Lecture 1, Calculus

Prof. dr. Gheorghe Moza

1 Sequences and numerical series of real numbers

1.1 Sequences of real numbers

Definition 1.1. A **sequence** of real numbers (a real sequence) has the form

$$a_0, a_1, ..., a_n, ...$$

where $a_n \in \mathbb{R}$ for all $n \geq 0$. Formally, a sequence of real numbers can be defined as a function $a : \mathbb{N} \to \mathbb{R}$, i.e. for each natural number $n \in \mathbb{N}$ we associate the real number $a_n \in \mathbb{R}$, called the **general term** of the sequence. One way to denote a sequence is $(a_n)_{n \in \mathbb{N}}$, $(a_n)_{n \geq 0}$, or simply (a_n) .

In some situations, a sequence must be considered as a real function defined on the set $\{n \in \mathbb{N} : n \ge n_0\}$, where $n_0 \in \mathbb{N}$ is a fixed natural number (often called rank), in which case the sequence will be denoted by $(a_n)_{n\ge n_0}$ (take, for example, $a_n = \frac{1}{n(n-2)}$, $n \ge 3$). Sequences most often begin with $n_0 = 0$ (for example, $a_n = n - 1$, $n \ge 0$) or $n_0 = 1$ ($a_n = \frac{\ln n}{n+1}$, $n \ge 1$). Specifically, if n is a positive integer (that is, $n_0 = 1$), then a_n is called the nth term of the sequence.

By abuse of notation, it is often convenient to write "the sequence a_n " instead of "the sequence whose general term is a_n ".

Definition 1.2. A sequence $(a_n)_{n\geq 0}$ of real numbers is called **bounded** if there exist two **finite** numbers m, M such that

$$m < a_n < M$$
,

 $\forall n \geq 0$. The sequence $(a_n)_{n\geq 0}$ is called **left-bounded** if there exists $m \in \mathbb{R}$, finite, such that $m \leq a_n, \forall n \geq 0$, respectively, **right-bounded** if there exists $M \in \mathbb{R}$, finite, with $a_n \leq M, \forall n \geq 0$. A sequence which is not bounded is called **unbounded**.

For example, the sequence $a_n = \frac{1}{n^2}$, $n \ge 1$, is bounded because $0 < a_n \le 1$, $\forall n \ge 1$. But the sequence $a_n = n^4$, $n \ge 1$, is unbounded, because it is not right-bounded, even though it is left-bounded by m = 0.

Definition 1.3. A sequence $(a_n)_{n\geq 0}$ is called **increasing** (or monotonically increasing) if

$$a_n \leq a_{n+1}$$

 $\forall n \geq 0$, respectively, **decreasing** (or monotonically decreasing) if

$$a_n \ge a_{n+1}$$
,

 $\forall n \geq 0$. The sequence $(a_n)_{n\geq 0}$ is constant if $a_n = a_{n+1}$, $\forall n \geq 0$. If the above inequalities are strictly, that is, $a_n < a_{n+1}$ and $a_n > a_{n+1}$, the corresponding sequence is termed as strictly increasing, respectively, decreasing. A sequence (a_n) is called **monotonic** if it is either increasing or decreasing.

For example, the sequence $a_n = \frac{1}{n^2}, n \ge 1$, is (strictly) decreasing because $a_n = \frac{1}{n^2} > \frac{1}{(n+1)^2} = a_{n+1}, \ \forall n \ge 1$, and the sequence $a_n = n^4, n \ge 1$, is (strictly) increasing because $a_n = n^4 < (n+1)^4 = a_{n+1}, \ \forall n \ge 1$.

Definition 1.4. A sequence $(a_n)_{n\geq 0}$ is called **convergent** if there exists a real **finite** number $a \in \mathbb{R}$, such that $\forall \varepsilon > 0$, there is a rank $n_1 \in \mathbb{N}$ with the property that

$$|a_n - a| < \varepsilon,$$

for all $n \in \mathbb{N}$, $n \ge n_1$. In this case, the number a is called **the limit** of the sequence (a_n) and we denote usually by

$$\lim_{n \to \infty} a_n = a,$$

or, simply $a_n \to a$ (specifying or not $n \to \infty$). If the limit of the sequence (a_n) does not exist or is $\pm \infty$ (infinite), the sequence (a_n) is called **divergent**. Sometimes, if the limit exists and is $\pm \infty$, the sequence is said to be convergent to $\pm \infty$.

