson Stylus 32) Tektronix 33) 1J04

Ferroelectric field is used to induce a phase transition between the antiferroelectric (FE) phase. Perovskite materials such as tin modified lead lanthanum zirconate titanate (PLZSNT) exhibit large strains of up to 1% associated with the AFE to FE phase transition. Electrostatic Conductive plates are separated by a compressible or fluid dielectric (usually air). Upon application of a voltage, the plates attract each other and displace ink, causing drop ejection. The conductive plates may be in a comb or honeycomb	35) Many ink types can be used 36) Low thermal expansion	40) Large area required for actuator	Cont of ani or
electric	used 36) Low thermal expansion		253401/96
electric	36) Low thermal expansion	due to low strain	45) IJ04
electric	expansion	41) Response speed is marginal (~ 10	
electric		lus)	
electric		42) High voltage drive transistors	
electric	required (approx. 3.5 V/µm)	required	
electric	nerated without	43) Full pagewidth print heads	
electric	difficulty	impractical due to actuator size	
electric	38) Does not require		
electric	lectrical poling		
ostatic	46) Low power	52) Difficult to integrate with	55) IJ04
ostatic	consumption	electronics	
ostatic	47) Many ink types can be	53) Unusual materials such as	
ostatic	. Perovskite used	PLZSnT are required	
ostatic	48) Fast operation (< 1 μs)	54) Actuators require a large area	
ostatic	nate (49) Relatively high		
ostatic	longi		
ostatic	le AFE to FE 50) High efficiency		
ostatic	51) Electric field strength		
ostatic	of around 3 V/µm can be		
ostatic	readily provided		
	56) Low power	59) Difficult to operate electrostatic	64) IJ02, IJ04
(usually air). Upon application of a voltage, the plates attract each other and displace ink, causing drop ejection. The conductive plates may be in a comb or honeycomb	consi	devices in an aqueous environment	
voltage, the plates attract each other and displace ink, causing drop ejection. The conductive plates may be in a comb or honeycomb	57) Many ink types can be	60) The electrostatic actuator will	
and displace ink, causing drop ejection. The conductive plates may be in a comb or honeycomb	t each other used	normally need to be separated from the	
ejection. The conductive plates may be in a comb or honeycomb	g drop 58) Fast operation	ink	
be in a comb or honeycomb		61) Very large area required to	
	qm	achieve high forces	
structure, or stacked to increase the		62) High voltage drive transistors	
surface area and therefore the force.	re the force.	may be required	
		63) Full pagewidth print heads are not	
		competitive due to actuator size	

Electrostatic	A strong electric field is applied to	65) Low current	67) High voltage required	72) 1989 Saito et al.
pull on ink	the ink, whereupon electrostatic	consumption	68) May be damaged by sparks due to	SP
•	attraction accelerates the ink towards	66) Low temperature	air breakdown	73) 1989 Miura et
	the print medium.		69) Required field strength increases	al, USP 4,810,954
			as the drop size decreases	74) Tone-jet
			70) High voltage drive transistors	
			equi	
			71) Electrostatic field attracts dust	
Permanent	An electromagnet directly attracts a	75) Low power	80) Complex fabrication	86) 1J07, IJ10
magnet electro-	permanent magnet, displacing ink	consumption	81) Permanent magnetic material	
magnetic	and causing drop ejection. Rare earth	76) Many ink types can be	such as Neodymium Iron Boron	
	magnets with a field strength around	pssn	(NdFeB) required.	
	1 Tesla can be used. Examples are:	77) Fast operation	82) High local currents required	
	Samarium Cobalt (SaCo) and	78) High efficiency	83) Copper metalization should be	
	magnetic materials in the neodymium	79) Easy extension from	used for long electromigration lifetime	
	iron boron family (NdFeB,	single nozzles to pagewidth	and low resistivity	
	NdDyFeBNb, NdDyFeB, etc)	print heads	84) Pigmented inks are usually	
			infeasible	
			85) Operating temperature limited to	
			the Curie temperature (around 540 K)	
Soft magnetic	A solenoid induced a magnetic field	87) Low power	92) Complex fabrication	98) IJ01, IJ05, IJ08,
core electro-	in a soft magnetic core or yoke	consumption	93) Materials not usually present in a	1J10
magnetic	fabricated from a ferrous material	88) Many ink types can be	CMOS fab such as NiFe, CoNiFe, or	99) IJ12, IJ14, IJ15,
	such as electroplated iron alloys such	nseq	CoFe are required	IJ17
	as CoNiFe [1], CoFe, or NiFe alloys.	89) Fast operation	94) High local currents required	
	Typically, the soft magnetic material	90) High efficiency	95) Copper metalization should be	
	is in two parts, which are normally	91) Easy extension from	used for long electromigration lifetime	
	held apart by a spring. When the	single nozzles to pagewidth	and low resistivity	
	solenoid is actuated, the two parts	print heads	96) Electroplating is required	
	attract, displacing the ink.		97) High saturation flux density is	
			required (2.0-2.1 T is achievable with	
			CoNiFe [1])	

Magnetic	The Lorenz force acting on a current	100) Low power	105) Force acts as a twisting motion	110) IJ06, IJ11, IJ13,
Lorenz force	carrying wire in a magnetic field is	consumption 101) Many ink types can be	106) Typically, only a quarter of the solenoid lenoth provides force in a	IJ16
	This allows the magnetic field to be	nsed	useful direction	
	supplied externally to the print head,	102) Fast operation	107) High local currents required	
	for example with rare earth	103) High efficiency	108) Copper metalization should be	
	permanent magnets.	104) Easy extension from	used for long electromigration lifetime	
	Only the current carrying wire need	single nozzles to pagewidth	and low resistivity 100) Pigmented into are negative	
	be fabricated on the print-head, simplifying materials requirements.		infeasible	
Magneto-	The actuator uses the giant	111) Many ink types can be	115) Force acts as a twisting motion	120) Fischenbeck,
striction	magnetostrictive effect of materials	nseq	116) Unusual materials such as	USP 4,032,929
	such as Terfenol-D (an alloy of	112) Fast operation	Terfenol-D are required	121) 1J25
	terbium, dysprosium and iron	113) Easy extension from	117) High local currents required	
	developed at the Naval Ordnance	single nozzles to pagewidth	118) Copper metalization should be	
	Laboratory, hence Ter-Fe-NOL). For	print heads	used for long electromigration lifetime	
	best efficiency, the actuator should	114) High force is available	and low resistivity	
	be pre-stressed to approx. 8 MPa.		119) Pre-stressing may be required	
Surface tension	Ink under positive pressure is held in	122) Low power	127) Requires supplementary force to	130) Silverbrook, EP
reduction	a nozzle by surface tension. The	consumption	effect drop separation	0771 658 A2 and
	surface tension of the ink is reduced	123) Simple construction	128) Requires special ink surfactants	related patent
	below the bubble threshold, causing	124) No unusual materials	129) Speed may be limited by	applications
	the ink to egress from the nozzle.	required in fabrication	surfactant properties	
		125) High efficiency		
		126) Easy extension from		
		single nozzles to pagewidth		
		print heads		

Viscosity	The ink viscosity is locally reduced	131) Simple construction	134) Requires supplementary force to	139) Silverbrook, EP
Leamenon	ejected. A viscosity reduction can be	ΞŢ	135) Requires special ink viscosity	related patent
	achieved electrothermally with most	133) Easy extension from	obe	applications
	inks, but special inks can be	single nozzles to pagewidth	136) High speed is difficult to achieve	
	engineered for a 100:1 viscosity	print heads	137) Requires oscillating ink pressure	
	reduction.		138) A high temperature difference	
			(typically 80 degrees) is required	
Acoustic	An acoustic wave is generated and	140) Can operate without a	141) Complex drive circuitry	146) 1993
	focussed upon the drop ejection	nozzle plate	142) Complex fabrication	Hadimioglu et al,
	region.		143) Low efficiency	EUP 550,192
			144) Poor control of drop position	147) 1993 Elrod et al,
			145) Poor control of drop volume	EUP 572,220
Thermoelastic	An actuator which relies upon	148) Low power	157) Efficient aqueous operation	160) IJ03, IJ09, IJ17,
bend actuator	differential thermal expansion upon	consumption	requires a thermal insulator on the hot	1118
	Joule heating is used.	149) Many ink types can be	side	161) IJ19, IJ20, IJ21,
		nseq	158) Corrosion prevention can be	1322
		150) Simple planar	difficult	162) 1123, 1124, 1127,
		fabrication	159) Pigmented inks may be infeasible,	1J28
		151) Small ehipintegrated	as pigment particles may jam the bend	163) IJ29, IJ30, IJ31,
		circuit area required for	actuator	1132
		each actuator		164) IJ33, IJ34, IJ35,
		152) Fast operation		1136
		153) High efficiency		165) IJ37, IJ38 ,IJ39,
 		154) CMOS compatible		IJ40
		voltages and currents		166) IJ41
		155) Standard MEMS		
		processes can be used		
		156) Easy extension from		
		single nozzies to pagewidtn print heads		

