Normal and Cohen-Macaulay schemes

此果是勇者辛姜尔,他一定会这么做的!

Normality and Cohen-Macaulay schemes

1 Height, Depth and Dimension

Krull dimension and height of prime ideals Algebraically, we have the following definitions.

Definition 1. Let A be a noetherian ring. The *height of a prime ideal* \mathfrak{p} in A is defined as the maximum length of chains of prime ideals contained in \mathfrak{p} , that is,

$$\operatorname{ht}(\mathfrak{p}) := \sup\{n \mid \exists \text{ a chain of prime ideals } \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n = \mathfrak{p}\}.$$

The $Krull\ dimension$ of A is defined as

$$\dim A := \max_{\mathfrak{p} \in \operatorname{Spec} A} \operatorname{ht}(\mathfrak{p}).$$

Geometrically, we have the corresponding definition.

Definition 2. Let X be a noetherian scheme. The *codimension of an irreducible subscheme* Y in X is defined as the length of the longest chain of irreducible closed subsets containing Y, that is,

$$\operatorname{codim}_X(Y) := \sup\{n \mid \exists \text{ a chain of irreducible closed subsets } Y = Y_0 \subsetneq Y_1 \subsetneq \cdots \subsetneq Y_n\}.$$

The dimension of X is defined as

$$\dim X := \max_{Y \in \operatorname{Irred}(X)} \operatorname{codim}_X(Y).$$

For an affine scheme $X = \operatorname{Spec} A$, above two definitions coincide by the correspondence of prime ideals and irreducible closed subsets.

Proposition 3. Let A be a noetherian ring and $\mathfrak{p} \in \operatorname{Spec} A$. Then the height of \mathfrak{p} is equal to the codimension of the irreducible closed subset $V(\mathfrak{p})$ in $\operatorname{Spec} A$.

Proposition 4. Let X be a locally noetherian scheme and $\xi \in X$. Then dim $\mathcal{O}_{X,\xi} = \operatorname{codim} Z_{\xi}$.

Proof. Yang: To be continued.

For "nice" schemes, the Krull dimension behaves well by following proposition.

Proposition 5. Let S be spectrum of a field k or an algebraic integer ring \mathcal{O}_K and X an integral S-variety. Then we have the follows:

- (i) For any point $P \in X$, $\dim X = \dim \mathcal{O}_{X,P} + \operatorname{codim} \overline{\{P\}}$.
- (ii) For any non-empty open subset $U \subset X$, dim $U = \dim X$.
- (iii) $\dim X = \operatorname{trdeg}(\mathcal{K}(X)/\mathcal{K}(S)) + \dim S$.

Proof. Yang: To be continued.

Depth For a noetherian local ring (A, \mathfrak{m}) , we can define the depth of an A-module M.

Definition 6. Let (A, \mathfrak{m}) be a noetherian local ring with residue field k and M a finitely generated A-module. A sequence $t_1, \dots, t_n \in \mathfrak{m}$ is called a regular sequence for M if t_i is not a zero divisor on $M/(t_1, \dots, t_{i-1})$, that is, $M/(t_1, \dots, t_{i-1}) \to t_i M/(t_1, \dots, t_{i-1})$ is injective. The depth of M is defined as the maximum length of regular sequences for M.

Up to now, there are three numbers measuring the "size" of a local ring (A, \mathfrak{m}) :

- $\dim A$: the Krull dimension of A.
- depth A: the depth of A.

Date: May 13, 2025, Author: Tianle Yang, loveandjustice@88.com

• $\dim_{\kappa(\mathfrak{m})} T_{A,\mathfrak{m}}$: the dimension of Zariski tangent space $T_{A,\mathfrak{m}} := (\mathfrak{m}/\mathfrak{m}^2)^{\vee}$ as a $\kappa(\mathfrak{m})$ -vector space.

These three numbers are related by the following inequalities.

Proposition 7. Let (A, \mathfrak{m}) be a local noetherian ring with residue field k. Then the following inequalities hold:

$$\operatorname{depth} A \leq \dim_{\mathsf{k}} T_{A,\mathfrak{m}}.$$

To see these, we need the following well-known theorem.

Theorem 8 (Krull's Principal Ideal Theorem). Let A be a noetherian ring. Suppose $f \in A$ is not a unit or a zero divisor. Then $\dim A/(f) \leq \dim A - 1$. Moreover, if A is local or $\dim A_{\mathfrak{m}}$ is constant for all \mathfrak{m} , then the equality holds.

| Proof. Yang: To be added.

