Skript QT2

16. Juni 2021

Inhaltsverzeichnis

0	Gru	dstruktur der Quantenmechanik	3					
	0.1	Postulate	3					
	0.2	Ortsraum, Teilchen in 1D	3					
1	Relativistische Quantenmechanik							
	1.1	Kontinuierliche Symmetrien (Bsp. Rotationsinvarianz)	4					
		.1.1 Drehungen in 3D	4					
		.1.2 Darstellungen	4					
		.1.3 Drehungen in der Quantenmechanik	5					
	1.2	orentzinvarianz	6					
		.2.1 Lorentzgruppe	6					
		.2.2 Darstellungen	6					
		.2.3 Diracspinoren und γ -Matrizen	7					
	1.3	berblick über relativistische Wellengleichungen	7					
		.3.1 Klein-Gordon-Gleichung	8					
		.3.2 Dirac-Gleichung	9					
	1.4	Physik und Lösungen der Diracgleichung	10					
		.4.1 Freie Lösungen, Impuls-/Spin-Eigenzustände	10					
		.4.2 Mehr zum Drehimpuls	11					
		.4.3 Kopplung ans elektromagnetische Feld	12					
		.4.4 Nichtrelativistischer Limes	12					
		.4.5 Weitere Konsequenzen: Spin-Bahn-Kopplung	14					
2	Ununterscheidbare Teilchen							
	Во	onen und Fermionen	18					
	2.1	Interscheidbare Teilchen	18					
		1.1 Zustände	18					

	2.1.2	Observablen/Operatoren	19		
2.2	Identis	sche/Ununterscheidbare Teilchen	19		
	2.2.1	Prinzipien	19		
	2.2.2	Zustände	20		
2.3	Einfac	he Anwendungen	22		
	2.3.1	Grund- und angeregte Zustände	22		
	2.3.2	Direkter Prozess vs. Austauschterm	23		
	2.3.3	Wasserstoffmolekül H_2	24		
2.4	Erzeug	gungs- und Vernichtungsoperatoren	26		
	2.4.1	Fock-Raum	26		
	2.4.2	Erzeuger/Vernichter für Bosonen	26		
	2.4.3	Erzeuger/Vernichter für Fermionen	27		
	2.4.4	Besetzungszahldarstellung	28		
	2.4.5	Formulierung von Observablen	29		
	2.4.6	Kurz-Überblick über Anwendungen	31		
2.5	Ortsraum, Impulsraum, QFT (Spin=0)				
	2.5.1	Zur Interpretation der letzten Ergebnisse	32		
	2.5.2	Ortsraum	32		
	2.5.3	Quantenfeldtheorie	33		
	254	Quantonfoldthoorie und Impulgraum	36		

Kapitel 0

Grundstruktur der Quantenmechanik

0.1 Postulate

Essenz: Doppelspaltexperiment / Stern-Gerlach-Experiment

Zustand: eindeutig / maximal präpariertes physikalisches System, reproduzierbares Verhalten, eindeutige Zeitentwicklung. Beschreibung durch $|\psi\rangle$ eines Hilbertraums. Linearkombinationen erlaubt!

Observablen: Operatoren \hat{A} (hermitesch, da reelle Eigenwerte \leftrightarrow mögliche Messwerte)

Wahrscheinlichkeit: Für ein Messergebnis a_n ist die Wahrscheinlichkeit $|\langle a_n | \psi \rangle|^2$ (normierte Zustände).

Erwartungswert: (Korrollar) $\langle \psi | \hat{A} | \psi \rangle$

Zeitentwicklung: \hat{H} (Hamiltonoperator), \hat{H} sei nicht expl. zeitabh.

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \langle \psi_1 | \hat{A} | \psi_2 \rangle = \langle \psi_1 | [\hat{A}, \hat{H}] | \psi_2 \rangle$$

Schrödinger-Bild

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$

Heisenberg-Bild

$$\begin{aligned} |\psi_H\rangle &= e^{i\hat{H}t}|\psi(t)\rangle \\ \hat{A}_H(t) &= e^{i\hat{H}t}\hat{A}e^{-i\hat{H}t} \\ i\hbar\frac{\mathrm{d}}{\mathrm{d}t}\hat{A}_H(t) &= [\hat{A}_H(t),\hat{H}] \end{aligned}$$

0.2 Ortsraum, Teilchen in 1D

Operatoren \hat{x} , \hat{p} , $[\hat{x}, \hat{p}] = i\hbar$.

EZe: $|x\rangle,\,|p\rangle$ (bilden jeweils Basis)

Wellenfunktionen: $\psi(x) := \langle x|\psi\rangle, \, \tilde{\psi}(p) := \langle p|\psi\rangle$

Kapitel 1

Relativistische Quantenmechanik

1.1 Kontinuierliche Symmetrien (Bsp. Rotationsinvarianz)

Frage: Was ist Drehimpuls?

1.1.1 Drehungen in 3D

 $(\rightarrow \text{Liegruppe } SO(3))$

Aktive Drehung: Bsp. $\mathbf{v}' = R_z(\theta)\mathbf{v}$ (Drehung um Winkel θ um z-Achse)

Infinitesimale Drehungen, $\theta = \varepsilon \to 0$:

$$R_z(\varepsilon) = \mathbf{1} - i\varepsilon \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{1} - i\varepsilon \ell_z$$

$$\ell_z = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \ell_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \ell_y = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \qquad (\ell_k)_{i,j} = -i\varepsilon_{ijk}$$

"Generatoren der zugehörigen Lie-Algebra"

Charakteristische Kommutatorrelation: $[\ell_i, \ell_j] = i\varepsilon_{ijk}\ell_k$

Endliche Drehungen: $R_z(\theta) = \exp(-i\theta \ell_z)$

1.1.2 Darstellungen

Eine Darstellung einer Gruppe ist eine Zuordnung: $R \mapsto D(R) = \text{Matrix} / \text{linearer Operator}, \text{ mit}$

$$D(R_1R_2) = D(R_1)D(R_2)$$

Physikalische Idee: Viele physikalische Größen \rightarrow angeben, wie sie sich unter Drehungen verhält.

• Impuls: $\mathbf{p} \longmapsto \mathbf{p}' = R\mathbf{p}$

• Energie: $E \longmapsto E' = E = D(R)E$ mit $\forall R : D(R) = 1$

• Ladung: $Q \mapsto Q' = Q$

• Dichte: $\rho \longmapsto \rho' : \rho'(R\mathbf{x}) = \rho(\mathbf{x})$

• Quantenzustand $|\psi\rangle \longmapsto |\psi'\rangle = \hat{D}(R)|\psi\rangle$

Generatoren für Darstellungen: $\theta = \varepsilon \to 0$

$$D(R_z(\varepsilon)) = \mathbf{1} - i\varepsilon J_z$$
 (Analog für x, y)

mit Operatoren J_x, J_y, J_z wie $D(R_z(\varepsilon))$, diese sind spezifisch für die Darstellung.

$$D(R_z(\theta)) = \exp(-i\theta J_z)$$

$$[J_i, J_i] = i\varepsilon_{ijk}J_k$$

Die Generatoren jeder Darstellung erfüllen dieselben Vertauschungsrelationen.

1.1.3 Drehungen in der Quantenmechanik

Darstellung von Drehungen:

$$\hat{D}(R_k(\theta)): |\psi\rangle \mapsto |\psi'\rangle = \hat{D}(R_k(\theta))|\psi\rangle$$

Gruppenstruktur:

$$\hat{D}(R_1R_2) = \hat{D}(R_1)\hat{D}(R_2)$$

Falls Symmetrie:

$$\langle \psi' | \phi' \rangle = \langle \psi | \phi \rangle \Leftrightarrow \langle \psi | \hat{D}^{\dagger} \hat{D} | \phi \rangle$$

 $\hat{D}(R)$ ist ein unitärer Operator. $[\hat{D}(R), H] = 0$.

Infinitesimale Drehung:

$$\hat{D}(R_k(\varepsilon)) = \mathbf{1} - i\varepsilon \hat{J}_k$$

Falls Symmetrie:

$$[\hat{J}_k, \hat{H}] = 0$$
 $[\hat{J}_i, \hat{J}_j] = i\varepsilon_{ijk}\hat{J}_k$

Per Definition: $\hat{\mathbf{J}}$ is Drehimpuls dieser Quantentheorie.

Konsequenzen bei solchen $\hat{\mathbf{J}}$ -Operatoren: (QT1)

$$[\hat{J}_z, \hat{\mathbf{J}}] = 0 \qquad \hat{J}_{\pm} = \hat{J}_x \pm i\hat{J}_y$$

Mögliche Eigenzustände: $|j,m\rangle$ mit $j=0,\frac{1}{2},1,\frac{3}{2},\dots$ und $m=-j,\dots,j$

Einfachste nicht-triviale Darstellung: $j=\frac{1}{2},$ d.h. 2-Zustandssystem $|\pm\rangle:=|j=\frac{1}{2},m=\pm\frac{1}{2}\rangle$.

$$|\psi\rangle = \psi_{+}|+\rangle + \psi_{-}|-\rangle$$

$$\psi \stackrel{R_k(\theta)}{\longmapsto} \psi' = \left(\mathbf{1} - i\theta \frac{\sigma_k}{2}\right) \psi$$

mit Pauli-Matrizen σ_k .

1.2 Lorentzinvarianz

1.2.1 Lorentzgruppe

Drehungen: $(t, \mathbf{r}) \longmapsto (t, R(\mathbf{r}))$

Boosts in x-Richtung:

$$\begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} \cosh \beta & \sinh \beta & 0 & 0 \\ \sinh \beta & \cosh \beta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}$$

Generatoren: ℓ_x, ℓ_y, ℓ_z wie gehabt. Boosts: $\Lambda_x(\beta) = \mathbf{1} - i\beta k_x + \mathcal{O}(\beta^2)$

6 Generatoren: Vertauschungsrelationen (und zyklisch):

$$[\ell_x, \ell_y] = i\ell_z$$

$$[k_x, k_y] = -i\ell_z$$

$$[\ell_x, k_y] = ik_z$$

1.2.2 Darstellungen

Def. Darstellung: Matrizen/Operatoren J_i , K_i , mit $[J_x, J_y] = iJ_z$, $[K_x, K_y] = -iJ_z$, $[J_x, K_y] = iK_z$. Triviale Darstellung: $J_i = 0$, $K_i = 0$

Spin $\frac{1}{2}$: $J_i = \sigma^i/2$, $K_i = -i\sigma^i/2$. Die Elemente des 2D Darstellungsraumes nennt man linkshändige Weyl-Spinoren. (Andere Variante mit $K_i = +i\sigma^i/2$: Elemente sind rechtshändige Weyl-Spinoren)

Partität/Raumspiegelung P: $\mathbf{x} \mapsto -\mathbf{x}$, $\mathbf{p} \mapsto -\mathbf{p}$, $\mathbf{J} \mapsto \mathbf{J}$, $\mathbf{K} \mapsto -\mathbf{K}$. Falls P-Transformation genutzt werden soll, sind beide Darstellungen nötig \Rightarrow 4D komplexer Spinorraum aus Dirac-Spinoren notwendig.

$$\Psi = \begin{pmatrix} \psi_{\alpha} \\ \overline{\psi}^{\dot{\alpha}} \end{pmatrix}$$

Darstellung für Diracspinoren:

$$J_i = \begin{pmatrix} \frac{\sigma^i}{2} & 0\\ 0 & \frac{\sigma^i}{2} \end{pmatrix} \qquad K_i = \begin{pmatrix} -i\frac{\sigma^i}{2} & 0\\ 0 & i\frac{\sigma^i}{2} \end{pmatrix}$$

Dirac
spinoren: 4-komponentige komplexe Spinoren. Einfachste Darstellung mit
 ${\it P-}$ Transformation.

Lorentztransformationen und Darstellungen:

$$\Lambda^{\mu}{}_{\nu}=\delta^{\mu}{}_{\nu}+\omega^{\mu}{}_{\nu}$$

6

(mit infinitesimalem und antisymmetrischem $\omega^{\mu\nu}$ (wenn beide Indizes oben!), z.B Drehung, Boost)

$$\Lambda = \mathbf{1} - \frac{i}{2}\omega^{\mu\nu}L_{\mu\nu}$$

mit $L_{ij} = -L_{ji} = \varepsilon_{ijk}\ell_k$ und $L_{i0} = -L_{0i} = k_i$

Für eine Darstellung S:

$$S(\Lambda) := \mathbf{1} - \frac{i}{2} \omega^{\mu\nu} L_{\mu\nu}$$

1.2.3 Diracspinoren und γ -Matrizen

 $\psi = (\psi_1, \psi_2, \psi_3, \psi_4) = \text{komplexer Diracspinor}.$

Def γ -Matrizen: $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}\mathbf{1}$

Weyl-Form:

$$\gamma^0 := \begin{pmatrix} 0 & \mathbf{1}_2 \\ \mathbf{1}_2 & 0 \end{pmatrix} \qquad \gamma^i \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix}$$

Die Generatoren J, K lassen sich so ausdrücken:

$$S_{\mu\nu} = \frac{i}{4} [\gamma_{\mu}, \gamma_{\nu}]$$

Dies reproduziert die Darstellungsmatrix $L_{\mu\nu}$ der Lorentztransformation.

$$\gamma^{\mu\dagger}\!\!:\gamma^{0\dagger}=\gamma^0,\,\gamma^{i\dagger}=-\gamma^i=\gamma^0\gamma^i\gamma^0$$

$$S^{\dagger}_{\mu\nu} = \gamma^0 S_{\mu\nu} \gamma^0$$

$$S^{-1}(\Lambda) = \mathbf{1} + \frac{i}{2} \omega^{\mu\nu} S_{\mu\nu} = \gamma^0 S^{\dagger}(\Lambda) \gamma^0$$

Def Adjungierter Spinor: $\overline{\psi} := \psi^{\dagger} \gamma^0$

Lorentz:

$$\begin{split} \psi &\longmapsto S(\Lambda) \psi \\ \overline{\psi} &\longmapsto \overline{\psi} S^{-1}(\Lambda) \\ \overline{\psi} \psi &\longmapsto \overline{\psi} \psi \\ \overline{\psi} \gamma^{\mu} \psi &\longmapsto \Lambda^{\mu}{}_{\nu} \overline{\psi} \gamma^{\nu} \psi \\ S^{-1}(\Lambda) \gamma^{\mu} S(\Lambda) &= \Lambda^{\mu}{}_{\nu} \gamma^{\nu} \end{split}$$

1.3 Überblick über relativistische Wellengleichungen

Welche Gleichungen wären erlaubt durch Lorentzinvarianz?

