Количество теплоты

1. В начальный момент в сосуде под легким поршнем находится только жидкий эфир. На рисунке представлен график зависимости температуры эфира от времени его нагревания и последующего охлаждения. Какой участок графика соответствует конденсации паров эфира?

2. Удельная теплоемкость тела зависит от:

А) массы тела;

В) количества теплоты и массы тела;

Б) рода вещества;

Г) массы тела и температуры тела.

3. В процессе кристаллизации температура вещества:

А) Увеличивается:

Б) Уменьшается; **В)** Не изменяется;

Г) Равна 0.

4. В процессе плавления внутренняя энергия вещества:

А) Не изменяется:

Б) Увеличивается:

В) Уменьшается;

Г) Равна нулю.

5. В начальный момент в сосуде под легким поршнем находится только жидкий эфир. На рисунке представлен график зависимости температуры эфира от времени его нагревания и последующего охлаждения. Какой участок графика соответствует кипению эфира?

- 7. Найдите массу m глицерина, если при нагревании от $t_1 = 10$ °C до $t_2 = 15$ °C он поглотил Q = 12 кДж теплоты. Удельная теплоемкость глицерина $c = 2400 \, \text{Дж/(кг} \cdot ^{\circ}\text{C}).$
- 8. Вычислите удельную теплоту парообразования L жидкого азота, если при переходе m = 200 г азота из жидкого состояния в газообразное при температуре кипения поглощается Q = 40,2 кДж теплоты.
- 9. Определите массу т алюминия, если для его плавления понадобилось Q = 31~200~Дж теплоты. Удельная теплота плавления алюминия $\lambda = 390~$ кДж/кг. Алюминий находился при температуре плавления.
- 10. Теплоемкость тела равна С = 200Дж/К. Определите, какое количество теплоты Q необходимо сообщить телу, чтобы нагреть его с $t_1 = 25$ °C до $t_2 = 50$ °C.
- **11.** В печи сгорели сосновые дрова объемом $V = 10 \text{ дм}^3$. Какое количество теплоты Q получила при этом комната? Плотность сосны $\rho = 440 \text{ кг/м}^3$, а ее удельная теплота сгорания q = 10 МДж/кг.
- 12. Найдите плотность р льда при t = 0 °C, если известно, что для плавления $V = 200 \text{ см}^3$ льда требуется Q = 60.3 кДж теплоты. Удельная теплота плавления льда $\lambda = 3.33 \cdot 10^5 \, \text{Дж/кг}$.
- **13.** Найдите объём V керосина, если при его сгорании выделилось Q = 736 кДж теплоты. Плотность керосина $\rho = 800 \text{ кг/м}^3$, а его удельная теплота сгорания q = 46 M Дж/кг.

- **14.** Какое количество теплоты Q понадобится для того, чтобы $m_1 = 2$ кг воды нагреть от $t_1 = 20$ °C до температуры кипения $t_2 = 100$ °C и $m_2 = 100$ г её обратить в пар? Удельная теплоемкость воды $c = 4200 \text{ Дж/(кг} \cdot {}^{\circ}\text{C})$, удельная теплота парообразования воды L = 2.26 MДж/кг.
- 15. На рисунке 1 изображен график зависимости температуры вещества массой

m = 800 г, находящегося электроплитке, OT времени. начальном состоянии вещество находилось в твердом состоянии. Ответьте на вопросы:

- А) Что изображают отрезки графика AB, BC и CD?
- Б) Сколько времени продолжался процесс нагревания твердого тела? Процесс плавления?
- В) Какова начальная температура вещества?
- Г) Какая масса вещества расплавилась к моменту времени $\tau_1 = 3$ мин?

