-

´-Variables aléatoirs discrètes

Exercice:3

Soit (Ω, \mathcal{T}, P) un espace probabilisé , A un événement de Ω de probabilité non nul .Donner une condition nécessaire et suffisante pour que $P_A = P$

Solution:3

Æ₃. Supposons que P(A) = 1 alors $P(\overline{A}) = 0$. Soit $B \in \mathcal{T}$, on a $P(\overline{A} \cap B) \leq P(\overline{A}) = 0$ ce qui entraine alors que $P(\overline{A} \cap B) = P(\overline{A})P(B)$ ce qui prouve alors que \overline{A} et B sont indépendants et par suite A et B sont indépendants d'ou le résultat

Exercice:2

Soit $a \in]1, +\infty[$, on rappelle que la série $\sum_{n \ge 1} \frac{1}{n^a}$ est convergente sa somme est noté $\zeta(a)$

- ① Démontrer que l'on peut définir une probabilité P_a sur \mathbb{N}^* , à l'aide de la suite de réels $(p_k)_{k\in\mathbb{N}^*}$ définie par $\forall k\in\mathbb{N}^*$, $p_k=\frac{1}{k^a\zeta(a)}$. On considère désormais l'espace probabilités $(\mathbb{N}^*,P(\mathbb{N}^*),P_a)$
- ② Soit $m \in \mathbb{N}^*$, on note $A_m = m\mathbb{N}^*$, c'est à dire l'ensemble des multiples de l'entier m.Calculer $P_a(A_m)$
- **④** On note pour $i \in \mathbb{N}^*$, p_i le i-ème entier premier et C_n l'ensemble des entiers divisibles par aucun nombre premier p_i pour $i \in [1, n]$. Calculer $P_a(C_n)$ et déterminer $\bigcap_{i=1}^n C_n$
- ⑤ En déduire le développement Eurelien de la fonction $\zeta: \forall a>1$, $\zeta(a)=\prod_{i=1}^{+\infty}\left(1-\frac{1}{p_i^a}\right)^{-1}$

Solution:2

① La famille $(p_k)_k$ définie une probabilité si elle est sommable de somme égale à 1.Comme elles est indexée par $\mathbb N$ alors ceci est équivalent à la série $\sum_{n\geq 1} p_n$ est convergente .Or a>1, alors la série de Reimann $\sum_{n\geq 1} \frac{1}{n^a}$

est convergente et par suite $\sum_{n=1}^{+\infty}\left(\frac{\dfrac{1}{\zeta(a)}}{n^a}\right)=\dfrac{1}{\zeta(a)}\zeta(a)=1$, d'ou le résultat

② Soit
$$m \in N^*$$
, on a : $P_a(A_m) = \sum_{k=1}^{+\infty} \left(\frac{1}{\zeta(a)} \cdot \frac{1}{(km)^a} \right) = \frac{1}{m^a \cdot \zeta(a)} \left(\sum_{k=1}^{+\infty} \frac{1}{k^a} \right) = \frac{1}{m^a}$

$$P(A_i \cap A_j) = P(A_i).P(A_j) = \frac{1}{i^a j^a}$$

Or $A_i \cap A_j$ est l'ensemble des multiples communs des entiers i et j et pare suite $A_i \cap A_j = A_{i \vee j}$ et par suite $P(A_i \cap A_j) = \frac{1}{(i \vee j)^a}$, on en déduit alors v que les événements A_i et A_j sont indépendants si,et seulement si $i,j=i \vee j$ ce qui est équivalent à $i \wedge j=1$

ⓐ Soit $n \in \mathbb{N}^*$, il est clair que $C_n = \bigcap_{i=1}^n \overline{A_i}$, comme les p_i sont premier entre eux alors d'après la question précédente les A_i sont indépendants et donc les $\overline{A_i}$ aussi et par suite on a :

précédente les
$$A_i$$
 sont indépendants et donc les $\overline{A_i}$ aussi et par suite on a :
$$P(C_n) = \prod_{i=1}^n P\left(\overline{A_i}\right) = \prod_{i=1}^n (1 - P(A_i)) = \prod_{i=1}^n \left(1 - \frac{1}{p_i^a}\right)$$

