Optimalizace

7. Spektrální rozklad

Tomáš Kroupa Tomáš Werner

2023 LS

Fakulta elektrotechnická ČVUT v Praze

Proč nás zajímají vlastní čísla/vektory v optimalizaci?

ullet Pro symetrickou matici ${f A} \in \mathbb{R}^{n imes n}$ často řešíme úlohy

$$\min_{\mathbf{x} \in \mathbb{R}^n} \; \{ \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} \mid \|\mathbf{x}\| = 1 \} \quad \text{ a } \quad \max_{\mathbf{x} \in \mathbb{R}^n} \; \{ \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} \mid \|\mathbf{x}\| = 1 \}$$

 Ukážeme, že minimum/maximum je vlastní vektor odpovídající nejmenšímu/největšímu vlastnímu číslu matice A

Vlastní čísla a vlastní vektory

Nechť pro matici $\mathbf{A}\in\mathbb{R}^{n\times n}$, nenulový vektor $\mathbf{v}\in\mathbb{C}^n$ a $\lambda\in\mathbb{C}$ platí

$$\mathbf{A}\mathbf{v}=\lambda\mathbf{v}.$$

Pak λ je vlastní číslo matice ${\bf A}$ a ${\bf v}$ je vlastní vektor příslušný λ .

λ	je	vlastní	číslo
-----------	----	---------	-------

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

v je vlastní vektor

$$\mathbf{v} \in \mathsf{null}(\mathbf{A} - \lambda \mathbf{I})$$

Spektrum matice je množina všech jejích vlastních čísel.

Diagonalizovatelné matice

Definujme

$$\Lambda = diag(\lambda_1, \dots, \lambda_n)$$
 a $V = [v_1 \dots v_n].$

- Platí AV = VΛ.
- Matice A je diagonalizovatelná pokud je V regulární.

Spektrální rozklad

Pro diagonalizovatelnou matici A platí

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$$
 a $\mathbf{\Lambda} = \mathbf{V}^{-1} \mathbf{A} \mathbf{V}$.

3

Spektrální rozklad symetrické matice

Věta

Nechť $\mathbf{A} \in \mathbb{R}^{n \times n}$ je symetrická. Potom je každé vlastní číslo matice \mathbf{A} reálné a existuje ortonormální množina vlastních vektorů $\mathbf{v}_1, \dots, \mathbf{v}_n$ matice \mathbf{A} .

Tedy pro reálnou symetrickou matici \mathbf{A} je matice $\mathbf{V} = [\mathbf{v}_1 \dots \mathbf{v}_n]$ dokonce ortogonální a platí

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^\mathsf{T} = \lambda_1 \mathbf{v}_1 \mathbf{v}_1^\mathsf{T} + \dots + \lambda_n \mathbf{v}_n \mathbf{v}_n^\mathsf{T}.$$

4

Spektrální rozklad symetrické matice – geometricky

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^\mathsf{T} = \lambda_1 \mathbf{v}_1 \mathbf{v}_1^\mathsf{T} + \dots + \lambda_n \mathbf{v}_n \mathbf{v}_n^\mathsf{T}$$

Interpretace

- 1. Matice $\bf A$ vyjadřuje škálování maticí $\bf \Lambda$ v souřadném systému popsaném bází ${\bf v}_1,\ldots,{\bf v}_n$
- 2. Matice **A** je součtem škálovaných ortogonálních projektorů $\lambda_i \mathbf{v}_i \mathbf{v}_i^\mathsf{T}$ na vzájemně kolmé přímky o směrech \mathbf{v}_i

Jak počítat vlastní čísla?

QR algoritmus (Francis, 1961) je základem soudobých efektivních metod na výpočet vlastních čísel matice **A**.

- 1. $\mathbf{A}_0 := \mathbf{A}, i := 0$
- 2. Dokud není splněna ukončovací podmínka:
 - 2.1 Sestroj QR rozklad, $\mathbf{A}_i = \mathbf{QR}$
 - 2.2 $\mathbf{A}_{i+1} \coloneqq \mathbf{R}\mathbf{Q}$
 - $2.3 \ i := i + 1$

Tvrzení

Matice A_0, A_1, \ldots mají stejné spektrum.

QR algoritmus – ukázka

- Posloupnost A₀, A₁,... konverguje téměř ve všech případech k blokově horní trojúhelníkové matici s bloky o velikosti 1 a 2
- Pro náhodnou matici **A** řádu 500 dostaneme **A**₅₀, **A**₅₀₀, **A**₂₀₀₀:

Pozitivně semidefinitní matice

Matice $\mathbf{A} \in \mathbb{R}^{n \times n}$ je pozitivně semidefinitní, pokud

$$\mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} \geq 0$$
 pro každý $\mathbf{x} \in \mathbb{R}^n$.

Tvrzení

Pro symetrickou matici $\mathbf{A} \in \mathbb{R}^{n \times n}$ jsou tato tvrzení ekvivalentní.

- 1. A pozitivně semidefinitní.
- 2. Vlastní čísla matice A jsou nezáporná.
- 3. Existuje matice $\mathbf{B} \in \mathbb{R}^{n \times n}$ taková, že $\mathbf{A} = \mathbf{B}^{\mathsf{T}} \mathbf{B}$.
- 4. Všechny hlavní minory matice A jsou nezáporné.

Pozitivně definitní matice

Matice $\mathbf{A} \in \mathbb{R}^{n \times n}$ je pozitivně definitní, pokud

$$\mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} > 0$$
 pro každý $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}.$

Tvrzení

Pro symetrickou matici $\mathbf{A} \in \mathbb{R}^{n \times n}$ jsou tato tvrzení ekvivalentní.

