Stock Price Prediction using Machine Learning

Submitted By: - M.C.A. (Regular Entry) Semester-VI

Preyash S. KaPatel (18034211003)

Guided by

Dr. Jigneshkumar A. Chauhan (Internal Guide)

Submitted to
Acharya Motibhai Patel Institute of Computer Studies,
GANPAT UNIVERSITY
Dec-April 2021

Project Profile

Project Profile

Project Title	Stock Price Prediction using Machine Learning				
Project category	Web Application				
Objective	To Predict the stock price based on the past and upcoming events.				
Front End	Django				
Back End	Django, Python				
Tool	Anaconda, Google Colab				
Server	XAMP				
Documentation Tool	Office 365				
Company Name	MADHDA BUSINESS SOLUTIONS PVT LTD				
Internal Guide	Dr. Jigneshkumar A. Chauhan				
External Guide	Pravin Dangar				
Developed By	Preyash Sanjay KaPatel (1803421003)				
Group No	19				

Requirement Specification

Existing system

The existing system works as follow:

- Money related transaction require high alertness of statistical insights of history and future events, In such case taking decision of stake sale, hold or buy are difficult.
- ▶ Before taking decision we need to look at the past data, stock patterns, Recent news and judging the price takes time and it might end up in slow decision, incomplete information.
- ► Taking the Stake sale/buy/Hold based on emotion and incomplete information may perform false prediction.
- Drawback of Existing System
 - Incomplete Information
 - Emotion based Decision
 - Unawareness of stock price patterns

Need for new system

- ► Rapid Decision:
 - User can take decision rapidly as it is performed autonomous.
- ► Improved Accuracy:
 - ▶ User can use the result to take decision for stake sale or hold or buy
- Based on Historic data:
 - Prediction are based on historic data and past events' effect.

- Stock price prediction is an important decision in order to gat benefit from stock market.
- ▶ To predict the stock Price I have used Artificial Neural Network, Which contain three layers:
 - Input Layer : We have number of features equal to number on neurons in input layer
 - Hidden Layer: Set of neurons to store what was learned (can be modified accordingly)
 - Output Layer: Using only one output layer neuron as we are using it for regression problem.

- Creating Indicator Functions is also important to create bias in prediction based on what is more important
- ▶ Following are the Indicator for Stock Price Prediction:
 - ► RSI (Relative Strength Index):
 - ► MFI (Money Flow Index)
 - ► EMA (Exponential Moving Average)

- ► RSI (Relative Strength Index):
 - Measures speed and change of price movements.
 - ▶ It ranges in between 0 and 100
 - ▶ We consider overbought above 70 and oversold below 30 (generally)
 - ► RSI = 100 [100 / (1 + (Average of Upward Price Change / Average of Downward Price Change))]

- ► MFI (Money Flow Index):
 - Related to RSI but incorporates volume too where RSI considers prices only
 - ► Typical Price = (High + Low + Close)/3
 - Next, Money Flow (not the Money Flow Index) is calculated by multiplying the period's Typical Price by the volume.
 - ► Money Flow = Typical Price * Volume

- ► EMA (Exponential Moving Average):
 - SMA = avg of price data,
 - ► EMA = more weight to data which is more current.
 - EMA is more sensitive to price movement and it used to determine trend direction
 - ► EMA = (K x (C P)) + P
 - where,
 - ► C = Current Price
 - ▶ P = Previous periods EMA (A SMA is used for the first periods calculations)
 - ► K = Exponential smoothing constant

USED HARDWARE AND SOFTWARE CLINET SIDE

- Minimum Requirement of Hardware and Software:
- Hardware Requirement:
 - ▶ Basic CPU with 700 MHz Speed
 - ▶ 1 GB RAM
- Software Requirement:
 - ► Chrome with 68.0.3440.75 or above Version
 - Good Internet Speed

USED HARDWARE AND SOFTWARE Server SIDE

- Minimum Requirement of Hardware and Software:
- ► Hardware Requirement:
 - ► Inter i3 10th generation
 - ▶ 4 GB RAM
 - ▶ 250 mb Space in SSD
- Software Requirement:
 - ► Chrome with 68.0.3440.75 or above Version
 - High Speed Internet
 - Google Colab
 - Webpage IDE
 - Github Desktop

FUNCTIONAL MODULE SPECIFICATION

Functional Module Specification

- Login:
 - Admin and Account Holder can access website by successfully login
- Watchlist:
 - User can add remove stock from watchlist.
- Holdings:
 - ▶ Here user can see there stock holding if they have.
- Predictions:
 - ▶ In this module user can predict the stock price.

