Конспект по Дискретной математике.

Чепелин В.А.

Содержание

1	Лекция 1.
1.1	Аксиоматическое вероятное пространство
2	Лекция 2.
2.1	Случайная величина
2.2	Мат. ожидание.
2.3	Незав. случайные величины
2.4	Дисперсия случайной величины
3	Лекция 3.
3.1	Ковариация
3.2	Корреляция
3.3	Хвостовые неравенства
4	Лекция 4.
4.1	Введение в теорию информации.
4.2	
5	Лекция 5.
5.1	Определение цепи Маркова
5.2	Эргодический класс
5.3	Уходим в математику
5.4	Мат. ожидание времени до поглощения
6	Информация о курсе

1 Лекция 1.

1.1 Аксиоматическое вероятное пространство.

Пусть у нас есть Ω - элементарные исходы и связанная с ним функция $p:\Omega\to [0,1]$ - дискретная вероятностная мера (плотность вероятности) - функция, которая по элементарному исходу возвращает вероятность.

А также $\sum_{w \in \Omega} p(w) = 1$, а также $0 \le p_i \le 1$ А также мы считаем, что $|\Omega|$ не более чем счетно. Для множеств мощности континуума нам нужна более сложная теория.

Рассмотрим примеры:

1. Честная монета:

$$\Omega = \{0, 1\}. \ p(0) = p(1) = \frac{1}{2}.$$

2. Нечестная монета или распределение Бернулли:

$$\Omega = \{0, 1\}. \ p(0) = 1 - p(1) = q.$$

3. Честная игральная кость:

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$
 $p(w) = \frac{1}{6}.$ $p(w) = \frac{1}{52}$

4. Колода карт:

$$\Omega = \{ \langle c, r \rangle \ 1 \le c \le 4, 1 \le r \le 15 \}$$

5. Геометрическое распределение:

$$\Omega = \mathbb{N}, \, p(i) = \frac{1}{2^i}$$

Замечание. Не существует равномерного распределения на счетном множестве.

<u>Событие</u> — множество $A\subset \Omega.$ $P(A)=\sum_{w\in A}p(w).$ (Иногда используют \Pr).

P(A) = 1 — достоверное событие.

P(A) = 0 — невозможное событие.

Рассмотрим примеры на честной игральной кости:

- 1. Только четные: $P(A) = \frac{3}{6} = \frac{1}{2}$.
- 2. Больше 4-ex: $P(A) = \frac{2}{6} = \frac{1}{3}$.

Замечание: нельзя с равной вероятностью выбрать случайное целое число.

Независимые события — A,B независимы, если $P(A \cap B) = P(A) \cdot P(B)$.

$$\frac{P(A\cap B)}{P(B)} = \frac{P(A)}{P(\Omega)} - \text{независимы (если выполнилось B, то вероятность не поменялась)}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
— вероятность А при условии В — **условная вероятность**.

Произведение вероятностных пространств.

Пусть у нас есть $\Omega_1.p_1$, а также Ω_2,p_2 , тогда произведение вероятностных пространств:

$$\Omega = \Omega_1 \times \Omega_2$$
$$p(\langle w1, w2 \rangle) = p_1(w_1) \cdot p_2(w_2)$$

Утв. $\forall A \subset \Omega_1, B \subset \Omega_2$.

 $A \times \Omega_2$ и $\Omega_1 \times B$ независимы.

Пусть у нас есть n событий: A_1, A_2, \ldots, A_n .

Тогда обычно **независимость** *п* **событий** подразумевает:

- 1. A_i, A_j независимы $\forall i, j, \quad i \neq j$
- 2. $\forall I \subset \{1, 2, 3, ..., n\}: P(\bigcap_{i \in I} A_i) = \prod_{i \in I} P(A_i)$

Формула полной вероятности

$$\Omega = A_1 \cup A_2 \cup \ldots \cup A_n, \, orall i
eq j : A_i \cap A_j = \emptyset -$$
 полная система событий.

Возьму B - какое-то событие.

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)$$

Пример: урна с шариками. Сначала выбираете урну, потом достаете шарик.

Формула Байеса.

