Экзаменационная программа по курсу «Математическая статистика».

1. Структура экзаменационного билета.

Экзаменационный билет состоит из:

- двух основных теоретических вопросов, на которые нужно дать подробный и развернутый письменный ответ, включая необходимые формулировки утверждений и теорем и доказательства, если они были изложены в курсе лекций.
 - одной задачи, решение которой нужно записать подробно.
- пяти дополнительных вопросов, на которые можно дать лишь краткий письменный ответ, при необходимости сославшись на соответствующие известные факты при устном ответе.

2. Основные теоретические вопросы.

Далее приводится полный список основных теоретических вопросов по темам, изложенным в курсе:

- 1. Основные определения математической статистики: выборка, объем выборки, реализация выборки, вариационный ряд, порядковые статистики, эмпирическая функция распределения и её свойства (теоремы о сходимости).
- 2. Задача точечного оценивания неизвестных величин: параметров, вероятностей и моментов. Понятие статистики и оценки, свойства оценок: несмещенность и состоятельность. Сравнение несмещенных оценок на основе дисперсий. Понятие об оптимальной оценке, утверждение о единственности оптимальной несмещенной оценки. Обобщение критерия сравнения оценок на основе дисперсий с использованием среднеквадратичного отклонения, функции потерь и функции условного риска.
- 3. Понятие состоятельной оценки и предельные теоремы, используемые для доказательства состоятельности оценок (теорема Бернулли, теорема Хинчина, неравенство Чебышева и закон больших чисел в форме Чебышева, закон больших чисел в форме Маркова). Утверждение о состоятельности оценки с убывающей дисперсией.
- 4. Задача точечного оценивания вероятности события, построение оценки и свойства оценки. Задача точечного оценивания значений функции распределения, построение оценки и свойства оценки.
- 5. Задача точечного оценивания математического ожидания и дисперсии. Понятие о выборочном среднем, выборочной дисперсии и исправленной выборочной. Несмещенность и состоятельность выборочного среднего, выборочной дисперсии и исправленной выборочной дисперсии (без вывода формулы дисперсии выборочной дисперсии).
- 6. Точечное оценивание старших моментов: выборочные моменты и их свойства несмещенности и состоятельности.
- 7. Постановка задачи построения точечной линейной оценки среднего при разноточных измерениях, метод построения линейной оценки с минимальной дисперсией и свойства коэффициентов.
- 8. Метод моментов построения точечных оценок, свойства моментных оценок.
- 9. Метод максимального правдоподобия построения точечных оценок. Свойства МП-оценок: состоятельность и асимптотическая нормальность.
- 10. Метод порядковых статистик: построение оценок и оценка квантилей. Понятие порядковой статистики, функция распределения и функция плотности вероятности порядковых статистик. Теорема Крамера об асимптотической нормальности порядковых статистик и свойства оценок по методу порядковых статистик.
- 11. Понятие доверительного интервала, верхней и нижней доверительных границ. Понятие центральной статистики и общий метод построения доверительных интервалов с помощью центральной статистики. Метод построения центральной статистики.
- 12. Построение наикратчайшего доверительного интервала для математического ожидания по выборке из нормального распределения с известной дисперсией.
- 13. Распределение хи-квадрат и построение доверительных интервалов для дисперсии и среднеквадратичного отклонения по выборке из нормального распределения с известным математическим ожиланием.

