

Распознавание внутреннего проговаривания фонем на основе данных электроэнцефалограммы и электромиограммы.

Студентка: Поиленкова Анна 621 группы

Научный руководитель: к.т.н., доцент Костенко В. А.

brain-computer interface

Электрофизиологические данные

ЭЭГ - Электроэнцефалография

 метод регистрации электрической активности мозга

ЭМГ - Электромиография

метод оценки и регистрации
электрической активности скелетных мышц

Цели и задачи работы

Целью работы является разработка алгоритма распознавания мысленно проговариваемых фонем русского языка на основе данных, получаемых с устройства электроэнцефалографии, и данных электромиографа, снятых в области отвечающей за речь.

Для достижения указанной цели необходимо решить следующие задачи:

- 1. Изучить метод проведения эксперимента по сбору данных, а также методы их предварительной обработки,
- 2. Разработать математическую постановку задачи распознавания фонем,
- 3. Провести обзор существующих алгоритмов для задачи распознавания мысленно проговариваемых фонем,
- 4. На основе обзора разработать и реализовать выбранный метод распознавания мысленно проговариваемых фонем,
- 5. Провести экспериментальное исследование реализованного алгоритма на реальных данных.

Внутренняя речь

Внутренняя речь - беззвучная, мысленная речь, которая возникает в тот момент, когда мы думаем о чем-либо или по-другому, когда произносим что-то про себя

во время мысленной речи возникает отчетливая речедвигательная импульсная активности либо в форме повышения общего тонуса речевой мускулатуры, либо в форме кратковременных вспышек.

Задача классификации мысленно произносимых проговариваемых фонем

N - уникальный номер одной из фонемы русского языка: $1:A-[a],2:B-[6],3:\Phi-[\phi],4:\Gamma-[\Gamma],5:M-[M],6:P-[p],7:Y-[y]$

Задача распознавания мысленного произношения

Дано:

- Данные ЭЭГ: $E^{(i)} = [e_1^{(i)}, e_2^{(i)}, \dots, e_j^{(i)}, \dots, e_{K_i}^{(i)}]$, где $e_j^{(i)} = \langle e_{j,C3}^{(i)}, e_{j,T3}^{(i)}, e_{j,F3}^{(i)}, e_{j,F7}^{(i)} \rangle$
- Данные ЭМГ: $M^{(i)} = [m_1^{(i)}, m_2^{(i)}, \dots, m_j^{(i)}, \dots, m_{K_i}^{(i)}]$, где $m_j^{(i)} = \langle m_{j,Oz}^{(i)}, m_{j,Fp}^{(i)} \rangle$
- Обозначим $W^{(i)}$ за множество, полученное объединением элементов множеств $E^{(i)}$ и $M^{(i)}$. В таком случае: $W^{(i)} = [w_1^{(i)}, w_2^{(i)}, \dots, w_j^{(i)}, \dots, w_{K_i}^{(i)}]$

$$w_j^{(i)} = \langle e_{j,C3}^{(i)}, e_{j,T3}^{(i)}, e_{j,F3}^{(i)}, e_{j,F7}^{(i)}, m_{j,Oz}^{(i)}, m_{j,Fp}^{(i)} \rangle$$

I - номер испытуемого

 K_i - число сегментов испытуемого і $m_{i,Oz}^{(i)}$ - временной ряд канала Оz

Требуется разработать:

• Алгоритм построения классификатора для испытуемого і.

classifier:
$$M \rightarrow P$$

, где M - множество всех возможных временных рядов длины T, P - множество $\{1, 2, 3, 4, 5, 6, 7\}$.

$$accuracy = \frac{\sum_{k=1}^{K_i} w_k^{(i)} \in W^{(i)}, [classifier_1^{(i)} \{ w_k^{(i)} \} = L(i, k)]}{|\{ w_k^{(i)} : w_k^{(i)} \in W^{(i)} \}|}$$

 $accuracy \rightarrow max$

Обзор

Статья		Точность распознавания
[2]	2 хинди фонемы	SVM - 75–80%
[3]	11 (фонемы + слова)	SVM - 20%
[4]	9 слов	CNN - 85 %
[5]	4 слова (вверх, вниз, налево, направо)	SVM - 26.2%, XGBoos - 27,9%, BiLSTM - 36,1%
[6]	4 слова	SVM - 28,95% до 30,25%

SVM

Support Vector Machine

Извлечение признаков

Четырехуровневое дискретное вейвлетпреобразование для исходного сигнала

Классификация

AR + MAD + STD

AR - коэффициенты авторегрессии MAD - среднее абсолютное отклонение STD - среднеквадратичное отклонение

SVM

Support Vector Machine

	Испытуемый							
Кол-во коэфф.								
авторегрессии	1	2	3	4	5	6		
Данные ЭЭГ								
AR4	26.8%	13.6%	22%	23.4%	15.3%	22%		
AR6	24.3%	24.1%	32.5%	11.1%	27.8%	23.6%		
AR8	17.5%	26.8%	24.3%	14.7%	21.7%	19.2%		
Объединённые данных ЭЭГ и ЭМГ								
AR4	21.6%	12.7%	20%	23.1%	13.4%	10.4%		
AR6	23.5%	18.2%	20.3%	16.9%	18.8%	15.1%		
AR8	15%	15.4%	18.4%	17.2%	18.3%	13.4%		

Усредненные значения точности. AR4, AR6, AR8 — коэффициенты авторегрессионных моделей 4-го, 6-го и 8-го порядка соответственно.

Полученные результаты

- по данным ЭЭГ 23.9% в среднем по всем испытуемым
- при объединении данных ЭЭГ + ЭМГ 18.8%

Литература

- 1. Шевченко А. О., Вартанов А. В. ВЫЗВАННЫЙ АРТИКУЛЯТОРНЫЙ ОТВЕТ ПРИ ВНУТРЕННЕМ И ВНЕШНЕМ ПРОГОВАРИВАНИИ // Современная наука: актуальные проблемы теории и практики. Серия: Познание. -2023. -№01. -С. 108-111 DOI 10.37882/2500-3682.2023.01.20
- Khan, Munna. Classification of myoelectric signal for sub-vocal Hindi phoneme speech recognition / Munna Khan, Mosarrat Jahan // Journal of Intelligent & Fuzzy Systems. — 2018. — Vol. 35, no. 5. — Pp. 5585–5592.
- 3. Cooney, Ciaran. Mel frequency cepstral coefficients enhance imagined speech decoding accuracy from EEG / Ciaran Cooney, Rafaella Folli, Damien Coyle // 2018 29th Irish Signals and Systems Conference (ISSC) / IEEE. 2018. Pp. 1–7.
- 4. Silent eeg-speech recognition using convolutional and recurrent neural network with 85% accuracy of 9 words classification / Darya Vorontsova, Ivan Menshikov, Aleksandr Zubov et al. // Sensors. 2021. Vol. 21, no. 20. P. 6744.
- 5. Gasparini F., Cazzaniga E., Saibene A. Inner speech recognition through electroencephalographic signals //arXiv preprint arXiv:2210.06472. 2022.
- 6. Cooney C. et al. Evaluation of hyperparameter optimization in machine and deep learning methods for decoding imagined speech EEG //Sensors. 2020. T. 20. No. 16. C. 4629.