9

DERIVADES DE FUNCIONS DE DIVERSES VARIABLES

(Resum teòric)

Índex

9.1.	Derivades direccionals, derivades parcials	-
9.2.	Vector gradient i matriu jacobiana	4
9.3.	Direcció òptima. Regla de la cadena	4

9.1. Derivades direccionals, derivades parcials

Sigui f una funció real de 2 variables i considerem un punt $\mathbf{a}=(a_1,a_2)$ del seu domini i un vector unitari $\mathbf{v} \in \mathbb{R}^2$. La gráfica de f és una superfície en el pla XY. Considerem la recta r que passa per \mathbf{a} i té la direcció de \mathbf{v} . El pla perpendicular al pla XY i que conté la recta r talla la gràfica de f en una corba que passa pel punt $(a_1,a_2,f(a_1,a_2))$; el pendent de la recta tangent a aquesta corba en aquest punt és la derivada direccional de f segons \mathbf{v} en el punt \mathbf{a} . A continuació, formalitzem aquest concepte i el generalitzem a n variables.

Sigui f una funció real de n variables definida i siguin $\mathbf{a} \in Dom f$, i $\mathbf{v} \in \mathbb{R}^n$ un vector unitari. La funció f té derivada en \mathbf{a} en la direcció de \mathbf{v} si existeix el límit següent i és un nombre real:

$$\frac{\partial f}{\partial \mathbf{v}}(\mathbf{a}) = \lim_{\lambda \to 0} \frac{f(\mathbf{a} + \lambda \mathbf{v}) - f(\mathbf{a})}{\lambda}.$$

Si $\{e_1, \ldots, e_n\}$ és la base canònica de \mathbb{R}^n , la derivada direccional de f en a en la direcció de e_i es denomina i-èsima derivada parcial o derivada parcial respecte a la i-èsima variable, per a la qual s'utilitzen indistintament les notacions següents:

$$D_i f(\mathbf{a}), \qquad \frac{\partial f}{\partial x_i}(\mathbf{a}), \qquad f_{x_i}(\mathbf{a}),$$

les dues últimes en cas que f estigui definida com a funció de les variables (x_1,\ldots,x_n) .

Observem que la i-èsima derivada parcial de f en $\mathbf{a}=(a_1,\ldots,a_n)$ és

$$\frac{\partial f}{\partial x_i}(\mathbf{a}) = \lim_{\lambda \to 0} \frac{f(a_1, \dots, a_{i-1}, a_i + \lambda, a_{i+1}, \dots, a_n) - f(a_1, \dots, a_n)}{\lambda},$$

i que aquesta definició correspon a la de la derivada al punt a_i de la funció d'una variable definida per $x\mapsto f(a_1,\ldots,a_{i-1},x,a_{i+1},\ldots,a_n)$. Així, el càlcul de derivades parcials es redueix al càlcul de derivades de funcions d'una variable.

Si $f: U \to \mathbb{R}$ és una funció que té derivada parcial i-èsima a cada punt de U, aleshores queda definida la funció i-èsima derivada parcial $D_i f$, $\partial f/\partial x_i$ o f_{x_i} , que fa correspondre a cada punt de $\mathbf{x} \in U$ la i-èsima derivada parcial de f en \mathbf{x} .

9.2. Vector gradient i matriu jacobiana

Si f admet derivades parcials a \mathbf{a} respecte de totes les variables, s'anomena vector gradient de f en \mathbf{a} , i es denota per $\nabla f(\mathbf{a})$, el vector

$$\nabla f(\mathbf{a}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{a}), \frac{\partial f}{\partial x_2}(\mathbf{a}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{a})\right).$$

Si f es una funció m-vectorial i totes les seves funcions coordenades admeten derivades parcials a ${\bf a}$ respecte de totes les variables, s'anomena matriu jacobiana de f en ${\bf a}$ la matriu de m files i n columnes

$$\mathcal{J}f(\mathbf{a}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{a}) & \frac{\partial f_1}{\partial x_2}(\mathbf{a}) & \dots & \frac{\partial f_1}{\partial x_n}(\mathbf{a}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{a}) & \frac{\partial f_2}{\partial x_2}(\mathbf{a}) & \dots & \frac{\partial f_2}{\partial x_n}(\mathbf{a}) \\ \dots & \dots & \dots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{a}) & \frac{\partial f_m}{\partial x_2}(\mathbf{a}) & \dots & \frac{\partial f_m}{\partial x_n}(\mathbf{a}) \end{pmatrix},$$

on, com es pot veure, cada fila és el gradient de cadascuna de les funcions coordenades de f en \mathbf{a} . El determinant de la matriu $\mathcal{J}f(\mathbf{a})$ es denomina $\mathbf{j}\mathbf{a}\mathbf{c}obi\mathbf{a}$ de f en \mathbf{a} .

