H3 Eenvoudige thermodynamische systemen 3.1 PV-diagram voor een zuivere stof PV-diagram Bekijk 1kg water bij een vaste temperatuur in een vat met veranderbare P en V > bekijk de grafiek met isothermen: begin bij punt A, waar het water bestaat als onverzadigde damp > laat het volume van het vat verkleinen > tot punt B zal de druk toenemen nu echter: bij verdere compressie treedt er condensatie van de damp op > er gebeurt compressie met cte T en P > lijnstuk BC komt overeen met isobare isotherme compressie, de *dampdruk* nu: bij C is alle water gecondenseerd > bij verdere compressie zal de druk toenemen, het is dus een verzadigde vloeistof >> we kunnen dit doen bij verschillende temperaturen echter: het lijnstuk BC zal kleiner worden met stijgende temp > we bereiken een kritische temperatuur T_k op het kritisch punt K waarbij er enkel gas is > dit is het buigpunt van de kritische isotherm > bij dit kritisch punt hebben we de kritische druk P_k en het kritisch volume V_k = alle punten die overeenkomen met de verzadigde damp dampverzadigingslijn > stippellijn op de figuur = verdampingslijn waarbij het gebied van vloeistof-damp overgaat in vastestof-damp trippellijn > hier: EF mengsel van dampverzadrgingslijn vloeistof en damp vast damp vloeistofverzadigingslijn tripellijn. mengsel van vast en damp 3.2 PT-diagram voor een zuivere stof PT-diagram Bekijk een zuivere stof met cte V en veranderbare P en T We hebben een stollingslijn, verdampingslijn en sublimatielijn > komen samen in trippelpunt, waar de stof vast, vloeibaar en gasvormig is > deze lijnen verdelen de grafiek in zones waar de stof in verschillende fases is >> sublimatielijn: altijd positieve helling stollingslijn: meestal positieve helling, met uitzonderingen (vb water) H_20 $C0_2$ gas stollingslijn kritisch punt vloeistof verdampingslijn vast (dampspanningslijn) damp tripelpunt

sublimatielijn

T

3.3 het PVT-oppervlak		
PVT-oppervlak	We kunnen nu deze twee grafieken combineren > beschrijft een oppervlak in de ruimte > een stof moet zich in een fase bevinden die op dit oppervlak bevind nl: een stof kan niet eender welk punt aannemen in de PVT-ruimte:	
	3.4 toestandsvergelijkingen	
toestandsvergelijking PVT	= vgl die het PVT-vlak geeft voor een bepaalde stof > bekijk een stof in een vat met aanpasbare druk, temp en volume van de vorm: $f(P,V,T)=0.$ > deze wordt experimenteel bepaald > bij lage drukken geldt de ideale gaswet: $P_{\rm V}=RT.$ Echter, theoretisch kan de deze verbeterd worden tot: $\left(P+\frac{a}{{ m V}^2}\right)({ m V}-b)=RT,$	
	hierbij geldt: v = V/n	
	3.5 differentiële toestandsveranderingen	
infinitesimale veranderingen	ledere infinitesimaal in thermodyn. heeft als voorwaarde dat het een verandering in een grootheid voorstelt die klein is vergeleken met de grootheid zelf > maar groot in vergelijking met het effect teweeggebracht door enkele moleculen ie: de verandering moet een bepaalde, meetbare invloed hebben, maar klein zijn	
Volumeverandering dV	We kunnen V schrijven in functie van T en P: $V = g(T,P)$ dan is de differentiaal: $dV = \left(\frac{\partial V}{\partial T}\right)_P dT + \left(\frac{\partial V}{\partial P}\right)_T dP,$ definieer de volume-uiteenzettingscoëfficiënt $\boldsymbol{\beta}$: $\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_P$ en de isotherme samendrukbaarheid $\boldsymbol{\kappa}$: $\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial P}\right)_T$ > deze zijn technisch gezien afh van V, maar exp. blijven deze praktisch constant > $\boldsymbol{\beta}$ en $\boldsymbol{\kappa}$ zijn dus stof-afhankelijke constanten	
	Dan vinden we: $dV = \beta V dT - \kappa V dP$	

