Abstract Algebra from the context of the course MTH 418H: Honors Algebra

Kaedon Cleland-Host

January 21, 2022

Contents

1		up Theory
		Groups
	1.2	Subgroups
		1.2.6 Greatest Common Divisor
		1.2.12 Least Common Multiple
		1.2.16 Cyclic Groups
	1.3	Homomorphisms
	1.4	Cosets
		1.4.5 Counting Formula
		1.4.6 Lagrange's Theorem
	1.5	Normal Subgroups
	1.6	Quotient Groups
		1.6.3 Correspondence Theorem
	1.7	Product Groups
		1.7.3 Multiplication Isomorphism
		1.7.5 First Isomorphism Theorem
	1.8	Group Actions
		1.8.6 Orbit Stabilizer Theorem
	1.9	Conjugation
	1.10	p-Groups
		1.10.3 Fixed Point Theorem
		1.10.7 First Sylow Theorem
		1.10.9 Second Sylow Theorem
		1.10.11 Third Sylow Theorem
		<u></u>
2		d Theory
	2.1	Rings and Fields
	2.2	Ring Homomorphisms
	2.3	Quotient Rings
	2.4	Product Rings
	2.5	Characteristic
	2.6	Polynomial Rings
	2.7	Ideals
	2.8	Integral Domains
	2.9	Irreducibility
	2.10	Field Extensions

Chapter 1

Group Theory

1.1 Groups

Definition 1.1.1. A law of composition is a map $S^2 \to S$.

Remark. We will use the notation ab for the elements of S obtained as $a, b \to ab$. This element is the product of a and b.

Definition 1.1.2. A group is a set G together with a law of composition that has the following three properties:

- 1. **Identity** There exists an element $1 \in G$ such that 1a = a1 = A for all $a \in G$.
- 2. Associativity (ab)c = a(bc) for all $a, b, c \in G$.
- 3. Inverse For any $a \in G$, there exists $a^{-1} \in G$ such that $aa^{-1} = a^{-1}a = 1$.

Definition 1.1.3. An abelian group is a group with a commutative law of composition. That is for any $a, b \in G$, ab = ba.

Definition 1.1.4. The **order** of a group G is the cardinality of the set.

Proposition 1.1.5. Cancellation Law For $a, b, c \in G$ if ab = ac then b = c.

Proposition 1.1.6. Let S be a set with an associative law of composition and an identity. The subset of elements of S that are invertible forms a group.

1.2 Subgroups

Definition 1.2.1. A group H is a **Subgroup** of G if H is subset of G, H has the same law of composition as G, and H is also a group. In other words H a group if it is a subset of G with the following properties:

- 1. Closure $a, b \in H$ then $ab \in H$.
- 2. Identity $1 \in H$.
- 3. Inverse For all $a \in H$, $a^{-1} \in H$.

Definition 1.2.2. A subgroup S of G is a **proper subgroup** if $S \neq G$ and $S \neq \{I\}$.

Proposition 1.2.3. If H and K are subgroup of G, then $H \cap K$ is a subgroup.

Theorem 1.2.4. If S is a subgroup of \mathbb{Z}^+ , then either

- $S = \{0\}$
- $S = \mathbb{Z}a$, where a is the smallest elements of S.

Definition 1.2.5. For two integers $a, b \in \mathbb{Z}$ we sat that a divides b if $\frac{b}{a} \in \mathbb{Z}$ denoted a|b.

1.2.6 Greatest Common Divisor

Definition 1.2.7. The greatest common divisor of two integers $a, b \in \mathbb{Z}$ is the integer $d \in \mathbb{Z}$ such that

$$\mathbb{Z}d = \mathbb{Z}a + \mathbb{Z}b = \{n \in \mathbb{Z} | n = ra + sb \forall r, s \in \mathbb{Z}\}\$$

Proposition 1.2.8. Properties of the greatest common divisor Let $a, b \in \mathbb{Z}$, not both zero, and let d be the greatest common divisor. Then

- 1. There are integers $r, s \in \mathbb{Z}$ such that d = ra + sb.
- 2. d|a and d|b.
- 3. If $e \in \mathbb{Z}$ such that e|a and e|b then e|d.

Definition 1.2.9. Two integers $a, b \in \mathbb{Z}$ are relatively prime if gcd(a, b) = 1.

