مجله حسابداری مدیریت سال دوم / پیششماره سوم / بهار ۱۳۸۸

نقد و بررسی روش های برآورد بهای تمام شده نرم افزار مطالعه موردی شرکت همکاران سیستم

دکترایرج نوروش ^۱ دکتر بیتا مشایخی ^۲ محمد نوری جاوید ^۳

تاریخ پذیرش: ۸۸/۰۳/۰۶

تاریخ دریافت: ۸۸/۰۱/۲۳

چکیده:

این مقاله به معرفی موضوع برآورد بهای تمام شده نرم افزار می پردازد. بدین منظور درباره انواع روش های برآورد و نقاط قوت و ضعف آنها صحبت شده و در نهایت برای آشنایی بیشتر با موضوع برآورد نرم افزار، یکی از جذاب ترین مدل های برآورد بهای تمام شده نرم افزار، مدل COCOMO، تشریح شده است.

واژههای کلیدی: برآورد بهای تمام شده نرم افزار، مدل های برآورد نرم افزار، مدل COCOMO

¹ - دانشیار دانشکده مدیریت دانشگاه تهران

^{2 -} استادیار دانشکده مدیریت دانشگاه تهران- نویسنده اول و مسئول مکاتبات.

آدرس: بزرگراه جلال آل احمد، پل نصر، دانشکده مدیریت دانشگاه تهران Email: mashykhi@ut.ac.ir

³ - کارشناس ارشد حسابداری دانشگاه تهران

۱- مقدمه

روز به روز بر تعداد شرکت هایی که از فناوری اطلاعات استفاده می کنند افزوده می شود. بکارگیری کامپیوتر در سازمان ها ابزار قدرتمندی برای تولید و مدیریت فراهم آورده و منجر به افزایش بهره وری شده است. طی ۱۰ سال گذشته تمایل شدیدی به استفاده از سیستم های اطلاعاتی تجاری موسوم به سیستم های برنامه ریزی منابع سازمان (ERP) به وجود آمده است.

عموما شرکت های تولید کننده نرم افزار دچار معضل افزایش هزینه ها بیش از میزان بودجه شده می باشند. طبق تحقیقی که توسط موسسه استندیش آنجام شده، بطور متوسط هزینه های واقعی یک پروژه نرم افزاری ۱۸۹٪ بیشتر از میزان بودجه شده است و تنها ۱۷٪ پروژه ها به موقع، طبق هزینه بودجه شده و با تمام قابیلت ها و ویژگی هایی که از اول مشخص شده بودند به اتمام می رسند. به دنبال این قضیه، نارضایتی مشتری؛ بی کیفیتی نرم افزارها و ناامیدی تولید کنندگان بوجود می آید.

یک امر ضروری در مراحل اولیه پروژه، برآورد زمان و فعالیت لازم برای تکمیل پروژه است. متاسفانه این موضوع یکی از مشکل ترین کارها در حوزه فناوری اطلاعات است. اغلب پروژه های نرم افزاری دچار مشکل کمبود مالی و زمان می شوند که یکی از دلایل آن برآوردهای اولیه اشتباه می باشد.

برآورد بهای تمام شده نرم افزار فرآیند پیش بینی مینزان فعالیت لازم برای ایجاد یک سیستم نرم افزاریست (Johnson-1998). بررسی داده های تاریخی مربوط به پروژه های مختلف نشان داده است که روند بهای تمام شده با برخی پارامترهای قابل اندازه گیری همبستگی دارند(Johnson-1998). ایس مشاهدات به ارائه مدل های متعددی منتهی شده است

که برای ارزیابی، پیش بینی و کنترل بهای تمام شده نرم افزار می توانند مورد استفاده قرار بگیرند.

در ادامه این مقاله درباره انواع روش های برآورد و نقاط قوت و ضعف آنها صحبت شده و در نهایت برای آشنایی بیشتر با موضوع برآورد نرم افزار، یکی از جذاب ترین مدل های برآورد بهای تمام شده نرم افزار، مدل COCOMO، تشریح شده است.

٢- ادبيات موضوع

به منظور جلوگیری از افزایش هزینه ها و زمان بیش از میزان بودجه شده یک پروژه نرم افزاری، مدل های برآورد بهای تمام شده متعددی به وجود آمده است. به دلیل وجود تحولات شدید در تولید نرم افزار ایجاد مدلی که برآوردهای دقیق از پروژه در اختیار استفاده کننده قرار دهد بسیار مشکل است. لذا یکی از مهمترین اهداف صنعت نرم افزار ایجاد مدل های مفیدی است که منطبق بر چرخه عمر تولید نرم افزار به دقت باشد و هزینه تولید یک محصول نرم افزاری را به دقت برآورد کند.

سه عامل در تعیین کل هزینه یک پروژه نقش دارد: بهای نرم افزار و سخت افزار به علاوه هزینه نگهداری؛ هزینه ایاب و ذهاب و آموزش؛ هزینه نیروی انسانی برای اغلب پروژه ها عمده ترین هزینه، هزینه نیروی انسانی است. رایانه های پرقدرت مناسب برنامه نویسی نرم افزارها نسبتا ارزان هستند. اگرچه ممکن است به واسطه اینکه مراحل تولید نرم افزار در ایستگاه های کاری متعدد انجام می شود، هزینه ایاب و ذهاب زیادی نیاز باشد اما این هزینه ها به نسبت هزینه نیروی انسانی بسیار ناچیز است. به علاوه بکارگیری سیستم های مخابره الکترونیکی از قبیل ایمیل، وب سایت و ویدئو کفرانس می تواند این هزینه را کاهش دهد.

