ADV: Trigonometry (Adv), T1 Trigonometry and Measure of Angles

(Adv)

Bearings (Y11)

3D Trigonometry (Y11)

Teacher: Troy McMurrich

Exam Equivalent Time: 100.5 minutes (based on HSC allocation of 1.5 minutes approx.

per mark)

T1 Trigonometry and Measure of Angles

HISTORICAL CONTRIBUTION

- T1 Trigonometry and Measure of Angles is a mixture of content that previously belonged to the Standard 2, Mathematics and Ext1 courses. Our analysis has it accounting for an estimated 6.3% of past papers.
- This topic has been split into four sub-topics for analysis purposes: 1-Trig Ratios, Sine and Cosine Rules (2.5%), and 2-3D Trigonometry (0.7%), Bearings (1.3%) and Circular Measure (1.8%).
- This analysis looks at the sub-topic Bearings.

HSC ANALYSIS - What to expect and common pitfalls

- Bearings is a prime topic area to test Advanced and Standard 2 students with common content. The 2020 exam confirmed this with a common question worth a substantial 5 marks.
- In our view, bearings' contribution to Advanced exams will be meaningfully higher than it has been historically, primarily due to the common content described above.
- Before 2020, bearings was most recently tested in the Advanced exam in 2018 and 2014. With good mark allocations on offer when it is asked, a revision focus is warranted here.
- A number of Std2 past HSC questions have been included in this database (identified by 2ADV* in the title).

Questions

1. Measurement, STD2 M6 SM-Bank 2 MC

Which of the following expresses S60°W as a true bearing?

- A. 030°
- B. 060°
- c. 120°
- D. 240°

2. Measurement, STD2 M6 SM-Bank 3 MC

Which of the following expresses S65°W as a true bearing?

- **A.** 065°
- **B.** 155°
- **C.** 245°
- **D.** 295°

3. Trigonometry, 2ADV* T1 2010 HSC 10 MC

A plane flies on a bearing of 150° from \boldsymbol{A} to \boldsymbol{B} .

What is the bearing of \boldsymbol{A} from \boldsymbol{B} ?

- (A) 30°
- (B) 150°
- (c) 210°
- (D) 330°

4. Trigonometry, 2ADV* T1 2012 HSC 20 MC

Town \boldsymbol{B} is 80 km due north of Town \boldsymbol{A} and 59 km from Town \boldsymbol{C} .

Town \boldsymbol{A} is 31 km from Town \boldsymbol{C} .

What is the bearing of Town $oldsymbol{C}$ from Town $oldsymbol{B}$?

- (A) 019°
- (B) 122°
- (C) 161°
- (D) 341°

5. Trigonometry, 2ADV* T1 2014 HSC 23 MC

The following information is given about the locations of three towns $\boldsymbol{X}, \boldsymbol{Y}$ and \boldsymbol{Z} :

- $\cdot m{X}$ is due east of $m{Z}$
- $oldsymbol{\cdot X}$ is on a bearing of $oldsymbol{145}^{oldsymbol{\circ}}$ from $oldsymbol{Y}$
- $\cdot \boldsymbol{Y}$ is on a bearing of 060° from \boldsymbol{Z} .

Which diagram best represents this information?

6. Trigonometry, 2ADV* T1 2016 HSC 25 MC

The diagram shows towns \boldsymbol{A} , \boldsymbol{B} and \boldsymbol{C} . Town \boldsymbol{B} is 40 km due north of town \boldsymbol{A} . The distance from \boldsymbol{B} to \boldsymbol{C} is 18 km and the bearing of \boldsymbol{C} from \boldsymbol{A} is 025°. It is known that $\angle \boldsymbol{BCA}$ is obtuse.

What is the bearing of \boldsymbol{C} from \boldsymbol{B} ?

- (A) 070°
- (B) 095°
- (C) 110°
- (D) 135°

7. Trigonometry, 2ADV* T1 2008 HSC 17 MC

The diagram shows the position of $m{Q}$, $m{R}$ and $m{T}$ relative to $m{P}$.

