Connecting ArcGIS with R and Conda

Shaun Walbridge

https://github.com/sc w/nyc-r-ws

High Quality PDF

ArcGIS

Today: Rand Conda

- Conda
 - Introduction
 - Optional demo
- R and the R-ArcGIS Bridge
 - Introduction
 - Demo
 - Road Ahead

Software Ecosystem

Connecting with ArcGIS

- Don't have an equivalent API for accessing our services via R like the ArcGIS API for Python (yet)
- ArcGIS is a *system of record*. Combine data and analysis from many fields and into a common environemnt.
- Why connect? Can't do it all, we support over 1000 GP tools enabling *integration* across environments for realistic workflows

The SciPy Stack

Data science

- Python (SciPy stack, Jupyter, scikit-learn, ...)
- C++ (Tensorflow, Shark, MLC++)
- Java (Spark MLlib, Weka)
- R (ML task view)
- Many workflows require combining components from multiple environments.

Packages with Conda

Why package management?

- Software is composed of many smaller components, often called packages or libraries.
- It's often better to reuse code that solves a problem well rather than recreating it
- But, sharing code is a hard problem. Do you have the same packages of the same versions as the developer did?

Why Conda?

- Scientific Python community identified that there was a gap not being addressed by the core Python infrastructure, limiting their ability to get packages into the hands of users
- Industry standard built by people who care about this space —
 Continuum Analytics (Esri partner)

Why Conda?

- It solves the hard problem:
 - Handles dependencies for many languages (C, C++, R and of course Python)
 - Built for Python first, but it really solves a much broader infrastructural issue.

- Cross-platform: Simply develop recipes for building and installing software on Linux, OS X and Windows.
- Open source: Esri is using it, you can use it in your own projects for other contexts

What can it install? Not just scientific packages, can install everything from interactive environments like <u>Spyder</u> to <u>Jupyter Notebooks</u>.

- Environments Can isolate an environment, flexibly make changes withot affecting installed software.
- Requirements include explicit state information, not just the package name.
- Packages an environment is built up from one or more packages, can be from many languages – from R to C++ to Fortran.
- Also handles platforms and Jupyter notebooks

Where do packages come from?

Conda packages can come from a variety of locations:

- anaconda.org many thousands of packages
- Repositories (e.g. Anaconda Cloud, self-hosted)
- On disk

Conda Basics

conda --help

conda info

Conda info is the starting point — it tells you the state of the environment.

Conda Basics

```
conda list
# packages in environment at C:\ArcGIS\bin\Python\envs\arcgispro-py3:
colorama
                          0.3.7
                                                              defaults
                                                    py35_0
                          0.10.0
                                                    py35_0
                                                              defaults
cycler
                                                    py35_0
                                                              defaults
future
                          0.15.2
matplotlib
                                              np111py35_0e [arcgispro]
                          1.5.3
                                                                         esri
                                                              defaults
                                                    py35_1
                          0.19
mpmath
                          1.2.4
                                                            [arcgispro]
netcdf4
                                                   py35_0e
                                                                         esri
                          1.3.7
                                                    py35_1
                                                              defaults
nose
                                              np111py35_0e
                                                            [arcgispro]
                          2.6.1
                                                                         esri
numexpr
                                                   py35_0e
                                                            [arcgispro]
                          1.11.2
                                                                         esri
numpy
                          0.19.0
                                               np111py35_0
                                                              defaults
pandas
pip
                          8.1.2
                                                    py35_0
                                                              defaults
                          1.4.31
                                                    py35_0
                                                              defaults
                          2.1.4
                                                    py35_0
pyparsing
                                                              defaults
pypdf2
                          1.26.0
                                                              esri
                                                      py_0
                                                    py35_0
                          2.9.2
                                                              defaults
pytest
```

Conda Basics

Activating environments, a couple ways:

- Use the shortcuts
- Manually activate the environment:

cd C:\ArcGIS\bin\Python\Scripts
activate arcgispro-py3

- A collection of packages and Python install is called an environment or env, the building block for managing Python with Conda
- Can have multiple environments and seamlessly switch between them

Conda vs...

Name	Means	Included?
Conda	The command itself	✓
Miniconda	A minimum set of Python packages to build and run Conda.	
Anaconda	A distribution 200+ packages built with Conda	
Anaconda Server	Host the full infrastructure internally	

How can I use this?

- ArcGIS (Desktop & Server) ships the SciPy stack powerful and out of the box in all products
- Conda command and a Conda root Python install
- New modules (e.g. requests), environment with Pro

How can I use this?

