L1 ANSWER 2 OF 3 WPINDEX COPYRIGHT 2006 THE THOMSON CORP on STN

AN 1994-354909 [44] WPINDEX

DNC C1994-161924

TI Curable coating compsn. for polyolefin mouldings - comprising poly methacryloyloxy monomer (s), acrylic copolymer, chlorinated polyolefin etc used as primer for metallisation..

DC A14 A17 A82 G02 M13

(MITR) MITSUBISHI RAYON CO LTD

CYC 1

PA

PI JP 06279706 A 19941004 (199444) * 7 C09D004-02 <--JP 3508866 B2 20040322 (200421) 7 C09D004-02

ADT JP 06279706 A JP 1993-70440 19930329; JP 3508866 B2 JP 1993-70440 19930329

FDT JP 3508866 B2 Previous Publ. JP 06279706

PRAI JP 1993-70440 19930329

IC ICM C09D004-02

ICS C23C014-20

ICA C08F299-00

/ BINARY DATA / SEKI0706001.TIF

AB JP 06279706 A UPAB: 19941223

Compsn comprises (A) 0.1-50 wt pts chlorinated polyolefin (chlorine content: under 50%); (B) 10-80 wt pts monomer mixture consisting of (b-1) 20-100 wt% polyfunctional monomer having one to two (meth) acryloyloxy groups per molecule; (C) 1-80 wt pts acrylic copolymer; and (D) 0.1-15 wt pts photopolymerisation initiator.

USE/ADVANTAGE - The composition is used for forming an undercoat for metal deposition on polyolefin resin mouldings, esp for producing metallised polypropylene resin mouldings with good heat resistance, adhesion and surface smoothness without pretreatment. The coating is formed by applying it to the polyolefin resin surface and irradiating.

In an example, the coating agent composition was prepared by mixing 1 wt pt 'Supercuron 804M' (RTM: lower chlorinated polypropylene) with 45 wt pts dipentaerythritol hexaacrylate, 15 wt pts hydrogenated bisphenol A diacrylate, 5 wt pts 2-dicyclopentenoxyethyl acrylate, 30 wt pts acrylic copolymer (weight-average molecular weight: 50000) of methyl methacrylate/isobutyl methacrylate/dicyclopentanyl methacrylate = 60/20/20, 4 wt pts benzophenone and 200 wt pts toluene (organic solvent). The solution was applied to the polypropylene base material by spraying so as to get 20 micron thick cured coat. Then, after volatilisation of the organic solvent by heating, the cured coat (primer layer) was obtained by irradiation with 2000 mJ/cm3 (340-380 nm wavelength) with a high tension mercury lamp. Aluminium was deposited on the polypropylene base material

by vacuum evaporation coating process to obtain the metallised polypropylene resin. The surface was smooth and transparent. Adhesive was 100/100 in the cross-cut adhesion test. The metallised samples were heated in a hot-air drying oven at 110 deg C for 24 hrs. No change was observed by visual inspection.

Dwg.0/0

FS CPI

FA AB; GI

MC CPI: A04-F01A1; A04-G01; A08-C01; A08-C07; A10-E04A; A11-C02C; A11-C04B1; A12-B07; G02-A05E; M13-H05

•		実施例1	実施例2	実施例3	実施例4	実施例5
<u>:</u>	1					
-	CPP	1部	1部	1部	1部	1部
3.3.	DPHA	4.5部	45部	45部		45部
	PETA	<u> </u>		. —	45部	_
被	HBADA	15部	15部	15部	15部	_
覆	CHDMDA	_	_			15部
材	DCPEA	5部	2 部	5 部	5部	5部
組上	CHA	-		-		
成	MA1	30部		30部	30部	30部
物	MA 2		30部	_	_	
	BNP	4部	4部		4 部	4部
ı	2EAQ		_	4部		
有概溶剂	トルエン	200部	200部	200部	200部	200部
性	硬化被膜の 外観	0	0	0	0	0
	付着性	0	0	0	0	0
能	耐熱性	0	. 0	0	0	0

.

.

