1. Consider the partial differential equation

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} - 2\frac{\partial u}{\partial x} = 0, \ 0 < x < 1, \ t > 0, \quad (1)$$

with the boundary conditions

$$\frac{\partial u}{\partial x}(t,0) = \frac{\partial u}{\partial x}(t,1) = 0, \ t > 0,$$

and initial conditions

$$u(0,x) = e^{-x} (\pi \cos \pi x + \sin \pi x), \ \frac{\partial u}{\partial t}(0,x) = 0, \ 0 < x < 1.$$

- Show that a separation of variables in (1) leads to an eigenvalue problem in the variable x.
- Determine the eigenvalues and the eigenfunctions for the eigenvalue problem in question.
- Determine a solution to (1) which satisfies the boundary and the initial conditions.

Solution

• We assume u(x,t) = X(x)T(t), yielding

$$XT'' - X''T - 2X'T = 0 \implies \frac{T''}{T} = \frac{X'' + 2X'}{X} = \lambda$$

for some constant λ . We thus obtain an eigenvalue problem for X:

$$LX = X'' + 2X' = \lambda X$$

subject to X'(0) = X'(1) = 0.

• Multiplying the equation by e^x gives

$$(e^x X)'' = (\lambda + 1) (e^x X),$$

and hence the general solution is

$$X = e^{-x} \left(C_1 \sinh\left(\sqrt{\lambda + 1}x\right) + C_2 \cosh\left(\sqrt{\lambda + 1}x\right) \right)$$

if $\lambda + 1 > 0$, while

$$X = e^{-x} \left(C_1 \sin \left(\sqrt{-(\lambda + 1)} x \right) + C_2 \cos \left(\sqrt{-(\lambda + 1)} x \right) \right)$$

if $\lambda + 1 < 0$. In the former case $(\lambda + 1 > 0)$, we compute that

$$X'(0) = \sqrt{\lambda + 1}C_1 - C_2;$$

$$X'(1) = \frac{1}{e} \left(\left(\sqrt{\lambda + 1}C_2 - C_1 \right) \sinh \sqrt{\lambda + 1} + \left(\sqrt{\lambda + 1}C_1 - C_2 \right) \cosh \sqrt{\lambda + 1} \right).$$

For these to simultaneously vanish (and avoid $C_1 = C_2 = 0$), we'd require $\lambda = 0$ or $\lambda = -1$, giving the two eigenfunctions

$$X_0(x) = 1, \ X_{-1}(x) = e^{-x}.$$

In the latter case above $(\lambda + 1 < 0)$, we compute

$$X'(0) = \sqrt{-(\lambda+1)}C_1 - C_2;$$

$$X'(1) = \frac{1}{e} \left(-\left(\sqrt{-(\lambda+1)}C_2 + C_1\right) \sin\sqrt{-(\lambda+1)} + \left(\sqrt{-(\lambda+1)}C_1 - C_2\right) \cos\sqrt{-(\lambda+1)} \right).$$

For these to simultaneously vanish, we'd require $\sqrt{-(\lambda+1)}=k\pi$ for $k\geq 0$ integral, i.e., $\lambda_k=-(1+\pi^2k^2)$, giving the remaining eigenfunctions

$$X_k(x) = e^{-x} \left(\sin k\pi x + k\pi \cos k\pi x \right).$$

• We note that $u(x,t) = X_1(x)$, hence we need only solve $T'' = \lambda_1 T = -(1+\pi^2)T$, yielding

$$T(t) = C_1 \sin((1+\pi^2)t) + C_2 \cos((1+\pi^2)t)$$
.

The condition T'(0) = 0 gives $T(t) = \cos((1+\pi^2)t)$. It follows that

$$u(x,t) = \cos((1+\pi^2)t) e^{-x} (\sin \pi x + \pi \cos \pi x).$$

2. Let $\phi \in C^1(\mathbb{R}^2)$. Solve the following Cauchy problem in \mathbb{R}^3 :

$$\begin{cases} x_1 \partial_{x_1} u + 2x_2 \partial_{x_2} u + \partial_{x_3} u = 3u, \\ u(x_1, x_2, 0) = \phi(x_1, x_2) \end{cases}.$$

