

POWER CABLE

THIS IS THE PROPERTY OF Mr. Company

Head Office and Factory, Leaside (Toronto), Ontario

Montreal East Factory

POWER CABLE

HANDBOOK No. P.C. 40

PAPER INSULATED "COMPOUND-FILLED" TYPE
PAPER INSULATED "OIL-FILLED" TYPE
VARNISHED CAMBRIC INSULATED
RUBBER INSULATED
CONTROL CABLES
NON-METALLIC SHEATHED
STEEL WIRE ARMOURED
DOUBLE STEEL TAPE ARMOURED
ASBESTOS-VARNISHED CAMBRIC INSULATED
RUBBER INSULATED PORTABLE POWER CABLES

(ANADA WIRE TO CABLE COMPANY

Standard Underground Cable Co. of Canada, Limited

FACTORIES: LEASIDE, ONT.; MONTREAL, QUE.
Cable Address: Canwirco, Toronto

DISTRICT SALES OFFICES AND WAREHOUSES:

Montreal, Que., Ottawa, Ont., Toronto, Ont., Hamilton, Ont., Winnipeg, Man. Regina, Sask., Calgary, Alta., Vancouver, B.C.

INTRODUCTION

HIS catalogue has been compiled for the convenience of those specifying, purchasing, installing, or operating power cable, and contains data pertaining to all classes of cable up to and including high voltage Oil-Filled cable.

We believe that the information included in the tabulations, the descriptive and installation data, will be of particular value to the user, and that this catalogue is the most complete of its kind to date.

In its compilation, we have taken the fullest advantage of the guidance we have received from engineers representing most of the important users of power cable in this country, to whom we tender, herewith, our grateful acknowledgment.

In using the special "India-tint" suede paper, we are taking advantage of the recent research carried out on behalf of the American Institute of Electrical Engineers, which adopted this type of paper as ensuring a minimum in eye-strain and maximum legibility.

PAPER INSULATED POWER CABLES GENERAL

Paper insulated power cables have been in use since about 1890. The inherent suitability of this type of insulation for high voltage was such that a little more than a decade later three conductor cable was in operation at pressures as high as 25 kv. While operation at this voltage was entirely successful there was, for a long period of years, comparatively little demand for cable at ratings above 15 kv. because of practical limitations of generator voltage and the fact that the amounts of power required to be transmitted underground and the distances involved rarely justified the cost of transformation to higher voltages. Three conductor paper cable in the 15 kv. class was successfully produced on a large scale, and, while cable rated up to 25 kv. was practicable, development beyond the needs of the day did not proceed with rapidity.

In 1908 the first Sector Type conductor was developed, making it possible to produce multi-conductor cables of considerably larger conductor area without increasing the overall cable diameter.

The year 1920 may be thought of as marking the start of an advance which has enormously increased the voltage range of paper insulated power cables and has brought them to the present high standard of excellence.

It was in that year that General Cable Corporation, an associate of Canada Wire and Cable Co., produced cable for the first Type H installation in the world, an achievement culminating nearly seven years of intensive research and development. The success which crowned this pioneer work is evidenced by the fact that Type H Cable is now recognized as standard for multi-conductor cable operating above 15 kv.

Beginning in 1925, improvements in insulating paper resulted in manila paper, which had been generally used in this country, being rapidly replaced by wood pulp paper because of the greater uniformity and higher dielectric strength of the latter.

In 1926 the use of supercalendered paper was introduced because of its superior mechanical and electrical characteristics; and because it was possible by its use to grade the insulation so as to reduce its electrical stress near the conductor where it is highest.

Because of these properties, it is employed by Canada Wire & Cable Co. in all the extra high voltage insulated power cables.

EXTRA-HIGH VOLTAGE CABLES

Canada Wire & Cable Co. has manufactured all the 66 kv. cable in use in Canada, the first installation being the first of that voltage in the British Empire, and one of the pioneer installations in the world.

Always alert to maintain its leadership in the extra high voltage cable field, Canada Wire & Cable Co. by virtue of patent arrangements with Pirelli-General Cable Works Ltd., in Great Britain, and its close contact with General Cable Corporation, in the United States, is in a position to both manufacture and install Oil-Filled Cable Systems up to 230 kv. working pressure.

TYPES AND APPLICATIONS

The inherent properties of impregnated paper insulation include high electrical breakdown strength, and low dielectric loss. It is the only practical form of insulation for power cables of very high voltage. Moreover, because it is relatively inexpensive and can be operated with high conductor temperatures, it is the most economical insulation for an extensive range of applications in the low and intermediate voltage fields. Some of the principal types of impregnated paper insulated cables are briefly described in the following paragraphs.

COMPOUND-FILLED TYPE CABLES

Compound-filled type insulation is composed of layers of paper tapes applied helically over the conductor and impregnated with compounds principally consisting of mineral oil fractions sufficiently viscous to prevent "bleeding" when the cable is cut for splicing, and minimize "migration" in service.

Over the insulated and impregnated cables which may be single or multi-conductor, a tightly fitting lead sheath is extruded. Multi-conductor cables may be of the belted type wherein the conductors are insulated separately, cabled together with suitable filler material, and then covered with a layer of insulation or belt overall, after which they are impregnated and lead covered. Multi-conductor cables may also be Type H which consists of individually insulated conductors each covered with metallic shielding tape, cabled together with fillers, wrapped overall with metallic binder tape, then impregnated and lead covered.

Multi-conductor compound-filled belted cables have application at voltages up to 15 kv. The shielded, or Type H, multi-conductor compound-filled type cables are used for voltages up to 34.5 kv. Single conductor compound-filled cables are applicable to voltages as high as 69 kv. Compound-filled cables are used in underground ducts, and in aerial, submarine, or direct earth installations.

OIL-FILLED CABLES

(Pirelli Patents)

Oil-filled cables differ from compound-filled in several essential respects. An impregnating oil is used which is fluid at all operating temperatures and channels are provided for longitudinal oil flow. When the cable is heated by load and the oil expands, the oil flows lengthwise of the cable through the channel or channels into the joints and out into reservoirs. When the cable cools and the oil contracts, it is forced back into the cable by pressure on the reservoirs. Thus a positive pressure of moderate magnitude is kept on the oil at all times preventing the formation of voids in the insulation and permitting the use of greatly reduced insulation thicknesses.

Cable operating records covering the past several years indicate that a majority of service failures are attributable to damage to lead sheaths arising from a variety of causes. An important advantage of oil-filled cable is that service failures from these causes are practically eliminated because a positive and controlled internal oil pressure is main-

tained continuously within the sheath and, while some loss of oil will result in the event of sheath damage, the entrance of moisture is prevented and operation can continue until it is convenient to make repairs.

In single conductor oil-filled cables the oil channel is in the centre of the conductor. The conductor usually employed is composed of layers of strands laid concentrically over an open helical core wound from flat steel or copper strip and having an inside diameter which is sufficient to insure free flow of oil under all operating conditions. Radial oil flow takes place between the strands of the conductor and through the insulation.

Three conductor oil-filled cables are of the shielded, or Type H, design and have three oil channels formed by steel or copper springs, which lie in the spaces normally occupied by the filler material.

Single conductor oil-filled cable is in operation at voltages as high as 230 kv. Three conductor oil-filled cable is used for voltages up to 69 kv. being limited only by practical cable diameters. Oil-filled cables are installed in underground ducts, and are suitable also for aerial, submarine, or earth installation.

There is a wide range of voltages where both compoundfilled and oil-filled cables find application. The choice for a particular installation depends on a number of factors and can best be made after a thorough engineering and economic, study in which Canada Wire & Cable Co. engineers stand ready at all times to lend assistance.

CONDUCTORS

Conductors for paper insulated power cables are normally composed of untinned, soft annealed copper wires having, before stranding, physical characteristics complying with the requirements of the Canadian Engineering Standards Association Draft Specification for Paper Insulated Lead Covered Cables.

Conductor sizes No. 8 B. & S. and larger normally are stranded.

The following types of stranded conductors are used for paper insulated cables.

CONCENTRIC:

Regular concentric stranded cable is normally furnished for single conductor cables in all practicable sizes.

ANNULAR CONCENTRIC:

A concentric stranded conductor with a rope core, used in larger sizes of single conductor cables. For a given conductor area, the skin effect ratio is reduced, but at the expense of an increase in the overall diameter.

HOLLOW CORE:

A concentric stranded conductor built up over a core consisting of an open helical spring wound from flat steel or copper strip. It is used for single conductor oil-filled cable, the helical core providing the longitudinal channel for the flow of oil.

Conductors for oil-filled cables are available in two standard inside diameters, .500 and .690 inches, these being the inside diameters of the spring core.

SECTOR:

Similar to Concentric described above except that the conductor is formed into a 120° Sector shape for use in three conductor cables, 90° for four conductor cables, and 180° for two conductor cables.

Sector shaped conductors in multi-conductor cables result in a smaller overall diameter than the equivalent round conductor size, due to the reduction in interstice area, and in addition, our method of forming sector conductors imparts to multi-conductor cables the important advantage of unusually low alternating current resistance due to the practical elimination of proximity effect.

SEGMENTAL: TYPE "M"

A stranded conductor composed of three or four segments lightly insulated from each other by means of paper tapes.

By the subdivision of the conductor into segments, transposition of the individual strands is accomplished in such a way as greatly to reduce skin effect.

This highly efficient method of reducing skin effect with very slight increase in diameter makes available much larger conductor sizes than were formerly practicable, particularly where the available duct diameter is limited.

The design is protected by Canadian Patent No. 367,692, issued to Mr. H. Milliken of Montreal, the inventor, in 1937.

DIMENSIONS OF SECTOR SHAPED CONDUCTORS

Size B. & S.		SECT	OR DIMEN	sions—ii	NCHES	
or C.M.	180° (2 Co.	nductor) H	120° (3 Co	onductor)	90° (4 Co	onductor) H
8	.219	.103	. 250	.151		<u> </u>
8 6 4 2 1	.348 .438 .492	.164 .206 .232	.315 .398 .447	.190 .239 .269		.262
1/0 2/0	.553	.261	.502	.301	.455	.332
3/0 4/0 250,000	.697 .783 .850	.328 .368 .400	.632 .712 .772	.380 .428 .465	.574 .645 .700	.418 .470
300,000 350,000	.930	.438	.846 .915	.509	.767	.558
400,000 500,000	$1.075 \\ 1.205$.506	1.092	.550 .588 .667	.828 .883 .993	. 604 . 645 . 722
600,000 750,000	1.318	.620	1.198	.806	1.084	.790
1,000,000	1.700	.800	1.544	. 930	1.400	1.020

Note: The above dimensions are approximate only, and are subject to normal manufacturing tolerances.

BARE STRANDED COPPER-SIZE,

SI	SIZE			RANDI			CONDU	
B. & S.	C.M.	Class	No. of Wires	Wire Diam. Inches	Cond. Diam. Inches	Cond. Diam. Mm.	Square Inches	Square Mm.
4/0	211,600	В	19	. 1055	.528	13.4	.1662	107
4/0	211,600	A & AA	12	.1328	. 552	14.0	. 1662	107
3/0	211,600 167,800	A & AA	7 19	.1739	$.522 \\ .470$	13.3	.1662	107
3/0	167,800	A & AA	12	.1183	.492	$\frac{11.9}{12.5}$.1318	85.0 85.0
3/0	167,800	A & AA	7	.1548	.464	11.8	.1318	85.0
2 /0 2 /0	133,100	В	19	.0837	.419	10.6	.1045	67.4
2/0	133,100		12	. 1053	.437	11.1	. 1045	67.4
2/0	$133,100 \\ 105,500$	A & AA B	7 19	.1379	.414	10.5	.1045	67.4
1/0	105,500	<u> </u>	12	.0938	.390	9.46 9.90	.08286	53.5 53.5
1/0	105,500	A & AA	7	.1228	.368	9.34	.08286	53.5
1	83,690	В	19	.0664	.332	8.43	.06573	42.4
1 1 2 2 3	83,690	A	7	.1093	.328	8.33	. 06573	42.4
9	83,690 66,370	AA B&A	3 7 3 7	.1670	.360	9.14	. 06573	42.4
2	66,370	AA	3	. 1487	.320	7.42 8.14	0.05213 0.05213	33.6 33.6
3	52,630	B & A	7	.0867	.260	6.61	.04134	26.7
3	52,630	AA	3	. 1325	.285	7.24	.04134	\26.7
4	41,740	B & A	7	.0772	. 232	5.88	.03278	21.2
4 5 6	41,740 33,100	AA B	3	.1180	.254	6.46	. 03278	21.2
6	26,250	B	7	.0612	.184	5.24	0.02600 0.02062	16.8 13.3
7	20,820	B	3 7 3 7 7	.0545	.164	4.16	.01635	10.5
8	16,510	В	7	.0486	.146	3.70	.01297	8.37
9	13,090	В	7	.0432	. 130	3.30	.01028	6.63
$\begin{array}{c} 10 \\ 12 \end{array}$	$10,380 \\ 6,530$	B	7 7 7	.0385	.116	2.95	.008152	5.26
14	4.107	B	7	0305 0242	$.0915 \\ .0726$	$\frac{2.33}{1.84}$	005129 003226	$\frac{3.32}{2.08}$

WEIGHT, RESISTANCE AND BREAKING STRENGTH

	WEIG		* AVERAGE	‡ BREA	KING ST	RENGTH
Size B. & S.	Pounds per 1,000'	Kg. per Km.	RESISTANCE OHMS/1,000' @ 25°C.	Hard- Drawn	Medium Hard- Drawn	Annealed
4 /0 4 /0 4 /0 3 /0	653.3 653.3 653.3 518.1	972 972 972 971	.0509 .0509 .0509 .0642	9,617 9,483 9,154 7,698	7,479 7,378 7,269 5,970	6,149 6,149 6,149 5,074
3/0 3/0	518.1 518.1	771 771	.0642	7,556 7,366	5,890 5,812	4,876 4,876
2/0 2/0 2/0 1/0 1/0 1/0	410.9 410.9 410.9 325.7 325.7 325.7	611 611 611 485 485 485	.0811 .0811 .0811 .102 .102	6,153 6,049 5,927 4,899 4,840 4,750	4,766 4,704 4,641 3,803 3,753 3,703	4,025 3,868 3,868 3,190 3,190 3,066
1 1 2 2 3	258.4 258.4 255.9 204.9 202.9 162.5	385 385 380 305 302 242	$\begin{array}{c} .129 \\ .129 \\ .129 \\ .162 \\ .162 \\ .205 \end{array}$	3,898 3,804 3,620 3,045 2,913 2,433	3,037 2,958 2,875 2,361 2,299 1,885	2,531 2,432 2,432 2,007 1,929 1,591
3 4 4 5 6 7	160.9 128.9 127.6 102.2 81.05 64.28	239 192 190 152 121 95.7	.205 .259 .259 .326 .410 .519	2,359 1,938 1,879 1,542 1,228 977.2	1,835 1,505 1,465 1,201 958.6 765.3	1,529 $1,262$ $1,213$ $1,001$ 793.7 629.6
8 9 10 12 14	50.98 40.42 32.05 20.16 12.68	75.9 60.0 47.6 30.0 18.8	$\begin{array}{c} .654 \\ .824 \\ 1.03 \\ 1.65 \\ -2.63 \end{array}$	777.2 618.1 491.6 311.1 197.1	$\begin{array}{c} 610.7 \\ 487.3 \\ 388.9 \\ 247.7 \\ 157.7 \end{array}$	499.2 395.8 313.9 197.5 124.2

^{*} Resistances are based on the International Annealed Copper Standard, viz., 0.15328 ohm (meter gram) at $20^{\circ}\mathrm{C}$. Weights and resistances have $2\,\%$ added to allow for stranding. Hard-drawn copper may be taken as about $2.7\,\%$ higher resistivity than annealed copper.

[‡] Breaking strengths are based on A.S.T.M. specification requirements, using minimum values for hard and medium hard-drawn wire, and maximum values for soft wire.

BARE STRANDED COPPER—SIZE,

SIZE	A.S.		RANDIN				UCTOR
C.M.	Class	No. of Wires	Wire Diam. Inches	Cond. Diam. Inches	Cond. Diam. Mm.	Square Inches	Square Mm.
5,000,000	B	217 169	.1518	2.581 2.580	65.6 65.6	3.927 3.927	2,530
,500,000	В	217	.1440	2.448	62.2	3.534	$2,530 \\ 2,280$
1,500,000 1,000,000	A B	169 217	$.1632 \\ .1358$	2.448 2.309	62.2 58.6	3.534 3.142	2,280 2,027
1,000,000	A	169	.1538	2.307	58.6	3.142	2,027
,500,000	B	169	.1439	2.159	54.8	2.749	1,772
,000,000	В	127 169	$.1660 \\ .1332$	2.158 1.998	54.8	$\frac{2.749}{2.356}$	1,772 1,518
,000,000	AB	$\frac{127}{127}$.1537	1.998 1.824	50.8 46.3	2.356	1,518
2,500,000	Ā	91	.1657	1.823	46.3	$1.964 \\ 1.964$	1,266 1,266
2,000,000	В	127	. 1255	1.632	41.4	1.571	1,013
,000,000 ,750,000	A B	$\frac{91}{127}$.1482	$\frac{1.630}{1.526}$	41.4 38.8	$1.571 \\ 1.374$	1,013
1,750,000 1,500,000	A B	91 91	.1387	1.526	38.8	1.374	886
,500,000	Ä	61	.1568	1.412	35.9 35.8	1.178 1.178	760 760
,250,000	В	91	.1172	1.289	32.7	0.9817	633
,250,000	B & A	61 61	.1431	$\frac{1.288}{1.152}$	32.7 29.3	.9817	633 507
,000,000	B & A	37	.1644	1.151	29.2	.7854	507
900,000	AA	61 37	.1215 $.1560$	$\frac{1.094}{1.092}$	27.8 27.7	.7069	456 456
800,000	B & A	61	.1145	1.031	26.2	.6283	405
800,000 750,000	AA B&A	37 61	.1470	$\frac{1.029}{0.998}$	$\frac{26.1}{25.3}$.6283	405 380
750,000	AA B&A	37 61	.1424	.997	25.3	.5890	380
700,000	AA	37	.1375	.964 .963	24.5 24.5	.5498	355 355
600,000	В	61	.0992	.893	22.7	.4712	304
600,000 500,000	A & AA B & A	37 37	.1273	.891	22.6 20.6	.4712 $.3927$	304 253
500,000 450,000	AA B&A	19 37	.1622	.811 .772	20.6	.3927	253
450,000	AA	19	.1539	.770	$\frac{19.6}{19.6}$.3534	228 228
400,000	В	37	.1040	.728	18.5	.3142	203
400,000 350,000	A & AA B	19 37	$.1451 \\ .0973$.726	$\frac{18.4}{17.3}$.3142	203 177
350,000 350,000	AA AA	19 12	.1357	. 679	17.2	.2749	177
300,000	B	37	.0900	.710	$18.0 \\ 16.0$.2749 $.2356$	177 152
300,000	A	19	.1257	.629	16.0	.2356	152
300,000 250,000	AA B	$\begin{array}{c} 12 \\ 37 \end{array}$.1581 $.0822$.657	16.7 14.6	.2356	152
250,000	A	19	.1147	.574	14.6	.1964	127
250,000	. AA	12	.1443	.600	15.2	.1964	127

WEIGHT, RESISTANCE AND BREAKING STRENGTH

SIZE	WEIG		*AVERAGE	‡ BREA	KING STF POUNDS	RENGTH
	Pounds	Kg.	RESISTANCE		Medium	
C.M.	per	per	OHMS/1,000' @ 25°C.	Hard-	Hard- Drawn	Annealed
	1,000′	Km.	@ 25°C.	Drawn	Drawn	
5,000,000	15,890	23,620	.00216	219,500	173,200	145,300
5,000,000	15,890	23,620	.00216	216,300	171,800	145,300
1,500,000	14,300	21,280	.00240	200,400	$156,900 \\ 154,600$	130,800 130,800
1,500,000 1,000,000	14,300 12,590	21,280 18,720	$.00240 \\ .00270$	197,200 178,100	139,500	116,20
1,000,000	12,590	18,720	.00270	175,600	138,500	116,20
3,500,000	11,020	16,400	.00308	155,900	122,000	101,70
3,500,000	11,020	$16,400 \\ 13,900$.00308	153,400 134,400	$120,200 \\ 104,600$	101,70 87,18
3,000,000 3,000,000	9,353 9,353	13,900	.00359	131,700	103,900	87,18
2,500,000	7,794	11,590	.00432	131,700 111,300	87,170	72,65
2,500,000	7,794	11,590	.00432	109,600	85,880	72,65
2,000,000	6,175	9,190	.00539	90,050 87,790	70,210 69,270	58,12 58,12
2,000,000 1,750,000	$6,175 \\ 5,403$	9,190 8,050	.00539	78,800	61,430	50,85
1,750,000	5,403	8,050	.00617	77,930 67,540	61,020	50.85
1,500,000	4,631	6,890	.00719	67,540	52,650	43,59
1,500,000	4,631	6,890	.00719	65,840	51,950	43,59
1,250,000	3,859	5,740	.00863	56,280 55,670	43,880 43,590	36,32 36,32
1,250,000 1,000,000	3,859 3,088	5,740 4,590	.0108	45,030	35,100	29,06
1.000,000	3.088	4,590	.0108	43,830	34,350	29,06
900,000	2,779	4,140	.0120	40,520	31,590	26,15
900,000	2,779	4,140	.0120	39,510	31,170	26,15
800,000	2,470	3,680	.0135	36,360	28,270	23,25
800,000	2,470 2,316	3,680	.0135	35,120	27,710	23,25
750,000	2,316 2,316	$\frac{3,450}{3,450}$.0144	34,090 33,400	$26,510 \\ 26,150$	21,79 $21,79$
750,000 700,000	2.161	3,220	.0154	31,820	24,740	20.34
700,000	2,161	3,220	.0154	31,170	24,410	20,34
600,000	1,853	2,760	.0180	27,530	21,350	18,14
600,000 500,000	1,853 1,544	2,760 2,300	.0180	$27,020 \\ 22,510$	21,060 17,550	17,44 $14,53$
500,000	1,544	2,300	.0216	21,950	17,550 17,320	14,53
450,000	1,389	2,070	.0240	20,450	15,900	13,08
450,000	1,389	2,070	.0240	19,750	15,590	13,08
400,000	1,235 1,235	1,840 1,840	.0270	18,320 17,560	14,140 13,850	11,62 11,62
400,000 350,000	1,081	1,610	.0308	16,060	12,450	10,58
350,000	1,081	1.610	.0308	15,590	12,200	10,17
350,000	1,081	1,610	.0308	15,140	12,020	10,17
300,000	926.3	1,380	.0360	13,870	10,740	9,07
300,000	926.3	1,380	.0360	13,510	10,530	8,71
300,000	926.3	1,380	.0360	13,170	10,390	8,71
250,000	771.9 771.9	1,150 1.150	.0431	$11,560 \\ 11,360$	8,952 8,836	7,55 $7,26$
250,000 250,000	771.9	1,150	.0431	11,130	8.717	7,26

^{*} Resistances are based on the International Annealed Copper Standard, viz., 0.15328 ohm (meter gram) at 20°C. Weights and resistances are increased as follows to allow for stranding: 5,000,000 and 4,500,000 C.M., 5%; 4,000,000 and 3,500,000 C.M., 4%; 3,000,000 and 2,500,000 C.M., 3%; other sizes 2%. Hard-drawn copper may be taken as about 2.7% higher resistivity than annealed copper.

[‡] Breaking strengths are based on A.S.T.M. specification requirements, using minimum values for hard and medium hard-drawn wire, and maximum values for soft wire.

BARE SOLID COPPER WIRE TABLE—SIZE,

Size	DIAM	ETER		AREA	
B. & S.	Inches	Mm.	C.M.	Square Inches	Square Mm.
4 /0 3 /0	.4600	11.7	211,600 167,800	.1662	107.0
2/0	.4096	$\frac{10.4}{9.3}$	167,800 133,100	.1318	85.0
1/0	.3249	8 3	105,500	.1045	67.4 53.5
$\frac{1}{2}$.2893	7.3	83,690	.06573	42.4
			66,370	.05213	33.6
3 4 5 6 7 8	.2294	5.8 5.2	52,630 41,740	.04134	26.7
5	. 1819	4.6	33,100	0.03278 0.02600	$\frac{21.2}{16.8}$
6	.1620	4.1	26,250	.02062	13.3
8	.1443	3.7	20,820 16,510	.01635	10.5
				.01297	8.37
9	.1144	2.91	13,090 10,380	.01028	6.63
11	.09074	$\frac{2.59}{2.30}$	8,234	.008155	$\frac{5.26}{4.17}$
12	.08081	2.05	6,530	.005129	3.31
13 14	.07196 $.06408$	1.83 1.63	5,178 4,107	.004067	2 62
				.003225	2.08
15 16	0.05707 0.05082	$\frac{1.45}{1.29}$	3,257	.002558	1.65
17	.04526	1.15	2,583 2,048	.002028	1.31
18	.04030	1.02	1.624	.001276	$ \begin{array}{c} 1.04 \\ 0.823 \end{array} $
19 20	03589 03196	0.91	1,288	.001012	. 653
			1,022	.0008023	518
21 22	02846 02535	.72	810.1	.0006363	.411
23	.02257	.64	642.5 509.5	.0005046	.326
24	.02010	.51	404.0	.0003173	.258
25 26	.01790 $.01594$. 45	320.4	.0002517	.162
	.01394	.40	254.1	.0001996	. 129
27 28	.01420	.36	201.5	.0001583	. 102
29	.01126	.32	$159.8 \\ 126.7$	0001255 00009954	.081
30	.01003	.25	100.5	.00007894	.064
31 32	008928 007950	.227	79.70	.00006260	.040
		.202	63.21	.00004964	.032
33 34	.007080	.180	50.13	.00003937	.025
35	.005615	.160	$\frac{39.75}{31.52}$	00003122 00002476	.020
36	.005000	.127	25.00	.00002476	.016
37 38	.004453	.113	19.83	.00001557	.010
			15.72	.00001235	.008
39	.003531	.090	12.47	.000009793	.006
41	.002800	$.080 \\ .072$	9.888	.000007766	.005
42	.002494	.063	7.842 6.219	000006159 000004884	.003
43	.002221	.057	4.932	.000003873	.003
77	.001978	.050	3.911	.000003072	.002

WEIGHT, RESISTANCE AND BREAKING STRENGTH

	WEIG	снт	*AVERAGE	‡ BREA	KING STR POUNDS	ENGTH
Size	Pounds	Kg.	RESISTANCE OHMS/1,000'		Medium	Soft
3. & S.	per 1,000'	per Km.	OHMS/1,000′ @ 25°C.	Hard- Drawn	Hard- Drawn	Annealed
4 /0	641	953	.0500	8,143	6,980	5,983
3/0	508	756	.0630	6,722 5,519	5,667	4,745
2/0 1/0	403 319	599 475	.0795 .100	5,519 4,517	4,599 3,730	3,763 2,984
1	253	377	.126	3,688	3,024	2,432
2	201	299	. 159	3,003	2,450	1,929
3	159	237 188	.201 .253	2,439 1,970	1,984 1,584	1,530 1,213
5	126 100	188	320	1.591	1,264	961.9
6	79.5	118	. 403	1,280	1,010 806.6	762.9 605.0
3 4 5 6 7 8	$63.0 \\ 50.0$	93.7 74.4	.508	1,030 826.0	643.9	479.8
9	39.6	58.9	.808	661.2	514.2	380.5
10	31.4	46.8	1.02	529.2	410.4	314.0
11 12	24.9 19.8	37.1 29.4	1.28 1.62	422.9	327.6	$ \begin{array}{c} 249.0 \\ 197.5 \end{array} $
13	15.7	23.3	2.04	337.0 268.0	261.6 208.8	156.6
14	12.4	18.5	2.58	213.5	166.6	124.2
15	$\frac{9.86}{7.82}$	14.7 11.6	3.25 4.09	169.8 135.1	$133.0 \\ 106.2$	98.48 78.10
16 17	6.20	9.23	5.16	107.5	84.71	61.93
18	4.92	7.32	$\frac{6.51}{8.21}$	85 47	67.61 53.95	49.12 38.95
19 20	3.90 3.09	5.80 4.60	10.4	67.99 54.08	43.05	30.89
21	2.45	3.65	.13.1	43.07	34.36	24.50
22 23	1.94	$\frac{2.89}{2.30}$	$\frac{16.5}{20.8}$	34.26 27.25	27.41 21.87	$19.43 \\ 15.41$
24	$\frac{1.54}{1.22}$	1.82	26.2	21 67	17.45	12.69
25	1.22 0.970	1.44	33.0	17.26 13.73	17.45 13.92	10.07
26	.769	1.14	41.6		11.11	7.983
27 28	.610 .484	0.908 .720	$\frac{52.5}{66.2}$	10.92 8.698	8.863	$6.331 \\ 5.021$
29	.384	.571	83.4	6.918	5.640	3.981
30 31	.304	.453	105.0 133	$\frac{5.502}{4.376}$	4.499 3.589	$ \begin{array}{r} 3.157 \\ 2.504 \end{array} $
32	.191	.285	167	3.485	2.862	1.986
33	.152	.226	211	2.772	2.283	1.575
34 35	$.120 \\ .0954$.179	266 335	$\frac{2.204}{1.755}$	$1.821 \\ 1.452$	1.249
36	.0757	.113	423	1.396	1.158	.785
37	.0600	.0893	533	$1.110 \\ 0.8829$	0.9238	.622
38	.0476	.0708	673			
39 40	0377 0299	0562 0445	848 1,070	.7031 $.5592$	4685	310
41	.0237	.0353	1,350	. 4434	.3716	. 246
42 43	.0188	.0280	1,700	.3517	.2947	. 195
43	.0118		2,140 2,700	.2212	.1853	

^{*} Resistances are based on the International Annealed Copper Standard, viz., 0.15328 ohm (meter gram) at $20^{\circ}\mathrm{C}$. Hard-drawn copper may be taken as about $2.7\,\%$ higher resistivity than annealed copper.

[‡] Breaking strengths are based on A.S.T.M. specification requirements, using minimum values for hard and medium hard-drawn wire, and maximum values for soft wire.

INSULATION

PAPER:

In the manufacture of paper insulated power cables, Canada Wire & Cable Co. uses the highest quality of paper made from wood pulp.

Three grades of paper are used depending upon the rated voltage of the cable.

In extra high voltage cables, all three grades of paper are used as follows:

- (a) Super-dense
- (b) High density
- (c) Normal density

In building up the paper insulation over the conductors, super-dense is applied nearest to the conductor where the voltage gradient is steepest. Next, the high density paper, and finally the normal density paper tapes are applied. This procedure constitutes the so-called grading of insulation which reduces the maximum stress near the conductor and results in a more nearly uniform radial stress distribution through the insulation wall.

It is well known that the more dense the paper, that is, the more closely the pure cellulose fibres are packed together, the greater the barrier action to the passage of ions. This explains why cables made with super-dense paper have somewhat higher dielectric strength at 60 cycles and 15% to 25% higher impulse strength than those made with normal or low density paper. The higher impulse, or surge strength is particularly important in oil-filled cables where the insulation walls are reduced.

With very dense paper the ratio of impregnating compound to paper becomes less. As the co-efficient of expansion of compound is large compared with that of paper, the reduced quantity of compound accompanying the use of super-dense paper results in less expansion of the cable sheath with temperature increase, thereby reducing the

tendency to form ionizable voids when decreasing temperature causes contraction.

The pure cellulose fibres in insulating paper are responsible for its mechanical strength. The greater number of fibres per unit of volume in super-dense paper gives it a tensile strength 30% in excess of that of normal density paper.

IMPREGNATING OILS

COMPOUND-FILLED CABLES

Petroleum derivatives rigidly selected for this purpose are standard for the basic ingredient for compound-filled paper insulated power cables.

This type of compound minimizes the formation of voids in the insulation. The impregnant is purposely fairly viscous to minimize "bleeding" from the insulation. The derivatives used are specially refined products from which tarry residues, unsaturated hydrocarbons, and volatile constituents have been removed. Not only must the correct crudes be used in the preparation of suitable cable compounds, but correct and adequate refining methods must be employed. Over-refinement cannot be permitted as heat-aging tests on the oil and accelerated life tests on cable samples show this to result in instability of the insulation in service.

Special compounds having high viscosity are available for vertical risers, and other applications where migration is likely to be a problem.

OIL-FILLED CABLES

Oil-filled cable is impregnated with a refined mineral oil of a viscosity comparable to, but somewhat greater than, that of standard transformer oil. The properties best adapted to give successful service in oil-filled cables have been carefully determined and the oil is selected to meet these requirements. One of the essentials is a suitable viscosity-temperature relationship so that the impregnant will be sufficiently fluid at all operating temperatures to assure free

flow to all points of the cable, thus preventing the formation of voids. The oils are of a high purity, and have high dielectric strength and low dielectric loss throughout the temperature range of operation. Stability under high electrical stress is another and especially important property of the oil used. After complete tests are made on the oil as received, careful control tests are continued on the oil both before it is used in the cable and on samples taken from the cable after manufacture.

SHIELDING

Over the paper insulation of the individual conductors of Type "H" multi-conductor cable, Canada Wire & Cable Co. employs a special form of copper shielding tape to act both as a shielding tape and as an efficient conductor of heat away from the centre of the cable.

Over the paper insulation of single conductor Type "H" cables, Canada Wire & Cable Co. employs a metallized paper tape which remains throughout the life of the cable in intimate contact with the surface of the paper insulation and prevents any voids between the insulation and the lead sheath from being subjected to electric stress.

METAL BINDER TAPE

On Type "H" (shielded) multi-conductor cables, a metal reinforcing or binder tape is applied over the assembled cabled conductors. This tape serves to bind the conductors together during subsequent manufacturing operations. It also relieves mechanical stress on the lead sheath caused by power system short circuits. As contrasted with a binder tape of non-metallic material, it serves as a path of high thermal conductivity between the individual conductor shields and the heat-dissipating lead sheath. The metal used for the binder tape may be either magnetic (steel) or non-magnetic (bronze), although the latter is furnished unless otherwise specified. As far as those additional losses from skin effect, proximity effect, losses in the binder tape itself, or in the lead sheath are concerned, it has been found that

there is very little difference between cables with magnetic binders and those having non-magnetic tapes. The magnetic binder does, however, increase the cable reactance, but this increase is inherently so little that it is of no great importance except in cases of parallel operation. The following recommendations are made as guides in selecting the proper binder tape material:

NEW INSTALLATIONS:

Bronze binder tapes provide adequate reinforcement and their use is recommended for all new installations.

INSTALLATION EXTENSIONS:

In general, where a new cable is to be installed in parallel with an existing cable having the same conductor size, it is recommended that the binder tape be of the same type as in the existing cable so that impedances may be more nearly equal. Where the parallel cables are of different conductor sizes or construction, the question of load division must be studied and the binder tape selected for the new cable which will give the most favourable relative loadings.

SHEATHS

The usual sheath material for impregnated paper insulated power cables is lead, usually in pure, but occasionally in alloy form.

The extensive use of lead and the variety of the lead alloys employed warrant brief mention of the more important ones, together with their general properties and applications.

COMMON LEAD:

Common lead supplied by Canada Wire & Cable Co. has a purity of 99.85% in accordance with A.S.T.M. Specification for Grade III. It is the most satisfactory and economical form of paper cable sheath for the great majority of installations. It is highly resistant to corrosion under most conditions and long experience evidences its permanence, stability, and general suitability for cable sheathing.

ANTIMONY LEAD:

Alloys containing 3/4 to 1% of antimony are harder than common lead and have high fatigue strength. They are extensively used for aerial cable where vibration and wear resistance are required.

TIN LEAD:

Alloys of 2% or 3% tin have tensile strength, fatigue strength, and hardness comparable to the antimony alloys, and are suitable where abrasion or vibration resistance must be provided. The 2% tin alloy was formerly considered standard for oil-filled cables, but has been superseded by High Copper lead except for situations where rough ducts necessitate a lead of high abrasion resistance.

HIGH COPPER LEAD:

High Copper Lead is a controlled alloy having the following specification. Its most important property is its resistance to creep, having in this respect considerable advantage over the 2% tin alloy heretofore used for oil-filled cable.

Silver	.002%	max.
Copper	.04% to	.08%
Arsenic, Antimony, and Tin	.002%	max.
Zinc	.001%	max.
Iron	.0015%	max.
Bismuth	.005% to	.05%
Lead (by difference)	99.90%	min.

LEAD SHEATH THICKNESSES

FOR PAPER INSULATED CABLES

Core Diameter.	COM	POUND-FIL		BLES	OIL-F	ILLED
Inches	Mils	1/64 Ins.	Mils	1/64 In.	Mils	1/64 In
0 — .600	80	5	95	6		
.601— .900	85	5 1/2	100	61/2		_
.901—1.200	95	6	110	7	110	7 7
1.201—1.500	100	$\frac{61}{7}$	115	7 1/2	110	7
.501—1.800	110	7	125	8	115	71/2
.801-2.100	115	7½ 8	130	8 1/2	125	8
.101-2.400	125	8	140	9'	135	8½ 9 9½
.401-2.700	135	81/2	150	9 1/2	140	9
.701-3.000	140.	9	160	10	150	91
.001-3.300	155	9	170	īĭ	155	10
.301-3.600	165	101/2	180	111%	170	11
.601 and over	170	11'	185	12'	170	ii

The ruling dimensions are those expressed in mils.

PROTECTIVE COVERINGS

Where lead covered impregnated paper insulated power cables are to be subjected to severe mechanical or chemical influences, some form of protective covering over the lead sheath is recommended. Some of the more frequently used coverings are described here, together with notes as to their general application.

JUTE COVERING

Where a moderate amount of mechanical and corrosion protection is required this may be secured by the use of one or two servings of jute yarn over the lead sheath. The lead covered cable is run through hot asphalt compound and served with a closely wound layer of impregnated jute yarn. If two wraps are specified they are applied with opposite directions of lay. Compound is applied between layers and overall, with a final coating of non-adhesive compound to prevent successive layers of cable on the shipping reel from sticking and for convenience in handling.

Minimum thicknesses of jute servings are given in the following table:

	Thickness of Serving
One Serving Inches	Two Servings Inches
4/64	6/64
4/64	7/64
4/64	8/64
	Jute One Serving Inches 4/64 4/64

DUCK TAPE

As an alternate covering, duck tape, pre-saturated with asphalt compound, having a thickness of not less than 20 mils is applied to the lead sheath with a lap of not less than 25%. The lead sheath is run through hot asphalt compound immediately before application of the tape. If more than one tape is specified, a coating of compound is applied over each tape except the outer one.

DOUBLE STEEL TAPE ARMOUR

Galvanized Double Steel Tape Armoured Cable.

The lead sheath applied over the insulated conductors in lead sheathed cables, is intended primarily to prevent the entrance of moisture, oil, etc., and to a limited extent to provide protection from mechanical injury. However, in all cases where a cable is installed in a location where it is definitely exposed to mechanical damage either during, or after installation, it is recommended that the lead sheath itself be permanently protected by a double layer of steel tape armouring, applied in the factory.

In applying this steel tape armouring, a layer of impregnated jute is helically wound over the lead sheath, over which is placed two layers of flat steel tape, also helically wound.

Where the cable is to be installed entirely above ground, galvanized steel tapes are used with no further covering, but for cables to be buried directly in the ground, ungalvanized steel tapes are applied, and a helically wound layer of impregnated jute is wound overall.

The galvanized steel tape armoured cable is particularly suitable for the larger power feeders inside factory buildings or basements, where it is usually suspended along the walls, ceilings, roof trusses, etc., throughout its entire length.

Its comparative flexibility permits easy and inconspicuous installation in buildings where structural features are such that rigid conduit construction would be extremely difficult, and much more costly.

Branch taps into an installed cable are easily made by cutting the cable through, and inserting a standard box over the two ends.

Jute Covered Double Steel Tape Armoured Cable

Table 1. Giving the addition to be made to the overall diameters of plain lead sheathed cables to allow for amouring.

Overall Diameter	Addition to Overall Dia	METER FOR ARMOURING
of Lead Sheath	No Jute Overall	Jute Overall
0.000" to 1.000"	0.19"	0.340"
1.001" and larger	0.22"	0.380"

Table II. Giving the addition to be made to the weight of plain lead sheathed cables to allow for armouring.

Diam. Over Lead, Inches	Additional Weight per 1,000 Ft. for Armouring, Pounds	Diam. Over Lead, Inches	Additional Weight per 1,000 Ft. for Armouring, Pounds
.25	170	2.05	1,670
.30	200	2.10	1,700
.35	$\frac{240}{270}$	2.15	1,750
.40	300	$\frac{2.20}{2.25}$	1,790 1,830
.50	340	2.30	1.860
.55	380	2.35	1,900
.60	410	2.40	1,940
.65	440	2.45	1,980
.70	480	2.50	2,010
.75	520	2.55	2,050
.80	560	2.60	2,080
.85 .90	590 620	2.65	2,130
.95	660	$\frac{2.70}{2.75}$	2,160 2,200
1.00	690	2.80	2,240
1.05 1.10	920 960	$\frac{2.85}{2.90}$	2,280
1.10	1,000	2.95	2,310 2,350
1.20	1,040	3.00	2,390
1.25	1,070	3.05	2,420
1.30	1,110	3.10	2,460
1.35	1,150	3.15	2,500
1.40	1,190	3.20	2,540
1.45	1,220	3.25	2,570
1.50	1,260	3.30	2,610
1.55	1,300	3.35	2,650
1.60	1,340	3.40	2,690
$\frac{1.65}{1.70}$	$1.370 \\ 1.400$	$\frac{3.45}{3.50}$	2,720
			2,760
1.75	1,450	3.55	2,800
1.80	1,480	3.60	2,840
1.85	1,520	3.65 3.70	2,880
1.90 1.95	1,560 1,600	3.70 3.75	2,910
2.00	1,640	3.80	2,950 2,980

GALVANIZED STEEL WIRE ARMOUR

In certain types of lead sheathed cable installations, the cable is subjected to severe longitudinal strain during or after installation, in addition to requiring armour protection to the lead sheath. This strain is due frequently to the weight of the cable itself, or subsequent tension applied to the cable by external means. It is important that these excessive strains are not applied to either the lead sheath, insulation, or conductors, and for this reason it is recommended that cables which will be subject to these conditions be steel wire armoured, so constructed that the armouring itself will take up the excessive strain

In applying the galvanized steel wire armouring, a bedding of jute is first placed over the lead sheath, and over this bedding is helically wound a single layer of armouring, comprising a number of galvanized steel wires, the number of wires and "lay angle" being such as to completely cover the cable.

Steel wire armoured cables may be classified as follows:

(a) Cables For Vertical Installation

This class includes cables for mine shafts, bore-holes, or for installation in vertical shafts in tall buildings, and other similar applications in which the weight of the cable itself is such that injurious mechanical stress might be applied to the lead sheath, insulation, or conductors both during installation, or in being suspended vertically over a long period of time during operation.

Head Serving

Intermediate Serving The armouring for cables in this class is applied as described above, with the addition of a galvanized steel wire "serving" or binding about 4 inches long applied tightly over the armouring at intervals of approximately 25 feet along the cable.

At the "upper end" of the cable (the end from which the cable will be suspended), the armour wires terminate with a special "head serving". (See illustration on page 23.)

The purpose of the head serving and intermediate 4-inch servings is to ensure that the weight of the cable will be taken by the armour wires when suspended from the top both during and after installation.

The most common method of supporting this cable is to allow the bottom of the head serving to rest on a loosely fitting clamp, with further loose clamps at intervals down the cable to retain the cable in place.

The maximum length of cable which may be suspended vertically with a reasonable margin of safety is as follows:

Size of	Maximum Length			
3 Conductor Cable	Feet			
Up to 4/0 4/0 to 500,000 c.m.	1,000			

(b) Submarine Cables

These cables are constructed to resist mechanical damage and longitudinal stress both during and after installation, the longitudinal stresses however, in most cases, being distributed along the cable rather than being concentrated at the ends. For this reason, the head servings and intermediate servings described above are omitted, this further facilitating installation owing to the uniform smooth surface of the armouring.

Owing to the possibility of severe conditions of wear on the submerged section, the armour wires are somewhat heavier than on cables intended for vertical suspension.

Full particulars are available if desired.

DIMENSIONS OF STEEL WIRE ARMOUR

Table III.

SUBMARINE CABLE

Diameter of Cable under Jute Bedding.	SIZE OF ARMOUR WIRE Diameter,		
Inches	N.B.S.	Inches	
0.000 to 0.500	15	.072	
0.501 to 0.750	12	.104	
0.751 to 1.250	10	.128	
1.251 to 2.000	8	.160	
2.001 and over	6	.192	

Table IV. OTHER WIRE ARMOURED CABLES (Vertical Cables, etc.)

Diameter of Cable under Jute Bedding.	SIZE OF ARMOUR WIRE Diameter.		
Inches	N.B.S.	Inches	
0.000 to 0.400	16	.064	
0.401 to 0.800	15	.072	
0.801 to 1.050	14	.080	
1.051 to 1.300	12	.104	
1.301 to 1.700	10	.128	
1.701 to 2.200	8	.160	
2.201 and over	6	.192	

Table V. Additions to be made to weights of plain lead sheathed cables to allow for steel wire armouring, for cables other than Submarine Type.

Diam. Over Lead, Inches	Additional Wt. per 1,000 Ft., Pounds	Diam. Over Lead, Inches	Additional Wt. per 1,000 Ft., Pounds	Diam. Over Lead, Inches	Additional Wt. per 1,000 Ft., Pounds	Diam. Over Lead, Inches	Addittional Wt. per 1,000 Ft., Pounds
. 25	290	1.05	970	1.85	3,000	2.65	4,800
.30	325	1.10	1,280	1.90	3,070	2.70	4.875
. 35	352	1.15	1.330	1.95	3.135	2.75	4,965
.40	388	1.20	1,375	2.00	3,210	2.80	5,040
.45	465	1.25	1,420	2.05	3,280	2.85	5,125
							0,120
. 50	502	1.30	1,470	2.10	3,345	2.90	5,205
. 55	533	1.35	1,855	2.15	3,410	2.95	5,290
. 60	570	1.40	1,915	2.20	3,480	3.00	5,365
. 65	602	1.45	1,980	2.25	4.145	3.05	5,455
.70	638	1.50	2,035	2.30	4,230	3.10	5,530
.75	675	1.55	2,090	0.05	1010		
.80	707	1.60		2.35	4,310	3.15	5,615
.85	818	1.65	2,145	2.40	4,395	3.20	5,695
.90	860		2,205	2.45	4,475	3.25	5,770
.95	897	1.70	2,260	2.50	4,550		
		1.75	2,860	2.55	4,635		
1.00	934	1.80	2,930	2.60	4,710		

Table VI. Additions to be made to the overall diameters of plain lead sheathed cables to allow for steel wire armouring, for cables other than Submarine Type. (Exclusive of head servings or intermediate servings.)

Overall Diameter of	Addition to Overall Diameter			
Lead Sheath, Inches	for Armouring, Inches			
0.000 to 0.400 0.401 to 0.800 0.801 to 1.050 1.051 to 1.300 1.301 to 1.700 1.701 to 2.200 2.201 and up	. 288 . 304 . 320 . 368 . 416 . 480			

MANUFACTURE

Successful manufacture of paper insulated cable requires careful attention not only to the selection of materials, but to every detail of fabrication. Canada Wire & Cable Co. has pioneered in Canada in the development of special equipment for manufacture and testing, and has provided the plant departments with trained personnel. All men in key positions have continual contact with laboratory developments. A thorough appreciation of the significance of technical details is reflected in every phase of production. Some of the features in the manufacture and testing are worthy of mention.

TAPING

Canada Wire & Cable Co. early recognized the fundamentals of correct application of paper tape and adopted the best equipment developed for this purpose.

Some of the important features of the taping machines are of interest. The tape is applied under a pre-determined tension which remains substantially independent of the size of the roll or "pad," the speed of the machine, and of whether the machine is starting or stopping. The tension setting is under the operator's control at all times. When any tape in the machine runs out, or in case of its breaking, the machine stops automatically and almost instantaneously because of the low moment of inertia of its rotating parts. Positive drive keeps all moving parts in perfect synchronism and eliminates backlash. The taping heads on the machines have been so designed that visual inspection can be made of all tapes at their points of application as the machines are running. This important feature enables the operator to detect any tendency toward overlap or "registration." and promptly control it. Capstans of very large diameter insure freedom from strain on the insulation as the taped cable is drawn through the machine.

CABLING

The individual conductors, on large bobbins, are carried in cradles supported in the rotating frame of the cabling machine. Smaller bobbins carry the paper or jute material used for fillers. The conductors and fillers are led to a closing die which assembles them into their correct position. An unusual feature is the design and position of the taping head which applies the binding tape to the assembled cable, very close to the point at which it emerges from the closing die. This insures the fixing of the conductors in their correct relative position before they can have any opportunity to spring apart. Once the conductors are bound tightly together in cable form, they are strong torsionally and resist any tendency toward deformation.

IMPREGNATING

The process of impregnation is essentially different for compound and oil-filled cables and should be considered accordingly.

COMPOUND-FILLED CABLES

The drying of the insulated cables prior to impregnation is accomplished in tanks by a combination of heat and vacuum. Vacua down to 1 mm. are obtained. Temperature is measured by means of thermocouples placed under the layers of cable on the reels, and is accurately controlled. Continued power factor and capacity measurements to check the progress of drying are made without interrupting the process.

When the electrical measurements show that the cable is dry, impregnating compound is introduced and pressure is built up by the use of pumps operating under oil seals which prevent the admission of air. Power factor and capacity measurements are continued until complete impregnation at the existing temperature is indicated, after which the cables are cooled and kept under compound until immediately before going to the lead presses. While cooling under pressure the impregnating compound contracts and the paper thereby takes up a maximum amount of compound. The cooling proceeds only to a point just above room temperature so as to preclude the possibility of moisture condensation on the cables as they leave the tanks. The capacity and number of impregnating tanks permit the handling of large orders and long individual lengths.

OIL-FILLED CABLES

Drying and impregnating of oil-filled cables is done after the lead sheath has been applied, a process made possible by the channels provided in these cables. Individual cable lengths are supplied with fittings at both ends which provide oil and vacuum line connections as well as the electrical connections for making power factor and capacity tests. Recording pressure and vacuum gauges as well as indicating mercury gauges are connected to each end of the cable length. The drying is accomplished by heat and vacuum, and frequent tests are made to insure the complete absence of leaks in the vacuum lines or connections. Dryness is indicated by power factor and capacity measurements, and is checked by trapping the exhaust from the cable in coils surrounded by liquid air. Small amounts of moisture, if present, are condensed and measured. The process is continued until the elimination of all traces of moisture is indicated. The impregnating oil before admission to the cable is filtered and subjected to a two-stage degasifying process. In the first stage, nearly all the dissolved air is removed by spraying the oil into a tank under vacuum. In the second stage, the oil is sprayed into another tank under extremely high vacuum which completes the removal of air. The oil is then tested for power factor at 100°C., after which it is admitted at one end of the cable, vacuum being maintained at the other end. Under these conditions the impregnation proceeds through the cable length, following which oil is passed through under pressure until the power factor of the oil at the leaving end is equal to that at the entering end. The cable is then allowed to cool to room temperature under oil pressure. From this point on throughout the life of the cable-during handling, further testing, shipment, installation, and operation-the oil in the cable is continuously under pressure supplied by means of temporary or permanent pressure reservoirs.

APPLYING LEAD SHEATH

Lead sheaths are applied by the latest types of hydraulically actuated extrusion presses. At all times during the application of the lead sheath, an accurate check is kept on the temperature of the lead by means of a recording thermometer having thermocouples placed in several locations in the die, and in the lead itself.

TESTING

Canada Wire and Cable Co. is equipped with unusual facilities for testing paper insulated power cables. The devices employed in cable testing are too numerous to cover here. Canada Wire and Cable Co. has however, equipment for, and has actually tested power cable at over 200,000 volts at 60 cycles.

POWER FACTOR OF PAPER INSULATED LEAD COVERED CABLES

For compound-filled paper insulated power cable rated at more than 7.5 kv., and not more than 35 kv. for multiconductor cable, or 69 kv. for single conductor cable, the power factor of the dielectric at 60 cycles shall not exceed the values given in the following table:

COMPOUND-FILLED CABLE

POWER FAC	TOR %
-----------	-------

		11 11 11 01 0 1 70			
Temperature of Cable*	Rated Voltage 7.6-20.0 Kv.	Rated Voltage 20.1 Kv. and ove			
	Phase to Phase	Phase to Phase			
Room to 60°C	2.0	1.2			
70°C	2.9	1.7			
75°C	3.4	2.0			
80°C	4.0	2.4			
85°C	4.7	2.9			
90°C	5.5				

OIL-FILLED CABLE

Temperature of Cable*	POWER FACTOR
Room to 60°C	0.60
70°C	0.75
80°C	0.90

^{*} Uniform temperature throughout cable.

INSULATION THICKNESSES—P. I. L. C. OIL-FILLED

SINGLE CONDUCTOR CABLES

Minimum Average Recommended Thickness Grounded Neutral

Rated			Rated			Rated	α.	
Voltage	Size	Insula-	Voltage	Size	Insula-	Voltage	Size	Insula
Phase	B. & S.	tion	Phase	B. & S.	tion	Phase	B. & S.	tion
to	or 1000	Thick-	to	or 1000		to	or 1000	
	Circular	ness	Phase	Circular		Phase	Circular	
Volts	Mils	Mils	Volts	Mils	Mils	Volts	Mils	Mils
15,000		110	45,000		225	75,000		340
16,000	1/0	110	46,000		225	80,000		355
17,000	to	115	47,000		235	85,000	3 /0	375
18,000	750	120	48,000		240	90,000		390
19,000	100	125	49,000		245		to	
19,000		120	40,000			95,000		410
The same of the sa			50,000		245	100,000	2500	430
20,000		130	51,000		250	105,000	2000	445
		135	52,000		250	110,000		465
21,000		140	53,000		255	110,000		100
22,000			54,000		255			
23,000		145	34,000		200	115,000		480
24,000		150	55,000		260	120,000		500
					265	125,000		525
25,000		155	56,000		270	130,000	4/0	535
26,000	1/0	160	57,000	0.10			4/0	555
27,000		160	58,000	2/0	275	135,000	4.5	999
28,000	to	165	59,000		275	100 000	. to	F.00
29,000		165		to	000	138,000	0500	560
	2500		60,000		280	140,000	2500	570
30,000		170	61,000	2500	285	145,000		590
31,000		175	62,000		290	150,000		610
32,000		175	63,000		290	155,000		625
33,000		180	64,000		295			
34,000		185						
			65,000		295	160,000	250	645
34,500		190	66,000		300	161,000	to	650
35,000		190	67,000		305	165,000	2500	660
			68,000		310			
100	TANKS OF THE		69,000		315			
36,000		195					750	
37,000		200	70,000		320	230,000	to	925
38,000	2/0	200	71,000		320		2500	
39,000	-/-	205	72,000		325			
55,000	to	_30	73,000		330		14	
40,000		210	74,000		335			
41,000	2500	215	. 1,000		000			
42,000	2000	215	No. of Contract of		A CONTRACTOR			
43,000		220						
44,000		220					1	
44,000		220					STATE STATE OF THE PARTY OF	

See Notes on Page 31

INSULATION THICKNESSES—P. I. L. C. OIL-FILLED

MULTI-CONDUCTOR CABLES

Minimum Average Recommended Thickness Grounded Neutral

Rated Voltage Phase	Size B. & S.	Insula-	Rated Voltage Phase	Size B. & S.	Insula-	Rated Voltage Phase	Size	Insula
to	or 1000		to	or 1000		to	B. & S.	tion
Phase	Circular		Phase	Circular			or 1000	Thick-
Volts	Mils	Mils	Volts	Mils	Mils	Volts	Circular Mils	ness Mils
15,000	\$140 a	110	34,500		190	51,000		250
16,000		110	35,000	1 /0 to	190	52,000		
17,000		115	36,000	600	195	53,000	1 /0 to	250
18,000		120		(Round)	200	54,000	1 /0 to 750	255
19,000		125	01,000	or	200		(Round)	255
	1 to	120	38,000	2 /0 to	200	33,000		260
20,000		130	39,000	600	205	56,000	or 2/0 to	005
21,000	600	135	40,000	(Sector)	210	57,000	750	$\frac{265}{270}$
22,000	000	140	41.000	(Deciot)	215			
	(Round)	145	11,000		210	59,000	(Sector)	275
24,000	(150	The William Street			60,000		275 280
	or		42,000		215	00,000		280
25,000	King and A	155	43,000	1/0 to	220	7.		
26,000	1 /0 to	160	44,000	750	220	61,000		005
27,000	2,0 00	160		(Round)		62,000	2 /0 to	285 290
28,000	600	165	10,000	or	220	63,000		
29,000	000	165	46,000	2/0 to	225		750 Round)	290 295
	(Sector)		47,000	750	235	65,000	or or	295
30,000	4	170	48,000	(Sector)	240	05,000	3 /0 to	290
31,000		175	49,000	(200001)	245	66,000	750	300
32,000		175	50,000		245		(Sector)	305
33,000		180	30,000		240	68.000	(Bector)	
34,000		185				69,000		310 315

All cables have an operating tolerance of 5% above the rated voltage.

For intermediate voltages the insulation thickness for the next higher voltage is recommended.

A system is considered to have a grounded neutral if the neutral is permanently grounded to earth and if facilities are provided to insure prompt isolation of a faulty element of the system.

Single Conductor:

Values are applicable to hollow core conductors with either of the two standard internal diameters, i.e., 0.50 inch or 0.69 inch.

At 20 kv. and above, if the cross sectional area of the conductor exceeds 2,500,000 C.M., the thickness of insulation should be increased by 15 mils. Below 20 kv. the thicknesse given in the table apply for all conductor sizes up to and including 750,000 C.M. For 751,000 C.M. to 2,500,000 C.M., the thickness of insulation should be 125 mils for all voltages from 15 to 19 kv. inclusive. For conductor sizes larger than 2,500,000 C.M. in this voltage range, add an additional 15 mils to insulation thickness, giving a total of 140 mils.

Three Conductor:

Values are applicable to round or sector shaped conductors as designated.

If the cross sectional area of the conductor exceeds the maximum limits specified, the thickness of insulation should be increased as follows: Up to and including \$50,000 C.M., add 15 mils. For conductor sizes larger than \$50,000 C.M., add 30 mils. This method of increasing insulation thickness for large conductor sizes will in one instance call for slightly more insulation for large conductor sizes at the next lower voltage step than for the same conductor sizes at the higher voltage step. In this instance the lightest wall of insulation called for will hold for both cases.

INSULATION THICKNESSES—P. I. L. C. COMPOUND-FILLED

SINGLE OR MULTI-CONDUCTOR CABLES-TYPE "H" (Shielded)

Rated foltage Phase to Phase	Size of Conductor B. & S. or 1,000 Circular	GRO	NSULATION UNDED UTRAL	Ungi	NESS ROUNDED SUTRAL
rnase	Mils	Mils	Inches	Mils	Inche
1.000	8-500	65	4/64	65	4/64
1,000	501—1,000 Over 1,000	80 95	5/64 6/64	80 95	5 /64 6 /64
2,000	8—500 501—1,000	80	5/64	80	5/64
2,000	Over 1,000	95 110	6/64 7/64	95 110	6 /64 7 /64
3,000	8-500	80	5 /64	80	5/64
3,000	501—1,000 Over 1,000	95 110	6/64 7/64	95 110	6 /64 7 /64
4,000	8—1,000 Over 1,000	95 110	6 /64	95	6/64
5,000	8—1,000	95	7 /64 6 /64	110	7/64
0,000	Over 1,000	110	7/64	95 110	6 /64 7 /64
6,000	8—1,000 Over 1,000	110 125	7 /64 8 /64	110 125	7 /64 8 /64
7,000	8 and over	125	8/64	140	9 /64
8,000	6 and over	140	9 /64	155	10/6
9,000 10,000	6 and over 6 and over	140 155	9 /64 10 /64	170	11 /6- 12 /6-
11,000	6 and over	155	10/64	190 190	12/6
12,000 13,000	6 and over 6 and over	170 170	11/64	205	13 /6-
14,000	6 and over	190	11/64 12/64	220 235	14/6
15,000	6 and over	205	13/64	250	15 /6- 16 /6-
16,000	4 and over	205	13/64	265	17/6
17,000 18,000	4 and over 4 and over	220	14/64	280	18/6
19,000	4 and over	235 235	15 /64 15 /64	280 295	18/6
20,000	2 and over	250	16/64	295	19 /64 19 /64
21,000	2 and over	250	16/64	315	20/6
22,000	2 and over	265	17 /64 17 /64 18 /64	330	21/6
$23,000 \\ 24,000$	2 and over	265 280	17/64	345	22/6
25,000	2 and over 2 and over 2 and over	280	18/64	345 360	22 /6 23 /6
26,000	2 and over	295	19/64	375	24/6
27,000 28,000	2 and over 1 and over	295 315	19/64	390	25/6
29,000	1 and over	330	20 /64 21 /64	405 420	26/6
30,000	1 and over	330	21/64	420	27/6
31,000	1/0 and over	345	22/64	440	27/6- 28/6-
32,000 33,000	1/0 and over 1/0 and over	345 360	22 /64 23 /64	440	28/64

All cables have an operating tolerance of 5% above the rated voltage, except those rated at 15,000 volts and below, which have no operating tolerance. The ruling dimensions are those expressed in mils.

INSULATION THICKNESSES—P. I. L. C. COMPOUND-FILLED

MULTI-CONDUCTOR CABLE—BELTED TYPE

Rated Voltage	Size of Conductor	CONI	INSU	LATION		NESS	
Phase	B. & S.				INDED	UNGE	OUNDED
Phase	1,000 C.M.	Mils	Inches	Mils	Inches	NE Mils	Inches
1,000	8 to 4/0 213 to 750 Over 750	65 80 80	4 /64 5 /64 5 /64	30 30 45	2 /64 2 /64 3 /64	30 30 45	2 /64 2 /64 3 /64
2,000	8 to 4/0 Over 4/0	80 80	5 /64 5 /64	30 45	2/64 3/64	30 45	2 /64 3 /64
3,000	8 and larger	80	5/64	45	3 /64	45	3/64
4,000	8 and larger	95	6/64	45	3 /64	45	3/64
5,000	8 and larger	95	6/64	65	4/64	65	4/64
6,000	8 and larger	95	6/64	65	4 /64	65	4/64
7,000	8 and larger	110	7/64	65	4/64	95	6/64
8,000	6 and larger	110	7/64	65	4/64	110	7/64
9,000	6 and larger	125	8/64	65	4/64	125	8/64
10,000	6 and larger	125	8/64	65	4/64	125	8/64
11,000	6 and larger	125	8/64	80	5/64	125	8/64
12,000	6 and larger	140	9 /64	80	5/64	140	9/64
13,000	6 and larger	140	9/64	80	5/64	140	9/64
14,000	6 and larger	155	10/64	80	5/64	155	10/64
15,000	6 and larger	155	10/64	80	5/64	155	10/64

The ruling dimensions are those expressed in mils.

SINGLE CONDUCTOR

1,000 VOLTS

(Grounded or Ungrounded Neutral)

Code	Co	nductor Size	Insula- tion Thick-	Lead Thick-	Overall Diam.,	Net Weight	Average Resistance
Code	B. & S.	C.M.	ness, Inches	ness, Inches	Inches	Pounds / 1,000'	Ohms/1,000' @ 25°C.
LAAFS	8	16,510	.065	.080	.44	515	. 654
LAAGT	6	26,250	.065	.080	.48	595	.410
LAAHV	4 2 1	41,740	.065	.080	. 53	710	.259
LAAKY	2	66,370	.065	.080	.59	870	.162
LAALZ	1	83,690	.065	.080	. 63	980	.129
LAAMB	1/0	105,500	.065	.080	. 67	1,100	.102
LAANC	2/0	133,100	.065	.080	.71	1,260	.0811
LAARG	3/0	167,800	.065	.080	.76	1,430	.0642
LAASH	4/0	211,600	.065	.085	.83	1,750	.0509
LAAVK		250,000	.065	.085	.88	1,950	.0431
LAAWL		300,000	.065	.085	.93	2,180	
LAAZN		350,000	.065	.085	.98	2,420	.0360
LABAP		400,000	.065	.085	1.03	2,650	.0270
LABIR		500,000	.065	.095	1.14	3,220	.0216
LABOS	0.00	600,000	.080	.095	1.25	3,750	.0180
LABPA		750,000	.080	.095	1.35	4,400	
LABSO		1.000,000	.080	.100	1.52	5,630	.0144
LABUT		1,250,000	.095	.100	1.68	6,760	.0108
LABVY		1,500,000	.095	.110	1.83	7.990	.00863

SINGLE CONDUCTOR

2,000 VOLTS

(Grounded or Ungrounded Neutral)

Code		nductor Size	Insulation Thickness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/1,000 @ 25°C.
LABYV LACER LACRE LACTO LACUV	8 6 4 2	16,510 26,250 41,740 66,370 83,690	.080 .080 .080 .080 .080	.080 .080 .080 .080	. 47 . 51 . 55 . 62 . 66	560 640 755 920 1,030	.654 .410 .259 .162
LACWY LADAR LADIT LADOV LADSE	1/0 2/0 3/0 4/0	105,500 $133,100$ $167,800$ $211,600$ $250,000$.080 .080 .080 .080 .080	.080 .080 .085 .085	.70 .74 .80 .86	1,160 1,310 1,590 1,810 2,010	.129 .102 .0811 .0642 .0509
LADVO LADYX LAEDS LAEFT LAEJY	:::	300,000 350,000 400,000 500,000 600,000	.080 .080 .080 .080	.085 .085 .085 .095	$\begin{array}{c} .96 \\ 1.01 \\ 1.06 \\ 1.17 \end{array}$	2,250 2,480 2,720 3,300	.0431 .0360 .0308 .0270 .0216
LAEJI LAELB LAEND LAEPF LAEWM		750,000 1,000,000 1,250,000 1,500,000	.095 .095 .110 .110	.095 $.095$ $.100$ $.110$ $.110$	1.28 1.38 1.55 1.73 1.86	3,830 4,480 5,720 7,060 8,090	.0180 $.0144$ $.0108$ $.00863$ $.00719$

SINGLE CONDUCTOR

3,000 VOLTS

(Grounded or Ungrounded Neutral)

Code		nductor Size	Insula- tion Thick- ness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms /1,000' @ 25°C.
LABYV	8	16,510	.080	.080	.47	560	. 654
LACER	6	26,250	.080	.080	.51	640	.410
LACRE	4 2 1	41,740	.080	.080	.55	755	.259
LACTO	2	66,370	.080	.080	.62	920	.162
LACUV	1	83,690	.080	.080	.66	1,030	129
LACWY	1/0	105,500	.080	.080	.70	1,160	.102
LADAR	2/0	133,100	.080	.080	.74	1,310	.0811
LADIT	3/0	167,800	.080	.085	.80	1,590	.0642
LADOV	4/0	211,600	.080	.085	.86	1.810	.0509
LADSE		250,000	.080	.085	.91	2,010	.0431
LADVO	/	300,000	.080	.085	.96	2,250	.0360
LADYX		350,000	.080	.085	1.01	2,480	.0308
LAEDS	17	400,000	.080	.085	1.06	2,720	.0270
LAEFT	A	500,000	.080	.095	1.17	3,300	.0216
LAEJY		600,000	.095	.095	1.28	3,830	.0180
LAELB	34	750,000	.095	.095	1.38	4,480	.0144
LAEND		1,000,000	.095	.100	1.55	5,720	.0108
LAEPF		1,250,000	.110	.110	1.73	7.060	.00863
LAEWM		1,500,000	.110	.110	1.86	8.090	.00719

SINGLE CONDUCTOR

4,000 VOLTS

(Grounded or Ungrounded Neutral)

Code		nductor Size C.M.	Insulation Thickness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/1,000' @ 25°C.
LAFAS LAFET LAFIV LAFSA LAFTE LAFUX LAFWO LAFZY LAGOY LAGOY LAGUZ	8 6 4 2 1 1/0 2/0 3/0 4/0 	16,510 26,250 41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000 300,000 350,000 400,000 500,000 750,000 1,000,000	. 095 . 095	.080 .080 .080 .080 .080 .085 .085 .085	.50 .54 .59 .65 .69 .73 .78 .83 .88 .94 .99 1.04 1.11 1.20 1.28 1.38 1.55	605 690 805 970 1,080 1,210 1,460 1,650 2,070 2,310 2,550 2,920 3,370 3,370 4,480 5,720 7,060	.654 .410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308 .0270 .0216 .0180 .0144 .0108

SINGLE CONDUCTOR

5,000 VOLTS

(Grounded or Ungrounded Neutral)

Code	Conductor Size		Insula- tion Thick-	Lead Thick-	Overall Diam.,	Net Weight	Average Resistance
	B. & S.	C.M.	ness, Inches	ness, Inches	Inches	Pounds / 1,000'	Ohms /1,000 @ 25°C.
LAFAS	8	16,510	.095	.080	. 50	605	. 654
LAFET	6	26,250	.095	.080	.54	690	.410
LAFIV	4 2 1	41,740	.095	.080	.59	805	.259
LAFSA	2	66,370	.095	.080	. 65	970	.162
LAFTE	1	83,690	.095	.080	. 69	1,080	.129
LAFUX	1/0	105,500	.095	.080	.73	1.210	.102
LAFWO	2/0	133,100	.095	.085	.78	1,460	.0811
LAFZY	3/0	167,800	.095	.085	.83	1.650	.0642
LAGAT	4/0	211,600	.095	.085	.88	1.860	.0509
LAGEV		250,000	.095	.085	.94	2,070	.0431
LAGOY		300,000	.095	.085	.99	2.310	.0360
LAGTA		350,000	.095	.085	1.04	2,550	.0308
LAGUZ		400,000	.095	.095	1.11	2,920	.0270
LAGVE		500,000	.095	.095	1.20	3.370	.0216
LAGYO		600,000	.095	.095	1.28	3,830	.0180
LAHAV		750,000	.095	.095	1.38	4.480	.0144
LAHCY		1,000,000	.095	.100	1.55	5.720	.0108
LAHIX		1,250,000	.110	.110	1.73	7.060	.00863
LAHOZ		1,500,000	.110	.110	1.86	8,090	.00719

SINGLE CONDUCTOR

6,000 VOLTS

(Grounded or Ungrounded Neutral)

Code		nductor Size	Insula- tion Thick- ness,	Lead Thick- ness,	Overall Diam., Inches	Net Weight Pounds /	
	B. & S.	C.M.	Inches	Inches		1,000′	@ 25°C.
LAHUB	8	16,510	.110	.080	.53	655	. 654
LAHVA	6	26,250	.110	.080	.57	740	.410
LAHWE		41.740	.110	.080	.62	855	.259
LAHZO	4 2 1	66,370	.110	.080	.68	1.020	.162
LAICS	ī	83,690	.110	.080	.72	1,140	.129
LAILC	1/0	105,500	.110	.080	.76	1.270	.102
LAIRJ	2/0	133,100	.110	.085	.81	1,520	.0811
LAITL	3/0	167,800	.110	.085	.86	1,710	.0642
LAJBO	4/0	211,600	.110	.085	.92	1.940	.0509
LAJIZ		250,000	.110	.085	.97	2,140	.0431
LAJOB		300,000	.110	.085	1.02	2,380	.0360
LAJUC		350,000	.110	.095	1.09	2,750	.0308
LAJWA		400,000	.110	.095	1.14	3.000	.0270
LAJYE		500,000	.110	.095	1.23	3,450	.0216
LAKAY		600,000	.110	.095	1.31	3,900	.0180
LAKCO		750,000	.110	.100	1.42	4.740	.0144
LAKEZ		1.000,000	.110	.100	1.58	5.810	.0108
LAKIB		1,250,000	.125	.110	1.76	7,160	.00863
LAKOC		1,500,000	.125	.110	1.89	8,200	.00719

SINGLE CONDUCTOR

7,000 VOLTS

(Grounded Neutral)

Code		nductor Size C.M.	Insula- tion Thick- ness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds / 1,000'	Average Resistance Ohms /1,000' @ 25°C.
LAKUD LAKYA LAKZE LALAZ LALBE LALDO LALEB LALIC LALOD LALUF LALYG	8 6 4 2 1 1/0 2/0 3/0 4/0	16,510 26,250 41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000 300,000	.125 .125 .125 .125 .125 .125 .125 .125	.080 .080 .080 .080 .080 .085 .085 .085	. 56 . 60 . 65 . 71 . 75 . 80 . 84 . 89 . 95 1.00	700 785 905 1,080 1,190 1,420 1,580 1,770 2,000 2,200 2,450	
LALZA LAMAB LAMCE LAMEC LAMFO LAMID LAMOF LAMUG	/::: :::	350,000 400,000 500,000 600,000 750,000 1,000,000 1,250,000 1,500,000	.125 .125 .125 .125 .125 .125 .125 .125	.095 .095 .095 .095 .100 .100 .110	1.12 1.17 1.26 1.34 1.45 1.60 1.76 1.89	2,830 3,070 3,530 3,980 4,820 5,900 7,160 8,200	.0308 .0270 .0216 .0180 .0144 .0108 .00863

SINGLE CONDUCTOR

7,000 VOLTS

Code		iductor Size	Insula- tion Thick- ness,	Lead Thick- ness,	Overall Diam., Inches	Net Weight Pounds/	Average Resistance
	B. & S.	C.M.	Inches	Inches	Inches	1,000'	Ohms /1,000' @ 25°C.
LAZTY	8	16,510	.140	.080	.59	750	. 654
LAZUS	6	26,250	.140	.080	.63	840	.410
LAZYT	4 2 1	41,740	.140	.080	.68	955	.259
LEABT	2	66,370	.140	.080	.74	1,120	.162
LEAGZ	1 .	83,690	.140	.085	.79	1.350	.129
LEAHB	1/0	105,500	.140	.085	.83	1,480	.102
LEAKD	2/0	133,100	.140	.085	.87	1.640	.0811
LEALF	3/0	167,800	.140	.085	.92	1.840	.0642
LEAMG	4/0	211,600	.140	.085	.98	2,060	.0509
LEARL		250,000	.140	.085	1.03	2,270	.0431
LEASM	W	300,000	.140	.095	1.10	2,650	.0360
LEBAT		350,000	.140	.095	1.16	2,900	.0308
LEBEV		400,000	.140	.095	1.20	3.140	.0270
LEBOY		500,000	.140	.095	1.29	3,600	.0216
LEBTA	****	600,000	.140	.095	1.37	4,060	.0180
LEBUZ		750,000	.140	.100	1.48	4,900	.0144
LEBVE		1,000,000	.140	.100	1.63	5,990	.0108
LEBYO		1,250,000	.140	.110	1.79	7,260	.00863
LECAV		1,500,000	.140	.110	1.92	8,300	.00719

SINGLE CONDUCTOR

8,000 VOLTS

(Grounded Neutral)

Code	Co B. & S.	nductor Size C.M.	Insulation Thickness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds / 1,000'	Average Resistance Ohms/1,000' @ 25°C.
LANAC LANCA LANCA LANED LANGO LANIF LANOG LANUH LANYJ LAOBS LAOCT LAOGY LAOHZ LAOHZ LAONG LAONG LAOWPH LAOWPH LAOWAP	6 4 2 1 1/0 2/0 3/0 4/0 	26,250 41,740 66,370 83,690 105,500 133,100 211,600 250,000 350,000 400,000 600,000 750,000 1,000,000 1,250,000 1,500,000	.140 .140 .140 .140 .140 .140 .140 .140	.080 .080 .080 .085 .085 .085 .085 .085	.63 .68 .74 .79 .83 .87 .92 .98 1.03 1.10 1.15 1.20 1.29 1.37 1.48 1.64 1.79	850 960 1,130 1,340 1,480 1,640 1,830 2,070 2,270 2,270 2,900 3,140 3,600 4,060 4,910 5,990 7,260 8,300	.410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308 .0270 .0216 .0180 .0144 .0108 .00863 .00719

SINGLE CONDUCTOR

8,000 VOLTS

Code	Conductor Size B. & S. C.M.	Insula- tion Thick- ness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds / 1,000'	Average Resistance Ohms/1,000 @ 25°C.
LECIX	6 26,250	. 155	.080	. 66	890	.410
LECOZ	4 41,740	. 155	.080	.71	1.020	.259
LECUB	2 66,370	.155	.085	.78	1,280	.162
LECVA	1 83,690	. 155	.085	.82	1.400	.129
LECWE	1/0 105,500	. 155	.085	.86	1,540	.102
LECZO	2/0 133,100	. 155	.085	.90	1.690	.0811
LEDBO	3/0 167.800	. 155	.085	.95	1.900	.0642
LEDIZ	4/0 211,600	.155	.085	1.01	2,130	.0509
LEDOB	250,000	.155	.085	1.06	2,330	.0431
LEDUC	300,000	. 155	.095	1.13	2,720	.0360
EDYE	350,000	. 155	.095	1.19	Maria Control of the	
LEEDY	400,000	.155	.095	1.22	2,970	.0308
LEELG	500,000	.155	.095	1.32	3,210 3,680	.0270
EENJ	600,000	.155	.100	1.41		.0216
EEPK	750,000	.155	.100	1.51	4,300 4,990	.0180
EEWR						.0144
EEZT	1,000,000	. 155	.100	1.67	6,040	.0108
EFAY	1,250,000	. 155	.110	1.82	7,360	.00863
HIL A I	1,500,000	. 155	.110	1.95	8,400	.00719

SINGLE CONDUCTOR

9,000 VOLTS

(Grounded Neutral)

Code		nductor Size	Insula- tion Thick-	Lead Thick-	Overall Diam.,	Net Weight	Average Resistance
	B. & S.	.C.M.	ness. Inches	ness, Inches	Inches	Pounds / 1,000'	Ohms /1,000 @ 25°C.
LANAC	6	26,250	.140 -	.080	. 63	950	410
LANCA	4	41,740	.140	.080		850	.410
LANED	2	66,370	.140		. 68	960	.259
LANGO	6 4 2 1	83,690	.140	.080	.74	1,130	.162
LANIF	The state of the s	The second second		.085	.79	1,340	.129
LANOG	1/0	105,500	. 140	. 085	.83	1.480	.102
LANUH	2/0	133,100	. 140	.085	.87	1,640	.0811
	3/0	167,800	.140	.085	.92	1,830	.0642
LANYJ	4/0	211,600	.140	.085	.98	2,070	.0509
LAOBS	. / .	250,000	.140	.085	1.03	2,270	.0431
LAOCT	/	300,000	.140	.095			
LAOGY	/	350,000	.140		1.10	2,650	. 0360
LAOHZ	/	400,000		. 095	1.15	2,900	.0308
LAOLD		500,000	.140	.095	1.20	3,140	.0270
LAONG	1	600,000	.140	.095	1.29	3,600	.0216
			.140	. 095	1.37	4,060	.0180
LAOPH		750,000	.140	.100	1.48	4.910	.0144
LAORK		1,000,000	.140	.100	1.64	5.990	.0108
LAOWP		1,250,000	.140	.110	1.79	7,260	
LAPAP		1,500,000	.140	.110	1.92	8,300	.00863

SINGLE CONDUCTOR

9,000 VOLTS

Code		ductor Size C.M.	Insula- tion Thick- ness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds / 1,000'	Average Resistance Ohms/1,000 @ 25°C.
LEFCO LEFEZ LEFIB LEFOC LEFOC LEGAZ LEGAZ LEGBE LEGC LEGUF LEGUF LEGYG LEGYG LEGYA LEGAZ LEHAB	6 4 2 1 1/0 2/0 3/0 4/0 	26,250 41,740 66,370 83,690 105,500 133,100 167,800 250,000 300,000 350,000 400,000 500,000 600,000 750,000	.170 .170 .170 .170 .170 .170 .170 .170	.080 .080 .085 .085 .085 .085 .085 .095 .095 .095 .095 .095 .100 .100	.69 .74 .81 .85 .89 .93 .98 1.04 1.11 1.17 1.22 1.26 1.35 1.44 1.54	940 1,065 1,340 1,460 1,600 1,760 1,960 2,200 2,540 2,790 3,040 3,290 3,760 4,400 5,080	.410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308 .0270 .0216 .0180 .0144
LEHBA LEHCE	1	,250,000 ,500,000	.170	.110	1.85 1.98	6,180 7,460 8,510	.0108 .00863 .00719

SINGLE CONDUCTOR

10,000 VOLTS

(Grounded Neutral)

Code		nductor Size	Insula- tion Thick- ness,	Lead Thick- ness,	Overall Diam., Inches	Net Weight Pounds/	Average Resistance Ohms/1,000
	B. & S.	C.M.	Inches	Inches		1,000′	@ 25°C.
LAPEF	6	26,250	.155	.080	.66	890	410
LAPFE	4	41,740	.155	.080	.70		.410
LAPHO	4 2	66,370	.155	.085		1,020	.259
LAPIG	1	83,690	.155	.085	.77	1,280	.162
LAPOH	1/0	105,500	.155		.81	1,400	.129
	1/0	100,000	. 133	.085	.86	1,540	.102
LAPUJ	2/0	133,100	. 155	.085	.90	1.700	0014
LAPYK	3/0	167.800	. 155	.085	.95		.0811
LARAG	4/0	211,600	.155	.085		1,900	.0642
ARHE		250,000	.155		1.01	2,130	.0509
LARIJ		300,000		.085	1.06	2,330	.0431
2111010	***	300,000	. 155	.095	1.13	2,720	.0360
LARKO		350,000	. 155	.095	1.18	2,970	.0308
LARMY		400,000	.155	.095	1.22	3,210	
LAROK	1000	500,000	.155	.095	1.32		.0270
LARUL		600,000	.155	.100		3,680	.0216
ASAH		750,000			1.41	4,310	.0180
The second		730,000	.155	.100	1.51	5,000	.0144
LASHA		1.000.000	.155	.100	1.66	6,080	0100
LASIK		1,250,000	.155	.110	1.82		.0108
ASJE		1,500,000	.155			7,360	.00863
		1,000,000	. 100	.110	1.94	8,400	.00719

SINGLE CONDUCTOR

10,000 VOLTS

Code	8	ductor	Insula- tion Thick- ness,	Lead Thick- ness,	Overall Diam., Inches	Net Weight Pounds/	Average Resistance Ohms/1,000
	B. & S.	C.M.	Inches	Inches		1,000′	@ 25°C.
LEHEC	6	26,250	.190	.080	.73	1.010	.410
LEHFO	4	41.740	.190	.085	.79	1.230	
LEHID	2	66.370	.190	.085	.85		. 259
LEHOF	1	83,690	.190	.085	.89	1,320	.162
LEHUG	1/0	105,500	.190	.085		1,550	. 129
Western to the second state of	1/0	100,000	.130	.000	. 93	1,690	.102
LEHYH	2/0	133,100	.190	.085	.97	1,850	.0811
LEICY	3/0	167,800	.190	.085	1.02	2,050	.0642
LEIJF	4/0 .	211,600	.190	.095	1.10	2,420	
LEIRN		250,000	.190	.095	1.15		.0509
LEIXT		300,000	.190	.095		2,630	.0431
		300,000	.190	.095	1.20	2,890	.0360
LEJAC		350,000	.190	.095	1.26	3.150	.0308
LEJCA		400,000	.190	.095	1.30	3,400	.0270
LEJDE		500,000	.190	.095	1.39	3,860	
LEJED		600,000	.190	.100	1.48		.0216
LEJGO		750,000	.190	.100		4,510	.0180
		100,000	. 190	.100	1.58	5,200	.0144
LEJIF		1,000,000	.190	.110	1.76	6,510	.0108
LEJOG		1,250,000	.190	.110	1.89	7,600	
LEJUH		1,500,000	.190	.110	2.02	8,650	00863 00719

SINGLE CONDUCTOR

11,000 VOLTS

(Grounded Neutral)

Code	Co B. & S.	nductor Size C.M.	Insula- tion Thick- ness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/1,000' @ 25°C.
LAPEF	6	26,250	.155	.080	.66	890	410
LAPFE	4	41.740	.155	.080	.70	1.020	.410
LAPHO	4 2	66,370	. 155	.085	.77	1,280	.259
LAPIG	1	83,690	.155	.085	.81	1,400	.162
LAPOH	1/0	105,500	.155	.085	.86		.129
T 4 DTTT					. 30	1,540	.102
LAPUJ	2/0	133,100	. 155	.085	.90	1.700	.0811
LAPYK	3/0	167,800	. 155	.085	. 95	1,900	.0642
LARAG	4/0	211,600	. 155	.085	1.01	2,130	.0509
LARHE		250,000	. 155	.085	1.06	2,330	.0431
LARIJ	./	300,000	. 155	.095	1.13	2,720	.0360
TARKO						2,120	.0000
LARKO	/	350,000	. 155	.095	1.18	2,970	.0308
LARMY	/	400,000	. 155	.095	1.22	3,210	.0270
LAROK	1	500,000	. 155	.095	1.32	3,680	.0216
LARUL		600,000	. 155	.100	1.41	4,310	.0180
LASAH		750,000	.155	.100	1.51	5,000	.0144
LASHA		1.000,000	155	100			.0111
LASIK			.155	.100	1.66	6,080	.0108
LASJE		1,250,000	. 155	.110	1.82	7,360	.00863
LAGJE	• • •	1,500,000	. 155	.110	1.94	8,400	.00719

SINGLE CONDUCTOR

11,000 VOLTS

Code	Co	nductor Size	Insula- tion Thick- ness.	Lead Thick- ness,	Overall Diam., Inches	Net Weight	Average Resistance
	B. & S.	C.M.	Inches	Inches	inches	Pounds / 1,000'	Ohms /1,000 @ 25°C.
LEHEC	6	26,250	.190	.080	.73	1,010	.410
LEHFO	4	41,740	.190	. 085	.79	1,230	.259
LEHID	4 2 1	66,370	.190	.085	.85	1.320	.162
LEHOF		83,690	.190	.085	.89	1,550	.129
LEHUG	1/0	105,500	.190	.085	.93	1,690	.102
LEHYH	2/0	133,100	.190	.085	.97	1.850	.0811
LEICY	3/0	167,800	.190	.085	1.02	2,050	.0642
LEIJF	4/0	211,600	.190	.095	1.10	2,420	.0509
LEIRN		250,000	.190	.095	1.15	2,630	.0431
LEIXT		300,000	.190	.095	1.20	2,890	.0360
LEJAC		350,000	.190	.095	1.26	3,150	.0308
LEJCA		400,000	.190	.095	1.30	3,400	
LEJDE		500,000	.190	.095	1.39	3,860	.0270
LEJED		600,000	.190	.100	1.48	4,510	.0216
LEJGO		750,000	.190	.100	1.58	5,200	.0180
LEJIF	100	1,000,000	. 190	110			
LEJOG		1,250,000	.190	.110	1.76	6,510	.0108
LEJUH		1,500,000	.190	.111	1.89	7,600	.00863
		1,000,000	. 190	.110	2.02	8,650	.00719

SINGLE CONDUCTOR

12,000 VOLTS

(Grounded Neutral)

Code	Co	nductor Size	Insula- tion Thick-	Lead Thick-	Overall Diam.,	Net Weight	Average Resistance
	B. & S.	C.M.	ness, Inches	ness, Inches	Inches	Pounds / 1,000'	Ohms/1,000 @ 25°C.
LASLO	6	26,250	.170	.080	. 69	940	.410
LASNY	4	41,740	.170	.080	.74	1,070	.259
LASOL	4 2 1	66,370	.170	.085	.81	1,340	.162
LASUM	1	83,690	.170	.085	.85	1,460	.129
LASYN	1/0	105,500	.170	.085	.89	1,600	.102
LATAJ	2/0	133,100	.170	.085	. 93	1,770	.0811
LATEK	3/0	167,800	.170	.085	.98	1,960	.0642
LATIL	4/0	211,600	.170	.085	1.04	2,200	.0509
LATJA		250,000	.170	.095	1.11	2,540	.0431
LATKE		300,000	.170	.095	1.16	2,790	.0360
LATMO		350,000	.170	.090	1.22	3.040	
LATPY		400,000	.170	.095	1.26		.0308
LATYP		500,000	.170	.095	1.35	3,290	.0270
LAUBT		600,000	.170	.100		3,760	.0216
LAUFY		750,000	.170		1.44	4,400	.0180
	HEAT OF THE PARTY	100,000	.170	.100	1.54	5,080	.0144
LAUGZ		1,000,000	.170	.100	1.70	6,180	.0108
LAUHB		1,250,000	.170	.110	1.85	7,460	.00863
		1,500,000	.170	.110	1.98	8,510	.00719

SINGLE CONDUCTOR

12,000 VOLTS

Code	Co	nductor Size	Insula- tion Thick-	Lead Thick-	Overall Diam.,	Net Weight	Average Resistance
Code	B. & S.	C.M.	ness, Inches	ness, Inches	Inches	Pounds / 1,000'	Ohms /1,000 @ 25°C.
LEJYJ	6	26,250	.205	.080	.76	1,070	.410
LEKAD	4	41,740	.205	.085	.82	1.300	.259
LEKDA	$\frac{4}{2}$	66,370	.205	.085	.88	1,490	.162
LEKEF		83,690	. 205	.085	.92	1,610	.129
LEKFE	1/0	105,500	. 205	.085	.96	1,750	.102
LEKHO	2/0	133,100	.205	.085	1.00	1.910	.0811
LEKIG	3/0	167,800	.205	.085	1.05	2.120	.0642
LEKOH	4/0	211,600	.205	.095	1.13	2,490	.0509
LEKUJ		250,000	.205	.095	1.18	2,710	.0431
LEKYK		300,000	. 205	.095	1.23	2,970	.0360
ELAF		350,000	.205	.095	1.29	3,220	.0308
LELEG		400,000	.205	.095	1.33	3,480	.0270
LELFA		500,000	. 205	.100	1.43	4,120	.0216
LELGE		600,000	.205	.100	1.51	4,600	.0180
LELJO		750,000	.205	.100	1.61	5,290	.0144
LELLY		1,000,000	.205	.110	1.79	6,610	.0108
LELOJ		1,250,000	.205	.110	1.92	7,700	
LELUK		1,500,000	.205	.115	2.06	9,000	.00863

SINGLE CONDUCTOR

(Grounded Neutral)

13,000 VOLTS

Code	Co B. & S.	nductor Size C.M.	Insulation Thick- ness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds / 1,000'	Average Resistance Ohms /1,000' @ 25°C.
LASLO LASNY LASOL LASUM LASYN	$\begin{array}{c} 6 \\ 4 \\ 2 \\ 1 \\ 1/0 \end{array}$	$\begin{array}{c} 26,250 \\ 41,740 \\ 66,370 \\ 83,690 \\ 105,500 \end{array}$.170 .170 .170 .170 .170	.080 .080 .085 .085 .085	.69 .74 .81 .85	940 1,070 1,340 1,460 1,600	.410 .259 .162 .129
LATAJ LATEK LATIL LATJA LATKE	2/0 3/0 4/0 · · ·	$133,100 \\ 167,800 \\ 211,600 \\ 250,000 \\ 300,000$. 170 . 170 . 170 . 170 . 170	.085 .085 .085 .095	.93 .98 1.04 1.11 1.16	$ \begin{array}{c} 1,770 \\ 1,960 \\ 2,200 \\ 2,540 \\ 2,790 \end{array} $.0811 .0642 .0509 .0431
LATMO LATPY LATYP LAUBT LAUFY	/:::: /::::	$350,000 \\ 400,000 \\ 500,000 \\ 600,000 \\ 750,000$.170 .170 .170 .170 .170	.095 .095 .095 .100	1.22 1.26 1.35 1.44 1.54	3,040 3,290 3,760 4,400 5,080	.0308 .0270 .0216 .0180
LAUGZ LAUHB		$\substack{1,000,000\\1,250,000\\1,500,000}$.170 .170 .170	.100 .110 .110	1.70 1.85 1.98	6,180 7,460 8,510	.0108 .00863 .00719

SINGLE CONDUCTOR

(Ungrounded Neutral)

Code	Co	nductor Size	Insula- tion Thick-	Lead Thick-	Overall Diam.,	Net Weight	Average Resistance
	B. & S.	C.M.	ness, Inches	ness, Inches	Inches	Pounds / 1,000'	Ohms /1,000 @ 25°C.
LELYL	6	26,250	.220	.085	.80	1,220	.410
LEMAG	4	41,740	.220	.085	.85	1,370	.259
LEMGA	$\frac{4}{2}$	66,370	. 220	.085	.91	1,540	.162
LEMHE		83,690	.220	.085	.95	1,670	
LEMIJ	1/0	105,500	.220	.085	.99	1,810	.129
LEMKO	2/0	133,100	.220	.085	1.03	1,980	
LEMMY	3/0	167,800	.220	.095	1.10	2,320	.0811
LEMOK	4/0	211,600	.220	.095	1.16		.0642
LEMUL		250,000	.220	.095	1.21	2,570	.0509
LENAH		300,000	.220	.095	1.26	2,780 3,040	.0431
LENHA		350,000	.220	.095			
LENIK		400,000	.220	.095	1.32	3,300	.0308
LENJE		500,000	.220	.100	1.36	3,560	.0270
LENLO		600,000	.220	.100	1.46	4,200	.0216
LENNY		750,000	.220	.100	1.54	4,690	.0180
Control State of the				.100	1.64	5,380	.0144
ENOL		1,000,000	.220	.110	1.82	6,710	0100
LENUM		1,250,000	.220	.110	1.95	7.800	.0108
LENYN		1,500,000	,220	.115	2.09	9,110	00863 00719

SINGLE CONDUCTOR

(Grounded Neutral)

14,000 VOLTS

26,250 41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000 300,000	. 190 . 190 . 190 . 190 . 190 . 190 . 190 . 190 . 190	.080 .085 .085 .085 .085 .085 .085 .095	.73 .79 .85 .89 .93 .97 1.02 1.10	1,020 1,230 1,420 1,540 1,690 1,850 2,050 2,420	.410 .259 .162 .129 .102 .0811 .0642 .0509
41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000	. 190 . 190 . 190 . 190 . 190 . 190 . 190 . 190	. 085 . 085 . 085 . 085 . 085 . 085 . 095	.79 .85 .89 .93 .97 1.02 1.10	1,230 1,420 1,540 1,690 1,850 2,050 2,420	.259 .162 .129 .102 .0811 .0642
66,370 83,690 105,500 133,100 167,800 211,600 250,000	.190 .190 .190 .190 .190 .190	.085 .085 .085 .085 .085 .095	.85 .89 .93 .97 1.02 1.10	1,420 1,540 1,690 1,850 2,050 2,420	$\begin{array}{c} .162 \\ .129 \\ .102 \\ .0811 \\ .0642 \end{array}$
83,690 105,500 133,100 167,800 211,600 250,000	.190 .190 .190 .190 .190 .190	.085 .085 .085 .085 .095	.89 .93 .97 1.02 1.10	1,540 1,690 1,850 2,050 2,420	.129 .102 .0811 .0642
105,500 133,100 167,800 211,600 250,000	.190 .190 .190 .190	.085 .085 .085 .095	.93 .97 1.02 1.10	1,690 1,850 2,050 2,420	. 102 . 0811 . 0642
$\begin{array}{c} 167,800 \\ 211,600 \\ 250,000 \end{array}$.190 .190 .190	.085 .095 .095	1.02 1.10	$2,050 \\ 2,420$.0811 .0642
$\begin{array}{c} 167,800 \\ 211,600 \\ 250,000 \end{array}$.190 .190 .190	.085 .095 .095	1.02 1.10	$2,050 \\ 2,420$.0642
$211,600 \\ 250,000$.190	.095	1.10	2,420	
250,000	.190	.095			
					.0431
300,000	.190	.095	1.20	$\frac{2,640}{2,890}$.0360
350 000	190	095	1 25		.0308
					.0308
					.0216
					.0180
750,000	.190	.100	1.58	5,200	.0144
1.000.000	190	110	1 76	6.510	.0108
					.00863
1,500,000	.190	.110	2.02		.00719
	1,000,000 1,250,000 1,500,000 DUCTOR	400,000 190 500,000 190 600,000 190 750,000 190 1,000,000 190 1,250,000 190 1,500,000 190	400,000 190 095 500,000 190 095 600,000 190 100 750,000 190 100 1,000,000 190 110 1,250,000 190 110 1,500,000 190 110	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	400,000

Code	Co. B. & S.	nductor Size	Insula- tion Thick- ness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds / 1,000'	Average Resistance Ohms /1,000 @ 25°C.
LEOBY	6	26,250	. 235	.085	.83	1,280	.410
LEOGD	4	41.740	.235	.085	.88	1,410	.259
LEOLJ	2	66,370	. 235	.085	.94	1,610	.162
LEORP	1	83,690	.235	.085	.98	1,730	.129
LEOVS	1/0	105,500	.235	.085	1.02	1,880	.102
LAOWT	2/0	133,100	.235	.085	1.06	2,060	.0811
LEPAJ	3/0	167,800	.235	.095	1.13	2,390	.0642
LEPEK	4/0	211,600	.235	.095	1.19	2,640	.0509
LEPIL		250,000	.235	.095	1.24	2,850	.0431
LEPJA		300,000	. 235	.095	1.29	3,120	.0360
LEPKE		350,000	.235	.095	1.35	3,380	.0308
LEPMO		400,000	.235	.095	1.39	3,640	.0270
LEPPY		500,000	.235	.100	1.49	4,290	.0216
LEPYP		600,000	.235	.100	1.57	4.780	.0180
LERAL		750,000	.235	.100	1.67	5,480	.0144
LEREM		1,000,000	.235	.110	1.85	6,810	.0108
LERLA		1,250,000	.235	.110	1.98	7.910	.00863
LERME		1,500,000	.235	.115	2.12	9,230	.00719

SINGLE CONDUCTOR

(Grounded Neutral)

15,000 VOLTS

Code		nductor Size C.M.	Insula- tion Thick- ness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds / 1,000'	Average Resistance Ohms/1,000 @ 25°C.
LAWRY	6	26,250	. 205	.080	.76	1.070	410
LAWYR	4	41,740	205	.085	.82	1,070	.410
LAYAM	4 2	66,370	.205	.085		1,300	.259
LAYEN	ī	83,690	205		. 88	1,480	.162
LAYIB	1/0	105,500		.085	. 92	1,610	.129
	1/0	100,000	. 205	.085	. 96	1,750	.102
LAYJD	2/0	133,100	. 205	.085	1.00	1,920	0011
LAYLG	3/0	167,800	.205	.085	1.05		.0811
LAYMA	4/0	211,600	.205	.095		2,120	.0642
LAYNE	-/-	250,000	.205		1.13	2,490	.0509
LAYSY	100	300,000		.095	1.18	2,700	.0431
	/-	300,000	. 205	.095	1.23	2,970	.0360
LAYUR	1. 372	350,000	. 205	.095	1.28	2 000	0000
LAYZT	/ / / / / /	400,000	.205	.095		3,220	.0308
LAZAN	1	500,000	.205		1.33	3,480	.0270
LAZEP		600,000		.100	1.43	4,120	.0216
LAZNA	/		.205	.100	1.51	4,600	:0180
DAZINA	• • •	750,000	. 205	.100	1.61	5,290	.0144
LAZOR	<i>(</i>)	1,000,000	.205	.110	1 70	0.010	0400
LAZPE	*	1,250,000			1.79	6,610	:0108
LAZRO			. 205	.110	1.92	7,700	.00863
LAZIO		1,500,000	. 205	.115	2.06	8,950	.00719

SINGLE CONDUCTOR

(Ungrounded Neutral)

Code		ductor	Insula- tion Thick- ness,	Lead Thick-	Overall Diam.,	Net Weight	Average Resistance
	B. & S.	C.M.	Inches	ness, Inches	Inches	Pounds / 1,000'	Ohms /1,000 @ 25°C.
LEROP	6	26,250	. 250	.085	.86	1,340	.410
LERPO	4	41,740	.250	.085	.91	1.480	.259
LARYR	4 2 1	66,370	.250	.085	.97	1.670	.162
LESAM	1	83,690	.250	.085	1.01	1,800	129
LESIP	1/0	105,500	.250	.085	1.05	1.950	.102
LESMA	2/0	133,100	.250	.095	1.11	2,250	.0811
LESNE	3/0	167,800	.250	.095	1.16	2,460	.0642
LESSY	4/0	211,600	.250	.095	1.22	2,720	
LESUR	7	250,000	.250	.095	1.27	2,930	.0509
LESYS		300,000	.250	.095	1.32	3,200	.0360
LETAN		350,000	.250	.095	1.38	3,460	
LETEP		400,000	.250	.100	1.43	3,880	.0308
LETNA		500,000	.250	.100	1.52	4,370	
LETOR		600,000	.250	.100	1.60	4.870	.0216
LETPE		750,000	.250	.100	1.70	5,570	.0180
LETRO		1,000,000	.250				
LETUS		1,250,000		.110	1.88	6,910	.0108
LETYT		1,500,000	$.250 \\ .250$.110	$\frac{2.01}{2.15}$	8,010 9,340	.00863

SINGLE CONDUCTOR

16,000 VOLTS

(Grounded Neutral)

Code	Conductor Size		Insula- tion Thick-	Lead Thick- ness.	Overall Diam.,	Net Weight Pounds/	Average Resistance
	B. & S.	C.M.	ness, Inches	Inches	Inches	1,000'	Ohms/ 1,000' @ 25°C.
NAACH	4	41,740	.205	.085	.82	1.300	.259
NAAFK	2	66,370	. 205	.085	.88	1,480	.162
NAAHM	1	83,690	.205	.085	.92	1,600	.129
NAAJN	1/0	105,500	. 205	.085	.96	1,750	.102
NAANS	2/0	133,100	. 205	.085	1.00	1,920	.0811
NAAPT	3/0	167,800	. 205	.085	1.05	2.120	.0642
NAASY	4/0	211,600	.205	.095	1.13	2,500	.0509
NAATZ		250,000	.205	.095	1.18	2,710	.0431
NAAVB		300,000	. 205	.095	1.23	2,980	.0360
NAAXD		350,000	. 205	.095	1.29	3,230	.0308
NABAG		400,000	.205	.095	1.33	3,490	.0270
NABGA		500,000	.205	.100	1.43	4,130	.0216
NABHE		600,000	.205	.100	1.51	4,600	.0180
NABIJ		750,000	.205	.100	1.61	5,300	.0144
NABKO		1.000,000	.205	.110	1.79	6,620	.0108

SINGLE CONDUCTOR

16,000 VOLTS

Code	Cond	uctor Size	Insula- tion Thick-	Lead Thick- ness,	Overall Diam.,	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000' @ 25°C.
	B. & S.	C.M.	ness, Inches	Inches	Inches		
NAVYH	4	41,740	.265	.085	.94	1,550	.259
NAWAC	2	66,370	.265	.085	1.00	1,740	.162
NAWCA	1	83,690	.265	.085	1.04	1,870	.129
NAWDE	1/0	105,500	. 265	.095	1.10	2,150	.102
NAWED	2/0	133,100	.265	.095	1.14	2,330	.0811
NAWGO	3/0	167,800	. 265	.095	1.19	2.540	.0642
NAWIF	4/0	211,600	.265	.095	1.25	2,800	.0509
NAWOG		250,000	.265	.095	1.30	3,020	.0431
NAWUH		300,000	.265	.095	1.35	3,280	.0360
NAWYJ		350,000	. 265	.100	1.42	3,720	.0308
NAYAD		400,000	. 265	.100	1.46	3,980	.0270
NAYDA		500,000	.265	.100	1.55	4,480	.0216
NAYEF		600,000	.265	.100	1.63	4,960	.0180
NAYFE		750,000	.265	.110	1.75	5,890	.0144
NAYHO		1,000,000	.265	.110	1.91	7,030	.0108

SINGLE CONDUCTOR

17,000 VOLTS

(Grounded Neutral)

Code	Condu B. & S.	ctor Size	Insula- tion Thick- ness,	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000'
			Inches	Control of			@ 25°C.
NABMY	4	41,740	.220	.085	.85	1,360	.259
NABOK	2	66,370	.220	.085	.91	1,550	.162
NABUL		83,690	.220	.085	.95	1,660	.129
NACAH	1/0	105,500	.220	.085	.99	1.810	.102
NACHA	2/0	133,100	.220	.085	1.03	1,980	.0811
NACIK	3/0	167,800	.220	.095	1.10	2,320	.0642
NACJE	4/0	211.600	.220	.095	1.16	2,580	.0509
NACLO	1. 1. 1. 1.	250,000	.220	.095	1.21	2,790	
NACOL		300,000	.220	.095	1.26	3,050	.0431
NACUM	./	350,000	.220	.095	1.32	3,310	$0360 \\ 0308$
NACYN	/	400,000	.220	.095	1.36	3,570	.0270
NADAJ	/	500,000	.220	.100	1.46	4.210	
NADEK	/	600,000	.220	.100	1.54	4,690	.0216
NADIL /		750,000	.220	.100	1.64	5,400	.0180
NADJA		1.000,000	.220	.110	1.82	6,730	.0144

SINGLE CONDUCTOR

17,000 VOLTS

Code	Conductor Size		Insula- tion Thick-	Lead Thick- ness.	Overall	Net Weight	Average Resistance
Code	B. & S.	C.M.	ness, Inches	Inches	Diam., Inches	Pounds/ 1,000'	Ohms/ 1,000′ @ 25°C.
NAYIG	4	41,740	.280	.085	.97	1,610	.259
NAYKY	2	66,370	.280	.085	1.03	1.800	.162
NAYNZ		83,690	.280	.085	1.07	1.930	.129
NAYOH	1/0	105,500	.280	.095	1.13	2,220	.102
NAYUJ	2/0	133,100	.280	.095	1.17	2,400	.0811
NAZAF	3/0	167,800	.280	.095	1.22	2,620	.0642
NAZEG	4/0	211,600	.280	.095	1.28	2,880	.0509
NAZFA		250,000	.280	.095	1.33	3,100	.0431
NAZGE		300,000	.280	.095	1.38	3,370	.0360
NAZJO		350,000	.280	.100	1.45	3,800	.0308
NAZLY		400,000	.280	.100	1.49	4.070	.0270
NAZOJ		500,000	.280	.100	1.58	4.570	.0216
NAZUK		600,000	.280	.100	1.66	5.060	.0180
NAZYL		750,000	.280	.110	1.78	5,990	.0144
NEAHR		1,000,000	.280	.110	1.94	7.140	.0108

SINGLE CONDUCTOR

18,000 VOLTS

(Grounded Neutral)

Code	Condu B. & S.	C.M.	Insula- tion Thick- ness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000' @ 25°C.
NADKE		41.740	007	005	00	1 100	
NADMO	4 2 1	66.370	.235	.085	. 88	1,420	.259
NADYP	í	83.690	.235	.085	.94	1,610	.162
NAEGM	1/0	105,500	.235	.085		1,730	.129
NAEJP	2/0	133,100	235	.085	1.02	1,880	.102
ALDI	2/0	100,100	. 233	.085	1.06	2,050	.0811
NAEMS	3/0	167.800	.235	.095	1.13	2,390	.0642
NAENT	4/0	211,600	.235	.095	1.19	2,650	.0509
VAERY		250,000	.235	.095	1.24	2,860	.0431
NAEWD		300,000	.235	.095	1.29	3.130	.0360
NAFAK		350,000	.235	.095	1.35	3,390	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		000,000	. 200	.033	1.55	3,390	.0308
NAFEL		400,000	.235	.095	1.39	3,650	.0270
NAFKA		500,000	.235	.100	1.49	4,300	.0216
NAFLE		600,000	.235	.100	1.57	4.780	
NAFNO		750,000	.235	.100	1.67	5,490	.0180
NAFON	100	1.000,000	.235	.110	1.85	6,830	.0144

SINGLE CONDUCTOR

18,000 VOLTS

Code	Conductor Size		Insula- tion	Lead Thick-	Overall	Net Weight	Average Resistance
	B. & S.	C.M.	Thick- ness, Inches	ness, Inches	Diam., Inches	Pounds/ 1,000'	Ohms/ 1,000′ @ 25°C.
NAYIG	4	41,740	.280	.085	.97	1,610	. 259
NAYKY	2	66,370	.280	.085	1.03	1,800	.162
NAYNZ		83,690	.280	.085	1.07	1,930	.129
NAYOH	1/0	105,500	.280	.095	1.13	2,220	.102
NAYUJ	2/0	133,100	.280	.095	1.17	2,400	.0811
NAZAF	3/0	167,800	.280	.095	1.22	2,620	.0642
NAZEG	4/0	211,600	.280	.095	1.28	2,880	.0509
NAZFA		250,000	.280	.095	1.33	3.100	.0431
NAZGE		300,000	.280	.095	1.38	3,370	.0360
NAZJO		350,000	.280	.100	1.45	3,800	.0308
NAZLY	646.0	400,000	.280	.100	1.49	4.070	.0270
NAZOJ		500,000	.280	.100	1.58	4,570	.0216
NAZUK		600,000	.280	.100	1.66	5.060	.0180
NAZYL	0.96.0	750,000	.280	.110	1.78	5,990	.0144
NEAHR	46.0	1,000,000	.280	.110	1.94	7,140	.0108

SINGLE CONDUCTOR

19,000 VOLTS

(Grounded Neutral)

Code	Cond B. & S.	uctor Size C.M.	Insula- tion Thick- ness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000' @ 25°C.
MADIE							
NADKE	2	41,740	.235	.085	.88	1,420	.259
NADMO	2	66,370	. 235	.085	. 94	1,610	.162
NADYP		83,690	. 235	.085	.98	1.730	.129
NAEGM	1/0	105,500	. 235	.085	1.02	1.880	.102
NAEJP	2/0	133,100	. 235	.085	1.06	2,050	.0811
NAEMS	3/0	167,800	.235	.095	1.13	2,390	.0642
NAENT	4/0	211,600	.235	.095	1.19	2,650	.0509
NAERY	./.	250,000	. 235	.095	1.24	2,860	.0431
NAEWD	/	300,000	.235	.095	1.29	3.130	.0360
NAFAK	1	350,000	.235	.095	1.35		
	/	330,000	. 200	.099	1.33	3,390	.0308
NAFEL	/	400,000	.235	.095	1.39	3,650	.0270
NAFKA		500,000	.235	.100	1.49	4.300	.0216
NAFLE	4	600,000	.235	.100	1.57	4.780	.0180
NAFNO		750,000	.235	.100	1.67	5,490	
NAFON		1.000,000	.235	.110	1.85	6.830	.0144

SINGLE CONDUCTOR

19,000 VOLTS

Code	Cond	Conductor Size		Lead Thick-	Overall	Net Weight	Average Resistance
Code	B. & S.	C.M.	Thick- ness, Inches	ness, Inches	Diam., Inches	Pounds/ 1,000'	Ohms/ 1,000' @ 25°C.
NEAJS	4	41,740	. 295	.085	1.00	1,680	.259
NEAKT	2	66,370	.295	.085	1.06	1.870	.162
NEALV	1	83,690	. 295	.095	1.12	2.130	.129
NEANY	1/0	105,500	.295	.095	1.16	2,290	.102
NEAPZ	2/0	133,100	. 295	.095	1.20	2,480	.0811
NEARC	3/0	167.800	.295	.095	1.25	2,690	.0642
NEASD	4/0	211,600	.295	.095	1.31	2,960	.0509
NEAVG	1.44	250,000	.295	.095	1.36	3,170	.0431
NEAZK		300,000	.295	.100	1.42	3.620	.0360
NEBAL		350,000	.295	.100	1.48	3,890	.0308
NEBEM		400,000	.295	.100	1.52	4.160	.0270
NEBLA		500,000	.295	.100	1.61	4.660	.0216
NEBME		600,000	.295	.100	1.69	5,150	.0180
NEBOP		750,000	.295	.110	1.82	6,090	.0144
NEBPO	196 100 100	1,000,000	295	.110	1.98	7,240	.0108

SINGLE CONDUCTOR

20,000 VOLTS

(Grounded Neutral)

Code	Cond	uctor Size	Insula- tion Thick-	Lead Thick- ness.	Overall Diam.,	Net Weight	Average Resistance
	B. & S.	C.M.	ness, Inches	Inches	Inches	Pounds/ 1,000'	Ohms/ 1,000' @ 25°C.
NAFUP	2	66,370	.250	.085	.97	1.670	.162
NAGAL	1	83,690	. 250	.085	1.01	1.800	.129
NAGEM	1/0	105,500	. 250	.085	1.05	1.950	.102
NAGLA	2/0	133,100	. 250	.095	1.11	2,250	.0811
NAGME	3/0	167,800	. 250	.095	1.16	2,470	.0642
NAGOP	4/0	211,600	. 250	.095	1.22	2,730	.0509
NAGYR		250,000	. 250	.095	1.27	3.050	.0431
NAHAM		300,000	.250	.095	1.32	3,220	.0360
NAHIP		350,000	. 250	.095	1.38	3,470	.0308
NAHMA		400,000	.250	.100	1.43	3,890	.0270
NAHNE		500,000	.250	.100	1.52	4,390	.0216
NAHUR		600,000	.250	.100	1.60	4.880	.0180
NAHYS		750,000	.250	.100	1.70	5,580	.0144
NAICK		1,000,000	. 250	.110	1.88	6,930	.0108

SINGLE CONDUCTOR

20,000 VOLTS

Code	Cond	uctor Size	Insula- tion Thick- ness, Inches	Lead Thick-	Overall	Net Weight	Average Resistance
Code	B. & S.	C.M.		ness, Inches	Diam., Inches	Pounds/ 1,000'	Ohms/ 1,000' @ 25°C.
NEAKT	2	66,370	.295	.085	1.06	1,870	. 162
NEALV	1	83,690	. 295	.095	1.12	2,130	.129
NEANY	1/0	105,500	. 295	.095	1.16	2,290	.102
NEAPZ	2/0	133,100	. 295	.095	1.20	2,480	.0811
NEARC	3/0	167,800	. 295	.095	1.25	2,690	.0642
NEASD	4/0	211,600	.295	.095	1.31	2,960	.0509
NEAVG		250,000	. 295	.095	1.36	3.170	.0431
NEAZK		300,000	. 295	.100	1.42	3,620	.0360
NEBAL	• • • • •	350,000	. 295	.100	1.48	3,890	.0308
NEBEM		400,000	.295	.100	1.52	4.160	.0270
NEBLA		500,000	.295	.100	1.61	4,660	
NEBME		600,000	.295	.100	1.69	5,150	.0216
NEBOP		750,000	.295	.110	1.82	6.090	.0180
NEBPO		1,000,000	.295	.110	1.98	7,240	.0144

SINGLE CONDUCTOR

(Grounded Neutral)

21,000 VOLTS

Code	Conductor Size		Insula- tion Thick-	Lead Thick- ness.	Overall	Net Weight	Average Resistance
	B. & S.	C.M.	ness, Inches	Inches	Diam., Inches	Pounds/ 1,000'	Ohms/ 1,000′ @ 25°C.
NAFUP	2 .	66.370	. 250	.085	. 97	1.070	400
NAGAL	2 /	83,690	.250	.085	1.01	1,670	.162
NAGEM	1/0	105,500	.250	.085	1.05	1,800	.129
NAGLA	2/0	133,100	.250	.095	1.11	$\frac{1,950}{2,250}$.102
NAGME	3/0	167,800	. 250	.095	1.16	2,470	.0811 $.0642$
MAGOD	4 10	011 000				_,_,	.0012
NAGOP	4/0	211,600	. 250	.095	1.22	2.730	.0509
NAGYR	./	250,000	. 250	.095	1.27	3,050	.0431
NAHAM	1	300,000	. 250	. 095	1.32	3,220	.0360
NAHIP	1	350,000	. 250	.095	1.38	3,470	.0308
NAHMA	1	400,000	. 250	. 100	1.43	3,890	.0270
NAHNE	/	500,000	.250	.100	1.52	4 000	
NAHUR	1.1.1	600,000	.250	.100		4,390	.0216
NAHYS	1.1.	750,000	.250	.100	1.60	4,880	.0180
NAICK		1.000,000	.250		1.70	5,580	.0144
1,111011		1,000,000	. 250	.110	1.88	6,930	.0108

SINGLE CONDUCTOR

21,000 VOLTS

Code	Condo	C.M.	Insulation Thickness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000'
			THOROS				@ 25°C.
NEPRY	2	66,370	.315	.095	1.12	2.000	100
NEPYR	1	83,690	.315	.095	1.16	2,090	.162
NECAM	1/0	105,500	.315	.095	1.20	2,230	.129
NECEN	2/0	133,100	.315	.095	1.24	2,390	.102
NECIP	3/0	167,800	.315	.095	1.29	2,580	.0811
		101,000	.010	.000	1.29	2,780	.0642
NECNE	4/0	211,600	.315	.095	1.35	2 000	0.00
NECSY		250,000	.315	.100	1.41	3,060	. 0509
NECUR		300,000	.315	.100		3,450	.0431
NECYS		350,000	.315	.100	1.46	3,730	.0360
NEDAN		400,000	.315	.100	1.52	4,010	.0308
		100,000	.010	.100	1.56	4,270	.0270
NEDEP	1	500,000	.315	.100	1 00	4 500	
NEDNA		600,000	.315		1.65	4,780	.0216
NEDOR		750,000		.110	1.75	5,490	.0180
NEDPE	• • •		.315	.110	1.85	6,230	.0144
KEDPE		1,000,000	.315	.110	2.01	7.380	.0108

SINGLE CONDUCTOR

22,000 VOLTS

(Grounded Neutral)

Code	Conductor Size		Insula- tion	Lead Thick-	Overall	Net Weight	Average Resistance
Code	B. & S.	C.M.	Thick- ness, Inches	ness, Inches	Diam., Inches	Pounds/ 1,000'	Ohms/ 1,000′ @ 25°C.
NAIGN	2	66,370	. 265	.085	1.00	1.740	.162
NAIRZ	1	83,690	. 265	.085	1.04	1.870	.129
NAJAN	1/0	105,500	. 265	.095	1.10	2,150	102
NAJEP	2/0	133,100	. 265	.095	1.14	2,330	.0811
NAJNA	3/0	167,800	. 265	.095	1.19	2,540	.0642
NAJOR	4/0	211.600	. 265	.095	1.25	2.800	.0509
NAJPE		250,000	. 265	.095	1.30	3,020	.0431
NAJRO		300,000	. 265	.095	1.35	3,280	.0360
NAJTY		350,000	. 265	.100	1.42	3,720	.0308
NAJUS		400,000	. 265	. 100	1.46	3,980	.0270
NAJYT		500.000	. 265	.100	1.55	4,480	.0216
NAKAP		600,000	.265	.100	1.63	4.960	.0180
NAKIR	100000	750,000	. 265	.110	1.75	5,890	.0144
NAKOS	100	1,000,000	.265	.110	1.91	7.030	.0108

SINGLE CONDUCTOR

22,000 VOLTS

Code	Condu B. & S.	C.M.	Insulation Thick- ness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000' @ 25°C.
NEDRO	/ 2	66,370	.330	.095	1.15	2,160	100
NEDUS	/ 1 ·	83,690	.330	.095	1.19	2,300	. 162
NEDYT	1/0	105,500	.330	.095	1.23	2,470	.129
NEEJT	2/0	133,100	.330	.095	1.27		.102
NEEMY	3/0	167,800	.330	.095	1.32	2,660	.0811
	0,0	101,000	.000	.000	1.02	2,870	.0642
NEENZ	4/0	211,600	.330	.095	1.38	3.140	0700
NEERD	7	250,000	.330	.100	1.44		.0509
NEEWJ		300,000	.330	.100	1.49	3,540	.0431
NEFAP .	2000	350,000	.330	.100	1.55	3,820	.0360
NEFIR		400,000	.330	.100	1.59	4,090	.0308
1,131,110		400,000	.000	.100	1.59	4,370	.0270
NEFOS	100.00	500,000	.330	. 100	1 00	4 000	
NEFPA	100	600,000	.330	.110	1.68	4,880	.0216
NEFSO					1.78	5,590	.0180
NEFUT		750,000	.330	.110	1.88	6,330	.0144
TABLUI	:	1,000,000	.330	.115	2.08	7,740	.0108

SINGLE CONDUCTOR

23,000 VOLTS

(Grounded Neutral)

Code	Cond	uctor Size	Insula- tion Thick-	tion Thick-		Net Weight Pounds/	ght Resistance	
	B. & S.	C.M.	ness, Inches	Inches	Diam., Inches	1,000′	Ohms/ 1,000′ @ 25°C.	
NAIGN	2	66,370	. 265	.085	1.00	1,740	.162	
NAIRZ	$\frac{2}{1}$	83,690	. 265	.085	1.04	1.870	.129	
NAJAN	1/0	105,500	. 265	.095	1.10	2,150	.102	
NAJEP	2/0	133,100	. 265	.095	1.14	2,330	.0811	
NAJNA	3/0	167,800	. 265	.095	1.19	2,540	.0642	
NAJOR	4/0	211,600	. 265	. 095	1.25	2,800	.0509	
NAJPE	11/4	250,000	.265	.095	1.30	3,020	.0431	
NAJRO		300,000	. 265	.095	1.35	3,280	.0360	
NAJTY	/	350,000	.265	.100	1.42	3,720	.0308	
NAJUS	1	400,000	. 265	.100	1.46	3,980	.0270	
NAJYT	/	500,000	. 265	.100	1.55	4.480	.0216	
NAKAP/	1.7	600,000	.265	.100	1.63	4.960	.0180	
NAKIR	7	750,000	.265	.110	1.75	5,890	.0180	
NAKOS		1,000,000	.265	.116	1.91	7,030	.0108	

SINGLE CONDUCTOR

23,000 VOLTS

Code	Conductor Size		Insula- tion	Lead Thick-	Overall	Net Weight	Average Resistance
	B. & S.	C.M.	Thick- ness, Inches	ness, Inches	Diam., Inches	Pounds/ 1,000'	Ohms/ 1,000′ @ 25°C.
NEFVY	2	66,370	.345	.095	1.18	2,240	.162
NEFYV	1	83,690	.345	.095	1.22	2,380	.129
NEGTO	1/0	105,500	.345	.095	1.26	2,550	.102
NEGUV	2/0	133,100	.345	.095	1.30	2,730	.0811
NEGWY	3/0	167,800	.345	.095	1.35	2,950	.0642
NEHAR	4/0	211,600	.345	.100	1.42	3.390	.0509
NEHIT	To be a second	250,000	.345	.100	1.47	3,620	.0431
NEHOV		300,000	.345	. 100	1.52	3,910	.0360
NEHRA		350,000	.345	.100	1.58	4,190	.0308
NEHSE		400,000	.345	.100	1.62	4,460	.0270
NEHVO		500,000	.345	.110	1.73	5.180	.0216
NEHYX		600,000	. 345	.110	1.81	5,690	.0180
NEIGS	12.	750,000	.345	.110	1.91	6,430	.0144
NEIRF		1,000,000	.345	.115	2.08	7,850	.0108

SINGLE CONDUCTOR

24,000 VOLTS

(Grounded Neutral)

Code	Cond B. & S.	uctor Size	Insula- tion Thick- ness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000'
-			Inches				@ 25°C.
NAKPA	2	66,370	.280	.085	1.03	1.800	.162
NAKSO		83,690	.280	.085	1.07	1.930	.129
NAKUT	1/0	105,500	.280	.095	1.13	2,220	.102
NAKVY	2/0	133,100	.280	.095	1.17	2,400	.0811
NAKYV	3/0	167,800	.280	. 095	1.22	2,620	.0642
NALER	4/0	211,600	.280	.095	1.28	2.880	.0509
NALRE	The second	250,000	.280	.095	1.33	3,100	.0431
NALTO		300,000	.280	.095	1.38	3,370	.0360
NALUV		350,000	.280	.100	1.45	3,800	.0308
NALWY		400,000	.280	.100	1.49	4,070	.0270
NAMAR		500,000	.280	.100	1.58	4.570	.0216
NAMIT	100000000000000000000000000000000000000	600,000	.280	.100	1.66	5,060	.0180
NAMOV		750,000	.280	.110	1.78	5,990	.0144
NAMRA		1,000,000	.280	.110	1.94	7,140	.0108

SINGLE CONDUCTOR

24,000 VOLTS

Code	Condo	C.M.	Insula- tion Thick- ness,	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000'
			Inches				@ 25°C
NEFVY	2	66,370	.345	.095	1.18	2,240	100
NEFYV	$-\frac{2}{1}$	83,690	.345	.095	1.22	2,380	.162
NEGTO	1/0	105,500	.345	.095	1.26	2,550	.129
NEGUV	2/0	133,100	.345	.095	1.30	2,730	.102
NEGWY	3/0	167.800	.345	.095	1.35	2,730	.0811
	.0,0	101,000	.010	.000	1.00	2,950	.0642
NEHAR	4/0	211,600	.345	.100	1.42	3.390	.0509
NEHIT		250,000	.345	.100	1.47	3,620	.0431
NEHOV	0.0	300,000	.345	.100	1.52	3,910	
NEHRA		350,000	.345	.100	1.58	4.190	.0360
NEHSE	120.00	400,000	.345	.100	1.62	4,190	.0308
		100,000	.010	.100	1.02	4,400	.0270
NEHVO	14111	500,000	.345	.110	1.73	5,180	0016
NEHYX	11.00	600,000	.345	.110	1.81	5,690	.0216
NEIGS	10.2.1	750,000	.345	.110	1.91	6,430	.0180
NEIRF		1,000,000	.345	.115	2.08	7,850	.0144

SINGLE CONDUCTOR

25,000 VOLTS

(Grounded Neutral)

Code		Conductor Size B. & S. C.M.		Thick- ness	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000' @ 25°C.
NAKPA	2	66,370	.280	. 085	1.03	1.800	100
NAKSO		83,690	.280	.085	1.07	1,930	.162
NAKUT	1/0	105,500	.280	.095	1.13	2,220	.129
NAKVY	2/0	133,100	.280	.095	1.17	2,400	.102
NAKYV	3/0	167,800	.280	.095	1.22	2,620	.0811 $.0642$
NALER	4/0	211,600	.280	.095	1 00		
NALRE		250,000	.280	.095	1.28	2,880	.0509
NALTO		300,000	.280		1.33	3,100	.0431
NALUV	./.	350,000	.280	.095	1.38	3,370	.0360
NALWY	7::	400,000		.100	1.45	3,800	.0308
	/	400,000	.280	.100	1.49	4,070	.0270
NAMAR	/	500,000	.280	.100	1.58	4 550	
NAMIT	/	600,000	.280	.100		4,570	.0216
NAMOV		750,000	.280	.110	1.66	5,060	.0180
NAMRA		1,000,000	.280	.110	1.78	5,990	.0144
	The State of the S	2,000,000	.200	.110	1.94	7,140	.0108

SINGLE CONDUCTOR

25,000 VOLTS

Code	Condu	ctor Size	Insula- tion Thick-	Lead Thick- ness,	Overall Diam.,	Net Weight	Average Resistance
	B. & S.	C.M.	ness, Inches	Inches	Inches	Pounds/ 1,000'	Ohms/ 1,000' @ 25°C.
NEITH	2	66,370	.360	.095	1.21	0.040	
NEIZM	1	83,690	.360	.095	1.25	2,310	.162
NEJAS	1/0	105,500	.360	.095	1.29	2,450	.129
NEJET	2/0	133,100	.360	.095		2,620	. 102
NEJIV	3/0	167,800	.360	.095	$\frac{1.33}{1.38}$	2,810	.0811
			.000	.000	1.00	3,030	.0642
NEJSA	4/0	211,600	.360	. 100	1.45	9 990	
NEJTE		250,000	.360	.100	1.50	3,380	.0509
NEJUX		300,000	.360	.100	1.55	3,700	.0431
NEJWO		350,000	.360	.100	1.61	3,890	.0360
NEJZY		400,000	.360	.100	1.65	4,270	.0308
			.000	.100	1.00	4,550	.0270
NEKAT		500,000	.360	.110	1.76	F 000	
NEKEV		600,000	.360	.110		5,280	.0216
NEKOY		750,000	.360	110	1.84	5,790	.0180
NEKTA		1,000,000	.360		1.94	6,540	.0144
****	S. From	-,000,000	.000	.115	2.11	8,000	.0108

SINGLE CONDUCTOR

26,000 VOLTS

(Grounded Neutral)

Code	Condu	actor Size	Insula- tion Thick-	Lead Thick- ness.	Overall Diam	Net Weight Pounds/	Average
Code	B. & S.	C.M.	ness, Inches	Inches	Inches	1,000′	Ohms/ 1,000' @ 25°C.
NAMSE	2	66,370	. 295	.085	1.06	1.870	.162
NAMVO		83,690	. 295	.095	1.12	2,136	.129
NAMYX	1/0	105,500	. 295	.095	1.16	2,290	.102
NANAS	2/0	133,100	. 295	.095	1.20	2,480	.0811
NANET	3/0	167,800	. 295	. 095	1.25	2,690	/.0642
NANIV	4/0	211,600	.295	.095	1.31	2,960	.0509
NANSA		250,000	. 295	.095	1.36	3,170	.0431
NANTE	12.7	300,000	. 295	.100	1.42	3,620	.0360
NANUX		350,000	.295	.100	1.48	3.890	.0308
NANZY		400,000	. 295	.100	1.52	4,160	.0270
NAOKS		500,000	. 295	.100	1.61	4,660	.0216
NAOLT		600,000	.295	.100	1.69	5.150	.0180
NAOPY	1000	750,000	.295	.110	1.82	6.090	.0144
NAORB		1,000,000	.295	.110	1.98	7,240	.0108

SINGLE CONDUCTOR

26,000 VOLTS

Code	Cond	uctor Size	Insula- tion Thick-	Lead Thick- ness,	Overall Diam.,	Net Weight	Average Resistance
Code	B. & S.	C.M.	ness, Inches	Inches	Inches	Pounds/ 1,000'	Ohms/ 1,000′ @ 25°C.
NEKUZ	2	66,370	.375	.095	1.24	2,390	.162
NEKVE		83,690	.375	.095	1.28	2,530	.129
NEKVO	1/0	105,500	.375	.095	1.33	2,700	.102
NELAV	2/0	133,100	.375	.095	1.36	2,890	.0811
NELCY	3/0	167,800	.375	.100	1.42	3,280	.0642
NELIX	4/0	211,600	.375	.100	1.48	3,560	.0509
NELOZ		250,000	:375	.100	1.53	3,790	.0431
NELUB		300,000	.375	.100	1.58	4,090	.0360
NELVA		350,000	.375	.100	1.64	4.370	.0308
NELWE	• • •	400,000	.375	.100	1.68	4,640	.0270
NELZO		500,000	.375	.110	1.79	5,370	.0216
NEMBO		600,000	.375	.110	1.87	5.900	.0180
NEMIZ	3.52	750,000	.375	.110	1.97	6,640	.0144
NEMOB	1.0	1,000,000	.375	.115	2.14	8.070	.0108

SINGLE CONDUCTOR

27,000 VOLTS

(Grounded Neutral)

Code	Condo	C.M.	Insulation Thick- ness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000' @ 25°C.
NAMSE	2 /	66,370	.295	.085	1.06	1,870	.162
NAMVO		83,690	. 295	.095	1.12	2.130	.102
NAMYX	1/0	105,500	. 295	.095	1.16	2,290	.102
NANAS	2/0	133,100	. 295	.095	1.20	2,480	.0811
NANET	3/0	167,800	. 295	.095	1.25	2,690	.0642
NANIV	4/0	211,600	. 295	.095	1 91	0.000	
NANSA	./	250,000	.295	.095	1.31	2,960	.0509
NANTE	4	300,000	.295	.100	1.36	3,170	.0431
NANUX	/	350,000	.295	.100	1.42	3,620	.0360
NANZY	/	400,000	.295	.100	1.48	3,890	.0308
	/	100,000	. 200	.100	1.52	4,160	.0270
NAOKS /		500,000	. 295	100			
NAOLT		600,000		.100	1.61	4,666	.0216
NAOPY		750,000	.295	.100	1.69	5,150	.0180
NAORB			. 295	.110	1.82	6,090	.0144
LILOIUB		1,000,000	. 295	.110	1.98	7,240	.0108

SINGLE CONDUCTOR

27,000 VOLTS

Code	Cond B. & S.	C.M.	Insulation Thickness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000' @ 25°C.
NEMUC	2	66,370	.390	.095	1.27	2,460	.162
NEMWA	1	83,690	.390	. 095	1.31	2,590	.129
NEMYE	1/0	105,500	.390	.095	1.35	2.780	.102
NENAY	2/0	133,100	.390	.095	1.39	2,970	.0811
NENCO	3/0	167,800	.390	.100	1.45	3,370	.0642
NENEZ	4/0	211,600	.390	.100	1.51	9.050	
NENIB		250,000	.390	.100	1.56	3,650	.0509
NENOC		300,000	.390	.100	1.61	$\frac{3,890}{4,170}$.0431
NENUD		350,000	.390	.100	1.67	4,170	.0360
NENYA		400,000	.390	.110	1.73	4,950	0.0308 0.0270
NENZE		****				1,000	.0270
		500,000	.390	.110	1.82	5,480	.0216
NEOFS		600,000	.390	.110	1.90	6,000	.0180
NEOGT		750,000	.390	.110	2.00	6,750	.0144
NEOHV		1,000,000	.390	.115	2.17	8.180	.0108

SINGLE CONDUCTOR

28,000 VOLTS

(Grounded Neutral)

Code	Conductor Size		Insula- tion	Lead Thick-	Overall	Net Weight	Average Resistance
	B. & S.	C.M.	Thick- ness, Inches	ness, Inches	Diam., Inches	Pounds/ 1,000'	Ohms/ 1,000′ @ 25°C.
NAOSC	1	83,690	.315	.095	1.16	2,230	.129
NAOWG	1/0	105,500	.315	.095	1.20	2,390	.102
NAPAT	2/0	133,100	.315	.095	1.24	2,580	.0811
NAPEV	3/0	167,800	.315	.095	1.29	2,780	.0642
NAPOY	4/0	211,600	.315	.095	1.35	3,060	.0509
NAPTA	and the second	250,000	.315	.100	1.41	3,450	.0431
NAPUZ		300,000	.315	.100	1.46	3,730	.0360
NAPVE		350,000	.315	.100	1.52	4.010	.0308
NAPYO		400,000	.315	.100	1.56	4,270	.0270
NARBO	• • •	500,000	.315	.100	1.65	4,780	.0216
NARIZ		600,000	.315	.110	1.75	5.490	.0180
NAROB		750,000	.315	.110	1.85	6,230	.0144
NARUC		1,000,000	.315	.110	2.01	7.380	.0108

SINGLE CONDUCTOR

28,000 VOLTS

Code	Conductor Size		Insula- tion	Lead Thick-	Overall	Net Weight	Average Resistance
Code	B. & S.	C.M.	Thick- ness, Inches	ness, Inches	Diam., Inches	Pounds/ 1,000'	Ohms/ 1,000′ @ 25°C.
NEOKY	1	83,690	.405	.095	1.34	2,680	.129
NEOLZ	1/0	105,500	.405	.095	1.38	2,850	.102
NEONC	2/0	133,100	. 405	.100	1.43	3,220	.0811
NEORG	3/0	167,800	.405	. 100	1.48	3,450	.0642
NEOSH	4/0	211,600	.405	.100	1.54	3,740	.0509
NEOVK		250,000	. 405	.100	1.59	3,970	.0431
NEOWL		300,000	. 405	.100	1.64	4.250	.0360
NEOZN		350,000	.405	.100	1.70	4.550	.0308
NEPAZ		400,000	.405	.110	1.76	5.040	.0270
NEPBE		500,000	. 405	.110	1.85	5,570	.0216
NEPEB	(913.)	600,000	.405	.110	1.93	6.100	.0180
NEPGY	100	750,000	.405	.115	2.04	7,100	.0144
NEPIC		1,000,000	.405	.115	2.20	8.390	.0108

SINGLE CONDUCTOR

(Grounded Neutral)