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(B|A_i) \cdot P(A_i)}{\sum_{j=1}^{n} P(B|A_j) \cdot P(A_j)}$$

2 Лекция 2.

2.1 Случайная величина.

Случайная величина или численная характеристика каждого элементарного исхода — это отображение $\xi: \Omega \to \mathbb{R},$ которое сопоставляет каждому элементарному исходу какое-то число. Пример:

- 1. $D=\{1,2,\dots,6\}$. Возьмем $\Omega=D^2$. Например, человек бросает два игральных кубика. Тогда, очевидно, $p(\langle i,j\rangle)=\frac{1}{36}$. И тогда он задает функцию случайной величины, например, как $\xi(\langle i,j\rangle)=i+j$.
- 2. Возьмем случайный граф G на n вершинах. $\xi(G) =$ количеству компонент связности. Или $\xi(G) =$ количеству ребер в этом графе.
- 3. Давайте кидать игральный кубик и сопоставим каждой выпадающей грани число, равное количеству точек на этой грани. То есть $\Omega = \{1, 2, \dots, 6\}, \, \xi(i) = i.$

4.
$$\Omega = \{1, 2, \dots, 6\}; E = \{2, 4, 6\}. \ x_E(w) = \begin{cases} 1, w \in E \\ 0, w \notin E \end{cases}$$

Возьмем какие-то Ω, p, ξ :

 $[\xi=i]=\{w|\xi(w)=i\}\subset\Omega-$ множество элементарных исходов, случайная величина которых равна i.

 $\underline{\operatorname{def:}}\ f_{\xi}:\mathbb{R} o \mathbb{R}$ — дискретная плотность вероятности $\xi.$

$$P([\xi = i]) = P(\xi = i) = f_{\xi}(i) = \sum_{w \in [\xi = i]} p(w)$$

Дискретная плотность вероятности — это функция, которая говорит нам, насколько вероятно каждое из этих отдельных значений, которые может принимать случайная величина. Другими словами, она присваивает вероятность каждому возможному исходу.

Немного поменяем и получим $[\xi \leq i] = \{w | \xi(w) \leq i\} \subset \Omega.$

$$P([\xi \le i]) = P(\xi \le i) = F_{\xi}(i)$$

<u>def:</u> $F_{\xi}: \mathbb{R} \to \mathbb{R} - \underline{\text{функция распределения}}$. У дискретной случайной величины функция распределения ступенчатая. Например:

2.2 Мат. ожидание.

Математическое ожидание — среднее значение случайной величины.

$$E_{\xi} = \sum_{w} p(w)\xi(w) = \sum_{i} i \cdot P(\xi = i).$$

Дальше А.С. использует 3 вида обозначений:

1. E_{ξ} 2. $E(\xi)$ 3. $E\xi$ — не боимся, это одно и то же.

Теорема (линейность мат ожидания)

$$E\lambda\xi = \lambda E_{\xi}$$
 $E_{(\xi+\eta)} = E_{\xi} + E_{\eta}$

Доказательство:

$$E\lambda\xi=\sum_w p(w)\cdot\lambda\xi(w)=\lambda\sum_w p(w)\xi(w)=\lambda E_\xi$$

$$E(\xi+\eta)=\sum_w p(w)(\xi(w)+\eta(w))=\sum_w p(w)\xi(w)+\sum_w p(w)\eta(w)=E(\xi)+E(\eta)$$
 Q.E.D.

МАТ. ОЖИДАНИЕ ВСЕГДА ЛИНЕЙНО!!!

2.3 Незав. случайные величины

 ξ,η - **независимы**, если $[\xi=a],[\eta=b]$ — независимы $\forall a,b.$

Эквивалентное утверждение — $[\xi \leq a], [\eta \leq b]$ — независимы $\forall a, b.$

Иначе говоря, две случайные величины называются *независимыми*, если по значению одной нельзя сделать выводы о значении другой.

Теорема (о мультипликативности мат. ожидания)

$$\xi, \eta$$
 — независимы $\Rightarrow E(\xi \cdot \eta) = E_{\xi} \cdot E_{\eta}$.

