

Submersible Pressure Transducer

Installation and Operation Manual

Table of Contents

SECTION 1: SYSTEM DESCRIPTION	3
SECTION 2: SYSTEM INSTALLATION	10
SECTION 3: SYSTEM OPERATION	16
SECTION 4: SYSTEM MAINTENANCE	16
SECTION 5: SYSTEM TROUBLESHOOTING	17
SECTION 6: SYSTEM SPECIFICATIONS	18
SECTION 7: PROBE PAL	20
SECTION 8: REPLACEMENT PARTS LIST	23
APPENDIX A – PRESSURE CONVERSION CHART	23
THE WARRANTY	25

DOCUMENTATION CONVENTIONS

This document uses the following conventions to present information:

An exclamation point icon indicates a **WARNING** of a situation or condition that could lead to personal injury or death. You should not proceed until you read and thoroughly understand the **WARNING** message.

A raised hand icon indicates **CAUTION** information that relates to a situation or condition that could lead to equipment malfunction or damage. You should not proceed until you read and thoroughly understand the **CAUTION** message.

A note icon indicates **NOTE** information. Notes provide additional or supplementary information about an activity or concept.

Section 1: System Description

Function and Theory

Geotech's Submersible Pressure Transducer (Transducer) incorporates the latest technological advancements in piezoresistive sensing and control. Geotech offers a variety of transducers including, gas, vacuum, sealed gauge and absolute models.

The transducer contains a laser trimmed, temperature-compensated, pressure sensing element, providing continuous hydrostatic level measurement in non-pressurized or pressurized liquid environments. It is suitable for all liquids compatible with 316 stainless steel and is designed for ruggedness and long life in the harshest environments.

Geotech's state of the art electronics provide a 4-20 mA output signal. A 1-5 VDC output process signal can easily be generated by adding a 250Ω local resistor across the output (see Section 2, Figure 2-3).

Lightning and surge protection features for transducers are optional. Protection is achieved through the use of 2 protectors; one integral to the transducer housing and one provided for the outside line located at the surface and grounded to a good earth ground. This option must be selected and installed at the time of order placement and is not available as a factory upgrade.

Featuring quick response and low clamping voltages, these devices protect against fast rising voltage transients as well as severe current surges associated with lightning discharges up to 20,000 amperes. Following a surge, the protector automatically restores the line to normal operation and awaits the next surge without having to reset a breaker or replace a fuse. Location and system operating budget should be considered when ordering should this protection option be necessary.

Transducers installed with this option have a lifetime warranty against damage due to voltage surge when this 2-part option is properly installed.

When using the lightning protection option on 4-20 mA products, users should take into account the additional series resistance of this option when selecting the loop power supply. This option will increase total loop resistance by 88 Ohms.

A note on accuracy

Adding it all up: When figuring how accurate system pressure and level measurements are, all sources of error must be considered. Along with consideration of type of sensor used (e.g. Absolute, Sealed Gauge or Vented Gauge) and nominal sensor error (see Section 6, System Specifications). One must also account for measurement device accuracy.

For example: Many common PLC devices offer a nominal ±0.5% measurement accuracy on analog input lines. This may or may not account for losses due to analog to digital conversion. Be sure to consider all sources of error in your analysis.

Accuracy calculations can be especially important when using pressure sensors for pump control. Be sure to account for a worst case scenario when placing a sensor in a water column and programming on/off set points to prevent running a pump dry or over filling a receiving tank.

Fluid density must also be considered in fluid level measurement. For example: fresh groundwater is less dense than brackish water which is less dense than heavily saturated sea water. The same level of seawater will register more pressure on a sensor than fresh water.

Vented Gauge Sensor Application Description

Vented Gauge Sensors are well suited for all pressure range measurements. However, cable length and vent line maintenance become problematic at 500 feet (152 m). For this reason, it is recommended the Vented Gauge Sensor be employed in applications requiring less than 200 psi (13.8 bar) nominal (or less than 500 feet (152 m) of vented tubing cable).

Figure 1-1

When installing a pumping system and transducer with vented cable down well, the cable should be secured to the discharge pipe at 10 ft (3 m) to 25 ft (7.6 m) increments. In deep trench or mine shaft applications of over 100 ft (30 m), vertical auxiliary strain relief cable may be required.

Desiccant replacement frequency is site dependent. Regional humidity levels and cable length will determine desiccant replacement frequency. Higher humidity and longer cable lengths will require more frequent desiccant replacement. Damp well head vaults can also increase desiccant replacement frequency.

Bellows are a maintenancefree alternative to the desiccant pack on a vented Transducer. Ask your Geotech Sales Representative for more information.

Example of Desiccant Pack installed on Vented Transducer cable.

The cartridge will have to be field replaced as site environment requires.

