Glow Starter RELCO SC480 Atlas of Emission Lines

Recorded by the Spectrographs SQUES Echelle and DADOS

Richard Walker, CH-Rifferswil

richiwalker@bluewin.ch

Version 3.0 02/2015

1 Calibration Light Sources for Echelle Spectrographs

Due to the split-up of the highly resolved broadband-spectrum to numerous overlapping orders, Echelle spectrographs require calibration light sources, producing a huge number of evaluable emission lines, which are more or less evenly distributed over the entire wavelength range, reaching from blue to red. In the professional sector, but partly also in the amateur field, mostly hollow cathode lamps with eg iron, argon or thorium are used. Such are usually quite expensive and some of these substances, released by a possible lamp break, not really harmless. In addition, a specific high voltage supply is required.

2 Low Cost Alternative

The popular neon glow lamp, particularly used in amateur circles, produces the main part of the useable emission lines in the red- or long wavelength range of the spectrum. Here it can possibly be used for the calibration of some individual orders, but it is useless for the overall calibration of an entire Echelle spectrum.

The glass bulb of the glow starter RELCO SC480, produced by the Italian lighting manufacturer RELCO, houses a bimetal switch and contains also strongly different portions of the noble gases *He, Ne* and *Ar*, as well as H (probably generated by dissociation of remaining water vapour within the bulb). By a simple modification of the starter these gases can be excited to produce several hundreds of evaluable emission lines. There exist also professional calibration lamps, using this gas mixture [71].

3 Modification of the Glow Starter

With minimal electrical knowledge this unit can be modified to a calibration light source by supplying it with 230V via a series resistor of about 24 k Ω . The following illustration shows my modified version with 2x47 k Ω connected in parallel. For our purposes, the capacitor, applied to prevent radio interference, can be removed. Before soldering, the oxide layer must be grinded from the connecting wires. If the switch opens and closes periodically, the value of the series resistor must be increased (up to >30k Ω). The glass bulb of the RELCO starter is so small that it may be mounted even in to the spectrograph as a fixed calibration light source. Anyway all such modifications remain of course at your own risk!

Modified in such a way, the excited gases in the bulb generate some 240 evaluable emission lines. Counting also those on all overlapped Echelle orders, this number increases even to approximately 370. Between the individual starters, the intensity of the hydrogen Balmer series can vary very strongly. Numerous additional lines, which are not listed here, are generated by alloying elements, coatings and dopants, such as tungsten (W), lanthanum (La), cerium (Ce), hafnium (Hf), thorium (Th), and Fe, Cr, Sn, Ni, Mn [72]. Their identification is difficult and highly speculative, since for a given line, almost always *several* plausible determination options exist in the immediate vicinity.

4 Application for the Echelle Calibration (R ≈ 20'000)

Within the entire range of $\lambda\lambda$ 3888 - 8136 [Å], and distributed to 30 SQUES Echelle orders, all usable emission lines are documented in the following tables. As an absolute exception, within the order 29 ($\lambda\lambda$ 7600-7900), only two evaluable emission lines are generated by noble gases, which however are supplemented here by a striking oxygen triplet. In addition, there are still other calibration options eg with known H_2O and/or O_2 lines of the daylight spectrum, during the night reflected by the moon and planets.

The SQUES Echelle spectrograph produces nearly straight running orders which can be simply processed also individually and applying conventional methods, eg the Vspec or RSpec Software [51, [52]. This way the modified RELCO starter allows the quick and easy wavelength calibration for the analysis of individual, highly resolved lines. Also possible is the somewhat demanding processing and calibration of the entire spectrum with ISIS or corresponding MIDAS routines, because significantly more than the minimum required three emission lines are available here. Line pairs which appear scarcely resolved here and therefore can hardly be selectively marked with the cursor are referred with "Blend" in the tables. Lines which, due to overlapping orders, appear twice, are labelled in colour. As a supplement and with relatively high probability, in the rather sparsely populated orders 39, 40 and 43, Ti- emissions could be identified. These lines are additionally labelled with "?".