Notation:

- 4-Vektoren: $(x^{\mu}) = (t, \mathbf{x}), (p^{\mu}) = (E, \mathbf{p})$
- Lorentzinvarianten sind Skalarprodukte, z.B. $p^{\mu}p_{\mu}=E^2-\mathbf{p}^2=:m^2$

• Ableitungen: $\partial_{\mu} = \left(\frac{\partial}{\partial x^{\mu}}\right) = (\partial_{t}, \nabla), \ \Box = \partial_{\mu}\partial^{\mu} = \partial_{t} - \Delta$

• Elektrodynamik: $j^{\mu} = (\rho, \mathbf{j})$, $\partial_{\mu} j^{\mu} = 0$, $A^{\mu} = (\phi, \mathbf{A})$, $F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}$ Maxwell: $\partial_{\mu} F^{\mu\nu} = \mu_0 j^{\nu}$, homogene Gleichung automatisch durch Potentiale erfüllt. Lorentz-Transf.: $x'^{\mu} = \Lambda^{\mu}{}_{\nu} x^{\nu}$, $j'^{\mu}(x') = \Lambda^{\mu}{}_{\nu} j^{\nu}(x)$

1.3.1 Klein-Gordon-Gleichung

 $\phi(x)$ sei Skalarfeld $(\phi \mapsto \phi' \text{ mit } \phi'(x') = \phi(x)).$

$$\Box \phi(x) + m^2 \phi(x) = 0$$

Interpretation?

• Einfachste relativistische Differentialgleichung

• "erraten aus QM" (mit QM Ersetzungsregeln $E \to i\partial_t$, $\mathbf{p} \to -i\nabla$)

• Nichtrelativistischer Limes: ein Teilchen, $E \approx m + \text{Korrektur}$. Ansatz:

$$\psi(\mathbf{x},t) = e^{-imt} \psi_{n.r.}(\mathbf{x},t)$$

$$\Rightarrow \partial_t^2 \psi = (-2im\partial_t \psi_{n.r.} - m^2 \psi_{n.r.} + \mathcal{O}(\ddot{\psi})) e^{-imt}$$

$$\Rightarrow 2im\partial_t \psi_{n.r.} = -\Delta \psi_{n.r.}$$

• Klassische Feldgleichung:

$$\mathcal{L}_{KG} = (\partial^{\mu}\phi^*)(\partial_{\mu}\phi) - m^2\phi^*\phi$$

Euler-Lagrange:

$$0 = \partial_{\rho} \frac{\partial \mathcal{L}}{\partial (\partial_{\rho} \phi^*)} - \frac{\partial \mathcal{L}}{\partial \phi^*}$$

Rolle als QM Wellengleichung für ein Teilchen in Ortsdarstellung:

Schrödinger-Gleichung nicht-relativistisch: $i\partial_t \psi = -\frac{\Delta}{2m} \psi$

Klein-Gordon-Gleichung: $-\partial_t^2\phi=(-\Delta+m^2)\phi$

Aufenthaltwahrscheinlichkeitsdichte: Suche $(j^{\mu}) = (\rho, \mathbf{j})$ mit Kontinuitätsgleichung $\partial_{\mu} j^{\mu} = 0$:

$$\phi^*(\Box + m^2)\phi - \phi(\Box + m^2)\phi^* = 0$$
$$= \partial_{\mu}[\phi^*\partial^{\mu}\phi - \phi\partial^{\mu}\phi^*]$$

Definiere 4-Stromdichte:

$$j^{\mu} = \frac{i}{2m} \left[\phi^* \partial^{\mu} \phi - \phi \partial^{\mu} \phi^* \right]$$
$$\Rightarrow \mathbf{j} = -\frac{i}{2m} \left[\phi^* \nabla \phi - \phi \nabla \phi^* \right]$$
$$\Rightarrow \rho = \frac{i}{2m} \left[\phi^* \partial_t \phi - \phi \partial_t \phi^* \right]$$

Interpretation

- ρ ist nicht positiv definit! $\rho < 0$ möglich! Also kann ρ nicht als Aufenthaltswahrscheinlichkeit interpretiert werden.
- Lösungen: $\phi \sim e^{-iEt+i\mathbf{p}\cdot\mathbf{x}}$: $\rho = \frac{E}{m} > 0$, $\rho \sim e^{+iEt-i\mathbf{p}\cdot\mathbf{x}}$: $\rho = -\frac{E}{m} < 0$: negative Energie möglich!?
- Idee: KG-Gl. beschreibt zwei Teilchentypen (Teilchen + Antiteilchen) mit entgegengesetzten Ladungen. Interpretiere ρ als elektrische Ladungsdichte.

1.3.2 Dirac-Gleichung

 $\psi(x)$ sein "Dirac-Spinorfeld" d.h. $\psi \mapsto \psi'$ mit $\psi'(x') = S(\Lambda)\psi(x)$.

$$S(\Lambda) = \mathbf{1}_4 - \frac{i}{2}\omega^{\mu\nu}S_{\mu\nu}$$

$$S_{\mu\nu} = \frac{i}{4} [\gamma_{\mu}, \gamma_{\nu}]$$

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu} \mathbf{1}_4$$

Dirac-Gleichung:

$$\boxed{(i\partial_{\mu}\gamma^{\mu} - m)\psi = 0}$$

Interpretation:

- nicht einfachste Differenzialgleichung
- erraten von Dirac: gewünscht "Wurzel aus KG-Gleichung" (Herleitung △ Lit.)
- $\mathcal{L} = \overline{\psi}(i\partial_{\mu}\gamma^{\mu} m)\psi$
- Adjungierte Dirac-Gl. $i\partial_{\mu}\overline{\psi}\gamma^{\mu} + m\overline{\psi} = 0$

$$\Rightarrow \partial_{\mu}(\overline{\psi}\gamma^{\mu}\psi) = 0$$

• Def. $j^{\mu} = \overline{\psi} \gamma^{\mu} \psi$, $\rho = \psi^{\dagger} \psi$ ist positiv-definit

Vollständige Darstellung der Lorentztransformationen

$$\psi'(x) = S(\Lambda)\psi(\Lambda^{-1}x) = (\mathbf{1} - \frac{i}{2}\omega^{\mu\nu}S_{\mu\nu})\psi(x - \omega x)$$

und

$$\psi' = (1 - \frac{i}{2}\omega^{\mu\nu}\hat{J}_{\mu\nu})\psi$$

 $(\hat{J}$ Generatoren der Darstellung der Lorentz-Algebra auf dem Fkt.-Raum der Spinorfelder)

$$\Longrightarrow \hat{J}_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu}) + S_{\mu\nu}$$

$$\hat{J}_{\mu\nu} = \hat{L}_{\mu\nu} + S_{\mu\nu}$$

Analog zur KG-Gl. treten Inkonsistenzen auf, wenn man Diracgl. als 1-Teilchen-Theorie auffasst. Die Probleme sind ähnlich aber nicht gleich.

1.4 Physik und Lösungen der Diracgleichung

1.4.1 Freie Lösungen, Impuls-/Spin-Eigenzustände

Dirac-Gleichung: $(i\partial \!\!\!/ - m)\psi = 0$

Gesamt-Drehimpuls: $\hat{J}_{ij} = \hat{L}_{ij} + S_{ij}$. Spin-EZ: $\pm \frac{1}{2}$

Ansatz: $\psi(x) = w(p)e^{\mp ipx}$ (mit $px = p_{\mu}x^{\mu}$)

$$\Rightarrow (\pm p - m)w(p) = 0$$

Eigenwertgleichung für p!

Beachte: $p^2 = p^\mu \gamma_\mu p^\nu \gamma_\nu = p^\mu p^\nu \gamma_\mu \gamma_\nu = \frac{1}{2} p^\mu p^\nu \{\gamma_\mu, \gamma_\nu\} = p^2 \mathbf{1}$

D.h. $\not p$ hat EWe $\pm \sqrt{p^2}$ vermutlich je 2-fach entartet. Nicht-triviale Lösung der EW-Gl. für $p^2=m^2$ \rightarrow Teilchen mit Ruhemasse m beschrieben.

Bezeichnungen der Lösungen

$$(\not p - m)u(p,s) = 0$$

$$(\not p + m)v(p, s) = 0$$

Beispiel: $p^2=m^2,\,(p^\mu)=(E,0,0,p_z)$ in z-Richtung, $E^2=p_z^2+m^2.$

$$p = p^{\mu} \gamma_{\mu} = E \gamma_0 + p_z \gamma_3 = E \gamma^0 - p_z \gamma^3 = \begin{pmatrix} \mathbf{1}E & -p_z \sigma^3 \\ p_z \sigma^3 & -\mathbf{1}E \end{pmatrix}$$

Es gilt $[p, S_{12}] = 0$, d.h. p und S_z haben simultane Eigenzustände. (allg. p und $\frac{\mathbf{p} \cdot \mathbf{S}}{|\mathbf{p}|} = \text{Helizitätsoperator}$ simultan Diagonalisierbar).

EW-Gleichung lösen:

$$u(p, +1/2) = N \cdot \begin{pmatrix} E + m \\ 0 \\ p_z \\ 0 \end{pmatrix}$$

$$u(p, -1/2) = N \cdot \begin{pmatrix} 0 \\ E+m \\ 0 \\ -p_z \end{pmatrix}$$

mit $N = \frac{1}{\sqrt{E+m}}$.

$$v(p, +1/2) = N \cdot \begin{pmatrix} p_z \\ 0 \\ E+m \\ 0 \end{pmatrix}$$

$$v(p, -1/2) = N \cdot \begin{pmatrix} 0 \\ -p_z \\ 0 \\ E+m \end{pmatrix}$$

Spinoren für andere \mathbf{p} : $\mathbf{p}=R\mathbf{p}_z=e^{-\frac{i}{2}\omega^{\mu\nu}L_{\mu\nu}}\mathbf{p}_z$:

$$u(p,s) = e^{-\frac{i}{2}\omega^{\mu\nu}S_{\mu\nu}}u(p_z,s)$$

Negative Energien

$$\psi(x) = u(p,s) = e^{-iEt + i\mathbf{p}\cdot\mathbf{x}}$$

$$\psi(x) = v(p, s) = e^{+iEt - i\mathbf{p}\cdot\mathbf{x}}$$

D.h. Energie (-E) < 0 für v-Lösungen.

1.4.2 Mehr zum Drehimpuls

Man betrachte die Diracgleichung als quantenmechanische 1-Teilchen-Gleichung. (sinnvoll, solange Antiteilchen und QFT Effekte vernachlässigbar sind).

Formulierung analog zur Schrödingergleichung im Ortsraum:

$$(i\partial \!\!\!/ - m)\psi = 0$$

Multiplikation mit γ^0 von links und nach Zeitableitung umstellen:

$$i\partial_t \psi = (-i\gamma^0 \gamma^i \partial_i + m\gamma^0) \psi =: \hat{H}_D^{(0)} \psi$$

Drehimpuls aus Darstellung der Lorentztransformation.

$$\hat{J}_{ij} = i(x_i\partial_j - x_j\partial_i) + \hat{S}_{ij} = \hat{L}_{ij} + \hat{S}_{ij}$$
$$\hat{\mathbf{J}} = \hat{\mathbf{L}} + \hat{\mathbf{S}}$$

Es gilt $[\hat{H}_D^{(0)}, \hat{\mathbf{J}}] = 0$, d.h. Gesamtdrehimpuls erhalten. $[\hat{H}_D^{(0)}, \hat{\mathbf{L}}] = \gamma^0 \gamma_1 \partial_y - \gamma^0 \gamma_2 \partial_x$.

Helizität

$$\frac{\hat{\mathbf{S}} \cdot \hat{\mathbf{p}}}{|\hat{\mathbf{p}}|}$$
$$[\hat{H}_D^{(0)}, \hat{\mathbf{S}} \cdot \hat{\mathbf{p}}] = [\hat{H}_D^{(0)}, \frac{1}{2} \epsilon_{ijk} S_{ij} \hat{p}^k] = \sim \frac{1}{2} \epsilon_{ijk} \gamma^0 \gamma_i \partial_j \partial_k = 0$$

Es gibt simultane Eigenzustände zu Energie, Impuls, Helizität.