- 14. Теорема Фишера о выборочном среднем и исправленной выборочной дисперсии. Построение доверительных интервалов для дисперсии и среднеквадратичного отклонения по выборке из нормального распределения с неизвестным математическим ожиданием.
- 15. Теорема Фишера о выборочном среднем и исправленной выборочной дисперсии. Построение доверительного интервала для математического ожидания по выборке из нормального распределения с неизвестной дисперсией.
- 16. Построение доверительных интервалов с использованием асимптотической нормальности. Построение доверительного интервала для вероятности события: способы A, Б и B.
- 17. Построение доверительного интервала для коэффициента корреляции двумерного нормального распределения с неизвестными математическими ожиданиями и дисперсиями.
- 18. Основные определения в задачах проверки статистических гипотез: статистическая гипотеза (простая и сложная), основная и альтернативная гипотезы (альтернативные распределения), статистический критерий и статистика критерия, критическая область и общий принцип проверки гипотез.
- 19. Основные определения в задачах проверки статистических гипотез: статистика критерия и критическая область, вероятности ошибок первого и второго родов, функция мощности критерия (функции мощности как характеристика критерия и вид функции мощности «хорошего» критерия), свойства несмещенности и состоятельности критерия.
- 20. Постановка задачи проверки простой гипотезы о вероятностях и критерий хи-квадрат. Утверждение о неограниченности по вероятности статистики критерия хи-квадрат при условии, что основная гипотеза не верна. Теорема Пирсона об асимптотическом распределение статистики критерия хи-квадрат при условии, что основная гипотеза верна. Состоятельность критерия хи-квадрат. Нецентральное распределение хи-квадрат и асимптотическое распределение статистики критерия хи-квадрат при условии, что основная гипотеза не верна. Условие применимости критерия хи-квадрат на практике.
- 21. Постановка задачи проверки простой гипотезы о вероятностях. Применение критерия хи-квадрат к задаче проверке гипотезы о распределении полностью известном.
- 22. Постановка задачи проверки сложной гипотезы о вероятностях и критерий хи-квадрат. Теорема Фишера об асимптотическом распределении минимальной по параметру статистики в случае, если основная гипотеза верна. Теорема Фишера об асимптотическом распределении статистики с МПоценкой параметра в случае, если основная гипотеза верна. Применение критерия хи-квадрат к задаче проверки гипотезы о распределении с неизвестным параметром.
- 23. Постановка задачи проверки гипотезы о независимости признаков и применение критерия хиквадрат.
- 24. Постановка задачи проверки гипотезы об однородности и критерий проверки: статистика критерия и критическая область.
- 25. Критерий согласия Колмогорова: постановка задачи, основная и альтернативная гипотезы, статистика критерия, утверждение о неограниченности по вероятности статистики критерия, в случае если основная гипотеза не верна, критическая область, распределение статистики, в случае если основная гипотеза верна, теорема Колмогорова, выбор порога критической области по заданному уровню значимости.
- 26. Критерий согласия Колмогорова-Смирнова: постановка задачи, основная и альтернативная гипотезы, статистика критерия и, её значения в случае если основная не верна, критическая область, теорема Смирнова, выбор порога критической области по заданному уровню значимости.
- 27. Критерий Фишера: постановка задачи, основная и альтернативная гипотезы, статистика критерия и её значения, в случае если основная не верна, критическая область, утверждение о распределении статистики критерия, в случае если основная гипотеза верна, выбор порогов критической области по заданному уровню значимости.
- 28. Критерий Стьюдента: постановка задачи, основная и альтернативная гипотезы, статистика критерия и её значения, в случае если основная не верна, критическая область, утверждение о распределении статистики критерия, в случае если основная гипотеза верна, выбор порога критической области по заданному уровню значимости.
- 29. Однофакторный дисперсионный анализ: постановка задачи, основное дисперсионное соотношение, межгрупповая и внутригрупповая дисперсии, распределение внутригрупповой дисперсии, значения межгрупповой дисперсии, в случае если основная гипотеза не верна,

- распределение межгрупповой дисперсии, в случае если основная гипотеза верна, статистика критерия, критическая область и выбор порога критической области по заданному уровню значимости.
- 30. Задача проверки параметрических гипотез, статистический критерий и функции вероятностей ошибок первого и второго рода. Понятие о равномерно наиболее мощном критерии.
- 31. Постановка задачи различения двух простых гипотез, вероятности ошибок первого и второго рода, понятия минимаксного критерия и байесовского критерия. Понятие критерия отношения вероятностей, свойства вероятностей ошибок критериев отношения вероятностей и теорема о построении минимаксного критерия, байесовского критерия и наиболее мощного критерия как соответствующих критериев отношения вероятностей.
- 32. Понятие о последовательных критериях и применение последовательных критериев в задаче различения двух простых гипотез, вероятности ошибок первого и второго родов и случайная величина количества шагов до остановки.
- 33. Постановка задачи различения двух простых гипотез и понятие о последовательном критерии отношения вероятностей. Утверждение о неравенствах для границ последовательного критерия отношения вероятностей. «Приближенный» последовательный критерий отношения вероятностей для заданных вероятностей ошибок.
- 34. Постановка задачи различения двух простых гипотез, «приближенный» последовательный критерий отношения вероятностей для заданных вероятностей ошибок, неравенства для вероятностей ошибок «приближенного» последовательного критерия отношения вероятностей.
- 35. Постановка задачи различения двух простых гипотез и понятие о последовательном критерии отношения вероятностей. Утверждение об остановке последовательного критерия отношения вероятностей и следствие из него. Тождество Вальда и приближенный метод расчета математических ожиданий случайной величины количества шагов до остановки «приближенного» последовательного критерия отношения вероятностей.
- 36. Теоретическая и практическая задачи регрессионного анализа. Постановка практической задачи линейной регрессии, оценка по методу наименьших квадратов и утверждение о решении нормального уравнения.
- 37. Постановка задачи линейной регрессии с дополнительным предположением об остатках, теорема о свойствах оценки по методу наименьших квадратов, утверждение об оценке остаточной дисперсии. Понятия коэффициента детерминации и скорректированного коэффициента детерминации.
- 38. Постановка задачи нормальной линейной регрессии, связь между оценкой по методу наименьших квадратов и оценкой максимального правдоподобия. Теорема о распределениях оценки по методу наименьших квадратов, величины среднеквадратичного отклонения и величины разности среднеквадратичных отклонений.
- 39. Постановка задачи нормальной линейной регрессии. Теорема о распределениях оценки по методу наименьших квадратов, величины среднеквадратичного отклонения и величины разности среднеквадратичных отклонений. Построение доверительных интервалов для компонент оценки по методу наименьших квадратов и остаточной дисперсии, построение доверительной области для оценки по методу наименьших квадратов и проверка гипотезы об отсутствии зависимости.
- 40. Сравнение оценок на основе среднеквадратического отклонения. Смещение оценки. Понятие эффективной оценки в заданном классе оценок. Существование оценки с заданным смещением и несмещенной оценки. Утверждение о единственности оценки эффективной в заданном классе.
- 41. Понятие достаточной статистики. Построение эквивалентных статистических процедур с использованием достаточных статистик. Теорема Неймана-Фишера (критерий факторизации).
- 42. Понятие достаточной статистики. Формулировка теоремы Неймана-Фишера (без доказательства). Два следствия из теоремы Неймана-Фишера о МП-оценке и достаточных статистиках. Понятия подчиненности статистик и минимальной достаточной статистики.
- 43. Понятие достаточной статистики. Теорема Блекуэлла, Рао, Колмогорова. Последовательное «улучшение» оценок.
- 44. Понятие достаточной статистики. Понятие полной статистики. Утверждение об оценках, являющихся функциями полной статистики. Формулировка теоремы Блекуэлла, Рао, Колмогорова. Утверждение об эффективной оценке, являющейся функцией полной статистики, и следствие о единственности этой оценки.

