Recitation 2: Solutions for the exercise problems

Shunkei Kakimoto

Solution to Exercise 1

By the definition of CDF, $\Phi(z)$ can be written as $\Phi(z) = Pr(Z \le z)$.

Answers:

Part (a)

$$Pr(Z < b) = \Phi(b)$$

Part (b)

$$Pr(Z \le b) = \int_{-\infty}^{b} \phi(z) dz$$

Part (c)

$$Pr(a \le Z \le b) = Pr(Z \le b) - Pr(Z \le a) = \Phi(b) - \Phi(a)$$

Part (c)

$$Pr(a \le Z \le b) = \int_a^b \phi(z) dz$$

Solution to Exercise 2

Idea We want to derive the PDF of Y which is defined by $Y = X^2$. Since $0 \le X \le 1$, $0 \le Y \le 1$. Recall the definition of PDF. Let G(y) be the CDF of Y and g(y) be the PDF of Y. Then, $g(y) = \frac{d}{dy}G(y)$ by the definition of PDF. That is, once you get G(y), you can derive g(y). So, let's start with the CDF of Y.

Answers:

By the definition of CDF,

$$G(y) = Pr(Y \le y).$$

Substituting $Y = X^2$,

$$G(y) = Pr(X^2 \le y)$$

= $Pr(0 \le X \le \sqrt{y})$

(The last equality is because of the fact that $X^2 \le y \iff -\sqrt{y} \le X \le \sqrt{y}$ and the condition $X \ge 0$.)

Since we know that X is uniformly distributed $(X \sim U[0,1])$, the PDF of X is 1 for $0 \le X \le 1$. Also, note that the range $[0, \sqrt{y}]$ is contained in the range of the PDF of X. So,

$$G(y) = Pr(0 \le X \le \sqrt{y}) = \int_0^{\sqrt{y}} 1 dx = \sqrt{y}. \tag{1}$$

Thus, PDF of Y is

$$g(y) = \frac{d}{dy}G(y) = \frac{1}{2\sqrt{y}} \quad (0 \le y \le 1)$$

Solution to Exercise 3

Answers:

Part (a)

$$\begin{aligned} Cov(X,Y) &= E[(X-E[X])(Y-E[Y])] \\ &= E\Big[XY-XE[Y]-E[X]Y+E[X]E[Y]\Big] \\ &= E[XY]-E[X]E[Y]-E[X]E[Y]+E[X]E[Y] \qquad (\because \text{ linearity of expectation}) \\ &= E[XY]-E[X]E[Y] \\ &= E[XY] \end{aligned} \quad (\because E[X]=0 \text{ or } E[Y]=0)$$

Also, note that Cov(X, Y) = E[XY] - E[X]E[Y].

Part (b)

By definition,

$$corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var[X]Var[Y]}}$$

If $X \perp \!\!\! \perp Y$, then, Cov(X,Y) = E[XY] - E[X]E[Y] = E[X]E[Y] - E[X]E[Y] = 0. (Note that if $X \perp \!\!\! \perp Y$, E[XY] = E[X]E[Y]).

Therefore, if $X \perp \!\!\!\perp Y$,

$$corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var[X]Var[Y]}} = 0$$

Part (c)

Here, I show Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y) without assuming E[X] = E[Y] = 0.

By definition,

$$Var[X+Y] = E\Big[\Big(X+Y-E[X+Y]\Big)^2\Big]$$

$$= E\Big[\Big(X+Y-E[X]-E[Y]\Big)^2\Big] \qquad (\because \text{ linearity of expectation})$$

$$= E\Big[\Big(X-E[X])+(Y-E[Y])\Big)^2\Big]$$

$$= E\Big[(X-E[X])^2+(Y-E[Y])^2+2(X-E[X])(Y-E[Y])\Big]$$

$$= E\Big[(X-E[X])^2\Big]+E\Big[(Y-E[Y])^2\Big]+2E\Big[(X-E[X])(Y-E[Y])\Big] \qquad (\because \text{ linearity of expectation})$$

$$= Var[X]+Var[Y]+2Cov(X,Y)$$

Part (4)

$$\text{If } X \text{ and } Y \text{ are uncorrelated, } corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var[X]Var[Y]}} = 0 \iff cov(X,Y) = 0.$$

Therefore, using the result of Part (3),

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y) = Var[X] + Var[Y]$$

Solution to Exercise 4