

Devrenin eşdeğer direnci ($R_{\rm es}$)

$$R_{es} = R_1 + R_M$$

$$R_{es} = 3 \Omega + 2 \Omega = 5 \Omega$$

şeklinde hesaplanır.

Ohm Yasası'na göre

 $V = I \cdot R_{\rm es}$ matematiksel modelinde verilenler yerine yazıldığında

 $20 = I \cdot 5$

I = 4 A bulunur. Bu değer ampermetrede okunan değerdir.

3.9. Soru

Bir elektrikli ısıtıcının direnç devresi yandaki gibidir. Isıtıcı, farklı ısıtma seviyelerine sahip iki bölümden oluşmaktadır. İlk bölüm 4 Ω , 5 Ω ve R dirençleriyle; ikinci bölüm 6 Ω 'luk iki dirençle kurulmuştur. Birinci bölümün eşdeğer direnci 2 Ω olarak ölçülmektedir. Bu devrede ısıtıcının farklı ısıtma seviyelerini sağlamak için iki farklı akım A_1 ve A_2 ampermetreleri ile ölçülmektedir.

 ${\sf A_1}$ ve ${\sf A_2}$ ampermetrelerinin gösterdiği değerler sırasıyla I_1 ve I_2 olduğuna göre $\frac{I_1}{I_2}$ oranı kaçtır?

Cevap

