Part 4 - Abstract elliptic problems

4.1. Existence and uniqueness of solutions

(Hilbert spaces and Lax-Milgram theorem)

Hilbert spaces

A real $\frac{\text{Hilbert space}}{\text{V}}$ is

- a complete space

 (i.e., every Cauchy sequence in V converges in V)
- ightharpoonup with a scalar product $(v, w)_V$ for $v, w \in V$
- ▶ and induced norm $||v||_V = \sqrt{(v,v)_V}$.

Examples:

- $V = L^2(\Omega)$ with $(\cdot, \cdot)_V = (\cdot, \cdot)_{L^2(\Omega)}$;
- $V = H^1(\Omega)$ with $(\cdot, \cdot)_V = (\cdot, \cdot)_{H^1(\Omega)}$;
- $V = H_0^1(\Omega)$ with $(\cdot, \cdot)_V = (\nabla \cdot, \nabla \cdot)_{L^2(\Omega)}$.

Important inequalities

► Cauchy-Schwarz inequality:

in any Hilbert space V with scalar product $(\cdot,\cdot)_V$ it holds

$$|(v, w)_V| \le ||v||_V ||w||_V$$

for all $v, w \in V$.

Important inequalities

Let $\Omega \subset \mathbb{R}^d$ be a domain with diameter $\operatorname{diam}(\Omega) := \sup_{x,y \in \Omega} \{|x-y|\}.$

► (Poincaré-Friedrichs inequality;

$$\|v\|_{L^2(\Omega)} \leq \frac{\operatorname{diam}(\Omega)}{\sqrt{2}} \|\nabla v\|_{L^2(\Omega)} \quad \text{for all } v \in \underline{H^1_0(\Omega)}.$$

ightharpoonup Poincaré inequality on convex domains $\Omega\subset\mathbb{R}^d$.

For all $v \in H^1(\Omega)$ with zero average

$$\int_{\Omega} v(x) \, dx = 0$$

it holds

$$\|v\|_{L^2(\Omega)} \leq \frac{\operatorname{diam}(\Omega)}{\pi} \|\nabla v\|_{L^2(\Omega)}.$$

The Lax-Milgram theorem

For a real Hilbert space V and a bilinear form $B: V \times V \to \mathbb{R}$

ightharpoonup that is continuous, i.e., there exists $\beta > 0$ so that

$$B(v, w) \le \beta \|v\|_V \|w\|_V$$
 for all $v, w \in V$,

ightharpoonup and coercive, i.e., there exists $\alpha>0$ so that

$$B(v, v) \ge \alpha ||v||_V^2$$
 for all $v \in V$.

Then for any <u>linear</u> and <u>continuous</u> functional $F:V\to\mathbb{R}$ there exists exactly one $u\in V$ such that

$$B(u, v) = F(v)$$
 for all $v \in V$.

Recall the general elliptic setting

- $ightharpoonup \Omega \subset \mathbb{R}^d$ be a bounded domain
- ▶ source term: $f \in L^2(\Omega)$,

Let

▶ elliptic diffusion coefficient: $\mathbf{k} \in L^{\infty}(\Omega, \mathbb{R}^{d \times d})$, $\mathbf{k}(x)\boldsymbol{\xi} \cdot \boldsymbol{\xi} > \mathbf{k}_0 |\boldsymbol{\xi}|^2$ for all $\boldsymbol{\xi} \in \mathbb{R}^d$

Weak formulation of the elliptic problem:

Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \mathbf{k} \nabla u \cdot \nabla v = \int_{\Omega} \mathbf{f} \, v \qquad \text{for all } v \in H^1_{\mathbf{0}}(\Omega).$$

Goal: Apply Lax-Milgram to show existence of *u*.