In the diagram,

- $oldsymbol{Q}$ is south-west of $oldsymbol{P}$
- $m{R}$ is north-west of $m{P}$

∠**QPT** is 165°

What is the bearing of $m{T}$ from $m{P}$?

- (A) 060°
- (B) 075°
- (c) 105°
- (D) 120°

8. Measurement, STD2 M6 2019 HSC 4 MC

Which compass bearing is the same as a true bearing of 110°?

- A. S20°E
- в. S20°W
- c. S70°E
- D. S70°W

9. Measurement, STD2 M6 2021 HSC 14 MC

Consider the diagram below.

What is the true bearing of \boldsymbol{A} from \boldsymbol{B} ?

- A. 025°
- B. 065°
- c. 115°
- D. 295°

10. Trigonometry, 2ADV T1 2018 HSC 12a

A ship travels from Port A on a bearing of 050° for 320 km to Port B. It then travels on a bearing of 120° for 190 km to Port C.

- i. What is the size of $\angle ABC$? (1 mark)
- ii. What is the distance from Port A to Port C? Answer to the nearest 10 kilometres. (2 marks)

11. Trigonometry, 2ADV T1 2020 HSC 15

Mr Ali, Ms Brown and a group of students were camping at the site located at \boldsymbol{P} . Mr Ali walked with some of the students on a bearing of 035° for 7 km to location \boldsymbol{A} . Ms Brown, with the rest of the students, walked on a bearing of 100° for 9 km to location \boldsymbol{B} .

- a. Show that the angle \boldsymbol{APB} is 65°. (1 mark)
- b. Find the distance AB. (2 marks)
- c. Find the bearing of Ms Brown's group from Mr Ali's group. Give your answer correct to the nearest degree. (2 marks)

12. Trigonometry, 2ADV' T1 2008 HSC 6a

From a point \boldsymbol{A} due south of a tower, the angle of elevation of the top of the tower \boldsymbol{T} , is 23°. From another point \boldsymbol{B} , on a bearing of 120° from the tower, the angle of elevation of \boldsymbol{T} is 32°. The distance \boldsymbol{AB} is 200 metres.

- i. Copy or trace the diagram into your writing booklet, adding the given information to your diagram.
 (1 mark)
- ii. Hence find the height of the tower. Give your answer to the nearest metre. (3 marks)

13. Trigonometry, 2ADV' T1 2010 HSC 5a

A boat is sailing due north from a point \boldsymbol{A} towards a point \boldsymbol{P} on the shore line.

The shore line runs from west to east.

In the diagram, $m{T}$ represents a tree on a cliff vertically above $m{P}$, and $m{L}$ represents a landmark on the shore. The distance $m{PL}$ is 1 km.

From \boldsymbol{A} the point \boldsymbol{L} is on a bearing of 020°, and the angle of elevation to \boldsymbol{T} is 3°.

After sailing for some time the boat reaches a point $\, {\it B} \!$, from which the angle of elevation to $\, {\it T} \!$ is 30°.

i. Show that
$$BP=rac{\sqrt{3} an3^{\circ}}{ an20^{\circ}}$$
. (3 marks)

ii. Find the distance $m{AB}$. Give your answer to 1 decimal place. (1 mark)

14. Trigonometry, 2ADV' T1 2015 HSC 12c

A person walks 2000 metres due north along a road from point \boldsymbol{A} to point \boldsymbol{B} . The point \boldsymbol{A} is due east of a mountain $\boldsymbol{O}\boldsymbol{M}$, where \boldsymbol{M} is the top of the mountain. The point \boldsymbol{O} is directly below point \boldsymbol{M} and is on the same horizontal plane as the road. The height of the mountain above point \boldsymbol{O} is \boldsymbol{h} metres.

From point \boldsymbol{A} , the angle of elevation to the top of the mountain is 15°.

From point \boldsymbol{B} , the angle of elevation to the top of the mountain is 13°.

- i. Show that $OA = h \cot 15^\circ$. (1 mark)
- ii. Hence, find the value of h. (2 marks)

15. Trigonometry, 2ADV T1 2004 HSC 3c

The diagram shows a point $oldsymbol{P}$ which is 30 km due west of the point $oldsymbol{Q}$.

