MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE SECRETARIAT GENERAL

DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR

SESSION 2017

DIRECTION DE L'ENSEIGNEMENT SUPERIEUR PUBLIC et PRIVE

Service d'Appui au Baccalauréat

mmmmmmmmmm

Série

e : C

Epreuve de :

MATHEMATIQUES

Durée

4 heures

Code matière: 009

Coefficient: 5

<u>NB</u>: L'utilisation d'une calculatrice scientifique non programmable est autorisée. L'exercice et les deux problèmes sont obligatoires.

EXERCICE: (4 points)

Arithmétique:

1. a) Montrer que pour tout entier naturel x et y, on a x + y et x - y ont la même parité. (0,5pt)

b) En déduire la résolution dans N×N de l'équation : $x^2 = y^2 + 8$ (0,5pt)

2. a) Résoudre dans N l'équation : $5x \equiv 1 \pmod{3}$ (0,5pt)

b) En déduire une solution particulière de l'équation : 5x-3y=1 (0,25pt)

c) Résoudre dans N×N l'équation : 5x-3y=1 (0,25pt)

Probabilité:

Une urne contient 3 boules blanches et n boules noires ($n \ge 3$). Toutes les boules sont indiscernables au toucher.

1- Un enfant tire simultanément deux boules de l'urne. On note par A_n l'évènement : « obtenir au moins une boule noire ».

a) Calculer la probabilité $P(A_n)$ de A_n (0,5pt)

b) Calculer $\lim_{n \to +\infty} P(A_n)$. (0,25pt)

c) Pour quelles valeurs de n a-t-on $P(A_n) \le 0.99$? (0,5pt)

2- On remet l'urne dans la condition initiale. L'enfant tire de nouveau au hasard une à une 3 boules en remettant dans l'urne chaque boule qui a été tirée. Soit l'évènement B_n : « tirer 3 boules blanches. »

a) Calculer la probabilité $P(B_n)$ de B_n (0,5pt)

b) Déterminer la valeur de $n \in \mathbb{N}$ pour que $P(B_n) = \frac{27}{1000}$. (0,25pt)

PROBLEME 1 (7points)

Dans le plan orienté (\mathcal{P}), on considère le triangle équilatéral ABC tel que mes $(\widehat{BC}, \widehat{BA}) = \frac{\pi}{3}$ et AB = 4cm.

Soit I le projeté orthogonal de A sur le segment [BC]. La droite parallèle à la droite (AI) et passant par le point C coupe la droite (AB) au point Ω . On note par D la symétrique de B par rapport au point C.

Soient t la translation de vecteur \overline{BC} ; r la rotation de centre A et d'angle $\frac{\pi}{3}$; r_1 la rotation de centre B et

d'angle $\frac{-\pi}{3}$; $f = tor \ et \ g = for_1$.

Partie A

1-	Faites la figure et placer les points A, B, C, D, I et Ω .	(0,5pt)

2- a) Décomposer t en deux symétries orthogonales dont l'un des axes est la droite (AI). (0,5pt)

b) Décomposer r en deux symétries orthogonales dont l'un des axes est la droite (AB). (0,5pt)

c) Déterminer la nature et les éléments caractéristiques de f. (0,5pt)

3- a) Déterminer g(B). (0,5pt)

b) En déduire la nature et les éléments caractéristiques de g . (0,5pt)

4- On note par A' = f(A), B' = f(B) et C' = f(C).

a) Placer les points $A', B'et \ C'$ sur la même figure. (0,5pt)

b) Quelle est la nature du triangle A'B'C' ? Justifier. (0,25pt)

c) Montrer que Ω , A'et B' sont alignés. (0,25pt)

Partie B

Le plan (\mathscr{P}) est rapporté à un repère orthonormé direct (B, \vec{u} , \vec{v}). Sachant que $\vec{u} = \frac{1}{3} \vec{BI}$ et $\vec{v} = \frac{1}{2\sqrt{2}} \vec{IA}$

1-	a)	Exprimer le vecteur \overrightarrow{BA} en fonction des deux vecteurs \overrightarrow{u} et \overrightarrow{v} .	(0,5pt)
	,	Déterminer les affixes des points A,B et C.	(0,25pt×3)
2-	a)	Ecrire les expressions complexes de t. r. et r.	(0.25nt×3)

b) En déduire les expressions complexes de f et g.