High CTE	A material with a very high	167) High force can be	177) Requires special material (e.g.	181) IJ09, IJ17, IJ18,
thermoelastic	coefficient of thermal expansion	generated	PTFE)	1120
actuator	(CTE) such as	168) PTFE is a candidate	178) Requires a PTFE deposition	182) IJ21, IJ22, IJ23,
	polytetrafluoroethylene (PTFE) is	for low dielectric constant	process, which is not yet standard in	1324
	used. As high CTE materials are	insulation in ULSI	ULSI fabs	183) IJ27, IJ28, IJ29,
	usually non-conductive, a heater	169) Very low power	179) PTFE deposition cannot be	130
	fabricated from a conductive material	consumption	followed with high temperature (above	184) IJ31, IJ42, IJ43,
	is incorporated. A 50 µm long PTFE	170) Many ink types can be	350 °C) processing	1344
	bend actuator with polysilicon heater	nsed	180) Pigmented inks may be infeasible,	
	and 15 mW power input can provide	171) Simple planar	as pigment particles may jam the bend	
	180 μN force and 10 μm deflection.	fabrication	actuator	
	Actuator motions include:	172) Small ehipintegrated		
	Bend	circuit area required for		
	1,:L	each actuator		
	T COL	173) Fast operation		
	Buckle	174) High efficiency		
	Rotate	175) CMOS compatible		
		voltages and currents		
		176) Easy extension from		
		single nozzles to pagewidth		
		print heads		

thermal e thermal e thermal e thermal e actuator increase orders of copper. The expands include:	thermal expansion (such as PTFE) is	nenerated	development (Uich OTE conduction			
lastic		gonerated	developinent (riign C 1 E conductive			
	doped with conducting substances to	186) Very low power	polymer)			
orders of copper. T expands Example include:	increase its conductivity to about 3	consumption	195) Requires a PTFE deposition			
copper. T expands Example include:	orders of magnitude below that of	187) Many ink types can be	process, which is not yet standard in			
Example include:	copper. The conducting polymer	nsed	ULSI fabs			
Example include:	expands when resistively heated.	188) Simple planar	196) PTFE deposition cannot be	•		
include:	Examples of conducting dopants	fabrication	followed with high temperature (above			
	1	189) Small ehipintegrated	350 °C) processing			
Carbon n	Carbon nanotiibes	circuit area required for	197) Evaporation and CVD deposition			
		each actuator	techniques cannot be used			
Metal fibers	oers	190) Fast operation	198) Pigmented inks may be infeasible,			
Conducti	Conductive polymers such as doped	191) High efficiency	as pigment particles may jam the bend			
polythiophene		192) CMOS compatible	actuator			
Carbon granules	granules	voltages and currents				
		193) Easy extension from				
		single nozzles to pagewidth				
		print heads				
Shape memory A shape 1	A shape memory alloy such as TiNi	able	206) Fatigue limits maximum number	213)	1126	
	(also known as Nitinol - Nickel	(stresses of hundreds of	of cycles			
<u> </u>	Titanium alloy developed at the	MPa)	207) Low strain (1%) is required to			
Naval Or		201) Large strain is	extend fatigue resistance			
thermally	thermally switched between its weak	available (more than 3%)	208) Cycle rate limited by heat			•
martensit	martensitic state and its high stiffness	202) High corrosion	removal			
austenic	austenic state. The shape of the	resistance	209) Requires unusual materials (TiNi)			
actuator		203) Simple construction	210) The latent heat of transformation			
deformed		204) Easy extension from	must be provided			
shape. The	shape. The shape change causes	single nozzles to pagewidth	211) High current operation			
ejection	ejection of a drop.	print heads	212) Requires pre-stressing to distort			
		205) Low voltage operation	the martensitic state			

Linear Magnetic	Linear Magnetic Linear magnetic actuators include the	214) Linear Magnetic	218) Requires unusual semiconductor 222) IJ12	222)	IJ12
Actuator	Linear Induction Actuator (LIA),	actuators can be constructed	materials such as soft magnetic alloys		
	Linear Permanent Magnet	with high thrust, long travel,	(e.g. CoNiFe [1])		
	Synchronous Actuator (LPMSA),	and high efficiency using	219) Some varieties also require		
	Linear Reluctance Synchronous	planar semiconductor	permanent magnetic materials such as		
	Actuator (LRSA), Linear Switched	fabrication techniques	Neodymium iron boron (NdFeB)		
	Reluctance Actuator (LSRA), and the	215) Long actuator travel is	220) Requires complex multi-phase		
	Linear Stepper Actuator (LSA).	available	drive circuitry		
		216) Medium force is	221) High current operation		
		available			
		217) Low voltage operation			

BASIC OPERATION MODE

Operational mode	Description	Advantages	Disadvantages	Examples
Actuator directly pushes ink	This is the simplest mode of operation: the actuator directly supplies sufficient kinetic energy to	223) Simple operation 224) No external fields required	Drop repetition rate is usually limited to less than 10 KHz. However, this is not fundamental to the method,	230) Thermal inkjet 231) Piezoelectric inkjet
	expel the drop. The drop must have a sufficient velocity to overcome the	225) Satellite drops can be avoided if drop velocity is	but is related to the refill method normally used	232) IJ01, IJ02, IJ03, IJ04
	surface tension.	less than 4 m/s 226) Can be efficient,	228) All of the drop kinetic energy must be provided by the actuator	233) IJ05, IJ06, IJ07, IJ09
		tuator	229) Satellite drops usually form if drop velocity is greater than 4.5 m/s	234) IJ11, IJ12, IJ14, IJ16
				235) IJ20, IJ22, IJ23, IJ24
				236) IJ25, IJ26, IJ27, IJ28
				237) IJ29, IJ30, IJ31, IJ32
				238) IJ33, IJ34, IJ35, IJ36
				239) IJ37, IJ38, IJ39, IJ40
				240) IJ41, IJ42, IJ43, IJ44
Proximity	The drops to be printed are selected by some manner (e.g. thermally	241) Very simple print head fabrication can be used	243) Requires close proximity between the print head and the print media or	246) Silverbrook, EP 0771 658 A2 and
	induced surface tension reduction of pressurized ink). Selected drops are	242) The drop selection means does not need to	transfer roller 244) May require two print heads	related patent applications
	separated from the ink in the nozzle by contact with the print medium or a	provide the energy required to separate the drop from	printing alternate rows of the image 245) Monolithic color print heads are	:
	transfer roller.	the nozzle	difficult	

Electrostatic	The drons to be printed are selected	247) Very simple print head	249) Requires very high electrostatic	252) Silverbrook. EP
pull on ink	by some manner (e.g. thermally	prication can be used	р	71
•	induced surface tension reduction of	248) The drop selection	250) Electrostatic field for small nozzle	related patent
	pressurized ink). Selected drops are	means does not need to	sizes is above air breakdown	applications
	separated from the ink in the nozzle	provide the energy required	251) Electrostatic field may attract dust	253) Tone-Jet
_	by a strong electric field.	to separate the drop from the nozzle		
Magnetic pull on	The drops to be printed are selected	254) Very simple print head	256) Requires magnetic ink	259) Silverbrook, EP
ink	by some manner (e.g. thermally	fabrication can be used	257) Ink colors other than black are	0771 658 A2 and
	induced surface tension reduction of	255) The drop selection	difficult	related patent
	pressurized ink). Selected drops are	means does not need to	258) Requires very high magnetic	applications
	separated from the ink in the nozzle	provide the energy required	fields	
	by a strong magnetic field acting on	to separate the drop from		
	the magnetic ink.	the nozzle		
Shutter	The actuator moves a shutter to block	260) High speed (>50 KHz)	263) Moving parts are required	267) 1J13, IJ17, IJ21
	ink flow to the nozzle. The ink	operation can be achieved	264) Requires ink pressure modulator	
	pressure is pulsed at a multiple of the	due to reduced refill time	265) Friction and wear must be	
	drop ejection frequency.	261) Drop timing can be	considered	
		very accurate	266) Stiction is possible	
		262) The actuator energy		
		can be very low		
Shuttered grill	The actuator moves a shutter to block	268) Actuators with small	271) Moving parts are required	275) IJ08, IJ15, IJ18,
,	ink flow through a grill to the nozzle.	travel can be used	272) Requires ink pressure modulator	1119
	The shutter movement need only be	269) Actuators with small	273) Friction and wear must be	
	equal to the width of the grill holes.	force can be used	considered	
- 15 10		270) High speed (>50 KHz)	274) Stiction is possible	
		<u>ë</u>	ĺ	
Pulsed magnetic	A pulsed magnetic field attracts an	276) Extremely low energy	278) Requires an external pulsed	281) IJ10
pull on ink	'ink pusher' at the drop ejection	operation is possible	E	
pusher	frequency. An actuator controls a	277) No heat dissipation	279) Requires special materials for	
	catch, which prevents the ink pusher	problems	both the actuator and the ink pusher	
<u></u>	from moving when a drop is not to be ejected.		280) Complex construction	
	doctor:			

AUXILIARY MECHANISM (APPLIED TO ALL NOZZLES)

T frame				LAGILL DIV.
Mechanism		0		1
None T	The actuator directly fires the ink	282) Simplicity of construction	285) Drop ejection energy must be supplied by individual nozzle actuator	286) Most inkjets, including
, 0	other mechanism required.		`	piezoelectric and
		284) Small physical size		287) IJ01- IJ07, IJ09,
				U11
				288) IJ12, IJ14, IJ20,
				289) IJ23-IJ45
Oscillating ink T	The ink pressure oscillates, providing	290) Oscillating ink	293) Requires external ink pressure	296) Silverbrook, EP
	much of the drop ejection energy.	pressure can provide a refill	oscillator	0771 658 A2 and
` E	The actuator selects which drops are	pulse, allowing higher	294) Ink pressure phase and amplitude	related patent
	to be fired by selectively blocking or	operating speed	must be carefully controlled	applications
ion)	enabling nozzles. The ink pressure	291) The actuators may	295) Acoustic reflections in the ink	297) IJ08, IJ13, IJ15,
	oscillation may be achieved by	operate with much lower	chamber must be designed for	IJ17
>	vibrating the print head, or preferably	energy		298) IJ18, IJ19, IJ21
4	by an actuator in the ink supply.	292) Acoustic lenses can be		
		used to focus the sound on		
		the nozzles		
Media proximity T	The print head is placed in close			305) Silverbrook, EP
<u> </u>	proximity to the print medium.			0771 658 A2 and
<i>y</i> 1	Selected drops protrude from the	301) Simple print head	304) Cannot print on rough substrates	related patent
<u> </u>	print head further than unselected	construction		applications
-	drops, and contact the print medium.			
	The drop soaks into the medium fast			
<u>ຫ</u>	enough to cause drop separation.			