بررسی مطالعات و تحقیقات انجام شده در زمینه برآورد بهای تمام شده طی سالهای ۱۹۸۹ تا ۲۰۰۴

نشان می دهد که رایج ترین موضوع این تحقیقات معرفی و ارزیابی مدل های برآورد بوده است. این بررسی نشان می دهد که اکثر مقالات به بررسی مدل های برآورد از نقطه نظر فنی پرداخته اند (جدول ۱). همچنین این تحقیقات حاکی از آن است که مقالات ارائه شده غالبا به مطالعه رویکردهای برآورد مبتنی بر گرسیون پرداخته اند. باید به این نکته توجه کرد که بیشتر مدل های پارامتری رایج، مثل COCOMO، جزو این گروه قرار می گیرند. تقریبا نیمی از مقالات جزو این گروه قرار می گیرند. تقریبا نیمی از مقالات

به ساخت، بهبود یا مقایسه مدل ها با مدل های مبتنی بر رگرسیون پرداخته انـد . (,Jørgensen, et. al.,)

همچنین این تحقیقات حاکی از آن است که مقالات ارائه شده غالبا به مطالعه رویکردهای برآورد مبتنی بر رگرسیون پرداخته اند. تقریبا نیمی از مقالات به ساخت، بهبود یا مقایسه مدل ها با مدل های مبتنی بر رگرسیون پرداخته اند (جدول ۲). (Jørgensen, et.).

جدول ۱: طبقه بندی موضوعی مطالعات برآورد بهای تمام شده نرم افزار

جمع	۲۰۰۰–۲۰۰۶	1991999	-19/19	موضوع تحقيق
18 (7.71)	٥٨ (٪٥٨)	97 (7.09)	۳۰ (٪۷۳)	روش برآورد
۱۸ (٪٦)	۳ (٪۳)	٧ (٠/.٤)	۸ (٪۲۰)	تابع برآورد
Y• ('/.V')	٤ (٪٤)	۱۳ (٪۸)	۳ (٪۷)	بهینه سازی مدل ها
٦٠ (٪٢٠)	17 (7.17)	۳۹ (٪۲٤)	0 (%17)	تعيين اندازه سيستم
٤٨ (٪١٦)	18 (7.18)	YO (7.10)	۹ (٪۲۲)	مسائل سازمانى
Y0 (/.A)	18 (%18)	۱۰ (٪٦)	Y (%)	ارزیابی عدم اطمینان مدل ها
۱٦ (٪٥)	٦ (٪٦)	A ('/.o')	۲ (٪۵)	ارزیابی عملکرد برآورد
۳ (٪۱)	Y ('/.Y)	1 (/.1)	٠ (٪٠)	ویژگی های مجموعه داده های مدل
٤ (٪١)	1 (/.1)	٣ (٪٢)	• ('/.•)	ساير

هر مقاله ممكن است در مورد بيشتر از يک موضوع بحث كند.

جدول ۲: سیر تحقیقات حول موضوع روش های برآورد بهای نرم افزار

		_		,
موضوع تحقيق	-19/4	1991999	۲۰۰۰–۲۰۰٤	جمع
ر گرسیون	21 (7.51)	76 (/.47)	51 (7.51)	148 (7.49)
برآورد بر اساس مقایسه	1 (/.٢)	15 (′.9)	15 (/.15)	31 (/.10)
قضاوت تجربى	7 (′/.٧)	13 (/ʌ)	21 (/.٤)	15 (′/.V)
تجزیه کار ^٦	3 (7.7)	5 (/.3)	4 (/.4)	12 (/.4)
Function Point	7 (/.17)	47 (/.29)	18 (%18)	68 (7.22)
طبقه بندی و رگرسیون	0 (/.0)	5 (/.7)	9 (/.11)	14 (/.7)
شبیه سازی	Y (%)	4 (/.2)	4 (/.4)	10 (/.3)
شبکه های عصبی	0 (7.0)	11 (/.7)	11 (/.11)	22 (/.7)
تئورى	YO (/. 49)	14 (/.9)	5 (/.5)	39 (/.13)
روش بيز ^٧	0 (7.0)	1 (/.1)	6 (/.6)	7 (/.2)
ترکیب روشهای مختلف	• (′/.•)	3 (/.2)	۲ (٪۲)	5 (/.2)
ساير	2 (7.5)	7 (/.4)	16 (/.16)	25 (/.8)

هر مقاله ممكن است در مورد بيشتر از يک موضوع بحث كند.

۱-۲- روش های های برآورد

سازمان ها به برآورد هزینه و نیروی انسانی نیازمندند. برای این منظور یکی از روش های موجود در جدول ۳ استفاده می شود (, Sommerville). 2004.

هر تکنیک برآورد نقاط قوت و ضعف خودش را دارد. هر کدام نیاز به اطلاعات مختلفی در مورد پــروژه

دارند لذا اگر اطلاعات مورد نیاز مدل دقیق نباشد برآورد حاصل درست نخواهد بود. هیچ مدلی نتوانسته است بطور مداوم و در همه شرایط برآوردهای دقیقی ارائه دهد. این بدان علت است که برخی از اطلاعات مهم پروژه در مراحل اولیه کار بسیار مبهم و ناقص

جدول ۳: روش های برآورد

شرح	روش
بر اساس اطلاعات موجود درباره بهای تمام شده تاریخی مدلی طرح می شود که برخی	مدل سازی الگوریتمی
مشخصات نرم افزار (معمولا اندازه آن را) به بهای تمام شده پروژه مربوط می کند.	بهای تمام شده^
چندین فرد خبره در زمینه مربوط به حوزه پروژه اقدام به برآورد بهای تمام شده آن می	
کنند و در نهایت با مقایسه برآوردها و بحث و تبادل نظـر بــه یـک اتفــاق نظـر دربــاره	قضاوت حرفه یی ^۹
برآوردها می رسند.	
این تکنیک زمانی کاربرد دارد که پروژه های دیگری مشابه با نرم افزار کنونی قبلا اجـرا	بسرآورد بسر اسساس
شده باشند. بهای پروژه جدید از طریق مقایسه با پروژه های قبلی برآورد می شود.	مقایسه ۱۰
قانون پارکینسون چنین بیان می کند که کار تا هنگامی توسعه می یابــد کــه همــه زمــان	
موجود به اتمام برسد. در این روش بهای تمام شده با توجه به منابع موجود تعیین مـی	قانون پاركينسون''
شود نه بر اساس ارزیابی اهداف پروژه.	
بهای تمام شده نرم افزار تا آن میزانی که مشتری قادر به خرج کـردن بــرای پــروژه مــی	
باشد برآورد می شود. میزان برآورد به بودجه مشتری بستگی دارد نــه بـــه قابلیــت هـــای	Price to win

۲-۲- روش قضاوت حرفه یی

قضاوت حرفه یی که رایج ترین شیوه می باشد بر تجربه جمعی یک تیم از افراد متخصص استوار است. مدیران سیستم های اطلاعاتی عمدتا به روش قضاوت حرفه یی اعتماد می کنند چون برآوردها به سادگی و بدون استفاده از ابزارها یا تکنیک های پیچیده بدست می آیند. برآوردهای حاصل از روش قضاوت حرفه یی معمولا خیلی کمتر از میزان واقعی هستند معمولا خیلی کمتر از میزان واقعی هستند (Jørgensen, et. al., 2004).

