

Reweighted Solutions for Weighted Low Rank Approximation

David P. Woodruff and Taisuke Yasuda

Weighted Low Rank Approximation

• Low rank approximation (LRA): given $\mathbf{A} \in \mathbb{R}^{n \times d}$, solve

$$\min ||\mathbf{A} - \tilde{\mathbf{A}}||_F^2 = \sum_{i=1}^n \sum_{j=1}^d |\mathbf{A}_{i,j} - \tilde{\mathbf{A}}_{i,j}|^2 \qquad \text{s.t. } \operatorname{rank}(\tilde{\mathbf{A}}) \le k$$

• Weighted LRA (WLRA): given $A \in \mathbb{R}^{n \times d}$ and weights $W \in \mathbb{R}^{n \times d}$, solve

$$\min \|\mathbf{A} - \tilde{\mathbf{A}}\|_{\mathbf{W},F}^2 = \sum_{i=1}^n \sum_{j=1}^d \mathbf{W}_{i,j}^2 \cdot |\mathbf{A}_{i,j} - \tilde{\mathbf{A}}_{i,j}|^2 \quad \text{s.t. } \operatorname{rank}(\tilde{\mathbf{A}}) \le k$$

Entrywise weights W

- Advantages of introducing weights
 - Model missing entries by setting $\mathbf{W}_{i,j} = 0$ (aka matrix completion)
 - Model uncertainty of an entry
- Disadvantages of introducing weights
- Problem becomes NP hard, even to approximate

Goal. Design efficient bicriteria approximation algorithms for WLRA.

- We focus on **low rank weight matrices** (i.e. $rank(W) \le r$)
- This assumption is necessary in general [RWZ16]
 - There exist input instances with rank r that require $\exp(r)$ time under natural complexity assumptions
- This seems to be a decent assumption in practice

A Simple New Algorithm

Algorithm: WLRA.

Entrywise product •

- 1. Compute a rank rk LRA $\tilde{\mathbf{A}}_{\mathbf{W}}$ of $\mathbf{W} \circ \mathbf{A}$
- 2. Return $\tilde{\mathbf{A}} := \mathbf{W}^{\circ -1} \circ \tilde{\mathbf{A}}_{\mathbf{W}}$

Reweight by the entrywise inverse W°-1

- This solution is a **reweighting** of a rank rk solution, but not low rank itself
- Efficient storage: W and \tilde{A}_W are both low rank
- Efficient application: if **W** is structured

Proof

Lemma. If $rank(\mathbf{W}) \leq r$ and $rank(\tilde{\mathbf{A}}) \leq k$, then $rank(\mathbf{W} \circ \tilde{\mathbf{A}}) \leq rk$.

Proof: We have

$$\mathbf{W} \circ \tilde{\mathbf{A}} = \left(\sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{T}}\right) \circ \left(\sum_{j=1}^{k} \mathbf{b}_{j} \mathbf{c}_{j}^{\mathsf{T}}\right)$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{k} \left(\mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{T}}\right) \circ \left(\mathbf{b}_{j} \mathbf{c}_{j}^{\mathsf{T}}\right)$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{k} \left(\mathbf{u}_{i} \circ \mathbf{b}_{i}\right) \left(\mathbf{v}_{j} \circ \mathbf{c}_{j}\right)^{\mathsf{T}}$$

Theorem. The algorithm outputs a solution with cost at most the optimal rank k solution.

• **Proof:** For any rank k matrix A', we have

$$\begin{split} \|\mathbf{A} - \mathbf{W}^{\circ -1} \circ \tilde{\mathbf{A}}_{\mathbf{W}}\|_{\mathbf{W},F}^2 &= \|\mathbf{W} \circ \mathbf{A} - \tilde{\mathbf{A}}_{\mathbf{W}}\|_F^2 \\ &\leq \|\mathbf{W} \circ \mathbf{A} - \mathbf{W} \circ \mathbf{A}'\|_F^2 \\ &= \|\mathbf{A} - \mathbf{A}'\|_{\mathbf{W},F}^2 \end{split}$$
 Rank at most rk by lemma

Matrices with Structured Entrywise Inverses

- The entrywise inverse is unfavorable...
- This can be fixed for structured matrices!

Lemma. If $\operatorname{rank}(\mathbf{A}) \leq k$ and $\mathbf{W} = \mathbf{E} + \sum_{i=1}^r \mathbf{S}_i$ for a sparse matrix \mathbf{E} and rank 1 matrices \mathbf{S}_i with disjoint support, then $\mathbf{W}^{\circ -1} \circ \mathbf{A}'$ can be applied quickly to a vector.

. **Proof:** We can write $\mathbf{W}^{\circ -1} = \mathbf{E}' + \sum_{i=1}' \mathbf{S}_i^{\circ -1}$, where \mathbf{E}' is a sparse matrix that has the same support as \mathbf{E} . Then,

$$(\mathbf{W}^{\circ -1} \circ \mathbf{A}')\mathbf{x} = (\mathbf{E}' \circ \mathbf{A}')\mathbf{x} + \sum_{i=1}^{r} (\mathbf{S}_{i}^{\circ -1} \circ \mathbf{A}')\mathbf{x}$$
Sparse Low rank

Communication Complexity

- Column subset selection: there is a set of $\tilde{O}(k/\varepsilon)$ columns that span a $(1+\varepsilon)$ relative error LRA
- If the weight matrix \mathbf{W} has s-sparse columns, then by using LRA based on column subset selection, we can represent a WLRA solution in roughly srk + rkd space.
- . When $d \ll s \leq \frac{n}{r}$, this is nearly optimal!

Theorem. Representing a relative error WLRA solution for a matrix **W** with *s*-sparse columns requires $\Omega(srk)$ bits of space.

A is r copies of a $sr \times k$ matrix W is r copies of $s \times k$ blocks

Real world dataset: DNN weight matrices, weighted by importance scores

Experiments

• Synthetic dataset: mixture of Gaussians, weighted by inverse variance