Remark 1.1. a) From this definition we learn that, if a sequence $(a_n)_{n\geq 0}$ is convergent to a, then all terms of the sequence lie in a neighborhood of a, excepting eventual a finite numbers of them, (from a_1 to a_{n_1-1}), more exactly, for $\forall \varepsilon > 0$ we have $a_n \in (a - \varepsilon, a + \varepsilon)$, for all $n \in \mathbb{N}$, $n \geq n_1$. The rank $n_1 \in \mathbb{N}$ depends on ε , $n_1 = n_1(\varepsilon)$.

b) The limit of a sequence, if exists, is unique.

Remark 1.2. When dealing with convergence of sequences, we do not use in general the definition but one or more properties described below. We list them here without proofs.

Properties.

P1) Let $(a_n)_{n\geq 0}$ be a **monotonic** sequence (i.e. increasing or decreasing) for all $n\geq n_0$, where $n_0\in\mathbb{N}$ is a fixed rank. If $(a_n)_{n\geq 0}$ is also **bounded** then $(a_n)_{n\geq 0}$ is convergent.

We notice from this property that, for the convergence of a_n , it suffices a_n to be monotonic from a certain rank n_0 , while the first $n_0 - 1$ terms have no influence on the convergence.

- P2) Any **convergent** sequence is **bounded**.
- P3) The **squeezing theorem** for sequences: if there are three **sequences** such that $a_n \leq b_n \leq c_n$ for all $n \geq n_0$ and $a_n \to a$, $c_n \to a$, then $b_n \to a$.
- P4) Let (a_n) be a **sequence** of strictly positive real numbers such that

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l.$$

Then, if $l < 1 \Rightarrow \lim_{n \to \infty} a_n = 0$ and if $l > 1 \Rightarrow \lim_{n \to \infty} a_n = +\infty$.

P5) Let (a_n) be a **sequence** of strictly positive real numbers and assume there exists the limit

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l.$$

Then there exists also the limit $\lim_{n\to\infty} \sqrt[n]{a_n}$ and

$$\lim_{n\to\infty} \sqrt[n]{a_n} = l.$$

P6) (Stolz lemma). Let (a_n) , (b_n) be two sequences of real numbers. If (b_n) is monotonically increasing with its limit $+\infty$, and if there exists

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = l,$$

then, there exists also $\lim_{n\to\infty} \frac{a_n}{b_n} = l$.

P7) If
$$\lim_{n\to\infty} u_n = +\infty$$
, then $\lim_{n\to\infty} \left(1 + \frac{1}{u_n}\right)^{u_n} = e \approx 2.71$.

P8) (L'Hospital rule)

$$\lim_{n\to\infty}\frac{P\left(n\right)}{Q\left(n\right)}\overset{\frac{0}{0}}{\underset{\infty}{=}}\lim_{n\to\infty}\frac{P'\left(n\right)}{Q'\left(n\right)}.$$

Definition 1.5. A sequence (a_n) of real numbers is called a **Cauchy sequence** (or **fundamental** sequence) if for $\forall \varepsilon > 0$, there exists a rank $n_1 = n_1(\varepsilon) \in \mathbb{N}$ such that

$$|a_{n+p} - a_n| < \varepsilon,$$

 $\forall n \in \mathbb{N}, n \geq n_1 \text{ and } \forall p \in \mathbb{N}.$

Remark 1.3. Denoting by m = n + p, we get an equivalent definition: the sequence (a_n) is a **Cauchy sequence** if $\forall \varepsilon > 0$, there exists a rank $n_1 = n_1(\varepsilon) \in \mathbb{N}$ such that, for all $m, n \in \mathbb{N}$ with $m, n \geq n_1$,

$$|a_m - a_n| < \varepsilon.$$

Definition 1.6. We say that $(a_{n_k})_{k\geq 1}$ is a **subsequence** of the sequence $(a_n)_{n\geq 1}$, if all terms of $(a_{n_k})_{k\geq 1}$ are extracted from the sequence $(a_n)_{n\geq 1}$.

For example, extracting the even, respectively, the odd numbers from the sequence $a_n = n, n \ge 0$, we obtain two different subsequences, $b_n = 2n, n \ge 1$, respectively, $c_n = 2n - 1, n \ge 1$.

Since any subsequence is in fact a sequence, we may denote it by (b_n) , (c_n) , (d_n) and so one, not necessarily by (a_{n_k}) .

