TUGAS UTS REVIEW JURNAL KLASIFIKASI PADA PENGOLAHAN CITRA

Disusun untuk memenuhi salah satu tugas mata kuliah

Pengolahan Citra

Dosen: Ilcham, S.SI, .M.Eng

Disusun Oleh:

Nama: Miftahul Jannah

Nim: A1 20043

Prodi: Teknik Informatika

UNIVERSITAS NAHDLATUL ULAMA SULAWESI TENGGARA

TABEL REVIEW JURNAL NASIONAL

Jurnal pertama

JUDUL	Klasifikasi Tingkat Kematangan Jambu Bol Berbasis
	Pengolahan Citra Digital Menggunakan Metode K-
	Nearest Neighbor
JURNAL	Jurnal Informatika Merdeka Pasuruan
VOLUME & HALAMAN	Vol.3 No.1 tahun 2018 s.d Vol.7 No.2 tahun 2022
TAHUN	Maret 2022
PENULIS	Aminatus Syarifah, Aditya Akbar Riadi, Arief
	Susanto
	Teknik Informatika, Fakultas Teknik, Universitas
	Muria Kudus, Indonesia
REVIEWER	A120043 – Miftahul Jannah
TANGGAL	31 May 2023
TUJUAN PENELITAN	Tingkat kematangan jambu bol berdasarkan warna
	kulit tersebut agak sulit diklasifikasikan secara
	konvensional menggunakan mata manusia.
	Pengklasifikasian ini berguna untuk menyortir jambu
	bol yang akan dijual di pasar tradisional dan toko
	buah. Namun, penyortiran secara manual tersebut
	memiliki kekurangan diantaranya dapat
	menimbulkan perbedaan persepsi, waktu yang
	digunakan tidak efisien, serta memungkinkan adanya
	hasil klasifikasi yang beragam.
	Berdasarkan masalah tersebut, perlu adanya sistem
	yang dapat mengkalisfikasikan tingkat kematangan
	jambu bol agar memudahkan petani maupun
	pedagang saat penyortiran. Oleh karena itu,
	teknologi pengolahan citra digital menjadi solusi
	untuk membangun sistem pengklasifikasian tingkat
	kematangan jambu bol. Pada penelitian ini

	klasifikasi tingkat kematangan jambu bol ada 3
	macam, yaitu mentah, matang, dan sangat matang.
	Untuk menganalisis klasifikasi tingkat
	kematangannya menggunakan metode K-Nearest
	Neighbor dengan ekstraksi cirinya berdasarkan fitur
	warna HSV (Hue Saturation Value) dan fitur tekstur
	GLCM (Gray Level Coocurance Matrix).
SUBJEK PENELITIAN	Jambu bol, Pengolahan Citra Digital, K-NN,
	Ekstraksi, HSV, GLCM
METODE PENELITIAN	Berdasarkan uraian dari penelitian-penelitian yang
	telah dilakukan sebelumnya, peneliti menggunakan
	metode K-Nearest Neighbor, menggunakan metode
	ektraksi fitur HSV dan GLCM untuk
	mengklasifikasikan tingkat kematangan jambu bol.
	Tujuan penelitian ini adalah untuk
	mengklasifikasikan jambu bol merah sesuai tingkat
	kematangannya menggunakan metode K-Nearest
	Neighbor
LANGKAH-LANGKAH	Sistem klasifikasi tingkat kematangan jambu bol
PERANCANGAN	pada penilitian ini akan dibuat berbasis GUI
	(Graphical User Interface)/dekstop menggunakan
	tools matlab. Adapun proses pengumpulan datanya
	dilakukan dengan teknik observasi dan wawancara
	pada petani jambu bol, pedangan jambu bol di pasar
	tradisional, dan pedagang jambu bol di toko buah.
	Pada sistem klasifikasi tingkat kematangan jambu
	bol ini membutuhkan dua jenis data, yaitu data
	training dan data testing.
	Data tersebut berupa data foto/gambar dari jambu
	bol. Pada sistem klasifikasi ini terdapat 3 jenis
	klasifikasi tingkat kematangan jambu bol, yaitu
	mentah, matang, dan sangat matang. Untuk data
	training memiliki total data sebanyak 60 data yang

terdiri dari 20 data jambu bol dengan tingkat kematangan mentah, 20 data jambu bol dengan tingkat kematangan matang, dan 20 data jambu bol dengan tingkat kematangan sangat matang.

