

24.02.15

다변량 스팀 사용 이상 감지 및 영향 변수의 원인 분석

서울과학기술대학교 데이터사이언스학과

이성호 <u>sean0310@seoultech.ac.kr</u>

배소희 <u>shbae2819@g.seoultech.ac.kr</u>

심재웅 <u>jaewoong@seoultech.ac.kr</u>

데이터

- 이용 데이터
- 제품 2종에 대한 6달간 센서 데이터

df_ext(2023-03,04)(5123,0385)_2023-11-16 seoultech df_ext(2023-05,06)(5123,0385)_2023-11-16 seoultech df_ext(2023-07,08)(5123,0385)_2023-11-16 seoultech 기간: 2023-03-02 08:00:00 ~ 2023-08-27 03:00:00 (분)

date	날짜
tg	Sensor (38개)
stop	공정 분석값 0 : 가동 1 : 중지 이벤트 발생 2 : 중지 복구
jr	단위 공정값 / 제품 생산 주기 (생산품 번호)

- 이용 데이터 전처리
 - jr_progress : jr을 기준으로 시간에 따른 정수를 새로운 변수로 추가

• jr_window_patch : window 사이즈 만큼의 데이터 패치 후, 예측하고자 하는 시점의 jr과 다른지 같은지 표기하는 새로운 변수 추가

데이터

- 이용 데이터
- 이용 데이터 정의
 - input(X): tg (38개 sensor 데이터), 공정진행도(jr_progress), 공정변화도(jr_window_patch)
 - Window size: 30
 - output(y) : 5분 후의 ei계산값 tg04/(tg02*tg03*0.0003)
- Data split
 - Train/Test = 80:20

Train: 2023-03-02 08:00:00 ~ 2023-07-16 12:47:00 (70440)

Test: ~ 2023-08-27 03:00:00 (17598)

데이터 이해 및 전처리

- 이용 데이터 처리
 - tg04 tg02 값 중 1 이하의 값 제외(735개의 index)

○ tg03 tg03 값 중 1000 이하의 값 제외(959개의 index)

○ tg02 tg02 값 중 10 이하의 값 제외(54개의 index)

○ 결과 총 1,131개의 row가 삭제됨

count	88709.000000
mean	1.174082
std	0.305062
min	0.096630
25%	1.158493
50%	1.274723
75%	1.343347
max	3.523615
Name:	ei, dtype: float64

UCL & LCL 설정(이상치 정의)

- 이전 5개의 jr에 대한 ei값의 누적 평균 ± 0.15
 - 전체 시계열

■ 관리 한계선(UCL,LCL) 내부 : class 0 (82668)

■ LCL 미만 : class 1 (2794) ■ UCL 초과 : class 2 (3247)

1D CNN

- Experiment setting
 - Epoch : 100
 - O optimizer : Adam(lr=1e-4)
 - 학습 데이터셋에서 각 클래스가 차지하는 비율의 역수를 사용하 여 loss weight 설정
 - Layer: 1D Conv layer(16->32->64->128) / kernel=3), Linear layer (256 -> 32 -> 3)
- Result
 - Acc : 0.9010
 - F1: 0.4538
- 변수 별 중요도 해석
 - tg17(스팀 누적값)○ tg38(설비 AE 속도)

 - is_abnormal(ei label값)

Confusion Matrix_1D CNN_classification

ok(n=16907)

Under LCL(n=138)

Over UCL(n=115)

117

Over UCL

1D CNN

1D CNN

LSTM

- **Experiment setting**
 - Epoch : 100
 - O optimizer : Adam(lr=1e-4)
 - 학습 데이터셋에서 각 클래스가 차지하는 비율의 역수를 사용하여 loss weight 설정
 - Layer: lstm layer(hidden=256, layer=6) + attention layer

- Result
 - Acc: 0.9619
 - F1: 0.4945
- 변수 별 중요도 해석
 - tg02(종이별 측정 무게)

 - tg17(스팀 누적값)○ tg38(설비 AE 속도)

LSTM

LSTM

IMV-LSTM

- **Experiment setting**
 - Epoch : 100
 - O optimizer : Adam(Ir=1e-3)
 - Lstm layer 노드: 32
 - 학습 데이터셋에서 각 클래스가 차지하는 비율의 역수를 사용하여 loss weight 설정

O Acc: 0.9501

F1: 0.5368

모델 해석(Attention Map)

- jr_window_patch(공정변화도) tg03(끝단 설비 속도)
- O is_abnormal(ei label값)
- tg 35(설비S1 용액 높이)
- jr_progress(공정진행도)

IMV-LSTM

IMV-LSTM

전체 모델 결과표

• 1D CNN

Regression			
	precision	recall	F1 score
Under LCL	0.3986	0.4365	0.4167
Over UCL	0.5391	0.2081	0.3002
		Accuracy	0.9748

Classification			
	precision	recall	F1 score
Under LCL	0.8188	0.0694	0.1280
Over UCL	0.3478	0.2847	0.2847
	Accuracy 0.9010		

- 회귀에서 높은 정확도이나 분류의 정확도는 낮음 - 분류의 F1 score 매우 낮음

LSTM

Regression			
	precision	recall	F1 score
Under LCL	0.6087	0.4200	0.4970
Over UCL	0.2087	0.4000	0.2743
Accuracy			0.9832

Classification			
	precision	recall	F1 score
Under LCL	0.4348	0.2091	0.2824
Over UCL	0.487	0.1414	0.2192
Accuracy 0.9619			0.9619

- 회귀의 Under UCL의 경우 높은 정밀도 - 전반적으로 낮은 F1 score

IMV LSTM

Regression			
	precision	recall	F1 score
Under LCL	0.5072	0.4930	0.5000
Over UCL	0.2870	0.3667	0.3220
Accuracy			0.9843

Classification			
	precision	recall	F1 score
Under LCL	0.5652	0.2241	0.3210
Over UCL	0.6174	0.1431	0.2324
Accuracy 0.9546			0.9546

회귀에서의 높은 정확도와 Under UCL의 가장 높은 재현율분류의 F1 score 가장 높음

감사합니다