NE529

DESCRIPTION

The NE529 is a high-speed analog voltage comparator which, for the first time, mates state-of-the-art Schottky diode technology with the conventional linear process. This allows simultaneous fabrication of high-speed TTL gates with a precision linear amplifier on a single monolithic chip.

FEATURES

- 10ns propagation delay
- Complementary output gates
- TTL or ECL compatible outputs
- Wide common-mode and differential voltage range
- Typical gain 5000

APPLICATIONS

- A/D conversion
- ECL-to-TTL interface
- TTL-to-ECL interface
- Memory sensing
- Optical data coupling

PIN CONFIGURATIONS

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
14-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	NE529N	0405B
14-Pin Small Outline (SO) Package	0 to +70°C	NE529D	0175D

NE529

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V ₁ +	Positive supply voltage	+15	V
V ₁ -	Negative supply voltage	-15	V
V ₂ +	Gate supply voltage	+7	V
V _{OUT}	Output voltage	+7	V
V _{IN}	Differential input voltage	±5	V
V _{CM}	Input common mode voltage	±6	V
P_{D}	Maximum power dissipation ¹ T _A =25°C (still-air)		
	N package	1420	mW
	D package	1040	mW
T _A	Operating temperature range	0 to +70	°C
T _{STG}	Storage temperature range	-65 to +150	°C
T _{SOLD}	Lead soldering temperature		
	(10 sec max)	+300	°C

NOTES:

^{1.} Derate above 25°C at the following rates:

N package at 11.5mW/°C

D package at 8.3mW/°C

NE529

DC ELECTRICAL CHARACTERISTICS

 $\label{eq:V1+=+10V} V_1 + = +5.0 \text{V}, \ V_1 - = -10 \text{V}, \ \text{unless otherwise specified}.$

SYMBOL	PARAMETER	TEST CONDITIONS		NE529			
SYMBOL			Min	Тур	Max	UNIT	
Input char	acteristics		·				
Vos	Input offset voltage @ 25°C				6	mV	
	Over temperature range				10	IIIV	
I	Input bias current @ 25°C			5	20	T	
BIAS	Over temperature range	V _{IN} =0V			50	μΑ	
laa	Input offset current @ 25°C			2	5	μΑ	
los	Over temperature range	V _{IN} =0V			15	μΑ	
V_{CM}	Common-mode voltage range		-5	0		V	
Gate chara	acteristics						
	Output voltage						
V_{OUT}	"1" state	V_2 +=4.75V, I_{SOURCE} =-1mA	2.7	3.3		V	
	"0" state	V ₂ +=4.75V, I _{SINK} =10mA			0.5	V	
	Strobe inputs						
	"0" Input current ¹	V_2 +=5.25V, V_{STROBE} =0.5V			-2	mA	
	"1" Input current @ 25°C1	V_2 +=5.25V, V_{STROBE} =2.7V			100	μΑ	
	Over temperature range	V_2 +=5.25V, V_{STROBE} =2.7V			200	μΑ	
	"0" input voltage	V ₂ +=4.75V			0.8	V	
	"1" input voltage	V ₂ +=4.75V	2.0	1		V	
I _{SC}	Short-circuit output current	V ₂ +=5.25V, V _{OUT} =0V	-18		-70	mA	
Power sup	ply requirements						
	Supply voltage						
V ₁ +			5		10	V	
V ₁ -			-6	1	-10	V	
V ₂ +			4.75	5	5.25	V	
	Supply current	V ₁ +=10V, V ₁ -=-10V					
		V ₂ +=5.25V					
I ₁ +		Over temp.			5	mA	
I ₁ -		Over temp.			10	mA	
l ₂ +		Over temp.			20	mA	

NOTES:

AC ELECTRICAL CHARACTERISTICS

T_A=25°C (See AC test circuit).

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			LINUT
			Min	Тур	Max	UNIT
t _R	Transient response	V _{IN} =±100mV step				
	Propagation delay time					
t _{PLH}	Low-to-high			12	22	ns
t _{PHL}	High-to-low			10	20	ns
	Delay between output A and B			2	5	ns
	Strobe delay time					
t _{ON}	turn-on time			6		ns
t _{OFF}	turn-off time			6		ns

August 31, 1994 322

^{1.} See logic function table.

NE529

TYPICAL PERFORMANCE CHARACTERISTICS

RESPONSE TIME TEST CIRCUIT

August 31, 1994 323

NE529

APPLICATIONS

One of the main features of the device is that supply voltages (V+, V-) need not be balanced, as in the following diagrams. For proper operation, however, negative supply (V-) should always be at least 6V more than the ground terminal (pin 6). Input Common-Mode

range should be limited to values of 2V less than the supply voltages (V+ and V-) up to a maximum of ± 5 V as supply voltages are increased.

It is also important to note that Output A is in phase with Input A and Output B is in phase with Input B.

LOGIC FUNCTION

V _{ID} (A ⁺ , B ⁻)	STROBE A	STROBE B	OUTPUT A	ОИТРИТ В
V _{ID} ≤-V _{OS}	Н	X	L	Н
-V _{OS} <v<sub>ID<v<sub>OS</v<sub></v<sub>	Н	Н	Undefined	Undefined
V _{ID} ≥V _{OS}	X	Н	Н	L
X	L	L	Н	Н

TYPICAL APPLICATIONS

324

August 31, 1994