29,000 VOLTS

Code	Condo	C.M.	Insulation Thickness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000' @ 25°C.
NARWA NARYE NASAY NASCO	1 1/0 2/0 3/0	83,690 105,500 133,100 167,800	.330 .330 .330 .330	.095 .095 .095 .095	1.19 1.23 1.27 1.32	2,300 2,470 2,660 2,870	.129 .102 .0811 .0642
NASEZ NASIB NASOC NASUD	4/0	211,600 250,000 300,000	.330 .330	.100	1.38 1.44 1.49	3,140 3,540 3,820	.0509
NASYA NASZE NATAZ	<i>j</i>	350,000 400,000 500,000	.330 .330 .330	.100 .100 .100	1.55 1.59 1.68	4,090 4,370 4,880	.0308 .0270 .0216
NATES NATES		600,000 750,000 1,000,000	.330 .330 .330	.110 .110 .115	1.78 1.88 2.08	5,590 6,330 7,740	.0180 .0144 .0108

SINGLE CONDUCTOR

29,000 VOLTS

Code	Cond B. & S	luctor Size	Insulation Thickness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000' @ 25°C.
NEPOD NEPUF NEPYG NEPZA NERCA	$1 \\ 1/0 \\ 2/0 \\ 3/0 \\ 4/0$	83,690 105,500 133,100 167,800 211,600	.420 .420 .420 .420 .420	.095 .100 .100 .100	1.37 1.42 1.46 1.51 1.57	2,760 3,110 3,300 3,540 3,830	. 129 . 102 . 0811 . 0642 . 0509
NERDE NERED NERGO NERIF NEROG	: : : :	250,000 300,000 350,000 400,000 500,000	.420 .420 .420 .420 .420	.100 .100 .110 .110 .110	1.62 1.67 1.75 1.79 1.88	4,080 4,340 4,840 5,140 5,680	.0431 .0360 .0308 .0270 .0216
NERUH NERYJ NESAD		$\begin{array}{c} 600,000 \\ 750,000 \\ 1,000,000 \end{array}$.420 .420 .420	.110 .115 .115	1.96 2.07 2.23	6,210 7,210 8,410	.0180 .0144 .0108

SINGLE CONDUCTOR

30,000 VOLTS

(Grounded Neutral)

Code	Condu B. & S.	C.M.	Insulation Thickness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000' @ 25°C.
NARWA	1	83,690	.330	.095	1.19	2,300	.129
NARYE	1/0	105,500	.330	.095	1.23	2,470	.102
NASAY	2/0	133,100	.330	.095	1.27	2,660	.0811
NASCO	3/0	167,800	.330	. 095	1.32	2,870	.0642
NASEZ	4/0	211,600	.330	.095	1.38	3,140	.0509
NASIB	100	250,000	.330	.100	1.44	3,540	.0431
NASOC		300,000	.330	.100	1.49	3,820	.0360
NASUD		350,000	.330	.100	1.55	4.090	.0308
NASYA		400,000	.330	.100	1.59	4.370	.0270
NASZE		500,000	. 330	. 100	1.68	4,880	.0216
NATAZ	E SERVICE	600,000	.330	.110	1.78	5.590	.0180
NATDO		750,000	.330	.110	1.88	6,330	.0144
NATEB		1,000,000	.330	.115	2.08	7.740	.0108

SINGLE CONDUCTOR

30,000 VOLTS

Code	Condu	ictor Size	Insula- tion Thick-	Lead Thick- ness.	Overall Diam.,	Net Weight Pounds/	Average Resistance Ohms/
3000	B. & S.	C.M.	ness, Inches	Inches	Inches	1,000′	1,000′ @ 25°C.
NEPOD NEPUF	1 1/0	83,690	.420	.095	1.37	2,760	.129
NEPYG NEPZA	$\frac{2}{0}$	105,500 $133,100$ $167,800$	$ \begin{array}{r} .420 \\ .420 \\ .420 \end{array} $.100 .100 .100	$1.42 \\ 1.46 \\ 1.51$	$3,110 \\ 3,300 \\ 3,540$.102
NERCA	4/0	211,600	.420	.100	1.57	3,830	0.0642 0.0509
NERDE NERED	::::	250,000 300,000	$.420 \\ .420$.100 .100	$\frac{1.62}{1.67}$	4,080 4,340	0.0431 0.0360
NERGO NERIF		350,000 400,000	.420	.110	1.75	4,840 5,140	.0308
NEROG		500,000	.420	.110	1:88	5,680	.0216
NERUH NERYJ		600,000 750,000	.420	.110	$\frac{1.96}{2.07}$	$\frac{6,210}{7,210}$.0180
NESAD		1,000,000	.420	.115	2.23	8,410	.0108

SINGLE CONDUCTOR

31,000 VOLTS

(Grounded Neutral)

Code	Conductor Size		Insula- Lead tion Thick-		Overall	Net Weight	Average Resistance
	B. & S.	C.M.	Thick- ness, Inches	ness, Inches	Diam., Inches	Pounds/ 1,000'	Ohms/ 1,000′ @ 25°C.
NATGY	1/0	105,500	.345	.095	1.26	2,550	100
NATIC	2/0	133,100	.345	.095	1.30	2,730	.102
NATOD	3/0	167,800	.345	.095	1.35	2,950	.0642
NATUF	4/0	211,600	.345	.100	1.42	3,390	.0509
NATYG		250,000	.345	.100	1.47	3,620	.0431
NATZA	/	300,000	.345	100	1 50	0.010	
NAUHR	1. /15	350,000	.345	.100	1.52	3,910	.0360
NAUJS	1.1.	400,000	.345	.100	1.58	4,190	.0308
NAUKT	. / .	500,000	.345	.110	1.62	4,460	.0270
NAULV	/	600,000	.345	.110	1.73	5,180	.0216
	/	000,000	.040	.110	1.81	5,690	.0180
NAUPZ	/	750,000	.345	.110	1 01	0.400	
NAURC	1	1.000,000	.345	.115	$\frac{1.91}{2.08}$	6,430 7,850	.0144

SINGLE CONDUCTOR

31,000 VOLTS

Code	Cond B. & S.	C.M.	Insulation Thickness, Inches	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1,000' @ 25°C.
NESDA NESEF NESFE NESHO	$\frac{1}{0}$ $\frac{2}{0}$ $\frac{3}{0}$ $\frac{4}{0}$	$105,500 \\ 133,100 \\ 167,800 \\ 211,600$.440 .440 .440	.100 .100 .100 .100	1.46 1.50 1.55 1.61	3,220 3,420 3,660 3,950	.102 .0811 .0642
NESOH NESUJ	/	250,000 300,000	.440	.100	1.66 1.73	4,170	.0509
NESYK NETAF NETEG		350,000 400,000 500,000 600,000	.440 .440 .440	.110 .110 .110 .110	1.79 1.83 1.92 2.00	4,990 5,280 5,810 6,340	0.0308 0.0270 0.0216
NETGE NETJO		750,000 1,000,000	.440	.115	2.11 2.27	7,350 8,560	.0180 .0144 .0108

SINGLE CONDUCTOR

32,000 VOLTS

(Grounded Neutral)

Code	Conductor Size		Insula- tion Thick-	Lead Thick- ness,	Overall Diam.,	Net Weight Pounds/	Average Resistance Ohms/
	B. & S.	C.M.	ness, Inches	Inches	Inches	1,000′	1,000′ @ 25°C.
NATGY	1/0	105,500	.345	.095	1.26	2,550	.102
NATIC	2/0	133,100	.345	.095	1.30	2,730	.0811
NATOD	3/0	167,800	.345	.095	1.35	2,950	.0642
NATUF	4/0	211,600	.345	. 100	1.42	3,390	.0509
NATYG		250,000	.345	. 100	1.47	3,620	.0431
NATZA		300,000	.345	.100	1.52	3,910	.0360
NAUHR		350,000	.345	.100	1.58	4,190	.0308
NAUJS		400,000	.345	.100	1.62	4,460	.0270
NAUKT		500,000	.345	.110	1.73	5,180	.0216
NAULV		600,000	.345	.110	1.81	5,690	.0180
NAUPZ		750,000	.345	.110	1.91	6.430	.0144
NAURC		1,000,000	.345	.115	2.08	7,850	.0108

SINGLE CONDUCTOR

32,000 VOLTS

Code	Cond B. & S.	uctor Size	Insula- tion Thick- ness,	Lead Thick- ness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	Average Resistance Ohms/ 1.000'	
	D. C. S.	C.M.	Inches	Thenes	Theres	1,000	@ 25°C.	
NESDA	1/0	105,500	.440	.100	1.46	3,220	.102	
NESEF	2/0	133,100	.440	.100	1.50	3,420	.0811	
NESFE	3/0	167,800	.440	.100	1.55	3,660	.0642	
NESHO	4/0	211,600	.440	.100	1.61	3,950	.0509	
NESIG		250,000	.440	.100	1.66	4,170	.0431	
NESOH		300,000	.440	.110	1.73	4.680	.0360	
NESUJ		350,000	.440	.110	1.79	4.990	.0308	
NESYK		400,000	.440	.110	1.83	5,280	.0270	
NETAF		500,000	.440	.110	1.92	5.810	.0216	
NETEG		600,000	.440	.110	2.00	6,340	.0180	
NETGE		750,000	.440	.115	2.11	7.350	.0144	
NETJO		1,000,000	.440	.115	2.27	8,560	.0108	

SINGLE CONDUCTOR

33,000 VOLTS

Code	Cond	uctor Size	Insula- tion Thick-	Lead Thick- ness.	Overall Diam.,	Net Weight	Average Resistance
	B. & S.	C.M.	ness, Inches	Inches	Inches	Pounds/ 1,000'	Ohms/ 1,000′ @ 25°C.
NAUSD	1/0	105,500	.360	.095	1.29	2,620	.102
NAUVG	2/0	133,100	.360	.095	1.33	2,810	.0811
NAUZK	3/0 /	167,800	.360	.095	1.38	3.030	.0642
NAVAB NAVBA	4/0	211,600	.360	. 100	1.45	3,380	.0509
NAVBA		250,000	.360	.100	1.50	3,700	.0431
NAVCE		300,000	.360	.100	1.55	3.890	0000
NAVEC		350,000	.360	.100	1.61	4,270	.0360
NAVFO	./	400,000	.360	.100	1.65	4.550	.0308
NAVHY		500,000	.360	.110	1.76	5,280	.0270
NAVID	/	600,000	.360	.110	1.84	5,790	$.0216 \\ .0180$
						0,.00	.0100
NAVOF	/	750,000	.360	. 110	1.94	6,540	.0144
NAVUG		1,000,000	.360	.115	2.11	8,000	.0108

SINGLE CONDUCTOR

33,000 VOLTS

G .	Condu	ictor Size	Insula- tion	Lead Thick-	Overall	Net Weight	Average Resistance
Code	B. & S.	C.M.	Thick- ness, Inches	ness, Inches	Diam., Inches	Pounds/ 1,000'	Ohms/ 1,000′ @ 25°C.
NETOJ	1/0	105,500	.455	. 100	1.49	3,310	.102
NETUK	2/0	133,100	.455	.100	1.53	3,510	
NETYL	3/0	167,800	.455	.100	1.58	3,750	.0811
NEVAG	4/0	211,600	.455	.100	1.64	4,040	.0642
NEVGA		250,000	.455	.100	1.69	4,280	0.0509 0.0431
NEVHE	A . 7.	300,000	.455	.110	1 70	4 ===	
NEVIJ	7	350,000	.455	.110	$\frac{1.76}{1.82}$	4,770	.0360
NEVKO	W	400,000	.455	.110	1.86	5,080	.0308
NEVOK		500,000	.455	.110		5,380	.0270
NEVUL		600,000	.455		1.95	5,920	.0216
T.L. CL		000,000	.400	.115	2.04	6,700	.0180
NEWAH		750,000	.455	.115	0 14	=	THE STATE OF
NEWHA		1.000,000	.455	.115	$\frac{2.14}{2.30}$	7,460 8,670	.0144

TWO CONDUCTOR—BELTED (Grounded or Ungrounded Neutral)

1,000 VOLTS

Code	Conductor Size			Insulation Thickness, Inches		Thick- ness,	meter,	Weight Pounds/	Average Resist- ance Ohms/	
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000' @ 25°C.	
LEVAP	8	16,510	Sector	.065	.030	.080	. 69	940	. 654	
LEVIR	6	26,250	Sector	.065	.030	.080	.74	1,080	.410	
LEVOS	4	41,740	Sector	.065	.030	.085	.82	1,390	.259	
LEVPA	$\frac{2}{1}$	66,370	Sector	.065	.030	.085	.91	1,680	. 162	
LEVSO	1	83,690	Sector	.065	.030	.085	.96	1,870	.129	
LEVUT	1/0	105,500	Sector	.065	.030	.085	1.02	2.110	102	
LEVYV	2/0	133,100	Sector	.065	. 030	.095	1.11	2,530	.0811	
LEWER	3/0	167,800	Sector	.065	.030	.095	1.18	2,870	.0642	
LEWRE	4/0	211,600	Sector	.065	.030	.095	1.26	3,290	.0509	
LEWTO		250,000	Sector	.080	.030	.095	1.39	3,800	.0431	
LEWUV		300,000	Sector	.080	.030	.100	1.48	4,440	.0360	
LEYAR		350,000	Sector	.080	.030	.100	1.55	4,900		
LEYIT		400,000	Sector	.080	.030	.100	1.62	5,380	.0308	
LEYOV		500,000	Sector	.080	.030	.110	1.76	6,460	.0270	
LEYRA		600,000	Sector	.080	.030	.110	1.87	7.340	.0216 $.0180$	
LEYSE		750,000	Sector	.080	.030	.110	2.02	8,640		
LEYVO		1,000,000	Sector	.080	.045	.115	2.28	11.020	.0144	

TWO CONDUCTOR—BELTED

(Grounded or Ungrounded Neutral)

		* Conducto	or .	Insulation Thickness,		Lead Thick-	Overal		Average Resist-
Code		Size		Inc			meter,	Weight Pounds/	ance Ohms/
	B. & S.	C.M.	Shape	Cond. Belt		Ins.	Ins.	1,000′	1,000′ @ 25°C
LEZAS	8	16,510	Sector	.080	.030	.080	.75	1.040	. 654
LEZET	6	26,250	Sector	.080	.030	.085	.81	1,280	.410
LEZIV	4	41,740	Sector	.080	.030	.085	.88	1,500	.259
LEZSA	2	66,370	Sector	.080	.030	.085	.97	1,800	.162
LEZTE	1	83,690	Sector	.080	.030	.085	1.02	1,990	.129
LEZUX	1/0	105,500	Sector	.080	.030	.095	1.10	2.370	. 102
LEZWO	2/0	133,100	Sector	.080	.030	.095	1.17	2,660	.0811
LIABZ	3/0	167,800	Sector	.080	.030	.095	1.24	3.010	.0642
LIAFD	4/0	211,600	Sector	.080	.030	.095	1.32	3,430	.0509
LIAHG		250,000	Sector	.080	.045	.100	1.43	4,050	.0431
LIALK		300,000	Sector	.080	.045	.100	1.51	4,520	.0360
LIATS		350,000	Sector	.080	.045	.100	1.58	4,990	.0308
LIAVT		400,000	Sector	.080	.045	.100	1.65	5,470	.0270
LIAZY		500,000	Sector	.080	.045	.110	1.79	6,560	.0216
LIBAZ		600,000	Sector	.080	.045	.110	1.90	7,440	.0180
LIBBE		750,000	Sector	.080	.045	.115	2.06	9,000	.0144
LIBDO		1,000,000	Sector	.080	.045	.115	2.28	11,060	.0108

TWO CONDUCTOR—BELTED

(Grounded or Ungrounded Neutral)

3,000 VOLTS

Code	Conductor Size			Insulation Thickness, Inches		Thick-	Overall Dia- meter,	Net Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000'	1,000' @ 25°C
LIBEB	8	16,510	Sector	.080	.045	.085	.79	1.190	. 654
LIBGY	6	26,250	Sector	.080	.045	.085	.84	1,340	.410
LIBIC	4	41,740	Sector	.080	.045	.085	.91	1,560	.259
LIBOD	2	66,370	Sector	.080	.045	.085	1.00	1.860	
LIBUF	1	83,690	Sector	.080	.045	.085	1.05	2,060	$.162 \\ .129$
LIBYG	1/0	105,500	Sector	.080	.045	.095	1.13	2,440	
LIBZA	2/0	133,100	Sector	.080	.045	.095	1.20		.102
LICAB	3/0	167,800	Sector	.080	.045	.095	1.27	2,740	.0811
LICBA	4/0	211,600	Sector	.080	.045	.095	1.35	3,080	.0642
LICCE	/	250,000	Sector	.080	.045	.100	1.43	$\frac{3,510}{4,050}$	0.0509 0.0431
LICFO		300,000	Sector	.080	.045	.100	1.51		
LICHY	1.7.	350,000	Sector	.080	.045	.100	1.58	4,520	.0360
LICID	/	400,000	Sector	.080	.045			4,990	.0308
LICOF	/	500,000	Sector	.080	.045	. 100	1.65	5,470	.0270
LICUG	/	606,000	Sector	.080	.045	.110	$\frac{1.79}{1.90}$	6,560 $7,440$.0216 $.0180$
LICYH	/	750,000	Sector	.080	.045				
LIDAC	1	1,000,000	Sector	.080	.045	.115	$\frac{2.06}{2.28}$	$9,000 \\ 11,060$.0144 $.0108$

TWO CONDUCTOR—BELTED
(Grounded or Ungrounded Neutral)

Code	Conductor			Insulation Thickness, Inches		Lead Overall Thick- Dia- ness, meter,		Weight Pounds/	
	B. & S	. C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LIDCA LIDDE	8 6	16,510 $26,250$	Sector	.095	.045	.085	.85	1,330 1,450	. 654
LIDED	4 2	$41,740 \\ 66,370$	Sector	0.095 0.095	.045	.085	.97 1.06	1,670 1,980	.259 $.162$
LIDIF	1 1/0	83,690 105,500	Sector	.095	.045	.095	1.13	2,320 2,570	.102
LIDUH	$\frac{2}{0}$	$133,100 \\ 167,800$	Sector Sector	$.095 \\ .095$.045	.095	1.26 1.33	2,870 $2,870$ $3,220$.0811
LIDYJ	4/0	$211,600 \\ 250,000$	Sector	.095	0.045 0.045	.100	$\frac{1.42}{1.49}$	3,820 4,200	0.0509 0.0431
LIFAD	:::	300,000 350,000	Sector	.095	$045 \\ 045$.100	1.57 1.64	4,700 5,170	.0360
LIFEF LIFFE LIFHO		400,000 500,000	Sector	.095	0.045	.110	1.73 1.85	5,860 6,750	.0270
LIFIG		600,000 750,000	Sector	.095	.045	.110	1.96 2.12	7,640 9,190	.0180
LIFKY		1,000,000	Sector	.095	.045	.125	2.36	11,600	.0108

TWO CONDUCTOR—BELTED (Grounded or Ungrounded Neutral)

5,000 VOLTS

Code	Conductor Size			Insulation Thickness, Inches		Thick-	Overall Dia- meter,	Weight	Average Resist- ance Ohms/
1 (da 30	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LIFOH LIFUJ	8 6	16,510	Sector	.095	.065	.085	.89	1,390	. 654
LIFYK	4	$26,250 \\ 41,740$	Sector	.095 $.095$.065	.085	1.01	1,540	.410
LIGAF	$\frac{2}{1}$	66,370	Sector	.095	.065	.095	1.12	$\frac{1,760}{2,210}$	$\frac{.259}{.162}$
LIGEG	1	83,690	Sector	.095	.065	.095	1.17	2,410	.129
LIGFA	1/0	105,500	Sector	.095	.065	.095	1.23	2,670	.102
LIGGE	2/0	133,100	Sector	.095	.065	.095	1.29	2,970	.0811
LIGOJ	$\frac{3}{4}$	167,800 211,600	Sector	.095	.065	.095	1.37	3,330	.0642
LIGUK	4/0	250,000	Sector	.095	$.065 \\ .065$.100	$\frac{1.46}{1.53}$	$\frac{3,930}{4,320}$	0509 0431
LIGYL		300,000	Sector	.095	.065	.100	1.61	4.820	.0360
LIHAG		350,000	Sector	.095	.065	.100	1.68	5,300	.0308
LIHGA		400,000	Sector	.095	.065	.110	1.76	6,040	.0270
TIHHE		500,000	Sector	.095	.065	.110	1.88	6,880	.0216
LIHIJ	• • •	600,000	Sector	.095	. 065	.110	2.00	7,780	.0180
LIHKO LIHMY	111	750,000 1,000,000	Sector Sector	.095	0.065 0.065	.115 .125	$\frac{2.16}{2.40}$	9,340 11,770	.0144

TWO CONDUCTOR—BELTED

6,000 VOLTS

Weight ance Pounds/ Ohms/	
Ohms/	
1,000′ @ 25°C.	
. 654	
.410	
.259	
.162	
.129	
.102	
.0811	
.0642	
.0509	
.0431	
.0360	
.0308	
.0270	
.0216	
.0180	
.0144	
.0108	

TWO CONDUCTOR—BELTED (Grounded Neutral)

7,000 VOLTS

Code		Conducto	Shape	Insula Thick Incl	ness,	Thick- ness,	meter,	Net Weight Pounds	
	B. & S.	C.M.	ыаре	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LIKYP	8	16,510	Round	.110	.065	.085	1.03	1,710	. 654
LILAK	6	26,250	Round	.110	.065	.095	1.13	2,060	.410
LILEL	4	41,740	Round	.110	.065	.095	1.23	2,340	.259
LILKA	2	66,370	Sector	.110	.065	.095	1.18	2,340	.162
LILNO	1	83,690	Sector	.110	.065	.095	1.23	2,550	.129
LILON	1/0	105,500	Sector	.110	.065	.095	1.29	2.810	.102
LILUP	2/0	133,100	Sector	.110	.065	.095	1.36	3,120	.0811
LIMAL	3/0	167,800	Sector	.110	.065	.100	1.44	3,640	.0642
LIMEM	4/0	211,600	Sector	.110	.065	.100	1.52	4.080	.0509
LIMLA	/	250,000	Sector	.110	.065	.100	1.59	4,500	.0431
T T3 (3 (T)									.0101
LIMME		300,000	Sector	.110	.065	. 100	1.67	4,990	.0360
LIMOP		350,000	Sector	. 110	.065	.110	1.76	5,680	.0308
LIMPO	/	400,000	Sector	.110	.065	.110	1.83	6,170	.0270
LIMRY	/	500,000	Sector	.110	.065	.110	1.95	7.070	.0216
LIMYR	1	600,000	Sector	.110	.065	. 115	2.07	8,230	.0180
LINAM	4	750,000	Sector	.110	.065	.115	2.22	9,550	.0144
LINIP		1,000,000	Sector	.110	.065	.125	2.46	12,000	.0108

TWO CONDUCTOR—BELTED

(Ungrounded Neutral)

Code		Conducto		Insul Thick Inc	ness,	Thick- ness,	meter,	Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LIZCO	8	16,510 26,250	Round Round	.110	.095	.095	1.11	1,970 2,210	. 654
LIZIB LIZUD	$\frac{4}{2}$	41,740 66,370 83,690	Round Sector Sector	.110 .110 .110	.095 .095 .095	.095 .095 .095	1.39 1.24 1.29	2,670 $2,490$ $2,700$.162
LIZYA LIZZE	$\frac{1}{0}$	105,500 133,100	Sector	.110	.095	.095	1.35 1.43	2,700 2,960 3,440	.129 .102 .0811
LOAHL LOAJM	$\frac{3}{0}$	$167,800 \\ 211,600$	Sector Sector	.110	$.095 \\ .095$.100	1.50 1.58	$3,820 \\ 4,270$.0642 $.0509$
LOALP LOAPS		250,000 300,000	Sector	.110	.095	.100	1.65	4,680 5,390	.0431
LOARY LOATY LOAVZ	:::	350,000 400,000 500,000	Sector	.110	.095	.110	1.82	5,880 6,370	.0308
LOAVE		500,000	Sector	.110	.095	.110	2.01 2.13	7,290 8,440	.0216
LOBAF	11.1	750,000	Sector Sector	.110	.095	.115	$\frac{2.28}{2.52}$	$9,770 \\ 12,250$.0144

TWO CONDUCTOR—BELTED

(Grounded Neutral)

8,000 VOLTS

Code		Conducto		Insul Thick Inc	cness,	Thick- ness,	meter,	Weight Pounds/	Average Resist- ance Ohms/
	B. & S	. С.М.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000' @ 25°C.
LILAK	$\begin{smallmatrix} 6\\4\end{smallmatrix}$	$26,250 \\ 41,740$	Round Round	.110	.065	.095	1.13	2,060 2,340	.410
LILKA	$\frac{2}{1}$	66,370 83,690	Sector Sector	.110	.065	.095	1.18	2,340 $2,550$.162
LILUP	$\frac{1}{2}$	105,500 133,100	Sector Sector	.110	.065	.095	$\frac{1.29}{1.36}$	$\frac{2,810}{3,120}$.102
LIMAL LIMEM LIMLA	$\frac{3}{0}$ $\frac{4}{0}$	167,800 211,600	Sector	.110	.065	.100	$\frac{1.44}{1.52}$	3,640 4,080	.0642
LIMME		250,000 300,000	Sector	.110	.065	.100	1.59	4,500 4,990	.0431
LIMOP LIMPO LIMRY	- :::	350,000 400,000 500,000	Sector	.110	.065	.110	$\frac{1.76}{1.83}$	5,680 6,170	$.0308 \\ .0270$
LIMYR		600,000	Sector	.110	.065	.110	$\frac{1.95}{2.07}$	7,070 8,230	$0216 \\ 0180$
LINAM	:::	750,000 1,000,000	Sector Sector	.110	.065	.115	$\frac{2.22}{2.46}$	$9,550 \\ 12,000$.0144 .0108

TWO CONDUCTOR—BELTED

8,000 VOLTS

Code		Conducto		Insul Thick Inc	ness,	Thick-	Overall Dia- meter,	Net Weight Pounds	Average Resist- ance Ohms/
10 30 30 da	B. & S	. С.М.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LOBEG	6	26,250	Round	.110	.110	.095	1.22	2,280	.410
LOBFA	4 2	41,740	Round	.110	.110	.095	1.32	2,600	.259
LOBGE	2	66,370	Sector	.110	.110	.095	1.27	2,560	.162
LOBJO	1	83,690	Sector	.110	.110	.095	1.32	2,780	.129
LOBLY	1/0	105,500	Sector	.110	.110	.095	1.38	3,040	.102
LOBOJ	2/0	133,100	Sector	.110	.110	.100	1.46	3,530	.0811
LOBUK	3/0	167,800	Sector	.110	.110	.100	1.53	3,910	.0642
LOBYL	4/0	211,600	Sector	.110	.110	.100	1.61	4.360	.0509
LOCAG	15-68	250,000	Sector	.110	.110	.100	1.68	4,770	.0431
LOCGA		300,000	Sector	.110	.110	.110	1.78	5.490	.0360
LOCHE		350,000	Sector	.110	.110	.110	1.85	5.980	.0308
LOCIJ		400,000	Sector	.110	.110	.110	1.92	6,470	
LOCKO	0.5	500,000	Sector	.110	.110	.115	2.05	7,640	.0270
LOCOK	1000	600,000	Sector	.110	.110	.115	2.16		.0216
LOCUL		750,000	Sector	.110	.110	.115	2.31	$8,550 \\ 9,890$.0180 $.0144$
LODAH	·	1,000,000	Sector	.110	.110	,125	2.55	12,380	.0108

TWO CONDUCTOR—BELTED

9,000 VOLTS

(Grounded Neutral)

Code		Conducto Size	12.0	Insul Thick Inc	ness,	Thick- ness,	meter,	Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000' @ 25°C.
LINMA LINNE	6	$26,250 \\ 41,740$	Round Round	.125	.065	.095	1.19	2,200	.410
LINSY	4 2 1	66,370 83,690	Sector Sector	.125	.065	.095	$1.29 \\ 1.24 \\ 1.29$	2,510 $2,470$ $2,680$.259 $.162$ $.129$
LIOBD	$\frac{1}{0}$ $\frac{2}{0}$	105,500	Sector Sector	.125	.065	.095	1.35	2,940	.102
LIOHK	3/0 4/0	167,800 211,600	Sector Sector	.125	.065	.100	$1.43 \\ 1.50 \\ 1.58$	$3,430 \\ 3,800 \\ 4,260$.0811 $.0642$ $.0509$
LIOLN LIORT	-:::/	$250,000 \\ 300,000$	Sector Sector	$.125 \\ .125$.065	.100	1.65 1.75	4,660 5,380	.0431
LIOVY	:/:	350,000 400,000	Sector Sector	$.125 \\ .125$.065	.110	1.82	5,860 6,340	.0308
LIPAN LIPEP LIPNA	1.:-	500,000	Sector Sector	$.125 \\ .125$.065	.110	2.01	7,270 8,430	.0216
LIPRO		750,000	Sector	.125	.065	.115	2.28	9,750 12,240	.0144

TWO CONDUCTOR—BELTED

9,000 VOLTS

Code		Conducte	or		mess,	Lead Thick	Overall Dia-	Net Weight	Average Resist- ance
Code		Size	G1	Inc	hes		meter,	Pounds/	Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C
LODHA	6	26,250	Round	.125	. 125	. 095	1.31	2,510	410
LODIK	4	41,740	Round	.125	.125	.100	1.42	3.000	.410
LODJE	2	66,370	Sector	.125	.125	.095	1.36	2,780	.259
LODLO	1	83,690	Sector	.125	.125	.100	1.42	3,170	.162
LODNY	1/0	105,500	Sector	.125	.125	.100	1.48	3,450	.129
LODOL	2/0	133,100	Sector	. 125	. 125	. 100	1.55	3,770	
LODUM	3/0	167,800	Sector	.125	.125	.100	1.62	4,150	.0811
LODYN	4/0	211,600	Sector	.125	.125	.100	1.70	4,630	.0642
LOECH		250,000	Sector	.125	.125	.110	1.79	5,260	.0509
LOEFK		300,000	Sector	.125	.125	.110	1.87	5,780	.0431 $.0360$
LOEJN		350,000	Sector	.125	.125	.110	1.94	6,270	.0308
LOENS		400,000	Sector	.125	.125	.110	2.01	6.780	.0270
LOEPT		500,000	Sector	.125	.125	.115	2.14	7,950	.0216
LOETZ		600,000	Sector	.125	.125	.115	2.25	8.870	
LOEVB		750,000	Sector	.125	.125	.125	2.42	10,550	.0180
LOEXD		1 000 000						10,550	.0144
LOEAD		1,000,000	Sector	. 125	.125	.125	2.64	12,760	.0108

TWO CONDUCTOR—BELTED

(Grounded Neutral)

10,000 VOLTS

Code		Conducto	or	Insul Thick	ness,	Lead Thick-	Overall Dia-	Net Weight	Average Resist- ance
Code		Size	CI.	Inc	hes		meter,	Pounds/	Ohms/
193	B. & S.	. С.М.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000' @ 25°C
LINMA	6	26,250	Round	.125	.065	.095	1 10	0.000	
LINNE	4	41,740	Round	.125	.065	.095	1.19	2,200	.410
LINSY	2	66,370	Sector	.125	.065		1.29	2,510	. 259
LINYS	$\frac{4}{2}$	83,690	Sector	.125		.095	1.24	2,470	. 162
LIOBD	1/0	105,500	Sector		. 065	.095	1.29	2,680	.129
	1/0	100,000	sector	. 125	.065	.095	1.35	2,940	.102
LIOCF	2/0	133,100	Sector	.125	.065	.100	1 49	0.400	/
LIOHK	3/0	167,800	Sector	.125	.065		1.43	3,430	.0811
LIOJL	4/0	211,600	Sector	.125		.100	1.50	3,800	.0642
LIOLN		250,000	Sector		.065	. 100	1.58	4,260	. 0509
LIORT	100	300,000		. 125	.065	. 100	1.65	4,660	.0431
LICIUI	* * *	300,000	Sector	. 125	.065	.110	1.75	5,380	.0360
LIOVY		350,000	Sector	.125	.065	110	1 00		
LIOWZ	1000	400,000	Sector	.125		.110	1.82	5,860	. 0308
LIPAN		500,000	Sector		.065	.110	1.89	6,340	.0270
LIPEP		600,000		. 125	. 065	. 110	2.01	7,270	.0216
LIPNA	• • •		Sector	.125	.065	. 115	2.13	8,430	.0180
LILIVA		750,000	Sector	.125	.065	.115	2.28	9,750	.0144
LIPRO		1,000,000	Sector	.125	.065	.125	2.52	12,240	.0108

TWO CONDUCTOR—BELTED

(Ungrounded Neutral)

LODHA 6 LODIK 4 LODJE 2 LODLO 1	26,250 41,740 66,370	Round Round Sector	.125	.125	. 095	1.31	2,510	@ 25°C.
LODNY 1/0 LODOL 2/0 LODUM 3/0 LODYN 4/0 LOECH LOEFK LOEDT LOEPT LOETZ LOEXD	133,100 167,800 211,600 250,000 300,000 350,000 400,000 500,000 600,000 750,000	Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector	. 125 .125 .125 .125 .125 .125 .125 .125	. 125 . 125	.100 .095 .100 .100 .100 .100 .110 .110 .110 .11	1.42 1.36 1.42 1.48 1.55 1.62 1.70 1.79 1.87 1.94 2.01 2.14 2.25 2.42	3,000 2,780 3,170 3,450 3,770 4,150 4,630 5,260 5,780 6,270 6,780 7,950 8,870 10,550	. 259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308 .0270 .0216 .0180 .0144

TWO CONDUCTOR—BELTED

11,000 VOLTS

(Grounded Neutral)

