Event-Based Estimation

Yilin Mo

July 2, 2015

1 Problem Formulation

Let $x \in \mathbb{R}^n$ be the state, such that $x \mathcal{N}(\bar{x})$. $y \in \mathbb{R}^m$ is the sensor measurement, where y_i is the measurement from the *i*th sensor, such that

$$y_i = a_i x + v_i.$$

Assume that x, v_1, \ldots, v_m are all linearly independent and $v_i \sim \mathcal{N}(0, r_i)$.

Let γ_i be a binary variable, such that $\gamma_i=0$ if the sensor is not selected. $\gamma_i=1$ if the sensor is selected.

In the previous lecture, we consider γ_i to be independent from y_i .

In this lecture, we will assume γ_i depends on y_i .

Consider the sensors employ the following strategy:

- 1. Each sensor randomly generates a uniformly distributed random variable ξ_i on [0,1].
- 2. Sensor i computes a function:

$$g_i(y_i) = \exp\left(-\frac{y_i^2}{2\delta_i}\right),$$

where $\delta_i > 0$ is a fixed parameter.

3. Sensor i decides whether to send the measurement or not:

$$\gamma_i = \begin{cases} 0 & \text{if } \xi_i \le g_i(y_i) \\ 1 & \text{if } \xi_i > g_i(y_i) \end{cases}$$

Define the information set $\mathcal{I} = \{\gamma_1, \dots, \gamma_m, \gamma_1 y_1, \dots, \gamma_m y_m\}$ and state estimation and the estimation error covariance matrix as $\hat{x} \triangleq \mathbb{E}(x|\mathcal{I}), P \triangleq \text{Cov}(x|\mathcal{I})$ respectively.

2 Optimal Estimator

Consider single sensor case. The joint probability of x, y, γ satisfies

$$P(x \in X, y \in Y, \gamma = 0) = P(x \in X)P(y \in Y | x \in X)P(\gamma = 0 | y \in Y)$$

$$= \int_{x \in X} \int_{y \in Y} \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} \exp\left(-\frac{1}{2}(x - \bar{x})^T \Sigma^{-1}(x - \bar{x})\right) \frac{1}{\sqrt{2\pi r}} \exp\left(-\frac{1}{2r}(y - ax)^2\right) g(y) dx dy.$$

Hence.

$$P(x \in X, \gamma = 0) = \alpha \int_{x \in X} \int_{y \in \mathbb{R}} \exp\left[-\frac{1}{2}\left((x - \bar{x})^T \Sigma^{-1} (x - \bar{x}) + \frac{1}{r}(y - ax)^2 + \frac{1}{\delta}y^2\right)\right] dx dy$$

$$= \alpha \int_{x \in X} \exp\left[-\frac{1}{2}(x - \bar{x})^T \Sigma^{-1} (x - \bar{x})\right] \int_{y \in \mathbb{R}} \exp\left[-\frac{1}{2}\left(\frac{1}{r}(y - ax)^2 + \frac{1}{\delta}y^2\right)\right] dy dx$$

Since

$$\begin{split} \frac{1}{r}(y-ax)^2 + \frac{1}{\delta}y^2 &= \left(\frac{1}{r} + \frac{1}{\delta}\right)y^2 - \frac{2}{r}(ax)y + \frac{1}{r}(ax)^2 \\ &= \left[\sqrt{\frac{r+\delta}{r\delta}}\;y - \sqrt{\frac{\delta}{r(r+\delta)}}\;(ax)\right]^2 + \frac{1}{r+\delta}x^Ta^Tax. \end{split}$$

Hence,

$$\begin{split} &P(x \in X, \gamma = 0) = \beta \int_{x \in X} \exp\left[-\frac{1}{2}\left((x - \bar{x})^T \Sigma^{-1} (x - \bar{x}) + \frac{1}{r + \delta} x^T a^T a x\right)\right] dx \\ &= \lambda \int_{x \in X} \exp\left[-\frac{1}{2}(x - \tilde{x})\tilde{P}^{-1} (x - \tilde{x})\right], \end{split}$$

where

$$\tilde{P} = \left(\Sigma^{-1} + \frac{a^T a}{r + \delta}\right)^{-1} = \Sigma - \Sigma a^T (a\Sigma a^T + r + \delta)^{-1} a\Sigma.$$

and

$$\tilde{x} = P\Sigma^{-1}\bar{x} = \bar{x} + \Sigma a^T (a\Sigma a^T + r + \delta)^{-1} (0 - a\bar{x}).$$

Hence, if $P(x|\gamma=0)$ is Gaussian distributed with mean \tilde{x} and covariance P. On the other hand,

$$P(x \in X | y \in Y, \gamma = 1) = \frac{P(\gamma = 1 | x \in X, y \in Y) P(x \in X | y \in Y)}{P(\gamma = 1 | y \in Y)} = \frac{(1 - g(y)) P(x \in X | y \in Y)}{1 - g(y)}$$
$$= P(x \in X | y \in Y).$$

Hence, $P(x|y,\gamma=1)$ is a Gaussian distribution with mean $\bar{x}+\Sigma a^T(a\Sigma a^T+r)^{-1}(y-a\bar{x})$ and variance $P=(\Sigma^{-1}+a^Ta/r)^{-1}$. Therefore

$$\hat{x} = \bar{x} + \Sigma a^T (a\Sigma a^T + r + (1 - \gamma)\delta)^{-1} (\gamma y - a\bar{x}),$$

and

$$P = \left(\Sigma^{-1} + \frac{a^T a}{r + (1 - \gamma)\delta}\right)^{-1}$$

For multi-sensors, define

$$\Gamma = diag(\gamma_1, \ldots, \gamma_m), \ \Delta = diag(\delta_1, \ldots, \delta_m).$$

then

$$\hat{x} = \bar{x} + \Sigma C^T (C \Sigma C^T + R + (I - \Gamma) \Delta)^{-1} (\Gamma y - C \bar{x}),$$

and

$$P = \left(\Sigma^{-1} + \sum_{i=1}^{m} \frac{a_i^T a_i}{r_i + (1 - \gamma_i)\delta_i}\right)^{-1} = \Sigma - \Sigma C^T (C\Sigma C^T + R + (I - \Gamma)\Delta)^{-1} C\Sigma.$$

3 Communication Rate

Consider single sensor case and assume that $\bar{x}=0$ Let us define the communication rate $\lambda=P(\gamma=1)$. Then

$$P(\gamma = 0) = \mathbb{E} P(\xi \le g(y)|y) = \mathbb{E}g(y).$$

y is Gaussian with mean 0 and variance $r + a\Sigma a^T$. Hence,

$$\mathbb{E}g(y) = \frac{1}{\sqrt{2\pi(r + a\Sigma a^T)}} \int_{y\in\mathbb{R}} \exp\left[-\frac{1}{2}\left(\frac{y^2}{r + a\Sigma a^T} + \frac{y^2}{\delta}\right)\right]$$
$$= \frac{1}{\sqrt{1 + \frac{r + a\Sigma a^T}{\delta}}}.$$

For multi sensor case,

$$\lambda_i = 1 - \frac{1}{\sqrt{1 + \frac{r_i + a_i \Sigma a_i^T}{\delta_i}}}.$$