NOTES ON ERGODIC THEORY

ZHAOSHEN ZHAI

Abstract. Notes on the Summer 2025 Reading Group on Ergodic Theory, following [Anu22], organized by Frédéric Kai, Ludovic Rivet, and Zhaoshen Zhai (website).

Contents

- Lecture 1 (Samy Lahlou): Crash course on Measure Theory, Part I
 Lecture 2 (Samy Lahlou): Crash course on Measure Theory, Part II
 Lecture 3 (Peng Bo): Introduction to Ergodic Theory
 - 1. Lecture 1 (Samy Lahlou): Crash course on Measure Theory, Part I

Given a set X, our goal is to define a map $\mu: \mathcal{P}(X) \to [0,\infty]$ that assigns to each subset $A \subseteq X$ a measure $\mu(A) \in [0,\infty]$ that 'behaves like the volume of A'. This turns out to be impossible in full generality (and we shall see using ergodic-theoretic methods that this impossibility is for good reason), so we instead restrict to special subsets of X with a nice algebraic (think: 'constructible') structure.

Further reading. [Anu23, Lectures 1 to 5] and [Fol99, Chapter 1].

Definition 1.1. Let X be a set. A σ -algebra on X is a collection $\mathcal{B} \subseteq \mathcal{P}(X)$ of subsets of X containing \varnothing and is closed under complements and countable unions. More precisely:

- 1. (Non-trivial). $\emptyset \in \mathcal{B}$.
- 2. (Closure under complements). For any $A \in \mathcal{B}$, we have $X \setminus A \in \mathcal{B}$.
- 3. (Closure under countable unions). For any countable family $\{A_n \in \mathcal{B} : n \in \mathbb{N}\}$, we have $\bigcup_n A_n \in \mathcal{B}$.

Definition 1.2. If \mathcal{B} is a σ -algebra on a set X, the pair (X,\mathcal{B}) is said to be a measurable space.

A useful way to construct a σ -algebra is to start with an arbitrary family $\mathcal{C} \subseteq \mathcal{P}(X)$ and close¹ it under the above three conditions. Abstractly:

Definition 1.3. The σ -algebra generated by $\mathcal{C} \subseteq \mathcal{P}(X)$ is $\langle \mathcal{C} \rangle_{\sigma} := \bigcap \{\mathcal{B} : \mathcal{B} \supseteq \mathcal{C} \text{ is a } \sigma\text{-algebra on } X\}$.

Note that $\langle \mathcal{C} \rangle_{\sigma}$ is indeed a σ -algebra on X since the intersection of σ -algebras is again a σ -algebra.

Definition 1.4. Let X be a topological space. The *Borel* σ -algebra on X is $\mathcal{B}(X) := \langle \mathcal{T} \rangle_{\sigma}$, where \mathcal{T} is the topology on X. The elements of $\mathcal{B}(X)$ are called the *Borel sets* of X.

Date: May 7, 2025.

¹This 'closure' operation can be made precise as follows. Starting with $\mathcal{C}_0 := \mathcal{C}$, throw in all the subsets of X that is necessary to satisfy Definition 1.1 relativized to \mathcal{C}_0 to obtain \mathcal{C}_1 (that is, let \mathcal{C}_1 contain \varnothing and such that if $A \in \mathcal{C}_0$, then $X \setminus A \in \mathcal{C}_1$, and similarly for condition 3). Then, let \mathcal{C}_2 be defined by throwing in all the countable unions and complements of sets in \mathcal{C}_1 . Doing so infinitely-many times and taking the union $\bigcup_{\alpha} \mathcal{C}_{\alpha}$ will give us $\langle \mathcal{C} \rangle_{\sigma}$, but beware that this process must proceed into the transfinite up to $\alpha < \omega_1$, where ω_1 is the first uncountable ordinal; ask your local set theorist why.

Intuitively, for any topological space X, one would like to 'measure' the Borel sets. This is justified since if one wants a measure compatible with the topology, then one must be able to measure the open sets, and hence also closed sets, countable unions of closed sets (called F_{σ} sets), countable intersections of open sets (called G_{δ} sets), countable intersections of F_{σ} sets, countable unions of G_{δ} sets, and so on².

Definition 1.5. A measure on a measurable space (X, \mathcal{B}) is a map $\mu : \mathcal{B} \to [0, \infty]$ such that $\mu(\emptyset) = 0$ and $\mu(\bigsqcup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} \mu(A_n)$ for any pairwise disjoint family $\{A_n \in \mathcal{B} : n \in \mathbb{N}\}.$

The triple (X, \mathcal{B}, μ) is then called a measure space. A Borel measure is a measure defined on some Borel σ -algebra.

