百校联盟 2020 届 TOP300 七月尖子生联考 化 学

注意事项:

- 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
- 2. 答题前,考生务必将自己的姓名、准考证号填写在本试卷的相应位置。
- 3. 全部答案写在答题卡上,写在本试卷上无效。
- 4. 本试卷满分 100 分,测试时间 90 分钟。
- 5. 考试范围:必修一第三章、第四章。

可能用到的相对原子质量: H 1 C 12 O 16 Na 23 Cl 35.5 K 39 Mn 55 Fe 56 I 127

第 [卷

- 一、选择题:本题共 20 小题,在每题给出的选项中,只有一个选项符合题目要求。第 $1\sim10$ 题,每小题 2 分,第 $11\sim20$ 题,每小题 3 分。
- 1. 下列做法与建设天蓝、地绿、水清的美丽中国相违背的是

B.推广使用一次性 塑料餐具

C.杜绝在湿地、绿地 乱搭乱建

D.关停排放严重 超标的企业

- 2. 化学与生活、生产关系密切。下列说法正确的是
 - A. 明矾可作净水剂,也可用于自来水的杀菌消毒
 - B. 氢氧化铝、碳酸钠常用作胃酸中和剂
 - C. SiC 和 C60 两种化合物均属于新型无机非金属材料
 - D. "火烧硝石有紫青烟"的描述说明硝石中含有钾元素
- 3. 下列物质的应用中,利用了该物质氧化性的是
 - A. 液氨——作制冷剂

B. 甘油——作护肤保湿剂

C. FeCl₃——用于铜制印刷版的制作

- D. 食醋——除去水壶中的水垢
- 4. 示踪原子法是研究化学反应的重要方法之一,下列化学方程式正确的是
 - A. $2KMnO_4 + 5H_2^{18}O_2 + 3H_2SO_4 = K_2SO_4 + 2MnSO_4 + 5^{18}O_2 + 8H_2O_4 + 8H_$
 - B. $Na_2^{34}S+2H_2SO_4(ix)=Na_2SO_4+S \downarrow +^{34}SO_2 \uparrow +2H_2O$
 - C. 5^{15} NH₄ NO₃ = 2H¹⁵ NO₃ +4N₂ \uparrow +9H₂O
 - D. $K^{37}ClO_3 + 6HCl = K^{37}Cl + 3Cl_2 + 3H_2O$
- 5. 向下列溶液中通入过量 CO₂,最终会有固体析出的是
 - A. 澄清石灰水

B. 硝酸钡溶液

C. 氯化钠溶液

- D. 饱和碳酸钠溶液
- 6. 常温下,下列各组离子在指定的环境中可能大量共存的是
- A. pH=13 的溶液中: Na^+ 、 S^{2-} 、 AlO_2^- 、 SO_3^{2-}
- B. 某无色溶液中: Na+、Cu2+、NO3、Cl-
- C. 硝酸钠溶液中: Ca²⁺、K⁺、SO₄²⁻、MnO₄⁻
- D. 加入铝粉能产生 H₂ 的溶液中: Na⁺、K⁺、HCO₃ 、NO₃

- 7. 下列对物质的用涂叙述错误的是
 - A. 亚硝酸钠和硅胶都是食品工业中常用的干燥剂
 - C. 双氧水和酒精都是常用的医用消毒剂
- 8. 氮元素的化合价与其形成物质类别的关系如图所示。下列说 法错误的是
 - A. b 与 O₂ 在一定条件下反应可以生成 d
 - B. c 既有氧化性,又有还原性
 - C.f 的化学式一定为 NO2
 - D. g 与 b 可化合生成离子化合物
- 9. 向稀硝酸中加入一定质量的铁铜合金,充分反应后,有固体剩
 - 余,再向混合液中加入一定量稀硫酸,有部分固体溶解。下列对上述过程的判断错误的是
 - A. 第一次剩余固体中一定含有铁
 - C. 第一次所得混合溶液中一定不含有 Fe3+
- 10. 下列实验仪器的选择错误的是

