

# **Standard Power MOSFET**

IXTH 24P20 IXTT 24P20  $V_{DSS} = -200 \text{ V}$   $I_{D25} = -24 \text{ A}$   $R_{DS(op)} \le 0.15 \Omega$ 





| Symbol                 | <b>Test Conditions</b>                                                       | Maximum  | Maximum Ratings |  |  |
|------------------------|------------------------------------------------------------------------------|----------|-----------------|--|--|
| V <sub>DSS</sub>       | $T_{_{\rm J}}$ = 25°C to 150°C                                               | -200     | V               |  |  |
| $\mathbf{V}_{DGR}$     | $T_{_{\rm J}}$ = 25°C to 150°C; $R_{_{\rm GS}}$ = 1 $M\Omega$                | -200     | V               |  |  |
| V <sub>GS</sub>        | Continuous                                                                   | ±20      | V               |  |  |
| $\mathbf{V}_{GSM}$     | Transient                                                                    | ±30      | V               |  |  |
| I <sub>D25</sub>       | T <sub>C</sub> = 25°C                                                        | -24      | A               |  |  |
| I <sub>DM</sub>        | $T_{c} = 25^{\circ}C$ , pulse width limited by $T_{J}$                       | -96      | Α               |  |  |
| I <sub>AR</sub>        | $T_{c} = 25^{\circ}C$                                                        | -24      | Α               |  |  |
| <b>E</b> <sub>AR</sub> | T <sub>C</sub> = 25°C                                                        | 30       | mJ              |  |  |
| P <sub>D</sub>         | T <sub>C</sub> = 25°C                                                        | 300      | W               |  |  |
| T <sub>J</sub>         |                                                                              | -55 +150 | °C              |  |  |
| $T_{JM}$               |                                                                              | 150      | °C              |  |  |
| T <sub>stg</sub>       |                                                                              | -55 +150 | °C              |  |  |
|                        | Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10 s | 400      | °C              |  |  |
|                        | Plastic Body for 10s                                                         | 250      | °C              |  |  |
| M <sub>d</sub>         | Mounting torque (TO-247)                                                     | 1.13/10  | Nm/lb.in.       |  |  |
| Weight                 | TO-247                                                                       | 6        | g               |  |  |
|                        | TO-268                                                                       | 5        | <u>g</u>        |  |  |

| Symbol              | Test Conditions                                                   | $(T_J = 25^{\circ}C, \text{ unless})$ min.      | otherwi | istic Va<br>se speci<br>max. |          |
|---------------------|-------------------------------------------------------------------|-------------------------------------------------|---------|------------------------------|----------|
| V <sub>DSS</sub>    | $V_{gs} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$                  | -200                                            |         |                              | V        |
| V <sub>GS(th)</sub> | $V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$                       | -3.0                                            |         | -5.0                         | V        |
| I <sub>gss</sub>    | $V_{GS} = \pm 20 \ V_{DC}, \ V_{DS} = 0$                          |                                                 |         | ±100                         | nA       |
| I <sub>DSS</sub>    | V <sub>DS</sub> = 0.8 • V <sub>DSS</sub><br>V <sub>GS</sub> = 0 V | T <sub>J</sub> = 25°C<br>T <sub>J</sub> = 125°C |         | -25<br>-1                    | μA<br>mA |
| R <sub>DS(on)</sub> | $V_{GS} = -10 \text{ V}, I_{D} = 0.5 \cdot I_{D25}$               |                                                 |         | 0.15                         | Ω        |

#### TO-247 (IXTH)



TO-268 (IXTT)



G = Gate, D = Drain, S = Source, TAB = Drain

### Features

- International standard packages
- $\bullet \ \, \mathsf{Low} \,\, \mathsf{R}_{\scriptscriptstyle \mathsf{DS} \, (\mathsf{on})} \, \mathsf{HDMOS^{\mathsf{TM}}} \, \mathsf{process} \, \,$
- Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- Low package inductance (<5 nH)
  - easy to drive and to protect

#### **Applications**

- High side switching
- Push-pull amplifiers
- DC choppers
- Automatic test equipment

## Advantages

- Easy to mount with 1 screw (isolated mounting screw hole)
- Space savings
- High power density

© 2005 IXYS All rights reserved



| Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test Conditions Cha $(T_{_{J}}=25^{\circ}\text{C, unless omin.})$                                                                                      |                      | istic Values<br>se specified)<br>max. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------|
| g <sub>fs</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $V_{DS} = -10 \text{ V}; I_{D} = I_{D25}, \text{ pulse test}$ 10                                                                                       | 15                   | S                                     |
| C <sub>iss</sub> C <sub>oss</sub> C <sub>rss</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                        | 4200<br>830<br>350   | pF<br>pF<br>pF                        |
| $\mathbf{t}_{d(on)}$ $\mathbf{t}_{r}$ $\mathbf{t}_{d(off)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{cases} V_{GS} = -10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 0.5 \text{ I}_{D25} \\ R_{G} = 4.7 \Omega \text{ (External)} \end{cases}$ | 36<br>29<br>68<br>28 | ns<br>ns<br>ns                        |
| $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$ | $ V_{GS} = -10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = 0.5 I_{D25} $                                                                                  | 150<br>40<br>70      | nC<br>nC<br>nC                        |
| R <sub>thJC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (TO-247)                                                                                                                                               | 0.25                 | 0.42 K/W<br>K/W                       |

