Generalized Legendrian racks: Knot coloring invariants and algebraic classification

Hudson River Undergraduate Mathematics Conference Session: Abstract Algebra 1A

Lực Ta (Yale University)

Adviser: Sam Raskin (Yale University)

April 5, 2025

Outline

- Historical background
 - Knots and racks
 - The Legendrian isotopy problem
- Q GL-racks
- Oistinguishing results
- 4 Exhaustive search algorithms
- Equivalence of categories
- Group-theoretic classification
 - Classifying GL-structures
 - Categorical centers
- End matter

Motivation: Distinguishing knots

Reidemeister moves

Two knots are equivalent up to ambient isotopy if and only if they're related by a finite sequence of *Reidemeister moves*.

Racks and quandles

Definition

Let X be a set, let $s: X \to S_X$ be a map, and write $s_x := s(x)$. We call the pair (X, s) a **rack** if

$$s_x s_y = s_{s_x(y)} s_x$$

for all $x, y \in X$. If in addition $s_x(x) = x$ for all $x \in X$, then we say that (X, s) is a **quandle**.

Example (Permutation racks)

Fix a permutation $\sigma \in S_X$, and define $s_x := \sigma$ for all $x \in X$. Then $(X, \sigma)_{\text{perm}} := (X, s)$ is a rack, and it's a quandle if and only if $\sigma = \text{id}_X$.

Example (Conjugation quandles)

Let X be a union of conjugacy classes in a group G, and let s_x be the conjugation map $y\mapsto xyx^{-1}$. Then Conj X:=(X,s) is a quandle.

Rack homomorphisms

Loosely speaking, we can study knot colorings as maps between racks.

Definition

A map $\varphi: X \to Y$ is a **homomorphism** between racks (X, s) and (Y, t) if $\varphi s_x = t_{\varphi(x)} \varphi$ for all $x \in X$.

Example

Every group homomorphism $\varphi:G\to H$ is also a quandle homomorphism $\varphi:\operatorname{Conj} G\to\operatorname{Conj} H$ because

$$\varphi s_{\mathsf{x}}(y) = \varphi(\mathsf{x} \mathsf{y} \mathsf{x}^{-1}) = \varphi(\mathsf{x}) \varphi(\mathsf{y}) \varphi(\mathsf{x})^{-1} = s_{\varphi(\mathsf{x})} \varphi(\mathsf{y})$$

for all $x, y \in G$.

Example

Every rack R = (X, s) has a canonical automorphism θ_R defined by $x \mapsto s_x(x)$. Also, R is a quandle if and only if $\theta_R = \mathrm{id}_X$.

The standard contact structure

Definition

The **standard contact structure** on \mathbb{R}^3 , denoted by ξ_{std} , is an assignment of a plane to each point (x, y, z) defined by $dz - y \, dx = 0$.

When y = 0, the planes are flat. When moving in the positive y-direction, the slopes grow more negative; when moving in the negative y-direction, the slopes grow more positive.

Legendrian knots

Definition

A smooth knot is called **Legendrian** if it lies everywhere tangent to $\xi_{\rm std}$.

We often study Legendrian knots via their front projections onto the xz-plane, viewed from the negative y-axis.

- Cusps instead of vertical tangencies
- Only one type of crossing

Distinguishing between Legendrian knots

Two Legendrian knots are equivalent up to Legendrian isotopy if and only if they're related by the *Legendrian Reidemeister moves*.

Outline

- Historical background
 - Knots and racks
 - The Legendrian isotopy problem
- Q GL-racks
- Oistinguishing results
- Exhaustive search algorithms
- 5 Equivalence of categories
- 6 Group-theoretic classification
 - Classifying GL-structures
 - Categorical centers
- 7 End matter

GL-racks and their homomorphisms

Definition

A **GL-structure** on a rack R = (X, s) is a rack automorphism $u \in \operatorname{Aut} R$ such that $us_x = s_x u$ for all $x \in X$. We call (R, u) a **GL-rack**.

