Technische Universität München

Ferienkurs Lineare Algebra 1

Gruppen, Ringe, Körper und Vektorräume

Aufgaben

22. März 2011

Tanja Geib

Sei (G, \cdot) eine Gruppe mit neutralem Element e, und es gelten für alle $g \in G$ die Gleichung $g^2 = e$. Beweisen Sie, dass (G, \cdot) eine abelsche Gruppe ist.

Aufgabe 2

Betrachten Sie den \mathbb{R} -Vektorraum $V = \{f : \mathbb{R} \to \mathbb{R}\}$ mit der üblichen punktweisen Addition und skalaren Multiplikation und die Mengen

$$G = \{ f \in V : \ f(x) = f(-x) \ \forall x \in \mathbb{R} \}$$

$$U = \{ f \in V : \ f(x) = -f(-x) \ \forall x \in \mathbb{R} \}$$

Beweisen Sie: G und U sind R-Vektorräume.

Aufgabe 3

Es sei G eine Gruppe. Zeigen Sie: G ist genau dann abelsch, wenn die Abbildung $\varphi: G \to G, \ x \mapsto x^2$ ein Homomorphismus ist.

Aufgabe 4

Im \mathbb{R} -Vektorraum $V:=\mathbb{R}^3$ seien Unterräume U_1 und U_2 gegeben durch

$$U_1 = span((-1, 2, 3), (-1, 5, 5))$$

$$U_2 = span((2, -2, 1), (-1, 3, -2))$$

Bestimmen Sie die Dimensionen $dim(U_1), dim(U_2), dim(U_1 + U_2)$ und $dim(U_1 \cap U_2)$.

Aufgabe 5

Beantworten Sie folgende Fragen durch Ankreuzen mit "Ja" oder "Nein". Es sind keine Begründungen anzugeben.

Sind die folgenden Aussagen richtig?	
Jeder Vektorraum hat eine Basis.	□ Ja □ Nein
Die Menge $\{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$ ist ein Unterraum	□ Ja □ Nein
des \mathbb{R} -Vektorraumes \mathbb{R}^3 .	
Eine linear unabhängige Teilmenge eines Vektorraumes enthält	□ Ja □ Nein
niemals den Nullvektor.	
Die Komposition $g\circ f$ zweier injektiver Abbildungen $f:A\to B$	□ Ja □ Nein
und $g: B \to C$ (A,B,C Mengen) ist immer injektiv.	
Die Vereinigung zweier Unterräume eines Vektorraumes ist stets	□ Ja □ Nein
wieder ein Unterraum.	
Der Durchschnitt zweier Unterräume eines Vektorraumes ist stets	□ Ja □ Nein
wieder ein Unterraum.	

Welche der folgenden Aussagen sind richtig, welche falsch? Begründen Sie jeweils kurz Ihre Antwort.

- (a) $\mathbb{N}_0 := \{0\} \cup \mathbb{N}$ ist mit der üblichen Addition eine Gruppe.
- (b) Dei Menge $M:=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2=z^2\}$ ist ein Unterraum des \mathbb{R} -Vektorraums \mathbb{R}^3 .

(c) Die Matrix
$$A := \begin{pmatrix} -12 & 0 & 34 & -10 \\ 5 & -50 & 6 & 1 \\ -66 & 2 & 3 & 4 \end{pmatrix} \in \mathbb{C}^{3\times 4}$$
 hat den Rang 4.

Aufgabe 7

Welche der folgenden Abbildungen φ sind Gruppehomomorphismen? Bestimmen Sie gegebenenfalls $Kern(\varphi)$ und $Bild(\varphi)$. Antworten nur kurz begründen.

(a)
$$\varphi: (\mathbb{R}, +) \to (\mathbb{R} \setminus \{0\}, \cdot), \ x \mapsto e^{3x}.$$

(b)
$$\varphi: (Aut(\{1,2,3\}), \circ) \to (Aut(\{1,2,3\}), \circ), \ \pi \mapsto (2\ 1\ 3) \circ \pi.$$

(c)
$$\varphi: (\mathbb{Z}_4, \oplus_4) \to (\mathbb{Z}_4, \oplus_4), \ x \mapsto x \oplus_4 x.$$

(d)
$$\varphi: (\mathbb{R}, +) \to (\mathbb{R}, +), x \mapsto x^2$$
.

Aufgabe 8

Es sei $K := \{0, 1, a, b\}$ eine Menge mit 4 paarweise verschiedenen Elementen. Füllen Sie die folgenden Tabellen so aus, dass K zusammen mit den Abbildungen $+ : K \times K \to K$ und $\cdot : K \times K \to K$ ein Körper ist. Begründen Sie kurz.

+	0	1	a	b
0				
1				
a				
b				

	0	1	a	b
0				
1				
a				
b				

Im \mathbb{R} -Vektorraum $V=\mathbb{R}^3$ seien die Unterräume U_1 und U_2 gegeben durch

$$U_1 = span\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}) = \{a \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + b \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} : a, b \in \mathbb{R}\},$$

$$U_2 = span\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}) = \{a \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + b \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} : a, b \in \mathbb{R}\},$$

Geben Sie einen Vektor u an mit $U_1 \cap U_2 = span(u)$ und zeigen Sie $V = U_1 + U_2$.

Aufgabe 10

Gegeben seien der Vektorraum \mathbb{R}^3 und die Vektoren

$$x_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ x_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \ x_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \ x_4 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

- (a) Entscheiden Sie für folgenden Mengen jeweils, ob sie linear abhängig sind:
- (i) $\{x_1, x_2, x_3\}$, (ii) $\{x_1, x_2, x_4\}$, (iii) $\{x_1, x_2, x_3, x_4\}$, (iv) $\{x_2, x_3, x_4\}$, (v) $\{x_1 + x_2, x_3\}$.
- (b) Für welche der Mengen kann man $y = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$ als Linearkombination schreiben?

Beantworten Sie folgende Fragen durch Ankreuzen mit "Ja" oder "Nein". Es sind keine Begründungen anzugeben.

Es sei K ein Körper.

Gelten folgende Aussagen für jeden K-Vektorraum V?	
$(V \setminus \{0\}, \cdot)$ ist eine kommutative Gruppe	□ Ja □ Nein
(K,\cdot) ist kommutative Gruppe.	□ Ja □ Nein
$\forall \lambda, \mu \in K, v \in V \text{ gilt } (\lambda \mu)v = \mu(\lambda)v.$	□ Ja □ Nein
$\forall \lambda, \mu \in K, v \in V \text{ gilt } \lambda(v + \mu) = \lambda v + \lambda \mu.$	□ Ja □ Nein

Aufgabe 12

Beantworten Sie folgende Fragen durch Ankreuzen mit "Ja" oder "Nein". Es sind keine Begründungen anzugeben. Wir betrachten die Menge

$$M = v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, v_5 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, v_6 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \end{pmatrix} \subseteq \mathbb{R}^4.$$

Sind die folgenden Aussagen wahr?	
$span(v_2, v_3, v_5) = span(v_3, v_5)$	□ Ja □ Nein
$span(v_2, v_3, v_5) = span(v_1, v_3, v_5)$	□ Ja □ Nein
$span(v_1, v_5, v_6) = span(v_1, v_2, v_3, v_4, v_5, v_6)$	□ Ja □ Nein
$span(v_1, v_2, v_4) = span(v_2, v_3, v_5, v_6)$	□ Ja □ Nein