21-740

Functional Analysis II

Spring 2013

Assignment 2

Due on Wednesday, October 9

* Please hand solutions to problems marked with an asterisk.

Throughout these problems X is a complex Hilbert space.

Definition: Let $A \in \mathcal{L}(X;X)$ be given. The set of all generalized eigenvalues of A is called the *approximate point spectrum* of A and is denoted by $\sigma_{ap}(A)$.

1.* Let $\{A_n\}_{n=1}^{\infty}$ be a sequence in $\mathcal{L}(X;X)$ such that $A_mA_n=A_nA_m$ for all $m,n\in\mathbb{N}$. Assume that

$$A_n^* = A_n, \quad A_n \leq A_{n+1} \leq I \quad \text{for all } n \in \mathbb{N}.$$

Show that there exists $L \in \mathcal{L}(X;X)$ with $L^* = L$ such $A_n \to L$ in the strong operator topology as $n \to \infty$. (Suggestion: Put $T_n = I - A_n$ and for m < n, look at $(T_m - T_n)T_m$ and $(T_m - T_n)T_n$. Then look at $||T_m x - T_n x||^2$.)

- 2.* Let $A, C \in \mathcal{L}(X; X)$ be given. Assume that $A^* = A$ and that $A \geq 0$. Show that there is exactly one $B \in \mathcal{L}(X; X)$ such that $B^* = B$, $B \geq 0$ and $B^2 = A$. Moreover, if AC = CA then BC = CB. (Suggestion: Assume first that $A \leq I$. Put $B_0 = 0$ and $B_{n+1} = B_n + \frac{1}{2}(A B_n^2)$ for $n = 0, 1, 2, \cdots$. Then apply your result to the operator $A/\|A\|$. It may prove useful to let D = I A and $F_n = I B_n$.)
 - 3. Let $T \in \mathcal{C}(X;X)$ be given. Show that there exist $A \in \mathcal{C}(X;X)$ and $U \in \mathcal{L}(X;X)$ such that $A^* = A, A \geq 0, U$ is unitary and T = AU = UA.
- 4.* Prove or Disprove: Let $\alpha \in (-1,1)$, and a sequence $\{x_n\}_{n=1}^{\infty}$ in X be given. Assume that

$$\forall m, n \in \mathbb{N}, \quad (x_m, x_n) = \begin{cases} 1 & \text{if } m = n \\ \alpha & \text{if } n \neq n. \end{cases}$$

Then $\{x_n\}_{n=1}^{\infty}$ is weakly convergent

5. Assume that $\mathbb{K} = \mathbb{C}$ and let $R, L \in \mathcal{L}(l^2; l^2)$ be the right and left shift operators, respectively. Find $\sigma(R)$ and $\sigma(L)$.

6.* Assume that $\mathbb{K} = \mathbb{C}$ and consider the operator $A \in \mathcal{L}(l^2; l^2)$ defined by

$$Ax = \left(x_1, \frac{x_2}{2}, \frac{x_3}{3}, \dots, \frac{x_k}{k} \dots\right)$$
 for all $x \in X$.

Put

$$L(\lambda) = A - \lambda I$$
 for all $\lambda \in \mathbb{R}$.

Describe explicitly the subspaces $\mathcal{N}(L(\lambda)^+)$ for $\lambda \in \mathbb{R}$.

- 7. Prove or Disprove: Let $A, B \in \mathcal{L}(X; X)$ be given. Assume that A-B is compact and let $\lambda \in \sigma(A) \setminus \sigma_p(A)$ be given. Then $\lambda \in \sigma(B)$.
- 8.* Let $\mathbb{K} = \mathbb{C}$ and $R \in \mathcal{L}(l^2; l^2)$ be the right shift operator. Does there exist a compact operator $T \in \mathcal{C}(X; X)$ such that R + T is normal? Explain.
- 9. Let $A, B \in \mathcal{L}(X; X)$ be given. What is the relationship between $\sigma(AB)$ and $\sigma(BA)$? Explain.
- 10. Prove or Disprove: Let $A \in \mathcal{L}(X;X)$ be given. Then $\sigma_{ap}(A)$ is closed.
- 11.* Prove or Disprove: Let $A \in \mathcal{L}(X;X)$ be given. Then

$$\operatorname{bdry}(\sigma(A) \subset \sigma_{ap}(A).$$