5 Application for the Broadband-Calibration (R ≈ 900/4'000)

Since here neon as well as argon generate numerous and strong emission lines, the formation of many blends, particularly in the red part of *low-resolution spectra*, is inevitable. Nevertheless within the entire wideband spectrum still more than sufficient isolated lines are available for a reliable calibration of the wavelength axis. The corresponding commented DADOS profiles, recorded with 200- and 900L mm⁻¹, are attached at the end of this document in sect. 8.

6 Hα Analysis with Conventional Grating Spectrographs

The H α line is located within the Echelle order No 34. Here also the calibration lines, located adjacent to H α , can be found. For the users of Lhires III and ISIS, directly adjacent to the well known neon triple $\lambda\lambda\lambda$ 6506/6532/6598, two additional argon lines at $\lambda\lambda$ 6538.112 and 6604.853, as well as the H α emission itself are available.

7 RELCO Calibration Lines and SQUES Echelle Orders (R ≈ 20'000)

The following charts and tables show the positions of the individual emission lines, distributed to the orders of the SQUES Echelle spectrograph (R \approx 20'000). These can be used eg for the calibration of the entire spectrum with ISIS or MIDAS. The appropriate wavelengths have been copied in to these tables from the *"Elements"* tool of *Vspec*. For the calibration, limited to only one individual Echelle order, the labelled profiles are applicable.

Practical Notes:

To improve the visibility of the weaker calibration lines a stronger zoom in the intensity axis is required. For the overall processing and calibration of the entire spectrum, eg with ISIS, it is recommended to select the more intense lines only. Applying different Echelle spectrographs with comparable or even the same grating configuration, some of the emission lines, located here at the outermost edges of the orders, may appear to be moved in the neighbouring orders. Further the line intensity, not only of the hydrogen Balmer series, is noticeably subjected to the manufacturing tolerance of the starter production.

 $\overline{\text{Tip:}}$ To avoid transmission errors, the wavelength data can be copied with $ctrl\ c$ from the pdf file and transferred to the Vspec calibration field with *shift insert*.

	Ne	Ā	Ā	Ar	Ar	Ar	Ar	Ar	Ne	Ar		2	א פ	Ā	Ar / Ne	٩Ľ	Ne	Ηα	Ar	Ne	Ne						
s 28 – 34	6929.467	6888.174	6879.582	6871.289	6861.269	6766.612	6756.163	6752.834	6717.043	6684.293		77	6/1/.043	6684.293	BLEND	6966.359	6664.051	929.0999	6643.698	6639.74	6638.221	6604.853	6598.953	6562.82	6538.112	6532.882	6506.528
Order	\vdash	2	8	4	2	7	∞	6	10	12		7	٦ ،	Υ)	4	2	9	7	6	10	11	12	13	14	15	16	17
helle (33	33	33	33	33	33	33	33	33	33		Č	40 6	34	34	34	34	34	34	34	34	34	34	34	34	34	34
SQUES Echelle Orders 28 –	Ar	Ar	Ar	Ar	He	Ar	Ar	Ne	Ar	Ne	Ar	Ar	Ar		Ar	Ar	Ar	Ar	Ne	Ne	Ar	Ne	Ar	Ar	Ar	Ar	Ne
	7372.118	7353.293	7316.005	7311.716	7281.35	7272.936	7265.172	7245.167	7206.98	7173.938	7158.839	7147.042	7125.82		7147.042	7125.82	7107.478	7067.218	7059.107	7032.413	7030.251	7024.05	6965.431	6960.25	6951.478	6937.664	6929.467
ssion	1	2	3	4	2	7	∞	6	10	11	13	14	15		1	2	m	· 10	9	7	∞	6	11	12	13	14	15
rter Emissionlines	31	31	31	31	31	31	31	31	31	31	31	31	31		32	32				32		32		32			
	Ne	Ar		0	0	0	Ar	Ar		Ne	Ne	Ar	Ar	Ne	Ar	Ar	Ar	Ar	Ar	Ar	Ar						
RELCO SC480 Glowsta	8136.406	8115.311	8103.693	8023.308	8014.786	8006.157	7948.176	7891.075		7775.39	7774.17	7771.94	7723.761	7635.106		7544.044	7535.774	7514.652	7503.869	7488.871	BLEND	7425.294	7412.337	7392.98	7383.98	7372.118	7353.293
CO S(П	7	3	9	7	∞	6	10		1	7	3	4	9		1	2	3	4	2	∞	6	10	11	14	15	16
REL	28	28	28	28	28	28	28	28		29	59	59	59	29		30	30	30	30	30	30	30	30	30	30	30	30