Transfer roller	Drops are printed to a transfer roller	306) High accuracy	309)	Bulky	312) Silverbrook, EP
	instead of straight to the print	307) Wide range of print	310)	Expensive	0771 658 A2 and
	medium. A transfer roller can also be	substrates can be used	311)	Complex construction	related patent
	used for proximity drop separation.	308) Ink can be dried on the			applications
		transfer roller			313) Tektronix hot
					melt piezoelectric
					inkjet
					314) Any of the IJ
					series
Electrostatic	An electric field is used to accelerate	315) Low power	317)	317) Field strength required for	318) Silverbrook, EP
	selected drops towards the print	316) Simple print head	sepa	separation of small drops is near or	0771 658 A2 and
	medium.	construction	abov	above air breakdown	related patent
					applications
					319) Tone-Jet
Direct magnetic	A magnetic field is used to accelerate	320) Low power	322)	Requires magnetic ink	324) Silverbrook, EP
field	selected drops of magnetic ink	321) Simple print head	323)	Requires strong magnetic field	0771 658 A2 and
	towards the print medium.	construction			related patent
	•				applications
Cross magnetic	The print head is placed in a constant	325) Does not require	326)	Requires external magnet	328) IJ06, IJ16
field	magnetic field. The Lorenz force in a	magnetic materials to be	327)	Current densities may be high,	
	current carrying wire is used to move	integrated in the print head	resn	resulting in electromigration problems	
	the actuator.	manufacturing process			
Pulsed magnetic	A pulsed magnetic field is used to	329) Very low power	331)	Complex print head construction	333) IJ10
field	cyclically attract a paddle, which	operation is possible	332)	Magnetic materials required in	
	pushes on the ink. A small actuator	330) Small print head size	print	print head	
	moves a catch, which selectively				
	prevents the paddle from moving.				

ACTUATOR AMPLIFICATION OR MODIFICATION METHOD

Actuator amplification	Description	Advantages	Disadvantages	Examples
None	No actuator mechanical amplification is used. The actuator directly drives the drop ejection process.	334) Operational simplicity	335) Many actuator mechanisms have insufficient travel, or insufficient force, to efficiently drive the drop ejection process	336) Thermal Bubble Inkjet 337) IJ01, IJ02, IJ06, IJ07 338) IJ16, IJ25, IJ26
Differential expansion bend actuator	An actuator material expands more on one side than on the other. The expansion may be thermal, piezoelectric, magnetostrictive, or other mechanism.	in a reduced print head area 340) The bend actuator converts a high force low travel actuator mechanism to high travel, lower force mechanism.	 341) High stresses are involved 342) Care must be taken that the materials do not delaminate 343) Residual bend resulting from high temperature or high stress during formation 	4 %
Transient bend actuator	A trilayer bend actuator where the two outside layers are identical. This cancels bend due to ambient temperature and residual stress. The actuator only responds to transient heating of one side or the other.	348) Very good temperature stability 349) High speed, as a new drop can be fired before heat dissipates 350) Cancels residual stress of formation	351) High stresses are involved 352) Care must be taken that the materials do not delaminate	353) IJ40, IJ41
Actuator stack	A series of thin actuators are stacked. This can be appropriate where actuators require high electric field strength, such as electrostatic and piezoelectric actuators.	354) Increased travel 355) Reduced drive voltage	356) Increased fabrication complexity 357) Increased possibility of short circuits due to pinholes	358) Some piezoelectric ink jets 359) IJ04
Multiple actuators	Multiple smaller actuators are used simultaneously to move the ink. Each actuator need provide only a portion of the force required.	360) Increases the force available from an actuator 361) Multiple actuators can be positioned to control ink flow accurately	362) Actuator forces may not add linearly, reducing efficiency	363) IJ12, IJ13, IJ18, IJ20 364) IJ22, IJ28, IJ42, IJ43

Linear Spring	A linear spring is used to transform a motion with small travel and high	365) Matches low travel actuator with higher travel	367) Requires print head area for the spring	368) 1J15
	notion.	366) Non-contact method of motion transformation		
Reverse spring	The actuator loads a spring. When the actuator is turned off, the spring releases. This can reverse the force/distance curve of the actuator to make it compatible with the force/time requirements of the drop ejection.	369) Better coupling to the ink	370) Fabrication complexity 371) High stress in the spring	372) IJ05, IJ11
Coiled actuator	A bend actuator is coiled to provide greater travel in a reduced ehipintegrated circuit area.	373) Increases travel 374) Reduces ehipintegrated circuit area 375) Planar implementations are relatively easy to fabricate.	376) Generally restricted to planar implementations due to extreme fabrication difficulty in other orientations.	377) 1117, 1121, 1134, 1135
Flexure bend actuator	A bend actuator has a small region near the fixture point, which flexes much more readily than the remainder of the actuator. The actuator flexing is effectively converted from an even coiling to an angular bend, resulting in greater travel of the actuator tip.	378) Simple means of increasing travel of a bend actuator	 379) Care must be taken not to exceed the elastic limit in the flexure area 380) Stress distribution is very uneven 381) Difficult to accurately model with finite element analysis 	382) IJ10, IJ19, IJ33
Gears	Gears can be used to increase travel at the expense of duration. Circular gears, rack and pinion, ratchets, and other gearing methods can be used.	383) Low force, low travel actuators can be used 384) Can be fabricated using standard surface MEMS processes	 385) Moving parts are required 386) Several actuator cycles are required 387) More complex drive electronics 388) Complex construction 389) Friction, friction, and wear are possible 	390) IJ13

Catch	The actuator controls a small catch.	391) Very low actuator	393)	Complex construction	396) IJ10
	The catch either enables or disables	energy	394)	Requires external force	
	movement of an ink pusher that is controlled in a bulk manner	392) Very small actuator size	395)	Unsuitable for pigmented inks	
Buckle plate	A buckle plate can be used to change	397) Very fast movement	398)	Must stay within elastic limits of	401) S. Hirata et al,
i	a slow actuator into a fast motion. It	achievable	the 1	the materials for long device life	"An Ink-jet Head",
	can also convert a high force, low		399)	High stresses involved	Proc. IEEE MEMS,
	travel actuator into a high travel,		400)	Generally high power	Feb. 1996, pp 418-
	medium force motion.		redn	requirement	423. 402) IJ18, IJ27
Tapered	A tapered magnetic pole can increase	403) Linearizes the	404)	Complex construction	405) IJ14
magnetic pole	travel at the expense of force.	magnetic force/distance curve			
Lever	A lever and fulcrum is used to	406) Matches low travel	408)	High stress around the fulcrum	409) IJ32, IJ36, IJ37
	transform a motion with small travel	actuator with higher travel			
	and high force into a motion with	requirements			
	longer travel and lower force. The	407) Fulcrum area has no			
	lever can also reverse the direction of	linear movement, and can			
	travel.	be used for a fluid seal			
Rotary impeller	The actuator is connected to a rotary	410) High mechanical	412)	Complex construction	414) IJ28
	impeller. A small angular deflection	advantage	413)	Unsuitable for pigmented inks	
	of the actuator results in a rotation of	411) The ratio of force to			
	the impeller vanes, which push the	travel of the actuator can be			
	ink against stationary vanes and out	matched to the nozzle			
	of the nozzle.	requirements by varying the number of impeller vanes			
Acoustic lens	A refractive or diffractive (e.g. zone	415) No moving parts	416)	Large area required	418) 1993
	plate) acoustic lens is used to		417)	Only relevant for acoustic ink jets	Hadimioglu et al,
	concentrate sound waves.				EUF 330,192
					419) 1993 Elrod et al, EUP 572.220

Sharp	A sharp point is used to concentrate	420)	420) Simple construction	421) Difficult to fabricate using 423)	3	423) Tone-jet
conductive point	an electrostatic field.			standard VLSI processes for a surface		
				ejecting ink-jet		
				422) Only relevant for electrostatic ink		
				jets		

ACTUATOR MOTION

Actuator motion	Description	Advantages	Disadvantages		Examples	Se	
Volume	The volume of the actuator changes,	424) Simple construction in	425) High energy is typically required	pically required	426) Hewlett-	Hewlett-	
expansion	pushing the ink in all directions.	the case of thermal ink jet	to achieve volume expansion. This	ansion. This	Packa	Packard Thermal	
•)		leads to thermal stress, cavitation, and	, cavitation, and	Inkjet		
			kogation in thermal ink jet	k jet	427) Canon	Canon	
			implementations		Bubblejet	ejet	
Linear, normal	The actuator moves in a direction	428) Efficient coupling to	429) High fabrication complexity may	complexity may	430) I	430) IJ01, IJ02, IJ04,	74,
to	normal to the print head surface. The	ink drops ejected normal to	be required to achieve perpendicular	perpendicular	1107		
ehipintegrated	nozzle is typically in the line of	the surface	motion		431) I	431) IJ11, IJ14	
circuit surface	movement.						
Linear, parallel	The actuator moves parallel to the	432) Suitable for planar	433) Fabrication complexity	olexity	436) I	436) IJ12, IJ13, IJ15,	15,
t	print head surface. Drop ejection may	fabrication	434) Friction		1133,		
ehipintegrated	still be normal to the surface.		435) Stiction		437) I	437) IJ34, IJ35, \$\psi 35	36
circuit surface							
Membrane push	An actuator with a high force but	438) The effective area of	439) Fabrication complexity	olexity	442) 1	442) 1982 Howkins	S
•	small area is used to push a stiff	the actuator becomes the	440) Actuator size		USP 4	USP 4,459,601	
	membrane that is in contact with the	membrane area	441) Difficulty of integration in a	gration in a			
	ink.	:	VLSI process	ı			
Rotary	The actuator causes the rotation of	443) Rotary levers may be	445) Device complexity	ty	447) I	1105, 1108, 1113,	13,
	some element, such a grill or	used to increase travel	446) May have friction	May have friction at a pivot point	1128		
	impeller	444) Small ehipintegrated					
		circuit area requirements					•