A. 用图 1 装置可以制取 NH3

C. 用图 3 装置可以收集 NH。

- B. 漂白粉和 SO₂ 都是常用的漂白剂
- D. 醋酸和氯化钠都是常用的食品添加剂

- B. 第二次剩余固体中一定含有铜
- D. 最后所得混合溶液中可能含有 Cu²⁺

- B. 用图 2 装置可以干燥 NH3
- D. 用图 4 装置可以完成"喷泉"实验
- 11.下列化合物既能通过化合反应一步制得,又能通过复分解反应一步制得的是
 - A. SO₂

B. FeCl₂

C. Cu

D. H₂SiO₃

- 12. 设 N_A 为阿伏加德罗常数的值,下列说法正确的是
 - A. 标准状况下,0.56 L 甲烷中含有的共价键数为 $0.1N_A$
 - B. 5. 6 g 铁粉与 1 mol Cl₂ 完全反应,转移的电子数目为 0. $2N_A$
 - C. 常温常压下,18 g 重水(D_2O)含有的电子数为 $10N_A$
 - D. 0. 1 mol·L $^{-1}$ 氯化钠溶液中所含氯离子的数目为 0. $1N_A$
- 13. 研究表明,通过碘循环系统可以吸收工业废气中的 SO₂ 制备一种重要的化工原料 M,同时完成氢能源再 生(如图所示)。下列说法错误的是
 - A. 开发氢能源有利于社会可持续发展
 - B. 为提高 SO₂ 的吸收效率,应不断分离出 HI
 - C. I₂ 为整个循环过程的催化剂
 - D. M 为硫酸
- 14. 高纯轻质 CaCO。广泛应用于橡胶、塑料、油漆等行业。一种以磷石膏(主要成分为 CaSO。,含少量 SiO。 和 Al₂O₃)为原料制备轻质高纯 CaCO₃ 的流程如下:

下列说法错误的是

- A. "转化"时发生反应的离子方程式为 $CaSO_4 + 2NH_3 + CO_2 + H_2O = CaCO_3 + 2NH_4^+ + SO_2^{2-}$
- B. "转化"时应先通入 CO₂,再通入 NH₃
- C. 实验室"过滤"时用到的玻璃仪器有玻璃棒、漏斗、烧杯
- D. "浸取"过程中会有 NH。生成
- 15. 下列化学反应的离子方程式书写错误的是
 - A. 铝溶于 NaOH 溶液: Al+2OH-=AlO₂+H₂ ↑

 - C. 向烧碱溶液中加入过量的小苏打: $OH^- + HCO_3^- = CO_3^2 + H_2O$
 - D. 石灰石溶于醋酸:CaCO₃+2CH₃COOH=Ca²⁺+2CH₃COO⁻+H₂O+CO₂ ↑

17 1/4 № 1/2020 届 TOP300 七月尖子生联考 化学 第 2 页 共 4 页

16. 氢化钠在有机合成中用途广泛。某学习小组利用如图所示装置制备 NaH。下列说法正确的是

- A. 装置 B 可用装置 D 代替
- B. 装置 D 用于处理尾气
- C. 实验后,将 a 中固体加入水中,若有 H。生成,则证明固体为 NaH
- D. 装置 A 也可用于 KMnO4 与浓盐酸反应制备 Cl2
- 17. 五种常见物质的转化关系如图所示(部分反应物及产物略去),其中 W、M、X 含有某种相同的元素。下列说法错误的是
 - A. 若 X 为 O_2 ,则 W 可能为二氧化碳
 - B. 若 X 为 Al(OH)₃,则 Y 可能为稀硫酸
 - C. 若 X 为 Fe,则 Y 可能为稀硝酸
 - D. 若 X 为 NaHCO3,则 M 可能为二氧化碳
- 18. 下列关于图像的描述错误的是