Code		Conducto		Insul Thick Inc	ness,	Thick-	Overall Dia- meter.	Net Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000' @ 25°C.
LIPYT	6	26,250	Round	. 125	.080	.095	1.22	2,280	.410
LIRER	4	41,740	Round	. 125	.080	.095	1.32	2,600	.259
LIRRE	2	66,370	Sector	. 125	.080	.095	1.27	2,550	.162
LIRTO	1	83,690	Sector	. 125	.080	.095	1.32	2,760	.129
LIRUV	1/0	105,500	Sector	. 125	.080	.095	1.38	3,020	.102
LIRWY	2/0	133,100	Sector	.125	.080	.100	1.46	3.510	.0811
LISAR	3/0	167,800	Sector	.125	.080	100	1.53	3,880	.0642
LISIT	4/0	211,600	Sector	. 125	.080	.100	1.61	4,350	.0509
LISOV	/	250,000	Sector	.125	.080	.100	1.68	4,760	.0303
LISRA	/	300,000	Sector	125	.080	.110	1.78	5,480	.0360
LISVO	/.	350,000	Sector	. 125	.080	.110	1.85	5,970	.0308
LISYX	. /	400,000	Sector	.125	.080	.110	1.92	6,460	
LITAS	1	500,000	Sector	.125	.080	.115	2.05	7,620	.0270
LITET	1/	600,000	Sector	.125	.080	.115	2.16		.0216
LITIV	1	750,000	Sector	.125	.080	.115	2.31	8,530	.0180
			~~~~	.120	.000	.110	2.31	9,870	.0144
LITSA	• • •	1,000,000	Sector	. 125	.080	.125	2.55	12,370	.0108

#### TWO CONDUCTOR—BELTED

11,000 VOLTS

		Conducto	or	Insul		Lead	Overall	Net	Average Resist-
Code		Size	Chana	Thick Inc.			meter,	Weight Pounds/	ance Ohms/
27 1 84	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C
LODHA	6	26,250	Round	.125	. 125	.095	1.31	2.510	.410
LODIK	4	41,740	Round	.125	.125	.100	1.42	3.000	.259
LODJE	2	66,370	Sector	. 125	.125	.095	1.36	2,780	.162
LODLO		83,690	Sector	. 125	.125	.100	1.42	3.170	.129
LODNY	1/0	105,500	Sector	. 125	.125	.100	1.48	3,450	.102
LODOL	2/0	133,100	Sector	.125	.125	.100	1.55	3,770	.0811
LODUM	3/0	167,800	Sector	. 125	.125	.100	1.62	4.150	.0642
LODYN	4/0	211,600	Sector	.125	.125	.100	1.70	4,630	.0509
LOECH		250,000	Sector	.125	.125	.110	1.79	5,260	.0431
LOEFK		300,000	Sector	.125	.125	.110	1.87	5,780	.0360
LOEJN		350,000	Sector	.125	.125	.110	1.94	6.270	.0308
LOENS		400,000	Sector	.125	.125	.110	2.01	6.780	
LOEPT		500,000	Sector	.125	.125	.115	2.14	7.950	.0270
COETZ		600,000	Sector	.125	.125	.115	2.25	8,870	.0216
COEVB		750,000	Sector	.125	.125	.125	2.42	10,550	.0180 $.0144$
OEXD	9	1,000,000	Sector	. 125	.125	.125	2.64	12,760	.0108



#### TWO CONDUCTOR—BELTED

12,000 VOLTS

(Grounded Neutral)

Code		Conducto Size	医超生 相可	Insul Thick Inc	ness,	Thick- ness,	meter,	Weight Pounds/	Average Resist- ance Ohms/
Frank in	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LITUX LITWO LIUHL LIUJM	6 4 2	26,250 41,740 66,370 83,690	Round Round Sector Sector	.140 .140 .140 .140	.080 .080 .080	.095 .095 .095	1.30 1.40 1.33	2,460 2,770 2,690	.410 .259 .162
LIULP	$\frac{1}{0}$ $\frac{2}{0}$	105,500	Sector	.140	.080	.095	1.38	2,910 3,340	129
LIURY LIUTY LIUVZ	$\frac{3}{4}$	167,800 211,600 250,000	Sector Sector Sector	.140	.080	.100	$   \begin{array}{c}     1.52 \\     1.59 \\     1.67   \end{array} $	3,670 $4,060$ $4,520$	$ \begin{array}{c} .0811 \\ .0642 \\ .0509 \end{array} $
LIUZD LIVAT		300,000	Sector	.140	.080	.110	1.76 1.84 1.91	5,150 5,660 6,150	.0360
LIVEV LIVOY LIVTA		400,000 500,000 600,000	Sector Sector Sector	.140 .140 .140	.080	.110	$\frac{1.98}{2.11}$	6,650 7,820	.0308 $.0270$ $.6216$
LIVUZ	•••	750,000	Sector	.140	.080	.115	2.22 2.39 2.61	8,740 10,410 12,600	.0180 .0144 .0108

#### TWO CONDUCTOR—BELTED

12,000 VOLTS

		Conducte	or	Insul		Lead	Overall	Net	Average Resist-
Code		Size		Thick Inc		Thick- ness,		Weight Pounds/	ance
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000' @ 25°C.
LOFAJ	6	26,250	Round	.140	. 140	.100	1.41	2,810	.410
LOFEK	$\frac{6}{4}$	41,740	Round	.140	.140	.100	1.51	3,260	.259
LOFIL	2	66,370	Sector	.140	.140	.100	1.46	3.180	.162
LOFJA	1	83,690	Sector	.140	.140	.100	1.51	3,410	.129
LOFKE	1/0	105,500	Sector	.140	.140	.100	1.57	3,890	.102
LOFMO	2/0	133,100	Sector	.140	.140	.100	1.64	4.030	.0811
LOFYP	3/0	167,800	Sector	.140	.140	.110	1.73	4,630	.0642
LOGAK	4/0	211,600	Sector	.140	.140	.110	1.81	5,120	.0509
LOGEL		250,000	Sector	.140	.140	.110	1.88	5,550	.0431
LOGKA		300,000	Sector	.140	.140	.110	1.96	6,070	.0360
LOGLE		350,000	Sector	.140	.140	.115	2.04	6,820	.0308
LOGNO	ART. A	400,000	Sector	.140	.140	.115	2.11	7,330	.0270
LOGON		500,000	Sector	.140	.140	.115	2.23	8,270	
LOGUP	N.V.	600,000	Sector	.140	.140	.125	2.36	9,520	.0216
LOHAL	36	750,000	Sector	.140	.140	.125	2.51	10,920	.0180 $.0144$
COHEM		1,000,000	Sector	.140	.140	. 135	2.75	13,470	.0108



### TWO CONDUCTOR—BELTED (Grounded Neutral)

13,000 VOLTS

Code		Conducto		Insul Thick Inc	mess,	Thick- ness,	meter,	Net Weight Pounds/	Average Resist- ance Ohms/
1 12	B. & S	. C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000' @ 25°C.
LITUX	6 4	26,250 $41,740$	Round Round	.140	.080	.095	1.30	2,460	.410
LIUHL	$\frac{2}{1}$	66,370 83,690	Sector Sector	.140	.080	.095	$1.40 \\ 1.33 \\ 1.38$	2,770 2,690	.259
LIULP	$\frac{1}{0}$ $\frac{2}{0}$	105,500	Sector	.140	.080	.100	1.45	2,910 3,340	.129
LIURY	3/0 4/0	133,100 $167,800$ $211,600$	Sector Sector	.140	.080	.100	$\frac{1.52}{1.59}$	$\frac{3,670}{4,060}$	.0811 $.0642$
LIUVZ	::/.	250,000 300,000	Sector Sector	.140 .140 .140	.080 .080	.100	1.67	4,520 5,150	0509 $0431$
LIVAT LIVEV	/	350,000	Sector	.140	.080	.110	1.84	5,660 6,150	.0360
LIVOY	/::: <del>-</del>	400,000 500,000	Sector	.140	.080	.110	$\frac{1.98}{2.11}$	6,650 7,820	.0270
LIVUZ		600,000 750,000	Sector	.140	.080	$.115 \\ .125$	$\frac{2.22}{2.39}$	8,740 10,410	.0180
LIVVE		1,000,000	Sector	. 140	.080	. 125	2.61	12,600	.0108

### TWO CONDUCTOR—BELTED

(Ungrounded Neutral)

Code		Conduct		Insul Thick Inc	mess,	Thick- ness,	meter,	Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000' @ 25°C.
LOFAJ LOFEK	6 4	26,250	Round	. 140	. 140	.100	1.41	2,810	.410
LOFIL	2	41,740	Round	. 140	. 140	.100	1.51	3,260	.259
LOFJA	1	66,370	Sector	. 140	. 140	.100	1.46	3,180	.162
LOFKE		83,690	Sector	. 140	. 140	. 100	1.51	3,410	.129
LUFKE	1/0	105,500	Sector	. 140	.140	.100	1.57	3,890	.102
LOFMO	2/0	133,100	Conton	110				0,000	.102
LOFYP	3/0	167,800	Sector	. 140	.140	.100	1.64	4.030	.0811
LOGAK	4/0		Sector	. 140	. 140	.110	1.73	4,630	.0642
LOGEL		211,600	Sector	. 140	. 140	.110	1.81	5,120	.0509
LOGKA		250,000	Sector	. 140	. 140	.110	1.88	5,550	.0431
LOGKA		300,000	Sector	. 140	.140	.110	1.96	6,070	.0360
LOGLE		350,000	Ganta-	110				0,010	.0300
LOGNO			Sector	. 140	.140	.115	2.04	6.820	.0308
LOGON		400,000	Sector	. 140	. 140	.115	2.11	7,330	.0270
LOGUP		500,000	Sector	. 140	. 140	.115	2.23	8,270	.0216
LOHAL		600,000	Sector	. 140	.140	.125	2.36	9,520	.0180
LOHAL		750,000	Sector	. 140	.140	. 125	2.51	10.920	.0144
LOHEM		1,000,000	Sector	. 140	.140	. 135	2.75	13,470	.0108



### TWO CONDUCTOR—BELTED (Grounded Neutral)

14,000 VOLTS

Code		Conductor			ation ness,	Thick-	Overall Dia- meter,	a- Weight	Average Resist- ance
11.50	B. & S.		Shape	Cond.	Belt	Ins.	Ins.	1,000'	Ohms/ 1,000' @ 25°C
LIVYO	6	26,250	Round	. 155	.080	.095	1.34	2,570	.410
LIWAV	4	41.740	Round	.155	.080	.100	1.45	3.080	.259
LIWIX	4 2 1	66,370	Sector	.155	.080	.095	1.39	2,830	.162
LIWOZ	1 .	83,690	Sector	.155	.080	.100	1.45	3,220	129
LIWUB	1/0	105,500	Sector	.155	.080	.100	1.51	3,490	102
LIYBO	2/0	133,100	Sector	. 155	.080	.100	1.58	3,830	.0811
LIYFK	3/0	167,800	Sector	.155	.080	.100	1.65	4,230	
LIYHM	4/0	211,600	Sector	.155	.080	.110	1.75	4,230	.0642
LIYIZ		250,000	Sector	.155	.080	.110	1.82		. 0509
LIYJN		300,000	Sector	.155	.080	.110	1.90	5,330 5,840	.0431 $.0360$
LIYNS		350,000	Sector	. 155	.080	.110	1.97	6,350	.0308
LIYOB	100	400,000	Sector	. 155	.080	.115	2.05	7,100	
LIYUC		500,000	Sector	.155	.080	.115	2.17		.0270
LIYWA		600,000	Sector	.155	.080	.115	2.28	8,030	.0216
LIYXD		750,000	Sector	.155	.080	.125	2.45	$8,950 \\ 10,640$	.0180 $.0144$
LIZAY	1	1,000,000	Sector	. 155	.080	. 135	2.69	13,160	.0108

### TWO CONDUCTOR—BELTED (Ungrounded Neutral)

Code	B. & S	Conducto Size C.M.	Shape		ation eness, hes	Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
LOHLA	6 -	96 950	Downd	155					
LOHME	4	26,250	Round	. 155	. 155	. 100	1.50	3,160	.410
LOHOP	4	41,740	Round	. 155	. 155	. 100	1.60	3,490	.259
ГОНЬО	$\frac{2}{1}$	66,370	Sector	. 155	. 155	. 100	1.55	3,420	. 162
		83,690	Sector	. 155	. 155	. 100	1.60	3,630	. 129
LOHYR	1/0	105,500	Sector	. 155	. 155	. 100	1.66	3,950	. 102
LOIGM	2/0	133,100	Sector	. 155	. 155	110	1 77	4 500	
LOIJP	3/0	167.800	Sector	.155		.110	1.75	4,500	.0811
LOIRY	4/0	211,600	Sector		. 155	.110	1.82	4,920	.0642
LOJAM				. 155	. 155	.110	1.90	5,410	. 0509
LOJEN		250,000	Sector	. 155	. 155	.110	1.97	5,850	. 0431
LOSEM		300,000	Sector	. 155	. 155	.115	2.06	6,630	.0360
LOJIP	1000	350,000	Sector	.155	. 155	115	0 10	7 140	0000
LOJMA		400,000	Sector	.155		.115	2.13	7,140	. 0308
LOJNE		500,000	Sector		. 155	.115	2.20	7,650	.0270
LOJUR	• • • •	600,000		. 155	. 155	.115	2.32	8,590	.0216
LOJYS	* * * * * *		Sector	. 155	. 155	. 125	2.45	9,880	.0180
LOJIS		750,000	Sector	. 155	. 155	. 125	2.60	11,280	.0144
LOKAN	7	1,000,000	Sector	. 155	. 155	.135	2.84	13,860	.0108



### TWO CONDUCTOR—BELTED (Grounded Neutral)

15,000 VOLTS

Code	B. & S	Conduct Size	or Shape	Insul Thick Inc	ation eness, hes	Lead Thick- ness, Ins.		Weight	Average Resist- ance Ohms/ 1,000'
LIVYO LIWAY LIWIX LIWOZ LIWUB	$\begin{array}{c} 6 \\ 4 \\ 2 \\ 1 \\ 1/0 \end{array}$	$\begin{array}{c} 26,250 \\ 41,740 \\ 66,370 \\ 83,690 \\ 105,500 \end{array}$	Round Round Sector Sector Sector	. 155 . 155 . 155 . 155 . 155	.080 .080 .080 .080	.095 .100 .095 .100	1.34 1.45 1.39 1.45 1.51	2,570 3,080 2,830 3,220 3,490	@ 25°C.  .410 .259 .162 .129
LIYBO LIYFK LIYHM LIYIZ LIYJN	2/0 3/0 4/0/	$133,100 \\ 167,800 \\ 211,600 \\ 250,000 \\ 300,000$	Sector Sector Sector Sector Sector	. 155 . 155 . 155 . 155 . 155	.080 .080 .080 .080	.100 .100 .110 .110	1.58 1.65 1.75 1.82 1.90	3,830 4,230 4,910 5,330 5,840	.102 .0811 .0642 .0509 .0431
LIYNS LIYOB LIYUC LIYWA LIYXD		350,000 $400,000$ $500,000$ $600,000$ $750,000$	Sector Sector Sector Sector	. 155 . 155 . 155 . 155 . 155	.080 .080 .080 .080 .080	.110 .115 .115 .115 .125	1.97 2.05 2.17 2.28 2.45	6,350 7,100 8,030 8,950 10,640	.0360 .0308 .0270 .0216 .0180 .0144
TIZA I		1,000,000	Sector	. 155	.080	. 135	2.69	13,160	.0108

### TWO CONDUCTOR—BELTED (Ungrounded Neutral)

Code		Conducto Size		Insul Thick Inc	ation eness,	Thick.		Weight	Average Resist- ance
TOWY.	B. & S.	0.11.1	Shape	Cond.	Belt	Ins.	Ins.	Pounds/ 1,000'	Ohms/ 1,000' @ 25°C.
LOHLA LOHME		26,250 $41,740$	Round Round	.155	.155	.100	1.50	3,160	.410
LOHOP LOHPO	2	66,370 83,690	Sector Sector	. 155	. 155	.100	$\frac{1.60}{1.55}$	$\frac{3,490}{3,420}$	.259
LOHYR	1/0	105,500	Sector	. 155 . 155	. 155	.100	1.60	3,630 3,950	.129
LOIGM LOIJP	2/0 3/0	$133,100 \\ 167,800$	Sector Sector	.155	. 155	.110	1.75	4,500	.0811
LOIRY LOJAM	4/0	211,600 $250,000$	Sector	. 155	. 155	.110	1.82	4,920 5,410	.0642
LOJEN		300,000	Sector	. 155 . 155	. 155	.110	1.97	5,850 6,630	.0431
LOJIP LOJMA		350,000 400,000	Sector Sector	. 155	. 155	.115	2.13	7,140	.0308
LOJNE LOJUR		500,000	Sector	. 155	. 155	.115	$\frac{2.20}{2.32}$	7,650 8,590	.0270
LOJYS		$600,000 \\ 750,000$	Sector	. 155	.155	$.125 \\ .125$	2.45	9,880	.0180
LOKAN		1,000,000	Sector	. 155	. 155	. 135	2.84	11,280 13,860	.0144



#### THREE CONDUCTOR—BELTED

(Grounded or Ungrounded Neutral)

1,000 VOLTS

Code		Conducto Size	or Shape	Insul Thick Inc	ness,	Thick- ness,	meter,	Weight Pounds/	
100	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LOKEP LOKNA LOKOR LOKPE LOKRO LOKYT LOLAP LOLIR LOLOS LOLPA LOLSO LOLUT LOLVY	8 6 4 2 1 1/0 2/0 3/0 4/0 	$\begin{array}{c} 16,510 \\ 26,250 \\ 41,740 \\ 66,370 \\ 83,690 \\ 105,500 \\ 133,100 \\ 167,800 \\ 211,600 \\ 250,000 \\ 300,000 \\ 300,000 \\ 400,000 \\ 500,000 \end{array}$	Round Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector	.065 .065 .065 .065 .065 .065 .065 .065	.030 .030 .030 .030 .030 .030 .030 .030	.085 .085 .085 .095 .095 .095 .100 .100 .110	.83 .83 .92 1.03 1.13 1.20 1.29 1.38 1.50 1.65 1.77 1.86 1.96 2.12	1,340 1,400 1,700 2,110 2,540 2,870 3,290 3,780 4,580 5,320 6,220 6,900 7,590 9,120	.654 .410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308 .0270 .0216
LOLYV LOMER LOMRE	Ed. 61	600,000 750,000 1,000,000	Sector Sector	.080 .080 .080	.030 .030 .045	.115 .125 .135	2.26 2.48 2.81	10,390 12,630 16,180	.0180 .0144 .0108

THREE CONDUCTOR—BELTED (Grounded or Ungrounded Neutral)

Code		Conduct	or	Insulation Thickness,		Thick-		Weight	Average Resist- ance
Code		Size	Shape	Inc	nes		meter,	Pounds/	
2040	B. & S.	. C.M.	ыаре	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LOMTO	8	16,510	Round	.080	.030	. 085	.89	1,460	. 654
LOMUV	6	26,250	Sector	.080	.030	.085	.89	1,520	.410
LOMWY	4	41,740	Sector	.080	.030	.085	.98	1.820	.259
LONAR	2	66,370	Sector	.080	.030	.095	1.11	2,370	.162
LONIT	1	83,690	Sector	.080	.030	.095	1.19	2,680	.129
LONOV	1/0	105,500	Sector	.080	.030	.095	1.26	3.020	
LONRA	2/0	133,100	Sector	.080	.030	.095	1.35		.102
LONSE	3/0	167,800	Sector	.080	.030	.100	1.45	3,440	.0811
LONVO	4/0	211,600	Sector	.080	.030	.100	1.56	4,110	.0642
LONYX		250,000	Sector	.080	.045	.100	1.68	$\frac{4,760}{5,410}$	.0509
LOOCK		300,000	Sector					and the same same	. 0431
LOOGN		350,000	Sector	.080	.045	.110	1.80	6,320	.0360
LOOLS	• • • •	400,000		.080	.045	.110	1.89	7,000	. 0308
LOONV			Sector	.080	.045	.110	1.98	7,700	.0270
LOORZ		500,000	Sector	.080	.045	.115	2.15	9,230	.0216
The second of the second of the second	• • • •		Sector	.080	.045	.115	2.29	10,510	.0180
LOOSB		750,000	Sector	. 080	.045	.125	2.51	12,760	.0144
LOOAD	10.00	1,000,000	Sector	.080	.045	. 135	2.81	16,180	.0108



### THREE CONDUCTOR—BELTED (Grounded or Ungrounded Neutral)

3,000 VOLTS

Code		Conductor Size Shape		Insul Thick Inc	ness,	Thick- ness,	Overall Dia- meter,	Weight, Pounds/	Average Resist- ance Ohms/
T 0 0 T	B. & S.	C.M.	Snape	Cond.	Belt	Ins.	Ins.	1,000′	1,000' @ 25°C
LOOWF	8	$16,510 \\ 26,250$	Round	.080	$045 \\ 045$	.085	.92	1,530 1,590	. 654
LOPET LOPIV LOPSA	$\frac{4}{2}$	41,740 66,370	Sector	.080	0.045	.085	1.01	1,890 2,440	.410 $.259$ $.162$
LOPTE	1/0	83,690	Sector	.080	.045	.095	1.22	2,750	.129
LOPUX LOPWO	$\frac{2}{0}$	$133,100 \\ 167,800$	Sector Sector	.080	.045	0.095 $0.095$ $0.000$	$1.29 \\ 1.38 \\ 1.48$	3,090 3,520	.102 $.0811$
LOPZY LORAV	4/0	$211,600 \\ 250,000$	Sector Sector	.080	.045	.100	1.59	4,200 $4,850$ $5,460$	.0642
LORCY LORIX	/	300,000 350,000	Sector Sector	.080	. 045	.110	1.80	6,320	.0431
LOROZ LORUB	- :/-	400,000 500,000	Sector	.080	.045	.110	1.89	7,000 7,700	$.0308 \\ .0270$
LORVA	1.0	600,000	Sector	.080	0.045 $0.045$	.115	$\frac{2.15}{2.29}$	$9,230 \\ 10,510$	$.0216 \\ .0180$
LORWE	:::	$750,000 \\ 1,000,000$	Sector Sector	.080	.045	$.125 \\ .135$	$\frac{2.51}{2.81}$	12,760 16,180	.0144

### THREE CONDUCTOR—BELTED

(Grounded or Ungrounded Neutral)

Code		Conducto	or Shape	Thick	ation eness, thes	Lead Thick ness, Ins.	meter,	Weight Pounds/	
	B. & S	. C.M.	энаро	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LOSIZ	8	16,510 26,250	Round	.095	.045	. 085	99	1,660	. 654
LOSOB	4	41,740	Round	.095	0.045	.085	1.07	1,910	.410
LOSUC	2	66,370	Sector	.095	.045	.095	$\frac{1.19}{1.20}$	2,400	. 259
LOSWA	1	83,690	Sector	.095	.045	.095	1.28	$\frac{2,580}{2,900}$	$.162 \\ .129$
LOSYE	1/0	105,500	Sector	.095	.045	.095			
LOTAY	2/0	133,100	Sector	.095	.045	.100	$\frac{1.35}{1.45}$	3,240	.102
LOTEZ	3/0	167,800	Sector	.095	.045	.100	1.54	$\frac{3,850}{4,370}$	.0811
LOTIB	4/0	211,600	Sector	.095	.045	.100	1.65	5.030	0.0642 $0.0509$
LOTOC		250,000	Sector	.095	.045	.110	1.76	5.810	.0309
LOTUD	040.00	300,000	Sector	.095	.045	.110	1.86		
LOTYA		350,000	Sector	.095	.045	.110	1.95	$\frac{6,520}{7,200}$	.0360
LOTZE		400,000	Sector	. 095	.045	.115	2.05	8,150	.0308 $.0270$
LOUKS		500,000	Sector	.095	.045	.115	2.21	9,450	.0216
LOULT		600,000	Sector	. 095	.045	.125	2.37	11,050	.0180
LOUMV		750,000	Sector	.095	.045	.125	2.57	13,020	
LOUPY		1,000,000	Sector	. 095	.045	.135	2.87	16,460	.0144



### THREE CONDUCTOR—BELTED (Grounded or Ungrounded Neutral)

5,000 VOLTS

Code		Conducto	or Shape	Insul Thick Inc	ness,	Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	. C.M.	спарс	Cond.	Belt	1115.	Ins.	1,000′	1,000′ @ 25° C
LOURB LOUSC LOVAZ LOVBE LOVDO	8 6 4 2 1	16,510 26,250 41,740 66,370 83,690	Round Round Round Sector Sector	.095 .095 .095 .095 .095	.065 .065 .065 .065	.085 .095 .095 .095	1.03 1.13 1.23 1.24 1.32	1,750 2,140 2,500 2,680 3,000	.654 .410 .259 .162 .129
LOVEB LOVGY LOVIC LOVOD LOVUF	1/0 2/0 3/0 4/0	$105,500 \\ 133,100 \\ 167,800 \\ 211,600 \\ 250,000$	Sector Sector Sector Sector	.095 .095 .095 .095 .095	.065 .065 .065 .065	.095 .100 .100 .100	1.39 1.49 1.58 1.69 1.80	3,350 3,960 4,490 5,160 5,940	.102 .0811 .0642 .0509
LOVYG LOVZA LOWBA LOWEC LOWFO		300,000 350,000 400,000 500,000 600,000	Sector Sector Sector Sector	.095 .095 .095 .095 .095	.065 .065 .065 .065	.110 .110 .115 .115 .125	1.90 1.99 2.09 2.25 2.41	6,660 7,350 8,300 9,650 11,220	.0360 .0308 .0270 .0216 .0180
LOWID	:::	750,000 1,000,000	Sector Sector	.095	.065	.125	2.61 2.91	13,190 16,650	.0144

THREE CONDUCTOR—BELTED
(Grounded or Ungrounded Neutral)

Code		Conducto	Shape	Insul Thick Inc	ness,	Thick-	Overall Dia- meter, Ins.	Weight	Average Resist- ance Ohms/
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B. & S.	C.M.	опаро	Cond.	Belt	Ins.	Ins.	1,000	1,000′ @ 25°C.
LOURB	8	16,510 $26,250$	Round Round	.095	.065	.085	1.03	$\frac{1,750}{2,140}$	. 654
LOVAZ LOVBE LOVDO	4 2 1	$41,740 \\ 66,370 \\ 83,690$	Round Sector Sector	0.095 $0.095$ $0.095$	.065 .065	095 $095$ $095$	1.23 $1.24$ $1.32$	2,500 $2,680$ $3,000$	.259 $.162$ $.129$
LOVEB	1/0 2/0	105,500 133,100	Sector Sector	.095	.065	.095	1.39	3,350 3,960	.102
LOVIC LOVUD LOVUF	3/0 4/0	167,800 $211,600$ $250,000$	Sector Sector	.095 .095 .095	.065 .065	.100 .100 .110	1.58 1.69 1.80	4,490 5,160 5,940	.0642
LOVYG LOVZA		300,000 350,000	Sector Sector	.095	.065	.110	1.90	6,660	.0360
LOWBA LOWEC LOWFO		400,000 500,000	Sector Sector	.095	.065	.115	$\frac{2.09}{2.25}$	7,350 8,300 9,650	0308 $0270$ $0216$
LOWID		600,000 750,000 1,000,000	Sector Sector	.095 .095	.065	.125	2.41 2.61 2.91	11,220 13,190 16,650	.0180



### THREE CONDUCTOR—BELTED

(Grounded Neutral)

7,000 VOLTS

Code	Conductor Size			Insulation Thickness, Inches		Thick- ness,	meter,	Net Weight Pounds/	Average Resist- ance Ohms/
	B. & S	. С.М.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000' @ 25°C.
LOWOF	8	16,510 $26,250$	Round Round	.110	.065	.095	1.11	2,020	.654
LOWID	4 2	41,740 66,370	Round	.110	.065	.095	1.19	$\frac{2,290}{2,670}$	$.410 \\ .259$
LOWUG	1 1/0	83,690 105,500	Sector	.110	.065	.095	$\frac{1.30}{1.38}$	$\frac{2,830}{3,150}$	.162
LOYAC LOYCA	$\frac{2}{0}$	133,100 167,800	Sector	.110	0.065	.100	$\frac{1.46}{1.55}$	3,680 4,140	.102
LOYDE	4/0	211,600 250,000	Sector	.110	.065	.100	$\frac{1.64}{1.77}$	4,680 5,560	0.0642 $0.0509$
LOYGO	:::/	300,000	Sector Sector	.110	.065	.110	1.86	6,140 6,870	.0360
LOYIF LOYJS	:/:	350,000 400,000	Sector	.110	.065	.115	$\frac{2.06}{2.15}$	7,810 8,520	.0308
LOYKT LOYLV	1::5	500,000	Sector Sector	.110	.065	.115	2.31	9,830	.0270 $.0216$
LOYOG		750,000 1,000,000	Sector Sector	.110	.065	. 135	2.69	11,470 13,780	.0180
	1 11 1	1,000,000	bector	.110	. 065	. 135	2.97	16,920	.0108

### THREE CONDUCTOR—BELTED

-BELTED 7,000 VOLTS (Ungrounded Neutral)

Code		Conduct	or Shape	Insulation Thickness, Inches		Thick ness,	meter,	Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	. С.М.	опаре	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LUGYY	8	$16,510 \\ 26,250$	Round Round	.110	.095	.095	1.17 1.25	2,170 2,440	. 654
LUHER LUHRE LUHTO	4 2 1	41,740 $66,370$ $83,690$	Round Sector Sector	.110 .110 .110	.095	.095	$\frac{1.36}{1.36}$	2,840 2,990	$.259 \\ .162$
LUHUV LUHWY	$\frac{1}{0}$ $\frac{2}{0}$	105,500 133,100	Sector Sector	.110	.095	.100 .100 .100	1.45 $1.52$ $1.61$	3,490 $3,850$ $4,320$	.129
LUIJT LUIRD LUJAR	3/0 4/0	$\begin{array}{c} 167,800 \\ 211,600 \\ 250,000 \end{array}$	Sector	.110	.095	.100	$\frac{1.70}{1.83}$	4,870 5,760	.0811 $.0642$ $.0509$
LUJIT LUJOV		300,000 350,000	Sector Sector	.110 .110 .110	.095	.110	1.92	6,350 7,080	.0431
LUJRA LUJSE LUJVO	111	400,000 500,000	Sector Sector	.110	.095 .095 .095	.115 .115 .125	2.12 $2.21$ $2.39$	$8,030 \\ 8,740 \\ 10,390$	0308 $0270$ $0216$
LUJYZ LUKET		600,000 750,000	Sector	.110	.095	. 125	2.53	11,730 14,050	.0180
		1,000,000	Sector	.110	. 095	. 140	3.04	17,580	.0108



### THREE CONDUCTOR—BELTED

(Grounded Neutral)

8,000 VOLTS

Code		Conducto	or Shape		ation eness, hes	Thick- ness,	meter,	Weight Pounds/	Average Resist- ance Ohms/
200	B. & S.	C.M.	эпаре	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LOWHY LOWID LOWOF LOWUG	4 2	26,250 41,740 66,370 83,690	Round Round Sector Sector	.110 .110 .110 .110	.065 .065 .065 .065	.095 .095 .095 .095	1.19 1.30 1.30 1.38	2,290 2,670 2,830 3,150	.410 .259 .162 .129
LOWYH LOYAC LOYCA LOYDE LOYED	1/0 2/0 3/0 4/0	$105,500 \\ 133,100 \\ 167,800 \\ 211,600 \\ 250,000$	Sector Sector Sector Sector	.110 .110 .110 .110 .110	.065 .065 .065 .065	.100 .100 .100 .110 .110	1.46 1.55 1.64 1.77 1.86	3,680 4,140 4,680 5,560 6,140	.102 .0811 .0642 .0509 .0431
LOYGO LOYIF LOYJS LOYKT LOYLV		300,000 350,000 400,000 500,000 600,000	Sector Sector Sector Sector	.110 .110 .110 .110 .110	.065 .065 .065 .065	.110 .115 .115 .115 .125	1.96 2.06 2.15 2.31 2.47	6,870 7,810 8,520 9,830 11,470	.0360 .0308 .0270 .0216 .0180
LOYOG		750,000 1,000,000	Sector Sector	.110	.065 .065	. 135 . 135	$\frac{2.69}{2.97}$	$13,780 \\ 16,920$	.0144

#### THREE CONDUCTOR—BELTED

(Ungrounded Neutral)

Code		Conducto			ation ness, hes	Thick- ness,	meter,	Weight Pounds/	Average Resist- ance Ohms/
3 1	B. & S	. C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LUKIV	6	26,250	Round	.110	.110	.095	1.28	2,510	.410
LUKSA	4	41,740	Round	.110	.110	.095	1.39	2,910	.259
LUKTE	$\frac{4}{2}$	66,370	Sector	.110	.110	.095	1.39	3,070	.162
LUKUX		83,690	Sector	.110	.110	.100	1.48	3,580	.129
LUKWO	1/0	105,500	Sector	.110	.110	.100	1.55	3,930	.102
LUKZY	2/0	133,100	Sector	.110	.110	.100	1.64	4,410	.0811
LULAT	3/0	167,800	Sector	.110	.110	.110	1.75	5,170	.0642
LULEV	4/0	211,600	Sector	.110	.110	.110	1.86	5,860	
LULOY		250,000	Sector	.110	.110	.110	1.95	6.450	. 0509
LULTA		300,000	Sector	.110	.110	.115	2.06	7,430	0.0431 0.0360
LULUZ		350,000	Sector	.110	.110	.115	2.15	8.140	.0308
LULVE		400,000	Sector	.110	.110	.115	2.24	8,850	.0270
LULYO		500,000	Sector	.110	.110	.125	2.42	10,520	.0216
LUMAV	0.00	600,000	Sector	.110	.110	.125	2.56	11,860	
LUMCY	10.00	750,000	Sector	.110	.110	.135	2.78	14,190	.0180
LUMIX	1976	1,000,000	Sector	.110	.110	.140	3.07	17,740	.0108



#### THREE CONDUCTOR—BELTED

(Grounded Neutral)

9,000 VOLTS

Code		Conducto		Thick	ation ness, hes	Thick- ness,	meter,	Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LOYUH	6	26,250	Round	.125	.065	.095	1.26	2,450	.410
LOYZK	4	41,740	Round	.125	.065	.095	1.36	2,830	259
LOZAD	2	66,370	Sector	.125	.065	.095	1.36	2,980	.162
LOZDA		83,690	Sector	.125	.065	.100	1.45	3,480	.129
LOZEF	1/0	105,500	Sector	.125	.065	.100	1.52	3,850	.102
LOZFE	2/0	133,100	Sector	.125	.065	.100	1.61	4,320	.0811
LOZHO	3/0	167,800	Sector	.125	.065	.100	1.70	4,870	.0642
LOZIG	4/0	211,600	Sector	.125	.065	.110	1.83	5,760	.0509
LOZKY		250,000	Sector	.125	.065	.110	1.92	6,350	
LOZOH		300,000	Sector	.125	.065	.110	2.02	7.070	.0431 $.0360$
LOZUJ	/	350,000	Sector	.125	.065	.115	2.12	8,030	.0308
LOZYK	/	400,000	Sector	.125	.065	.115	2.21	8,730	
LUAKS		500,000	Sector	.125	.065	.125	2.39		.0270
LUALT		600,000	Sector	.125	.065	.125		10,380	.0216
LUAMV	1	750,000	Sector	.125	.065		2.53	11,720	.0180
	1		Section	.120	.003	. 135	2.75	14,040	.0144
LUAPY	/	1,000,000	Sector	. 125	.065	.140	3.04	17,590	.0108

### THREE CONDUCTOR—BELTED

(Ungrounded Neutral)

Code		Conducto			ation eness,	Thick- ness,	meter,	Net Weight Pounds/	Average Resist- ance Ohms/
3	B. & S	. С.М.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C
LUMOZ	6	26,250	Round	. 125	. 125	.095	1.38	2,770	.410
LUMUB	4	41,740	Round	. 125	.125	.100	1.49	3.330	259
LUMVA	2	66,370	Sector	.125	.125	.100	1.49	3,480	.162
LUMWE	1	83,690	Sector	. 125	.125	.100	1.57	3,840	129
LUMZO	1/0	105,500	Sector	.125	.125	.100	1.64	4.210	.102
LUNBO	2/0	133,100	Sector	.125	.125	.110	1.75	4,900	.0811
LUNIZ	3/0	167,800	Sector	.125	.125	.110	1.84	5,470	.0642
LUNOB	4/0	211,600	Sector	.125	.125	.110	1.95	6,170	.0509
LUNUC		250,000	Sector	.125	.125	.115	2.05	7.020	
LUNYE		300,000	Sector	.125	.125	.115	2.15	7,760	0.0431 $0.0360$
LUOGS		350,000	Sector	.125	.125	.115	2.24	0.470	
LUOHT		400,000	Sector	.125	.125	.115		8,470	.0308
LUOLY		500,000	Sector	.125	.125		2.33	9,190	.0270
LUONB	= 3	600,000	Sector	.125	.125	.125	2.51	10,890	.0216
LUORF		750,000	Sector	.125	.125	.125 $.135$	2.65	12,250	.0180
THOME				. 120	.120	. 133	2.87	14,610	.0144
LUOWK		1,000,000	Sector	.125	.125	.140	3.16	18,200	.0108



### THREE CONDUCTOR—BELTED

(Grounded Neutral)

10,000 VOLTS

Code	B. & 8	Conduct Size S. C.M.	Shape	Insul Thick Inc	ation eness, hes	Thick-	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @/25°C.	
LOYUH LOYZK LOZAD LOZDA LOZEF	$\begin{array}{c} 6 \\ 4 \\ 2 \\ 1 \\ 1/0 \end{array}$	26,250 $41,740$ $66,370$ $83,690$ $105,500$	Round Round Sector Sector Sector	.125 .125 .125 .125 .125	.065 .065 .065 .065	.095 .095 .095 .100	1.26 1.36 1.36 1.45 1.52	2,450 2,830 2,980 3,480	.410 .259 .162 .129	
LOZFE LOZHO LOZIG LOZKY LOZOH	2/0 3/0 4/0	$133,100 \\ 167,800 \\ 211,600 \\ 250,000 \\ 300,000$	Sector Sector Sector Sector Sector	.125 .125 .125 .125 .125	.065 .065 .065 .065	.100 .100 .110 .110 .110	1.61 1.70 1.83 1.92 2.02	3,850 4,320 4,870 5,760 6,350	.102 .0811 .0642 .0509 .0431	
LOZUJ LOZYK LUAKS LUALT LUAMV		350,000 400,000 500,000 600,000 750,000	Sector Sector Sector Sector	.125 .125 .125 .125 .125	.065 .065 .065 .065	.115 .115 .125 .125 .135	2.12 2.21 2.39 2.53	7,070 8,030 8,730 10,380 11,720 14,040	.0360 .0308 .0270 .0216 .0180 .0144	
LUAPY	•••	1,000,000	Sector	.125	.065	.140		17,590	.0108	

### THREE CONDUCTOR—BELTED

(Ungrounded Neutral)

Code B. & S	Conduct Size S. C.M.	or Shape	Insul Thick Inc Cond.	ation eness, hes	Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C	
LUMOZ 6 LUMUB 4 LUMVA 2 LUMWE 1 LUMZO 1/0 LUNBO 2/0 LUNIZ 3/0 LUNUC 4/0 LUNUC UNYE LUOGS LUOHT LUOLY LUOLY LUONB	26,250 41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000 300,000 350,000 400,000 500,000	Round Round Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector	.125 .125 .125 .125 .125 .125 .125 .125	. 125 . 125	.095 .100 .100 .100 .100 .110 .110 .115 .115	1.38 1.49 1.49 1.57 1.64 1.75 1.84 1.95 2.05 2.15	2,770 3,330 3,480 3,840 4,210 4,900 5,470 6,170 7,760 8,470 9,190	.410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360	
LUORF	600,000 750,000 1,000,000	Sector Sector	.125 .125 .125	.125	.125	2.51 2.65 2.87 3.16	10,890 12,250 14,610 18,200	.0216 .0180 .0144 .0108	



### THREE CONDUCTOR—BELTED

(Grounded Neutral)

11,000 VOLTS

Code	B. & S.	Conducto	Shape	Insul Thick Inc	ness,	Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000'
	200				2010	Branch L			@ 25°C.
LUARB	6	26,250	Round	. 125	.080	.095	1.29	2,530	.410
LUASC	4	41,740	Round	.125	.080	.095	1.39	2,910	.259
LUAWG		66,370	Round	. 125	.080	.100	1.53	3,630	
LUBAK	1	83,690	Round	.125	.080	.100	1.61		. 162
LUBEL	1/0	105,500	Sector	.125	.080	.100		3,880	.129
TITTE			200001	. 120	.000	.100	1.55	3,930	.102
LUBKA	2/0	133,100	Sector	.125	.080	.100	1.64	4,410	.0811
LUBLE	3/0	167,800	Sector	.125	.080	.110	1.75	5,170	.0642
LUBNO	4/0	211,600	Sector	. 125	.080	.110	1.86	5.860	.0509
LUBON	/	250,000	Sector	. 125	.080	.110	1.95	6,450	
LUBUP	/	300,000	Sector	.125	.080	.115	2.06	7.430	.0431
TITOAT				. 120	.000	.113	2.00	7,430	.0360
LUCAL	/-	350,000	Sector	. 125	.080	.115	2.15	8,130	.0308
LUCEM		400,000	Sector	.125	.080	.115	2.24	8,840	.0270
LUCLA	1	500,000	Sector	.125	.080	.125	2.42	10,510	.0216
LUCOP	1	600,000	Sector	. 125	.080	.125	2.56	11,850	
LUCPO	/	750,000	Sector	.125	.080	.135	2.78	14,190	.0180
LUCDI				/-	. 000	. 100	4.10	14,190	.0144
LUCRY		1,000,000	Sector	. 125	.080	.140	3.07	17,740	.0108

#### THREE CONDUCTOR—BELTED

(Ungrounded Neutral)

Code		Conducto Size		Insula Thick Inc	ness,	Thick- ness,	meter,	Net Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LUOZM LUPAY	6	26,250	Round	.125	.125	.095	1.38	2,770	.410
	4	41,740	Round	. 125	. 125	.100	1.49	3,330	. 259
LUPCO	2	66,370	Round	.125	. 125	.100	1.62	3,900	.162
LUPEZ	1	83,690	Round	.125	.125	.100	1.70	4,170	.129
LUPIB	1/0	105,500	Sector	. 125	. 125	.100	1.64	4,210	.102
LUPOC	2/0	133,100	Sector	.125	.125	.110	1.75	4,900	.0811
LUPUD	3/0	167,800	Sector	. 125	.125	.110	1.84	5,470	.0642
LUPYA	4/0	211,600	Sector	.125	.125	.110	1.95	6.170	.0509
LUPZE		250,000	Sector	. 125	.125	.115	2.05	7.020	
LURAB		300,000	Sector	.125	.125	.115	2.15	7,760	.0431 $.0360$
LURBA		350,000	Sector	.125	.125	.115	9 94	0.470	
LURCE		400,000	Sector	.125	.125		2.24	8,470	.0308
LUREC		500,000	Sector	.125	.125	.115	2.33	9,190	.0270
LURFO		600,000	Sector			. 125	2.51	10,890	.0216
LURHY		750,000		. 125	.125	.125	2.65	12,250	.0180
		700,000	Sector	. 125	.125	. 135	2.87	14,610	.0144
LUROF		1,000,000	Sector	.125	.125	.140	3.16	18,200	.0108



### THREE CONDUCTOR—BELTED

(Grounded Neutral)

12,000 VOLTS

Code		Conducto		Inches		Thick- ness,		Net Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	. С.М.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LUCYR LUDAM	6 4 2	$26,250 \\ 41,740$	Round Round	.140	.080	.095	1.35 1.46	2,690	.410
LUDEN LUDIP LUDMA	1	66,370 83,690	Round Round	.140	.080	.100	1.59	$3,250 \\ 3,810 \\ 4,190$	$^{259}_{.162}$
LUDNE	2/0	105,500 133,100	Sector	.140	.080	.100	1.61	4,120	. 102
LUDSY LUDUR LUDYS	$\frac{3}{0}$	$\begin{array}{c} 167,800 \\ 211,600 \\ 250,000 \end{array}$	Sector	.140	.080	.110	$\frac{1.81}{1.92}$	5,370 6,060	0811 $0642$ $0509$
LUEIS	Star.	300,000	Sector	.140	.080	.110	$\frac{2.01}{2.12}$	6,660 7,640	.0431
LUELV		$350,000 \\ 400,000 \\ 500,000$	Sector	.140	.080	.115	$\frac{2.21}{2.30}$	8,350 9,070	.0308
LUEPZ		600,000 750,000	Sector Sector	.140 $.140$ $.140$	.080	.125 $.125$ $.135$	2.48	10,760 $12,110$	.0216
LUEVG		1,000,000	Sector	.140	.080	.135	2.84 3.13	14,460 18,030	.0144

### THREE CONDUCTOR—BELTED

(Ungrounded Neutral)

Code	B. & S.	Conductorsize C.M.	or Shape	Insul Thick Inc	ness,	Thick-	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
LURUG LURYH LUSAC LUSCA LUSCE LUSED LUSED LUSIF LUSIY LUSOG LUSUH LUSYJ LUTAD LUTDA LUTDA LUTDA	6 4 2 1 1/0 2/0 3/0 4/0 	26,250 41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000 300,000 400,000 500,000 600,000 750,000	Round Round Round Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector	.140 .140 .140 .140 .140 .140 .140 .140	.140 .140 .140 .140 .140 .140 .140 .140	.100 .100 .110 .110 .110 .110 .115 .115	1.48 1.58 1.73 1.82 1.75 1.84 1.93 2.05 2.14 2.24 2.33 2.44 2.60 2.76	3,190 3,600 4,390 4,800 4,700 5,200 5,780 6,740 7,350 8,080 8,810 9,880 11,270 12,980	.410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308 .0270 .0216 .0180
LUTHO		1,000,000	Sector	.140	.140	.135	2.96 3.25	15,030 18,650	.0144



### THREE CONDUCTOR—BELTED

(Grounded Neutral)

13,000 VOLTS

Code	Conductor Size		Insulation Thickness, Inches		Thick- ness,	meter,	Weight Pounds	Average Resist- ance Ohms	
	B. & S	. С.М.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C
LUCYR	6	26,250	Round	.140	.080	.095	1.35	2,690	.410
LUDAM	4	41,740	Round	. 140	.080	.100	1.46	3,250	.259
LUDEN	2	66,370	Round	. 140	.080	.100	1.59	3,810	.162
LUDIP	1	83,690	Round	.140	.080	.100	1.68	4.190	.129
LUDMA	1/0	105,500	Sector	. 140	.080	.100	1.61	4,120	.102
LUDNE	2/0	133.100	Sector	.140	.080	.100	1 70	4 000	
LUDSY	3/0	167,800	Sector	.140	.080		1.70	4,600	.0811
LUDUR	4/0	211,600	Sector	.140	.080	.110	1.81	5,370	.0642
LUDYS	/	250,000	Sector	.140		.110	1.92	6,060	.0509
LUEJS	/	300,000	Sector		.080	.110	2.01	6,660	.0431
попо	/	300,000	Sector	.140	.080	.115	2.12	7,640	.0360
LUEKT	/.	350,000	Sector	.140	.080	.115	2.21	0.000	0000
LUELV	. / .	400,000	Sector	.140	.080	115		8,350	.0308
LUENY	/	500,000	Sector	.140	.080		2.30	9,070	.0270
LUEPZ	1. 1	600,000	Sector	.140		.125	2.48	10,760	.0216
LUERC	1:11	750,000	Sector		.080	.125	2.62	12,110	.0180
1		700,000	Sector	.140	.080	. 135	2.84	14,460	.0144
LUEVG		1,000,000	Sector	.140	.080	.140	3.13	18,030	.0108

### THREE CONDUCTOR—BELTED

(Ungrounded Neutral)

Code		Conductor			Insulation Thickness, Inches		Overall Dia- meter,	Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000' @ 25°C
LURUG	6	26,250	Round	. 140	.140	.100	1.48	3.190	.410
LURYH	4	41,740	Round	.140	.140	.100	1.58	3,600	.259
LUSAC	2	66,370	Round	.140	.140	.110	1.73	4,390	.162
LUSCA	1	83,690	Round	.140	.140	.110	1.82	4,800	.102
LUSDE	1/0	105,500	Sector	.140	.140	.110	1.75	4.700	.102
LUSED	2/0	133,100	Sector	.140	.140	.110	1.84		
LUSGO	3/0	167,800	Sector	.140	.140	.110	1.93	5,200	.0811
LUSIF	4/0	211,600	Sector	.140	.140	.115	2.05	5,780	.0642
LUSJY		250,000	Sector	.140	.140	.115	2.14	6,740	.0509
LUSOG		300,000	Sector	.140	.140	.115	2.14	7,350 8,080	.0431 $.0360$
LUSUH		350,000	Sector	.140	.140	.115	2.33	0.010	
LUSYJ		400,000	Sector	.140	.140	.125	2.44	8,810	.0308
LUTAD		500,000	Sector	.140	.140	125		9,880	.0270
LUTDA		600,000	Sector	.140	.140	.135	$\frac{2.60}{2.76}$	11,270	.0216
LUTEF		750,000	Sector	.140	.140	.135		12,980	.0180
			200001	. 140	. 140	. 133	2.96	15,030	.0144
LUTHO		1,000,000	Sector	. 140	.140	.140	3.25	18,650	.0108



### THREE CONDUCTOR—BELTED

14,000 VOLTS

(Grounded Neutral)

Code		Conductor Size		Insulation Thickness, Inches		Thick- ness,	meter,	Weight Pounds/	Average Resist- ance Ohms/
1725	B. & S.	C.M.	ыаре	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LUEZK LUFAN LUFEP	6 4 2	26,250 41,740 66,370	Round Round Round	. 155 . 155 . 155	.080 :080 .080	.100 .100 .100	1.43 1.53 1.66	3,040 3,440 4,010	.410 .259 .162
LUFNA LUFOR	1/0	83,690 105,500	Round	.155	.080	.110	$\frac{1.76}{1.67}$	4,590 4,300	.129
LUFPE LUFRO LUFTY	$\frac{2}{0}$ $\frac{3}{0}$ $\frac{4}{0}$	133,100 $167,800$ $211,600$	Sector Sector	. 155 . 155 . 155	.080 .080	.110 .110 .110	1.78 $1.87$ $1.98$	5,000 5,570 6,270	.0811 $.0642$ $.0509$
LUFUS	:::	250,000 300,000	Sector Sector	. 155 . 155	.080	.115	$\frac{2.08}{2.18}$	7,120 $7,880$	.0309 $.0431$ $.0360$
LUGAP LUGIR LUGOS		350,000 400,000 500,000	Sector Sector	. 155 . 155 . 155	.080 .080 .080	.115 .125 .125	2.27	8,580 9,630	.0308
LUGPA LUGSO		600,000 750,000	Sector Sector	. 155	.080	.135	$2.54 \\ 2.70 \\ 2.90$	$11,010 \\ 12,700 \\ 14,740$	.0216 $.0180$ $.0144$
LUGUT	19	1,000,000	Sector	. 155	.080	. 140	3.19	18,330	.0108

### THREE CONDUCTOR—BELTED

14,000 VOLTS

Code		Conductor Size Shap		Insula Thick Inc	ness,	Thick- ness,	meter,	Net Weight Pounds/	Average Resist- ance Ohms/
37000	B. & S	. C.M.	ыаре	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LUTIG LUTOH LUTUJ LUTYK LUVAF LUVEG LUVFA LUVGE LUVJO LUVOJ	6 4 2 1 1/0 2/0 3/0 4/0	26,250 41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000 300,000	Round Round Round Sector Sector Sector Sector Sector Sector	. 155 . 155 . 155 . 155 . 155 . 155 . 155 . 155 . 155 . 155	.155 .155 .155 .155 .155 .155 .155 .155	.100 .100 .110 .110 .110 .110 .115 .115	1.58 1.68 1.83 1.91 1.84 1.93 2.02 2.14 2.23 2.33	3,480 3,890 4,700 5,100 5,000 5,510 6,090 7,060 7,670 8,430	.410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360
LUVUK LUVYL LUWAG LUWHE LUWIJ LUWOK		350,000 400,000 500,000 600,000 750,000	Sector Sector Sector Sector Sector	.155 .155 .155 .155 .155	.155 .155 .155 .155 .155	.125 .125 .135 .135 .140	2.44 2.53 2.71 2.85 3.06 3.37	9,500 10,260 12,000 13,400 15,840 19,940	.0308 .0270 .0216 .0180 .0144



### THREE CONDUCTOR—BELTED

(Grounded Neutral)

15,000 VOLTS

Code		Conducto		Insul Thick Inc	ness,	Lead Overall Net Thick- Dia- Weigh ness, meter, Pound			Average Resist- ance Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000' @ 25°C.
LUEZK	6	26,250	Round	. 155	.080	.100	1.43	0.040	
LUFAN	4	41,740	Round	.155	.080	.100	1.53	3,040	.410
LUFEP	2	66,370	Round	.155	.080	.100		3,440	.259
LUFNA	1	83,690	Round	.155	.080		1.66	4,010	.162
LUFOR	1/0	105,500	Sector	.155	.080	.110	1.76	4,590	.129
		200,000	pocion	. 100	.000	.100	1.67	4,300	.102
LUFPE	2/0	133,100	Sector	. 155	.080	.110	1.78	F 000	
LUFRO	3/0	167,800	Sector	.155	.080	.110	1.87	5,000	.0811
LUFTY	4/0	211,600	Sector	.155	.080	.110		5,570	.0642
LUFUS	/	250,000	Sector	.155	.080		1.98	6,270	.0509
LUFYT	/	300,000	Sector	.155		.115	2.08	7,120	.0431
	,	000,000	Sector	. 133	.080	.115	2.18	7,880	.0360
LUGAP	. /.	350,000	Sector	.155	.080	.115	2.27	0.500	
LUGIR	./	400,000	Sector	.155	.080	.125		8,580	.0308
LUGOS	/	500,000	Sector	155	.080		2.38	9,630	.0270
LUGPA	/	600,000	Sector	.155		.125	2.54	11,010	.0216
LUGSO	/ :	750,000	Sector		.080	. 135	2.70	12,700	.0180
		,00,000	Bector	. 155	.080	.135	2.90	14,740	.0144
LUGUT		1,000,000	Sector	. 155	.080	. 140	3.19	18,330	.0108

### THREE CONDUCTOR—BELTED

(Ungrounded Neutral)

Code	Conductor Size			Insulation Thickness,		Thick-		Weight	Average Resistance
Couc		5126	Chana	Inc	nes		meter,	Pounds/	Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000' @ 25°C
LUTIG	6	26,250	Round	. 155	. 155	.100	1 50	0.400	
LUTOH	4	41,740	Round	.155	.155		1.58	3,480	.410
LUTUJ	2	66,370	Round	. 155		.100	1.68	3,890	. 259
LUTYK	2	83,690	Round		. 155	.110	1.83	4,700	. 162
LUVAF	1/0	105,500		. 155	. 155	.110	1.91	5,100	.129
	1/0	100,000	Sector	.155	. 155	.110	1.84	5,000	.102
LUVEG	2/0	133,100	Sector	. 155	. 155	110	1 00		
LUVFA	3/0	167,800	Sector	. 155		.110	1.93	5,510	.0811
LUVGE	4/0	211,600	Sector		. 155	.110	2.02	6,090	.0642
LUVJO		250,000		. 155	. 155	.115	2.14	7,060	.0509
LUVOJ			Sector	. 155	. 155	.115	2.23	7.670	.0431
LC VO3		300,000	Sector	. 155	. 155	.115	2.33	8,430	.0360
LUVUK		350,000	Sector	100					.0300
LUVYL		400,000		. 155	. 155	. 125	2.44	9,500	.0308
LUWAG			Sector	. 155	. 155	.125	2.53	10,260	.0270
LUWHE		500,000	Sector	. 155	.155	. 135	2.71	12,000	.0216
LUWIJ		600,000	Sector	. 155	.155	. 135	2.85	13,400	.0180
LU W 13		750,000	Sector	. 155	. 155	.140	3.06	15,840	
LUWOK		1 000 000	0				0.00	10,040	.0144
LU WOK	1.00	1,000,000	Sector	. 155	. 155	. 155	3.37	19,940	.0108



### THREE CONDUCTOR—TYPE "H" (Grounded Neutral)

16,000 VOLTS

		Conduct	or	Insula-	Lead	Overall	Net	Average Resist-
Code	S	Bize	01	tion Thick-	Thick- ness,	Dia- meter,	Weight Pounds/	ance Ohms/
	B. & S.	C.M.	Shape	ness, Ins.	Ins.	Ins.	1,000′	@ 25°C.
NEWIK	4	41,740	Round	. 205	.100	1.59	3,570	. 259
NEWJE	4 2 1	66,370	Round	.205	.110	1.74	4.360	.162
NEWLO	1	83,690	Round	.205	.110	1.82	4,750	129
NEWOL	1/0	105,500	Round	.205	.110	1.91	5,220	102
NEWUM	2/0	133,100	Round	.205	.110	2.01	5,770	.0811
NEWYN	3/0	167,800	Round	. 205	.115	2.13	6,680	.0642
NEYAJ	4/0	211,600	Sector	. 205	.110	2.02	6,420	.0509
NEYCS		250,000	Sector	. 205	.115	2.12	7,260	.0431
NEYDT		300,000	Sector	. 205	.115	2.22	8,010	.0360
NEYEK		350,000	Sector	. 205	.115	2.31	8,740	.0308
NEYIL		400,000	Sector	.205	.125	2.42	9.800	.0270
NEYJA		500,000	Sector	. 205	.125	2.58	11.180	.6216
NEYKE	Mary July	600,000	Sector	.205	.135	2.74	12,880	.0180
NEYMO		750,000	Sector	. 205	. 135	2.94	14,920	.0144
NEYPY		1,000,000	Sector	. 205	.140	3.23	18,340	.0108

#### THREE CONDUCTOR-TYPE "H"

16,000 VOLTS

		Conduct	or	Insula-	Lead	Overall	Net	Average Resist-
Code		Size	01	tion Thick-	Thick- ness,	Dia- meter,	Weight Pounds/	Ohms
143.	B. & S.	C.M.	Shape	ness, Ins.	Ins.	Ins.	1,000′	1,000′ @ 25°C.
NIORL	4	41,740	Round	. 265	.110	1.86	4,580	. 259
NIOSM	4 2 1	66,370	Round	.265	.110	1.99	5,200	.162
NIPAF		83,690	Round	. 265	.115	2.09	5,870	.129
NIPEG	1/0	105,500	Round	. 265	.115	2.18	6,370	.102
NIPFA	2/0	133,100	Round	. 265	.115	2.28	6,920	.0811
NIPGE	3/0	167,800	Round	.265	.125	2.41	7.940	.0642
NIPJO	4/0	211,600	Sector	. 265	.115	2.27	7,530	.0509
NIPLY		250,000	Sector	. 265	.125	2.38	8,450	.0431
NIPOJ		300,000	Sector	. 265	.125	2.48	9,260	.0360
NIPUK		350,000	Sector	.265	.125	2.57	10,040	.0308
NIPYL		400,000	Sector	.265	. 135	2.68	11 120	0070
NIRAH		500,000	Sector	.265	.135	2.84	$11,130 \\ 12,570$	.0270
NIRHA	Art well to a	600,000	Sector	.265	.140	2.99	$12,370 \\ 14,350$	.0216



### THREE CONDUCTOR—TYPE "H"

(Grounded Neutral)

17,000 VOLTS

Code	B. & S.	Conduct Size C.M.	or Shape	Insulation Thick- ness, Ins.	Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
NEZAK NEZEL NEZKA NEZLE NEZNO	$\begin{array}{c} 4 \\ 2 \\ 1 \\ 1/0 \\ 2/0 \end{array}$	41,740 66,370 83,690 105,500 133,100	Round Round Round Round Round	.220 .220 .220 .220 .220 .220	.100 .110 .110 .110 .115	1.65 1.80 1.89 1.98 2.08	3,780 4,570 4,950 5,440 6,250	.259 .162 .129 .102 .0811
NEZON NEZUP NIADS NIAFT NIAJY	3/0 4/0 	167,800 211,600 250,000 300,000 350,000	Round Sector Sector Sector Sector	.220 .220 .220 .220 .220	.115 .115 .115 .115 .125	2.19 2.09 2.18 2.27 2.39	6,890 6,880 7,480 8,220 9,290	.0642 .0509 .0431 .0360 .0308
NIALB NIAND NIAPF NIAWM		400,000 500,000 600,000 750,000	Sector Sector Sector Sector	.220 .220 .220 .220	.125 .125 .135 .140	2.48 $2.64$ $2.80$ $3.01$	$10,050 \\ 11,430 \\ 13,160 \\ 15,570$	$\begin{array}{c} .0270 \\ .0216 \\ .0180 \\ .0144 \end{array}$

#### THREE CONDUCTOR—TYPE "H"

17,000 VOLTS

Code	B. & S.	Conduc Size C.M.	Shape	Insulation Thickness, Ins.	Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
NIRIK NIRJE NIRLO NIRNY NIROL	$\begin{array}{c} 4 \\ 2 \\ 1 \\ 1/0 \\ 2/0 \end{array}$	$\begin{array}{c} 41,740 \\ 66,370 \\ 83,690 \\ 105,500 \\ 133,100 \end{array}$	Round Round Round Round Round	. 280 . 280 . 280 . 280 . 280	.110 .115 .115 .115 .125	1.93 2.07 2.15 2.24 2.36	4,800 5,660 6,090 6,570 7,500	. 259 . 162 . 129 . 102 . 0811
NIRUM NIRYN NISAJ NISEK NISIL	3/0 4/0 	$167,800 \\ 211,600 \\ 250,000 \\ 300,000 \\ 350,000$	Round Sector Sector Sector	. 280 . 280 . 280 . 280 . 280	.125 .115 .125 .125 .125	2.47 2.33 2.44 2.54 2.63	8,210 7,750 8,710 9,510 10,280	$\begin{array}{c} .0642 \\ .0509 \\ .0431 \\ .0360 \\ .0308 \end{array}$
NISJA NISKE NISMO		400,000 500,000 600,000	Sector Sector Sector	.280 .280 .280	.135 .135 .140	$2.74 \\ 2.90 \\ 3.05$	11,390 12,850 14,640	.0270 .0216 .0180



### THREE CONDUCTOR—TYPE "H"

(Grounded Neutral)

18,000 VOLTS

		Conduct	or	Insula-	Lead Thick-	- Dia-	Net Weight	Average Resist-	
Code		Size		Thick-	ness,	meter,	Pounds/	ance Ohms/	
1000 s	B. & S.	CM.	Shape	ness, Ins.	Ins.	Ins.	1,000′	0 25°C.	
NIBER	4	41,740	Round	.235	.110	1.74	4,170	. 259	
NIBRE	$\frac{2}{1}$	66,370	Round	.235	.110	1.87	4.780	162	
NIBTO	1	83,690	Round	.235	.110	1.95	5,170	.129	
NIBUV	1/0	105,500	Round	. 235	.115	2.05	5,920	.102	
NIBWY	2/0	133,100	Round	.235	.115	2.15	6,480	.0811	
NICAR	3/0	167,800	Round	.235	.115	2.26	7.140	.0642	
NICIT	4/0	211,600	Sector	.235	.115	2.15	7.090	.0509	
NICOV		250,000	Sector	. 235	.115	2.24	7,700	.0431	
NICRA		300,000	Sector	.235	.125	2.36	8,780	.0360	
NICSE		350,000	Sector	.235	.125	2.45	9,540	.0308	
NICVO	4,700 = 300	400,000	Sector	.235	.125	2.54	10.290	.0270	
NICYX		500,000	Sector	.235	.135	2.72	12,020	.0216	
NIDAS		600,000	Sector	.235	.135	2.86	13,430	.0180	
NIDET	10.00	750,000	Sector	.235	.140	3.07	15,770	.0144	
		1							

#### THREE CONDUCTOR—TYPE "H"

(Ungrounded Neutral)

NIRIK         4         41,740         Round         280         110         1.93         4,800         259           NIRJE         2         66,370         Round         280         115         2.07         5,660         162           NIRLO         1         83,690         Round         280         115         2.15         6,090         129           NIRNY         1/0         105,500         Round         280         115         2.24         6,570         102           NIROL         2/0         133,100         Round         280         125         2.36         7,500         0811           NIRUM         3/0         167,800         Round         280         125         2.47         8,210         0642           NIRYN         4/0         211,600         Sector         280         125         2.47         8,210         0642           NISAJ          250,000         Sector         280         125         2.47         8,210         0642           NISEK          300,000         Sector         280         125         2.44         8,710         0431           NISIL          350,000 </th <th>Code</th> <th>B. &amp; S.</th> <th>Conductorsize C.M.</th> <th>Shape</th> <th>Insulation Thickness, Ins.</th> <th>Lead Thick- ness, Ins.</th> <th>Overall Dia- meter, Ins.</th> <th>Net Weight Pounds/ 1,000'</th> <th>Average Resist- ance Ohms/ 1,000' @ 25°C.</th>	Code	B. & S.	Conductorsize C.M.	Shape	Insulation Thickness, Ins.	Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
NIRNY NIROL         1/0         105,500 Round         Round 280         115 2.24 8,570 Round         102 102 Round           NIROL         2/0         133,100 Round         280 115 2.36 7,500 Round         125 2.36 7,500 Round         125 2.36 7,500 Round         125 2.47 Round         8,210 Round         125 2.47 Round         125 2.44 Round		4	41,740	Round	.280	.110	1.93	4.800	. 259
NIRNY NIROL         1/0         105,500 Round         Round 280         115 2.24 8,570 Round         102 102 Round           NIROL         2/0         133,100 Round         280 115 2.36 7,500 Round         125 2.36 7,500 Round         125 2.36 7,500 Round         125 2.47 Round         8,210 Round         125 2.47 Round         125 2.44 Round		2		Round	.280	.115	2.07		
NIROL         2/0         133,100         Round         280         125         2.36         7,500         .0811           NIRUM         3/0         167,800         Round         280         .125         2.47         8,210         .0642           NIRYN         4/0         211,600         Sector         .280         .125         2.33         7,750         .0509           NISAJ          250,000         Sector         .280         .125         2.54         8,710         .0431           NISEK          300,000         Sector         .280         .125         2.54         9,510         .0360           NISIL          350,000         Sector         .280         .125         2.63         10,280         .038           NISIA          400,000         Sector         .280         .135         2.74         11,390         .0270           NISKE          500,000         Sector         .280         .135         2.90         12,850         .0216						.115	2.15	6,090	.129
NIRUM 3/0 167,800 Round 280 125 2.47 8,210 0642 NIRYN 4/0 211,600 Sector 280 115 2.33 7,750 0509 NISAJ 250,000 Sector 280 125 2.44 8,710 0431 NISEK 300,000 Sector 280 125 2.54 9,510 0360 NISIL 350,000 Sector 280 125 2.63 9,510 0360 NISJA 400,000 Sector 280 125 2.63 10,280 0308  NISJA 400,000 Sector 280 135 2.74 11,390 0270 NISKE 500,000 Sector 280 135 2.90 12,850 0216								6,570	. 102
NIRYN         4/0         211,600         Sector         280         115         2.33         7,750         0509           NISAJ          250,000         Sector         280         125         2.44         8,710         0431           NISEK          300,000         Sector         280         125         2.54         9,510         0360           NISIL          350,000         Sector         280         125         2.63         10,280         0308           NISJA          400,000         Sector         280         135         2.74         11,390         0270           NISKE          500,000         Sector         280         135         2.90         12,850         0216	NIROL	2/0	133,100	Round	.280	. 125	2.36	7,500	.0811
NIRYN         4/0         211,600         Sector         280         115         2.33         7,750         0509           NISAJ          250,000         Sector         280         125         2.44         8,710         0431           NISEK          300,000         Sector         280         125         2.54         9,510         0360           NISIL          350,000         Sector         280         125         2.63         10,280         0308           NISJA          400,000         Sector         280         135         2.74         11,390         0270           NISKE          500,000         Sector         280         135         2.90         12,850         0216	NIRUM	3/0	167 800	Round	280	195	9 47	8 910	0649
NISAJ     250,000     Sector     280     125     2.44     8,710     0431       NISEK     300,000     Sector     280     125     2.54     9,510     0360       NISIL     350,000     Sector     280     125     2.63     10,280     0308       NISJA     400,000     Sector     280     135     2.74     11,390     0270       NISKE     500,000     Sector     280     135     2.90     12,850     0216									
NISEK       300,000       Sector       280       125       2.54       9,510       0360         NISIL        350,000       Sector       .280       .125       2.63       10,280       .0308         NISJA        400,000       Sector       .280       .135       2.74       11,390       .0270         NISKE        500,000       Sector       .280       .135       2.90       12,850       .0216		The second second second second							
NISIL          350,000         Sector         280         .125         2.63         10,280         .0308           NISJA          400,000         Sector         .280         .135         2.74         11,390         .0270           NISKE          500,000         Sector         .280         .135         2.90         12,850         .0216									
NISKE 500,000 Sector .280 .135 2.90 12,850 .0216	NISIL								
NISKE 500,000 Sector .280 .135 2.90 12,850 .0216	NIGIA		100 000	Souton	200	105	0.74	11 000	0050
37763.50									
115110 000,000 Sector 200 140 3.03 14,040 0180									
	11101110		000,000	Sector	. 200	. 140	0.00	14,040	.0180



### THREE CONDUCTOR—TYPE "H" (Grounded Neutral)

19,000 VOLTS

		Conduct	or	Insula-	Lead	Overall	Net	Average Resist-
Code	B. & S.	Size . C.M.	Shape	tion Thick- ness, Ins.	Thick- ness, Ins.	Dia- meter, Ins.	Weight Pounds/ 1,000'	ance Ohms/ 1,000' @ 25°C.
NIBER NIBRE NIBTO NIBUV NIBWY	$\begin{array}{c} 4 \\ 2 \\ 1 \\ 1/0 \\ 2/0 \end{array}$	$\begin{array}{c} 41,740 \\ 66,370 \\ 83,690 \\ 105,500 \\ 133,100 \end{array}$	Round Round Round Round Round	. 235 . 235 . 235 . 235 . 235	.110 .110 .110 .115 .115	1.74 1.87 1.95 2.05 2.15	4,170 4,780 5,170 5,920 6,480	.259 .162 .129 .102 .0811
NICAR NICIT NICOV NICRA NICSE	3/0 4/0	$167,800 \\ 211,600 \\ 250,000 \\ 300,000 \\ 350,000$	Round Sector Sector Sector Sector	. 235 . 235 . 235 . 235 . 235	.115 .115 .115 .125 .125	2.26 2.15 2.24 2.36 2.45	7,140 7,090 7,700 8,780 9,540	.0642 .0509 .0431 .0360 .0308
NICVO NICYX NIDAS NIDET	/:: <u>:</u>	400,000 500,000 600,000 750,000	Sector Sector Sector Sector	. 235 . 235 . 235 . 235	.125 .135 .135 .140	2.54 2.72 2.86 3.07	10,290 12,020 13,430 15,770	.0270 .0216 .0180 .0144

### THREE CONDUCTOR—TYPE "H"

19,000 VOLTS

Average

Resist-

ance Ohms/

	В. « S.	C.M.		Ins.				@ 25°C.
NISPY NISYP NITAK NITEL NITKA NITKA NITKO NITON NITUP NIUDY	4 2 1 1/0 2/0 3/0 4/0 	41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000 300,000 350,000	Round Round Round Round Round Sector Sector Sector Sector	.295 .295 .295 .295 .295 .295 .295 .295	.110 .115 .115 .115 .125 .125 .125 .125 .125	1.99 2.14 2.22 2.31 2.43 2.54 2.54 2.50 2.60 2.71	5,020 5,920 6,310 6,840 7,750 8,460 8,310 8,960 9,760 10,870	.259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308
NIUJD NIULG NIUPK		400,000 500,000 600,000	Sector Sector	.295 .295 .295	. 135 . 135 . 140	2.80 2.96 3.11	11,660 13,120 14,940	.0270 .0216 .0180



### THREE CONDUCTOR—TYPE "H"

(Grounded Neutral)

20,000 VOLTS

	Conductor			Insula-		Overall	Net	Average Resist-
Code		Size	97.	tion Thick-	Thick- ness,	Dia- meter,	Weight Pounds/	ance Ohms/
- A - 12.2	B. & S.	C.M.	Shape	ness, Ins.	Ins.	Ins.	1,000′	1,000′ @ 25°C.
NIDIV	2	66,370	Round	.250	110	1.00	* 000	-
NIDSA	ī	83,690	Round	.250	.110	1.93	5,000	.162
NIDTE	1/0	105,500	Round		.110	2.02	5,410	.129
NIDUX	2/0	133,100	Round	.250	. 115	2.12	6,140	/.102
NIDWO	3/0	167,800		.250	.115	2.21	6,700	.0811
	0,0	107,000	Round	. 250	.115	2.32	7,360	.0642
NIDZY	4/0	211,600	g-it	0.00	1005			
NIECS		250,000	Sector	. 250	.115	2.21	7,310	. 0509
NIEDT			Sector	. 250	.115	2.30	7.920	.0431
NIELC	- 17.00	300,000	Sector	. 250	.125	2.42	9,010	.0360
NIEMD		350,000	Sector	. 250	. 125	2.51	9,780	.0308
MIEMD		400,000	Sector	.250	.125	2.60	10,550	.0270
MILITARITA		L S Zumate	COLUMN TO SERVICE				10,000	.0210
NIENF		500,000	Sector	.250	.135	2.78	12.300	.0216
NIERJ		600,000	Sector	.250	. 135	2.92	13,710	
NIETL		750,000	Sector	.250	.140	3.13	16,160	.0180 $.0144$

### THREE CONDUCTOR—TYPE "H"

(Ungrounded Neutral)

		Conductor			Lead	Overall	Net	Average Resist-
Code	B. & S.	Size C.M.	Shape	tion Thick- ness, Ins.	Thick- ness, Ins.	Dia- meter, Ins.	Weight Pounds/ 1,000'	ance Ohms 1,000' @ 25°C
NISYP NITAK NITEL NITKA	$\begin{array}{c} 2 \\ 1 \\ 1/0 \\ 2/0 \end{array}$	66,370 83,690 105,500 133,100	Round Round Round Round	.295 .295 .295 .295	.115 .115 .115 .125	2.14 2.22 2.31 2.43	5,920 6,310 6,840 7,750	.162 .129 .102 .0811
NITLE NITNO NITON NITUP NIUDY	3/0 4/0 	167,800 211,600 250,000 300,000 350,000	Round Sector Sector Sector Sector	. 295 . 295 . 295 . 295 . 295	.125 $.125$ $.125$ $.125$ $.125$ $.125$	2.54 $2.41$ $2.50$ $2.60$ $2.71$	8,460 8,310 8,960 9,760 10,870	.0642 .0509 .0431 .0360 .0308
NIUJD NIULG NIUPK	···	400,000 500,000 600,000	Sector Sector Sector	.295 .295 .295	.135 .135 .140	2.80 2.96 3.11	11,660 $13,120$ $14,940$	.0270 .0216 .0180



### THREE CONDUCTOR—TYPE "H"

(Grounded Neutral)

21,000 VOLTS

		Conductor			Lead	Overall	Net	Average Resist-
Code	Size		Shape	tion Thick-	Thick- ness,	Dia- meter,	Weight Pounds/	ance Ohms/
1	B. & S.	C.M.	опаре	ness, Ins.	Ins.	Ins.	1,000′	1,000′ @ 25°C.
NIDIV	2	66,370	Round	. 250	.110	1.93	5,000	.162
NIDSA		83,690	Round	.250	.110	2.02	5.410	.102
NIDTE	1/0	105,500	Round	. 250	.115	2.12	6.140	.102
NIDUX	2/0	133,100	Round	. 250	.115	2.21	6,700	.0811
NIDWO	3/0	167,800	Round	. 250	.115	2.32	7,360	.0642
NIDZY	4/0	211,600	Sector	050				
NIECS	1/0	250,000		. 250	.115	2.21	7,310	. 0509
NIEDT	7.	300,000	Sector	.250	.115	2.30	7,920	.0431
NIELC	/	350,000	Sector	.250	. 125	2.42	9,010	.0360
NIEMD	/:	400,000	Sector	.250	. 125	2.51	9,780	.0308
1,122,112	1	400,000	sector	.250	.125	2.60	10,550	.0270
NIENF		500,000	Sector	.250	. 135	9 79	10.000	0010
NIERJ		600,000	Sector	.250	.135	2.78	12,300	.0216
NIETL		750,000	Sector	.250		2.92	13,710	.0180
		.00,000	Dector	. 250	. 140	3.13	16,160	.0144

#### THREE CONDUCTOR-TYPE "H"

21,000 VOLTS

		Conductor			Lead	Overall	Net	Average Resist
Code		Size	Shape	tion Thick-	Thick- ness,	Dia- meter,	Weight Pounds/ 1,000'	ance Ohms/ 1,000' @ 25°C.
	B. & S.	C.M.		ness, Ins.	Ins.	Ins.		
NIURM	2	66,370	Round	.315	.115	2.22	6,190	100
NIUZT		83,690	Round	.315	.115	2.31	6,620	$.162 \\ .129$
NIVAL	1/0	105,500	Round	.315	.125	2.41	7,480	.102
NIVEM NIVLA	2/0	133,100	Round	.315	.125	2.51	8,090	.0811
NIVLA	3/0	167,800	Round	.315	.125	2.62	8,810	.0642
NIVME	4/0	211,600	Sector	.315	.125	2.49	0.040	0500
NIVOP		250,000	Sector	.315	.125	2.58	8,640	.0509
NIVPO		300,000	Sector	.315	135	2.70	$9,290 \\ 10,420$	.0431
NIVRY		350,000	Sector	.315	. 135	2.79	11,240	.0360
NIVYR		400,000	Sector	.315	.135	2.88	12,020	.0308
NIWAM		500,000	Sector	.315	.140	3.05	13,870	.0216



### THREE CONDUCTOR—TYPE "H"

(Grounded Neutral)

22,000 VOLTS

	Conductor			Insula-	Lead	Overall	Net	Average Resist-
Code	Size			tion Thick-	Thick- ness,	Dia- meter,	Weight Pounds/	ance Ohms/
	B. & S.	C.M.	Shape	ness, Ins.	Ins.	Ins.	1,000′	1,000′ @ 25°C.
NIEWN	2	66,370	Round	. 265	.110	1.99	F 900	100
NIFAT	$\frac{2}{1}$	83,690	Round	.265	.115	2.09	$\frac{5,200}{5,870}$	. 162
NIFEV	1/0	105,500	Round	.265	.115	2.18	6.370	.129 $.102$
NIFOY	2/0	133,100	Round	.265	.115	2.28	6,920	.0811
NIFTA	3/0	167,800	Round	.265	.125	2.41	7,940	.0642
NIFUZ	4/0	211,600	Sector	.265	.115	2.27	7 590	0500
NIFVE		250,000	Sector	.265	.125	2.38	$7,530 \\ 8,450$	. 0509
NIFYO		300,000	Sector	.265	.125	2.48	9,260	.0431
NIGAV		350,000	Sector	.265	.125	2.57	10,040	.0360
NIGCY		400,000	Sector	.265	.135	2.68	11,130	.0308 $.0270$
NIGIX	Mark St.	500,000	Sector	.265	. 135	0.04	10.550	
NIGOZ		600,000	Sector	.265	.140	$\frac{2.84}{2.99}$	$12,570 \\ 14,350$	.0216 $.0180$

#### THREE CONDUCTOR-TYPE "H"

(Ungrounded Neutral)

		Conductor			Lead	Overall	Net	Average Resist-
Code		Size	Shape	tion Thick- ness,	Thick- ness, Ins.	Dia- meter, Ins.	Weight Pounds/ 1,000'	ance Ohms/ 1,000'
	B. & S.	C.M.		Ins.			1,000	@ 25°C.
NIWEN	2	66,370	Round	.330	.115	2.28	6,430	. 162
NIWUR	1	83,690	Round	.330	.125	2.39	7,200	129
NIWYS NIYAN	1/0	105,500	Round	.330	.125	2.48	7,760	.102
NIYDZ	2/0 3/0	133,100	Round	.330	. 125	2.57	8,350	.0811
MIIDZ	3/0	167,800	Round	.330	. 135	2.71	9,430	.0642
NIYEP	4/0	211,600	Sector	.330	.125	2.55	8,880	.0509
NIYHD		250,000	Sector	.330	.125	2.64	9,540	.0431
NIYJF		300,000	Sector	.330	. 135	2.76	10,690	.0360
NIYNA		350,000	Sector	.330	. 135	2.85	11,500	.0308
NIYOR	• • • •	400,000	Sector	.330	. 135	2.94	12,300	.0270
NIYPE	·	500,000	Sector	.330	.140	3.11	14,150	.0216



#### THREE CONDUCTOR—TYPE "H"

(Grounded Neutral)

23,000 VOLTS

Code	Conductor			Inșula-		Overall	Net	Average Resist-
	Size		Shape	tion Thick- ness,	Thick- ness,	Dia- meter,	Weight Pounds/	ance Ohms/
	B. & S.	C.M.	опарс	Ins.	Ins.	Ins.	1,000′	1,000′ @ 25°C.
NIEWN	2	66,370	Round	. 265	.110	1.99	5,200	.162
NIFAT	1	83,690	Round	.265	.115	2.09	5.870	.129
NIFEV	1/0	105,500	Round	.265	.115	2.18	6.370	.102
NIFOY	2/0	133,100	Round	. 265	.115	2.28	6,920	.0811
NIFTA	3/0	167,800	Round	.265	.125	2.41	7,940	.0642
NIFUZ	4/0	211,600	Sector	.265	.115	2.27	7.530	.0509
NIFVE	/	250,000	Sector	.265	.125	2.38	8,450	.0431
NIFYO	/	300,000	Sector	.265	.125	2.48	9,260	.0360
NIGAV	/	350,000	Sector	. 265	.125	2.57	10,040	.0308
NIGCY		400,000	Sector	.265	.135	2.68	11,130	.0270
NIGIX		500,000	Sector	.265	. 135	2.84	12.570	.0216
NIGOZ		600,000	Sector	.265	.140	2.99	14,350	.0180

#### THREE CONDUCTOR-TYPE "H"

(Ungrounded Neutral)

	Conductor			Insula-	Lead Thick-	Overall	Net	Average Resist-
Code		Size	Shape	tion Thick-	ness,	Dia- meter,	Weight Pounds/	Ohms
	B. & S.	C.M.	Snape	ness, Ins.	Ins.	Ins.	1,000′	1,000′ @ 25°C
NIYRO	2	66,370	Round	.345	.125	2.37	6,990	.162
NIYTY NIYUS	1/0	83,690	Round	.345	.125	2.47	7,510	.129
NIYXT	2/0	$105,500 \\ 133,100$	Round	.345	.125 $.125$	$2.55 \\ 2.64$	8,010	.102
NIZAP	3/0	167,800	Round	.345	135	2.77	8,610 9,500	.0811
NIZIR	4/0	211,600	Sector	.345	.125	2.61	9,130	.0509
NIZOS		250,000	Sector	.345	. 135	2.72	10,130	.0431
NIZPA NIZSO	• • • •	300,000	Sector	.345	. 135	2.82	10,960	.0360
NIZUT	• • •	$350,000 \\ 400,000$	Sector	.345	. 135	2.91	11,780	.0308
11201	• • •	400,000	Bector	.345	.140	3.01	12,940	.0270
NIZVY		500,000	Sector	.345	.140	3.17	14,450	.0216



### THREE CONDUCTOR—TYPE "H" (Grounded Neutral)

24,000 VOLTS

Code		Conductor Size			Lead Thick- ness,	Overall Dia- meter.	Net Weight Pounds/	Average Resist- ance
NIGHD	B. & S.	C.M.	Shape	ness, Ins.	Ins.	Ins.	1,000′	Ohms/ 1,000′ @ 25°C.
NIGUB NIGVA NIGWE NIGZO NIHBO	$\begin{array}{c} 2 \\ 1 \\ 1/0 \\ 2/0 \\ 3/0 \end{array}$	66,370 83,690 105,500 133,100 167,800	Round Round Round Round Round	. 280 . 280 . 280 . 280 . 280	.115 .115 .115 .125 .125	2.07 2.15 2.24 2.36 2.47	5,660 6,090 6,570 7,500 8,210	.162 .129 .102 .0811
NIHIZ NIHOB NIHUC NIHWA NIHYE	4/0  	211,600 250,000 300,000 350,000 400,000	Sector Sector Sector Sector Sector	.280 .280 .280 .280 .280	.115 .125 .125 .125 .135	2.33 2.44 2.54 2.63 2.74	7,750 8,710 9,510 10,280 11,390	.0509 .0431 .0360 .0308
NIJAY NIJCO	·:::	500,000 600,000	Sector Sector	.280 .280	.135 .140	2.90 3.05	12,850 14,640	.0216

### THREE CONDUCTOR—TYPE "H"

24,000 VOLTS

Code		Conduct	or	Insula- tion	Lead Thick-	Overall Dia-	Net Weight	Average Resist- ance
	B. & S.	C.M.	Shape	Thick- ness, Ins.	ness, Ins.	meter, Ins.	Pounds/ 1,000'	Ohms/ 1,000' @ 25°C.
NIYRO NIYTY NIYUS NIYXT NIZAP	$\begin{array}{c} 2 \\ 1 \\ 1/0 \\ 2/0 \\ 3/0 \end{array}$	66,370 83,690 105,500 133,100 167,800	Round Round Round Round Round	.345 .345 .345 .345 .345	.125 .125 .125 .125 .125 .135	2.37 2.47 2.55 2.64 2.77	6,990 7,510 8,010 8,610 9,500	.162 .129 .102 .0811
NIZIR NIZOS NIZPA NIZSO NIZUT	4/0  	211,600 250,000 300,000 350,000 400,000	Sector Sector Sector Sector Sector	.345 .345 .345 .345 .345	.125 .135 .135 .135 .140	2.61 2.72 2.82 2.91 3.01	9,130 $10,130$ $10,960$ $11,780$ $12,940$	.0509 .0431 .0360 .0308
NIZVY		500,000	Sector	.345	.140	3.17	14,450	.0216



### THREE CONDUCTOR—TYPE "H"

(Grounded Neutral)

25,000 VOLTS

Code	Conductor			Insula- tion	Lead Thick-	Overall Dia-	Net Weight	Average Resist- ance
	B. & S.	Size C.M.	Shape	Thick- ness, Ins.	ness, Ins.	meter, Ins.	Pounds/ 1,000'	Ohms/ 1,000′ @ 25°C.
NIGUB	2 /	66,370	Round	.280	.115	2.07	5,660	.162
NIGVA	1 /	83,690	Round	.280	.115	2.15	6.090	.129
NIGWE	1/0	105,500	Round	.280	.115	2.24	6,570	.102
NIGZO	2/0	133,100	Round	.280	.125	2.36	7,500	.0811
NIHBO	3/0	167,800	Round	.280	.125	2.47	8,210	.0642
NIHIZ	4/0	211,600	Sector	.280	.115	2.33	7.750	.0509
NIHOB	1	250,000	Sector	.280	.125	2.44	8,710	.0431
NIHUC		300,000	Sector	.280	.125	2.54	9,510	.0360
NIHWA		350,000	Sector	.280	.125	2.63	10,280	.0308
NIHYE		400,000	Sector	.280	.135	2.74	11,390	.0270
NIJAY		500,000	Sector	.280	.135	2.90	12,850	0916
NIJCO		600,000	Sector	.280	.140	3.05	14,640	$.0216 \\ .0180$

#### THREE CONDUCTOR-TYPE "H"

(Ungrounded Neutral)

		Conduct	or	Insula-		Overall	Net	Average Resist-
Code	Size		Shape	tion Thick- ness.	Thick- ness, Ins.	Dia- meter, Ins.	Weight Pounds/ 1.000'	ance Ohms/
	B. & S.	C.M.	Shape	Ins.		Ins.	1,000	1,000′ @ 25°C.
NOADY	2	66,370	Round	.360	.125	2.44	7,250	.162
NOAJD	$\frac{2}{1}$	83,690	Round	.360	.125	2.52	7,740	.129
NOALG	1/0	105,500	Round	.360	.125	2.61	8,280	.102
NOANJ	2/0	133,100	Round	.360	.135	2.72	9,230	.0811
NOAPK	3/0	167,800	Round	.360	.135	2.84	9,990	.0642
NOARM	4/0	211,600	Sector	.360	.135	2.69	9.720	.0509
NOAWR		250,000	Sector	.360	. 135	2.78	10,390	.0431
NOAZT		300,000	Sector	.360	. 135	2.88	11,230	.0360
NOBAV		350,000	Sector	.360	. 135	2.97	12,050	.0308
NOBIX		400,000	Sector	.360	.140	3.07	12.830	.0270



### THREE CONDUCTOR—TYPE "H" (Grounded Neutral)

26,000 VOLTS

Code	B. & S.	Conduct Size C.M.	Shape	Insulation Thickness, Ins.	Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
NIJEZ NIJIB NIJOC NIJUD NIJYA	$\begin{array}{c} 2 \\ 1 \\ 1/0 \\ 2/0 \\ 3/0 \end{array}$	66,370 83,690 105,500 133,100 167,800	Round Round Round Round Round	. 295 . 295 . 295 . 295 . 295	.115 .115 .115 .125	2.14 2.22 2.31 2.43 2.54	5,920 6,310 6,840 7,750 8,460	.162 .129 .102 .0811 .0642
NIJZE NIKAZ NIKBE NIKDO NIKEB	4/0  	211,600 250,000 300,000 350,000 400,000	Sector Sector Sector Sector	.295 .295 .295 .295 .295	.125 .125 .125 .135 .135	2.41 2.50 2.60 2.71 2.80	8,310 8,960 9,760 10,870 11,660	.0509 .0431 .0360 .0308 .0270
NIKIC NIKOD	••••	500,000 600,000	Sector Sector	.295 .295	.135	2.96 3.11	13,120 14,940	.0216 .0180

### THREE CONDUCTOR—TYPE "H"

(Ungrounded Neutral)

Code	Conductor			Insula-		Overall	Net	Average Resist-
	/ ( v	Size		tion Thick-	Thick- ness.	Dia- meter.	Weight Pounds/	ance Ohms/
	B. & S.	C.M.	Shape	ness, Ins.	Ins.	Ins.	1,000′	1,000' @ 25°C.
NOBVA NOBWE NOBZO	$\frac{2}{1}$ $\frac{1}{1/0}$	66,370 83,690 105,500	Round Round Round	.375 .375 .375	.125 .125 .135	2.50 2.59 2.70	7,530 8,000 8,880	.162
NOCBO NOCWA	2/0 3/0	133,100 167,800	Round Round	.375	.135	2.78 2.91	9,490 $10,320$	.102 $.0811$ $.0642$
NOCYE NODCO NODYA NODZE	4/0	211,600 250,000 300,000 350,000	Sector Sector Sector Sector	.375 .375 .375	.135 .135 .135 .140	2.75 2.84 2.94	9,970 10,660 11,510	.0509 .0431 .0360
NOECY	1.2.4.2	400,000	Sector	.375	.140	3.04	$12,700 \\ 13,520$	.0308 $.0270$



### THREE CONDUCTOR—TYPE "H"

(Grounded Neutral)

27,000 VOLTS

Code	Conductor Size B. & S. C.M. Shape			Insula- tion Thick- ness, Ins.	Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000'
	1			III.				@ 25°C.
NIJEZ NIJIB NIJOC NIJUD NIJYA	$\begin{array}{c} 2 \\ 1 \\ 1/0 \\ 2/0 \\ 3/0 \end{array}$	66,370 83,690 105,500 133,100 167,800	Round Round Round Round Round	.295 .295 .295 .295 .295	.115 .115 .115 .125	2.14 2.22 2.31 2.43 2.54	5,920 6,310 6,840 7,750 8,460	.162 .129 .102 .0811 .0642
NIJZE NIKAZ NIKBE NIKDO NIKEB	4/0	$\begin{array}{c} 211,600 \\ 250,000 \\ 300,000 \\ 350,000 \\ 400,000 \end{array}$	Sector Sector Sector Sector	. 295 . 295 . 295 . 295 . 295	.125 .125 .125 .135 .135	2.41 2.50 2.60 2.71 2.80	8,310 8,960 9,760 10,870 11,660	.0509 .0431 .0360 .0308 .0270
NIKIC NIKOD	:::	500,000 600,000	Sector Sector	.295 .295	. 135 . 140	2.96 3.11	13,120 14,940	.0216

### THREE CONDUCTOR—TYPE "H"

(Ungrounded Neutral)

	Conductor			Insula-	Lead	Overall	Net	Average Resist-
Code	Size			tion Thick-	Thick- ness,	Dia- meter,	Weight Pounds/	ance Ohms/
	B. & S.	C.M.	Shape	ness, Ins.	Ins.	Ins.	1,000′	1,000′ @ 25°C.
NOEDZ	2	66,370	Round	.390	.125	2.56	7.000	
NOEJF		83,690	Round	.390	.125	2.65	7,680 8,260	.162
NOENK	1/0	105,500	Round	.390	.135	2.76	9,150	.129
NOERN	2/0	133,100	Round	.390	.135	2.85	9,800	.102
NOEWS	3/0	167,800	Round	.390	.135	2.97	10,600	.0811 $.0642$
NOEXT	4/0	211,600	Sector	.390	105	0.01		
NOFBE		250,000	Sector	.390	. 135	2.81	10,240	.0509
NOFDO		300,000	Sector		. 135	2.90	10,930	.0431
NOFGY	1.15	350,000	Sector	.390	.140	3.01	12,150	.0360
		000,000	Sector	.390	.140	3.10	12,980	.0308



### THREE CONDUCTOR—TYPE "H"

28,000 VOLTS

(Grounded Neutral)

Code	B. & S.	Conduct Size C.M.	Shape	Insulation Thickness, Ins.	Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
NIKUF NIKYG NIKZA NILAB NILAB	1 1/0 2/0 3/0 4/0	83,690 105,500 133,100 167,800 211,600	Round Round Round Round Sector	.315 .315 .315 .315 .315	.115 .125 .125 .125 .125	2.31 2.41 2.51 2.62 2.49	6,620 7,480 8,090 8,810 8,640	. 129 . 102 . 0811 . 0642 . 0509
NILCE NILEC NILFO NILID NILOF		250,000 300,000 350,000 400,000 500,000	Sector Sector Sector Sector	.315 .315 .315 .315 .315	.125 .135 .135 .135 .140	2.58 2.70 2.79 2.88 3.05	9,290 $10,420$ $11,240$ $12,020$ $13,870$	$\begin{array}{c} .0431 \\ .0360 \\ .0308 \\ .0270 \\ .0216 \end{array}$

### THREE CONDUCTOR—TYPE "H"

28,000 VOLTS

	Conductor			Insula- tion	Lead Thick-	Overall Dia-	Net Weight	Average Resist-
Code	<b>自由的</b>	Size		Thick-	ness,	meter,	Pounds/	Ohms/
*******	B. & S.	C.M.	Shape	ness, Ins.	Ins.	Ins.	1,000′	1,000′ @ 25°C.
NOFYG	1	83,690	Round	.405	. 135	2.74	8,870	.129
NOFZA	1/0	105,500	Round	.405	.135	2.82	9,440	.102
NOGBA NOGCE	2/0	133,100	Round	.405	. 135	2.92	10,100	.0811
NOGFO	3/0 4/0	167,800 211,600	Round Sector	$.405 \\ .405$	.140	$\frac{3.04}{2.87}$	$11,250 \\ 10,510$	0.0642 $0.0509$
NOGHY NOGYH		250,000	Sector	.405	. 135	2.96	11,190	.0431
NOHCA		300,000 350,000	Sector	.405	.140	$\frac{3.07}{3.16}$	$12,370 \\ 13,280$	.0360



### THREE CONDUCTOR—TYPE "H"

29,000 VOLTS

(Grounded Neutral)

Code	В. & 8	Conduct Size S. C.M.	or Shape	Insulation Thickness, Ins.	Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
NILUG NILYH NIMAC NIMCA NIMDE	$\begin{array}{c} 1 \\ 1/0 \\ 2/0 \\ 3/0 \\ 4/0 \end{array}$	83,690 105,500 133,100 167,800 211,600	Round Round Round Round Sector	.330 .330 .330 .330 .330	.125 .125 .125 .135 .135	2.39 2.48 2.57 2.71 2.55	7,200 7,760 8,350 9,430 8,880	.129 .102 .0811 .0642 .0509
NIMED NIMGO NIMIF NIMOG NIMUH	::: :::	250,000 300,000 350,000 400,000 500,000	Sector Sector Sector Sector	.330 .330 .330 .330 .330	.125 .135 .135 .135 .140	2.64 2.76 2.85 2.94 3.11	9,540 $10,690$ $11,500$ $12,300$ $14,150$	$\begin{array}{c} .0431 \\ .0360 \\ .0308 \\ .0270 \\ .0216 \end{array}$

### THREE CONDUCTOR—TYPE "H"

29,000 VOLTS

Code		Conductor			Lead	Overall	Net	Average Resist-
	B. & S.	Size C.M.	Shape	tion Thick- ness, Ins.	Thick- ness, Ins.	Dia- meter, Ins.	Weight Pounds/ 1,000'	ance Ohms/ 1,000' @ 25°C.
NOHDE NOHGO NOHJY NOHYJ NOIBY	$1 \\ 1/0 \\ 2/0 \\ 3/0 \\ 4/0$	83,690 105,500 133,100 167,800 211,600	Round Round Round Round Sector	.420 .420 .420 .420 .420	.135 .135 .140 .140 .135	2.80 2.89 2.99 3.11 2.93	9,140 9,770 10,780 11,560 10,780	.129 .102 .0811 .0642 .0509
NOIGD NOILJ	• • •	250,000 300,000	Sector Sector	.420 .420	.140 .140	3.03 3.13	11,830 12,650	.0431



### THREE CONDUCTOR—TYPE "H" 30,000 VOLTS

#### (Grounded Neutral)

Code	B. & S.	Conduct Size C.M.	or Shape	Insulation Thickness, Ins.	Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
NILUG NILYH NIMAC NIMCA NIMDE	$1 \\ 1/0 \\ 2/0 \\ 3/0 \\ 4/0$	83,690 105,500 133,100 167,800 211,600	Round Round Round Sector	.330 .330 .330 .330 .330	.125 .125 .125 .135 .135	2.39 2.48 2.57 2.71 2.55	7,200 7,760 8,350 9,430 8,880	.129 .102 .0811 .0642 .0509
NIMED NIMGO NIMIF NIMOG NIMUH		250,000 300,000 350,000 400,000 500,000	Sector Sector Sector Sector	.330 .330 .330 .330 .330	.125 .135 .135 .135 .140	2.64 2.76 2.85 2.94 3.11	9,540 10,690 11,500 12,300 14,150	$\begin{array}{c} .0431 \\ .0360 \\ .0308 \\ .0270 \\ .0216 \end{array}$

### THREE CONDUCTOR—TYPE "H"

30,000 VOLTS

		Conductor			Lead	Overall	Net	Average
Code	B. & S.	Size C.M.	Shape	tion Thick- ness, Ins.	Thick- ness, Ins.	Dia- meter, Ins.	Weight Pounds/ 1,000'	Ohms 1,000'
				110.				@ 25°C
NOHDE NOHGO	1/0	83,690 105,500	Round Round	$.420 \\ .420$	.135	2.80	$9,140 \\ 9,770$	.129
NOHJY	2/0 3/0	133,100 167,800	Round Round	.420	.140	2.99 3.11	10,780	.0811
NOIBY	4/0	211,600	Sector	.420	.135	2.93	$11,560 \\ 10,780$	0642 $0509$
NOIGD NOILJ		250,000 300,000	Sector Sector	.420	.140	3.03	$11,830 \\ 12,650$	.0431



### THREE CONDUCTOR—TYPE "H"

31,000 VOLTS

(Grounded Neutral)

		Conduct	or	Insula-	Lead Thick-	Overall	Net	Average Resist-	
Code	1	Size		tion Thick-	ness,	Dia- meter,	Weight Pounds/	Ohms	
	B. & S.	C.M	Shape	ness, Ins.	Ins.	Ins.	1,000′	1,000′ @ 25°C.	
NIMYJ	1/0	105,500	Round	.345	.125	2.55	8,010	.102	
NINAD	2/0	133,100	Round	.345	.125	2.64	8,610	.0811	
NINDA	3/0	167,800	Round	.345	. 135	2.77	9,500	.0642	
NINEF	4/0	211,600	Sector	.345	.125	2.61	9,130	.0509	
NINFE		250,000	Sector	.345	. 135	2.72	10,130	.0431	
NINHO		300,000	Sector	.345	. 135	2.82	10.960	.0360	
NINIG		350,000	Sector	.345	. 135	2.91	11.780	.0308	
NINKY		400,000	Sector	.345	.140	3.01	12,940	.0270	
NINOH		500,000	Sector	.345	.140	3.17	14,450	.0216	

### THREE CONDUCTOR—TYPE "H"

31,000 VOLTS

		Conduct	Insula- tion	Lead Thick-	Overall Dia-	Net Weight	Average Resist-	
Code	Size		Chana	Thick-	ness,	meter,	Pounds/	Ohms
	B. & S.	C.M.	Shape	ness, Ins.	Ins.	Ins.	1,000′	1,000′ @ 25°C.
NOIRP NOJDA	$\frac{1}{0}$	105,500 133,100	Round	.440	.140	2.99	10,550	.102
NOJFE	3/0	167,800	Round	.440	.140	3.08	$11,190 \\ 11,990$	.0811 $.0642$
NOJHO NOJKY	4/0	$211,600 \\ 250,000$	Sector	.440	.140	$\frac{3.02}{3.11}$	$11,510 \\ 12,600$	0509 $0431$



### THREE CONDUCTOR—TYPE "H"

32,000 VOLTS

### (Grounded Neutral)

Code		Conduct Size	or	Insula- tion	Thick-	Overall Dia-	Net Weight	Average Resist- ance
nilizioni.	B. & S.	C.M.	Shape	Thick- ness, Ins.	ness, Ins.	meter, Ins.	Pounds/ 1,000'	Ohms/ 1,000′ @ 25°C.
NIMYJ NINAD NINDA NINEF NINFE	1/0 2/0 3/0 4/0	105,500 133,100 167,800 211,600 250,000	Round Round Sector Sector	.345 .345 .345 .345 .345	. 125 . 125 . 135 . 125 . 135	2.55 2.64 2.77 2.61 2.72	8,010 8,610 9,500 9,130 10,130	.102 .0811 .0642 .0509
NINHO NINIG NINKY NINOH		300,000 350,000 400,000 500,000	Sector Sector Sector	.345 .345 .345 .345	. 135 . 135 . 140 . 140	2.82 2.91 3.01 3.17	10,960 11,780 12,940 14,450	.0360 .0308 .0270 .0216

### THREE CONDUCTOR—TYPE "H"

32,000 VOLTS

1971 to 15.		Conduct	or	Insula-	Lead	Overall	Net	Average Resist-
Code	B. & S.	Size C.M.	Shape	tion Thick- ness, Ins.	Thick- ness, Ins.	Dia- meter, Ins.	Weight Pounds/ 1,000'	ance Ohms/ 1,000' @ 25°C.
NOIRP NOJDA NOJFE NOJHO NOJKY	1/0 2/0 3/0 4/0	105,500 133,100 167,800 211,600 250,000	Round Round Round Sector Sector	.440 .440 .440 .440 .440	.140 .140 .140 .140 .140	2.99 3.08 3.19 3.02 3.11	10,550 11,190 11,990 11,510 12,600	.102 .0811 .0642 .0509 .0431



### THREE CONDUCTOR—TYPE "H"

33,000 VOLTS

(Grounded Neutral)

		Conduct	or	Insula- tion	Lead Thick-	Overall Dia-	Net Weight	Average Resist-
Code	B. & S.	Size C.M.	Shape	Thick- ness, Ins.	ness, Ins.	meter, Ins.	Pounds/ 1,000'	ance Ohms/ 1,000' @ 25°C.
NINUJ NINYK NIOBT NIOFY NIOGZ	1/0 2/0 3/0 4/0	105,500 133,100 167,800 211,600 250,000	Round Round Sector Sector	.360 .360 .360 .360 .360	. 125 . 135 . 135 . 135 . 135	2.61 2.72 2.84 2.69 2.78	8,280 9,230 9,990 9,720 10,390	.102 .0811 .0642 .0509 .0431
NIOHB NIOKD NIOLF	:::	300,000 350,000 400,000	Sector Sector Sector	.360 .360 .360	.135 .135 .140	2.88 2.97 3.07	11,230 12,050 12,830	.0360 .0308 .0270

### THREE CONDUCTOR—TYPE "H"

33,000 VOLTS

		Conduct	or	Insula- tion	Lead	Overall		Average Resist-
Code		Size	01	Thick-	Thick- ness,	Dia- meter,	Weight Pounds/	ance Ohms/
A Year	B. & S.	C.M.	Shape	ness, Ins.	Ins.	Ins.	1,000′	1,000′ @ 25°C.
NOJYK NOKFA	$\frac{1}{0}$	105,500 133,100	Round Round	.455	.140	3.05 3.14	10,800	.102
NOKGE NOKJO	$\frac{3}{0}$	$167,800 \\ 211,600$	Round	.455	.140	3.26 3.08	11,480 $12,330$ $11,800$	.0811
NOKLY		250,000	Sector	.455	.140	3.17	12,510	0.0509 $0.0431$

### FOUR CONDUCTOR—BELTED

1,000 VOLTS

(Grounded or Ungrounded Neutral)

Code Thickness, Thick	d Overall Net Resistance Commerce Pounds Ins. 1,000' 1,000' 25°C.
LUWUL 8 16,510 Round .065 .030 .085 LUYAH 6 26,250 Round .065 .030 .085 LUYDS 4 41,740 Round .065 .030 .095 LUYHA 2 66,370 Sector .065 .030 .095 LUYIK 1 83,690 Sector .065 .030 .095 LUYJE 1/0 105,500 Sector .065 .030 .095	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
LUYLO     2/0     133,100     Sector     .065     .030     .095       LUYOL     3/0     167,800     Sector     .065     .030     .100       LUYPF     4/0     211,600     Sector     .065     .030     .100       LUYUM      250,000     Sector     .080     .030     .110       LUZAJ      300,000     Sector     .080     .030     .110	1.44 4,170 .0811 1.56 4,850 .0642 1.69 5,660 .0509 1.87 6,790 .0431
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

### FOUR CONDUCTOR—BELTED

2,000 VOLTS

(Grounded or Ungrounded Neutral)

Code	Conductor			Insul Thick Inc	cness,	Lead Thick- ness,	Overall Net Dia- Weight meter, Pounds/		Average Resist- ance Ohms/	
	B. & S.	. С.М.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000' @ 25°C.	
LYADY	8	16,510	Round	.080	.030	.085	07	1 070	-	
LYAJP	6	26,250	Round	.080	.030	.085	.97	1,670	. 654	
LYALG	4	41,740	Round	.080	.030	.095	1.06	1,960	.410	
LYANJ	$\frac{2}{1}$	66,370	Sector	.080	.030	.095	1.20	2,530	.259	
LYAPK	1	83,690	Sector	.080	.030	.095	$\frac{1.22}{1.30}$	$\frac{2,820}{3,180}$	$.162 \\ .129$	
LYARM	1/0	105,500	Sector	.080	.030	005	1 00		and the second	
LYAWR	2/0	133,100	Sector	.080	.030	.095	1.39	3,630	.102	
LYAZT	3/0	167,800	Sector	.080		.100	1.50	4,350	.0811	
LYBAV	4/0	211,600	Sector	.080	.030	.100	1.60	5,010	.0642	
LYBIX		250,000	Sector	.080	0.030 $0.045$	.110	$\frac{1.77}{1.90}$	6,080 6,890	0.0509 $0.0431$	
LYBJY		300,000	Sector	000	045	***				
LYBOZ	14/15/	350,000	Sector	.080	.045	.110	2.02	7,790	.0360	
LYBUB		400,000	Sector	.080	.045	.115	2.14	8,920	.0308	
LYBVA		500,000	Sector	.080	.045	.115	2.24	9,800	.0270	
LYBWE		600,000		.080	.045	. 125	2.45	11,800	.0216	
		000,000	Sector	.080	.045	. 125	2.63	13,520	.0180	
LYBZO		750,000	Sector	.080	.045	. 135	0 00	10.000		
LYCBO	111	1,000,000	Sector	.080	.045	.135	$\frac{2.88}{3.23}$	$16,360 \\ 20,790$	.0144	

FOUR CONDUCTOR—BELTED

3,000 VOLTS

(Grounded or Ungrounded Neutral)

Code		Conductor Size			ation eness, hes	Thick- Dia- Weight ness, meter, Pounds/			Average Resist- ance Ohms/
	B. & S	. C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′′	1,000' @ 25°C.
LYCIZ LYCKY	8	16,510 26,250	Round Round	.080	.045	.085	1.00	1,740	. 654
LYCOB LYCUC	4 2	41,740 66,370	Round Sector	.080	0.045 $0.045$ $0.045$	.095 .095	1.11	$2,170 \\ 2,610$	.410 .259
LYCVE		83,690	Sector	.080	.045	.095	$\frac{1.25}{1.33}$	2,890 3,260	.162
LYDAY LYDCO	$\frac{1}{0}$ $\frac{2}{0}$ $\frac{3}{0}$	$105,500 \\ 133,100 \\ 167,800$	Sector	.080	0.045	.100	$\frac{1.43}{1.53}$	3,880 4,440	.102
LYDEZ LYDIB	4/0	211,600 250,000	Sector Sector	.080 .080 .080	.045 $.045$ $.045$	.100 .110 .110	$1.65 \\ 1.80 \\ 1.90$	5,130 $6,170$ $6,890$	.0642
LYDOC LYDUD		300,000	Sector	.080	.045	.110	2.02	7,790	.0431
LYDYA LYDZE		$350,000 \\ 400,000 \\ 500,000$	Sector Sector	.080	045 $045$ $045$	.115 $.115$ $.125$	2.14	8,920 9,800	.0308 .0270
LYECY	• • • •	600,000	Sector	.080	.045	.125	$2.45 \\ 2.63$	11,800 13,520	$.0216 \\ .0180$
LYEJF	::: /	750,000 1,000,000	Sector	.080	.045	.135	2.88 3.23	$16,360 \\ 20,790$	.0144

### FOUR CONDUCTOR—BELTED

4,000 VOLTS

(Grounded or Ungrounded Neutral)

Code	B. & S.	Conducto	Shape	Insul Thick Inc. Cond.	ness,	Thick-	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C'
LYENK LYERN	8 6	16,510 $26,250$	Round Round	.095	.045	.085	1.07	1,890	. 654
LYEWS	4 2 1	41,740 66,370	Round Sector	.095	.045	.095	$\frac{1.19}{1.30}$	$\frac{2,350}{2,790}$	.410 .259
LYFAZ	1	83,690	Sector	.095	$.045 \\ .045$	$.095 \\ .095$	$\frac{1.31}{1.39}$	$\frac{3,050}{3,430}$	.162
LYFBE LYFDO	1/0 2/0	105,500 133,100	Sector Sector	.095	.045	.100	1.49	4,060	.102
LYFEB LYFIC	3/0 4/0	167,800 211,600	Sector Sector	.095	.045	.100 .110 .110	1.59	4,620 5,540	.0811 $.0642$
LYFMY		250,000	Sector	.095	.045	.110	$\frac{1.86}{1.96}$	$\frac{6,380}{7,100}$	0509 $0431$
LYFOD LYFUF	:::/	300,000 350,000	Sector	.095	0.045	.115	2.09	8,270	.0360
LYFYM LYFZA	:::	400,000 500,000	Sector Sector	.095	.045	.115	2.30	9,150 10,040	.0308 $.0270$
LYGAB	• • • •	600,000	Sector	.095	.045	.135	$\frac{2.51}{2.71}$	$12,060 \\ 14,120$	.0216 $.0180$
LYGBA		750,000	Sector	.095	.045	. 135	2.94	16,660	.0144

FOUR CONDUCTOR—BELTED

5,000 VOLTS

(Grounded or Ungrounded Neutral)

Code	B. & S.	Conducto	Shape	Insula Thick Inc. Cond.	ness,	Thick-	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
LYGCE	8	16,510	Round	.095	.065	.095	1.13	2,120	. 654
LYGEC	6	26,250	Round	.095	.065	.095	1.23	2,450	.410
LYGFO	4 2	41,740	Round	.095	. 065	.095	1.34	2,890	.259
LYGID	1	66,370	Sector	.095	.065	.095	1.35	3,150	. 162
LIGNI	1	83,690	Sector	.095	.065	.100	1.44	3,710	.129
LYGOF	1/0	105,500	Sector	.095	.065	.100	1.53	4,180	100
LYGUG	2/0	133,100	Sector	.095	.065	.100	1.63	4,740	.102
LYGYN	3/0	167,800	Sector	.095	.065	.110	1.77	5,670	.0642
LYHAC	4/0	211,600	Sector	.095	.065	.110	1.90	6.520	.0509
LYHCA		250,000	Sector	.095	.065	.110	2.00	7,250	.0431
LYHDE		300,000	Conton	005	00=	/			
LYHED		350,000	Sector	.095	.065	.115	2.13	8,410	.0360
LYHGO		400,000	Sector	.095	.065	.115	2.24	9,300	.0308
LYHIF	PARK S	500,000	Sector	.095	.065	.125	2.36	10,520	.0270
LYHOG		600,000	Sector	.095	0.065	.125	2.55	12,230	.0216
		000,000	Dector	.095	.005	. 135	2.75	14,310	.0180
LYHPY		750,000	Sector	.095	.065	.140	2.99	17,220	.0144

### FOUR CONDUCTOR—BELTED

6,000 VOLTS

(Grounded or Ungrounded Neutral)

		Conducto	or	Insul		Lead Thick	Overall Net		Averag
Code		Size		Inc	Inches ness, meter, Pound		Weight Pounds/	Ohms	
and the second	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000 @ 25°
LYGCE	8	16,510	Round	.095	.065	.095	1.13	2,120	654
LYGEC	6	26,250	Round	.095	.065	.095	1.23	2,120	.654 $.410$
LYGFO	4	41,740	Round	.095	.065	.095	1.34	2,890	.259
LYGID	4 2 1	66,370	Sector	.095	.065	.095	1.35	3,150	.162
LYGNY	1	83,690	Sector	.095	.065	.100	1.44	3,710	.129
LYGOF	1/0	105,500	Sector	.095	.065	.100	1.53	4.180	. 102
LYGUG	2/0	133,100	Sector	.095	.065	.100	1.63	4,740	.081
LYGYN	3/0	167,800	Sector	.095	.065	.110	1.77	5,670	.064
LYHAC	4/0	211,600	Sector	.095	.065	.110	1.90	6,520	.050
LYHCA	• • •	250,000	Sector	.095	.065	.110	2.00	7,250	.043
YHDE		300,000	Sector	.095	.065	.115	2.13	8,410	. 036
LYHED		350,000	Sector	.095	.065	.115	2.24	9,300	.030
LYHGO		400,000	Sector	.095	.065	.125	2.36	10,520	.027
LYHIF		500,000	Sector	.095	.065	.125	2.55	12,230	.021
LYHOG		600,000	Sector	.095	.065	. 135	2.75	14,310	.018
YHPY		750,000	Sector	.095	.065	.140	2.99	17,220	.014

FOUR CONDUCTOR—BELTED

(Grounded Neutral)

7,000 VOLTS

Code	B. & S.	Conductorize C.M.	or Shape	Thick	ation eness, hes	Lead Thick- ness, Ins.		Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
LYHUH LYHYP LYIBY LYIGD LYILJ LYIRP LYJADA LYJDA LYJEF LYJFE LYJHO LYJIG LYJOH LYJOH LYJUJ LYKAF LYKEG	8 6 4 2 1 1/0 2/0 3/0 4/0 	16,510 26,250 41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000 300,000 300,000 400,000 500,000 600,000	Round Round Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sect	.110 .110 .110 .110 .110 .110 .110 .110	.065 .065 .065 .065 .065 .065 .065 .065	.095 .095 .100 .100 .100 .100 .110 .115 .115 .125 .125 .135	1.21 1.30 1.42 1.42 1.50 1.59 1.69 1.83 1.95 2.07 2.30 2.42 2.41 2.81	2,310 2,630 3,240 3,240 3,490 3,880 4,370 4,940 6,720 7,720 8,640 9,530 10,770 12,510 14,580	.654 .410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308 .0270 .0180

### FOUR CONDUCTOR—BELTED

(Ungrounded Neutral)

Code		Conduct		Insul Thick Inc	ation eness,	Lead Thick- ness,		Net Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LYSPE	8	16,510	Round	.110	.095	005	1,162		4
LYSRO	6	26,250	Round	.110		.095	1.27	2,460	. 654
LYSUS		41,740	Round		.095	.095	1.36	2,790	.410
LYSYB	$\frac{4}{2}$	66,370	Sector	. 110	.095	.100	1.48	3,420	.259
LYTAP	ī	83,690		.110	.095	.100	1.48	3,660	.162
	-	00,000	Sector	.110	.095	.100	1.56	4,060	.129
LYTIR	1/0	105 500	~					2,000	.129
LYTOS	2/0	105,500	Sector	.110	.095	.100	1.65	4,550	.102
LYTPA	2/0	133,100	Sector	.110	.095	.110	1.78	5,370	
LYTSO	3/0	167,800	Sector	.110	.095	.110	1.89		.0811
	4/0	211,600	Sector	.110	.095	110	2.01	6,080	.0642
LYTUT		250,000	Sector	.110	.095	.115		6,930	.0509
				.110	.000	.115	2.13	7,940	.0431
LYTYC		300,000	Sector	.110	005				
LYUXY		350,000	Sector		.095	.115	2.25	8,870	.0360
LYVER		400,000	Sector	.110	.095	.125	2.38	10,090	.0308
LYVRE		500,000		.110	.095	. 125	2.48	11,020	.0270
LYVTO			Sector	.110	.095	. 135	2.69	13,100	.0216
/ 10		600,000	Sector	.110	.095	. 135	2.86	14,840	.0180
LYVUV			100					11,010	.0100
LIVOV		750,000	Sector	.110	.095	.140	3.11	17,830	0144
		Charles to						11,000	.0144

### FOUR CONDUCTOR—BELTED

8,000 VOLTS

(Grounded Neutral)

Code	\$	Conducto		Insul Thick Inc	ness,	Lead Thick- ness,		Net Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LYHYP	6	26,250	Round	.110	.065	.095	1.30	2,630	.410
LYIBY		41.740	Round	.110	.065	.100	1.42	3.240	.259
LYIGD	4 2 1	66,370	Sector	.110	.065	.100	1.42	3,490	.162
LYILJ	1	83,690	Sector	.110	.065	.100	1.50	3,880	.129
LYIRP	1/0	105,500	Sector	.110	.065	.100	1.59	4 270	100
LYJAD	2/0	133,100	Sector	.110	.065	.100		4,370	. 102
LYJDA	3/0	167.800	Sector	.110	.065	.110	1.69	4,940	.0811
LYJEF	4/0	211,600	Sector	.110	.065	.110	$\frac{1.83}{1.95}$	5,870	.0642
LYJFE		250,000	Sector	.110	.065	.115	2.07	$\frac{6,720}{7,720}$	0.0509 0.0431
LYJHO		300,000	Sector	.110	005	110	0 10	0.040	
LYJIG	•••	350,000	Sector	.110	.065	.115	2.19	8,640	. 0360
LYJOH	0.00	400,000			.065	.115	2.30	9,530	.0308
LYJUJ		500,000	Sector	.110	.065	.125	2.42	10,770	.0270
LYKAF		600,000		.110	.065	.125	2.61	12,510	.0216
LILAR	• • •	000,000	Sector	.110	.065	. 135	2.81	14,580	.0180
LYKEG	• • • •	750,000	Sector	.110	.065	.140	3.05	17,520	.0144

### FOUR CONDUCTOR—BELTED

8,000 VOLTS

Code	s	Conducto		Insula Thick Inc	ness,	Lead Thick- ness,		Net Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000 ^t @ 25°C.
LYVYD	6	26,250	Round	.110	.110	.095	1.39	2,860	.410
LYWAR	4	41,740	Round	.110	.110	.100	1.51	3,500	.259
LYWIT	4 2 1	66,370	Sector	.110	.110	.100	1.51	3,740	.162
LYWOV		83,690	Sector	.110	.110	.100	1.59	4,150	.129
LYWRA	1/0	105,500	Sector	.110	.110	.100	1.68	4,640	.102
LYWYF	2/0	133,100	Sector	.110	.110	.110	1.80	5,450	.0811
LYZAT	3/0	167,800	Sector	.110	.110	.110	1.92	6.180	.0642
LYZEV	4/0	211,600	Sector	.110	.110	.115	2.06	7,300	.0509
LYZOY	×	250,000	Sector	.110	.110	.115	2.16	8,040	.0431
LYZTA		300,000	Sector	.110	.110	.115	2.28	8,980	.0360
LYZUZ		350,000	Sector	.110	.110	.125	2.41	10,220	.0308
LYZVE		400,000	Sector	.110	.110	.125	2.51	11,150	.0270
LYZYO	100.00	500,000	Sector	.110	.110	.135	2.72	13,230	.0216
MAAKS	96	600,000	Sector	.110	.110	.135	2.90	15,000	.0180
MAALT		750,000	Sector	.110	.110	.140	3.14	17,980	.0144

FOUR CONDUCTOR—BELTED

9,000 VOLTS

(Grounded Neutral)

Code	B. & S.	Conducto Size C.M.	Shape	Insul Thick Inc Cond.	ness,	Lead Thick- ness, Ins.		Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
LYKFA LYKGE LYKJO LYKOJ LYKRY LYKUK LYKYR LYLAG LYLGA LYLHE LYLLJ LYLKO LYLOK LYLSY LYLUL LYLSY LYLUL	6 4 2 1 1/0 2/0 3/0 4/0 	26,250 41,740 66,370 83,690 105,500 133,100 167,800 250,000 300,000 350,000 500,000 600,000 750,000	Round Round Round Round Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector	. 125 . 125	.065 .065 .065 .065 .065 .065 .065 .065	.095 .100 .100 .110 .110 .110 .110 .115 .115	1.37 1.50 1.64 1.76 1.86 1.77 1.89 2.02 2.13 2.25 2.38 2.48 2.69 2.87	2,810 3,460 4,130 4,810 5,360 5,350 6,990 6,950 7,940 8,870 10,110 11,030 13,100 14,888	.410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308 .0270 .0216 .0180

### FOUR CONDUCTOR—BELTED

9,000 VOLTS

Code				Thick	Insulation Thickness, Inches		Overall Dia- meter,	Weight Pounds/	Average Resist- ance Ohms/
B	. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C
MAAMV	6	26,250	Round	. 125	. 125	.100	1.50	3,310	.410
MAAPY	4 2	41,740	Round	.125	.125	.100	1.62	3,820	.259
MAARB	2	66,370	Round	.125	.125	.110	1.78	4,720	.162
MAASC	1	83,690	Round	.125	.125	.110	1.88	5,210	.129
MAAWG	1/0	105,500	Round	.125	.125	.110	1.98	5,780	.102
MABAK	2/0	133,100	Sector	.125	. 125	.110	1.89	5,750	.0811
MABKA	3/0	167,800	Sector	.125	.125	.110	2.01	6.510	.0642
MABLE	4/0	211,600	Sector	.125	.125	.115	2.15	7.640	.0509
MABNO		250,000	Sector	.125	.125	.115	2.25	8.390	.0431
MABON		300,000	Sector	.125	.125	.125	2.39	9,660	.0360
MABUP		350,000	Sector	.125	.125	.125	2.50	10,610	0200
MACAL		400,000	Sector	.125	.125	125	2.60	11,550	.0308
MACEM		500,000	Sector	.125	.125	135	2.81	13,650	.0270
MACLA	/	600,000	Sector	.125	.125	.140	3.00	15,820	.0216
MACOP		750,000	Sector	.125	.125	.140	3.23	18,450	.0180 $.0144$

FOUR CONDUCTOR—BELTED

10,000 VOLTS

(Grounded Neutral)

Code	Conducto Size B. & S. C.M.		or Shape	Insul Thick Inc. Cond.	ness,	Thick-	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
LYKFA LYKGE LYKJO LYKOJ LYKRY LYKUK LYKYR LYLAG LYLGA LYLGA LYLHE LYLIJ LYLKO LYLOK LYLOK	6 4 2 1 1/0 2/0 3/0 4/0 	26,250 41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000 300,000 350,000 400,000 500,000 600,000	Round Round Round Round Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector	.125 .125 .125 .125 .125 .125 .125 .125	.065 .065 .065 .065 .065 .065 .065 .065	.095 .100 .100 .110 .110 .110 .115 .115 .125 .135	1.37 1.50 1.64 1.76 1.86 1.77 1.89 2.02 2.13 2.25 2.38 2.48 2.69 2.87	2,810 3,460 4,130 4,810 5,360 5,350 6,090 6,950 7,940 8,870 10,110 11,030 13,100 14,888	.410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308 .0270 .0216 .0180

### FOUR CONDUCTOR—BELTED

10,000 VOLTS

Code	s B. & S.	Conducto	Shape	Insul Thick Inc Cond.	ness,	Thick-	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
MAANET									
MAAMV	6	26,250	Round	.125	.125	.100	1.50	3,310	.410
MAAPY	4	41,740	Round	.125	.125	.100	1.62	3,820	.259
MAARB	2	66,370	Round	.125	.125	.110	1.78	4,720	.162
MAASC	1	83,690	Round	.125	.125	.110	1.88	5,210	.129
MAAWG	1/0	105,500	Round	. 125	.125	.110	1.98	5,780	.102
MABAK	2/0	199 100							.102
MABKA		133,100	Sector	. 125	.125	.110	1.89	5,750	.0811
MABLE	3/0	167,800	Sector	.125	.125	.110	2.01	6,510	.0642
MABNO	4/0	211,600	Sector	.125	.125	.115	2.15	7,640	.0509
MABON	* * *	250,000	Sector	.125	.125	.115	2.25	8,390	.0431
MABON		300,000	Sector	.125	. 125	.125	2.39	9,660	.0360
MABUP		250 000	0	100					
MACAL	• • • •	350,000	Sector	.125	.125	.125	2.50	10,610	.0308
MACEM		400,000	Sector	. 125	.125	.125	2.60	11,550	.0270
MACLA		500,000	Sector	. 125	.125	. 135	2.81	13,650	.0216
MACOP	• • • •	600,000	Sector	.125	.125	. 140	3.00	15,820	.0180
MACOF		750,000	Sector	.125	. 125	. 140	3.23	18,450	.0144

FOUR CONDUCTOR—BELTED

11,000 VOLTS

(Grounded Neutral)

Code		Conducto	or	Insul Thick Inc	ness,	Thick	Overall Dia-	Weight	Average Resist- ance
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	meter, Ins.	Pounds/ 1,000'	Ohms/ 1,000′ @ 25°C.
LYLYS	6	26,250	Round	.125	.080	.100	1.41	3,060	410
LYMAH	4	41,740	Round	.125	.080	.100	1.53	3,550	$.410 \\ .259$
LYMHA	2	66.370	Round	.125	.080	.100	1.67	4,210	.162
LYMIK	1	83,690	Round	.125	.080	.110	1.79	4,910	129
LYMJE	1/0	105,500	Round	.125	.080	.110	1.89	5,460	.102
LYMLO	2/0	133,100	Sector	.125	.080	.110	1.80	5,450	.0811
LYMOL	3/0	167,800	Sector	. 125	.080	.110	1.92	6,190	.0642
LYMTY	4/0	211,600	Sector	. 125	.080	.115	2.06	7,310	.0509
LYMUM		250,000	Sector	. 125	.080	.115	2.16	8,050	.0431
LYMYT		300,000	Sector	.125	.080	.115	2.28	8,980	.0360
LYNAJ		350,000	Sector	. 125	.080	.125	2.41	10.230	.0308
LYNEK		400,000	Sector	.125	.080	.125	2.51	11,160	.0270
LYNIL		500,000	Sector	.125	.080	.135	2.72	13,240	.0216
LYNJA		600,000	Sector	.125	.080	.135	2.90	15,020	.0180
LYNKE		750,000	Sector	.125	.080	.140	3.14	17,990	.0144

### FOUR CONDUCTOR—BELTED

11,000 VOLTS

Code					ation mess, hes	Thick- ness,	meter,	Net Weight Pounds/ 1,000'	
	3. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C
MAAMV	6	26,250	Round	.125	. 125	.100	1.50	3,310	.410
MAAPY	4	41,740	Round	.125	.125	.100	1.62	3,820	.259
MAARB	2	66,370	Round	.125	.125	.110	1.78	4.720	.162
MAASC	1	83,690	Round	.125	.125	.110	1.88	5,210	.129
MAAWG	1/0	105,500	Round	. 125	. 125	.110	1.98	5,780	.102
MABAK	2/0	133,100	Sector	.125	.125	.110	1.89	5.750	.0811
MABKA	3/0	167,800	Sector	.125	.125	.110	2.01	6,510	.0642
MABLE	4/0	211,600	Sector	.125	.125	.115	2.15	7,640	.0509
MABNO		250,000	Sector	.125	.125	.115	2.25	8,390	.0431
MABON		300,000	Sector	.125	.125	.125	2.39	9,660	.0360
MABUP		350,000	Sector	.125	.125	.125	2.50	10,610	.0308
MACAL		400,000	Sector	.125	.125	.125	2.60	11,550	.0270
MACEM		500,000	Sector	.125	.125	.135	2.81	13,650	.0216
MACLA		600,000	Sector	.125	.125	.140	3.00	15,820	.0180
MACOP		750,000	Sector	.125	.125	.140	3.23	18,450	.0144

### FOUR CONDUCTOR—BELTED

12,000 VOLTS

(Grounded Neutral)

Code	B. & S.	Conduct Size C.M.	or Shape	Insul Thick Inc Cond.	ness,	Lead Thick- ness, Ins.		Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C
LYNMO LYNYY LYNYY LYOBZ LYOFD LYOHG LYOLK LYOVT LYOZY LYPAK LYPEL LYPKA LYPLE LYPNO	6 4 2 1 1/0 2/0 3/0 4/0 	26,250 41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000 300,000 350,000 400,000 500,000 600,000	Round Round Round Round Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector	.140 .140 .140 .140 .140 .140 .140 .140	.080 .080 .080 .080 .080 .080 .080 .080	.100 .100 .110 .110 .110 .110 .115 .115	1.48 1.60 1.76 1.86 1.96 1.86 1.98 2.12 2.22 2.36 2.47 2.57 2.78 2.96	3,250 3,750 4,650 5,130 5,690 5,660 6,410 7,510 8,290 9,540 10,490 11,420 13,530 15,290	.410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308 .0270 .0216 .0180

### FOUR CONDUCTOR—BELTED

12,000 VOLTS

Code	B. & S.	Conducto	or Shape	Insul Thick Inc Cond.		Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
MACPO MACRY MACYR MADEN MADIP	$\frac{2}{1}$ $1/0$	$\begin{array}{c} 26,250 \\ 41,740 \\ 66,370 \\ 83,690 \\ 105,500 \end{array}$	Round Round Round Round Round	.140 .140 .140 .140 .140	.140 .140 .140 .140 .140	.100 .110 .110 .110 .115	1.60 1.74 1.88 1.98 2.09	3,610 4,340 5,050 5,550 6,370	.410 .259 .162 .129 .102
MADMA MADNE MADSY MADUR MADYS	3/0 4/0	133,100 167,800 211,600 250,000 300,000	Sector Sector Sector Sector	.140 .140 .140 .140 .140	.140 .140 .140 .140 .140	.110 .115 .115 .125 .125	1.98 2.11 2.24 2.36 2.48	6,080 7,080 7,980 9,060 10,040	.0811 .0642 .0509 .0431 .0360
MAEJS MAEKT MAEIV MAENY	/!!! !!!	350,000 400,000 500,000 600,000	Sector Sector Sector Sector	.140 .140 .140 .140	.140 .140 .140 .140	.125 .135 .135 .140	2.59 2.71 2.90 3.09	$11,000 \\ 12,280 \\ 13,890 \\ 16,270$	.0308 .0270 .0216 .0180

FOUR CONDUCTOR—BELTED

13,000 VOLTS

(Grounded Neutral)

Code	s	Conducto		Insula Thick Inc	mess,	Thick- ness,	, meter,	Weight Pounds/	Average Resist- ance Ohms/
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LYNMO	6	26,250	Round	.140	.080	.100	1.48	3,250	410
LYNVY	4	41,740	Round	.140	.080	.100	1.60	3,750	.410
LYNYV	4 2	66,370	Round	.140	.080	.110	1.76	4,650	.259
LYOBZ	1	83,690	Round	.140	.080	.110	1.86	5,130	.162
LYOFD	1/0	105,500	Round	.140	.080	.110	1.96	5,690	.102
LYOHG	2/0	133,100	Sector	.140	.080	.110	1.86	5,660	.0811
LYOLK	3/0	167,800	Sector	. 140	.080	.110	1.98	6,410	.0642
LYOVT	4/0	211,600	Sector	.140	.080	.115	2.12	7,510	.0509
LYOZY		250,000	Sector	.140	.080	.115	2.22	8,290	.0431
LYPAK		300,000	Sector	.140	.080	.125	2.36	9,540	.0360
LYPEL	10.00	350,000	Sector	.140	.080	.125	2.47	10,490	.0308
LYPKA		400,000	Sector	.140	.080	.125	2.57	11,420	.0270
LYPLE		500,000	Sector	.140	.080	. 135	2.78	13,530	.0216
LYPNO		600,000	Sector	.140	.080	.135	2.96	15,290	.0180

### FOUR CONDUCTOR—BELTED

13,000 VOLTS

Conduct Code Size			Shape	Insul Thick Inc	ness,	Lead Thick- ness,	Weight Pounds/	Average Resist- ance Ohms/	
. /1	3. & S.	C.M.	ыпаре	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C
MACPO	6	26,250	Round	.140	.140	.100	1.60	3,610	410
MACRY	4	41,740	Round	.140	.140	.110	1.74	4,340	$.410 \\ .259$
MACYR	2	66,370	Round	.140	.140	.110	1.88	5,050	.162
MADEN	1	83,690	Round	.140	.140	.110	1.98	5,550	.129
MADIP	1/0	105,500	Round	.140	.140	.115	2.09	6,370	.102
MADMA	2/0	133,100	Sector	.140	.140	.110	1.98	6.080	.0811
MADNE	3/0	167,800	Sector	.140	.140	.115	2.11	7.080	.0642
MADSY	4/0	211,600	Sector	.140	.140	.115	2.24	7,980	.0509
MADUR		250,000	Sector	.140	.140	.125	2.36	9.060	.0431
MADYS		300,000	Sector	.140	.140	.125	2.48	10,040	.0360
MAEJS		350,000	Sector	.140	.140	.125	2.59	11,000	.0308
MAEKT		400,000	Sector	.140	.140	.135	2.71	12,280	.0270
MAEIV		500,000	Sector	.140	.140	.135	2.90	13,890	.0216
MAENY		600,000	Sector	.140	.140	.140	3.09	16,270	.0180

### FOUR CONDUCTOR—BELTED

14,000 VOLTS

(Grounded Neutral)

Code			Shape	Insul Thick Inc	ness,	Lead Thick- ness, Ins.		Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
LYPON	6	26,250	Round	. 155	.080	.100	1.56	3,470	.410
LYPUP	$\frac{4}{2}$	41,740	Round	. 155	.080	.100	1.67	3,960	.259
LYPWY	2	66,370	Round	. 155	.080	.110	1.83	4,880	.162
LYRAM LYREN		83,690	Round	. 155	.080	.110	1.93	5,380	.129
LIKEN	1/0	105,500	Round	. 155	.080	.115	2.04	6,190	.102
LYRIP	2/0	133,100	Sector	.155	.080	110		-	
LYRMA	3/0	167.800	Sector	.155	.080	.110	1.92	5,880	.0811
LYRNE	4/0	211,600	Sector	.155	.080	.115	2.04	6,880	.0642
LYRUR		250,000	Sector	.155	.080	.115	2.17	7,760	.0509
LYRYZ		300,000	Sector	.155	.080	.125	$\frac{2.28}{2.42}$	8,520	.0431
			Coctor	. 100	.000	. 120	2.42	9,810	.0360
LYSAN		350,000	Sector	.155	.080	.125	2.53	10,760	0200
LYSEP		400,000	Sector	.155	.080	.125	2.63	11,700	.0308
LYSNA		500,000	Sector	.155	.080	.135	2.84	13.820	.0270 $.0216$
LYSOR		600,000	Sector	.155	.080	.140	3.03	15,990	.0180
							0.00	10,000	.0100

### FOUR CONDUCTOR—BELTED

14,000 VOLTS

Code	S B. & S.	Conducto	or Shape	Insula Thick Inc. Cond.	ness,	Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
MAEPZ MAERC MAEVG MAEZK MAFAN MAFEP MAFNA MAFOR MAFPE MAFRO MAFTY MAFUS MAFYT MAGAP	6 4 2 1 1/0 2/0 3/0 4/0 	26,250 41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000 300,000 350,000 400,000 500,000 600,000	Round Round Round Round Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector Sector	.155 .155 .155 .155 .155 .155 .155 .155	. 155 . 155	.110 .110 .110 .115 .115 .115 .125 .125 .135 .140	1.73 1.84 1.98 2.09 2.19 2.08 2.20 2.33 2.45 2.57 2.70 2.80 3.00 3.18	4,140 4,660 5,390 6,160 6,840 6,660 7,430 8,350 9,450 10,440 11,740 12,710 14,900 16,760	.410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308 .0270 .0216 .0180

FOUR CONDUCTOR—BELTED

15,000 VOLTS

(Grounded Neutral)

Code	s	Conducto		Insula Thick Incl	ness,	Thick- ness,	meter,	Weight	
	B. & S.	C.M.	Shape	Cond.	Belt	Ins.	Ins.	1,000′	1,000′ @ 25°C.
LYPON	6	26,250	Round	.155	.080	.100	1.56	3,470	.410
LYPUP	4	41,740	Round	. 155	.080	.100	1.67	3,960	.259
LYPWY	2	66,370	Round	.155	.080	.110	1.83	4,880	.162
LYRAM LYREN		83,690	Round	.155	.080	.110	1.93	5,380	.129
LIREN	1/0	105,500	Round	.155	.080	.115	2.04	6,190	.102
LYRIP	2/0	133,100	Sector	.155	.080	.110	1.92	5.880	.0811
LYRMA	3/0	167,800	Sector	.155	.080	.115	2.04	6.880	.0642
LYRNE	4/0	211,600	Sector	.155	.080	.115	2.17	7,760	.0509
LYRUR		250,000	Sector	. 155	.080	.115	2.28	8,520	.0431
LYRYZ		300,000	Sector	.155	.080	.125	2.42	9,810	.0360
LYSAN		250,000	Conton	155	000	105	0 50		
LYSEP		$350,000 \\ 400,000$	Sector	.155	.080	.125	2.53	10,760	.0308
LYSNA		500,000	Sector	.155	.080	.125	2.63	11,700	.0270
LYSOR	1111	600,000	Sector	.155	.080	.135	2.84	13,820	.0216
LISON		000,000	pector	.133	.080	.140	3.03	15,990	.0180

### FOUR CONDUCTOR—BELTED

15,000 VOLTS

Code	Shape	Insula Thick Inc.	ness,	Lead Thick- ness, Ins.	Overall Dia- meter, Ins.	Net Weight Pounds/ 1,000'	Averag Resistance Ohms 1,000' @ 25°C		
	B. & S.	C.M.		Cond.	Dere				W 25 C
MAEPZ	6	26,250	Round	. 155	155	110	1 70	4.140	440
MAERC	4	41,740	Round		. 155	110	1.73	4,140	.410
MAEVG	9	66,370	Round	. 155	. 155	.110	1.84	4,660	.259
MAEZK	$\frac{2}{1}$	83.690	Round	. 155	. 155	.110	1.98	5,390	.162
MAFAN	1/0	105,500	Round	.155	.155	.115	2.09	6,160	.129
MAPAN	1/0	105,500	Round	. 155	.155	.115	2.19	6,840	.102
MAFEP	2/0	133,100	Sector	. 155	.155	.115	2.08	6,660	0011
MAFNA	3/0	167,800	Sector	.155	. 155	.115	2.20	7,430	.0811
MAFOR	4/0	211,600	Sector	.155	.155	.115	2.33	8.330	.0642
MAFPE		250,000	Sector	.155	.155	.125	2.45		.0509
MAFRO		300,000	Sector	.155	.155	.125		9,450	.0431
WILLIE ICO	500.00	300,000	Bector	. 100	. 133	.125	2.57	10,440	.0360
MAFTY	1	350,000	Sector	. 155	.155	.135	2.70	11,740	.0308
MAFUS		400,000	Sector	.155	.155	.135	2.80	12,710	.0270
MAFYT		500,000	Sector	.155	.155	.140	3.00	14,900	
MAGAP	1111	600,000	Sector	.155	.155	.140	3.18	16,760	.0216 $.0180$

### VARNISHED CAMBRIC INSULATED POWER CABLES

Canada Wire & Cable Co. manufactures a complete line of varnished cambric insulated wires and cables for building wiring, general power purposes, and for special applications where varnished cambric insulation is the most suitable type to employ.

The varnished cloth used for insulation consists of a specially processed cotton cloth, coated with individually baked films of insulating varnish. This type of insulation, applied helically around the conductor in tape form, has been in commercial use since 1902.

Varnished cambric insulation has moisture resistance to a degree which makes it suitable for station wiring without the additional protection of a lead sheath. It is not affected by ordinary oils and greases, it is highly resistant to corona discharges, and its ruggedness enables it to withstand any reasonable mechanical stress during installation. It has high dielectric strength and long life, and its high safe operating temperatures permit large current carrying capacities.

For underground installations or where exposed to moisture conditions beyond that usually encountered in indoor installations, it must be protected by a lead sheath.

The type of varnish used has undergone a series of continuous improvements, and as a result, Canada Wire & Cable Co. has standardized on two types of cloth for cable work, standard and heat resisting.

The lead sheathed wire or cable may be pulled through conduits, either underground or along building walls, etc., if protection against mechanical injury is necessary; or if this protection is not necessary it may be itself clipped to walls or ceilings.

As an alternative to the use of conduit for mechanical protection, a steel armouring is frequently applied over the lead sheath in the factory, permitting the wire or cable to be buried directly in the ground, or trained along walls with no further protection.

See pages 20 to 25 for armouring.

# SINGLE OR MULTI-CONDUCTOR CABLES—TYPE "H" (Shielded) INSULATION THICKNESSES—V.C. INSULATED (Standard or Heat-Resisting V.C.)

Zx		10/64 11/64 11/64				16/64	16/64	18/64	19/64	21/64						
INSULATION	Ung N	155 170 170	170	205	235	250	250	280	295	330						
INSU	Grounded Neutral Ills Inches	9/64 9/64 9/64	10/64	11/64	12/64	13/64	14/64	15/64	15/64	16/64	17/64	18/64	20/64	22/64	23/64	25/64 25/64 26/64
	Gre N Mils	140 140 140	155	170	190	205	220	235	235	250	265	280	315	345	360	390 405
Size of Conductor	or 1,000 Circular Mils	6-4/0 213-1,000 Over 1,000	6 and over	4 and over	4 and over	2 and over	2 and over	2 and over	2 and over	1 and over	1 and over	1 and over	1 and over 1 and over	1 and over	1 and over	1/0 and over 1/0 and over
Rated	Phase to Phase	6,000	8,000	9,000	10,000	11,000	12,000	13,000	14,000	15,000	16,000	18,000	19,000 20,000	21,000	22,000 23,000	24,000 25,000
1	T 8	<del></del>												R		
	Ungrounded Neutral Ails Inches	8440 9999	7/64	4/64	9/9/2	9/8	5/64	6/64	8/64	6/64	6/64	7/64	7/64	8/64	9/64	10/64
INSULATION	Ung N Mils	45 65 95 95	110	80	110	125	80	95	125	95	95	110	110	125	140	155
INSU	Grounded Neutral fils Inches	3/64 2/64 5/64 6/64	7/64 8/64	4/64 5/64	6/64 7/64	8/64	5/64	6/64	8/64	6/64	6/64	7/64	7/64	8/64	8/64	9/64
	Gro Ne Mils	45 65 95 95	110	80	110	125	95	95	125	95	95	110	110	125	125	140
Size of Conductor B. & S.	or 1,000 Circular Mils	$\begin{array}{c} 10-8\\ 7-2\\ 1-4/0\\ 213-500 \end{array}$	501-1,000 Over 1,000	10-2	501-1,000	Over 1,000	8-2 1-4/0	213-500	Over 1,000	8-2	$\frac{1-4/0}{213-500}$	501-1,000 Over 1,000	8-4/0	213-1,000 Over 1,000	8-4/0	213-1,000 Over 1,000
Rated	Phase to Phase	009		1 000	1,000			2,000			3,000			4,000	1	2,000

All cables have an operating tolerance of 5% above the rated voltage, except those rated at 15,000 volts and below, which have no the operating tolerance.

# INSULATION THICKNESSES—V.C. INSULATED MULTI-CONDUCTOR CABLES—BELTED TYPE

(Standard or Heat-Resisting V.C.)

Rated	Size of			ULATIO	N THIC	KNESS	
Voltage Phase to	Conductor B. & S.	Con	DUCTOR			BELT	
Phase	1,000 C.M.	Mils	Inches		ounded eutral Inches	Ung N Mils	rounded eutral Inches
600	10-8 7-2 1-4/0 213-500 501-1,000 Over 1,000	45 65 80 95 95	3/64 4/64 5/64 6/64 6/64 7/64	0 0 0 0 0 30	0 0 0 0 2/64	0 0 0 0 30	0 0 0 0 0 2/64
1,000	10-2 1-4/0 213-500 501-1,000 Over 1,000	65 80 95 95	4/64 5/64 6/64 6/64 7/64	30 0 0 0 30 30	2/64 $0$ $0$ $0$ $2/64$ $2/64$	30 0 0 30 30 30	2/64 $0$ $0$ $0$ $2/64$ $2/64$
2,000	$\begin{array}{c} 8-2\\ 1-4/0\\ 213-500\\ 501-1,000\\ \text{Over 1,000} \end{array}$	80 95 95 95 110	5/64 6/64 6/64 6/64 7/64	0 0 0 30 30	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 2/64 \\ 2/64 \end{array}$	0 0 0 30 30	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 2/64 \\ 2/64 \end{array}$
3,000	8-2 1-4/0 213-500 501-1,000 Over 1,000	80 95 95 95 110	5/64 6/64 6/64 6/64 7/64	30 30 30 45 45	2/64 2/64 2/64 3/64 3/64	30 30 30 45	2/64 2/64 2/64 3/64
4,000	8-4/0 213-500 501-1,000 Over 1,000	95 95 95 110	6/64 6/64 6/64 7/64	45 45 65 65	3/64 3/64 4/64 4/64	45 45 45 65 65	3/64 3/64 3/64 4/64 4/64
5,000	8-4/0 213-1,000 Over 1,000	95 110 110	6/64 7/64 7/64	65 65 80	4/64 4/64 5/64	65 65 80	4/64 4/64
6,000	6-4/0 213-1,000 Over 1,000	95 110 110	6/64 7/64 7/64	80 80 80	5/64 5/64 5/64	80 80	5/64 5/64 5/64
7,000	6 and larger	110	7/64	80	5/64	80	5/64
8,000	6 and larger	110	7/64	95	6/64	95 110	6/64
9,000	4 and larger	125	8/64	95	6/64	125	7/64
10,000	4 and larger	140	9/64	95	6/64	140	8/64
11,000	2 and larger	155	10/64	95	6/64	155	9/64 10/64
12,000	2 and larger	155	10/64	110	7/64	155	10/64
13,000	2 and larger	170	11/64	110	7/64	170	11/64
14,000	2 and larger	190	12/64	110	7/64	190	12/64
5,000	1 and larger	205	13/64	110	7/64	205	13/64



SINGLE	CONDUCTOR-	-SOLID	
SINGLE	BRAID	TYPE	"V"

600 VOLTS

Code	Conductor Size B. & S. C.M.		Diam. Bare Cond.,	Insula- tion Thick-	Overall Diam., Inches	Area Insu- lated Cond.,		Average Resist- ance/
	2.45.	O.M.	Inches	ness, Inches	Thenes	Square Inches	1,000′	1,000'@ 25°C.
JOPYK JORAG JORGA JORHE	14 12 10 8	4,107 6,530 10,380 16,510	.064 $.081$ $.102$ $.128$	3/64 3/64 3/64 3/64	.188 .205 .232 .294	.028 .033 .042 .068	25 34 49 79	2.58 1.62 1.02 0.641

#### SINGLE CONDUCTOR—STRANDED, SINGLE BRAID TYPE "V"

600 VOLTS

Code		ductor size	Strand- ing	Diam. Bare Cond., Ins.	Insula- tion Thick- ness, Ins.	Overall Diam., Ins.		Weight Pounds/	Average Resist- ance/ 1,000'@ 25°C.
JORIJ	14	4,107	7/.0242	.073	3/64	.197	.030	26	2.63
JORKO	12	6,530	7/.0305	.092	3/64	.216	.037	36	1.65
JORMY	10	10,380	7/.0385	.116	3/64	.246	.047	51	1.03
JOROK	8	16,510	7/.0486	.146	3/64	.312	.076	82	0.654

#### SINGLE CONDUCTOR—SOLID, DOUBLE BRAID TYPE "V"

600 VOLTS

Code	Condu B. & S.	ctor Size	Diam. Bare Cond., Inches	Insula- tion Thick- ness, Inches	Overall Diam., Inches	Area Insu- lated Cond., Square Inches	Net Weight Pounds/ 1,000'	Average Resist- ance/ 1,000'@ 25°C.
JORUL	14	4,107	.064	3/64	.218	.037	33	2.58
JOSAH	12	6,530	.081	3/64	.235	.043	44	1.62
JOSHA	10	10,380	.102	3/64	.268	.056	60	1.02
JOSIK	8	16,510	.128	3/64	.334	.088	100	0.641



SINGLE CONDUCTOR—STRANDED, DOUBLE BRAID TYPE "V"

600 VOLTS

Code		onductor Size & S. C.M.	Strand- ing	Bare	Insula- tion Thick- ness, Ins.	Over- all Diam., Ins.	Area Insu- lated Cond., Square Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance/ 1,000' @ 25°C.
JOSJE	14	4,107	7/.0242	.073	3/64	.227	040	6.1	
JOSLO	12	6,530	7/.0305	.092	3/64	.246	.040	34	2.63
JOSNY	10	10,380	7/.0385	.116	3/64	.282	.062	41 59	1.65
JOSOL	8	16,510	7/.0486	.146	3/64	.320	.080		1.03
JOSUM	6	26,250	7/.0612	.184	4/64	.370	.107	76	0.654
TOGTAT					-/	.0.0	.107	125	.410
JOSYN	5	33,100	7/.0688	.206	4/64	.392	.120	150	/200
JOTAJ	4	41,740	7/.0772	.232	4/64	.418	.137	180	.326
JOTEK	3	52,640	7/.0867	.260	4/64	.456	.163	225	.259
JOTIL JOTJA	2	66,370	7/.0974	.292	4/64	.488	.187	270	.205
JOIJA	1	83,690	19/.0664	.332	5/64	.558	.244	345	.102
JOTKE	1 10	105 500						010	.129
JOTMO	1/0 2/0	105,500	19/.0745	.373	5/64	. 599	.282	420	.102
JOTPY	3/0	133,100	19/.0837	.418	5/64	. 654	.336	520	.0811
JOTYP	4/0	167,800	19/.0940	.470	5/64	.705	.390	635	.0642
JOUBT	1 1	211,600	19/.1055	.528	5/64	.764	.458	785	.0509
OCCDI		250,000	37/.0822	.575	6/64	.843	. 558	935	.0431
JOUFY		300,000	37/.0900	000	0101				.0101
JOUGZ		350,000		. 630	6/64	.898	. 633	1.100	.0360
JOUHB		400,000	37/.0973	.681	6/64	.949	.707	1,270	.0308
JOUKD		500,000	$\frac{37}{.1162}$	.728	6/64	.996	.779	1,440	.0270
JOUMG		600,000	61/.0992	.814	6/64	1.08	.916	1,760	.0216
		000,000	01/.0992	.893	7/64	1.21	1.15	2,130	.0180
JOUSN		700,000	61/.1071	.964	7 10 4	1 00			
JOVAK		750,000	61/.1109	.998	7/64	1.28	1.29	2,460	.0154
JOVEL		800,000	61/.1145	1.031		1.32	1.37	2,630	.0144
JOVKA		900,000	61/.1215	1.093	7/64 7/64	1.34	1.41	2,790	.0135
JOVLE		1,000,000	61/.1280	1.152		1.43	1.61	3,140	.0120
		,,,,,,	027.1200	1.102	1/04	1.49	1.74	3,460	.0108
JOVNO		1,250,000	91/.1172	1.290	8/64	1.66	9 10	1.000	
JOVON		1,500,000	91/.1284	1.412		1.78	2.16	4,320	.00863
JOVUP		1,750,000	127/.1174	1.526			2.49 2.83	5,130	.00719
JOWAL			127/.1255	1.631			3.14	5,930	.00617
					0/01	2.00	0.14	6,750	.00539
NO THE WAY		The State of the S							



SINGLE CONDUCTOR

TYPE "V-10"

	Co	nductor Size	Strand-	Diam. Bare	Insula-	Over-	Area Insu- lated	Net Weight	Average Resist-
Code	B. & S	. C.M.	ing			Diam., Ins.	Cond., Square Ins.	Pounds/ 1,000'	
JOWEM	10	10,380	7/.0385	.116	4/64	.302	.072	66	1.03
JOWLA	8	16,510	7/.0486	.146	4/64	.332	.087	89	0.654
<b>JOWME</b>	6	26,250	7/.0612	.184	4/64	.370	.107	125	.410
JOWOP	5	33,100	7/.0688	.206	4/64	.392	120	150	.326
JOWPO	4	41,740	7/.0772	. 232	4/64	.418	.137	180	.259
JOWRY	3	52,640	7/.0867	.260	4/64	.456	.163	225	.205
JOWYR	2	66,370	7/.0974	.292	4/64	.488	.187	270	.162
JOYAM	1	83,690	19/.0664	.332	5/64	.558	.244	345	.129
JOYEN	1/0	105,500	19/.0745	.373	5/64	.599	.282	420	.102
JOYIP	2/0	133,100	19/.0837	.418	5/64	. 654	.336	520	.0811
JOYJD	3/0	167,800	19/.0940	.470	5/64	.705	.390	635	.0642
JOYLG	4/0	211,600	19/.1055	.528	5/64	.764	.458	785	.0509
JOYMA	/	250,000	37/.0822	.575	6/64	.843	. 558	935	.0431
JOYNE		300,000	37/.0900	. 630	6/64	.898	. 633	1.100	.0360
JOYSY	./.	350,000	37/.0973	.681	6/64	.949	.707	1,270	.0308
JOYUR	/	400,000	37/.1040	.728	6/64	.996	.779	1,440	.0270
JOYZT		500,000	37/.1162	.814	6/64	1.08	.916	1,760	.0216
JOZAM		600,000	61/.0992	.893	7/64	1.21	1.15	2,130	.0180
JOZEP JOZNA		700,000	61/.1071	.964	7/64	1.28	1.29	2,460	.0154
JOZIVA		750,000	61/.1109	.998	7/64	1.32	1.37	2,630	.0144
JOZOR		800,000	61/.1145	1.031	7/64	1.34	1.41	2,790	.0135
JOZPE		900,000	61/.1215	1.093	7/64	1.43	1.61	3.140	.0135
JOZRO		1.000,000	61/.1280	1.152	7/64	1.49	1.74	3,460	.0120
JOZTY		1,250,000	91/.1172	1.290	8/64	1.66	2.16	4,320	.00863
JOZUS		1,500,000	91/.1284	1.412	8/64	1.78	2.49	5,130	.00803
JOZYT		1,750,000	127/.1174	1.526	8/64	1.90	2.83	5,930	.00617
JUABT		2,000,000	127/.1255	1.631	8/64	2.00	3.14	6,750	.00539
								-,	.00000



SINGLE CONDUCTOR

TYPE "V-20"

Code	Co	onductor Size	Strand-	Bare	tion	Over-	Area Insu- lated	Net Weight	Average Resist-
Code	B. & S	S. C.M.	ing	Cond., Ins.	Thick- ness, Ins.	Diam., Ins.	Cond., Square Ins.	Pounds/ 1,000'	
JUAFY	8	16,510	7/.0486	.146	5/64	.362	.103	98	.654
JUAGZ	6	26,250	7/.0612	.184	5/64	.400	.126	135	.410
JUAHB JUAKD	5	33,100	7/.0688	.206	5/64	.422	.140	160	.326
JUALF	4 3	41,740	7/.0772	.232	5/64	.458	.165	195	.259
JUALE	0	52,640	7/.0867	.260	5/64	.486	.186	235	. 205
JUAMG	2	66,370	7/.0974	.292	5/64	.518	011	00.	1
JUARL	1	83,690	19/.0664	.332	6/64	.590	.211	285	/.162
JUASM	1/0	105,500	19/.0745	.373	6/64	.641	.323	360 440	.129
JUBAT	2/0	133,100	19/.0837	.418	6/64	.686	.370	535	.102
JUBEV	3/0	167,800	19/.0940	.470	6/64	.738	.428	655	.0642
JUBOY	4/0	911 600	10/ 1000					000	.0012
JUBTA	4/0	211,600 250,000	19/.1055	.528	6/64	.796	.498	805	.0509
JUBUZ		300,000	37/.0822 37/.0900	.575	6/64	.843	. 558	935	.0431
JUBVE		350,000	37/.0973	.630	6/64	.898	. 633	1,100	.0360
JUBYO		400,000	37/.1040	.728	6/64	.949	.707	1,270	.0308
		100,000	377.1040	.120	0/04	.996	.779	1,440	.0270
JUCAV		500,000	37/.1162	.814	6/64	1.08	.916	1,760	.0216
JUCIX		600,000	61/.0992	.893	7/64	1.21	1.15	2,130	.0180
JUCOZ		700,000	61/.1071	.964	7/64	1.28	1.29	2,460	.0154
JUCUB		750,000	61/.1109	.998	7/64	1.32	1.37	2,630	.0144
JUCVA		800,000	61/.1145	1.031	7/64	1.34	1.41	2,790	.0135
JUCWE		900,000	61 / 1915	1 000	7.04				
JUCZO	:::	1,000,000	$\frac{61}{.1215}$ $\frac{61}{.1280}$	$\frac{1.093}{1.152}$	7/64	1.43	1.61	3,140	.0120
JUDBO		1,250,000	91/.1172	1.152	7/64 8/64	1.49	1.74	3,460	.0108
JUDIZ		1,500,000	91/.1284	1.412	8/64	1.66	2.16	4,320	.00863
JUDOB		1,750,000	127/.1174	1.526	8/64	1.90	2.49 2.83	5,130	.00719
JUDUC		2,000,000	127/.1255	1.631	8/64	2.00	3.14	5,930 6,750	.00617
					3,02	2.00	0.11	0,700	.00539
			WIENESSEE			-			



SINGLE CONDUCTOR

TYPE "V-30"

Code	Conductor Size		Strand-	Bare	Insula-	all	Area Insu- lated	Net Weight	Average Resist-
Code	B. & S	. C.M.	ing	Ins.	ness, Ins.	Diam., Ins.	Cond., Square Ins.	Pounds/ 1,000'	ance/ 1,000' @ 25°C.
JUDWA	8	16,510	7/.0486	.146	6/64	.374	.110	115	.654
JUDYE	6	26,250	7/.0612	.184	6/64	.432	.147	145	.654
JUEDY	5	33,100	7/.0688	.206	6/64	.464	169	175	.326
JUEJD	4	41,740	7/.0772	.232	6/64	.490	.189	210	.259
JUELG	3	52,640	7/.0867	.260	6/64	.518	.211	250	.205
JUENJ	2	66,370	7/.0974	.292	6/64	.550	.238	300	.162
JUEPK	1	83,690	19/.0664	.332	6/64	.590	.273	360	.129
JUERM	1/0	105,500	19/.0745	.373	6/64	.641	.323	440	.102
JUEWR	2/0	133,100	19/.0837	.418	6/64	.686	.370	540	.0811
JUEZT	3/0	167,800	19/.0940	.470	6/64	.738	.428	655	.0642
JUFAY	4/0	211,600	19/.1055	.528	6/64	.796	.498	805	.0509
JUFCO JUFEZ		250,000	37/.0822	.575	7/64	.873	.599	955	.0431
JUFIB	/	300,000	37/.0900	. 630	7/64	.928	.676	1,120	.0360
JUFOC	/	350,000 400,000	37/.0973	.681	7/64	.979	.753	1,290	.0308
CONTRACTOR CONTRACTOR	/	400,000	37/.1040	.728	7/64	1.026	.833	1,460	.0270
JUFUD	/	500,000	37/.1162	.814	7/64	1.112	.968	1,780	.0216
JUFYA	1	600,000	61/.0992	.893	7/64	1.21	1.15	2,130	.0180
JUFZE		700,000	61/.1071	.964	7/64	1.28	1.29	2,460	.0154
JUGAZ JUGBE		750,000	61/.1109	.998	7/64	1.32	1.37	2,630	.0144
JUGBE		800,000	61/.1145	1.031	7/64	1.34	1.41	2,790	.0135
JUGDO		900,000	61/.1215	1.093	7/64	1.43	1.61	3,140	.0120
JUGEB		1,000,000	61/.1280	1.152	7/64	1.49	1.74	3,460	.0108
JUGGY		1,250,000	91/.1172	1.290	8/64	1.66	2.16	4.320	.00863
JUGIC		1,500,000	91/.1284	1.412	8/64	1.78	2.49	5,130	.00719
JUGOD		1,750,000	127/.1174	1.526	8/64	1.90	2.83	5,930	.00617
JUGUF	• • • •	2,000,000	127/.1255	1.631	8/64	2.00	3.14	6,750	.00539
	T. T.	7							



SINGLE CONDUCTOR

TYPE "V-40"

Code		nductor Size	Strand- ing	Bare	Insula- tion Thick- ness, Ins.	all	Area Insu- lated Cond., Square Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance/ 1,000' @ 25°C.
JUGYG JUGZA JUHAB JUHBA JUHCE	8 6 5 4 3	16,510 26,250 33,100 41,740 52,640	7/.0612 7/.0688	.146 .184 .206 .232 .260	7/64 7/64 7/64 7/64 7/64	.434 .472 .494 .520 .548	.148 .175 .192 .212 .236	120 155 190 220 260	. 654 . 410 . 326 . 259 . 205
JUHEC JUHID JUHOF JUHUG	$\begin{array}{c} 2\\1\\1/0\\2/0\\3/0\end{array}$	66,370 83,690 105,500 133,100 167,800	7/.0974 19/.0664 19/.0745 19/.0837 19/.0940	.292 .332 .373 .418 .470	7/64 7/64 7/64 7/64 7/64	.580 .630 .671 .716 .768	.264 .312 .354 .403 .463	315 380 460 555 675	.162 .129 .102 .0811 .0642
JUHYH JUIJF JUIRN JUIXT JUJAC	4/0  	211,600 250,000 300,000 350,000 400,000	19/.1055 37/.0822 37/.0900 37/.0973 37/.1040	.528 .575 .630 .681 .728	7/64 8/64 8/64 8/64 8/64	$\begin{array}{c} .826 \\ .905 \\ .960 \\ 1.01 \\ 1.06 \end{array}$	.536 .643 .724 .801 .882	825 980 1,150 1,320 1,490	.0509 .0431 .0360 .0308 .0270
JUJCA JUJDE JUJED JUJGO JUJIF JUJOG		500,000 600,000 700,000 750,000 800,000	37/.1162 61/.0992 61/.1071 61/.1109 61/.1145	.814 .893 .964 .998 1.031	8/64 8/64 8/64 8/64	1.14 1.24 1.31 1.35 1.38	1.02 1.21 1.35 1.43 1.50	1,810 2,170 2,500 2,670 2,830	.0216 .0180 .0154 .0144 .0135
JUJUH JUJYJ JUKAD JUKDA JUKEF	]	900,000 1,000,000 1,250,000 1,500,000 1,750,000 2,000,000	61/.1215 61/.1280 91/.1172 91/.1284 127/.1174 127/.1255	1.093 1.152 1.290 1.412 1.526 1.631	8/64 8/64 9/64 9/64 9/64 9/64	1.46 1.52 1.70 1.81 1.93 2.03	1.67 1.81 2.24 2.57 2.93 3.24	3,180 3,510 4,370 5,180 5,980 6,800	.0120 .0108 .00863 .00719 .00617 .00539



SINGLE CONDUCTOR

TYPE "V-50"

Code		ductor Bize C.M.	Strand- ing	Bare	Insula- tion Thick- ness, Ins.	all	Area Insu- lated Cond., Square Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance/ 1,000' @ 25°C.
JUKFE	8	16,510	7/.0486	.146	9/64	.498	. 195	150	054
JUKHO	6	26,250	7/.0612	.184	9/64	.536	.226	$\frac{150}{190}$	.654 .410
JUKIG	5	33,100	7/.0688	.206	9/64	.558	.245	215	.326
JUKOH	4	41,740	7/.0772	.232	9/64	.584	.268	250	.259
JUKUJ	3	52,640	7/.0867	.260	9/64	.622	.304	300	.205
********								000	
JUKYK	2	66,370	7/.0974	.292	9/64	.654	.336	350	.162
JULAF		83,690	19/.0664	.332	9/64	.694	.378	415	.129
JULEG	1/0	105,500	19/.0745	.373	9/64	.735	.424	495	.102
JULGE	$\frac{2}{0}$	133,100 167,800	19/.0837	.418	9/64	.780	.478	595	.0811
JULGE	3/0	107,800	19/.0940	.470	9/64	.832	.544	720	.0642
JULJO	4/0	211,600	19/.1055	.528	9/64	900	600	070	. 0500
JULLY		250,000	37/.0822	.575	10/64	.890	.622	870	.0509
JULOJ	/	300,000	37/.0900	.630	10/64	1.02	.817	1,030	.0431
JULUK	/	350,000	37/.0973	.681	10/64	1.07	.899	$\frac{1,200}{1,370}$	.0360
JULYL	/	400,000	37/.1040	.728	10/64	1.12	.985	1,550	.0308
			.,		10/01	1.12	. 303	1,550	.0270
JUMAG	./.	500,000	37/.1162	.814	10/64	1.23	1.17	1,900	.0216
JUMGA	1	600,000	61/.0992	.893	10/64	1.31	1.33	2,230	.0180
JUMHE	1	700,060	61/.1071	.964	10/64	1.38	1.48	2,570	.0154
JUMIJ	/	750,000	61/.1109	.998	10/64	1.43	1.61	2,760	.0144
JUMKO		800,000	61/.1145	1.031	10/64	1.46	1.68	2,920	.0135
JUMMY	-	000 000	01/1015						
JUMOK		900,000	61/.1215	1.093	10/64	1.53	1.82	3,260	.0120
JUMUL		1,250,000	61/.1280	1.152	10/64	1.58	1.97	3,590	.0108
JUNAH		1,500,000	91/.1172 91/.1284	$1.290 \\ 1.412$	10/64	1.72	2.32	4,410	.00863
JUNHA		1,750,000	127/.1174	1.526	$\frac{10/64}{10/64}$	1.84	2.66	5,220	.00719
JUNIK		2,000,000	127/.1255	1.631	10/64	$\frac{1.96}{2.06}$	3.01	6,030	.00617
		-,000,000		1.001	10/04	2.00	3.33	6,850	.00539
1									



### SINGLE CONDUCTOR

### (Grounded Neutral)

7,000 VOLTS

Code	B. & S	onductor Size	Strand- ing	Diam. Bare Cond., Ins.	Insulation Thickness, Ins.	Over- all Diam., Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
OGABY OGAGD OGALJ OGAMK OGARP OGAVS OGAWT OGBAY OGBBZ OGBIB OGBOC OGCEB OGCEB OGCEB OGCEB	6 4 2 1 1/0 2/0 3/0 4/0 	26,250 41,740 66,370 83,690 105,500 133,100 167,800 250,000 300,000 350,000 400,000 500,000 600,000 750,000 1,000,000	7/.0612 7/.0772 7/.0974 19/.0664 19/.0745 19/.0837 19/.0837 19/.1055 37/.0822 37/.0900 37/.1040 37/.1162 61/.0992 61/.1109	.184 .232 .292 .373 .418 .470 .528 .575 .630 .681 .728 .814 .893 .998	.155 .155 .155 .155 .155 .155 .155 .155	.55 .60 .67 .71 .75 .79 .84 .90 .95 1.00 1.08 1.12 1.23 1.31 1.43	195 260 360 430 515 615 740 895 1,210 1,210 1,410 1,950 2,300 2,840 3,690	
OGCUF OGCYG OGDAB OGDDO	:::	1,250,000 1,500,000 1,750,000 2,000,000	91/.1172 91/.1284 127/.1174 127/.1255	1.290 1.412 1.526 1.631	. 155 . 155 . 155 . 155	1.72 1.85 1.96 2.07	4,540 5,370 6,230 7,060	.00863 .00719 .00617 .00539

### SINGLE CONDUCTOR

### 7,000 VOLTS

Code	В. & 8	onductor Size	Strand- ing	Diam. Bare Cond., Ins.	Insula- tion Thick- ness, Ins.	Over- all Diam., Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
OGDEC	6	26,250	7/.0612	.184	.170	.58	910	
OGDFE	4	41,740	7/.0772	.232	.170		210	.410
OGDID	$\frac{4}{2}$	66,370	7/.0974	.292	.170	. 64	270	.259
OGDOF	1	83,690	19/.0664	.332	.170	.70	380	.162
OGDUG	1/0	105,500	19/.0745	.373		.74	445	.129
OGDYH	2/0				.170	.78	530	. 102
OGEBZ	3/0	133,100	19/.0837	.418	.170	.82	635	.0811
OGEFD		167,800	19/.0940	.470	.170	.87	760	.0642
OGELK	4/0	211,600	19/.1055	. 528	.170	. 93	920	.0509
		250,000	37/.0822	.575	.170	.98	1,060	.0431
OGETS		300,000	37/.0900	. 630	.170	1.03	1,240	.0360
OGEVT		350,000	37/.0973	.681	.170	1.11	1,440	
OGEZY		400,000	37/.1040	.728	.170	1.15	1,630	.0308
OGFAC		500,000	37/.1162	.814	.170	1.26		.0270
OGFED		600,000	61/.0992	.893	.170	1.34	1,990	.0216
OGFIF		750,000	61/.1109	.998	.170	1.46	2,330	.0180