drukverandering dP	We hebben nu analoog: $dP = \left(\frac{\partial P}{\partial T}\right)_V dT + \left(\frac{\partial P}{\partial V}\right)_T dV,$
	uit appendix1 zien we dat:
	$\left(\frac{\partial x}{\partial y}\right)_z = \frac{1}{(\partial y/\partial x)_z}, \text{en} \left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1.$
	dus wan kunnen we schrijven:
	$\left(\frac{\partial P}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial P}{\partial T}\right)_V$
	waarbij we uit vorige deel vinden:
	$\left(\frac{\partial P}{\partial T}\right)_V = \frac{\beta}{\kappa}. \qquad \text{en} \left(\frac{\partial P}{\partial V}\right)_T = -\frac{1}{\kappa V},$
	dus we vinden: $dP = \frac{\beta}{\kappa} dT - \frac{1}{\kappa V} dV.$
drukverandering bij V cte	Als V constant is hebben we: $dP = \frac{\beta}{\kappa} dT$
	due no integration
	$P_f - P_i = \frac{\beta}{\kappa} (T_f - T_i)$
	3.6 eenvoudige thermodynamische systemen
3.6.1 de gespannen snaar	
gespannen snaar	Bekijk een snaar bij cte druk en volume
	> we kunnen het systeem beschrijven door de coords:
	\bullet de spanning in de snaar F (intensief), gemeten in Newton (N),
	\bullet de lengte van de snaar L (extensief), gemeten in meter (m),
	ullet de ideaal-gastemperatuur T (intensief), gemeten in Kelvin (K) of in graden Celsius (°C).
	Bij cte temperatuur in elasticiteitsgrens kan men de wet van Hooke toepassen:
	$F=const.(L-L_o), \qquad met\ L_0\ de\ lengte\ bij\ nulspanning$
	bij kleine verandering dL hebben we dus:
	$dL = \left(\frac{\partial L}{\partial T}\right)_F dT + \left(\frac{\partial L}{\partial F}\right)_T dF,$
	we kunnen twee constanten definiëren: lineaire uitzettingscoëfficiënt α:
	$\alpha = \frac{1}{L} \left(\frac{\partial L}{\partial T} \right)_F$
	elasticiteitsmodulus Y:
	$Y = \frac{L}{A} \left(\frac{\partial F}{\partial L} \right)_T$
	De volume-uitzettingscoëfficiënt kan dan beschreven worden door:
	$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_F = \frac{1}{L_1 L_2 L_3} \left[L_2 L_3 \left(\frac{\partial L_1}{\partial T} \right)_F + L_1 L_3 \left(\frac{\partial L_2}{\partial T} \right)_F + L_1 L_2 \left(\frac{\partial L_3}{\partial T} \right)_F \right]$
	of dus in een isotroop materiaal α_1 = α_2 = α_3 = α dan:
	$\beta = \frac{1}{L_1} \left(\frac{\partial L_1}{\partial T} \right)_F + \frac{1}{L_2} \left(\frac{\partial L_2}{\partial T} \right)_F + \frac{1}{L_3} \left(\frac{\partial L_3}{\partial T} \right)_F = \alpha_1 + \alpha_2 + \alpha_3 = 3\alpha.$

