

On the Interplay Between Fine-tuning and Sentence-level Probing for Linguistic Knowledge in Pre-trained Transformers EMNLP 2020

Lao Leyi South University of Science and Technology

Motivation

- BERT, RoBERTa, and ALBERT perform well in various NLP tasks.
- It is still unclear how the **representations** of a pre-trained model change when fine-tuning on a downstream task.
- Further, little is known about whether and to what extent this process adds or removes linguistic knowledge from a pre-trained model.

- Probing
- Investigating the following questions:
 - How and where does fine-tuning affect the **representations** of a pre-trained model?
 - To which extent (if at all) can changes in **probing** accuracy be attributed to a change in linguistic knowledge encoded by the model.

Pre-trained Models

BERT

RoBERTa

ALBERT

Fine-tuning tasks (Sentence-level)

- GLUE benchmark
 - CoLA (The Corpus of Linguistic Acceptability, focusing on **syntactic**)
 - SST-2 (Stanford Sentiment Treebank, focusing on semantic and/or discourse)
 - RTE (Recognizing Textual Entailment, focusing on **discourse**)
- SQuAD (Stanford Questions Answering Dataset, focusing on discourse)

Probing tasks (Sentence-level)

- bigram-shift (Syntactic Task)
 - Testing a model's sensitivity to word order.
- semantic-odd-man-out (**Semantic** Task)
 - Testing a model's sensitivity to semantic incongruity
- coordination-inversion (**Discourse** Task)
 - Testing for a model's broader discourse understanding.

Pooling

- CLS-Pooling
- mean-pooling

Probing Task	BERT-base-cased							
	CLS-pooling				mean-pooling			
	CoLA		SST-2		CoLA		SST-2	
	0 - 6	7 - 12	0 - 6	7 - 12	0 - 6	7 - 12	0 - 6	7 - 12
bigram-shift	0.07	4.73	-1.02	-4.63	0.23	1.45	-0.37	-3.24
coordinate-inversion	-0.10	1.90	-0.25	-1.15	0.14	0.29	-0.48	-0.85
odd-man-out	-0.20	0.26	-0.02	-1.28	-0.34	-0.29	-0.30	-1.09

	RoBERTa-base								
Probing Task	CLS-pooling				mean-pooling				
	CoLA		SST-2		CoLA		SST-2		
	0 - 6	7 - 12	0 - 6	7 - 12	0 - 6	7 - 12	0 - 6	7 - 12	
bigram-shift	0.58	5.35	-2.41	-7.22	0.69	1.74	-0.23	-4.87	
coordinate-inversion	-0.72	1.84	-1.28	-0.63	-0.22	0.02	-0.18	-3.83	
odd-man-out	-0.66	1.05	-1.09	-2.40	-0.08	-0.55	-0.46	-3.61	

Probing Task	ALBERT-base-v1								
	CLS-pooling				mean-pooling				
	CoLA		SST-2		CoLA		SST-2		
	0 - 6	7 - 12	0 - 6	7 - 12	0 - 6	7 - 12	0 - 6	7 - 12	
bigram-shift	1.55	3.39	-1.94	-5.15	0.26	0.66	-0.70	-2.73	
coordinate-inversion	-0.69	-1.53	-1.07	-2.87	-0.07	-1.19	-0.35	-1.53	
odd-man-out	-0.42	-1.39	-0.90	-2.75	-0.27	-1.40	-0.60	-2.82	

(a) Entropy

- The CLS token learns to take more sentencelevel information into account.
- The improvement in probing accuracy can not simply be attributed to the encoding of linguistic knowledge.

The **pretrained masked language model heads** are evaluated on the Wikitext-2 test set and compare it to the masked-language modeling **perplexity** of fine-tuned models.

Finetuning on SST-2 has indeed more dramatic effects on the representations of both models compared to fine-tuning on CoLA.

Test which layers **contribute the most** to the change in perplexity and replace the layers of the fine-tuned encoder with pre-trained layers, starting with the last layer.

- Finding that the changes that lead to an increase in perplexity happen in the **last layers**.
- Fine-tuning indeed does affect the representations of a pre-trained model and in particular those of the **last** hidden layers.

Investigating the Representation Learning of Interjections in Fined-tuned Language Models

Lao Leyi South University of Science and Technology

Motivation

- Interjections (e.g., uh, mmhmm) are important signals in conversation.
- Can Language model such as GPT-2 and Llama3 properly learn the representation of interjections through fine-tuning;
- Does the representation of the interjection show similarity across the three chosen language from the selected dialogue datasets
- Which fine-tuning task can best foster representation learning for interjections?

In order to verify how interjections are properly represented in the language model, we will focus on using **fine-tuning task** instead.

Pre-trained Models

- BERT
- GPT-2
- Llama3

Language

- Japanese
- English
- German

Fine-tuning tasks

- next-token prediction (baseline)
- dialogue-act prediction
- turn-taking prediction

GPT-2_next-token prediction

Llama3_next-token prediction

Thank You

