Лабораторная работа №2а Решение задачи Дирихле для уравнения Пуассона в непрямоугольной области

Выполнил(а):	
Группа: Вариант №	_
Метод	(см. стр. б)
$\Delta u(x, y) = \underline{\hspace{1cm}}$	
при $x \in (___, ___)$, <i>y</i> ∈(,);
<i>u</i> (, <i>y</i>) =	$u(___, y) = ____,$
$u(x, \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}$	$u(x, \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}.$
<u> </u>	правый верхний, левый верхний ний (подчеркнуть ваш вариант). $x \in ($,)
Постановка основной задачі $\Delta u(x, y) =$	
	, <i>y</i> ∈(,);
$u(x, \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}$	
Выбитый прямоугольник: левый нижний, правый нижний	правый верхний, левый верхний, ний (подчеркнуть ваш вариант). $\mathbf{x} \in (\mathbf{y}, \mathbf{y})$ их $\mathbf{x} \in (\mathbf{y}, \mathbf{y})$

1.	Начальное приближение:
2.	Параметры метода:
	Для тестовой задачи запишите метод в матричной и поком
	понентной формах, а также все выкладки расчета первой ите
	рации метода.
1	Don't Total

- 4. Результаты тестирования на сетке небольшого размера $n = ____, m = ____$ запишите в приложении 1.
- 5. В приложении 2 приведите тест, показывающий наличие второго порядка сходимости в задаче.
- 6. В приложении 3 приведите код вашей программы.

Приложение 1.

Основные результаты тестирования должны быть показаны в таблицах 1–3.

В таблице №1 запишите результат первой итерации метода, посчитанной вручную.

В таблице №2 приведите результат первой итерации метода, посчитанной вашей программой.

В таблице №3 запишите результат работы метода после многих итераций (напр., при $\varepsilon_l = 10^{-12}$).

Таблица №1

<i>y</i> ₅						
<i>y</i> ₄						
у 3						
<i>y</i> ₂						
y_I						
Уо						
	x_0	x_1	x_2	x_3	X_4	x_5

Таблица №2

<i>y</i> ₅						
<i>y</i> ₄						
<i>y</i> ₃						
<i>y</i> ₂						
y_I						
уо						
	x_0	x_1	x_2	x_3	x_4	x_5

Таблица №3

<i>y</i> ₅						
<i>y</i> ₄						
у з						
y_2						
<i>y</i> ₁						
Уо						
	x_0	x_1	x_2	χ_3	χ_4	<i>x</i> ₅

Приложение 2. Анализ порядка сходимости для тестовой задачи Укажите параметры итерационного метода

n×m	max U-V
Порядок сходимости	

Анализ порядка сходимости для основной задачи Укажите параметры итерационного метода

n×m	<i>max</i> <i>V</i> − <i>V</i> 2
Порядок сходимости	

Список методов для реализации

<i>№</i> no cnu- cкy	ФИО	Задача из варианта	Метод
1.	БЛОХИН	1	Простой итерации τ=τ _{opt}
2.	БОРИСОВ	2	Минимальных невязок
3.	винницкий	3	Простой итерации с чебышев- ским набором параметров
4.	ГРИБКИНА	4	Сопряженных градиентов
5.	ДВОРЯНИНОВА	5	Верхней релаксации, ω=ω _{орt}
6.	ИСРАФИЛОВ	6	Простой итерации τ=τopt
7.	КИРАКОСЯН	7	Минимальных невязок
8.	КОЗЫРЕВ	8	Простой итерации с чебышев- ским набором параметров
9.	КУДРЯВЦЕВ	9	Сопряженных градиентов
10.	КУЗНЕЦОВА	10	Верхней релаксации, ω=ωορt
11.	КУКУШКИН	1	Простой итерации $\tau = \tau_{opt}$
12.	ЛАРИН	2	Минимальных невязок
13.	MATBEEBA	3	Простой итерации с чебышев- ским набором параметров
14.	НИКОЛАЕВА	4	Сопряженных градиентов
15.	ПРЫТКОВА	5	Верхней релаксации, ω=ω _{opt}
16.	ПУЗАНКОВА	6	Простой итерации $\tau = \tau_{opt}$
17.	САВИЧЕВ	7	Минимальных невязок
1.	СКРЕБКОВ	8	Простой итерации с чебышевским набором параметров
1.	СМИРНОВ	8	Сопряженных градиентов
1.	СМИРНОВА	8	Верхней релаксации, ω=ω _{opt}
1.	COBPACOB	8	Простой итерации τ=τ _{opt}
1.	ЧЕБОКСАРИНОВ	8	Минимальных невязок
2.	ЧЕРНОВ	8	Простой итерации с чебышев- ским набором параметров