SST1 Übungsstunde 10

Matteo Dietz

December 2024

Themenüberblick

• Z-Transformation

Definition, Konvergenzgebiete und Eigenschaften Zusammenhang zu Laplace Transformation und DTFT Anwendung auf zeitdiskrete LTI-Systeme

Aufgaben für diese Woche

114, **115**, 116 117 118, **119**, **120**, 121, **122**

Die **fettgedruckten** Übungen empfehle ich, weil sie wesentlich zu eurem Verständnis der Theorie beitragen und/oder sehr prüfungsrelevant sind.

\mathcal{Z} -Transformation

$$\mathcal{Z}\{x[n]\} = X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}, \quad z \in \mathbb{C}$$

- Die Summe $\sum_{n=-\infty}^{\infty} x[n]z^{-n}$ kann möglicherweise divergieren.
 - ⇒ Wir müssen Konvergenzgebiete betrachten.

Konvergenzgebiet (ROC)

$$\mathsf{ROC}_X = \{z \in \mathbb{C} : X(z) \text{ konvergiert absolut}\}$$

•
$$z = re^{2\pi i\theta} \implies \sum_{n=-\infty}^{\infty} |x[n]r^{-n}e^{-2\pi in\theta}| = \sum_{n=-\infty}^{\infty} |x[n]r^{-n}|$$

- \implies ROC hängt nur von |z| = r ab.
- \implies ROC besteht aus Kreisscheiben um z = 0:

$$ROC_X = \{ x \in \mathbb{C} : 0 \le R_- < |z| < R_+ \le \infty \}$$

⇒ Konvergenzgebiet muss **zusammenhängend** sein.

ROC: Rechtsseitige Signale

$$X(z) = \sum_{n=N_1}^{\infty} x[n]z^{-n}$$

 \mathcal{Z} -Transformation X(z) ist rational und x[n] rechtsseitig \implies ROC = Region in der komplexen Ebene ausserhalb des betragsweise grössten Poles von X(z)möglicherweise inklusive $|z|=\infty$.

ROC: Linksseitige Signale

$$X(z) = \sum_{k=-\infty}^{M} x[n]z^{-n}$$

Z-Transformation X(z) ist rational und x[n] linksseitig \Longrightarrow ROC = Region in der komplexen Ebene **innerhalb** des betragsweise kleinsten Poles von X(z) ausser möglicherweise z=0.

ROC: Beidseitige Signale

Beidseitiges Signal = Summe rechtsseitiges und linksseitiges Signal

ROC enthält die Schnittmenge der ROCs vom rechtsseitigen und linksseitigen Signal.

ROC: Signale endlicher Länge

• Ein Signal endlicher Länge nimmt nur an einer **endlichen Anzahl an Stellen** Werte ungleich null an.

z.B. für
$$n$$
 mit $-\infty < N \le n \le M < \infty$

• \mathbb{Z} -Transformation ist die Summe einer endlichen Anzahl Terme und muss somit für $z \neq 0, \infty$ konvergieren, weil dann jeder Term der Summe endlich ist.

• Die ROC kann aber muss nicht z = 0 oder ∞ enthalten.

Aufgabe 115: ROCs

Aufgabe 115: ROCs

Eigenschaften der \mathcal{Z} -Transformation

Linearität:

$$\mathcal{Z}\{ax[n] + by[n]\} = aX(z) + bY(z)$$

Das Konvergenzgebiet ist mindestens $ROC_X \cap ROC_Y$

Zeitverschiebung:

$$\mathcal{Z}\{x[n-n_0]\}=z^{-n_0}X(z)$$

Das Konvergenzgebiet bleibt gleich.

Eigenschaften der Z-Transformation

• Faltung:

$$y[n] = (x * h)[n] \circ \mathcal{Z} \bullet Y(z) = X(z)H(z)$$

Das Konvergenzgebiet ist mindestens $ROC_X \cap ROC_Y$

Umkehrformel:

$$x[n] = \frac{1}{2\pi i} \oint_C X(z) z^{n-1} dz$$

C = geschlossener Pfad in der ROC im Gegenuhrzeigersinn

\mathcal{Z} -Transformation: Formelsammlung

Matteo Dietz

SST1 Übungsstunde 10

\mathcal{Z} -Transformation: Formelsammlung

105.	$\delta[n]$	0-	1	$\forall z$
106.	$\sigma[n]$	o—•	$\frac{z}{z-1}$	z > 1
107.	$-\;\sigma[-n-1]$	0—●	$\frac{z}{z-1}$	z < 1
108.	$\alpha^n\sigma[n]$	○	$\frac{z}{z-\alpha}$	$ z > \alpha $
109.	$-\;\alpha^n\sigma[-n-1]$	0—●	$\frac{z}{z-\alpha}$	$ z < \alpha $
110.	$n\sigma[n]$	○	$\frac{z}{(z-1)^2}$	z > 1
111.	$-\ n\sigma[-n-1]$	o—•	$\frac{z}{(z-1)^2}$	z < 1
112.	$\sin(\alpha n) \; \sigma[n]$	o—•	$\frac{z\sin(\alpha)}{z^2 - 2z\cos(\alpha) + 1}$	z > 1
113.	$\cos(\alpha n) \; \sigma[n]$	○	$\frac{z(z-\cos(\alpha))}{z^2-2z\cos(\alpha)+1}$	z > 1
114.	$\rho^n \sin(\alpha n) \; \sigma[n]$	o ⊸•	$\frac{\rho z \sin(\alpha)}{z^2 - 2\rho z \cos(\alpha) + \rho^2}$	$ z > \rho$
115.	$\rho^n\cos(\alpha n)\;\sigma[n]$	o—•	$\frac{z(z-\rho\cos(\alpha))}{z^2-2\rho z\cos(\alpha)+\rho^2}$	$ z > \rho$
116.	$\sin(\alpha n + \varphi) \; \sigma[n]$	o ⊸•	$\frac{z^2 \sin(\varphi) + z \sin(\alpha - \varphi)}{z^2 - 2z \cos(\alpha) + 1}$	z > 1
117.			$\log_e\left(\frac{z}{z-1}\right)$	z > 1
118.	$\frac{1-e^{-\alpha n}}{n} \ \sigma[n]$	o →	$\alpha + \log_e \left(\frac{z - e^{-\alpha}}{z - 1} \right)$	$ z >1,\; \alpha>0$
119.	$\frac{\sin(\alpha n)}{n} \sigma[n]$	○	$\alpha + \arctan\left(\frac{\sin(\alpha)}{z - \cos(\alpha)}\right)$	$ z > \cos(\alpha), \ \alpha > 0$

\mathcal{Z} -Transformation \leftrightarrow Laplace-Transformation

(*Z*-Transf.:)
$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

(Laplace:) $X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$

Die \mathbb{Z} -Transformation ist das zeitdiskrete Analogon zur Laplace-Transformation.

\mathcal{Z} -Transformation \leftrightarrow DTFT

$$(\mathcal{Z} ext{-Transf.:}) \qquad X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$
 $\hat{x}(\theta) = \sum_{n=-\infty}^{\infty} x[n]e^{-2\pi i n \theta}$

Die DTFT ist die Z-Transformation ausgewertet auf dem Einheitskreis in der komplexen Ebene

Aufgabe 122: \mathcal{Z} -Transformation \leftrightarrow DTFT

Es sei
$$x[n] = \delta[n+3] + \delta[n-3]$$

- a) Berechnen Sie die \mathbb{Z} -Transformierte X(z) von x[n].
- b) Schliessen Sie aus dem Ergebnis in a) auf die zeitdiskrete Fouriertransformierte $\hat{x}(\theta)$ von x[n].
- c) Berechnen Sie den Betrag und die Phase von $\hat{x}(\theta)$.

Anwendungen Z-Transformation auf LTI-Systeme

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{m=0}^{M} b_m x[n-m]$$

$$95. \int_{a_k z^{-k}} \left(\sum_{k=0}^{N} a_k z^{-k}\right) Y(z) = \left(\sum_{m=0}^{M} b_m z^{-m}\right) X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{m=0}^{M} b_m z^{-m}}{\sum_{k=0}^{N} a_k z^{-k}}$$

Matteo Dietz

Kausalität

Das LTI-System ist kausal, falls h[n] rechtsseitig ist, d.h. wenn ROC_H ausserhalb der betragsweise grössten Poles liegt.

BIBO-Stabilität

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty \Leftrightarrow \sum_{n=-\infty}^{\infty} |h[n]z^{-n}| < \infty \text{ mit } |z| = 1$$

LTI-System BIBO-stabil, falls **Einheitskreis** \subseteq **ROC**_H liegt, d.h. wenn $\{z \in \mathbb{C} : |z| = 1\} \subseteq \mathsf{ROC}_H$. Wenn H(z) rational ist, ist es eine Äquivalenz.

Matteo Dietz SST1 Ü

SST1 Übungsstunde 10

Serien- und Parallelschaltung von LTI-Systemen

$$H(z) = H_1(z)H_2(z)$$

$$H(z) = H_1(z) + H_2(z)$$

Rückkopplung

$$X(z)H_1(z) + H_2(z)Y(z)H_1(z) = Y(z)$$

 $X(z)H_1(z) = Y(z)(1 - H_1(z)H_2(z))$
 $H(z) = \frac{H_1(z)}{1 - H_1(z)H_2(z)}$

Prüfungsaufgabe: Frühjahr 2024, Aufgabe 3