(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

TIPO OMPI

) - I COLI BRIZZIO I COLID VOLI BIDI COLI COLI COLI COLI COLID COLID COLID COLID COLID COLID COLID COLID COLID

(43) International Publication Date 15 April 2004 (15.04.2004)

PCT

(10) International Publication Number WO 2004/031232 A1

(51) International Patent Classification7:

C07K 14/475

(21) International Application Number:

PCT/AU2003/001310

(22) International Filing Date: 6 October 2003 (06.10.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 2002951853

4 October 2002 (04.10.2002) AU

(71) Applicants (for all designated States except US): COMMONWEALTH SCIENTIFIC AND INDUSTRIAL
RESEARCH ORGANISATION [AU/AU]; Limestone
Avenue, Campbell, Australian Capital Territory 2601
(AU). LUDWIG INSTITUTE FOR CANCER RESEARCH [US/US]; 605 Third Avenue, New York, NY
10158 (US). WALTER AND ELIZA HALL INSTITUTE OF MEDICAL RESEARCH [AU/AU]; Royal
Melbourne Hospital, Royal Parade, Parkville, Victoria
3052 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GARRETT, Thomas, Peter, John [AU/AU]; 2 Gray Street, Brunswick, Victoria 3056 (AU). ELLEMAN, Thomas, Charles [AU/AU]; 12 Swan Avenue, Westmeadows, Victoria 3049 (AU). ADAMS, Timothy, Edward [AU/AU]; 48 Brassey Avenue, Rosanna, Victoria 3084 (AU). BURGESS, Antony, Wilkes [AU/AU]; 32 Range Street, Camberwell, Victoria 3124 (AU). JORISSEN, Robert, Nicholas

[AU/AU]; 138 Bloomfield Road, Keysborough, Victoria 3173 (AU). LOU, Meizhen [AU/AU]; 10 Roma Street, Scoresby, Victoria 3179 (AU). LOVRECZ, George, Oscar [AU/AU]; 2 Tovey Street, North Balwyn, Victoria 3104 (AU). McKERN, Neil, Moreton [AU/AU]; Como Road, Lilydale, Victoria 3170 (AU). WARD, Colin, Wesley [AU/AU]; 903 Rathdowne Street, Carlton, Victoria 3053 (AU).

- (74) Agent: FB RICE & CO; 139 Rathdowne Street, Carlton, Victoria 3053 (AU).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CRYSTAL STRUCTURE OF ERBB2 AND USES THEREOF

(57) Abstract: More particularly, the present invention relates to the crystal structure of the ErbB2, in particular the crystal structure of an extracellular portion of ErbB2 and to methods of using the crystal and related structural information to screen for and design compounds that interact with ErbB2, or variants of thereof.

04/031232 AJ

WO 20

Page 2 of 148

3/1875

JC13 Rec'd PCT/PTO 01 APR 2005

WO 2004/031232

PCT/AU2003/001310

1

Crystal Structure Of ErbB2 And Uses Thereof

Field of the invention

5

10

30

35

The present invention relates generally to structural studies of ErbB2. More particularly, the present invention relates to the crystal structure of the ErbB2, in particular the crystal structure of an extracellular portion of ErbB2 and to methods of using the crystal and related structural information to screen for and design compounds that interact with or modulate ErbB2; or variants thereof.

Background to the invention

ErbB2 was discovered as an oncogene (neu) in a rat brain tumor (Schecter et al., 1984, 15 Nature 312, 513-516). ErbB2/HER2 is closely related to the EGF receptor and is the most oncogenic member of the EGFR family. It is amplified and/or overexpressed in approximately 30% of human breast cancers and in many other types of human malignancies and this overexpression is correlated with poor clinical prognosis (see Mendelsohn and Baselga, 2000, Oncogene 19, 6550-6565; Yu and Hung, 2000, 20 Oncogene 19, 6115-6121). Overexpression of ErbB2 enhances metastasis-related properties such as invasion, angiogenesis and increased survival of cancer cells, and confers increased resistance to various cancer therapies including chemotherapy and gamma-radiation (see Mendelsohn and Baselga, 2000; Yu and Hung, 2000). Some forms of breast cancer are now treated with antibodies that recognise ErbB2 and 25 improvements in anti-ErbB2 therapies are likely to flow from a better understanding of its 3D structure and its mechanism of action.

Considerable resources have been directed to the identification of an ErbB2 ligand. No ligand has been found, however the search led to the discovery of ErbB4 and considerable improvements in our biological understanding of the EGF receptor family (Harari and Yarden, 2000, Oncogene 19, 6102-6114; Yarden and Sliwkowski, 2001, Nat. Rev. Mol. Cell. Biol. 2, 127-137). It now seems certain that ErbB2 has no ligand. Instead it acts as a second receptor sub-unit in three EGF receptor family heterodimers: ErbB1-ErbB2, ErbB3-ErbB2 and ErbB4-ErbB2 (Daly et al., 1997, Cancer Res. 57, 3804-3811; Sundaresan et al., 1998, Endocrinol. 139, 4756-4764). There is definitive evidence that the EGF receptor homodimer signals differently to the EGF receptor-

WO 2004/031232 PCT/AU2003/001310

2

ErbB2 heterodimer. Unless ErbB2 carries an oncogenic mutation, as in c-neu, it signals only after activation of its heterodimer partner by EGF or other relevant ligand.

The human ErbB2 is a large (1234 residues), monomeric, modular glycoprotein with an extracellular domain, a single transmembrane region and an intracellular cytoplasmic tyrosine kinase, which is flanked by noncatalytic regulatory regions (Yamamoto et al., 1986, Nature 319, 230-234). The extracellular portion of human ErbB2 (residues 1-632), like the EGFR, consists of four sub-domains L1, CR1, L2 and CR2 (Bajaj et al., 1987, Biochim. Biophys. Acta 916, 220-226; Ward et al., 1995, Proteins: Struct. Funct. Genet. 22, 141-153) also referred to as domains I-IV (Lax et al., 1988, Mol. Cell. Biol. 8, 1970-1978).

Summary of the invention

We have determined the three dimensional structure of a truncated form (residues 1-509) of the ectodomain of the tyrosine kinase receptor ErbB2 at 2.5 Å resolution and compared it with the recently solved structures of the EGFR ectodomain with TGFα or EGF and the unliganded ErbB3 ectodomain. Lack of ligand binding by ErbB2 appears to be caused by amino acid differences in the L1 and L2 domains of ErbB2. Furthermore, ligands would not be able to bind to the observed conformation of ErbB2 here as kinks in the first Cys-rich region (CR1) lead to a closer juxtaposition of the L domains, occluding the region of ErbB2 that is analogous to the EGFR ligand binding site. The L1/L2 buried surface area and the degree of complementarity in the L domain interface implies that this "closed" form is biologically relevant.

25

35

10

Accordingly, in one aspect, the present invention provides a method for identifying a potential modulator compound for ErbB2 which method comprises:

- (a) providing a three-dimensional structure of
- (i) amino acids 1-509 of ErbB2 polypeptide having the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I; or
 - (ii) a subset of said amino acids having a corresponding subset of the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the

20

25

30

WO 2004/031232 PCT/AU2003/001310

3

corresponding backbone atoms described by the atomic coordinates shown in Appendix I;

- (b) providing the three-dimensional structure of a candidate compound;
- (c) assessing the stereochemical complementarity between the three-dimensional structure of step (b) and a region of the three-dimensional structure of step (a); and
- (d) selecting a compound on the basis of the stereochemical complementarity.

In a preferred embodiment, the method further comprises:

- (e) synthesising or obtaining a candidate compound assessed in step (c) as possessing stereochemical complementarity with the three-dimensional structure of step (a);
 - (f) determining the ability of the candidate compound to interact with and/or modulate the activity of ErbB2.
- In yet a further aspect the present invention provides a method for preparing a pharmaceutical composition for treating diseases associated with aberrant ErbB2 signalling, the method comprising:
 - (a) providing a three-dimensional structure of
 - (i) amino acids 1-509 of ErbB2 polypeptide having the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I; or
 - (ii) a subset of said amino acids having a corresponding subset of the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I;
 - (b) providing the three-dimensional structure of a candidate compound;
 - (c) assessing the stereochemical complementarity between the three-dimensional structure of step (b) and a region of the three-dimensional structure of step (a); and
 - (d) selecting a compound on the basis of the stereochemical complementarity;
 - (e) synthesising or obtaining a candidate compound assessed in step (c) as possessing stereochemical complementarity with the three-dimensional structure of step (a);
- 35 (f) determining the ability of the candidate compound to interact with and/or modulate the activity of ErbB2; and

25

30

35

WO 2004/031232 PCT/AU2003/001310

4

(g) incorporating the compound into a pharmaceutical composition.

The method may be used for either targeted or broad screening. Targeted screening involves the design and synthesis of chemical compounds that are analogs of some active compounds or that can specifically act with the biological target under investigation. Broad screening involves the design and synthesis of a large array of maximally diverse chemical compounds, leading to diverse libraries that are tested against a variety of biological targets.

In a further aspect, the present invention provides a method of modulating ErbB2, the method comprising contacting the receptor with a compound that matches a region selected from at least one of the CR1 domain, the potential CR1 loop docking site between the L1, CR1 and L2 domains, the CR1-L2 hinge region, the regions of the L1 and L2 domains that contact each other in a closed conformation.

The compound may be a small molecule modulator. The term "small molecule" includes an organic compound either synthesized in the laboratory or found in nature. Typically, a small molecule is any organic molecule having a molecular weight of less than about 1500. Preferably the molecule has a molecular weight less that about 1000, more preferably less than about 500.

The term "ErbB2" as used herein includes wild-type ErbB2 and variants thereof including allelic variants and naturally occurring mutations and genetically engineered variants.

The present invention also provides a set of coordinates as shown in Appendix I, or a subset thereof, where said coordinates define a three dimensional structure of amino acids 1-509 of an ErbB2 polypeptide or a subset of said amino acids, or a set of coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I, or a subset thereof.

In a related aspect, the present invention provides a computer for producing a threedimensional representation of a molecule or molecular complex, wherein the computer comprises:

15

25

30

35

WO 2004/031232 PCT/AU2003/001310

5

- (a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein the machine readable data comprises (i) the atomic coordinates of amino acids 1-509 of an ErbB2 polypeptide as shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I; or (ii) the atomic coordinates of a subset of said amino acids having a corresponding subset of the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I;
- (b) a working memory for storing instructions for processing the machine-readable data;
- (c) a central-processing unit coupled to the working memory and to the machine-readable data storage medium, for processing the machine-readable data into the three dimensional representation; and
 - (d) an output hardware coupled to the central processing unit, for receiving the three-dimensional representation.
- Preferably, said subsets of amino acids are selected from the CR1 domain and the potential CR1 loop docking site between the L1, CR1 and L2 domains equivalent to that seen in the TGFα:sEGFR dimer complex (Garrett et al., 2002, Cell 110, 763-773), or the CR1-L2 hinge region or the regions of the L1 and L2 domains that contact each other in this closed conformation.

More preferably the subset of amino acids defines a homodimerisation or heterodimerisation surface with other EGF receptor family members. Preferred heterodimerisation surfaces include (i) the N-terminal end of the CR1 domain (residues 200-203, 210-213, 216-218, 225-230), (ii) the CR1 domain dimerisation loop (residues 247-268) and adjacent residues (residues 244-246, 285-289) and (iii) the C-terminal end of the CR1 domain (residues 294-319).

In a further preferred embodiment, the subset of amino acids comprises the following residues: Gln 36, Gln 60, Arg 82, Thr 84, Gln 85, Phe 237, Thr 269, Phe 270, Gly 271, Ala 272, Tyr 282, Thr 285, Gly 288, Ser 289, Cys 290, Thr 291, Leu 292, Val 293, Cys 294, Pro 295 and Cys 310.

10

15

20

25

30

35

6

The three-dimensional structure of ErbB2 may be used to develop models useful for drug design and in silico screening of candidate compounds that modulate ErbB2 activity. Other physicochemical characteristics may also be used in developing the model, e.g. bonding, electrostatics etc.

Generally the term "in silico" refers to the creation in a computer memory, i.e., on a silicon or other like chip. Stated otherwise "in silico" means "virtual." When used herein the term "in silico" is intended to refer to screening methods based on the use of computer models rather than in vitro or in vivo experiments.

By "modulate" we mean that the compound increases or decreases signal transduction via ErbB2. The phrase "decreases signal transduction" is intended to encompass partial or complete inhibition of signal transduction via ErbB2. The ability of a candidate compound to increase or decrease signal transduction via ErbB2 can be assessed by any one of the ErbB2 cell-based assays described herein.

The term "small molecule" includes a compound with a molecular weight of 1500 or less. Preferably, the small molecule has a molecular weight of less than 1000, particularly preferred is a molecule having a molecular weight of less than 500.

Accordingly, in yet a further aspect, the present invention provides a computer-based method of identifying a candidate modulator of ErbB2, which method comprises fitting the structure of

- (i) amino acids 1-509 of an ErbB2 polypeptide having the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I; or
- (ii) a subset of said amino acids having a corresponding subset of the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I;

to the structure of a candidate modulator molecule.

10

15

20

25

30

35

. 7

In a further related aspect, the present invention provides a computer-assisted method for identifying candidate compounds able to interact with ErbB2 and thereby modulate an activity mediated by the receptor, using a programmed computer comprising a processor, an input device, and an output device, which method comprises the steps of:

- (a) entering into the programmed computer, through the input device, data comprising the atomic coordinates of amino acids 1-509 of ErbB2 as shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I, or a subset of said coordinates;
- (b) generating, using computer methods, a set of atomic coordinates of a structure that possesses stereochemical complementarity to the atomic coordinates entered in step (a), thereby generating a criteria data set;
- (c) comparing, using the processor, the criteria data set to a computer database of chemical structures;
- (d) selecting from the database, using computer methods, chemical structures which are similar to a portion of said criteria data set; and
- (e) outputting, to the output device, the selected chemical structures which are complementary to or similar to a portion of the criteria data set.

In another related aspect, the present invention provides a method for evaluating the ability of a chemical entity to interact with an ErbB2, said method comprising the steps of:

- (a) providing a computer model of at least one region of ErbB2 using structure coordinates wherein the root mean square deviation between said structure coordinates and the structure coordinates of amino acids 1-509 of ErbB2 as set forth in Appendix I is not more than 1.5 Å;
- (b) employing computational means to perform a fitting operation between the chemical entity and said computer model of the binding surface; and
- (c) analysing the results of said fitting operation to quantify the association between the chemical entity and the binding surface model.

The model may be adaptive in a sense that it allows for slight surface changes to improve the fit between the candidate compound and the protein, e.g. by small movements in side chains or main chain.

Preferably, the region of ErbB2 is defined by the CR1 domain and the potential CR1 loop docking site between the L1, CR1 and L2 domains equivalent to that seen in the TGFa:sEGFR dimer complex (Garrett et al., 2002), or the CR1-L2 hinge region or the regions of the L1 and L2 domains that contact each other in this closed conformation and combinations thereof.

More preferably the region defines a heterodimerisation surface with other EGF receptor family members. Preferred heterodimerisation surfaces include (i) the N-terminal end of the CR1 domain (residues 200-203, 210-213, 216-218, 225-230), (ii) the CR1 domain dimerisation loop (residues 247-268) and adjacent residues (residues 244-246, 285-289) and (iii) the C-terminal end of the CR1 domain (residues 294-319).

In a further preferred embodiment, the region comprises the following amino acid residues: Gln 36, Gln 60, Arg 82, Thr 84, Gln 85, Phe 237, Thr 269, Phe 270, Gly 271, Ala 272, Tyr 282, Thr 285, Gly 288, Ser 289, Cys 290, Thr 291, Leu 292, Val 293, Cys 294, Pro 295 and Cys 310.

The ErbB2 crystal structure provided herein may also be used to model/solve the structure of a new crystal using molecular replacement. Accordingly, in a further aspect the present invention provides a method of using molecular replacement to obtain structural information about a molecule or a molecular complex of unknown structure, comprising the steps of:

- (i) crystallising said molecule or molecular complex;
- (ii) generating an X-ray diffraction pattern from said crystallized molecule or molecular complex;
- (iii) applying at least a portion of the structure coordinates set forth in Appendix I, or structure coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the structure coordinates set forth in Appendix I, to the X-ray diffraction pattern to generate a threedimensional electron density map of at least a portion of the molecule or molecular complex whose structure is unknown.

Preferably the molecule of unknown structure is ErbB2 or variant thereof.

30

10

15

20

25

20

9

In one embodiment, the molecular complex of unknown structure is a complex of ErbB2, or variant thereof, and a ligand or candidate ligand.

In another embodiment the molecular complex of unknown structure is a complex of ErbB2 and an EGF receptor. The molecular complex of unknown structure may also be a complex of ErbB2, an ErbB1 (EGF receptor), ErbB3 or ErbB4 receptor and a ligand or candidate ligand.

The screening methods of the fourth aspect of the invention may be used to identify compounds that modulate ErbB2 signalling. Such compounds may be used to treat disorders associated with ErbB2 dysfunction.

Accordingly, in a further aspect, the present invention provides a method for preventing or treating a disease associated with signaling by ErbB2 which method comprises administering to a subject in need thereof a compound identified by the screening methods of the invention.

The present invention also provides a pharmaceutical composition comprising a compound identified by the screening methods of the invention, which compound is able to bind to the extracellular domain of ErbB2 and modulate an activity of said receptor, as well as a method of preventing or treating a disease associated with signalling by ErbB2 which method comprises administering to a subject in need thereof a composition of the invention.

25 In yet a further aspect, the present invention provides a crystal of an ErbB2 polypeptide. In particular the present invention provides a crystal of an ErbB2 polypeptide having a space group P2₁2₁2₁ with unit cell dimensions of a=75.96 Å, b=82.24 Å, and c=110.06 Å with up to about 1% variation in any cell dimension. Preferably said ErbB2 polypeptide is a truncated soluble extracellular domain of the full-length ErbB2.

The present invention also provides a crystalline composition comprising a crystal of ErbB2.

15

25

30

35

10

In a further aspect, the invention provides a computer system for identifying one or more candidate modulators of ErbB2, the system containing data representing the structure of

- (i) amino acids 1-509 of ErbB2 polypeptide having the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I; or
- (ii) a subset of said amino acids having a corresponding subset of the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I.

The present invention further provides a computer readable media having recorded thereon data representing a model and/or the atomic coordinates of a ErbB2 crystal. Also provided is a computer readable media having recorded thereon coordinate data according to Appendix I, or a subset thereof, where said coordinate data define a three dimensional structure of amino acids 1-509 of ErbB2 polypeptide or a subset of said amino acids, or coordinate data having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinate according to Appendix I, or a subset thereof.

Particular diseases associated with signalling by ErbB2 include cancerous conditions such as cancer of the brain, head and neck, prostate, testicular, ovary, breast, cervix, lung, pancreas and colon; and melanoma, rhabdomyosarcoma, mesothelioma, squamous carcinomas of the skin and glioblastoma.

The information provided in Appendix I shows that there are a number of loop structures that line the ErbB2 dimerisation surface. It is envisaged that antibodies directed against these loop structures would interfere with the formation of heterodimers with other members of the EGF receptor family.

Accordingly, in a further aspect the present invention provides an antibody that binds to ErbB2, the antibody being directed against a structure defined by (i) ErbB2 amino acid residues 200-203, (ii) ErbB2 amino acid residues 210-213, (iii) ErbB2 amino acid residues 216-218, (iv) ErbB2 amino acid residues 225-230, (v) ErbB2 amino acid

11

residues 247-268 or a subset thereof; (vi) ErbB2 amino acid residues 244-246, (vii) ErbB2 amino acid residues 285-289, or (viii) ErbB2 amino acid residues 294-319 or a subset thereof.

In yet a further aspect the present invention provides an isolated conformationally constrained peptide or peptidomimetic consisting essentially of (i) ErbB2 amino acid residues 200-203, (ii) ErbB2 amino acid residues 210-213, (iii) ErbB2 amino acid residues 216-218, (iv) ErbB2 amino acid residues 225-230, (v) ErbB2 amino acid residues 247-268 or a subset thereof; (vi) ErbB2 amino acid residues 244-246, (vii) ErbB2 amino acid residues 285-289, or (viii) ErbB2 amino acid residues 294-319 or a subset thereof.

In yet a further aspect the present invention provides a computer-assisted method for identifying potential mimetics of ErbB2, using a programmed computer comprising a processor, a data storage system, an input device, and an output device, comprising the steps of:

- (a) inputting into the programmed computer through said input device data comprising the atomic coordinates of amino acids 200-203, 210-213, 216-218, 225-230, 247-268, 244-246, 285-289, or 294-319 of ErbB2 as shown in Appendix I, or atomic coordinates
- having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I, thereby generating a criteria data set;
 - (b) comparing, using said processor, said criteria data set to a computer database of chemical structures stored in said computer data storage system;
- 25 (c) selecting from said database, using computer methods, chemical structures having a portion that is structurally similar to said criteria data set;
 - (d) outputting to said output device the selected chemical structures having a portion similar to said criteria data set.
- In yet a further aspect the present invention provides a computer-assisted method for identifying potential mimetics of ErbB2, using a programmed computer comprising a processor, a data storage system, an input device, and an output device, comprising the steps of:
- (a) inputting into the programmed computer through said input device data comprising the atomic coordinates of amino acids 200-203, 210-213, 216-218, 225-230, 247-268, 244-246, 285-289, or 294-319 of ErbB2 as shown in Appendix I, or atomic coordinates

having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I, thereby generating a criteria data set;

- (b) constructing, using computer methods, a model of a chemical structure having a portion that is structurally similar to said criteria data set;
 - (c) outputting to said output device the constructed model.

In yet a further aspect the present invention provides a compound having a chemical structure selected using a method of the present invention, said compound being an ErbB2 mimetic. Preferably, the compound is a peptidomimetic that has fewer than 30 amino acids, more preferably fewer than 25 amino acids.

As will be readily understood by those skilled in this field the methods of the present invention provide a rational method for designing and selecting compounds including antibodies which interact with ErbB2. In the majority of cases these compounds will require further development in order to increase activity. Such further development is routine in this field and will be assisted by the structural information provided in this application. It is intended that in particular embodiments the methods of the present invention includes such further developmental steps.

20

10

15

It is also intended that embodiments of the present invention include manufacturing steps such as incorporating the compound into a pharmaceutical composition in the manufacture of a medicament.

25 Throughout this specification, preferred aspects and embodiments apply, as appropriate, separately, or in combination, to other aspects and embodiments, mutatis mutandis, whether or not explicitly stated as such.

Brief Description of the Figures

30

- Figure 1. Structure-based sequence alignment of the human ErbB2 ectodomain with other members of the ErbB family.
- (A) The receptor L1 and L2 domains plus the first module of the cys-rich regions, CR1
 and CR2. Positions with conserved physicochemical properties of amino acids are boxed. Disulfide bond connections are shown are solid lines. Secondary structure

elements are indicated above and below the sequences as cylinders for α -helices and arrows for β -strands. Residues buried at L1/L2 interface are denoted by R. Sequence sources are: EGFR (Ullrich et al., 1984, Nature 309, 418-425), ErbB2 (Yamamoto et al., 1986); ErbB3 (Kraus et al., 1989, Proc Natl Acad Sci U S A. 86, 9193-9197; Plowman et al., 1990, Proc. Natl Acad. Sci. U S A. 87, 4905-4909); ErbB4 (Plowman et al., 1993, Proc. Natl. Acad. Sci. USA. 90, 1746-1750).

(B) Modules 2 to 8 of the ErbB family cys-rich region CR1 and modules 2 to 7 of CR2. Three types of disulfide bonded modules are indicated by bars below the sequences. The unfilled bars below parts of the cys-rich sequences indicate modules with 2 disulfide bonds (in a Cys 1-3 and 2-4 arrangement), the solid bars indicate modules which contain a single disulfide bond and have a β-finger motif, and the dashed bar indicates residues present in a disulfide-linked bend consisting of only five residues. Disulfide bonds are shown in solid lines and except for those that do not conform to the CR1 pattern which are indicated as dashed lines. The number in parentheses shows where amino acids have been omitted. Boxed residues and secondary structure elements are as in A.

Figure 2. Polypeptide fold for residues 1-509 of ErbB2 and its comparison with EGFR (1-501) as seen in the 2:2 complex with TGFα, and the full length ectodomain of ErbB3.

Figure 3. Percentage inhibition of thymidine incorporated in a cell line expressing erbB2 on EGFR-K721R (a kinase defective EGFR) + full length ErbB2 by compounds 39293, 94289, 19378 and 20697.

Detailed description of the invention

20

25

30

35

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art (e.g. in molecular biology, biochemistry, structural biology, and computational biology). Standard techniques are used for molecular and biochemical methods (see generally, Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed. (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. and Ausubel et al., Short Protocols in Molecular Biology (1999) 4th Ed, John Wiley & Sons, Inc. - and the full version

entitled Current Protocols in Molecular Biology, which are incorporated herein by reference) and chemical methods.

Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

ErbB2 crystals and crystal structures

The present invention provides a crystal comprising an ErbB2 polypeptide. Such crystals preferably are of the space group P2₁2₁2₁ with unit cell dimensions of a=75.96 Å, b=82.24 Å, and c=110.06 Å.

As used herein, the term "crystal" means a structure (such as a three dimensional (3D) solid aggregate) in which the plane faces intersect at definite angles and in which there is a regular structure (such as internal structure) of the constituent chemical species. Thus, the term "crystal" can include any one of: a solid physical crystal form such as an experimentally prepared crystal, a 3D model based on the crystal structure, a representation thereof such as a schematic representation thereof or a diagrammatic representation thereof, a data set thereof for a computer.

Crystals according to the invention may be prepared using full-length ErbB2 polypeptides. However, preferably the extracellular domain is employed in isolation. Thus, preferably the ErbB2 polypeptide is a truncated polypeptide containing the extracellular domain and lacking the transmembrane domain and the intracellular tyrosine kinase domain. Typically, the extracellular domain comprises residues 1 to 632 (mature receptor numbering) of human ErbB2, or the equivalent thereof, or a truncated version thereof, preferably comprising amino acids 1 to 509, or the equivalent residues in other ErbB2 polypeptides.

In a preferred embodiment the ErbB2 polypeptide is human ErbB2 (Accession No. A24571 – mature protein begins at residue 22). However, the ErbB2 polypeptide may also be obtained from other species, such as other mammalian species.

25

30

10

Crystals may be constructed with wild-type ErbB2 polypeptide sequences or variants thereof, including allelic variants and naturally occurring mutations as well as genetically engineered variants. Typically, variants have at least 95 or 98% sequence identity with a corresponding wild-type ErbB2 polypeptide.

5

10

20

25

35

Optionally, the crystal of ErbB2 may comprise one or more molecules which bind to ErbB2, or otherwise soaked into the crystal or cocrystallise with ErbB2. Such molecules include ligands or small molecules, which may be candidate pharmaceutical agents intended to modulate the interaction between ErbB2 and its biological targets or dimer partners, such as other members of the EGF receptor family. The crystal of ErbB2 may also be a molecular complex with other receptors of the EGF receptor family such as ErbB1 (the EGF receptor), ErbB3 or ErbB4. The complex may also comprise additional molecules such as the ligands to these receptors.

15 The production of ErbB2 crystals is described below.

In a preferred embodiment, an ErbB2 crystal of the invention has the atomic coordinates set forth in Appendix I. It will be understood by those skilled in the art that atomic coordinates may be varied, without affecting significantly the accuracy of models derived therefrom; thus, although the invention provides a very precise definition of a preferred atomic structure, it will be understood that minor variations are envisaged and the claims are intended to encompass such variations. Preferred are variants in which the r.m.s. deviation of the x, y and z co-ordinates for all backbone atoms other than hydrogen is less than 1.5 Å (preferably less than 1 Å, 0.7 Å or less than 0.3 Å) compared with the coordinates given in Appendix I.

In a highly preferred embodiment, the crystal has the atomic coordinates as shown in Appendix I.

As used herein, the term "atomic co-ordinates" refer to a set of values which define the position of one or more atoms with reference to a system of axes.

The present invention also provides a crystal structure of an ErbB2 polypeptide, in particular a crystal structure of the extracellular domain of an ErbB2 polypeptide, or a region thereof.

20

25

30

16

The atomic coordinates obtained experimentally for amino acids 1 to 509 (mature receptor numbering) of human ErbB2 are shown in Appendix I. However, a person skilled in the art will appreciate that a set of atomic coordinates determined by X-ray crystallography is not without standard error. Accordingly, any set of structure coordinates for an ErbB2 polypeptide that has a root mean square deviation of protein backbone atoms of less than 0.75 Å when superimposed (using backbone atoms) on the atomic coordinates listed in Appendix I shall be considered identical.

The present invention also comprises the atomic coordinates of an ErbB2 polypeptide that substantially conform to the atomic coordinates listed in Appendix I.

A structure that "substantially conforms" to a given set of atomic coordinates is a structure wherein at least about 50% of such structure has an average root-mean-square deviation (RMSD) of less than about 1.5 Å for the backbone atoms in secondary structure elements in each domain, and more preferably, less than about 1.3 Å for the backbone atoms in secondary structure elements in each domain, and, in increasing preference, less than about 1.0 Å, less than about 0.7 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å for the backbone atoms in secondary structure elements in each domain.

In a more preferred embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein at least about 75% of such structure has the recited average root-mean-square deviation (RMSD) value, and more preferably, at least about 90% of such structure has the recited average root-mean-square deviation (RMSD) value, and most preferably, about 100% of such structure has the recited average root-mean-square deviation (RMSD) value.

In an even more preferred embodiment, the above definition of "substantially conforms" can be extended to include atoms of amino acid side chains. As used herein, the phrase "common amino acid side chains" refers to amino acid side chains that are common to both the structure which substantially conforms to a given set of atomic coordinates and the structure that is actually represented by such atomic coordinates.

The present invention also provides subsets of said atomic coordinates listed in Appendix I and subsets that conform substantially thereto. Preferred subsets define one or more regions of the human ErbB2 extracellular domain selected from the CR1

30

17

domain and the potential CR1 loop docking site between the L1, CR1 and L2 domains equivalent to that seen in the TGFa:sEGFR dimer complex (Garrett et al., 2002), or the CR1-L2 hinge region or the regions of the L1 and L2 domains that contact each other in this closed conformation. A particularly preferred subset defines the heterodimerisation surface of ErbB2 with other members of the EGF receptor family, such as ErbB1, ErbB3 and/or ErbB4.

It will be appreciated that a set of structure coordinates for a polypeptide is a relative set of points that define a shape in three dimensions. Thus, it is possible that an entirely different set of coordinates could define a similar or identical shape. Moreover, slight variations in the individual coordinates will have little effect on overall shape.

The variations in coordinates may be generated due to mathematical manipulations of the structure coordinates. For example, the structure coordinates set forth in Appendix I could be manipulated by crystallographic permutations of the structure coordinates, fractionalisation of the structure coordinates, integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates, or any combination thereof.

- Alternatively, modification in the crystal structure due to mutations, additions, substitutions, and/or deletions of amino acids, or other changes in any of the components that make up the crystal could also account for variations in structure coordinates.
- Various computational analyses are used to determine whether a molecular complex or a portion thereof is sufficiently similar to all or parts of the structure of the extracellular domain of ErbB2 described above. Such analyses may be carried out in current software applications, such as the Molecular Similarity program of QUANTA (Molecular Simulations Inc., San Diego, CA) version 4.1.

The Molecular Similarity program permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure.

Comparisons typically involve calculation of the optimum translations and rotations required such that the root mean square difference of the fit over the specified pairs of equivalent atoms is an absolute minimum. This number is given in angstroms.

15

20

25

30

35

18

Accordingly, structural coordinates of an ErbB2 within the scope of the present invention include structural coordinates related to the atomic coordinates listed in Appendix I by whole body translations and/or rotations. Accordingly, r.m.s deviations listed above assume that at least the backbone atoms of the structures are optimally superimposed which may require translation and/or rotation to achieve the required optimal fit from which to calculate the r.m.s.d.

A three dimensional structure of an ErbB2 protein or region thereof which substantially conforms to a specified set of atomic coordinates can be modeled by a suitable modeling computer program such as MODELER (Sali and Blundell, 1993, J. Mol. Biol., vol. 234:779-815), as implemented in the Insight II Homology software package (Insight II (97.0), MSI, San Diego)), using information, for example, derived from the following data: (1) the amino acid sequence of the human ErbB2 protein; (2) the amino acid sequence of the related portion(s) of the protein represented by the specified set of atomic coordinates having a three dimensional configuration; and, (3) the atomic coordinates of the specified three dimensional configuration. A three dimensional structure of an ErbB2 protein which substantially conforms to a specified set of atomic coordinates can also be calculated by a method such as molecular replacement, which is described in detail below.

Structure coordinates/atomic coordinates are typically loaded onto a machine readable-medium for subsequent computational manipulation. Thus models and/or atomic coordinates are advantageously stored on machine-readable media, such as magnetic or optical media and random-access or read-only memory, including tapes, diskettes, hard disks, CD-ROMs and DVDs, flash memory cards or chips, servers and the internet. The machine is typically a computer.

The structure coordinates/atomic coordinates may be used in a computer to generate a representation, e.g. an image, of the three-dimensional structure of the ErbB2 crystal which can be displayed by the computer and/or represented in an electronic file.

The structure coordinates/atomic coordinates and models derived therefrom may also be used for a variety of purposes such as drug discovery and X-ray crystallographic analysis of other protein crystals.

10

15

25

30

35

19

Design/selection of chemical entities that bind ErbB2

Using a variety of known modelling techniques, the crystal structure of the present invention can be used to produce a model for at least part of ErbB2.

As used herein, the term "modelling" includes the quantitative and qualitative analysis of molecular structure and/or function based on atomic structural information and interaction models. The term "modelling" includes conventional numeric-based molecular dynamic and energy minimisation models, interactive computer graphic models, modified molecular mechanics models, distance geometry and other structure-based constraint models.

Molecular modelling techniques can be applied to the atomic coordinates of the ErbB2 to derive a range of 3D models and to investigate the structure of binding sites, such as the binding sites of monoclonal antibodies and inhibitory peptides.

These techniques may also be used to screen for or design small and large chemical entities which are capable of binding ErbB2 and modulating the ability of ErbB2 to interact with extracellular biological targets, such as other members of the EGF receptor family e.g. which modulate the ability of ErbB2 to heterodimerise. The screen may employ a solid 3D screening system or a computational screening system.

Such modelling methods are to design or select chemical entities that possess stereochemical complementary to particular regions of ErbB2.

By "stereochemical complementarity" we mean that the compound or a portion thereof makes a sufficient number of energetically favourable contacts with the receptor as to have a net reduction of free energy on binding to the receptor.

Such stereochemical complementarity is characteristic of a molecule that matches intra-site surface residues lining the groove of the receptor site as enumerated by the coordinates set out in Appendix I. By "match" we mean that the identified portions interact with the surface residues, for example, via hydrogen bonding or by non-covalent Van der Waals and Coulomb interactions (with surface or residue) which promote desolvation of the molecule within the site, in such a way that retention of the molecule within the groove is favoured energetically.

10

15

20

25

30

35

20

It is preferred that the stereochemical complementarity is such that the compound has a K_d for the receptor site of less than $10^{-4}M$, more preferably less than $10^{-5}M$ and more preferably $10^{-6}M$. In a most preferred embodiment, the K_d value is less than $10^{-8}M$ and more preferably less than $10^{-9}M$.

Chemical entities which are complementary to the shape and electrostatics or chemistry of the receptor site characterised by amino acids positioned at atomic coordinates set out in Appendix I will be able to bind to the receptor, and when the binding is sufficiently strong, substantially prohibit the interaction of the ErbB2 with biological target molecules such as other EGF receptors.

It will be appreciated that it is not necessary that the complementarity between chemical entities and the receptor site extend over all residues lining the groove in order to inhibit binding of a molecule or complex that naturally interacts with ErbB2.

A number of methods may be used to identify chemical entities possessing stereocomplementarity to a region of the extracellular domain of ErbB2. For instance, the process may begin by visual inspection of potential binding sites, for example, the binding sites for anti- ErbB2 antibodies, on the computer screen based on the ErbB2 coordinates in Appendix I generated from the machine-readable storage medium. Alternatively, selected fragments or chemical entities may then be positioned in a variety of orientations, or docked, within an individual binding site of ErbB2, as defined supra. Modelling software that is well known and available in the art may be used (Guida, W. C. (1994). "Software For Structure-Based Drug Design." Curr. Opin. Struct. Biology 4: 777-781). These include QUANTA and InsightII [Molecular Simulations, Inc., San Diego, Calif., a division of Pharmacopiea, Inc., Princeton, N.J., 1992], SYBYL [Molecular Modeling Software, Tripos Associates, Inc., St. Louis, Mo., 1992], This modelling step may be followed by energy minimization with standard molecular mechanics force fields such as AMBER [S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, and P. Weiner, J. Am. Chem. Soc., vol. 106, pp. 765-784 (1984)], and CHARMM [B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S Swaminathan, and M. Karplus, J. Comp. Chem. vol. 4, pp. 187-217 (1983)]. In addition, there are a number of more specialized computer programs to assist in the process of selecting the binding moieties of this invention.

Specialised computer programs may also assist in the process of selecting fragments or chemical entities. These include, inter alia:

- 1. GRID (Goodford, P. J.,"A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules", J. Med. Chem., 28, pp. 849-857 (1985)). GRID is available from Oxford University, Oxford, UK.
 - 2. MCSS (Miranker, A. and M. Karplus, "Functionality Maps of Binding Sites: A Multiple Copy Simultaneous Search Method. "Proteins: Structure, Function and Genetics, 11, pp. 29-34 (1991)). MCSS is available from Molecular Simulations, Burlington, MA.
- AUTODOCK (Goodsell, D. S. and A. J. Olsen, "Automated Docking of Substrates to Proteins by Simulated Annealing", Proteins: Structure, Function, and Genetics, 8, pp. 195-202 (1990)). AUTODOCK is available from Scripps Research Institute, La Jolla, CA.
- DOCK (Kuntz, I. D. et al.,"A Geometric Approach to Macromolecule-Ligand Interactions", J. Mol. Biol., 161, pp. 269-288 (1982)). DOCK is available from University of California, San Francisco, CA.

Once suitable chemical entities or fragments have been selected, they can be assembled into a single compound. In one embodiment, assembly may proceed by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of ErbB2. This is followed by manual model building using software such as Quanta or Sybyl. Alternatively, fragments may be joined to additional atoms using standard chemical geometry.

The above-described evaluation process for chemical entities may be performed in a similar fashion for chemical compounds.

Useful programs to aid one of skill in the art in connecting the individual chemical entities or fragments include:

10

WO 2004/031232

5

20

25

35

22

- 1. CAVEAT (Bartlett et al, "CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules". In "Molecular Recognition in Chemical and Biological Problems", Special Pub., Royal Chem. Soc., 78, pp. 182-196 (1989)). CAVEAT is available from the University of California, Berkeley, CA.
- 2. 3D Database systems such as MACCS-3D (MDL Information Systems, San Leandro, CA). This area is reviewed in Martin, "3D Database Searching in Drug Design", J. Med. Chem., 35, pp. 2145-2154 (1992)).
- 10 3. HOOK (available from Molecular Simulations, Burlington, MA).

Other molecular modeling techniques may also be employed in accordance with this invention. See, e. g., Cohen et al., "Molecular Modeling Software and Methods for Medicinal Chemistry", J. Med. Chem., 33, pp. 883-894 (1990). See also Navia and Murcko, "The Use of Structural Information in Drug Design", Current Opinions in Structural Biology, 2, pp. 202-210 (1992).

There are two preferred approaches to designing a molecule, according to the present invention, that complement the stereochemistry of ErbB2. The first approach is to in silico directly dock molecules from a three-dimensional structural database, to the receptor site, using mostly, but not exclusively, geometric criteria to assess the goodness-of-fit of a particular molecule to the site. In this approach, the number of internal degrees of freedom (and the corresponding local minima in the molecular conformation space) is reduced by considering only the geometric (hard-sphere) interactions of two rigid bodies, where one body (the active site) contains "pockets" or "grooves" that form binding sites for the second body (the complementing molecule).

This approach is illustrated by Kuntz et al., 1982, J. Mol. Biol. 161: 269, and Ewing et al., 2001, J. Comput-Aid. Mol. Design 15: 411, the contents of which are hereby incorporated by reference, whose algorithm for ligand design is implemented in a commercial software package, DOCK version 4.0, distributed by the Regents of the University of California and further described in a document, provided by the distributor, which is entitled "Overview of the DOCK program suite" the contents of which are hereby incorporated by reference. Pursuant to the Kuntz algorithm, the shape of the cavity represented by a site on ErbB2 is defined as a series of overlapping spheres of different radii. One or more extant databases of crystallographic data, such

as the Cambridge Structural Database System maintained by Cambridge University (University Chemical Laboratory, Lensfield Road, Cambridge, U.K.), the Protein Data Bank maintained by the Research Collaboratory for Structural Bioinformatics (Rutgers University, N.J., U.S.A.), LeadQuest (Tripos Associates, Inc., St. Louis, MO), Available Chemicals Directory (Molecular Design Ltd., San Leandro, CA), and the NCI database (National Cancer Institute, U.S.A) is then searched for molecules which approximate the shape thus defined.

Molecules identified on the basis of geometric parameters, can then be modified to satisfy criteria associated with chemical complementarity, such as hydrogen bonding, ionic interactions and Van der Waals interactions. Different scoring functions can be employed to rank and select the best molecule from a database. See for example Bohm and Stahl, 1999, M. Med. Chem. Res. 9: 445. The software package FlexX, marketed by Tripos Associates, Inc. (St. Louis, MO) is another program that can be used in this direct docking approach (see Rarey, M. et al., J. Mol. Biol. 1996, 261: 470).

The second preferred approach entails an assessment of the interaction of respective chemical groups ("probes") with the active site at sample positions within and around the site, resulting in an array of energy values from which three-dimensional contour surfaces at selected energy levels can be generated. The chemical-probe approach to ligand design is described, for example, by Goodford, 1985, J. Med. Chem. 28:849, the contents of which are hereby incorporated by reference, and is implemented in several commercial software packages, such as GRID (product of Molecular Discovery Ltd., West Way House, Elms Parade, Oxford OX2 9LL, U.K.).

25

30

35

10

15

20

Pursuant to this approach, the chemical prerequisites for a site-complementing molecule are identified at the outset, by probing the active site with different chemical probes, e.g., water, a methyl group, an amine nitrogen, a carboxyl oxygen, or a hydroxyl. Favoured sites for interaction between the active site and each probe are thus determined, and from the resulting three-dimensional pattern of such sites a putative complementary molecule can be generated. This may be done either by programs that can search three-dimensional databases to identify molecules incorporating desired pharmacophore patterns or by programs which using the favoured sites and probes as input to perform de novo design. Suitable programs for determining and designing pharmacophores include CATALYST (including HypoGen or HipHop) (Molecular

Simulations, Inc), and CERIUS2, DISCO (Abbott Laboratories, Abbott Park, IL) and ChemDBS-3D (Chemical Design Ltd., Oxford, U.K.).

The pharmacophore can be used to screen in silico compound libraries/ three-dimensional databases, using a program such as CATALYST (Molecular Simulations, Inc); MACCS-3D and ISIS/3D (Molecular Design Ltd., San Leandro, CA), ChemDBS-3D (Chemical Design Ltd., Oxford, U.K.), and Sybyl/3DB Unity (Tripos Associates, Inc., St. Louis, MO).

Databases of chemical structures are available from a number of sources including Cambridge Crystallographic Data Centre (Cambridge, U.K.), Molecular Design, Ltd., (San Leandro, CA), Tripos Associates, Inc. (St. Louis, MO), Chemical Abstracts Service (Columbus, OH), the Available Chemical Directory (MDL Inc), the Derwent World Drug Index (WDI), BioByteMasterFile, the National Cancer Institute database (NCI), and the Maybridge catalogue.

De novo design programs include LUDI (Biosym Technologies Inc., San Diego, CA), Leapfrog (Tripos Associates, Inc.), Aladdin (Daylight Chemical Information Systems, Irvine, CA), and LigBuilder (Peking University, China).

Once an entity or compound has been designed or selected by the above methods, the efficiency with which that entity or compound may bind to ErbB2 can be tested and optimised by computational evaluation. For example, a compound that has been designed or selected to function as an ErbB2 binding compound must also preferably traverse a volume not overlapping that occupied by the binding site when it is bound to the native ErbB2. An effective ErbB2 binding compound must preferably demonstrate a relatively small difference in energy between its bound and free states (i. e., a small deformation energy of binding). Thus, the most efficient ErbB2 binding compound should preferably be designed with a deformation energy of binding of not greater than about 10 kcal/mole, preferably, not greater than 7 kcal/mole. ErbB2 binding compounds may interact with ErbB2 in more than one conformation that is similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the energy of the free compound and the average energy of the conformations observed when the compound binds to the protein.

35

20

25

30

A compound designed or selected as binding to ErbB2 may be further computationally optimised so that in its bound state it would preferably lack repulsive electrostatic interaction with the target protein.

Such non-complementary (e.g., electrostatic) interactions include repulsive chargecharge, dipole-dipole and charge-dipole interactions. Specifically, the sum of all electrostatic interactions between the compound and the protein when the compound is bound to ErbB2, preferably make a neutral or favourable contribution to the enthalpy of binding.

10

15

30

35

Once an ErbB2-binding compound has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups to improve or modify its binding properties. Generally, initial substitutions are conservative, i. e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided. Such substituted chemical compounds may then be analysed for efficiency of fit to ErbB2 by the same computer methods described in detail above.

Specific computer software is available in the art to evaluate compound deformation energy and electrostatic interaction. Examples of programs designed for such uses include: Gaussian 92, revision C (Frisch, Gaussian, Inc., Pittsburgh, PA); AMBER, version 4.0 (Kollman, University of California at San Francisco); QUANTA/CHARMM (Molecular Simulations, Inc., Burlington, MA); and Insight II/Discover (Biosysm Technologies Inc., San Diego, CA).

The screening/design methods may be implemented in hardware or software, or a combination of both. However, preferably, the methods are implemented in computer programs executing on programmable computers each comprising a processor, a data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. Program code is applied to input data to perform the functions described above and generate output information. The output information is applied to one or more output devices, in known fashion. The computer may be, for example, a personal computer, microcomputer, or workstation of conventional design.

Each program is preferably implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be compiled or interpreted language.

5

10

Each such computer program is preferably stored on a storage medium or device (e.g., ROM or magnetic diskette) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.

15 Compounds identified by, or designed by the methods of the invention can be synthetic or naturally occurring, preferably synthetic. In one embodiment, a synthetic compound selected or designed by the methods of the invention preferably has a molecular weight equal to or less than about 5000 or 1000 daltons. A compound selected or designed by methods of this invention is preferably soluble under physiological conditions.

20

25

30

Confirmation of binding and biological activity

Compounds selected or designed in accordance with the in silico methods of the invention may be subjected to further confirmation of binding to ErbB2 by cocrystallization of the compound with ErbB2 and structural determination, as described herein.

Compounds designed or selected according to the methods of the present invention are preferably assessed by a number of *in vitro* and *in vivo* assays of ErbB2 function to confirm their ability to interact with and modulate ErbB2 activity. For example, compounds may be tested for their ability to bind to ErbB2 and/or for their ability to modulate e.g. disrupt, heterodimerisation of ErbB2 to other members of the EGF receptor family such as ErbB1, ErbB3 or ErbB4.

15

20

30

27

Suitable assays include *in vitro* binding assays and ErbB2-dependent proliferation assays, such as described by Deb et al., 2001, J Biol Chem 276:15554-15560 or Berezov et al., 2001, J. Med. Chem. 44: 2565-2574.

5 Particular examples of suitable assays are described below.

Inhibition of heterodimer formation between ErbB2 and other ErbB family members

Rationale: While ErB2 is a major oncogenic therapeutic target in its own right, it is now clear that part of the tumour-promoting activity associated with ErbB2 often depends on ligand-induced heterodimer formation with other ErbB family members. There is no known ligand for ErbB2, however ligand binding to other ErbB family members (ErbB1, ErbB3 and ErbB4) causes their heterodimerization with ErbB2. Thus reagents that block this association, for example the ErbB2-specific antibody 2C4, inhibit ligand-stimulated growth in vitro and tumour xenograft in vivo (Agus, D.B. et.al. Cancer Cell 2:127-137). Heterodimerization results in cross-phosphorylation by the ErbB2 kinase of the dimerization partner. In particular, ErbB3 mediated signalling requires heterodimer formation as this particular ErbB family member lacks a functional kinase. Thus, while it is not possible to directly ligand-activate the ErbB2 kinase, it is possible to monitor its activity in cells co-expressing ErbB2 with one or more members of the EGFR family by adding ligands specific to the heterodimerization partners.

Methods: a number of readouts can be used to assess the efficacy, and specificity, of
ErbB2 compounds/antibodies in cell-based assays of ligand-induced heterodimer
formation. Activity can be assessed by one or more of the following:

- (i) Inhibition of ligand-induced heterodimerisation of ErbB2 with other ErbB family members in a target cell line, for example MCF-7 breast cancer cells. Immunoprecipitation of ErbB2 complexes from cell lysates can be performed with a receptor-specific antibody, and the absence/presence of other ErbB receptors and their biologically relevant ligands within the complex can be analysed following electrophoresis/Western transfer by probing with antibodies to other ErbB receptors.
- 35 (ii) Inhibition of the activation of signalling pathways by ligand-activated heterodimers. Association with ErbB2 appears critical for other members of the ErbB

25

28

family of receptors to elicit maximal cellular response following ligand binding. In the case of the kinase-defective ErbB3, ErbB2 provides a functional tyrosine kinase domain to enable signalling to occur following binding of growth factor ligands. Thus, cells co-expressing ErbB2 and ErbB3 can be treated with ligand, for example heregulin, in the absence and presence of inhibitor and the effect on ErbB3 tyrosine phosphorylation monitored by a number of ways including immunoprecipitation of ErbB3 from treated cell lysates and subsequent Western blotting using anti-phosphotyrosine antibodies (see Agus op. cit. for details). Alternatively, a high-throughput assay can be developed by trapping ErbB3 from solubilized lysates onto the wells of a 96-well plate coated with an anti-ErbB3 receptor antibody, and the level of tyrosine phosphorylation measured using, for example, europium-labelled anti-phosphotyrosine antibodies, as embodied by Waddleton, D. et.al. Anal. Biochem. 309:150-157, 2002.

In a broader extension of this approach, effector molecules known to be activated downstream of activated receptor heterodimers, such as mitogen-activated protein kinases (MAPK) and Akt, may be analysed directly, by immunoprecipitation from treated lysates and blotting with antibodies that detect the activated forms of these proteins, or by analysing the ability of these proteins to modify/activate specific substrates.

(iii) Inhibition of ligand-induced cellular proliferation. A variety of cell lines are known to co-express combinations of ErbB receptors, for example many breast and prostate cancer cell lines. Assays may be performed in 24/48/96-well formats with the readout based around DNA synthesis (tritiated thymidine incorporation), increase in cell number (crystal violet staining) etc. However, co-expression of ErbB1 or ErbB4 in such cell lines will mean that it is difficult to determine whether ErbB1 or ErbB4 homodimer signalling is responsible for the proliferative response to ligand.

A new, semi-automated assay system to monitor ErbB2 signalling activity that may be used to confirm the ability of candidate compounds to interact with and modulate ErbB2 activity has been developed. This assay exploits the heterodimerization characteristic of the ErbB family of receptor. We have created a BaF/3 cell line, which normally does not express any members of the ErbB family and is IL-3 dependent, that co-expresses wild-type ErbB2 and a kinase defective (but ligand responsive) ErbB-1 mutant (EGFR-K721R). Upon exposure of the cells to EGF (or other ErbB1 ligand),

15

20

30

29 .

heterodimer formation occurs leading to phosphorylation of the kinase-defective ErbB1 by the ErbB2 kinase, initiation of the signal transduction pathways downstream of the receptors and ultimately to DNA synthesis. In this experimental system signalling is strictly ligand-dependent but is entirely mediated by the ErbB2 kinase, providing a specific and sensitive assay for inhibitors of ErbB2 heterodimerization. Non-specific toxicity of the test samples is assessed in parallel by testing the cells' responsiveness to IL-3 in the absence of EGF.

Method: BaF/3 cells co-expressing EGFR-K721R and full length wild type ErbB2 are routinely grown in RPMI/10%FCS containing IL-3. Before assay, cells are washed three times to remove residual IL-3 and resuspended in RPMI 1640 + 10% FCS. Cells are seeded into 96 well plates using a Biomek 2000 (Beckman) at 2x10⁴ cells per 200μl and incubated for 4 hours at 37°C in 10% CO₂. Putative ErbB2 inhibitors are added to the first titration point and titrated in two-fold dilutions across the 96 well plate in duplicate with or without a constant amount of EGF (1nM) or IL-3 (1μl). ³H-Thymidine (0.5μCi/well) is added and the plates incubated for 20 hours at 37°C in 5% CO₂. At the end of the incubation the cells are lysed in 0.5M NaOH at room temperature for 30 minutes then harvested onto nitrocellulose filter mats using an automatic harvester (Tomtec, Connecticut, USA). The mats are dried, placed in a plastic counting bag and scintillant (10ml) added. Incorporated 3H-Thymidine is determined using a beta counter (1205 Betaplate, Wallac, Finland).

- (iv) Inhibition of growth in soft-agar. This is the benchmark-type assay undertaken to assess anti-tumour activity prior to xenograft studies in animals. Cells are seeded into liquid soft agar cultures, the agar allowed to set, and the appearance of cell colonies monitored over the next 14-21 days. The appearance of colonies in semi-solid media is known as anchorage-independent growth, and is characteristic of the tumour phenotype. Cultures of tumour cell lines can be set up in the presence of both ligand and candidate antagonists of receptor heterodimerisation, and colony growth monitored.
 - (v) Ability of candidate compounds to block in vivo growth of tumour xenografts of human tumour cell lines whose tumorigenic phenotype is known to be at least partly dependent on ligand activation of ErbB2 heterodimer cell signalling e.g. MCF7 breast cancer cells, LNCap prostate cancer cells etc. This can be assessed in

immunocompromised mice either alone or in combination with an appropriate cytotoxic agent for the cell line in question.

Modulation of ligand-receptor interaction

5

Rationale & method: ErbB2 has no identified ligand of its own, yet in association with other ErbB family members can markedly influence the interaction of its heterodimer partner with ligand.

- (i) Heterodimers of ErbB2/3, either on the cell-surface or generated as recombinant 10 fusion proteins using an immunoglobulin Fc domain, bind heregulin with 2-3 orders of magnitude higher affinity than the equivalent ErbB3 homodimers (Jones, J.T. et. al. FEBS Lett. 447:227-231, 1999). Similarly, ErbB4 homodimers do not bind EGF, whereas ErbB2/4 heterodimers do (Jones op.cit.). The heterodimer antagonist antibody 15 2C4 blocks heregulin binding to cell-surface and Fc fusion heterodimers very efficiently, possibly as a result of steric hindrance through the ligand-binding site, although this remains to be established. This observation suggests that candidate inhibitors of heterodimer association, in particular the ErbB2 CR1 loop-specific antibodies can be tested for activity in this manner. Hence, it is possible to assay in a 20 96-well format the ability of lead entities (which may or may not be antibodies) to block the binding of tagged ligand, for example europium-labelled EGF, to immobilised ErbB2 hetrodimer combinations, in one example ErbB2/4 Fc fusion proteins, using time-resolved fluorescence as a readout.
- (ii) Berezov, A. et. al. J. Biol. Chem. 277: 28330-28339 (2002) describe a screen using the BIAcore whereby small ErbB2 peptide mimetics are used to inhibit heterodimer formation between immobilised ErbB1, 2 or 3 ectodomains and a solution containing ErbB3 ectodomain and ligand (heregulin). The peptides are derived from the Cterminal region of the second cysteine-rich domain of ErbB2.

30

35

Molecular replacement/binding

The structure coordinates of ErbB2, such as those set forth in Appendix I, can also be used for determining at least a portion of the three-dimensional structure of a molecular complex which contains at least some structural features similar to at least a portion of ErbB2. In particular, structural information about another crystallised molecular

10

15

20

25

30

35

31

complex may be obtained. This may be achieved by any of a number of well-known techniques, including molecular replacement.

Methods of molecular replacement are generally known by those of skill in the art (generally described in Brunger, Meth. Enzym., vol. 276, pp. 558-580, 1997; Navaza and Saludjian, Meth. Enzym., vol. 276, pp. 581-594, 1997; Tong and Rossmann, Meth. Enzym., vol. 276, pp. 594-611, 1997; Bentley, Meth. Enzym., vol. 276, pp. 611-619, 1997); Lattman, "Use of the Rotation and Translation Functions", in Meth. Enzymol., 115, pp. 55-77 (1985); and Rossmann, ed., "The Molecular Replacement Method", Int. Sci. Rev. Ser., No. 13, Gordon & Breach, New York (1972)).

Generally, X-ray diffraction data are collected from the crystal of a crystallised target structure. The X-ray diffraction data is transformed to calculate a Patterson function. The Patterson function of the crystallised target structure is compared with a Patterson function calculated from a known structure (referred to herein as a search structure). The Patterson function of the crystallised target structure is rotated on the search structure Patterson function to determine the correct orientation of the crystallised target structure in the crystal. The translation function is then calculated to determine the location of the target structure with respect to the crystal axes. Once the crystallised target structure has been correctly positioned in the unit cell, initial phases for the experimental data can be calculated. These phases are necessary for calculation of an electron density map from which structural differences can be observed and for refinement of the structure. Preferably, the structural features (e.g., amino acid sequence, conserved di-sulphide bonds, and beta-strands or beta-sheets) of the search molecule are related to the crystallised target structure.

The electron density map can, in turn, be subjected to any well-known model building and structure refinement techniques to provide a final, accurate structure of the unknown crystallised molecular complex (eg see Jones, T.A., Zou, J.Y., Cowan, S.W., and Kjeldgaard (1991). Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47,110–119; Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., et al. (1998). Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921).

20

32

Obtaining accurate values for the phases, by methods other than molecular replacement, is a time-consuming process that involves iterative cycles of approximations and refinements and greatly hinders the solution of crystal structures. However, when the crystal structure of a protein containing at least a homologous portion has been solved, the phases from the known structure provide a satisfactory estimate of the phases for the unknown structure.

By using molecular replacement, all or part of the structure coordinates of ErbB2 provided herein (and set forth in Appendix) can be used to determine the structure of a crystallised molecular complex whose structure is unknown more rapidly and efficiently than attempting to determine such information ab initio. This method is especially useful in determining the structure of ErbB2 mutants and homologues.

The structure of any portion of any crystallised molecular complex that is sufficiently homologous to any portion of the extracellular domain of ErbB2 can be solved by this method.

