Question 1. In the model

$$y = \beta x_t + u_t, \ t = 1, 2, ..., T$$

 x_t is measured with error. Data is only available on x_t^* , where

$$x_t^* = x_t + v_t$$
; $t = 1, 2, ..., T$

and $Eu_t = Ev_t = 0$, $E(u_t v_t) = E(x_t u_t) = E(x_t v_t) = 0$. y_t, x_t and x_t^* have zero means.

j=(xx)-1x14

If $\hat{\beta}$ is the ordinary least squares estimator of β from regressing y_t on x_t^* , show that $\hat{\beta}$ is inconsistent.

$$\beta = \frac{\sum X_{t}^{*} \cdot y_{t}}{\sum X_{t}^{*2}} = \frac{\sum (X_{t} + V_{t})(\beta X_{t} + U_{t})}{\sum (X_{t} + V_{t})^{2}} = \frac{\sum (X_{t} + V_{t})(\beta X_{t} + U_{t})}{\sum (X_{t} + V_{t})^{2}}$$

$$= \frac{(\beta \sum X_{t}^{2} + \sum X_{t} \cdot \mathcal{U}_{t} + \beta \sum V_{t} \cdot X_{t} + \sum \mathcal{U}_{t} \mathcal{V}_{t})}{(\sum X_{t}^{2} + \sum V_{t}^{2} + 2\sum X_{t} V_{t})} \frac{1}{T-1}$$

$$\frac{1}{(\Xi X_{t}^{2} + \Xi V_{t}^{2} + 2\Xi X_{t}V_{t})} \frac{1}{T-1}$$

$$\frac{1}{(\Xi X_{t}^{2})} + \frac{1}{(\Xi X_{t}^{2})}$$

$$\frac{1}{(\Xi X_{t}^{2})} + \frac{1}{(\Xi X_{t}^{2})} + \frac{1}{(\Xi X_{t}^{2})} + \frac{1}{(\Xi X_{t}^{2})}$$

$$\frac{1}{(\Xi X_{t}^{2})} + \frac{1}{(\Xi X_{t}^{2})} + \frac{1}{(\Xi X_{t}^{2})}$$

$$\frac{1}{(\Xi X_{t}^{2})} + \frac{1}{(\Xi X_{t}^{2})} + \frac{1}{(\Xi X_{t}^{2})}$$

$$\frac{1}{(\Xi X_{t}^{2})} + \frac{1}{(\Xi X_{t}^{2})}$$

$$\frac{1}{(\Xi X_{t}^{2})} + \frac{1}{(\Xi X_{t}^{2})}$$

$$= \beta \frac{\delta_x^2}{\delta_x^2 + \delta_y^2} => \text{in consist out}$$

$$0 < \frac{\delta_{x}^{1}}{\delta_{x}^{2} + \delta_{y}^{2}}$$

b)
$$y_{t}^{*} = y_{t+1} W_{t}$$
 $E V_{+} = 0$
 $E(u_{t} W_{t}) = E(x_{+}W_{t}) = 0$

$$\int_{S} = \frac{\sum Y_{t} \cdot y_{t}^{*}}{\sum Y_{t}^{2}} = \frac{\sum X_{t} (y_{t} + W_{t})}{\sum X_{t}^{2}} = \frac{1}{T-1}$$

$$= \frac{\sum X_{t}^{2} \cdot \frac{1}{T-1}}{\sum X_{t}^{2} \cdot \frac{1}{T-1}} = 0$$

$$\sum_{t} X_{t}^{2} \frac{1}{T-1}$$

$$\int_{t}^{\infty} |x|^{2} \int_{t}^{\infty} |x|^{2}$$

Question 2 Briefly explain what is instrumental variable estimation. Consider the model $Y_t = \beta X_t + u_t$; t = 1, 2, ..., T.

What is instrumental variable estimator for this model? Is it consistent? Give an example of a model where instrumental variable estimation is an improvement on ordinary least squares (OLS). Explain why IV estimation is superior to OLS in this case.

Give an example of a model where instrumental variable estimation is an improvement on ordinary least squares (OLS).

Explain why IV estimation is superior to OLS in this case.

$$Cov(X_t, U_t) \neq 0$$
 => endogeneity

$$cov(U_t, \frac{2}{2}t) = 0$$
 exogeneity

1)
$$\chi_t = \chi \cdot zt$$
 $\chi = \frac{\sum \chi_t z_t}{\sum z_t^2}$

2)
$$y_t = \beta_1 \cdot \hat{\chi}_t \leftarrow$$

$$\hat{\beta}_{1V} = \frac{\sum y_t \cdot \hat{\chi}_t}{\sum \hat{\chi}_t^2} = \frac{\sum y_t \cdot \mathcal{I}_t}{\sqrt{2} \sum \mathcal{I}_t^2} = \frac{1}{\sqrt{2}}$$

	`\ \\ \\	ĝ us	
$Cov(X, E) \neq 0$	Biv unbiax d, cons.	liased, inconsistent	
cov (x, &)=0	unbil	ised, cons.	
	ineff.	ised, cons.	_
		τ.	-
Un · oo	<u> </u>	c 1.c. 1. #	_
ρω. γνο	endoyeidy, Bas - inconsistant	- Consistant	
He: Boxs	- inmantat		
να. υμ	00/00/13/100/		
Τ	/ ^ /		
(BIV-BOLS)	(V(jiv) - V(j	(Biv-Boss) ~ 2	
J J	U V	U U	_
			-
			_
			-

