$$S = \{ (1, 1, 2, ..., 9) \}$$
 $P = \{ (1, 1, 2, ..., 9) \}$

S? 0* (d+ | d* pd+) Expresión REGULAR

	1	1	1		2
5	=0	SI	d	F	2 4
_		- 1		1 '	-

Σ	No	Follow Pos
3	1	2,3,4,5
0	2	2,3,4,5
4	3	3,7
4	4	4,5
P	5	6
9	6	6,7
#	7	

Que Nodo que aplica calcular Follow Pos.

Por Ejamplo: para el siguiente nodo 0

Para cada elemento del last del hijo I39, se debe colocar como follow el First del hijo Derecho.

Para 2 > follow: {3,4,5}
Para 2 > follow: {3,4,5}

otro ejemplo:

484

4 04

Para cada elemento del last del hijo, se debe colocar como Follow el first del hijo. Para 7 > follow {4}

Es igual para el (+), la misma lógica del (+).

fara formar la tabla de Transiciones:

- → El Estado Inicial (Xo) se forma del First de la Raíz, en este caso => X= {1,2,3,4,5}
- -> cada estado se evalúa con referencia a cada terminal. For ejemplo:

Para la transición con cada terminal, estamos en Xo y si viene un terminal a qué testado nos vamos. Estamos en Xo y viene el terminal Ses, nos vamos al estado X1.

$$(x_0, s) \rightarrow follow (1) = \{2,3,4,5\} \rightarrow X_1$$

$$(X_0, \emptyset) \rightarrow \text{follow}(z) = \{2,3,4,5\} \Rightarrow X_1$$

$$(x_0, p) \rightarrow follow (5) = \{6\} \Rightarrow X_3$$

ESTADO	S	Ø	d	P
Xo={1,2,3,4,5}	X4	×1	Xz	X3
X1= { 2,3,4,5 }		X1	X2	Хз
@ X2={3,4,5,7}		_	Xz	Хз
X3={6}			X4-	
@ X4={6,7}			X4	0

ESTO SE REALIZA PARA CAPA ESTADO NUEYO, HASTA QUE YA NO HAYA OTROS NUEVOS.

- @ ESTAPO DE ACEPTACIÓN, donde esté el elemento # (Número 7 en este caso).
- → DIBUJAR DFA a partir de la tabla de Transiciones;

