Digital Systems Design and Laboratory [14. Derivation of State Graphs and Tables]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw
CSIE Department

National Taiwan University
Spring 2019

Sequential Logic Design

- ☐ Unit 11: Latches and Flip-Flops
- ☐ Unit 12: Registers and Counters
- ☐ Units 13--15: Finite State Machines
- ☐ Unit 16: Summary
- ☐ Designing a sequential circuit
 - > Construct a state graph or state table (Unit 14)
 - Simplify it (Unit 15)
 - > Derive flip-flop input equations and output equations (Unit 12)

- **☐** Design of a Sequence Detector
- ☐ Guidelines for Construction of State Graphs
- ☐ Serial Data Code Conversion
- ☐ Alphanumeric State Graph Notation

"101" Detector (1/5)

- ☐ Output "1" if detecting "101"
- ☐ Example
 - > Input X 0011011001010100
 - > Output Z 00000<u>1</u>00000<u>1</u>00
- ☐ State graph (Mealy)
 - $ightharpoonup S_0$: initial, S_1 : get "1", S_2 : get "10"

"101" Detector (2/5)

☐ State table

Present	Next	State	Present Output			
State	X = 0	X = 1	X = 0	X = 1		
S ₀	S ₀	S ₁	0	0		
S_1	S ₂	S_1	0	0		
S ₂	S_0	S_1	0	1		

"101" Detector (3/5)

☐ State maps

					ABX	0	1	ABX	0	1	ABX	0	1
AB	A ⁺	B ⁺	4	Z	00	0	0	00	0		00	0	0
, , ,	X = 0	X = 1	X = 0	X = 1		3	3		J			- C	
00	00	01	0	0	01	1	0	01	0	1	01	0	0
01	10	01	0	0	\Rightarrow	1	U	OI	U	1	O1		U
10	00	01	0	1	11	X	X	11	X	X	11	X	X
11	XX	XX	Х	Χ	11		^	11	^	^	11		^
					10	0	0	10	0	1	10	0	1
						A+ =	X'B	•	B ⁺	= X	-	Z =	XA

"101" Detector (4/5)

☐ Realize it

$$A^+ = X'B$$

$$\triangleright$$
 B⁺ = X

$$\geq$$
 Z = XA

"101" Detector (5/5)

■ Some variants

- ➤ Moore machine?
 - One more state
- > "010" and "1001" detector
 - A more complicated machine

FIGURE 14-10

© Cengage Learning 2014

State	Sequence Ends in		
So	Reset		
S ₁	0 (but not 10)		
S_2	01		
S ₃	10		
S ₄	1 (but not 01)		
S ₅	100		

- ☐ Design of a Sequence Detector
- **☐** Guidelines for Construction of State Graphs
- ☐ Serial Data Code Conversion
- ☐ Alphanumeric State Graph Notation

Guidelines for Construction of State Graphs

☐ Steps

- > Construct sample sequences to help you understand the problem
- > Determine under what conditions it should reset
- ➤ If only one or two sequences leads to a nonzero output, construct a partial state graph
 - Another way, determine what sequences or groups of sequences must be remembered by the circuit and set up states accordingly
- ➤ Each time you add an arrow to the state graph, determine whether it can go to one of the previously defined states or whether a new state must added
- Check your graph to make sure there is one and only one path leaving each state for each combination of values of the input variables
- ➤ When your graph is complete, verify it by applying the input sequences formulated in step 1

- ☐ Design of a Sequence Detector
- ☐ Guidelines for Construction of State Graphs
- **☐** Serial Data Code Conversion
- ☐ Alphanumeric State Graph Notation

Serial Data Transmission

Mealy Machine

- Output depends on
 - Current state (synchronous)
 - Input (maybe asynchronous)
- ☐ State changes at a falling edge
- Fewer states

Moore Machine

- Output only depends on
 - Current state (synchronous)
- ☐ State changes at a falling edge
- ☐ More states (in general)
- ☐ 1 clock period delay

- ☐ Design of a Sequence Detector
- ☐ Guidelines for Construction of State Graphs
- ☐ Serial Data Code Conversion
- **□** Alphanumeric State Graph Notation

Alphanumeric State Graph Notation

- ☐ When a sequential circuit has several inputs, label the state graph arcs with <u>alphanumeric</u> input variable names instead of 0's and 1's
 - > Example
 - 2 inputs: F for "forward" and R for "reverse"

Completely Specified State Graph

Properties

- > OR together all input labels on arcs emanating from a state, the result can reduce to 1
 - Cover all conditions: F + F'R +F'R' = F + F' = 1
- > AND together any pair of input labels on arcs emanating from a state, the result can reduce to 0
 - Only one arc is valid: $F \cdot F'R = 0$, $F \cdot F'R' = 0$, $F'R \cdot F'R' = 0$

Q&A