Twitter in the Parliament - A Text-based Analysis of German Political Entities

Patrick Schulze, Simon Wiegrebe

Supervisors:

Prof. Dr. Christian Heumann, Prof. Dr. Paul W. Thurner

7. Juli 2020

Overview

- Explore estimated topical structure with respect to different dimensions, e.g. membership in political party, time, ...
- Precisely: examine relationship between document-level prevalence covariates x_d and topic proportions θ_d
- Natural idea: regress topic proportions on prevalence covariates
- Problem: θ_d is *latent* variable and has to be estimated itself!
- In following two approaches to address this problem:
 - ① Regression that takes into account uncertainty about θ_d : perform sampling technique known as "method of composition" in social sciences
 - 2 Direct assessment of STM output via logistic normal distribution with estimated topical prevalence parameters $\hat{\Gamma}$ and $\hat{\Sigma}$

Method of Composition

- Let $\theta_{(k)} := (\theta_{1,k}, \dots, \theta_{D,k})^T \in [0,1]^D$ denote proportion of k-th topic for all D documents
- Method of Composition (repeat m times):
 - 1 Sample $heta_{(k)}^*$ from (variational) posterior of $heta_{(k)}$ estimated by STM
 - 2 Run regression model with response $\theta_{(k)}^*$ and covariates \boldsymbol{X} to obtain estimate $\hat{\boldsymbol{\xi}}^*$ of regression coefficients $\boldsymbol{\xi}^*$ and covariance of $\hat{\boldsymbol{\xi}}^*$, $\hat{\boldsymbol{V}}_{\boldsymbol{\xi}}^*$
 - 3 Sample $\tilde{\boldsymbol{\xi}}^*$ from $F(\hat{\boldsymbol{\xi}}^*,\hat{\boldsymbol{V}}_{\boldsymbol{\xi}}^*)$, where F is (asymptotic) distribution of $\hat{\boldsymbol{\xi}}^*$
- ullet Idea: samples $ilde{oldsymbol{\xi}}^*$ take into account uncertainty in $heta_{(k)}$
- Visualization of topic-metadata relationship: For observation \mathbf{x}_{pred} , plot \mathbf{x}_{pred} vs. predicted response with $\mathbf{x}_{\text{pred}}^T \tilde{\mathbf{\xi}}^*$ as linear predictor

Method of Composition: Problems

Several concerns with method of composition:

- In STM, regression model in step 2 is OLS; however OLS not appropriate to model (sampled) proportions in open unit interval
- Mixing of Bayesian and frequentist approach questionable:
 - From Bayesian perspective, $\tilde{\boldsymbol{\xi}}^*$ can only be considered sample from posterior of $\boldsymbol{\xi}$ in certain Bayesian regression models with questionable (uniform) prior assumptions
 - Using $\mathbf{x}_{\text{pred}}^T \tilde{\mathbf{\xi}}^*$ as linear predictor does *not* yield sample of posterior predictive distribution
- Separate modeling of topic proportions neglects dependence of different topics among each other

Method of Composition: Usage within R Package stm

- Problem: OLS regression not suitable for (sampled) proportions, which are restricted to interval (0,1)
- Estimated relationship between proportions and prevalence covariates might even involve negative proportions:

Figure: Emprical mean and 95% credible intervals for topics 1 and 6 over time, estimated using estimateEffect from the stm package.

Method of Composition: Extension of existing approach

 Instead of OLS regression, we can use a beta regression or a quasibinomial GLM (both with logit-link) to adequately model proportions

Figure: Empirical mean and 95% credible intervals, obtained using a quasibinomial GLM.

Mixing of Bayesian and Frequentist Approach

- Regression within of method of composition is frequentist regression
- However, in STM $\tilde{\boldsymbol{\xi}}^*$ considered samples from (marginal, i.e., integrated over latent topic proportions) posterior of regression coefficients; only true by assuming uniform priors for $\boldsymbol{\xi}$
- Caution: uncertainty from previous plots with respect to prediction of mean ⇒ does not reflect variation of topic proportions in data!
- Better idea: fully Bayesian approach with more realistic priors and sampling from posterior predictive distribution to reflect variation of data

Fully Bayesian Approach: Idea

- Idea: explicitly perform Bayesian regression in second step of each iteration of method of composition
- Modeling via beta regression (with normal priors centered around zero) in order to model proportions in (0,1)
- Visualization: Sample proportions from posterior predictive distribution at end of each step of method of composition (i.e., conditioning on previously sampled $\theta_{(k)}^*$) with covariate values \mathbf{x}_{pred}

Fully Bayesian Approach: Results

- Predicted (empirical) mean mostly in line with results from previous analysis
- Uncertainty now w.r.t. variation of topic proportions in data
- Observed variation for topic proportions corresponds well to variation according to predictive posterior

Figure: Smooth effects without credible intervals (left) and smooth effects with 95% credible intervals (right) $_{9/12}$

Multivariate Modeling of Proportions

- ullet Remember, by assumption: $oldsymbol{ heta}_d \sim \mathsf{LogisticNormal}(oldsymbol{\Gamma}^T oldsymbol{x}_d^T, oldsymbol{\Sigma})$
- Logistic normal distribution assumes high dependence among individual components ⇒ not fully taken into account in univariate modeling via, e.g., the beta distribution
- Inference within STM involves finding estimates $\hat{\Gamma}$ and $\hat{\Sigma} \Rightarrow$ Idea: plug estimates into logistic normal distribution
- For given covariate value \mathbf{x}_{pred} , obtain topic proportion as $\boldsymbol{\theta}_d^* \sim \text{LogisticNormal}(\hat{\boldsymbol{\Gamma}}^T \mathbf{x}_{\text{pred}}^T, \hat{\boldsymbol{\Sigma}})$

Multivariate Modeling of Proportions

- Plugging in Γ and $\hat{\Sigma}$ is "naïve" method: ideally sample prevalence parameters from their posterior \Rightarrow would yield higher variation
- However, not easily possible ⇒ should be addressed in future implementations

Figure: Smooth effects without credible intervals (left) and smooth effects with credible intervals (right)

Bibliography