National Taiwan University Department of Electrical Engineering Algorithms, Fall 2019 $\begin{array}{c} {\rm Handout}\ \#4\\ {\rm October}\ 1,\ 2019\\ {\rm Yao\text{-}Wen\ Chang\ \&\ Iris\ Hui\text{-}Ru\ Jiang} \end{array}$

Name. Student ID: Web ID:	Name:	Student ID:	Web ID:
---------------------------	-------	-------------	---------

Problem 1. (10 pts) For the following functions, rank them from the slowest (with the lowest complexity) to the fastest growing.

$$(\lg n)^{\lg n}, \qquad \lg n!, \qquad (\lg n)!, \qquad n^{1/\lg n}, \qquad 2^{2^n}$$

Problem 2. (10 pts) Is $4n^2 - 3n + 1 = O(n^2)$ correct? Disprove the statement, or prove it by determining the smallest **integer constant** c and then the smallest **integer constant** n_0 in the definition of O-notation.

Problem 3. (12 pts) For the following two recurrence relations, give their asymptotic growth rates using the Θ notation. Assume in each case that T(n) is $\Theta(1)$ for $n \leq 4$. Show your steps!

- (a) (6 pts) $T(n) = 2T(n/4) + n^2 \lg n$.
- (b) (6 pts) T(n) = T(n/3) + T(2n/3) + n.

Problem 4. (8 pts) Given n items, with i-th item worth v_i dollars and weighing w_i kg, a porter develops an O(nW) algorithm to pick as valuable a load as possible, where W is the maximum weight (in kg) he can carry in one load. Does this algorithm run in polynomial time? Why?