Examen du cours d'instabilité, M2R DET, 1 février 2018

Durée 2 heures. La qualité de la présentation de la copie sera prise en compte.

Documents autorisés : tous documents manuscrits.

1 Equation de Ginsburg-Landau inhomogène

On étudie le problème suivant, gouvernant l'évolution de la fonction scalaire F(x,t), définie dans l'intervalle $x \in [-L, L]$ et $t \in [0, \infty]$:

$$\frac{\partial F}{\partial t} = (r - \alpha x^2)F + \nu \frac{\partial^2 F}{\partial^2 x} - F^3 \qquad (\alpha > 0)$$
 (1)

associée aux conditions limites F(-L,t) = F(+L,t) = 0 et à la condition initiale $F(x,0) = F_0(x)$.

Ce modèle, appelé Ginsburg-Landau inhomogène, a parfois été utilisé pour modéliser les instabilités dans le sillage d'un objet bidimensionnel.

- 1. Ecrire la version linéarisée de ce problème sous forme d'un problème aux valeurs propres. Que peut-on dire de la structure mathématique du problème? A quoi peut-on s'attendre concernant les valeurs propres λ ? Tracez l'allure attendue pour la courbe donnant $\lambda_{r,max}(r)$ (partie réelle de la valeur propre la plus instable en fonction du paramètre de contrôle r).
- 2. Proposez une stratégie de résolution numérique du problème linéaire précédent (on ne demande pas d'écrire un programme détaillé mais de présenter les principales étapes de la démarche).
- 3. Expliquez comment (et sous quelles hypothèses) on peut ramener le problème à une "équation d'amplitude" pour un paramètre d'amplitude A(t). Donnez la forme attendue de cette équation. Quelle bifurcation classique reconnait-on?

2 Convection de Rayleigh-Bénard dans une cellule verticale

On étudie l'instabilité de convection se produisant dans une cellule rectangulaire définie par $x \in [0, L]$ et $y \in [0, H]$ avec $H \gg L$ (contrairement au cas traité en cours qui correspond à une cellule de horizontale avec $H \ll L$).

On note $T_0 = T(x,0)$ et $T_1 = T(x,H)$ avec $T_0 > T_1$ les températures des parois inférieures et supérieures, et on suppose les parois latérales maintenues à la température de l'état de base $\bar{T}(y)$.

- 1. Décrire l'état de base (solution sans convection) du système, et donnez la loi $T=\overline{T}(y)$ correspondante.
- 2. On étudie la stabilité en cherchant une solution "monodimensionnelle" de la forme $T = \overline{T}(y) + Re(\hat{T}e^{ikx}e^{\lambda t})$; $\vec{u} = Re(\hat{v}e^{ikx}e^{\lambda t})\vec{e_y}$ où \hat{T} et \hat{v} sont des constantes (éventuellement complexes) indépendantes de y. Pour quelles valeurs de k cette solution vérifie-t-elle les conditions limite en x = 0 et x = L? Représentez l'allure du champ de vitesse correspondant. Cette solution est-elle valable dans toute la cellule?

3. Ecrire les équations du mouvement dans le régime linéaire $(\hat{T} \ll 1 \text{ et } \hat{v} \ll 1)$ en précisant les hypothèses de modélisation. Montrez que les valeurs propres sont solutions de l'équation suivante :

$$(\lambda + \nu k^2)(\lambda + \kappa k^2) - \alpha g(T_0 - T_1)/H = 0$$
(2)

4. En déduire que l'instabilité se produit lorsque la condition suivante est réalisée :

$$(T_0 - T_1) > \frac{red16\nu\kappa\pi^4 H}{\alpha g L^4} \tag{3}$$

(Indication : on pourra remarquer que l'équation précédente a deux solutions réelles λ_1 et λ_2 dont l'une est toujours négative, et donc se contenter d'étudier le signe du produit des deux racines).

Instabilité de deux fluides superposés

On considère deux couches de fluides superposées de vitesse et masse volumique différentes :

y < 0: $\rho = \rho_1; u = -U$

y > 0: $\rho = \rho_2$; u = U

On note g la gravité, dirigée vers le bas. On néglige la tension superficielle.

1. Montrez que des perturbations de nombre d'onde k dans la direction x sont gouvernées par la relation de dispersion suivante :

$$\rho_1(kU+\omega)^2 + \rho_2(kU-\omega)^2 + (\rho_2-\rho_1)gk = 0$$
(4)

Vous utiliserez la démarche de votre choix mais veillerez à bien préciser et justifier les hypothèses faites dans la modélisation.

- 2. Dans le cas g = 0, montrez que cette relation de dispersion prédit une instabilité. Exprimez son taux d'amplification et sa vitesse de phase, et montrez que celle-ci est constante.
- 3. Dans le cas $g \neq 0$ et $\rho_2 > \rho_1$, deux mécanismes d'instabilité sont en compétition. Lesquels? Quel mécanisme est dominant dans la limite des grandes longueurs d'ondes? Qu'en est-il dans la limite des petites longueurs d'ondes? (justifiez en s'appuyant sur la relation de dispersion).
- 4. Dans le cas $g \neq 0$ et $\rho_2 < \rho_1$, montrez que l'instabilité a lieu uniquement pour $k > k_c$, avec :

$$k_c = \frac{g}{4U^2} \frac{\rho_1 - \rho_2}{\rho_1 \rho_2}. (5)$$

Interprétez physiquement ce résultat.