Such structure coordinates are also particularly useful to solve the structure of crystals of ErbB2 co-complexed with a variety of molecules, such as other EGF receptor family receptors to which ErbB2 dimerises, or chemical entities. For example, this approach enables the determination of the optimal sites for the interaction between chemical entities, and the interaction of candidate ErbB2 agonists or antagonists.

All of the complexes referred to above may be studied using well-known X-ray diffraction techniques and may be refined versus 1.5-3.5 A resolution X-ray data to an R value of about 0.25 or less using computer software, such as X-PLOR (Yale University, distributed by Molecular Simulations, Inc.; see Blundell & Johnson, supra; Meth. Enzymol., vol. 114 & 115, H. W. Wyckoff et al., eds., Academic Press (1985)). This information may thus be used to optimize known ErbB2 agonist/antagonists, such as anti-ErbB2 antibodies, and more importantly, to design new or improved ErbB2 agonists/antagonists.

Production of ErbB2 crystals

35 The crystals of the present invention may be prepared by expressing a nucleotide sequence encoding ErbB2 or a variant thereof in a suitable host cell, and then

crystallising the purified protein(s). Preferably the ErbB2 polypeptide contains the extracellular domain (amino acids 1 to 632 of the mature human polypeptide or a truncated version thereof, preferably comprising amino acids 1 to 509, or the equivalent residues in other ErbB2 polypeptides) but lacks the transmembrane and intracellular domains. Preferred host cells are those that provide for reduced glycosylation of recombinant polypeptides, such as a glycosylation-defective mammalian cell line e.g. the Lec8 Chinese hamster cell line, a derivative of CHO-K1 fibroblasts (ATCC CRC:1737) (Stanley, 1989, Mol. Cell Biol. 9: 377-383).

ErbB2 polypeptides may also be produced as fusion proteins, for example to aid in extraction and purification. Examples of fusion protein partners include glutathione-Stransferase (GST), hexahistidine, GAL4 (DNA binding and/or transcriptional activation domains) and beta-galactosidase. It may also be convenient to include a proteolytic cleavage site between the fusion protein partner and the protein sequence of interest to allow removal of fusion protein sequences.

After expression, the proteins may be purified and/or concentrated, for example by immobilised metal affinity chromatography, ion-exchange chromatography, and/or gel filtration.

The protein(s) may be crystallised using known techniques. Usually, in a crystallisation process, a crystallisation buffer is prepared with a lower concentration of a precipitating agent necessary for crystal formation. For crystal formation, the concentration of the precipitating agent has to be increased, by addition of precipitating agent or by diffusion of the precipitating agent between the crystallisation buffer and a reservoir buffer. Diffusion may be achieved by known techniques such as the "hanging drop" or the "sitting drop" method. In these methods, a drop of crystallisation buffer containing the protein (s) is hanging above or sitting beside a much larger pool of reservoir buffer. Alternatively, the balancing of the precipitating agent can be achieved through a semi-permeable membrane that separates the crystallisation buffer and prevents dilution of the protein into the reservoir buffer.

We have found that the inclusion of about 15% PEG 1500 provides optimal crystallization conditions for the extracellular domain of human ErbB2.

20

25

30

15

20

34

Generating the crystal structure

Once the crystals have been obtained, the structure may be solved by known X-ray diffraction techniques. Many techniques use chemically modified crystals, such as those modified by heavy atom derivatization. In practice, a crystal is soaked in a solution containing heavy metal atom salts, or organometallic compounds, e. g., lead chloride, gold thiomalate, thimerosal or uranyl acetate, which can diffuse through the crystal and bind to the surface of the protein. The location(s) of the bound heavy metal atom(s) can then be determined by X-ray diffraction analysis of the soaked crystal. The patterns obtained on diffraction of a monochromatic beam of X-rays by the atoms (scattering centres) of the crystal can be solved by mathematical equations to give mathematical coordinates. The diffraction data are used to calculate an electron density map of the repeating unit of the crystal. The electron density maps are used to establish the positions of the individual atoms within the unit cell of the crystal (Blundel, T. L. and N. L. Johnson, Protein Crystallography, Academic Press (1976)).

Target binding sites for modulators of ErbB2

The three-dimensional structure of ErbB2 provided herein allows the identification of target binding sites for potential ErbB2 modulators.

Preferred target binding sites are those involved in heterodimerisation of ErbB2 with other members of the EGF receptor family, such as ErbB1, ErbB3 and/or ErbB4.

- 25 One preferred binding site involved in heterodimerisation is the CR1 dimerisation loop (residues 247-268) and adjacent residues (residues 244-246, 285-289). Other suitable binding sites include the N-terminal end of the CR1 domain (residues 200-203, 210-213, 216-218, 225-230), and the C-terminal end of the CR1 domain (residues 294-319).
- 30 In a further preferred embodiment, the binding site is the docking site on ErbB2 for the CR1 dimerisation loop of heterodimer partners. This docking site is located on ErbB2 between the L1, CR1 and L2 domains. Preferably, the docking site comprises the following ErbB2 residues: Gln 36, Gln 60, Arg 82, Thr 84, Gln 85, Phe 237, Thr 269, Phe 270, Gly 271, Ala 272, Tyr 282, Thr 285, Gly 288, Ser 289, Cys 290, Thr 291, Leu
- 292, Val 293, Cys 294, Pro 295 and Cys 310. 35

In yet another preferred embodiment, the target binding site is located on the L1 or L2 domains. Unlike the unligated structure of ErbB3 (Cho, H. S. & Leahy, D. J. Science 297, 1330-1333 (2002)) or the pseudo-unligated structure of EGFR (Ferguson et al., Molecular Cell, Vol. 11, 507-517, (2003)), the structure of ErbB2 exists in a conformation similar to that of the 2:2 ligand-receptor dimer. This is in large part maintained by the L1:L2 contact, as described in Garrett, et al., Molecular Cell, Vol. 11, 495-505. Thus a small molecule or antibody which binds to either the L1 or L2 domain or intercalates between them can modulate receptor dimer formation by either preventing the domains from binding to each other or by modifying the relative positions of the domains. Thus binding of a chemical entity to the L1 and/or L2 domain may cause the protein to adopt a conformation similar to that of its unligated relatives (EGFR or ErbB3) and thereby inhibit dimerisation. Alternatively, binding of a chemical entity to the L1 and/or L2 domain may cause modifications in the CR1 (dimerisation domain) as described in Garrett, et al., Molecular Cell, Vol. 11, 495-505 to inhibit receptor dimer formation. The relevant binding sites of the L1 or L2 domain consist of the atoms of either one of these domains that lie within about 4.5 Angstroms of the other domain.

Antibodies

20

10

The term "antibody" as used in this invention includes intact molecules as well as fragments thereof, such as Fab, F(ab')2, and Fv which are capable of binding the epitopic determinant. These antibody fragments retain some ability to selectively bind with its antigen or receptor and are defined as follows:

25

- (1) Fab, the fragment which contains a monovalent antigen-binding fragment of an antibody molecule can be produced by digestion of whole antibody with the enzyme papain to yield an intact light chain and a portion of one heavy chain;
- 30 (2) Fab', the fragment of an antibody molecule can be obtained by treating whole antibody with pepsin, followed by reduction, to yield an intact light chain and a portion of the heavy chain; two Fab' fragments are obtained per antibody molecule;
- (3) (Fab')2, the fragment of the antibody that can be obtained by treating whole
 antibody with the enzyme pepsin without subsequent reduction; F(ab)2 is a dimer of two Fab' fragments held together by two disulfide bonds;

(4) Fv, defined as a genetically engineered fragment containing the variable region of the light chain and the variable region of the heavy chain expressed as two chains; and

5

15

- (5) Single chain antibody ("SCA"), defined as a genetically engineered molecule containing the variable region of the light chain, the variable region of the heavy chain, linked by a suitable polypeptide linker as a genetically fused single chain molecule.
- Methods of making these fragments are known in the art. (See for example, Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (1988), incorporated herein by reference).
 - Antibodies of the present invention may be produced, for example, by immunizing mice with purified ErbB2 fragment 1-509. After determining that the mice are producing anti-ErbB2 antibodies, hybridomas may be prepared and antibody specificity assayed by ELISA or Flow Cytometry using two cell lines: Baf/wt-EGFR cells and Baf/EGFR-"mutation x" cells. These mouse cell lines express either the wild type ErbB2 or the ErbB2 containing an amino acid substitution, for example an Ala substitution (ie mutation x), within the specific site against which the antibody is to be directed. When hybridomas secreting antibodies which recognize Baf/wt-ErbB2, but not Baf/ErbB2-"mutant x" are identified, the corresponding hybridoma may be cloned and the monoclonal antibody purified.
- Alternatively, in raising antibodies of the invention, it may be desirable to use derivatives of the peptides or loop structures which are conformationally constrained. Conformational constraint refers to the stability and preferred conformation of the three-dimensional shape assumed by a peptide. Conformational constraints include local constraints, involving restricting the conformational mobility of a single residue in a peptide; regional constraints, involving restricting the conformational mobility of a group of residues, which residues may form some secondary structural unit; and global constraints, involving the entire peptide structure. For example, amino acids adjacent to or flanking the ErbB2 loop structures may be included in the construct to maintain conformation of the peptide used to raise antibodies.

In addition, the active conformation of the peptide may be stabilized by a covalent modification, such as cyclization or by incorporation of gamma-lactam or other types of bridges. For example, side chains can be cyclized to the backbone so as create a L-gamma-lactam moiety on each side of the interaction site. See, generally, Hruby et al., "Applications of Synthetic Peptides," in Synthetic Peptides: A User's Guide: 259-345 (W. H. Freeman & Co. 1992). Cyclization also can be achieved, for example, by formation of cystine bridges, coupling of amino and carboxy terminal groups of respective terminal amino acids, or coupling of the amino group of a Lys residue or a related homolog with a carboxy group of Asp, Glu or a related homolog. Coupling of the alpha-amino group of a polypeptide with the epsilon-amino group of a lysine residue, using iodoacetic anhydride, can be also undertaken. See Wood and Wetzel, 1992, Int'l J. Peptide Protein Res. 39: 533-39.

Further the conformation of the peptide analogues may be stabilised by including amino acids modified at the alpha carbon atom (eg. α-amino-150-butyric acid) (Burgess and Leach, 1973, Biopolymers 12(12):2691-2712; Burgess and Leach, 1973, Biopolymers 12(11):2599-2605) or amino acids which lead to modifications on the peptide nitrogen atom (eg. sarcosine or N-methylalanine) (O'Donohue et al, 1995, Protein Sci. 4(10):2191-2202).

20

25

30

10

15

Another approach described in US 5,891,418 is to include a metal-ion complexing backbone in the peptide structure. Typically, the preferred metal-peptide backbone is based on the requisite number of particular coordinating groups required by the coordination sphere of a given complexing metal ion. In general, most of the metal ions that may prove useful have a coordination number of four to six. The nature of the coordinating groups in the peptide chain includes nitrogen atoms with amine, amide, imidazole, or guanidino functionalities; sulfur atoms of thiols or disulfides; and oxygen atoms of hydroxy, phenolic, carbonyl, or carboxyl functionalities. In addition, the peptide chain or individual amino acids can be chemically altered to include a coordinating group, such as for example oxime, hydrazino, sulfhydryl, phosphate, cyano, pyridino, piperidino, or morpholino. The peptide construct can be either linear or cyclic, however a linear construct is typically preferred.

Peptides and Peptidomimetics

In yet a further aspect the present invention provides an isolated conformationally constrained peptide or peptidomimetic consisting essentially of (i) ErbB2 amino acid residues 200-203, (ii) ErbB2 amino acid residues 210-213, (iii) ErbB2 amino acid residues 216-218, (iv) ErbB2 amino acid residues 225-230, (v) ErbB2 amino acid residues 247-268 or a subset thereof; (vi) ErbB2 amino acid residues 244-246, (vii) ErbB2 amino acid residues 285-289, or (viii) ErbB2 amino acid residues 294-319 or a subset thereof.

10

20

25

30

The term "conformationally constrained molecules" means conformationally constrained peptides and conformationally constrained peptide analogues and derivatives.

The term "analogues" refers to molecules having a chemically analogous structure to the naturally occurring alpha-amino acids present in ErbB2. Examples include molecules containing gem-diaminoalkyl groups or alklylmalonyl groups.

The term "derivatives" includes alpha amino acids wherein one or more side groups found in the naturally occurring alpha-amino acids present in ErbB2 have been modified. Thus, for example the naturally-occurring amino acids present in ErbB2 may be replaced with a variety of uncoded or modified amino acids such as the corresponding D-amino acid or N-methyl amino acid. Other modifications include substitution of hydroxyl, thiol, amino and carboxyl functional groups with chemically similar groups.

The present invention encompasses the use of conformationally constrained peptidomimetics of fragments of ErbB2 (such as amino acid residues 247-268), i.e. analogues and derivatives which mimic the activity of ErbB2 and are therefore capable of modulating ErbB2 activity in vivo. These peptidomimetics are preferably substantially similar in three-dimensional shape to the peptide structures (for example, loop structures) as they exist on the native ErbB2. Substantial similarity means that the geometric relationship of groups in the ErbB2 peptide fragment is preserved such that the peptidomimetic will mimic the activity of ErbB2 in vivo.

A "peptidomimetic" is a molecule that mimics the biological activity of a peptide but is no longer peptidic in chemical nature. By strict definition, a peptidomimetic is a molecule that no longer contains any peptide bonds (that is, amide bonds between amino acids). However, the term peptide mimetic is sometimes used to describe molecules that are no longer completely peptidic in nature, such as pseudo-peptides, semi-peptides and peptoids. Whether completely or partially non-peptide, peptidomimetics for use in the methods of the invention provide a spatial arrangement of reactive chemical moieties that closely resembles the three-dimensional arrangement of active groups in the peptide on which the peptidomimetic is based. As a result of this similar active-site geometry, the peptidomimetic has effects on biological systems which are similar to the biological activity of the peptide.

There are clear advantages for using a mimetic of a given peptide rather than the peptide itself, because peptides commonly exhibit two undesirable properties: (1) poor bioavailability; and (2) short duration of action. Peptide mimetics offer an obvious route around these two major obstacles, since the molecules concerned are small enough to be both orally active and have a long duration of action. There are also considerable cost savings and improved patient compliance associated with peptide mimetics, since they can be administered orally compared with parenteral administration for peptides. Furthermore, peptide mimetics are much cheaper to produce than peptides.

Suitable peptidomimetics based on, for example, residues 247-268, can be developed using readily available techniques. Thus, for example, peptide bonds can be replaced by non-peptide bonds that allow the peptidomimetic to adopt a similar structure, and therefore biological activity, to the original peptide. Further modifications can also be made by replacing chemical groups of the amino acids with other chemical groups of similar structure. The development of peptidomimetics derived from ErbB2 peptides based on residues 247-268 can be aided by reference to the three dimensional structure of these residues as provided in Appendix I. This structural information can be used to search three-dimensional databases to identify molecules having a similar structure, using programs such as MACCS-3D and ISIS/3D (Molecular Design Ltd., San Leandro, CA), ChemDBS-3D (Chemical Design Ltd., Oxford, U.K.), and Sybyl/3DB Unity (Tripos Associates, St. Louis, MO).

30

10

15

20

Those skilled in the art will recognize that the design of a peptidomimetic may require slight structural alteration or adjustment of a chemical structure designed or identified using the methods of the invention. In general, chemical compounds identified or designed using the methods of the invention can be synthesized chemically and then tested for ability to modulate ErbB2 activity using any of the methods described herein. The methods of the invention are particularly useful because they can be used to greatly decrease the number potential mimetics which must be screened ability to modulate ErbB2 activity.

The peptides or peptidomimetics of the present invention can be used in assays to screening for candidate compounds which bind to regions of ErbB2 and potentially interfere with the hereodimerisation of ErbB2 with another member of the EGF receptor family.

Standard solid-phase ELISA assay formats are particularly useful for identifying inhibitors of dimerisation. In accordance with this embodiment, the peptide or peptidomimetic of the invention is immobilized on a solid matrix, such as, for example an array of polymeric pins or a glass support. Conveniently, the immobilized peptide or peptidomimetic is a fusion polypeptide comprising Glutathione-S-transferase (GST; e.g. a CAP-ERK fusion), wherein the GST moiety facilitates immobilization of the protein to the solid phase support. This assay format can then be used to screen for candidate compounds that bind to the immobilised peptide or peptidomimetic and/or interefere with binding of a natural binding partner of ErbB2 to the immobilised peptide or peptidomimetic.

25

30

35

20

15

Uses of modulators of ErbB2

Compounds/chemical entities designed or selected by the methods of the invention described above may be used to modulate ErbB2 activity in cells, i.e. activate or inhibit ErbB2 activity. In particular, they may be used to modulate the interaction between ErbB2 and other heterodimerisation partners of the EGF receptor family, such as ErbB1, ErbB2 and ErbB4.

Modulation of heterodimerisation between ErbB2 and other members of the EGF receptor family may be achieved by direct binding of the chemical entity to a

heterodimerisation surface of ErbB2 and/or by an allosteric interaction elsewhere in the ErbB2 extracellular domain.

Given that aberrant EGF/ErbB2 activity is implicated in a range of disorders, the compounds described above may also be used to treat, ameliorate or prevent disorders characterised by abnormal ErbB2 signalling. Examples of such disorders include malignant conditions including tumours of the brain, head and neck, prostate, ovary, breast, cervix, lung, pancreas and colon; and melanoma, rhabdomyosarcoma, mesothelioma, squamous carcinomas of the skin and glioblastoma.

10

15

30

35

Administration

Compounds of the invention, i.e. antibodies of the invention or modulators of ErbB2 identified or identifiable by the screening methods of the invention, may preferably be combined with various components to produce compositions of the invention. Preferably the compositions are combined with a pharmaceutically acceptable carrier or diluent to produce a pharmaceutical composition (which may be for human or animal use).

The formulation will depend upon the nature of the compound and the route of administration but typically they can be formulated for topical, parenteral, intramuscular, oral, intravenous, intra-peritoneal, intranasal inhalation, lung inhalation, intradermal or intra-articular administration. The compound may be used in an injectable form. It may therefore be mixed with any vehicle which is pharmaceutically acceptable for an injectable formulation, preferably for a direct injection at the site to be treated, although it may be administered systemically.

The pharmaceutically acceptable carrier or diluent may be, for example, sterile isotonic saline solutions, or other isotonic solutions such as phosphate-buffered saline. The compounds of the present invention may be admixed with any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s). It is also preferred to formulate the compound in an orally active form.

In general, a therapeutically effective daily oral or intravenous dose of the compounds of the invention, including compounds of the invention and their salts, is likely to range from 0.01 to 50 mg/kg body weight of the subject to be treated, preferably 0.1 to 20

25

42

mg/kg. The compounds of the invention and their salts may also be administered by intravenous infusion, at a dose which is likely to range from 0.001-10 mg/kg/hr.

Tablets or capsules of the compounds may be administered singly or two or more at a time, as appropriate. It is also possible to administer the compounds in sustained release formulations.

Typically, the physician will determine the actual dosage which will be most suitable for an individual patient and it will vary with the age, weight and response of the particular patient. The above dosages are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.

For some applications, preferably the compositions are administered orally in the form of tablets containing excipients such as starch or lactose, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or colouring agents.

The compositions (as well as the compounds alone) can also be injected parenterally, for example intravenously, intramuscularly or subcutaneously. In this case, the compositions will comprise a suitable carrier or diluent.

For parenteral administration, the compositions are best used in the form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood.

For buccal or sublingual administration the compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.

For oral, parenteral, buccal and sublingual administration to subjects (such as patients), the daily dosage level of the compounds of the present invention and their pharmaceutically acceptable salts and solvates may typically be from 10 to 500 mg (in single or divided doses). Thus, and by way of example, tablets or capsules may contain from 5 to 100 mg of active compound for administration singly, or two or more at a time, as appropriate. As indicated above, the physician will determine the actual

dosage which will be most suitable for an individual patient and it will vary with the age, weight and response of the particular patient.

The routes of administration and dosages described are intended only as a guide since a skilled practitioner will be able to determine readily the optimum route of administration and dosage for any particular patient depending on, for example, the age, weight and condition of the patient.

The present invention will now be described further with reference to the following examples, which are illustrative only and non-limiting. The examples refer to the figures:

EXAMPLES

15 Experimental Procedures

Construction of the ErbB2-509 expression vector

An ErbB2 cDNA clone encompassing the entire coding region in the expression vector 20 pRc/CMV (Invitrogen) was a gift from Dr. Rod Fiddes (AMBRI Pty,Ltd.). A Hind III/EcoR 1 fragment spanning the 5'-non-coding region and nucleotides encoding amino acids 1-412 was isolated and cloned into pUC19 (Pharmacia). A 324 basepair EcoRl fragment incorporating amino acids 413-509 of ErbB2 and a C-terminal FLAG epitope (Brizzard et al., 1994, Biotechniques 16, 730-735) was generated by the polymerase 25 chain reaction (PCR) using the primers 5'-CGGACAGCCTGCCTGACCTC-3' (upstream) and 5'-CCGGAATTCTAGACTACTTATCATCGTCATCTTTGTAATCGTTGACACA CTGGGTGGGC-3', and cloned into the EcoR 1 site of this plasmid. This plasmid was further modified by replacement of the 5' Hind III/BamH I of ErbB2 with a truncated Hind III/BamH I fragment, corresponding to nucleotides 171-1170 (GenBank accession 30 number X03363), generated by PCR using the primers 5'-GGGGAAGCTTGCCACCATGGAGCTGGCGGCC-3' (upstream) 5'-GCTGCACTTCTCACACCGCTG-3' (downstream). The fidelity of all amplification products was established by nucleotide sequencing. The modified ErbB2 cDNA insert 35 was subsequently excised as a Hind III/Xba I fragment and cloned into the corresponding restriction sites of the mammalian expression vector pEE14 (Bebbington

and Hentschel, 1987, .In: DNA Cloning (Glover, D., ed.), Vol. III, pp.163-188, IRL Press, Oxford, U.K) to generate pESE.ErbB2-509.

Cell culture and transfection

5

The Lec8 Chinese hamster cell line, a derivative of CHO-K1 fibroblasts was obtained from the American Tissue Culture Collection (ATCC CRC:1737) and maintained in Glasgow's modified Eagle's medium (Life Technologies) supplemented with 10% fetal calf serum (FCS). Cells were transfected with pESE.ErbB2-509 that had been linearised by digestion with Fsp I, using FuGENE (Roche Molecular Biochemicals) according to the manufacturer's instructions. Stable transfectants were isolated by culturing cells in glutamine-free medium containing 10% dialysed FCS and 25 μ M methionine sulfoximine. Supernatants were screened by dot-blotting onto nitrocellulose and probing with the anti-FLAG monoclonal antibody, M2 (Brizzard et al., 1994).

15

20

25

30

35

10

Protein Production and Purification

A positive polyclonal culture was used for scale-up protein production by growing the cells in roller bottles, during which time they were adapted to DMEM/F12 (JRH) media, supplemented with 10% dialysed FCS (Life Techologies) and 25uM methionine sulfoximine. After verifying the yield and quality of the ErbB2-509 fragment, four 500ml spinner flasks, each containing 10 g of FibraCell disks (New Brunswick Scientific), were inoculated with harvested cells from eight confluent roller bottles. Over a period of three weeks, spent media was collected daily from the spinner flasks and replaced with fresh media. Undialysed serum (CSL) was used instead of dialysed serum after day three. Approximately 30 litres of media harvest was collected over three weeks.

ErbB2-509 FLAG-tagged protein was purified by immunoaffinity chromatography over a 50 ml column of M2 anti-FLAG antibody covalently coupled to Mini Leak Low (Kem-En-Tek Denmark) as per manufacturer's instructions. Batches of four to six litres of culture media at 4 °C were passed over the column at 100 – 200 ml/h and washed with ~20 column volumes of 40 mM Tris-buffered saline at pH8 /0.02% sodium azide (TBSA). FLAG-tagged protein was eluted from the column after 90 min of recirculating 50 ml of a 0.25 mg/ml solution of the FLAG peptide DYKDDDDK in TBSA, followed by elution with three to four column volumes of 0.1 mg/ml FLAG

45.

peptide in TBSA. The affinity column was regenerated with 0.1M sodium citrate pH 3 before re-equilibration at pH 8 with TBSA, ready for the next batch of harvest. Further purification was effected by passing a concentrated solution of the peptide-eluted product over a Superdex 200 column (Pharmacia 26/60) in TBSA at 5 ml/min. Greater than 90% of the 280nm-absorbing material eluted as a single symmetrical peak of apparent mass ~70 kDa, at a yield of 1-2mg/L of the spinner-flask harvest. The peak fraction was buffer-exchanged into 10 mM HEPES pH7.5 and concentrated to 8mg/ml.

Crystallization and Data Collection

10

15

20

25

30

35

Crystallization trials were performed with a factorial screen (Jancarik and Kim, 1991, J. Appl. Cryst. 24, 409-411) using the hanging drop method. Initially, rod-shaped crystals grew within 4 days, which diffracted to ~3.5 Å. However, after further crystallization trials the best conditions were 15% PEG 1500 and the resolution extended to 2.5 Å. Crystals (space group P2₁2₁2₁, a=75.96, b=82.24, c=110.06 Å) were cryo-cooled to –170 °C in 20% PEG, 20% glycerol. Diffraction data were recorded as 192 1° exposures on a Rigaku RAXIS IV area detector using RU-300 Rigaku generator equipped with elliptical glass capillary optics (AXCO). Data were integrated to 2.5 Å and scaled using the DENZO/SCALEPACK (mosaic spread 0.8°, R_{sym}=0.103, multiplicity 7.2, completeness 97.2%)

Structure Solution and Refinement

The structure was solved by molecular replacement with AMORE using data 10-4 Å resolution and two fragments of EGFR (residues 4-238 and 310-500) as search models. In both rotation and translation functions the highest peaks corresponded to the correct solution. By inspection of electron density maps (10-3.5 Å resolution) with O an initial model of ErbB2 was constructed from the structure of EGFR. This model consisted of 472 of 510 residues, including 91 side chains truncated from the EGFR equivalent. Structure refinement was performed with CNS (Brunger et al., 1998, Acta Crystallogr. D Biol Crystallogr. 54, 905-921). Initially, rigid body refinement with four groups (residues 1-194, 197-310, 318-510) gave R=0.473, Rfree=0.482 (5% of the data). Nine rounds of manual refitting were alternated with energy minimisation, B factor refinement and, sometimes, simulated annealing. The resolution was extended in a stepwise manner with a bulk solvent correction applied from round 3 and an overall anisotropic thermal parameter from round 6. The final model contains 506 amino

acids, 4 carbohydrate residues and 134 solvent molecules, giving R=0.226, R_{free} =0.264 (data 25-2.5 Å). For residues 1-2, 100-102 and 107-113 294-318 the electron density is weak and there is no density for residues 103-106 or beyond residue 510.

5 Database Preparation

10

15

20

25

30

Databases were generated using information provided by the Supplier, or the NIH developmental therapeutics program. The NCI database was built from the October 2000 release, and the Tripos Leadquest database using the October 2001 release. SDF records were converted into 3-dimensional Sybyl mol2 files using the dbtranslate utility from UNITY environment in sybyl6.7, coordinates were generated using Concord 4.0.2 and the atom typing of resulting mol2 files corrected using our in house tool Molprepare. The resulting mol2 files were then protonated, assigned Gasteiger-Huckel charges and minimized (conjugate gradient for a maximum of 500 iterations) using Sybyl 6.7. Databases were then indexed for our database server program.

Assay for determining ErbB2 kinase activity

BaF/3 cells co-expressing K721R-ErbB1 and wtErbB2 are routinely grown in RPMI/10%FCS containing IL-3. Before assay, cells are washed three times to remove residual IL-3 and resuspended in RPMI 1640 + 10% FCS. Cells are seeded into 96 well plates using a Biomek 2000 (Beckman) at 2x10⁴ cells per 200μl and incubated for 4 hours at 37°C in 10% CO₂. Candidate ErbB2 inhibitors are added to the first titration point and titrated in two-fold dilutions across the 96 well plate in duplicate with or without a constant amount of mEGF (1nM) or IL-3 (1μl). 3^H-Thymidine (0.5μCi/well) is added and the plates incubated for 20 hours at 37°C in 5% CO₂. At the end of the incubation the cells are lysed in 0.5M NaOH at room temperature for 30 minutes then harvested onto nitrocellulose filter mats using an automatic harvester (Tomtec, Connecticut, USA). The mats are dried, placed in a plastic counting bag and scintillant (10ml) added. Incorporated 3H-Thymidine is determined using a beta counter (1205 Betaplate, Wallac, Finland).

15

20

25

30

47

Example 1: Description of structure

The ErbB2 fragment described here comprises the L1, CR1 and L2 domains plus the first module (residues 489-509) from the second cys-rich region CR2. The crystals contained only one molecule of the truncated ErbB2 ectodomain in the asymmetric unit and showed no evidence of dimers. ErbB2 (residues 1-509) adopts a compact bilobed structure reminiscent of the closed conformation of the EGFR ectodomain in its 2:2 complexes with TGFα (Garrett et al., 2002) or EGF (Ogiso et al., 2002, Cell 110, 775-787), but very different from the open conformations seen in the unliganded, full length ErbB3 ectodomain (Cho and Leahy, 2002) or the truncated L1/CR/L2 fragment of the closely related type 1 insulin-like growth factor receptor (Garrett et al., 1998, Nature 394, 395-399).

The main chain conformation of each L domain is similar to the corresponding domains of EGFR with the rmsd for the $C\alpha$ atoms of L1 being 1.14-1.21 (for >91% of the $C\alpha$ atoms) and for the $C\alpha$ atoms of L2 being 0.97-1.05 Å (96%). In the ErbB2 L1 domain, the V-shaped region (residues 9-17), which forms a substantial part of the ligand-binding surface in EGFR, is maintained. However there is a small shift in the position of the N-terminal helix (residues 17-30) in ErbB2 and minor differences in residues equivalent to those in EGFR that make a main chain contact with TGF α (Garrett et al., 2002). The position of the large insertion (residues 101-109) specific to ErbB2 (Figure 1) is in the loop of EGFR (residues 101-106) in the fourth repeat at the corner of the second and third β -sheets of the L1 domain and is predominantly disordered in ErbB2. In the ErbB2 L2 main chain, small movements are seen in the two loops (residues 324-334 and 360-374) equivalent to those that bind ligand in EGFR (Garrett et al., 2002) and in the relative position of the single cys rich module (residues 489-509) that follows the L2 domain.

While the folds of the two L domains are similar in ErbB2 and the EGFR/TGFa complex (Garrett et al., 2002) the relative orientation of these two domains are quite different (Figures 3 and 4). This is due to differences in the CR1 domain and the CR1-L2 hinge of ErbB2 which direct the two L domains towards each other, where they make substantial contact (the total accessible surface area buried is 1264 Å² and shape complimentarily, $S_o = 0.63$). The overall movement of the ErbB2 L2 domain, with respect to L1, corresponds to a rotation of about 35 ° (A 37.4 °, B 31.8 °) around an axis parallel to strands of the L2 large β -sheet and a translation of 7 Å towards CR1 so that

in ErbB2 the bottom of the large sheet on L2 sits against the N-terminal end (residues 1-33) of L1. In this conformation an EGF-like ligand cannot bind to sites on either the L1 or L2 domains of ErbB2 (as seen for EGFR) since each site is occluded by the opposing L domain.

5

10

15

20

35

Finding ErbB2 in this "closed" form raises the question of whether this could occur in the unligated form of EGFR (or ErbB3/ErbB4). Structural superposition is not straightforward as there are main chain rearrangements in this region of ErbB2, namely a shift in the N-terminal helix of L1 by about 1.8 Å, possibly due to Leu22 of ErbB2 being replaced by an aromatic side chain in ErbB1 (F24), ErbB3 (Y27) and ErbB4 (Y24) (Figure 1). However, even when superimposing residues 9-17 and the helix separately then comparing with superpositions of L2, complementarity in these regions for other members of the family was not observed. In EGFR, Gln411 is equivalent to Ala419 of ErbB2 and the bulky Gln side chain could not be easily accommodated in the ErbB2 structure as it would sterically clash with Ser26 and Met30 (Met24 and Leu28 in ErbB2). This closed conformation would not pose a problem for ErbB3/ErbB4 where the residues corresponding to ErbB2 Ala419 are Gly residues (Figure 1). Asn12 in EGFR is a key residue for ligand binding and is strictly conserved in all the EGFR family except ErbB2. If the unliganded form of EGFR were to have the same conformation as ErbB2 then Asn12 (equivalent to Met10 in ErbB2) would sterically clash with His409 (Asn417 in ErbB2) and the side chains of Lys463 and Lys465 (equivalent to the hydrophobic residues Ala471 and Leu473 of ErbB2) on the last strand of the major β -sheet of L2, would overlap with Arg29 and Asp22, respectively. In addition to the steric clash, electrostatic repulsion may also be important as residues 29 and 463 are basic (Lys/Arg) in EGFR/ErbB3/Erb4 but are His and Ala in ErbB2, respectively. Thus it appears that the "closed" conformation seen for domains 1-3 of ErbB2 is unlikely to be a general feature of this receptor family but unique to the ErbB2 molecule.

30 Example 2: Analysis of the ligand binding region

A comparison of the ErbB2 and EGFR structures shows why ErbB2 does not bind ligands such as EGF, TGF α , or the neuregulins. The L domains of EGFR, together with the ligand, TGF α , were superimposed on the corresponding L domains of ErbB2 using the strands of the large β -sheet. Residues of ErbB2 L1 which would interfere with ligand binding are Arg13 (replacing Thr, Ser and Ser in ErbB1, ErbB3 and ErbB4) and

Pro15 (replacing Leu, Thr and Leu in ErbB1, ErbB3 and ErbB4) on the short N-terminal strand of the L1 domain (Figure 1). In EGFR, residues 13-15 form a β -sheet with the ligand. The presence of Arg13 alone is likely to prevent ligand binding as this residue lies at the heart of the interface. Unless the receptor side chains are small there is no room for ligand side chains. Another crucial residue in EGFR is Asn12, the side chain of which makes two hydrogen bonds to the ligand's main chain. Asn is present in EGFR, ErbB3 and ErbB4 but in ErbB2 the equivalent residue (Met10) is buried between Val8 and Pro15 and unavailable for ligand interactions. Another residue in the L1 domain which would interfere with EGF-related ligand binding by ErbB2 is Asp98, which is Ser or Leu in the other ErbB family members (Figure 1) and would clash with Glu27 of TGF α

Observations by Kohda et al., 1993 (J. Biol. Chem. 268, 1976-1981) indicate that ligands can bind to L2 alone albeit with low affinity. For the L2 domain the differences between ErbB2 and the other ErbB receptors are more subtle. Asp355 of EGFR, which makes a salt bridge with the highly conserved Arg42 of TGF α (Garrett et al., 2002), is conserved for all EGFR homologues including ErbB2. However, in ErbB2 movement of residues 324-334 in a neighbouring loop appears to disturb the position of this residue (Asp363). Other residues in the L2 binding site of EGFR such as His346 and Gln384 are smaller in ErbB2 (Ala354 and Ser392), so binding to ErbB2 would be expected to be of lower affinity.

The ligand-binding surfaces of the EGFR homologues are by no means well conserved and each ErbB receptor has its own ligand binding characteristics. ErbB3 and ErbB4 predominantly bind the neuregulin group. Again, ErbB2 fails to interact with this subfamily of ligands and the residues of ErbB2 at positions equivalent to the EGFR ligand binding surface clearly disrupt the L1 and L2 binding surface (Figure 1).

Example 3: Differences in CR1

30

35

10

15

20

25

In the TGFa:EGFR complex, the dominant feature of CR1 is a large loop (residues 242-259) which extends out from the rod-shaped CR1 and plays a key role in homo-dimerisation and signaling for that receptor. This loop contains only limited sequence homology with the other EGFR homologues (33-44%) and it was not clear whether dimerisation of the receptor influenced the conformation of this loop. In the crystal, ErbB2 is present as a monomer and the CR1 loop projects out into solvent, lying

15

20

50

against an adjacent molecule in a crystal contact. Superposition of this loop from ErbB2 and EGFR shows that the main chain of the ErbB2 loop adopts a very similar structure to that found in the EGFR dimer (rmsd 0.61 A for 15 Ca's) with small differences seen only at the tip. Thus it seems that this loop has a well defined conformation even in the undimerised state. Residues important in maintaining this structure are prolines found at various positions in different homologues, particularly Pro257 (EGFR), and two completely conserved asparagines (residues 247 and 256 in EGFR) which make hydrogen-bonded contacts with main chain atoms. In ErbB2 this loop is bent slightly (12-13°) relative to the corresponding fifth cys rich module in EGFR.

Overall comparison of the CR1 domain shows that, relative to EGFR, it does not bend smoothly, rather it bends locally at three places. For individual modules rms deviations in Ca positions are less than 1 Å while for the whole domain the rms deviation is 1.7/1.8 Å (106/98 of 117 residues). Cys rich modules 2-4 lie similarly against L1 in both ErbB2 and EGFR and the bends occur at the interfaces of the fourth and seventh modules. The most obvious bend is in the middle of CR1 between the fourth and fifth modules (21/25°) but other differences (between the fifth and sixth modules 11°, between the sixth and seventh modules 15/27°), together with a bend of 37/32° between the seventh module and the L2 domain constitute the set of changes which reorientate L2 with respect to L1.

Example 4: Implications for dimerisation

The rearrangements in CR1 have three effects on the dimer interface as seen in EGFR and the capacity of ErbB2, in this conformation, to form heterodimers with a 1:1 complex of EGFR with ligand. Superposing the fifth cys-rich module from CR1 of ErbB2 on one half of the EGFR dimer, the bend at the fourth and fifth modules of ErbB2 causes the N-terminal tip of ErbB2 to move away from the corresponding region on the other molecule, removing that region from the back-to-back contact. The bend at cys-rich modules 6 and 7 of ErbB2 would bring module 8 in contact with module 7 of EGFR. More significant, however, is that the bend at the fourth and fifth modules of ErbB2 brings the ErbB2 L1domain closer to the tip of the partner's CR1 loop, causing Thr249 of EGFR) to overlap with Thr84 and Gln60 of ErbB2. Therefore it seems unlikely that ErbB2 could interact with EGFR in the closed form. With some minor

10

15

20

25

30

51

structural rearrangement the tip of ErbB2's CR1 loop could be accommodated in EGFR.

Example 5: In silico screening for compounds that modulate ErbB2 activity

Molecular docking of large compound data bases to target proteins of known or modeled 3-dimensional structure is now a common approach in the identification of new lead compounds. This "virtual screening" approach relies on fast and accurate estimation of the ligand binding mode and an estimate of ligand affinity. Typically a large database of compounds, either real or virtual is docked to a target structure and a list of the best potential ligands is produced. This ranking should be highly enriched for active compounds which may then be subject to further experimental validation.

The calculation of the ligand binding mode may carried out by molecular docking programs which are able to dock the ligands in a flexible manner to a static protein structure. The estimation of ligand affinity is typically carried out by the use of a separate scoring function. These scoring functions include empirical functions [DOCK potential energy, Chemscore, Score], or knowledge based potentials of mean force [PMF, SMoG]. Consensus scoring involves re-scoring each ligand with multiple scoring functions and then using a combination of these rankings to generate a hit list.

We used the program DOCK (vers. 4.0.1) for the generation of favorable conformations of ligand binding. Protons and Kollman all-atom charges were added to the protein using the Biopolymer module of Sybyl6.7 and proton positions minimized with all other atoms held fixed. Scoring grids were calculated using the GRID program with a grid resolution of 0.25 Angstrom. All conformations were minimized using the DOCK energy function. Docking of ligand databases were directed towards the sites identified previously. Nine scoring functions were used, including Score, the Score-Quality estimate, DOCK energy function, PMF, PMF-RB (the PMF function with penalties for rotatable bonds), the SMoG function, SMoG/H (the SMOG function scaled by the number of ligand heavy atoms), Chemscore, and the Autodock Scoring function. Ligand conformations were chosen using a rank-by-rank consensus of the nine different scoring methods of the best 25 solutions obtained from the DOCK program using the DOCK potential energy. A ranked list of compounds was generated using a consensus of the individual scores for each ligand (in their best consensus-ranked conformation).

Four of the top-ranked compounds (compounds 39293, 94289, 19378 and 20697) were obtained and tested for their ability to modulate ErbB2 kinase activity according to the method described above. The results of these inhibition assays are shown in Figure 3. These results show that all four compounds tested inhibited ErbB2 kinase activity at concentrations of between 10⁻¹ and 10² µM.

Conclusion

5

20

25

30

The availability of 3D structures for the ErbB2(1-509) monomer, the 2:2 dimer complexes of TGFα:sEGFR501 (Garrett et al., 2002) and EGF:EGFR621 (Ogiso et al., 2002), the unliganded ErbB3 ectodomain monomer (Cho and Leahy, 2002) and the related L1/cys-rich/L2 fragment of the IGF-1R (Garrett et al., 1998) provides the framework to explore some of the outstanding issues related to ErbB receptor function.
A striking feature in these comparisons is the flexibility that exists at the CR1/L2 junction resulting in major differences in the positioning of the L2 domain relative to the L1/CR1 region.

The structure of the unliganded ErbB3 full length ectodomain is even more open than that of the IGF-1R fragment, with the L2 domain rotated further away from the L1 domain (Figure 3). This open conformation is very different from the closed arrangement of the L1 and L2 domains seen in the two EGFR/ligand dimer structures and in the ErbB2(1-509) structure reported here. The open conformation is stabilised by a single main chain/main chain hydrogen bond and side chain interactions between residues Tyr246, Phe251 and Gln252 in the CR1 loop (residues 242-259) and Asp562, Gly563, His565 (module 5) and Lys583 (module 6) of CR2. These contact residues are conserved in EGFR and ErbB4 but not in ErbB2 (Cho and Leahy, 2002). This open structure of ErbB3 provides an explanation for the predominantly low affinity ligand binding by soluble full length EGFR ectodomain compared to the high affinity binding shown by sEGFR501, which cannot make these contacts since it lacks CR2 modules 2 to 7. The same CR1 loop is critically involved in formation of the ligand-induced EGFR dimers suggesting that it becomes available for such dimer interactions following ligand binding.

The "closed" structure of the unliganded ErbB2(1-509) fragment seen here, where the bottom of the L2 domain sits against the top of the L1 domain resembles a "pseudo-

active" arrangement of domains, similar to that seen in the EGFR/ligand complexes (Garrett et al., 2002; Ogiso et al., 2002). It may represent the conformation of the full length ectodomain, since the residues involved in the ErbB3 CR1 loop/CR2 interactions are not conserved in ErbB2 (Cho and Leahy, 2002) and such a constraining CR1/CR2 interaction may not be tolerated in a receptor that does not bind ligand TGFα:sEGFR501.

The 3D structure of ErbB2 also allows the epitopes for monoclonal antibodies to be mapped and their mode of action inferred, since some inhibit, some stimulate and others have no effect on cell growth. The epitopes for mAbs L87, N28 and N12 have been located to the regions Cys199-Cys214, Thr195-Cys214 and Cys510-Ala565 (mature receptor numbering) respectively (Yip YL, Smith G, Koch J, Dubel S, Ward RL. Identification of epitope regions recognized by tumor inhibitory and stimulatory anti-ErbB-2 monoclonal antibodies: implications for vaccine design. J Immunol. 166(8):5271-8, (2001)). The epitopes for mAbs L87 and N28 (reported to have no effect or to stimulate growth of a subset of breast cancer cell lines respectively) are located in the second cys rich module of CR1, while the epitope for mAb N12, an inhibitory antibody, is located within a large region comprising cys rich modules 2 to 4 of CR2 (Figure 2). Similarly the epitope for the potential therapeutic anti-ErbB2 monoclonal antibody MGr6 (Orlandi R, Formantici C, Menard S, Boyer CM, Wiener JR, Colnaghi M. A linear region of a monoclonal antibody conformational epitope mapped on p185HER2 oncoprotein. J. Biol Chem. 378(11):1387-92, (1997)) has been shown to include residues 207-215 (mature receptor numbers) in the third module of CR1.

25

10

15

20

The CR2 region has also been implicated as the site of action for a set of inhibitory peptides originally designed to mimic the CDR3 loop of herceptin and shown to compete with herceptin for binding to ErbB2. A subsequent set of inhibitory peptides have been designed which mimic sequences in modules 4 to 6 of CR2, a region shown to contribute to ErbB2 heterodimer formation. Other inhibitors of ErbB2 function include the ErbB2 splice variant herstatin and the small, leucine-rich repeat proteoglycan decorin. The inhibition of ErbB2 function in breast cancer cells by decorin has been shown to be indirect and involves inactivation of ErbB4, presumably by direct binding.

54

The availability of the 3D structures of these receptors will facilitate the determination of the precise mechanism of action of these inhibitory agents and the design of new approaches to interfering with ErbB receptor function.

5 The disclosure of all publications referred to in this application are incorporated herein by reference.

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

55 APPENDIX I

REMARK Coordinates for ErbB2 1-509 construct 25-2.5 A R=0.2258

ATOM	1	CB	SER	1	46.698	22.851	38.977	1.00	99.78
MOTA	2	OG	SER	1	47.614	22.349	39.935	1.00	100.53
MOTA	3	С	SER	1	48.261	24.420	37.763	1.00	98.75
MOTA	4	0	SER	1	48.172	24.394	36.528	1.00	98.79
ATOM	5	N	SER	1	45.832	24.925	37.936	1.00	98.88
MOTA	6	CA	SER	1	47.002	24.314	38.639		99.43
ATOM	7	N	THR	2	49.431	24.529	38.395		97.11
MOTA	8	CA	THR	2	50.669	24.691	37.637		94.13
ATOM	9	CB	THR	2	51.169	26.163	37.747	1.00	94.56
ATOM	10	OG1	THR	2	52.093	26.440	36.686		94.31
ATOM	11	CG2	THR	2	51.855	26.405	39.098	1.00	
ATOM	12	С	THR	2	51.853	23.755	37.936		91.66
ATOM	13	0	THR	2	52.049	23.270	39.059		91.43
ATOM	14	N	GLN	3	52.633	23.530	36.882		88.14
MOTA	15	CA	GLN	3	53.835	22.705	36.892		83.26
ATOM	16	CB	GLN	3	53.744	21.659	35.791		84.63
ATOM	17	CG	GLN	3	53.371	22.279	34.450		84.29
ATOM	18	CD	GLN	3	53.596	21.346	33.287		84.81
ATOM	19	OE1	GLN	3	54.731	20.987	32.980		85.45
ATOM	20	NE2		3	52.514	20.944	32.631		84.85
ATOM	21	С	GLN .	3	54.972	23.670	36.561		79.21
ATOM	22	0	GLN	3	56.142	23.289	36.494		79.22
ATOM	23	N	VAL	4	54.597	24.925	36.338	1.00	
ATOM	24	CA	VAL	4	55.542	25.981	36.003	1.00	
ATOM	25	СВ	VAL	4	55.074	26.763	34.752	1.00	
ATOM	26		VAL	4	55.931	28.002	34.552		66.99
ATOM	27		VAL	4	55.139	25.870	33.530		68.86
ATOM	28	С	VAL	4	55.701	26.972	37.149		64.66
ATOM	29	Ö	VAL	4	54.733	27.308	37.143		65.50
ATOM	30	N	CYS	5	56.927	27.431	37.355		58.78
ATOM	31	CA	CYS	5	57.212	28.406	38.392		55.26
ATOM	32	C	CYS	5	58.186	29.414	37.822		53.65
MOTA	33	ō	CYS	5	58.623	29.297	36.680		54.51
ATOM	34	СВ	CYS	5	57.844	27.748	39.614		55.51
ATOM	35	SG	CYS	5	59.486	27.015	39.305		53.11
ATOM	36	N	THR	6	58.539	30.401	38.626		51.73
MOTA	37	CA	THR	6	59.463	31.412	38.176		52.19
ATOM	38	СВ	THR	6	58.830	32.782	38.249		53.27
ATOM	39	OG1		6	57.717	32.702	37.348		57.20
ATOM	40	CG2	THR	6	59.849	33.861	37.862		56.08
ATOM	41	C	THR	6	60.746	31.409	38.979		51.03
ATOM	42	ō	THR	6	60.743	31.182	40.189		50.21
ATOM	43	N	GLY	7	61.847	31.670	38.290		48.21
ATOM	44	CA	GLY .	7	63.125	31.675	38.960		47.10
ATOM	45	C	GLY	7	63.314	32.992	39.640		44.03
ATOM	46	ŏ	GLY	7	62.359	33.713	39.875		45.91
ATOM	47	N	THR	8	64.556	33.312	39.946		43.65
ATOM	48	CA	THR	8	64.863	34.561	40.610		42.53
ATOM	49	СВ	THR	8	65.520	34.293	41.963		44.28
ATOM	50	OG1	THR	8	66.581	33.340	41.802		46.88
ATOM	51	CG2		8	64.488	33.739	42.943		47.24
ATOM	52	C	THR	8	65.781	35.417	39.754		40.10
ATOM	53	Õ	THR	8	66.004	35.123	38.585		37.84
ATOM	54	N	ASP	9	66.296	36.485	40.346		40.12
ATOM	55	CA	ASP	9	67.195	37.394	39.655		40.12
ATOM	56	CB	ASP	9	66.407	38.434	38.856		43.09
ATOM	57	CG	ASP	. 9					
			-TUE	J	67.241	39.086	37.762	T.00	44.32

					30)		
ATOM	58	OD1	ASP	9	68.488	39.067	37.867	1.00 43.99
ATOM	59	OD2		9	66.646	39.627	36.804	1.00 45.18
ATOM	60	С	ASP	. 9	68.023	38.097	40.707	1.00 39.21
ATOM	61	0	ASP	9	68.044	39.318	40.769	1.00 40.86
ATOM	62	N	MET	10	68.704	37.322	41.539	1.00 39.49
ATOM	63	CA	MET	10	69.520	37.896	42.600	1.00 40.57
MOTA	64	CB	MET	10	69.250	37.166	43.915	1.00 40.06
MOTA	65	CG	MET	10	69.796	35.757	43.936	1.00 41.52
ATOM	66	SD	MET	10	68.945	34.741	45.121	1.00 43.89
ATOM	67	CE	MET	10	69.080	35.809	46.633	1.00 45.64
MOTA	68	С	MET	10	71.013	37.836	42.300	1.00 40.42
MOTA	69	0	MET	10	71.811	38.483	42.985	1.00 38.87
ATOM	70	N	LYS	11	71.391	37.059	41.289	1.00 39.91
ATOM	71	CA	LYS	11	72.798	36.926	40.940	1.00 42.86
ATOM	72	СВ	LYS	11	73.352	38.252	40.398	1.00 42.49
ATOM	73	CG	LYS	11	72.644	38.787	39.160	1.00 46.76
ATOM	74	CD	LYS	11	72.753	37.820	37.995	1.00 51.31
ATOM	75	CE	LYS	11	72.095	38.371	36.714	1.00 55.51
ATOM	76	NZ	LYS	11	70.623	38.092	36.600	1.00 57.96
ATOM	77	С	LYS	11	73.570	36.517	42.200	1.00 44.00
ATOM	78	0	LYS	11	73.198	35.550	42.877	1.00 43.65
ATOM	79	N	LEU	12	74.624	37.261	42.523	1.00 43.59
ATOM	80	CA	LEU	12	75.438	36.952	43.691	1.00 45.11
MOTA	81	СВ	LEU	12	76.919	37.107	43.349	1.00 45.41
ATOM	82	CG	LEU	12	77.420	36.244	42.186	1.00 47.19
ATOM	83	CD1	LEU	12	78.899	36.526	41.919	1.00 44.25
ATOM	84	CD2	LEU	12	77.188	34.778	42.516	1.00 43.16
MOTA	85	С	LEU	12	75.108	37.808	44.912	1.00 46.99
MOTA	86	0	LEU	12	75.836	37.779	45.908	1.00 46.09
MOTA	87	N	ARG	13	74.016	38.571	44.830	1.00 48.04
MOTA	88	CA	ARG	13	73.591	39.427	45.935	1.00 47.76
MOTA	89	CB	ARG	13	72.374	40.279	45.521	1.00 47.43
MOTA	90	CG	ARG	13	72.683	41.496	44.633	1.00 44.43
MOTA	91	CD	ARG	13	71.409	42.038	43.968	1.00 44.08
MOTA	92	ΝE	ARG	13	71.525	42.039	42.509	1.00 44.91
ATOM	93	CZ	ARG	13	70.526	41.778	41.666	1.00 47.24
MOTA	94	NH1		13	69.313	41.497	42.130	1.00 43.48
MOTA	95	NH2		13	70.745	41.763	40.351	1.00 47.70
ATOM	96	С	ARG	13	73.251	38.586	47.177	1.00 49.10
ATOM	97	0	ARG	13	72.547	37.583	47.100	1.00 48.39
ATOM	98	N	LEU	14	73.772	39.019	48.318	1.00 51.74
ATOM	99	CA	LEU	14	73.567	38.353	49.595	1.00 52.86
MOTA	100	CB	LEU	14	74.407	39.058	50.662	1.00 54.52
MOTA	101	CG	LEU	14	74.504	38.400	52.043	1.00 58.51
MOTA	102		LEU	14	75.513	37.251	51.983	1.00 57.78 1.00 58.95
ATOM	103		LEU	14	74.939	39.431	53.088	1.00 58.95
MOTA	104	С	LEU	14	72.101	38.380	50.018	
MOTA	105	0	LEU	14	71.457	39.420	49.960 50.447	1.00 54.88 1.00 52.63
ATOM	106	N	PRO	15	71.552	37.235	50.447	1.00 53.32
MOTA	107	CD		. 15	72.115	35.878	50.872	1.00 53.32
MOTA	108	CA	PRO	15	70.150	37.218		1.00 52.65
MOTA	109	CB	PRO	15 15	69.872 70.878	35.732 35.034	51.119 50.267	1.00 54.06
MOTA	110	CG	PRO	15 15	70.878	38.025	52.161	1.00 53.54
MOTA	111	C	PRO	15 15		37.738	53.123	1.00 53.34
MOTA	112	0	PRO	15 16	70.788 69.182	39.023	52.181	1.00 54.22
MOTA	113	N	ALA	16 16		39.885	53.355	1.00 54.22
MOTA	114	CA	ALA	16 16	69.018 68.069	41.038	53.032	1.00 54.82
ATOM	115	CB	ALA	16 16		39.132	54.585	1.00 53.70
MOTA	116	C	ALA	16 16	68.521 68.705	39.587	55.709	1.00 53.71
ATOM	117	O N	ALA			37.976	54.371	1.00 53.21
ATOM	118	N	SER	17	67.902	31.310	J4.J/I	1.00 00.50

_	_
٦	1

					J.	,			
ATOM	119	CA	SER	17	67.384	37.181	55.478	1.00	52.73
MOTA	120	CB	SER	17	65.859	37.301	55.521		51.32
ATOM	121	0G	SER	17	65.320	36.576	56.610		51.26
ATOM	122	C	SER	17	67.809	35.711	55.351		52.82
ATOM	123	0	SER ·	17	67.037	34.853	54.905		53.32
ATOM	124	N	PRO	18	69.049	35.404	55.755		52.39
ATOM ATOM	125 126	CD	PRO	18	70.012	36.343	56.358		52.34
ATOM	127	CA CB	PRO PRO	18 18	69.603 70.923	34.047	55.697 56.442		51.18
ATOM	128	CG	PRO	18	70.923	34.181 35.609	56.181		52.04 53.40
ATOM	129	C	PRO	18	68.704	33.002	56.343		52.47
ATOM	130	ō	PRO	18	68.706	31.832	55.939		52.40
ATOM	131	N	GLU	19	67.934	33.417	57.346		52.12
ATOM	132	CA	GLU	19	67.052	32.486	58.045		52.59
ATOM	133	СВ	GLU	19	66.532	33.094	59.354		56.71
ATOM	134	CG	GLU	19	67.594	33.635	60.310		63.85
ATOM	135	CD	GLU	19	68.074	35.031	59.930	1.00	68.23
ATOM	136	OE1	GLU	19	67.220	35.871	59.559	1.00	70.68
ATOM	137	OE2		19	69.298	35.293	60.018	1.00	70.34
ATOM	138	С	GLU	19	65.856	32.036	57.215	1.00	49.61
ATOM	139	0	GLU	19	65.287	30.977	57.478		48.77
ATOM	140	N	THR	20	65.460	32.835	56.227		46.30
ATOM	141	CA	THR	20	64.306	32.467	55.411		44.66
ATOM	142	CB	THR	20	63.179	33.540	55.493	1.00	44.01
ATOM ATOM	143 144	OG1 CG2		20	63.700	34.828	55.137	1.00	
ATOM	145	CGZ	THR THR	20 20	62.603 64.633	33.592	56.905		40.61
ATOM	146	0	THR	20	63.789	32.188 31.708	53.952 53.205	1.00	42.99
ATOM	147	N	HIS	21 .	65.868	32.470	53.560		43.03
ATOM	148	CA	HIS	21	66.322	32.239	52.191	1.00	43.70
ATOM	149	СВ	HIS	21	67.838	32.414	52.104	1.00	43.12
ATOM	150	CG	HIS	21	68.369	32.324	50.708		42.78
ATOM	151	CD2		21	69.323	31.530	50.167	1.00	43.08
MOTA	152	ND1	HIS	21	67.918	33.133	49.690		41.09
MOTA	153	CE1		21	68.572	32.845	48.580	1.00	42.02
ATOM	154	NE2		21	69.431	31.874	48.842	1.00	42.45
ATOM	155	С	HIS	21	65.958	30.869	51.619		43.14
ATOM	156	0	HIS	21	65.452	30.780	50.500	1.00	41.68
ATOM	157	N	LEU	22	66.234	29.811	52.380		43.54
ATOM	158	CA	LEU	22	65.945	28.442	51.951	1.00	
ATOM	159	CB	LEU	22	66.583	27.434	52.909		45.68
ATOM ATOM	160 161	CG CD1	LEU	22 22	66.262	25.962 25.569	52.610		47.25
ATOM	162	CD2		22	66.790 66.878	25.089	51.234 53.676		46.02 46.91
ATOM	163	C	LEU	22	64.457	28.158	51.865		43.69
ATOM	164	ō	LEU	22	63.988	27.439	50.981		44.10
ATOM	165	N	ASP	23	63.718	28.720	52.804		45.13
ATOM	166	CA	ASP	23	62.278	28.543	52.861		45.72
ATOM	167	CB	ASP	23	61.762	29.165	54.159	1.00	48.31
MOTA	168	CG	ASP	23	60.347	28.763	54.483	1.00	52.03
MOTA	169	OD1		23	59.718	28.037	53.679	1.00	53.43
MOTA	170		ASP ·	23	59.861	29.185	55.556		55.74
MOTA	171	С	ASP	23.	61.663	29.215	51.625		45.83
ATOM	172	0	ASP	23	60.607	28.805	51.124		46.01
ATOM	173	N	MET	24	62.344	30.241	51.121		44.06
ATOM	174	CA	MET	24	61.875	30.945	49.937		41.04
ATOM ATOM	175 176	CB CG	MET MET	24 24	62.681	32.229	49.717		41.33
ATOM	177	SD	MET	24	62.282 63.189	33.010	48.459		41.54
ATOM	178	CE	MET	24	64.724	32.480 33.373	46.990 47.263		41.03
ATOM	179	C	MET	24	62.029	30.028	48.746		39.66
	-						,		