۳-۲- روش برآورد بر اساس مقایسه

روش برآورد براساس مقایسه را می تـوان بطـور مختصر این گونه توضیح داد که این روش سه مرحلـه

دارد: در مرحله اول، مشخصه های پروژه ای که قرار است برآورد شود را بر اساس مشخصات عمومی حاصل از اطلاعات تاریخی مجموعه ای از پروژه های تکمیل شده قبلی بدست می آورند. در مرحله دوم، یک یا چند پروژه مشابه (همسایه میاتمثیل و این مجموعه با توجه به معیارهای تشابه که قبلا تعریف شده اند، انتخاب می شوند. در مرحله نهایی، هزینه پروژه های همسایه با هم ترکیب می شوند تا بر آورد هزینه پروژه مورد نظر را شکل دهند (معمولا می مطالعات نشان داده اند که نتایج این روش با روش مطالعات نشان داده اند که نتایج این روش با روش های رگرسیونی قابل مقایسه و حتی در بعضی مواقع بهتر از آنها هستند (Mittas, 2007).

٤-٢- مدل سازى الگوريتمي بهاى تمام شده

این شیوه از یک فرمول ریاضی برای پیش بینی هزینه پروژه، از طریق برآورد های اندازه و تعداد پرسنل متخصص لازم و سایر عوامل، استفاده می کند. یک مدل الگوریتمی از طریق بررسی و تحلیل هزینه و مشخصات پروژه های تکمیل شده به منظور یافتن یک فرمول که با اطلاعات واقعی بهترین تناسب را داشته باشد، بدست می آید.

متاسفانه همه مدل های الگوریتمی از مشکلات بنیادی مشابهی بدین شرح رنج می برند:

- برآورد اندازه در مراحل اولیه پـروژه اغلـب کـار مشکلی است.
- برآورد فاکتورهای تعدیل کننده مدل بسیار ذهنی هستند. برآورد دو نفر با هم تفاوت بسیاری دارد
 که به علت زمینه کاری و تجربه آنها در کار با نوع سیستمی است که تولید می کنند.

تعداد خطوط کد برنامه ، واحد اصلی اندازه گیری نرم افزار در خیلی از مدل های الگوریتمی می باشد. همچنین برآورد اندازه نیرم افیزار می توانید به روش مقایسه با پروژه های تکمیل شده دیگر، بیرآورد به وسیله تبدیل Function Point به تعداد خطوط کد برنامه، برآورد بیر اساس رتبه بندی اجیزاء برنامه و استفاده از یک مرجع معتبر برای تعیین اندازه اجزاء و یا می تواند از طریق قضاوت حرفه یی مهندسین نرم افزار باشد. برآورد دقیق اندازه کید برنامه در مراحل اولیه پروژه بسیار مشکل است زیبرا اندازه کید برنامه به تصمیماتی که برای طراحی نرم افزار مربوط می شود بستگی دارد که در مراحل اولیه این تصمیمات هنوز اتخاذ نشده اند.

Function Point یک واحد اندازه گیری نرم افزار است؛ درست مثل ساعت برای اندازه گیری زمان، مایل برای اندازه گیری مسافت و سلسیوس برای اندازه گیری دما. این روش، نرم افزار را از طریق شمارش

قابلیت هایی که بر اساس طراحی منطقی برای کاربر فراهم می شود، اندازه گیری می کند.

فرآیندهای قابل شامارش دو نوعند: فرآیندهای مربوط به داده ها^۸، فرآیندهای مربوط به نقل و انتقال داده ها و داده ها^۹. نوع اول وظیفه ذخیره و نگهداری داده ها و نوع دوم قابلیت دریافت، تغییر و یا ارسال داده ها به کاربر یا برنامه های دیگر را دربر می گیرند. بعد از تعیین فرآیندها با در نظر گرفتن ضریب پیچیدگی برای هر کدام از فرآیندها، تعداد Function Point تعدیل نشده ۱۱ ز طریق جمع نتایج حاصل بدست می آید. (Longstreet, 2004)

دقت برآوردهای یک مدل برآورد الگوریتمی به میزان اطلاعات در دسترس از پروژه نرم افزاری بستگی دارد. با پیشرفت فرآیند تولید نرم افزار اطلاعات بیشتری از پروژه بدست می آید که باعث می شود برآوردهای پروژه دقیق تر انجام شود. اگر برآورد اولیه از میزان فعالیت لازم برای پروژه X ماه باشد، مقدار واقعی میزان فعالیت در فاصله بین \$0.25x و 4x قرار دارد. این فاصله با پیشرفت تولید، همانطور که در شکل دارد. این فاصله با پیشرفت تولید، همانطور که در شکل ۱ نشان داده شده، کمتر می شود (,.1895

٥-٢- مشكلات مدل هاى الگوريتمى موجود

اینکه آیا مدل های الگوریتمی موجود برای استفاده در حیطه وسیعی از پروژه های نرم افزاری معتبر هستند یا نه جای سوال است؟ کمرر ادر مطالعه مستقلی که روی مدل COCOMOانجام داد به این نتیجه رسید که اختلاف بین مقادیر پیش بینی شده و مقادیر واقعی بیش از ۶۰۰ درصد می باشد (Johnson, 1998). دلایل این امر می تواند یکی از موارد زیر باشد: ساختار مدل ها، پیچیدگی پروژه ها و برآورده اندازه پروژه.

١-٥-٢- ساختار مدل ها

اگرچه اکثر محققین و متخصصین با ایس موضوع موافقند که اندازه پروژه اصلی ترین عامل تعیین کننده میزان فعایت لازم برای تکمیل پروژه است؛ اما رابطه بین اندازه و میزان فعالیت به روشنی مشخص نیست (Johnson, 1998). بیشتر مدل ها میزان فعالیت را بر حسب اندازه تعیین می کنند و برای نشان دادن ایس موضوع که پروژه های بزرگتر فعالیت بیشتری لازم دارد، اندازه را به توان می رسانند (Effort = Size کارد، اندازه را به توان می رسانند (Johnson, 1998). این موضوع بطور تجربی تائید شده اما شواهد کمی برای تائید آن وجود دارد (Johnson, 1998).