Sedangkan, data testing (data yang digunakan untuk uji coba) memiliki total data sebanyak 30 data yang terdiri dari 10 data jambu bol mentah, 10 data jambu bol matang, dan 10 data jambu bol sangat matang.

Data training tersebut digunakan sebagai dataset pada database sebagai bahan pengenalan pada sistem klasifikasi yang dibuat, sehingga dapat menghasilkan klasifikasi pada data uji (testing).

Proses pengambilan data foto dari jambu bol tersebut menggunakan kamera handphone dengan ukuran kameranya sebesar 64 MP sehingga diperoleh data foto yang jelas dan detail. Pengambilan foto jambu bol ini dilakukan dengan menggunakan latar belakang berwarna putih yang berasal dari kain putih polos, agar diperoleh hasil foto yang lebih cerah, bersih, serta lebih fokus dalam mendeteksi cirinya. Adapun 3 jenis klasifikasi tingkat kematangan yang digunakan pada penelitian ini dapat dilihat pada gambar 1 untuk ringkat kematangan mentah,gambar 2 untuk tingkat kematangan matang, dan gambar 3. untuk tingkat kematangan sangat matang/tua.

HASIL PENELITIAN

Objek yang digunakan pada pengujian klasifikasi ini adalah foto jambu bol merah dengan tingkat kematangan "matang" dan memiliki ukuran sebesar 4624 x 3472 piksel. Foto jambu bol yang dijadikan sebagai objek uji coba terdapat pada gambar 13 di bawah ini.

Pengujian ini dilakukan dengan nilai ketetanggan untuk klasifikasi adalah k=1 dan untuk GLCM

menggunakan sudut 00 dengan ketetanggan (D) bernilai 1. Adapun hasil pengujian klasifikasi pada menu klasifikasi terdapat pada gambar 14 di bawah ini. Pada gambar 14 dapat dilihat bahwa hasil keputusan akhirnya berupa klasifikasi buah jambu bol pada tingkat kematangan yang "matang". Adapun hasil konversi warna HSV dan *grayscale* secara lebih *detail* dan jelas dapat dilihat pada gambar 15 dan gambar 16 di bawah ini. Adapun data hasil ekstraksi fitur/ciri HSV dan GLCM dari aplikasi ini dapat dilihat pada tabel 2 di bawah ini.

TABEL 2 Hasil Ekstrasksi Mean H	0.5385
Mean S	0.2343
Mean V	0.8565
Entropi H	37.159
Entropi S	50.470
Entropi V	49.310
Skewness H	30.733
Skewness S	31.807
Skewness V	-32.191
Standar Deviasi H	0.1308
Standar Deviasi S	0.1350
Standar Deviasi V	0.0467
Contrass	0.0987
Energi	0.2541
Corellation	0.9868
Homogeneity	0.9643

tampilan proses akurasi pada aplikasi pengolahan citra ini terdapat pada gambar 17 di bawah ini. Pada proses ekstraski data training ini membutuhkan waktu selama 58 detik dan waktu yang dipelukan untuk mengkestraksi data testing sebesar 31 detik. Ekstraksi data training membutuhkan waktu lebih

lama dari estraksi data testing karena proses ini dilakukan pada 60 data. Hasil akurasi dari menu akurasi pada gambar 17 di atas sebesar 0.9333 atau jika dipersentasekan sebesar 93% dengan menggunakan nilai ketetanggan k=1.