•

(19) 日本国特許庁 (JP)

(12)公開特許公報(A)

(2)

(11)特許出顧公開番号

特開平6-279706

(43)公開日 平成6年(1994)10月4日

(51) Int. Cl. 5

識別記号

FΙ

CO9D 4/02

PDS MRN

7921-4J

// CO8F299/00

7442-43

審査請求 未請求 請求項の数1 OL (全7頁)

(21)出願番号

特願平5-70440

(22)出願日

平成5年(1993)3月29日

(71)出願人 000006035

三菱レイヨン株式会社

東京都中央区京橋2丁目3番19号

(72)発明者 河口 貴司

愛知県名古屋市東区砂田橋四丁目1番60号

三菱レイヨン株式会社商品開発研究所内

(72)発明者 八木 政敏

愛知県名古屋市東区砂田橋四丁目1番60号

三菱レイヨン株式会社商品開発研究所内

(72)発明者 柄沢 満喜男

愛知県名古屋市東区砂田橋四丁目1番60号 三菱レイヨン株式会社商品開発研究所内

(54) 【発明の名称】被覆材組成物 ...

(57)【要約】

【目的】 ポリオレフィン樹脂成型品に付着性、耐熱性、表面平滑性に優れた蒸着用アンダーコート層を形成せしめるに有用な被覆材組成物を提供する。

【構成】 (A) 塩素含有量が50%以下の塩素化ポリオレフィン0.1~50重量部、(B) 1分子中に3個以上の(メタ)アクリロイルオキシ基を有する多官能性単量体(b-1)20~100重量%と、1分子中に1~2個の(メタ)アクリロイルオキシ基を有する1~2官能性単量体(b-2)80~0重量%とからなる単量体混合物10~80重量部、(C)アクリル系共重合体1~80重量部及び(D)光重合開始剤0.1~15重量部からなることを特徴とする被覆材組成物

1

【特許請求の範囲】

【請求項1】 (A) 塩素含有量が50%以下の塩素化ポリオレフィン0.1~50重量部、

(B) 1分子中に 3個以上の(メタ)アクリロイルオキシ基を有する多官能性単量体(b-1) 20~100重量%と、1分子中に 1~2個の(メタ)アクリロイルオキシ基を有する 1~2官能性単量体(b-2) 80~0重量%とからなる単量体混合物 10~80重量部、

- (C) アクリル系共重合体1~80重量部及び
- (D) 光重合開始剤 0. 1~15重量部 からなることを特徴とする被覆材組成物 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、活性エネルギー線照射により、ポリオレフィン樹脂成型品に付着性、耐熱性、表面平滑性に優れた蒸着用アンダーコートを形成せしめるのに使用される被覆材組成物に関する。

[0002]

【従来の技術】生産性、成型性、軽量化などの利点を有するポリオレフィン、例えばポリエチレン、ポリプロピ 20レン等の樹脂成型品基材の表面上に蒸着用アンダーコート(プライマー層)を形成し、その上にイオン化蒸着、スパッタリング等の金属化処理を施した金属化樹脂成型品が各種装飾品、反射板などきわめて広汎な分野に利用されている。しかしながら、これらポリオレフィン樹脂は無極性でかつ結晶性であり薬品、溶剤などに対しても極めて安定であるため通常の被覆組成物では付着せず、塗装が困難である。このため従来からポリオレフィン樹脂表面への被覆組成物の付着性を改良するために種々の前処理を行っている。その例としては火炎処理法、コロ 30ナ放電、酸化剤処理法、サンドブラスト法、放射線処理法などがある。

[0003]

【発明が解決しようとする課題】しかし、かかる手法は 被塗物の形状によっては適用が困難であり、均一な表面 処理が得られにくく、付着性も十分に満足するものでは ない。又、これら金属化樹脂成型品を反射板等に用いる 場合耐熱性、表面平滑性等の性能が必要となる。

[0004]

