

TEAM

Marwa HAJ AYED

Armand Bryan FOZAMEENDEZOUMOU

Abdessalem DRINE

Eya BEN JEMAA

TABLE OF CONTENTS

- 1. INTRODUCTION
- 2.PROBLEM
- 3. STUDY OF THE EXISTING
- 4. SOLUTION
- 5. CRISP DM METHODOLOGY
- 6. IMPROVEMENT OF OUR SOLUTION
- 7.CONCLUSION
- 8. REFERENCE

INTRODUCTION

Traffic Forecasting in 5G Network using LSTM

PROBLEM

Accurately predicting 5G traffic to optimize resource allocation and enhance network performance.

STUDY OF THE EXISTING

Traffic Prediction in 5G Networks Using LSTM Neural Networks

THIS STUDY EXPLORES THE USE OF LSTM NEURAL NETWORKS FOR PRECISE TRAFFIC PREDICTION IN 5G NETWORKS. BY CAPTURING COMPLEX TRAFFIC PATTERNS, LSTM MODELS OPTIMIZE RESOURCE ALLOCATION EFFECTIVELY. WITH REAL TRAFFIC DATA, THE STUDY DEMONSTRATES THE POTENTIAL OF LSTM IN ENHANCING TRAFFIC PREDICTION ACCURACY AND IMPROVING OVERALL NETWORK PERFORMANCE IN 5G ENVIRONMENTS.

A Comparative Study of Traffic Prediction Models in 5G Networks

THIS COMPARATIVE STUDY FINDS THAT LSTM, AN RNN-BASED MODEL, OUTPERFORMS OTHER METHODS IN ACCURATELY PREDICTING TRAFFIC IN 5G NETWORKS. THESE RESULTS HIGHLIGHT THE IMPORTANCE OF ADVANCED MODELS FOR OPTIMIZING RESOURCE MANAGEMENT AND IMPROVING TRAFFIC PREDICTION IN 5G NETWORKS.

SOLUTION

Using deep learning algorithms for traffic prediction in 5G networks.

CRISP-DM METHOD

CRISP-DM METHODOLOGY

DATA EXPLORATION

	gridID	startTime	smsIn	sms0ut	callIn	call0ut	internet
0	1	2013-11-01	78.709755	45.886570	41.108567	48.245378	1507.048349
1	1	2013-11-02	86.415810	43.875946	47.891016	53.590637	1515.641856
2	1	2013-11-03	77.728292	45.446780	36.145436	40.906425	1533.148425
3	1	2013-11-04	104.793806	54.821018	67.898464	70.399418	1404.813593
4	1	2013-11-05	97.425105	46.607029	68.735213	70.766221	1518.090111
619928	10000	2013-12-28	177.422546	71.416895	108.930903	131.882476	2373.501572
619929	10000	2013-12-29	130.030895	56.847904	83.989946	98.134224	2452.266242
619930	10000	2013-12-30	178.314106	71.122147	143.387445	158.163057	2198.423026
619931	10000	2013-12-31	259.851232	141.173667	137.291843	159.614859	2256.632144
619932	10000	2014-01-01	254.696088	152.534149	106.231598	126.834037	2196.453302

619933 rows x 7 columns

DATA PREPARATION

#print sample of new data
dailyGridActivity.sample(4)

		internet	count	sms	call	weekdayFlag	holiday	part_of_day
gridID	startTime							
2084	2013-12-31	2533.845203	3147.465982	326.146930	287.473849	1	0	0
5993	2013-11-02	1455.324340	1826.317115	206.707502	164.285273	5	1	0
3909	2013-11-16	1663.609311	1880.796160	105.002754	112.184094	5	0	0
7770	2013-12-09	25880.407751	30766.389733	2665.301925	2220.680056	0	0	0