Peneliti juga melakukan pengujian pada beberapa nilai ketetanggan yang digunakan di metode K-NN, antara lain k=1, k=2, k=3, k=5, dan k=10. Namun, hasil akurasi yang paling tinggi diperoleh pada nilai ketetanggan k=1, yaitu sebesar 93%. Adapun tabel perbandingan hasil klasifikasi pada pengujian beberapa nilai ketetanggaan tersebut terdapat pada tabel 3 di bawah ini.

Jurnal kedua

JUDUL	Klasifikasi Beras Menggunakan Metode K-Means
	Clustering Berbasis Pengolahan Citra Digital
JURNAL	Jurnal Terapan Sains & Teknologi (RAINSTEK)
VOLUME & HALAMAN	Vol. 1 No. 1
TAHUN	Maret 2019
PENULIS	Atriyan Trisnawan, Wahyudi Harianto, Syahminan,
	Teknik Informatika Fakultas Sains Dan Teknologi
	Universitas Kanjuruhan Malang
	atriyan1994@gmail.com, wahyou@unikama.ac.id,
	syahminan@unikama.ac.id
REVIEWER	A120043 – Miftahul Jannah
TANGGAL	31 May 2023
TUJUAN PENELITAN	Di Indonesia padi merupakan komoditas utama
	dalam menyokong pangan
	masyarakat. Makanan lokal seperti umbi-umbian
	tidak mampu menggeser keberadaan tanaman padi
	sebagai
	pangan pokok. Terdapat 18 juta petani padi di
	Indonesia yang menyumbang 66% terhadap produk
	domestik
	bruto (PDB) tanaman pangan.
	Di Indonesia proses pengolahan padi menjadi beras
	dilakukan dengan dua cara yaitu proses pengolahan
	ditumbuk dan proses pengolahan modern memakai
	alat penggilingan. Proses pengolahan paska panen di
	Indonesia identik menggunakan penggilingan
	modern. Beras merupakan komponen penting dalam
	makanan
	sehari-hari. Ada beberapa jenis yang beredar di
	pasaran yaitu : beras pandan wangi, rojo lele, IR 64,
	IR 42, C 4,

	dan lain-lain. Dengan benareka ragam bentuk, warna
	dan jenis beras di pasaran banyak kelemahan yang
	dimiliki
	manusia di dalam mempersepsi klasifikasi jenis
	beras menggunakan indera penglihatan
	Pada penelitian kali ini, penelitian mencoba
	menggunakan teknik dengan pendekatan metode
	untuk
	menentukan analisa dan pengelompokan jenis beras
	dengan pendekatan menggunakan pencitraan
SUBJEK PENELITIAN	Analisa; Beras; K-Mean Clustering; Digital Image
	Processing.
METODE PENELITIAN	Pada penelitian kali ini, penelitian mencoba
	menggunakan teknik dengan pendekatan metode
	untuk
	menentukan analisa dan pengelompokan jenis beras
	dengan pendekatan menggunakan pencitraan dengan
	judul
	"Klasifikasi beras menggunakan Metode K-Means
	Clustering Berbasis pengolahan citra digital".
LANGKAH-LANGKAH	2. Tahapan Penelitian
PERANCANGAN	Tahapan penelitian merupakan langkah-langkah
	yang akan dilakukan peneliti dalam
	melakukan penelitian. Tahapan yang dilakukan
	dalam penelitian ini meliputi studi literatur,
	pengumpulan data, perancangan sistem, pembuatan
	sistem, pengujian sistem, dan pembuatan laporan.
	Bagan tahapan penelitian disajikan pada Gambar 1.
	3. Perhitungan K-means Clustering
	K-means clustering adalah salah satu algoritma
	dalam menentukan klasifikasi terhadap objek
	berdasarkan fitur dari objek tersebut kedalam K
	kluster. K adalah angka positif yang menyatakan

jumlah grup/kluster/partisi terhadap objek.

Pemartisian data dilakukan dengan mencari nilai jarak

minimum antara data dan nilai *centroid* yang telah di set baik secara random atau pun dengan *initial set of centroid*, kita juga dapat menentukan nilai *centroid* berdasarkan K objek yang berurutan.

