1. An optimization problem

Consider the primal optimization problem,

$$p^* = \min_{\vec{x} \in \mathbb{R}^2} \frac{1}{2} x_1^2 + \frac{1}{2} x_2^2 \tag{1}$$

s.t.
$$x_1 \ge 0$$
, (2)

$$x_1 + x_2 \ge 2. (3)$$

First we solve the primal problem directly.

- (a) Sketch the feasible region and argue that $\vec{x}^* = (1, 1)$ and $p^* = 1$.
- (b) Next we solve the problem with the help of the dual. First, find the Lagrangian $\mathcal{L}(\vec{x}, \vec{\lambda})$.

- (c) Formulate the dual problem.
- (d) Solve the dual problem to find $\vec{\lambda}^{\star}$ and d^{\star} .

(e) Does strong duality hold?

- (f) Finally we use the KKT conditions to find $\vec{x}^{\star}, \vec{\lambda}^{\star}$. First we write down the KKT conditions and then we find $\vec{\tilde{x}}$ and $\vec{\tilde{\lambda}}$ that satisfy them.
- (g) Argue why the optimal primal and dual solutions are given by $\vec{x}^\star = \vec{\tilde{x}}$ and $\vec{\lambda}^\star = \vec{\tilde{\lambda}}$.

2. Complementary Slackness

Consider the problem:

$$p^* = \min_{x \in \mathbb{R}} \quad x^2 \tag{4}$$

s.t.
$$x \ge 1, x \le 2.$$
 (5)

(a) Does Slater's condition hold? Is the problem convex? Does strong duality hold?

(b) Find the Lagrangian $\mathcal{L}(x, \lambda_1, \lambda_2)$.

(c) Find the dual function $g(\lambda_1, \lambda_2)$ so that the dual problem is given by,

$$d^* = \max_{\lambda_1, \lambda_2 \in \mathbb{R}_+} g(\lambda_1, \lambda_2). \tag{6}$$

(d) Solve the dual problem in (6) for d^* .

(e) Solve for $x^\star, \lambda_1^\star, \lambda_2^\star$ that satisfy the KKT conditions.

(f) Can you spot a connection between the values of λ_1^{\star} , λ_2^{\star} in relation to whether the corresponding inequality constraints are active or not at the optimal x^{\star} ?