غالب مدل ها تحت شرایطی که در آن ایجاد شده است خوب عمل می کنند اما وقتی که تعمیم داده می شود ضعیف هستند. مدل COCOMO81 از تحلیل ۶۳ پروژه بدست آمده . مدل COCOMO II حاصل بررسی ۸۳ پروژه است. مدل هایی که بر پایه مجموعه اطلاعات محدودی استوارند بیشتر به ویژگی های خاص آن مجموعه متمایل هستند. این موضوع باعث افزایش دقت مدل در پروژه های مشابه می شود اما دامنه کاربرد مدل را محدود می کند.

۲-۵-۲ پیچیدگی مدل ها

شرایط خاصی که در همر سازمان وجود دارد در بهره وری آنها موثر است .(Johnson, 1998). خیلی از مدل ها (مثل COCOMO) و SLIM) عامل

تعدیلی دارند که این تفاوت ها را به حساب می آورند. تخمینگر برای لحاظ کردن تفاوت بین پروژه خود با مجموعه اطلاعاتی که مدل بر اساس آنها شکل گرفته بر این عامل تعدیل اطمینان می کند. اما این گونه تعمیم ها معمولا کافی نیستند.

کمرر ۱۲ اظهار می کنند که استفاده از محرک های هزینه مدل COCOMO همیشه باعث بهبود دقت برآورد نمی شود. مدل COCOMO فرض می کند که این محرک های هزینه از هم مستقلند اما در عمل واقعا اینطور نیست. خیلی از این عوامل بر یکدیگر اثر می گذارند و این باعث می شود که روی برخی ویژگی ها تاکید بیشتری بشود. از طرف دیگر این محرک های هزینه به شدت ذهنی هستند. به علاوه محاسبات عامل تعدیل معمولا بسیار پیچیده است. مدل SLIM روی عامل فناوری بسیار حساس است، اما این عامل به راحتی محاسبه نمی شود.

۳-۵-۲- برآورد اندازه پروژه

بیشتر مدل ها برآوردی از اندازه پروژه را برای محاسبات خود لازم دارند. با این حال، برآورد اندازه پروژه در آغاز آن مشکل است. خیلی از مدل ها از تعداد خطوط کد برنامه برای تعیین اندازه پروژه استفاده می کنند که در مراحل اولیه کار ، قبل از کد نویسی، قابل تعیین نیست. اگرچه می توان برای این منظور از روش Points و یا Function Points برای تعین اندازه استفده کرد اما این روش ها بسیار دهنی هستند.

برآوردهای اندازه ممکن است بسیار نادقیق باشند. برای حصول اطمینان از انجام دقیق پیش بینی اندازه باید روش های برآورد و مجموعه داده ها با هم سازگار باشند. اگر روش اندازه گیری مورد استفاده مدل با روشی که در عمل بکار می رود یکسان نباشند

مدل به نتايج دقيق دست نخواهـد يافـت (,Johnson). 1998).

۲-۲ مدل COCOMO

مدل COCOMO یک مدل تجربی است که از جمع آوری داده های تعداد زیادی پروژه نرم افزاری بدست آمده. این داده ها تجزیه و تحلیل شدند تا بهترین فرمولی که با داده های واقعی تناسب دارد حاصل شود. مدل اولیه در سال ۱۹۸۱ منتشر شد. بعدها بوهم و همکارانش مدل مذکور را بهبود داده و مدل COCOMO II را ارائه کردند که باعث تحولات زیادی در مهندسی نرم افزار شد.

مدل COCOMO به دلایل متعدد نسبت به مدل های دیگر بر تری دارد:

 مستندات کافی از این مدل در اختیار عموم قرار دارد و ابزارهای تجاری متعددی برای استفاده از آن در دسترس می باشد.

 این مدل بطور گسترده ای در سازمان های مختلف مورد ارزیابی و استفاده قرار گرفته است.^{۱۳}

۲-۷ مدل COCOMO II

کاهش چشمگیر هزینه سخت افرار رایانه و رواج استفاده از بسته های نرم افزاری آماده در پروژه های نرم افزاری باعث کاهش هزینه تولید نرم افزار شده است. همزمان با این موضوع نسل جدید فرآیند های تولید نرم افزار و محصولات نرم افزاری به میدان آمده اند و در حال تغییر نحوه تولید نرم افزار در سازمان ها هستند. این رویکردهای جدید – مانند فرآیندهای نرم افزاری پویا و ریسک محور، زبان های برنامه نویسی نسل چهارم، برنامه های رایانه ای مولد نرم افزار ۱٬۰ نرم افزارهای تجاری آماده برای استفاده ۱٬۰ روش های میانبر تولید نرم افزار ۱٬۰ باعث افزایش کیفیت محصولات تولید نرم افزار ۱٬۰ – باعث افزایش کیفیت محصولات

نرم افزاری، کاهش هزینه تولید و کاهش ریسک و چرخه عمر آنها می شود.

با این حال، مدل های موجود برآورد بهای تولید نرم افزار این روش های جدید را بطور کامل پوشش نمی دهند. این مباحث منجر به ارائه نسخه جدید از مدل COCOMO شد (Boehm, 1995)، برای پروژه های نرم افزاری زمان خود بسیار مناسب بود. اما در مواجه با روش های جدید تولید نرم افزار با مشکلاتی مواجه شده بود.

مدل COCOMO II شامل مدلهای فرعی زیر می باشد:

الف) مدل Application Composition که شامل روش تهیه یک نمونه اولیه از نرم افزار، که در اصطلاح به آن پروتو تایپ V می گویند، برای کار روی مسائل پر ریسک مثل رابط کاربر، عملکرد نـرم افـزار و فنـاوری مورد استفاده می باشد.

