Practice questions for mid-semester exam

Question 1. Give examples of the following, with proof. Or if no example exists, prove that.

- (a) A non-rational algebraic number.
- (b) A prime ideal which is not maximal.
- (c) A degree 3 extension of $\mathbb{C}(t)$.
- (d) A degree 3 extension of \mathbb{F}_3 .
- (e) An algebraic extension which is not finite.
- (f) A non-rational number $\alpha \in \mathbb{Q}(\sqrt{5})$ such that $\mathbb{Q}(\alpha)$ is not equal to $\mathbb{Q}(\sqrt{5})$.
- (g) A non-rational number $\alpha \in \mathbb{Q}(\sqrt[4]{5})$ such that $\mathbb{Q}(\alpha)$ is not equal to $\mathbb{Q}(\sqrt[4]{5})$.
- (h) A degree 3 extension of \mathbb{Q} which is not isomorphic to one of the form $\mathbb{Q}(\sqrt[3]{a})$

Question 2. Determine the degrees of the following extensions (ζ_n stands for $e^{2\pi i/n}$)

- (a) $\mathbb{Q}(\sqrt[4]{4})$
- (b) $\mathbb{Q}(\sqrt[5]{6}, \sqrt[3]{7})$
- (c) $\mathbb{Q}(\sqrt{2} + \sqrt{-3})/\mathbb{Q}$
- (d) $\mathbb{Q}(\sqrt{2}+\sqrt{3})/\mathbb{Q}$
- (e) \mathbb{R}/\mathbb{Q}
- (f) $\mathbb{Q}(\sqrt[3]{2}, \zeta_3\sqrt[3]{2})$
- (g) \mathbb{C}/\mathbb{R}
- (h) $\mathbb{Q}(\zeta_{11})/\mathbb{Q}$ (i) $\mathbb{Q}(\zeta_9 + \zeta_9^{-1})/\mathbb{Q}$

Question 3. Prove that the following polynomials are irreducible over \mathbb{Q}

- (a) $x^4 4x^3 + 6$
- (b) $x^3 + 7x + 4$
- (c) $x^3 + 7x + 3$
- (d) $x^6 + 30x^5 15x^3 + 6x 120$
- (e) $x^4 + x^3 + x^2 + 1$

Question 4. Which of the following are fields? Which are isomorphic to subrings of \mathbb{R} ?

- (a) $\mathbb{Q}[x]/\langle x^2 2 \rangle$
- (b) $\mathbb{Q}[x]/\langle x^2 4x + 1 \rangle$
- (c) $\mathbb{Q}[x]/\langle x^2-1\rangle$
- (d) $\mathbb{Q}[x]/\langle x-3\rangle$
- (e) $\mathbb{Q}[x]/\langle x^2 + 1\rangle$
- (f) $\mathbb{Q}[x]$

Question 5. Determine the minimal polynomials of the following elements

- (a) $1 + \sqrt{3} \in \mathbb{R}$ over \mathbb{Q}
- (b) $\sqrt{5} \in \mathbb{R}$ over $\mathbb{Q}(\sqrt{3})$
- (c) $\alpha^2 + 1 \in \mathbb{E}$ over \mathbb{F}_3 , where \mathbb{E} is the field $\mathbb{F}_3[x]/(x^3 + 2x + 1)$ and $\alpha \in \mathbb{E}$ is the coset \bar{x} .
- (d) $i\sqrt{-1+2\sqrt{3}} \in \mathbb{C}$ over \mathbb{Q}

Question 6. For which prime numbers p is $\cos(2\pi/p)$ irrational?

Question 7. Prove or disprove the following.

- (a) Let E/F be a field extension and $\alpha \in E$. If α is algebraic over F then $F[\alpha] = F(\alpha)$.
- (b) Let E/F be a field extension and $\alpha \in E$. If $F[\alpha] = F(\alpha)$ then α is algebraic over F.
- (c) A regular 365-gon is constructible.
- (d) Every field of positive characteristic is finite.
- (e) Every finite field has positive characteristic.
- (f) $\sqrt{2} \in \mathbb{R}$ can be written as a polynomial expression of $\sqrt{2} + \sqrt{5}$.