- A. 图 I 表示向盐酸中滴加 NaAlO₂ 溶液,沉淀质量随 NaAlO₂ 溶液体积的变化
- B. 图 Ⅱ表示向 NH₄Al(SO₄)₂溶液中滴加 NaOH 溶液,沉淀质量随 NaOH 溶液体积的变化
- C. 图Ⅲ表示向 NH₄Cl 溶液中加入稍过量 Na₂O₂ 固体,产生气体的体积随 Na₂O₂ 质量的变化
- D. 图 IV 表示向 Na₂ CO₃ 溶液中滴加稀盐酸,产生气体的体积随盐酸溶液体积的变化
- 19. 下列实验操作和现象所得结论正确的是

选项	实验操作	现 象	结 论
A	向某无色溶液中滴加稀盐酸	溶液变浑浊	原溶液中一定存在 Ag ⁺
В	向某无色溶液中滴加稀 NaOH 溶液	未观察到明显现象	原溶液中一定不存在 NH4+
С	向酸性 KMnO4 溶液中通入 SO2	溶液紫红色褪去	SO ₂ 具有还原性
D	向某溶液中通人 Cl2,再滴人 KSCN 溶液	溶液变红	原溶液中一定含有 Fe ²⁺

- 20. 现有 3. 60 g NaCl、NaHCO₃ 和 Na₂CO₃ 的混合固体,加热足够长时间后,固体质量剩余 3. 29 g;将剩余固体溶于一定体积的盐酸中,产生 0. 448 L 气体(标准状况下),并将所得溶液稀释至 100 mL,测得所得溶液 pH=1。下列判断正确的是
 - A. 混合固体中 NaHCO3 的质量为 0.84 g
- B. 混合固体中 Na₂CO₃ 的质量为 2.12 g
- C. 所加盐酸中, HCl 的物质的量为 0.04 mol
- D. 最终所得溶液中 $c(Cl^{-}) = 0.1 \text{ mol} \cdot L^{-1}$

第Ⅱ卷

- 二、非选择题:本题包括4小题,共50分。
- 21. (11 分)现有 A、B、C、D、E 五种阴阳离子均不相同的化合物,五种阳离子为 K^+ 、 Ca^{2+} 、 Ba^{2+} 、 Fe^{2+} 、 Al^{3+} ,五种阴离子为 Cl^- 、 OH^- 、 NO_3^- 、 SO_4^{2-} 、 CO_3^{2-} 。现将它们分别配成 0.5 mol · L^{-1} 的溶液,进行如下实验:
 - ①测得溶液 A、B 呈碱性,且碱性为 B>A;
 - ②向 C 溶液中滴加稀盐酸,有气体生成;
 - ③向 D 溶液中滴加 NaOH 溶液,先出现沉淀,继续滴加,沉淀消失。

请根据上述实验现象,回答下列问题:

(1)实验②中发生反应的化学方程式为______;向 C 中滴加 NaOH 溶液,出现的现象为 。

- (2)分两步写出实验③中发生反应的离子方程式:
- (3)写出下列四种化合物的化学式:A 、B 、E 。
 - **7** 1/4 ₩ 2020 届 TOP300 七月尖子生联考 化学 第 3 页 共 4 页