3.6.2 oppervlaktefilms	
oppervlaktefilm	= opgespannen vlies / membraan met een bepaalde oppervlaktespanning γ : $\gamma = \frac{F}{l}.$
	beschouw een U-vormig raam met een glijstuk met een vloeistoffilm, dan geldt: $_F$
	$\gamma = \frac{F}{2l}.$ bij cte P en V hebben we drie coords:
	 de oppervlaktespanning γ (intensief), uitgedrukt in N/m, de oppervlakte van de film A (extensief), uitgedrukt in m², de ideaal-gastemperatuur T (intensief), uitgedrukt in K of °C.
	experimenteel kunnen we zien dat de oppervlaktespanning onafh is vd oppervlakte > voor een zuiver vloeistof kunnen we schrijven:
	$\gamma = \gamma_o \left(1 - \frac{T'}{T'_o} \right)^n$
	met γ_0 de oppervlaktespanning bij 0°C en n een constante afh van de vloeistof
oppervlaktespanning voor olie en water	voor monomoleculaire oliefilm op water geldt binnen beperkte waarden voor A stellen dat: $(\gamma-\gamma_w)A=const.T,$ met γ_w de oppervlaktespanning van zuiver water en γ die van water+olielaag
3.6.3 de omkeerbare elektroch	> het verschil γ-γ _w is dan de <i>oppervlaktedruk</i>
omkeerbare elektrische cel	= twee elektrodes ondergedompeld in een verschillend elektrolyt
vb: Daniellcel	koperelektrode in kopersulfaat oplossing zinkelektrode in zinksulfaat oplossing > van elkaar gescheiden door poreuze wand Nu is de koperelektrode positief geladen tov de zinkelektrode > spanningsverschil > galvanische cel: verbind de cel met een potentiometer lager dan de ems > stroom vloeit conventioneel van koperelektrode naar zinkelektrode > nl: door de reactie: $Zn + CuSO_4 \rightarrow Cu + ZnSO_4$, of met deelreacties: $Zn \rightarrow Zn^{2+} + 2e^-$ (oxidatie) en $Cu^{2+} + 2e^- \rightarrow Cu$ (reductie). Als we potentiometer hoger dan de ems aansluiten, is er een stroom in de andere richting > de cel is omkeerbaar: $Cu + ZnSO_4 \rightarrow Zn + CuSO_4$ deelreacties $Cu \rightarrow Cu^{2+} + 2e^-$ (oxidatie) en $Zn^{2+} + 2e^- \rightarrow Zn$ (reductie),
	Cu Zn CuSQ-kristallen ZnSQ-kristallen
wet van Faraday	bij verdwijning van 1mol Zn en afzetting van 1mol Cu is er een overdracht van j N_F coulomb > j=valentie en N_F = Faradayconstante = 96.500 C/mol > bij verdwijning van Δ n mol verandert lading vd cel van Z_i naar Z_f : $Z_f - Z_i = -\Delta n j N_F.$

thermodynamica van omkeerbare cellen	Bij cte temp en volume kan de cel beschreven worden door: • de e.m.s. V_{ε} (intensief), gemeten in V,
	• de lading Z (extensief), gemeten in C,
	• de ideaal-gastemperatuur T (intensief).
	nu hebben we:
	$V_{\varepsilon} = V_{\varepsilon,25} + \alpha (T' - 25^{\circ}C) + \beta (T' - 25^{\circ}C)^{2} + \gamma (T' - 25^{\circ}C)^{3},$
3.6.4 het diëlektricum	,
diëlektricum	Beschouw een elek. condensator: twee evenw. platen met afmetingen groter dan de onderlinge afstand l
	> tss de condensator bevind zich een diëlektrische stof
	> bij een potentiaalverschil tss de platen ontstaat er een elektrisch veld E
	> sterkte vh veld is anders dan wanneer er geen diëlektricum aanwezig zou zijn
	nl: - wanneer molec. in diëlektricum niet polair zijn, zullen ze uiteengedreven worden door E > molec. worden polair door E
	- als molec. wel polair zijn, maar willek. georiënteerd
	> molec. worden gelijk georiënteerd
	> een maat voor de geïnduceerde richtingen vd ladingen is het <i>totaal elektrisch moment</i> Π
	> met volume V vh diëlektricum kunnen we de <i>diëlektrische verplaatsing</i> D definiëren:
	$D = \varepsilon_o E + \mathcal{P} = \varepsilon_o E + \frac{\Pi}{V}.$
thermodynamica diëlektricum	Bij cte temperatuur en volume kunnen we het diëlektricum beschrijven door: \bullet de elektrische veldsterkte E (intensief), gemeten in V/m ,
	\bullet het elektrisch dipoolmoment Π (extensief), gemeten in C.m,
	ullet de ideaal-gastemperatuur T (intensief).
	met de formule: $\frac{\Pi}{V} = \left(a + \frac{b}{T}\right)E, \qquad \text{met a en b stofafhankelijke constanten}$
3.6.5 de paramagnetische staa	f
paramagnetische staaf	= staaf die magnetisch wordt in nabijheid van magnetisch veld B > deze magnetische bijdrage word de <i>magnetisatie M</i> genoemd > de magnetische inductie wordt dan gegeven door:
	$B = \mu_o(H + \mathcal{M}) = \mu_o\left(H + \frac{M}{V}\right)$
thermodynamica paramagn. staaf	Bij cte druk en volume kunnen we het systeem beschrijven via: • de magnetische veldsterkte H (intensief), gemeten in A/m ,
	$ullet$ het magnetisch moment M (extensief), gemeten in $\mathrm{Am}^2,$
	\bullet de ideaal-gastemperatuur T (intensief).
	met de formule: $M = C_c \frac{H}{T}, \qquad \qquad \text{met C}_{\text{C}} \text{ de Curieconstante}$

