

Arquitetura e Organização de Computadores

Centro Universitário 7 Setembro - Uni7 **Sistemas de Informação**

Aula 12

Prof. MSc Manoel Ribeiro

manoel@opencare.com.br

Representação Binária

- Números inteiros sem sinal
- Números com sinal em complemento

Número inteiros sem sinal

- A representação é feita somente convertendo o número para base 2
- Técnica da divisão sucessivas
 - A técnica de divisões sucessivas é utilizada para conversão de números inteiros do sistema decimal para o binário.
 - Esta técnica consiste em dividir o número original pela base 2, o resto da divisão será um dígito e o resultado da divisão é novamente dividido por 2.
 - Esta última etapa se repete até que o resultado da divisão seja zero.

Número inteiros sem sinal

Exemplo representando 199 na base decimal

N	÷2	RESTO
199	99	1
99	49	1
49	24	1
24	12	0
12	6	0
6	3	0
3	1	1
1	0	1

Portanto 199₁₀ será representado 11000111₂

Número inteiros sem sinal

- Tamanho de variáveis inteiras sem sinal
 - byte (8 bits), 0..2⁸
 - unsigned int (16 bits), 0..2¹⁶
 - unsigned long (32 bits), 0..2³²
- Os números convertidos para binários serão completados com 0's à esquerda até o tamanho da variável

Número inteiros com sinal em complemento de 2

- A representação em complemento para 2 tem as seguintes características:
 - o bit da esquerda indica o sinal;
 - possui processo para converter um número de positivo para negativo e de negativo para positivo;
 - o 0 tem uma representação única: todos os bits a 0;
 - o a gama de valores que é possível representar com n bits é -2^{n-1} ... 2^{n-1} -1.

Número inteiros com sinal em complemento de 2

- Exemplo de decimal para binário:
 - Representação binária
 101₁₀ = 01100101₂ (com 8 bits)
 - Invertendo todos os bits
 10011010₂

 \circ Somando uma unidade $10011010_2 + 1 = 10011011_2 = -101_{10}$

Número inteiros com sinal em complemento de 2

- Exemplo de binário para decimal do número 11100100₂ (com 8 bits):
 - Como o bit da esquerda é 1 este número é negativo.
 - Invertendo todos os bits

 \circ Somando uma unidade $00011011_2 + 1 = 00011100_2 = 28_{10}$

Logo: 11100100₂ é -28

Exercício

- Represente a sua idade em num inteiro de 8 bits com sinal em complemento de 2
- 2) O método de complemento 1 apenas inverte os bits, pesquise e descubra por que ele deixou de ser utilizado