22. (10 分)MnO 在医药、有机合成、电化学等领域用涂广泛,易被氧化。某化学兴趣小组利用 MnO。和炭粉 制备 MnO 并检验可能的气态产物,利用下图所示装置进行实验。 MnO、与炭粉混合物 晶体 PdCl 已知: i.CO 与 PdCl。溶液反应生成黑色难溶于水的 Pd 单质和两种常温下为气态的酸性物质。 ii.实验室常用亚硝酸钠晶体与饱和氯化铵溶液反应制备 N₂。 请回答下列问题: (1)按气流从左到右的方向,上述装置的合理连接顺序为 c→ →i(填仪器接口的小写字母)。 (2)实验开始时, 应先点燃装置 B 处酒精灯一段时间后, 再点燃装置 A 处酒精喷灯, 原因为 (答两点)。 (3)充分反应后,能证明气态产物只有 CO 的现象为 (4)装置 C 中发生反应的化学方程式为 (5)装置 F 的作用为 23. (15 分)含硫化合物多为重要的化工原料。请回答下列问题: I. 多硫化物是含多硫离子 (S_x^2) 的化合物,可用作废水处理剂、硫化剂等。 (1)Na₂S₂的电子式为 (2)Na₂S₅(易溶于水)在酸性条件下可生成 H₂S 和 S,该反应的离子方程式为 (3)黄铁矿(FeS₂)是工业上制硫酸的重要原料,在氧气中煅烧生成 Fe₂O₃和 SO₂,其煅烧的化学方程式为 Ⅱ. 焦亚硫酸钠(Na₂S₂O₅)是一种食品抗氧化剂,易溶于水。 (4)焦亚硫酸钠 $(Na_2S_2O_5)$ 中硫元素的化合价为 (5)向某些饮料中添加少量焦亚硫酸钠 $(Na_2S_2O_5)$,可降低饮料中溶解氧的含量,发生反应的离子方程式 (6)向饱和碳酸钠溶液中通入过量 SO₂ 可制得焦亚硫酸钠,发生反应的化学方程式为 \coprod . 硫代硫酸钠($Na_2S_2O_3$)是一种重要的滴定试剂,常用来滴定溶液中的含碘量。 (7)为测定某碘水中 I₂ 的浓度(假设碘水中的碘元素均以碘单质形式存在),取该碘水 200.00 mL,加入 淀粉溶液作为指示剂,滴加 $0.01 \text{ mol} \cdot L^{-1}$ 硫代硫酸钠标准液,发生反应: $I_2 + 2S_2 O_3^2 = S_4 O_6^2 + 2I^-$, 当 (填实验现象),即为终点。平行滴定 3 次,标准液的平均用量为 20.00 mL,则该碘 水中I。的浓度为 $mg \cdot L^{-1}$. 24. (14分)某工厂废料中含有一定量的单质银。该工厂设计回收单质银的工艺流程如下: NaClO溶液 $N_2H_4 \cdot H_2O$ → 含AgCl的滤渣 → 溶解 —> 含[Ag(NH,),]+的溶液 -滤渣 滤液 已知: i. NaClO 在酸性条件下易分解,且 NaClO 氧化 Ag 的效果远强于 NaClO; ii . 3NaClO $\stackrel{H^+}{=}$ 2NaCl+ NaClO_{2 a} 请回答下列问题: (1)"粉碎"的目的为 (2)"浸出"时,需加入适量 NaCl 并保持体系为碱性环境,其中需保持体系为碱性环境的原因为

(4) "溶解"时,发生反应的离子方程式为____。 (5) "还原"时, N_2 H_4 • H_2 O 对应的产物为 N_2 。此反应中氧化剂与还原剂的物质的量之比为_____

C. Na₂S

,发生反应的离子方程式为

B. NaCl

A. HNO₂

(3)"浸出"时,所加 NaClO 可用 代替(填选项字母),但此法的缺点是

百校联盟 2020 届 TOP300 七月尖子生联考

化学 参考答案

本试卷防伪处为:

示踪原子法是研究化学反应 反应中氧化剂与还原剂的物质

- 1. B 【解析】推广光伏发电,可以减少化石燃料的使用,A 项正确;一次性塑料餐具的使用属于资源浪费,且不可降解,造成白色污染,B 项错误;杜绝在湿地、绿地乱搭乱建,符合青山,绿水的要求,C 项正确;关停排放严重超标的企业,有利于环境保护,D 项正确。
- 2. D【解析】明矾不具备杀菌消毒能力,A项错误;碳酸钠碱性太强,不能作胃酸中和剂,B项错误;C。属于单质,且不属于新型无机非金属材料,C项错误;"紫青烟"为钾元素的焰色反应现象,D项正确。
- 3. C 【解析】液氨作制冷剂,利用了液氨的沸点较高, A 项错误;甘油作护肤保湿剂,利用的是物理性质, B 项错误;FeCl₃ 用于铜制印刷版的制作中,Fe³⁺和 铜单质发生了氧化还原反应,C 项正确;食醋除去 水壶中的水垢,利用的是食醋的酸性,D 项错误。
- 4. A 【解析】H₂¹⁸O₂ 中的氧原子全部变为¹⁸O₂, A 项 正确; Na₂³⁴S 中的硫原子全部变为³⁴S, B 项错误; ¹⁵NH₄⁺中的氮原子全部变为氮气, C 项错误; K³⁷ClO₃中的氯原子变为氯气分子, D 项错误。
- 5. D 【解析】向澄清石灰水中通入 CO₂,最终不会产生沉淀,A 项错误;向硝酸钡溶液中通入 CO₂,无明显现象,B 项错误;向氯化钠溶液中通入 CO₂,无明显现象,C 项错误;向饱和碳酸钠溶液中通入 CO₂,会析出碳酸氢钠,D 项正确。
- 6. A 【解析】Na⁺、S²⁻、AlO₂⁻、SO₃²⁻ 在碱性溶液中能大量共存,A 项正确;含 Cu²⁺的水溶液显蓝色,B 项错误;Ca²⁺和 SO₄²⁻ 不能大量共存,C 项错误;加入铝粉能产生 H₂ 的溶液为酸性或碱性溶液,HCO₃⁻ 均不能大量存在,D 项错误。
- 7. A 【解析】亚硝酸钠不能作干燥剂, A 项错误; 漂白 粉和 SO₂ 都是常用的漂白剂, B 项正确; 双氧水和 酒精都是常用的医用消毒剂, C 项正确; 醋酸和氯 化钠都是常用的食品添加剂, D 项正确。

- 8. C 【解析】b 为 NH₃, d 为 NO, NH₃ 催化氧化后的产物为 NO, A 项正确; c 为 N₂ 既有氧化性,又有还原性,B项正确; f 的化学式可能为 NO₂ 也可能为 N₂O₄, C 项错误; g、b 分别为 HNO₃ 和 NH₃,可化合生成离子化合物 NH₄NO₃, D 项正确。
- 9. A 【解析】向稀硝酸中加入一定质量的铁铜合金, 充分反应后,有固体剩余,说明所得溶液中一定不存在 Fe³+,一定存在 Fe²+,可能存在 Cu²+,剩余固体一定有铜,可能有铁;再向混合液中加入一定量稀硫酸,虽然有部分固体溶解,但也可能是铜与剩余的 NO₃ 和加入的 H+反应,并不能说明固体中一定含有铁,所以结论和第一次加入稀硝酸的结论一致。所以 A 项错误。
- 10. C 【解析】浓氨水与生石灰可以制 NH₃, A 项正确;碱石灰可以用来干燥 NH₃, B 项正确; NH₃ 密度比空气小,应用向下排空气法收集, C 项错误; NH₃ 极易溶于水,可用于喷泉实验, D 项正确。
- 11. B【解析】SO₃ 不能通过复分解反应一步制得, A 项错误; FeCl₂ 能通过 Fe 和 FeCl₃ 化合反应一步制得, 也能通过 BaCl₂ 和 FeSO₄ 复分解反应一步制得, B 项正确; Cu 不能通过化合反应和复分解反应制得, C 项错误; H₂SiO₃ 不能通过化合反应一步制得, D 项错误。
- 12. A 【解析】标准状况下,0.56 L 甲烷为0.025 mol CH_4 ,含有的共价键数为 $0.1N_A$,A 项正确;5.6 g 铁粉完全反应,转移的电子数目为 $0.3N_A$,B 项错误;18 g 重水为 0.9 mol,含有的电子数为 $9N_A$,C 项错误;未给出溶液体积,无法计算,D 项错误。
- 13. B【解析】氢能源为清洁高效能源,故开发氢能源 有利于社会可持续发展,A项正确;碘循环系统不 能分离出 HI,B项错误;由图知 I₂ 为整个循环过 程的催化剂,C项正确;上述循环系统生成 H₂ 同 时可制得的 M 为硫酸,D项正确。
- 14. B 【解析】根据流程中反应物和产物综合判断, "转化"时发生反应的离子方程式为 $CaSO_4$ + $2NH_3 + CO_2 + H_2O = CaCO_3 + 2NH_4^+ + SO_4^{2-}$, A 项正确;由于 CO_2 溶解度小, NH_3 溶解度大,所以"转化"时应先通人 NH_3 ,再通人 CO_2 , B 项错误;