Interpretation der 4 Komponenten von ψ

Zu gegebenem Impuls **p**: 4 linear unabhängige Lösungen:

- E > 0, Helizität $\pm \frac{1}{2}$
- E < 0, Helizität $\pm \frac{1}{2}$

1.4.3 Kopplung ans elektromagnetische Feld

Freie Diracgleichung: $(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$

Freie Klein-Gordon-Gleichung: $(-\partial_{\mu}\partial^{\mu} - m^2)\phi = 0$

Relativistisches klassisches Teilchen: $L = \frac{1}{2} m \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau}$

Kopplung and e.m. Feld soll relativistisch invariant und eichinvariant sein. (Eichung $A^{\mu}(x) \mapsto A^{\mu}(x) + \partial^{\mu}\theta(x)$).

Klassisches Teilchen:

$$L = \frac{1}{2} m \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau} - e \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau} A^{\mu}(x)$$

(Einfachse denkbare relativistische WW, Wirkung ist eichinvariant, reproduziert Coulomb- und Lorentzkraft)

Kanonisch konjugierter Impuls:

$$\mathcal{P}^{\mu} = \frac{\partial L}{\partial \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau}} = m \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} - eA^{\mu}$$

$$\Rightarrow H = \frac{1}{2m} (\mathcal{P}^{\mu} + eA^{\mu})^2$$

Rezept: minimale Kopplung $\mathcal{P}^{\mu} \to \mathcal{P}^{\mu} + eA^{\mu}$, Klein-Gordon-Gleichung:

$$\left[\left[\left(i\partial^{\mu} + eA^{\mu} \right) \left(i\partial_{\mu} + eA_{\mu} \right) - m^2 \right] \phi = 0 \right]$$

Dirac-Gleichung:

$$(i\partial + eA - m)\psi = 0$$

Elektromagnetische Stromdichte:

$$j^{\mu} = e \overline{\psi} \gamma^{\mu} \psi$$

Eichinvarianz:

$$A^{\mu}(x) \longrightarrow A^{\mu}(x) + \partial^{\mu}\theta(x)$$

 $\psi(x) \longrightarrow e^{ie\theta(x)}\psi(x)$

Eichkovariante Ableitung: $D^{\mu}\psi:=(\partial^{\mu}-ieA^{\mu})\psi$. Damit gilt $D^{\mu}\psi\longrightarrow e^{ie\theta(x)}D^{\mu}\psi$

1.4.4 Nichtrelativistischer Limes

Nichtrelativistische Schrödingergleichung mit e.m. Feld:

$$(i\partial_t + e\Phi)\psi = \frac{(\hat{\mathbf{p}} + e\mathbf{A})^2}{2m}\psi$$

Klein-Gordon-Gleichung:

$$\left[(i\partial^{\mu} + eA^{\mu}) \left(i\partial_{\mu} + eA_{\mu} \right) - m^2 \right] \phi = 0$$

$$(A^{\mu}) = (\Phi, \mathbf{A}), (i\partial^j) = (-i\partial_j) = (p^j).$$

Ansatz:

• ϕ ist Energie-EZ, $i\partial_t \phi = E\phi$

- E = m + klein, E > 0
- $e|A^{\mu}| \ll m$
- $|\partial_t A^{\mu}| \ll |mA^{\mu}|$
- $|p| \ll m$

Einsetzen in KG-Gl.:

$$[(i\partial_t + e\Phi)(E + e\Phi) - (\hat{\mathbf{p}} + e\mathbf{A})^2 - m^2] \phi = 0$$

Vernachlässigen von $\partial_t \Phi$:

$$[(E + e\Phi)^2 - (\hat{\mathbf{p}} + e\mathbf{A})^2 - m^2] \phi = 0$$

Mit $E+e\Phi=m+(E-m+e\Phi)$ mit Vernachlässigung des Quadrates der letzten Klammer:

$$\left[2m(E - m + e\Phi) - (\hat{\mathbf{p}} + e\mathbf{A})^2\right]\phi = 0$$

Daraus folgt direkt die nichtrelativistische Schrödingergleichung.

Diracgleichung mit e.m. Feld

$$(i\not\!\!D-m)\psi=0$$

Ansatz wie oben. Aufteilung des Diracspinors in zwei Paulispinoren:

$$\psi = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$$

$$\begin{pmatrix} iD_0 - m & iD_i\sigma^i \\ -iD_i\sigma^i & -iD_0 - m \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = 0$$

Nach Ansatz: $iD_0 \to E + e\Phi$, $iD_i\sigma^i = -\sigma(\hat{\mathbf{p}} + e\mathbf{A})$.

$$(E - m + e\Phi)\psi_A - \boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})\psi_B = 0$$
$$(-E - m - e\Phi)\psi_B + \boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})\psi_A = 0$$

Eliminiere

$$\psi_{B} = \frac{\boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})}{E + m + e\Phi} \psi_{A} \cong \left(\frac{1}{2m} + \mathcal{O}(m^{-2})\right) \boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})$$

$$\Rightarrow (E - m + e\Phi)\psi_{A} = \frac{1}{2m} \left(\boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})\right) \left(\boldsymbol{\sigma}(\hat{\mathbf{p}} + e\mathbf{A})\right) \psi_{A}$$

Vereinfachung der σ -Anteile

$$\begin{split} (\boldsymbol{\sigma} \cdot \hat{\mathbf{O}})(\boldsymbol{\sigma} \cdot \hat{\mathbf{O}}) &= \sigma^i \hat{O}^i \sigma^j \hat{O}^j = \sigma^i \sigma^j \hat{O}^i \hat{O}^j \\ &= \left(\frac{1}{2} \left\{ \sigma^i, \sigma^j \right\} + \frac{1}{2} \left[\sigma^i, \sigma^j \right] \right) \hat{O}^i \hat{O}^j = \left(\delta^{ij} + i \epsilon^{ijk} \sigma^k \right) \hat{O}^i \hat{O}^j \\ &= \hat{\mathbf{O}}^2 + i \epsilon^{ijk} \sigma^k \frac{1}{2} [\hat{O}^i, \hat{O}^j] \end{split}$$

Hier:
$$\hat{\mathbf{O}} = (\hat{\mathbf{p}} + e\mathbf{A})$$
:

$$\cdots = (\hat{\mathbf{p}} + e\mathbf{A})^2 + i\epsilon^{ijk}\sigma^k(-i\partial_i eA^j)$$

$$= (\hat{\mathbf{p}} + e\mathbf{A})^2 + e\mathbf{B} \cdot \boldsymbol{\sigma}$$
$$(E - m + e\Phi)\psi_A = \left[\frac{(\hat{\mathbf{p}} + e\mathbf{A})^2}{2m} + \frac{e}{2m}\boldsymbol{\sigma} \cdot \mathbf{B}\right]\psi_A$$

Pauli-Gleichung enthält Term $\mathbf{S} \cdot \mathbf{B}$ ($\mathbf{S} = \boldsymbol{\sigma}/2$) mit Vorfaktor:

$$g_s \frac{e}{2m} \mathbf{S} \cdot \mathbf{B} \qquad , \qquad g_s = 2$$

Bedeutung des g_s -Terms Allg. Hamiltonian für magnetischen Dipol μ im B-Feld:

$$H = -\boldsymbol{\mu} \cdot \mathbf{B}_{ext}$$

Vergleich mit Pauli-Gleichung liefert $\mu_s = -g_s \frac{e}{2m} \mathbf{S}$ mit $g_s = 2$. Das ist ein intrinsisches magnetisches Dipolmoment, proportional zum Spin.

Vergleich mit klassischer Elektrodynamik (rotierende Ladungsverteilung, Ladung Q, Masse M, Drehimpuls \mathbf{L}) liefert $\boldsymbol{\mu} = \frac{Q}{M} \mathbf{L} \Rightarrow$ Klassisches Ergebnis entspricht g = 1.

Interpretation des ersten Terms (identisch in der nicht-relativistischen Schrödingergleichung)

$$\frac{(\hat{\mathbf{p}} + e\mathbf{A})^2}{2m} = \underbrace{\frac{\hat{\mathbf{p}}^2}{2m}}_{E_{bin}} + \underbrace{\frac{e}{2m}(\hat{\mathbf{p}}\mathbf{A} + \mathbf{A}\hat{\mathbf{p}}) + \frac{e^2}{2m}\mathbf{A}^2}_{\text{e.m. WW}}$$

Bsp. homogenes **B**-Feld: setze $\mathbf{A}(x) = -\frac{1}{2}(\mathbf{x} \times \mathbf{B})$, dann $\mathbf{B} = \nabla \times \mathbf{A}$.

$$\hat{\mathbf{p}}\mathbf{A} + \mathbf{A}\hat{\mathbf{p}} = \mathbf{B} \cdot \hat{\mathbf{L}}$$

$$\Rightarrow \text{Erster Term } = \frac{\hat{\mathbf{p}}^2}{2m} + \frac{e}{2m}\mathbf{B} \cdot \hat{\mathbf{L}} + \frac{e^2}{2m}\mathbf{A}^2$$

1.4.5 Weitere Konsequenzen: Spin-Bahn-Kopplung

Höhere Ordnungen im nicht-relativistischen Limes:

- Spin-Bahn-Kopplung $\sim \mathbf{L} \cdot \mathbf{S}$ (Feinstrukturaufspaltung)
- Darwin-Term
- Korrektur E-kin.

Saubere Herleitung durch systematische Entwicklung in Potenzen von m. $\frac{1}{m}$ sei eine kleine Größe. \rightarrow Foldy-Wouthuysen-Transformation/-Bild.

$$(i\not\!\!D-m)\psi=0$$

$$\Leftrightarrow i\partial_t\psi=(-e\Phi+m\gamma^0-iD_i\gamma^0\gamma^i)\psi=H_D\psi$$

Idee: Unitäre Transformation / neues "Bild", Zerlegung in 2-Spinoren.

$$\psi = e^{-iS}\psi' = e^{-iS}\begin{pmatrix} \psi'_A\\ \psi'_B \end{pmatrix}$$

S hermitesch, eventuell t-abhängig.

Neuer Hamiltonian:

$$i\partial_t \psi' = i\partial_t (e^{iS}\psi) = (i\partial_t e^{iS})\psi + e^{iS}i\partial_t \psi$$

$$= \left[(i\partial_t e^{iS})e^{-iS} + e^{iS}H_D e^{-iS} \right]\psi'$$

$$H'_D = i(i\dot{S} + \frac{i^2}{2}[S, \dot{S}] + \frac{i^3}{6}[S, [S, \dot{S}]] + \dots) + H_D + i[S, H_D] + \frac{i^2}{2}[S, [S, H_D]] + \dots$$

Idee 2: H'_D soll blockdiagonal sein in 2-Spinoren (bis zu bestimmter Ordnung) \to Gleichung für ψ'_A reicht aus.

Konkret:

$$H_D = m\gamma^0 + (-e\Phi) + \begin{pmatrix} 0 & (\mathbf{p} + e\mathbf{A}) \cdot \boldsymbol{\sigma} \\ (\mathbf{p} + e\mathbf{A}) \cdot \boldsymbol{\sigma} & 0 \end{pmatrix} = \underbrace{m\gamma^0}_{\mathcal{O}(m^1)} + \underbrace{\mathcal{E}}_{\mathcal{O}(m^0)} + \underbrace{\mathcal{O}}_{\mathcal{O}(m^0)}$$

Häufige Umformung: $\gamma^0 O = -O \gamma^0$ mit ungeradem Operator O.