SYSTEM FLOW CHART

SYSTEM FLOW CHART for Admin

SYSTEM FLOW CHART for User

Use-Case Diagram

Use-Case Diagram

Class Diagram

Class Diagram

DataModel

id: AutoField

user: CharField

avgCost: FloatField

created: DateTimeField

price: FloatField qty: IntegerField

symbol: CharField

0..*

User

id: AutoField

date_joined: DateTimeField

email: EmailField

first_name: CharField

is_active: BooleanField

is_staff: BooleanField

is_superuser: BooleanField

last_login: DateTimeField

last_name: CharField

password: CharField

username: CharField

Sequence Diagram

Sequence Diagram for Admin

Sequence Diagram for User

Activity Diagram

Activity Diagram for Admin

Activity Diagram for User

Deployment Diagram

Deployment Diagram

Data Dictionary

Data Dictionary

Name: DataModel

DESCRIPTION:- Represents stock holding and watchlist Primary Key: id

<u>Sr.No</u>	<u>Field Name</u>	<u>Data Type</u>	<u>Constraint</u>	<u>Description</u>
1	id	IntegerField	Primary Key	Represent Record id
2	user	CharField	Not Null	Represent registered User
3	avgCost	FloatField	Not Null	Represent Average cose
4	created	DateTimeField	Not Null	Represent stock addition date and time
5	price	FloatField	Not Null	Represent last updated price
6	qty	IntegerField	Not Null	Represent quenty
7	symbol	CharField	Not Null	Represent stock symbol

Data Dictionary

Name: User

DESCRIPTION:- Represents users's details

D'	TZ	' 1
Primary	K AV' 1	и
I IIIIIAI Y	IXC Y.	LU
	_	

<u>Sr.No</u>	<u>Field Name</u>	<u>Data Type</u>	<u>Constraint</u>	<u>Description</u>
1	id	IntegerField	Primary Key	Represent user id
2	Date_joined	DateTimeField	Not Null	Represent date of joining
3	email	EmailField	Not Null	Represent Email id of user
4	First_name	CharField	Not Null	Represent First Name
5	ls_active	BooleanField	Not Null	Represent user status
6	ls_staff	BooleanField	Not Null	Represent user is staff member or not
7	ls_superuser	BooleanField	Not Null	Represent user is super user or not
8	last_login	DateTimeField	Not Null	Represent last login date and time
9	last_name	CharField	Not Null	Represent user's last name
10	Password	CharField	Not Null	Represent password
11	username	CharField	Not Null	Represent username

Input & Output Design

Home Page

Signup Page

Signup Credential Validation:

Login Page

Login Credential Validation:

Home after login

Watchlist Page

Holdings Page

Prediction Page

Prediction Page

Admin Login Page

Admin Login Credential Validation:

Admin Home Page

Admin User's List

Admin Add User/Super User Page

Admin DataModel Page

Admin Add DataModel Page

Admin Change Password Page

Admin Logout Page

Testing

Testing For Login/Signup Validation

<u>Sr.No</u>	Validation Checking	Excepted Result	<u>Test Result</u>
1	Usename	Not Null and Unique	Pass
2	Password	Not null	Pass
3	Confirm Password	Not null	Pass

Testing For Watchlist

<u>Sr.No</u> <u>Validation Checking</u> <u>Excepted Result</u> <u>Test Result</u>

1 Symbol As per Yahoo Finance Pass

Testing For Holding

<u>Sr.No</u>	Validation Checking	Excepted Result	<u>Test Result</u>
1	Symbol	As per Yahoo Finance	Pass
2	Quantity	Greater then Zero	Pass

Testing For Prediction

<u>Sr.No</u> <u>Validation Checking</u> <u>Excepted Result</u> <u>Test Result</u>

1 Symbol As per Yahoo Finance Pass

Future Enhancement

Future Enhancement

- Implement NLTK to have impact of News on Stock Price Prediction
- Speeding up the Model training time
- Maintain prebuilt model for faster response
- News update for respective stock
- Stock's Fundamentals view

Bibliography

Bibliography

- https://www.djangoproject.com/
- https://in.finance.yahoo.com/
- https://www.python.org/
- http://tensorflow.org/
- http://keras.io/

Thank You