Suites et Séries – TD₈ – Complément

Devoir surveillé 2021-2022

Exercice 1.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée telle que la suite $(u_{n+1}-u_n)_{n\in\mathbb{N}}$ soit monotone.

1. Montrer que la suite $(u_{n+1} - u_n)_{n \in \mathbb{N}}$ est convergente.

La suite $(u_n)_{n\in\mathbb{N}}$ est bornée par un certain M>0, donc pour tout $n\in\mathbb{N}$,

$$|u_{n+1} - u_n| \le |u_{n+1}| + |u_n| \le 2M.$$

Ainsi, la suite $(u_{n+1} - u_n)_{n \in \mathbb{N}}$ est bornée.

La suite $(u_{n+1} - u_n)_{n \in \mathbb{N}}$ est monotone et bornée, donc elle converge vers une limite $l \in \mathbb{R}$.

- 2. Montrer par l'absurde que $u_{n+1} u_n \xrightarrow[n \to +\infty]{} 0$.
 - Supposons l > 0. Par définition de la convergence, on a

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geqslant N, l - \varepsilon < u_{n+1} - u_n < l + \varepsilon.$$

On applique cette définition à $\varepsilon = \frac{l}{2} > 0$: il existe $N \in \mathbb{N}$ tel que

$$\forall n \geqslant N, \ l - \frac{l}{2} < u_{n+1} - u_n.$$

Ainsi,

$$\forall n \geqslant N, \, u_{n+1} \geqslant u_n + \frac{l}{2}.$$

On en déduit :

$$\forall n \geqslant N, \ u_n \geqslant \underbrace{u_N + \frac{l}{2}(n-N)}_{n \to +\infty}.$$

C'est absurde car la suite $(u_n)_{n\in\mathbb{N}}$ est bornée.

— De même, on obtient une contraction si l < 0. Finalement, l = 0 et donc :

$$u_{n+1} - u_n \xrightarrow[n \to +\infty]{} 0$$

3. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge. Ce résultat est-il encore vrai si on ne suppose plus $(u_n)_{n\in\mathbb{N}}$ bornée?

Posons $(v_n)_{n\in\mathbb{N}}=(u_{n+1}-u_n)_{n\in\mathbb{N}}$. On sait que $(v_n)_{n\in\mathbb{N}}$ est monotone et converge vers 0.

- Supposons que (v_n) est croissante. Montrons qu'elle est négative. Soit $n \in \mathbb{N}$. Pour tout $k \geq n$, on a $v_k \geq v_n$. Par passage à la limite quand $k \to +\infty$, on obtient $0 \geq v_n$. Ainsi, pour tout $n \in \mathbb{N}$, $u_{n+1} \leq u_n$. La suite $(u_n)_{n \in \mathbb{N}}$ est décroissante et bornée, donc elle converge.
- De même, si $(v_n)_{n\in\mathbb{N}}$ est décroissante, on obtient avec la convergence vers 0 que $(v_n)_{n\in\mathbb{N}}$ est positive. Alors la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et bornée, donc elle converge.
- On a donc montré que :

la suite $(u_n)_{n\in\mathbb{N}}$ converge.

Posons, pour $n \in \mathbb{N}$, $u_n = n^2$. Alors pour tout $n \in \mathbb{N}$:

$$u_{n+1} - u_n = 2n + 1$$

 $u_{n+1} - u_n = 2n + 1$ La suite $(u_{n+1} - u_n)_{n \in \mathbb{N}}$ est croissante, mais la suite $(u_n)_{n \in \mathbb{N}}$ ne converge pas.

En général, le résultat n'est plus vrai si on ne suppose plus $(u_n)_{n \in \mathbb{N}}$ bornée.

Exercice 2.

Soit la suite récurrente définie par

$$\begin{cases} u_0 > 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + \frac{1}{u_n^5} \end{cases}$$

1. Montrer que

$$\forall n \in \mathbb{N}, \ u_n \in]0, +\infty[$$

Remarque : il s'agit ici de l'exercice 2.5.2 du polycopié. Les étudiants ayant travaillé le polycopié trouveront ce Midterm Exam particulièrement sympathique.

Pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$ avec $f: x \mapsto x + x^{-5}$. L'intervalle $]0, +\infty[$ est stable par f et $u_0 > 0$, donc pour tout $n \in \mathbb{N}$, $u_n > 0$.

