Comparative Statics II: Income and Substitution Effects

Econ 50 | Lecture 9 | February 2, 2016

Lecture

Group Work

- Income and Substitution Effects: Intuitive Review
- Analyzing a Price Change:
 Slutsky Decomposition
- Finding the Decomposition Point: The "Dual" Problem

 Finding the Decomposition Point: Cobb-Douglas

Part I Income and Substitution Effects: An Intuitive Review

- Tangency condition: $MRS_{x,y} = P_x/P_y$
 - X is now relatively more expensive
 - You will substitute Y for X
- Budget set: $P_x x + P_y y = I$
 - You can no longer afford to be as happy as you were before.
 - You will buy fewer of both goods, relative to...some point

- Tangency condition: $MRS_{x,y} = P_x/P_y$
 - X is now relatively more expensive
 - You will substitute Y for X
- Budget set: $P_x x + P_y y = I$
 - You can no longer afford to be as happy as you were before.
 - You will buy fewer of both goods, relative to...some point

- Tangency condition: $MRS_{x,y} = P_x/P_y$
 - X is now relatively more expensive
 - You will substitute Y for X
- Budget set: $P_x x + P_y y = I$
 - You can no longer afford to be as happy as you were before.
 - You will buy fewer of both goods, relative to...some point

- Tangency condition: $MRS_{x,y} = P_x/P_y$
 - X is now relatively more expensive
 - You will substitute Y for X
- Budget set: $P_x x + P_y y = I$
 - You can no longer afford to be as happy as you were before.
 - You will buy fewer of both goods, relative to...some point

- Tangency condition: $MRS_{x,y} = P_x/P_y$
 - X is now relatively more expensive
 - You will **substitute** Y for X
- Budget set: $P_x x + P_y y = I$
 - You can no longer afford to be as happy as you were before.
 - You will **buy fewer of both goods**, relative to...some point

Formal Definitions

- The substitution effect is the change in the quantity demanded resulting from a change relative prices, holding the level of utility constant
- The income effect is the change in the quantity demanded resulting from a change in purchasing power, holding all prices constant.

Formal Definitions

- The substitution effect is the change in the quantity demanded resulting from a change relative prices, holding the level of utility constant
- The income effect is the change in the quantity demanded resulting from a change in purchasing power, holding all prices constant.

Suppose the price of a good goes down.

You could now afford to be just as happy as you were before

(move along your indifference curve)

by buying **more of that good**and **less of other goods**and save some money in the meantime.

SUBSTITUTION EFFECT

...but suppose you don't save the money

You could spend that money to be happier than you were before

(move to a **higher** indifference curve)

by buying more of one or both goods (depending on whether they're normal or inferior goods)

Suppose the price of a good goes down.

You could now afford to be just as happy as you were before

(move along your indifference curve)

by buying **more of that good** and **less of other goods** and save some money in the meantime.

SUBSTITUTION EFFECT

...but suppose you don't save the money

You could spend that money to be happier than you were before

(move to a **higher** indifference curve)

by buying more of one or both goods (depending on whether they're normal or inferior goods)

Suppose the price of a good goes down.

You could now afford to be just as happy as you were before

(move along your indifference curve)

by buying more of that good and less of other goods and save some money in the meantime.

SUBSTITUTION EFFECT

...but suppose you don't save the money.

You could spend that money to be happier than you were before

(move to a **higher** indifference curve)

by buying **more of one or both goods**(depending on whether they're
normal or inferior goods)

Suppose the price of a good goes down.

You could now afford to be just as happy as you were before

(move **along** your indifference curve)

by buying more of that good and less of other goods and save some money in the meantime.

SUBSTITUTION EFFECT

...but suppose you don't save the money.

You could spend that money to be happier than you were before

(move to a **higher** indifference curve)

oy buying **more of one or both goods**(depending on whether they're
normal or inferior goods)

Suppose the price of a good goes down.

