# Algorithms for Data Science CSOR W4246

Eleni Drinea
Computer Science Department

Columbia University

Asymptotic notation, mergesort, recurrences

### Outline

- 1 Asymptotic notation
- 2 The divide & conquer principle; application: mergesort
- 3 Solving recurrences and running time of mergesort

### Review of the last lecture

- ► Introduced the problem of **sorting**.
- ► Analyzed insertion-sort.
  - ▶ Worst-case running time:  $T(n) = \frac{3n^2}{2} + \frac{7n}{2} 4$
  - ► Space: in-place algorithm
- ▶ Worst-case running time analysis: a reasonable measure of algorithmic efficiency.
- ▶ Defined polynomial-time algorithms as "efficient".
- ▶ Argued that detailed characterizations of running times are not convenient for understanding scalability of algorithms.

# Running time in terms of # primitive steps

We need a coarser classification of running times of algorithms; exact characterizations

- ▶ are too detailed;
- $\blacktriangleright$  do not reveal similarities between running times in an immediate way as n grows large;
- ▶ are often meaningless: high-level language steps will expand by a constant factor that depends on the hardware.

# Aymptotic analysis

- 1 Asymptotic notation
- 2 The divide & conquer principle; application: mergesort
- 3 Solving recurrences and running time of mergesort

A framework that will allow us to compare the rate of growth of different running times as the input size n grows.

- ightharpoonup We will express the running time as a function of the number of primitive steps; the latter is a function of the input size n.
- ➤ To compare functions expressing running times, we will ignore their low-order terms and focus solely on the highest-order term.

# Asymptotic upper bounds: Big-O notation

#### Definition 1(O).

We say that T(n) = O(f(n)) if there exist constants c > 0 and  $n_0 \ge 0$  s.t. for all  $n \ge n_0$ , we have  $T(n) \le c \cdot f(n)$ .



### Asymptotic upper bounds: Big-O notation

#### Definition 1 (O).

We say that T(n) = O(f(n)) if there exist constants c > 0 and  $n_0 \ge 0$  s.t. for all  $n \ge n_0$ , we have  $T(n) \le c \cdot f(n)$ .

Examples: Show that T(n) = O(f(n)) when

- $ightharpoonup T(n) = an^2 + b, \ a, b > 0 \text{ constants and } f(n) = n^2.$
- ►  $T(n) = an^2 + b$  and  $f(n) = n^3$ .

### Asymptotic lower bounds: Big- $\Omega$ notation

# Asymptotic lower bounds: Big- $\Omega$ notation

### Definition 2 $(\Omega)$ .

We say that  $T(n) = \Omega(f(n))$  if there exist constants c > 0 and  $n_0 \ge 0$  s.t. for all  $n \ge n_0$ , we have  $T(n) \ge c \cdot f(n)$ .



### Definition 2 ( $\Omega$ ).

We say that  $T(n) = \Omega(f(n))$  if there exist constants c > 0 and  $n_0 \ge 0$  s.t. for all  $n \ge n_0$ , we have  $T(n) \ge c \cdot f(n)$ .

Examples: Show that  $T(n) = \Omega(f(n))$  when

- $ightharpoonup T(n) = an^2 + b, \ a, b > 0 \text{ constants and } f(n) = n^2.$
- ▶  $T(n) = an^2 + b$ , a, b > 0 constants and f(n) = n.

### Asymptotic tight bounds: $\Theta$ notation

### Definition 3 ( $\Theta$ ).

We say that  $T(n) = \Theta(f(n))$  if there exist constants  $c_1, c_2 > 0$  and  $n_0 \ge 0$  s.t. for all  $n \ge n_0$ , we have

$$c_1 \cdot f(n) < T(n) < c_2 \cdot f(n).$$



### Asymptotic tight bounds: $\Theta$ notation

### Definition 3 $(\Theta)$ .

We say that  $T(n) = \Theta(f(n))$  if there exist constants  $c_1, c_2 > 0$  and  $n_0 \ge 0$  s.t. for all  $n \ge n_0$ , we have

$$c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$$
.

### Equivalent definition

$$T(n) = \Theta(f(n))$$
 if  $T(n) = O(f(n))$  and  $T(n) = \Omega(f(n))$ 

### Asymptotic tight bounds: $\Theta$ notation

# Asymptotic upper bounds that are $\mathbf{not}$ tight: little-o

### Definition 3 $(\Theta)$ .

We say that  $T(n) = \Theta(f(n))$  if there exist constants  $c_1, c_2 > 0$  and  $n_0 \ge 0$  s.t. for all  $n \ge n_0$ , we have

$$c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$$
.

