

Approximate алгоритмы для больших данных

Дмитрий Киселёв

План

- Хэш и примеры применений
 - Извлечение признаков
 - Разделение на группы
 - Фильтрация
 - Расчет статистик
- Поиск ближайших соседей
 - Примерный подсчет расстояния
 - Примерный поиск ближайших соседей

text-snauon, hadowicolo filter: dropshadowicolo color:#777: header main-havigation of h box-shadow: ODX COX Must poly-shadow nd-color:#F9F9F9

rund #F5

Что такое хэш

Хэш

Хэш функция переводит вход (число / строку / whatever) в целочисленный номер корзины (bucket number)

Хороший хэш должен равномерно распределять по корзинам ключи.

Хэш от одного ключа всегда попадает в одну корзину

Пример: остаток от деления на простое число для целочисленных ключей

Пример: конвертируем символ для строки в Int (Unicode / ASCII), суммируем.

Hashing trick

Аналог One-Hot-encoding

Рассмотрим фичу с именем "country"

- 1. Создаем хэш-таблицу с весами линейной модели
- 2. Пусть для текущей строки ее значение "russia"
- 3. Берем хэш от "country_russia" и достаем из хэш-таблицы соответствующий вес

HashingTF в Spark

- 1. Вместо сохранения конкретных слов, берем хэши от них
- 2. Сохраняем это в хэш-таблицу (хэш слова -> встречаемость)

A/B/n-тесты

- Берем id пользователя превращаем в строку
- Конкатенируем с солью (например, название текущего теста)
- Берем от этого хэш (MurMurHash3 хороший вариант)
- Выделяем остаток от деления значения хэша на большое простое число
- Для удобства конвертируем в доли получаем значение CDF равномерного распределения
- Сравниваем CDF с границами вариаций

Bloom filter

Задача

- У нас есть очень большое множество
- Хотим проверить входят ли какие-то элементы в него

Подход в лоб

- Делаем хэш-таблицу по данным
- Смотрим, что хэш для нового элемента уже существует
- Быстро (лукап по хэш-таблице константа), но требует много места

Bloom filter

Имеет две операции

- добавление в множество
- проверка на отсутствие

Состоит из n бит (сначала все 0) и k хэш-функций, которые кладут в один из n бит Добавление

- 1. Считаем k хэш-функций от элемента
- 2. Меняем 0 на 1 (или оставляем 1) в корзинках, которые вернули хэши

Поиск

- 1. Считаем k хэш-функций от элемента
- 2. Если какой-то бит равен 0, то элемента нет в множестве

Но могут быть коллизии!

https://en.wikipedia.org/wiki/Bloom_filter

Bloom Filter

Но могут быть коллизии!

Давайте посчитаем вероятность False Positive через параметры n, k и количества элементов в множестве (m)

- 1. Каждая хэш-функция попадает равномерно в одну из n корзинок, тогда вероятность промаха по конкретной корзинке $1-\frac{1}{n}$
- 2. Тогда вероятность, что все хэш-функции промахнуться мимо этого бита равна $\left(1-\frac{1}{n}\right)^k$
- 3. Всего m элементов поэтому вероятность, что в заполненном фильтре пустой бит равна $\left(1-\frac{1}{n}\right)^{km}$
- 4. Вероятность того, что все хэши выставлены для нового элемента

$$\left(1 - \left(1 - \frac{1}{n}\right)^{km}\right)^k \approx \left(1 - e^{-\frac{km}{n}}\right)^k$$

Bloom filter

Вероятность коллизии $p=\left(1-e^{-\frac{km}{n}}\right)^k$ минимальна при $k=\frac{n}{m}\ln 2$ Подставив k в формулу р получим $\ln p=-\frac{n}{m}(\ln 2)^2$ Отсюда

$$n = -\frac{m \ln p}{(\ln 2)^2} \approx -1.44 m \log_2 p$$
$$k = -\log_2 p$$

Если у нас $m=10^6$ элементов и хотим ошибаться не чаще p=0.01 Количество требуемых бит $n\approx 10^7$, $k\approx 7$ Обычная хэш-таблица при хэше в 32 бита — $3.2*10^7$

Count-min sketch

Задача

- Имеем нагруженный поток данных
- Хотим посчитать как часто конкретный элемент встречается в потоке Подход в лоб
- Делаем хэш-таблицу элемент встречаемость
- Смотрим по хэшу встречаемость элемента
- Быстро (лукап по хэш-таблице константа), но требует много места