Remark 1.4. a) If a **sequence** (a_n) is convergent with the limit a, then all its subsequences are convergent to the same limit a.

b) If a **sequence** (a_n) contains two different subsequences converging to two different limits, then the sequence is divergent.

Lemma 1.1. (Bolzano-Weierstrass). Any bounded **sequence** contains at least a convergent subsequence.

Theorem 1.1. (Cauchy's general criterion for convergence of sequences). The sequence (a_n) of real numbers is convergent if and only if (a_n) is a Cauchy sequence.

Exercises

1. Show by definition that $a_n = \frac{n}{n+1}, n \ge 1$, converges to a = 1.

Solution. For all $\varepsilon > 0$, $|a_n - 1| < \varepsilon$ is equivalent to $\left| \frac{-1}{n+1} \right| < \varepsilon$, i.e. $\frac{1}{n+1} < \varepsilon$, which implies $n > \frac{1}{\varepsilon} - 1$. Take now $n_1 = n_1(\varepsilon) = \left[\frac{1}{\varepsilon} - 1 \right] + 1 \in \mathbb{N}$, where [x] denotes the integer part of the real number x (e.g. [4.2] = 4). From [x] + 1 > x, we get that $n > \frac{1}{\varepsilon} - 1$, for all $n \in \mathbb{N}, n \ge n_1$, which is equivalent to $|a_n - 1| < \varepsilon$, that is, the sequence (a_n) is convergent and $\lim_{n \to \infty} a_n = 1$. For example, if $\varepsilon = 0.1$, we get $n_1 = 10 \in \mathbb{N}$, which means that all terms of the sequence starting with a_{10} lie on the interval $(1 - \varepsilon, 1 + \varepsilon) = (0.9, 1.1)$. If $\varepsilon = 0.01$, we get $n_1 = 100$, that is, all terms starting with a_{10} lie on $(1 - \varepsilon, 1 + \varepsilon) = (0.99, 1.01)$. If $\varepsilon = 1$, we get $n_1 = 1$, and the terms starting with a_1 lie in the interval $(1 - \varepsilon, 1 + \varepsilon) = (0, 2)$. So, the smaller is ε , the smaller is the neighborhood of the limit and the more terms (but a finite number) remain outside the neighborhood.

Calculate the limit of the following sequences.

2.
$$a_n = \frac{n + \sqrt{n^2 + 1}}{n}$$
, $b_n = \frac{n - \sqrt{n^2 + 1}}{n^2}$, $c_n = \frac{\ln(n+1)}{n}$. Solution. We have

$$\lim_{n \to \infty} a_n \stackrel{\cong}{=} \lim_{n \to \infty} \frac{\left(n + \sqrt{n^2 + 1}\right)'}{\left(n\right)'} = \lim_{n \to \infty} \left(1 + \frac{n}{n^2 + 1}\right) = 1.$$

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{\left(n - \sqrt{n^2 + 1}\right)\left(n + \sqrt{n^2 + 1}\right)}{n^2\left(n + \sqrt{n^2 + 1}\right)} = \lim_{n \to \infty} \frac{-1}{n^2\left(n + \sqrt{n^2 + 1}\right)} = 0.$$

$$\lim_{n \to \infty} c_n \stackrel{\cong}{=} \lim_{n \to \infty} \frac{\left(\ln\left(n + 1\right)\right)'}{\left(n\right)'} = \lim_{n \to \infty} \left(\frac{1}{n + 1}\right) = 0.$$

3.
$$x_n = \sqrt{n} \left(\sqrt{n+1} - \sqrt{n} \right)$$
, $y_n = \frac{n^3}{3^n}$, $z_n = \frac{\sqrt[n]{n!} + n}{n}$, and
$$t_n = \frac{1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n-1} + \frac{1}{n}}{n^2}$$
, $n \ge 2$.

Solution. We have:

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{\sqrt{n} (n+1-n)}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} = \frac{1}{2}.$$

For y_n we evaluate

$$\lim_{n \to \infty} \frac{y_{n+1}}{y_n} = \lim_{n \to \infty} \frac{\frac{(n+1)^3}{3^{n+1}}}{\frac{n^3}{3^n}} = \lim_{n \to \infty} \frac{(n+1)^3}{3n^3} = \frac{1}{3} < 1.$$

Now, from P4), we get $\lim_{n\to\infty} a_n = 0$.