Example (Permutation GL-racks)

GL-structures on permutation racks $(X, \sigma)_{perm}$ are permutations $u \in S_X$ such that $u\sigma = \sigma u$.

Example (Conjugation GL-quandles)

Given a group G and a central element $z \in Z(G)$, multiplication by z is a GL-structure on Conj G.

Definition

A **GL-rack homomorphism** is a rack homomorphism that commutes with/intertwines GL-structures.

Coloring Legendrian knots (1/2)

Figure: The Legendrian (2, -q)-torus knot Λ with maximal classical invariants.

Coloring Legendrian knots (2/2)

For all GL-racks (R, \mathbf{u}) , define $\mathbf{d} \in \operatorname{Aut} R$ to be $\theta_R^{-1} \mathbf{u}^{-1}$.

Example

In the previous figure, $\mathcal{G}(\Lambda)$ is the free GL-rack on the set $\{x_1, \ldots, x_q\}$ modulo the congruence generated by the relations

$$s_{u(x_1)}(x_q) = ud(x_2), s_{d(x_q)}(x_{q-1}) = du(x_1), s_{d(x_{i-1})}(x_{i-2}) = d^2(x_i) \forall 3 \leq i \leq q.$$

To distinguish Λ from some other Legendrian knot Λ' , it suffices to show that $\mathcal{G}(\Lambda)$ and $\mathcal{G}(\Lambda')$ are nonisomorphic.

To do that, it suffices to find a GL-rack L such that

$$|\operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{GLR}}}(\mathcal{G}(\Lambda),L)| \neq |\operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{GLR}}}(\mathcal{G}(\Lambda'),L)|,$$

an inequality of coloring invariants.

Outline

- Historical background
 - Knots and racks
 - The Legendrian isotopy problem
- Q GL-racks
- Oistinguishing results
- Exhaustive search algorithms
- Equivalence of categories
- Group-theoretic classification
 - Classifying GL-structures
 - Categorical centers
- 7 End matter

Legendrian 6_2 knots (1/3)

Figure: Legendrian 6_2 knots with classical invariants (tb, rot) = (-7, 2).

Legendrian 6_2 knots (2/3)

Let Λ_1 and Λ_2 be the knots on the left and right of the previous figure, respectively. Then $\mathcal{G}(\Lambda_1)$ and $\mathcal{G}(\Lambda_2)$ are free GL-racks modulo congruence generated by the relations

$$\begin{split} \mathcal{G}(\Lambda_1) \begin{cases} s_{x_1} \mathrm{u}(x_4) &= x_5, & s_{x_4} \mathrm{du}(x_1) &= x_2, \\ s_{x_2}(x_1) &= \mathrm{d}^2(x_6), & s_{x_5}(x_3) &= \mathrm{ud}(x_2), \\ s_{x_3}(x_6) &= \mathrm{d}(x_5), & s_{x_6}(x_4) &= \mathrm{d}^2(x_3). \end{cases} \\ \mathcal{G}(\Lambda_2) \begin{cases} s_{x_1} \mathrm{ud}^2(x_3) &= x_4, & s_{x_5}(x_3) &= \mathrm{d}(x_2), \\ s_{x_1}(x_6) &= x_7, & s_{x_3}(x_6) &= \mathrm{d}^2(x_5), \\ s_{x_6}(x_2) &= \mathrm{u}(x_1), & s_{x_3}(x_7) &= x_1. \\ s_{x_2}(x_5) &= \mathrm{d}(x_4), \end{cases} \end{split}$$

Legendrian 6_2 knots (3/3)

Theorem

 Λ_1 and Λ_2 are nonequivalent.

Proof.

In cycle notation, let $\sigma \in S_3$ be the permutation (123). Consider the permutation GL-rack

$$L := ((\{1, 2, 3\}, \sigma)_{\text{perm}}, \sigma^{-1}).$$

Then we have a GL-rack homomorphism $\psi:\mathcal{G}(\Lambda_1) o L$ defined by

$$\psi(x_i) := \begin{cases} 1 & \text{if } i \in \{1, 3, 4\}, \\ 2 & \text{if } i \in \{2, 6\}, \\ 3 & \text{if } i \in \{5, 7\}, \end{cases}$$

but a straightforward computation yields $|\operatorname{Hom}_{\mathsf{GLR}}(\mathcal{G}(\Lambda_2), L)| = 0$.

