Multiple Logistic Regression

Now, we expand the regression model, adding in more covariates. Add gender to your model.

1. First, assume no effect modification by gender. State the model.

Define $Y_i=1$ if individual i visited the doctor in the last 12 months, 0 otherwise; $X_{1i}=1$ if the individual is **above** the poverty line, 0 otherwise; $X_{2i}=1$ if female, 0 if male. Then, our model is $Y_i \sim Bernoulli(p_i)$, where

$$logit(p_i) = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i}$$

2. Fit the model.

```
. logit doctor nopov female
Iteration 0: log likelihood = -247.4035
Iteration 1: log likelihood = -229.36247
Iteration 2: log likelihood = -228.56747
Iteration 3: log likelihood = -228.56462
Iteration 4: log likelihood = -228.56462
                                                      Number of obs =
Logistic regression
                                                      LR chi2(2) = Prob > chi2 =
                                                                             37.68
                                                                             0.0000
Log likelihood = -228.56462
                                                      Pseudo R2
                                                                              0.0761
      doctor | Coef. Std. Err. z P>|z| [95% Conf. Interval]

    nopov |
    .997763
    .3245721
    3.07
    0.002
    .3616134
    1.633913

    female |
    1.384033
    .2549714
    5.43
    0.000
    .8842978
    1.883767
```

The fitted regression model is $logit(\hat{p}_i) = -.0322 + .998X_{1i} + 1.384X_{2i}$.

3. Is there evidence of effect modification by gender?

Now, we fit the model

$$logit(p_i) = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i}$$

and test whether $\beta_3 = 0$.

Iteration 2: log likelihood = -228.56544
Iteration 3: log likelihood = -228.55916
Iteration 4: log likelihood = -228.55916

Logistic regression

Number of obs = 500

LR chi2(3) = 37.69

Prob > chi2 = 0.0000

Log likelihood = -228.55916

Pseudo R2 = 0.0762

doctor			z		=	Interval]
_Inopov_1		.472267		0.042	.036275	1.887528
female	1.329136	.5835434	2.28	0.023	.1854119	2.47286
_InopXfemal_1	.0678287	.6489728	0.10	0.917	-1.204135	1.339792
_cons	-3.76e-15	.4472136	-0.00	1.000	8765225	.8765225

There is no evidence of effect modification by gender.

4. Is there evidence of confounding by gender?

Without gender: $\hat{\beta}_1 = 0.671$ With gender: $\hat{\beta}_1 = 0.998$

Yes, there is evidence of confounding by gender.