Potenciação

Resumo

Potenciação é a multiplicação de fatores iguais representado por a^n onde a é a base e n é o expoente e indica a quantidades de fatores que serão multiplicados (nesse caso n fatores). Exemplo: $4^3 = 4.4.4 = 64$.

As propriedades básicas da potenciação são:

- a) $a^m \cdot a^n = a^{m+n}$ Exemplo: $2^3 \cdot 2^2 = 2^5$
- b) a^m : $a^n = a^{m-n}$ Exemplo: 3^4 : 3^2 = 3^2
- c) $(a^m)^n = a^{mn}$ Exemplo: $(2^3)^2 = 2^6$
- d) $(a \cdot b)^m = a^m \cdot b^m$ Exemplo: $(2 \cdot 4)^2 = 2^2 \cdot 4^2$

e)
$$\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}$$
 Exemplo:
$$\left(\frac{3}{7}\right)^{2} = \frac{3^{2}}{7^{2}}$$

$$(b \neq 0)$$

f)
$$a^0 = 1$$

$$(a \neq 0)$$

g)
$$1^{m} = 1$$

h)
$$a^{-m} = \left(\frac{1}{a}\right)^m$$
 Exemplo $2^{-2} = \left(\frac{1}{2}\right)^2$

$$(a \neq 0)$$

i)
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
 Exemplo $3^{\frac{1}{2}} = \sqrt[n]{3^n}$

Notação científica

Serve para representar grandezas muito grandes ou muito pequenas a partir de potências de 10. A fórmula da notação científica é: m.10ⁿ, onde m é a mantissa, ou seja um número racional maior que 1 e menor que 10 e n represente algum número inteiro que é a potência de 10, também chamado ordem de grandeza.

Por exemplo: 250000 = $2, 5.10^5$. 0,002 = 2.10^{-3}

Exercícios

1. Leia o trecho adaptado abaixo para responder à questão. "A perereca-macaco-de-cera, encontrada na América do Sul e Central, é capaz de aguentar mais tempo no sol forte do que outras espécies de anfíbios, devido à secreção de cera que reduz a perda de água por evaporação, protegendo sua pele."

Disponível em: http://biologiavida-oficial.blogspot.com.br/2014/04/phyllomedusasauvagii.html.

A área territorial da América Central é de, aproximadamente, 523.000 km². Assinale a alternativa que apresenta a área em potência de base 10.

- a) 523×10^2 .
- **b)** $52,3\times10^4$.
- c) $5,23 \times 10^2$.
- d) 523×10^4 .
- **e)** $5,23 \times 10^3$.
- 2. Uma das principais provas de velocidade do atletismo é a prova dos 400 metros rasos. No Campeonato Mundial de Sevilha, em 1999, o atleta Michael Johnson venceu essa prova, com a marca de 43,18 segundos. Esse tempo, em segundo, escrito em notação científica é
 - a) $0,4318 \times 10^2$
 - **b)** 4.318×10^{1}
 - **c)** $43,18 \times 10^0$
 - d) 431.8×10^{-1}
 - **e)** 4.318×10^{-2}

3. A Agência Espacial Norte Americana (NASA) informou que o asteroide YU 55 cruzou o espaço entre a Terra e a Lua no mês de novembro de 2011. A ilustração a seguir sugere que o asteroide percorreu sua trajetória no mesmo plano que contém a órbita descrita pela Lua em torno da Terra. Na figura, está indicada a proximidade do asteroide em relação à Terra, ou seja, a menor distância que ele passou da superfície terrestre.

Com base nessas informações, a menor distância que o asteroide YU 55 passou da superfície da Terra é igual a

- a) $3,25 \times 10^2$ km.
- **b)** 3.25×10^3 km.
- c) 3.25×10^4 km.
- d) $3,25 \times 10^5$ km.
- e) $3,25 \times 10^6$ km.

4. A cor de uma estrela tem relação com a temperatura em sua superfície. Estrelas não muito quentes (cerca de 3 000 K) nos parecem avermelhadas. Já as estrelas amarelas, como o Sol, possuem temperatura em torno dos 6 000 K; as mais quentes são brancas ou azuis porque sua temperatura fica acima dos 10 000 K. A tabela apresenta uma classificação espectral e outros dados para as estrelas dessas classes.

Estrelas da Sequência Principal

Classe Espectral	Temperatura	Luminosidade	Massa	Raio
O5	40 000	5 x 10 ⁵	40	18
В0	28 000	2 x 10 ⁴	18	7
A0	9 900	80	3	2.5
G2	5 770	1	1	1
МО	3 480	0,06	0,5	0,6

Temperatura em Kelvin.

Luminosidade, massa e raio, tomando o Sol como unidade.

Disponível em: http://www.zenite.nu. Acesso em: 1 maio 2010 (adaptado).

Se tomarmos uma estrela que tenha temperatura 5 vezes maior que a temperatura do Sol, qual será a ordem de grandeza de sua luminosidade?

- a) 20 000 vezes a luminosidade do Sol.
- b) 28 000 vezes a luminosidade do Sol.
- c) 28 850 vezes a luminosidade do Sol.
- d) 30 000 vezes a luminosidade do Sol,
- e) 50 000 vezes a luminosidade do Sol.
- **5.** Considere $a = 11^{50}$, $b = 4^{100}$ e $c = 2^{150}$ e assinale a alternativa correta.
 - a) c < a < b
 - b) c < b < a
 - c) a < b < c
 - d) a < c < b
- **6.** Um adulto humano saudável abriga cerca de 100 bilhões de bactérias, somente em seu trato digestivo. Esse número de bactérias pode ser escrito como:
 - **a)** 10⁹
 - **b)** 10¹⁰
 - **c)** 10¹¹
 - **d)** 10^{12}
 - **e)** 10¹³

- 7. Considere que o corpo de uma determinada pessoa contém 5,5 litros de sangue e 5 milhões de glóbulos vermelhos por milímetro cúbico de sangue. Com base nesses dados, é correto afirmar que o número de glóbulos vermelhos no corpo dessa pessoa é (use que 1L=dm³= 10⁶ mm³):
 - a) $2,75.10^9$
 - **b)** 5, 5.10¹⁰
 - **c)** 5.10¹¹
 - **d)** $5, 5.10^{12}$
 - **e)** 2,75.10¹³
- **8.** A fração $\frac{2^{98} + 4^{50} 8^{34}}{2^{99} 32^{20} + 2^{101}}$ é igual a:
 - a) '
 - **b)** $-\frac{11}{6}$
 - **c)** 2
 - **d)** $-\frac{5}{2}$
 - **e)** $\frac{7}{4}$
- 9. $\frac{(-5)^2 3^2 + \left(\frac{2}{3}\right)^0}{3^{-2} + \frac{1}{5} + \frac{1}{2}} \text{ \'e igual a}:$
 - **a)** $\frac{3150}{17}$
 - **b)** 90
 - **c)** $\frac{1530}{73}$
 - **d)** $\frac{17}{3150}$
 - **e)** 90

- **10.** Se $5^{3a} = 64$, o valor de 5^{-a} é:
 - **a)** 1/4
 - **b)** 1/40
 - **c)** -1/4
 - **d)** 1/20

Gabarito

1. B

Transformando em 523.000 em potência de 10, temos: $523.000 = 523 \times 1000 = 523 \times 10^3 = 52,3 \times 10^4$

2. B

A resposta é
$$43,18 = \frac{43,18}{10} \times 10 = 4,318 \times 10^{1}$$
.

3. C

Utilizando a ideia de notação científica, temos:

325 mil km =
$$325 \cdot 10^3$$
 km = $3,25 \cdot 10^2 \cdot 10^3 = 3,25 \cdot 105$ km.

4. A

A estrela sugerida no problema é da classe BO e sua luminosidade é 2.104 = 20 000 vezes a temperatura do sol.

5. A

a =
$$11^{50}$$

b = $4^{100} = (4^2)^{50} = 16^{50}$
c = $2^{150} = (2^3)^{50} = 8^{50}$
 $8^{50} < 11^{50}16^{50} \Rightarrow c < a < b$

6. (

Reescrevendo 100 bilhões sabendo que 1 bilhão = 10^9 , temos que 100 bilhões é igual a 100. 10^9 = 10^2 . 10^9 = 10^{11}

7. E

5,5 L= 5,5 dm³ = 5,5. 10^6 mm³. Número de glóbulos vermelhos: $5.10^6.5$, $5.10^6 = 27$, $5.10^{12} = 2,75.10^{13}$

8. B

$$\frac{2^{98} + 4^{50} - 8^{34}}{2^{99} - 32^{20} + 2^{101}} = \frac{2^{98} + \left(2^2\right)^{50} - \left(2^3\right)^{34}}{2^{99} - \left(2^5\right)^{20} + 2^{101}} = \frac{2^{98} + 2^{100} - 2^{102}}{2^{99} - 2^{100} + 2^{101}} = \frac{2^{98} \left(1 + 2^2 - 2^4\right)}{2^{99} \left(1 - 2 + 2^2\right)} = \frac{1. - 11}{2.3} = -\frac{11}{6}$$

9 (

$$\frac{(-5)^2 - 3^2 + \left(\frac{2}{3}\right)^0}{3^{-2} + \frac{1}{5} + \frac{1}{2}} = \frac{25 - 9 + 1}{\frac{1}{9} + \frac{1}{5} + \frac{1}{2}} = \frac{17}{\frac{10 + 18 + 45}{90}} = \frac{17}{\frac{73}{90}} = 17.\frac{90}{73} = \frac{1530}{73}$$

10. A

$$5^{3a} = 64 \Leftrightarrow (5^a)^3 = 4^3 \Leftrightarrow 5^a = 4$$
, logo $5^{-a} = \frac{1}{4}$