Solution

We use the method of characteristics, parametrizing the initial condition curve as $(s_1, s_2) \mapsto (s_1, s_2, 0, \phi(s_1, s_2))$. The system of ODEs results in

$$x'_1 = x_1;$$

 $x'_2 = 2x_2;$
 $x'_3 = 1;$
 $z' = 3z.$

All equations may be solved immediately, giving

$$x_1(t) = s_1 e^t;$$

$$x_2(t) = s_2 e^{2t};$$

$$x_3(t) = t;$$

$$z(t) = \phi(s_1, s_2) e^{3t}.$$

We can solve for s_1, s_2, t in terms of x_1, x_2, x_3 :

$$s_1 = x_1 e^{-x_3}$$
; $s_2 = x_2 e^{-2x_3}$; $t = x_3$.

The solution is thus

$$u(x_1, x_2, x_3) = z = \phi(x_1 e^{-x_3}, x_2 e^{-2x_3}) e^{3x_3}.$$

3. Let u(x) be harmonic in the unit disc |x| < 1 in \mathbb{R}^2 , and assume that $u \geq 0$. Prove the following Harnack's inequality:

$$\frac{1-|x|}{1+|x|}u(0) \le u(x) \le \frac{1+|x|}{1-|x|}u(0), \ |x| < 1.$$

Solution

u is given by

$$u(x,y) = (1 - x^2 - y^2) \frac{1}{2\pi} \int_{\xi^2 + \eta^2 = 1} \frac{g(\xi, \eta)}{(x - \xi)^2 + (y - \eta)^2} dS_{\xi, \eta}.$$

From the inequalities

$$1 - \sqrt{x^2 + y^2} \le \sqrt{(x - \xi)^2 + (y - \eta)^2} \le 1 + \sqrt{x^2 + y^2}$$

and from the mean value property of u, we obtain

$$u(x,y) \le \frac{1 - x^2 - y^2}{\left(1 - \sqrt{x^2 + y^2}\right)^2} \frac{1}{2\pi} \int g(\xi, \eta) dS_{\xi, \eta} = \frac{1 + \sqrt{x^2 + y^2}}{1 - \sqrt{x^2 + y^2}} u(0, 0)$$

and

$$u(x,y) \ge \frac{1 - x^2 - y^2}{\left(1 + \sqrt{x^2 + y^2}\right)^2} \frac{1}{2\pi} \int g(\xi, \eta) dS_{\xi, \eta} = \frac{1 - \sqrt{x^2 + y^2}}{1 + \sqrt{x^2 + y^2}} u(0, 0).$$

4. Let $u(x,t) \in C^{\infty}(\mathbb{R}^3 \times \mathbb{R})$ solve the Cauchy problem for the wave equation

$$\begin{cases} \left(\partial_t^2 - \Delta_x\right) u = 0, \ x \in \mathbb{R}^3, \ t > 0, \\ u|_{t=0} = \phi(x), \ \partial_t \phi|_{t=0} = \psi(x), \end{cases}$$
 (2)

with $\phi(x)$ and $\psi(x)$ being smooth compactly supported functions on \mathbb{R}^3 . Use an explicit formula for the solution of (2) (the Kirchhoff's formula) to show that there exists a constant C > 0 such that we have, uniformly in $x \in \mathbb{R}^3$,

$$|u(x,t)| \le \frac{C}{t}, \ t > 0.$$

Solution

u is given by

$$u(x,t) = \frac{1}{4\pi} \frac{\partial}{\partial t} \left(t \int_{|\xi|=1} \phi(x+t\xi) dS_{\xi} \right) + t \frac{1}{4\pi} \int_{|\xi|=1} \psi(x+t\xi) dS_{\xi}.$$

Let R>0 be large enough such that $\phi(x)=\psi(x)=0$ for $|x|\geq R$ (possible by compact support), and let M>0 be such that $|\phi|, |\psi|, |\phi'|\leq M$ (possible by smoothness), where we denote $\phi'(x)=\phi_{x_1}(x)+\phi_{x_2}(x)+\phi_{x_3}(x)$. We first note that

$$\left| \frac{1}{4\pi} \int_{|\xi|=1} \psi(x+t\xi) dS_{\xi} \right| = \left| \frac{1}{4\pi t^2} \int_{|\eta+x|=t} \psi(\eta) dS_{\eta} \right| \le \frac{R^2}{t^2} M$$

