Problème. Sur la notion de fonction génératrice.

Dans ce problème, m et n sont des entiers naturels non nuls et $p \in [0,1]$. Toutes les variables aléatoires seront supposées définies sur un espace probabilisé fini (Ω, P) et à valeurs entières positives : $X(\Omega)$ sera une partie finie de \mathbb{N} .

On appelle fonction génératrice de X et on note G_X la fonction

$$G_X: t \mapsto E(t^X).$$

1. Fonction génératrice et loi d'une variable aléatoire.

Soit X et Y deux variables aléatoires à valeurs dans \mathbb{N} .

(a) Démontrer que pour tout $t \in \mathbb{R}$,

$$G_X(t) = \sum_{k \in X(\Omega)} P(X = k)t^k.$$

- (b) Justifier que X et Y ont même loi si et seulement si $G_X = G_Y$.
- 2. Fonction génératrice et lois usuelles.

Pour $t \in \mathbb{R}$, calculer

- (a) $G_X(t)$ pour X suivant la loi de Bernoulli $\mathcal{B}(p)$.
- (b) $G_U(t)$ pour U suivant la loi uniforme sur [1, n].
- (c) $G_Y(t)$, pour Y suivant la loi binomiale $\mathcal{B}(n,p)$.
- 3. Fonction génératrice et espérance.

Soit $X: \Omega \to [0, n]$.

- (a) Justifier que $G'_X(1) = E(X)$.
- (b) À l'aide de ce qui précède, retrouver l'expression connue pour l'espérance d'une variable aléatoire de loi $\mathcal{B}(n,p)$.

- 4. Fonction génératrice et somme de deux variables.
 - (a) Montrer que si X et Y sont deux variables aléatoires **indépendantes**, alors

$$G_{X+Y} = G_X \times G_Y$$
.

(b) Application 1

On modélise un lancer de deux dés équilibrés en considérant un couple (X, Y) de deux variables indépendantes et toutes deux de loi uniforme sur [1, 6]. Quelle est la loi de X + Y?

(c) Application 2

Soient X et Y deux variables aléatoires indépendantes, X suivant la loi binomiale $\mathcal{B}(m,p)$ et Y suit la loi $\mathcal{B}(n,p)$. Démontrer que X+Y suit la loi $\mathcal{B}(m+n,p)$.

Exercice 1. Une inégalité.

Soit $n \in \mathbb{N}^*$. Montrer que pour tous réels positifs x_1, \ldots, x_n et toute permutation $\sigma \in S_n$,

$$\sum_{i=1}^{n} x_i x_{\sigma(i)} \le \sum_{i=1}^{n} x_i^2.$$

Exercice 2. Matrice de projection orthogonale.

On travaille dans \mathbb{R}^n muni de sa structure euclidienne, et on considère

$$a = (a_1, \dots, a_n) \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}.$$

Calculer P, la matrice dans la base canonique de la projection orthogonale sur Vect(a)

Notons
$$A = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$
. Une fois les calculs faits, vérifier que $P = \frac{AA^\top}{A^\top A}$.