- 1. A pozitivně definitní.
- 2. Vlastní čísla matice A jsou kladná.
- 3. Existuje regulární matice $\mathbf{B} \in \mathbb{R}^{n \times n}$ taková, že $\mathbf{A} = \mathbf{B}^{\mathsf{T}} \mathbf{B}$.
- 4. Všechny vůdčí hlavní minory matice A jsou kladné.

Negativně semidefinitní a indefinitní matice

Matice $\mathbf{A} \in \mathbb{R}^{n \times n}$ je

- negativně semidefinitní, pokud $\mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} \leq 0$ pro každé $\mathbf{x} \in \mathbb{R}^n$,
- negativně definitní, pokud $\mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} < 0$ pro každé $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$,
- indefinitní, existuje-li $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ tak, že $\mathbf{x}^T \mathbf{A} \mathbf{x} < 0 < \mathbf{y}^T \mathbf{A} \mathbf{y}$.

Pozorování

 ${\bf A}$ je negativně definitní, právě když $-{\bf A}$ je pozitivně definitní.

Choleského rozklad

Věta

Nechť $\mathbf{A} \in \mathbb{R}^{n \times n}$ je symetrická. Je-li \mathbf{A} pozitivně semidefinitní, potom existuje horní trojúhelníková matice $\mathbf{R} \in \mathbb{R}^{n \times n}$ tak, že

$$\mathbf{A} = \mathbf{R}^{\mathsf{T}} \mathbf{R}$$
.

Je-li A pozitivně definitní, je taková matice R jediná.

Aplikace pro symetrickou pozitivně definitní matici A:

- Řešení soustavy Ax = b
- Invertování matice A

Kvadratické formy

Kvadratická forma je homogenní polynom $f: \mathbb{R}^n \to \mathbb{R}$ stupně 2,

$$f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j, \qquad \mathbf{A} \in \mathbb{R}^{n \times n}.$$

Poznámka

Pro každou kvadratickou formu s maticí $\mathbf{A} \in \mathbb{R}^{n \times n}$ je matice $\frac{\mathbf{A} + \mathbf{A}^{\mathsf{T}}}{2}$ symetrická a platí $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{x}^{\mathsf{T}} \frac{\mathbf{A} + \mathbf{A}^{\mathsf{T}}}{2} \mathbf{x}$.

Extrémy kvadratické formy

Tvrzení

Uvažujme kvadratickou formu $f(\mathbf{x}) = \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x}$, kde $\mathbf{A} \in \mathbb{R}^{n \times n}$.

- ullet Je-li f pozitivně semidefinitní, pak má f v bodě $oldsymbol{0}$ minimum.
- Je-li f pozitivně definitní, pak má f v bodě $\mathbf{0}$ ostré minimum.
- Je-li f indefinitní, pak f nemá minimum ani maximum.

Analogicky pro negativně semidefinitní matice/maximum.

Příklad: kvadratické formy s diagonální maticí pro n=2

$$g(\mathbf{y}) = \mathbf{y}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{y} = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2$$

$$g(\mathbf{y}) = y_1^2 + y_2^2$$

$$\mathbf{\Lambda} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$g(\mathbf{y}) = y_1^2 + y_2^2$$
 $g(\mathbf{y}) = -y_1^2 - y_2^2$ $g(\mathbf{y}) = y_1^2 - y_2^2$ $\mathbf{\Lambda} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\mathbf{\Lambda} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ $\mathbf{\Lambda} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

$$g(\mathbf{y}) = y_1^2 - y_2^2$$

$$\mathbf{\Lambda} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Diagonalizace kvadratické formy

Tvrzení

Pro každou kvadratickou formu f se symetrickou maticí \mathbf{A} existuje kvadratická forma g s diagonální maticí $\mathbf{\Lambda}$ tak, že $f(\mathbf{x}) = g(\mathbf{V}^\mathsf{T}\mathbf{x})$, kde $\mathbf{A} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^\mathsf{T}$ je spektrální rozklad.

- Forma f má jednodušší popis v novém souřadném systému tvořeném ortonomální bází ze sloupců V
- Typ kvadratické formy poznáme podle znamének na diagonále

Příklad: vrstevnice kvadratické formy pro n = 2

Elipsa

- Vrstevnice výšky 1 kvadratické formy $f(\mathbf{x}) = \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x}$ s pozitivně definitní maticí $\mathbf{A} \in \mathbb{R}^2$ je pootočená elipsa
- ullet Elipsa má osy ve směru vlastních vektorů ${f v}_1$ a ${f v}_2$
- Délky poloos elipsy jsou $\frac{1}{\sqrt{\lambda_1}}$ a $\frac{1}{\sqrt{\lambda_2}}$

Kvadratická funkce a její vrstevnice

Kvadratická funkce je polynom $f: \mathbb{R}^n \to \mathbb{R}$ druhého stupně,

$$f(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{x} + c,$$

kde $\mathbf{A} \in \mathbb{R}^{n \times n}$ je symetrická, $\mathbf{b} \in \mathbb{R}^n$ a $c \in \mathbb{R}$.

Kvadrika je vrstevnice výšky 0 kvadratické funkce, tj. množina

$$\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} + \mathbf{b}^\mathsf{T} \mathbf{x} + c = 0\}.$$

Speciální případy

- Elipsoid (A je pozitivně definitní)
- Kuželosečka (pro n=2)