1. Schritt: arbeite bis $\mathcal{O}(m^0)$: Setze $S = \mathcal{O}(m^{-1})$

$$H'_D = H_D + i[S, H_D] + \mathcal{O}(m^{-1}) = m\gamma^0 + \mathcal{E} + \mathcal{O} + i[S, m\gamma^0 + \mathcal{E} + \mathcal{O}] + \mathcal{O}(m^{-1})$$
$$= m\gamma^0 + \mathcal{E} + \mathcal{O} + i[S, m\gamma^0]$$

Lösung: $S = -\frac{i}{2m}\gamma^0 \mathcal{O}$

Damit H_D' komplett ausrechnen bis $\mathcal{O}(m^{-2})$:

$$H'_D = H_D + i[S, H_D] - \dot{S} + \frac{i^2}{2}[S, [S, H_D]] - \frac{i}{2}[S, \dot{S}] + \frac{i^3}{6}[S, [S, [S, H_D]]] + \mathcal{O}(m^{-3})$$

Für die einzelnen Terme finden Wirkung

$$i[S, H_D] = i \left[-\frac{i}{2m} \gamma^0 \mathcal{O}, m \gamma^0 + \mathcal{E} + \mathcal{O} \right] = -\mathcal{O} + \frac{1}{2m} \gamma^0 [\mathcal{O}, \mathcal{E}] + \frac{1}{m} \gamma^0 \mathcal{O}^2$$

$$-\dot{S} = \frac{i}{2m} \gamma^0 \dot{\mathcal{O}}$$

$$\frac{i}{2} [S, \dot{S}] = -\frac{i}{8m^2} [\mathcal{O}, \dot{\mathcal{O}}]$$

$$\frac{i^2}{2} [S, [S, H_D]] = -\frac{1}{2m} \gamma^0 \mathcal{O}^2 - \frac{1}{8m^2} [\mathcal{O}, [\mathcal{O}, \mathcal{E}]] - \frac{1}{2m^2} \mathcal{O}^3$$

$$\frac{i^3}{3!} [S, [S, [S, H_D]]] = \frac{1}{6m^2} \mathcal{O}^3$$

Der neue Hamiltonian ist nun

$$\begin{split} H_D' &= \underbrace{m\gamma^0 + \mathcal{E} + \frac{1}{2m}\gamma^0\mathcal{O}^2 - \frac{1}{8m^2}[\mathcal{O}, i\dot{\mathcal{O}} + [\mathcal{E}, \mathcal{O}]]}_{\text{gerade} =: H_{D, \text{even}}'} + \\ &= \underbrace{\frac{1}{2m}\gamma^0(i\dot{\mathcal{O}} + [\mathcal{O}, \mathcal{E}]) - \frac{1}{6m^2}\mathcal{O}^3}_{\text{ungerade} =: \mathcal{O}'} \\ &=: H_{D, \text{even}}' + \mathcal{O}' \end{split}$$

2. Schritt: arbeite bis $\mathcal{O}(m^-1)$:

In Analogie setzen wir $\psi' = e^{iS'}\psi''$ mit $S' = -\frac{i}{2m}\gamma^0\mathcal{O}'$ und erhalten

$$H_D'' = H_{D,\text{even}}' + i[S', \mathcal{E}] - \dot{S}' + \mathcal{O}(m^{-3}) := D_{D,\text{even}} + \mathcal{O}''$$

3. Schritt: arbeite bis $\mathcal{O}(m^{-2})$:

Wir setzen wieder $\psi'' = e^{i-iS''}\psi'''$ mit $S'' = -\frac{i}{2m}\gamma^0\mathcal{O}'' = \mathcal{O}(m^{-3}).$

HIER FEHLT NOCH DIE GLEICHUNG FÜR $H_D^{\prime\prime\prime}$

Vollständig ausgerechnet:

$$H_D^{\prime\prime\prime} = \underbrace{m\gamma^0 + \mathcal{E} + \frac{1}{2m}\gamma^0\mathcal{O}^2}_{\mathcal{O}(m^{-1})} - \underbrace{\frac{1}{8m^2}[\mathcal{O}, i\dot{\mathcal{O}} + [\mathcal{O}, \mathcal{E}]]}_{\mathcal{O}(m^{-2})}$$

- Terme bis $\mathcal{O}(m^{-1})$ liefern genau den Limes aus 1.4.4 inkl. des g-2-Terms
- Zusätzliche Terme der relativistischen Korrektur bis $\mathcal{O}(m^{-2})$

Wir diskutieren diese Terme anhand des Zentralpotentials mit $\mathbf{A} = 0$ und $\Psi(\mathbf{x}, t) = \Psi(r)$ mit $r = |\mathbf{x}|$. Es ergeben sich die Terme

$$\nabla \Psi(r) = \frac{\mathbf{x}}{r} \frac{\mathrm{d}\Psi}{\mathrm{d}r}$$

$$\mathbf{E} = -\nabla \Psi$$

$$\mathcal{E} = e\Psi$$

$$\mathcal{O} = \begin{pmatrix} 0 & \boldsymbol{\sigma} \cdot \mathbf{p} \\ \boldsymbol{\sigma} \cdot \mathbf{p} & 0 \end{pmatrix} = -i \begin{pmatrix} 0 & \boldsymbol{\sigma} \cdot \nabla \\ \boldsymbol{\sigma} \cdot \nabla & 0 \end{pmatrix}$$

$$[\mathcal{O}, \mathcal{E}] = -ie \begin{pmatrix} 0 & \boldsymbol{\sigma} \cdot \mathbf{E} \\ \boldsymbol{\sigma} \cdot \mathbf{E} & 0 \end{pmatrix}$$

$$[\mathcal{O}, [\mathcal{O}, \mathcal{E}]] = (-i)(-ie) \begin{pmatrix} [\boldsymbol{\sigma} \cdot \nabla, \boldsymbol{\sigma} \cdot \mathbf{E}] & 0 \\ 0 & [\boldsymbol{\sigma} \cdot \nabla, \boldsymbol{\sigma} \cdot \mathbf{E}] \end{pmatrix}$$

$$[\boldsymbol{\sigma} \cdot \nabla, \boldsymbol{\sigma} \cdot \mathbf{E}] = \sigma^{i} \sigma^{j} (\partial_{i} E^{j} + E^{j} \partial_{i}) - \sigma^{j} \sigma^{i} E^{j} \partial_{i}$$

$$= \nabla \cdot \mathbf{E} + i \underline{\boldsymbol{\sigma}} \cdot (\nabla \times \mathbf{E}) + i \underline{\boldsymbol{e}}^{2} e^{ijk} \sigma^{k} E^{j} \partial_{i}$$

$$= \nabla \cdot \mathbf{E} - \frac{2}{r} \frac{\mathrm{d}\Psi}{\mathrm{d}r} \boldsymbol{\sigma} \cdot \mathbf{L}$$

Wir finden den nun bis zum $\mathcal{O}(m^{-2})$ Term blockdiagonalen Hamiltonian

$$H_D''' = \frac{e}{8m^2} \nabla \cdot \mathbf{E} - \frac{e}{2m^2r} \frac{\mathrm{d}\Psi}{\mathrm{d}r} \mathbf{S} \cdot \mathbf{L}$$

Der obere Block ist

$$H_{\text{eff}} = m + H_{\mathcal{O}(m^{-1})} + H_{\mathcal{O}(m^{-2})} + \dots$$

$$H_{\mathcal{O}(m^{-1})} = H_{\text{Pauli}} = -e\Psi + \frac{(\mathbf{p} + e\mathbf{A})^2}{2m} + \frac{e}{2m}\boldsymbol{\sigma} \cdot \mathbf{B}$$

$$H_{\mathcal{O}(m^{-2})} = \underbrace{\frac{e}{8m^2}\nabla \cdot \mathbf{E}}_{\text{Darwin-Term}} - \underbrace{\frac{e}{2m^2r}\frac{d\Psi}{dr}\mathbf{S} \cdot \mathbf{L}}_{\text{Spin-Bahn-Kopplung}}$$

Diskussion:

- Darwin-Term: beim Atom $\nabla \cdot \mathbf{E} = 4\pi \rho_{\mathrm{Kern}} \propto \delta^{(3)}(\mathbf{x})$ ergibt sich eine Korrektur für die s-Orbitale, die am Kern eine endliche Aufenthaltswahrscheinlichkeit haben
- Spin-Bahn-Koppluns: Wegen dieses Terms $[H_{\text{eff}}, \mathbf{S}] \neq 0$ und $[H_{\text{eff}}, \mathbf{L}] \neq 0$, aber $[H_{\text{eff}}, \mathbf{J}] = 0$.

Kapitel 2

Ununterscheidbare Teilchen

Bosonen und Fermionen

Klassisch: jedes Teilchen hat eine eindeutige Bahnkurve \rightarrow prinzipiell daran erkennbar.

QM: keine eindeutige Bahnkurve

Fragen

- \bullet Existieren "ununterscheidbare Teilchen"? \to Ja! (experimenteller Beweis)
- \bullet Wie beschreibt man das? \to Mehrteilchensysteme, Zustände, Hilberträume/Operatoren
- Nützlicher Formalismus? → Erzeuger/Vernichter, Zweite Quantisierung, Quantenfeldtheorie

2.1 Unterscheidbare Teilchen

2.1.1 Zustände

Basiszustände für zwei Teilchen ohne Wechselwirkung:

Basis für Teilchen 1: $|n^{(1)}\rangle$, n = 1, 2, ...

Basis für Teilchen 2: $|m^{(2)}\rangle$, $m=1,2,\ldots$

 \Rightarrow vernünftige Annahme: Basiszustände für Teilchen 1+2:

 $|n^{(1)}\rangle|m^{(2)}\rangle, n, m=1,2,\dots$ "Produktzustände"

Hilbertraum: Teilchen 1 $\mathcal{H}_1^{(1)}$, Teilchen 2 $\mathcal{H}_1^{(2)}$. (Oberer Index Teilchenindex, Unterer Index Teilchenzahl)

Teilchen 1+2: $\mathcal{H}_2 = \mathcal{H}_1^{(1)} \otimes \mathcal{H}_1^{(2)}$ (Produktraum)

 $\bullet~\mathcal{H}_2$ enthält sowohl Produktzustände (separabel), z.B.

$$|1^{(1)}\rangle|2^{(2)}\rangle$$

oder

$$(|1^{(1)}\rangle + |3^{(1)}\rangle)(|5^{(2)}\rangle + |7^{(2)}\rangle)$$

aber auch verschränkte Zustände ("entangled"), z.B.

$$\frac{|1^{(1)}\rangle|1^{(2)}\rangle - |2^{(1)}\rangle|2^{(2)}\rangle}{\sqrt{2}}$$

Skalarprodukte "offensichtlich" übertragen

$$\left(\langle \psi^{(1)} | \langle \phi^{(2)} | \right) \left(| \psi'^{(1)} \rangle | \phi'^{(2)} \rangle \right) := \left(\langle \psi^{(1)} | \psi'^{(1)} \rangle \right) \cdot \left(\langle \phi^{(2)} | \phi'^{(2)} \rangle \right)$$

Schreibweise: $|\psi^{(1)}\rangle|\phi^{(2)}\rangle = |\psi,\phi\rangle$, Ortsraum-Wellenfunktion: $|x_1^{(1)}\rangle|x_2^{(2)}\rangle = |x_1,x_2\rangle$

$$\langle x_1, x_2 | \psi \rangle =: \psi(x_1, x_2)$$

2.1.2 Observablen/Operatoren

Observable: A_2 : hermitesche Operatoren auf \mathcal{H}_2

• Observablen, die nur ein Teilchen betreffen: entsprechen $A_1^{(1)}$:

$$\langle \psi^{(1)} | \langle \phi^{(2)} | A_2^{(1)} | \psi'^{(1)} \rangle | \phi'^{(2)} \rangle = \langle \psi^{(1)} | A_1^{(1)} | \psi'^{(1)} \rangle \cdot \langle \phi^{(2)} | \phi'^{(2)} \rangle$$
$$A_2^{(1)} = A_1^{(1)} \otimes \mathbf{1}$$

• Analog: Observable betrifft nur Teilchen 2:

$$B_2^{(2)} = \mathbf{1} \otimes B_1^{(2)}$$

Allgemeine Observable: keine Produktstruktur nötig! \to WW zwischen Teilchen! Bsp. Coulomb-Potenzial zwischen Teilchen 1 und 2:

$$\langle \psi^{(1)}, \phi^{(2)} | V_2 | \psi^{(1)}, \phi^{(2)} \rangle = \int d^3 x_1 d^3 x_2 \frac{-\alpha}{|\mathbf{x}_1 - \mathbf{x}_2|} |\psi(\mathbf{x}_1)|^2 |\phi(\mathbf{x}_2)|^2$$

$$\implies V_2 = \int d^3 x_1 d^3 x_2 (|\mathbf{x}_1^{(1)}\rangle \langle \mathbf{x}_1^{(1)} | \otimes |\mathbf{x}_2^{(2)}\rangle \langle \mathbf{x}_2^{(2)} |) \frac{-\alpha}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

Hamiltonian:

$$H_2 = H_1^{(1)} \otimes \mathbf{1} + \mathbf{1} \otimes H_1^{(2)} + H_{WW}^{(1,2)}$$

2.2 Identische/Ununterscheidbare Teilchen

2.2.1 Prinzipien

Exp: Pauliprinzip, Fermigas, Gibbs Paradoxon (keine Mischungsentropie wenn gleichatomige Gase gemischt werden)

Bisheriger Formalismus reicht nicht aus, da die bisherigen Zustände zu detailliert sind (Zuordnung des Teilchenindexes ist überflüssig)

Fundamentale Beobachtungstatsache / Postulat Zustände eines Systems ununterscheidbarer Teilchen sind gegenüber Vertauschung der Teilchenindizes generell symmetrisch oder generell antisymmetrisch.