OGFOG		1,000,000					2,880	.0144
OGFUH		1,250,000	61/.1280	1.152	.170	1.62	3,740	.0108
OGFYJ		1,500,000	91/.1172	1.290	.170	1.75	4,590	.00863
OGGAD	• • •		91/.1284	1.412	.170	1.88	5,430	.00719
OGGEF		1,750,000 2,000,000	127/.1174	1.526	.170	1.99	6,280	.00617
OGGEF		2,000,000	127/.1255	1.631	.170	2.10	7,110	.00539



### SINGLE CONDUCTOR

(Grounded Neutral)

8,000 VOLTS

Code B. &	Conductor Size	Strand- ing	Diam. Bare Cond., Ins.	Insulation Thick- ness, Ins.	Over- all Diam., Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
OBABS OBACT OBACT OBAGY OBAHZ OBAHZ OBAMF OBAMF OBANG OBAPH OBARK OBAWP OBBAS OBBGO OBBHE OBBJA OBCOY OBCOY OBCUZ OBDKE OBDLA OBDLA	0 133,100 167,800 0 211,600 250,000 350,000 400,000 500,000 600,000 1,000,000 1,500,000 1,500,000 1,500,000 1,500,000	7/.0612 7/.0772 7/.0974 19/.0664 19/.0745 19/.0837 19/.0940 19/.1055 37/.0822 37/.0900 37/.1040 37/.1162 61/.1280 91/.1172 91/.1284 127/.1174	. 184 . 232 . 292 . 332 . 373 . 418 . 575 . 630 . 681 . 728 . 814 . 898 . 1 152 1 . 290 1 . 152 1 . 152 1 . 152 1 . 152	170 170 170 170 170 170 170 170 170 170	.58 .64 .70 .74 .78 .82 .87 .93 .98 1.01 1.15 1.24 1.46 1.62 1.75 1.88 1.99 2.10	210 270 380 445 530 635 760 920 1,060 1,240 1,430 1,990 2,380 3,740 4,590 5,430 6,280 7,110	

### SINGLE CONDUCTOR

(Ungrounded Neutral)

						the same of the same		
Code		nductor Size	Strand- ing	Diam. Bare Cond., Ins.	Insulation Thick- ness, Ins.	Over- all Diam., Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
OBDUB	6	26,250	7/.0612	.184	.190	.63	235	.410
OBEBT	4	41,740	7/.0772	.232	.190	.68	305	.259
OBEFY	2	66,370	7/.0974	.292	.190	.74	405	
OBEGZ	1	83,690	19/.0664	.332	.190	.78	475	.162
OBEKD	1/0	105,500	19/.0745	.373	.190	.82	560	.129
OBELF	2/0	133,100						.102
OBEMG	3/0	167,800	19/.0837	.418	.190	.86	665	.0811
OBERL	4/0	211,600	19/.0940	.470	.190	.91	790	.0642
OBFIZ			19/.1055	.528	.190	.97	955	.0509
OBFLE		$250,000 \\ 300,000$	37/.0822	.575	.190	1.02	1,100	.0431
	• • •		37/.0900	. 630	.190	1.09	1,300	.0360
OBFMA		350,000	37/.0973	.681	.190	1.15	1,480	.0308
OBFOB		400,000	37/.1040	.728	.190	1.21	1,680	.0270
OBFUC		500,000	37/.1162	.814	.190	1.30	2,030	.0216
OBGAY		600,000	61/.0992	.893	.190	1.38	2,380	
OBGEZ		750,000	61/.1109	.998	.190	1.50	2,930	.0180
OBGIB		1,000,000	61/.1280					.0144
OBGLO		1,250,000		1.152	.190	1.66	3,790	.0108
OBGNA		1,500,000	91/.1172	1.290	.190	1.79	4,640	.00863
OBGOC		1,750,000	91/.1284	1.412	.190	1.92	5,490	.00719
OBGUD			127/.1174	1.526	.190	2.03	6,370	.00617
ODGOD		2,000,000	127/.1255	1.631	. 190	2.14	7,190	.00539



### SINGLE CONDUCTOR

10,000 VOLTS

(Grounded Neutral)

Code	B. & S	onductor Size	Strand- ing	Diam. Bare Cond., Ins.	Insula- tion Thick- ness, Ins.	Over- all Diam., Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms 1,000' @ 25°C.
OBHAZ OBHEB OBHIC OBHOD OBHUF	$\begin{array}{c} 4 \\ 2 \\ 1 \\ 1/0 \\ 2/0 \end{array}$	41,740 $66,370$ $83,690$ $105,500$ $133,100$	7/.0772 7/.0974 19/.0664 19/.0745 19/.0837	.232 .292 .332 .373 .418	.190 .190 .190 .190 .190	.68 .74 .78 .82 .86	305 405 475 560 665	.259 .162 .129 .102 .0811
OBHYG OBIJD OBILG OBIPK OBIRM	3/0 4/0 	$167,800 \\ 211,600 \\ 250,000 \\ 300,000 \\ 350,000$	19/.0940 19/.1055 37/.0822 37/.0900 37/.0973	.470 .528 .575 .630 .681	.190 .190 .190 .190 .190	.91 $.97$ $1.02$ $1.09$ $1.15$	790 955 1,100 1,300 1,480	$\begin{array}{c} .0642 \\ .0509 \\ .0431 \\ .0360 \\ .0308 \end{array}$
OBIZT OBJAB OBJEC OBJID OBJOF		$\begin{array}{c} 400,000 \\ 500,000 \\ 600,000 \\ 750,000 \\ 1,000,000 \end{array}$	37/.1040 37/.1162 61/.0992 61/.1109 61/.1280	.728 $.814$ $.893$ $.998$ $1.152$	.190 .190 .190 .190 .190	1.21 $1.30$ $1.38$ $1.50$ $1.66$	1,680 2,030 2,380 2,930 3,790	.0270 .0216 .0180 .0144 .0108
OBJUG OBJYH OBKAC OBKED	::: :::	1,250,000 1,500,000 1,750,000 2,000,000	91/.1172 91/.1284 127/.1174 127/.1255	1.290 $1.412$ $1.526$ $1.631$	.190 .190 .190 .190	1.79 $1.92$ $2.03$ $2.14$	4,640 5,490 6,370 7,190	.00863 .00719 .00617 .00539

### SINGLE CONDUCTOR

10,000 VOLTS

Code		onductor Size	Strand- ing	Diam. Bare Cond., Ins.	Insula- tion Thick- ness, Ins.	Over- all Diam., Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
OBKIF OBKOG OBKRA OBKUH OBKYJ	$\begin{array}{c} 4 \\ 2 \\ 1 \\ 1/0 \\ 2/0 \end{array}$	$\begin{array}{c} 41,740 \\ 66,370 \\ 83,690 \\ 105,500 \\ 133,100 \end{array}$	7/.0772 7/.0974 19/.0664 19/.0745 19/.0837	.232 .292 .332 .373 .418	.235 .235 .235 .235 .235	.77 .83 .87 .91	355 460 535 625 730	. 259 . 162 . 129 . 102 . 0811
OBLAD OBLEF OBLIG OBLOH OBLUJ	3/0 4/0 	$\begin{array}{c} 167,800 \\ 211,600 \\ 250,000 \\ 300,000 \\ 350,000 \end{array}$	19/.0940 19/.1055 37/.0822 37/.0900 37/.0973	.470 .528 .575 .630 .681	.235 .235 .235 .235 .235	1.00 $1.06$ $1.13$ $1.20$ $1.26$	865 1,030 1,210 1,410 1,590	.0642 .0509 .0431 .0360 .0308
OBLYK OBNAG OBNEH OBNIJ OBNOK		$\begin{array}{c} 400,000 \\ 500,000 \\ 600,000 \\ 750,000 \\ 1,000,000 \end{array}$	37/.1040 37/.1162 61/.0992 61/.1109 61/.1280	.728 .814 .893 .998 1.152	.235 .235 .235 .235 .235	1.30 1.41 1.49 1.59 1.75	1,780 2,150 2,520 3,050 3,920	.0270 .0216 .0180 .0144 .0108
OBNUL OBNYM OBOCY OBODZ		1,250,000 1,500,000 1,750,000 2,000,000	91/.1172 91/.1284 127/.1174 127/.1255	1.290 $1.412$ $1.526$ $1.631$	.235 .235 .235 .235	1.88 $2.01$ $2.12$ $2.23$	4,780 5,640 6,510 7,350	.00863 .00719 .00617 .00539



### SINGLE CONDUCTOR

12,000 VOLTS

(Grounded Neutral)

Code		ductor Size C.M.	Strand- ing	Diam. Bare Cond., Ins.	Insula- tion Thick- ness, Ins.	Over- all Diam., Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000'
ОВОНО	2	66,370	7/.0974	.292	.220	.80	440	@ 25°C.
OBOJF	1	83,690	19/.0664	.332	.220	.84	515	.129
OBONK	1/0	105,500	19/.0745	.373	.220	.88	600	.102
OBORN	2/0	133,100	19/.0837	.418	.220	.92	705	.0811
OBOSP	3/0	167,800	19/.0940	.470	.220	.97	840	.0642
OBOWS	4/0	211,600	19/.1055	.528	.220	1.03	1.010	.0509
OBOXT		250,000	37/.0822	.575	.220	1.10	1,180	.0431
OBPAH		300,000	37/.0900	. 630	.220	1.15	1,360	.0360
OBPIK		350,000	37/.0973	. 681	.220	1.23	1,560	.0308
OBPOL		400,000	37/.1040	.728	.220	1.27	1,750	.0270
OBPUM		500,000	37/.1162	.814	.220	1.36	2,100	.0216
OBPWA	/	600,000	61/.0992	.893	.220	1.46	2,470	.0180
OBPYN	/ .	750,000	61/.1109	.998	.220	1.56	3,010	.0144
OBRAK		,000,000	61/.1280	1.152	.220	1.72	3,880	.0108
OBREL	/ 1	,250,000	91/.1172	1.290	.220	1.85	4,740	.00863
OBRIM	1	,500,000	91/.1284	1.412	.220	1.98	5.590	.00719
OBRON		,750,000	127/.1174	1.526	.220	2.09	6,460	
OBRUP		2,000,000	127/.1255	1.631	.220	2.20	7,290	00617 $00539$

### SINGLE CONDUCTOR

12,000 VOLTS

Code		nductor Size . C.M.	Strand- ing	Diam. Bare Cond., Ins.	Insula- tion Thick- ness, Ins.	Over- all Diam., Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
OBSAL	2	66,370	7/.0974	.292	.250	.86	485	.162
OBSBA	1	83,690	19/.0664	.332	.250	.90	555	.129
OBSEM	1/0	105,500	19/.0745	.373	.250	.94	645	.102
OBSIN	2/0	133,100	19/.0837	.418	.250	.98	755	.0811
OBSOP	3/0	167,800	19/.0940	.470	.250	1.03	890	.0642
OBSYR	4/0	211,600	19/.1055	.528	.250	1.11	1,090	.0509
OBTAM		250,000	37/.0822	.575	.250	1.16	1.230	.0431
OBTEN		300,000	37/.0900	.630	.250	1.23	1,440	.0360
OBTIP		350,000	37/.0973	.681	.250	1.29	1,620	.0308
OBTUR		400,000	37/.1040	.728	.250	1.33	1,810	.0270
OBTYS		500,000	37/.1162	.814	.250	1.44	2,190	.0216
OBUBY		600,000	61/.0992	.893	.250	1.52	2.550	.0180
OBUGD		750,000	61/.1109	.998	.250	1.62	3,090	.0144
OBULJ		1,000,000	61/.1280	1.152	.250	1.78	3,970	.0108
OBUMK		1,250,000	91/.1172	1.290	.250	1.91	4,830	.00863
OBURP		1,500,000	91/.1284	1.412	.250	2.04	5,690	.00719
OBVAN		1,750,000	127/.1174	1.526	.250	2.15	6,560	.00617
OBVEP		2,000,000	127/.1255	1.631	.250	2.26	7,410	.00539



(Grounded Neutral)

### SINGLE CONDUCTOR

15,000 VOLTS

Code	B. & S.	nductor Size	Strand- ing	Diam Bare Cond., Ins.	Insulation Thickness, Ins.	Over- all Diam., Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
OBVOR OBVUS OBVYT	$\frac{1}{1/0}$	83,690 105,500 133,100	19/.0664 19/.0745 19/.0837	.332 .373 .418	.250 .250 .250	.90 .94 .98	555 645	.129
OBWAP OBWIR	3/0 4/0	167,800 211,600 250,000	19/.0940 19/.1055	.470 .528	.250	1.03 1.11	755 890 1,090	.0811 $.0642$ $.0509$
OBWUT OBWYV OBYDO OBYFE		300,000 350,000 400,000 500,000	37/.0822 37/.0900 37/.0973 37/.1040 37/.1162	.575 .630 .681 .728	.250 $.250$ $.250$ $.250$	1.16 $1.23$ $1.29$ $1.33$	1,230 1,440 1,620 1,810	0.0431 $0.0360$ $0.0308$ $0.0270$
OBYGA OBZFO OBZHA OBZYX	::: 1	600,000 750,000 1,000,000	61/.0992 61/.1109 61/.1280	.814 .893 .998 1.152	.250 .250 .250 .250	1.44 1.52 1.62 1.78	2,190 2,550 3,090 3,970	.0216 .0180 .0144 .0108
OCAGS		1,250,000 1,500,000	91/.1172 91/.1284	$1.290 \\ 1.412$	$.250 \\ .250$	$\frac{1.91}{2.04}$	4,830 5,690	.00863

### SINGLE CONDUCTOR

1,750,000 2,000,000

OCALY OCALY

15,000 VOLTS

00617 00539

 $6,560 \\ 7,410$ 

### (Ungrounded Neutral)

 $\frac{1.526}{1.631}$ 

 $.250 \\ .250$ 

 $\frac{2.15}{2.26}$ 

127/.1174 127/.1255

Code	B. & S	onductor Size . C.M.	Strand- ing	Diam. Bare Cond., Ins.	Insula- tion Thick- ness, Ins.	Over- all Diam., Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
OCAMZ OCANB OCARF OCATH OCAWK	$1 \\ 1/0 \\ 2/0 \\ 3/0 \\ 4/0$	83,690 105,500 133,100 167,800 211,600	19/.0664 19/.0745 19/.0837 19/.0940 19/.1055	.332 .373 .418 .470 .528	.330 .330 .330 .330 .330	1.06 1.12 1.16 1.23 1.29	690 810 930 1,090 1,270	.129 .102 .0811 .0642 .0509
OCAZM OCBAN OCBED OCBHA OCBOR	:::	250,000 300,000 350,000 400,000 500,000	37/.0822 37/.0900 37/.0973 37/.1040 37/.1162	.575 .630 .681 .728 .814	.330 .330 .330 .330 .330	1.34 1.41 1.47 1.51 1.60	1,420 1,640 1,830 2,030 2,390	.0431 .0360 .0308 .0270 .0216
OCBUS OCBYT OCCAP OCCGO OCCIR		600,000 750,000 1,000,000 1,250,000 1,500,000	61/.0992 61/.1109 61/.1280 91/.1172 91/.1284	.893 .998 1.152 1.290 1.412	.330 .330 .330 .330	1.68 1.78 1.94 2.07 2.20	2,770 3,320 4,220 5,110 5,980	.0180 .0144 .0108 .00863 .00719
OCCJA OCCOS		1,750,000 2,000,000	127/.1174 127/.1255	1.526 1.631	.330	2.31 2.42	6,870 7,730	.00719



SINGLE	CON	<b>IDU</b>	CTC	DR-	SO	LID
--------	-----	------------	-----	-----	----	-----

TYPE "VL" 600 VOLTS

Code	Conductor Size		Diam. Bare	Insula- tion Thick-	Lead Thick-	Overall Diam.,	Net Weight	Average Resist- ance/
	B. & S.	C.M.	Cond., Inches	ness, Inches	ness, Inches	Inches	Pounds/ 1,000'	1,000′ @ 25°C.
JUNJE JUNLO	14	4,107	.064	3/64	2/64	.25	130	2.58
JUNNY	12 10 8	6,530 $10,380$ $16,510$	.081 $.102$ $.128$	3/64 3/64 3/64	2/64 3/64 3/64	.27 .33 .37	$\frac{150}{255}$ $\frac{320}{320}$	$1.62 \\ 1.02 \\ 0.641$

### SINGLE CONDUCTOR—STRANDED TYPE "VL" 600 VOLTS

Code	Co B. & S	onductor Size	Strand- ing	Diam. Bare Cond., Inches	Insula tion Thick- ness, Ins.	Lead Thick	Diam.,	Weight Pounds	
1 AUT	2.4			Inches	ms.	ms.	Ins.	1,000′	@ 25°C.
TIMITO	1.			1	1000000		Telephone and		
JUNUM JUNYN	$\begin{pmatrix} 14 \\ 12 \end{pmatrix}$	4,107	7/.0242	.073	3/64	2/64	.26	135	2.63
JUOBY	10	6,530	7/.0305	.092	3/64	2/64	.28	155	1.65
JUOGD	8	$10,380 \\ 16,510$	7/.0385	.116	3/64	3/64	.34	265	1.03
JUOLJ	6	26,250	7/.0486 7/.0612	.146	3/64	3/64	.37	345	0.654
00013	U	20,230	77.0012	.184	4/64	4/64	.46	500	.410
JUORP	5	33,100	7/.0688	.206	4/64	4/64	.48	545	.326
JUOVS	4	41,740	7/.0772	.232	4/64	4/64	.50	600	.320
JUOWT	3	52,640	7/.0867	.260	4/64	4/64	.53	665	.205
JUPAJ	2	66,370	7/.0974	.292	4/64	4/64	.56	745	.162
JUPEK	1	83,690	19/.0664	.332	5/64	4/64	.63	885	.129
TTTDTT									
JUPIL	1/0	105,500	19/.0745	.373	5/64	4/64	.68	1,000	.102
JUPJA JUPKE	2/0	133,100	19/.0837	.418	5/64	4/64	.72	1,130	.0811
JUPMO	3/0	167,800	19/.0940	.470	5/64	4/64	.77	1,300	.0642
JUPPY	4/0	211,600	19/.1055	.528	5/64	4/64	.83	1,500	.0509
JUFFI		250,000	37/.0822	.575	6/64	5/64	.94	1,940	.0431
JUPYP		300.000	37/.0900	.630	6/64	F 104	00	0.150	0000
JUREM		350,000	37/.0973	.681	6/64	5/64 5/64	1.05	2,170	.0360
JURLA		400,000	37/.1040	.728	6/64	5/64	1.09	$\frac{2,400}{2,620}$	.0308 $.0270$
JUROP		500,000	37/.1162	.814	6/64	5/64	1.18	3,040	.0216
JURYR		600,000	61/.0992	.893	7/64	6/64	1.32	3,850	.0180
					.,01	0,01	1.02	0,000	.0100
JUSAM		700,000	61/.1071	.964	7/64	6/64	1.39	4.280	.0154
JUSEN		750,000	61/.1109	.998	7/64	6/64	1.42	4,500	.0144
JUSIP		800,000	61/.1145	1.031	7/64	6/64	1.46	4,700	.0135
JUSMA		900,000	61/.1215	1.093	7/64	6/64	1.52	5,110	.0120
JUSNE		1,000,000	61/.1280	1.152	7/64	6/64	1.58	5,520	.0108
JUSSY		1 950 000	01/1170	1 000	0.104	F 10.4			
JUSUR		1,250,000 $1,500,000$	91/.1172	1.290	8/64	7/64	1.78	7,020	.00863
JUSYS		1,750,000	91/.1284 127/.1174	$\frac{1.412}{1.526}$	8/64	7/64	1.90	8,020	.00719
JUTAN		2,000,000	127/.1255	1.631	8/64 8/64	7/64	2.01	9,010	.00617
		2,000,000	121/.1200	1.031	0/04	7/64	2.12	10,000	.00539



SINGLE CONDUCTOR TYPE "VL-10"

Code		nductor Size	Strand-	Diam. Bare	Insulation Thick-	Lead Thick-	all	Net Weight	
	B. & S.	C.M.	ing	Cond., Inches	ness, Ins.	ness, Ins.	Diam., Ins.		(d) 25°C.
JUTEP JUTNA	10 8	10,380 16,510	7/.0385 7/.0486	.116	4/64 4/64	3/64 3/64	.36	280 325	1.03 0.654
JUTOR JUTPE JUTRO	6 5 4	26,250 $33,100$ $41,740$	7/.0612 7/.0688 7/.0772	.184 .206 .232	4/64 4/64 4/64	4/64 4/64 4/64	.46 .48 .50	500 545 600	.410 .326 .259
JUTUS JUTYT JUVAP	$\frac{3}{2}$	52,640 66,370 83,690	7/.0867 7/.0974 19/.0664	.260 .292 .332	4/64 4/64 5/64	4/64 4/64	.53	665 745	.205 .162
JUVIR JUVOS	$\frac{1}{0}$ $\frac{1}{2}$	105,500 133,100	19/.0664 19/.0745 19/.0837	.373	5/64 5/64 5/64	4/64 4/64 4/64	.63 .68 .72	880 1,000 1,135	.129 .102 .0811
JUVPA JUVSO JUVUT	3/0 4/0	$\begin{array}{c} 167,800 \\ 211,600 \\ 250,000 \end{array}$	19/.0940 19/.1055 37/.0822	.470 .528 .575	5/64 5/64 6/64	4/64 4/64 5/64	.77 .83 .94	1,300 1,500 1,940	.0642 .0509 .0431
JUVYV JUWER		300,000 350,000	37/.0900 37/.0973	.630 .681	6/64 6/64	5/64 5/64	.99 1.05	2,170 2,400	.0360
JUWRE JUWUV JUYAR		400,000 500,000 600,000	37/.1040 37/.1162 61/.0992	.728 .814 .893	6/64 6/64 7/64	5/64 5/64 6/64	1.09 $1.18$ $1.32$	2,620 $3,040$ $3,850$	.0270 $.0216$ $.0180$
JUYIT JUYOV JUYRA		700,000 750,000 800,000	61/.1071 61/.1109 61/.1145	.964 .998	7/64 7/64 7/64	6/64 6/64	1.39	4,280 4,500	.0154
JUYSE JUYVO JUZAS		900,000 1,000,000 1,250,000	61/.1215 61/.1280 91/.1172	1.093 $1.152$ $1.290$	7/64 7/64 7/64 8/64	6/64 6/64 7/64	1.46 $1.52$ $1.58$ $1.78$	4,700 5,110 5,520 7,020	.0135 .0120 .0108 .00863
JUZET JUZIV		1,500,000	91/.1284	1.412	8/64 8/64	7/64	1.90	9,010	.00503
JUZSA	al.	2,000,000	127/.1255	1.631	8/64	7/64	2.12	10,000	.00539



SINGLE CONDUCTOR TYPE "VL-20" 2,000 VOLTS

Code		iductor Size	Strand-	Diam. Bare	Insula- tion Thick-	Lead Thick-		Net Weight	Average Resist- ance/
	B. & S.	C.M.	ing	Cond., Inches	ness, Ins.	ness, Ins.	Diam., Ins.	Lbs./ 1,000'	1,000′ @ 25°C.
JUZTE JUZUX JUZWO JYABS JYACT	8 6 5 4 3	16,510 26,250 33,100 41,740 52,640	7/.0486 7/.0612 7/.0688 7/.0772 7/.0867	.146 .184 .206 .232 .260	5/64 5/64 5/64 5/64 5/64	3/64 3/64 3/64 3/64 4/64	.42 .45 .48 .50	355 420 460 510 705	.654 .410 .326 .259 .205
JYAGY JYAHZ JYALD JYAMF JYANG	$\begin{array}{c} 2 \\ 1 \\ 1/0 \\ 2/0 \end{array}$	66,370 83,690 105,500 133,100 167,800	7/.0974 19/.0664 19/.0745 19/.0837 19/.0940	.292 .332 .373 .418	5/64 6/64 6/64 6/64 6/64	4/64 4/64 4/64 4/64 4/64	.59 .67 .71 .75	785 930 1,040 1,180 1,350	.162 .129 .102 .0811 .0642
JYAPH JYARK JYAWP JYBAS JYBET	4/0	211,600 250,000 300,000 350,000 400,000	19/.1055 37/.0822 37/.0900 37/.0973 37/.1040	.528 .575 .630 .681	6/64 6/64 6/64 6/64 6/64	5/64 5/64 5/64 5/64 5/64	.89 .94 .99 1.05 1.09	1,760 1,940 2,170 2,400 2,620	.0509 .0431 .0360 .0308 .0270
JYBIV JYBSA JYBTE JYBUX JYBWO		500,000 600,000 700,000 750,000 800,000	37/.1162 61/.0992 61/.1071 61/.1109 61/.1145	.814 .893 .964 .998 1.031	6/64 7/64 7/64 7/64 7/64	5/64 6/64 6/64 6/64 6/64	1.18 1.32 1.39 1.42 1.46	3,040 3,850 4,280 4,500 4,700	.0216 .0180 .0154 .0144 .0135
JYCAT JYCEV JYCOY JYCTA JYCUZ JYCVE	· :::	900,000 1,000,000 1,250,000 1,500,000 1,750,000 2,000,000	61/.1215 $61/.1280$ $91/.1172$ $91/.1284$ $127/.1174$ $127/.1255$	1.093 1.152 1.290 1.412 1.526 1.631	7/64 7/64 8/64 8/64 8/64 8/64	6/64 6/64 7/64 7/64 7/64 7/64	1.52 1.58 1.78 1.90 2.01 2.12	5,110 5,520 7,020 8,020 9,010 10,000	.0120 .0108 .00863 .00719 .00617



SINGLE CONDUCTOR TYPE "VL-30" 3,000 VOLTS

Code	C	onductor Size	Strand-	Diam. Bare	Insula	Lead	Over-	Net	Average Resist-
- 3	B. & S		ing	Cond., Inches	ness, Ins.	Thick ness, Ins.	- all Diam., Ins.	Weight Lbs./ 1,000'	ance/ 1,000' @ 25°C.
JYCYO	8	16,510	7/.0486	.146	6/64	2/64	4.	0.05	
JYDAV	6	26,250	7/.0612	.184	6/64	3/64 3/64	.41	365	. 654
JYDIX JYDOZ	5	33,100	7/.0688	.206	6/64	3/64	.51	455	.410
JYDUB	4	41,740	7/.0772	.232	6/64	4/64	.57	495	.326
PIDOR	3	52,640	7/.0867	.260	6/64	4/64	.59	685 750	.259
JYDVA	9	00 070			-,	1/01	.00	750	.205
JYDWE	2	66,370 83,690	7/.0974	.292	6/64	4/64	. 63	830	.162
JYDZO	1/0	105,500	19/.0664	.332	6/64	4/64	. 67	930	.129
JYEBT	2/0	133,100	19/.0745	.373	6/64	4/64	.71	1,040	.102
JYEFY	3/0	167,800	19/.0837 19/.0940	.418	6/64	4/64	.75	1,180	.0811
	0,0	101,000	19/.0940	.470	6/64	4/64	.80	1,350	.0642
JYEGZ	4/0	211,600	19/.1055	F00	0.10.4			/	
JYEKD		250,000	37/.0822	.528	6/64	5/64	.89	1,760	.0509
JYELF		300,000	37/.0900	.630	7/64	5/64	.97	2,000	.0431
JYEMG		350,000	37/.0973	.681	7/64 7/64	5/64	1.02	2,230	.0360
JYERL		400,000	37/.1040	.728	7/64	5/64 5/64	1.08	2,460	.0308
TYPE			/.1010	.120	1/04	3/04	1.12	2,690	.0270
JYFBO		500,000	37/.1162	.814	7/64	6/64	1.24	9 410	0010
JYFIZ JYFOB		600,000	61/.0992	.893	7/64	6/64	1.32	3,410	.0216
JYFUC		700,000	61/.1071	.964	7/64	6/64	1.32	3,850	.0180
JYFWA	• • •	750,000	61/.1109	.998	7/64	6/64	1.42	4,500	.0154
JIFWA		800,000	61/.1145	1.031	7/64	6/64	1.46	4,700	.0144
JYFYE		900,000	01/1017				0	1,100	.0133
JYGAY		1,000,000	61/.1215	1.093	7/64	6/64	1.52	5.110	.0120
JYGCO		1,250,000	61/.1280	1.152	7/64	6/64	1.58	5,520	.0108
JYGEZ		1,500,000	91/.1172	1.290	8/64	7/64	1.78	7,020	.00863
JYGIB		1,750,000	91/.1284 127/.1174	1.412	8/64	7/64	1.90	8,020	.00719
JYGOC		2,000,000	127/.1174	1.526	8/64	7/64	2.01	9,010	.00617
	7	-,500,000	121/.1200	1.631	8/64	7/64	2.12	0,000	.00539



SINGLE CONDUCTOR TYPE "VL-40" 4,000 VOLTS

Code		nductor Size	Strand-	Diam. Bare	Insula- tion Thick-	Lead	Over-	Net Weight	Average Resist- ance/
	B. & S.	C.M.	ing	Cond., Inches	ness, Ins.	ness, Ins.	Diam., Ins.	Lbs./ 1,000'	1,000' @ 25°C
JYGUD	8	16,510	7/.0486	.146	7/64	3/64	.48	420	.654
JYGYA	6	26,250	7/.0612	.184	7/64	3/64	.52	475	.410
JYGZE	5	33,100	7/.0688	.206	7/64	4/64	.57	635	.326
$\begin{array}{c} { m JYHAZ} \\ { m JYHBE} \end{array}$	4	41,740	7/.0772	.232	7/64	4/64	.60	690	.259
JIHDE	3	52,640	7/.0867	.260	7/64	4,64	.62	760	.205
JYHDO	2	66,370	7/.0974	000					
JYHEB	ī	83,690	19/.0664	.292	7/64	4/64	. 65	835	.162
JYHIC	1/0	105,500	19/.0745	.332	7/64	4/64	.70	970	. 129
JYHJY	2/0	133,100	19/.0837	.418	7/64 7/64	4/64	.74	1,090	.102
JYHOD	3/0	167,800	19/.0940	.470	7/64	4/64 5/64	.78	1,230	.0811
			107.0010	.410	1/04	3/04	.86	1,600	.0642
JYHUF	4/0	211,600	19/.1055	.528	7/64	5/64	.92	1.810	.0509
JYHYJ		250,000	37/.0822	.575	8/64	5/64	1.00	2,060	.0309
JYHZA	/	300,000	37/.0900	.630	8/64	5/64	1.06	2,300	.0360
JYIJD	/	350,000	37/.0973	.681	8/64	5/64	1.11	2,520	.0308
JYILG		400,000	37/.1040	.728	8/64	5/64	1.15	2,750	.0270
JYIPK		500 000							.02.0
JYIRM	1	500,000	37/.1162	.814	8/64	6/64	1.27	3,480	.0216
JYIZT	1	600,000	61/.0992	.893	8/64	6/64	1.35	3,930	.0180
JYJAB /		700,000	61/.1071	.964	8/64	6/64	1.42	4,360	.0154
JYJBA	•••	750,000	61/.1109	.998	8/64	6/64	1.46	4,570	.0144
JIJDA		800,000	61/.1145	1.031	8/64	6/64	1.49	4,780	.0135
JYJCE		900,000	61/.1215	1 000	0/04	0.104			
JYJEC		1,000,000	61/.1280	$\frac{1.093}{1.152}$	8/64	6/64	1.55	5,190	.0120
JYJFO		1,250,000	91/.1172	1.132	8/64 9/64	6/64	1.61	5,600	.0108
JYJID		1,500,000	91/.1284	1.412	9/64	7/64 7/64	$\frac{1.81}{1.93}$	7,140	.00863
JYJKY		1,750,000	127/.1174	1.526	9/64	7/64	$\frac{1.93}{2.05}$	8,150	.00719
JYJOF		2,000,000	127/.1255	1.631	9/64	7/64	$\frac{2.05}{2.16}$	9,130 $10,100$	.00617



SINGLE CONDUCTOR TYPE "VL-50" 5,000 VOLTS

Code	B. & S	onductor Size	Strand- ing	Diam. Bare Cond., Inches	Insulation Thick- ness, Ins.	Lead Thick	Over- all Diam Ins.	Weight	Average Resist- ance/ 1,000' @ 25°C.
JYJUG JYJYK JYKAC JYKCA JYKDE	8 6 5 4 3	$16,510 \\ 26,250 \\ 33,100 \\ 41,740 \\ 52,640$	7/.0486 7/.0612 7/.0688 7/.0772 7/.0867	.146 .184 .206 .232 .260	9/64 9/64 9/64 9/64 9/64	4/64 4/64 4/64 4/64 4/64	.57 .61 .63 .66	630 710 760 820 885	.654 .410 .326 .259
JYKED JYKGO JYKIF JYKLY JYKOG	1/0 2/0 3/0	66,370 83,690 105,500 133,100 167,800	7/.0974 19/.0664 19/.0745 19/.0837 19/.0940	.292 .332 .373 .418 .470	9/64 9/64 9/64 9/64 9/64	4/64 4/64 4/64 5/64 5/64	.72 .76 .80 .88 .93	970 1,070 1,190 1,530 1,720	.162 .129 .102 .0811 .0642
JYKUH JYKYL JYLAD JYLDA JYLEF JYLFE	4/0  	211,600 250,000 300,000 350,000 400,000	19/.1055 37/.0822 37/.0900 37/.0973 37/.1040	.528 .575 .630 .681 .728	9/64 10/64 10/64 10/64 10/64	5/64 5/64 5/64 5/64 6/64	.99 1.06 1.12 1.17 1.25	1,940 2,180 2,420 2,650 3,180	.0509 .0431 .0360 .0308 .0270
JYLHO JYLIG JYLMY JYLOH JYLUJ	:::	500,000 600,000 700,000 750,000 800,000	37/.1162 61/.0992 61/.1071 61/.1109 61/.1145	.814 .893 .964 .998 1.031	10/64 10/64 10/64 10/64 10/64	6/64 6/64 6/64 6/64 6/64	$     \begin{array}{r}       1.33 \\       1.41 \\       1.48 \\       1.52 \\       1.55     \end{array} $	3,630 4,090 4,520 4,730 4,940	.0216 .0180 .0154 .0144 .0135
JYLYM JYMAF JYMEG JYMFA JYMGE		900,000 1,000,000 1,250,000 1,500,000 1,750,000 2,000,000	61/.1215 61/.1280 91/.1172 91/.1284 127/.1174 127/.1255	1.093 1.152 1.290 1.412 1.526 1.631	10/64 10/64 10/64 10/64 10/64	6/64 6/64 7/64 7/64 7/64 7/64	1.61 1.67 1.84 1.96 2.08 2.18	5,360 5,780 7,230 8,240 9,240 10,220	.0120 .0108 .00863 .00719 .00617



#### SINGLE CONDUCTOR

7,000 VOLTS

(Grounded Neutral)

		ductor	Strand-	Diam. Bare	Insula- Lead tion Thick-		Over-	Net Weight	Average Resist- ance	
Code	B. & S.	C.M.	ing	Cond., Inches	Thick- ness, Ins.	ness, Ins.	Diam., Ins.		Ohms/ 1,000′ @ 25°C	
OGGHE		26,250	7/.0612	.184	.155	.065	. 63	725	.410	
OGGIG		41,740	7/.0772	.232	.155	.065	.68	835	.259	
OGGJA	2	66,370	7/.0974	.292	.155	.065	.74	985	.162	
OGGOH		83,690	19/.0664	.332	. 155	.065	.78	1,090	.129	
OGGUJ	1/0	105,500	19/.0745	.373	.155	.065	.82	1,210	.102	
OGGYK	2/0	133,100	19/.0837	.418	.155	.080	.89	1,560	.0811	
OGHAF	3/0	167,800	19/.0940	.470	.155	.080	.94	1,750	.0642	
OGHEG	4/0	211,600	19/.1055	.528	.155	.080	1.00	1.970	.0509	
OGHIH		250,000	37/.0822	.575	.155	.080	1.05	2,170	.0431	
OGHOJ		300,000	37/.0900	.630	.155	.080	1.10	2,410	.0360	
OGHUE	·	350,000	37/.0973	.681	.155	.080	1.16	2,650	.0308	
OGHYL		400,000	37/.1040	.728	.155	.080	1.20	2,880	.0270	
OGIXY		500,000	37/.1162	.814	.155	.095	1.32	3,640	.0216	
OGJAG		600,000	61/.0992	.893	.155	.095	1.40	4,090	.0180	
OGJEH	/	750,000	61/.1109	.998	.155	.095	1.50	4,750	.0144	
OGJIJ		1,000,000	61/.1280	1.152	.155	.095	1.66	5,820	.0108	
OGJOK		1,250,000	91/.1172	1.290	.155	.110	1.82	7,280	.00863	
OGJUL		1,500,000	91/.1284	1.412	.155	.110	1.95	8,330	.00719	
OGJYM		1,750,000	127/.1174	1.526	.155	.110	2.06	9,360	.00617	
OGKAH	1 /	2,000,000	127/.1255	1.631	.155	.110	2.17	10,360	.00539	

#### SINGLE CONDUCTOR

7,000 VOLTS

_/_	(Carpennia Trouvill)								
Code	Co B. & S	onductor Size . C.M.	Strand- ing	Diam Bare Cond., Inches	Insulation 'Thickness, Ins.	Thick-	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
OGKIK OGKLE OGKM. OGKOI OGKUM	A 2 1	26,250 41,740 66,370 83,690 105,500	7/.0612 7/.0772 7/.0974 19/.0664 19/.0745	.184 .232 .292 .332 .373	.170 .170 .170 .170 .170	.065 .065 .065 .065	.66 .71 .77 .81	765 875 1,030 1,140 1,470	.410 .259 .162 .129 .102
OGKYN OGLAJ OGLEK OGLIL OGLOM	N 2/0 3/0 4/0	133,100 167,800 211,600 250,000 300,000	19/.0837 19/.0940 19/.1055 37/.0822 37/.0900	.418 .470 .528 .575	.170 .170 .170 .170 .170	.080 .080 .080 .080	.92 .97 1.03 1.08 1.13	1,620 1,800 2,030 2,230 2,470	.0811 .0642 .0509 .0431 .0360
OGLUN OGLYP OGMAI OGMEI	к Г	350,000 400,000 500,000 600,000	37/.0973 37/.1040 37/.1162 61/.0992	.681 .728 .814 .893	.170 .170 .170 .170	.080 .095 .095 .095	1.19 $1.26$ $1.35$ $1.43$	2,710 3,240 3,710 4,170	.0308 .0270 .0216 .0180
OGMIN OGMUI OGNAI OGNEN OGNIN	N	750,000 1,000,000 1,250,000 1,500,000 1,750,000 2,000,000	61/.1109 61/.1280 91/.1172 91/.1284 127/.1174 127/.1255	.998 1.152 1.290 1.412 1.526 1.631	.170 .170 .170 .170 .170	.095 .110 .110 .110 .110	1.53 1.69 1.85 1.98 2.09 2.20	4,830 5,900 7,370 8,420 9,460 10,460	.0144 .0108 .00863 .00719 .00617



#### SINGLE CONDUCTOR

### (Grounded Neutral)

8,000 VOLTS

Code	B. & S	onductor Size . C.M.	Strand- ing	Diam. Bare Cond., Inches	Insula- tion Thick- ness, Ins.	Thick-	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
OCCUT OCCYV OCDER OCDIS OCDOT OCDUV OCEFS OCECY OCEKY OCENC OCEVE OCEVE OCEVE OCEVE OCFAR OCFAR OCFAR OCFIT OCFK	1 1/0 2/0 3/0 4/0 	26,250 41,740 66,370 83,690 105,500 133,100 211,600 250,000 300,000 350,000 400,000 500,000 600,000 1,000,000 1,250,000 1,750,000	7/,0612 7/,0772 7/,0974 19/,0664 19/,0745 19/,0837 19/,10940 19/,1055 37/,0822 37/,0900 37/,1040 37/,1162 61/,0992 61/,1109 61/,1280 91/,1172 91/,1284	. 184 . 232 . 292 . 332 . 373 . 418 . 470 . 528 . 575 . 630 . 681 . 728 . 814 . 893 . 998 . 1. 152 1. 290 1. 412 1. 1526	.170 .170 .170 .170 .170 .170 .170 .170	.065 .065 .065 .080 .080 .080 .080 .080 .080 .095 .095 .095 .095 .110 .110	.66 .71 .77 .81 .88 .92 .97 1.03 1.08 1.13 1.19 1.26 1.35 1.43 1.53 1.43 1.53 1.85 1.98	765 875 1,030 1,140 1,470 1,620 1,800 2,230 2,470 2,710 4,170 4,170 4,830 7,370 8,420 9,460	.410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0270 .0216 .0180 .0144 .0108 .00863 .00719 .00619

#### SINGLE CONDUCTOR

#### 8,000 VOLTS

Code	Conductor Size		Strand- ing	Diam. Bare Cond.,	Insula- Lead tion Thick- Thick- ness,		Over- Net all Weight Diam., Lbs./		Average Resist- ance
	B. & S.	. C.M.		Inches	ness, Ins.	Ins.	Ins.	Lbs./ 1,000'	Ohms/ 1,000' @ 25°C.
OCFLA	6	26,250	7/.0612	.184	. 190	.065	.70	825	.410
OCFOV	4	41,740	7/.0772	.232	.190	.065	.75	940	.259
OCFYX	$\frac{4}{2}$	66,370	7/.0974	.292	.190	.065	.81	1.100	.162
OCGAS		83,690	19/.0664	.332	.190	.080	.88	1,410	.129
OCGET	1/0	105,500	19/.0745	.373	.190	.080	.92	1,540	.102
OCGIV	2/0	133,100	19/.0837	.418	.190	000			
OCGMA	3/0	167,800	19/.0940	.470	.190	.080	.96	1,690	.0811
OCGUX		211,600	19/.1055	.528	.190	.080	1.01	1,880	.0642
OCHAT		250,000	37/.0822	.575	.190	.080	1.07	2,110	.0509
OCHEV		300,000	37/.0900	:630	.190	.080	$\frac{1.12}{1.17}$	$\frac{2,310}{2,550}$	.0431 $.0360$
OCHLO		350,000	27/ 0072						
OCHME		400,000	37/.0973	.681	. 190	.095	1.26	3,100	.0308
OCHNA		500,000	$\frac{37}{.1162}$	.728	.190	.095	1.30	3,340	.0270
OCHOY		600,000	61/.0992	.814	.190	. 095	1.39	3,810	.0216
OCHUZ		750,000	61/.1109	.998	.190	.095	1.47	4,270	.0180
			01/.1103	. 990	.190	.095	1.57	4,930	.0144
OCIFT		1,000,000	61/.1280	1.152	.190	.110	1.76	6,430	.0108
OCIJY		1,250,000	91/.1172	1.290	.190	.110	1.89	7,500	.00863
OCILB		1,500,000	91/.1284	1.412	.190	.110	2.02	8,550	.00719
OCIPE		1,750,000	127/.1174	1.526	.190	.110	2.13	9,590	.00617
OCJAV		2,000,000	127/.1255	1.631	.190	.125	2.27	11,150	.00539



#### SINGLE CONDUCTOR

10,000 VOLTS

(Grounded Neutral)

Code		nductor Size C.M.	Strand- ing	Diam. Bare Cond., Inches	Insula- tion Thick- ness, Ins.	Thick-	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
OCJIX OCJOZ OCJUB OCKIZ OCKNO OCKOPE OCKPE OCKUC OCLAY	3/0 4/0	41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000 300,000 350,000	7/.0772 7/.0974 19/.0664 19/.0745 19/.0837 19/.0940 19/.1055 37/.0822 37/.0900 37/.0973	.232 .292 .332 .373 .418 .470 .528 .575 .630 .681	.190 .190 .190 .190 .190 .190 .190 .190	.065 .065 .080 .080 .080 .080 .080 .080	.75 .81 .88 .92 .96 1.01 1.07 1.12 1.17 1.26	940 1,100 1,410 1,540 1,690 1,880 2,110 2,310 2,550 3,100	.259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308
OCLIB OCLOC OCLUD OCMAZ OCME OCMIC OCMOI OCMUR OCMYO	:::/s :://	400,000 500,000 600,000 750,000 1,000,000 1,250,000 1,500,000 1,750,000 2,000,000	37/.1040 37/.1162 61/.0992 61/.1109 61/.1280 91/.1172 91/.1284 127/.1174 127/.1255	$\begin{array}{c} .728 \\ .814 \\ .893 \\ .998 \\ 1.152 \\ 1.290 \\ 1.412 \\ 1.526 \\ 1.631 \end{array}$	.190 .190 .190 .190 .190 .190 .190 .190	.095 .095 .095 .095 .110 .110 .110 .125	1.30 1.39 1.47 1.57 1.76 1.89 2.02 2.13	3,340 3,810 4,270 4,930 6,430 7,500 8,550 9,590 11,150	.0270 .0216 .0180 .0144 .0108 .00863 .00719 .00617 .00539

#### SINGLE CONDUCTOR

10,000 VOLTS

Code		Size	Strand-	Diam. Bare	Insula- Lead tion Thick-		Over- Net all Weight		Average Resist- ance
	B. & S	. С.М.	ing	Cond., Inches	Thick- ness, Ins.	ness, Ins.	Diam., Ins.	Lbs./ 1,000'	Ohms/ 1,000′ @ 25°C
ococs	4	41,740	7/.0772	.232	.235	.080	.87	1,280	.259
OCODT	2	66,370	7/.0974	.292	.235	.080	.93	1,460	.162
OCOHY		83,690	19/.0664	.332	.235	.080	.97	1,580	.129
OCOLC	1/0	105,500	19/.0745	.373	.235	.080	1.01	1,710	.102
OCONF	2/0	133,100	19/.0837	.418	.235	.080	1.05	1,870	.0811
OCORJ	3/0	167,800	19/.0940	.470	.235	.080	1.10	0.000	
OCOSK	4/0	211,600	19/.1055	.528	.235	.080	1.16	2,060	.0642
OCOWN		250,000	37/.0822	.575	.235	.080	1.21	2,300	.0509
OCPAC		300,000	37/.0900	.630	.235	.095	1.21	2,500	.0431
OCPED		350,000	37/.0973	.681	.235	.095	1.35	3,050 3,320	.0360
OCPIF		400,000	37/.1040	.728	.235	.095			
OCPOG		500,000	37/.1162	.814	.235		1.39	3,560	.0270
OCPUH		600,000	61/.0992	.893		.095	1.48	4,030	.0216
OCPYJ		750,000	61/.1109	.998	.235	.095	1.56	4,510	.0180
OCRAF		1.000,000	61/.1280		.235	.095	1.66	5,180	.0144
		2,000,000	01/.1200	1.152	.235	.110	1.85	6,710	.0108
OCREG		1,250,000	91/.1172	1.290	.235	.110	1.98	7,780	00000
OCRIH		1,500,000	91/.1284	1.412	.235	.110	2.11	8.850	.00863
OCROJ		1,750,000	127/.1174	1.526	.235	.110	2.22	9.890	.00719
OCRUK		2,000,000	127/.1255	1.631	.235	.125		11.480	.00617 $.00539$



#### SINGLE CONDUCTOR

12,000 VOLTS

(Grounded Neutral)

Code	Conductor		Strand- ing	Diam. Bare Cond	Insula- Lead tion Thick- Thick- ness,		Over- Net all Weight Diam., Lbs./		
	B. & S	. С.М.		Inches	ness, Ins.	Ins.	Ins.	Lbs./ 1,000'	Ohms/ 1,000' @ 25°C.
OCRYL OCSAG	2	66,370	7/.0974	.292	.220	.080	.90	1,400	.162
OCSEH	1/0	83,690 105,500	19/.0664	.332	.220	.080	.94	1,520	.129
OCSIJ	2/0	133,100	19/.0745	.373	.220	.080	.98	1,660	.102
OCSOK	3/0	167,800	19/.0837 19/.0940	.418	.220	.080	1.02	1,810	.0811
OCSUL				.470	.220	.080	1.07	2,000	.0642
OCSUL	4/0	211,600	19/.1055	.528	.220	.080	1.13	2,230	.0509
OCSYM		250,000	37/.0822	.575	.220	.080	1.18	2,440	.0431
OCSZA		300,000	37/.0900	.630	.220	.095	1.26	2,980	.0360
OCTAH	Electrical Control	350,000 400,000	37/.0973	.681	.220	.095	1.32	3,240	.0308
	(36 = 7)	±00,000	37/.1040	.728	.220	.095	1.36	3,490	.0270
OCTIK		500,000	37/.1162	.814	.220	.095	1.45	2 000	
OCTOL		600,000	61/.0992	.893	.220	.095	1.53	3,960	.0216
OCTUM OCTYN		750,000	61/.1109	.998	.220	.095	1.63	$\frac{4,420}{5,090}$	.0180
OCTZE		1,000,000	61/.1280	1.152	.220	.110	1.82	6,620	.0144
OCIZE		1,250,000	91/.1172	1.290	.220	.110	1.95	7,690	.00863
OCUBS		1,500,000	91/.1284	1.412	.220				
OCUCT		1,750,000	127/.1174	1.526	.220	.110	2.08	8,750	.00719
OCUGY		2,000,000	127/.1255	1.631	.220	.125	$\frac{2.19}{2.33}$	9,790	.00617
					20	.120	2.33	11,370	.00539

#### SINGLE CONDUCTOR

12,000 VOLTS

Code B	Conductor Size	Strand- ing	Diam. Bare Cond., Inches	Insulation Thick- ness, Ins.	Thick-	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
OCURK OCVAJ OCVEK OCVIL OCVOM OCVUN OCVYP OCWAK OCWEL OCWIM OCWON OCWUP OCYAL	2 66,370 1 83,690 1/0 105,500 2/0 133,100 3/0 167,800 4/0 211,600 250,000 350,000 350,000 400,000 500,000 1,000,000 1,250,000 1,500,000 1,750,000 1,750,000 2,000,000	7/.0974 19/.0664 19/.0745 19/.0837 19/.0940 19/.1055 37/.0822 37/.0903 37/.1040 37/.1162 61/.0992 61/.1109 91/.1172 91/.1284 127/.1174 127/.1255	.292 .332 .373 .418 .470 .528 .575 .630 .681 .728 .814 .893 .998 1.152 1.290	.250 .250 .250 .250 .250 .250 .250 .250	.080 .080 .080 .080 .080 .080 .095 .095 .095 .095 .095 .110 .110		1,510 1,630 1,770 1,930 2,120 2,360 2,870 3,120 3,390 3,630 4,110 4,580 6,800 7,880 8,950 10,550	.162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308 .0270 .0216 .0180 .0144 .0108 .00719 .00719



#### SINGLE CONDUCTOR

15,000 VOLTS

(Grounded Neutral)

Code	Co B. & S.	nductor Size C.M.	Strand- ing	Diam. Bare Cond., Inches	Insulation Thick- ness, Ins.	Thick-	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Average Resist- ance Ohms/ 1,000' @ 25°C.
OCUDE							1000		
OCYDE	1	83,690	19/.0664	.332	.250	.080	1.00	1,630	.129
OCYEM	1/0	105,500	19/.0745	.373	.250	.080	1.04	1,770	.102
OCYFA	2/0	133,100	19/.0837	.418	.250	.080	1.08	1.930	.0811
OCYIN	3/0	167,800	19/.0940	.470	.250	.080	1.13	2,120	.0642
OCYOP	4/0	211,600	19/.1055	.528	.250	.080	1.19	2,360	.0509
OCZAM		250,000	37/.0822	.575	.250	.095	1.27	2,870	.0431
OCZEN		300,000	37/.0900	.630	.250	.095	1.32	3,120	.0360
OCZIP		350,000	37/.0973	.681	.250	.095	1.38	3,390	.0308
OCZUR		400,000	37/.1040	.728	.250	.095	1.42	3,630	.0270
OCZYS		500,000	37/.1162	.814	,250	.095	1.51	4,110	.0216
ODACK		600,000	61/.0992	.893	.250	.095	1.59	4.580	.0180
ODAGN		750,000	61/.1109	.998	.250	.095	1.69	5,260	
ODALS	1/	1,000,000	61/.1280	1.152	.250	.110	1.88		.0144
ODAMT	/	1,250,000	91/.1172	1.132				6,800	.0108
ODANY	1:1/-	1,500,000			.250	.110	2.01	7,880	.00863
		1,000,000	91/.1284	1.412	.250	.110	2.14	8,950	.00719
ODARZ		1,750,000	127/.1174	1.526	.250	.125	2.28	10.550	.00617
ODASB	/	2,000,000	127/.1255	1.631	.250	.125	2.39	11,590	.00539

#### SINGLE CONDUCTOR

15,000 VOLTS

	Co	enductor Size	Strand-	Diam. Bare	Insula- Lead tion Thick-	Over-	Net Weight	Average Resist- ance	
Code	B. & S	. C.M.	ing	Cond., Inches	Thick- ness, ness, Ins. Ins.	Diam., Ins.		Ohms/ 1,000′ @ 25°C.	
ODAVD		83,690	19/.0664	.332	.330 .080	1.16	1,950	.129	
ODAWE		105,500	19/.0745	.373	.330 .080	1.20	2,100	.102	
ODBAJ	2/0	133,100	19/.0837	.418	.330 .095	1.27	2,560	.0811	
ODBEK		167,800	19/.0940	.470	.330 .095	1.32	2,770	.0642	
ODBIL	4/0	211,600	19/.1055	.528	.330 .095	1.38	3,040	.0509	
ODBOM		250,000	37/.0822	.575	.330 .095	1.43	3.260	.0431	
ODBUN		300,000	37/.0900	.630	.330 .095	1.48	3,520	.0360	
ODBYP		350,000	37/.0973	.681	.330 .095	1.54	3,800	.0308	
ODCAK		400,000	37/.1040	.728	.330 .095	1.58	4.040	.0270	
ODCEL		500,000	37/.1162	.814	.330 .095	1.67	4,530	.0216	
ODCIM		600,000	61/.0992	.893	.330 .110	1.78	5,440	.0180	
ODCON		750,000	61/.1109	.998	.330 .110	1.88	6,160	.0144	
ODCUP		1,000,000	61/.1280	1.152	.330 .110	2.04	7,310	.0108	
ODDAL		1,250,000	91/.1172	1.290	.330 .110	2.17	8,410	.00863	
ODDEM	1	1,500,000	91/.1284	1.412	.330 .125	2.33	10,050	.00503	
ODDGO		1,750,000	127/.1174	1.526	.330 .125	0.44	11 140	00017	
ODDHE		2,000,000	127/.1255	1.631		2.44	11,140	.00617	
-		_,555,666	12.7.1200	1.001	.330 .125	2.55	12,210	.00539	



TWO CONDUCTOR—ROUND

TYPE "VML"

600 VOLTS

Code	o	onductor Size	Strand- ing, Each	Diam. Bare	Thio	lation ekness, ches	Thick-		Weight	Aver. Resistance/
	В. &	S. C.M.	Cond.	Cond., Ins.		. Belt	ness, Ins.	Diam. Ins.	Lbs./	1,000′ @ 25°C.
ЈУМЈО	10	10,380	7/.0385	116	2104	D: 1		298		
JYMNY		16,510	7/.0486	.116	3/64	Binder		.51	605	.103
JYMOJ	6	26,250	7/.0612	.146	3/64	Binder	4/64	.61	730	. 654
JYMUK		41,740	7/.0772	.232	4/64	Binder		.77	970	.410
JYMYN	3	52,640	7/.0867	.260	4/64	Binder		.89	1,360	.259
			,.000.	.200	4/04	Binder	5/64	. 95	1,520	.205
JYNAG	2	66,370	7/.0974	.292	4/64	Binder	E 104	1 01	1	
JYNGA	1	83,690	19/.0664	.332		Binder		1.01	1,700	. 162
JYNHE	1/0		19/.0745	.373	5/64	Binder		1.15	2,040	. 129
JYNIJ	2/0		19/.0837	.418		Binder		$\frac{1.27}{1.36}$	2,600	.102
JYNKO	3/0	167,800	19/.0940	.470		Binder		1.46	2,940	.0811
JYNOK	4 10	011 000			-,	Dillidel	0/04	1.40	3,350	.0642
JYNPY	4/0		19/.1055	.528	5/64	Binder	6/64	1.58	3,830	0500
JYNUL	• • • •	250,000	37/.0822	.575	6/64	Binder	7/64	1.76	4,830	.0509
JYNYP		300,000	37/.0900	. 630	6/64	Binder	7/64	1.87	5,370	.0360
JYOCY		350,000	37/.0973	.681	6/64	Binder	7/64	1.97	5,900	.0308
01001		400,000	37/.1040	.728	6/64	Binder	7/64	2.07	6,430	.0270
JYODZ		500,000	97/ 1100	014				1	5,100	.0210
JYOHD		600,000	37/.1162			Binder	8/64	2.27	7,980	.0216
JYOJF		700,000	$\frac{61}{.0992}$ $\frac{61}{.1071}$			Binder	8/64	2.48	9,290	.0180
JYONK		750,000	61/.1109			Binder	8/64	2.62	10,290	.0154
JYORN		800,000				Binder	8/64	2.69	10,790	.0144
		555,000	01/.1145	1.031	6/64	Binder	8/64	2.75	11,280	.0135
JYOSP	-	900,000	61/.1215	1 009	0 104	Die	0.10.			
JYOWS		1,000,000	61/.1280		6/64	Binder	8/64	2.88	12,230	.0120
			02/.1200	1.102	6/64	Binder	8/64	2.99	13,170	.0108

Binder 2/64 2/64 2/64 2/64

2/64 2/64



TWO CONDUCTOR—ROUND TYPE "VML-10" 1,000 VOLTS

	. 1,000′ @25°C.
JYOXT         8         16,510         7/.0486         .146         4/64         Binder         4/64         .146         .146         4/64         Binder         4/64         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146         .146 </td <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TWO CONDUCTOR—ROUND TYPE "VML-20" 2,000 VOLTS

Code	В.	s	ductor ize C.M.	Strand- ing, Each Cond.	Diam Bare Cond., Ins.	. Thic		Thick-	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Aver. Resist- ance/ 1,000' @ 25°C.
JYRSY JYRUP JYRYS JYSAL JYSEM JYSLA JYSME JYSOP JYSPO HYSTY	1 2 3 4	2/0 1/0 1/0	16,510 26,250 41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000	7/.0486 7/.0612 7/.0772 7/.0974 19/.0664 19/.0745 19/.0837 19/.0940 19/.1055 37/.0822	.146 .184 .232 .292 .332 .373 .418 .470 .528 .575	5/64 5/64 5/64 5/64 6/64 6/64 6/64 6/64	Binder Binder Binder Binder Binder Binder Binder Binder	4/64 5/64 5/64 5/64 6/64 6/64 6/64 7/64	.82 .94 1.06 1.20 1.32 1.41 1.51 1.63 1.76	870 1,020 1,160 1,800 2,080 2,740 3,080 3,490 3,980 4,830	.654 .410 .259 .162 .129 .102 .0811 .0642 .0509 .0431
JYTAM JYTEN JYTIP			350,000 350,000 400,000 500,000	37/.0900 37/.0973 37/.1040 37/.1162	.630 .681 .728 .814	6/64 6/64 6/64	Binder Binder Binder Binder	7/64 7/64	1.87 1.97 2.07 2.26	5,370 5,900 6,430 8,330	.0360 .0308 .0270 .0216



TWO	COND	UCTOR	-ROUND

TYPE "VML-30" 3,000 VOLTS

Code		nductor Size	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Thicl Inc		Lead Thick- ness, Ins.			Aver. Resist- ance/ 1,000' @ 25°C.
JYTMA JYTNE JYTUR JYTVY JYTYV	6 4 2 1	16,510 26,250 41,740 66,370 83,690	7/.0486 7/.0612 7/.0772 7/.0974 19/.0664	.146 .184 .232 .292 .332	5/64 5/64 5/64 5/64 6/64	2/64 2/64 2/64 2/64 2/64	4/64 5/64 5/64 5/64 5/64	.79 .90 1.00 1.12 1.26	950 1,320 1,570 1,920 2,280	.654 .410 .259 .162 .129
JYUBY JYUGD JYULJ JYUMK JYURP	1/0 2/0 3/0 4/0	105,500 133,100 167,800 211,600 250,000	19/.0745 19/.0837 19/.0940 19/.1055 37/.0822	.373 .418 .470 .528 .575	6/64 6/64 6/64 6/64 6/64	2/64 2/64 2/64 2/64 2/64	6/64 6/64 6/64 6/64 7/64	1.37 1.46 1.57 1.68 1.81	2,880 3,230 3,650 4,150 5,020	.102 .0811 .0642 .0509 .0431
JYUVS JYVAN JYVEP JYVNA	:::	300,000 350,000 400,000 500,000	37/.0900 37/.0973 37/.1040 37/.1162	.630 .681 .728 .814	6/64 6/64 6/64 6/64	2/64 2/64 2/64 2/64	7/64 7/64 7/64 8/64	1.92 $2.02$ $2.11$ $2.32$	5,580 6,120 6,670 8,240	.0360 .0308 .0270 .0216

# TWO CONDUCTOR—ROUND TYPE "VML-40" 4,000 VOLTS

Code		nductor Size	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Thick		Lead Thick- ness, Ins.			Aver. Resistance/ 1,000' @ 25°C.
JYVOR JYVPE JYVRO JYVUS JYVWY		16,510 26,250 41,740 66,370 83,690	7/.0486 7/.0612 7/.0772 7/.0974 19/.0664	.146 .184 .232 .292 .332	6/64 6/64 6/64 6/64 6/64	3/64 3/64 3/64 3/64 3/64	5/64 5/64 5/64 6/64 6/64	.92 .99 1.09 1.24 1.32	1,310 1,490 1,750 2,400 2,650	.654 .410 .259 .162 .129
JYWIR JYWOS JYWUT JYWYX JYZAR		105,500 133,100 167,800 211,600 250,000	19/.0745 19/.0837 19/.0940 19/.1055 37/.0822	.373 .418 .470 .528 .575	6/64 6/64 6/64 6/64	3/64 3/64 3/64 3/64 3/64	6/64 6/64 6/64 7/64 7/64	1.40 1.49 1.60 1.75 1.84	2,960 3,310 3,730 4,660 5,110	.102 .0811 .0642 .0509 .0431
JYZIT JYZOV JYZRA	:::	300,000 350,000 400,000 500,000	37/.0900 37/.0973 37/.1040 37/.1162	.630 .681 .728 .814	6/64 6/64 6/64 6/64	3/64 3/64 3/64 3/64	7/64 7/64 7/64 8/64	1.95 $2.05$ $2.15$ $2.35$	5,680 6,230 6,770 8,350	.0360 .0308 .0270 .0216



TWO CONDUCTOR—ROUND TYPE "VML-50" 5,000 VOLTS

	Code		nductor Size	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Incl	mess, hes	Thick- ness,	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Aver. Resist- ance/ 1,000' @ 25°C.
	YZSE	8	16,510	7/.0486	.146	6/64	4/64	5/64	.95	1,370	.654
	YZYB	6	$26,250 \\ 41,740$	7/.0612 7/.0772	.184	6/64	4/64	5/64	1.03	1,550	. 410
	KAABT	4 2	66,370	7/.0974	.232 $.292$	6/64	4/64 4/64	5/64	1.12	1,810	.259
	KAAFY	ī	83,690	19/.0664	.332	6/64	4/64	6/64 6/64	$\frac{1.27}{1.35}$	$\frac{2,470}{2,720}$	.162
			7	207.0001	.002	0/01	1/01	0/04	1.00	2,720	.129
]	KAAGZ	1/0	105,500	19/.0745	.373	6/64	4/64	6/64	1.44	3,030	.102
	KAAHB		133,100	19/.0837	.418	6/64	4/64	6/64	1.53	3,390	.0811
	KAAKD		167,800	19/.0940	.470	6/64	4/64	6/64	1.63	3,810	.0642
	KAALF	4/0/	211,600	19/.1055	.528	6/64	4/64	7/64	1.78	4.750	.0509
	KAAMO	i	250,000	37/.0822	.575	7/64	4/64	7/64	1.93	5,370	.0431
	TAIDT										
	KAARL	1	300,000	37/.0900	. 630	7/64	4/64	7,64	2.04	5,950	.0360
	XAASM $XABAT$	A	350,000	37/.0973	.681	7/64	4/64	7/64	2.14	6,500	.0308
	KABEV		400,000 500,000	37/.1040	.728	7/64	4/64	8/64	2.27	7,600	.0270
1	LIDE		000,000	37/.1162	.814	7/64	4/64	8/64	2.44	8,670	.0216
-				*- 1744 W		- 15 - SV 24					
								and Assessment			the second second second



THREE CONDUCTOR TYPE "VML" 600 VOLTS

Code		nductor Size	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Thie In	ulation ckness, ches	Thick-	Over- all Diam. Ins.	Weight	Aver. Resist- ance/ 1,000' @ 25°C.
KABOY KABTA KABUZ KABVE KABYO	8 6 4	10,380 16,510 26,250 41,740 52,640	7/.0385 7/.0486 7/.0612 7/.0772 7/.0867	.116 .146 .184 .232 .260	3/64 3/64 4/64 4/64 4/64	Binder Binder Binder Binder Binder	4/64 4/64 4/64 5/64 5/64	.58 .70 .80 .94 1.00	670 920 1,140 1,580 1,780	1.03 0.654 .410 .259 .205
KACAV KACIX KACOZ KACUB KACVA	1/0	66,370 83,690 105,500 133,100 167,800	7/.0974 19/.0664 19/.0745 19/.0837 19/.0940	.292 .332 .373 .418 .470	4/64 5/64 5/64 5/64 5/64	Binder Binder Binder Binder Binder	5/64 6/64 6/64 6/64 6/64	1.07 1.27 1.34 1.44 1.55	2,020 2,740 3,110 3,550 4,080	.162 .129 .102 .0811 .0642
KACWE KACZO KADBO KADIZ KADOB		211,600 250,000 300,000 350,000 400,000	19/.1055 37/.0822 37/.0900 37/.0973 37/.1040	.528 .575 .630 .681 .728	5/64 6/64 6/64 6/64 6/64	Binder Binder Binder Binder Binder	6/64 7/64 7/64 7/64 7/64	1.67 $1.87$ $1.99$ $2.10$ $2.21$	4,730 5,900 6,630 7,350 8,070	.0509 .0431 .0360 .0308 .0270
KADUC KADWA KADYE KAEDY KAEJD	<del>/::/</del> :::	500,000 600,000 700,000 750,000 800,000	37/.1162 61/.0992 61/.1071 61/.1109 61/.1145	.893 .964 .998	6/64 6/64 6/64 6/64 6/64	Binder Binder Binder Binder Binder	8/64 8/64 8/64 8/64	2.42 2.59 2.74 2.81 2.88	9,990 11,790 13,170 13,870 14,470	.0216 .0180 .0154 .0144 .0135
KAELG KAENJ KADUC		900,000,000	61/.1215 61/.1280	1.152	6/64	Binder Binder	8/64 9/64		15, <u>2</u> 70 17,970	.0120
KADWA KADYE KAEDY KAEJD	. ::/: /::: !:::	500,000 600,000 700,000 750,000 800,000	37/.1162 61/.0992 61/.1071 61/.1109 61/.1145	.814 .893 .964 .998 1.031	6/64 6/64 6/64 6/64 6/64	Binder 2/64 2/64 2/64 2/64	8/64 8/64 8/64 8/64	2.79 2.87 2.94	9,990 11,900 13,280 13,990 14,660	.0216 .0180 .0154 .0144 .0135
KAENJ		,000,000	61/.1280		6/64	$\frac{2/64}{2/64}$	8/64 8/64		16,010 17,390	.0120 .0108



THREE CONDUCTOR	NDUCTOR	N	CO	EE	<b>THR</b>	1
-----------------	---------	---	----	----	------------	---

#### TYPE "VML-10"

1,000 VOLTS

Code		nductor Size	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Thic		Thick-	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Aver. Resist- ance/ 1,000' @ 25°C.
KAEPK KAERM KAEWR KAEZT KAFAY KAFCO KAFEZ KAFIB KAFOC KAFUD KAFYA KAFZE KAGAZ KAGAZ KAGAZ	8 6 4 2 1 1/0 2/0 3/0 4/0 	16,510 26,250 41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000 300,000 350,000 400,000 500,000	7/.0486 7/.0612 7/.0772 7/.0974 19/.0664 19/.0745 19/.0837 19/.1055 37/.0822 37/.0900 37/.0973 37/.1040 37/.1162	.146 .184 .232 .292 .332 .373 .418 .470 .528 .575 .630 .681 .728 .814	4/64 4/64 4/64 5/64 5/64 5/64 5/64 5/64	Binder Binder Binder Binder Binder Binder Binder Binder Binder Binder Binder Binder	4/64 5/64 5/64 6/64 6/64 6/64 6/64 7/64 7/64	.72 .80 .94 1.07 1.27 1.34 1.44 1.55 1.67 1.87 1.99 2.10 2.21 2.42	920 1,140 1,580 2,020 2,740 3,110 3,550 4,080 4,730 5,900 6,630 7,350 8,070 9,990	.654 .410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308 .0270

#### THREE CONDUCTOR

#### TYPE "VML-20"

Code		nductor Size	Strand- ing, Each Cond.	Diam Bare Cond., Ins.	Thic Inc Each		Thick-	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Aver. Resist- ance/ 1,000' @ 25°C.
KAGDO KAGEB KAGGY KAGIC KAGOD	8 6 4 2 1	16,510 26,250 41,740 66,370 83,690	7/.0486 7/.0612 7/.0772 7/.0974 19/.0664	.146 .184 .232 .292 .332	5/64 5/64 5/64 5/64 6/64	Binder Binder Binder Binder Binder	5/64 5/64 5/64	.79 .90 1.00 1.13 1.32	920 1,400 1,700 2,130 3,000	.654 .410 .259 .162 .129
KAGUF KAGYG KAGZA KAHAB KAHBA	1/0 2/0 3/0 4/0	105,500 133,100 167,800 211,600 250,000	19/.0745 19/.0837 19/.0940 19/.1055 37/.0822	.373 .418 .470 .528 .575	6/64 6/64 6/64 6/64	Binder Binder Binder Binder Binder	6/64 6/64 7/64	1.41 1.51 1.62 1.77 1.87	3,270 3,710 4,250 5,310 5,900	.102 .0811 .0642 .0509
KAHCE KAHEC KAHFO KAHID		300,000 350,000 400,000 500,000	37/.0900 37/.0973 37/.1040 37/.1162	.630 .681 .728 .814	6/64 6/64 6/64 6/64	Binder Binder Binder Binder	7/64 7/64	1.99 $2.10$ $2.21$ $2.42$	6,630 7,350 8,070 9,990	.0360 .0308 .0270 .0216



THREE CONDUCTOR

TYPE "VML-30"

3,000 VOLTS

KAHOF 8 16,510 7/.0486 .146 5/64 2/64 5/64 .87 1,280 KAHUG 6 26,250 7/.0612 .184 5/64 2/64 5/64 .95 1,500 KAHYH 4 41,740 7/.0772 .232 5/64 2/64 5/64 1.05 1,810 KAICY 2 66,370 7/.0974 .292 5/64 2/64 5/64 1.05 1,810 KAICY 1 83,690 19/.0664 .332 6/64 2/64 6/64 1.38 3,120 KAIRN 1/0 105,500 19/.0745 .373 6/64 2/64 6/64 1.46 3,400 KAIXT 2/0 133,100 19/.0837 .418 6/64 2/64 6/64 1.56 3,850 KAJAC 3/0 167,800 19/.0940 .470 6/64 2/64 6/64 1.67 4,390 KAJAC 4/0 211,600 19/.1055 .528 6/64 2/64 7/64 1.83 5,400	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	.654
KAICY       2       66,370       7/.0974       .292       5/64       2/64       5/64       1.19       2,250         KAIJF       1       83,690       19/.0664       .332       6/64       2/64       6/64       1.38       3,120         KAIRN       1/0       105,500       19/.0745       .373       6/64       2/64       6/64       1.46       3,400         KAIXT       2/0       133,100       19/.0847       .418       6/64       2/64       6/64       1.56       3,850         KAJAC       3/0       167,800       19/.0940       .470       6/64       2/64       6/64       1.67       4,390	.410
KAIRN 1/0 105,500 19/.0745 .373 6/64 2/64 6/64 1.46 3,400 KAIXT 2/0 133,100 19/.0837 .418 6/64 2/64 6/64 1.56 3,850 KAJAC 3/0 167,800 19/.0940 .470 6/64 2/64 6/64 1.67 4,390	.259
KAIRN 1/0 105,500 19/.0745 .373 6/64 2/64 6/64 1.46 3,400 KAIXT 2/0 133,100 19/.0837 .418 6/64 2/64 6/64 1.56 3,850 KAJAC 3/0 167,800 19/.0940 .470 6/64 2/64 6/64 1.67 4,390	.162
KAIXT 2/0 133,100 19/.0837 .418 6/64 2/64 6/64 1.56 3.850 KAJAC 3/0 167,800 19/.0940 .470 6/64 2/64 6/64 1.67 4,390	.129
KAIXT 2/0 133,100 19/.0837 .418 6/64 2/64 6/64 1.56 3,850 KAJAC 3/0 167,800 19/.0940 .470 6/64 2/64 6/64 1.67 4,390	.102
KAJAC 3/0 167,800 19/.0940 .470 6/64 2/64 6/64 1.67 4,390	.0811
	.0642
	.0509
KAJDE 250,000 37/.0822 .575 6/64 2/64 7/64 1.93 6,080	.0431
KAJED 300,000 37/.0900 .630 6/64 2/64 7/64 2.05 6,820	.0360
KAJGO 350,000 37/.0973 .681 6/64 2/64 7/64 2.16 7,540	.0308
KAJIF 400,000 37/.1040 .728 6/64 2/64 8/64 2.29 8,810	.0270
KAJOG 500,000 37/.1162 .814 6/64 2/64 8/64 2.47 10,200	.0216

THREE CONDUCTOR TYPE "VML-40"

Code		ductor Size C.M.	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Incl	mess, nes	Thick- ness,	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Aver. Resist- ance/ 1,000' @ 25°C.
KAJUH KAJYJ KAKAD KAKDA	8 6 4	16,510 26,250 41,740 66,370	7/.0486 7/.0612 7/.0772 7/.0974	.146 .184 .232 .292	6/64 6/64 6/64 6/64	3/64 3/64 3/64 3/64	5/64 5/64 5/64	.97 1.05 1.16	1,460 1,680 2,000	.654 .410 .259
KAKEF	1/0	83,690 105,500	19/.0664 19/.0745	.332	6/64	3/64 3/64	6/64 6/64 6/64	1.32 1.40	2,770 3,100 3,480	.162
KAKHO KAKIG KAKOH KAKUJ	3/0	133,100 167,800 211,600 250,000	19/.0837 19/.0940 19/.1055 37/.0822	.418 .470 .528 .575	6/64 6/64 6/64	3/64 3/64 3/64 3/64	6/64 7/64 7/64 7/64	1.59 1.73 1.86 1.96	3,930 4,890 5,580 6,180	.0811 .0642 .0509 .0431
KAKYK KALAF KALEG		300,000 350,000 400,000	37/.0900 37/.0973 37/.1040	.630 .681 .728	6/64 6/64 6/64	3/64 3/64 3/64	7/64 7/64 8/64	2.08 2.19	6,920 7,640	.0360
KALFA		500,000	37/.1162	.814	6/64	3/64	8/64	$\frac{2.32}{2.50}$	8,930 10,310	.0270



THREE CONDUCTOR

TYPE "VML-50"

Code		aductor Size C.M.	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Incl	mess, nes	Thick-	Over- all Diam., Ins.		Aver. Resistance/ 1,000' @ 25°C.
KALGE	8	16,510	7/.0486	.146	6/64	4/64	5/64	1.00	1,520	.654
KALJO	6	26,250	7/.0612	.184	6/64	4/64	5/64	1.08	1,750	.410
KALLY	4	41,740	7/.0772	.232	6/64	4/64	5/64	1.19	2,070	.259
KALOJ	2	66,370	7/.0974	.292	6/64	4/64	6/64	1.35	2,840	.162
KALUK	1	83,690	19/.0664	.332	6/64	4/64	6/64	1.43	3,180	.129
KALYL KAMAG KAMGA KAMHE KAMIJ	1/0 2/0 3/0 4/0	105,500 133,100 167,800 211,600 250,000	19/.0745 19/.0837 19/.0940 19/.1055 37/.0822	.373 .418 .470 .528 .575	6/64 6/64 6/64 6/64 7/64	4/64 4/64 4/64 4/64 4/64	6/64 6/64 7/64 7/64 7/64	1.52 1.62 1.76 1.89 2.05	3,560 4,010 4,990 5,680 6,470	.102 .0811 .0642 .0509 .0431
KAMKO		300,000	37/.0900	.630	7/64	4/64	7/64	2.17	7,220	.0360
KAMMY		350,000	37/.0973	.681	7/64	4/64	8/64	2.31	8,500	.0308
KAMOK		400,000	37/.1040	.728	7/64	4/64	8/64	2.42	9,260	.0270
KAMUL		500,000	37/.1162	.814	7/64	4/64	8/64	2.60	10,660	.0216



#### THREE CONDUCTOR—BELTED

(Grounded Neutral)

7,000 VOLTS

Code		ductor Size C.M.	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Insula Thick Inch Each Cond.	ness,	Lead Thick- ness, Ins.		Net Weight Lbs./ 1,000'	Aver. Resist- ance Ohms/ 1,000' @ 25°C.
OGNOP OGNYR OGOGH OGOHJ OGOLM OGONP OGORS OGOST OGOWY OGOZB OGPAM OGPEN	2 1 1/0 2/0 3/0 4/0	26,250 41,740 66,370 83,690 105,500 133,100 167,800 211,600 250,000 300,000 350,000 400,000 500,000	7/.0612 7/.0772 7/.0974 19/.0664 19/.0745 19/.0837 19/.0940 19/.1055 37/.0822 37/.0900 37/.0903 37/.1040 37/.1162	.184 .232 .292 .332 .373 .418 .470 .528 .575 .630 .681 .728 .814	.110 .110 .110 .110 .110 .110 .110 .110	.080 .080 .080 .080 .080 .080 .080 .080	.080 .095 .095 .095 .095 .110 .110 .110 .110 .125 .125	1.21 1.35 1.47 1.56 1.65 1.76 1.87 2.00 2.11 2.21 2.37 2.46 2.67	2,050 2,730 3,240 3,600 4,020 4,900 5,510 6,280 6,940 7,690 9,100 9,870 11,340	.410 .259 .162 .129 .102 .0811 .0642 .0509 .0431 .0360 .0308 .0270 .0216

### THREE CONDUCTOR—BELTED

(Ungrounded Neutral)

Code		luctor ize C.M.	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Insula Thick Inch Each Cond.	ness, les	Lead Thick- ness, Ins.		Net Weight Lbs./ 1,000'	Aver. Resistance Ohms/ 1,000' @ 25°C.
OGPIP OGPRA OGPUR OGPYS OGSER	6 4 2 1 1/0	26,250 41,740 66,370 83,690 105,500	7/.0612 7/.0772 7/.0974 19/.0664 19/.0745	.184 .232 .292 .332 .373	.110 .110 .110 .110 .110	.095 .095 .095 .095	.095 .095 .095	1.38 $1.50$ $1.59$	2,420 2,810 3,310 3,680 4,100	.410 .259 .162 .129 .102
OGSIS OGSSO OGSTE OGSUV OGSVA	3/0 4/0	133,100 167,800 211,600 250,000 300,000	19/.0837 19/.0940 19/.1055 37/.0822 37/.0900	.418 .470 .528 .575 .630	.110 .110 .110 .110 .110	.095 .095 .095 .095	.110 .110 .110	1.79 $1.90$ $2.03$ $2.14$ $2.27$	4,990 5,610 6,370 7,040 8,340	.0811 .0642 .0509 .0431 .0360
OGTAR OGTES OGTIT		350,000 400,000 500,000	37/.0973 37/.1040 37/.1162	.681 .728 .814	.110 .110 .110	.095 .095 .095	. 125 . 125 . 125	$2.40 \\ 2.49 \\ 2.70$	9,210 9,990 11,560	.0308 .0270 .0216



#### THREE CONDUCTOR—BELTED

(Grounded Neutral)

8,000 VOLTS

Code	8	ductor Size C.M.	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Insula Thick Inch Each Cond.	ness, '	Thick-	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Aver. Resistance Ohms/ 1,000' @ 25°C.
ODDIN ODDJA	6	26,250	7/.0612	.184	.110	.095	.095	1.27	2,420	.410
ODDOP	4 2	41,740 66,370	7/.0772 7/.0974	.232	.110	.095	.095	1.38	2,810	.259
ODDYR	ī	83,690	19/.0664	.292	.110	.095 $.095$	.095	1.50	3,310	.162
ODEKS	1/0	105,500	19/.0745	.373	.110	.095	.095	1.59 1.68	$3,680 \\ 4,100$	.129
ODELT	2/0	133,100	19/.0837	.418	.110	.095	. 110	1.79	4,990	.0811
ODEMV	3/0	167,800	19/.0940	.470	.110	.095	.110	1.90	5,610	.0642
ODEPY	4/0	211,600	19/.1055	.528	.110	.095	.110	2.03	6,370	.0509
ODERB	/-	250,000	37/.0822	.575	.110	.095	.110	2.14	7,040	.0431
ODEWG	./	300,000	37/.0900	. 630	.110	.095	. 125	2.27	8,340	.0360
ODFAM	/	350,000	37/.0973	.681	.110	.095	. 125	2.40	9,210	:0308
ODFEN		400,000	37/.1040	.728	.110	.095	.125	2.49	9,990	.0270
ODFIP		500,000	37/.1162	.814	.110	.095	.125	2.70	11,560	.0216

#### THREE CONDUCTOR—BELTED

(Ungrounded Neutral)

Code		ductor ize C.M.	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Insula Thick Inch Each Cond.	ness, ies	Thick-	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Aver. Resistance Ohms/ 1,000' @ 25°C.
ODFUR	6	26,250	7/.0612	.184	.110	.110		1.30	2,490	.410
ODFYS	$\frac{4}{2}$	$41,740 \\ 66,370$	7/.0772 7/.0974	.232	.110	.110		$\frac{1.41}{1.53}$	2,880	.259
ODGEP	1	83,690	19/.0664	.332	.110	.110		1.62	$\frac{3,390}{3,760}$	$.162 \\ .129$
ODGLA	1/0	105,500	19/.0745		.110	.110			4,600	. 102
ODGOR	2/0	133,100	19/.0837	.418	.110	.110	.110	1.82	5,080	.0811
ODGUS	3/0	167,800	19/.0940		.110	.110			5,700	
ODGYT	4/0	211,600	19/.1055		.110	.110	.110	2.06	6,470	.0509
ODHAP		250,000	37/.0822	.575	.110	.110		2.17	7,140	.0431
ODHIR	***	300,000	37/.0900	. 630	.110	.110	.125	2.30	8,450	.0360
ODHOS		350,000	37/.0973	.681	.110	.110	.125	2.43	9.320	.0308
ODHUT		400,000	37/.1040		.110	.110		2.52	10,100	.0270
ODHYV		500,000	37/.1162	.814	.110	.110		2.73	11,680	.0216
		750	STATE STATE	ender or the de			Calling Service			English State



#### THREE CONDUCTOR—BELTED

(Grounded Neutral)

10,000 VOLTS

Code		ductor lize C.M.	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Insula Thick Inch Each Cond.	ness, ies	Lead Thick- ness, I Ins.		Net Weight Lbs./ 1,000'	Aver. Resist- ance Ohms/ 1,000' @ 25°C.
ODIJS ODIKT ODILV ODIPZ ODIRC	$\begin{array}{c} 4 \\ 2 \\ 1 \\ 1/0 \\ 2/0 \end{array}$	41,740 66,370 83,690 105,500 133,100	7/.0772 7/.0974 19/.0664 19/.0745 19/.0837	.232 .292 .332 .373 .418	.140 .140 .140 .140 .140	.095 .095 .095 .095	.095 .110 .110	1.50 1.63 1.75 1.83 1.92	3,120 3,660 4,450 4,880 5,390	.259 .162 .129 .102 .0811
ODIZK ODJER ODJIS ODJME ODJNA	3/0 4/0 	167,800 211,600 250,000 300,000 350,000	19/.0940 19/.1055 37/.0822 37/.0900 37/.0973	.470 .528 .575 .630 .681	.140 .140 .140 .140 .140	.095 .095 .095 .095	.110 $.125$ $.125$	2.03 2.16 2.29 2.40 2.53	6,020 6,810 8,010 8,830 9,710	.0642 .0509 .0431 .0360 .0308
ODJOT ODJUV	<b>*:::</b>	400,000 500,000	37/.1040 37/.1162	.728 .814	.140	.095		$\frac{2.62}{2.81}$	10,500 12,040	.0270 .0216

#### THREE CONDUCTOR—BELTED

10,000 VOLTS

Code		ductor lize C.M.	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Insula Thicki Inch Each Cond.	ness, '	Lead Thick- ness, 1 Ins.	all	Net Weight Lbs./ 1,000'	Aver. Resist- ance Ohms/ 1,000' @ 25°C.
ODKAR ODKES	4 2	41,740 66,370	7/.0772 7/.0974	.232	.140	.140	.095	1.59 1.75	3,350 4,320	
ODKIT ODKNE ODKOV	$\frac{1}{1/0}$ $\frac{2}{0}$	83,690 105,500 133,100	19/.0664 19/.0745 19/.0837	.332 .373 .418	.140 .140 .140	.140 .140 .140	.110	$\frac{1.84}{1.92}$	4,730 5,160	.129
ODKPA ODKYX	3/0	167,800	19/.0940	.470	.140	.140	.110	2.01	5,680 6,320	.0642
ODLAS ODLET	4/0	211,600 250,000 300,000	19/.1055 37/.0822 37/.0900	.528 .575 .630	.140 .140 .140	.140 .140 .140	.125 $.125$ $.125$	2.28 $2.38$ $2.49$	7,660 8,340 9,170	0.0509 $0.0431$ $0.0360$
ODLIV	•••	350,000 400,000	37/.0973 37/.1040	.681	.140	.140	.125	$\frac{2.62}{2.71}$	10,060	.0308
ODMAT		500,000	37/.1162	.814	.140	.140	.125	2.90	10,860 12,410	.0270 .0216



#### THREE CONDUCTOR—BELTED

12,000 VOLTS

(Grounded Neutral)

Code	nductor Size . C.M.	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Thick	ness, nes	Thick-	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Aver. Resistance Ohms/ 1,000' @ 25°C.
ODMEV 2 ODMOY 1 ODMUZ 1/0 ODNAV 2/0 ODNIX 3/0	66,370 83,690 105,500 133,100 167,800	7/.0974 19/.0664 19/.0745 19/.0837 19/.0940	.418	.155 .155 .155 .155 .155	.110 .110 .110 .110 .110	.110 .110 .110	$\frac{1.92}{2.01}$	4,300 4,710 5,170 5,690 6,320	.129 .102 .0811
ODNOZ 4/0 ODNUB ODOHS ODOJT ODONZ	211,600 250,000 300,000 350,000 400,000	19/.1055 37/.0822 37/.0900 37/.0973 37/.1040	.575 .630 .681	.155 .155 .155 .155 .155	.110 .110 .110 .110	$ \begin{array}{c} .125 \\ .125 \\ .125 \end{array} $	2.27 2.38 2.49 2.61 2.71	7,640 8,340 9,180 10,040 10,860	.0431 .0360 .0308
ODORD	500,000	37/.1162	.814	.155	.110	.125	2.89	12,390	.0216

#### THREE CONDUCTOR—BELTED

12,000 VOLTS

Code		nductor Size	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Thick	ness, hes	Thick-	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Aver. Resistance Ohms/ 1,000' @ 25°C.
ODOSF ODOWJ ODPIZ ODPOB ODPRO	1/0 2/0	66,370 83,690 105,500 133,100 167,800	7/.0974 19/.0664 19/.0745 19/.0837 19/.0940	.332 .373 .418	.155 .155 .155 .155	. 155 . 155 . 155 . 155 . 155	.110 .110 .110	$\frac{1.92}{2.01}$	4,580 4,990 5,460 5,980 6,630	.129 .102 .0811
ODPUC ODSAB ODSEC ODSID ODSOF	4/0	211,600 250,000 300,000 350,000 400,000	19/.1055 37/.0822 37/.0900 37/.0973 37/.1040	.575 .630 .681	.155 .155 .155 .155 .155	. 155 . 155 . 155 . 155 . 155	.125 $.125$ $.125$	2.36 2.47 2.58 2.70 2.80	7,970 8,690 9,530 10,400 11,230	.0431 .0360 .0308
odsug		500,000	37/.1162	.814	.155	.155	.125	2.98	12,770	.0216



#### THREE CONDUCTOR—BELTED

15,000 VOLTS

(Grounded Neutral)

Code		nductor Size	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Thick	hes	Thick-	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Aver. Resistance Ohms/ 1,000' @ 25°C
ODSVO ODSWE ODSYH ODTAC ODTED	2/0 3/0	83,690 105,500 133,100 167,800 211,600	19/.0664 19/.0745 19/.0837 19/.0940 19/.1055	.332 .373 .418 .470 .528	.205 .205 .205 .205 .205	.110 .110 .110 .110 .110	.110 .110 .125 .125 .125	2.04 2.13 2.26 2.37 2.49	5,380 5,850 6,960 7,640 8,470	.129 .102 .0811 .0642 .0509
ODTIF ODTOG ODTUH ODTWO ODTYJ		250,000 300,000 350,000 400,000 500,000	37/.0822 37/.0900 37/.0973 37/.1040 37/.1162	.575 .630 .681 .728 .814	.205 .205 .205 .205 .205	.110 .110 .110 .110 .110	.125 .125 .125 .125 .125	2.60 2.71 2.82 2.92 3.11	9,200 10,050 10,900 11,740 13,340	.0431 .0360 .0308 .0270 .0216

#### THREE CONDUCTOR—BELTED

15,000 VOLTS

Code	Conductor Size B. & S. C.M.	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Thick	ness, ies	Lead Thick- ness, Ins.	Over- all Diam., Ins.	Net Weight Lbs./ 1,000'	Aver. Resistance Ohms/ 1,000' @ 25°C.
ODTZA ODUGS ODUHT ODULY ODUMZ	$\begin{array}{ccc} 1 & 83,690 \\ 1/0 & 105,500 \\ 2/0 & 133,100 \\ 3/0 & 167,800 \\ 4/0 & 211,600 \end{array}$	19/.0664 19/.0745 19/.0837 19/.0940 19/.1055	.332 .373 .418 .470 .528	.205 .205 .205 .205 .205	. 205 . 205 . 205 . 205 . 205		2.26 2.35 2.45 2.56 2.68	6,600 7,070 7,680 8,370 9,220	.129 .102 .0811 .0642 .0509
ODURF ODUTH ODUZM ODVAD ODVEF	250,000 300,000 350,000 400,000 500,000	37/.0822 37/.0900 37/.0973 37/.1040 37/.1162	.575 .630 .681 .728 .814	.205 .205 .205 .205 .205 .205	.205 .205 .205 .205 .205	.125 .125 .125 .125 .125	2.79 2.90 3.01 3.11 3.33	9,960 10,830 11,720 12,570 15,000	.0431 .0360 .0308 .0270 .0216

### RUBBER INSULATED POWER CABLES

Rubber insulated wires and cables have a wider adaptation to electrical circuits than any other type known today. Simplicity in handling and its resistance to moisture are important reasons for its popularity.

Canada Wire & Cable Co. manufactures a complete line of rubber insulated power cables for all the standard types of service, and for those uses which require special constructions to suit unusual conditions.

Several grades of rubber or rubber-like insulating compounds are available, those in common use being as follows:

## CODE RUBBER

Fulfilling, with a wide margin of safety, the requirements of the Canadian Engineering Standards Association for Rubber Covered Wires and Cables.

#### CLASS AO (A.S.T.M.) RUBBER

A high grade rubber insulating compound meeting the physical, ageing, and electric requirements of A.S.T.M. Specification D-27. Is recommended for use on all important rubber insulated power, lighting, and control cables where the maximum copper operating temperature does not exceed 60°C (140°F), and the working pressure does not exceed 5,000 volts.

#### PERFORMANCE GRADE RUBBER

A high grade rubber compound very similar to grade AO rubber, but for which, in accordance with A.S.T.M. Specification D353-37T, chemical tests are omitted.

#### THERMAX RUBBER

A special rubber compound with outstanding temperature resistance and good physical and electrical properties. Suitable for use at a copper temperature of 70°C.,—a temperature which would cause rapid deterioration in ordinary rubber compounds. May be used as the insulation of braid or lead covered cables up to 5,000 volts working pressure, although for voltages above 2,000 a special construction is necessary.

#### **GENCORONE**

A rubber-like compound having extremely high dielectric strength and resistance to corona or ozone, in addition to other general characteristics which ensure long life and reliability. These characteristics together with its inherent rubber-like properties such as its resistance to moisture, acids, and alkalis make Gencorone an ideal insulation for many special applications, particularly in the higher voltage range up to 15,000 volts.

#### NEOPRENE

A synthetic rubber-like compound which, when mixed with certain other ingredients has unusual oil-resisting and flame-retarding properties. Having a comparatively low insulation resistance, it is normally not used as an insulation, but has a very important application as an overall jacketting compound for portable cords, for use in the presence of oil, which would rapidly injure the usual rubber compounds. Its flame retarding properties are such that its use is particularly frequent in mines.

#### KOROSEAL

A non-inflammable synthetic resin, resistant to oil, water, acids, alkalis, sunlight, ozone and weathering, but is thermoplastic. This compound is partially transparent and can be made up in a series of bright distinguishing colours. Koroseal is just coming into use commercially and therefore its permissible applications are not fully determined.

For conduit installations in interior wiring, braid covered conductors may be used, but for underground installations, or where exposed to moisture it must be covered with a lead sheath.

The lead sheathed wire or cable may be pulled through conduits either underground or along walls, etc., if protection against mechanical injury is necessary, or if this protection is not necessary it may be itself clipped to walls or ceilings.

As an alternative to the use of conduit for mechanical protection, a steel armouring is frequently applied over the lead sheath in the factory, permitting the wire or cable to be buried directly in the ground, or trained along walls with no further protection.

See pages 20 to 25 for armouring.

# INSULATION THICKNESSES—RUBBER INSULATED SINGLE OR MULTI-CONDUCTOR

Voltage	Conductor B. & S.	THICE	ATION CNESS Un-	Rated Voltage	Size of Conductor B. & S.	INSUL THICI	KNESS
Phase	or	Grounded	grounded	Phase		C 1 1	Un-
to	1.000	Neutral.	Neutral.	to	or	Grounded	
Phase	C.M.	Inches	Inches	Phase	1,000	Neutral,	Neutral,
	0.1.1.	Inches	inches	гнаsе	C.M.	Inches	Inches
					Samuel Comme		7000
	14-9	3/64	3/64		8-4/0	11/64	14/64
	8-2	4/64	4/64	7,000	213-1,000	11/64	
600	1-4/0	5/64	5/64	1,000	Over 1,000	12/64	14/64
	213-500	6/64	6/64		0 101 1,000	12/04	15/64
	501-1,000	7/64	7/64				
	Over 1,000	8/64	. 8/64		8-4/0	12/64	16/64
	0,000	0/01	. 0/04	8,000	213-1,000	12/64	16/64
	14-8	4/64	4/64	100000000000000000000000000000000000000	Over 1,000	13/64	17/64
	7-2	5/64					/
1,000	1-4/0	6/64	5/64		6-4/0	19 /04	17 101
1,000	213-500		6/64	9,000	213-1,000	13/64	17/64
		7/64	7/64	3,000		13/64	17/64
	501-1,000	8/64	8/64		Over 1,000	14/64	18/64
	Over 1,000	9/64	9/64				
					6-4/0	14/64	18/64
	14-8	5/64	5/64	10.000	213-1,000	14/64	18/64
	7-2	6/64	6/64		Over 1,000	15/64	19/64
2,000	1-4/0	7/64	7/64	Section School	- 102 2,000	10/01	13/04
	213-500	8/64	8/64		0.410		
	501-1,000	9/64	9/64	11,000	6-4/0	15/64	20/64
	Over 1,000	9/64	9/64	11,000	213-1,000	15/64	20/64
					Over 1,000	16/64	21/64
	14-8	7/64	7/64				
3,000	7-4/0	8/64	8/64	at the same of	6-4/0	16/64	22/64
	213-1,000	9/64	9/64	12,000	213-1,000	16/64	22/64
	Over 1,000	10/64	10/64	The second	Over 1,000	17/64	23/64
							20,01
1 000	14-4/0	9/64	9/64	23 - 1 - 2 - 3	6-4/0	17/64	23/64
4,000	213-1,000	10/64	10/64	13.000	213-1,000	17/64	23/64
	Over 1,000	11/64	11/64		Over 1,000	18/64	24/64
	1.				02 2,000	10,01	21/01
2 0 2 2 4 4	14-4/0	10/64	10/64		6-4/0	18/64	25/64
5,000	213-1,000	11/64	11/64	14,000	213-1.000	18/64	25/64
	Over 1,000	12/64	12/64		Over 1,000	19/64	26/64
	14-4/0	10/64	12/64		6-4/0	19/64	97/04
6,000	213-1,000	11/64	12/64	15,000	213-1,000		27/64
	Over 1,000	12/64	13/64	10,000	Over 1,000	19/64	27/64
	2,000	12/01	10/01		Over 1,000	20/64	28/64

N.B.—We do not recommend Rubber Insulation for voltages over 5,000 volts except for very unusual conditions—in such cases 30% grade rubber or its equivalent should be used.



# SINGLE CONDUCTOR—SOLID, SINGLE BRAID

TYPE "R"

600 VOLTS

Code	Conductor Size		Diam. Bare	Insula- tion Thick-	Overall Diam.,	Cond.,	Net Weight	Average Resist- ance/ 1,000'
and a	B. & S.	C.M.	Cond., Inches	ness, Inches	Inches	Square Inches	Pounds/ 1,000'	1,000′ @ 25°C.
JAAHG	14	4,107	.064	3/64	.188	.028	27	2.63
JAALK JAATS	12 10	6,530 $10,380$	.081	3/64 3/64	.205 $.232$	.033	36 51	1.66
JAAVT	8	16,510	.128	4/64	.294	.068	82	0.647

# SINGLE CONDUCTOR—STRANDED,

SINGLE BRAID

TYPE "R"

600 VOLTS

Code		ductor dize C.M.	Strand- ing	Diam. Bare Cond., Inches		all Diam.,	Area Insulated Cond., Square Inches	Net Weight Pounds/ 1,000'	Average Resist- ance/ 1,000' @ 25°C.
JABBE	14	4,107	7/.0242	.073	3/64	.197	.030	28	2.68
JABDO	12	6,530	7/.0305	.092	3/64	.216	.037	38	1.69
JABEB	10	10,380	7/.0385	.116	3/64	.246	.047	53	1.06
JABGY	8	16,510	7/.0486	.146	4/64	.312	.076	86	0.667

# SINGLE CONDUCTOR—SOLID, DOUBLE BRAID

TYPE "R"

600 VOLTS

Code	Conductor		Diam. tion Bare Thick- Cond ness.		Diam.,	Area Insulated Cond.,	Net Weight	Average Resist- ance/	
	B. & S.	C.M.	Inches	ness, Inches	Inches	Square Inches	Pounds/ 1,000'	1,000′ @ 25°C.	
JABUF JABYG JABZA JACAB	14 12 10 8	4,107 6,530 10,380 16,510	.064 .081 .102 .128	3/64 3/64 3/64 4/64	.218 .235 .268 .334	.037 .043 .056 .088	31 41 58 92	2.63 1.66 1.03 0.647	



#### SINGLE CONDUCTOR—STRANDED, DOUBLE BRAID

TYPE "R" 600 VOLTS

Code		nductor Size	Strand-	Diam.	Insula- tion Thick-	Overall Diam.,	Area Insul- ated		Average Resist-
	B. & S.		ing	Cond.,		Inches		Weight Pounds/ 1,000'	ance/ 1,000' @ 25°C.
JACEC	14	4,107	7/.0242	.073	3/64	.227	.040	35	2.68
JACFO JACHY	$\frac{12}{10}$	6,530	7/.0305	.092	3/64	.246	.047	43	1.69
JACID	8	10,380 16,510	7/.0385 7/.0486	.116	3/64	.282	.062	61	1.06
JACOF	6	26,250	7/.0612	.146 .184	4/64 4/64	.352	.098	96 130	$0.667 \\ .420$
JACUG	5	33,100	7/.0688	.206	4/64	.392	.120	155	000
JACYH	4	41,740	7/.0772	.232	4/64	.418	.137	185	.333
JADAC	3	52,640	7/.0867	.260	4/64	.456	.163	230	.209
JADCA JADDE	2	66,370	7/.0974	.292	4/64	.488	.187	275	.166
JADDE	1	83,690	19/.0664	.332	5/64	.558	.244	355	.132
JADGO	1/0	105,500	19/.0745	.373	5/64	.599	.282	430	.105
JADJY JADJY	2/0	133,100	19/.0837	.418	5/64	.654	.336	530	.0828
JADOG	3/0 4/0	167,800 211,600	19/.0940	.470	5/64	.705	.390	650	.0656
JADUH		250,000	$\frac{19}{.1055}$ $\frac{37}{.0822}$	.528 .575	5/64 6/64	.764	.458	795	.0516
	1	_00,000	017.0022	.010	0/04	.043	.558	950	.0440
JADYJ	/	300,000	37/.0900	.630	6/64	.898	.633	1.110	.0367
JAEXY JAFAD		350,000	37/.0973	.681	6/64	.949	.707	1,290	.0315
JAFDA	***	400,000 500,000	37/.1040	.728	6/64	.996	.779	1,460	.0278
JAFEF		600,000	$\frac{37}{.1162}$ $\frac{61}{.0992}$	.814	6/64 7/64	$\frac{1.08}{1.21}$	.916	1,780	.0218
/		000,000	017.0332	.000	1/04	1.21	1.15	2,160	.0184
JAFFE		700,000	61/.1071	.964	7/64	1.28	1.29	2,500	.0156
JAFHO		750,000	61/.1109	.998	7/64	1.32	1.37	2,670	.0146
JAFIG JAFKY		800,000	61/.1145	1.031	7/64	1.34	1.41	2,830	.0136
JAFOH	:::	900,000	61/.1215 $61/.1280$	1.093	7/64	1.43	1.61	3,180	.0121
		2,000,000	01/.1280	1.152	7/64	1.49	1.74	3,500	.0109
JAFUJ		1,250,000	91/.1172	1.290	8/64	1.66	2.16	4.370	.00873
JAFYK		1,500,000	91/.1284	1.412	8/64	1.78	2.49	5,180	.00727
JAGAF JAGEG		1,750,000	127/.1174	1.526	8/64	1.90	2.83	5,990	.00624
JAGEG		2,000,000	127/.1255	1.631	8/64	2.00	3.14	6,810	.00545



SINGLE CONDUCTOR—SOLID TYPE "R-10" 1,000 VOLTS

Code	Conductor Size		Diam. Bare Cond	Insulation Thickness.	Diam.,		Net Weight	Average Resist- ance/
	B. & S.	C.M.	Inches	Inches	Inches	Square Inches	Pounds/ 1,000'	1,000′ @ 25°C.
JAGFA JAGGE JAGJO JAGOJ	14 12 10 8	4,107 6,530 10,380 16,510	.064 .081 .102 .129	4/64 4/64 4/64 4/64	. 246 . 263 . 284 . 314	.048 .054 .063 .077	39 49 64 89	2.63 1.66 1.03 0.647

## SINGLE CONDUCTOR—STRANDED TYPE "R-10" 1,000 VOLTS

Code		onductor Size	Strand- ing	Cond.,	Thick-	Overall Diam., Inches	Area Insul- ated Cond., Sq. Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance/ 1,000' @ 25°C.
JAGUK JAGYL JAHAG JAHGA JAHHE	14 12 10 8 6	4,107 6,530 10,380 16,510 26,250	7/.0242 7/.0305 7/.0385 7/.0486 7/.0612	.073 .092 .116 .146 .184	4/64 4/64 4/64 4/64 5/64	.255 .274 .302 .332 .400	.051 .059 .072 .087 .126	$\begin{pmatrix} 41 \\ 52 \\ 69 \\ 93 \\ 140 \end{pmatrix}$	2.68 1.69 1.06 0.667 .420
JAHIJ JAHKO JAHMY JAHOK JAHUL	5 4 3 2 1	33,100 41,740 52,640 66,370 83,690	7/.0688 7/.0772 7/.0867 7/.0974 19/.0664	.206 .232 .260 .292 .332	5/64 5/64 5/64 5/64 6/64	.422 .458 .486 .518 .590	.140 .165 .186 .211 .273	165 205 245 290 370	.333 .264 .209 .166 .132
JAIGH JAIJK JAILM JAIRS JAIZB	1/0 2/0 3/0 4/0	105,500 133,100 167,800 211,600 250,000	19/.0745 19/.0837 19/.0940 19/.1055 37/.0822	.373 .418 .470 .528 .575	6/64 6/64 6/64 6/64 7/64	.641 .686 .738 .796 .873	.323 .370 .428 .498 .599	455 550 670 820 975	.105 .0828 .0656 .0516 .0440
JAJAH JAJHA JAJIK JAJLO JAJOL JAJYN	***	300,000 350,000 400,000 500,000	37/.0900 37/.0973 37/.1040 37/.1162 61/.0992	.630 .681 .728 .814 .893	7/64 7/64 7/64 7/64 8/64	$\begin{array}{c} .928 \\ .979 \\ 1.026 \\ 1.112 \\ 1.243 \end{array}$	.676 .753 .833 .968 1.21	1,150 1,320 1,490 1,810 2,200	.0367 .0315 .0278 .0218 .0184
JAKAJ JAKEK JAKJA JAKMO	111 211 211 211 211	700,000 750,000 800,000 900,000 1,000,000	61/.1071 61/.1109 61/.1145 61/.1215 61/.1280	.964 .998 1.031 1.093 1.152	8/64 8/64 8/64 8/64	1.314 1.348 1.381 1.463 1.522	1.35 1.43 1.50 1.67 1.81	2,540 2,710 2,870 3,220 3,550	.0156 .0146 .0136 .0121 .0109
JAKYP JALAK JALEL		1,250,000 1,500,000 1,750,000 2,000,000	91/.1172 91/.1284 127/.1174 127/.1255	1.290 1.412 1.526 1.631	9/64 9/64 9/64 9/64	1.692 1.814 1.928 2.033	2.24 2.57 2.93 3.24	4,420 5,240 6,050 6,870	.00873 .00727 .00624 .00545



SINGLE CONDUCTOR—SOLID TYPE "R-20" 2,000 VOLTS

Code	Conductor Size		Diam. Bare	Insula- tion Thick-	Diam.,	Area Insulated Cond.,	Weight	Average Resist- ance/
	B. & S.	C.M.	Cond., Inches	ness, Inches	Inches	Square Inches	Pounds/ 1,000'	1,000′ @ 25°C.
JALKA JALLE JALNO JALUP	14 12 10 8	4,107 6,530 10,380 16,510	.064 .081 .102 .128	5/64 5/64 5/64 5/64	.276 .297 .318 .344	.060 .069 .079 .093	47 58 75 99	2.63 1.66 1.03 0.647

## SINGLE CONDUCTOR—STRANDED TYPE "R-20" 2,000 VOLTS

	Code		onductor Size	Strand- ing	Cond.,	Thick-	Overall Diam., Inches	Area Insul- ated Cond., Sq. Ins.	Net Weight Pounds/ 1,000'	Average Resist- ance/ 1,000' @ 25°C.
	JAMAL JAMEM JAMLA	14 12 10	4,107 6,530 10,380		.073	5/64 5/64	.285	.064	49	2.68 1.69
	JAMME JAMOP	8	16,510 26,250	7/.0486 7/.0612	.116 .146 .184	5/64 5/64 6/64	.332 .362 .432	.087 .103 .147	78 105 155	1.06 0.667 ,420
	JAMPO JAMRY JAMYR JANAM	5 4 3 2 1	33,100 $41,740$ $52,640$ $66,370$	7/.0688 7/.0772 7/.0867 7/.0974	.206 .232 .260 .292	6/64 6/64 6/64	.464 .490 .518 .550	.169 .189 .211 .238	185 215 260 310	.333 .264 .209
	JANEM JANIP JANMA	1 1/0 2/0	83,690 105,500 133,100	19/.0664 19/.0745	.332 .373 .418	7/64 7/64 7/64	.630 .671 .716	.312	395 475 570	.166
	JANNE JANSY JANUR	3/0 4/0	167,800 211,600 250,000		.470 .528 .575	7/64 7/64 8/64	.768 .826 .905	.463 .536 .643	690 850 1,010	.0828 .0656 .0516 .0440
J	ANYS AOBD AOCF AOHK	:::	300,000 350,000 400,000	37/.0900 37/.0973 37/.1040	.630 .681 .728	8/64 8/64 8/64	0.960 $0.960$ $0.960$ $0.960$ $0.960$ $0.960$	.724 .801 .882	1,180 1,350 1,520	.0367 .0315 .0278
J	AOJL AOLN AORT		500,000 600,000 700,000	37/.1162 61/.0992 61/.1071	.814 .893	8/64 9/64 9/64	1.144 1.275 1.346	1.02 1.29 1.43	1,850 2,240 2,580	.0218 .0184
J	AOWY AOWZ APEP		750,000 800,000 900,000 1,000,000	61/.1109 61/.1145 61/.1215 61/.1280	.998 1.031 1.093 1.152	9/64 9/64 9/64 9/64	1.380 1.433 1.495 1.554	1.50 1.61 1.77 1.89	2,750 2,940 3,270 3,600	.0146 .0136 .0121 .0109
J	APNA APOR APRO	•••	1,250,000 1,500,000 1,750,000	91/.1172 91/.1284 127/.1174	1.290 1.412 1.526	9/64 9/64 9/64	1.692 1.814 1.928	2.24 2.57 2.93	4,420 5,240 6,050	.00873 .00727 .00624
J	APUS		2,000,000	127/.1255	1.631	9/64	2.033	3.24	6,870	.00545



SINGLE CONDUCTOR—SOLID TYPE "R-30" 3,000 VOLTS

Code	Conductor Size		Diam. Bare	Insula- tion Thick-	Diam.,	Area Insulated Cond.,	Weight	Average Resist- ance/
	B. & S.	C.M.	Cond., Inches	ness, Inches	Inches	Square Inches	Pounds/ 1,000'	1,000′ @ 25°C.
JAPYT JARER JARRE JARTO	14 12 10 8	4,107 6,530 10,380 16,510	.064 .081 .102 .128	7/64 7/64 7/64 7/64	.342 .359 .380 .406	.092 .101 .113 .129	66 78 96 120	2.63 1.66 1.03 0.647

## SINGLE CONDUCTOR—STRANDED TYPE "R-30" 3,000 VOLTS

Code		nductor Size	Strand- ing	Bare Cond.,	Thick- ness,	Overall Diam., Inches	ated Cond.,	Net Weight Pounds/	Average Resist- ance/ 1,000'
	<b>D.</b> & S.	. C.M.		Inches	Inches		Sq. Ins.	1,000′	@ 25°C.
JARUV JARWY JASAR JASIT	14 12 10	4,107 6,530 10,380	7/.0242 7/.0305 7/.0385	.073 .092 .116	7/64 7/64 7/64	.351 .370 .394	.097 .108 .122	69 82 100	2.68 1.69 1.06
JASOV	8	16,510 26,250	7/.0486 7/.0612	.146	7/64 8/64	.424	.141 $.200$	125 185	0.667
JASRA JASSE JASVO JASYX JATAS	5 4 3 2 1	33,100 41,740 52,640 66,370 83,690	7/.0688 7/.0772 7/.0867 7/.0974 19/.0664	.206 .232 .260 .292 .332	8/64 8/64 8/64 8/64 8/64	.526 .552 .580 .622 .662	.217 .239 .264 .304 .344	215 250 290 350 415	.333 .264 .209 .166
JATET JATIV JATSA JATUX JATWO	1/0 2/0 3/0 4/0	105,500 133,100 167,800 211,600 250,000	19/.0745 19/.0837 19/.0940 19/.1055 37/.0822	.373 .418 .470 .528 .575	8/64 8/64 8/64 8/64 9/64	.703 .748 .800 .858 .937	.388 .439 .503 .578 .690	495 595 720 870 1,035	.105 .0828 .0656 .0516
JAUHL JAUJM JAULP JAURV JAUVZ		300,000 350,000 400,000 500,000 600,000	37/.0900 37/.0973 37/.1040 37/.1162 61/.0992	.630 .681 .728 .814 .893	9/64 9/64 9/64 9/64 9/64	.992 1.043 1.090 1.196 1.275	.773 .850 .933 1.13 1.28	1,210 1,380 1,555 1,900 2,240	.0367 .0315 .0278 .0218 .0184
JAVAT JAVEV JAVOY JAVUZ JAVYO		700,000 750,000 800,000 900,000 1,000,000	61/.1071 61/.1109 61/.1145 61/.1215 61/.1280	.964 .998 1.031 1.093 1.152	9/64 9/64 9/64 9/64 9/64	1.346 1.380 1.433 1.495 1.554	1.43 1.50 1.62 1.76 1.89	2,580 2,750 2,935 3,270 3,600	.0156 .0146 .0136 .0121 .0109
JAWAV JAWCY JAWIX JAWOZ	***	1,250,000 1,500,000 1,750,000 2,000,000	91/.1172 91/.1284 127/.1174 127/.1255	1.290 $1.412$ $1.526$ $1.631$	10/64 10/64 10/64 10/64	1.722 $1.844$ $1.958$ $2.063$	2.32 2.66 3.01 3.33	4,470 5,290 6,110 6,930	.00873 .00727 .00624 .00545



SINGLE CONDUCTOR—SOLID TYPE "R-40" 4,000 VOLTS

Code	Conductor Size		Diam. Bare Cond.,	Insula- tion Thick- ness.	Overall Diam., Inches	Area Insulated Cond., Square	Net Weight Pounds/	Average Resist- ance/ 1,000'
	B. & S.	C.M.	Inches	Inches	Inches	Inches	1,000′	@ 25°C.
JAWUB	14	4,107	.064	9/64	.406	.129	90	2.63
JAWVA JAWZO	12 10	6,530 $10,380$	.081 $.102$	9/64 9/64	.423 $.454$	$.141 \\ .162$	$\frac{105}{125}$	1.66 1.03
JAYBO	8	16,510	.128	9/64	.480	.181	155	0.647

#### SINGLE CONDUCTOR—STRANDED TYPE "R-40" 4,000 VOLTS

Code		nductor Size	Strand- ing		Thick-	Overall Diam., Inches	ated	Net Weight Pounds/ 1,000'	Average Resist- ance/ 1,000' @ 25°C.
JAYFK JAYHM JAYIZ JAYGN JAYNS	14 12 10 8 6	4,107 6,530 10,380 16,510 26,250	7/.0242 7/.0305 7/.0385 7/.0486 7/.0612	.073 .092 .116 .146 .184	9/64 9/64 9/64 9/64 9/64	.415 .434 .468 .498 .536	.135 .148 .172 .195 .226	95 105 130 160 205	2.68 1.69 1.06 0.667 .420
JAYOB JAYUC JAYWA JAYXD JAZAY	5 4 3 2 1	33,100 41,740 52,640 66,370 83,690	7/.0688 7/.0772 7/.0867 7/.0974 19/.0664	.206 .232 .260 .292 .332	9/64 9/64 9/64 9/64 9/64	.558 .584 .622 .654 .694	.245 .268 .304 .336 .378	230 265 315 370 435	.333 .264 .209 .166 .132
JAZCO JAZEZ JAZIB JAZOC JAZUD	1/0 2/0 3/0 4/0	105,500 133,100 167,800 211,600 250,000	19/.0745 19/.0837 19/.0940 19/.1055 37/.0822	.373 .418 .470 .528 .575	9/64 9/64 9/64 9/64 10/64	.735 .780 .832 .890 .967	.424 .478 .544 .622 .734	520 620 745 900 1,060	$\begin{array}{c} .105 \\ .0828 \\ .0656 \\ .0516 \\ .0440 \end{array}$
JAZYA JAZZE JEAHL JEAJM JEALP	:::	300,000 350,000 400,000 500,000 600,000	37/.0900 37/.0973 37/.1040 37/.1162 61/.0992	.630 .681 .728 .814 .893	10/64 10/64 10/64 10/64 10/64	1.022 $1.073$ $1.120$ $1.226$ $1.305$	.817 .899 .985 1.17 1.33	1,240 1,410 1,590 1,940 2,280	.0367 .0315 .0276 .0218 .0184
JEAPS JEARV JEATY JEAVZ JEAWB	:::	700,000 750,000 800,000 900,000 1,000,000	61/.1071 61/.1109 61/.1145 61/.1215 61/.1280	.964 .998 1.031 1.093 1.152	10/64 10/64 10/64 10/64 10/64	1.376 1.430 1.463 1.525 1.584	1.48 1.61 1.68 1.82 1.97	2,620 2,810 2,980 3,310 3,650	.0156 .0146 .0136 .0121 .0109
JEAZD JEBFA JEBGE JEBJO		1,250,000 1,500,000 1,750,000 2,000,000	91/.1172 91/.1284 127/.1174 127/.1255	1.290 $1.412$ $1.526$ $1.631$	11/64 11/64 11/64 11/64	$\begin{array}{c} 1.754 \\ 1.876 \\ 1.990 \\ 2.095 \end{array}$	2.41 2.75 3.11 3.45	4,530 5,350 6,170 7,000	.00873 .00727 .00624 .00545



SINGLE CONDUCTOR—SOLID TYPE "R-50" 5,000 VOLTS

Code	Conductor Size		Diam. Bare	Insula- tion Thick-	Diam.,	Area Insulated Cond.,	Weight	Average Resist- ance/
	B. & S.	C.M.	Cond., Inches	ness, Inches	Inches	Square Inches	Pounds/ 1,000'	1,000′ @ 25°C.
JEBLY JEBYL JECGA JECHE	14 12 10 8	4,107 6,530 10,380 16,510	.064 .081 .102 .128	10/64 10/64 10/64 10/64	.436 .463 .484 .510	.149 .168 .183 .204	100 120 140 165	2.63 1.66 1.03 0.647

# SINGLE CONDUCTOR—STRANDED TYPE "R-50" 5,000 VOLTS

	The second second	District Control of the							
					Insula		Area		Arromona
0-1-	Co	onductor		Diam.	tion	Overall	Insul-	Net	Average Resist-
Code		Size	Strand-	Bare	Thick-	Diam.	ated	Weight	ance/
	D & G	0.11	ing	Cond.,	ness,	Inches	Cond.,	Pounds/	1.000'
	B. & S	. C.M.		Inches	Inches		Sq. Ins.	1.000′	@ 25°C.
								-1000	G 20 C.
TECTEO	a description	Section Section 2							
JECKO JEDHA	14	4,107	7/.0242	.073	10/64	.455	.163	110	2.68
JEDJE	12 10	6,530	7/.0305	.092	10/64	.474	.176	125	1.69
JEDLO	8	10,380	7/.0385	.116	10/64	.498	. 195	145	1.06
JEDNY	6	16,510	7/.0486	. 146	10/64	.520	.212	175	0.667
SEDIVI	. 0	26,250	7/.0612	. 184	10/64	. 566	.251	220	.420
JEDYN	5	33,100	7/.0688	.206	10/64	.588	.271	250	000
JEECH	4	41,740	7/.0772	.232	10/64	.624	.306	290	.333
JEEFK	3	52,640	7/.0867	.260	10/64	.652	.334	335	.264
JEEJN	2	66,370	7/.0974	.292	10,64	.684	.367	390	.166
JEENS	1	83,690	19/.0664	.332	10,64	.724	.412	455	.132
JEEPT	1/0	105,500	19/.0745	.373	10/04			Exchange and	
JEETZ	2/0	133,100	19/.0837	.418	10/64 10/64	.765	.460	540	. 105
JEEVB	3/0	167,800	19/.0940	.470	10/64	.810	.515	640	.0828
JEEXD	4/0	211,600	19/.1055	.528	10,64	.862	. 584	770	.0656
JEFJA		250,000	37/.0822	.575	11/64	.999	.784	925	.0516
TERRET					11/01	. 555	.104	1,090	.0440
JEFKE		300,000	37/.0900	.630	11/64	1.054	.866	1,270	.0367
JEFMO	1.00	350,000	37/.0973	.681	11/64	1.105	.951	1,450	.0315
JEFYP JEGKA	****	400,000	37/.1040		11/64	1.152	1.04	1,630	.0278
JEGLE		500,000	37/.1162	.814	11/64	1.258	1.23	1.980	.0218
PEGLE	***	600,000	61/.0992	.893	11/64	1.337	1.39	2,320	.0184
<b>JEGNO</b>		700,000	61/.1071	004	11/01				.0.00
JEHLA	200	750,000	61/.1109		11/64 11/64	1.428	1.59	2,680	.0156
<b>JEHME</b>		800,000	61/.1145	1.031	11/64	1.462	1.68	2,860	.0146
JEHPO		900,000	61/.1215	1.093	11/64	1.495 $1.557$	1.76	3,020	.0136
<b>JEHYR</b>		1,000,000	61/.1280	1.152	11/64	1.616	1.89	3,360	.0121
JEIGM				1.102	11/04	1.010	2.04	3,700	.0109
JEIJP		1,250,000	91/.1172			1.786	2.49	4,580	.00873
JEIRY		1,500,000	91/.1284	1.412	12/64	1.908	2.85	5,410	.00727
JEJMA		1,750,000	127/.1174	1.526		2.022	3.21	6,240	.00624
OLIGINIA		2,000,000	127/.1255	1.631	12/64	2.127	3.53	7.070	.00545
_									300010



SINGLE CONDUCTOR—SOLID TYPE "RL" 600 VOLTS

Code		luctor	Diam. Insulation Lead Bare Thick- Thick-			Overall Diam.,	Net Weight	Average Resist- ance/
	B. & S.	C.M.	Cond., Inches	ness, Inches	ness, Inches	Inches	Pounds/ 1,000'	1,000′ @ 25°C.
JEJNE JEJUR JEJYS JEKNA	14 12 10 8	4,107 6,530 10,380 16,510	.064 .081 .102 .128	3/64 3/64 3/64 4/64	2/64 2/64 3/64 3/64	.25 .27 .33 .39	130 150 255 330	2.63 1.66 1.03 0.647

SINGLE CONDUCTOR—STRANDED TYPE "RL" 600 VOLTS

Code	Co	onductor Size	Strand-	Diam. Bare	Insula- tion Thick-	Lead	Over-	Net Weight	Average Resist-
	B. & S	. С.М.	ing	Cond., Inches	ness, Ins.			Pounds/ 1,000'	ance/ 1,000' @ 25°C.
JEKOR/	14	4,107	71.0010						
JEKPE	12	6,530	7/.0242 7/.0305	.073	3/64	2/64	.26	140	2.68
JEKRO	10	10,380	7/.0305	.092	3/64	2/64	.28	160	1.69
JEKUS	8	16,510	7/.0486	.116	3/64	3/64	.34	270	1.06
JEKYT	6	26,250	7/.0612	.146	4/64	3/64	.41	350	0.667
		20,200	17.0012	. 184	4/64	4/64	.46	505	.420
JELIR	5	33,100	7/.0688	.206	4 10 4	1.00	40		
JELOS	4	41,740	7/.0772	.232	4/64	4/64	.48	550	.333
JELPA	3	52,640	7/.0867	.260	4/64	4/64	.50	610	.264
JELSO	2	66,370	7/.0974	.292	4/64	4/64	.53	670	.209
JELUT	1	83,690	19/.0664	.332	5/64	4/64	.63	750 890	.166
THE TEXT				.002	0/01	4/04	.03	890	. 132
JELVY	1/0	105,500	19/.0745	.373	5/64	4/64	.68	1.010	.105
JELYV	2/0	133,100	19/.0837	.418	5/64	4/64	.72	1,150	.0828
JEMER	3/0	167,800	19/.0940	.470	5/64	4/64	.77	1,310	.0656
JEMRE	4/0	211,600	19/.1055	.528	5/64	4/64	.83	1,510	.0516
JEMTO		250,000	37/.0822	.575	6/64	5/64	.94	1.960	.0440
JEMUV		000 000				-,		1,000	.0440
JEMWY		300,000	37/.0900	.630	6/64	5/64	.99	2,190	.0367
JENAR		350,000	37/.0973	.681	6/64	5/64	1.05	2,420	.0315
JENIT		400,000	37/.1040	.728	6/64	5/64	1.09	2.640	.0276
JENOV	/	500,000	37/.1162	.814	6/64	5/64	1.18	3.070	.0218
omito.		600,000	61/.0992	.893	7/64	6/64	1.32	3.880	.0184
JENRA		700,000	61/1071	001					
JENSE		750,000	61/.1071	.964	7/64	6/64	1.39	4,310	.0156
JENVO		800,000	61/.1109	.998	7/64	6/64	1.42	4,530	.0146
JENYX		900,000	61/.1145 $61/.1215$	1.031	7/64	6/64	1.46	4,740	.0136
JEOCK		1,000,000	61/.1213	1.093	7/64	6/64	1.52	5,150	.0121
	W S	_,500,000	017.1280	1.152	7/64	6/64	1.58	5,560	.0109
JEOGN		1,250,000	91/.1172	1.290	8/64	7 101	1 80		
JEOLS		1,500,000	91/.1284	1.412		7/64	1.78	7,070	.00873
JEONV		1,750,000	127/.1174	1.526	8/64 8/64	7/64	1.90	8,080	.00727
JEORZ		2,000,000	127/.1255	1.631	8/64	7/64	2.01	9,070	.00624
			,.1200	1.001	0/04	7/64	2.12	10,060	.00545



SINGLE CONDUCTOR—SOLID TYPE "RL-10" 1,000 VOLTS

Code		luctor	Bare	Insulation Thick-	Thick-	Overall Diam.,	Net Weight	Average Resist- ance/
. P	B. & S.	C.M.	Cond., Inches	ness, Inches	ness, Inches	Inches	Pounds/ 1,000'	1,000′ @ 25°C.
JEOSB JEOVD JEOWF JEPAS	14 12 10 8	4,107 6,530 10,380 16,510	.064 .081 .102 .128	4/64 4/64 4/64 4/64	3/64 3/64 3/64 3/64	.30 .32 .34 .37	220 245 275 315	2.63 1.66 1.03 0.647

# SINGLE CONDUCTOR—STRANDED TYPE "RL-10" 1,000 VOLTS

					DOKEN THE T				
	0				Insula-				Average
Code	C	onductor Size	Q4	Diam.	tion	Lead	Over-	Net	Resist-
Code		BIZE	Strand-	Bare	Thick-	Thick	- all	Weight	ance/
	B. & S	. C.M.	ing	Cond.,	ness,		Diam.		
		· C.M.		Inches	Ins.	Ins.	Ins.	1,000′	@ 25°C.
				X					
JEPET	14	4,107	7/.0242	.073	4/64	3/64	.31	/000	0.00
JEPIV	12	6,530	7/.0305	.092	4/64	3/64	.33	$     \begin{array}{r}       230 \\       255     \end{array} $	2.68 1.69
JEPSA	10	10,380	7/.0385	.116	4/64	3/64	.36	285	1.06
JEPTE	8	16,510	7/.0486	.146	4/64	3/64	.39	330	0.667
JEPUX	6	26,250	7/.0612	.184	5/64	3,64	.45	425	.420
JEPWO	5	92 100	71 0000				. 10	220	. 120
JEPZY	4	33,100 41,740	7/.0688	.206	5/64	3/64	.48	470	.333
JERCY	3	52,640	7/.0772	.232	5;64	3/64	.50	520	.264
JEROZ	2	66,370	7/.0867	.260	5/64	4/64	.56	715	.209
JERUB	ĩ	83,690	7/.0974 19/.0664	.292	5/64	4/64	.59	795	.166
		00,000	19/.0004	.332	6/64	4/64	.67	940	.132
JERVA	1/0	105,500	19/.0745	.373	6/64	4/64	.71	1.000	
<b>JERWE</b>	2/0	133,100	19/.0837	.418	6/64	4/64	75	1,060	.105
JERZO	3/0	167,800	19/.0940	.470	6/64	4,64	.80	1,190 1,360	.0828
JESBO	4/0	211,600	19/.1055	.528	6/64	5/64	.89	1,780	.0656
JESIZ		250,000	37/.0822	.575	7/64	5/64	.97	2.020	.0310
JESOB		000 000				0,01		2,020	.0110
JESUC	***	300,000	37/.0900	.630	7/64	5/64	1.02	2,260	.0367
JESWA		350,000	37/.0973	.681	7/64	5/64	1.08	2,480	.0315
JESYE		400,000 500,000	37/.1040	.728	7/64	5/64	1.12	2,710	.0278
JETAY		600,000	37/.1162	.814	7/64	6/64	1.24	3,440	.0218
		300.000	61/.0992	.893	8/64	6/64	1.35	3,960	.0184
JETIB		700,000	61/.1071	.964	0104	0101	1 10		
JETOC		750,000	61/.1109	.998	8/64	6/64	1.42	4,400	.0156
JETUD		800,000	61/.1145	1.031	8/64 8/64	6/64	1.46	4,610	.0146
JETYA		900,000	61/.1215	1.093	8/64	6/64	$\frac{1.49}{1.55}$	4,820	.0136
JETZE		1,000,000	61/.1280	1.152	8/64	6/64	1.61	5,240 5,650	.0121 $.0109$
JEVAZ		1 050 000			0,01	3/01	1.01	0,000	.0103
JEVAZ		1,250,000	91/.1172	1.290	9/64	7/64	1.81	7,190	.00873
JEVDO		1,500,000	91/.1284	1.412	9/64	7/64	1.93	8,210	.00727
JEVEB		1,750,000	127/.1174	1.526	9/64	7/64	2.05	9,200	.00624
02,EB	•••	2,000,000	127/.1255	1.631	9/64	7/64	2.16	10,200	.00545
		AT THE SECOND SECOND							



SINGLE CONDUCTOR—SOLID TYPE "RL-20" 2,000 VOLTS

Code		luctor ize	Diam. Insulation Lead Bare Thick- Thick-			Overall Diam.,	Net Weight	Average Resist- ance/
	B. & S.	C.M.	Cond., Inches	ness, Inches	ness, Inches	Inches	Pounds/ 1,000'	1,000′ @ 25°C
JEVGY JEVIC JEVOD JEVUF	14 12 10 8	4,107 6,530 10,380 16,510	.064 .081 .102 .128	5/64 5/64 5/64 5/64	3/64 3/64 3/64 3/64	.33 .35 .37 .40	250 270 305 345	2.63 1.66 1.03 0.647

## SINGLE CONDUCTOR—STRANDED TYPE "RL-20" 2,000 VOLTS

Code B	. & S	onductor Size . C.M.	Strand- ing	Diam. Bare Cond., Inches	Insulation Thick- ness, Ins.	Thick		Net Weight Pounds/ 1,000'	Average Resist- ance/ 1,000' @ 25°C.
JEVYG	14	4,107	7/.0242	.073	5/64	3/64	.34	260	2.68
JEVZA	12	6,530	7/.0305	.092	5/64	3/64	.36	285	1.69
JEWAB	10	10,380	7/.0385	.116	5/64	3/64	.39	315	1.06
JEWBA	8	16,510	7/.0486	.146	5/64	3/64	.42	360	0.667
JEWCE	6	26,250	7/.0612	.184	6/64	3/64	.49	460	.420
JEWEC JEWFO JEWHY JEWID JEWOF	5 4 3 2 1	33,100 41,740 52,640 66,370 83,690	7/.0688 7/.0772 7/.0867 7/.0974 19/.0664	.206 .232 .260 .292 .332	6/64 6/64 6/64 6/64 7/64	3/64 4/64 4/64 4/64 4/64	.51 .57 .59 .63	505 690 760 840 990	.333 .264 .209 .166
JEWUG JEWYH JEYCA JEYDE JEYGO	1/0 2/0 3/0 4/0	105,500 133,100 167,800 211,600 250,000	19/.0745 19/.0837 19/.0940 19/.1055 37/.0822	.373 .418 .470 .528 .575	7/64 7/64 7/64 7/64 8/64	4/64 4/64 5/64 5/64 5/64	.74 .78 .86 .92	1,110 1,240 1,610 1,830 2,090	.105 .0828 .0656 .0516
JEYJS		300,000	37/.0900	.630	8/64	5/64	1.06	2,320	.0367
JEYKT		350,000	37/.0973	.681	8/64	5/64	1.11	2,550	.0315
JEYLV		400,000	37/.1040	.728	8/64	5/64	1.15	2,780	.0278
JEYZK		500,000	37/.1162	.814	8/64	6/64	1.27	3,520	.0218
JEZFE		600,000	61/.0992	.893	9/64	6/64	1.38	4,050	.0184
JEZKY		700,000	61/.1071	.964	9/64	6/64	1.45	4,490	.0156
JEZYK		750,000	61/.1109	.998	9/64	6/64	1.49	4,710	.0146
JIAKS		800,000	61/.1145	1.031	9/64	6/64	1.52	4,910	.0136
JIAMV		900,000	61/.1215	1.093	9/64	6/64	1.58	5,340	.0121
JIARB		1,000,000	61/.1280	1.152	9/64	6/64	1.64	5,740	.0109
JIASC		1,250,000	91/.1172	1.290	9/64	7/64	1.81	7,190	.00873
JIAWG		1,500,000	91/.1284	1.412	9/64	7/64	1.93	8,200	.00727
JIBAK		1,750,000	127/.1174	1.526	9/64	7/64	2.05	9,210	.00624
JIBEL		2,000,000	127/.1255	1.631	9/64	7/64	2.15	10,200	.00545



## SINGLE CONDUCTOR—SOLID TYPE "RL-30" 3,000 VOLTS

Code		luctor ize	Diam. Insulation Lead Bare Thick- Thick-			Overall Diam.,	Net Weight	Average Resist- ance/
	B. & S.	C.M.	Cond., Inches	ness, Inches	ness, Inches	Inches	Pounds/ 1,000'	1,000′ @ 25°C,
JIBKA JIBLE JIBNO JIBON	14 12 10 8	4,107 6,530 10,380 16,510	.064 .081 .102 .128	7/64 7/64 7/64 7/64	3/64 3/64 3/64 3/64	.40 .41 .43 .46	320 335 370 410	2.63 1.66 1.03 0.647

#### SINGLE CONDUCTOR—STRANDED TYPE "RL-30" 3,000 VOLTS

Code	Co	onductor Size	Strand-	Diam. Bare	Insula- tion Thick-	Lead	Over	Net Weight	Average Resist- ance/
	B. & S	. С.М.	ing	Cond., Inches	ness, Ins.			, Pounds/ 1,000'	1,000′ @ 25°C.
JIBUP JICAL	14 12	4,107 6,530	7/.0242 7/.0305	.073	7/64 7/64	3/64	.41	/ 320 350	2.68
JICEM JICLA	10 8	10,380 16,510	7/.0385 7/.0486	.116	7/64 7/64	3/64 3/64	.45	380 430	1.06 0.667
JICOP	6 5	26,250 33,100	7/.0612 7/.0688	.184	8/64	4/64	.58	670 720	,420
JICRY JICYR	4 3	$\frac{41,740}{52,640}$	7/.0772 7/.0867	.232	8/64 8/64	4/64 4/64	.63	780 850	.333 .264 .209
JIDAM JIDEN	2	66,370 83,690	7/.0974 19/.0664	.332	8/64 8/64	4/64 4/64	.69 .73	930 1,040	.166
JIDIP JIDMA	1/0 2/0	105,500 133,100	19/.0745 19/.0837	.373 .418	8/64 8/64	4/64 4/64	.77 .81	1,160 1,300	.105
JIDNE JIDSY JIDUR	3/0 4/0	167,800 $211,600$ $250,000$	19/.0940 19/.1055 37/.0822	.470 .528 .575	8/64 8/64 9/64	5/64 5/64 5/64	.90 .95 1.03	1,680 1,900 2,150	.0656 .0516 .0440
JIDYS JIEJS	V	300,000	37/.0900	.630	9/64	5/64	1.09	2,390	.0367
JIEKT JIELV	11.	350,000 400,000 500,000	37/.0973 37/.1040 37/.1162	.681 .728 .814	9/64 9/64 9/64	5/64 5/64 6/64	1.14 $1.19$ $1.30$	2,620 2,850 3,600	.0315 $.0278$ $.0218$
JIENY		600,000	61/.0992	.893	9,64	6/64	1.38	4,040	.0184
JIERC JIEVG		700,000 750,000 800,000	61/.1071 61/.1109 61/.1145	.964 .998 1.031	9/64 9/64 9/64	6/64 6/64 6/64	1.45 $1.49$ $1.52$	4,480 4,710 4,920	.0156 .0146 .0136
JIEZK JIFAN		900,000 1,000,000	61/.1215 61/.1280	1.093 1.152	9/64 9/64	6/64 6/64	1.58 1.64	5,340 5,750	.0121
JIFEP JIFNA		1,250,000 1,500,000	91/.1172 91/.1284	1.290 1.412	10/64 10/64	7/64 7/64	1.84 1.96	7,290 8,310	.00873
JIFOR JIFPE		1,750,000 2,000,000	127/.1174 127/.1255	1.526 1.631	10/64 10/64	7/64 7/64	2.08 2.18	9,310 10,310	.00624



SINGLE CONDUCTOR—SOLID TYPE "RL-40" 4,000 VOLTS

		Diam. Insulation Lead Bare Thick-Thick-			Overall Diam.,	Net Weight	Average Resist- ance/
B. & S.	C.M.	Inches	Inches	Inches	inches	1,000'	1,000′ @ 25°C.
14	4,107	.064	9/64	3/64	.46	380	2.63
10 8	10,380 $16,510$	.081 .102 .128	9/64 9/64 9/64	3/64 3/64 4/64	.48 .50 .56	405 440 620	$\frac{1.66}{1.03}$
	Si B. & S.	14 4,107 12 6,530 10 10,380	Size         Bare Cond., Inches           B. & S.         C.M.           14         4,107         .064           12         6,530         .081           10         10,380         .102	Size         Bare Cond., Inches         Thickness, Inches           14         4,107         .064         9/64           12         6,530         .081         9/64           10         10,380         .102         9/64	Size         Bare Cond., Inches         Thickness, Inches         Thickness, Inches           14         4,107         .064         9/64         3/64           12         6,530         .081         9/64         3/64           10         10,380         .102         9/64         3/64	Size         Bare Cond., Inches         Thick-ness, Inches         Thick-ness, Inches         Thick-ness, Inches         Thick-ness, Inches         Inches           14         4,107         .064         9/64         3/64         .46           12         6,530         .081         9/64         3/64         .48           10         10,380         .102         9/64         3/64         .50	Size   Bare Cond., ness, lnches   Thickness,

## SINGLE CONDUCTOR—STRANDED TYPE "RL-40" 4,000 VOLTS

Code	Co B. & S	onductor Size	Strand- ing	Diam. Bare Cond., Inches	Insulation Thickness, Ins.	Lead Thick		Net Weight Pounds/ 1.000'	Average Resist- ance/ 1,000' @ 25°C.
-	-								0
JIGAP	14	4.107	7/.0242	.073	9/64	3/64	.47	390	2.68
JIGIR	12	6,530	7/.0305	.092	9/64	3/64	.49	420	1.69
JIGOS	10	10,380	7/.0385	.116	9/64	3/64	.51	455	1.06
JIGPA	8	16,510	7/.0486	.146	9/64	4/64	.57	645	0.667
JIGSO	6	26,250	7/.0612	.184	9/64	4/64	.61	720	.420
JIGUT	-	90 100							
JIGVY	5 4	33,100	7/.0688	.206	9/64	4/64	. 63	770	.333
JIGYV	3	41,740	7/.0772	.232	9/64	4/64	.66	830	.264
JIHER	9	$52,640 \\ 66,370$	7/.0867	.260	9/64	4/64	.69	900	.209
JIHRE	2	83,690	7/.0974	.292	9,64	4/64	,72	985	.166
OTTIVE	*	00,000	19/.0664	.332	9/64	4/64	.76	1,090	.132
ЛНТО	1/0	105,500	19/.0745	.373	0.104		00		
JIHUV	2/0	133,100	19/.0837	.418	9/64	4/64	.80	1,210	.105
JIHWY	3/0	167,800	19/.0940	.470	9/64	5/64	.88	1,550	.0828
JIJAR	4/0	211,600	19/.1055	.528	9/64	5/64	.93	1,740	.0656
JIJIT		250,000	37/.0822	.575	9/64 10/64	5/64	.99	1,960	.0516
			017.0022	.010	10/04	5/64	1.06	2,110	.0440
JIJOV		300,000	37/.0900	.630	10/64	5/64	1.12	2,460	.0367
JIJRA		350,000	37/.0973	.681	10.64	5/64	1.17	2,400	
JIJSE		400,000	37/.1040	.728	10/61	6/64	1.25	3,220	.0315 $.0278$
JIJVO		500,000	37/.1162	.814	10/64	6/64	1.33	3,680	.0218
JIJYX		600,000	61/.0992	.893	10/64	6/64	1.41	4.130	.0184
*****					10/01	0,04	4.41	4,100	.0104
JIKAS		700,000	61/.1071	.964	10/64	6/64	1.48	4,570	.0156
JIKET		750,000	61/.1109	.998	10/64	6/64	1.52	4.790	.0146
JIKIV		800,000	61/.1145	1.031	10/64	6/64	1.55	5,000	.0136
JIKSA		900,000	61/.1215	1.093	10/64	6/64	1.61	5,420	.0121
JIKTE		1,000,000	61/.1280	1.152	10/64	6/64	1.67	5,830	.0109
JIKUX	3 35	1,250,000	01/1170	1 000	22.01				
JIKWO			91/.1172	1.290	11/64	7/64	1.87	7,400	.00873
JIKZY		1,500,000	91/.1284	1.412	11/64	7/64	1.99	8,420	.00727
JILAT		1,750,000 2,000,000	127/.1174	1,526	11/64	7/64	2.11	9,430	.00624
OTHER		2,000,000	127/.1255	1.631	11/64	7/64	2.21	10,420	.00545



SINGLE CONDUCTOR—SOLID TYPE "RL-50" 5,000 VOLTS

Code		luctor ize	Diam. Insulation Lead Bare Thick-Thick-			Overall Diam.,	Net Weight	Average Resist- ance/
	B. & S.	C.M.	Cond., Inches	ness, Inches	ness, Inches	Inches	Pounds/ 1,000'	1,000′ @ 25°C.
JILEV JILOY JILTA JILUZ	14 12 10 8	4,107 6,530 10,380 16,510	.064 .081 .102 .128	10/64 10/64 10/64 10/64	3/64 3/64 4/64 4/64	.49 .51 .56 .59	415 440 610 660	2.63 1.66 1.03 0.647

## SINGLE CONDUCTOR—STRANDED TYPE "RL-50" 5,000 VOLTS

Code	Co	onductor Size	Strand-	Diam. Bare	Insula- tion Thick-	Lead Thick		Net Weight	Average Resist- ance/
2 ⁸ (80 kg) (1945)	B. & S	. С.М.	ing	Cond., Inches	ness, Ins.	ness, Ins.	Diam. Ins.	, Pounds/ 1,000'	1,000′ @ 25°C.
JILVE JILYO	14 12	4,107 6,530	7/.0242 7/.0305	.073	10/64 10/64	3/64	.50	425	2.68
JIMAV	10	10,380	7/.0385	.116	10/64	3/64 4/64	$.52 \\ .57$	450 630	1.69
JIMCY JIMIX	8 6	$16,510 \\ 26,250$	7/.0486 7/.0612	.146	$\frac{10/64}{10/64}$	4/64 4/64	.60	685 765	0.667
JIMOZ JIMUB	5 4	33,100 41,740	7/.0688 7/.0772	.206	10/64	4/64	.66	815	.333
JIMVA	3	52,640	7/.0867	.232	10/64 10/64	4/64 4/64	.69	880 950	.264
JIMWE JIMZO	$\frac{2}{1}$	66,370 83,690	7/.0974 19/.0664	.292	10/64 10/64	4,64 4/64	.75	1,030 1,140	.166
JINBO JINIZ	1/0 2/0	105,500 133,100	19/.0745 19/.0837	.373	10/64	5/64	.86	1,460	.105
JINOB	3/0	167,800	19/.0940	.470	10/64 10/64	5/64	.91	$1,610 \\ 1,800$	.0828
JINUC	4/0	$211,600 \\ 250,000$	$\frac{19}{.1055}$ $\frac{37}{.0822}$	.528	$\frac{10/64}{11/64}$	5/64 5/64	$\frac{1.02}{1.10}$	2,030 2,290	.0516
JIOGS JIOHT		300,000 350,000	37/.0900	.630	11/64	5/64	1.15	2,530	.0367
JIOLY	114	400,000	37/.0973 37/.1040	.681 $.728$	11/64 11/64	5/64 6/64	$\frac{1.20}{1.28}$	$\frac{2,760}{3,310}$	.0315 $.0276$
JIONB JIORF	:::	500,000 600,000	37/.1162 61/.0992	.814	11/64	6/64 6/64	1.37	3,760 4,220	.0218
JIOWK	933.	700,000	61/.1071	.964	11/64	6/64	1.52	4,660	.0154
JIOZM JIPAY		750,000	61/.1109	.998	11/64	6/64	1.55	4,880	.0146
JIPCO		800,000 900,000	61/.1145 $61/.1215$	$\frac{1.031}{1.093}$	11/64 11/64	6/64	$\frac{1.58}{1.65}$	5,090 5,510	.0136
JIPEZ		1,000,000	61/.1280	1.152	11/64	6/64	1.73	6,340	.0121
JIPIB		1,250,000 1,500,000	91/.1172 91/.1284	1.290	12/64	7/64	1.90	7,500	.00873
JIPUD	100.0	1,750,000	127/.1174	$\frac{1.412}{1.526}$	$\frac{12/64}{12/64}$	7/64	$\frac{2.03}{2.14}$	8,530 9,530	.00727
JIPYA	•••	2,000,000	127/.1255	1.631	12/64	7/64	2.28	11,090	.00545



FLAT DUPLEX—SOLID TYPE "RDL"

600 VOLTS

Code	Conductor		Diam. Bare	Insula- tion Thick-	Lead Thick-	Ove Dimer Inc	sions,	Net Weight	Average Resist- ance/
	B. & S.	C.M.	Cond., Inches	ness, Inches	ness, Inches	Long	Short	Pounds/	1,000′ @ 25°C.
JIRFO	14	4,107	.064	3/64	2/64	.44	.25	215	2.63
JIRHY	12	6,530	.081	3/64	3/64	.50	.30	350	1.66
JIRID	10	10,380	.102	3/64	3/64	.56	.33	415	1.03
JIROF	.8	16,510	.128	4/64	3/64	.68	.39	550	0.647

#### FLAT DUPLEX—STRANDED

TYPE "RDL"

600 VOLTS

Code	Conductor Size B. & S. C.M.		Strand- ing Each Con- ductor	Diam. Bare Cond., Inches	ness.	Lead Thick- ness, Inches	Overall Dimensions Net Inches Weight Pounds/ Long Short 1,000'			Average Resist- ance/ 1,000' @ 25°C.
JIPZE	14	4,107	7/.0242	.073	3/64	2/64	.46	.26	225	2.68
JIRAB	12	6,530	7/.0305	.092	3/64	3/64	.53	.31	370	1.69
JIRBA	10	10,380	7/.0385	.116	3/64	3/64	.59	.34	435	1.06
JIRCE	8	16,510	7/.0486	.146	4/64	3/64	.72	.41	595	0.667
JIREC	6	26,250	7/.0612	.184	4/64	4/64	.87	.49	900	.420



# TWO CONDUCTOR, ROUND—SOLID TYPE "RML"

600 VOLTS

Code	Conductor		Diam. Th Bare I		ation kness, hes	Lead Thick-	Overall Diam.,	Average Resist- ance/	
	B. & S.	C.M.	Inches	Each Cond.	Belt	ness, Inches	inches	Pounds/ 1,000'	1,000′ @ 25°C.
JIULZ	14	4,107	.064	3/64	Binder	2/64	.46	285	2.63
JIUMB JIURG	12 10	6,530 $10.380$	.081	3/64 3/64	Binder Binder	3/64 3/64	.54	450 525	1.66
JIUSH	8	16,510	.128	4/64	Binder	3/64	.70	695	$\frac{1.03}{0.647}$

# TWO CONDUCTOR, ROUND—STRANDED TYPE "RML"

600 VOLTS

Code	Conductor Size		Strand- ing, Each Con-	Diam. Bare Cond	Inches		Thick-		Net Weight	Aver. Resist- ance/
	B. & S.	C.M.	ductor	Ins.	Cond.	Belt	ness, Ins.	Diam., Ins.	1,000′	1,000′ @ 25°C.
JIRUG	14	4,107	7/.0242	.073	3/64	Binder	2/64	.48	305	2.68
JIRYH	12	6,530	7/.0305	.092	3/64	Binder		.56	480	1.69
JISAC	10	10,380	7/.0385	.116	3/64	Binder			565	1.06
JISCA	8	16,510	7/.0486	.146	4/64	Binder			745	0.667
JISDE	6	26,250	7/.0612	.184	4/64	Binder		.81	1,050	.420
JISED	4	41,740	7/.0772	.232	4/64	Binder	4/64	.90	1,250	.264
JISGO	3	52,640	7/.0867	.260	4/64	Binder	4/64	.96	1,390	.209
JISIF	2	66,370	7/.0974	.292	4/64	Binder		1.02	1,560	.166
JISJY	1	83,690	19/.0664	.332	5/64	Binder		1.19	2,130	.132
JISOG	1/0	105,500	19/.0745	.373	5/64	Binder		1.27	2,420	.105
JISUH	2/0	133,100	19/.0837	.418	5/64	Binder	5/64	1.36	2,740	.0828
JISYJ	3/0	167,800	19/.0940	.470	5/64	Binder	5/64	1.46	3,110	.0656
JITAD	4/0	211,600	19/.1055	.528	5/64	Binder	5/64	1.58	3,600	.0516
JITDA		250,000	37/.0822	.575	6/64	Binder	6/64	1.77	4,590	.0440
JITEF	• • • •	300,000	37/.0900	. 630	6/64	Binder	6/64	1.88	5,120	.0367
JITHO		350,000	37/.0973	.681	6/64	Binder	6/64	1.99	5,630	.0315
JITIG		400,000	37/.1040	.728	6/64	Binder		2.08	6,150	.0278
JITOH		500,000	37/.1162	.814	6/64	Binder	6/64	2.25	7,110	.0218
JITUJ		600,000	61/.0992	.893	7/64	Binder	8/64	2.53	9,460	.0184
JITYK	•••	700,000	61/.1071	.964	7/64	Binder	8/64	2.67	10,470	.0156
JIUFS		750,000	61/.1109	.998	7/64	Binder	8/64	2.74	10,970	.0146
JIUGT		800,000	61/.1145		7/64	Binder	8/64	2.81	11,450	.0136
JIUHV		900,000	61/.1215		7/64	Binder	8/64	2.93	12,410	.0121
JIUKY	1	.000.000	61/.1280	1 150	7/64	Binder	8/64	3.05	13,360	.0109



TYPE "RML-10" 1,000 VOLTS

Code		ductor Bize C.M.	Strand- ing, Each Con- ductor	Diam. Bare Cond., Ins.	Thick	lation kness, thes	Lead Thick- ness, Ins.	Over- all Diam., Ins.	Net Wght. Lbs./ 1,000'	Aver. Resist- ance/ 1,000' @ 25°C
JIUVK JIUZN JIVAF	6	$\begin{array}{c} 16,510 \\ 26,250 \\ 41,740 \end{array}$	7/.0486 7/.0612 7/.0772	.146 .184 .232	4/64 5/64 5/64	Binder Binder Binder	5/64	.90	870 1,330	.667
JIVFA JIVGE	1	66,370 83,690	7/.0974	.332	5/64 6/64	Binder Binder	5,64	1.12	1,570 1,920 2,630	.132
JIVJO JIVUK JIVYL	1/0 2/0 3/0 4/0	105,500 $133,100$ $167,800$ $211,600$	19/.0745 19/.0837 19/.0940 19/.1055	.373 .418 .470 .528	6/64 6/64 6/64 6/64	Binder Binder Binder Binder	6/64 6/64	1.37 $1.46$ $1.56$	2,890 3,240 3,660 4,160	.105 .0828 .0656
JIWAG JIWHE JIWIJ		250,000 300,000 350,000	37/.0822 37/.0900	.575	7/64 7,64	Binder Binder	7/64 7/64	1.86 1.97	5,180 5,740	.0516 .0440 .0367
JIWOK JIWUL		400,000 500,000	37/.0973 37/.1040 37/.1162	.681 .728 .814	7/64 7,64 7/64	Binder Binder Binder	7/64		6,280 6,830 8,420	.0315 $.0276$ $.0218$

# TWO CONDUCTOR—ROUND TYPE "RML-20" 2,000 VOLTS

Code		nductor Size	Strand- ing, Each Con- ductor	Diam. Bare Cond., Ins.	Thick	lation kness, hes 7	Lead Thick- ness, Ins.	Over- all Diam., Ins.	Net Wght. Lbs./ 1,000'	Aver. Resist- ance/ 1,000' @ 25°C.
JIYAH JIYDS JIYHA	8 6	16,510 26,250	7/.0486 7/.0612	.146	5/64 6/64	Binder Binder	5/64	.96	960 1,440	.667
JIYJE	$\frac{4}{2}$	41,740 66,370 83,690	7/.0772 7/.0974 19/.0664	.232	6/64 6/64 7/64	Binder Binder		1.18	1,690 2,040	.264
JIYOL JIYPF JIYUM	$\frac{1}{0}$	105,500 133,100 167,800	19/.0745 19/.0837 19/.0940	.373 .418 .470	7/64 7/64 7/64	Binder Binder Binder Binder	6/64 6/64 6/64	1.35 $1.43$ $1.52$ $1.62$	2,750 3,030 3,380 3,800	.132 .105 .0828
JIZAJ JIZEK JIZIL	4/0	250,000	19/.1055 37/.0822	.528	7/64	Binder Binder	7/64	1.77	4,730 5,350	.0656
JIZJA JIZKE JIZYP		300,000 350,000 400,000 500,000	37/.0900 37/.0973 37/.1040 37/.1162	.630 .681 .728 .814	8/64 8/64 8/64 8/64	Binder Binder Binder Binder	7/64 7/64 8/64 8/64	2.14	5,930 6,470 7,580 8,650	.0367 .0315 .0278 .0218



TWO	CON	IDII	CTOR-	_RO	LIND

TYPE "RML-30" 3,000 VOLTS

Code		nductor Size	Strand- ing, Each Con- ductor	Diam. Bare Cond., Ins.	Thick	lation kness, hes	Thick-	Over- all Diam., Ins.	Net Wght. Lbs./ 1,000'	Aver. Resist- ance/ 1,000' @ 25°C.
JOAFS JOAHY JOAKY JOALZ	4	16,510 26,250 41,740 66,370 83,690	7/.0486 7/.0612 7/.0772 7/.0974 19/.0664	.146 .184 .232 .292 .332	7/64 8/64 8/64 8/64 8/64	Binder Binder Binder Binder Binder	5/64 5/64 6/64	.94 1.08 1.18 1.33 1.41	1,360 1,670 1,930 2,610 2,910	.667 .420 .264 .166
JOAME JOANC JOARG JOASH JOAVK	2/0 3/0 4/0	105,500 133,100 167,800 211,600 250,000	19:.0745 19/.0837 19/.0940 19/.1055 37/.0822	.373 .418 .470 .528 .575	8/64 8/64 8/64 8/64 9/64	Binder Binder Binder Binder Binder	6/64 6/64 6/64 7/64	1.49 1.58 1.69 1.83 1.99	3,180 3,540 3,960 4,900	.132 .105 .0828 .0656 .0516
JOAWL JOAZN JOBAP JOBIR	·	300,000 350,000 400,000 500,000	37/.0900 37/.0973 37/.1040 37/.1162	.630 .681 .728 .814	9/64 9/64 9/64 9/64	Binder Binder Binder Binder	7/64 7/64 8/64	2.10 2.20 2.33 2.50	5,540 6,120 6,680 7,800 8,870	.0440 .0367 .0315 .0276 .0218

# TWO CONDUCTOR—ROUND TYPE "RML-40" 4,000 VOLTS

Code		iductor Size	Strand- ing, Each Con- ductor	Diam. Bare Cond., Ins.	Thick Inc	lation kness, hes	Lead Thick- ness, Ins.		Net Wght. Lbs./ 1,000'	Aver. Resist- ance/ 1,000' @ 25°C.
JOBOS JOBPA JOBSO JOBVY	6 4	16,510 26,250 41,740 66,370	7/.0486 7/.0612 7/.0772 7/.0974	.146 .184 .232 .292	9/64 9/64 9/64 9/64	Binder Binder Binder Binder	5/64 6/64	$\frac{1.15}{1.28}$	1,600 1,790 2,370 2,780	.667 .420 .264 .166
JOBYV JOCER JOCRE JOCTO JOCUV	1/0 2/0 3/0	83,690 105,500 133,100 167,800 211,600	19/.0664 19/.0745 19/.0837 19/.0940 19/.1055	.332 .373 .418 .470 .528	9/64 9/64 9/64 9/64 9/64	Binder Binder Binder Binder Binder	6/64 6/64 7/64	1.56 $1.65$ $1.78$	3,090 3,340 3,700 4,540 5,080	.132 .105 .0828 .0656 .0516
JOCWY JODAR JODIT JODOV JODSE		250,000 300,000 350,000 400,000 500,000	37/.0822 37/.0900 37/.0973 37/.1040 37/.1162	.575 .630 .681 .728 .814	10/64 10/64 10/64 10/64 10/64	Binder Binder Binder Binder Binder	7/64 8/64 8/64	2.05 2.16 2.30 2.39 2.56	5,720 6,300 7,430 8,010 9,090	.0440 .0367 .0315 .0278 .0218



TWO CONDUCTOR—ROUND TYPE "RML-50" 5000 VOLTS

Code		ductor	Strand- ing, Each Con-	Diam. Bare Cond.,	Thick	lation kness, thes	Thick-		Net Wght.	Aver. Resistance/
	B. & S.	C.M.	ductor	Ins.	Cond.	Belt	Ins.	Diam., Ins.	1,000'	1,000′ @ 25°C.
JODVO	8	16,510	7/ 0496	140	10/04	D: 1				-
JODYX		26,250	7/.0486 7/.0612	.146	10/64	Binder		1.13	1,710	.667
JOEDS	4	41,740	7/.0772	.232	10/64	Binder		1.24	2,200	.420
JOEJY	2	66.370	7/.0974	.292	10/64	Binder		1.34	2,500	.264
	-	00,010	17.0314	. 232	10/04	Binder	6/64	1.46	2,900	.166
JOELB	1 /	83,690	10/ 0004	220	10 04	D: 1				
JOEND		105,500	19/.0664 19/.0745	.332	10,64	Binder		1.54	3,230	.132
JOEPF	2/0	133,100	19/.0837	.373	10/64	Binder		1.62	3,480	.105
JOEWM		167,800	19/.0940	.418	10/64	Binder		1.74	4,250	.0828
JOFAS	4/0	211,600	19/.1055	.470	10/64	Binder		1.84	4,720	.0656
001110	1/0	211,000	19/.1000	.528	10/64	Binder	7/64	1.96	5,260	.0516
JOFET		070 000								
JOFIV	1	250,000	37/.0822	.575	11/64	Binder		2.12	5,910	.0440
JOFSA		300,000	37/.0900	.630	11/64	Binder		2.26	7,060	.0367
JOFSA		350,000	37/.0973	.681	11/64	Binder		2.36	7,650	.0315
JOFUX		400,000	37/.1040	.728	11/64	Binder		2.45	8,230	.0278
JOFUA		500,000	37/.1162	.814	11/64	Binder	8/64	2.63	9,310	.0218



THREE CONDUCTOR—SOLID TYPE "RML" 600 VOLTS

Code		ductor ize C.M.	Diam. Bare Cond., Inches	Thic	lation kness, ches		Inches	Net Weight Pounds/ 1,000'	Average Resist- ance/ 1,000' @ 25°C.
KECEC	14	4,107	.064	3/64	Binder	3/64	.52	450	2.63
KECFO	12	6,530	.081	3/64	Binder	4/64	.59	650	1.66
KECHY	10	10,380	.102	3/64	Binder	4/64	.65	755	1.03
KECID	8	16,510	.128	4/64	Binder	4/64	.78	995	0.647

### THREE CONDUCTOR—STRANDED TYPE "RML" 600 VOLTS

Code		ductor Size	Strand- ing, Each	Diam. Bare	Thiel Inc	lation kness, hes	Lead Chick-	all	Net Weight	Aver. Resist- ance/
	B. & S	C.M.	Con- ductor	Cond., Ins.	Cond.	Belt	ness, Ins.	Diam., Ins.	Lbs./ 1,000'	1,000′ @ 25°C.
JOFWO	14	4,107	7/.0242	.073	3/64	Binder	4/64	.57	605	2.68
JOFZY	12	6,530	7/.0305	.092	3/64	Binder	4/64	.61	680	1.69
JOGAT	10	10,380	7/.0385	.116	3,64	Binder	4/64	.68	790	1.06
JOGEV		16,510	7/.0486	.146	4/64	Binder	4/64	.82	1.050	0.667
JOGOY	6	26,250	7/.0612	.184	4/64	Binder	5/64	.89	1,430	.420
JOGTA	4	41.740	7/.0772	.232	4/64	Binder	5/64	.99	1,720	.264
JOGUZ	3	52,640	7/.0867	.260	4/64	Binder	5/64	1.05	1,910	.209
JOGVE	2	66,370	7/.0974	.292	4/64	Binder	5/64	1.21	2,150	.166
JOGYO		83,690	19/.0664	.332	5/64	Binder	6/64	1.30	2,900	.132
JOHAV	1/0	105,500	19/.0745	.373	5,64	Binder	6/64	1.39	3,280	.105
JOHCY	2/0	133,100	19/.0837	.418	5/64	Binder	6/64	1.49	3,730	.0828
JOHIX	3/0	167,800	19/.0940	.470	5/64	Binder	6/64	1.60	4,270	.0656
JOHOZ	4/0	211,600	19/.1055	.528	5/64	Binder	6/64	1.73	4,930	.0516
JOHUB		250,000	37/.0822	.575	6/64	Binder	7/64	1.93	6,140	.0440
JOHVA		300,000	37/.0900	. 630	6/64	Binder	7/64	2.05	6,890	.0367
JOHVE		350,000	37/.0973	.681	6/64	Binder	7/64	2.15	7,600	.0315
JOHZO		400,000	37/.1040	.728	6/64	Binder	7/64	2.29	8,900	.0278
JOICS		500,000	37/.1162	.814	6/64	Binder	7/64	2.47	10,280	.0218
TOILC		600,000	61/.0992	.893	7/64	Binder	7/64	2.71	11,940	.0184
JOIRJ	•••	700,000	61/.1071	.964	7,64	Binder	7/64	2.86	13,300	.0156
JOITL		750,000	61/.1109	.998	7/64	Binder	7/64	2.93	13,980	.0146
JOJBO		800,000	61/.1145		7/64	Binder	7/64	3.00	14,630	.0136
JOJIZ		900,000	61/.1215	1.093	7/64	Binder	7/64	3.14	15,950	.0121
JOJOB	1	,000,000	61/.1280	1.152	7/64	Binder	9/64	3.30	18,050	.0109



THR	EE (	CO	ND	U	CT	OR

## TYPE "RML-10" 1000 VOLTS

Code Conductor Size  B. & S. C.M.	Strand- ing, Each Con- ductor	Diam. Bare Cond., Ins.	Thic	lation ekness, ches	Thick-	Over- all Diam., Ins.	Wght.	Aver. Resist- ance/ 1,000' @ 25°C.
KECOF     8     16,510       KECUG     6     26,250       KECYH     4     41,740       KEDAC     2     66,370       KEDCA     1     83,690       KEDDE     1/0     105,500       KEDED     2/0     133,100       KEDGO     3/0     167,800       KEDJF     4/0     211,600       KEDJY      250,000	7/.0486 7/.0612 7/.0772 7/.0974 19/.0664 19/.0745 19/.0837 19/.0940 19/.1055 37/.0822	.146 .184 .232 .292 .332 .373 .418 .470 .528 .575	4/64 5/64 5/64 5/64 6/64 6/64 6/64 6/64	Binder Binder Binder Binder Binder Binder Binder Binder Binder	5/64 5/64 5/64 6/64 6/64 6/64	.78 .95 1.06 1.19 1.37 1.46 1.56 1.67 1.83 1.99	1,000 1,520 1,830 2,280 3,070 3,440 3,900 4,460 5,550 6,340	.667 .420 .264 .166 .132 .105 .0828 .0656 .0516
KEDOG       300,000         KEDUH       350,000         KEDYJ       400,000         KEEXY       500,000	37/.0900 37/.0973 37/.1040 37/.1162	.630 .681 .728 .814	7/64 7/64 7/64 7/64	Binder Binder Binder Binder	7/64 8/64	2.11 2.22 2.35 2.54	.7,080 7,820 9,120 10,540	.0367 .0315 .0278 .0218

# THREE CONDUCTOR TYPE "RML-20" 2000 VOLTS

Code Conductive Size	Each Con-	Diam. Bare Cond., I	Thick Inc	ation eness, hes	Thick-	Over- all Diam., Ins.	Net Wght. Lbs./ 1,000'	Aver. Resist- ance/ 1,000' @ 25°C.
KEFDA 6 2 KEFEF 4 4 4 JOJUC 2 6 JOJWA 1 8: JOJYE 1/0 10: JOKAY 2/0 13: JOKCO 3/0 16: JOKEZ 4/0 21 JOKIB 25: JOKOC 30: JOKOC 30: JOKOC 30: JOKUD 35: JOKYA 40:	6,510 7/.0486 6,250 7/.0612 1,740 7/.0772 6,370 7/.0974 3,690 19/.0664 5,500 19/.0837 7,800 19/.0837 1,600 19/.1055 0,000 37/.0822 0,000 37/.0900 0,000 37/.1162	.184 .232 .292 .332 .373 .418 .470 .528 .575	6/64 6/64 6/64 7/64 7/64 7/64 7/64 8/64 8/64 8/64	Binder Binder Binder Binder Binder Binder Binder Binder Binder Binder Binder Binder Binder	5/64 5/64 6/64	.87 1.02 1.12 1.29 1.44 1.53 1.62 1.76 1.89 2.06 2.18 2.32 2.42 2.42	1,300 1,650 1,970 2,740 3,620 4,070 5,040 5,740 6,550 7,310 8,620 9,380 10,800	.667 .420 .264 .166 .132 .105 .0828 .0656 .0516 .0440 .0367 .0315 .0278



THREE CONDUCTOR TYPE "RML-30" 3,000 VOLTS

Code		nductor Size	Strand- ing, Each Con- ductor	Diam. Bare Cond., Ins.	Thic In	lation kness, ches	Thick	Diam.,	Net Wght. Lbs./ 1,000'	Aver. Resist- ance/ 1,000' @ 25°C.
JOLBE JOLDO JOLEB JOLIC JOLOD	8 6 4 2 1	16,510 26,250 41,740 66,370 83,690	7/.0486 7/.0612 7/.0772 7/.0974 19/.0664	.146 .184 .232 .292 .332	7/64 8/64 8/64 8/64 8/64	Binder Binder Binder Binder Binder	5/64 6/64 6/64	1.00 $1.15$ $1.29$ $1.42$ $1.51$	1,550 1,920 2,560 3,060 3,450	.667 .420 .264 .166 .132
JOLUF JOLYG JOLZA JOMAB JOMBA		105,500 133,100 167,800 211,600 250,000	19/.0745 19/.0837 19/.0940 19/.1055 37/.0822	.373 .418 .470 .528 .575	8/64 8/64 8/64 8/64 9/64	Binder Binder Binder Binder Binder	7/64 7/64 7/64	1.59 1.72 1.83 1.96 2.13	3,790 4,660 5,250 5,950 6,790	.105 .0828 .0656 .0516 .0440
JOMCE JOMEC JOMFO JOMID		300,000 350,000 400,000 500,000	37/.0900 37/.0973 37/.1040 37/.1162	.630 .681 .728 .814	9,64 9/64 9/64 9/64	Binder Binder Binder Binder	8/64 8/64	2.28 2.39 2.49 2.67	8,100 8,870 9,630 11,040	.0367 .0315 .0278 .0218

THREE CONDUCTOR TYPE "RML-40" 4,000 VOLTS

Code Conductor Size B. & S. C.M.	Strand- ing, Each Con- ductor	Diam. Thic	ches Thick ness,	Diam.,	Net Resist. Wght. ance/ Lbs./ 1,000' @ 25°C.
JOMOF 8 16,510 JOMUG 6 26,250 JOMYH 4 41,740 JONAC 2 66,370 JONCA 1 83,690 JONDE 1/0 105,500 JONED 2/0 133,100 JONED 2/0 133,100 JONIF 4/0 211,600 JONIF 4/0 250,000 JONUH 300,000 JONYJ 350,000 JONYJ 350,000 JONYJ 350,000 JOOBS 400,000 JOOBS 400,000 JOOCT 500,000	7/.0486 7/.0612 7/.0772 7/.0974 19/.0664 19/.0745 19/.0837 19/.1055 37/.0822 37/.0900 37/.1040 37/.1162	.146 9/64 .184 9/64 .232 9/64 .292 9/64 .332 9/64 .373 9/64 .418 9/64 .470 9/64 .528 9/64 .575 10/64 .630 10/64 .631 10/64 .728 10/64 .814 10/64	Binder 5/64 Binder 6/64 Binder 6/64 Binder 6/64 Binder 6/64 Binder 7/64 Binder 7/64 Binder 7/64 Binder 8/64 Binder 8/64 Binder 8/64 Binder 8/64	1.26 1.36 1.49 1.58 1.66 1.79 1.90 2.03 2.20 2.34 2.45 2.55	1,820 .667 2,370 .420 2,730 .264 3,230 .166 3,630 .132 3,970 .105 4,860 .0822 5,450 .0656 6,170 .0516 6,990 .0440 8,370 .0367 9,100 .0318 9,880 .0278



THREE CONDUCTOR

TYPE "RML-50"

5,000 VOLTS

Code		onductor Size S. C.M.	Strand- ing, Each Con- ductor	Diam Bare Cond., Ins.	. Thic	lation ekness, ches	Thick-		Net Wght. , Lbs./ 1,000'	Aver. Resist- ance/ 1,000' @ 25°C.
JOOGY JOOHZ	6	16,510 26,250	7/.0486 7/.0612	.146	10/64 10/64	Binder Binder		1.24	2,260 2,520	.667
JOOLD JOONG JOOPH	2	41,740 66,370 83,690	7/.0772 7/.0974 19/.0664	.232 .292 .332	10/64 10/64 10/64	Binder Binder Binder	6/64 6/64	$\frac{1.42}{1.55}$	2,890 3,400	.420 .264 .166
JOORK JOOWP	1/0	105,500 133,100	19/.0745 19/.0837	.373	10/64	Binder	7/64	1.64	3,800 4,550	.132
JOPAD JOPEF JOPFE	3/0 4/0	167,800 211,600	19/.0940 19/.1055	.418 .470 .528	10/64 10/64 10/64	Binder Binder Binder	7/64 7/64 7/64	1.86 $1.97$ $2.09$	5,050 5,650 6,380	.0828 .0656 .0516
ЈОРНО	/	250,000 300,000	37/.0822 37/.0900	.630	11/64	Binder Binder	8/64	2.29	7,790	.0440
JOPIG JOPUJ	/::·	350,000 400,000 500,000	37/.0973 37/.1040 37/.1162	.728	11/64 11/64 11/64	Binder Binder Binder	8/64 8/64 8/64	2.52 2.63 2.81	9,370 10,160 11,600	.0315 .0278 .0218
-/			1 10 10 10 10 10	/		Dilider	0/01	2.01	11,000	.0216

### RUBBER SHEATHED PORTABLE POWER CABLE

Canada Wire & Cable Co. manufactures a complete line of portable cables for supplying power to electric shovels, dredges, compressors, cranes and all movable electrically driven machinery. In addition these cables are highly suitable for making emergency or temporary power connections during repairs or alterations.

Two classes of cables are available, a very high grade product under the copyrighted name of TUFFLEX, and the standard ROUGH USAGE CABLE.

There are three general types of TUFFLEX or ROUGH USAGE cable as follows:

Type W, without ground wires.

Type G, with ground wires.

Type SH, (Shielded) with or without ground wires.



# 3 CONDUCTOR TYPE W (Without Ground Wires)

Type SH Cable is further sub-divided into the following:

Туре	Ground Wires	Shielding
SH-A	Without	On each Conductor
SH-B	Without	Over Cabled Conductors
SH-C	With	Over Cabled Conductors
SH-D	With	Over each Conductor

Shielding braids over the assembled conductors confine the voltage stress within the core of the cable. When applied over the separate conductors, shielding confines the stress to the individual conductor insulations, eliminating corona and the attendant formation of ozone which is injurious to rubber. Shielding braids, properly grounded, afford protection to the cable and to the operator.

Shielding braids consist of a combination copper-cotton braid with the tinned copper wires running in a direction opposite to the lay of the cable. This combination type braid is preferred since the cotton prevents wear and the resulting breaking of the individual fine copper wires, and improves flexibility.

It is considered good practice to employ ground wires in all shielded high voltage portable cables. These ground wires are uninsulated in SH-D cable to permit electrical contact with the shielding braid.



3 CONDUCTOR TYPE G
(With Ground Wires)

### RECOMMENDED VOLTAGES

Type W (without Ground Wires)

This type is not recommended for service above 2,500 volts.

### Type G (with Ground Wires)

While cables operating above 2,500 volts should preferably be shielded, the ground wires in Type G cables in effect provide some shielding and afford a certain degree of protection to operators when the wires are grounded at both ends of the cable length.

### Type SH (Shielded-with or without Ground Wires)

Type SH shielded cables are similar to Types W and G, as previously described, except for the addition of shielding braids, and are recommended for all operating voltages above 2,500 volts. These cables are classified in four groups, depending upon the way in which the shielding is applied and whether or not ground wires are included.

## SELECTION OF TYPE AND SIZE

In selecting the proper type and conductor size, careful consideration should be given to the service conditions under which the cable is to be installed and operated. When there is any question regarding the flexibility, current rating, voltage regulation or shielding, especially where severe service conditions obtain, or where a special design is required, Canada Wire & Cable Co. will be pleased to offer recommendations.

### **CURRENT RATINGS**

The current ratings shown in the tables which follow are based on continuous loading at an ambient temperature of 40°C. Correction factors for various other ambient temperatures are as follows:

Degrees	Correction
Centigrade	Factor
10	1.58
20	1.41
30	1.22
40	1.00
50	0.71

When a load factor of less than 50% is expected, it may be possible to recommend a smaller conductor or a higher rating for the conductor in use.

When the cable is used with one or more layers wound on a gathering reel, the tabulated current ratings should be corrected by the following factors:

Number of Layers	Percentage of Specified Rating
1	85 -
2	65
3 mile 5	45
4	35

### TUFFLEX PORTABLE CABLES

General construction features of TUFFLEX, applying particularly to multiple conductor low voltage power types, are described below:

### (1) Conductors

Each conductor is composed of fine, tinned, annealed copper wires, specially stranded to insure maximum flexibility. Two classes of stranding are available, depending upon the degree of flexibility desired, as shown on the tabulation which follows.

### (2) Insulation

The insulation on individual conductors is a tough special type rubber compound designed for extra ability to stand crushing without electrical or mechanical failure. Insulation thicknesses are in accordance with the Canadian Electrical Code Standards.

### (3) Conductor Identification

The insulation on each conductor is protected by a rubber faced tape, colour coded for ready identification. Colours are progressively black, white, red, and green for cables of from one to four conductors.

### (4) Fillers

Strong twisted jute fillers are placed in the interstices left by the cabled round conductors. These fillers serve to increase longitudinal strength, and provide protection against crushing, beside maintaining a round cable.

### (5) Ground Wires

Ground wires can be included with the fillers when required for electrical purposes. Cable without ground wires is designated as Type W, and cable with ground wires as Type G.

### (6) Overall Covering

The cabled conductors and fillers are covered with a helically applied rubber faced tape, over which is applied an open reinforcing serving of seine twine cord. This is an important factor in resisting crushing.