实验室"过滤"时用到的玻璃仪器有玻璃棒、漏斗、烧杯, C项正确;"浸取"过程中主要是 CaO 与 NH₄ Cl溶液反应, 会有 NH₃ 生成, D项正确。

- 15. A 【解析】铝溶于 NaOH 溶液: 2Al+2OH⁻ + 2H₂O=2AlO₂⁻ + 3H₂ ↑, A 项错误; 浓盐酸与 MnO₂ 反应制备 Cl₂: MnO₂ + 2Cl⁻ + 4H⁺ ← Mn²⁺ + 2H₂O+Cl₂ ↑, B 项正确; 向烧碱溶液中加入过量的小苏打: OH⁻ + HCO₃⁻ = CO₃⁻ + H₂O, C 项 正确; 石灰石溶于醋酸: CaCO₃ + 2CH₃COOH = Ca²⁺ + 2CH₃COO⁻ + H₂O + CO₂ ↑, D 项正确。
- 16. D 【解析】浓硫酸不能除去 H₂ 中的 HCl, A 项错误;装置 D 用于防止空气进入装置 C 的反应管中,B 项错误;未参加反应的 Na 也能与水反应生成 H₂,C 项错误;KMnO₄ 与浓盐酸反应制备 Cl₂为固体与液体不加热的反应,可在装置 A 中进行,D 项正确。
- 17. C 【解析】若 X 为 O₂,则 W 可能为 CO₂, M 为 Na₂O₂, A 项正确;若 X 为 Al(OH)₃,则 Y 可能为 稀硫酸, Z 可能是 NaOH, B 项正确;若 X 为 Fe, W、M 两种含铁的化合物不会生成铁单质, C 项错误;若 X 为 NaHCO₃,则 M 可能为二氧化碳,W 为 NaOH 或 Na₂CO₃, D 项正确。
- 18. D【解析】向盐酸中滴加 NaAlO₂ 溶液,刚开始无沉淀,待 NaAlO₂ 全部转化为 Al³⁺后,沉淀开始产生,且不会溶解,A 项正确;向 NH₄ Al(SO₄)₂ 溶液中滴加 NaOH 溶液,开始 Al³⁺沉淀,后 NH₄ 参与反应,沉淀无变化,后沉淀溶解于 NaOH 溶液,B 项正确;向 NH₄Cl 溶液中加入 Na₂O₂ 固体,既产生氨气,又产生氧气,待氯化铵反应完后,只产生氧气,所以气体总量减少,C 项正确;向 Na₂CO₃ 溶液中滴加稀盐酸,开始时无气体产生,D 项错误。
- 19. C 【解析】遇盐酸变浑浊,溶液中可能存在 SiO₃²⁻, A 项错误;溶液中含有少量 NH₄⁴,且未加热,所以 NH₃ 可能未放出,B 项错误;酸性 KMnO₄ 溶液褪色能证明 SO₂ 具有还原性,C 项正确;向某溶液中通入 Cl₂,再滴入 KSCN 溶液,溶液变红,说明原溶液中含有 Fe³⁺或 Fe²⁺,D 项错误。
- 20. A 【解析】3.60 g NaCl、NaHCO₃ 和 Na₂CO₃ 的混合固体,加热足够长时间后,分解出 H₂O 和 CO₂,固体质量剩余 3.29 g,减少了 0.31 g,所得 NaHCO₃ 的物质的量为 0.01 mol,质量为0.84 g, A 项正确;将剩余固体溶于一定体积的盐酸中,产

生 0. 448 L 气体(标准状况下),即 Na₂ CO₃ 的物质的量为 0. 02 mol,质量为 2. 12 g,但还有NaHCO₃分解出的 Na₂ CO₃,B 项错误;制取 CO₂ 的过程中消耗 HCl 的物质的量为 0. 04 mol,但最后还有剩余的 HCl,C 项错误;所得溶液 pH=1,最终所得溶液中 $c(H^+)=0.1$ mol·L⁻¹,再加上溶液中的 NaCl,所以最终所得溶液中 $c(Cl^-)$ 大于 0. 1 mol·L⁻¹,D 项错误。