The point \boldsymbol{R} is 12 km from \boldsymbol{P} and has a bearing from \boldsymbol{P} of 070°.

- i. Find the distance of $m{R}$ from $m{Q}$. (2 marks)
- ii. Find the bearing of ${\it R}$ from ${\it Q}$. (2 marks)

16. Trigonometry, 2ADV T1 2014 HSC 13d

Chris leaves island \boldsymbol{A} in a boat and sails 142 km on a bearing of 078° to island \boldsymbol{B} . Chris then sails on a bearing of 191° for 220 km to island \boldsymbol{C} , as shown in the diagram.

- i. Show that the distance from island $m{C}$ to island $m{A}$ is approximately 210 km. (2 marks)
- ii. Chris wants to sail from island $m{C}$ directly to island $m{A}$. On what bearing should Chris sail? Give your answer correct to the nearest degree. (3 marks)

17. Trigonometry, 2ADV* T1 2005 HSC 27c

The bearing of ${m C}$ from ${m A}$ is 250° and the distance of ${m C}$ from ${m A}$ is 36 km.

- i. Explain why heta is 110° . (1 mark)
- ii. If ${\pmb B}$ is 15 km due north of ${\pmb A}$, calculate the distance of ${\pmb C}$ from ${\pmb B}$, correct to the nearest kilometre. (3 marks)

18. Trigonometry, 2ADV' T1 2004 HSC 3d

The length of each edge of the cube ABCDEFGH is 2 metres. A circle is drawn on the face ABCD so that it touches all four edges of the face. The centre of the circle is O and the diagonal AC meets the circle at X and Y.

- i. Explain why $\angle FAC = 60^{\circ}$. (1 mark)
- ii. Show that $FO=\sqrt{6}$ metres. (1 mark)
- iii. Calculate the size of $\angle XFY$ to the nearest degree. (1 mark)

19. Trigonometry, 2ADV* T1 2009 HSC 27b

A yacht race follows the triangular course shown in the diagram. The course from ${\bf P}$ to ${\bf Q}$ is 1.8 km on a true bearing of 058°.

At $m{Q}$ the course changes direction. The course from $m{Q}$ to $m{R}$ is 2.7 km and $m{\angle PQR} = {m{74}^{\circ}}$.

- i. What is the bearing of $m{R}$ from $m{Q}$? (1 mark)
- ii. What is the distance from $m{R}$ to $m{P}$? (2 marks)
- iii. The area inside this triangular course is set as a 'no-go' zone for other boats while the race is on. What is the area of this 'no-go' zone? (1 mark)

20. Trigonometry, 2ADV* T1 2007 26a

The diagram shows information about the locations of towns \boldsymbol{A} , \boldsymbol{B} and \boldsymbol{Q} .

- i. It takes Elina 2 hours and 48 minutes to walk directly from Town ${\pmb A}$ to Town ${\pmb Q}$. Calculate her walking speed correct to the nearest km/h. (1 mark)
- ii. Elina decides, instead, to walk to Town ${\pmb B}$ from Town ${\pmb A}$ and then to Town ${\pmb Q}$. Find the distance from Town ${\pmb A}$ to Town ${\pmb B}$. Give your answer to the nearest km. (2 marks)
- iii. Calculate the bearing of Town $oldsymbol{Q}$ from Town $oldsymbol{B}$. (1 mark)

21. Trigonometry, 2ADV* T1 2017 HSC 30c

The diagram shows the location of three schools. School \boldsymbol{A} is 5 km due north of school \boldsymbol{B} , school \boldsymbol{C} is 13 km from school \boldsymbol{B} and $\angle \boldsymbol{ABC}$ is 135°.

- i. Calculate the shortest distance from school $m{A}$ to school $m{C}$, to the nearest kilometre. (2 marks)
- ii. Determine the bearing of school $m{C}$ from school $m{A}$, to the nearest degree. (3 marks)

22. Trigonometry, 2ADV* T1 2011 HSC 24c

A ship sails 6 km from \boldsymbol{A} to \boldsymbol{B} on a bearing of 121°. It then sails 9 km to \boldsymbol{C} . The size of angle \boldsymbol{ABC} is 114°.

