Chapter 1

Functions, Spaces and Norms

A mixed partial derivative of a function can be written in multi-index notation. Let $d \in \mathbb{N}$, and $\alpha = (\alpha_1, \dots, \alpha_d)$ be a d-tuple of non-negative integers. The length of α is given by $|\alpha| \equiv \sum_{i=1}^d \alpha_i$. Then for a function $f \in C^{|\alpha|}(\Omega)$, where Ω is an open subset of \mathbb{R}^d , the mixed partial derivative of f is given by

 $D^{\alpha}f = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \dots \left(\frac{\partial}{\partial x_d}\right)^{\alpha_d} f.$

Here $C^k(\Omega)$, $k \in \mathbb{Z}_+$ is the set of all continuous real valued functions f on Ω such that $D^{\alpha}f \in C(\Omega) \ \forall \alpha \text{ s.t. } |\alpha| \leq k$.

If Ω is a bounded open set, $C^k(\overline{\Omega})$ denotes the set of all $u \in C^k(\Omega)$ such that $D^{\alpha}u$ can be extended to a continuous function on $\overline{\Omega}$, the closure of Ω , for all α such that $|\alpha| \leq k$.

Definition 1.0.1 A normed space W is **complete** if every Cauchy sequence in W converges to an element in W.

Definition 1.0.2 A complete normed space is called a **Banach space**.

Definition 1.0.3 A compelete inner product space is called a Hilbert space.

Lemma 1.0.1 (Cauchy-Schwarz inequality) Let W be a Hilbert space equipped with the inner product $\langle \cdot, \cdot \rangle_W$ and $u, v \in W$. Then

$$|\langle u, v \rangle_W \le ||u||_W ||v||.$$

Lemma 1.0.2 (Triangle Inequality) Let W be a Hilbert space equipped with the inner product $\langle \cdot, \cdot \rangle_W$ and $u, v \in W$. Then

$$||u+v||_W \le ||u||_W + ||v||_W$$

1.1 Hölder Continuity

Let $\Omega \subset \mathbb{R}^d$ be open, and $0 < \gamma \le 1$. A function $u : \Omega \to \mathbb{R}$ is said to be Hölder continuous with exponent γ if

$$|u(x) - u(y)| \le C|x - y|^{\gamma} \tag{1.1}$$

for some constant C.

Definition 1.1.1 1. If $u: U \to \mathbb{R}$ is bounded and continuous we write

$$||u||_{C(\overline{\Omega})} \equiv \sup_{x \in U} |U(x)|$$

2.

1.2 Lipschitz Continuity

1.3 Lebesgue Spaces

Let $\Omega \subset \mathbb{R}^d$ be a Lipschitz domain and u be a real valued function defined on Ω . For $1 \leq p < \infty$, the **Lebesgue space** $L^p(\Omega)$ is

$$L^{p}\Omega := \left\{ u : \int_{\Omega} |u(x)|^{p} dx < \infty \right\}. \tag{1.2}$$

This space has a natural norm defined by $||u||_{L^p(\Omega)} = (\int_{\Omega} |u(x)|^p dx)^{\frac{1}{p}}$. To define the Lebesgue space for $p = \infty$ we need the following definitions.

Definition 1.3.1 A subset A of \mathbb{R}^d is said to have **measure zero** if for every $\epsilon > 0$ there exists a set of open cubes $\{U_k\}_{k=1}^{\infty}$ such that $A \subset \bigcup_{k=1}^{\infty} U_k$ and $\sum_{k=1}^{\infty} vol(U_k) < \epsilon$.

For example, A could be a set of distinct points. It is always possible to make smaller boxes around this set of points, so A is a set of measure zero.

