Приклад послідовного алгоритму розбиття.

Розглянемо приклад розбиття графа (схеми) на підграфи (частини) за допомогою послідовного алгоритму (ПА).

Ми вже з вами знаємо, що суть ПА полягає в виділенні з початкового графу сильно зв'язанних підгафів, що відповідають визначенним критеріям оптимізації.

Таким чином, в згальному випадку, там відома початкова схема (вам вона видана), яку ми описали ВГС - G(X,V); матрицею зв'яків |A|.

Потрібно розбити початковий граф G(X,V) на k-підграфів, кожен з яких містить n_i вершин.Вам потрібно розбити G(X,V) на стільки підграфів,скільки рядків елементів на ПУ; кількість елементів в підграфах G_1,G_2,\ldots відповідно $n_1+n_2+\cdots+n_k=n$ елементів. Оптимізувати m-число зв'язків між сформованими підграфами.

Для Вас m-скільки вийде в результаті ваших обчислень, тобто m не оптимізується, фле відслідковується.

Так формується задача в загальному випадку, ми будемо вирішцвати конкретні задачі. Для конкретного випадку задача формується наступним чином.

Розбити на частини (вузли) граф G(X,V), заданий матрицею зв'язку $A_{\mathrm{l4} \times \mathrm{l4}}$ при таких обмеженнях:

- 1. Максимальне число зв'язків кожного окремо взятого підграфа $G_i(X_i,V_i)$ не повинно первищувати 6: $m \le 6$.
- 2. Число вершин в підграфі $3 \le |x_i| \le 5$. (Для ЛР число вершин в підграфі скільки елементів в рядку ПУ, число вузлів скільки рядків)

Стратегія. Завжди прагнуть формувати графи з максимальним числом вершин.

По схемі складемо матрицю зв'язків (суміжності)

Матриця суміжності схеми (Деньдобренько???) має вигляд

	x_1	x_2	x_3	X_4	X_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	$\rho(x_i)$	
\mathcal{X}_1	0	0	0	1	0	3	0	1	0	0	0	0	1	1	7	
$\overline{x_2}$	0	0	2	0	0	0	1	0	0	0	1	0	1	0	5	$= \rho(x_2)$
x_3	0	2	0	0	0	0	1	0	0	0	0	2	1	0	6	
x_4	1	0	0	0	2	0	0	0	1	1	2	0	0	0	7	
$\overline{x_5}$	0	0	0	2	0	0	0	0	3	1	0	0	0	0	6	
x_6	3	0	0	0	0	0	0	2	0	0	2	0	0	1	8	
x_7	0	1	1	0	0	0	0	0	0	0	0	1	1	1	5	$= \rho(x_7)$
x_8	1	0	0	0	0	2	0	0	0	0	0	0	0	2	5	$= \rho(x_8)$
x_9	0	0	0	1	3	0	0	0	0	1	1	0	0	0	6	
x_{10}	0	0	0	1	1	0	0	0	1	0	2	1	0	0	6	
x_{11}	0	1	0	2	0	2	0	0	1	2	0	0	0	0	8	
x_{12}	0	0	2	0	0	0	1	0	0	1	0	0	2	0	6	
x_{13}	1	1	1	0	0	0	1	0	0	0	0	2	0	0	6	
X_{14}	1	0	0	0	0	1	1	2	0	0	0	0	0	0	5	$= \rho(x_{14})$

- Визначаємо локальні степені кожної вершини:

$$\rho(x_i) = \sum_{i=1}^n a_i = \sum_{i=1}^{14} a_i$$

- Вибираємо вершину з мінімальною локальною степінню. Декілька вершин мають однакову локальну степінь

$$\rho(x_2) = \rho(x_7) = \rho(x_8) = \rho(x_{14}) = 5 = \min$$

Яку з цих вершин приймати за початкову, з якої починається формування першого підграфа?

Ми з вами знаємо, що ε друга умова вибору першої вершини - вона (вершина) повинна мати найбільше число кратних ребер.