ب) مدل Early Design که برای اکتشاف گزینه های مختلف معماری نرم افزار و مفاهیم عملیات مناسب است. در این مرحله تولید اطلاعات کافی برای انجام برآوردهای دقیق وجود ندارد. این مدل زمانی بکار می رود که نیازسنجی مشتری کاملا انجام شده و مراحل اولیه طراحی سیستم در حال اجراست. در این مرحله هدف، انجام برآورد بدون مشقت زیاد است. این مدل از ۷ ضریب تعدیل برای برآورد تشکیل شده

ج) مدل Post-Architecture مفصل ترین و دقیق ترین مدل COCOMO II است که مراحل تولید و نگهداری محصول نرم افزاری را در بر می گیرد. در این مرحله اطلاعات بیشتری از نرم افزار و فرآیند تولید آن در دسترس می باشد. این مدل از مجموعه ۱۷ ضریب تعدیل برای برآورد دقیق تر نرم افزار استفاده می کند.

۳- مدل سازی بهای تمام شده در COCOMO II

با دانستن اندازه پروژه، مینزان نیروی انسانی لازم برای تکمیل پروژه بر مبنای نفر – ماه $^{1/}$ از فرمول زیس بدست می آید:

(افرمول ۱)
$$PM = A \times (Size)^B$$

برای تعیین مقدار B مقادیر عددی درجه بندی فاکتورهای تعدیل اندازه با هم جمع شده و در فرمول زیر قرار می گیرند:

(نومول ۲)
$$B = 0.91 + 0.01 \sum W_i$$

در مدل COCOMO II پنج فاکتور برای تعدیل اندازه به قرار زیر تعریف شده است:

۱. سابقه اجرایی^۹: میزان تجربه قبلی شرکت را در کار بر روی این نوع نرم افزار نشان می دهد. خیلی کم یعنی شرکت هیچگونه تجربه قبلی در این زمینه ندارد. فوق العاده زیاد به معنی این است که شرکت کاملا با موضوع آشناست.

7. قابلیت انعطاف در تولید ۲۰: نشان دهنده میزان انعطاف در تولید است. خیلی کم یعنی فر آیندهای تولید از قبل تعیین شده هستند. فوق العاده زیاد به معنی این است که مشتری فقط اهداف کلی را معین کرده.

۳. ریسک معماری نرم افزار ۲۱: میزان تحلیل و بررسی ریسک انجام شده را اندازه می گیرد. خیلی کم یعنی بررسی ناچیزی صورت گرفته و فوق العاده زیاد یعنی بررسی به صورت کامل و مفصل انجام شده است. این فاکتور به دنبال پاسخ به این سوال است که معماری نرم افزار تا چه اندازه دقیق معین شده است.

۴. همکاری تیمی ۲۱: میزان همکاری اعضای تیم تولید را با همدیگر نشان می دهد. خیلی کم یعنی اعضا تیم در همکاری و ارتباط با هم دچار مشکل هستند. فوق العاده زیاد یعنی اعضا همکاری بی وقفه ای با هم دارند.

۵. بلوغ فرآیندهای تولید۳۳: میزان بهبود انجام گرفته در فرآیندهای تولید را نشان می دهد. این فاکتور یک درجه بندی ۵ سطحی دارد. در سطح اول، شرکت دارای فرآیندهای تثبیت شده ای برای تولید نیست. این گونه شرکت ها شرایط با ثباتی ندارند و قادر به تکرار موفقیت های قبلی نیستند. در سطح دو، شرکت ها قادر به تکرار فرآیندهای موفق قبلی در پروژه های بعدی هستند. شرکت ها در این سطح از اندکی مدیریت پروژه بهره مند هستند اما هنوز خطر سرريز شدن هزينه ها از میزان بودجه وجود دارد. در سطح سه، شرکت فر آیندهای استانداردی را برای تولید نرم افزار تعریف کرده و در طول زمان آنها را بهبود می دهد. شرکت ها از یک ثبات رویه در بین پروژه های مختلف خود برخوردارند. در سطح چهار، مديريت با استفاده از اندازه گیری های دقیق، فرآیند تولید را به طور موثری كنترل مي كند. مديريت مي توانـد راه هـاي تعـديل و تطبیق فر آیندها با ویژگی های یروژه های مختلف را با کمترین میزان افت کیفیت شناسایی کند. در سطح ينج، شركت ها به بهبود مستمر فرآيندها از طريق بهبود نو آوری های فناوری متمرکز هستند.

۱-۳- ضرایب تعدیل کننده برآورد فعالیت ۲۴

در مدل Post-Architecture هفده ضریب تعدیل برآورد برای نشان دادن اثر شرایط حاکم بر فرآیند تولید در برآورد نرم افزار تعریف شده است. ارزش اسمی تعیین شده برای هر کدام از این ضرایب برابر ۱ است. اگر ضریب، اثر افزاینده روی برآورد اولیه داشته باشد مقدار آن بزرگ تر از ۱ است. بالعکس اگر ضریب، عامل نیروی انسانی را کاهش دهد مقدار آن کوچک تر از ۱ می شود. بنابراین، مقدار ضریب A در فرمول ۱ به وسیله فرمول زیر محاسبه می شود:

(۳ فرمول) $A=2.94 imes \prod EM_i$

یروژه (TDEV) است که برای تمام مدل های فرعی

(فرمول ۴)

 $TDEV = 3.67 \times PM^{\textstyle (0.28+0.2\times(B-0.91))} \times \frac{\%SCED}{\textstyle}$

TDEV مدت زمان بر آوردی بر حسب ماه از زمان

شناسایی نیازمندی های سیستم تا هنگامی که تائید می

شود که نرم افزار همه نیازمندی های مشخص شده را

یاسخ می دهد را دربر می گیرد. PM مقدار نیروی

انسانی محاسبه شده از فرمول ۱ می باشد. SCED%

برخی کاربران مدل COCOMO ترجیح می دهند

به جای استفاده از بر آورد نقطه ای از بر آورد فاصله ای

استفاده کنند. برای این منظور وقتی که مقدار فعالیت از

طریق یکی از سه مدل COCOMO II بر آورد شد

مقادیر خوشبینانه و بدبینانه مقدار فعالیت با در نظر

گرفتن یک واحد انحراف استاندارد حول مقدار محاسبه

شده از فرمول بدست می آید (جدول ۴). این مقادیر

را می توان با کمک فرمول ۳ برای محاسبه محدوده

زمانی لازم برای تکمیل یروژه بکار برد.

درصد افزایش یا کاهش در زمان بندی یروژه است.