【課題を解決するための手段】本発明者らが上記の問題 40 点を解決するために鋭意検討した結果、ポリオレフィン 樹脂に良好な付着性を有するある特定の塩素化ポリオレフィン及びアクリル共重合体に、耐熱性に優れた特定の単量体混合物及び光重合開始剤を配合した被殺材組成物をポリオレフィン樹脂成型品に塗布して、活性エネルギー線照射により硬化させることにより、ポリオレフィン 樹脂に付着性、耐熱性、表面平滑性に優れた蒸着用アンダーコーティング層が得られることを見い出し本発明に至った。

【0005】すなわち、本発明は、(A) 塩素含有量が 50

50 %以下の塩素化ポリオレフィン $0.1\sim50$ 重量 部、(B) 1分子中に3個以上の(メタ) アクリロイルオキシ基を有する多官能性単量体(b-1) $20\sim10$ 0重量%と、1分子中に $1\sim2$ 個の(メタ) アクリロイルオキシ基を有する $1\sim2$ 官能性単量体(b-2) $80\sim0$ 重量%とからなる単量体混合物 $10\sim80$ 重量部、(C) アクリル系共重合体 $1\sim80$ 重量部及び(D) 光重合開始剤 $0.1\sim15$ 重量部からなることを特徴とする被覆材組成物である。

【0006】以下、本発明について詳細に説明する。 10 【0007】本発明において使用される成分(A)の塩 素化ポリオレフィンは、ポリオレフィンとの密着性を向 上させるのに有効な成分である。この塩素化ポリオレフ ィンは、ポリエチレン、ポリプロピレン等のポリオレフ ィンを通常の方法で塩素化したものであり、各種市販さ れているものが使用できる。例えば、ハードレン14L LB(東洋化成工業株式会社製塩素化ポリオレフィン、 トルエン30%溶液)、ハードレン14ML (東洋化成 工業株式会社製塩素化ポリオレフィン、トルエン30% 溶液)、ハードレンBS-40(東洋化成工業株式会社 製塩素化ポリオレフィン、トルエン50%溶液)、スー パークロン804M(山陽国策パルプ株式会社製塩素化 ポリオレフィン、トルエン30%溶液)等の各種塩素化 ポリオレフィン樹脂があげられる。

【0008】(A)成分の使用割合は、(A)~(D)成分の合計量100重量部中に0.1~50重量部、好ましくは0.1~30重量部、より好ましくは0.3~10重量部が好適である。成分(A)の量が0.1重量部未満では、十分な付着性が得られず、50重量部をこえると耐熱性が低下し、また塗膜の光沢も低下する。本発明において、得られる硬化被膜の付着性を考慮する際には塩素含有量が50%以下、好ましくは20~35%の低塩素化ポリオレフィン樹脂が好適である。

【0009】本発明において使用される成分(B)の1 分子中に3個以上の(メタ)アクリロイルオキシ基を有 する多官能性単量体(b-1)と、1分子中に1~2個 の(メタ)アクリロイルオキシ基を有する1~2官能性 単量体(b-2)とからなる単量体混合物は、活性エネ ルギー線の照射により良好な重合活性を示し、ポリオレ フィン樹脂成型品に、耐熱性、表面平滑性に優れた蒸着 用アンダーコート層としての架橋硬化被膜を形成させる 成分である。1分子中に3個以上の(メタ)アクリロイ ルオキシ基を有する多官能性単量体(b-1)の例とし て、例えばトリメチロールプロパントリ(メタ)アクリ レート、ペンタエリスリトールトリ (メタ) アクリレー ト、ペンタエリスリトールテトラ (メタ) アクリレー ト、ジペンタエリスリトールトリ(メタ)アクリレー ト、ジペンタエリスリトールテトラ(メタ)アクリレー ト、ジペンタエリスリトールペンタ(メタ)アクリレー ト、ジペンタエリスリトールヘキサ (メタ) アクリレー

ト、トリペンタエリスリトールテトラ (メタ) アクリレ ート、トリペンタエリスリトールペンタ (メタ) アクリ レート、トリペンタエリスリトールヘキサ (メタ) アク リレート、トリペンタエリスリトールヘプタ (メタ) ア クリレート、トリペンタエリスリトールオクタ (メタ) アクリレート等が挙げられ、上記した中でも、ペンタエ リスリトールテトラアクリレート、ジペンタエリスリト ールヘキサアクリレートが特に好ましい。これらの多官 能性単量体は1種でまたは2種以上を併用することがで きる。