#### Equivalent definition

$$T(n) = \Theta(f(n))$$
 if  $T(n) = O(f(n))$  and  $T(n) = \Omega(f(n))$ 

**Notational convention:**  $\log n$  stands for  $\log_2 n$ 

Examples: Show that  $T(n) = \Theta(f(n))$  when

- $ightharpoonup T(n) = an^2 + b, \ a, b > 0 \text{ constants and } f(n) = n^2$
- $ightharpoonup T(n) = n \log n + n \text{ and } f(n) = n \log n$

#### Definition 4(o).

We say that T(n) = o(f(n)) if, for any constant c > 0, there exists a constant  $n_0 \ge 0$  such that for all  $n \ge n_0$ , we have  $T(n) < c \cdot f(n)$ .

### Asymptotic upper bounds that are **not** <u>tight</u>: little-o

### Definition 4 (o).

We say that T(n) = o(f(n)) if, for any constant c > 0, there exists a constant  $n_0 \ge 0$  such that for all  $n \ge n_0$ , we have  $T(n) < c \cdot f(n)$ .

- ▶ Intuitively, T(n) becomes insignificant relative to f(n) as  $n \to \infty$ .
- ▶ Proof by showing that  $\lim_{n\to\infty} \frac{T(n)}{f(n)} = 0$  (if the limit exists).

# Asymptotic upper bounds that are **not** tight: little-o

#### Definition 4(o).

We say that T(n) = o(f(n)) if, for any constant c > 0, there exists a constant  $n_0 \ge 0$  such that for all  $n \ge n_0$ , we have  $T(n) < c \cdot f(n)$ .

- ▶ Intuitively, T(n) becomes insignificant relative to f(n) as  $n \to \infty$ .
- ▶ Proof by showing that  $\lim_{n\to\infty} \frac{T(n)}{f(n)} = 0$  (if the limit exists).

Examples: Show that T(n) = o(f(n)) when

- $ightharpoonup T(n) = an^2 + b, \ a, b > 0 \text{ constants and } f(n) = n^3.$
- $ightharpoonup T(n) = n \log n \text{ and } f(n) = n^2.$

### Asymptotic lower bounds that are **not** tight: little- $\omega$

# Asymptotic lower bounds that are **not** tight: little- $\omega$

### Definition 5 ( $\omega$ ).

We say that  $T(n) = \omega(f(n))$  if, for any constant c > 0, there exists a constant  $n_0 \ge 0$  such that for all  $n \ge n_0$ , we have  $T(n) > c \cdot f(n)$ .

#### Definition 5 ( $\omega$ ).

We say that  $T(n) = \omega(f(n))$  if, for any constant c > 0, there exists a constant  $n_0 \ge 0$  such that for all  $n \ge n_0$ , we have  $T(n) > c \cdot f(n)$ .

- ▶ Intuitively T(n) becomes arbitrarily large relative to f(n), as  $n \to \infty$ .
- ▶  $T(n) = \omega(f(n))$  implies that  $\lim_{n\to\infty} \frac{T(n)}{f(n)} = \infty$ , if the limit exists. Then f(n) = o(T(n)).

### Asymptotic lower bounds that are **not** tight: little- $\omega$

# Basic rules for omitting low order terms from functions

#### Definition 5 ( $\omega$ ).

We say that  $T(n) = \omega(f(n))$  if, for any constant c > 0, there exists a constant  $n_0 \ge 0$  such that for all  $n \ge n_0$ , we have  $T(n) > c \cdot f(n)$ .

- ▶ Intuitively T(n) becomes arbitrarily large relative to f(n), as  $n \to \infty$ .
- ▶  $T(n) = \omega(f(n))$  implies that  $\lim_{n \to \infty} \frac{T(n)}{f(n)} = \infty$ , if the limit exists. Then f(n) = o(T(n)).

Examples: Show that  $T(n) = \omega(f(n))$  when

- $ightharpoonup T(n) = n^2 \text{ and } f(n) = n \log n.$
- ►  $T(n) = 2^n$  and  $f(n) = n^5$ .

1. Ignore **multiplicative** factors: e.g.,  $10n^3$  becomes  $n^3$ 

2.  $n^a$  dominates  $n^b$  if a > b: e.g.,  $n^2$  dominates n

3. Exponentials dominate polynomials: e.g.,  $2^n$  dominates  $n^4$ 

4. Polynomials dominate logarithms: e.g., n dominates  $\log^3 n$ 

 $\Rightarrow$  For large enough n,

$$\log n < n < n \log n < n^2 < 2^n < 3^n < n^n$$

# Properties of asymptotic growth rates

# Today

1. Transitivity

1.1 If 
$$f = O(g)$$
 and  $g = O(h)$ , then  $f = O(h)$ .

1.2 If 
$$f = \Omega(g)$$
 and  $g = \Omega(h)$ , then  $f = \Omega(h)$ .

1.3 If 
$$f = \Theta(g)$$
 and  $g = \Theta(h)$ , then  $f = \Theta(h)$ .

2. Sums of up to a constant number of functions

2.1 If 
$$f = O(h)$$
 and  $g = O(h)$ , then  $f + g = O(h)$ .

2.2 Let k be a fixed constant, and let  $f_1, f_2, \ldots, f_k, h$  be functions such that for all  $i, f_i = O(h)$ . Then  $f_1 + f_2 + \ldots + f_k = O(h)$ .