- 21. (11 分)【答案】(1) 9Fe (NO₃)₂ + 12HCl = 5Fe(NO₃)₃+3NO↑+4FeCl₃+6H₂O(2分) 先 出现白色沉淀,迅速变为灰绿色,最终变为红褐色(2分)
 - $(2)AI^{3+} + 3OH^{-} = AI(OH)_{3}$ 、 $AI(OH)_{3} + OH^{-}$ = $AIO_{2}^{-} + 2H_{2}O(每个方程式 2 分, 共 4 分)$
 - (3)K₂CO₃(1分) Ba(OH)₂(1分) CaCl₂(1分)

【解析】能使溶液显碱性的离子为 OH^- 、 CO_3^{2-} ,其中能与 CO_3^{2-} 形成化合物且溶于水的只有 K^+ ,剩下的阳离子中能与 OH^- 形成化合物且溶于水的只有 Ba^{2+} ,又有碱性为 B > A,所以 A 为 K_2CO_3 、 B 为 $Ba(OH)_2$;剩下的离子中能遇盐酸产生气体的一定是 $Fe(NO_3)_2$;向 D 溶液中滴加 NaOH 溶液,先出现沉淀,继续滴加,沉淀消失,说明 D 中存在 Al^{3+} ,又因为 Ca^{2+} 和 SO_4^{2-} 不能大量共存,所以 D 为 $Al_2(SO_4)_3$,E 为 $CaCl_2$ 。

- (1) 实验②中发生反应的化学方程式为 $9Fe(NO_3)_2 + 12HCl = 5Fe(NO_3)_3 + 3NO ↑ + 4FeCl_3 + 6H_2O; 向 C 中滴加 NaOH 溶液, 出现的现象为先出现白色沉淀, 迅速变为灰绿色, 最终变为红褐色。$
- (2)实验③中的两步离子方程式为 $Al^{3+} + 3OH^{-}$ = $Al(OH)_3$ 、 $Al(OH)_3 + OH^{-} = AlO_2^{-} + 2H_2O_3$
- (3)A、B、E 分别为 K₂CO₃、Ba(OH)₂、CaCl₂。
- 22. (10 分)【答案】(1)fg(或 gf)→ab(或 ba)→hi→de (2 分)
 - (2)防止生成的 MnO 被氧化、防止可能生成的 CO 与空气混合加热爆炸、防止空气中的 CO₂ 干扰实验(2分,答出其中两点即可)
 - (3)装置 E 中澄清石灰水无明显现象,装置 C 中 溶液出现黑色沉淀(2分)
 - (4) $PdCl_2 + CO + H_2O = Pd + CO_2 + 2HCl$ (2分)
 - (5)收集 CO,防止空气污染(2分)
 - 【解析】(1)由信息知,装置 B 是用来制备 N2,装置

A可用于制备 MnO,装置 D可用于除去 N_2 中的 水蒸气,装置 E可用于检验是否有 CO_2 ,装置 C可用于检验 CO,装置 F可用于收集尾气,故装置的 连接顺序为 c
ightharpoonup fg(或 gf)
ightharpoonup ab(或 ba)
ightharpoonup hi
ightharpoonup de
ightharpoonup j。