Centroid adalah nilai rata-rata aritmetik dari sebuah objek dari seluruh titik dalam objek tersebut. Penerapan K-means clustering ini dapat dilakukan dengan prosedur step by step berikut:

HASIL PENELITIAN

Pengujian sistem dengan menggunakan black box bertujuan untuk mengetahui jalannya suatu sistem.

Dengan melakukan pengujian seperti ini, dapat diketahui hasil dari proses program apakah telah sesuai dengan

hasil yang diharapkan, sehingga dapat menghasilkan output yang sesuai dengan hasil tes-tes yang dijalankan.

Hasil yang diharapkan disini adalah dengan memasukkan gambar telur ayam dapat diketahui nilai RGBnya,

sehingga dengan perbandingan nilai kedekatan antara nilai RGB data master dan data telur yang di analisa dapat

menghasilkan informasi berupa klasifikasi telur ayam terhadap pengguna. Berikut adalah hasil pengujian

menggunakan black box.

Untuk mengetahui seberapa besar keakuratan sistem maka dilakukan uji coba menggunakan kuisioner

antara pendapat responden tentang sistem aplikasi image processing. berdasarkan hasil pengujian kuisioner yang

dihasilkan dari sistem aplikasi image processing sebanyak 10 responden maka hasil tingkat keakurasian sistem

sebesar 100% dengan perhitungan sebagai berikut. 10 responden x 8 pertanyaan x bobot nilai tertinggi

(3) =

Sangat Setuju

 $10 \times 8 \times 3 = 240$

93/240 x 100 = 38.75% di bulatkan menjadi 39% Setuju

 $10 \times 8 \times 3 = 240$

76/240 x 100 = 31.6% di bulatkan menjadi 32%

Cukup Setuju

 $10 \times 8 \times 3 = 240$

 $15/240 \times 100 = 6.25\%$ di bulatkan menjadi 7%

Kurang Setuju

 $10 \times 8 \times 3 = 240$

 $0/240 \times 100 = 0\%$

Total Keseluruhan 78%.

Dengan demikian tingkat keakurasian pada pengujian pada black box testing pada aplikasi adalah 78% yang

artinya masih ada kegagalan pada sistem aplikasi yang harus diperbaiki

4.6 Pengujian Sistem Dengan Pakar Berdasarkan hasil pengujian yang dilakukan sebanyak 40 kali terdapat kesalahan sebesar 9 kali dan

kesesuaian 31 kali, sehingga dapat disimpulkan bahwa tingkat keakuratan sistem sebanyak 77,5%

Jurnal ketiga

JUDUL	Klasifikasi Kematangan Stroberi Berbasis
	Segmentasi Warna dengan Metode HSV
JURNAL	Jurnal JPE (Jurnal Penelitian Enjiniring)
VOLUME & HALAMAN	Vol. 23, No. 2
TAHUN	November 2019
PENULIS	Indrabayu1, Nurhikma Arifin, Intan Sari Areni
	Departemen Teknik Informatika, Fakultas Teknik,
	Universitas Hasanuddin
	Departemen Teknik Elektro, Fakultas Teknik,
	Universitas Hasanuddin
	Jl. Poros Malino km. 6, Bontomarannu, Kabupaten
	Gowa, Sulawesi Selatan 92171
	Email: indrabayu@unhas.ac.id
REVIEWER	A120043 – Miftahul Jannah
TANGGAL	31 May 2023
TUJUAN PENELITAN	Stroberi merupakan buah yang disukai oleh
	konsumen dan bernilai jual tinggi. Buah stroberi
	dapat dikonsumsi segar atau dalam bentuk
	olahan seperti sirup, selai, dodol, manisan dan
	bahan tambahan pada kue atau es. Kondisi buah
	stroberi ditentukan oleh beberapa parameter.
	Salah satunya adalah parameter tingkat
	kematangan buah yang bisa dilihat dari
	perubahan warna buah stroberi [1].
	Namun, pada proses klasifikasi kematangan
	stroberi yang dilakukan secara manual memiliki
	banyak keterbatasan karena dipengaruhi
	subjektivitas manusia seperti cepat lelah dan
	pengaruh fisik lainnya, sehingga pada kondisi
	tertentu proses pengklasifikasian tidak
	konsisten. Klasifikasi yang tidak konsisten akan