Copy the diagram into your writing booklet and show all the information on it.

- i. What is the bearing of $m{C}$ from $m{B}$? (1 mark)
- ii. Find the distance \pmb{AC} . Give your answer correct to the nearest kilometre. (2 marks)
- iii. What is the bearing of \boldsymbol{A} from \boldsymbol{C} ? Give your answer correct to the nearest degree. (3 marks)

23. Trigonometry, 2ADV T1 SM-Bank 1

A tower is built on flat ground.

Three tourists, \boldsymbol{A} , \boldsymbol{B} and \boldsymbol{C} are observing the tower from ground level.

 $m{A}$ is due north of the tower, $m{C}$ is due east and $m{B}$ is on the line of sight from $m{A}$ and $m{C}$ and between them.

The angles of elevation to the top of the tower from \boldsymbol{A} , \boldsymbol{B} and \boldsymbol{C} are 26°, 28° and 30°, respectively.

What is the bearing of $m{B}$ from the tower? (4 marks)

Copyright © 2004-21 The State of New South Wales (Board of Studies, Teaching and Educational Standards NSW)

Worked Solutions

1. Measurement, STD2 M6 SM-Bank 2 MC

$$S60^{\circ}W = 180 + 60$$

= 240°
 $\Rightarrow D$

2. Measurement, STD2 M6 SM-Bank 3 MC

True bearing =
$$180 + 65$$

= 245°
 $\Rightarrow C$

3. Trigonometry, 2ADV* T1 2010 HSC 10 MC

 $\angle TBA = 30^{\circ}$ (angle sum of triangle)

 \therefore Bearing of A from B

$$= 360 - 30$$

$$= 330^{\circ}$$

 $\Rightarrow D$

4. Trigonometry, 2ADV* T1 2012 HSC 20 MC

Using the cosine rule:

$$\cos \angle B = rac{a^2 + c^2 - b^2}{2ac}$$

$$= rac{59^2 + 80^2 - 31^2}{2 \times 59 \times 80}$$

$$= 0.9449...$$
 $\angle B = 19^\circ ext{ (nearest degree)}$

- \therefore Bearing of Town C from $B = 180 19 = 161^{\circ}$
- $\Rightarrow C$

5. Trigonometry, 2ADV* T1 2014 HSC 23 MC

Since X is due east of Z

 \Rightarrow Cannot be B or D

COMMENT: Drawing a parallel North/South line through **Y** makes this question *much simpler* to solve

The diagram shows we can find

$$\angle ZYX = 60 + 35^{\circ} = 95^{\circ}$$

Using alternate angles (60°) and the 145° bearing of X from Y

$$\Rightarrow C$$

6. Trigonometry, 2ADV* T1 2016 HSC 25 MC

Using the sine rule,

$$rac{\sin \angle BCA}{40} = rac{\sin 25^{\circ}}{18}$$
 $\sin \angle BCA = rac{40 \times \sin 25^{\circ}}{18}$
 $= 0.939...$
 $\angle BCA = 180 - 69.9 \; (\angle BCA > 90^{\circ})$
 $= 110.1^{\circ}$

 \therefore Bearing of C from B

$$= 110.1 + 25$$
 (external angle of triangle)

$$= 135.1$$

$$\Rightarrow D$$

7. Trigonometry, 2ADV* T1 2008 HSC 17 MC

$$\angle QPS = 45^{\circ}$$
 (Q is south west of P)

$$\angle TPS = 165 - 45 = 120^{\circ}$$

$$\therefore$$
 $\angle NPT = 60^{\circ}$ (180° in straight line)

$$\Rightarrow A$$

8. Measurement, STD2 M6 2019 HSC 4 MC

 $110^{\circ} = \text{S}70^{\circ}\text{E}$ $\Rightarrow C$ 9. Measurement, STD2 M6 2021 HSC 14 MC

Bearing (A from B) =
$$270 + 25$$

= 295°

$$\Rightarrow D$$

♦♦ Mean mark 28%.