Доказательство:

$$\begin{split} E_{(\xi\cdot\eta)} &= \sum_{a} aP(\xi,\eta=a) = \sum_{a} a \sum_{\forall i,j:\, i\cdot j=a} \sum_{i\in R_{\xi},j\in R_{\eta}} P(\xi=i,\eta=j) = \\ &= \sum_{a} \sum_{i} \sum_{j} aP(\xi=i)P(\eta=j) = \sum_{i} iP(\xi=i) \cdot \sum_{j} jP(\eta=j) = E_{\eta} \cdot E_{\xi} \end{split}$$
 Q.E.D.

2.4 Дисперсия случайной величины.

 $D_{\xi} = Var(\xi)$ — **дисперсия** случайной величины.

$$D_{\xi} = E((\xi - E_{\xi})^2) = E_{\xi^2} - (E_{\xi})^2$$

Дисперсия случайной величины — это мера того, насколько сильно разбросаны значения этой случайной величины вокруг её математического ожидания (среднего значения). Другими словами, она показывает, насколько "широко" распределение вероятностей случайной величины.

Теорема (свойства дисперсии). Если ξ, η - независимы:

$$D_{c\eta} = c^2 D_{\eta}$$
 $D_{\xi+\eta} = D_{\xi} + D_{\eta}$

Доказательство тривиально из линейности мат. ожидания.

3 Лекция 3.

3.1 Ковариация

$$Cov(\xi, \eta) = E_{\xi\eta} - E_{\xi}E_{\eta}$$

Ковариация или **корреляционный момент** показывает на сколько зависимы случайные величины это мера зависимости двух случайных величин.

Если ξ, η - независимые случайные величины

$$Cov(\xi, \eta) = 0$$

:

$$Cov(\xi,\xi) = D_{\xi} = Var_{\xi}$$
 - вариация

3.2 Корреляция

$$Corr(\xi, \eta) = \frac{E_{\xi\eta} - E_{\xi}E_{\eta}}{\sqrt{D_{\xi} \cdot D_{\eta}}} = \frac{Cov(\xi, \eta)}{\sqrt{D_{\xi} \cdot D_{\eta}}}$$

Корреляция - статистическая взаимосвязь двух случайных величин. Корреляция является **нормированной** версией ковариации, что позволяет сравнивать силу линейной зависимости между различными парами переменных, независимо от их масштаба.

Теорема (об ограниченности корреляции)

$$-1 \le Cor(\xi, \eta) \le 1$$

Доказательство:

Возьму $\alpha = \xi - \lambda \eta$:

$$D\alpha = D(\alpha) = E\xi^2 - 2\lambda E_{\xi\eta} + \lambda^2 E\eta^2 - (E\xi)^2 + 2\lambda E_{\xi} E_{\eta} - \lambda^2 (E_{\eta})^2 \ge 0$$
$$D\xi - 2\lambda Cov(\xi, \eta) + \lambda^2 D\xi \ge 0$$

Откуда, если рассматривать это, как уравнение относительно λ , то $D \le 0$, то есть:

$$4Cov(\xi,\eta) - 4D_{\eta}D_{\xi} \le 0$$

А если присмотреться, то это и есть то, что нам надо.

Q.E.D.

3.3 Хвостовые неравенства

Рассмотрим азартную игру. не одобряем, не играем.

Проводится случайный эксперимент, смотрится значение ξ . Если оно получилось 100 или больше, то мы платим 100 рублей, а иначе наш друг платит нам 100 рублей. Мы знаем $E\xi=10,\xi\geq 0$

Хотим оценить $P(\xi \le 100)$:

Давайте посмотрим, является ли наша вероятность меньше $\frac{1}{2}$. Тогда всё, что правее 100 имеет вероятность выпадения $\geq \frac{1}{2}$. Все левое оценивается нулем, откуда мат ожидание хотя бы 50. Такого быть не может. В общем случае:

Теорема (Неравенство Маркова)

$$\xi \not\equiv 0, \xi \ge 0 : \forall a \ge 1 : P(\xi \ge a \cdot E\xi) \le \frac{1}{a}$$

Доказательство:

$$E_{\xi} = \sum_{v} v \cdot P(\xi = v) = \sum_{v < a \cdot E\xi} v P(\xi = v) + \sum_{v \ge a \cdot E\xi} v P(\xi = v) \ge \sum_{v \ge a \cdot E\xi} a E \xi P(\xi = v) = a E \xi \cdot P(\xi \ge a \cdot E\xi)$$

Q.E.D.