 $\bigcap_{n\geq 1} C_n$ est l'ensemble des entier naturel qui n'est divisible par aucun nombre premier donc c'est l'entier 1

et par suite $\bigcap_{n\geq 1} C_n = \{1\}$. La suite $(C_n)_n$ est une suite décroissante d'événements donc d'après

🛜 Variables aléatoirs discrètes

Le théorème de continuité monotone on a $\lim_{n\to+\infty} P\left(C_n\right) = P\left(\bigcap_{n=1}^{+\infty} C_n\right) = P\left(\{1\}\right) = \frac{1}{\zeta(a)}$, ce qui entraine alors

que
$$\frac{1}{\zeta(a)} = \prod_{n=1}^{+\infty} \left(1 - \frac{1}{p_n^a}\right)$$
 ce qui donne alors $\zeta(a) = \prod_{n=1}^{+\infty} \left(1 - \frac{1}{p_n^a}\right)^{-\frac{1}{2}}$

Soient X et Y deux variables aléatoires indépendantes à valeurs dans [1, n]

- ① Exprimer E(X) en fonction de $P(X \ge k)$
- ② On suppose que les variables X et Y sont indépendantes et suit une loi uniforme .Déterminer l'espérance de variables suivantes min(X,Y), max(X,Y) et |X-Y|

Solution:1

① Soit $k \in [1, n]$, on $(X \ge k) = (X = k) \cup (X > k)$ et comme les événements (X = k) et (X > k) sont incompatibles alors $P(X \ge k) = P([X = k]) + P([X > k])$ et par suite

$$P([X = k]) = P([X \ge k]) - P([X > k]) = P([X \ge k]) - P([X \ge k + 1])$$

$$E(X) = \sum_{k=0}^{n} k \left(P\left([X \ge k] \right) - P\left([X \ge k+1] \right) \right) = \sum_{k=1}^{n} k P\left([X \ge k] \right) + \sum_{k=1}^{n} k P\left([X \ge k+1] \right)$$

$$= \sum_{k=1}^{n} k P\left([X \ge k] \right) - \sum_{k=2}^{n+1} (k-1) P\left([X \ge k] \right) = P\left([X \ge 1] - n P(X \ge n+1) + \sum_{k=2}^{n} P\left([X \ge k] \right)$$

Comme
$$X(\Omega) \subset [1, n]$$
 alors $P([X \ge n+1]) = 0$, on conclut alors que $E(X) = \sum_{k=1}^{n} P([X \ge k])$

② \not en. La variable aléatoire min(X,Y) est une variable aléatoire discrète à valeurs dans [1,n]. D'après le résultat précédent on a

$$(*): E\left(\min(X,Y)\right) = \sum_{k=1}^{n} P\left(\min(X,Y) \ge k\right) = \sum_{k=1}^{n} P\left([X \ge k] \cap [Y \ge k]\right) = \sum_{k=1}^{n} P([X \ge k].P\left([Y \ge k])\right)$$

Ceci d'une part d'autre part , pour $k \in [1, n]$, on a $P([X \ge k]) = \sum_{i=1}^{n} P([X = i]) = \sum_{i=1}^{n} \frac{1}{n}$ et par suite

 $P([X \ge k]) = \frac{n-k+1}{n}$. Comme les variables aléatoires X et Y suivent la même loi uniforme alors

$$P\left([X \geq k]\right) = P\left([Y \geq k]\right) = \frac{n-k+1}{n}$$
, en remplaçant dans l'égalité (*) on obtient

$$E\left(\min(X,Y)\right) = \sum_{k=1}^{n} \left(\frac{(n-k+1)^2}{n^2}\right) = \frac{1}{n^2} \left(\sum_{k=1}^{n} (n+1)^2 - 2k(n+1) + k^2\right)$$
$$= \frac{(n+1)^2}{n} - \frac{(n+1)^2}{n} + \frac{(n+1)(2n+1)}{6n} = \frac{(n+1)(2n+1)}{6n}$$

 \mathbb{Z} . Il est claire que $\max(X,Y) + \min(X,Y) = X + Y$, donc par linéarité de l'espérance on obtient $E(\max(X,Y)) = E(X) + E(Y) - E(\min(X,Y)) = 2E(X) - E(\min(X,Y))$ car les variables aléatoires X et Y suivent la même loi, et par suite