10. Trigonometry, 2ADV T1 2018 HSC 12a

i.

Let
$$D$$
 be south of B

$$\angle ABD = 50^{\circ}$$
 (alternate angles)

$$\angle DBC = 60^{\circ}$$
 (180° in straight line)

$$\therefore \angle ABC = 50 + 60$$
$$= 110^{\circ}$$

ii. Using the cosine rule:

$$AC^{2} = AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos \angle ABC$$
$$= 320^{2} + 190^{2} - 2 \times 320 \times 190 \times \cos 110^{\circ}$$
$$= 180 \ 089.64...$$

$$\therefore AC = 424.36...$$

$$=420 \text{ km (nearest } 10 \text{ km)}$$

11. Trigonometry, 2ADV T1 2020 HSC 15

a.
$$\angle APB = 100 - 35$$

= 65°

b. Using cosine rule:

$$AB^2 = AP^2 + PB^2 - 2 \times AP \times PB\cos 65^{\circ}$$

= $49 + 81 - 2 \times 7 \times 9\cos 65^{\circ}$
= $76.750...$
 $\therefore AB = 8.760...$
= $8.76 \text{ km (to 2 d.p.)}$

c.

$$\angle PAC = 35^{\circ} \text{ (alternate)}$$

Using cosine rule, find $\angle PAB$:

$$cos∠PAB = \frac{7^2 + 8.76 - 9^2}{2 \times 7 \times 8.76}$$
= 0.3647...
∴ ∠PAB = 68.61...°
= 69° (nearest degree)

∴ Bearing of B from
$$A(\theta)$$

= 180 - (69 - 35)
= 146°

12. Trigonometry, 2ADV' T1 2008 HSC 6a

ii. Find
$$OT = h$$

Using the cosine rule in $\triangle AOB$:

$$200^2 = OA^2 + OB^2 - 2 \cdot OA \cdot OB \cdot \cos 60 \dots (*)$$

$$\ln \Delta OAT, \tan 23^{\circ} = \frac{h}{OA}$$

$$\Rightarrow OA = \frac{h}{\tan 23^{\circ}} \dots (1)$$

In
$$\triangle OBT$$
, $\tan 32^{\circ} = \frac{h}{OB}$

$$\Rightarrow OB = \frac{h}{\tan 32^{\circ}} \dots (2)$$

Substitute (1) and (2) into (*):

$$200^2 = rac{h^2}{ an^2 \ 23^\circ} + rac{h^2}{ an^2 \ 32^\circ} - 2 \cdot rac{h}{ an \ 23^\circ} \cdot rac{h}{ an \ 32^\circ} \cdot rac{1}{2}$$

$$=h^2igg(rac{1}{ an^2\,23^\circ}+rac{1}{ an^2\,32^\circ}+rac{1}{ an\,23^\circ\cdot an\,32^\circ}igg)$$

$$= h^2(4.340...)$$

$$h^2 = \frac{40\ 000}{4.340...}$$

$$= 9214.55...$$

$$h = 95.99...$$

$$= 96 m \text{ (to nearest m)}$$

i. Show
$$BP = \frac{\sqrt{3} \tan 3^{\circ}}{\tan 20^{\circ}}$$

In $\triangle ATP$

$$an 3° = rac{TP}{AP}$$

$$\Rightarrow AP = \frac{TP}{\tan 3}$$

In $\triangle APL$:

$$\tan 20^{\circ} = \frac{1}{AP}$$

$$\Rightarrow AP = \frac{1}{\tan 20}$$

$$\therefore \frac{TP}{\tan 3} = \frac{1}{\tan 20}$$

$$TP = \frac{\tan 3^{\circ}}{\tan 20^{\circ}} \dots (1)$$

In $\triangle BTP$:

$$\tan 30^{\circ} = \frac{TP}{BP}$$

$$\frac{1}{\sqrt{3}} = \frac{TP}{BP}$$

$$BP = \sqrt{3} \times TP$$
 (using (1) above)