Bosonen (Spin ganzzahlig) $|...\psi, \phi...\rangle = +|...\phi, \psi...\rangle$

Fermionen (Spin halbzahlig) $|...\psi, \phi...\rangle = -|...\phi, \psi...\rangle$

2.2.2 Zustände

N-Teilchen Hilbertraum $\mathcal{H}_N = \mathcal{H}_1 \otimes \ldots \otimes \mathcal{H}_N$

Permutationsoperator P_{ij} :

$$P_{ij}|...\psi^{(i)}...\phi^{(j)}...\rangle = |...\phi^{(i)}...\psi^{(j)}...\rangle$$

$$(P_{ij})^2 = \mathbf{1}, (P_{ij})^{\dagger} = P_{ij}$$

(Anti-)symmetrischer Hilbertraum:

- $\mathcal{H}_N^{(+)}$ Teilchenraum mit $P_{ij}|\phi^{(+)}\rangle=|\phi^{(+)}\rangle$
- $\mathcal{H}_N^{(-)}$ Teilchenraum mit $P_{ij}|\phi^{(-)}\rangle = -|\phi^{(-)}\rangle$

Bsp. 2 Bosonen

- Basis \mathcal{H}_1 : $|n\rangle$
- Basis \mathcal{H}_2 : $|n^{(1)}, m^{(2)}\rangle$
- Basis

$$\mathcal{H}_{2}^{(+)}: \frac{|n^{(1)}m^{(2)}\rangle + |m^{(1)}n^{(2)}\rangle}{\sqrt{2}} =: |n,m\rangle^{(+)}$$

Bsp. 2 Fermionen (Vernachlässige Spin)

• Basis

$$\mathcal{H}_{2}^{(-)}: \frac{|n^{(1)}m^{(2)}\rangle - |m^{(1)}n^{(2)}\rangle}{\sqrt{2}} =: |n,m\rangle^{(-)}$$

Bsp. 2 Fermionen (Mit Spin)

- Basis \mathcal{H}_1 : $|n^{\uparrow}\rangle$, $|n^{\downarrow}\rangle$
- Basis \mathcal{H}_2 : Vier Kombinationen von n und m für verschiedene Spineinstellungen oder äquivalent:

$$|n^{(1)}m^{(2)}\rangle\otimes|\uparrow\uparrow\rangle,|n^{(1)}m^{(2)}\rangle\otimes\left(\frac{|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle}{\sqrt{2}}\right),|n^{(1)}m^{(2)}\rangle\otimes|\downarrow\downarrow\rangle,|n^{(1)}m^{(2)}\rangle\otimes\left(\frac{|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle}{\sqrt{2}}\right)$$

•
$$\mathcal{H}_{2}^{(1)}$$
:

$$\frac{|n^{(1)}m^{(2)}\rangle - |m^{(1)}n^{(2)}\rangle}{\sqrt{2}} \otimes \begin{cases} \frac{|\uparrow\uparrow\uparrow\rangle}{\sqrt{2}} \\ \frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}} \\ |\downarrow\downarrow\rangle \end{cases}$$
$$\frac{|n^{(1)}m^{(2)}\rangle + |m^{(1)}n^{(2)}\rangle}{\sqrt{2}} \otimes \frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}}$$

Folgerung: Selber Ort unmöglich, wenn Spins gleich.

Frage: Sind obige Zustände eine Basis? Wie konstruiert man allgemein eine Basis von $\mathcal{H}_N^{(\pm)}$?

Antwort: Nimm Basis aus Produktzuständen von \mathcal{H}_N , symmetrisiere/antisymmetrisiere jedes Basiselement (wie für N=2 genutzt).

Def. Symmetrisierungsoperator

$$S_N^{(\pm)} := \frac{1}{N!} \sum_{\mathcal{P}} (\pm 1)^{\mathcal{P}} \mathcal{P}$$

mit Permutationsoperator \mathcal{P} (beliebiges Produkt von P_{ij} -Operatoren).

Es gilt:

(a)
$$P_{ij}S_N^{(\pm)} = \frac{1}{N!} \sum_{\mathcal{P}} (\pm)^{\mathcal{P}} P_{ij} \mathcal{P} = \pm S_N^{(\pm)} = S_N^{(\pm)} P_{ij}$$

(b)
$$\mathcal{P}S_{N}^{(\pm)} = (\pm 1)^{\mathcal{P}}S_{N}^{(\pm)}$$

(c) $S_N^{(\pm)}$ ist hermitesch.

(d)
$$S_N^{(\pm)} S_N^{(\pm)} = S_N^{(\pm)}$$

 $S_N^{(\pm)}$ sind hermitesche Projektionsoperatoren auf $\mathcal{H}_N^{(\pm)}$.

Konstruktion einer Basis

- $\bullet\,$ Nimm Basis von \mathcal{H}_N aus Produktzuständen: $|n_1^{(1)}n_2^{(2)}\cdots n_N^{(N)}\rangle$
- Def. $S_N^{(\pm)} | n_1^{(1)} n_2^{(2)} \cdots n_N^{(N)} \rangle =: | n_1 \cdots n_N \rangle^{(\pm)}$
- Nimm beliebigen Zustand $|\psi_N^{\pm}\rangle \in \mathcal{H}_N^{\pm}$

$$\implies |\psi_N^{\pm}\rangle \in \mathcal{H}_N,$$

$$P_{ij}|\psi_N^{\pm}\rangle = \pm |\psi_N^{\pm}\rangle \implies S_N^{\pm}|\psi_N^{\pm}\rangle = +|\psi_N^{\pm}\rangle$$

$$\implies |\psi_N^{\pm}\rangle = S_N^{\pm} \left(\int |n_1^1 \dots n_N^N\rangle \langle n_1^1 \dots n_N^N| \right) \left(S_N^{\pm}\right)^{\dagger} |\psi_N^{\pm}\rangle$$

$$= \sum_{\text{Pacignust and of } K \text{ of fisient an}} \left(n_1 \dots n_N |\psi_N^{\pm}\rangle\right)$$

In der Tat stimmt die obige Antwort und die Basis ist durch die obige Gleichung gegeben.

• Normierung: per Konstruktion gilt die Vollständigkeitsrelation

$$\mathbf{1}_{\mathcal{H}_N^{\pm}} = \int |n_1 \dots n_N\rangle^{\pm} \langle n_1 \dots n_N|^{\pm}$$

wegen $S_N^{\pm}S_N^{\pm}=S_N^{\pm}$ aber anders normiert als im 2-Teilchen-Beispiel.

Observablen, weitere Motivation für Symmetrisierungspostulate

System aus N identischen Teilchen, A_N sei sinnvolle Observable, $|\psi_N\rangle$ und $|\phi_N\rangle$ seien sinnvolle Zustände.

- $|\psi_N\rangle$ und $P_{ij}|\psi_N\rangle$ "bedeuten das selbe"
- Sinnvolle Annahme für die Observablen

$$\langle \psi_N | A_N | \psi_N \rangle = \langle \psi_N | P_{ij} A_N P_{ij} | \psi_N \rangle$$

 $\implies A_N = P_{ij} A_N P_{ij} \implies [A_N, P_{ij}] = 0$

für jede sinnvolle Observable auf dem Raum der sinnvollen Zustände.

• Spezielle Observable $A_N := |\psi_N\rangle\langle\psi_N|$ ergibt

$$P_{ij}A_N|\psi_N\rangle = A_N P_{ij}|\psi_N\rangle \iff (P_{ij}|\phi_N\rangle)\langle\phi_N|\psi_N\rangle = |\phi_N\rangle\langle\phi_N|P_{ij}|\psi_N\rangle$$

Woraus schließlich folgt dass

$$\iff P_{ij}|\phi_N\rangle = \lambda|\phi_N\rangle \implies \lambda = \pm 1$$

.

- Das Symmetrisierungspostulat wird hierdurch suggestiert. Das Postulat selbst ist noch etwas stärker, denn es besagt, dass für jede Teilchensorte genau nur ein Vorzeichen erlaubt ist.
- Beispiele für Observablen

2 Teilchen unterscheidbar	$m{x}_1,m{x}_2;m{p}_1,m{p}_2;H=rac{m{p}_1^2}{2m}+rac{m{p}_2^2}{2m};m{L}_1,m{L}_2,m{L}_{ m ges}$
	H sinnvoll, $\boldsymbol{x}_1, \boldsymbol{x}_2$ nicht sinnvoll
2 Teilchen ununterscheidbar	$x_1 - x_2$ nicht sinnvoll,
	aber $x_1 + x_2$, $(x_1 - x_2)^2$, $ x_1 - x_2 ^2$, x_1x_2 sinnvoll

- Vollständiges System kommutierender Observablen ist kompliziert.
- Oft möglich: Rechnen nicht direkt mit \mathcal{H}_N^{\pm} sondern in \mathcal{H} und mit einzelnen Observablen und am Ende: Spezialisieren/Einschränken auf symmetrische bzw. antisymmetrische Zustände.

2.3 Einfache Anwendungen

2.3.1 Grund- und angeregte Zustände

N Teilchen ohne Wechselwirkung;

- 1. Unterscheidbar: z.B. die Elektronen im He-Atom
- 2. Fermionen: z.B. Elektronen im Metall
- 3. Bosonen: mehrere H-Atome

Beispiel: Alle Teilchen im Potential mit möglichen Energien e_1, e_2, e_3, \ldots und Eigenzuständen $|1\rangle, |2\rangle, |3\rangle, \ldots$

- 1. Grundzustand $|1^1, 1^2\rangle$, $E = 2e_1$
 - 1. Angeregter Zustand $|1^12^2\rangle$ oder $|2^11^2\rangle$, $E=e_1+e_2$ 2-fach entartet.
- 2. Grundzustand N: $|1,2,\ldots,N\rangle^-$, $E=e_1+e_2+\ldots+e_N$ nicht entartet. e_N ist die maximale besetzte Energie im Grundzustand, genannt Fermienergie
 - 1. Angeregter Zustand: $|1, 2, \dots, N-1, N+1\rangle^-$ nicht entartet! $\Delta E = e_{N+1} e_N$
- 3. Grundzustand N: $|1, 1, \ldots, 1\rangle^+$, $E = Ne_1$
 - 1. Angeregter Zustand: $|2,1,\ldots,1\rangle$ nicht entartet! $\Delta E = e_2 e_1$

2.3.2 Direkter Prozess vs. Austauschterm

Zwei Teilchen: $|\psi\rangle$, $|\phi\rangle$ \longrightarrow Prozess \longrightarrow $|n\rangle$, $|m\rangle$

Anfangszustand $|i\rangle$ \longrightarrow Endzustand $|f\rangle$. Frage: Was ist die Wahrscheinlichkeit?

$$P_{i\to f} = |A_{i\to f}|^2$$

Unterscheidbar: (entweder nur links oder nur rechts):

• "direkt":

$$A_{i\rightarrow f}^d = \langle n^{(1)} m^{(2)} | \psi^{(i)} \phi^{(2)} \rangle = \langle n | \psi \rangle \langle m | \phi \rangle$$

• "Austauschterm":

$$A^a_{i\to f} = \langle m^{(1)} n^{(2)} | \psi^{(1)} \phi^{(2)} \rangle = \langle m | \psi \rangle \langle n | \phi \rangle$$

• Gesamtwahrscheinlichkeit: "entweder $\langle nm|$ oder $\langle mn|$ "

$$P_{i \to f} = |A_{i \to f}^d|^2 + |A_{i \to f}^a|^2$$

Bosonen:

$$\begin{split} |i\rangle &= \frac{|\psi\phi\rangle + |\phi\psi\rangle}{\sqrt{2}} \qquad |f\rangle = \frac{|nm\rangle + |mn\rangle}{\sqrt{2}} \\ A_{i\to f} &= \langle f|i\rangle = \frac{1}{2} \left(\langle \psi|n\rangle \langle \phi|m\rangle + \langle \phi|n\rangle \langle \psi|m\rangle \right) \cdot 2 = A^d_{i\to f} + A^a_{i\to f} \\ P_{i\to f} &= \left| A^d_{i\to f} + A^a_{i\to f} \right|^2 \end{split}$$

Fermionen (Analog):

$$P_{i \to f} = \left| A_{i \to f}^d - A_{i \to f}^a \right|^2$$

Spezialfall n = m: (Beide Teilchen gehen in den selben Zustand über)

- Fermionen: $P_{i \to f} = 0$
- Bosonen: $P_{i\to f} = 2|A^d_{i\to f}|^2$ (Doppelt so groß wie bei unterscheidbaren Teilchen)

2.3.3 Wasserstoffmolekül H₂

Chemische Bindung, gewisser Atomabstand R minimiert die Energie. Austauschwechselwirkung sehr wichtig \rightarrow Orts-Wellenfunktion.

Im Grundzustand: Orts-Wellenfunktion symmetrisch, Spin antisymmetrisch.

Annahme/Näherung: Kerne fixiert im Abstand R, Positionen der Kerne a und b, Elektronen 1 und 2

$$H = \frac{\mathbf{p}_1^2}{2m} + \frac{\mathbf{p}_2^2}{2m} - \alpha \left(\frac{1}{r_{1a}} + \frac{1}{r_{2a}} + \frac{1}{r_{1b}} + \frac{1}{r_{2b}} - \frac{1}{r_{12}} - \frac{1}{R} \right)$$

$$H = H_{1,a} + H_{2,b} - \alpha \left(\frac{1}{r_{1b}} + \frac{1}{r_{2a}} - \frac{1}{r_{12}} - \frac{1}{R} \right)$$

H-Atom-Zustände, Struktur der 2-Elektron-Zustände.

Erinnerung H-Atom:

Quantenzahlen $n, l, m: \psi_{nlm} \sim R_{nl}(r)Y_{lm}(\theta, \varphi)$

Grundzustand:

$$\psi_{100} = \frac{2}{\sqrt{4\pi}} a_B^{-\frac{3}{2}} e^{-\frac{r}{a_B}}$$

(Bohrscher Radius $a_B = \frac{1}{\alpha m}$).

