

Pokémon Combat Power Prediction

About the Dataset

- Response variable: the total combat power of a Pokémon
- 10 predictor variables describing characteristics of a Pokémon that might affect its combat power
 - Attack power, defense power, speed, etc.
- N = 151 observations

Data Preprocessing

- Features with mostly NA values a removed
- All Variables are centered and scaled
- Based on the correlation matrix, categorical variables were removed as they have low correlation with our response variable Combate Power

Predictors vs. Y-Variable Scatter Plots (Smooth Line)

Predictors vs. Y-Variable Scatter Plots (Linear)

Linear Models

LASSO Model

Optimal λ: 0.001

Test RMSE: 0.1482682

Test R²: 0.9999891

Optimal λ: 0.9

10-fold CV RMSE: 9.350761

10-fold CV R²: 0.9987542

RIDGE Model

Optimal λ: 0.07220809

Test RMSE: 0.1750829

Test R²: 0.9999881

Optimal CV λ: 0.0001

10-fold CV RMSE: 0.5156949

10-fold CV R2: 0.9999525

Elastic Net Model

Optimal α: 0.10

Optimal λ: 1.5396741

Test RMSE: 2.979197

Test R^2: 0.9999459

CV RMSE: 3.063694

CV R²: 0.9998308

-1l	1la -d	DMCE	Dagwagad	МАГ
alpha	lambda	RMSE	Rsquared	MAE
0.10	0.1539674	3.063694	0.9998308	2.669048
0.10	1.5396741	3.063694	0.9998308	2.669048
0.10	15.3967405	8.482446	0.9992171	7.361019
0.55	0.1539674	3.080863	0.9998334	2.693164
0.55	1.5396741	3.080863	0.9998334	2.693164
0.55	15.3967405	17.336177	0.9960507	15.145405
1.00	0.1539674	3.098440	0.9998316	2.709611
1.00	1.5396741	3.099146	0.9998316	2.710212
1.00	15.3967405	27.370689	0.9841780	23.938302

PCA Model

```
PC1
                        PC2
                                   PC3
                                              PC4
                                                         PC5
                                                                     PC6
HP
        0.4437172 0.2902156 0.5824899 0.1186440
                                                   0.3560326
                  0.3656014 -0.2945284
       0.4427849
                                        0.4961522
                                                   0.2099356 - 0.54156267
Defense 0.2860453
                  0.4924948 -0.5227099 -0.5406416 -0.1372336
Sp., Atk 0,4209884 -0,3898564 0,1523431 -0,6001147
                                                   0.3269740 -0.42487946
Sp..Def 0.5223266 -0.2030213 0.1784992
                                        0.1156187 -0.8003733 -0.01141514
       0.2741866 -0.5885183 -0.4956435
Speed
                                        0.2719519 0.2506499
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 Standard deviation 1.5765 1.1914 0.9095 0.8237 0.59652 0.48334 Proportion of Variance 0.4142 0.2366 0.1379 0.1131 0.05931 0.03894 Cumulative Proportion 0.4142 0.6508 0.7887 0.9018 0.96106 1.00000

CV RMSE: 5.672624

CV R2: 0.9969829

Piecewise Orthogonal Polynomial Model

ANOVA Table for ploy = $1 \sim 5$

```
Res.Df RSS Df Sum of Sq F Pr(>F)

1 144 95625

2 138 85758 6 9866.9 2.6982 0.01671 *

3 132 80450 6 5308.2 1.4516 0.19984

4 132 80450 0 0.0

5 132 80450 0 0.0
```

Optimal Degree: 2

Predictors Cut: 4

10-fold CV MSE: 10967.69

Comparison: Orthogonal Polynomial Model

10-fold CV MSE Matrix

	Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)	
1	144	89.856					
2	138	64.018	6	25.838	176.090	< 2.2e-16	***
3	132	31.660	6	32.358	220.527	< 2.2e-16	***
4	126	11.397	6	20.263	138.092	< 2.2e-16	***
5	120	2.935	6	8.462	57.673	< 2.2e-16	***

	Degree	CV_MSE
[1,]	1	0.7125979
[2,]	2	0.8271812
[3,]	3	0.8501690
[4,]	4	2.2138280
[5,]	5	2.4795033

Spline Model

B-Splines (bs()): using quantiles to split the predictors

RMSE	R-Squared	MAE	
0.5989	0.9999	0.2473	

Natural Cubic Splines (ns()):

RMSE	R-Squared	MAE	
0.7005	0.9999	0.3742	

Smooth Splines (bs()):

The optimal smoothing parameter (lambda) is 132.5178.

The 10-fold Cross Validation RMSE is 0.8184

Generalized Additive Model

Smoothing Spline GAM

GAM Method	10-fold CV MSE
Smoothing Spline	0.7164
Natural Spline	0.7404
Local Regression	0.7404

Natural Spline GAM

Local Regression GAM

Model Comparison

		LASSO	RIDGE	Elastic Net	PCA	Piecewise Polynomial	Spline (B-Spline)	GAM
CV	/ RMSE	9.350761	0.5156949	3.063694	5.672624	104.7267	0.5989	0.8464

- RIDGE seems to be the most accurate
- Low λ values for the linear models and high λ values for the nonlinear models
- Low α value for elastic net
- In general, a linear fit seems most appropriate

