In-tutorial exercise sheet 10

supporting the lecture Mathematical Finance and Stochastic Integration

(Discussion in the tutorial on June 30th 2016, 2:15 p.m.)

Exercise P.21.

Let $(X_t)_{t\in[0,T]}$ be a Brownian motion with drift $a\in\mathbb{R}$ and volatility $\sigma>0$ (i.e. it holds $X_t=at+\sigma B_t$ for a standard Brownian motion $(B_t)_{t\geq0}$) on $(\Omega,\mathcal{F},\mathbb{P})$.

a) Show, that we can define an equivalent probability measure \mathbb{Q} via the \mathbb{P} -density

$$L_T = \exp\left(\frac{b-a}{\sigma^2}X_T - \frac{b^2 - a^2}{2\sigma^2}T\right), \ \rho \in \mathbb{R},$$

i.e. show $L_T \geq 0$, L_T is \mathcal{F}_T -measurable and $\mathbb{E}_{\mathbb{P}}[L_T] = 1$.

- b) Compute the density process $(L_t)_{t\geq 0} = (\mathbb{E}_{\mathbb{P}}[L_T|\mathcal{F}_t])_{t\geq 0}$.
- c) Show, that X is a Brownian motion with drift b and volatility σ under \mathbb{Q} . Hint: Consider the conditional characteristic functions $u \mapsto \mathbb{E}_{\mathbb{Q}}[\exp(iu(X_t - X_s))|\mathcal{F}_s]$ for $t \geq s$.

Exercise P.22.

Consider the Black-Scholes model with stock price process $A_t = A_0 \exp((\mu - \sigma^2/2)t + \sigma B_t)$ for a Brownian motion $B = (B_t)_{t \in [0,T]}$ under the probability measure \mathbb{P} . Then the discounted stock price process $e^{-\rho t}A_t$, $\rho > 0$, is a \mathbb{Q} -martingale where \mathbb{Q} is defined by

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(\frac{\rho - \mu}{\sigma}B_T - \frac{(\rho - \mu)^2}{2\sigma^2}T\right).$$