З матриці слідує: аналізуємо рядки x_2, x_7, x_8, x_{14}

 x_2 - два кратних зв'язки між x_2 та x_3 ($a_{23} = 2$)

 x_7 - не має кратних зв'язків

 x_{8} - x_{8} - x_{6} , x_{8} - x_{14} - має з двома вершинами кратні зв'язки

 x_{14} - $x_{14} - x_8$ - має один кратний зв'язок

Вибираємо першу вершину для формування першого підграфа x_8 , таким чином $G_1^1 = \left\{ x_8 \right\}$. Визначемо відносну вагу вершини $\delta(x_8)$, згідно загальної формули:

$$\delta(x_8) = \rho(x_8) - 2a_{88} = 5 - 0 = 5$$

Відносна вага першої вершини, включеної до формованого підграфу, дорівнює її локальній степені: $\delta(x_s) = \rho(x_s) = 5$

 $\ddot{l}\ddot{l}$ можна й не визначати, але потрібно знати $m_1^1=5$

Таким чином перший підграф з однією вершиною x_8 зв'язаний з другим підграфом з 13 вершин, має 5 зовнішніх зв'язків.

Подивимося на Рис.1, що складений за матрецею |A|. Теоретично і практично все співпадає.

Звертаю вашу увагу на те, що

 $m_1 = \rho(x_8) = \delta(x_8)$ тільки для першого кроку

Таким чином $G_1^1 = \{x_8\}$ $m_1^1 = 5$

- Для включення другої вершини до G_1 визначемо підмножину вершин суміжних (зв'язаних) з x_8 . Аналізуємо рядок x_8 в |A| . x_8 зв'язана з вершинами $\left\{x_1, x_6, x_{14}\right\}$.
- Для того щоб вІдповісти, яку з підмножини цих вершин включати на другому кроці до формуємого підграфу $G_{\scriptscriptstyle 1}$. Визначемо відносні ваги, по черзі включаючи їх до $G_{\scriptscriptstyle 1}^{\scriptscriptstyle 1}$.

Маємо таку таблицю

Визначемо відносні ваги вершин

$$\delta(x_1) = \rho(x_1) - 2a_{18} = 7 - 2 \cdot 1 = 5$$

$$\delta(x_6) = \rho(x_6) - 2a_{68} = 8 - 2 \cdot 2 = 4$$

$$\delta(x_{14}) = \rho(x_{14}) - 2a_{148} = 5 - 2 \cdot 2 = 1 = \min$$

Вибираємо вершину з мінімальною відносною вагою, тобто приєднуємо x_{14} до x_8 .

Тобто на другому кроці x_{14} додається до $G_1^2 = \left\{ x_8, x_{14} \right\}$

Визначемо число зовнішніх зв'язків для $G_{\rm l}^2$ з іншими 12 вершинами:

$$\delta(x_i^2) = \delta(x_8) + \delta(x_{14}) = 5 + 1 = 6 = m_1^2$$

Подивимося на рис.2. Перевіримо чи виконуються умови поставленної задачі

$$G_1^2 = \left\{ x_8, x_{14} \right\}$$

$$m_1^2 = 6$$

$$x_8 \longleftrightarrow x_{14}$$

внутрішні зв'язки становляться зовнішніми, а зовнішні - внутрішніми

Рис.2

Враховуючи те, що всі вимоги виповнюються, то будемо включати наступну вершину

- Тепер розглянемо множину зв'язків, які мають вершини x_{14} та x_8 , що включкні до G_1^2 . Для цього аналізуємо рядки x_{14} та x_8 :

 x_8 - зв'язана з x_6 та x_1 (вершини, що залишилися)

 $x_{14}\,$ - в'язана з $x_7\,$ - нова вершина. $x_{14}\,$ також зв'язана з $x_6\,$ та $x_1\,$, але ці вершини вже зв'язані з $x_8\,$

