Методы оптимизации. Семинар 9. Условия оптимальности.

Александр Катруца

Московский физико-технический институт Факультет Управления и Прикладной Математики

12 декабря 2019 г.

Напоминание

- Сопряжённые функции
- Неравенство Юнга-Фенхеля
- Примеры сопряжённых функций

Мотивация

Вопрос 0

Когда существует решение оптимизационной задачи?

Вопрос 1

Как проверить, что точка является решением оптимизационной задачи?

Вопрос 2

Из каких условий можно найти решение оптимизационной задачи?

Существование решения

Теорема Вейерштрасса

Пусть $X \subset R^n$ компактное множество и пусть f(x) непрерывная функция на X. Тогда точка глобального минимума функции f(x) на X существует.

Эта теорема гарантирует, что решение подавляющего большинства разумных задач существует.

<u>Услов</u>ия оптимальности

Определение

Условием оптимальности будем называть некоторое выражение, выполнимость которого даёт необходимое и (или) достаточное условие экстремума.

Классы задач:

- Общая задача минимизации
- Задача безусловной минимизации
- Задача минимизации с ограничениями типа равенств
- Задача минимизации с ограничениями типа равенств и неравенств

Общая задача минимизации

Задача

$$f(x) \to \min_{x \in X}$$

Критерий оптимальности

Пусть f(x) определена на множестве $X\subset \mathbb{R}^n$. Тогда

- 1. если x^* точка минимума f(x) на X, то $0 \in \partial_X f(x^*)$
- 2. если для некоторой точки $x^* \in X$ существует субдифференциал $\partial_X f(x^*)$ и $0 \in \partial_X f(x^*)$, то x^* точка минимума f(x) на X.

Какие недостатки у приведённого критерия?

$$\bullet \ \mathbf{x}^{\mathsf{T}}\mathbf{x} + \alpha \|\mathbf{x} - \mathbf{c}\|_{2} \to \min_{\mathbf{x} \in \mathbb{R}^{n}}, \ \alpha > 0$$

- $\mathbf{x}^{\mathsf{T}}\mathbf{x} + \alpha \|\mathbf{c}^{\mathsf{T}}\mathbf{x} b\|_2 \to \min_{\mathbf{x} \in \mathbb{R}^n}, \ \alpha > 0$
- Ограничение на допустимое множество

$$(x+2)^2 + |y+3| \to \min_{(x,y) \in \mathbb{R}^2}$$

s.t. $8 + 2x - y \le 0$

Задача безусловной минимизации

Задача: $f(x) \to \min_{x \in \mathbb{R}^n}$.

Критерий оптимальности для выпуклых функций

Пусть f(x) выпуклая функция на \mathbb{R}^n . Тогда точка x^* решение задачи безусловной минимизации $\Leftrightarrow 0 \in \partial f(x^*)$.

Следствие

Если f(x) выпукла и дифференцируема на \mathbb{R}^n . Тогда точка x^* решение задачи безусловной минимизации \Leftrightarrow $\nabla f(x^*) = 0$.

Достаточное условие для невыпуклых функций

Пусть f дважды дифференцируема на \mathbb{R}^n и x^* такая что $\nabla f(x^*)=0$. Тогда если $\nabla^2 f(x^*)\succ 0$, то x^* точка строгого локального минимума f(x) на \mathbb{R}^n .

- $x_1e^{x_1} (1 + e^{x_1})\cos x_2 \to \min$
- Функция Розенброка:

$$(1-x_1)^2 + \alpha \sum_{i=2}^n (x_i - x_{i-1}^2)^2 \to \min, \ \alpha > 0$$

• $x_1^2 + x_2^2 - x_1x_2 + e^{x_1 + x_2} \rightarrow \min$

Задача минимизации с ограничениями типа равенств

Задача

$$f(x) o \min_{x \in \mathbb{R}^n}$$

s.t. $g_i(x) = 0, \ i = 1, \dots, m$

Лагранжиан

$$L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$$

Возможные варианты

Рисунок взят из блога

 $\verb|http://www.offconvex.org/2016/03/22/saddlepoints/|$

Задача

$$\min_{x \in \mathbb{R}^n} f(x)$$
s.t. $g_i(x) = 0, i = 1, ..., m$

$$h_j(x) \le 0, j = 1, ..., p$$

Лагранжиан

$$L(x, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$

Условия оптимальности Каруша-Куна-Таккера (ККТ)

Необходимые условия

Пусть для задачи выполнено условие регулярности. Тогда если x^* локальное решение задачи, и функции f,h_j,g_i дифференцируемы, то найдутся такие μ^* и λ^* , для которых выполнено следующее:

•
$$g_i(x^*) = 0, i = 1, ..., m$$

•
$$h_j(x^*) \leq 0, j = 1, ..., p$$

•
$$\mu_j^* \geq 0$$
, $j = 1, \ldots, p$

•
$$\mu_i^* h_j(x^*) = 0$$
, $j = 1, ..., p$

Если задача выпуклая, то эти же условие является достаточным.

Примеры условий регулярности

- Если g_i и h_j линейны, то дополнительные условия не нужны
- Градиенты ограничений типа равенств и активных ограничений типа неравенств линейно независимы в x^*
- Условие Слейтера:
 - Задача является выпуклой, то есть g_i аффинные, h_j и f выпуклые
 - ullet Существует точка x_0 такая что $g_i(x_0) = 0$ и $h_j(x_0) < 0$

•

•

$$\min x + 3y$$
s.t. $x - y \ge 0$

$$(x - 1)^2 + (y - 1)^2 \le 9$$

$$\min (x + 1)^2 + (y + 1)^2$$
s.t. $2x + 3y \ge 5$

$$\min x_1 - 2x_2 + x_3$$

Резюме

- Существование решения оптимизационной задачи
- Условия оптимальности для
 - общей задачи оптимизации
 - задачи безусловной оптимизации
 - задачи оптимизации с ограничениями типа равенств
 - задачи оптимизации с ограничениями типа равенств и неравенств