

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

FUNDAMENTALS OF OPTIMIZATION

Constrained convex optimization

CONTENT

- Lagrange dual function
- Lagrange dual problem
- KKT condition

Lagrange dual function

Optimization problem in the standard form

(P) minimize
$$f(x)$$

s.t. $g_i(x) \le 0$, $i = 1, 2, ..., m$
 $h_i(x) = 0$, $i = 1, 2, ..., p$
 $x \in X \subseteq \mathbb{R}^n$

with $x \in \mathbb{R}^n$, and assume $D = (\bigcap_{i=1}^m \operatorname{dom} g_i) \cap (\bigcap_{i=1}^m \operatorname{dom} h_i)$ is not empty.

- Denote f^* the optimal value of f(x)
- If f, g_i (i = 1, 2, ..., m) are convex functions, h_i (i = 1, ..., p) are linear \rightarrow convex program

Lagrange dual function

• Define Lagrangian function L: $R^n \times R^m \times R^p \rightarrow R$

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{p} \mu_i h_i(x)$$

• Lagrange dual function (or dual function)

$$q(\lambda, \mu) = inf_{x \in D} L(x, \lambda, \mu)$$

Lagrange dual problem

(D) maximize $q(\lambda, \mu)$

$$\lambda$$
, $\mu \geq 0$

Lagrange dual function

- **Weak duality theorem** if x^* is an optimal solution to the primal problem and (λ^*, μ^*) is an optimal solution to the dual problem, then $f(x^*) \ge q(\lambda^*, \mu^*)$
- Corollary If there exist x^* and (λ^*, μ^*) such that $f(x^*) = q(\lambda^*, \mu^*)$, then x^* and (λ^*, μ^*) are respectively optimal solutions to the primal and dual problems

KKT Conditions

- **Theorem** (Fritz John necessary conditions) Let x^* be a feasible solution of (P). If x^* is a local minimum of (P), then there exists (u, λ, μ) such that:
 - $u\nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) + \sum_{i=1}^p \mu_i \nabla h_i(x^*) = 0$
 - $u, \lambda \geq 0, (u, \lambda, \mu) \neq 0$
 - $\lambda_i g_i(x^*) = 0$, i = 1, ..., m

KKT Conditions

- **Theorem** (Karush-Kuhn-Tucker (KKT) necessary conditions) Let x^* be a feasible solution of (P) and $I = \{i: g_i(x^*) = 0\}$. Further, suppose that $\nabla h_i(x^*)$ for i = 1, ..., p and $g_i(x^*)$ for $i \in I$ are linearly independent. If x^* is a local minimum of (P), then there exists (λ, μ) such that:
 - $\nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) + \sum_{i=1}^p \mu_i \nabla h_i(x^*) = 0$
 - $\lambda \geq 0$,
 - $\lambda_i g_i(x^*) = 0, i = 1,..., m$

KKT Conditions

- **Theorem** (KKT sufficient conditions) Let x^* be a feasible solution of (P) which is convex program (f, g_i) are convex functions, h_i are linear functions). If there exists (λ, μ) such that:
 - $\nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla g_i(x^*) + \sum_{i=1}^p \mu_i \nabla h_i(x^*) = 0$
 - $\lambda \geq 0$,
 - $\lambda_i g_i(x^*) = 0, i = 1, ..., m$

then x^* is a global optimal solution of (P)

Example

minimize
$$f(x,y) = 2x - y$$

s.t. $g_1(x,y) = x^2 + y^2 - 2 \le 0$
 $g_2(x,y) = x - y - 1 \le 0$

•
$$\nabla f(x,y) = [2 \ 1]^T, \nabla g_1(x,y) = [2x \ 2y]^T, \nabla g_2(x,y) = [1 \ -1]^T$$

- f and g_2 are linear, so they are convex
- $\nabla^2 g_1(x,y) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ which is positive definite, so g_1 is convex
- Exercise Apply KKT condition, solve the problem?

$$Z_{IP}$$
 = minimize $f(x) = c^{T}x$
s.t. $Ax \ge b$
 $Dx \ge d$
 x integer

- Let $X = \{x \text{ integer } | Dx \ge d\}$
- Assume optimizing over X can be solved easily, but adding constraint $Ax \ge b$ makes the problem too difficult

$$Z(\lambda) = \min_{x} c^{T}x + \lambda^{T}(b - Ax)$$

s.t. $Dx \ge d$
 $x \text{ integer}$ c

- For a fixed λ , $Z(\lambda)$ is assumed to be computed easily
- Important: compute the best lower bound

$$Z_D = \max_{\lambda \ge 0} Z(\lambda)$$

• **Exercise** Given a constant value $\lambda = \lambda^{(k)}$, suppose $x^{(k)}$ is an optimal solution to the problem

$$Z(\lambda) = \min_{x} c^{T}x + \lambda^{T}(b - Ax)$$

s.t. $Dx \ge d$
 $x \text{ integer}$ c

Explain why $s^{(k)} = b - Ax^{(k)}$ is a subgradient of function Z at $\lambda^{(k)}$?

Subgradient method for computing Z_D

```
Choose starting point \lambda^{(0)} (e.g., \lambda^{(0)} = 0); k = 0 while (STOP condition not reach) { x^{(k)} is the solution of Z(\lambda^{(0)}) Compute subgradient s^{(k)} = b - Ax^{(k)} of function Z at \lambda^{(k)} if s^{(k)} = 0 then BREAK \lambda^{(k+1)} = \max\{0, \lambda^{(k)} + \alpha^{(k)}s^{(k)}\} /* \alpha^{(k)} denote the step size */ k = k + 1 }
```


VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