				30)			
180	0	MET	24	61.076	29.809	47.996		
	N							
								39.32
								40.05
							-	
							1.00	57.96
							1.00	63.73
			26	62.397	23.911	53.135	1.00	67.15
196	NH1	ARG	26	62.293	25.222	53.329	1.00	69.09
197	NH2	ARG	26	63.492	23.269	53.539	1.00	67.64
198	С	ARG	26	60.107	26.045	48.276		42.82
199	0	ARG	26	59.517	25.299	47.497		42.76
200	N	HIS	27	59.580	27.185			
201	CA	HIS						
202	CB	HIS						
203	CG	HIS						
			•					
								46.79
				•				46.45
				62.221	31.194	43.558	1.00	48.92
	С	LEU	28	59.516	27.554	43.989	1.00	44.27
217	0	LEU	28	58.762	27.494	43.016	1.00	45.44
218	N	TYR	29	60.377	26.581	44.292	1.00	43.09
219	CA	TYR	29	60.534	25.415	43.417		42.13
220	CB	TYR	29	62.022	25.135			39.72
221	CG	TYR	29	62.757				38.19
								44.62
								45.73
								49.77
						47.316		54.17
			30	57.827	21.494	48.820		59.15
			30	56.949	22.186	49.353	1.00	61.69
236			30	58.757	20.837	49.523		60.08
237	С	GLN	30	57.616	22.241	44.246		43.52
238	0	GLN	30	56.666	22.971	43.988		43.46
239	N	GLY	31	57.791	21.062	43.670		42.70
240	CA	GLY	31	56.833	20.579	42.698	1.00	44.21
	181 182 183 184 185 186 187 188 189 190 191 193 194 195 197 198 199 200 201 202 203 204 205 207 208 209 201 201 201 201 201 201 201 201 201 201	181 N 182 CA 183 CB 184 CG 185 CD1 186 CD2 187 C 188 O 189 N 190 CA 191 CB 192 CG 193 CD 194 NE 195 CZ 196 NH1 197 NH2 198 C 199 O 200 N 201 CA 202 CB 203 CG 204 CD2 205 ND1 206 CE1 207 NE2 208 C 209 O 210 N 211 CA 212 CB 213 CG 214 CD1 215 CD2 216 C 217 O 218 N 219 CA 220 CB 214 CD1 215 CD2 216 C 217 O 218 N 219 CA 220 CB 231 CG 221 CD1 222 CCD1 223 CCD1 224 CD2 225 CC2 227 CH 228 C 237 C 238 O 231 CA 232 CB	181 N LEU 182 CA LEU 183 CB LEU 184 CG LEU 185 CD1 LEU 186 CD2 LEU 187 C LEU 188 O LEU 189 N ARG 190 CA ARG 191 CB ARG 192 CG ARG 193 CD ARG 194 NE ARG 195 CZ ARG 197 NH2 ARG 198 C ARG 197 NH2 ARG 198 C ARG 199 O ARG 190 ARG 190 201 CA HIS 202 CB HIS 203 CG HIS 204 CD2 HIS <td< td=""><td>181 N LEU 25 182 CA LEU 25 183 CB LEU 25 184 CG LEU 25 185 CD1 LEU 25 186 CD2 LEU 25 187 C LEU 25 188 O LEU 25 189 N ARG 26 190 CA ARG 26 191 CB ARG 26 191 CB ARG 26 192 CG ARG 26 193 CD ARG 26 194 NE ARG 26 195 CZ ARG 26 196 NH1 ARG 26 197 NH2 ARG 26 198 C ARG 26 199 O ARG 26 200 N HIS 27 201 CA HIS 27 201 CA HIS 27 201 CA HIS 27 202 CB HIS 27 203 CG HIS 27 204 CD2 HIS 27 205 ND1 HIS 27 206 CE1 HIS 27 207 NE2 HIS 27 207 NE2 HIS 27 208 C HIS 27 209 O HIS 27 210 N LEU 28 211 CA LEU 28 211 CA LEU 28 212 CB LEU 28 213 CG LEU 28 214 CD1 LEU 28 215 CD2 LEU 28 216 C LEU 28 217 O LEU 28 216 C LEU 28 217 O LEU 28 218 N TYR 29 220 CB TYR 29 221 CG TYR 29 222 CD1 TYR 29 222 CD1 TYR 29 223 CE1 TYR 29 224 CD2 TYR 29 225 CE2 TYR 29 226 CZ TYR 29 227 OH TYR 29 228 C TYR 29 229 O TYR 29 220 CB GLN 30 231 CA GLN 30 233 CG GLN 30 234 CD GLN 30 235 OE1 GLN 30 236 NE2 GLN 30 237 C GLN 30 238 O GLN 30 239 N GLY 31</td><td>180</td><td>181 N LEU 25 63.237 29.487 182 CA LEU 25 63.548 28.582 183 CB LEU 25 64.979 28.071 184 CG LEU 25 66.063 29.137 185 CD1 LEU 25 66.063 29.137 185 CD1 LEU 25 66.061 29.619 187 C LEU 25 62.584 27.412 188 O LEU 25 62.584 27.412 189 N ARG 26 62.409 26.802 190 CA ARG 26 61.502 25.679 191 CB ARG 26 61.430 25.236 192 CG ARG 26 60.308 24.228 193 CD ARG 26 60.193 23.867 194 NE ARG 26 61.417 23.249 195 CZ ARG 26 62.397 23.911 196 NH1 ARG 26 62.397 23.911 197 NH2 ARG 26 63.492 23.269 198 C ARG 26 60.107 26.045 199 O ARG 26 60.107 26.045 199 O ARG 26 60.107 26.045 200 N HIS 27 59.580 27.185 201 CA HIS 27 57.358 28.831 204 CD2 HIS 27 57.915 29.116 205 ND1 HIS 27 57.915 29.116 205 ND1 HIS 27 56.087 28.363 207 NE2 HIS 27 57.358 28.831 204 CD2 HIS 27 57.358 28.831 206 CE1 HIS 27 56.981 28.369 207 NE2 HIS 27 56.981 28.369 208 C HIS 27 57.318 27.455 210 N LEU 28 59.307 28.470 211 CA LEU 28 59.476 28.770 212 CB LEU 28 60.763 29.576 213 CG LEU 28 60.763 29.576 214 CD1 LEU 28 59.516 27.554 215 CD2 LEU 28 60.27 29.470 216 C LEU 28 59.516 27.554 217 O LEU 28 59.516 27.554 218 N TYR 29 60.377 26.581 220 CB TYR 29 62.022 25.135 221 CG TYR 29 62.022 25.135 222 CD1 TYR 29 62.022 25.135 223 CG GIN 30 58.057 22.722 233 CG GIN 30 57.627 21.367 233 CG GIN 30 56.666 22.971 234 CD GIN 30 56.666 22.971 235 OE1 GIN 30 56.666 22.971 237 CG GIN 30 56.666 22.971 238 N GLY 31 57.791 21.062</td><td> 180</td><td> 180</td></td<>	181 N LEU 25 182 CA LEU 25 183 CB LEU 25 184 CG LEU 25 185 CD1 LEU 25 186 CD2 LEU 25 187 C LEU 25 188 O LEU 25 189 N ARG 26 190 CA ARG 26 191 CB ARG 26 191 CB ARG 26 192 CG ARG 26 193 CD ARG 26 194 NE ARG 26 195 CZ ARG 26 196 NH1 ARG 26 197 NH2 ARG 26 198 C ARG 26 199 O ARG 26 200 N HIS 27 201 CA HIS 27 201 CA HIS 27 201 CA HIS 27 202 CB HIS 27 203 CG HIS 27 204 CD2 HIS 27 205 ND1 HIS 27 206 CE1 HIS 27 207 NE2 HIS 27 207 NE2 HIS 27 208 C HIS 27 209 O HIS 27 210 N LEU 28 211 CA LEU 28 211 CA LEU 28 212 CB LEU 28 213 CG LEU 28 214 CD1 LEU 28 215 CD2 LEU 28 216 C LEU 28 217 O LEU 28 216 C LEU 28 217 O LEU 28 218 N TYR 29 220 CB TYR 29 221 CG TYR 29 222 CD1 TYR 29 222 CD1 TYR 29 223 CE1 TYR 29 224 CD2 TYR 29 225 CE2 TYR 29 226 CZ TYR 29 227 OH TYR 29 228 C TYR 29 229 O TYR 29 220 CB GLN 30 231 CA GLN 30 233 CG GLN 30 234 CD GLN 30 235 OE1 GLN 30 236 NE2 GLN 30 237 C GLN 30 238 O GLN 30 239 N GLY 31	180	181 N LEU 25 63.237 29.487 182 CA LEU 25 63.548 28.582 183 CB LEU 25 64.979 28.071 184 CG LEU 25 66.063 29.137 185 CD1 LEU 25 66.063 29.137 185 CD1 LEU 25 66.061 29.619 187 C LEU 25 62.584 27.412 188 O LEU 25 62.584 27.412 189 N ARG 26 62.409 26.802 190 CA ARG 26 61.502 25.679 191 CB ARG 26 61.430 25.236 192 CG ARG 26 60.308 24.228 193 CD ARG 26 60.193 23.867 194 NE ARG 26 61.417 23.249 195 CZ ARG 26 62.397 23.911 196 NH1 ARG 26 62.397 23.911 197 NH2 ARG 26 63.492 23.269 198 C ARG 26 60.107 26.045 199 O ARG 26 60.107 26.045 199 O ARG 26 60.107 26.045 200 N HIS 27 59.580 27.185 201 CA HIS 27 57.358 28.831 204 CD2 HIS 27 57.915 29.116 205 ND1 HIS 27 57.915 29.116 205 ND1 HIS 27 56.087 28.363 207 NE2 HIS 27 57.358 28.831 204 CD2 HIS 27 57.358 28.831 206 CE1 HIS 27 56.981 28.369 207 NE2 HIS 27 56.981 28.369 208 C HIS 27 57.318 27.455 210 N LEU 28 59.307 28.470 211 CA LEU 28 59.476 28.770 212 CB LEU 28 60.763 29.576 213 CG LEU 28 60.763 29.576 214 CD1 LEU 28 59.516 27.554 215 CD2 LEU 28 60.27 29.470 216 C LEU 28 59.516 27.554 217 O LEU 28 59.516 27.554 218 N TYR 29 60.377 26.581 220 CB TYR 29 62.022 25.135 221 CG TYR 29 62.022 25.135 222 CD1 TYR 29 62.022 25.135 223 CG GIN 30 58.057 22.722 233 CG GIN 30 57.627 21.367 233 CG GIN 30 56.666 22.971 234 CD GIN 30 56.666 22.971 235 OE1 GIN 30 56.666 22.971 237 CG GIN 30 56.666 22.971 238 N GLY 31 57.791 21.062	180	180

					3	9			
MOTA	241	С	GLY	31	57.004	21.189	41.324	1.00	45.65
MOTA	242	0	GLY	31	56.423	20.704	40.349	1.00	46.11
MOTA	243	N	CYS	32	57.798	22.250	41.232		45.88
MOTA	244	CA	CYS	32	58.026	22.905	39.946		47.34
ATOM	245	С	CYS	32	58.777	22.007	38.947		47.39
ATOM	246	0	CYS	32	59.699	21.272	39.319		45.44
ATOM ATOM	247	CB	CYS	32	58.819	24.193	40.147		48.51
ATOM	248 249	SG N	CYS	32	58.990	25.178	38.624		50.51
ATOM	250	CA	GLN	33 33	58.378 59.012	22.078	37.679		47.35
ATOM	251	CB	GLN	33	57.989	21.292 20.400	36.620 35.932		48.75 49.20
ATOM	252	CG	GLN	33	57.576	19.204	36.755		54.87
ATOM	253	CD	GLN	33	56.562	18.341	36.036		57.52
ATOM	254		GLN	33	56.554	17.117	36.185		57.65
ATOM	255		GLN	33	55.690	18.978	35.255		58.17
MOTA	256	С	GLN	33	59.679	22.183	35.572		49.12
MOTA	257	0	GLN	33	60.759	21.859	35.066	1.00	48.02
MOTA	258	N	VAL	34	59.024	23.296	35.240	1.00	47.34
ATOM	259	CA	VAL	34	59.559	24.236	34.260		44.43
ATOM	260	СВ	VAL	34	58.583	24.448	33.091		42.79
ATOM	261		VAL	34	59.141	25.488	32.129		42.57
ATOM	262		VAL	34	58.355	23.141	32.369		39.31
ATOM ATOM	263 264	С 0	VAL	34	59.817	25.577	34.930		44.27
ATOM	265	N	VAL VAL	34 35	58.895 61.073	26.216	35.424		46.02
ATOM	266	CA	VAL	35	61.434	25.998 27.255	34.946		42.27 42.31
ATOM	267	CB	VAL	35	62.742	27.233	35.568 36.360		41.24
ATOM	268		VAL	35	63.170	28.473	36.909		40.12
ATOM	269	CG2	VAL	35	62.555	26.125	37.480		39.17
ATOM	270	С	VAL	35	61.601	28.409	34.583		43.64
ATOM	271	0	VAL	35	62.617	28.494	33.890		42.15
MOTA	272	N	GLN .	36	60.591	29.276	34.511		45.54
MOTA	273	CA	GLN	36 .	60.666	30.453	33.653	1.00	48.03
ATOM	274	CB	GLN	36	59.339	31.226	33.650	1.00	52.27
ATOM	275	CG	GLN	36	58.117	30.387	33.323		58.81
ATOM	276	CD	GLN	36	58.043	29.982	31.861		62.93
ATOM	277	OE1	GLN	36	59.060	29.949	31.155		66.35
ATOM ATOM	278 279	NE2	GLN	36	56.837	29.651	31.402		63.08
ATOM	280	C 0	GLN GLN	36 36	61.714	31.268	34.398		46.27
ATOM	281	N	GLY	37	61.757 62.567	31.237 31.989	35.630 33.694		49.00 41.30
ATOM	282	CA	GLY	37	63.556	32.739	34.437		40.34
ATOM	283	С	GLY	37	64.762	31.895	34.812		39.23
ATOM	284	0	GLY	37	65.041	30.870	34.187		39.87
MOTA	285	N	ASN	38	65.466	32.305	35.853		37.71
ATOM	286	CA	ASN	38	66.681	31.617	36.253	1.00	37.65
MOTA	287	CB	ASN	38	67.796	32.647	36.355	1.00	38.08
ATOM	288	CG	ASN	38	67.723	33.667	35.259	1.00	40.43
ATOM	289	OD1		38	67.923	33.356	34.087		40.88
ATOM	290	ND2		38	67.412	34.897	35.628		42.58
ATOM ATOM	291	C	ASN	38	66.645	30.809	37.542		37.32
ATOM ATOM	292 293	O N	ASN	38	65.976	31.175	38.509		37.72
ATOM ATOM	294	N CA	LEU LEU	39 39	67.385 67.488	29.706 28.861	37.543 38.719		35.57 36.14
ATOM	295	CB	LEU	39	67.563	27.386	38.719		35.37
ATOM	296	CG	LEU ·	39	67.785	26.494	39.559		36.47
ATOM	297	CD1		39	66.662	26.738	40.561		36.90
ATOM	298		LEU	39	67.840	25.027	39.153		33.34
ATOM	299	С	LEU	39	68.776	29.274	39.411		37.41
MOTA	300	0	LEU	39	69.873	28.952	38.933		36.96
ATOM	301	N	GLU	40	68.644	29.998	40.524		37.19

					O.	,			
ATOM	302	CA	GLU	40	69.808	30.471	41.266	1.00	38.08
ATOM	303	CB	GLU	40	69.806	32.003	41.350	1.00	38.80
ATOM	304	CG	GLU	40	69.494	32.703	40.013		42.78
ATOM	305	CD	GLU	40	69.452	34.223	40.117		41.78
ATOM	306		GLU	40	70.459	34.885	39.779	1.00	43.35
ATOM ATOM	307 308	OE2 C	GLU	40	68.411	34.755	40.546		42.97
ATOM	309	0	GLU GLU	40 40	69.846 69.009	29.875	42.666		39.52
ATOM	310	N	LEU	41	70.826	30.185 29.005	43.509 42.893	1.00	38.50 40.86
ATOM	311	CA	LEU	41	71.017	28.346	44.173	1.00	
ATOM	312	CB	LEU	41	71.104	26.846	43.942		41.49
ATOM	313	CG	LEU	41	69.800	26.337	43.304	1.00	
ATOM	314	CD1	LEU	41	69.983	24.930	42.767	1.00	39.41
ATOM	315	CD2		41	68.667	26.390	44.342		40.37
ATOM	316	С	LEU	41	72.302	28.895	44.784	1.00	
ATOM	317	0	LEU	41	73.414	28.483	44.423	1.00	
ATOM	318	N	THR	42	72.137	29.837	45.711		42.93
ATOM	319	CA	THR	42	73.271	30.494	46.337	1.00	
ATOM ATOM	320 321	CB OG1	THR THR	42 42	73.405 72.214	31.940 32.679	45.809 46.124	1.00	
ATOM	322	CG2	THR	42	73.597	31.940	44.299	1.00	
ATOM	323	C	THR	42	73.228	30.547	47.859	1.00	
ATOM	324	ō	THR	42	72.170	30.371	48.474	1.00	
ATOM	325	N	TYR	43	74.402	30.793	48.444		45.06
ATOM	326	CA	TYR	43	74.599	30.912	49.889	1.00	
MOTA	327	CB	TYR	43	74.222	32.326	50.355		43.21
ATOM	328	CG	TYR	43	75.011	33.417	49.663		45.31
ATOM	329	CD1	TYR	43	74.534	34.021	48.495	1.00	
ATOM	330	CE1	TYR	43	75.295	34.970	47.809		44.72
ATOM ATOM	331 332	CD2 CE2	TYR	43 43	76.271	33.795	50.133		46.31
ATOM	333	CEZ	TYR TYR	43	77.047 76.557	34.742 35.323	49.452 48.291	1.00	45.38 46.22
ATOM	334	OH	TYR	43	77.342	36.227	47.598	1.00	42.92
ATOM	335	C	TYR .	43	73.883	29.886	50.768	1.00	
ATOM	336	0	TYR	43	73.432	30.216	51.864	1.00	46.70
ATOM	337	N	LEU	44	73.795	28.645	50.310	1.00	47.21
MOTA	338	CA	LEU	44	73.126	27.622	51.098	1.00	50.64
ATOM	339	CB	LEU	44 .	72.463	26.592	50.181	1.00	49.29
ATOM	340	CG	LEU	44	71.380	27.177	49.271	1.00	47.48
ATOM	341	CD1	LEU	44	70.697	26.077	48.489	1.00	47.96
MOTA	342 343	CD2	LEU	44	70.371	27.914	50.117	1.00	46.43
ATOM ATOM	344	C 0	LEU LEU	44 44	74.098 75.175	26.931 26.517	52.044 51.634	1.00	53.36 53.59
ATOM	345	N	PRO	45	73.725	26.807	53.334		56.73
ATOM	346	CD	PRO	45	72.430	27.232	53.900		58.00
ATOM	347	CA	PRO	45	74.548	26.168	54.368		57.37
MOTA	348	CB	PRO	45	73.802	26.506	55.652	1.00	57.48
MOTA	349	CG	PRO	45	72.373	26.447	55.205		59.17
ATOM	350	C	PRO	45	74.677	24.659	54.141		58.12
ATOM	351	0 .	PRO	45	73.874	24.053	53.425		57.47
ATOM	352 353	N	THR	46 46	75.680	24.060	54.772		57.76
MOTA MOTA	354	CA CB	THR THR	46	75.945 77.255	22.641 22.257	54.610 55.363		57.98 56.25
ATOM	355	OG1	THR	46	77.894	21.172	54.683		57.72
ATOM	356	CG2	THR	46	76.972	21.841	56.791		55.98
ATOM	357	C	THR	46	74.799	21.696	55.003		59.34
MOTA	358	0	THR	46	74.720	20.572	54.508		59.26
ATOM	359	N	ASN '	47	73.895	22.147	55.864	1.00	62.38
ATOM	360	CA	ASN	47	72.791	21.291	56.300		66.35
ATOM	361	CB	ASN	47	72.480	21.549	57.781		72.57
ATOM	362	CG	ASN	47	72.136	23.006	58.064	1.00	78.54

					01	L			
ATOM	363	OD1		47	71.287	23.596	57.391	1.00	
ATOM	364	ND2		47	72.792	23.586	59.066	1.00	
ATOM	365		ASN	47	71.509	21.462	55.488 55.838		66.68
ATOM	366		ASN	47	70.466	20.906 22.218	54.398		64.94
ATOM	367	N	ALA	48	71.593	22.210	53.549		61.77
ATOM	368	CA	ALA	48 48	70.435 70.783	23.582	52.548		61.89
ATOM	369	CB	ALA ALA	48	69.845	21.294	52.813	1.00	
ATOM	370 371	C 0	ALA	48	70.524	20.630	52.030	1.00	
ATOM ATOM	372	N	SER	49	68.572	21.022	53.075		58.17
ATOM	373	CA	SER	49	67.875	19.937	52.405		57.25
ATOM	374	CB	SER	49	66.781	19.367	53.304	1.00	59.13
ATOM	375	OG	SER	49	65.951	18.483	52.566	1.00	62.13
ATOM	376	С	SER	49	67.245	20.536	51.150		55.84
ATOM	377	0	SER	49	66.339	21.365	51.247		56.85
MOTA	378	N	LEU	50	67.710	20.099	49.983		53.85
ATOM	379	CA	LEU	50	67.236	20.609	48.702		50.83
ATOM	380	CB	LEU	50	68.432	21.048	47.872		48.70
ATOM	381	CG	LEU	50	69.386	22.023	48.554		50.27
MOTA	382		LEU	50	70.539	22.339	47.601		48.46
MOTA	383		LEU	50	68.635	23.298	48.948 47.863		50.80
MOTA	384	C	LEU	50	66.396	19.651 19.812	47.663		51.99
MOTA	385	0	LEU	50 51	66.304 65.777	18.666	48.492		50.31
ATOM	386 387	N CA	SER SER	51	64.972	17.696	47.758		49.12
ATOM ATOM	388	CB	SER	51	64.342	16.710	48.737		49.94
ATOM	389	OG	SER	51	63.326	17.355	49.486		54.77
ATOM	390	C	SER	51	63.861	18:311	46.897		48.09
ATOM	391	ō	SER	51	63.420	17.710	45.920	1.00	49.53
ATOM	392	N	PHE	52	63.398	19.500	47.252		45.59
ATOM	393	CA	PHE	52	62.330	20.121	46.487		44.82
ATOM	394	CB	PHE	52	61.796	21.335	47.245		45.04
ATOM	395	CG	PHE	52	62.850	22.338	47.608		44.14
ATOM	396	CD1		52	63.365	23.208	46.652		41.89 43.61
MOTA	397		PHE	52	63.322	22.424	48.919		40.61
ATOM	398		PHE	. 52	64.342	24.158 23.368	47.000 49.275	1.00	
MOTA	399		PHE	52 52	64.300 64.806	24.235	48.313		39.55
ATOM	400	CZ C	PHE PHE	52 52	62.712	20.520	45.059		44.76
ATOM ATOM	401 402	0	PHE	52 52	61.859	20.959	44.289		44.08
ATOM	403	N	LEU	53	63.986	20.360	44.710		43.96
ATOM	404	CA	LEU	53	64.485	20.701	43.382	1,00	43.72
ATOM	405	CB	LEU	53	65.931	21.183	43.481	1.00	40.39
ATOM	406	CG	LEU	53	66.283	22.422	44.307		40.76
ATOM	407	CD1	LEU	53 ·	67.788	22.494	44.453		39.34
ATOM	408	CD2	LEU	53	65.757	23.691	43.631		40.38
ATOM	409	С	LEU	53	64.449	19.506	42.419		46.76
MOTA	410	0	LEU	53	64.773	19.643	41.233		47.47
MOTA	411	N	GLN	54	64.048	18.343	42.927		48.46 49.89
MOTA	412	CA	GLN	54	64.029	17.108	42.140 43.050		52.52
MOTA	413	CB	GLN	54	63.710 62.363	15.913 16.008	43.756		57.71
ATOM	414	CG	GLN	54 54	61.976	14.718	44.471		60.56
ATOM	415	CD OE1	GLN GLN	54 54	62.778	14.139	45.213		59.21
ATOM	416 417	NE2		54 54	60.735	14.269	44.259		61.81
ATOM ATOM	418	C	GLN	54	63.138	17.026	40.904		48.57
ATOM	419	Ö	GLN	54	63.359	16.159	40.050	1.00	47.17
ATOM	420	N	ASP	55	62.147	17.907	40.786		47.48
ATOM	421	CA	ASP	55	61.248	17.853	39.630		47.88
ATOM	422	СВ	ASP	· 55	59.814	18.076	40.082		51.15
ATOM	423	CG	ASP	55	59.371	17.062	41.089	1.00	55.30

62 MOTA 424 OD1 ASP 55 59.391 15.852 40.759 1.00 55.97 MOTA 425 59.012 OD2 ASP 55 17.480 42.213 1.00 58.38 MOTA 426 C ASP 55 38.475 61.557 18.801 1.00 46.37 MOTA 427 0 ASP 55 60.917 18.725 37.423 1.00 47.17 MOTA 428 N ILE 62.523 56 19,693 38.672 1.00 44.29 429 ATOM CA ILE 56 62.928 20.648 37.643 1.00 43.21 MOTA 430 CB ILE 64.033 21.585 56 38.197 1.00 40.52 MOTA 431 CG2 ILE 56 64.534 22.528 37.117 1.00 37.41 ATOM 56 432 CG1 ILE 63.486 22.350 39.401 1.00 37.70 MOTA 433 ILE CD1 56 64.501 23.185 40.099 1.00 37.33 MOTA 434 С ILE 56 63.453 19.887 36.409 1.00 44.92 ATOM 435 0 ILE 56 64:379 19.077 36.516 1.00 45.32 ATOM 436 N GLN 57 62.842 20.139 35.254 1.00 44.74 ATOM 437 CA GLN 57 63.225 19.496 33.998 1.00 46.02 MOTA 438 CB GLN 57 62.017 18.887 33.307 1.00 48.48 MOTA 439 CG GLN 57 61.555 17.577 33.863 1.00 54.00 16.928 MOTA 440 CD GLN 57 60.559 32.937 1.00 56.38 ATOM 441 OE1 GLN 57 60.682 17.034 31.713 1.00 58.36 MOTA 442 NE2 GLN 57 59.572 16.245 33.505 1.00 57.50 MOTA 443 С GLN 57 63.862 20.473 33.027 1.00 45.57 MOTA 444 0 GLN 57 64.740 20.100 32.249 1.00 44.05 ATOM 445 N GLU 58 63.377 21.711 33.033 1.00 45.73 MOTA 446 GLU CA 58 63.934 22.738 32.169 1.00 45.78 58 MOTA 447 CB GLU 22.825 30.844 63.166 1.00 48.71 MOTA 448 CG GLU 58 61.654 22.860 30.928 1.00 53.11 MOTA 449 CD GLU 60.996 22.732 58 29.546 1.00 56.02 MOTA 450 OE1 GLU 58 61.070 21.635 28.932 1.00 53.20 MOTA 451 OE2 GLU 58 60.410 23.737 29.072 1.00 58.53 MOTA 452 С GLU 58 63.998 24.099 32.844 1.00 43.99 MOTA 453 0 GLU 58 63.206 24.406 33.729 1.00 43.84 MOTA 454 N VAL 64.985 24.888 32.445 59 1.00 42.10 MOTA 455 CA VAL 59 65.180 26.224 32.982 1.00 41.08 MOTA 456 VAL CB 59 66.464 26.297 33.820 1.00 38.49 ATOM 457 CG1 VAL 59 66.931 27.751 33.959 1.00 36.98 MOTA 458 CG2 VAL 59 66.212 25.680 35.189 1.00 36.83 MOTA 459 С VAL 59 65.291 27.164 31.786 1.00 43.13 MOTA 460 0 66.204 27.025 VAL 59 30.968 1.00 43.59 MOTA 461 N GLN 60 64.355 28.107 31.685 1.00 43.10 MOTA 462 CA GLN 60 64.335 29.048 30.577 1.00 44.01 MOTA 463 CB GLN 60 63.006 29.797 30.573 1.00 48.84 464 MOTA CG GLN 60 62.831 30.739 29.394 1.00 52.91 MOTA 465 CD GLN 62.559 32.139 60 29.866 1.00 57.79 OE1 ATOM 466 GLN 60 61.503 32.414 30.436 1.00 60.40 NE2 GLN ATOM 467 63.523 33.037 29.659 1.00 60.28 60 MOTA 468 С GLN 60 65.510 30.033 30.592 1.00 43.30 MOTA 469 0 GLN 60 66.031 30.416 29.537 1.00 41.41 MOTA 470 N GLY 61 65.928 30.441 31.786 1.00 42.03 MOTA 471 CA GLY 61 67.053 31.352 31.892 1.00 40.78 MOTA 472 С 68.354 30.577 GLY 61 32.012 1.00 40.97 MOTA 473 0 GLY 61 68.605 29.643 31.246 1.00 40.44 32.978 MOTA 474 N TYR 69.180 30.970 1.00 40.18 62 MOTA 475 1.00 40.06 CA TYR 62 70.459 30.319 33.237 MOTA 476 CB TYR 62 71.589 31.350 33.229 1.00 39.70 477 MOTA CG TYR 62 71.461 32.427 34.287 1.00 39.27 478 MOTA CD1 TYR 71.835 32.188 35.610 1.00 38.87 62 ATOM 479 CE1 TYR 62 71.724 33.190 36.589 1.00 39.73 33.960 ATOM 480 CD2 TYR 70.965 33.698 1.00 40.72 62 MOTA 481 CE2 TYR 62 70.847 34.710 34.925 1.00 40.09 MOTA 482 CZTYR 62 34.448 71.227 36.239 1.00 41.39 MOTA 483 OH

35.431

29.634

37.197

34.598

1.00 39.21

1.00 40.89

71.094

70.410

TYR

TYR

ATOM

484

С

62

					03)		
ATOM	485	0	TYR	62	69.461	29.823	35.361	1.00 41.00
ATOM	486		VAL	63	71.439	28.841	34.896	1.00 41.43
MOTA	487	CA	VAL	63	71.530	28.122	36.167	1.00 39.60
ATOM	488	CB	VAL	63	71.634	26.596	35.959	1.00 37.74
ATOM	489	CG1	VAL	63	71.827	25.916	37.298	1.00 36.52
ATOM	490	CG2	VAL	63	70.376	26.063	35.276	1.00 37.06
MOTA	491		VAL	63	72.759	28.568	36.944	1.00 40.62
ATOM	492		VAL	63	73.886	28.332	36.526	1.00 40.79
ATOM	493		LEU	64	72.532	29.210	38.083	1.00 42.23
ATOM	494	CA	LEU	64	73.613	29.689	38.928	1.00 41.00
ATOM	495	CB	LEU	64	73.435	31.182	39.213	1.00 41.07 1.00 42.23
MOTA	496	CG	LEU	64	74.493	31.862	40.092 39.419	1.00 42.23
MOTA	497	CD1	LEU	64	75.867	31.792	40.343	1.00 37.33
ATOM	498	CD2		64	74.070 73.605	33.317 28.906	40.232	1.00 37.32
ATOM	499	C	LEU	64	73.605	28.781	40.894	1.00 42.23
ATOM	500	0	LEU .	. 64 65	74.766	28.361	40.574	1.00 42.40
ATOM	501	N	ILE	65	74.760	27.587	41.791	1.00 41.32
ATOM	502 503	CA CB	ILE	65	75.166	26.101	41.494	1.00 39.96
ATOM ATOM	504	CG2	ILE	65	75.532	25.368	42.783	1.00 41.29
ATOM	505	CG1	ILE	65	73.906	25.517	40.855	1.00 40.19
ATOM	506	CD1	ILE	65	74.037	24.057	40.414	1.00 36.26
ATOM	507	C	ILE	65	76.255	28.140	42.336	1.00 42.20
ATOM	508	ō	ILE	65	77.323	27.816	41.827	1.00 42.24
ATOM	509	N	ALA	66	76.173	28.976	43.363	1.00 43.21
ATOM	510	CA	ALA	66	77.383	29.579	43.892	1.00 44.14
ATOM	511	СВ	ALA	66	77.696	30.853	43.103	1.00 39.19
ATOM	512	С	ALA	66	77.348	29.890	45.379	1.00 46.15
ATOM	513	0	ALA	66	76.285	30.089	45.963	1.00 46.35
ATOM	514	N	HIS	67	78.537	29.936	45.976	1.00 48.07
ATOM	515	CA	HIS	67	78.697	30.243	47.386	1.00 49.29
ATOM	516	CB	HIS	67	78.336	31.705	47.636	1.00 51.64
MOTA	517	CG	HIS	67	79.390	32.669	47.190	1.00 54.81
ATOM	518		HIS	67	79.392	33.596	46.203	1.00 56.63 1.00 57.63
MOTA	519		HIS	67	80.625	32.753	47.797	1.00 57.69
MOTA	520		HIS	67	81.343	33.692	47.205 46.234	1.00 57.89
ATOM	521		HIS	67 63	80.617 77.892	34.219 29.338	48.305	1.00 49.42
ATOM	522	C	HIS	67	77.306	29.786	49.289	1.00 50.64
ATOM	523	0	HIS ASN	67 68	77.871	28.055	47.987	1.00 49.48
ATOM	524 525	N CA	ASN	68	77.147	27.111	48.810	1.00 49.88
ATOM ATOM	526	CB	ASN	68	76.222	26.266	47.942	1.00 48.94
ATOM	527	CG	ASN	68	75.243	27.113	47.157	1.00 50.57
ATOM	528		ASN	68	74.477	27.890	47.737	1.00 48.22
ATOM	529		ASN	68	75.266	26.977	45.830	1.00 48.81
ATOM	530	C	ASN	68	78.135	26.222	49.543	1.00 51.48
ATOM	531	ō	ASN	68	79.266	26.020	49.093	1.00 51.22
ATOM	532	N	GLN	69	77.704	25.713	50.689	1.00 52.43
ATOM	533	CA	GLN	69	78.525	24.825	51.488	1.00 53.43
ATOM	534	CB	GLN	69	78.554	25.292	52.944	1.00 55.53
ATOM	535	CG	GLN	69	79.220	26.638	53.133	1.00 60.31
ATOM	536	CD	GLN	69	80.547	26.714	52.402	1.00 64.35
MOTA	537	OE1		69	81.401	25.840	52.559	1.00 66.60
ATOM	538	NE2		69	80.728	27.759	51.595	1.00 65.26
MOTA	539	C	GLN	69	77.910	23.439	51.390	1.00 52.50
MOTA	540	0	GLN	69	78.518	22.450	51.788	1.00 55.45
MOTA	541	N	VAL	70	76.698	23.375	50.848	1.00 49.65
MOTA	542		VAL	70	75.990	22.112	50.689	1.00 47.14
MOTA	543		VAL	70	74.576			1.00 45.05 1.00 43.90
ATOM	544		VAL	70 70	74.673			1.00 45.15
MOTA	545	CG	S AYT	70	73.676	21.176	50.366	1.00 43.13

					0-	•			
ATOM	546	С	VAL	70	76.814	21.173	49.787	1.00	47.49
MOTA	547	0	VAL	70	77.539	21.622	48.905	1.00	44.75
MOTA	548	N	ARG	71	76.702	19.869	50.002	1.00	50.39
ATOM	549	CA	ARG	71	77.497	18.931	49.219	1.00	
ATOM	550	СВ	ARG	71	77.877	17.720	50.078		56.84
ATOM	551	CG	ARG	71	78.651	18.115	51.328		60.61
ATOM	552	CD	ARG	71	79.305	16.937	52.011		63.62
ATOM	553 554	NE	ARG	71	79.895	17.351	53.279		67.41
ATOM ATOM	555	CZ	ARG	71 71	79.191	17.586	54.383		70.48
ATOM	556	NH1 NH2		71	77.869 79.806	17.439 17.984	54.377 55.490	1.00	71.09
ATOM	557	C	ARG	71	76.874	18.470	47.916		70.91 56.48
ATOM	558	Ö	ARG	71	77.592	18.082	46.984		55.56
ATOM	559	N	GLN	72	75.546	18.511	47.846		57.00
ATOM	560	CA	GLN	72	74.855	18.110	46.632		56.93
ATOM	561	СВ	GLN	72	74.520	16.616	46.662		57.34
ATOM	562	CG	GLN	72	73.595	16.185	45.505		61.22
ATOM	563	CD	GLN	72	74.186	16.421	44.097	1.00	
ATOM	564	OE1	GLN	72	74.791	17.467	43.810	1.00	59.65
ATOM	565	NE2	GLN	72	73.988	15.444	43.210	1.00	63.04
MOTA	566	С	GLN	72	73.582	18.902	46.365	1.00	55.55
ATOM	567	0	GLN	72	72.872	19.300	47.284		55.69
ATOM	568	N	VAL	73	73.319	19.124	45.082		54.03
ATOM	569	CA	VAL	73	72.147	19.842	44.608		52.00
ATOM	570	CB	VAL	73	72.571	21.137	43.888		52.61
ATOM	571	CG1		73	73.274	22.065	44.869		51.82
ATOM ATOM	572 573	CG2	VAL	73	73.537	20.806	42.753		57.12
ATOM	574	С 0	VAL	73 73	71.460 71.853	18.881 18.758	43.637 42.489		50.04
ATOM	575	N	PRO	73 74	70.425	18.173	44.103		49.44
ATOM	576	CD	PRO	74	69.847	18.290	45.453		49.59
ATOM	577	CA	PRO	74	69.670	17.202	43.304		50.32
ATOM	578	СВ	PRO	74	68.715	16.589	44.330		50.82
ATOM	579	CG	PRO	74	68.455	17.735	45.253	1.00	50.68
ATOM	580	С	PRO	74	68.936	17.697	42.056		49.40
ATOM	581	0	PRO	74	67.708	17.846	42.051	1.00	50.49
ATOM	582	N	LEU	75	69.694	17.925	40.991	1.00	47.89
ATOM	583	CA	LEU	75	69.124	18.366	39.724	1.00	46.86
ATOM	584	CB	LEU	75	69.824	19.644	39.254		43.48
ATOM	585	CG	LEU	75	69.457	20.850	40.125		43.50
ATOM	586	CD1	LEU	75	70.382	22.007	39.846	1.00	40.95
ATOM	587	CD2	LEU	75	68.004	21.235	39.862	1.00	42.32
ATOM	588	C	LEU	75 75	69.253	17.264	38.675		46.45
ATOM ATOM	589 590	O N	LEU GLN	75 76	69.535 69.034	17.541	37.510		46.20
ATOM	591	CA	GLN	76	69.138	16.016 14.871	39.094 38.191		47.00 46.56
ATOM	592	CB	GLN	76	69.037	13.545	38.949		48.03
ATOM	593	CG	GLN	76	70.267	13.160	39.761		52.56
ATOM	594	CD	GLN	76	70.356	13.903	41.088		54.82
ATOM	595	OE1		76	69.411	14.601	41.485		56.30
MOTA	596	NE2		76	71.486	13.746	41.789		51.88
ATOM	597	С	GLN	76	68.128	14.842	37.054	1.00	45.92
ATOM	598	0	GLN	76	68.341	14.118	36.087	1.00	46.57
ATOM	599	N	ARG	77 .	67.037	15.605	37.145		44.53
MOTA	600	CA	ARG	77	66.058	15.592	36.053		42.84
MOTA	601	CB	ARG	77	64.645	15.385	36.586		45.72
ATOM	602	CG	ARG	77	64.453	14.065	37.281		50.95
ATOM	603	CD	ARG	77	62.984	13.699	37.368		55.58
ATOM	604 605	NE CZ	ARG	77 77	62.768	12.654	38.363		61.00
ATOM ATOM	606	CZ NH1	ARG	77 77	62.080	12.832	39.487		64.13
MOTA	500	MUT	ANG	7 7	61.538	14.017	39.746	T.00	65.36

					63)			
ATOM	607	NH2	ARG	77	61.940	11.835	40.357	1.00	64.68
ATOM	608	С	ARG	77	66.083	16.825	35.155	1.00	40.56
ATOM	609	0	ARG	77	65.224	16.997	34.288	1.00	38.61
ATOM	610	N	LEU	78	67.068	17.687	35.361	1.00	38.63
ATOM ATOM	611 612	CA	LEU	78	67.191	18.877	34.539	1.00	37.84
ATOM	613	CB CG	LEU	78 78	68.222	19.828	35.133	1.00	35.63
ATOM	614	CD1	LEU LEU ,	78	68.500 67.195	21.074	34.304	1.00	34.86
ATOM	615		LEU .	78	69.524	21.841 21.923	34.072 35.024	1.00	33.94 32.14
ATOM	616	C	LEU	78	67.631	18.424	33.157	1.00	39.74
ATOM	617	ō	LEU	78	68.751	17.947	32.968	1.00	38.58
ATOM	618	N	ARG	79	66.731	18.563	32.194	1.00	42.07
ATOM	619	CA	ARG	79	67.001	18.154	30.824	1.00	43.44
ATOM	620	СВ	ARG	79	65.719	17.640	30.186	1.00	44.33
ATOM	621	CG	ARG	79	65.967	16.780	29.007	1.00	49.41
ATOM	622	CD	ARG	79	66.291	15.400	29.506	1.00	57.39
MOTA	623	NE	ARG	79	67.309	14.738	28.707	1.00	58.07
ATOM	624	CZ	ARG	79	67.735	13.513	28.956	1.00	60.12
ATOM	625	NH1		79	67.215	12.848	29.977	1.00	61.40
ATOM	626	NH2		79	68.677	12.965	28.198	1.00	62.59
ATOM	627	C	ARG	79	67.554	19.259	29.925	1.00	44.07
ATOM	628	0	ARG	79	68.445	19.024	29.110	1.00	46.42
ATOM ATOM	629 630	N Ca	ILE	80	67.034	20.469	30.074	1.00	44.22
ATOM	631	CA CB	ILE ILE	80 80	67.449 66.516	21.547 21.562	29.197	1.00	44.40
ATOM	632	CG2	ILE	80	65.072	21.389	27.968 28.421	1.00	45.97 45.82
ATOM	633	CG1	ILE	80	66.676	22.857	27.179	1.00	47.04
ATOM	634	CD1	ILE	80	65.668	22.989	26.046	1.00	49.16
ATOM	635	C	ILE	80	67.473	22.937	29.813	1.00	
ATOM	636	0	ILE	80	66.607	23.297	30.606	1.00	46.12
ATOM	637	N	VAL	81	68.492		29.453		41.12
ATOM	638	CA	VAL .	81	68.617	25.078	29.909	1.00	39.98
ATOM	639	CB	VAL	81	69.940	25.317	30.637	1.00	37.75
ATOM	640	CG1		81	70.063	26.790	31.019	1.00	33.86
ATOM	641	CG2		81	70.005	24.441	31.880	1.00	37.92
ATOM .	642	C	VAL	81	68.591	25.895	28.622	1.00	
ATOM	643	0	VAL	81	69.516	25.805	27.817		41.60
ATOM ATOM	644 645	N	ARG	82	67.525	26.669	28.422	1.00	40.63
ATOM	646	CA CB	ARG ARG	82 82	67.366 65.906	27.474 27.914	27.213	1.00	41.36
ATOM	647	CG	ARG	82	64.970	26.741	27.057 26.805	1.00	41.22 41.15
ATOM	648	CD	ARG	82	63.507	27.152	26.721	1.00	39.21
ATOM	649	NE	ARG	82	62.642	25.974	26.746	1.00	39.74
ATOM	650	CZ	ARG	82	62.532	25.094	25.755		37.15
ATOM	651	NH1	ARG	82	63.223	25.249	24.641	1.00	
ATOM	652	NH2	ARG	82 -	61.735	24.047	25.888	1.00	39.83
MOTA	653	С	ARG	82	68.279	28.682	27.126	1.00	40.96
ATOM	654	0	ARG	82	68.615	29.123	26.035	1.00	43.30
ATOM	655	N	GLY	83	68.677	29.222	28.267	1.00	41.75
ATOM	656	CA	GLY	83	69.573	30.363	28.252	1.00	
ATOM	657	C	GLY	83	69.023	31.619	27.601	1.00	
ATOM ATOM	658 659	O N	GLY	83	69.744 67.747	32.317	26.878	1.00	
ATOM	660	CA	THR THR	84 84		31.906	27.854		43.83
ATOM	661	СВ	THR	84	67.111 65.603	33.099 33.090	27.311 27.582	1.00	43.71 43.70
ATOM	662	OG1	THR	84	64.976	32.119	26.732		43.70
ATOM	663	CG2	THR	84	64.997	34.446	27.312		46.08
ATOM	664	C	THR	84	67.748	34.291	27.999	1.00	
ATOM	665	Ō	THR	84	67.577	35.433	27.590		45.57
ATOM	666	N	GLN	85	68.499	33.999	29.053		46.19
MOTA	667	CA	GLN	85	69.202	35.009	29.827		47.00

66 ATOM CB 85 68.398 668 GLN 35.387 31.064 1.00 48.71 ATOM 669 CG GLN 85 67.018 35.903 30.776 1.00 54.49 ATOM 670 32.007 CD GLN 85 66.134 35.842 1.00 59.66 ATOM 671 OE1 GLN 85 66.463 36.415 33.053 1.00 59.91 ATOM 672 85 65.005 31.893 NE2 GLN 35.138 1.00 60.96 MOTA 673 С GLN 85 70.497 34.343 30.249 1.00 46.30 MOTA 674 0 GLN 85 70.515 33.135 30.496 1.00 45.05 MOTA 675 N LEU 86 71.575 35.113 30.350 1.00 44.87 MOTA 676 CA LEU 86 72.850 34.522 30.724 1.00 44.82 34.532 MOTA 677 CB LEU 86 73.803 29.535 1.00 42.60 MOTA 678 CG LEU 86 73.321 33.774 28.304 1.00 44.41 MOTA 33.988 679 CD1 LEU 86 74.329 27.186 1.00 47.40 32.287 MOTA 680 CD2 LEU 86 73.161 28.620 1.00 42.93 MOTA 681 С LEU 86 73.523 35.216 31.879 1.00 45.57 MOTA 682 0 LEU 86 73.408 36.429 32.045 1.00 48.26 ATOM 683 N PHE 87 74.225 34.434 32.683 1.00 43.87 MOTA 684 74.959 34.987 33.800 CA PHE 87 1.00 43.63 ATOM 685 CB PHE 87 75.444 33.853 34.689 1.00 40.78 686 PHE 76.231 34.313 ATOM CG 87 35.857 1.00 40.85 ATOM 687 CD1 PHE 87 75.626 35.038 36.869 1.00 40.47 77.586 35.946 MOTA 688 CD2 PHE 87 34.037 1.00 41.63 MOTA 689 CE1 PHE 87 76.362 35.481 37.955 1.00 41.04 MOTA 690 CE2 PHE 87 78.332 34.476 37.031 1.00 40.73 77.719 1.00 40.21 ATOM 691 PHE 35.200 38.037 CZ87 MOTA 692 С PHE 87 76.143 35.729 33.154 1.00 45.18 MOTA 693 76.785 0 PHE 87 35.199 32.244 1.00 44.05 MOTA 694 GLU 88 76.420 36.951 33.610 1.00 46.88 N MOTA 695 CA GLU 88 77.496 37.769 33.046 1.00 50.12 MOTA 696 CB GLU 88 78.869 37.225 33.436 1.00 50.94 MOTA 697 CG GLU 79.183 37.333 34.915 1.00 54.47 88 MOTA 698 CD 88 80.582 36.842 35.252 1.00 56.68 GLU ATOM 699 OE1 88 80.903 36.719 36.461 GLU 1.00 58.66 MOTA 700 OE2 GLU 88 81.363 36.584 34.308 1.00 56.70 ATOM 701 88 77.398 37.837 31.524 1.00 52.26 С GLU MOTA 702 0 GLU 88 78.383 38.105 30.838 1.00 53.70 ATOM 703 N ASP 89 76.205 37.575 31.004 1.00 53.97 704 CA ASP 75.954 37.622 29.566 1.00 55.67 MOTA 89 38.988 705 76.369 29.012 ATOM CB ASP 89 1.00 56.99 MOTA 706 CG ASP 89 75.403 40.082 29.404 1.00 59.00 39.894 MOTA 707 OD1 ASP 89 74.189 29.157 1.00 60.54 ATOM 708 89 75.850 29.956 OD2 ASP 41.115 1.00 56.93 76.579 ATOM 709 С ASP 89 36.527 28.706 1.00 54.74 ATOM 710 0 ASP 89 76.530 36.604 27.478 1.00 55.07 77.143 35.497 MOTA 711 N ASN 90 29.325 1.00 54.15 77.764 34.438 1.00 52.57 ATOM 712 CA ASN 90 28.538 MOTA 713 CB ASN 90 79.277 34.595 28.584 1.00 52.47 MOTA 714 ASN 90 79.737 35.890 27.980 1.00 53.25 CG 79.531 26.794 MOTA 715 OD1 ASN 90 36.135 1.00 54.48 MOTA 716 ND2 ASN 90 80.359 36.736 28.791 1.00 52.67 1.00 51.81 MOTA 717 90 77.426 33.015 28.949 C ASN MOTA 718 0 ASN 90 77.363 32.115 28.114 1.00 51.39 MOTA 719 N TYR 91 77.187 32.803 30.231 1.00 50.25 76.949 MOTA 720 CA TYR 91 31.453 30.677 1.00 49.51 77.887 31.174 ATOM 721 CB TYR 91 31.845 1.00 51.13 722 79.291 MOTA CG TYR 91 31.674 31.567 1.00 52.63 ATOM 723 CD1 TYR 91 79.699 32.943 31.984 1.00 53.04 724 91 80.979 33.427 MOTA CE1 TYR 31.696 1.00 53.62 CD2 TYR 91 1.00 54.91 ATOM 725 80.202 30.893 30.851 726 MOTA CE2 TYR 91 81.489 31.368 30.554 1.00 55.55 MOTA 727 CZTYR 91 81.869 32.634 30.981 1.00 55.51 728 MOTA OH TYR 91 83.136 33.101 30.703 1.00 54.62

					67	/			
ATOM	729	С	TYR	91	75.535	31.020	31.013	1.00	47.39
ATOM	730	ō	TYR	91	74.803	31.713	31.719	1.00	
ATOM	731	N	ALA	92	75.161	29.864	30.471		44.48
ATOM	732	CA	ALA	92	73.863	29.281	30.730		43.50
ATOM	733	CB	ALA	92	73.474	28.356	29.613		40.46
ATOM	734	C	ALA	92	74.012	28.499	32.030		44.42
ATOM	735	0	ALA	92		28.223	32.716		
					73.025				46.43
ATOM	736	N	LEU	93	75.252	28.136	32.359		42.65
ATOM	737	CA	LEU	93	75.539	27.395	33.583		41.17
ATOM	738	CB	LEU	93	75.734	25.917	33.284		38.62
ATOM	739	CG	LEU	93	76.143	25.090	34.505		37.50
ATOM	740	CD1		93	75.067	25.170	35.582		38.29
ATOM	741	CD2		93	76.360	23.652	34.087		36.61
ATOM	742	С	LEU	93	76.776	27.934	34.298		41.94
ATOM	743	0	LEU	93 .	77.865	27.986	33.730	1.00	42.96
ATOM	744	N	ALA	94	76.599	28.325	35.554	1.00	40.94
ATOM	745	CA	ALA	94	77.686	28.878	36.335	1.00	41.22
ATOM	746	CB	ALA	94	77.506	30.378	36.461	1.00	39.61
ATOM	747	С	ALA	94	77.766	28.241	37.720	1.00	43.35
ATOM	748	0	ALA	94	76.814	28.299	38.499	1.00	42.96
ATOM	749	N	VAL	95	78.911	27.632	38.017		44.35
ATOM	750	CA	VAL	95	79.143	26.996	39.307		45.11
ATOM	751	CB	VAL	95	79.388	25.500	39.125		43.05
ATOM	752		VAL ·	95	79.533	24.819	40.479		39.27
ATOM	753		VAL	95	78.240	24.899	38.312		40.86
ATOM	754	C	VAL	95	80.369	27.669	39.925		48.52
ATOM	755	ō	VAL	95	81.508	27.415	39.517		48.34
ATOM	756	N	LEU	96	80.128	28.524	40.916		50.32
ATOM	757	CA	LEU	96					
					81.207	29.272	41.542		51.50
ATOM	758	CB	LEU	96 06	81.074	30.739	41.150		51.70
ATOM	759	CG	LEU	96	80.684	30.959	39.690		52.86
ATOM	760		LEU	96	80.346	32.418	39.457		52.63
ATOM	761	CD2		96	81.821	30.512	38.793		53.82
ATOM	762	С	LEU	96	81.323	29.181	43.059		53.24
ATOM	763	0	LEU	96	80.344	28.970	43.774		53.15
ATOM	764	N	ASP	97	82.555	29.359	43.524		54.82
ATOM	765	CA	ASP	97	82.906	29.347	44.938		55.39
ATOM	766	CB	ASP	97	82.927	30.780	45.456		53.38
ATOM	767	CG	ASP	97	83.658	31.711	44.521		53.93
ATOM	768		ASP	97	83.020	32.242	43.586		52.94
ATOM	769		ASP	97	84.879	31.892	44.706	1.00	53.79
ATOM	770	С	ASP	97	82.055	28.476	45.850	1.00	57.18
ATOM	771	0	ASP	97	81.505	28.948	46.849	1.00	55.28
MOTA	772	N	ASN	98	81.962	27.197	45.510	1.00	59.71
ATOM	773	CA	ASN	98	81.208	26.253	46.318	1.00	63.26
ATOM	774	CB	ASN	98	80.327	25.394	45.421	1.00	61.80
ATOM	775	CG	ASN	98	79.265	26.203	44.735	1.00	60.81
ATOM	776	OD1	ASN	98	78.351	26.712	45.383	1.00	62.45
ATOM	777	ND2	ASN	98	79.382	26.350	43.419	1.00	59.92
MOTA	778	С	ASN	98	82.186	25.391	47.108		65.67
ATOM	779	0	ASN	98	82.574	24.313	46.673		65.42
ATOM	780	N	GLY	99	82.579	25.894	48.272		70.08
ATOM	781	CA	GLY	99 .	83.520	25.197	49.125		76.22
ATOM	782	С	GLY	99	84.105	26.187	50.116		81.42
ATOM	783	ō	GLY	99	84.487	27.299	49.740		81.92
ATOM	784	N	ASP	100	84.176	25.774	51.374		86.13
ATOM	785	CA	ASP	100	84.686	26.590	52.475		90.98
ATOM	786	CB	ASP	100	85.046	25.680	53.656		92.47
ATOM	787	CG	ASP	100	83.883	24.805	54.092		94.56
ATOM	788		ASP	100	82.875				
						25.358	54.582		96.09
ATOM	789	ODZ	ASP	100	83.973	23.566	53.941	1.00	94.94

						O C	•			
ATOM	790	С	ASP	100	85.8	61	27.531	52.179	1.00	
ATOM	791	0	ASP .	100	85.7		28.743	52.365		93.83
ATOM	792	N	PRO	101	87.0		26.998	51.735		96.96
ATOM	793	CD	PRO	101	87.4		25.609	51.851		98.24
ATOM	794	CA	PRO	101	88.1		27.878	51.444		99.43
ATOM	795	CB	PRO	101	89.3		26.938	51.564	1.00	
ATOM	796	CG	PRO	101	88.8		25.813	52.424	1.00	
MOTA	797	С	PRO	101	88.0		28.543	50.071	1.001	
MOTA	798	0	PRO	101	87.0		28.846	49.567	1.001	
ATOM	799	N	LEU	102	89.2		28.769	49.477	1.001	
ATOM	800	CA	LEU	102	89.3		29.398	48.156 48.291	1.001	
ATOM	801	CB	LEU	102	89.4 89.5		30.925 31.548	47.017	1.001	
ATOM	802	CG	LEU	102 102	90.5		28.889	47.369	1.001	
ATOM	803	C 0	LEU LEU	102	91.		29.157	47.724	1.001	
ATOM ATOM	804 805	N	PRO	107	90.		18.959	64.154	1.001	
ATOM	806	CA	PRO	107	89.		17.932	63.974	1.001	
ATOM	807	CB	PRO	107	88.		18.209	64.898	1.001	
ATOM	808	C	PRO	107	89.		17.878	62.517	1.001	26.87
ATOM	809	Ö	PRO	107	88.		18.060	62.223	1.001	27.11
ATOM	810	N	VAL	108	90.		17.618	61.613	1.001	26.89
ATOM	811	CA	VAL	108	89.	916	17.548	60.181	1.001	26.48
ATOM	812	СВ	VAL	108	91.		17.551	59.391	1.001	26.25
ATOM	813	С	VAL	108	89.	074	16.331	59.790	1.001	
ATOM	814	0	VAL	108	87.	889	16.464	59.470	1.001	
ATOM	815	N	THR	109	89.	698	15.154	59.819	1.001	
MOTA	816	CA	THR	109	89.	049	13.890	59.461		23.95
ATOM	817	CB	THR	109	89.		12.719	60.113		24.08
ATOM	818	С	THR	109	87.		13.828	59.824		22.63
ATOM	819	0	THR	109	86.		13.313	59.050		22.80
ATOM	820	N	GLY	110	87.		14.351	60.999		20.61
ATOM	821	CA	GLY	110		844	14.343	61.449		17.57
MOTA	822	С	GLY	110		853	14.918	60.453		.15.50 .16.01
MOTA	823	0	GLY	110		260	14.183 16.234	59.659 60.490		12.70
MOTA	824	N	ALA	111		673 734	16.234	59.600		.09.22
ATOM	825	CA	ALA	111 111		549	18.363	60.053		.09.74
MOTA	826	CB	ALA ALA	111		146	16.876	58.127		06.68
MOTA	827	С	ALA	111		218	17.366	57.754		06.45
ATOM ATOM	828 829	N O	SER	112		285	16.294	57.293		03.09
ATOM	830	CA	SER	112		538	16.211	55.858		99.27
ATOM	831	CB	SER	112		483	15.337	55.175	1.00	99.51
ATOM	832	OG	SER	112		457	14.037	55.735	1.00	101.30
ATOM	833	c	SER	112		476	17.622	55.285	1.00	96.09
ATOM	834	ō	SER	112		460	18.310	55.408		96.48
ATOM	835	N	PRO	113	84.	564	18.071	54.644		92.15
ATOM	836	CD	PRO	113		785	17.320	54.307		91.00
ATOM	837	CA	PRO	113	84.	601	19.415	54.061		88.77
MOTA	838	CB	PRO	. 113		804	19.344	53.123		89.27
MOTA	839	CG	PRO	113		720	18.417	53.848		90.34
MOTA	840	С	PRO	113		.309	19.782	53.333		84.95
MOTA	841	0	PRO	113		662	18.929	52.720		84.81
MOTA	842	N	GLY	114		930	21.052	53.422		80.54 75.55
MOTA	843	CA	GLY	114		.729	21.506	52.754		72.23
MOTA	844	C	GLY	114		.044	21.832	51.310		72.23
MOTA	845	0	GLY	114		.199	22.076	50.961		69.91
MOTA	846	N	GLY	115		.021	21.834	50.465		66.25
MOTA	847	CA	GLY	115		.232	22.137	49.061 48.157		63.68
MOTA	848	С	GLY	115		.635	21.080 19.926			62.37
MOTA	849	0	GLY	115		.481	21.484			62.02
MOTA	850	N	LEU	116	80	.292	21.404	40.337	2.00	

