MATH3160 — Portfolio 1.1-2.1

Mike Medved

September 4th, 2022

1 Deliverables

1.1 Sample Space

Definition: The Sample Space S with respect to an Experiment E is a the set of all possible outcomes for the given experiment.

1.1.1 Examples

- A coin flip has a sample space of $\{H, T\}$.
- A die roll has a sample space of $\{1, 2, 3, 4, 5, 6\}$.

1.2 Set Operations

• Set Union:

• Set Intersection:

• Set Difference:

• Symmetric Difference: $A\triangle B$

• Set Disjoint: $A \perp B$

• Set Inclusion:

• Set Compliment:

1.3 Events \Leftrightarrow Sets

Event	Set
Sure Event	S (Entire Sample Space)
Impossible Event	Ø (Empty Set)
Event A	The subset all of favorable outcomes to A
Event A or B	$A \cup B$
Event A and B	$A \cap B$
Event A implies B	Set B is included in Set A
Event A, B incompatible	Set A and Set B are disjoint
Contrary of Event A	A^c with respect to the sample space S

1.4 Combinatorics: n-choose-k

Definition: The number of ways of choosing k objects from a set of n objects is denoted by $\binom{n}{k}$.

This can be accomplished by utilizing the following formula, where n represents the number of elements in the set, and k represents the amount being chosen.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

1.4.1 Examples

- Given the set $N = \{1, 2, 3, 4, 5, 6, 7\}$, how many ways are there to choose 3 ordered objects from N?
 - For the first entry, there are seven possibilities, for the second entry, there are six possibilities, and so on. Therefore, according to the definition of **n-choose-k**, there are 7*6*5 different choices for choosing three ordered elements from the seven element set.
- Given the same set N, how many ways are there to choose 3 different objects from N?
 - There are $\frac{7!}{4!*3!}$ ways to choose three different objects from the set.

1.5 Binomial Theorem

1.6 Classical Definition of Probability

1.7 Axiomatic Definition of Probability