Theorem 9 (Nakayama's Lemma). Let (A, \mathfrak{m}) be a local ring. Suppose M is a finitely generated A-module. If $\mathfrak{m}M = M$, then M = 0.

| Proof. Yang: To be added.

2 Normal schemes

Definition 10. A ring A is called *normal* if it is an integral domain and integrally closed in its field of fractions Frac(A).

Proposition 11. Normality is a local property. That is, TFAE:

- (a) A is normal.
- (b) For any prime ideal $\mathfrak{p} \in \operatorname{Spec} A$, the localization $A_{\mathfrak{p}}$ is normal.
- (c) For any maximal ideal $\mathfrak{m} \in \mathrm{mSpec}\,A$, the localization $A_{\mathfrak{m}}$ is normal.

Proposition 12. Let A be a normal ring. Then A[X] and A[[X]] are normal rings.

Definition 13. A scheme X is called *normal* if the local ring $\mathcal{O}_{X,x}$ is normal for any point $x \in X$.

Example 14.

Proof.

Definition 15. Let X be a scheme. The *normalization* of X is an X-scheme X^{ν} with the following universal property: for any normal X-scheme Y, its structure morphism $Y \to X$ factors through X^{ν} .

Proposition 16. Let X be an integral scheme. Then the normalization X^{ν} of X exists. Moreover, $X^{\nu} \to X$ is birational.

Theorem 17. Let X be a normal noetherian scheme. Let $F \subset X$ be a closed subset of codimension ≥ 2 . Then the restriction $H^0(X, \mathcal{O}_X) \to H^0(X \setminus F, \mathcal{O}_X)$ is an isomorphism.

3 Regular conditions and Serre's conditions

Definition 18. Let X be a locally noetherian scheme and $k \in \mathbb{Z}_{\geq 0}$. We say that X verifies property R_k or is regular in codimension k if $\forall \xi \in X$ with codim $\overline{\{\xi\}} \leq k$,

$$\dim_{\kappa(\xi)} T_{X,\xi} = \dim \mathcal{O}_{X,\xi}.$$

We say that X verifies property S_k if $\forall \xi \in X$,

$$\operatorname{depth} \mathcal{O}_{X,\xi} \geq \min\{k, \dim \mathcal{O}_{X,\xi}\}.$$

Definition 19 (Cohen-Macaulay). A noetherian local ring (A, \mathfrak{m}) is called *Cohen-Macaulay* if dim $A = \operatorname{depth} A$. A locally noetherian scheme X is called *Cohen-Macaulay* if $\mathcal{O}_{X,\xi}$ is Cohen-Macaulay for any point $\xi \in X$.

By definition, it is easy to see that X is Cohen-Macaulay if and only if it verifies S_k for all $k \geq 0$.

Example 20 (Non Cohen-Macaulay rings).

Definition 21. An ideal I of a noetherian ring A is called *unmixed* if

$$ht(I) = ht(\mathfrak{p}), \quad \forall \mathfrak{p} \in Ass(A/I).$$

We say that the unmixedness theorem holds for a noetherian ring A if any ideal $I \subset A$ generated by ht(I) elements is unmixed. We say that the unmixedness theorem holds for a locally noetherian scheme X if $\mathcal{O}_{X,\xi}$ is unmixed for any point $\xi \in X$.

Remark 22. Recall that the set of associated primes of a module M is defined as

$$\operatorname{Ass}(M) := \{ \mathfrak{p} \in \operatorname{Spec} A \colon \exists x \in M \text{ such that } \mathfrak{p} = \operatorname{Ann}(x) \}.$$

Theorem 23. Let X be a locally noetherian scheme. Then the unmixedness theorem holds for X if and only if X is Cohen-Macaulay.

Theorem 24. Let X be a locally noetherian scheme. Suppose that X is Cohen-Macaulay. Let $F \subset X$ be a closed subset of codimension $\geq k$. Then the restriction $H^i(X, \mathcal{O}_X) \to H^i(X \setminus F, \mathcal{O}_X)$ induced by the is an isomorphism.

Theorem 25 (Serre's criterion for normality). Let X be a locally noetherian scheme. Then X is normal if and only if it verifies R_1 and S_2 .

Theorem 26. Let X be a locally noetherian scheme. Then X is reduced if and only if it verifies R_0 and S_1 .