One's-complement

- Negative number: Bitwise complement positive number
 - $0011 \equiv 3_{10}$
 - $1100 \equiv -3_{10}$
- Solves the arithmetic problem

	Add	Invert, add	Invert, add, add carry		Invert and add	
4	0100	4	0100	- 4	1011	
+ 3	+ 0011	– 3	+ 1100	+ 3	+ 0011	
= 7	= 0111	= 1	1 0000	- 1	1110	
		add carry:	+1			
			= 0001			

- Remaining problem: Two representations for zero
 - 0 = 0000 and also -0 = 1111

Two's-complement

- Negative number: Bitwise complement plus one
 - $0011 \equiv 3_{10}$
 - $1101 \equiv -3_{10}$
- Only one zero!
- MSB is the sign digit
 - 0 ≡ positive
 - 1 ≡ negative

	Add	Invert and add		Invert	Invert and add	
4 + 3	0100 + 0011	4 - 3	0100 + 1101	- 4 + 3	1100 + 0011	
= 7	= 0111	= 1 drop carry	1 0001 = 0001	- 1	1111	

	6-bit Binary of Magnitude	Sign and Magnitude	One's Complement	Two's Complement
-10	001010	101010	110101	110110
-14	001110	101110	1100001	1100010
-3	000011	100011	111100	111101
-17	010001	110001	101110	101111

Arithmetic's using 1's and 2's complement

Addition of a positive number and a negative number.

Case I: When the positive number has a greater magnitude

In this case the end-around carry will be generated and is added into the final result.

	Binary	5-bit Binary	111	
11	1011	01011	01011	
-5	101	00101	+ 11010	(1's Complement)
			00101	
			+ 1	
			00110	

Addition of a positive number and a negative number

Case II: When the negative number is greater.

When the negative numbers is greater **no end-around carry** will be generated. The result of addition will be negative, and the **final result is obtained by taking 1's complement** of the result.

	1	5-bit Binary	Binary	
(1's Complement)	10100	01011	1011	-11
	+ 00101	00101	101	5
	11001			
(1's Complement)	00110			

When the numbers are negative

A end-around **carry will be generated** which will be **added** in sum. 1's complement of the result will give the magnitude.

	Binary	5-bit Binary	. 1	
-10	1010	01010	10101	(1's Complement)
-5	101	00101	+ 11010	(1's Complement)
			01111	
			10000	
			01111	(1's Complement)

Addition of a positive number and a negative number.

Case I: When the positive number has a greater magnitude

In this case the **end-around carry will be generated** and is **discarded**. The final result is the result of addition.

	Binary	5-bit Binary	1111	
11	1011	01011	01011	
-5	101	00101	+ 11011	(2's Complement)
			00110	

Addition of a positive number and a negative number

Case I: When the negative number is greater.

When the negative numbers is greater **no end-around carry will be generated**. The result of addition will be negative, and the **final result is obtained by taking 2's complement** of the final sum.

	Binary	5-bit Binary	1 1
-11	1011	01011	10101 (2's Complement)
5	101	00101	+ 00101
			11010 00110 (2's Complement)

When the numbers are negative

A end-around **carry will be generated** which will be **discarded**. The final result is obtained by taking 2's complement of the sum.

	1 111	6-bit Binary	Binary	
(2's Complement)		01011	1010	-10
(2's Complement)	+ 11011	00101	101	-5
	10001			
(2's Complement)	01111			

In summary

- Can't infer a representation from a number
 - 11001 is 25 (unsigned)
 - 11001 is –9 (sign magnitude)
 - 11001 is –6 (ones complement)
 - 11001 is –7 (twos complement)
- 1's complement -> Add Carry
- 2's complement -> Drop Carry

Thanks a lot

If you are taking a Nap, wake up.....Lecture Over