COMPITO C

Algebra e Geometria, Fisica, (Fioresi)

	20 Dicembre, 2018	
NOME:		

NUMERO DI MATRICOLA:

Non sono permesse calcolatrici, telefonini, libri o appunti.

Tutto il lavoro deve essere svolto su queste pagine. Non fate la brutta e siate chiari nei ragionamenti.

In tutto il compito siano a e b le ultime due cifre NON NULLE e DISTINTE del proprio numero di matricola. Esempio: se il numero di matricola e' 624040066 allora a=4, b=6.

1	
2	
3	
Totale	

COGNOME:

Esercizio 1 (50 punti)

Si consideri la matrice complessa:

$$A = \begin{pmatrix} 2 & 1+i & 0 \\ 1-i & 3 & 0 \\ 0 & k & b \end{pmatrix}$$

- a) Si dica per quali valori di k e' diagonalizzabile.
- b) Posto k=0 si determini, se possibile, una matrice P unitaria tale che P^*AP sia diagonale.
- c) Posto k=0 si scriva il prodotto hermitiano associato ad A e si dica se e' non degenere, definito positivo.

Esercizio 2 (50 punti)

- a) Sia il sottospazio vettoriale W in \mathbf{R}^4 definito dalle equazioni ax + y + az at = 0, bx + y + bz bt = 0, (a + b)x + y + (a + b)z (a + b)t = 0.
- I) Si determini una base ortogonale di W rispetto al prodotto euclideo in \mathbf{R}^4 . II) Si determini W^{\perp} .
- b) Si determini la forma di Jordan e una base di Jordan della matrice:

$$A = \begin{pmatrix} 9 & -9b \\ 4/b & -3 \end{pmatrix}$$

Esercizio 3 (50 punti)

- a) Si risponda vero o falso motivando la risposta con una dimostrazione oppure con un controesempio.
- I) L'insieme delle matrici hermitiane invertibili in $M_n(\mathbf{C})$ e' un gruppo.
- II) Sia V spazio vettoriale reale con un prodotto scalare. Se $\langle u, u \rangle = 0$ allora il prodotto scalare dato e' degenere.
- b) Sia A una matrice simmetrica reale $n \times n$ con due soli autovalori λ e μ . Si dimostri che

$$\mathbf{R}^n = V_\lambda \oplus V_\mu$$

- e che $V_{\mu} = V_{\lambda}^{\perp}$ (ove W^{\perp} e' da intendersi rispetto al prodotto euclideo o standard e V_{λ} indica l'autospazio relativo all'autovalore λ . Se si intende utilizzare un risultato lo si enunci chiaramente. (max 20 righe)
- c) Sia V spazio vettoriale sul campo k di dimensione n (finita) con un prodotto scalare. Si dimostri che V e' isomorfo a V^* attraverso l'uso del prodotto scalare dato (max 15 righe). Se si intende utilizzare un risultato lo si enunci chiaramente.

CREDITO EXTRA. Si dimostri che se A e' una matrice hermitiana definita positiva e invertibile allora esiste N invertibile tale che $A = N^*N$.