Deep Learning

Lecture 13 Graph Neural Network Recap

Autoregressive models: PixelCNN, LMConv

Generative Adversarial Networks: theoretical results, vanishing gradients, mode collapse

Generative Adversarial Networks: Unrolled GAN, Energy-based GAN, Wasserstein GAN

Evaluation metrics for GAN: Inception Score, Frechet Inception Distance

GAN's representative: Cycle GAN

Источники

- <u>Курс на ODS</u>
- Kypc cs224W
- Подборка статей на towardsdatascience.com

Графовые данные

Контакты людей

Связь молекул

Железнодорожные пути и дороги

Цитирование

Подписки в соцсетях

Просмотренные видео на youtube

Задачи на графах

Подходы к решению: матрица смежности

1	1	0	1	0	0	0
1	1	1	1	1	0	0
0	1	1	1	1	1	0
1	1	1	1	0	0	0
0	1	1	0	1	1	1
0	0	1	0	1	1	0
0	0	0	0	1	0	1

Подходы к решению: SVD

1	1	0	1	0	0	0
1	1	1	1	1	0	0
0	1	1	1	1	1	0
1	1	1	1	0	0	0
0	1	1	0	1	1	1
0	0	1	0	1	1	0
0	0	0	0	1	0	1

Подходы к решению: DeepWalk

Stefano is explaining deep walk on a Medium page

page

Обучаемые подходы решения задач на графах

Message Passing

Что у нас есть:

 A - матрица смежности (adjacency matrix)

 $\mathbf{A}: N \times N$

Для экономии памяти:

- Разреженная (sparse) A
- Лист граней (edge index)

```
[[ a, a, b, b, c, c, d, d, f, f], [ b, c, c, d, d, f, f, e, e, g]]
```


Новое представление узла b получается как **функция** от предыдущего представления **x(b)** и представления соседей **X(N(b))**

$$\mathbf{h}_b = \phi(\mathbf{x}_b, \mathbf{X}_{\mathcal{N}_b})$$

Представление соседей получается путем агрегации их представлений

$$\mathbf{X}_{\mathcal{N}_b} = \psi(\mathbf{x}_a, \mathbf{x}_b, \mathbf{x}_c, \mathbf{x}_d,)$$

Message Passing: Aggregare & Update

1. AGGREGATE Построение сообщения **m**

$$\mathbf{m}_{\mathcal{N}(u)}^{(k)} = ext{AGGREGATE}(\{\mathbf{h}_v^{(k)}, orall v \in \mathcal{N}(u)\})$$

UPDATE
 Обновление узла **u**

$$\mathbf{h}_{u}^{(k+1)} = ext{UPDATE}(\mathbf{h}_{u}^{(k)}, \mathbf{m}_{\mathcal{N}(u)}^{(k)})$$

Message Passing: Aggregare

На первом шаге для вершины u строится сообщение :

$$\mathbf{m}_{\mathcal{N}(u)} = ext{AGGREGATE}(\{\mathbf{h}_v, orall v \in \mathcal{N}(u)\})$$

В графах нет простого понятия "местоположения" вершины, то есть мы не можем сказать, что вершина u находится "справа" или "сверху" от вершины v. У каждой вершины есть сообщество соседей, которое мы можем в общем случае перечислять в любом порядке. Поэтому функция агрегации должна быть инвариантна к перестановкам (**permutation invariance**) - то есть результат агрегации не зависит от порядка ее применения к вершинам-соседям.

Мы будем записывать permutation invariant функции как \oplus : $\mathbf{m}_{\mathcal{N}(u)} = \bigoplus_{v \in \mathcal{N}(u)} \psi(\mathbf{x}_{-}v)$

Например, часто используемое агрегирование через сумму представлений соседей и умножение с обучаемой весовой матрицей $\mathbf{W}_{\text{neigh}}$ будет записываться как:

$$\mathbf{m}_{\mathcal{N}(u)} = \mathbf{W}_{ ext{neigh}} \sum_{v \in \mathcal{N}(u)} \mathbf{x}_v$$

Message Passing: Update

Новое представление вершины ${f u}$ на ${f k}$ -ом слое получается в результате функции UPDATE от предыдущего представления этой вершины ${f h}_{_{\parallel}}$ и сообщения ${f m}$, полученного на шаге AGGREGATE:

$$\mathbf{h}_u^{(k+1)} = ext{UPDATE}(\mathbf{h}_u^k, \mathbf{m}_{\mathcal{N}(u)}^k)$$

Или с использованием нотации агрегирования:

$$\mathbf{h}_u^{(k+1)} = \phi(\mathbf{h}_u^k,igoplus_{v\in\mathcal{N}(u)}\mathbf{h}_v^k)$$

В простейшем виде функция UPDATE может складывать преобразованные представления и пропускать результат через некоторую нелинейную функцию σ (sigmoid, tanh, ReLU, и т.д.):

$$\mathbf{h}_u^{(k+1)} = \sigma(\mathbf{W}_{ ext{self}}\mathbf{h}_u^k + \mathbf{W}_{ ext{neigh}}\mathbf{m}_{\mathcal{N}(u)}^k)$$

Глубина Message Passing сетей

Message Passing эквивалентен агрегации соседних представлений, поэтому для получения сообщений от \mathbf{k} -hop соседей (\mathbf{k} -hop neighborhood) нужно как минимум \mathbf{k} слоев message passing.