X et Y suivent la même loi , et par suite
$$E(\max(X,Y)) = n + 1 - \frac{(n+1)(2n+1)}{6n} = \frac{(n+1)}{6n} (6n - (2n+1)) = \frac{(4n-1)(n+1)}{6n}$$

Ø. Il est clair que $|X - Y| = 2\max(X,Y) - (X+Y)$ et par suite

$$E(|X-Y|) = 2E\left(\max(X,Y)\right) - 2E(X) = \frac{(4n-1)(n+1)}{3n} - (n+1) = \frac{(n+1)}{3n}\left(-3n + 4n - 1\right) = \frac{(n^2-1)}{3n}$$

Exercice:2

Soit (Ω, \mathcal{T}, P) un espace probabilisé , et X une variable aléatoire réelle prenant ses ses valeurs dans $\mathbb N$

- 1.1 Montrer que , pour tout entier naturel non nul $n: \sum_{k=0}^{n} kP(X=k) = \sum_{k=0}^{n-1} P(X>k) nP(X>n)$
- 1.2 On suppose que la variable aléatoire X admet une espérance E(X). Montrer que :

$$\forall n \in \mathbb{N} \text{ , } 0 \leq nP(X > n) \leq \sum_{k=n+1}^{+\infty} kP(X = k)$$

En déduire que la série $\sum_n P(X>n)$ converge , et que $\sum_{n=0}^{+\infty} P(X>n) = E(X)$

1.3 On suppose que la série $\sum_{n} P(X > n)$ est convergente .Montrer que la série $\sum_{n} nP(X = n)$ est convergente

🥱 - Variables aléatoirs discrètes

Et que X admet une espérance

- 1.4 Enoncer le théorème qui vient d'être établit, en faisant intervenir la fonction de répartition
 - 2 Montrer que si X admet une variance , alors $E(X^2) = \sum_{k=0}^{+\infty} (2k+1)P(X>k)$

Solution:2

1.1
$$\sum_{k=1}^{n} kP(X=k) = \sum_{k=1}^{n} k \left(P([X \ge k]) - P([X > k]) \right) = \sum_{k=1}^{n} k \left(P([X > k-1]) - P([X > k]) \right)$$
$$= \sum_{k=1}^{n} kP([X > k-1]) - \sum_{k=1}^{n} kP([X > k]) = \sum_{k=0}^{n-1} (k+1)P([X > k]) - \sum_{k=1}^{n} kP([X > k])$$
$$= \sum_{k=0}^{n-1} P([X > k]) - nP([X > n])$$

- somme égale à E(X)1.3 ② On suppose que la série $\sum_n P\left([X>n]\right)$ est convergente .D'après la première question on a $\forall n \in \mathbb{N}$, $0 \leq \sum_{k=0}^n kP\left([X=k]\right) \leq \sum_{k=0}^n P\left([X>k]\right) \leq \sum_{n=0}^{+\infty} P\left([X>n]\right)$, ce qui prouve alors que la suite des sommes partielles de la série $\sum_n nP\left([X=n]\right)$ est majorée et par suite cette série convergente . ② Comme X admet une espérance alors d'après la deuxième question on a $\lim_{n \to +\infty} nP\left([X>n]\right) = 0$ et par passage à la limite dans l'égalité de la première question , on obtient $E(X) = \sum_{n=0}^{+\infty} P\left([X>n]\right)$
- 1.4 On vient d'établir le théorème suivant : Si X est une variable aléatoire discrète telle que $X(\Omega) = \mathbb{N}$ alors X admet une espérance si, et seulement si, la série $\sum_{n} P\left([X > n]\right)$ auquel cas on a

$$E(X) = \sum_{n=0}^{+\infty} P([X > n]) = \sum_{n=0}^{+\infty} (1 - F_X(n))$$

2 . Supposons que X admet une variance alors X^2 admet une espérance c'est à dire la série $\sum_n n^2 P\left([X=n]\right)$ est convergente .Or

$$\sum_{k=1}^{n} k^{2} P([X=k]) = \sum_{k=1}^{n} k^{2} \left(P([X>k-1]) - P([X>k]) \right) = \sum_{k=1}^{n} k^{2} P([X>k-1]) - \sum_{k=1}^{n} k^{2} P([X>k])$$

$$= \sum_{k=0}^{n-1} (k+1)^{2} P([X>k]) - \sum_{k=0}^{n} k^{2} P([X>k]) = -n^{2} P([X>n]) + \sum_{k=1}^{n} (2k+1) P([X>k]) : (*)$$

