Examenul național de bacalaureat 2021 Proba E. c)

Matematică M tehnologic

BAREM DE EVALUARE ȘI DE NOTARE

Testul 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(7 - 7 \cdot \frac{1}{6} \cdot \frac{1}{7}\right) \cdot \frac{6}{41} = \left(7 - \frac{1}{6}\right) \cdot \frac{6}{41} =$	3p
	$=\frac{41}{6}\cdot\frac{6}{41}=1$	2p
2.	$f(x) = g(x) \Leftrightarrow 2x - 6 = 6 - x$	3p
	Coordonatele punctului de intersecție sunt $x = 4$, $y = 2$	2p
3.	3x - 2 = 7	3p
	x = 3, care convine	2p
4.	$p - \frac{12}{100} \cdot p = 264$, unde p este prețul inițial al tabletei	3p
	p = 300 de lei	2p
5.	$x_A = \frac{x_M + x_T}{2} = \frac{2+6}{2} = 4$	3p
	$y_A = \frac{y_M + y_T}{2} = \frac{3+5}{2} = 4$	2p
6.	$\sin 30^\circ = \cos 60^\circ = \frac{1}{2}$, $\sin 60^\circ = \cos 30^\circ = \frac{\sqrt{3}}{2}$, $\sin 90^\circ = 1$	3p
	$\cos 60^{\circ} \sin 60^{\circ} + \sin 90^{\circ} - \sin 30^{\circ} \cos 30^{\circ} = \frac{\sqrt{3}}{4} + 1 - \frac{\sqrt{3}}{4} = 1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 3 & 5 \\ 1 & 3 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 3 & 5 \\ 1 & 3 \end{vmatrix} =$	2p
	$=3\cdot 3-1\cdot 5=9-5=4$	3 p
b)	$B \cdot B + 2C = \begin{pmatrix} 4 & 12 \\ 4 & 12 \end{pmatrix} + \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 14 \\ 4 & 12 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 4+2 & 3\cdot 4+2 \\ 4 & 3\cdot 4 \end{pmatrix} = A(4)$	2p
c)	$A(n) + B = \begin{pmatrix} n+3 & 3n+5 \\ n+1 & 3n+3 \end{pmatrix} \Rightarrow \det(A(n) + B) = 4n+4$, unde n este număr natural	3 p
	$4n + 4 = 4 \Leftrightarrow n = 0$, care convine	2p
2.a)	$1*1 = \frac{3 \cdot 1 \cdot 1 + 1}{1 + 1} =$	3 p
	$=\frac{4}{2}=2$	2p

Probă scrisă la matematică M tehnologic

Barem de evaluare și de notare

b)	$1*2 = \frac{7}{3} \Rightarrow (1*2)*3 = \frac{7}{3}*3 = \frac{33}{8}$	2p
	$2*3 = \frac{19}{5} \Rightarrow 1*(2*3) = 1*\frac{19}{5} = \frac{31}{12}$, de unde obţinem $((1*2)*3) - (1*(2*3)) = \frac{33}{8} - \frac{31}{12} = \frac{37}{24}$	3p
c)	$\frac{3x^2+1}{2x} = 2 \Leftrightarrow 3x^2-4x+1=0$	3 p
	$x = 1$ sau $x = \frac{1}{3}$, care convin	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 3x^4 + 3x^3 - 6x^2 =$	3p
	$=3x^{2}(x^{2}+x-2)=3x^{2}(x-1)(x+2), x \in \mathbb{R}$	2p
b)	f(0) = -1, f'(0) = 0	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = -1$	3 p
c)	$x \in [-2,1] \Rightarrow x - 1 \le 0 \text{si} x + 2 \ge 0$	2p
	Cum $x^2 \ge 0$, pentru orice număr real $x \Rightarrow f'(x) \le 0$, pentru orice $x \in [-2,1]$, deci f este descrescătoare pe $[-2,1]$	3 p
2.a)	$\int_{-1}^{1} (f(x) + x - 3) dx = \int_{-1}^{1} (x^3 - x + 3 + x - 3) dx = \int_{-1}^{1} x^3 dx = \frac{x^4}{4} \Big _{-1}^{1} =$	3 p
	$= \frac{1}{4} - \frac{1}{4} = 0$	2p
b)	$\int_{0}^{1} (f(x) - x^{3} - 3)e^{x} dx = -\int_{0}^{1} xe^{x} dx = -(x - 1)e^{x} \Big _{0}^{1} =$	3 p
	$= (-1) \cdot e^0 = -1$	2p
c)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(x^{3} - x + 3 \right) dx = \left(\frac{x^{4}}{4} - \frac{x^{2}}{2} + 3x \right) \Big _{0}^{1} = \frac{11}{4}$	3p
	$-a^2 + 5 = \frac{11}{4} \Leftrightarrow a^2 = \frac{9}{4}$ şi, cum $a > 0$, obţinem $a = \frac{3}{2}$	2p