- ArcGIS (Desktop & Server) ships the SciPy stack powerful and out of the box in all products
- Conda command and a Conda root Python install
- New modules (e.g. requests), environment with Pro
- Get packages, expand your possibility space
- Package your work: this is an opportunity to distribute it, possibly including commercial side as well.

How can luse this?

Python Package Manager

The following list of Python packages are installed with ArcGIS Pro. Learn more about Conda packages

pytest

Installed Packages

2.9.2

Esri and ??

- Integration via ArcGIS-R bridge
- Joined R Consortium and R Foundation
- More to come GIS has historically been more coupled with Python

Why R?

- Powerful core data structures and operations
 - Data frames, functional programming
- Unparalleled breadth of statistical routines
 - The *de facto* language of Statisticians
- CRAN: 6400 packages for solving problems
- Versatile and powerful plotting

R Data Types

Data types you're used to seeing...

Numeric - Integer - Character - Logical - timestamp

R Data Types

Data types you're used to seeing...

Numeric - Integer - Character - Logical - timestamp

... but others you probably aren't:

vector-matrix-data.frame-factor

Data Frames

• Treats tabular (and multi-dimensional) data as a *labeled*, *indexed* series of observations. Sounds simple, but is a game changer over typical software which is just doing 2D layout (e.g. Excel)

Data Types

```
# Create a data frame out of an existing source
df.from.csv <- read.csv(
   "data/growth.csv",
   header=TRUE)</pre>
```

Data Types

```
# Create a data frame from scratch
quarter \leftarrow c(2, 3, 1)
person <- c("Goodchild",</pre>
              "Tobler",
              "Krige")
met.quota <- c(TRUE, FALSE, TRUE)</pre>
df <- data.frame(person,</pre>
                    met.quota,
```

Data Types

sp Types

OD: SpatialPoints

1D: SpatialLines

2D: SpatialPolygons

• 3D: Solid

• 4D: Space-time

Entity + Attribute model

Statistical Formulas

fit.results <- lm(pollution ~ elevation + rainfal)

- Domain specific language for statistics
- Similar properties in other parts of the language
- <u>caret</u> for model specification consistency

R-ArcGIS Bridge

R — ArcGIS Bridge

R fluent programmers Analysts problem solving Stakeholders interpretation / consumption

R – ArcGIS Bridge

- ArcGIS developers can create tools and toolboxes that integrate ArcGIS and R
- ArcGIS users can *access R* code through geoprocessing scripts
- R users can access organizations GIS' data, managed in traditional GIS ways

https://r-arcgis.github.io

R — ArcGIS Bridge

Store your data in ArcGIS, access it quickly in R, return R objects back to ArcGIS native data types (e.g. geodatabase feature classes).

Knows how to convert spatial data to sp objects.

Package Documentation

Access ArcGIS from R

Start by loading the library, and initializing connection to ArcGIS:

```
# load the ArcGIS-R bridge library
library(arcgisbinding)
# initialize the connection to ArcGIS. Only needed
arc.check_product()
```

Access ArcGIS from R

First, select a data source (can be a feature class, a layer, or a table):

```
input.fc <- arc.open('data.gdb/features')</pre>
```

Then, filter the data to the set you want to work with (creates inmemory data frame):

This creates an *ArcGIS data frame* – looks like a data frame, but retains references back to the geometry data.

Access ArcGIS from R

Finished with our work in R, want to get the data back to ArcGIS. Write our results back to a new feature class, with arc.write:

arc.write('data.gdb/new_features', results.df)

Building R Script Tools

\odot	Semiparametric Regression	≡
Parameters Environments		?
* Input	Features	<u>#</u>
* Locat	ions To Predict	<u>#</u>
* Depe	ndent Variable	
* Outp	ut Prediction Feature Class	<u>+</u>
Linea	r Explanatory Variables Select A	2
① Nonli	near Explanatory Variables Select A	13
Input	Knot Features	<u>+</u>

RArcGIS Bridge Demo

• Details of model based clustering analysis in the R Sample Tools

How To Install

- Install with the R bridge install
- Detailed installation instructions

Where Can I Run This?

Road Ahead

Road Ahead: next few months

- Raster
- Microsoft R server
- Data Science VM on Azure data science problem solving with R,
 Python, ArcGIS and much more

Road Ahead: longer term

- Geoprocessing from R stay in R for everything
- ArcGIS API for R