Review of model validation scripts for Lake Michigan FVCOM-GEM

10/5/2021

Peter Alsip

Depth-Time rasters

Depth-Time raster: plotting loop

 Loop through nodes (ms)

Read in data for given node

Define plot attributes for TP

 Read in variable data and apply necessary conversions

```
for(mi in 1:length(ms)){
 detlist <- mlist[[mi]]$detlist
 nutNames <- mlist[[mi]]$nutNames
 depths <- mlist[[mi]]$depths
  m <- mlist[[mi]]$node
 nuti <- 7# chl 7, tp 6
  #nuts2plot <- 1:length(nutNames) #which( !(nutNames %in% c("GPP","BIO M","MRATION")) )</pre>
 #nuts2plot <- which( !(nutNames1 %in% c("GPP", "BIO M", "MRATION", "aice")) )</pre>
 nuts2plot<-which(nutNames1 %in% c("Chl", "TP"))</pre>
  #nuts2plot <-which( (nutNames1 %in% c("kdPAR")))</pre>
 for(nuti in nuts2plot){
   nutName <- nutNames1[nuti]</pre>
   #nutDim <- nutDims[nuti]
   nutDim <- nutList[[which(names(nutList)==nutName)]]$dim
   unit <- nutList[[which(names(nutList)==nutName)]]$unit
   scale <- nutList[[which(names(nutList)==nutName)]]$scale</pre>
   mx <- nutList[[which(names(nutList)==nutName)]]$mx</pre>
   nutLab <- nutList[[which(names(nutList)==nutName)]]$nutLab
    addObs2plot<-FALSE # defaults to false, TRUE for TP and CHL as of 7/22/20 -PA
   }else if(nutName == "TP"){
     detm <- detlist[[which(nutNames=="PO4")]]*scale</pre>
     TPVars <- nutList[[which(names(nutList)=="TP")]]$var
     TPVars <- TPVars[!(TPVars %in% "PO4")]
     for(i in 1:length(TPVars)){
       detm <- detm + detlist[which(nutNames==TPVars[i])][[1]]*scale*ptoc[1] # assumes ptoc is same for all</pre>
     zlim < -c(0, mx)
     addObs2plot<-TRUE
```

Depth-Time plots

Set up raster

Overlay obs

```
length(siglay)
 timi <- length(time1)
      <- depths[length(depths)]+(depths[2]-depths[1])/2 # depth at bottom edge of image</pre>
      <- t(detm)
 mat2 <- detm[1:timi,nd:1]</pre>
 #mat2 <- detm[1:timi,nd:1]
     zlim <- c(0, max(mat2, na.rm=TRUE))</pre>
     zlim <- c(min(mat2, na.rm=TRUE), max(mat2, na.rm=TRUE))</pre>
 # zlim <- c(0,10000)
 cols <- tim.colors(256)
par(mar = c(6, 4, 3, 5) + 0.1) #c(bottom, left, top, right)
 image(mat2, zlim=zlim, col=cols, xaxt="n", yaxt="n"
       ,xlab=" "
       ,ylab="Depth, m"
       # ,main = nutLab
       # .cex.main=0.8
# Add observations for TP or Chl
if(addObs2plot){
  obsData<-muskegon[which(muskegon$Year == year & muskegon$Station == stas1d$station[mi]),]
  # add date column
 obsData$date2<-as.POSIXct(paste0(obsData$Year,"-",obsData$DOY),format = "%Y-%j")
  obsData$date2<-as.POSIXct(strftime(obsData$date2, format = "%Y-%m-%d %H:%M:%S"))
  odf<-obsData[,c("Station","date2","Depth",nutName)]
 odf<-odf[which(!is.na(odf[,c(nutName)])),]
  # index observations by the model time step they fall on. This is necessary for correctly
  odf$yhour<-NA
  for(i in 1:nrow(odf)){
   odf$yhour[i]<-which(time1 %in% odf$date2[i]) # index obervations by model time steps
  # raster plot x axis is c(0,1) so the x position of observations and model values are determined.
 odf$yhour<-odf$yhour/length(time1)
  # depth index (y position of observations)
  # subtract depth from 1
  odf$depth1<- 1-as.numeric(odf$Depth)*-1/dmax
  cexObs<-1.0
 cols2<-fields::color.scale(as.numeric(odf[,c(nutName)]), col=cols, zlim = zlim)</pre>
  points(odf$yhour, odf$depth1, col=cols2, pch=19, cex=cex0bs)
  points(odf$yhour, odf$depth1, col="black", cex=cexObs)
  points(odf$yhour, odf$depth1, col="white", cex=cexObs+0.2)
```


lmh_hindcast_summary_plots.R

 Purpose: Summarize FVCOM-GEM outputs and provide quick comparison to observations digitized from publications and GLERL's Muskegon dataset

Pre-reqs:

- Matrix [node, time] of surface TP extracted from output netcdfs
- depthTimeList data at Muskegon nodes
- Muskegon observations

Lakewide time series

 Extract modeled surface level TP data at each time step and save to an .Rdata file (done in a separate script) and then read in data for plotting

- Calculate volume-weighted, lake wide mean TP for each time step
 - To calculate 'Vols':
 - Read in art1 (node areas)
 from output netcdf and h
 (node depths) and then
 calculate node volumes:
 - Vols = art1 * h

```
po4<- list2[[which(list2Names=="PO4")]]
po4<-po4 * nutList$PO4$scale

tp<-po4
TPVars <- nutList[[which(names(nutList)=="TP")]]$var
TPVars <- TPVars[!(TPVars %in% "PO4")]
for(i in 1:length(TPVars)){
   tp <- tp + list2[which(list2Names==TPVars[i])][[1]]*ptoc[1]}
tp <- p2*nutList$TP$scale

tp<-tp[,,] # compress to two dimensional matrix since there is</pre>
```

```
# define function for calculating volume weighted mean used in apply(
vol.weighted.mean<-function(x){
  # print(length(x))
  if(length(x) < 90806){ # Just Lake Michigan with Green bay
    nodes = ro1
  if(length(x) == 40313){ # Just Lake Michigan without Green bay
    nodes = ro2
  if(length(x) == 90806){# Entire domain (Lake Mich-Huron)
    nodes = coordsn$node
  # vols mat<-matrix(vols,nrow=length(vols),ncol=ncol(x),byrow=FALSE)</pre>
  weighted average<-sum(x*vols[nodes])/sum(vols[nodes])</pre>
  return(weighted average)
# time series of lakewide average chl
tp_ts<- apply(tp,2,vol.weighted.mean)
mi_tp_ts<- apply(tp[nodes,],2,vol.weighted.mean)</pre>
mi tp ts nogb<- apply(tp[ro2,],2,vol.weighted.mean)
```

Simulated TP, 2019

Compare model values to observations at Muskegon transect

```
library(readxl)
muskegon<-read excel("/mnt/projects/hpc/alsip/lmhofs gem/LakeData/LMICH WQ Rowe.xlsx", sheet = "Readin2R")</pre>
muskegon<-as.data.frame(muskegon)
muskegon$PP<-as.numeric(muskegon$PP)
# conform station naming to stas1d
# Alpha/alpha = M15
# Beta/beta = M45
# Omega/omega = M110
muskegon$Station[which(muskegon$Station == "Omega")]<-"M110"
muskegon$Station[which(muskegon$Station %in% c("alpha","Alpha") ) <- "M15"
muskegon$Station[which(muskegon$Station %in% c("beta", "Beta") )]<-"M45"
# change colname so it matches stas1d
colnames(muskegon)[which(colnames(muskegon) == "Station")]<-"station"</pre>
#stas1d
# station
                       lat
                                                    node
        M15 -86.344 43.18817 -226.5529 214.4337 15732
        M45 -86.432 43.18817 -233.6943 214.8711 17441
      M110 -86.536 43.18817 -242.1334 215.3975 18690
# read in Muskegon depth time data
list.files(archive path, ".Rdata")
load(paste0(archive path, "depthTimeList.Rdata"))
time1<-depthTimeList$time1
```

Read in Muskegon data from Steve Pothoven and compare model values to in situ values

Year	Month	Day	DOY	Station	Depth	Surface Te secchi	CHL	TP	PP	TDP
1994	10	12	285	В	5	5	2.54	4.60	3.85	0.75
1994	10	12	285	В	10	5	1.85	5.15	3.75	1.40
1994	10	12	285	В	20	5	1.74	5.05	4.00	1.05
1994	10	12	285	В	30	5	1.07	3.35	4.20	
1994	10	12	285	В	50	5	0.25	4.45	2.70	1.75
1994	10	12	285	В	90	5	0.14	6.35	3.40	2.95
1994	11	10	314	В	5		2.53	5.90	3.50	2.40
1994	11	10	314	В	10		2.68	7.55	8.40	
1994	11	10	314	В	20		2.24	6.75	3.70	3.05
1994	11	10	314	В	30		1.20	5.80	3.15	2.65
1994	11	10	314	В	50		0.35	6.45	2.35	4.10

```
time1<-depthTimeList$time1
stas1d$node<-depthTimeList$nodes # i verified that the nodes are in order of station from shallowest to deepest (M15 -> M45 -> M110)
# add node number to muskegon data frame
muskegon<-merge(muskegon, stas1d[,c("station","node")], by ="station")</pre>
```

Box plot comparisons

Comparison to same year observations

Comparison to historical distribution of observations

Time series at specified depth

Other model validation scripts done for Lake Erie that could be adapted for Lake Michigan

BIAS RMSE COR OBSMEAN OBSSD SIMSD COUNT -12.32 49.96 0.79 45.2 76.26 47.34 8301