Timer

- Free-run counter (independent of processor)
- Functions
 - Input capture
 - Output compare
 - Pulse-width modulation (PWM) generation
 - One-pulse mode output
- STM has many application notes (on all aspects of the STM32)
 - App note AN4776 General Purpose Timer Cookbook

Timer: Clock

$$f_{CK_CNT} = \frac{f_{CL_PSC}}{PSC + 1}$$

Timer: Output

Timer: Input Capture

Multi-Channel Outputs

PWM Mode

(Pulse Width Modulation)

Period =
$$T_{off} + T_{on}$$

Duty Cycle =
$$\frac{C_{oo}}{CC_{out}} + CC_{out}$$

Mode	Counter < Reference	Counter ≥ Reference	
PWM mode 1 (Low True)	Active Low	Inactive	
PWM mode 2 (High True)	Inactive	Active High	

Edge-aligned Mode (Up-counting)

ARR = 6, RCR = 0

clock

clock

counter

counter

counter overflow
Update event (UEV)

Period = (1 + ARR) * Clock Period = 7 * Clock Period

ARR = Auto-Reload Register

UEV = Update Event

RCR = Repetition Count Register

Edge-aligned Mode (down-counting)

Center-aligned Mode

ARR = 6, RCR = 0Clock Counter Counter Counter Counter **Counter** underflow overflow underflow overflow Update event (UEV) Period = (2 * ARR) * Clock Period

= 12 * Clock Period

PWM Mode 1 (Low-True)

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

Duty Cycle =
$$\frac{CCR}{ARR + 1}$$
$$= \frac{3}{7}$$

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

Duty Cycle =
$$1 - \frac{CCR}{ARR + 1}$$

$$= \frac{4}{7}$$

Period = (1 + ARR) * Clock Period = 7 * Clock Period

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

Duty Cycle =
$$1 - \frac{CCR}{ARR + 1}$$

$$= \frac{2}{7}$$

OCREF

Center-aligned mode, ARR = 6, CCR = 3, RCR = 0

Clock TOTAL TOTAL

Duty Cycle =
$$1 - \frac{CCR}{ARR}$$

$$= \frac{1}{2}$$

Period = 2 * ARR * Clock Period = 12 * Clock Period

Center-aligned mode, ARR = 6, CCR = 3, RCR = 0

Clock TOTAL TOTAL

Duty Cycle =
$$1 - \frac{CCR}{ARR}$$

$$= \frac{5}{6}$$

Period = 2 * ARR * Clock Period = 12 * Clock Period

Auto-Reload Register (ARR)

Auto-Reload Preload Enable (ARPE) bit in TIMx_CR1

ARPE = 1 (Synchronous Update)

If UDIS bit in TIMx_CR1 is 1, UEV event is disabled.

ARPE = 0 (Asynchronous Update)

Repetition Counter Register (RCR)

Repetition Counter Register (RCR)

Counter-aligned mode

Edge-aligned mode

Upcounting

Repetition Counter Register (RCR)

Repetition Counter Register (PCR)

Repetition Counter Register (PCR)

PWM Output Polarity

Mode	Counter < CCR	Counter ≥ CCR
PWM mode 1 (Low True)	Active (Low)	Inactive
PWM mode 2 (High True)	Inactive	Active (High)

Output Polarity:

• Software can program the CCxP bit in the TIMx_CCER register

	Active	Inactive
Active High	High Voltage	Low Voltage
Active Low	Low Voltage	High Voltage

Up-Counting: Left Edge-aligned

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

PWM Mode 2: Right Edge-aligned

Upcounting mode, ARR = 6, CCR = 3, RCR = 0

PWM Mode 2: Center Aligned

The devil is in the detail

- Timer output control
- Enable Timer Output
 - MOE: Main output enable
 - OSSI: Off-state selection for Idle mode
 - OSSR: Off-state selection for Run mode
 - CCxE: Enable of capture/compare output for channel x
 - CCxNE: Enable of capture/compare complementary output for channel x

Control bits				Output states ⁽¹⁾		
MOE bit	OSSI bit	OSSR bit	CCxE bit	CCxNE bit	OCx output state	OCxN output state
1 X		×	0	0	Output disabled (not driven by the timer: Hi-Z) OCx=0, OCxN=0	
		0	0	1	Output disabled (not driven by the timer: Hi-Z) OCx=0	OCxREF + Polarity OCxN = OCxREF xor CCxNP
		0	1	0	OCxREF + Polarity OCx=OCxREF xor CCxP	Output Disabled (not driven by the timer: Hi-Z) OCxN=0
	^	Х	1	1	OCREF + Polarity + dead- time	Complementary to OCREF (not OCREF) + Polarity + dead-time
	8	1	0	1	Off-State (output enabled with inactive state) OCx=CCxP	OCxREF + Polarity OCxN = OCxREF x or CCxNP
		1	1	0	OCxREF + Polarity OCx=OCxREF xor CCxP	Off-State (output enabled with inactive state) OCxN=CCxNP
	0		×	Х	Output Disabled (not driven by the timer: Hi-Z) OCx=CCxP, OCxN=CCxNP Off-State (output enabled with inactive state)	
	1	1 X 1	0	0		
			0	1		
0			1	0	Asynchronously: OCx=CCxP, OCxN=CCxNP (if BRK or BRK2 is triggered).	P, OCxN=CCxNP (if BRK or
			1	1	Then (this is valid only if BRK is triggered), if the clock is present: OCx=OISx and OCxN=OISxN after a dead-time, assuming that OISx and OISxN do not correspond to OCX and OCxN both in active state (may cause a short circuit when driving switches in half-bridge configuration). Note: BRK2 can only be used if OSSI = OSSR = 1.	

Monitor both rising and falling edge

Monitor only rising edges or only falling edge

Input Capture

Input Capture Diagram

WHY IS THE MEASUREMENT OF TIME INTERESTING???

use echolocation to map their surroundings?

Ultrasonic Distance Sensor

$$Distance = \frac{Round \ Trip \ Time \times Speed \ of \ Sound}{2}$$

$$= \frac{Round\ Trip\ Time(\mu s) \times 10^{-6} \times 340m/s}{2}$$

$$= \frac{Round\ Trip\ Time(\mu s)}{58}$$

Ultrasonic Distance Sensor

• The delay from triggered chirp to echo response is the round-trip time t_{RT} .

If t_{RT} is 60*ms*, no obstacle is detected.

Echo response

Ultrasonic Distance Sensor