Для цих вершин визначаємо їх відносні ваги.

$$\delta(x_1) = \rho(x_1) - 2(a_{18} + a_{114}) = 7 - 2 \cdot (1+1) = 3$$

$$\delta(x_6) = \rho(x_6) - 2(a_{68} + a_{614}) = 8 - 2 \cdot (2+1) = 2 = \min$$

$$\delta(x_7) = \rho(x_7) - 2(a_{78} + a_{714}) = 5 - 2 \cdot (0 + 1) = 3$$

Тепер вже сума. В дужках буде стільки сум, скільки вершин включається до формуємого графу. У нашому випадку - дві вершини - дві суми.

На третьому кроці включаємо x_6 $G_1^3 = \{x_8, x_{14}, x_6\}$

Число зовішніх зв'язків підграфа G_1^3 визначається по сумарній видносній вазі

$$\delta(x_r^3) = \delta(x_r^2) + \delta(x_6) = 6 + 2 = 8 = m_1^3, G_1^3 = \{x_8, x_{14}, x_6\}$$

Тобто $m_1^3 = 8 > m_{dop} = 6$. Не виконується одна з вимог $m_1^3 > m_{dop} > 6$. Формально можна закінчили формування підграфів, але ми їх не сформували.

Подивимося на рис.3. Проаналізуємо |A| . x_6 має 5 зв'язків з вершинами, що включені до графу G_1^3 .

Рис.3

Таким чином при включені x_6 до G_1^3 ми маємо число зовнішніх зв'язків більше, чим задано по умові задачі. Більш того, ми також не сформували підграф з необхідним числом вершин. Давайте проаналізуємо рис.3. З Рис.3 видно, що нам може допомогти вершина x_1 . З рис.3 видно, що нам може допомогти вершина x_1 . Якщо на четвертому кроці ми включемо вершину x_1 до , то число зовнішніх з в'язків зменшиться на 3, а число вершин в G_1 буде 4. Поступимо таким чином. Останній результат запам'ятаємо. Зробимо наступний крок четвертий крок, аналогічно попередньому - другому, третьому кроку.

$$\delta(x_1) = \rho(x_1) - 2(a_{18} + a_{114} + a_{16}) = 7 - 2 \cdot (1 + 1 + 3) = -3 = \min$$

$$\delta(x_7) = \rho(x_7) - 2(a_{78} + a_{714} + a_{76}) = 5 - 2 \cdot (0 + 1 + 0) = 3$$

$$\delta(x_{11}) = \rho(x_{11}) - 2 \cdot (0 + 0 + 2) = 4$$

$$\frac{\left\{x_r^4\right\} \quad x_1 \quad x_7 \quad x_{11}}{\delta(x_r^4) \quad -3 \quad 3 \quad 4}$$

Приєднання вершини x_1 на четвертому кроці до формуємого підграфу G_1 зменшує число зовнішніх зв'яків на 3. В результаті отримаємо

$$\delta(x_r^4) = \delta(x_r^3) + \delta(x_1) = 8 - 3 = 5$$

Тобто на четвертому кроці отримаємо

$$G_1^4 = \{x_8, x_{14}, x_6, x_1\}$$

$$\delta(x_r^4) = 5 = m_1^4 < m_{dop} = 6$$

Подивимося на рис.4.

Нагадаю. Відносна вага в за гальному випадку може приймати наступні значення: $\delta(x_i) = 0$ при включені вершини x_i до формуємого підграфу число зовнішніх зв'язків не помінялося

 $\delta(x_i) < 0$ включення вершини x_i зменшує число зовнішніх зв'язків

 $\delta(x_i) > 0$ включення вершини x_i збільшує число зовнішніх зв'язків

Стратегія така, до формуємого підграфу прагнуть включити максимальне число вершин (але повинні виконуватися всі умови). Тому зробимо наступний крок. Дивимося на рис. 5.