- 16. Какая масса т льда, взятого при температуре плавления, расплавится, если ему сообщить такое количество теплоты, которое выделится при конденсации m₂ = 8 кг водяного пара, взятого при температуре кипения. Удельная теплота плавления льда $\lambda = 333$ кДж/кг, удельная теплота парообразования воды $L = 22.6 \cdot 10^5 \, \text{Дж/кг}.$
- **17.** На какую высоту h можно было бы поднять груз массой $m_1 = 10$ кг, если бы полностью удалось использовать энергию, выделяющуюся при остывании капли воды массой $m_2 = 1$ г от температуры $t_1 = 100$ °C до $t_2 = 0$ °C? Удельная теплоемкость воды c = 4200 Дж/(кг·К).
- **18.** Свинцовая деталь массой m = 100 г охлаждается от $t_1 = 427$ °C до температуры плавления t₂ = 327 °C и отвердевает. Какое количество теплоты Q передает деталь окружающим телам? Удельная теплоемкость расплавленного свинца $c = 170 \text{ Дж/(кг} \cdot {}^{\circ}\text{C})$, удельная теплота плавления свинца $\lambda = 25 \text{ кДж/кг}$.
- 19. При скольжении бруска по шероховатой поверхности выделилось количество теплоты Q = 1,5 Дж. На какое расстояние s переместилось тело, если сила трения была постоянна и равна $F_{TD} = 5 \text{ H}.$
- 20. Брусок массой m = 250 г перемещают равномерно по горизонтальной поверхности с помощью динамометра, расположенного горизонтально. Сила упругости динамометра $F_{ynp} = 1,5$ H. Найдите количество выделившейся теплоты Q, при движении бруска со скоростью v = 8 см/с в течение времени t = 20 с.
- **21.** Объем формы для пищевого льда $V = 750 \text{ см}^3$. Форму заливают водой при температуре $t_1 = 12$ °C, из которой получают лед при температуре $t_2 = 0$ °C. Какое количество теплоты выделилось при этом? Плотность воды $\rho = 1000 \text{ кг/м}^3$. Удельная теплоемкость воды c_в = 4200 Дж/(кг·К), удельная теплота плавления льда $\lambda = 340 \text{ кДж/кг.}$

- **22.** Молот массой $m_1 = 600$ кг падает на стальную деталь массой $m_2 = 1,4$ кг с высоты h = 80 см. На сколько градусов Δt нагреется деталь при ударе, если на ее нагревание идет $\eta = 40$ % всей энергии молота? Удельная теплоемкость стали $c = 460~\mathrm{Дж/(кr}~^{\circ}\mathrm{C})$.
- **23.** Определите, какая масса m_1 угля потребуется, чтобы нагреть $m_2 = 0.2$ т железного лома от $t_1 = 20$ °C до температуры $t_2 = 420$ °C. КПД плавильной печи $\eta = 60$ %. Удельная теплота сгорания угля q = 30 МДж/кг. Удельная теплоемкость железа c = 460 Дж/(кг °C).
- **24.** Молот массой $m_1 = 10$ кг, двигающийся со скоростью $\upsilon = 20$ м/с, ударяется о железную деталь массой $m_2 = 800$ г, лежащую на наковальне. Найдите изменение температуры Δt детали, если на её нагревание идёт $\eta = 46$ % энергии молота. Удельная теплоемкость железа c = 460 Дж/(кг °C).
- **25.** Смесь, состоящую из $m_1=200$ г льда и $m_2=2$ кг воды, при общей температуре $t_1=0$ °C нужно нагреть до температуры кипения $t_2=100$ °C и обратить в пар. Какое количество теплоты Q понадобится для этого? Удельная теплота плавления льда $\lambda=333$ кДж/кг, удельная теплоемкость воды c=4200 Дж/(кг·°C), удельная теплота парообразования воды L=2,26 МДж/кг.
- **26.** До какой температуры t_2 нагреется $m_1 = 4$ кг воды при $t_1 = 14$ °C, если на нагревание пойдет только $\eta = 70$ % теплоты, выделенной при сгорании спирта массой $m_2 = 40$ г? Удельная теплота сгорания спирта q = 27 МДж/кг. Удельная теплоемкость воды c = 4200 Дж/(кг·°C).
- **27.** На рисунке приведен график зависимости температуры некоторого металлического образца, помещенного в электропечь постоянной мощности, от времени. Определите массу m образца, если на нагревание образца до температуры плавления затрачено $Q = 6 \, \text{МДж}$, а удельная теплота плавления образца $\lambda = 36 \, \text{кДж/кг}$.