For the Hilbert space $H_0^1(\Omega)$ with H^1 -scalar product

$$(v,w)_{H^1(\Omega)}=(v,w)_{L^2(\Omega)}+(\nabla v,\nabla w)_{L^2(\Omega)},$$

we define the bilinear form

$$B(v, w) := \int_{\Omega} k \nabla v \cdot \nabla w.$$

- ► Linearity: obvious.
- ► Continuity: with L²-Cauchy-Schwarz inequality

$$B(v,w) = \int_{\Omega} k \nabla v \cdot \nabla w \le \|k\|_{L^{\infty}(\Omega)} (\nabla v, \nabla w)_{L^{2}(\Omega)}$$

$$\stackrel{\text{CS}}{\le} \|k\|_{L^{\infty}(\Omega)} \|\nabla v\|_{L^{2}(\Omega)} \|\nabla w\|_{L^{2}(\Omega)}$$

$$\stackrel{\text{CS}}{\le} \|v\|_{H^{1}(\Omega)} \|w\|_{H^{1}(\Omega)} \quad \text{with } \beta := \|k\|_{L^{\infty}(\Omega)}$$

For the Hilbert space $H_0^1(\Omega)$ with H^1 -scalar product

$$(v,w)_{H^1(\Omega)}=(v,w)_{L^2(\Omega)}+(\nabla v,\nabla w)_{L^2(\Omega)},$$

we define the bilinear form $B(v, w) := \int_{\Omega} k \nabla v \cdot \nabla w$.

Coercivity: with Poincaré-Friedrichs inequality:

$$\begin{split} B(v,v) &= \int_{\Omega} \mathbf{k} \nabla v \cdot \nabla v \geq \mathbf{k}_0 \int_{\Omega} |\nabla v|^2 \\ &= \frac{\mathbf{k}_0}{2} \int_{\Omega} |\nabla v|^2 + \frac{\mathbf{k}_0}{2} \int_{\Omega} |\nabla v|^2 \\ &\geq \frac{\mathbf{k}_0}{2} \int_{\Omega} |\nabla v|^2 + \frac{\mathbf{k}_0}{\operatorname{diam}(\Omega)^2} \int_{\Omega} |v|^2 \\ &\geq \frac{\alpha}{2} \|v\|_{H^1(\Omega)}^2, \qquad \text{for } \alpha := \mathbf{k}_0 \min\{2^{-1}, \operatorname{diam}(\Omega)^{-2}\}. \end{split}$$

where we used $\mathbf{k}(x)\boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \mathbf{k}_0 |\boldsymbol{\xi}|^2$ for all $\boldsymbol{\xi} \in \mathbb{R}^d \setminus \{0\}$.

For the Hilbert space $H_0^1(\Omega)$ with H^1 -scalar product

$$(v,w)_{H^1(\Omega)}=(v,w)_{L^2(\Omega)}+(\nabla v,\nabla w)_{L^2(\Omega)},$$

we define the bilinear form

$$B(v, w) := \int_{\Omega} \mathbf{k} \nabla v \cdot \nabla w.$$

We summarize the properties:

- ► Linearity.
- Continuity: $B(v, w) \leq \beta \|v\|_{H^1(\Omega)} \|w\|_{H^1(\Omega)}$
- Coercivity: $B(v, v) \ge \alpha ||v||_{H^1(\Omega)}^2$.

Hence: B(v, w) fulfills the assumptions of the Lax-Milgram theorem.

For the Hilbert space $H_0^1(\Omega)$ with H^1 -scalar product

$$(v,w)_{H^1(\Omega)}=(v,w)_{L^2(\Omega)}+(\nabla v,\nabla w)_{L^2(\Omega)},$$

we define linear functional

$$F(v) := \int_{\Omega} f v.$$

- Linearity: obvious.
- ► Continuity: with L²-Cauchy-Schwarz inequality

$$F(v) := \int_{\Omega} f v \leq \|f\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)} \leq \|f\|_{L^{2}(\Omega)} \|v\|_{H^{1}(\Omega)}.$$

Reminder: a linear functional $F: V \to \mathbb{R}$ is continuous if $F(v) \le C \|v\|_V$ for some constant C > 0 and all $v \in V$.