3. Transpose symmetry

- f = O(g) if and only if  $g = \Omega(f)$ .
- f = o(g) if and only if  $g = \omega(f)$ .

- 1 Asymptotic notation
- 2 The divide & conquer principle; application: mergesort
- 3 Solving recurrences and running time of mergesort

### The divide & conquer principle

- ▶ **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- ▶ Conquer the subproblems by solving them recursively.
- ▶ Combine the solutions to the subproblems to get the solution to the overall problem.

# Divide & Conquer applied to sorting

- ▶ **Divide** the problem into a number of subproblems that are smaller instances of the same problem.

  Divide the input error into two lists of equal size.
  - Divide the input array into two lists of equal size.
- ► Conquer the subproblems by solving them recursively. Sort each list recursively. (Stop when lists have size 2.)
- ► Combine the solutions to the subproblems into the solution for the original problem.

  Merge the two sorted lists and output the sorted array.

# Mergesort: pseudocode

# Merge: intuition

```
\begin{aligned} & \text{Mergesort } (A, left, right) \\ & \text{if } right == left \ \text{then return} \\ & \text{end if} \\ & mid = left + \lfloor (right - left)/2 \rfloor \\ & \text{Mergesort } (A, left, mid) \\ & \text{Mergesort } (A, mid + 1, right) \\ & \text{Merge} (A, left, right, mid) \end{aligned}
```

#### Remarks

- ▶ Mergesort is a recursive procedure (why?)
- ▶ Initial call: Mergesort(A, 1, n)
- ▶ Subroutine Merge merges two sorted lists of sizes  $\lfloor n/2 \rfloor$ ,  $\lceil n/2 \rceil$  into one sorted list of size n. How can we accomplish this?

**Intuition:** To merge two sorted lists of size n/2 repeatedly

- compare the two items in the front of the two lists;
- extract the smaller item and append it to the output;
- ▶ update the front of the list from which the item was extracted.

Example:  $n = 8, L = \{1, 3, 5, 7\}, R = \{2, 6, 8, 10\}$ 

# Merge: pseudocode

# Merge: optional exercises

code for Merge

```
Merge (A, left, right, mid)
L = A[left, mid]
R = A[mid + 1, right]
Maintain two pointers p_L, p_R, initialized to point to the first elements of L, R, respectively
while both lists are nonempty do

Let x, y be the elements pointed to by p_L, p_R
Compare x, y and append the smaller to the output Advance the pointer in the list with the smaller of x, y
end while
```

Append the remainder of the non-empty list to the output.

Optional exercise 2: write a recursive Merge

Optional exercise 1: write detailed pseudocode or actual

**Remark:** the output is stored directly in A[left, right], thus the subarray A[left, right] is sorted after Merge(A, left, right, mid).

| A 1     |         |          | 2.6    |
|---------|---------|----------|--------|
| Anal    | VSIS    | $\cap$ t | Merge  |
| 1 11100 | y $010$ | OI       | 110160 |

# Analysis of Merge: correctness

- 1. Correctness
- 2. Running time
- 3. Space

- 1. **Correctness:** by induction on the size of the two lists (recommended exercise)
- 2. Running time
- 3. Space

# Merge: pseudocode

### Merge (A, left, right, mid)

L = A[left, mid]  $\rightarrow$ **not** a primitive computational step! R = A[mid+1, right]  $\rightarrow$ **not** a primitive computational step! Maintain two pointers  $p_L, p_R$  initialized to point to the first elements of L, R, respectively while both lists are nonempty do

Let x, y be the elements pointed to by  $p_L, p_R$ Compare x, y and append the smaller to the output Advance the pointer in the list with the smaller of x, y end while

Append the remainder of the non-empty list to the output.

**Remark:** the output is stored directly in A[left, right], thus the subarray A[left, right] is sorted after Merge(A, left, right, mid).

# Analysis of Merge: running time

- 1. **Correctness:** by induction on the size of the two lists (recommended exercise)
- 2. Running time:
  - ▶ Suppose L, R have n/2 elements each
  - ► How many iterations before all elements from both lists have been appended to the output?
  - ► How much work within each iteration?
- 3. Space

- 1. **Correctness:** by induction on the size of the two lists (recommended exercise)
- 2. Running time:
  - $\blacktriangleright$  L, R have n/2 elements each
  - ▶ How many iterations before all elements from both lists have been appended to the output? At most n-1.
  - ▶ How much work within each iteration? Constant.
  - $\Rightarrow$  Merge takes O(n) time to merge L, R (why?).
- 3. **Space:** extra  $\Theta(n)$  space to store L, R (the output of Merge is stored directly in A).