Over all is placed a tough, resilient, abrasion-resisting jacket of 60% rubber. This stock is the equivalent of the best automobile tire treads.

### ROUGH USAGE CABLE

Where a cable is required for somewhat less important or severe service than those listed under TUFFLEX, ROUGH USAGE cable is available. This cable is made up in substantially the same manner as TUFFLEX, with the exception that a 30% rubber compound is used for the conductor insulation, and a 40% rubber compound for the overall jacket. On this type of cable also, the rubber faced binder tape binding the cabled conductors together and the reinforcing serving of seine twine are omitted.

### SPECIAL OVERALL COVERINGS

When unusual service conditions are encountered, such as exposure to oil or a flame-resisting cable is imperative, the use of NEOPRENE is recommended as a jacketting material.

For applications in which the cable does not require as great a degree of mechanical protection various grades of weatherproof braid coverings are available.

# TUFFLEX RUBBER SHEATHED PORTABLE POWER CABLE

THREE CONDUCTOR TYPES "W" and "G" 600 VOLTS

			Insula-		TYPE W		Түре С		*Current
Size B. & S.	Conductor Strand- ing	Diam., Inches	tion Thick- ness, Inches	Over- all Diam., Inches	Net Weight Pounds per 1,000'		Ground Wires	Net Weight Pounds per 1,000'	Carry- ing
8 8	49/No. 25 133/No. 29	.161 .169	4/64 4/64	.'89 .89	465 470	3 x 3 x	19/No. 27 19/No. 27	505 515	35 35
6	49/No. 23 133/No. 27	.203 .213	4/64 4/64	1.00 1.00	615 630	3 x 3 x	19/No. 25 19/No. 25	670 685	50 50
4	49/No. 21 133/No. 25	.256 .268	4/64 4/64	1.14 1.14	850 870	3 x 3 x	19/No. 23 49/No. 27	935 955	65 65
3	49/No. 20 133/No. 24	.288	4/64 4/64	$\frac{1.22}{1.22}$	1,010 1,030	3 x 3 x	49/No. 26 49/No. 26	1,120 1,140	75 75
2 2	133/No. 23 259/No. 26	.339	4/64 4/64	1.36 1.36	1,280 1,270	3 x 3 x	49/No. 25 49/No. 25	1,420 1,440	90 90
1 1	133/No. 22 259/No. 25	.380	5/64 5/64	1.54 1.54	1,640 1,610	3 x 3 x	49/No. 24 49/No. 24	1,810 1,790	100 100
$\frac{1}{0}$ $\frac{1}{0}$ $\frac{2}{0}$	133/No. 21 259/No. 24	.427	5/64 5/64	1.66 1.66	1,960 1,930	3 x 3 x	49/No. 23 49/No. 23	2,180 2,150	120 120
2/0 2/0 3/0	133/No. 20 259/No. 23	.479	5/64 5/64	1.79	2,340 2,320	3 x	133/No. 26 133/No. 26	2,640 2,620	135 135
3/0 3/0 4/0	259/No. 22 427/No. 24 259/No. 21	.532 .543	5/64 5/64	1.93	2,780 2,820	3 x	133/No. 25 133/No. 25	3,160 3,190	155 155
4/0	427/No. 23	.610	5/64	2.10 2.10	3,380 3,440		133/No. 24 133/No. 24	3,850 3,910	180 180

^{*} Refer to information under "Current Ratings" on page 184 before using these current carrying capacities.

# TUFFLEX RUBBER SHEATHED PORTABLE POWER CABLE

TWO CONDUCTOR TYPE "W" 600 VOLTS

Size B. & S.	Conductor Stranding	Diam., Inches	Insulation Thickness, Inches	Overall Diam., Inches	Net Weight Pounds/ 1,000'	*Current Carrying Capacity, Amps.
8 8	49/No. 25 133/No. 29	.161	4/64 4/64	.84	365 370	40
6	49/No. 23 133/No. 27	.203	4/64 4/64	.94	480 490	40 50 50
4 4	49/No. 21	.256	4/64	1.07	660	70
	133/No. 25	.268	4/64	1.07	670	70
3 3	49/No. 20	.288	4/64	1.14	770	80
	133/No. 24	.302	4/64	1.14	780	80
2 2	133/No. 23 259/No. 26	.339 .335	4/64 4/64	$\frac{1.26}{1.26}$	965 955	95 95
1	133/No. 22 259/No. 25	.380 .376	5/64 5/64	$\frac{1.43}{1.43}$	1,230 1,220	110
1/0	133/No. 21	.427	5/64	1.55	1,480	130
1/0	259/No. 24	.422	5/64	1.55	1,470	130
2/0	133/No. 20	.479	5/64	1.67	1,760	150
2/0	259/No. 23	.474	5/64	1.67	1,750	150
3/0	259/No. 22	.532	5/64	1.80	2,080	175
3/0	427/No. 24		5/64	1.80	2,110	175
4/0	259/No. 21	.598	5/64	1.96	2,530	200
4/0	427/No. 23	.610	5/64	1.96	2,560	200

^{*} Refer to information under "Current Ratings" on page 184 before using these current carrying capacities.

# TUFFLEX RUBBER SHEATHED PORTABLE POWER CABLE

FOUR CONDUCTOR

TYPES "W" and "G"

	CONDUCTOR		Insula-	Over-	Type W		Type G		*Current
Size B. & S.	Strand- ing	Diam., Inches	Thick- all ness, Diam., Inches Inches		Net Weight Pounds per 1,000'	Weight Pounds Ground per Wires		Net Weight Pounds per 1,000'	
8 8	49/No. 25 133/No. 29	.161	4/64 4/64	1.01	610 615	3 x 3 x	19/No. 28 19/No. 28	640 645	30 30
6	49/No. 23 133/No. 27	.203	4/64 4/64	$\frac{1.12}{1.12}$	790 805	3 x 3 x	19/No. 26 19/No. 26	835 850	40 40
4	49/No. 21 133/No. 25	.256 .268	4/64 4/64	$\frac{1.27}{1.27}$	1,090 1,120	3 x 3 x	19/No. 24 19/No. 24	1,160 1,190	55 55
3	49/No. 20 133/No. 24	.285	4/64 4/64	1.36 1.36	1,290 1,320	3 x 3 x	49/No. 27 49/No. 27	1,380 1,410	65 65
2 2	133/No. 23 259/No. 26	.339	4/64 4/64	1.51 1.51	1,640 1,620	3 x 3 x	49/No. 26 49/No. 26	1,750 1,740	75 75
1	133/No. 22 259/No. 25	.380	5/64 5/64	$\frac{1.72}{1.72}$	2,100 2,080	3 x 3 x	49/No. 25 49/No. 25	2,240 2,220	85 85
1/0 1/0	133/No. 21 259/No. 24	.427	5/64 5/64	1.85 1.85	2,520 2,490	3 x 3 x	49/No. 24 49/No. 24	2,690 2,660	100 100
2/0 2/0	133/No. 20 259/No. 23	.499 .474	5/64 5/64	2.00 2.00	3,030 2,990	3 x 3 x	133/No. 27 133/No. 27	3,270 3,230	115 115
3/0 3/0	259/No. 23 427/No. 24	.532	5/64 5/64	2.16 2.16	3,600 3,660	3 x 3 x	133/No. 26 133/No. 26	3,900 3,960	130 130
4/0 4/0	259/No. 21 427/No. 23	.598	5/64 5/64	$\frac{2.35}{2.35}$	4,380 4,460	3 x	133/No. 25 133/No. 25	4,760 4,840	150 150

^{*} Refer to information under "Current Ratings" on page 184 before using these current carrying capacities.

### MOULDED TERMINALS

for

### RUBBER SHEATHED PORTABLE POWER CABLES



Many important users of rubber sheathed portable power cable, particularly in the larger sizes, specify that the cable be equipped with a moulded rubber terminal or cap at each end of the cable before shipment. These provide an efficient seal against the entrance of moisture into the cable. Before applying the terminal, the individual conductors are each covered with a weatherproof braid as far as the end of the rubber jacket. Where ground wires are included in the cable, these are brought together and soldered to a single, rubber insulated weatherproof braided conductor. Shielding tapes, where used, are also soldered to this conductor with the ground wires, this common connection being made at a point "inside" the moulded terminal. Individual conductors, external to the terminal are 24 inches in length unless otherwise specified by the customer.

The moulded terminal is made from the same type of rubber as is used in the sheath of the cable itself, carefully applied and vulcanized to ensure a perfect seal.

### CONTROL CABLES

Control cables have a wide application in generating stations and sub-stations, industrial plants, and for general purposes where a multiple conductor cable is desired for remote control operation of motors, circuit breakers and other power equipment; for relay and metering circuits; for traffic light systems; and other automatic of supervisory indicating circuits of varied nature.

These cables are usually constructed in accordance with the Canadian Engineering Standards Association Specification C21-1927 which, however, permits a wide variation as to choice of details depending upon the service conditions.

The following is a brief description of this type of cable.

### CONDUCTORS

Conductors are tinned soft or annealed copper, the size depending on the permissible load and voltage drop. Sizes for ordinary applications range from No. 14 B & S to No. 9 B & S, but larger conductors up to No. 2 B & S are sometimes used. Stranded conductors are generally used although solid conductors are permissible.

### INSULATION

Each conductor is insulated for 600 volts working pressure with either Code grade rubber, or any of the special grade compounds described on Page 157 depending upon service conditions.

### BRAIDS

Identification of circuits in Control cables is obtained by means of a coloured cotton braid on each conductor, the available colours being as follows:

1.	White	

- 2. Black
- 3. Red
- 4. Green Yellow
- 5. 6. White-Black
- 7. White-Red
- 8. White-Green

- 9. White-Yellow
- 10. Black-Red
- Black-Green 11.
- 12. Black-Yellow
- 13. Red-Green
- 14. Red-Yellow
- 15. Green-Yellow

Colours are used in the order shown, commencing with the largest conductor. Conductor braids are given a clear wax moisture-resistant finish.

### OVERALL COVERING

The cabled conductors are given an overall covering consisting of either a braid, rubber jacket, or a lead sheath depending upon service conditions.

The following tabulation gives dimensions and other data of a representative range of sizes of Control Cable:

# CONTROL CABLE RUBBER INSULATED—BRAID OR LEAD COVERED



Cond.		Stranding,	Diam.	Insula- tion	BRAI CAB		LE	AD SHEA CABLE	
Size,	No. of	Each	Each	Thick-	Over-	Net	Lead	Over-	Net
B. & S.	Conds.	Conductor	Cond.,	ness,	all	Weight	Thick-	all	Weigh
i in	6,623	Participation	Theres	inches	Inches	Pounds/ 1,000'	ness, Inches	Diam., Inches	Pounds 1,000'
14	1	7 x No. 22	.076	3/64	.20	30	3/64	.30	990
14	2	7 x No. 22	.076	3/64	.44 x .24	1 75	3/64	.49 x .29	230 350
14 14	3 4	7 x No. 22 7 x No. 22	.076	3/64	. 50	130	4/64	. 60	650
14	5	7 x No. 22	.076	3/64 3/64	.55	$\frac{170}{205}$	4/64 4/64	.65	740
					.02	200	4/04	.71	840
14 14	6	7 x No. 22 7 x No. 22	.076	3/64	.68	245	4/64	.77	930
14	8	7 x No. 22	.076	3/64	.68	265 305	4/64	.77	950
14	9	7 x No. 22	.076	3/64	.83	360	4/64 5/64	.82	$1,050 \\ 1,430$
14 14	$\frac{10}{12}$	7 x No. 22 7 x No. 22	.076	3/64	.88	390	5/64	1.00	1,520
14	12	7 X NO. 22	.076	3/64	.91	440	5/64	1.04	1,610
12	1	19 x No. 25	.090	3/64	.21	40	3/64	0.32	260
12 12	2 3	19 x No. 25 19 x No. 25	.090	3/64	.47 x .25		3/64	.53 x .31	395
12	4	19 x No. 25	.090	3/64 3/64	.53	$\frac{170}{205}$	4/64	. 63	715
12	5	19 x No. 25	.090	3/64	.66	250	4/64	.68	815 910
12	6	19 x No. 25	.090	3/64	.72	285	1.001		
12	7	19 x No. 25	.090	3/64	.72	315	4/64 4/64	.81	1,020 $1,050$
12 12	8	19 x No. 25	.090	3/64	.78	370	5/64	.90	
12	9	19 x No. 25 19 x No. 25	.090	3/64 3/64	.88	435	5/64	1.01	1,550
12	12	19 x No. 25	.090	3/64	.93	445 510	5/64 5/64	1.06	$1,640 \\ 1,760$
9	190.10	10 - 37 00					3/04	1.09	1,700
9	1 2	19 x No. 22 19 x No. 22	.127	3/64 3/64	.24	65	3/64	0.35	295
9	3	19 x No. 22	.127	3/64	.63	165 270	4/64 4/64	.68	780 885
9	4	19 x No. 22	.127	3/64	.70	320	4/64	.79	1.030
. 9	5	19 x No. 22	.127	3/64	.77	390	5/64	.89	1,390
9	6 7	19 x No. 22	.127	3/64	.85	455	5/64	.98	1,550
9	7 8	19 x No. 22 19 x No. 22	.127	3/64	.85	500	5/64	.98	1,600
9 9 9	9	19 x No. 22 19 x No. 22	.127	3/64 3/64	1.04	570 665	5/64	1.04	1,750
9	10	19 x No. 22	.127	3/64	1.11	700	5/64 6/64	$\frac{1.17}{1.24}$	2,000 2,450
9	12	19 x No. 22	.127	3/64	1.15	825	6/64	1.31	2,450

# Asbestos-Varnished Cambric insulated power cables

All-asbestos, and asbestos-varnished cambric wires and cables fulfil the need for an insulated conductor suitable for operation under high temperature and flame conditions, beyond that which any other standard conductor insulation can withstand.

In most cable constructions, one or more layers of asbestos are applied alternately with one or more layers of helically applied varnished cambric tape, the latter providing a flexible insulation of high dielectric strength to reinforce the electrical characteristics of the asbestos. The layers of asbestos are saturated with flame-retarding, heatresisting and, usually, moisture-resisting compounds.

Construction details of the various types of this class of wire and cable, together with the class of service for which each type is approved are given in Table 1.

Data given in the succeeding Tables are for the most commonly used types of braid covered, or lead covered cables for industrial plants at working voltages up to 600 volts. Lead sheathed cables may be armoured if desired.

All details are in accordance with the Canadian Engineering Standards Association Specification C 22.2, No. 28 (1st Draft, Sept., 1939).

# CONSTRUCTION DETAILS, ETC., AND THE USES OF THE VARIOUS TYPES OF ASBESTOS INSULATED CONDUCTORS

	General and Special Applications	ASBESTOS-VARNISHED-CAMBRIC POWER WITE AND CABLE FOR general power wiring, either open or in conduit; for use in power plants, industrial plants, boiler rooms and simi- lar places; for use where conductors will be exposed to heat, grease and corrosive fumes, but where no great amount of	moisture is present. Lato-Sheathed Asbestos-Varnished. Cambric Power Cable. Same use as for Type A-1, but where, in addition, the insulation may be subjected to moisture of condensation; owhere the cable is to be submerged in	water.  Water.  Water the wiring of switchboards and other types of control apparatus.	Switchboard Wire and Cable Same use as for Type A.3 but where timed, solid or stranded conductors are desired.	HINGE CABLE For swinging-panel connections; and for general switchboard and panel wiring where a degree of flexibility is required.	Multi-conductor Control Cable For control or signal wiring, either open or in conduit; for use in power stations, boiler rooms or other locations where a multi-conductor cable is required to withstand operating temperatures too high for other general types of insulation.
TOTAL	Voltage Rating	600-V.	.V-009	.V.009	. У-009	600-V.	.V-009
COLUMN	Treatment of Outer Braid	Flame- retarding, heat- and moisture- resisting		Flame- retarding and heat- resisting	Flame- retarding and heat- resisting	Flame- retarding and heat- resisting	Flame. retarding, heat- and moisture- resisting (Does not apply to the protective tape.)
	Treatment of Asbestos Insulation	Flame- retarding, heat- and moisture- resisting	Flame- retarding, heat- and moisture- resisting	Flame- retarding, heat- and moisture- resisting	Flame- retarding, heat- and moisture- resisting	Flame- retarding, heat- and moisture- resisting	Flame- retarding, heat- and moisture- resisting
THE PROPERTY OF	Kind of Outer Covering	Asbestos Braid	Lead Sheath	Cotton Braid	Cotton Braid	Cotton Braid	Cotton braid on each individual conductor and a protective tape followed by an asbestos braid over the assembly of cond's.
2	Kind of Insulation	Varnished- Cambric and Asbestos	Varnished- Cambric and Asbestos	Varnished- Cambric and Asbestos	Varnished- Cambric and Asbestos	Varnished- Cambric and Asbestos	Varnished- Cambric and Asbestos
	Kind of Conductor	Solid or Stranded up to 4/0 B. & S. G.; Stranded only above 4/0 B. & S. G.	Stranded only	Stranded	Solid or Stranded (Tinned)	Flexible- Stranding only (Tinned)	Flexible- Stranded Conductors (Tinned)
	Size of Cond'r., MCM. or B. & S. G.	14 B. & S. Gauge to 1,000 MCM.	14 B. & S. Gauge to 1,000 MCM.	14 B. & S. Gauge to 1,000 MCM.	14 to 4/0 B. & S. Gauge	14 to 8 B. & S. Gauge	9 and 12 B. & S. Gauge
	Type Desig- nation	Type A.1	Type A-2	Type A-3	Type A-4	Type A-5	Type A-6

# CONSTRUCTION DETAILS, ETC., AND THE USES OF THE VARIOUS TYPES OF ASBESTOS INSULATED CONDUCTORS

					199
General and Special Applications	ALL-ASBESTOS POWER WIRE AND CABLE For open wiring, and the wiring of switchboards, control panels; for wiring in the vicinity of furnaces, bake-ovens, hotel and restaurant cooking ranges and similar locations where a heat-resisting and flame-retarding insulation is desirable and where the wiring is exposed to	HEAD-LIGHT CABLE For use as cab and instrument-light Whiring on steam locomotives, and similar uses where heat and grease are present, but no great amount of	ABBERTOS-V ARNISHED-CAMBRIC APPARATUS CABLE For flexible leades of motors and trans- formers, coil connections and for the internal wiring of machinery in mines, in power-plants, steel-mills, foundries, boiler-rooms and on cranes; or for open wring or in conduit; where wiring is exposed to heat, grease, and corrosive fumes, but where no great amount of	ALL-ABBERGOS APPARATUS CABLE For use where flexible leads must be operated under high-temperature conditions such as leads on electric furnaces.	ALL-ASBESTOS EXTRA-FLEXIBLE CABLE For motion-picture projectors, arclamps, spot-lights, stage-lights, search-lights, electric cranes and controllers, etc., where extreme flexibility of the conductor is required and where the insulation is subjected to high temperatures.
Voltage Rating	600-V.	.V.000	.V-009	600-V.	300-V.
Treatment of Outer Braid	Flame- retarding and heat- resisting	Flame- retarding, heat- and moisture- resisting	Flame- retarding, heat- and moisture resisting	Flame- retarding, heat- and moisture- resisting	Flame- retarding and heat- resisting
Treatment of Asbestos Insulation	Flame- retarding and heat- resisting	Flame- retarding, heat- and moisture- resisting	Flame- retarding, heat- and moisture- resisting	Flame- retarding, heat- and moisture- resisting	Flame- retarding and heat- resisting
Kind of Outer Covering	Asbestos Braid	Cotton	Asbestos Braid	Asbestos Braid	Asbestos Braid
Kind of Insulation	Asbestos	Varnished- Cambric and Asbestos	Varnished- Cambric and Asbestos	Asbestos	Asbestos
Kind of Conductor	Solid or Stranded up to 4/0 B. & S. G.; Stranded only above 4/0 B. & S. G. (Tinned or Untinned)	Flexible-Stranding only (Tinned)	Flexible Stranding (Tinned)	Flexible- Stranding only (Tinned)	Extra- Flexible Stranding only
Size of Cond'r., MCM. or B. & S. G.	14 B. & S. Gauge to 1,000 MCM.	16 to 10 B. & S. Gauge	14 B. & S. Flexible-Gauge Strandin to only 1,000 MCM. (Tinned)	14 B. & S. Gauge to 500 MCM.	14 to 4/0 B. & S. Gauge
Type Desig- nation	Type A-7	Type A-8	A-9	Type A-10	Type A-11

# CONSTRUCTION DETAILS, ETC., AND THE USES OF THE VARIOUS TYPES OF ASBESTOS INSULATED CONDUCTORS

General and Special Applications	ALL-ASBESTOS TWO-CONDUCTOR CORD For use as cab and instrument-light wiring on steam locomotives, and as carbasion cord in steel-mills, kiln-rooms and similar bot locations.	ASBESTOS-VARNIBED-CAMBRIC TWO-CCANDUCTOR CORD Same use as for Type A-12, but where, in addition, the insulation may be exposed to grease, but where no	great amount of moisture is present. Asbrasorov-Varnishen-Cambric Two-conductor Cord Same use as for Type A-13 but at a higher voltage.	Srove Wire And Carle For the wiring of electric stoves, ranges and similar electrical appliances.	APPLIANCE LEAD-WIRE AND CABLE For the wiring of sandwich toasters, grills and waffle-irons.	STOVE WIRE AND CABLE FOR the Writing of electric stoves, ranges and similar electrical appliances where the temperature to which the conductivit subjected will not exceed 100 deg. C. (212 deg. F.), excluding the part one inch from the element terminals.
 Voltage Rating	300-V.	300-V.	600-V.	300-V.	300-V.	300-V.
Treatment of Outer Braid	Flame- retarding, heat- and moisture- resisting	Flame- retarding, heat- and moisture- resisting	Flame- retarding, heat- and moisture- resisting	Flame- retarding and heat- resisting t	d-	
Treatment of Asbestos Insulation	Flame- retarding, heat- and moisture- resisting	Flame- retarding, heat- and moisture- resisting	Flame- retarding, heat- and moisture- resisting	Flame-re- I tarding and rheat-resist- a ing or r flame-re- tarding, heat and moisture resisting	Flame-retarding and heat-resisting or flame-retarding, heat-and moisture.	resisting Flame- retarding heat- and moisture- resisting
Kind of Outer Covering	Asbestos Braid	Asbestos Braid	Asbestos Braid	Asbestos Braid	None	None
Kind of Insulation	Asbestos	Varnished- Cambric and Asbestos	Varnished- Cambric and Asbestos	Varnished- Cambric and Asbestos	Plain Asbestos	Varnished- Cambric and Asbestos
Kind of Conductor	Flexible. Stranding only	Flexible- Stranding only	Flexible. Stranding only (Tinned)	Solid or Stranded (Copper or Nickel)	Solid or Stranded (Copper or Nickel)	Solid or Stranded
Size of Cond'r., MCM. or B. & S. G.	18 to 10 B. & S. Gauge	18 to 10 B. & S. Gauge	18 to 10 B. & S. Gauge	18 to 4 B. & S. Gauge	18 to 8 B. & S. Gauge	18 to 8 B. & S. Gauge
Type Desig- nation	Type A-12	Type A-13	Type A-14	Types A-15 (copper) A-15N (nickel)	Types A-16 (copper) A-16N (nickel)	A-17

# ASBESTOS - VARNISHED CAMBRIC INSULATED BRAID COVERED CABLE



SINGLE CONDUCTOR SOLID and STRANDED

TYPE "A-1"

Code		Conductor Size S. C.M.	Strand- ing		T)	nsulati hickned Inches V.C.	ess, s	Thick-	Over- all Diam., Ins.	Wght.	Aver. Resist- ance Ohms/ 1,000' @ 25°C.
OFABD	14	4,107	Solid	.064		.025	.020	.045	.245	30	2.575
OFACF OFAHK	14 12		7/.0242	.073		.025	.020	.045	.255	35	2.627
OFAJL	12	6,530	Solid 7/.0305	.081	::::	$.025 \\ .025$	.020	.045	.265		1.619
OFALN	10		Solid	.102			$.020 \\ .020$	$.045 \\ .045$	.275 $.285$		1.652 1.018
OFAMP	10		7/.0385	.116		.025	.020	.045	.300	70	1.039
OFAVY OFAWZ	8	16,510	Solid	.128		.025	.020	.045	.310	80	0.641
OFBAD	6		7/.0486 Solid	$.146 \\ .162$			.020	.045	.325	95	.654
OFBIG	6	26,250	7/.0612	.184	.015 $.015$	.030	$.020 \\ .020$	$.045 \\ .045$	.385	140	.403
OFFIT	SF E	/			.010			.045	.405	145	.410
OFBUJ	5	33,100	Solid	.182	.015	.030	.020	.045	.400	160	.320
OFCOJ	4		7/.0688 Solid	.206 $.204$	.015	.030	.020	.045	.430	170	.326
OFCYL	4		7/.0772	.232	.015 $.015$	.030	.020	$.045 \\ .045$	.425	195	.253
OFDIJ	3	52,640	Solid	.229	.015	.030	.020	.045	$.455 \\ .450$	200 235	.259
OFDYM	3	52,640	7/.0867	.260	.015	.030	.020	.045	.480	240	.205
OFEJM	2	66,370	Solid	.258	.015	.030		.045	.480	. 280	.159
OFELP OFEPS	1	66,370	7/.0974	.292	.015	.030	.020	.045	.515	290	.162
OFERV	1	83,690 83,690	Solid	.289	.015	.030		.045	.530	. 350	.126
			19/.0664	.332	.015	.030	.030	.045	.575	. 375	.129
OFETY	1/0		Solid	.325	.015	.030	.030	.045	.565	425	.100
OFEVZ	1/0	105,500	19/.0745	.373	.015	.030	.030	.045	.615	480	.102
OFEWB OFEZD	2/0 2/0	133,100 133,100	Solid	.365	.015	.030	.030	.045	.610	545	.0795
OFFAH	3/0	167,800	19/.0837 Solid	.418	.015 $.015$	.030	.030	.045	.660	575	.0811
							.030	.045	.650	660	.0630
OFFGO	3/0 4/0	167,800 211,600	19/.0940	.470	.015		.030	.045	.710	690	.0642
OFFJA	4/0		Solid 19/.1055	$.460 \\ .528$	.015	.030	.030	.045	.700	800	.0500
OFFYN		250,000	37/.0822	.575	.015 $.030$	$.030 \\ .040$	$.030 \\ .040$	$.045 \\ .045$	.770 .885	840	.0509
OFGAJ			37/.0900	.630	.030		.040	.045	.940	$1,020 \\ 1,190$	.0431 $.0360$
OFGUN		350,000	37/.0973	.681	.030						
OFGYP		400,000	37/.1040	.728	.030	.040	$.040 \\ .040$	.045	0.995 $0.995$ $0.995$	1,360 1,530	.0308
OFHIM		450,000	37/.1103 37/.1162	.772	.030	.040	.040	.045		1,700	$.0270 \\ .0240$
OFICH		500,000	37/.1162	.814	.030	.040	.040	.045	1.125	1.860	.0216
OFIFK	• • •	550,000	61/.0950	.855	.030	.040	.040	$.045 \\ .045$	1.165	2,030	.0196
OFIJN		600,000	61/.0992	.893	.030	.040	.040	.045	1.205	2,200	.0180
OFIPT	• • •	650,000	61/.1032	.929	.030	.040	.040	.045	1.240	2.360	.0166
OFIXD	:::		61/.1071 61/.1109	.964 .998	.030	.040	.040	.045		2,530	.0154
OFJYR		800,000	61/.1145	1.031	.030		$.040 \\ .040$	$.045 \\ .045$		2,690 2,860	.0144
OFKLO		900,000	61/.1215	1 003	.030						
		1,000,000	61/.1280	1.152		.040	.040		$1.405 \\ 1.465$	3,190	.0120 $.0108$
-							.010	.010	1.400	0,010	.0108

# ASBESTOS - VARNISHED CAMBRIC INSULATED LEAD SHEATHED CABLE



SINGLE CONDUCTOR

TYPE "A-2"

Code Size Strand Bare Inches Thick- al ness, Dia B. & S. C.M. Ins. 1st 2nd Ins. In Asb. V.C. Asb.	
OFLOR 14 4,107 7/.0242 .073 .015 .030 .030 2/64 .2	
OTI TIME 10 1000 17 1000 1010 1000 1000 1000 10	
OF 10 000. 000. 010. 010. 000. 000 000 000	
OF 110	
OFMIR 6 26,250 7/.0612 .184 .015 .030 .030 4/64 .4	0 490 .410
OFMOS 5 33,100 7/.0688 .206 .015 .030 .030 4/64 .4	5 540 .326
OFMUT 4 41,740 7/.0772 .232 .015 .030 .030 4/64 .5	
OFMYV 3 52,640 7/.0867 .260 .015 .030 .030 4/64 .5	
OFNER 2 66,370 7/.0974 .292 .015 .030 .030 4/64 .5	0 715 .162
OFNIS 1 83,690 19/.0664 .332 .020 .030 .030 4/64 .6	0 890 .129
OFNOT 1/0 105,500 19/.0745 .373 .020 .030 .030 4/64 6	
OFFICE 0/0 .000 .000 .000 .000 .000 .000 .000	
OFNUV 2/0 133,100 19/.0837 .418 .020 .030 .030 4/64 .7 OFOGM 3/0 167,800 19/.0940 .470 .020 .030 .030 4/64 .7	
OFOHN 4/0 211,600 19/.1055 .528 .020 .030 .030 4/64 .8	
OFOJP 250,000 37/.0822 .575 .030 .040 .040 5/64 .9	
	0 2,010 .0101
OFONT 300,000 37/.0900 .630 .030 .040 .040 5/64 1.0	0 2,270 .0360
OFORY 350,000 37/.0973 .681 .030 .040 .040 5/64 1.0	0 2,500 .0308
OFOSZ 400,000 37/.1040 .728 .030 .040 .040 5/64 1.1 OFOWD 500,000 37/.1162 .814 .030 .040 .040 5/64 1.1	
OFDAD 200 001 0000 001 000 000 000 000 1.1	
OFPAR 600,000 61/.0992 .893 .030 .040 .040 6/64 1.3	5 3,930 .0180
OFPES 750,000 61/.1109 .998 .030 .040 .040 6/64 1.4	0 4.570 .0144
OFPIT 800,000 61/.1145 1.031 .030 .040 .040 6/64 1.4	
OFPOV 900,000 61/,1215 1,093 030 040 040 6/64 1 5	
OFPRE 1,000,000 61/.1280 1.152 .030 .040 .040 6/64 1.5	
	,

# ASBESTOS - VARNISHED CAMBRIC INSULATED LEAD SHEATHED CABLE



THREE CONDUCTOR

TYPE "A-2" (M)

Code		onductor Size S. C.M.	Strand- ing, Each Cond.	Diam. Bare Cond., Ins.	Ti 1st	sulati nickne Inches	ss,	Thick- ness,		Net Wght. Lbs./ 1,000'	Aver. Resist- ance Ohms/ 1,000' @, 25°C.
-		and the second									
OFRAT	14	4,107	7/.0242	.073	.015	.030	.030	4/64	.621	625	2.627
OFROY	12	6,530	7/.0305	.092	.015			4/64	.662		1.652
OFRUZ	10	10,380	7/.0385	.116	.015		.030	4/64	.715		1.039
OFSAV	8	16,510	7/.0486	.146	.015	.030	.030	4/64	.780		0.654
OFSIX	6	26,250	7/.0612	.184	.015	.030	.030	5/64	.890	1,310	.410
OFSOZ	-	00 100		1	V 16 15 1					-,	
OFSTO	5	33,100	7/.0688	.206	.015			5/64	.940	1,440	.326
OFSUB	4	41,740	7/.0772	.232	.015			5/64	.995	1,600	.259
OFSVE	3 2	52,640	7/.0867		.015			5/64	1.05	1,780	.205
OFSWA	1	66,370	7/.0974	.292	.015		.030	5/64	1.12	2,010	.162
OFSWA	/ 1	83,690	19/.0664	.332	.020	.030	.030	6/64	1.26	2,620	.129
OFSTIZ	1/0	105,500	10/ 0745	070	000						
OFSOB	2/0	133,100	19/.0745	.373	.020				1.35	2,970	.102
OFSUC	3/0	167,800	19/.0837	.418	.020	.030	.030		1.45	3,390	.0811
OFSVO	4/0	211,600	19/.0940 19/.1055	.470	.020		.030		1.56	3,890	.0642
OFSWE	1/0	250,000	37/.0822	.528	.020	.030			1.72	4,930	.0509
315111		200,000	31/.0022	.575	.030	.040	.040	7/64	1.95	5,780	.0431
OFUGN		300,000	37/.0900	.630	020	.040	040	7104	0.00	0 450	0000
OFULS		350,000		.681	.030		.040		2.06	6,470	.0360
OFUMT		400,000	37/.1040	.728	.030	.040	.040	8/64	2.17	7,150	.0308
OFURZ		500,000	37/.1162	.814	.030	.040	.040	8/64	$\frac{2.30}{2.49}$	8,490	.0270
OFUSB		600,000	61/.0992	.893	.030	.040	.040	8/64		9,710	.0216
		200,000	-17.0002	.000	.000	.010	.040	0/04	2.00	11,020	.0180
OFUVD		750,000	61/.1109	.998	.030	.040	.040	8/64	2.89	12.950	.0144
OFVAY		800,000	61/.1145	1.031	.030	.040	.040	8/64		13,560	.0135
OFVEZ		900,000	61/.1215	1.093	.030	.040	.040	8/64		14.780	.0120
OFVIB		1,000,000	61/.1280	1.152	.030	.040	.040	8/64		16,010	.0120
								0,01	0.22	10,010	.0108
										* 1	

### ALL-ASBESTOS INSULATED BRAID COVERED CABLE



SINGLE CONDUCTOR SOLID and STRANDED

TYPE "A-7"

Code		nductor Size	Strand- ing	Diam. Bare Cond., Ins.	Insula- tion Thick- ness, Ins. Asbesto	Braid Thick- ness, Ins.		Weight Pounds	Aver. Resistance Ohms/ / 1,000' @ 25°C.
OGCYG OGDAB OGDDO OGDEC OGDFE	14 14 12 12 10	4,107 4,107 6,530 6,530 10,380	Solid 7/.0242 Solid 7/.0305 Solid	.064 .073 .081 .092 .102	.040 .040 .040 .040 .040	.045 .045 .045 .045	.235 .245 .255 .265 .275	36 38 46 48 60	2.575 2.627 1.619 1.652 1.018
OGDID OGDOF OGDUG OGDYH OGEBZ	10 8 8 6 6	10,380 $16,510$ $16,510$ $26,250$ $26,250$	7/.0385 Solid 7/.0486 Solid 7/.0612	.116 .128 .146 .162 .184	.040 .040 .040 .060 .060	.045 .045 .045 .045 .045	.290 .300 .320 .375 .395	63 85 88 120 135	1.039 0.641 .654 .403 .410
OGEFD OGELK OGETS OGEVT OGEZY	5 5 4 4 3	33,100 $33,100$ $41,740$ $41,740$ $52,640$	Solid 7/.0688 Solid 7/.0772 Solid	.182 .206 .204 .232 .229	.060 .060 .060 .060	.045 .045 .045 .045 .045	.390 .420 .415 .445 .440	145 160 170 190 208	.320 .326 .253 .259 .201
OGFAC OGFED OGFIF OGFOG OGFUH	3 2 2 1 1	52,640 66,370 66,370 83,690 83,690	7/.0867 Solid 7/.0974 Solid 19/.0664	.260 .258 .292 .289 .332	.060 .060 .060 .090	.045 .045 .045 .045 .045	.470 .470 .505 .560 .605	228 255 275 330 390	.205 .159 .162 .126 .129
OGFYJ OGGAD OGGEF OGGHE OGGIG	1/0 1/0 2/0 2/0 3/0	105,500 105,500 133,100 133,100 167,800	Solid 19/.0745 Solid 19/.0837 Solid	.325 .373 .365 .418 .410	.090 .090 .090 .090	.045 .045 .045 .045 .045	.595 .645 .635 .690 .680	400 465 490 558 635	.100 .102 .0795 .0811 .0630
OGGJA OGGOH OGGUJ OGGYK OGHAF	3/0 4/0 4/0 	167,800 211,600 211,600 250,000 300,000	19/.0940 Solid 19/.1055 37/.0822 37/.0900	.470 .460 .528 .575 .630	.090 .090 .090 .120 .120	.045 .045 .045 .045	.740 .730 .800 .905 .960	675 775 820 985 1,224	.0642 .0500 .0509 .0431 .0360
OGHEG OGHIH OGHOJ OGHIL	  	350,000 400,000 450,000 500,000 550,000	37/.0973 37/.1040 37/.1103 37/.1162 61/.0950	.681 .728 .772 .814 .855	.120 .120 .120 .120 .120	.045 .045 .045 .045	1.015 1.060 1.105 1.145 1.185	1,322 1,488 1,655 1,820 2,000	.0308 .0270 .0240 .0216 .0196
OGIXY OGJAG OGJEH OGJIJ OGJOK		600,000 650,000 700,000 750,000 800,000	61/.0992 61/.1032 61/.1071 61/.1109 61/.1145	.893 .929 .964 .998 1.031	.120 .120 .120 .120 .120	.045 .045 .045 .045	1.225 1.260 1.295 1.330 1.365	2,152 2,320 2,483 2,645 2,800	.0180 .0166 .0154 .0144 .0135
OGJUL OGJYM	:::	900,000	61/.1215 61/.1280	1.093 1.152	.120	.045	1.425 1.485	3,142 3,473	.0120

# ASBESTOS-VARNISHED CAMBRIC INSULATED BRAID COVERED CABLE



SINGLE CONDUCTOR
FLEXIBLE STRANDED—TINNED

TYPE "A-9"

Code	Co	onductor Size	Strand-	Diam. Bare	Th	sulati ickne Inches	SS,	Braid Thick-		Net Wght.	Aver. Resistance Ohms/
Code	3. & 8	S. C.M.	ing	Cond., Ins.	1st Asb.	v.c.	2nd Asb.	ness, Ins.	Diam., Ins.	Lbs./ 1,000'	1,000' @ 25°C.
-	Land V				2.4		w 2				1
OFVOC	14	4,107	41/.010	075	010	.030	015	.045	.275	40	0 700
OFVUD	12	6,530	65/.010	.095	010	.030	.015	.045	.275	40	$\frac{2.769}{1.747}$
OFWAZ	10	10,380	105/.010			.030		.045	.320		1.081
OFWEB	. 8	16,510	133/.0112	.168		.030		.045	.370		0.702
OFWIC	6	26,250	133/.0141	.212	.010	.030	.015	.045	.415	147	.438
OFWOD	_	00 100								100	. 200
OFWUF	5		133/.0158			.030		.045	.440	165	.349
OFWYG	4 3	41,740	133/.0177		.010	.030	.015	.045	.470	202	.278
OFYBE	2		133/.0199		.010	.030		.045	.500	248	.220
OFYCA	1		133/.0224 259/.0180		.010		.015	.045	.540	309	.170
or ron	-	00,000	209/.0180	.378	.015	.030	.030	.045	.620	381	. 139
OFYZO	1/0	105 500	259/.0202	191	.015	020	020	045	000	400	
OFZDA	2/0	133,100	259/.0227	.477	.015	.030 $.030$		.045	.665	460	.110
OFZYJ	3/0	167,800	259/.0255	.536	.015	.030		$.045 \\ .045$	.720	560	.0856
OGABY	4/0	211,600	259/.0286		.015		.030	.045	.775	684 826	.0679
OGAGD			427/.0242	.653	.020	.040	.040	.045	.945	1.013	.0540 $.0459$
				.000	.020	.010	.010	.040	. 340	1,013	.0459
OGALJ		300,000	427/.0265	.716	.020	.040	.040	.045	1.010	1,181	.0383
OGAMK		350,000	427/.0286		.020		.040		1.065	1.357	.0329
OGARP		400,000	427/.0306	.826	.020	.040	.040		1.120	1.543	.0287
OGAVS		450,000	427/.0325		.020	.040	.040		1.170	1.734	.0255
OGAWT		500,000	427/.0342	.923	.020	.040	.040		1.215	1,895	.0230
OGBAY		EE0 000	407 : 0050	0.00	000						
OGBEZ	:::	600,000	427/.0359	.969	.020		.040		1.260	2,073	.0209
OGBIB	:::	650,000	427/.0380 427/.0390	1.027	.020	.040	.040		1.320	2,239	.0186
OGBOC		700,000	427/.0390	1.000	$.020 \\ .020$	.040	.040		1.345	2,408	.0177
OGBUD	:::	750,000	427/.0420	1 124	.020	$.040 \\ .040$	.040		1.380	2,580	.0166
		.00,000	12.7.0420	1.104	.020	.040	.040	.045	1.425	2,759	.0152
OGCAZ		800,006	427/.0427	1.153	020	040	040	045	1.445	2 024	0147
OGCEB		850,000	427/.0446	1.204	.020	040	.040		1.445	2,924 3,082	.0147 $.0135$
OGCIC		900,000	427/.0453	1.222	.020		.040		1.515	3,263	.0133
OGCOD		950,000	427/.0472	1.274	.020	.040	.040		1.565	3,424	.0121
OGCUF		1,000,000	427/.0480	1.295	.020	.040	.040		1.585	3,590	.0117
						M Bate				0,000	.011.
		*			t close			-			-

# "STANDARD" CABLES FOR MINES Mill and Underground

The application of wire and cable to mines, both above and below ground requires, quite frequently, special consideration, due to the unusual conditions encountered. Extreme moisture is usual below ground, considerable condensation and damp atmosphere in the mill buildings; and in many cases the moisture is combined with chemicals which would rapidly injure many of the standard protective materials.

The reduction of fire hazard is of course of particular importance.

Canada Wire & Cable Company's engineers maintain close contact with mining electrical development and are therefore competent to recommend the most suitable cable for any condition. Some of the special cables listed below are the result of close co-operation with mine electrical engineers, who have suggested various features in make-up.

### INSULATION

Since the working voltage below ground and in the mill buildings rarely exceeds 4,000 volts, and excessive moisture is a common condition, rubber is the preferred insulation. For hot locations in mill buildings, asbestos-varnished cambric insulation is recommended.

Power feeders between distribution substations located above ground are usually paper insulated lead sheathed cables installed in ducts, or double steel tape armoured and installed directly in the earth.

### PROTECTIVE COVERING

For protection against moisture a lead sheath, or rubber sheath is recommended, lead being preferred for all important power or control cables. Where local rules do not permit the use of a rubber sheath due to the danger of fire, a NEOPRENE sheath is recommended.

Where severe abrasion may occur during installation, or mechanical protection is required, a steel wire or steel tape armour is recommended. Vertically suspended cables, as in mine shafts require a steel wire armour as described on pages 23-25. Double steel tape armouring is suitable for non-vertical cables.

Smaller control, signal, or telephone cables may be armoured with interlocking steel tape armour as described in this section under "TECK" flexible armoured cable.

### PROTECTION FROM CORROSION

For protection against ordinary rusting from dampness, galvanized steel wire or tape is generally sufficient, although for cables permanently buried in the ground, impregnated jute covered steel tape armour is recommended. This type of cable is illustrated and described on page 20.

Where injurious chemicals are present, special precautions are necessary to protect metallic armouring. In most cases, a coating of Venezuelan asphalt over the armouring itself and in the overall jute, if the latter is used, is sufficient. This treatment has been found particularly suitable as a protection against weak sulphuric or sulphurous acid solutions,—a condition of frequent occurrence. Usually the coating is factory applied, and retouched by hand application of cold asphaltic compound after installation where necessary.

Where cyanide is present, copper armouring has proved most suitable. For large cables, however, this is usually too expensive, but is frequently used in the form of interlocking tape on "Teck" and similar small cables. Large armoured cables are protected with a coating of Venezuelan asphalt as previously mentioned.

Rubber, or Neoprene jacketted cables are also particularly resistant to injury from the more common chemicals, but their use is frequently limited due to the desirability of more adequate mechanical protection.

Many combinations of protective coverings are available to suit special conditions and Canada Wire and Cable Co's engineers will be pleased to make recommendations for any specific condition.

The following are some of the many types of mining cable available:

### STEEL WIRE ARMOURED

For permanent shaft installation, see pages 23-25.

### DOUBLE STEEL TAPE ARMOURED

For permanent distribution systems between substations, mill buildings, etc., or for main feeders in the buildings themselves, and distribution in the mine, except shaft installation, see pages 20-22.

### SUPER MILL CABLE

For control, lighting, and small motor circuits above or below ground, especially where moisture or chemical conditions make conventional wiring methods and metallic protection impractical or short-lived.

Consists of 2 or 3 tinned stranded copper conductors insulated with 30% rubber, each conductor having an identifying coloured rubber. Insulated conductors are cabled together with strong jute fillers with a rubber faced tape over the core.

Over all is a double rubber jacket, the inner jacket being of 30% rubber, and the outer 40% rubber. Between the two jackets is a tinned copper braid, serving both as a ground shield and as a reinforcement for the jacket. This jacket is not flame-resistant and therefore cannot be used as permanent wiring in some localities. Where a flame-resistant jacket is obligatory, a Neoprene outer jacket is acceptable.

### TYPE "S" FLEXIBLE ARMOURED

For shaft and mill installation. Has not as much mechanical protection as steel wire armoured cable, nor the longitudinal strength, and must be frequently supported during installation and in service in the shaft. The conductor insulation is protected by the high grade rubber jacket against air and moisture. Eliminates necessity of conduit in mills. Light, flexible and easy to handle. Excellent in three conductor for small power circuits and two conductor for underground lighting and telephone.

### "TECK" FLEXIBLE ARMOURED

For shaft and mill installation. Similar to Type "S." except the rubber jacket is of 30% rubber and is not lead moulded. The jacket accordingly is not as resistant to abrasion, but this quality is not essential under the armour. This type of cable is cheaper than the Type "S." Armoured.

### TYPE "S" LEAD COVERED

For shaft and mill installation. The lead sheath adds to the weight of the cable, but provides excellent protection against flame, oil and oxidation. Heavier than Type "S." Armoured, and must be supported at frequent intervals during installation and in service in the shaft.

### PLAIN LEAD COVERED

For mill installation in ducts, conduit, or cableways, that is, where the cable is not exposed to mechanical injury. The substantial lead sheath seals the conductor insulation against the effect of air and moisture.

### TYPE "S" PLAIN

For shaft installation. Light, flexible and easy to handle, but without the mechanical protection of the armoured cables. Must be supported at frequent intervals during installation, and in service to relieve the conductors of cable weight. This type of cable is not protected against fire. The high grade lead moulded 40% rubber jacket is of the same quality as Type "S." Rough Usage Cables, and is recommended in preference to the other types of non-armoured cables.

### "TECK" PLAIN

For shaft installation. Similar in construction to Type "S." Plain except that the rubber jacket is of 30% rubber, not lead moulded, and is not as resistant to abrasive wear. The overall tape facilitates handling in wet locations during installation. Offered as an alternative to Type "S." where low first cost is a major factor. Must be supported at frequent intervals during installation and in service. Not flameproof.

### McINTYRE SPECIAL

For shaft installation. This type of cable has been installed in a number of mines to reduce first cost. We recommend Type "S." plain or "Teck" plain in preference, due to the higher quality of the rubber jacket on these cables for the protection of the conductor insulation. McIntyre Special is not flameproof, and requires supporting at frequent intervals similar to Type "S." and "Teck."

### INSTALLATION OF CABLES

Several excellent publications are available giving information on the construction of underground conduit systems and the methods of installing and jointing cables; among which are the "Underground Systems Reference Book" published in 1931 by the National Electric Light Association, and "Electrical Distribution Engineering" by H. P. Seelye, published in 1930. The notes which follow cover the subject only in a general way, details being readily available in the above-mentioned publications and many others.

### TYPE OF INSTALLATION

Many factors influence the type of cable installation to be employed, among which are the physical and sometimes chemical or thermal conditions along the cable route, the cost of the installation in relation to its importance and occasionally the electrical limitations of the cable itself. It is important to note that the cable to be used is closely related to the manner in which it is to be installed, and to the conditions to which it will be subjected after installation.

In general, there are five types of installation as follows:

- (a) Underground, in ducts.
- (b) Underground, buried directly in earth.
- (c) Overhead, on messenger wire or clamped to parts of buildings or other structures, either outdoors or indoors.
- (d) Vertically, in shafts or bore-holes.
- (e) Submarine.

### (a) UNDERGROUND, IN DUCTS

For important installations, where future growth of electrical load, necessitating the installation of additional cables at a later date is probable, or where maximum operating flexibility is desired, and quick replacement of sections in trouble is essential, this type of installation is ideal.

### Materials

Modern duct systems comprise a number of fibre, asbestos, or single way vitrified clay tile conduits, encased in concrete with 1-1/2" to 2" thickness of concrete between conduits, buried in the ground to a minimum depth usually about 30". Multiple tile duct may be used for communication cables but not for power cables.

### Size of Conduits

Conduits vary from 2" to 5" in diameter, 3-1/2" and 4" diameter conduits being the most common. The modern trend is decidedly toward the use of larger conduits. Very few of the important users are installing conduits smaller than 4" diameter.

For new power cable installations, it is good practice to install a duct having a diameter about 1" larger than the diameter of the cable. This will ensure ease in pulling in the cable, besides providing for its possible replacement by a slightly larger cable in the future. Larger ducts permit more "snaking" of the cable during load cycles and decrease the amount of working of the lead sheath at the duct mouth.

### **Duct Location and Design**

Several factors govern the location and route of a duct system, among which are:

- (1) The most desirable location of manholes.
- (2) Avoiding surface or sub-surface obstructions.
- (3) Avoiding curves in the duct system as far as possible.

In designing the arrangement of the ducts, it is important to keep in mind that the heat generated by the cables is dispersed radially outwards in all directions through the soil. From this consideration therefore, it is important to ensure that the duct system is surrounded with soil having good heat conductivity. Cinders or loose stone for this reason should not be used in back-filling. It is advisable also to so arrange the ducts that all heavily loaded cables may be installed in "outside" ducts, i.e., in those nearest the surrounding soil. Cinder back-fill is particularly objectionable as likely to provide conditions injurious chemically and electrolytically to the lead sheath.

Where the arrangement of ducts is such that some are "interior" ducts; for example, in a layout having four rows, with four ducts in each row, it is usual to reserve, if possible, all interior ducts for such cables as control, communication, or signal cables which generate little or no heat.

Manhole location is governed generally by the necessity for branch feeders, changes in direction of the duct system, cable terminations, and in the case of long runs, intermediate manholes are necessary to ensure ease in pulling the cable without injury. In the latter case, the spacing of manholes depends upon the size of the cable.

Plain lead sheathed cable is generally used for installation in duct systems. Where soil conditions are such as to provide solutions in wet ducts likely to attack the lead sheath, special coverings for protection of the lead can be applied.

Since plain lead sheathed cables are generally used in underground duct systems, an important precaution in installation is that of ensuring that the lead sheath is not damaged. Chipped ducts if clay tile ducts are used, rusted steel conduits, pieces of cement or other hard substances left in the duct system, have caused serious damage to lead sheaths.

It is important, therefore, to ensure that the duct system is thoroughly clean before commencing to pull in the cable. In addition, the liberal use of a lubricant such as soapstone or grease, applied to the cable at the duct mouth is recommended.

Excessive bending of the cable is another cause of injury, not only to the lead sheath, but to the insulation, especially paper or varnished cambric.

Sheath failures have occurred also by abrasion of the duct mouth in manholes, particularly where the cable is permitted to lie over a sharp or rough edge at the end of the duct. In this case, abrasion is accelerated by elongation and contraction of the cable due to the heating and cooling in conformity with changes in the electrical load. Duct mouth shields having a rounded edge are available; these shields being suitable for installing in the duct mouth after the cable has been installed.

Proper manhole space and training is necessary to provide for the expansion and contraction and prevent the consequent bending concentrating at one point causing transverse cracking of the lead at that point.

Excessive pulling strain must also be avoided, a common mistake being the attempt to pull the cable around too sharp a bend.

# (b) UNDERGROUND, BURIED DIRECTLY IN EARTH

This method is preferred for isolated circuits where an increase in load, requiring additional cables is not expected; for example, exterior lighting, railway signals, etc., or where the cost of a duct system is not warranted.

In installing a cable by this method, the cable is laid at the bottom of a trench usually from 18" to 30" deep. If two or more cables are to be installed, a separation of at least 6" is recommended between cables.

In back-filling, care should be taken to ensure that the cables are surrounded by soil having good heat conductivity,—loose stone or cinders are therefore to be avoided.

Steel tape armoured, lead sheathed cables are best for this type of installation, since the armouring may be relied upon to protect the cable from damage from sharp stones, or other injurious material either during or after installation.

Where future excavation work near the site of the buried cable is probable, it is advisable to guard the cable against damage during excavation, by placing a warning or protective material over the cable throughout its length. For this purpose, a specially developed clay brick, or creosoted

wood planking is commonly used, laid on top of the first 2" or 3" of soil covering the cable with the back-fill laid thereover. Untreated planking should not be used. In addition, where possible, it is advisable to place markers at ground surface denoting the location of the cable.

# (c) OVERHEAD ON MESSENGER WIRE OR CLAMPED TO WALLS, ETC.

### (1) On Messenger Wire

This method is used occasionally where underground installation is not feasible, particularly where space can be obtained on an existing transmission pole line. It is used occasionally also in industrial plants between buildings or in tunnels, and is particularly favoured in mines.

Where the cable is not likely to be mechanically damaged after installation, for example, on a transmission pole line, an unarmoured lead sheathed cable may be used, the lead sheath having included in it a small percentage of antimony to assist in preventing vibration failures, and "grooving" at the suspension rings.

For installation in tunnels, a galvanized steel tape armoured, lead sheathed cable is recommended.

It is important to note that exposure to the heat of the sun results in a very material reduction in the allowable current carrying capacity of the cable.

### (2) Clamped to Building Walls, Etc.

This is a convenient method of installing distribution feeders in industrial plants and other large properties, particularly for the larger feeders which otherwise would require the use of heavy conduit. Quite frequently the overall cost of this type of installation is appreciably lower than the equivalent conduit installation, especially where bends and offsets are required.

For exterior installation, jute covered double steel tape armoured lead sheathed cable is generally used, and for interior installation, galvanized double steel tape armouring is preferred. The cable should be loosely supported in clips about 4 or 5 feet apart. Varnished cambric, or rubber insulated cable is generally used for branch feeders in industrial buildings, in which case, connection to distribution panels and junction boxes is made by means of standard box connectors, locknuts and bushings, as used for the nearest size of flexible conduit.

Main feeders, however, quite frequently are paper insulated cables, requiring Ozite-filled potheads at each connection.

(3) Supported on Racks, or Cable Trays in Power Houses, Cable Tunnels, Etc.

This is often a convenient method of installing cable, since advantage can frequently be taken of available unobstructed space in existing tunnels or on walls. Here, plain lead sheathed cables may be used provided that there is no danger from damage to the sheath after installation. Galvanized armoured cable is recommended where such a danger exists.

Where metal trays or continuous shelves are used, provision should be made to permit the cable to expand longitudinally without falling off the support. A wide tray, permitting the cable to "snake" or a number of smooth blocks placed under the cable at intervals are suitable for this purpose.

In tunnel installation it is important to avoid proximity to steam pipes.

Exposed power cables under this classification should be fire-proofed as described on Page 214.

### (d) VERTICALLY IN SHAFTS OR BORE-HOLES

The main problem in vertical suspension of cables is to ensure that the weight of the cable is not permitted to apply injurious mechanical stresses to the lead sheath, insulation or conductors during installation, or while suspended over a period of time during operation.

For this reason a steel wire armoured cable is used as described on pages 23-25.

In installation, the cable, if the cage size permits, is lowered to the bottom of the shaft on the reel, and the cable itself hoisted upwards, taking care that the "head serving" is used as the point of attachment for the hoisting rope fitting. For this arrangement the head serving should be placed on the outer end of the cable (i.e., the end to come first off the reel).

When the head serving alone is to support the cable as in a bore-hole, it should rest on a snug fitting clamp adequately supported on proper foundation members.

Where the reel of cable is too large to be lowered into the shaft the cable is mounted on the surface, carefully braked, and lowered by lashing at frequent intervals to the hoist ropes as the cable is paid out. For this arrangement the head serving should be on the innermost end of the cable on the reel. When the cable is at the proper position, it is transferred to the shaft timbers, usually being clamped every ten to twenty feet although the head serving alone is capable of supporting the cable up to lengths of about 1,000 ft.

High grade rubber insulated, lead sheathed, armoured cable is most commonly used for this purpose, the rubber being preferred since it contains no fluid constituent which might migrate down the cable. Varnished cambric insulated and paper insulated cables are, however, utilized where special conditions necessitate their use.

### (e) SUBMARINE

Since practically every submarine cable installation presents a special problem of its own, there is no standardized procedure.

Such factors as the length and size of the cable, the nature and depth of the channel, speed of current, equipment available, the necessity for, and location of splices, location of shore end structures, etc., each have a bearing on the method of installation.

There are, however, a few general precautions to be taken in any submarine installation and the notes which follow cover these only.

### (1) Location

Whenever possible, it is desirable, but not essential, to lay a submarine cable in a single length without splices. The limit to the single length is fixed by the size of the cable, and the manufacturing and shipping facilities.

It is important to ensure that the cable be not permitted to sway in service. A location should be chosen therefore where the cable will rest on the ground throughout its length, and will not be in danger of disturbance by shipping, anchors, etc.

### (2) Installation

In installing a submarine cable, as with all cables, it is most important to avoid damaging the lead sheath or insulation. Of almost equal importance, however, is the necessity of maintaining sufficient tension in the cable to ensure that the cable will not "kink" under water. The installation procedure should therefore be planned with these dangers particularly in mind. With these provisions, short cables may be installed by setting up the cable reel on shore and pulling across the channel, using a winch or rope, taking care that the cable reel does not "over-run". The cable is usually retarded by applying a brake to the cable reel, or to the cable itself after it has left the reel.

Where the above method cannot be used, i.e., where the pulling strain would be likely to be too great, or the channel so wide as to necessitate one or more joints in the cable, the cable is installed from a scow or raft.

In this method, the cable, if in a short single length without joints, can be installed directly from the reel mounted on the raft as the latter progresses across the channel. Longer lengths, and cables which require joints are removed from their reels and laid out in "figure 8" or coiled on the deck of a scow. Care is essential that the cable will not be kinked when being coiled on the scow or when paying out during the laying operation. "Figure 8" requires a larger scow and is favoured when one is available. Coiling permits the use of a smaller scow but requires an

overhead framework to be erected over which the cable may be run in laying.

Joints should be made before laying operations start, particularly where river or tidal currents occur at the crossing. Joints made during the laying operation are always hazardous, especially so when currents of water are involved. The long continued vibration of the cable is very liable to crack the lead sheath.

During laying operations tension should be kept on the cable by suitable braking to ensure that loops and consequent kinks will not be laid into the cable. This is a most important point.

Since submarine cable installations are particularly prone to develop unusual conditions, it is best economy to employ the services of a thoroughly experienced submarine cable supervisor to superintend operations.

### FIRE-PROOFING OF CABLES

All plain lead sheathed cables exposed in manholes, tunnels, or mounted on walls, etc., should be covered with fire-proof protection. This is in order to avoid or minimize injury due to failures of adjacent cables or other short-time fires or flashes.

The preferred method is to apply a helical layer of asbestos listing of from two to three inches in width, at least one-third lapped, throughout the length of the exposed cable. The asbestos listing is generally reinforced by soaking in a solution of silicate of soda and applying while still wet.

There are various other methods, usually based on combinations of portland and asbestos cement and tapes or nettings.

### CABLE POTHEADS



Canada Wire & Cable Co. manufacturers a complete line of Potheads of its own design; this design resulting from intimate knowledge of the problems involved in cable engineering and installation.

Potheads are available for all classes of service, from the inexpensive "Low Voltage" type to the "Oil-Filled" type, designed and manufactured for an operating voltage up to 66,000 volts.

These Potheads are described and illustrated in our Catalogue No. A-34, which includes full details of installation.

A copy of this catalogue, or subsequent revisions thereto will be glady furnished upon request.

### JUNCTION BOXES



Junction Boxes provide an extremely flexible method of interconnecting the various cables of a distribution system, besides providing a simple means of isolating a cable fault and thus allowing restoration of service with minimum delay.

Canada Wire & Cable Co. manufacturers a complete line of Junction Boxes of its own design, and are standard up to a working pressure of 2500 volts.

Special boxes may be obtained to suit unusual circumstances.

A typical range of Junction Boxes are described and illustrated in our Catalogue No. A-34, a copy of which will be glady furnished upon request.

### JOINTING PROCEDURE

For

# 3 CONDUCTOR PAPER INSULATED, LEAD SHEATHED CABLE—STRAIGHT JOINT

In jointing paper insulated lead covered cable, it is of vital importance to adopt only those methods and materials shown by experience to be best suited to the work at hand, and to proceed in a well-considered series of steps in a methodical way from the time the cable is cut until the joint is completed.

It is extremely important in carrying out the work that nothing is done to damage in any way the insulation or to roughen the strands or other metallic conductors. Moisture from the hands or other sources—dust, dirt, flakes of solder or other foreign materials—must also be excluded from the joint and the hand-applied insulation placed in such a way as to avoid air pockets between the conducting parts and the insulation and between layers of insulation.

Any sharp point or projection of the conducting parts produces an air pocket when covered by insulation so that



Fig. 1—The last three layers of insulation must be torn off, and not cut.

great care must be taken to avoid all metallic projections, high points on insulation, burrs and cuttings and have the conductor, solder and sleeve "streamlined" before applying the insulation. Excessive bending of conductors may loosen or tear the paper insulation. The crotch, or where the conductors enter the belt insulation, is a vital point in any joint. Every effort must be made not to disturb the insulation at and near this point.

Paper or V.C. insulation may be cracked in cold weather if bent even to otherwise normal curvatures. Extra precautions should be taken in the winter to warm badly frozen cable before bending.

It will be noted that these instructions do not differentiate between the various conductor sizes or voltages in respect to the length of joint. It is recognized that there could be some saving in materials by designing each joint closely to fit the respective requirements, if large numbers are involved.



Fig. 2—Connectors are soldered solidly into place and all burrs smoothed off.

### PRECAUTIONS

Since making the joint necessitates exposing the insulation and conductors at the cable ends, preliminary preparations must be made to ensure that they be exposed only under the best possible conditions and for the shortest possible time consistent with obtaining a thoroughly reliable job. These precautions will include the following:

- (a) Choose, if possible, a warm dry day and provide protection against dirt-laden wind and condensation of moisture at the joint location.
  - (b) Have all tools clean, warm and dry.
- (c) Keep all hand-applied insulation in the containers until immediately required.
- (d) Heat the Ozite filling compound as specified on the container, using a thermometer to ensure the proper pouring temperature.

### JOINTING PROCEDURE

(a) Preparing the Cable.

Form the cable ends as nearly as possible in their final position, allowing the ends to overlap about 12 inches. It is important that the cable be so arranged that the joint will lie straight and well-centred within the lead sheath when wholly assembled.



Fig. 3—Beginning the taping.

Determine the location of the middle of the joint and cut both cables through at this point with a hacksaw, so that the cable ends will butt squarely together.

(b) Preparing the Lead Splicing Sleeve.

Scrape both ends of the lead sleeve with a shave hook or rasp for about 3 or 4 inches and cover the cleaned portions immediately with stearine flux.

Slip the lead sleeve over one end of the cable and away from the joint location.

### (c) Removing the Lead Sheath.

Mark the lead sheaths on both sides of the middle of the joint at a distance of about  $1\frac{1}{2}$ " less than half the length of the sleeve. Score the lead squarely around the circumference at these points to a depth not exceeding one half the thickness of the sheath.

Scrape the lead sheaths to a distance of about 3 inches beyond this mark and cover immediately with stearine flux.

Split the lead sheaths from the scored circumference to the end, taking care not to damage the paper belt insulation.

NOTE:—The lead sheath is usually scored and cut by means of a plumber's chipping knife and hammer.

Tear off the lead sheaths and "bell" out and trim free of sharp edges the remaining end of the sheath on the cables.



Fig. 4—Ends of conductor have been "pencilled."

Observe taping between connector and conductor insulation.

Only fibre or wood wedges should be used on "belling" out the lead sheath on the cable.

### (d) Removing the Insulation.

Tie with saturated flax twine and apply a temporary serving of dry cotton tape over the belt insulation on both cables at a point 1½ in. from the end of the lead sheath. Remove it to this point, taking care not to cut the insulation on the conductor. The last three layers of insulation must

be torn off and not cut to prevent any damage to conductor insulation. (See Fig. 1.) Remove the fillers also to this point.

Bind the conductors tightly together with cotton tape immediately beyond the remaining belt. Spread the conductors apart with smooth fibre or wood wedges only, forming them into their final position in a long, easy curve. As this is one of the most vital parts of the splicing operation, extreme care must be taken not to bend the insulated conductors at any point more sharply than when they were on the manufacturer's reel. No reverse bending is permitted.

Tie the insulation of each conductor with dry cotton tape at a point that will be 5% in. from the end of the connector when installed. Then remove the insulation from the end of the conductor to this point, tearing off last three layers of insulation to prevent cutting or marking of conductors. (See Fig. 2.)



Fig. 5—1 inch x 12 mil bias-cut V.C. tape applied half lap with number of layers as set forth in table A.

### (e) Applying the Connectors.

Clean the strands and apply stearine flux. Fit the connectors into place over the conductors with the slot toward the top, being sure that the conductors are butted inside the connectors.

Squeeze the connectors down tightly on to the conductors with a screw vise, making sure no strands project through the slot of the connectors.

Protect adjacent conductors carefully from spilled solder with a piece of canvas.

Apply stearine flux to the connectors, particularly in the slot, thoroughly tin the connectors and conductors by pouring hot wiping solder over them.

Wrap cotton tape tightly on the conductors between the end of the connectors and the conductor insulation with the first turn of the tape half-way up slope of connector.

Solder connectors solidly in place.

While still hot, smooth off all burrs with a piece of cotton tape.

Remove the cotton tape from the ends of the connectors and smooth off all burrs, leaving an absolutely smooth surface overall. Sharp points are to be avoided at all costs. (See Fig. 2.)

### (f) Pencilling the Insulation.

"Pencil" the ends of the conductor insulation for a length of ½ in. by removing a portion of the insulation in such a manner as to leave the end in the form of a cone, as shown in Fig. 4. This can be done with a very sharp penknife. "Pencilling" must be done with the wrap of the insulation to

### TABLE "A"

### MINIMUM LAYERS OF TAPE

Based on Using 1 in. x 12 Mil Bias-cut V.C. Tape Applied Half Lap

	Minimum No.
Voltages	Trips and Layers
550	
2,200	
6,600	
13,200	

NOTE:—The above insulation should be at least equal to double the manufacturer's conductor insulation.

prevent unravelling. The length of the finished "pencilling" should be about four times the thickness of the conductor insulation.

Secure the insulation with dry cotton tape.

After "pencilling" the insulation on any conductor, the hand-applied insulation should be immediately applied as described in Section (g), before proceeding with the next conductor.

### (g) Applying the Tape.

Fill in the space at both ends between the connector and conductor insulation with  $\frac{3}{8}$  in. x 12 mil bias-cut V.C. applied first followed by  $\frac{1}{2}$  in. x 12 mil bias-cut V.C. Both tapes are to be applied as tightly as possible without breaking the varnish film. (See Fig. 4.)



Fig. 6—Insulation is worked back under "belled" section of lead sheath to prevent ozite from working back into the cable.

Insulate over the connector and the pencils up to the level of the factory-applied insulation with 1 in. x 12 mil bias-cut V.C. tape applied half lap. Draw each layer tight to eliminate voids, but take care not to crack the varnish film by too great tension.



Fig. 7—The lead sleeve is slipped into place.

Remove the cotton tape applied in "(f)" and complete the insulation of each conductor with the 1 in. x 12 mil bias-cut V.C. tape applied half lap with the number of layers applied corresponding to the voltages as listed in accompanying table "A". This insulation will extend to a distance of at least 4 in. beyond where the conductor insulation was removed, then tapering down at each end. (See Figs. 3, 4, 5 and 6.)

Apply 1 in. x 12 mil bias-cut V.C. tape, half lap, to form a smooth belt of uniform thickness, extending to a distance of approximately 2 in. on each side of the middle of the joint, and strong enough to act as a binder. (See Figs. 5 and 6.)

### (h) Completing the Joint.

Remove the dry cotton tape applied under paragraph one of "(d)" above.

Apply 1 in. x 12 mil bias-cut V.C. tape over belt insulation at end of lead sheath and work this insulation carefully back in under "belled" section of lead sheath. (See Figs. 6 and 7.)

Slip the lead sleeve into place, using care to centre it over the joint. Beat down the ends of the sleeve to fit the lead sheaths of the cables.



Fig. 8—Paper pasters limit the length of the solder wipe.

Determine the length of the solder wipe required at each end and apply paper pasters to the lead sheath to limit this length, which should be at least 1 in. on each side of the point at which the lead sleeve meets the lead sheath.



Fig. 9-Completing the plumber's wiped joint.

Make a plumber's wiped joint at both ends. (See Figs. 8 and 9.)

Cut two holes in the upper surface of the lead sleeve, one about 2 or 3 in. from each end, the holes being large enough to admit the stem of a filling funnel. These holes

are readily made by making two knife cuts in the shape of a "V" and bending back the lips. (See Fig. 10.)

### (j) Filling the Joint with Compound.

Elevate one end of the joint about ½ in. above the other. Fill the joint from the lower hole with Ozite B compound which has been previously heated to the proper temperature as shown on the label of the container. This temperature should be determined by a thermometer.



Fig. 10—Filling the joint with compound through V-shaped knife cuts.

Allow the joint to cool slowly in order that the compound may contract fully, then complete the filling from the upper hole. N.B.—This final filling should be done as soon as possible after the joint has cooled, preferably the following day.

Seal the joint by beating down the filling hole lips and solder with half and half solder, using stearine flux. Care must be taken that this sealing operation is so effected that the solder does not leak through the hole and form an "icicle" projecting inside the sleeve.

Cut two rectangular patches from a piece of the lead sheath removed in "(c)". Stamp them with the initials of the splicer and the date and solder them over the V lip cuts on the sleeve.

# JOINTING MATERIAL FOR PAPER INSULATED LEAD SHEATHED CABLE SINGLE CONDUCTOR

Voltage		1,000 to 5,000	5,000		9	,000 to	6,000 to 10,000			11,000 t	11,000 to 15,000	
Conductor size (B & S or C M)+	No.	500 No. 1/0 MCM.	500 MCM.	1,000 MCM.	No. 6	No. 1/0	500 1,000 No. 6 No. 1/0 MCM. MCM.	1,000 MCM.	No. 6	No. 1/0	500 1,000 No. 6 No. 1/0 MCM. MCM	1,000 MCM.
Cable O.D. (inches)	0.54	0.73	1.20	1.55	0.66	0.86	1.32	1.66	92.0	96.0	1.43	1.79
Lead sleeve (inches)	11/2x10	1 1/2 x 10	2x12	2 1/2 x 16	11/2×10	2x12	2 1/2 x 16	3x18	11/2x12	2x14	21/2x16	3x18
Wiping solder (lbs.)	11/2	1 1/2	2 1/2	3 1/2	11/2	2 1/2	3 1/2	4 1/2	11/2	21/2	3 1/2	4 1/2
½ x ½ solder (lbs.)	74	74	74	*	*	74	74	1/4	74	*	74	74
Copper connectors	1	1	-	1	1	1	1	1	1	-	1	1
Cotton tape, 9 yds. x ½"	1	1	:		1	-	:	:	1	1	:	4
Cotton tape, 18 yds. x 1'	:		1	-			1	-	:		1	1
Bias V.C. tape, 2 yds. x 3%"	1	1	7	2	1	1	67	7	-	7	67	7
Bias V.C. tape, 2 yds. x 1/2"	1	1	67	7	1	-	67	2	1	61	63	7
Bias V.C. tape, 2 yds. x 34"	4	:	:	:	8	:		i	:	:	:	•
Bias V.C. tape, 2 yds. x 1"		9	:	:		•			:		:	
Bias V.C. tape, 18 yds. x 1"			2	3	•	1	61	4	1	67	က	22
Ozite (Pints)	1	1	1	က	-	1	က	4	1	7	3	4
Stearine (2 oz. cakes)	1	1	1	1	1	1	1	-	1	1	1	1
Paper pasters	10	10	10	10	10	10	10	10	10	10	10	10
Sat. flax twine (ft.)	10	10	10	10	10	10	10	10	10	10	10	10

‡ For intermediate sizes of conductor, use list of material for next larger size of conductor listed, except that connector should be the correct size.

# JOINTING MATERIAL FOR PAPER INSULATED LEAD SHEATHED CABLE THREE CONDUCTOR

<b>Т</b> ОГГА В В	1,000	1,000 to 5,000			6,000 to 10,000	10,000		1	11,000 to 15,000	00'91 0	0
Conductor size (B & S or C M ) + No g No 10	To 6 No 1 "	500	1,000	1			1,000			500	1.000
Cable O D Grobes	10.0 10.1/0		MCM.	No. 6	No. 1/0	MCM.	MCM.	No. 6	No. 6 No. 1/0 MCM. MCM.	MCM.	MCM.
		2.25	2.91	1.26	1.52	2.39	3.04	1.43	1.67	2.54	3 19
:	2x16 2½x16	3 1/2 x 18	4 1/2 x 22	21/2x16	21/x16	31%x18	41%x99	914716	9410	400	41/100
Wiping solder (lbs.) 2	21/2 31/2	5 1/2	7 1/2	31%	3.1%	516	717	917	orvo	7770 1	4 72×22
½ x ½ solder (lbs.)	1/2 1/2	72	77	<u>'</u> '	27	7/0	7 :	0 72	4 1/2	,	1 1/2
Copper connectors*	60	, 01	4 0	2 0	2, 0	2	22	72	75	72	72
Cotton tape, 18 yds. x 1%".		•	o	η,	י מי	က	က	က	69	8	3
Cotton tape. 18 vds. x 1"	•		: •	-	1		:	1	1	:	
Bias V. C. tana 9 vde v 3/"	: 0	٦ ,	1	:	:	1	1		:	1	1
Bias V C tane 9 and a 1/"	0 0	9	9	က	3	9	9	3	3	9	9
Bine V C tone 6 -1 - 2	, d	9	9	က	3	9	9	က	3	9	9
Dias V.C. bape, 2 yds. x %	9	:		6	:	:					
Bias V.C. tape, 2 yds. x 1"	4 14	26	50	4	8	30	909	. 4	: 7		: :
Bias V.C. tape, 18 yds. x 1"	:	1	2		-	6	6	01		00	0/
Ozite (pints)	2 3	20	10	c		1 h	4 9	: '	-	77	m
Stearine (2 oz. cakes)	1 1	-	-		,	0	10	00	4	00	10
Paper pasters	01 0	101	1 1	1 0.	٦ ;	1	1	1	1	1	1
Sat. flax twine (ft.)		2 1	01	10	10	10	15	10	10	10	15
:		25	25	25	25	25	25	25	25	25	25

‡ For intermediate sizes of conductor, use list of material for next larger size of conductor listed, except that connector should be the correct size.

* For sector conductors No. 4/0 B. & S. and smaller, use a connector for one B. & S. gauge larger conductor. For sector conductors larger than No. 4/0 B. & S., use a connector 50,000 C.M. larger.

# DIMENSIONS OF SPLIT, TINNED COPPER CONNECTORS

Size Conductor	Inside Diam.	Length, Inches	Approx Ship. Wt., Per M (lbs.)	Size	Inside Diam.	Length, Inches	Approx. Ship. Wt., Per M (lbs.)
12 B. & S. Solid	.086	1 ½ 1 ½ 1 ½ 1 ½ 1 ½ 1 ½	5	000 B.&S. Strand	.475	2	85
11 B. & S. Solid	.096	11/2	5 5 5 5	0000 B. & S. Strand	.533	216	125
10 B. & S. Solid	. 107	11/2	5	250,000 C.M.	.581	216	150
10 B. & S. Strand		11/2	5	300,000 C.M.	.635	21%	180
9 B. & S. Solid	.119	11/2	51/2	350,000 C.M.	.690	$\begin{array}{c} 2 \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{array}$	210
8 B. & S. Solid	.133		6	100 000 035			
8 B. & S. Strand	.151	112		400,000 C.M.	.740	3	280
7 B. & S. Solid	.149	112	61/2	450,000 C.M.	.784	3	320
7 B. & S. Strand	.169	1½ 1½ 1½ 1½ 1½	$\frac{6\frac{1}{2}}{7\frac{1}{2}}$	500,000 C.M.	.826	3 3 3	340
6 B. & S. Solid	.167	112	8 2	550,000 C.M.	.868	3	410
o B. a b. bolla	.107	1/2	0	600,000 C.M.	.906	31/2	500
6 B. & S. Strand	.189	1½ 1½ 1½ 1½	12	650,000 C.M.	.948	31/2	520
5 B. & S. Solid	.187	11/2	12	700,000 C.M.	.983	31/2	540
5 B. & S. Strand	.211	11/2	15	750,000 C.M.	1.018	31/2	580
4 B. & S. Solid	.209	11/2	15	800,000 C.M.	1.052	4	620
4 B. & S. Strand	.237	2	20	850,000 C.M.	1.083	4	690
2 D 2 G G-111							000
3 B. & S. Solid	.234	2	20	900,000 C.M.	1.115	4	750
3 B. & S. Strand	.265	2	25	950,000 C.M.	1.145	4	840
2 B. & S. Solid 2 B. & S. Strand	.263	2 2 2 2 2		1,000,000 C.M.	1.175	41/2	1,030
1 B & S. Strand	.297	2	35	1,250,000 C.M.	1.320	41/2	1,200
1 B. & S. Solid	.294	2	35	1,500,000 C.M.	1.440	4½ 5	1,650
1 B. & S. Strand	.337	2	40	1,750,000 C.M.	1.560	F1/	0.100
0 B. & S. Strand	.378	2		2,000,000 C.M.	1.664	51/2	2,100
00 B. & S. Strand	.423			2,500,000 C.M.	1.855	6	2,725
			-	2,000,000 0.11.	1.000	6½	3,300

Connectors No. 1/0 and larger are equipped with a rolled groove opposite the slot.

This groove acts as a hinge enabling the cable splicer to quickly and easily close the connector around the cable.

Such connectors are shipped with the slot opening equal to the diameter of the cable thus saving time and eliminating the distortion caused by opening the connector in the field.

# CALCULATION OF THE ELECTRICAL PROBLEMS OF UNDERGROUND CABLES

### Summary of Formulae

For a more complete treatment of this subject see articles by Dr. D. M. Simmons in the "Electric Journal", issues of May to November, 1932, inclusive.

CABLE DIAMETERS (a) Diameter Under Lead Sheath Round Conductors:
Di = d + 2T for one conductor cables
Di = 2.155 (d + 2T) + 2t for three conductor cables.  Di = 2.414 (d + 2T) + 2t for four conductor cables.  Sector Conductors (Approximate):
$\begin{array}{llllllllllllllllllllllllllllllllllll$
(b) Overall Diameters
Plain Lead Sheathed Cable:
Add twice the thickness of lead sheath given on page 19.
Lead Sheathed, Double Steel Tape Armoured Cable: Add the dimension given on page 21 to the overall diameter of lead sheath.
Lead Sheathed, Steel Wire Armoured Cable:
add the dimension given on page 25 to the overall diameter of lead sheath.
RESISTANCE Conductor:
$R_{T} = \frac{234 + T}{259} \times R_{25}  .  .  .  .  .  .  .  .  .  $
Lead Sheath
$R_{s} = \frac{0.039228}{r_{5}^{2} - r_{4}^{2}} \dots $
The above formulae is based on resistivity of lead = 26.1 microhm-cm. units at 60° C., this being an average value for practical use.
INDUCTANCE
Self Inductance of Conductor:
$L = (0.1404 \log_{10} \frac{S}{r} + 0.01525) \times 10^{-3}$ henries to neutral per 1,000
feet
NOTE: This equation applies strictly to a straight solid round wire and assumes uniform current distribution over the conductor area. The effect of cable lay, stranding, skin effect, etc., is usually small, although not always negligible.
Mutual Inductance of Conductor and Sheath (Single Conductor Cable):
$M = 0.1404 \log_{10} \frac{S}{r_m} \times 10^{-3}$ henries to neutral per 1,000 feet (11)

## ADDED EFFECTIVE CONDUCTOR RESISTANCE DUE TO INDUCED SHEATH CURRENTS (R_o):

Single Conductor Cables (Equilateral Spacing):

Multi-Conductor Cables:

$$S_1 = \frac{1}{\sqrt{3}} (d + 2T) \qquad (14)$$

### GEOMETRIC FACTOR

Many of the electrical characteristics of cables depend not only upon the specific qualities of the dielectric but also upon its size and shape. In determining these characteristics it is convenient to use certain factors which are purely functions of the geometric properties of the cable. For example, in single conductor cable, the electrical and the thermal resistances of the insulation are proportional to the electrical and the thermal specific resistances of the insulation material, and also to  $\log_e\ (D_i/d)$ , where  $D_i$  = diameter over the insulation and d=conductor diameter. The dimensions of the cable occur only in the expression  $\log_e\ (D_i/d)$ . The same expression enters into the formulae for the determination of capacity, dielectric loss, charging current, etc. and is defined as the geometric factor, G, for single conductor cable.

### Single Conductor Cable:

### Multi-Conductor Type H Cable:

For the case of multi-conductor Type H cable, a metal layer covers the surface of each individual conductor insulation. These metal layers are in contact with one another and with the sheath and thus create an equipotential surface, making it possible to treat the individual conductors as single conductor cables insofar as calculation of electrical characteristics are concerned, and the expression for geometric factor, G, given above may be used. While this single conductor geometric factor applies strictly to round conductors, the error in applying it to sector conductors is negligible for all practical purposes.

In the calculation of thermal characteristics of multiconductor Type H cable the problem is complicated by the fact that the metallic surface surrounding the individual insulated conductor cannot be considered an isothermal surface owing to the thinness of the copper shielding foil; actually a temperature gradient exists around its periphery when the cable is under load. A mathematical solution to this problem has been obtained which yields an expression for G₁, the geometric factor to be used in determining the thermal characteristics of three conductor Type H cable. From this expression, values of G₁ have been calculated and are presented in the table on page 234.

### Multi-Conductor Belted Cable:

For multi-conductor belted cable, such characteristics as capacity, insulation resistance, etc., depend on the electrical connections of the cable, and a different geometric factor is required for each case. For three conductor belted cable there are nine different ways in which capacity (for example) may be measured. The various possible connections and the corresponding geometric factors are as follows, the letters A, B and C referring to the three individual conductors:

Connection	Geometric Factor
A, B and C vs. sheath	G ₁ (see chart)
Three phase operation	G ₂ (see chart)
A vs. B	$G_3 = 2 G_2$
A vs. B and C	$G_4 = 1.5 G_2$
A vs. sheath	
A vs. B and sheath	$G_6 = \frac{G_2 (6 G_1 + G_2)}{3 G_1 + 2 G_2}$
A vs. B, C and sheath	$G_7 = \frac{9 G_1 G_2}{6 G_1 + G_2}$
A and B vs. sheath	$G_8 = \frac{6 G_1 + G_2}{6}$
A and B vs. C and sheath (	$G_9 = \frac{4.5 G_1 G_2}{3 G_1 + 2 G_2}$

Values for  $G_1$  for two, three and four conductor and  $G_2$  for three conductor belted cables are given on the chart on page 233. For sector conductor cables, the sector correction factor obtained from the bottom curve should be applied. All of the other geometric factors are related to  $G_1$  and  $G_2$  and can be calculated as indicated above.



# GEOMETRIC FACTORS FOR SINGLE CONDUCTOR CABLE AND MULTI-CONDUCTOR BELTED CABLE WITH ROUND OR SECTOR CONDUCTORS

Geometric factors can be obtained by calculating the ratios (T+t)/d and t/T (d being defined for sector cables as the diameter of a round conductor of the same area as the sector), and then reading the required value of geometric factor from a curve above. The value thus obtained will be the correct geometric factor for a round conductor cable. For sector conductors the values so obtained should be multiplied by the sector correction factor. In cables of the Non-Type H form without belts, such as multi-conductor rubber cables, the first ratio becomes T/d, and t/T=0.

# GEOMETRIC FACTOR (G₁) BETWEEN CONDUCTORS AND SHEATH OF THREE CONDUCTOR TYPE H CABLE

This geometric factor is to be used in calculating current carrying capacity and is based on insulation of thermal resistivity of 700* watt-cm. units with wrappings over the insulation of copper tape 3 mils thick.

B. 64 10/64 12/64 14/64 16/64 18/64 20/64 22/64 24/64 26/64 28/64 30/64 32/64 34/64 36/64 38/64 40/64 20/64 22/64 24/64 26/64 28/64 30/64 32/64 34/64 36/64 38/64 40/64 20/64 22/64 24/64 26/64 28/64 30/64 32/64 34/64 36/64 38/64 40/64 26/64 28/64 24/64 26/64 28/64 30/64 32/64 34/64 36/64 38/64 40/64 22/64 24/64 26/64 28/64 30/64 32/64 34/64 36/64 38/64 40/64 22/64 24/64 26/64 28/64 30/64 32/64 32/64 34/64 36/64 38/64 36/64 38/64 40/64 22/64 24/64 26/64 28/64 36/64 32/64 32/64 36/64 38/64 40/64 22/64 24/64 26/64 28/64 38/64 36/64 38/64 38/64 36/64 38/64 38/64 36/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64 38/64	Size of			The Section of														
T.         8/64 10/64 12/64 14/64 16/64 18/64 20/64 22/64 24/64 28/64 30/64 32/64 34/64 36/64 38/64 38/64           T.         SECTOR CONDUCTORS           54         63         72         81         88         96         1.03         1.01         1.15         1.21         1.26         1.31         1.36         1.40         1.45         1.49           54         65         76         76         89         1.03         1.05         1.07         1.13         1.26         1.31         1.36         1.40         1.45         1.49           41         49         65         76         89         0.95         1.00         1.05         1.15         1.26         1.31         1.36         1.40         1.45         1.49           37         44         50         66         65         73         78         84         89         0.97         1.01         1.15         1.13           37         44         50         56         66         67         72         76         80         84         89         0.97         1.01         1.05         1.13           38         44         49         55         60         64         69         77	Conductor B. & S.							Ing	SULATION	ON TH	CKNES	IN IN	CHES					
54         63         72         81         88         96         1.03         1.15         1.21         1.26         1.31         1.36         1.40         1.45         1.49           45         54         62         69         76         88         96         1.02         1.07         1.13         1.18         1.28         1.40         1.45         1.49           45         54         62         69         76         88         96         1.02         1.07         1.13         1.18         1.28         1.40         1.45         1.49           37         44         59         66         62         76         88         89         0.98         1.03         1.01         1.15         1.29         1.24         1.49         1.45         1.49         1.45         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49 <t< td=""><td>or C.M.</td><td>8/64</td><td></td><td></td><td></td><td></td><td>18/64</td><td></td><td></td><td></td><td></td><td></td><td>30/64</td><td>32/64</td><td>34/64</td><td>36/64</td><td>38/64</td><td>40/64</td></t<>	or C.M.	8/64					18/64						30/64	32/64	34/64	36/64	38/64	40/64
54         63         72         81         88         .96         1.03         1.09         1.15         1.21         1.26         1.31         1.36         1.40         1.45         1.49         1.56         54         69         76         89         1.02         1.07         1.13         1.18         1.23         1.28         1.37         1.41           44         46         57         68         76         89         0.96         1.03         1.08         1.23         1.24         1.29         1.37         1.41           35         44         66         66         77         75         88         98         0.97         1.01         1.05         1.09         1.13           35         41         48         56         66         67         77         75         88         89         0.97         1.01         1.05         1.09         1.13           36         41         48         55         60         64         69         74         75         76         89         .99         .99         1.01         1.04         1.01         1.01         1.01         1.01         1.01         1.01         1.01							3	SECTO	1000		CTOR	S						
50         58         67         75         82         89         0.95         1.07         1.21         1.20         1.31         1.36         1.40         1.45         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.49         1.40         1.49         1.40         1.49         1.40         1.49         1.40         1.49         1.40         1.49         1.41         1.40         1.49         1.41         1.40         1.49         1.41         1.40         1.49         1.41         1.40         1.49         1.41         1.40         1.49         1.40         1.49         1.40         1.49         1.40         1.49         1.40         1.49         1.40         1.49         1.40         1.49         1.40         1.49         1.40         1.49         1.40         1.49         1.40         1.49         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40         1.40	1/0	.54	.63	.72	81	88	96	1 03	1 00		10.1	1		1				
45         54         62         69         76         83         89         1.05         1.18         1.23         1.28         1.37         1.41           39         46         57         63         70         76         82         87         98         1.03         1.08         1.28         1.33         1.34           39         46         57         66         62         77         75         88         88         93         0.97         1.01         1.13         1.19           37         44         50         66         65         70         75         88         88         93         0.97         1.01         1.19         1.19         1.18         1.19         1.18         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19	2/0	.50	. 58	.67	75	88	800	00.0	1.09	1.15	17.1	1.26	1.31	1.36	1.40	1.45	1.49	1.53
61         71         76         76         76         82         87         1.80         1.10         1.10         1.24         1.29         1.34           39         44         46         53         60         66         72         78         84         88         93         0.97         1.01         1.05         1.09         1.13           35         44         48         54         66         77         75         80         88         89         0.97         1.01         1.05         1.09         1.13           33         40         46         51         57         62         67         77         76         89         89         0.97         1.01         1.05         1.09         1.13           30         37         44         48         55         66         64         67         77         76         89         89         99         99         1.09         1.01         1.04         1.05         1.09         1.10         1.04         1.05         1.09         1.10         1.09         1.13         1.10         1.10         1.10         1.10         1.10         1.10         1.10         1.10 <td>3/0</td> <td>.45</td> <td>.54</td> <td>.62</td> <td>69</td> <td>76</td> <td>83</td> <td>08</td> <td>0.00</td> <td>200</td> <td>1.13</td> <td>1.18</td> <td>1.23</td> <td>1.28</td> <td>1.32</td> <td>1.37</td> <td>1.41</td> <td>1.45</td>	3/0	.45	.54	.62	69	76	83	08	0.00	200	1.13	1.18	1.23	1.28	1.32	1.37	1.41	1.45
39         46         53         60         66         72         78         84         88         1.08         1.12         1.16         1.20         1.24           37         44         50         56         62         68         73         78         84         88         93         0.97         1.01         1.15         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19         1.19 <t< td=""><td>4/0</td><td>.41</td><td>.49</td><td>.57</td><td>63</td><td>202</td><td>76</td><td>60.</td><td>0.90</td><td>1.00</td><td>1.05</td><td>1.10</td><td>1.15</td><td>1.20</td><td>1.24</td><td>1.29</td><td>1.33</td><td>1.36</td></t<>	4/0	.41	.49	.57	63	202	76	60.	0.90	1.00	1.05	1.10	1.15	1.20	1.24	1.29	1.33	1.36
37         44         50         .56         .62         .68         73         .78         84         88         93         0.97         1.01         1.05         1.09         1.13           33         40         46         .51         .60         .65         .70         .75         .80         .84         .89         .93         0.97         1.01         1.05         1.09         1.13           31         38         44         .49         .55         .60         .64         .74         .76         .80         .84         .89         .93         0.97         1.01         1.04           27         .37         .43         .48         .53         .67         .77         .76         .89         .89         .93         0.97         1.01         1.04         1.04         1.04         1.04         1.04         .89         .89         .93         0.97         1.01         1.04         1.04         .09         .93         0.97         1.01         1.04         .09         .09         .09         .09         .09         .09         .09         .09         .09         .09         .09         .09         .09         .09	250,000	.39	.46	. 53	.60	99.	. 72	. 78	.83	.89	. 93	0.98	1.08	1.12	1.16	1.20	1.24	1.28
35         41         48         54         68         88         89         0.97         1.01         1.05         1.09         1.13           33         40         46         51         57         62         67         72         76         80         85         89         0.97         1.01         1.06         1.09         1.13           30         37         48         51         57         62         67         72         76         80         85         89         0.97         1.01         1.06         1.09         1.13           29         34         48         48         55         63         67         72         76         80         84         87         0.97         1.01         1.06         1.09         1.01           29         34         40         45         50         54         68         72         77         78         82         85         89         99         93         1.01         1.06         1.09         1.01         1.01         1.09         1.01         1.01         1.09         1.02         1.01         1.01         1.01         1.01         1.01         1.01	300,000	37	44	50	Z Z	60	00	î	í				2		11	01.1	1.13	1.23
33 40 46 51 57 62 67 72 76 89 89 99 097 1.01 1.05 1.08   31 38 44 49 55 60 64 69 74 78 82 89 99 097 1.01 1.05 1.08   32 34 44 49 55 60 64 69 77 72 76 88 89 99 097 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0	350,000	.35	41	48	54	80.	.00	. 13	. 13	48.	88.	.93	0.97	1.01	1.05	1.09	1.13	1.17
81 38 44 49 55 60 64 69 74 72 78 85 89 99 097 101 1.04  829 34 47 49 55 60 64 69 77 72 78 80 84 87 91 094 0.94  820 34 40 45 50 54 66 64 77 72 78 80 84 87 91 094 0.94  801 10.04  802 34 34 47 45 50 54 68 63 67 72 76 80 84 87 99 82 88  803 64 77 81 80 89 10.07 1.14 1.21 1.28 1.34 1.41 1.46 1.52 1.57 1.63 1.67 1.51  802 59 64 77 78 82 89 0.95 1.07 1.14 1.21 1.28 1.34 1.41 1.19 1.24 1.29 1.34 1.35  803 67 74 82 89 0.95 1.07 1.14 1.21 1.28 1.34 1.41 1.10 1.24 1.29 1.34 1.34  804 65 66 64 77 78 82 89 0.95 1.07 1.03 1.08 1.14 1.19 1.24 1.29 1.34 1.38  805 77 88 87 90 98 1.04 1.09 1.14 1.19 1.24 1.29 1.34 1.38  806 66 66 66 66 67 72 88 88 88 88 88 88 1.05 1.05 1.11 1.11 1.11 1.11 1.11 1.11	400,000	.33	.40	46	225	572	69	07.	150	.80	48.	68.	. 93	0.97	1.01	1.05	1.08	1.12
30   37   43   48   53   58   63   67   77   76   82   84   87   94   0.97   1.01     29   34   40   45   50   54   58   63   67   77   77   84   87   87   87   87   8	450,000	.31	.38	44	49	25.	909	. 64	809	0/1	.80	. 85	68.	.93	0.97	1.01	1.04	1.08
29 34 40 45 50 54 58 63 67 77 75 79 82 86 89 93 68 68 772 775 775 779 82 88 89 93 68 772 775 775 85 88 770 872 775 872 88 88 88 8 8 8 8 8 8 8 8 8 8 8 8 8	200,000	.30	.37	.43	.48	. 53	. 58	. 63	62	72	2/9	28.	98.	.90	.94	0.97	1.01	1.04
State	000 000	0						!		:		00.	£0.	10.	16.	.94	0.98	1.01
Second Color   Seco	200,000	29	.34	.40	.45	.50	.54	.58	.63	.67	.71	.75	64.	.82	98.	88	93	90 0
Color   Colo	800,000	. 26	31	36	42	.47	16.	.55	.60	.64	89.	.72	.75	. 79	.82	.85	88.	.91
61         71         81         90         98         1.07         1.14         1.21         1.28         1.34         1.41         1.46         1.52         1.57         1.63         1.67           57         63         63         71         79         88         1.00         1.07         1.14         1.20         1.26         1.32         1.57         1.63         1.67           50         59         63         71         74         82         89         0.95         1.07         1.13         1.18         1.29         1.34         1.44         1.54         1.54         1.54         1.54         1.59         1.54         1.59         1.54         1.59         1.54         1.54         1.54         1.54         1.54         1.54         1.59         1.54         1.59         1.54         1.59         1.54         1.59         1.54         1.59         1.54         1.59         1.54         1.38         1.44         1.59         1.54         1.59         1.54         1.59         1.54         1.59         1.54         1.59         1.54         1.59         1.54         1.59         1.44         1.59         1.54         1.59         1.44         <		-				OF.	CT.	00.	10.	10.	co.	.68	.72	.75	64.	. 82	.85	. 88
61         71         81         99         98         1.07         1.14         1.21         1.28         1.34         1.41         1.46         1.52         1.57         1.63         1.67           53         63         77         78         85         99         1.00         1.07         1.14         1.21         1.20         1.25         1.38         1.44         1.49         1.54         1.59           50         59         67         7.4         1.20         1.20         1.25         1.31         1.36         1.41         1.49         1.54         1.59           48         56         64         77         78         85         91         0.97         1.03         1.14         1.19         1.24         1.29         1.34         1.34           46         54         61         68         75         81         87         93         0.98         1.04         1.09         1.14         1.19         1.24         1.29         1.34         1.38           42         55         69         65         72         78         82         87         92         0.98         1.01         1.09         1.11         1.1								SOCIAL SOCIAL		NDUC					To the state of			
57         67         76         85         93         1.00         1.07         1.14         1.26         1.36         1.32         1.38         1.44         1.49         1.59         1.59         1.59         1.59         1.59         1.59         1.59         1.59         1.59         1.59         1.59         1.59         1.50         1.25         1.31         1.38         1.44         1.49         1.59         1.59         1.59         1.50         1.25         1.31         1.38         1.41         1.46         1.51         1.59         1.59         1.50         1.50         1.51         1.50         1.51         1.51         1.50         1.51         1.51         1.50         1.51         1.51         1.50         1.51         1.50         1.51         1.50         1.51         1.50         1.51         1.50         1.51         1.50         1.51         1.50         1.50         1.50         1.51         1.50         1.50         1.50         1.50         1.50         1.50         1.50         1.50         1.50         1.50         1.50         1.50         1.50         1.50         1.50         1.50         1.50         1.50         1.50         1.50         1.50	1/0	.61	.71	.81	06.	86.	1.07	1.14	1.21	1 28	1 34	1 41	1 48	1 50	1 11	1 00	100	1
53         63         77         79         87         0.94         1.01         1.08         1.14         1.20         1.25         1.81         1.41         1.59         1.51           48         .56         .64         .71         .78         .89         0.95         1.07         1.13         1.18         1.24         1.29         1.34         1.59           46         .56         .64         .71         .78         .81         .87         .93         0.98         1.04         1.09         1.14         1.19         1.24         1.29         1.34         1.38           44         .52         .59         .65         .72         .78         .87         .93         0.98         1.04         1.09         1.14         1.19         1.24         1.29         1.34         1.38           42         .55         .65         .72         .78         .87         .90         .98         1.01         1.06         1.11         1.15         1.29         1.24         1.29           42         .55         .63         .77         .78         .87         .90         .98         1.01         1.06         1.11         1.16         1	0/2	.57	.67	92.	.85	. 93	1.00	1.07	1.14	1 20	1 26	1 39	1 26	1.02	1.07	1.03	1.07	1.71
. 50 . 59 . 67 . 74 . 82 . 89 0. 95 1 02 1 07 1 13 1 18 1 24 1 29 1 34 1 39 1 34 1 34 1 38 1 34 1 38 1 38 3 1 38 1 38	3/0	. 53	. 63	.71	. 79	.87	0.94	1.01	1.08	1.14	1.20	1 25	1 31	1 26	1.43	1.04	1.59	1.64
48         50         64         71         78         85         91         0.97         1.03         1.08         1.14         1.19         1.24         1.29         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.35         1.34         1.35         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.35         1.34         1.39         1.33         1.34         1.39         1.34         1.35         1.34         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35	4/0	00.	.59	.67	.74	.82	68.	0.95	1.02	1.07	1.13	1.18	1.24	1 29	1 34	1 20	1.01	1.50
46         54         61         68         75         81         87         93         0.98         1.04         1.09         1.14         1.19         1.24         1.29         1.33           44         52         59         65         72         78         84         90         95         1.01         1.06         1.11         1.15         1.29         1.29         1.33           42         55         65         63         74         79         85         90         98         1.07         1.11         1.16         1.20         1.25           41         48         54         60         66         72         78         85         99         99         1.00         1.05         1.09         1.17         1.22           41         48         54         60         66         72         78         88         99         99         109         1.05         1.09         1.17         1.22	000,000	.48	96.	. 64	.71	. 78	.85	.91	0.97	1.03	1.08	1.14	1.19	1.24	1.29	1.34	1.38	1.43
44         52         59         65         72         78         84         90         95         104         109         114         119         124         129         138           43         56         57         63         77         76         82         87         92         0.98         1.06         1.11         1.15         1.24         1.29         1.29           42         49         55         66         68         74         77         85         90         95         1.00         105         1.11         1.16         1.29           41         48         54         60         66         72         78         83         88         109         1.05         1.09         1.11         1.15         1.22	000,000	.46	.54	.61	.68	75	18	87	0.5	00 0	100	00						
. 43 . 50 . 57 . 63 . 70 . 76 . 82 . 87 . 92 . 198 . 109 . 111 . 1.15 . 1.20 . 1.24 . 1.29 . 1.24 . 1.29 . 42 . 49 . 55 . 62 . 68 . 74 . 79 . 85 . 90 . 95 . 1.00 . 1.07 . 1.11 . 1.16 . 1.20 . 1.25 . 41 . 48 . 54 . 60 . 66 . 72 . 78 . 83 . 88 . 93 . 0.98 . 1.02 . 1.06 . 1.11 . 1.15 . 1.22	20,000	.44	.52	. 59	. 65	.72	72	84	00	00.00	1.04	1.09	1.14	1.19	1.24	1.29	1.33	1.38
. 42 . 49 . 55 . 62 . 68 . 74 . 79 . 85 . 90 . 95 1.00 1.01 1.10 1.20 1.22 1.41 . 48 . 54 . 60 . 66 . 72 . 78 . 83 . 88 . 93 0. 98 1.02 1.06 1.11 1.15 1.22	000,000	.43	.50	.57	.63	. 70	. 76	82	200	66	0.08	1.00	1.11	1.15	1.20	1.24	1.29	1.33
. 41 . 48 . 54 . 60 . 66 . 72 . 78 . 83 . 88 . 93 0. 98 1. 02 1. 06 1. 11 1. 15 1. 12	000,000	.42	.49	.55	. 62	89.	.74	64.	.85	96.	.95	1.00	1.05	1.11	1.10	1.20	1 99	1.29
CITATION TO COLUMN	000,000	.41	.48	.54	. 60	99.	.72	.78	. 83	88.	93	0.98	1.02	1 06	1 11	111	1.10	1.20

* While not strictly so, the thermal resistance of Type H Cable is closely proportional to the thermal resistivity, so that the above geometric factors may be used for other resistivities with a reasonable degree of accuracy.

CAPACITY (C)
Single Conductor Cable:
0.0169 k
$C = \frac{0.0169 \text{ k}}{G} \text{ microfarads per 1,000 feet } \dots $
(10)
Three Conductor Type H Cable:
(Three conductors against sheath):
(0.0169) (3) k
$C = \frac{(0.0169) (3) k}{G}$ microfarads per 1,000 feet (17)
(Under three phase voltage):
$C = \frac{0.0109 \text{ k}}{2.000 \text{ microfarads per 1 000 feet}}$
$C = \frac{0.0169 \text{ k}}{G} \text{ microfarads per 1,000 feet } \dots $
Multi-Conductor Belted Cable:
$C = \frac{0.0169 \text{ n k}}{G_x} \text{ microfarads per 1,000 feet } \dots \dots \dots (19)$
$G_{\mathbf{x}}$
CHARGING CURRENT (I)
Single Conductor Cable:
_ 0.106 e f k
$I = \frac{0.106 \text{ e f k}}{G} \text{ milliamperes per 1,000 feet } \dots \dots \dots (20)$
Three Conductor Type H Cable:
(Three conductors against sheath):
$I = \frac{(0.106) (3) \text{ ef k}}{(31)}$
$I = \frac{(0.106) (3) \text{ e f k}}{G} \text{ milliamperes per 1,000 feet } \dots \dots \dots (21)$
(Onder three phase voltage):
0.106 e f k
$I = \frac{0.106 \text{ ef } \text{ k}}{G} \text{ milliamperes per 1,000 feet} (22)$
Multi-Conductor Belted Cable:
(General formula for any connection):
$I = \frac{0.106 \text{ E f n k}}{G_x}  (*) \text{ milliamperes per 1,000 feet}  .  .  .  .  (23)$
G _x () miniampères per 1,000 feet (23)
LEAKAGE (g)
Single Conductor Cable:
0.106 f k cos Ø
$g = \frac{0.106 \text{ f k } \cos \emptyset}{G} \times 10^{-6} \text{ mhos per 1,000 feet to neutral} \qquad . \qquad $
Three Conductor T II C 11
Three Conductor Type H Cable:
(Under three phase voltage):
$g = \frac{0.106 \text{ f k } \cos \emptyset}{G} \times 10^{-6} \text{ mhos per 1,000 feet to neutral} \qquad . \qquad $
G × 10° innos per 1,000 feet to neutral (25)
Multi-Conductor Belted Cable:
(Under three phase voltage):
0.106 f n k cos Ø
$g = \frac{0.106 \text{ f n k cos } \emptyset}{G_2} \times 10^{-6} \text{ mhos per 1,000 feet to neutral (26)}$
* In calculating charging current under three-phase voltage, G ₂ being used,
E in this formula must be the voltage e to neutral in kilovolts.
For list of symbols are 252

For list of symbols, see page 252.

THREE-PHASE DIELECTRIC LOSS (WDL)
Single Conductor Cable:
$\mathbf{W} = 0.000106  \mathbf{e}^2  \mathbf{f}  \mathbf{k}  \cos  \mathbf{\phi}$
$W_{DL} = \frac{0.000106 e^2 f k \cos \emptyset}{G}$ watts per foot of cable (27)
Three Conductor Type H Cable:
$(0.000106) (3) e^2 f k \cos \phi$
$W_{DL} = \frac{(0.000106) (3) e^2 f k \cos \emptyset}{G}$ watts per foot of cable (28)
Multi-Conductor Belted Cable:
$0.000106 e^2 f n^2 k \cos \phi$
$W_{DL} = \frac{0.000106 e^2 f n^2 k \cos \emptyset}{G_2} \text{ watts per foot of cable } \dots \dots (29)$
INSULATION RESISTANCE (R;)
Single Conductor and Three Conductor Type H Cable:
$R_i = 0.989  e_1  G \times 10^{-6}$ megohms for one mile (30)
D _i
or $R_i = K \log_{10} \frac{D_i}{d}$ megohms for one mile
Multi-Conductor Belted Cable:
0.989 o. Cx
$R_{i} = \frac{0.989  e_{1}  G^{x}}{n} \times 10^{-6} \text{ megohms for one mile } \dots \dots (32)$ or (One conductor against other conductors and I. 1.1)
or (One conductor against other conductors and sheath)
$R_i = K \log_{10} \frac{(d + 3T + 2t)}{d}$ (approximate) megohms for one mile (33)
Note: For multi-conductor rubber cables equation (31) is used.

### IMPEDANCE CHARACTERISTICS OF WIRES AND CABLES AT 60 CYCLES

In the following tables are listed the characteristics affecting impedance calculations for the range of cables most commonly employed in Canada for transmission and distribution circuits. These characteristics are also tabulated for the principal conductors used for overhead lines. While these latter items are not, strictly speaking, Power Cable information, it is felt that their inclusion will be useful to Power System Engineers.

These characteristics are given in terms of the notation used in calculations by the method of symmetrical components. ("Symmetrical Components", Wagner & Evans, McGraw-Hill Book Company.) It is to be noted particularly that the ordinary line-to-neutral characteristics are identical to the positive-sequence characteristics. The zero-sequence characteristics are used for circuits with earth returns.

### The data include the following:

### For Cables

- (a) Positive- and Negative-Sequence Characteristics
  - (1) Conductor resistance at operating temperature.
  - (2) Inductive reactance at 60 cycles.
  - (3) Shunt capacitive reactance at 60 cycles.
- (b) Zero-Sequence Characteristics
  - (1) Series resistance at operating temperature.
  - (2) Inductive reactance at 60 cycles.
  - (3) Shunt capacitive reactance at 60 cycles.

### For Overhead Lines

- (a) Positive-, Negative- and Zero-Sequence Characteristics
  - (1) Conductor resistance at 50°C.
  - (2) Partial inductive reactance at 60 cycles.
  - (3) Partial shunt capacitive reactance at 60 cycles.
  - (4) Inductive spacing correction factor.
  - (5) Capacitive spacing correction factor.
  - (6) Resistance and shunt capacitive reactance ground return correction factors.

In overhead line calculations when the three phase conductors are symmetrically arranged the reactance may be divided into two parts, namely, the internal reactance due to the flux within the conductor, and the external reactance due to the flux between the conductors.

For compactness in tabulation the inductive reactance is divided into (1) the "partial inductive reactance" due to the internal flux plus the external flux to a radius of one foot, which is a function of the conductor size and type only, and (2) the "inductive spacing correction factor" due to the external flux between a radius of one foot and the centre of the other conductors, which is a function of the equivalent spacing only. Similarly the shunt capacitive-reactance may

be divided into the "partial shunt capacitive reactance" and the "capacitive spacing correction factor".



The formula for the inductance of two parallel round wires of radius r spaced at a distance S apart forming a return circuit is

$$L = \frac{1}{2} + 2 \log_e \frac{S}{r} \text{abhenrys/cm.} =$$

$$\frac{1}{2} + 2 \log_e \frac{1}{r} + 2 \log_e S \text{ abhenrys/cm.}$$

1st term = inductance due to internal flux.

2nd term = inductance due to flux between conductor and a radius of 1 ft.

3rd term = inductance due to external flux between a radius of 1 ft. and centre of other conductor.

"Partial Inductive Reactance" = sum of 1st and 2nd terms.

"Inductive Spacing Correction Factor" = 3rd term.

For properly transposed unsymmetrically spaced three phase lines the effect of irregularity may be taken into consideration by the introduction of equivalent spacings. The equivalent spacing formulae for the most usual configurations are as follows:



Equivalent spacing =  $D_e = \sqrt[3]{D_1 \cdot D_2 \cdot D_3}$ 



Equivalent spacing =  $D_e = \sqrt[3]{D_1 \cdot D_2 \cdot D_3}$ 



Equivalent spacing = D_e = 1.26 D

The principal formulae used in calculations by the method of symmetrical components are as follows:

### THREE PHASE CIRCUIT

Series Resistance and Inductive Reactance

Positive- and Negative-Sequence Impedance:

 $Z_1 = Z_2 = R_T + j (X_a + X_d)$  ohms per phase per mile.

Zero-Sequence Impedance:

 $Z_o = (R_T + r_e) + j (X_a + X_e - 2X_d)$  ohms per phase per mile.

Shunt Capacitive Reactance

Positive- and Negative-Sequence Impedance:

 $Z_1 = Z_2 = X_a' + X_d'$  megohms per phase per mile.

Zero-Sequence Impedance:

 $Z_o = X_{a'} + X_{e'} - 2X_{d'}$  megohms per phase per mile.

### SINGLE PHASE CIRCUIT

- (a) Without earth return:
  Impedance of Circuit = 2 [R_T + j (X_a + X_d)].
- (b) With line and neutral wires, the latter thoroughly grounded. ("Symmetrical Components", Wagner & Evans, McGraw-Hill Book Company.)

Impedance of Circuit = 
$$Z - \frac{M^2}{Z}$$
  
Where  $Z = \left(R_T + \frac{r_e}{3}\right) + j\left(X_a + \frac{X_e}{3}\right)$ 

and 
$$M = \frac{r_e}{3} + j \left( \frac{X_e}{3} - X_d \right)$$
.

### LIST OF SYMBOLS USED

 $R_T$  = a.c. resistance of conductor at temperature T (in degrees centigrade) indicated in tables.

R'_T = zero-sequence resistance.

r_e = resistance increment at 60 cycles, due to resistivity of earth, to be added to R_T to determine the total earth return circuit resistance.

X_a = partial inductive reactance.

X_d = inductive spacing correction factor.

Xa' = partial shunt capacitive reactance.

X_d' = capacitive spacing correction factor.

X_e = inductive reactance increment at 60 cycles, due to resistivity of earth to be added to X_a, to determine the total earth return circuit inductive reactance.

 $X_{e^{'}}$  = shunt capacitive reactance increment at 60 cycles, due to resistivity of earth to be added to  $X_{a^{'}}$  to determine the total earth return circuit shunt capacitive reactance.

X_L = total positive or negative sequence inductive reactance.

X_{LO} = total zero-sequence inductive reactance.

X_c = total positive or negative sequence shunt capacitive reactance.

X_{co} = total zero-sequence shunt capacitive reactance.

Z₁ = positive-sequence impedance.

Z₂ = negative-sequence impedance.

Z_o = zero-sequence impedance.

The resistance of conductor at any temperature t (in degrees centigrade) other than that indicated in tables may be computed from the following formula:

$$R_{t} = \left(\frac{234.5 + t}{234.5 + T}\right) R_{T}$$

38,600 34,700 31,400 29,600

27,200 25,500

23,400

.0398

.0392

.0378

.0371

### CHARACTERISTICS OF THREE CONDUCTOR PAPER INSULATED, LEAD SHEATHED CABLES

### Grounded Neutral-4,000 Volts

Positive- and Negative-

		SEQUENCE			ERO-SEQUEN	CE
Cond. Size	Rr †	XL	Xc ‡ Shunt	R'T**	XLO	Xco ‡ Shunt
B. & S.	Resistance	Inductive	Capacitive	Resistance	Inductive	Capacitive
or	Ohms/1,000			Ohms/1,000		Reactance
C.M.	@ 60°C.		Ohms/1,000'		Ohms/1,000'	
		per Phase	per Phase	@ 60°C.	per Phase	per Phase
		@ 60 Cycles	@ 60 Cycles		@60Cycles	@60Cycles
*6	.475	.0396	43,800	1.856	.0587	74,000
*4	.300	.0372	38,200	1.431	.0550	66,000
2	.188	.0319	26,900	1.313	.0482	48,300
1	.150	.0302	23,800	1.197	.0464	42,800
1/0	.118	.0292	21,900	1.108	.0447	39,600
2/0	.094	.0285	18,800	0.940	.0433	34,800
3/0	.075	.0275	17,000	.870	.0417	31,000
4/0	.059	.0268	14,400	.790	.0398	27,700
250,000	.050	.0262	13,500	.695	.0386	25,800
300,000	.042	.0256	12,300	.651	.0375	23,600
350,000	.036	.0251	11,400	.615	.0366	22,800
400,000	.031	.0248	11,000	.541	.0358	21,100
500,000	.025	.0238	9,860	.499	.0355	19,500
	/ (	Grounded	Neutral—	8,000 Volt	s	
*6	.475	.0414	46,300	1.606	.0625	83,000
*4	.300	.0387	40,500	1.335	.0587	75,000
2	.188	.0333	43,700	1.217	.0535	56,400
2	.150	.0314	36,500	1.113	.0500	51,700
1/0	.118	.0304	30,800	0.958	.0479	47,400
2/0	.094	.0296	25,500	.883	.0461	42,700
3/0	.075	.0286	20,200	.816	.0439	38,600
4/0	.059	.0278	14,900	.698	.0428	34,700
250,000	.050	.0269	12,000	.656	.0414	31,400
200,000	049	0262	9 600	615	0200	20 600

20,200 14,900 12,000 8,600

6,370 3,970 2,980

.615

 $.546 \\ .520$ 

.481

.0263

.0258

.0256

.0248

.042

.036

.031

.025

300,000

350,000

400,000

500,000

^{*} Round Conductors, remainder sector shaped.

[†] A.C. resistance based on International Annealed Copper Standard of resistivity, plus 2% for stranding and 2% for cabling.

[‡] Based on dielectric constant of insulation = 3.7.

^{**} Based on all return current in sheath.

### CHARACTERISTICS OF THREE CONDUCTOR PAPER INSULATED, LEAD SHEATHED CABLES

### Ungrounded Neutral-10,000 Volts

	Positiv	E- AND NEG	ATIVE-		34-113-14-7	
		SEQUENCE		Z	ERO-SEQUEN	CE
Cond. Size	RT †	XL	Xc ‡ Shunt	R'T**	XLO	Xco ‡ Shunt
B. & S.	Resistance	Inductive	Capacitive	Resistance	Inductive	Capacitive
or	Ohms/1,000'	Reactance	Reactance	Ohms/1,000'		Reactance
C.M.	@ 60°C.	Ohms/1,000' per Phase			Ohms/1,000'	
		@ 60 Cycles	per Phase @ 60 Cycles	@ 60°C.	per Phase @ 60 Cycles	per Phase
		Goodfales	@ 00 Cycles		@ oo Cycles	@60Cycle
*6	.475	.0430	52,400	1.441	.0701	99,000
*4	.300	.0402	46,300	1.122	.0656	90,600
$\frac{2}{1}$	.188	.0344	58,800	1.010	.0611	72,800
	.150	.0328	51,800	0.930	.0665	67,000
1/0	,118	.0315	46,300	.862	.0541	62,200
2/0	.094	.0306	40,200	.733	.0525	58,000
3/0	.075	.0294	34,800	,696	.0503	53,000
4/0	.059	.0287	28,800	.626	.0479	47,900
50,000	.050	.0278	24,600	.569	.0465	44,500
00,000	.042	.0272	22,000	.534	.0447	42,200
50,000	.036	.0265	18,800	.507	.0439	39,200
00,000	.031	.0264	14,800	.484	.0422	36,200
000,000	.025	.0254	11,300	.412	.0417	32,600

### Ungrounded Neutral-15,000 Volts

*6	.475	.0460	58,600	1.276	.0725	107,700
*4	.300	.0429	52,000	1.053	.0681	99,000
*2	.188	.0399	45,900	0.806	.0644	89.800
*1	.150	.0375	42,500	.741	.0605	85,200
1/0	.118	.0334	57,100	.730	.0584	71,500
2/0	.094	.0326	50,800	.679	.0557	66,000
3/0	.075	.0313	45,000	. 630	.0532	61,500
4/0	.059	.0303	39,100	.548	.0512	56,400
50,000	.050	.0300	35,900	.524	.0493	53,400
00,000	.042	.0286	30,900	.498	.0476	49,500
50,000	.036	.0280	28.300	.438	.0467	47,400
00,000	.031	.0276	24,500	.418	.0455	44,200
00,000	.025	.0266	20,400	.364	.0442	40,200

^{*} Round Conductors, remainder sector shaped.

 $[\]dagger$  A.C. resistance based on International Annealed Copper Standard of resistivity, plus 2% for stranding and 2% for cabling.

[‡] Based on dielectric constant of insulation = 3.7.

^{**} Based on all return current in sheath.

### CHARACTERISTICS OF COPPER TRANSMISSION LINE CONDUCTORS

### Hard Drawn 97.3 Per Cent. Conductivity

Size	OF CTOR	Num- ber	Outside Dia-	Approx.*	Xa' Partial Shunt	R _T	Xa Partial	
Circular Mils	B. & S.	of Wires	meter, Inches	Current	Capacitive React. Megohms/ mile/phase	ance Ohms/ mile	Inductive Reactance Ohms/ mile/phase	
1,000,000		61	1.152	1.300	.0901	0070		
900,000		61	1.093	1,220	.0916	0.0672 $0.0748$	.400	
800,000		61	1.031	1,130	.0934	.0748	.406	
750,000		61	0.998	1,090	.0943	.0897	.413	
700,000		61	.964	1.040	.0954	.0957		
600,000		37	.891	945	.0977	.111	.421	
500,000		37	.813	842	.100	.132	.432	
400,000	• • • • •	19	.726	730	.104	.164	.458	
300,000		19	.630	607	.108	017		
250,000		19	.574	540	.111	.217	.476	
211,600	0000	19	.528	485	.113	.307	.487	
211,600	0000	7	.522	484	.113	.307	.497	
167,806	000	7	.464	416	.117	007		
133,077	00	7 7	.414	359	.120	.387	.518	
105,535	/. 0	7 7	.368	309	.124	.614	.532	
83,693	1	7	.328	266	.127	.774	.546	
66,371	2	7	.292	230	.131	0==		
66,371	2 2 3	3	.320	235	.128	.975	.574	
52,635	3	7	.260	198	.134	$\frac{.965}{1.22}$	.571	
52,635	3	3	.285	202	. 131	1.22	.588	
							1.50	
41,740	4	3	.254	172	. 135	1.54	.599	
41,740 33,100	4	1	.204	166	.142	1.52	.609	
33,100	5	3	.226	150	.138	1.94	.613	
	. 5	1	. 182	143	.145	1.92	.622	
26,250	6	3	.201	130	.142	2.44	.628	
26,250	6	1	.162	123	.148	2.42	.628	
20,820	7	1 .	.144	106	152	3.05	.651	
16,510	8	1	.129	92	.153	3.84	.665	

^{*} Based on a Conductor Temperature of 75°C and an Ambient of 25°C.

### CHARACTERISTICS OF ALUMINUM CABLE STEEL REINFORCED CONDUCTORS

a:	-					Xa'	RT	Xa
Size of Con-	NUMB	ER	Copper* Equiv.,	Outside	Approx.	t Partial		
ductor,	WIRI	ns.	Cir.	Dia-	Max.	Shunt	Resist-	Partial
Cir.	******	20	Mils.	meter.		Capacitive	ance	Inductive
Mils.	Alumi-		or	Inches	Carrying		Ohms/	Reactance
or	num S	teel	B. & S.			Megohms/	mile	Ohms/
B. & S.						mile/phase	@ 50°C.	mile/phase
954,000	54	7	600,000	1.196	1.010	.0890	.109	.390
900,000	54	7777	566,000	1.162	966	.0898	.115	.393
874,500	54	7	550,000	1.146	949	.0903	.119	.395
795,000	54	7	500,000	1.093	897	.0917	.131	.401
795,000	26	7	500,000	1.108	901	.0912	. 131	.399
795,000	30	19	500,000	1.140	909	.0904	.131	.393
715,500	54	7	450,000	1.036	834	.0932	.145	.407
715,500	26	7	450,000	1.051	838	.0928	.145	.405
715,500	30	19	450,000	1.081	845	.0920	.145	.399
666,600	54	7	419,000	1.000	800	.0943	.155	.412
636,000	54	7	400,000	0.977	774	.0950	.163	.414
636,000	26 .	7	400,000	0.990	777	.0946	.163	.412
636,000		19	400,000	1.019	781	.0937	.163	.406
605,000	54	7	380,500	0.953	748	.0957	.172	/.417
556,500	26	777	350,000	.927	734	.0965	.186	.420
556,500	30	4	350,000	.953	726	.0957	.186	.415
500,000 477,000	30 26	7 7	314,500	.904	692	.0973	.207	.421
			300,000	.858	666	.0988	.217	.430
477,000	30	777777	300,000	.883	671	.0980	.218	.424
397,500	26	7	250,000	.783	591	.102	.260	.441
397,500	30	-	250,000	.806	596	.101	.261	.435
336,400 336,400	26 30	4	0000	.721	530	.104	.309	.451
300,000	26	7	0000	.741	535 493	.103	.309	.445
			188,700	.680		.106	.345	.458
300,000	30	7	188,700	.700	497	. 105	.345	.452
266,800	26	7	000	.642	457	.107	.388	.465
0000	6	1	00	.563	340	.111	.485	.581
000	6	1	. 0	.502	303	.115	.610	.621
00	6	1	$\frac{1}{2}$	.398	266	.118	.771	.641
			T.		233	.122	.972	.656