	3.7 toestandsvergelijking van een gas: de ideale-gaswet
viriaalontwikkeling	voor een gas van n mol bij een cte temp. is er een relatie tss P en v=V/n:
	$PV = A\left(1 + \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} + \dots\right)$
	met A,B,C, de stofafhankelijke <i>viriaalcoëfficiënten</i>
	>> voor gassen geldt er een recht evenredig verband > beschouw enkel de eerste twee termen
ideale gaswet	Beschouw Pv nu als een functie van P > we zien dat alle gassen eenzelfde punt benaderen bij P=0 > we kunnen dus stellen: $\lim_{P\to 0}(P{ m V})=A(T),$
	voor een ideaal gas weten we echter dat geldt: $T=273,16K\lim_{P_{TP}\to0}\frac{P}{P_{TP}}$
	$ = T = 273, 16 K \lim_{P_{TP} \to 0} \frac{PV/n}{P_{TP}V/n} = 273, 16 K \frac{\lim_{P \to 0} (PV)}{\lim_{P_{TP} \to 0} (PV)_{TP}}, $
	$\lim_{P \to 0} (P\mathbf{V}) = \left[\frac{\lim(P\mathbf{V})_{TP}}{273, 16 K} \right] T.$
	met tussen haken de <i>molaire universele gasconstante</i> R:
	$\lim_{P \to 0} (PV) = nRT,$
	dus: PV=nRT
samendrukbaarheidsfactor Z	We kunnen de viriaalontwikkeling herschrijven als:
	$\frac{PV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2} + \dots = Z,$
	met stofafhankelijk constante Z = $samendrukbaarheidsfactor$
wet van Boyle	Wanneer een ideaal gas een isotherm proces ondergaat bij cte massa geldt: PV = cte
wet van Charles	ideaal gas ondergaat en isochoor proces: P = cte.T
wet van Gay-Lussac	ideaal gas ondergaat isobaar proces: V = cte.T
wet van Dalton	voor een mengsel van niet-reagerende ideale gassen hebben we:
(partieeldruk)	$n = \sum_{i} n_i$
	Als deze gassen in één volume V bij zelfde temp T in een vat zitten geldt:
	$n = \frac{PV}{RT} = \sum_{i} n_i = \sum_{i} \frac{P_i V}{RT} = \frac{V}{RT} \sum_{i} P_i,$
	dus:
	$P = \sum_{i} P_{i}$
	>> de partiële druk van een gas in een mengsel is dus: $P_i = n_i \frac{RT}{V}.$
wet van Leduc (partieelvolume)	Voor gassen met éénzelfde druk P en temp T geldt dus ook: $V = \sum V_i.$
	>> het <i>partieel volume</i> van het gas is dan:
	$V_i = n_i \frac{RT}{P}.$
vochtigheid van lucht v _r	in lucht kan de partiële druk $P_i(w)$ van waterdamp niet hoger zijn dan de dampspanning $P_d(w)$ van water bij die temperatuur > definieer de vochtigheid als: $v_r = 100\% \frac{P_i(w)}{P_d(w)}.$