Econ 6100 Welfare Economics

Welfare Economics

- 1. Here is a version of the First Welfare Theorem with interdependent preferences. Suppose in a pure exchange economy, each individual has a 'private preference order' representable by a utility function $v_i: X_i \to \mathbf{R}$. Suppose that individuals' preferences are aggregates of everyone's private order. That is, for each individual i there is a function $u_i: R^I \to \mathbf{R}$ such that for any two allocations x and y, $x \succ_i y$ iff $u_i(v_1(x_1), \dots, v_I(x_I))$. Suppose now that private preferences are locally non-satiated, and suppose too that individuals preferences are altruistic in the sense that for all i, $Du_i \gg 0$; that is, i's utility is increasing in his and others private utility. Show that the conclusion of the First Welfare Theorem still holds with respect to private preferences; that is CE is PO with respect to private preferences. Does this imply the first welfare theorem?
- 2. Fix utility levels u_1 and u_2 for individuals 1 and 2, respectively, and define $U(u_1, u_2)$ to be the set of all aggregate endowments that can be allocated so as to give individual 1 utility at least u_1 and person 2 utility at least u_2 . The lower boundary of this set is called the *community indifference curve* for the utility pair (u_1, u_2) .
 - (a) Let (x^*, p^*) be a competitive equilibrium for an exchange economy with aggregate endowment $e = (e_x, e_y)$. Let u_i denote the utility realized by person i at the competitive equilibrium. Show that if preferences are locally non-satiated, then at at a competitive equilibrium price vector, expenditure on $U(u_1, u_2)$ is minimized at the aggregate endowment.
 - (b) Show that if the utility functions of the two individuals is strictly quasi-concave, $U(u_1, u_2)$ is a "strictly convex" set in the sense that the interior of the line segment connecting any two points in the set is in the interior of the set.
 - (c) Show that if utility is upper semi-continuous and $f = (f_x, f_y)$ is an endowment bundle that can be allocated to give the consumers $u'_i > u_i$, then at the competitive equilibrium prices, the value of f exceeds the value of e. Such an endowment is called a *potential Pareto improvement* because it *could* be allocated to realize a Pareto improvement, but of course not all allocations of the endowment are Pareto improvements.
 - (d) Show that the converse is not true.

A project is a vector $h \in \mathbf{R}^2$ that represents a change in the endowment vector. If the project is run at scale s, then the endowment vector will be e + sh. A project passes the net-benefit test if $p \cdot h > 0$.

- (e) Suppose that utility is C^1 and localy non-satiated. Show that if a project h passes the net-benefit test, then there is an $s^* > 0$ such that for all $0 < s < s^*$, the endowment e + sh is a potential Pareto improvement.
- 3. Consider an exchange economy in which the endowment allocation ω is not Pareto optimal. Let u_n and v_n denote the direct and indirect utility functions of individual n. Define $R_n = \{(p, m_n) : v_n(p, m_n) \geq w_n(\omega_n), \text{ and let } R = \{(p, m_1, \dots, m_N) : (p, m_n) \in \mathbb{R} \}$

 R_n for all n}. Suppose that v_n has the Gorman polar form $\alpha_n(p)m + \beta_n(p)$ for all $(p, m) \in R_n$. All functions are as differentiable as you need them to be. Suppose too that all the α_n are identical.

- (a) What is individual n's demand function?
- (b) Show that aggregate demand on R is independent of the distribution of income.
- (c) Suppose that x^* is an allocation Pareto superior to ω , and suppose that it is supported by price vector $p^* \gg 0$. Let

$$P = \{(m_1, \dots, m_N) : \sum_n m_n = p^* \sum_n \omega_n \text{ and all } v_n(p^*, m_n) \ge u_n(\omega_n)\}.$$

Give an expression for $\sum_{n} v(p^*, m_n)$ on P.

- (d) Show that the part of the utility possibility frontier corresponding to allocations Pareto superior to ω is a simplex; that is, for some number U, $\sum_n u_n = U$.
- 4. An exchange economy has two people and three goods. Let x_n denote person 1's consumption of good n, and let y_n denote person 2's consumption of good n. Utility for each consumer is quasi-linear. For person 1:

$$u_1(x,y) = x_1 - \frac{\alpha_1}{2}x_1^2 + x_2 - \frac{\alpha_2}{2}x_2^2 + x_3 - \lambda_1 y_1 - \lambda_2 y_2 - \lambda_3 y_3.$$

For person 2,

$$u_1(x,y) = y_1 - \frac{\beta_1}{2}y_1^2 + y_2 - \frac{\beta_2}{2}y_2^2 + y_3 - \gamma_1 x_1 - \gamma_2 x_2 - \gamma_3 x_3.$$

Notice that there are externalities in consumption. The endowment for consumer 1 is (1,0,e), and for consumer 2 it is (0,1,f).

There is a sales tax on goods 1 and 2. The seller of good n receives price p_n , while the buyer pays price $p_n + t_n$. Tax revenues split equally and handed back to the consumers as a lump-sum transfer. (That is, in deciding how much of a commodity to buy, the consumer does not account for the return of some share of the cost through the tax split.)

- (a) What is each consumer's budget constraint?
- (b) Define a sensible notion of competitive equilibrium for this economy.
- (c) Compute the competitive equilibrium for arbitrary (small) taxes t_1 and t_2 , assuming the allocation is interior.
- (d) Compute the derivative of both individuals' utilities with respect to the tax rates.
- (e) Are there small but non-zero taxes that would give an equilibrium allocation Paretobetter than that achieved at $t_1 = t_2 = 0$?
- 5. An allocation x^* in an exchange economy is a weak Pareto optimum if there is no feasible allocation x' such that each individual is better off under x' than under x'. State and prove a theorem about the relationship between competitive equilibria and weak Pareto optima.

- 6. Consider an exchange economy with L locally non-satiated individuals and N goods, and an aggregate endowment $\omega \gg 0$. Individual i is resource related to household j if at every feasible allocation x there is another allocation x' and a resource vector z such that
 - x' is at least as good as x for all individuals k, and strictly better for individual j,
 - x' is feasible for the economy with aggregate endowment ω' ,
 - $\omega' > \omega$, and $\omega'_k = \omega_k$ for all $k \neq i$.

Individual i is indirectly resource related to j if there is a sequence of individuals, $i = k_1, k_2, \ldots, k_m = j$ such that each individual k_j is directly resource related to her successor k_{j+1} .

- (a) Say in words the meanings of resource relatedness and indirect resource relatedness.
- (b) Show that if i is resource-related to j and (p^*, x^*, y^*) is a compensated equilibrium, and if $p^*x_i^* > 0$, then $p^*x_i^* > 0$.
- (c) Use the conclusion of part 1 to conclude that if i is indirectly resource-related to j and (p^*, x^*, y^*) is a compensated equilibrium, and if $p^*x_i^* > 0$, then $p^*x_i^* > 0$.
- (d) Show that if every individual is indirectly resource-related to other individual, every quasi-equilibrium is a competitive equilibrium.
- 7. Construct a one-consumer one-firm economy in which the production set is convex, preferences are continuous and convex, and there is nevertheless a Pareto-optimal allocation which cannot be supported as a quasi-equilibrium. What assumptions of the 2nd welfare theorem does your example violate?
- 8. Suppose that two goods are each made with labor and capital, and that the production functions for each good satisfy the usual neoclassical assumptions: they are C^2 and concave. Give a characterization of the rate that one good can be transformed into another.