

Valores y Vectores Característicos

¿Para qué sirven los eigenvalores y los eigenvectores?
Las aplicaciones son variadas, por ejmplo: en el crecimiento poblacional (sistemas dinámicos discretos o continuos), estabilidad de estructuras, vibraciones EDO's, formas cuadráticas, superficies cuadráticas, rotaciones, etc. Estos conceptos proporcionan información crítica en diseño de ingeniería (ayudan a pronosticar éxito o fracaso del diseño). Ver Lay página 301. Revisar también https://www.hiberus.com/crecemos-contigo/analisis-de-componentes-principales/

Definición (Eigenvector y eigenvalor)

Sea A una matriz de $n \times n$. Un escalar λ se llama eigenvalor (o valor propio o valor característico) de A si existe un vector x no nulo tal que $Ax = \lambda x$. Tal vector x se llama eigenvector (o también vector propio o vector característico) de A correspondiente a λ .

Ejemplo

Comprobar que el vector $x^T = (1,1)$ es un eigenvector de

$$A = \left(\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array}\right)$$

eigenvalues $\{\{1, 2, 1\}, \{4, 3, 5\}, \{-3, 2, -1\}\}$

Comprobar que el 5 es un eigenvalor de

$$A = \left(\begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array}\right)$$

Teorema

 $Si\ A$ es una matriz triangular o diagonal, entonces los valores de su diagonal pricipal son sus valores característicos. Ver en wolframalpha.

Teorema

 $Si\ A$ es una matriz triangular o diagonal, entonces los valores de su diagonal pricipal son sus valores característicos. Ver en wolframalpha.

Teorema

Si $v_1,...,v_r$ son vectores propios que corresponden a distintos valores propios $\lambda_1,\lambda_2,...\lambda_r$ de una matriz A de $n\times n$, entonces el conjunto $\{v_1,...,v_r\}$ es linealmente independiente.

$$A = \left(\begin{array}{cc} 1 & 3 \\ 2 & 1 \end{array}\right)$$

$$A = \left(\begin{array}{cc} 1 & 3 \\ -2 & -4 \end{array}\right)$$

$$A = \left(\begin{array}{cc} 1 & 3 \\ -2 & 1 \end{array}\right)$$

$$A = \left(\begin{array}{ccc} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{array}\right)$$

Definición (Semejante y/o diagonalizable)

Decimos que A es semejante a B si existe una matriz invertible S tal que $S^{-1}AS=B$ o bien $A=SBS^{-1}$. Y decimos que A es diagonalizable si A es semejante a una matriz diagonal D, esto es $A=SDS^{-1}$.

Teorema

Una matriz A de $n \times n$ es diagonalizable si, y sólo si, A tiene n vectores propios linealmente independientes. De hecho, $A = PDP^{-1}$, con D como una matriz diagonal, si, y sólo si, las columnas de P son n vectores propios de A linealmente independientes. En este caso, las entradas diagonales de D son valores propios de A que corresponden, respectivamente, a los vectores propios de P.

Matrix Diagonalization o diagonalize

Definición (Base ortogonal y ortonormal)

Sea $\beta=\{v_1,v_2,...,v_n\}$ una base para un espacio vectorial V de dimensión n dotado de un producto interno <,>. Decimos que la base β es ortogonal si < $v_i,v_j>=0$ para todo $i\neq j$. Si además, $||v_i||=1$ para todo i=1,2,...,n, diremos que la base es ortonormal.

Definición (Base ortogonal y ortonormal)

Sea $\beta=\{v_1,v_2,...,v_n\}$ una base para un espacio vectorial V de dimensión n dotado de un producto interno <,>. Decimos que la base β es ortogonal si $< v_i,v_j>=0$ para todo $i\neq j$. Si además, $||v_i||=1$ para todo i=1,2,...,n, diremos que la base es ortonormal.

Definición (Matriz ortogonal)

Una matriz de orden n decimos que es ortogonal si

$$AA^T = I_n,$$

PRINCIPLE INTERNATION OF THE PRINCIPLE O

donde A^T , es ma matriz transpuesta de A.

La matriz de rotación en \mathbb{R}^2

$$A = \left(\begin{array}{ccc} 4/5 & 3/5 & 0 \\ -3/5 & 4/5 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

Teorema (Espectral para matrices simétricas)

Sea A una matriz simétrica de orden n. Entonces exsite una matriz ortogonal P y una matriz diagonal D, ambas de orden n, tales que

$$A = P^{-1}DP$$

Definición (Problema de mínimos cuadrados -regresión lineal-)

Consiste básicamente en "resolver" un sistema en su forma matrical dada por

$$A^T A x = A^T b$$