Теорема (Неравенство Чебышева)

Абсолютная версия и относительная версия ($\alpha = \lambda \sigma$):

$$P(|\xi - E\xi| \ge \alpha) \le \frac{D\xi}{\alpha^2}$$
 $P(|\xi - E\xi| \ge \lambda\sigma) \le \frac{1}{\lambda^2}$

Доказательство:

Возьму вот такие величины:

$$D_{\xi} = E(\xi - E\xi)^2$$
 $\eta = (\xi - E\xi)^2$

Заметим, что $E\eta = D\xi$. Используем неравенство Маркова для оценки дисперсии:

$$P(\eta \ge c \cdot E\eta) \le \frac{1}{c}$$

Возьму $c = \frac{D_{\xi}}{\alpha^2}$ и получу искомое.

Q.E.D.

Нечестная монета. Вот вам дали домашку, вместе с вопросом $p > \frac{1}{2}$ или $p < \frac{1}{2}$. Что вы можете делать? Только кидать ее, но при этом бесконечное количество раз вы не кинете, у вас дедлайн домашки через час.

Пусть мы бросили n раз. Выпало c единиц и n-c нулей. Пусть $c\leq \frac{n}{2}$:

мы оросили
$$n$$
 раз. Выпало c единиц и $n-c$ нулеи. Пусть $c \leq \frac{n}{2}$:
$$P(\xi=c) \leq P(\xi \leq c) \leq P(|\xi-pn| \geq pn-c) \leq P(|\xi-pn| \geq \frac{n}{2}-c) \leq \frac{n}{4} \cdot \frac{1}{\left(\frac{n}{2}-c\right)^2}$$

Что это концептуально значит? На самом деле, это дает нам оценку на распределение. Зачем? Чтобы СДАТЬ домашку.

Теорема (Граница Чернова)

$$\begin{split} P(\xi \geq (1+\varepsilon)p) &\leq e^{-\frac{\varepsilon^2}{2+\varepsilon}np} \quad \Leftrightarrow \quad P(\xi \geq (1+\varepsilon)p) \leq e^{-\frac{\varepsilon^2}{2}np} \\ e^{-\frac{\varepsilon^2}{3}np} &\leq \delta \quad \Leftrightarrow \quad -\frac{\varepsilon^2}{3}np \leq \ln \delta \\ n &\geq \frac{3}{p\varepsilon^2} \ln \frac{1}{\delta} \end{split}$$

Не знаю, что это концептуально, напишите пж

4 Лекция 4.

4.1 Введение в теорию информации.

информация = - неопределенность - сказал дяденька Шеннон

Для осознания нам поможет рисунок АС:

Есть что-то - неизвестное - облачко. Затем, вы с помощью глаза заглядываете туда, и ваша неопределенность уменьшается. Соответственно вы получили информацию. То есть сначала была неопределенность H_1 , потом H_2 . $I = H_1 - H_2$, откуда и получается наша формула. У него есть глубокий смысл, но создается вопрос: «И че? И что это за неопределенность?»

Ну наличие глаза мешает, непонятно, фу фу фу. Поэтому хотим ввести что-то более формальное и менее абстрактное.

Пусть у нас есть какой-то случайный эксперимент Ω , с вероятностями p_1, \ldots, p_n . И вот мы получили информацию что выпало (например орел на монетке).

<u>Случайный источник</u> — черный ящик с красной кнопкой, который показывает номер эл. исхода, когда вы нажимаете на красную кнопку.

Возьмем монетку. Кинули, получили 0 или 1. Теперь возьмем кубик, получим число от 1 до 6. Когда мы кидаем кубик, мы получаем больше информации. И вот Шеннон решил систематизировать все это...