Матричная запись Message Passing сетей

Из линейной алгебры можно вспомнить, что произведение AX разреженной матрицы смежности A и матрицы признаков X содержит для каждой вершины сумму представлений ее соседей, что является частным случаем message passing с инвариантным агрегатором суммирования.

Для того, чтобы включить в результирующее произведение представление самой вершины, вводят простую аугментацию - self-loops, то есть виртуальные ребра-петли, соединяющие каждую вершину саму с собой. В матричной записи петли (self-loops) описываются как identity matrix *I* с единицами на главной диагонали. Тогда получается аугментированная матрица смежности:

$$ilde{A} = A + I$$

Полагая весовую матрицу агрегации соседей W_{neigh} равной весам агрегации предыдущего представления вершины W_{self} можно записать message passing на k-ом слое на уровне всего графа как уравнение:

$$\mathbf{H}^{(k+1)} = \sigma(\mathbf{ ilde{A}}\mathbf{H}^{(k)}\mathbf{W}^{(k)})$$

Различные GNN архитектуры усовершенствуют это уравнения дополнительной нормализацией (например, через степени вершин). Однако, не все архитектуры, например, такие как GAT, можно просто записать в матричной форме.

Message Passing Архитектуры

- Графовые конволюционные сети (Graph Convolutional Nets, GCNs), у которых веса ребер это скалярыконстанты, получающиеся из степеней вершин;
- Графовые сети с вниманием (Graph Attention Nets, GATs), где веса скаляры, но обучаемые в зависимости от представлений вершин;
- Message-Passing графовые сети (Message-Passing Neural Nets, MPNNs), где веса ребер векторы, которые объединяются с представлениями вершин через нелинейные функции.

Graph Convolutional Nets (GCN)

В парадигме message passing способ получения представления вершины записывается как:

$$\mathbf{h}_i = \phi \Big(\mathbf{x}_i, igoplus_{j \in \mathcal{N}(i)} c_{ij} \psi(\mathbf{x}_j) \Big)$$

где c_{ii} является скалярным весом ребра, соединяющего вершины і и j.

Разные GCN модели по-разному определяют этот вес как некоторую нормализационную константу. Классическая работа [10] определяет c_{ij} как обратное от среднего геометрического степеней вершин i и j:

$$c_{ij} = rac{1}{\sqrt{|\mathcal{N}(i)||\mathcal{N}(j)|}}$$

Тогда UPDATE функция записывается как:

$$\mathbf{h}_u^{(k)} = \sigma \Big(\mathbf{W}^{(k)} \sum_{v \in \mathcal{N}(u) \cup \{u\}} rac{\mathbf{h}_v}{\sqrt{|\mathcal{N}(u)||\mathcal{N}(v)|}} \Big)$$

В матричном виде нормализация использует аугментированную диагональную матрицу степеней вершин D, полученную из аугментированной матрицы смежности A = A + I:

$$H = ilde{D}^{-rac{1}{2}} ilde{A} ilde{D}^{-rac{1}{2}} XW$$

Graph Attention Nets (GAT)

Вес ребер - по-прежнему скаляр, но обучаемый!

В парадигме message passing функцию UPDATE можно записать как:

$$\mathbf{h}_i = \phi\Big(\mathbf{x}_i, igoplus_{j \in \mathcal{N}(i)} lpha(\mathbf{x}_i, \mathbf{x}_j) \psi(\mathbf{x}_j)\Big)$$

где $\alpha(x_i, x_j)$ - обучаемый вес ребра. Классическая работа по GAT определяет этот весовой коэффициент через механизм внимания (attention) на основе представлений вершин и обучаемого вектора внимания **a** (здесь || — конкатенация, а T -транспонирование):

$$egin{aligned} h_i = \Big|\Big|_{k=1}^K \sigma\Big(\sum_{j \in \mathcal{N}_i} lpha_{ij}^k \mathbf{W}^k h_j\Big) \end{aligned}$$

$$lpha_{ij} = rac{\exp\left(ext{LeakyReLU}\Big(\mathbf{a}^T[\mathbf{W}h_i||\mathbf{W}h_j]\Big)
ight)}{\sum_{k \in \mathcal{N}_i} \exp\left(ext{LeakyReLU}\Big(\mathbf{a}^T[\mathbf{W}h_i||\mathbf{W}h_k]\Big)
ight)}$$

Простой attention коэффициент приводит к следующей формуле функции UPDATE:

$$h_i = \sigma \Big(\sum_{j \in \mathcal{N}_i} lpha_{ij} \mathbf{W} h_j \Big)$$

Другие виды графов и подходы к их решению и другие проблемы (анонс)

Подходы к решению:

- Relational GCNs (R-GCN)
- Compositional GCNs (CompGCN)
- Ваши мысли?

Что если граф меняется?

- Добавляются ребра
- Добавляются вершины
- Добавляются подграфы

Перейдем к семинару и посмотрит на код GCN.