Metody numeryczne

Laboratorium 9

Aproksymacja metodą Padego

16.05.2021

Anastasiya Hradouskaya

Cel ćwiczenia

Celem laboratorium było zapoznanie się z aproksymacją metodą Padego.

1. Opis problemu

Zadaniem było wykonanie aproksymacji Padego funkcji

$$f(x) = \exp(-x^2)$$

kolejno dla (N, M) = (2,2), (4,4), (6,6), (2,4), (2,6), (2,8).

Funckję f(x) przybliżymy przy pomocy funkcji wymiernej

$$R_{N,M} = \frac{P_N(x)}{Q_M(x)} = \frac{\sum_{i=0}^{N} a_i x^i}{\sum_{i=0}^{M} b_i x^i}$$

W tym celu wykonaliśmy następujące kroki:

1) Wyznaczyliśmy współczynniki szeregu Maclaurina (c_k) , otrzymane bezpośrednio z rozwinięcia funkcji $\exp(-x^2)$

$$\exp(-x^2) = \sum_{p=0}^{\infty} (-1)^p \frac{x^{2p}}{p!} = \sum_{k=0}^{\infty} c_k \cdot x^k$$

Wartości współczynników c_k zachowaliśmy w wektorze $\vec{c} = [c_0, c_1, \dots, c_n]$

2) Rozwiązaliśmy układ równań

$$A \cdot \vec{x} = \vec{v}$$

gdzie

$$A_{i,j} = c_{N-M+i+j+1}, i,j = 0,1,...,M-1$$

$$y_i = -c_{N+1+i}, \quad i = 0, 1, ..., M-1$$

po rozwiązaniu układu równań zachowaliśmy współczynniki wielomianu $Q_M(x)$

$$b_0 = 1 \text{ oraz } b_{M-i} = x_i, i = 0, 1, ..., M-1$$

Wpołczynniki zapisaliśmy w wektorze $\vec{b} = [b_0, b_1, ..., b_M]$.

3) Wyznaczyliśmy współczynniki wielomianu $P_N(x)$ zgodnie ze wzorem:

$$a_i = \sum_{i=0}^{i} c_{i-j} \cdot b_j, \ i = 0, 1, ..., N$$

I zapisaliśmy je w wektorze $\vec{a} = [a_0, a_1, ..., a_n]$.

2. Opis metody

Aproksymacja

Aproksymacja oznacza przybliżenie funckji y = f(x) za pomocą "prostrzej" należącej do określonej klasy funkcji y = F(x).

Przyczyny stosowania aproksymacji:

- funkcja aproksymowana y=f(x) wyrażona jest za pomocą skomplikowanej, nieprakrycznej zależności analitycznej
- znany jest tylko skończony zbiór wartości funkcji y = f(x), np. odczytanych w trakcie pomiaru.

Funkcji aproksymującej (przybliżającej) y = F(x) poszukuje się zwykle w określonej rodzinie funkcji np. wśród wielomianów.

Przybliżanie jednej funkcji przez inną powoduje pojawianie się błedów, zwanych błedami aproksymacji (przybliżenia).

Aproksymacja Padego

Funckję aproksymowalną przybliżamy funckją wymierną tj. ilorazu dwóch wielomianów

$$R_{n,k}(x) = \frac{L_n(x)}{M_k(x)}$$

gdzie: N = n + k

Zadanie polega na znalezieniu N+1 współczynników L_n oraz M_k

$$L_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$M_k(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_k x^k, \quad b_0 \neq 0$$

tak aby $x_0 = 0$ funkcje aproksymowana i aproksymująca miały jak najwięcej równych pochodnych.

Rozwijamy f(x) w szereg Maclaurina

$$f(x) = \sum_{i=0}^{\infty} c_i x^i$$

Liczymy błąd aproksymacji (w celu otrzymania zależności współczynnika a_i oraz b_i)

$$f(x) - \frac{L_n(x)}{M_k(x)} = \frac{\left(\sum_{i=0}^{\infty} c_i x^i\right) \left(\sum_{i=0}^k b_i x^i\right) - \sum_{i=0}^n a_i x^i}{\sum_{i=0}^k b_i x^i}$$

Wykorzystujemy warunki z ciągłością pochodnych w x=0

$$f^{(m)}(x)\big|_{x=0} - \left. R_{n,k}^{(m)}(x) \right|_{x=0} = 0, \qquad m = 0, 1, 2, ..., k + n$$

Powyższy warunek będzie spełniony, gdy licznik zapiszemy jako

$$\left(\sum_{i=0}^{\infty} c_i x^i\right) \left(\sum_{i=0}^{k} b_i x^i\right) - \sum_{i=0}^{n} a_i x^i = \sum_{i=1}^{\infty} d_{N+j} x^{N+j}$$

