

Scalable Machine Learning Agenda

- 8:30 10:00 R in HPC
- 10:00 10:15 Break
- 10:15 10:45 Machine Learning with Spark
- 10:45 11:15 PySpark Hands-On
- 11:15 11:45 SparkR Hands-On
- 11:45 12:00 Wrap-Up

Machine Learning with Spark

Mai H. Nguyen, Ph.D.

Spark Topics

- Spark Overview
- Programming in Spark
- MLlib

Spark Overview

What is Spark?

- General framework for distributed computing
- Provides built-in data parallelism and faulttolerance for big data processing on a cluster
- Goals: speed, ease of use, generality
 - Multiple analytics applications, data sources, platforms
- Open-source

UC San Diego

Basics of Distributed Processing with Spark

Expressive programming environment

In-memory processing

Support for diverse workloads

Interactive shell

The Spark Stack

SparkSQL

Spark Streaming

MLlib

GraphX

Spark Core

The Spark Stack

SparkSQL

Spark Streaming

MLlib

GraphX

Spark Core

Distributed computing

UC San Diego

Spark SQL

Structured Data Processing

- Enables querying structured data through Spark
- Can use SQL and Hive Query Language
- Has APIs for Scala, Java, Python, and R
- Embed SQL queries in Spark programs

Spark Streaming

Streaming Data Processing

- Scalable processing for real-time analytics
- Data streams divided into micro-batches of data
- Has APIs for Scala, Java, and Python

Spark MLlib

Machine Learning

- Scalable machine learning library
- Provides distributed implementations of common machine learning algorithms and utilities
- Has APIs for Scala, Java, Python, and R

Spark GraphX

Graph Computation

Enables distributed graph processing.

The Spark Stack

SparkSQL

Spark Streaming

MLlib

GraphX

Spark Core

Supports diverse analytics applications

UC San Diego

Spark Interface

Provides ease of use

UC San Diego

In Memory Processing

Provides speed

What does in memory processing mean?

MapReduce

SDSC SAN DIEGO SUPERCOMPUTER CENTER

UC San Diego

Resilient Distributed Datasets

Dataset

Data storage created from: HDFS, S3, HBase, JSON, text, Local hierarchy of folders

Or created transforming another RDD

Resilient Distributed Datasets

Distributed

Distributed across the cluster of machines

Divided in partitions, atomic chunks of data

Resilient Distributed Datasets

Resilient

Recover from errors, e.g. node failure, slow processes

Track history of each partition, re-run

DataFrames & DataSets

DataFrame

DataSet

- Extensions to RDDs
- Provide higher-level abstractions, improved performance, better scalability

Programming in Spark

Start Spark Session


```
from pyspark.sql import SparkSession
spark = SparkSession \
   .builder \
   .appName ("PySpark Example") \
   .config("config.option","config.value") \
   .getOrCreate()
```


Read in Data

```
df = spark.read.csv("data.csv"),\
   inferSchema=True,header=True)
```


Read in Data

```
df = spark.read.csv("data.csv"),\
   inferSchema=True,header=True)
```

```
df = spark.read.jdbc \
  (url=my_url, \
   dbtable=table_name, \
   user=username,password=pwd)
```


Read in Data

```
df = spark.read.csv("data.csv"),\
   inferSchema=True,header=True)
```

```
df = spark.read.jdbc \
  (url=my_url, \
   dbtable=table_name, \
   user=username,password=pwd)
```

```
empl_0 = Row(id='123',name='John')
empl_1 = Row(id='456',name='Mary')
employees = [empl_0, empl_1]
df = spark.createDataFrame(employees)
```


Processing Data

Lazy Evaluation

- Transformations not immediately processed
- Plan of transformations is built
- Transformations executed when action is performed.
- Allows for efficient physical plan to be generated

Transformations & Actions

Transformations

- map
- filter
- coalesce
- reduceByKey

Actions

- take
- collect
- reduce
- saveAsText

Stop Spark Session

Driver Program

Programming in Spark

Start Spark Session

Create DataFrames

Apply transformations

Perform actions

Stop Spark Session

Spark MLlib: Machine Learning

Spark MLlib

SparkSQL

ърагк Streaming MLlib

GraphX

Spark Core

Machine learning

UC San Diego

MLIib Algorithms & Techniques

- Machine Learning
 - Classification, regression, clustering, etc.
 - Evaluation metrics
- Statistics
 - Summary statistics, sampling, etc.
- Utilities
 - Dimensionality reduction, transformation, etc.

MILib Example –Statistics

```
from pyspark.sql.functions import rand
# Generate random numbers
df = sqlContext.range(0,10)
             .withColumn('rand1', rand(seed=10))
             .withColumn('rand2', rand(seed=27))
# Show summary statistics
df.describe().show()
# Compute correlation
df.stat.corr('rand1','rand2')
```


MLIib Example – Clustering

print (center)

for center in model.clusterCenters()

Spark MLlib

- MLlib is Spark's machine learning library.
 - Distributed implementations
- Main categories of algorithms and techniques:
 - Machine learning
 - Statistics
 - Utilities for data preparation

Scalable Machine Learning Summary

- Spark core provides distributed computing
- Libraries support multiple analytics applications and workloads
- RDD/DF/DS provide data parallelism & fault-tolerance
- MLlib provides scalable machine learning

Spark Resources

- Spark
 - https://spark.apache.org/
- MLlib
 - https://spark.apache.org/mllib/
- Mastering Apache Spark
 - https://jaceklaskowski.gitbooks.io/mastering-apachespark/content/

Questions?

