Assignment 8

Task 1

Used the Branin Function to perform this Task.

$$f(x,y) = \left(y - \frac{5.1}{4\pi^2}x^2 + \frac{5}{\pi}x - 6\right)^2 + 10\left(1 - \frac{1}{8\pi}\right)\cos(x) + 10$$

Added Gaussian mean zero noise to the above value.

<u>Plot</u>

Task 2

Spearmint Package was used to run the Bayesian Optimization for the above function.

Matern52 Covariance Function was used.

Expected Improvement Acquisition Function was used.

The spearmint package finds the Global Minima.

True Minima of the above function : **0.2430**

Minima observed running Spearmint: 0.270087

<u>Plot</u>

Task 3

Multiarm bandit optimization Matlab Code

```
clc;
K = 3; %No of arms
theta = [0.50 \ 0.85 \ 0.10];
T = 1000;
alpha = 1;
beta = 1;
s = zeros(K, 1);
f = zeros(K, 1);
x = 0:0.01:1;
for t=1:T
    % Choose action.
    theta hat = zeros(1, K);
    for i=1:K
        theta hat(1,i) = betarnd(s(i)+alpha, f(i)+beta);
    end
    [~, action] = max(theta hat);
    % Pull lever.
    reward = rand <= theta(action);</pre>
    % Update.
    s(action) = s(action) + reward;
    f(action) = f(action) + 1 - reward;
    for i=1:K
        y = betapdf(x, s(i) + alpha, f(i) + beta);
        plot(x, y)
        hold on;
    end
    hold off;
end
```