On a $\forall n \in \mathbb{N}$, $0 \le n^2 P([X > n]) \le \sum_{k=n+1}^{+\infty} k^2 P([X = k])$ et comme la série $\sum_n n^2 P([X = k])$ est convergente alors la suite de ses restes tend vers 0 et par suite par encadrement $\lim_{n \to +\infty} n^2 P([X = n]) = 0$ et de l'égalité (*)on obtient alors la convergence des la série $\sum_{n \ge 0} (2n+1) P([X > n])$ converge et que sa somme est

$$\sum_{n\geq 0} (2n+1)P([X>n]) = \sum_{n=0}^{+\infty} n^2 P([X=n])$$

·Variables aléatoirs discrètes

Exercice:4

Soit f la fonction définie sur \mathbb{R}^+ par : f(0) = 0 et $\forall x > 0$, $f(x) = -x \ln(x)$. Soit (Ω, \mathcal{T}, P) un espace probabilisé et X une variable aléatoire sur Ω à valeurs dans un ensemble fini E de cardinal N. On appelle entropie de X le rèel noté H(X) défini par : $H(X) = \sum_{x \in F} f(P([X = x]))$

- ① Quel est le signe de H(X)?
- ② Calculer H(X) lorsque H est constante
- ① Montrer que $\sum_{x \in F} f(NP([X = x])) \le 0$
- ⑤ En déduire une majoration de H(X)
- 6 Pour quelles variables *X* l'entropie est -elle minimale?
- ② Pour quelle variable *X* l'entropie est-elle maximale?

Solution:4

- ① On note que si $x \in]0,1[$, ln(x) < 0 donc f(x) > 0.De plus f(0) = f(1) = 0 donc $f(x) \ge 0$ pour tout $x \in [0,1]$.Pour tout $x \in E$, $P([X = x]) \in [0,1]$ donc $f(P([X = x])) \ge 0$.On en déduite que $H(X) \ge 0$
- Si X est constante alors il existe $a \in E$ tel que P([X = a]) = 1 et $\forall x \in E$, $x \neq a \Rightarrow P([X = x]) = 0$. On a donc H(X) = 0 puis que f(0) = f(1) = 0
- ③ Si X suit une loi uniforme, on a $\forall x \in E$, $P([X = x]) = \frac{1}{N}$ avec N le cardinal de E et donc

$$f(P([X = x])) = -\frac{1}{N} \ln \left(\frac{1}{N}\right) = \frac{\ln N}{N}$$
. On en déduit alors que $H(X) = \ln N$

① Posons pour $x \ge 0$, g(x) = f(x) + x - 1. On a, pour x > 0, $g'(x) = -\ln x$, donc la fonction $g'(x) = -\ln x$ est strictement croissante su]0,1] et strictement décroisante sur $[1,+\infty]$. Son maximum est atteint en 1 seulement et vaut g(1) = 0 ce qui entraine alors que $g \le 0$ (Car on a aussi $g(0) = -1 \le 0$).

On a donc pour $x \ge 0$, $g(x) \le 0$, donc $f(x) \le 1 - x$ avec égalité si, et seulement si, x = 1. On a pour $x \in E$, $f(NP([X = x])) \le 1 - NP([X = x])$. En additionnant ces inégalités, on obtient : $\sum_{x \in E} f(NP([X = x])) \le \sum_{x \in E} (1 - NP([X = x]))$ Et comme $\sum_{x \in E} P([X = x]) = 1 \text{ alors } \sum_{x \in E} (1 - NP([X = x])) = N - N \sum_{x \in E} P([X = x]) = N - N = 0$, d'ou l'on déduit : $\sum_{x \in E} f(P([X = x])) \le 0$

