- 3.7 Suppose that a digital image is subjected to histogram equalization. Show that a second pass of histogram equalization (on the histogram-equalized image) will produce exactly the same result as the first pass.
- 3.8 In some applications it is useful to model the histogram of input images as Gaussian probability density functions of the form

$$p_r(r) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(r-m)^2}{2\sigma^2}}$$

where m and σ are the mean and standard deviation of the Gaussian PDF. The approach is to let m and σ be measures of average intensity and contrast of a given image. What is the transformation function you would use for histogram equalization?

3.15

3.16

3.17

- ★3.9 Assuming continuous values, show by example that it is possible to have a case in which the transformation function given in Eq. (3.3-4) satisfies conditions (a) and (b) in Section 3.3.1, but its inverse may fail condition (a').
 - **3.10 (a)** Show that the discrete transformation function given in Eq. (3.3-8) for histogram equalization satisfies conditions (a) and (b) in Section 3.3.1.
 - **★(b)** Show that the inverse discrete transformation in Eq. (3.3-9) satisfies conditions (a') and (b) in Section 3.3.1 only if none of the intensity levels r_k , k = 0, 1, ..., L 1, are missing.
 - **3.11** An image with intensities in the range [0,1] has the PDF $p_r(r)$ shown in the following diagram. It is desired to transform the intensity levels of this image so that they will have the specified $p_z(z)$ shown. Assume continuous quantities and find the transformation (in terms of r and z) that will accomplish this.

- **★3.12** Propose a method for updating the local histogram for use in the local enhancement technique discussed in Section 3.3.3.
 - **3.13** Two images, f(x, y) and g(x, y), have histograms h_f and h_g . Give the conditions under which you can determine the histograms of

$$\star$$
 (a) $f(x, y) + g(x, y)$

(b)
$$f(x, y) - g(x, y)$$

(c)
$$f(x, y) \times g(x, y)$$

(d)
$$f(x, y) \div g(x, y)$$

in terms of h_f and h_g . Explain how to obtain the histogram in each case.

- 3.14 The images shown on the next page are quite different, but their histograms are the same. Suppose that each image is blurred with a 3×3 averaging mask.
 - (a) Would the histograms of the blurred images still be equal? Explain.
 - **(b)** If your answer is no, sketch the two histograms.