1.
$$0.8 \times 6$$

2. Affirmation :

Le point A(-1; 5) appartient à la parabole d'équation $y = x^2 + 5$

☐ Faux □ Vrai

3. Développer et réduire l'expression (x+3)(x+4).

- 4. $3 + \frac{4}{3}$
- **5.** 10 % de 20
- **6.** Médiane de la série : 20; 12; 10; 15; 7
- 7. Multiplier une quantité par 0,95 revient à la diminuer de : . . . %
- **8.** (u_n) est une suite géométrique telle que $u_0 = 3$ et $u_1 = -21$ La raison de cette suite est : . . .
- **9.** Compléter par deux entiers consécutifs : . . . $<\sqrt{74}<\dots$
- **10.** Solution de l'équation 7x + 4 = 8
- **11.** Factoriser $-4(2x-5)+(2x-5)^2$.
- **12.** Dans une base orthonormée : $\overrightarrow{u} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 4 \\ -2 \end{pmatrix}$. Alors \vec{u} et \vec{v} sont colinéaires.
 - □ Vrai ☐ Faux

13. Déterminer l'équation réduite de la droite (AB).

- **14.** Soit la suite (u_n) définie par $u_0 = 1$ et pour $n \in \mathbb{N}$, $u_{n+1} = 3u_n + 1$. $u_2 = \dots$
- **15.** $P(A \cap B) = 0.24$; P(A) = 0.4; P(B) = 0.6A et B sont indépendants. □ Vrai ☐ Faux
- **16.** Le discriminant du trinôme $x^2 + x 2$ est ...
- 17. Un sportif court 3500 m en 15 min. Quelle est sa vitesse en km/h?

18.
$$f(x) = x^2 - 2x - 6$$
; $f'(x) = \dots$

	x_i	0	1	2	3
19.	$P(X=x_i)$	0,25	0,05	0,5	

$$P(X=3)=\dots$$

- **20.** $f(x) = \frac{1}{x^3}$; $f'(x) = \dots$ **21.** Solutions de (x-6)(x-4) < 0

22. Soit $f: x \longmapsto (x+7)(x+1)$

La représentation graphique \mathcal{C}_f a pour axe de symétrie la droite d'équation : $x=\dots$

- 23. $\frac{2^4}{2^7} = 2^{-1}$
- **24.** Écrire sous la forme d'une fraction irréductible : $\frac{3}{4} + \frac{5}{6} = \dots$
- **25.** On donne l'arbre de probabilités ci-dessous :

- $P(B) = \dots$
- **26.** Augmenter un prix de 16% puis le diminuer de 50% revient à le diminuer de 50% puis à l'augmenter 16%.
 - □ Vrai □ Faux
- 27. Soit $f(x) = -x^2 8x + 1$ L'abscisse du sommet de la parabole qui représente f est : . . .
- **28.** Calculer $2025^2 2024^2$.
- **29.** Coordonnées du point M milieu du segment [AB] où $A(10\,;\,2)$ et $B(8\,;\,10)$
- **30.** Factoriser $x^2 100$.

NOM, Prénom :

Score:/ 30

1. On peut calculer ainsi :

$$0.8 \times 6 = 0.1 \times 8 \times 6$$

= 0.1×48
= 4.8

2. Le point A est sur la parabole si son ordonnée est égale à l'image de son abscisse.

$$f(-1) = (-1)^2 + 5$$

Puisque $6 \neq 5$, le point A n'est pas sur la parabole.

L'affirmation est FAUSSE

3.
$$(x+3)(x+4) = x^2 + 4x + 3x + 12$$

= $x^2 + 7x + 12$

Le terme en x^2 vient de $x \times 1x = x^2$.

Le terme en x vient de la somme de $x \times 4$ et de $3 \times 1x$.

Le terme constant vient de $3 \times 4 = 12$.

$$3 + \frac{4}{3} = \frac{3 \times 3}{3} + \frac{4}{3}$$
4.
$$= \frac{9}{3} + \frac{4}{3}$$

$$= \frac{13}{3}$$

5. 10% de $20 = 0, 1 \times 20 = 2$

Prendre 10 % d'une quantité revient à la diviser par 10.

Ainsi,
$$10\%$$
 de $20 = \frac{20}{10} = 2$.

6. Cette série comporte cinq valeurs, on les range dans l'ordre croissant : 7; 10; 12; 15; 20

La médiane est la valeur centrale, soit 12.

- 7. Comme 0.95 1 = -0.05, multiplier par 0.95 revient à diminuer de 5 %.
- 8. La raison de la suite est donnée par le quotient $\frac{u_1}{u_0} = \frac{-21}{3} = -7$.
- **9.** Comme 64 < 74 < 81, alors $8 < \sqrt{74} < 9$.
- 10. On procède par étapes successives :

On commence par isoler 7x dans le membre de gauche en retranchant 4 dans chacun des membres, puis on divise par 7 pour obtenir la solution :

$$7x + 4 = 8$$

$$7x = 8 - 4$$

$$7x = 4$$

$$x = \frac{4}{7}$$

La solution de l'équation est : $\frac{4}{7}$.

