FUNCTIONS

SRUJANA-EE24BTECH11042

SECTION-A(D)

1) Let g(x) be a function defined on [-1, 1] if the area of the equilateral triangle with two of its vertices at (0,0) and [x,g(x)] is $\frac{\sqrt{3}}{4}$, then the function g(x) is (1989-2 Marks)

a)
$$g(x) = \pm \sqrt{1 - x^2}$$

b) $g(x) = \sqrt{1 - x^2}$

c)
$$g(x) = -\sqrt{1 - x^2}$$

d) $g(x) = \sqrt{1 + x^2}$

b)
$$g(x) = \sqrt{1 - x^2}$$

d)
$$g(x) = \sqrt{1 + x^2}$$

2) If $f(x) = \cos \left[\pi^2\right] x + \cos \left[-\pi^2\right] x$, where [x] stands for the greatest integer function, then (1991-2Marks)

a)
$$f(\frac{\pi}{2}) = -1$$

b) $f(\pi) = 1$

c)
$$f(-\pi) = 0$$

b)
$$f(\pi) = 1$$

c)
$$f(-\pi) = 0$$

d) $f(\frac{\pi}{4}) = 1$

3) If
$$f(x) = 3x - 5$$
, then $f^{-1}(x)$

(1998-2Marks)

- a) is given by $\frac{1}{3x-5}$ b) is given by $\frac{x+5}{3}$
- c) does not exist because f is not one-one
- d) does not exist because f is not onto

4) If
$$g(f(x)) = |\sin| x$$
 and $f(g(x)) = (\sin \sqrt{x})^2$, then

(1998-2Marks)

- a) $f(x) = \sin x^2, g(x) = \sqrt{x}$
- b) $f(x) = \sin x, g(x) = |x|$
- c) $f(x) = x^2, g(x) = \sin \sqrt{x}$
- d) f and g cannot be determined
- 5) Let $f:(0,1) \to R$ be defined by $f(x) = \frac{b-x}{1-bx}$, where b is a constant such that 0 < b < 1. Then
 - a) f is not invertible on (0,1)

 - b) $f \neq f^{-1}$ on (0, 1) and $f^{1}(b) = \frac{1}{f^{1}(0)}$ c) $(c)f = f^{-1}$ on (0, 1) and $f^{1}(b) = \frac{1}{f^{1}(0)}$
 - d) f^{-1} is differentiable (0, 1)
- 6) Let $f:(-1,1) \to IR$ be such that $f(\cos 4\theta) = \frac{2}{2-\sec^2\theta}$ for $\theta \in (0,\frac{\pi}{4}) \cup (\frac{\pi}{4},\frac{\pi}{2})$. Then the value(s) of $f\left(\frac{1}{3}\right)$ is are

a)
$$1 - \sqrt{\frac{3}{2}}$$

c)
$$1 - \sqrt{\frac{2}{3}}$$

b)
$$1 + \sqrt{\frac{3}{2}}$$
 d) $1 + \sqrt{\frac{2}{3}}$

- 7) The function f(x) = 2|x| + |x + 2| 2|x| has local minimum or local maximum at x = 2|x| + |x + 2| 2|x|(JEE Adv.2013)
 - a) -2

b) $\frac{-2}{3}$

c) 2

- d) $\frac{2}{3}$
- 8) Let $f:\left(\frac{-\pi}{2},\frac{\pi}{2}\right)\to R$ be given by $f(x)=(\log(\sec x+\tan x))^3$ Then

(JEE Adv.2014)

a) f(x) is an odd function

- b) f(x) is one-one function
- c) f(x) is an onto function
- d) f(x) is an even function
- 9) Let $a \in R$ and let $f: R \to R$ be given by $f(x) = x^5 5x + a$. Then (JEE Adv.2014)
 - a) f(x) has three real roots if a > 4
 - b) f(x) has only real root if a > 4
 - c) f(x) has three real roots if a < -4
 - d) f(x) has three real roots if -4 < a < 4
- 10) Let $f(x) = \sin\left(\frac{\pi}{6}\left(\frac{\pi}{2}\sin x\right)\right)$ for all $x \in R$ and $g(x) = \frac{\pi}{2}\sin x$ for all $x \in R$. Let $(f \circ g)(x)$ denote f(g(x)) and $(g \circ f)(x)$ denote g(f(x)). Then which of the following are true?

(JEE Adv 2015)

- a) Range of f is $\left[\frac{-1}{2}, \frac{1}{2}\right]$ b) Range of $f \circ g$ is $\left[\frac{-1}{2}, \frac{1}{2}\right]$
- c) $\lim_{x\to 0} \frac{f(x)}{g(x)} = \frac{\pi}{6}$ d) There is an $x \in R$ such that $(g \circ f)(x) = 1$

SECTION-A(E)

- 1) Find the domain and the range of the function $f(x) + \frac{x^2}{1+x^2}$. Is the function one one? 2) Draw the graph of $y = |x|^{\frac{1}{2}}$ for $-1 \le x \le 1$. (1978)

(1978)

- 3) If $f(x) = x^9 6x^8 2x^7 + 12x^6 + x^4 7x^3 + 6x^2 + x 3$ find f(x)(1979)
- 4) Consider the following relations in the set of real numbers R. $R = \{(x, y) : x \in R, y \in R, x^2 + y^2 \le 25\} \ R^1 = \{(x, y) : x \in R, y \in R, y \ge \frac{4}{9}x^2\}$ Find the domain and the range of $R \cap R^1$. Is the relation $R \cap R^1$ a function? (1979)
- 5) Let A and B be two sets each with a finite number of elements. Assume that there is an injective mapping from A to B and that there is an injective mapping from B to A. Prove that there is a bijective mapping from A to B.

(1981-2Marks)