- **28.** Сосуд с водой нагревают на электроплитке от $t_1=20$ °C до кипения ($t_{\kappa}=100$ °C) за $\tau_1=20$ минут. Сколько ещё времени τ_2 нужно, чтобы 42 % воды обратить в пар? Удельная теплоемкость воды $c=4,2\cdot10^3$ Дж/(кг· °C), удельная теплота парообразования воды $L=2,2\cdot10^6$ Дж/кг.
- **29.** В калориметре теплоемкостью C = 75 Дж/(°C) находится $m_1 = 100 \text{ г}$ воды при температуре $t_1 = 20$ °C. В калориметр опускают железное тело нагретое до температуры $t_2 = 90$ °C. После установления теплового равновесия в калориметре устанавливается температура t = 29 °C. Найдите массу тела m_2 . Удельная теплоемкость воды $c_1 = 4200 \text{ Дж/(кг·°C)}$, удельная теплоемкость железа $c_2 = 460 \text{ Дж/(кг·°C)}$.
- **30.** Вода, помещенная в морозильную камеру холодильника, охлаждается от $t_1 = 20$ °C до $t_0 = 0$ °C за $\tau_1 = 10$ мин. За какое время τ_2 четверть массы этой воды превратится в лед? Удельная теплота плавления льда $\lambda = 3,33\cdot 10^5$ Дж/кг. Удельная теплоемкость воды $c_{\rm B} = 4200$ Дж/(кг·°C).

- **31.** Груженые сани массой M равномерно двигались по горизонтальной поверхности покрытой снегом, температура которого t=0 °C. Коэффициент трения между полозьями саней и снегом $\mu=0.035$. Найдите массу саней с грузом, если все количество теплоты выделившееся при трении полозьев о снег, пошло на плавление снега ($\lambda=330~\mathrm{кДж/кг}$) и на пути $s=800~\mathrm{m}$ под полозьями растаял снег массой $m=280~\mathrm{r}$.
- **32.** Какую массу льда m_1 при температуре $t_1 = -20$ °C можно расплавить стоградусным водяным паром, масса которого $m_2 = 1$ кг? Удельная теплоемкость воды $c_B = 4.2 \cdot 10^3$ Дж/(кг· °C), удельная теплота парообразования воды $L = 22.6 \cdot 10^5$ Дж/кг, удельная теплота плавления льда $\lambda = 3.33 \cdot 10^5$ Дж/кг, удельная теплоемкость льда $c_\pi = 2.1 \cdot 10^3$ Дж/(кг· °C).

Ответы

```
8. L = 201 кДж/кг;
                                                          9. m = 0.08 \text{ kg};
                                                                                       10. O = 5.0 \text{ кДж};
                               12. \rho = 905 \text{ kg/m}^3;
                                                           13. V = 20 \text{ cm}^3:
                                                                                      14. O = 898 \ кДж;
11. O = 44 \text{ МДж};
                                                                                        20. Q = 2,4 Дж;
16. m_1 = 54 \text{ kg}; 17. h = 4.2 \text{ m}; 18. O = 4.2 \text{ kJw}; 19. s = 30 \text{ cm};
21. O = 292,8 кДж;
                                 22. \Delta t = 3 °C;
                                                           23. m_1 = 2.04 \text{ kg};
                                                                                         24. \Delta t = 2.5 °C;
25. O = 5.96 \text{ МДж};
                                 26. t_2 = 62 °C;
                                                             27. m = 250 \text{ kg};
                                                                                         28. \tau_2 = 55 мин;
29. m_2 = 0.159 \text{ kg}; 30. \tau_2 = 9.9 \text{ muH}; 31. M = 330 \text{ kg}; 32. m_1 = 7.15 \text{ kg}
```