Graph Theory Midterm 1 Solutions

- 1. State the definition of
 - a. a graph
 - b. a connected graph
 - c. a spanning tree for a graph G
 - **d.** isomorphic graphs G_1 and G_2

Solution. *See the notes for the definitions.*

2. Find the chromatic number for the line graph of the complete bipartite graph $K_{2,3}$.

Solution. The line graph for $K_{2,3}$ is shown below, colored with three colors:

This is an optimal coloring since there is an odd cycle. So the chromatic number is 3.

3. A **coalescence** of the graphs G_1 and G_2 is a graph created by merging a vertex in G_1 with a vertex in G_2 . For example, a coalescence of K_5 and C_4 is

- **a.** Let G be a coalescence of G_1 and G_2 . Explain why $P_G(x) = P_{G_1}(x)P_{G_2}(x)/x$.
- **b.** Find the chromatic polynomial for the following graph.

Solution. Select one of the $P_{G_1}(x)$ x-colorings of G_1 . Color the vertex v in G_2 that is to be merged with a vertex in G_1 the same color as it appears in G_1 . Color the remaining graph G_2 in $P_{G_2}(x)/x$ ways, with the division by x accounting for the already colored v.

The graph shown is a coalescence of K_6 , P_6 , and C_6 . The chromatic polynomial is

$$P_{K_6}(x)P_{P_6}(x)P_{C_6}(x)/x^2 = (x-1)^6(x-2)(x-3)(x-4)(x-5)((x-1)^6+(x-1)).$$

4. Use the bijection in the (second) proof of Cayley's formula to show that there are $2n^{n-3}$ trees on n vertices with the property that vertex 1 and vertex 2 are adjacent.

Solution. In order for vertex 1 and 2 to be adjacent, the function $f: \{2, \ldots, n-1\} \to \{1, \ldots, n\}$ in the second proof of Cayley's formula must have f(2) = 1 or f(2) = 2. There are 2 choices here and n choices for the remaining values of f(i) for $i = 3, \ldots, n-2$. So there are $2n^{n-3}$ total trees with 1 and 2 adjacent.

5. Suppose T is a tree with n vertices without a vertex of degree n-1. Show that T^c is connected.

Solution. The number of edges in the complement graph of a tree is $\binom{n}{2} - (n-1) = \binom{n-1}{2}$. Since T does not have a degree n-1 vertex, the complement graph cannot have a lone vertex as a disconnected component. By our theorem that says all graphs with more than $\binom{n-1}{2}$ edges is connected, This is the only way to have a disconnected graph with $\binom{n-1}{2}$ edges, and so T^c is connected.