٣-٣- محدوده نتايج خروجي

آن بكار مي رود:

مجموعــه ۱۷ ضــریب تعــدیل مــدل -Post مجموعــه ۱۷ ضــریب تعــدیل مــده Architecture

1.1

ا. فاکتورهای محصول که ویژگی های لازم برای تولید محصول نرم افزاری هستند. شامل:

- a. Required Software Reliability (RELY)
- b. Database Size (DATA)
- c. Product Complexity (CPLX)
- d. Required Reusability (RUSE)
- e. Document Match to Life-Cycle Needs (DOCU)

۲. فاکتورهای پلت فورم که به محدودیت های سخت افزاری موجود در نرم افزار دلالت دارند. شامل:

- a. Execution Time Constraint (TIME)
- b. Main Storage Constraint (STOR)
- c. Platform Volatility (PVOL)

۳. فاکتورهای نیروی انسانی که به قابلیت ها و تجربیات تیم تولید نرم افزار می پردازند. شامل:

- a. Analyst Capability (ACAP)
- b. Programmer Capability (PCAP)
- c. Application Experience (AEXP)
- d. Platform Experience (PEXP)
- e. Language and Tool Experience (LTEX)
- f. Personnel Continuity (PCON)

۴. فاکتورهای پروژه که شرایط خاص پروژه تولید نرم افزار را مورد توجه قرار می دهند. شامل:

- a. Use of Software Tools (TOOL)
- b. Multisite Development (SITE)
- c. Required Development Schedule (SCED)

جدول ۴: بر آورد فاصله ای مدل COCOMO II

بر آور د بدبینانه	برآورد خوش بینانه	مدل
2.0	0.50	Application Composition
1.5	0.67	Early Design
1.25	0.80	Post-Architecture

۲–۳– برآورد زمان تکمیل پروژه

مدیران پروژه همانطور که میزان فعالیت لازم برای تکمیل پروژه و هزینه کل پروژه را برآورد می کنند به مقدار زمان لازم برای اجرای پروژه هم نیازمندند. مدت زمان لازم برای تکمیل پروژه جدول زمان بندی پروژه خوانده می شود. مدل COCOMO حاوی فرمولی برای محاسبه مدت زمان لازم برای تکمیل

٤- پــروژه بــرآورد نــرم افــزار ليزينــگ در شــرکت همکاران سيستم

شرکت همکاران سیستم یکی از شرکت های خصوصی فعال در صنعت نرم افزار کشور می باشد. فعالیت های اجرایی این شرکت در قالب پروژه های تولید یا نگهداری و پشتیبانی تعریف می شوند. شرکت همکاران سیستم برای تولید محصولات نرم افزاری خود از مدل RUP استفاده می کند.

مدل RUP یکی از مدل های تولید نرم افزار است که توسط شرکت IBM طراحی شد. در این مدل چرخه عمر پروژه به چهار مرحله تقسیم شده است:

مرحله درک^{۲۶}، شرح جزئیات ۲^۷، ساخت ۲^۸ و انتقال ۲^۹. در پایان هر مرحله اگر پروژه ناموفق باشد آن مرحله مجدد تکرار می شود . در هر مرحله چند فعالیت ۳ و جریان کار ۳ تعریف شده با توجه به میزان اهمیت آن فعالیت در هر مرحله اجرا می شود. این فعالیتها عبارتند از: مدلسازی کسب و کار ۳ نیازسنجی، تحلیل و طراحی، کدنویسی، تست، استقرار ۳ مدیریت تنظیملت و تغییرات، مدیریت پروژه و آماده سازی شرایط محیط برای اجرای پروژه. شکل ۲ یک درک کلی از مدل برای اجرای بروژه. شکل ۲ یک درک کلی از مدل RUP را به تصویر کشیده است.

شکل ۲: مدل RUP

برای اجرای مدل، یکی از پروژه های جاری شرکت همکاران سیستم انتخاب شد. موضوع این پروژه، نرم افزار لیزینگ بود. شرکت در حال تصمیم گیری برای خرید یک نرم افزار لیزینگ از شرکت دیگری بود و قصد داشت درباره خرید یا تولید این نرم افزار تصمیم گیری کند.

شکل ۳ نمایانگر تصویر کلی مراحل اجرای این مدل می باشد. در ابتدا لازم بود که مشخص شود کدام مدل COCOMO II مناسب یروژه می باشد. با توجه به

اینک پروژه در مرحل نیازسنجی بوده و صرفا مشخصات و امکانات کلی آن تعیین شده بود، مدل Early Design به عنوان مناسب ترین گزینه انتخاب شد.

بله برآورد اندازه شروع تعین مقادیر ضرایب و فاکتورهای مدل و فاکتورهای مدل برآورد اولیه زمان برآورد نهایی و نیروی انسانی پایان

شكل ٣ : مراحل اجراى مدل COCOMO II

اولین قدم برای اجرای مدل COCOMO II عیین اندازه نرم افزار است. برای این منظور با توجه به اینکه هنوز کد نویسی نرم افزار آغاز نشده بود و به دلیل محدودیت های این روش اندازه گیری (که به آنها اشاره شد) از روش Function Point استفاده شد.

نحوه انجام این کار بدین صورت بود که بر اساس طرح اولیه موجود از نرم افزار در حال طراحی، ابتدا عناصر پنجگانه روش Function Point تعیین و تعداد انها شمارش شد. پس از شمارش، تعداد Function Point تعدیل نشده (UFP) برابر با ۱۵۴ واحد محاسبه شد (جدول ۵).

جدول ٥ : نتایج نهایی برآورد اندازه پروژه

	EI	EO	EQ	ILF	EIF	
تعداد	21	5	1	2	3	
Complexity	متوسط	متوسط	متوسط	متوسط	متوسط	
	4	5	4	10	7	
UFP	84	25	4	20	21	154

در مرحله بعد مقدار محاسبه شده می بایست به صورت تعداد خطوط کد سورس برنامه تبدیل شده و در مدل COCOMO II وارد شود. برای ایس کار از نسخه ۸٫۲ جدول ارائه شده توسط کاپرز جونز^{۲۲} در سال ۱۹۹۶ استفاده شد. جدول مذکور فهرستی از زبان

های برنامه نویسی مختلف است که در آن تعداد متوسط خطوط برنامه نویسی به ازای هر واحد Function Point به تفکیک زبان های برنامه نویسی محاسبه شده است. در زمان ارائه جدول مذکور حدود ۵۰۰ زبان برنامه نویسی وجود داشته که رایج ترین آنها در جدول آمده است. زبان های برنامه نویسی ابتدا سطح بندی شده اند. به این معنی که هر چه سطح زبان ها بالاتر می رود تعداد خطوط برنامه نویسی به ازاء هر Function Point که می شود.