Example 1.6 (Lebesgue). Equip \mathbb{R} with its usual topology. There is³ a unique measure $\lambda : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ on \mathbb{R} , called the *Lebesgue measure*, such that $\lambda([a, b]) = b - a$ for each $a \leq b$.

Example 1.7 (Bernoulli). Equip $2 = \{0,1\}$ with the discrete topology and consider the product topology on $2^{\mathbb{N}}$. For each $p \in [0,1]$, is a unique measure $\mu_p : \mathcal{B}(2^{\mathbb{N}}) \to [0,\infty]$ on $2^{\mathbb{N}}$, called the *Bernoulli* (p) measure, such that for each word $w \in 2^{<\mathbb{N}}$, we have $\mu_p([w]) = p^{n_1}(1-p)^{n_0}$ where n_i is the number of $i \in \{0,1\}$ in w and [w] is the set of all sequences in $2^{\mathbb{N}}$ containing w as a prefix.

If p = 0 (similarly if p = 1), then $\mu_p(\xi) \in \{0, 1\}$, and we have $\mu_p(\xi) = 1$ iff $(p, p, p, ...) \in \xi$. Thus, all of the measure is concentrated at (p, p, p, ...). Measures in which this occurs are called *Dirac measures*.

Example 1.8 (Dirac). Let X be a set and fix $x \in X$. The *Dirac measure concentrated* at x is the measure $\delta_x : \mathcal{P}(X) \to \{0,1\}$ defined by $\delta_x(A) := 1$ iff $x \in A$, and $\delta_x(A) := 0$ iff $x \notin A$.

Definition 1.9. A measure μ on (X,\mathcal{B}) is said to be *finite* if $\mu(X) < \infty$, a probability measure if $\mu(X) = 1$, and σ -finite if there is a partition $X = \bigsqcup_{n \in \mathbb{N}} X_n$ such that $X_n \in \mathcal{B}$ and $\mu(X_n) < \infty$ for all $n \in \mathbb{N}$.

Unless otherwise stated, all measures are assumed to be σ -finite. In fact, we will usually only deal with probability measures, since we can also normalize a finite measure to a probability measure by $\mu \mapsto \mu/\mu(X)$.

Lastly, even though μ is only defined on the σ -algebra \mathcal{B} , we can slightly extend μ to a larger σ -algebra.

Definition 1.10. Let (X, \mathcal{B}, μ) be a measure space. A subset $Z \subseteq X$ is said to be μ -null if there exists some $Z' \in \mathcal{B}$ such that $Z \subseteq Z'$ and $\mu(Z') = 0$. We write Null_{μ} for the set of all μ -null subsets of X. A subset $A \subseteq X$ is said to be μ -conull if $X \setminus A$ is μ -null.

Definition 1.11. Let (X, \mathcal{B}, μ) be a measure space. A subset $A \subseteq X$ is μ -measurable⁴ if there exists some $B \in \mathcal{B}$ and some μ -null set Z such that $A = B \cup Z$. We write Meas_{μ} for the set of all μ -measurable sets.

It is an exercise that $\operatorname{Meas}_{\mu} = \langle \mathcal{B} \cup \operatorname{Null}_{\mu} \rangle_{\sigma}$. Moreover, μ admits a unique extension to a map $\overline{\mu} : \operatorname{Meas}_{\mu} \to [0, \infty]$, called the *completion* of μ , and this measure satisfies $\operatorname{Meas}_{\overline{\mu}} = \operatorname{Meas}_{\mu}$. Hint: $\overline{\mu}(B \cup Z) := \mu(B)$.

Definition 1.12. A measure μ is complete if $\overline{\mu} = \mu$.

For convenience, we will always assume that measures are complete. Neither measures λ nor μ_p in Examples 1.6 and 1.7 are complete, so we tacitly extend them.

We end with some easy exercises on measures; please read/prove them, as they will be used freely in the future; they are roughly ranked by difficulty. Throughout, let (X, \mathcal{B}, μ) be a measure space and let $A_n \in \mathcal{B}$.

Exercise 1.13 (Monotonicity). If $A_1 \subseteq A_2$, then $\mu(A_1) \leq \mu(A_2)$.

Deduce that if μ is finite, then μ is a bounded function. (Are σ -finite measures bounded?)

Exercise 1.14 (Inclusion-exclusion). For any $A_1, A_2 \in \mathcal{B}$, we have $\mu(A_1 \cup A_2) + \mu(A_1 \cap A_2) = \mu(A_1) + \mu(A_2)$.

²This goes up the *Borel hierarchy*, studied in *Descriptive Set Theory*; see [Kec95].