Energien: $E_1 = -\frac{\alpha^2 m}{2}$, $E_n = \frac{E_1}{n^2}$ (Zusätzlich ungebundene Zustände mit E > 0)

H-Atom mit Proton im Punkt R_a

Selbe Energie-EW, Eigenzustände: $\psi_a(\boldsymbol{x}) = \psi_{\text{Ursprung}}(\boldsymbol{x} - \boldsymbol{R}_a)$

2-Elektron-Zustände 2 Basen von 1-T.-Zuständen um Proton $a | \psi_a, nlm \rangle$ und um Proton $b | \psi_b, nlm \rangle$ Basis von 2-Teilchen-Zuständen (antisymmetrisch): $\mathcal{H}_2^{(-)}$:

$$|\psi_{a,nlm}, \psi_{b,n'l'm'}\rangle^{(-)} \otimes \begin{cases} |\uparrow\uparrow\rangle\rangle \\ \frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}} \\ |\downarrow\downarrow\rangle \end{cases}$$
$$|\psi_{a,nlm}, \psi_{b,n'l'm'}\rangle^{(+)} \otimes \left(\frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}}\right)$$

Spinoperator kommutiert mit Hamiltonian, des Weiteren: $[S^2, S_z] = 0$. Simultane Eigenzustände:

$$|SM\rangle$$
 $S^2|SM\rangle = S(S+1)|SM\rangle$ $S_z|SM\rangle = M|SM\rangle$

Spin-Notation:

$$\begin{aligned} |1,1\rangle &:= |\uparrow\uparrow\rangle \\ |1,0\rangle &:= \frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}} \\ |1,-1\rangle &:= |\downarrow\downarrow\rangle \\ |0,0\rangle &:= \frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}} \end{aligned}$$

Damit Basis:

Ort antisymmetrisch, Spin S = 1: $|\psi_{a,nlm}, \psi_{b,n'l'm'}\rangle^{(-)} \otimes |1, M\rangle$ Ort symmetrisch, Spin S = 0: $|\psi_{a,nlm}, \psi_{b,n'l'm'}\rangle^{(+)} \otimes |0, 0\rangle$

Idee zur Lösung des H₂-Moleküls:

- Ziel: Grundzustandsenergie? Optimaler Abstand R?
- Annahme/Näherung: obigen Basiszustände sind Eigenzustände des vollen Moleküls (d.h. WW klein, H-Atome nur wenig beeinflusst)
- Variationsprinzip: Ansatz sinnvoller Zustände $|\psi_{\text{sinnvoll}}\rangle$

$$E_{var} = \frac{\langle \psi_{\text{sinnvoll}} | H | \psi_{\text{sinnvoll}} \rangle}{\langle \psi_{\text{sinnvoll}} | \psi_{\text{sinnvoll}} \rangle}$$

Auf jeden Fall: $E_{var} \geq E_{Grundzustand}$ (Gleichheit bei guter Wahl)

Heitler-London-Näherung

Wähle $|\psi_{\text{sinnvoll}}\rangle := |\psi\rangle^{(\pm)} = |\phi_a, \phi_b\rangle^{(\pm)} \otimes |SM\rangle$, wobei ϕ_a und ϕ_b die Grundzustände bezüglich der einzelnen H-Atome sind. Bei folgenden Matrixelementen: $\langle SM|SM\rangle = 1$ trägt nicht weiter bei \to ab jetzt nur noch Ortsraum betrachten.

$$\langle \boldsymbol{x} | \phi_{a,b} \rangle = \frac{2}{\sqrt{4\pi}} a_B^{-\frac{3}{2}} e^{-\frac{|\boldsymbol{x} - \boldsymbol{R}_{a,b}|}{a_B}}$$

Längere Rechnung ($\psi^{(\pm)}$ einsetzen und bekannte Skalarproduktrelationen, Normierung ausnutzen und beim Matrixelement auf Eigenzustände von Teilen des Hamiltonians achten):

(a)
$$\langle \psi^{(\pm)} | \psi^{(\pm)} \rangle = 1 \pm |L_{ab}|^2$$
 mit $L_{ab} = \langle \phi_a | \phi_b \rangle = \int d^3x \; \phi_a(\boldsymbol{x}) \phi_b(\boldsymbol{x}) \; (\ddot{\text{U}}\text{berlapp}).$

(b)
$$\langle \psi^{(\pm)} | H | \psi^{(\pm)} \rangle = \langle \phi_a^{(1)} \phi_b^{(2)} | H | \phi_a^{(1)} \phi_b^{(2)} \rangle \pm \langle \phi_a^{(1)} \phi_b^{(2)} | H | \phi_b^{(1)} \phi_a^{(2)} \rangle$$

Diagonalterm:

$$\langle \phi_a^{(1)} \phi_b^{(2)} | H | \phi_a^{(1)} \phi_b^{(2)} \rangle = 2E_1 + C_{ab}$$

mit Coulomb-Zusatzenergie

$$C_{ab} = \frac{\alpha}{R} - \alpha \int d^3x \, |\phi_a(\mathbf{x})|^2 \frac{1}{|\mathbf{x} - \mathbf{R}_b|}$$
$$- \alpha \int d^3x \, |\phi_b(\mathbf{x})|^2 \frac{1}{|\mathbf{x} - \mathbf{R}_a|}$$
$$+ \alpha \int d^3x_1 \, d^3x_2 \frac{|\phi_a(\mathbf{x}_1)|^2 |\phi_b(\mathbf{x}_2)|^2}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

Off-Diagonalterm:

$$\langle \phi_a^{(1)} \phi_b^{(2)} | H | \phi_b^{(1)} \phi_a^{(2)} \rangle = 2E_1 |L_{ab}|^2 + A_{ab}$$

mit Austauschterm

$$A_{ab} = \frac{\alpha}{R} |L_{ab}|^2 - \alpha L_{ab}^* \int d^3 x \, \frac{\phi_a^*(\boldsymbol{x})\phi_b(\boldsymbol{x})}{|\boldsymbol{x} - \boldsymbol{R}_a|}$$
$$- \alpha L_{ab} \int d^3 x \, \frac{\phi_a(\boldsymbol{x})\phi_b^*(\boldsymbol{x})}{|\boldsymbol{x} - \boldsymbol{R}_b|}$$
$$+ \alpha \int d^3 x_1 \, d^3 x_2 \frac{\phi_a^*(\boldsymbol{x}_1)\phi_b(\boldsymbol{x}_1)\phi_b^*(\boldsymbol{x}_2)\phi_a(\boldsymbol{x}_2)}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|}$$

Damit

$$E_{var}^{(\pm)} = 2E_1 + \frac{C_{ab} \pm A_{ab}}{1 \pm |L_{ab}|^2}$$

numerisch ausrechnen!

Stabile Bindung? Für welches R?

2.4 Erzeugungs- und Vernichtungsoperatoren

2.4.1 Fock-Raum

Der Fock-Raum ist ein Zustandsraum, der sowohl 1-Teilchen-, also auch Mehr-Teilchen-Zustände enthält.

Start wie bisher: 1-Teilchenraum \mathcal{H}_1 , Basis $|n\rangle$ sei gegeben.

Nun füge hinzu:

- "Vakuumzustand" $|0\rangle$ (Nicht Nullvektor!), $\langle 0|0\rangle = 1$ \rightarrow Vakuum-Hilbertraum $\mathcal{H}_0 = \{c|0\rangle, c \in \mathbb{C}\}$
- "Fockraum"

Bosonen: $\mathcal{F} := \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2^{(+)} \oplus \mathcal{H}_3^{(+)} \oplus \dots$ Fermionen: $\mathcal{F} := \mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \mathcal{H}_2^{(-)} \oplus \mathcal{H}_3^{(-)} \oplus \dots$

Basis von \mathcal{F} :

- Vakuum: $|0\rangle$

- 1-Teilchen: $|n\rangle$

- 2-Teilchen: $|n_1 n_2\rangle^{(\pm)}$

- 3-Teilchen: $|n_1 n_2 n_3\rangle^{(\pm)}$

Skalarprodukte:

$$\langle N\text{-Teilchen-Zustand}|M\text{-Teilchen-Zustand}\rangle = \begin{cases} 0 & N \neq M \\ \text{wie gehabt} & N = M \end{cases}$$

2.4.2 Erzeuger/Vernichter für Bosonen

Erzeugungsoperator a_n^{\dagger} "erzeugt ein zusätzliches Teilchen im Basiszustand $|n\rangle$ "

$$a_n^\dagger: \mathcal{H}_N^{(+)} \to \mathcal{H}_{N+1}^{(+)} \qquad a_n^\dagger |0\rangle = |n\rangle \qquad a_n^\dagger |m\rangle = \sqrt{2} |nm\rangle^{(+)} \qquad a_n^\dagger |mk\rangle^{(+)} = \sqrt{3} |nmk\rangle^{(+)}, \qquad \dots$$

Jeder Basiszustand des Fockraums lässt sich durch mehrfache Anwendung des Erzeugers auf das Vakuum gewinnen.

$$|n_1,...,n_N\rangle^{(+)} = \frac{1}{\sqrt{N!}} a_{n_1}^{\dagger} \cdots a_{n_N}^{\dagger} |0\rangle$$

Vertauschungsrelationen Nimm einen beliebigen Basiszustand aus \mathcal{F}

$$a_{n_1}^{\dagger} a_{n_2}^{\dagger} | m_1, ..., m_N \rangle^{(+)} = \sqrt{(N+1)(N+2)} | n_1 n_2 m_1, ..., m_N \rangle^{(+)}$$

$$a_{n_2}^{\dagger} a_{n_1}^{\dagger} | m_1, ..., m_N \rangle^{(+)} = \sqrt{(N+1)(N+2)} | n_2 n_1 m_1, ..., m_N \rangle^{(+)}$$

$$\Rightarrow [a_{n_1}^\dagger, a_{n_2}^\dagger] = 0 \qquad \text{(F\"{u}r Bosonen)}$$

Vernichtungsoperator $a_n := (a_n^{\dagger})^{\dagger}$

$$a_n|0\rangle = 0$$

$$a_n|m\rangle = \begin{cases} 0 & n \neq m \\ |0\rangle & n = m \text{ (und Zustände normiert)} \end{cases}$$

$$a_n|m_1, ..., m_N\rangle^{(+)} = \frac{1}{\sqrt{N}} \sum_{i=1}^N \delta_{nm_i} |m_1...m_{i-1}m_{i+1}...m_N\rangle^{(+)}$$

Vertauschungsrelation

$$a_{n}a_{m}^{\dagger}|m_{1}...m_{N}\rangle^{(+)} = a_{n}\sqrt{N+1}|mm_{1}...m_{N}\rangle^{(+)} = \delta_{nm}|m_{1}...m_{N}\rangle + \sum \delta_{nm_{i}}|mm_{1}...m_{i-1}m_{i+1}...m_{N}\rangle^{(+)}$$
$$a_{m}^{\dagger}a_{n}|m_{1}...m_{N}\rangle^{(+)} = \sum \delta_{nm_{i}}|mm_{1}...m_{i-1}m_{i+1}...m_{N}\rangle^{(+)}$$

Differenz enthält nur δ_{nm} -Term.

$$[a_n, a_m^{\dagger}] = \delta_{nm} := \langle n|m\rangle$$
$$[a_n^{\dagger}, a_m^{\dagger}] = 0$$
$$[a_n, a_m] = 0$$

Diese Vertauschungsrelationen beschreiben die Bose-Natur der Teilchen.

2.4.3 Erzeuger/Vernichter für Fermionen

Erzeugungsoperator

$$c_n^{\dagger}: \mathcal{H}_N^{(-)} \to \mathcal{H}_{N+1}^- \qquad c_n^{\dagger} |0\rangle = |n\rangle \qquad c_n^{\dagger} |m\rangle = \sqrt{2} |nm\rangle^{(-)} \qquad \dots$$

$$|n_1, ..., n_N\rangle^{(-)} = \frac{1}{\sqrt{N!}} c_{n_1}^{\dagger} \cdots c_{n_N}^{\dagger} |0\rangle$$

Vernichter: $c_n := (c_n^{\dagger})^{\dagger}$

Vertauschungsrelationen Vorgehen analog zu Bosonen.

$$\{c_{n_1}^{\dagger} c_{n_2}^{\dagger}\} = 0$$

$$c_n |m_1 ... m_N\rangle^{(-)} = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} (-1)^{i-1} \delta_{nm_i} |m_1 ... m_{i-1} m_{i+1} ... m_N\rangle^{(-)}$$

$$\{c_n, c_m^{\dagger}\} = \delta_{nm} := \langle n|m\rangle$$

$$\{c_n^{\dagger}, c_m^{\dagger}\} = 0$$

$$\{c_n, c_m\} = 0$$

Diese Vertauschungsrelationen beschreiben die Fermi-Statistik.

