香港中文大學 The Chinese University of Hong Kong

版權所有 不得翻印 Copyright Reserved

二零一三至一四年度上學期科目考試 Course Examination 1st Term, 2013 – 2014

Coi	urse C	編號及名稱 ode & Title	: CSCL3130	_	uages an	nd Automata Theory	
	時間 Time allowed 學號		:2	小時 hours 座毁	0	分鐘 minutes	
		ent I.D. No.	÷			AOMENICA DE LA COMPANION DE LA	
۱.	Consider the regular language L over $\Sigma = \{0, 1\}$:						
	$L = \{w \mid w \text{ does not contain "000"}\}$						
	 (a) Give a regular expression for L. (4%) (b) Draw a DFA for L. (5%) (c) Consider L₁ = {w w ∈ L and w ends with "00"}. Is L₁ regular? Prove your answer. (d) Consider L₂ = {w xwy ∈ L for some x, y ∈ (0+1)*}. Is L₂ regular? Prove your answer. (8%) 						
2.	Cons	Consider the following grammar over $\Sigma = \{a, b\}$:					
		$G: S \to AAB$ $A \to AA$ $B \to BB$	a				
	(a) (b) (c) (d) (e) (f)	Give the parse Suggest what Write G in Ch Show that G i	nost derivation of the der the language <i>L</i> nomsky Normal is ambiguous. (anbiguous gramn	rivation in part of grammar (1 Form G_1 . (4% 6%)	t (a). (3% 7 is. (3% %)	(6))
3.	Cons	Consider the following languages:					
		•	Turing machin Turing machin		_	t "010" in ten steps} t "010"}	
	(a) (b) (c)	Is L_2 recursive	e? Explain you ely enumerable e? Explain you	? Explain you	r answer	r. (8%)	

4. Consider the Turing machine *T*:

- (a) What will be the *final* tape content for input "abaab"? Where will be the pointer when T halts? (5%)
- (b) Suggest what does T do on a string from $(a+b)^*$ with at least one b? (5%)
- (c) Construct an MPCP instance I = (A, B) such that I has a solution if and only if T accepts the input string "aba". (8%)
- (d) Does I have a solution? Give the sequence of indices used in the construction of the solution if yes. Explain why a solution does not exist otherwise. (8%)

End of Paper