STUDY OF SINGLE-PHASE AND THREE PHASE INVERTERS AND THEIR MODULTION TECHNIQUES

Single Phase Voltage Source Inverter:

Circuit diagram:

Various Modulation schemes:

A. SQUARE WAVE MODULATION:

B. QUASI SQUARE WAVE MODULATION:

The output voltage can be calculated as

$$v_0 = \sum_{n=1,3,5...}^{\infty} \frac{4V_s}{n\pi} * \sin \frac{n\pi}{2} * \sin nd * \sin nwt$$

Now, if "2d" is made equal to π , then the peak value of the fundamental output voltage can be written as

$$v_{01m} = \frac{4V_s}{\pi}$$

For other values $2d < \pi$,

$$v_{01m} = \frac{4V_s}{\pi} * \sin d$$

The phase shift between the two modulating signals can be calculated as:

$$\alpha = \frac{2\pi t}{T} radians$$

C. UNIPOLAR MODULATION SCHEME:

D. BIPOLAR MODULATION SCHEME:

Three Phase Voltage Source Inverter:

Circuit diagram:

SPWM Modulation scheme:

Switches in the same leg will have complementary switching pulses.

Analog scheme for SPWM implementation:

Advantages of SPWM compared to 180-degree mode of operation:

- The output voltage control can be obtained without addition of any external components.
- Minimizes the lower order harmonics, while the higher order harmonics can be eliminated using a filter.
- Easy to implement and control.
- Compatible with today's digital microprocessors.
- Allows linear amplitude control of the output voltage/current.
- Lower switching losses.
- Lower power dissipation and better utilization of DC power supply.

Filter selection for single phase off grid inverter:

$$\Delta i_{pp} = \frac{D \times T_{s} \times (V_{DC} - V_{out})}{L_{f}}$$

$$\Delta i_{pp} = \frac{V_{DC} \times T_{s} \times m_{a} \times sin(\omega t) \times (1 - m_{a} sin(\omega t))}{L_{f}}$$

The ripple will be maximum at $Sin(wt) = \frac{1}{2*m_a}$

The L can be calculated as

$$\Delta i_{pp} \Big|_{max} = \frac{V_{DC} \times T_{s}}{4 \times L_{f}}$$
$$L_{f} = \frac{V_{DC}}{4 \times F_{sw} \times \Delta i_{pp}} \Big|_{max}$$

The filter capacitance can be calculated considering the cut-off frequency of the filter is at max 1/10th of the switching frequency

$$F_{\text{cut-off}} = \frac{1}{2 \pi \sqrt{L_f C_f}}$$

$$C_f = \frac{1}{Lf (2\pi F_{\text{cut-off}})^2}$$

Loss calculation for single phase Inverter:

$$D_{S1} = \frac{1}{2} + \frac{\text{Ma Sin } \omega t}{2}$$

$$D_{S4} = D_{S3} = (1 - DS_{1})$$

$$D_{S3} = \frac{1}{2} - \frac{\text{Ma Sin } \omega t}{2}$$

> The average currents for the switches and diodes can be calculated as

•
$$Is1(avg) = \frac{1}{2\pi} \int_0^{\pi} (iL * Ds1) d\theta$$

$$D_{S4} = 1 - D_{S1} = \frac{1}{2} - \frac{\text{Ma Sin } \omega t}{2}$$

•
$$Is1(avg) = \frac{1}{2\pi} \int_0^{\pi} (Im \sin(\omega t - \Phi) * (\frac{1}{2} (1 + Ma \sin \omega t)) d\theta$$

•
$$Is1(avg) = Im(\frac{1}{2\pi} + \frac{\mathsf{Ma}\; cos\Phi}{8})$$
 • $I_{D4}(avg) = Im(\frac{1}{2\pi} - \frac{\mathsf{Ma}\; cos\Phi}{8})$

> Similarly, the rms current expression for the switches and diodes can be written as:

•
$$Is1(RMS) = \sqrt{\frac{1}{2\pi}} \int_0^{\pi} (iL^2 * Ds1) d\Theta$$

• $Is1(RMS) = Im \sqrt{\frac{1}{8} + \frac{\mathsf{Ma} \; cos\Phi}{3\pi}}$

> The total conduction loss can be calculated as

•
$$P_{s1}$$
-cond = $\{Vs1_{drop} * Is1(avg)\} + \{Rs_{1_{*}} Is1(RMS)^{2}\}$

•
$$P_{D4}=cond = \{V_{D4 \text{ drop}} * ID_4(avg)\} + \{RD_{4} * ID_4(RMS)^2\}$$

- Total loss
- P_tot_cond= 4 (P_{s1 cond} +P_{d4 cond})

The concept of Dead Time:

- ➤ To avoid the simultaneous conduction of the switches of the same leg of the inverter a small amount of Dead Time is important.
- > This can be achieved by shifting the carrier signal by a small dc value as shown in fig below:

