Jarmoc Maja, indeks: 274263

Cel ćwiczenia: przeprowadzenie analizy głównych składowych (Principal component analysis) z użyciem zbioru danych "Cereals" zawierającego 30 rodzajów płatków śniadaniowych wraz z informacjami o kaloriach, ilości białka, tłuszczu, błonnika, węglowodanów, cukrów (w gramach) i sodu (w miligramach); (porcja: 30g.) Dane zostały ówcześnie przygotowane: usunięcie danych odstających, transformacja (o ile tego wymagały).

Dane zostały poddane autoskalowaniu przed HCA (nie ponawiam tego kroku przy PCA).

Celem PCA jest taki obrót układu współrzędnych, aby maksymalizować w pierwszej kolejności wariancję pierwszej współrzędnej, następnie wariancję drugiej współrzędnej itd..

Pierwszym krokiem w PCA jest wykonanie macierzy korelacji, niezbędnej do obliczenia wartości własnych i wektorów własnych macierzy w kolejnym kroku.

	calories	protein	fat	sodium*	fiber	carbo*	sugars
calories	1.000000	-0.235053	0.519579	0.064133	-0.167451	0.233747	0.343822
protein	-0.235053	1.000000	0.004077	-0.187741	0.750568	-0.082729	-0.523169
fat	0.519579	0.004077	1.000000	-0.152857	0.102935	0.528355	0.136245
sodium*	0.064133	-0.187741	-0.152857	1.000000	-0.112986	-0.409305	-0.211934
fiber	-0.167451	0.750568	0.102935	-0.112986	1.000000	0.124865	-0.260098
carbo*	0.233747	-0.082729	0.528355	-0.409305	0.124865	1.000000	0.743915
sugars	0.343822	-0.523169	0.136245	-0.211934	-0.260098	0.743915	1.000000

Tabela 1. Macierz korelacji dla cech (zbiór danych: "Cereals") m x m

Dzięki macierzy korelacji obliczyłam wektory własne i odpowiadające im wartości własne.

Posortowane malejąco (wraz ze spadkiem wyjaśnionej wariancji) wartości własne wraz z ich wektorami własnymi.

2.519	[0.377	0.03	-0.589	-0.181	-0.664	-0.22	-0.021]
1.928	[-0.325	0.523	-0.074	-0.003	-0.227	0.237	0.673]
1.189	[0.36	0.348	-0.499	-0.261	0.56	0.358	-0.094]
0.684	[-0.189	-0.37	-0.5	0.687	0.239	-0.002	0.237]
0.466	[-0.194	0.572	-0.067	0.431	-0.158	-0.004	-0.626]
0.187	[0.538	-0.019	0.316	0.395	-0.227	0.618	0.031]
0.038	[0.51	0.373	0.21	0.293	0.244	-0.621	0.298]

Kolejnym krokiem będzie wybór optymalnej liczby głównych składowych. Aby ustalić ich ilość użyłam dwóch metod:

 kryterium minimalnego zasobu zmienności – przyjęłam minimalny procent zmienności jaką chciałabym określić i na tej podstawie dobrałam liczbę głównych składowych (k).

Minimalny procent: 80%

Po zsumowaniu wyjaśnianej zmienności przez pierwsze trzy główne składowe uzyskałam ustalone przez siebie minimum. 3 pierwsze główne składowe wyjaśniają 80,4 % ogólnej zmienności.

• kryterium Keiser'a - jako istotne główne składowe wybieramy tylko te, których wartości własne ≥ 1.

Przy zastosowaniu kryterium Keiser'a również wybieram jako istotne 3 pierwsze główne składowe.

Następnie obliczyłam ładunki czynnikowe, czyli współczynniki korelacji pomiędzy daną zmienną, a składowymi. Stworzyłam macierz ładunków oraz wykresy słupkowe ładunków czynnikowych.

	PC1	PC2	PC3
calories	0.377	-0.325	0.360
protein	0.030	0.523	0.348
fat	-0.589	-0.074	-0.499
sodium*	-0.181	-0.003	-0.261
fiber	-0.664	-0.227	0.560
carbo*	-0.220	0.237	0.358
sugars	-0.021	0.673	-0.094

Tabela 2. Macierz ładunków k x m

Rysunek 1. Wykresy ładunków czynnikowych dla poszczególnych składowych.

Co prawda żaden z ładunków nie spełnia kryterium Malinowskiego – minimalna wartość (0.7) po pokonaniu której zachodzi korelacja pomiędzy zmienną ukrytą, a zmienną oryginalną, można jednak wyciągnąć następujące wnioski:

Pierwszy wektor własny (PC1) ma wysokie ładunki dodatnie przy zmiennej "calories" oraz wysokie ujemne ładunki przy zmiennych "fat" i fiber". Kalorie i tłuszcz wykazują dodatnią korelację. Tłuszcz i błonnik wykazują ujemną korelację, kalorie i błonnik wykazują dodatnią korelację, zmienne te mają największy wpływ na PC1.

Drugi wektor własny (PC2) ma wysokie ładunki dodatnie przy zmiennej "protein", "sugars". Białka i cukry wykazują ujemną korelację. Zmienne te mają największy wpływ na PC2.

Trzeci wektor własny (PC3) ma mały ładunek dodatni przy zmiennych: "calories", "protein", "fiber" i "carbo" oraz mały ujemny ładunek przy zmiennych "fat", "sodium" i "sugars". Interpretacja tej zmiennej nie jest oczywista.

Biplots

"Biplots" – nakłada na siebie wykres punktów utworzony wg. nowych współrzędnych i wykres ładunków.

Dostarcza więcej informacji niż dwa wykresy interpretowane samodzielnie.

Oznaczenia płatków na wykresach:

1. Bran Chex	
2. Bran Flakes	
3. Cap'n'Crunch	-
Cap i Crunch Cinnamon Toast Crunch	-
5. Clusters	
6. Cocoa Puffs	
7. Corn Chex	
8. Corn Flakes	-
	_
Corn Pops Count Chocula	_
11. Cracklin' Oat Bran	
12. Cream of Wheat (Quick)	_
, ,	
13. Crispix	
14. Crispy Wheat & Raisins 15. Double Chex	_
16. Froot Loops 17. Frosted Flakes	_
18. Frosted Mini-Wheats	_
	_
19. Fruit & Fibre Dates; Walnuts; and Oats 20. Fruitful Bran	
21. Fruity Pebbles	
22. Golden Crisp	
23. Golden Grahams	
24. Grape Nuts Flakes	
25. Grape-Nuts	
26. Great Grains Pecan	
27. Honey Graham Ohs	
28. Honey Nut Cheerios	
29. Honey-comb	
30. Just Right Crunchy Nuggets	

Kolory strzałek i nazwy zmiennych na wykresach są różne, aby biplot był bardziej czytelny.

PC1 i PC2

Wartości PC1 dla zmiennych wahają się od -0.30 do 0.65, natomiast PC2 w przedziale -0.5 do 0.6. Na wykresie widzimy wyodrębnione 4 skupiska. Różnica w wartości PC1 obiektów w każdym ze skupisk jest niewielka, o wiele większa jest różnica w wartościach PC2.

Pierwsze skupisko (wysunięte najbardziej na lewo) utworzone z numerów 3,4,19,20,26,27 to płatki o najwyższej ilości kalorii, zwracając uwagę na wykres ładunków PC1 możemy stwierdzić, że płatki te mają także dość dużą zawartość tłuszczu. (kalorie skorelowane są dodatnio z tłuszczem).

Skupisko najbardziej wysunięte na prawo złożóne jedynie z dwóch rodzajów płatków: 1 i 2 ma najniższą ilość kalorii. Łatwo więc o interpretację – im obiekt położony bardziej na prawo (większa wartość PC1) – tym ilość kalorii jest większa.

Płatki 10,16,22 mają największą zawartość cukrów, widać to tu, jak i na wykresie PC2 do PC3.

Zgodnie z kierunkiem strzałki wskazującej na zmienną sugars - im płatki bardziej wysunięte na prawo tym ilość cukrów jest większa.

Długa strzałka fiber skierowana ku górze wskazuje na dużą zawartóść błonnika (duża wartość PC3) – płatki 2, 11, 19, 20 mają największą ilosć błonnika ze wszystkich płatków w zbiorze.

Płatki o najniższej wartości PC1 to płatki z najwyższą ilością kalorii (120 kcal). Płatki o najwyższej wartości PC1 to płatki o najniższej ilości kalorii (90 kcal). Im wyższa wartość PC3 tym wyższa wartość błonnika.

Skupisko stworzone z płatków 22, 15, 12 i 8 to płatki o zerowej zawartości tłuszczu i tym samym niskiej zawartości kalorii.

Płatki numer 11 – stosunkowo dużo tłuszczu jak i białka równocześnie.

Podobnie jak na wykresie PC1 i PC2 również i tu formują się 4 skupiska z obiektami o podobnej wartości PC1, dzieje się tak ze względu na obecność wektora PC1, na który duży wpływ mają kalorie i tłuszcz w płatkach.