Project Manual

Simulation Steering Wheel ESCE 2010 - Fall 2025

August Bernberg October 8, 2025

Project Resources

LTSpice Simulation File: Github Link to .asc File

Contents

1	Description	3
	1.1 Complete Schematic and Block Diagram	3
	1.2 High-Level Description of Operation and Intended Application	3
	1.3 Description of Related Pre-Existing Applications	3
2	Operation and Design	5
	2.1 Input Block	5
	2.1.1 Schematic	5
	2.1.2 Design Equation	5
	2.1.3 Input/Output Plot	5
3	MS1 Building Block 1	6
	3.1 Schematic	6
	B.2 Design Equation	6
	3.3 Discussion of Component Choices	6
	3.4 Input/Output Plot	6
	3.5 Output Block	7
	3.5.1 Schematic	7
	3.5.2 Design Equation	7
	3.5.3 Input/Output Plot	7
4	Integration and Optimization	8
	4.1 MS1	8
5	Operating Conditions	9
	5.1 MS1	9
	5.1.1 Limitations and Faults	9
	5.1.2 Tradeoffs Present in the Design	9
	5.1.3 Circuit Improvements	9
6	ABET 3.2 Engineering Design Considerations	10
7	References	11

1 Description

1.1 Complete Schematic and Block Diagram

Download

Figure 1: Complete circuit schematic - ALL major components must be clearly labeled

Download

Figure 2: Block diagram showing functional relationships between stages

1.2 High-Level Description of Operation and Intended Application

This project focuses on the design and fabrication of a custom simulation steering wheel, integrating load cells, buttons, and a servo to create a realistic driving experience for the user. The load cells measure precise grip force which is translated into throttle or braking; the buttons are timely triggered for insim actions; and the servo motor's rotational data is measured for steering functionality. All sensor data is then read and translated be the HID(Human Interface Device) format and relayed to a computer via a microcontroller - the microcontroller's only purpose is to read, not manipulate external data - whihe allows for seamless communication with a simulation software/application.

1.3 Description of Related Pre-Existing Applications

There are numerous existing sim wheel options from manufacturers such as LogitechG, Thrust-master, and others. Entry-level models typically start around \$100, with midrange units costing up to \$300, and high-end versions—featuring force feedback, F1-style layouts, and other advanced features—reaching significantly higher prices. In contrast, this project aims to deliver similar functionality at a fraction of the cost, while maintaining high precision, simplicity, and ease of construction. However, unlike other commercial simulation wheels that rely heavily on microcon-

trollers to handle sensor inputs, this design focuses on hardware solutions while using as little power from a microcontroller, besides HID formatting, which has a combination of pros and cons.

2 Operation and Design

2.1 Input Block

2.1.1 Schematic

Download

Figure 3: Input block schematic with ALL components labeled

2.1.2 Design Equation

$$V_{out} = f(V_{in}) \tag{1}$$

where all variables are defined here or in the schematic.

2.1.3 Input/Output Plot

Download

Figure 4: I/O characteristic - from measurement, simulation, or datasheet (cite source!)

3 MS1 Building Block 1

3.1 Schematic

Figure 5: Building Block 1.1

3.2 Design Equation

Load Cell Output: manufactures provide no internal resistances of wheatstone bridge besides output voltage

$$V_{out}=\pm 10 mV$$

Amplifier Gain:

$$G_m = 1 + \frac{49.4k\Omega}{R_G}$$

Voltage Divider:

$$V_{out} = V_{in} \times \frac{R_1}{R_1 + R_2}$$

Defined variables:

- $G_m = \text{gain multiplier}$
- R_G = resistor gain
- $V_{out} = \text{output to amplifier reference pin}(6 \text{ recieving 2})$
- $R_1 \& R_2 = \text{resistors for voltage divider to get 2.5V output}$

3.3 Discussion of Component Choices

The loadcell has a 10mV output according to the manufacture (there is no information regarding the internal wheatstone bridge so cant provide a schematic for that). This means to get an LED lighting output, there needs to be a gain to 5V, which is approximately 500x multiplier. However, an input via a voltage divider supplies a baseline 2.5 volts, meaning there is only a required 50% gain, or 250x. Given the manufacture's gain of their AD8226 amp, it only requires a 200 ohm resistor to reach my threshold.

3.4 Input/Output Plot

3.5 Output Block

3.5.1 Schematic

Download

Figure 6: Input block schematic with ALL components labeled

3.5.2 Design Equation

$$V_{out} = f(V_{in}) \tag{2}$$

where all variables are defined here or in the schematic.

3.5.3 Input/Output Plot

Download

Figure 7: I/O characteristic - from measurement, simulation, or datasheet (cite source!)

4 Integration and Optimization

4.1 MS1

5 Operating Conditions

5.1 MS1

5.1.1 Limitations and Faults

A major limitation for this milestone is lack of complete data. The adafruit manufacturing team has provided poor documentation and schematics relating to their loadcell - only providing a Mandarin transcribed diagram with limited and inaccurate information (i.e. states range is 1-10kg but the one it is referencing is supposively caps at 20kg load). Besides that

5.1.2 Tradeoffs Present in the Design

5.1.3 Circuit Improvements

6 ABET 3.2 Engineering Design Considerations

. . .

7 References

References

Appendix