مدارهای الکتریکی و الکترونیکی فصل هفتم: مدار های RLC

استاد درس: محمود ممتاز پور ceit.aut.ac.ir/~momtazpour

فهرست مطالب

- □ کاربرد مدارهای RL و RC
 - □ مدارهای مرتبه دوم: RLC
- مدار RLC موازی بدون منبع 🗖
 - مدار RLC سری بدون منبع 🗖
- □ پاسخ کامل در حضور منبع و شرایط اولیه
 - نحوه محاسبه شرایط اولیه

مدارهای RL و RC

$$i_L(t) = \frac{V_0}{R} \left(1 - e^{-Rt/L} \right) u(t)$$

کاربرد در تحلیل تأخیر مدارهای مجتمع

کاربرد به عنوان یک فیلتر فرکانس

کاربرد به عنوان یک فیلتر فرکانس: حذف

مدار RLC

- □ یک مدار RLC هم دارای سلف است و هم دارای خازن. در صورتیکه فقط یک سلف و یک خازن داشته باشد، مدار مرتبه دوم خواهد بود.
- □ البته با دو خازن و یا دو سلف نیز میتوان مدار مرتبه دوم ساخت.
 - □ مدارهای RLC کاربردهای بسیار متنوعی دارند:
- □ نوسانساز: مداری که یک پالس متناوب تولید میکند (برای ساخت کلاک)
 - فیلتر فرکانس: مثلاً برای حذف نویز
 - گیرنده رادیوی آنالوگ و ...
 - □ همچنین مدلسازی رفتار سیستم تعلیق خودرو، آسانسور، هواپیما،
 کنتر لر دما و با استفاده از یک مدار RLC امکانپذیر است.

مدار RLC موازی بدون منبع

□ با اعمال KCL و مشتقگیری از آن داریم:

$$C\frac{d^2v}{dt^2} + \frac{1}{R}\frac{dv}{dt} + \frac{1}{L}v = 0$$

حل معادله ديفرانسيل مرتبه دوم

□ از طریق یافتن ریشههای معادله مشخصه:

$$Cs^2 + \frac{1}{R}s + \frac{1}{L} = 0$$

اگر s_2 و s_2 ریشههای معادله مشخصه باشند، پاسخ طبیعی برابر است با:

$$v_n(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

7. RLC Circuits Electrical Circuits

تحلیل پاسخ طبیعی

□ ریشههای معادله مشخصه برابرند با:

$$s_1, s_2 = -\frac{1}{2RC} \pm \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}}$$

$$\omega_0 = 1/\sqrt{LC}$$

$$\alpha = \frac{1}{2RC}$$

 ω_0 تعریف 1: فرکانس تشدید \square

lpha تعریف 2: ضریب میرایی \Box

تحلیل پاسخ طبیعی

□ با تعاریف صفحه قبل، ریشههای معادله مشخصه برابرند با:

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

ے برای یافتن ضرایب A_1 و A_2 نیاز به دو شرط اولیه داریم.

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

سه حالت ممکن برای پاسخ طبیعی

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$

$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

اگر
$$lpha>\omega_0$$
 باشد، ریشهها حقیقی و $lpha$

متمایزند و پاسخ میرای شدید نامیده میشود.

- □ پاسخ حالت نوسانی ندارد. مانند رها کردن یک پاندول در یک ظرف محتوی گریس، یا رها کردن یک فنر خیلی سفت
 - اگر $\alpha=\omega_0$ باشد، معادله مشخصه یک ریشه حقیقی مضاعف دارد و پاسخ میرای بحرانی نامیده میشود.
 - □ مدار در مرز نوسانی شدن است ولی هنوز نوسانی نیست.
 - اگر $\alpha < \omega_0$ باشد، ریشه ها مختلط و مزدو جاند و پاسخ میرای ضعیف نامیده می شود.
 - □ پاسخ مدار به صورت میرای نوسانی است. مانند رها کردن یک پاندول

$(\alpha>\omega_0)$ پاسخ میرای شدید

$$S_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$

$$S_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

□ هر دو ریشه حقیقی و متمایزند.

□ فرم پاسخ طبیعی به صورت زیر است.