Corollary 1.2.10. A pair $a, b \in \mathbb{Z}$ is relatively prime if an only if there are integers $r, s \in \mathbb{Z}$ such that ra + sb = 1.

Corollary 1.2.11. Let p be a prime integer. If p divides a product ab if integers, then at least one of p|a or p|b holds.

1.2.12 Least Common Multiple

Definition 1.2.13. The least common multiple of two integers $a, b \in \mathbb{Z}$ is the integer $m \in \mathbb{Z}$ such that

$$\mathbb{Z}m = \mathbb{Z}a \cap \mathbb{Z}b$$

Proposition 1.2.14. Properties of least common multiple Let a, b be non-zero integers and let m be there least common multiple. Then

- 1. a|m and b|m.
- 2. If $n \in \mathbb{Z}$ such that b|n and a|n, then m|n.

Corollary 1.2.15. For $d = \gcd(a, b)$ and $m = \operatorname{lcm}(a, b)$ then ab = dm.

1.2.16 Cyclic Groups

Definition 1.2.17. Let G be a group and $x \in G$. The cyclic subgroup generated by x denoted $\langle x \rangle$ is

$$\langle x \rangle = \{\dots, x^{-2}, x^{-1}, 1, x^1, x^2, \dots\}$$

Remark. For any subgroup S that contains x we have $S \subset \langle x \rangle$.

Definition 1.2.18. The **order of an element** $x \in G$ is the order of the group $\langle x \rangle$. This is the smallest positive integer n such that $x^n = 1$.

Proposition 1.2.19. Let $\langle x \rangle \subset G$ and consider the set $S = \{k \in \mathbb{Z} | x^k = 1\}$

- 1. The set S is a subgroup of \mathbb{Z}^+
- 2. $x^r = x^s$ $(r \ge s)$ if and only if $x^{r-s} = 1$.
- 3. If $S \neq \{0\}$, then $S = \mathbb{Z}n$ for some positive $n \in \mathbb{Z}$ and $\langle x \rangle = \{1, x^1, x^2, \dots, x^{n-1}\}$

Proposition 1.2.20. Let x be an element of finite order n in a group and let $k \in \mathbb{Z}$. Let k = nq + r, where $q, r \in \mathbb{Z}$ and $0 \le r < n$. Then

- 1. $x^k = x^r$
- 2. $x^k = 1$ if an only if r = 0.
- 3. The order of x^k is $n/\gcd(k,n)$.

1.3 Homomorphisms

Definition 1.3.1. A homomorphism $\varphi: G \to G'$ is a map from a group G to a group G' such that for any $a, b \in G$ we have

$$\varphi(ab) = \varphi(a)\varphi(b)$$

Proposition 1.3.2. Let $\varphi: G \to G'$ be a homomorphism

- 1. $\varphi(1) = 1$
- 2. $\varphi(a^{-1}) = \varphi(a)^{-1}$ for any $a \in G$

Definition 1.3.3. A homomorphism $\varphi: G \to G'$ is **injective** if $\varphi(x) = \varphi(u) \Rightarrow x = y$

Definition 1.3.4. A homomorphism $\varphi: G \to G'$ is **surjective** if for every $b \in G'$, there exists $a \in G$ such that $\varphi(a) = b$.

Definition 1.3.5. Let $\varphi: G \to G'$ be a homomorphism

1. The **kernal** of φ denoted $\ker(\varphi)$ is the set

$$\ker(\varphi) = \{ a \in G | \varphi(a) = 1 \}$$

2. The **image** of φ denoted $\text{Im}(\varphi)$ is the set

$$\operatorname{im}(\varphi) = \{ b \in G' | \exists a \in G, \varphi(a) = b \}$$

Corollary 1.3.6. A homomorphism $\varphi: G \to G'$ is injective if $\ker(\varphi) = \{1\}$

Corollary 1.3.7. A homomorphism $\varphi: G \to G'$ is surjective if $\operatorname{Im}(\varphi) = G'$

Proposition 1.3.8. Let $\varphi: G \to G'$ be a homomorphism the $\ker(\varphi)$ and $\operatorname{Im}(\varphi)$ are subgroups of G and G'

Definition 1.3.9. An **isomorphism** is a **bijective** homomorphism. A homomorphism is **bijective** if it is both injective and surjective.

Proposition 1.3.10. If $\varphi: G \to G'$ is an isomorphism, then $\varphi^{-1}: G' \to G$ is also an isomorphism.