Legendrian 8₁₀ knots

Similarly, one can show that these Legendrian knots are nonequivalent. . .

Figure: Legendrian 8_{10} knots with classical invariants (tb, rot) = (-8, 3).

Legendrian 8₁₃ knots

... and that these Legendrian knots are also nonequivalent.

Figure: Legendrian 8_{13} knots with classical invariants (tb, rot) = (-6, 1).

Settling conjectures

This completes the classification of Legendrian 8_{13} knots; the two on the previous slide were the only ones not distinguished yet.

Along the way, we answered an open question of Kimura (2023):

Corollary

GL-rack coloring invariants can distinguish Legendrian knots not distingushable by classical (or even homological) invariants.

Outline

- Historical background
 - Knots and racks
 - The Legendrian isotopy problem
- Q GL-racks
- Oistinguishing results
- Exhaustive search algorithms
- 5 Equivalence of categories
- Group-theoretic classification
 - Classifying GL-structures
 - Categorical centers
- End matter

Classifying small GL-racks

Using the computer algebra system GAP, Vojtěchovský and Yang (2019) classified racks up to order 11.

We can use this data to classify GL-racks of any order $n \le 11$.

- **①** For all racks R with underlying set $X := \{1, ..., n\}$, exhaustively search for GL-structures $u \in S_n$ on R.
- Search for GL-rack isomorphisms between the GL-racks found in the previous step.
- Throw out isomorphic copies.

Similarly, we can exhaustively search for Legendrian knot colorings.

Results (1/2)

Enumeration of GL-racks of order n

Results (2/2)

n	0	1	2	3	4	5	6	7	8
g(n)	1	1	4	13	62	308	2132	17268	189373
$g_q(n)$	1	1	2	6	19	74	353	2080	16023
r(n)	1	1	2	6	19	74	353	2080	16023
$r_q(n)$	1	1	1	3	7	22	73	298	189373 16023 16023 1581

Table: The numbers of GL-racks g(n) and GL-quandles $g^m(n)$ versus racks r(n) and quandles $r_q(n)$ of order n.

There appears to be a one-to-one correspondence between racks and GL-quandles. As it turns out, this correspondence generalizes in a natural way. . .

Outline

- Historical background
 - Knots and racks
 - The Legendrian isotopy problem
- Q GL-racks
- Oistinguishing results
- Exhaustive search algorithms
- 5 Equivalence of categories
- Group-theoretic classification
 - Classifying GL-structures
 - Categorical centers
- 7 End matter

Categorical background

Recall:

- A **category** is a collection of *objects* and *morphisms* that satisfy identity, composition, and associativity laws.
- A functor is a structure-preserving map between two categories.
- A functor $F: \mathcal{C} \to \mathcal{D}$ is an **equivalence of categories** if there's another functor $G: \mathcal{D} \to \mathcal{C}$ such that FG and GF are naturally isomorphic to the identity functors $\mathbf{1}_{\mathcal{C}}$ and $\mathbf{1}_{\mathcal{D}}$, respectively.

Example (Not important to know for our purposes)

The category of representations of a group G on a field \mathbb{F} is equivalent (actually isomorphic) to the category of left $\mathbb{F}[G]$ -modules.

Construction of functors

Let Rack be the category of racks, and let GLQ be the category of GL-quandles. Let's construct functors $F: \mathsf{Rack} \to \mathsf{GLQ}$ and $G: \mathsf{GLQ} \to \mathsf{Rack}$. They'll act trivially on (homo)morphisms.

Proposition

The following defines a functor F: Rack \rightarrow GLQ. Given a rack R = (X, s), define $\widetilde{s}: X \rightarrow S_X$ by $x \mapsto \widetilde{s}_x$, where $\widetilde{s}_x := \theta_R^{-1} s_x$. Then $F(R) := (X, \widetilde{s}, \theta_R)$ is a GL-quandle.