since the maximal surface area of $\{\eta \mid |\eta + x| = t \text{ and } |\eta + x| \leq R\}$ is $4\pi R^2$. Similarly,

$$\left| \frac{1}{4\pi} \int_{|\xi|=1} \phi(x+t\xi) dS_{\xi} \right|, \left| \frac{1}{4\pi} \int_{|\xi|=1} \phi'(x+t\xi) dS_{\xi} \right| \leq \frac{R^2}{t^2} M,$$

and so

$$|u(x,t)| = \left| \frac{1}{4\pi} \frac{\partial}{\partial t} \left(t \int_{|\xi|=1} \phi(x+t\xi) dS_{\xi} \right) + t \frac{1}{4\pi} \int_{|\xi|=1} \psi(x+t\xi) dS_{\xi} \right|$$

$$= \left| \frac{1}{4\pi} \int_{|\xi|=1} \phi(x+t\xi) dS_{\xi} + \frac{1}{4\pi} t \int_{|\xi|=1} \phi'(x+t\xi) dS_{\xi} + t \frac{1}{4\pi} \int_{|\xi|=1} \psi(x+t\xi) dS_{\xi} \right|$$

$$\leq \left(\frac{1}{t^{2}} + \frac{1}{t} + \frac{1}{t} \right) \frac{M}{R^{2}}$$

$$\leq \frac{C}{t}$$

for some constant C with t bounded away from 0. Of course, we also have the bound

$$|u(x,t)| \le M(2t+1),$$

which takes care of t near 0.

5. Solve the inhomogeneous problem for the Laplace operator in the unit disc $\mathbb{D} = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$,

$$\left\{ \begin{array}{l} \Delta u = x^2 - y^2 \text{ in } \mathbb{D}, \\ u = 0 \text{ along } \partial \mathbb{D}. \end{array} \right.$$

Solution

We note that,

$$v(x,y) = \frac{1}{12}(x^4 - y^4)$$

satisfies $\Delta v = x^2 - y^2$, but fails to vanish on $\partial \mathbb{D}$. Hence we seek a harmonic function w agreeing with v on $\partial \mathbb{D}$. In polar coordinates,

$$v(r,\theta) = \frac{1}{12}r^4\cos 2\theta,$$

so that

$$v(1,\theta) = \frac{1}{12}\cos 2\theta.$$

By inspection, we see that

$$w(x,y) = \frac{1}{12}(x^2 - y^2) = \frac{1}{12}r^2\cos 2\theta$$

is harmonic and agrees with v on $\partial \mathbb{D}$. Hence

$$u(x,y) = v(x,y) - w(x,y) = \frac{1}{12}(x^4 - x^2 - y^4 + y^2).$$

Alternatively, to find w, we can change to polar coordinates, seeking w such that

$$0 = \Delta w = w_{rr} + \frac{1}{r}w_r + \frac{1}{r^2}w_{\theta\theta}$$

subject to the boundary conditions $w(1,\theta) = \frac{1}{12}\cos 2\theta$. Setting $w(r,\theta) = R(r)\Theta(\theta)$ and separating variables yields

$$R''\Theta + \frac{1}{r}R'\Theta + \frac{1}{r^2}R\Theta'' = 0 \ \Rightarrow \ \frac{r^2R'' + rR'}{R} = -\frac{\Theta''}{\Theta} = \lambda$$

for some constant λ . From the periodic boundary conditions for Θ , we thus require $\lambda = k^2$ for $k \geq 0$ integral, giving

$$\Theta(\theta) = c_k \cos k\theta + s_k \sin k\theta.$$

We now examine the differential equation that R satisfies

$$r^2R'' + rR' - k^2R = 0.$$

which has linearly independent solutions $R = r^k$ and $R = r^{-k}$, and, in the case of k = 0, $R = \log r$. Since we desire bounded solutions as $r \to 0$, we limit consideration to $R = r^k$. By linearity, then,

$$w(r,\theta) = \sum_{k>0} r^k \left(c_k \cos k\theta + s_k \sin k\theta \right).$$

The boundary conditions give $c_2 = 1/12$ and all other coefficients 0, hence

$$w(r,\theta) = \frac{1}{12}r^2\cos 2\theta = \frac{1}{12}(x^2 - y^2),$$

as before.