- 45. Понятия функции правдоподобия, функции вклада и информации Фишера. Условия регулярности. Теорема о неравенстве Рао-Крамера и следствие о среднеквадратическом отклонении. Понятие R-эффективной оценки, замечание об эффективной в классе оценке и R-эффективной в классе оценке.
- 46. Условия регулярности и понятие R-эффективной оценки. Понятие об экспоненциальных семействах распределений. Теорема об экспоненциальных семействах и R-эффективных оценках.
- 47. Условия регулярности и понятие R-эффективной оценки. Понятие об экспоненциальных семействах распределений. Формулировка теоремы об экспоненциальных семействах и R-эффективных оценках (без доказательства). Два следствия из теоремы о R-эффективных оценках, достаточных статистиках и МП-оценках.
- 48. Функция правдоподобия, функция вклада и информация Фишера. Утверждение о вычислении информации Фишера с помощью второй производной. Утверждение об аддитивности информации Фишера. Информация Фишера в случае выборки и характер убывания нижних границ дисперсий оценок в случае выборки.

3. Задачи.

Задачи экзаменационных билетов подбираются из следующего списка:

- 1. Задана выбора, требуется построить оценку указанным методом (дополнительно выяснить свойства оценки: несмещенность, состоятельность и эффективность).
- 2. Задана совокупность наблюдаемых случайных величин, требуется построить доверительный интервал.
- 3. Построить критерий хи-квадрат для проверки простой гипотезы о вероятностях.
- 4. Построить критерий хи-квадрат для проверки гипотезы о независимости признаков.
- 5. Построить критерий хи-квадрат для проверки гипотезы об однородности.
- 6. Задана выборка, построить наиболее мощный критерий в задаче различения двух простых гипотез (критерий Неймана-Пирсона).
- 7. Задана выборка, построить «приближенный» последовательный критерий отношения вероятностей в задаче различения двух простых гипотез.
- 8. Задана выборка, требуется найти достаточную для параметра статистику (многомерную).
- 9. Задана выборка, требуется найти R-эффективную оценку, вычислить её дисперсию и сравнить с нижней границей из неравенства Рао-Крамера.
- 10. Задана выборка, требуется найти информацию Фишера о параметре.

4. Дополнительные вопросы.

Дополнительный вопрос является либо небольшим теоретическим вопросом, либо простой задачей:

- 1. Дать определение, встречающееся в курсе (например, вариационного ряда, достаточной статистики, статистического критерия).
- 2. Сформулировать утверждение или теорему (например, теорему Бернулли, неравенство Рао-Крамера).
- 3. Выписать (без вывода) оценку (например, для вероятности события или параметра распределения).
- 4. Вывести верхнюю или нижнюю доверительную границу для математического ожидания или дисперсии по выборки из нормального распределения в различных вариантах: с известным и неизвестным математическим ожиданием, с известной и неизвестной дисперсией.
- 5. Выписать (без вывода) статистику в задаче проверки статистической гипотезы (например, для критерия хи-квадрат проверки простой гипотезы о вероятностях или критерия Колмогорова-Смирнова).
- 6. Выписать формулы для приближенного расчета среднего количество шагов до остановки «приближенного» последовательного критерия отношения вероятностей.
- 7. Сформулировать задачу линейной (нормальной линейной) регрессии.
- 8. Перечислить свойства оценки по методу наименьших квадратов в задаче линейной (нормальной линейной) регрессии.