berpengaruh terhadap kualitas buah yang akan dipasarkan baik secara langsung maupun yang akan diolah menjadi produk. Oleh karena itu solusi dari masalah tersebut adalah sistem yang mampu melakukan klasifikasi kematangan stroberi secara konsisten dan akurat, sehingga dapat meminimalisir kesalahan yang dilakukan oleh manusia.

Pengolahan citra, HSV, stroberi, SVM

penelitian ini akan menerapkan

SUBJEK PENELITIAN

METODE PENELITIAN

sistem klasifikasi tingkat kematangan buah dengan memanfaatkan pengolahan citra digital dan kecerdasan buatan dengan menggunakan standar yang sama, sehingga sistem ini melakukan klasifikasi kematangan stroberi secara konsisten dan akurat. sistem ini mengklasifikasikan kematangan stroberi menjadi 3 kategori kelas yaitu stroberi belum matang, setengah matang, dan matang. Namun pada sistem ini diimplementasikan pengolahan citra digital dengan metode Hue, Saturation, dan Value (HSV) pada proses segmentasi sehingga memudahkan dalam pemisahan background dan objek stroberi dari berbagai ukuran dan bentuk. Proses segmentasi HSV didasarkan pada ciri warna stroberi dengan mengambil nilai Red, Green, dan Blue (RGB) pada citra. Sedangkan untuk klasifikasi menggunakan algoritma Support Vector Machine (SVM).

LANGKAH-LANGKAH PERANCANGAN

Dataset yang digunakan pada penelitian ini terdiri dari stroberi belum matang, setengah matang dan matang dengan total data 158

gambar stroberi. Dataset ini dibagi kedalam dua jenis data yaitu data latih dan data uji. Data latih yang akan digunakan sebanyak 80% dari total data. Data ini berupa data stroberi yang terlebih dahulu diproses untuk membentuk pola atau fitur yang akan digunakan dalam proses data uji. Sedangkan data uji yang digunakan sebanyak 20% dari total data. Data ini yang akan diproses dan dicocokkan dengan pola atau fitur hasil proses training dari data latih. Adapun pengambilan data pada penelitian ini dilakukan dengan menggunakan kamera Logitech C920 dengan resolusi 1920 x 1080 piksel, 15 megapixel snapshot dan bitrate 30 Fps. Kamera dipasang di dalam box ukuran 25 x 15 cm dengan kondisi pencahayaan yang telah ditentukan, yaitu menggunakan LED strip dan jarak antara kamera dengan objek stroberi adalah 25 cm. Data stroberi kemudian diolah menggunakan bahasa pemrograman python.

HASIL PENELITIAN

Setelah citra HSV diperoleh, maka proses selanjutnya adalah mengubah citra HSV ke citra hitam putih melalui proses masking. Masking adalah proses mengubah suatu citra menjadi citra hitam putih. Proses masking bertujuan untuk memisahkan antara foreground dan background citra dengan memanfaatkan proses thresholding. Proses thresholding menggunakan nilai batas tertentu (threshold) untuk mengubah nilai piksel pada gambar asli menjadi gambar biner, dimana nilai piksel foreground akan bernilai 1 dan nilai piksel background bernilai

0. Berdasarkan hasil eksperimen yang dilakukan pada kondisi stroberi belum matang, setengah matang, dan matang maka nilai lower dan upper yang optimal dari HSV Setelah proses masking selanjutnya menganalisis luas area objek pada citra untuk dilakukan bounding box. Blob detection akan menganalisis luas area dan bentuk objek blob dari suatu citra yang menjadi fokus deteksi. Hasil find contour, Selanjutnya dilakukan ekstraksi fitur dengan mengambil nilai rata-rata dari R, G, dan B pada citra sebagai pembeda antar objek.