You could now afford to be just as happy as you were before

(move along your indifference curve)

by buying more of that good and less of other goods and save some money in the meantime.

SUBSTITUTION EFFECT

...but suppose you don't save the money.

You could spend that money to be happier than you were before

(move to a **higher** indifference curve)

by buying more of one or both good (depending on whether they're normal or inferior goods)

Suppose the price of a good goes down.

You could now afford to be just as happy as you were before

(move along your indifference curve)

by buying more of that good and less of other goods and save some money in the meantime.

SUBSTITUTION EFFECT

...but suppose you don't save the money.

You could spend that money to be happier than you were before

(move to a **higher** indifference curve)

by buying **more of one or both good**(depending on whether they're
normal or inferior goods)

Suppose the price of a good goes down.

You could now afford to be just as happy as you were before

(move **along** your indifference curve)

by buying more of that good and less of other goods and save some money in the meantime.

SUBSTITUTION EFFECT

...but suppose you don't save the money.

You could spend that money to be happier than you were before

(move to a **higher** indifference curve)

by buying more of one or both goo (depending on whether they're normal or inferior goods)

Suppose the price of a good goes down.

You could now afford to be just as happy as you were before

(move **along** your indifference curve)

by buying more of that good and less of other goods and save some money in the meantime.

SUBSTITUTION EFFECT

...but suppose you don't save the money.

You could spend that money to be happier than you were before

(move to a **higher** indifference curve)

by buying **more of one or both goods**(depending on whether they're
normal or inferior goods)

Part II Analyzing a Price Change: Slutsky Decomposition

Point	Description	Utility	Price	
А	Initial Bundle	Initial Utility	Initial Price	
С	Final Bundle	Final Utility	Final Price	

Point	Description	Utility	Price	Income
Α	Initial Bundle	Initial Utility	Initial Price	Actual Income
С	Final Bundle	Final Utility	Final Price	Actual Income

Point	Description	Utility	Price	Income
Α	Initial Bundle	Initial Utility	Initial Price	Actual Income
В	"Decomposition" Bundle			
С	Final Bundle	Final Utility	Final Price	Actual Income

Point	Description	Utility	Price	Income
Α	Initial Bundle	Initial Utility	Initial Price	Actual Income
В	"Decomposition" Bundle	Initial Utility	Final Price	
С	Final Bundle	Final Utility	Final Price	Actual Income

Point	Description	Utility	Price	Income
Α	Initial Bundle	Initial Utility	Initial Price	Actual Income
В	"Decomposition" Bundle	Initial Utility	Final Price	Compensated Income
С	Final Bundle	Final Utility	Final Price	Actual Income

Slutsky Decomposition: Price Increase

Slutsky Decomposition: Price Decrease

- Suppose the price of good X changes.
- If the substitution effect on Y dominates the income effect on Y, then X and Y are substitutes and the PCC is downward sloping.
- If the income effect on Y dominates the substitution effect,
 then X and Y are complements and the PCC is upward sloping.
- If the income effect on Y exactly offsets the substitution effect, then X and Y are independent and the PCC is horizontal.

- Suppose the price of good X changes.
- If the substitution effect on Y dominates the income effect on Y, then X and Y are substitutes and the PCC is downward sloping.
- If the income effect on Y dominates the substitution effect,
 then X and Y are complements and the PCC is upward sloping.
- If the income effect on Y exactly offsets the substitution effect, then X and Y are independent and the PCC is horizontal.

- Suppose the price of good X changes.
- If the substitution effect on Y dominates the income effect on Y, then X and Y are substitutes and the PCC is downward sloping.
- If the income effect on Y dominates the substitution effect, then X and Y are complements and the PCC is upward sloping.
- If the income effect on Y exactly offsets the substitution effect, then X and Y are independent and the PCC is horizontal.