1 2 3 4	6	1	. 3	.355	199	.125	1.23	.665
2	6	1	4	.316	179	.128	1.55	.665
3	6	1	5 6	.281	157	.132	1.95	.661
4	6	1	7	.250	137 118	. 135	2.46	.659
5	6	1	8	.198	102	$.139 \\ .142$	$\frac{3.10}{3.91}$	.665
U	0		0	.130	102	.142	3.91	.673

^{*} Based upon Copper 97%; Aluminum 61%.  $\ddag$  Based upon a Conductor Temperature of 75°C. and an Ambient of 25°C.

# CHARACTERISTICS OF COPPERWELD AND COMPOSITE COPPER-COPPERWELD CONDUCTORS

		A CONTRACTOR OF THE PARTY OF TH					
	Size of Con- ductor or Desig- nation	Numb OF WIRE Copper C	Copper Equiva- lent	Outside Dia- meter, Inches	Approx.* Max. Current Carrying Capacity	Resistance Ohms/ mile @ 50°C.	Xa Partial Inductive Reactance Ohms/ mile/phase
7	1 2 2 m	Copper	weld—30% Co	onductivit	y—H. S. a	and E. H	. s.
3	No. 8 No. 9 No. 10	:: /	3 15,150 3 12,010 3 9,528	.277 .247 .220	131 113 98	4.24 5.35 6.75	.723 .735 .750
_	8	::	1 8,030 1 5,049	.162	87 65	7.95 12.61	.758 .786
		Сор	perweld—40%	Conduct	ivity—H.	s.	
3	No. 8 No. 9 No. 10	#	3 20,200 3 16,020 3 12,700	.277 .247 .220	151 130 113	3.18 4.00 5.06	.723 .735 .750
	6 8	/::	1 10,700 1 6,732	.162 .128	101 75	5.95 9.47	.758 .786
_			Composite Co	pper-Cop	perweld	100	
	2A 3A 4A 5A	2 2	$\begin{array}{cccc} 1 & 66,370 \\ 1 & 52,630 \\ 1 & 41,740 \\ 1 & 33,100 \end{array}$	.366 .326 .290 .258	231 199 171 148	.970 1.23 1.55 1.95	.639 .655 .671
	6A 7A 8A	2	1 26,250 1 20,820 1 16,510	.230 .223 .199	126 111 96	2.46 3.15 3.97	.697 .702 .713

^{*} Based on a Conductor Temperature of 125°C. for Copperweld and 75°C. for Composite Copper-Copperweld.

# INDUCTIVE REACTANCE SPACING CORRECTION FACTORS

### X_d—Ohms per Mile per Phase Separation—Feet

Feet	0	1	2	3	4	5	6	7	8	9
0 10 20 30	.279 .364 .413	.291 .369 .417	.084 .302 .375 .421	.133 .311 .380 .424	.168 .320 .386 .428	.195 $.329$ $.391$ $.431$	.217 .336 .395 .435	.236 .344 .400 .438	.252 .351 .404 .441	.267 .357 .409

### X_d—Ohms per Mile per Phase Separation—Inches (see Footnote †)

Inches	0	1	2	3	4	5	6	7	8	9
0		.302	.217	.169	.134	.107	.085	.066	.050	.03
10	.023	.011	0	.010	.019	.027	.035	.042	.049	.05
20 30	.062	.068	.074	.079	.084	.089	.094	.098	.103	.10
40	.146	.149	.152	.155	.158	.160	.163	.166	.168	.17
50 60	.173	.176	.178	.180	.183	.185	.187	.189	.191	.19

For Computing Zero-Sequence Impedance Only  $r_e$ =Resistance= .286 Ohms per Mile per Phase.

x_e=Reactance, from Table Below.

### X_e—Ohms per Mile per Phase

e' Earth									30.4
Resistivity Meter-Ohms	1	5	10	50	100	500	1,000	5,000	10,000
$\mathbf{x}_{\mathbf{e}}$	2.05	2.35	2.47	2.77	2.89	3.19	3.31	3.61	3.73

[†] Bar Over Number Indicates Negative Value.

## CAPACITIVE REACTANCE SPACING CORRECTION FACTORS

## X_d'—Megohms per Mile per Phase Separation—Feet

Ft.	0.	1	2	3	4	5	6	, 7	8	9
$\begin{array}{c} 0 \\ 10 \\ 20 \\ 30 \end{array}$	.0683 .0889 .101	$\begin{array}{c} 0 \\ .0711 \\ .0903 \\ .102 \end{array}$	.0206 .0737 .0917 .103	.0326 .0761 .0930 .104	.0411 .0783 .0943 .105	.0478 .0804 .0955 .106	.0532 .0823 .0967 .106	.0577 .0841 .0978 .107	.0617 .0858 .0989 .108	.0652 .0874 .0999 .109

## X_d'—Megohms per Mile per Phase Separation—Inches (see Footnote †)

In.	0	1	2	3	4	5	6	7	8	9
0 10 20 30 40 50 60	 .005 .0151 .0272 .0357 .0423 .0478	.0737 .003 .0166 .0281 .0364 .0429 .0482	.0532 0 .0180 .0291 .0371 .0435 .0487	.0411 .0023 .0193 .0300 .0378 .0440 .0492	.0326 .0045 .0206 .0309 .0385 .0446 .0496	.0260 .0066 .0218 .0317 .0392 .0451 .0501	.0206 .0085 .0229 .0326 .0398 .0457 .0505	.0160 .0103 .0240 .0334 .0405 .0462 .0510	.0120 .0120 .0251 .0342 .0411 .0467 .0514	.009 .0136 .0262 .0349 .0417 .0472

For Computing Zero-Sequence Shunt Capacitive Reactance Only  $\mathbf{x_e}'\!=\!\mathrm{Reactance}$ , from Table Below.

## X_e'—Megohms per Mile per Phase Height Above the Ground—Feet

10	15	20	25	30	40	50	60	70	80	90	100
.267											

## SPACING CORRECTION FACTORS FOR THREE-PHASE CIRCUIT WITH STANDARD CROSSARM

Type of Arm	SPACING IN IN.	x _d †	x _d '†
4 Pin * Low Voltage 6 Pin Low Voltage 6 Pin (Alley) Low Voltage 8 Pin * Low Voltage	14 ½ x 44 ½ x 59 14 ½ x 14 ½ x 29 14 x 14 x 28 13 5% x 27 ¼ x 40 78	.125 .051 .047 .088	.0305 .0124 .0113 .0214
4 Pin * Med. Voltage Secondary Racks	36 x 38 x 74 4 x 4 x 8 6 x 6 x 12 8 x 8 x 16	.164 .105 .057	.0401 .0258 .0138

^{*} Neutral or Ground Wire Located on Intermediate Pin.

[†] Bar Over Number Indicates Negative Value.

## APPLICATION OF 60 CYCLE IMPEDANCE CHARACTERISTICS TO TRANSMISSION AND DISTRIBUTION CIRCUITS

## Example No. 1

A three phase circuit consisting of a 3-conductor 300,000 C.M. sector, P.I.L.C. 15,000-volt cable, ungrounded neutral, delivers a load of 4,560 Kw. at 13,200 volts, 60 cycles, 80% power factor, a distance of 2,000 feet.

Determine the line voltage drop, regulation, copper loss, and charging current.

From the tables on page 242 for Positive-Sequence,

 $R_{\rm T}=0.042$  ohms per 1,000 feet per phase at 60°C.

X_L = total inductive reactance = 0.0286 ohms per 1,000 feet per phase at 60 Cycles.

Hence Positive-Sequence impedance, Z₁

= 0.042 + j 0.0286 per 1,000 feet per phase.

For 2,000 ft. length,

 $Z_1 = 0.084 + j 0.0572$  per phase

I = line current =  $\frac{4,560 \times 1,000}{1.73 \times 13,200 \times .80}$ 

= 250 amperes

E_R = receiving end volts to neutral

 $= \frac{13,200}{1.73}$ 

= 7,630 volts

 $IZ_1 = 250 (0.084 + j 0.0572)$  per phase

= 21 + j 14.3 per phase

E_s = sending end volts to neutral

= sum of vectors  $E_R$  and  $IZ_1$ 

 $= E_R \cos \theta + j E_R \sin \theta + 21 + j 14.3$ 

 $\cos \Theta = 0.80$ 

 $\sin \Theta = \sqrt{1 - (0.80)^2} = 0.60$ 

 $E_R \cos \Theta = 7,630 \times 0.80 = 6,100 \text{ volts}$ 

 $E_R \sin \theta = 7,630 \times 0.60 = 4,575 \text{ volts.}$ 

Absolute value of  $E_s = \sqrt{(E_R \cos \theta + 21)^2 + (E_R \sin \theta + 14.3)^2}$  $= \sqrt{(6,100 + 21)^2 + (4,575 + 14.3)^2}$   $= \sqrt{6,121^2 + 4,589.3^2}$  = 7,650 volts.

Voltage between lines at sending end

 $= 1.73 \times 7,650$ 

= 13,234.5 volts.

Total line drop = 13,234.5 - 13,200

= 34.5 volts.

Regulation =  $\frac{13,234.5 - 13,200}{13,200}$ 

= 0.261 per cent.

Note: In the above example, the conductor size was obviously determined by the current carrying capacity.

Copper Loss 
$$= 3 \times I^2 (2R_T)$$
 watts

$$= 3 \times 250 \times 250 \times 2 \times .042$$

= 15,730 watts = 15.7 Kw.

Charging Current:

From the table on page 242 for Positive-Sequence.

Shunt Capacitive Reactance = X_c = 30,900 ohms per 1,000 ft.

Charging current = 
$$2 \times \frac{13,200}{1.73} \times \frac{1}{30,900}$$
  
= 0.496 amperes.

## Example No. 2

A three phase transmission line two miles long delivers a load of 1,200 Kw. at 4,400 volts, 60 cycles, to a load circuit of 80% power factor. The conductors are 300,000 C.M. (19 wire) copper cable properly transposed and spaced twenty-four inches apart in a symmetrical flat spacing.

Determine total line drop and regulation at operating temperature of 50°C.



From page 243 for 300,000 C.M. (19 wire) copper conductor,

R_T = 0.217 ohms per mile per phase at 50°C.

X_a = partial inductive reactance = 0.476 ohms per mile per phase at 60 cycles.

From page 239 for symmetrical flat spacing,

 $D_e = 1.26 D$  $= 1.26 \times 24$ 

= 30.2 inches.

From page 246 for 30 inch equivalent spacing,

X_d = inductive spacing correction factor

= 0.111 ohms per mile per phase at 60 cycles.

Hence Positive-Sequence impedance per mile per phase,

 $Z_1 = R_T + j (X_a + X_d)$ = 0.217 + j (0.476 + 0.111)= 0.217 + j 0.587

Length of line = 2 miles.

Therefore for whole line  $Z_1 = 0.434 + j \cdot 1.174$ 

= line current = 1,200,000 = 197 amperes  $1.73 \times 0.80$ 

 $1Z_1 = 197 (0.434 + j 1.174)$ = 85.5 + j 232.

Hence

Es = sending end volts to neutral = sum of vectors Es and IZ1  $= E_R \cos \theta + j E_R \sin \theta + 85.5 + j 232$ =  $(E_R \cos \theta + 85.5) + j (E_R \sin \theta + 232)$ 

Therefore absolute value of Es

 $=\sqrt{(E_R \cos \theta + 85.5)^2 + (E_R \sin \theta + 232)^2}$  $\cos \Theta = 0.80$ 

 $\sin \Theta = \sqrt{1 - (0.80)^2} = 0.60$ E_R = receiving end volts to neutral

 $=\frac{4,400}{1.73}=2,540 \text{ volts}$ 

 $E_R \cos \theta = 2,540 \times 0.80 = 2,030 \text{ volts}$  $E_R \sin \theta = 2,540 \times 0.60 = 1,525 \text{ volts.}$ 

Therefore

 $E_8 = \sqrt{(2.030 + 85.5)^2 + (1.525 + 232)^2}$ = 2,750 volts.

Voltage between lines at sending end

 $= 2,750 \times 1.73$ = 4.760 volts.

Regulation

= 4,760 - 4,400= 8.2 per cent.4,400

Total Line Drop = 4,760 - 4,400 = 360 volts.

Copper loss in Lines = 3 I² (2 R_T) watts

 $= 3 \times 197 \times 197 \times 2 \times 0.217$  watts

= 50.5 Kw.

## Example No. 3

Determine the total line drop and regulation for above line properly transposed and unsymmetrically spaced in a flat spacing with the conductors 1 and 2 spaced 2 feet apart, and conductors 2 and 3 spaced 3 feet apart.

From page 239 for unsymmetrical flat spacing,

$$D_e = \sqrt[3]{2 \times 3 \times 5}$$

= 3.1 feet

= 37 inches.

From page 246 for 37 inch equivalent spacing, X_d = 0.137.

Therefore  $X_a + X_d = 0.476 + 0.137 = 0.613$ 

 $IZ_1 = 197 (0.434 + j 1.226)$ 

= 85.5 + j 242

Therefore  $E_s = \sqrt{(2030 + 85.5)^2 + (1,525 + 242)^2}$ = 2,760 volts.

Voltage between lines at sending end

 $= 2,760 \times 1.73$ 

= 4,780 volts.

Total Line Drop = 380 volts.

Regulation = 8.65 per cent.

## Example No. 4

Determine the positive- and zero-sequence impedances of the transmission line in Example No. 2 assuming the average earth resistivity °' = 100 meter-ohms.

From page 243 for 300,000 C.M. copper conductor,

R_T = 0.217 ohms per mile per phase at operating temperature of 50°C.

X_a = 0.476 ohms per mile per phase.

From page 246 for 30 inch equivalent spacing,

X_d = 0.111 ohms per mile per phase.

Therefore Positive-Sequence impedance,

 $Z_1 = R_T + j (X_a + X_d)$ 

= 0.217 + j (0.476 + 0.111)

= 0.217 + j 0.587 ohms per mile per phase.

From page 246 for e' = 100 meter-ohms,

X_e = 2.89 ohms per mile per phase.

From page 246,

re = 0.286 ohms per mile per phase.

Therefore Zero-Sequence impedance,

 $Z_o = R_T + r_e + j (X_a + X_e - 2 X_d)$ 

= 0.217 + 0.286 + j [0.476 + 2.89 - 2(0.111)]

= 0.503 + j 3.144 ohms per mile per phase.

## SYMBOLS

SIMBULS
A = size of conductor, circular mils.
D = outside diameter of sheath, inches.
Di = inside diameter of lead sheath, inches.
d = conductor diameter, (round), inches.
E = voltage between conductors, Kilovolts.
e = voltage to neutral, Kilovolts.
f = frequency.
G = geometric factor for a single conductor cable.
G ₁ = geometric factor all conductors against sheath.
G ₂ = geometric factor for three phase operation (belted cable).
G _x = any geometric factor, depending on the connection desired.
H = heating constant of the duct in thermal ohms for one fact
Standard duct heating constants, based on NFI A studies
and representative of average field conditions are as follows:
Number of Equally Loaded Cables in
Outside Ducts (N) . 1 2 3 4 5 6 7 8 9 10 11 12
Heating Constant (H)
in Thermal Ohms for
one foot of duct 1.45 1.15 1.04 .93 .86 .82 .79 .77 .75 .74 .73 .72
K = conventional minimum constants for insulation resistance at 15.5°C. (60°F.).
Paper (oil-filled)
Paper (compound-filled) 500
Varnished Cambric 500
Rubber (Code)
Rubber (30% grades)
k = specific inductive capacity of insulating material.
Representative values:
D ( ) CII N
Paper (compound-filled)
Varnished Cambric
Rubber
Lf = loss factor, expressed as ratio.
n = number of conductors in cable, or percentage conductivity, expressed as a decimal.
R = conductor resistance at temperature T _o , ohms per 1,000 ft. from equation (8).
(b)

 $R_{\rm ac}/R_{\rm dc}\!=\!$  ratio of alternating current resistance to direct current resistance of conductor.

This ratio is a combination of the skin effect ratio, as given in the table on page 263, and the proximity effect which, in multiple conductor cables, must be taken into account. For many types of stranded sector conductor the combined skin-proximity effect may be taken as 1.35 times the skin effect. For Canada Wire & Cable Co. sector cables, however, the proximity effect is practically eliminated and the combined effect may therefore be taken as equal to the skin effect, only.

R_o = added effective conductor resistance due to induced sheath currents, ohms per 1,000 feet, from equations 12, or 13.

R_s = resistance of lead sheath, ohms per 1,000 feet.

R_T = conductor resistance at temperature T deg. C., ohms per 1,000 feet.

R_{th} = thermal resistance to I²R loss between conductors and base in thermal ohms per one foot of cable from equation 34, 35 or 36.

R'th = thermal resistance to dielectric loss between conductors and base in thermal ohms per foot of cable. For single conductor and three conductor Type H cables from equations 34 and 35 respectively, except that the first term should be divided by 2, and the loss factor Lf should be omitted from the last term. For multi-conductor belted cables from equation 36, except that the loss factor Lf should be omitted from the last term.

R₂₅ = conductor resistance at 25°C., ohms per 1,000 feet.

r = radius of conductor, inches.

 $r_m$  = mean radius of sheath  $(r_5 + r_4) \div 2$ , inches.

r₄ = inner radius of lead sheath, inches.
 r₅ = outer radius of lead sheath, inches.

S = distance between centres of conductors, inches.

S₁ = distance between effective current centre of each conductor and the cable centre, inches.

T = conductor insulation thickness, inches, or temperature, deg. C.

T_G = base temperature of earth, deg. C. If cable operates in air, use ambient temperature of air, deg. C.

To = allowable temperature of insulation, deg. C.

t = belt thickness, inches, or new temperature deg. C.

W_{DL} = dielectric loss in watts per foot of cable from equation 27, 28 or 29.

 $X_M = 2\pi fM$  in which M is mutual inductance of conductor and sheath.

electrical resistivity of insulation at a given temperature in megohm-cm., units.

cos Ø = power factor of the insulation for a given temperature and frequency, expressed as a decimal.

## CURRENT CARRYING CAPACITY

One of the most common problems of cable calculation is the allowable current as limited by temperature rise. A word of caution, however, might be added. Current carrying capacity may be limited in general by the question of regulation, efficiency, economy, temperature rise, stability, etc. The actual limitation in a particular case is determined by the consideration which indicates the smallest permissible current. A given problem cannot be considered to have been solved completely unless it has been investigated from all these angles. For low voltage mains and feeders, the usual controlling factor is voltage drop and regulation. For higher voltage cables, in spite of notable exceptions, there seems to have sprung up a general idea that the limit is always a question of temperature rise. This is by no means the general case.

An obvious exception would be a long submarine cable, where regulation instead of temperature might be the criterion.

There are many other cases, moreover, of underground cables in ducts, where the laws of economy should be given more attention than they have in certain cases. The problem is such a large one that it cannot be covered in this outline, but it is obvious that in many cases, especially in a system where a consumer purchases power and has a high loadfactor, it would cost less per year to use a relatively large size of conductor than to use smaller conductors and have a large annual charge for the losses. Some cases are quite clean-cut in this respect, but in each instance the matter should be considered. Whenever there is any doubt as to the relative economy in the use of different sizes of the conductor, the final decision in the matter should be obtained only by considering the actual costs of the possible sizes that might be considered. Finally, it should be noted that not uncommonly a circuit is intended for a given current and in the future it becomes desirable considerably to increase this current. If economic considerations should dictate a size greater than necessary by reason of temperature limitations, its future increase in capacity is practical.

Before considering in detail the essential steps involved in the calculation of current carrying capacity, attention is directed to the loading tables which are given on pages 264 to 293. These tables give the maximum permissible carrying capacity of various groups and types of cables based upon a definitely stated set of representative assumptions. Where actual conditions conform to these, the tables will give the answer to a degree of accuracy well within the limits of practical requirements without further calculation.

Confining the problem to the calculation of current carrying capacity as limited by temperature rise, the problem is simple in its essentials, though it becomes somewhat complicated in certain cases. The fundamental requirement is that the insulation of the cable should not be heated above a certain temperature. Heat is generated in the conductors as I²R loss, in the sheath by induced currents and, to a much less degree, in the insulation itself by the voltage stresses, or, in other words,

the dielectric loss. The heat from these three sources must flow outward through the thermal resistance of the various elements, causing a total temperature rise. This temperature rise when added to the base temperature of the soil must not result in a conductor temperature greater than the allowable insulation temperature. That is the problem in a nutshell.

The fundamental law that should be borne in mind has been called "Ohm's law for heat," which is directly analogous to Ohm's law for electric circuits. In the electrical case, the difference of electrical potential is equal to the product of the electrical resistance by the electric current flowing. The corresponding thermal law is that the difference of temperature is equal to the product of the thermal resistance by the heat flow. Expressed mathematically in the proper units, temperature rise in deg. C. equals thermal ohms times watts. For the case of a cable, the heat is radial and follows an infinite number of parallel paths. Attention must therefore be confined to certain elements. Inasmuch as both the losses and the thermal conductance are proportional to the length of cable, merely one foot of cable need be considered.

### THERMAL RESISTANCE (a) Cables in Ducts

Single Conductor Compound-Filled Paper* Insulated Lead Sheathed Cable:

$$R_{th} = 3.65 G + \frac{4.93 \uparrow}{D} + L_f N H$$
 thermal ohms for one foot of cable (34)

Three Conductor Compound-Filled Type H Paper* Insulated Lead Sheathed Cable:

$$R_{\rm th} = \frac{3.65~G_1}{3} + \frac{4.93\dagger}{D} + L_{\rm f}~N~H$$
 thermal ohms for one foot of cable (35)

Multi-Conductor Belted Paper* Insulated Lead Sheathed Cable:

$$R_{\rm th} = \frac{3.65 \, G_1}{n} + \frac{4.93 \, \dagger}{D} + L_{\rm f} \, N \, H \text{ thermal ohms for one foot of cable (36)}$$

### (b) Cables in Air

Use formulae (34), (35) and (36) omitting last term.

resistivity of 1200°C./watt/cm² for diameters of 1.75 inches and above and on a straight line decrease in resistivity from this point to a value of 650°C./watt/cm² at zero diameter.

^{*} The coefficient 3.65 in equations (34), (35) and (36) is for compound-filled type paper insulation; for oil-filled paper the coefficient becomes 2.87; for varnished cambric, 3.13; and for rubber, 2.61.

[†] Where the outside diameter, D, of the sheath is less than 1.75 inches the expression  $\left(1.29 + \frac{2.67}{D}\right)$  should be used in place of the second term  $\frac{4.93}{D}$  in equations (34) to (36). These expressions are based on a surface

### CURRENT CARRYING CAPACITY

$$I = 0.281 \sqrt{\frac{A(T_0 - T_6)}{n R_{th}}} \text{ amperes per conductor } . . . . . . . . (37)$$

Note: This is the fundamental formula for current carrying capacity, in its simplest form. It neglects skin and proximity effect, lead sheath loss, and dielectric loss, and assumes that the conductor temperature is 65°C. (an average value of maximum permissible operating temperatures). The method of taking these factors into account is explained below:

### Correction for Conductor Temperature:

Multiply current carrying capacity as obtained from equation (37) by

$$\sqrt{\frac{299}{234+T_o}}$$

### Correction for Skin and Proximity Effect:

Multiply current carrying capacity as obtained above by

$$\frac{1}{\sqrt{R_{ac}/R_{dc}}}$$

### Correction for Sheath Loss:

Multiply the second and third terms of the expression for  $R_{th}$  in equation (34), (35) or (36) by  $\frac{R+R_o}{R}$  and use this modified  $R_{th}$  in equations (37) or (38).

## Complete Formula including Correction for Dielectric Loss:

## **CURRENT CARRYING CAPACITY TABLES**

The current carrying capacities contained in the tables which follow are based on standard conditions determined by the Underground Systems Committee of the former National Electric Light Association and adopted by the Insulated Power Cable Engineers Association of the U.S.A. The ratings for compound-filled type paper insulated cables have been taken from Publication No. A 14 (July, 1933) of the Edison Electric Institute of the U.S.A.; those for varnished cambric insulated cables were prepared by the I.P.C.E.A. and adopted November 1, 1934. The basis for all of these tables is outlined below:

(a) Thermal resistivity of compound-filled paper insulation, 700 (watt-cm. units); of varnished cambric and oil-filled paper insulation, 600; and of rubber insulation, 500.

- (b) Emissivity of sheath, 1,200 (watt-cm. units).
- (c) Daily load factors of 50%, 75% and 100% corresponding to loss factors of 33%, 62.5% and 100% for cables in underground ducts, and any load factor from 50% to 100% for cables in air.
  - (d) Duct constants as follows:

3 cables: 1.04 thermal ohms 6 cables: 0.82 thermal ohms 9 cables: .75 thermal ohms 12 cables: .72 thermal ohms

These constants, when multiplied by the number of loaded cables and the loss factor, give the following values for thermal resistance of ducts, in thermal ohms per foot of duct.

Number of Cables in	Load Factor:	50%	75%	100%
Duct Bank	Loss Factor:	33%	62.5%	100%
3 6 9 12		1.03 1.62 2.23 2.85	1.95 3.08 4.22 5.40	3.12 4.92 6.75 8.64

- (e) All cables in group of similar size, equally loaded, and in outside ducts only.
- (f) Average soil conditions (not dry or "hot spot" conditions).
- (g) Groups of cables in ducts are referred to ambient earth temperature without external source of heat.
- (h) Groups of cables in air are referred to surrounding air temperature at full load.
- (i) C.E.S.A. proposed standard temperature rule for compound-filled paper cable,  $T=(90-E)^{\circ}C$ . where T is maximum allowable copper temperature and E is the voltage rating in kv. The voltage E is taken as the phase to phase voltage for three conductor belted cables, and the voltage to ground for three conductor shielded and single conductor cables. Minimum temperature  $60^{\circ}C$ .; maximum temperature  $85^{\circ}C$ .

A.I.E.E. standard temperature rule for standard varnished cambric cable,  $T = (75 - E)^{\circ}C$ .

Maximum allowable copper temperatures for various rubber compounds:

Code and Intermediate (up to 5,000 volts)	50°C.
30% to 60% Grades (up to 8,000 volts)	60°C.
Heat-Resisting (up to 5,000 volts)	75°C.
Gencorone (up to 5,000 volts)	70°C.
Gencorone (over 5,000 volts)	60°C.

(j) Standard insulation thicknesses of paper in accordance with the C.E.S.A. proposed "Standard Specifications for Insulated Power Cable—Paper Insulated Lead Covered Cable", second draft.

For varnished cambric and rubber insulation, standard I.P.C.E.A. thicknesses.

Deviation, within reasonable limits, from these thicknesses in any one voltage class, does not introduce appreciable error in current rating.

- (k) Standard logarithmic formula used in calculating thermal resistance of single conductor cables. Thermal resistance of three conductor cables determined by the method given by Dr. D. M. Simmons, "Electric Journal", July, 1932, page 336.
- (l) Tables include corrections for dielectric loss and all other forms of extra a-c losses as indicated below.

## DIELECTRIC LOSS

## Paper

The reduction in carrying capacity of compound-filled paper insulated cables due to dielectric loss, as included in the tables, is based on the following A.E.I.C. maximum dielectric power factor values at 60 cycles.

Temperature in °C.	POWER FACTOR				
in C.	7.5 to 20 kv.	20.1 kv. and over			
Room to 60	2.0%	1.2%			
70	2.9%	1 7%			
75	3.4%	2.0%			
80	4.0%	2.4%			
85	4 7%	2 907			
90	5.5%	2.7/0			

For oil-filled cable, a power factor of 0.5% is assumed. The specific inductive capacity (S.I.C.) of compound-filled insulation is assumed as 3.7 (3.5 for oil-filled) for all temperatures and the calculated dielectric loss is based on uniform temperature for the cable cross section.

## Standard Varnished Cambric

The reduction in carrying capacity of varnished cambric insulated cables due to dielectric loss is based on an S.I.C. of 5.5 and on the following maximum dielectric power factor values at 60 cycles, the same assumptions applying as given in the previous paragraph.

	POWER	FACTOR
Temperature in °C.	Single or Multi-Conductor Shielded Cable	Multi-Conductor Non-shielded Cable
Room to 40 60 80	7.0% 10.0% 16.0%	10.0% 15.0% 25.0%

## Rubber

In the case of rubber insulated cables the dielectric loss is neglected. This is considered satisfactory because of the comparatively low voltages involved.

## ADDITIONAL A-C LOSSES

Single and three conductor cables have extra a-c losses produced by induction, such as skin effect and proximity effect losses in the conductors, loss in the lead sheath, and relatively small losses in the metal shielding and metal binding tape where such tapes are used.

For single conductor cable the tables include skin effect losses (proximity effect losses are negligible). Induced sheath current losses for short-circuited sheath operation are not included (except for one tabulation on oil-filled type) since these vary with spacing between cables. The tables, therefore, are based generally on open-circuited sheath operation of single conductor cable, in which case there are practically no sheath losses.

For three conductor cable, the tables include corrections for 60-cycle extra a-c losses, such as skin effect, proximity effect, and sheath losses. The correction factors used for three conductor cable, due to these losses, are as follows:

Conductor Size B. & S. or 1,000 Circular Mils	Correction Factor for Current Rating
1/0	.99
4/0	.98
300	.97
350	.96
500	.94
600	.93
750	.91

These factors hold, within acceptable limits, for all types of cable and thicknesses of insulation.

## USE OF THE TABLES General

In using these loading tables the preceding conditions and limitations should be kept in mind. Where the actual conditions depart from these, proper allowance should be made.

These tables are based on maximum allowable conductor temperatures and therefore represent maximum allowable current carrying capacities. Capacities of paper and varnished cambric cables are given for N.E.L.A.—N.E.M.A. Standard Preferred Voltage Ratings and the tables are so arranged that interpolation for other voltage ratings can easily be made.

The tables of current ratings "in air" are useful in determining the approximate carrying capacity of any cable or group of cables installed underground, indoors, or outdoors where, due to sources of external heat or other conditions, the thermal characteristics of the surroundings cannot be predetermined exactly. On this basis the approximate carrying capacity can be determined from the "in air" tables by arbitrarily assuming, or assigning, a conservative ambient full load temperature, i.e., the temperature of the air or duct immediately surrounding the cable. This value of ambient

temperature can be approximated by use of good judgment and experience. Actual temperature surveys when possible are of course more accurate and reliable.

## Rubber

Ratings of rubber insulated cables are given for two maximum copper temperatures, namely, 60°C. and 75°C. To determine approximate ratings at other maximum copper temperature the ratings of 60°C. may be multiplied by the correction factors given below:

	For 20°C. Earth Ambient	For 40°C. Air Ambient
50°C.	.89	.71
60°C.	1.00	1.00
70°C.	1.10	1.20

## D-c Current Carrying Capacities

The direct current ratings of single conductor standard strand cables are of interest. The following table gives the factor by which the a-c rating at 5,000 volts should be multiplied to obtain the d-c rating for d-c voltages up to 1,500 volts.

Conductor Size 1,000 Circular Mils	Correction Factor
300	1.005
350	1.006
400	1.009
500	1.011
600	1.016
700	1.020
750	1.023
800	1.025
1,000	1.036
1,250	1.054
1,500	1.072
1,750	1.092
2,000	1.115

## **Annular Concentric Stranded Conductors**

The current carrying capacities of annular conductor compound-filled paper cables given in the tables are based on the conductor diameters indicated below. The tables are accurate within 2% for other diameters having the same copper area, as follows: up to 1,250,000 C.M. core diameters can be increased or decreased 20%; above 1,250,000 C.M. core diameters can be increased 9% or decreased 15%. The current carrying capacities of annular conductor varnished-cambric cables given in the tables are based on I.P.C.E.A. conductor dimensions.

Size Circular Mils	Inside Diameter Inches	Conductor Diameter Inches
700,000	.40	1.04
800,000	.45	1.13
1,000,000	.56	1.31
1,250,000	.72	1.49
1,500,000	.95	1.71
1,750,000	1.16	1.92
2,000,000	1.25	2.11
2,500,000	1.38	2.36

## DIMENSIONS AND 60-CYCLE SKIN EFFECT RATIO OF STRANDED COPPER CONDUCTORS AT 65°C.

This table gives the conductor diameter in inches d, and the 60-cycle skin effect ratio or ratio of alternating to direct-current resistance, both for the ordinary form of stranding (inside diameter = 0) and for annular conductors.

Size Circular		0		25		DUCTOR I		
Mils			0.	. 23	0.	50	0	.75
50.5	d	Ratio	d	Ratio	d	Ratio	d	Ratio
3,000,000	1.998	1.439	2.02	1.39	2.08	1.36	2.15	1.29
2,500,000	1.825	1.336	1.87	1.28	1.91	1.24	2.00	1.20
,500,000	1.631	1.239	1.67	1.20	1.72	1.17	1.80	1.12
,000,000	$\frac{1.412}{1.152}$	1.145	1.45	1.12	1.52	1.09	1.63	1.06
1,000,000	1.152	1.068	1.19	1.05	1.25	1.03	1.39	1.02
800,000	1.031	1.046	1.07	1.04	1.16	1.02	1 00	
600,000	0.893	1.026	0.94	1.02	1.04	1.01	1.28	1.01
500,000	.814	1.018	.86	1.01	0.97	1.01		
400,000	.728	1.012	.78	1.01				
300,000	.630	1.006		1.01				

Circular Mils	1	.00	1.	.25	1.	50	2	.00
	d	Ratio	d	Ratio	d	Ratio	d	Ratio
3,000,000	$2.27 \\ 2.12$	1.23 1.16	2.39 2.25	1.19 1.12	2.54 2.40	1.15 1.09	2.87	1.08
2,000,000 1,500,000 1,000,000	$1.94 \\ 1.75 \\ 1.53$	$1.09 \\ 1.04 \\ 1.01$	$\begin{array}{c} 2.09 \\ 1.91 \\ 1.72 \end{array}$	$1.06 \\ 1.03 \\ 1.01$	$\frac{2.25}{2.07}$	$\frac{1.05}{1.02}$	$\frac{2.61}{2.47}$	1.02
800,000	1.45	1.01						::::

## CURRENT CARRYING CAPACITY OIL-FILLED PAPER CABLES SINGLE CONDUCTOR CABLES

	2,000
	1,750
	1,500
	1,250
MILS	1,000 1,250 1,500
Conductor Size B. & S. or 1,000 Circular Mils	006
0 CIR	800
в 1,00	750
S. 9.	706
в В. &	009
R Sizi	200
отсто	400
CONI	0 350
	250 300
	4/0
	2/0 3/0 4/0
	1/0 2/0
er.	
Max. Copper	Tem .O.
Maximum Three Phase	Voltage Volts
Number of Loaded	Cables in Duct Bank

## 75% LOAD FACTOR

Open-Circuited Sheath (Bonded and grounded at one point only.)

										AMI	AMPERES	PER	RES PER CONDUCTOR	остои	~					
	34,500	75.0		87 3	20 37	8 40	5 450	1 492						767	822	872	066			
	46,000	75.0	2	86 3	10 36	7 39	5 440	1 482						765	820	870	982			
*	000'69	75.0	2	282 30	300 367	17 390	0 430	0440	502	568	628	889	715	740	795	845	955	1,043	1,125	1,200
)	115,000	70.0		:	34	7 36	5 402	3 438						685	737	775	875			
	138,000	70.0		:	33	5 35	2 392	2 427						089	722	762	852			

*For six loaded cables in duct bank apply the following correction factors to the ratings for three loaded cables:

Correction Factor	. 913 . 915 . 908 . 908
Maximum Voltage	34,500 46,000 69,000 115,000 138,000

See footnotes page 265

## CURRENT CARRYING CAPACITY OIL-FILLED PAPER CABLES SINGLE CONDUCTOR CABLES (Continued)

Mil.s	900 1,000 1,250 1,500 1,750 2,000
. OR 1,000 CIRCULAR	6 008
00 CIR	750
я 1,00	200
S S. o	009
CONDUCTOR SIZE B. & S.	200
OR SIZ	400
DUCTO	350
Con	300
	250
	4/0
	3/0
	2/0
	1/0
Max. Copper	Temp.
Maximum Three Phase	Line Voltage Volts
Number of Loaded	Cables in Duct Bank

## 75% LOAD FACTOR

## Short-Circuited Sheath (Bonded and grounded at several points.)

670 668 665 635 628
650 650 650 620 610
628 628 628 595 587
603 603 570 565
568 568 568 537 530
553 551 548 518 515
535 535 528 498 492
525 525 522 518 490 485
513 513 510 504 475 472
487 485 478 450 4488
MPERES 457 453 448 422 418
A120 415 410 385 383
397 393 390 365 365
372 365 365 340 337
343 335 333 315 313
327 320 320 295 295
285 280 275 262 257
270 265 262 
538
75.0 75.0 70.0 70.0
34,500 46,000 69,000 115,000 138,000
3† or 6†

†Ratings given apply to either three or six loaded cables in duct bank, if cables are arranged as follows, the spacings being 71% in.:

Arrangement for Six Cables	ABC
Arrangement for Three Cables	ABC

Ratings are based on 60-cycle alternating current and grounded

Ratings are based on ambient earth temperature of 20°C. For forter ambient temperatures apply the following correction factors.

138,000 v.	1.09 1.00 0.89
115,000 v.	1.08 1.00 0.89
69,000 v.	1.08 1.00 0.90 0.90
46,000 v.	1.08 1.00 0.90 .79
34,500 v.	1.08 1.00 0.90 0.79
Ambient Temp.	01284 0000 0000 0000

Ratings include dielectric loss and skin effect. All cables in outside ducts.

Conductors are hollow core, 0.5 in. clear diameter.

## CURRENT CARRYING CAPACITY OIL-FILLED PAPER CABLES THREE CONDUCTOR SHIELDED CABLES

11	00	1
	750	
	200	
	7	
	009	
	9	
E	200	
	70	
. or 1,000 Circular Mils		
CUI	400	
JIR	4	
0		
00,	350	
3 1	60	
0.0		
	300	
3	30	
CONDUCTOR SIZE B. & S		
IZE	250	
82	23	
TO		
Duc	0	
INC	4/0	
ŏ		
	0	
	3/0	
	_	
	2/0	
		-
	1/0	
LX.	Temp.	
Ma	rei O	
O		
. II.	9	
imi	tag olts	
Maximum Three Phase	Vol	
Z		
er er	ct	
Number of Loaded	Du	
n oj	Ca	

## 75% LOAD FACTOR

	460 460 455
	445 445 440
	417 417 412
	382 382 380
TOR	342 342 342
CONDUC	320 320 320
MPERES PER	295 295 295
AMPE	262 265 265
	240 240 240
	210 210 210
	190
	168
	75.0 75.0 75.0
	34,500 46,000 69,000
	3 +

‡For six loaded cables in duct bank apply the following correction factors to the ratings for three loaded cables:

Correction Factor	.885 .882 .875
Maximum Voltage	34,500 46,000 69,000

Ratings include dielectric loss and extra a-c losses, such as sheath loss and proximity loss.

All cables in outside ducts.

Ratings are based on 60-cycle alternating current and grounded

Ratings are based on ambient earth temperature of 20°C. For other ambient temperatures apply the following correction factors:

A 000'69	1.08 1.00 0.90 0.79
46,000 v.	1.08 1.00 0.90 7.79
34,500 v.	1.08 1.00 0.90 .79
Ambient Temp.	10°C. 20°C. 30°C. 40°C.

Sector conductors. Approximate correction factor for round conductor cable is .99.

## CURRENT CARRYING CAPACITY—COMPOUND-FILLED PAPER CABLES SINGLE CONDUCTOR

## 50% LOAD FACTOR

4040404	500     60.0       500     85.0       500     85.0       235     270       236     28       238     294       346     388       350     76.5       36     207       38     386       39     366       30     70.0       36     32       36     32       36     32       36     32       37     34       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32       38     32	000 85.0 280 262 298 350 382 000 81.5 221 242 282 380 366 000 76.5 212 240 276 320 354 000 63.5 250 365 300 354 000 60.0 60.0 60.0 60.0 60.0 60.0 60.0	000000
510 496 470 438	408 490 474 450 422 422 422 422	360 470 442 432 406 406 376	450 436 414 414 388 360 330
555 640 538 622 514 592 478 548	4. O 13 12 12 1 4	4. 454545454	4 101010444
640 718 7 622 698 7 592 664 7 548 612 6	2,2,000,00	4 0000111	4. 01011111144
794 766 728 670	610 568 714 680 640	538 538 680 654 606 556	
827 798 758 758		om letetenon	as references
862 828 786 9726		- 2221110	o withings.
986 1,1 940 1,0 914 1,0 830 9	-i	0.0.0.00	
,070 1,235 ,070 1,180 ,018 1,122 ,940 1,032		HH	ť
35 1,338 30 1,270 22 1,208		HHH	ਜੰਜੰਜੰ
8 1,440 0 1,360 8 1,288 4 1 190			

## CURRENT CARRYING CAPACITY—COMPOUND-FILLED PAPER CABLES SINGLE CONDUCTOR

	000,
2.3	50 2
	1,7
	1,500
	250
	0 1,5
	1,00
III.S	800 1,000 1,250 1,500 1,750
AR M	750
. OR 1,000 CIRCULAR MIL	200
00 Cr	009
в 1,00	200
0.83	400
CONDUCTOR SIZE B. & S.	350
Size	300
TCTOR	250
JONDI	4/0
	3/0 4/0
1.5	1/0 2/0
	1/0
	-
	\ c1
	4
	9
Max.	Copper Temp. °C.
Rated	rnase Line Voltage Volts
	Loaded Cables in Duct Bank
IZ +	HE.OF

## 75% LOAD FACTOR

230 266 225 258 2017 248 204 234 212 244 204 234 192 220 207 237 207 237 207 237 208 220 182 207 193 220 194 220 197 207 198 220 198 220 198 220 198 220	2227	256 306 355 258 296 342 238 288 328 238 289 342 238 260 288 220 250 290 331 220 250 288 220 254 288 318 220 254 288 318 220 254 288 318 220 254 288 308 220 254 288 308 220 252 289 220 252 289 220 252 289 220 251 286 270 220 251 286 270 250 251 256 270 250 251 256 270 250 251 256 270 250 251 256 270 250 250 250 250 250 250 270 270 270 270 270 270 270 270 270 27	266 306 353 390 248 296 342 378 238 268 383 250 289 331 365 250 290 331 365 224 280 331 365 220 250 288 315 220 250 289 31 220 250 289 336 220 250 289 336 220 251 260 297 220 252 299 319 220 252 299 319 220 252 250 252 27 250 264 308 332 250 252 289 319 250 252 250 252 277 250 252 250 252 277 250 250 252 252 277 250 252 252 277 250 252 252 277 250 252 252 257 277 250 257 260 297 326 250 252 250 252 277 250 251 286 315 250 252 252 252 252 252 252 252 252 252	266 306 353 390 438 258 296 342 378 421 233 268 284 378 421 250 290 331 365 407 224 280 331 365 407 220 250 288 316 351 220 250 288 318 356 220 250 288 318 356 220 250 288 318 356 220 250 288 318 356 220 252 288 318 356 220 252 289 319 353 207 264 308 322 369 220 252 289 319 353 207 256 277 281 220 252 289 319 353 220 252 289 319 333 220 252 289 319 333 220 252 289 319 334 220 252 289 319 334 220 252 289 319 334 220 252 289 319 334 220 252 289 319 334	266 306 353 390 438 478 128 284 284 284 284 284 284 284 285 405 442 288 286 308 319 318 413 250 289 318 312 312 312 210 210 210 210 210 210 210 210 210 2	266 306 353 390 438 478 520 596 666 728 758 228 296 342 378 421 461 501 575 641 701 731 238 288 288 329 452 478 520 596 666 728 758 228 288 389 378 413 446 510 568 619 644 520 290 331 365 407 446 482 553 612 668 695 224 280 331 365 407 446 482 553 612 668 695 224 280 331 365 407 446 482 553 612 668 695 224 280 280 331 365 407 446 507 531 465 500 612 669 524 280 338 376 414 470 523 569 590 500 500 500 500 500 500 500 500 50	266 306 353 390 438 478 520 596 666 728 758 228 296 342 378 421 461 501 575 641 701 731 248 284 284 328 364 405 412 476 501 575 641 701 731 238 284 308 319 378 413 446 510 568 619 644 278 250 290 331 365 407 446 482 553 612 668 695 224 280 231 353 392 413 445 507 591 648 695 224 280 213 353 392 414 470 523 569 590 227 228 218 353 378 414 470 523 569 590 220 252 289 316 359 344 414 470 523 569 540 220 252 289 316 359 349 449 459 596 619 220 252 289 319 338 376 414 470 523 569 540 220 252 289 319 338 360 387 439 486 529 547 220 252 289 319 338 360 387 439 486 529 547 220 252 289 319 338 360 387 439 486 529 547 220 252 289 319 338 380 387 449 449 490 506 581 220 251 286 315 350 381 499 445 510 560 581 220 251 286 315 350 381 499 447 315 471 448 464 210 240 275 314 348 384 384 484 547 455 560 581 220 251 286 315 350 381 499 447 315 560 581 210 240 275 301 312 348 386 345 445 449 15 32 552 197 224 256 281 312 338 386 445 445 491 532 553 117 224 256 281 312 338 366 445 445 441 448 445 477 448 389 369 447 315 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 447 448 448	266 306 353 390 438 478 520 596 666 728 758 228 296 342 378 421 461 501 575 641 701 731 238 288 308 339 378 413 446 510 568 619 644 520 288 315 31 384 413 471 524 525 594 526 290 331 365 407 446 482 553 612 668 695 234 288 308 338 378 44 445 507 531 550 290 231 353 392 44 134 445 507 563 612 668 695 234 288 308 338 378 44 445 507 580 618 669 224 288 318 550 388 414 445 507 580 614 669 6224 288 318 350 388 414 445 507 580 614 669 619 620 252 228 288 318 350 349 440 445 507 569 619 620 220 252 220 252 220 252 289 319 338 387 441 445 401 445 607 580 619 620 220 252 277 27 37 37 38 387 471 523 568 590 577 280 277 286 277 307 384 359 407 444 448 404 407 580 280 287 277 287 278 388 385 428 488 588 590 619 620 220 252 277 307 384 385 496 491 545 650 501 618 619 620 252 277 387 388 381 467 414 448 404 407 220 252 277 286 376 386 378 486 575 580 590 590 570 286 275 388 388 486 485 587 580 604 67 210 220 252 277 387 388 386 413 456 459 532 552 513 517 284 275 381 312 338 386 414 445 415 447 448 446 476 276 381 312 338 386 414 445 418 450 581 540 572 540 578 381 312 338 386 414 445 418 445 417 428 366 381 348 386 381 418 456 455 513 513 510 282 283 283 286 440 387 441 448 445 417 524 56 281 344 384 385 386 414 445 418 418 418 418 418 418 418 418 418 418
Contract - Contract - Contract - Contract	22 22 22 22 22 22 22 22 22 22 22 22 22	256 306 355 258 296 342 238 288 328 238 289 342 238 260 288 220 250 290 331 220 250 288 220 254 288 318 220 254 288 318 220 254 288 318 220 254 288 308 220 254 288 308 220 252 289 220 252 289 220 252 289 220 251 286 270 220 251 286 270 250 251 256 270 250 251 256 270 250 251 256 270 250 251 256 270 250 250 250 250 250 250 270 270 270 270 270 270 270 270 270 27	266 306 353 390 248 296 342 378 238 268 383 250 289 331 365 250 290 331 365 224 280 331 365 220 250 288 315 220 250 289 31 220 250 289 336 220 250 289 336 220 251 260 297 220 252 299 319 220 252 299 319 220 252 250 252 27 250 264 308 332 250 252 289 319 250 252 250 252 277 250 252 250 252 277 250 250 252 252 277 250 252 252 277 250 252 252 277 250 252 252 257 277 250 257 260 297 326 250 252 250 252 277 250 251 286 315 250 252 252 252 252 252 252 252 252 252	266 306 353 390 438 258 296 342 378 421 233 268 284 378 421 250 290 331 365 407 224 280 331 365 407 220 250 288 316 351 220 250 288 318 356 220 250 288 318 356 220 250 288 318 356 220 250 288 318 356 220 252 288 318 356 220 252 289 319 353 207 264 308 322 369 220 252 289 319 353 207 256 277 281 220 252 289 319 353 220 252 289 319 333 220 252 289 319 333 220 252 289 319 334 220 252 289 319 334 220 252 289 319 334 220 252 289 319 334 220 252 289 319 334	266 306 353 390 438 478 128 284 284 284 284 284 284 284 285 405 442 288 286 308 319 318 413 250 289 318 312 312 312 210 210 210 210 210 210 210 210 210 2	266 306 353 390 438 478 520 596 666 728 758 228 296 342 378 421 461 501 575 641 701 731 238 288 288 329 452 478 520 596 666 728 758 228 288 389 378 413 446 510 568 619 644 520 290 331 365 407 446 482 553 612 668 695 224 280 331 365 407 446 482 553 612 668 695 224 280 331 365 407 446 482 553 612 668 695 224 280 280 331 365 407 446 507 531 465 500 612 669 524 280 338 376 414 470 523 569 590 500 500 500 500 500 500 500 500 50	266 306 353 390 438 478 520 596 666 728 758 228 296 342 378 421 461 501 575 641 701 731 238 288 288 288 245 442 478 520 596 666 728 758 228 288 319 378 413 446 510 568 619 644 520 290 331 365 407 446 482 553 612 668 695 224 280 231 355 392 431 445 507 593 695 224 280 313 365 407 446 482 553 612 668 695 224 280 213 353 392 431 445 507 593 612 669 524 289 318 350 341 445 507 580 590 590 590 590 590 590 590 590 590 59	AMPERES PER CONDUCTOR  266 306 353 390 438 478 520 596 666 728 789 789 896 1.011 1.101 1.202 1.248 2248 228 326 342 378 424 478 510 561 575 641 701 731 757 860 970 1.069 1.154 1.282 228 286 382 405 442 478 510 561 668 619 644 669 720 1.069 1.154 1.282 220 288 315 351 384 413 471 524 572 546 618 699 759 883 922 1.015 1.086 1.284 288 315 351 384 413 471 524 572 546 618 699 784 889 1.008 1.082 220 220 231 365 407 446 482 553 612 668 695 720 815 917 1.005 1.084 1.284 288 328 376 414 445 507 528 612 668 692 774 880 941 1.099 1.220 250 250 288 316 350 388 444 470 523 569 590 613 692 774 850 914 1.282 220 252 289 319 353 387 415 471 545 482 595 619 644 669 672 784 880 949 1.039 1.282 220 252 289 319 353 387 414 448 482 494 549 590 613 641 724 807 884 949 191 220 252 280 277 307 334 359 407 414 448 464 481 558 600 615 664 674 775 767 767 220 251 286 277 307 334 359 417 414 448 464 481 538 601 654 699 227 280 227 280 287 328 388 388 484 538 589 549 464 481 588 601 654 689 778 884 949 187 620 251 286 277 307 334 359 476 414 448 464 481 538 601 654 699 227 280 287 388 388 447 414 448 464 481 538 601 654 699 227 280 287 288 388 448 454 414 448 464 481 538 601 654 699 210 240 275 381 388 386 414 470 515 600 675 578 884 949 188 840 840 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 840 841 841 840 841 840 841 840 841 840 841 841 840 841 841 840 841 841 840 841 841 840 841 841 840 841 841 841 840 841 841 840 841 841 841 840 841 841 841 840 841 841 841
	200 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	252 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	353 390 328 331 365 315 328 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 353 331 331	353 390 438 342 378 421 328 362 405 288 315 351 288 315 351 398 318 365 298 318 356 298 318 356 298 318 356 298 318 356 268 294 326 268 294 326 270 298 319 353 270 298 318 350 271 307 287 301 334 288 315 350 287 301 334 288 315 350 288 315 350 288 315 350 288 315 350 288 315 350 288 315 350 288 318 318 318 318 318 318 318 318 318 3	AMPERES  353 390 438 478  342 378 421 461  388 362 405 442  388 315 351 384  321 353 392 431  321 353 392 431  321 353 392 413  321 353 392 419  288 316 350 386  329 326 341  289 319 333 387  270 298 330 360  227 227 326 381  227 326 381  228 312 353 387  314 344 382 419  289 319 333 387  297 326 381 350  297 326 382 395  227 326 381 382  227 326 381 383  228 313 350 381  228 388 312 388  228 313 350 381  228 313 350 381	AMPERES PER CONDUCTOR  353 390 438 478 520 596 666 728 758 342 378 421 461 501 575 641 701 731 342 378 421 465 501 575 641 701 731 398 362 405 442 478 520 596 666 728 758 398 315 351 384 413 471 524 572 545 321 353 392 431 465 503 644 669 321 353 392 431 465 534 590 644 669 288 316 350 386 414 470 523 569 619 690 528 316 350 386 414 470 523 569 619 630 630 630 630 630 630 630 630 630 630	AMPERES PER CONDUCTOR  353 390 438 478 520 596 666 728 758 342 378 413 446 510 568 669 539 378 413 446 510 568 619 549 528 315 351 384 413 471 524 572 545 531 555 392 431 445 510 568 695 546 531 353 392 431 445 507 563 612 668 695 288 315 352 392 431 445 507 563 612 668 695 288 316 350 388 385 484 507 446 485 534 590 644 669 528 316 350 389 376 414 470 523 569 590 546 570 588 316 350 389 319 314 344 382 419 450 125 570 618 643 689 319 353 389 495 499 459 596 619 520 577 307 334 359 313 374 414 448 464 507 525 277 307 334 369 407 515 560 500 500 500 500 500 500 500 500 50	AMPERES PER CONDUCTOR  353 390 438 478 520 596 666 728 789 789 896 1,011 1,101 1,202 1 328 378 413 461 501 575 641 701 731 777 860 970 1,069 1,154 1 328 319 378 413 441 347 1 524 572 594 689 721 1,015 1,086 1 288 315 351 384 413 471 524 572 594 689 759 882 972 1,015 1,086 1 328 315 351 384 413 471 524 572 594 689 759 882 972 1,015 1,086 1 321 385 372 414 445 507 568 692 724 880 992 1,018 1,018 1 321 385 372 414 445 507 563 612 668 692 784 880 914 1 321 385 372 414 445 507 563 612 669 692 774 880 914 1 388 316 350 388 444 470 523 569 590 613 692 774 850 914 1 445 507 569 590 613 692 774 850 914 1 445 507 569 590 613 692 774 850 914 1 444 382 419 450 512 570 618 643 667 753 842 992 919 1 380 333 374 414 448 414 448 414 448 414 448 414 448 414 448 414 414
390 438 478 520 378 421 461 501 339 378 413 446 315 351 384 413 378 413 446 378 413 446 378 413 446 378 413 446 378 378 413 445 378 378 413 445 378 378 414 445 378 378 378 419 378 378 419 450 378 378 388 385 378 414 445 378 378 388 385 378 378 378 415 378 378 380 387 378 378 380 387 378 380 387 388 388 389 388 388 389 388 388 389 388 388 389 388 388 388 389 388 388 388 388 388 388 388 388 388 388	AMPRIES PER 438 478 520 421 461 501 422 463 6142 478 878 413 446 878 413 446 876 876 876 876 876 876 876 876 876 87	PERFERENCE	PER PER PER PER PER PER PER PER PER PER			On 728 758 778 758 769 769 769 769 769 769 769 769 769 769	0n 728 728 761 761 761 761 761 761 761 761	OR 728 758 789 896 1,011 1,101 1,202 1,701 701 701 701 701 701 701 701 701 701
AMPERES PER COND 390 438 478 520 596 378 421 461 501 575 382 378 413 446 510 315 351 384 413 471 378 413 446 510 378 413 446 510 378 407 446 482 553 383 378 414 457 378 378 414 457 378 378 419 450 378 378 419 450 378 378 378 419 420 378 378 378 419 420 378 378 378 378 481 378 378 378 378 481 378 378 378 378 471 377 377 377 377 377 377 377 377 377 377	AMPERES PER COND 428 478 520 596 421 461 501 575 422 413 446 510 578 413 446 510 578 413 446 417 677 446 482 553 407 446 482 553 776 414 445 507 826 388 885 494 826 388 885 494 826 389 407 830 360 887 491 830 360 887 491 830 360 887 491 830 360 887 491 830 361 887 491 830 361 887 491 830 361 887 491 830 361 887 491 831 388 386 413 831 384 369 447 832 395 426 484 832 395 426 484 832 395 426 484 833 384 384 392 447 836 381 384 369 413 836 381 384 386 413 836 381 388	PERES PER COND 441 501 575 442 478 520 596 441 446 510 384 413 446 510 441 446 510 384 431 445 534 431 465 534 441 445 507 386 414 470 419 450 512 419 450 494 389 486 484 381 489 494 404 483 494 389 486 484 381 489 486 381 489 486 381 489 486 381 481 481 381 481 481	1 PER COND 550 550 550 550 550 550 550 550 550 550	COND 5596 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401 6401	1 2 000 mm 4 0 mm m 4 4 4 4 4 4 4 4 4 4 4 4	758 6495 6495 6495 6495 6995 6996 6996 6996	758 6495 6495 6495 6495 6995 6995 6996 6996	758 789 896 1.011 1.101 1.202 1 731 757 860 970 1.069 1.154 1086 1695 759 853 10.155 1.086 1594 6695 759 853 10.15 1.086 1695 720 815 910 1.015 1.086 1695 720 815 917 1.005 1.084 1695 619 619 619 619 619 619 619 619 619 619
AMPERES PER CONDUCTOR 390 438 478 520 596 666 378 421 461 501 575 641 339 378 413 442 578 548 612 315 31 384 413 471 524 355 407 446 482 553 612 356 407 446 482 553 612 358 392 431 465 534 590 338 376 444 445 507 563 318 350 386 401 445 324 382 419 450 512 570 344 382 419 450 512 570 348 389 414 475 533 389 380 387 434 414 328 380 387 439 486 377 307 334 359 407 450 378 383 387 444 414 386 382 385 486 539 388 389 486 539 389 389 486 539 389 389 486 539 381 389 467 450 381 389 467 450	AMPERES PER CONDUCTOR 438 478 520 596 666 421 461 501 575 641 378 413 446 510 568 351 384 413 446 510 568 371 384 413 446 510 584 372 431 465 534 590 372 431 465 534 590 372 431 465 534 590 372 431 465 534 590 372 431 465 543 642 372 386 344 445 372 419 450 512 570 373 387 415 471 523 380 387 415 471 523 380 387 481 480 387 384 389 487 410 382 395 426 484 534 414 382 395 426 484 534 413 382 395 426 484 534 413 383 386 385 426 486 383 381 499 447 515 384 364 392 445 491 382 383 384 486 487 487 383 384 384 487 414 382 385 486 487 487 383 384 384 487 487 387 388 386 487 487 388 388 486 481 485	### PERR CONDUCTOR	PER CONDUCTOR 7501 575 641 478 518 548 612 446 510 568 413 471 524 482 553 612 465 534 590 445 507 563 414 470 523 385 491 445 415 471 523 415 471 523 415 471 523 415 471 523 415 471 523 415 471 523 416 47 416 426 484 534 416 427 438 486 486 533 487 489 486 486 487 486 486 487 489 486 488 488 488 486 488 488 488 488 486 488 488 488 488 486 488 488 488 488 486 488 488 488 488 488 488 488 488 488	CONDUCTOR 5596 666 575 641 5510 568 471 524 471 524 470 523 481 485 484 549 471 523 484 549 471 523 484 549 471 523 484 549 471 523 484 549 484 549 484 549 484 549 484 584 484 584 588 481 588 481 588 481	DUCTOR 646 646 646 646 646 648 6482 6482 6482 6482 6482 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485 6485	1111110011 1100011111 000111111 000111114	1111110011 1100011111 000111111 000111114	789
390 438 478 520 596 666 728 378 421 461 501 575 641 701 382 421 48 548 612 668 339 378 412 478 548 612 668 315 51 584 413 471 524 572 575 575 575 575 575 575 575 575 575	AMPERES PER CONDUCTOR  438 478 520 596 666 728  421 415 571 541 708  378 413 477 548 612 668  378 413 446 510 568 619  48.4 48.4 414 471 524 572  407 446 482 553 612 668  392 431 465 507 563 612  350 386 414 470 523 569  326 388 444 401 445  328 419 450 512 570 618  389 404 457 494  381 382 419 486 529  382 387 415 471 523 568  383 384 384 384 444 448  362 385 486 484 534 580  384 386 381 446 495  384 386 381 469 467  384 386 381 469 467  385 381 388 381 446 495  381 388 386 418 456  381 388 381 470  382 383 484 594 446  383 383 384 386 488 584 580  384 386 383 445 495  385 386 381 385 486  386 381 386 485 586	PERES PER CONDUCTOR 4478 520 596 666 728 4461 501 575 641 701 834 413 471 546 617 844 413 471 549 572 845 413 471 524 572 846 482 553 612 668 441 445 507 563 612 886 414 470 523 569 886 414 470 523 569 887 415 471 524 580 887 415 471 524 580 887 415 471 524 580 888 485 529 886 414 470 523 569 887 415 471 523 568 887 415 471 523 568 888 486 484 534 444 448 489 486 529 886 484 534 444 448 886 484 534 446 886 484 534 580 886 488 534 580 886 488 534 580	PER CONDUCTOR   1   PER CONDUCTOR   520   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570   570	CONDUCTOR 556 666 728 5575 641 701 559 666 728 571 641 701 571 524 572 573 512 568 573 512 668 573 512 668 486 529 481 482 529 481 483 586 581 580 681 581 581	DUCTOR 666 728 641 728 641 708 641 708 642 556 612 668 612 668 612 668 612 668 613 664 644 655 653 612 644 645 649 644 645 649 644 645 649 644 645 649 644 645 649 644		789 6669 6669 6669 720 720 720 720 720 721 721 721 721 721 721 721 721 721 721	896 1.011 1.101 1.202 1 860 970 1.069 1.154 1 8818 922 1.015 1.086 1 759 882 939 1.018 1 882 938 1.018 1 882 938 1.018 1 882 938 1.018 1 882 938 1.018 1 882 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1 938 1
AMPERIS PER CONDUCTOR  390 438 478 520 596 666 7707 731 757 758 421 461 501 575 641 701 731 757 758 421 461 501 575 641 701 731 757 758 421 442 475 548 612 668 695 721 642 478 548 612 668 695 721 643 678 484 682 555 545 565 675 682 692 548 618 695 720 644 648 695 720 648 695 720 648 695 720 648 695 720 648 695 720 648 695 720 648 641 445 507 563 612 636 660 613 620 641 445 507 663 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 720 695 72	AMPERES PER CONDUCTOR  438 478 520 596 666 7701 731 757 7421 416 501 575 641 701 731 757 757 442 445 548 619 668 619 644 669 551 384 413 475 548 619 644 669 551 384 413 471 524 575 544 618 707 446 482 553 612 668 695 720 372 414 445 507 563 612 668 695 720 350 385 348 485 529 546 567 386 388 414 470 523 569 590 613 660 380 380 404 45 494 549 540 568 590 613 667 369 369 404 45 494 549 549 568 590 613 680 383 387 415 414 448 649 549 568 590 613 680 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 613 640 610 610 610 610 610 610 610 610 610	PERES PER CONDUCTOR  441 501 575 641 701 731 757 442 478 548 641 701 731 757 757 442 478 548 641 701 731 757 757 748 548 641 701 731 757 757 757 758 758 758 758 758 758 758	15 PER CONDUCTOR           501 575 641         701         731         757         478         758         759         750         750         755         641         701         731         757         446         510         646         669         751         757         747         751         757         751         757         751         751         751         751         751         751         751         751         751         751         751         751         751         751         751         751         751         751         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752         752	Conductors 5.6 6.6 6.6 6.7 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7	066 1701 731 757 641 701 731 757 641 701 731 757 641 701 731 757 641 669 695 721 658 695 720 648 695 720 648 695 720 648 695 720 648 695 720 648 695 720 648 695 720 648 695 720 648 695 720 648 659 641 652 640 660 660 660 660 660 660 660 660 660	8896 1 8818 6759 6759 6759 6759 6759 6759 6759 6759		1,202 1,1,202 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,0186 1,
AMPERES PER CONDUCTOR  390 438 478 520 596 666 728 758 789 896 1, 378 421 461 501 575 641 701 731 757 860 1, 382 405 442 448 540 648 612 668 695 721 818 315 351 384 413 471 524 572 594 618 699 759 353 378 413 471 524 572 594 618 699 759 353 378 414 447 523 612 668 695 720 815 358 376 414 447 523 599 590 613 699 744 348 382 419 450 545 659 619 640 675 640 774 341 382 419 450 512 570 618 643 667 753 313 359 340 443 540 445 599 640 613 660 614 724 341 382 419 450 512 570 618 643 667 753 320 369 404 435 490 467 401 445 610 612 610 610 610 610 610 610 610 610 610 610	AMPERES PER CONDUCTOR  438 478 520 596 666 728 758 758 789 896 1, 421 461 501 575 641 770 73 751 757 860 1, 424 461 510 575 641 770 73 751 757 860 1, 424 461 478 548 612 668 695 721 818 818 378 413 446 510 568 619 644 669 753 840 47 446 482 553 612 668 695 720 815 826 386 414 445 507 563 612 668 695 720 815 350 386 414 470 523 569 590 613 692 784 382 419 450 756 363 610 641 669 682 784 382 419 450 752 599 619 641 724 382 419 450 740 485 489 589 641 470 588 610 611 724 382 419 450 740 485 489 590 613 688 689 784 389 380 494 549 549 690 619 641 724 382 419 450 757 563 610 611 724 382 419 450 757 563 610 611 724 382 419 450 757 563 610 611 724 383 384 489 486 529 547 568 639 387 415 471 525 689 619 611 724 389 380 413 444 445 490 467 753 688 690 613 689 731 384 389 445 445 491 532 560 581 600 675 384 384 392 445 491 532 560 581 600 675 590 601 341 340 467 515 560 581 600 675 590 601 341 340 467 515 560 581 600 675 500 601 741 448 440 467 741 449 741 448 440 675 540 640 675 540 640 641 741 741 741 741 741 741 741 741 741 7	PERES PER CONDUCTOR  418 50 596 666 728 758 758 789 896 1, 441 501 575 641 701 731 757 860 1, 442 478 548 612 668 695 721 818 8413 446 510 568 619 644 669 752 883 413 471 594 525 594 618 699 883 413 471 594 525 594 618 699 883 413 475 507 563 612 668 695 720 815 414 445 507 563 612 668 695 720 744 445 507 563 612 686 692 744 445 507 563 612 686 692 744 445 507 563 612 686 692 744 445 507 563 612 686 692 744 445 507 563 612 686 693 744 445 507 563 612 686 693 744 445 507 563 612 686 693 744 445 507 563 693 540 613 683 885 486 485 599 547 568 639 887 435 440 445 540 450 560 613 641 724 888 485 599 613 687 753 494 549 549 540 613 687 588 414 444 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 448 441 441	PER CONDUCTOR   PER CONDUCTO	CONDUCTOR 556 666 728 758 789 896 1, 556 641 701 731 757 860 1, 556 641 701 731 757 860 1, 556 641 701 731 757 860 1, 556 641 668 695 721 818 843 434 482 25.5 894 618 699 434 482 45.5 896 612 686 695 720 815 534 590 612 686 695 720 815 534 590 612 636 690 746 690 690 746 690 690 746 690 690 690 746 690 690 690 746 775 563 612 636 690 612 640 775 540 640 641 724 441 523 568 690 612 688 643 687 753 464 588 589 690 612 688 643 687 753 486 529 547 568 639 641 724 441 448 644 481 538 690 615 688 645 645 640 641 724 444 644 641 543 665 550 544 644 641 641 73 645 645 645 645 645 645 645 645 645 645	DUCTOR  666 728 758 789 896 1, 612 668 695 725 880 61, 668 695 721 818 699 699 759 759 759 759 759 759 759 759 759 7	<b>i</b>	9922 9922 9922 7284 7284 7774 7774 7774 7774 7774 77	
AMPERES PER CONDUCTOR  390 488 478 520 596 666 728 758 789 896 1.011 1.  378 421 461 501 575 641 701 731 757 860 1970 1.  389 378 413 442 478 548 612 668 619 5721 818 922 1.  315 351 384 413 471 524 572 544 618 699 784 1.  365 407 446 482 553 612 668 695 720 815 917 1.  385 392 431 465 507 563 612 668 695 720 815 917 1.  386 307 446 482 553 612 668 695 720 815 917 1.  388 376 414 470 523 569 590 613 690 774 1.  388 385 486 485 599 546 567 774 886 599 774 1.  318 382 419 450 512 570 618 643 667 753 842 887 888 885 885 885 885 885 885 885 885	AMPERER PER CONDUCTOR  438 478 520 596 666 728 758 758 789 896 1,011 1, 421 461 501 575 641 701 731 757 860 970 1, 421 461 501 575 641 701 731 757 860 970 1, 421 446 510 868 619 644 669 759 822 1, 353 413 471 594 572 549 618 699 784 359 384 413 471 594 572 549 618 699 784 359 384 413 471 594 525 545 65 638 720 407 446 482 553 612 668 695 720 815 917 1, 382 383 384 445 507 583 612 668 695 720 815 917 1, 320 818 414 470 523 569 590 613 690 774 832 419 450 512 570 618 643 667 753 842 833 387 415 471 523 568 590 613 687 753 842 833 387 415 471 523 568 590 613 687 753 842 833 387 415 471 523 568 590 612 688 768 30 387 384 389 414 444 448 469 506 525 594 658 308 313 374 414 448 464 461 538 601 743 807 334 338 366 415 471 550 581 600 767 754 807 334 338 389 445 459 560 500 604 624 703 784 850 312 338 386 413 456 453 550 551 642 715 312 338 386 413 456 453 550 551 642 715 312 338 386 413 456 455 500 550 610 314 348 389 360 413 456 455 510 645 715 312 338 386 413 456 455 510 645 715 312 338 386 413 456 455 510 645 715 312 338 386 413 456 455 510 645 715 312 312 338 386 413 456 455 510 645 715 312 312 338 386 413 456 455 510 645 510 645 715 312 312 338 386 413 456 455 510 645 715 714 448 410 550 610 714 703 784 715 714 718 718 718 718 718 718 718 718 718 718	4.6 500 596 666 728 758 758 759 866 1.0111. 418 500 596 666 728 758 758 759 866 1.0111. 418 476 510 568 619 644 669 759 822 1.4 446 510 510 510 510 510 510 510 510 510 510	PERR CONDUCTOR   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,0	CONDUCTOR 56 666 728 758 789 896 1.011 1. 575 641 701 731 757 860 970 1. 510 666 672 688 619 751 818 922 1. 510 688 619 644 669 759 883 720 884 500 644 669 759 885 720 844 618 619 784 470 523 569 612 686 613 644 669 613 640 712 401 445 482 569 510 613 640 712 401 445 529 569 613 684 654 664 664 664 664 664 664 664 664 66	buttons         866         178         758         789         886         1.011         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01         1.01	1.011 9270 9270 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.101 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1.1011 1	ਜੰਜੰਜੰ ਜੰ	
AMPERES PER CONDUCTOR  30 438 478 520 596 666 778 758 789 896 1.011 1.101 1.378 421 461 501 575 641 701 731 757 860 1970 1.069 1.382 378 413 471 548 619 644 669 759 853 939 1.151 315 318 441 371 524 565 619 644 669 759 853 939 1.381 341 347 548 619 644 669 759 853 939 1.381 351 384 413 471 524 575 549 618 699 784 882 353 392 431 465 534 590 644 669 695 720 815 917 1.005 1.383 376 414 470 523 569 590 613 692 784 880 916 316 350 886 414 470 523 569 590 613 692 774 850 916 316 350 884 382 419 450 512 570 618 643 667 753 842 922 313 353 393 394 435 494 435 494 545 569 590 613 687 764 697 774 876 884 382 419 450 512 570 618 643 667 753 842 922 578 378 383 383 384 444 448 464 481 645 590 613 687 784 887 884 584 644 715 528 685 590 613 687 788 778 884 584 644 445 647 588 590 612 686 690 612 688 788 887 884 584 644 448 464 481 688 788 788 887 884 644 445 445 446 448 464 481 588 788 887 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 887 884 885 885 885 885 885 885 885 885 885	AMPERES PER CONDUCTOR  438 478 520 596 66 67 758 758 789 896 1,011 1,101 1, 421 461 501 575 641 701 731 757 860 970 1,069 1, 424 478 548 618 695 721 818 922 1,015 1, 378 413 446 510 568 619 644 669 721 818 922 1,015 1, 378 413 446 514 524 618 699 721 818 922 1,015 1, 378 413 471 524 572 594 669 698 784 862 784 825 837 841 445 534 590 644 669 695 720 815 917 1,005 1, 376 414 445 507 563 612 668 695 720 815 917 1,005 1, 376 414 445 507 563 569 590 613 692 774 850 826 838 838 438 445 470 523 569 590 613 692 774 850 826 838 838 438 445 470 523 569 590 613 692 774 850 836 944 435 494 549 549 568 619 617 724 887 884 830 944 435 494 549 549 568 619 619 617 724 887 884 830 837 415 471 523 568 590 612 688 768 840 777 775 775 775 775 775 775 775 775 77	PERES PER CONDUCTOR  441 501 575 641 701 731 757 860 1,011 1,101 1,412 478 548 618 618 618 618 618 618 618 618 618 61	1 PER CONDUCTOR         896 1.011 1.101 1.           520 560 666 728 758 789 896 1.011 1.101 1.         1.01 1.101 1.           550 575 641 701 731 757 860 970 1.069 1.         1.01 1.101 1.           446 510 568 619 649 669 721 818 922 1.015 1.         1.05 1.           448 371 524 572 594 618 699 784 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 788 862 862 862 867 867 862 778 862 862 862 862 862 862 862 862 862 86	CONDUCTOR  5.60 666 678 758 789 896 1.011 1.101 1.548 612 668 695 757 860 970 1.069 1.548 612 668 695 759 852 939 1.151 1.524 572 594 618 922 1.015 1.1524 572 594 618 922 1.015 1.1524 572 594 618 699 784 885 523 450 644 669 695 784 886 784 885 584 590 644 669 695 784 880 916 470 523 569 590 613 692 784 880 916 470 523 569 590 613 692 774 880 916 470 523 569 590 613 692 774 880 916 485 529 546 567 773 884 674 715 23 568 590 613 697 774 880 884 644 715 523 568 590 612 686 697 788 772 788 474 524 596 590 612 686 697 788 788 772 788 774 523 649 549 546 540 540 540 540 540 540 540 540 540 540	666         738         758         789         896         1.011         1.101         1.01         1.005         1.101         1.101         1.005         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101         1.101	1.011 1.101 1.011 1.011 1.011 1.1011 1.011 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005	1,101 1,069 1,069 1,069 1,069 1,069 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005	

Ratings are based on 60-cycle (see page 270 for footnotes).

## CURRENT CARRYING CAPACITY—COMPOUND-FILLED PAPER CABLES SINGLE CONDUCTOR

	2,000
	,750
	50 800 1,000 1,250 1,500 1,750 2,00
	50 1,8
	1,28
	1,000
ILS	800
R M	750
SCULA	200
0 Cm	009
1,00	200
CONDUCTOR SIZE B. & S. OR 1,000 CIRCULAR I	400
B. & !	350 4
SIZE	008
TOR	250 300
NDUC	4/0 2
ဝိ	3/0 4
	2/0 3
	1 1/0
	63
	6 4 2
	9
Max. Copper Temp.	°C.
r Rated Three Phase Line	Voltage Volts
Number of Loaded Cables	m Duct Bank

## 100% LOAD FACTOR

									1	0/0		1		1											
												AMBEBEE	100	0 000			١,								
	7 500	0 20					0					TWIT		FER	COND	CONDUCTOR									
	15,000	0.00					817	250			364	406	445	482	552	614	029	969	722	816	666	1 006	1 000	1 150	
	99,000	0.10				:	214	236	1		348	390	428	464	532	290	644	899	692	784	880	062	1,000	1,100	
۲,	23,000	20.07					902	236	•		336	376	110	442	909	999	919	640	669	746	858	010	1,000	1,100	
)	000,46	0.07					194	222	•		316	350	380	412	170	520	568	590	610	609	1000	OEO	200	1,040	
	46,000	63.5							234	•	294	326	354	382	136	180	524	544	569	640	708	707	910	200	
	000'60	0.00	:	:	:	:			:		:	:	328	352	001	143	482	200	518	586	658	716	762	808	
	7,500	85.0		::		:	500	•		•	334	370	104	134	194	559	614	670	604	700		000	! !		
	15,000	81.5		::			195		•		318	356	392	122	77	969	579	504	614	277	012	282	942	866	
4	23,000	76.5				:	188	212 2	240	276	304	338	368	368	154	200	548	268	500	560	4/1	844	904	926	
>	34,500	20.0				*****	177	•			887	318	346	376	124	168	508	596	544	619	138	202	828	808	
	46,000	63.5			::			**		•	997	296	322	346	068	130	470	488	FOR	566	080	444	194	838	
	000,69	9.09				:		:		:	:	:	967	318	999	394	428	442	458	519	676	080	(35)	777	
	7 500																		207	710	010	170	700	969	
	15,000													4		861	540	560	580	659	734	707	247	600	
	000,000						787	7 007	230 2	266	362			4.		122	519	538	557	869	1007	760	010	033	
0	23,000						100	•		•	•		•	4		162	502	518	536	504	689	110	010	400	
١	000,46							•		•	•	•		***	4	124	158	474	400	550	200	010	100	210	
	46,000	63.5									04	268	3 967	322 3	352	7 06	124	138	159	505	020	0/0	414	707	
	000,80							•	•			•		0.0		360	388	102	414	462	513	554	200	610	
	7,500	85.0	-			:	176 2	200											236	600	670	100	1 2	610	
	000,61	81.5						•	•	•	-								516	578	673	130	170	820	
12	24,500	70.0											••						061	544	809	660	700	720	
	46,000	63.0							200	226 2	248 2	274 2	•••						154	508	566	610	648	680	
	69,000	0.09			:			:	•				268 2	284 3	324 3	354 3	382	396	406	452	502	545	574	009	
-													•	•					8/8	422	468	505	530	558	

Ratings are based on 60-cycle (see page 270 for footnotes).

## CURRENT CARRYING CAPACITY—COMPOUND-FILLED PAPER CABLES SINGLE CONDUCTOR (Continued)

	2,0
	800 1,000 1,250 1,500 1,750
	0 1,
	1,50
	20
	1,2
	000
	0 1,
TILS	
R	750
ULA	0
JIRC	700
00	009
в 1,0	200
e S. o	400
B. 8	350
CONDUCTOR SIZE B. & S. OR 1,000 CIRCULAR MILS	300
UCTO	3/0 4/0 250 300
COND	4/0
	3/0
	2/0
	0/1
	_
	6 4 2 1 1/0
	4
	9
i.	
Max.	Temp °C.
ee ee se	ege ts
Rated Three Phase	Volta Volta
Nur	Cables in Duct Bank

000

## 50% TO 100% LOAD FACTOR

	1	3	2	1	_	00
	1,377	1,29	1.19	1,04	06	75
	1,273	1,191	1,102	973	844	710
	1,174	660'1	1.013	968	772	655
	1,052	986	910	804	693	594
	917 1	864	662	705	610	520
	964	749	694	919	534	457
	762	721	999	590	510	439
OR	730	689	639	566	493	422
TDUCT	_	~	•	-	-	384
COO	588	558	516	458	399	344
PER	508	479	447	398	350	300
PERES	466	441	410	365	321	278
AMI	419	398	370	331	292	:
	373	354	330	296	260	:
	337	320	298	266	235	:
	289	275	256	230	204	:
	249	238	993	201		
	214	206	194	175		
	181	178	171			
	157	154	148	2	:	: :
	118	116	-	:	:	
				:		
	0	, rc	, L	0	910	60.09
	82	82	76	20	63	99
	7 500	5,000	23,000	24,500	16,000	69,000
		770	Cap	ııı	Air	

Ratings are based on 60-cycle alternating current and grounded neutral.

Ratings are based on ambient earth temperature of 20°C. for cables in ducts and 40°C. ambient air temperature for cables in air. For other ambient temperatures apply the following correction factors:

CABLES IN AIR			ST	DOC	2	ABLES IN	CABLES IN DUCTS
Temp. 7,500 v. 15,000 v. 23,000 v. 34,500 v. 46,000 v. 69,000 v.	4 1	0000'6	v. 6	7. 46,000 v. 6	34,500 v. 46,000 v. 6	23,000 v. 34,500 v. 46,000 v. 6	Temp. 7,500 v. 15,000 v. 23,000 v. 34,500 v. 46,000 v. 69,000 v.
1.20 1.22	20°	1.12		1.11		1.10	1.09 1.10
1.11 1.12 1.13	30°	8	1	1.00		1.00	1.00
40°C. 1.00 1.00 1.00 1.0	40°	.87	0	0.88		06.0	0.00
0.88 0.87 0.85	200	.71		.74	.78 .74		.78

Ratings include dielectric loss and skin effect, but are based on open-circuited sheath operation, i.e., sheaths are bonded and grounded at one point only so that there are practically no sheath losses.

## CURRENT CARRYING CAPACITY COMPOUND-FILLED PAPER CABLES SINGLE CONDUCTOR—ANNULAR

Number of Loaded Cables	Rated Three Phase	Max. Copper		Con	DUCTOR	Size—1	,000 Cı	RCULAR	Mils*	1 100 0 T .
in Duct Bank	Line Voltage Volts	Temp. °C.	700	800	1,000	1,250	1,500	1,750	2,000	2,500

### 50% LOAD FACTOR

									The state of the s	
					Амі	PERES P	ER CON	DUCTOR		
3	7,500	85.0	820	892	1,030	1,200	1,358	1,510	1,642	1,882
	15,000	81.5	786	856	990	1,150	1,318	1,422	1,550	1,800
	23,000	76.5	742	814	940	1,086	1,226	1,362	1,492	1,690
	34,500	70.0	690	752	868	1,002	1,130	1,256	1,378	1,556
	46,000	63.5	628	686	790	912	1,026	1,134	1,238	1,404
	69,000	60.0	580	632	730	840	944	1,042	1,138	1,288
6	7,500	85.0	768	838	963	1,120	1,258	1,384	1,500	1,716
	15,000	81.5	738	804	926	1,066	1,200	1,318	1,426	1,640
	23,000	76.5	702	764	880	1,010	1,140	1,258	1,364	1,550
	34,500	70.0	650	710	816	938	1,054	1,162	1,264	1,434
	46,000	63.5	600	652	748	858	966	1,058	1,144	1,304
	69,000	60.0	552	600	688	788	884	974	1,052	1,188
9	7,500	85.0	728	792	912	1,056	1,175	1,288	1,390	1,588
	15,000	81.5	700	762	878	1,004	1,126	1,236	1,336	1,520
	23,000	76.5	666	726	832	952	1,066	1,170	1,272	1,440
	34,500	70.0	618	674	774	888	938	1,086	1,174	1,338
	46,000	63.5	572	620	710	814	910	993	1,070	1,214
	69,000	60.0	526	570	650	742	830	914	986	1,104
12	7,500	85.0	696	754	864	994	1,106	1,210	1,340	1,480
	15,000	81.5	668	726	828	948	1,060	1,160	1,250	1,414
	23,000	76.5	636	690	790	904	1,010	1,102	1,188	1,348
	34,500	70.0	590	640	732	838	938	1,020	1,096	1,244
	46,000	63.5	544	592	676	772	860	938	1,010	1,140
	69,000	60.0	500	544	620	705	786	860	926	1,036
Cables in Air	7,500 15,000 23,000 34,500 46,000 69,000	85.0 81.5 76.5 70.0 63.5 60.0	757 712 659 583 505 435	835 783 725 641 556 476	978 918 848 748 649 551	1,154 1,082 998 879 761 636	1,313 1,231 1,134 998 863 728	1,473 1,379 1,269 1,113 958 813	1,616 1,513 1,390 1,219 1,046 895	1,890 1,767 1,620 1,415 1,212 1,020

Ratings are based on 60-cycle alternating current and grounded neutral.

Ratings are based on ambient earth temperature of 20°C. for cables in ducts and 40°C. ambient air temperature for cables in air. For other ambient temperatures apply the following correction factors:

Ambi-		CAI	BLES	IN DU	CTS			C	ABLE	SIN	AIR	
	7,500 Volts	15,000 Volts	23,000 Volts	34,500 Volts	46,000 Volts	69,000 Volts	7,500 Volts	15,000 Volts	23,000 Volts	34,500 Volts	46,000 Volts	69,000 Volts
10°C. 20°C. 30°C. 40°C. 50°C.	1.07 1.00 0.92 .83 .73	1.00	1.09 1.00 0.90 .80 .69	1.10 1.00 0.90 .78 .63	1.11 1.00 0.88 .74 .56	1.12 1.00 0.87 .71 .50	$\frac{1.11}{1.00}$	1.22 1.12 1.00 0.87	1.25 1.13 1.00 0.85	1.29 1.15 1.00 0.82	1.36 1.20 1.00 0.76	1.42 1.23 1.00

Ratings include dielectric loss and skin effect, but are based on open-circuited sheath operation, i.e., sheaths are bonded and grounded at one point only so that there are practically no sheath losses.

For cables in ducts, all outside ducts are assumed.

For cables in air, ratings are for any load factor from 50% to 100%.

^{*}See Annular Concentric Stranded Conductors, page 262.

## CURRENT CARRYING CAPACITY COMPOUND-FILLED PAPER CABLES SINGLE CONDUCTOR—ANNULAR

Number of Loaded	Rated Three Phase	Max. Copper		CONDUCTOR SIZE—1,000 CIRCULAR MILS*
Cables in Duct Bank	Line Voltage Volts	Temp. °C.	700	800 1,000 1,250 1,500 1,750 2,000 2,500

### 75% LOAD FACTOR

					Амр	ERES PI	ER CONI	OUCTOR		
3	7,500	85.0	747	813	938	1,079	1,214	1,335	1,445	1,645
	15,000	81.5	718	781	900	1,033	1,162	1,277	1,380	1,575
	23,000	76.5	682	742	855	982	1,105	1,211	1,312	1,493
	34,500	70.0	633	689	794	910	1,023	1,119	1,215	1,379
	46,000	63.5	586	636	732	838	940	1,028	1,111	1,264
	69,000	60.0	538	584	666	760	856	940	1,020	1,145
6	7,500	85.0	683	741	853	973	1,087	1,185	1,277	1,447
	15,000	81.5	658	713	816	931	1,042	1,137	1,223	1,384
	23,000	76.5	625	679	777	886	990	1,078	1,162	1,316
	34,500	70.0	581	632	720	822	918	999	1,075	1,217
	46,000	63.5	536	584	664	758	845	920	989	1,117
	69,000	60.0	493	534	607	687	770	841	908	1,011
9	7,500	85.0	633	685	784	892	994	1,078	1,159	1,305
	15,000	81.5	608	659	752	856	953	1,035	1,111	1,250
	23,000	76.5	578	627	715	813	903	982	1,054	1,185
	34,500	70.0	537	583	663	753	835	909	975	1,095
	46,000	63.5	496	539	611	693	768	835	896	1,005
	69,000	60.0	456	493	556	630	700	761	818	908
12	7,500	85.0	593	641	729	827	918	994	1,066	1,198
	15,000	81.5	570	617	699	792	880	953	1,021	1,147
	23,000	76.5	542	587	665	753	835	905	968	1,086
	34,500	70.0	504	545	617	699	772	837	896	1,001
	46,000	63.5	465	504	568	643	707	768	822	916
	69,000	60.0	425	458	516	581	644	697	746	825
Cables in Air	7,500 15,000 23,000 34,500 46,000 69,000	85.0 81.5 76.5 70.0 63.5 60.0	757 712 659 583 505 435	835 783 725 641 556 476	978 918 848 748 649 551	1,154 1,082 998 879 761 636	1,313 1,231 1,134 998 863 728	1,473 1,379 1,269 1,113 958 813	1,616 1,513 1,390 1,219 1,046 895	1,890 1,767 1,620 1,415 1,212 1,020

Ratings are based on 60-cycle alternating current and grounded neutral.

Ratings are based on ambient earth temperature of 20°C. for cables in ducts and 40°C. ambient air temperature for cables in air. For other ambient temperatures apply the following correction factors:

Ambi-		CAI	BLES 1	N DU	CTS			C	ABLE	SIN	AIR	
ent	7,500 Volts	15,000 Volts	23,000 Volts	34,500 Volts	46,000 Volts	69,000 Volts	7,500 Volts	15,000 Volts	23,000 Volts	34,500 Volts	46,000 Volts	69,000 Volts
10°C. 20°C. 30°C. 40°C. 50°C.	1.00	1.08 1.00 0.92 .82 .72	1.09 1.00 0.90 .80 .69	1.10 1.00 0.90 .78 .63	1.11 1.00 0.88 .74 .56	1.12 1.00 0.87 .71 .50	1.11	1.22 1.12 1.00 0.87	1.25 1.13 1.00 0.85	1.29 1.15 1.00 0.82	1.36 1.20 1.00 0.76	1.42 1.23 1.00 0.71

Ratings include dielectric loss and skin effect, but are based on open-circuited sheath operation, i.e., sheaths are bonded and grounded at one point only so that there are practically no sheath losses.

For cables in ducts, all outside ducts are assumed.

For cables in air, ratings are for any load factor from 50% to 100%.

^{*}See Annular Concentric Stranded Conductors, page 262.

## CURRENT CARRYING CAPACITY COMPOUND-FILLED PAPER CABLES SINGLE CONDUCTOR—ANNULAR

						TITLE		
Number Rated of Three Max. Loaded Phase Copper Cables Line Tamp	, 25 20 pm	Con	DUCTOR	Size—1	,000 Cı	RCULAR	Mils*	
Cables Line Voltage Volts  Cables Line Voltage	700	800	1,000	1,250	1,500	1,750	2,000	2,500

## 100% LOAD FACTOR

	1.2				Ам	PERES P	ER CON	DUCTOR		
	7,500	85.0	684	742	850					
	15,000	81.5	658	714		976	1,086	1,184	1,276	1,446
3	23,000	76.5	624	680	816	930	1,040	1,136	1,224	1,384
0	34,500	70.0	580	630	776	888	990	1,080	1,162	1,316
	46,000	63.5	536		720	822	916	998	1.074	1,218
	69,000	60.0	492	582	664	758	842	918	988	1,114
		00.0	492	532	608	690	770	840	904	1,010
	7,500	85.0	608	658	750	050			201	1,010
	15,000	81.5	584	632		856	950	1,032	1.104	1,240
6	23,000	76.5	556	602	720	818	908	986	1,057	1,186
0	34,500	70.0	516	558	682	776	860	933	1,000	1,124
	46,000	63.5	476		634	718	796	864	926	1.036
	69,000	60.0	438	516	585	662	732	794	850	950
			458	470	530	598	664	722	774	856
	7,500	85.0	550	596	674	700				000
	15,000	81.5	530	574	648	766	842	916	984	1,092
9	23,000	76.5	504	544	616	736	806	870	930	1.050
9	34,500	70.0	470	506		696	768	830	888	988
	46,000	63.5	432	464	572	644	712	772	826	916
	69,000	60.0	398		522	586	646	696	744	824
			990	424	474	533	590	636	676	744
	7,500	85.0	512	550	622	700			0.0	1.44
	15,000	81.5	490	526	594	708	780	850	908	1.000
12	23,000	76.5	464	500	565	670	736	790	842	950
14	34,500	70.0	430	465		634	696	754	810	890
	46,000	63.5	390	414	524	586	644	696	744	820
	69,000	60.0	360		464	520	570	612	650	712
			300	385	432	480	525	566	600	654
/	7,500	85.0	757	835	978	1 154	1 010			004
Cables	15,000	81.5	712	783	918	1,154	1,313	1,473	1,616	1.890
in	23,000	76.5	659	725	848	1,082	1,231	1,379	1,513	1,767
	34,500	70.0	583	641	748	998	1,134	1,269	1,390	1,620
Air	46,000	63.5	505	556		879	998	1,113	1,219	1,415
	69,000	60.0	435		649	761	863	958	1,046	1,212
	,	00.0	400	476	551	636	728	813	895	1.020
	and the second second			Sec. MARCH						1,020

Ratings are based on 60-cycle alternating current and grounded neutral.

Ratings are based on ambient earth temperature of 20°C. for cables in ducts and 40°C. ambient air temperature for cables in air. For other ambient temperatures apply the following correction factors:

Ambi-			BLES			1 1324	T I	C	ABLE	S IN A	IR	
Temp.	7,500 Volts	15,000 Volts	23,000 Volts	34,500 Volts	46,000 Volts	69,000 Volts	7,500 Volts	15,000 Volts	23,000 Volts	34,500 Volts	46,000 Volts	69,000 Volts
10°C. 20°C. 30°C. 40°C. 50°C.	1.00	1.08 1.00 0.92 .82 .72	1.09 1.00 0.90 .80 .69	1.10 1.00 0.90 .78 .63	1.11 1.00 0.88 .74 .56	1.12 1.00 6.87 .71 .50	1.20 1.11 1.00	1.22 1.12 1.00 0.87	1.25 1.13 1.00 0.85	1.29 1.15 1.00	1.36 1.20 1.00	1.42 1.23 1.00

Ratings include dielectric loss and skin effect, but are based on open-circuited sheath operation, i.e., sheaths are bonded and grounded at one point only so that there are practically no sheath losses.

For cables in ducts, all outside ducts are assumed.

For cables in air, ratings are for any load factor from 50% to 100%.

^{*}See Annular Concentric Stranded Conductors, page 262.

## CURRENT CARRYING CAPACITY COMPOUND-FILLED PAPER CABLES

## THREE CONDUCTOR SECTOR TYPE H (Shielded)

Num- ber of Loaded Cables	Rated Three Phase Line Volt-	Max. Copper Temp.		Con	DUCTO	or Si	ze B	& S.	or 1	,000	Circu	LAR ]	Mils	
in Duct Bank	age Volts	°C.	1/0	2/0	3/0	4/0	250	300	350	400	500	600	700	750
				50	% L	OAI	) FA	сто	R					
									STATE OF THE PARTY	NDUC	ror			
3	$15,000 \\ 23,000 \\ 34,500$	81.5 76.5 70.0	186	209 204	239 234	274 268 255	$\frac{300}{292}$ $\frac{276}{276}$	334 327 306	364 356 333	390 382 358	442 432 401	487 473 442	530 512 478	546 528 492
6	15,000 23,000 34,500	81.5 76.5 70.0	175 	197 190	224 205	256 250 235	278 272 256	311 302 284	336 326 307	360 350 328	405 397 370	445 434 404	482 467 436	498 480 448
9	15,000 23,000 34,500	81.5 76.5 70.0	165	185 183	210 208	241 235 218	263 254 238	291 281 264	314 302 287	335 324 305	377 366 342	414 400 374	446 428 403	46 43 41
12	15,000 23,000 34,500	81.5 76.5 70.0	156 	175 170	196 194	227 221 208	245 240 224	274 264 246	295 284 266	314 303 284	354 340 319	388 371 348	420 400 374	430 409 384
				75	5% I	OAI	) FA	CTO	OR			1		
3	15,000 23,000 34,500	81.5 76.5 70.0	170 	193 187	218 212	249 242 230	270 263 246	300 290 274	326 316 296	347 337 314	390 381 354	430 415 388	464 446 418	476 458 430
6	15,000 23,000 34,500	81.5 76.5 70.0	153 	174 167	197 189	224 216 203	242 234 219	268 258 240	291 280 261	308 297 277	346 331 311	379 364 340	408 390 364	419 400 373
9	15,000 23,000 34,500	81.5 76.5 70.0	141 	159 154	179 174	204 197 185	221 212 197	244 232 216	263 252 235	279 267 249	313 300 278	342 326 304	368 350 326	376 357 333
12	15,000 23,000 34,500	81.5 76.5 70.0	132 	148 142	167 161	189 182 168	204 194 181	225 214 200	243 231 215	256 246 227	287 274 254	313 298 276	337 319 294	344 320 302
				100	)% I	LOA	D FA	ACTO	OR					
3	15,000 23,000 34,500	81.5 76.5 70.0	153	171 166	196 188	224 216 202	242 233 218	268 258 240	288 277 259	308 295 276	345 331 310	378 362 338	408 390 363	420 400 373
6	15,000 23,000 34,500		135 	151 146	171 166	196 188 175	210 203 188	233 222 206	250 239 222	266 254 236	296 284 263	322 308 286	348 331 307	358 340 318
9	15,000 23,000 34,500	81.5 76.5 70.0	121 	134 132	153 149	173 168 156	186 180 167	206 198 183	221 211 196	234 224 207	261 252 230	284 272 250	304 291 267	310 290 274
12	15,000 23,000 34,500	81.5 76.5 70.0	112 	125 120	142 135	161 153 139	172 164 149	189 180 165	202 192 175	214 203 185	237 225 203	256 242 218	273 259 232	288 266 236

## CURRENT CARRYING CAPACITY COMPOUND-FILLED PAPER CABLES

## THREE CONDUCTOR SECTOR TYPE H (Shielded)

(Continued)

Loaded	Line	Max.		Con	DUCT	or S	ize B	. & S.	OR	1,000	Circu	ULAR	Mils	
Cables in Duct Bank	Volt- age Volts	Temp. °C.	1/0	2/0	3/0	4/0	250	300	350	400	500	600	700	750

## 50% TO 100% LOAD FACTOR

0 11			A	MPER	ES PE	R Co	NDUC	TOR		
Cables in Air	15,000 23,000 34,500									

Ratings are based on 60-cycle alternating current and grounded neutral.

Ratings are based on ambient earth temperature of 20°C. for cables in ducts and 40°C. ambient air temperature for cables in air. For other ambient temperatures apply the following correction factors:

Ambient	CAB	LES IN DU	JCTS	CA	BLES IN A	AIR
Temp.	/15,000 v.	23,000 v.	34,500 v.	15,000 v.	23,000 v.	34,500 v
10°C. 20°C. 30°C. 40°C. 50°C.	1.08 1.00 0.92 .82 .72	1.09 1.00 0.91 .80 .69	1.10 1.00 0.90 .78 .63	1.22 1.12 1.00 0.87	1.25 1.13 1.00 0.85	1.29 1.15 1.00 0.82

Ratings include dielectric loss and extra a-c losses, such as sheath loss and proximity loss. For cables in ducts, all outside ducts are assumed.

For cables in air, ratings are for any load factor from 50% to 100%. Approximate correction factor for round conductor cable is .99.

## CURRENT CARRYING CAPACITY—COMPOUND-FILLED PAPER CABLES THREE CONDUCTOR BELTED TYPE

750	•	522 510 475 434	490 478 446 406	460 450 422 384	432 423 396 360
200		506 495 462 421	475 463 432 394	446 436 408 374	418 410 384 350
009		466 455 427 388	436 427 399 364	411 402 358 344	388 378 352 323
500		424 413 388 352	395 388 362 332	372 366 341 313	354 344 322 295
Mils 400		374 366 344 314	348 339 320 295	330 324 303 279	314 306 287 263
		348 341 322 294	329 320 298 276	306 302 283 261	294 287 267 248
Сівсоцав 300 350		320 314 295 272	300 294 275 254	284 277 260 242	272 264 246 231
1,000		CONDUCTOR 287 314 263 295 244 272	271 265 246 230	254 250 234 218	243 238 221 206
& S. OR 4/0	OR	262 256 256 241 222	248 243 227 213	234 230 216 201	224 218 204 190
B. B.	50% LOAD FACTOR	AMPERES 226 220 208 195	216 211 197 175	203 201 186 175	194 188 177 166
ron Size	OAD	A 197 191 181 169	189 183 172 154	178 175 164 154	170 165 157 146
Conductor 1/0 2/	20% I	173 170 160 160	165 162 151 143	157 154 143 136	150 146 137 131
0 1		150 145 138 132	144 141 133 125	140 135 126 118	132 128 120 115
Ø	Central Central	130 128 122 114	126 125 117 109	123 120 109 101	114 1114 108 101
4		99 97 92	96 95 91	93 88 88	8888 :
9		75 74 70 	73 72 69	71 70 67	69
∞ 5.		57 : : :	56	55 : : :	54 : : :
Max. Copper Temp.		85.0 82.5 75.0 67.0	85.0 82.5 75.0 67.0	85.0 82.5 75.0 67.0	85.0 82.5 75.0 67.0
Rated Three Phase Line Voltage Voltage		4,500 7,500 15,000 23,000	4,500 7,500 15,000 23,000	4,500 7,500 15,000 23,000	4,500 7,500 15,000 23,000
Number of Loaded Cables in Duct Bank		ю	9	6	12

Ratings are based on 60-cycle (see page 279 for footnotes).

## CURRENT CARRYING CAPACITY—COMPOUND-FILLED PAPER CABLES THREE CONDUCTOR BELTED TYPE (Continued)

	750
	200
	009
	200
ILS	400
LAR M	350
OR 1,000 CIRCULAR	300
1,000	250
S. OR	4/0
E B. &	3/0
FOR SIZ	2/0
ONDUCTOR SIZE	1/0
Ö	п
	61
	4
	9
Max. Copper	Temp. 8
Rated Three Phase	Line Voltage Volts
Number of Loaded	Cables in Duct Bank

## 75% LOAD FACTOR

474	432 395 423 415	388 354 386	350 322 322	348 322 296
459	420 382 410 402	376 344 373	366 343 314 344	338 316 288
423	354 354 380 372	348 320 348	340 292 321	314 293 269
384	322 345 338	316 290 316	290 265 265	288 267 245
3338	285 285 306 299	280 260 281	276 258 236 261	256 240 222
315 310	232 270 286 280	264 244 263	243 243 245	240 226 207
291 286	265 265 260	242 227 244	224 206 206	223 204 193
Jonbu 261 257	223 223 238 233	219 204 219	202 188 204	201 188 175
241 237	221 206 218 218	201 202	186 172 189	185 175 162
MPERES 210 206	180 180 190 187	176 165 176	163 152 152	163 153 142
A1181	166 164 164	156 144 156	153 143 133	143 135 126
160	140 147 144	137 128 137	127 119 128	127 120 113
140	130 128 128	121 113 122	113 107 114	112 106 100
122	1113	106 99 106	92 92 100	98 94 88
933	87. 88	25 : 25	77 : 78	77 73 :
711 720 720	67		59 : 59	59
55	51	49	46	:::
85.0 82.5 75.0	85.0 82.5	67.0 67.0 85.0	67.0 67.0 85.0	82.5 75.0 67.0
4,500	4,500 7,500	15,000 23,000 4,500	15,000 23,000 4.500	7,500 15,000 23,000
10	, ,	•	6	12

Ratings are based on 60-cycle (see page 279 for footnotes).

## CURRENT CARRYING CAPACITY—COMPOUND-FILLED PAPER CABLES THREE CONDUCTOR BELTED TYPE (Continued)

1	750
	7
	700
	009
	200
MILS	400
ULAR	350
1,000 CIRCULAN	300
в 1,00	250
& S. o	4/0
TOR SIZE B.	3/0
CTOR S	2/0
CONDU	1/0
	1
	61
	4
	9
ï	
Max. Copper	Temp °C.
Rated Three Phase	Voltage Volts
Number of Loaded	Cables in Duct Bank

## 100% LOAD FACTOR

	420	364	326	293
	414	358	322	286
	388	337	297	264
	354	308	270	241
	409	355	317	286
	402	349	312	280
	376	326	289	258
	344	298	263	236
	378	330	295	268
	371	323	289	261
	338	302	269	241
	317	277	246	220
	345	302	272	246
	338	295	265	241
	316	276	246	223
	290	253	226	203
	307	271	243	222
	300	263	238	217
	281	247	220	201
	258	227	204	183
	287	252	229	210
	281	246	224	204
	263	232	207	189
	243	213	192	174
TOR	265	234	211	195
	260	229	207	190
	242	215	193	177
	227	198	178	162
JONDUC	238	210	191	175
	233	206	187	172
	218	194	174	161
	204	180	163	147
PER C	218	194	176	163
	214	190	172	159
	201	178	162	149
	187	167	162	136
IPERES	191	170	154	142
	186	166	152	140
	173	156	142	131
	163	146	132	120
An	165	150	136	125
	163	143	133	123
	154	136	125	116
	143	128	117	106
	147	136	121	1112
	144	128	119	1110
	137	122	112	103
	128	114	105	96
	130	1119	108	99
	127	1113	103	97
	121	1008	99	91
	112	101	93	85
	1113 1113 100	105 99 97 90	95 93 87 81	88 87 80 75
	. 86 82 83 85 85	80 77 75	75 72 69	69 67 64
	67 66 63 	65 64 61	61 60 57	57 56 54
	252	49 :::	94 : : :	£4 : : :
	85.0	85.0	85.0	85.0
	82.5	82.5	82.5	82.5
	75.0	75.0	75.0	75.0
	67.0	67.0	67.0	67.0
	4,500	4,500	4,500	4,500
	7,500	7,500	7,500	7,500
	15,000	15,000	15,000	15,000
	23,000	23,000	23,000	23,000
	ю	9	6	12

Ratings are based on 60-cycle (see page 279 for footnotes).

## CURRENT CARRYING CAPACITY—COMPOUND-FILLED PAPER CABLES THREE CONDUCTOR BELTED TYPE (Continued)

	750
	200
	009
	200
MILS	400
ULAR	350
0 CIRC	300
OR 1,000 CIRCULAR	250
& S.	4/0
NDUCTOR SIZE B. & S.	3/0
CTOR S	2/0
CONDU	1/0
	1
	2
	4
	9 8
Max. Copper Temp.	.c.
Rated Three Phase Line	Voltage
Number of Loaded Cables	

## 50% TO 100% LOAD FACTOR

386
373
342
900
1
10-
1
ting on
Itanna
vela s
2-09 u
e based
ings are
Rat

Ratings are based on ambient earth temperature of 20°C. for cables in ducts and 40°C. ambient air temperature for cables in air. For other ambient temperatures apply the following correction factors: cycle alternating current and grounded neutral

		23,000 v		1.32	0.80
CABLES IN AID	15 000	19,000 V.	1.0.1	1.13	0.85
CABLES	7.500 v	· · · ·	1.21	1.11	0.88
	4,500 v.		1.20	1.11	0.88
	23,000 v.	01.1	200	.76	00.
IN DUCTS	15,000 v.	1.09	01.00		00.
CABLES IN	7,500 v.	1.08	1.00	.83	
	4,500 v.	1.07	1.00 0.92		do diolocatuio lo
Ambient	Temp.	10°C.	30°C.	40°C.	Ratings inclu

lude dielectric loss and extra a-c losses, such as sheath loss and proximity loss. For cables in air, ratings are for any load factor from 50% to 100%. For cables in ducts, all outside ducts are assumed.

## CURRENT CARRYING CAPACITY—VARNISHED CAMBRIC CABLES SINGLE CONDUCTOR—ANNULAR

SUC	0°C.	
ARIC	C. 5	
OR V	45°	
RS F	0°C.	
ACTO TEM	C. 4	
N F.	30°	
AMBI	0°C.	
ORRE	C. 2	
Ö	10°	
	2,000	
	000	
*	00 4,	×
Min	3,00	CTO
Conductor Size 1,000 Circular Mils*	2,500	50% LOAD FACTOR
CIRC	000	OAD
000	2,0	77 %
ıв 1,	1,750	500
R Siz	200	
UCTO	50 1,	
JOND	1,2	
	1,000	
	800	
	750	
ted ree Conductor Size 1,000 Circular Mils* Correction Factors for Various Ambient Temperatures are Copper	°C.	
Rated Three Phase Line C	ge ge lts	
Num- ber of Loaded	in Duct Bank	

4,500         72.5         775         960         1,275         1,532         1,740         1,940         2,310         2,740         1.09         1.00         90         78           7,500         70.5         755         987         1,235         1,480         1,680         1,685         2,270         2,655         1.10         1.00         89         77           4,500         70.5         713         908         1,135         1,440         1,590         1,765         2,120         2,445         1.10         1.00         87         77           15,000         66.5         660         805         1,040         1,225         1,395         1,535         1,395         1,31         1.00         87         77           4,500         72.5         695         857         1,105         1,325         1,385         1,535         1,415         1,500         1,425         1,395         1,435         1,00         30         78           4,500         72.5         695         857         1,105         1,250         1,415         1,560         1,855         2,120         1,00         89         76           5,000         66.5         665 <th>4,500 72 7,500 70 15,000 66 4,500 72 7,500 70</th> <th></th> <th></th> <th>A</th> <th>AMPERES</th> <th>PER</th> <th>CONDITION</th> <th>CTOR</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	4,500 72 7,500 70 15,000 66 4,500 72 7,500 70			A	AMPERES	PER	CONDITION	CTOR									
7,500         70.5         75.5         93.7         1,23.5         1,480         1,865         2,270         2,625         1.10         1.00         89         77           15,000         66.5         705         1,865         1,695         2,050         2,360         1.10         1.00         89         77           7,500         66.5         660         805         1,180         1,355         1,530         1,705         2,935         1.10         1.00         89         77           15,000         66.5         660         805         1,040         1,255         1,535         1,535         1,835         2,085         1.11         1.00         89         77           4,500         72.5         695         857         1,105         1,37         1,475         1,680         1,885         2,120         1.00         10         78           7,500         70.5         673         821         1,105         1,130         1,285         1,405         1,665         1,885         1.12         1.00         89         76           15,000         66.5         625         760         1,130         1,285         1,405         1,665         1,885<	7,500 70 15,000 66 4,500 72 7,500 70	STATE OF	096	Section 1	1.275		1.532		1.940	2.310	2.740	1.09	1.00	06	. 78		65
15,000         66.5         705         863         1,135         1,345         1,630         1,695         2,050         2,360         1.10         1.00         87         73           7,500         70.5         72.5         732         908         1,140         1,590         1,765         2,120         2,445         1.10         1.00         89         78           7,500         70.5         660         805         1,040         1,225         1,395         1,535         1,835         1,835         1,340         10         10         89         77           4,500         72.5         695         857         1,105         1,325         1,395         1,545         1,942         2,220         1.09         1.00         89         76           7,500         70.5         673         821         1,105         1,255         1,475         1,660         1,855         2,120         1.09         1.00         89         76           7,500         70.5         673         821         1,106         1,130         1,285         1,405         1,665         1,885         1.12         1.00         89         76         76           15,000	15,000 66 4,500 72 7,500 70		937		1,235		1,480		1,865	2,270	2,625	1.10	1.00	68.	.77		.62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4,500 72		863	::::	1,135	:::	1,345		1,695	2,050	2,360	1.10	1.00	.87	.73		. 54
7,500         70.5         71         875         1,140         1,355         1,530         1,700         2,035         2,340         1.10         1.00         89         77           15,000         66.5         660         805         1,040         1,225         1,395         1,535         1,835         1,835         1,11         1.00         89         77           4,500         72.5         695         857         1,105         1,307         1,475         1,660         1,855         2,120         1.00         89         76           15,000         66.5         625         760         970         1,130         1,285         1,405         1,665         1,885         1.12         1.00         89         76           15,000         66.5         625         760         1,130         1,285         1,405         1,665         1,885         1.12         1.00         87         77	7.500 70		806	:	1,180	:	1,410		1,765	2,120	2,445	1.10	1.00	06.	. 78	:	.65
15,000     66.5     660     805     1,040     1,225     1,395     1,535     1,835     2,085     1.11     1.00     .87     .72       4,500     72.5     695     857     1,105     1,307     1,475     1,660     1,855     2,220     1.09     1.00     .90     .78       7,500     70.5     673     821     1,065     1,250     1,415     1,560     1,855     2,120     1.10     1.90     .89     .76       15,000     66.5     62.5     .760     .970     1,130     1,285     1,405     1,665     1,885     1.12     1.00     .87     .71		:	875	:	1,140		1,355		1,700	2,035	2,340	1.10	1.00	68.	.77		.61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15,000 66	::	805	:	1,040	: :	1,225		1,535	1,835	2,085	1.11	1.00	.87	. 72	:	. 52
70.5 673 821 1.065 1.250 1.415 1.560 1.855 2.120 1.10 1.00 .89 .76 66.5 625 760 970 1,130 1.285 1,405 1,665 1,885 1.12 1.00 .87 .71	4.500 72		857		1.105	:	1.307		1.630	1.942	2,220	1.09	1.00	06.	.78	:	.65
66.5 625 760 970 1,130 1,285 1,405 1,665 1,885 1.12 1.00 .87 .71	20		821		1,065		1,250		1,560	1,855	2,120	1.10	1.00	68.	94.		.61
	99	:	094	:	970		1,130		1,405	1,665	1,885	1.12	1.00	.87	.71		. 50
								3 50	1	1							

10	7,500	70.5	713 694 643	::	880	::	1,095		1,350	1,530	1,693	2,030 1,940	2,320	
9	4,500 7,500 15,000	72.5 70.5 66.5	652 631 585		800 766 703		1,022 985 890	: ;/:	1,200 1,145 1,035	1,350 1,295 1,165	1,485 1,422 1,275	1,760 1,675 1,500	2,000 1,900 1,670	1.10
6	4,500 7,500 15,000	72.5 70.5 66.5	602 580 535	:::	732 702 638	:::	927 890 800		$\frac{1,080}{1,035}$	1,210 1,155 1,025	1,330 1,270 1,125	1,560 1,480 1,300	1,755 1,660 1,430	

 $\frac{65}{61}$ 

722

98.

1.00

65 60 43

98

Ratings are based on 60-cycle (see page 281 for footnotes).

*See Annular Concentric Stranded Conductors, page 262.

## CURRENT CARRYING CAPACITY—VARNISHED CAMBRIC CABLES SINGLE CONDUCTOR—ANNULAR

(Continued)

CORRECTION FACTORS FOR VARIOUS AMBIENT TEMPERATURES	10°C. 20°C. 30°C. 40°C. 45°C. 50°C.
Rated Three Phase Max. Conductor Size 1,000 Chrcular Mils* Copper Volt- Temp.  Ambient Temperatures	500 1,000 1,250 1,500 1,730 2,000 2,500 3,000 4,000 5,000
750	3
Max. Copper Temp.	;
Rated Three Phase Line Volt-	Volts
Num- ber of Loaded Cables in Duct	

## 100% LOAD FACTOR

	65 60 64 64 60 64 64 64 63 63 64
	.77 .65 .77 .77 .78 .78 .78
	11.00
	1.09 1.10 1.10 1.10 1.10 1.09 1.10
	1,985 1,642 1,642 1,665 1,550 1,330 1,450 1,335 1,080
	1,740 1,660 1,470 1,470 1,200 1,200 1,200 1,200 1,200
	1,470 1,410 1,260 1,195 1,195 1,050 1,045 892
CTOR	1,340 1,285 1,160 1,150 1,095 960 1,015 960 820
CONDU	1,190 1,140 1,025 1,023 980 860 910 860 745
S PER	
MPERES	1,014 975 880 882 840 744 786 765
A	111(1111111
	791 763 700 700 670 605 605 600 535
	!!!!!!!!!!
	647 627 580 576 555 510 527 500 454
	72.5 66.5 772.5 772.5 66.5 66.5 66.5
7	4,500 15,000 4,500 15,000 15,000 7,500 15,000 15,000
	6 6

## 50% TO 100% LOAD FACTOR

										1									
Cables in 1 Air 2	4,500 7,500 15,000 23,000	72.5 70.5 66.5 61.5	678 650 577 488	716 687 608 512	858 820 723 607	1,019 971 850 708	1,170 $1,115$ $970$ $806$	1,305 $1,232$ $1,070$ $1,070$ $886$	1,420 1,343 1,166 964	1,630 1,550 1,350 1,116	1,880 1,790 1,560 1,250	2,380 2,240 1,940 1,530	2,840 2,690 2,310 1,785	1.40 1.42 1.52 1.68	1.27 1.30 1.37 1.49	1.15 1.20 1.20 1.27	00.11.000	92	.83
Ratinge	and par	ad on 6	Ograpio	olton	motion		and and		1 - 1						1				1
Transings a	TO Day	o mo no	212 62-0	aitel	Haching	curre	nr and	groun	Den Den	27									

Ratings are based on ambient earth temperature 20°C. for cables in ducts and 40°C. ambient air temperature for cables in air. For other ambient temperatures apply the correction factors given.
Ratings include dielectric loss and skin effect, but are based on open-circuited sheath operation, i.e., the sheaths are bonded and grounded

at one point only so that there are practically no sheath losses. For cables in ducts, all outside ducts are assumed. For cables in air, ratings are for any load factor from 50% to 100%.

^{*}See Annular Concentric Stranded Conductors, page 262.

# CURRENT CARRYING CAPACITY—VARNISHED CAMBRIC CABLES SINGLE CONDUCTOR

Number	Rated																
Loaded	Three Phase Line	Max. Copper					Jonduci	CONDUCTOR SIZE B. & S.	B. &		OR 1,000 CIRCULAR MILS	RCULA	R MIL	87			
in Duct Bank	Voltage Volts	.C.	80	9	4	61	Т	1/0	2/0	3/0	4/0	250	300	350	400	500	009
						506	C LOA	50% LOAD FACTOR	TOR								
								AME	AMPERES PER CONDUCTOR	ER Col	NDUCTO	R					
23	4,500 7,500 15,000	72.5 70.5 66.5	122	95 93 93	123 123 121	163 163 160	189 189 184	219 219 212	251 251 243	293 290 282	342 337 325	378 373 360	424 418 401	465 463 441	506 503 476	588 576 547	646
9	4,500 7,500 15,000	72.5 70.5 66.5	70 69	92 92 90	120 120 118	158 158 155	183 183 178	212 212 203	243 243 234	283 279 270	328 323 310	363 356 343	406 398 381	445 441 814	483 478 451	558 546 516	
6	4,500 7,500 15,000	72.5 70.5 66.5	69	06 06 88 88	117 117 115	154 154 150	178 178 172	205 205 197	235 235 226	273 270 260	315 311 298	349 343 329	390 383 365	427 423 400	463 458 431	534 522 492	
Number of Loaded	Rated Three Phase	Max. Copper		Con	DUCTOR	SIZE,	1,000 C	Conductor Size, 1,000 Circular Mils	MILS			CORRE	CORRECTION FACTORS FOR VARIOUS AMBIENT TEMPERATURES	FACTO T TEM	RS FO	R VAR	ROOR
in Duct Bank	Voltage	.C.	200	750	800	1,000	1,250	1,500	1,750	2,000	10°	10°C. 20	20°C. 3	30°C. 40°C.	40°C.	45°C.	50°C.
53	4,500 7,500 15,000	72.5 70.5 66.5	724 710 674	754 741 700	784 769 726	894 882 830	1,022 1,000 935	1,125 1,090 1,035	1,230 1,200 1,120	1,310 1,286 1,195	1.09		0000	06.	.79	:::	65.
9	4,500 7,500 15,000	72.5 70.5 66.5	684 669 642	712 697 659	740 724 680	840 826 774	956 934 867	1,053 1,013 954	1,137 1,110 1,032	1,220 1,185 1,110	1.09		0000	06.88	777	:::	65.
6	4,500 7,500 15,000	72.5 70.5 66.5	652 637 608	678 663 623	704 688 644	797 783 729	903 882 816	993 956 900	1,070 1,045 965	1,140 1,110 1,035	1.09		888	90	77.		.65
Ratings an	no based on	Ratings are based on 60-ovels (see name 285 for factorities)	on our	90E F	" foots	1			1						2		-

Ratings are based on 60-cycle (see page 285 for footnotes).

# CURRENT CARRYING CAPACITY—VARNISHED CAMBRIC CABLES SINGLE CONDUCTOR (Continued)

Number of Loaded	Rated Three Phase	Max.				0	JONDUC	CONDUCTOR SIZE B. & S. OR 1,000 CIRCULAR MILS	B. & S	3. OR 1,	,000 C	RCULA	R MIL	αg			
Cables in Duct Bank	Line Voltage Volts	Temp.	× ×	9	4	61	H	1/0	2/0	3/0	4/0	250	300	350	400	200	009
					-	75%	% LOA	75% LOAD FACTOR	TOR								
ю	4,500 7,500 15,000	72.5 70.5 66.5	69 69 68	91 91 89	119 119 116	156 156 153	180 180 175	AMR 209 209 200	AMPERES PER 209 239 27 209 239 27 200 230 20		CONDUCTOR 78 322 74 317 35 303	356 350 335	398 390 372	436 432 410	473 468 440	546 534 503	610
9	4,500 7,500 15,000	72.5 70.5 66.5	67 67 66	87 85 85	113	148 148 144	171 171 165	198 198 188	225 225 216	262 257 248	301 297 284	333 327 313	372 364 346	405 400 378	440 433 408	506 492 464	563 548 514
6	$\frac{4,500}{7,500}$	72.5 70.5 66.5	64 64 63	84 84 81	108 108 105	141 141 136	163 163 155	187 187 178	213 213 202	247 243 232	283 279 265	313 307 292	347 341 322	380 374 351	404 378	469 458 429	520 508 474
Number of Loaded Cables	Rated Three Phase	Max. Copper	172	CON	DUCTOR	Size,	1,000 C	Conductor Size, 1,000 Circular Mils	MILS			CORRECTION FACTORS FOR VARIOUS AMBIENT TEMPERATURES	TION	FACTO T TEM	ECTION FACTORS FOR VA.	VARI	ous
Duct	Voltage	.c.	200	750	800	1,000	1,250	1,500	1,750	2,000	10°C.		20°C. 3	30°C. 40°C.	±0°C.		50°C.
10	4,500 7,500 15,000	72.5 70.5 66.5	668 652 622	694 680 638	722 705 660	816 804 748	928 906 838	1,025 984 926	1,100	1,175 1,145 1,066	1.09	1	1.00	06.	77.	::	.63
9	4,500 7,500 15,000	72.5 70.5 66.5	616 598 570	639 622 584	663 645 605	748 730 680	845 820 760	927 890 840	995 966 891	1,060 1,025 952	1.09		888	. 90 . 89 . 89	77.	: ::	6. 65.
6	4,500 7,500 15,000	72.5 70.5 66.5	568 554 516	589 575 534	612 596 554	688 672 621	774 754 692	845 816 754	907 882 806	962 934 850	1.09		0000	90	27.73	: :::	.65
atings ar	Ratings are based on 60-cycle (see page 285 for footnotes).	60-cycle (s	see page	, 285 fo	r footne	otes).											

# CURRENT CARRYING CAPACITY—VARNISHED CAMBRIC CABLES SINGLE CONDUCTOR (Continued)

		009		558 544 508	500 489 454	456 443 408	l su	50°C.	62 62 54	65 62 52	65 61 48
		200		501 491 460	452 441 411	412 401 371	VARIO		1:::	:::	:::
		400		437 430 405	396 390 360	363 355 330	S FOR	30°C. 40°C. 45°C.	772	79	
		350		404 398 375	367 361 337	336 330 307	ACTOR	°C. 40	988	90 89 87	98
	MILS	300		368 361 344	336 330 310	309 302 284	CORRECTION FACTORS FOR VARIOUS AMBIENT TEMPERATURES	20°C. 30			
	ULAR	250		330 325 311	303 297 282	279 273 257	RREC		1.00	1.00	1.00
	CIRC			10R 35 31 31		2000	Coo	10°C.	1.09	1.09	1.09 1.10 1.12
1999	000,	4/0		299 295 295 282	274 270 256	254 249 234		-			
	. or 1	3/0		ЕВ Сол 261 256 246	240 236 224	223 218 206		2,000	1,047 1,016 945	918 890 803	820 790 706
	B. & S	2/0	FOR	AMPERES PER CONDUCTOR 97 224 261 299 97 224 256 295 87 214 246 282	207 207 196	191 191 180	Mils	1,750	985 960 884	866 842 762	774 750 673
	R SIZE	1/0	FAC	AMP 197 197 187	182 182 173	169 169 159	CULAR	1,500	916 884 832	808 780 716	724 696 634
C. C. Carrier	CONDUCTOR SIZE B. & S. OR 1,000 CIRCULAR MILS	н	100% LOAD FACTOR	171 171 164	158 158 151	148 148 140	Conductor Size, 1,000 Circular Mils	1,250 1	838 814 751	740 722 658	668 644 584
	Co	61	100%	148 148 143	137 137 132	129 129 123	IZE, 1,0	1,000 1,	742 8 724 8 674 7	660 7 644 7 591 6	596 6 579 6 529 5
		4		1113 1113 1110	105 105 102	99 99 95	COR S				
		7		===	222	000	rbuca	800	658 640 597	587 572 528	532 516 471
N. C. C.		9		87 87 85	885 73	777	Con	750	632 617 580	566 552 510	514 496 458
		8		66 66 65	62 62 61	59 59 58		200	610 594 566	546 533 494	495 473 443
	Max. Copper	Temp.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	72.5 70.5 66.5	72.5 70.5 66.5	72.5 70.5 66.5	Max. Copper	.c.	72.5 70.5 66.5	72.5 70.5 66.5	72.5 70.5 66.5
	Rated Three Phase	Voltage Volts		4,500 7,500 15,000	4,500 7,500 15,000	4,500 7,500 15,000	Rated Three Phase	Voltage	4,500 7,500 15,000	4,500 7,500 15,000	4,500 7,500 15,000
	Number of Loaded	Cables in Duct Bank		25	9	6	Number of Loaded Cables	in Duct Bank	23	9	6

Ratings are based on 60-cycle (see page 285 for footnotes).

# CURRENT CARRYING CAPACITY—VARNISHED CAMBRIC CABLES SINGLE CONDUCTOR (Continued)

	009
	200
	400
	350
3 MILS	300
RCULAI	250
000 Cr	4/0
ов 1,0	3/0
3. & S.	2/0
CONDUCTOR SIZE B. & S. OR 1,000 CIRCULAR	1/0
CTOR	
JONDI	
	61
	4
	9
	00
Max. Copper	°C.
Rated Three Phase	Voltage
Number of Loaded Cables	n Duct Bank

## 50% TO 100% LOAD FACTOR

576 553 490 420	suc	50°C.	.83 .82 .75 .62
512 4492 438 375	VARIO	URES 45°C.	92 88 88 83
440 422 378 324	S FOR	PERATU	8888
402 384 347 298	ACTOR	30°C. 40	1.14 1.16 1.20 1.20 1.26
360 348 315 272	RECTION FACTORS FOR VAR	C. 30	
320 310 282 244	RRECT	20°C.	1.27 1.29 1.36 1.49
OR	Co	10°C.	1.39 1.42 1.52 1.68
286 278 253 253 219			000
244 239 218 218 188		2,000	1,200 1,142 1,001 835
MAPERES F 80 208 79 206 65 189 43 163	Mils	1,750	1,135 1,082 942 776
AMP 180 179 165 143	CIRCULAR	1,500	,020 976 853 717
153 151 142 124	1,000 Cm	1,250 1	909 1 871 768 344
130 128 121 106	E, 1,0		10.000
	R Size,	1,000	795 760 676 568
97 96 91	Jonductor	800	692 664 589 500
73	Con	750	666 638 566 481
56	3	700	636 612 540 462
72.5 70.5 66.5 61.5	Max. Copper	remp.	72.5 70.5 66.5 61.5
4,500 7,500 15,000 23,000	Rated Three Phase	Voltage Volts	4,500 7,500 15,000 23,000
Cables in Air	Number of Loaded	in Duct Bank	Cables in Air

Ratings are based on 60-cycle alternating current and grounded neutral.

Ratings are based on ambient earth temperature of 20°C. for cables in ducts and 40°C, ambient air temperature for cables in air. For other ambient temperatures apply the correction factors given.

Ratings include dielectric loss and skin effect, but are based on open-circuited sheath operation, i.e., the sheaths are bonded and grounded at one point only so that there are practically no sheath losses.

For cables in air, ratings are for any load factor from 50% to 100%. For cables in ducts, all outside ducts are assumed.

# CURRENT CARRYING CAPACITY—VARNISHED CAMBRIC CABLES THREE CONDUCTOR TYPE H (Shielded)

Num. Rated ber Three of Phase Max. Conductor Size B. & S. or 1,000 Circular Mils Cables Voit. Temp.	10°C. 20°C. 30°C. 40°C. 45°C. 50°C.
	750
	700
	009
Mins	200
CAR ]	400
TRCU	350
O00 C	300
ля 1,0	250
8.8.0	4/0
B. 8	3/0
Sizi	2/0
JCTOR	1/0
JONDI	-
	73
	4
	9
ated hree lase Max. ine Copper olt- Temp.	uge °C. 8
r - r - r - r - r - r - r - r - r - r -	uct a
Nu per Cap	in Dr Ban

### 50% LOAD FACTOR

	.62	.61	.61
	::	::	::
	1.1	.76	76
	.89	.89	. 88
	88	1.00	00.1
	2 1		
	1.10	1.10	1.10
	506	460	422 379
	489	445 403	410
	451	414	382
	4111	377	348 315
	360	334	310
FOR	337	312 287	290
NDUC	$\frac{311}{290}$	287	268 246
R CON	283 264	262 242	245 225
S PER	257 243	240 222	224 207
AMPERES	223 213	208	195 182
A	196 187	184 172	173 161
	171	160	151
	150	141	133
	132	124 116	117
	100	95	90
	77	73	649
	59	56	52
	70.5	70.5	70.5
	7,500	7,500	7,500
	10	9	6

### 75% LOAD FACTOR

.61	.61	.41
::	::	:::
72.	.76	.76 .67
8.89	.89	.89
88	88	1.00
1.10	1.10	1.10
441 396	386	343 293
428 384	375	333
398 359	348	312 268
362	318 286	285 249
321 293	283 257	255
300 275	265 242	238
277 255	246 225	221 197
253	205	204
231 214	207	188
201	181	165
178 166	161	147
155 146	141 132	129
136 128	124	114
120	110	102 93
92 87	82	72
71 68	63	61 57
55	51	47
70.5	70.5	70.5
7,500	7,500	7,500
ю	9	6

Ratings are based on 60-cycle (see page 287 for footnotes).

### CURRENT CARRYING CAPACITY—VARNISHED CAMBRIC CABLES THREE CONDUCTOR TYPE H (Shielded) (Continued)

	CORRECTION FACTORS FOR VARIOUS AMBIENT TEMPERATURES	10°C. 20°C. 30°C. 40°C. 45°C. 50°C.
		1/0 2/0 3/0 4/0 250 300 350 400 500 600 700 750
		002 (
		009
	[III.8	200
	AR M	400
	RCUL	350
	Conductor Size B. & S. or 1,000 Circular Mils	300
	1,00	250
	S. OF	4/0
	B. &	3/0
	Size	2/0
	TOR	1/0
	NDUC	1
	သိ	63
		4
		9
	Num. Kated Num. Kated Of Phase Max. Loaded Line Copper. Cables Volt- Temp.	S
1	arted hree hase jine olt-	olts
1	led I Pil	k V
1	Load Cab	Ban

### 106% LOAD FACTOR

	.60	900	25.00
	i		
	92.	.75	.75
	68.	.89	88.8
	1.00	1.00	1.00
LIMITE .	1.10 1	1.10 1	1.10 1
	380		281
	325	314 264	273 219
	345	293 249	256 210
	315 281	269	236 197
	281 252	242 210	213 179
~	264 238	227 198	200
TCTO	244 222	212 185	187 159
COND	222 203	194 171	172 149
	199 188	178 159	160
ERES	180	156	142 124
AMP	159 148	139	127
	140	122	1111
	123 116	108	99
	109	96	88
	79	74 69	68
	66	58	53
	51	46	41 40
	70.5	70.5	70.5
	7,500	7,500	7,500
	23	9	6

### 50% TO 100% LOAD FACTOR

.81
16.888
1.43 1.30 1.15 1.00 1.58 1.39 1.21 1.00 1.74 1.53 1.30 1.00
479 419 343
460 404 331
422 372 307
383 338 280
338 298 250
314 277 233
286 254 214
255 228 193
238 205 176
197 177 153
171 155 135
150 136 119
129 117 104
112 103 91
88 81 :
89 : :
:::
70.5 66.5 61.5
7,500 15,000 23,000
Cables in Air

Ratings are based on 60-cycle alternating current and grounded neutral.

Ratings are based on ambient earth temperature of 20°C. for cables in ducts, and 40°C, ambient air temperature for cables in air. For other ambient

Ratings include dielectric loss and extra a-c losses, such as sheath loss and proximity loss For cables in ducts, all outside ducts are assumed.

For cables in air, ratings are for any load factor from 50% to 100%.

# CURRENT CARRYING CAPACITY—VARNISHED CAMBRIC CABLES THREE CONDUCTOR BELTED

De00	
VAR TRES	
POR LATE	
APEI APEI	
C Ten	
N F.	
MBIII	
RREE A.	
CO 01	
750	
200	
009	
firs 500	
АВ М 400	
350	
300 C	
в 1,0	
2 S. o	
B. 8	
Size	
1/0	
Jonor 1	
6	
. 4	
Max Copp Temp °C.	
tated hase Cine 7 olt-	
ed 1	
Num- Rated ber Three of Phase Max. Correction Factors for Various Loaded Line Copper Cables Volt- Temp. 6 4 2 1 1/0 2/0 3/0 4/0 250 300 350 400 500 600 700 750 10°C. 20°C. 30°C. 45°C. 50°C. Bank Volts	-

### 50% LOAD FACTOR

	: : :		::	::	
	7.45	24.	.74	77.	.62
	688.	89	88.	688	.83
100	888	3 8	88	88	8
	911	14 10 10 1	1 1 1 1 1 1	10 1.	14 1.
	1.10			1.10	-
	481	444	419	419 390	325
	464 440	429	405 345	400	315
	426	395	373 320	369	293
	365	357	338	335	270
	337	314	298	297	243
R	313 296	292	242	275 258	229
UCTO	287	269	255	253	213
COND	261 249	245	233	231 219	195
PER	239	225	212	212	177
ERES	208	195	186	185	156
AMP	181	171	163	163	136
	156 149	148	141	141 134	120
	137	130	124	124	105
	114	114	108	109	93
	91	87	75	83	71
	67		59	63	
	53		46	49	
	67.5		67.5	70.5	0.09
	7,500		7,500	4,500	
	13	J. 1	0	6	

2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 27 2562 2

### 75% LOAD FACTOR

Ratings are based on 60-cycle (see page 289 for footnotes).

### CURRENT CARRYING CAPACITY—VARNISHED CAMBRIC CABLES THREE CONDUCTOR BELTED (Continued)

1	CORRECTION FACTORS FOR VARIOUS AMBIENT TEMPERATURES		8 6 4 2 1 1/0 2/0 3/0 4/0 250 300 350 400 500 600 700 750 10°C. 20°C. 30°C. 40°C. 45°C. 50°C.
			75
			700
			009
	ILS		200
1	RM		400
	COLLA		350
7	ONDUCTOR SIZE B. & S. OR 1,000 CIRCULAR MIL		300
,	1,000		250
	OR		4/0
	8.		3/0
f	ZE B		2/0
	OR SI		1/0
	OUCTO		_
	CONI		73
			4
			9
			oo
Num- Kated ber Three	Copper	Temp.	
ared	ine	olt-	uge olts
4 4 1	ed I	es v	k V
Per	Load	Cabl	in Du Ban

### 100% LOAD FACTOR

	.56	.62	
	:::	:::	:::
	74.77	.77	.72
	88.8	8.87	.89
	888	888	888
	1.10	1.10 1	1.10
	HHH	HHH	HHH
	377 353 290	325 305 233	288 264 189
	$\frac{365}{341}$	$\frac{315}{297}$	280 256 187
	337 317 264	$\frac{293}{275}$	252 239 179
	306 290 244	268 252 202	239 220 169
	272 258 221	240 224 184	213 198 156
R	253 240 207	224 209 173	200 186 147
UCTO	$\frac{234}{222}$ $\frac{192}{192}$	207 195 160	185 172 137
COND	215 203 174	190 180 146	170 159 125
PER	197 186 159	175 165 134	157 146 116
ERES	172 165 141	153 145 120	139 131 104
	152 145 125	$\frac{135}{128}$ $\frac{128}{106}$	124 116 93
	$\frac{132}{126}$	118 1112 94	108 102 83
	1116 1112 97	103 99 84	95 90 73
	102 98 86	91 88 74	85 79 65
	78 76 66	70 68 58	65 60 51
	60 53 52	53 46 46	51 46 41
	744	43 41 37	33 33
	70.5 67.5 60.0	70.5 67.5 60.0	70.5 67.5 60.0
	4,500 7,500 15,000	4,500 7,500 15,000	4,500 7,500 15,000
	10	9	6

	34
	1.41
	350
	442 407 31.2
	390
	385 354
LOK	345 318 318
	303
1.6	
3	280
LOAD FAC	255 235 190
0/,001	229 212
500	208 190 155
0 10	179 162 134
0% nc	154 139
	134
	110 97 86
	94 84 75
	049
	52 48
	4:
	70.5
	1.00

TOTO TO TOT WOLL OF WAY

Ratings are based on 60-cycle alternating current and grounded neutral.

4,500 7,500 15,000

Cables

Ratings are based on ambient earth temperature of 20°C. for cables in ducts, and 40°C ambient air temperature for cables in air. For other ambient temperatures apply the correction factors given.

Ratings include dielectric loss and extra a-c losses, such as sheath loss and proximity loss. For cables in ducts, all outside ducts are assumed.

For cables in air, ratings are for any load factor from 50% to 100%.

## CURRENT CARRYING CAPACITY—RUBBER INSULATED CABLES SINGLE CONDUCTOR—BRAIDED OR LEADED

Number of Loaded Cables in Duct Bank	Rated Three Phase Line Voltage Volts	To= Max. Copper Temp. °C.	∞	9	4	61	-	COND 1/0	CONDUCTOR SIZE B. & S. OR 1,000 CIRCULAR MILS 1/0 2/0 3/0 4/0 250 300 350 400 500 6	SIZE	B. &	S. or	300	0 CIR 350	tculai	8 Mil. 500	8,009	700	750	800 1,000	1,000
And the second second							5	1 %00	50% LOAD FACTOR	FAC	CTOR	_									
			100							AMP	AMPERES	PER (	Conductor	CTOR							1
2	009	60	71 63	102 86	131	175 149	201	237	272 232	315	368		457	503 428	548	631	708	776 660	796	837	958
9	to	75	71 61	83	129	168	195	230	264	304	353	390	436	480 408	523	604	670	734 623	763	792	902
6	5,000	75	69	96	125	164	189	222 190	256 218	294 250	339	375	416	462 393	503	574 490	640	698	725	751	855
12		75	68	94 80	123	159	185 158	216	248 212	284 242	327 279	362 308	403	443	482	552	608 518	665	692 592	718	815 694
				1			7	2% I	75% LOAD FACTOR	FAC	CTOR			1							1
23	009	75 60	70	100	126 108	169	194 166	226 193	259 220	296 252	343	382	426 364	471 400	512	589	655 560	715	743	771	876
9	to	75	68	96	120	162 138	185	214	245 209	281 239	323 276	357	397	434 371			604	755	671		800
6	5,000	75	65	92	116	154	175	202	230	264	303	336	374	410	442	507	564	610	634		737
12		75	63	88	$^{111}_{94}$	148 127	168	194 166	217	250	245	319	355	386							689

Ratings are based on 60-cycle (see page 291 for footnotes).

## CURRENT CARRYING CAPACITY—RUBBER INSULATED CABLES SINGLE CONDUCTOR—BRAIDED OR LEADED (Continued)

	1,000	801	707	640	594 505		862 650
8	000	707	628	572	527		747 566
750	3	682	608	551	511		718
700	3	658	584	533	493		687 519
LS	3	605	538	492	458 389		624 472
R MI		541	488	445	415		555
RCULA		~	426	333	365		479 362
B. & S. OR 1,000 CIRCULAR MILS 4/0 250 300 350 400 500 6		Conductor 397 436 372	395	362	340 290		436
в 1,00		COND 397 338	361	332	310	8	395 299
s S. o	R	Carlo College College	324 277	300	281 239	FACTO	349
67		AMPERES 82 322 40 275	294	273	256 218		315
R SIZE	D FA	AM 282 240	258	241 206	$\frac{224}{192}$	LOAD	272 206
CONDUCTOR 11/0 2/0 3	LOA	243 208	194	223	196 168	%00	233
	%001	214	198	183	173 147	TO 100%	201
-		185	173	161	148	50% 7	174
61		160	147	138	129	5	146
4		120 103	1113	106	99		110
9		95	88	82 70	74 63		80 61
00		68	64 54	61	58 49		59
To= Max. Copper Temp.	. C.	75 60	75	75	75		75 60
Rated Three Phase Line Voltage	Volts	009	to	5,000			600 to 5,000
Number of Loaded Cables in Duct		ю	9	6	12		Cables in Air

Ratings are based on 60-cycle alternating current and grounded neutral.

Ratings are based on ambient earth temperature of 20°C. for cables in ducts and 40°C. ambient air temperature for cables in air. For other ambient temperatures apply the following correction factors:

CABLES IN AIR	To=60°C.	1.58	1.41	1.22	1.00	0.71	
CABLE	To=75°C.	1.36	1.25	1.13	1.00	0.84	
DUCTS	To=60°C.	1.12	1.00	0.86	.71	.50	
CABLES IN DUCTS	To=75°C.	1.09	1.00	06.0	. 79	89.	
Ambiont	Temp.	10°C.	20°C.	30°C.	40°C.	50°C.	

Ratings include skin effect, but not dielectric loss, and are based on open-circuited sheath operation, i.e., sheaths are bonded and grounded at one point only so that there are practically no sheath losses. For cables in ducts, all outside ducts are assumed.

N.B.: These C.C.C.'s not recognized by Cdn. Elect. Code, 1939.

## CURRENT CARRYING CAPACITY—RUBBER INSULATED CABLES THREE CONDUCTOR—BRAIDED OR LEADED

	750			521 443	478 407	445	420 359		461	409	372	343 293
	200			503	466	431	408		446	399	361	334 286
	009	1		464 396	433 370	399	381		416	373	337	313 268
	200			425 363	394	370	348 298		324	341 292	311 266	287 245
Mils	400			378	351	332 284	311 266		337	304	281 240	258 220
ULAR D	350			355 302	326 279	310 265	287		313	285	264 225	241 206
CIRCI	300		TOR	325 278	291 258	285 243	262 223	103	248	225	243	223 191
1,000	250		ONDAC	291 248	274	258	243 208		265	240	221 189	205 176
Conductor Size B. & S. or 1,000 Circular Mils	4/0	~	AMPERES PER CONDUCTOR	268 228	250	235 201	222 190		242	218	202	189 162
в В. &	3/0	СТОІ	PERES	234 200	220 189	207	196	СТОЕ	212	191 164	180	168 143
OR SIZ	2/0	ID FA	AM	203 174	191 164	182 156	173	D FA	185	168	156 133	146 125
NDUCT	1/0	50% LOAD FACTOR		175 149	166	159	149 128	75% LOAD FACTOR	162	148 127	138	130
Co	1	500		157 134	147 126	139	132	75%	142	130	118 100	1111