37 RELCO SC480 Glowstarter Emissionlines SQUES Echelle Orders 35 –

Ne	Ar	Ar	Ne	Ar	Ne	Ne	Ar	Ar	Ar	Ne	Ne	Ar	Ar	Ar	Ar	Ne	Ar	Ne/Ar	Ne	Ne	
6182.146	BLEND	6170.174	6163.594	6145.441	6143.063	6128.45	6114.923	6105.635	6098.803	6096.163	6074.338	6059.372	6052.723	6043.223	6032.127	6029.997	6025.15	BLEND	BLEND	5965.471	
Н	2	3	4	2	9	7	6	10	11	12	13	14	16	17	18	19	20	21	22	23	
37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	
Ne	Ar	Ne	Ar	Ne	Ar	Ne	Ar	Ar	Ne	Ar	Ar	Ne	Ar	Ne	Ne						
6334.428	6307.657	6304.789	6296.872	6266.495	6243.12	6217.281	6215.938	6212.503	6182.146	BLEND	6170.174	6163.594	6145.441	6143.063	6128.45						
1	2	က	4	2	9	7	∞	6	12	13	14	15	17	18	19						
36	36	36	36		36										36						
Ar	Ne	Ne	Ar	Ar	Ar	Ar	Ne	Ar	Ne	Ar	Ne										
6538.112	6532.882	6506.528	6483.082	6416.307	6402.246	6384.717	6382.992	6369.575	6334.428	6307.657	6304.789										
1	2	3	4	2	9	6	10	11	12	18	19										
35			35		35	35	35	35	35	35	35										