Proposition

The following defines a functor $G: GLQ \to Rack$. Given a GL-rack L = (X, s, u), define $\hat{s}: X \to S_X$ by $x \mapsto \hat{s}_x$, where $\hat{s}_x := us_x$. Then $G(L) := (X, \hat{s})$ is a rack.

Result

Theorem

The categories Rack and GLQ are equivalent—in fact, isomorphic.

Proof.

For all GL-quandles L=(X,s,u), $FG(L)=(X,\widetilde{\hat{s}},\theta_{G(L)})=L$ because

$$\begin{split} \widetilde{\hat{s}}_y(x) &= \theta_{G(L)}^{-1} \hat{s}_y(x) = \hat{s}_y \theta_{G(L)}^{-1}(x) = u s_y \hat{s}_x^{-1}(x) = s_y u u^{-1} s_x^{-1}(x) = s_y(x) \\ &\text{and } \theta_{G(L)}(x) = \hat{s}_x(x) = u s_x(x) = u(x). \end{split}$$

For all racks R = (X, s), $GF(R) = (X, \hat{s}) = R$ because

$$\hat{\widetilde{s}}_{x} = \theta_{R} \widetilde{s}_{x} = \theta_{R} \theta_{R}^{-1} s_{x} = s_{x}.$$

Hence, $\emph{FG}=\mathbf{1}_{\mathsf{GLQ}}$ and $\emph{GF}=\mathbf{1}_{\mathsf{Rack}}.$

Outline

- Historical background
 - Knots and racks
 - The Legendrian isotopy problem
- Q GL-racks
- Oistinguishing results
- Exhaustive search algorithms
- 5 Equivalence of categories
- 6 Group-theoretic classification
 - Classifying GL-structures
 - Categorical centers
- End matter

The group of GL-structures

In 2023, Karmakar et al. posed the following question: given a rack R, what is the set U_R of all possible GL-structures on R?

To answer this question, we restate our (simplified but equivalent) definition of a GL-rack in group-theoretic language:

Definition

The **inner automorphism group** of a rack R = (X, s), denoted by Inn R, is the (normal) subgroup of Aut R generated by the s_x 's.

Theorem

For all racks R, U_R is the centralizer

$$U_R = C_{\operatorname{Aut} R}(\operatorname{Inn} R) \leq \operatorname{Aut} R.$$

Moreover, $(R, u_1) \cong (R, u_2)$ if and only if u_1 and u_2 are conjugate in Aut R.

Classifying results

Let's use this characterization to classify GL-structures on some infinite families of racks.

Corollary (Permutation GL-racks)

Let $P = (X, \sigma)_{perm}$ be a permutation rack. Then

$$U_P = C_{S_X}(\sigma) = \operatorname{Aut} P,$$

and U_P/\sim is the set of conjugacy classes of $C_{S_X}(\sigma)$.

Corollary (Conjugation GL-quandles)

Let G be a group, and let $Q := \operatorname{Conj} G$. If G is abelian, then $U_Q = S_G$, and U_Q / \sim is the set of conjugacy classes of S_G . On the other hand, if G is centerless, then $U_Q = \{ \operatorname{id}_G \}$.

Takasaki GL-kei (1/2)

Definition

Let A be an abelian additive group. Define $s_b(a) := 2b - a$ for all $a, b \in A$. Then T(A) := (A, s) is a quandle called a **Takasaki kei**.

Definition

For all $n \in \mathbb{N}$, the Takasaki kei $R_n := T(\mathbb{Z}/n\mathbb{Z})$ is a **dihedral quandle**.

Takasaki GL-kei (2/2)

Corollary

If A is an abelian additive group without 2-torsion, then the only GL-structure on the Takasaki kei T(A) is id_A . In particular, for all odd n, we have $U_{R_n}=\{\mathrm{id}_{\mathbb{Z}/n\mathbb{Z}}\}$.

Proof sketch.