【0010】また、1分子中に1~2個の(メタ)アク リロイルオキシ基を有する1~2官能性単量体 (b-1) の例としては、例えばメチル (メタ) アクリレー ト、エチル(メタ)アクリレート、プロピル(メタ)ア クリレート、n-プチル(メタ)アクリレート、t-ブ チル (メタ) アクリレート、イソプチル (メタ) アクリ レート、2-エチルヘキシル (メタ) アクリレート、n ーノニル (メタ) アクリレート、シクロヘキシル (メ **タ)アクリレート、ペンジル(メタ)アクリレート、ジ** シクロペンタニル (メタ) アクリレート、ジシクロペン 20 テニル(メタ)アクリレート、2-ジシクロペンテノキ シエチル (メタ) アクリレート、イソポルニル (メタ) アクリレート、メトキシエチル (メタ) アクリレート、 エトキシエチル (メタ) アクリレート、プトキシエチル (メタ) アクリレート、メトキシエトキシエチル (メ タ) アクリレート、エトキシエトキシエチル (メタ) ア クリレート、テトラヒドロフルフリル (メタ) アクリレ ート、2-ヒドロキシエチル(メタ)アクリレート、2 ーヒドロキシプロピル(メタ)アクリレート、4-ヒド ロキシプチル (メタ) アクリレート、 (メタ) アクリル 30 酸、 (メタ) アクリロイルモルホリン等の1官能性 (メ タ) アクリレートモノマー

エチレングリコールジ (メタ) アクリレート、1,3-プロピレングリコールジ(メタ)アクリレート、1,4 -ヘプタンジオールジ(メタ)アクリレート、1.6-ヘキサンジオールジ(メタ)アクリレート、ジエチレン グリコールジ (メタ) アクリレート、ネオペンチルグリ コールジ (メタ) アクリレート、テトラエチレングリコ ールジ(メタ)アクリレート、2-プチン-1,4-ジ (メタ) アクリレート、シクロヘキサン-1, 4-ジメ 40 タノールジ(メタ)アクリレート、水素化ビスフェノー ルAジ(メタ)アクリレート、1、5-ペンタンジ(メ タ) アクリレート、トリメチロールエタンジ (メタ) ア クリレート、トリシクロデカンジメタノールジ (メタ) アクリレート、トリメチロールプロパンジ (メタ) アク リレート、ジプロピレングリコールジ (メタ) アクリレ ート、1、3-プチレングリコールジ(メタ)アクリレ ート、2,2-ピス-(4-(メタ)アクリロキシプロ ポキシフェニル) プロパン、2,2-ビス-(4-(メ

ル)プロパン、ピスー(2-メタアクリロイルオキシエ チル) フタレート等の2官能性(メタ) アクリレートモ ノマーが挙げられるが、上記した中でも、2-エチルへ キシルアクリレート、シクロヘキシルアクリレート、ジ シクロペンタニルアクリレート、ジシクロペンテニルア クリレート、2-ジシクロペンテノキシエチルアクリレ ート、イソポルニルアクリレート、水素化ビスフェノー ルAジアクリレート、シクロヘキサン-1、4-ジメタ ノールジアクリレート、トリシクロデカンジメタノール 10 ジアクリレートが特に好ましい。これらの1~2官能性 単量体は、1種または2種以上を併用することができ

【0011】1分子中に3個以上の(メタ) アクリロイ ルオキシ基を有する多官能性単量体 (b-1) と1分子 中に1~2個の(メタ)アクリロイルオキシ基を有する 1~2官能性単量体(b-2)の使用割合は、単量体混 合物中、多官能性単量体(b-1)/1~2官能性単量 体(b-2)=20~100/0~80 (重量%) の範 囲であり、好ましくは硬化被膜の耐熱性、密着性、表面 平滑性のパランスの点から、(b-1)/(b-2)= 30~70/70~30 (重量%) の範囲が良い。

