ΜΙΓΑΔΙΚΗ ΑΝΑΛΥΣΗ

ΦΥΛΛΑΔΙΟ 0

Διδάσκοντες: Γ. Σμυρλής, Ν. Λαμπρόπουλος.

Άσκηση 1. Να λύσετε τις εξισώσεις:

(i)
$$(z+1)^2 + (z-1)^2 = 0$$
, (ii) $z^2 - 3z + 3 + i = 0$.

'Ασκηση 2. Θεωρούμε τον μιγαδικό αριθμό $z=x+yi, x,y\in\mathbb{R}$. Αν $\frac{z-i}{z+i}\in\mathbb{R}$ να αποδείξετε ότι $z\in\mathbb{I}$, ενώ αν $\frac{z-i}{z+i}\in\mathbb{I}$ να βρείτε τον γεωμετρικό τόπο των εικόνων του z στο \mathbb{C} . (Με \mathbb{I} συμβολίζουμε το σύνολο των φανταστικών αριθμών.)

Άσχηση 3. Να αποδείξετε ότι:

1.
$$A\nu z \in \mathbb{C} \ \tau \acute{o}\tau \epsilon |z| = 1 \Leftrightarrow \bar{z} = \frac{1}{z}$$

$$2.~A\nu~z\neq -1~$$
και $|z|=1~$ τότε $\frac{z-1}{z+1}\in \mathbb{I}$

'Ασκηση 4. Να αποδείξετε ότι για κάθε $z,w\in\mathbb{C}$ ισχύει:

$$|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2).$$

Ποιά είναι η γεωμετρική ερμηνεία της ισότητας αυτής;

Άσκηση 5. Να σχεδιάσετε τους γεωμετρικούς τόπους:

(i)
$$|z-3+4i| = |z-1|$$
 (ii) $|z-i| \le 1$ (iii) $Re(\bar{z}+i) = 2$

$$(iv) |z-2| = 2|z+1|$$
 $(v) |1-z| + |i+z| = 4$ $(vi) |z-2+i| - |z+1| = 10.$

Άσκηση 6. Αν οι μιγαδικοί αριθμοί z_1, z_2, z_3 είναι ανά δύο διάφοροι και οι εικόνες τους στο μιγαδικό επίπεδο βρίσκονται σε ευθεία γραμμή να αποδείξετε ότι $\frac{z_1-z_3}{z_3-z_2} \in \mathbb{R}$.

Άσκηση 7. $A \nu z = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$ να αποδείξετε ότι:

1. (i)
$$z^2 + z + 1 = 0$$
 (ii) $z^3 - 1 = 0$ (iii) $z^{2019} = 1$.

2.
$$(1+z)^{2n} = z^n, n \in \mathbb{N}$$
.

'Ασκηση 8. $A\nu |z+w|=|z|=|w|$ να αποδείξετε ότι $|z-w|=\sqrt{3}|z|$ γιά κάθε $z,w\in\mathbb{C}^*.$

'Ασκηση 9. $A\nu |z-1| \le 1$ και |z-2| = 1 να αποδείξετε ότι $1 \le |z| \le \sqrt{3}$.

'Ασκηση 10. Εστω z_k , k=0,1,2,...,n-1 οι νιοστές ρίζες της μονάδας. Να αποδείξετε ότι:

- 1. Τα ορίσματα των z_k , k=0,1,2,...,n-1 αποτελούν διαδοχικούς όρους αριθμητικής προόδου.
- 2. Οι z_k , k=0,1,2,...,n-1 αποτελούν διαδοχικούς όρους γεωμετρικής προόδου.

1

3.
$$z_0 + z_1 + \dots + z_{n-1} = 0$$
.

4.
$$z_0 \cdot z_1 \cdot \cdot \cdot z_{n-1} = (-1)^{n-1}$$
.

5.
$$(1-z_1)(1-z_2)\cdots(1-z_n)=n$$
.

6.
$$\bar{z}_k = \frac{1}{z_k} = z_{n-k}, \ k = 0, 1, 2, ..., n-1.$$

'Ασκηση 11. $Aν z = 1 + i να υπολογίσετε τον μιγαδικό <math>z^8$ καθώς επίσης το μέτρο και το κύριο όρισμα του μιγαδικού z^{2019} .

'Ασκηση 12. Να λύσετε την εξίσωση: $z^4 - z^3 + z^2 - z + 1 = 0$.

'Ασκηση 13. Να βρεθεί η ελάχιστη και η μέγιστη απόσταση της εικόνας του μιγαδικού $3+i\sqrt{3}$ από τις εικόνες των ριζών της εξίσωσης $z^6=-64$.

'Ασκηση 14. Na λύσετε τις εξισώσεις: (i) $e^z = e^{1+i}$ (ii) $e^z = 1+i$.

'Ασκηση 15. Να λύσετε την εξίσωση: $cosz = \frac{1}{2}$. Τι παρατηρείτε;

'Ασκηση 16. Να βρείτε την εικόνα του κύκλου |z|=1 μέσω της απεικόνισης $f(z)=z+\frac{1}{z}$;

Άσκηση 17. Να υπολογίσετε τους μιγαδικούς:

(i)
$$i^{\pi}$$
 (ii) π^{i} (iii) $\operatorname{Log}(-1)$ (iv) $\operatorname{Log}(i)$.

'Ασκηση 18. Να αποδείξετε ότι η εξίσωση $\cos z = w$ έχει λύση για κάθε $w \in \mathbb{C}$. Τι συμπεραίνετε για τη συνάρτηση $\cos z$.

'Ασκηση 19. $A\nu f(z) = z + 1 + z \operatorname{Log} z \ να \ αποδείξετε ότι <math>\lim_{z\to 0} f(z) = 1$.

Άσκηση 20. Να υπολογίσετε (αν υπάρχουν) τα όρια:

(i)
$$\lim_{z\to 0} Logz$$
 (ii) $\lim_{z\to 0} e^z$ (iii) $\lim_{z\to 0} \frac{z}{\bar{z}}$ (iv) $\lim_{z\to 0} \frac{Imz^2}{|z|}$.