Bend	The actuator bends when energized. This may be due to differential thermal expansion, piezoelectric expansion, magnetostriction, or other form of relative dimensional change.	448) A very small change in dimensions can be converted to a large motion.	449) Requires the actuator to be made from at least two distinct layers, or to have a thermal difference across the actuator	450) 1970 Kyser et al USP 3,946,398 451) 1973 Stemme USP 3,747,120 452) 1J03, IJ09, IJ10, IJ19 453) IJ23, IJ24, IJ25,
Swivel	The actuator swivels around a central pivot. This motion is suitable where	456) Allows operation where the net linear force on	458) Inefficient coupling to the ink motion	454) IJ30, IJ31, IJ33, IJ34 455) IJ35 459) IJ06
Straighten	there are opposite forces applied to opposite sides of the paddle, e.g. Lorenz force. The actuator is normally bent, and	the paddle is zero 457) Small ehipintegrated circuit area requirements 460) Can be used with	461) Requires careful balance of	462) 1326, 1332
Double bend	straightens when energized. The actuator bends in one direction when one element is energized, and bends the other way when another	shape memory alloys where the austenic phase is planar 463) One actuator can be used to power two nozzles. 464) Reduced	stresses to ensure that the quiescent bend is accurate 466) Difficult to make the drops ejected by both bend directions identical.	468) IJ36, IJ37, IJ38
	element is energized.	ehipintegrated circuit size. 465) Not sensitive to ambient temperature	467) A small efficiency loss compared to equivalent single bend actuators.	
Shear	Energizing the actuator causes a shear motion in the actuator material.	469) Can increase the effective travel of piezoelectric actuators	470) Not readily applicable to other actuator mechanisms	471) 1985 Fishbeck USP 4,584,590
Radial constriction	The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle.	472) Relatively easy to fabricate single nozzles from glass tubing as macroscopic structures	473) High force required474) Inefficient475) Difficult to integrate with VLSI processes	476) 1970 Zoltan USP 3,683,212

Coil / uncoil	A coiled actuator uncoils or coils	477) Easy to fabricate as a	479) Difficult to fabricate for non-	481) IJ17, IJ21, IJ34,
	more tightly. The motion of the free	planar VLSI process	planar devices	1135
	end of the actuator ejects the ink.	478) Small area required, therefore low cost	480) Poor out-of-plane stiffness	
Вом	The actuator bows (or buckles) in the middle when energized.	482) Can increase the speed of travel	484) Maximum travel is constrained 485) High force required	486) IJ16, IJ18, IJ27
Push-Pull	Two actuators control a shutter. One actuator pulls the shutter, and the other pushes it.	5 5	488) Not readily suitable for inkjets which directly push the ink	489) IJ18
Curl inwards	A set of actuators curl inwards to reduce the volume of ink that they enclose.	490) Good fluid flow to the region behind the actuator increases efficiency	491) Design complexity	492) IJ20, IJ42
Curl outwards	A set of actuators curl outwards, pressurizing ink in a chamber surrounding the actuators, and expelling ink from a nozzle in the chamber.	493) Relatively simple construction	494) Relatively large ehipintegrated circuit area	495) IJ43
Iris	Multiple vanes enclose a volume of ink. These simultaneously rotate, reducing the volume between the vanes.	496) High efficiency 497) Small ehipintegrated circuit area	498) High fabrication complexity 499) Not suitable for pigmented inks	500) 1J22
Acoustic vibration	The actuator vibrates at a high frequency.	501) The actuator can be physically distant from the ink	502) Large area required for efficient operation at useful frequencies 503) Acoustic coupling and crosstalk 504) Complex drive circuitry 505) Poor control of drop volume and position	506) 1993 Hadimioglu et al, EUP 550,192 507) 1993 Elrod et al, EUP 572,220
None	In various ink jet designs the actuator does not move.	508) No moving parts	509) Various other tradeoffs are required to eliminate moving parts	510) Silverbrook, EP 0771 658 A2 and related patent applications 511) Tone-jet

NOZZLE REFILL METHOD

Nozzle refill method	Description	Advantages	Disadvantages	Examples
Surface tension	After the actuator is energized, it typically returns rapidly to its normal position. This rapid return sucks in air through the nozzle opening. The ink surface tension at the nozzle then exerts a small force restoring the meniscus to a minimum area.	512) Fabrication simplicity 513) Operational simplicity	514) Low speed 515) Surface tension force relatively small compared to actuator force 516) Long refill time usually dominates the total repetition rate	517) Thermal inkjet 518) Piezoelectric inkjet 519) IJ01-IJ07, IJ10- IJ14 520) IJ16, IJ20, IJ22- IJ45
Shuttered oscillating ink pressure	Ink to the nozzle chamber is provided at a pressure that oscillates at twice the drop ejection frequency. When a drop is to be ejected, the shutter is opened for 3 half cycles: drop ejection, actuator return, and refill.	521) High speed 522) Low actuator energy, as the actuator need only open or close the shutter, instead of ejecting the ink drop	523) Requires common ink pressureoscillator524) May not be suitable forpigmented inks	525) 108, 1113, 1115, 1117 526) 1118, 1119, 1121
Refill actuator	After the main actuator has ejected a drop a second (refill) actuator is energized. The refill actuator pushes ink into the nozzle chamber. The refill actuator returns slowly, to prevent its return from emptying the chamber again.	527) High speed, as the nozzle is actively refilled	528) Requires two independent actuators per nozzle	529) IJ09
Positive ink pressure	The ink is held a slight positive pressure. After the ink drop is ejected, the nozzle chamber fills quickly as surface tension and ink pressure both operate to refill the nozzle.	530) High refill rate, therefore a high drop repetition rate is possible	531) Surface spill must be prevented 532) Highly hydrophobic print head surfaces are required	533) Silverbrook, EP 0771 658 A2 and related patent applications 534) Alternative for: 535) IJ01-IJ07, IJ10-IJ14 536) IJ16, IJ20, IJ22-IJ45

METHOD OF RESTRICTING BACK-FLOW THROUGH INLET

Inlet back-flow restriction method	Description	Advantages	Disadvantages	Examples
Long inlet channel	The ink inlet channel to the nozzle chamber is made long and relatively narrow, relying on viscous drag to reduce inlet back-flow.	537) Design simplicity 538) Operational simplicity 539) Reduces crosstalk	540) Restricts refill rate 541) May result in a relatively large ehipintegrated circuit area 542) Only partially effective	543) Thermal inkjet 544) Piezoelectric inkjet 545) IJ42, IJ43
Positive ink pressure	The ink is under a positive pressure, so that in the quiescent state some of the ink drop already protrudes from the nozzle. This reduces the pressure in the nozzle chamber which is required to eject a certain volume of ink. The reduction in chamber pressure results in a reduction in ink pushed out through the inlet.	1 At -1	548) Requires a method (such as a nozzle rim or effective hydrophobizing, or both) to prevent flooding of the ejection surface of the print head.	549) Silverbrook, EP 0771 658 A2 and related patent applications 550) Possible operation of the following: 551) IJ01-IJ07, IJ09-IJ12, 1J22, 1J34, IJ36-IJ41 554) IJ44
Baffle	One or more baffles are placed in the inlet ink flow. When the actuator is energized, the rapid ink movement creates eddies which restrict the flow through the inlet. The slower refill process is unrestricted, and does not result in eddies.	restricted as the long inlet method.	557) Design complexity 558) May increase fabrication complexity (e.g. Tektronix hot melt Piezoelectric print heads).	559) HP Thermal Ink Jet 560) Tektronix piezoelectric ink jet

Flevible flan	In this method recently disclosed by	561) Significantly reduces	Sez) Not applicable to most inkiet	565)	Canon
restricts inlet	Canon, the expanding actuator		of G		
	(bubble) pushes on a flexible flap	thermal ink jet devices	563) Increased fabrication complexity		
	that restricts the inlet.		564) Inelastic deformation of polymer		
			T d		
Inlet filter	A filter is located between the ink	566) Additional advantage		570)	570) IJ04, IJ12, IJ24,
	inlet and the nozzle chamber. The	of ink filtration	569) May result in complex	1327	
	filter has a multitude of small holes	567) Ink filter may be	construction	571)	1J29, IJ30
	or slots, restricting ink flow. The	fabricated with no			
	filter also removes particles which	additional process steps			
	may block the nozzle.				
Small inlet	The ink inlet channel to the nozzle	572) Design simplicity	573) Restricts refill rate	(9/5	1302, 1337, 1344
compared to	chamber has a substantially smaller		574) May result in a relatively large		
nozzle	cross section than that of the nozzle,		ehipintegrated circuit area		
	resulting in easier ink egress out of		575) Only partially effective	··-	•
	the nozzle than out of the inlet.				
Inlet shutter	A secondary actuator controls the	577) Increases speed of the	578) Requires separate refill actuator	579)	1109
	nosition of a shutter, closing off the	ink-jet print head operation	and drive circuit	,	
	ink inlet when the main actuator is				
	energized.				
The inlet is	The method avoids the problem of	580) Back-flow problem is	581) Requires careful design to	582)	1101, 1103, 1105,
located behind	inlet back-flow by arranging the ink-	eliminated	minimize the negative pressure behind	90fI	
the ink-pushing	pushing surface of the actuator		the paddle	583)	583) IJ07, IJ10, IJ11,
surface	between the inlet and the nozzle.			IJ14	
				584)	584) IJ16, IJ22, IJ23,
				C7CI	
				585)	585) IJ28, IJ31, IJ32,
				586)	134, 1J35, 1J36,
		·		587)	1140 1141
:				(122	21 az (o. az

Part of the	The actuator and a wall of the ink	588) Significant reductions	588) Significant reductions 590) Small increase in fabrication	591) 1J07, IJ20, IJ26,
actuator moves	chamber are arranged so that the	in back-flow can be	complexity	1138
to shut off the	motion of the actuator closes off the	achieved		
inlet	inlet.	589) Compact designs		
Nozzle actuator	In some configurations of ink iet.	oack-flow problem	S93) None related to ink back-flow on	594) Silverbrook, EP
does not result	there is no expansion or movement of	is eliminated	actuation	0771 658 A2 and
in ink back-flow	an actuator which may cause ink			related patent
	back-flow through the inlet.			applications
				595) Valve-jet
				596) Tone-jet
				597) IJ08, IJ13, IJ15,
				IJ17
				598) 1J18, IJ19, IJ21