$$G_1^4 = \left\{ x_8, x_{14}, x_6, x_1 \right\}$$
$$m_1^4 = 5$$

$$m_1 - 3$$

$$G_1^0 = \{x_8, x_{14}, x_6, x_1\}$$
 $m_1^0 = 5$

між вершинами графу на вершинами, що залишилися

Рис.4

$$\delta(x_7) = \rho(x_7) - 2(a_{78} + a_{714} + a_{76} + a_{71}) = 5 - 2 \cdot (0 + 1 + 0 + 0) = 3$$

$$\delta(x_{11}) = 4$$

$$\delta(x_4) = 5$$

$$\delta(x_{13}) = 4$$

Включаємо x_7

$$\delta(x_r^5) = 5 + \delta(x_7) = 5 + 3 = 8 = m_1^5 > m_{dop} = 6$$

Таким чином включення x_7 дозволяє отримати підграф з потрібним максимальним числом вершин $|x_i|=5$, але при цьому число зовнішніх зв'язків складає 8, що є більшим допустимого значення.

Підграф рахується сформованим, коли виконується дві умови: числа вершин та кількості зовнішніх зв'язків.

Тому

$$G_1^4 = \{x_8, x_{14}, x_6, x_1\}$$

 $m_1^0=5\,$ - це кількість зв'язкив 4-х вершин, що включені до G_1^0 , з 10-ма вершинами, що залишилися в G^* (визначаємо по матриці).

Приступаємо до формування другого підграфа. Для цього з початкової матриці |A| вершини, які увійшли до G_1^0 , тобто викреслюємо відповідні стовпчики та рядки та отримаємо нову матрицю $|A^*|$, яка містить вершини $x_2, x_3, x_4, x_5, x_7, x_9, x_{10}, x_{11}, x_{12}, x_{13}$. Далі ми можемо поступити двояко, при цьому отримаємо один та той же результат:

- 1. Сформувати другий підграф за розглянутою вище методикою, але з перехуванням ho
- 2. Сформувати другий підграф за розглянутою вище методикою, але локальні степені не перераховувати, тобто їх значення залишити з початкової матриці (щоб не плутатися).

		\mathfrak{c}_1	x_2	x_3	X_4	x_5	x_6		\mathfrak{c}_8	x_9	<i>x</i> ₁₀	x_{11}	<i>x</i> ₁₂	<i>x</i> ₁₃	\mathfrak{c}_{14}	$\rho(x_i)$	
	x_1)···	0	0	and a	0	3-	···-	'n	- Mari	~ 0 ~			restaur.	j im.	40100000000	
	x_2)	0	2	0	0	0	1	0	0	0	1	0	1	0	5	$= \rho(x_2)$
	x_3)	2	0	0	0	0	1	0	0	0	0	2	1	0	6	
-	x_4	1	0	0	0	2	0	0	0	1	1	2	0	0	0	7	
-	x_5)	0	0	2	0	0	0	0	3	1	0	0	0	0	6	
-	λ_6	300	-0-	-0-	···()···	0	0	•••0•••	2	****O***	~~0 ~	2	*****	0	i	Manu Con	
A)	1	1	0	0	0	0	0	0	0	0	1	1	1	5	$= \rho(x_7)$
_	x_8	ľ	0	0	0	Û	2	····	ĝΞ				Û	vre@ver	2	emagnu n	$=p(x_8)$
-	x_9)	0	0	1	3	0	0	O	0	1	1	0	0	0	6	
_	x_{10})	0	0	1	1	0	0	0	1	0	2	1	0	0	6	
_	<i>x</i> ₁₁)	1	0	2	0	2	0	O	1	2	0	0	0	0	8	
		•					3		3_	_					3		
	x_{12})	0	2	0	0	0	1	0	0	1	0	0	2	0	6	
-	$x_{12} = x_{13}$) 1	0	2	0	0	0	1	0	0	0	0	2	0	0	6 6	