We seek $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} k \nabla u \cdot \nabla v = \int_{\Omega} f v \quad \text{for all } v \in H_0^1(\Omega).$$

We have just shown: If we define $V = H_0^1(\Omega)$;

$$B(u,v) := \int_{\Omega} \mathbf{k} \nabla u \cdot \nabla v$$
 and $F(v) := \int_{\Omega} \mathbf{f} v$,

then $B(\cdot, \cdot)$ is a continuous and coercive bilinear form and $F(\cdot)$ is a continuous, linear functional.

Hence, the Lax-Milgram theorem implies that there is unique solution $u \in H_0^1(\Omega)$ with

$$B(u, v) = F(v)$$
 for all $v \in H_0^1(\Omega)$.

Elliptic problems with Neumann boundary

In the case of Neumann boundary conditions we saw that the weak formulation reads:

Find $u \in H^1(\Omega)$ with

$$(k\nabla u, \nabla v)_{L^{2}(\Omega)} + (u, v)_{L^{2}(\Omega)}$$

= $(f, v)_{L^{2}(\Omega)} + (g_{N}, v)_{L^{2}(\partial\Omega)}$

for all $v \in H^1(\Omega)$.

Existence and uniqueness follow analogously as before with the Lax-Milgram theorem. The only nontrivial issue is to show that

$$F(v):=(f,v)_{L^2(\Omega)}+(g_N,v)_{L^2(\partial\Omega)}$$
 is continuous on $H^1(\Omega)$

Elliptic problems with Neumann boundary

Find $u \in H^1(\Omega)$ with

$$(k\nabla u, \nabla v)_{L^{2}(\Omega)} + (u, v)_{L^{2}(\Omega)}$$

= $(f, v)_{L^{2}(\Omega)} + (g_{N}, v)_{L^{2}(\partial\Omega)}$

for all $v \in H^1(\Omega)$.

To apply Lax-Milgram, we need to show the continuity:

$$(g_N, v)_{L^2(\partial\Omega)} \le C \|v\|_{H^1(\Omega)}$$
 for all $v \in H^1(\Omega)$.

This is guaranteed by the trace theorem.

Trace theorem

Let $\Omega \subset \mathbb{R}^d$ be bounded and convex. Then there exists a constant $C_{tr} > 0$ such that

$$\|v\|_{L^2(\partial\Omega)} \le C_{\operatorname{tr}} \|v\|_{H^1(\Omega)}$$
 for all $v \in H^1(\Omega)$.

This means that boundary information can be estimated against the H^1 -norm of the function.

In the case of Neumann boundary conditions we have with Cauchy-Schwarz:

$$\begin{split} |(g_N,v)_{L^2(\partial\Omega)}| &\leq \|g_N\|_{L^2(\partial\Omega)}\|v\|_{L^2(\partial\Omega)} \leq \underbrace{\|g_N\|_{L^2(\partial\Omega)}\,C_{tr}}_{=:\mathcal{C}} \ \|v\|_{H^1(\Omega)}, \end{split}$$
 where

$$C = \|g_N\|_{L^2(\partial\Omega)} C_{\mathsf{tr}} > 0$$

is a constant that does not depend on v.

Part 4 - Abstract elliptic problems

4.2. Galerkin approximations and abstract error estimates

Abstract setting

In the following, we consider the elliptic problem in an abstract setting covered by Lax-Milgram:

For a continuous and coercive bilinear form $B(\cdot, \cdot)$ and a continuous, linear functional F, we seek $u \in V$ with

$$B(u, v) = F(v)$$
 for all $v \in V$.

Galerkin methods

Find $u \in V$ such that

$$B(u, v) = F(v)$$
 for all $v \in V$.

Numerical approximation?

Idea of Galerkin methods: Replace infinite dim space V (e.g. $V = H_0^1(\Omega)$) by finite dim subspace $V_h \subset V$.

Find $u_h \in V_h$ such that

$$B(u_h, v_h) = F(v_h)$$
 for all $v_h \in V_h$.

Note: exactly what we did for the finite element method!

