The group G is isomorphic to the group labelled by [48, 15] in the Small Groups library. Ordinary character table of $G \cong (C3 \times D8) : C2$:

Normalisers N_i	N_1							N_2						
p-subgroups of G up to conjugacy in G	P_1							P_2						
Representatives $n_j \in N_i$	1a	2a	2b	4a	2c	8a	8b	1a	2b	2a	2c	8a	4a	8 <i>b</i>
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	1	3	3	3	1	1	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	-1	3	3	3	-1	-1	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$			-3		3	1	1	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	1	-3	3	3	-1	-1	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	6	0	0	-6	6	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	6	0	0	0	-6	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	6	0	0	0	-6	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	-1	1	1	-1	-1	1	-1	1	1	-1	1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-1	1	1	1	-1	-1	1	1	-1	1	-1	1	-1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-1	-1	1	1	1	1	1	-1	-1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	0	0	-2	2	0	0	2	0	0	2	0	-2	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2			0		$E(8) - E(8)^3$	$-E(8) + E(8)^3$	2	0	0	-2	$E(8) - E(8)^3$	0	$-E(8) + E(8)^3$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	0	0	0	-2	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	2	0	0	-2	$-E(8) + E(8)^3$	0	$E(8) - E(8)^3$

 $P_2 = Group([(1,17,6)(2,24,10)(3,28,13)(4,30,15)(5,31,16)(7,35,20)(8,37,22)(9,38,23)(11,40,26)(12,41,27)(14,42,29)(18,44,33)(19,45,34)(21,46,36)(25,47,39)(32,48,43)]) \cong C3$

 $\chi_8 \mid 2 \quad 0 \quad 0 \quad 0 \quad -2 \quad 2 \quad -E(8) + E(8)^3 \quad 0 \quad 0 \quad -2 \quad E(8) - E(8)^3$ $\chi_9 \mid 2 \quad 0 \quad 0 \quad 0 \quad -2 \quad 2 \quad E(8) - E(8)^3 \quad 0 \quad 0 \quad -2 \quad -E(8) + E(8)^3 \quad 0$ $\chi_{10} \mid 2 \quad 0 \quad 0 \quad -2 \quad 2 \quad -1 \quad 0 \quad -E(3) + E(3)^2 \quad 1 \quad -1 \quad 0 \quad E(3) - E(3)^2$ $|\chi_{12}|$ 4 0 0 0 -4 -2 0 0 0 2 0

 $N_1 = Group([(1,2)(3,18)(4,21)(5,9)(6,24)(7,11)(8,14)(15,39)(16,27)(17,28)(18,21)(22,43)(23,34)(24,35)(26,29)(30,47)(31,41)(33,36)(37,48)(48,45)(40,42)(43,48)(15,39)(24,37)(30,36)(34,47)(39,43)(24,37)(30,36)(34,47)(39,43)(24,37)(39,43)(39$