For all such Takasaki kei, the automorphism group G and inner automorphism group H are known to be certain semidirect products. Use this classification to show that

$$U_{T(A)} = C_G(H) \subseteq \{(0, \psi) \in G : \psi|_{2A} = \mathrm{id}_{2A}\} = \{\mathrm{id}_A\}.$$

Dihedral GL-quandles

The previous result has infinitely many counterexamples when A has 2-torsion!

Theorem

For all even $n \ge 2$, we have

$$U_{R_n} \cong egin{cases} \mathbb{Z}/2\mathbb{Z} & \text{if } 4 \nmid n, \\ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} & \text{if } 4 \mid n. \end{cases}$$

If $4 \nmid n$, then the two GL-structures in U_{R_n} yield nonisomorphic GL-quandles. If $4 \mid n$, there's exactly one isomorphic pair.

Proof sketch.

Once again, Aut R_n and Inn R_n are certain semidirect products. Compute how conjugation works in these semidirect products to compute the centralizer of Inn R_n in Aut R_n .

Automorphism groups

Proposition

For all GL-racks (R, u),

$$Aut_{GLR}(R, u) = C_{Aut R}(u).$$

Corollary

For all dihedral GL-quandles (R_n, u) ,

$$\operatorname{\mathsf{Aut}}_{\operatorname{\mathsf{GLR}}}(R_n,\mathtt{u})\cong \mathbb{Z}/n\mathbb{Z}\rtimes (\mathbb{Z}/n\mathbb{Z})^{ imes}$$

except for a certain GL-structure u' on R_n when $4 \mid n$, in which case

$$\operatorname{\mathsf{Aut}}_{\operatorname{\mathsf{GLR}}}(R_n,\operatorname{\mathtt{u}}')\cong 2\mathbb{Z}/n\mathbb{Z}\rtimes (\mathbb{Z}/n\mathbb{Z})^{\times}.$$

Proposition

The automorphism group of the free GL-rack on one element is \mathbb{Z}^2 .

Categorical background

Recall: The **center** of a category C is the commutative monoid Z(C) of natural endomorphisms of the identity functor $\mathbf{1}_{C}$.

$$\begin{array}{ccc} X & \xrightarrow{\eta_{R_1}} & X \\ \varphi \Big| & & & \downarrow \varphi \\ Y & \xrightarrow{\eta_{R_2}} & Y \end{array}$$

Essentially, elements of $Z(\mathcal{C})$ are collections η of morphisms in \mathcal{C} that commute with all other morphisms φ in \mathcal{C} .

Example (Not important to know for our purposes)

Let A-mod be the category of modules over a ring A. Then the categorical center Z(A-mod) is isomorphic to the ring-theoretic center Z(A) of A.

Results

We can use the previous Proposition to compute the centers of the category GLR of GL-racks and various full subcategories.

Theorem

Let θ be the collection of θ_R 's for all racks R, and let u be the collection of all GL-structures on racks. We have the following:

- **1** The center Z(GLR) is the free abelian group $\langle \theta, u \rangle \cong \mathbb{Z}^2$.
- ② The centers of GLQ and the category of Legendrian racks are each the free group $\langle u \rangle \cong \mathbb{Z}$.
- **3** The center of the category of Legendrian quandles is the group $\langle u \mid u^2 = 1 \rangle \cong \mathbb{Z}/2\mathbb{Z}$.

Proof sketch.

Each of these categories is *strongly generated* by the free object F on one element. Show that the center is determined by F. Then, relate each group in the claim to the automorphism group of F.

Outline

- Historical background
 - Knots and racks
 - The Legendrian isotopy problem
- Q GL-racks
- Oistinguishing results
- Exhaustive search algorithms
- Equivalence of categories
- 6 Group-theoretic classification
 - Classifying GL-structures
 - Categorical centers
- End matter

Thank you!

Acknowledgments

This work was completed in partial fulfillment of the senior requirements for the math major at Yale. I thank Sam Raskin, my thesis adviser, for his many insights during the research and writing process. I also thank the HRUMC organizers for hosting this talk.

Contact: luc.ta@yale.edu | luc-ta.github.io

(Preprint expected within the next month on arXiv)