6. Find the Fourier transform of the integrable function $x \mapsto (\sin x)^2/x^2$. *Hint.* Determine first the Fourier transform of $x \mapsto x^{-1} \sin x$.

Solution

Let \mathcal{F} denote the Fourier transformation, i.e., formally at least,

$$\mathcal{F}_x(f(x))(\xi) = \int_{-\infty}^{\infty} e^{-ix\xi} f(x) dx.$$

The following properties of the Fourier transform are easy to derive, at least formally:

$$\mathcal{F}_{x}(1)(\xi) = 2\pi\delta(\xi);$$

$$\mathcal{F}_{x}\left(e^{iax}\right)(\xi) = 2\pi\delta(\xi - a);$$

$$\mathcal{F}_{x}\left(xf(x)\right)(\xi) = i\frac{d}{d\xi}\mathcal{F}_{x}(f(x))(\xi);$$

$$\mathcal{F}_{x}\left(f(x)g(x)\right)(\xi) = (\mathcal{F}_{x}(f(x)) * \mathcal{F}_{x}(g(x)))(\xi).$$

We thus compute

$$\mathcal{F}_x(\sin x)(\xi) = \mathcal{F}_x\left(\frac{1}{2i}\left(e^{ix} - e^{-ix}\right)\right)(\xi) = \frac{\pi}{i}\left(\delta(\xi - 1) - \delta(\xi + 1)\right).$$

It follows that

$$\frac{\pi}{i} \left(\delta(\xi - 1) - \delta(\xi + 1) \right) = \mathcal{F}_x(\sin x)(\xi) = \mathcal{F}_x \left(x \frac{1}{x} \sin x \right)(\xi) = i \frac{d}{d\xi} \mathcal{F}_x \left(\frac{1}{x} \sin x \right)(\xi),$$

hence

$$\mathcal{F}_x\left(\frac{1}{x}\sin x\right)(\xi) = -\pi \int_{-\infty}^{\xi} \left(\delta(\eta - 1) - \delta(\eta + 1)\right) d\eta = \begin{cases} 0, & \xi < -1 \\ \pi, & -1 < \xi < 1 = \pi\chi_{[-1,1]}(\xi). \\ 0, & \xi > 1 \end{cases}$$

Note that the constant of integration is correct since \mathcal{F} maps L^2 to L^2 , so, as $(\sin x)/x$ is in L^2 , its Fourier transform must also be in L^2 , so must decay at $\pm \infty$. We therefore finally obtain

$$\mathcal{F}_{x}\left(\frac{\sin^{2}x}{x^{2}}\right)(\xi) = \pi^{2}\left(\chi_{[-1,1]} * \chi_{[-1,1]}\right)(\xi)$$

$$= \pi^{2} \int_{-\infty}^{\infty} \chi_{[-1,1]}(\eta) \chi_{[-1,1]}(\xi - \eta) d\eta$$

$$= \pi^{2} \int_{-1}^{1} \chi_{[-1,1]}(\xi - \eta) d\eta$$

$$= \pi^{2} \int_{\xi-1}^{\xi+1} \chi_{[-1,1]}(\eta) d\eta$$

$$= \begin{cases} 0, & \xi < -2 \\ \pi^{2}(2+\xi), & -2 < \xi < 0 \\ \pi^{2}(2-\xi), & 0 < \xi < 2 \end{cases}$$

$$0, & \xi > 2$$

7. Consider an autonomous system in \mathbb{R}^n , x'(t) = f(x(t)), where $f = (f_1, f_2, \dots, f_n)$ is a smooth vector field, such that

$$\sum_{k=1}^{n} x_k f_k(x) < 0 \text{ for } x \neq 0.$$

show that $x(t) \to 0$ as $t \to \infty$, for each solution of the system, independently of the initial condition x(0).

Solution

Notice that

$$\frac{d}{dt}||x(t)||_2^2 = 2x(t) \cdot x'(t) = 2x(t) \cdot f(x(t)) < 0$$

for $x(t) \neq 0$. It follows that any given trajectory x(t) eventually leaves any compact set $K \subset \mathbb{R}^n$ not containing 0 (since the quantity $x \cdot f(x) < -\epsilon$ for some $\epsilon > 0$ on K), from which we conclude that $x(t) \to 0$ as $t \to \infty$.