2.4.4 Besetzungszahldarstellung

1.-T.-Basiszustände
$$|\psi_n\rangle,$$
 Mehr-T.-Zustände z.B. $a^{\dagger}_{\psi_{n_1}}a^{\dagger}_{\psi_{n_2}}a^{\dagger}_{\psi_{n_3}}|0\rangle=\sqrt{3!}|\psi_{n_1}\psi_{n_2}\psi_{n_3}\rangle$

Äquivalente Charakterisierung: "... Teilchen mit Zustand ψ_i " $\to Besetzungszahldarstellung$ (Nur sinnvoll für sym./antisym. Zustände, mit abzählbarer Basis)

$$|\psi_1\psi_3\psi_6\rangle^{(\pm)} = |1,0,1,0,0,1,0,0,...\rangle$$

Häufig andere Normierung genutzt:

Bsp:

$$a_{\psi_{1}}^{\dagger} a_{\psi_{2}}^{\dagger} a_{\psi_{3}}^{\dagger} |0\rangle = \sqrt{3!} |\psi_{1} \psi_{3} \psi_{6}\rangle^{(\pm)}$$

$$|\psi_{1} \psi_{3} \psi_{6}\rangle^{(\pm)} = \frac{1}{3!} \sum_{\mathcal{P}} (\pm 1)^{\mathcal{P}} |\psi_{1} \psi_{3} \psi_{6}\rangle$$

$$\langle \psi_{1} \psi_{3} \psi_{6} | \psi_{1} \psi_{3} \psi_{6}\rangle^{(\pm)} = \frac{1}{3!}$$

$$a_{\psi_{1}}^{\dagger} a_{\psi_{1}}^{\dagger} a_{\psi_{5}}^{\dagger} |0\rangle = \sqrt{3!} |\psi_{1} \psi_{1} \psi_{5}\rangle^{(+)}$$

$$|\psi_{1} \psi_{1} \psi_{5}\rangle^{(+)} = \frac{1}{3!} \sum_{\mathcal{P}} |\psi_{1} \psi_{1} \psi_{5}\rangle$$

$$\langle \psi_{1} \psi_{1} \psi_{5} | \psi_{1} \psi_{1} \psi_{5}\rangle^{(+)} = \frac{2!}{3!}$$

Allgemein:

- Falls jeder Zustand maximal einfach besetzt ist, dann Umnormierung mit $\sqrt{N!}$
- \bullet Falls Zustände Besetzungszahlen $n_1, n_2, ...,$ haben, dann Umnormierung mit

$$\sim \sqrt{\frac{N!}{n_1!n_2!...}}$$

Besetzungszahldarstellung normiert

$$|n_1, n_2, ...\rangle = \pm \cdots \frac{\left(a_{\psi_2}^{\dagger}\right)^{n_2}}{\sqrt{n_2!}} \frac{\left(a_{\psi_1}^{\dagger}\right)^{n_1}}{\sqrt{n_1!}} |0\rangle$$

Vorzeichen für Bosonen immer +.

2.4.5 Formulierung von Observablen

Immer entweder Bose/Fermi aber immer mit a^{\dagger}/a

Nehme direkte normierte Basis $|\psi_n\rangle$

Besetzungszahloperator:

$$\hat{n}_{\psi_k} := a_{\psi_k}^{\dagger} a_{\psi_k}$$
$$\hat{n}_{\psi_k} |0\rangle = 0$$

Vertauschungsrelation:

$$\begin{split} \hat{n}_{\psi_k} a_{\psi_l}^\dagger &= a_{\psi_k}^\dagger a_{\psi_k} a_{\psi_l}^\dagger = a_{\psi_l}^\dagger \hat{n}_{\psi_k} + \delta_{kl} a_{\psi_l}^\dagger \\ [\hat{n}_{\psi_k}, a_{\psi_l}^\dagger] &= \delta_{kl} a_{\psi_l}^\dagger \qquad [\hat{n}_{\psi_k}, \left(a_{\psi_l}^\dagger\right)^{n_l}] = n_l \delta_{kl} \left(a_{\psi_l}^\dagger\right)^{n_l} \end{split}$$

$$\hat{n}_{\psi_k}|n_1, n_2, ..., n_k, ...\rangle = n_k|n_1, n_2, ..., n_k, ...\rangle$$

Teilchenzahloperator:

$$N := \sum_k \hat{n}_{\psi_k}$$

Nebenrechnung:

$$a_{\psi_k}^{\dagger} a_{\psi_l} |\psi_{n_1}, ..., \psi_{n_N}\rangle^{(\pm)} = \sum_{m=1}^{N} \delta_{ln_m} |\psi_{n_1}, ..., \psi_k, ..., \psi_{n_N}\rangle^{(\pm)}$$

(wobei ψ_k den Zustand ψ_{n_m} ersetzt)

Einteilchenobservablen: z.B. kinetische Energie:

$$T_1 = \frac{\mathbf{p}^2}{2m}$$

$$T_N = \sum_{m=1}^{N} T_1^{(m)}$$

Matrixelement zw. 1-T.-Zuständen

$$\langle \psi_k | T_1 | \psi_l \rangle =: T_{kl}$$

$$T_1 | \psi_l \rangle = \sum_k T_{kl} | \psi_k \rangle$$

Wirkung auf N-T.-Zustand:

$$T_N |\psi_{n_1}...\psi_{n_N}\rangle^{(\pm)} = \sum_{m=1}^N \sum_k T_{kn_m} |\psi_{n_1},...,\psi_k,...,\psi_{n_N}\rangle^{(\pm)}$$

Vergleich mit Nebenrechnung:

$$T_N = \sum_{k,l} T_{kl} \ a_{\psi_k}^{\dagger} a_{\psi_l}$$

Zwei-Teilchen-Observablen (z.B. Coulomb-Potential zwischen Teilchen i,j)

$$V_2^{(ij)}: \langle \psi_{k_1} \psi_{k_2} | V_2^{(12)} | \psi_{l_1} \psi_{l_2} \rangle =: V_{k_1, k_2, l_1, l_2}$$

$$V = \frac{1}{2} \sum_{i \neq j} V_2^{(ij)}$$

analog

$$V = \frac{1}{2} \sum_{k_1 k_2 l_1 l_2} V_{k_1, k_2, l_1, l_2} a_{\psi_{k_1}}^\dagger a_{\psi_{k_2}}^\dagger a_{\psi_{l_2}} a_{\psi_{l_1}}$$

Beispiel Impulsbasis:

Nicht diskret, sondern kontinuierlich. Impuls-EZ für 1 Teilchen $|\mathbf{p}\rangle$, W.fkt $\langle \mathbf{x}|\mathbf{p}\rangle = \frac{1}{\sqrt{2\pi}^3}e^{i\mathbf{p}\cdot\mathbf{x}}$

$$\langle \mathbf{p}' | \mathbf{p} \rangle = \delta^{(3)}(\mathbf{p} - \mathbf{p}')$$

Erzeuger/Vernichter, kontinuierlicher Index:

$$[a_{\mathbf{p}}, a_{\mathbf{p}'}^{\dagger}] = \delta^{(3)}(\mathbf{p} - \mathbf{p}')$$

Alles analog mit $\sum_{k,l} \to \int d^3p \, d^3p'$

$$T = \int d^3p \, d^3p' \, \frac{\mathbf{p}^2}{2m} \, \delta^{(3)}(\mathbf{p} - \mathbf{p}') a_{\mathbf{p}'}^{\dagger} a_{\mathbf{p}}$$

$$T = \int d^3p \, \frac{\mathbf{p}^2}{2m} \, a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}$$

2-Teilchen-Potentiale in Impulsbasis:

im Ortsraum: $V_2^{(12)} = V(\mathbf{x}_1 - \mathbf{x}_2)$:

$$V = \frac{1}{2} \sum \int V_{\mathbf{p}_{1}'\mathbf{p}_{2}'\mathbf{p}_{1}\mathbf{p}_{2}} a_{\mathbf{p}_{1}'}^{\dagger} a_{\mathbf{p}_{2}'}^{\dagger} a_{\mathbf{p}_{2}} a_{\mathbf{p}_{1}}$$

$$V_{\mathbf{p}_{1}'\mathbf{p}_{2}'\mathbf{p}_{1}\mathbf{p}_{2}} = \langle \mathbf{p}_{1}'\mathbf{p}_{2}'|V_{2}|\mathbf{p}_{1}\mathbf{p}_{2}\rangle$$

$$= \frac{1}{(2\pi)^{6}} \int d^{3}x_{1} d^{3}x_{2} e^{i(\mathbf{p}_{1}\mathbf{x}_{1}+\mathbf{p}_{2}\mathbf{x}_{2}-\mathbf{p}_{1}'\mathbf{x}_{1}-\mathbf{p}_{2}'\mathbf{x}_{2})} V(\mathbf{x}_{1}-\mathbf{x}_{2})$$

$$= \delta^{(3)}(\mathbf{p}_{1}+\mathbf{p}_{2}-\mathbf{p}_{1}'-\mathbf{p}_{2}') \cdot \frac{1}{(2\pi)^{3}} \int d^{3}z e^{i\mathbf{z}\mathbf{q}}V(\mathbf{z})$$

mit $\mathbf{z} = \mathbf{x}_1 - \mathbf{x}_2$ und $\mathbf{q} = \mathbf{p}_2' - \mathbf{p}_2$

$$V = \frac{1}{2} \int d^3 p_1 d^3 p_2 d^3 q \frac{1}{(2\pi)^3} \tilde{V}(\mathbf{q}) a_{\mathbf{p}_1 + \mathbf{q}}^{\dagger} a_{\mathbf{p}_2 - \mathbf{q}}^{\dagger} a_{\mathbf{p}_2} a_{\mathbf{p}_1}$$

2.4.6 Kurz-Überblick über Anwendungen

System identischer Teilchen mit 2.-T.-WW, endl. Volumen

$$H = \underbrace{T + V_{ext}}_{H_0} + V_2$$

Wähle 1-T-Basis aus H_0 Eigenzuständen:

$$H_0|\psi_n\rangle = E_n|\psi_n\rangle$$

Zugehöriger Erzeuger: a_n^{\dagger}

$$T + V_{ext} = \sum_{n} E_n a_n^{\dagger} a_n$$

 V_2 in Impulsbasis:

$$V_2 = \frac{2}{L^3} \sum_{\mathbf{p}, \mathbf{p}', \mathbf{q}} \tilde{V}(\mathbf{q}) a_{\mathbf{p} - \mathbf{q}}^{\dagger} a_{\mathbf{p}' + \mathbf{q}}^{\dagger} a_{\mathbf{p}'} a_{\mathbf{p}}$$

Genereller Hamiltonian für Festkörperelektronen mit spinunabhängigem V_2

$$H = \sum_{\mathbf{k},\sigma} \xi_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \frac{1}{2L_3} \sum_{\mathbf{k}_1 \mathbf{k}_2 \mathbf{q} \sigma_1 \sigma_2} \tilde{V}(\mathbf{q}) c_{\mathbf{k}_1 - \mathbf{q}, \sigma_1}^{\dagger} c_{\mathbf{k}_2 + \mathbf{q}, \sigma_2}^{\dagger} c_{\mathbf{k}_2 \sigma_2} c_{\mathbf{k}_1 \sigma_1}$$

Genereller Hamiltonian für Bosegas mit Wechselwirkung:

$$H = \sum_{\mathbf{p}} \frac{\mathbf{p}^2}{2m} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + \frac{1}{2L^3} \sum_{\mathbf{p}_1 \mathbf{p}_2 \mathbf{q}} \tilde{V}(\mathbf{q}) a_{\mathbf{p}_1 - \mathbf{q}}^{\dagger} a_{\mathbf{p}_2 + \mathbf{q}}^{\dagger} a_{\mathbf{p}_2} a_{\mathbf{p}_1}$$

Anwendung: Hartree-Fock-Näherung

 $c_A^\dagger c_B^\dagger c_C c_D = \text{Produkt}$ aus Paar ABoder aus Paar A'B'

$$A = c_A^{\dagger} c_D$$
 $B = c_B^{\dagger} c_C$ $A' = c_A^{\dagger} c_C$ $B' = c_B^{\dagger} c_D$

Mean-field-Näherung:

$$A = \langle A \rangle + \delta A \qquad B = \langle B \rangle + \delta B$$
$$AB = (\langle A \rangle + \delta A)(\langle B \rangle + \delta B) \approx \langle A \rangle B + A \langle B \rangle - \langle A \rangle \langle B \rangle$$

H.F.-Näherung:

$$c^{\dagger}c^{\dagger}cc \approx A\langle B\rangle + B\langle A\rangle - \langle A\rangle\langle B\rangle - A'\langle B'\rangle - B'\langle A'\rangle + \langle A'\rangle\langle B'\rangle$$

(s. Wick-Theorem)

$$\Rightarrow \quad H^{\rm gen\"{a}hert} \approx {\rm Summe} \ {\rm von} \ {\rm Termen} \ \sim c^{\dagger}c$$

Weitere Anwendungsbeispiele: Supraleitung, Suprafluidität

2.5 Ortsraum, Impulsraum, QFT (Spin=0)

2.5.1 Zur Interpretation der letzten Ergebnisse

$$H = T + V$$

In Impulsbasis:

$$H = \int d^3p \, \frac{\mathbf{p}^2}{2m} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}} + \frac{1}{2} \int d^3p_1 \, d^3p_2 \, d^3q \, \tilde{V}(\mathbf{q}) a_{\mathbf{p}_1 - \mathbf{q}}^{\dagger} a_{\mathbf{p}_2 + \mathbf{q}}^{\dagger} a_{\mathbf{p}_2} a_{\mathbf{p}_1}$$

- freier Anteil: Summe über harmonische Oszillatoren mit $\omega_{\mathbf{p}} = \frac{\mathbf{p}^2}{2m}$.
- Zahl von Teilchen mit **p**: Anregungszahl des entsprechenden Oszillators $n_{\bf p}=a_{\bf p}^{\dagger}a_{\bf p}$
- Bedeutung der Oszillatoren: de Broglie-Wellen der Impuls-Eigenzustände
- Bedeutung von \sum bzw. $\int d^3p$: Oszillatoren sind unabhängig, T beschreibt keine Wechselwirkung zwischen den Teilchen.
- Wechselwirkungsanteil als Feynmandiagramm. (Siehe Vorlesung)
 Das gegebene Feynmandiagramm enthält zwei Teilchen mit Impulsen p₁ und p₂, die von links kommen und in der Mitte wechselwirken mit V(q) (Wie ein bosonisches Austauschteilchen gezeichnet). Danach kommen Teilchen mit veränderten Impulsen p₁ + q und p₂ q rechts raus.