NOZZLE CLEARING METHOD

Nozzle Clearing method	Description	Advantages	Disadvantages	Examples
Normal nozzle firing	All of the nozzles are fired periodically, before the ink has a chance to dry. When not in use the nozzles are sealed (capped) against air. The nozzle firing is usually performed during a special clearing cycle, after first moving the print head to a cleaning station.	599) No added complexity on the print head	600) May not be sufficient to displace dried ink	systems 602) IJ01- IJ07, IJ09- IJ12 603) IJ14, IJ16, IJ20, IJ22 604) IJ23- IJ34, IJ36- IJ45
Extra power to ink heater	In systems which heat the ink, but do not boil it under normal situations, nozzle clearing can be achieved by over-powering the heater and boiling ink at the nozzle.	605) Can be highly effective if the heater is adjacent to the nozzle	606) Requires higher drive voltage for clearing 607) May require larger drive transistors	608) Silverbrook, EP 0771 658 A2 and related patent applications
Rapid succession of actuator pulses	The actuator is fired in rapid succession. In some configurations, this may cause heat build-up at the nozzle which boils the ink, clearing the nozzle. In other situations, it may cause sufficient vibrations to dislodge clogged nozzles.	609) Does not require extra drive circuits on the print head 610) Can be readily controlled and initiated by digital logic	611) Effectiveness depends substantially upon the configuration of the inkjet nozzle	612) May be used with: 613) IJ01-IJ07, IJ09- IJ11 614) IJ14, IJ16, IJ20, IJ22 615) IJ23-IJ25, IJ27- IJ34 616) IJ36-IJ45

Extra power to ink pushing actuator	Where an actuator is not normally driven to the limit of its motion, nozzle clearing may be assisted by providing an enhanced drive signal to the actuator.	617) A simple solution where applicable	618) Not suitable where there is a hard limit to actuator movement	619) May be used with: 620) IJ03, IJ09, IJ16, IJ20 621) IJ23, IJ24, IJ25, IJ27 622) IJ29, IJ30, IJ31,
;		A bich morals sleeping		7 7
Acoustic resonance	An ultrasonic wave is applied to the ink chamber. This wave is of an appropriate amplitude and frequency	capability can be achieved 626) May be implemented	62/) High implementation cost if system does not already include an acoustic actuator	628) 1J08, IJ13, IJ15, IJ17 629) IJ18, IJ19, IJ21
	to clear blockages. This is easiest to achieve if the ultrasonic wave is at a resonant frequency of the ink cavity.	at very row cost in systems which already include acoustic actuators		
Nozzle clearing plate	A microfabricated plate is pushed against the nozzles. The plate has a	630) Can clear severely clogged nozzles	631) Accurate mechanical alignment is required	635) Silverbrook, EP 0771 658 A2 and
4	post for every nozzle. The array of posts		632) Moving parts are required633) There is risk of damage to the nozzles	related patent applications
			634) Accurate fabrication is required	
Ink pressure pulse	The pressure of the ink is temporarily increased so that ink streams from all	636) May be effective where other methods cannot	637) Requires pressure pump or other pressure actuator	640) May be used with all IJ series ink
	of the nozzles. This may be used in conjunction with actuator energizing.	pe nsed	638) Expensive 639) Wasteful of ink	jets
Print head wiper	A flexible 'blade' is wiped across the print head surface. The blade is	641) Effective for planar print head surfaces	643) Difficult to use if print head surface is non-planar or very fragile	646) Many ink jet systems
	usually fabricated from a flexible polymer, e.g. rubber or synthetic	642) Low cost	644) Requires mechanical parts 645) Blade can wear out in high	
	elastomer.		volume print systems	

Separate ink	A separate heater is provided at the	647) Can be effective where 649) Fabrication complexity	649) Fabrication com	plexity	650) Can be used
boiling heater	nozzle although the normal drop e-	other nozzle clearing			with many IJ series
	ection mechanism does not require it.	methods cannot be used			ink jets
	The heaters do not require individual	648) Can be implemented at			
	drive circuits, as many nozzles can	no additional cost in some			
	be cleared simultaneously, and no	inkjet configurations			
	imaging is required.				

NOZZLE PLATE CONSTRUCTION

Nozzle plate construction	Description	Advantages	Disadvantages	Examples
Electroformed nickel	A nozzle plate is separately fabricated from electroformed nickel, and bonded to the print head ehipintegrated circuit.	651) Fabrication simplicity	 High temperatures and pressures are required to bond nozzle plate Minimum thickness constraints Differential thermal expansion 	655) Hewlett Packard Thermal Inkjet
Laser ablated or drilled polymer	Individual nozzle holes are ablated by an intense UV laser in a nozzle plate, which is typically a polymer such as polyimide or polysulphone	656) No masks required 657) Can be quite fast 658) Some control over nozzle profile is possible 659) Equipment required is relatively low cost	formed formed 661) Special equipment required 662) Slow where there are many thousands of nozzles per print head 663) May produce thin burrs at exit holes	664) Canon Bubblejet 665) 1988 Sercel et al., SPIE, Vol. 998 Excimer Beam Applications, pp. 76- 83 666) 1993 Watanabe et al., USP 5,208,604
Silicon micro- machined	A separate nozzle plate is micromachined from single crystal silicon, and bonded to the print head wafer.	667) High accuracy is attainable	668) Two part construction 669) High cost 670) Requires precision alignment 671) Nozzles may be clogged by adhesive	672) K. Bean, IEEE Transactions on Electron Devices, Vol. ED-25, No. 10, 1978, pp 1185-1195 673) Xerox 1990 Hawkins et al., USP 4,899,181
Glass capillaries	Fine glass capillaries are drawn from glass tubing. This method has been used for making individual nozzles, but is difficult to use for bulk manufacturing of print heads with thousands of nozzles.	674) No expensive equipment required 675) Simple to make single nozzles	676) Very small nozzle sizes are difficult to form 677) Not suited for mass production	678) 1970 Zoltan USP 3,683,212

Monolithic,	The nozzle plate is deposited as a	679) High accuracy (<1	683) Requires sacrificial layer under	685) Silverbrook, EP
surface micro-	layer using standard VLSI deposition	um) 680) Monolithio	the nozzle plate to form the nozzle chamber	0771 658 A2 and
VLSI	nozzle plate using VLSI lithography		684) Surface may be fragile to the	applications
lithographic processes	and etching.	311	touch	686) 1J01, IJ02, IJ04, IJ11
•				687) IJ12, IJ17, IJ18, IJ20
				688) IJ22, IJ24, IJ27, IT28
				689) 1J29, IJ30, IJ31, IJ32
				690) II33, II34, II36, II37
				691) IJ38, IJ39, IJ40, IJ41
				692) IJ42, IJ43, IJ44
Monolithic,	The nozzle plate is a buried etch stop	693) High accuracy (<1	697) Requires long etch times	699) IJ03, IJ05, IJ06,
substrate	etched in the front of the wafer, and	694) Monolithic	096) requires a support water	700) IJ08, IJ09, IJ10,
	the wafer is thinned from the back			IJ13
	etch stop layer.	696) No differential expansion		(701) 134, 1315, 1316, 1319
		•		702) IJ21, IJ23, IJ25, IJ26
No nozzle plate	Various methods have been tried to	703) No nozzles to become	704) Difficult to control drop position	706) Ricoh 1995
	eliminate the nozzles entirely, to	clogged	accurately 705) Crosstalk problems	Sekiya et al USP 5.412.413
	include thermal bubble mechanisms			707) 1993
	and acoustic lens mechanisms			Hadimioglu et al EUP 550,192
				708) 1993 Elrod et al
				27,2,220

i namen	Each drop ejector has a trough	709) Reduced	711) Drop firing direction is sensitive 712) IJ35	712) 1J35
	through which a paddle moves. There	manufacturing complexity	to wicking.	
İ	is no nozzle plate.	710) Monolithic		
Nozzle slit T	The elimination of nozzle holes and	713) No nozzles to become	713) No nozzles to become 714) Difficult to control drop position 716) 1989 Saito et al	716) 1989 Saito e
instead of re	replacement by a slit encompassing	clogged	accurately	USP 4,799,068
individual m	many actuator positions reduces		715) Crosstalk problems	
nozzles	nozzle clogging, but increases			
13	crosstalk due to ink surface waves			

DROP EJECTION DIRECTION

Ejection direction	Description	Advantages	Disadvantages	Examples
Edge ('edge shooter')	Ink flow is along the surface of the ehipintegrated circuit, and ink drops are ejected from the ehipintegrated circuit edge.	717) Simple construction 718) No silicon etching required 719) Good heat sinking via substrate 720) Mechanically strong 721) Ease of ehipintegrated circuit handing	722) Nozzles limited to edge 723) High resolution is difficult 724) Fast color printing requires one print head per color	725) Canon Bubblejet 1979 Endo et al GB patent 2,007,162 726) Xerox heater-in- pit 1990 Hawkins et al USP 4,899,181 727) Tone-jet
Surface ('roof shooter')	Ink flow is along the surface of the ehipintegrated circuit, and ink drops are ejected from the ehipintegrated circuit surface, normal to the plane of the ehipintegrated circuit.	728) No bulk silicon etching required 729) Silicon can make an effective heat sink 730) Mechanical strength	731) Maximum ink flow is severely restricted	732) Hewlett- Packard TIJ 1982 Vaught et al USP 4,490,728 733) IJO2, IJ11, IJ12, IJ20 734) IJ22
Through chipintegrated circuit, forward ('up shooter')	Ink flow is through the ehipintegrated circuit . the ehipintegrated circuit .	735) High ink flow 736) Suitable for pagewidth print 737) High nozzle packing density therefore low manufacturing cost	738) Requires bulk silicon etching	739) Silverbrook, EP 0771 658 A2 and related patent applications 740) IJ04, IJ17, IJ18, IJ24 741) IJ27-IJ45

