

METHOD FOR PRODUCING BUILDING MATERIAL HAVING CALCIUM-SILICATE LINKS

Publication number:	HU209836 (B)	Also published as:
Publication date:	1994-11-28	<input type="checkbox"/> HU65443 (A2)
Inventor(s):	KIS JANOS [HU] KREKITY TAMAS [HU]	
Applicant(s):	KIS [HU]; KREKITY [HU]	
Classification:		
- international:	C04B28/18; C04B28/00; (IPC1-7); C04B14/04; C04B14/18; C04B18/14	
European:	C04B28/18	
Application number:	HU19900004677/19900730	
Priority number(s):	HU19900004677/19900730	

Abstract not available for HU 209836 (B)

Data supplied from the esp@cenet database — Worldwide

(19) Országkód:

HU

MAGYAR
KÖZTÁRSASÁG
ORSZÁGOS
TALÁLMÁNYI
HIVATAL

SZABADALMI LEÍRÁS

(11) Lajstromszám:

209 836 B

(21) A bejelentés száma: 4677/90
(22) A bejelentés napja: 1990. 07. 30.

(51) Int. Cl.⁵
C 04 B 14/04
C 04 B 18/14
C 04 B 14/18

(40) A közzététel napja: 1994. 06. 28.
(45) A megadás meghirdetésének dátuma a Szabadalmi
Közlönyben: 1994. 11. 28. SZKV 94/11

(72) (73) Feltalálók és szabadalmasok:

Kis János 70%, Budapest (HU)
Krékity Tamás 30%, Budapest (HU)

(74) Képviselő:

Krékity Tamás, Budapest

(54)

Eljárás kalcium-szilikát kötésű építőelemek előállítására

(57) KIVONAT

A találmány eljárást ismertet kalcium-szilikát kötésű építőelemek előállítására erőművi pernyéből, amorf SiO₂-ból, karbidmésziből, duzzasztott perlitből és vízből. Az eljárás során 50–80 tömeg% pernyét, 5–10 tömeg% amorf SiO₂öt, 10–30 tömeg% karbidmeszet,

0,5–10 tömeg% duzzasztott perlitet és 10–20 tömeg% vizet kevernek össze, majd a homogén elegyet sajtolják és 270–280 °C-on autoklávban gőzöl. Az elkészített építőelem a hagyományos módon és a hagyományos anyagokkal falazható és vakolható.

B 209 836 HU

A találmány tárgya eljárás kalcium-szilikát kötésű építőelemek előállítására erőművi pernyéből, amorf SiO₂-ból, karbidmésziből, duzzasztott perlitből és vízből.

Napjainkban egyre inkább előtérbe kerülnek a környezetvédelmi szempontok, így ezzel párhuzamosan minden súrgetőbbé válik az ipari hulladékanyagok – pl. az erőművi pernye, karbidmész stb. – felhasználási lehetőségeinek kutatása. Ezek az ipari hulladékanyagok amellett, hogy környezetvédelmi szempontból rendkívül károsak, jelentős területeket foglalnak el, illetve tesznek megművelhetetlenné. Hazánkban pl. az erőművi pernyének és a karbidmésznek csak töredékét hasznosítják.

A porszenek eltüzelésekor keletkezett pernye felhasználása többféle módon történhet. A legnagyobb felhasználó az építőanyaggyártó ipar és az építőipar. A pernyét adalékanyagként, de önmagában is, különöző, főleg építési területen hasznosítják. A főbb felhasználási területek: cementgyártás, pernyeblokk, gázsilikát, pernyekavicsgyártás, út- és mélyépítés, mezőgazdasági és egyéb célú felhasználás. (Tamás F. Szilákitápi Kézikönyv, Műszaki Könyvkiadó, 1982.)

A gázbeton gyártásakor a pernyéhez kötőanyagként meszet, cementet, pórusképző anyagként alumíniumport adnak. Így jó hőszigetelésű idomokat kapnak. Az eljárás nagy hibája, hogy szinte lehetetlen egyenletes pörüsszerkezetű anyagot előállítani, ami a végtermék szilárdságát jelentős mértékben rontja. Problémát okoz még, hogy a gázbeton blokkok igen könnyen felveszik a vizet, de elég nehezen adják le, így speciális habarcsokra van szükség a vízfelvétel mértékének csökkenésére. A pernye építőipari célra való felhasználását a fizikai tulajdonságain kívül jelentős mértékben befolyásolja a pernye kémiai összetétele. Ez sajnos nemcsak szénlelőhelyenként változik, hanem többnyire az egyes lelőhelyeken belül is változik az idő függvényében. A legoptimálisabb az az eset, amikor a pernye kémiai összetétele lehetőséget ad a kalcium-szilikát hidrát képződésére, mert ebben az esetben a pernye nemcsak mint adalékanyag szerepel, hanem a szilárdságot is javítja a latens hidraulikussága révén.

Mivel ez a jelenség nem minden pernyére igaz, és mivel a kémiai összetétel egy adott pernye esetében is változhat az idő függvényében a szénlelőhely kitermelésével párhuzamosan, az általunk készített találmány olyan megoldásra törekszik, hogy az ingadozó pernyeminőség ne befolyásolja a gyártani kívánt építőelem minőségi jellemzőit.