Example of maintenancefree Bellows installed on Vented Transducer cable.

The Bellow fluctuates with atmospheric pressure, but is environmentally sealed.

Absolute Pressure Application Description

Absolute Pressure Sensors are best suited for use in systems where atmospheric pressure variation is known and accounted for. Absolute Pressure Sensors can be used as atmospheric pressure sensors for compensating local fluid level measurements 30 psi (2 bar) absolute and above. For example:

Sensor 1 measures pressure of fluid column AND gas pressure above fluid level. Sensor 2 measures pressure of gas pressure only. To obtain fluid level only: Sensor 1 – Sensor 2 = fluid level only.

Example:

Sensor 1 measures 30 psi and Sensor 2 measures 14 psi.

30 - 14 = 16 psi. 16 psi x 2.31 = 36.96 feet of water.

(Use the psi to feet of water conversion chart found in Appendix A)

Figure 1-2

Sensor 2 can be used to compensate for variations in atmospheric pressure AND variation in well casing gas pressure in sealed systems (e.g. methane extraction well casing pressure).

Systems utilizing Absolute Pressure Sensors without accounting for atmospheric or well casing pressure fluctuations are inaccurate by:

Pressure fluctuation/ full scale range x 100 = % error.

Sealed Gauge Sensor Application Description

Sealed Gauge Sensors are best suited for applications measuring 200 PSI and higher. Sealed Gauge Sensors do not compensate for changes in local atmospheric pressure. They are calibrated to a nominal atmospheric pressure at sea level or 14.696 PSI (see conversion chart for reference to other pressure units).

In applications requiring less than 200 psi (13.8 bar), a local barometric pressure sensor (an Absolute Pressure Sensor) will be required to correct for variations. However, it is recommended that in this case Absolute Pressure Sensors be deployed. See Absolute Pressure Sensor application description for details.

Example:

Figure 1-3

Sensor 1 measures both the fluid level and the atmospheric pressure. However when atmospheric pressure varies it is insignificant to the total measurement. Application requirements may vary. Atmospheric compensation may be required per system requirements.

System Components

Figure 1-4 – Transducer (without Surge Suppressor)

Section 2: System Installation

Geotech's Submersible Pressure Transducer is compatible with all controllers having a 4-20 mA or 1-5 VDC input, providing the controller supply voltage is adequate. See Section 6, System Specifications (Supply Voltage). The required range is 12-36 VDC. If using less than 24V and a sense resistor, then use the chart found in Figure 7-2 to verify the voltage is adequate for the cable length and sense resistance. Check the operations manual for the specific controller being used.

In the event the controller being used does not have adequate voltage for the signal output, see Section 7 on the PROBE PAL signal enhancer (Figures 2-4 and 7-1 shows wire colors and function).

System integrators utilizing isolated power supplies must consider leakage current through the isolated circuit. Systems utilizing isolated power supplies are susceptible to measurement errors when isolation protection circuits are compromised by transient surges. Surge protection on sensor lines is highly recommended in this case.

Prior to installation, it is recommended that a pre-installation test be conducted. See Figure 2-1.

See Figures 2-2 and 2-3 for installation of Geotech's Submersible Pressure Transducer.

Always consult owners/installation manual on any electronic equipment before installing aftermarket OEM components.

Pre-Installation Test

TO TEST A PRESSURE TRANSDUCER:

Figure 2-1 – Pre-installation test

Figure 2-2 – Transducer connection to controller with 4-20 mA inputs.

Figure 2-3 – Transducer connection to controller with 1-5 VDC input.

Figure 2-4

Gas Sensor

Geotech strongly recommends that the sensor not be installed with the threads in the upward position. Doing so allows condensation to collect inside the body, allowing the possibility of freezing in cold weather. Figure 2-5 shows an example of proper sensor

Figure 2-5 – Gas sensor orientation

Section 3: System Operation

The Geotech Pressure Transducer consists of a sensing element and signal conditioning electronics enclosed in a stainless steel housing that is .72 inches (18 mm) in diameter. Pressure is sensed by a stainless steel diaphragm causing a full bridge strain gauge to be deformed. This deformation generates an electrical signal which is amplified by the signal conditioning electronics and converted to a 4-20 mA output signal.

Sensor cable length needs to be specified at the time of order. Refer to Figure 7-2 to check the required supply voltage for given cable length. If voltage used is below indicated supply requirement, sensor operation will be unreliable.

Cable lengths may be shortened in the field but they cannot be lengthened by splicing. Geotech does not encourage or support spliced transducer cable for any reason.

Section 4: System Maintenance

As with any electronic equipment some regular maintenance may be required. With Geotech's Submersible Pressure Transducer, regular maintenance has been reduced to simply checking the end cap for clogging or obstructions and cleaning as necessary.