					05	,			
ATOM	851	CA	LEU	116	79.709	20.582	45.948	1.00	59.67
ATOM	852	CB	LEU	116	79.271	21.387	44.723	1.00	57.68
ATOM	853	CG	LEU	116	78.388	20.692	43.691		56.19
ATOM	854		LEU .	116	77.022	20.411	44.296		54.53
ATOM	855	CD2	LEU	116	78.261	21.582	42.456		56.83
ATOM	856	C	LEU	116	80.764	19.544	45.551		59.55
ATOM ATOM	857	0	LEU	116	81.900	19.901	45.220		58.10
ATOM	858 859	N CA	ARG ARG	117 117	80.390	18.267	45.587		59.24
ATOM	860	CB	ARG	117	81.327 81.109	17.195 15.992	45.253 46.174		59.70
ATOM	861	CG	ARG	117	81.021	16.374	47.632	1.00	60.56
ATOM	862	CD	ARG	117	81.319	15.216	48.560	1.00	67.09
ATOM	863	NE	ARG	117	82.602	15.403	49.230	1.00	72.49
ATOM	864	CZ	ARG	117	82.917	16.462	49.975		75.62
ATOM	865	NH1		117	82.042	17.447	50.157	1.00	
ATOM	866	NH2	ARG	117	84.118	16.545	50.530	1.00	76.65
ATOM	867	С	ARG	117	81.209	16.765	43.798	1.00	58.65
ATOM	868	0	ARG	117	82.219	16.549	43.121		58.41
ATOM	869	N	GLU	118	79.972	16.644	43.326		57.45
ATOM	870	ÇA	GLU	118	79.703	16.264	41.946		56.49
ATOM	871	CB	GLU	118	79.584	14.737	41.840		56.46
ATOM	872	CG	GLU	118	78.782	14.074	42.940		57.68
ATOM ATOM	873 874	CD OF1	GLU	118	78.794	12.550	42.845		58.93
ATOM	875	OE1 OE2		118	79.886	11.944	42.929		59.44
ATOM	876	C	GLU	118 118	77.709 78.442	11.951 16.959	42.689 41.423		59.58
ATOM	877	0	GLU	118	77.498	17.192	42.176		55.19 57.56
ATOM	878	N	TEA .	119	78.432	17.304	40.139		52.98
ATOM	879	CA	LEU	119	77.283	17.983	39.536		50.77
ATOM	880	СВ	LEU	119	77.689	18.563	38.184	1.00	
ATOM	881	CG	LEU	119	78.554	19.824	38.302		45.09
ATOM	882	CD1	LEU	119	79.187	20.143	36.971	1.00	43.63
ATOM	883		LEU	119	77.704	20.989	38.787	1.00	
ATOM	884	С	LEU	119	76.038	17.103	39.391		51.28
ATOM	885	0	LEU	119	74.925	17.532	39.676		50.10
ATOM	886	N	GLN	120	76.220	15.872	38.941		53.25
ATOM ATOM	887 888	CA CB	GLN GLN	120	75.100	14.944	38.815		56.61
ATOM	889	CG	GLN	120 120	74.588 75.660	14.560 13.965	40.210 41.121	1.00	
ATOM	890	CD	GLN	120	75.000	12.947	42.109	1.00	68.65
ATOM	891		GLN	120	74.466	11.961	41.711	1.00	70.06
ATOM	892		GLN	120	75.337	13.174	43.402	1.00	
ATOM	893	С	GLN	120	73.921	15.404	37.951		56.07
ATOM	894	0	GLN	120	72.769	15.038	38.207	1.00	56.45
ATOM	895	N	LEU	121	74.220	16.197	36.927		55.01
MOTA	896	CA	LEU	121	73.213	16.687	35.987		53.16
ATOM	897	CB	LEU	121	73.667	18.017	35.383		52.15
ATOM	898	CG	LEU	121	73.852	19.173	36.360		51.71
MOTA	899	CD1		121	74.598	20.300	35.673		49.86
MOTA MOTA	900 901	CD2 C	LEU	121 121	72.485	19.632	36.868		50.80
ATOM	902	0	LEU .	121	73.154 73.450	15.636 15.919	34.890 33.729		52.58 53.15
ATOM	903	N	ARG	122	72.765	14.422	35.253		52.13
ATOM	904	CA	ARG	122	72.741	13.336	34.288		51.57
ATOM	905	СВ	ARG	122	72.730	12.005	35.029		53.46
ATOM	906	CG	ARG	122	71.586	11.827	35.995		55.67
ATOM	907	CD	ARG	122	72.026	10.906	37.111		58.36
ATOM	908	NE	ARG	122	70.896	10.320	37.815	1.00	62.96
ATOM	909	CZ	ARG	122	70.976		39.032		65.49
ATOM	910	NH1		122	72.140	9.790	39.680		64.20
MOTA	911	NH2	ARG	122	69.891	9.273	39.596	1.00	67.00

	70							
ATOM	912	С	ARG	122	71.656	13.358	33.222	1.00 49.90
ATOM	913	0	ARG ·	122	71.640	12.504	32.333	1.00 50.83
ATOM	914	N	SER .	123	70.756	14.330	33.292	1.00 46.61
MOTA	915	CA	SER	123	69.701	14.434	32.293	1.00 42.82
ATOM	916	CB	SER	123	68.335	14.530	32.967	1.00 42.47
ATOM	917	OG	SER	123	68.038	13.341	33.670	1.00 38.70
MOTA	918	С	SER	123	69.934	15.663	31.430	1.00 41.29
ATOM	919	0	SER	123	69.282	15.850	30.407	1.00 40.43 1.00 40.71
ATOM	920	N	LEU	124	70.879	16.496 17.715	31.849 31.119	1.00 40.71
ATOM	921 922	CA CB	LEU LEU	124 124	71.187	18.649	31.119	1.00 37.35
ATOM ATOM	923	CG	LEU	124	72.435	19.929	31.211	1.00 37.32
ATOM	924		LEU	124	71.166	20.651	30.771	1.00 35.84
ATOM	925		LEU	124	73.291	20.821	32.089	1.00 35.21
ATOM	926	C	LEU	124	71.888	17.428	29.809	1.00 43.38
ATOM	927	Ō	LEU	124	73.109	17.252	29.769	1.00 43.33
ATOM	928	N	THR	125	71.104	17.407	28.733	1.00 45.11
ATOM	929	CA	THR	125	71.621	17.138	27.397	1.00 43.33
ATOM	930	CB	THR	125	70.913	15.918	26.783	1.00 43.30
ATOM	931	OG1		125	69.496	16.104	26.878	1.00 42.09
MOTA	932	CG2		125	71.305	14.639	27.510	1.00 39.71
ATOM	933	С	THR	125	71.409	18.319	26.456	1.00 43.96
ATOM	934	0	THR	125	71.624	18.198 19.465	25.253 26.986	1.00 44.38 1.00 43.81
ATOM	935	N	GLU	126 126	70.994 70.745	20.598	26.106	1.00 42.67
ATOM	936 937	CA CB	GLU	126	69.350	20.330	25.500	1.00 41.42
ATOM ATOM	938	CG	GLU	126	69.020	21.521	24.453	1.00 41.40
ATOM	939	CD	GLU	126	69.512	21.153	23.061	1.00 43.48
ATOM	940		GLU	126	68.830	20.358	22.370	1.00 41.80
ATOM	941	OE2		126	70.587	21.658	22.661	1.00 42.13
ATOM	942	С	GLU	126	70.879	21.990	26.709	1.00 43.68
ATOM	943	0	GLU	126	70.234	22.317	27.704	1.00 45.80
ATOM	944	N	ILE	127	71.736	22.798	26.094	1.00 42.47
ATOM	945	CA	ILE	127	71.933	24.192	26.479	1.00 41.14
ATOM	946	CB	ILE	127	73.318	24.426	27.085	1.00 38.54
ATOM	947	CG2		127	73.574	25.911	27.245 28.437	1.00 33.94 1.00 36.30
MOTA	948	CG1		127	73.406 74.784	23.722 23.818	29.093	1.00 36.30
MOTA	949	CD1 C	ILE	127 127	71.790	24.944	25.149	1.00 43.31
ATOM ATOM	950 951	0	ILE	127	72.715	24.974	24.325	1.00 42.28
ATOM	952	N	LEU	128	70.609	25.523	24.935	1.00 44.48
ATOM	953	CA	LEU	128	70.312	26.222	23.690	1.00 44.79
ATOM	954	CB	LEU	128	68.851	26.661	23.678	1.00 44.23
MOTA	955	CG	LEU	128	67.875	25.475	23.692	1.00 45.11
MOTA	956	CD1	LEU	128	66.427	25.981	23.643	1.00 41.10
MOTA	957	CD2	LEU	128	68.183	24.555	22.499	1.00 41.18
MOTA	958	С	LEU	128	71.203	27.400	23.376	1.00 45.64
ATOM	959	0	LEU	128	71.668	27.543	22.247	1.00 47.14 1.00 45.50
ATOM	960	N	LYS	129	71.454	28.232 29.415	24.378 24.201	1.00 45.15
ATOM	961	CA	LYS LYS	. 129 129	72.283 71.368	30.629	23.983	1.00 47.19
ATOM ATOM	962 963	CB CG	LYS	129	72.057	31.989	23.869	1.00 51.77
ATOM	964	CD	LYS	129	71.021	33.124	23.825	1.00 53.80
ATOM	965	CE	LYS	129	71.666		23.978	1.00 56.48
ATOM	966	NZ	LYS	129	70.669	35.618	24.130	1.00 55.90
ATOM	967	C	LYS	129	73.143		25.447	1.00 44.99
MOTA	968	0	LYS	129	72.694		26.559	1.00 44.46
MOTA	969	N	GLY	130	74.384		25.267	1.00 45.43
ATOM	970	CA	GLY	130	75.240		26.422	1.00 45.56
MOTA	971	С	GLY	130	76.270		26.713	1.00 45.03 1.00 44.57
ATOM	972	0	GLY	130	76.214	28.104	26.161	T.00 44.5/

~	•
•	
•	•

						•			
MOTA	973	N	GLY	131	77.205	29.519	27.605	1.00 4	
ATOM	974	CA	GLY		78.261	28.581	27.934	1.00	
MOTA	975	С	GLY	131	78.315	28.070	29.361	1.00	
ATOM	976	0	GLY	131	77.367	28.197	30.126	1.00	
MOTA	977	N	VAL	132	79.449	27.493	29.724 31.050	1.00	
MOTA	978	CA	VAL	132	79.615	26.936	30.980	1.00	
ATOM	979	CB	VAL	132	79.794	25.405 24.846	32.360	1.00	
ATOM	980			132	80.046 78.549	24.768	30.366	1.00	
ATOM	981	CG2		132 132	80.804	27.534	31.777	1.00	
ATOM	982 983	С 0	VAL VAL	132	81.938	27.507	31.282	1.00	
ATOM ATOM	984	N	LEU	133	80.524	28.071	32.961	1.00	
ATOM	985	CA	LEU	133	81.535	28.675	33.807	1.00	
ATOM	986	CB	LEU	133	81.189	30.136	34.095	1.00	
ATOM	987	CG	LEU	133	82.080	30.807	35.148	1.00	49.20
ATOM	988		LEU	133	83.501	30.936	34.599	1.00	47.21
ATOM	989		LEU	133	81.509	32.171	35.525	1.00	46.27
ATOM	990	C	LEU	133	81.590	27.902	35.120	1.00	
ATOM	991	0	LEU	133	80.625	27.889	35.888	1.00	48.62
ATOM	992	N	ILE	134	82.715	27.246	35.369	1.00	
MOTA	993	CA	ILE	134	82.876	26.496	36.599	1.00	
ATOM	994	CB	ILE	134	82.847	24.974	36.328	1.00	
MOTA	995	CG2	ILE	134	82.963	24.210	37.633		41.94
ATOM	996	CG1	ILE	134	81.537	24.603	35.622		42.18
MOTA	997	CD1		134	81.321	23.115	35.409		36.15
ATOM	998	С	ILE	134	84.205	26.916	37.221		48.77
ATOM	999	0	ILE	134	85.273	26.640	36.673		49.10
ATOM	1000	N	GLN	135	84.130	27.594	38.363		49.58
MOTA	1001	CA	GLN	135	85.326	28.080	39.040		50.96
ATOM	1002	CB	GLN	135	85.527	29.572	38.738		51.43 54.23
ATOM	1003	CG	GLN	135	85.562	29.950	37.267 36.610		56.24
ATOM	1004	CD	GLN	135	86.913	29.700 30.347	36.939		58.47
ATOM	1005	OE1		135 135	87.910 86.948	28.761	35.670		57.30
ATOM	1006 1007	NE2 C	GLN GLN	135	85.286	27.904	40.557		51.50
ATOM	1007	0	GLN	135	84.223	27.833	41.172		53.24
ATOM ATOM	1000	N	ARG	136	86.472	27.840	41.146		51.51
ATOM	1010	CA	ARG	136	86.641	27.734	42.588		49.89
ATOM	1011	CB	ARG	136	86.613	29.149	43.175	1.00	48.50
ATOM	1012	CG	ARG	136	87.537	30.115	42.420	1.00	47.11
ATOM	1013	CD	ARG	136	87.473	31.547	42.951	1.00	47.61
ATOM	1014	NE	ARG	136	86.249	32.246	42.566	1.00	
ATOM	1015	CZ	ARG	136	85.970	32.657	41.331		49.03
ATOM	1016	NH1	ARG	136	86.826	32.447	40.338		48.98
MOTA	1017	NH2	ARG	136	84.825	33.280	41.087		48.99
MOTA	1018	С	ARG	136	85.680	26.814	43.344		49.80
ATOM	1019	0	ARG	136	84.969	27.239	44.255		49.62
MOTA	1020	N	ASN	137	85.681	25.542	42.965		50.11
MOTA	1021	CA	ASN	. 137	84.852	24.531	43.614		51.52
MOTA	1022	CB	ASN	137	83.836	23.984	42.619		49.76
MOTA	1023	CG	ASN	137	82.946	25.068	42.071		47.43
MOTA	1024		ASN	137	82.109	25.615	42.792		47.56 44.58
MOTA	1025		2 ASN	137	83.138	25.411 23.425	40.800 44.098		53.46
MOTA	1026	С	ASN	137 137	85.791 86.001	22.417	43.416		54.02
MOTA	1027	0	ASN	137	86.378	23.620	45.291		54.39
MOTA	1028	N	PRO		86.090	24.835	46.069		54.92
MOTA	1029	CD CA	PRO PRO		87.324	24.633	46.023		55.10
ATOM	1030 1031	CB	PRO		87.391	23.445	47.388		56.13
MOTA ATOM	1031	CB	PRO		87.246	24.875	47.030		55.77
ATOM ATOM	1032	C	PRO		87.057	21.267	46.141		54.62
ATOM	1000		FRO	130	57.057	,		_,	-

72 1034 MOTA 0 PRO 138 87.997 20.474 46.095 1.00 55.62 ATOM 1035 N GLN 139 85.798 20.873 46.309 1.00 52.71 MOTA 1036 CA GLN 139 85.470 19.457 46.445 1.00 50.41 MOTA 1037 CB GLN 139 84.503 19.245 47.600 1.00 54.28 MOTA 1038 84.965 CG GLN 139 19.780 48.927 1.00 57.44 1039 MOTA CD GLN 139 86.251 19.143 49.366 1.00 60.16 MOTA 1040 OE1 GLN 139 17.920 86.410 49.286 1.00 59.39 MOTA 1041 NE2 GLN 139 87.183 19.964 49.843 1.00 61.11 MOTA 1042 C GLN 139 84.812 18.881 45.212 1.00 48.99 MOTA 1043 0 GLN 139 84.227 17.806 45.291 1.00 49.44 MOTA 1044 N LEU 140 84.910 19.573 44.080 1.00 46.61 MOTA 1045 CA LEU 140 84.249 19.127 42.851 1.00 45.80 MOTA 1046 CB LEU 140 83.748 20.353 42.079 1.00 42.36 MOTA 1047 CG LEU 140 82.885 20.080 40.845 1.00 38.55 ATOM 1048 CD1 LEU 140 81.566 19.439 41.262 1.00 36.83 MOTA 1049 CD2 LEU 140 82.638 21.376 40.108 1.00 36.26 MOTA 1050 С LEU 140 18.220 85.024 41.887 1.00 48.03 MOTA 1051 0 LEU 140 86.151 18.521 41.491 1.00 48.11 ATOM 1052 17.120 N CYS 141 84.387 41.487 1.00 49.94 ATOM 1053 CA CYS 141 84.983 16.165 40.553 1.00 51.42 MOTA 1054 С CYS 141 84.155 15.955 39.281 1.00 52.28 ATOM 1055 0 CYS 141 82.986 16.342 39.201 1.00 52.04 ATOM 1056 CB CYS 141 14.804 85.161 41.227 1.00 53.37 ATOM 1057 SG CYS 141 86.472 14.727 42.484 1.00 55.47 ATOM 1058 N TYR 142 84.790 15.342 38.288 1.00 52.23 ATOM 1059 CA TYR 142 84.153 14.988 37.024 1.00 53.02 ATOM 1060 37.307 CB TYR 142 82.922 14.114 1.00 55.55 MOTA 1061 CG TYR 142 83.220 13.021 38.306 1.00 57.71 MOTA 1062 CD1 TYR 142 82.807 13.131 39.633 1.00 58.55 MOTA 1063 TYR CE1 142 83.154 12.162 40.580 1.00 60.12 MOTA 1064 CD2 TYR 142 83.986 11.911 37.944 1.00 59.09 MOTA 1065 TYR CE2 142 84.340 10.937 38.882 1.00 59.55 MOTA 1066 CZTYR 142 83.922 11.069 40.197 1.00 60.59 ATOM 1067 OH TYR 142 84.281 10.119 41.130 1.00 61.97 ATOM 1068 С TYR 142 83.777 16.077 36.038 1.00 52.13 MOTA 1069 0 TYR 142 83.566 15.787 34.862 1.00 52.66 ATOM 1070 N GLN 143 83.696 17.323 36.484 1.00 51.73 MOTA 1071 CA GLN 143 83.326 18.392 35.563 1.00 51.08 ATOM 1072 CB GLN 143 83.391 19.754 1.00 48.67 36.259 84.799 ATOM 1073 1.00 47.89 CG GLN 143 20.275 36.459 ATOM 1074 CD GLN 143 85.361 19.948 37.822 1.00 47.25 MOTA 1075 38.337 OE1 GLN 143 85.186 18.839 1.00 46.97 MOTA 1076 NE2 GLN 143 86.056 20.913 38.415 1.00 45.50 1077 MOTA С GLN 143 84.213 18.426 34.310 1.00 51.56 1078 MOTA 0 GLN 143 83.800 18.931 33.267 1.00 50.46 MOTA 1079 N ASP 144 85.427 17.889 34.414 1.00 53.39 86.362 MOTA 1080 CA ASP 144 17.888 33.284 1.00 54.95 1081 MOTA CB ASP 144 87.806 18.001 33.795 1.00 57.46 ATOM 1082 CG ASP 144 16.928 88.158 34.823 1.00 60.87 ATOM 1083 OD1 ASP 144 87.240 16.420 35.508 1.00 61.77 MOTA 1084 OD2 ASP 16.605 144 89.361 34.956 1.00 61.23 MOTA 1085 С ASP 144 86.227 16.698 32.336 1.00 54.14 MOTA 1086 0 ASP 144 86.718 16.746 31.211 1.00 54.76 MOTA 1087 N THR 145 85.548 15.644 32.779 1.00 52.72 MOTA 1088 CA THR 145 85.344 14.456 31.954 1.00 51.50 MOTA 1089 CB THR 145 85.184 13.194 32.806 1.00 52.77 MOTA 1090 OG1 THR 145 83.810 13.078 33.220 1.00 53.52 ATOM 1091 CG2 THR 145 86.095 13.250 34.025 1.00 50.79 1092 ATOM С THR 145 14.547 84.072 31.114 1.00 51.38 MOTA 1093 0 THR 145 83.705 13.593 1.00 51.92 30.428 1094 MOTA N ILE 146 83.386 15.682 31.180 1.00 51.88

					73	5			
MOTA	1095	CA	ILE	146	82.136	15.856	30.444		49.69
ATOM	1096	CB	ILE	146	81.122	16.710	31.258	1.00	49.09
ATOM	1097	CG2	ILE	146	79.967	17.145	30.367	1.00	48.38
ATOM	1098	CG1	ILE	146	80.609	15.914	32.467		48.35
ATOM ATOM	1099 1100	CD1	ILE	146	79.764	14.689	32.112	1.00	47.73
ATOM	1100	0	ILE . ILE	146 146	82.349 83.057	16.511 17.515	29.093 28.982	1.00	49.10
ATOM	1101	N	LEU	147	81.739	15.942	28.061	1.00	49.69 47.61
ATOM	1103	CA	LEU	147	81.864	16.512	26.735	1.00	46.57
ATOM	1104	CB	LEU	147	81.662	15.435	25.669	1.00	46.78
ATOM	1105	CG	LEU	147	81.972	15.868	24.228	1.00	
ATOM	1106	CD1		147	83.424	16.331	24.128	1.00	44.45
ATOM	1107	CD2	LEU	147	81.706	14.709	23.274	1.00	46.61
ATOM	1108	С	LEU	147	80.793	17.589	26.617	1.00	47.11
ATOM	1109	0	LEU	147	79.653	17.317	26.230	1.00	47.80
ATOM	1110	N	TRP	148	81.163	18.815	26.966	1.00	47.15
MOTA	1111	CA	TRP	148	80.231	19.940	26.920	1.00	48.80
ATOM	1112	CB	TRP	148	80.876	21.170	27.571	1.00	49.02
ATOM	1113	CG	TRP	148	81.187	20.945	29.021	1.00	48.42
ATOM	1114	CD2	TRP	148	80.251	20.955	30.107	1.00	49.28
ATOM	1115	CE2	TRP	148	80.966	20.608	31.276	1.00	48.49
ATOM ATOM	1116 1117	CE3	TRP TRP	148	78.877	21.222	30.204	1.00	48.27
ATOM	1118	NE1	TRP	148 148	82.391 82.269	20.609 20.403	29.557	1.00	48.34 48.74
ATOM	1119		TRP	148	80.358	20.403	30.911 32.530	1.00	47.35
ATOM	1120		TRP	148	78.271	21.136	31.449	1.00	47.60
ATOM	1121	CH2	TRP	148	79.014	20.787	32.597	1.00	49.76
ATOM	1122	С	TRP	148	79.721	20.293	25.523	1.00	48.75
ATOM	1123	0	TRP	148	78.595	20.765	25.367	1.00	47.54
ATOM	1124	N	LYS ·	149	80.553	20.059	24.512	1.00	49.96
ATOM	1125	CA	LYS	149	80.179	20.348	23.137	1.00	48.40
ATOM	1126	CB	LYS	149	81.324	19.993	22.203	1.00	52.26
ATOM	1127	CG	LYS	149	82.665	20.533	22.659	1.00	60.02
ATOM	1128	CD	LYS	149	82.621	22.046	22.881	1.00	62.98
ATOM	1129	CE	LYS	149	84.004	22.644	22.710	1.00	64.21
ATOM	1130	NZ	LYS	149	84.536	22.371	21.334	1.00	63.79
ATOM	1131 1132	C	LYS	149	78.947	19.551 19.997	22.755		47.38
ATOM ATOM	1133	O N	LYS ASP	149 150	78.135 78.801	18.360	21.955 23.319	1.00	47.43 46.10
ATOM	1134	CA	ASP	150	77.637	17.556	22.994	1.00	
ATOM	1135	CB	ASP	150	77.750	16.163	23.596	1.00	45.12
ATOM	1136	CG	ASP	150	76.718	15.205	23.024	1.00	45.94
MOTA	1137	OD1		150	76.966	14.701	21.912	1.00	45.25
MOTA	1138	OD2	ASP	150	75.664	14.968	23.664	1.00	42.14
MOTA	1139	С	ASP	150	76.397	18.229	23.565	1.00	45.07
MOTA	1140	0	ASP	150	75.352	18.301	22.916		45.29
ATOM	1141	N	ILE	151	76.523	18.721	24.791		43.99
MOTA	1142	CA	ILE	151	75.411	19.371	25.453		42.56
MOTA	1143	CB	ILE	151	75.757	19.677	26.921		40.70
MOTA	1144	CG2 CG1		151	74.555	20.304	27.615		41.16
MOTA MOTA	1145 1146	CD1		151 151	76.154 76.586	18.373 18.529	27.635 29.095		40.42 35.25
MOTA	1147	CDI	ILE	151	75.018	20.645	24.717		43.30
ATOM	1148	0	ILE	151	73.838	20.860	24.717		42.65
ATOM	1149	N	PHE	152	76.003	21.481	24.386		43.93
ATOM	1150	CA	PHE	152	75.747	22.724	23.658		44.46
ATOM	1151	СВ	PHE	152	77.064	23.426	23.292		43.79
ATOM	1152	CG	PHE	152	77.805	24.014	24.464	1.00	
MOTA	1153	CD1		152 .	79.197	24.083	24.452		47.49
ATOM	1154	CD2	PHE	152	77.125	24.517	25.570	1.00	47.25
MOTA	1155	CE1	PHE	152	79.903	24.640	25.521	1.00	46.51

					, -	•			
ATOM	1156	CE2	PHE	152	77.824	25.079	26.646	1.00	46.64
ATOM	1157	CZ	PHE	152	79.216	25.138	26.618	1.00	46.97
ATOM	1158	С	PHE	152	75.010	22.376	22.370	1.00	44.97
ATOM	1159	0	PHE	152	75.380	21.436	21.672		45.07
ATOM	1160	N	HIS	153	73.971	23.135	22.054		47.34
ATOM	1161	CA	HIS	153	73.193	22.913	20.840		49.91
ATOM	1162	СВ	HIS	153	71.905	23.729	20.906		51.90
ATOM	1163	CG	HIS .	153	70.927	23.409	19.821		52.97
ATOM	1164	CD2		153	70.035	22.396	19.697		53.16
ATOM ATOM	1165 1166	ND1 CE1	HIS	153 153	70.776	24.194	18.697		53.71
ATOM	1167	NE2		153	69.831 69.365	23.680 22.589	17.931 18.515		55.24 55.29
ATOM	1168	C	HIS	153	74.004	23.334	19.622		51.87
ATOM	1169	ŏ	HIS	153	74.923	24.146	19.735		51.83
ATOM	1170	N	LYS	154	73.673	22.790	18.456		55.48
ATOM	1171	CA	LYS	154	74.407	23.144	17.247		60.47
ATOM	1172	СВ	LYS	154	73.829	22.445	16.015	1.00	63.01
ATOM	1173	CG	LYS	154	74.206	20.976	15.895	1.00	68.55
MOTA	1174	CD	LYS	154	74.099	20.487	14.449	1.00	73.23
MOTA	1175	CE	LYS	154	72.700	20.712	13.862	1.00	76.00
MOTA	1176	NZ	LYS	154	72.575	20.188	12.467	1.00	75.37
MOTA	1177	С	LYS	154	74.381	24.642	17.024		62.14
ATOM	1178	0	LYS	154	75.423	25.262	16.808	1.00	63.02
ATOM	1179	N	ASN	155	73.189	25.225	17.095	1.00	63.91
ATOM	1180	CA	ASN	155	73.031	26.659	16.883		66.44
ATOM	1181	CB	ASN	155	71.566	26.981	16.573		68.56
ATOM ATOM	1182 1183	CG	ASN	155	71.112 71.122	26.419	15.230	1.00	71.59
ATOM	1184	OD1 ND2		155 155	70.714	25.209	15.014		73.47
ATOM	1185	C	ASN	155	73.516	27.304 27.532	14.319 18.042	1.00	73.15
ATOM	1186	o	ASN	155	73.488	28.762	17.946		66.67
ATOM	1187	N	ASN ·	156	73.965	26.912	19.131		67.57
ATOM	1188	CA	ASN	156	74.440	27.684	20.273		68.50
ATOM	1189	СВ	ASN	156	74.905	26.773	21.412		66.33
MOTA	1190	CG	ASN	156	75.184	27.542	22.694		63.56
ATOM	1191	OD1	ASN	156	75.866	28.557	22.678	1.00	62.87
MOTA	1192	ND2	ASN	156	74.662	27.054	23.811	1.00	63.14
MOTA	1193	С	ASN	156	75.595	28.557	19.807	1.00	70.55
MOTA	1194	0	ASN	156	76.671	28.057	19.457	1.00	70.12
ATOM	1195	N	GLN	157	75.350	29.865	19.802	1.00	72.48
ATOM	1196	CA	GLN	157	76.330	30.855	19.369	1.00	73.78
ATOM	1197	CB	GLN	157	75.600	32.098	18.863	1.00	74.49
ATOM	1198	CG	GLN	157	74.721	31.834	17.660		76.92
ATOM ATOM	1199 1200	CD OE1	GLN	157 157	75.500 75.897	31.859 32.929	16.363 15.893		79.62 82.63
ATOM	1201	NE2		157	75.732	30.683	15.777		79.15
ATOM	1202	C	GLN	157	77.295	31.251	20.479		74.47
ATOM	1203	ō	GLN	157	78.237	32.013	20.248		75.49
ATOM	1204	N	LEU	158	77.063	30.728	21.680		73.60
MOTA	1205	CA	LEU	158	77.904	31.040	22.829		72.29
ATOM	1206	CB	LEU	158	77.104	31.885	23.820	1.00	71.73
ATOM	1207	CG	LEU	158	76.730	33.257	23.254	1.00	70.67
MOTA	1208	CD1		158	75.489	33.791	23.939		71.16
MOTA	1209	CD2		158	77.910	34.201	23.418		70.11
ATOM	1210	C	LEU	158	78.444	29.785	23.509		72.29
MOTA	1211	0.	LEU	158 .	78.572	29.732	24.738	1.00	72.03
MOTA	1212	N	ALA	159	78.761	28.780	22.696		71.81
ATOM ATOM	1213 1214	CA CB	ALA ALA	159 159	79.296	27.512	23.188		70.92
ATOM	1214	CB	ALA	159	79.338 80.698	26.489 27.749	22.055 23.740		70.01
ATOM	1216	0	ALA	159	81.677	27.149	23.740		69.90
		-		_00	01.077	-,.1,0	-0.203		55.55

,	-	_
	,	•

			•		/:	•			
MOTA	1217	N	LEU	160	80.778	28.609	24.745	1.00	68.85
ATOM	1218	CA	LEU	160	82.040	28.953	25.368	1.00	68.85
ATOM	1219	CB	LEU	160	82.051	30.459	25.652	1.00	69.61
ATOM	1220	CG	LEU	160	83.289	31.167	26.209	1.00	71.41
ATOM	1221		LEU	160	83.155	32.672	25.979	1.00	70.97
ATOM ATOM	1222 1223	CDZ	LEU	160	83.448	30.864	27.695	1.00	71.17
ATOM	1223	0	LEU LEU	160 160	82.201	28.142	26.653	1.00	68.43
ATOM	1225	N	THR	161	81.221 83.437	27.638 28.007	27.202 27.122	1.00	67.78
ATOM	1226	CA	THR .	161	83.715	27.252	28.340	1.00	67.93 67.32
ATOM	1227	СВ	THR	161	84.015	25.769	28.011	1.00	67.61
ATOM	1228		THR	161	82.822	25.127	27.545	1.00	68.81
ATOM	1229		THR	161	84.513	25.039	29.236	1.00	69.29
ATOM	1230	С	THR	161	84.883	27.815	29.156	1.00	66.25
MOTA	1231	0	THR	161	85.851	28.342	28.606	1.00	66.57
ATOM	1232	N	LEU	162	84.765	27.709	30.477	1.00	64.73
ATOM	1233	CA	LEU	162	85.797	28.154	31.409	1.00	63.16
ATOM	1234	CB	LEU	162	85.587	29.599	31.844		63.88
ATOM	1235	CG	LEU	162	86.150	30.685	30.936	1.00	65.76
ATOM	1236	CD1		162	86.247	31.982	31.736	1.00	64.20
MOTA MOTA	1237		LEU	162	87.533	30.275	30.428		66.77
ATOM	1238 1239	C 0	LEU LEU	162 162	85.699	27.260	32.621	1.00	62.84
ATOM	1240	N	ILE	163	85.062 86.339	27.610 26.102	33.617 32.538	1.00	63.15 61.64
ATOM	1241	CA	ILE	163	86.276	25.148	33.622	1.00	61.03
ATOM	1242	СВ	ILE	163	85.839	23.779	33.022		58.91
ATOM	1243	CG2	ILE	163	85.660	22.808	34.245		57.25
ATOM	1244	CG1		163	84.527	23.947	32.317		
MOTA	1245	CD1	ILE	163	84.036	22.705	31.620		
ATOM	1246	С	ILE	163	87.556	25.004	34.414		61.98
ATOM	1247	0	ILE	163	88.598	24.637	33.877	1.00	62.41
ATOM	1248	N	ASP	164	87.453	25.303	35.706		63.32
ATOM	1249	CA	ASP	164	88.567	25.210	36.641	1.00	63.14
ATOM	1250	CB	ASP	164	88.375	26.237	37.768		
ATOM ATOM	1251 1252	CG	ASP	164	89.374	26.069	38.899	1.00	62.81
ATOM	1253	OD1 OD2		164 164	90.576 88.961	25.893 26.126	38.605	1.00	62.88
ATOM	1254	C	ASP	164	88.584	23.786	40.084 37.196		60.84
ATOM	1255	ō	ASP	164	87.533	23.788	37.190	1.00	63.01
ATOM	1256	N	THR	165	89.773	23.224	37.383	1.00	64.53
ATOM	1257	CA	THR	165	89.871	21.868	37.904		64.48
ATOM	1258	CB	THR	165	90.503	20.924	36.875	1.00	64.86
ATOM	1259	OG1	THR	165	91.734	21.484	36.410	1.00	65.61
ATOM	1260	CG2	THR	165	89.557	20.717	35.695		64.19
ATOM	1261	С	THR	165	90.638	21.766	39.211		64.43
ATOM	1262	0	THR	165	90.703	20.691	39.803		63.97
MOTA	1263	N	ASN	166	91.210	22.878	39.667		65.17
ATOM ATOM	1264 1265	CA CB	ASN	166	91.945	22.878	40.929		65.86
ATOM	1266	CG	ASN ASN	166 166	92.328 93.218	24.302 25.006	41.359 40.351		68.67 73.52
ATOM	1267	OD1		166	94.005	24.367	39.651		71.97
ATOM	1268	ND2		166	93.109	26.332	40.294		78.68
ATOM	1269	С	ASN	166	91.058	22.262	42.005		65.19
ATOM	1270	0	ASN	166	90.106	22.888	42.470		65.75
MOTA	1271	N	ARG	167	91.368	21.030	42.389		64.79
MOTA	1272	CA	ARG	167	90.598	20.330	43.408		64.71
MOTA	1273	CB	ARG	167	90.313	18.897	42.971		64.49
MOTA	1274	CG	ARG	167	89.594	18.791	41.663		65.00
ATOM	1275	CD	ARG	167	88.994	17.420	41.511		65.82
ATOM	1276	NE CZ	ARG	167	88.143	17.344	40.332		67.22
MOTA	1277	CZ	ARG	167	88.591	17.452	39.089	1.00	68.51

76 ATOM 1278 NH1 ARG 167 89.883 17.640 38.867 1.00 70.72 ATOM NH2 ARG 167 1279 87.749 17.365 38.067 1.00 70.00 ATOM 1280 ARG 167 С 91.349 20.299 44.727 1.00 64.78 MOTA 1281 0 ARG 167 92.543 20.583 44.776 1.00 65.42 ATOM SER 1282 N 168 90.645 19.934 45.792 1.00 64.29 ATOM 1283 SER 168 CA 91.247 19.875 47.112 1.00 63.70 ATOM 1284 CB SER 168 90.600 20.931 48.010 1.00 64.85 ATOM 1285 OG SER 168 91.251 21.029 49.262 1.00 63.91 ATOM 1286 С SER 168 91.078 18.478 47.705 1.00 64.32 1287 SER 48.914 0 168 91.202 18.281 1288 N ARG 169 90.789 17.511 46.838

ATOM 1.00 65.24 MOTA 1.00 63.72 ATOM 1289 CA ARG 169 90.618 16.115 47.233 1.00 62.92 ATOM 1290 ARG CB 169 89.186 15.838 47.700 1.00 61.69 ATOM 1291 ARG 46.585 CG 169 88.159 15.928 1.00 60.81 ATOM 1292 ARG CD 169 86.850 15.227 46.941 1.00 60.29 ATOM 1293 ARG NE 169 85.978 15.115 45.771 1.00 60.63 ATOM 1294 ARG 84.979 CZ169 14.246 45.652 1.00 58.93 ATOM 1295 NH1 ARG 169 84.712 13.403 46.634 1.00 61.04 ATOM 1296 NH2 ARG 169 84.251 14.216 44.544 1.00 58.88 ATOM 1297 С ARG 169 90.910 15.271 45.999 1.00 63.61 ATOM 1298 ARG 0 169 91.042 15.802 44.896 1.00 64.62 ATOM 1299 N ALA 170 91.013 13.961 46.182 1.00 63.09 ATOM 1300 CA ALA 170 91.284 13.061 45.068 1.00 62.15 11.929 ATOM 1301 ALA CB 170 92.188 45.533 1.00 61.97 ATOM 1302 С ALA 170 89.964 12.503 44.546 1.00 61.36 MOTA 1303 0 170 ALA 89.064 12.213 45.333 1.00 62.33 ATOM 1304 N CYS 171 89.843 12.347 43.229 1.00 60.67 ATOM 1305 CYS CA 171 88.603 11.825 42.650 1.00 60.64 ATOM 1306 C CYS 171 88.645 10.338 42.335 1.00 60.94 ATOM 1307 0 CYS 171 89.622 9.848 41.773 1.00 60.26 ATOM 1308 41.338 CB CYS 171 88.249 12.547 1.00 59.51 MOTA 1309 SG CYS 171 88.141 14.366 41.386 1.00 59.95 MOTA 1310 N HIS 172 87.589 9.617 42.695 1.00 61.81 MOTA 1311 CA HIS 172 87.520 8.203 42.347 1.00 62.68 MOTA 1312 CB HIS 172 86.412 7.488 43.124 1.00 64.14 ATOM 1313 CG HIS 172 86.736 7.251 44.568 1.00 67.75 MOTA 1314 CD2 HIS 87.818 1.00 68.32 172 7.591 45.309 MOTA 1315 ND1 HIS 172 85.879 6.588 45.422 1.00 68.70 86.418 ATOM 1316 CE1 HIS 172 6.531 46.627 1.00 69.06 MOTA 1317 NE2 HIS 172 87.594 7.132 46.585 1.00 70.47 MOTA 1318 С HIS 172 87.161 8.243 40.861 1.00 63.27 MOTA 1319 0 86.545 9.200 40.392 HIS 172 1.00 63.84

1320 87.541 MOTA N PRO 173 7.213 40.096 1.00 63.36 MOTA 1321 CD PRO 173 88.332 6.022 40.453 1.00 63.35 ATOM 1322 PRO 173 7.218 CA 87.219 38.666 1.00 62.52 MOTA 1323 CB PRO 173 88.147 6.139 38.119 1.00 63.08 1324 MOTA CG PRO 173 88.152 5.142 39.235 1.00 62.82 1325 MOTA С PRO 173 85.745 6.941 1.00 61.30 38.345 MOTA 1326 0 PRO 173 85.018 6.394 39.174 1.00 60.21 ATOM 1327 CYS 85.319 7.321 37.138 N 174 1.00 60.56 36.694 MOTA 1328 CA CYS 174 83.944 7.091 1.00 60.85 MOTA 1329 83.643 С CYS 174 5.605 36.800 1.00 62.57 MOTA 1330 0 CYS 174 84.559 4.787 36.806 1.00 64.23 83.750 MOTA 1331 CB CYS 174 7.506 35.227 1.00 58.70 ATOM 1332 SG CYS 174 83.709 9.288 34.837 1.00 56.01 MOTA 1333 N SER 175 82.362 5.254 36.877 1.00 64.18 36.956 MOTA 1334 CA SER 175 81.961 3.852 1.00 65.15 MOTA 1335 175 CB SER 80.433 3.738 37.084 1.00 65.03 ATOM 1336 OG SER 175 79.996 2.385 37.055 1.00 62.93 1337 С MOTA SER 175 82.437 3.126 35.689 1.00 66.82

82.599

MOTA

1338

0

SER

175

3.742

34.627

1.00 65.55

77 ·

					,	,			
ATOM	1339	N	PRO	176	82.677	1.805	35.793	1.00	67.86
ATOM	1340	CD	PRO	176	82.600	0.994	37.021	1.00	67.63
MOTA	1341	CA	PRO	176	83.136	0.991	34.661	1.00	68.04
MOTA	1342	CB	PRO	176	83.251	-0.408	35.266	1.00	68.70
MOTA	1343	CG	PRO	176	83.552	-0.132	36.711	1.00	
ATOM	1344	С	PRO	176	82.126	1.039	33.530	1.00	68.50
ATOM	1345	0	PRO	176	82.476	0.908	32.358	1.00	68.63
ATOM	1346	N	MET	177	80.867	1.233	33.908	1.00	69.98
ATOM	1347	CA	MET MET	177	79.753	1.307	32.966	1.00	71.03
ATOM ATOM	1348 1349	CB CG	MET	177	78.442	1.427	33.740	1.00	74.07
ATOM	1350	SD	MET	177 177	78.160 77.587	0.279 -1.175	34.697 33.823		76.88 79.28
ATOM	1351	CE	MET	177	76.129	-0.467	32.980	1.00	76.83
ATOM	1352	C	MET	177	79.860	2.489	32.002	1.00	
ATOM	1353	ŏ	MET	177 .	79.295	2.452	30.905		69.07
ATOM	1354	N	CYS	178	80.574	3.535	32.413		68.38
ATOM	1355	CA	CYS	178	80.721	4.721	31.581	1.00	67.86
ATOM	1356	С	CYS	178	81.723	4.536	30.454		70.14
ATOM	1357	0	CYS	178	82.929	4.410	30.679		70.44
ATOM	1358	CB	CYS	178	81.131	5.927	32.419	1.00	
ATOM	1359	SG	CYS	178	79.973	6.377	33.746	1.00	
ATOM	1360	N	LYS	179	81.193	4.552	29.237	1.00	71.44
ATOM	1361	CA	LYS	179	81.961	4.392	28.009	1.00	72.58
ATOM	1362	CB	LYS	179	81.111	4.872	26.823	1.00	74.72
MOTA	1363	CG	LYS	179	79.759	4.447	26.948		76.95
ATOM	1364	С	LYS	179	83.320	5.107	27.981	1.00	71.24
ATOM	1365	0	LYS	179	84.348	4.529	28.346	1.00	71.78
ATOM	1366	N	GLY	180	83.319	6.362	27.539	1.00	
ATOM	1367	CA	GLY	180	84.557	7.113	27.436		66.76
ATOM	1368	C	GLY	180	85.009	7.880	28.665	1.00	
ATOM	1369	0	GLY	180	85.504	9.001	28.546	1.00	
ATOM ATOM	1370 1371	N Ch	SER	181	84.855	7.284	29.843	1.00	
ATOM	1371	CA CB	SER SER	181 181	85.268 86.785	7.942 8.155	31.076 31.085	1.00	
ATOM	1372	OG	SER	181	87.479	6.920	31.005	1.00	
ATOM	1374	C	SER	181	84.577	9.289	31.233	1.00	
ATOM	1375	ō	SER	181	85.179	10.250	31.714	1.00	
ATOM	1376	N	ARG ·	182	83.316	9.358	30.816		57.20
ATOM	1377	CA	ARG	182	82.541	10.586	30.922		53.54
MOTA	1378	СВ	ARG	182	81.994	10.977	29.547		52.60
ATOM	1379	CG	ARG	182	83.079	11.307	28.526	1.00	51.05
ATOM	1380	CD	ARG	182	82.480	11.761	27.208	1.00	49.89
ATOM	1381	NE	ARG	182	83.487	12.061	26.190	1.00	50.63
MOTA	1382	CZ	ARG	182	84.426	12.997	26.313	1.00	53.22
MOTA	1383		ARG	182	84.501	13.733	27.417		53.61
ATOM	1384	NH2		182	85.285	13.213	25.323		52.35
ATOM	1385	С	ARG	182	81.392	10.399	31.914		52.13
ATOM	1386	0	ARG	182	80.448	9.652	31.647		49.98
MOTA	1387	N	CYS	183	81.477	11.067	33.063		50.35
ATOM	1388	CA	CYS	183	80.424	10.954	34.067		50.36
ATOM	1389 1390	C	CYS	183	80.235	12.234	34.876		50.14
ATOM ATOM	1391	O CB	CYS CYS	183 183	81.110 80.721	13.113	34.878		49.09 51.52
ATOM	1391	CB SG	CYS	183	82.222	9.791 10.011	35.017 36.025		53.52
ATOM	1393	N	TRP	184	79.091	12.326	35.561		49.39
ATOM	1394	CA	TRP	184	78.754	13.485	36.391		50.35
ATOM	1395	СВ	TRP	184	77.272	13.844	36.280		48.39
ATOM	1396	CG	TRP	184	76.840	14.320	34.949		46.10
ATOM	1397	CD2		184	77.000	15.639	34.425		46.71
ATOM	1398	CE2		184	76.450	15.640	33.128		46.63
ATOM	1399	CE3		184	77.556	16.825	34.927		46.81

					7	8		
ATOM	1400	CD1	TRP	184	76.220	13.593	33.981	1.00 44.32
ATOM	1401	NE1	TRP	184	75.982	14.376	32.882	1.00 45.69
ATOM	1402	CZ2	TRP	184	76.436	16.784	32.320	1.00 46.95
ATOM	1403	CZ3		184	77.545	17.962	34.125	1.00 45.69
ATOM	1404	CH2	TRP	184	76.987	17.932	32.834	1.00 46.50
ATOM	1405	С	TRP	184	79.034	13.182	37.845	1.00 52.63
ATOM	1406	0	TRP	184	78.997	14.072	38.693	1.00 52.34
ATOM	1407	N	GLY	185	79.283	11.912	38.130	1.00 55.68
ATOM	1408	CA	GLY	185	79.559	11.497	39.490	1.00 58.79
ATOM ATOM	1409 1410	С 0	GLY	185	80.110	10.091	39.502	1.00 61.63
ATOM	1411	Ŋ	GLY GLU	185 186	80.183 80.498	9.435 9.621	38.461	1.00 63.55
ATOM	1412	CA	GLU	186	81.057	8.282	40.680 40.821	1.00 63.97 1.00 65.52
ATOM	1413	CB	GLU	186	81.624	8.113	42.238	1.00 63.32
ATOM	1414	CG	GLU	186	81.996	6.687	42.614	1.00 73.34
ATOM	1415	CD	GLU	186	82.845	6.608	43.877	1.00 76.15
ATOM	1416	OE1	GLU	186	82.521	7.314	44.864	1.00 75.86
ATOM	1417	OE2	GLU	186	83.830	5.829	43.877	1.00 76.23
ATOM	1418	С	GLU	186	80.052	7.172	40.510	1.00 64.74
ATOM	1419	0	GLU	186	80.430	6.108	40.023	1.00 64.79
ATOM	1420	N	SER	187	78.773	7.421	40.768	1.00 64.00
ATOM	1421	CA	SER	187	77.748	6.412	40.524	1.00 64.83
ATOM	1422	CB	SER	187	76.360	6.992	40.784	1.00 64.09
ATOM	1423	OG	SER	187	75.364	6.029	40.506	1.00 65.85
ATOM ATOM	1424 1425	С	SER	187	77.781	5.788	39.131	1.00 65.54
ATOM	1425	O N	SER SER	187 188	78.370 77.145	6.334 4.627	38.193 39.011	1.00 67.53 1.00 65.72
ATOM	1427	CA	SER	188	77.145	3.903	37.747	1.00 65.72
ATOM	1428	CB	SER	188	76.828	2.414	37.747	1.00 65.58
ATOM	1429	OG	SER	188	75.640	2.213	38.745	1.00 66.29
MOTA	1430	С	SER	188	75.941	4.485	36,942	1.00 65.07
MOTA	1431	0	SER	188	75.706	4.102	35.798	1.00 63.32
MOTA	1432	N	GLU	189	75.232	5.419	37.563	1.00 65.54
MOTA	1433	CA	GLU	189	74.108	6.074	36.922	1.00 65.45
ATOM	1434	CB	GLU	189	72.909	6.075	37.863	1.00 68.22
MOTA	1435	CG	GLU	189	72.379	4.704	38.223	1.00 71.35
ATOM	1436	CD	GLU	189	71.195	4.799	39.166	1.00 74.87
ATOM ATOM	1437 1438	OE1 OE2	GLU	189	70.549	3.760	39.433	1.00 76.57
ATOM	1439	C	GLU	189 189	70.913 74.428	5.923 7.509	39.645 36.522	1.00 74.44 1.00 63.65
ATOM	1440	Ö	GLU	189	73.521	8.274	36.198	1.00 64.33
ATOM	1441	N	ASP	190	75.705	7.879	36.543	1.00 61.27
ATOM	1442	CA	ASP	190	76.087	9.237	36.185	1.00 59.70
ATOM	1443	СВ	ASP	190	76.898	9.868	37.309	1.00 60.26
ATOM	1444	CG	ASP	190	76.138	9.915	38.607	1.00 62.99
MOTA	1445		ASP	190	74.995	10.429	38.622	1.00 62.79
MOTA	1446		ASP	190	76.691	9.440	39.619	1.00 65.30
MOTA	1447	С	ASP	190	76.867	9.339	34.884	1.00 58.34
ATOM	1448	0	ASP	190	77.533	10.344	34.629	1.00 58.18
ATOM	1449	N	CYS	191	76.785	8.305	34.059	1.00 56.49
ATOM ATOM	1450 1451	CA C	CYS CYS	191 191	77.491 76.855	8.324 9.351	32.787	1.00 55.82 1.00 55.00
MOTA'	1451	0	CYS	191	75.640	9.331	31.850 31.625	1.00 54.59
ATOM	1453	СВ	CYS	191	77.450	6.937	32.142	1.00 56.66
ATOM	1454	SG	CYS	191	78.189	5.611	33.156	1.00 56.79
ATOM	1455	N	GLN	192	77.663	10.269	31.319	1.00 52.00
ATOM	1456	CA	GLN	192	77.144	11.272	30.398	1.00 50.36
MOTA	1457	CB	GLN	192	78.229	12.283	29.975	1.00 48.42
ATOM	1458	CG	GLN	192	77.836	13.130	28.750	1.00 44.65
MOTA	1459	CD	GLN	192	78.811	14.268	28.423	1.00 45.67
MOTA	1460	OE1	GLN	192	79.992	14.214	28.761	1.00 45.08

ATOM

1521

N

GLY

201

79 ATOM 1461 NE2 GLN 192 78.312 15.294 27.735 1.00 45.93 ATOM 1462 C 10.573 GLN 192 76.606 29.166 1.00 50.85 ATOM 1463 192 0 GLN 77.304 9.789 28.531 1.00 52.31 MOTA 1464 SER 193 N 75.347 10.838 28.848 1.00 50.48 ATOM 1465 CA SER 193 74.721 10.255 27.674 1.00 50.36 ATOM 1466 193 CB SER 73.231 10.007 27.941 1.00 51.05 MOTA 1467 OG SER 193 72.622 9.330 26.856 1.00 54.42 ATOM 1468 С SER 193 74.896 11.284 26.558 1.00 49.91 ATOM 1469 0 SER 193 74.477 12.437 26.703 1.00 51.97 10.885 ATOM 1470 N LEU 194 25.456 75.525 1.00 47.52 ATOM 1471 CA LEU 194 75.743 11.802 24.340 1.00 45.90 ATOM 1472 CB LEU 194 77.042 11.425 23.618 1.00 45.34 24.561 MOTA 1473 CG LEU 194 78.254 11.307 1.00 45.76 MOTA 1474 CD1 LEU 194 79.524 10.936 23.792 1.00 46.27 ATOM 1475 CD2 LEU 194 78.453 12.621 25.281 1.00 43.23 MOTA 1476 С LEU 194 74.541 11.767 23.388 1.00 45.22 ATOM 1477 0 LEU 194 73.954 10.706 23.174 1.00 44.15 ATOM 1478 195 12.922 N THR 74.158 22.836 1.00 45.06 ATOM 1479 CA THR 195 73.004 12.977 21.932 1.00 45.39 ATOM 1480 CB THR 195 71.721 13.462 22.677 1.00 42.78 ATOM 1481 195 OG1 THR 71.877 14.824 23.092 1.00 42.26 ATOM 1482 CG2 THR 195 71.454 12.610 23.888 1.00 40.24 ATOM 1483 С THR 195 73.188 13.848 20.685 1.00 48.13 14.046 19.906 ATOM 1484 0 THR 195 72.240 1.00 47.32 ATOM 1485 N ARG 196 74.398 14.366 20.496 1.00 50.47 ATOM 1486 ARG 196 74.700 CA 15.206 19.339 1.00 54.64 ATOM 1487 CB ARG 196 74.945 16.661 19.774 1.00 55.44 ATOM 1488 CG ARG 196 75.186 17.639 18.615 1.00 57.51 ATOM 1489 CD ARG 196 75.521 19.042 19.111 1.00 56.78 MOTA 1490 NE ARG 196 76.599 19.642 18.328 1.00 60.42 1491 196 ATOM ARG 77.246 20.759 CZ 18.661 1.00 61.82 19.769 MOTA 1492 ARG 196 76.924 21.413 1.00 61.40 NH1 1493 78.235 1.00 61.58 MOTA NH2 ARG 196 21.214 17.897 MOTA 1494 ARG 196 75.934 14.673 1.00 56.36 С 18.611 1495 196 75.830 ATOM 0 ARG 14.136 17.514 1.00 56.46 THR ATOM 1496 N 197 77.097 14.817 19.244 1.00 59.50 ATOM 1497 CA THR 197 78.374 14.370 1.00 61.37 18.687 MOTA 1498 CB THR 197 79.531 14.549 19.719 1.00 61.39 ATOM 1499 OG1 THR 197 79.214 13.846 20.927 1.00 63.55 ATOM 1500 CG2 THR 197 79.752 16.020 20.039 1.00 60.20 MOTA 1501 С THR 197 78.428 12.922 18.167 1.00 62.07 MOTA 1502 197 79.360 12.556 17.447 1.00 63.66 0 THR MOTA 1503 N VAL 198 77.450 12.094 18.515 1.00 62.36 MOTA 1504 77.464 10.705 18.051 1.00 63.59 CA VAL 198 MOTA 1505 CB VAL 198 77.466 9.733 19.239 1.00 63.41 ATOM 1506 CG1 VAL 198 78.619 10.061 20.169 1.00 65.40 ATOM 1507 CG2 VAL 198 76.141 9.817 19.981 1.00 63.36 1508 198 10.365 MOTA С VAL 76.269 17.168 1.00 64.53 ATOM 1509 0 VAL 198 75.768 9.237 17.200 1.00 65.15 16.372 MOTA 1510 N CYS 199 75.820 11.332 1.00 66.05 MOTA 1511 CA CYS 199 74.659 11.128 15.511 1.00 67.00 MOTA 1512 С CYS 199 74.962 10.869 14.040 1.00 69.27 MOTA 1513 199 75.999 11.288 0 CYS 13.510 1.00 67.96 MOTA 1514 CYS 199 73.705 12.325 15.613 1.00 64.26 CB MOTA 1515 CYS 199 73.095 12.674 17.292 1.00 58.90 SG MOTA 1516 N ALA 200 74.024 10.176 13.397 1.00 71.92 MOTA 1517 200 74.109 9.831 11.984 1.00 74.79 CA ALA MOTA 1518 CB 200 73.163 8.670 11.668 1.00 75.33 ALA ATOM 1519 С ALA 200 73.732 11.052 11.157 1.00 76.31 MOTA 1520 200 73.453 1.00 76.44 0 ALA 12.119 11.711

