VIP Cheatsheet: Second-order ODE

Shervine Amidi

May 27, 2018

General case

 \Box General form – The general form of a second-order ODE can be written as a function F of x, y, y' and y'' as follows:

$$F(x,y,y',y'') = 0$$

 \square Methods of resolution – The table below summarizes the general tricks to apply when the ODE has the following classic forms:

Old form	Trick	New form
$F\left(x,y',y''\right)=0$	$y' \triangleq u, y'' = \frac{du}{dx}$	$G\left(x, u, \frac{du}{dx}\right) = 0$
$F\left(y,y^{\prime},y^{\prime\prime}\right)=0$	$y' \triangleq u, y'' = u \frac{du}{dy}$	$G\left(y, u, \frac{du}{dy}\right) = 0$
$F\left(y',y''\right)=0$	$y' \triangleq u, y'' = \frac{du}{dx}$ $y' \triangleq u, y'' = u\frac{du}{dy}$	Missing- y approach $G\left(u,\frac{du}{dx}\right) = 0$ Missing- x approach $G\left(u,\frac{du}{dy}\right) = 0$

 \square Standard form of a linear ODE – The standard form of a second-order linear ODE is expressed with p, q and r known functions of x such that:

$$y'' + p(x)y' + q(x)y = r(x)$$

for which the total solution y is the sum of a homogeneous solution y_h and a particular solution y_p :

$$y = y_h + y_p$$

Remark: if r = 0, then the ODE is homogeneous (and we have $y_p = 0$). If $r \neq 0$, then the ODE is said to be inhomogeneous.

□ Linear dependency – Two functions y_1 , y_2 are said to be linearly dependent if $\frac{y_2}{y_1} = C$ constant. Conversely, they are linearly independent if $\frac{y_2}{y_1} \neq C$.

Linear homogeneous - Variable coefficients

□ Method of reduction of order – Let y_1 be a solution to the equation y'' + p(x)y' + q(x)y = 0. By noting C_1 , C_2 constants, the global solution y_h is written as:

$$y_h = C_1 y_1 + C_2 y_1 \int \frac{e^{-\int p \, dx}}{y_1^2} \, dx$$

Remark: Here, for any function p, the notation $\int pdx$ denotes the primitive of p without additive constant.

Linear homogeneous - Constant coefficients

 \Box General form – The general form of a linear homogeneous second-order ODE with a,b,c constant coefficients is:

$$ay'' + by' + cy = 0$$

□ **Resolution** – Based on the types of solution of the characteristic equation $a\lambda^2 + b\lambda + c = 0$, and by noting $\Delta = b^2 - 4ac$ its discriminant, we distinguish the following cases:

Name	Case	Roots	Solution
Two distinct real roots	$\Delta > 0$	$\lambda_1 = \frac{-b + \sqrt{\Delta}}{2a}$ $\lambda_2 = \frac{-b - \sqrt{\Delta}}{2a}$	$y_h = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$
Double real root	$\Delta = 0$	$\lambda = -\frac{b}{2a}$	$y_h = [C_1 + C_2 x]e^{\lambda x}$
Complex conjugate roots	$\Delta < 0$	$\lambda_1 = \alpha + i\beta$ $\lambda_2 = \alpha - i\beta$ where $\alpha = -\frac{b}{2a}$ and $\beta = \frac{\sqrt{ \Delta }}{2a}$	$y_h = [C_1 \cos(\beta x) + C_2 \sin(\beta x)] e^{\alpha x}$

A special case: the Euler-Cauchy equation

 \square General form – The Euler-Cauchy equation is a special case of linear homogeneous ODEs and has the following general form, where each $a_i \in \mathbb{R}$ is a constant coefficient:

$$a_n x^n y^{(n)} + a_{n-1} x^{n-1} y^{(n-1)} + \dots + a_1 x y' + a_0 y = 0$$

 \square Second-order case – For n=2, by noting $y=x^m$, the ODE provides the indicial equation:

$$am^2 + (b-a)m + c = 0$$

with discriminant $\Delta = (b-a)^2 - 4ac$ and where the resolution of the ODE depends on the cases summarized in the table below.

Name	Case	Roots	Solution
Two distinct real roots	$\Delta > 0$	$m_1 = \frac{-b + a + \sqrt{\Delta}}{2a}$	$y_h = C_1 x^{m_1} + C_2 x^{m_2}$
		$m_2 = \frac{-b + a - \sqrt{\Delta}}{2a}$	
Double real root	$\Delta = 0$	$m = -\frac{b-a}{2a}$	$y_h = [C_1 + C_2 \ln x]x^m$
Complex conjugate roots	$\Delta < 0$	$m_1 = \alpha + i\beta$ $m_2 = \alpha - i\beta$	$y_h = \left[C_1 \cos(\beta \ln x) \right]$
		where $\alpha = -\frac{b-a}{2a}$ and $\beta = \frac{\sqrt{ \Delta }}{2a}$	$+C_2\sin(\beta\ln x)\Big]x^{\alpha}$

Linear inhomogeneous - Variable coefficients

 $\hfill\Box$ Wronskian – Given y_1 and y_2 the two solutions of the homogeneous equation, we define the Wronskian W as follows:

$$W = y_1 y_2' - y_2 y_1'$$

 \square Method of Variation of Parameters – The particular solution y_p of the inhomogeneous ODE is given by:

$$y_p = -y_1 \int \frac{y_2 r}{W} dx + y_2 \int \frac{y_1 r}{W} dx$$

Linear inhomogeneous – Constant coefficients

□ Undetermined coefficients method – The particular solution y_p of the inhomogeneous ODE ay'' + by' + cy = r(x) is determined from the correspondence table below:

Form of r	Form of y_p	
C	A	
$x^n, n \in \mathbb{N}^*$	$A_0 + A_1 x + \dots + A_n x^n$	
$e^{\gamma(x)}$	$Ae^{\gamma x}$	
$\cos(\omega x) \text{ or } \sin(\omega x)$	$A\cos(\omega x) + B\sin(\omega x)$	
$x^n e^{\gamma x} \cos(\omega x)$ or $x^n e^{\gamma x} \sin(\omega x)$	$(A_0 + A_1x + \dots + A_nx^n)\cos(\omega x)e^{\gamma x} + (B_0 + B_1x + \dots + B_nx^n)\sin(\omega x)e^{\gamma x}$	

Remark: all new constants are determined after plugging back y_p into the ODE.

□ Modification rule – If the particular solution y_p picked from the above table matches either y_1 or y_2 , then has to be multiplied by the lowest power of x such that it is no more the case.

 \square Sum rule – If r(x) is a sum of functions of the first column of the above table, then y_p is the sum of its associated particular solutions.