4.2 Энтропия

Пусть у нас есть случайный источник и вероятности p_1, p_2, \ldots, p_n . Мы хотим померить численно сколько информации содержится в одном эксперименте:

$$H(p_1,\ldots,p_n):RS\to R^+$$

Энтропия Шеннона(H) - это мера неопределенности или случайности, связанная с случайной переменной. Она измеряет среднее количество информации, необходимое для описания результата случайной переменной. Иными словами, энтропия показывает, насколько непредсказуемым является источник информации.

Возьму пример $p_i = \frac{1}{n}$. Введем новое обозначение:

$$h(n) = H\left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)$$

Очевидно, что h(n+1) > h(n).

Теперь рассмотрим вероятностное пространство и источник на нем:

$$\Omega = \{(1,1), (1,1), \dots, (1,m_1), (2,1), \dots, (k,1), \dots, (k,m_k)\}$$

И давайте теперь каждому причислим какую-то q_{ij} , так, что в сумме 1. $p_i = \sum_{j=1}^{m_i} q_{ij}$. Пусть наш случайный источник сломан и показывает только одно число. Если я возьму сломанный случайный источник от Ω , то мы получим столько же информации сколько и у случайного источника сделанного из p.

Теперь давайте делить это на 2 части. Что вот мы сначала видим первую часть информации, а потом хоба и видим вторую часть информации. И того мы получаем, что когда мы открываем вторую часть мы получим $p_iH(\frac{q_{i1}}{p_i},\ldots,\frac{q_{mi}}{p_i})$ информации. Откуда благодаря таким рассуждение получаем свойство, которое называется **аддитивностью энтропии**:

$$H(p_1, \dots, p_k) + \sum_{i=1}^k p_i H(\frac{q_{i1}}{p_i}, \dots, \frac{q_{mi}}{p_i}) = H(q_{11}, \dots, q_{mk})$$

Также для фиксированного n, H непр из $\mathbb{R}^n \to \mathbb{R}$.

Теорема. (Формула энтропии Шеннона)

$$H(p_1, \dots, p_n) = -\alpha \sum_{i=1}^n p_i \log_2 p_i$$

 α отвечает за выбор единицы измерений.

Доказательство:

<u>Лемма 1.</u> $h(n \cdot m) = h(n) + h(m)$.

Доказательство:

Возьмем $k=n, m_i=m, p=\frac{1}{n}, q_{ij}=\frac{1}{nm}$. Из утверждения сверху это верно!

Q.E.D.

Фиксируем $h(2) = \alpha$. Тогда:

<u>Лемма 2.</u> $h(2^k) = k\alpha$. тривиально из Леммы 1.

Лемма 2,5. $h(n^r) = rh(n)$. тривиально из Леммы 1.

<u>Лемма 3.</u> $h(n) = \alpha \log_2 n$

Доказательство:

Найду i такое, что $2^i \le n^r < 2^{i+1}$, где $r \in \mathbb{N}$.

Из монотонности h следует: $\alpha i \leq h(n^r) < \alpha(i+1)$. Поэтому:

$$\alpha i \le rh(n) < \alpha \quad \Leftrightarrow \quad a\frac{i}{r} \le h(n) \le a\frac{i+1}{r}$$

Также мы знаем, что $i \leq r \log_2 n < i+1$. Получим, что:

$$\alpha \frac{i}{r} \le \alpha log_2 n < \alpha \frac{i+1}{r}$$

То есть $\forall r : |h(n) - \alpha log_2 n| \leq \frac{\alpha}{r}$. Откуда, получаем требуемое равенство.

Q.E.D.

