TEORIA KATEGORII

SERIA 5: TRANSFORMACJE NATURALNE I MONADY

Problem 1. Niech C będzie kategorią kartezjańsko-domknietą. Pokazać, że następujące rodziny:

- $\{\eta_X: X \to (X \times A)^A\}_X$,
- $\{\varepsilon_X : X^A \times A \to X\}_X$, $\{\mu_X : ((X \times A)^A \times A)^A \to (X \times A)^A\}$, gdzie $\mu_X = (\varepsilon_{X \times A})^A$.

sa transformacjami naturalnymi między odpowiednimi funktorami.

Problem 2. Pokazać, że następujące rodziny $\{\eta_X\}_X$ i $\{\mu_X\}_X$ są transformacjami naturalnymi między odpowiednimi Set-funktorami:

- (1) $\{\eta_X : X \to \mathcal{P}X\}_{X \in \mathsf{Set}}$, gdzie $\eta_X(x) = \{x\}$ oraz $\{\mu_X : \mathcal{P}\mathcal{P}X \to \mathcal{P}X\}_{X \in \mathsf{Set}}, \mu_X(S) = \bigcup S$,
- (2) $\{\eta_X: X \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \eta_X(x) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, s_2, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, \dots, s_n) = x \operatorname{oraz} \{\mu_X: (X^*)^* \to X^*\}_{X \in \mathsf{Set}}, \operatorname{gdzie} \mu_X(s_1, \dots, s_n) = x \operatorname{oraz}$
- (3) Niech $M = (M, \cdot, 1)$ będzie ustalonym z góry monoidem, a ponadto $\{\eta_X : X \to M \times X\}_{X \in \mathsf{Set}}$, gdzie $\eta_X(x) = (1, x)$ oraz $\{\mu_X : M \times M \times X \to M \times X\}_{X \in \mathsf{Set}}, \text{ gdzie } \mu_X(m, n, x) = (m \cdot n, x).$

Problem 3. Pokazać, że następujące trójki są monadami:

- $(1) \ \left((\mathcal{I}d \times A)^A : \mathbb{C} \to \mathbb{C}, \mu : \left((\mathcal{I}d \times A)^A \times A \right)^A \implies (\mathcal{I}d \times A)^A, \eta : \mathcal{I}d \implies (\mathcal{I}d \times A)^A), \, \mathrm{gdzie} \, \mathbb{C}$ jest kategorią kartezjańsko domkniętą oraz μ i η są jak w Zadaniu 1.
- (2) (T, μ, η) , gdzie $T \in \{\mathcal{P}, (-)^*, M \times \mathcal{I}d\}$, oraz μ i η są jak w Zadaniu 2 dla odpowiednich funktorów.

Problem 4. Niech (T, μ, η) będzie monadą na kategorii \mathbb{C} . Dla $f: A \to TB, g: B \to TC$ zdefiniujmy:

$$g \cdot f : A \to TC; g \cdot f = \mu_C \circ Tg \circ f.$$

Pokazać, że dla f, g oraz $h: C \to TD$ zachodzi:

$$(h \cdot g) \cdot f = h \cdot (g \cdot f) \text{ oraz } f \cdot \eta_A = \eta_B \cdot f = f.$$

Problem 5. Trójkę $(T,(-)^*,\eta)$ nazywamy trójką Kleisliego, jeśli

- $T: \mathbb{C} \to \mathbb{C}$ jest funktorem,
- $\eta = {\eta_X : X \to TX}_{X \in \mathbb{C}}$ jest rodziną strzałek,
- (-)* przyporzadkowuje dowolnej strzałce $f: X \to TY$ strzałkę $f^*: TX \to TY$,

dodatkowo spełniającymi następujące równania:

$$\eta_X^* = id_{TX}$$
, oraz $f^* \circ \eta_X = f$ oraz $(g^* \circ f)^* = g^* \circ f^*$.

Pokazać, że jeśli $(T, (-)^*, \eta)$ jest trójką Kleisliego, to (T, μ, η) jest monadą dla $\mu = \{\mu_X : T^2X \to TX\}$ dla $\mu_X = (id_{TX})^*$. Ponadto, jeśli $(T, (-)^*, \eta)$ jest monadą, to $(T, (-)^*, \eta)$ jest trójką Kleisliego, gdzie $f^* = \mu_Y \circ Tf \text{ dla } f: X \to TY.$

1