Jurnal keEmpat

JUDUL	Klasifikasi Karakteristik Fisik Biji Pinang Belah
	Kering (Areca catechu) menggunakan Pengolahan
	Citra Digital
JURNAL	JURNAL ILMIAH MAHASISWA PERTANIAN
VOLUME & HALAMAN	Volume 7, Nomor 2
TAHUN	Mei 2022
PENULIS	Ria Desianti Br Sitepu, Indera Sakti Nasution,
	Rahmat Fadhil
	Program Studi Teknik Pertanian, Fakultas Pertanian,
	Universitas Syiah Kuala
	I.nasution@unsyiah.ac.id
REVIEWER	A120043 – Miftahul Jannah
TANGGAL	31 May 2023
TUJUAN PENELITAN	Penelitian ini bertujuan untuk mengklasifikasikan
	karakteristik fisik biji pinang belah kering dengan
	pengolahan citra menggunakan metode K- Nearest
	Neighbor (K- NN). Penelitian ini dilakukan karena
	tidak seragam nya karakteristik biji pinang belah
	kering yang disebabkan oleh tekstur, bentuk, dan
	warna pada biji pinang belah kering karena adanya
	kecacatan pada sampel.
SUBJEK PENELITIAN	Classification, Areca catechu, image processing, K-
	NN
METODE PENELITIAN	Sebelumnya sudah ada penelitian mengenai
	klasifikasi biji pinang belah yang dilakukan oleh
	Hartono dan Trismiyati (2016), mereka melakukan
	klasifikasi berdasarkan baik dan buruknya biji
	pinang tersebut. Biji pinang diklasifikasi berdasarkan
	parameter warna (R, G, B) dimana tingkat akurasi
	yang dihasilkan sebesar 96%. Penelitian lainnya
	menggunakan metode K-NN pernah dilakukan oleh

Sitorus (2018) untuk menentukan klasifikasi mutu buah papaya berdasarkan sifat fisik dan warna, tingkat akurasi yang didapat yaitu 100%
Penelitian ini bertujuan untuk mengklasifikasikan karakteristik fisik biji pinang belah kering dengan pengolahan citra menggunakan metode K- Nearest Neighbor (K- NN). Penelitian ini dilakukan karena tidak seragam nya karakteristik biji pinang belah kering yang disebabkan oleh tekstur, bentuk, dan warna pada biji pinang belah kering karena adanya kecacatan pada sampel.

LANGKAH-LANGKAH PERANCANGAN

Penelitian ini dilakukan di Laboratorium Teknik Pasca Panen Fakultas Pertanian Universitas Syiah Kuala Banda Aceh.

Alat dan Bahan

Alat yang digunakan pada penelitian ini, yaitu kamera kinect, laptop, software Halcon MVTec versi 20.11, software Excel, software SPSS, lampu LED, ring light, background kertas karton berwarna biru, studio mini box. Dan bahan yang digunakan yaitu 1.920 biji pinang belah kering.

Akuisisi Data dan Pengambilan Gambar
Pada penelitian ini ada 8 klasifikasi biji pinang belah

Akuisisi Data dan Pengambilan Gambar
Pada penelitian ini ada 8 klasifikasi biji pinang belah
kering yang digunakan yaitu D-Normal (biji normal
telungkup), U-Normal (biji pinang terbalik), DBusuk (biji busuk telungkup), U-Busuk (biji busuk
terbalik), D-Pecah (biji pecah telungkup), U-Pecah
(biji pecah terbalik), D-Asing (benda asing
telungkup), U-Asing (benda asing terbalik).
Pengambilan citra dilakukan 10 kali setiap
klasifikasi nya, dimana dalam 1 foto terdapat 16 biji
pinang belah kering. Maksud dari U dan D pada

klasifikasi yaitu posisi dari klasifikasi, dimana D (down) yaitu posisi telungkup dan U (up) telentang. Ekstraksi Fitur

Parameter utama yang menentukan kualitas dari biji pinang yaitu bentuk, tekstur, dan warna. Ke 3 parameter tersebut sudah mewakili kriteria kualitas dari biji pinang belah kering. Dalam pengolahan citra digital, fitur dari warna yang digunakan yaitu R, G, B. Tekstur menggunakan fitur kontras, korelasi, energi, dan homogenitas. Sedangkan untuk bentuk, fitur yang digunakan yaitu area dan perimeter.

