

## PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE COMPUTAÇÃO COMPUTAÇÃO GRÁFICA CMP 1170 – 2019/1 PROF. MSC. GUSTAVO VINHAL

# Aula 14 Realismo Visual e Iluminação (Continuação)



## Iluminação

- Iluminação é um aspecto fundamental em qualquer composição.
  - Responsável por permitir a visualização e realismo de cenas e objetos.
- Luz é uma forma de radiação eletromagnética que se desloca em linha reta, transportada por uma onda que determina suas características físicas pelo comprimento de onda e frequência.
- Características:
  - Emissores;
  - Refletores;
  - Refração;
  - Transparência;

# PUC goiás

## **Emissores**

- São fontes de luz (lâmpadas, velas, fogo, sol, estrelas, etc);
- São caracterizados pelas intensidades e comprimento de onda;
- Podem ser subdivididos em:
  - Emissores naturais;
  - Luz ambiente;
  - Emissores de Luz Artificiais.

## **Emissores**



## **Emissores naturais**

- Simulam a emissão de iluminação presentes na natureza: sol e lua;
- Esse tipo de iluminação é direcional;
- A iluminação pode gerar diferentes valores de RGB para simular diferentes horas do dia (céu claro, RGB(250, 255, 175));

## **Emissores**



## **Luz Ambiente**

- Neste tipo de iluminação, a luz não tem uma direção possível de ser observada (não possui uma fonte de luz);
  - A iluminação vem da reflexão da luz em muitas superfícies difusas;

## **Emissores**



## **Emissores de Luz Artificial**

- São todas aqueles que emitem luzes que não são naturais;
- Podem-se citar:
  - Luzes Fotométricas;
  - Luz Omni;
  - · Luz Direcional;
  - Refletores.

## **Emissores**

# PUC goiás

## **Emissores de Luz Artificial – Luzes Fotométricas**

- A iluminação depende diretamente da intensidade de energia da fonte;
- A fonte de energia pode ser direcionada para um ponto. Pode ser representada nas formas:
  - Pontual (uma única lâmpada);
  - Linear (lâmpadas com determinado comprimento – fluorescentes);
  - Áreas iluminadas (painéis luminosos).
- A intensidade de iluminação é medida pela quantidade de Lumens.



## **Emissores**

# PUC goiás

## **Emissores de Luz Artificial – Luz Omni**

 Neste tipo de luz, os raios luminosos são espalhados em todas as direções.





## **Emissores**



## Emissores de Luz Artificial – Luz Direcional (*Direct light*)

- Os raios luminosos são direcionais (direção única) e paralelos.
- São utilizados para simular a luz solar.





## **Emissores**

## Emissores de Luz Artificial – Luz Refletora (Spot light)

Os raios luminosos são direcionais (direção única), porém não são paralelos.

 São utilizados para simular a luz de lanterna, farol, etc.







## Refletores

- Objetos não emitem luz própria: eles refletem a radiação neles incidente em diferentes comprimento de onda.
  - A reflexão se deve pela interação molecular entre a radiação incidente e o material que compõe a superfície do objeto.
- Podem ser subdivididos em:
  - Reflexão Ambiente;
  - Reflexão Difusa;
  - Reflexão Especular;

## Refletores

## Reflexão Ambiente

- Nessa reflexão a superfície do objeto reflete a luz (difusa e não direcional) igualmente em todas as direções.
  - Em ambientes reais, há superfícies que não são iluminadas diretamente mas também não são completamente escuras.



## Refletores

## PUC goiás

## Reflexão Difusa

 Nessa reflexão a quantidade de luz refletida e percebida pelo olho humano não depende da posição do observador.



- A luz refletida depende do ângulo da luz incidente.
  - Agora, é possível perceber as diferentes intensidades de luz incidentes.





## Refletores

# PUC goiás

## Reflexão Especular

- Nessa reflexão é considerada o brilho (highlight) que as superfícies possuem em determinados ângulos de observação.
- O fóton não interage com os pigmentos da superfície deixando a cor da luz refletida igual a cor original da luz incidente.
  - Basicamente, determinados pontos da superfície atuam como um espelho refletindo a luz incidente.





# PUC GOIÁS

## Refração

- Nem todo objeto absorve complemente a luz. Alguns, transmitem a luz absorvida.
- Quando um objeto transmite a luz que recebe, pode ocorrer o processo de refração.

Propriedade da desvio da trajetória da luz ao "entrar" em uma

superfície.

| Material                                    | IR     |
|---------------------------------------------|--------|
| Ar (em temperatura e pressão padrão ou STP) | 1,0003 |
| Água                                        | 1,33   |
| Álcool etílico                              | 1,36   |
| Vidro                                       | 1,66   |
| Plástico                                    | 1,51   |
| Vidro Denso                                 | 1,52   |
| Sal                                         | 1,53   |
| Quartzo                                     | 1,46   |
| Cristal                                     | 1,58   |
| Diamante                                    | 2,42   |

## Refração

Propriedade da desvio da trajetória da luz ao "entrar" em uma superfície.



## **Transparência**

- Propriedade de transmitir a luz ao "entrar" em uma superfície.
  - Transparência sem refração: não há desvio da luz incidente.
     Consequência: os objetos localizados atrás dessa superfície não são "deslocados";

Transparência com refração: há desvio da luz incidente.
 Consequência: os objetos localizados não estão na sua posição

real.





## **REFERÊNCIAS BIBLIOGRÁFICAS:**

AZEVEDO, Eduardo; CONCI, Aura. **Computação gráfica:** teoria e prática. Rio de Janeiro: Campus, 2003.