Count-min sketch

width w

Операции

- Инкремент счетчика для элемента
- Извлечение счетчика для элемента

Состоит из d разных хэш-функций с w корзинками Добавление

- 1. Считаем d хэш-функций от элемента
- 2. Добавляем 1 в соответствующие ячейки

Извлечение

- 1. Считаем d хэш-функций от элемента
- 2. Берем минимум из полученных значений в ячейках

https://florian.github.io/count-min-sketch/

Count-min sketch

С вероятностью $1-\delta$ ошибка будет не больше чем $\varepsilon \sum counts$

Выбрать количество корзин и хэшей можно через $\mathbf{w} = \left[\frac{e}{\varepsilon}\right], \ d = \left[\ln\frac{1}{\delta}\right]$

packgroun text-shadow: opx filter, dropshadowtcoro color:#777 header main-navigation ul box-shadow: muz-pox-ehadous ad-color:#F9F Поиск похожих

aund A

Поиск похожих Similarity search

Что такое?

- Поиск наиболее похожих элементов (документов, товаров, пользователей...) согласно заданной метрике близости или расстояния (Жаккард, Косинус, Евклид,...)
- Классические примеры: k-ближайших соседей, ранжирование (рексистемы, чат-боты, распознавание лиц,), дедупликация документов

Метрики

- Расстояние переводит пару элементов некоторого пространства в вещественное число
- Должно удовлетворять условиям
 - Расстояние неотрицательно
 - Расстояние равно нулю только тогда, когда совпадают элементы
 - Расстояние симметрично
 - Неравенство треугольника
- Примеры: Jaccard, Euclidian, Cosine

Метрики

- Jaccard: $d(x, y) = 1 \frac{|x \cap y|}{|x \cup y|}$
- Euclidean: $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- Cosine: $d(x, y) = \arccos \frac{\sum x_i * y_i}{\sqrt{\sum x_i^2 y_i^2}}$

Позволяет быстро посчитать меру Жаккарда

Element	S_1	S_2	S_3	S_4
\overline{a}	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

Переставим строки и найдем имя элемента с первым ненулевым значением

Element	S_1	S_2	S_3	S_4
b	0	0	1	0
e	0	0	1	0
a	1	0	0	1
d	1	0	1	1
c	0	1	0	1

$$h(S1) = a, h(S2) = c, h(S3) = b, h(S4) = a$$

Вероятность совпадения в такой перестановке – мера Жаккарда Всего возможно три варианта событий

- 1. Оба элемента в строке равны 1 (количество элементов в пересечении)
- 2. Только один из элементов в строке имеет 1 (объединение пересечение)
- 3. В обоих строках нули

В данном случае нам интересны только 1 и 2.

Вероятность того, что 1 будет раньше 2 равна $\frac{|1|}{|1|+|2|}$, что совпадает с близостью Жаккарда

- Но переставлять строки дорого
 - Хэш эквивалентен перестановке
 - Первый ненулевой элемент имеет минимальное значение функции
- Как оценить вероятность?
 - Используем несколько перестановок (несколько разных хэшей) сигнатура
 - Посчитаем долю совпадений

Возьмем три хэш-функции: $x \bmod 5$, $x^3 - 1 \bmod 5$ и $3x - 2 \bmod 5$ $J = \frac{2}{3}$

	Element		S_1	S_2	S_3	S_4	
1	0	1	\overline{a}	1	0	0	1
2	2	4	b	0	0	1	0
3	1	2	c	0	1	0	1
4	3	0	d	1	0	1	1
0	4	3	e	0	0	1	0

Approximate Nearest Neighbors

Мы научились быстро сравнивать два документа

Однако даже такой подход не позволит быстро находить ближайшие элементы на входящий запрос

Давайте выберем только потенциально наиболее близких кандидатов и проведем медленное сравнение уже на этом подмножестве

Locality-sensitive hashing (LSH) for MinHash

Разделим наши MinHash сигнатуры на полоски (bands) и посмотрим на коллизии внутри них. Если коллизии есть, то уже полноценно сравниваем эти документы