#### Source-Drain Diode

| Symbol          | Test Conditions min.                                                        | typ. | max. | ,  |
|-----------------|-----------------------------------------------------------------------------|------|------|----|
| I <sub>s</sub>  | V <sub>GS</sub> = 0                                                         |      | -24  | Α  |
| I <sub>SM</sub> | Repetitive; pulse width limited by $T_{\scriptscriptstyleJM}$               |      | -96  | Α  |
| V <sub>SD</sub> | $I_F = I_S$ , $V_{GS} = 0$ V,<br>Pulse test, t ≤ 300 μs, duty cycle d ≤ 2 % |      | -3   | V  |
| t <sub>rr</sub> | $I_{F} = I_{S}$ , di/dt = 100 A/ $\mu$ s, $V_{R}$ = -50 V                   | 250  |      | ns |



Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain

| Dim.           | Millimeter |       | Inches |       |
|----------------|------------|-------|--------|-------|
|                | Min.       | Max.  | Min.   | Max.  |
| Α              | 4.7        | 5.3   | .185   | .209  |
| A,             | 2.2        | 2.54  | .087   | .102  |
| A <sub>2</sub> | 2.2        | 2.6   | .059   | .098  |
| b              | 1.0        | 1.4   | .040   | .055  |
| b <sub>1</sub> | 1.65       | 2.13  | .065   | .084  |
| b <sub>2</sub> | 2.87       | 3.12  | .113   | .123  |
| С              | .4         | .8    | .016   | .031  |
| D              | 20.80      | 21.46 | .819   | .845  |
| Е              | 15.75      | 16.26 | .610   | .640  |
| е              | 5.20       | 5.72  | 0.205  | 0.225 |
| L              | 19.81      | 20.32 | .780   | .800  |
| L1             |            | 4.50  |        | .177  |
| ØP             | 3.55       | 3.65  | .140   | .144  |
| Q              | 5.89       | 6.40  | 0.232  | 0.252 |
| R              | 4.32       | 5.49  | .170   | .216  |
| S              | 6.15       | BSC   | 242    | BSC   |
|                |            |       |        |       |







| MYZ  | INCHES   |                  | MILLIMETERS |       |  |
|------|----------|------------------|-------------|-------|--|
| 2114 | MIN      | MAX              | MIN         | MAX   |  |
| Α    | .193     | .201             | 4.90        | 5.10  |  |
| A1   | .106     | .114             | 2.70        | 2.90  |  |
| A2   | .001     | .010             | 0.02        | 0.25  |  |
| b    | .045     | .057             | 1.15        | 1.45  |  |
| b2   | .075     | .083             | 1.90        | 2.10  |  |
| С    | .016     | .026             | 0.40        | 0.65  |  |
| C2   | .057     | .063             | 1.45        | 1.60  |  |
| D    | .543     | .551             | 13.80       | 14.00 |  |
| D1   | .488     | .500             | 12.40       | 12.70 |  |
| Ε    | .624     | .632             | 15.85       | 16.05 |  |
| E1   | .524     | .535             | 13.30       | 13.60 |  |
| е    | .215     | .215 BSC 5.45 BS |             | BSC   |  |
| Н    | .736     | .752             | 18.70       | 19.10 |  |
| L    | .094     | .106             | 2.40        | 2.70  |  |
| L1   | .047     | .055             | 1.20        | 1.40  |  |
| L2   | .039     | .045             | 1.00        | 1.15  |  |
| L3   | .010 BSC |                  | 0.25 BSC    |       |  |
| L4   | .150     | .161             | 3.80        | 4.10  |  |

Fig. 1. Output Characteristics @ 25°C



Fig. 3.  $R_{DS(on)}$  Normalized to  $I_{D25}$  Value vs.



Fig. 5. Drain Current vs. Case Temperature



Fig. 2. Output Characteristics @ 125°C



Fig. 4.  $R_{DS(on)}$  Normalized to  $I_{D25}$  Value vs.  $I_D$ 



Fig. 6. Input Admittance





Fig. 7. Transconductance



Fig. 8. Source Current vs. Source-To-Drain Voltage



Fig. 9. Gate Charge



Fig. 10. Temperature dependence of Breakdown and Threshole Voltage



Fig. 11. Capacitance



Fig. 12. Forward-Bias Safe Operating Area







Fig. 13. Maximum Transient Thermal Resistance