Definition 1.3.11. Two groups G and G' are **isomorphic** if there is an isomorphism $\varphi: G \to G'$.

Definition 1.3.12. An **automorphism** is an isomorphism $\varphi: G \to G$.

1.4 Cosets

Definition 1.4.1. Let H be a subgroup of G. The **left coset** of H induced by an element $a \in G$ is the set

$$aH = \{ah | h \in H\}$$

The **right coset** of H induced by an element $a \in G$ is the set

$$Ha = \{ha | h \in H\}$$

Proposition 1.4.2. Let H be a subgroup of G. The left cosets partition G. The right cosets partition G.

Definition 1.4.3. For a subgroup H of G. The **index of** H **in** G denoted [G:H] is the number of left cosets of H in G.

Lemma 1.4.4. All left cosets aH and all right cosets Ha of a subgroup H of a group G have the same order.

Lemma 1.4.5. Counting Formula. For a subgroup H of G we have

$$|G| = |H|[G:H]$$

Theorem 1.4.6. Lagrange's Theorem. Let H be a subgroup of a finite group G. The order of H divides the order of G.

Corollary 1.4.7. The order of an element of a finite group divides the order of the group.

Corollary 1.4.8. If G is a group of prime order then for $a \in G$ where $a \neq \mathbb{I}$, we have $G = \langle a \rangle$.

Corollary 1.4.9. If $\varphi: G \to G'$ is a homomorphism of finite groups then

$$|G| = |\ker(\varphi)||\operatorname{Im}(\varphi)|$$

1.5 Normal Subgroups

Definition 1.5.1. A subgroup N of a group G is **normal** if for every $a \in N$ and $g \in G$, $gag^{-1} \in N$.

Proposition 1.5.2. For any homomorphism $\varphi: G \to G'$ the $\ker(\varphi)$ is a normal subgroup of G.

Proposition 1.5.3. Let $H \subset G$ be a subgroup. Then the following are equivalent

- 1. H is a normal subgroup.
- 2. For all $q \in G$, $qHq^{-1} = H$
- 3. For all $G \in G$, gH = Hg
- 4. Every left coset of H in G is a right coset of H in G.

Corollary 1.5.4. If a group G has just one subgroup of order n, then that subgroup is normal.

1.6 Quotient Groups

Definition 1.6.1. If $H \subset G$ is a subgroup. The **Quotient** is defined $G/H = \{ \text{left cosets of } H \}$.

Proposition 1.6.2. If $H \subset G$ is a normal subgroup, then G/H is a group with law of composition [aH][bH] = [abH].

Theorem 1.6.3. Correspondence Theorem Let $\varphi: G \to G'$ be a surjective homomorphism with kernal K. There is a bijective correspondence between subgroups of G' and subgroups of G that contain K.

{subgroups of G that contain K} $\leftrightarrow G/K$

1.7 Product Groups

Definition 1.7.1. If G and G' are groups, $G \times G'$ is the **product group** defined

$$G \times G' = \{(g, g') | g \in G, g' \in G'\}$$

with the law of composition

$$(a, a')(b, b') = (ab, a'b')$$

Proposition 1.7.2. Let G be a cyclic group of order mn where gcd(m,n) = 1 then $G \equiv C_m \times C_n$.

Proposition 1.7.3. Let H, K be subgroups of a group G. Consider the multiplication map

$$f: H \times K \to G$$

given by f(h,k) = hk. Then

- 1. f is a homomorphism if an only if kh = hk for all $h \in H$ and $k \in K$
- 2. f is injective if and only if $H \cap K = \{1\}$
- 3. if H is normal the image HK of f is a subgroup of G.

In particular, $G \cong H \times K$ under f if and only if $H \cap K = \{1\}$, HK = G and K and H are both normal.

Proposition 1.7.4. The map $\pi: G \to G/N$ defined by $\pi(x) = [aN]$ such that $x \in aN$ is a surjective homomorphism with kernal N.

Theorem 1.7.5. First Isomorphism Theorem Let $\varphi: G \to G'$ be a surjective homomorphism and let N be its kernal.

$$G' \cong G/N$$

1.8 Group Actions

Definition 1.8.1. An action of a group G on a set S is a map

$$G \times S \to S$$

$$(g,s)\mapsto g*s$$

such that

- 1. 1 * s = s for all $s \in S$.
- 2. Associativity: (gg') * s = g * (g * s) for all $g, g' \in G$ and $s \in S$.

Definition 1.8.2. Given an action of a group G on the set S, the **orbit** O_s of an element $s \in S$ is

$$O_s = \{gs \in S | g \in G\}$$

Definition 1.8.3. An action of G on S is **transitive** if $S = O_s$ for some $s \in S$.

Definition 1.8.4. The **stabilizer** G_s of an element $s \in S$ is

$$G_s = \{ g \in G | gs = s \}$$

Proposition 1.8.5. Let G be a subgroup of a group G.

- 1. The action of G on G/H is transitive.
- 2. The stabilizer $G_{[H]}$ of [H] is the subgroup H.

Theorem 1.8.6. textbfOrbit Stabilizer Theorem Let G be a group action on a set S. For any $s \in S$, there is a bijection

$$\epsilon: G/G_s \leftrightarrow O_s$$

$$[aG_s] \mapsto as$$

such that $\epsilon(g[C]) = g\epsilon([C])$ for all $g \in G$ and $[C] \in G/G_s$

Corollary 1.8.7. Let G be a group acting on a finite set S. Then for any $s \in S$

$$|G| = |O_s||G_s|$$

1.9 Conjugation

Definition 1.9.1. The **conjugate** of $a \in G$ by $g \in G$ is gag^{-1} .

Definition 1.9.2. The **conjugation action** is the action of a group G defined by $G \times G \to G$ with $(g, x) \mapsto gxg^{-1}$.

Lemma 1.9.3. G is abelian \Leftrightarrow conjugation map is the identity

Definition 1.9.4. The **centralizer** of x is the stabilizer of x under conjugation.

$$Z(x) = \{g \in G | gxg^{-1} = x\} = \{g \in G | gx = xg\}$$

Definition 1.9.5. The conjugacy class of x is the orbit of x under conjugation.

$$C(x) = \{gxg^{-1} \in G | g \in G\}$$

Definition 1.9.6. The **center** of a group G is the subgroup

$$Z = \{ z \in G | zg = gz \text{ for all } g \in G \}$$

Corollary 1.9.7. The center of a group is a normal subgroup.

Corollary 1.9.8. Every centralizer contains the center.

Proposition 1.9.9. The Class Equation The orbits of of conjugation partition the group.

$$|G| = \sum_{\text{conjugacy classes } C} |C|$$

1.10 p-Groups

Definition 1.10.1. A p-group is a group of order p^n for some prime p.

Proposition 1.10.2. The center of a *p*-group is non-trivial.

Theorem 1.10.3. Fixed Point Theorem Let G be a p-group action on a finite set S If |S| is not divisible by p, then there is a fixed point for the action of G on S.

Proposition 1.10.4. Every group of order p^2 is abelian.

Corollary 1.10.5. A group of order p^2 is either cyclic or a product of two cyclic groups

Definition 1.10.6. A subgroup $H \subset G$ of order p^e is called a **Sylow** p-subgroup.

Theorem 1.10.7. First Sylow Theorem A finite group whose order is divisible by a prime contains a Sylow *p*-subgroup.

Corollary 1.10.8. A group whose order is divisible by a prime p contains an element of order p.

Theorem 1.10.9. Second Sylow Theorem Let G be a finite group whose order is divisible by a prime p.

- 1. The Sylow p-subgroups of G are conjugate subgroups.
- 2. Every subgroup of G that is a p-group is contained in a Sylow p-subgroup.

Corollary 1.10.10. A group G has just one Sylow p-subgroup H if and only if H is normal.

Theorem 1.10.11. Third Sylow Theorem Let G be a finite group whose order $n = p^e m$, with p prime and p not dividing m. Let s be the number of Sylow p-subgroups of G. Then s divides m and $s \equiv 1 \mod p$.

Chapter 2

Field Theory

2.1 Rings and Fields

Definition 2.1.1. A ring R is a set with two laws of composition denoted + and \times that satisfy the following axioms:

- **Identity** \exists elements denoted $0, 1 \in R$ such that $1 \times a = a$ and $0 + a = a, \forall a \in R$.
- Additive Inverse For all $a \in R$, there exists an element $-a \in R$ such that -a + a = 0.
- Associativity For all $a, b, c \in R$, $a \times (b \times c) = (a \times b) \times c$ and a + (b + c) = (a + b) + c.
- Commutativity For all $a, b \in R$, $a \times b = b \times a$ and a + b = b + a.
- **Distributivity** For all $a, b, c \in R$, $a \times (b + c) = (a \times b) + (a \times c)$.

Definition 2.1.2. A field F is a ring where every nonzero element has a multiplicative inverse.

• Multiplicative Inverse For all nonzero $a \in F$, there exists an element $a^{-1} \in R$ such that $a \times a^{-1} = 1$.

Definition 2.1.3. A subring H is a subset of a ring R with the following properties

- Closure For all $a, b \in H$, $a \times b$, $a + b \in H$.
- Identity $0, 1 \in H$.
- Additive Inverse For all $a \in H$, $-a \in H$.

Definition 2.1.4. A subfield H is a subring of a field F that contains multiplicative inverses of nonzero elements.

• Multiplicative Inverse For all $a \in H$, $a^{-1} \in H$.

Proposition 2.1.5. Let R be a ring. 0 = 1 in R if and only if R is the zero ring.

2.2 Ring Homomorphisms

Definition 2.2.1. A ring homomorphism $\varphi: R \to R'$ is a map such that for all $a, b \in R$

- 1. $\varphi(a+b) = \varphi(a) + \varphi(b)$
- 2. $\varphi(ab) = \varphi(a)\varphi(b)$
- 3. $\varphi(1) = 1$

Definition 2.2.2. A **ring isomorphism** is a bijective ring homomorphism.

Proposition 2.2.3. Let F be a field. If $f: F \to R$ is a ring homomorphism and R is nonzero, then f is injective.

Corollary 2.2.4. Any homomorphism between fields is injective.

2.3 Quotient Rings

Definition 2.3.1. The quotient ring R/I where I is and ideal of the ring R is the ring of cosets of I with ring structure

$$(a+I)+(b+I)=(a+b+I)$$

$$(a+I)(b+I) = (ab+I)$$

2.4 Product Rings

Definition 2.4.1. If R and R' are rings, $R \times R'$ is the **product ring** defined

$$R \times R' = \{(r, r') | r \in R, r' \in R'\}$$

with the laws of composition

$$(a, a') + (b, b') = (a + b, a' + b')$$

 $(a, a')(b, b') = (a \times b, a'b')$

2.5 Characteristic

Definition 2.5.1. A field F has **characteristic** n if $\sum_{n=0}^{\infty} 1 = 0$. If no such sum is possible a field has characteristic 0.

Proposition 2.5.2. The characteristic of a field must be prime.

Definition 2.5.3. For prime $p \in \mathbb{N}$, let \mathbb{F}_p denote the field $\mathbb{Z}/(p)$.

Proposition 2.5.4. If a field F has characteristic p > 0 then there exists a unique homomorphism $\mathbb{F}_p \to F$ and if p = 0 then there exists a unique homomorphism $\mathbb{Q} \to F$.

2.6 Polynomial Rings

Definition 2.6.1. A polynomial with coefficients $a_i \in R$ in a ring R is a finite linear combination of powers of x^i

$$f(x) = a_n x^n + \dots + a_1 x + a_0$$

Definition 2.6.2. The **degree** of a polynomial f is the largest n such that $a_n \neq 0$.

Definition 2.6.3. A polynomial f is **monic** if $a_n = 1$ where $n = \deg f$.

Definition 2.6.4. For a ring R the **polynomial ring** denoted $R[x_1, \ldots, x_r]$ is the ring of polynomials constructed from linear combinations of powers of the variables x_1, \ldots, x_r .

Proposition 2.6.5. Let $x = (x_1, \dots, x_m)$ and $y = (y_1, \dots, y_n)$ be sets of variables. There is a unique isomorphism

$$R[x,y] \rightarrow R[x][y]$$

which is the identity on R and sends $x \mapsto x, y \mapsto y$.

2.7 Ideals

Definition 2.7.1. An ideal I of a ring R is an additive subgroup such that for all $s \in I$ and $r \in R$, $rs \in I$.

Definition 2.7.2. A principle ideal generated by an element $a \in R$ in a ring R is the ideal

$$(a) = aR = Ra = \{ra | r \in R\}$$

Proposition 2.7.3. The kernel of a ring homomorphism is an ideal.