Rewriting $z_n = \sqrt[n]{\frac{n!}{n^n}} + 1$ and denoting by $u_n = \frac{n!}{n^n}$, we have

$$\frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{n^n}{(n+1)^n} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e}$$

which, in turn, implies $\lim_{n\to\infty} b_n = \frac{1}{e} + 1$. For the last sequence we denote by $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n-1} + \frac{1}{n}$ and $b_n = n^2$. Since (b_n) is monotonically increasing to $+\infty$ and

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \lim_{n \to \infty} \frac{1}{n+1} \frac{1}{2n+1} = 0,$$

by P6) $\lim_{n\to\infty} t_n = 0$.

4. Use the Cauchy's general criterion for convergence to show the convergence of the sequences:

a)
$$a_n = \frac{\sin x}{2} + \frac{\sin 2x}{2^2} + \ldots + \frac{\sin nx}{2^n}.$$

Solution. Calculate $|a_{n+p} - a_n|$. It is clear that, for all n and p natural numbers, we have:

$$|a_{n+p} - a_n| = \left| \frac{\sin(n+1)x}{2^{n+1}} + \frac{\sin(n+2)x}{2^{n+2}} + \dots + \frac{\sin(n+p)x}{2^{n+p}} \right|$$

$$\leq \frac{|\sin(n+1)x|}{2^{n+1}} + \frac{|\sin(n+2)x|}{2^{n+2}} + \dots + \frac{|\sin(n+p)x|}{2^{n+p}}$$

$$\leq \frac{1}{2^{n+1}} + \frac{1}{2^{n+2}} + \dots + \frac{1}{2^{n+p}} = \frac{1}{2^{n+1}} \cdot \frac{1 - \left(\frac{1}{2}\right)^p}{1 - \frac{1}{2}} < \frac{1}{2^n} < \frac{1}{n}.$$

But $\frac{1}{n} < \varepsilon$ for all $\varepsilon > 0$ and $n \ge n_1 = n_1(\varepsilon) = \left[\frac{1}{\varepsilon}\right] + 1 \in \mathbb{N}$, which implies that $|a_{n+p} - a_n| < \frac{1}{n} < \varepsilon$, for all $n, p \ge n_1$, which means that (a_n) is a Cauchy sequence, so convergent.

b)
$$b_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2}.$$

Solution. For all non-zero $n, p \in \mathbb{N}$, we have

$$|b_{n+p} - b_n| = \left| \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+p)^2} \right|$$

$$< \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(n+p-1)(n+p)}$$

$$= \frac{1}{n} - \frac{1}{n+1} + \frac{1}{n+1} - \frac{1}{n+2} + \dots + \frac{1}{n+p-1} - \frac{1}{n+p}$$

$$= \frac{1}{n} - \frac{1}{n+p} < \frac{1}{n}.$$

If $n_1 = n_1(\varepsilon) = \left[\frac{1}{\varepsilon}\right] + 1 \in \mathbb{N}$ then $|b_{n+p} - b_n| < \varepsilon$ for all $n, p \ge n_1$. It means that (b_n) is a Cauchy sequence, so convergent.

2 Numerical series.

Definition 2.1. Let $(u_n)_{n\geq 1}$ be a sequence of real numbers. We call a **numerical** series associated to the sequence (u_n) , the infinite sum

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$$

The series $\sum_{n=1}^{\infty} u_n$ is often denoted shortly by $\sum_n u_n$, $\sum_{n\geq 1} u_n$, or simply $\sum u_n$. The sequence (s_n) with the general term

$$s_n = u_1 + u_2 + \ldots + u_n = \sum_{k=1}^n u_k$$

is called **the sequence of partial sums** associated to the series $\sum u_n$, and u_n is called **the general term of the series.**

Definition 2.2. We say the series $\sum_n u_n$ is **convergent** if the sequence (s_n) is convergent. In this case, the limit s of the sequence (s_n) ,

$$s = \lim_{n \to \infty} s_n,$$

is called **the sum** of the series and one denotes by

$$\sum_{n=0}^{\infty} u_n = s.$$

If the sequence (s_n) does not have a (unique) limit or the limit is $\pm \infty$, the series $\sum_n u_n$ is called **divergent**.