Galerkin methods

Find $\mu \in V$ such that

$$B(u, v) = F(v)$$
 for all $v \in V$.

Find $u_h \in V_h$ such that

$$B(u_h, v_h) = F(v_h)$$
 for all $v_h \in V_h$.

How big is the error $e_h = u - u_h$?

Since $V_h \subset V$, we have

$$B(u, v_h) = F(v_h)$$
 for all $v_h \in V_h$,
 $B(u_h, v_h) = F(v_h)$ for all $v_h \in V_h$.

Subtracting both equations gives Galerkin orthogonality:

$$B(u-u_h,v_h)=0$$
 for all $v_h\in V_h$.

Why do we call the following statement Galerkin orthogonality?

$$B(u-u_h,v_h)=0$$
 for all $v_h\in V_h$.

Assume that $B(\cdot, \cdot)$ is symmetric (i.e., B(v, w) = B(w, v)), then

it is a symmetric and positive definite (=coercive) bilinear form,

or in other words, $B(\cdot, \cdot)$ is scalar product in V.

Why do we call the following statement Galerkin orthogonality?

$$B(u-u_h,v_h)=0$$
 for all $v_h\in V_h$.

If $B(\cdot, \cdot)$ is a scalar product in V, then we can interpret the statement geometrically as:

the error $u-u_h$ is $B(\cdot,\cdot)$ -orthogonal on V_h .

Reminder: orthogonal projection

For a Hilbert space $(V, (\cdot, \cdot)_V)$ with subspace $V_h \subset V$, the orthogonal projection onto V_h is $P_h: V \to V_h$.

This means: for $u \in V$, the projection $P_h(u) \in V_h$ fulfills

$$(P_h(u), v_h)_V = (u, v_h)_V$$
 for all $v_h \in V_h$.

In other words, the $P_h(u) - u$ is orthogonal on V_h :

$$(P_h(u)-u,v_h)_V=0$$
 for all $v_h\in V_h$.

(1)

We can see, that $P_h(u)$ is the function in V_h that has the smallest distance to u, because:

$$||u - P_h(u)||_V^2 = (u - P_h(u), u - P_h(u))_V \stackrel{\text{(1)}}{=} (u - P_h(u), u)_V$$

$$\stackrel{\text{(1)}}{=} (u - P_h(u), u - v_h)_V \stackrel{\text{CS}}{\leq} ||u - P_h(u)||_V ||u - v_h||_V.$$

Hence:

$$||u - P_h(u)||_V \le ||u - v_h||_V$$
 for all $v_h \in V_h$.

Galerkin orthogonality (for error $e_h = u - u_h$):

$$B(u - u_h, V_h) = B(e_h, V_h) = 0.$$

Geometric interpretation: if $B(\cdot, \cdot)$ is symmetric, then

- \triangleright error e_h is $B(\cdot, \cdot)$ -orthogonal to the subspace V_h ;
- ▶ u_h is $B(\cdot, \cdot)$ -orthogonal projection of u onto V_h ;
- ► Hence:

 (u_h) is the $B(\cdot,\cdot)$ -best approximation of u in V_h :

$$|||u - u_h||| = \inf_{v_h \in V_h} |||u - v_h|||,$$

where $|||\cdot||| := \sqrt{B(\cdot,\cdot)}$ is the energy norm.

Céa's lemma

Galerkin orthogonality (for error $e_h = u - u_h$):

$$B(e_h, V_h) = 0.$$

Estimate for the non-symmetric case?

$$\alpha \|e_h\|_{H^1(\Omega)}^2 \leq B(e_h, e_h) = B(e_h, \mathbf{u} - \mathbf{u}_h)$$

$$\overset{\mathsf{G.O.}}{=} B(e_h, u - v_h) \leq \beta \|e_h\|_{H^1(\Omega)} \|u - v_h\|_{H^1(\Omega)}.$$

Consequently (dividing by $\|e_h\|_{H^1(\Omega)}$):

$$||u - u_h||_{H^1(\Omega)} \le \frac{\beta}{\alpha} \inf_{v_h \in V_h} ||u - v_h||_{H^1(\Omega)},$$

i.e. u_h is a H^1 -quasi best approximation of u in V_h .

