PROBLEM 13.42

KNOWN: Dimensions and temperature of a flat-bottomed hole.

FIND: (a) Radiant power leaving the opening, (b) Effective emissivity of the cavity, ε_e , (c) Limit of ε_e as depth of hole increases.

SCHEMATIC:

ASSUMPTIONS: (1) Hypothetical surface A_2 is a blackbody at 0 K, (2) Cavity surface is isothermal, opaque and diffuse-gray.

ANALYSIS: Approximating A_2 as a blackbody at 0 K implies that all of the radiation incident on A_2 from the cavity results (directly or indirectly) from emission by the walls and escapes to the surroundings. It follows that for A_2 , $\varepsilon_2 = 1$ and $J_2 = E_{b2} = 0$.

(a) From the thermal circuit, the rate of radiation loss through the hole (A_2) is

$$q_1 = \left(E_{b1} - E_{b2}\right) / \left[\frac{1 - \varepsilon_1}{\varepsilon_1 A_1} + \frac{1}{A_1 F_{12}} + \frac{1 - \varepsilon_2}{\varepsilon_2 A_2}\right]. \tag{1}$$

Noting that $F_{21} = 1$ and $A_1 F_{12} = A_2 F_{21}$, also that

$$A_1 = \pi D^2 / 4 + \pi DL = \pi D (D / 4 + L) = \pi (0.006 \,\mathrm{m}) (0.006 \,\mathrm{m} / 4 + 0.024 \,\mathrm{m}) = 4.807 \times 10^{-4} \,\mathrm{m}^2$$

$$A_2 = \pi D^2 / 4 = \pi (0.006 \,\mathrm{m})^2 / 4 = 2.827 \times 10^{-5} \,\mathrm{m}^2.$$

Substituting numerical values with $E_b = \sigma T^4$, find

$$q_1 = 5.67 \times 10^{-8} \, \text{W} \, / \, \text{m}^2 \cdot \text{K}^4 \, \left(1000^4 - 0\right) \text{K}^4 \, / \left[\frac{1 - 0.8}{0.8 \times 4.807 \times 10^{-4} \, \text{m}^2} + \frac{1}{2.827 \times 10^{-5} \, \text{m}^2} + 0 \right]$$

$$q_1 = 1.580 \text{ W}.$$

(b) The effective emissivity, ε_e , of the cavity is defined as the ratio of the radiant power leaving the cavity to that from a blackbody having the same area of the cavity opening and at the temperature of the inner surfaces of the cavity. For the cavity above,

$$\varepsilon_{e} = \frac{q_{1}}{A_{2}\sigma T_{1}^{4}}$$

$$\varepsilon_{\rm e} = 1.580 \,\mathrm{W} / 2.827 \times 10^{-5} \,\mathrm{m}^2 \left(5.67 \times 10^{-8} \,\mathrm{W} / \,\mathrm{m}^2 \cdot \mathrm{K}^4 \right) \left(1000 \,\mathrm{K} \right)^4 = 0.986.$$

(c) As the depth of the hole increases, the term $(1 - \epsilon_1)/\epsilon_1$ A_1 goes to zero such that the remaining term in the denominator of Eq. (1) is $1/A_1$ $F_{12} = 1/A_2$ F_{21} . That is, as L increases, $q_1 \to A_2$ F_{21} E_{b1} . This implies that $\epsilon_e \to 1$ as L increases. For L/D = 10, one would expect $\epsilon_e = 0.999$ or better.