

FORMATO DE SYLLABUS	Código: AA-FR-003		
Macroproceso: Direccionamiento Estratégico	Versión: 01		
Proceso: Autoevaluación y Acreditación	Fecha de Aprobación:		

FACULTAD:		Tecnológica									
PROYECTO CUF	RRICULAR:		Tecnología en El	ectrónica Industrial	CÓDIGO PLAN D		ESTUDIOS:				
I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO											
NOMBRE DEL ESPACIO ACADÉMICO: AUTOMÁTICA I											
Código del espacio académico:		24901	Número de créditos académicos:			3					
Distribución horas de trabajo:			HTD	2	нтс	5	НТА				
Tipo de espacio académico:			Asignatura	х	Cátedra						
NATURALEZA DEL ESPACIO ACADÉMICO:											
Obligatorio Básico	х	Obligatorio Complementario			Electivo Intrínseco		Electivo Extrínseco				
CARÁCTER DEL ESPACIO ACADÉMICO:											
Teórico		Práctico		Teórico-Práctico	x	Otros:		Cuál:			
	MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:										
Presencial	х	Presencial con incorporación de TIC		Virtual		Otros:		Cuál:			
II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS											

27/07/2023

Se recomienda que el estudiante tenga conocimientos en lógica digital, fundamentos de programación estructurada, sistemas eléctricos básicos, álgebra booleana, lectura e interpretación de diagramas eléctricos, así como principios básicos de control automático. Adicionalmente, familiaridad con herramientas como MATLAB/Simulink, PLCs y diagramas ladder facilitará el desarrollo del curso.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

La automatización es un pilar clave de la Industria 4.0. La asignatura de Automática I introduce al estudiante en el diseño, análisis e implementación de sistemas automatizados mediante controladores lógicos programables (PLCs), redes de comunicación industrial y metodologías modernas de programación. Con base en normas internacionales como ISA-88 (Batch Control), ISA-95 (Integración Empresa-Planta) y IEC 61131-3 (estructuras de programación en PLCs), se promueve la formación de profesionales capaces de enfrentar los desafíos de interoperabilidad, estandarización y eficiencia en entornos industriales. Este curso constituye una base para el diseño de sistemas ciberfísicos escalables, confiables y sostenibles.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Desarrollar en el estudiante las competencias necesarias para el diseño, modelado e implementación de sistemas automatizados secuenciales basados en lógica programada, con énfasis en herramientas modernas de automatización y estándares de la industria.

Objetivos Específicos:

Aplicar métodos formales en el diseño de controladores lógicos programables.

Implementar soluciones de automatización usando máquinas de estados finitos, UML-Statecharts y redes de Petri.

Utilizar estándares como IEC 61131-3 en la estructuración de software para PLC.

Modelar sistemas secuenciales multitarea y analizar su comportamiento dinámico.

Integrar herramientas de simulación, verificación y validación en el ciclo de diseño de automatismos.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de formación:

Promover la adquisición de conocimientos y habilidades en el diseño estructurado y normativo de automatismos industriales.

Familiarizar al estudiante con arquitecturas de automatización modernas y el rol del software estandarizado.

Estimular el pensamiento lógico, crítico y creativo mediante la implementación de automatismos aplicables a procesos reales.

Desarrollar la capacidad de integrar PLCs, sensores, actuadores y redes de comunicación en un sistema completo.

Resultados de aprendizaje esperados:

Modela sistemas secuenciales empleando MEF, UML y redes de Petri.

Diseña automatismos industriales cumpliendo con IEC 61131-3.

Implementa lógicas de control secuencial en plataformas industriales modernas.

Aplica técnicas de verificación y validación en proyectos de automatización.

Integra herramientas de simulación y documentación técnica en el diseño automatizado.

VI. CONTENIDOS TEMÁTICOS

1: Fundamentos y modelado formal (4 semanas)

Sistemas a eventos discretos (DES)

Máquinas de estados finitos (MEF)

Diseño multitarea de sistemas secuenciales

Estándares de diseño ISA-88 y su relación con automatismos secuenciales

2: Metodologías de programación estructurada (2 semanas)

Árboles de fallos y su uso en automatismos

Diagramas UML-Statecharts

Verificación y validación de controladores (model checking, pruebas funcionales)

3: Redes de Petri aplicadas a automatización (4 semanas)

Propiedades estructurales y dinámicas

Tipologías y métodos de análisis

Implementación en sistemas multitarea y jerárquicos

Aplicaciones en control de procesos batch (ISA-88)

4: Implementación en PLC con norma IEC 61131-3 (4 semanas)

Lenguajes: Ladder, FBD, SFC, ST

Estructura modular de programas

Generación de código desde modelos (MEF, redes de Petri)

Pruebas en plataformas: CODESYS, ISaGRAF, Rockwell Logix Designer

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

El curso se desarrollará bajo un enfoque de aprendizaje activo, basado en proyectos y resolución de problemas. Las sesiones combinarán teoría, talleres prácticos, simulación, programación y experimentación con PLCs. Se utilizarán plataformas de automatización industrial como Rockwell, Siemens, CODESYS, y simuladores como Factory I/O y Simulink. Los estudiantes desarrollarán proyectos donde diseñarán, modelarán y verificarán automatismos aplicados a procesos industriales reales o simulados, integrando normas y buenas prácticas.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, simuladores (CODESYS, RSLogix 5000, ISaGRAF), textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con PLCs industriales (Rockwell, Siemens, Wago), Herramientas de modelado y simulación: MATLAB/Simulink, Factory I/O, Sensores, actuadores y tableros didácticos, manuales de fabricantes, normas ISA, guías de diseño IEC 61131-3.

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Durante el curso se pueden organizar visitas a laboratorios especializados de la universidad y/o planta de automatización o un centro de entrenamiento industrial donde se pueda observar la implementación de automatismos secuenciales bajo estándares industriales. Esta actividad permitirá a los estudiantes contextualizar su aprendizaje y reconocer aplicaciones reales de lo desarrollado en el curso.

XI. BIBLIOGRAFÍA

Zapata, Germán. Diseño de Automatismos Secuenciales para Controladores Lógicos Programables. Universidad Nacional de Colombia

Piedrahita, Ramón. Ingeniería de la Automatización Industrial. Alfaomega

Mandado, Enrique. Autómatas Programables: Entorno y Aplicaciones. Alfaomega

Ballcell, Joseph & Romeral, José. Autómatas Programables. Alfaomega

ISA. Normas ISA-88, ISA-95, ISA-101

IEC. Norma IEC 61131-3 para PLCs

XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS

Fecha revisión por Consejo Curricular:
Fecha aprobación por Consejo Curricular:
Número de acta: