

mastermanas805@gmail.com >

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Social Networks (course)

Announcements (announcements)

About the Course (https://swayam.gov.in/nd1_noc20_cs32/preview) Ask a Question (forum)

Progress (student/home) Mentor (student/mentor)

Unit 7 - Week 5

Register for Certification exam

(https://nptelaprilexam.swayam.gov.in/)

Thank you for taking the Assignment 5.

Course outline

How does an NPTEL online course work?

Week 0

Week 1

Week 2

Week 3

Week 4

Week 5

Assi	gr	me	ent	5

Your last recorded submission was on 2020-03-04, 23:15 Due date: 2020-03-04, 23:59 IST. IST

IST			

1) In a graph having 'n' nodes, how many possible triangles can be present?

1 point

O n^3

○ 3n

(n(n-1)(n-2))/6

O None of the above

2) What can we say about the stability/balance of K6 (complete graph on 6 nodes) having all **1 point** edges -ve, with one random edge being

positive? (Choose the most appropriate):

Olt is a stable graph.

O It is an unstable graph but it will have exactly four balanced triangles.

O It is an unstable graph but it will have exactly six balanced triangles.

۸	Lecture-54:	It is an unstable graph but It will have only one balanced triangle.				
X	Lecture-54: sessment submitted. Spatial Segregation: An Introduction	3) In a graph having 8 nodes, how many possible edges can be present?				
	(unit?	28				
	unit=58&lesson=59)	○ 36				
	Lecture55-	○ 56				
	Spatial Segregation:	○ 58				
	Simulation of the Schelling Model (unit? unit=58&lesson=60)	4) Which of the following graphs are stable?	1 point			
	Lecture56- Spatial Segregation: Conclusion (unit? unit=58&lesson=61)	(a) + + C (b) + C				
	Lecture 57- Schelling Model Implementation- 1(Introduction) (unit? unit=58&lesson=62)	(c) - A (d) - + C				
	O Lecture 58- Schelling Model Implementation- 2 (Base Code)	(b) & (d) ONLY(a) & (c) ONLY(c) & (d) ONLY				
	(unit?	(a) & (b) ONLY				
	unit=58&lesson=63)	5) Which of the triangles shown in Figure displayed in Ques 4 follows the social belief that	1 point			
Lectur	Lecture 59-	'Enemy of my enemy is my friend'?	-			
	Schelling Model	○ (a)				
	Implementation-	(b)				
	Visualization and Getting a	○ (c)				
	list of boundary	○ (d)				
	and internal nodes (unit? unit=58&lesson=64)	6) A friend's friend tends to become a friend, and so does an enemy's enemy. The reasons for the same are	1 point			
	Lecture 60-	○ Social influence and clustering respectively				
	Schelling	Social influence and structural balance respectively				
	Model Implementation	Triadic closure and structural balance respectively				

- Getting a list Triadic closure and clustering respectively Assessmeatistalmitted. X nodes (unit? 7) A signed graph is balanced if and only if it contains no cycle with 1 point unit=58&lesson=65) O An even number of negative edges Lecture 61-O An odd number of negative edges Schelling Model O An even number of positive edges Implementation An odd number of positive edges - Shifting the unsatisfied 8) Which of the following structures of graphs is/are balanced? 1 point nodes and visualizing the final graph (unit? unit=58&lesson=66) Mutual Mutual Mutual Mutual Mutual Mutual Lecture 62-Friends Friends Friends Enemies Animosity Friendship Positive and between In between In In In Negative sets sets Set A Set B Set A Set B Relationships -Introduction (unit? Set A Set B Set A Set B unit=58&lesson=67) Lecture 63-(a) (b) Structural Balance (unit? unit=58&lesson=68) Mutual Mutual Mutual Mutual Lecture 64-Mutual Mutual Enemies Friendship Enemies Friends Enemies Enemy's Animosity between between In In In In Enemy is a sets sets Friend (unit? Set A Set B Set A Set B unit=58&lesson=69) Lecture 65-Set A Set B Set A Set B Characterizing the structure of balanced (c) (d) networks (unit? unit=58&lesson=70) Both (a) and (c) Lecture 66-Balance Only (a) Theorem (unit? Only (b) unit=58&lesson=71) O Both (b) and (d) Lecture 67-

9) Can we have a complete signed graph on 4 nodes (K4) and 5 nodes (K5) respectively,

each having exactly one unstable triangle?

○ K4 - Yes, K5 - Yes

Proof of

Balance

Theorem (unit? unit=58&lesson=72)

1 point

Lecture 68-Assessment submitted.

- X positive and negative edges (unit? unit=58&lesson=73)
 - Lecture 69 Outline of
 Implementation
 (unit?
 unit=58&lesson=74)
 - Lecture 70-Creating graph, displaying it and counting unstable triangles (unit? unit=58&lesson=75)
 - Lecture 71Moving a
 network from
 an unstable to
 stable state
 (unit?
 unit=58&lesson=76)
 - Lecture 72-Forming two coalitions (unit? unit=58&lesson=77)
 - Lecture 73 Forming two coalitions (Continued) (unit? unit=58&lesson=78)
 - Lecture 74 Visualizing
 coalitions and
 the evolution
 (unit?
 unit=58&lesson=79)
 - Quiz : Assignment 5 (assessment? name=204)

- O K4 Yes, K5 No
- O K4 No, K5 Yes
- K4 No, K5 No

10Which of the following graphs is/are balanced?

- Only (b) and not (a)
- O Neither (a) nor (b)
- O Both (a) and (b)
- Only (a) and not (b)

You may submit any number of times before the due date. The final submission will be considered for grading.

Submit Answers

1 point

