

Internet of Things

Senior Design Project Course

IP Communication

Lecturer: Avesta Sasan

University of California Davis

Lets Get Started:

Focus of Today's Lecture: (Review)

Image source: http://www.cchc.cl/informacion-a-la-comunidad/industria-de-la-construccion/personaje/

Why Using Gateway? (Review)

Lowering Power

Sensor send data to a gateway in short range, gate way send the data to cloud.

2. Supporting varying to/from sensor communication protocols

Each sensor may have a different protocol. Gateway translate it to IP

Filtering the data

Usually small fraction of data is usable. Filtering could be done at gateways.

4. Reducing latency

 Many IoT devices too small to do the processing themseleves, and it take too long to wait for cloud. Gateway remedy this.

5. Improving security

- Can afford to make data transmission through gateway more secure.
- Prevent too many lightly secured sensors to be connected to internet.

Gateway & Protocol Translation (Review)

- IoT devices can connect to Internet using Internet Protocol (IP) stack.
 - Problem:
 - IP stack is very complex.
 - Demands a large power and memory from the connecting devices.
- Gateway removes the need for direct connection to internet.
 - IoT devices can also connect locally through non-IP networks
 - Consume less power and offer larger mobility, and connect to the Internet via a smart gateway.

Internet Protocol

- Internet Protocol (IP) widely used to send/receive data over Internet.
- There are courses that are entirely dedicated to TCP/IP communication
- In this lecture, we are going to just briefly review this technology

Internet

- Definition: A set of interconnected networks
- Underlying networks can be completely different
- (TCP/)IP is what links them

Internet

- Internet is a distributed system (no central control)
- Billions of connected devices
- Host: end systems that run network applications (protocols)
- Communication links
 - Fiber, copper, radio, satellite
 - Bandwidth matters the most. Delay, jitter etc. are also important
- IP is the glue that connects all these devices
- Analogous to sending mail using the postal service

Routers:

- Routers: devices on multiple networks that pass traffic between them
 - Individual networks pass traffic from one router or endpoint to another
 - TCP/IP hides the details as much as possible

Protocol Layering

- Networks are complex! Too many pieces
 - Hosts, Routers
 - Links of various media
 - Applications
 - Protocols
 - Hardware, software
- Layers Implement service abstractions
 - Each relying on services provided by layer below

Protocol Layering Example

- Layers Implement service abstractions
 - Each relying on services provided by layer below

TCP/IP Network Model

A layered Protocol:

- Layer 1 : Link : includes device driver and network interface card
- Layer 2 : Network : handles the movement of packets, e.g., Routing
- Layer 3: Transport: provides a reliable flow of data between two hosts
- Layer 4: Application: handles the details of the particular application

Packet Encapsulation

- The data is sent down the protocol stack
- Each layers adds to the data the required header

Packet Encapsulation

Encapsulation and De-capsulation of data during a transfer!

Link Layer (header and trailer information)

- When a datagram is sent across a physical network, the receiver on the other side, removes the header from the encapsulating frame and *discards* it.
- If the IP datagram is forwarded along further, the router places (only) the IP datagram into a new frame suitable to the next network it must cross.

Internet Protocol

- Responsible for end to end transmission
- Sends data in individual packets
- Maximum size of packet is determined by the networks
 - Fragmented if too large
- Unreliable
 - Packets might be lost, corrupted, duplicated, delivered out of order

Currently internet widely uses IPv4

4 bytes for address

e.g. 163.1.125.98

163	1	125	98

- Each device normally gets one (or more)
- In theory there are about **4 billion (2**³²) addresses available
- But the number of devices in IoT is much larger.
 - That is why IPv6 is being introduced. (128 bit addressing scheme).
 - How many unique addressed we could generate using IPv6

232 Devices could be

addressed

Routing

- How does a device know where to send a packet?
 - All devices need to know what IP addresses are on directly attached networks
- If the destination is on a local network
 - send it directly there

- If the destination address isn't local
 - Most non-router devices just send everything to a single local router
 - Routers need to know which network corresponds to each possible IP address

IP Routing

IP is the highest layer protocol which is implemented routers.

Who Allocates The IP addresses?

 IP address allocation is controlled centrally by ICANN (Internet Corporation for Assigned Names and Numbers)

- Fairly strict rules on further delegation to avoid wastage
 - Have to demonstrate actual need for them
 - https://en.wikipedia.org/wiki/ICANN

Organizations that got in early have bigger allocations than they really need

IP Datagram

The structure of IP datagram is as following:

UDP (User Datagram Protocol)

- A thin layer on top of IP
- Adds packet length + checksum
 - Guard against corrupted packets
- Also source and destination ports
 - Ports are used to associate a packet with a specific application at each end
- Still unreliable:
 - Duplication, loss, out-of-order receiving of packets are possible

0 1	6 31	
Source Port	Destination Port	
Length	Checksum	
Application data		

<u>Field</u>	<u>Purpose</u>
Source Port	16-bit port number identifying originating application
Destination Port	16-bit port number identifying destination application
Length	Length of UDP datagram (UDP header + data)
Checksum	Checksum of IP pseudo header, UDP header, and data

TCP (Transmission Control Protocol)

- Reliable alternative of UDP with more overhead
- A tick (in oppose to thin in UDP) layer on top of IP
- Reliable, connection-oriented, stream delivery
 - Data is guaranteed to arrive, and in the correct order without duplications
 - Or the connection will be dropped
- Imposes significant overheads

TCP Implementation

- Connections are established using a three-way handshake
 - Click here to learn how three-way handshake works?
- Data is divided up into packets by the operating system
- Packets are numbered, and received packets are acknowledged
- Connections are explicitly closed
 - (or may abnormally terminate)

TCP Header (just for your information!)

Compared to UDP, TCP protocol need a larger header size!

Field	<u>Purpose</u>
Source Port	Identifies originating application
Destination Port	Identifies destination application
Sequence Number	Sequence number of first octet in the segment
Acknowledgment #	Sequence number of the next expected octet (if ACK flag set)
Len	Length of TCP header in 4 octet units
Flags	TCP flags: SYN, FIN, RST, PSH, ACK, URG
Window	Number of octets from ACK that sender will accept
Checksum	Checksum of IP pseudo-header + TCP header + data
Urgent Pointer	Pointer to end of "urgent data"
Options	Special TCP options such as MSS and Window Scale

TCP Data Transfer

- No packet loss in TCP!
 - If acknowledge is not received (within specified time), re-transmit again!

Lets Summarize:

Network Security

- Network security is the study of
 - How bad guys can attack networks
 - How to **defend** against such attacks
 - How to **design** systems that are immune to attacks
- Internet was **not** designed with security in mind
 - The protocols and system works best under mutual trust
 - Security is embedded in every layer

The End. End.