10.887

9.834

73.713

1.00 78.51

ATOM		CA	GLY	201	73.382	11.992	8.952	1 00	78.51
2	1522				73.302	11.332	0.932	1.00	/0.DI
ATOM		С	GLY	201	74.024	13.240	9.517		79.24
ATOM		0	GLY	201	75.241	13.284	9.716		79.77
ATOM		N	GLY	202	73.207	14.249	9.801	1.00	78.75
ATOM		CA	GLY	202	73.729	15.475	10.372	1.00	77.26
ATOM		С	GLY	202	72.721	16.040	11.350	1.00	75.70
ATOM		0	GLY	202	72.779	17.222	11.699		75.31
ATOM		N	CYS	203	71.801	15.192	11.807	1.00	73.40
ATOM		CA	CYS	203	70.758	15.645		1.00	
ATOM		С	CYS	203	71.308	16.143	14.045		68.86
ATOM		0	CYS	203	72.292	15.613	14.558		68.82
ATOM		CB	CYS	203	69.734	14.540	12.948		72.59
ATOM		SG	CYS	203	70.319	13.145	13.941		75.84
ATOM		N	ALA	204	70.652	17.169	14.590		65.90
ATOM ATOM		CA	ALA	204	71.050	17.813	15.845		62.55
ATOM		CB C	ALA	204	70.169	19.037	16.091		60.92
ATOM		0	ALA	204	71.054	16.921	17.087		60.13
ATOM		N	ALA ARG	204 205	71.996 69.999	16.970	17.880		60.20
ATOM		CA	ARG	205	69.882	16.129 15.233	17.261		57.62
ATOM		CB	ARG	205	68.831	15.759	18.409 19.393		56.05 53.61
ATOM		CG	ARG	205	69.196	17.073	20.070		52.57
ATOM		CD	ARG	205	70.444	16.932	20.939		49.89
ATOM		NE	ARG	205	70.879	18.209	21.501		47.37
ATOM		CZ	ARG	205	72.046	18.391	22.109		49.35
ATOM	1547		ARG	205	72.892	17.371	22.236		51.06
ATOM			ARG	205	72.378	19.584	22.584		47.62
ATOM		С	ARG	205	69.499	13.830	17.960		56.33
MOTA	1550	0	ARG	205	68.872	13.654	16.917		55.93
ATOM	1551	N	CYS	206	69.866	12.828	18.750		56.86
ATOM	1552	CA	CYS	206	69.545	11.459	18.383		59.23
MOTA		С	CYS	206	69.528	10.509	19.578		62.16
ATOM		0	CYS	206	70.103	10.799	20.625	1.00	62.41
MOTA		CB	CYS	206	70.535	10.970	17.326	1.00	56.45
ATOM		SG	CYS	206	72.269	10.911	17.882	1.00	56.15
ATOM		N	LYS	207	68.848	9.378	19.408	1.00	65.56
MOTA		CA	LYS	207	68.723	8.356	20.445		68.79
ATOM		CB	LYS	207	67.347	7.683	20.343		67.04
ATOM		CG	LYS	207	67.173	6.436	21.195		67.73
ATOM		CD	LYS	207	65.772	5.855	21.043		67.54
ATOM		CE	LYS	207	65.436	5.561	19.586		67.59
ATOM		NZ	LYS	207	66.392	4.601	18.974	0.01	
ATOM		C	LYS	207	69.830	7.312	20.293		71.75
ATOM ATOM		O N		. 207	70.112 70.460	6.550	21.218		72.00
ATOM		N CA	GLY GLY	208 208	70.460 71.523	7.287 6.330	19.123		74.88
ATOM		C	GLY	208	72.444	6.705	18.881 17.733		78.08 80.40
ATOM		Ö	GLY	208	72.566	7.880	17.733		80.35
ATOM		N	PRO	209	73.116	5.718	17.122		82.07
ATOM		CD	PRO	209	73.269	4.347	17.650		81.75
ATOM		CA	PRO	209	74.037	5.952	16.004		82.82
ATOM		CB	PRO	209	75.095	4.884	16.225		83.11
ATOM		CG	PRO	209	74.248	3.718	16.670		83.12
MOTA	1575	С	PRO	209	73.388	5.830	14.623		83.61
ATOM	1576	0	PRO	209	73.866	6.418	13.647		82.88
ATOM	1577	N	LEU	210	72.302	5.063	14.554		84.52
ATOM		CA	LEU	210	71.586	4.825	13.301		86.20
MOTA		CB	LEU	210	70.631	3.640	13.468		86.91
MOTA	1580	CG	LEU	210	71.320	2.497	13.943		88.07
ATOM		С	LEU	210	70.799	6.033	12.796	1.00	86.53
MOTA	1582	0	LEU	210	70.273	6.822	13.584		86.64

				•	. 8	1		
ATOM	1583	N	PRO	211	70.705	6.189	11.464	1.00 86.67
ATOM	1584	CD	PRO	211	71.348	5.377	10.417	1.00 86.41
ATOM	1585	CA	PRO	211	69.969	7.313	10.873	1.00 86.21
ATOM	1586	CB	PRO	211	70.054	7.029	9.375	1.00 86.12
ATOM	1587	CG	PRO	211	71.381	6.339	9.249	1.00 86.71
MOTA	1588	С	PRO	211	68.531	7.335	11.378	1.00 84.87
ATOM	1589	0	PRO	211	67.890	8.383	11.416	1.00 84.36
MOTA	1590	N	THR	212	68.038	6.166	11.770	1.00 83.57
MOTA	1591	CA	THR	212	66.680	6.039	12.276	1.00 82.59
ATOM	1592	CB	THR	212	66.202	4.575	12.229	1.00 82.81
ATOM	1593	OG1	THR	212	64.904	4.479	12.833	1.00 83.74
ATOM	1594	CG2	THR	212	67.180	3.671	12.974	1.00 81.77
ATOM ATOM	1595	C	THR	212	66.584	6.526	13.713	1.00 81.46
ATOM	1596 1597	O N	THR ASP	212 213	65.499 67.720	6.847 6.568	14.193	1.00 81.45 1.00 80.37
ATOM	1598	CA	ASP	213	67.740	7.020	14.401 15.788	1.00 79.08
ATOM	1599	CB	ASP	213	69.002	6.524	16.505	1.00 79.78
ATOM	1600	CG	ASP	213	69.053	5.010	16.621	1.00 80.99
ATOM	1601		ASP	213	68.014	4.400	16.968	1.00 81.86
ATOM	1602		ASP	213	70.134	4.433	16.374	1.00 80.16
ATOM	1603	С	ASP	213	67.665	8.542	15.874	1.00 77.22
ATOM	1604	0	ASP	213	67.365	9.092	16.935	1.00 77.31
ATOM	1605	N	CYS	214	67.940	9.216	14.759	1.00 74.07
MOTA	1606	CA	CYS	214 ·	67.883	10.672	14.719	1.00 70.05
ATOM	1607	С	CYS	214	66.541	11.159	15.230	1.00 66.41
MOTA	1608	0	CYS	214	65.513	10.513	15.021	1.00 65.64
MOTA	1609	CB	CYS	214	68.084	11.193	13.299	1.00 70.85
MOTA	1610	SG	CYS	214	69.811	11.527	12.823	1.00 76.21
ATOM	1611	N	CYS	215	66.566	12.305	15.902	1.00 62.55
ATOM	1612	CA	CYS	215	65.363	12.913	16.455	1.00 59.05
ATOM	1613	С	CYS	215	64.740	13.900	15.460	1.00 56.72
ATOM	1614 1615	O	CYS	215	65.420	14.435	14.581	1.00 55.51
ATOM ATOM	1616	. CB SG	CYS CYS	215 215	65.697 66.369	13.668 12.690	17.751 19.136	1.00 57.47 1.00 53.64
ATOM	1617	N	HIS	216	63.444	14.141	15.607	1.00 53.04
ATOM	1618	CA	HIS	216	62.757	15.096	14.748	1.00 54.48
ATOM	1619	CB	HIS	216	61.269	15.142	15.115	1.00 53.10
ATOM	1620	CG	HIS	216	60.438	15.983	14.195	1.00 55.87
MOTA	1621	CD2	HIS	216	59.589	15.638	13.196	1.00 55.67
MOTA	1622		HIS	216	60.406	17.360	14.266	1.00 56.51
MOTA	1623	CE1	HIS	216	59.570	17.827	13.354	1.00 56.11
MOTA	1624	NE2	HIS	216	59.061	16.803	12.692	1.00 56.64
MOTA	1625	С	HIS	216	63.410	16.478	14.934	1.00 54.60
MOTA	1626	0	HIS	216	63.856	16.837	16.034	1.00 53.79
MOTA	1627	N	GLU	217	63.470	17.236	13.847	1.00 53.81
ATOM	1628	CA	GLU	. 217	64.067	18.566	13.833	1.00 54.35
ATOM	1629	CB	GLU	217	63.849	19.193	12.444	1.00 58.36
ATOM	1630	CG	GLU	217	64.190	20.676	12.323	1.00 63.65
ATOM	1631 1632	CD	GLU	217	64.738	21.027	10.948	1.00 67.93 1.00 71.26
ATOM ATOM	1633		GLU GLU	217 217	64.097 65.805	20.634 21.692	9.945 10.868	1.00 /1.26
ATOM	1634	C	GLU	217	63.564	19.513	14.928	1.00 57.02
ATOM	1635	Ö	GLU	217	64.338	20.313	15.464	1.00 52.35
ATOM	1636	N	GLN	218	62.275	19.421	15.251	1.00 51.31
ATOM	1637	CA	GLN	218	61.661	20.271	16.269	1.00 51.12
ATOM	1638	CB	GLN	218	60.139	20.318	16.080	1.00 50.40
ATOM	1639	CG	GLN	218	59.688	21.323	15.034	1.00 50.78
ATOM	1640	CD	GLN	218	60.338	22.687	15.232	1.00 52.99
MOTA	1641	OE1	GLN	218	60.327	23.238	16.335	1.00 53.76
MOTA	1642		GLN	218	60.905	23.238	14.164	1.00 52.00
MOTA	1643	С	GLN	218	61.983	19.866	17.705	1.00 51.26

							_			
MOTA	1644	0	GLN .	218		61.619	20.557	18.654	1.00 5	
MOTA	1645	N	CYS	219	•	62.665	18.742	17.863	1.00 5	
ATOM	1646	CA	CYS	219		63.039	18.271	19.185	1.00 5	
ATOM	1647	С	CYS	219		64.281	18.988	19.678	1.00 4	
MOTA	1648	0	CYS	219		65.053	19.540	18.893	1.00 4	
ATOM	1649	СВ	CYS	219		63.369	16.787	19.161	1.00 5	
ATOM	1650	SG	CYS	219		62.010	15.615	18.926	1.00 5	3.95
MOTA	1651	N	ALA	220		64.471	18.944	20.991	1.00 4	9.92
	1652	CA	ALA	220		65.628	19.530	21.644	1.00 4	
ATOM		CB	ALA	220		65.293	20.916	22.174	1.00 5	
ATOM	1653			220		65.995	18.590	22.796	1.00 4	
ATOM	1654	C	ALA			65.121	17.925	23.363	1.00 4	
MOTA	1655	0	ALA	220			18.523	23.112	1.00 4	
MOTA	1656	N	ALA	221		67.286		24.195		9.39
MOTA	1657	CA	ALA	221		67.795	17.684	25.486	1.00 4	
MOTA	1658	CB	ALA	221		67.019	17.963		1.00 4	
ATOM	1659	С	ALA	221		67.785	16.183	23.879	1.00 5	
MOTA	1660	0	ALA	221		68.672	15.444	24.314		
ATOM	1661	N	GLY	222		66.796	15.720	23.129	1.00 4	
ATOM	1662	CA	GLY	222		66.770	14.308	22.800	1.00 5	
MOTA	1663	С	GLY	222		65.397	13.768	22.472	1.00 5	
ATOM	1664	0	GLY	222		64.432	14.528	22.375	1.00 5	
ATOM	1665	N	CYS	223		65.306	12.448	22.313	1.00 5	
MOTA	1666	CA	CYS	223		64.037	11.804	21.979	1.00 5	
ATOM	1667	С	CYS	223		64.028	10.307	22.259	1.00 5	55.32
ATOM	1668	Ö	CYS	223		65.075	9.692	22.470	1.00 5	55.55
ATOM	1669	СВ	CYS	223		63.729	12.016	20.503	1.00 5	3.19
	1670	SG	CYS	223		64.960	11.250	19.401	1.00 5	
MOTA				224		62.831	9.729	22.256	1.00 5	
ATOM	1671	N	THR			62.664	8.296	22.473	1.00 5	
ATOM	1672	CA	THR	224		61.517	8.008	23.440	1.00	
ATOM	1673	CB	THR	224			8.560	22.917	1.00	
MOTA	1674	OG1		224		60.305		24.796	1.00 5	
MOTA	1675	CG2		224		61.812	8.620		1.00	
MOTA	1676	С	THR	224		62.335	7.677	21.117	1.00	
MOTA	1677	0	THR	224		62.844	6.613	20.758		
MOTA	1678	N	GLY	225		61.480	8.364	20.367	1.00	
MOTA	1679	CA	\mathtt{GLY}	225		61.100	7.899	19.044	1.00	
MOTA	1680	С	GLY	225		61.548	8.883	17.973	1.00	
ATOM	1681	0	GLY	225		62.223	9.873	18.275	1.00	
ATOM	1682	N	PRO	226		61.195	8.633	16.705	1.00	
ATOM	1683	CD	PRO	226		60.659	7.353	16.199	1.00	
ATOM	1684	CA	PRO	226		61.575	9.521	15.599	1.00	
MOTA	1685	СВ	PRO	226		61.713	8.556	14.431	1.00	
ATOM	1686	CG	PRO	226		60.571	7.596	14.694	1.00	
ATOM	1687	С	PRO	226		60.537	10.615	15.319	1.00	64.69
ATOM	1688	0	PRO	226		60.805	11.560	14.577	1.00	
ATOM	1689	N	LYS	227		59.356	10.478	15.917	1.00	
ATOM	1690	CA	LYS	227		58.276	11.438	15.716	1.00	63.98
ATOM	1691	СВ		. 227		56.930		16.082	1.00	
ATOM	1692	CG	LYS	227		56.580		15.200	1.00	66.25
	1693	CD	LYS	227		55.152		15.416	1.00	69.05
ATOM	1694	CE	LYS	227		54.965		16.775		70.66
ATOM		NZ	LYS	227		55.844		16.951		70.84
ATOM	1695			227		58.467		16.487		63.25
ATOM	1696		LYS			59.191				62.89
ATOM	1697		LYS	227						61.92
ATOM	1698		HIS	228		57.823				61.52
ATOM	1699		HIS	228		57.927				61.00
ATOM	1700		HIS	228		57.443				62.26
ATOM	1701			228		55.996				62.88
ATOM	1702		2 HIS	228		55.015				
MOTA	1703		1 HIS	228		55.404	_			62.93
MOTA	1704	CE	1 HIS	228		54.123	16.748	14.347	1.00	62.35

					. 0.	3			
MOTA	1705		HIS	228	53.861	15.692	15.097		62.26
ATOM	1706	С	HIS	228	57.133	15.114	17.972		61.48
MOTA	1707	0	HIS .	228	56.898	16.156	18.589		60.05
ATOM	1708	N	SER	229	56.733	13.915	18.384		61.60
ATOM	1709	CA	SER	229	55.969	13.713	19.609		61.01
MOTA	1710	CB	SER	229	54.644	13.010	19.286		61.25
MOTA	1711	OG	SER	229	54.855	11.816	18.539		61.44
ATOM	1712	С	SER	229	56.783	12.871	20.591		59.99
ATOM	1713	0	SER	229	56.332	12.581	21.698		59.55
ATOM	1714	N	ASP	230	57.984	12.482	20.174		59.28
ATOM ATOM	1715 1716	CA	ASP	230	58.866	11.674	21.011		59.27
ATOM	1717	CB CG	ASP	230	59.423	10.492	20.212		60.87
ATOM	1717		ASP ASP	230 230	58.346	9.719	19.479		62.55
ATOM	1719		ASP	230	57.331 58.525	9.352	20.118	1.00	62.34
ATOM	1720	C	ASP	230	60.031	9.473 12.511	18.263 21.535		62.79
ATOM	1721	0	ASP	230	61.065	11.980	21.535		58.31
ATOM	1722	N	CYS	231	59.863	13.826	21.501		59.10 56.84
ATOM	1723	CA	CYS	231	60.889	14.741	21.969		53.72
ATOM	1724	C	CYS	231	60.990	14.742	23.497		52.21
ATOM	1725	ō	CYS	231	59.996	14.525	24.200	1.00	
ATOM	1726	СВ	CYS	231	60.562	16.166	21.524		54.60
ATOM	1727	SG	CYS	231	60.392	16.502	19.744		53.23
ATOM	1728	N	LEU	232	62.191	14.992	24.009		50.70
MOTA	1729	CA	LEU	232	62.382	15.078	25.452		50.35
ATOM	1730	СВ	LEU	232	63.822	14.746	25.836		49.26
MOTA	1731	CG	LEU .	232	64.221	13.274	25.726		51.66
ATOM	1732	CD1	LEU	232	65.665	13.105	26.204		50.91
ATOM	1733	CD2	LEU	232	63.279	12.416	26.561		49.83
MOTA	1734	С	LEU	232	62.064	16.514	25.856		49.63
MOTA	1735	0	LEU	232	61.730	16.798	27.003		49.78
ATOM	1736	N	ALA	233	62.178	17.414	24.887	1.00	50.22
MOTA	1737	CA	ALA	233	61.910	18.834	25.084	1.00	49.90
MOTA	1738	CB	ALA	233	63.099	19.507	25.759	1.00	49.52
MOTA	1739	С	ALA	233	61.692	19.441	23.711	1.00	49.74
ATOM	1740	0	ALA	233	62.251	18.962	22.718		50.22
ATOM	1741	N	CYS	234	60.883	20.493	23.654		48.80
MOTA	1742	CA	CYS	234	60.605	21.168	22.391		46.07
ATOM	1743	С	CYS	234	61.573	22.320	22.159		45.21
ATOM	1744	0	CYS	234	61.745	23.189	23.019		44.39
ATOM	1745	СВ	CYS	234	59.182	21.704	22.383		44.96
ATOM	1746	SG	CYS	234	57.878	20.445	22.262		49.23
ATOM	1747	N	LEU	235	62.206	22.321	20.991		44.46
ATOM ATOM	1748 1749	CA CB	LEU LEU	235 235	63.154	23.373	20.635		42.64
ATOM	1750	CG	LEU	235	63.753 64.722	23.087 24.119	19.259 18.670		38.15
ATOM	1751	CD1		235	65.957	24.119	19.542		40.61 38.57
ATOM	1752	CD2		235	65.127	23.644	17.284		39.44
ATOM	1753	C	LEU	235	62.486	24.753	20.647		42.98
ATOM	1754	ō	LEU	235	63.126	25.748	20.976		44.50
ATOM	1755	N	HIS	236	61.200	24.805	20.300		43.28
ATOM	1756	CÄ	HIS	236	60.448	26.064	20.273		43.13
ATOM	1757	CB	HIS	236	60.140	26.472	18.828		41.66
ATOM	1758	CG	HIS	236	61.362	26.675	17.981		41.09
ATOM	1759	CD2		236	61.972	25.857	17.093		37.73
ATOM	1760	ND1		236	62.124	27.825	18.032		39.96
MOTA	1761	CE1		236	63.151	27.704	17.212		38.38
MOTA	1762	NE2		236	63.082	26.519	16.631		38.79
MOTA	1763	С	HIS	236	59.136	25.958	21.048		43.69
MOTA	1764	0	HIS	236	59.016	26.492	22.140		43.60
MOTA	1765	N	PHE	237		25.259	20.501	1.00	45.04

					84	ł			
ATOM	1766	CA	PHE	237	56.881	25.168	21.208	1.00	47.08
MOTA	1767	СВ	PHE	237	55.866	26.126	20.576		46.02
MOTA	1768	CG	PHE	237	56.309	27.549	20.593		44.88
MOTA	1769	CD1	PHE	237	56.765	28.160	19.435		44.85
ATOM	1770	CD2	PHE ·	237	56.337	28.262	21.786		43.81
ATOM	1771	CE1	PHE	237	57.248	29.467	19.465	1.00	45.44
MOTA	1772	CE2	PHE	237	56.820	29.569	21.830		43.85
MOTA	1773	CZ	PHE	237	57.276	30.174	20.670	1.00	44.65
MOTA	1774	С	PHE	237	56.244	23.804	21.335	1.00	48.24
MOTA	1775	0	PHE	237	56.268	23.002	20.405	1.00	50.43
ATOM	1776	N	ASN	238	55.681	23.543	22.508		49.47
ATOM	1777	CA	ASN	238	54.973	22.296	22.741		51.45
ATOM	1778	СВ	ASN	238	55.082	21.856	24.202		54.33
ATOM	1779	CG	ASN	238	54.388	20.529	24.458		59.95
ATOM	1780		ASN	238	53.556	20.093	23.652		61.47
ATOM	1781		ASN	238	54.713	19.885	25.579		63.18
ATOM	1782	С	ASN	238	53.526	22.658	22.418		50.77
ATOM	1783	0	ASN	238	52.926	23.500	23.089		49.69
ATOM ATOM	1784 1785	N Ca	HIS	239	52,983	22.049	21.372		50.70
ATOM	1786	CA CB	HIS	239 239	51.616	22.319	20.953		51.93
ATOM	1787	CG	HIS HIS	239	51.581	22.562	19.443		51.88 52.05
ATOM	1788	CD2		239	50.227 49.115	22.916 23.373	18.912		
ATOM	1789	ND1		239	49.113	22.838	19.533 17.571		50.98 53.11
ATOM	1790	CE1		239	48.664	23.234	17.371		52.58
ATOM	1791	NE2		239	48.159	23.564	18.566		50.88
ATOM	1792	C	HIS	239	50.728	21.134	21.313		54.08
ATOM	1793	0	HIS	239	50.366	20.324	20.455		55.11
ATOM	1794	N	SER .	240	50.390	21.025	22.590		55.26
ATOM	1795	CA	SER	240	49.547	19.932	23.046		57.11
ATOM	1796	СВ	SER	240	48.118	20.101	22.510		57.75
ATOM	1797	OG	SER	240	47.417	21.127	23.197	1.00	
ATOM	1798	С	SER	240	50.086	18.567	22.619		57.00
ATOM	1799	0	SER	240	49.352	17.756	22.058	1.00	57.19
MOTA	1800	N	GLY	241	51.366	18.314	22.870		56.21
MOTA	1801	CA	GLY	241	51.921	17.022	22.514	1.00	55.65
MOTA	1802	С	GLY	241	52.931	17.001	21.384	1.00	56.21
MOTA	1803	0	GLY	241	53.783	16.108	21.332	1.00	56.34
MOTA	1804	N	ILE	242	52.850	17.959	20.467		55.70
MOTA	1805	CA	ILE	242	53.804	17.982	19.368		56.07
ATOM	1806	СВ	ILE	242	53.100	17.806	17.992		57.14
MOTA	1807	CG2	ILE	242	52.197	16.579	18.027		58.47
ATOM	1808	CG1	ILE	242	52.266	19.035	17.653		57.33
ATOM	1809	CD1		242	51.636	18.967	16.284		59.21
ATOM	1810	C	ILE	242	54.632	19.264	19.355		54.41
ATOM	1811 1812	O N	ILE	242 243	54.119 55.925	20.352 19.118	19.594		54.64 52.85
ATOM ATOM	1813	CA	CYS CYS	243	56.824	20.258	19.098 19.045		
ATOM	1814	C	CYS	243	56.746	20.236	17.658		51.87 52.41
ATOM	1815	0	CYS	243	56.821	20.000	16.649		52.32
ATOM	1816	CB	CYS	243	58.268	19.818	19.310		51.08
ATOM	1817	SG	CYS .	243	58.637	19.090	20.946		46.96
MOTA	1818	И	GLU	244	56.598	22.207	17.612		52.51
ATOM	1819	CA	GLU	244	56.521	22.935	16.349		52.16
ATOM	1820	СВ	GLU	244	55.057	23.264	16.028		55.07
ATOM	1821	CG	GLU	244	54.287	22.078	15.419		57.94
MOTA	1822	CD	GLU	244	52.773	22.235	15.473		59.16
ATOM	1823	OE1		244	52.070	21.444	14.813		61.89
ATOM	1824	OE2		244	52.280	23.133	16.180		60.11
ATOM	1825	С	GLU	244	57.362	24.210	16.398		50.67
MOTA	1826	0	GLU	244	57.778	24.650	17.477	1.00	50.55

					C	13			
ATOM	1827	N	LEU	245	57.626	24.792	15.229	1.00	47.79
MOTA	1828	CA	LEU	245	58.418	26.019	15.143	1.00	45.05
ATOM	1829	CB	LEU		58.850	26.268	13.697	1.00	44.16
MOTA	1830	CG	LEU	245	59.673	27.522	13.385	1.00	46.91
ATOM	1831		. LEU	245	61.006	27.525	14.158	1.00	
MOTA	1832	CD2	LEU	245	59.921	27.569	11.887	1.00	44.84
ATOM	1833	С	LEU	245	57.641	27.226	15.684	1.00	43.01
ATOM	1834	0	LEU	245.	58.227	28.138	16.254		43.29
ATOM	1835	N	HIS	246	56.328	27.245	15.498		42.54
ATOM	1836	CA	HIS	246	55.516	28.336	16.033		43.79
ATOM	1837	CB	HIS	246	55.446	29.533	15.066		43.90
MOTA	1838	CG	HIS	246	54.822	29.218	13.744		46.48
ATOM	1839		HIS	246	55.345	29.205	12.493		
ATOM	1840	ND1	HIS	246	53.504	28.832	13.613		46.81
MOTA	1841	CE1	HIS	246	53.244	28.591	12.339		48.43
MOTA	1842	NE2	HIS	246	54.343	28.809	11.639		47.81
MOTA	1843	С	HIS	246	54.122	27.822	16.345		43.37
MOTA	1844	0	HIS	246	53.756	26.727	15.936		42.87
MOTA	1845	N	CYS	247	53.352	28.607	17.086		44.91
MOTA	1846	CA	CYS	247	52.001	28.198	17.441		46.69
MOTA	1847	С	CYS	247	51.029	28.620	16.363		46.85
MOTA	1848	0	CYS	247	51.390	29.345	15.440		47.26
MOTA	1849	CB	CYS	247	51.574	28.828	18.766		45.32
MOTA	1850	SG	CYS	247	52.606	28.367	20.196	1.00	48.87
ATOM	1851	N	PRO	248	49.777	28.155	16.458		47.67
MOTA	1852	CD	PRO	248	49.277	27.029	17.261		48.14
ATOM	1853	CA	PRO	248	48.792	28.539	15.447	1.00	48.14
ATOM	1854	CB	PRO	248	47.665	27.525	15.650	1.00	47.79
ATOM	1855	CG	PRO	248	48.355	26.353	16.284	1.00	48.90
ATOM	1856	С	PRO	248	48.339	29.954	15.770	1.00	48.84
ATOM	1857	0	PRO	248	. 47.903	30.219	16.888	1.00	49.62
ATOM	1858	И	ALA	249	48.448	30.857	14.806	1.00	49.08
ATOM	1859	CA	ALA	249	48.029	32.239	15.012	1.00	51.41
ATOM	1860	CB	ALA	249	48.198	33.025	13.711	1.00	51.96
ATOM	1861	С	ALA	249	46.576	32.337	15.507	1.00	51.87
ATOM	1862	0	ALA	249	45.776	31.417	15.326		51.47
ATOM	1863	N	LEU	250	46.245	33.458	16.139	1.00	53.36
ATOM	1864	CA	LEU	250	44.898	33.677	16.656	1.00	55.64
ATOM	1865	CB	LEU	250	44.905	34.778	17.720		54.87
ATOM	1866	CG	LEU	250	45.630	34.462	19.021	1.00	54.91
ATOM	1867		LEU	250	45.485	35.628	19.978	1.00	56.42
ATOM	1868		LEU	250	45.049	33.202	19.631	1.00	56.57
ATOM	1869	С	LEU	250	43.902	34.060	15.566		56.65
ATOM	1870	0	LEU	250	42.691	33.966	15.760		55.99
ATOM	1871	N	VAL	251	44.405	34.499	14.422		58.57
MOTA	1872	CA	VAL	251	43.512	34.896	13.347		61.37
MOTA	1873	CB	VAL	251	43.509	36.425	13.164		61.36
ATOM	1874		VAL	251	43.124	37.110	14.470		59.22
MOTA	1875		VAL	251	44.883	36.889	12.694		61.93
ATOM	1876	C	VAL	251	43.886	34.276	12.018		63.15
ATOM	1877	0	VAL	251	45.061	34.033	11.746		64.19
ATOM	1878	N	THR	252	42.873	34.013	11.199		65.01
ATOM ATOM	1879 1880	CA	THR	252	43.076	33.461	9.865		66.08
ATOM	1881	CB OG1		252	42.151	32.259	9.584		67.82
ATOM	1882	OG1 CG2	THR	252	42.265	31.301	10.640		70.86
ATOM	1883	CGZ	THR	252	42.532	31.590	8.272		68.46
ATOM	1884		THR	252	42.660	34.601	8.946		65.57
ATOM	1885	O N	THR	252	41.695	35.311	9.248		66.04
ATOM	1886	N CA	TYR	253	43.379	34.796	7.845		63.88
ATOM	1887		TYR	253	43.024	35.864	6.922		62.24
ATOM	1001	СВ	TYR	253	44.272	36.620	6.463	1.00	61.85

					8	6		
ATOM	1888	CG	TYR	253	44.977	37,329	7.592	1.00 62.35
MOTA	1889	CD1	TYR		46.223	36.891	8.046	1.00 61.84
ATOM	1890		TYR	253	46.859	37.517	9.113	1.00 61.95
MOTA	1891		TYR	253	44.382	38.416	8.237	1.00 61.08
MOTA	1892	CE2	TYR		45.007	39.048	9.307	1.00 61.11
ATOM	1893	CZ	TYR	253	46.245	38.594	9.740	1.00 62.39
ATOM ATOM	1894 1895	OH C	TYR TYR	253 253	46.873	39.213	10.797	1.00 63.23
ATOM	1896	0	TYR		42.250 42.409	35.362 34.215	5.713 5.283	1.00 60.86 1.00 58.01
ATOM	1897	N	ASN	254	41.403	36.242	5.183	1.00 50.01
ATOM	1898	CA	ASN	254	40.587	35.942	4.020	1.00 61.15
MOTA	1899	CB	ASN	254	39.425	36.939	3.922	1.00 62.18
MOTA	1900	CG	ASN	254	38.575	36.728	2.675	1.00 63.32
ATOM	1901		ASN	254	38.771	37.386	1.648	1.00 60.67
ATOM	1902	ND2		254	37.636	35.792	2.757	1.00 63.52
MOTA MOTA	1903 1904	С	ASN	254 254	41.450	36.013	2.764	1.00 61.98
ATOM	1904	о И	ASN THR	254 255	42.152 41.385	37.002 34.954	2.529	1.00 60.65
ATOM	1906	CA	THR	255	42.149	34.841	1.965 0.726	1.00 62.41 1.00 63.35
ATOM	1907	СВ	THR	255	41.705	33.572	-0.030	1.00 63.35
ATOM	1908	OG1	THR	255	42.419	32.447	0.496	1.00 63.38
MOTA	1909	CG2	THR		41.947	33.700	-1.535	1.00 63.89
MOTA	1910	С	THR	255	42.098	36.045	-0.220	1.00 64.24
ATOM	1911	0	THR	255	43.107	36.404	-0.826	1.00 63.50
ATOM	1912	N	ASP	256	40.929	36.669	-0.337	1.00 66.28
ATOM ATOM	1913 1914	CA CB	ASP ASP	256 256	40.753	37.806	-1.239	1.00 68.16
ATOM	1915	CG	ASP	256	39.327	37.660 36.325	-2.018 -2.722	1.00 69.86 1.00 72.07
ATOM	1916		ASP	256	40.068	36.111	-3.712	1.00 72.07
ATOM	1917		ASP	256	38.501	35.490	-2.277	1.00 71.56
MOTA	1918	С	ASP	256	40.725	39.139	-0.527	1.00 69.08
ATOM	1919	0	ASP	. 256	41.317	40.115	-0.984	1.00 69.16
ATOM	1920	N	THR	257	40.020	39.176	0.593	1.00 70.47
ATOM ATOM	1921 1922	CA	THR	257	39.874	40.400	1.357	1.00 72.75
ATOM	1923	CB OG1	THR THR	257 257	38.563 37.564	40.381 39.674	2.149	1.00 73.56
ATOM	1924	CG2	THR	257	38.086	41.791	1.403 2.403	1.00 74.14 1.00 73.14
ATOM	1925	C	THR	257	41.004	40.626	2.344	1.00 73.14
MOTA	1926	0	THR	257	41.428	41.760	2.568	1.00 74.03
MOTA	1927	N	PHE	258	41.492	39.537	2.927	1.00 74.08
MOTA	1928	CA	PHE	258	42.540	39.608	3.933	1.00 74.96
MOTA	1929	CB	PHE	258	43.801	40.300	3.396	1.00 73.47
MOTA MOTA	1930 1931	CG CD1	PHE	258 258	44.676	39.383	2.594	1.00 73.25
MOTA	1931		PHE	258 258	44.419 45.701	39.134	1.248 3.208	1.00 72.60 1.00 72.78
ATOM	1933		PHE	258	45.163	38.223	0.526	1.00 72.78
ATOM	1934		PHE	258	46.450	37.738	2.496	1.00 71.82
MOTA	1935	CZ	PHE	258	46.179	37.511	1.153	1.00 72.81
MOTA	1936	С	PHE	258	41.991	40.339	5.140	1.00 76.08
ATOM	1937	0	PHE	258	42.578	41.298	5.639	1.00 75.95
ATOM	1938	N	GLU	259	40.829	39.878	5.579	1.00 78.07
ATOM ATOM	1939 1940	CA CB	GLU	259 259	40.171	40.435	6.740	1.00 80.33
ATOM	1941	CG	GLU	259 259	38.744 38.635	40.869 42.348	6.403 6.032	1.00 82.99 1.00 88.00
ATOM	1942	CD	GLU	259	37.196	42.806	5.809	1.00 90.89
MOTA	1943	OE1	GLU	· 259	36.577	42.381	4.807	1.00 91.78
MOTA	1944	OE2	GLU	259	36.684	43.590	6.641	1.00 92.51
MOTA	1945	С	GLU	259	40.166	39.351	7.802	1.00 80.14
MOTA	1946	0	GLU	259	39.849	38.192	7.519	1.00 80.17
ATOM	1947	N C2	SER	260	40.535	39.741	9.018	1.00 79.91
MOTA	1948	CA	SER	260	40.613	38.830	10.152	1.00 79.51

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

ATOM

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

ATOM

MOTA

ATOM

ARG

ARG

ARG

ARG

ARG

ARG

ARG

ARG

ARG

TYR

TYR

TYR

NH2 ARG

CA

СВ

CG

CD

NE

CZ

С

0.

N

CA

CB

NH1

267

267

267

267

267

267

267

267

267

267

268

268

268

1.00 53.52

1.00 55.28

1.00 59.39

1.00 61.46

1.00 61.95

1.00 66.21

1.00 66.55

1.00 66.39 1.00 52.01

1.00 50.48

1.00 49.34

1.00 48.57

1.00 49.99

87 MOTA 1949 CB SER 260 40.948 39.603 11.435 1.00 79.83 42.295 1950 11.451 ATOM OG SER 260 40.041 1.00 82.07 39.383 37.982 1.00 79.07 ATOM 1951 С SER 260 10.417 1952 38.247 10.162 1.00 78.31 ATOM 0 SER 260 38.383 MOTA 1953 N MET 261 39.647 36.795 10.947 1.00 79.30 MET 261 38.629 35.836 11.332 1.00 79.39 MOTA 1954 CA ATOM 1955 CB MET 261 38.224 34.946 10.149 1.00 82.44 9.255 MOTA 1956 CG MET 261 37.133 35.551 1.00 86.60 MET 261 35.583 35.989 10.146 1.00 89.52 MOTA 1957 SD MET 261 34.711 34.386 10.152 1.00 88.94 MOTA 1958 CE MOTA 1959 С MET 261 39.249 35.004 12.446 1.00 77.40 40.337 12.285 1.00 76.93 MOTA 1960 0 MET 261 34.443 MOTA PRO 262 38.574 34.931 13.601 . 1.00 75.08 1961 N MOTA 1962 PRO 262 37.184 35.340 13.847 1.00 74.38 CD MOTA 1963 CA PRO 262 39.089 34.158 14.732 1.00 73.19 37.940 34.212 15.734 1.00 73.46 MOTA 1964 CB PRO 262 MOTA 262 36.740 34.314 14.858 1.00 74.32 1965 CG PRO 39.463 32.737 14.333 1.00 71.04 1966 MOTA С PRO 262 ATOM 1967 0 PRO 262 38.839 32.140 13.454 1.00 70.71 32.210 14.978 1.00 68.58 MOTA 1968 N ASN 263 40.496 ATOM 1969 ASN 263 40.962 30.864 14.689 1.00 67.27 CA ATOM 1970 CB ASN 263 42.470 30.865 14.436 1.00 66.62 29.507 14.004 1971 ASN 42.986 1.00 65.52 MOTA CG 263 14.462 1.00 65.69 42.506 28.474 1972 OD1 ASN MOTA 263 MOTA 1973 ND2 ASN 43.980 29.502 13.129 1.00 65.08 263 15.857 1.00 66.33 MOTA 1974 C ASN 263 40.653 29.941 41.212 30.099 16.941 1.00 65.65 MOTA 1975 0 ASN 263 MOTA 1976 PRO 264 39.761 28.959 15.647 1.00 66.51 N MOTA 1977 PRO 264 39.157 28.575 14.357 1.00 65.55 CD 28.010 16.702 1.00 65.99 MOTA 1978 CA PRO 264 39.390 38.407 27.078 15.991 1.00 66.25 MOTA 1979 CB PRO 264 27.105 14.561 1.00 65.20 1980 38.883 MOTA CG PRO 264 1.00 66.56 MOTA 1981 С PRO 264 40.612 27.267 17.251 26.838 18.407 1.00 65.94 ATOM 1982 0 PRO 264 40.627 1.00 66.53 ATOM 1983 GLU 265 41.637 27.131 16.411 N 16.781 MOTA 1984 CA GLU 265 42.872 26.450 1.00 65.73 1.00 68.14 25.655 15.585 43.401 MOTA 1,985 CB GLU 265 1986 42.471 24.553 15.090 1.00 72.53 CG GLU 265 MOTA MOTA 1987 CD GLU 265 42.368 23.379 16.059 1.00 76.42 1988 265 43.414 22.773 16.391 1.00 78.03 MOTA OE1 GLU 1.00 78.72 1989 OE2 GLU 265 41.238 23.057 16.487 MOTA 27.440 17.250 1.00 63.96 MOTA 1990 С GLU 265 43.940 27.057 MOTA 1991 0 GLU 265 45.083 17.509 1.00 63.86 28.710 1.00 61.36 17.356 43.566 MOTA 1992 Ν GLY 266 44.514 29.722 17.789 1.00 58.94 1993 266 MOTA CA GLY 1994 С 266 44.947 29.550 19.231 1.00 57.21 MOTA GLY 1995 266 44.139 29.165 20.071 1.00 57.33 MOTA 0 GLY 29.830 19.511 1.00 56.18 MOTA 1996 N ARG 267 46.222

46.793

47.494

46.634

45.362

44.597

45.085

46.326

44.347

47.827

48.474

47.988

48.990

48.583

29.724

28.376

27.156

27.124

25.914

24.696

24.547

23.626

30.824

31.287

31.247

32.267

33.135

20.861

21.049

20.756

21.604

21.346

21.543

21.999

21,280

21.096

20.153

22.347

22.645

23.838

					8	88		
ATOM	2010	CG	TYR	268	47.271	33.870	23.686	1.00 50.84
MOTA	2011	CD1		268	46.055	33.181	23.695	1.00 50.27
ATOM	2012	CE1		268	44.847	33.853	23.549	1.00 50.81
ATOM	2013	CD2		268	47.245	35.253	23.533	1.00 49.75
ATOM ATOM	2014 2015	CE2		268	46.044	35.937	23.387	1.00 51.75
ATOM	2015	OH	TYR TYR	268 268	44.849	35.231	23.393	1.00 52.26
ATOM	2017	C	TYR	268	43.661 50.324	35.903 31.594	23.213 22.975	1.00 54.20 1.00 48.52
ATOM	2018	Ö	TYR	268	50.384	30.390	23.261	1.00 48.32
ATOM	2019	N	THR	269	51.397	32.376	22.920	1.00 48.17
MOTA	2020	CA	THR	269	52.707	31.853	23.252	1.00 46.34
MOTA	2021	CB	THR	269	53.817	32.473	22.379	1.00 44.79
ATOM	2022	OG1		269	53.783	33.898	22.488	1.00 45.68
ATOM	2023	CG2		269	53.632	32.083	20.938	1.00 45.34
ATOM ATOM	2024 2025	C 0	THR	269	52.960	32.186	24.721	1.00 47.04
ATOM	2025	N	PHE	269 270	52.713 53.411	33.309 31.186	25.170	1.00 47.56
ATOM	2027	CA	PHE	270	53.719	31.342	25.469 26.881	1.00 45.80 1.00 46.48
ATOM	2028	СВ	PHE	270	52.532	30.926	27.754	1.00 47.64
ATOM	2029	CG	PHE	270	52.853	30.875	29.221	1.00 47.84
ATOM	2030	CD1	PHE	270	53.395	31.978	29.865	1.00 49.86
ATOM	2031		PHE	270	52.604	29.727	29.962	1.00 50.22
ATOM	2032		PHE	270	53.682	31.941	31.234	1.00 51.58
ATOM	2033	CE2		270	52.888	29.679	31.326	1.00 50.74
ATOM ATOM	2034 2035	CZ C	PHE PHE	270 270	53.427 54.902	30.791	31.963	1.00 50.30
ATOM	2036	0	PHE	270	54.750	30.433 29.220	27.152	1.00 45.41
ATOM	2037	N	GLY	271	56.083	31.024	27.261 27.261	1.00 45.07 1.00 45.52
ATOM	2038	CA	GLY	271	57.263	30.217	27.475	1.00 45.32
ATOM	2039	С	GLY	271	57.451	29.372	26.227	1.00 46.08
MOTA	2040	0	GLY	271	57.336	29.881	25.113	1.00 47.07
ATOM	2041	N	ALA	272	57.711	28.081	26.401	1.00 45.01
ATOM	2042	CA	ALA	272	57.910	27.207	25.262	1.00 44.35
ATOM ATOM	2043 2044	CB	ALA	272	59.112	26.288	25.503	1.00 42.29
ATOM	2044	C 0	ALA ALA	272 272	56.671 56.778	26.382 25.213	24.970 24.595	1.00 45.01
ATOM	2046	N	SER	273	55.493	26.973	24.595	1.00 46.73 1.00 44.94
ATOM	2047	CA	SER	273	54.278	26.216	24.855	1.00 47.72
MOTA	2048	CB	SER	273	53.795	25.497	26.120	1.00 48.16
ATOM	2049	OG	SER	273	53.297	26.428	27.055	1.00 53.37
ATOM	2050	С	SER	273	53.141	27.053	24.283	1.00 46.71
MOTA	2051	0	SER	273	53.121	28.271	24.435	1.00 44.26
ATOM ATOM	2052 2053	N CA	CYS	274 274	52.210	26.378	23.608	1.00 45.77
ATOM	2054	C	CYS	274	51.050 49.870	27.039 26.777	23.025 23.947	1.00 47.39 1.00 47.37
ATOM	2055	ō	CYS	274	49.494	25.631	24.163	1.00 47.37
MOTA	2056	СВ	CYS	274	50.735	26.476	21.639	1.00 47.43
MOTA	2057	SG	CYS	274	52.155	26.421	20.504	1.00 46.90
MOTA	2058	N	VAL	275	49.287	27.838	24.486	1.00 46.52
MOTA	2059	CA	VAL	275	48.168	27.690	25.403	1.00 46.86
ATOM ATOM	2060 2061	CB CC1	VAL	275	48.516	28.276	26.771	1.00 44.33
ATOM	2062		VAL VAL	275 275	49.818 48.630	27.687 29.783	27.253	1.00 43.46 1.00 44.17
ATOM	2063	C	VAL	275	46.937	28.401	26.669 24.879	1.00 47.21
MOTA	2064	0	VAL	275	47.047	29.367	24.130	1.00 48.64
MOTA	2065	N	THR	276	45.768	27.925	25.291	1.00 47.78
MOTA	2066	CA	THR	276	44.497	28.509	24.864	1.00 47.96
ATOM	2067	СВ	THR	276	43.337	27.562	25.180	1.00 48.33
ATOM	2068	OG1	THR	276	43.221	27.419	26.603	1.00 47.75
ATOM	2069 2070	CG2	THR		43.592	26.188	24.555	1.00 47.06
ATOM	20/0	С	THR	276	44.227	29.841	25.554	1.00 47.72

89 .

					85) .			
MOTA	2071	0	THR	276	43.563	30.710	25.005	1.00	47.53
MOTA	2072	N	ALA	277	44.743	29.990	26.768	1.00	48.65
ATOM	2073	CA	ALA	277	44.558	31.217	27.529	1.00	48.95
ATOM	2074	СВ	ALA	277	43.339	31.091	28.434	1.00	49.82
ATOM	2075	С	ALA	277	45.788	31.497	28.371	1.00	48.96
ATOM	2076	0	ALA	277	46.396	30.572	28.921	1.00	48.47
ATOM	2077	N	CYS	278	46.157	32.771	28.472	1.00	49.32
ATOM	2078	CA	CYS	278	47.314	33.146	29.281	1.00	50.33
ATOM	2079	C	CYS	278	47.017	32.867	30.753	1.00	
ATOM	2080	ō	CYS	278	45.878	33.010	31.205	1.00	51.96
ATOM	2081	СВ	CYS	278	47.650	34.626	29.095	1.00	46.73
ATOM	2082	SG	CYS	278	48.295	35.016	27.442		45.43
ATOM	2083	N	PRO	279	48.033	32.440	31.517		52.20
ATOM	2084	CD	PRO	279	49.389	32.030	31.107	1.00	53.86
ATOM	2085	CA	PRO	279	47.807	32.159	32.936		51.15
ATOM	2086	СВ	PRO	279	49.062	31.390	33.343	1.00	51.40
ATOM	2087	CG	PRO	279	50.119	31.958	32.442	1.00	53.87
ATOM	2088	C	PRO	279	47.590	33.422	33.770	1.00	50.59
ATOM	2089	ō	PRO	279	47.843	34.543	33.320	1.00	48.69
ATOM	2090	N	TYR	280	47.118	33.222	34.995	1.00	50.86
ATOM	2091	CA	TYR	280	46.841	34.318	35.905	1.00	49.82
ATOM	2092	CB	TYR	280	46.464	33.784	37.284	1.00	48.50
ATOM	2093	CG	TYR	280	45.914	34.859	38.180	1.00	48.40
ATOM	2094	CD1		280	44.638	35.374	37.970	1.00	49.04
ATOM	2095	CE1		280	44.144	36.418	38.747	1.00	49.87
ATOM	2096	CD2		280	46.689	35.413	39.194	1.00	48.78
ATOM	2097	CE2		280	46.206	36.459	39.979	1.00	50.12
ATOM	2098	CZ	TYR	280	44.933	36.957	39.747	1.00	50.73
ATOM	2099	OH	TYR	280	44.448	37.995	40.512	1.00	53.36
ATOM	2100	C	TYR	280	47.991	35.297	36.066	1.00	50.72
ATOM	2101	ō	TYR	280	49.149	34.899	36.210	1.00	50.74
ATOM	2102	N	ASN	281	47.637	36.579	36.043	1.00	50.37
ATOM	2103	CA	ASN	281	48.562	37.690	36.219	1.00	51.25
ATOM	2104	СВ	ASN	281	49.495	37.430	37.413	1.00	51.06
ATOM	2105	CG	ASN	281	49.975	38.723	38.068		51.36
ATOM	2106		ASN	281	49.221	39.689	38.171	1.00	51.17
ATOM	2107	ND2		281	51.220	38.739	38.526	1.00	51.60
ATOM	2108	С	ASN	. 281	49.379	38.071	34.989	1.00	51.58
ATOM	2109	0	ASN	281	50.151	39.036	35.027		50.94
MOTA	2110	N	TYR	282	49.211	37.326	33.902	1.00	51.57
ATOM	2111	CA	TYR	282	49.927	37.644	32.671	1.00	52.72
ATOM	2112	CB	TYR	282	50.364	36.368	31.948	1.00	52.57
ATOM	2113	CG	TYR	282	51.685	35.802	32.430		53.88
MOTA	2114		TYR	282	51.791	35.168	33.670		54 [.] .63
ATOM	2115	CE1	TYR	282	53.020	34.658	34.121		53.76
ATOM	2116		TYR	282	52.838	35.915	31.647		53.83
ATOM	2117	CE2	TYR	282	54.064	35.413	32.085		53.98
MOTA	2118	CZ	TYR	282	54.151	34.786	33.321		54.93
MOTA	2119	OH	TYR	282	55.363	34.284	33.751		54.27
MOTA	2120	С	TYR	282	49.061	38.495	31.742		53.12
MOTA	2121	0	TYR	282	47.845	38.578	31.904		51.51
MOTA	2122	N	LEU	283	49.699	39.132	30.770		54.89
MOTA	2123	CA	LEU	283	48.993	39.976	29.820	-	56.63
MOTA	2124	СВ	LEU	283	49.729	41.311	29.671		58.42
MOTA	2125	CG	LEU	283	49.807	42.232	30.900		59.48
MOTA	2126	CD1	LEU	283	50.883	43.288	30.699		59.69
MOTA	2127	CD2	LEU	283	48.461	42.892	31.133		60.34
ATOM	2128	C	LEU	283	48.875	39.299	28.459		57.32
MOTA	2129		LEU	283	49.858	38.793	27.921		58.54
ATOM	2130		SER	284	47.663	39.273	27.913		58.71
ATOM	2131	CA	SER	284	47.422	38.681	26.600	1.00	59.30

90 ATOM 2132 CB SER 284 45.977 1.00 58.31 38.197 26.481 MOTA 2133 OG SER 284 45.749 37.090 27.340 1.00 58.17 MOTA 2134 С SER 284 39.795 47.688 25.608 1.00 60.28 MOTA 2135 0 SER 284 47.313 40.939 25.855 1.00 60.43 ATOM 2136 N THR 285 48.332 39.476 24.490 1.00 61.69 ATOM 2137 THR CA 285 48.660 40.506 23.514 1.00 62.74 ATOM 2138 THR CB 285 40.574 50.177 23.288 1.00 61.20 ATOM 2139 OG1 THR 285 50.617 39.392 22.605 1.00 60.25 ATOM 2140 CG2 THR 285 50.893 40.683 24.616 1.00 59.34 MOTA 2141 С THR 285 47.997 40.382 22.155 1.00 65.35 MOTA 2142 0 THR 285 39.405 47.310 21.863 1.00 66.92 MOTA 2143 N ASP 286 48.217 41.401 21.328 1.00 68.96 ATOM 2144 CA ASP 286 47.680 41.456 19.974 1.00 70.35 ATOM 2145 CB **ASP** 286 48.064 42.779 19.292 1.00 73.32 ATOM 2146 CG ASP 286 47.489 44.000 19.991 1.00 75.72 ATOM 2147 OD1 ASP 286 46.253 44.191 19.922 1.00 75.54 ATOM 2148 OD2 ASP 286 48.276 44.763 20.603 1.00 76.45 ATOM 2149 С ASP 286 48.318 40.325 19.191 1.00 70.06 MOTA 2150 0 ASP 286 47.648 39.581 18.467 1.00 70.44 ATOM 2151 N VAL 287 40.210 49.631 19.356 1.00 68.31 ATOM 2152 VAL 287 CA 50.420 39.212 18.655 1.00 66.57 ATOM 2153 CB VAL 287 51.900 39.626 18.622 1.00 68.51 ATOM 2154 CG1 VAL 287 52.583 38.997 17.402 1.00 70.27 MOTA 2155 CG2 VAL 287 52.016 41.147 18.609 1.00 67.05 MOTA 2156 С VAL 287 50.330 37.807 19.237 1.00 64.30 MOTA 2157 0 VAL 287 51.238 36.999 19.048 1.00 64.78 MOTA 2158 N GLY 288 37.522 49.247 19.953 1.00 62.01 MOTA 2159 CA GLY 288 49.056 36.201 20.533 1.00 59.45 MOTA 2160 С GLY 288 50.131 35.683 21.476 1.00 57.09 MOTA 2161 0 GLY 288 50.586 34.542 21.348 1.00 55.74 MOTA 2162 N SER 289 50.546 36.509 22.426 1.00 55.12 MOTA 2163 ÇA SER 289 51.557 36.082 23.381 1.00 55.42 MOTA 2164 CB SER 289 52.903 36.772 23.091 1.00 55.58 MOTA 2165 38.181 OG SER 289 52.827 23.246 1.00 54.26 MOTA 2166 С 289 SER 51.119 36.373 24.815 1.00 54.82 MOTA 2167 0 SER 289 50.156 37.109 25.051 1.00 52.55 MOTA 2168 N CYS 290 51.822 35.771 25.768 1.00 54.19 MOTA 2169 CA CYS 290 51.535 35.989 27.176 1.00 54.40 ATOM 2170 С CYS 290 52.756 36.694 27.740 1.00 56.69 MOTA 2171 0 CYS 290 53.846 36.119 27.849 1.00 56.87 MOTA 2172 CB CYS 290 51.286 34.661 27.884 1.00 51.20 MOTA 2173 SG CYS 290 49.861 33.745 27.217 1.00 48.94 MOTA 2174 52.576 N THR 291 37.957 28.088 1.00 58.96 MOTA 2175 CA THR 291 53.692 38.732 28.586 1.00 62.71 2176 ATOM CB THR 291 54.214 39.664 27.492 1.00 62.87 2177 MOTA THR OG1 291 55.427 40.284 27.929 1.00 67.19 MOTA 2178 CG2 THR 53.181 40.738 291 27.185 1.00 62.81 2179 MOTA С THR 53.350 291 39.570 29.800 1.00 64.32 MOTA 2180 0 THR 291 52.178 39.807 30.105 1.00 64.63 MOTA 2181 N LEU 292 54.396 40.024 30.482 1.00 65.88 MOTA 2182 CA LEU 292 54.249 40.857 31.665 1.00 67.54 MOTA 2183 СВ LEU 292 55.361 40.537 32.663 1.00 64.73 MOTA 2184 LEU 39.042 CG 292 55.548 32.941 1.00 65.08 MOTA 2185 CD1 LEU 292 56.703 38.835 33.898 1.00 64.62 MOTA 2186 LEU CD2 292 54.270 38.454 33.512 1.00 64.78 MOTA 2187 С LEU 292 54.300 42.338 31.280 1.00 69.22 MOTA 2188 0 LEU 292 53.964 43.204 32.085 1.00 70.92 MOTA 2189 N VAL 293 54.707 42.625 30.047 1.00 71.80 MOTA 2190 CA VAL 293 44.003 54.803 29.577 1.00 75.12 MOTA 2191 CB VAL 293 44.492 29.586 56.269 1.00 75.39 MOTA 2192 CG1 VAL 293 56.303 46.012 29.559 1.00 75.24

\sim	4
u	

					9	1		
MOTA	2193	CG2		293	57.009	43.945	30.809	1.00 74.43
ATOM	2194	С	VAL	293	54.264	44.109	28.155	1.00 77.87
ATOM	2195	0	VAL	293	54.600	43.294	27.303	1.00 78.41
ATOM	2196	N	CYS	294	53.441	45.120	27.899	1.00 81.86
ATOM	2197	CA	CYS	294	52.840	45.315	26.581	1.00 87.12
ATOM	2198	C	CYS	294	53.783	45.780	25.455	1.00 91.22
ATOM ATOM	2199 2200	O	CYS	294	54.965	46.052	25.685	1.00 91.41
ATOM	2200	CB SG	CYS	294 294	51.676	46.299	26.685	1.00 86.96
ATOM	2202	N	PRO	295	50.194 53.258	45.704 45.854	27.562 24.208	1.00 88.97
ATOM	2203	CD	PRO	295	52.018	45.149	23.830	1.00 95.10 1.00 96.29
ATOM	2204	CA	PRO	295	53.979	46.276	22.996	1.00 90.29
ATOM	2205	СВ	PRO	295	53.069	45.788	21.863	1.00 96.88
MOTA	2206	CG	PRO	295	52.360	44.617	22.463	1.00 96.55
ATOM	2207	С	PRO	295	54.246	47.781	22.887	1.00 98.82
ATOM	2208	0	PRO	295	53.619	48.585	23.581	1.00 98.72
MOTA	2209	N	LEU	296	55.172	48.137	21.992	1.00100.53
MOTA	2210	CA	LEU	296	55.571	49.524	21.731	1.00102.46
ATOM	2211	CB	LEU	296	55.670	49.784	20.223	1.00103.54
ATOM	2212	CG	LEU	296	56.912	49.335	19.452	1.00104.08
ATOM	2213	CD1		296	56.713	49.602	17.963	1.00103.26
ATOM ATOM	2214 2215	CD2	LEU	296	58.138	50.078	19.974	1.00103.86
ATOM	2216	0	LEU LEU	296 296	54.635	50.560	22.321	1.00103.21
ATOM	2217	N	HIS	297	54.820 53.629	51.017 50.933	23.449 21.539	1.00103.65 1.00104.02
ATOM	2218	CA	HIS	297	52.665	51.925	21.973	1.00104.02
ATOM	2219	СВ	HIS	297	52.446	52.953	20.871	1.00104.87
MOTA	2220	С	HIS	297	51.338	51.301	22.387	1.00105.28
MOTA	2221	0	HIS	297	50.342	52.005	22.515	1.00105.58
ATOM	2222	N	ASP	298	51.323	49.984	22.585	1.00105.05
MOTA	2223	CA	ASP	298	50.108	49.290	23.019	1.00104.04
ATOM	2224	СВ	ASP	298	50.140	47.815	22.602	1.00103.55
ATOM	2225	CG	ASP	298	49.793	47.659	21.238	1.00102.45
ATOM ATOM	2226	C	ASP	298	50.009	49.395	24.538	1.00103.29
ATOM	2227 2228	O N	ASP GLN	298 · 299	51.029 48.794	49.358	25.229	1.00103.87
ATOM	2229	CA	GLN	299	48.794	49.527 49.649	25.064 26.506	1.00101.99
ATOM	2230	СВ	GLN	299	48.371	51.107	26.866	1.00101.04
ATOM	2231	CG	GLN	299	49.451	52.031	26.331	1.00101.34
ATOM	2232	CD	GLN	299	49.618	53.289	27.159	1.00102.01
MOTA	2233	OE1	GLN	299	48.641	53.969	27.483	1.00104.75
ATOM	2234	NE2	GLN	. 299	50.865	53.614	27.498	1.00103.49
MOTA	2235	С	GLN	299	47.576	48.747	27.142	1.00100.08
ATOM	2236	0	GLN	299	46.638	48.293	26.483	1.00100.27
MOTA	2237	N	GLU	300	47.749	48.501	28.438	1.00 98.05
ATOM ATOM	2238 2239	CA	GLU	300	46.867	47.635	29.215	1.00 96.41
ATOM	2240	CB CG	GLU GLU	300 300	47.407 48.771	47.512	30.641	1.00 95.18
ATOM	2241	CD	GLU	300	49.335	46.846 46.801	30.711 32.111	1.00 93.52 1.00 91.95
ATOM	2242		GLU	300	48.591	46.407	33.031	1.00 91.93
ATOM	2243		GLU	300	50.523	47.148	32.291	1.00 90.84
ATOM	2244	С	GLU	300	45.407	48.061	29.261	1.00 95.94
ATOM	2245	0	GLU	300	45.092	49.242	29.346	1.00 95.78
MOTA	2246	N	VAL	301	44.519	47.074	29.209	1.00 95.93
MOTA	2247	CA	VAL	301	43.081	47.307	29.251	1.00 96.56
ATOM	2248	CB	VAL	301	42.452	47.153	27.857	1.00 96.60
ATOM	2249		VAL	301	40.966	47.486	27.915	1.00 96.39
ATOM ATOM	2250 2251		VAL	301	43.174	48.049	26.866	1.00 96.93
ATOM ATOM	2251	С 0	VAL VAL	301 301	42.432	46.290	30.183	1.00 97.30
ATOM ATOM	2253	N	THR	302	42.285 42.038	45.118 46.747	29.833	1.00 96.75
			T111/	302	42.030	40./4/	31.367	1.00 98.44

