GATE-2011-AE

AI24BTECH11024-Pappuri Prahladha

1) The possible set of eigenvalues of a 4 × 4 skew-symmetric orthogonal real matrix is

2) The coefficient of $(z - \pi)^2$ in the Taylor series expansion of $f(z) = \begin{cases} \frac{\sin z}{z - \pi} & \text{if } z \neq \pi \\ -1 & \text{if } z = \pi \end{cases}$

c) $\{\pm 1\}$

d) $\{0, \pm i\}$

b) $\{\pm i, \pm 1\}$

a) $\{\pm i\}$

around π is

a) $\frac{1}{2}$	b) $-\frac{1}{2}$	c) $\frac{1}{6}$	d) $-\frac{1}{6}$
3) Consider \mathbb{R}^2 with for all $A, B \subseteq \mathbb{R}^2$? P: $A \cup B = \overline{A} \cup \overline{B}$. Q: $A \cap B = \overline{A} \cap \overline{B}$. R: $(A \cup B)^o = A^o \cup B$. S: $(A \cap B)^o = A^o \cap B$.		hich of the following	statements are TRUE
a) P and R only	b) P and S only	c) Q and R only	d) Q and S only
4) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with $f(1) = 5$ and $f(3) = 11$. If $g(x) = \int_1^3 f(x+t) dt$ then $g'(0)$ is equal to			
5) Let P be a 2×2 complex matrix such that $trace(P) = 1$ and $det(P) = -6$. Then, $trace(P^4 - P^3)$ is			
irreducible elemen a) The ideal $\langle 1 + a \rangle$ b) The ideal $\langle a + b \rangle$ c) The ideal $\langle 1 + a \rangle$	$ b\rangle$ is a prime ideal. $ b\rangle$ is a prime ideal.	wing statements is TI	
 7) Let X be a compa Let f: X → Y be a a) f is a closed ma b) f is an open ma c) f is both an open 	not necessarily a max act Hausdorff topological a bijective continuous ap but not necessarily ap but not necessarily en map and a closed rand open map or a closed	cal space and let <i>Y</i> b mapping. Which of th an open map. a closed map. nap.	

8) Consider the linear programming problem:

$$Maximizex + \frac{3}{2}y$$

$$subject \ to \ 2x + 3y \le 16,$$

$$x + 4y \le 18,$$

$$x > 0, \ y > 0.$$

If S denotes the set of all solutions of the above problem, then

a) S is empty.

c) S is a line segment.

b) S is a singleton.

- d) S has positive area.
- 9) Which of the following groups has a proper subgroup that is NOT cyclic?
 - a) $\mathbb{Z}_{15} \times \mathbb{Z}_{77}$
 - b) S_3
 - c) $(\mathbb{Z}, +)$
 - d) $(\mathbb{Q}, +)$
- 10) The value of the integral

$$\int_0^\infty \int_x^\infty \left(\frac{1}{y}\right) e^{-y/2} \, dy \, dx$$

is _____.

11) Suppose the random variable U has uniform distribution on [0,1] and $X=-2\log U$. The density of X is

a)
$$f(x) = \begin{cases} e^{-x} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

b) $f(x) = \begin{cases} 2e^{-2x} & \text{if } /, x > 0 \\ 0 & \text{otherwise} \end{cases}$
c) $f(x) = \begin{cases} \frac{1}{2}e^{-x/2} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$
d) $f(x) = \begin{cases} \frac{1}{2} & \text{if } x \in [0, 2] \\ 0 & \text{otherwise} \end{cases}$

- 12) Let f be an entire function on \mathbb{C} such that $|f(z)| \le 100 \log |z|$ for each z with $|z| \ge 2$. If f(i) = 2i, then f(1)
 - a) must be 2
 - b) must be 2i
 - c) must be i
 - d) cannot be determined from the given data
- 13) The number of group homomorphisms from \mathbb{Z}_3 to \mathbb{Z}_9 is ______.