⑤ On remarque si $P([X = x]) \neq 0$, on a

$$f(NP([X = x])) = -NP([X = x]) \ln (NP([X = x]))$$

$$= -NP([X = x]) \ln N - NP([X = x]) \ln (P([X = x]))$$

$$= f(N)P([X = x]) + Nf(P([X = x]))$$

$$= f(N)P([X=x]) + Nf\left(P([X=x])\right)$$
.Cette égalité reste encore vrai si $P([X=x]) = 0$.On en déduit alors que :
$$\sum_{x \in E} f\left(NP([X=x])\right) = f(N)\sum_{x \in E} P([X=x]) + N\sum_{x \in E} f\left(P([X=x])\right)$$

$$= f(N) + NH(X)$$

. On en déduit alors que $H(X) \leq -\frac{f(N)}{N}$, c'est à dire $H(X) \leq \ln(N)$

- **6** On a vu que pour toute variable aléatoire X, $H(X) \ge 0$, donc la valeur minimale est 0. Si X n'est pas constante alors il existe $a \in E$ tel que P([X = a]) > 0 et comme $f(P([X = x])) \ge 0$ si $x \ne a$ alors , on a à fortiori H(x) > 0. On conclut: L'entropie H(X) est minimale c'est à dire est nulle si, et seulement si X est une variable constante

que
$$H(X) = \ln N$$
 d'après la question (6) cela est équivalent à $\sum_{x \in E} f\left(P([X=x])\right) = 0$, c'est à dire à $\sum_{x \in E} f\left(P([X=x])\right) = \sum_{x \in E} (1 - NP([X=x]))$ ou encore $\sum_{x \in E} f\left(NP([X=x])\right) - 1 + NP([X=x]) = 0$. On a pour tout $x \in E$, $f\left(NP([X=x])\right) - 1 = NP([X=x]) \le 0$, cette somme de termes négatifs est

donc nulle si chaque terme est nul .D'après la question (6) cela est équivaut à NP([X = x]) = 1 et donc

$$P([X = x]) = \frac{1}{N}$$
, pour tout $x \in E : X$ suit alors loi uniforme

On conclut : L'entropie est maximale c'est à dire égale à $\ln N$ si, et seulement si X suit une loi uniforme

-

🔗 Variables aléatoirs discrètes

Exercice:5

On rappelle que si X est une variable aléatoire discrète , positive , possédant une espérance , alors $\forall \lambda > 0$, $P([X \ge \lambda]) \le \frac{E(X)}{\lambda}$. Soit $(S_n)_n$ une variable aléatoire , qui suit une loi binomiale de paramètre (n,p) et x>0

- ① Montrer que, pour $\lambda > 0$, on a $P([S_n np \ge nx]) \le \frac{E\left(e^{\lambda(S_n np)}\right)}{e^{n\lambda . x}}$
- ② Démontrer que $\forall t \in \mathbb{R}$, $e^t \leq t + e^{t^2}$, puis en déduire que $P\left([S_n np \geq nx]\right) \leq e^{n(\lambda^2 \lambda.x)}$
- 3 Montrer que : $P([S_n np \ge nx]) \le e^{-\frac{nx^2}{4}}$
- 4 En déduire l'inégalité de \mathcal{B} ernstein :

$$P\left(\left\lceil \frac{S_n}{n} - p \ge x \right\rceil\right) \le 2e^{-\frac{nx^2}{4}}$$

Solution:5

① La fonction exp est croissante et $\lambda > 0$, donc on a

$$[S_n - np \ge nx] = [\lambda (S_n - np) \ge \lambda . nx] = [e^{\lambda (S_n - np)} \ge e^{\lambda . nx}]$$

La variable aléatoire $e^{\lambda(S_n-np)}$ possède une espérance car elle est finie .On en déduit en appliquant l'inégalité de Markov que appliquée à la variable $e^{\lambda(S_n-np)}$:

$$P([S_n - np \ge nx]) = P([e^{\lambda(S_n - np)} \ge e^{\lambda.nx}]) \le \frac{E(e^{\lambda(S_n - np)})}{e^{n\lambda.x}}$$