	٦	^
4	J	

						· 2		
MOTA	2254	CA	THR	302	41.426	45.875	32.360	1.00 99.64
ATOM	2255	CB	THR	302	41.483	46.500	33.767	1.00 99.04
MOTA	2256	OG1		302	42.818	46.934	34.050	1.00 98.39
ATOM	2257	CG2		302	41.053	45.484	34.812	1.00 97.82
ATOM	2258	С	THR	302	39.972	45.554	32.063	1.00101.32
ATOM	2259	0	THR	302	39.126	46.448	32.038	1.00101.86
ATOM	2260	N	ALA	303	39.687	44.275	31.836	1.00103.31
ATOM	2261	CA	ALA	303	38.322	43.828	31.583	1.00105.07
ATOM	2262	CB	ALA	303	38.320	42.572	30.714	1.00104.35
ATOM	2263	C	ALA	303	37.733	43.530	32.961	1.00106.78
ATOM	2264	0	ALA	303	38.480	43.314	33.918	1.00106.64
ATOM	2265	N	GLU	304	36.406	43.529	33.065	1.00108.54
ATOM	2266	CA	GLU	304	35.729	43.274	34.339	1.00109.78
MOTA	2267	CB	GLU	304	34.251	42.959	34.107	1.00110.34
ATOM	2268	CG	GLU	304	33.458	44.049	33.413	1.00110.81
ATOM	2269	CD	GLU	. 304	31.973	43.724	33.360	1.00111.13
MOTA	2270	OE1		304	31.614	42.628	32.869	1.00110.92
ATOM	2271	OE2		304	31.167	44.567	33.814	1.00111.09
ATOM ATOM	2272	C	GLU	304	36.345	42.118	35.117	1.00110.69
	2273	0	GLU	304	36.803	42.290	36.251	1.00111.35
ATOM ATOM	2274 2275	N	ASP	305	36.338	40.939	34.500	1.00110.93
		CA	ASP	305	36.874	39.725	35.109	1.00110.67
ATOM ATOM	2276	CB	ASP	305	36.698	38.541	34.144	1.00110.84
MOTA	2277 2278	CG OD1	ASP	305	37.331	38.790	32.782	1.00111.14
ATOM	2279		ASP ASP	305	37.777	39.927	32.519	1.00111.75
ATOM	2279	C		305	37.373	37.843	31.968	1.00111.02
ATOM	2281	0	ASP ASP	305	38.336	39.826	35.559	1.00110.28
ATOM	2282	И	GLY	305	38.787	39.039	36.394	1.00110.13
ATOM	2283	CA	GLY	306 306	39.074	40.789	35.013	1.00109.66
ATOM	2284	C	GLY	306 306	40.467	40.948	35.395	1.00108.63
ATOM	2285	0	GLY	306 306	41.439	40.719	34.257	1.00107.62
ATOM	2286	N	THR	307	42.580 40.992	41.180 40.003	34.305	1.00108.33
MOTA	2287	CA	THR	307	41.831	39.722	33.231	1.00106.17
MOTA	2288	СВ	THR	307	41.062	38.924	32.074 31.004	1.00104.19
ATOM	2289	OG1		307	40.574	37.703	31.574	1.00104.68 1.00104.14
ATOM	2290	CG2	THR	307	41.971	38.606	29.823	1.00104.14
MOTA	2291	C	THR	307	42.300	41.026	31.442	1.00103.03
MOTA	2292	0	THR	307	41.551	41.672	30.708	1.00103.05
MOTA	2293	N	GLN	308	43.536	41.417	31.735	1.00101.57
ATOM	2294	CA	GLN	308	44.087	42.643	31.175	1.00100.15
ATOM	2295	СВ	GLN	308	45.086	43.281	32.137	1.00 99.43
MOTA	2296	CG	GLN	308	44.471	43.874	33.385	1.00 99.19
ATOM	2297	CD	GLN	. 308	45.501	44.589	34.240	1.00100.05
MOTA	2298		GLN	308	46.469	43.983	34.697	1.00100.13
ATOM	2299	NE2	GLN	308	45.301	45.884	34.454	1.00100.28
ATOM	2300	С	GLN	308	44.784	42.338	29.860	1.00 99.59
ATOM	2301	0	GLN	308	45.744	41.570	29.820	1.00 99.52
ATOM	2302	N	ARG	309	44.288	42.938	28.783	1.00 98.88
ATOM	2303	CA	ARG	309	44.867	42.733	27.467	1.00 97.82
ATOM	2304	СВ	ARG	309	43.767	42.612	26.407	1.00 97.73
ATOM	2305	CG	ARG	309	42.669	41.612	26.738	1.00 98.41
ATOM	2306	CD	ARG	309	41.374	42.306	27.164	1.00 99.02
MOTA	2307	NE	ARG	309	40.752	43.094	26.010	1.00 98.96
ATOM	2308	CZ	ARG	309	39.449	43.716	26.380	1.00 98.63
ATOM	2309	C	ARG	309	45.747	43.922	27.132	1.00 97.75
ATOM ATOM	2310 2311	O N	ARG	309	45.816	44.889	27.889	1.00 97.57
ATOM	2311	N CA	CYS	310	46.433	43.832	26.000	1.00 97.78
ATOM	2312	CA	CYS CYS	310 310	47.282	44.915	25.527	1.00 97.65
ATOM	2313	0		310	46.661	45.373	24.214	1.00100.22
WION	531#	U	CYS	310	46.607	44.603	23.259	1.00101.04

. 93 25.254 1.00 94.17 2315 CYS 310 48.704 44.428 MOTA CB 43.939 26.685 1.00 88.15 49.711 MOTA 2316 SG CYS 310 24.162 46.185 46.613 1.00103.10 ATOM 2317 N GLU 311 22,942 1.00105.28 45.573 47.134 MOTA 2318 CA GLU 311 23.254 44.196 47.730 1.00104.85 MOTA 2319 CB GLU 311 23.046 1.00105.54 43.048 46.757 MOTA 2320 CG GLU 311 41.703 47.337 23.442 1.00106.78 311 ATOM 2321 CD GLU 23.014 311 41.383 48.469 1.00107.43 MOTA 2322 OE1 GLU 24.178 1.00107.11 40.960 46.654 MOTA 2323 OE2 GLU 311 48.174 22.238 1.00106.82 311 46.441 MOTA 2324 C GLU 47.365 48.729 22.832 1.00106.91 311 ATOM 2325 0 GLU 312 20.965 1.00108.60 MOTA LYS 46.139 48.426 2326 N 46.883 49.401 20.174 1.00109.53 2327 CA LYS 312 ATOM 18.705 1.00109.04 46.471 49.321 MOTA 2328 CB LYS 312 20.719 1.00110.29 2329 312 46.625 50.799 ATOM С LYS 20.686 1.00110.37 45.501 51.303 MOTA 2330 0 LYS 312 21.227 1.00111.11 47.683 51.414 MOTA 2331 N CYS 313 52.749 21.796 1.00111.89 47.609 MOTA 2332 CA CYS 313 21.100 1.00112.43 313 48.738 53.504 2333 С CYS ATOM 54.408 21.664 1.00112.94 49.352 MOTA 2334 0 CYS 313 23.308 47.847 52.650 1.00111.88 CB CYS 313 ATOM 2335 313 47.192 53.962 24.389 1.00112.06 MOTA 2336 SG CYS 49.008 53.097 19.863 0.01112.82 ATOM 2337 N SER 314 53.689 19.053 0.01113.18 50.062 ATOM 2338 CA SER 314 0.01113.17 50.033 53.096 17.650 ATOM 2339 CB SER 314 18.979 0.01113.47 314 49.953 55.202 2340 С SER ATOM 50.797 55.926 19.509 0.01113.48 MOTA 2341 0 SER 314 1.00113.74 48.904 55.675 18.321 2342 N LYS 315 ATOM 48.694 57.105 18.165 1.00114.23 ATOM 2343 CA LYS 315 1.00114.86 47.988 57.382 16.832 ATOM 2344 СВ LYS 315 1.00114.98 15.609 2345 CG LYS 315 48.771 56.924 MOTA 57.663 15.500 1.00114.63 50.098 2346 ATOM CD LYS 315 1.00114.17 50.837 57.298 14.225 315 MOTA 2347 CE LYS 14.103 1.00113.31 52.118 58.046 2348 LYS 315 ATOM NZ47.936 57.753 19.328 1.00113.77 2349 LYS 315 ATOM С 48.546 58.446 20.144 1.00114.04 2350 LYS 315 ATOM 0 19.428 1.00113.20 ATOM 2351 N PRO 316 46.605 57.544 18.572 1.00112.87 45.675 56.793 2352 PRO 316 ATOM CD 45.874 58.165 20.541 1.00112.47 MOTA 2353 CA PRO 316 44.404 20.155 1.00112.47 316 57.964 2354 CB PRO MOTA 1.00112.56 44.443 57.634 18.679 316 2355 CG PRO ATOM 46.213 21.836 1.00111.90 57.433 2356 C PRO 316 MOTA 1.00112.00 PRO 316 45.640 56.374 22.116 MOTA 2357 0 57.984 22.627 1.00110.08 47.132 MOTA 2358 N CYS 317 23.862 1.00107.76 47.515 57.312 317 MOTA 2359 CA CYS 47.772 58.186 25.090 1.00105.03 317 2360 C CYS MOTA 1.00104.64 48.751 58.935 25.145 2361 0 CYS 317 ATOM 23.602 1.00108.86 48.735 56.431 2362 CB CYS 317 ATOM 48.819 55.102 24.827 1.00111.58 2363 SG CYS 317 MOTA 26.082 1.00101.44 2364 ALA 318 46.892 58.053 ATOM N 46,982 58.809 27.331 1.00 98.34 MOTA 2365 CA ALA 318 28.185 1.00 97.94 45.746 58.546 CB ALA 318 MOTA 2366 1.00 95.80 48.241 58.464 28.122 ALA 318 2367 С MOTA 1.00 95.52 48.574 57.291 28.293 MOTA 2368 0 ALA 318 1.00 92.64 48.930 59.493 28.609 MOTA 319 2369 N ARG 50.154 59.315 29.387 1.00 89.08 2370 CA ARG 319 MOTA 1.00 90.56

60.680

61.703

61.586

61.897

62.018

29.692

30.371

31.899

32.506

33.815

1.00 91.95

1.00 92.71

1.00 93.30

1.00 93.09

50.795

49.875

49.847

51.142

51.349

ATOM

ATOM

MOTA

MOTA

MOTA

2371

2372

2373

2374

2375

CB

CG

CD

NE

CZ

ARG

ARG

ARG

ARG

ARG

319

319

319

319

					94	•			
ATOM	2376	NH1	ARG -	319	50.345	61.860	34.671	1.00 91.92	
MOTA	2377	NH2	ARG	319	52.567	62.289	34.270	1.00 92.71	
MOTA	2378	С	ARG	319	49.899	58.559	30.688	1.00 85.21	
ATOM	2379	0	ARG	319	48.840	58.692	31.306	1.00 85.67	
ATOM	2380	N	VAL	320	50.878	57.760	31.097	1.00 79.32 1.00 72.87	
MOTA	2381	CA	VAL	320	50.754	56.986	32.323 32.024	1.00 72.87 1.00 71.59	
ATOM	2382	CB	VAL	320 320	50.689 49.490	55.473 55.170	31.142	1.00 71.39	
ATOM ATOM	2383 2384	CG1 CG2	VAL	320	51.980	55.014	31.360	1.00 68.56	
ATOM	2385	C	VAL	320	51.936	57.248	33.242	1.00 69.92	
ATOM	2386	ō	VAL	320	52.937	57.843	32.841	1.00 68.57	
ATOM	2387	N	CYS	321	51.811	56.805	34.485	1.00 65.95	
ATOM	2388	CA	CYS	321	52.882	56.973	35.449	1.00 62.47	
MOTA	2389	С	CYS	321	53.787	55.748	35.418	1.00 60.43	
MOTA	2390	0	CYS	321	53.364	54.654	35.785	1.00 59.95	
ATOM	2391	CB	CYS	321	52.303	57.122	36.845	1.00 62.31	
MOTA	2392	SG	CYS	321	51.145	58.507	37.041 34.966	1.00 60.91 1.00 58.69	
ATOM	2393	N	TYR	322	55.021 55.962	55.925 54.821	34.929	1.00 57.74	
ATOM	2394 2395	CA CB	TYR TYR	322 322	56.921	54.951	33.747	1.00 60.17	
ATOM ATOM	2395	CG	TYR	322	56.281	54.638	32.420	1.00 62.41	
ATOM	2397	CD1		322	55.945	55.656	31.528	1.00 63.63	
ATOM	2398	CE1	TYR	322	55.315	55.372	30.318	1.00 64.44	
MOTA	2399	CD2	TYR	322	55.975	53.323	32.069	1.00 61.83	
MOTA	2400	CE2	TYR	322	55.343	53.029	30.865	1.00 63.82	
MOTA	2401	CZ	TYR	322	55.016	54.057	29.995	1.00 64.36	
ATOM	2402	OH	TYR	322	54.374	53.778	28.813	1.00 64.79 1.00 56.52	
ATOM	2403	С	TYR	322	56.749	54.830 55.892	36.224 36.754	1.00 50.52	
MOTA	2404	0	TYR	322 323	57.066 57.062	53.646	36.737	1.00 54.51	
MOTA	2405 2406	N CA	GLY GLY	323	57.803	53.570	37.979	1.00 50.35	
ATOM ATOM	2400	CA	GLY	323	59.208	53.077	37.749	1.00 48.48	
ATOM	2408	Ö	GLY	323	59.654	52.971	36.605	1.00 46.95	
ATOM	2409	N	LEU	324	59.906	52.775	38.840	1.00 47.45	ì
ATOM	2410	CA	LEU	324	61.271	52.287	38.755	1.00 46.55	
ATOM	2411	CB	LEU	324	61.821	52.000	40.154	1.00 47.15	
MOTA	2412	CG	LEU	324	61.766	53.157	41.170	1.00 48.69	
MOTA	2413	CD1		324	62.424	52.736	42.484	1.00 48.11 1.00 48.58	
MOTA	2414	CD2		324	62.477 61.301	54.386 51.030	37.897	1.00 46.35	
MOTA	2415 2416	С 0	LEU LEU	324 324	60.404	50.189	37.977	1.00 45.07	
ATOM ATOM	2417	N	GLY	325	62.329	50.932	37.058	1.00 47.27	
ATOM	2417	CA	GLY	325	62.486	49.793	36.178	1.00 47.12	
ATOM	2419	C	GLY	325	61.836	50.005	34.824	1.00 49.50	
ATOM	2420	0	GLY	325	62.022	49.204	33.904	1.00 49.51	
MOTA	2421	N	MET	326	61.073	51.085	34.687	1.00 50.15	
MOTA	2422	CA	MET	326	60.395	51.357	.33.424	1.00 51.67	
MOTA	2423	CB	MET	. 326	58.881	51.323	33.634	1.00 52.43 1.00 54.09	
MOTA	2424	CG	MET	326	58.332 58.490	49.938 48.857	33.912 32.476	1.00 58.5	
ATOM	2425	SD	MET MET	326 326	56.995	49.301	31.579	1.00 57.02	
MOTA MOTA	2426 2427	CE C	MET	326	60.790	52.676	32.764	1.00 52.23	3
MOTA	2428	Ö	MET	326	61.170	53.637	33.438	1.00 51.49	9
MOTA	2429	N	GLU	327	60.693	52.701	31.436	1.00 53.2	
ATOM	2430	CA	GLU	327	61.017	53.875	30.624	1.00 54.1	
MOTA	2431	СВ	GLU	327	59.795	54.790	30.529	1.00 55.3	
MOTA	2432	CG	GLU	327	58.654	54.175	29.738	1.00 58.20	
MOTA	2433	CD	GLU	327	59.108	53.717	28.368	1.00 60.14 1.00 62.1	
ATOM	2434		L GLU	327	59.744	54.531	27.673	1.00 62.1	
MOTA	2435		2 GLU	327 327	58.833	52.557 54.669	27.981 31.099	1.00 53.7	
MOTA	2436	. С	GLU	327	62.232	J4.009	31.033	1.00 55.7	•

					, ,	,			•
ATOM	2437	0	GLU	327	63.343	54.135	31.155	1.00	
ATOM	2438	N	HIS	328	62.034	55.939	31.436	1.00	
ATOM	2439	CA	HIS		63.160	•••	31.882	1.00	
MOTA	2440	CB	HIS	328	62.815	58.240	31.910	1.00	
MOTA	2441	CG	HIS	328	61.685	58.603	32.817	1.00	
ATOM	2442		HIS	328	61.656	59.345	33.950		53.62
MOTA	2443		HIS	328	60.378	58.240	32.565	1.00	53.71
ATOM	2444		HIS	328	59.593	58.745	33.501 34.353	1.00	
ATOM	2445		HIS	328	60.343	59.420	33.223	1.00	
ATOM	2446	C	HIS	328	63.707	56.311 56.498	33.488		57.58
MOTA	2447	0	HIS	328 329	64.892 62.862	55.709	34.058		56.08
ATOM	2448	N	LEU	329	63.291	55.261	35.384		55.37
MOTA	2449	CA	LEU LEU	329	62.110	55.322	36.362		54.06
ATOM ATOM	2450 2451	CB CG	LEU	329	61.512	56.725	36.547		54.58
	2451		LEU	329	60.185	56.665	37.287		53.35
ATOM ATOM	2452		LEU	329	62.513	57.587	37.296		53.68
ATOM	2454	CDZ	LEU	329	63.884	53.855	35.374		55.48
ATOM	2455	0	LEU	329	64.213	53.313	36.426		56.56
ATOM	2456	N	ARG	330	64.035	53.278	34.185		54.51
ATOM	2457	CA	ARG	330	64.567	51.929	34.042	1.00	55.09
ATOM	2458	СВ	ARG	330	64.811	51.610	32.558	1.00	57.19
ATOM	2459	CG	ARG	330	65.548	50.287	32.322	1.00	61.45
ATOM	2460	CD	ARG	330	65.206	49.616	30.982		67.13
MOTA	2461	NE	ARG	330	65.373	50.493	29.817		72.58
MOTA	2462	CZ	ARG	330	64.371	51.106	29.183		75.31
MOTA	2463	NH1	ARG	330	63.118	50.940	29.595		75.51
MOTA	2464	NH2	ARG	330	64.616	51.887	28.132		76.41
MOTA	2465	С	ARG	330	65.825	51.598	34.841	1.00	
MOTA	2466	0	ARG	330	66.009	50.454	35.257		55.54
MOTA	2467	N	GLU	331	66.693	52.581	35.065		55.30
MOTA	2468	CA	GLU	331	67.935	52.323	35.798		52.86
MOTA	2469	CB	GLU	331	69.144	52.838	35.001		54.33 56.11
ATOM	2470	CG	GLU	331	69.397	52.157	33.653		58.11
ATOM	2471	CD	GLU	331	68.403	52.567	32.570 32.682		58.17
MOTA	2472	OE1		331	67.824	53.674 51.793	31.596		56.57
ATOM	2473	OE2		331	68.220 67.970	52.930	37.196		51.54
ATOM	2474	С	GLU	331 331	68.918	52.702	37.150	1.00	
ATOM ATOM	2475 2476	O N	GLU VAL	332	66.950	53.717	37.530		51.04
ATOM	2477	CA	VAL	332	66.871	54.350	38.844		51.96
ATOM	2478	CB	VAL	332	65.764	55.414	38.886		51.13
ATOM	2479		. VAL	332	65.749	56.088	40.250		49.43
ATOM	2480		VAL	332	65.984	56.435	37.780	1.00	48.05
ATOM	2481	C	VAL	332	66.574	53.285	39.892		53.80
ATOM	2482	ō	VAL	332	65.620	52,518	39.756	1.00	54.40
ATOM	2483	N	ARG	333	67.384	53.236	40.942	1.00	56.37
ATOM	2484	CA	ARG	333	67.189	52.219	41.966	1.00	59.44
ATOM	2485	СВ	ARG	333	68.532	51.602	42.370		60.59
MOTA	2486	CG	ARG	. 333	69.412	52.502	43.215		66.44
MOTA	2487	CD	ARG	333	69.823	53.776	42.474		71.63
MOTA	2488	NE	ARG	333	70.882	54.496	43.184		76.84
MOTA	2489	CZ	ARG	333	72.081	53.985	43.470		79.39
MOTA	2490		LARG	333	72.387	52.739	43.107		79.11
MOTA	2491		2 ARG	333	72.982	54.720	44.116		79.77
MOTA	2492	С	ARG	333	66.455	52.675	43.220		58.57
MOTA	2493	0	ARG	333	66.384	51.916	44.183		59.16
MOTA	2494	N	ALA		65.902	53.888	43.212		57.03
MOTA	2495	CA	ALA		65.191	54.383	44,388		55.85 52.63
MOTA	2496	CB	ALA		66.177	54.615	45.519	1 00	56.09
MOTA	2497	С	ALA	334	64.362	55.644	44.175	1.00	50.09

					,	,			
ATOM	2498	0	ALA	334	64.617	56.436	43.272	1.00	
MOTA	2499		VAL	335	63.355	55.820	45.024	1.00	
ATOM	2500		VAL	335	62.498	56.997	44.965 45.602		57.41
ATOM	2501	CB	VAL .	335	61.114	56.714	45.828	1.00	
MOTA	2502			. 335	60.357	58.006	44.694		56.93
MOTA	2503		VAL	335	00.010	55.792	45.748		58.30
ATOM	2504	C	VAL	335	63.222	58.083 57.852	46.871		58.06
ATOM	2505	0	VAL	335	63.682 63.342	59.263	45.149		59.37
ATOM	2506	N CA	THR THR	336 336	64.039	60.365	45.800		59.83
ATOM	2507 2508	CB	THR	336	65.463	60.511	45.266		58.36
ATOM ATOM	2508 2509.		THR	336	65.402	61.041	43.939		59.09
ATOM	2510	CG2	THR	336	66.175	59.159	45.232		57.89
ATOM	2511	C	THR	336	63.334	61.687	45.542		61.53
ATOM	2512	Ö	THR	336	62.333	61.747	44.822	1.00	62.10
ATOM	2513	N	SER	337	63.876	62.747	46.136		62.16
ATOM	2514	CA	SER	337	63.337	64.091	45.977		61.32
ATOM	2515	CB	SER	337	64.154	65.077	46.807	1.00	60.42
ATOM	2516	OG	SER	337	64.087	64.756	48.183	1.00	62.18
ATOM	2517	C	SER	337	63.413	64.485	44.508	1.00	61.14
ATOM	2518	0	SER	337	62.650	65.334	44.035		59.75
ATOM	2519	N	ALA	338	64.336	63.846	43.796	1.00	61.33
ATOM	2520	CA	ALA	338	64.556	64.114	42.381	1.00	62.09
ATOM	2521	CB	ALA	338	65.957	63.649	41.985		61.47
MOTA	2522	С	ALA	338	63.515	63.486	41.453		62.48
MOTA	2523	0	ALA	338	63.526	63.747	40.247		63.76
MOTA	2524	N	ASN	339	62.624	62.658	41.996		61.25
MOTA	2525	CA	ASN	339	61.597	62.017	41.173		60.09
MOTA	2526	CB	ASN	339	62.092	60.652	40.672		58.96
MOTA	2527	CG	ASN	339	62.569	59.741	41.801		59.46
MOTA	2528	OD1		339	61.845	59.486	42.755		60.66
MOTA	2529		ASN	339	63.791	59.239	41.682		59.53
MOTA	2530	С	ASN	339	60.248	61.851	41.873		60.07
MOTA	2531	0	ASN	339	59.242	61.546	41.239		60.23 59.91
MOTA	2532	N	ILE	340	60.228	62.070	43.180 43.958		61.02
MOTA	2533	CA	ILE	340	59.011	61.920 62.413	45.417		61.44
MOTA	2534	CB	ILE	340	59.236 59.850	63.807	45.413		60.10
ATOM	2535	CG2		340 340	57.918	62.368	46.196		60.95
ATOM	2536	CG1 CD1	_	340	57.392	60.970	46.422		59.08
MOTA	2537		ILE	340	57.785	62.617	43.359		61.93
ATOM	2538 2539	С 0	ILE	340	56.683	62.056	43.362		61.85
ATOM	2540	N	GLN	341	57.966	63.830	42.843		63.02
ATOM ATOM	2541	CA	GLN	341	56.847	64.575	42.268		63.53
ATOM	2542	CB	GLN	341	57.258	66.018	41.958		65.29
ATOM	2543	CG	GLN	341	56.910	67.016	43.070		66.87
ATOM	2544	CD	GLN	341	55.411	67.055	43.386		67.11
MOTA	2545	OE1		341	54.579	67.344	42.516		66.49
ATOM	2546		GLN	341	55.066	66.762	44.636	1.00	65.92
ATOM	2547	C	GLN	341	56.238	63.944	41.025		63.04
ATOM	2548	ō	GLN	341	55.080	64.204	40.702	1.00	64.33
ATOM	2549	N	GLU	. 342	57.011	63.112	40.333		60.92
ATOM	2550	CA	GLU	342	56.528	62.450	39.126		59.81
MOTA	2551	СВ	GLU		57.655	61.627	38.490		60.69
ATOM	2552	CG	GLU		58.774	62.431	37.861		61.90
ATOM	2553	CD	GLU		59.878	61.543	37.304		64.99
ATOM	2554	OE1	. GLU	342	59.547	60.520	36.660		65.22
ATOM	2555	OE2	GLU	342	61.073	61.871	37.498		65.92
ATOM	2556	С	GLU	342	55.324	61.529	39.377		58.93
MOTA	2557	0	GLU		54.658	61.093	38.431		59.33
ATOM	2558	N	PHE	343	55.031	61.237	40.641	1.00	56.77

					9	17			
ATOM	2559	CA	PHE	343	53.928	60.332	40.944	1.00	
ATOM	2560	CB	PHE	343	54.373	59.303	41.980	1.00	
MOTA	2561	CG	PHE	343	55.591	58.538	41.565		48.42
MOTA	2562	CD1	PHE	343	56.796	58.704	42.238		46.96
MOTA	2563		PHE	343	55.548	57.689	40.467		47.13
ATOM	2564		PHE	343	57.940	58.040	41.824 40.045		44.73 46.48
ATOM	2565			343	56.688	57.019	40.045		44.96
ATOM	2566	CZ	PHE	343	57.889 52.660	57.197 61.009	41.399		54.34
MOTA	2567	C	PHE PHE	343 343	51.655	60.344	41.662		53.92
ATOM ATOM	2568 2569	O N	ALA	344	52.704	62.333	41.483		53.73
ATOM	2570	CA	ALA	344	51.541	63.107	41.894		52.84
ATOM	2571	СВ	ALA	344	51.797	64.577	41.640		52.20
ATOM	2572	C	ALA	344	50.286	62.658	41.140	1.00	53.05
ATOM	2573	0	ALA	344	50.287	62.559	39.910		52.61
ATOM	2574	N	GLY	345	49.222	62.374	41.888		53.32
ATOM	2575	CA	GLY	345	47.965	61.968	41.283		53.54
MOTA	2576	С	GLY	345	47.972	60.678	40.482		55.19
ATOM	2577	0	GLY	345	47.063	60.422	39.682		54.90
MOTA	2578	N	CYS	346	48.989	59.852	40.686		54.98
MOTA	2579	CA	CYS	346	49.064	58.591	39.969 40.658		55.73 56.57
MOTA	2580	C	CYS	346	48.192	57.548 57.218	40.658		58.72
MOTA	2581	0	CYS	346	48.427 50.510	58.118	39.928		57.10
MOTA	2582	CB SG	CYS CYS	346 346	51.587	59.170	38.905		59.00
MOTA MOTA	2583 2584	N	LYS	347	47.174	57.042	39.966		56.79
ATOM	2585	CA	LYS	347	46.305	56.025	40.559		56.60
ATOM	2586	СВ	LYS	347	44.938	55.984	39.866		56.84
ATOM	2587	CG	LYS	347	44.073	57.208	40.113		60.70
ATOM	2588	CD	LYS	347	42.609	56.931	39.810	0.01	59.47
ATOM	2589	CE	LYS	347	41.733	58.096	40.247		59.77
MOTA	2590	NZ	LYS	347	40.283	57.799	40.085		59.55
MOTA	2591	С	LYS	347	46.965	54.672	40.391		56.47
MOTA	2592	0	LYS	347	46.939		41.282		54.68
MOTA	2593	N	LYS	348	47.570		39.226		55.45 53.89
MOTA	2594	CA	LYS	348	48.219		38.873 37.722		53.77
ATOM	2595	CB	LYS	348	47.436 47.806		37.722		57.56
ATOM	2596 2597	CG CD	LYS LYS	348 348	47.031		36.160		60.25
ATOM ATOM	2598	CE	LYS	348	47.394		35.769		62.70
ATOM	2599	NZ	LYS	348	46.633		34.569		66.48
ATOM	2600	C	LYS	348	49.653		38.459		52.28
ATOM	2601	ō	LYS	348	49.920	54.560	37.794		53.57
ATOM	2602	N	ILE	349	50.582	52.700	38.872		49.65
MOTA	2603	CA	ILE	349	51.979		38.510		47.48
MOTA	2604	CB	ILE	349	52.854		39.732		45.57
MOTA	2605	CG2		349	54.325		39.346		46.75
MOTA	2606	CG1		349	52.575		40.259		45.22
MOTA	2607	CD1		349	53.449		41.421 37.780		43.85 46.46
MOTA	2608	C	ILE	349	52.527 52.541		38.313		45.46
MOTA	2609	0	ILE PHE	349 350	52.981		36.554		45.65
MOTA	2610 2611	N CA	PHE	350	53.528		35.740		45.55
ATOM ATOM	2612	CB	PHE	. 350	53.276		34.259		46.63
MOTA	2613	CG	PHE	350	51.816		33.928		47.66
MOTA	2614		L PHE	350	51.181		34.243		48.14
MOTA	2615		PHE	350	51.072		33.325	1.00	49.55
ATOM	2616		l PHE	350	49.821	52.703	33.965		48.95
ATOM	2617		2 PHE	350	49.707	50.491	33.042		50.22
ATOM	2618	CZ	PHE	350	49.086		33.365		49.30
MOTA	2619	С	PHE	350	55.014	50.693	36.039	1.00	43.17

					98	•			
MOTA	2620	0	PHE	350	55.830	51.416	35.479	1.00	43.46
MOTA	2621	N	GLY	351	55.341	49.773	36.939	1.00	
MOTA	2622	CA	GLY	351	56.712	49.578	37.370		41.42
MOTA	2623	С	GLY	351	56.740	49.343	38.875		41.84
MOTA	2624	0	GLY	351	55.744	48.905	39.452		43.39
MOTA	2625	N	SER	352	57.857	49.658	39.523		40.45
MOTA	2626	CA	SER	352	57.990	49.427	40.952		38.91
MOTA	2627	CB	SER	352	59.028	48.332	41.195		39.49
ATOM	2628	OG		352	58.712	47.165	40.452		39.72
MOTA	2629	С	SER	352	58.372	50.649	41.771		39.34
MOTA	2630	0	SER	352	58.798	51.663	41.238		39.29
ATOM	2631	N	LEU	353	58.209	50.536 51.608	43.084 44.005		39.89 39.25
ATOM	2632	CA	LEU	353 353	58.556 57.312	52.148	44.712		38.43
ATOM	2633	CB CG	LEU LEU	353 353	56.288	52.140	43.887		37.43
ATOM ATOM	2634 2635	CD1	LEU	353	55.179	53.438	44.808		35.64
ATOM	2636		LEU	353	56.980	54.089	43.190		37.71
ATOM	2637	C	LEU	353	59.504	51.030	45.032		38.86
ATOM	2638	Ö	LEU	353	59.224	49.994	45.633		42.35
ATOM	2639	N	ALA	354	60.636	51.685	45.227		38.83
ATOM	2640	CA	ALA	354	61.620	51.210	46.198		39.22
ATOM	2641	СВ	ALA	354	62.766	50.480	45.481	1.00	34.77
ATOM	2642	С	ALA	354	62.169	52.384	47.002	1.00	39.17
ATOM	2643	0	ALA	354	62.535	53.425	46.444	1.00	39.80
ATOM	2644	N	PHE	355	62.204	52.215	48.316	1.00	39.01
ATOM	2645	CA	PHE	355	62.708	53.248	49.198	1.00	40.18
MOTA	2646	CB	PHE	355	61.615	53.702	50.177		39.58
MOTA	2647	CG	PHE	355	60.340	54.134	49.497		38.96
ATOM	2648	CD1	PHE	355	59.444	53.191	49.009		37.60
MOTA	2649		PHE	355	60.060	55.485	49.304		38.55
ATOM	2650		PHE	355	58.285	53.585	48.332		39.45
MOTA	2651		PHE	355	58.905	55.891	48.630		38.69
MOTA	2652	CZ	PHE	355	. 58.016	54.938	48.142		38.52
MOTA	2653	С	PHE	355	63.880	52.665	49.949		40.41
MOTA	2654	0	PHE	355	63.750	51.635	50.604		41.91 41.13
ATOM	2655	N	LEU	356 356	65.032	53.312	49.835		41.13
ATOM .	2656	CA	LEU	356	66.230 67.298	52.838 52.463	50.513 49.479		42.83
ATOM	2657	CB	LEU	356 356	67.250	51.250	48.578		45.38
MOTA	2658 2659	CG	LEU LEU	356 356	65.821	51.477	47.695		45.56
MOTA MOTA	2660		LEU	356	68.288	51.012	47.718		46.11
ATOM	2661	CDZ	LEU	356	66.773	53.917	51.440		41.93
ATOM	2662	Ö	LEU	356	66.251	55.026	51.481		40.02
MOTA	2663	N	PRO	357	67.816	53.594	52.219	1.00	44.66
ATOM	2664	CD	PRO	357	68.397	52.253	52.435		44.52
MOTA	2665	CA	PRO	357	68.409	54.571	53.134	1.00	46.97
MOTA	2666	CB	PRO	357	69.730	53.915	53.506	1.00	45.42
MOTA	2667	CG	PRO	357	69.333	52.476	53.622		45.44
MOTA	2668	С	PRO	357	68.606	55.914	52.432		50.51
MOTA	2669	0	PRO	357	68.132	56.958	52.902		51.44
MOTA	2670	N	GLU	358	69.295	55.872	51.295		52.17
MOTA	2671	CA	GLU	358	69.568	57.072	50.513		53.67
ATOM	2672	CB	GLU	358	70.243	56.688	49.194		55.12
MOTA	2673	CG	GLU	358	69.738	55.382	48.617		57.84
MOTA	2674	CD	GLU	358	70.386	55.030	47.296		58.68
MOTA	2675	OE1		. 358	70.171	55.782	46.315		57.40
MOTA	2676	OE2		358	71.105	54.002	47.243		57.52 53.93
ATOM	2677	C	GLU	358	68.325	57.906	50.232		53.93 53.80
MOTA	2678	0	GLU	358	68.398	59.137	50.187		54.11
ATOM	2679	N	SER	359	67.188	57.240	50.044 49.759		55.21
MOTA	2680	CA	SER	359	65.942	57.946	49.133	1.00	00.21

	•				99	,	•		
ATOM	2681	СВ	SER	359	64.745	56.991	49.789	1.00	
ATOM	2682	OG	SER	359	64.804	56.030	48.755	1.00	
ATOM	2683	С	SER	359	65.707	59.049	50.776	1.00	
ATOM	2684	0	SER	359	65.442	60.197	50.415	1.00	
MOTA	2685	N	PHE	360	65.817	58.702	52.054		58.29
MOTA	2686	CA	PHE	360	65.583	59.682	53.102	1.00	
ATOM	2687	CB	PHE	360	64.794	59.036	54.239	1.00	
ATOM	2688	CG	PHE	360	63.556	58.357	53.766 53.499		52.83 50.96
ATOM	2689	CD1	PHE	360	63.555 62.418	56.991 59.099	53.471		51.66
ATOM ATOM	2690 2691	CD2 CE1	PHE PHE	360 360	62.441	56.378	52.942		48.89
ATOM	2692	CE2	PHE	360	61.297	58.491	52.911		49.47
ATOM	2693	CZ	PHE	360	61.311	57.130	52.646		47.46
ATOM	2694	C	PHE	360	66.851	60.347	53.607	1.00	62.88
ATOM	2695	Ō	PHE	360	66.785	61.388	54.259		62.93
ATOM	2696	N	ASP	361	68.002	59.751	53.300		65.54
ATOM	2697	CA	ASP	361	69.277	60.332	53.700		67.51
ATOM	2698	CB	ASP	361	70.425	59.325	53.556		66.61
MOTA	2699	CG	ASP	361	70.430	58.263	54.642		66.17
MOTA	2700		ASP	361	69.825	58.483	55.716		63.22
MOTA	2701		ASP	361	71.063	57.208	54.419		66.05 69.79
ATOM	2702	С	ASP	361	69.543	61.508	52.764 53.167		69.60
MOTA	2703	0	ASP	361 362	70.107 69.118	62.531 61.353	51.512		72.02
ATOM ATOM	2704 2705	N CA	GLY GLY	362	69.335	62.388	50.518		73.73
ATOM	2706	C	GLY	362	70.783	62.338	50.073		74.63
ATOM	2707	Ö	GLY	362	71.641	61.849	50.805		73.91
ATOM	2708	N	ASP	363	71.064	62.819	48.869		76.81
ATOM	2709	CA	ASP	363	72.436	62.819	48.380		79.49
MOTA	2710	СВ	ASP	363	72.563	61.984	47.100		80.20
MOTA	2711	CG	ASP	363	74.010	61.796	46.665		80.95
MOTA	2712	OD1	ASP	363	74.842	61.403	47.515		80.92
MOTA	2713	OD2		363	74.314	62.033	45.474		81.00
ATOM	2714	С	ASP	363	72.883	64.252	48.116		80.85 80.38
MOTA	2715	0	ASP	363	72.604 73.566	64.817 64.866	47.054 49.101		81.73
MOTA	2716	N	PRO PRO	364 364	73.770	64.322	50.458		81.93
ATOM ATOM	2717 2718	CD CA	PRO	364	74.070	66.240	49.015		81.54
ATOM	2719	CB	PRO	364	74.791	66.422	50.348		81.54
ATOM	2720	CG	PRO	364	73.966	65.575	51.279	1.00	81.80
ATOM	2721	C	PRO	364	74.994	66.450	47.816		81.87
MOTA	2722	0	PRO	364	75.011	67.530	47.220		81.95
ATOM	2723	N	ALA	365	75.756	65.413	47.469		81.95
MOTA	2724	CA	ALA	365	76.676	65.471	46.334		82.33
MOTA	2725	CB	ALA	365	77.417	64.141	46.186		81.35
ATOM	2726	С	ALA	365	75.911	65.797	45.050		82.82 83.65
ATOM	2727	0	ALA	365	76.395	66.547 65.233	44.201 44.913		82.50
MOTA	2728	N	SER	366 366	74.715 73.885	65.484	43.740		82.52
MOTA	2729 2730	CA CB	SER SER	366 366	73.148	64.206	43.329		82.26
MOTA MOTA	2731	OG	SER	366	72.287	63.753	44.360		83.81
ATOM	2732	C	SER	366	72.876	66.592	44.054		82.34
ATOM	2733	ō	SER	366	72.016	66.925	43.231	1.00	81.76
ATOM	2734	N	ASN	367	73.002	67.162	45.250		82.16
ATOM	2735	CA	ASN		72.115	68.224	45.721		82.06
ATOM	2736	CB	ASN	367	72.221	69.465	44.830		81.56
MOTA	2737	CG	ASN	367	71.427	70.634	45.377		80.51
MOTA	2738		ASN	367	71.597	71.027	46.531		79.99
MOTA	2739	ND2		367	70.553	71.194	44.554		81.11 81.68
MOTA	2740	C	ASN		70.661	67.756	45.785 45.747		81.41
ATOM	2741	0	ASN	367	69.723	68.565	33./4/	1.00	01.71

					10	U		
ATOM	2742	N	THR	368	70.486	66.439	45.872	1.00 80.67
ATOM	2743	CA	THR	368	69,167	65.832	45.979	1.00 78.44
ATOM	2744	CB	THR	368	69.172	64.390	45.435	1.00 78.87
MOTA	2745	OG1	THR	368	70.291	63.679	45.982	1.00 78.61
MOTA	2746	CG2	THR	368	69.270	64.395	43.913	1.00 78.71
MOTA	2747	C	THR	368	68.846	65.822	47.470	1.00 77.12
ATOM	2748	0	THR	368	69.304	64.953	48.214	1.00 76.03
MOTA	2749	N	ALA	369	68.077	66.816	47.901	1.00 76.38
MOTA	2750	CA	ALA	369	67.709	66.944	49.300 49.498	1.00 76.74 1.00 76.05
MOTA	2751	CB	ALA	369	66.828	68.169 65.696	49.782	1.00 77.16
ATOM	2752 2753	C	ALA	369 369	66.984 66.275	65.042	49.016	1.00 78.07
MOTA	2754	O N	ALA PRO	370	67.173	65.332	51.059	1.00 76.47
ATOM ATOM	2755	CD	PRO	370	68.080	65.903	52.075	1.00 75.55
ATOM	2756	CA	PRO	370	66.492	64.143	51.570	1.00 74.73
ATOM	2757	CB	PRO	370	66.781	64.208	53.063	1.00 75.53
ATOM	2758	CG	PRO	370	68.175	64.779	53.089	1.00 75.54
ATOM	2759	C	PRO	370	65.003	64.232	51.258	1.00 73.48
ATOM	2760	ō	PRO	370	64.473	65.313	50.992	1.00 72.25
MOTA	2761	N	LEU	371	64.331	63.092	51.267	1.00 72.66
ATOM	2762	CA	LEU	371	62.909	63.078	50.987	1.00 70.92
ATOM	2763	СВ	LEU	371	62.488	61.699	50.484	1.00 70.30
ATOM	2764	CG	LEU	371	61.186	61.639	49.689	1.00 70.82
MOTA	2765	CD1	LEU	371	61.188	62.676	48.576	1.00 70.62
MOTA	2766	CD2	LEU	371	61.034	60.249	49.110	1.00 71.78
ATOM	2767	С	LEU	371	62.231	63.419	52.304	1.00 70.26
ATOM	2768	0	LEU	371	62.697	63.006	53.367	1.00 70.33 1.00 69.31
MOTA	2769	N	GLN	372	61.153	64.193	52.236	
ATOM	2770	CA	GLN	372	60.439	64.604	53.437 53.371	1.00 68.71 1.00 69.99
ATOM	2771	CB	GLN	372	60.097 61.321	66.098 66.998	53.286	1.00 71.40
ATOM	2772	CG	GLN	372	62.246	66.847	54.484	1.00 71.40
MOTA	2773	CD OE1	GLN GLN	372 372	63.432	67.164	54.405	1.00 71.93
ATOM ATOM	2774 2775	NE2		372	61.703	66.368	55.601	1.00 71.67
ATOM	2776	C	GLN	372	59.170	63.805	53.646	1.00 67.36
ATOM	2777	o	GLN	372	58.424	63.546	52.703	1.00 67.20
ATOM	2778	N	PRO	373	58.907	63.408	54.897	1.00 65.94
ATOM	2779	CD	PRO	373	59.725	63.676	56.094	1.00 64.60
ATOM	2780	CA	PRO	373	57.716	62.631	55.241	1.00 66.02
MOTA	2781	CB	PRO	373	57.665	62.753	56.759	1.00 65.24
ATOM	2782	CG	PRO	373	59.117	62.742	57.119	1.00 64.73
ATOM	2783	С	PRO	373	56.442	63.140	54.565	1.00 66.69
ATOM	2784	0	PRO	373	55.578	62.349	54.191	1.00 66.11
MOTA	2785	N	GLU	374	56.336	64.458	54.402	1.00 67.78
MOTA	2786	CA	GLU	374	55.155	65.063	53.783 54.062	1.00 67.96 1.00 71.04
ATOM	2787	СВ	GLU	374	55.102	66.571	55.511	1.00 76.32
ATOM	2788	CG	GLU	374	55.353	66.977 67.069	55.836	1.00 70.52
ATOM	2789	CD	GLU	374	56.834 57.560	67.749	55.073	1.00 82.11
MOTA	2790	OE I		374 374	57.269	66.474	56.851	1.00 80.79
MOTA	2791 2792	C	GLU GLU	374	55.130	64.839	52.276	1.00 65.88
ATOM ATOM	2793	o	GLU	374	54.068	64.852	51.652	1.00 64.80
ATOM	2794	N	GLN	375	56.306	64.650	51.690	1.00 64.56
ATOM	2795	CA	GLN	375	56.406	64.422	50.255	1.00 63.02
ATOM	2796	CB	GLN	375	57.873	64.533	49.816	1.00 63.52
ATOM	2797	CG	GLN	375	58.463	65.934	50.022	1.00 64.59
ATOM	2798	CD	GLN	375	59.898	66.082	49.511	1.00 65.39
MOTA	2799		LGLN	375	60.853	65.602	50.131	1.00 64.63
MOTA	2800	NE:	2 GLN		60.048	66.750	48.370	1.00 64.25
ATOM	2801	С	GLN		55.819	63.048	49.894	1.00 61.79
MOTA	2802	0	GLN	375	55.289	62.852	48.796	1.00 59.93

					10	1.			
MOTA	2803	N	LEU	376	55.893	62.111	50.836	1.00	
MOTA	2804	CA	LEU	376	55.370	60.767	50.628	1.00 5	
ATOM	2805	СВ	LEU	376	55.747	59.865	51.807		56.26
ATOM	2806	CG	LEU	376	57.233	59.609	52.064		54.81
ATOM	2807	CD1	LEU	376	57.400	58.770	53.323	1.00 5	52.63
MOTA	2808	CD2		376	57.847	58.909	50.870 50.452	1.00	
MOTA	2809	C	LEU	376 376	53.848 53.275	60.757 59.771	49.996	1.00	
ATOM	2810	O N	LEU GLN	376 377	53.275	61.855	50.812		60.33
ATOM ATOM	2811 2812	N CA	GLN	377	51.740	61.936	50.694	1.00	
ATOM	2813	CB	GLN	377	51.225	63.212	51.374		64.78
ATOM	2814	CG	GLN	377	51.792	63.448	52.782		
ATOM	2815	CD	GLN	377	51.407	62.363	53.783		72.43
ATOM	2816	OE1	GLN	377	51.981	62.273	54.881	1.00	73.12
ATOM	2817	NE2	GLN	377	50.426	61.541	53.415	1.00	72.94
ATOM	2818	С	GLN	377	51.332	61.910	49.221	1.00	60.41
ATOM	2819	0	GLN	377	50.155	62.000	48.879	1.00	59.09
ATOM	2820	N	VAL	378	52.324	61.784	48.353	1.00	
ATOM	2821	CA	VAL	378	52.086	61.732	46.922	1.00	
ATOM	2822	CB	VAL	378	53.421	61.887	46.152	1.00	
ATOM	2823	CG1	VAL	378	53.229	61.598	44.679	1.00	
ATOM	2824	CG2	VAL	378	53.948	63.297	46.326	1.00	
MOTA	2825	С	VAL	378	51.411	60.416	46.511	1.00	
MOTA	2826	0	VAL	378	50.664	60.369	45.531	1.00	
ATOM	2827	N	PHE	379	51.651	59.353	47.268	1.00 1.00	
MOTA	2828	CA	PHE	379	51.077	58.060	46.922 47.348	1.00	
MOTA	2829	CB	PHE	379	52.025	56.942	46.773	1.00	
MOTA	2830	CG	PHE	379	53.397	57.072 57.542	47.547	1.00	
ATOM	2831	CD1		379 379	54.446 53.635	56.758	45,445		49.60
ATOM	2832 2833	CD2	PHE PHE	379	55.716	57.700	47.009		47.98
ATOM ATOM	2834	CE2		379	54.906	56.914	44.899		49.85
ATOM	2835	CEZ	PHE	379	55.946	57.386	45.687		46.39
ATOM	2836	C	PHE	379	49.699	57.779	47.491	1.00	59.16
ATOM	2837	ō	PHE	379	49.169	56.675	47.323	1.00	59.83
ATOM	2838	N	GLU	380	49.107	58.773	48.141	1.00	60.36
ATOM	2839	CA	GLU	380	47.800	58.580	48.750		60.34
MOTA	2840	CB	GLU	. 380	47.431	59.804	49.595		64.04
MOTA	2841	CG	GLU	380	48.559	60.216	50.561		69.08
MOTA	2842	CD	GLU	380	48.062	60.875	51.841		71.31
MOTA	2843	OE 1		380	47.450	60.167	52.670		72.79
MOTA	2844	OE2		380	48.286	62.096	52.018	1.00	
MOTA	2845	С	GLU	380	46.705	58.257	47.746		58.30 58.43
MOTA	2846	0	GLU	380	45.672	57.700	48.110 46.479		55.99
MOTA	2847	N	THR	381	46.927 45.924	58.583 58.284	45.461		55.42
MOTA	2848	CA	THR	381	45.879	59.387	44.369		57.10
MOTA	2849	CB OG1	THR THR	381 381	47.178	59.545	43.787		58.07
MOTA MOTA	2850 2851	CG2		381	45.442	60.718	44.967		55.87
ATOM	2852	C	THR	381	46.219	56.936	44.798		54.20
ATOM	2853	ŏ	THR	381	45.359	56.357	44.125		53.97
ATOM	2854	N	LEU	382	47.440	56.442	45.013		52.85
ATOM	2855	ÇA	LEU	382	47.907	55.179	44.444		49.26
ATOM	2856	СВ	LEU	382	49.377	54.959	44.820		47.79
MOTA	2857	CG	LEU	382	50.073	53.734	44.210		46.53
ATOM	2858	CD1	LEU	382	50.071	53.838	42.693		42.81
MOTA	2859	CD2	LEU	382	51.493	53.635	44.736		46.51
MOTA	2860	С	LEU	382	47.078	53.956	44.850		48.27
MOTA	2861	0	LEU	382	46.925	53.656	46.031		47.89
MOTA	2862	N	GLU	383	46.564	53.252	43.848		46.86 48.66
MOTA	2863	CA	GLU	383	45.742	52.067	44.047	1.00	40.00

					10	4		
ATOM	2864	СВ	GLU	383	44.392	52.251	43.340	1.00 49.79
MOTA	2865	CG	GLU	383	43.444	53.219	44.030	1.00 54.40
MOTA	2866	CD	GLU	383	42.353	53.762	43.110	1.00 54.51
MOTA	2867		GLU	383	41.654	52.965	42.440	1.00 52.52
ATOM	2868		GLU	383	42.194	55.002	43.071	1.00 57.33
MOTA	2869	С	GLU	383	46.398	50.792	43.511	1.00 48.27
ATOM	2870	0	GLU	383	46.054	49.681	43.941	1.00 48.13 1.00 46.27
MOTA	2871	N	GLU	384	47.338	50.956	42.579 41.948	1.00 48.27
MOTA	2872	CA	GLU	384	47.998 47.182	49.818 49.377	40.727	1.00 43.47
ATOM	2873 2874	CB	GLU	384 384	47.102	48.150	39.991	1.00 44.19
MOTA		CG CD	GLU GLU	384	46.854	47.776	38.783	1.00 46.00
ATOM ATOM	2875 2876		GLU.	384	45.688	48.226	38.712	1.00 49.83
ATOM	2877		GLU	384	47.331	47.027	37.908	1.00 45.41
ATOM	2878	C	GLU	384	49.444	50.030	41.510	1.00 41.83
ATOM	2879	Ö	GLU	384	49.822	51.096	41.028	1.00 38.67
ATOM	2880	N	ILE	385	50.232	48.973	41.684	1.00 40.65
ATOM	2881	CA	ILE	385	51.636	48.925	41.301	1.00 37.49
ATOM	2882	СВ	ILE	385	52.569	48.874	42.535	1.00 36.30
ATOM	2883	CG2	ILE	385	53.981	48.449	42.110	1.00 35.11
ATOM	2884	CG1		385	52.581	50.238	43.239	1.00 35.95
MOTA	2885	CD1	ILE	385	53.340	50.264	44.568	1.00 29.52
MOTA	2886	С	ILE	385	51.766	47.616	40.532	1.00 36.95
MOTA	2887	0	ILE	385	51.464	46.556	41.068	1.00 35.48
MOTA	2888	N	THR	386	52.196	47.684	39.277	1.00 37.82
MOTA	2889	CA	THR	386	52.341	46.475	38.474	1.00 37.30
MOTA	2890	CB	THR	386	52.386	46.786	36.949	1.00 39.40
MOTA	2891	OG1		386	53.414	47.751	36.670	1.00 37.23
MOTA	2892		THR	386	51.027	47.308	36.477	1.00 38.44
ATOM	2893	С	THR	386	53.615	45.746	38.861	1.00 38.20
ATOM	2894	0	THR	386	53.722	44.521	38.684	1.00 38.03
MOTA	2895	N	GLY	387	54.574	46.497	39.398	1.00 36.02 1.00 36.07
ATOM	2896	CA	GLY	387	55.834	45.896	39.805	1.00 35.54
ATOM	2897	C	GLY	387	55.839	45.377 44.527	41.231 41.601	1.00 33.34
ATOM	2898	0	GLY	387 388	55.028 56.759	45.877	42.041	1.00 37.73
MOTA	2899 2900	N CA	TYR TYR	388	56.845	45.438	43.426	1.00 34.18
ATOM ATOM	2900	CB	TYR	388	58.033	44.481	43.603	1.00 33.76
ATOM	2902	CG	TYR	388	59.384	45.087	43.268	1.00 33.25
ATOM	2903	CD1		388	60.077	45.871	44.198	1.00 35.21
ATOM	2904	CE1		388	61.317	46.446	43.886	1.00 33.69
ATOM	2905	CD2		388	59.963	44.895	42.013	1.00 33.97
ATOM	2906		TYR	388	61.199	45.470	41.685	1.00 33.20
MOTA	2907	CZ	TYR	388	61.870	46.238	42.626	1.00 34.87
MOTA	2908	OH	TYR	388	63.097	46.782	42.308	1.00 34.96
ATOM	2909	С	TYR	388	57.013	46.651	44.322	1.00 34.08
MOTA	2910	0	TYR	388	57.157	47.776	43.842	1.00 36.49
ATOM	2911	N	LEU	389	56.967	46.432	45.624	1.00 32.82
MOTA	2912	CA	LEU	389	57.163	47.522	46.559	1.00 33.35
MOTA	2913	CB	LEU	389	55.872	47.816	47.334	1.00 33.62
MOTA	2914	CG	LEU	389	55.963	48.815	48.497	1.00 34.53
MOTA	2915	CD1		389	56.529	50.133	47.997	1.00 34.74
MOTA	2916	CD2		389	54.583	49.036	49.132	1.00 33.40 1.00 34.94
MOTA	2917	С	LEU	389	58.269	47.031	47.480	1.00 34.94
MOTA	2918	0	LEU	389	58.185	45.934	48.050 47.594	1.00 34.97
ATOM	2919	И	TYR	390	59.322	47.832	48.426	1.00 35.32
MOTA	2920	CA	TYR	390	60.472	47.490 47.241	47.515	1.00 36.83
MOTA	2921	CB	TYR	390	61.687		48.215	1.00 36.83
MOTA	2922	CG CD1	TYR	390	62.984 63.449	46.903 45.588	48.260	1.00 30.84
MOTA	2923		L TYR L TYR	390 390	64.675	45.269	48.865	1.00 39.01
MOTA	2924	CEJ	LIK	370	04.0/3	33.203	-0.000	1.55 55.01

					10.	•		
ATOM	2925	CD2	TYR	390	63.770	47.902	48.800	1.00 36.30
ATOM	2926		TYR	390	64.997	47.594	49.415	1.00 37.61
ATOM	2927	CZ	TYR	390	65.441	46.278	49.440	1.00 38.56
ATOM	2928	OH	TYR	390	66.642	45.965	50.034	1.00 40.00
ATOM	2929	С	TYR	390	60.722	48.675	49.359	1.00 36.57
ATOM	2930	0	TYR	390	60.818	49.812	48.902	1.00 39.11
ATOM	2931	N	ILE	391	60.826	48.411	50.656	1.00 34.84
ATOM	2932	CA	ILE	391	61.047	49.461	51.634	1.00 36.11
ATOM	2933	CB	ILE	391	59.742	49.799	52.392	1.00 38.59
ATOM	2934	CG2		391	59.975	50.992	53.304	1.00 33.31
ATOM	2935	CG1	ILE	391	58.606	50.080	51.394	1.00 37.52
MOTA	2936	CD1		391	57.306	50.498	52.045	1.00 36.81 1.00 37.80
ATOM	2937	С	ILE	391	62.082	49.024	52.657	
MOTA	2938	0	ILE	391	61.784	48.240	53.558	1.00 39.48 1.00 38.87
ATOM	2939	N	SER	392	63.296	49.541	52.524 53.438	1.00 30.07
ATOM	2940	CA	SER	392	64.376	49.186	52.652	1.00 40.15
ATOM	2941	CB	SER	392	65.609	48.743 49.756	51.739	1.00 42.76
MOTA	2942	OG	SER	392	66.009	50.370	54.320	1.00 38.92
ATOM	2943	C	SER	392	64.722	50.325	55.090	1.00 38.90
ATOM	2944	0	SER	392	65.679	51.435	54.185	1.00 38.10
ATOM	2945	N	ALA	393	63.941 64.117	52.637	54.987	1.00 39.21
MOTA	2946	CA	ALA	393	65.262	53.492	54.444	1.00 38.87
ATOM	2947	CB	ALA ALA	393 393	62.809	53.424	54.978	1.00 40.68
MOTA	2948	С О	ALA	393	62.103	53.488	53.963	1.00 38.40
ATOM	2949	N	TRP	394	62.488	54.019	56.120	1.00 41.96
ATOM	2950 2951	CA	TRP	394	61.252	54.775	56.264	1.00 43.86
ATOM ATOM	2952	CB	TRP	394	60.110	53.794	56.583	1.00 42.73
MOTA	2953	CG	TRP	394	58.729	54.325	56.387	1.00 42.06
MOTA	2954	CD2		394	58.072	54.578	55.139	1.00 41.48
MOTA	2955	CE2		394	56.780	55.068	55.438	1.00 40.33
ATOM	2956	CE3		394	58.448	54.439	53.797	1.00 41.31
MOTA	2957	CD1		394	57.839	54.661	57.361	1.00 43.59
MOTA	2958	NE1	TRP	394	56.664	55.107	56.801	1.00 43.49
ATOM	2959	CZ2	TRP	394	55.862	55.421	54.447	1.00 39.55
MOTA	2960		TRP	394	57.528	54.793	52.803	1.00 41.64 1.00 40.34
MOTA	2961		TRP	394	56.249	55.278	53.140 57.415	1.00 40.54
MOTA	2962	С	TRP	394	61.508	55.748 55.427	58.335	1.00 42.87
MOTA	2963	0	TRP	394	62.259	56.954	57.366	1.00 46.80
MOTA	2964	N	PRO	395	60.907 59.942	57.432	56.356	1.00 47.29
ATOM	2965	CD	PRO	395 395	61.096	57.963	58.420	1.00 48.66
ATOM	2966 2967	CA CB	PRO PRO	395	60.358	59.184	57.859	1.00 48.97
MOTA	2968	CG	PRO	395	59.242	58.576	57.079	1.00 47.43
ATOM ATOM	2969	C	PRO	395	60.565	57.543	59.785	1.00 49.74
ATOM	2970	Ö	PRO	395	59.376	57.256	59.917	1.00 50.66
ATOM	2971	N	ASP	396	61.438	57.512	60.795	1.00 51.99
ATOM	2972	CA	ASP	396	61.033	57.121	62.153	1.00 54.46
ATOM	2973	CB	ASP	396	62.155	57.360	63.164	1.00 56.07
ATOM	2974	CG	ASP	396	63.283	56.373	63.022	1.00 61.08
MOTA	2975		1 ASP	396	62.993	55.169	62.829	1.00 62.53 1.00 63.88
ATOM	2976		2 ASP	396	64.458	56.799	63.115	1.00 53.88
ATOM	2977		ASP	396	59.790		62.645	1.00 54.40
MOTA	2978	0	ASP	396	58.986	57.289	63.390 62.238	1.00 53.50
MOTA	2979		SER	397	59.635		62.653	
MOTA	2980			397	58.475 58.551		62.085	
MOTA	2981			397	58.623			
MOTA	2982			397 397	57.161			
MOTA	2983		SER	397	56.164			
ATOM	2984		SER LEU	398	57.150			
MOTA	2985	IA	TEO	290	37.130	00.002		

