Множественное выравнивание последовательностей

Множественное выравнивание последовательностей

Две главные состовляющие автоматических методов множественного выравнивания:

- оценка качества выравнивания (функция оценки)
- алгоритм выравнивания

Оценка качества выравнивания: наименьшая энтропия

Обычно считают, что колонки $\{m_i\}$ в множественном выравнивании независимы. Тогда вес выравнивания:

$$S(m) = \sum_{i} S(m_i)$$

Информационная энтропия (мера неопределенности или мера беспорядка):

$$H(x) = -\sum_{i}^{n} p(i) \log p(i)$$

Можем задать вес колонки ті как:

$$S(m_i) = -\sum_a p_{ia} \log p_{ia}$$

где
$$p_{ia} = \frac{c_{ia}}{\sum_{b} c_{ib}} \quad \text{, a c_{ia} - количество остатков a в колонке i}$$

Оценка качества выравнивания: сумма пар

Оценка качества колонки функцией "сумма пар":

$$S(m_i) = \sum_{k < l} s(m_{ik,} m_{il})$$

где m_{ik} - остаток в і-й колонке и k-ой строке,

а s(a,b) - вес замены остатка a на остаток b, вычисленный на основе матрицы замен (BLOSUM или PAM)

Многомерное динамическое программирование

 $S(x_{i_1}^1,x_{i_2}^2,...,x_{i_N}^N)$ - вес колонки, составленной из $i_1,i_2,...,i_N$ -ых символов последовательностей $x^1,x^2,...,x^N$

 $\alpha_{i1}, i_2, ..., i_N$ - вес оптимального выравнивания в ячейке $(i_1, i_2, ..., i_N)$

Рекурсия для трехмерного случая:

$$\alpha_{i-1,j-1,k-1} + S(x_i^1, x_j^2, x_k^3)$$

$$\alpha_{i,j-1,k-1} + S(-, x_j^2, x_k^3)$$

$$\alpha_{i-1,j,k-1} + S(x_i^1, -, x_k^3)$$

$$\alpha_{i-1,j-1,k} + S(x_i^1, x_j^2, -)$$

$$\alpha_{i,j,k-1} + S(-, -, x_k^3)$$

$$\alpha_{i-1,j,k} + S(x_i^1, -, -)$$

$$\alpha_{i,j-1,k} + S(-, -, -)$$

Многомерное динамическое программирование

- Количество ячеек равно $L_1 \times L_2 \times ... \times L_N = O(L^N)$
- Для вычисления веса в каждой ячейке необходимо найти максимум из 2^N-1 вариантов
- Вычислительная сложность:
 - по памяти O(L^N)
 - по времени O(2^NL^N)

Методы прогрессивного выравнивания

- Методы построения множественного выравнивания путем последовательного объединения попарных выравниваний
- Как правило, первоначально строится приближенное филогенетическое дерево
- С помощью дерева выбирается порядок построения попарных выравниваний
- Далее последовательности добавляются поочередно к главному выравниванию, либо подвыравнивания (профили) выравниваются друг с другом

Выравнивание профилей

- Выравнивание профилей (стопок последовательностей) выполняется обычным алгоритмом динамического программирования
- Оптимизируется сумма парных весов:

$$\sum_i S(m_i) = \sum_i \sum_{k < l \le N} s(m_i^k, m_i^l) =$$

$$\sum_{i} \sum_{k < l \le n} s(m_i^k, m_i^l) + \sum_{i} \sum_{n < k < l \le N} s(m_i^k, m_i^l) + \sum_{i} \sum_{k < n; n < l \le N} s(m_i^k, m_i^l)$$

ClustalW - популярный метод множественного выравнивания

- Строится матрица расстояний с использованием попарных выравниваний
- Строится направляющее дерево с помощью метода соединения соседей
- Выравнивание строится в порядке убывания сходства последовательностей. Выполняются выравнивания последовательности к последовательности, последовательности к профилю и профиля к профилю
- Дополнительные эвристики:
 - взвешивание последовательностей
 - использование различных матриц замен (BLOSUM80/50)
 - корректировка дерева при низком весе выравнивания

Благодарности

• При подготовке слайдов использовались материалы лекций:

- Михаила Гельфанда (ИППИ)
- Андрея Миронова (МГУ)
- Serafim Batzoglou (Stanford)
- Manolis Kellis (MIT)
- Pavel Pevzner (UCSD)