Bias in Al

Science of Science & Computational Discovery Lab

School of Information Studies **SYRACUSE UNIVERSITY**

Science of Science Summer School

StyleGAN — Official TensorFlow Implementation

python 3.6 tensorflow 1.10 cudnn 7.3.1 license CC BY-NC

Neural net-generated memes are one of the best uses of AI on the internet

I can't stop making memes

Two Petty Theft Arrests VERNON PRATER **BRISHA BORDEN Prior Offenses Prior Offenses** 2 armed robberies, 1 4 juvenile attempted armed misdemeanors robbery Subsequent Offenses Subsequent Offenses None 1 grand theft VERNON PRATER **BRISHA BORDEN** 8 LOW RISK HIGH RISK LOW RISK HIGH RISK

Borden was rated high risk for future crime after she and a friend took a kid's bike and scooter that were sitting outside. She did not reoffend.

"Google apologizes after its Vision Al produced racist results"

https://algorithmwatch.org/en/story/google-vision-racism/

New Zealand passport robot tells applicant of Asian descent to open eyes

-REUTERS

What?	How?
Allocation Harm	Al systems extend or withhold opportunities, resources
Quality-of-service Harm	Al systems do not work as well for one individual as it does for another

Amazon announced moratorium on police use of Amazon's facial recognition technology (June 10, 2020)

IBM announced that the company would exit the general-purpose face recognition business to fight racism (June 8, 2020)

Data Collection and Annotation

Biases in Data

- → Biased data representation: There are some groups represented less positively than others
- → Biased Label: Annotation in your dataset will reflect the worldviews of your annotators
- → Reporting bias: What people share is not a reflection of real-world frequencies
- → Selection bias: Selection does not reflect a random sample

Liang., L., **Acuna, DE** (2020) *Artificial mental phenomena: Psychophysics as a framework to detect perception biases in AI models* In Conference on Fairness, Accountability, and Transparency (FAT* '20), January 27–30, 2020, Barcelona, Spain. ACM, New York, NY, USA, 10 pages.

Interpretation:

- → Confirmation bias: The tendency to search for, interpret, favor, and recall information in a way that confirms one's preexisting beliefs or hypotheses
- → Overgeneralization: coming to conclusion based on information that is too general and/or not specific enough
- → Correlation fallacy: Confusing correlation with causation
- → Automation bias: propensity for humans to favor suggestions from automated decision-making systems over contradictory information without automation.

Linear regression high interpretability low accuracy

$$\mathrm{Outcome}_i = b_0 + b_1 \mathrm{Gender}_i + \epsilon_i$$
Easy to interpret gender effect on outcome

Deep learning low interpretability high accuracy

Outcome_i =
$$f(b_{20} + b_{21}f(b_{10} + b_{11}f(b_0 + b_1\text{Gender}_i))) + \epsilon_i$$

Hard to interpret gender effect on outcome

Accuracy vs. Interpretability

Accuracy

StyleGAN — Official TensorFlow Implementation

python 3.6 tensorflow 1.10 cudnn 7.3.1 license CC BY-NC

Neural net-generated memes are one of the best uses of AI on the internet

I can't stop making memes

Data Preparation

- 1. Understand your data: skews, correlations
- 2. Combine inputs from multiple sources
- 3. Removing the signal for problematic output: 1) stereotyping 2) Sexism, Racism, *-ism
- 4. Adding signal for desired variables 1) increasing model performance 2) Attention to subgroups or data slices with worse performance

Model Training

- 1. Always cross-validate!
- 2. Use held-out test set for hard use cases
- 3. multitask adversarial training

Data Hidden layers

Gender?
Race
...

		Model Predictions		
		Positive	Negative	
Reference	Positive	True Positive	False Negative	Recall
	Negative	False Positive	True Negative	False Positive Rate
	1	Precision	Negative Predictive Value	

Criterion

Equality of opportunity:
Recall is equal across subgroups

 $Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$

Predictive parity:
Precision is equal across subgroups

$$Presicion = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

Tools

AIX360 (AI Explainability 360) by IBM

- •Data explanation
- •Local post-hoc explanation
- •Local direct explanation
- •Global direct explanation
- •Global post-hoc explanation

https://github.com/Trusted-AI/AIX360

What-if Tool by Google

- •Visualize dataset
- •Visualize model inference
- •Explore counterfactual examples
- •Compare models prediction
- •Visualize model performance

https://pair-code.github.io/what-if-tool/get-started/

Thank you!