Theorem 2.1. (Cauchy's general criterion for convergence of series). A series of real numbers $\sum_n u_n$ is convergent if and only if the sequence of partial sums (s_n) is a Cauchy **sequence**, that is, for any $\varepsilon > 0$, there exists a rank $n_1 = n_1(\varepsilon) \in \mathbb{N}$ such that, for all $n \in \mathbb{N}$, $n \ge n_1$ and any $p \in \mathbb{N}$ we have $|s_{n+p} - s_n| < \varepsilon$, or, equivalently,

$$|u_{n+1} + u_{n+2} + \ldots + u_{n+p}| < \varepsilon.$$

Remark 2.1. If the series $\sum u_n$ is convergent, then the sequence (u_n) is convergent to 0, namely $u_n \to 0$. If $u_n \nrightarrow 0$, then the series $\sum u_n$ is divergent.

Remark 2.2. If $\sum_n u_n$ and $\sum_n v_n$ are two convergent series, then the series $\sum_n (\alpha u_n + \beta v_n)$, $\forall \alpha, \beta \in \mathbb{R}$, is convergent.

Definition 2.3. We say that a series $\sum_n u_n$ is **absolutely convergent** if the series $\sum_n |u_n|$ is convergent.

Proposition 2.1. Any absolutely convergent series is convergent.

Remark 2.3. If a series $\sum_n u_n$ is convergent, it does not imply necessarily that it is absolutely convergent. A convergent series which is not absolutely convergent, is called **semi-convergent**.

Example 2.1. We will show later that the series $\sum_{n\geq 1} (-1)^n \frac{1}{n}$ is semi-convergent.

For two series $\sum_n u_n$ and $\sum_n v_n$, their **product (multiplication)** is a new series $\sum_n c_n$, with

$$c_n = u_1 v_n + u_2 v_{n-1} + \dots + u_{n-1} v_2 + u_n v_1.$$

Theorem 2.2. (Mertens). If a series $\sum_n u_n$ is absolutely convergent and the series $\sum_n v_n$ is convergent, then their product series $\sum_n c_n$ is convergent and we have $\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} u_n \cdot \sum_{n=1}^{\infty} v_n$.

Proposition 2.2. (Abel Test). Assume the series of real numbers $\sum_n u_n$ has its sequence of partial sums (s_n) bounded and let $(a_n)_{n\geq 1}$ be a sequence of real numbers monotonically decreasing and convergent to 0. Then the series $\sum_n a_n u_n$ is convergent.

Definition 2.4. A series of real numbers of the form $\sum_{n} (-1)^{n} u_{n}$, $u_{n} \geq 0$, is called **an alternating series.**

Proposition 2.3. (Dirichlet Test). Let $\sum_{n} (-1)^{n} a_{n}$, $a_{n} > 0$, be an alternating series. If the sequence (a_{n}) is monotonically decreasing and convergent to 0, then the series $\sum_{n} (-1)^{n} a_{n}$ is convergent.

Exercises

1. Study the geometric series $\sum_{n=1}^{\infty} q^n$, with $q \neq 0$ a real number.

Solution. a) If q = 1, the sum $s_n = \sum_{k=1}^n 1 = n \to +\infty$, that is, the series is divergent. b) If q = -1, the sum $s_n = -1 + 1 - 1 + 1 - \dots = 0$, if n is even, respectively, $s_n = -1 + 1 - 1 + \dots = -1 \neq 0$, if n is odd, which means that the sequence s_n contains two subsequences with two different limits, so that s_n is divergent. This implies the series is divergent.

c) If $q \in (-1, 1)$, the sum

$$s_n = \sum_{k=1}^n q^n = q + q^2 + \dots + q^n = q \frac{1 - q^n}{1 - q} \to \frac{q}{1 - q},$$

because $q^n \to 0$. So the series is convergent and has the sum

$$s = \sum_{n=1}^{\infty} q^n = \lim_{n \to \infty} s_n = \frac{q}{1 - q}.$$

d) If q > 1, the sum

$$s_n = \sum_{k=1}^n q^n = q \frac{1 - q^n}{1 - q} \to +\infty,$$

because $q^n \to \infty$, so the geometric series is divergent.

e) Finally, assume q < -1. As $q^{2n} \to +\infty$ and $q^{2n-1} \to -\infty$, the sequence s_n is not convergent, that is the geometric series is divergent.

As a **conclusion**, the geometric series $\sum_{n=1}^{\infty} q^n$ is convergent if and only if its ration $q \in (-1,1)$.