پس از انجام محاسبات مقدار برآوردی تعداد خطوط کد برنامه (ESLOC) برابر با ۳۹۴۲ خط بدست آمد (جدول ۶).

جدول ٦: برآورد اندازه نرم افزار لیزینگ

1						
زبان	ضريب تبديل	UFP	*ESLOC			
Delphi / VB	29	123	3567			
Database	12	31	372			
٥	جم	154	4957			
= Estimat	ed Source Lin	es Of *	ESLOC			

مرحله بعدی تعیین مقادیر ضریب B و A در مدل است. این ضرایب بوسیله فرمول های شماره ۲ و $^{\mathfrak{m}}$ محاسبه می شوند:

(نومول ۲)
$$B = 0.91 + 0.01 \sum W_i$$

(سور ول ۳) فرمول (فرمول ۳) فرمول (

B مقدار ضریب B براساس فرمول ۲ برابر با ۱,۰۵۲۷ طبق جدول ۷ محاسبه شده است.

جدول ۷: محاسبه ضریب B در مدل

فاكتورهاى تعديل	مقدار		
PREC	معمولي	3.72	
FLEX	معمولي	3.04	
RESL	زياد	2.83	
TEAM	خیلی زیاد	0	
PMAT	معمولي	4.68	
B =	1.0527		

مقدار ضرایب EM_i بر اساس فرمول T برابر با EM_i محاسبه شده است (جدول T). در نتیجه مقدار T برابر خواهد شد با T ۱,۴۰۱۵ (T,۲۷۶۷ برابر خواهد شد با T

جدول Λ : محاسبه ضریب A در مدل

نام ضرايب	مقدار ضرايب		
RCPX	زياد	1.33	
RUSE	فوق العاده زياد	1.24	
PDIF	معمولي	1	
PERS	خیلی زیاد	0.63	
PREX	خیلی زیاد	0.74	
FCIL	فوق العاده زياد	0.62	
SCED	زياد	1	
∏ <i>EM</i> =	0.4767		

در مرحله آخر با داشتن مقدار تمام ضرایب مقدار نیروی انسانی و زمان لازم برای تولید نرم افزار طبق فرمول های ۱ و ۴ بدست می آید.

(۱ فرمول)
$$PM = A \times (Size)^{B}$$

(فرمول ۴)

TDEV = 3.9V × PM (0.7A + 0.2 × (B - 0.91)) × %SCED / 100

جدول ٩: نتایج محاسبات مدل

ضریب ثابت	EM	Size	В	TDEV	PM
2.94	4767/0	942/3	0527/1	27/8	۵/۹۴

محاسبات جدول فوق بیانگر آن است که برای اجرای پروژه نرم افزار لیزینگ با توجه به شرایطی که طبق ضرایب مدل برای آن فرض شد حدود ۶ نفر ماه کار نیروی انسانی و ۸ ماه زمان لازم است. مدل COCOMO II هر نفر – ماه را معادل ۱۵۲ ساعت در نظر می گیرد. بنابراین برای تکمیل این پروژه در مجموع 914 ساعت فعالیت مورد نیاز است.

دو نمونه دیگر

برای حصول اطمینان از صحت برآوردها، مدل برای دو پروژه دیگر شرکت اجرا شد. پروژه های مذکور از برنامه های سال ۸۵ شرکت بودند. سایر اطلاعات مربوط به آنها به قرار جدول زیر است:

جدول ۱۰ : مشخصات دو نرم افزار دیگر

مجموع ساعات کارکرد واقعی	تعداد خطوط کد	نام پروژه
1794	740	سيستم اموال
7010	۵۸۰۰۰	گزارش های مدیریتی

هنگام برآورد این پروژه ها معلوم شد که در تولید سیستم اموال از نرم افزارهای تولید خودکار کد استفاده شده است. بنابراین برای تعیین اندازه آن باید از مدل Reuse استفاده کرد. جدول ۱۱ خلاصه محاسبات اندازه را نشان می دهد.

جدول ۱۱: محاسبه اندازه پروژه ها در مدل Reuse

اندازه نهای <i>ی</i>	معادل کد	′/. AT	کل	
38860	19140	33 %	58000	سيستم اموال
34500	0	0%	34500	سیستم گزارشات مدیریت

همانطور که در جدول نشان داده شده ، از مجموع مراب معموع کدنویسی انجام شده برای سیستم اموال 19140 خط آن از به طور خودکار تولید شده است. برای تولید این تعداد خط برنامه نویسی ۸ نفر – ماه فعالیت لازم می باشد. در نهایت اندازه سیستم اموال که در محاسبات برآورد استفاده می شود تعداد ۳۸۸۶۰ خط کدنویسی می باشد.

نتایج برآورد در جدول ۱۲ آمده است. طبق جدول ذیل سیستم اموال ۱۳/۵۹ نفر – ماه کار لازم دارد. اما باید Λ نفر – ماه هم برای تولید خودکار کدها به آن اضافه کرد که در نهایت کل فعالیت لازم ۲۱/۵۹ نفر ماه می شود. با احتساب ۱۵۲ ساعت کار برای هر نفر میزان کل ساعت کار براوردی ۳۸۶۸ می شود. این مقدار با ساعات واقعی کار در این ساخت سیستم اموال بسیار نزدیک است. در مورد سیستم گزارشات مدیریت براورد انجام شده حاکی از نیاز به $\Lambda/۲$ نفر –ماه فعالیت است که معادل $\Lambda/۲$ ساعت کار می باشد.

