Numerical Optimization exercise sheet

review on 15.01.2024 during the exercise class

1. (Active set method)

The active set method is an optimization method for quadratic problems (QP) with (affine) linear equality and inequality constraints of the form

$$\begin{cases}
\min_{x} f(x) := \frac{1}{2}x^{T}Ax + a^{T}x \\
\text{s.t. } Bx = b, \ Cx \le c,
\end{cases}$$
(1)

where A is symmetric positive definite on ker B and B has full rank. The idea is to reduce the problem to a sequence of QPs with only equality constraints. At an iterate $x^{(k)} \in \mathcal{F}$ not being the solution x^* , we seek a feasible descent direction $d^{(k)}$ by solving (see (3.6.19))

$$\begin{cases} \min_{d^{(k)}} f(x^{(k)} + d^{(k)}) \\ \text{s.t. } Bd^{(k)} = 0, \ C_j d^{(k)} = 0, \ j \in \mathcal{A}(x^{(k)}) \end{cases}$$

which is equivalent to

$$\begin{cases} \min_{d^{(k)}} \frac{1}{2} (d^{(k)})^T A d^{(k)} + (d^{(k)})^T (A x^{(k)} + a) \\ \text{s.t. } D^{(k)} d^{(k)} = 0. \end{cases}$$
 (2)

We know from the lecture, that there can now arise three possibilities.

Case 1: $d^{(k)} = 0, \, \mu^{(k)} \ge 0$

Case 2: $d^{(k)} = 0$, $\mu_j^{(k)} < 0$ for at least on $j \in \mathcal{A}(x^{(k)})$

Case 3: $d^{(k)} \neq 0$ is a feasible direction

- a) Derive the KKT system for (1) and (2).
- b) Let (1) be convex and let $x^{(k)} \in \mathcal{F}$ be the current iterate. Show that, if for the solution $d^{(k)}$ and the Lagrange multiplier $\mu^{(k)}$ of (2) holds Case 1, then $x^{(k)}$ is a solution of (1).
- c) Assume that we are in Case 2 and the Inactivation step has been performed, i.e. we have $d^{(k)} = 0$ and $\mu_j^{(k)} < 0$ for at least one $j \in \mathcal{A}^{(k)}$. Further, we have $\tilde{d}^{(k)}$, $\tilde{\lambda}^{(k)}$ and $\tilde{\mu}^{(k)}$ as the solution of problem (2) w.r.t. the set $\tilde{\mathcal{A}}^{(k)} := \mathcal{A}^{(k)} \setminus \{j\}$ as described in the lecture notes. Show that $\tilde{d}^{(k)}$ is a feasible direction at $x^{(k)}$ by showing $\tilde{d}^{(k)} \in \mathcal{L}(\mathcal{F}, x^{(k)})$.

Hint: Exploit the optimality conditions for $d^{(k)}$ and $\tilde{d}^{(k)}$.

d) Assume everything from c) holds and further assume that $D^{(k)}$ has full rank for all $k \in \mathbb{N}$. Show that $\tilde{d}^{(k)} \neq 0$.

$$(2+4+6+4=16 \text{ Points})$$

2. (Active set method, Matlab)

In this exercise we want to visualize the iterations of the active set method.

- a) Download the MATLAB function activeset.m from Moodle and adjust the method such that the nullspace_method.m is used to solve the subproblems.
- b) Apply the active set method to the problem

$$\min_{x \in \mathbb{R}^2} f(x) = (x_1 - 1)^2 + (x_2 - 2.5)^2$$
s.t. $x_1 - 2x_2 + 2 \ge 0$

$$-x_1 - 2x_2 + 6 \ge 0$$

$$-x_1 + 2x_2 + 2 \ge 0$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

with the initial value $x_0 = (2,0)^T$ and the associated active set $\mathcal{A}(x_0)$.

c) Plot the contours of f with the constraints and the path of the iterations of the active set method.

$$(2+4+6=12 \text{ Points})$$