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

مدار RLC میرای شدید: مثال 1

اگر
$$v(0^+)=0$$
 و $v(0^+)=0$ باشد، نشان دهید $v(t)=84(e^{-t}-e^{-6t})$

14

رسم پاسخ مدار در حالت میرای شدید

مدار RLC میرای شدید: مثال 2

$$v_{c}(t) = 80e^{-50000t} - 20e^{-200000t} V$$
 نشان دهید \Box

$(\alpha=\omega_0)$ پاسخ میرای بحرانی

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$

$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

□ یک ریشه حقیقی مضاعف:

$$s_1 = s_2 = -\alpha$$

□ فرم پاسخ طبیعی به صورت زیر است:

$$v(t) = e^{-\alpha t} \left(A_1 t + A_2 \right)$$

مدار RLC میرای بحرانی: مثال

ہ با فرض $2V=(0^+)$ ، R_2 و R_2 را طوری به دست آورید که پاسخ مدار میرای بحرانی باشد.

 \square Answer: $R_1 = 31.63 \text{ k}\Omega$, $R_2 = 0.4\Omega$

یاسخ میرای ضعیف ($\alpha < \omega_0$)

$$S_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
داریم $S_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$

ریشههای مختلط مزدوج
$$\omega_d = \sqrt{{\omega_0}^2 - \alpha^2}$$
با تعریف $\omega_d = \sqrt{{\omega_0}^2 - \alpha^2}$

$$s_1 = -\alpha + j\omega_d$$

$$s_2 = -\alpha - j\omega_d$$

🗖 فرم پاسخ میرای ضعیف

$$v(t) = e^{-\alpha t} \left(A_1 e^{j\omega_d t} + A_2 e^{-j\omega_d t} \right)$$

□ یا به عبارت دیگر:

$$v(t) = e^{-\alpha t} \left(B_1 \cos(\omega_d t) + B_2 \sin(\omega_d t) \right)$$

مدار RLC میرای ضعیف: مثال 1

$$v(t) = 210\sqrt{2}e^{-2t}\sin\sqrt{2}t$$

مقایسه پاسخهای مختلف

مقایسه پاسخهای مختلف

ا با افزایش R در مدار RLC موازی، ضریب میرایی α کاهش یافته و روند میرایی کند میشود.

22

مدار RLC میرای ضعیف: مثال 2

$$i_L = e^{-1.2t} (2.03 \cos 4.75t + 2.56 \sin 4.75t)$$
 نشان دهید \Box

مدار RLC سری بدون منبع

□ با نوشتن KVL و مشتقگیری از آن داریم:

$$L\frac{d^{2}i}{dt^{2}} + R\frac{di}{dt} + \frac{1}{C}i = 0$$

$$R \begin{cases} \downarrow i & \downarrow C \\ \downarrow \nu_{L} \\ - & \downarrow \end{pmatrix}$$

□ این مدار دوگان مدار RLC موازی است.

7. RLC Circuits Electrical Circuits

حل معادله مرتبه دوم برای یافتن پاسخ طبیعی

□ مانند مدار موازی، با حل معادله مشخصه زیر و یافتن ریشهها شروع میکنیم:

$$Ls^2 + Rs + \frac{1}{C} = 0$$

$$s_1, s_2 = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$
 :ا دیشهها

سه حالت ممکن پاسخ طبیعی

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
$$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$

□ تعریف ضریب میرایی و فرکانس تشدید:

$$\alpha = \frac{R}{2L}$$

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

 $:(\alpha>\omega_0)$ میرای شدید \square

$$v(t) = e^{-\alpha t} \left(A_1 t + A_2 \right)$$

 $(\alpha = \omega_0)$ میرای بحرانی ص

$$v(t) = e^{-\alpha t} \left(B_1 \cos(\omega_d t) + B_2 \sin(\omega_d t) \right) \alpha < \omega_0$$
میرای ضعیف $\alpha < \omega_0$