HASIL PENELITIAN

Pengujian hasil klasifikasi bekerja berdasarkan pengenalan objek, di mana pengujian ini dilakukan untuk mengetahui apakah program ini dapat mengklasifikasikan biji pinang belah berdasarkan beberapa karakteristik yang telah ditetapkan. Untuk mengukur kinerja dari program ini yaitu data testing citra biji pinang belah kering sebanyak 640 biji pinang, tetapi setelah program dijalankan terdeteksi bahwa banyak biji pinang yang tidak dikenali berdasarkan karakteristik nya yaitu sebanyak 119 biji, sehingga data prediksi benar sebanyak 521 biji.

Jurnal keLima

JUDUL	KLASIFIKASI KUALITAS FISIK KOPI BERAS
	ARABIKA
	MENGGUNAKAN PENGOLAHAN CITRA
	DENGAN METODE K-NEAREST
	NEIGHBOR (K-NN)
JURNAL	JURNAL ILMIAH MAHASISWA PERTANIAN
VOLUME & HALAMAN	Volume 7, Nomor 2
TAHUN	Mei 2022
PENULIS	Reni Mardisa, Indera Sakti Nasution, Kiman Siregar
	Progam Studi Teknik Pertanian, Fakultas Pertanian,
	Universitas Syiah Kuala
	Email: renimardisa99@gmail.com
REVIEWER	A120043 – Miftahul Jannah
TANGGAL	31 May 2023
TUJUAN PENELITAN	Berdasarkan latar belakang tersebut, perlu dilakukan
	penelitian yang mengetahui hasil klasifikasi biji kopi
	beras arabika menggunakan pengolahan citra dengan
	metode K-Nearest Neighbor (KNN) dengan
	penggunaan nilai k tetangga terdekat yang memiliki
	akurasi yang tinggi. K-Nearest Neighbor (KNN)
	adalah metode untuk melakukan klasifikasi terhadap
	objek berdasarkan data pembelajaran yang jaraknya
	paling dekat dengan objek yang diuji. Jarak antara
	data latih dan data uji dihitung menggunakan
	persamaan euclidean (Tarsono et al., 2018).
	Penelitian ini bertujuan untuk mengklasifikasi
	kualitas fisik kopi beras arabika berdasarkan citra
	biji normal, biji pecah, biji coklat, dan biji hitam
	sebagian dengan menggunakan metode K- Nearest
	Neighbor (K-NN).

SUBJEK PENELITIAN

image processing, k-nearest neighbor method, arabica rice coffee beans, use of the nearest neighbor k value.

METODE PENELITIAN

Penelitian ini dilaksanakan di Laboratorium Teknik
Pasca Panen, Program studi Teknik Pertanian,
Fakultas Pertanian, Universitas Syiah Kuala,
Darussalam Banda Aceh. Penelitian ini dilaksanakan
pada bulan Agustus 2021. Bahan yang digunakan
pada penelitian ini meliputi kopi beras arabika yang
sesuai dengan SNI 01-2907-2008 yang berasal dari
Desa Pondok Baru, Kabupaten Bener Meriah
Provinsi Aceh. Peneliti melakukan klasifikasi
kualitas fisik kopi beras arabika dengan kriteria biji
normal, biji pecah, biji coklat dan biji sebagian hitam
dengan menggunakan pedoman pada SNI 01-29072008 kopi beras yang digunakan sebanyak 2400
butir,