Summary: Galerkin methods and Céa's lemma

Find $u \in V$ such that

$$B(u, v) = F(v)$$
 for all $v \in V$.

Find $u_h \in V_h$ such that

$$B(u_h, v_h) = F(v_h)$$
 for all $v_h \in V_h$.

The error is quasi-optimal in the H^1 -norm, i.e.,

$$\|u-u_h\|_{H^1(\Omega)} \leq \frac{\beta}{\alpha} \inf_{v_h \in V_h} \|u-v_h\|_{H^1(\Omega)}.$$

Can we use this to derive convergence rates?

Part 4 - Abstract elliptic problems

4.3. H^1 -a priori error estimates for the Finite Element Method

Reminder: P1-finite element space

Let \mathcal{T}_h be a non-overlapping, simplicial partition of the convex polygonal domain $\Omega \subset \mathbb{R}^d$ that is also shape regular and quasi-uniform (and without hanging nodes).

On \mathcal{T}_h the P1 finite element space is

$$V_{h,\mathbf{0}} := \{ v \in C^0(\Omega) \cap H^1_{\mathbf{0}}(\Omega) | \\ orall K \in \mathcal{T}_h : v_{|K} \text{ is polynomial of degree } 1 \}.$$

The FE space $V_{h,0}$ is spanned by the nodal basis, i.e.,

$$V_{h,\mathbf{0}} = \operatorname{span}\{\phi_z | z \in \mathcal{N}_{h,\mathbf{0}}\}.$$

Galerkin method (summary)

Find $u \in H_0^1(\Omega)$ such that

$$B(u,v) = F(v)$$
 for all $v \in H_0^1(\Omega)$.

Galerkin approximation in $V_{h,0} \subset H_0^1(\Omega)$:

Find $u_h \in V_{h,0}$ such that

$$B(u_h, v_h) = F(v_h)$$
 for all $v_h \in V_{h,0}$.

Abstract error estimate:

$$||u-u_h||_{H^1(\Omega)} \leq \frac{\beta}{\alpha} \inf_{v_h \in V_{h,0}} ||u-v_h||_{H^1(\Omega)} = ?.$$

 $(H^1$ -quasi-best approximation)

Quasi-interpolation estimates - Part 1

The Clément quasi-interpolation operator

$$I_h: H_0^1(\Omega) \to V_{h,0}$$

is given by

$$I_h(v) := \sum_{z \in \mathcal{N}_h, 0} \frac{(v, \phi_z)_{L^2(\Omega)}}{(1, \phi_z)_{L^2(\Omega)}} \phi_z$$

and fulfills the estimates for all $v \in H_0^1(\Omega)$

$$||I_h(v) - v||_{L^2(\Omega)} \le Ch||v||_{H^1(\Omega)}$$

and

$$||I_h(v)||_{H^1(\Omega)} \le C||v||_{H^1(\Omega)}.$$

Quasi-interpolation estimates - Part 2

The Clément quasi-interpolation $I_h: H_0^1(\Omega) \to V_{h,0}$ with

$$I_h(v) := \sum_{z \in \mathcal{N}_{h,0}} \frac{(v,\phi_z)_{L^2(\Omega)}}{(1,\phi_z)_{L^2(\Omega)}} \phi_z$$

fulfills the estimates for all $v \in H_0^1(\Omega) \cap H^2(\Omega)$:

$$\|I_h(v) - v\|_{L^2(\Omega)} \le Ch^2 \|v\|_{H^2(\Omega)}$$

and

$$||I_h(v) - v||_{H^1(\Omega)} \le Ch||v||_{H^2(\Omega)}.$$

Here, $H^2(\Omega)$ is the space of two-times weakly differentiable functions with

$$H^2(\Omega):=\{v|\sum_{i+i<2}\|\partial_{x_ix_j}v\|_{L^2(\Omega)}<\infty\}.$$

A priori error estimate - $H^2(\Omega)$ case

Conclusion:

Let $V_{h,0}$ be the P1-FEM space, then we have the error estimate

$$\|u-u_h\|_{H^1(\Omega)} \leq \frac{\beta}{\alpha} \inf_{v_h \in V_{h,0}} \|u-v_h\|_{H^1(\Omega)} \leq \frac{\beta}{\alpha} \|u-I_h(u)\|_{H^1(\Omega)}.$$

If $u \in H_0^1(\Omega) \cap H^2(\Omega)$ we have

$$||u - I_h(u)||_{H^1(\Omega)} \le C h ||u||_{H^2(\Omega)}$$

and hence (by combining the estimates)

$$||u - u_h||_{H^1(\Omega)} \le C h ||u||_{H^2(\Omega)},$$

i.e., P1-FEM converges with linear order in the $H^1(\Omega)$ -norm.

A priori error estimate - $H^1(\Omega)$ case

Conclusion:

Let $V_{h,0}$ be the P1-FEM space, then we have the error estimate

$$\|u-u_h\|_{H^1(\Omega)} \leq \frac{\beta}{\alpha} \inf_{v_h \in V_{h,0}} \|u-v_h\|_{H^1(\Omega)}.$$

If only $u \in H_0^1(\Omega)$ we have by density arguments

$$\lim_{h\to 0} \|u - u_h\|_{H^1(\Omega)} \leq \frac{\beta}{\alpha} \lim_{h\to 0} \inf_{v_h \in V_{h,0}} \|u - v_h\|_{H^1(\Omega)} = 0.$$

This means, even if the exact solution u is only in $H^1(\Omega)$, the FEM is still guaranteed to converge.

A priori error estimate

For $u \in H_0^1(\Omega) \cap H^2(\Omega)$ we have

$$\|u-u_h\|_{H^1(\Omega)} \leq C h \|u\|_{H^2(\Omega)},$$

and if only $u \in H_0^1(\Omega)$ we have

$$\lim_{h\to 0} \|u - u_h\|_{H^1(\Omega)} = 0.$$

In fact, depending on the regularity of u the convergence rate can be anything between arbitrarily slow and full linear order.

Typically the geometry of Ω (e.g., not convex and small corners) and a jumping coefficient k have the biggest impact on a bad regularity. This is not uncommon.

When can we guarantee that $H_0^1(\Omega) \cap H^2(\Omega)$?

Let $\Omega \subset \mathbb{R}^d$ be a bounded <u>convex</u> domain; $f \in L^2(\Omega)$ a source term and $\mathbf{k} \in L^{\infty}(\Omega, \mathbb{R}^{d \times d})$ an elliptic diffusion coefficient that is also <u>Lipschitz continuous</u>.

Then there is exists unique solution $u \in H_0^1(\Omega) \cap H^2(\Omega)$ to

$$\int_{\Omega} \mathbf{k} \nabla u \cdot \nabla v = \int_{\Omega} \mathbf{f} v \quad \text{for all } v \in H_0^1(\Omega).$$

Furthermore, there is constant C>0 that depends on Ω and k, such that

$$\|u\|_{H^2(\Omega)} \leq C \|f\|_{L^2(\Omega)}.$$

Summary: a priori error estimate

Let $\Omega \subset \mathbb{R}^d$ be a bounded <u>convex</u> domain; $f \in L^2(\Omega)$ a source term and $\mathbf{k} \in L^\infty(\Omega, \mathbb{R}^{d \times d})$ an elliptic diffusion coefficient that is also <u>Lipschitz continuous</u>.

Then we have optimal linear convergence for the H^1 -error:

$$\|u-u_h\|_{H^1(\Omega)} \leq C \frac{h}{\|u\|_{H^2(\Omega)}} \leq C \frac{h}{\|f\|_{L^2(\Omega)}}.$$

Part 4 - Abstract elliptic problems

4.4. L²-a priori error estimates for the Finite Element Method

Aubin-Nitsche lemma

 L^2 -error estimates - why is there an issue?