(0,**25**pt×2

(0,25pt)

c) Déterminer leurs natures et leurs éléments caractéristiques.

 $(0,25pt\times2)$

PROBLEME 2 (9points)

Partie A

Pour tout entier naturel n>0 , soit la fonction numérique f_n de la variable réelle x définie sur $\mathbb{R}-\{-1\}$ par :

$$f_n(x) = \frac{e^{-x}}{\left(1+x\right)^n}.$$

On note par (\mathcal{C}_n) sa courbe représentative dans un plan muni d'un repère orthonormé ($O, \ \vec{i}, \ \vec{j}$) d'unité 1cm.

1) a- Calculer les limites de f_n aux bornes de son ensemble de définition (on distinguera les cas où n est pair ou impair). (1pt)

b- Calculer la fonction dérivée $f_n'(x)$ en fonction de x et n. (0,5pt)

c- Dresser les tableaux de variations de f_n selon la parité de n. (1pt)

2) Montrer que toutes les courbes (a) passent par un point fixe de coordonnées que l'on précisera. (0,25pt)

Calculer $\lim_{x \to -\infty} \frac{f_n(x)}{x}$ (distinguer les deux cas où n est pair ou impair). (0,25pt)

(0.25pt)a- Etudier suivant les valeurs de x la position relative des courbes (\mathcal{C}) et (\mathcal{C}). (1pt)

b- Tracer ((G)) et ((G)) dans le même repère.

Partie B

Pour tout entier nature n > 0, soit $I_n = \int_0^1 f_n(x) dx$.

1) Donner l'expression de $f_n'(x)$ en fonction de $f_n(x)$ et $f_{n+1}(x)$ (0,5pt)

2) a- Montrer que la suite (I_n) est décroissante. (0,5pt)

b- En déduire que la suite (I_n) est convergente. (0,5pt)

3) a- Démontrer que pour tout entier naturel n > 0 et $0 \le x \le 1$, on a : $\frac{e^{-1}}{(1+x)^n} \le f_n(x) \le \frac{1}{(1+x)^n}$. (0,25pt)

b- En déduire que pour tout n > 0, on a : $\frac{e^{-1}}{n-1} \left[1 - \frac{1}{2^{n-1}} \right] \le I_n \le \frac{1}{n-1} \left[1 - \frac{1}{2^{n-1}} \right]$. (0,25pt)

c- Calculer $\lim_{n \to +\infty} I_n$ (0,25pt)

4) a- En utilisant la question 1) de la partie B, montrer que : $I_n + nI_{n+1} = 1 - \frac{e^{-1}}{2^n}$ (0,25pt)

b- En déduire $\lim_{n \to +\infty} nI_{n+1}$ (0,25pt)

Partie C (Cette partie est indépendante des deux parties A et B)

Soit (U_n) la suite définie pour tout entier nature l > 0 par : $U_n = \int_0^1 x^n \ln(x+1) dx$.

1) Etudier le signe de $(x^{n+1} - x^n)$ sur l'intervalle [0 ;1]. (0,25pt)

2) En déduire le sens de variation de (U_x) . (0,5pt)3) La suite (U_n) est-elle convergente ? Justifier.

(0,5pt)Démontrer que pour tout entier naturel n > 0, on a : $0 \le U_n \le \frac{\ln 2}{n+1}$.

(0,5pt)5) En déduire $\lim_{n\to+\infty} U_n$.