NASSCOM MINI PROJECT

NAME: LAVANYA S

ID NO: 20191COM0114

SECTION: 5COM2

Predict Fuel Efficiency

In [42]:

Let's import the necessary libraries to get started with this task:

import matplotlib.pyplot as plt

```
import pandas as pd
import seaborn as sns

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

In [45]: import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

# Make NumPy printouts easier to read.
np.set_printoptions(precision=3, suppress=True)
```

```
In [2]: dataset = pd.read_csv("/content/dataset.txt",sep=",")
```

In [54]: dataset.head()

Out[54]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	car name	USA
0	18.0	8	307.0	130	3504	12.0	70	chevrolet chevelle malibu	1.0
1	15.0	8	350.0	165	3693	11.5	70	buick skylark 320	1.0
2	18.0	8	318.0	150	3436	11.0	70	plymouth satellite	1.0
3	16.0	8	304.0	150	3433	12.0	70	amc rebel sst	1.0
4	17.0	8	302.0	140	3449	10.5	70	ford torino	1.0

In [53]: dataset.tail()

Out[53]:

		mpg	cylinders	displacement	horsepower	weight	acceleration	model year	car name	US
3	393	27.0	4	140.0	86	2790	15.6	82	ford mustang gl	1
3	894	44.0	4	97.0	52	2130	24.6	82	vw pickup	0
3	895	32.0	4	135.0	84	2295	11.6	82	dodge rampage	1
3	396	28.0	4	120.0	79	2625	18.6	82	ford ranger	1
3	897	31.0	4	119.0	82	2720	19.4	82	chevy s- 10	1

In [52]: print("presenceof null values:"+str(dataset.isnull().values.any()))

presenceof null values:False

Clean the data

```
In [46]: | dataset.isna().sum()
Out[46]: mpg
         cylinders
                           0
         displacement
                           0
         horsepower
                           0
         weight
                           0
          acceleration
                           0
         model year
                           0
         car name
                           0
         USA
                           0
         Europe
                           0
          Japan
         dtype: int64
```

Drop those rows to keep this initial tutorial simple:

```
In [55]: dataset = dataset.dropna()
  dataset
```

Out[55]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	car name	Uŧ
0	18.0	8	307.0	130	3504	12.0	70	chevrolet chevelle malibu	1
1	15.0	8	350.0	165	3693	11.5	70	buick skylark 320	1
2	18.0	8	318.0	150	3436	11.0	70	plymouth satellite	1
3	16.0	8	304.0	150	3433	12.0	70	amc rebel sst	1
4	17.0	8	302.0	140	3449	10.5	70	ford torino	1
393	27.0	4	140.0	86	2790	15.6	82	ford mustang gl	1
394	44.0	4	97.0	52	2130	24.6	82	vw pickup	(
395	32.0	4	135.0	84	2295	11.6	82	dodge rampage	1
396	28.0	4	120.0	79	2625	18.6	82	ford ranger	1
397	31.0	4	119.0	82	2720	19.4	82	chevy s- 10	1

398 rows × 11 columns

```
In [8]: | origin = dataset.pop('origin')
        dataset['USA'] = (origin == 1)*1.0
        dataset['Europe'] = (origin == 2)*1.0
        dataset['Japan'] = (origin == 3)*1.0
        print(origin)
        0
                1
        1
                1
                1
                1
                1
        393
               1
        394
               2
        395
        396
        397
        Name: origin, Length: 398, dtype: int64
```

Now, let's split the data into training and test sets:

```
In [9]: train_dataset = dataset.sample(frac=0.8,random_state=0)
    test_dataset = dataset.drop(train_dataset.index)
    print(train_dataset)
```

	mpg	cylinders	displacement		USA	Europe	Japan
65	14.0	8	351.0		1.0	0.0	0.0
132	25.0	4	140.0		1.0	0.0	0.0
74	13.0	8	302.0		1.0	0.0	0.0
78	21.0	4	120.0		0.0	1.0	0.0
37	18.0	6	232.0	• • •	1.0	0.0	0.0
• •	• • •	• • •	• • •	• • •		• • •	• • •
207	20.0	4	130.0		0.0	1.0	0.0
279	29.5	4	98.0		0.0	0.0	1.0
227	19.0	6	225.0		1.0	0.0	0.0
148	26.0	4	116.0		0.0	1.0	0.0
143	26.0	4	97.0		0.0	1.0	0.0

[318 rows x 11 columns]

```
In [10]:
          print(test dataset)
                        cylinders
                                     displacement
                                                            USA
                                                                  Europe
                                                                            Japan
                  mpg
           9
                 15.0
                                              390.0
                                                            1.0
                                                                      0.0
                                                                              0.0
                                                      . . .
                                              360.0
           25
                 10.0
                                  8
                                                            1.0
                                                                      0.0
                                                                              0.0
           28
                  9.0
                                  8
                                              304.0
                                                            1.0
                                                                      0.0
                                                                              0.0
           31
                 25.0
                                  4
                                              113.0
                                                            0.0
                                                                      0.0
                                                                              1.0
           32
                 25.0
                                  4
                                               98.0
                                                            1.0
                                                                      0.0
                                                                              0.0
                                                      . . .
                  . . .
                                                            . . .
                                                                      . . .
                                                                              . . .
                                                . . .
           368
                 27.0
                                  4
                                              112.0
                                                            1.0
                                                                      0.0
                                                                              0.0
                                                      . . .
           370
                31.0
                                                                      0.0
                                                                              0.0
                                  4
                                              112.0
                                                            1.0
                                                      . . .
           382
                 34.0
                                  4
                                              108.0
                                                            0.0
                                                                      0.0
                                                                              1.0
           384
                 32.0
                                                                      0.0
                                                                              1.0
                                               91.0
                                                            0.0
           396
                 28.0
                                              120.0
                                                            1.0
                                                                      0.0
                                                                              0.0
           [80 rows x 11 columns]
```

visualize the data by using the seaborn's pair plot method:

Out[11]: <seaborn.axisgrid.PairGrid at 0x7f0dfcfc5750>

using bar plot

```
In [16]: pd.value_counts(dataset['cylinders']).plot.bar()
```

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0deb1efe90>

prediction using box plot

```
In [18]: sns.boxplot(x='cylinders',y='mpg',data=dataset)
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0deb049950>

A boxplot will help us better visualize what is happening with the data. Using seaborn's builtin boxplot method, I've made the plot below, which plots car origin against the mpgs of the individual cars:

Heat map

Now, separate the target values from the features in the dataset. This label is that feature that I will use to train the model to predict fuel efficiency:

```
In [19]: train_labels = train_dataset.pop('mpg')
          test labels = test dataset.pop('mpg')
          print(train labels)
          65
                 14.0
          132
                 25.0
          74
                 13.0
          78
                 21.0
          37
                 18.0
          207
                 20.0
          279
                 29.5
          227
                 19.0
          148
                 26.0
                 26.0
          143
         Name: mpg, Length: 318, dtype: float64
```

```
In [20]: print(test labels)
                 15.0
         25
                 10.0
                 9.0
         28
         31
                 25.0
         32
                25.0
                 . . .
         368
                27.0
         370
                31.0
         382
                34.0
         384
                32.0
         396
                28.0
         Name: mpg, Length: 80, dtype: float64
In [62]: train features = train dataset.copy()
         test_features = test_dataset.copy()
         train_labels = train_features.pop('cylinders')
         test labels = test_features.pop('cylinders')
```

overall statistics

```
In [21]: train_stats=train_dataset.describe()
    train_stats.pop("cylinders")
    train_stats=train_stats.transpose()
    train_stats
```

Out[21]:

	count	mean	std	min	25%	50 %	75%	max
displacement	318.0	193.061321	103.812742	70.0	100.25	151.0	259.50	455.0
weight	318.0	2963.823899	844.749805	1613.0	2219.25	2792.5	3571.25	5140.0
acceleration	318.0	15.595912	2.796282	8.0	13.90	15.5	17.30	24.8
model year	318.0	75.946541	3.705266	70.0	73.00	76.0	79.00	82.0
USA	318.0	0.641509	0.480313	0.0	0.00	1.0	1.00	1.0
Europe	318.0	0.163522	0.370424	0.0	0.00	0.0	0.00	1.0
Japan	318.0	0.194969	0.396801	0.0	0.00	0.0	0.00	1.0

Normalize The Data

```
In [22]: def norm(x):
    return (x - train_stats['mean']) / train_stats['std']
    normed_train_data = norm(train_dataset)
    normed_test_data = norm(test_dataset)
    normed_train_data
```

Out[22]:

	Europe	Japan	USA	acceleration	car name	cylinders	displacement	horsepo
65	-0.441445	-0.491351	0.746369	-0.928344	NaN	NaN	1.521380	
132	-0.441445	-0.491351	0.746369	0.502127	NaN	NaN	-0.511125	
74	-0.441445	-0.491351	0.746369	0.144509	NaN	NaN	1.049377	
78	2.258163	-0.491351	-1.335607	1.396171	NaN	NaN	-0.703780	
37	-0.441445	-0.491351	0.746369	-0.034300	NaN	NaN	0.375086	
•••								
207	2.258163	-0.491351	-1.335607	0.037224	NaN	NaN	-0.607453	
279	-0.441445	2.028805	-1.335607	0.359080	NaN	NaN	-0.915700	
227	-0.441445	-0.491351	0.746369	0.752459	NaN	NaN	0.307657	
148	2.258163	-0.491351	-1.335607	-0.570726	NaN	NaN	-0.742311	
143	2.258163	-0.491351	-1.335607	-0.391917	NaN	NaN	-0.925333	

318 rows × 10 columns

In [23]: normed_test_data

Out[23]:

	Europe	Japan	USA	acceleration	car name	cylinders	displacement	horsepo
9	-0.441445	-0.491351	0.746369	-2.537624	NaN	NaN	1.897057	
25	-0.441445	-0.491351	0.746369	-0.570726	NaN	NaN	1.608075	
28	-0.441445	-0.491351	0.746369	1.038553	NaN	NaN	1.068642	
31	-0.441445	2.028805	-1.335607	-0.570726	NaN	NaN	-0.771209	1
32	-0.441445	-0.491351	0.746369	1.217362	NaN	NaN	-0.915700	1
368	-0.441445	-0.491351	0.746369	1.074315	NaN	NaN	-0.780842	I
370	-0.441445	-0.491351	0.746369	0.216033	NaN	NaN	-0.780842	I
382	-0.441445	2.028805	-1.335607	0.466365	NaN	NaN	-0.819373	I
384	-0.441445	2.028805	-1.335607	0.037224	NaN	NaN	-0.983129	1
396	-0.441445	-0.491351	0.746369	1.074315	NaN	NaN	-0.703780	I

80 rows × 10 columns

In [64]: train_dataset.describe().transpose()[['mean', 'std']]

Out[64]:

	mean	std
cylinders	5.427673	1.682941
displacement	193.061321	103.812742
weight	2963.823899	844.749805
acceleration	15.595912	2.796282
model year	75.946541	3.705266
USA	0.641509	0.480313
Europe	0.163522	0.370424
Japan	0.194969	0.396801

Build The Model

```
In [43]:
         def build_model():
           model = keras.Sequential([
             layers.Dense(64, activation=tf.nn.relu, input shape=[len(train
         dataset.keys())]),
             layers.Dense(64, activation=tf.nn.relu),
             layers.Dense(1)
           ])
           optimizer = tf.keras.optimizers.RMSprop(0.001)
           model.compile(loss='mean squared error',
                         optimizer=optimizer,
                         metrics=['mean_absolute_error', 'mean_squared_error
         '])
           return model
         model = build model()
         model
```

Out[43]: <keras.engine.sequential.Sequential at 0x7f0d955370d0>

In [94]: model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 64)	704
dense_1 (Dense)	(None, 64)	4160
dense_2 (Dense)	(None, 1)	65

Total params: 4,929
Trainable params: 4,929
Non-trainable params: 0

During this notebook, we built a model that could reliably predict a car's mpg given some information about the car within 2.5 mpg of the actual value.

This model could be trained with newer car data and be used to predict competitor's future mpg ratings for upcoming cars, allowing companies to potentially resources currently used on R&D today on making more efficient, more popular vehicles that outshine competitors.

While our model may be inaccurate in some cases, we talked about how our dataset can contain inaccurate values for the mpg, and oftentimes, our predictions are more accurate than the values in the dataset.

For newer cars, the collected data is significantly more reliable, so our model will be able to perform better with a different, more accurate dataset.

If you want to optimize spending your resources and outshine the competition, Cocolevio's machine learning models can help you get the edge you need to succeed in your market.