The desiccant packs on vent tube lines for gauge type sensors must be replaced periodically. Frequency will depend on environmental conditions specific to your site. If the desiccants are pink, then they must be replaced to avoid reading inaccuracies and eventual sensor damage. Once moisture collects inside the vent tube it cannot be removed and the sensor must be replaced.

Section 5: System Troubleshooting

Problem: Sensor not outputting any current.

Solutions:

- No supply voltage.
- Sensor wired backwards.
- Blown fuse on power supply.
- Broken sensor wire.

Problem: Sensor outputting wrong current.

Solutions:

- Check pressure with independent meter.
- Shield not properly connected to good ground.
- Cable cut or scraped allowing water into cable.

Problem: Sensor output is "noisy".

Solution:

Shield is broken or improperly connected.

Section 6: System Specifications (Pressure Transducer)

Maximum ratings

Supply voltage 12-36 VDC Supply current 25 mA

Maximum pressure As specified PSI absolute, Sealed

Gauge, or Gauge

Pressure 4-20 mA Output 1-5 VDC

Performance

Performance		
Pressure Ranges	(psi)	(bar)
	0-15	0-1
	0-30	0-2
	0-50	0-3.5
	0-100	0-7
	0-150	0-10
	0-200	0-14
	0-350	0-25
	0-500	0-35
	0-1000	0-70
	0-1500	0-100
Accuracy *	0.25	% of full scale
	0.1	% of full scale available
Non-linearity	0.07	% of full scale
Repeatability	0.015	% of full scale
Pressure hysteresis	0.010	% of full scale
Zero error	±0.1	% of full scale
Span error	±0.1	% of full scale
Compensated temperature Range	-4 to 185° F (-20° to 85°C)	
Operating temperature Range	-40 to 25	57° F (-40 to 125°C)
Response time	2 millise	conds

Physical

Life

Sensor length 7.7" (19.6 cm)

8.6" (21.8 cm) w/ Surge Suppressor opt.

Sensor diameter.72" (1.8 cm)Sensor weight4.3 oz. (122 g)Proof pressure3x psi/barBurst Pressure5x psi/bar

Media compatibility Liquids or gasses compatible with

316 stainless steel

1 million pressure cycles

Probe is protected from reverse polarity supply connection.

^{*}Accuracy of the system is highly dependent on the device being used to take the measurement.

System Specifications (Cable)

Jacket Yellow Polyurethane
Diameter .25" +.010"/-.010"

(6.35 mm +.25 mm/-.25 mm)

Conductors 2-24 AWG 7/32 tinned copper Red – White

Drain 24 AWG 7/32 tinned copper bare Insulation Polyolefin .012" Nom. Wall (.3 mm)

Vent Tube Nylon 6/6 Vent tube

Inner Shield Aluminum/Polyester Tape Wrap

Outer Shield 38 AWG Tinned Copper Spiral, 95% coverage

Jacket Yellow Tefzel
Diameter .25" +.010"/-.010"

(6.35 mm +.25 mm/-.25 mm)

Conductors 2-24 AWG 7/32 tinned copper Red – White

Drain 24 AWG 7/32 tinned copper bare Insulation Polyolefin .012" Nom. Wall (.3 mm)

Vent Tube Nylon 6/6 Vent tube

Inner Shield Aluminum/Polyester Tape Wrap

Outer Shield 38 AWG Tinned Copper Spiral, 95% coverage

Jacket Blue Polyurethane Diameter .25" +.010"/-.010"

(6.35 mm + .25 mm/-.25 mm)

Conductors 2-24 AWG 7/32 tinned copper Red – White

Drain 24 AWG 7/32 tinned copper bare Insulation Polyolefin .012" Nom. Wall (.3 mm)

Vent Tube Nylon 6/6 Vent tube

Inner Shield Aluminum/Polyester Tape Wrap

Outer Shield 38 AWG Tinned Copper Spiral, 95% coverage

Jacket Blue modified PVC blend Diameter .375" +.015"/-.015"

(9.5 mm +.4 mm/-.4 mm)

(9.5 mm +.4 mm/-.4 mm)

Conductors 2-18 AWG 16/30 tinned copper Red – White

Drain 24 AWG 16/30 tinned copper bare Insulation Polyolefin .030" Nom. Wall (.76 mm) Aluminum/Polyester Tape Wrap

Section 7: PROBE PAL

Function and Theory

Geotech PROBE PAL Signal Enhancer

The Geotech PROBE PAL is an accessory that has been designed to enhance the 4-20 mA signal from sensors with long cable lengths, or that operate in "noisy" conditions. A reverse voltage protection circuit has been incorporated into the PROBE PAL. An example of the PROBE PAL can be seen in Figure 7-1.

