Sidorenko Marc Note: 9/20 (score total : 9/20)

Nom et prénom, lisibles :

+212/1/12+

Identifiant (de haut en bas) :

QCM THLR 4

	STORENGO 00 01 18 2 03 04 05 06 07 08 09
	SINORENGO 00 1 2 03 04 05 06 07 08 09 Marc 01 02 03 04 05 06 07 08 09
2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. I'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +212/1/xx+···+212/2/xx+.
	Q.2 Le langage $\{a^n \mid \forall n \in \mathbb{N}\}$ est
-1/2	☐ fini 🔞 non reconnaissable par automate ☐ vide 🔀 rationnel
	Q.3 Le langage des nombres binaires premiers compris entre 0 et $2^{2^{2^2}} - 1$ est
0/2	 □ non reconnaissable par un automate fini à transitions spontanées □ non reconnaissable par un automate fini déterministe □ non reconnaissable par un automate fini nondéterministe ☑ rationnel
2/2	 Q.4 A propos du lemme de pompage Si un langage ne le vérifie pas, alors il n'est pas rationnel Si un langage le vérifie, alors il est rationnel Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel Q.5 Un automate fini qui a des transitions spontanées
-1/2	\square accepte $arepsilon$ est déterministe $\textcircled{8}$ n'accepte pas $arepsilon$ n'est pas déterministe
	Q.6 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:
-1/2	\square L_1, L_2 sont rationnels \square L_1 est rationnel \square L_2 est rationnel \square L_1, L_2 sont rationnels et $L_2 \subseteq L_1$
	Q.7 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):
2/2	$\frac{n(n+1)}{2}$ Il n'existe pas. 2^n $n+1$
	 Quelle séquence d'algorithmes teste l'appartenance d'un mot au langage d'une expression rationnelle? Thompson, déterminisation, élimination des transitions spontanées, évaluation.
2/2	 Thompson, élimination des transitions spontanées, déterminisation, minimisation, évaluation. Thompson, déterminisation, Brzozowski-McCluskey. Thompson, déterminimisation, évaluation.

2/2

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

Fin de l'épreuve.