- 2. Study the convergence of the series a) $\sum_{n=1}^{\infty} \frac{1}{(n+1)n}$, b) $\sum_{n\geq 2} \frac{n-1}{n!}$,
- c) $\sum_{n\geq 1} \frac{n}{n^4+4}$. Solution. a)

$$s_n = \sum_{k=1}^n \frac{1}{(k+1)k} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n-1} - \frac{1}{n} + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}.$$

As $s_n \to 1$, the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)n} = 1$, so it is convergent.

b) The general term can be put in the form

$$u_n = \frac{n-1}{n!} = \frac{n}{n!} - \frac{1}{n!} = \frac{1}{(n-1)!} - \frac{1}{n!}$$

Then

$$s_n = 1 - \frac{1}{2!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{1}{(n-1)!} - \frac{1}{n!} = 1 - \frac{1}{n!}.$$

As $s_n \to 1$, the series is convergent to 1.

c) Taking into account that

$$n^4 + 4 = n^4 + 4n^2 + 4 - 4n^2 = (n^2 + 2)^2 - 4n^2 = (n^2 + 2 - 2n)(n^2 + 2 + 2n),$$
 the general term becomes

$$u_n = \frac{n}{(n^2 - 2n + 2)(n^2 + 2n + 2)} = \frac{An + B}{n^2 - 2n + 2} + \frac{Cn + D}{n^2 + 2n + 2}$$

Identifying the coefficients, we get $u_n = \frac{1}{4} \left(\frac{1}{n^2 - 2n + 2} - \frac{1}{n^2 + 2n + 2} \right)$, or, equivalently $u_n = \frac{1}{4} \left(\frac{1}{(n-1)^2 + 1} - \frac{1}{(n+1)^2 + 1} \right).$

$$u_n = \frac{1}{4} \left(\frac{1}{(n-1)^2 + 1} - \frac{1}{(n+1)^2 + 1} \right).$$

Computing now the sum s_n , we get

$$4s_n = 1 - \frac{1}{5} + \frac{1}{2} - \frac{1}{10} + \frac{1}{5} - \frac{1}{17} + \frac{1}{10} - \dots + \frac{1}{(n-3)^2 + 1} - \frac{1}{(n-1)^2 + 1} + \frac{1}{(n-2)^2 + 1} - \frac{1}{n^2 + 1} + \frac{1}{(n-1)^2 + 1} - \frac{1}{(n+1)^2 + 1} = 1 + \frac{1}{2} - \frac{1}{n^2 + 1} - \frac{1}{n^2 + 2n + 2}.$$

As $s_n \to 3/8$, the series is convergent to 3/8.

3. Using the Abel test show the series $\sum_{n\geq 1} \frac{\cos(nx)}{\sqrt{n}}, x \in (0, 2\pi)$, is convergent. **Solution.** We compute first

$$p_n = \cos x + \cos 2x + \dots + \cos (nx).$$

Denote $q_n = \sin x + \sin 2x + ... + \sin (nx)$ and $z = \cos x + i \sin x$. Using the well-known formula $z^n = (\cos x + i \sin x)^n = \cos nx + i \sin nx, n \ge 1$, one gets

$$p_n + iq_n = z + z^2 + \dots + z^n = z \frac{1 - z^n}{1 - z}.$$

But

$$z\frac{1-z^n}{1-z} = (\cos x + i\sin x)\frac{(1-\cos nx) - i\sin nx}{(1-\cos x) - i\sin x}$$
$$= -\frac{1}{2} + \frac{1}{2}\frac{\cos nx - \cos(x+nx)}{1-\cos x} + iK(n,x)$$

where K(n,x) is an expression depending on n and x which we do not need. Hence,

$$p_n = -\frac{1}{2} + \frac{1}{2} \frac{\cos nx - \cos(x + nx)}{1 - \cos x},$$

which, in turn, implies,

$$|p_n| < \frac{1}{2} + \frac{1}{2} \frac{|\cos nx| + |\cos (x + nx)|}{|1 - \cos x|}$$

 $< \frac{1}{2} + \frac{1}{1 - \cos x} < \infty,$

since $\cos x \neq 1$ when $x \in (0, 2\pi)$. Hence, (p_n) is bounded. As $a_n = \frac{1}{\sqrt{n}}$ is monotonically decreasing to 0, by Abel's test, the series is convergent.

4. The series $\sum_{n} (-1)^n \frac{1}{n}$ is convergent by the Dirichlet test because it is alternating and the sequence $a_n = \frac{1}{n}$ is monotonically decreasing and convergent to 0.