② \angle n.Il suffit d'étudier les variations de la fonction $t \longmapsto e^{t^2} - e^t + t$ (C'est à vous de le faire) \angle n.En appliquant l'inégalité précédente à $e^{\lambda p}$ et $e^{-\lambda q}$, on obtient

$$pe^{\lambda \cdot q} + qe^{-\lambda \cdot p} \le p\left(\lambda \cdot q + e^{\lambda^2 q^2}\right) + q\left(-\lambda \cdot p + e^{\lambda^2 p^2}\right) \le pe^{\lambda^2 q^2} + qe^{\lambda^2 p^2}$$

Comme $\lambda^2 p^2 \leq \lambda^2$ et $\lambda^2 q^2 \leq q^2$, on en déduit : $pe^{\lambda.q} + qe^{\lambda.p} \leq (p+q)e^{\lambda^2} \leq e^{\lambda^2}$, on a ensuite $E\left(e^{\lambda(S_n-np)}\right) \leq \left(e^{\lambda^2}\right)^n \leq e^{n\lambda^2}$, puis en utilisant l'inégalité de Markov on a

$$P([S_n - np \ge nx]) \le \frac{e^{n\lambda^2}}{e^{n\lambda.x}} = e^{n(\lambda^2 - \lambda.x)}$$

③ La fonction $\varphi: \lambda \longmapsto \lambda^2 - \lambda.x$ admet son minimum sur \mathbb{R}_+^* en $\frac{x}{2}$ et par suite en prenant $\lambda = \frac{x}{2}$ dans la relation précédente , on obtient :

$$P\left(\left[S_{n}-np\geq nx\right]\right)\leq e^{n\left(\frac{x^{2}}{4}-\frac{x^{2}}{2}\right)}\leq e^{-\frac{nx^{2}}{4}}$$

On remarque que

$$\left[\left| \frac{S_n}{n} - p \right| \ge x \right] = \left[\left| S_n - np \right| \ge nx \right] = \left[S_n - np \ge nx \right] \cup \left[S_n - np \le -nx \right]$$

On en déduit que

$$P\left(\left[\left|\frac{S_n}{n}-p\right|\geq x\right]\right)\leq P\left(\left[S_n-np\geq nx\right]\right)+P\left(\left[S_n-np\leq -nx\right]\right)\leq 2e^{-\frac{nx^2}{4}}$$

Exercice:6

On considère un couple de variables aléatoires à valeurs dans $\mathbb N$, pour lesquels il existe un réel λ tel que la loi de (X,Y) soit définie par :

$$\forall (i,j) \in \mathbb{N}^2$$
, $P([X=i] \cap [Y=j]) = \frac{(i+j)\lambda^{i+j}}{ei!j!}$

- ① Déterminer λ
- ② Déterminer la loi de *X*
- 3 Les variables aléatoires X et Y sont-elles indépendantes?
- 4 Calculer $E\left(2^{X+Y}\right)$

- Variables aléatoirs discrètes

Solution:6

① La famille $\left(\frac{(i+j)\lambda^{i+j}}{ei!j!}\right)_{(i,j)\in\mathbb{N}^2}$ définie la loi conjointe du couple (X,Y) si, et seulement si cette famille est

sommable de somme égale à 1 . Pour i fixé la série $\sum_j \frac{(i+j)\lambda^{i+j}}{ei!j!}$ est convergente de somme

$$\sigma_i = \sum_{j=0}^{+\infty} \frac{(i+j)\lambda^{i+j}}{ei!j!} = \frac{\lambda^i}{ei!}(i+\lambda)e^{\lambda}$$
 et la série $\sum_i \sigma_i$ est convergente de somme $\sum_{i=0}^{+\infty} \sigma_i = 2\lambda \cdot e^{2\lambda-1}$, donc

d'après le théorème de Fubini la famille $\left(\frac{(i+j)\lambda^{i+j}}{ei!j!}\right)_{(i,j)\in\mathbb{N}^2}$ est sommable de somme $2\lambda.e^{2\lambda-1}$.La valeur

de λ est le réel vérifiant $2\lambda . e^{2\lambda - 1} = 1$. La fonction $f: x \longmapsto 2xe^{2x - 1}$ est strictement croissante sur \mathbb{R}^* et comme $f\left(\frac{1}{2}\right) = 1$, donc $\lambda = \frac{1}{2}$

