Project 1

William Sear (101107069) (L160) (R251)

10/01/2014

Abstract

This paper will analyze the behviour of the equations that define how

Contents

1	Models under Consideration	3
1.1	Discrete Model for Account Balance	3
1.2	Continous Model for Account Balance	3
1.3	Rate of Change in Account Balance in Continous Model	3
	Installment Debt Rate Model 1.4.1 Classification	3
2	Comparison of Discrete and Continous Account Balance Models	4
2.1	Comparison of Discrete model as compounding rate increases	4
2.2	Compounding rate calculated annually	4
2.3	Compounding rate calculated biannually	6
2.4	Compounding rate calculated quarterly	8
2.5	Compounding rate calculated monthy	10
	Accuracy of Discrete model compared to Continous model 2.6.1 Qualitative Review	11 11 11
3	Characterization of Installment Debt Model	12

3.1 Equilibrium Solution	12
3.2 Derivative Behavior	12
3.3 Direction Field	12
3.4 Initial Value Problem	12
3.5Behaviour of rate of payment over Time 3.5.1 Time to pay off debt at rate of payment	
3.6 Accuracy of Installment Debt Model	12
4 Installment Savings	12
4.1 Calculation	
1.2Initial Value Solution	

Part 1

Models under Consideration

1.1 Discrete Model for Account Balance

$$A_d(t) = A_0(1 + \frac{r}{n})^{nt} \tag{1}$$

1.2 Continous Model for Account Balance

$$A_c(t) = A_0 e^{rt} (2)$$

1.3 Rate of Change in Account Balance in Continous Model

$$\frac{dA_c}{dt} = rA_c \tag{3}$$

1.4 Installment Debt Rate Model

$$\frac{dA_c}{dt} = rA_c - P \tag{4}$$

1.4.1 Classification

Part 2 Comparison of Discrete and Continous Account Balance Models

- 2.1 Comparison of Discrete model as compounding rate increases
- 2.2 Compounding rate calculated annually

Figure 1: Annual Compouning Rate of 10%

Figure 2: Annual Compounding Rate of 20%

2.3 Compounding rate calculated biannually

Figure 3: Biannual Compouding Rate of 10%

Figure 4: Biannual Compounding Rate of 20%

2.4 Compounding rate calculated quarterly

Figure 5: Quarterly Compouding Rate of 10%

Figure 6: Quarterly Compounding Rate of 20%

2.5 Compounding rate calculated monthy

Figure 7: Monthly Compouding Rate of 10%

Figure 8: Monthly Compounding Rate of 20%

2.6 Accuracy of Discrete model compared to Continous model

2.6.1 Qualitative Review

Review Graphs in detail here (behaviour of n and r)

2.6.2 Quantitative Review

In what year is the difference greater than a dollar?

Rate	Year
6.9%	107
12.99%	53
19.99%	33

Assumptions: $A_0 = 1$ and n = 365

Table 1: Year Discrete and Continous Models differ by one dollar

Part 3

Characterization of Installment Debt Model

- 3.1 Equilibrium Solution
- 3.2 Derivative Behavior
- 3.3 Direction Field
- 3.4 Initial Value Problem
- 3.5 Behaviour of rate of payment over Time
- 3.5.1 Time to pay off debt at rate of payment
- 3.5.2 Payment needed to pay off debt in a given time
- 3.6 Accuracy of Installment Debt Model

Part 4

Installment Savings

- 4.1 Calculation
- 4.2 Initial Value Solution

Figure 9: Derivative of Model 4 at account balance

Figure 10: Direction Field of Model 4