【0012】成分(B)の使用割合は、(A)~(D) 成分の合計量100重量部中、10~80重量部、好ま しくは40~70重量部であり、10重量部未満では、 十分な耐熱性が得られず、80重量部を越えると硬化被 膜の付着性が低下する。

【0013】本発明において使用される成分(C)のア クリル系共重合体は、付着性を向上させる成分であり、 アクリル系単量体を主成分とする単量体をラジカル重合 開始剤の存在化に溶液重合法、塊状重合法、乳化重合法 等の採用により得ることができる。アクリル系共重合体 を構成するのに使用される単量体としては、例えばメチ ル(メタ)アクリレート、エチル(メタ)アクリレー ト、プロピル (メタ) アクリレート、n-ブチル (メ タ) アクリレート、t-ブチル (メタ) アクリレート、 イソプチル (メタ) アクリレート、2-エチルヘキシル (メタ) アクリレート、n-ノニル (メタ) アクリレー ト、シクロヘキシル(メタ)アクリレート、ペンジル (メタ) アクリレート、ジシクロペンタニル (メタ) ア クリレート、ジシクロペンテニル (メタ) アクリレー ト、2-ジシクロペンテノキシエチル(メタ)アクリレ ート、イソポルニル(メタ)アクリレート、メトキシエ チル (メタ) アクリレート、エトキシエチル (メタ) ア クリレート、プトキシエチル (メタ) アクリレート、メ トキシエトキシエチル(メタ)アクリレート、エトキシ エトキシエチル (メタ) アクリレート、テトラヒドロフ ルフリル(メタ)アクリレート、等のアクリル酸エステ ル類、2-ヒドロキシエチル (メタ) アクリレート、2 -ヒドロキシプロピル (メタ) アクリレート、3-ヒド タ) アクリロキシ(2-ヒドロキシプロポキシ) フェニ 50 ロキシプロピル (メタ) アクリレート、4-ヒドロキシ

プチル (メタ) アクリレート等のヒドロキシアルキル (メタ) アクリレート類、2-ヒドロキシエチル (メタ) アクリレートとエチレンオキシドの付加物、2-ヒドロキシエチル (メタ) アクリレートとプロピレンオキシドの付加物、2-ヒドロキシエチル (メタ) アクリレートと ε-カプロラクトンの付加物などの2-ヒドロキ

【0014】また必要に応じて共重合に使用される単量 10 体の例としては、例えばスチレン、αーメチルスチレン、pーターシャリープチルスチレン、ビニルトルエンなどのスチレン誘導体、(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸等の不飽和カルボン酸類、

シエチル(メタ)アクリレートと有機ラクトン類の付加

物等の水酸基含有ビニルモノマーを挙げることができ

る。

(メタ) アクリロニトリルのような重合性不飽和ニトリル類、(メタ) アクリルアミド、Nーメチロール(メタ) アクリルアミド、ブトキシ(メタ) アクリルアミド等重合性アミド類、マレイン酸ジエチル、マレイン酸ジプチル、フマル酸ジプチル、イタコン酸ジエチル、イタコン酸ジブチル等不飽和カルボン酸エステル類、酢酸ビ 20 ニル、プロピオン酸ビニルなどのビニルエステル類が挙げられる。

【0015】アクリル系共重合体(C)成分の使用割合は、(A)~(D)成分の合計量100重量部中に1~80重量部、より好ましくは、20~50重量部が好適である。(C)成分の量が1重量部未満では、十分な付着性が得られず、80重量部を越えると硬化被膜の耐熱性、表面平滑性が低下する。