$$=\frac{\sqrt{3}\tan 3^{\circ}}{\tan 20^{\circ}}$$
 ... as required

ii.
$$AB = AP - BP$$

$$AP = rac{1}{ an 20^{\circ}} ~~ ext{(from part (i))}$$

$$\therefore AB = \frac{1}{\tan 20^{\circ}} - \frac{\sqrt{3} \tan 3^{\circ}}{\tan 20^{\circ}}$$
$$= \frac{1 - \sqrt{3} \tan 3}{\tan 20^{\circ}}$$

$$= 2.5 \text{ km (to 1 d.p.)}$$

14. Trigonometry, 2ADV' T1 2015 HSC 12c

i. Show $OA = h \cot 15^{\circ}$

In $\triangle MOA$,

$$an 15^\circ = rac{h}{OA}$$
 $OA = rac{h}{ an 15^\circ}$
 $= h \cot 15^\circ \dots as required$

ii. In ΔMOB

$$an 13^\circ = rac{h}{OB}$$
 $OB = rac{h}{ an 13^\circ}$
 $= h \cot 13^\circ$

In $\triangle AOB$:

$$OA^2 + AB^2 = OB^2$$
 $OB^2 - OA^2 = AB^2$
 $(h \cot 13^\circ)^2 - (h \cot 15^\circ)^2 = 2000^2$
 $h^2 [(\cot^2 13^\circ - \cot^2 15^\circ)] = 2000^2$

$$= \sqrt{\frac{2000^2}{\cot^2 13^\circ - \cot^2 15^\circ}}$$

$$= 909.704...$$

$$= 910 \text{ m (nearest metre)}$$

15. Trigonometry, 2ADV T1 2004 HSC 3c

i. Join RQ to form ΔRPQ

$$\angle RPQ = 90 - 70 = 20^{\circ}$$

Using the cosine rule:

$$RQ^2 = PR^2 + PQ^2 - 2 \times PR \times PQ \times \cos\angle RPQ$$

= $12^2 + 30^2 - 2 \times 12 \times 30 \times \cos 20^\circ$
= $367.421...$
 $\therefore RQ = 19.168...$
= $19.2 \text{ km} (1 \text{ d.p.})$

ii. Using sine rule:

$$rac{\sin\angle RQP}{12} = rac{\sin 20^{\circ}}{19.168...}$$
 $\sin\angle RQP = rac{12 imes \sin 20^{\circ}}{19.168...}$
 $= 0.214...$
 $\angle RQP = 12.36...^{\circ}$
 $= 12^{\circ} \quad (\text{nearest degree})$

$$\therefore \text{ Bearing of } R \text{ from } Q$$
$$= 270 + 12$$

$$= 282^{\circ}$$

i.

Find $\angle ABC$

Let D be south of B

$$\therefore \angle CBD = 191 - 180 = 11^{\circ}$$

$$\angle DBA = 78^{\circ} \text{ (alternate)}$$

$$\angle ABC = 78 - 11$$

= 67°

Using cosine rule:

$$AC^2 = AB^2 + BC^2 - 2 \cdot AB \cdot BC \cdot \cos \angle ABC$$

$$=142^2+220^2\ -2\times 142\times 220\times \cos 67^\circ$$

$$= 44 \ 151.119...$$

$$\therefore AC = 210.121...$$

$$\approx 210~\text{km}~$$
 ... as required

ii. Find $\angle ACB$

Using sine rule:

$$\frac{\sin\angle ACB}{142} = \frac{\sin\angle ABC}{212}$$

$$\sin\angle ACB = \frac{142 \times \sin 67^{\circ}}{210}$$

$$= 0.6224...$$

$$\angle ACB = 38.494...$$

= 38° (nearest degree)

Let E be due North of C

$$\angle ECB = 11^{\circ} \text{ (alternate to } \angle CBD\text{)}$$

$$\therefore \angle ECA = 38 - 11$$
$$= 27^{\circ}$$

 \therefore Bearing of A from C

$$= 360 - 27$$

= 333°

17. Trigonometry, 2ADV* T1 2005 HSC 27c

i. There is 360° about point A

$$\therefore \theta + 250^{\circ} = 360^{\circ}$$
$$\theta = 110^{\circ}$$

ii.