Mivel kalcium-szilikát-hidrát kötésű téglát kívántunk előállítani, kézenfekvő volt, hogy a CSH-ot a téglá előállítása során – in situ – a téglában állítsuk elő a megfelelő adalékanyagok hozzáadásával. Így szükségtelen volt, hogy a téglá kötéshöz cementet használunk, ami az előállítási költségeket csökkentette. Az adalékanyagok optimalizálásával sikerült elérni, hogy a téglá minimális szilárdságát beállítsuk a pernye oxidos összetételének tág határok között történő változása esetén is. Ez azt jelentette, hogy a téglá nyomósílársága egy minimális értéktől – 8 MPa – csak pozitív irányban térhet el.

A találmány lényege, hogy 50–80 tömeg% pernyét, 5–10 tömeg% amorf SiO₂-ot, 10–30 tömeg% karbidmeszt és 0,5–10 tömeg% duzzasztott perlitet összekeverünk, adunk hozzá 10–20 tömeg% vizet és homogén keveréket készítünk. Az elegyet sajtolással formázzuk, majd autoklávban 270–280 °C-on gőzöljük.

A kalcium-szilikát-hidrát a gőzölés során alakul ki az építőelemben. A találmány elkészítésekor arra törekedtünk, hogy az építőelemet lehetőség szerint hulladékanyagokból állítsuk elő. A találmány szerinti kompozícióban a duzzasztott perlit kivételével minden alapanyag valamilyen ipari folyamat melléktermékeként keletkezik. Ezen anyagok tárolása, illetve az elhelyezése eddig problémát okozott az üzemeknek. A pernyével kapcsolatos problémákról már szóltunk, a karbidmész az acetiléngyártás során keletkezik, és óriási zagytárolókban helyezik el. A felhasználása nem megoldott probléma, csak töredékét használják fel. Az amorf SiO₂ a korundgyártás során keletkező melléktermék.

A kompozícióban az amorf SiO₂ és a karbidmészben levő Ca(OH)₂ reakciójának eredményeként alakul ki a CSH. A duzzasztott perlitenek kettős funkciója van. Az egyik az építőelem hőszigetelésének javítása, a másik funkció technológiai jellegű. A kompozíció rendkívül érzékeny a sajtolás során a nedvesítésre. A duzzasztott perlit a nagy vízfelvétel képességénél fogva viszonylag nagy toleranciát biztosít a hozzáadható víz mennyiségrére vonatkozóan.

Az elkészített falazóelemek a hagyományos falazóelemekhez hasonlóan beépíthetők, illetve vakolhatók. Felhasználásuk a hagyományos építőipari technológiák szerint történik. A találmányt az oltalmi kör korlátozása nélkül a következő kiviteli példákkal ismertetjük:

35 1. példa
64,5 tömeg% erőművi pernyét, 5,8 tömeg% amorf SiO₂-ot, 20 tömeg% karbidmeszt és 1,0 tömeg% duzzasztott perlitet összekeverünk, adunk hozzá 10 tömeg% vizet és homogén keveréket készítünk. A keveréket formába tesszük, sajtoljuk, majd 276 °C-on autoklávban gőzöljük. Az elkészített idom sűrűsége 1,200 kg/m³, nyomósílársága 8,8 MPa volt. Az építőelem a hagyományos módon beépíthető, ill. vakolható.

50 2. példa
59 tömeg% pernyét, 5,9 tömeg% amorf SiO₂-ot, 17,9 tömeg% karbidmeszt és 2,4 tömeg% duzzasztott perlitet összekevertünk, adunk hozzá 14,8 tömeg% vizet és homogén elegyet készítettünk. A keveréket formába tettük, sajtoltuk, majd 276 °C-on autoklávban gőzöltük. Az elkészített idom sűrűsége 900 kg/m³. A falazóelem a hagyományos építőipari technológiákkal és anyagokkal falazható, ill. vakolható.

SZABADALMI IGÉNYPONT

60 Eljárás kalcium-szilikát kötésű építőelemek előállí-

tására erőművi pernyéből, amorf SiO₂-ból, karbid-mészből, duzzasztott perlitből és vízből *azzal jellemzve*, hogy

- a) 50–80 tömeg% erőművi pernyét, amely
 - 56–60 tömeg%-ban SiO₂-ot
 - 16–18 tömeg%-ban Al₂O₃-ot
 - 8–12 tömeg%-ban Fe₂O₃-ot
 - 5–7 tömeg%-ban CaO-ot
 - 1–2,5 tömeg%-ban MgO-ot
 - 1,5–6,5 tömeg%-ban SO₃-ot
 - 1–2 tömeg%-ban K₂O-ot
 - 0,2–1 tömeg%-ban Na₂O-t tartalmaz,
- b) 5–10 tömeg% amorf SiO₂-ot, amelynek SiO₂ tartalma min. 85 tömeg%,
- c) 10–30 tömeg% karbidmeszet, amelynek száraz-

- anyagtartalma min. 80 tömeg%, és amely
 - 60–70 tömeg%-ban CaO-ot
 - 1,5–2,5 tömeg%-ban SiO₂-ot
 - 0,5–2,0 tömeg%-ban Al₂O₅-ot
 - 5 0–1,0 tömeg%-ban Fe₂O₃-ot
 - 0–1 tömeg%-ban TiO₂-ot
 - 0–1 tömeg%-ban MgO-ot
 - 0–1 tömeg%-ban Na₂O-ot
 - 0–1 tömeg%-ban K₂O-ot
 - 10 0,5–1,5 tömeg%-ban SO₃-ot tartalmaz, és
 - d) 0,5–10 tömeg% duzzasztott perlitet
 - e) 10–20 tömeg% vízzel homogenizálunk, sajtolóformában ismert módon sajtoljuk, majd
 - f) a nyers építőelemeket 270–280 °C-on autoklávban gőzöljük.