Возвращаемся к доказательству теоремы. Пусть p_i рациональные. Приведем все p к общему знаменателю и пусть теперь $p_i=\frac{a_i}{b_i}$. Возьму $m_i=a_i,\ r_{ij}=\frac{1}{a_i}, q_{ij}=\frac{1}{n}$. Подставим во второе неравенство получим:

$$H\left(\frac{1}{b}, \frac{1}{b}, \dots, \frac{1}{b}\right) = H(p_1, p_2, \dots, p_k) + \sum_{i=1}^k p_i H\left(\frac{1}{a_i}, \dots, \frac{1}{a_i}\right)$$

Что тут происходит? Я разбиваю каждый исход изначальный, на a_i исходов по $\frac{1}{b_i}$. С одной стороны я получаю b исходов по $\frac{1}{b}$. С другой стороны я могу выбрать исход, а потом его разбить. Откуда по аддитивности и получается такая формула. А она в свою очередь уже удобная, так как в ней повторяются значения внутри H, так что можем заменить на h:

$$h(b) = H(p_1, \dots, p_k) + \sum_{i=1}^{k} p_i h(a_i)$$

Заметим, что $\sum_{i=1}^{n} p_i = 1$, так что левую часть на эту сумму:

$$\sum_{i=1}^{n} p_i h(b) = H(p_1, \dots, p_k) + \sum_{i=1}^{k} p_i h(a_i)$$

$$H(p_1, \dots, p_k) = \sum_{i=1}^{n} p_i(h(b) - h(a_i))$$

$$H(p_1, \dots, p_k) = \sum_{i=1}^n p_i(\alpha \log_2 b - \alpha \log_2 a_i) = -\alpha \sum_{i=1}^n p_i \log_2 p_i$$

Эта формула верна и не для рац. исходя непрерывности (любое не рац. можно зажать с двух сторон сходящимися последовательностями и мы победили)

Q.E.D.

 α — бит, единица информации.

Обычно используется логарифм по основанию 2, тогда энтропия измеряется в битах (или "Шеннонах"). Если используется натуральный логарифм (основание е), то энтропия измеряется в натах. Использование логарифма по основанию 10 даёт единицы измерения в децитах (Hartleys). Выбор основания влияет только на масштаб энтропии, а не на её относительные значения.

Энтропия Шеннона имеет широкое применение в различных областях, включая:

- Теория информации: Является фундаментальным понятием для измерения количества информации.
- Сжатие данных: Используется для оценки теоретического предела сжатия данных.
- Криптография: Оценка случайности ключей и стойкости шифров.
- Машинное обучение: В деревьях решений используется для выбора признаков, которые лучше всего разделяют данные.
- Обработка естественного языка (NLP): Оценка неопределенности в языковых моделях.
- Термодинамика: Аналогична термодинамической энтропии, отражает меру беспорядка в системе.

Также есть такие понятия, как взаимная энтропия и условная энтропия. Их определения появятся в конспекте после того, как пройдет неделя со сдачей домашки.

5 Лекция 5.

5.1 Определение цепи Маркова

Вспомним задачу с домашних заданий:

Петя хочет пойти в кино с вероятностью ровно $\frac{1}{3}$, а у него есть только честная монета. Может ли он осуществить свой замысел?

Как вы знаете она обладает вот таким решением:

И действия Пети задаются этим орриентированным графом с весами на ребрах. Добавим петли в ребра идти и не идти с вероятностью 1.

Граф с конечным числом вершин, где на каждом ребре написаны вероятности, и где сумма чисел на ребрах исходящих из каждой вершины равна 1, называется **цепь Маркова** или Марковская цепь.

Посмотрим на распределение вероятностей. Посмотрим на вектор:

 $b = (b_1, b_2, \dots, b_n)$, где b_i - вероятность оказаться в i - ой позиции.

Возьмем матрицу P, где p_{ij} - вероятность перейти из i в j. Тогда на нашем примере была вот такая матрица:

$$P = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0\\ 0 & 1 & 0 & 0\\ \frac{1}{2} & 0 & 0 & \frac{1}{2}\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

<u>Поглощающее состояние</u> - то, которое переходит само в себя с вероятностью 1.

Это матрица перехода для цепи Маркова.

Пусть мы перешли в новое состояние: $c = (c_1, \ldots, c_n)$.

$$c_i = P(c = i) = \sum_{j=1}^{n} P(c = i|B = j)P(b = j) = \sum_{j=1}^{n} p_{ji}b_j$$

Откуда $c^T = b^T P$. Есть еще другое обозначение $\overrightarrow{c} = c^T$.