$$a^{2} = b^{2} + c^{2} - 2ab \cos A$$

$$CB^{2} = 36^{2} + 15^{2} - 2 \times 36 \times 15 \times \cos 110^{\circ}$$

$$= 1296 + 225 - (-369.38...)$$

$$= 1890.38...$$

$$\therefore CB = 43.47...$$

= 43 km (nearest km)

18. Trigonometry, 2ADV' T1 2004 HSC 3d

Since FA, AC and FC are all diagonals of sides of a cube,

$$FA = AC = FC$$

 $\therefore \Delta FAC$ is equilateral

$$\therefore \angle FAC = 60^{\circ}$$

In
$$\triangle AEF$$

$$AF^{2} = EF^{2} + EA^{2}$$

$$= 2^{2} + 2^{2}$$

$$= 8$$

$$AF = \sqrt{8}$$

$$= 2\sqrt{2}$$

In
$$\triangle AFO$$

$$\sin 60^\circ = rac{FO}{AF}$$

$$rac{\sqrt{3}}{2} = rac{FO}{2\sqrt{2}}$$

$$FO = rac{\sqrt{3}}{2} imes 2\sqrt{2}$$

$$=\sqrt{6}$$
 metres ... as required.

iii.

XY is the diameter of a circle AND the width of the cube.

$$\therefore XY = 2$$

$$\therefore OX = OY = 1$$

$$\tan \angle OFX = \frac{1}{\sqrt{6}}$$

$$\angle OFX = 22.207...^{\circ}$$

$$\therefore \angle XFY = 2 \times 22.407...$$

$$= 44.415...$$

$$=44^{\circ}$$
 (nearest degree)

19. Trigonometry, 2ADV* T1 2009 HSC 27b

$$\angle PQS = 58^{\circ}$$
 (alternate to $\angle TPQ$)

Bearing of R from Q

$$= 180^{\circ} + 58^{\circ} + 74^{\circ}$$

= 312°

TIP: Draw North-South parallel lines through relevant points to help calculate angles as shown in the Worked Solutions.

(ii) Using cosine rule:

$$RP^2 = RQ^2 + PQ^2 - 2 \times RQ \times PQ \times \cos \angle RQP$$

= $2.7^2 + 1.8^2 - 2 \times 2.7 \times 1.8 \times \cos 74^\circ$
= $7.29 + 3.24 - 2.679...$
= $7.851...$
 $\therefore RP = \sqrt{7.851...}$
= $2.8019...$
 $\approx 2.8 \text{ km (1 d.p.)}$

(iii) Using
$$A=rac{1}{2}ab\sin C$$

$$A = \frac{1}{2} \times 2.7 \times 1.8 \times \sin 74^{\circ}$$

= 2.3358...
= 2.3 km²

∴ No-go zone is 2.3 km²

20. Trigonometry, 2ADV* T1 2007 26a

i. 2 hrs 48 mins = 168 mins

$$\begin{aligned} \text{Speed } (A \text{ to } Q) &= \frac{15}{168} \\ &= 0.0892... \text{ km/min} \end{aligned}$$

Speed (in km/hr) =
$$0.0892... \times 60$$

= $5.357... \text{ km/hr}$
= 5 km/hr (nearest km/hr)

Using cosine rule

$$AB^2 = 15^2 + 10^2 - 2 \times 15 \times 10 \times \cos 87^\circ$$

= 309.299...
 $AB = 17.586...$
= 18 km (nearest km)

 \therefore The distance from Town A to Town B is 18 km.

iii.

