4. Übungsblatt

- (1) FILTER ON A FINITE SET: Consider the set $X = \{0, 1, 2\}$.
 - (a) Determine all filters on X.
 - (b) Which of these filters are ultrafilters?
 - (c) Which of these filters converge, if X is equipped with the discrete topology
- (2) Convergence of filters and initial topology: Consider a family of topological spaces $(X_i)_{i\in I}$, a set X and maps $f_i\colon X\to X_i$. We define on X the initial topology with respect to these maps and consider a filter \mathcal{F} on X. Prove that \mathcal{F} converges to some $x\in X$ if and only if for every $i\in I$ the filter $f_i(\mathcal{F})$ converges to $f_i(x)$.
- (3) CONTINUITY AND SEQUENTIAL CONTINUITY: Consider \mathbb{R} equipped with the cocountable topology $\mathcal{T}_{cco} = \{A \subset \mathbb{R} : \mathbb{R} \setminus A \text{ countable}\} \cup \{\varnothing\}.$
 - (a) Show that a sequence $(x_n)_{n\in\mathbb{N}}$ converges to some $x\in\mathbb{R}$ if and only if there is an $N\in\mathbb{N}$ such that $x_n=x$ for all $n\geq N$.
 - (b) Show that for every nonempty subset $A \subset \mathbb{R}$ and every convergent sequence $x_n \to x$ with $x_n \to x$ it follows that $x \in A$. Give an example of a set $A \subset \mathbb{R}$ for which \overline{A} does not only consist of limits of sequences in A.
 - (c) Show that $(\mathbb{R}, \mathcal{T}_{cco})$ is not a Hausdorff space, but limits of convergent sequences are unique.
 - (d) Let $\mathcal{T}_{\mathbb{R}}$ denote the natural topology on \mathbb{R} . Show that the identity map $(\mathbb{R}, \mathcal{T}_{cco}) \to (\mathbb{R}, \mathcal{T}_{\mathbb{R}})$ is sequentially continuous but not continuous.
- (4) Compact intervals are compact: Let $a, b \in \mathbb{R}$, a < b. Show that the interval $[a, b] \subset \mathbb{R}$ is compact, i.e., that every open cover $(O_i)_{i \in I}$ admits a finite subcover. Hint: Consider the set $A := \{x \in [a, b] : [a, x] \text{ is covered by finitely many } O_i\}$ and show that $b = \sup A$.
- (5) UNIQUENESS OF THE PRODUCT TOPOLOGY: Let $(X_i)_{i \in I}$ be compact Hausdorff spaces. Show that the product topology on $\prod_{i \in I} X_i$ is the unique topology with the following properties:
 - (a) The projections $\pi_j : \prod_{i \in I} X_i \to X_j$ are continuous for every $j \in I$.
 - (b) $\prod_{i \in I} X_i$ is compact.