Exercise (recommended): run Mergesort on input 1, 7, 4, 3, 5, 8, 6, 2.

### Analysis of Mergesort

- 1. Correctness
- 2. Running time
- 3. Space

### Mergesort: correctness

For simplicity, assume  $n = 2^k$  for integer  $k \ge 0$ . We will use induction on k.

- ▶ Base case: For k = 0, the input consists of 1 item; Mergesort returns the item.
- ▶ Induction Hypothesis: For  $k \ge 0$ , assume that Mergesort correctly sorts any list of size  $2^k$ .
- ▶ Induction Step: We will show that Mergesort correctly sorts any list A of size  $2^{k+1}$ .

From the pseudocode of Mergesort, we have:

- Line 3: mid takes the value  $2^k$
- Line 4:  $Mergesort(A, 1, 2^k)$  correctly sorts the leftmost half of the input, by the induction hypothesis.
- ▶ Line 5: Mergesort $(A, 2^k + 1, 2^{k+1})$  correctly sorts the rightmost half of the input, by the induction hypothesis.
- Line 6: Merge correctly merges its two sorted input lists into one sorted output of size  $2^k + 2^k$ .
- $\Rightarrow$  Mergesort correctly sorts any input of size  $2^{k+1}$ .

# Running time of Mergesort

Today

The running time of Mergesort satisfies:

$$T(n) = 2T(n/2) + cn$$
, for  $n \ge 2$ , constant  $c > 0$   
 $T(1) = c$ 

This structure is typical of recurrence relations

- ▶ an **inequality** or **equation** bounds T(n) in terms of an expression involving T(m) for m < n
- ightharpoonup a base case generally says that T(n) is constant for small constant n

#### Remarks

- ▶ We ignore floor and ceiling notations.
- A recurrence does **not** provide an asymptotic bound for T(n): to this end, we must **solve** the recurrence.

- 1 Asymptotic notation
- 2 The divide & conquer principle; application: mergesort
- 3 Solving recurrences and running time of mergesort

# Solving recurrences, method 1: recursion trees

The technique consists of three steps

- 1. Analyze the first few levels of the tree of recursive calls
- 2. Identify a pattern
- 3. Sum the work spent over all levels of recursion

**Example:** give an asymptotic bound for the recurrence describing the running time of Mergesort

$$T(n) = 2T(n/2) + cn$$
, for  $n \ge 2$ , constant  $c > 0$   
 $T(1) = c$ 

# A general recurrence and its solution

The running times of many recursive algorithms can be expressed by the following recurrence

$$T(n) = aT(n/b) + cn^k$$
, for  $a, c > 0, b > 1, k \ge 0$ 

What is the recursion tree for this recurrence?

- $\triangleright$  a is the branching factor
- ightharpoonup b is the factor by which the size of each subproblem shrinks
- $\Rightarrow$  at level i, there are  $a^i$  subproblems, each of size  $n/b^i$
- $\Rightarrow$  each subproblem at level i requires  $c(n/b^i)^k$  work
- the height of the tree is  $\log_b n$  levels
- $\Rightarrow$  Total work:  $\sum_{i=0}^{\log_b n} a^i c(n/b^i)^k = cn^k \sum_{i=0}^{\log_b n} \left(\frac{a}{b^k}\right)^i$

### Theorem 6 (Master theorem).

If  $T(n) = aT(\lceil n/b \rceil) + O(n^k)$  for some constants a > 0, b > 1,  $k \ge 0$ , then

$$T(n) = \begin{cases} O(n^{\log_b a}) & \text{, if } a > b^k \\ O(n^k \log n) & \text{, if } a = b^k \\ O(n^k) & \text{, if } a < b^k \end{cases}$$

#### Example: running time of Mergesort

T(n) = 2T(n/2) + cn:  $a = 2, b = 2, k = 1, b^k = 2 = a \Rightarrow T(n) = O(n \log n)$ 

### How would you solve...

1. 
$$T(n) = 2T(n-1) + 1, T(1) = 2$$

2. 
$$T(n) = 2T^2(n-1), T(1) = 4$$

3. 
$$T(n) = T(2n/3) + T(n/3) + cn$$

The technique consists of two steps

- 1. Guess a bound
- 2. Use (strong) induction to prove that the guess is correct (See your textbook for more details on this technique.)

#### Remark 1 (simple vs strong induction).

- 1. **Simple induction:** the induction step at n requires that the inductive hypothesis holds at step n-1.
- 2. **Strong induction** is just a variant of simple induction where the induction step at n requires that the inductive hypothesis holds at all previous steps  $1, 2, \ldots, n-1$ .