9.3. Direcció òptima. Regla de la cadena

Recordem que per a una funció real de variable real f la derivabilitat en un punt a equival a l'existència de recta tangent a la corba y = f(x) en el punt (a, f(a)).

Per a una funció de n variables, l'existència de l'hiperplà tangent a la gràfica de la funció en un punt està lligat al concepte de diferenciabilitat en el punt corresponent. Aquí prescindirem de l'estudi de la diferenciabilitat i parlarem del concepte següent, que dóna una condició suficient per a la diferenciabilitat, i amb el qual és més fàcil treballar.

Sigui f una funció real de n variables definida i sigui $\mathbf{a} \in Domf$,. La funció f és de classe \mathcal{C}^1 en \mathbf{a} si n totes les derivades parcials de primer ordre són contínues en \mathbf{a} .

Des del punt de vista geomètric, si una funció real de dues variables f(x, y) és de classe \mathcal{C}^1 en un punt (a, b), aleshores existeix el pla tangent a la superfície z = f(x, y) en el punt (a, b, f(a, b)) i és el pla d'equació:

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b),$$

Siguin f una funció de n variables i $\mathbf a$ un punt del seu domini. Es compleixen les tres propietats següents.

- ullet Si f és de classe \mathcal{C}^1 en \mathbf{a} , aleshores f és diferenciable en \mathbf{a} .
- ullet Si f és diferenciable en ${f a}$, aleshores f és contínua en ${f a}$.
- ullet Si f és de classe \mathcal{C}^1 en \mathbf{a} i \mathbf{v} és un vector unitari, aleshores la derivada direccional de f en \mathbf{a} en la direcció de \mathbf{v} existeix i és

$$\frac{\partial f}{\partial \mathbf{v}}(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{v}.$$

Pel que fa a la tercera propietat, donat que la derivada direccional és el producte escalar $\nabla f(a) \cdot \mathbf{v} = \|\nabla f(a)\| \cdot \|\mathbf{v}\| \cdot \cos\alpha$, on α és l'angle que formen el vector gradient i \mathbf{v} , veiem que la derivada direccional màxima en un punt té lloc per a $\alpha = 0$, és a dir, en la direcció i el sentit del gradient en aquest punt, i el seu valor és precisament la norma del vector gradient. La derivada direccional és nul·la si $\alpha = \pi/2$, és a dir, en la direcció ortogonal al gradient.

Per a una funció m-vectorial, els conceptes de diferenciabilitat i de classe \mathcal{C}^1 es remet al de les funcions coordenades: sigui $U \subseteq \mathbb{R}^n$, $\mathbf{a} \in U$, i $f = (f_1, \dots, f_m) \colon U \to \mathbb{R}^m$ una funció m-vectorial. Es diu que f és de classe \mathcal{C}^1 en \mathbf{a} si les m funcions coordenades f_1, \dots, f_m són de classe \mathcal{C}^1 en \mathbf{a} .

La suma i el producte de dues funcions de classe C^1 en un punt també són de classe C^1 en aquest punt. Pel que fa a la composició, es té la denominada regla de la cadena.

Regla de la cadena. Siguin $U\subseteq\mathbb{R}^n$ i $V\subseteq\mathbb{R}^m$, $f\colon U\to\mathbb{R}^m$ i $g\colon V\to\mathbb{R}^p$ funcions vectorials.

Si f és de classe C^1 en $\mathbf{a} \in U$ i g és de classe C^1 en $f(\mathbf{a}) \in V$, aleshores $g \circ f$ és de classe C^1 \mathbf{a} i es compleix la relació següent entre les respectives matrius jacobianes:

$$\mathcal{J}(g \circ f)(\mathbf{a}) = \mathcal{J}g(f(\mathbf{a})) \cdot \mathcal{J}f(\mathbf{a}).$$

(Noteu que $\mathcal{J}f(a)$ és una matriu $m\times n$, $\mathcal{J}g(f(a))$ és una matriu $p\times m$, i $\mathcal{J}(g\circ f)(a)$ és una matriu $p\times n$.)