

FOUNDATIONAL BLOCKS FOR SMART GRIDS

DIGITALISATION OF POWER TRANSFORMER **MONITORING SYSTEM**

Speaker: **MOUSAM DUTTA**

DISTRIBUTION ENGINEER (MAINS)

CESC LIMITED

Introduction

CESC Limited Company name:

Scope: Generation & Distribution of electricity across 567 sq. km in Kolkata & Howrah in West Bengal

Registered Office: CESC House, Chowringhee Square, Kolkata - 700001

• CESC is India's first fully integrated electrical utility company and it has been on an epic ride ever since 1899 in generating and distributing power

• Consumer Base: 3.4 million LT, 1700 HT -- including domestic, industrial and commercial users

• CESC has about 300 power transformers in 18 Substations and in

122 Distribution stations

CESC HOUSE - Head Office of CESC Limited A heritage building built in 1933

Serampor

Context

Relevance

Comprehensive

- Every device can be supported remotely
- Automatic updates and notifications

Run time analysis

- Collection of statistics over time
- Monthly or yearly reports to detect trends
- Short time trend & Long time trends

Greater efficiency

- More efficient than manned systems
- No error due to lack of consciousness

Maintenance

- Allows remote analysis of data
- Reliable method of proactive maintenance-reduction in chance of sudden breakdown or failure
- Preventive maintenance of about 300 Power Transformers

Presentation on the Topic

Page: 5 of 10

Step 1

PARAMETER SELECTION AND COLLECTION OF DATA

Parameters(For power transformers)					
<u>Already available</u>		To be measured using sensors			
Parameter	Source	Parameter	Sensor type		
Winding temperature	WTI repeater	Vibration level	Vibration sensor		
Tap position	SCADA system	Conservator Oil level	VGA camera / Potentiometer		
Voltage(LV & HV side)	SCADA system	Top tank temperature	Temperature sensor		
Load(Amps)	SCADA system	Bottom tank temperature	Temperature sensor		
Hydrogen level in oil	Online Hydrogen Sensors	Humidity inside breather	Humidity sensor		
		Pressure inside breather	Pressure sensor		
		OLTC motor current	Current transformer		

Presentation on the Topic

Step 2

CODIFICATION OF DATA

Classification

The data obtained are to be grouped in several classes depending on range of values

Defining Colour Codes

Different color codes are defined for different classes for better understanding, representation

Identify values to produce Notification

The maximum allowable value is determined

SAMPLE COLOR CODING TOP OIL (TANK) TEMPERATURE

<u>Parameter</u>	Color code		Notification
Top oil (tank)	Temperature range(°C)	Color code	When temperature exceeds 70°C
	<= 60	Light green	
temperature	60-70	Orange	
	>70	Red	

Presentation on the Topic

Step 3

DATA TRANSMISSION & STORAGE SYSTEM

Use Case/Case Study

VARIATION OF TOP & BOTTOM TANK TEMPERATURE AND CONSERVATOR OIL LEVEL

PTR IoT Interval Read Profile: B.T.ROAD S/S T2 - SA00012AT2_132

Use Case/Case Study

VARIATION OF TEMPERATURE, PRESSURE AND RELATIVE HUMIDITY INSIDE BREATHER

PTR IoT Interval Read Profile: PRINCEP STREET S/S T1 - SA00014AT1_220

Key Takeaways/ Recommendations

*** PATH FORWARD :**

- Standard reference values may be set for each parameter at different times of the year which may be used for comparison.
- Analysis of physical condition of the power transformers alongside loading data will eventually lead us to even distribution of load among various transformers that will reduce stress on a single transformer
- **Abnormal values** may be archived for further analysis and to find cause of discrepancies
- Improvement of performance and extension of life and reduction in maintenance cost

Thank You

References ::

- 1. Australian Journal of Basic and Applied Sciences, 5(11): 984-990, 2011; ISSN 1991-8178
- "Transmission of vibration of a power transformer from the internal structures to the tank" by Ming Jin, Jie Pan, Hai Huang and Jianping Zhou; Australian Acoustical Society.
- "Remote Monitoring System for Transformer Substations" by Timo T. Vekara, Seppo Pettissalo and N. Rajkumar
- Indian electricity Grid Code, CERC, 2010