					10	'1			
MOTA	2986	CA	LEU	398	55.936	57.858	60.606	1.00	
ATOM	2987	CB	LEU	398	55.917	57.766	59.075		47.89
ATOM	2988	CG	LEU	398	55.848	59.089	58.296		48.30
ATOM	2989	CD1	LEU	398	55.639	58.783	56.834		47.77
ATOM	2990	CD2	LEU	398	54.706	59.967	58.798		46.68
ATOM	2991	С	LEU	398	55.801	56.457	61.220		47.95
ATOM	2992	0	LEU	398	56.700	55.627	61.100		47.18
MOTA	2993	N	PRO	399	54.662	56.182	61.885		45.97
MOTA	2994	CD	PRO	399	53.594	57.154	62.195		42.77
MOTA	2995	CA	PRO	399	54.393	54.892	62.533 63.566		45.25 44.03
ATOM	2996	CB	PRO	399	53.327	55.254 56.285	62.842		43.17
ATOM	2997	CG	PRO	399	52.528 53.940	53.753	61.618		45.16
ATOM	2998	C	PRO	399 399	54.021	52.575	61.991		46.16
ATOM	2999	0 N	PRO ASP	400	53.451	54.093	60.434		42.35
ATOM ATOM	3000 3001	N CA	ASP	400	52.987	53.069	59.512		41.88
ATOM	3001	CB	ASP	400	51.493	52.790	59.736		42.58
ATOM	3003	CG	ASP	400	50.617	54.024	59.516		44.56
ATOM	3004		ASP	400	51.096	55.030	58.943		44.51
ATOM	3005		ASP	400	49.434	53.983	59.912	1.00	45.18
ATOM	3006	C	ASP	400	53.229	53.461	58.062		41.12
ATOM	3007	0	ASP	400	53.945	54.425	57.779	1.00	41.52
ATOM	3008	N	LEU	401	52.630	52.711	57.144	1.00	39.96
ATOM	3009	CA	LEU	401	52.787	52.985	55.718	1.00	40.52
ATOM	3010	CB	LEU	401	53.207	51.704	54.986	1.00	37.20
ATOM	3011	CG	LEU	401	. 54.389	50.918	55.572		34.86
MOTA	3012	CD1	LEU	401	54.417	49.516	54.978		29.03
MOTA	3013	CD2	LEU	401	55.697	51.668	55.317		32.51
MOTA	3014	С	LEU	401	51.445	53.481	55.178		42.33
MOTA	3015	0	LEU	401	51.102	53.249	54.010	1.00	
MOTA	3016	N	SER	402	50.691	54.174	56.029		43.15
MOTA	3017	CA	SER	402	49.376	54.659	55.635		45.17 46.37
ATOM	3018	CB	SER	402	48.704	55.422	56.790		50.42
ATOM	3019	OG	SER	402	49.390 49.379	56.621 55.505	57.108 54.360		45.55
MOTA	3020	С	SER	402 · 402	48.332	55.649	53.718		44.73
ATOM	3021	O N	SER VAL	402	50.531	56.059	53.710	1.00	
MOTA MOTA	3022 3023	N CA	VAL	403	50.562	56.833	52.746		44.06
ATOM	3023	CB	VAL	403	51.995	57.324	52.361		46.39
ATOM	3025	CG1		403	52.570	58.199	53.450	1.00	
MOTA	3026	CG2		403	52.908	56.131	52.075	1.00	48.94
ATOM	3027	C	VAL	403	50.056	55.922	51.625	1.00	43.40
ATOM	3028	Ö	VAL	403	49.513	56.397	50.624	1.00	44.33
ATOM	3029	N		. 404	50.238	54.614	51.797	1.00	40.95
ATOM	3030	CA	PHE	404	49.795	53.636	50.804		41.83
MOTA	3031	CB	PHE	404	50.849	52.528	50.636		42.48
ATOM	3032	CG	PHE	404	52.148	53.000	50.065		39.30
MOTA	3033	CD1	PHE	404	52.217	53.489	48.770		38.75
ATOM	3034		PHE	404	53.306	52.953	50.825		38.89
MOTA	3035		PHE	404	53.426	53.921	48.245		38.45
MOTA	3036		PHE	404	54.519	53.383	50.307		37.33
MOTA	3037	CZ	PHE	404	54.577	53.866	49.017		37.18
MOTA	3038	C	PHE	404	48.472	52.990	51.220		42.45 39.55
MOTA	3039	0	PHE	404	48.150	51.877	50.792		44.33
MOTA	3040	N	GLN	405	47.699	53.687 53.130	52.045 52.520		45.10
ATOM	3041	CA	GLN	405	46.442	54.054	53.564		45.82
• MOTA	3042	CB	GLN	405	45.816 45.431	55.426	53.053		51.73
MOTA	3043	CG	GLN	405 405	45.431	56.304	54.156		53.97
MOTA	3044 3045	CD OF 1	GLN GLN	405 405	43.860	55.960	54.778		54.78
ATOM	3045		GLN GLN	405	45.527	57.443	54.411		53.84
MOTA	2040	1417.5	. GLIN	400	.5.527				

105 ATOM 3047 C GLN 405 45.426 52.790 51.429 1.00 44.71 ATOM 3048 GLN 0 405 44.518 51.996 51.667 1.00 45.50 ATOM 3049 ASN 406 N 53.368 45.565 50.239 1.00 43.57 ATOM 3050 ASN CA 406 44.624 53.056 49.160 1.00 44.72 ATOM 3051 CB ASN 406 44.169 54.326 48.421 1.00 46.41 ATOM 3052 CG ASN 406 43.366 55.270 49.299 1.00 47.55 ATOM 3053 OD1 ASN 406 42.443 54.858 50.011 1.00 45.86 ATOM 3054 ND2 ASN 406 43.705 56.555 49.236 1.00 46.55 MOTA 3055 С ASN 406 45.223 52.094 48.137 1.00 44.32 ATOM 3056 0 ASN 406 44.677 51.917 47.044 1.00 45.85 ATOM 3057 N LEU 407 46.355 51.492 48.482 1.00 42.87 ATOM 3058 CA LEU 407 47.011 50.546 47.595 1.00 41.65 ATOM 3059 CB LEU 407 48.438 50.296 48:078 1.00 39.43 MOTA 3060 CG LEU 407 49.305 49.362 47.244 1.00 38.68 ATOM 3061 CD1 LEU 407 49.279 49.793 45.796 1.00 37.29 ATOM 3062 CD2 LEU 407 50.718 49.377 47.794 1.00 39.44 ATOM 3063 С LEU 407 46.191 49.257 47.627 1.00 42.87 ATOM 3064 0 LEU 407 46.066 48.618 48.668 1.00 41.20 ATOM 3065 N GLN 408 45.626 48.880 46.487 1.00 44.64 MOTA 3066 CA GLN 408 44.789 47.686 46.422 1.00 46.93 ATOM 3067 CB GLN 408 43.540 47.979 45.599 1.00 46.58 ATOM 3068 CG GLN 408 42.557 48.874 46.317 1.00 51.50 MOTA 3069 CD GLN 408 41.587 49.554 45.374 1.00 52.88 ATOM 3070 OE1 GLN 408 40.933 48.907 44.545 1.00 52.20 MOTA 3071 GLN NE2 408 41.486 50.872 45.497 1.00 55.91 MOTA 3072 С GLN 408 45.464 46.458 45.852 1.00 47.02 ATOM 3073 0 GLN 408 45.213 45.334 46.300 1.00 47.65 MOTA 3074 N VAL 409 46.317 46.672 44.861 1.00 44.93 MOTA 3075 CA VAL 409 46.984 45.562 44.227 1.00 44.05 MOTA 3076 CB VAL 409 46.259 45.169 42.920 1.00 45.18 MOTA 3077 CG1 VAL 409 47.031 44.075 42.194 1.00 45.20 ATOM 3078 CG2 VAL 409 44.850 44.698 43.231 1.00 47.18 ATOM 3079 C VAL 409 48.434 45.835 43.890 1.00 43.61 MOTA 3080 0 VAL 409 48.813 46.949 43.528 1.00 42.67 MOTA 3081 N ILE 410 49.239 44.791 44.038 1.00 41.59 MOTA 3082 CA ILE 410 44.823 50.644 43.693 1.00 38.73 MOTA 3083 CB ILE 410 51.557 44.752. 44.937 1.00 34.96 MOTA 3084 CG2 ILE 410 53.034 44.643 44.501 1.00 30.70 MOTA 3085 CG1 ILE 410 45.793 51.347 46.003 1.00 30.25 CD1 ILE ATOM 3086 410 52.241 46.107 47.012 1.00 25.93 MOTA 3087 С ILE 410 50.752 43.546 42.877 1.00 39,73 ATOM 3088 0 ILE 410 50.887 42.461 43.435 1.00 40.26 MOTA 3089 N ARG 411 50.630 43.680 41.556 1.00 41.18 MOTA 3090 CA ARG 411 50.694 42.536 40.651 1.00 41.50 MOTA 3091 CB ARG 411 50.614 42.987 39.193 1.00 44.32 ATOM 3092 CG ARG 411 49.216 43.133 38.611 1.00 50.54 MOTA 3093 CD ARG 48.556 411 44.418 39.037 1.00 54.13 MOTA 3094 ARG 47.302 NE 411 44.679 38.322 1.00 60.27 MOTA 3095 CZARG 411 46.201 43.930 38.392 1.00 61.55 ATOM 3096 NH1 ARG 411 46.162 42.836 39.144 1.00 59.64 MOTA 3097 NH2 ARG 411 45.118 44.299 37.719 1.00 63.09 MOTA 3098 С ARG 411 51.961 41.720 40.819 1.00 41.76 MOTA 3099 0 ARG 51.927 411 40.494 40.760 1.00 43.44 MOTA 3100 N GLY 412 53.086 42.392 41.018 1.00 40.54 ATOM 3101 CA GLY 412 54.327 41.659 41.154 1.00 41.36 MOTA 3102 C GLY 412 54.784 41.094 39.815 1.00 41.71 MOTA 3103 0 GLY 412 55.437 40.055 39.771 1.00 39.26 MOTA 3104 Ν ARG 413 54.436 41.770 38.717 1.00 43.65 3105 MOTA CA ARG 413 54.857 41.316 37.391 1.00 44.63 MOTA 3106 CB ARG 413 54.234 42.165 36.287 1.00 45.78 MOTA 3107 CG ARG 413 52.743

41.912

36.102

1.00 49,28

						-	•		
ATOM	3108	CD	ARG ·	413	52.314	42.174	34.661		50.29
MOTA	3109	NE	ARG	413	51.307	43.227	34.552		53.86
ATOM	3110	CZ	ARG	413	50.043	43.113	34.950		51.79
ATOM	3111		ARG	413	49.608	41.978	35.493		50.37
ATOM	3112		ARG	413	49.217	44.142	34.799		48.50
ATOM	3113	C	ARG	413	56.373	41.398	37.331		44.29
ATOM	3114	0	ARG	413	57.008	40.727	36.524		46.07
ATOM	3115	N	ILE	414	56.938	42.242	38.186		42.36
ATOM ATOM	3116	CA	ILE ILE	414	58.380	42.380	38.311 37.862		41.85
ATOM	3117 3118	CB CG2	ILE	414 414	58.868 60.374	43.768 43.869	38.024		38.29
ATOM	3119	CG1	ILE	414	58.504	44.006	36.401		42.75
ATOM	3120	CD1	ILE	414	58.947	45.376	35.886		45.50
ATOM	3121	C	ILE	414	58.632	42.209	39.820		42.04
ATOM	3122	ō	ILE	414	58.010	42.896	40.634		42.22
ATOM	3123	N	LEU	415	59.525	41.293	40.194		40.03
ATOM	3124	CA	LEU	415	59.807	41.040	41.608		39.68
ATOM	3125	СВ	LEU	415	59.630	39.553	41.915		37.15
MOTA	3126	CG	LEU	415	58.331	38.933	41.382	1.00	37.95
MOTA	3127	CD1	LEU	415	58.434	37.428	41.472		34.92
ATOM	3128	CD2	LEU	415	57.118	39.454	42.150	1.00	36.11
ATOM	3129	С	LEU	415	61.202	41.475	42.029	1.00	38.94
ATOM	3130	0	LEU	4.15	62.129	41.464	41.229	1.00	40.10
ATOM	3131	N	HIS	416	61.351	41.870	43.286	1.00	37.91
ATOM	3132	CA	HIS	416	62.661	42.277	43.765	1.00	37.95
MOTA	3133	CB	HIS	416	62.549	42.958	45.117	1.00	35.21
ATOM	3134	CG	HIS	416	63.853	43.482	45.611		37.67
MOTA	3135	CD2		416	64.475	44.666	45.396		36.84
MOTA	3136	ND1		416	64.735	42.708	46.333		37.22
ATOM	3137	CE1		416	65.846	43.394	46.540		38.59
ATOM	3138	NE2		416	65.714	44.584			36.63
ATOM	3139	С	HIS	416	63.520	41.011	43.849		38.20
ATOM	3140	0	HIS	416	63.062	39.973	44.355		37.39
ATOM	3141 3142	N Cr	ASN	417	64.760 65.634	41.092 39.913	43.359 43.298		36.97 35.90
ATOM ATOM	3142	CA CB	ASN ASN	417 417	66.035	39.399	44.683		38.02
ATOM	3143	CG	ASN	417	67.226	40.139	45.260		40.21
ATOM	3145		ASN	417	68.074	40.625	44.525		44.23
ATOM	3146		ASN	417	67.304	40.210	46.582		39.54
ATOM	3147	C	ASN	417	64.845	38.823	42.562		36.30
ATOM	3148	ō	ASN	417	65.093	37.631	42.738		35.72
ATOM	3149	N	GLY	418	63.883	39.252	41.747	1.00	33.78
MOTA	3150	CA	GLY	418	63.071	38.327	40.989	1.00	34.34
MOTA	3151	С	GLY	418	62.245	37.374	41.831		35.85
MOTA	3152	0	GLY	418	61.760	36.363	41.323		37.04
MOTA	3153	N	ALA	419	62.055	37.690	43.108		35.17
MOTA	3154	CA	ALA	419	61.296	36.793	43.972		34.41
MOTA	3155	CB	ALA ·	419	62.275	35.987	44.854		30.62
MOTA	3156	С	ALA	419	60.226	37.444	44.855		33.91
ATOM	3157	0	ALA	419	59.134	36.893	45.021		33.84
MOTA	3158	N	TYR	420	60.547	38.611	45.405		33.11
MOTA	3159	CA	TYR	420	59.672	39.325	46.327		31.95
MOTA	3160	CB	TYR	420	60.514	39.806	47.505		33.26 34.39
MOTA	3161 3162	CG CD1	TYR	420	61.335 62.715	38.713 38.640	48.139 47.936		34.39
ATOM	3163	CD1	TYR TYR	420 420	63.487	37.626	47.936		38.42
MOTA MOTA	3164		TYR	420	60.733	37.749	48.958		35.52
ATOM	3165		TYR	420	61.486	36.738	49.562		37.85
ATOM	3166	CZ	TYR	420	62.862	36.681	49.351		38.60
ATOM	3167	ОН	TYR	420	63.595	35.676	49.942		39.21
ATOM	3168	C.	TYR	420	58.879	40.497	45.764		31.18
				•		-	-		

PCT/AU2003/001310

		•			1	07		
MOTA	3169	0	TYR	420	59.442	41.404	45.164	1.00 32.88
ATOM	3170	N	SER	421	57.571	40.488	45.991	1.00 31.19
ATOM	3171	CA	SER	421	56.697	41.549	45.499	1.00 30.32
ATOM ATOM	3172 3173	CB	SER	421	55.345	40.970	45.077	1.00 32.75
ATOM	3174	OG C	SER SER	421 421	54.882	40.006	46.012	1.00 36.22
ATOM	3175	Ö	SER	421	56.497 56.132	42.603 43.744	46.559	1.00 30.53
ATOM	3176	N	LEU	422	56.738	42.221	46.264 47.805	1.00 31.77 1.00 30.40
ATOM	3177	CA	LEU	422	56.604	43.151	48.917	1.00 30.40
ATOM	3178	СВ	LEU	422	55.254	42.986	49.622	1.00 30.25
ATOM	3179	CG	LEU	422	55.121	43.842	50.888	1.00 29.90
ATOM ATOM	3180 3181	CD1		422	55.036	45.319	50.512	1.00 28.81
ATOM	3182	C	LEU	422 422	53.893 57.706	43.415	51.663	1.00 31.47
ATOM	3183	ō	LEU	422	57.782	42.893 41.808	49.920 50.501	1.00 29.76 1.00 29.18
ATOM	3184	N	THR	423	58.551	43.896	50.137	1.00 29.18
MOTA	3185	CA	THR	423	59.640	43.755	51.080	1.00 29.16
MOTA	3186	CB	THR	423	60.979	43.717	50.349	1.00 30.73
MOTA	3187	0G1		423	60.952	42.685	49.357	1.00 26.80
ATOM ATOM	3188 3189	CG2 C		423	62.103	43.462	51.326	1.00 29.57
ATOM	3190	0	THR THR	423 423	59.671 59.665	44.904	52.076	1.00 32.07
ATOM	3191	N	LEU	424	59.697	46.070 44.572	51.701 53.356	1.00 34.06 1.00 33.32
MOTA	3192	CA	LEU	424	59.757	45.588	54.386	1.00 33.32
ATOM	3193	CB	LEU	424	58.432	45.680	55.131	1.00 31.70
ATOM	3194	CG	LEU	424	57.199	45.898	54.266	1.00 31.60
ATOM	3195	CD1		424	56.001	46.055	55.196	1.00 32.03
ATOM ATOM	3196 3197	CD2 C	LEU LEU	424	57.374	47.131	53.384	1.00 30.01
ATOM	3198	Ö	LEU	424 424	60.830 60.655	45.109 44.093	55.321 55.990	1.00 32.73
ATOM	3199	N	GLN	425	61.941	45.834	55.367	1.00 33.11 1.00 35.85
ATOM	3200	CA	GLN	425	63.054	45.448	56.225	1.00 33.63
ATOM	3201	СВ	GLN	425	64.051	44.596	55.427	1.00 39.34
ATOM	3202	CG	GLN	425	64.565	45.265	54.172	1.00 41.63
MOTA MOTA	3203 3204	CD OF1	GLN	425	65.575	44.410	53.435	1.00 44.59
ATOM	3204	OE1 NE2		425 425	65.325 66.723	43.229 44.999	53.160	1.00 45.28
ATOM	3206	C	GLN	425	63.794	46.613	53.105 56.891	1.00 42.97 1.00 39.68
ATOM	3207	0	GLN	425	63.935	47.704	56.320	1.00 40.17
ATOM	3208	N	GLY	426	64.258	46.348	58.112	1.00 40.10
ATOM	3209	CA	GLY	426	64.992	47.323	58.899	1.00 39.31
ATOM ATOM	3210 3211	С	GLY	426	64.228	48.585	59.233	1.00 39.60
ATOM	3212	O N	GLY LEU	426 427	64.839 62.906	49.576 48.562	59.615	1.00 41.24
ATOM	3213	CA	LEU	427	62.117	49.759	59.114 59.390	1.00 38.98 1.00 39.49
ATOM	3214	СВ	LEU	427	60.808	49.704	58.613	1.00 39.56
ATOM	3215	CG	LEU	427	60.970	49.266	57.157	1.00 39.73
ATOM	3216		LEU	427	59.601	49.006	56.567	1.00 39.64
ATOM ATOM	3217 3218	CD2	LEU	427	61.711	50.331	56.365	1.00 38.74
ATOM	3219	0	LEU LEU	· 427 427	61.817 62.114	49.990 49.149	60.866	1.00 40.51
MOTA	3220	N	GLY	428	61.228	51.148	61.727 61.149	1.00 40.55 1.00 40.84
MOTA	3221	CA	GLY	428	60.884	51.493	62.514	1.00 38.84
MOTA	3222	С	GLY	428	59.381	51.565	62.697	1.00 40.06
MOTA	3223	0	GLY	428	58.897	51.957	63.761	1.00 40.32
MOTA MOTA	3224	N	ILE	429	58.630	51.179	61.669	1.00 39.38
ATOM	3225 3226	CA CB	ILE	429 429	57.178 56.518	51.230	61.759	1.00 38.33
MOTA	3227	CG2		429	56.897	50.853 51.876	60.428 59.371	1.00 37.87 1.00 38.44
MOTA	3228	CG1		429	56.932	49.444	60.002	1.00 36.44
MOTA	3229	CD1		429	56.211	48.957	58.741	1.00 34.27

-		_	•
1	п	1)	x

						U			
MOTA	3230	С	ILE	429	56.615	50.343	62.865		38.00
MOTA	3231	0	ILE	429	57.205	49.313	63.219		35.51
ATOM	3232	N	SER	430	55.472	50.758	63.412		37.06
MOTA	3233	CA	SER	430	54.826	50.013	64.480		36.12
MOTA	3234	CB	SER	430	54.293	50.968	65.531		37.07
MOTA	3235	OG	SER	430	55.382	51.538	66.235		37.62
MOTA	3236	С	SER	430	53.729	49.107	63.960		35.48
MOTA	3237	0	SER	430	53.370	48.132	64.612		35.19
MOTA	3238	N	TRP	431	53.204	49.426	62.781		36.17
MOTA	3239	CA	TRP	431	52.190	48.588	62.132		37.40
MOTA	3240	CB	TRP	431	50.798	48.784	62.763		38.03
MOTA	3241	CG	TRP	431	50.242	50.167	62.666		38.99
ATOM	3242	CD2	TRP	431	50.377	51.200	63.643		37.91
MOTA	3243	CE2	TRP	431	49.793	52.370	63.099		36.90
MOTA	3244	CE3	TRP	431	50.944	51.255	64.922		37.49
MOTA	3245	CD1		431	49.588	50.726	61.600		39.59
MOTA	3246	NE1	TRP	431	49.318	52.054	61.854		38.21
ATOM	3247	CZ2	TRP	431	49.762	53.581	63.790		36.66
ATOM	3248	CZ3	TRP	431	50.913	52.463	65.610		40.07
ATOM	3249	CH2	TRP	431	50.325	53.612	65.040		37.72
ATOM	3250	С	TRP	431	52.177	48.900	60.636		38.01
ATOM	3251	0	TRP	431	52.692	49.925	60.205	1.00	38.72
ATOM	3252	N	LEU	432	51.605	48.014	59.835	1.00	38.11
ATOM	3253	CA	LEU	432	51.596	48.239	58.402		37.62
MOTA	3254	CB	LEU	432	51.281	46.929	57.692	1.00	37.35
ATOM	3255	CG	LEU	432	52.243	45.818	58.122		34.41
MOTA	3256	CD1	LEU	432	51.976	44.598	57.284		37.13
ATOM	3257	CD2	LEU	. 432	53.680	46.269	57.959		32.05
MOTA	3258	С	LEU	432	50.657	49.344	57.940	1.00	38.77
MOTA	3259	0	LEU	432	51.105	50.356	57.384		39.52
ATOM	3260	N	GLY	433	49.359	49.154	58.144		38.86
ATOM	3261	CA	GLY	433	48.411	50.180	57.742	1.00	38.46
ATOM	3262	С	GLY	433	48.067	50.179	56.267	1.00	40.43
ATOM	3263	0	GLY	433	47.531	51.159	55.742	1.00	39.11
ATOM	3264	N	LEU	434	48.393	49.083	55.588	1.00	41.72
ATOM	3265	CA	LEU	434	48.091	48.942	54.166	1.00	44.07
ATOM	3266	CB	LEU	434	49.052	47.922	53.552		41.25
ATOM	3267	CG	LEU	434	50.539	48.289	53.655		41.54
ATOM	3268	CD1	LEU	434	51.399	47.068	53.381	1.00	
MOTA	3269	CD2	LEU	434	50.872	49.397	52.668		40.90
ATOM	3270	С	LEU	434	46.636	48.443	54.092		46.14
MOTA	3271	0	LEU	434	46.341	47.409	53.483		45.75
MOTA	3272	N	ARG	435	45.734	49.201	54.716		47.92
MOTA	3273	CA	ARG	435	44.319	48.834	54.812		50.23
MOTA	3274	CB	ARG	435	43.540	49.923	55.549		54.76
MOTA	3275	CG	ARG	435	43.562	51.270	54.874		59.93
MOTA	3276	CD	ARG	435	42.595	52.231	55.537		64.22
MOTA	3277	NE	ARG	435	42.370	53.382	54.672		71.06
ATOM	3278	CZ	ARG	435	41.303	54.170	54.722		73.22
ATOM	3279	NH1	ARG	435	40.338	53.940	55.611		74.09
MOTA	3280	NH2	ARG	435	41.196	55.180	53.864		74.84
MOTA	3281	С	ARG	· 435	43.550	48.452	53.559		49.26
MOTA	3282	0	ARG	435	42.602	47.682	53.649		49.02
ATOM	3283	N	SER	436	43.937	48.970	52.398		48.80
MOTA	3284	CA	SER	436	43.236	48.633	51.161		47.08
MOTA	3285	CB	SER		43.154	49.855	50.251		49.11
MOTA	3286	OG	SER		42.243	50.807	50.760		51.09
MOTA	3287	С	SER	436	43.851	47.481	50.374		46.81
ATOM	3288	0	SER		43.266	47.009	49.396		48.99
MOTA	3289	N	LEU	437	45.019	47.014	50.801		46.11
MOTA	3290	CA	LEU	437	45.710	45.940	50.096	1.00	44.52

					10	7			
ATOM	3291	CB	LEU	437	47.107	45.758	50.674		42.22
ATOM	3292	CG	LEU	437	47.982	44.747	49.937		40.49
MOTA	3293	CD1	LEU	437	48.241	45.250	48.519		36.99
MOTA	3294	CD2		437	49.290	44.552	50.698		39.32
MOTA	3295	С	LEU	437	44.976	44.610	50.132		45.78
ATOM	3296	0	LEU	437	44.915	43.955	51.174		45.88
MOTA	3297	N		438	44.436	44.194	48.993		46.68
MOTA	3298	CA	ARG	438	43.715	42.928	48.949	-	49.57
MOTA	3299	CB	ARG	438	42.283	43.137	48.435		51.68 57.84
MOTA	3300	CG	ARG	438	42.228	43.703	47.025		62.85
MOTA	3301	CD	ARG	438	41.034	43.180 43.425	46.234 44.800		64.06
MOTA	3302	NE	ARG	438 438	41.190 41.115	43.425	44.233		65.00
ATOM	3303	CZ	ARG ARG	438	40.874	45.700	44.978		63.57
MOTA	3304 3305	NH1	ARG	438	41.305	44.753	42.925		65.53
ATOM ATOM	3305	C	ARG	438	44.404	41.880	48.081		48.81
ATOM	3307	Ö	ARG	438	43.934	40.743	47.998		49.66
ATOM	3307	N	GLU	439	45.504	42.245	47.425		47.06
ATOM	3309	CA	GLU	439	46.194	41.273	46.577		46.12
ATOM	3310	CB	GLU	439	45.407	41.026	45.280		45.20
ATOM	3311	CG	GLU	439	46.269	40.369	44.188	1.00	48.25
ATOM	3312	CD	GLU	439	45.546	40.096	42.873		49.06
ATOM	3313	OE1		439	44.639	40.867	42.494	1.00	52.99
ATOM	3314	OE2		439	45.910	39.112	42.199	1.00	
ATOM	3315	С	GLU	439	47.649	41.519	46.180	1.00	44.21
MOTA	3316	0	GLU	439	48.061	42.634	45.860	1.00	
MOTA	3317	N	LEU	440	48.403	40.429	46.192	1.00	
ATOM	3318	CA	LEU	440	49.789	40.407	45.768	1.00	
MOTA	3319	CB	LEU	440	50.687	39.888	46.885	1.00	
ATOM	3320	CG	LEU	. 440	50.834	40.836	48.079	1.00	
MOTA	3321	CD1		440	51.618	40.156	49.172		36.28
MOTA	3322	CD2		440	51.549	42.102	47.643		37.02
ATOM	3323	С	LEU	440	49.724	39.412	44.618	1.00	
MOTA	3324	0	LEU	440	49.757	38.204	44.830	1.00	
MOTA	3325	N	\mathtt{GLY}	441	49.590	39.932	43.402		41.24
ATOM	3326	CA	GLY	441	49.472	39.088	42.223	1.00	
MOTA	3327	С	GLY	441	50.400	37.892	42.136 41.668		42.55 43.43
MOTA	3328	0	GLY	441	50.009	36.821 38.076	42.563		41.02
ATOM	3329	N N	SER	442	51.641 52.613	37.002	42.531		40.92
ATOM	3330	CA	SER	442 442	53.030	36.683	41.092		41.27
MOTA	3331 3332	CB OG	SER SER	442	53.645	37.802	40.492		45.36
ATOM ATOM	3333	C	SER	442	53.808	37.447	43.338		40.20
ATOM	3334	Ö	SER	442	53.890	38.613	43.742		40.30
ATOM	3335	N	GLY	443	54.728	36.518	43.582		38.65
ATOM	3336	CA	GLY	443	55.901	36.834	44.369		37.83
ATOM	3337	C	GLY	443	55.631	36.603	45.844	1.00	39.08
ATOM	3338	ō	GLY	443	54.475	36.493	46.268	1.00	39.98
ATOM	3339	N	LEU	444	56.696	36.525	46.631		37.91
ATOM	3340	CA	LEU	444	56.567	36.310	48.053	1.00	37.00
ATOM	3341	CB	LEU	444	57.694	35.415	48.538		38.41
ATOM	3342	CG	LEU	444	57.537	33.963	48.088		42.05
MOTA	3343	CD1	LEU	444	58.864	33.394	47.609		45.89
MOTA	3344		LEU	. 444	56.983	33.161	49.241		42.56
MOTA	3345	С	LEU	444	56.630	37.640	48.764		38.87
MOTA	3346	0	LEU	444	56.975	38.656	48.162		42.31
MOTA	3347	N	ALA	445	56.276	37.632	50.044		37.35
ATOM	3348	CA	ALA	445	56.310	38.821	50.868		34.33
ATOM	3349	CB	ALA	445	54.996	39.004	51.575		34.87
MOTA	3350	C	ALA	445	57.413	38.595	51.881		34.94
MOTA	3351	0	ALA	445	57.487	37.534	52.506	T.00	34.95

0

MOTA

HIS

452

110 52.040 1.00 33.98 LEU 446 58.282 39.582 3352 MOTA N 3353 LEU 446 59.366 39.457 52.990 1.00 32.14 MOTA CA 60.705 39.427 52.259 1.00 31.79 MOTA 3354 CB LEU 446 1.00 35.26 446 61.968 39.387 53.128 MOTA 3355 CG LEU 1.00 35.34 3356 LEU 446 61.878 38.262 54.154 MOTA CD1 63.183 39.202 52.237 1.00 35.63 MOTA 3357 CD2 LEU 446 1.00 34.42 53.946 59.302 40.627 MOTA 3358 С LEU 446 41.787 53.526 1.00 36.09 59.372 3359 LEU 446 MOTA 0 1.00 34.59 59.148 40.316 55.233 3360 447 MOTA N ILE 59.059 1.00 33.79 41.326 56.279 MOTA 3361 CA ILE 447 1.00 33.38 57.617 41.456 56.770 MOTA 3362 CB ILE 447 1.00 34.06 447 57.528 42.521 57.846 MOTA 3363 CG2 ILE 1.00 32.75 41.770 55.588 MOTA 3364 CG1 ILE 447 56.699 55.994 1.00 34.78 42.062 MOTA 3365 CD1 ILE 447 55.245 40.889 57.438 1.00 35.09 447 59.944 MOTA 3366 С ILE 59.622 39.931 58.147 1.00 36.39 ILE 447 ATOM 3367 0 57.643 1.00 34.59 448 61.061 41.574 3368 N HIS MOTA 41.156 58.716 1.00 37.11 HIS 448 61.945 ATOM 3369 CA 1.00 39.27 58.223 ATOM 3370 СВ HIS 448 62.853 40.028 40.486 57.264 1.00 38.82 MOTA 3371 CG HIS 448 63.904 40.725 55.933 1.00 39.04 MOTA 3372 CD2 HIS 448 63.852 1.00 39.32 65.177 40.825 57.667 448 ATOM 3373 ND1 HIS 3374 65.864 41.257 56.624 1.00 40.51 448 CE1 HIS MOTA 1.00 41.38 65.083 41.207 55.560 3375 NE2 HIS 448 MOTA 1.00 39.00 59.285 3376 62.792 42.277 ATOM С HIS 448 1.00 39.77 43.306 58.637 63.011 ATOM 3377 0 HIS 448 42.046 60.502 1.00 39.63 63.276 MOTA 3378 N HIS 449 64.091 43.008 61.222 1.00 40.27 ATOM 3379 CA HIS 449 43.120 60.594 1.00 40.23 65.477 CB HIS 449 3380 MOTA HIS 449 66.346 41.940 60.892 1.00 45.12 3381 CG ATOM 1.00 45.97 67.248 41.725 61.879 ATOM 3382 CD2 HIS 449 1.00 46.84 40.757 60.188 MOTA 3383 ND1 HIS 449 66.260 1.00 47.26 39.864 60.731 MOTA 3384 CE1 HIS 449 67.071 61.761 40.426 1.00 46.02 67.682 MOTA 3385 NE2 HIS 449 1.00 39.67 44.370 61.362 63.439 MOTA 3386 С HIS 449 45.410 61.157 1.00 39.10 64.067 3387 HIS 449 MOTA 0 3388 450 62.157 44.339 61.711 1.00 39.45 ASN MOTA Ν 1.00 38.40 61.371 45.544 61.965 ATOM 3389 CA ASN 450 61.110 1.00 37.35 60.119 45.525 ATOM 3390 CB ASN 450 45.445 59.639 1.00 35.81 60.442 3391 CG ASN 450 ATOM 1.00 35.66 46.313 59.106 450 61.142 ATOM 3392 OD1 ASN 58.971 1.00 32.14 59.942 44.407 450 ATOM 3393 ND2 ASN 45.410 63.445 1.00 38.45 61.034 450 3394 С ASN ATOM 1.00 38.05 3395 450 60.003 44.846 63.816 0 ASN MOTA 1.00 38.23 45.908 64.274 MOTA 3396 N THR 451 61.948 1.00 39.20 45.839 65.729 MOTA 3397 CA THR 451 61.881 66.323 46.689 1.00 40.04 62.996 3398 THR 451 ATOM CB 1.00 44.58 46.203 65.835 64.247 MOTA 3399 OG1 THR 451 67.840 1.00 38.85 62.984 46.622 THR MOTA 3400 CG2 451 1.00 40.85 60.590 46.192 66.463 3401 THR 451 MOTA С 67.400 1.00 40.47 3402 THR 451 60.184 45.491 MOTA 0 66.058 1.00 40.04 47.281 59.955 MOTA 3403 N HIS 452 58.745 47.724 66.721 1.00 40.12 ATOM 3404 CA HIS 452 66.842 1.00 41.64 58.771 49.249 CB HIS 452 MOTA 3405 1.00 42.19 60.048 49.797 67.401 ATOM 3406 CG HIS 452 1.00 42.10 3407 61.034 50.523 66.823 ATOM CD2 HIS 452 1.00 41.64 MOTA 60.404 49.655 68.726 3408 ND1 HIS 452 1.00 42.19 68.941 MOTA 3409 CE1 HIS 452 61.551 50.277 67.803 1.00 41.89 61.955 50.813 MOTA 3410 NE₂ HIS 452 65.951 1.00 40.45 452 47.316 57.504 MOTA 3411 C HIS 1.00 41.14 56.407 47.801 66.231

					11	-			
MOTA	3413	N	LEU	453	57.660	46.424	64.984	1.00 40.04	
ATOM	3414	CA	LEU	453	56.521	46.049	64.167	1.00 40.19 1.00 37.00	
ATOM	3415	CB	LEU	453	57.001	45.606	62.782 61.759	1.00 37.00	
ATOM	3416	CG	LEU	453	55.893	45.347 46.659	61.397	1.00 37.34	
ATOM	3417	CD1	LEU	453 453	55.194 56.490	44.686	60.516	1.00 35.69	
ATOM	3418		LEU	453 453	55.597	44.993	64.746	1.00 40.85	
ATOM	3419	C 0	LEU LEU	453	56.018	43.883	65.038	1.00 41.66	
ATOM ATOM	3420 3421	N	CYS	454	54.333	45.360	64.925	1.00 43.03	
ATOM	3422	CA	CYS	454	53.324	44.426	65.404	1.00 45.80	
ATOM	3423	C		454	52.311	44.337	64.277	1.00 47.23	
ATOM	3424	ō	CYS	454	52.589	44.766	63.160	1.00 50.06	
ATOM	3425	СВ	CYS	454	52.647	44.928	66.682	1.00 48.08	
ATOM	3426	SG	CYS	454	53.699	44.807	68.162	1.00 52.71	
MOTA	3427	N	PHE	455	51.144	43.776	64.554	1.00 46.70	
MOTA	3428	CA	PHE	455	50.107	43.660	63.537	1.00 46.11	
MOTA	3429	CB	PHE	455	49.487	45.025	63.255	1.00 44.91	
ATOM	3430	CG	PHE	455	48.892	45.645	64.460	1.00 45.40	
MOTA	3431		PHE	455	49.692	46.348	65.358	1.00 46.60 1.00 45.00	
MOTA	3432		PHE	455	47.555	45.440	64.763 66.545	1.00 43.00	
ATOM	3433		PHE	455 455	49.169 47.015	46.831 45.916	65.947	1.00 46.34	
ATOM	3434		PHE	455 455	47.013	46.613	66.844	1.00 47.91	
ATOM ATOM	3435 3436	CZ C	PHE PHE	455 455	50.564	43.033	62.244	1.00 45.88	
ATOM	3437	0	PHE	455	50.200	43.484	61.168	1.00 46.84	
ATOM	3438	N	VAL	456	51.367	41.989	62.355	1.00 47.26	
ATOM	3439	CA	VAL	456	51.833	41.263	61.191	1.00 49.14	;
ATOM	3440	СВ	VAL	456	53.332	40.892	61.315	1.00 50.57	
ATOM	3441		VAL	456	53.768	40.038	60.121	1.00 48.77	
ATOM	3442	CG2	VAL	456	54.174	42.159	61.412	1.00 49.21	
MOTA	3443	С	VAL	456	50.998	39.988	61.183	1.00 51.32	
MOTA	3444	0	VAL	456	50.487	39.569	60.137	1.00 51.84	
MOTA	3445	N	HIS	457	50.844	39.387	62.365	1.00 52.85 1.00 54.27	
MOTA	3446	CA	HIS	457	50.080	38.149 37.435	62.499 63.830	1.00 57.53	
ATOM	3447	CB	HIS	457	50.398 49.938	38.172	65.056	1.00 62.48	
MOTA	3448	CG	HIS HIS	457 ⁻ 457	48.920	37.921	65.917	1.00 63.06	
ATOM ATOM	3449 3450		HIS	457	50.562	39.310	65.527	1.00 63.53	
ATOM	3451		HIS	457	49.950	39.726	66.622	1.00 63.21	
ATOM	3452		HIS	457	48.951	38.903	66.880	1.00 63.61	L
ATOM	3453	С	HIS	457	48.583	38.390	62.389	1.00 52.92	
ATOM	3454	Ō	HIS	457	47.819	37.448	62.190	1.00 52.93	
MOTA	3455	N	THR	458	48.173	39.652	62.505	1.00 51.57	
MOTA	3456	CA	THR	458	46.760	40.016	62.422	1.00 49.96	
MOTA	3457	CB	THR	458	46.488	41.361	63.099	1.00 50.57 1.00 48.76	
MOTA	3458	OG1		458	47.275	42.382	62.468	1.00 50.84	
MOTA	3459	CG2		458	46.835 46.275	41.290 40.127	64.576 60.984	1.00 49.72	
ATOM	3460	С	THR	458 458	45.273	40.127	60.742	1.00 49.69	
MOTA	3461	O N	THR VAL	459	47.204	40.055	60.037	1.00 47.7	
ATOM ATOM	3462 3463	CA	VAL	459	46.862	40.152	58.626	1.00 46.1	
ATOM	3464	CB	VAL	459	47.970	40.901	57.836	1.00 45.2	
MOTA	3465		L VAL	459	47.655	40.896	56.357	1.00 41.7	7
ATOM	3466		VAL	459	48.088	42.327	58.340	1.00 42.7	
ATOM	3467	С	VAL	459	46.649	38.768	58.008	1.00 47.6	
ATOM	3468	0	VAL	459	47.468	37.862	58.174	1.00 47.1	
ATOM	3469	N	PRO	460	45.532	38.590	57.281	1.00 48.2	
MOTA	3470	CD	PRO	460	44.465	39.590	57.079	1.00 47.2	
ATOM	3471	CA	PRO	460	45.188	37.323	56.626	1.00 47.4	2
ATOM	3472	CB	PRO	460	43.693	37.475	56.388	1.00 47.6 1.00 46.7	
MOTA	3473	CG	PRO	460	43.589	38.932	56.022	1.00 40./	4

					11	2			
MOTA	3474	С	PRO	460	45.965	37.157	55.318	1.00	47.25
ATOM	3475	0	PRO	460	45.376	37.114	54.234	1.00	47.13
ATOM	3476	N	TRP	461	47.285	37.052	55.427		45.76
MOTA	3477	CA	TRP	461	48.151	36.934	54.258	1.00	44.54
ATOM	3478	СВ	TRP	461	49.569	36.609	54.717	1.00	40.95
ATOM	3479	CG	TRP	461	50.152	37.709	55.539	1.00	
MOTA	3480	CD2	TRP	461	50.621	38.978	55.060	1.00	40.35
MOTA	3481	CE2	TRP	461	51.053	39.716	56.185	1.00	
ATOM	3482	CE3	TRP	461	50.718	39.562	53.789		39.46
ATOM	3483	CD1	TRP	461	50.310	37.731	56.897	1.00	
ATOM ATOM	3484 3485	NE1 CZ2	TRP TRP	461 461	50.850	38.934	57.293	1.00	
ATOM	3486	CZ3	TRP ·	461	51.576	41.008	56.075		39.81
ATOM	3487	CH2	TRP	461	51.237 51.660	40.847 41.555	53.681		38.47
ATOM	3488	C	TRP	461	47.707	35.960	54.818 53.166	1.00	40.35
ATOM	3489	Ö	TRP	461	47.841	36.254	51.973		42.98
ATOM	3490	N	ASP	462	47.172	34.810	53.563		48.29
ATOM	3491	CA	ASP	462	46.713	33.817	52.593	1.00	
ATOM	3492	СВ	ASP	462	46.136	32.615	53.327		54.39
ATOM	3493	CG	ASP	462	47.196	31.833	54.068	1.00	
ATOM	3494	OD1		462	46.845	31.154	55.064	1.00	
MOTA	3495	OD2		462	48.380	31.890	53.648	1.00	
ATOM	3496	С	ASP	462	45.676	34.388	51.631		47.95
ATOM	3497	0	ASP	462	45.593	33.979	50.482	1.00	
MOTA	3498	N	GLN	463	44.879	35.327	52.112	1.00	47.85
MOTA	3499	CA	GLN	463	43.868	35.951	51.279	1.00	
MOTA	3500	CB	GLN	463	42.964	36.862	52.132	1.00	52.77
ATOM	3501	CG	GLN	463	41.948	36.126	53.015	1.00	57.25
ATOM	3502	CD	GLN	463	41.022	37.074	53.790	1.00	60.95
ATOM	3503	OE1	GLN	463	40.433	38.005	53.219	1.00	62.40
ATOM	3504	NE2	GLN	463	40.880	36.830	55.095	1.00	
ATOM	3505	С	GLN	463	44.504	36.766	50.138	1.00	
ATOM	3506	0	GLN	463	43.979	36.789	49.026		49.51
MOTA	3507	N	LEU	464	45.636	37.418	50.405	1.00	
ATOM	3508	CA	LEU	464	46.304	38.237	49.394	1.00	
ATOM ATOM	3509 3510	CB CG	LEU LEU	464	47.310	39.169	50.068		46.42
ATOM	3511	CD1	LEU	464 . 464	46.803	39.973	51.266	1.00	
ATOM	3512	CD2	LEU	464	47.859 45.526	40.972 40.685	51.695 50.896		46.98 49.82
ATOM	3513	C	LEU	464	47.012	37.480	48.257	1.00	
ATOM	3514	Ö	LEU	464	47.012	37.977	47.129		45.77
ATOM	3515	N	PHE	465	47.524	36.290	48.542		44.21
ATOM	3516	CA	PHE	465	48.229	35.514	47.532		45.10
ATOM	3517	СВ	PHE	465	49.029	34.400	48.203		42.93
MOTA	3518	CG	PHE	465	50.001	34.895	49.240		42.74
MOTA	3519	CD1	PHE	465	50.800	36.010	48.987		41.77
MOTA	3520	CD2	PHE	465	50.131	34.243	50.463		41.86
MOTA	3521	CE1		465	51.713	36.467	49.935	1.00	41.10
MOTA	3522	CE2	PHE	465	51.041	34.688	51.421	1.00	40.99
MOTA	3523	CZ	PHE	465	51.833	35.801	51.160		42.60
MOTA	3524	С	PHE	465	47.279	34.935	46.486		47.59
ATOM	3525	0	PHE	465	46.080	34.816	46.735		49.78
ATOM	3526	N	ARG	466	47.823	34.570	45.323		47.40
ATOM	3527	CA	ARG	466	47.036	34.028	44.221		45.90
ATOM	3528	CB	ARG	466	46.903	35.084	43.130		45.38
MOTA	3529	CG	ARG	466	46.126	36.321	43.557		46.15
ATOM	3530	CD	ARG	466	44.642	36.023	43.736		43.17
ATOM	3531 3532	NE CZ	ARG	466	43.879	37.221	44.084		42.43
ATOM ATOM	3533	CZ NH1	ARG ARG	466 466	43.744 44.318	37.693	45.321		41.90
ATOM	3534	NH2		466		37.068	46.337		
WION	JJJ4	MIL	PLO	- U U	43.035	38.795	45.544	T.00	41.69

						-			
ATOM	3535	С	ARG	466	47.551	32.724	43.590		47.53
MOTA	3536	0	ARG	466	46.932	32.200	42.660		48.19
MOTA	3537	N	ASN	467	48.682	32.209	44.064		47.38
MOTA	3538	CA	ASN	467	49.220	30.955	43.535		47.50
ATOM	3539	CB	ASN	467	50.154	31.209	42.334		48.16
MOTA	3540	CG	ASN	467	51.524	31.725	42.736		50.64
MOTA	3541			467	52.339	30.991	43.311		52.47 46.93
ATOM	3542	ND2		467	51.793	32,990	42.425 44.668	1.00	
ATOM	3543	С	ASN	467	49.924	30.199	45.659		46.18
ATOM	3544	0	ASN	467	50.341 50.063	30.802 28.869	44.534		47.46
ATOM	3545	И	PRO	468	49.835	28.116	43.291		46.51
ATOM	3546	CD	PRO	468 468	50.693	28.003	45.542		48.63
ATOM	3547 3548	CA CB	PRO PRO	468	50.617	26.610	44.914		48.24
ATOM ATOM	3549	CG	PRO	468	49.584	26.747	43.814		47.11
ATOM	3550	C	PRO	468	52.116	28.344	45.930		49.84
ATOM	3551	Ö	PRO	468	52.572	27.957	46.999		52.80
ATOM	3552	N	HIS	469	52.814	29.066	45.065		50.04
ATOM	3553	CA	HIS	469	54.199	29.409	45.318	1.00	49.71
ATOM	3554	СВ	HIS	469	54.940	29.548	43.988	1.00	53.11
ATOM	3555	CG	HIS	469	55.012	28.276	43.201		54.91
ATOM	3556		HIS	469	54.448	27.924	42.021	1.00	54.62
ATOM	3557		HIS	469	55.737	27.181	43.622	1.00	56.43
ATOM	3558		HIS	469	55.620	26.211	42.733	1.00	56.70
ATOM	3559		HIS	469	54.843	26.636	41.752		55.63
ATOM	3560	С	HIS	469	54.423	30.653	46.154	1.00	48.30
ATOM	3561	0	HIS	469	55.567	31.030	46.394		48.74
ATOM	3562	N	GLN	470	53.349	31.287	46.610		47.55
MOTA	3563	ÇA	GLN	470	53.479	32.506	47.414		46.16
MOTA	3564	CB	GLN	470	52.433	33.535	46.993		45.94
ATOM	3565	CG	GLN	470	52.547	34.014	45.560		47.79
MOTA	3566	CD	GLN	470	51.472	35.034	45.218		48.54
MOTA	3567		GLN	470	50.320	34.677	44.971		48.75 44.96
MOTA	3568	NE2		470	51.840	36.309	45.223		
MOTA	3569	С	GLN	470	53.331	32.255	48.909		46.20 47.30
MOTA	3570	0	GLN	470	52.631	31.331	49.333 49.702		44.42
MOTA	3571	N	ALA	471	53.972 53.923	33.107 33.000	51.150		43.97
MOTA	3572	CA	ALA	471	54.650	31.745	51.607		43.76
MOTA	3573 3574	CB	ALA	471 471	54.588	34.219	51.763		44.57
MOTA	3575	С	ALA ALA	471	55.245	35.000	51.071		42.63
MOTA MOTA	3575	O N	LEU	472	54.417	34.377	53.069		42.98
ATOM	3577	CA	LEU	472	55.031	35.484	53.767	1.00	
ATOM	3578	CB	LEU	472	54.049	36.128	54.746		41.67
ATOM	3579	CG	LEU	472	54.740	37.049	55.766		42.01
ATOM	3580		LEU	472	55.350	38.268	55.051	1.00	40.33
ATOM	3581		LEU	472	53.745	37.477	56.824		40.11
ATOM	3582	С	LEU	472	56.215	34.965	54.549		41.03
ATOM	3583	0	LEU	472	56.069	34.034	55.330		42.94
ATOM	3584	N	LEU	473	57.388	35.553	54.336		41.80
MOTA	3585	CA	LEU	473	58.582	35.154	55.075		40.99
MOTA	3586	CB	LEU	473	59.789	35.020	54.144		39.87
MOTA	3587	CG	LEU	473	59.554	34.118	52.927		40.65
MOTA	3588		LEU	473	60.896	33.717	52.334		40.09
MOTA	3589	CD2	LEU	473	58.754	32.884	53.324		38.13
ATOM	3590	С	LEU	473	58.792	36.271	56.078		41.31
MOTA	3591	0	LEU	473	58.828	37.441	55.712		41.51
MOTA	3592	N	HIS	474	58.929	35.910	57.349		43.35
MOTA	3593	CA	HIS	474	59.061	36.909	58.402		42.81
MOTA	3594	CB	HIS	474	57.668	37.264	58.888		42.99
MOTA	3595	CG	HIS	474	56.926	36.090	59.442	1.00	43.37

1	1	1

					•	• •		
MOTA	3596		HIS		56.177	35.143	58.830	1.00 43.37
MOTA	3597		HIS	474	56.986	35.732	60.772	1.00 44.24
MOTA	3598		HIS	474	56.307	34.614	60.954	1.00 44.58
ATOM	3599		HIS	474	55.806	34.235	59.791	1.00 44.84
ATOM	3600	С	HIS	474	59.884	36.411	59.581	1.00 43.18
ATOM	3601	0	HIS	474	59.763	35.261	60.004	1.00 44.46
ATOM	3602	N	THR	475	60.703	37.292	60.132	1.00 42.59
ATOM	3603	CA	THR	475	61.533	36.920	61.257	1.00 41.62
ATOM ATOM	3604	CB	THR	475	62.673	35.973	60.802	1.00 42.51
ATOM	3605 3606	OG1 CG2		475	63.340	35.423	61.948	1.00 47.00
ATOM	3607	CGZ	THR THR	475	63.685	36.724	59.953	1.00 42.92
ATOM	3608	0	THR	475 475	62.118	38.195	61.826	1.00 40.91
ATOM	3609	N	ALA	475 476	62.245	39.188	61.117	1.00 41.61
ATOM	3610	CA	ALA	476	62.458 63.057	38.171	63.110	1.00 41.19
ATOM	3611	CB	ALA	476	64.442	39.324	63.778	1.00 39.52
ATOM	3612	C	ALA	476	62.221	39.612 40.615	63.178 63.814	1.00 37.39
ATOM	3613	Ö	ALA	476	62.774	41.719	63.790	1.00 40.28
ATOM	3614	N	ASN	477	60.897	40.493	63.846	1.00 41.36 1.00 39.57
ATOM	3615	CA	ASN	477	60.068	41.683	63.981	1.00 39.57
ATOM	3616	CB	ASN	477	58.836	41.609	63.084	1.00 39.84
ATOM	3617	CG	ASN	477	59.198	41.577	61.593	1.00 40.20
ATOM	3618		ASN	477	59.810	42.514	61.062	1.00 42.24
MOTA	3619	ND2		477	58.818	40.497	60.918	1.00 40.34
MOTA	3620	С	ASN	477	59.686	41.674	65.465	1.00 40.44
ATOM	3621	0	ASN	477	60.159	40.809	66.214	1.00 38.44
ATOM	3622	N	ARG	478	58.858	42.614	65.914	1.00 41.50
MOTA	3623	CA	ARG	478	58.506	42.630	67.329	1.00 40.80
MOTA	3624	CB	ARG	478	57.610	43.816	67.665	1.00 41.88
MOTA	3625	CG	ARG	478	57.488	44.006	69.161	1.00 42.92
MOTA	3626	CD	ARG	478	56.713	45.238	69.585	1.00 42.69
ATOM	3627	NE	ARG	478	56.840	45.392	71.035	1.00 46.73
MOTA	3628	CZ	ARG	478	56.010	46.080	71.814	1.00 44.48
ATOM	3629		ARG	478	54.959	46.702	71.302	1.00 45.76
ATOM	3630			478	56.239	46.144	73.115	1.00 45.84
ATOM	3631	C	ARG	478	57.796	41.341	67.724	1.00 42.21
ATOM	3632	0	ARG	478	56.818	40.941	67.094	1.00 42.14
ATOM	3633	N	PRO	479	58.276	40.672	68.783	1.00 43.41
ATOM	3634	CD	PRO	479	59.428	41.039	69.629	1.00 41.40
ATOM	3635	CA	PRO	479	57.658	39.415	69.238	1.00 43.35
ATOM ATOM	3636 3637	CB	PRO	479	58.435	39.087	70.510	1.00 40.98
ATOM	3638	CG C	PRO	479	59.794	39.717	70.254	1.00 41.03
ATOM	3639	0	PRO	479	56.155	39.544	69.494	1.00 45.50
ATOM	3640	N	PRO GLU	479 480	55.686	40.533	70.060	1.00 45.59
ATOM	3641	CA	GLU	480	55.401 53.955	38.539	69.072	1.00 49.19
ATOM	3642	CB	GLU	480	53.330	38.546	69.266	1.00 53.07
ATOM	3643	CG	GLU	480	53.330	37.306 37.452	68.617 67.107	1.00 54.18
MOTA	3644	CD	GLU	480	52.862	36.146	66.416	1.00 58.24
ATOM	3645	OE1	GLU	480	51.961	35.426	66.897	1.00 61.65 1.00 63.71
ATOM	3646	OE2	GLU	480	53.514	35.845	65.387	1.00 63.71
ATOM	3647	C	GLU	480	53.551	38.642	70.734	1.00 53.95
MOTA	3648	0	GLU	480	52.522	39.223	71.054	1.00 55.14
MOTA	3649	N	ASP	481	54.361	38.086	71.627	1.00 55.81
ATOM	3650	CA	ASP	481	54.046	38.146	73.048	1.00 57.69
ATOM	3651	CB	ASP	481	54.943	37.196	73.850	1.00 59.27
ATOM	3652	CG	ASP	481	54.607	35.732	73.611	1.00 61.89
ATOM	3653	OD1		481	53.412	35.367	73.706	1.00 62.97
ATOM	3654	OD2		481	55.540	34.947	73.337	1.00 63.73
ATOM	3655	С	ASP	481	54.194	39.564	73.586	1.00 58.87
MOTA	3656	0	ASP	481	53.484	39.956	74.517	1.00 59.57