	61			136 116	125 107	118	1111 94		123	1112	104	97
	4			99	95	91 78	88		93	86	81	77
	9			74 63	69	65	62		70	65	61	57 49
	<b>8</b>			56	54	52	50	1.5	52	50	46 39	44
To= Max.	Copper Temp.			75	75	75	75		75	75	75	75
Rated Three Phase	Voltage Volts			009	to	5,000			009	2	5,000	
Number of Loaded	Cables In Duct Bank			13	9	6	112	-34	3	9	6	12

Ratings are based on 60-cycle (see page 293 for footnotes).

## CURRENT CARRYING CAPACITY—RUBBER INSULATED CABLES THREE CONDUCTOR—BRAIDED OR LEADED (Continued)

Number	Rated	To =					Coo	NDUCT	DR SIZI	CONDUCTOR SIZE B. & S. OR 1,000 CIRCULAR MILS	S. OR	1,000	CIRCL	LAR D	AILS				
Loaded Cables In Duct Bank	Phase Line Voltage Volts	Max. Copper Temp.	00	9	4	. 81	-	1/0	2/0	3/0	4/0	250	300	350	400	200	009	200	750
		4					1006	% LO	AD FA	00% LOAD FACTOR	~								1
								75.0	AMI	AMPERES	PER C	ONDUC	CTOR						
22	009	75	50	66 56	86	113	131	148	168	191	218	239	265	287	307	342 292	371 316	396	410
9	ç	75	45	59	79 67	103	116	133	152	170	195	211	232	251 215	269	295	321 274	343 293	353
6	5,000	75 60	43	55	72 62	93	106	122 104	136	156	175	191 164	210 180	225 193	239	266 227	287	307	314 269
12		75 60	38	50	68	73	97	113	127 108	143	161 137	176 150	193 165	207	221 189	244 209	264 225	239	289
			7			506	50% TO	100%	LOA	D FAC	TOR						38		
Cables in Air	600 to 5,000	75 60	47	64 49	87 66	118	134 102	159	179	206	237	264 200	295 223	324 248	350 266	395 299	436 330	475 359	493 372

Ratings are based on 60-cycle alternating current and grounded neutral.

Ratings are based on ambient earth temperature of 20°C. for cables in ducts and 40°C, ambient air temperature for cables in air. For other anbient temperatures apply the following correction factors:

	3.						The second secon
CABLES IN AIR	To=60°C.	1.58	1.41	1.22	1.00	0.71	1000年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の
CABLE	To=75°C.	1.36	1.25	1.13	1.00	0.84	
CABLES IN DUCTS	To=60°C.	1.12	1.00	0.86	.71	.50	
CABLES I	To=75°C.	1.09	1.00	06.0	62.	. 68	
Ambiont	Temp.	10°C.	20°C.	30°C.	40°C.	50°C.	

Ratings include extra a-c losses, such as sheath loss and proximity loss, but not dielectric loss. For cables in ducts, all outside ducts are assumed.

N.B.: These C.C.C.'s not recognized by Cdn. Elect. Code, 1939.

### **VOLTAGE DROP**

The following curves give a convenient method for obtaining the approximate voltage drop on a cable of known length carrying a current at 25 cycles or 60 cycles, 3 phase.

The curves are calculated for cable impedances equivalent to the conductor spacing in three conductor, 600 volt, rubber insulated cables, but they may be used for obtaining the voltage drop in varnished cambric, rubber, or paper insulated cables for voltages up to 5,000 volts with an accuracy sufficient for most practical purposes.

See next page for directions.



### How to Use Curves

Multiply the line current by the distance in feet this current is to be transmitted.

Locate the horizontal line equivalent to this figure.

Look along this horizontal line to the point of intersection of the oblique line marked with the size of conductor being used.

From this point of intersection look down to the scale on the bottom horizontal line directly underneath.

The figure thus obtained on this scale will be the voltage drop.

### Single Phase—3 Wire Circuits

Proceed as above, and multiply the voltage drop obtained by 1.16.



### GENERAL INFORMATION PROPERTIES OF COPPER

Property	Hard-Drawn Copper Wire	Annealed Copper Wire
Tensile Strength (lb./in.²) 49, Young's Modulus of Elasticity	000 to 67,000 (1)	36,000 to 40,000 (2)
(lb./in.²)	16,000,000 (3)	12,000,000 (3)
Modulus of Torsion (lb./in.2)	6,150,000 (3)	
Proportional Limit (lb./in.2)	37,000 (4)	Not determinable
Elongation at Fracture (in 10 inches)	to 4% (approx.) (1)	20% to 35% (2)
*Electrical Resistivity—Ohms (Metre, gram) International Annealed Copper Standard.		0.15328 (4)
*Electrical Resistivity — Ohms (Mil, foot) International An- nealed Copper Standard		10.371 (4)
Temperature Coefficient of Resistiv 20 deg. C.) 100% Conductivity	vity (per deg. C. a	t 0.00393 (4)
Temperature Coefficient of Resistiv 68 deg. F.) 100% Conductivity	vity (per deg. F. a	t /
Boiling Point (deg. C.)		2,100 to 2,300 (3)
Coefficient of Linear Expansion (per	deg. F.)	0.00000925
Coefficient of Linear Expansion (per	deg. C.)	0.00001666 (4)
Specific Thermal Conductivity (cal per sq. cm., per sec.)	ories, per deg. C.	

^{*} Hard-Drawn Copper has about 2.7% higher resistivity than annealed copper.

⁽¹⁾ A.S.T.M. Spec. B1-27.

⁽²⁾ A.S.T.M. Spec. B3-27.

⁽³⁾ N.E.L.A. Underground Systems Reference Book.

⁽⁴⁾ Smithsonian Tables.

### RESISTIVITY OF COPPER CORRESPONDING TO VARIOUS PER CENT. CONDUCTIVITIES (20°C.)

International Annealed Copper Standard (I.A.C.S.) = 100% Density: 8.89 grams per cm³.

Per Cent. Conductivity	Ohms (meter, gram)	Ohms (mile, pound)*	Microhm- cm.	Microhm- inch	Ohms (mil, foot
100.0	.15328	875.20	1.7241	.67879	10.371
99.9	.15343	876.08	1.7258	.67947	10.381
99.8	.15359	876.95	1.7276	.68015	10.392
99.7	.15374	877.83	1.7293	.68083	10.402
99.6	.15390	878.71	1.7310	.68152	10.413
99.5	.15403	879.60	1.7328	.68220	10.423
99.4	.15421	880.48	1.7345	.68289	10.434
99.3	.15436	881.37	1.7363	.68358	10.444
99.2	.15452	882.26	1.7379	.68426	10.455
99.1	.15467	883.15	1.7398	.68495	10.465
99.0	.15483	884.04	1.7415	.68565	10.476
98.9	.15498	884.93	1.7433	.68634	10.486
98.8	. 15514	885.82	1.7450	.68703	10.497
98.7 98.6	.15530	886.73	1.7468	.68773	10.508
	.15546	887.63	1.7486	.68843	10.518
98.5	.15561	888.53	1.7504	.68913	10.529
98.4 98.3	.15577	889.43	1.7521	.68983	10.540
98.2	.15593 $.15609$	890.34	1.7539	. 69053	10.550
98.16	.15615	891.24 891.58	1.7557	.69123	10.561
	.13013		1.7564	.69151	10.565
98.1	.15625	892.15	1.7575	.69194	10.572
98.0 97.9	.15641	893.06	1.7593	.69264	10.583
97.8	$.15657 \\ .15673$	893.97	1.7611	.69335	10.593
97.7	.15689	894.89 895.80	1.7629	.69406	10.604
		099.80	1.7647	.69477	10.615
97.66 97.6	.15695	896.15	1.7654	. 69505	10.619
97.5	$.15705 \\ .15721$	896.72	1.7665	.69548	10.626
97.4	.15737	897.64 898.56	$\frac{1.7683}{1.7701}$	.69619	10.637
97.4 97.3	.15753	899.49	1.7719	.69691 .69763	10.648
				.09703	10.659
97.2 97.16	.15770	900.41	1.7738	.69834	10.670
97.16	.15776	900.77	1.7745	.69863	10.674
$97.1 \\ 97.0$	$.15786 \\ .15792$	901.34	1.7756	.69906	10.681
96.9	.15792	$902.27 \\ 903.20$	1.7774	.69978	10.692
	.10010	903.20	1.7793	.70051	10.703
96.8	.15835	904.13	1.7811	.70123	10.714
96.7 96.66	.15851	905.07	1.7829	.70195	10.725
96.6	.15858	905.44	1.7837	.70224	10.729
96.5	.15884	906.0	1.7848	.70268	10.736
00.0	.10004	906.94	1.7866	.70341	10.747

^{*} Numerically equal to pounds per mile-ohm.

### [RESISTIVITY OF COPPER CORRESPONDING TO VARIOUS PER CENT. CONDUCTIVITIES (20°C.)

(Continued)

Per Cent. Conductivity	Ohms (meter, gram)	Ohms (mile, pound)*	Microhm- cm.	Microhm- inch	Ohms (mil, foot)
96.4	.15900	907.88	1.7885	.70414	10.758
96.3	.15917	908.83	1.7903	.70487	10.760
96.2	.15933	909.77	1.7922	.70560	10.781
96.16	.15940	910.15	1.7929	.70590	10.785
96.1	.15949	910.72	1.7941	.70634	10.792
96.0	.15967	911.67	1.7959	.70707	10.803
95.0	.16135	921.26	1.8148	.71452	10.917
94.16	.16279	929.52	1.8310	.72089	11.014
93.15	.16455	939.51	1.8509	.72871	11.134
90.0	.17031	972.44	1.9156	.75421	11.523
85.0	.18033	1,029.65	2.0284	.79858	12.201
80.0	.19160	1,094.00	2.1551	.84849	12.964
75.0	.20437	1,166.93	2.2988	.90505	13.828
70.0	.21897	1,250.29	2.4630	.96970	14.816
65.0	.23582	1,346.46	2.6525	1.04429	15.955
60.0	.25547	1,458.66	2.8735	1.13132	17.285
55.0	.27869	1,591.27	3.0647	1.23416	18.856
50.0	.30656	1,750.40	3.4482	1.35758	20.742
45.0	.34062	1,944.89	3.8313	1.50842	23.047
40.0	.38320	2,188.00	4.3103	1.69698	25.928
39.21			/. /. /.		26.45
36.27					28.59
35.0	.43794	2,500.57	4.9260	1.93940	29.631
30.0	.51093	2,917.33	5.7470	2.26263	34.570
29.41					35.26
26.47	**				39.18
15.0	1.0219	5,834.67	11.4940	4.52527	69.14
13.0	1.1791	6,732.31	13.2623	5.22146	79.78

^{*} Numerically equal to pounds per mile-ohm.

The foregoing resistivities are useful in the calculation of 20°C. resistances of conductors having given dimensions and percentage conductivities. In the case of stranded conductors account should, of course, be taken of the increased length due to spiralling of the component wires, by use of the appropriate cabling factor.

### COPPER RESISTANCE AT ANY TEMPERATURE

Conductor resistances at any temperature may be determined by the expression:

$$R_t = R_{20} \left[ 1 + 0.00393 \text{ n (t} - 20) \right]$$
 where  $R_t$  = resistance at temperature t, ohms

R₂₀ = resistance at 20°C., ohms

n = percentage conductivity, expressed as a decimal

t = new temperature, °C.

For 100% conductivity (n = 1.00) this expression is equivalent to

$$R_t = \frac{234.5 + t}{254.5} \, R_{20}$$

### COPPER CONDUCTOR RESISTANCE CORRECTION FACTORS

The following tabulations give the factor by which the 20°C. resistance of a conductor must be multiplied to obtain its resistance at various other temperatures.

The tabulations are based on copper of 100 per cent. conductivity.

Temp.°C.	20	25	30	35	40	45	50	55	60	65	70	75
Multiplier	1.000	1.020	1.039	1.059	1.079	1.098	1.118	1.138	1.157	1.177	1.197	1.216

Temp. °F.	68	80	90	100	110	120	130	140	150	160
Multiplier	1.000	1.026	1.048	1.070	1.092	1.113	1.135	1.157	1.179	1.201

### USEFUL ELECTRICAL FORMULAE FOR DETERM-INING AMPERES, HORSE-POWER, KILOWATTS AND KILOVOLT-AMPERES

To Find	Direct Curren		ALTERNATING CURRENT					
	Direct Curren	Single Phase	Two Phase 4-Wi	re Three Phase				
Amperes When hp Is Known	hp×746	hp×746	hp×746	hp×746				
np is known	EXeff	$E \times eff \times pf$	$2\times E\times eff\times pf$	$\overline{1.73\times \text{E}\times \text{eff}\times \text{pf}}$				
Amperes When kw Is Known	kw×1,000	kw×1,000	kw×1,000	kw×1,000				
Aw 18 Khowh	E	E×pf	$2\times E\times pf$	$\overline{1.73\times E\times pf}$				
Amperes When kva Is Known		kva×1,000	kva×1,000	kva×1,000				
A Va Is Known		<b>E</b>	2×E	1.73×E				
Kilowatts	IXE	$I \times E \times pf$	$I \times E \times 2 \times pf$	$I \times E \times 1.73 \times pf$				
Illiowatts	1,000	1,000	1,000	1,000				
kva		IXE	$I \times E \times 2$	I×E×1.73				
KYW.		1,000	1,000	1,000				
hp Output	$I \times E \times eff$	$I \times E \times eff \times pf$	IXEXeffXpf	$I \times E \times 1.73 \times eff \times p$				
deed bearing	746	746	746	746				

I—Amperes; E—Volts; eff—Efficiency; pf—Power Factor; kw—Kilowatts; kva—Kilovolt-amperes; hp—Horse-Power

### COMMON ELECTRICAL TERMS

Ampere = Unit of current or rate of flow of electricity.

Volt = Unit of electromotive force.

1 Kilovolt = 1,000 Volts.

Ohm = Unit of electrical resistance.

Watt = Unit of Power.

= Volts × Amperes (Direct Current).

= Volts × Amperes × Power Factor (Single Phase).

1 Kilowatt (Kw.) = 1,000 Watts.

Watt-hour = Unit of Electrical Energy.

= Watts × Hours.

1 Kilowatt-hour (Kwh.) = 1,000 Watt-hours.

Volt-ampere = a convenient expression used to determine circuit or system capacity and performance (sometimes

called "apparent power").

= Volts  $\times$  Amperes.

| Kilovolt-ampere

(Kva.) = 1,000 Volt-amperes.

Coulomb = Unit of quantity of electricity = quantity which passes a cross section of a conductor in 1 second when the current is 1 ampere.

Mho = Unit of electrical conductance =  $\frac{1}{Ohm}$ 

Henry = Unit of inductance = inductance of a closed circuit in which an electromotive force of 1 volt is produced when the electric current traversing the circuit varies uniformly at the rate of 1 ampere per second.

Farad = Unit of electrical capacitance = that capacity
whose potential will be raised I volt by the
addition of a charge of one coulomb. The
practical unit is the microfarad which is one
millionth of a farad.

Dielectric Constant (of an insulating material) = Ratio of the capacitance of a condenser having the given material as the dielectric to the capacitance of the same condenser with vacuum as the dielectric.

S.I.C. = Specific Inductive Capacity = Dielectric Constant = Permittivity.

Dielectric Strength (of an insulating material) = Maximum voltage or potential gradient that the material can withstand without rupture.

Ohm's Law:—in Direct
Current, Amperes = Volts
Ohms

### TEMPERATURE CONVERSION TABLES

	-							
C.		F.	C.		F.	C.		F.
-17.8	0	32	18.2 18.9	65	149.0	188 193	370	698 716
$-17.2 \\ -16.7$	1 2 3 4 5 6 7	33.8 35.6	18.9 19.4	66 67	$150.8 \\ 152.6$	193 199	380 390	716
-16.1 -15.0 -14.4 -13.9 -13.3 -12.2 -11.6 -10.6 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0	3	37.4	20.0	68		204	400	734 752 770 788 806 824
-15.5	4	39.2 41.0	20.4	69	154.4 156.2 159.8 161.6 163.4 165.2 167.0 168.8	210 215	410 420 430 440	770
-14.4	6	42.8	21.1 21.7 22.2 22.8 23.3 23.9	70 71 72 73 74 75	159.8	215 221	420	788
-13.9	7	42.8 44.6	22.2	72	161.6	226 232	440	824
-13.3 $-12.8$	8	46.4	22.8	73	163.4	232 238	450	842
-12.2	10	48.2 50.0 51.8 53.6	23.9	75	167.0	243	460 470	860 878
-11.6	11 12 13 14	51.8	2T.T	76	168.8	249	480	896
-11.1 -10.6	13	55.4	$\frac{25.0}{25.6}$	77	170.6 172.4 174.2 176.0 177.8 179.6 181.4 183.2 185.0 186.8 188.6	254 260	490 500 510 520 530 540	914
-10.0	14	55.4 57.2 59.0	26:1	79	174.2	265	510	932 950
- 9.4 8.0	15 16	59.0 60.8	26.6	80	176.0	271	520	
-8.3	17	62.6	27.2	81 82	177.8	276 282	530	908 986 1,004 1,022 1,040 1,058
-7.8	18 19	64.4	28.3	83	181.4	288	550	1,022
- 7.2 - 6.7	19 20	62.6 64.4 66.2 68.0	28.9	84	183.2	293	560	1,040
- 6.1	21	69.8	29.4	85 86	185.0	299	570	1,058 1,076
-5.5	21 22 23	69.8 71.6	27.2 27.8 28.3 28.9 29.4 29.9 30.4	87	188.6	304 310	570 580 590	1,094
-5.0	24	73.4 75.2 77.0	31.0 31.6	87 88 89	190.4	315	600	1.112
-3.9	25 26	77.0	32.2	90	192.2 194.0	321 326 332	610	1,130 1,148
-3.3	26	78.8	32.2 32.6 33.3	91	195.8	332	630	1,166 1,184
$\frac{-2.8}{-2.2}$	28	80.6 82.4	33.8	92 93	$197.6 \\ 199.4$	338	640	1,184 1,202
-1.7	27 28 29	84.2 86.0	34.4	94	201.2	338 343 349	620 630 640 650 660	1,202
$-\frac{1.1}{-6}$	30 31	86.0	35.0	95	201.2 203.0	354	670 680	1,238
. 0	32	87.8 89.6	35.0 35.5 36.1 36.6 37.2 37.8 43.3 48.9	96 97	204.8 206.6	360 365 371 376 382 387 393	680	1,220 1,238 1,256 1,274
.6 1.1 1.7 2.2 2.8 3.3 3.9 4.4 4.9	32 33 34	91 4	36.6	00	208 4	371	690 700 710 720 730 740 750 760 770	1,292 1,310
1.7	35	93.2 95.0	37.2	99 100 100 110 120	210.2 212.0 212	376	710	1,310
2.2	36		37.8	100	212.0	387	730	1,328
2.8	37 38	98.6 100.4 102.2 104.0	43.3	110	230	393	740	1,346 1,364
3.9	39	100.4	48.9 54.4	120	248 266	399 404	750	1,382
4.4	40	104.0	60	130 140	284	410	770	1,400 1,418
4.9	41 42	105.8	65.6	150	302	415	780	1,418 1,436
6.1	43	105.8 107.6 109.4	$\frac{71}{76.7}$	160 170	320 338	415 421 426 432	780 790 800	1,454
6.7	44	111.2	82.2	180	356	432	810	1,472 1,490
7.8	45	113.0	82.2 87 93.3	190	374 392	438 443	810 820 830	1,508
8.3	46 47	109.4 111.2 113.0 114.8 116.6 118.4 120.2 122.0 123.8 125.6	98.9	190 200 210 212	410	449	840	1,526 1,544
8.9	48	118.4	100	212	413 428	454	840 850 860	1,562
10.0	49 50	120.2	104	220	428 446	454 460 465 471 476 482 487	860 870	1,580
10.6	51	123.8	110 115 121 127 132	230 240	464	471	880	1,598 1,616
11.1	52 53	125.6	121	250	482	476	890	1,634
12.2	54		132	260 270	500 518	482	900 910	1,652 1,670
12.8	55	129.2 131.0	138	280	536	493 498	920	1,688
13.3	56 57	132.8 134.6	143	290	554	498	930	1 706
5.6 6.1 6.7 7.2 8.3 8.9 9.4 10.6 11.1 11.7 12.2 12.8 13.3 13.7 14.4	58	136 4	149 154	300 310	554 572 590	504 510	940 950	1,724 1,742 1,760
15.0	59	138.2 140.0	160	320 330	608 626	515	960	1,760
16.1	60 61	140.0 141.8	165	330 340	626 644	520 526	970	1,778
16.7	62	143.6	171 177 182	350	662	532	980 990	1,796 1,814
14.4 15.0 15.6 16.1 16.7 17.2 17.8		145.4	182	360	680	538	1,000	1,832
17.8	64	147.2						

Note: The numbers in BLACK FACE refer to the temperature either in degrees Centigrade or Fahrenheit which it is desired to convert into the other scale.

### PROPERTIES OF METALS (20°C.)

. 1	Symbol	Atomic Weight	Specific Grav- ity	Specific Heat Cal./Gram Deg. C.	Melting Point Deg. C.
COPPER: Annealed Wire (100% cond.) Hard Drawn Wire (97.5% cond.)	Cu	63.57	8.89 8.89	.0921	1,083
Brass, Hard Drawn Wire: Com'l. Bronze (90 % Cu, 10 % Zn) Low Brass (80 % Cu, 20 % Zn). High Brass (70 % Cu, 30 % Zn)			8.80 8.67	.092	1,045 995
BRONZE, Hard Drawn Wire:			8.53	.092	930
Aluminum (96.25% Cu, 3% Al, 0.75% Si)			8.54 8.89 8.89 8.89	.09 .09 .09	1,021 1,021 949 932
ALUMINUM	Al	26.97	2.71	.214	660
Iron	Fe	55.84	7.9	.107	1,535
LEAD	Pb	207.22	11.3	.031	327
NICKEL	Ni	58.69	8.9	.105	1,452
SILVER	Ag	107.88	10.5	.056	961
Steel (mild)			7.8	.107	1,300-1,47
rin	Sn	118.70	7.3	.054	232
ZINC	Zn	65.38	7.1	.092	419
	tivity Microhm- Cm.	of Re- C	m.2/ of	efficient Expan-	Strength Lbs. per
	Units	per S	Sec./	sion per	Sq. Inch
Copper: Annealed Wire (100% cond.)	Units	per S Deg. C. De	eg. C.* D	per leg. C.†	
COPPER: Annealed Wire (100% cond.) Hard Drawn Wire (97.5% cond.)	Units	per S Deg. C. De	.92 17	per Deg. C.†	Sq. Inch  3,000-40,000 0,000-70,000
Annealed Wire (100% cond.) Hard Drawn Wire (97.5% cond.)	1.7241 1.7683 4.66 5.95	per S Deg. C. De .00393 .00383 .	.92 17 .45 18 .34 19	per deg. C.† / × 10 ⁻⁶ 36 × 10 ⁻⁶ × 10 ⁻⁶	3,000-40,000 0,000-70,000 95,000 105,000
Annealed Wire (100% cond.). Hard Drawn Wire (97.5% cond.) BRASS, Hard Drawn Wire: Com'l. Bronze (90% Cu, 10% Zn) Low Brass (80% Cu, 20% Zn). High Brass (70% Cu, 30% Zn). BRONZE, Hard Drawn Wire: Aluminum (96.55% Cn, 20% Al	1.7241 1.7683 4.66 5.95 6.90 11.49 5.75 2.16	per S Deg. C. De .00393 .00383 .00145 .00114 .00098	.92 17 .92 17 .45 18 .34 19 .26 20 .170 17 .395 17 .824 17	per / deg. C.†  (× 10 ⁻⁶ 3/  × 10 ⁻⁶	3,000–40,00 0,000–70,00 95,000 105,000 120,000 125,000 95,000 79,000
Annealed Wire (100% cond.). Hard Drawn Wire (97.5% cond.) BRASS, Hard Drawn Wire: Com'l. Bronze (90% Cu, 10% Zn) Low Brass (80% Cu, 20% Zn). High Brass (70% Cu, 30% Zn). BRONZE, Hard Drawn Wire: Aluminum (96.25% Cu, 3% Al, 0.75% Si). Tin (98.2% Cu, 1.8% Sn) Cadmium (99% Cu, 1% Cd). Phosphor (95% Cu, 5% Sn)	1.7241 1.7683 4.66 5.95 6.90 11.49 5.75 2.16 9.56	per S Deg. C. De .00393 .00383 . .00145 .00114 .00098 .00059 .00118 .00314 .00071	.m./ sec./ seg. C.* D .92 17 	per / deg. C.†  ( × 10 ⁻⁶ 36  3 × 10 ⁻⁶	3,000-40,00 0,000-70,00 95,000 105,000 120,000 125,000 95,000 79,000 125,000
Annealed Wire (100% cond.) Hard Drawn Wire (97.5% cond.) BRASS, Hard Drawn Wire: Com'l. Bronze (90% Cu, 10% Zn) Low Brass (80% Cu, 20% Zn). High Brass (70% Cu, 30% Zn). BRONZE, Hard Drawn Wire: Aluminum (96.25% Cu, 3% Al, 0.75% Si). Tin (98.2% Cu, 1.8% Sn) Cadmium (99% Cu, 1% Cd). Phosphor (95% Cu, 5% Sn) ALUMINUM.	1.7241 1.7683 4.66 5.95 6.90 11.49 5.75 2.16 9.56 2.828	per S Deg. C. De .00393 .00383 . .00145 .00114 .00098 .00059 .00118 .00314 .00071 .00403	.92 17 .92 17 .93 18 .34 19 .26 20 .170 17 .395 17 .824 17 .195 18	per / deg. C.†  ( × 10 ⁻⁶ 36  3 × 10 ⁻⁶ 10	3,000-40,00 0,000-70,00 95,000 105,000 120,000 125,000 95,000 79,000 125,000 24,000
Annealed Wire (100% cond.) Hard Drawn Wire (97.5% cond.) Brass, Hard Drawn Wire: Com'l. Bronze (90 % Cu, 10 % Zn) Low Brass (80% Cu, 20 % Zn). High Brass (70% Cu, 30% Zn). Bronze, Hard Drawn Wire: Aluminum (96.25% Cu, 3% Al, 0.75% Si) Tin (98.2% Cu, 1.8% Sn) Cadmium (99 % Cu, 1% Cd). Phosphor (95% Cu, 5% Sn) ALUMINUM.	1.7241 1.7683 4.66 5.95 6.90 11.49 5.75 2.16 9.56	per S Deg. C. De .00393 .00383 . .00145 .00114 .00098 .00059 .00118 .00314 .00071 .00403 .005	.92 17 .92 17 .93 18 .34 19 .26 20 .170 17 .395 17 .824 17 .195 18 .52 23 .16 12	per / deg. C.†  ( × 10 ⁻⁶ 36 × 10 ⁻⁶	3,000-40,00 0,000-70,00 95,000 105,000 120,000 125,000 95,000 79,000 125,000 24,000 50,000
Annealed Wire (100% cond.) Hard Drawn Wire (97.5% cond.) Brass, Hard Drawn Wire: Com'l. Bronze (90 % Cu, 10 % Zn) Low Brass (80% Cu, 20 % Zn). High Brass (70% Cu, 30% Zn). Bronze, Hard Drawn Wire: Aluminum (96.25% Cu, 3% Al, 0.75% Si) Tin (98.2% Cu, 1.8% Sn) Cadmium (99 % Cu, 1% Cd). Phosphor (95% Cu, 5% Sn) ALUMINUM.	1.7241 1.7683 4.66 5.95 6.90 11.49 5.75 2.16 9.56 2.828 10.0	per S Deg. C. De .00393 .00383 . .00145 .00114 .00098 .00059 .00118 .00314 .00071 .00403 .005 .0039		per / deg. C.†  (× 10 ⁻⁶ 36  × 10 ⁻⁶	3,000-40,00 0,000-70,00 95,000 105,000 120,000 125,000 95,000 79,000 125,000 24,000 50,000 1,800-4,000
Annealed Wire (100% cond.) Hard Drawn Wire (97.5% cond.) Brass, Hard Drawn Wire: Com'l. Bronze (90% Cu, 10% Zn) Low Brass (80% Cu, 20% Zn). High Brass (70% Cu, 30% Zn). BRONZE, Hard Drawn Wire: Aluminum (96.25% Cu, 3% Al, 0.75% Sl). Tin (98.2% Cu, 1.8% Sn). Cadmium (99% Cu, 1% Cd). Phosphor (95% Cu, 5% Sn). ALUMINUM. TRON. LEAD.	1.7241 1.7683 4.66 5.95 6.90 11.49 5.75 2.16 9.56 2.828 10.0 22.0 7.8	Deg. C. Deg. C	.92 17 .92 17 .92 17 .93 18 .34 19 .26 20 .170 17 .395 17 .395 17 .195 18 .52 23 .16 12 .083 28 .14 14	per / deg. C.†  (× 10 ⁻⁶ 36  × 10 ⁻⁶	3,000-40,00 0,000-70,00 95,000 105,000 120,000 125,000 95,000 79,000 125,000 24,000 50,000 1,800-4,000
Annealed Wire (100% cond.) Hard Drawn Wire (97.5% cond.) Brass, Hard Drawn Wire: Com'l. Bronze (90 % Cu, 10 % Zn) Low Brass (80% Cu, 20 % Zn) High Brass (70% Cu, 30% Zn) Bronze, Hard Drawn Wire: Aluminum (96.25% Cu, 3% Al, 0.75% Si) Tin (98.2% Cu, 1.8% Sn) Cadmium (99% Cu, 1% Cd) Phosphor (95% Cu, 5% Sn) Aluminum.  Gron LEAD NICKEL	1.7241 1.7683 4.66 5.95 6.90 11.49 5.75 2.16 9.56 2.828 10.0 22.0 7.8 1.63	Deg. C. Deg. C	.92 17 .92 17 .92 17 .93 18 .34 19 .26 20 .170 17 .395 17 .395 17 .195 18 .52 23 .16 12 .083 28 .14 14	per / deg. C.†  ( × 10 ⁻⁶ 36 × 10 ⁻⁶ × 10 ⁻	3,000-40,00 0,000-70,00 95,000 105,000 120,000 125,000 95,000 79,000 125,000 24,000 50,000 1,800-4,000 42,000
Annealed Wire (100% cond.) Hard Drawn Wire (97.5% cond.) Brass, Hard Drawn Wire: Com'l. Bronze (90 % Cu, 10 % Zn) Low Brass (80% Cu, 20 % Zn). High Brass (70% Cu, 30% Zn). Bronze, Hard Drawn Wire: Aluminum (96.25% Cu, 3% Al, 0.75% Si) Tin (98.2% Cu, 1.8% Sn). Cadmium (99% Cu, 1% Cd). Phosphor (95% Cu, 5% Sn). ALUMINUM. FRON. LEAD. VICKEL. SILVER.	1.7241 1.7683 4.66 5.95 6.90 11.49 5.75 2.16 9.56 2.828 10.0 22.0 7.8	Deg. C. De .00393 .00383 . .00145 .00114 .00098 . .00059 .00118 .00314 .00071 . .00403 .005 . .0039 . .006 . .0038 1 .	.92 17 .92 17 .92 17 .93 18 .34 19 .26 20 .170 17 .395 17 .395 17 .195 18 .52 23 .16 12 .083 28 .14 14 .01 18 .11 9	per / beg. C.†  ( × 10 ⁻⁶ 36  × 10 ⁻⁶	3,000-40,00 0,000-70,00 95,000 105,000 120,000 125,000 95,000 125,000 24,000 50,000 1,800-4,000

^{*} Multiply by 4.186 to obtain conductivity in Watts/Cm. 2 /Cm./Deg. C. † Multiply by 5/9 to obtain coefficient per Deg. F.

### PROPERTIES OF INSULATING MATERIALS (20°C.)

	Specific Gravity	Specific Heat Cal./ Gram/ Deg. C.	Thermal Resistivity Deg. C./ Watt/ Cm.²/Cm. (Thermal Ohms)	Dielectric Constant	Electrical Volume Resistivity Ohm-Cm.
AIR	0.0012	0.237	4.000	1.00	
ASPHALT (native)	1.05		4,000	1.00	
BAKELITE (pure resin).	1.25	• • • • • •	140	2.7	6 x 10 ¹⁴
BEESWAX	0.96	••••	700	4.5-7.5	2 x 10 ¹⁶
Celluloid (clear)	1.5		2,900	2.9	o x 10 ¹⁴ - 2 x 10 ¹⁵
CELLULOID (Clear)	1.5	• • • • •	600	7.0	2 x 10 ¹⁰
CONCRETE	1.8-2.5	0.16	50-100		
Cork	0.24	0.49	1,800		
Cotton (dry)		0.36		3.5	1 x 109
ENAMEL (wire)				5.0	1 x 10 ¹⁴
GLASS (elect.)	2.3	0.20	100	5.0	1 x 10 ¹⁴
IMPREGNATED PAPER	1.17		550-700	3.7-4.0	2 x 10 ¹⁴ - 1 x 10 ¹⁶
IMPREGNATING OIL	0.90		700	2.2	$2 \times 10^{13}$
MICA	2.9	0.21	280	4.5-7.5	THE RESERVE OF THE PARTY OF THE
PARAFFIN	0.90	0.45	400	2.1	1 x 10 ¹⁵ - 2 x 10 ¹⁷
Porcelain (elect.)	2.4	0.26	100	5.7	1 x 10 ¹⁶ - 5 x 10 ¹⁸
	2.4	0.20	100	5.7	1 x 10 ¹⁴ - 3 x 10 ¹⁴
RUBBER:					
Smoked Sheet Code Compound	$0.92 \\ 1.40$	0.48	500	2.6	
Performance	1.40	•••••	500	6.0	3.1 x 10 ¹⁴
Compound	1.40		500	5.0	1.75 x 10 ¹⁵
Thermax Compound.	1.65		400	5.0	1.75 x 10 ¹⁵
VARNISHED CLOTH					
(black)	1.25		600	5.0	3 x 10 ¹⁴
WATER	1.00	1.00	170	80.0	
Wood (maple)	0.68		550	4.4	5 x 10 ¹¹
					0 % 10
The second secon		and the second second second second			

In presenting the above tables of properties of metals and insulating materials the intention is to show average or representative values for purposes of comparison and for use in engineering calculations not requiring a high order of accuracy. Depending on the material in question, properties may vary considerably with such characteristics as composition, purity, grain structure, size of sample, temperature, moisture content, previous mechanical and thermal treatment, method of test, etc. In condensed tables of this sort it is impracticable to show the effect of these variables, but in work requiring precision they should, of course, be taken into account. When the exact nature of the material is known, accurate data can usually be found in such reference works as the International Critical Tables or the Smithsonian Physical Tables, as well as in various engineering handbooks.

### **CONVERSION FACTORS**

MULTIPLY THE NUMBER OF	BY	TO OBTAIN THE NUMBER OF
Length		
Mils	.001	Inches
Mils	.02540	Millimeters
Inches	1,000.0	Mils
Inches	25.40	Millimeters
Inches	2.540	Centimeters
Inches	0.02540	Meters
Feet	30.48	Centimeters
Feet	0.3048	Meters
Feet (Thousands of)	.3048	Kilometers
Yards	.9144 1.6093	Meters
Miles	1.6093	Kilometers
Millimeters	39.37	Mils
Millimeters	0.03937	Inches
Centimeters	.3937	Inches
Centimeters Meters	.03281 39.37 3.281	Feet
Meters	39.37	Inches
Meters	3.281	Feet
Kilometers	1.0936	Yards
Kilometers	3.281 0.6214	Thousands of Feet
	0.0214	Miles
Area		
Square Mils	1.2732	Circular Mils
Square Mils	0.000001	Square Inches
Circular Mils	.7854	Square Mils
Circular Mils	.0000007854	Square Inches
Circular Mils	.000001	Circular Inches
Circular Mils	.0005067	Square Millimeters
Square Inches	1,000,000.0	Square Mils
Square Inches	1,273,200.0	Circular Mils
Square Inches	1.2732	Circular Inches
Square Inches	645.2	Square Millimeters
Square Inches	6.452	Square Centimeters
Circular Inches	1,000,000.0	Circular Mils
Circular Inches	0.7854	Square Inches
Square Feet	.09290 1,973.5	Square Meters
Square Millimeters	1,9/3.5	Circular Mils
Square Millimeters Square Centimeters	0.0013300	Square Inches
Square Meters	. 15500 10, 764	Square Inches
	10.704	Square Feet
olume		
Cubic Inches	16.387	Cubic Centimeters
Cubic Feet	0.02832	Cubic Meters
Cubic Centimeters	06102	Cubic Inches
Cubic Meters	.06102 35.31	Cubic Feet
Quarts (liquid)	0.9464	
Quarts (liquid)	U. 7404	Liters

### **CONVERSION FACTORS**

MULTIPLY THE NUMBER OF	ву	TO OBTAIN THE NUMBER OF
Miscellaneous		
Pounds Pounds per Cubic Inch	. 4536 27. 68	Kilograms Grams per Cubic Centi
Pounds per 1,000 Feet	1.488	meter Kilograms per Kilometer
Grams per Cubic Centime		Pounds per Cubic Inch
Kilograms	2.2046	Pounds
Kilograms per Kilometer	0.6720	Pounds per 1,000 Feet
Ohms per 1,000 Feet Ohms per Kilometer	3.281 0.3048	Ohms per Kilometer Ohms per 1,000 Feet
Energy		
British Thermal Units	778.0	Foot-Pounds
British Thermal Units	1054.8	Joules
British Thermal Units British Thermal Units	0.2930 .0003929	Watt-Hours
British Thermal Units	252.0	Horsepower-Hours Gram-Calories
Foot-Pounds	0.001285	British Thermal Units
Foot-Pounds	1.356	Joules
Foot-Pounds	0.0003766	Watt-Hours
Foot-Pounds	. 1383	Meter-Kilograms
Watt-Hours	3.413	British Thermal Units
Watt-Hours Watt-Hours	2,655.0	Foot-Pounds
	3,600.0	Joules
Joules Joules	0.000948	British Thermal Units
Joules	.0002778	Foot-Pounds Watt-Hours
	0,000,000.0	Ergs
Joules	0.2389	Gram-Calories
Gram-Calories	.003969	British Thermal Units
Gram-Calories	4.186	Joules
Meter-Kilograms	7.233	Foot-Pounds
Horsepower-Hours	2,545.0	British Thermal Units
Power		
Horsepower	550.0	Foot-Pounds per Second
Horsepower Horsepower	33,000.0 0.7457	Foot-Pounds per Minut
Horsepower	1.014	Kilowatts Metric Horsepower
Foot-Pounds per Second	0.001818	Horsepower
Foot-Pounds per Minute	.00003030	Horsepower
Kilowatts	1.341	Horsepower
Kilowatts	1.360	Metric Horsepower
Metric Horsepower	0.9863	Horsepower
Metric Horsepower	.7355	Kilowatts

Note: Mean calories and mean British thermal units used throughout. Joule is "absolute" Joule.

### **CONVERSION FACTORS**

MULTIPLY THE NUMBER OF	ву	TO OBTAIN THE NUMBER OF
Pressure		and the state of t
Feet of Water	0.433	Pounds per Square Inch
Feet of Water	62.4	Pounds per Square Foot
Inches of Mercury	1.134	Feet of Water
Inches of Mercury	0.4912	Pounds per Square Inch.
Atmospheres	14.697	Pounds per Square Inch
Atmospheres	33.9	Feet of Water
Pounds per Square Foot	4.8824	Kilograms per Square Meter
Pounds per Square Inch	0.07031	Kilograms per Square Centi
Kilograms per Square		meter
Centimeter	32.8	Feet of Water
Kilograms per Square	32.6	reet of Water
Centimeter Centimeter	14.223	Pounds per Square Inch
Discharge		
Cubic Feet per Second	374.08	Imperial Gallons per Minute
Cubic Feet per Second	448.9	U.S. Gallons per Minute
Cubic Feet per Second	1.9835	Acre-Feet per Day
Cubic Centimeters per Second	0.79	Imperial Gallons per Hour
Cubic Centimeters per Second	0.95	U.S. Gallons per Hour
Inches of Rainfall per Hour	1.008	Cubic Feet per Second per Acre
Velocity		
Radians per Second	9.5496	Revolutions per Minute
Revolutions per Minute	6.000	Degrees per Second
Feet per Second	0.6818	Miles per Hour
Miles per Hour	88.0	Feet per Minute

### METRIC MEASURE

1 kilometer = 1,000 meters
1 meter = 10 decimeters
= 100 centimeters
= 1,000 millimeters
= 1,000,000 microns
= 10,000,000,000 Angstrom units

### LAND MEASURE

= 5,280 feet = 1,760vards = 320 rods = 80 chains = 8 furlongs 1 furlong = 660 feet = 220 yards = 40 rods = 10 chains 1 chain 66 feet = 22 yards = 4 rods = 100 links1 rod  $16.5 \, \text{feet} =$ 5.5 yards = 25 links1 link 7.92 inches 1 square mile = 640 acres = 160 square rods = 10 square chains 1 square rod = 272.25 square feet = 30.25 square yards

### NAUTICAL MEASURE

1 nautical mile = length of a minute of longitude of the earth at the equator = 6080.20 feet = 1.15155 statute or land miles

1 knot = 1 nautical mile per hour

1 league (U.S.) = 3 nautical miles 1 league (Gr. Britain) = 3 statute miles

1 fathom = 6 feet

1 cable length = 120 fathoms

### LIQUID MEASURE

| hogshead = 2 barrels | barrel = 31½ gallons | gallon = 4 quarts = 8 pints = 231 cubic inches | quart = 2 pints

### MISCELLANEOUS CONSTANTS

 $\pi = 3.14159$   $\frac{1}{\pi} = 0.31831$   $\pi^{2} = 9.8696$  e = 2.71828  $\log_{10}X = 0.43429 \log_{e}X$   $\sqrt{2} = 1.41421$   $\frac{1}{\pi} = 0.31831$   $\frac{\pi}{4} = 0.785398$   $\log_{10}\pi = 0.49715$   $\log_{e}X = 2.3026 \log_{10}X$ 

1 radian = 57.296 deg. = 57° 17′ 45″

Absolute zero = -273.1°C. = -459.6°F.

Acceleration of gravity (Lat.  $40^{\circ}$ , sea level) = 980.2 cm. per sec.² = 32.2 ft. per sec.²

Velocity of sound in dry air at  $0^{\circ}$ C. = 33,170 cm. per sec. = 1,088 ft. per sec. Velocity of light in vacuum =  $2.998 \times 10^{10}$  cm. per sec. = 186,300 miles per sec.

### MENSURATION FORMULAE

Triangle Area =  $\frac{1}{2}$  (base) × (altitude)

Parallelo-

gram Area =  $(base) \times (altitude)$ 

Trapezoid Area =  $(\frac{1}{2} \text{ sum of parallel sides}) \times (\text{altitude})$ 

Circle Circumference =  $(3.1416) \times (diameter) = (6.2832) \times (radius)$ Area =  $(0.7854) \times (diameter)^2 = (3.1416) \times (radius)^2$ 

Area of Sector = ½ (radius) × (arc)

Area of Segment =  $\frac{1}{2}$  (radius)  $\times$  (arc)  $-\frac{1}{2}$  (radius)  $\times$  (chord)  $+\frac{1}{2}$  (chord)  $\times$  (height)

Ellipse Area =  $(0.7854) \times (\text{short diameter}) \times (\text{long diameter})$ 

Cylinder Surface = (length) × (circumference) + (area of ends) Volume = (0.7854) × (length) × (diameter)²

Cone Surface

(curved only) = ½ (slant height) × (circumference of base)

Volume = ½ (area of base) × (height)

Sphere Surface =  $(3.1416) \times (\text{diameter})^2 = (\text{circumference}) \times (\text{diameter})$ 

Volume =  $(0.5236) \times (\text{diameter})^3 = \frac{1}{6} (\text{circumference}) \times (\text{diameter})^2$ 

= 2/3 (volume of circumscribing cylinder)

### SOLUTION OF TRIANGLES Right-angled Triangles



$$\sin A = \frac{a}{c}$$

$$\cot A = \frac{b}{a}$$

$$\cos A = \frac{b}{c}$$

$$\sec A = \frac{c}{b}$$

$$\tan A = \frac{a}{b}$$

$$\operatorname{cosec} A = \frac{c}{a}$$

To find sides:

$$a = \sqrt{c^2 - b^2} = c \sin A = b \tan A$$

$$b = \sqrt{c^2 - a^2} = a \cot A = c \cos A$$

$$c = \sqrt{a^2 + b^2} = a \csc A = \frac{a}{\sin A} = b \sec A = \frac{b}{\cos A}$$

To find angles:

A: 
$$\sin A = \frac{a}{c}$$
 or  $\tan A = \frac{a}{b}$ 

$$B = 90^{\circ} - A$$

Area = 
$$\frac{a\sqrt{c^2 - a^2}}{2} = \frac{ab}{2} = \frac{a^2 \cot A}{2} = \frac{b^2 \tan A}{2} = \frac{c^2 \sin A \cos A}{2}$$

### SOLUTION OF TRIANGLES Oblique-angled Triangles



To find any side, c:

$$c = \frac{a \sin C}{\sin A} = \frac{b \sin C}{\sin B} = \frac{a}{\cos B + \sin B \cot A} = \frac{b}{\cos A + \sin A \cot C}$$

$$= a. \cos B. + a. \sin B. \cot A = b \cos A + b \sin A. \cot B = \sqrt{a^2 + b^2 - 2 a b \cos C}$$

To find any angle, A:

$$\sin A = \frac{a \sin C}{c} = \frac{a \sin B}{b}.$$

$$\cos A = \frac{c^2 + b^2 - a^2}{2 c b}$$

$$\tan A = \frac{a \sin C}{b - a \cos C} = \frac{a \sin b}{c - a \cos B} = \frac{\tan C + \tan B}{\tan C \tan B - 1}$$

$$Area = \frac{b \cdot c \cdot \sin A}{2} = \frac{a \cdot b \cdot \sin C}{2} = \frac{c \cdot a \cdot \sin B}{2}$$

$$= \sqrt{s \cdot (s - a) \cdot (s - b) \cdot (s - c)} \quad \text{where } s = \frac{a + b + c}{2}$$

### FUNCTIONS OF NUMBERS, 1 to 49

No.	Square	Cube	Square Root	Cubic Root	1000 x	No. =	Diameter
			A COLLEGE OF		Reciprocal	Circum.	Area
1 2 3 4 5	1 4 9 16 25	$\begin{array}{c} 1 \\ 8 \\ 27 \\ 64 \\ 125 \end{array}$	$\begin{array}{c} 1.0000 \\ 1.4142 \\ 1.7321 \\ 2.0000 \\ 2.2361 \end{array}$	1.0000 1.2599 1.4422 1.5874 1.7100	1000.000 500.000 333.333 250.000 200.000	3.142 6.283 9.425 12.566 15.708	$egin{array}{c} 0.7854 \\ 3.1416 \\ 7.0686 \\ 12.5664 \\ 19.6350 \\ \end{array}$
6	36	216	2.4495	1.8171	$166.667 \\ 142.857 \\ 125.000 \\ 111.111 \\ 100.000$	18.850	28.2743
7	49	343	2.6458	1.9129		21.991	38.4845
8	64	512	2.8284	2.0000		25.133	50.2655
9	81	729	3.0000	2.0801		28.274	63.6173
10	100	1000	3.1623	2.1544		31.416	78.5398
11	121	1331	3.3166	2.2240	90.9091	34.558	95.0332
12	144	1728	3.4641	2.2894	83.3333	37.699	113.097
13	169	2197	3.6056	2.3513	76.9231	40.841	132.732
14	196	2744	3.7417	2.4101	71.4286	43.982	153.938
15	225	3375	3.8730	2.4662	66.6667	47.124	176.715
16	256	4096	4.0000	2.5198	62.5000	50.265	201.062
17	289	4913	4.1231	2.5713	58.8235	53.407	226.980
18	324	5832	4.2426	2.6207	55.5556	56.549	254.469
19	361	6859	4.3589	2.6684	52.6316	59.690	283.529
20	400	8000	4.4721	2.7144	50.0000	62.832	314.159
21	441	9261	4.5826	2.7589	47.6190	65.973	346.361
22	484	10648	4.6904	2.8020	45.4545	69.115	380.133
23	529	12167	4.7958	2.8439	43.4783	72.257	415.476
24	576	13824	4.8990	2.8845	41.6667	75.398	452.389
25	625	15625	5.0000	2.9240	40.0000	78.540	490.874
26	676	17576	5.0990	2.9625	38.4615	81.681	530.929
27	729	19683	5.1962	3.0000	37.0370	84.823	572.555
28	784	21952	5.2915	3.0366	35.7143	87.965	615.752
29	841	24389	5.3852	3.0723	34.4828	91.106	660.520
30	900	27000	5.4772	3.1072	33.3333	94.248	706.858
31	961	29791	5.5678	3.1414	32.2581	97.389	754.768
32	1024	32768	5.6569	3.1748	31.2500	100.531	804.248
33	1089	35937	5.7446	3.2075	30.3030	103.673	855.299
34	1156	39304	5.8310	3.2396	29.4118	106.814	907.920
35	1225	42875	5.9161	3.2711	28.5714	109.956	962.113
36	1296	46656	6.0000	3.3019	27.7778	113.097	1017.88
37	1369	50653	6.0828	3.3322	27.0270	116.239	1075.21
38	1444	54872	6.1644	3.3620	26.3158	119.381	1134.11
39	1521	59319	6.2450	3.3912	25.6410	122.522	1194.59
40	1600	64000	6.3246	3.4200	25.0000	125.66	1256.64
41	1681	68921	6.4031	3.4482	24.3902	128.81	1320.25
42	1764	74088	6.4807	3.4760	23.8095	131.95	1385.44
43	1849	79507	6.5574	3.5034	23.2558	135.09	1452.20
44	1936	85184	6.6332	3.5303	22.7273	138.23	1520.53
45	2025	91125	6.7082	3.5569	22.2222	141.37	1590.43
46	2116	97336	6.7823	3.5830	21.7391	144.51	1661.90
47	2209	103823	6.8557	3.6088	21.2766	147.65	1734.94
48	2304	110592	6.9282	3.6342	20.8333	150.80	1809.56
49	2401	117649	7.0000	3.6593	20.4082	153.94	1885.74

### FUNCTIONS OF NUMBERS, 50 to 99

No.	Square	Cube	Square Root	Cubic	1000	No. =	Diameter
	- 4		1000	Troot	Reciprocal	Circum.	Area
50	2500	125000	7.0711	3.6840	20.0000	157 08	1963.50
51	2601	132651	7.1414	3.7084	19.6078	$157.08 \\ 160.22$	2042.8
52 53	2704 2809	140608	7.2111 7.2801	3.7325 3.7563	19.2308	163.36	2123.79
54	2916	148877 157464	7.2801	3.7563	18.8679 18.5185	166.50 169.65	2206.18 2290.29
55	3025	166375	7.4162	3.8030		172.79	2375.8
56	3136	175616	7.4833	3.8259	18.1818 17.8571	175.93	2463.0
57 58	3249 3364	185193	7.5498 7.6158	3.8485	17.5439	179.07	2551.76
59	3481	195112 205379	7.6158	3.8709 3.8930	17.2414 16.9492	182.21 185.35	2551.76 2642.08 2733.97
60	3600	216000	7.7460	3.9149	16.6667	188.50	1801
61	3721	226981	7.8102	3.9365	16.3934	191.64	2827.43 2922.47
62	3844	238328	7.8102 7.8740 7.9373	3.9579	16.1290	194.78	3019.07
63 64	3969 4096	250047 262144	7.9373 8.0000	$\frac{3.9791}{4.0000}$	15.8730	197.92 201.06	3019.07 3117.25 3216.99
					15.6250	201.06	3216.99
65	4225 4356	274625 287496	8.0623 8.1240	4.0207	15.3846	204.20	3318.31
67	4489	300763	8.1854	4.0412 4.0615	15.1515 14.9254	207.35	3421.19
68	4624	314432	8.2462	4.0817	14.7059	210.49	3525.65 3631.68
69	4761	328509	8.3066	4.1016	14.4928	213.63 216.77	3739.28
70	4900 5041	343000 357911	8.3666	4.1213	14.2857	219.91	3848.45
71 72	5184	373248	8.4261 8.4853	4.1408 4.1602	14.0845	223.05	3959.19
73	5329	389017	8.5440	4.1793	13.8889 13.6986	226.19 $229.34$	4071.50
74	5476	405224	8.6023	4.1983	13.5135	232.48	4185.39 4300.84
75	5625	421875	8.6603	4.2172 4.2358	13.3333	235.62	4417.86
77	5776 5929	438976 456533	8.7178 8.7750	4.2358	13.1579	238.76	4536 46
77	6084	474552	8.8318	4.2543	$12.9870 \\ 12.8205$	241.90 245.04	4656.63
79	6241	493039	8.8882	4.2908	12.6582	248.19	4778.36 4901.67
80	6400	512000	8.9443	4.3089	12.5000	251.33	5026.55
31	6561 6724	531441 551368	9.0000	4.3267	12.3457	254.47	5153.00
3	6889	571787	9.0554 9.1104	4.3445 4.3621	$12.1951 \\ 12.0482$	257.61 260.75	5281.02
4	7056	592704	9.1652	4.3795	11.9048	263.89	5410.61 5541.77
5	7225	614125	9.2195 9.2736	4.3968	11.7647	267.04	5674.50
6 7	7396 7569	636056 658503	9.2736	4.4140	11.6279	270.18 273.32	5808.80
8	7744	681472	9.3274 9.3808	4.4310 4.4480	11.4943 11.3636	273.32	5944.68
9	7921	704969	9.4340	4.4647	11.2360	276.46 279.60	6082.12 $6221.14$
0	8100	729000	9.4868	4.4814	11.1111	282.74	6361.73
1 2	8281 8464	753571	9.5394	4.4979	10.9890	285.88	6503.88
3	8649	778688 804357	9.5917	4.5144	10.8696	289.03	6647.61
4	8836	830584	9.6954	4.5468	10.7527 10.6383	292.17 295.31	6792.91 6939.78
5	9025	857375	9.7468	4.5629	10.5263	298.45	7088.22
6	9216	884736	9.7980	4.5789	10.4167	301.59 304.73	7238.23
7	9409 9604	912673 941192	9.8489 9.8995	4.5947	10.3093 10.2041	304.73	7389.81
9	9801	970299	9.8995	4.6104 4.6261	10.2041 10.1010	307.88	7542.96 7697.69

### FUNCTIONS OF NUMBERS, 100 to 149

No.	Square	Cube	Square	Cubic	1000	No. =	Diameter
	1		1000	, Itoot	Reciprocal	Circum.	Area
100	10000	1000000	10.0000	4.6416	10.00000	314 16	7853.9
101	10201	1030301	10.0499	4.6570	9.90099	317 30	8011.8
102	10404	1061208	10.0995	4.6723	9.80392	314.16 $317.30$ $320.44$	8171.2
103 104	10609	1092727	10.1489	4.6875	9.70874	323.58	8332.2
	10816	1124864	10.1980	4.7027	9.61538	326.73	8494.8
105	$\frac{11025}{11236}$	1157625 1191016	10.2470 10.2956	4.7177	9.52381	329.87	8659.0
107	11449	1225043	10.3441	4.7326 4.7475	9.43396	333.01	8824.7
108	11664	1259712	10.3923	4.7622	9.34579 9.25926	336.15	8992.0
109	11881	1295029	10.4403	4.7769	9.17431	$339.29 \\ 342.43$	9160.8 9331.3
110	12100	1331000	10.4881	4.7914	9.09091	345.58	9503.3
111 112	12321	1367631	10.5357	4.8059	9.00901	348.72	9676.8
113	$12544 \\ 12769$	1404928	10.5830	4.8203	8.92857	351.86	9852.0
114	12996	1442897	10.6301	4.8346	8.84956	355.00 358.14	10028.7
		1481544	10.6771	4.8488	8.77193	358.14	10207.0
115	13225	1520875	10.7238	4.8629	8.69565	361.28	10386.9
116 117	13456	1560896	10.7703 10.8167	4.8770	8.62069	364.42	10568.3
118	13689 13924	1601613	10.8167	4.8910	8.54701	367.57 370.71	10751.3
119	14161	1643032 1685159	10.8628	4.9049	8.47458	370.71	10935.9
		,	10.9087	4.9187	8.40336	373.85	11122.0
120	14400	1728000	10.9545	4.9324	8.33333	376.99	11309.7
$\frac{121}{122}$	14641	1771561	11.0000	4.9461	8.26446	380.13	11499.0
123	14884 15129	1815848	11.0454	4.9597	8.19672	380.13 383.27	11689.9
124	15376	1860867	11.0905	4.9732	8.13008	386.42	11882.3
		1906624	11.1355	4.9866	8.06452	389.56	12076.3
125	15625	1953125	11.1803 11.2250	5.0000	8.00000	392.70	12271.8
$\frac{126}{127}$	15876 16129	2000376	11.2250	5.0133	7.93651	395.84	12469.0
128	16384	2048383 2097152	11.2694	5.0265	7.87402 7.81250 7.75194	398.98	12667.7
129	16641	2146689	11.3137 11.3578	5.0397	7.81250	402.12	12868.0
	/		100	5.0528	7.75194	405.27	13069.8
130	16900	2197000	11.4018	5.0658	7.69231	408.41	13273.2
131 132	17161 17424	2248091	11.4455	5.0788	7.63359	411.55	13478.2
133	17689	2299968	11.4891	5.0916	7.63359 7.57576	414.69	13684.8
134	17956	2352637 2406104	11.5326 11.5758	5.1045	7.51880	417.83	13892.9
				5.1172	7.46269	420.97	14102.6
135	18225	2460375	11.6190	5.1299	7.40741	424.12	14313.9
136	18496	2515456	11.6619	5.1426	7.35294	427.26	14526.7
137 138	18769 19044	2571353	11.7047	5.1551	7.85294 7.29927	430.40	14741 1
139	19321	2628072	11.7473	5.1676	7.24638	433.54	14957.1
		2685619	11.7898	5.1801	7.19424	436.68	15174.7
140 141	19600 19881	2744000 2803221	11.8322	5.1925	7.14286	439.82	15393.8
142	20164	2863288	11.8743	$5.2048 \\ 5.2171$	7.09220	442.96	15614.5
143	20449	2924207	11.9164 11.9583	5.2293	$   \begin{array}{c c}     7.04225 \\     6.99301   \end{array} $	446.11	15836.8
144	20736	2985984	12.0000	5.2415	6.94444	449.25 452.39	16060.6 16286.0
145	21025	3048625	12.0416	5.2536	6.89655	455.53	
146	21316	3112136	12 0830	5.2656	6.84932	458.67	16513.0
147	21609	3176523	12.1244	5.2776	6.80272	461.81	16741.5 16971.7
148	21904	3241792	12.1655	5.2896	6.75676	464.96	17203.4
149	22201	3307949	12.2066	5.3015	6.71141	468.10	17436.6

### FUNCTIONS OF NUMBERS, 150 to 199

No.	Square	Square Cube	Square Cubic Root	1000	No. =	Diameter	
	-			1000	Reciprocal	Circum.	Area
150	22500	3375000	12.2474	5.3133	6.66667	471.24	17671.5
151	22801	3442951	12.2882	5.3251	6.62252	474.38	17907.9
152	23104	3511808	12.3288	5.3368	6.57895	477.52	18145.8
153	23409	3581577	12.3693	5.3485	6.53595	480.66	18385.4
154	23716	3652264	12.4097	5.3601	6.49351	483.81	18626.5
155	24025	3723875	12.4499	5.3717	$\begin{array}{c} 6.45161 \\ 6.41026 \\ 6.36943 \\ 6.32911 \\ 6.28931 \end{array}$	486.95	18869.2
156	24336	3796416	12.4900	5.3832		490.09	19113.4
157	24649	3869893	12.5300	5.3947		493.23	19359.3
158	24964	3944312	12.5698	5.4061		496.37	19606.7
159	25281	4019679	12.6095	5.4175		499.51	19855.7
160	25600	4096000	12.6491	5.4288	$\begin{array}{c} 6.25000 \\ 6.21118 \\ 6.17284 \\ 6.13497 \\ 6.09756 \end{array}$	502.65	20106.2
161	25921	4173281	12.6886	5.4401		505.80	20358.3
162	26244	4251528	12.7279	5.4514		508.94	20612.0
163	26569	4330747	12.7671	5.4626		512.08	20867.2
164	26896	4410944	12.8062	5.4737		515.22	21124.1
165	27225	4492125	12.8452	5.4848	6.06061	518.36	21382.5
166	27556	4574296	12.8841	5.4959	6.02410	521.50	21642.4
167	27889	4657463	12.9228	5.5069	5.98802	524.65	21904.0
168	28224	4741632	12.9615	5.5178	5.95238	527.79	22167.1
169	28561	4826809	13.0000	5.5288	5.91716	530.93	22431.8
170	28900	4913000	13.0384	5.5397	5.88235	534.07	22698.0
171	29241	5000211	13.0767	5.5505	5.84795	537.21	22965.8
172	29584	5088448	13.1149	5.5613	5.81395	540.35	23235.2
173	29929	5177717	13.1529	5.5721	5.78035	543.50	23506.2
174	30276	5268024	13.1909	5.5828	5.74713	546.64	23778.7
175	30625	5359375	13.2288	5.5934	5.71429	549.78	24052.8
176	30976	5451776	13.2665	5.6041	5.68182	552.92	24328.5
177	31329	5545233	13.3041	5.6147	5.64972	556.06	24605.7
178	31684	5639752	13.3417	5.6252	5.61798	559.20	24884.6
179	32041	5735339	13.3791	5.6357	5.58659	562.35	25164.9
180	32400	5832000	13.4164	5.6462	5.55556	565.49	25446.9
181	32761	5929741	13.4536	5.6567	5.52486	568.63	25730.4
182	33124	6028568	13.4907	5.6671	5.49451	571.77	26015.5
183	33489	6128487	13.5277	5.6774	5.46448	574.91	26302.2
184	33856	6229504	13.5647	5.6877	5.43478	578.05	26590.4
185	34225	6331625	13.6015	5.6980	5.40541	581.19	26880.3
186	34596	6434856	13.6382	5.7083	5.37634	584.34	27171.6
187	34969	6539203	13.6748	5.7185	5.34759	587.48	27464.6
188	35344	6644672	13.7113	5.7287	5.31915	590.62	27759.1
189	35721	6751269	13.7477	5.7388	5.29101	593.76	28055.2
190	36100	6859000	13.7840	5.7489	5.26316	596.90	28352.9
191	36481	6967871	13.8203	5.7590	5.23560	600.04	28652.1
192	36864	7077888	13.8564	5.7690	5.20833	603.19	28952.9
193	37249	7189057	13.8924	5.7790	5.18135	606.33	29255.3
194	37636	7301384	13.9284	5.7890	5.15464	609.47	29559.2
195	38025	7414875	13.9642	5.7989	5.12821	612.61	29864.8
196	38416	7529536	14.0000	5.8088	5.10204	615.75	36171.9
197	38809	7645373	14.0357	5.8186	5.07614	618.89	30480.5
198	39204	7762392	14.0712	5.8285	5.05051	622.04	30790.7
199	39601	7880599	14.1067	5.8383	5.02513	625.18	31102.6

### FUNCTIONS OF NUMBERS, 200 to 249

No.	Square	Cube	Square Root	Cubic Root	1000 x	No. = 1	Diameter
- +-					Reciprocal	Circum.	Area
200	40000	8000000	14.1421	5.8480	5.00000	628.32	31415.9
$\frac{201}{202}$	40401 40804	8120601	14.1774	5.8578	4.97512	631 46	31730.9
203	41209	8242408 8365427	14.2127 14.2478	5.8675 5.8771	4.95050	634.60	32047.4
204	41616	8489664	14.2829	5.8868	4.92611 4.90196	634.60 637.74 640.88	32365.5 32685.1
205 206	42025	8615125	14.3178 14.3527	5.8964	4.87805	644.03	33006.4
207	42436 42849	8741816 8869743	14.3527	5.9059	4.85437	647.17 650.31	33329.2
208	43264	8998912	14.4222	$5.9155 \\ 5.9250$	$\frac{4.83092}{4.80769}$	650.31	33653.5
209	43681	9129329	14.4568	5.9345	4.78469	653.45 656.59	$33979.5 \\ 34307.0$
$\frac{210}{211}$	44100 44521	9261000 9393931	14.4914	5.9439	4.76190	659.73	34636.1
212	44944	9528128	$14.5258 \\ 14.5602$	$5.9533 \\ 5.9627$	4.73934 4.71698	662.88	34966.7
213	45369	9663597	14.5945	5.9721	4.69484	666.02 669.16	35298.9 35632.7
214	45796	9800344	14.6287	5.9814	4.67290	672.30	35968.1
$\frac{215}{216}$	46225 46656	9938375 10077696	14.6629	5.9907	4.65116	675.44	36305.0
217	47089	10218313	14.6969 14.7309	$6.0000 \\ 6.0092$	4.62963 4.60829	678.58	36643.5
218	47524	10360232	14.7309 14.7648 14.7986	6.0185	4.58716	681.73 684.87	$36983.6 \\ 37325.3$
219	47961	10503459	14.7986	6.0277	4.56621	688.01	37668.5
$\frac{220}{221}$	48400 48841	10648000 10793861	14.8324 14.8661	6.0368	5.44545	691.15	38013.3
222	49284	10941048	14.8997	$6.0459 \\ 6.0550$	4.52489 4.50450	694.29	38359.6
223	49729 50176	11089567	14.9332	6.0641	4.48430	700 58	38707.6 39057.1
224	50176	11239424	14.9666	6.0732	4.46429	697.43 700.58 703.72	39408.1
225 226	50625	11390625	15.0000	6.0822	4.44444	706.86	39760.8
227	51076 51529	$\frac{11543176}{11697083}$	$15.0333 \\ 15.0665$	6.0912	4.42478	710.00	40115.0
228	51984	11852352	15.0997	$6.1002 \\ 6.1091$	4.40529 4.38596	710.00 $713.14$ $716.28$	40470.8 40828.1
229	52441	12008989	15.1327	6.1180	4.36681	719.42	41187.1
$\frac{230}{231}$	52900	12167000	15.1658 15.1987	6.1269	4.34783	722.57	41547.6
232	53361 53824	$\begin{array}{c} 12326391 \\ 12487168 \end{array}$	15.1987 $15.2315$	6.1358 6.1446	4.32900 4.31034	722.57 725.71	41909.6
233	54289	12649337	15.2643	6.1534	4.29185	728.85 $731.99$	$42273.3 \\ 42638.5$
234	54756	12812904	15.2971	6.1622	4.27350	735.13	43005.3
235 236	55225 55696	12977875 13144256	15.3297	6.1710	4.25532	738.27	43373.6
237	56169	13312053	15.3623 15.3948	6.1797	4.23729 4.21941	741.42	43743.5
238	56644	13481272	15.4272	6.1885 6.1972	4.20168	744.56	44115.0 44488.1
239	57121	13651919	15.4596	6.2058	4.18410	747.70 750.84	44862.7
240 241	57600 58081	13824000 13997521	15.4919	6.2145	4.16667 4.14938	753.98	45238.9
242	58564	14172488	15.5242 15.5563	6.2231 6.2317	4.14938 4.13223	757.12	45616.7
243	59049	14348907	15.5885	6.2403	4.11523	760.27 763.41	45996.1 46377.0
244	59536	14526784	15.6205	6.2488	4.09836	766.55	46759.5
245 246	60025 60516	14706125 14886936	15.6525	6.2573	4.08163	769.69	47143.5
247	61009	15069223	15.6844 15.7162	$6.2658 \\ 6.2743$	4.06504 4.04858	772.83	47529.2
248	61504	15252992	15.7480	6.2828	4.03226	772.83 775.97 779.12	47916.4 48305.1
249	62001	15438249	15.7797	6.2912	4.01606	782.26	48695.5

### FUNCTIONS OF NUMBERS, 250 to 299

No.	Square	Cube	Square	Cubic	1000	No. =	Diameter
145713			1000	Root	Reciprocal	Circum.	Area
250	62500	15625000	15.8114	6.2996	4.00000	707 40	
251	63001	15813251	15.8430	6.3080	3.98406	785.40 788.54	49087.
252	63504	16003008	15.8745	6.3164	3.96825	701 69	49480.
253	64009	16194277	15.9060	6.3247	3.95257	791.68 794.82	49875.
254	64516	16387064	15.9374	6.3330	3.93701	797.96	50272. 50670.
255	65025	16581375	15.9687	6.3413	3.92157	801 11	51070
$\frac{256}{257}$	65536	16777216 16974593	16.0000	6.3496	3.90625	801.11 804.25	51070. 51471.
258	66049 66564	16974593	16.0312	6.3579	3.89105	807.39	51874
259	67081	17173512 17373979	16.0624 16.0935	6.3661 6.3743	3.87597 3.86100	810.53	52279.
260	67600	17576000				813.67	52685.
261	68121	17779581	16.1245	6.3825	3.84615	816.81	53092
262	68644	17984728	16.1555 16.1864	6.3907	3,83142	819.96	53502.
263	69169	18191447	16.1804	6.3988 6.4070	3.81679	823.10	53912.
264	69696	18399744	16.2481	6.4151	3.80228 3.78788	826.24 829.38	54325. 54739.
265	70225	18609625	16.2788	6.4232	3.77358		
266	70756	18821096	16.2788 16.3095	6.4312	3 75940	832.52 835.66	55154.
267	71289	19034163	16.3401	6.4393	3.75940 3.74532	838.81	55571.
268 269	71824	19248832	16.3707	6.4473	3.73134	841.95	55990.5 56410.
	72361	19465109	16.4012	6.4553	3.71747	845.09	56832
270 271	72900 73441	19683000	16.4317	6.4633	3.70370	848.23	57255.
279	73984	19902511	16.4621	6.4713	3.69004	851.37	57680
272 273	74529	20123648	16.4924	6.4792	3.67647	854.51	58106.
274	75076	$\frac{20346417}{20570824}$	16.5227	6.4872	3.66300	857.65 860.80	58534.
			16.5529	6.4951	3.64964	860.80	58964.
275	75625	20796875	16.5831	6.5030	3.63636	863.94	E020F 5
276	76176	21024576	16.6132	6.5108	3.62319	867 08	59395.7 59828.8
278	76729 77284	21253933	16.6433	6.5187	3.61011	870.22	60262.8
279	77841	21484952 21717639	16.6733 16.7033	6.5265	3.59712	867.08 870.22 873.36	60698.7
			16.7033	6.5343	3.58423	876.50	61136.2
280	78400	21952000	16.7332	6.5421	3.57143	879.65	61575
281	78961	22188041	16.7631	6.5499	3.55872	882.79	61575.2 62015.8
283	79524 80089	22425768	16.7631 16.7929 16.8226	6.5577	3.54610	885.93	62458.0
284	80656	22665187 22906304	16.8226	6.5654	3.53357	889.07	62901.8
			16.8523	6.5731	3.52113	892.21	63347.1
85	81225	23149125	16.8819	6.5808	3.50877	895.35	62704
86	81796	23393656	16.9115	6.5885	3.49650	898.50	63794.0 64242.4
87	82369	23639903	16.9411	6.5962	3.48432	901.64	64692.5
89	82944 83521	23887872	16.9706	6.6039	3.47222	904.78	65144.1
		24137569	17.0000	6.6115	3.46021	907.92	65597.2
90	84100 84681	24389000	17.0294	6.6191	3.44828	911.06	66052.0
92	85264	24642171 24897088	17.0587 17.0880	6.6267	3.43643	914.20	66508.3
93	85849	25153757	17.0880	6.6343	3.42466	914.20 917.35	66966.2
94	86436	25412184	17.1172 17.1464	6.6419	3.41297 3.40136	920.49 923.63	67425.6
95	87025	25672375	17 1750				67886.7
96	87616	25934336	17.1756 17.2047 17.2337	6.6569	3.38983	926.77	68349.3
97	88209	26198073	17.2337	6.6719	3.37838 3.36700	929.91	68813.4
98	88804	26463592	11.2021	6.6794	3.35570	933.05	69279.2
99	89401	26730899	17.2916	6.6869	3.34448	936.19 939.34	69746.5 $70215.4$
STATE OF THE PARTY OF	WITCHES APPLICATE OF	The second secon					

### FUNCTIONS OF NUMBERS, 300 to 349

No.	Square	Square Cube	Square Cubic Root	1000	No. = Diameter		
Total (	Square	Cube	1000		Reciprocal	Circum.	Area
300	90000	27000000	17.3205	6.6943	3.33333	942.48	70685.
$\frac{301}{302}$	90601 91204	27270901 27543608	17.3494 17.3781	6.7018 6.7092	3.32226	945.62	71157.
303	91809	27818127	17.4069	6.7166	3.31126 3.30033	948.76 951.90	71631. 72106.
304	92416	28094464	17.4356	6.7240	3.28947	955.04	72583.
305 306	93025 93636	28372625	17.4642	6.7313 6.7387	3.27869	958.19	73061.
307	94249	28652616 28934443	17.4929 17.5214	6.7387	3.26797 3.25733	961.33 964.47	73541.
308	94864	29218112	17.5499	6.7533	3.24675	967 61	74023. 74506.
309	95481	29503629	17.5784	6.7606	3.23625	967.61 970.75	74990.
310 311	96100 96721	29791000 30080231	17.6068 17.6352	6.7679	3.22581 3.21543	973.89	75476.
312	97344	30371328	17.6635	6.7752	3.20513	977.04	75964. 76453.
313	97969	30664297	17.6918 17.7200	6.7824 6.7897	3.19489	980.18 983.32	76944
314	98596	30959144		6.7969	3.18471	986.46	77437
315	99225	31255875	17.7482	6.8041	3.17460	989.60 992.74	77931.
316 317	99856 100489	31554496 31855013	17.7764	6.8113 6.8185	3.16456 3.15457	992.74	78426. 78923.
318	101124	32157432	17.7764 17.8045 17.8326 17.8606	6.8256	3.14465	999.03	79422
319	101761	32461759	CONTROL OF STREET STREET, STREET	6.8328	3.13480	1002.2	79922.
$\frac{320}{321}$	102400 103041	32768000 33076161	17.8885 17.9165 17.9444 17.9722	6.8399	3.12500	1005.3	80424.
322	103684	33386248	17.9103	6.8470 6.8541	3.11526 3.10559	1008.5 1011.6	80928. 81433.
323	104329	33698267	17.9722	6.8612	3.09598	1014.7	81939
324	104976	34012224	18.0000	6.8683	3.08642	1017.9	82448.
325 326	105625	34328125	18.0278	6.8753	3.07692	1021.0	82957.
327	$106276 \\ 106929$	34645976 34965783	18.0555 18.0831	6.8824 6.8894	3.06749 3.05810	1024.2	83469.
328	107584	35287552	18.1108	6.8964	3.04878	1027.3 1030.4	83981. 84496.
329	108241	35611289	18.1384	6.9034	3.03951	1033.6	85012.
330	108900	35937000	18.1659	6.9104	3.03030	1036.7	85529.
331 332	109561 110224	36264691 36594368	18.1934	6.9174 6.9244	3.02115 3.01205	1039.9	86049.
333	110889	36926037	18.2209 18.2483	6.9313	3.00300	$1043.0 \\ 1046.2$	86569. 87092.
334	111556	37259704	18.2757	6.9382	2.99401	1049.3	87615.
335	112225	37595375	18.3030 18.3303 18.3576	6.9451	2.98507	1052.4	88141.
336 337	112896 113569	37933056 38272753	18.3303	6.9521 6.9589	2.97619 2.96736	1055.6	88668.
338	114244	38614472	18.3848	6.9658	2.95858	1058.7 1061.9	89196. 89727.
339	114921	38958219	18.4120	6.9727	2.94985	1065.0	90258.
340	115600	39304000	18.4391	6.9795	2.94118	1068.1	90792.
341 342	116281 116964	39651821 40001688	18.4662 18.4932	6.9864 6.9932	2.93255 2.92398	1071.3	91326.
343	117649	40353607	18.5203	7.0000	2.91545	1077.6	91863. 92401.
344	118336	40707584	18.5472	7.0068	2.90698	1080.7	92940.
345 346	119025 119716	41063625	18.5742	7.0136	2.89855	1083.8	93482.
347	120409	41421736 41781923	18.6011 18.6279	7.0203	2.89017 2.88184	1087.0	94024. 94569.
348	121104	42144192	18.6548	7.0338	2.87356	1090.1	94569.
349	121801	42508549	18.6815	7.0406	2.86533	1096.4	95662.

### FUNCTIONS OF NUMBERS, 350 to 399

No.	Square	Cube	Square Root	Cubic Root	1000	No. = Diameter	
	Square	Cube	Root		Reciprocal	Circum.	Area
350 351	122500 123201	42875000 43243551	18.7083 18.7350	7.0473 7.0540	2.85714	1099.6	96211.3
352	123904	43614208	18.7617	7.0607	2.84900 2.84091	1102.7	96761.8 97314.0
353	124609	43986977	18.7883	7.0674	2 83286	1105.8 1109.0	97867.7
354	125316	44361864	18.8149	7.0740	2.82486	1112.1	98423.0
355 356	$126025 \\ 126736$	44738875 45118016	18.8414 18.8680	7.0807 7.0873	2.81690	1115.3 1118.4	98979.8
357	127449	45499293	18.8944	7.0940	2.80899 2.80112	1121.5	99538.2 100098
358	128164	45882712	18.9209 18.9473	$7.1006 \\ 7.1072$	2.79330	1124.7	100660
359	128881	46268279			2.78552	1127.8	101223
360 361	$129600 \\ 130321$	46656000 47045881	18.9737 19.0000	7.1138	$2.77778 \\ 2.77008$	$1131.0 \\ 1134.1$	$101788 \\ 102354$
362	131044	47437928	19.0263	7.1269	2.76243	1137.3	102334
363	131769 132496	47832147	19.0526	7.1204 7.1269 7.1335	2.76243 2.75482	1140.4	103491
364		48228544	19.0788	7.1400	2.74725	1143.5	104062
365 366	$133225 \\ 133956$	48627125 49027896	19.1050	7.1466	$2.73973 \\ 2.73224$	1146.7	104635
367	134689	49430863	19.1311 19.1572	7.1531 $7.1596$	2.72480	$1149.8 \\ 1153.0$	$\begin{array}{c} 105209 \\ 105785 \end{array}$
368	135424	49836032	19.1833	7.1661	2.71739	1156.1	106362
369	136161	50243409	19.2094	7.1726	2.71003	1159.2	106941
370	136900 137641	50653000	19.2354 $19.2614$	7.1791	2.70270	1162.4	107521
371 372	138384	51064811 51478848	19.2873	7.1855 $7.1920$	$2.69542 \\ 2.68817$	$\frac{1165.5}{1168.7}$	108103 108687
373	139129	51895117	19.3132	7.1984	2.68097	1171.8	109272
374	139876	52313624	19.3391	7.2048	2.67380	1175.0	109858
375 376	140625 141376	52734375 53157376	19.3649 19.3907	$7.2112 \\ 7.2177$	2.66667 2.65957	1178.1	110447
377	142129	53582633	19.4165	7.2240	2.65252	1181.2 1184.4	$\frac{111036}{111628}$
378	142884	54010152	19.4422	7.2304	2.64550	1187.5	112221
379	143641	54439939	19.4679	7.2368	2.63852	1190.7	112815
380	144400	54872000 55306341	19.4936 $19.5192$	$7.2432 \\ 7.2495$	$2.63158 \\ 2.62467$	1193.8	113411
381 382	$\frac{145161}{145924}$	55742968	19.5448	7.2558	2.61780	$1196.9 \\ 1200.1$	114009 114608
383	146689	56181887	19.5704	7.2558 7.2622	2 61097	1203.2	115209
384	147456	56623104	19.5959	7.2685	2.60417	1206.4	115812
385	148225	57066625	19.6214	7.2748	2.59740	1209.5	116416
386 387	148996 149769	57512456 57960603	19.6469 $19.6723$	7.2811 $7.2874$	$2.59067 \\ 2.58398$	$1212.7 \\ 1215.8$	117021 117628
388	150544	58411072	19.6977	$7.2874 \\ 7.2936$	2.57732	1218.9	118237
389	151321	58863869	19.7231	7.2999	2.57069	1222.1	118847
390	152100	59319000	19.7484 19.7737 19.7990	7.3061 7.3124 7.3186	2.56410	1225.2	119459
$\frac{391}{392}$	152881 153664	59776471 60236288	19.7990	7.3124	$2.55754 \\ 2.55102$	$1228.4 \\ 1231.5$	$\begin{array}{c} 120072 \\ 120687 \end{array}$
393	154449	60698457	19.8242	1.3248	2.54453	1234.6	121304
394	155236	61162984	19.8494	7.3310	2.53807	1237.8	121922
395 396	156025	61629875	19.8746	7.3372	$2.53165 \\ 2.52525$	1240.9	$\begin{array}{c} 122542 \\ 123163 \end{array}$
396	156816 157609	$\begin{array}{c} 62099136 \\ 62570773 \end{array}$	19.8997 19.9249	7.3434 7.3496	2.51889	$1244.1 \\ 1247.2$	$\frac{123163}{123786}$
398	158404	63044792	19.9499	7.3558	2.51256	1250.4	124410
399	159201	63521199	19.9750	7.3619	2.50627	1253.5	125036

# FUNCTIONS OF NUMBERS, 400 to 449

No.	Square	Cube	Square Root	Cubic Root	1000 x	No. = D	iameter
1				1000	Reciprocal	Circum.	Area
400	160000	64000000	20.0000	7.3681	2.50000	1256.6	125664
401	160801	64481201	20.0250	7.3742	2.49377	1259.8	126293
402 403	161604	64964808	20.0499	7.3803	2 48756	1262.9	126923
404	162409 163216	65450827	20.0749	7.3864	2.48139	1266.1	127556
		65939264	20.0998	7.3925	2.47525	1269.2	128190
405 406	164025 164836	66430125 66923416	20.1246	7.3986	2.46914	$1272.3 \\ 1275.5$	128825
407	165649	67419143	$20.1494 \\ 20.1742$	7.4047	$2.46305 \\ 2.45700$	1275.5	129462
408	166464	67917312	20.1990	7.4047 7.4108 7.4169	2.45700	1278.6	130100
409	167281	68417929	20.2237	7.4229	2.44499	$1281.8 \\ 1284.9$	$130741 \\ 131382$
410	168100	68921000	20.2485	7 4290	2 43902	1288.1	
411	168921	69426531	20.2731	$7.4290 \\ 7.4350$	2.43309	1291.2	$132025 \\ 132670$
412	169744	69934528	20.2978	7.4410	2.42718	1294 3	133317
413	170569 171396	70444997	20.3224	7.4470	2.42131	$1294.3 \\ 1297.5$	133965
	WANTED BY	70957944	20.3470	.7.4530	2.41546	1300.6	134614
415 416	172225	71473375	20.3715	7.4590	2.40964	1303.8	135265
417	173056 173889	71991296 $72511713$	20.3961	7.4650	2.40385	1306.9	135918
418	174724	73034632	$20.4206 \\ 20.4450$	7.4710	2.39808	1310.0	136572
419	175561	73560059	20.4695	7.4770 7.4829	2.39234 2.38663	1313.2 1316.3	$137228 \\ 137885$
420	176400	74088000	20.4939	7.4889			
421	177241	74618461	20.5183	7 4948	$\frac{2.38095}{2.37530}$	1319.5	138544
422	178084	75151448	20.5426	7.5007	2.36967	$1322.6 \\ 1325.8$	$139205 \\ 139867$
423 424	178929	75686967	20.5670	7.4948 7.5007 7.5067	2.36407	1328.9	140531
	179776	76225024	20.5913	7.5126	2.35849	1332.0	141196
$\frac{425}{426}$	180625 181476	76765625	20.6155	7.5185	2.35294 2.34742	1335.2	141863
427	182329	77308776 77854483	20.6398	7.5244 7.5302	2.34742	1338.3	142531
428	183184	78402752	20.6640 20.6882	7.5302	2.34192	1341.5	143201
429	184041	78953589	20.7123	$7.5361 \\ 7.5420$	$2.33645 \\ 2.33100$	1344.6 1347.7	143872 $144545$
430	184900	79507000	20 7364	7 5470	2.32558		
431	185761	80062991	$\begin{array}{c c} 20.7364 \\ 20.7605 \end{array}$	7.5478 7.5537	2.32019	$1350.9 \\ 1354.0$	$145220 \\ 145896$
432	186624	80621568	20.7846	1.5595	2 31481	1357.2	146574
433 434	187489	81182737	20.8087	7.5654 7.5712	2.30947	1360.3	147254
1	188356	81746504	20.8327	7.5712	2.30947 2.30415	1363.5	147934
435	189225	82312875	20.8567	7.5770	2.29885	1366.6	148617
436 437	190096	82881856	20.8806	7.5828	2.29358	1369.7	149301
437	190969 191844	83453453	20.9045	7.5886 7.5944	2:28833	1372.9	149987
439	191844	84027672 84604519	20.9284 20.9523	7.5944	2.28311	1376.0	150674
				7.6001	2.27790	1379.2	151363
440 441	193600 194481	85184000 85766121	20.9762	7.6059	2.27273 2.26757	1382.3	152053
442	195364	86350888	$21.0000 \\ 21.0238$	7.6117 7.6174	2.26757	1385.4	152745
443	196249	86938307	21.0476	7.6232	$2.26244 \\ 2.25734$	1388.6	153439
444	197136	87528384	21.0713	7.6289	2.25225	1391.7 1394.9	154134 154830
445	198025	88121125	21.0950	7.6346	2.24719	1398.0	
446	198916	88716536	21 1187	7.6403	2.24215	1401.2	$\frac{155528}{156228}$
447	199809 200704	89314623	21.1424 21.1660	7.6403 7.6460	2.23714	1404.3	156930
449	201601	89915392 90518849	21.1660	7.6517	2 23214	1407.4	157633
	201001	00010049	21.1896	7.6574	2.22717	1410.6	158337

## FUNCTIONS OF NUMBERS, 450 to 499

							Total S
No.	Square	Cube	Square Root	Cubic Root	1000 X		Diameter
	,				Reciprocal	Circum.	Area
450 451	202500 203401	91125000 91733851	$21.2132 \\ 21.2368$	7.6631	2.22222	1413.7	159043
452	204304	92345408	21.2308	7.6688	2.21729	1416.9	159751
453	205209	92959677	21.2603 21.2838	7.6801	2.21239 2.20751	$1420.0 \\ 1423.1$	160460 161171
454	206116	93576664	21.3073	7.6857	2.20264	1426.3	161883
455	207025	94196375	21.3307	7 6914	2 19780	1429.4	162597
456	207936	94818816	$21.3542 \\ 21.3776$	7.6914 7.6970 7.7026	$2.19780 \\ 2.19298$	1432.6	163313
457	208849 209764	95443993	21.3776	7.7026	2.18818	1435.7	164030
458 459	210681	96071912 96702579	21.4009 21.4243	7.7082 7.7138	$2.18341 \\ 2.17865$	1438.8	164748
				Committee of the second	2.17800	1442.0	165468
460 461	$211600 \\ 212521$	97336000 97972181	21.4476 21.4709	7.7194	2.17391	1445.1	166190
462	213444	98611128	21.4709	7 7206	$2.16920 \\ 2.16450$	1448.3	166914
463	214369	99252847	21.5174	7.7362	2 15983	1451.4 1454.6	167639 168365
464	215296	99897344	21.5407	7.7194 7.7250 7.7306 7.7362 7.7418	2.15517	1457.7	169093
465	216225	100544625	21.5639	7.7473	2.15054	1460.8	169823
466	217156	101194696	21.5870	7.7529	2.14592	1464.0	170554
467	218089	101847563	21.6102	7.7584 7.7639	2 14133	1467.1 1470.3	171287
468 469	$219024 \\ 219961$	$\begin{array}{c} 102503232 \\ 103161709 \end{array}$	21.6333 $21.6564$	$7.7639 \\ 7.7695$	2.13675		172021
		103101703	21.0304	1.1095	2.13220	1473.4	172757
470	220900	103823000	21.6795	7.7750	2.12766	1476.5	173494
471 472	$\frac{221841}{222784}$	$\frac{104487111}{105154048}$	21.7025	7.7805	2.12314	1479.7	174234
473	223729	105823817	21 7486	7.7860 7.7915	2.11864 2.11416	$1482.8 \\ 1486.0$	174974 175716
473 474	224676	106496424	21.7256 $21.7486$ $21.7715$	7.7970	2.10970	1489.1	176460
475	225625	107171875	21.7945	7.8025	2.10526	1492.3	177905
476	226576	107850176	21 8174	7.8079	2.10084	1492.3	$177205 \\ 177952$
477	227529	108531333	21.8403	7.8134	2.09644	1498.5	178701
478 479	228484 229441	$\begin{array}{c} 109215352 \\ 109902239 \end{array}$	$21.8632 \\ 21.8861$	7.8188 7.8243	2.09205	1501.7	179451
			21.0001	1.8243	2.08768	1504.8	180203
480 481	230400	110592000	21.9089	7.8297	2.08333	1508.0	180956
481	231361 232324	111284641 111980168	$     \begin{array}{c c}       21.9317 \\       21.9545     \end{array} $	7.8352 7.8406	2.07900	1511.1	181711
483	233289	112678587	21.9773	7.8460	2.07469 2.07039	1514.2	$182467 \\ 183225$
484	234256	113379904	22.0000	7.8514	2.06612	$1517.4 \\ 1520.5$	183984
485	235225	114084125	22.0227	7.8568	2.06186		104745
486	236196	114791256	22.0454	7.8622	2.05761	1523.7 1526.8	184745 185508
487	237169	115501303	22.0681	7.8676	2.05339	1530.0	186272
488 489	238144 239121	$\begin{array}{c c} 116214272 \\ 116930169 \end{array}$	22.0907 $22.1133$	7.8730	2.04918	1533.1	187038
200			22.1133	7.8784	2.04499	1536.2	187805
490	240100	117649000	22.1359	7.8837	2.04082	1539.4	188574
491 492	241081 242064	118370771 119095488	$22.1585 \\ 22.1811$	7.8891 7.8944	$2.03666 \\ 2.03252$	1542.5	189345
493	243049	119823157	22.2036	7.8998	2.03252	1545.7 1548.8	190117 190890
494	244036	120553784	22.2261	7.9051	2.02429	1551.9	191665
495	245025	121287375	22.2486	7.9105	2.02020	1555 1	100440
496	246016	122023936	22.2711	7.9158	2 01613	$1555.1 \\ 1558.2$	192442 193221
497	247009	122763473	22.2935	7.9158	2.01207 2.00803	1561.4	194000
498	248004 249001	$\frac{123505992}{124251499}$	22.3159 22.3383	7.9264 7.9317	2.00803	1564.5	194782
100	213001	124201433	22.0003	7.9317	2.00401	1567.7	195565

## FUNCTIONS OF NUMBERS, 500 to 549

500         250000         125000000         22,3607         7,9370         2,00000         1570.8         1           501         251001         125751501         22,3830         7,9423         1,99601         1570.8         1           502         252004         126506008         22,4054         7,9476         1,99203         1577.1         1           503         253009         127263527         22,4277         7,9528         1,98807         1580.2         1           504         254016         128024064         22,4499         7,9581         1,98807         1580.2         1           505         255025         128787625         22,4722         7,9634         1,98020         1586.5         2           506         256036         129554216         22,4944         7,9686         1,97628         1589.6         2           507         257049         130328843         22,5167         7,9739         1,97239         1592.8         2           509         259081         131872229         22,5610         7,9843         1,96464         1599.1         2           510         260100         132651000         22,5832         7,9946         1,96078         1602.	Area 196350 197136 1977136 198713 198713 199504 200296 201090 201886 202683 203482 204282 205084 205887 206692 207499
501         251061         125751801         22 3830         7.9423         1.99601         1573.9         1           502         252004         126506008         22 4054         7.9476         1.99203         1577.1         1           503         253009         127263527         22 4277         7.9528         1.98801         1580.2         1           504         254016         128024064         22 4499         7.9581         1.98413         1583.4         1           505         255025         128787625         22 4722         7.9634         1.98020         1586.5         2           506         256036         129554216         22 4944         7.9686         1.97628         1589.6         2           507         257049         130323843         22.5167         7.9739         1.97239         1592.8         2           508         258064         131096512         22.5389         7.9791         1.96850         1595.9         2           510         260100         132651000         22.5832         7.9896         1.96078         1602.2         2           511         261121         133432831         22.6958         8.0052         1.94932         1601.	197136 197923 198713 199504 200296 201090 201886 202683 203482 204282 205084 205887 206692
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	197923 198713 199504 200296 201090 201886 202683 203482 204282 205084 205887 206692
504         254016         128024064         22.4499         7.9581         1.98413         1580.2         1           505         255025         128787625         22.4722         7.9634         1.98020         1586.5         2           506         256036         129554216         22.4944         7.9686         1.97628         1589.6         2           507         257049         130323843         22.5167         7.9739         1.97239         1592.8         2           508         258064         131096512         22.5389         7.9791         1.96850         1595.9         2           509         259081         131872229         22.5610         7.9843         1.96464         1599.1         2           510         260100         132651000         22.5832         7.9896         1.96078         1602.2         2           511         261121         133432831         22.6053         7.9948         1.95695         1608.5         2           512         262144         134217728         22.6274         8.0000         1.95312         1608.5         2           513         263169         135796744         22.6776         8.0156         1.94175         1617.	198713 199504 200296 201090 201886 202683 203482 204282 205084 205887 206692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200296 201090 201886 202683 203482 204282 204282 205084 205887 206692
308         235084         131090512         22.5389         7.9791         1.96850         1595.9         2           509         259081         131872229         22.5610         7.9843         1.96464         1599.1         2           510         260100         132651000         22.5832         7.9896         1.96078         1602.2         2           511         261121         133432831         22.6653         7.9948         1.95695         1605.4         2           512         262144         134217728         22.6495         8.0000         1.95312         1608.5         2           513         263169         135005697         22.6495         8.0052         1.94953         1611.6         2           514         264196         135796744         22.6716         8.0052         1.94953         1614.8         2           515         265225         136590875         22.7156         8.0208         1.93798         1621.1         2           516         266256         137388096         22.7156         8.0208         1.93798         1621.1         2           518         268324         138991832         22.7596         8.0311         1.93050         1627.	201090 201886 202683 203482 204282 205084 205887 206692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	201886 202683 203482 204282 205084 205887 206692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	202683 203482 204282 205084 205887 206692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	204282 205084 205887 206692
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	205084 205887 206692
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	205887 206692
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	206692
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	207499
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	208307
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	209117 209928
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	210741
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	211556
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	212372
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	213189 214008
525 275625 144703125 22.9129 8.0671 1.90476 1649.3 2 526 276676 145531576 22.9347 8.0723 1.90114 1652.5 2	214829
526   $276676$   $145531576$   $22.9347$   $8.0723$   $1.90114$   $1652.5$   $2$	215651
	216475
	217301 218128
$528 \mid 278784 \mid 147197952 \mid 22.9783 \mid 8.0825 \mid 1.89394 \mid 1658.8 \mid 2$	218956
529 279841 148035889 23.0000 8.0876 1.89036 1661.9 2	219787
$egin{array}{c ccccccccccccccccccccccccccccccccccc$	20618
532 283024 150568768 23 0651 8 1028 1 87970 1671 2 2	$21452 \\ 22287$
$533 \mid 284089 \mid 151419437 \mid 23.0868 \mid 8.1079 \mid 1.87617 \mid 1674.5 \mid 2$	23123
534 285156 152273304 23.1084 8.1130 1.87266 1677.6 2	23961
535 286225 153130375 23.1301 8.1180 1.86916 1680.8 2 536 287296 153990656 23.1517 8.1231 1.86567 1683.9 2	24801
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$25642 \\ 26484$
538   289444   155720872   23.1948   8.1332   1.85874   1690.2   2	27329
539 290521 156590819 23.2164 8.1382 1.85529 1693.3 2	28175
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29022
542 + 293764 + 159220088 + 23.2809 + 8.1533 + 1.84502 + 1702 7 + 2	
$\begin{bmatrix} 543 & 294849 & 160103007 & 23.3024 & 8.1583 & 1.84162 & 1705.9 & 2 \end{bmatrix}$	29871
	30722 31574
	30722
$egin{array}{c c c c c c c c c c c c c c c c c c c $	30722 31574 32428 33283
548   300304   164566592   23.4094   8.1833   1.82482   1721.6   2	30722 31574 32428 232428 233283 234140
$\begin{bmatrix} 549 & 301401 & 165469149 & 23.4307 & 8.1882 & 1.82149 & 1724.7 & 2 \end{bmatrix}$	30722 31574 32428 33283

## FUNCTIONS OF NUMBERS, 550 to 599

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ameter
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Area
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	237583
554         306916         170031464         23.5372         8.2130         1.86505         1740.4           555         308025         170953875         23.5584         8.2180         1.80180         1743.6           556         309136         171879616         23.5797         8.2229         1.79856         1746.7           557         310249         172808693         23.6008         8.2278         1.79533         1749.9           558         311364         173741112         23.6220         8.2327         1.79211         1753.0           559         312481         174676879         23.6432         8.2377         1.78891         1756.2           560         313600         175616000         23.6643         8.2426         1.78571         1759.2           561         314721         176558481         23.6854         8.2426         1.78936         1762.4           562         315844         177504328         23.7065         8.2524         1.77936         1768.7           563         316969         17845367         23.7276         8.2573         1.77620         1768.7           564         318096         179406144         23.7487         8.2621         1.776991	238448
554         306916         170031464         23.5372         8.2130         1.86505         1740.4           555         308025         170953875         23.5584         8.2180         1.80180         1743.6           556         309136         171879616         23.5797         8.2229         1.79856         1746.7           557         310249         172808693         23.6008         8.2278         1.79533         1749.9           558         311364         173741112         23.6220         8.2327         1.79211         1753.0           559         312481         174676879         23.6432         8.2377         1.78891         1756.2           560         313600         175616000         23.6643         8.2426         1.78571         1759.2           561         314721         176558481         23.6854         8.2426         1.78936         1762.4           562         315844         177504328         23.7065         8.2524         1.77936         1768.7           563         316969         17845367         23.7276         8.2573         1.77620         1768.7           564         318096         179406144         23.7487         8.2621         1.776991	239314 240182
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	241051
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	241922
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	242795
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	243669
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{244545}{245422}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	246301
562 316969 17845367 23.7065 8.2524 1.77936 1765.6 563 316969 17845367 23.7276 8.2573 1.77620 1768.7 564 318096 179406144 23.7487 8.2621 1.77305 1771.9 565 319225 180362125 23.7697 8.2670 1.76991 1775.0	247181
564 318096 179406144 23.7487 8.2621 1.77305 1771.9 565 319225 180362125 23.7697 8.2670 1.76991 1775.0	248063
565 319225 180362125 23.7697 8.2670 1.76991 1775.0	$248947 \\ 249832$
F00 0000F0 101001100 T. 1010 T. 1010 T. 1110.0	249832
	250719
567   321489   182284263   23.8118   8.2768   1.76367   1781 3	$\frac{251607}{252497}$
568 322624 183250432 23.8328 8.2816 1.76056 1784.4	253388
569 323761 184220009 23.8537 8.2865 1.75747 1787.6	254281
570 324900 185193000 23.8747 8.2913 1.75439 1790.7	255176
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	256072
779   900900   10019071#   00 00#:   3.11020   1.11020	$256970 \\ 257869$
E74   990476   100110004   00 0500   0 0500   T	258770
575 330625 190109375 23.9792 8.3155 1.73913 1806.4	259672
$\frac{576}{6}   \frac{331776}{331776}   \frac{191102976}{191102976}   \frac{24.0000}{8.3203}   \frac{8.3203}{1.73611}   \frac{180976}{180976}  $	260576
377 332323 132100033 24.0208 8.3251 1.73310 1812.7	261482
EMO   325041   104104500   04 0004   0 00	$262389 \\ 263298$
580 336400 195112000 24.0832 8.3396 1.72414 1822.1	264208
581   337561   196122941   24.1039   8.3443   1.72117   1825 3	265120
582     338724     197137368     24.1247     8.3491     1.71821     1828.4       583     339889     198155287     24.1454     8.3539     1.71527     1831.6	266033
EQ4   9410EQ   1001EQE01   01 1001.0	$266948 \\ 267865$
585 342225 200201625 24.1868 8.3634 1.70940 1837.8 586 342396 201230056 24.2074 8.3682 1.70648 1841.0 587 344569 20226903 24.2074 8.3682 1.70648 1841.0	$268783 \\ 269703$
051   011005   202202005   24.2201   0.3730   1.70358   1844.1	270624
588     345744     203297472     24.2487     8.3777     1.70068     1847.3       589     346921     204336469     24.2693     8.3825     1.69779     1850.4	271547
	272471
590     348100     205379000     24.2899     8.3872     1.69492     1853.5       591     349281     206425071     24.3105     8.3919     1.69205     1856.7	273397
592 350464 207474688 24 2211 8 2067 1 62010 1070	274325
593   351649   208527857   24.3516   8.4014   1.68634   1863 0	$275254 \\ 276184$
	277117
595 354025 210644875 24.3926 8.4108 1.68067 1869.2	278051
596   355216   211708736   24,4131   8,4155   1,67785   1,872 4	278986
E00 357604 013047100 01.1202 1.07504 1075.5	$279923 \\ 280862$
E00   950001   014001700   04 THE   0.1210   1.07224   1070.7	
	281802

## FUNCTIONS OF NUMBERS, 600 to 649

No.	Square	Cube	Square Root	Cubic Root	1000 X	No. = D	iameter
.,0.	Square	Cube	1,000	Root	Reciprocal	Circum.	Area
2 6							
600	360000	216000000	24.4949	8.4343	1.66667	1885.0	28274
601	361201	217081801	24.5153	8.4390	1.66389	1888.1	28368
602	362404	218167208	24.5357	8.4437	1.66113	1891.2	28463
603	363609	219256227	24.5561	8.4484	1.65837	1894.4	28557
604	364816	220348864	24.5764	8.4530	1.65563	1897.5	28652
605	366025	221445125	24.5967	8.4577	1.65289	1900.7	28747
606	367236	222545016	24.6171	8.4623	1.65017	1903.8	28842
607	368449	223648543	24.6374	8.4670	1.64745	1906.9	28937
608 609	369664 370881	$\begin{array}{c} 224755712 \\ 225866529 \end{array}$	$24.6577 \\ 24.6779$	$8.4716 \\ 8.4763$	1.64474	1910.1 1913.2	29033 29128
					1.64204		
610 611	$\frac{372100}{373321}$	226981000	24.6982	8.4809	1.63934	1916.4 1919.5	29224 29320
612	374544	$\frac{228099131}{229220928}$	$24.7184 \\ 24.7386$	$8.4856 \\ 8.4902$	1.63666	1922.7	29416
613	375769	230346397	24.7588	8.4948	1.63399 1.63132	1925.8	29512
614	376996	231475544	24.7790	8.4994	1.62866	1928.9	29609
615	378225	232608375	94 7009	0 5040	1 00000	1932.1	29705
616	379456	233744896	$24.7992 \\ 24.8193$	8.5040 8.5086	1.62602	1935.2	29802
617	380689	234885113	24.8395	8.5132	$1.62338 \\ 1.62075$	1938.4	29899
618	381924	236029032	24.8596	8.5178	1.61812	1941.5	29996
619	383161	237176659	24.8797	8.5224	1.61551	1944.6	30093
620	384400	238328000	24.8998	8.5270	1.61290	1947.8	30190
621	385641	239483061	24.9199	8.5316	1.61031	1950.9	30288
622	386884	240641848	24.9399	8.5362	1.60772	1954.1	30385
623	388129	241804367	24.9600	8.5408	1.60514	1957.2	30483
624	389376	242970624	24.9800	8.5453	1.60256	1960.4	30581
625	390625	244140625	25.0000	8.5499	1.60000	1963.5	30679
626	391876	245314376	25.0200	8.5544	1.59744	1966.6	30777
627	393129	246491883	25.0400	8.5590	1.59490	1969.8	30876
628	394384	247673152	25.0599	8.5635	1.59236	1972.9	30974
629	395641	248858189	25.0799	8.5681	1.58983	1976.1	31073
630	396900	250047000	25.0998	8.5726	1.58730	1979.2	31172
631	398161	251239591	25.1197	8.5772	1.58479	1982.3	31271
632	399424	252435968	25.1396	8.5817	1.58228	1985.5	31370
633	400689	253636137	25.1595	8.5862	1.57978	1988.6	31470
634	401956	254840104	25.1794	8.5907	1.57729	1991.8	31569
635	403225	256047875	25.1992	8.5952	1.57480	1994.9	31669
636	404496	257259456	25.2190	8.5997	1.57233	1998.1	31769
637 638	405769	258474853	25.2389	8.6043	1.56986	2001.2	31869 31969
639	407044 408321	259694072 260917119	25.2587 25.2784	8.6088 8.6132	1.56740 1.56495	2004.3	32069
							32169
640 641	409600 410881	262144000 263374721	25.2982	8.6177 8.6222	1.56250 1.56006	2010.6 2013.8	32270
642	412164	264609288	25.3180 25.3377	8.6267	1.55763	2016.9	32371
643	413449	265847707	25.3574	8.6312	1.55521	2020.0	32472
644	414736	267089984	25.3772	8.6357	1.55280	2023.2	32573
645	416025	268336125	25.3969	8.6401	1.55039	2046.3	32674
646	417316	269586136	25.4165	8.6446	1.54799	2029.5	32775
647	418609	270840023	25.4362	8.6490	1.54560	2032.6	32877
648	419904	272097792	25.4558	8.6535	1.54321	2035.8	32979
649	421201	273359449	25.4755	8.6579	1.54083	2038.9	33081

# FUNCTIONS OF NUMBERS, 650 to 699

No.	Square	Cube	Square Root	Cubic Root	1000	No. = I	Diameter
		,	1000	1000	Reciprocal	Circum.	Area
650	422500	274625000	25.4951	8.6624	1.53846	0040.0	
651	423801	275894451	25.5147	8.6668	1.53610	2042.0 2045.2	331831
652	425104	277167808	25.5343	8.6713	1.53374	2048.3	332853
653	426409	278445077	25.5539	8.6757	1.53139	2051.5	333876 334901
654	427716	279726264	25.5734	8.6801	1.52905	2054.6	335927
655 656	429025 430336	281011375 282300416	25.5930	8.6845	1.52672	2057.7	336955
657	431649	283593393	25.6125 25.6320	8.6890	1.52439	2060.9	337985
658	432964	284890312	25.6515	8.6934	1.52207	2064.0	339016
659	434281	286191179	25.6710	8.6978 8.7022	1.51976 1.51745	2067.2 2070.3	340049 341084
660	435600	287496000	25.6905	8.7066	1.51515	Service Management	
661	436921	288804781	25.7099	8.7110	1.51286	$2073.5 \\ 2076.6$	342119
662	438244	290117528	25.7294	8.7154	1.51057	2079.7	343157 344196
663 664	439569	291434247	25.7488	8.7154 8.7198	1.50830	2082.9	345237
	440896	292754944	25.7682	8.7241	1.50602	2086.0	346279
665	442225	294079625	25.7876	8.7285	1.50376	2089.2	247202
666	443556	295408296	25.8070	8.7329	1.50150	2092.3	$347323 \\ 348368$
667	444889	296740963	25.8263	8.7329 8.7373	1.49925	2095.4	349415
669	446224 447561	298077632	25.8457	8.7416	1.49701	2098.6	350464
		299418309	25.8650	8.7460	1.49477	2101.7	351514
670	448900	300763000	25.8844	8.7503	1.49254	2104.9	352565
671 672	450241	302111711	25.9037	8.7547	1.49031	2108.0	353618
673	451584 452929	303464448	25.9230	8.7590	1.48810	2111.2	354673
674	454276	304821217 306182024	25.9422	8.7634	1.48588	2114.3	355730
			25.9615	8.7677	1.48368	2117.4	356788
675	455625	307546875	25.9808	8.7721	1.48148	2120.6	357847
677	456976 458329	308915776	26.0000	8.7764	1.47929	2123.7	358908
678	459684	310288733 311665752	26.0192	8.7807 8.7850	1.47710	2126.9	359971
679	461041	313046839	$26.0384 \\ 26.0576$	8.7850	1.47493	2130.0	361035
100			20.0376	8.7893	1.47275	2133.1	362101
680 681	462400	314432000	26.0768	8.7937	1.47059	2136.3	363168
682	463761 465124	315821241	26.0960	8.7980	1.46843	2139.4	364237
683	466489	317214568	26.1151	8.8023	1.46628	2142.6	365308
684	467856	318611987 320013504	26.1343	8.8066	1.46413	2145.7	366380
			26.1534	8.8109	1.46199	2148.8	367453
685	469225	321419125	26.1725	8.8152	1.45985	2152.0	368528
686 687	470596 471969	322828856	26.1916	8.8194	1.45773	2155.1	369605
688	473344	$\frac{324242703}{325660672}$	26.2107 26.2298	8.8237	1.45560	2158.3	370684
689	474721	327082769	26.2298	8.8280	1.45349	2161.4	371764
100			26.2488	8.8323	1.45138	2164.6	372845
690 691	476100	328509000	26.2679	8.8366	1.44928	2167.7	373928
692	477481   478864	329939371	26.2869	8.8408	1.44718	2170.8	375013
693	480249	331373888 332812557	26.3059	8.8451	1.44509	2170.8 2174.0	376099
694	481636	334255384	26.3249 26.3439	8.8493	1.44300 1.44092	2177.1 2180.3	377187 378276
695	483025	335702375		San State of A			
696	484416	337153536	26.3629 26.3818	8.8578 8.8621	1.43885	2183.4	379367
697	485809	338608873	26.4008	8.8663	1.43678	2186.5	380459
698	487204	340068392	26.4197	8.8706	1.43472 1.43266	2189.7	381553
699	488601	341532099	26.4386	8.8748	1.43062	4104.0	382649

### FUNCTIONS OF NUMBERS, 700 to 749

NT.	0	Cuba	Square	Cubic	1000	No. = Di	iameter
No.	Square	Cube	Root	Root	Reciprocal	Circum.	Area
700	490000	343000000	26,4575	8.8790	1.42857	2199.1	384845
701	491401	344472101	26.4764	8.8833	1.42653	2202.3	385945
702	492804	345948408	26.4953	8.8875	1.42450	2205.4	387047
703 704	494209 495616	347428927 348913664	$26.5141 \\ 26.5330$	8.8917 8.8959	1.42248 1.42045	2208.5 2211.7	388151 389256
705	497025	350402625	26.5518	8.9001	1.41844	2214.8	390363
706	498436	351895816	26.5707	8.9043	1.41643	2218.0	391471 392580
707	499849 501264	353393243 354894912	26.5895 26.6083	8.9085 8.9127	1.41443 1.41243	2221.1 2224.2	393692
709	502681	356400829	26.6271	8.9169	1.41044	2227.4	394805
710	504100	357911000	26.6458	8.9211	1.40845	2230.5	395919
711 712	505521	359425431	26.6646	8.9253	1.40647	2233.7 2236.8	397035 398153
713	506944 508369	360944128 362467097	26.6833 $26.7021$	8.9295 8.9337	1.40449 1.40252	2240.0	399272
714	509796	363994344	26.7208	8.9378	1.40056	2243.1	400393
715	511225	365525875	26.7395	8.9420	1.39860	2246.2	401515
716 717	512656	367061696	26.7582	8.9462	1.39665 1.39470	2249.4 2252.5	402639 $403765$
718	514089 515524	368601813 370146232	26.7769 26.7955	8.9503 8.9545	1.39276	2255.7	404892
719	516961	371694959	26.8142	8.9587	1.39082	2258.8	406020
720	518400	373248000	26.8328	8.9628	1.38889	2261.9	407150
$\begin{array}{c} 721 \\ 722 \end{array}$	519841 521284	374805361 376367048	26.8514 26.8701	8.9670 8.9711	1.38696 1.38504	2265.1 2268.2	408282
723	522729	377933067	26.8887	8.9752	1.38313	2271.4	410550
724	524176	379503424	26.9072	8.9794	1.38122	2274.5	411687
725	525625	381078125	26.9258	8.9835	1.37931 1.37741	2277.7 2280.8	412825 413965
$\frac{726}{727}$	527076 528529	382657176 384240583	26.9444 26.9629	8.9876 8.9918	1.37552	2283.9	415100
728	529984	385828352	26.9815	8.9959	1.37363	2287.1	416248
729	531441	387420489	27.0000	9.0000	1.37174	2290.2	417393
730	532900	389017000	27.0185	9.0041	1.36986	2293.4	418539
731 732	534361 535824	390617891 392223168	$27.0370 \\ 27.0555$	9.0082 9.0123	1.36799 1.36612	2296.5 2299.6	41968
733	537289	393832837	27 0740	9.0123	1.36426	2302.8	42198
734	538756	395446904	27.0740 27.0924	9.0205	1.36240	2305.9	42313
735 736	540225	397065375	27.1109	9.0246	1.36054	2309.1 2312.2	42429 42544
736	541696 543169	398688256 400315553	27.1293	$9.0287 \\ 9.0328$	1.35870 1.35685	2312.2	42544
738	544644	401947272	27.1477 27.1662	9.0369	1.35501	2318.5	42776
739	546121	403583419	27.1846	9.0410	1.35318	2321.6	42892
740	547600	405224000	27.2029	9.0450	1.35135	2324.8	43008
741 742	549081 550564	406869021 408518488	27.2213 27.2397	9.0491 $9.0532$	1.34953	$\begin{vmatrix} 2327.9 \\ 2331.1 \end{vmatrix}$	43124 43241
743	552049	410172407	27.2580	9.0572	1.34590	2334.2	43357
744	553536	411830784	27.2764	9.0613	1.34409	2337.3	43474
745 746	555025 556516	413493625	27.2947 27.3130 27.3313 27.3496	9.0654	1.34228	2340.5 2343.6	43591 43708
740	558009	415160936 416832723	27 33130	9.0694 9.0735	1.34048 1.33869	2343.6	43708
748	559504	418508992	27.3496	9.0775	1.33690	2349.9	43943
749	561001	420189749	27.3679	9.0816	1.33511	2353.1	44060

# FUNCTIONS OF NUMBERS, 750 to 799

No.	Square	Cube	Square Root	Cubic Root	1000	No. =	Diamete
		<u></u>	1000	1000	Reciprocal	Circum.	Area
750	562500	421875000	27.3861	0.0050	1 0000		
751	564001	423564751	27 4044	9.0856	1.33333	2356.2	44178
752	565504	425259008	27 4996	9.0896 9.0937	1.33156	2359.3	44296
753	567009	426957777	27.4044 27.4226 27.4408		1.32979	2362.5	44414
754	568516	428661064	27.4591	9.0977	1.32802 1.32626	2365.6 2368.8	44532 44651
755	570025	430368875	27.4773	9.1057	1.32450	1 ST	
756	571536	432081216	27.4955	9.1098	1.32275	2371.9	44769
757	573049	433798093	27.5136	9.1138	1.32100	2375.0	44888
758	574564	435519512	27.5318	9.1178	1.31926	2378.2	45007
759	576081	437245479	27.5500	9.1218	1.31752	2381.3 2384.5	45126 45245
760	577600	438976000	27.5681	9.1258	1.31579		
761	579121	440711081	27.5862	9.1298	1.31406	2387.6	45364
762	580644	442450728	27.6043	9.1338	1.31234	2390.8 2393.9	45484
763	582169	444194947	27.6043 27.6225	9.1378	1.31062	2393.9	45603
764	583696	445943744	27.6405	9.1418	1.30890	$2397.0 \\ 2400.2$	457234 458434
765	585225	447697125	27.6586	9.1458	1.30719	2403.3	45963
766	586756	449455096	27.6767	9.1498	1.30548	2406.5	46083
767	588289	451217663	27.6948	9.1498 9.1537	1.30378	2409.6	46204
768	589824	452984832	27.7128	9.1577	1.30208	2412.7	463247
769	591361	454756609	27.6767 27.6948 27.7128 27.7308	9.1617	1.30039	2415.9	464454
770 771	592900 594441	456533000	27.7489	9.1657	1.29870	2419.0	465663
772	595984	458314011	27.7669	9.1696	1.29702	2422.2	466873
773	597529	460099648	27.7669 27.7849 27.8029	9.1736	1.29534	2425.3	468085
774	599076	461889917 463684824	27.8029	9.1775	1.29366	2428.5	469298
			27.8209	9.1815	1.29199	2431.6	470513
775	600625	465484375	27.8388	9.1855	1.29032	2434.7	471730
776	602176	467288576	27.8568	9.1894	1.28866	2437.9	472948
777	603729	469097433	27.8568 27.8747	9.1933	1.28700	2441 0	474168
778	605284	470910952	27.8927	9.1973	1.28535	2444.2	475389
779	606841	472729139	27.9106	9.2012	1.28370	2447.3	476612
780	608400	474552000	27.9285 27.9464 27.9643	9.2052	1.28205	2450.4	477836
81	609961	476379541	27.9464	9.2091	1.28041	2453.6	479062
	611524	478211768	27.9643	9.2130	1.27877	2456.7	480290
83	613089 614656	480048687	27.9821	9.2170	1.27714	2459.9	481519
		481890304	28.0000	9.2209	1.27714 1.27551	2463.0	482750
85	616225	483736625	28.0179	9.2248	1.27389	2466.2	400000
86	617796	485587656	28.0357	9.2287	1.27226	2469.3	483982
87	619369	487443403	28.0535	9.2326	1.27065	2409.3	485216
88	620944	489303872	28.0713	9.2365	1.26904	2475.6	486451 487688
89	622521	491169069	28.0891	9.2404	1.26743	2478.7	488927
90	624100	493039000	28.1069	9.2443	1.26582	2481.9	490167
91	625681	494913671	28.1247	9.2482	1.26422	2485.0	491409
92	627264	496793088	28.1425	9.2521	1.26263	2488.1	492652
93	628849	498677257	28.1603	9.2560	1.26103	2491.3	493897
94	630436	500566184	28.1780	9.2599	1.25945	2494.4	495143
95	632025	502459875	28.1957	9.2638	1.25786	2497.6	496391
96	633616	504358336	28.2135	9.2677	1.25628	2500.7	497641
97 98	635209	506261573	28.2312	9.2716	1.25471	2503.8	498892
98	636804	508169592	28.2489	9.2754	1.25313	2507.0	500145
00	638491	510082399	28.2666	9.2793	1.25156	2510.1	501399

## FUNCTIONS OF NUMBERS, 800 to 849

No.	Square	Cube	Square Root	Cubic	1000	No. = I	Diameter
				Root	Reciprocal	Circum.	Area
800	640000	512000000	28.2843	9.2832	1.25000	2513.3	502655
801	641601	513922401	28.3019	9.2870	1.24844	2516.4	503912
802	643204	515849608	28.3196	9.2909	1.24688	2519.6	505171
803 804	644809	517781627	28.3373	9.2948	1.24533	2522.7	506432
	646416	519718464	28.3549	9.2986	1.24378	2525.8	507694
805 806	648025	521660125	28.3725	9.3025	1.24224	2529.0	508958
807	649636 651249	523606616 525557943	28.3901	9.3063	1.24069	2532.1	510223
808	652864	527514112	28.4077 28.4253	9.3102	1.23916	2535.3	511490
809	654481	529475129	28.4429	$9.3140 \\ 9.3179$	1.23762 1.23609	2538.4 2541.5	512758 514028
810	656100	531441000	28.4605	9.3217	1.23457		
811	657721	533411731	28.4781	9.3255	1.23305	2544.7 2547.8	515300
812	659344	535387328	28.4956	9.3294	1.23153	2551.0	516573
813	660969	537367797	28.5132	9.3332	1.23001	2554.1	$517848 \\ 519124$
814	662596	539353144	28.5307	9.3370	1.22850	2557.3	520402
815	664225	541343375	28.5482	9.3408	1.22699	2560.4	521681
816 817	665856	543338496	28.5657	9.3447	1.22549	2563 5	522962
818	667489 669124	545338513	28.5832	9.3485	1.22399	2566.7	524245
819	670761	547343432	28.6007	9.3523	1.22249	2569.8	525529
		549353259	28.6182	9.3561	1.22100	2573.0	526814
820 821	672400 674041	551368000	28.6356	9.3599	1.21951	2576.1	528102
822	675684	553387661 555412248	28.6531	9.3637	1.21803	2579.2	529391
823	677329	557441767	$28.6705 \\ 28.6880$	9.3675 9.3713	1.21655	2582.4	530681
824	678976	559476224	28.7054	9.3713 $9.3751$	$1.21507 \\ 1.21359$	2585.5 2588.7	$531973 \\ 533267$
825	680625	561515625	28.7228	9.3789			
826	682276	563559976	28.7402	9.3827	$1.21212 \\ 1.21065$	2591.8	534562
827	683929	565609283	28.7576	9.3865	1.20919	2595.0	535858
828	685584	567663552	28.7750	9.3902	1.20773	2598.1 2601.2	537157 $538456$
829	687241	569722789	28.7924	9.3940	1.20627	2604.4	539758
830	688900	571787000	28.8097	9.3978	1.20482	2607.5	541061
831	690561	573856191	28.8271	9.4016	1.20337	2610.7	542365
832	692224	575930368	28.8444	9.4053	1.20192	2613.8	543671
833	693889	578009537	28.8617	9.4091	1.20048	2616.9	544979
834	695556	580093704	28.8791	9.4129	1.19904	2620.1	546288
835	697225	582182875	28.8964	9.4166	1.19760	2623.2	547599
836 837	698896	584277056	28.9137	9.4204	1.19617	2626.4	548912
837	700569	586376253	28.9310	9.4241	1.19474	2629.5	550226
839	702244 703921	588480472 590589719	28.9482 28.9655	9.4279 9.4316	1.19332 1.19190	2632.7	551541
840	705600					2635.8	552858
841	705600 707281	592704000 594823321	28.9828 29.0000	9.4354 9.4391	1.19048	2638.9	554177
842	708964	596947688	29.0000	9.4391	1.18906	2642.1	555497
843	710649	599077107	29.0345	9.4466	1.18624	2645.2 2648.4	556819 558142
844	712336	601211584	29.0517	9.4503	1.18483	2651.5	559467
845	714025	603351125	29.0689	9.4541	1.18343	2654.6	560794
846	715716	605495736	29.0861	9.4578	1.18203	2657.8	562122
847	717409	607645423	29.1033	9.4615	1.18064	2660.9	563452
848 849	719104	609800192	29.1204	9.4652	1.17925	2664.1	564783
OTI	720801	611960049	29.1376	9.4690	1.17786	2667.2	566116

## FUNCTIONS OF NUMBERS, 850 to 899

No.	Square	Cube	Square Root	Cubic Root	1000 x	No. = I	Diameter
		29.000			Reciprocal	Circum.	Area
850	722500	614125000	29.1548	9.4727	1.17647	2670.4	567450
851	724201	616295051	29.1719	9.4764	1.17647 1.17509	2673.5	568786
852	725904	618470208	29.1890	9.4801	1.17371	2676.6	570124
853 854	727609 729316	620650477	29.2062	9.4838	1.17233	2679.8	571463
		622835864	29.2233	9.4875	1.17096	2682.9	572803
855 856	731025 732736	625026375 627222016	29.2404 29.2575	9.4912	1.16959	2686.1	574140
857	734449	629422793	29.2746	9.4949	1.16822	2689.2	575490
858	736164	631628712	29.2916	9.4986 9.5023	1.16686	2692.3	576835
859	737881	633839779	29.3087	9.5060	$1.16550 \\ 1.16414$	2695.5 2698.6	578182 579530
860	739600	636056000	29.3258	9.5097	1.16279	2701.8	
861	741321	638277381	29.3258 29.3428	9.5134	1.16144	2704.9	580880
862	743044	640503928	29.3598	9.5171	1.16009	2708.1	582232 583585
863	744769	642735647	29.3769	9.5207	1.15875	2711.2	584940
864	746496	644972544	29.3939	9.5244	1.15741	2714.3	586297
865 866	748225	647214625	29.4109	9.5281	1.15607	2717.5	587655
867	749956 751689	649461896	29.4279	9.5317	1.15473	2720.6	589014
868	753424	651714363 653972032	29.4449	9.5354	1.15340	2723.8	590375
869	755161	656234909	29.4618 $29.4788$	9.5391	1.15207	2726.9	591738
				9.5427	1.15075	2730.0	593102
870 871	756900	658503000	29.4958	9.5464	1.14943	2733.2	594468
872	758641 760384	660776311	29.5127	9.5501	1.14811	2736.3	595835
873	762129	663054848 665338617	29.5296	9.5537	1.14679	2739.5	/597204
874	763876	667627624	29.5466 $29.5635$	9.5574	1.14548	2742.6	598575
				9.5610	1.14416	2745.8	599947
875 876	765625	669921875	29.5804	9.5647	1.14286	2748.9	601320
877	767376 769129	672221376	29.5973	9.5683	1.14155	2752.0	602696
878	770884	674526133	29.6142	9.5719	1.14025	2755.2	604073
879	772641	676836152	29.6311	9.5756	1.13895	2758.3	605451
		679151439	29.6479	9.5792	1.13766	2761.5	606831
880	774400	681472000	29.6648	9.5828	1.13636	2764.6	608212
881 882	776161	683797841	29.6816	9.5865	1.13507	2767 7	609595
883	777924 779689	686128968	29.6985	9.5901	1.13379	2767.7 2770.9	610980
884	781456	688465387	29.7153	9.5937	1.13250	2774.0	612366
		690807104	29.7321	9.5973	1.13122	2777.2	613754
885	783225	693154125	29.7489	9.6010	1.12994	2780.3	615143
886	784996	695506456	29.7658	9.6046	1.12867	2783.5	616534
887 888	786769	697864103	29.7825	9.6082	1.12740	2786.6	617927
889	788544	700227072	29.7993	9.6118	1.12613	2789.7	619321
	790321	702595369	29.8161	9.6154	1.12486	2792.9	620717
890	792100	704969000	29.8329	9.6190	1.12360	2796.0	622114
891	793881	707347971	29.8496	9.6226	1.12233	2799.2	623513
892 893	795664	709732288	29.8664	9.6262	1.12108	2802.3	624913
893	797449 799236	712121957 714516984	29.8831 29.8998	9.6298	1.11982	2805.4	626315
895	2			9.6334	1.11857	2808.6	627718
896	801025 802816	716917375	29.9166	9.6370	1.11732	2811.7	629124
897	802816	719323136	29.9333	9.6406	1.11607	2814.9	630530
898	806404	721734273 724150792	29.9500	9.6442	1.11483	2818.0	631938
899	808201	726572699	29.9666 29.9833	9.6477	1.11359	2821.2	633348
APPENDING TO THE			23.3000	9.6513	1.11235	2824.3	634760

### FUNCTIONS OF NUMBERS, 900 to 949

No.	Square	Cube	Square Root	Cubic	1000	No. = I	Diamete
7	Square	Cube	Koot	Root	Reciprocal	Circum.	Area
900	810000	729000000	30.0000	9.6549	1.11111	2827.4	63617
901	811801	731432701	30:0167	9.6585	1.10988	2830.6	63758
902	813604	733870808	30.0333	9.6620	1.10865	2833.7	63900
903	815409	736314327	30.0500	9.6656	1.10742	2836.9	64042
904	817216	738763264	30.0666	9.6692	1.10619	2840.0	64184
905 906	819025 820836	741217625 743677416	30.0832	9.6727	1.10497	2843.1	64326
907	822649	746142643	30.0998 30.1164	9.6763 9.6799	1.10375	2846.3	64468
908	824464	748613312	30.1104	9.6834	$1.10254 \\ 1.10132$	2849.4 2852.6	64610 $64753$
909	826281	751089429	30.1496	9.6870	1.10011	2855.7	64896
910	828100	753571000	30.1662	9.6905	1.09890	2858.8	65038
911	829921	756058031	30.1828	9.6941	1.09769	2862.0	65181
912	831744	758550528	30.1993	9.6976	1.09649	2865.1	65325
913	833569	761048497	30.2159	9.7012 9.7047	1.09529	2868.3	65468
914	835396	763551944	30.2324	9.7047	1.09409	2871.4	65611
915	837225	766060875	30.2490	9.7082	1.09290	2874.6	65755
916	839056	768575296	30.2655	9.7118	1.09170	2877.7 2880.8	65899
917	840889	771095213	30.2820	9.7153 9.7188	1.09051	2880.8	66043
$\frac{918}{919}$	842724 844561	773620632 776151559	30.2985	9.7188	1.08932	2884.0	66187
		/	30.3150	9.7224	1.08814	2887.1	66331
920	846400	778688000	30.3315	9.7259	1.08696	2890.3	66476
$\frac{921}{922}$	848241	781229961	30.3480 30.3645	9.7294	1.08578	2893.4	66620
922	850084	783777448	30.3645	9.7294 9.7329 9.7364	1.08460	2896.5	66765
924	851929 853776	786330467 788889024	$\frac{30.3809}{30.3974}$	9.7364 9.7400	$1.08342 \\ 1.08225$	2899.7 2902.8	66910 67055
925	855625	791453125					
926	857476	794022776	$\frac{30.4138}{30.4302}$	9.7435 9.7470	$1.08108 \\ 1.07991$	2906.0	67200
927	857476 859329	796597983	30.4467	9.7505	1.07875	2909.1 2912.3	67346 67491
928	861184	799178752	30.4631	9.7540	1.07759	2915.4	67637
929	863041	801765089	30.4795	9.7575	1.07643	2918.5	67783
930	864900	804357000	30.4959	9.7610	1.07527	2921.7	67929
931	866761	806954491	30.5123	9.7645	1.07411	2924.8	68075
932 933	868624	809557568	30.5287	9.7680	1.07296	2928.0	68221
934	870489 872356	812166237 814780504	30.5450	9.7715 9.7750	1.07181	2931.1	68368
			30.5614		1.07066	2934.2	68514
935	874225	817400375	30.5778	9.7785	1.06952	2937.4	68661
$\frac{936}{937}$	876096	820025856	30.5941	9.7819	1.06838	2940.5 2943.7	68808
938	877969 879844	822656953 825293672	30.6105 30.6268	9.7854 9.7889	1.06724	2943.7	68955
939	881721	827936019	30.6268	9.7889	1.06610 1.06496	2946.8 2950.0	69102 69250
940	883600	830584000	30.6594	9.7959	1.06383	2953.1	69397
941	885481	833237621	30.6757	9.7993	1.06270	2956.2	69545
942	887364	835896888	30.6920	9.8028	1.06157	2959.4	69693
943	889249 891136	838561807 841232384	$30.7083 \\ 30.7246$	9.8063	1.06045	2962.5	69841
	MATERIAL STATE			9.8097	1.05932	2965.7	69989
945	893025 894916	843908625 846590536	30.7409 $30.7571$ $30.7734$	9.8132	1.05820	2968.8	70138
947	894916	846590536 849278123	30.7571	9.8167	1.05708	2971.9	70286
948	898704	851971392	30.7734	$9.8201 \\ 9.8236$	1.05597 1.05485	2975.1 2978.2	70435
949	900601	854670349	30.8058	9.8270	1.05374	2978.2	70584 $70733$

## FUNCTIONS OF NUMBERS, 950 to 999

							Sand Street As
No.	Square	Cube	Square Root	Cubic Root	1000	No. = I	Diameter.
			1000	Root	Reciprocal	Circum.	Area
950	902500	857375000	30.8221	9.8305	1 05060	2004 =	
951	904401	860085351	30.8383	9.8339	$1.05263 \\ 1.05152$	2984.5	708822
952	906304	862801408	30.8545	9.8374	1.05042	2987.7 2990.8	710315
953	908209	865523177	30.8707	9.8408	1.04932	2990.8	711809
954	910116	868250664	30.8869	9.8443	1.04822	2993.9 2997.1	713306 714803
955	912025	870983875	30.9031 30.9192	9.8477	1.04712	3000.2	716303
956 957	913936	873722816	30.9192	9.8511	1.04603	3003.4	717804
958	915849 917764	876467493	30.9354	9.8546	1.04493	3006.5	717804 719306
959	919681	879217912 881974079	$30.9516 \\ 30.9677$	9.8580 9.8614	$1.04384 \\ 1.04275$	3009.6 3012.8	$720810 \\ 722316$
960	921600	884736000	30.9839	9.8648			
961	923521	887503681	31.0000	9.8683	$1.04167 \\ 1.04058$	3015.9 3019.1	723823
962	925444	890277128	31.0161	9.8717	1.03950	3019.1	725332
963	927369	893056347	31.0322	9.8751	1.03842	3025.4	726842
964	929296	895841344	31.0483	9.8785	1.03734	3028.5	728354 729867
965	931225	898632125	31.0644	9.8819	1.03627	3031.6	731382
966	933156	901428696	31.0805	9.8854	1.03520	3034.8	732899
967 968	935089 937024	904231063	31.0966	9.8888	1.03413	3037.9	734417
969	938961	907039232	31.1127	9.8922	1.03306	3041.1	735937
		909853209	31.1288	9.8956	1.03199	3044.2	737458
970	940900	912673000	31.1448	9.8990	1.03093	3047.3	738981
971	942841	915498611	31.1609	9.9024	1.02987	3050.5	740506
972 973	944784	918330048	31.1769	9.9058	1.02881	3053.6	742032
974	946729 948676	921167317	31.1929	9.9092	1.02775	3056.8	743559
		924010424	31.2090	9.9126	1.02669	3059.9	745088
975	950625	926859375	$\frac{31.2250}{31.2410}$	9.9160	1.02564	3063.1	746619
976 977	952576	929714176 932574833	31.2410	9.9194	1.02459	3066.2	748151
978	954529 956484	932574833	31.2570	9.9227	1.02354	3069.3	749685
979	958441	935441352 938313739	$\frac{31.2730}{31.2890}$	9.9261	1.02249	3072.5	751221
				9.9295	1.02145	3075.6	752758
980 981	960400	941192000	31.3050	9.9329	1.02041	3078.8	754296
982	962361 964324	944076141	31.3209	9.9363	1.01937	3081.9	755837
983	966289	946966168 949862087	31.3369	9.9396	1.01833	3085.0	757378
984	968256	952763904	$\frac{31.3528}{31.3688}$	9.9430 9.9464	$1.01729 \\ 1.01626$	$\frac{3088.2}{3091.3}$	758922 760466
985	970225	955671625					
986	972196	958585256	$\frac{31.3847}{31.4006}$	9.9497	1.01523	3094.5	762013
987	974169	961504803	31.4006	$9.9531 \\ 9.9565$	1.01420	3097.6	763561
988	976144	964430272	31.4325	9.9598	1.01317	3100.8	765111
989	978121	967361669	31.4484	9.9632	$1.01215 \\ 1.01112$	3103.9 3107.0	766662 768214
990	980100	970299000	31.4643	9.9666	1.01010	3110.2	769769
991	982081	973242271	31.4802	9.9699	1.00908	3113.3	771325
992	984064	976191488	31.4960	9.9733	1.00806	3116.5	772882
993	986049	979146657	31.5119	9.9766	1.00705	3119.6	774441
994	988036	982107784	31.5278	9.9800	1.00604	3122.7	776002
995 996	990025	985074875	31.5436 31.5595 31.5753	9.9833	1.00503	3125.9	777564
996	992016 994009	988047936	31.5595	9.9866	1.00402	3129.0	779128
998	994009	991026973	31.5753	9.9900	1.00301	3132.2	780693
999	998001	994011992 997002999	31.5911	9.9933	1.00200	3135.3	782260
000	000001	991002999	31.6070	9.9967	1.00100	3138.5	783828
-	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN						

Courtesy of Carnegie-Illinois Steel Corporation

### **COMMON LOGARITHMS**

					- Company											11.55		Selection.	100
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4	8	12	17	21	25	29	33	37
11 12 13	0792	$0453 \\ 0828 \\ 1173$	0864	0899	0934	0969	1004	1038	1072	1106	3		11 10 10	14	19 17 16	23 21 19	24	$\frac{30}{28}$ $\frac{26}{26}$	
14 15 16	1761	1492 1790 2068	1818	1847	1875	1903	1931	1959	1987	2014	3	6 6 5	9 8 8	12 11 11	15 14 13	18 17 16		$\frac{24}{22}$ $21$	27 25 24
17 18 19	2304 2553 2788	2330 2577 2810	2355 2601 2833	2380 2625 2856	2405 2648 2878	2430 2672 2900	2455 2695 2923	2480 2718 2945	2504 2742 2967	2529 2765 2989	2 2 2	5 5 4	7 7 7			15 14 13	16	20 19 18	21
20		3032		100			200					4	6	8	11	13	15	17	19
21 22 23	3424 3617	3243 3444 3636	3464 3655	3483 3674	3502 3692	3522 3711	3541 3729	3560 3747	3579 3766	3598 3784	2 2	4 4 4	6 6 6	8 8 7		12 12 11		16 15 15	18 17 17
24 25 26	3979	3820 3997 4166	4014	4031	4048	4065	4082	14099	4116	4133	2	4 3 3	5 5 5	7 7 7	9 9 8	11 10 10	12	14 14 13	15
27 28 29	4472	4330 4487 4639	4502	4518	4533	4548	4564	4579	4594	4609	2	3 3 3	5 5 4	6 6 6	8 8 7	9 9	11	$\frac{13}{12}$ $12$	
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13
31 32 33	1606	4928 5065 5198	5079	5092	5105	5119	5132	5145	5159	5172	1	3 3 3	4 4 4	6 5 5	7 7 6	8 8 8	9	11 11 10	$\frac{12}{12}$ $\frac{12}{12}$
34 35 36	5441	5328 5453 5575	5465	5478	5490	5502	5514	5527	5539	5551	1	3 2 2	4 4 4	5 5 5	6 6	8 7 7	9 9 8	10 10 10	11
37 38 39	5682 5798 5911	5694 5809 5922	5705 5821 5933	5717 5832 5944	5729 5843 5955	5740 5855 5966	5752 5866 5977	5763 5877 5988	5775 5888 5999	5786 5899 6010	1 1 1	2	333	5 5 4	6 6 5	777	8 8 8	9 9	10 10 10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10
41 42 43	6232	6138 6243 6345	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3 3 3	4 4 4	5 5 5	6 6 6	7 7 7	8 8	9 9
44 45 46	6532	6444 6542 6637	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3 3	4 4 4	5 5 5	6 6 6	7 7 7	8 8 7	9 9 8
47 48 49	6812	6730 6821 6911	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3 3	4 4 4	5 4 4	5 5 5	6 6 6	7 7 7	8 8
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51 52 53	7160	7084 $7168$ $7251$	7177	17185	7193	17202	7210	7218	7226	7235	1		3 2 2	3 3 3	4 4 4	5 5 5	6 6	7 7 6	8 7 7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7

### COMMON LOGARITHMS

=	- 11																						25	75	5/4		497				
		0		1		2		8	3	4	4		5	-	6	1	7	I	8	9	,	1	2	3		1	5	6	7	8	9
5	5	740	)4	741	12	74	19	74	27	74	35	74	143	7	45	1 7	459	9 7	466	74	74	1	2	2		3	4	5	5	6	7
51	3	763	4	764	12	76	49	76	57	76	89 64	76	597	7	664	1 7	612	2 7	619 $694$	75. 76: 77:	$\frac{27}{01}$	1 1 1	2 2 1	2 2 2		3	444	5 5 4	5 5 5	6 6	777
59 60 61						• 0			. 0	.0	02	"	600	100	990	1	903	1	910	77° 78° 79°	17	1 1 1	1 1 1	2 2 2	. :	3	4 4 4	4 4 4	5 5 5	6 6	7 6 6
62 63 64	8	306	2 8	306	9	807	75	808	32	80	89	80	28 96	81	035	8	041 109	80	048	798 808 812	55 22	1 1 1	1 1 1	2 2 2		3	3 3 3	444	5 5 5	6 5 5	6 6
65																				818		1	1	2	:	3 :	3	4	5	5	6
66 67 68	8	32.	5 8	33	1	333	8	834	14	83	51	83	93 57	83	63	83	306	83	312 376	825 831 838	9	1 1 1	1 1 1	2 2 2	600000	1	3	444	5 5 4	5 5 5	6 6
69 70 71	8	513	8	519	9 8	352	5 8	353	1	853	37	854	82 43	84	88 49	85	194	85	61	844 850 856	67	1 1 1	1 1 1	2 2 2	2 2 2	2000	3	4 4 4	4 4 4	5 5 5	6 6 5
72 73 74	8	692	8	698	3 8	370	4 8	371	0 8	371	6	866	22	86 87	69 27	86	33	86 87	81 39	862 868 874	6 5	1 1 1	1 1 1	2 2 2	2 2 2	3		444	4 4 4	555	5 5 5
75																				880		1	1	2	2	3		3	4	5	5
76 77 78																				885 891 897		1 1 1	1 1 1	2 2 2	2 2 2	3 3		3 3 3	4 4 4	5 4 4	5 5 5
79 80 81	11 2	$\mathbf{r}$	11.57	0.510	шч	114	2119	114	719	1115	ЖIU	1115	9110	30	221	un	COL	$\alpha \alpha$	741	902. 907. 913:		1 1 1	1 1 1	2 2 2	2 2 2	3 3 3	1.	3 3 3	4 4 4	4 4 4	5 5 5
82 83 84																				9186 9238 9289		1 1 1	1 1 1	2 2 2	2 2 2	3333		3 3 3	4 4 4	4 4 4	5 5 5
85	92	294	92	299	9	304	1 9	309	9	31	5 9	32	0 8	32	25	93	30	93:	35	340		1	1	2	2	3	:	3	4	4	5
86 87 88	100	00	134	EUU	19	±U;	) 9	411	119	4 1.	3 4	4%		12.0	3.40	0 75	201	OA!	25 0	390 440 489	1		1	2 1 1	2 2 2	3 2 2	60 60 60	3	4 3 3	4 4 4	5 4 4
89 90 91	95	90	95	95	96	300	9	605	9	609	9 9	56 61	6 9 4 9	57 61	9	957	76 9	958 962	81 9	538 586 633		0	1	1 1 1 1	2 2 2	2 2 2	3000		3 3 3	4 4 4	4 4 4
92 93 94																				680 727 773		0	1	1 1 1	2 2 2	2 2 2	333	-		4 4 4	4 4 4
95	97	77	97	82	97	86	97	791	97	795	98	800	9	80	5 9	80	9 9	81	4 9	818	1	0	1	1	2	2	3			4	4
96 97 98	130	001	90	121	47	111	192	ss i	193	<b>426</b>	HICK.	207	ΝО	<b>20</b>	410	100	0 0	On	20	863 908 952	000		L		2 2 2	2 2 2	3 3 3		3	4	4 4 4
99	99	56	99	61	99	65	99	69	98	74	99	78	9	98	3 9	98	7 9	99	1 99	996	(	) 1	1 1		2	2	3		3	3	4

### NATURAL SINES

						×4								
	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1	2	3	4 5
0°	0000	0017	0035	0052	0070	0087	0105	0122	0140	0157	3	6	9	12 15
1 2 3	0175 0349 0523	$0192 \\ 0366 \\ 0541$	$0209 \\ 0384 \\ 0558$	$\begin{array}{c} 0227 \\ 0401 \\ 0576 \end{array}$	$0244 \\ 0419 \\ 0593$	$0262 \\ 0436 \\ 0610$	$0279 \\ 0454 \\ 0628$	$\begin{array}{c} 0297 \\ 0471 \\ 0645 \end{array}$	$0314 \\ 0488 \\ 0663$	$0332 \\ 0506 \\ 0680$	3 3 3	6 6	9 9	12 15 12 15 12 15
4 5 6	$0698 \\ 0872 \\ 1045$	$0715 \\ 0889 \\ 1063$	$\begin{array}{c} 0732 \\ 0906 \\ 1080 \end{array}$	$0750 \\ 0924 \\ 1097$	$0767 \\ 0941 \\ 1115$	$0785 \\ 0958 \\ 1132$	$0802 \\ 0976 \\ 1149$	$0819 \\ 0993 \\ 1167$	0837 $1011$ $1184$	$0854 \\ 1028 \\ 1201$	3 3 3	6 6 6	9 9	12 15 12 14 12 14
7 8 9	1219 1392 1564	$\begin{array}{c} 1236 \\ 1409 \\ 1582 \end{array}$	$\begin{array}{c} 1253 \\ 1426 \\ 1599 \end{array}$	1271 1444 1616	$1288 \\ 1461 \\ 1633$	1305 1478 1650	1323 1495 1668	1340 1513 1685	$\begin{array}{c} 1357 \\ 1530 \\ 1702 \end{array}$	1374 1547 1719	333	6 6	9 9	12 14 12 14 12 14
10	1736	1754	1771	1788	1805	1822	1840	1857	1874	1891	3	6	9	12 14
11 12 13	$\begin{array}{c} 1908 \\ 2079 \\ 2250 \end{array}$	$\begin{array}{c} 1925 \\ 2096 \\ 2267 \end{array}$	1942 2113 2284	1959 $2130$ $2300$	1977 2147 2317	1994 2164 2334	2011 $2181$ $2351$	2028 2198 2368	2045 $2215$ $2385$	2062 $2232$ $2402$	3 3 3	6 6	9 9 8	11 14 11 14 11 14
14 15 16	2419 2588 2756	$2436 \\ 2605 \\ 2773$	$\begin{array}{c} 2453 \\ 2622 \\ 2790 \end{array}$	$2470 \\ 2639 \\ 2807$	2487 2656 2823	2504 2672 2840	$\begin{array}{c} 2521 \\ 2689 \\ 2857 \end{array}$	2538 2706 2874	$\begin{array}{c} 2554 \\ 2723 \\ 2890 \end{array}$	$\begin{array}{c} 2571 \\ 2740 \\ 2907 \end{array}$	3 3	6 6	8 8 8	11 14 11 14 11 14
17 18 19	2924 3090 3256	$2940 \\ 3107 \\ 3272$	2957 3123 3289	2974 3140 3305	$2990 \\ 3156 \\ 3322$	3007 3173 3338	3024 3190 3355	$3040 \\ 3206 \\ 3371$	$3057 \\ 3223 \\ 3387$	3074 3239 3404	3 3 3	6 6 5	8 8	11 14 11 14 11 14
20	3420	3437	3453	3469	3486	3502	3518	3535	3551	3567	3	5	8	11 14
21 22 23	3584 3746 3907	3600 3762 3923	3616 3778 3939	3633 3795 3955	3649 3811 3971	3665 3827 3987	3681 3843 4003	3697 3859 4019	3714 3875 4035	3730 3891 4051	3 3 3	5 5 5	8 8 8	11 14 11 14 11 14
24 25 26	4067 4226 4384	4083 4242 4399	4099 4258 4415	4115 4274 4431	4131 4289 4446	4147 4305 4462	4163 4321 4478	4179 4337 4493	4195 4352 4509	4210 4368 4524		5 5 5	8 8	11 13 11 13 10 13
27 28 29	4540 4695 4848	4555 4710 4863		4586 4741 4894	4602 4756 4909	4617 4772 4924	4633 4787 4939	4648 4802 4955	4664 4818 4970	4679 4833 4985		5 5 5	8 8	10 13 10 13 10 13
30	5000	5015	5030	5045	5060	5075	5090	5105	5120	5135	3	5	8	10 13
31 32 33	5150 5299 5446	5314	5180 5329 5476	5195 5344 5490	5210 5358 5505	5225 5373 5519	5240 5388 5534	5255 5402 5548	5270 5417 5563	5284 5432 5577	2 2 2	5 5 5	7 7 7	10 12 10 12 10 12
34 35 36	5592 5736 5878	5606 5750 5892	5621 5764 5906	5635 5779 5920	5650 5793 5934	5664 5807 5948	5678 5821 5962	5693 5835 5976	5707 5850 5990	5721 5864 6004	2 2 2	5 5 5	7 7 7	10 12 10 12 9 12
37 38 39	6018 6157 6293	$6032 \\ 6170 \\ 6307$	6046 6184 6320	6060 6198 6334	6074 $6211$ $6347$	$6088 \\ 6225 \\ 6361$	$\begin{array}{c} 6101 \\ 6239 \\ 6374 \end{array}$	$\begin{array}{c} 6115 \\ 6252 \\ 6388 \end{array}$	$6129 \\ 6266 \\ 6401$	6143 6280 6414	2 2 2	5 5 4	7 7 7	9 12 9 11 9 11
40	6428	6441	6455	6468	6481	6494	6508	6521	6534	6547	2	4	7	9 11
41 42 43	6561 6691 6820	6574 6704 6833	6587 6717 6845	6600 6730 6858	6613 6743 6871	6626 6756 6884	6639 6769 6896	6652 6782 6909	6665 6794 6921	6678 6807 6934	2 2 2	4 4 4	7 6 6	9 11 9 11 8 11
44	6947	6959	6972	6984	6997	7009	7022	7034	7046	7059	2	4	6	8 10
	1		and the second						N. R. W. LYNING	W. C. 15/11		2		

### NATURAL SINES

=	11	1	1	1								-	1		1-1-1
	0'	6'	12'	18'	24		36	42	48	54	1	2	3	4	5
45		7083			1000		7145	7157	7 7169	7181	2	4	6	8	3 10
46 47 48	7314 7431	7206 7325 7443	7337 7455	7349 7466	736 747	1 7373 8 7490	7385	7396	7408	7420	2	4 4		888	10
49 50 51	7547 7660 7771	7558 7672 7782	7570 7683 7793	7581 7694 7804	759: 770: 781:	3 7604 5 7716 5 7826	7727	7738	7749	7760	2 2 2	4 4 4	6 6 5	8 7 7	9 9
52 53 54	7986	7891 7997 8100	8007	8018	8028	8 8039	7944 8049 8151	7955 8059 8161	8070		2 2 2	4 3 3	5 5 5	7 7 7	9 9 8
55	8192	8202	8211	8221	823	8241	8251	8261	8271	8281	2	3	5	7	8
56 57 58	8387 8480	8300 8396 8490	8406 8499	8415 8508	8425 8517	8434 8526	8348 8443 8536	8358 8453 8545	8462	8377 8471 8563	2 2 2	3 3 3	5 5 5	6 6 6	8 8 8
59 60 61	8660		8678 8763	8686 8771	8695 8780	8704 8788	8625 8712 8796	8634 8721 8805	8643 8729 8813	8652 8738 8821	1 1 1	3 3	4 4 4	6 6 6	777
62 63 64	8829 8910 8988	8918	8926	8934	8942	8949	8878 8957 9033	8886 8965 9041	8894 8973 9048	8902 8980 9056	1 1 1	3 3	4 4 4	5 5 5	7 6 6
65	9063	9070	9078	9085	9092	9100	9107	9114	9121	9128	1	2	4	5	6
66 67 68	9135 9205 9272	9212 9	9219	9225	9232	9239	9178 9245 9311	9184 9252 9317	9191 9259 9323	9198 9265 9330	1 1 1 1	2 2 2	333	5 4 4	6 6 5
69 70 71	9336 9397 9455	9403 9	9409	9415	9421	9426	9373 9432 9489	9379 9438 9494	9385 9444 9500	9391 9449 9505	1 1 1	2 2 2	3 3 3	4 4 4	5 5 5
72 73 74	9511 9563 9613	9568	9573	9578	9583	9537 9588 9636	9542 9593 9641	9548 9598 9646	9553 9603 9650	9558 9608 9655	1 1 1	2 2 2	3 2 2	4 3 3	4 4 4
75	9659	9664	9668	9673	9677	9681	9686	9690	9694	9699	1	1	2	3	4
76 77 78	9703 9 9744 9 9781 9	9748 9	751	755	759	9724 9763 9799	9728 9767 9803	9732 9770 9806	9736 9774 9810	9740 9778 9813	1 1 1	1 1 1	2 2 2	3 3 2	3 3 3
79 80 81	9816 9 9848 9 9877 9	851 9	854 9	857 9	860	9833 9863 9890	9836 9866 9893	9839 9869 9895	9842 9871 9898	9845 9874 9900	1 0 0	1 1 1	2 1 1	2 2 2	3 2 2
82 83 84	9903 9 9925 9 9945 9	928 9	930 9	932 9	934	9914 9936 9954	9917 9938 9956	9919 9940 9957	9921 9942 9959	9923 9943 9960	0 0 0	1 1 1	1 1 1	2 1 1	2 2 1
85	9962 9	963 9	965 9	966 9	968	9969	9971	9972	9973	9974	0	0	1	1	1
86 87 88	9976 9 9986 9 9994 9	987 9	988 9	989 9	990	9981 9990 9997	9982 9991 9997	9983 9992 9997	9984 9993 9998	9985 9993 9998	0 0 0	0 0	1 0 0	1 1 0	1 1 0
89	9998 9	999 9	999 9	999 9	999	1.000 nearly	1.000 nearly	1.000 nearly	1.000 nearly	1.000 nearly	0	0	0	0	0

### NATURAL COSINES

_					Committee of	S. Control		MALE SOCIETY	Company of the Company	STORY OF THE		1000			
	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1	2	3	4	5
0°	1.000	1.000 nearly	1.000 nearly	1.000 nearly	1.000 nearly	9999	9999	9999	9999	9999	0	0	0	0	0
1 2 3	9998 9994 9986	9998 9993 9985	9998 9993 9984	9997 9992 9983	9997 9991 9982	9990	9990	9989	9995 9988 9978	9987	0 0	0 0 0	0 0 1	0 1 1 1	0 1 1
5 6	9976 9962 9945	9974 9960 9943	9973 9959 9942	9972 9957 9940	9971 9956 9938	9969 9954	9968 9952	9966 9951	9965 9949 9930	9963 9947	0	0 1 1	1 1 1	1 1 1	1 2 2
7 8 9	9925 9903 9877	9923 9900 9874	9921 9898 9871	9919 9895 9869	9917 9893 9866	9914 9890	9912 9888	9910 9885	9907 9882	9905 9880	0 0	1	1 1	2 2 2	2 2 2
10	9848	9845	9842	9839	9836				9854 9823		0	1	1 2	2	3
11 12 13	9816 9781 9744	9813 9778 9740	9810 9774 9736	9806 9770 9732	9803 9767 9728	9799 9763	9796 9759	9792 9755	9789 9751 9711	9785 9748	1 1	1 1 1	2 2 2	2 3 3	3 3 3
14 15 16	9703 9659 9613	9699 9655 9608	9694 9650 9603	9690 9646 9598	9686 9641 9593	9636	9632	9627	9668 9622 9573	9617	1 1 1	$\begin{array}{c} 1 \\ 2 \\ 2 \end{array}$	2 2 2	3 3 3	4 4 4
17 18 19	9563 9511 9455	9558 9505 9449	9553 9500 9444	9548 9494 9438	9542 9489 9432	9483	9478	9472	9521 9466 9409	9461	1 1 1	2 2 2	3 3 3	4 4 4	4 5 5
20	9397	9391	9385	9379	9373	9367	9361	9354	9348	9342	1	2	3	4	5
21 22 23	9336 9272 9205	9330 9265 9198	9323 9259 9191	9317 9252 9184	9311 9245 9178	9239	9232	9225	9285 $9219$ $9150$	9212	1	2 2 2	3 3 3	4 4 5	5 6 6
24 25 26	9135 9063 8988	9128 9056 8980	9121 9048 8973	9114 9041 8965	9107 9033 8957	9026	9018	9011	9078 9003 8926	8996	1 1 1	2 3 3	4 4 4	5 5 5	6 6 6
27 28 29	8910 8829 8746	8902 8821 8738	8894 8813 8729	8886 8805 8721	8878 8796 8712	8788	8780	8771	8846 8763 8678	8755	1 1 1	3 3 3	4 4 4	5 6 6	7 7 7
30	8660	8652	8643	8634	8625	8616	8607	8599	8590	8581	1	3	4	6	7
31 32 33	8572 8480 8387	8563 8471 8377	8554 8462 8368	8545 8453 8358	8536 8443 8348	8434	8425	8415	8499 8406 8310	8396	2 2 2	3 3 3	5 5 5	6 6 6	8 8 8
34 35 36	8290 8192 8090	8281 8181 8080	8271 8171 8070	8261 8161 8059	8251 8151 8049	8141	8131	8121	8211 8111 8007	8100	2 2 2	3 3 3	5 5 5	7 7 7	8 8 9
37 38 39	7986 7880 7771	7976 7869 7760	7965 7859 7749	7955 7848 7738	7944 7837 7727	7826	7815	7804	7902 7793 7683	7782	2 2 2	4 4 4	5 5 6	7 7 7	9 9
40	7660	7649	7638	7627	7615	7604	7593	7581	7570	7559	2	4	6	8	9
41 42 43	7547 7431 7314	7536 7420 7302	7524 7408 7290	7513 7396 7278	7501 7385 7266	7373	7361	7349	7455 7337 7218	7325	2 2 2	4 4 4	6 6	8 8	10 10 10
44	7193	7181	7169	7157	7145	7133	7120	7108	7096	7083	2	4	6	8	10
-				Annual Control of the		AND DESCRIPTION OF	CONTRACTOR OF STREET	August 1		all and the same of	Section 4		-	1	

N.B.—Numbers in difference columns to be subtracted, not added.

### NATURAL COSINES

=															
	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1	2	3	4 5	5
45	7071	7059	7046	7034	7022	7009	6997	6984	6972	6959	2	4	6	8 10	0
46 47 48	6947 6820 6691		6921 6794 6665	6909 6782 6652	6896 6769 6639	6884 6756 6626	6871 6743 6613		6845 6717 6587	6833 6704 6574	2 2 2	4 4 4	6 6 7	8 1 9 1 9 1	1
49 50 51	6561 6428 6293		6534 6401 6266	6521 6388 6252	6508 6374 6239	6494 6361 6225	6481 6347 6211	6468 6334 6198	6455 6320 6184	6441 6307 6170	2 2 2	4 4 5	777	9 11 9 11 9 11	1