- (2)由信息知 MnO 易被氧化,且生成的 CO 与空气混合加热可能爆炸,空气中的 CO₂ 与石灰水反应可能干扰实验,故实验开始前先通入一段时间 N_2 的目的为排尽装置中空气,防止 MnO 被氧化,防止 CO 与空气混合加热爆炸,防止空气中的 CO_2 干扰实验。
- (3)由装置和试剂的作用知,能证明气态产物只有 CO的现象为装置 E 中澄清石灰水无明显现象, 装置 C 中溶液出现黑色沉淀。
- (4)装置 C 中发生反应的化学方程式为 PdCl₂ + CO+H₂O=Pd ↓ +CO₂+2HCl₃
- (5)装置 F 的作用为收集 CO,防止空气污染。
- 23. (15 分)【答案】(1)Na⁺[: S:S:]²⁻Na⁺(2 分)
 - $(2)S_5^{2-} + 2H^+ = H_2S \uparrow + 4S \downarrow (2 分)$
 - $(3)4FeS_2 + 11O_2$ <u>煅烧</u> $2Fe_2O_3 + 8SO_2(2分)$
 - (4)+4(1分)
 - $(5)S_2O_5^{2-}+O_2+H_2O=2SO_4^{2-}+2H^+(2 \%)$
 - (6) $Na_2CO_3 + 2SO_2 = Na_2S_2O_5 + CO_2(2 分)$
 - (7)滴入最后一滴 $Na_2S_2O_3$ 标准液后,溶液由蓝色变为无色,且 30 s 内不再变蓝(2 分) 127(2 分)
 - 【解析】(1) Na_2S_2 的电子式为 $Na^+[:S:S:]^{2-}Na^+$ 。
 - (2)多硫化钠 Na_2S_5 在酸性条件下生成的 H_2S 为还原产物,生成的 S 为氧化产物,1 mol Na_2S_5 反应生成 1 mol H_2S 和 4 mol S,所以离子方程式为 $S_5^{2-} + 2H^+ = H_2S \uparrow + 4S \downarrow$ 。

 - (4)焦亚硫酸钠 $(Na_2S_2O_5)$ 中根据钠和氧的化合价及总化合价代数和为零可算得硫的化合价为+4价。
 - (5)焦亚硫酸钠(Na₂S₂O₅)与氧气反应的离子方

- 程式为 $S_2O_5^{2-}+O_2+H_2O=2SO_4^{2-}+2H^+$ 。
- (6)向饱和碳酸钠溶液中通入过量 SO_2 生成焦亚硫酸 钠 的 化 学 方 程 式 为 $Na_2CO_3+2SO_2=Na_2S_2O_5+CO_2$ 。
- (7) 碘水加淀粉后为蓝色,当消耗完碘单质后变为无色,所以滴定终点的现象为当滴入最后一滴 $Na_2S_2O_3$ 标准液后,溶液由蓝色变为无色,且 30 s 内不再变蓝即滴定至终点;发生反应为 $I_2+2S_2O_3^2-S_4O_6^2-2I^2$, $2\times c$ (I_2) \times V (I_2) = c ($S_2O_3^2-3$) \times V ($S_2O_3^2-3$) V (S_2
- 24. (14 分)【答案】(1)增大接触面积,提高后续银的 浸出速率(2 分)
 - (2)防止 NaClO 分解成 NaClO₃ 降低氧化效果(2 分) 2Ag+ClO⁻+Cl⁻+H₂O=2AgCl+2OH⁻ (2分)
 - (3)A(2分) 产生氮氧化物,污染环境(2分)
 - (4)AgCl+2NH₃ H₂O=[Ag(NH₃)₂]⁺+Cl⁻+2H₂O(2分)
 - (5)4:1(2分)
 - 【解析】(1)"粉碎"的目的为增大接触面积,提高后续银的浸出速率。
 - (2)"浸出"时,需加入适量 NaCl 并保持体系为碱性环境,其中需保持体系为碱性环境的原因为防止 NaClO 分解成 NaClO 。降低氧化效果,发生反应的离子方程式为 $2Ag+ClO^-+Cl^-+H_2O=2AgCl+2OH^-$ 。
 - (3)"浸出"时需要氧化剂, 所加 NaClO 可用 HNO。代替,但此法的缺点是产生氮氧化物,污染环境。
 - (4)"溶解"时,根据反应物和产物的判断可得发生 反应的离子方程式为 $AgCl + 2NH_3 \cdot H_2O =$ [$Ag(NH_3)_2$] + $+Cl^- + 2H_2O_3$.
 - (5)"还原"时, N_2 H_4 H_2 O 对应的产物为 N_2 ,转移电子数为 4,氧化剂为+1 价的银,转移电子数为 1,所以氧化剂与还原剂的物质的量之比为4:1。