Посмотрим на наши шаги:

 $b^0 = (1,0,0,0)$ - наш вектор b изначально

$$b^1 = (0, \frac{1}{2}, \frac{1}{2}, 0)$$

$$b^2 = (\frac{1}{4}, \frac{1}{2}, 0, \frac{1}{4})$$

$$b^3 = (0, \frac{5}{8}, \frac{1}{8}, \frac{1}{4})$$

и так далее. Логично, что $\overrightarrow{b}^n = \overrightarrow{b} \cdot P^n$.

Мы смотрели с точки зрения линейной алгебры. Давайте посмотрим граф цепи Маркова (смотрим только ненулевые ребра). Тогда в нем есть такие виды вершин:

- 1. поглощающие (существенное)
- 2. непоглощающие (не существенное) несколько выходов

Цепь Маркова - <u>поглощающая</u>, если из любого состояние можно дойти до поглощающего состояния.

5.2 Эргодический класс

Эргодический класс - компонента сильной связности графа марковской цепи.

todo: вставить определение сильной связности.

Эргодический класс называется поглощающим, если из него не исходит ребер в другие эргодические классы.

Конденсацией марковской цепи называется конденсация графа.

Эргодическая марковаская цепь - состоит из одного эргодического класса.

Эргодический класс периодическим с периодом $d \neq 1$, если длина любого цикла в этом эргодическом классе делится на d (d - максимально).

Теорема (о классификации марковских цепей)

- 1. ∀ марковская цепь содержит поглощающий эргодический класс.
- 2. Марковская цепь с вероятностью 1 рано или поздно оказывается в состоянии из поглощающего эргодического класса.
- 3. для непереодического поглощающего эргодического класса в случае попадания в него существует стационнарное предельное распредельное вероятностей b:b=bP. \forall начального распределение $b^0, b^0:b^0P^n\to b$.

Жизнь Марковской цепи крайне скучна - А.С. Станкевич

5.3 Уходим в математику.

$$b^1 = b \cdot P, \, b^n = b \cdot P^n$$

Дана поглащающая марковская цепь. Занумеруем, чтобы изначально шли непогл., а потом погл:

Где I = единичная матрица.

Возьмем a = началу вектора b, где любое состояние не поглощающее.

Заметим, что: $a^n = a \cdot Q^n$ из-за нулей. Докажем, что $Q^n \to 0$.

Теорема о поглощении.

Поглощающая М.Ц переходит в погл. состояние с вероятностью 1.

todo: написать доказательство, оно несложное, я просто с температурой и не склеил

Хотим теперь понять, а где же мы поглотимся?

5.4 Мат. ожидание времени до поглощения

Давайте рассмотрим мат. ожидание времени до поглощения.

Есть b_0 - начальное распределение. T - сл. величина: число шагов до погл:

$$T = \sum_{i=1}^m T_i$$
, где T_i - число посещений i -ого состояния.

$$T_i = \sum_{j=0}^{\infty} = T_{ij}$$
, такая что $T_{ij} = \begin{cases} 1, \text{ если на } j\text{-ом ходу в сост } i \\ 0, \text{ иначе} \end{cases}$

$$ET = \sum_{i=1}^{m} ET_i = \sum_{i=1}^{m} \sum_{j=0}^{\infty} ET_{ij} = \sum_{i=1}^{m} (\sum_{j=0}^{\infty} a^0 Q^j)_i = \sum_{i=1}^{m} (a_0 \sum_{j=0}^{\infty} Q^j)_i = \sum_{i=1}^{m} (a_0 N)_i;$$

Как мы знаем из линейной алгебры: $\sum\limits_{j=0}^{\infty}Q^{j}=(I-Q)^{-1}$

 $N = (I-Q)^{-1}$ - фундаментальная матрица поглощающей марковской цепи.

 $A = a^{0}NR$ - распределение вероятностей поглощения в состояниях

6 Информация о курсе

Поток — y2024.

Группы М3138-М3142.

Преподаватель — Станкевич Андрей Сергеевич.

В данном семестер фокусируются 2 темы: Дискретная теория вероятности и представление слов (токенов) в компьютере.

