Examenul național de bacalaureat 2021 Proba E. c)

Matematică BAREM DE EVALUARE ȘI DE NOTARE

Testul 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\log_3 6 + \log_3 2 - \log_3 4 = \log_3 \frac{6 \cdot 2}{4} =$	3p
	$= \log_3 3 = 1$	2p
2.	f(m) = 3m - 4	2p
	$f(m) = m \Leftrightarrow 3m - 4 = m \Leftrightarrow m = 2$	3p
3.	$2^{2x} = 2^{x^2 - 3} \Leftrightarrow 2x = x^2 - 3 \Leftrightarrow x^2 - 2x - 3 = 0$	3p
	x = -1 sau $x = 3$	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre, numerele care au suma cifrelor egală cu 9 sunt: 18, 27, 36, 45, 54, 63, 72, 81 și 90, deci sunt 9 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}$	1p
5.	B este mijlocul segmentului AM , deci $1 = \frac{-3 + x_M}{2}$ și $3 = \frac{5 + y_M}{2}$	3p
	$x_M = 5, \ y_M = 1$	2p
6.	$(\cos 120^{\circ} - \sin 30^{\circ})^2 = \left(-\frac{1}{2} - \frac{1}{2}\right)^2 = 1$	2p
	$\cos^2 30^\circ + \cos^2 60^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = 1, \text{ deci } \left(\cos 120^\circ - \sin 30^\circ\right)^2 = \cos^2 30^\circ + \cos^2 60^\circ$	3p

SUBIECTUL al II-lea (30 de puncte)

1.	$4*2021 = 4\cdot2021 - 4(4+2021) + 20 =$	3 p
	=-16+20=4	2p
2.	x * y = xy - 4(x + y) + 20 = yx - 4(y + x) + 20 =	3 p
	$= y * x$, pentru orice numere reale $x \neq y$, deci legea de compoziție "*" este comutativă	2p
3.	x * y = xy - 4x - 4y + 16 + 4 =	3p
	= x(y-4)-4(y-4)+4=(x-4)(y-4)+4, pentru orice numere reale x şi y	2p
4.	$(x-4)(x-8)+4=x \Leftrightarrow (x-4)(x-9)=0$	3p
	x = 4 sau $x = 9$	2p
5.	Cum $x \ge 6$ şi $y \ge 6$, obţinem $x - 4 \ge 2$ şi $y - 4 \ge 2$, deci $(x - 4)(y - 4) \ge 4$	3 p
	$(x-4)(y-4)+4 \ge 8 \Rightarrow x * y \ge 8$, pentru orice numere reale $x \neq y$, cu $x \ge 6 \neq y$	2p
6.	x*4=4, $4*y=4$, pentru orice numere reale x și y	2p
	$1^2 * 2^2 * 3^2 * \dots * 2021^2 = (1^2 * 4) * (3^2 * 4^2 * \dots * 2021^2) = 4 * (3^2 * 4^2 * \dots * 2021^2) = 4$	3p

SUBIECTUL al III-lea (30		de puncte)	
1.	$\det A = \begin{vmatrix} -2 & 1 \\ 3 & 0 \end{vmatrix} = -2 \cdot 0 - 1 \cdot 3 =$	3p	
	=0-3=-3	2p	
2.	$M(6) = \begin{pmatrix} 6 & 3 \\ 1 & 4 \end{pmatrix}$, deci $A + M(6) = \begin{pmatrix} -2+6 & 1+3 \\ 3+1 & 0+4 \end{pmatrix} =$	3р	
	$= \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix} = 4 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	2p	
3.	$\det(M(x)) = \begin{vmatrix} x & 3 \\ 1 & x-2 \end{vmatrix} = x(x-2) - 3 =$	3 p	
	$=x^2-2x-3=(x+1)(x-3)$, pentru orice număr real x	2p	
4.	$A+M(2) = \begin{pmatrix} -2 & 1 \\ 3 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 4 & 0 \end{pmatrix} \Rightarrow \det(A+M(2)) = -16$	2p	
	$9-a^2=-16 \Leftrightarrow a^2=25$, de unde obţinem $a=-5$ sau $a=5$	3p	
5.	$M(x) \cdot M(x) = \begin{pmatrix} x^2 + 3 & 6x - 6 \\ 2x - 2 & x^2 - 4x + 7 \end{pmatrix}, x \in \mathbb{R}, 4I_2 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$	2p	
	$\begin{pmatrix} x^2 + 3 & 6x - 6 \\ 2x - 2 & x^2 - 4x + 7 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}, \text{ de unde obţinem } x = 1, \text{ care convine}$	3 p	
6.	$M(n)+M(n+1)+M(n+2) = \begin{pmatrix} 3n+3 & 9\\ 3 & 3n-3 \end{pmatrix}$	2p	
	$\begin{pmatrix} 3n+3 & 9 \\ 3 & 3n-3 \end{pmatrix} = \begin{pmatrix} 3 \cdot 2022 & 9 \\ 3 & 3 \cdot 2020 \end{pmatrix}$, deci $n = 2021$, care convine	3 p	