52 53 54	6157 6018 5878	6143 6004 5864	6129 5990 5850	6115 5976 5835	6101 5962 5821	6088 5948 5807	6074 5934 5793	6060 5920 5779	6046 5906 5764	6032 5892 5750	2 2 2	5 5 5	7 7 7	9 12 9 12 9 12	2
55	5736	5721	5707	5693	5678	5664	5650	5635	5621	5606	2	5	7	10 12	2
56 57 58	5592 5446 5299	5577 5432 5284	5563 5417 5270	5548 5402 5255	5534 5388 5240	5519 5373 5225	5505 5358 5210	5490 5344 5195	5476 5329 5180	5461 5314 5165	2 2 2	5 5 5	777	10 12 10 12 10 12	2
59 60 61	5150 5000 4848	5135 4985 4833	5120 4970 4818	5105 4955 4802	5090 4939 4787	5075 4924 4772	5060 4909 4756	5045 4894 4741	5030 4879 4726	5015 4863 4710	3 3 3	5 5 5	8 8 8	10 13 10 13 10 13	3
62 63 64	4695 4540 4384	4679 4524 4368	4664 4509 4352	4648 4493 4337	4633 4478 4321	4617 4462 4305	$\begin{array}{c} 4602 \\ 4446 \\ 4289 \end{array}$	4586 4431 4274	4571 4415 4258	4555 4399 4242	3 3 3	5 5 5	888	10 13 10 13 11 13	3
65	4226	4210	4195	4179	4163	4147	4131	4115	4099	4083	3	5	8	11 13	3
66 67 68	4067 3907 3746	4051 3891 3730	4035 3875 3714	4019 3859 3697	4003 3843 3681	3987 3827 3665	3971 3811 3649	3955 3795 3633	3939 3778 3616	3923 3762 3600	333	5 5 5	888	11 14 11 14 11 14	F
69 70 71	3584 3420 3256	3567 3404 3239	$\frac{3551}{3387}$ $\frac{3223}{3223}$	$3535 \\ 3371 \\ 3206$	3518 3355 3190	3502 3338 3173	3486 3322 3156	3469 3305 3140	3453 3289 3123	3437 3272 3107	3 3 3	5 5 6	888	11 14 11 14 11 14	L
72 73 74	3090 2924 2756	3074 2907 2740	$3057 \\ 2890 \\ 2723$	3040 2874 2706	3024 2857 2689	$3007 \\ 2840 \\ 2672$	2990 2823 2656	2974 2807 2639	$\begin{array}{c} 2957 \\ 2790 \\ 2622 \end{array}$	2940 2773 2605	3 3 3	6 6 6	8 8 8	1 14 11 14 11 14	Į
75	2588	2571	2554	2538	2521	2504	2487	2470	2453	2436	3	6	8	11 14	
76 77 78	2419 2250 2079	2402 2233 2062	$\begin{array}{c} 2385 \\ 2215 \\ 2045 \end{array}$	2368 2198 2028	$\begin{array}{c} 2351 \\ 2181 \\ 2011 \end{array}$	2334 2164 1994	2317 $2147$ $1977$	$2300 \\ 2130 \\ 1959$	2284 2113 1942	2267 2096 1925	3 3 3	6 6 6	8 9 9	11 14 11 14 11 14	
79 80 81	1908 1736 1564	1891 1719 1547	1874 1702 1530	1857 1685 1513	1840 1668 1495	1822 1650 1478	1805 1633 1461	1788 1616 1444	1771 1599 1426	1754 1582 1409	3 3 3	6 6 6	9 9 9	12 14 12 14 12 14	
82 83 84	1392 1219 1045	1374 1201 1028	1357 1184 1011	1340 1167 0993	1323 1149 0976	1305 1132 0958	$\begin{array}{c} 1288 \\ 1115 \\ 0941 \end{array}$	$\begin{array}{c} 1271 \\ 1097 \\ 0924 \end{array}$	1253 1080 0906	$\begin{array}{c} 1236 \\ 1063 \\ 0889 \end{array}$	3 3 3	6 6 6	9 9 9	12 14 12 14 12 14	
85	0872	0854	0837	0819	0802	0785	0767	0750	0732	0715	3	6	9	12 15	
86 87 88	$0698 \\ 0523 \\ 0349$	$0680 \\ 0506 \\ 0332$	0663 0488 0314	$\begin{array}{c} 0645 \\ 0471 \\ 0297 \end{array}$	$0628 \\ 0454 \\ 0279$	$0610 \\ 0436 \\ 0262$	$0593 \\ 0419 \\ 0244$	$\begin{array}{c} 0576 \\ 0401 \\ 0227 \end{array}$	0384	$0541 \\ 0366 \\ 0192$	3 3 3	6 6 6	9 9 9	12 15 12 15 12 15	
89	0175	0157	0140	0122	0105	0087	0070	0052	0035	0017	3	6	9	12 15	

N.B.—Numbers in difference columns to be subtracted, not added.

### NATURAL TANGENTS

_							State Barrie	E		Section 1	distant.				
	0'	6'	12'	18'	24'	30'	36'	42'	48'	54	1	2	3	4	5
0°	.0000	0017	0035	0052	0070	0087	0105	0122	0140	0157	3	6	9	12	14
1 2 3	.0175 .0349 .0524	$\begin{array}{c} 0192 \\ 0367 \\ 0542 \end{array}$	0209 0384 0559	$\begin{array}{c} 0227 \\ 0402 \\ 0577 \end{array}$	$0244 \\ 0419 \\ 0594$	$\begin{array}{c} 0262 \\ 0437 \\ 0612 \end{array}$	$0279 \\ 0454 \\ 0629$	$0297 \\ 0472 \\ 0647$	0314 0489 0664	$0332 \\ 0507 \\ 0682$	3 3 3	6 6	9 9 9	12 12 12	15 15 15
5	.0699 .0875 .1051	0717 0892 1069	0734 0910 1086	$0752 \\ 0928 \\ 1104$	$0769 \\ 0945 \\ 1122$	$0787 \\ 0963 \\ 1139$	$0805 \\ 0981 \\ 1157$	$0822 \\ 0998 \\ 1175$	0840 1016 1192	0857 $1033$ $1210$	3 3 3	6 6	9 9	12 12 12	15 15 15
7 8 9	.1228 .1405 .1584	1246 1423 1602	1263 1441 1620	1281 1459 1638	1299 1477 1655	1317 1495 1673	1334 1512 1691	$\begin{array}{c} 1352 \\ 1530 \\ 1709 \end{array}$	1370 1548 1727	1388 1566 1745	3 3 3	6 6 6	9 9	12 12 12	15 15 15
10	.1763	1781	1799	1817	1835	1853	1871	1890	1908	1926	3	6	9	12	15
11 12 13	.1944 .2126 .2309	1962 2144 2327	1980 2162 2345	1998 $2180$ $2364$	$\begin{array}{c} 2016 \\ 2199 \\ 2382 \end{array}$	2035 $2217$ $2401$	2053 2235 2419	$\begin{array}{c} 2071 \\ 2254 \\ 2438 \end{array}$	2089 2272 2456	2107 2290 2475	3 3 3	6 6 6	9 9	12 12 12	15 15 15
14 15 16	.2493 .2679 .2867	2512 2698 2886	2530 2717 2905	2549 2736 2924	2568 2754 2943	2586 2773 2962	2605 2792 2981	$2623 \\ 2811 \\ 3000$	$2642 \\ 2830 \\ 3019$	2661 2849 3038	333	6 6 6	9 9	12 13 13	16 16 16
17 18 19	.3057 .3249 .3443	3076 3269 3463	3096 3288 3482	$\frac{3115}{3307}$ $\frac{3502}{3502}$	$3134 \\ 3327 \\ 3522$	3153 3346 3541	$3172 \\ 3365 \\ 3561$	3191 3385 3581	$\frac{3211}{3404}$ $\frac{3600}{3600}$	3230 3424 3620	333	6 6	10 10 10	13 13 13	16 16 17
20	.3640	3659	3679	3699	3719	3739	3759	3779	3799	3819	3	7	10	13	17
21 22 23	.3839 .4040 .4245	$3859 \\ 4061 \\ 4265$	3879 4081 4286	3899 4101 4307	$3919 \\ 4122 \\ 4327$	3939 4142 4348	3959 4163 4369	3979 4183 4390	4000 4204 4411	4020 4224 4431	3 3 3	777	10 10 10		17 17 17
24 25 26	.4452 .4663 .4877	4473 4684 4899	4494 4706 4921	4515 4727 4942	4536 4748 4964	4557 4770 4986	4578 4791 5008	4599 4813 5029	4621 4834 5051	4642 4856 5073	4 4 4		10 11 11	14	18 18 18
27 28 29	.5095 .5317 .5543	5117 5340 5566	5139 5362 5589	5161 5384 5612	5184 5407 5635	5206 5430 5658	5228 5452 5681	5250 5475 5704	5272 5498 5727	5295 5520 5750	4 4 4	8	11 11 12	15	18 19 19
30	.5774	5797	5820	5844	5867	5890	5914	5938	5961	5985	4	8	12	16	20
31 32 33	.6009 .6249 .6494	6032 6273 6519	6056 6297 6544	6080 6322 6569	6164 6346 6594	$6128 \\ 6371 \\ 6619$	$6152 \\ 6395 \\ 6644$	6176 6420 6669	6200 6445 6694	6224 6469 6720	4 4 4	8	12 12 13	16	20 20 21
34 35 36	.6745 .7002 .7265	6771 7028 7292	6796 7054 7319	6822 7080 7346	6847 7107 7373	6873 7133 7400	6899 7159 7427	6924 7186 7454	6950 7212 7481	6976 7239 7508	4 4 5	9.	13 13 14	18	21 22 23
37 38 39	.7536 .7813 .8098	7563 7841 8127	7590 7869 8156	7618 7898 8185	7646 7926 8214	7673 7954 8243	7701 7983 8273	7729 8012 8302	7757 8040 8332	7785 8069 8361		10	14 14 15	19	23 24 24
40	.8391	8421	8451	8481	8511	8541	8571	8601	8632	8662	5	10	15	20	25
41 42 43	.8693 .9004 .9325	8724 9036 9358	8754 9067 9391	8785 9099 9424	8816 9131 9457	8847 9163 9490	8878 9195 9523	8910 9228 9556	8941 9260 9590	8972 9293 9623	5		16 16 17	21	26 27 28
44	.9657	9691	9725	9759	9793	9827	9861	9896	9930	9965		11		23	

### NATURAL TANGENTS

_			-			by Aller									
	0'	6'	12'	18'	24'	30'	36'	42'	48'	54'	1	2	3	4	5
45°	1.0000	0035	0070	0105	0141	0176	0212	0247	0283	0319	6	12	18	24	30
46 47 48	$\begin{array}{ c c c }\hline 1.0355\\ 1.0724\\ 1.1106\\ \hline\end{array}$	0761	0799	0837	$0501 \\ 0875 \\ 1263$		0951	0990	1028		6	12 13 13	18 19 20	25 25 26	31 32 33
49 50 51	1.1504 $1.1918$ $1.2349$	1544 1960 2393	$\begin{array}{c} 1585 \\ 2002 \\ 2437 \end{array}$		1667 2088 2527		$\begin{array}{c} 1750 \\ 2174 \\ 2617 \end{array}$			1875 $2305$ $2753$		14 14 15	21 22 23	28 29 30	34 36 38
52 53 54	1.2799 1.3270 1.3764	2846 3319 3814	2892 3367 3865	2938 3416 3916	2985 3465 3968	3514	3079 3564 4071		3175 3663 4176	3222 3713 4229	8 8 9	16 16 17	23 25 26	31 33 34	39 41 43
55	1.4281	4335	4388	4442	4496	4550	4605	4659	4715	4770	9	18	27	36	45
56 57 58	1.4826 1.5399 1.6003	4882 5458 6066		5577	5051 5637 6255	5108 5697 6319	5757	5818	5282 5880 6512	5340 5941 6577	10 10 11	19 20 21	29 30 32	38 40 43	48 50 53
59 60 61	1.6643 1.7321 1.8040	6709 7391 8115	6775 7461 8190	6842 7532 8265	6909 7603 8341	6977 7675 8418	7045 7747 8495	7820	7182 7893 8650	7251 7966 8728	11 12 13	23 24 26	34 36 38	45 48 51	56 60 64
62 63 64	$\begin{array}{c} 1.8807 \\ 1.9626 \\ 2.0503 \end{array}$	8887 9711 0594	8967 9797 0686	9047 9883 0778	9128 9970 0872	0057	$9292$ $\overline{0145}$ $1060$	9375 $0233$ $1155$	9458 $0323$ $1251$	9542 $0413$ $1348$	14 15 16	27 29 31	41 44 47	55 58 63	68 73 78
65	2.1445	1543	1642	1742	1842	1943	2045	2148	2251	2355	17	34	51	68	85
66 67 68	$2.2460 \\ 2.3559 \\ 2.4751$	2566 3673 4876	2673 3789 5002	2781 3906 5129	2889 4023 5257	2998 4142 5386	3109 4262 5517	3220 4383 5649	3332 4504 5782	3445 4627 5916	18 20 22	37 40 43	55 60 65	74 79 87	92 99 108
69 70 71	2.6051 $2.7475$ $2.9042$	6187 7625 9208	6325 7776 9375	6464 7929 9544	6605 8083 9714	8239	6889 8397 0061	7034 8556 0237	7179 8716 0415	7326 8878 0595	24 26 29	47 52 58	71 78 87	95 104 115	118 130 144
72 73 74	3.0777 3.2709 3.4874	$0961 \\ 2914 \\ 5105$	1146 3122 5339	1334 3332 5576	1524 3544 5816	1716 3759 6059	1910 3977 6305	2106 4197 6554	2305 4420 6806	2506 4646 7062	32 36 41	64 72 82	96 108 122	129 144 162	161 180 203
75	3.7321	7583	7848	8118	8391	8667	8947	9232	9520	9812	46	94	139	186	232
76 77 78	4.0108 4.3315 4.7046	$0408 \\ 3662 \\ 7453$	$0713 \\ 4015 \\ 7867$	1022 4374 8288	1335 4737 8716	1653 5107 9152	1976 5483 9594	$2303 \\ 5864 \\ \hline 0045$	$2635 \\ 6252 \\ \hline 0504$	$\frac{2972}{6646}$ $\overline{0}970$	53 62 73	107 124 146	160 186 219	214 248 292	267 310 365
79	5.1446	1929	2422	2924	3435	3955	4486	5026	5578	6140	87	175	262	350	437
80	5.6713 6.3138	7297 3859	7894 4596	8502 5350	$9124 \\ 6122$	9758 6912	0405	1066	$\overline{1742}$ 9395	2432	_		- 1		
82	7.1154	2066	12.00				7720	8548		0264					
83	8.1443	2636	3002 3863	3962 5126	4947 6427	5958 7769	6996 9152	$\frac{8062}{0579}$	$\frac{9158}{2052}$	$\frac{0285}{3572}$	1	Differ	ence	colu	mns
84	9.5144			10.02	10.20	10.39	10.58	10.78	10.99	11.20	cea	se tong to	o be	rapi	eful, dity
85	11.43													chang	
86 87 88	14.30 19.08 28.64	19.74	20.45	21.20	22.02	22.90	23.86	24.90	26.03	27.27					
89	57.29	63.66	71.62	81.85	95.49	114.6	143.2	191.0	286.5	573.0					

# COMBINED TABLE OF THE PRINCIPAL WIRE GAUGES

NDED	Kilo-	grams per Km.	9,190	9,068	8,041	6.892		5,743	5,667	4,595	4,004	2,100	3,676	3,627	3,446	3,216	7,101	2.720	2,298	2,176	1,838	1,678	1,608	1,378	1,360
STRANDED	WEIGHT 10- Pounds	per 1,000 Ft.	6,175	6,093	5,403	4,631	1006	3,859	3,808	3,088	9,047	2::1	2,470	2,437	2,316	2,161	1,853	1.828	1,544	1,462	1,235	1,127	1,081	926	914
SOLID	X	grams per Km.	:	:	:				:	:												:	:		
SOI	Pounds	per 1,000 Ft.	::	:::	:			****	: : :		: :				• • • • • • • • • • • • • • • • • • • •			1			•	: >	/: :		
	British Stand-	ard Wire Gauge	::::	: : :	:::			:::									: :		7. 1.					:	:
BERS	Old English Wire	Gauge (Lon-don)	::::	::::	::::			:::									: : :					: : :			
GAUGE NUMBERS	Birming- ham	Wire Gauge (Stubs)	:	: :	:	: :		:::		•			: : :							*******		: : :	:::	: : :	
GAUG	Steel Wire Gauge	(Wash- burn & Moen)		:::	:::	: :		:::		::::							:::	Y:							
	Ameri- can	Wire Gauge (B.&S.)			:	: :		::::		:	: :						:::								
		Square Milli- meters	1,013.4	1,000.0	880.7	760.1		633.4	629.0	2000.7	456.0	2	405.4	400.0	380.0	504.7	904.0	300.0	253.4	240.0	202.7	0.681	177.3	152.0	150.0
<b>E</b>	CROSS SECTION	Circular Mils	2,000,000	1,974,000	1,730,000	1,500,000		1,250,000	1,233,000	1,000,000	900,000	2006000	800,000	789,400	750,000	000,000	000,000	592,100	200,000	473,600	400,000	365,100	350,000	300,000	296,000
SOLID WIRE	Ch	Square	1,571,000	1,550,000	1,374,000	1.178,000		981,700	968,800	775,000	706,900	anakan.	628,300	620,000	000,686	049,800	411,200	465,000	392,700	372,000	314,200	286,800	274,900	235,600	232,500
92	DIAMETER	Milli- meters			33.60	31.11		28.40					22.72					19.54		17.48				13.91	
	DIAM	Mils	1,414.0	1,405.0	1,523.0	1,225.0		1,118.0	1,111.0	1,000.0	948.7		894.4	888.5	866.0	230.1	114.0	769.5		688.2			591.6	547.7	544.1

1,000,000 square mils = 1 square inch. E.g., cross sectional area of No. 4/0 B. & S. is 0.1662 square inch.

TDED RE		Kilo- grams per Km.	1,149 1,104 1,088 990 978	972 948 861 857 852	829 771 734 712 653	635 635 611 604 556	531 504 485
STRANDED	Wелент	Pounds per 1,000 Ft.	772 742 731 666 659	653 636 579 576 576	558 518 494 478 438	427 427 411 406 374	357 339 326
SOLID	WEI	grams per Km.	1,126 1,082 1,067 971 959	953 929 845 840 835	813 756 720 698 650	623 622 599 545	521 494 475
SOI		Pounds per 1,000 Ft.	757 727 717 652 646	641 624 568 565 565	547 508 484 469 429	419 418 403 398 367	350 332 319
	British	Stand- ard Wire Gauge	0/2	5/0	4/0	3/0	:::
BERS	Old English	Wire Gauge (Lon- don)	:::::	4/0	3/0		1/0
GAUGE NUMBERS	Birming-	ham Wire Gauge (Stubs)		4/0	3/0		0,::/
GAUG	Steel	Gauge (Wash- burn & Moen)	0/9	5/0	4/0	3/0	2/0
	Ameri-	Can Wire Gauge (B.&S.)	:::::	4/0	3/0	2/0	1/0
		Square Milli- meters	126.7 121.7 120.0 109.1 107.9	107.2 104.4 95.0 94.56 93.91	91.52 85.03 81.07 78.58 73.17	70.12 70.0 67.43 66.58 61.36	58.58 55.52 53.48
<b>E</b>	CROSS SECTION	Circular Mils	250,000 240,100 236,800 215,300 213,000	211,600 206,100 187,500 186,600 185,300	180,600 167,800 160,000 155,100 144,400	138,400 138,100 133,100 131,400 121,100	115,600 109,600 105,500
SOLID WIRE	CR	Square	196,300 188,600 186,000 169,100 167,300	166,200 161,900 147,300 146,600 145,600	141,900 131,800 125,700 121,800 113,400	108,700 108,500 104,500 103,200 95,110	90,790 86,050 82,890
	DIAMETER	Milli- meters	12.70 12.45 12.36 11.79	11.68 11.53 11.00 10.97 10.93	10.80 10.40 10.16 10.00 9.652	9.449 9.441 9.266 9.208 8.839	8.636 8.407 8.251
144 144	DIAM	Mils	500.0 490.0 486.6 464.0 461.5	460.0 454.0 433.0 430.5	425.0 409.6 400.0 393.8 380.0	372.0 371.7 364.8 362.5 348.0	340.0 331.0 324.9

1			r				
STRANDED	-	grams per Km.	481 453 431 413 385	370 368 350 317 316	308 305 292 272 260	247 242 233 227 221	206 197 192
STRA	WEIGHT	per 1,000 Ft.	324 305 290 278 258	249 247 236 213 213	207 205 197 184 176	166 163 157 152 150	139 133 129
ID RE	WEI	grams per Km.	472 445 423 405 377	363 361 343 311	302 299 286 267 255	242 237 228 222 217	202 193 188
SOLID	Tours de	per 1,000 Ft.	318 299 272 253	244 242 231 209 209	203 201 192 180 173	163 159 154 149 147	136 130 126
	British	ard Wire Gauge	1/0	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	: : : : :	4 : : : :	יים : :
BERS	Old	Gauge (Lon-don)	:::-:	64 : : : :	ω : : : 4	::::::20	:::
SAUGE NUMBERS	Birming-	Wire Gauge (Stubs)	:::-:	α : : : :	ω : : : 4		:::
GAUG	Steel	(Wash- burn & Moen)	1/0	2 : 1	::::m:	::4::	: io :
	Ameri-	Wire Gauge (B. & S.)	:::: <b>:</b> -	!!!!!!	: :::: :0::::	:	4
		Square Milli- meters	53.19 50.0 47.60 45.60 42.41	40.87 40.58 38.60 35.0	33.99 33.63 32.18 30.09 28.70	27.27 26.67 25.72 25.0 24.52	22.77 21.71 21.15
<b>Ξ</b>	CROSS SECTION	Circular Mils	105,000 98,680 93,940 90,000 83,690	80,660 80,090 76,180 69,070 68,910	67,080 66,370 63,500 59,390 56,640	53,820 52,630 50,760 49,340 48,400	44,940 42,850 41,740
SOLID WIRE	O.	Square	82,450 77,500 73,780 70,690 65,730	63,350 62,900 59,830 54,250 54,120	52,690 52,130 49,880 46,640 44,490	42,270 41,340 39,870 38,750 38,010	35,300 33,650 32,780
Sa	DIAMETER	Milli- meters	8.230 7.979 7.785 7.620 7.348	7.214 7.188 7.010 6.676 6.668	6.579 6.544 6.401 6.190 6.045	5.893 5.827 5.723 5.642 5.588	5.385 5.258 5.189
2500 X	DIAN	Mils	324.0 314.1 306.5 300.0 289.3	284.0 276.0 262.8 262.5	259.0 257.6 252.0 243.7 238.0	232.0 229.4 225.3 222.1 220.0	212.0 207.0 204.3

STRANDED		Kilo- grams per Km.		169.0 152.0 149.0			125.0				95.3		83.6	75.9	66.7	66.1	61.8
STRA	WEIGHT	Pounds per 1,000 Ft.	128.0	114.0 102.0 100.0	97.5	96.7	84.1	79.1	6.79		64.1		56.3	51.0	44.8	44.5	41.5
ID RE		Kilo- grams per Km.	186.0	166.0 149.0 146.0	142.0	141.0	123.0	115.0			93.4		82.0	74.4	65.4	64.8	60.6
SOLID		Pounds per 1,000 Ft.	125.0	112.0 100.2 98.1	95.6	94.8	82.4	77.5			62.8	7.69	55.2	50.0	44.0	43.6	39.6
	British	Stand- ard Wire Gauge	:	o : :	:::	.2		00			. 6	:	::	.10.	:::	:;	:: :::
BERS	Old	Wire Gauge (Lon-don)	9		:	:::	ο :	:	:	6	:		.10	:::	:::	11	::
GAUGE NUMBERS	Birming-	ham Wire Gauge (Stubs)	9		:	:::	∞ :	:::	/:·	n :	::	:	.10.	::	:::	11	
GAUG	Steel	Gauge (Wash- burn & Moen)	: 0	• : : : :	:	2 ::	:00	\\	6	: :	:	10	2:	: :;	11	1	
	Ameri-	can Wire Gauge (B.&S.)		5	:	: : : :		:	:::		:::		: : :	o :	/	:	. 6
		Square Milli- meters	20.88	16.77 16.42 16.0		15.70			11.14	10.55	10.51			8.302	-	7.297	6.634
Œ	CROSS SECTION	Circular Mils	41,210	33,100 32,400 31,580	91 990	30,980	26,250	79,000	21,990			18,230	17,960	16,380	00000	14,400 $13,460$	13,090
SOLID WIRE	Ö	Square	32,370 28,950	26,000 25,450 24,800	94 610	24,330	20,620	011,02	$17,270 \\ 17,200$	16,350	15,500	14,310	$14,100 \\ 12,970$	12,870	11 910	10,570	10,280
	DIAMETER	Milli- meters	5.156	4.621 4.572 4.514	4 496	4.470	4.115		3.767			512000		3.251	020	2.946	
	DIAN	Mils		181.9 180.0 177.7		176.0			148.0				128.5	128.0 120.5	190 0	116.0	114.4

DED		Kilo- grams per Km.	54.6 54.4 551.2 49.7	41.4 38.9 37.8 36.3	31.7 229.4 23.9	22.7 19.4 18.9 18.0	15.4 15.0 14.4
STRANDED	_	Pounds per 1,000 Ft.	V-044L	∞∞44	m01000	06412	
RS	310		33.4. 33.4.	225. 255. 24.	21. 20. 19. 16.	52523	10.4 10.1 9.68
SOLID		grams per Km.	53.5 53.3 50.2 48.7 46.8	40.6 38.1 37.7 37.1	31.0 29.4 23.4 23.3 3.3	22.2 19.0 18.5 17.6	15.1 14.7 14.1
SO		Pounds per 1,000 Ft.	36.0 35.8 33.7 32.7	25.6 25.3 24.9 23.9	20.9 19.8 19.4 15.7	12.8 12.4 12.4 11.8	10.2 9.86 9.49
	British	Stand- ard Wire Gauge	15:::	13:	114	116	17
BERS	Old English	Wire Gauge (Lon- don)	12	13	14	16	17
SAUGE NUMBERS	3irming-	ham Wire Gauge (Stubs)	12	13	14	16	17
GAUG	Steel Wire	Gauge (Wash- burn & Moen)	12:::	13::	15	16	
	Ameri-	Can Wire Gauge (B.&S.)	:::::01	: : ;= :	113	: :4 : :	15
		Square Milli- meters	6.020 6.0 5.640 5.481 5.261	4.573 4.289 4.242 4.172 4.0	3.491 3.209 3.243 2.627 2.624	2.5 2.141 2.081 2.075 1.979	1.705 1.650 1.589
	CROSS SECTION	Circular Mils	11,880 11,840 11,130 10,820 10,380	9,025 8,464 8,372 8,234 7,894	6,889 6,530 6,400 5,184 5,178	4,934 4,225 4,107 4,096 3,906	3,364 3,257 3,136
SOLID WIRE	Свс	Square Mils	9,331 9,300 8,742 8,495 8,155	7,088 6,648 6,576 6,467 6,200	5,411 5,129 5,027 4,072 4,067	3,875 3,318 3,225 3,217 3,068	2,642 2,558 2,463
σ	ETER	Milli- meters	2.769 2.764 2.680 2.642 2.588	2.413 2.337 2.324 2.305 2.257	2.108 2.053 2.032 1.829 1.828	1.784 1.651 1.628 1.626 1.588	1.473 1.450 1.422
	DIAMETER	Mils	109.0 108.8 105.5 104.0 101.9	95.0 92.0 91.5 90.74 88.85	83.0 80.81 80.0 72.0 71.96	70.24 65.0 64.08 64.0 62.5	58.0 57.07 56.0

ADED	Kilo- grams per Km.	14.0 13.6 13.4 11.8	10.6 10.4 10.2 9.41 8.10	7.72 7.47 7.35 7.12 5.95	5.92 5.77 5.63 5.57 4.70	4.69
STRANDED	Weight lo-Pounds ms per rr 1,000 m. Ft.	9.38 9.14 9.01 7.98 7.42	7.11 6.97 6.30 6.32 5.45	5.19 5.02 4.94 4.79 4.00	3.98 3.78 3.74 3.16	3.15 3.10 3.06
SOLID	Kil gra pe Kil	13.7 13.3 13.1 11.6	10.4 10.2 10.0 9.23 7.94	7.57 7.32 7.21 6.98 5.84	5.80 5.66 5.52 5.46 4.61	4.60
SOI	Pounds per 1,000 Ft.	9.20 8.96 7.82 7.27	6.97 6.83 6.76 6.20 5.34	5.09 4.92 4.70 3.92	3.90 3.80 3.71 3.67	3.09 3.04 3.00
	British Stand- ard Wire Gauge		81 : : : :	19	21	:::
BERS	Old English Wire Gauge (Lon-don)	18::::	:::::	19	50	21.
GAUGE NUMBERS	Birming- ham Wire Gauge (Stubs)	18	19	/!!!!!	20	:::
GAUG	Steel Wire Gauge (Wash- burn & Moen)	17.	:8:::	13	50:::	211
	American Wire Gauge (B.&S.)	16	17.	::: :::	61 :::/:	20
Title William	Square Milli- meters	1.539 1.5 1.478 1.309 1.217	1.167 1.143 1.131 1.038 0.8938	.8518 .8231 .8107 .7854	. 6527 . 6362 . 6207 . 6136	.5176 .5092 .5028
E	Cross Section Circular Mils	3,038.0 2,960.0 2,916.0 2,583.0 2,401.0	2,304.0 2,256.0 2,232.0 2,048.0 1,764.0	1,681.0 1,624.0 1,600.0 1,550.0 1,296.0	1,288.0 1,255.0 1,225.0 1,211.0 1,024.0	1,022.0 1,005.0 992.3
SOLID WIRE	Cr Square Mils	2,386.0 2,325.0 2,290.0 2,028.0 1,886.0	1,810.0 1,772.0 1,753.0 1,609.0 1,385.0	1,320.0 1,276.0 1,257.0 1,217.0 1,018.0	1,012.0 986.1 962.1 951.1 804.2	802.3 789.2 779.3
	DIAMETER s Milli- meters	1.400 1.382 1.372 1.291 1.245	1.219 1.207 1.200 1.150 1.067	1.041 1.024 1.016 1.000 0.9144	.9116 .9000 .8890 .8839 .8128	.8118 .8052 .8001
6-2-2 0-13	Diai	55.12 54.41 54.0 50.82 49.0	48.0 47.5 47.24 45.26 42.0	41.0 40.30 40.0 39.37 36.0	35.89 35.43 35.0 34.8 32.0	31.96 31.7 31.5

11					
SOLID WIRE WEIGHT ounds Kilo- grams 000 Ft. per Km.	33.65 33.55 33.55 33.55 33.55 33.55		2.38 2.30 1.89 1.88	1.82 1.80 1.58 1.48	1.44 1.35 1.23 1.21 1.18
SOLID WI WEIGHT Pounds K per gr 1,000 Ft. per	22222 2234 2234 2237 21	2.01 1.94 1.89 1.74 1.69	1.60 1.54 1.47 1.27 1.26	1.22 1.21 1.06 0.992 .981	. 970 . 906 . 824 . 814 . 794
British Stand- ard Wire Gauge	53	53	24	25	27
SERS Old English Gauge (London)	22 22 23	24	25	277	
GAUGE NUMBERS eel Birming- Old uge Wire Engl shburn Gauge Gau loen) (Stubs) (Lond	22	23	24	25	
GAUG Steel Wire Gauge (Washburn & Moen)	525	23	24	26	27
Ameri- can Wire Gauge (B. & S.)	21	53	53	24	25
N Square Millimeters	. 4410 . 4145 . 4105 . 3973 . 3694	.3373 .3255 .3167 .2919 .2827	. 2680 . 2582 . 2452 . 2129 . 2109	.2047 .2027 .1781 .1660	.1624 .1517 .1380 .1363
RE Cross Section Circular Mils	870.3 818.0 810.1 784.0 729.0	665.6 642.4 625.0 576.0 558.0	529.0 509.5 484.0 420.3 416.2	404.0 400.0 351.6 327.6 324.0	320.4 299.3 272.3 269.0
SOLID WIRE CRO Square Mils	683.5 642.4 636.3 615.8 572.6	522.8 504.6 490.9 452.4 438.3	415.5 400.1 380.1 330.1 326.9	317.3 314.2 276.1 257.3 254.5	251.7 235.1 213.8 2113.2 206.1
DIAMETER S Millimeters	7493 7264 7229 7112 6858	. 6553 . 6438 . 6350 . 6096	5842 5733 5588 5207 5182	.5106 .5080 .4763 .4597	.4547 .4394 .4191 .4116
Diax	29.5 28.6 28.46 28.0 27.0	25.8 25.35 25.0 24.0 23.62	23.0 22.57 22.0 20.5 20.4	20.10 20.0 18.75 18.1	17.90 17.3 16.50 16.4 16.2

WIRE	Weight nds Kilo- grams Ft. per Km.	1.15 1.14 1.12 1.08 1.01	0.987 .908 .883 .852 .833	.785 .785 .720 .693	.676 .649 .627 .606 .571	.525 .525 .488 .473 .453
SOLID	WE Pounds per 1,000 Ft.	775 769 751 727 681	.663 .610 .593 .572	.527 .512 .496 .484 .465	.454 .436 .421 .384	383 327 318 304
	British Stand- ard Wire Gauge	:::::	28	30	31	33
BERS	Old English Gauge (London)	29	30		31	33 33 35
GAUGE NUMBERS	Birming- ham Wire Gauge (Stubs)	.27	58	29	30	31
GAU	Steel F Wire Gauge (Washburn & Moen)	29	30	31	33	34
	Ameri- can Wire Gauge (B. & S.)	26	27	58	29	88
	Square Millimeters	.1297 .1288 .1257 .1217 .1140	.1110 .1021 .09932 .09580	.08829 .08563 .08302 .08098	.07604 .07297 .07055 .06818	.06413 .05910 .05481 .05324 .05093
RE	Cross Section Circular Mils	256.0 254.1 248.0 240.3 225.0	219.0 201.5 196.0 189.1	174.2 169.0 163.8 159.8	150.1 144.0 139.2 134.6 126.7	126.6 116.6 108.2 105.1 100.5
SOLID WIRE	Square	201.1 199.6 194.8 188.7 176.7	172.0 158.3 153.9 148.5 145.3	136.8 132.7 128.7 125.5 120.8	117.9 113.1 109.4 105.7 99.54	99.40 91.61 84.95 82.52 78.94 78.54
	DIAMETER IS Millimeters	.4064 .4049 .4000 .3937 .3810	.3759 .3556 .3493 .3454	.3353 .3302 .3251 .3211 .3150	.3112 .3048 .2997 .2946 .2859	2858 2743 2642 2664 25646 2546
	DIA	16.0 15.94 15.75 15.50 15.0	14.8 14.20 14.0 13.75 13.6	13.2 13.0 12.8 12.64	12.25 12.0 11.8 11.6 11.26	11.25 10.8 10.4 10.25 10.03

WIRE IGHT Kilo- grams per Km.	407 382 365 359 325	.318 .288 .285 .260 .253	. 226 . 221 . 208 . 196 . 196	.179 .173 .162 .152	. 142 . 136 . 122 . 113
SOLID WI WEIGHT Pounds K per grr 1,000 Ft. per	. 273 . 256 . 245 . 241 . 219	.214 .194 .191 .175	.152 .148 .140 .132 .128	. 120 . 116 . 109 . 100 . 100	.0954 .0916 .0818 .0757 .0697
British Stand- ard Wire Gauge	34	35	37	38	39
SERS Old English Gauge (London)	34	36	37	38: : : :	339
GAUGE NUMBERS eel Birming- Old ifre ham Engli uge Wire Engli hburn Gauge Gaug	32	33	34		35
GAUC Steel Wire Gauge Washburn & Moen)	35	38	40	43 44 44	
Ameri- can Wire Gauge (B. & S.)	31	32	33	34	35
Square Millimeters	. 04573 . 04289 . 04104 . 04039 . 03661	.03575 .03243 .03203 .02927 .02850	.02540 .02483 .02343 .02207	.02014 .01948 .01824 .01705	.01597 .01533 .01370 .01267
RE Cross Section Circular Mils	90.25 84.64 81.00 79.70	70.56 64.00 63.21 57.76 56.25	50.13 49.00 46.24 43.56 42.25	39.75 38.44 36.00 33.64	31.52 30.25 30.25 27.04 25.00 23.04
SOLID WIRE CRC Square Mils	70.88 66.48 63.62 62.60 56.75	55.42 50.27 49.64 45.36 44.18	39.37 38.38 36.32 34.21 33.18	31.22 30.19 28.27 26.42 25.97	24.76 23.76 21.24 19.63 18.10
S Diameter S Millimeters	. 2413 . 2337 . 2286 . 2268 . 2159	.2134 .2032 .2019 .1930	.1798 .1778 .1727 .1676	.1601 .1575 .1524 .1473 .1461	. 1426 . 1397 . 1321 . 1270
Dian	9.50 9.2 9.00 8.928 8.5	8.4 8.0 7.950 7.6 7.50	7.080 7.0 6.8 6.6 6.50	6.305 6.2 6.0 5.8 5.75	5.615 5.5 5.2 5.000 4.8

SOLID WIRE	Kilo- grams per Km.	.0953 .0912 .0893 .0872 .0721	.0708 .0584 .0562 .0461 .0445	.0354 .0353 .0259 .0259	. 0180 . 0176 . 0140 . 0115	.0088 .0070 .0065 .0055
SOLID	WEIGHT Pounds K per gra 1,000 Ft. per	. 0641 . 0613 . 0600 . 0586 . 0484	.0476 .0392 .0377 .0310	.0237 .0237 .0188 .0174	. 0121 . 0118 . 0094 . 0077	.0059 .0047 .0044 .0037 .0030
	British Stand- ard Wire Gauge	4	43	45	47	49.
BERS	Old English Gauge (London)	40				
GAUGE NUMBERS	ham Wire Gauge (Stubs)	36				
GAUC	Wire Gauge (Washburn & Moen)	49				
A meri-	Can Wire Gauge (B. & S.)	37	38 39 40	41 42 43	444 455 466	47 48 49 50
	N Square Millimeters	.01072 .010026 .01005 .009810 .008107	. 007967 . 006567 . 006318 . 005189	. 003973 . 003973 . 003151 . 002919 . 002499	. 002027 . 001982 . 001572 . 001297	.0009884 .0007838 .0007297 .0006216 .0005067
3E	Cross Section Circular Mils	21.16 20.25 19.83 19.36 16.00	15.72 12.96 12.47 10.24 9.888	7.842 7.840 6.219 4.932	4.000 3.911 2.560 2.460	1.951 1.547 1.440 1.227 1.000 0.9728
SOLID WIRE	Square Mils	16.62 15.90 15.57 15.21 12.57	12.35 10.18 9.793 8.042 7.766		3.142 3.072 2.436 2.011 1.932	1.532 1.215 1.131 0.9635 .7854 .7641
	DIAMETER s Millimeters	. 1168 . 1143 . 11131 . 1016	. 1007 . 09144 . 08969 . 07987	. 071112 . 06334 . 06096 . 05641	. 05023 . 04473 . 04064 . 03984	.03547 .03159 .03048 .02813 .02540
•	DIA Mils	4.6 4.453 4.4 4.0	3.953 3.531 3.2 3.145	2.22 2.22 2.22 2.22 0.221	1.978 1.761 1.6 1.568	1.244 1.2 1.108 1.0 0.9863

## DECIMAL EQUIVALENTS

8ths	16ths	32nds	64ths	Decimal	8ths	16ths	32nds	64ths	Decimal
1.			1	.015625			14 E	33	.515625
		i	2	.03125			i7	34	. 53125
			3 4	.046875				35	.546875
••	1	2	4	.0625		9	18	36	.5625
			5	.078125				37	.578125
		3	6	.09375			19	38	.59375
i	2	4	7 8	.109375	5	::		39	.609375
1	2	4	8	.125	5	10	20	40	. 625
			9	.140625				41	. 640625
		5	10	.15625			21	42	. 65625
• •	3	6	11 12	.171875 .1875		ii	22	43	.671875 .6875
•••	3	0	12	.1875		11	22	44	.0875
			13	.203125				45	.703125
		7	14	.21875			23	46	.71875
2	4	8	15	.234375	6	iż		47	. 734375
2	4	8	16	. 25	О	12	24	48	.75
			17	. 265625				49	.765625
		9	18	.28125			25	50	.78125
• •	5	iò	19 20	.296875 $.3125$	• •	13	26	$\frac{51}{52}$	.796875 $.8125$
•••	9	10	20	.3123		13	20	52	.8125
		ii	21	.328125				53	.828125
		11	22	.34375			27	54	.84375
3	6	12	$\frac{23}{24}$	.359375	7	44		55	.859375
3	0	12	24	.375	•	14	28	56	.875
			25	.390625				57	.890625
		13	26	.40625			29	58	.90625
	7	14	27 28	.421875		1:	30	59	.921875
••	1/2	14	28	. 4375		15	30	60	.9375
			29	.453125				61	.953125
	/	15	30	.46875	2		31	62	.96875
.;	/ · 8	10	31	.484375	• :	::		63	.984375
4	8	16	32	.5	8	16	32	64	1.0

# POWER CABLE REELS

# Dimensions—Capacity—Weight

m			890
234		480 850 930	975 2,200 2,810
2½ Feet		380  695 920 1,200	1,265 2,770
21/4 (1) — In		450 750 800 1,275 1,390	2,775 2,200 1,700 1,265
CABLE 2 I (Max		00000	2,200 1,700 1,265
Verall Diameter of Cable   1   1   1   1   1   2   1   3   2   2   2   4   4   4   5   4   5   4   4   5   4   4	595 500 755 545 370 470 270	785 1,175 1,520 2,150 2,350	2,775
AMETE 1½ able o	500 545 270	1,150 1,845 2,150 2,600	
LL DI 1¼ h of C	595 755 470	2,480	
Overall Diameter of Cable — Inches $1  1  1  1  1  1  1  2  1  2  2$	320 1,080 1,340 840	2,860 1,660 1,150 785 69 2,480 1,845 1,175 1,04 2,890 2,150 1,520 1,13 2,600 2,150 1,60 2,500 2,150 1,68	
34	140 510 1,700 2,265 1,415		
72	355 140 1,340 510 3,500 1,700 3,500 2,265 3,400 1,415	/iiiiii	:::
Dimensions Reel Wight.  Reel Overall (Approx.) ½ F T D H W Lbs.	30 56 180 220 260	400 450 600 760 1,020	
rall (A	13 28 28 28 28 28 28 28 28 28 28 28 28 28	39 ½ 39 ½ 46 46 46	62 1 64 2
Ove H	23 24 29 30 30	66 64 76 82 82 82	88 94 104
MEN D	12 14 24 24 36	38 32 40 40 40 40 40 40 40	44 88 44
Dr Reel T	8 114 21 21 21 21	32 36 36 36	36 51 50
_F	28 28 44 48 48	56 60 66 72 78	84 90 100

## INDEX

Abrasive Conditions, Cables for18,	186	202
A-C Losses 258,	250	260
Corrections for	256	260
A-C Resistance, see also, Resistance	.250,	200
Annular Conductors, in	262	262
Sector Conductors, in 6, 241,	.202,	203
A.C.S.R. Conductors 0, 241,	242,	252
Accelerated Life Tests		244
Accelerated Life Tests		15
Acid Conditions, Cables for	.158,	203
Aerial Cables 3, 4, 18, 21, 24, 118, 158, 206, 210, 255,	257,	260
Compound-Filled P.I.L.C.	2	211
Double Steel Tabe Armoured 21 110	150	210
Lead Sheaths for	18,	210
Lead Sheaths for Oil-Filled P.I.L.C.		4
Aeriai installations	210.	211
Cables for, see, Aerial Cables		
Air,		
Ambient Temperature of184, 264,	270.	291
Cables in	257	260
see also. Aerial Installat	ions	200
Alkali Conditions, Cables for see also, Aerial Installar	ions	158
All'Aspesios Insulated Power Cables	102	201
Allowable Copper Temperature 2 118 157 158 257	258.	261
Alloyed Lead Sheaths, see, Lead Sheaths Alternating Current Formulae Aluminum, Properties of		
Alternating Current Formulae	299	300
Ambient Temperatures	281	201
American Wire Gauge	220	240
Annular Concentric Conductors 5	262	262
Dimensions of	262	262
Skin Enect Ratio of	5	263
Antimony Lead	18	210
Applications of Power Cables 2, 3, 4, 118, 157, 158, 189, 184, 186	100	
Abrasive Conditions 193, 202, 203, 204, 205, 206-214, Abrasive Conditions 18,	253	254
Abrasive Conditions	186	202
Acid Conditions	158	202
Aerial Installations	206	210
Alkali Conditions		158
Automatic Control Systems		190
Boiler Room Circuits		105
Bore-Hole Installations	211	212
Branch Feeders	~ ,	211
Branch Taps		21
Building Installations21, 23, 118, 157, 158, 190, 194-196, 202	206	211
Burried Installations, see, Direct Earth Installations		
Ceilings, Suspension on         21, 118, 158, 206,           Chemical Conditions         19, 158, 202-204,	209	211
Chemical Conditions 19, 158, 202-204	206.	208
Circuit Breaker Installations		100
Compressors. Portable		192
Conduit Installations	206	207
Control Cable Installations	204	208
see also. Control Ca	11	200

352 INDEX

Applications of Power Cables—continued Corona Conditions	
Corona Conditions	82
Corrosive Conditions	03
Cranes 1	82
Cyanide Conditions 2	03
Direct Earth Installations3, 4, 21, 118, 158, 202, 203, 204, 206, 2	
Distribution Systems 2	
Dredges1	82
Duct Installations3, 4, 205, 206, 207, 208, 2	.09
Emergency Connections1	82
Extensions17, 18, 2	.09
Exterior Installations 209, 2	
Extra-High Voltage	2
see also, Oil-Filled Cables Factory Installations 21, 23, 118, 157, 158, 190, 195, 206, 2 Flame Conditions 158, 186, 193-196, 202, 204, 205, 211, 2	
Factory Installations	11
Flame Conditions	14
Generating Station Installations 190, 194-1	96
High Temperature Conditions 2, 157, 193-196, 2	202
High Voltage	83
Hot Locations21, 23, 118, 158, 190, 193-196, 206, 209, 210, 2	202
Indoor Installations	211
Lighting Installations	204
Locomotive Circuits	96
Longitudinal Strain Conditions 23, 185, 2	
Main Feeders 204 2	11
Mechanically Injurious Conditions19-21, 118, 158, 185, 186, 209, 210, 2	11
Metering Circuits	90
Mill Buildings 105 202.2	206
see also, Building Installations   See also, Building Installations   23, 195, 202-206, 210, 211, 2	.00
Mine Installations 23 195 202-206 210 211 2	112
Mine Shafts 23, 202, 204-206, 211, 2	112
Moisture Conditions	05
Motor Control Circuits	004
Oil Conditions	05
Overhead Installations, see, Aerial Installations	.03
Oxidation Conditions2	205
Portable Cable Installations 182-189, 1	00
Power Feeders 21, 2	202
Rack Installations 21, 2	
Relay Circuits	
Remote Control Circuits 1	100
Roof Trusses, Suspension on 21, 2	110
Rough Usage Conditions 1	10
see also, Rubber Sheathed Portable Power Cables	.00
Shaft Installations	112
Shovels, Electric1	
Station Wires 1	18
Submarine Installations	
Switchboard Circuits	
Telephone Circuits	208
Temporary Connections 1	82
Traffic Light Systems1	90
Tray Installations 2	11
Tunnel Installations 209, 211, 2	
Underground Installations3, 4, 118, 158, 202-204, 206, 2	11
The standard instandarding	11
Vertical Installations 15, 23, 202, 204-206, 2	11
Vertical Shafts	.12

Applications of Power Cables—continued		
Walls, Suspension on	5. 209	. 211
Wet Locations	205	200
Application of 60-Cycle Impedance Characteristics	248	3-251
Armour,	to Military	
Copper	Comp.	. 203
Double Steel Tape, see, Double Steel Tape Armour		
	Application	
Steel Tape, Interlocking	300	203
Aspestos Cement		214
Aspestos Ducts		207
Asbestos Insulated Power Cables	193	3-201
Ashestos V.C. Landard P. C. H.		214
Asbestos-V.C. Insulated Power Cables 193	3-201,	202
Asphalt, Venezuelan		203
Atomic Weights Automatic Control Systems		302
Average Permissible Operating Temperature		190
Back-Fill 200	200	256
Back-Fill 208 Belt Insulation 218, 220	, 209,	210
Belt Thickness 218, 220	, 233,	253
see also Insulation Thinks	233,	253
Belted Type, see, Particular Type of Cable Bending of Cables 208, 209	iesses	
Bending of Cables 208, 209	210	221
Binder Tape, Metallic	, 210,	221
Non-Metallic		16
Bleeding, of P.I.L.C. Cables		10
Boiler Room Circuits, Cables for	2	105
Bore-Hole Installations 23, 202, 206,	211	195
Braided Cables, see, Particular Type of Cable	211,	212
Braids 121, 132, 160	166	101
Cotton		101
Shielding	122	204
Weatherproof	186	100
Dranch Feeders	208	211
Dranch Taps		21
Drass, Properties of		302
Dreaking Strengths, A.S. I.M.		
Copper, Solid	12	. 13
Copper, Stranded	0 10	11
Dritish Standard Wire Gauge	220	240
Druize officiana Tane		11
Brown & Sharpe Wire Gauge	339	-348
Brown & Sharpe Wire Gauge Building Installations 21, 23, 118, 157, 158, 190, 194-196, 202	-206,	211
Durieu Cables, see, Intert Carin Installations		
Buried Installations, see, Direct Earth Installations		
Cable Centre		253
Cable Diameters		230
Cable Economics see also, Overall Diam 206,	eters	
Cable Installations 206,	210.	254
Cable Installations 4, 17, 18, 21, 23, 24, 118, 158 Cable Lay, Effect of, on Inductance	, 206-	714
Cables, see. Application of Power Cables, also, Particular Type		230
Cabling Allowance	044	
Cabling Allowance Cabling of, P.I.L.C. Cables Calculation of Florida I Public St. Market Cables	241,	242
Calculation of Electrical Problems of Underground Cables	220	26
Calculation of Overhead Line Problems	236	2.50

354 INDEX

Calculation of Underground Cable Problems 230-236, 248, 254-	256
Capacitive Spacing Correction Factor 238,	247
Capacity, Current Carrying, see, Current Carrying Capacity	
Capacity, Electrostatic 232, Capacity Measurements, of P.I.L.C. Cables 27,	235
Capacity Measurements, of P.I.L.C. Cables	28
Canstans	20
Ceilings, Cables for Suspension on	214
Cellulose Fibres14,	15
Characteristics, Impedance, of Wires and Cables at 60 Cycles	251
Charging Current	235
Chemical Conditions, Cables for19, 158, 202-204, 206,	
Cinder Back-Fill 208,	
Circles, Area, etc., of311-	
Circuit Breaker Installations	190
Clamps	
Class AO (A.S.T.M.) Rubber	157
Clay Bricks	
Code Rubber	157
Coiling	
Common Electrical Terms 299,	
Common Lead	
Compounds,	11
Asphalt19, 20,	203
Flame-Resisting	103
Heat-Resisting Heat-Resisting	103
Impregnating	27
see also Impregnating Oils	, 21
see also, Impregnating Oils Moisture-Resisting	193
Non-Adhesive	19
Ozita 211 218 227	228
Ozite 211, 218, 227, Rubber 157, 158, 182, 185,	186
Venezuelan Asphalt	203
Compound-Filled Cables, see, Paper Insulated Power Cables Compressors, Cables for	182
Concentric Conductors 5, 8, 9, 10	11
C. 1	
Conductance, see, Leakage Conductivity, Electrical	200
Conductivity, Electrical	200
Annealed Copper	302
Hard Copper 243,	302
Conductivity, Thermal Metal Binder Tape, of	16
Metals, of	202
Conductor Identification	100
Conductor Temperature	
Conductors 4-7,	185
A.C.S.R.	244
Copper, see also, Copper annular concentric	262
concentric	
hollow core concentric	
round solid	242
round stranded	253
sector stranded1, 6, 7, 241,	252
segmental Type M	245
Copper-Copperweld	245
Copper Transmission Line	243

Conductors—continued	
Copperweld	The second state of the second state of the
Economical Size of	245
	184, 254
Transposed	
Connectors, Box	116, 158, 207, 208, 210, 212
Contraction of Sheaths Control Cables	221, 222, 223, 221, 228, 229
Control Cables, Armoured Asbestos Insulated	14, 15, 209
Armoured	
Asbestos Insulated Asbestos-V.C. Insulated	203
Conversion Factors	200 201 204 206
Allowable Temperature of	157 257 259 261
- AMICUICU	1 200 200
- Licus of Round	0 12 220 240
Conductivity, Thermal	202
Conductivity, Thermal Conductors, Types of, see, Conductors Current Carrying Capacity of an Conductors	
Tard Drawn	200 200
Resistivity of Shielding Tape Specific Gravity of	see also Resistance
Resistivity of	9. 11. 13. 296. 297. 298. 302
Shielding Tape	3 16
Specific Gravity of	302
Specific Heat of Stranding Allowance for Temperature	302
Stranding Allowance for	9 11 241
Tinned Voltage Drop in see Voltage Drop	183 185
Voltage Drop in, see, Voltage Drop Weight of Wire Tables	103,
Weight of	8-13, 339-348
Wire Tables	8-13, 339-348
Copperweld Conductors Copper-Cotton Shielding	245
Copper-Cotton Shielding Copper Shielding Tape	182, 183
C	3. 16
Core,	, 10
Helical, Steel or Copper	4.5
Hollow, Conductors	

Core—continued	
Rope, Conductor	5
see also Annular Concentric Conductors Corona 118, 157, 158,	
Corona	182
Correction for A-C Losses	260
Corrosion Protection see Protective Coverings	
Corrosive Conditions, Cables for	203
Cosines, Natural 335,	336
Cotton Braid	101
Cotton Cloth 118,	202
Cotton Tape 220, 221, 222, 224, 227, 228,	303
Coverings Overall	303
Coverings, Overall	180
Cracking of Lead Sheaths see also, Protective Coverings 209,	
Cracking of Lead Sheaths 209,	214
Cranes, Cables for	182
Crushing 185,	186
Cube Roots 311	-330
Current Carrying Capacity.	
A-C Losses, Effect of, on	260
Accuracy of	254
Air, of Cables in	291
Allowable	260
Allowable Copper Temperature 257, 258, 260,	261
Basis of256-259, 260,	262
Calculation of254-256,	260
Conductor Temperature 255 257 258 260	261
Conductor Temperature 255-257, 258, 260, Conductor Temperature Correction for 256,	261
Conductor Temperature Correction for	201
Corrections for184, 256, 258, 260,	203
Daily Load Factors184,	25/
Dielectric Loss Correction for	256
Dielectric Loss, Effect of, on255, 256, 258,	259
Direct Current	261
Economic Considerations of	254
Effect of Variation of Insulation Thicknesses on	258
Estimation of	260
Factors Affecting	260
Flow of Heat in Cable 254.	255
Formulae for	256
Insulation Temperature	257
Limitations of 210 253	260
Load Factor, Effect of, on	254
Loss Factor	257
Ohm's Law For Heat	255
Proximity Effect Correction for256, 258,	260
Proximity Effect, Effect of, on256, 258, 259,	260
Reels, of Cables, on	104
Shooth Loss Correction for	260
Sheath Loss Correction for         256, 258,           Sheath Loss, Effect of, on         254, 256, 258, 259,	200
Sheath Loss, Effect of, on	200
Skin Effect Correction for256, 258, 260,	263
Skin Effect, Effect of, on256, 258, 259,	260
Sun, Effect of, on	210
Tables,	
A.C.S.R.	244
Copper-Copperweld Conductors	245
Copper Transmission Line Conductors	243
Copperweld Conductors P.I.L.C., Compound-Filled, 3/c Belted Type 276	245
P.I.L.C., Compound-Filled, 3/c Belted Type 276	-279
P.LL.C. Compound-Filled 3/c Type H 274	275

Current Carrying Capacity—continued		
Tables—continued		
P.I.L.C., Compound-Filled, Single Conductor	267-	-270
P.I.L.C., Compound-Filled, 1/c, Annular	2/1-	2/3
P.I.L.C., Oil-Filled, 3/c, Type H	264	265
P.I.L.C., Oil-Filled, Single Conductor Rubber Insulated, Braided or Leaded, 3/c Belted Type	202	203
Rubber Insulated, Braided or Leaded, 3/c Belted Type	200	293
Rubber Insulated, Braided or Leaded, Single Conductor	290,	100
Rubber Sheathed Portable Power Cables10	260	262
Use of	288	280
V.C. Insulated, 3/c Belted Type V.C. Insulated, 3/c Type H	286	287
V.C. Insulated, Single Conductor	282	285
V.C. Insulated, 1/c Annular	280	281
Temperature Allowable Copper 118 252	7 258	261
Temperature, Allowable, Copper 118, 257 Temperature, Average Permissible 118, 257	, 230,	256
Temperature Rise	253	-255
Thermal Conductance		
Thermal Considerations	254	255
Thermal Law, see Ohm's Law For Heat		
Thermal Law, see Ohm's Law For Heat Thermal Resistance	255,	257
I nermal Resistivity	200,	250
Use of, Tables		260
Voltage, Effect of, on	257,	258
Current Centre		253
Current Ratings		184
Cyanide Conditions, Cables for see also, Current Carrying Ca	pacity	000
Cyanide Conditions, Cables for		203
Daily Load Factors Damage to Cables 21, 208, 209, 210	212	21/
Decimal Equivalents	), 213,	340
D.C. Current Carrying Capacity		261
Diameters		
A.C.S.R.	A SHIP IN	244
Annular Conductor	262.	263
Cable		230
see also, Overall Dia Copper, Bare	meters	
Copper, Bare	2, 263,	339
Copper-Copperweld		245
Copper-Copperweld Copper Transmission Line		243
Copperweld		245
Sector Cable	6,	230
see also, Cable,	above	
Dielectrics, see, Insulations Dielectric Constant	200	202
Dielectric Constant	6 258	250
Correction for	0, 200,	256
Reduction in Current due to	258	259
Thermal Resistance to	250,	253
D. I. C. B. B. C.		
Dielectric Power Factor, see, Power Factor		
Dielectric Power Factor, see, Power Factor Dielectric Strength	4, 118,	300
Dielectric Strength	4, 118, 6, 209,	300 210
Dielectric Power Factor, see, Power Factor Dielectric Strength Direct Earth Installations 21, 118, 158, 202, 203, 200 Cables for, see, Applications of Power Cables	4, 118, 6, 209,	300 210
Cables for, see, Applications of Power Cables  Double Steel Tape Armour	4, 118, 6, 209, 9, 210,	211
Cables for, see, Applications of Power Cables  Double Steel Tape Armour	4, 118, 6, 209, 9, 210,	211 22
Cables for, see, Applications of Power Cables  Double Steel Tape Armour	4, 118, 6, 209, 9, 210,	211 22 21
Cables for, see, Applications of Power Cables  Double Steel Tape Armour	4, 118, 6, 209, 9, 210, 21,	211 22 21 230

Double Steel Tape Armour—continued		
Thickness of		21
Types of, Cable	158	203
Dredges, Cables for		182
Drying of Cables	27	28
Duck Tape		20
Thickness of		20
Ducts	207	208
Duct Constants	252	257
Duct Installations 3, 4, 18, 118, 158, 202, 206-209, 214, 254	255.	257
Cables for, see, Applications of Power Cables		
Lead Sheaths for	18.	208
Duct Mouth	208	200
Duct Mouth Shields		209
Duct Systems	207	208
Duplex Cable		173
Earth, see, Soil		1.5
Earth, Cables in, see, Direct Earth Installations		
Economical Size of Conductors	184	254
Economics, Cable	210	254
Electric Shovels. Cables for		182
Electric Stress	16	100
Electric Stress, Reduction of in PIIC Cables		2
Electrical Characteristics of Cables 230 231-236 241 242	252	256
Electrical Resistivity, see, Resistivity	, 233	230
Electrical Resistivity, see, Resistivity Electrical Terms	299	300
Elongation of Cables		200
Emergency Connections		182
Emissivity of Lead Sheath	255	257
Equipotential Surface	233,	221
Equivalent Spacing	220	231
Excessive Bending	238,	239
Expansion of Shooths		208
Expansion of Sheaths		14
Exposed Cables	158,	211
Extensions, Cable	17	, 18
Exterior Installations	209,	211
External Reactance		227
Extra-High Voltage Cables		2
see also, Oil-Filled C	ables	
see also, Oil-Filled C Factory Installations 21, 23, 118, 157, 158, 190, 195,	206,	211
reeders	211.	253
Fibre Ducts		207
Fibre Wedges	220	221
Fillers	186	221
Fire-Proofing	211	214
Flame-Resisting Cable	205	214
Flax Twine 220,	203,	220
Flow of Heat in Cables 16,	251,	220
Formulae 10 Capies	254,	255
Formulae 230-240, 255,	256,	299
Functions of Numbers	311	-330
Galvanized Steel Wire Armour	, 210,	211
Additions for Weight of		23
Angle of Lay of		23
Applying		23
Diameter of, Cable	25.	230
Head Serving of2	3, 24,	212

Galvanized Steel Wire Armour—continued				
Intermediate Serving of			23	, 24
Maximum Length of Vertically Suspended, Cable				24
Sizes of				75
Submarine, Cable Supporting of, Cable			24	. 25
Supporting of, Cable			24	212
Types of, Cable	25	118	158	202
Vertically Suspended, Cable 23,	24 25	202	204	211
Gencorone 25,	21, 23	, 202,	201,	157
General Information			206	250
Generating Station Installations		100	104	106
Geometric Factor		190,	197,	190
Graded Paper			231	-237
"Grooving" of Lord Shooth		•••••		210
"Grooving" of Lead Sheaths	100	100	105	210
Ground Wires	182	, 183,	185,	190
Grounded Neutral, Definition of Heat-Ageing Tests				31
Heat-Ageing Tests				15
Heat Flow in Cables		16,	254,	255
Heat Generated in Cables		207,	254,	255
Heat Flow in Cables Heat Generated in Cables Heat-Resisting Rubber, see, Thermax				
Helical Core, Steel or Copper		Acres and a		4. 5
High Copper Lead		election and		18
High Density Paper				14
High Grade Rubber		157	204	212
High Temperature Conditions, Cables for	2 15	13/,	106	212
High Voltage Cables	2, 15	, 193	~190,	202
High Voltage Cables	1, 2	, 15/,	158,	183
Hollow Core Conductors				5
not Locations, Cables for	157	7. 193	-196	202
Identification, Conductor				185
Impedance Characteristics of Wires and Cables at 60	Cycles		236	-251
Impregnated Jute, see, Jute	-,			
Impregnated Paper, see Paper Insulation				
Impropriating Oil-				
"Bleeding" of			2	1.5
Coefficient of Expansion	••••••		2	, 15
Coefficient of Expansion Compound-Filled P.I.L.C. Cable, for			~	14
Crudes in			2, 15	, 27
Crudes in				15
Degasifying of				28
Dielectric Constant of				303
Dielectric Loss in				16
Dielectric Strength of				16
	••••••			202
Electrical Resistivity of		*	***********	
Filtering of				28
Filtering of Migration of			2	15
Filtering of Migration of Mineral			2	, 15
Filtering of Migration of Mineral			2	, 15
Filtering of Migration of Mineral Moisture in Oil-Filled P.I.L.C. Cable, for			2	, 15 , 15 28
Filtering of Migration of Mineral Moisture in Oil-Filled P.I.L.C. Cable, for Petroleum Derivatives of			2 2	, 15 , 15 28 , 15
Filtering of Migration of Mineral Moisture in Oil-Filled P.I.L.C. Cable, for Petroleum Derivatives of Ratio of, to Paper			2 2 3	, 15 , 15 28 , 15 15
Filtering of Migration of Mineral Moisture in Oil-Filled P.I.L.C. Cable, for Petroleum Derivatives of Ratio of, to Paper Refinement of			2 2	, 15 , 15 28 , 15 15 14
Filtering of Migration of Mineral Moisture in Oil-Filled P.I.L.C. Cable, for Petroleum Derivatives of Ratio of, to Paper Refinement of Specific Gravity of			2 3	, 15 , 15 28 , 15 15 14 15
Filtering of Migration of Mineral Moisture in Oil-Filled P.I.L.C. Cable, for Petroleum Derivatives of Ratio of, to Paper Refinement of Specific Gravity of Specific Heat of			2 2 3	, 15 , 15 28 , 15 15 14 15 303
Filtering of Migration of Mineral Moisture in Oil-Filled P.I.L.C. Cable, for Petroleum Derivatives of Ratio of, to Paper Refinement of Specific Gravity of Specific Heat of Stability of			2 2 3	, 15 , 15 28 , 15 15 14 15 303 303
Filtering of Migration of Mineral Moisture in Oil-Filled P.I.L.C. Cable, for Petroleum Derivatives of Ratio of, to Paper Refinement of Specific Gravity of Specific Heat of Stability of Tests on			2 2 3	, 15 , 15 , 28 , 15 , 15 , 14 , 15 , 303 , 303 , 303
Filtering of Migration of Mineral Moisture in Oil-Filled P.I.L.C. Cable, for Petroleum Derivatives of Ratio of, to Paper Refinement of Specific Gravity of Specific Heat of Stability of Tests on Thermal Resistivity of			2 2 3 3	, 15 28 , 15 15 14 15 303 303 16 , 28
Filtering of Migration of Mineral Moisture in Oil-Filled P.I.L.C. Cable, for Petroleum Derivatives of Ratio of, to Paper Refinement of Specific Gravity of Specific Heat of Stability of			2 2 3 3	, 15 28 , 15 15 14 15 303 303 16 , 28

Impregnating Vacuum	27.	28
Impregnation of P.I.L.C. Cables	. 27.	28
Impulse Strength		14
Indoor Installations, Cables for21, 23, 118, 158, 190, 193-196, 206,	209, 2	11
Induced Sheath Currents 231, 252, 254,	256, 2	259
Variation of	2	259
Inductance	230, 2	38
Inductive Reactance 237, 239,	241, 2	42
Inductive Spacing Correction Factor 237, Installation of Cables	238, 2	46
Installation of Cables17, 18, 21, 23, 24, 118, 158, 206-214, 254,	255, 2	57
Aerial	210, 2	211
Overhead		
Submarine		
Underground, in Ducts	209, 2	114
Underground, in Earth202, 203,		
Vertical15, 23, 24,	211, 2	212
Insulating Materials, Properties of	3	303
Insulating Varnish	1	18
Insulation	2	231
Asbestos see also, Insulating Mater	rials	02
Asbestos-Varnished Cambric 118,	102 2	93
Grading of Paper	193, 3	14
Paper		
see also P	aner	
Rubber	185. 3	303
	1 1	
Syntheticsee also, Rul	157, 1	58
Varnished Cambric	118, 3	303
Varnished Cloth	118, 3	303
Insulation Resistance 231, 232,	236, 2	252
Insulation Resistivity	3	303
Insulation Temperature 118, 157, 254,	255, 2	257
Insulation Thicknesses 233,	253, 2	258
All-Asbestos Wires and Cables, 600 volts	2	200
Asbestos-Varnished Cambric Wires and Cables, 600 volts197,	198,	
DUGG IENIDAM IN LA	199, 2	201
P.I.L.C., Compound-Filled, Belted Type, multi-conductor	61	33
2/c, 1000-15000 volts 3/c, 1000-15000 volts	76	87
4/c, 1000-15000 volts		
P.I.L.C., Compound-Filled, single conductor		32
1/c, 1000-33000 volts	34	
P.I.L.C., Compound-Filled, Type H		32
1/c, 1000-33000 volts		32
3/c, 16000-33000 volts	87-1	105
P.I.L.C., Oil-Filled,		
1/c, 15000-230000 volts	30,	31
3/c, 15000-69000 volts		31
Rubber Insulated Control Cables, 600 volts		192
Rubber Insulated Power Cables, 1/c, and Belted Type	160	159
1/c, Braided, 600-5000 volts	167	172
1/c, Lead Sheathed, 600-5000 volts 2/c, Lead Sheathed, 600-5000 volts	173	177
3/c. Lead Sheathed, 600-5000 volts	178-1	181

INDEX

Insulation Thicknesses—continued			ide	
Rubber Sheathed Portable Cables,				
Rubber Sheathed Portable Cables, 2/c, Tufflex, 600 volts				188
3/c, Tufflex, 600 volts 4/c, Tufflex, 600 volts				187
4/c, Tufflex, 600 volts				189
V.C. Insulated Power Cables, Belted Type				120
2/c, Lead Sheathed, 600-5000 volts			144-	147
3/c, Lead Sheathed, 600-15000 volts			148-	156
V.C. Insulated Power Cables, single conductor				119
1/c, Braided, 600-15000 volts			121	132
1/c, Lead Sheathed, 600-15000 volts			133	143
Intermediate Manholes		,		208
Internal Reactance	2 10		017	23/
Ionizable Voids	3, 15	), 16,	217,	223
Iron, Properties of				302
Isothermal Surface, in Cables Jackets, Rubber, see, Rubber Sheaths			······································	232
Jointing	212	214	217	226
Jointing Material	213,	214,	21/	220
Jointing Material Jointing Procedure			217	226
Junction Boxes		••••••	211	216
Jute Coverings	10 21	22	202	210
Direction of Lay of	19, 21	, 23,	203,	19
Thickness of				20
Jute Fillers		•••••	27	185
Jute Servings	***************************************		10	21
Direction of Lay of	•••••••		19	19
Thickness of			70.00	20
Kinking	••••••		213	214
Koroseal			213,	157
Land Managema				207
Lead, see also, Lead Sheaths				301
Lead, see also, Lead Sheaths Properties of Lead Sheaths				302
Lead Sheaths	17	18	202	205
Abrasion of		, 10,	202,	18
Aerial Cables, for			-	18
Alloyed				18
Antimony			18.	210
Applying			3. 28	. 29
Atomic Weight of				302
Common				17
Contraction of		14	15.	209
Corrosion of		17.	18.	208
Cracking of				214
Creep, Resistance to				18
Greep, Resistance to				214
Damage to	08, 209,	210.	213.	217
Damage to	08, 209,	210,	213, 255.	257
Damage to	08, 209,	210,	213, 255, 14	257
Damage to3, 4, 20 Emissivity of Expansion of	08, 209,	210,	213, .255, 14	257 , 15
Damage to3, 4, 20 Emissivity of Expansion of Extrusion of Fatigue Strength of	08, 209,	210,	213, 255, 14 3, 28	257 , 15 , 29
Damage to	08, 209,	210,	213, 255, 14 3, 28	257 , 15 , 29 18 210
Damage to	08, 209,	210,	213, 255, 14 3, 28	257 , 15 , 29 18 210
Damage to	08, 209, 31, 252.	210,	213, 255, 14 3, 28	257 , 15 , 29 18 210 18 259
Damage to 3, 4, 20 Emissivity of Expansion of Extrusion of Fatigue Strength of "Grooving" of High Copper Induced Currents 23 Linear Coefficient of Expansion of	08, 209, 31, 252,	210,	213, 255, 14 3, 28 256,	257 , 15 , 29 18 210 18 259 302
Damage to 3, 4, 20 Emissivity of Expansion of Extrusion of Fatigue Strength of "Grooving" of High Copper Induced Currents 23 Linear Coefficient of Expansion of Loss in 231, 25	31, 252, 52, 254.	210, 254, 256.	213, 255, 143, 28 256,	257 , 15 , 29 18 210 18 259 302 260
Damage to 3, 4, 20 Emissivity of Expansion of Extrusion of Fatigue Strength of "Grooving" of High Copper Induced Currents 23 Linear Coefficient of Expansion of Loss in 231, 25 Mechanical Stress in	98, 209, 31, 252, 52, 254,	210, 254, 256,	213, 255, 14 3, 28 256, 259,	257 , 15 , 29 18 210 18 259 302 260 16
Damage to 3, 4, 20 Emissivity of Expansion of Extrusion of Fatigue Strength of "Grooving" of High Copper Induced Currents 23 Linear Coefficient of Expansion of Loss in 231, 25	31, 252, 52, 254,	210, 254, 256,	213, 255, 14 3, 28 256, 259,	257 , 15 , 29 18 210 18 259 302 260 16

Lead Sheaths—continued		
Resistance of230, 237,	239,	253
Resistivity of	230.	302
Soil, Effect of, on		208
Specific Gravity of		302
Specific Heat of		302
Specifications for		17
Temperature Coefficient of Resistance of		302
Temperature of		29
Thermal Conductivity of		302
Thermal Surface Resistivity of	255,	257
Thickness of, see, Lead Sheath Thicknesses		
Tin		18
Transverse Cracking of		209
Working of		207
Lead Sheath Thicknesses.		
Asbestos-Varnished Cambric Cables	198,	199
P.I.L.C., Compound-Filled Belted Type, multi-conductor		19
2/c, 1000-15000 volts	6	4_75
3/c, 1000-15000 volts	76	5-87
4/c. 1000-15000 volts	106	117
P.I.L.C., Compound-Filled, single conductor 1/c, 1000-33000 volts		19
1/c, 1000-33000 volts	34	1-63
P.I.I.C. Compound Filled Type H multi-conductor		10
3/c, 16000-33000 volts	87	105
3/c, 16000-33000 volts  P.I.L.C., Compound-Filled, Type H, single conductor  P.I.L.C., Compound-Filled, Submarine		19
P.I.L.C., Compound-Filled, Submarine		19
F.I.L.C., Oll-Filled		10
Rubber Insulated Control Cables, 600 volts	7.30	192
Rubber Insulated Power Cables, 1/c and Belted.		
1/c, 600-5000 volts	167	172
2/c, 600-5000 volts	173.	177
3/c. 600-5000 volts	179	191
Submarine Cable, for V.C. Insulated Power Cables, 1/c and Belted, 1/c, 600-15000 volts	1, 0	19
V.C. Insulated Power Cables, 1/c and Belted.	***********	1,
1/c, 600-15000 volts	133	143
2/C, 000-3000 VOILS	144	-14/
3/c, 600-15000 volts Lead Sheathed Cable, see, Particular Type,	148	156
Lead Sheathed Cable, see, Particular Type.	1 10	150
Lead Sheathing	28	158
Lead Sleeves	227	228
Leakage	LLI,	235
Leakage Lighting Cables	195	204
Liquid Measure	175,	307
Line Drop 249,	250	251
Linear Coefficient of Expansion of Metals	Drob	302
Locomotive Circuits, Cables for	105	106
Load Division	123,	17
Load Factor	254	257
Loading Tables, see, Current Carrying Capacity	251,	231
Logarithms	331	332
London Wire Gauge	220	349
Longitudinal Strain	22	211
Loss Factor 252,	255	257
Lubrication of Cables 252,	230,	200
Main Feeders	204	211
Manholes 207, 208,	200	211
207, 200,	209,	217

Manufacture of P.I.L.C, Cable	26	5-29
McIntyre Special Cable	2	206
Measure, Units of	22.5	307
Mechanical Protection 20,	23,	209
see also, Protective Coveri	ngs	
Mechanical Stress 16, 23, 1	18,	211
Mechanically Injurious Conditions, Cables for19-21, 118, 158, 1	86,	211
Melting Point of Metals		302
Mensuration Formulae		308
Messenger Wire Installations, see, Aerial Installations	07	
Metal Binder Tape 3, 16, 17,	27,	231
Bronze		
Losses in		
Steel		16
Thermal Conductivity of	222	
Metallic Shielding Tape 3, 16, 231, 2 Losses in	232,	259
Metallized Paper Tape	•••••	16
Metals, Properties of	202	202
Metering Circuits	002,	100
Metric Measure		307
Migration, of Compound 2,	15	212
Mill Buildings Cables for	202	206
Mine Shafts, Cables for23, 202, 204-206, 2	one	200
Mine Shafts, Cables for 23 202 204-206 3	711	212
Mines Cables for see Standard Cables for Mines		212
Miscellaneous Constants		307
Moisture 4, 20, 118, 157, 1	158	202
Effect of, on Insulation 20, 118, 1	157	158
Protection against	202	217
Resistance to	118.	157
Moisture Conditions, Cables for20, 118, 157, 158, 194-196, 202, 2	204.	205
Motor Control Circuits 190, 1	195.	204
Multiple Tile Ducts		207
Mutual Inductance	230.	253
National Electric Light Association	206.	256
Nautical Measure		307
Negative-Sequence Characteristics 237, 239.	241	-247
Neoprene 157, 186, 202, 3	203.	204
Neutral. Definition of Grounded		31
Nickel. Properties of		302
Non-Metallic Binder Tape	16	17
Non-Metallic Sheathed Power Cable	182	-189
Non-Vertical Installations		203
Normal Density Paper		14
Numbers, Functions of	311	-330
Ohm's Law	255	300
Ohm's Law For Heat	255,	255
Effect of, on Insulations	118	158
Flow, in Oil-Filled Cable	110,	3 4
Flow, in Oil-Filled Cable Impregnating, see, Impregnating Oil Mineral		J, 1
Mineral	2	15
Protection against	158.	186
Transformer	150,	15
Oil Channels	3 4	28
Oil Conditions, Cables for 20, 118, 158,	186	205
, 110, 130,	* OU.	201

Oil-Filled Cable	264-266
Applications of See also, Paper Insulated Power ( Current Carrying Capacity of, see, Current Carrying Capacity	able
Applications of	4
Current Carrying Capacity of, see, Current Carrying Capacity	
Failures in	3
Impregnation of	15 16 29
Manufacture of	26 20
Principle of	20-29
Sheath Damage in	2 1
Voltage Rating of	J, 1
Old English Wire Gauge	220 249
Open-Circuited Sheath Operation	250
Overall Coverings	106
see also Protective Cove	100
Overall Diameters see also, Protective Cove	220
A.C.S.K. Conductors	244
All-Asbestos Wires and Cables, 600 volts	200
Asbestos-Varnished Cambric Wires and Cables, 600 volts197,	100
	100 001
Copper Conductors, Bare	199, 201
Copper Transmission Line Conductors	203, 339
Copper-Copperweld Conductors	243
Copper Copper weld Conductors	245
Copperweld Conductors	245
Double Steel Tape Armour Additions for	21
Duct Tape Additions for	20
Formulae for Galv. Steel Wire Armour Additions for	230
Galv. Steel Wire Armour Additions for	25
Tute Covering Additions for	7()
P.I.L.C., Compound-Filled, Belted Type	230
2/c, 1000-15000 volts 3/c, 1000-15000 volts 4/c, 1000-15000 volts  P.I.C., Compound-Filled, single conductor	64-75
3/c, 1000-15000 volts	76-87
4/c, 1000-15000 volts	106-117
P.I.L.C., Compound-Filled, single conductor	230
1/c, 1000-33000 volts P.I.L.C., Compound-Filled, Type H	34-63
P.I.L.C., Compound-Filled, Type H	230
3/c. 16000-33000 volts	87 105
P.I.L.C., Oil-Filled	230
Rubber Insulated Control Cables 600 volts	102
Rubber Insulated Power Cables, 1/c and Belted Type	220
1/c. Braided, 600-5000 volts	160 166
1/c, Lead Sheathed, 600-5000 volts	167 172
2/c. Lead Sheathed, 600-5000 volts	172 177
3/c. Lead Sheathed, 600-5000 volts	179 191
Rubber Sheathed Portable Cables	220
2/c, Tufflex, 600 volts 3/c, Tufflex, 600 volts 4/c, Tufflex, 600 volts	188
3/c, Tufflex, 600 volts	187
4/c, Tufflex, 600 volts	189
V.C. Insulated Power Cables, Belted Type	230
2/c. Lead Sheathed, 600-5000 volts	144 147
3/c. Lead Sheathed, 600-15000 volts	148 156
V.C. Insulated Power Cables, single conductor	230
1/c, Braided, 600-15000 volts 1/c, Lead Sheathed, 600-15000 volts	121-132
1/c, Lead Sheathed, 600-15000 volts	133-143
Overhead Installations	210 211
see also Aprial Installat	ions
Overhead Installations See also, Aerial Installat Cables for, see, Aerial Cables Overhead Lines	10118
Overhead Lines	
Calculation of	236 251
Conductors for 236,	243 245
230,	L13-L13

O ₂	xidation Conditions, Cables for	205
Pa	per,	
	Application of, Tape	, 27
	Cellulose, Fibres in	, 15
	Coefficient of Expansion of	14
	Cracking of	218
	Dielectric Constant of	303
	Dielectric Loss in	258
	Dielectric Strength of	14
	Electrical Resistivity of	303
100	Grades of	14
300	High Density 14	15
1	Insulation Resistance of	252
j	Mechanical Strength of 200,	15
1	Metallized	16
	Normal Density 14	15
	Power Factor of	250
7./3	Properties of	202
	Ratio of, to Impregnating Compound	303
	"Registration" of	14
	Registration of Resistivity of	26
	Specific Consider of	303
	Specific Gravity of	303
1	Specific reat of	303
	Specific Gravity of Specific Heat of Specific Inductive Cacapity of, see, Dielectric Constant of, above Super Calendered Super Dance	
	Supercalendered	2
	Thermal Resistivity of 234, 256,	303
	Voids in	223
	Wood Pulp1	. 14
Pa	per Insulated Power Cable	-117
	A-C Losses in 258 250	260
	Accelerated Life Tests on	15
	Air, in	270
	see Applications of below	
	Allowable Current in, see, Current Carrying Capacity  Ambient Temperatures 264, Applications of 2, 3, 4, 202, 205, 208, 210, 211,	
	Ambient Temperatures	270
	Applications of	212
	see also. Applications of Power Cables	
	Belt Thicknesses see Insulation Thicknesses	
	Belted Type	
	260 276	-279
	260, 276 Bending of	221
	Cable Centre	253
	Cable Diameter, see, Diameters of, below Cabling of	233
	Cabling of	26
	Calculation of Problems 220 226 249 252	256
	Capacity Measurements of	220
	Capacity of	, 20
	Characteristics of, 60 Cycles 241,	233
	Charging Company of	242
	Charging Current of	235
No.	Coiling of	213
	Compound-Filled Type	
	106-117, 255, 256, 259, 267	-279
	Conductance of, see, Leakage	
	Conductor Temperature255, 256, 257,	260
	Conductance of, see, Leakage Conductor Temperature	8-13
	Conduits for, Installations	207
	Connectors for	229

Paper Insulated Power Cables—continued		
Contraction of Correction for A-C Losses in		209
Correction for A-C Losses in		260
Corrosion Protection of		208
see also, Protective C	Covering	IS
Cracking of Insulation		218
Cracking of Sheaths	200	214
Current Carrying Canacity of see Current Carrying Cana	aites	, 211
Current Carrying Capacity of, see, Current Carrying Capa Current Carrying Capacity Tables	26	4 270
Current Centre of	20	252
Damage to	011 01	255
Damage to	211, 21.	3, 214
Development of		1, 2
Diameter over Lead Sheath, see, Diameters of, below		
Diameter under Lead Sheath, see, Diameters of, below		
Diameters of		230
Dielectric Constant of Dielectric Loss in Diele	Diameter	rs
Dielectric Constant of	259, 300	0, 303
Dielectric Loss in	256, 258	8, 259
Dielectric Strength of		14
Dielectric Strength of Double Steel Tape Armoured, see, Double Steel Tape Armou	r	
Drying of		27. 28
Ducts Systems for	20	7. 208
Ducts, in3, 4, 202, 206, 207, 208,	209, 255	5, 257
see also, Applications	of, abov	re
Earth, insee also, Applications	202, 206	5, 209
Economics of see also, Applications	of, abov	re
Economics of		254
Flectric Stress in		14 16
Electrical Resistivity of Elongation of Emissivity of Lead Sheath Equipotential Surface in		303
Elongation of		209
Emissivity of Lead Sheath	25	5, 257
Equipotential Surface in		231
Expansion of, Sheaths		14
Exposed		211
Extra-High Voltage		2
Failures in		3. 214
Feeders	210, 21	1, 253
Fillers		27
Fillers Fire-Proofing of	21	1, 214
Formulae for230	-240 255	5, 256
Formulae for 230 Galvanized Steel Wire Armoured, see, Galv. Steel Wire	Armou	ır
General Information		1
Geometric Factor for	23	31-234
"Grooving" of		210
Heat-Ageing Tests on		15
Heat Flow in	16, 25	4, 255
Heat Generated in	207, 25	4, 255
Impedance of	17. 23	36-242
Impedance Characteristics of	23	36-242
Impregnated Jute Coverings, see, Jute Coverings Impregnation of		
Impregnation of2, 3,	4, 15, 2	27, 28
Impulse Strength of		14
Induced Sheath Currents 231, 252,	254. 256	5. 259
Inductance of		230
Inductance of Inductive Reactance of 237, 239,	241, 242	2, 246
Installation of	3, 24, 20	06-214
Insulation for, see, Paper		

Paper Insulated Power Cables—continued Insulation of see also, Tapi Insulation Resistance of Ins	
Insulation of	14, 15
see also. Tapi	ng of, below
Insulation Resistance of	236, 252
Insulation Temperature of2 Insulation Thicknesses of, see, Insulation Thicknesses	9, 254, 255, 257
Insulation Thicknesses of, see, Insulation Thicknesses	The second visited to
Ionizable Voids in	15, 16, 217, 223
Jointing Material for	227, 228
Jointing of	213, 214, 217-226
Junction Boxes for	216
Jute Coverings for, see, Jute Coverings Kinking of	010
Lead Sheath Thicknesses of, see, Lead Sheath Thicknesses	213
Lead Sheathing of	17 20
Lead Sheaths for, see, Lead Sheaths Leakage of	17, 20
Leakage of	235
Load Factor of	257
Load Factor of Loading Tables for, see, Current Carrying Capacity Longitudinal Strain on	291
Longitudinal Strain on	23, 211
LOSS Tactor of	757 755 757
Lubrication of	208
Manholes for	207, 208
Manufacture of Mechanical Protection of	26, 27, 28, 29
iviechanical Protection of	20, 23, 209
Mechanical Stress insee also, Protectiv	e Coverings
Moisture, Protection from	16, 23, 211
Mutual Inductance of	20
Negative-Sequence Characteristics of23	7 220 241 242
Oil Channels in	2 4 20
Oil Protection from	20
( )   Filled   Vine   1 4 15 76 79 70 20 21 75	E AFC AFA
1	264, 265, 266
Open-Circuited Sheath Operation of	259
Open-Circuited Sheath Operation of Overall Diameters of, see, Diameters of, above Overhead	
Overhead	3, 4, 206, 210
Postuve-Sequence Characteristics of	7, 239, 241, 242
Potheads for Power Factor of 27, 29 Protection from Meisture Oile etc.	215
Protection from Moisture, Oils, etc.	9, 253, 258, 259
Protection of	200 211 214
Protective Coverings for See also, Protective Proximity Effect in See also, Protective Proximity Effect in See also, Protective Proximity Effect in See also, Protective See also	Coverings
Protective Coverings for	10.25 208 214
Proximity Effect in 6, 16, 25	2 256 259 260
Fulling III	207 208
Radial Stress in	14
Kared Voltage Lolerance on	21 22
Reactance of	742 746 747
Reels for	350
Regulation of	240 052 054
Resistance of	747 757 762
Series Resistance of 237 Sheath Failures in 237	, 239, 241, 242
Sheath Losses in 231, 252, 254	2 200
Sheath Resistance of 231, 252, 254	1, 250, 259, 260
230	5, 231, 239, 233

P	aper Insulated Power Cables—continued Sheathing of	
	Sheathing of	3, 28
	Sheaths for, see, Lead Sheaths	
	Shielded, see, Type H. below	
	Shielding of Short-Circuited Sheath Operation of	16
	Short-Circuited Sheath Operation of	259
	Short-Time Fires on	214
	Short-Time Flashes in	214
	Shunt Capacitive Reactance of237, 239, 241, 242,	247
	Size of Conductors for	254
	see also, Copper, Conductors 5, 6, 16, 252, 256, 259, 260,	
	Skin Effect in	263
	Snaking of	211
	Specific Inductive Capacity of 241 252 259	300
	Specifications for	260
	Splicing of	217
	Submarine	254
	Surge Strength of	14
	Symbols for	252
	Taping of	5. 27
	Temperature Gradient in	232
	Temperature of Insulation 254, 255,	257
	Tension on 213.	214
	Testing of	20
	Thermal Characteristics of	232
	Thermal Resistance of 231, 232, 253, 254, 255	258
	Thermal Resistivity of 256, Thermal Surface Resistivity of, Lead Sheathed 255,	303
	Thermal Surface Resistivity of, Lead Sheathed255,	257
	Tolerance on Rated Voltages	, 32
	Type H	
	Tolerance on Rated Voltages 31 Type H 1, 3, 32, 88-105, 231, 232, 234, 235, 236, 253, 255, 257, 259, 274, Types of 1, 2, 3, 4, 16, 34 Underground 202, 203, 206	275
	Types of	-117
	Underground 202, 203, 206	-210
	Vertically Installed see also, Applications of, above 15, 23, 24, 202, 206,	
	Vertically Installed	211
	Vibration of	214
	Voltage Drop in253, 294,	295
	see also, Impedance Characteristics of Wires and Cables	
	Voltage Gradient in at 60 Cycles	
	Voltage Gradient in	14
	voltage Rating of	1. 2
	Weight of	-117
	Zero-Sequence Characteristics of 237, 239, 241,	242
י	aper Pasters	228
2	arallel Operation	17
۲	artial Inductive Reactance	-245
	Pencilling" 222,	223
2	erformance Grade Rubber 157,	303
2	ermitivity, Dielectric, see, Dielectric Constant etroleum Derivatives	
ר	etroleum Derivatives	15
D	irelli Patents	3
ľ	lain Lead Covered Cable 193, 205, 211, 214,	230
P	lumber's Wiped Joint see also, Particular Type of Cable	005
D	ortable Cables	225
5	ortable Cables	190
D	see also, Rubber Sheathed Portable Power Cable ositive-Sequence Characteristics 236, 237, 239, 241, 242,	0.15
D	ositive-Sequence Characteristics230, 237, 239, 241, 242, otheads	247
4	711	115

	No receipt	· contract		Charles Market
Power Factor, Dielectric 27	, 29,	253,	258,	259
Compound-Filled P.I.L.C. Cable		27	. 29.	258
Oil-Filled P.I.L.C. Cables			29.	259
Rubber Insulated Cables			253.	259
V.C. Insulated Cables			253.	259
Power Feeders			21	202
Problems, Underground Cable, Calculation of	1.236	248	254	256
Protection of Cables	186	202	202	-250
2. 100 of Oddies	200,	200	203,	214
Protective Coverings19-25, 118, 158,	200,	209,	211,	217
Asphaltia Campany	202,	203,	208,	214
Asphaltic Compound				203
Copper Armouring Double Steel Tape Armour 20, 118,				203
Double Steel Tape Armour20, 118,	158,	202,	203,	209
Duck Tape				20
Fire-Proofing			211,	214
Fire-Proofing Galv. Steel Wire Armour	23,	202,	203,	204
Interlocking Steel Tane Armour			203	205
Jute, Impregnated, see, Jute Coverings Lead Sheathing				
Lead Sheathing	.118.	158.	202.	208
see also	Lea	d She	aths	
Neoprene Sheathing see also 158,	186	202	203	204
Rubber Sheathing, see, Rubber Sheaths	100,	202,	200,	201
Venezuelan Asphalt				202
Weatherproof Braids			106	100
Proximity Effect	256	250	.100,	190
Compatible for	256,	258,	259,	260
Correction for				256
Sector Conductors, in			6,	252
Pulling of Cables118, 158,	207,	208,	209,	213
Radial Stress, in P.I.L.C. Cables				14
Rated Voltage Tolerance			31	. 32
Reactance see also, Particular Inductive 237, Shunt Capacitive 237	Type 237, 239,	of C 239 241,	Cable 241 242,	260 -247 246 247
Reactance see also, Particular Inductive 237, Shunt Capacitive 237	Type 237, 239,	of C 239 241,	Cable 241 242,	260 -247 246 247
Reactance see also, Particular I7, Inductive Shunt Capacitive 237, Reels, Capacity, Dimensions of	Type 237, 239, 239,	of C 239 241, 241,	Cable 241 242, 242,	260 -247 246 247 350
Reactance see also, Particular Reactance 17, Inductive 237, Shunt Capacitive 237, Reels, Capacity, Dimensions of "Registration"	Type 237, 239, 239,	of C 239 241, 241,	Cable 241 242, 242,	260 -247 246 247 350 26
Reactance see also, Particular Reactance 17, Inductive 237, Shunt Capacitive 237, Reels, Capacity, Dimensions of "Registration" Regulation	Type 237, 239, 239,	of C 239 241, 241,	Cable 241 242, 242, 253	260 -247 246 247 350 26 254
Reactance see also, Particular Reactance 17, Inductive 237, Shunt Capacitive 237, Reels, Capacity, Dimensions of "Registration" Regulation Relay Circuits, Cables for	Type 237, 239, 239, 239,	of C 239 241, 241, 249,	241, 242, 242, 242,	260 -247 246 247 350 26 254
Reactance see also, Particular Reactance 17, Inductive 237, Shunt Capacitive 237, Reels, Capacity, Dimensions of "Registration" Regulation Relay Circuits, Cables for Remote Control Circuits, Cables for	Type, 237, 239, 239, 184,	of C 239 241, 241, 249,	Cable 241 242, 242, 253,	260 -247 246 247 350 26 254 190 190
Reactance see also, Particular Reactance 17, Inductive 237, Shunt Capacitive 237, Reels, Capacity, Dimensions of "Registration" Regulation Relay Circuits, Cables for Remote Control Circuits, Cables for	Type, 237, 239, 239, 184,	of C 239 241, 241, 249,	Cable 241 242, 242, 253,	260 -247 246 247 350 26 254 190 190
Reactance see also, Particular Reactance 17, Inductive 237, Shunt Capacitive 237, Reels, Capacity, Dimensions of "Registration" Regulation Relay Circuits, Cables for Remote Control Circuits, Cables for Resistance, A-C 6.	Type 237, 239, 239, 184,	of C 239 241, 241, 249,	Cable 241 242, 242, 242, 253,	260 -247 246 247 350 26 254 190 190
Reactance see also, Particular Reactance 17, Inductive 237, Shunt Capacitive 237, Reels, Capacity, Dimensions of "Registration" Regulation Relay Circuits, Cables for Remote Control Circuits, Cables for Resistance, A-C 6, A.C.S.R.	Type 237, 239, 239, 184, 241,	of C 239 241, 241, 249,	Cable 241 242, 242, 242, 253, 252,	260 -247 246 247 350 26 254 190 190 263 244
Reactance see also, Particular Reactance 17, Inductive 237, Shunt Capacitive 237, Reels, Capacity, Dimensions of "Registration" Regulation Relay Circuits, Cables for Remote Control Circuits, Cables for Resistance, A-C 6, A.C.S.R. Cabling Allowance for	Type 237, 239, 239, 184,	241, 241, 241, 242,	Cable 241, 242, 242, 253, 252, 241	260 -247 246 247 350 26 254 190 190 263 244 242
Reactance	Type 237, 239, 239, 184,	249, 242,	2able 241, 242, 242, 253, 252, 241,	260 -247 246 247 350 26 254 190 190 263 244 242 302
Reactance 17. Inductive 237. Shunt Capacitive 237. Reels, Capacity, Dimensions of "Registration" Regulation Relay Circuits, Cables for Remote Control Circuits, Cables for Resistance, A-C 6, A.C.S.R. Cabling Allowance for Coefficient, Temperature, of Conductor	Type 237, 239, 239, 184, 241,	249, 242,	241, 242, 242, 242, 253, 253,	260 -247 246 247 350 26 254 190 190 263 244 242 302 230
Reactance 17. Inductive 237. Shunt Capacitive 237. Reels, Capacity, Dimensions of "Registration" Regulation Relay Circuits, Cables for Remote Control Circuits, Cables for Resistance, A-C 6, A.C.S.R. Cabling Allowance for Coefficient, Temperature, of Conductor Copper, Solid Bare	Type 237, 239, 239, 184, 241,	249, 242,	2able 241, 242, 242, 253, 253, 251, 241,	260 -247 246 247 350 26 254 190 190 263 244 242 302 230 131
Reactance	Type 237, 239, 239, 184, 241,	249, 242,	253, 252, 251, 253,	260 -247 246 247 350 26 254 190 190 263 244 242 302 230 121 178
Reactance	Type 237, 239, 239, 184, 241,	249, 242,	253, 252, 251, 253,	260 -247 246 247 350 26 254 190 190 263 244 242 302 230 121 178
Reactance	Type 237, 239, 239, 184, 241,	249, 242,	253, 252, 251, 253,	260 -247 246 247 350 26 254 190 190 263 244 242 302 230 121 178
Reactance	Type, 237, 239, 239, 184, 241, 160, 241,	249, 242, 173, 242,	253, 252, 252, 253, 252, 251, 252, 260	260 -247 246 247 350 26 254 190 190 263 244 242 302 230 121 178 181
Reactance	Type 237, 239, 239, 184, 160, 241,	249, 242, 242, 173, 242,	241, 242, 242, 242, 253, 252, 241, 174, 252, 160-	260 -247 246 247 350 26 254 190 190 263 244 242 302 230 121 178 263 181 198 198 198 198 198 198 198
Reactance	Type, 237, 239, 239, 184, 241, 160, 241,	241, 241, 242, 242, 242,	2able 241, 242, 242, 242, 253, 252, 241, 174, 252, 160	260 -247 246 247 350 26 254 190 190 263 244 242 230 121 178 263 181 245 247 247 247 259 260 277 260 277 277 277 277 277 277 277 27
Reactance	Type 237, 239, 239, 239, 184, 241, 160, 241,	249, 241, 241, 249, 242, 122, 173, 242,	241, 252, 160.	260 -247 246 247 350 26 254 190 190 263 244 242 230 1178 263 181 245 245 246 247 246 254 254 264 274 286 286 286 286 286 286 286 286
Reactance	Type 237, 239, 239, 239, 184, 241, 160, 241,	249, 241, 241, 249, 242, 122, 173, 242,	241, 252, 160.	260 -247 246 247 350 26 254 190 190 263 244 242 230 1178 263 181 245 245 246 247 246 254 254 264 274 286 286 286 286 286 286 286 286
Reactance	Type 237, 239, 239, 184, 241, 160, 241,	249, 241, 241, 241, 242, 242,	2able 241, 242, 242, 242, 253, 252, 241, 13, 174, 252, 160-2252, 231	260 -247 246 247 350 26 254 190 190 -263 242 302 243 242 243 302 243 244 302 243 244 302 263 264 274 350 264 264 264 264 264 264 264 264
Reactance	Type 237, 239, 239, 184, 160, 241, 160, 241,	249, 241, 241, 241, 242, 242,	2able 241, 241, 252, 174, 252, 160, 160, 252, 241, 252, 241, 252, 252, 241, 252, 241, 252, 252, 231, 240, 240	260 -247 246 247 350 26 254 190 -263 244 242 242 230 121 178 263 181 181 263 284 299 263 224 225 230 230 240 250 250 250 250 250 250 250 25
Reactance	Type 237, 239, 239, 184, 160, 241, 160, 241, 230, 230,	249, 242, 242, 231, 242, 242,	241, 252, 160-2252, 231, 240, 231	260 -247 246 247 350 26 190 190 263 244 242 2302 2300 121 178 263 181 245 245 263 254 254 254 255 263 263 275 285 285 285 285 285 285 285 28
Reactance	Type 237, 239, 239, 184, 160, 241, 160, 241, 230, 230,	249, 242, 242, 231, 242, 242,	241, 252, 160-2252, 231, 240, 231	260  -247 246 247 350 26 190 190 -263 2244 242 302 2230 121 178 263 -181 245 2299 263 252 298

Resistance—continued			
Lead Sheath230	237	230	253
Loss due to			
Moisture, to			
Negative Sequence	7 241	242	245
Negative-Sequence 237, 241, 242 Stranding Allowance for Zero-Sequence	742	244	245
Stranding Allowange for	0 11	241	242
Zoro Coguenge	227	241,	242
Designation Plants - 1	231,	271,	272
Resistivity, Electrical, Copper, of	207	200	200
Copper, of9, 11, 13	5, 297,	298,	302
Insulating Materials, of			303
Lead, of		230,	302
Metals, of			
Volume			
Resistivity, Thermal	255,	256,	303
Roof Trusses, Cables for Suspension on		21,	210
Rough Usage Cables, see, Rubber Sheathed Portable Power	r Cable	2	
Rough Usage Conditions, Cables for			186
see also, Rubber Sheathed Portable Po	wer C	ables	
Rubber,			
Chemicals, Effect of, on			203
Class AO (A.S.T.M.)			157
Code		.157.	303
Compounds	157.	185.	186
Copper Temperature for, Compounds	7. 258.	260.	261
Corona, Effect of, on	157.	158.	182
Corona, Effect of, on Dielectric Constant of	252	300	303
Dielectric Loss in	252,	300,	259
Electrical Resistivity of			
Gencorone			157
Heat Resisting, see, Thermax, below High Grade Insulated Control Cables, see, Control Cables Insulated Power Cables, see, Rubber Insulated Power Cables			13.
High Grade	157	204	212
Insulated Control Cables see Control Cables	157,	201,	212
Insulated Power Cables see Rubber Insulated Power Cable			
Insulation Resistance of		236	252
Tackets see Sheathe below		250,	232
Jackets, see, Sheaths, below Koroseal			158
Lead Moulded see Sheaths below	•••••		150
Lead Moulded, see, Sheaths, below Performance Grade		157	303
Power Factor of		253	250
Properties of	252	256	303
Sheathed Portable Power Cable, see, Rubber Sheathed Port			303
Cable	table 1	Ower	
Sheaths186, 202	203	204	205
Smoked Sheet			
Smoked Sheet	••••••		202
Specific Gravity of Specific Heat of	••••••••		303
Specifications for			157
Synthetic		256	202
Thermal Resistivity of		450,	157
Thermax Thickness of, Insulation, see, Insulation Thicknesses Voltage Rating of	••••••		13/
Voltage Dating of	157	150	102
P. I. J. J. J. C.	137,	138,	103
Rubber Insulated Control Cables, see, Control Cables	18 A	9 207	400
Rubber Insulated Power Cables			
A-C Losses in			
Acid. Resistance to		158	203

Rubber Insulated Power Cables—continued	
Air. in 150 210 255 257 257	20
Alakalis, Resistance to see also, Applications of, below	, 29
Alakalis, Resistance to	20
Allowable Current in, see Current Carrying Capacity Ambient Temperatures Applications of	, 20.
Ambient Temperatures	20
Applications of	21
see also, Applications of Power Cables	21.
Belt Thicknesses, see Insulation Thicknesses	
see also, Applications of Power Cables Belt Thicknesses, see Insulation Thicknesses Bending of	221
Braided 208, 209, 218 Cable Centre 158, 160	166
Cable Disputers and Disputers Cable Disputers	25
Cable Diameters, see, Diameters of, below Calculation of, Problems 230-236, 248, 253 Capacity of	. 25
Calculation of, Problems 230-236 248 253	2 256
Charging Current or	000
Chemicals, Ellect of, on	201
Coming of	212
Compounds for	158
Conductance of, see, Leakage	130
Conductor Temperature	260
Connectors 101	220
Contraction of	200
Correction for A-C Losses in 157,	260
Corrosion Protection of, see, Protective Coverings	200
Cracking of, Sheaths	214
Corrosion Protection of, see, Protective Coverings Cracking of, Sheaths Current Carrying Capacity of, see Current Carrying Capacity Current Carrying Capacity Tables Current Centre of  290	211
Current Carrying Capacity Tables	-203
Current Centre of 200 200 210 211 Centre of 200 211 Centre of	253
Damage to	214
Diameter over Lead Sheath, see, Diameters of, below	
Diameter under Lead Sheath, see, Diameters of, below	
Diameter over Lead Sheath, see, Diameters of, below Diameter under Lead Sheath, see, Diameters of, below Diameters of  See also Overall Diameters	230
Dielectric Constant of see also, Overall Diameters  252, 300,	-30
Dielectric Constant of252, 300.	303
Duct Systems for see also, Double Steel Tape Armour 207,	
Duct Systems for 207,	208
206 200 255	OFT
Earth, in see also, Applications of, above 206,	
206.	209
Economics of See also, Applications of, above Electrical Resistivity of Insulation	
Electrical Desiration of Y	254
Elongation of Emissivity of Lead Shooth	209
Equipotential Surface in 255,	231
Formulae for 230-240, 255,	256
Galvanized Steel Wire Armoured, see, Galv. Steel Wire Armour Geometric Factor for 231-	
231	234

K	ubber Insulated Power Cables—continued		. 11
	"Grooving" of		210
	Heat Flow in16, 25	4,	255
	Heat Generated in207, 25	4,	255
	Heat Resisting		157
	High Voltage	7,	158
	Impregnated Jute Coverings, see, Jute Coverings		
	Induced Sheath Currents 231, 252, 254, 25	6,	259
	Inductance of	:	230
	Installation of158, 20	06-	214
	Insulation of15	7,	158
	Insulation Resistance of23	6.	252
	Insulation Resistivity of		303
	Insulation Temperature of	5.	257
	Insulation Thicknesses of, see, Insulation Thicknesses		
	Jointing of21	3.	214
	lunction Boxes for		716
	Jute Coverings for, see, Jute Coverings		
	Kinking of		213
	Jute Coverings for, see, Jute Coverings Kinking of Lead Sheath Thicknesses of, see, Lead Sheath Thicknesses		-10
	Lead Sheathed1	67-	181
	Lead Sheathing of	٠.	158
	Lead Sheaths for see Lead Sheaths		7
	Lead Sheaths for, see, Lead Sheaths Leakage of	1	235
	Load Factor of	7	257
	Londing Tables for see Comment Commine Commine		
	Loss Factor of252, 25	5	257
	Lubrication of	٥,	208
	Manholes for	7	208
	Mechanical Protection of	12	200
	Mechanical Stress in		
	Moisture, Protection from 20, 15	7	150
	Mutual Inductance of	7.,	220
	Oil, Effect of, on	•••••	150
	Oil, Protection from2		150
	One Circuited Shooth Operation of	.0,	100
	Open-Circuited Sheath Operation of Overall Diameter of, see, Diameters of, above		259
	Overhead20		210
	Dether 1- for	0,	210
	Potheads for		215
	Power Factor of	3,	259
	Protection of	1,	214
	Protective Coverings for	18,	214
	Proximity Effect in	gs	200
	Proximity Effect in	9,	260
	Pulling of158, 20		
	Reels for		
	Regulation of24	9,	253
	Resistance of1	60-	181
	Resistivity of Insulation		303
	Sheath Failures in		209
	Sheath Losses in231, 252, 254, 256, 25	0	260
	Sheath Resistance of231, 232, 234, 236, 23	10	252
	Chartha for	U,	255
	Sheaths for		158
	Short-Circuited Sheath Operation ofsee also, Lead Sheath	hs	
	Short-Circuited Sheath Operation of		259
	Short-Time Fires on		214
	Short-Time Flashes in		214

0	ubber Insulated Power Cables—continued	
K	Size of Conductors for	254
	Size of Conductors for	231
	see also, Copper, Conductors Skin Effect in	262
	Skin Effect in	203
	Snaking of 207,	211
	Specific Inductive Capacity of	300
	Specifications for	260
	Splicing of 212, 213,	21/
	Submarine 19, 24, 200, 212,	234
	Sunlight, Resistance to	158
	Symbols for	252
	Temperature Gradient in	232
	Temperature of Insulation 157, 254, 255,	257
	Tension on 213,	214
	Thermal Characteristics of 231,	232
	Thermal Characteristics of	258
	Thermal Resistance of231, 232, 253-255,	203
	Thermal Resistivity of256,	257
	Thermal Surface Resistivity of, Lead Sheathed 255,	25/
	Types of 157, 158, 160	181-1
	Type R	161
	Type R-10	162
	Type R-20	163
	Type R-30	164
	Type R-40	165
	Type R-50	166
	Type RL	167
	Type RL	168
	Type RL-10	160
	Type RL-20	170
	Type RL-30	170
	Type RL-40	171
	Type RL-50	1/2
	Type RDI.	1/3
	Type RMI. 1/4.	1/8
	Type RML-10175,	1/9
	Type RML-20175,	179
	Type RML-30	180
	Type RML-40	180
	Type RML-50	181
	Underground 158, 200	5-210
	and also Applications of above	210
	see also, Applications of, above Vertically Installed	212
	Vertically installed	214
	Vibration of	205
	Voltage Drop in253, 294,	150
	Voltage Ratings of157,	158
-	Weight of22, 25, 160	181
R	Rubber Sheathed Portable Power Cable	2-190
	Allowable Current in184, 187, 188,	190
	Ambient Temperature for	184
	Applications of	202
	see also. Applications of Power Cables	7
	see also, Applications of Power Cables Braids, Shielding, for	183
	Chemicals, Effect of, on	203
	Classes of182,	182
	Common de for	103
	Compounds for	100
	Conductors for 184,	105
	Conductor Temperature157, 255,	258
	Copper-Cotton Braiding for	183
	Coverings Overall for	186

Rubber Sheathed Portable Power Cable—continued	
Crushing of	. 186
Current Carrying Capacity of	7-190
Current Rating of	184
Current Carrying Capacity of 184, 18 Current Rating of Diameters of	230
Fillers forsee also, Overall Diameter	S
Fillers for185	, 186
Ground Wires in	190
High Voltage	183
Indentification of	185
Insulation of	186
see also. Rubbe	r
Insulation Thicknesses of, see, Insulation Thicknesses	
Jackets for, see, Sheaths for, below	
Load Factor of	184
Neoprene Jacketted	186
Overall Coverings for	186
Overall Diameter of, see, Diameters of, above	
Protection of	, 185
Rough Usage	. 186
Service Conditions of182, 184	, 186
Sheaths for	, 204
Shielding of	, 184
Size of	184
Strandings for	185
Terminals, Moulded, for	190
Tufflex	186
Types of	. 184
Type G	. 189
Type SH182	, 183
Type SH-A	182
Type SH-B Type SH-C	182
Type SH-C	. 182
Type SH-D	, 183
Type W 182, 183, 185, 187, 188	, 189
Voltage Drop in	, 295
Voltage Regulation of	. 184
Voltage Stress in	. 182
Voltages Recommended for 183	, 184
Weight of	7-190
Sector Cables	0-234
see also, Particular Type of Cable	3
Sector Conductors, Development of	
Development of	. 1
Dimensions of	. 7
Geometric Factor for 231, 232, 233	, 234
Proximity Effect in6	, 252
Resistance of 6, 241	, 252
Skin Effect in	. 252
Seelye, H.P.	. 206
Segmental Type M Conductor	. 6
Seine Twine	. 186
Selection of Proper Type	, 254
Self Inductance 230	238
Series Resistance 237, 239, 24	1-245
Servings,  Jute	
Saina Terrina 19, 2	0, 21
Seine Twine	. 186

Servings—continued		
S.W.A. Head		23
S.W.A. Intermediate Shaft Installations, Cables for		23
Shaft Installations, Cables for	23 202 204-206 211	212
Sheath.	23, 202, 201 200, 211,	212
Lead, see, Lead Sheaths		
Rubber, see, Rubber Sheaths		
Sheath Failures		200
Sheath Loss	221 252 254 256 250	209
Sheath Desistance	231, 252, 254, 256, 259,	260
Sheath Resistance	230, 237, 239,	253
Shielded Cable, see, Particular Type		
Shielded Cable, see, Particular Type Sheathing of Cables, Lead	3	, 28
Shielding		100
Braids	see also, Particular Type of Cable	
Braids	182 183 184	204
Dronze Tape		16
Copper Braid	The second secon	204
Copper-Cotton	183 184	100
Copper Tape	3	16
Grounding of	J	192
Losses in	16	250
Metallized Paper Tape	10,	16
Steel Tape	1.22.7.23	16
Thermal Conductivity of	16	10
Type H, see, Particular Type of Cal	.1	302
Short-Circuited Sheath Operation	ole .	
Short Time Pi		259
Short-Time Fires		214
Snort-lime Flashes		214
Snovels, Electric, Cables for		182
Snunt Capacitive Reactance	237 239 241	242
Silicate of Soda		214
Silver, Properties of		202
Simmons, D.M.	020	302
Sines Natural	230,	258
Sines, Natural	333,	334
Size, Conductor		254
Skin Effect	see also, Copper, Conductors	
Skin Effect		263
Alliular Concentric Conductors, in	757	262
Corrections for		256
Inductance, Effect of, on		256
Inductance, Effect of, on		256 230
Inductance, Effect of, on		256 230 252
Inductance, Effect of, on	5	256 230 252 6
Inductance, Effect of, on	5	256 230 252 6
Inductance, Effect of, on	5,	256 230 252 6 263
Inductance, Effect of, on	5,	256 230 252 6 263 303
Inductance, Effect of, on	5,	256 230 252 6 263 303
Inductance, Effect of, on		256 230 252 6 263 303 211 208
Inductance, Effect of, on		256 230 252 6 263 303 211 208
Inductance, Effect of, on		256 230 252 6 263 303 211 208
Inductance, Effect of, on Sector Conductors, in Segmental Type M Conductors, in Skin Effect Ratio Smoke Sheet Rubber Snaking of Cables Soapstone Soil,  Conductivity Lead, Effect of, on Resistivity, Electrical, of	208,	256 230 252 6 263 303 211 208 209 208
Inductance, Effect of, on	208, 208, 205, 205, 205, 205, 205, 205, 205, 205	256 230 252 6 263 303 211 208 209 208 246
Inductance, Effect of, on	208, 208, 208, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 226, 227, 226, 227, 226, 227, 227	256 230 252 6 263 303 211 208 209 208 246 265
Inductance, Effect of, on Sector Conductors, in Segmental Type M Conductors, in Segmental Type M Conductors, in Skin Effect Ratio Smoke Sheet Rubber Snaking of Cables Soapstone Soil, Conductivity Lead, Effect of, on Resistivity, Electrical, of Temperature Solder, Wiping Spacing of Cables	208, 208, 208, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 221, 222, 226, 227, 226, 227, 226, 227, 226, 227, 227	256 230 252 6 263 303 211 208 209 208 246 265
Inductance, Effect of, on Sector Conductors, in Segmental Type M Conductors, in Segmental Type M Conductors, in Skin Effect Ratio Smoke Sheet Rubber Snaking of Cables Soapstone Soil,  Conductivity Lead, Effect of, on Resistivity, Electrical, of Temperature Solder, Wiping Spacing of Cables Spacific Gravity	208, 208, 207, 208, 221, 222, 226, 227, 221, 222, 226, 227, 227, 228, 227, 228, 227, 228, 227, 228, 227, 228, 228	256 230 252 6 263 303 2211 208 209 209 208 246 265 2228
Inductance, Effect of, on Sector Conductors, in Segmental Type M Conductors, in Segmental Type M Conductors, in Skin Effect Ratio Smoke Sheet Rubber Snaking of Cables Soapstone Soil, Conductivity Lead, Effect of, on Resistivity, Electrical, of Temperature Solder, Wiping Spacing of Cables Specific Gravity, Insulating Materials, of	208, 2 208, 2 221, 222, 226, 227, 2	256 230 252 6 263 3303 211 208 209 209 2246 2259
Inductance, Effect of, on Sector Conductors, in Segmental Type M Conductors, in Segmental Type M Conductors, in Skin Effect Ratio Smoke Sheet Rubber Snaking of Cables Soapstone Soil, Conductivity Lead, Effect of, on Resistivity, Electrical, of Temperature Solder, Wiping Spacing of Cables	208, 2 208, 2 221, 222, 226, 227, 2	256 230 252 6 263 3303 211 208 209 209 2246 2259

Specific Heat,	
Insulating Materials, of	303
Metals, of	302
Specific Inductive Capacity, see, Dielectric Constant	
Specifications 4, 157, 256-258, 260	296
Splicing212, 213,	217
Splicing Sleeves, Lead	228
Square Roots	-330
Standard Cables for Mines 202	-206
Applications of	202
Copper Tape Armoured Double Steel Tape Armoured 203,	203
Double Steel Tape Armoured	204
see also, Double Steel Tape Armour Galvanized Steel Wire Armoured 203,	
Galvanized Steel Wire Armoured 203,	204
see also, Galv. Steel Wire Armour Insulation of	000
McIntyre Special	202
P.I.L.C.	200
san also Paper Insulated Down Calley	202
Plain Lead Coveredsee also, Paper Insulated Power Cables	205
Protective Coverings for 202,	203
Rubber Insulated 202, 204,	205
Sheathing of	-205
Super Mill	204
Teck Flexible Armoured	205
Teck Plain	206
Type S Flexible Armoured	204
Type S Lead Covered	205
Type S Plain 205,	206
V.C. Insulated	202
Station Wires see also, Asbestos-V.C. Insulated Power Cables	110
Stearine Flux	110
Steel Wire Armour, see, Galv. Steel Wire Armour	228
Steel Wire Gauge339	240
Strain, Longitudinal 23,	211
Stranding Allowances	211
Stranding Allowances, Inductance, for	220
Resistance, for9,	230
Weights, for 9,	11
Strandings, A.S.T.M. 8, 9, 10,	11
Stress, Electric 2, 14, 16,	182
Stress, Longitudinal 23,	211
Submarine Cables 3 4 24 25 206 212	254
Lead Sheath Thickness of	19
Length of	213
Submarine Installations 10 24 25 206 212 214	DEA
Cables, for, see Submarine Cables	231
Cables, for, see Submarine Cables Supercalendered Paper	14
Super-Dense Paper14,	15
Super Mill Cable	204
Surface Resistivity, Thermal, of Lead	257
Surge Strength	14
Switchboard Circuits, Cables for	196
Symbols 240, 252,	302
Symmetrical Components	226

Synthetic Rubber1	57, 158
Tables,	
Tables, Conversion Factors	304-306
Current Carrying Capacity, see, Current Carrying Capacity Functions of Numbers, of	
Functions of Numbers, of	311-330
Logarithm3	31. 332
Temperature Conversion	301
Trigonometrical	333-338
Wire Gauges, of	339-348
Tangents, Natural	
Tape,	37, 330
Asbestos	214
Binding	
Bronze Binder	10, 259
Copper Shielding 16, 2	32, 259
Cotton220, 221, 222, 224, 227, 2	28, 303
Double Steel, Armour, see, Double Steel Tape Armour Duck	
Duck	20
Metal         Binder         3, 16, 17, 27, 2           Metal         Shielding         3, 231, 2	31, 259
Metal Shielding 3, 231, 2	32, 259
Metallized Paper	16
Non-Metallic Binder	17, 27
Paper, see, Paper Rubber Faced1	
Rubber Faced	85, 186
Shielding	190
Steel Bindersee also, Shield	ing
Steel Binder	16
Varnished Cambric	228. 303
Taping	27 118
Teck Flexible Armoured	205
Teck Flexible Armoured	205
Teck Flexible Armoured Teck Plain 2	205, 206
Teck Flexible Armoured Teck Plain 2	205, 206
Teck Flexible Armoured Teck Plain 2 Temperature, Allowable Copper	205 205, 206 258, 261
Teck Flexible Armoured         2           Teck Plain         2           Temperature,         118, 157, 257, 2           Allowable Copper         126, 270, 2           Ambient         264, 270, 2	205 205, 206 258, 261 281, 291
Teck Flexible Armoured Teck Plain  Temperature, Allowable Copper Ambient Average Permissible Operating	205 205, 206 258, 261 281, 291 256
Teck Flexible Armoured Teck Plain  Temperature, Allowable Copper Ambient Average Permissible Operating Coefficient of Resistance	205 205, 206 258, 261 281, 291 256 302
Teck Flexible Armoured Teck Plain  Temperature, Allowable Copper Ambient Average Permissible Operating Coefficient of Resistance Conductor  2, 243-245, 254-257, 260, 2	205 205, 206 258, 261 281, 291 256 302 261, 264
Teck Flexible Armoured Teck Plain Temperature, Allowable Copper Ambient Average Permissible Operating Coefficient of Resistance Conductor Conversion Table  2  2  2  2  2  2  2  2  2  2  2  2  2	205 205, 206 258, 261 281, 291 256 302 261, 264 301
Teck Plexible Armoured Teck Plain 2 Temperature, Allowable Copper 118, 157, 257, 2 Ambient 264, 270, 2 Average Permissible Operating Coefficient of Resistance Conductor 2, 243-245, 254-257, 260, 2 Gradient Gradient	205, 206 205, 206 258, 261 281, 291 256 302 261, 264 301 232
Teck Flexible Armoured         2           Temperature,         118, 157, 257, 2           Allowable Copper         264, 270, 2           Ambient         264, 270, 2           Average Permissible Operating         2           Coefficient of Resistance         2, 243-245, 254-257, 260, 2           Conversion Table         3           Gradient         118, 157, 254, 2	205 205, 206 258, 261 281, 291 256 261, 264 301 232 255, 257
Teck Flexible Armoured         2           Teck Plain         2           Temperature,         118, 157, 257, 2           Allowable Copper         264, 270, 2           Ambient         264, 270, 2           Average Permissible Operating         Coefficient of Resistance           Conductor         2, 243-245, 254-257, 260, 2           Conversion Table         Gradient           Insulation         118, 157, 254, 2           Rise         118, 157, 254, 2	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 253-255
Teck Flexible Armoured         2           Teck Plain         2           Temperature,         118, 157, 257, 2           Allowable Copper         264, 270, 2           Ambient         264, 270, 2           Average Permissible Operating         Coefficient of Resistance           Conductor         2, 243-245, 254-257, 260, 2           Conversion Table         Gradient           Insulation         118, 157, 254, 2           Rise         Soil	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 253-255 255
Teck Plain         2           Temperature,         118, 157, 257, 2           Allowable Copper         118, 157, 257, 2           Ambient         264, 270, 2           Average Permissible Operating         Coefficient of Resistance           Conductor         2, 243-245, 254-257, 260, 2           Conversion Table         Gradient           Insulation         118, 157, 254, 2           Rise         Soil           Surveys	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 253-255 261
Teck Plexible Armoured Teck Plain 2 Temperature, Allowable Copper 118, 157, 257, 2 Ambient 264, 270, 2 Average Permissible Operating Coefficient of Resistance Conductor 2, 243-245, 254-257, 260, 2 Conversion Table Gradient Insulation 118, 157, 254, 2 Rise Soil Surveys Temporary Connections	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 255 255 261
Teck Plexible Armoured         2           Temperature,         3           Allowable Copper         118, 157, 257, 2           Ambient         264, 270, 2           Average Permissible Operating         2           Coefficient of Resistance         2           Conductor         2, 243-245, 254-257, 260, 2           Conversion Table         3           Gradient         3           Insulation         118, 157, 254, 2           Rise         3           Soil         3           Surveys         7           Temporary Connections         7           Tensile Strength of Metals	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 255 255 261 182
Teck Flexible Armoured Teck Plain 2 Temperature, Allowable Copper 118, 157, 257, 2 Ambient 264, 270, 2 Average Permissible Operating Coefficient of Resistance Conductor 2, 243-245, 254-257, 260, 2 Conversion Table Gradient Insulation 118, 157, 254, 2 Rise Soil Surveys Temporary Connections Tensile Strength of Metals Tension in Cables	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 253-255 261 182 302
Teck Plain 2 Teck Plain 2 Temperature, Allowable Copper 118, 157, 257, 2 Ambient 264, 270, 2 Average Permissible Operating Coefficient of Resistance Conductor 2, 243-245, 254-257, 260, 2 Conversion Table Gradient Insulation 118, 157, 254, 2 Rise Soil Surveys Temporary Connections Tensile Strength of Metals Tension in Cables Terminals, Moulded	205 205, 206 258, 261 256 302 261, 264 301 232 255, 257 253-255 261 182 302 213
Teck Plain         2           Temperature,         3           Allowable Copper         118, 157, 257, 2           Ambient         264, 270, 2           Average Permissible Operating         2           Coefficient of Resistance         2           Conductor         2, 243-245, 254-257, 260, 2           Conversion Table         3           Gradient         3           Insulation         3           Rise         3           Soil         3           Surveys         3           Temporary Connections         3           Tensile Strength of Metals         3           Terminals, Moulded         3           Testing         15	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 255, 257 255 261 182 213 190
Teck Plaxible Armoured         2           Teck Plain         2           Temperature,         118, 157, 257, 2           Allowable Copper         264, 270, 2           Awerage Permissible Operating         2           Coefficient of Resistance         2           Conductor         2, 243-245, 254-257, 260, 2           Conversion Table         3           Gradient         118, 157, 254, 2           Rise         3           Soil         3           Surveys         3           Temporary Connections         3           Tensile Strength of Metals         3           Terminals, Moulded         3           Testing         15           Thermal Characteristics         2	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 255 255 261 182 302 213 190 5, 27-29 31
Teck Plain 2 Temperature, Allowable Copper 118, 157, 257, 2 Ambient 264, 270, 2 Average Permissible Operating Coefficient of Resistance Conductor 2, 243-245, 254-257, 260, 2 Conversion Table Gradient Insulation 118, 157, 254, 2 Rise Soil Surveys Temporary Connections Tensile Strength of Metals Tension in Cables Terminals, Moulded Testing 15 Thermal Characteristics 2 Thermal Conductance	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 255 255 261 182 302 213 190 5, 27-29 31
Teck Plain         2           Temperature,         Allowable Copper         118, 157, 257, 2           Ambient         264, 270, 2           Average Permissible Operating         264, 270, 2           Coefficient of Resistance         2, 243-245, 254-257, 260, 2           Conversion Table         3, 243-245, 254-257, 260, 2           Gradient         1, 18, 157, 254, 2           Insulation         118, 157, 254, 2           Rise         30il           Surveys         3           Temporary Connections         7           Tensile Strength of Metals         7           Terminals, Moulded         15           Thermal Characteristics         2           Thermal Conductance         2	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 255, 257 255 251 182 213 190 5, 27-29 31, 232 255
Teck Plain 2 Temperature, Allowable Copper 118, 157, 257, 2 Ambient 264, 270, 2 Average Permissible Operating Coefficient of Resistance Conductor 2, 243-245, 254-257, 260, 2 Conversion Table Gradient Insulation 118, 157, 254, 2 Rise Soil Surveys Temporary Connections Tensile Strength of Metals Tension in Cables Terminals, Moulded Testing 15 Thermal Characteristics 2 Thermal Conductance Thermal Conductivity, Metal Binder Tape, of	205 205, 206 258, 261 256 302 261, 264 301 232 255, 257 255, 257 253 261 182 302 213 302 213 303 213 304 305 307 307 308 309 309 309 309 309 309 309 309
Teck Plain 2 Temperature, Allowable Copper 118, 157, 257, 2 Ambient 264, 270, 2 Average Permissible Operating Coefficient of Resistance Conductor 2, 243-245, 254-257, 260, 2 Conversion Table Gradient Insulation 118, 157, 254, 2 Rise Soil Surveys Temporary Connections Tensile Strength of Metals Tension in Cables Terminals, Moulded Testing 15 Thermal Conductance Thermal Conductance Thermal Conductivity, Metal Binder Tape, of Metals, of	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 255, 257 255 255 251 182 213 190 5, 27-29 31, 232 255 255
Teck Plaxible Armoured Teck Plain 2 Temperature, Allowable Copper 118, 157, 257, 2 Ambient 264, 270, 2 Average Permissible Operating Coefficient of Resistance Conductor 2, 243-245, 254-257, 260, 2 Conversion Table Gradient Insulation 118, 157, 254, 2 Rise Soil Surveys Temporary Connections Tensile Strength of Metals Tension in Cables Terminals, Moulded Testing 15 Thermal Characteristics 2 Thermal Conductivity, Metal Binder Tape, of Metals, of Thermal Considerations 16, 206, 2	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 255, 257 255 261 182 302 213 190 5, 27-29 302 255 302 302 303 403 190 5, 27-29 303 304 305 306 307 307 308 309 309 309 309 309 309 309 309
Teck Plaxible Armoured Teck Plain 2 Temperature, Allowable Copper 118, 157, 257, 2 Ambient 264, 270, 2 Average Permissible Operating Coefficient of Resistance Conductor 2, 243-245, 254-257, 260, 2 Conversion Table Gradient Insulation 118, 157, 254, 2 Rise Soil Surveys Temporary Connections Tensile Strength of Metals Tension in Cables Terminals, Moulded Testing 15 Thermal Characteristics 2 Thermal Conductivity, Metal Binder Tape, of Metals, of Thermal Considerations 16, 206, 2	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 255, 257 255 261 182 302 213 190 5, 27-29 302 255 302 302 303 403 190 5, 27-29 303 304 305 306 307 307 308 309 309 309 309 309 309 309 309
Teck Plain 2 Temperature, Allowable Copper 118, 157, 257, 2 Ambient 264, 270, 2 Average Permissible Operating Coefficient of Resistance Conductor 2, 243-245, 254-257, 260, 2 Conversion Table Gradient Insulation 118, 157, 254, 2 Rise Soil Surveys Temporary Connections Tensile Strength of Metals Tension in Cables Terminals, Moulded Testing 15 Thermal Conductance Thermal Conductivity, Metal Binder Tape, of Metals, of Thermal Considerations 16, 206, 2	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 255 255 261 182 302 213 190 5, 27-29 31, 232 255 302 54, 255
Teck Plain 2 Temperature, Allowable Copper 118, 157, 257, 2 Ambient 264, 270, 2 Average Permissible Operating Coefficient of Resistance Conductor 2, 243-245, 254-257, 260, 2 Conversion Table Gradient Insulation 118, 157, 254, 2 Rise Soil Surveys Temporary Connections Tensile Strength of Metals Tension in Cables Terminals, Moulded Testing 15 Thermal Conductance Thermal Conductivity, Metal Binder Tape, of Metals, of Thermal Considerations 16, 206, 2	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 255 255 261 182 302 213 190 5, 27-29 31, 232 255 302 54, 255
Teck Plain 2 Temperature, Allowable Copper 118, 157, 257, 2 Ambient 264, 270, 2 Average Permissible Operating Coefficient of Resistance Conductor 2, 243-245, 254-257, 260, 2 Conversion Table Gradient Insulation 118, 157, 254, 2 Rise Soil Surveys Temporary Connections Tensile Strength of Metals Tension in Cables Terminals, Moulded Testing 15 Thermal Characteristics 2 Thermal Conductivity, Metal Binder Tape, of Metals, of Thermal Considerations 16, 206, 2	205 205, 206 258, 261 281, 291 256 302 261, 264 301 232 255, 257 255 255 261 182 302 213 190 5, 27-29 31, 232 255 302 54, 255

Tt. 1 D
Thermal Resistance—continued
Dielectric Loss, to
Ducts, of
Thermal Resistivity 234, 255, 256, 303
Thermal Surface Resistivity of Lead 255, 257
Thermax Rubber 253, 257
Tile Ducts 207, 208
Tin, Properties of 302
Tin Lead 18
Tolerance on Rated Voltage 31, 32, 119
Traffic Light Systems 190
Training of Cables 209
Transmission Line Conductors 243-245
Transposed Conductors 238
Triangles, Solution of 309, 310
Trigonometric Functions 333-338
Tufflex Cable, see, Rubber Sheathed Portable Power Cable
Tunnel Installations 209, 211, 214
Type H1, 3, 4, 16, 231, 232, 234, 235, 236, 253, 259
Type M, Segmental Conductor see also, Particular Type of Cable
Type M, Segmental Conductor
Type S Flexible Armoured 204
Type S Lead Covered 205
1 ype S Plain 205, 206
Types of Power Cables,
Aerial, see, Aerial Cables
Applications of Various, see, Applications of Power Cables
Asbestos Insulated 194-196, 200
Asbestos-V.C. Insulated 194-199, 201
Willes, IOF, SPP, Standard Caples for Mines
P.I.L.C. 1-4, 16, 34-117
Rubber Insulated, Control Cables 190-192 Rubber Insulated 157-181
Rubber Sheathed Portable 182-189
V.C. Insulated 182-189  118-156
Underground Cable Problems, Calculation of 230-236, 248, 254-256
Underground Cables, see, Applications of Power Cables
Underground Installations,
Earth, in, see, Direct Earth Installations
Vacuum, Impregnating 27
Varnished Cambric Insulated Power Cables 118 156
A-C Losses in
Air, in 210 255 257 260 281
Allowable Current in, see, Current Carrying Capacity Ambient Temperatures 281
Ambient Temperatures 281
Applications of
see also, Applications of Power Cables
Belt Thicknesses, see, Insulation Thicknesses
Belted Type
Bending of 208, 209 Braided 118, 121-132
Cable Centre of
Cable Diameter of see Diameters of below
Cable Diameter of, see, Diameters of, below Calculation of, Problems 230-236, 248, 253-256
Capacity of
. , 233

Varnished Cambric Insulated Power Cables—continued	
Charging Current of	235
Coiling of	
Conductor Temperature in	
Conductor Temperature in118, 255, 256	3, 260
Conductors for	6. 7
Conduits for, Installations	207
Connectors for	229
Contraction of	209
Corona, Resistance to Correction for A-C Losses in	118
Correction for A-C Losses in	260
Corrosion Protection of, see, Protective Coverings Cracking of, Insulation	
Cracking of, Insulation	218
Cracking of, Sheaths	214
Current Carrying Capacity of	118
see also, Current Carrying Capacit	w 110
Current Carrying Capacity Tables	0-289
Current Centre of	253
Damage to	3 214
Diameter over Lead Sheath, see, Diameters of, below	, 211
Diameter under Lead Sheath, see, Diameters of, below	
Diameters of	230
see also Overall Diameter	250
Dielectric Constant of Dielectric Loss in	300
Dielectric Loss in 236 253 254 255 256 25	250
Dielectric Strength of	119
Double Steel Tape Armoured	110
see also Deuble Chail Town A	110
Duct Systems for see also, Double Steel Tape Armou	7 200
Ducts, in 206-209, 25	, 200
Ducis, III	0, 25/
see also, Applications of, above	
Forth in	e 200
Earth, in	e 5, 209
Earth, in	e 254
Economics ofsee also, Applications of, above	e 254
Economics of Elongation of Elongation of	e 254 209
Economics of Elongation of Emissivity of Lead Sheath 25	e 254 209 5. 257
Economics of Elongation of Emissivity of Lead Sheath 25 Equipotential Surface in	254 209 5, 257 231
Economics of Elongation of Elongation of Emissivity of Lead Sheath 25 Equipotential Surface in Exposed 11	254 254 209 5, 257 231 8, 211
Economics of Elongation of Elongation of Emissivity of Lead Sheath 25. Equipotential Surface in Exposed 11. Feeders 208, 210, 21	254 254 209 5, 257 231 8, 211
Economics of Elongation of Elongation of Emissivity of Lead Sheath 25 Equipotential Surface in Exposed 11 Feeders 208, 210, 21 Fire-Proofing of 21	e 254 209 5, 257 231 8, 211 1, 253
Economics of Elongation of Elongation of Emissivity of Lead Sheath 25 Equipotential Surface in Exposed 11 Feeders 208, 210, 21 Fire-Proofing of 21 Formulae for 230,240, 25	254 254 209 5, 257 231 8, 211 1, 253 1, 214
Economics of Elongation of Elongation of Emissivity of Lead Sheath 25 Equipotential Surface in Exposed 11 Feeders 208, 210, 21 Fire-Proofing of 21 Formulae for 230-240, 25 Galvanized Steel Wire Armoured	254 254 209 5, 257 231 8, 211 1, 253 1, 214 5, 256 118
Economics of Elongation of Elongation of Elongation of Emissivity of Lead Sheath 25 Equipotential Surface in Exposed 11 Feeders 208, 210, 21 Fire-Proofing of 21 Formulae for 230-240, 25 Galvanized Steel Wire Armoured	254 254 209 5, 257 231 8, 211 1, 253 1, 214 5, 256 118
Economics of Elongation of Elongation of Elongation of Emissivity of Lead Sheath 25 Equipotential Surface in Exposed 11 Feeders 208, 210, 21 Fire-Proofing of 21 Formulae for 230-240, 25 Galvanized Steel Wire Armoured see also, Galvanized Steel Wire Armoured Geometric Factor for 22	re 254 254 209 231 231 253 214 256 118
Economics of Elongation of Elongation of Elongation of Emissivity of Lead Sheath 25. Equipotential Surface in Exposed 11. Feeders 208, 210, 21. Fire-Proofing of 21. Formulae for 230-240, 25. Galvanized Steel Wire Armoured see also, Galvanized Steel Wire Armoured Geometric Factor for 23. Galvanized Steel Wire Armoured See also, Galvanized Steel Wire Armoured Geometric Factor for 25. Galvanized Steel Wire Armoured Geomet	re 254 209 5, 257 231 8, 211 1, 253 1, 214 5, 256 sur 118 sur 31-234 210
see also, Applications of, above Economics of Elongation of Elongation of Emissivity of Lead Sheath 25. Equipotential Surface in Exposed 11. Feeders 208, 210, 21. Fire-Proofing of 21. Formulae for 230-240, 25. Galvanized Steel Wire Armoured see also, Galvanized See also, Ga	re 254 209 5, 257 231 8, 211 1, 253 1, 214 5, 256 118 rr 31-234 210 14, 255
see also, Applications of, above Economics of Elongation of Emissivity of Lead Sheath	re 254 259 5, 257 231 1, 253 1, 214 5, 256 118 rr 210 4, 255 4, 255
see also, Applications of, above Economics of Elongation of Emissivity of Lead Sheath	re 254 259 5, 257 231 1, 253 1, 214 5, 256 118 rr 210 4, 255 4, 255
Economics of Elongation of Elongation of Elongation of Emissivity of Lead Sheath	254 254 209 5, 257 231 8, 211 1, 253 1, 214 5, 256 18 118 210 4, 255 4, 255
Economics of Elongation of Elongation of Elongation of Emissivity of Lead Sheath	254 254 209 5, 257 231 8, 211 1, 253 1, 214 5, 256 18 118 18 17 210 4, 255 4, 255 5, 259 230
Economics of Elongation of Elongation of Elongation of Emissivity of Lead Sheath 25. Equipotential Surface in Exposed 11. Feeders 208, 210, 21. Fire-Proofing of 21. Formulae for 230-240, 25. Galvanized Steel Wire Armoured see also, Galvanized Steel Wire Armoured See also, Galvanized Steel Wire Armoured 16, 25. Heat Flow in 16, 25. Impregnated Jute Coverings, see, Jute Coverings Induced Sheath Currents 231, 252, 254, 25. Inductance of Installation of 118, 20.	254 254 209 231 253 214 216 218 218 216 216 216 255 259 230 230 230 230 230 230
Economics of Elongation of Elongation of Elongation of Emissivity of Lead Sheath 25. Equipotential Surface in Exposed 11. Feeders 208, 210, 21. Fire-Proofing of 21. Fire-Proofing of 230-240, 25. Galvanized Steel Wire Armoured see also, Galvanized Steel Wire Armoured See also, Galvanized Steel Wire Armoured 16, 25. Heat Flow in 16, 25. Heat Generated in 207, 25. Impregnated Jute Coverings, see, Jute Coverings Induced Sheath Currents 231, 252, 254, 25. Inductance of Installation of 118, 26. Insulation of 118, 26.	254 254 209 5, 257 231 8, 211 1, 253 1, 253 1, 253 1, 214 5, 256 1, 255 4, 255 4, 255 6, 259 230 06-214 118
Economics of Elongation of Elongation of Emissivity of Lead Sheath 25 Equipotential Surface in Exposed 11 Feeders 208, 210, 21 Fire-Proofing of 21 Formulae for 230-240, 25 Galvanized Steel Wire Armoured See also, Galvanized Steel Wire Armoured See also, Galvanized Steel Wire Armoured 16, 25 Galvanized Steel Wire Armoured See also, Galvanized Steel Wire Armoured S	254 209 5, 257 209 5, 257 231 1, 253 1, 214 5, 218 18 118 118 118 118 119 14, 255 14, 255 14, 255 14, 255 15, 259 230 26, 259 27, 259 28, 259 29, 259 20, 20, 259 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
See also, Applications of, above Economics of Elongation of Emissivity of Lead Sheath	254 299 5, 257 299 5, 257 231 1, 253 1, 214 5, 256 118 118 118 119 119 119 119 119
See also, Applications of, above Economics of Elongation of Emissivity of Lead Sheath	254 299 5, 257 299 5, 257 231 1, 253 1, 214 5, 256 118 118 118 119 119 119 119 119
Economics of Elongation of Elongation of Elongation of Emissivity of Lead Sheath 25. Equipotential Surface in Exposed 11. Feeders 208, 210, 21. Fire-Proofing of 21. Formulae for 230-240, 25. Galvanized Steel Wire Armoured see also, Galvanized Steel Wire Armoured See also, Galvanized Steel Wire Armoured 16, 25. Heat Flow in 16, 25. Impregnated Jute Coverings, see, Jute Coverings Induced Sheath Currents 231, 252, 254, 25. Inductance of Installation of 118, 26. Insulation Resistance of 23. Insulation Temperature of 118, 254, 25. Insulation Temperature of 118, 254, 25. Insulation Thicknesses Jointing of 21.	254 254 209 5, 257 231 8, 211 1, 253 1, 253 118 5, 256 118 214 5, 255 4, 255 4, 255 6, 259 250 214 255 4, 255 256 256 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257
Economics of Elongation of Elongation of Emissivity of Lead Sheath 25 Equipotential Surface in Exposed 11 Feeders 208, 210, 21 Fire-Proofing of 21 Formulae for 230-240, 25 Galvanized Steel Wire Armoured See also, Galvanized Steel Wire Armoured See also, Galvanized Steel Wire Armoured 16, 25 Galvanized Steel Wire Armoured See also, Galvanized Steel Wire Armoured S	254 254 209 5, 257 231 8, 211 1, 253 1, 253 118 5, 256 118 214 5, 255 4, 255 4, 255 6, 259 250 214 255 4, 255 256 256 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257 257

Varnished Cambric Insulated Power Cables—continued	40.17
Kinking of	010
Lead Sheath Thicknesses of, see, Lead Sheath Thicknesses Lead Sheathed 13	. 213
Lead Sheathed	3 156
Lead Sheaths for, see, Lead Sheaths Leakage of	. 110
Leakage of	235
Load Factor of	OFT
Loading Tables for, see, Current Carrying Capacity Loss Factor of	. 231
Loss Factor of	257
Lubrication of	201
Manufacture of Mahamana Mahama	. 208
Mechanical Protection of	. 118
Mechanical Stress in	
Moisture Pecietores of	, 211
Moisture Resistance of 20	. 118
Mutual Inductance of	. 230
Oil, Protection from 20	, 118
Open-Circuited Sheath Operation of	. 259
Overall Diameters of, see, Diameters of, above Overhead	
Dether 1 (206)	210
Potheads for	215
Power Factor of 253	259
Protection from Moisture, Oils, etc. 20	118
Protective Coverings for	
Protective Coverings for 19-25, 118, 208,	214
Pulling of	208
Reels for	250
Regulation of 240 252	251
Resistance of	252
Oneath Failures in	200
Sheath Losses in	260
Sheath Resistance of	252
Sheaths for, see, Lead Sheaths	233
Shielded, see, Type H	
Sheaths for, see, Lead Sheaths Shielded, see, Type H Shielding of Short Circuits Short On the Short Circuits Sh	14
Short-Circuited Sheath Operation	250
Short-Time Fires on	239
Short-Time Flashes in	214
Size of Conductors for	214
or conductors for	254
Skin Effect in	000
Skill Effect III	263
Snaking of	211
Specific Inductive Capacity of	300
Specifications for256, 258,	260
Splicing of 212,	213
Station Wiring, for	118
Submarine 206, 212	254
Symbols for	252
Taping of	118
1 emperature Gradient in	232
Temperature of Insulation 118 254 255	257
Tension on	213
Thermal Characteristics of	232
Thermal Resistance of	258
Thermal Resistivity of	303

Varnished Cambric Insulated Power Cables—continued	grain	
Thermal Surface Resistivity of Lead	255,	257
Tolerance on Rated Voltage		119
Types of11	8, 121	-156
Type H 231, 232, 234-236, 253, 255, 257, 259	9, 286,	287
Type V	121,	122
Type V-10		
Type V-20		124
Type V-30		125
Type V-40		126
Type V-50		127
Type VL		133
Type VL-10		134
Type VL-20		135
Type VL-30		136
Type VL-40	100	137
Type VL-50		
Type VML		
Type VML-10	145.	149
Type VML-20	145.	149
Type VML-30		
Type VML-40		
Type VML-50		
Underground 11	8 206	210
Vertically Installed see also, Application of,	ahove	-210
Vertically Installed	3 24	211
Vibration of	3, 21,	214
Voltage Drop in	204	205
Weight of	5 121	156
Varnished Cambric Tane 118 222 223 224 227	228	303
Varnished Cloth Vertical Installations 15, 23, 24, 202, 204-206	118	202
Vertical Installations 15 23 24 202 204 206	211	212
Vertical Risers	, 211,	15
Vertical Shafts, Cables for 15 23 202 206	211	212
Vertical Shafts, Cables for         15, 23, 202, 206           Vertically Suspended Cables         15, 23, 24, 202, 204-206	211,	212
Maximum Length of	, 211,	212
Vibration of Cables 18	210	214
Vitrified Clay Ducts	207	208
Voids 2 15 16	217	200
Voids 3, 15, 16 Voltage Drop 249, 250, 251, 253	204	223
see also, Impedance Characteristics of Wires and Cables at 60 C	, 294,	293
Voltage Gradient in P.I.L.C. Cables	ycies	14
Voltage Ratings 1, 2, 157, 158, 183, 184, 19	1 106	202
Voltage, Standard Preferred, Ratings	1-190,	202
Voltage Stress	100	200
1 T1	182,	254
Voltage Tolerance see also, Electric	otress	110
Volume Resistivity Floatrical	1, 32,	119
Volume Resistivity, Electrical Walls, Cables for Suspension on 21, 118, 158, 206, 209 Washburg S. Maca Carrier	211	303
Washburn & Moon Gauge	, 211,	214
Washburn & Moen Gauge Weatherproof Braids	339	-348
Weatherproof Braids Weights,		190
All-Asbestos Insulated Power Cables, of		000
Ashestos V C Insulated Power Cables, of	7 460	200
Asbestos-V.C. Insulated Power Cables, of 197	/-199,	201
Atomic		302
Cable, Mechanical Stresses due to		211
Connectors, Copper, of		229
Conversion Factors for	SALES	305

Weights—continued	
Copper, Solid, of	12, 13, 339-348
Copper, Stranded, of	8-11
Double Steel Tape Armour, of	22
Galv. Steel Wire Armour, of	
P.I.L.C. Power Cables, of	22, 25, 34-117
Rubber Insulated Control Cables	192
Rubber Insulated Power Cables	160-181
Rubber Sheathed Portable Power Cables	187-189
V.C. Insulated Power Cables	123-156
Wet Locations, Cables for	205, 208
Wire Tables	339-348
Wood Planking	210
Wood Pulp	1. 14
Wood Wedges	220, 221
Yarn, Impregnated Jute, see, Jute Coverings Zero-Sequence Characteristics	236, 237, 239, 241, 247
Zinc. Properties of	









## Digitized by:



ASSOCIATION FOR PRESERVATION TECHNOLOGY, INTERNATIONAL www.apti.org

BUILDING TECHNOLOGY HERITAGE LIBRARY

https://archive.org/details/buildingtechnologyheritagelibrary

From the collection of: Mike Jackson, FAIA