Arthur Marmin Curriculum Vitae

DOCTOR AL RESEARCH

"Rational models optimized exactly for solving signal processing problems"

My research interest is in convex optimization and polynomial optimization and their application to signal processing.

- I have worked on the application of Lasserre's hierarchy on several signal processing problems where structures can be leveraged to alleviate the computational complexity.
- I have developed algorithms to solve large-scale SDP problems.
- I have studied the connection between polynomial optimization, tensor decomposition and the moment problem.

WORK EXPERIENCE

APRIL 2015 — APRIL 2017

Industrial Technology Research Institute, Taiwan *Research Engineer*

I worked at the System and Architecture Design department:

- I modelled the power consumption and performance of embedded GPU and wrote OpenGL and Vulkan benchmarks.
- I took part in the development of a collaborative software platform for SoC, EDA and IP designers to perform early power and performance analysis and validation. The software is based on SystemC/TLM hardware model and a modified version of Qemu to run Android.
- I implemented image rendering techniques on FPGA to reduce the motion-to-photon delay inside virtual reality devices.

JULY — SEPTEMBER 2012

TeamWork Vietnam, Vietnam **SAP administrator**

I monitored, administrated and installed SAP systems for Swiss and French customers.

TEACHING EXPERIENCE

SPRING SEMESTER 2020

CentraleSupélec, France *Optimization (2nd year)*

OCTOBER 2017 — JUNE 2020

CentraleSupélec, France

Reinforcement classes in mathematics

Topics: topology, measure theory, Lebesgue integral, probability, statistics, and partial differential equation.

FALL SEMESTER 2014

National Chiao Tung University, Taiwan Embedded System Design (Graduate class) 117 chemin du murger, 74330 Poisy, France

(+33) 7 69 96 86 40

arthur.c.marmin@gmail.com

https://www.arthurmarmin.github.io

EDUCATION

Doctor of Philosophy DEC. 2020 Centre de Vision Numérique Advisors: Jean-Christophe Pesquet, Marc Castella Université Paris-Saclay, CentraleSupélec OCT. 2017 Master of Science JAN. 2015 Electrical Engineering and Computer Science Advisor: Shiao-Li Tsao Thesis: Design and Implementation of an Embedded GPU Simulator National Chiao Tung University, Taiwan SEP. 2013 **Engineer Diploma in Telecommunication** JAN. 2015

COMPUTER SKILLS

SEP. 20II

Télécom SudParis

PROGRAMMING C++, Assembly Languages, Python,
LISP

HARDWARE DESIGN Verilog, VHDL, SystemC, TLM

API OpenGL, OpenCL, Qt, mlpack,
Linux kernel

SOFTWARE Matlab, GloptiPoly, Tensorlab,
Xilinx Vivado Design suite,
Git, Doxygen, Emacs

LANGUAGE SKILLS

FRENCH Mother tongue

ENGLISH Fluent, working operational

MANDARIN Good working knowledge

Used in daily life and working environment

GERMAN Good working knowledge

EXTRA INFORMATION

- I have reviewed articles for IEEE Transactions on Signal Processing.
- I was a visitor at Gdansk University of Technology under the supervision of Anna Jezierska in January 2020.

PUBLICATIONS

- A. Marmin, C. H. Lai, H. L. Huang, J. M. Liu, and S. L. Tsao. Design and implementation of an embedded GPU simulator. In *Computer Graphic Workshop*, 2015
- A. Marmin, C. H. Lai, H. Tago, H. L. Huang, and J. M. Lu. Architecture agnostic energy model for GPU-based design. In *Proc. Int. Symp. on VLSI Design, Automation and Test (VLSI-DAT)*, pages 1–4. IEEE, April 2016
- A. Marmin, M. Castella, J.-C. Pesquet, and L. Duval. Signal reconstruction from sub-sampled and nonlinearly distorted observations. In *Proc. European Signal Processing Conference*, pages 1970–1974. IEEE, September 2018
- M. Castella, J.-C. Pesquet, and A. Marmin. Rational optimization for nonlinear reconstruction with approximate ℓ_0 penalization. *IEEE Trans. Signal Process.*, 67(6):1407–1417, March 2019
- A. Marmin, M. Castella, and J.-C. Pesquet. How to globally solve non-convex optimization problems involving an approximate ℓ_0 penalization. In *Proc. Int. Conf. Acoust. Speech Signal Process.*, pages 5601–5605. IEEE, May 2019
- A. Marmin, M. Castella, and J.-C. Pesquet. Sparse signal reconstruction with a sign oracle. In *Proc. Signal Processing with Adaptive Sparse Structured Representations (SPARS) workshop*, July 2019
- A. Marmin, M. Castella, and J.-C. Pesquet. Detecting the rank of a symmetric tensor. In *Proc. European Signal Processing Conference*, pages 1–5. IEEE, September 2019
- A. Marmin, M. Castella, and J.-C. Pesquet. A moment-based approach for guaranteed tensor decomposition. In *Proc. Int. Conf. Acoust. Speech Signal Process.*, pages 3927–3931. IEEE, May 2020
- A. Marmin, A. Jezierska, M. Castella, and J.-C. Pesquet. Global optimization for recovery of clipped signals corrupted with Poisson-Gaussian noise. *IEEE Signal Process. Lett.*, 27:970–974, May 2020
- A. Marmin, M. Castella, and J.-C. Pesquet. Globally optimizing owing to tensor decomposition. In *Proc. European Signal Processing Conference*, pages 990–994. IEEE, September 2020
- A. Marmin, M. Castella, and J.-C. Pesquet. Robust reconstruction with nonconvex subset constraints: a polynomial optimization approach. In *IEEE Int. Workshop Mach. Learn. Signal Process.*. IEEE, September 2020
- A. Marmin, M. Castella, J.-C. Pesquet, and L. Duval. Sparse signal reconstruction for nonlinear models via piecewise rational optimization. Signal Process., 179:107835, February 2021