³We will not prove this fact, but it is an application of Carathéodory's Extension Theorem; see [Anu23, Lecture 4].

⁴Very confusing terminology. One might think that elements of \mathcal{B} are the 'measurable' ones, but this removes μ from the picture. In general, there are much more μ -measurable sets that there are sets in \mathcal{B} . Indeed, there are 2^{\aleph_0} -many Borel sets on \mathbb{R} , but there are $2^{2^{\aleph_0}}$ -many λ -measurable sets!

Exercise 1.15 (Continuity \nearrow). If $(A_n)_{n\in\mathbb{N}}$ is increasing, then $\mu(\bigcup_{n\in\mathbb{N}}A_n)=\lim_{n\to\infty}\mu(A_n)$.

Exercise 1.16 (Continuity \searrow). If $(A_n)_{n\in\mathbb{N}}$ is decreasing and $\mu(A_1)<\infty$, then $\mu(\bigcap_{n\in\mathbb{N}}A_n)=\lim_{n\to\infty}\mu(A_n)$.

Exercise 1.17. Show that $\lambda(\mathbb{Q}) = 0$. HINT: What is the Lebesgue measure of singletons?

Let P be a property of some points in X. We say that P holds μ -almost everywhere (or μ -almost surely) if $\{x \in X : x \text{ satisfies } P\}$ is μ -conull.

Exercise 1.18 (Borel-Cantelli Lemmas). Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of μ -measurable sets.

- 1. If $\sum_{n\in\mathbb{N}}\mu(A_n)<\infty$, then μ -almost every $x\in X$ lives in at-most finitely-many A_n .
- 2. (Measure Compactness). If $\mu(X) < \infty$ and there exists $\varepsilon > 0$ such that $\mu(A_n) \ge \varepsilon$ for all $n \in \mathbb{N}$, then at least an ε -measure set of $x \in X$ lives in infinitely-many A_n 's.

For measurable spaces (X_1, \mathcal{B}_1) and (X_2, \mathcal{B}_2) , define $\mathcal{B}_1 \otimes \mathcal{B}_2 := \langle B_1 \times B_2 : B_i \in \mathcal{B}_i \rangle_{\sigma}$.

Exercise 1.19. Show that if X_i are second-countable topological spaces, then $\mathcal{B}(X_1 \times X_2) = \mathcal{B}(X_1) \otimes \mathcal{B}(X_2)$.

Exercise 1.20. Let X be a topological space. A Cantor set is a subset $C \subseteq X$ homeomorphic to $2^{\mathbb{N}}$.

- 1. Show that the 'middle-thirds Cantor set' $C \subseteq [0,1]$ is a Cantor set as in the above definition. Moreover, show that $\lambda(C) = 0$. Hint: Recall the construction $C = \bigcap_{n \in \mathbb{N}} C_n$ and use continuity.
- 2. Define a Cantor set $C \subseteq [0,1]$ with positive Lebesgue measure. HINT: fatten the standard construction.

A measurable set $A \subseteq X$ is said to be an *atom* if there is no subset $B \subseteq A$ with $0 < \mu(B) < \mu(A)$. For example, singletons $\{x\}$ are atoms under the Dirac measure δ_x . More generally:

Exercise 1.21. If (X, \mathcal{B}, μ) is a σ -finite measure space, \mathcal{B} is countably generated (i.e., $\mathcal{B} = \langle \mathcal{B}_0 \rangle$ for some countable $\mathcal{B}_0 \subseteq \mathcal{P}(X)$), and separates points (i.e., if $x \neq y$, then there exists $B \in \mathcal{B}$ such that $x \in B \not\ni y$.), then every atom $A \in \mathcal{B}$ is a singleton.

2. Lecture 2 (Samy Lahlou): Crash course on Measure Theory, Part II

TODO: Lebesgue integral, L^p , measurable functions, simple functions

Further reading. [Anu23, Lectures 9 to TODO] and [Fol99, Chapters 2 and 3].

3. Lecture 3 (Peng Bo): Introduction to Ergodic Theory

TODO: intro

Further reading. None!

References

- [Anu22] Anush Tserunyan, Topics in Ergodic Theory and Measured Group Theory, available at https://www.math.mcgill.ca/atserunyan/Courses/2022_W.Math594.Erg&MsGrp/.
- [Anu23] _____, Advanced Real Analysis 1, available at https://www.math.mcgill.ca/atserunyan/Courses/2023F.Math564. Analysis1/.
- [Fol99] Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd ed., Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, John Wiley & Sons, 2013, 1999.
- [Kec95] Alexander S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Springer New York, NY,

Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada

 $Email\ address: \verb| zhaoshen.zhai@mail.mcgill.ca|\\$