انتقال انرژی بین سلف و خازن در مدار RLC مو از ی

$$C=100nF, L=7\mu H$$
 $(R=100~\Omega)$ میرای ضعیف \Box

انتقال انرژی بین سلف و خازن در مدار RLC مه از ی

$$C = 100nF$$
, $L = 7\mu H$

$$(R=4.1833~\Omega)$$
میرای بحرانی \Box

انتقال انرژی بین سلف و خازن در مدار RLC مه از ی

$$C = 100nF$$
, $L = 7\mu H$

$$(R=1~\Omega)$$
میرای شدید $_{\square}$

خلاصه مدار های RLC بدون منبع

نوع	وضعيت	شرط	α	ω_0	فرم پاسخ طبیعی
موازی	Overdamped	$\alpha > \omega_0$	$\frac{1}{2RC}$	$\frac{1}{\sqrt{LC}}$	$A_1 e^{s_1 t} + A_2 e^{s_2 t}$ $s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$
سرى			$\frac{R}{2L}$		
موازى	Critically damped	$\alpha = \omega_0$	$\frac{1}{2RC}$	$\frac{1}{\sqrt{LC}}$	$e^{-\alpha t}(A_1t + A_2)$
سرى			$\frac{R}{2L}$		
موازی	Underdamped	$\alpha < \omega_0$	$\frac{1}{2RC}$	$\frac{1}{\sqrt{LC}}$	$e^{-\alpha t} (B_1 cos \omega_d t + B_2 sin \omega_d t)$ $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$
سرى			$\frac{R}{2L}$		

پاسخ کامل

□ پاسخ کامل مدار های RLC مانند قبل از جمع پاسخ طبیعی و اجباری بهدست میآید:

$$v(t) = v_n(t) + v_f(t)$$

- هر دو شرط اولیه $v(0^+)$ و $v(0^+)$ باید در پاسخ کامل صدق $v(0^+)$ کنند.
 - □ برای مثال در حضور منابع DC:

$$v_n(t) = Ae^{s_1t} + Be^{s_2t}$$
 پاسخ طبیعی \square

$$v(t) = K + Ae^{s_1 t} + Be^{s_2 t}$$
 :پاسخ کامل

$$v(t) = K + Ht + Bt$$
 : $v(0^+) = V_f + A + B$, $\frac{dv}{dt}(0^+) = As_1 + Bs_2$

نحوه محاسبه شروط اولیه: مثال

مقادیر اولیه جریانها و ولتاژهای نامگذاری شده را در 0^+ و 0^- بهدست آورید.

پاسخ:

$$v_R(O^+) = -30 \text{ V}$$
 $i_R(O^+) = -1 \text{ A}$
 $v_L(O^+) = 120 \text{ V}$ $i_L(O^+) = 5 \text{ A}$
 $v_C(O^+) = 150 \text{ V}$ $i_C(O^+) = 4 \text{ A}$

$$v_R(0^-) = -150 \text{ V}$$
 $i_R(0^-) = -5 \text{ A}$
 $v_L(0^-) = 0 \text{ V}$ $i_L(0^-) = 5 \text{ A}$
 $v_C(0^-) = 150 \text{ V}$ $i_C(0^-) = 0 \text{ A}$

نحوه محاسبه مقادير اوليه مشتقات: مثال

□ مقادیر مشتق ولتاژها و جریانهای نامگذاری شده را در +0 بهدست آورید.

$$dv_R/dt(0^+) = -1200 \text{ V/s}$$
 $di_R/dt(0^+) = -40 \text{ A/s}$
 $dv_L/dt(0^+) = -1092 \text{ V/s}$ $di_L/dt(0^+) = 40 \text{ A/s}$
 $dv_C/dt(0^+) = 108 \text{ V/s}$ $di_C/dt(0^+) = -40 \text{ A/s}$

محاسبه پاسخ کامل: مثال

نشان دهید برای t>0 داریم: $v_{\mathcal{C}}(t) = 150 + 13.5(e^{-t} - e^{-9t}) \ volts$

7. RLC Circuits Electrical Circuits

مدار LC بدون اتلاف

- □ وجود مقاومت در مدار RLC باعث میرا شدن پاسخ می شود.
- □ وقتی در یک مدار RLC سری مقدار مقاومت صفر یا در یک مدار RLC موازی مقدار مقاومت بینهایت شود، پاسخ کاملاً نوسانی غیرمیرا است (حالت بدون اتلاف).
 - $v(0)=i(0)=-1/6\,A$ مثال: در شکل زیر، با فرض i(0)=0

تمرین کلاسی 1

🗖 نشان دهید:

$$v_C(t) = -e^{-0.8t} (5\cos 9.97t + 0.4\sin 9.97t)V$$

تمرین کلاسی 2

ے کلید در زمان t=0 بسته می شود. L ، R و L را طوری بیابید که:

$$v(t) = 5e^{-400t}\cos(300t)$$

تمرین کلاسی 3

را بیابید. $v_c(t)$

