Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1.	(Currently Amended) A method of operating a gas vane pump including: (a)
	_a housing (10), (b)
	_a rotor (40) rotatably disposed within said housing and cooperating with said
housing to def	ine a pump chamber-(42) having a dimension in a radial direction of the rotor,
which dimension varies in a rotating direction of the rotor, (c)	
	at least one vane (70) held by said rotor movably relative to said rotor and
dividing said p	oump chamber into a plurality of variable-volume chambers (80), and (d)
	a lubricant supply passage (100) formed through said housing and said rotor,
said lubricant	supply passage being closed when said rotor is placed at an angular position
relative to said	housing which angular position is outside a predetermined angular range, and
opened for cor	nmunication with an external lubricant supply source when said rotor is placed
at an angular p	osition within said predetermined angular range,

wherein said vane pump is operated so as to satisfy a condition that when said rotor-(40) is stopped at an angular position relative to said housing, which angular position is within said predetermined angular range, a mass of a lubricant remaining in a lowest portion of said pump chamber-(42) is divided into a first portion and a second portion, by an initial divider vane-(74) which is provided by one of said plurality of vanes-(70).

- 2. (Previously Presented) A method according to claim 1, wherein a ratio of a volume of said first portion to a volume of said second portion is within a range between 4:1 and 1:4.
- 3. (Previously Presented) A method according to claim 2, wherein said ratio is between 3:1 and 1:3.

- 4. (Previously Presented) A method according to claim 2, wherein said ratio is between 2:1 and 1:2.
- 5. (Previously Presented) A method according to claim 2, wherein said ratio is between 1.5:1 and 1:1.5.
- 6. (Previously Presented) A method according to claim 1, wherein said gas vane pump is operable as a vacuum pump.
 - (Currently Amended) A gas vane pump comprising:
 a housing-(10);

a rotor (40)-rotatably disposed within said housing and cooperating with said housing to define a pump chamber (42) having a dimension in a radial direction of the rotor, which dimension varies in a rotating direction of the rotor;

at least one vane-(70) held by said rotor movably relative to said rotor and dividing said pump chamber into a plurality of variable-volume chambers-(80); and

a lubricant supply passage (100) formed through said housing and said rotor, said lubricant supply passage being closed when said rotor is placed at an angular position relative to said housing, which angular position is outside a predetermined angular range, and opened for communication with an external lubricant supply source when said rotor is placed at an angular position within said predetermined angular range,

wherein a relative position between said lubricant supply passage-(100) in an open state thereof and an initial divider vane-(74) which is one of said plurality of vanes is determined such that a point of contact of said initial divider vane with an inner circumferential surface of said housing when said rotor-(40) is stopped at an angular position relative to said housing, which angular position is in the middle of said predetermined angular range, is located at a lowest point of said pump chamber or at a position adjacent to said lowest point.

- 8. (Currently Amended) A gas vane pump according to claim 7, wherein the position adjacent to said lowest point of said pump chamber-(42) is located within a center angle range of 30° with respect to a center of gravity of an interior space of said housing-(10) in cross section in a plane perpendicular to an axis of rotation of said rotor-(40), said lowest point being located in the middle of said center angle range.
- 9. (Previously Presented) A gas vane pump according to claim 8, wherein said center angle range is 20°.
- 10. (Previously Presented) A gas vane pump according to claim 8, wherein said center angle range is 10°.
- 11. (Previously Presented) A gas vane pump according to claim 8, wherein said center angle range is 6°.
- 12. (Currently Amended) A gas vane pump according to claim 7, wherein said position adjacent to said lowest point of said pump chamber-(42) is located within a predetermined center angle range with respect to a center of gravity of an interior space of said housing in cross section in a plane perpendicular to an axis of rotation of said rotor-(40), said predetermined center angle range being no more than four times as large as said predetermined angular range of said rotor, said lowest point being located in the middle of said center angle range.
- 13. (Currently Amended) A gas vane pump according to claim 12, wherein said center angle range is no more than two times as large as said predetermined angular range of said rotor-(40).
- 14. (Currently Amended) A gas vane pump according to claim 12, wherein said center angle range is no more than said predetermined angular range of said rotor-(40).
 - 15. (Currently Amended) A method of operating a gas vane pump including: (a)

 a housing (10), (b)

a rotor-(40) rotatably disposed within said housing and cooperating with said
housing to define a pump chamber (42) having a dimension in a radial direction of the rotor,
which dimension varies in a rotating direction of the rotor, (e)
at least one vane (70) held by said rotor movably relative to said rotor and
dividing said pump chamber into a plurality of variable-volume chambers-(80), and (d)
a lubricant supply passage (100) for introducing a lubricant from an external
lubricant supply source into said pump chamber,

wherein said rotor (40) is stopped at an angular position relative to said housing, at which a mass of a lubricant remaining in a lowest portion of said pump chamber (42) is divided into a first portion and a second portion, by an initial divider vane (74) which is provided by one of said plurality of vanes (70), and that when rotation of said rotor is resumed, said first portion is first discharged from said pump chamber by said initial divider vane, and said second portion is then discharged from said pump chamber by a subsequent vane which follows said initial divider vane.

16. (Currently Amended) A method according to claim 15, wherein said lubricant supply passage (100) is formed through said housing (10) and said rotor (40), and is closed when said rotor is placed at an angular position relative to said housing, which angular position is outside a predetermined angular range, and opened for communication with said external lubricant supply source when said rotor is placed at an angular position within said predetermined angular range, said vane pump being operated so as to satisfy a condition that when said rotor is stopped at the angular position within said predetermined angular range, said mass of the lubricant remaining in said lowest portion of said pump chamber (42) is divided into said first and second portions by said initial divider vane.