Through ehipintegrated circuit, reverse ('down shooter')	Ink flow is through the ehip-integrated circuit , and ink drops are ejected from the rear surface of the ehip-integrated-circuit .	agewidth acking w	745) Requires wafer thinning 746) Requires special handling during manufacture	747) 1J01, IJ03, IJ05, IJ06 748) IJ07, IJ08, IJ09, IJ10 749) IJ13, IJ14, IJ15,
		manufacturing cost		1316 750) 1319, 1321, 1323, 1325 751) 1326
Through actuator	Ink flow is through the actuator, which is not fabricated as part of the same substrate as the drive	752) Suitable for piezoelectric print heads	753) Pagewidth print heads require several thousand connections to drive circuits	756) Epson Stylus 757) Tektronix hot melt niezoelectric ink
	transistors.		754) Cannot be manufactured in standard CMOS fabs	jets
			(55) Complex assembly required	

INK TYPE

Ink type	Description	Advantages	Disadvantages	Examples	
Aqueous, dye	Water based ink which typically contains: water, dye, surfactant, humectant, and biocide. Modern ink dyes have high waterfastness, light fastness	758) Environmentally friendly 759) No odor	760) Slow drying 761) Corrosive 762) Bleeds on paper 763) May strikethrough 764) Cockles paper	765) Most existing inkjets 766) All IJ series ink jets 767) Silverbrook, EP 0771 658 A2 and related patent applications	existing J series ink rbrook, EP A2 and ent
Aqueous, pigment	Water based ink which typically contains: water, pigment, surfactant, humectant, and biocide. Pigments have an advantage in reduced bleed, wicking and strikethrough.	768) Environmentally friendly 769) No odor 770) Reduced bleed 771) Reduced wicking 772) Reduced strikethrough	773) Slow drying 774) Corrosive 775) Pigment may clog nozzles 776) Pigment may clog actuator mechanisms 777) Cockles paper	778) 1726) 779) 780) 0771 relate appli 781) ink-j ink-j (with	U02, IJ04, IJ21, IJ27, IJ30 Silverbrook, EP 658 A2 and ed patent cations Piezoelectric ets Thermal ink jets t significant ctions)
Methyl Ethyl Ketone (MEK)	MEK is a highly volatile solvent used for industrial printing on difficult surfaces such as aluminum cans.	783) Very fast drying 784) Prints on various substrates such as metals and plastics	785) Odorous 786) Flammable	787) All IJ jets	All IJ series ink
Alcohol (ethanol, 2- butanol, and others)	Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer photographic printing.	789) Fast drying 789) Operates at sub- freezing temperatures 790) Reduced paper cockle 791) Low cost	792) Slight odor 793) Flammable	794) All IJ jets	All IJ series ink

Phase change	The ink is solid at room temperature,	795) No drying time- ink	801) High viscosity	807) Tektronix hot
(hot melt)	and is melted in the print head before etting. Hot melt inks are usually wax	instantly freezes on the print medium	802) Printed ink typically has a 'waxy' feel	melt piezoelectric ink jets
	based, with a melting point around	796) Almost any print	803) Printed pages may 'block'	808) 1989 Nowak
	80 °C. After jetting the ink freezes	medium can be used		USP 4,820,346
	almost instantly upon contacting the	797) No paper cockle	curie point of permanent magnets	809) All IJ series ink
	print medium or a transfer roller.	occurs	805) Ink heaters consume power	jets
		798) No wicking occurs	806) Long warm-up time	
		799) No bleed occurs		
		800) No strikethrough		
		occurs		
Oil	Oil based inks are extensively used in	810) High solubility	813) High viscosity: this is a	815) All IJ series ink
	offset printing. They have advantages	medium for some dyes	significant limitation for use in inkjets,	jets
	in improved characteristics on paper	811) Does not cockle paper	which usually require a low viscosity.	
	(especially no wicking or cockle). Oil	812) Does not wick through	Some short chain and multi-branched	
	soluble dies and pigments are	paper	oils have a sufficiently low viscosity.	
	required.		814) Slow drying	
Microemulsion	A microemulsion is a stable, self	816) Stops ink bleed	820) Viscosity higher than water	823) All IJ series ink
	forming emulsion of oil, water, and	817) High dye solubility	821) Cost is slightly higher than water	jets
	surfactant. The characteristic drop	818) Water, oil, and	based ink	
	size is less than 100 nm, and is	amphiphilic soluble dies can	822) High surfactant concentration	
	determined by the preferred	pe nsed	required (around 5%)	
	curvature of the surfactant.	819) Can stabilize pigment		
		suspensions		

Ink Jet Printing

5

A large number of new forms of ink jet printers have been developed to facilitate alternative ink jet technologies for the image processing and data distribution system. Various combinations of ink jet devices can be included in printer devices incorporated as part of the present invention. Australian Provisional Patent Applications relating to these ink jets which are specifically incorporated by cross reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PO8066	15-Jul-97	Image Creation Method and Apparatus (IJ01)	6,227,652 (July 10, 1998)
PO8072	15-Jul-97	Image Creation Method and Apparatus (IJ02)	6,213,588 (July 10, 1998)
PO8040	15-Jul-97	Image Creation Method and Apparatus (IJ03)	6,213,589 (July 10, 1998)
PO8071	15-Jul-97	Image Creation Method and Apparatus (IJ04)	6,231,163 (July 10, 1998)
PO8047	15-Jul-97	Image Creation Method and Apparatus (IJ05)	6,247,795 (July 10, 1998)
PO8035	15-Jul-97	Image Creation Method and Apparatus (IJ06)	6,394,581 (July 10, 1998)
PO8044	15-Jul-97	Image Creation Method and Apparatus (IJ07)	6,244,691 (July 10, 1998)
PO8063	15-Jul-97	Image Creation Method and Apparatus (IJ08)	6,257,704 (July 10, 1998)
PO8057	15-Jul-97	Image Creation Method and Apparatus (IJ09)	6,416,168 (July 10, 1998)
PO8056	15-Jul-97	Image Creation Method and Apparatus (IJ10)	6,220,694 (July 10, 1998)
PO8069	15-Jul-97	Image Creation Method and Apparatus (IJ11)	6,257,705 (July 10, 1998)
PO8049	15-Jul-97	Image Creation Method and Apparatus (IJ12)	6,247,794 (July 10, 1998)
PO8036	15-Jul-97	Image Creation Method and Apparatus (IJ13)	6,234,610 (July 10, 1998)
PO8048	15-Jul-97	Image Creation Method and Apparatus (IJ14)	6,247,793 (July 10, 1998)
PO8070	15-Jul-97	Image Creation Method and Apparatus (IJ15)	6,264,306 (July 10, 1998)
PO8067	15-Jul-97	Image Creation Method and Apparatus (IJ16)	6,241,342 (July 10, 1998)
PO8001	15-Jul-97	Image Creation Method and Apparatus (IJ17)	6,247,792 (July 10, 1998)
PO8038	15-Jul-97	Image Creation Method and Apparatus (IJ18)	6,264,307 (July 10, 1998)
PO8033	15-Jul-97	Image Creation Method and Apparatus (IJ19)	6,254,220 (July 10, 1998)
PO8002	15-Jul-97	Image Creation Method and Apparatus (IJ20)	6,234,611

			(July 10, 1998)
PO8068	15-Jul-97	Image Creation Method and Apparatus (IJ21)	6,302,528)
			(July 10, 1998)
PO8062	15-Jul-97	Image Creation Method and Apparatus (IJ22)	6,283,582
			(July 10, 1998)
PO8034	15-Jul-97	Image Creation Method and Apparatus (IJ23)	6,239,821
			(July 10, 1998)
PO8039	15-Jul-97	Image Creation Method and Apparatus (IJ24)	6,338,547
			(July 10, 1998)
PO8041	15-Jul-97	Image Creation Method and Apparatus (IJ25)	6,247,796
			(July 10, 1998)
PO8004	15-Jul-97	Image Creation Method and Apparatus (IJ26)	09/113,122
			(July 10, 1998)
PO8037	15-Jul-97	Image Creation Method and Apparatus (IJ27)	6,390,603
D00042	15 7 1 05		(July 10, 1998) 6,362,843
PO8043	15-Jul-97	Image Creation Method and Apparatus (IJ28)	(July 10, 1998)
PO8042	15-Jul-97	Image Creation Method and Apparatus (IJ29)	6,293,653
1 000 12	15 341 77	image creation freehold and Apparatus (1329)	(July 10, 1998)
PO8064	15-Jul-97	Image Creation Method and Apparatus (IJ30)	6,312,107
			(July 10, 1998)
PO9389	23-Sep-97	Image Creation Method and Apparatus (IJ31)	6,227,653
			(July 10, 1998)
PO9391	23-Sep-97	Image Creation Method and Apparatus (IJ32)	6,234,609
			(July 10, 1998)
PP0888	12-Dec-97	Image Creation Method and Apparatus (IJ33)	6,238,040
			(July 10, 1998)
PP0891	12-Dec-97	Image Creation Method and Apparatus (IJ34)	6,188,415
			(July 10, 1998)
PP0890	12-Dec-97	Image Creation Method and Apparatus (IJ35)	6,227,654
			(July 10, 1998)
PP0873	12-Dec-97	Image Creation Method and Apparatus (IJ36)	6,209,989
			(July 10, 1998)
PP0993	12-Dec-97	Image Creation Method and Apparatus (IJ37)	6,247,791
			(July 10, 1998)
PP0890	12-Dec-97	Image Creation Method and Apparatus (IJ38)	6,336,710
771000	10.7.00		(July 10, 1998)
PP1398	19-Jan-98	An Image Creation Method and Apparatus	6,217,153
		(IJ39)	(July 10, 1998)
PP2592	25-Mar-98	An Image Creation Method and Apparatus	6,416,167 (July 10, 1998)
		(IJ40)	
PP2593	25-Mar-98	Image Creation Method and Apparatus (IJ41)	6,243,113
			(July 10, 1998)
PP3991	9-Jun-98	Image Creation Method and Apparatus (IJ42)	6,283,581
			(July 10, 1998)
PP3987	9-Jun-98	Image Creation Method and Apparatus (IJ43)	6,247,790
			(July 10, 1998)
PP3985	9-Jun-98	Image Creation Method and Apparatus (IJ44)	6,260,953
			(July 10, 1998)
PP3983	9-Jun-98	Image Creation Method and Apparatus (IJ45)	6,267,469
		<u> </u>	(July 10, 1998)

