Applied Machine Learning Lecture 13 Unsupervised Learning

Ekarat Rattagan, Ph.D.

(Clustering)

Slides adapted from Andrew NG

Supervised learning

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$

Unsupervised learning

Training set: $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$

Applications of clustering

Market segmentation

Organize computing clusters

Social network analysis

Astronomical data analysis

K-means algorithm

- The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance,
- Minimizing a criterion known as the inertia or within-cluster sum-of-squares (see below).
- This algorithm requires the number of clusters to be specified. The k-means algorithm divides a set of samples into disjoint clusters, each described by the mean of the samples in the cluster. The means are commonly called the cluster "centroids"; note that they are not, in general, points from , although they live in the same space.
- The K-means algorithm aims to choose centroids that minimise the inertia, or within-cluster sum-of-squares criterion:

K-means optimization objective

 $c^{(i)}$ = index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned

 $\mu_{{\scriptscriptstyle C}(i)}$ = cluster centroid of cluster to which example $x^{(i)}$ has been μ_k = cluster centroid k ($\mu_k \in \mathbb{R}^n$) assigned

Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{c^{(1)}, \dots, c^{(m)}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

$$\mu_1, \dots, \mu_K$$

K-means algorithm

Randomly initialize K cluster centroids $\mu_1,\mu_2,\dots,\mu_K\in\mathbb{R}^n$

```
= index (from 1 to K ) of cluster centroid closest to \boldsymbol{x}^{(i)}
                   for i = 1 to m c^{(i)} = index
Repeat {
```

for k = 1 to K

 μ_k := average (mean) of points assigned to cluster k

~

Limitation of K-Means

Limitation

1. Where to put initial centroids?

2. What is the right value of K?

Random initialization Centroids

The k-means++ algorithm

denote the shortest distance from a data point to the closest center we have already chosen. Then, We propose a specific way of choosing centers for the k-means algorithm. In particular, let D(x)we define the following algorithm, which we call k-means++.

1a. Take one center c_1 , chosen uniformly at random from \mathcal{X} .

(Assign probability to each x) 1b. Take a new center c_i , choosing $x \in \mathcal{X}$ with probability $\frac{D(x)^2}{\sum_{x \in \mathcal{X}} D(x)^2}$.

1c. Repeat Step 1b. until we have taken k centers altogether.

Arthur, David, and Sergei Vassilvitskii. "k-means++: The Advantages of Careful Seeding."

[(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3 Suppose we have the small dataset clusters.

We begin by randomly selecting (7,4) to be a cluster center.

		E				
prob	1	2/103 *	29/103	17/103	37/103	18/103
×	(7,4)	(8,3)	(6'9)	(3,3)	(1,3)	(10,1)

Suppose we have the small dataset [(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3

We add (1,3) to the list of cluster centers	ø	00 /	9	N 4	è	1 5	2
luster							
st of c							
the li							
1,3) to	prob	t	2/53	29/53	4/53	,	18/52
We add (×	(7,4)	(8,3)	(6'9)	(3,3)	(1,3)	(101)
We		ت	<u></u>	3	0		(1

[(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3 Suppose we have the small dataset clusters.

We add (5,9) to the list of cluster centers.

prob	1		1		1	
×	(7,4)	(8,3)	(2,9)	(3,3)	(1,3)	(10.1)

Choosing the number of clusters

What is the right value of K?

Choosing the value of K

Elbow method:

Choosing the value of K

Silhouette analysis:

$$s(i) = \begin{cases} 1 - \frac{a(i)}{b(i)} & \text{if } a(i) < b(i) \\ 0 & \text{if } a(i) = b(i) \\ \frac{b(i)}{a(i)} - 1 & \text{if } a(i) > b(i) \end{cases}$$

a(i) : the average distance between 'i' and all other data within the same cluster

b(i) : the lowest average distance of 'i' to all points in any other clusters, of which 'i' is not a member

This metric ranges from -1 to 1 for each observation in your data and can be interpreted as follows:

- Values close to 1 suggest that the observation is well matched to the assigned cluster
- Values close to 0 suggest that the observation is borderline matched between two clusters
- Values close to -1 suggest that the observations may be assigned to the wrong

Choosing the value of K Silhouette analysis:

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html