2.5.2 Ortsraum

Ortsraum-EZ für ein Teilchen: $|\mathbf{x}\rangle$.

Erzeuger/Vernichter kontinuierlicher "Index": $a_{\mathbf{x}}^{\dagger}$. Andere Bezeichnung $\hat{\Psi}^{\dagger}(\mathbf{x})$.

$$\begin{split} [\hat{\Psi}(\mathbf{x}), \hat{\Psi}(\mathbf{y})]^{(\pm)} &= 0 \\ [\hat{\Psi}(\mathbf{x}), \hat{\Psi}^{\dagger}(\mathbf{y})]^{(\pm)} &= \delta^{(3)}(\mathbf{x} - \mathbf{y}) \\ \hat{\Psi}^{\dagger}(\mathbf{x})|0\rangle &= |\mathbf{x}\rangle \end{split}$$

Zusammenhang mit Impulsdarstellung:

$$\hat{\Psi}^{\dagger}(\mathbf{x}) = \frac{1}{\sqrt{2\pi^3}} \int d^3 p \, a_{\mathbf{p}}^{\dagger} e^{-i\mathbf{x}\cdot\mathbf{p}}$$

$$\hat{\Psi}(\mathbf{x}) = \frac{1}{\sqrt{2\pi^3}} \int d^3 p \, a_{\mathbf{p}} e^{i\mathbf{x}\cdot\mathbf{p}}$$

Dann mit 2-Teilchen-Potential:

$$V = \frac{1}{2} \int \mathrm{d}^3 x_1 \, \mathrm{d}^3 x_2 \, \hat{\Psi}^{\dagger}(\mathbf{x_1}) \hat{\Psi}^{\dagger}(\mathbf{x_2}) V(\mathbf{x_1} - \mathbf{x_2}) \hat{\Psi}(\mathbf{x_2}) \hat{\Psi}(\mathbf{x_1})$$

Dann freier 1-Teilchen-Hamiltonian:

$$T = \int d^3x_1 d^3x_2 \langle \mathbf{x}_2 | \frac{\mathbf{p}^2}{2m} | \mathbf{x}_1 \rangle \hat{\Psi}^{\dagger}(\mathbf{x}_2) \hat{\Psi}(\mathbf{x}_1)$$
$$= \int d^3x_1 d^3x_2 d^3p \frac{\mathbf{p}^2}{2m} \frac{e^{i(\mathbf{p}\mathbf{x}_2 - \mathbf{p}x_1)}}{(2\pi)^3} \hat{\Psi}^{\dagger}(\mathbf{x}_2) \hat{\Psi}(\mathbf{x}_1)$$

 \mathbf{p}^2 -Term durch Laplaceoperator ersetzen und partielle Integration.

$$= \int \mathrm{d}^3 x_1 \, \mathrm{d}^3 x_2 \, \mathrm{d}^3 p \frac{e^{i(\mathbf{p} \mathbf{x}_2 - \mathbf{p} x_1)}}{(2\pi)^3} \hat{\Psi}^\dagger(\mathbf{x_2}) \cdot \frac{-\Delta}{2m} \hat{\Psi}(\mathbf{x_1})$$

Integrieren nach \mathbf{p} ergibt δ -Funktion.

$$T = \int d^3x \, \hat{\Psi}^{\dagger}(\mathbf{x}) \frac{-\Delta}{2m} \hat{\Psi}(\mathbf{x})$$

Bedeutung und Vergleich:

 $\hat{\Psi}(\mathbf{x})$:

- ullet Vernichter für Teilchen bei ${f x}$.
- Definiert auf Fockraum.
- Auch Quantenfeldoperator genannt.
- Kann auf beliebige Zustände wirken.

 $\psi(x)$:

- 1-Teilchen-QM
- Wellenfunktion $\psi(x) = \langle \mathbf{x} | \psi \rangle$
- Charakterisiert einen bestimmten Zustand $|\psi\rangle$
- Nicht sinnvoll in Mehrteilchentheorie.

Die Ähnlichkeit motivierte den historischen Begriff zweite Quantisierung.

Relation: im Fockraum gibt es einen 1-Teilchen-Unterraum und 1-Teilchen-Zustände. Präpariere einen 1-Teilchen-Zustand $|\psi\rangle$. Dann:

$$\langle 0|\hat{\Psi}(\mathbf{x})|\psi\rangle = \psi(\mathbf{x})$$

2.5.3 Quantenfeldtheorie

Betrachte nur freien Hamiltonian

$$H = \int d^3x \, \hat{\Psi}^{\dagger}(\mathbf{x}) \frac{-\Delta}{2m} \hat{\Psi}(\mathbf{x}) = \int d^3x \, \frac{1}{2m} (\nabla \hat{\Psi}^{\dagger}(\mathbf{x})) (\nabla \hat{\Psi}(\mathbf{x}))$$

Umgekehrte Sichtweise: starte von anderem Startpunkt \longrightarrow liefert Fockraum.

Starte mit einer klassischen Feldtheorie mit klassischem Feld $\psi(\mathbf{x}, t)$. (Bekannte klassische Feldtheorien sind die Elektrodynamik und die allgemeine Relativitätstheorie)

Lagrangedichte

$$\mathcal{L} = i\psi^*\dot{\psi} - \frac{1}{2m}|\nabla\psi|^2$$

Euler-Lagrange-Gleichungen (Subtilität: ψ^* und ψ als unabhängig betrachten)

$$\frac{\partial \mathcal{L}}{\partial \psi^*} = \frac{\partial}{\partial x^{\mu}} \frac{\partial \mathcal{L}}{\partial \left(\frac{\partial \psi^*}{\partial x^{\mu}}\right)}$$

$$\iff \qquad i\dot{\psi} = \frac{-\Delta}{2m}\psi$$

Die Form ist äquivalent zur Schrödingergleichung, die Bedeutung ist hier aber nur die einer klassischen Feldgleichung.

Kanonisch konjugierter Impuls

$$\pi = \frac{\partial \mathcal{L}}{\partial \dot{\psi}} = i\psi^*$$

Hamiltonian $H = \int d^3x \, \mathcal{H}$

$$\mathcal{H} = \pi \cdot \dot{\psi} - \mathcal{L} = \frac{1}{2m} |\nabla \psi|^2$$

Poissonklammern

$$\{A, B\}_{PK} := \int \left(\frac{\partial A}{\partial \psi(\mathbf{x})} \frac{\partial B}{\partial \pi(\mathbf{x})} - \frac{\partial B}{\partial \psi(\mathbf{x})} \frac{\partial A}{\partial \pi(\mathbf{x})} \right) d^3 x$$
$$\frac{\partial \psi(\mathbf{x})}{\partial \psi(\mathbf{y})} = \delta^{(3)}(\mathbf{x} - \mathbf{y})$$
$$\{\psi(\mathbf{x}), \pi(\mathbf{y})\}_{PK} = \delta^{(3)}(\mathbf{x} - \mathbf{y})$$

Quantisierung Rezept: "kanonische Quantisierung"

Ersetze $ih\{\ ,\ \}_{PK}\longrightarrow [\ ,\].$ Die kanonische Quantisierung liefert Operatoren $\hat{\Psi}(\mathbf{x}),\,\hat{\pi}(\mathbf{x})=i\hat{\Psi}^{\dagger}(\mathbf{x}),\,\hat{\mathcal{H}}.$

 $\{\psi(\mathbf{x}), \psi(\mathbf{y})\}_{PK} = 0$

$$[\hat{\Psi}(\mathbf{x}), \hat{\Psi}(\mathbf{y})]^{(\pm)} = 0 \qquad [\hat{\Psi}(\mathbf{x}), \hat{\Psi}^{\dagger}(\mathbf{y})]^{(\pm)} = \delta^{(3)}(\mathbf{x} - \mathbf{y})$$
$$\hat{H} = \int d^3x \, \hat{\mathcal{H}}(\mathbf{x}) = \int d^3x \, \frac{1}{2m} (\nabla \hat{\Psi}^{\dagger}(\mathbf{x})) (\nabla \hat{\Psi}(\mathbf{x}))$$

2.5.3. Anhang: Kanonische Quantisierung

Rezept, um eine sinnvolle Quantentheorie zu definieren.

Klassische Theorie	Quantentheorie
ein Paar von "kanonischen Variablen" q,\dot{q} "ein	Forderung: es existieren Operatoren auf dem Zu-
Freiheitsgrad"	standsraum mit \hat{q} , \hat{p} und
$L(q,\dot{q}) o q, p = \frac{\partial L}{\partial \dot{q}}$ kanon. konj. Impuls	$\hat{H} = H(\hat{q}, \hat{p})$
$ ightarrow H(q,p) = p\dot{q} - L$	$\min [\hat{A}, \hat{B}] = i\hbar \{A, B\}_{PK}$
Bewegungsgleichung	
$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} = \frac{\partial L}{\partial q}$	
oder äquivalent $\dot{q}=\frac{\partial H}{\partial p}, \dot{p}=-\frac{\partial H}{\partial q}$	
oder äquivalent $\frac{\mathrm{d}}{\mathrm{d}t}A = \{A,H\}_{PK}$	
mit $\{A,B\}_{PK} = \frac{\partial A}{\partial q} \frac{\partial B}{\partial p} - \frac{\partial A}{\partial p} \frac{\partial B}{\partial q}$	

Verallgemeinerung: viele Variablen $q_1(t)$, $q_2(t)$, $q_3(t)$,... bzw. unendlich viele Variablen und auch kontinuierliche Variablen $q_x(t) =: q(t,x)$ ("Feld")

Beispiel: Harmonischer Oszillator

$$L = \frac{m}{2}\dot{q}^2 - \frac{m\omega^2}{2}q^2$$

$$p = \frac{\partial L}{\partial \dot{q}} = m\dot{q}$$

$$H = p\dot{q} - L = \frac{p^2}{2m} + \frac{m\omega^2}{q}q^2$$

Bewegungsgleichung aus Lagrange

$$m\ddot{q} = -m\omega^2 q$$

Bewegungsgleichung aus Hamilton

$$\dot{p} = -m\omega^2 q \quad , \quad \dot{q} = \frac{p}{m}$$

QT: Operatoren $\hat{q},\,\hat{p}$ mit $[\hat{q},\hat{p}]=i\hbar$

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{q}^2$$

Aus dem Kommutator $[\hat{q}, \hat{p}] = i\hbar$ folgt

$$\langle x|p\rangle = N \cdot e^{ipx/\hbar}$$

In Ortsdarstellung folgt

$$\hat{p} = -i\hbar \frac{\partial}{\partial x}$$

Warum ist das Rezept sinnvoll? \rightarrow Die so erzeugte QT reproduziert die ursprüngliche klassische Theorie im klassischen Limes!

Beispiel:

$$\begin{split} \hbar \frac{\mathrm{d}}{\mathrm{d}t} \langle \psi | \hat{p} | \psi \rangle &= \langle \psi | i [\hat{H}, \hat{p}] | \psi \rangle \\ [\hat{H}, \hat{p}] &= m \omega^2 \hat{q} i \hbar \\ \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \langle \hat{p} \rangle &= -m \omega^2 \langle \hat{q} \rangle \end{split}$$

D.h. die QT liefert, dass die Erwartungswerte die klassischen Bewegungsgleichungen erfüllen!

Ehrenfest-Theorem

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{A} = \frac{i}{\hbar}[\hat{H}, \hat{A}]$$

(Entspricht der klassischen Bewegungsgleichung mit Poissonklammern)

2.5.4 Quantenfeldtheorie und Impulsraum

Startpunkt: $\mathcal{L} = i\psi^*\psi - \frac{1}{2m}|\nabla\psi|^2$.

Wie kann man die Struktur des Zustandsraums ermitteln?

Ansatz: neue Operatoren $a_{\mathbf{p}}$:

$$\hat{\Psi}(\mathbf{x}) = \frac{1}{\sqrt{2\pi^3}} \int d^3 p \, a_{\mathbf{p}} \, e^{i\mathbf{p} \cdot \mathbf{x}}$$

simple Rechnung erzeugt Vertauschungsrelationen:

$$[a_{\mathbf{p}}, a_{\mathbf{p}'}] = 0$$
 , $[a_{\mathbf{p}}, a_{\mathbf{p}'}^{\dagger}] = \delta^{(3)}(\mathbf{p} - \mathbf{p}')$

Hamiltonian wird zu

$$\hat{H} \int \mathrm{d}^3 p \, \frac{\mathbf{p}^2}{2m} a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}$$

[HIER FEHLT EIN GANZES STÜCK ZUM ERZEUGTEN FOCKRAUM UND ZUR INTERPRETATION DER ZUSTÄNDE - Vorlesung 16.06.2021]