

Predictive models for the random processes

Workshop

Nikolay Nikitin, PhD, assistant professor 2022

Plan of the workshop

What we want to learn: how to build statistical forecasts

- To analyze stationarity of a process (for mathematical expectation and variance);
- To analyze covariance function. To define covariance (or correlation window);
- To estimate spectral density function with using different functions for spectral window;
- To filter high frequencies (**noise**) with using various **filters** (e.g. moving average, Gaussian filter);
- To repeat estimation of spectral density and compare with result for non-filtered data;
- To build auto-regression model for filtered and non-filtered data. To analyze residual
 error and to define appropriate order of model; Compare different approach for
 hyperparameter tuning;
- To find additional factors that influence on chosen varaiable;
- To analyze mutual correlation functions among factors;
- To build model in a form of **linear dynamical system** using additional factors. To analyze residual error and to define appropriate order of model.

Analyze stationarity of a process

Stationarity – the constant of mean and variance over time.

Non-stationary (by mean) series generation y_=np.random.uniform(-1,1,[n])

mu=0 sigma=0.01 e= np.random.normal(mu, sigma, n) t = [v/1000 for v in range(0,n)] y=y_+e+t

plt.plot(x,y)
plt.show()

(Stationarity.ipynb)

Mean and variance non-stationarity

Non-stationary (by mean and variance) series generation

```
y_=np.random.uniform(-1,1,[n])
```

```
mu=0
sigma=0.01
e = np.zeros(n)
for i in range(n):
    e[i]= np.random.normal(mu, sigma+i/500, 1)
t = [v/200 for v in range(0,n)]
y=y_+e+t
```

plt.plot(x,y)
plt.show()

(Stationarity.ipynb)

Non-stationary process decomposition

УНИВЕРСИТЕТ ИТМО

Components:

- Trend long-term time series change;
- Seasonality time series changes with constant period;
- Cyclic time series changes with variable period;
- Residuals a component that is left after other components have been calculated and removed from time series data.

Stationarity analysis and decomposition (example)

Stationarity.ipynb

https://colab.research.google.com/drive/10fQ4421jhxjuRNMGBhF4FF_4y01jrK3s

Analyze covariance function with window

The finite sliding correlation window allow to analyse the correlation change through time.

Covariance function with different window

УНИВЕРСИТЕТ ИТМО

Estimate spectral density function

Reminder from the lecture

Bartlett

$$\lambda_{2}(\tau) = \begin{cases} 1 - \frac{|\tau|}{\tau_{\max}} & \text{npu } 0 \le \tau \le \tau_{\max}, \\ 0 & \text{npu } \tau > \tau_{\max} \end{cases}$$

Bartlett (modified)

$$h_{3}(\tau) = \begin{cases} 0.5 \left(1 - \cos \frac{\pi \tau}{\tau_{\text{max}}} \right) \text{при } 0 \le \tau \le \tau_{\text{max}} \\ 0 \text{ при } \tau > \tau_{\text{max}} \end{cases}$$

Hann

Hamming

$$I_{5}(\tau) = \begin{cases} 1 - \left(\frac{|\tau|}{\tau_{\max}}\right)^{g} \text{ mpu } \tau \leq \tau_{\max}, g \geq 1 \\ 0 \text{ mpu } \tau > \tau_{\max} \end{cases}$$

Parsen

$$A_{6}(\tau) = \begin{cases} 1 - 6\left(\frac{\tau}{\tau_{max}}\right)^{2} + 6\left(\frac{\tau}{\tau_{max}}\right)^{3} & \text{при } 0 \le 1 \le \frac{\tau_{max}}{\tau_{max}} \\ 2\left(1 - \frac{\tau}{\tau_{max}}\right)^{3} & \text{при } \frac{1}{2}\tau_{max} \le \tau \le \tau_{ma} \\ 0 & \text{при } \tau > \tau_{max} \end{cases}$$

Parsen (2)

Spectral density estimation using Barlett function

Spectral density estimation for the real data (sea surface height)

Spectral density function estimation (example)

Open the autocov.ipynb

https://colab.research.google.com/drive/1PcBwAvA8KHIWGjNjYqK37rG6lN0547xu

Filter high frequencies (noise)

Rolling window filtering

Reminder for lecture

Butterworth filter

Filtering example

Open the filtering.ipynb https://github.com/Dreamlone/ITMO_materials/blob/master/fedotworkshop/Time_series_filters.ipynb

In this example, the features of FEDOT framework are used.

Spectral density for filtered data

Periodogramm without filtering (blue) and with moving average filter (black).

Spectral density without filtering (blue) and with moving average filter (yellow).