Céa lemma (H^1 -quasi optimality):

$$\|u-u_h\|_{H^1(\Omega)} \leq C \inf_{v_h \in V_h} \|u-v_h\|_{H^1(\Omega)}.$$

But, it does not hold

$$\|u-u_h\|_{L^2(\Omega)} \leq C \inf_{v_h \in V_h} \|u-v_h\|_{L^2(\Omega)}.$$

So we cannot derive L^2 -error estimates the same way as in the H^1 -case.

We consider the elliptic problem with solution $u \in H_0^1(\Omega)$ and Galerkin approximation $u_h \in V_h$:

$$B(u, v) = F(v)$$
 for all $v \in H_0^1(\Omega)$, $B(u_h, v_h) = F(v_h)$ for all $v_h \in V_h$.

With the error $e_h := u - u_h$, we consider a dual auxiliary problem: find $\psi \in H_0^1(\Omega)$ with

$$B(v, \psi) = (v, e_h)_{L^2(\Omega)}$$
 for all $v \in H_0^1(\Omega)$.

Selecting $v = e_h$ gives us:

$$||e_h||_{L^2(\Omega)}^2 = B(e_h, \psi).$$

We just saw:

$$\|e_h\|_{L^2(\Omega)}^2 = B(e_h, \psi).$$
 (1)

Recall Galerkin orthogonality:

$$B(e_h, v_h) = 0$$
 for all $v_h \in V_h$.

Selecting $v_h = I_h(\psi)$ for the Clément interpolation $I_h: H_0^1(\Omega) \to V_{h,0}$ yields

$$B(e_h, I_h(\psi)) = 0.$$

Subtracting this from (1) gives:

$$\|e_h\|_{L^2(\Omega)}^2 = B(e_h, \psi - I_h(\psi)) \le \beta \|e_h\|_{H^1(\Omega)} \|\psi - I_h(\psi)\|_{H^1(\Omega)}.$$

We just saw:

$$\|e_h\|_{L^2(\Omega)}^2 \leq C \|e_h\|_{H^1(\Omega)} \|\psi - I_h(\psi)\|_{H^1(\Omega)}.$$

We already know

$$\|e_h\|_{H^1(\Omega)} \leq Ch \|f\|_{L^2(\Omega)}$$

and we know the Clément interpolation estimate

$$\|\psi - I_h(\psi)\|_{H^1(\Omega)} \leq Ch \|\psi\|_{H^2(\Omega)}.$$

We conclude

$$\|e_h\|_{L^2(\Omega)}^2 \leq C h^2 \|f\|_{L^2(\Omega)} \|\psi\|_{H^2(\Omega)}.$$

We just saw:

$$\|e_h\|_{L^2(\Omega)}^2 \leq C h^2 \|f\|_{L^2(\Omega)} \|\psi\|_{H^2(\Omega)}.$$

Recalling that $\psi \in H_0^1(\Omega)$ solves

$$B(v, \psi) = (v, e_h)_{L^2(\Omega)}$$
 for all $v \in H_0^1(\Omega)$.

and the regularity result that $\psi \in H^1_0(\Omega) \cap H^2(\Omega)$ with

$$\|\psi\|_{H^2(\Omega)}\leq C\|e_h\|_{L^2(\Omega)},$$

we conclude

$$\|e_h\|_{L^2(\Omega)}^2 \leq Ch^2\|f\|_{L^2(\Omega)}\|e_h\|_{L^2(\Omega)}.$$

L^2 -a priori error estimate

We summarize: the L^2 -error can be estimated as

$$||u-u_h||_{L^2(\Omega)} \leq Ch^2||f||_{L^2(\Omega)}.$$

This means, the P1 finite element method shows a second order convergence in the L^2 -norm.

Note: this result requires again sufficient regularity, which is for example fulfilled if Ω is convex and k Lipschitz-continuous.