Definition 2.7.4. An ideal generated by a set of elements $a_1, \ldots, a_n \in R$ in a ring R is the ideal

$$(a_1,\ldots,a_n) = \{r_1a_1 + \cdots + r_na_n | r_1,\ldots,r_n \in R\}$$

Definition 2.7.5. An ideal is **proper** if it is neither $\{0\}$ nor R.

Proposition 2.7.6. A ring R is a field if and only if the only proper ideal is the zero ideal.

Definition 2.7.7. A maximal ideal M of a ring R is an ideal such that $M \neq R$ and there are not ideals I such that $M \subsetneq I \subsetneq R$.

Proposition 2.7.8. An ideal is maximal if and only if R/I is a field.

2.8 Integral Domains

Definition 2.8.1. A domain is a ring R such that $\forall a, b \in R$, if ab = 0, then a = 0 or b = 0

Proposition 2.8.2. Any field is a domain.

Proposition 2.8.3. Any finite domain is a field.

Definition 2.8.4. An ideal I of a ring R is called **prime** if R/P is a domain

Proposition 2.8.5. Any maximal ideal is prime.

Definition 2.8.6. A **principal ideal domain** is a domain *R* in which every ideal is principal.

Definition 2.8.7. A euclidean domain is a domain R a function $N: R \setminus \{0\} \to \mathbb{Z}_{>0}$ such that

- 1. $\forall x, y \in Rx \neq 0, \exists q, r \in Rs.t.y = xq + r$
- 2. $\forall x, y \in Rx \neq 0, N(x) \leq N(xy)$

Theorem 2.8.8. Any euclidean domain is a principal ideal domain

Proposition 2.8.9. Let $p(x) \in F[x]$ and $\alpha \in F$ if $p(\alpha) = 0$ then $p(x) = (x - \alpha)q(x)$ for some $q(x) \in F[x]$

2.9 Irreducibility

Definition 2.9.1. A unit is a ring R is an element which has a multiplicative inverse.

Proposition 2.9.2. If $x \in R$, x is a unit if and only if (x) = R.

Definition 2.9.3. An **irreducible** element $r \in R$ is a nonzero nonunit element where x = ab implies a or b is a unit.

Theorem 2.9.4. If R is a principle ideal domain then a nonzero I = (x) is maximal if and only if x is irreducible.

Lemma 2.9.5. Gauss's Lemma - If $p(x) \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Z}[x]$ then p(x) is still irreducible in $\mathbb{Q}[x]$.

Lemma 2.9.6. Eisenstein's Criterion Let $p(x) \in \mathbb{Z}[x]$, let $\beta \in \mathbb{Z}$ be a prime. $p(x) = \sum_{i=0}^{n} a_i x^i$ If

$$\beta \not | a_n, \quad \beta | a_0, a_1, \dots, a_{n-1}, \quad \beta \not | a_0$$

then p(x) is irreducible.

2.10 Field Extensions

Definition 2.10.1. A field extension is an (injective) homomorphism between fields.

Definition 2.10.2. A field extension is **algebraic** if

Definition 2.10.3. A field extension is transcendental if

Proposition 2.10.4. If $F \to K$ is a field extension then K is a vector space over F.

Definition 2.10.5. The **degree** of a field extension is the dimension of the vector space formed.

Proposition 2.10.6. If $F \to K$ is a degree n field extension and $K \to L$ is a degree m extension, then $F \to K \to L$ is a degree mn extension.

Proposition 2.10.7. Every finite extension is a composition of algebraic extensions.

Definition 2.10.8. A polynomial $p(x) \in F[x]$ splits if it factors into

$$c(x-r_1)(x-r_2)\dots(x-r_n)$$
 $r_i\in F$

Proposition 2.10.9. Let F be a field, \exists field extension $F \to \Omega$ such that p(x) splits as an element of $\Omega[x]$.

Definition 2.10.10. A field Ω is called algebraically closed if every polynomial $p(x) \in \Omega[x]$ has a root in Ω .

Proposition 2.10.11. The following are equivalent:

- 1. Ω is algebraically closed.
- 2. Any polynomial $p(x) \in \Omega[x]$ splits.
- 3. The only irreducible polynomials in Ω are linear.
- 4. If $\Omega \to L$ is a finite field extension then $\Omega = L$.

Theorem 2.10.12. The Fundamental Theorem of Algebra - C is algebraically closed.

Theorem 2.10.13. Any field can be embedded into an algebraically closed field.