 $ho(x_2) =
ho(x_7)$, вибираємо x_1 , тому що вершина має кратні ребра $m_2^1 = 5$ $G_2^1 = \{x_2\}$

$$\begin{cases} x_{r_2}^2 \} & x_3 & x_7 & x_{11} & x_{13} \\ \delta(x_r^2) & 2 & 3 & 6 & 4 \\ & & \text{min} \end{cases}$$

$$\delta(x_3) = \rho(x_3) - 2a_{32} = 6 - 2 \cdot 2 = 2 = \min$$

$$\delta(x_7) = \rho(x_7) - 2a_{72} = 5 - 2 \cdot 1 = 3$$

$$\delta(x_{11}) = \rho(x_{11}) - 2a_{112} = 8 - 2 \cdot 1 = 6$$

$$\delta(x_{13}) = \rho(x_{13}) - 2a_{132} = 6 - 2 \cdot 1 = 4$$

$$G_2^2 = \{x_2, x_3\}; m_2^2 = m_2^1 + m_2^2 = 5 + 2 = 7 > m = 6$$

Давайте спробуємо ще включити вершину до вормуємого графу G_2 .

Підмножина вершин, що зв'язані з $G_2^2 = \{x_2, x_3\}$ така

$$\frac{\left\{x_{r_{2}}^{3}\right\} \left|x_{7}\right| \left|x_{11}\right| \left|x_{12}\right| \left|x_{13}\right|}{\delta(x_{r}^{3}) \left|1\right| 6 \left|2\right| 2}$$
min

Як ми бачимо - добавилася вершина x_{12} - залишок вершин x_2^2 після писля включення x_3

$$\delta(x_7) = \rho(x_7) - 2(a_{72} + a_{73}) = 5 - 2 \cdot (1+1) = 1 = \min$$

Все зрозуміло - заповнимо таблицю

$$G_2^3 = \{x_2, x_3, x_7\}; \ m_2^3 = m_2^2 + \delta(x_7) = 7 + 1 = 8 > m = 6$$
 - ще збільшилося

Складемо таблицю

$$\frac{\left\{x_{r}^{4}\right\} | x_{11} | x_{12} | x_{13}}{\delta(x_{r}^{4}) | 6 | 0 | 0}$$

Звертаю вашу увагу. Включення вершини x_7 не має зв'яків з новими вершинами, а тільки з тими, що ми розгядаємо $\delta(x_{12}) = \delta(x_{13}) = 0$, тобто включення x_{12} та x_{13} до G_2^3 не призведе до збільшення зовнішніх зв'язків.

$$G_2^4 = \{x_2, x_3, x_7, x_{12}\}; m_2^4 = m_2^3 + \delta(x_{12}) = 8 > m = 6$$

При $\delta(x_{12}) = \delta(x_{13}) = 0$ ми можемо включити любу з цих вершин, але тільки одну!

Складемо нову таблицю

$$\frac{\left\{x_r^5\right\} | x_{10} | x_{11} | x_{13}}{\delta(x_r^5) | 4 | 6 | -4}$$

 x_{10} зв'язана з x_{12}

Бажаний "-" - дістався він нам при значно додатковій кількості кроків.

$$G_2^0 = \{x_2, x_3, x_7, x_{12}, x_{13}\}; \ m_2^0 = m_2^4 + \delta(x_{13}) = 8 - 4 = 4 < m = 6$$

Отже, всі умови виконуються:

- Включаємо максимально допустиму кількість вершин до другого підграфу $|x_i| < 5 \max$
- число зовнішніх зв'язків менше допустимого

Сформуємо другий підграф

$$G_2^0 = \left\{ x_2, x_3, x_7, x_{12}, x_{13} \right\}$$

$$m_2^0 = 4$$

При визначенні $\delta(x_r)$ вершин, що включаються до другого підграфа ρ необхідно брати з початкової матриці.