Definition 1.3.2 The **essential supremum** of a measurable function $u : \Omega \to \mathbb{R}$ is the smallest $a \in \mathbb{R}$ such that the set $\{\mathbf{x} \in \Omega : u(\mathbf{x}) > a\}$ has measure zero. If no such a exists, $esssup_{\mathbf{x} \in \Omega} u(\mathbf{x}) = \infty$.

$$L^{\infty}(\Omega) := \left\{ u : \operatorname{ess\,sup}_{\mathbf{x} \in \Omega} |u(\mathbf{x})| < \infty \right\}$$
(1.3)

with norm $||u||_{L^{\infty}(\Omega)} := \operatorname{ess\,sup}\{|u(\mathbf{x})|, \mathbf{x} \in \Omega\}.$

Lemma 1.3.1 Hö lder inequality Let $u \in L^p(\Omega)$ and $v \in L^{p'}(\Omega)$ with 1/p + 1/p' = 1. Then

$$\left\| \int_{\Omega} u(\mathbf{x})v(\mathbf{x})dx \right\| \le \|u\|_{L^{p}(\Omega)} \|v\|_{L^{p'}(\Omega)}$$

1.4 Sobolev Spaces

The set of functions $u \in C^{\infty}(\Omega)$ with compact support is denoted $\mathcal{D}(\Omega)$. The set of **locally** integrable functions is defined as

$$L^1_{loc}(\Omega):=\{u:u\in L^1(K), \text{ for compact } K\subset\Omega\}.$$

Definition 1.4.1 A function $f \in L^1_{loc}(\Omega)$ has a **weak derivative** D^{α}_w if there exists a function $g \in L^1_{loc}(\Omega)$ such that

$$\int_{\Omega} g(\mathbf{x})\phi(\mathbf{x})dx = (-1)^{|\alpha|} \int_{\Omega} f(\mathbf{x}) D_q^{\alpha} \phi(\mathbf{x}) dx, \ \phi \in \mathcal{D}(\Omega).$$

If such a g exists, we define $D_w^{\alpha} f := g$.

We can now define the **Sobolev Spaces** $W^{k,p}(\Omega)$ as

$$W^{k,p}(\Omega) := \{ u \in L^1_{loc}(\Omega) : ||u||_{W^{k,p}(\Omega)} < \infty \}$$

where the norm $||u||_{W^{k,p}(\Omega)}$ is defined by

$$||u||_{W^{k,p}(\Omega)} = \begin{cases} \left(\sum_{|\alpha| \le k} ||D_w^{\alpha} u||_{L^p(\Omega)}^p \right)^{1/p} & \text{for } 1 \le p < \infty \\ \max_{|\alpha| \le k} ||D_w^{\alpha} u||_{L^p(\Omega)} & \text{for } p = \infty. \end{cases}$$

For the special case p=2 the Sobolev space $W^{k,2}(\Omega)$ is denoted $H^k(\Omega)$, and an inner product is induced on this space by the norm.

Theorem 1.4.1 The Sobolev space $W^{k,p}(\Omega)$ is a Banach space.

Theorem 1.4.2 The space $H^k(\Omega)$ is a Hilbert space.

Definition 1.4.2 A functional is a function from a vector of function space into its underlying scalar field, or a set of functions to the real numbers. A functional on a real vector space V is linear if f(v+w) = f(v) + f(w) and $f(cv) = cf(v) \ \forall \ v, w \in V$ and $c \in \mathbb{R}$.

Definition 1.4.3 Let V be a vector space. The **dual space** of V is the space consisting of all continuous linear functionals on V, and is denoted V'.

Theorem 1.4.3 (Riesz representation theorem) Any continuous functional L on a Hilbert space H with the inner product $\langle \cdot, \cdot \rangle$ can be represented uniquely as

$$L(v) = \langle u, v \rangle_H \text{ for some } u \in H$$

Moreover, we have

$$||L||_{H'} = ||u||_H.$$

Lemma 1.4.1 (Lax-Milgram) Suppose that V is a real Hilbert space equipped with norm $\|\cdot\|_V$. Let $l(\cdot)$ be a continuous linear functional on V, and $a(\cdot, \cdot)$ a continuous, coercive bilinear functional on $V \times V$. Then there exists a unique $u \in V$ such that

$$a(u.v) = l(v) \ \forall v \in V.$$

The solution is stable with respect to the right hand side such that

$$||u||_V \le C||l||_{V'}.$$