					11.	,		
ATOM	3657	N	GLU	482	55.111	40.335	73.005	1.00 58.07
MOTA	3658	CA	GLU	482	55.322	41.707	73.442	1.00 57.66
MOTA	3659	CB	GLU	482	56.653	42.231	72.922	1.00 58.24
MOTA	3660	CG	GLU	482	57.814	41.616	73.634	1.00 61.21 1.00 64.17
MOTA	3661	CD	GLU	482	57.684	41.785	75.130	1.00 65.63
ATOM	3662	OE1	GLU	482	57.895	42.916	75.630 75.803	1.00 65.01
ATOM	3663		GLU	482	57.350	40.787	72.951	1.00 53.01
ATOM	3664	C	GLU	482	54.188 53.732	42.584 43.485	73.655	1.00 58.45
ATOM	3665	0	GLU	482	53.732	42.318	71.732	1.00 57.89
ATOM	3666	N	CYS CYS	483 483	52.638	43.082	71.167	1.00 58.21
MOTA	3667	CA C	CYS	483	51.434	42.873	72.084	1.00 59.50
ATOM ATOM	3668 3669	0	CYS	483	50.901	43.828	72.657	1.00 58.80
ATOM	3670	СВ	CYS	483	52.327	42.595	69.747	1.00 56.50
ATOM	3671	SG	CYS	483	53.718	42.813	68.586	1.00 54.37
ATOM	3672	N	VAL	484	51.028	41.614	72.231	1.00 59.47
ATOM	3673	CA	VAL	484	49.901	41.264	73.084	1.00 59.07
ATOM	3674	СВ	VAL	484	49.638	39.742	73.037	1.00 60.26
ATOM	3675		VAL	484	48.555	39.356	74.038	1.00 61.90
ATOM	3676		VAL	484	49.218	39.339	71.626	1.00 58.82
ATOM	3677	С	VAL	484	50.190	41.710	74.518	1.00 58.07
ATOM	3678	0	VAL	484	49.300	42.180	75.228	1.00 56.65
ATOM	3679	N	GLY	485	51.446	41.580	74.928	1.00 57.91
ATOM	3680	CA	GLY	485	51.831	41.992	76.267	1.00 59.03
MOTA	3681	С	GLY	485	51.524	43.460	76.507	1.00 59.68
MOTA	3682	0	GLY	485	51.071	43.840	77.586	1.00 60.34 1.00 60.09
MOTA	3683	N	GLU	486	51.768	44.288	75.498 75.602	1.00 60.09
MOTA	3684	CA	GLU	486	51.502	45.717 46.477	74.502	1.00 61.23
ATOM	3685	CB	GLU	486	52.252 52.540	47.925	74.838	1.00 62.83
ATOM	3686	CG	GLU	486 486	53.215	48.666	73.701	1.00 65.64
MOTA	3687	CD	GLU	486 486	52.522	49.010	72.721	1.00 66.77
ATOM	3688	OE1 OE2		486	54.440	48.901	73.782	1.00 67.03
ATOM	3689 3690	C	GLU	486	49.999	45.935	75.446	1.00 60.37
ATOM ATOM	3691	Ö	GLU	486	49.507	47.061	75.539	1.00 59.61
ATOM	3692	N	GLY	487	49.276	44.843	75.197	1.00 59.61
ATOM	3693	CA	GLY	487	47.835	44.927	75.028	1.00 58.40
ATOM	3694	C	GLY	487	47.369	45.243	73.614	1.00 57.71
ATOM	3695	ō	GLY	487	46.177	45.471	73.392	1.00 58.87
ATOM	3696	N	LEU	488	48.292	45.248	72.655	1.00 56.03
ATOM	3697	CA	LEU	488	47.952	45.546	71.268	1.00 54.46
MOTA	3698	CB	LEU	_. 488	49.218	45.866	70.473	1.00 52.69
MOTA	3699	CG	LEU	488	50.005	47.084	70.965	1.00 52.11 1.00 50.51
MOTA	3700		LEU	488	51.361	47.177	70.274	1.00 50.51
MOTA	3701		LEU	488	49.186	48.324 44.404	70.703 70.591	1.00 54.20
MOTA	3702	С	LEU	488	47.206	43.226	70.797	1.00 56.18
ATOM	3703	0	LEU	488	47.516	43.226	69.775	1.00 56.93
MOTA	3704	N	ALA	489	46.220 45.414	43.791	69.045	1.00 57.23
ATOM	3705	CA	ALA	489 489	44.704	42.861	70.015	1.00 56.66
MOTA	3706	CB C	ALA ALA	489	44.396	44.510	68.177	1.00 57.16
MOTA	3707	0	ALA	489	44.236	45.722	68.272	1.00 55.01
MOTA MOTA	3708 3709		CYS	490	43.703		67.335	1.00 59.68
ATOM	3710		CYS	490	42.704	44.331	66.446	1.00 61.86
ATOM	3711	C	CYS	490	41.547	44.932	67.230	1.00 65.58
ATOM	3712		CYS	490	41.165		68.284	1.00 66.33
MOTA	3713		CYS	490	42.174		65.482	1.00 61.11
MOTA	3714		CYS	490	43.394		64.269	1.00 60.72
ATOM	3715		HIS	491	40.994		66.712	1.00 68.46
MOTA	3716			491	39.872		67.356	
MOTA	3717	СВ	HIS	491	39.443	47.912	66.529	1.00 71.52

						· ·			
MOTA	3718		HIS	491	38.432	48.782	67.208	1.00	
ATOM	3719	CD2		491	38.477	50.088	67.564		73.89
ATOM	3720	ND1		491	37.183	48.328	67.576		74.38
ATOM	3721	CE1		491	36.502	49.318	68.125		74.29
MOTA	3722	NE2		491	37.264	50.397	68.128		74.01
MOTA	3723	-	HIS	491	38.700	45.730	67.517		72.75
MOTA	3724	0	HIS	491	38.435	44.897	66.639		71.43
ATOM	3725	N	GLN	492	38.007	45.846	68.651	1.00	
ATOM	3726	CA	GLN	492	36.876	44.978	68.979	1.00	
MOTA	3727	CB	GLN	492	36.141	45.524	70.213	1.00	
MOTA	3728	CG	GLN	492	35.318	44.487	70.987	1.00	
MOTA	3729	CD	GLN	492	34.127	43.951	70.201	1.00	
ATOM	3730		GLN	492	33.217	44.702	69.841	1.00	
MOTA	3731		GLN	492	34.129	42.646	69.932	1.00	
MOTA	3732	С	GLN	492	35.903	44.845	67.812	1.00	
ATOM	3733	0	GLN	492	35.266	43.802	67.633		74.06
ATOM	3734	N	LEU	493	35.803	45.898	67.009		73.83
MOTA	3735	CA	LEU	493	34.895	45.884	65.878		74.17
ATOM	3736	СВ	LEU	493	34.506	47.318	65.515		74.20
MOTA	3737	CG	LEU	493	33.341	47.339	64.712		74.76
ATOM	3738	С	LEU	493	35.456	45.156	64.647		74.56
MOTA	3739	0	LEU	493	34.791	45.088	63.613		74.80
ATOM	3740	N	CYS	494	36.674	44.620	64.745		73.90
ATOM	3741	CA	CYS	494	37.259	43.895	63.617		73.92
MOTA	3742	C	CYS	494	36.675	42.491	63.604		74.79 74.58
MOTA	3743	0	CYS	494	37.077	41.628	64.382 63.727		73.15
ATOM	3744	CB	CYS	494	38.787	43.817 45.373	63.407		70.37
ATOM	3745	SG	CYS	494	39.687	43.373	62.702		76.40
ATOM	3746	N	ALA	495	35.724	42.263	62.702		77.39
ATOM	3747	CA	ALA	495	35.006 34.438	40.932	61.149		78.27
ATOM	3748	CB	ALA	495 495	35.730	39.719	62.886		77.47
MOTA	3749 3750	С 0	ALA ALA	495	35.730	39.077	63.891		77.55
MOTA MOTA	3751	N	ARG	496	36.686	39.319	62.049		76.19
ATOM	3752	CA	ARG	496	37.391	38.060	62.274		75.09
ATOM	3753	CB	ARG	496	37.472	37.270	60.963		77.48
ATOM	3754	CG	ARG	496	36.656	35.975	60.967		79.11
ATOM	3755	CD	ARG	496	36.916	35.131	59.720		80.25
ATOM	3756	NE	ARG	496	36.382	35.803	58.462		82.56
ATOM	3757	CZ	ARG	496	34.891	35.920	58.474		83.50
ATOM	3758	C	ARG	496	38.783	38.171	62.888	1.00	73.32
ATOM	3759	ō	ARG	496	39.644	37.330	62.636	1.00	73.14
ATOM	3760	N	GLY	497	38.995	39.196	63.707		71.64
ATOM	3761	CA	GLY	497	40.287	39.387	64.345		68.82
ATOM	3762	С	GLY	497	41.390	39.845	63.405	1.00	66.99
ATOM	3763	0	GLY	497	42.553	39.886	63.790		67.23
MOTA	3764	N	HIS	498	41.023	40.201	62.177		65.61
MOTA	3765	CA	HIS	498	41.987	40.646	61.171		64.32
MOTA	3766	CB	HIS	498	41.646	40.025	59.816		66.38
ATOM	3767	CG	HIS	498	41.612	38.531	59.832		67.04
MOTA	3768	CD2	HIS	498	42.128	37.639	60.709		66.05
ATOM	3769		HIS	498	40.993	37.791	58.846		68.48
MOTA	3770		HIS	498	41.131	36.506	59.115		69.68
MOTA	3771		HIS	498	41.815	36.386	60.240		69.46
MOTA	3772	С	HIS	498	42.037	42.158	61.010		62.27
ATOM	3773	0	HIS	498	41.003	42.812	60.867		62.26
ATOM	3774	N	CYS	499	43.250	42.704	61.009		59.39
ATOM	3775	CA	CYS	499	43.442	44.139	60.856		56.07
ATOM	3776	C	CYS	499	44.878	44.451	60.436		54.88
MOTA	3777	0	CYS	499	45.765	43.611	60.576		54.18 53.82
MOTA	3778	CB	CYS	499	43.121	44.842	62.171	1.00	55.82

1	1	7
1	- 1	•

						•			
MOTA	3779	SG	CYS	499	44.212	44.370	63.550	1.00	
MOTA	3780	N	TRP	500	45.096	45.660	59.922	1.00	
MOTA	3781	CA	TRP	500	46.422	46.096	59.483	1.00	
MOTA	3782	CB	TRP	500	46.345	46.877	58.169	1.00	
MOTA	3783	CG	TRP	500	45.967	46.062	56.991	1.00	
MOTA	3784	CD2	TRP	500	46.855	45.330	56.134	1.00	
MOTA	3785	CE2	TRP	500	46.059	44.678 45.163	55.170 56.090	1.00	
MOTA	3786 3787	CE3	TRP TRP	500 500	48.246 44.710	45.163	56.525	1.00	
ATOM ATOM	3788	NE1	TRP	500	44.754	45.002	55.432		53.67
ATOM	3789	CZ2		500	46.606	43.870	54.171		51.30
ATOM	3790	CZ3	TRP	500	48.792	44.360	55.094		51.18
ATOM	3791	CH2	TRP	500	47.970	43.724	54.148	1.00	51.05
MOTA	3792	C	TRP	500	47.048	47.002	60.519	1.00	55.36
ATOM	3793	0	TRP	500	48.159	47.500	60.328	1.00	55.37
MOTA	3794	N	GLY	501	46.324	47.234	61.607		56.86
MOTA	3795	CA	GLY	501	46.834	48.106	62.643		58.32
MOTA	3796	С	GLY	501	45.906	48.224	63.834		60.22
MOTA	3797	0	GLY	501	44.953	47.457	63.963		59.76
ATOM	3798	N	PRO	502	46.159	49.199	64.719		61.74
ATOM	3799	CD	PRO	502	47.338	50.076	64.639		61.18
ATOM	3800	CA	PRO	502	45.395	49.479	65.939		62.80
ATOM	3801	CB	PRO		46.227 47.607	50.565 50.353	66.626 66.085		62.29
ATOM	3802	CG	PRO	502 502	43.933	49.904	65.799		64.19
ATOM ATOM	3803 3804	С О	PRO PRO	502	43.933	49.154	66.155		63.69
ATOM	3805	N	GLY	503	43.720	51.115	65.294		65.19
ATOM	3806	CA	GLY	503	42.376	51.657	65.168		67.81
ATOM	3807	C	GLY	503	41.284	50.832	64.511	1.00	69.48
ATOM	3808	ō	GLY	503	41.498	49.675	64.149	1.00	69.49
ATOM	3809	N	PRO	504	40.078	51.412	64.359	1.00	70.50
ATOM	3810	CD	PRO	504	39.672	52.684	64.974		70.99
ATOM	3811	CA	PRO	504	38.918	50.755	63.742		70.28
MOTA	3812	CB	PRO	504	37.727	51.582	64.244		70.32
MOTA	3813	CG	PRO	504	38.272	52.375	65.398		70.99
MOTA	3814	C	PRO	504	39.036	50.827	62.225		69.41
MOTA	3815	0	PRO	504	38.374	50.083 51.742	61.499 61.763		69.42 68.13
MOTA	3816	N	THR	505 505	39.884 40.119	51.742	60.340		67.47
MOTA MOTA	3817 3818	CA CB	THR THR	505	40.119	53.259	60.102		67.81
ATOM	3819	OG1		505	40.220	54.325	60.796		67.46
ATOM	3820	CG2		505	40.936	53.574	58.611	1.00	68.41
MOTA	3821	C	THR		40.947	50.834	59.714	1.00	67.11
ATOM	3822	0	THR	505	40.949	50.669	58.496		66.67
MOTA	3823	N	GLN	506	41.641	50.067	60.550		67.09
MOTA	3824	CA	GLN	506	42.513	49.000	60.074		66.20
MOTA	3825	CB	GLN	506	43.757	48.940	60.963		65.97
MOTA	3826	CG	GLN	506	44.438	50.292	61.156		65.10
MOTA	3827	CD	GLN	506	44.931	50.897	59.851		64.76
MOTA	3828	OE1		506	45.477	52.001	59.833		63.49 64.72
MOTA	3829		GLN	506	44.747	50.174 47.598	58.754 59.937		66.13
ATOM	3830	C	GLN	506 506	41.928 42.640	46.681	59.535		65.92
MOTA MOTA	3831 3832	N N	GLN CYS	507	40.651	47.418	60.259		66.51
ATOM	3833	CA	CYS	507	40.043	46.094	60.147		67.92
MOTA	3834	C	CYS	507	40.079	45.584	58.711	1.00	69.10
ATOM	3835	ŏ	CYS	507	40.336	46.351	57.786	1.00	68.98
ATOM	3836	СВ	CYS	507	38.594	46.107	60.642		68.38
ATOM	3837	SG	CYS	507	38.351	46.532	62.400		67.08
MOTA	3838	N	VAL		39.804	44.293	58.534		71.60
MOTA	3839	CA	VAL	508 ·	39.824	43.665	57.214	1.00	74.36

					11	0			
ATOM	3840	СВ	VAL	508	41.094	42.802	57.046	1.00	74.35
MOTA	3841	CG1	VAL .	508	41.169	42.249	55.637		73.86
ATOM	3842	CG2	VAL	508	42.325	43.620	57.372		74.61
ATOM	3843	С	VAL	508	38.618	42.760	56.926	1.00	76.71
MOTA	3844	0	VAL	508	37.993	42.232	57.846	1.00	76.96
ATOM	3845	N	ASN	509	38.320	42.583	55.637	1.00	78.89
MOTA	3846	CA	ASN	509	37.231	41.729	55.161		79.46
MOTA	3847	CB	ASN	509	37.748	40.301	54.959	0.01	79.66
MOTA	3848	CG	ASN	509	36.706	39.434	54.544		79.80
MOTA	3849	С	ASN	509	35.994	41.690	56.048		80.03
MOTA	3850	0	ASN	509	35.706	40.669	56.672		80.13
MOTA	3851	N	ASP	510	35.256	42.796	56.081		80.55
MOTA	3852	CA	ASP	510	34.042	42.894	56.885		81.01
MOTA	3853	CB	ASP	510	32.979	41.945	56.341		81.12
MOTA	3854	С	ASP	510	34.333	42.570	58.343		81.22
ATOM	3855	0	ASP	510	34.135	43.457	59.200		81.38
MOTA	3856		ASP	510	34.756	41.429	58.608		81.41
ATOM	3857		TAW	601	66.524	30.665	42.494		28.61
ATOM	3858		TAW	602	48.735	23.280	22.419		71.18
ATOM	3859		WAT	603	65.388	13.447	32.927		57.63
ATOM	3860		TAW	604	41.973	47.301	64.542		35.83
ATOM	3861		TAW	605	69.684	31.298	45.975 49.027		
ATOM	3862		WAT	606	63.686	41.502	47.356		33.31 39.87
ATOM	3863 3864		WAT WAT	607 608	59.703 57.621	43.909 15.652	21.616		48.33
ATOM ATOM	3865		WAT	609 ·	72.561	35.414	45.496		41.23
ATOM	3866		WAT	610	60.694	29.164	22.844		40.92
ATOM	3867		WAT	611	57.286	37.916	62.350	1.00	
ATOM	3868		WAT	612	46.597	49.739	51.334	1.00	
ATOM	3869		WAT	613	66.260	35.222	49.508		30.53
ATOM	3870		WAT	614	65.596	48.769	43.073		47.24
ATOM	3871		TAW	615	50.445	34.432	40.487		49.48
ATOM	3872		TAW	616	64.437	47.570	62.680		39.37
ATOM	3873		WAT	617	64.474	34.466	36.845	1.00	49.08
ATOM	3874	OH2	TAW	618	44.017	32.385	41.614	1.00	53.85
ATOM	3875	OH2	WAT	619	49.339	30.195	12.563	1.00	42.42
MOTA	3876	OH2	TAW	620	54.537	33.867	42.583	1.00	37.72
ATOM	3877		WAT	621	64.364	53.511	57.998		38.10
MOTA	3878		WAT	622	76.463	9.761	42.429		57.34
MOTA	3879		TAW	623	70.186	16.762	34.786		43.49
ATOM	3880	OH2	WAT	624	79.053	23.302	19.458		59.95
ATOM	3881			625	47.646	54.357	48.883	1.00	46.72
ATOM	3882		WAT	626	56.831	53.403	65.052		46.20
ATOM	3883		TAW	627	59.570	19.307	44.131		34.57 38.16
ATOM	3884		TAW	628	59.681 66.403	48.082 51.834	63.468 57.456		37.88
ATOM	3885 3886		WAT WAT	629 630	66.042	43.477	41.897		47.27
ATOM ATOM	3887		WAI	631	59.733	22.694	19.076		39.36
ATOM	3888		WAT .	632	71.933	32.168	53.584		51.96
ATOM	3889		WAT	633	67.238	29.817	55.382		39.02
ATOM	3890		WAT	634	59.851	33.676	40.899		45.95
ATOM	3891		WAT	635	83.739	22.332	45.520		50.48
ATOM	3892		WAT	636	61.181	20.281	41.584	1.00	42.52
ATOM.	3893		TAW	637	61.537	40.611	38.196		40.98
MOTA	3894	OH2	WAT	638	61.615	29.853	19.905		52.46
MOTA	3895		WAT	639	59.028	54.089	61.722		40.76
MOTA	3896		WAT	640	43.735	38.307	-3.516		60.92
MOTA	3897		WAT	641	55.950	37.085	38.131		48.00
ATOM	3898		TAW	642	55.110	41.451	65.214		32.81
MOTA	3899		TAW	643	61.727	25.862	29.188		46.24
MOTA	3900	OH2	TAW	644	65.928	18.150	38.925	1.00	40.13

1	1	0

					* * *	,			
ATOM	3901	ОН2		645	55.177	34.966	24.691		46.33
ATOM	3902	OH2		646	41.487	51.896	47.974		65.65
ATOM	3903	OH2		647	55.395	15.492	23.549		56.95
ATOM	3904	OH2		648 .	59.898	21.613	26.137	1.00	
ATOM	3905	OH2		649	58.699	47.923	70.573		54.29
ATOM	3906	OH2		650	64.003	58.536	60.177		49.67
ATOM	3907 3908	OH2		651 652	68.010	11.136	22.922	1.00	46.58
ATOM ATOM	3909	OH2 OH2		653	55.678 45.897	50.674 25.870	68.586 27.002	1.00	46.85 57.96
ATOM	3910	OH2		654	54.359	26.790	48.758	1.00	
ATOM	3911	OH2		655	80.363	16.850	38.325	1.00	34.34
ATOM	3912	OH2		656	61.431	53.904	60.446		58.46
ATOM	3913	OH2		657	64.395	35.461	52.723		35.60
ATOM	3914	OH2		658	52.526	40.800	64.728	1.00	
ATOM	3915	OH2		659	56.877	31.825	56.618		45.68
MOTA	3916	OH2	WAT	660	55.868	27.878	30.041	1.00	53.59
MOTA	3917	OH2	WAT	661	77.776	15.905	45.073	1.00	
MOTA	3918	OH2	WAT	662	63.754	25.151	14.194	1.00	46.52
ATOM	3919	OH2		663	41.878	53.249	63.058	1.00	44.80
MOTA	3920	OH2		664	80.591	16.000	36.009		51.39
ATOM	3921	OH2		665	59.393	45.412	72.211	1.00	77.96
ATOM	3922	OH2		666	51.497	25.366	16.022	1.00	38.80
ATOM	3923	OH2		667	61.863	12.713	17.304	1.00	
ATOM	3924	OH2		668	63.503	14.941	33.560		42.89
ATOM ATOM	3925 3926	OH2	WAT	669	61.973	36.087	65.135		50.06
ATOM	3927	OH2 OH2		670 671	53.296 59.130	56.350 10.280	56.050 24.662	1.00	44.60 48.60
ATOM	3928	OH2		672	78.580	23.713	47.588		55.99
ATOM	3929	OH2		673	56.562	19.517	13.895		44.27
ATOM	3930	OH2		674	65.541	48.376	65.243		65.80
ATOM	3931	OH2		675	68.517	47.817	50.926	1.00	51.64
ATOM	3932	OH2		676	52.940	45.320	33.774		66.09
ATOM	3933	OH2		677	75.668	19.068	52.383		57.66
ATOM	3934	OH2	WAT	678	70.723	37.503	60.123	1.00	46.72
MOTA	3935	OH2	WAT	679	50.335	33.290	18.844	1.00	45.69
MOTA	3936	OH2		680	52.500	32.843	54.796	1.00	53.72
ATOM	3937	OH2		681	57.066	23.070	13.074	1.00	
ATOM	3938	OH2		682	61.915	33,379	63.218		48.04
ATOM	3939	OH2		683	67.948	43.379	49.661		44.42
MOTA	3940	OH2		684	57.359	22.912	26.139		41.68
ATOM	3941	OH2		685	79.814	28.506	19.445		49.19
ATOM	3942	OH2		686	74.126	12.870	30.657	_	42.03
ATOM	3943	OH2		687	49.421 66.525	21.379	14.426		61.74
ATOM ATOM	3944 3945	OH2		688 689	82.488	36.888 11.904	51.906 44.349		42.72 51.00
ATOM	3946	OH2		690	73.678	42.567	41.135		56.59
ATOM	3947	OH2		691	55.539	33.853	27.113		58.89
ATOM	3948	OH2		692	44.960	47.684	36.358		58.30
ATOM	3949	OH2		693	63.736	54.302	65.440		63.02
MOTA	3950	OH2	WAT	694	48.109	58.899	55.284	1.00	55.29
MOTA	3951	OH2		695	45.345	35.120	-1.208	1.00	60.11
MOTA	3952	OH2		696	58.248	26.866	28.828		46.10
MOTA	3953	OH2		697	66.972	48.406	56.023		38.88
MOTA	3954	OH2		698	67.380	47.152	45.433		46.93
ATOM	3955	OH2		699	54.190	24.235	12.345		43.07
ATOM	3956	OH2		700	82.014	37.287	31.826		49.62
ATOM	3957	OH2		701	72.612	9.107	14.973		63.48
ATOM ATOM	3958 3959	OH2		702 703	60.555 67.063	29.814 39.237	25.951 50.605		49.47
ATOM	3960	OH2		703 704	84.336	13.624	49.262		78.36
ATOM	3961	OH2		704	48.431	55.687	34.738		57.72
	5501	J	****		40.4JT	55.007	J = 1 / J U		52

					12	v			
MOTA	3962		WAT	706	71.691	37.538	29.164		48.64
ATOM	3963		WAT.	707	60.252	65.177	41.763		57.87
ATOM	3964	OH2		708	61.977	18.461	29.063		53.49
ATOM	3965		WAT	709	77.177	25.254	19.532		84.59
ATOM	3966		WAT	710	52.321	48.027	67.553		44.06
ATOM	3967	OH2		711 .	55.147	47.193	34.020		62.19
ATOM	3968	OH2		712	47.265	40.316	39.544		53.27
ATOM	3969		WAT	713	64.134	61.597	36.364		61.55
ATOM	3970 3971		WAT	714	45.208	24.605	18.377		48.53
ATOM ATOM	3972		WAT WAT	715 · 716	48.252	61.583	44.775 29.771		59.25
ATOM	3973		WAT	717	74.802 55.024	15.285 47.905	68.582		50.29
ATOM	3974		WAT	718	67.997	16.025	14.692		45.87 57.23
ATOM	3975	OH2		719	52.457	50.945	71.009		53.06
ATOM	3976		WAT	720	47.846	40.861	69.090		67.31
ATOM	3977	OH2		721	60.706	31.257	56.916		60.88
ATOM	3978	OH2		722	65.455	41.843	50.751		40.91
ATOM	3979	OH2		723	57.205	29.454	54.969		47.67
ATOM	3980	OH2		724	67.371	61.279	47.906		61.63
ATOM	3981	OH2	WAT	725	42.132	44.861	54.036		72.42
MOTA	3982	OH2	WAT	726	49.901	45.638	59.964	1.00	58.08
ATOM	3983	OH2	WAT	727	78.431	30.042	52.188	1.00	54.52
ATOM	3984	OH2	TAW	728	67.232	20.133	17.586	1.00	48.39
MOTA	3985	OH2		729	56.846	21.629	28.220		66.25
ATOM	3986	OH2		731	66.550	67.628	45.297		61.99
ATOM	3987	OH2		732	42.679	47.745	68.650		59.22
MOTA	3988	OH2		733	59.753	54.875	64.155		46.18
ATOM	3989	OH2		734	69.441	41.606	48.205		56.13
ATOM	3990		WAT .	735	54.860	31.772	59.102		52.80
ATOM	3991	C1	NAG	911	72.132	24.580	59.897		88.45
ATOM	3992	C2	NAG	911	71.432	23.893	61.092		90.78
MOTA MOTA	3993 3994	N2 C7	NAG NAG	911 911	70.376	23.011	60.624		92.23
ATOM	3995	07	NAG	911	70.502 71.152	21.689 21.141	60.728 61.623		93.50 93.42
ATOM	3996	C8	NAG	911	69.801	20.845	59.672		93.63
ATOM	3997	C3	NAG	911	70.831	24.939	62.047		91.07
ATOM	3998	03	NAG	911	70.344	24.295	63.218		90.85
ATOM	3999	C4	NAG	911	71.879	25.985	62.436		91.28
ATOM	4000	04	NAG	911	71.274	27.004	63.221		91.82
ATOM	4001	C5	NAG	911	72.494	26.594	61.170		91.20
ATOM	4002	05	NAG	911	73.089	25.551	60.360		90.01
ATOM	4003	C6	NAG	911	73.588	27.607	61.477		91.15
MOTA	4004	06	NAG	911	73.105	28.667	62.292	1.00	89.63
MOTA	4005	C1	NAG	941	94.155	27.124	39.668	1.00	83.74
ATOM	4006	C2	NAG	941	93.682	28.571	39.467	1.00	85.78
MOTA	4007	N2	NAG	941	92.491	28.591	38.639		87.29
MOTA	4008	C7	NAG	941	91.434	29.308	39.013		87.84
ATOM	4009	07	NAG	941	90.910	29.191	40.121		88.39
MOTA	4010	C8	NAG	941	90.882	30.316	38.016		87.53
MOTA	4011	C3	NAG	941	94.793	29.413	38.819		87.28
ATOM	4012	03	NAG	941	94.397	30.779	38.775		87.44
ATOM	4013 4014	C4	NAG	941	96.097	29.280	39.622		88.25 88.64
ATOM ATOM	4014	04 C5	NAG '	941 941	97.156 96.450	29.948 27.795	38.945 39.806		88.22
ATOM	4015	05	NAG	941	95.356	27.193	40.454		85.86
ATOM	4017	C6	NAG	941	97.695	27.100	40.454		88.36
ATOM	4018	06	NAG	941	97.384	27.551	42.038		88.02
MOTA	4019	C1	NAG	951	54.055	18.637	25.913		63.88
ATOM	4020	C2	NAG	951	55.035	17.683	26.604		64.92
ATOM	4021	N2	NAG	951	56.133	17.389	25.708		62.42
ATOM	4022	C7	NAG	951	57.321	17.936	25.923		61.61
							-		_

ATOM	4023	07	NAG	951	57.488	18.897	26.673		61.97
ATOM	4024	C8	NAG	951	58.507	17.323	25.201	1.00	62.25
ATOM	4025	C3	NAG	951	54.326	16.379	27.003	1.00	68.63
MOTA	4026	03	NAG	951	55.206	15.566	27.768	1.00	66.57
ATOM	4027	C4	NAG	951	53.057	16.687	27.814	1.00	71.99
ATOM	4028	04	NAG	951	52.327	15.468	28.079	1.00	78.42
ATOM	4029	C5	NAG	951	52.178	17.671	27.024	1.00	70.23
MOTA	4030	05	NAG	951	52.923	18.877	26.751	1.00	66.53
ATOM	4031	C6	NAG	951	50.911	18.086	27.746	1.00	69.73
ATOM	4032	06	NAG	951	49.903	18.488	26.828	1.00	68.69
ATOM	4033	C1	NAG	952	52.203	15.123	29.418	1.00	84.50
ATOM	4034	C2	NAG	952	50.843	14.467	29.674	1.00	87.78
ATOM	4035	N2	NAG	952	49.773	15.386	29.332	1.00	88.99
ATOM	4036	Ċ7	NAG	952	49.117	15.239	28.184	1.00	90.08
ATOM	4037	07	NAG	952	49.630	14.740	27.176	1.00	90.89
ATOM	4038	C8	NAG	952	47.670	15.708	28.144	1.00	90.00
ATOM	4039	C3	NAG	952	50.744	14.054	31.149	1.00	89.39
ATOM	4040	03	NAG	952	49.530	13.345	31.371	1.00	90.01
ATOM	4041	C4	NAG	952	51.934	13.163	31.527	1.00	
ATOM	4042	04	NAG	952	51.910	12.898	32.925	1.00	92.36
ATOM	4043	C5	NAG	952	53.256	13.853	31.148	1.00	
ATOM	4044	05	NAG	952	53.253	14.204	29.745	1.00	
ATOM	4045	C6	NAG	952	54.470	12.971	31.390	1.00	
ATOM	4046	06	NAG	952	54.846	12.275	30.211	1.00	89.44
END									

Claims

- 1. A method for identifying a potential modulator compound for ErbB2 which method comprises:
- 5 (a) providing a three-dimensional structure of
 - (i) amino acids 1-509 of ErbB2 polypeptide having the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I; or
- 10 (ii) a subset of said amino acids having a corresponding subset of the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I;
- 15 (b) providing the three-dimensional structure of a candidate compound;
 - (c) assessing the stereochemical complementarity between the three-dimensional structure of step (b) and a region of the three-dimensional structure of step (a); and
 - (d) selecting a compound on the basis of the stereochemical complementarity.
- 20 2. A method as claimed in claim 1, which further comprises:
 - (e) synthesising or obtaining a candidate compound assessed in step (c) as possessing stereochemical complementarity with a topographical region of the three-dimensional structure of step (a);
- (f) determining the ability of the candidate compound to interact with and/or modulate the activity of ErbB2.
 - 3. A method as claimed in claim 1 or claim 2, wherein the subset of amino acids is selected from at least one of the CR1 domain, the potential CR1 loop docking site between the L1, CR1 and L2 domains, the CR1-L2 hinge region, the regions of the L1 and L2 domains that contact each other in a closed conformation.
 - 4. A method as claimed in any one of the preceding claims, wherein the subset of amino acids defines at least a part of the heterodimerisation surface with another member of the EGF receptor family.

123

- 5. A method as claimed in claim 4, wherein the member of the EGF receptor family is selected from the group consisting of ErbB1 (EGF receptor), ErbB3 and ErbB4.
- 6. A method as claimed in claim 4 or 5, wherein the heterodimerisation surface includes at least one of (i) the N-terminal end of the CR1 domain, (ii) the CR1 domain dimerisation loop and adjacent residues and (iii) the C-terminal end of the CR1 domain.
- 7. A method according to claim 6, wherein the surface comprises at least one of residues selected from 200-203, 210-213, 216-218, 225-230, 247-268, 244-246, 285-289) and 294-319.
 - 8. A method as claimed in claim 3, wherein the subset defines the CR1 loop docking site.
 - 9. A method as claimed in claim 8, wherein the docking site comprises at least one of the following ErbB2 residues: Gln 36, Gln 60, Arg 82, Thr 84, Gln 85, Phe 237, Thr 269, Phe 270, Gly 271, Ala 272, Tyr 282, Thr 285, Gly 288, Ser 289, Cys 290, Thr 291, Leu 292, Val 293, Cys 294, Pro 295 and Cys 310.
 - 10. A method as claimed in any one of the preceding claims wherein the method is performed *in silico*.
- 11. A method as claimed in claim 10, wherein the candidate compound is selected from a real compound, a virtual compound or a combination thereof.
 - 12. A method as claimed in claim 10 or 11, wherein the compound is in a library with at least one other candidate compound.
- 30 13. A method as claimed in any one of claims 10 to 12, wherein the method is used for targeted screening.
 - 14. A method as claimed in any one of claims 10 to 12, wherein the library comprises an array of maximally diverse compounds.

35

15

20

• •

- 15. A method of modulating ErbB2, the method comprising contacting the receptor with a compound that matches a region selected from at least one of the CR1 domain, the potential CR1 loop docking site between the L1, CR1 and L2 domains, the CR1-L2 hinge region, and the regions of the L1 and L2 domains that contact each other in a closed conformation.
- 16. A method as claimed in claim 15, wherein the region is a heterodimerisation surface of the receptor with another member of the EGF receptor family.
- 10 17. A method according to claim 16, wherein the other member of the EGF receptor family is selected from the group consisting of ErbB1 (EGF receptor), ErbB3 and ErbB4.
- 18. A method as claimed in claim 16 or 17, wherein the heterodimerisation surface includes at least one of (i) the N-terminal end of the CR1 domain, (ii) the CR1 domain dimerisation loop and adjacent residues and (iii) the C-terminal end of the CR1 domain.
 - 19. A method according to claim 18, wherein the surface comprises at least one of residues selected from 200-203, 210-213, 216-218, 225-230, 247-268, 244-246, 285-289) and 294-319.
 - 20. A method as claimed in claim 16 or claim 17, wherein the region is the CR1 loop docking site.
- 25 21. A method as claimed in claim 20, wherein the region comprises at least one of the following ErbB2 residues: Gln 36, Gln 60, Arg 82, Thr 84, Gln 85, Phe 237, Thr 269, Phe 270, Gly 271, Ala 272, Tyr 282, Thr 285, Gly 288, Ser 289, Cys 290, Thr 291, Leu 292, Val 293, Cys 294, Pro 295 and Cys 310.
- 30 22. A method as claimed in any one of claims 15 to 21, wherein the molecule is a small molecule modulator.
 - 23. A method as claimed in claim 22, wherein the small molecule is identified by the method of claim 1.

20

25

30

PCT/AU2003/001310

- 24. A method according to any one of claims 15 to 21, wherein the molecule is an antibody.
- 25. A computer-based method of identifying a candidate modulator of ErbB2, which method comprises fitting the structure of
- (a) amino acids 1-509 of ErbB2 polypeptide having the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I; or
- 10 (b) a subset of said amino acids having a corresponding subset of the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I;
 - to the structure of a candidate modulator molecule.
 - 26. A computer-assisted method for identifying candidate compounds able to interact with ErbB2 and thereby modulate an activity mediated by the receptor, using a programmed computer comprising a processor, an input device, and an output device, which method comprises the steps of:
 - (a) entering into the programmed computer, through the input device, data comprising the atomic coordinates of amino acids 1-509 of ErbB2 as shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I, or a subset of said coordinates;
 - (b) generating, using computer methods, a set of atomic coordinates of a structure that possesses stereochemical complementarity to the atomic coordinates entered in step (a), thereby generating a criteria data set;
 - (c) comparing, using the processor, the criteria data set to a computer database of chemical structures;
 - (d) selecting from the database, using computer methods, chemical structures which are similar to a portion of said criteria data set; and
- (e) outputting, to the output device, the selected chemical structures which are complementary to or similar to a portion of the criteria data set.

25

30

35

- 27. A method for evaluating the ability of a candidate modulator to interact with ErbB2, said method comprising the steps of:
- (a) providing a computer model of at least one region of ErbB2 using structure coordinates wherein the root mean square deviation between said structure coordinates and the structure coordinates of amino acids 1-509 of ErbB2 as set forth in Appendix I is not more than 1.5 Å;
- (b) employing computational means to perform a fitting operation between the chemical entity and said computer model of the binding surface; and
- (c) analysing the results of said fitting operation to quantify the association between the chemical entity and the binding surface model.
 - 28. A computer system for identifying one or more candidate modulators of ErbB2, the system containing data representing the structure of
 - (a) amino acids 1-509 of ErbB2 polypeptide having the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I; or
 - (b) a subset of said amino acids having a corresponding subset of the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I.
 - 29. A computer for producing a three-dimensional representation of a molecule or molecular complex, wherein the computer comprises:
 - (a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein the machine readable data comprises (i) the atomic coordinates of amino acids 1-509 of ErbB2 polypeptide as shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I; or (ii) the atomic coordinates of a subset of said amino acids having a corresponding subset of the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I;

20

35

- (b) a working memory for storing instructions for processing the machine-readable data;
- (c) a central-processing unit coupled to the working memory and to the machine-readable data storage medium, for processing the machine-readable data into the three dimensional representation; and
- (d) an output hardware coupled to the central processing unit, for receiving the three-dimensional representation.
- 30. A computer readable media having recorded thereon data representing a model and/or the atomic coordinates of a ErbB2 crystal.
 - 31. A computer readable media having recorded thereon coordinate data according to Appendix I, or a subset thereof, where said coordinate data define a three dimensional structure of amino acids 1-509 of ErbB2 polypeptide or a subset of said amino acids, or coordinate data having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinate according to Appendix I, or a subset thereof.
 - 32. A crystal of ErbB2 polypeptide.
 - 33. A crystal of ErbB2 polypeptide having a space group P2₁2₁2₁ with unit cell dimensions of a=75.96 Å, b=82.24 Å, and c=110.06 Å, with up to about 1% variation in any cell dimension
- 25 34. A crystalline composition comprising a crystal of ErbB2.
 - 35. A method of using molecular replacement to obtain structural information about a molecule or a molecular complex of unknown structure, comprising the steps of:
 - (a) crystallising said molecule or molecular complex;
- 30 (b) generating an X-ray diffraction pattern from said crystallized molecule or molecular complex;
 - (c) applying at least a portion of the structure coordinates set forth in Appendix I, or structure coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the structure coordinates set forth in Appendix I, to the X-ray diffraction

30

35

PCT/AU2003/001310

128

pattern to generate a three-dimensional electron density map of at least a portion of the molecule or molecular complex whose structure is unknown.

- 36. A method according to claim 35 wherein the molecule of unknown structure is ErbB2 or variant thereof.
 - 37. A method according to claim 36 wherein the molecular complex of unknown structure is a complex of ErbB2 and an EGF receptor.
- 38. A method according to claim 37 wherein the molecular complex of unknown structure is a complex of ErbB2, an ErbB1, ErbB3 or ErbB4 receptor and a ligand or candidate ligand.
- 39. A method for preventing or treating a disease associated with signaling by ErbB2 which method comprises administering to a subject in need thereof a compound identified by the method of any one of claims 1 to 27.
 - 40. A pharmaceutical composition comprising a compound identified by the method of any one of claims 1 to 27.
 - 41. A method for preparing a pharmaceutical composition for treating diseases associated with aberrant ErbB2 signalling, the method comprising:
 - (a) providing a three-dimensional structure of
- (i) amino acids 1-509 of ErbB2 polypeptide having the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I; or
 - (ii) a subset of said amino acids having a corresponding subset of the atomic coordinates shown in Appendix I, or atomic coordinates having a root mean square deviation of backbone atoms of not more than 1.5Å when superimposed on the corresponding backbone atoms described by the atomic coordinates shown in Appendix I;
 - (b) providing the three-dimensional structure of a candidate compound;
 - (c) assessing the stereochemical complementarity between the three-dimensional structure of step (b) and a region of the three-dimensional structure of step (a); and
 - (d) selecting a compound on the basis of the stereochemical complementarity;

15

20

25

PCT/AU2003/001310

- (e) synthesising or obtaining a candidate compound assessed in step (c) as possessing stereochemical complementarity with the three-dimensional structure of step (a);
- (f) determining the ability of the candidate compound to interact with and/or modulate the activity of ErbB2; and
- (g) incorporating the compound into a pharmaceutical composition.
- 42. A method of preventing or treating a disease associated with signalling by ErbB2 which method comprises administering to a subject in need thereof a composition according to claim 40.
 - 43. An antibody that binds to ErbB2, the antibody being directed against at least one of the N-terminal end of the CR1 domain, the CR1 domain dimerisation loop and adjacent residues and the C-terminal end of the CR1 domain.
- 44. An antibody as claimed in claim 43, the antibody being directed against a structure defined by (i) ErbB2 amino acid residues 200-203, (ii) ErbB2 amino acid residues 210-213, (iii) ErbB2 amino acid residues 216-218, (iv) ErbB2 amino acid residues 225-230, (v) ErbB2 amino acid residues 247-268 or a subset thereof; (vi) ErbB2 amino acid residues 244-246, (vii) ErbB2 amino acid residues 285-289, or (viii) ErbB2 amino acid residues 294-319 or a subset thereof.
- 45. An isolated conformationally constrained peptide or peptidomimetic consisting essentially of (i) ErbB2 amino acid residues 200-203, (ii) ErbB2 amino acid residues 210-213, (iii) ErbB2 amino acid residues 216-218, (iv) ErbB2 amino acid residues 225-230, (v) ErbB2 amino acid residues 247-268 or a subset thereof; (vi) ErbB2 amino acid residues 244-246, (vii) ErbB2 amino acid residues 285-289, or (viii) ErbB2 amino acid residues 294-319 or a subset thereof.
- 46. An *in vitro* assay for identifying a potential modulator compound for ErbB2 the method comprising contacting a candidate compound with a CR1 domain dimerisation loop or fragment thereof and determining whether the compound binds to the dimerisation loop or fragment thereof.

Inventor(s): Thomas Peter John GARRETT et al.

Appl. No.: Unassigned

PCT/AU2003/001310

1/3

Figure 1

Page 132 of 148 10/529887

WO 2004/03123

Title: CRYSTAL STRUCTURE OF ERBB2 AND USES THEREOF Inventor(s): Thomas Peter John GARRETT et al. Appl. No.: Unassigned

PCT/AU2003/001310

2/3

Figure 2

Inventor(s): Thomas Peter John GARRETT et al. Appl. No.: Unassigned 10/529887

PCT/AU2003/001310

3/3

Figure 3

JC Rec'd PCT/PTO 01 APR 2005
PCT/AU2003/001310

1/10

SEQUENCE LISTING

<110>	Commonwealth Scientific and Industrial Research Organisation
	Walter and Eliza Hall Institute of Medical Research
	Ludwig Institute for Cancer Research

- <120> Crystal structure of ErbB2 and uses thereof
- <130> 501742/JEP
- <150> Australian Patent Provisional Application No 2002951853
- <151> 2002-10-04
- <160> 4
- <170> PatentIn version 3.1
- <210> 1
- <211> 509
- <212> PRT
- <213> Homo sapiens
- <400> 1
- Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys Leu Arg Leu Pro Ala 1 5 10 15
- Ser Pro Glu Thr His Leu Asp Met Leu Arg His Leu Tyr Gln Gly Cys 20 25 30
- Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr Leu Pro Thr Asn Ala 35 40 45
- Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val Gln Gly Tyr Val Leu
 50 60
- Ile Ala His Asn Gln Val Arg Gln Val Pro Leu Gln Arg Leu Arg Ile 65 70 75 80
- Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr Ala Leu Ala Val Leu 85 90 95
- Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro Val Thr Gly Ala Ser 100 105 110
- Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser Leu Thr Glu Ile Leu 115 120 125 .
- Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln Leu Cys Tyr Gln Asp 130 135 140

2/10

Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn Asn Gln Leu Ala Leu 150 Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys His Pro Cys Ser Pro 170 Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser Ser Glu Asp Cys Gln 180 185 Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys Ala Arg Cys Lys Gly 200 205 Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys Ala Ala Gly Cys Thr 215 Gly Pro Lys His Ser Asp Cys Leu Ala Cys Leu His Phe Asn His Ser 230 Gly Ile Cys Glu Leu His Cys Pro Ala Leu Val Thr Tyr Asn Thr Asp 250 Thr Phe Glu Ser Met Pro Asn Pro Glu Gly Arg Tyr Thr Phe Gly Ala Ser Cys Val Thr Ala Cys Pro Tyr Asn Tyr Leu Ser Thr Asp Val Gly 275 280 Ser Cys Thr Leu Val Cys Pro Leu His Asn Gln Glu Val Thr Ala Glu 295 Asp Gly Thr Gln Arg Cys Glu Lys Cys Ser Lys Pro Cys Ala Arg Val Cys Tyr Gly Leu Gly Met Glu His Leu Arg Glu Val Arg Ala Val Thr Ser Ala Asn Ile Gln Glu Phe Ala Gly Cys Lys Lys Ile Phe Gly Ser . 345 Leu Ala Phe Leu Pro Glu Ser Phe Asp Gly Asp Pro Ala Ser Asn Thr Ala Pro Leu Gln Pro Glu Gln Leu Gln Val Phe Glu Thr Leu Glu Glu 370 380

3/10

Ile Thr Gly Tyr Leu Tyr Ile Ser Ala Trp Pro Asp Ser Leu Pro Asp 390

Leu Ser Val Phe Gln Asn Leu Gln Val Ile Arg Gly Arg Ile Leu His 410

Asn Gly Ala Tyr Ser Leu Thr Leu Gln Gly Leu Gly Ile Ser Trp Leu 420

Gly Leu Arg Ser Leu Arg Glu Leu Gly Ser Gly Leu Ala Leu Ile His 440

His Asn Thr His Leu Cys Phe Val His Thr Val Pro Trp Asp Gln Leu 455

Phe Arg Asn Pro His Gln Ala Leu Leu His Thr Ala Asn Arg Pro Glu

Asp Glu Cys Val Gly Glu Gly Leu Ala Cys His Gln Leu Cys Ala Arg 490

Gly His Cys Trp Gly Pro Gly Pro Thr Gln Cys Val Asn

<210> 2

<211> 501 <212> PRT <213> Homo sapiens

<400> 2

Leu Glu Glu Lys Lys Val Cys Gln Gly Thr Ser Asn Lys Leu Thr Gln

Leu Gly Thr Phe Glu Asp His Phe Leu Ser Leu Gln Arg Met Phe Asn

Asn Cys Glu Val Val Leu Gly Asn Leu Glu Ile Thr Tyr Val Gln Arg

Asn Tyr Asp Leu Ser Phe Leu Lys Thr Ile Gln Glu Val Ala Gly Tyr

Val Leu Ile Ala Leu Asn Thr Val Glu Arg Ile Pro Leu Glu Asn Leu

4/10

Gln Ile Ile Arg Gly Asn Met Tyr Tyr Glu Asn Ser Tyr Ala Leu Ala 90 Val Leu Ser Asn Tyr Asp Ala Asn Lys Thr Gly Leu Lys Glu Leu Pro 100 105 Met Arg Asn Leu Gln Glu Ile Leu His Gly Ala Val Arg Phe Ser Asn Asn Pro Ala Leu Cys Asn Val Glu Ser Ile Gln Trp Arg Asp Ile Val 135 Ser Ser Asp Phe Leu Ser Asn Met Ser Met Asp Phe Gln Asn His Leu Gly Ser Cys Gln Lys Cys Asp Pro Ser Cys Pro Asn Gly Ser Cys Trp Gly Ala Gly Glu Glu Asn Cys Gln Lys Leu Thr Lys Ile Ile Cys Ala Gln Gln Cys Ser Gly Arg Cys Arg Gly Lys Ser Pro Ser Asp Cys Cys 200 His Asn Gln Cys Ala Ala Gly Cys Thr Gly Pro Arg Glu Ser Asp Cys Leu Val Cys Arg Lys Phe Arg Asp Glu Ala Thr Cys Lys Asp Thr Cys 225 230 235 Pro Pro Leu Met Leu Tyr Asn Pro Thr Thr Tyr Gln Met Asp Val Asn 250 Pro Glu Gly Lys Tyr Ser Phe Gly Ala Thr Cys Val Lys Lys Cys Pro Arg Asn Tyr Val Val Thr Asp His Gly Ser Cys Val Arg Ala Cys Gly Ala Asp Ser Tyr Glu Met Glu Glu Asp Gly Val Arg Lys Cys Lys Lys

5/10

Cys Glu Gly Pro Cys Arg Lys Val Cys Asn Gly Ile Gly Ile Gly Glu 305 310 315 320

Phe Lys Asp Ser Leu Ser Ile Asn Ala Thr Asn Ile Lys His Phe Lys 325 330 335

Asn Cys Thr Ser Ile Ser Gly Asp Leu His Ile Leu Pro Val Ala Phe 340 345 350

Arg Gly Asp Ser Phe Thr His Thr Pro Pro Leu Asp Pro Gln Glu Leu 355 360 365

Asp Ile Leu Lys Thr Val Lys Glu Ile Thr Gly Phe Leu Leu Ile Gln 370 380

Ala Trp Pro Glu Asn Arg Thr Asp Leu His Ala Phe Glu Asn Leu Glu 385 390 395 400

Ile Ile Arg Gly Arg Thr Lys Gln His Gly Gln Phe Ser Leu Ala Val405 410 415

Val Ser Leu Asn Ile Thr Ser Leu Gly Leu Arg Ser Leu Lys Glu Ile 420 425 430

Ser Asp Gly Asp Val Ile Ile Ser Gly Asn Lys Asn Leu Cys Tyr Ala 435 440 445

Asn Thr Ile Asn Trp Lys Lys Leu Phe Gly Thr Ser Gly Gln Lys Thr 450 455 460

Lys Ile Ile Ser Asn Arg Gly Glu Asn Ser Cys Lys Ala Thr Gly Gln 465 470 475 480

Val Cys His Ala Leu Cys Ser Pro Glu Gly Cys Trp Gly Pro Glu Pro 485 490 495

Arg Asp Cys Val Ser 500

<210> 3

<211> 500

<212> PRT

<213> Homo sapiens

<400> 3

6/10

Ser Glu Val Gly Asn Ser Gln Ala Val Cys Pro Gly Thr Leu Asn Gly
1 5 10 15

Leu Ser Val Thr Gly Asp Ala Glu Asn Gln Tyr Gln Thr Leu Tyr Lys
20 25 30

Leu Tyr Glu Arg Cys Glu Val Val Met Gly Asn Leu Glu Ile Val Leu 35 40 45

Thr Gly His Asn Ala Asp Leu Ser Phe Leu Gln Trp Ile Arg Glu Val 50 55 60

Thr Gly Tyr Val Leu Val Ala Met Asn Glu Phe Ser Thr Leu Pro Leu 65 70 75 80

Pro Asn Leu Arg Val Val Arg Gly Thr Gln Val Tyr Asp Gly Lys Phe 85 90 95

Ala Ile Phe Val Met Leu Asn Tyr Asn Thr Asn Ser Ser His Ala Leu 100 105 110

Arg Gln Leu Arg Leu Thr Gln Leu Thr Glu Ile Leu Ser Gly Gly Val 115 120 125

Tyr Ile Glu Lys Asn Asp Lys Leu Cys His Met Asp Thr Ile Asp Trp 130 135 140

Arg Asp Ile Val Arg Asp Arg Asp Ala Glu Ile Val Val Lys Asp Asn 145 150 155 160

Gly Arg Ser Cys Pro Pro Cys His Glu Val Cys Lys Gly Arg Cys Trp 165 170 175

Gly Pro Gly Ser Glu Asp Cys Gln Thr Leu Thr Lys Thr Ile Cys Ala 180 185 190

Pro Gln Cys Asn Gly His Cys Phe Gly Pro Asn Pro Asn Gln Cys Cys 195 200 205

His Asp Glu Cys Ala Gly Gly Cys Ser Gly Pro Gln Asp Thr Asp Cys 210 215 220

Phe Ala Cys Arg His Phe Asn Asp Ser Gly Ala Cys Val Pro Arg Cys 225 230 235 240

7/10

Pro Gln Pro Leu Val Tyr Asn Lys Leu Thr Phe Gln Leu Glu Pro Asn 245 250 255

Pro His Thr Lys Tyr Gln Tyr Gly Gly Val Cys Val Ala Ser Cys Pro 260 265 . 270

His Asn Phe Val Val Asp Gln Thr Ser Cys Val Arg Ala Cys Pro Pro 275 280 285

Asp Lys Met Glu Val Asp Lys Asn Gly Leu Lys Met Cys Glu Pro Cys 290 295 300

Gly Gly Leu Cys Pro Lys Ala Cys Glu Gly Thr Gly Ser Gly Ser Arg 305 310 315 320

Phe Gln Thr Val Asp Ser Ser Asn Ile Asp Gly Phe Val Asn Cys Thr 325 330 335

Lys Ile Leu Gly Asn Leu Asp Phe Leu Ile Thr Gly Leu Asn Gly Asp 340 345 350

Pro Trp His Lys Ile Pro Ala Leu Asp Pro Glu Lys Leu Asn Val Phe 355 360 365

Arg Thr Val Arg Glu Ile Thr Gly Tyr Leu Asn Ile Gln Ser Trp Pro 370 375 380

Pro His Met His Asn Phe Ser Val Phe Ser Asn Leu Thr Thr Ile Gly 385 390 395

Gly Arg Ser Leu Tyr Asn Arg Gly Phe Ser Leu Leu Ile Met Lys Asn 405 410 415

Leu Asn Val Thr Ser Leu Gly Phe Arg Ser Leu Lys Glu Ile Ser Ala 420 425 430

Gly Arg Ile Tyr Ile Ser Ala Asn Arg Gln Leu Cys Tyr His His Ser 435 440 445

Leu Asn Trp Thr Lys Val Leu Arg Gly Pro Thr Glu Glu Arg Leu Asp 450 455 460

Ile Lys His Asn Arg Pro Arg Arg Asp Cys Val Ala Glu Gly Lys Val 465 470 475 480

8/10

Cys Asp Pro Leu Cys Ser Ser Gly Gly Cys Trp Gly Pro Gly Pro Gly 485 490 495

Gln Cys Leu Ser 500

<210> 4

<211> 502

<212> PRT

<213> Homo sapiens

<400> 4

Gln Pro Ser Asp Ser Gln Ser Val Cys Ala Gly Thr Glu Asn Lys Leu 1 5 10 15

Ser Ser Leu Ser Asp Leu Glu Gln Gln Tyr Arg Ala Leu Arg Lys Tyr 20 25 30

Tyr Glu Asn Cys Glu Val Val Met Gly Asn Leu Glu Ile Thr Ser Ile 35 40 45

Glu His Asn Arg Asp Leu Ser Phe Leu Arg Ser Val Arg Glu Val Thr 50 60

Gly Tyr Val Leu Val Ala Leu Asn Gln Phe Arg Tyr Leu Pro Leu Glu 65 70 . 75 80

Asn Leu Arg Ile Ile Arg Gly Thr Lys Leu Tyr Glu Asp Arg Tyr Ala 85 90 95

Leu Ala Ile Phe Leu Asn Tyr Arg Lys Asp Gly Asn Phe Gly Leu Gln 100 105 110

Glu Leu Gly Leu Lys Asn Leu Thr Glu Ile Leu Asn Gly Gly Val Tyr 115 120 125

Val Asp Gln Asn Lys Phe Leu Cys Tyr Ala Asp Thr Ile His Trp Gln 130 135 140

Asp Ile Val Arg Asm Pro Trp Pro Ser Asm Leu Thr Leu Val Ser Thr 145 150 155 160

Asn Gly Ser Ser Gly Cys Gly Arg Cys His Lys Ser Cys Thr Gly Arg

9/10

Cys Trp Gly Pro Thr Glu Asn His Cys Gln Thr Leu Thr Arg Thr Val Cys Ala Glu Gln Cys Asp Gly Arg Cys Tyr Gly Pro Tyr Val Ser Asp Cys Cys His Arg Glu Cys Ala Gly Gly Cys Ser Gly Pro Lys Asp Thr 215 Asp Cys Phe Ala Cys Met Asn Phe Asn Asp Ser Gly Ala Cys Val Thr Gln Cys Pro Gln Thr Phe Val Tyr Asn Pro Thr Thr Phe Gln Leu Glu 250 His Asn Phe Asn Ala Lys Tyr Thr Tyr Gly Ala Phe Cys Val Lys Lys Cys Pro His Asn Phe Val Val Asp Ser Ser Ser Cys Val Arg Ala Cys 280 Pro Ser Ser Lys Met Glu Val Glu Glu Asn Gly Ile Lys Met Cys Lys Pro Cys Thr Asp Ile Cys Pro Lys Ala Cys Asp Gly Ile Gly Thr Gly 305 Ser Leu Met Ser Ala Gln Thr Val Asp Ser Ser Asn Ile Asp Lys Phe 325 330 Ile Asn Cys Thr Lys Ile Asn Gly Asn Leu Ile Phe Leu Val Thr Gly 340 Ile His Gly Asp Pro Tyr Asn Ala Ile Glu Ala Ile Asp Pro Glu Lys 355 360 Leu Asn Val Phe Arg Thr Val Arg Glu Ile Thr Gly Phe Leu Asn Ile 370 375 380

Gln Ser Trp Pro Pro Asn Met Thr Asp Phe Ser Val Phe Ser Asn Leu

Val Thr Ile Gly Gly Arg Val Leu Tyr Ser Gly Leu Ser Leu Leu Ile

395

400

390

10/10

405

410

415

Leu Lys Gln Gln Gly Ile Thr Ser Leu Gln Phe Gln Ser Leu Lys Glu

420

425

430

Ile Ser Ala Gly Asn Ile Tyr Ile Thr Asp Asn Ser Asn Leu Cys Tyr
435
440
445

Tyr His Thr Ile Asn Trp Thr Thr Leu Phe Ser Thr Ile Asn Gln Arg 450 455 460

Ile Val Ile Arg Asp Asn Arg Lys Ala Glu Asn Cys Thr Ala Glu Gly 470 475 480

Met Val Cys Asn His Leu Cys Ser Ser Asp Gly Cys Trp Gly Pro Gly 485 490

Pro Asp Gln Cys Leu Ser 500