З матриці $\left|A^*\right|$ викреслюємо рядки та стовпчики, що відповідають вершинам, включеним до G_2^0 , тоді отримаємо нову матрицю $\left|A^{**}\right|$.

В результаті отримаємо

$$G_3^0 = \{x_4, x_5, x_9, x_{10}, x_{11}\}$$

тобто G_3^0 - сформувався автоматично. *Останній підграф завжди формується автоматично*. Якщо б в G_3^0 було вершин більше ніж 5, то формування цього підграфа виконується так, як вище ми з вами робили для першого та другого.

Але давайте вернемося до нашого випадку, а в загалі-то завжди останній підграф буде формуватися автоматично. Тоді виникає питання, а як визначити кількість завнішніх зв'язків G_3^0 ? Для цього випадку сумарна видносна вага всіх вершин, що залишилися (всіх включених до G_3^0 вершин) визначають наступним чином

$$\sum_{x_g \in G_3^0} \delta(x_g) = \sum_{x_g \in G_3^0} \rho(x_g) - 2 \sum_{\substack{x_g \in G_3^0 \\ h \in G_2^0}} a_{gh}$$

$$\sum_{x_g \in G_3^0}
ho(x_g)$$
 - сума локальних степенів включених вершин до G_3^0 $2\sum_{\substack{x_g \in G_3^0 \ h \in G_3^0}} a_{gh}$ - сума зв'язків між вершинами включеними до G_3^0

$$\sum_{x_g \in G_3^0} \delta(x_g) = \sum_{x_g \in G_3^0} \rho(x_g) - 2 \sum_{\substack{x_g \in G_3^0 \\ h \in G_3^0}} a_{gh} = \rho(x_4) + \rho(x_5) + \rho(x_9) + \rho(x_{10}) + \rho(x_{11}) - 2(a_{45} + a_{49} + a_{410} + a_{411} + a_{59} + a_{510} + a_{511} + a_{910} + a_{911} + a_{1011} =$$

$$= (7 + 6 + 6 + 6 + 8) - 2(2 + 1 + 1 + 2 + 3 + 1 + 0 + 1 + 1 + 2) =$$

$$m_3^0 = 5$$

Таким чином умова задачі виконана. Початковий граф розрізаний на три підграфа, з потрібним числом вершин в кожному з них та числом зовнішніх зв'язків кожного окремо взятого підграфу $m \le 6$.

В результаті отримали

 $= 33 - 2(14) = 5 < m_{dov} = 6$

Як визначити число внутрішньовузлових (v_{ii}, v_{jj}, v_{kk}) зв'язків. Це є число зв'зків між вершинами включеними до відповідного підграфу, так $v_{11} = a_{18} + a_{14} + a_{16} + a_{814} + a_{86} + a_{146}$. Це визначення виконується по матриці |A|.

Як визначити число зовнішніх зв'язків між підграфами (v_{ij} , v_{jk} , v_{jk} ,...). визначається числом зв'язків між вершинами, включеними до підграфів: v_i та v_i , v_i та v_k , v_j та v_k і т.д. $v_{12} = a_{113} + a_{112} + a_{13} + a_{12} + a_{17} + a_{813} + a_{812} + a_{83} + a_{87} + a_{1413} + a_{1412} + a_{143} + a_{142} + a_{147} + a_{613} + a_{612} + \cdots$

Число зовнішніх зв'язків між першим підграфом та двома іншими - 5, другим та двома іншими 4, третім та твома іншими - 5. Загальне ж число зовнішніх зв'язків - 7

Якість компонування:

$$\Delta G = \frac{1}{2} \frac{\sum v_{ii}}{\sum v_{ij}} = \frac{36}{7}$$

 $\sum v_{ii}$ - сума всіх внутрішніх зв'язків (внутрішньовузлові зв'язки)

 $\sum v_{ij}$ - сума всіх зовнішніх зв'язків

 $rac{1}{2}$ - пишеться, коли ми з вами включаємо $a_{_{12}}$ та $a_{_{21}}$.