LSH for MinHash

- .3 .047
- .4 .186
- .5 .470
- .6 .802
- .7 .975
- .8 .9996

- 1. Пусть близость между двумя документами равна s
- 2. Тогда вероятность, что сигнатуры совпадут в одной полоске s^r
- 3. Вероятность несовпасть хотя бы в одной строке полоски равна $1 s^r$
- 4. Вероятность, что одна строка не совпадет везде равна $(1 s^r)^b$

5. Тогда вероятность, что кандидаты полностью совпадут хотя бы в одной

полосе равна $1 - (1 - s^r)^b$

Jaccard similarity of documents

Bucketed random projection (Euclidean)

- 1. Проводим прямую
- 2. Делим на корзинки равной длины
- 3. Смотрим попали ли две точки в одну корзину

Для проекции используем хэш-функцию

$$h(x) = \left| \frac{v \cdot x}{a} \right|$$

v — случайный единичный вектор

Random Hyperplanes (Cosine)

- 1. Берем случайную плоскость
- 2. Перемножаем вектора на нормаль и смотрим на знаки
- 3. Вероятность их расположения по одной стороне равнп углу между векторами.

Вместо того, чтобы семплировать случайнук вектор из 1 и -1

Annoy

- Выберем две случайные точки и проведем к ним нормаль
- Повторим для подплоскости, пока в листе останется не больше заданного К элементов
- Сохраним индекс в бинарное дерево
- Но одно дерево слишком неточное
- Соберем лес!

https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html

Navigable Small World (NSW)

- 1. Строим Small World граф по данным
- 2. При запросе попадаем на случайную вершину
- 3. Идем в ближайшую к запросу соседнюю вершину
- 4. Повторяем, пока не окажемся в ближайшей точке.

https://habr.com/ru/company/mailru/blog/338360/

Hierarchical Navigable Small World (HNSW)

Теперь разделим граф на слои

Все точки со слоя n переходят на слой n+1

- 1. Выбираем случайную точку на верхнем слое
- 2. Используем механизм NSW
- 3. Как только нашли ближайшую точку на слое, спускаемся ниже

https://habr.com/ru/company/mailru/blog/338360/

Facebook AI research Similarity Search (FAISS)

FAISS состоит из трех основных частей

- 1. Asymmetric distance computation (ADC)
- 2. Inverted file (IVF)
 - Для центроида храним сразу список всех векторов остатков
- 3. Product quantization (PQ)

FAISS: ADC

- Воспользуемся идеей корзинок и разделим наше пространство на кластеры с помощью K-Means
- Для репрезентации корзины возьмем вектор центрального элемента
- При запросе находим ближайший центр
- Достаем элементы кластера через IVF

https://habr.com/ru/company/mailru/blog/338360/

FAISS: IVF

Для центров кластера просто храним список элементов в нем

https://habr.com/ru/company/mailru/blog/338360/

FAISS: PQ

- 1. Вычитаем элементы центроида из вектора
- 2. Делим полученный вектор на корзинки
- 3. Каждую из частей кластеризуем и заменяем индексом центра

https://mccormickml.com/2017/10/13/product-quantizer-tutorial-part-1/

FAISS: Поиск

- При запросе находим несколько ближайших центров кластеров
- Достаем элементы кластера через IVF
- Остаток вектора от запроса до центра кластера кодируется через PQ
- Расстояние от запроса до элемента определяется, как сумма расстояний от центров кластеров между всеми корзинками
- Достаем ближайших

Выводы

Хэши позволяют многое ускорить

- Подготовка фичей
- Фильтрация данных
- Подсчет статистик
- Оценка похожести
- Поиск ближайших

Но нужно помнить, что они вносят ошибку

text-snauow filter dropshadowcolo color:#777 header main-havigation ulli box-shadow: ODY COM mnz-hox-shadow nd-color:#F9F9F9

wind #F5

Вопросы

Домашнее задание

Peaлизовать Random Hyperplanes LSH (для косинусного расстояния) в виде Spark Estimator

Основное задание (100 баллов)

- 1. Посмотреть как устроены MinHashLSH и BucketedRandomProjectionLSH в Spark
- 2. Унаследоваться от LSHModel и LSH
- 3. Определить недостающие методы для модели (hashFunction, hashDistance keyDistance, write) и для LSH (createRawLSHModel, copy, transformSchema)

Дополнительное задание (30 баллов)

- 1. Сделать предсказания (на тех же данных и фичах: HashingTf-Idf)
- 2. Подобрать количество гиперплоскостей и трешхолд по расстоянию