task-4

May 15, 2025

1 Task 4: Present Business Insight

1.0.1 Objective

Translate technical analysis into clear, actionable insights for decision-makers at Prime Frontier Group, focusing on where and why to launch pilot solar deployment projects.

1.0.2 Top 3 Recommended Regions for Pilot Solar Projects

- 1. **Region_32**
 - Solar Irradiance: 7.35 kWh/m²/day
 - Electricity Cost: \$0.39/kWh
 - **Grid Access**: 46.4%
 - Solar Access Score: 0.78 (highest overall)
- 2. Region 7
 - Solar Irradiance: 7.08 kWh/m²/day
 - Electricity Cost: \$0.38/kWh
 - **Grid Access**: 55.7%
 - Solar Access Score: 0.78
- 3. Region_3
 - Solar Irradiance: 6.15 kWh/m²/day
 - Electricity Cost: \$0.36/kWh
 - Grid Access: 28.3%
 - Solar Access Score: 0.71

1.0.3 Why These Regions?

- Strong Technical Potential: All three regions have above-average irradiance (6.15–7.35 kWh/m²/day), ensuring reliable solar output year-round.
- **High Cost of Electricity**: Each region exceeds the \$0.35/kWh mark making solar not just sustainable, but economically urgent.
- Underserved Energy Access: Grid access ranges from 28% to 55%, meaning solar can leapfrog existing limitations and bring energy equity.

- Operational Readiness: Moderate infrastructure scores (0.48–0.68) and low terrain ruggedness (0.19–0.57) suggest installation is feasible without major logistical hurdles.
- Model & Score Alignment: These regions consistently ranked at the top of both the Solar Access Score and Random Forest predictions, reducing risk of misclassification.

1.0.4 Remaining Risks & Unknowns

- Land Ownership & Legal Barriers: The current dataset lacks detail on zoning laws, land tenure, or environmental clearance all crucial for implementation.
- Planned Grid Expansions: A region labeled as low-access today may be part of an upcoming national electrification initiative, altering its long-term solar value.
- Community Readiness: We do not yet account for energy literacy, local acceptance, or willingness to adopt solar-as-a-service models.

1.0.5 What Additional Data Would Strengthen the Analysis?

- 1. Government Electrification Roadmaps to avoid overlap with public utility expansions.
- 2. Land Use & Ownership Data to identify viable installation zones and reduce legal disputes.
- 3. **Microeconomic Profiles** income levels, energy affordability, and willingness-to-pay thresholds.
- 4. Seasonal & Climate Data to ensure solar performance across dry and rainy seasons.
- 5. Access to Logistics Infrastructure road conditions, distance from depots, serviceability.

1.0.6 Strategic Recommendation for Prime Frontier

Begin pilot deployments in Region_32, Region_7, and Region_3. These regions are data-backed, strategically underserved, and operationally feasible. Success in these zones can position Prime Frontier Group as a leader in efficient, inclusive solar expansion — and create a blueprint for scalable rollouts across West Africa.

•		Grid			Solar
	Solar Irradiance	Access	Electricity Cost	Infrastructure	e Access
Region	$(kWh/m^2/day)$	(%)	$(\mathrm{USD/kWh})$	Index	Ruggedn es ere
Region_	_32 .35	46.4%	\$0.39	0.48	0.19 0.78
Region_7 7.08		55.7%	\$0.38	0.68	0.19 0.78
Region_	_3 6.15	28.3%	\$0.36	0.49	0.57 0.71