Consult your operation/installation manual for the specific controller being used.

Figure 7-1

Installation and Operation

PROBE PAL Connection:

RED To control or sensor power supply (+).

BLACK To control or sensor supply (-) or common.

WHITE 4-20mA loop signal return from sensor (-).

BROWN PROBE PAL voltage output to sensor (+).

WHITE 4-20mA loop signal to control input sense.

Connection:

Connect 4-20mA loop signal wire to one white wire on the PROBE PAL.

2. Connect other white wire to 4-20mA input on control.

3. Connect PROBE PAL black wire to current loop sensor supply common.

Place PROBE PAL near controller for optimal results.

For proper system operation, connect sensor drain wires to system chassis ground near controller or to a suitable ground lug. Make certain system wiring is in accordance with all local codes.

PROBE PAL Specifications

Maximum ratings

Output power 375 mW Input power max 1 W Filter capacitance 0.01 uF

Environmental

Ambient operating temperature $-40 - 140^{\circ} \text{ F } (-40 - 60^{\circ} \text{ C})$ Storage temperature $-67 - 212^{\circ} \text{ F } (-55 - 100^{\circ} \text{ C})$

Humidity 5% to 95% Relative NC

Physical size 2 x 2 x ¾ inches (5 cm x 5 cm x 1.9 cm)

Weight 8oz. (.23 kg)

Figure 7-2

Section 8: Replacement Parts List

Parts Description	Parts List
CAP,DELRIN,BOTTOM,TRANSDUCER	22050018
DESICCANT KIT, TRANSDUCERS	82050128
BELLOWS KIT, TRANSDUCERS	82050129
SURGE SUPPRESSOR,PRES TRANS,UW UPWELL	82050113
PROBE PAL, SIGNAL BOOSTER WITH NOISE FILTER	82050039
MANUAL.PRESSURE TRANSDUCER	12050178

Contact Geotech for specific pressure ranges and cable lengths.

Appendix A – Pressure Conversion Chart

	PSI	Inches of Water (In. H2O) 4°C	Feet of Water (Ft. H2O) 4°C	bar (bar)	Atmosphere (atm)
1 PSI	1	27.68	2.31	68.95 x 10 ⁻³	68.05 x 10 ^{−3}
1 Inches of Water (In. H2O) 4°C	27.68	1	1/12	2.49 x 10 ⁻³	2.46 x 10 ⁻³
1 Feet of Water (Ft. H2O) 4°C	.434	12	1	29.9 x 10⁻³	29.5 x 10 ⁻³
1 bar (bar)	14.50	401.46	33.46	1	.987
1 Atmosphere (atm)	14.696	406.8	33.90	1.01325	1

DOCUMENT REVISIONS				
EDCF#	DESCRIPTION	REV/DATE		
-	Previous Release, SP	03/04/2013		
Project	Edited specifications to reflect small addition to overall length, SP	04/15/2014		
Project	Added Bellows Kit option for vented cable transducers, SP	07/09/2014		
Project	Accuracy in Section 6: 0.25% of full scale, 0.1% of full scale available, SP	11/4/2014		

The Warranty

For a period of one (1) year from date of first sale, product is warranted to be free from defects in materials and workmanship. Geotech agrees to repair or replace, at Geotech's option, the portion proving defective, or at our option to refund the purchase price thereof. Geotech will have no warranty obligation if the product is subjected to abnormal operating conditions, accident, abuse, misuse, unauthorized modification, alteration, repair, or replacement of wear parts. User assumes all other risk, if any, including the risk of injury, loss, or damage, direct or consequential, arising out of the use, misuse, or inability to use this product. User agrees to use, maintain and install product in accordance with recommendations and instructions. User is responsible for transportation charges connected to the repair or replacement of product under this warranty.

Equipment Return Policy

A Return Material Authorization number (RMA #) is required prior to return of any equipment to our facilities, please call our 800 number for appropriate location. An RMA # will be issued upon receipt of your request to return equipment, which should include reasons for the return. Your return shipment to us must have this RMA # clearly marked on the outside of the package. Proof of date of purchase is required for processing of all warranty requests.

This policy applies to both equipment sales and repair orders.

FOR A RETURN MATERIAL AUTHORIZATION, PLEASE CALL OUR SERVICE DEPARTMENT AT 1-800-833-7958.

Model Number:	
Serial Number:	
Date of Purchase:	

Equipment Decontamination

Prior to return, all equipment must be thoroughly cleaned and decontaminated. Please make note on RMA form, the use of equipment, contaminants equipment was exposed to, and decontamination solutions/methods used. Geotech reserves the right to refuse any equipment not properly decontaminated. Geotech may also choose to decontaminate the equipment for a fee, which will be applied to the repair order invoice.