【0016】本発明において使用される成分(D)であ る光重合開始剤としては、ベンゾイン、ベンゾインモノ メチルエーテル、ベンゾインイソプロピルエーテル、ア セトイン、ペンジル、ペンゾフェノン、p-メトキシベ ンゾフェノン、ジエトキシアセトフェノン、ベンジルジ メチルケタール、2,2-ジエトキシアセトフェノン、 1-ヒドロキシシクロヘキシルフェニルケトン、メチル フェニルグリオキシレート、エチルフェニルグリオキシ レート、2-ヒドロキシ-2-メチル-1-フェニルプ ロパン-1-オン、2-エチルアントラキノン等のカル ポニル化合物、テトラメチルチウラムモノスルフィド、 テトラメチルチウラムジスルフィド等の硫黄化合物、 2, 4, 6-トリメチルベンゾイルジフェニルフォスフ ィンオキサイド等のアシルフォスフィンオキサイド等を 挙げることができる。これらは、1種または2種以上の 混合系で使用される。これらの中でも、ベンゾフェノ ン、2-エチルアントラキノンがより好ましい。光重合 開始剤の使用量は、(A)~(D)成分の合計量100 重量部中に0.1~15重量部、より好ましくは、1~ 10重量部が好適である。(D)成分の量が0.1重量 部未満では、硬化が不十分となり、15重量部を越える と硬化被膜の付着性が低下する。

【0017】本発明の組成物には、必要に応じて望ましい粘度に調整するために有機溶剤が含まれてもよい。有機溶剤としては、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系化合物;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、酢酸メトキシエチル等のエステル系化合物;ジエチルエーテル、エチレングリコールジメチルエーテル、ジオキサン等のエーテル系化合物;トルエン、キシレン、等の芳香族化合物;ペンタン、ヘキサン等の脂肪族化合物;塩化メチレン、クロロベンゼン、クロロホルム等のハロゲン化炭化水素等を挙げることができる。

【0018】また、本発明の組成物には、レベリング 剤、消泡剤、沈降防止剤、潤滑剤、研磨剤、防錆剤、帯 電防止剤などの添加剤を加えてもよい。

【0019】ポリオレフィン樹脂成型品への蒸着用アンダーコート層の形成は、本発明の被覆材組成物をオレフィン樹脂成型品の表面に塗付し、活性エネルギー線を照射することにより達成される。アンダーコート層の膜厚は硬化被膜の厚さで $1\sim40\mu$ mの範囲である。

1 【0020】被覆材組成物の塗布方法としては、ハケ塗り、スプレーコート、ディップコート、スピンコート、カーテンコート等の方法が用いられるが、塗布作業性、被膜の平滑性、均一性の点から、スプレーコート法が好ましい。

【0021】また、本発明の組成物を硬化するために用いられる活性エネルギー線としては、紫外線、電子線、ガンマー線等が挙げられる。

【0022】アンダーコート層を設けたポリオレフィン 樹脂への蒸着は、アルミニウム等の金属を公知の蒸着方 法により行われる。

[0023]

【実施例】以下に実施例及び比較例を挙げ本発明を詳しく説明する。なお、実施例中の『部』はすべて『重量部』を意味する。また実施例中の測定評価は次のような方法で行った。

【0024】(1)硬化被膜の外観

組成物の塗布、硬化後の外観を目視評価した。

〇・・・・表面が平滑で、透明である。

△・・・・・表面に凸凹があり、平滑でない。

40 ×・・・・平滑でなく、白化、クモリ、光沢の低下が 観察される。

【0025】(2)付着性

金属化処理サンプルに1mm間隔で基材まで達するクロスカットを入れ、1mm¹ の碁盤目を100個作り、その上にセロハンテープを貼りつけ急激にはがし、剥離した碁盤目を数えた。

〇・・・・剥離なし。

△・・・・・剥離の数1~50個

×・・・・・剥離の数51~100個

0 【0026】(3)耐熱性

6

金属化処理サンプルを110℃の熱風乾燥機に24時間・ 入れ、外観を目視評価した。

〇・・・・変化なし。

△・・・・・塗板の一部にクラック、白化、クモリ、ニ ジ現象が観察される。

×・・・・・塗板の全面にクラック、白化、クモリ、ニ ジ現象が観察される。

【0027】 [実施例1~4、比較例1~6] 表1に示 す配合比で硬化液を調整し、ポリプロピレン基材に硬化 膜厚が 20μ mになるようにスプレー塗装を行う。次に 10 MA1:アクリル系共重合体 加熱により有機溶剤分を揮発させた後、空気中で高圧水 銀灯を用い、波長340~380nmの積算光量が20 00mJ/cm'のエネルギーを照射し、硬化塗膜(プ ライマー層)を得る。この様に処理したポリプロピレン 基材に、真空蒸着法にてアルミニウムを蒸着し、金属化 ポリプロピレン樹脂を得た。得られた金属化処理サンプ ルの評価結果を表1に示した。