- 2. Montrer que $u_n \xrightarrow[n \to +\infty]{} +\infty$.
 - Pour tout $n \in \mathbb{N}$, $u_n > 0$, d'après la question (1).
 - L'équation $x = x + x^{-5}$ n'a pas de solution sur $]0, +\infty[$, cela veut dire que la fonction f(définie dans la réponse à la question (1)) n'a pas de point fixe sur cet intervalle.
 - Pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = u_n^{-5} \geqslant 0$, donc la suite $(u_n)_{n \in \mathbb{N}}$ est croissante. Par conséquent, elle converge ou elle tend vers $+\infty$. Comme f n'a pas de point fixe, on en déduit que :

$$u_n \xrightarrow[n \to +\infty]{} +\infty$$

- 3. On souhaite trouver un équivalent de u_n lorsque n tend vers $+\infty$. Pour cela, on pose pour tout $n \in \mathbb{N}^*$: $v_n = \frac{u_n^6}{6}$ et $w_n = v_{n+1} - v_n$.
 - (a) Donner un équivalent de w_n lorsque $n \to +\infty$. En déduire la nature de la série $\sum w_n$.

$$w_n = v_{n+1} - v_n = \frac{1}{6} \left(\left(u_n + \frac{1}{u_n^5} \right)^6 - u_n^6 \right) = \frac{1}{6} u_n^6 \left(\frac{6}{u_n^6} + \underset{n \to +\infty}{o} \left(\frac{1}{u_n^6} \right) \right) \underset{n \to +\infty}{\sim} 1$$
 La série $\sum_n w_n$ est donc grossièrement divergente.

(b) Donner un équivalent de v_n lorsque $n \to +\infty$. En déduire un équivalent de u_n .

 $\sum_{n} w_n = \sum_{n} (v_{n+1} - v_n)$ est à termes positifs, divergente (grossièrement), donc par comparaison des séries à termes positifs :

$$v_n - v_0 = S_n(w) \underset{n \to +\infty}{\sim} S_n(1) = n + 1$$

C'est-à-dire:

$$v_n \underset{n \to +\infty}{\sim} n$$

On en déduit que $\frac{u_n^6}{6n} \xrightarrow[n \to +\infty]{} 1$, et comme la fonction $x \mapsto \sqrt[6]{x}$ est continue en 1, on a $\frac{u_n}{\sqrt[6]{6n}} \xrightarrow[n \to +\infty]{} 1$. Finalement, $u_n \xrightarrow[n \to +\infty]{} \sqrt[6]{6n}$

4. Donner le terme suivant du développement asymptotique de u_n lorsque n tend vers $+\infty$. On reprend le développement limité de $v_{n+1} - v_n$:

$$v_{n+1} - v_n = \frac{1}{6} \left(\left(u_n + \frac{1}{u_n^5} \right)^6 - u_n^6 \right) = \frac{1}{6} u_n^6 \left(\frac{6}{u_n^6} + \frac{15}{u_n^{12}} + \underset{n \to +\infty}{o} \left(\frac{1}{u_n^{12}} \right) \right) = 1 + \frac{5}{2u_n^6} + o\left(\frac{1}{u_n^6} \right).$$

Comme $u_n^6 \sim 6n$, on a finalement

$$v_{n+1} - v_n = 1 + \frac{5}{12n} + \underset{n \to +\infty}{o} \left(\frac{1}{n}\right)$$

d'où

$$v_{n+1} - v_n - 1 \underset{n \to +\infty}{\sim} \frac{5}{12n}.$$

La série $\sum_{n} \frac{5}{12n}$ est à termes positifs et divergente, donc c'est le cas aussi de la série $\sum_{n} (v_{n+1} - v_n - 1)$. On a donc par comparaison des sommes partielles :

$$v_n - v_1 - (n-1) \mathop{\sim}_{n \to +\infty} \sum_{k=1}^{n} \frac{5}{12k}$$

Comme $\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln(n)$, on en déduit

$$v_n = n + \frac{5}{12}\ln(n) + o_{n \to +\infty}(\ln(n)).$$

Alors

$$u_{n} = \sqrt[6]{6n + \frac{5}{2}\ln(n) + o(\ln(n))}$$

$$= \sqrt[6]{6n} \left(1 + \frac{5}{12}\frac{\ln(n)}{n} + o_{n \to +\infty}\left(\frac{\ln(n)}{n}\right)\right)^{\frac{1}{6}}$$

$$= \sqrt[6]{6n} \left(1 + \frac{5}{72}\frac{\ln(n)}{n} + o_{n \to +\infty}\left(\frac{\ln(n)}{n}\right)\right)^{\frac{1}{6}}$$

Finalement,
$$u_n = \sqrt[6]{6 n} + \frac{5\sqrt[6]{6}}{72} \frac{\ln(n)}{n^{5/6}} + \underset{n \to +\infty}{o} \left(\frac{\ln(n)}{n^{5/6}}\right)$$

Exercice 3.