- 11. (2x-5) est un facteur commun. $-4(2x-5) + (2x-5)^2 = (2x-5)(-4+(2x-5))$ = (2x-5)(2x-9)
- 12. Les vecteurs non nuls \vec{u} et \vec{v} sont colinéaires si et seulement si il existe un nombre k tel que $\vec{v}=k\vec{u}$.

Les coordonnées de \vec{v} sont égales à -2 fois celles de \vec{u} .

Donc $\vec{v} = -2\vec{u}$ et les vecteurs \vec{u} et \vec{v} sont colinéaires.

L'affirmation est VRAIE.

13. En utilisant les deux points A et B, on détermine le coefficient directeur m de la droite :

$$m = \frac{y_B - y_A}{x_B - x_A} = -\frac{2}{3}.$$

 $m=\frac{y_B-y_A}{x_B-x_A}=-\frac{2}{3}.$ L' ordonnée à l'origine est 1, ainsi l'équation réduite de la droite est

$$y = -\frac{2}{3}x + 1.$$

14. On calcule d'abord u_1 :

$$u_1 = 3 \times u_0 + 1$$

$$u_1 = 3 \times 1 + 1$$

$$=4$$

On obtient donc pour u_2 :

$$u_2 = 3 \times u_1 + 1$$

$$u_2 = 3 \times 4 + 1$$

$$=13$$

15. A et B sont indépendants si $P(A \cap B) = P(A) \times P(B)$.

Comme:

$$P(A) \times P(B) = 0.4 \times 0.6$$

$$= 0.24$$

On obtient l'égalité $P(A \cap B) = P(A) \times P(B)$.

Les événements A et B sont donc indépendants.

L'affirmation est VraiE.

16. $\Delta = b^2 - 4ac$ avec a = 1, b = 1 et c = -2.

$$\Delta = 1^2 - 4 \times 1 \times (-2)$$

$$=9$$

17. En 1 heure, il parcourt 4 fois plus de distance gu'en 15 minutes, soit $4 \times 3500 = 14000$ m.

Sa vitesse est donc 14 km/h.

18. On détermine la fonction dérivée :

$$f'(x) = 2x - 2 \times 1 + 0$$

$$= 2x - 2$$

19. On calcule l'espérance mathématiques de X:

$$P(X = 3) = 1 - (0, 25 + 0, 05 + 0, 5)$$

= 1 - 0, 8
= 0, 2

20.
$$f'(x) = \frac{-3}{x^{3+1}} = -\frac{3}{x^4}$$

21. (x-6)(x-4) est l'expression factorisée d'une fonction polynôme du second degré de la forme $a(x-x_1)(x-x_2)$.

Les racines sont $x_1 = 6$ et $x_2 = 4$.

Le polynôme est du signe de a=1 (donc positif) sauf entre ses racines. L'ensemble solution est donc :]4; 6[.

22. Les racines de ce polynôme du second degré sont $x_1 = -7$ et $x_2 = -1$. L'axe de symétrie est donné par la moyenne des racines : $x = \frac{x_1 + x_2}{2}$, soit $x = \frac{-7 + (-1)}{2}$, c'est-à-dire x = -4.

23.
$$\frac{2^4}{2^7} = 2^{4-7} = 2^{-3}$$

24. Pour additionner des fractions, on les met au même dénominateur. Le plus petit dénominateur commun est 12.

Ainsi,
$$\frac{3}{4} + \frac{5}{6} = \frac{9}{12} + \frac{10}{12}$$

$$= \frac{19}{12} \text{(fraction irréductible)}$$

25. On utilise la formule des probabilités totales pour calculer P(B):

$$P(B) = P(A \cap B) + P(\bar{A} \cap B)$$

$$= 0.7 \times 0.2 + 0.3 \times 0.5$$

$$= 0.14 + 0.15$$

$$= 0.29$$

26. Le coefficient multiplicateur global est le produit des coefficients multiplicateurs.

Le coefficient multiplicateur associé à une augmentation de 16% est 1,16 et celui associé à une diminution de 50% est 0,5.

Le coefficient multiplicateur gobal est $1,16\times0,5$ dans un cas ou $0,5\times1,16$ dans l'autre cas, ce qui revient strictement au même.

L'affirmation est donc VraiE.

27. Pour un polynôme de degré 2 du type $ax^2 + bx + c$, l'abscisse du sommet de la parabole x_S est donnée par $-\frac{b}{2a}$.

L'abscisse du sommet est donnée par $x_S = -\frac{-8}{2 \times (-1)} = -4$.

28. On utilise l'égalité remarquable $a^2 - b^2 = (a - b)(a + b)$ avec a = 2025 et b = 2024.

$$2025^2 - 2024^2 = (2025 - 2024)(2025 + 2024) = 1 \times 4049 = 4049.$$

29. Les coordonnées du milieu sont données par la moyenne des abscisses et la moyenne des ordonnées :

$$x_M = \frac{10+8}{2} =$$
9 et $y_M = \frac{2+10}{2} =$ 6. Ainsi, $M(9; 6)$.

30. On utilise l'égalité remarquable $a^2 - b^2 = (a+b)(a-b)$ avec a=x et b=10.

$$x^{2} - 100 = x^{2} - 10^{2}$$
$$= (x - 10)(x + 10)$$