Basic Statistics

Sudipta Das

Assistant Professor,

Department of Computer Science,
Ramakrishna Mission Vivekananda Educational & Research Institute

Outline I

- Regression
 - Method of Curve Fitting

Curve Fitting: Problem I

- A High School Problem in Physics:-
 - Measuring the **conductance** (=1/resistance) of a device

Curve Fitting: Problem II

Experiment Result

Voltage(V_x)		0.2		_	 1.9	2
$Current(I_y)$	1.236	0.622	1.537	0.873	 5.392	6.661

Current (I_y) vs. Voltage (V_x)

Solution I

- Intuitive Solution
 - Draw a straight line, goes through origin such that the distances of the observed points are not far from that straight line
 - Then report the slop of that straight line as the conductance of the device

Current (I_y) vs. Voltage (V_x) with Prediction Line

Solution II

 Mathematically, among numerous straight lines, passing through the origin, choose the one which minimize

$$\Delta = \sum_{i=1}^n (I_{y_i} - I_{\hat{y}_i})^2$$

- I_{y_i} : Observed value of current in experiment at voltage V_{x_i}
- $I_{\hat{y}_i}$: Predicted value of current at voltage V_{x_i} , calculated as

$$I_{\hat{y}_i} = c + mV_{x_i}$$

• $(I_{y_i} - I_{\hat{y}_i})$: Error by prediction at voltage V_{x_i}

Solution III

- Question:- Which pair of (c, m) will minimize Δ ?
- Ans:-

$$\frac{\delta}{\delta c} \Delta = \frac{\delta}{\delta c} \sum_{i=1}^{n} (I_{y_i} - I_{\hat{y}_i})^2
= \frac{\delta}{\delta c} \sum_{i=1}^{n} (I_{y_i} - c - mV_{x_i})^2 = \sum_{i=1}^{n} 2(I_{y_i} - c - mV_{x_i})(-1) = 0$$

$$\frac{\delta}{\delta m} \Delta = \frac{\delta}{\delta m} \sum_{i=1}^{n} (I_{y_i} - I_{\hat{y}_i})^2$$

$$= \frac{\delta}{\delta m} \sum_{i=1}^{n} (I_{y_i} - c - mV_{x_i})^2 = \sum_{i=1}^{n} 2(I_{y_i} - c - mV_{x_i})(-V_{x_i}) = 0$$

Solution IV

Therefore,

$$m = \frac{\sum_{i=1}^{n} (I_{y_i} - \bar{I}_y)(V_{x_i} - \bar{V}_x)}{\sum_{i=1}^{n} (V_{x_i} - \bar{V}_x)^2} = \frac{Cov(I_y, V_x)}{Var(V_x)}, (\text{say } \hat{\beta}_1)$$

and

$$c = \bar{l}_y - m\bar{V}_x$$
, (say $\hat{\beta}_0$).

Least Square method I

- The method of finding the 'best' line by minimizing the Δ is called Least Square method
- $\hat{\beta}_0$ and $\hat{\beta}_1$ are called the least square **predicted stray current** and **predicted conductance**, respectively of the **true stray current** and **true conductance**, respectively.

Least Square method II

- Outcome by the method of least square:
 - $\hat{\beta}_0$ and $\hat{\beta}_1$ are predicted values of the true stray current and the true conductance, respectively.
 - Error/Residual $(E_i = I_{y_i} I_{\hat{y}_i})$ at each point (V_{x_i}, I_{y_i}) ; i = (1, ..., n).

Residual (E) vs. Voltage (V_x) with Prediction Line

Least Square method III

We can calculate Residual Sum of Squares

$$RSS = \Delta_{min} = \sum_{i=1}^{n} E_i^2$$

• A scaled value of Δ_{min}

$$RSE = \sqrt{\frac{\Delta_{min}}{n-2}}$$

Lesser RSE (Residual Standard Error) better prediction

Least Square method IV

Multiple R-squared

$$R^2 = 1 - \frac{RSS}{TSS}$$

where, $RSS = \Delta_{min}$ and

TSS (Total Sum of Squares) =
$$\sum_{i=1}^{n} (I_{y_i} - \overline{I}_y)^2$$
.

• Higher R² better estimate