Spatii vectoriale. Bore. Suluspatii vectoriale. Subspatii afine.

O multime muida V se mumorte apatici vectorial peste K (cop camutatiu) dacă există l'operatii/legi de camponiție; una internă +: V xV -> V si una externa " K xV -> V , cu womatoarele proprietati: 1) (1,+) grup alulian a) d(x+y) = (ax+dy) , + d, ek sitx, yeV

3) (d+B) x = dx+Bx +d, BEK & +xEV

4) (dB)x = d(BX) & dpEK & ** *xEV

5) 3 dementul mubeu în V o a.î x+o=0+x. 4xeV

6) I·x = x +x EV

O submultime W a spatialui rectorial V peste K (corp comulati) se numerte sulspatie rectarial daca impressona en adunarea si commultirea rectorilar (cu scalari), capatà a structura de spații redorial. Submullimea XV e subspații red al lui V dacă ûn depliniște womătoarele proprietăli:

1) Yx, y & W, a wern x+y & W

2) Yx, & W & dek , anom dx EW

Daça V este spații redorial și V,, Vz sunt subspații rectoriale ale lui V, atunci: 13 VINV2 subspații vectorial al lui V 2) V,+V2 = {x+y | x eV, , y eV2 } subspatie al lui V

Exemple: 1) dumanstraim (a)
$$(IR^2/R)^2$$
, on the spatial vectorial

 $+: IR^2 \times IR^2 \rightarrow IR^2$, unde $(IR^2, +)$ grap comutation

 $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$
 $O_{R^2} = (o_1 o)$
 $-i(x_1, x_2) = (-x_1, -x_2)$, $-i \in IR$

• $: IR^2 \times IR \rightarrow IR^2$, unde $(IR, +, \cdot)$ coarp comutation

 $d(x_1, x_2) = (dx_1, dx_2)$, \forall de IR so $(x_1, x_2) \in IR^2$

Im comolutie > $(IR^2/IR)^2$, onte spatial vectorial

2) Fix $V = S(x_1y_1) \in IR^2 \setminus x = y_1 S$, $Este$ V subspatial alluige?

The $u, v \in V \mid = \lambda u + \beta v \in V$
 $u = (x_1, y_1) \in V = (x_2, y_2)$
 $du = (x_1, y_1) \in V = (x_2, y_2)$
 $du = (x_1, y_1) + \beta(x_2, y_2) = dx_1 + \beta x_2 + dy_1 + \beta y_2$
 $= x + y_1$
 $x - y_1 = dx_1 + \beta x_2 - dy_1 - \beta y_2 = d(x_1 - y_1) + \beta(x_2 - y_2) = dx_1$
 $= 0 \in V$

Deci, V este subspatiu vedorial al lui 122

Se mum este subspații ofim subsolul unui spații afin peste K (cop comutatui), $A = (X, \overline{X}', \Phi)$ gormat din $X = mulțime mudo <math>\overline{X}' = \text{spații vectoriol peste } K$ si suncția $\phi: X \times X \to \overline{X}'$ cu proprii-tățile: 1) $\exists 0 \in X$ a.î. $\Phi_0: X \to \overline{X}'$, $\Phi_0(A) = \phi(0, A)$ este bijectivă $\Psi \in X$

2) \$ (A,B) + \$ (B,C) = \$ (A,C) , \$ A,B,C &X

Exemples: ecuation ale subspatialer afine ûn A'

ecuation communice: $\frac{x^{1}-2}{3} = \frac{x^{2}+1}{-8} = \frac{x^{3}+3}{5} = \frac{x^{4}+6}{-2}$

ecualii paramuteice:
$$x' = 2+3t$$
, $t \in \mathbb{R}$

$$x^2 = -1-8t$$

$$x^3 = -3+6t$$

$$x^4 = 6-2t$$

unde droopte d=A+ [a] ,A=(2,-1,-3,6) & a=(3,-8,5,-2)

Fie V un patri vedorial peste K (corp comutation) si submullime S = S 11, 12, ... Vm } a lui V:

- 1) daca 3 = sistem limiar imdependent => tues, uxov
- 2) dace S= sintern linion dependent => 45° ev en SeS' 3'= sint. lin. dep.

Submuldimea 8 a spatiului redordal V este:

- 1) sintem liniar independent doea, din Septer ca $d_1 v_1 + d_2 v_2 + \cdots + d_m v_m = 6v$ = $d_1 = d_2 = \cdots = d_m = 0$
- 2) sistem limiar dependent daca 3 dudendent mu tot menulu > divi+ 22/2+... +dmvm = Ov

Sulemultimea B a spatialui vectorial V perte K (corp camutatie) se numerte bora daca B este nistern liniar independent si este sintem de genuratori pentru V.

Tearerma: Oxice spatii redorial admite a bara

B = sint. limiar, indep.

Presupumerm ea
$$d_1V_1 + d_2V_2 + d_3V_3 = 0$$

 $(-d_1, d_{11}0) + (d_{21}0, d_2) + (2d_3, d_3, d_3) = 0$

$$=(-d_1+d_2+2d_3,d_1+d_3,d_2+d_3)=(0,0,0)=$$

=>
$$\begin{cases} -d_1 + d_2 + 2d_3 = 0 \\ d_1 + d_3 = 0 \end{cases}$$

 $\begin{cases} d_2 + d_3 = 0 \end{cases}$
=> $\begin{cases} (0,0,0) \text{ solution unlead} = > \end{cases}$
=> $\begin{cases} B = \text{sint. lim. inolep.} \end{cases}$

Matricea de trecere de la 0 boza la alla:

$$\int_{C} \int_{C} \left(\frac{1}{2} + \frac{1}{2} +$$

· Screem B C B', un de C= matricea de trecero de la BeaB?

$$C = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{14n} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ a_{31} & a_{32} & \cdots & a_{3m} \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{pmatrix} \in \mathcal{U}_m(K)$$

wation: $C = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{14n} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{pmatrix}$

·Observatio: B C B' => B' C-1 B

Fie V um K-spatiu rectarial si JeV subspatur. Spurem ea g este un sistem de generatorie pentre V dacă < 9> = V.

Dace 9= {v1,v2,...vm}eV mind. gem, <=> \text{VeV} = 3 d1,d2,...dmeV 0 $\sqrt{}$ $V = d_1V_1 + d_2V_2 + ... + d_mV_m$.

Spunerm ea V este spațiii vectoriial finit general dacă 3 01, 02,... .. om ∈ V a. ?. V = < 01,00,... om>

Exemplu: 1) IR [x] mu e finit generat 2) Km fimit generat, unde K = 1R sau C