DESCRIBE METHOD

dailyGridActivity.describe().T

	count	mean	std	min	25%	50%	75%	max
internet	619933.0	8957.248908	15376.536548	0.000000	1782.880566	4254.068418	9188.972982	331244.215800
count	619933.0	10894.746262	18578.251208	0.300023	2197.856144	5254.453316	11159.280239	401991.571896
sms	619933.0	1008.488025	1777.567264	0.000000	183.464545	466.154523	1032.067081	37442.964641
call	619933.0	929.009329	1610.637689	0.000000	170.363478	436.875254	978.965350	36542.184142
weekdayFlag	619933.0	3.000002	2.016063	0.000000	1.000000	3.000000	5.000000	6.000000
part_of_day	619933.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

DISTRIBUTION OF THE DATA

MODELING

LSTM

GRU

CONVID

0000

LSTM ARCHITECTURE

CONVID LSTM ARCHITECTURE

```
[ ] model2.summary()
```

Model: "sequential_3"

Layer (type)	Output Shape	Param #
conv1d_1 (Conv1D)	(None, 9, 256)	6400
<pre>max_pooling1d_1 (MaxPooling 1D)</pre>	(None, 4, 256)	0
lstm_2 (LSTM)	(None, 128)	197120
flatten_1 (Flatten)	(None, 128)	0
dense_4 (Dense)	(None, 192)	24768
dense_5 (Dense)	(None, 1)	193

Total params: 228,481

Trainable params: 228,481 Non-trainable params: 0

CONVID LSTM RESULT

```
history_cnn1d = model2.fit(trainx_tensor,trainy_tensor, epochs=5, batch_size=100, validation_split=0.1, verbose=1, callbacks=[tensorboard_callback])
Epoch 1/5
Epoch 2/5
Epoch 3/5
Epoch 4/5
                  =======] - 168s 30ms/step - loss: 9.9746e-05 - mean_absolute_error: 0.0039 - val_loss: 1.3179e-05 - val_mean_absolute_error
5580/5580 [=========
Epoch 5/5
loss_cnnlstm = np.mean(history_cnnld.history['mean_absolute_error'])
val_loss_cnnlstm = np.mean(history_cnnld.history['val_mean_absolute_error'])
print(' The Loss of the Convld LSTM model training = {} \n The Loss on validation data with Convld LSTM model = {}'.format(loss_cnnlstm, val_loss_cnnlstm))
The Loss of the Convld LSTM model training = 0.0042401162907481195
The Loss on validation data with Conv1d LSTM model = 0.0024808562127873303
```


Then see all val loss of the 3 models.

Add text cell

```
[ ] val_data_model = {'LSTM': val_loss_lstm, 'GRU':val_loss_gru, 'Conv1DLSTM':val_loss_cnnlstm
```

pd.DataFrame(data=val_data_model, index=[0])

₽		LSTM	GRU	Conv1DLSTM	
	0	0.003274	0.002113	0.002481	

EVALUATION OF PREDICTED DATA AGAINST REAL DATA.

FINAL RESULT PREDICTED USING CONVID LSTM

```
Prediction of the next day (02-January-2014):

internet count sms call

array([[2702.53346836, 3280.03990818, 305.48719123, 298.13796269]])
```

DEPLOYMENT

IMPROVEMENT OF OUR SOLUTION

Enhancing our deep learning-based traffic prediction system for 5G networks and potentially incorporating fault detection algorithms for proactive identification of network failures.

CONCLUSION

In summary, our project highlights the effectiveness of LSTM, GRU and Conv1D LSTM models in accurately predicting traffic in 5G networks. These advanced algorithms offer improved accuracy and resource optimization capabilities, making them valuable tools for network planning and optimization.

REFERENCE

- Show the market analysis of your company's competitors
- https://ir.lib.uwo.ca/cgi/viewcontent.cgi?
 article=11545&context=etd
- https://www.hindawi.com/journals/cin/2022/3174530/
- https://www.researchgate.net/publication/369450347_A_co mparative_study_of_cellular_traffic_prediction_mechanisms

THANK YOU