- Suppose the price of good X changes.
- If the substitution effect on Y dominates the income effect on Y, then X and Y are substitutes and the PCC is downward sloping.
- If the income effect on Y dominates the substitution effect, then X and Y are complements and the PCC is upward sloping.
- If the income effect on Y exactly offsets the substitution effect, then X and Y are independent and the PCC is horizontal.

- Consider just the income effect of an increase in the price of X.
- If both goods are normal, the final point will have more of both than the decomposition point.
- If one good is inferior in the relevant income range, the final point will have less of the inferior good than the decomposition point.
- If good X is a Giffen good in the relevant income range, the final point will have less of good X than the initial point.

- Consider just the income effect of an increase in the price of X.
- If both goods are normal, the final point will have more of both than the decomposition point.
- If one good is inferior in the relevant income range, the final point will have less of the inferior good than the decomposition point.
- If good X is a Giffen good in the relevant income range, the final point will have less of good X than the initial point.

- Consider just the income effect of an increase in the price of X.
- If both goods are **normal**, the **final point** will have **more of both** than the **decomposition point**.
- If one good is inferior in the relevant income range, the final point will have less of the inferior good than the decomposition point.
- If good X is a Giffen good in the relevant income range, the final point will have less of good X than the initial point.

- Consider just the income effect of an increase in the price of X.
- If both goods are **normal**, the **final point** will have **more of both** than the **decomposition point**.
- If one good is **inferior** in the relevant income range, the **final point** will have **less of the inferior good** than the **decomposition point**.
- If good X is a Giffen good in the relevant income range, the final point will have less of good X than the initial point.

Slutsky Diagram: Inferior and Giffen Goods

Slutsky Diagram: Inferior and Giffen Goods

Part III Finding the Decomposition Point The "Dual" Problem

Utility Maximization

Cost Minimization

$$\mathsf{max}_{x,y} \; u(x,y)$$
 s.t. $P_x x + P_y y = I$

$$\min_{x,y} P_x x + P_y y$$

s.t. $u(x,y) = U$

Solve for x^* and y^* ; the solutions are:

Marshallian Demand Functions

$$x^*(P_x,P_y,I),y^*(P_x,P_y,I)$$

Hicksian Demand Functions

$$x^*(U, P_x, P_y), y^*(U, P_x, P_y)$$

Plug x^* and y^* back into the objective function:

Indirect Utility Function

Expenditure Function:

$$V(P_x, P_y, I) = u[x^*(P_x, P_y, I), y^*(P_x, P_y, I)] \quad E(U, P_x, P_y) = P_x x^*(U, P_x, P_y) + P_y y^*(U, P_x,$$

(Utility from utility-maximizing choice

Utility Maximization

Cost Minimization

$$\max_{x,y} u(x,y)$$

s.t. $P_x x + P_y y = I$

Solve for x^* and y^* ; the solutions are:

Marshallian Demand Functions
$$x^*(P_x, P_y, I), y^*(P_x, P_y, I)$$

Hicksian Demand Functions: $x^*(U, P_x, P_y), y^*(U, P_x, P_y)$

Plug x^* and y^* back into the objective function:

Indirect Utility Function:

Expenditure Function:

$$V(P_x, P_y, I) = u[x^*(P_x, P_y, I), y^*(P_x, P_y, I)] \quad E(U, P_x, P_y) = P_x x^*(U, P_x, P_y) + P_y y^*(U, P_x,$$

(Utility from utility-maximizing choice

Utility Maximization

Cost Minimization

$$\max_{x,y} u(x,y)$$

s.t. $P_x x + P_y y = I$

$$\min_{x,y} P_x x + P_y y$$

s.t. $u(x,y) = U$

Solve for x^* and y^* ; the solutions are:

Marshallian Demand Functions

$$x^*(P_x,P_y,I),y^*(P_x,P_y,I)$$

Hicksian Demand Functions

$$x^*(U,P_x,P_y), y^*(U,P_x,P_y)$$

Plug x^* and y^* back into the objective function:

Indirect Utility Function

Expenditure Function:

$$V(P_x, P_y, I) = u[x^*(P_x, P_y, I), y^*(P_x, P_y, I)] \quad E(U, P_x, P_y) = P_x x^*(U, P_x, P_y) + P_y y^*(U, P_x,$$

(Utility from utility-maximizing choice)

Utility Maximization

Cost Minimization

$$\max_{x,y} u(x,y)$$

s.t. $P_x x + P_y y = I$

$$\min_{x,y} P_x x + P_y y$$

s.t. $u(x,y) = U$

Solve for x^* and y^* ; the solutions are:

Marshallian Demand Functions:

$$x^*(P_x, P_y, I), y^*(P_x, P_y, I)$$

Hicksian Demand Functions:

$$x^*(U,P_x,P_y),y^*(U,P_x,P_y)$$

Plug x^* and y^* back into the objective function:

Indirect Utility Function:

Expenditure Function:

$$V(P_x, P_y, I) = u[x^*(P_x, P_y, I), y^*(P_x, P_y, I)] \quad E(U, P_x, P_y) = P_x x^*(U, P_x, P_y) + P_y y^*(U, P_x,$$

(Utility from utility-maximizing choice)

Indirect Utility function:

 $V(P_x, P_y, I)$

Expenditure function:

 $E(P_x, P_y, U)$

Indirect Utility function: $V(P_x, P_y, I)$

Expenditure function: $E(P_x, P_y, U)$

"How much utility can I buy with income *!*?"

Indirect Utility function: $V(P_x, P_v, I)$

Expenditure function: $E(P_x, P_v, U)$

"How much utility can I buy with income *I*?"

(Utility of utility-maximizing choice)

Indirect Utility function: $V(P_x, P_v, I)$

Expenditure function: $E(P_x, P_v, U)$

"How much utility can I buy with income *I*?"

"How much money does it cost to achieve utility *U*?"

(Utility of utility-maximizing choice)

Indirect Utility function:

 $V(P_x,P_y,I)$

Expenditure function:

 $E(P_x, P_y, U)$

"How much utility can I buy with income I?"

"How much money does it cost to achieve utility *U*?"

(Utility of utility-maximizing choice)

Utility Maximization

Cost Minimization

$$\max_{x,y} \ u(x,y) \\ \text{s.t.} \ P_x x + P_y y = I \\ \text{s.t.} \ u(x,y) = U$$

Solve for x^* and y^* ; the solutions are:

Marshallian Demand Functions:

$$x^*(P_x, P_y, I), y^*(P_x, P_y, I)$$

Hicksian Demand Functions:

$$x^*(U, P_x, P_y), y^*(U, P_x, P_y)$$

Plug x^* and y^* back into the objective function:

Indirect Utility Function:

Expenditure Function:

$$V(P_x, P_y, I) = u[x^*(P_x, P_y, I), y^*(P_x, P_y, I)] \quad E(U, P_x, P_y) = P_x x^*(U, P_x, P_y) + P_y y^*(U, P_x,$$

(Utility from utility-maximizing choice

Utility Maximization

Cost Minimization

$$\max_{x,y} \ u(x,y) \\ \text{s.t.} \ P_x x + P_y y = I \\ \text{s.t.} \ u(x,y) = U$$

Solve for x^* and y^* ; the solutions are:

Marshallian Demand Functions:

$$x^*(P_x, P_y, I), y^*(P_x, P_y, I)$$

Hicksian Demand Functions:

$$x^*(U, P_x, P_y), y^*(U, P_x, P_y)$$

Plug x^* and y^* back into the objective function:

Indirect Utility Function:

Expenditure Function:

$$V(P_x, P_y, I) = u[x^*(P_x, P_y, I), y^*(P_x, P_y, I)] \quad E(U, P_x, P_y) = P_x x^*(U, P_x, P_y) + P_y y^*(U, P_x, P_y)$$