② Soit $i \in \mathbb{N}$, on sait que

$$P(X = i) = \sum_{j=0}^{+\infty} P([X = i] \cap [Y = j]) = \sum_{j=0}^{+\infty} \frac{(i+j)\lambda^{i+j}}{e^{i!}j!} = \frac{\lambda^{i}}{i!} \left(i \sum_{j=0}^{+\infty} \frac{\lambda^{j}}{j!} + \sum_{j=0}^{+\infty} \frac{j\lambda^{j}}{j!} \right) = \frac{\lambda^{i}e^{\lambda-1}}{i!}(i+\lambda)$$

Ce qui donne en remplaçant λ par sa valeur que $\forall i \in \mathbb{N}$, $P([X=i]) = \left(\frac{1}{2}\right)^i \frac{e^{-\frac{1}{2}}}{i!} \left(i + \frac{1}{2}\right)$. Un calcul

tout à fait analogue aurait prouvé que $: \forall j \in \mathbb{N}$, $P\left([Y=j]\right) = \left(\frac{1}{2}\right)^j \frac{e^{-\frac{1}{2}}}{j!} \left(j + \frac{1}{2}\right)$

- ③ On a $P([X = 0] \cap [Y = 0]) = \frac{1}{e}$ et $P([X = 0]) \cdot P([Y = 0]) = \frac{1}{4}e^{-1} \neq \frac{1}{e}$. Les variables X et Y ne sont pas indépendantes
- 9 D'après le théorème de transfert la variable 2^{X+Y} admet une espérance si la famille $\left(2^{i+j}\frac{(i+j)\lambda^{i+j}}{ei!j!}\right)_{(i,j)\in\mathbb{N}^2}$ est sommable c'est à dire que la famille $\left(\frac{(i+j)(2\lambda)^{i+j}}{ei!j!}\right)_{(i,j)\in\mathbb{N}^2}$ est sommable .Par une méthode analogue à celle de la première question (ou λ est remplacer par 2λ) on trouve que la famille $\left(2^{i+j}\frac{(i+j)\lambda^{i+j}}{ei!j!}\right)_{(i,j)\in\mathbb{N}^2}$ est sommable de somme égale à :

$$\sum_{(i,j)\in\mathbb{N}^2} 2^{i+j} \frac{(i+j)\lambda^{i+j}}{e^{i!}j!} = 4\lambda \cdot e^{4\lambda - 1} = 2e \cdot \text{D'ou } E(2^{X+Y}) = 2e$$

Exercice:7

Soient X et Y deux variables aléatoires réelles discrète dont le coefficient de corrélation est noté $\rho_{X,Y}$

- ① Soit $(a,c)\in (\mathbb{R}^*)^2$ et $(b,d)\in \mathbb{R}^2$, montrer que $\rho_{aX+b,cY+d}=sign(ac).\rho_{X,Y}$
- ② Quel est la valeur du coefficient de corrélation de *X et Y* si *Y* est une fonction affine de *X* ?
- ③ On suppose dans cette question que X et Y admettent des variances non nulle .On pose $Z = \left(\frac{1}{\sigma_Y}\right) Y \left(\frac{\rho_{X,Y}}{\sigma_X}\right) X$
- 4.1) Calculer V(Z)
- 4.2) Que peut-on en déduire si $|\rho_{X,Y}| = 1$

Solution:7

- ① Nous avons $\rho_{aX+b,cY+d} = \frac{C\left(aX+b,CY+d\right)}{\sigma(aX+b)\sigma(cY+d)} = \frac{acC\left(X,Y\right)}{|ac|\sigma(X)\sigma(Y)} = \frac{ac}{|ac|}\rho(X,Y)$, donc si a et c sont de même signe, alors $\rho_{aX+b,cY+d} = \rho(X,Y)$
- ② On a $\rho(X, aX + b) = sign(a)\rho(X, X) \in \{-1, 1\}$
- 4 Si $ho_{X,Y}=1$, alors V(Z)=0 et par suite la variable Z est constante presque par tout égale à E(Z) , autrement dit il existe deux réels a et b tels que Y=aX+b