On définit la série $\sum_{n} u_n$ de terme général u_n donné par :

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{\ln(n)}{1 + (-1)^{n+1}n}.$$

On rappelle que pour tout $(\alpha, \beta) \in \mathbb{R}^2$, la série de Bertrand $\sum_n \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ converge si et seulement si :

$$(\alpha > 1)$$
 ou $(\alpha = 1 \text{ et } \beta > 1)$

1. Donner un équivalent de u_n lorsque n tend vers $+\infty$.

On a, pour tout $n \in \mathbb{N}^*$,

$$u_n = \frac{\ln(n)}{1 + (-1)^{n+1}n}$$

$$= (-1)^{n+1} \frac{\ln(n)}{n} \frac{1}{1 + \frac{(-1)^{n+1}}{n}}$$

$$= (-1)^{n+1} \frac{\ln(n)}{n} \left(1 + \underset{n \to +\infty}{o} (1)\right)$$

$$= (-1)^{n+1} \frac{\ln(n)}{n} + \underset{n \to +\infty}{o} \left(\frac{\ln(n)}{n}\right)$$

Donc,
$$u_n \underset{n \to +\infty}{\sim} (-1)^{n+1} \frac{\ln(n)}{n}$$

2. Montrer que la série $\sum_{n} u_n$ est convergente.

Le terme $(-1)^{n+1}\frac{\ln(n)}{n}$ n'est pas de signe constant et ne converge pas absolument. On ne peut donc pas utiliser le critère d'équivalence. Il faut donc faire un développement asymptotique de u_n à l'ordre suivant :

$$u_n = \frac{\ln(n)}{1 + (-1)^{n+1}n}$$

$$= (-1)^{n+1} \frac{\ln(n)}{n} \frac{1}{1 + \frac{(-1)^{n+1}}{n}}$$

$$= (-1)^{n+1} \frac{\ln(n)}{n} \left(1 - \frac{(-1)^{n+1}}{n} + o_{n \to +\infty} \left(\frac{1}{n}\right)\right)$$

$$= (-1)^{n+1} \frac{\ln(n)}{n} - \frac{\ln(n)}{n^2} + o_{n \to +\infty} \left(\frac{\ln(n)}{n^2}\right)$$

On définit pour tout $n \in \mathbb{N}^*$, $v_n = (-1)^{n+1} \frac{\ln(n)}{n}$ et $w_n = -\frac{\ln(n)}{n^2} + \underset{n \to +\infty}{o} \left(\frac{\ln(n)}{n^2}\right)$.

On vérifie que $\sum v_n$ est une série alternée : \triangleright On définit

$$f: [1; +\infty[\to \mathbb{R}$$

$$x \mapsto \frac{\ln(x)}{x}$$

f est dérivable sur $[1; +\infty[$, et pour tout $x \in [1; +\infty[$, $f'(x) = \frac{1 - \ln(x)}{x^2}$. Pour tout x > e, on a $f'(x) \leq 0$.

La suite $(|v_n|)_{n\in\mathbb{N}}$ est donc décroissante à partir d'un certain rang.

 \triangleright On a de plus $|v_n| \underset{n \to +\infty}{\longrightarrow} 0$.

 \triangleright Enfin, les signes sont bien alternés.

Par théorème des séries alternées, la série $\sum v_n$ est donc convergente.

De plus, on a $|w_n| \underset{n \to +\infty}{\sim} \frac{\ln(n)}{n^2}$. C'est le terme général d'une série de Bertrand convergente, on en déduit que $\sum_{n=1}^{\infty} w_n$ est absolument convergente, donc convergente.

La série
$$\sum_{n} u_n$$
 est donc bien convergente.

3. On pose, pour tout $n \in \mathbb{N}^*$, $v_n = u_{2n-1} + u_{2n}$.

Donner un équivalent de $R_n(v) = \sum_{k=n+1}^{+\infty} v_k$ quand $n \to +\infty$.