Glowstarter RELCO SC480 Calibration Lines SQUES Echelle Orders 38 – 47

RELCO SC480 Glowstarter Emissionlines SQUES Echelle Orders 38 – 45

Ar	Ar	Ar	Ar	Ne/Ar	Ar	Ar	Ar	무	Ne	Ar	H		Ar	He	Ne	Ar	He	Αľ	Ar	Ar	He									
5187.746	5165.773	5162.285	5151.391	BLEND	5141.783	5090.495	5062.037	5047.74	5037.751	5017.163	5015.678		5062.037	5047.74	5037.751	5017.163	5015.678	5009.334	4965.08	4933.209	4921.931									
Н	3	4	2	9	7	10	11	12	13	14	15		Н	2	3	9	7	∞	10	14	15									
44	44	44	44	44	44	44	44	44	44	44	44		45	45	45	45	45	45	45	45	45									
Ti ?	Ne	Ar	Ar	Ar	Ne	Δr	Ē -	Ar	Ne	Ar	Ā	Ar	Ar	Ar	Ne	Ar	Ar	Ne	Ne	Ne	Ne		: 4	Δr	Ar	, <	₹ <	ξ '	Ar Ne/Ar	Ar
5689.47	5656.659	5650.704	5606.733	5572.541	5562.766	555253		55/2.541	5562.766	5558.702	5506.113	5495.874	5451.652	5421.352	5400.562	5451.652	5421.352	5400.562	5343.283	5341.094	5330.778	5252 11	5221.271	5216814	5187 746		5162 285	5161 201	SISI.391 BLFND	5141.783
9	6	10	12	18	19	20	,	⊣ (7	က	9	7	10	13	15	\vdash	8	2	10	11	12	7	,	1 1	13	7 1	17	10	19	20
40	40	40	40	40	40	40		4.T	41	41	41	41	41	41	41	42	42	42	42	42	42	43	43	43	43	: 27	43	- -	4 43 63	43
Ne	Ar	Ne	Ne	Ne	Ne	Ar	Ar	Ar	Ne	Ne	Ar	Ne/Ar	: 0H	2 <u>a</u>	Ar	. d	Ar	Ne		Ar	Ne	Ar	Ne	Ne	Ne	Ne	Ar	Ne	۲i ج	
5987.907	5987.302	5975.534	5974.627	5965.471	5944.834	5942.669	5928.813	5912.085	5906.429	5902.462	5888.584	BLEND	5875 62	5877.878	5860.31	5857 488	5834.263	5820.156		5860.31	5852.488	5834.263	5820.156	5804.45	5764.419	5748.298	5739.52	5719.225	5689.47	
H	2	3	4	2	6	10	13	14	16	17	18	19	200	2.7	22	23	24	25		1	2	cc	4	7	10	12	24	25	27	
38	38	38	38	38	38	38	38	38	38	38	38	38	× ×	2 2	0 00) «	0 00	38		39	39	39	39	39	39	39	39	39	39	

ES Echelle Ur	Ar	Нβ	Ar	Ar	Ne	Ar	Ne	Ar	Ar	Ar	Ar	He He	Ar
ines sQU	4865.91	4861.33	4847.81	4806.02	4788.927	4764.865	4752.732	4735.906	4732.053	4726.868	4721.591	4713.146	4702.316
IISSION	2	က	4	2	9	∞	6	10	11	12	13	14	15
er Em	47	47	47	47	47	47	47	47	47	47	47	47	47
_													
vstart	Ar	Ar	He	Ar	Ar	Ar	Ar	Нβ	Ar	Ar			
C480 Glowstart	4965.08 Ar		4921.931 He						4847.81 Ar				
RELCO SC480 Glowstarter Emissionlines SQUES Echelle Ord	4965.08		4921.931	4904.752	4889.042	4879.864	4865.91	4861.33	4847.81	4806.02			

Glowstarter RELCO SC480 Calibration Lines SQUES Echelle Orders 48 – 57

	Ą	Ar	He	Ar																					
s 48 – 51	4481.811	4474.759	4471.479	4448.879	4439.461	4433.838	4430.189	4426.001	4400.986	4400.097	4385.057	4379.667	4375.954	BLEND	4367.832	4362.066	4352.205	4348.064	4345.168	4335.338	ന	4331.2			
Order	\vdash	2	3	4	2	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22			
helle	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51			
SQUES Echelle Orders 48	Ar	Ar	Ne	Ar	Ar	Ar	Ar	Ar	He	Ar	Ar	Ar	Ar	Ar											
	4579.35	4545.052	4537.754	4530.552	4522.323	4510.733	4481.811	4474.759	4471.479	4448.879	4439.461	4433.838	4430.189	4426.001											
ssionli	1	2	3	4	2	9	6	10	11	12	13	14	15	16											
er Emi	20	20	20	20	20	20	20	20	20	20	20	20	20	20											
vstarte	Ar	Ne	Ar	Ar	Ar	Ar	He	Ar	Ar	Ar	Ar	Ar		Ar	Ne	Ar	Ar	Ar							
RELCO SC480 Glowstarter Emissionlines	4764.865	4752.732	4735.906	4732.053	4726.868	4721.591	4713.146	4702.316	4657.901	4637.233	4628.441	4609.567		4657.901	4637.233	4628.441	4609.567	4596.097	4589.898	4579.35	4545.052	4537.754	4530.552	4522.323	4510.733
)S O:	Н	2	3	4	2	9	7	∞	6	10	11	14		Н	2	n	4	9	7	∞	10	11	12	13	14
REL(48	48	48	48	48	48	48	48	48	48	48	48		49	49	49	49	49	49	49	49	49	49	49	49