(Utility from utility-maximizing choice)

Utility Maximization

Cost Minimization

$$\max_{x,y} \ u(x,y) \\ \text{s.t.} \ P_x x + P_y y = I \\ \text{s.t.} \ u(x,y) = U$$

Solve for x^* and y^* ; the solutions are:

Marshallian Demand Functions:

$$x^*(P_x, P_y, I), y^*(P_x, P_y, I)$$

Hicksian Demand Functions:

$$x^*(U, P_x, P_y), y^*(U, P_x, P_y)$$

Plug x^* and y^* back into the objective function:

Indirect Utility Function:

Expenditure Function:

$$V(P_x, P_y, I) = u[x^*(P_x, P_y, I), y^*(P_x, P_y, I)] \quad E(U, P_x, P_y) = P_x x^*(U, P_x, P_y) + P_y y^*(U, P_x, P_y)$$

(Utility from utility-maximizing choice)

Utility Maximization

Cost Minimization

$$\max_{x,y} \ u(x,y) \\ \text{s.t.} \ P_x x + P_y y = I \\ \text{s.t.} \ u(x,y) = U$$

Solve for x^* and y^* ; the solutions are:

Marshallian Demand Functions:

$$x^*(P_x, P_y, I), y^*(P_x, P_y, I)$$

Hicksian Demand Functions:

$$x^*(U,P_x,P_y),y^*(U,P_x,P_y)$$

Plug x^* and y^* back into the objective function:

Indirect Utility Function:

Expenditure Function:

$$V(P_x, P_y, I) = u[x^*(P_x, P_y, I), y^*(P_x, P_y, I)] \quad E(U, P_x, P_y) = P_x x^*(U, P_x, P_y) + P_y y^*(U, P_x, P_y)$$
(Utility from utility-maximizing choice) (Cost of cost-minimizing choice)

Group Work

Example: Cobb-Douglas u(x, y) = xy

Start with Marshallian demand:

$$x^* = \frac{I}{2P_x}, y^* = \frac{I}{2P_y}$$

Plug (x^*, y^*) back into u(x, y) = xy to find the indirect utility function:

Set the indirect utility function equal to U and solve for I to find the expenditure function:

$$\frac{I^2}{4P_xP_y} = U \Rightarrow I^2 = 4P_xP_yU$$
$$\Rightarrow E(P_x, P_y, U) = 2P_x^{\frac{1}{2}}P_y^{\frac{1}{2}}U^{\frac{1}{2}}$$

$$x^* = \frac{E(P_x, P_y, U)}{2P_x} = \frac{2P_x^{\frac{1}{2}}P_y^{\frac{1}{2}}U^{\frac{1}{2}}}{2P_x}$$

$$\Rightarrow x^H(P_x, P_y, U) = \left(\frac{P_y}{P_x}\right)^{\frac{1}{2}}U^{\frac{1}{2}}$$

Example: Cobb-Douglas u(x, y) = xy

Start with Marshallian demand:

$$x^* = \frac{I}{2P_x}, y^* = \frac{I}{2P_y}$$

Plug (x^*, y^*) back into u(x, y) = xy to find the indirect utility function:

$$u(x^*, y^*) = \left(\frac{I}{2P_x}\right) \left(\frac{I}{2P_y}\right) \Rightarrow V(P_x, P_y, I) = \frac{I^2}{4P_x P_y}$$

Set the indirect utility function equal to U and solve for I to find the expenditure function:

$$\frac{I^2}{4P_xP_y} = U \Rightarrow I^2 = 4P_xP_yU$$
$$\Rightarrow E(P_x, P_y, U) = 2P_x^{\frac{1}{2}}P_y^{\frac{1}{2}}U^{\frac{1}{2}}$$

$$x^* = rac{E(P_x, P_y, U)}{2P_x} = rac{2P_x^{rac{1}{2}}P_y^{rac{1}{2}}U^{rac{1}{2}}}{2P_x}$$
 $\Rightarrow x^H(P_x, P_y, U) = \left(rac{P_y}{P_x}
ight)^{rac{1}{2}}U^{rac{1}{2}}$