Ink Jet Manufacturing

5

Further, the present application may utilize advanced semiconductor fabrication techniques in the construction of large arrays of ink jet printers. Suitable manufacturing techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PO7935	15-Jul-97	A Method of Manufacture of an Image Creation	6,224,780
		Apparatus (IJM01)	(July 10, 1998)
PO7936	15-Jul-97	A Method of Manufacture of an Image Creation	6,235,212
		Apparatus (IJM02)	(July 10, 1998)
PO7937	15-Jul-97	A Method of Manufacture of an Image Creation	6,280,643
		Apparatus (IJM03)	(July 10, 1998)
PO8061	15-Jul-97	A Method of Manufacture of an Image Creation	6,284,147
		Apparatus (IJM04)	(July 10, 1998)
PO8054	15-Jul-97	A Method of Manufacture of an Image Creation	6,214,244
		Apparatus (IJM05)	(July 10, 1998)
PO8065	15-Jul-97		6,071,750
		Apparatus (IJM06)	(July 10, 1998)
PO8055	15-Jul-97	A Method of Manufacture of an Image Creation	6,267,905
		Apparatus (IJM07)	(July 10, 1998)
PO8053	15-Jul-97	A Method of Manufacture of an Image Creation	6,251,298
D000 5 0	15.7.1.05	Apparatus (IJM08)	(July 10, 1998)
PO8078	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM09)	6,258,285
PO7933	15-Jul-97	A Method of Manufacture of an Image Creation	(July 10, 1998)
107933	13-341-57	Apparatus (IJM10)	(July 10, 1998)
PO7950	15-Jul-97	A Method of Manufacture of an Image Creation	6,241,904
		Apparatus (IJM11)	(July 10, 1998)
PO7949	15-Jul-97	A Method of Manufacture of an Image Creation	6,299,786
		Apparatus (IJM12)	(July 10, 1998)
PO8060	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM13)	09/113,124
PO8059	15 1-1 07		(July 10, 1998)
PO8039	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM14)	6,231,773 (July 10, 1998)
PO8073	15-Jul-97	A Method of Manufacture of an Image Creation	6,190,931
2 0 0 0 7 0	10 041 37	Apparatus (IJM15)	(July 10, 1998)
PO8076	15-Jul-97	A Method of Manufacture of an Image Creation	6,248,249
		Apparatus (IJM16)	(July 10, 1998)
PO8075	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM17)	6,290,862 (July 10, 1998)
PO8079	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM18)	6,241,906 (July 10, 1998)

ZF190US

PO8050	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM19)	09/113,116 (July 10, 1998)
PO8052	15-Jul-97	A Method of Manufacture of an Image Creation	6,241,905
		Apparatus (IJM20)	(July 10, 1998)
PO7948	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM21)	6,451,216 (July 10, 1998)
PO7951	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM22)	6,231,772 (July 10, 1998)
PO8074	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM23)	6,274,056 (July 10, 1998)
PO7941	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM24)	6,290,861 (July 10, 1998)
PO8077	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM25)	6,248,248 (July 10, 1998)
PO8058	15-Jul-97		6,306,671
		A Method of Manufacture of an Image Creation Apparatus (IJM26)	(July 10, 1998)
PO8051	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM27)	6,331,258 (July 10, 1998)
PO8045	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM28)	6,110,754 (July 10, 1998)
PO7952	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM29)	6,294,101 (July 10, 1998)
PO8046	15-Jul-97	A Method of Manufacture of an Image Creation Apparatus (IJM30)	6,416,679 (July 10, 1998)
PO8503	11-Aug-97	A Method of Manufacture of an Image Creation Apparatus (IJM30a)	6,264,849 (July 10, 1998)
PO9390	23-Sep-97	A Method of Manufacture of an Image Creation Apparatus (IJM31)	6,254,793 (July 10, 1998)
PO9392	23-Sep-97	A Method of Manufacture of an Image Creation	6,235,211
		Apparatus (IJM32)	(July 10, 1998)
PP0889	12-Dec-97	A Method of Manufacture of an Image Creation Apparatus (IJM35)	6,235,211 (July 10, 1998)
PP0887	12-Dec-97	A Method of Manufacture of an Image Creation Apparatus (IJM36)	6,264,850 (July 10, 1998)
PP0882	12-Dec-97	A Method of Manufacture of an Image Creation Apparatus (IJM37)	6,258,284
PP0874	12-Dec-97	A Method of Manufacture of an Image Creation Apparatus (IJM38)	(July 10, 1998) 6,258,284 (July 10, 1998)
PP1396	19-Jan-98		6,228,668
PP2591	25-Mar-98	A Method of Manufacture of an Image Creation Apparatus (IJM41)	(July 10, 1998) 6,180,427
PP3989	9-Jun-98	A Method of Manufacture of an Image Creation	1 ' '
		Apparatus (IJM40)	(July 10, 1998)
PP3990	9-Jun-98	A Method of Manufacture of an Image Creation Apparatus (IJM42)	6,267,904 (July 10, 1998)
PP3986	9-Jun-98	A Method of Manufacture of an Image Creation Apparatus (IJM43)	6,245,247 (July 10, 1998)
PP3984	9-Jun-98	A Method of Manufacture of an Image Creation	6,245,247
11 3307	3-Juii-30	America of Manufacture of an image Creation Apparatus (IJM44)	(July 10, 1998)

		Apparatus (IJM44)	
PP3982	1	A Method of Manufacture of an Image Creation	6,231,148
		Apparatus (IJM45)	(July 10, 1998)

Fluid Supply

Further, the present application may utilize an ink delivery system to the ink jet head. Delivery systems relating to the supply of ink to a series of ink jet nozzles are described in the following Australian provisional patent specifications, the disclosure of which are hereby incorporated by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PO8003	15-Jul-97	Supply Method and Apparatus (F1)	6,350,023 (July 10, 1998)
PO8005	15-Jul-97	Supply Method and Apparatus (F2)	6,318,849 (July 10, 1998)
PO9404	23-Sep-97	A Device and Method (F3)	09/113,101 (July 10, 1998)

MEMS Technology

Further, the present application may utilize advanced semiconductor microelectromechanical techniques in the construction of large arrays of ink jet printers. Suitable microelectromechanical techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PO7943	15-Jul-97	A device (MEMS01)	
PO8006	15-Jul-97	A device (MEMS02)	6,087,638
			(July 10, 1998)
PO8007	15-Jul-97	A device (MEMS03)	09/113,093
			(July 10, 1998)
PO8008	15-Jul-97	A device (MEMS04)	6,340,222
			(July 10, 1998)
PO8010	15-Jul-97	A device (MEMS05)	6,041,600
			(July 10, 1998)
PO8011	15-Jul-97	A device (MEMS06)	6,299,300
			(July 10, 1998)
PO7947	15-Jul-97	A device (MEMS07)	6,067,797
			(July 10, 1998)
PO7945	15-Jul-97	A device (MEMS08)	09/113,081
			(July 10, 1998)
PO7944	15-Jul-97	A device (MEMS09)	6,286,935
			(July 10, 1998)
PO7946	15-Jul-97	A device (MEMS10)	6,044,646
			(July 10, 1998)
PO9393	23-Sep-97	A Device and Method (MEMS11)	09/113,065
			(July 10, 1998)
PP0875	12-Dec-97	A Device (MEMS12)	09/113,078
			(July 10, 1998)
PP0894	12-Dec-97	A Device and Method (MEMS13)	09/113,075
			(July 10, 1998)

10

5

IR Technologies

5

Further, the present application may include the utilization of a disposable camera system such as those described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PP0895	12-Dec-97	An Image Creation Method and Apparatus (IR01)	6,231,148 (July 10, 1998)
PP0870	12-Dec-97	A Device and Method (IR02)	09/113,106 (July 10, 1998)
PP0869	12-Dec-97	A Device and Method (IR04)	6,293,658 (July 10, 1998)
PP0887	12-Dec-97	Image Creation Method and Apparatus (IR05)	
PP0885	12-Dec-97	An Image Production System (IR06)	6,238,033 (July 10, 1998)
PP0884	12-Dec-97	Image Creation Method and Apparatus (IR10)	6,312,070 (July 10, 1998)
PP0886	12-Dec-97	Image Creation Method and Apparatus (IR12)	6,238,111 (July 10, 1998)
PP0871	12-Dec-97	A Device and Method (IR13)	09/113,086 (July 10, 1998)
PP0876	12-Dec-97	An Image Processing Method and Apparatus (IR14)	09/113,094 (July 10, 1998)
PP0877	12-Dec-97	A Device and Method (IR16)	6,378,970 (July 10, 1998
PP0878	12-Dec-97	A Device and Method (IR17)	6,196,739 (July 10, 1998)
PP0879	12-Dec-97	A Device and Method (IR18)	09/112,774 (July 10, 1998)
PP0883	12-Dec-97	A Device and Method (IR19)	6,270,182 (July 10, 1998)
PP0880	12-Dec-97	A Device and Method (IR20)	6,152,619 (July 10, 1998)
PP0881	12-Dec-97	A Device and Method (IR21)	09/113,092 (July 10, 1998)

DotCard Technologies

5

10

Further, the present application may include the utilization of a data distribution system such as that described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian Provisional Number	Filing Date	Title	US Patent/Patent Application and Filing Date
PP2370	16-Mar-98	Data Processing Method and Apparatus (Dot01)	(July 10, 1998)
PP2371	16-Mar-98	Data Processing Method and Apparatus (Dot02)	09/113,052 (July 10, 1998