【0028】なお、表1の化合物の記号は次の通りであ

CPP:低塩素化ポリプロピレン スーパークロン80 20

4 M

: 山陽国策パルプ株式会社製品

DPHA: ジベンタエリスリトールヘキサアクリレート **PETA:ペンタエリスリトールテトラアクリレート** HBADA:水素化ビスフェノールAジアクリレート CHDMDA:シクロヘキサン-1, 4-ジメタノール ジアクリレート

8

DCPEA: 2 - ジシクロペンテノキシエチルアクリレ ート

CHA:シクロヘキシルアクリレート

: メチルメタクリレート/イソプチルメタクリレート/ ジシクロペンタニルメタアクリレート=60/20/2 0 重量平均分子量 5.0×10°

MA2:アクリル系共重合体

: メチルメタクリレート/イソプチルメタクリレート/ イソボルニルメタクリレート=60/20/20 重量 平均分子量5. 0×10⁴

BNP:ベンゾフェノン

2EAQ:2-エチルアントラキノン

[0029] [主1]

				【表 1 】		
		実施例1	実施例2	実施例3	実施例4	実施例 5
被覆材組成物	CPP	1 部	1 部	1 部	1 部	1部
	DPHA	45部	45部	45部	_	45部
	PETA			_	45部	
	HBADA	15部	15部	15部	15部	_
	CHDMDA	_	_	_		15部
	DCPEA	5部	5 部	5部	5部	5部
	CHA		_		_	_
	MA1	30部		30部	30部	30部
	MA2	·	3 0 部		_	_
	BNP	4 部	4 部		4 部	4 部
	2 E A Q		_	4部		_
有機溶剤	トルエン	200部	200部	200部	200部	200部
性	硬化被膜の 外観	0	0	0	0	0
能	付着性	0	0	0	0	0
	耐熱性	0	0	0	0	0

10

[0030]

【表2】

		実施例 6	実施例7	比較例1	比較例2	比較例3
	CPP	1部	10部		60部	1部
	DPHA	45部	25部	45部	18部	8 0 器
	PETA	_	11部	_	-	
被一	HBADA	15部	15部	15部	6部	5部
퓇	CHDMDA		_	_		
材	DCPEA	-	5 部	5部	2 部	5部
組	CHA	5部				_
成	MA1	30部	30部	31部	10部	5部
物	MA2					
	BNP	4 部	4 部	4部	4部	4部
	2 E A Q					
有機溶剤	トルエン	200部	200部	200部	200部	200部
溶剤						
性	硬化被膜の 外観	0	0 .	0	Δ	Δ
	付着性	0	0	×	0	0
能	耐熱性	0	0	0	×	×

【0031】 【表3】

		比較例 4	比較例5	
	CPP	1部	11部	
	DPHA	5部	65部	
	PETA			
被	HBADA		15部	
覆	CHDMDA			
材	DCPEA		5部	
組工	CHA	-		
成	M A 1	90部		
物	M A 2			
	BNP	4部	4 部	
	2 E A Q			
有機溶剤	トルエン	200部	200部	
性	硬化被膜の 外観	Δ	Δ	
	付着性	0	Δ	
能	耐熱性	×	0	

[0032]

【発明の効果】以上述べた如き構成からなる本発明の被 ででは組成物は、ポリオレフィン系樹脂の表面に前処理することなしに塗布し、活性エネルギー線を照射すること により、耐熱性、付着性、表面平滑性に優れた蒸着用ア ンダーコート層を形成することができ、その結果耐熱 性、付着性に優れた金属化ポリプロピレン樹脂成型品を 得ることができる。