جدول ۱۲: نتایج برآورد مدل COCOMO

	Α	EM	Size	В	PM
سيستم اموال	7/94	•/1٣٧•	۳۸/۸۶۰	•/9810	17/09
سیستم گزارشات مدیریت	Y/ 9 4	•/•٨٧۴	T4/0··	•/٩٧٨۴	۸/۲۲

می توان برآوردها را به جای نقطه ای به صورت فاصله ای انجام داد تا میزان دقت و تطبیق آنها با واقعیت بهتر نمایان شود. برای این منظور از داده های جدول ۴ که در مورد محدوده نتایج خروجی ارائه شد، باید استفاده کنیم. با توجه به اینکه در انجام دو برآورد اخیر از مدل Post-Architecture استفاده کردیم، محدوده نتایج برآورد مدل از ۰۸/۰ برابر مقدار محاسبه شده تا ۱/۲۵ برابر آن می باشد.

با این حساب محدوده برآورد دو پروژه طبق جدول ۱۳ می باشد. مشاهده می شود که مقادیر ساعات واقعی هر دو پروژه در محدوده برآورد قرار دارد.

جدول ۱۳ : مقایسه محدوده نتایج برآورد با مقادیر واقعی

	بدبينانه	متوسط	خوش بینانه	مقدار واقعی
سيستم اموال	4120/19	T A\$A/V1	7.9 4/9V	3515.5
سیستم گزارشات مدیریت	1841/91	1474/04	1174/47	1263

٥- جمع بندي و نتيجه گيري

مدل های برآورد بهای تمام شده نرم افزار، ابزار مدیریتی مناسبی هستند که این امکان را برای تولیدکننده نرم افزار فراهم می کنند تا پیش از اینکه پروژه نرم افزاری شروع شود و پیش از اینکه شرکت متحمل هزینه های هنگفتی گردد درباره اجرا یا تداوم پروژه تصمیم گیری شود.

از این نکته نباید غافل شد که هیچ برآوردی بدون خطا نیست و همواره درصدی از خطا وجود دارد. البته می توان از طریق تنظیم ۲۵ مدل با استفاده از داده های حاصل از فعالیت یک شرکت نرم افزاری و تحلیل آماری آن ها، برآوردهای بهتری برای پروژه های آن

- 3. Boehm, B.W., B. K. Clark, (1995) "An Overview of the COCOMO 2.0 Software Cost Model"
- 4. Johnson, k.,(1998) " Software Cost Estimation: Metrics and Models ",
- 5. Jørgensen, M. and D.I.K. Sjøberg, (2004).The Impact of Customer Expectation on Software Development Effort Estimates. International Journal of Project Management,
- 6. Jørgensen, M. and Martin Shepperd, (2007) "A Systematic Review of Software Development Cost Estimation Studies", IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 1,
- 7. Khoshgoftaar, Taghi M.,(2004) "Identification of fuzzy models of software cost estimation", Fuzzy Sets and Systems Vol. 145.
- 8. Longsteert, D.(2004), "Function Point Training Course ", www.softwaremetrics.com
- 9. Mittas, N., el. al., (2007) "Improving Analogy Based Software Cost Estimation by a Resampling Method ", Information and Software Technology.
- 10. Sicilia, M.A., et al, (1999)
 "Software Cost Estimation with
 Fuzzy Inputs: Fuzzy Modeling and
 Aggregation of Cost Drivers",
 KYBERNETIKA Vol. 35.
- 11. Stamelos, J., et al,(2003) "Estimating the development cost of custom software", Information & Management Vol. 40.

بادداشتها

شرکت بدست آورد که این موضوع خود جای تحقیق و بررسی دارد.

متداول ترین روش های برآورد عبارتند از: روش برآورد بر اساس مقایسه، روش قضاوت حرفه یی و روش مدل سازی الگوریتمی. از میان این روش ها، مدلسازی الگوریتمی جایگاه ویژه یی دارد. یکی از محبوب ترین مدل های الگوریتمی مدل محبوب ترین مدل های الگوریتمی از چند مدل فرعی است که هر کدام کاربرد خاص خود را دارد.

مدل COCOMO قابلیت لحاظ کردن اثر استفاده از تکه های نرم افزاری آماده و قابل استفاده مجدد ^۳ را دارد. این به معنای استفاده از قطعات برنامه نویسی شده برنامه های قبلی در پروژه های جدید است. یعنی به جای اینکه یک قسمت از نرم افزار را از ابتدا بنویسند، کد برنامه های قبلی را اصلاح کرده و در کد برنامه جدید می گنجانند. این کار باعث صرفه جویی در زمان و هزینه می شود. این قابلیت مدل در زمان و هزینه می شود. این قابلیت مدل همچنین روش تحلیل Function Point خود به عنوان یک مدل برآورد نرم افزار قابل استفاده است. مقایسه نتایج برآورد این مدل با نتایج مدل مقایست های این دو روش ارائه دهد.

فهرست منابع

- 1. Boehm, Barry W.,(2000) "Software Cost Estimation with COCOMO II", prentice Hall.
- 2. Boehm, B.W., B. K. Clark, E. Horowitz, R. Madachy, R.W. Selby, and C. Westland, (1995) "Cost Models for Future Software Processes: COCOMO", 7, Annals of Software Engineering,

¹ Enterprise Resource Planning

² WWW.STANDISHGROUP.COM

³ Software Development Life-cycle (SDLC)

```
<sup>4</sup> Effort Cost
```

⁷ Lines of Source Code

⁸ Data Functions

⁹ Transaction Functions

¹⁰ Unadjusted Function Point

¹¹ Kemerer

¹² Kemerer

13 از جمله سازمان ها و شرکت های استفاده کننده از این مدل می توان به این موارد اشاره کرد: مایکروسافت، موتورولا، دایملر کرایسلر، بوئینگ، زیراکس، آی بی ام، سان مایکروسیستمز، و وزارت دفاع ایالات متحده

¹⁴ Application generator

15 Commercial of-the-shelf (COTS)
16 Fast-track software development approaches

Prototype

18 Person – Month (PM)

19 Precedentedness (PREC)

Development Flexibility (FLEX)
Development Flexibility (FLEX)
Architecture/risk resolution
Team Cohesion (TEAM)

²³ Process Maturity (PMAT)

²⁴ Effort Multipliers (EM)

²⁵ Project Schedule

²⁶ Inception

²⁷ Elaboration

²⁸ Construction

²⁹ Transition

³⁰ Discipline

31 Workflow

32 Business Modeling

Business Modeling
Deployment

Capers Jones
Calibration
Reusable Components

⁵ Neighbor

⁶ Analogy