Artcam Technologies

Further, the present application may include the utilization of camera and data processing techniques such as an Artcam type device as described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian	Filing Date	Title	US Patent/Patent Application and
Provisional			Filing Date
Number			
PO7991	15-Jul-97	Image Processing Method and Apparatus	09/113,060
		(ART01)	(July 10, 1998)
PO7988	15-Jul-97	Image Processing Method and Apparatus	6,476,863
		(ART02)	(July 10, 1998)
PO7993	15-Jul-97	Image Processing Method and Apparatus	09/113,073
		(ART03)	(July 10, 1998)
PO9395	23-Sep-97	Data Processing Method and Apparatus	6,322,181
		(ART04)	(July 10, 1998)
PO8017	15-Jul-97	Image Processing Method and Apparatus	
		(ART06)	(July 10, 1998)
PO8014	15-Jul-97	Media Device (ART07)	6,227,648
			(July 10, 1998)
PO8025	15-Jul-97	Image Processing Method and Apparatus	09/112,750
		(ART08)	(July 10, 1998)
PO8032	15-Jul-97	Image Processing Method and Apparatus	09/112,746
		(ART09)	(July 10, 1998)
PO7999	15-Jul-97	Image Processing Method and Apparatus	09/112,743
		(ART10)	(July 10, 1998)
PO7998	15-Jul-97	Image Processing Method and Apparatus	09/112,742
		(ART11)	(July 10, 1998)
PO8031	15-Jul-97	Image Processing Method and Apparatus	09/112,741
		(ART12)	(July 10, 1998)
PO8030	15-Jul-97	Media Device (ART13)	6,196,541
			(July 10, 1998)
PO7997	15-Jul-97	Media Device (ART15)	6,195,150
			(July 10, 1998)
PO7979	15-Jul-97	Media Device (ART16)	6,362,868

ZF190US

	- ,		Tr. 1
200015			(July 10, 1998)
PO8015	15-Jul-97	Media Device (ART17)	09/112,738
			(July 10, 1998)
PO7978	15-Jul-97	Media Device (ART18)	09/113,067
			(July 10, 1998)
PO7982	15-Jul-97	Data Processing Method and Apparatus	
		(ART19)	(July 10, 1998
PO7989	15-Jul-97	Data Processing Method and Apparatus	6,362,869
		(ART20)	(July 10, 1998
PO8019	15-Jul-97	Media Processing Method and Apparatus	6,472,052
		(ART21)	(July 10, 1998
PO7980	15-Jul-97	Image Processing Method and Apparatus	6,356,715
		(ART22)	(July 10, 1998)
PO8018	15-Jul-97	Image Processing Method and Apparatus	09/112,777
		(ART24)	(July 10, 1998)
PO7938	15-Jul-97	Image Processing Method and Apparatus	09/113,224
		(ART25)	(July 10, 1998)
PO8016	15-Jul-97	Image Processing Method and Apparatus	6,366,693
		(ART26)	(July 10, 1998)
PO8024	15-Jul-97	Image Processing Method and Apparatus	
		(ART27)	(July 10, 1998)
PO7940	15-Jul-97	Data Processing Method and Apparatus	09/113 072
		(ART28)	(July 10, 1998)
PO7939	15-Jul-97	Data Processing Method and Apparatus	109/112 785
	1.00.00	(ART29)	(July 10, 1998)
PO8501	11-Aug-97	Image Processing Method and Apparatus	
00301	11 /10 5 /	(ART30)	(July 10, 1998)
PO8500	11-Aug-97	Image Processing Method and Apparatus	
1 00500	11-Aug-97	(ART31)	(July 10, 1998)
PO7987	15-Jul-97	Data Processing Method and Apparatus	
10//0/	15-341-77	(ART32)	(July 10, 1998)
PO8022	15-Jul-97	Image Processing Method and Apparatus	(3dly 10, 1990)
1 00022	15-341-97	(ART33)	(July 10, 1998
PO8497	11-Aug-97	Image Processing Method and Apparatus	00/112 000
100497	11-Aug-97	(ART34)	(July 10, 1998)
PO8020	15-Jul-97	Data Processing Method and Apparatus	
1 08020	13-Jul-97	(ART38)	1
PO8023	15-Jul-97	Data Processing Method and Apparatus	(July 10, 1998
FU8023	13-341-97	(ART39)	•
PO8504	11-Aug-97	Image Processing Method and Apparatus	(July 10, 1998)
FO8304	11-Aug-97		
PO8000	15 5-1 07	(ART42)	(July 10, 1998)
PO8000	15-Jul-97	Data Processing Method and Apparatus	
DO7077	15 5-1-07	(ART43)	(July 10, 1998)
PO7977	15-Jul-97	Data Processing Method and Apparatus	· ·
DO7024	15 7 1 05	(ART44)	(July 10, 1998)
PO7934	15-Jul-97	Data Processing Method and Apparatus	•
70500		(ART45)	(July 10, 1998)
PO7990	15-Jul-97	Data Processing Method and Apparatus	
D00:00		(ART46)	(July 10, 1998)
PO8499	11-Aug-97	Image Processing Method and Apparatus	1 -
		(ART47)	(July 10, 1998)
PO8502	11-Aug-97	Image Processing Method and Apparatus	1
		(ART48)	(July 10, 1998)
PO7981	15-Jul-97	Data Processing Method and Apparatus	
		(ART50)	(July 10, 1998
PO7986	15-Jul-97	Data Processing Method and Apparatus	09/113,057
		(ART51)	(July 10, 1998)
PO7983	15-Jul-97	Data Processing Method and Apparatus	09/113,054
		'	• • • • • • • • • • • • • • • • • • •

· · · · · · · · · · · · · · · · · · ·		(ADTS2)	(7.1.10.1000)
20001		(ART52)	(July 10, 1998)
PO8026	15-Jul-97	Image Processing Method and Apparatus	
		(ART53)	(July 10, 1998)
PO8027	15-Jul-97	Image Processing Method and Apparatus	09/112,759
		(ART54)	(July 10, 1998)
PO8028	15-Jul-97	Image Processing Method and Apparatus	09/112,757
		(ART56)	(July 10, 1998)
PO9394	23-Sep-97	Image Processing Method and Apparatus	6,357,135
		(ART57)	(July 10, 1998
PO9396	23-Sep-97	Data Processing Method and Apparatus	09/113,107
		(ART58)	(July 10, 1998)
PO9397	23-Sep-97	Data Processing Method and Apparatus	6,271,931
		(ART59)	(July 10, 1998)
PO9398	23-Sep-97	Data Processing Method and Apparatus	6,353,772
		(ART60)	(July 10, 1998)
PO9399	23-Sep-97	Data Processing Method and Apparatus	6,106,147
		(ART61)	(July 10, 1998)
PO9400	23-Sep-97	Data Processing Method and Apparatus	09/112,790
		(ART62)	(July 10, 1998)
PO9401	23-Sep-97	Data Processing Method and Apparatus	6,304,291
		(ART63)	(July 10, 1998)
PO9402	23-Sep-97	Data Processing Method and Apparatus	09/112,788
		(ART64)	(July 10, 1998)
PO9403	23-Sep-97	Data Processing Method and Apparatus	6,305,770
		(ART65)	(July 10, 1998)
PO9405	23-Sep-97	Data Processing Method and Apparatus	6,289,262
		(ART66)	(July 10, 1998)
PP0959	16-Dec-97	A Data Processing Method and Apparatus	6,315,200
	_	(ART68)	(July 10, 1998)
PP1397	19-Jan-98	A Media Device (ART69)	6,217,165
		, , ,	(July 10, 1998)

We Claim:

5

10

15

20

1. A printhead assembly for a camera system having a chassis and a platen assembly that is mountable on the chassis, the platen assembly being configured to support passage of a print medium along a printing path, the printhead assembly comprising

an ink reservoir assembly that is mountable on the chassis and defines at least three ink reservoirs in which respective differently colored inks are received, the ink reservoir assembly defining an outlet;

a guide assembly that is positioned in the ink reservoir assembly to define at least three discrete ink paths that open at the outlet; and

at least one printhead integrated circuit that is positioned in the outlet to span the printing path, the, or each, printhead integrated circuit defining at least three sets of inlet apertures, each set of inlet apertures being aligned with a respective ink path.

- 2. A printhead assembly as claimed in claim 1, in which the ink reservoir assembly defines three ink reservoirs and the guide assembly defines three discrete ink paths.
- 3. A printhead assembly as claimed in claim 2, in which both the ink reservoir assembly and the guide assembly are elongate to span the printing path, the ink reservoir assembly including an elongate base member and an elongate cover member, the cover member having a roof wall, a pair of opposed side walls and a pair of spaced inner walls, the side walls and the inner walls depending from the roof wall and being generally parallel to each other and the base member having a floor and a pair of opposed end walls and defining an elongate opening in which the printhead integrated circuits are mounted, the guide assembly being interposed between lower ends of the inner walls and the floor.

25

4. A printhead assembly as claimed in claim 3, in which the guide assembly includes a pair of guide walls that extend from respective lower ends of the inner walls inwardly towards the elongate opening to define the three distinct ink paths that terminate at respective sets of inlet apertures of the printhead integrated circuits.

30

5. A printhead assembly as claimed in claim 3, in which the base member, the cover member and the guide assembly are molded of a plastics material.

- 6. A printhead assembly as claimed in claim 3, in which one of the end walls defines a number of air inlet openings that are treated to be hydrophobic to permit the ingress of air into the ink reservoirs as ink is fed from the ink reservoirs and to inhibit the egress of ink.
- 5 7. A printhead assembly as claimed in claim 1, in which a sponge-like member is positioned in each ink reservoir to store the ink while inhibiting agitation of ink during general use of the camera system.
 - 8. A camera system that includes a printhead assembly as claimed in claim 1.

Abstract

A printhead assembly for a camera system that includes an ink reservoir assembly that is mountable on the chassis of the camera system and defines at least three ink reservoirs in which differently colored inks are received. The ink reservoir assembly defines an outlet. A guide assembly is positioned in the ink reservoir assembly to define three discrete ink paths that open at the outlet. A printhead integrated circuit is positioned in the outlet to span the printing path. The printhead ehipintegrated circuit defines three sets of inlet apertures, each set of inlet apertures being aligned with a respective ink path.

10

5