Auto-regression model

университет итмо

Shows the best results with time series with clear seasonality and low noise levels;

Requires customization of parameters for each individual case;

AR(p):
$$y_t = \alpha + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t.$$

MA(q):
$$y_t = \alpha + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$
,

ARMA(p,q):
$$y_t = \alpha + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \epsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}.$$

ARIMA (p, d, q) - ARMA for n-times-differentiated time series;

Seasonality:
$$y_t = \alpha + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \dots + \theta_q \epsilon_{t-q}$$

$$+\theta_S \varepsilon_{t-S} + \theta_{2S} \varepsilon_{t-2S} + \dots + \theta_{PS} \varepsilon_{t-QS}.$$

 $+\phi_{S}y_{t-S} + \phi_{2S}y_{t-2S} + \cdots + \phi_{P}Sy_{t-P}S$

+ P components with period S

ITSMOre than a UNIVERSITY

Prediction quality metrics

R² – explained variance

```
from sklearn.metrics import r2_score
print("Linear Regression R^2:", round(r2_score(y, y_pred_lr), 3))
print("SMA R^2:", round(r2_score(y, y_sma), 3))
```

Linear Regression R^2: 0.942 SMA R^2: 0.822

MSE/RMSE

```
from sklearn.metrics import mean_squared_error

print("Linear Regression MSE:", round(mean_squared_error(y, y_pred_lr), 3))
print("SMA MSE:", round(mean_squared_error(y, y_sma), 3))
```

Linear Regression MSE: 1882343.713 SMA MSE: 5774211.042

MAPE

```
def mean_absolute_percentage_error(y_true, y_pred):
    return round(np.mean(np.abs((y_true - y_pred) / y_true)) * 100, 3)

print("Linear Regression MAPE:", mean_absolute_percentage_error(y, y_pred_lr))
print("SMA MAPE:", mean_absolute_percentage_error(y , y_sma))
```

Linear Regression MAPE: 4.0 SMA MAPE: 22.493

Additional factors

Example:

SARIMAX Model: Daily & 6-Month Forecast Price of West Texas Intermediate (WTI) Crude Oil Futures from 2016

Variables:

- 1. Date Daily based on Business Days
- 2. Price Daily Closing Price predictor
- 3. Open Daily Opening Price
- 4. High Intraday Maximum Price
- 5. Low Intraday Minimum Price
- 6. Volume # of futures traded
- 7. % Change Percent change from previous day's closing price

университет итмо

SARIMAX - Seasonal AutoRegressive Integrated Moving Average with **eXogenous regressors**

exog=train data.features).fit(disp=0)

SARIMAX example

Open the ARIMA Forecast.ipynb

https://github.com/Dreamlone/ITMO_materials/blob/master/fedot-workshop/ARIMA.ipynb

Univariate and multivariate time series

Univariate time series

Multivariate time series

Advanced forecasting and validation

Multiscale forecasting

https://github.com/Dreamlone/ITMO_materials/blo b/master/fedotworkshop/Multiscale forecasting.ipynb

Validation for time series forecasts

https://github.com/Dreamlone/ITMO_materials/blob/master/fedot-workshop/Advanced_validation.ipynb

Cross-correlation (mutual correlation)

g∗f

Cross-correlation matrix for random process

6 hours

Cross-correlation matrix

$$\mathbf{R_{XY}} = egin{bmatrix} \mathbf{E}[X_1Y_1] & \mathbf{E}[X_1Y_2] & \cdots & \mathbf{E}[X_1Y_n] \ \\ \mathbf{E}[X_2Y_1] & \mathbf{E}[X_2Y_2] & \cdots & \mathbf{E}[X_2Y_n] \ \\ dots & dots & \ddots & dots \ \\ \mathbf{E}[X_mY_1] & \mathbf{E}[X_mY_2] & \cdots & \mathbf{E}[X_mY_n] \end{bmatrix}$$

-0.90

-0.75

-0.60

- 0.45

Model of linear dynamical system


```
from statsmodels.tsa.vector_ar.var_model import VAR

train, test = df[['Hsig', 'RTpeak']][:-test_size], df[['Hsig', 'RTpeak']][-test_size:]

history = train
predictions = list()

for t in range(test.shape[0]):
    model = VAR(endog=history)
    model_fit = model.fit(maxlags=16)
    output = model_fit.forecast(model_fit.y, steps=1)
    yhat = output[0]
    predictions.append(yhat)
    obs = test.iloc[t]
    history = history.append(obs)
```


Vector Auto Regression model implementation

Wave height forecasting with additional variables

Open

https://github.com/Dreamlone/ITMO_materials/blob/master/fedot-workshop/Multivariate.ipynb

Automation of the predictive modelling

Example for AutoML framework FEDOT (https://github.com/nccr-itmo/FEDOT)

Forecasted time series for financial dataset (prehistory is used to fit the model)

https://colab.research.google.com/drive/1cRFhC 3GwkmfDmzgqof0q7M7i3ocJESSF?usp=sharing

Materials for workshop

Notebooks with examples:

https://github.com/Dreamlone/ITMO_materials/tree/master/fedot-workshop

FEDOT:

https://github.com/aimclub/FEDOT

Additional info:

https://towardsdatascience.com/automl-for-time-series-definitely-a-good-idea-c51d39b2b3f

https://towardsdatascience.com/automl-for-time-series-advanced-approaches-with-fedot-framework-4f9d8ea3382c

https://towardsdatascience.com/what-to-do-if-a-time-series-is-growing-but-not-in-length-421fc84c6893

Thank you!

ITSMOre than a UNIVERSITY