D

149°

87°

31°

56°

56°

0

$$\angle CAQ = 31^{\circ} \quad (\text{straight angle at } A)$$
 $\angle AQD = 31^{\circ} \quad (\text{alternate angle } AC \mid\mid DQ)$
 $\angle DQB = 87 - 31 = 56^{\circ}$
 $\angle QBE = 56^{\circ} \quad (\text{alternate angle } DQ \mid\mid BE)$

$$\therefore$$
 Bearing of Q from B
= $180 + 56$
= 236°

21. Trigonometry, 2ADV* T1 2017 HSC 30c

(i) Using cosine rule:

$$AC^2 = AB^2 + BC^2 - 2 \times AB \times BC \times \cos 135^{\circ}$$

= $5^2 + 13^2 - 2 \times 5 \times 13 \times \cos 135^{\circ}$
= $285.923...$

$$\therefore AC = 16.909...$$

$$= 17 \text{ km (nearest km)}$$

Using sine rule, find $\angle BAC$:

$$\frac{\sin\angle BAC}{13} = \frac{\sin 135^{\circ}}{17}$$

$$\sin\angle BAC = \frac{13 \times \sin 135^{\circ}}{17}$$

$$= 0.5407...$$

$$\angle BAC = 32.7^{\circ}$$

♦♦ Mean mark part (ii) 31%.

 \therefore Bearing of C from A

$$= 180 + 32.7$$

= 212.7°

$$= 213^{\circ}$$

22. Trigonometry, 2ADV* T1 2011 HSC 24c

i.

STRATEGY: This deserves repeating again: Draw North-South parallel lines through major points to make the angle calculations easier!

Let point D be due North of point B

$$\angle ABD = 180 - 121$$
 (cointerior with $\angle A$)
= 59°
 $\angle DBC = 114 - 59$
= 55°

 \therefore Bearing of C from B is 055°

ii. Using cosine rule:

$$AC^2 = AB^2 + BC^2 - 2 \times AB \times BC \times \cos\angle ABC$$

= $6^2 + 9^2 - 2 \times 6 \times 9 \times \cos 114^\circ$
= $160.9275...$
 $\therefore AC = 12.685...$ (Noting $AC > 0$)
= 13 km (nearest km)

iii. Need to find $\angle ACB$ (see diagram)

$$\cos\angle ACB = rac{AC^2 + BC^2 - AB^2}{2 \times AC \times BC}$$

$$= rac{(12.685...)^2 + 9^2 - 6^2}{2 \times (12.685...) \times 9}$$

$$= 0.9018...$$

$$\angle ACB = 25.6^{\circ} \text{ (to 1 d.p.)}$$

MARKER'S COMMENT: The best responses showed clear working on the diagram.

From diagram,

$$\angle BCE = 55^{\circ}$$
 (alternate angle, $DB \mid\mid CE$)

\therefore Bearing of A from C

$$= 180 + 55 + 25.6$$

$$= 260.6$$

$$=261^{\circ}$$
 (nearest degree)

23. Trigonometry, 2ADV T1 SM-Bank 1

Let h = height of tower

In $\triangle OAT$:

$$an 26^\circ = rac{h}{d_A}$$
 $d_A = rac{h}{ an 26^\circ}$

Similarly,

$$egin{aligned} d_B &= rac{h}{ an 28^\circ} \ d_C &= rac{h}{ an 30^\circ} \end{aligned}$$

In $\triangle OAC$:

$$an \angle OAC = rac{d_C}{d_A}$$

$$= rac{rac{h}{ an 30^\circ}}{rac{h}{ an 26^\circ}}$$

$$= rac{ an 26^\circ}{ an 30^\circ}$$

$$= 0.8447...$$
 $\angle OAC = 40.19^\circ$

Using sine rule in $\triangle OAB$:

$$rac{\sin\angle ABO}{d_A} = rac{\sin\angle OAC}{d_B}$$
 $\sin\angle ABO = \sin 40.2^\circ imes rac{ an 28^\circ}{ an 26^\circ}$
 $= 0.7035...$
 $\angle ABO = 44.71^\circ ext{ or } 135.29^\circ$

Since $\angle OCA = an^{-1} \left(rac{ an 30}{ an 26} \right)$
 $= 49.8^\circ$
 $\Rightarrow \angle OBC = 44.71^\circ$
(otherwise angle sum $\triangle OBC > 180^\circ$)
 $\angle AOB = 180 - (40.19 + 135.29)$
 $= 4.52$

 \therefore Bearing of B from tower is 005°.

Copyright © 2016-2022 M2 Mathematics Pty Ltd (SmarterMaths.com.au)