Example: Cobb-Douglas u(x, y) = xy

Start with Marshallian demand:

$$x^* = \frac{I}{2P_x}, y^* = \frac{I}{2P_y}$$

Plug (x^*, y^*) back into u(x, y) = xy to find the indirect utility function:

$$u(x^*, y^*) = \left(\frac{I}{2P_x}\right) \left(\frac{I}{2P_y}\right) \Rightarrow V(P_x, P_y, I) = \frac{I^2}{4P_x P_y}$$

Set the indirect utility function equal to U and solve for I to find the expenditure function:

$$\frac{I^2}{4P_x P_y} = U \Rightarrow I^2 = 4P_x P_y U$$
$$\Rightarrow E(P_x, P_y, U) = 2P_x^{\frac{1}{2}} P_y^{\frac{1}{2}} U^{\frac{1}{2}}$$

$$x^* = rac{E(P_x, P_y, U)}{2P_x} = rac{2P_x^{rac{1}{2}}P_y^{rac{1}{2}}U^{rac{1}{2}}}{2P_x} \Rightarrow x^H(P_x, P_y, U) = \left(rac{P_y}{P_x}
ight)^{rac{1}{2}}U^{rac{1}{2}}$$

Example: Cobb-Douglas u(x, y) = xy

Start with Marshallian demand:

$$x^* = \frac{I}{2P_x}, y^* = \frac{I}{2P_y}$$

Plug (x^*, y^*) back into u(x, y) = xy to find the indirect utility function:

$$u(x^*, y^*) = \left(\frac{I}{2P_x}\right) \left(\frac{I}{2P_y}\right) \Rightarrow V(P_x, P_y, I) = \frac{I^2}{4P_x P_y}$$

Set the indirect utility function equal to U and solve for I to find the expenditure function:

$$\frac{I^2}{4P_x P_y} = U \Rightarrow I^2 = 4P_x P_y U$$
$$\Rightarrow E(P_x, P_y, U) = 2P_x^{\frac{1}{2}} P_y^{\frac{1}{2}} U^{\frac{1}{2}}$$

$$x^* = \frac{E(P_x, P_y, U)}{2P_x} = \frac{2P_x^{\frac{1}{2}}P_y^{\frac{1}{2}}U^{\frac{1}{2}}}{2P_x}$$

$$\Rightarrow x^H(P_x, P_y, U) = \left(\frac{P_y}{P_x}\right)^{\frac{1}{2}}U^{\frac{1}{2}}$$

Example: Cobb-Douglas u(x, y) = xy

Start with Marshallian demand:

$$x^* = \frac{I}{2P_x}, y^* = \frac{I}{2P_y}$$

Plug (x^*, y^*) back into u(x, y) = xy to find the indirect utility function:

$$u(x^*, y^*) = \left(\frac{I}{2P_x}\right) \left(\frac{I}{2P_y}\right) \Rightarrow V(P_x, P_y, I) = \frac{I^2}{4P_x P_y}$$

Set the indirect utility function equal to U and solve for I to find the expenditure function:

$$\frac{I^2}{4P_x P_y} = U \Rightarrow I^2 = 4P_x P_y U$$
$$\Rightarrow E(P_x, P_y, U) = 2P_x^{\frac{1}{2}} P_y^{\frac{1}{2}} U^{\frac{1}{2}}$$

$$x^* = \frac{E(P_x, P_y, U)}{2P_x} = \frac{2P_x^{\frac{1}{2}}P_y^{\frac{1}{2}}U^{\frac{1}{2}}}{2P_x}$$

$$\Rightarrow x^H(P_x, P_y, U) = \left(\frac{P_y}{P_x}\right)^{\frac{1}{2}}U^{\frac{1}{2}}$$