Dla warunku:

$$f(0) - R_{n,k} = 0$$

dostajemy równanie

$$(b_0 + b_1 x + \dots + b_k x^k)(c_0 + c_1 x + \dots) = (a_0 + a_1 x + \dots + a_n x^n)$$

z którego wydobywamy zależności

$$a_0 = b_0 c_0$$

$$a_1 = b_0 c_1 + b_1 c_0$$

$$a_2 = b_0 c_2 + b_1 c_1 + b_2 c_0$$

i ostatecznie wzór ogólny

$$a_r = \sum_{j=0}^r c_{r-j} b_j, \qquad r = 0, 1, 2, ..., n$$

Wykorzystujemy też założenie o równości i pochodnych (do rzędu n+k+1) co daje dodatkową zależność

$$\sum_{j=0}^{k} c_{n+k-s-j} b_j = 0, \qquad s = 0, 1, 2, ..., k-1$$

Sposób postępowania:

- Wyznaczamy współczynniki Maclaurina.
 W niektórych przypadkach (rzadko) możliwe jest wykorzystanie wzoru analitycznego na pochodne.
- 2) Tworzymy układ równań, którego rozwiązanie to współczynniki b_i

$$\begin{bmatrix} c_{n-m+1} & c_{n-m+2} & \dots & c_n \\ c_{n-m+2} & c_{n-m+3} & \dots & c_{n+1} \\ \vdots & \ddots & \vdots \\ c_n & c_{n+1} & \dots & c_{n+m-1} \end{bmatrix} \begin{bmatrix} b_m \\ b_{m-1} \\ \vdots \\ b_1 \end{bmatrix} = \begin{bmatrix} -c_{n+1} \\ -c_{n+2} \\ \vdots \\ -c_{n+m} \end{bmatrix}$$

3) Teraz możemy wyznaczyć kolejno współczynniki a_i

$$a_i = \sum_{j=0}^{l} c_{i-j} \cdot b_j, \qquad i = 0, 1, ..., n$$

3. Wykresy i wyniki

Za pomocą biblioteki matplotlib narysowaliśmy w Pythonie wykresy funkcji $f(x) = \exp(-x^2)$ w zakresie $x \in [-5, 5]$ oraz $R_{N,M}$ dla ustalonych N i M.

Rys.1 Wykres funkcji f(x) i funkcji przybliżającej $R_{2,2}$

Rys.2 Wykres funkcji f(x) i funkcji przybliżającej $R_{4,4}$

Rys.3 Wykres funkcji f(x) i funkcji przybliżającej $R_{6,6}$

Rys.4 Wykres funkcji f(x) i funkcji przybliżającej $R_{2,4}$

Rys.5 Wykres funkcji f(x) i funkcji przybliżającej $R_{2,6}$

Rys.6 Wykres funckji f(x) i funkcji przybliżającej $R_{2,8}$

Analizując powyższe wykresy, możemy wywnioskować, że dla małych wartości N i M (w przypadku, gdy M równa się N) wykresy prawie się nie pokrywają z oczekiwaniami teoreotycznymi.

Ze zwiększeniem wartości *N* i *M* wykresy bardziej się pokrywają. Interesującym jest to, że przy każdych ustalonych *N* i *M* wartości funkcji aproksymującej zbliżone do ekstremum funkcji aproksymowanej są bardzo bliskie do teoretycznych i wykres funkcji aproksymującej prawie idealnie pokrywa się z wykresem funkcji aproksymowanej.

W przypadku, gdy róznica między wartością *M* a *N* jest większa, wykresy prawie w całości pokrywają się, co możemy zaobserwować na rysunku 6.

4. Wnioski

Aproksymacja funkcji metodą Padego pozwala na szybkie otrzymanie przybliżonych wyników. Metodę tę stosuje się przy dysponowaniu większą ilością danych. Metoda aproksymacji Padego jest bardzo uniwersalna.

Dużą zaletą aproksymacji w stosunku do interpolacji jest to, że aby dobrze przybliżać, funkcja aproksymująca nie musi być wielomianem bardzo dużego stopnia (w ogóle nie musi być wielomianem).

Bibliografia

https://eti.pg.edu.pl/documents/176593/26763380/Wykl AlgorOblicz 3.pdf

http://home.agh.edu.pl/~chwiej/mn/aproksymacja 1819.pdf

https://pl.wikipedia.org/wiki/Aproksymacja#:~:text=Aproksymacja%5Bedytuj%5D&text=przy%20obliczaniu%20ca%C5%82ek%20oznaczonych%20z,na%20dyskretnym%20zbiorze%20punkt%C3%B3w%20(np.