数字图像处理

第五次作业

自动化 62 2160300167 张斐然

1 频域低通滤波器:设计低通滤波器包括 butterworth and Gaussian (选择合适的半径,计算功率谱比),平滑测试图像 test1 和 2;分析各自优缺点;

公式:

Butterworth 低通滤波器

$$H(u,v) = \frac{1}{1 + (D(u,v)/D_0)^{2n}}$$

高斯低通滤波器

$$H(u,v) = e^{\frac{-D^2(u,v)}{2D_0^2}}$$

高斯滤波器的过度特性非常平坦,因此不会产生振铃现象。

实现步骤:

- 1. 给定一幅大小为m*n的图像f(x,y)。选择适当的填充参数P和Q,一般令P=2m,Q = 2n。
- 2. 对图像f(x, y)填充0,填充后得到图像大小为P*Q的图像fp(x, y)。
- 3. 用(-1)^(x+y)乘以fp(x,y)将其移到变换中心 (中心化)。
- 4. 计算fp(x, y)的DFT, 得到F(u,v)。
- 5.生成一个实的,对称的滤波函数H(u, v),大小为P*Q,中心在(P/2, Q/2)处。然后相乘(矩阵点乘)得到G(u,v) = H(u,v)F(u,v)。
- 6. 对G(u, v)反傅里叶变换,然后取实部,再乘以(-1)^(x+y)进行反中心变换最后得到qp(x,y)。
- 7. 提取gp(x,y)左上角的m*n区域,对提取的部分进行标准化处理,得到最终的结果图像g(x,y)。 实验结果:
- 1. test1 进行巴特沃斯低通变换,截止频率分别为 40,100,150,200

D0 = 40, n = 2

D0 = 100, n = 2

2. test2 进行巴特沃兹低通变换,截止频率分别为 20,40,150,200

3. 3.test1 进行高斯低通变换,截止频率分别为 20,40,150,200

4. test2 进行高斯低通变换,截止频率分别为 20,40,150,200

5. 功率谱比

7 7 7 77 -				
Test1	20	40	150	200
巴特沃兹	0.9110	0.9754	0.9882	0.9936
高斯	0.7939	0.8939	0.9806	0.9878

Test2	20	40	150	200
巴特沃兹	0.8358	0.9002	0.9654	0.9736
高斯	0.8458	0.9099	0.9698	0.9770

结论:

可以看出,随着半径的增大,功率谱比变大,图像变得更加清晰。两种滤波器性能大致相同,但从功率谱比情况来看,

巴特沃斯滤波器的过渡带更长,

高斯滤波器曲线更加平滑。

- 2 频域高通滤波器:设计高通滤波器包括 butterworth and Gaussian, 在频域增强边缘。选择半径和计算功率谱比,测试图像 test3,4:分 析各自优缺点;
 - ①给定一幅大小为 m*n 的输入图像 f(x,y),确定填充参数,典型的选取 M=2*m,N=2*n;
 - ②对 f(x,y)添加必要数量的 0,形成大小为 P*Q 的填充后的图像 fp(x,y);
 - ③用(-1)^(x+y)乘以 fp(x,y)移到变换中心;
 - ④计算来自步骤三的图像的 DFT, 得到 F(u,v);
- ⑤生成一个实的、对称的滤波函数 H(u,v),其大小为 P*Q,中心在(P/2,Q/2)的位置处,用阵列相乘得到乘积 G(u,v)=H(u,v)*F(u,v)
 - ⑥得到处理后的图像:

其中滤波器大小与频谱大小相同,相乘即可得到新的频谱。 实验结果:

1.test3 进行巴特沃兹高通变换,截止频率分别为 20,40,150,200

2.test4 进行巴特沃兹高通变换,截止频率分别为 20,40,150,200

3.test3 进行高斯高通变换,截止频率分别为 20,40,150,200

4.test4 进行高斯高通变换,截止频率分别为 20,40,150,200

5.功率谱比

Test1	20	40	150	200
巴特沃兹	0.0356	0.0078	0.00008	0.00001
高斯	0.0287	0.0065	0.0001	0.00004

Test2	20	40	150	200
巴特沃兹	0.0873	0.0404	0.0048	0.0028
高斯	0.0760	0.0333	0.0041	0.0024

结论:

从结果图像可知,两种高通滤波器都有边缘增强功能。

随着半径的增加,滤波后的图像边缘应该越来越清晰,功率谱比越来越小。

但当增大到一定程度时,边缘将消失,图像全部变成了黑色。

对比巴特沃斯高通滤波器和高斯高通滤波器的效果可知,两种滤波器达到的基本效果是一致的,但两者截止频率相同时得到的功率谱比却不同,主要原因是两个滤波器在过渡带处的差异。

3 其他高通滤波器: 拉普拉斯和 Unmask, 对测试图像 test3,4 滤波; 分析各自优缺点;

结果:

1.test3 的 unmask 与拉普拉斯滤波

2. test4 的 unmask 与拉普拉斯滤波

原图像test3.pgm

unmask.pgm

结论: 可知两种滤波方式均可应用于边缘检测。