LANGKAH-LANGKAH PERANCANGAN

Alat dan Bahan

meliputi kamera Kinect V2, laptop, foto Box, penggaris, karton biru, dua lampu LED 5 watt, dan 1 lampu ring light diameter 26 cm dan 1 lampu ring light diameter 20 cm. Pengolahan citra digital menggunakan aplikasi Halcon MVTec 20.05. bahan yang digunakan adalah biji kopi beras arabika. Prosedur Penelitian Bahan yang digunakan pada penelitian ini meliputi kopi beras arabika yang sesuai dengan SNI 01-2907-2008 yang berasal dari Desa Pondok Baru, Kabupaten Bener Meriah Provinsi Aceh. Peneliti melakukan klasifikasi kualitas fisik kopi beras arabika dengan kriteria biji normal, biji pecah, biji coklat dan biji sebagian hitam dengan menggunakan

Alat dan bahan yang digunakan pada penelitian ini

pedoman pada SNI 01-2907-2008 kopi beras yang digunakan sebanyak 2400 butir, dengan pengambilan 80 foto untuk data training yaitu 1600 biji, untuk data testing 40 foto yaitu 800 biji Kategori biji normal adalah biji kopi dengan bentuk utuh tanpa adanya cacat dengan kualitas tinggi, biji pecah adalah biji kopi yang tidak utuh yang besarnya sama atau kurang dari ¾ bagian biji utuh, biji kopi coklat adalah biji kopi yang setengah atau lebih bagian luarnya berwarna coklat, selanjutnya biji kopi hitam sebagian biji kopi yang kurang dari setengah bagian luarnya berwarna hitam atau satu bintik hitam kebirua-biruan tetapi tidak berlubang atau ditemukan lubang dengan warna hitam yang lebih besar dari lubang. klasifikasi dalam pengambilan citra terdiri dari biji kopi telungkup (Down) dan terbalik (up) yaitu D-Normal, U-Normal, D-Pecah, U-Pecah, D-Coklat, U-Coklat, D-Hitam Sebagian dan U-Hitam Sebagian. Pengambilan Citra Biji Kopi Arabika Pengambilan citra biji kopi beras arabika dengan menggunakan kamera Kinect V2. Kamera diletakkan secara tegak lurus dengan biji

menggunakan kamera Kinect V2.

Kamera diletakkan secara tegak lurus dengan biji kopi, jarak pencahayaan disesuaikan dengan jarak kamera. Pengambilan citra kopi beras arabika menggunakan latar belakang karton berwarna biru dengan menggunakan Box foto ukuran 40cm x 40cm x 40cm. Pengambilan citra dilakukan pada setiap kategori cacat biji kopi yang berbeda-beda. Pengambilan citra

pada penelitian ini dilakukan sebagai berikut: biji kopi beras diletakkan 20 butir secara mendatar dengan cara pengambilannya diletakkan 20 butir biji kopi secara telungkup (down) dan biji kopi terbalik (up) di atas karton berwarna biru, penggunaan karton berwarna biru bertujuan supaya gambar yang dihasilkan tidak adanya bayangan yang mengganggu proses pengolahan citra, kemudian jarak kamera dengan objek yang digunakan adalah 23 cm karena resolusi yang dihasilkan tinggi, kemudian proses ini kembali diulang untuk kategori biji kopi cacat yang lainnya. Format gambar yang dihasilkan adalah BMP dengan ukuran Gambar 640 x 480 pixel. Berikut cara pengambilan citra biji kopi beras arabika secara telungkup (down) dan pengambilan citra secara terbalik (up).

HASIL PENELITIAN

Hasil penelitian menunjukkan rata-rata persentase akurasi tertinggi dengan menggunakan nilai K=5 yaitu 78,625% dengan perlakuan terbaik yaitu pada biji kopi terlungkup (Down) dengan rata-rata akurasi sebesar 80,25%, dan Berdasarkan hasil klasifikasi menggunakan Linear Discriminant Analysis (LDA) parameter yang paling berpengaruh dalam klasifikasi biji kopi beras arabika adalah parameter area, perimeter, b, kontras, B, R, L, a, energi, korelasi, dan G