RELCO SC480 Glowstarter Emissionlines SQUES Echelle Orders 52 – 55

RELCO SC480 Glowstarter Emissionlines SQUES Echelle Orders 56 – 57

_															
	Ar	Ar	Ar	He	Ar	Ar	Ar	Ar	Ar	Ar	He				
	4013.857	3994.792	3979.356	3964.729	3948.979	3947.505	3946.097	3932.547	3928.623	3925.719	3888.65				
	1	2	ĸ	4	5	9	7	∞	6	10	11				
	57	22	22	57	57	57	22	22	22	22	22				
	Ar/?	Ar/Ar	Ar	Ar	Ar	Ar	Ar	He	Ar	Ar	Ar	He	Ar	Ar	Ar
	BLEND	BLEND	4052.921	4044.418	4042.894	4035.46	4033.809	4026.36	4013.857	3994.792	3979.356	3964.729	3948.979	3947.505	3946.097
	1	2	3	4	2	9	7	∞	6	10	11	12	13	14	15
	26	99	26	26	26	99	26	26	26	26	26	99	26	26	99

8 Relco Broadband-Calibration Lines (R ≈ 900 / 4'000)

The following tables show the Relco calibration lines for resolutions of R \approx 900 and \approx 4,000. Only those emissions are labelled here, which are suitable for the calibration of a spectral profile.

RELCO SC480 Emission Lines DADOS Spectrograph 200L mm⁻¹ R ≈ 800

©Richard Walker 2013/06

RELCO SC480 Emission Lines DADOS Spectrograph 900L mm⁻¹ R ≈ 4000

9 Literature and Internet Links

Author:

The following scripts on the subject (some of them in German only) are downloadable under this link: http://www.ursusmajor.ch/astrospektroskopie/richard-walkers-page/index.html

- [1] Spectroscopic Atlas for Amateur Astronomers
- [2] Analysis and Interpretation of Astronomical Spectra, Theoretical Background and Practical Applications for Amateur Astronomers
- [3] Das Aufbereiten und Auswerten von Spektralprofilen mit den wichtigsten IRIS und Vspec
- [4] Kalibrierung von Spektren mit der Xenon Stroboskoplampe
- [5] Atomic Emission Spectroscopy with Spark- or Arc Excitation, Experiments with the DADOS Spectrograph and Simple Makeshift Tools
- [6] Kalibrierung von Spektren mit dem Glimmstarter ST 111 von OSRAM
- [7] Quasar 3C273, Optical Spectrum and Determination of the Redshift

Further Internet Links

Spectrographs:

[20] SQUES Echelle Spectrograph, Eagleowloptics Switzerland, http://www.eagleowloptics.com/

[21] DADOS Spectrograph, Baader Planetarium, Germany: http://www.baader-planetarium.com/pdf_download.htm

[22] Shelyak Instruments: http://www.shelyak.com/

[23] SBIG Spectrograph DSS-7, http://ftp.sbig.com/dss7/dss7.htm

Spectrographic software:

[50] IRIS / ISIS: Webpage of Christian Buil

http://www.astrosurf.com/buil/

[51] Vspec: Webpage of Valerie Désnoux

http://astrosurf.com/vdesnoux/

[52] RSpec: Webpage of Tom Field

http://www.rspec-astro.com/

[53] MIDAS, ESO

http://www.eso.org/sci/software/esomidas//

Database:

[70] NIST Atomic Spectra Database:

http://physics.nist.gov/PhysRefData/ASD/lines_form.html