Pour tout $n \in \mathbb{N}^*$, on a:

$$\begin{split} v_n &= u_{2n-1} + u_{2n} \\ &= \frac{\ln(2n-1)}{2n} - \frac{\ln(2n)}{2n-1} \\ &= \frac{\ln(2n) + \ln\left(1 - \frac{1}{2n}\right)}{2n} - \frac{\ln(2n)}{2n} \frac{1}{1 - \frac{1}{2n}} \\ &= \frac{\ln(2n)}{2n} + \frac{1}{2n} \left[-\frac{1}{2n} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n}\right) \right] \\ &- \frac{\ln(2n)}{2n} \left[1 + \frac{1}{2n} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n}\right) \right] \\ &= -\frac{\ln(2n)}{4n^2} + \mathop{o}_{n \to +\infty} \left(\frac{\ln(2n)}{n^2}\right) - \frac{1}{4n^2} + \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2}\right) \\ &= -\frac{\ln(2n)}{4n^2} + \mathop{o}_{n \to +\infty} \left(\frac{\ln(2n)}{n^2}\right) \\ &\stackrel{\sim}{\underset{n \to +\infty}{\longrightarrow}} \frac{-\ln(2n)}{4n^2} \\ &\stackrel{\sim}{\underset{n \to +\infty}{\longrightarrow}} \frac{-\ln(n)}{4n^2} \end{split}$$

On a, $(-v_n)_{n\in\mathbb{N}}$ est une suite à termes positifs telle que $-v_n \underset{+\infty}{\sim} \frac{\ln(n)}{4n^2}$. On pose, pour tout $n \geqslant 1$, $w_n = \frac{\ln(n)}{4n^2}$. Par comparaison de séries à termes positifs, on a donc $R_n(v) \underset{+\infty}{\sim} -R_n(w)$. On considère la fonction :

$$f: [1; +\infty[\to \mathbb{R}$$

$$x \mapsto \frac{\ln(x)}{4x^2}$$

La fonction f est décroissante à partir d'un certain rang N, et on a donc, pour tout $k \ge N$,

$$w_{k+1} \leqslant \int_{k}^{k+1} f(t) dt \leqslant w_k.$$

En sommant ces inégalités entre $n \ge N$ et $+\infty$, on obtient

$$R_n(w) \leqslant \int_n^{+\infty} f(t) dt \leqslant R_n(w) + w_n.$$

On a de plus, pour tout x > n,

$$\int_{n}^{x} f(t)dt = \int_{n}^{x} \frac{\ln(t)}{4t^{2}}$$

$$= \left[-\frac{\ln(t)}{4t} \right]_{n}^{x} + \int_{n}^{x} \frac{1}{4t^{2}}dt$$

$$= \frac{\ln(n)}{n} - \frac{\ln(x)}{x} - \left[\frac{1}{4t} \right]_{n}^{x}$$

$$= \frac{\ln(n)}{4n} - \frac{\ln(x)}{4x} + \frac{1}{4n} - \frac{1}{4x}$$

$$\xrightarrow[x \to +\infty]{} \frac{\ln(n)}{4n} + \frac{1}{4n}$$

$$\xrightarrow[n \to +\infty]{} \frac{\ln(n)}{4n}$$

On a donc $w_n = \underset{n \to +\infty}{o} \left(\int_n^{+\infty} f(t) dt \right)$. On en déduit que

$$R_n(w) \underset{n \to +\infty}{\sim} \frac{\ln(n)}{4n}.$$

On a donc
$$R_n(v) = -\frac{\ln(n)}{4n} + \underset{n \to +\infty}{o} \left(\frac{\ln(n)}{n}\right) \cdot \left[R_n(v) \underset{n \to +\infty}{\sim} \frac{-\ln(n)}{4n}\right]$$

4. En déduire un équivalent de $R_n(u)$ quand $n \to +\infty$.

On en déduit que $R_{2n}(u) = -\frac{\ln(n)}{4n} + \underset{n \to +\infty}{o} \left(\frac{\ln(n)}{n}\right)$. On a de plus, pour tout $n \in \mathbb{N}$,

$$R_{2n+1}(u) = R_{2n}(u) - u_{2n+1} = -\frac{\ln(n)}{4n} - \frac{\ln(2n)}{2n} + o\left(\frac{\ln(n)}{n}\right) = -\frac{3\ln(n)}{4n} + o\left(\frac{\ln(n)}{n}\right).$$

On a donc
$$u_n \underset{n \to +\infty}{\sim} -\frac{(2+(-1)^{n+1})\ln(n)}{4n}$$