汇编与接口技术

第4章 存储器扩展

-

§ 4.1 半导体存储器的基本知识

一、半导体存储器的基本结构

§ 4.1 半导体存储器的基本知识

一、半导体存储器的基本结构

§ 4.1 半导体存储器的基本知识

一、半导体存储器的基本结构

三、常用半导体存储器芯片简介

1. SRAM芯片

存储容量=2K×8位

二、半导体存储器的主要性能指标

1. 存储容量

指存储器可以容纳的二进制信息量,它与存储器的字长和地址编码长度直接相关。

2. 存取速度

(1) 存取时间TA (Access Time)

指从CPU给出有效的存储地址启动一次存储器读/写操作开始,到操作完成所经历的时间。

(2) 存取周期TMC (Memory Cycle) 指连续两次存储器读/写操作之间所需的最小时间间隔。

3. 可靠性

用MTBF(Mean Time Between Failures),即平均故障间隔时间来衡量。

6

2. DRAM芯片

存储容量=64K×1位

3. EPROM芯片

存储容量=4K×8位

9

§ 4.2 存储容量扩展的基本方式

目的: mk×n位/片 — 扩展 MK×N位

一、位扩展

位数扩充,增加存储字长。M=m,N/n=所需芯片数。

4. EEPROM芯片

存储容量=8K×8位

5. Flash Memory芯片

存储容量=32K×8位

二、字扩展

增加存储字数,即存储单元数。N=n, M/m=所需要片数。

10

三、字/位同时扩展

M/m×N/n=所需芯片数。

13

■存储器的总线连接

§ 4.3 内存芯片与系统总线的连接

1. 数据线的连接

系统数据总线为8位,则需一组8位存储器; 系统数据总线为16位,则需两组8位存储器; 系统数据总线为32位,则需四组8位存储器; 系统数据总线为64位,则需八组8位存储器。

2. 地址线的连接

片外地址 片内地址

3. 控制线的连接

用CPU的存储器读、写信号与存储器芯片的控制信号线连接,以实现对存储器正确的读写操作。

14

■实现片选控制的三种方式

1.全译码

CPU的全部地址线都参予译码,因此对应于存储器 芯片中的任意单元都只有唯一的确定的地址。

2. 部分译码

CPU的地址线没有全部参予译码,那么一个存储单元的地址不唯一。若有n条地址线未参予译码,则一个存储单元有2n个地址对应,称为"地址重迭"。

3.线选法(线译码)

用单条地址线选择存储器,不需要<mark>地址译码器</mark>。

适用于小容量存储系统。

§ 4.4 存储器扩展应用举例

一、8位存储器系统扩展

17

■由4片2732EPROM和4片6116SRAM构成的8位存储器系统

>各存储芯片的地址范围计算详见教材P132。

■由两片27256EPROM和两片62256SRAM构成的8位存储器系统

存储芯片	A ₁₉ A ₁₈	$A_{17} A_{16} A_{15}$	A ₁₄ ~A ₀	地址范围
27256 (1)	1 0	0 0 0	0000 ··· 00 ~1111 ··· 11	80000H ~87FFFH
27256 (2)	1 0	0 0 1	0000 ··· 00 ~1111 ··· 11	88000H ~8FFFFH
62256 (1)	1 0	0 1 0	0000 ··· 00 ~1111 ··· 11	90000H ~97FFFH
62256 (2)	1 0	0 1 1	0000 ··· 00 ~1111 ··· 11	98000H ~9FFFFH 1

■由4片2732EPROM和4片6116SRAM构成的8位存储器系统

>各存储芯片的地址范围计算详见教材P132。

■由4片2732EPROM和4片6116SRAM构成的8位存储器系统

▶各存储芯片的地址范围计算详见教材P132。

21

■由两片2764EPROM和两片6264SRAM构成的16位存储器系统

存储芯片	A ₁₉ A ₁₈ A ₁₇	A ₁₆ A ₁₅ A ₁₄	A ₁₃ ~A ₁	BHE	\mathbf{A}_{0}	地址范围	奇/偶
6264 (1)	1 0 0	1 1 0	0000 ··· 00 ~1111 ··· 11	1	0	98000H ~9BFFEH	偶
6264 (2)	1 0 0	1 1 0	0000 ··· 00 ~1111 ··· 11	0	1	98001H ~9BFFFH	奇
2764 (1)	1 0 0	1 1 1	0000 ··· 00 ~1111 ··· 11	1	0	9C000H ~9FFFEH	偶
2764 (2)	1 0 0	1 1 1	0000 ··· 00 ~1111 ··· 11	0	1	9C001H ~9FFFFH 6	

二、16位存储器系统扩展

- ■在16位系统中,内存1MB地址空间分为两部分:
- ightharpoonup 偶地址区 同CPU低8位数据线相连,由 A_0 作片选,当 A_0 = 0时选中;
- ▶奇地址区 同CPU高8位数据线相连,由 BHE 片选,当BHE = 0时选中;
- ▶存储芯片A₀~A₁₈同CPU A₁~A₁₉相连。

22

■由8片2732EPROM和8片6116SRAM构成的16位存储器系统 P143

- >EPROM采用全译码方式, SRAM采用部分译码方式。
- ▶各存储芯片的地址范围计算详见教材P144~P146。

三、32位存储器系统

- ■在32位系统中,将内存地址空间分为四部分:
- ho地址线 A_1 、 A_0 译码后形成4个存储体的片选信号 $\overline{BE}_0 \sim \overline{BE}_2$;
- ▶模4存储结构,一个总线周期可读/写4个字节;

四、64位存储器系统

- ■在64位系统中,将内存地址空间分为八部分:
- ightharpoonup地址线 A_2 、 A_1 、 A_0 译码后形成8个存储体的片选信号 $\overline{BE} \circ \sim \overline{BE} \tau$;
- ▶模8存储结构,一个总线周期可读/写8个字节;