

Fig. 12.2. Contour plot in the (ε, γ) -plane of the rotating liquid-drop energy calculated for the nucleus ¹⁵⁴Sm at I=40. The rotation axis (defined as the 1-axis) is sketched for the different cases of axially symmetric shape (cf. fig. 8.6). The same nuclear shapes are formed in the three 60° sectors but the rotation axis coincides with the smaller ($\gamma=0^\circ$ to 60°), the intermediate ($\gamma=0^\circ$ to -60°) and the larger ($\gamma=-60^\circ$ to -120°) principal axis, respectively. The numbers on the contour lines refer to MeV above the energy of a spherical liquid drop at I=0 (from Andersson et al. 1976).

Fig. 12.4. Single-particle orbitals along a path in the $(\varepsilon, \varepsilon_4, \gamma, \omega)$ space as indicated schematically in the lower part of the figure. The path is chosen to illustrate how the orbitals can be followed when a prolate collective band goes to termination at oblate shape. The spherical origin of the orbitals at a typical low-spin deformation is traced in part A while in part B, rotation is switched on at constant deformation.

At a frequency of $\omega/\omega_0 \simeq 0.15$ corresponding to $I \simeq 6$ in the 20 Ne ground band, the driving forces toward oblate shape become important. Thus, in part C the deformation is varied over the γ plane together with changes in the other parameters as they occur when a band approaches termination at $\gamma = 60^\circ$. In part D, finally, the origin of the aligned oblate orbitals is traced, illustrating to which j shell they mainly belong and their aligned spin. The occupation of sd-shell orbitals in the ground state and in the terminating 8^+ state of 20 Ne is also indicated. It is interesting to note how the Z = N = 10 gap stays large all the way to the termination ($\varepsilon \simeq 0.20, \gamma = 60^\circ$) while this is not the case for the N = Z = 12 gap. Thus, we expect the aligned 8^+ state terminating the ground band in 20 Ne to be more favoured than the corresponding aligned 12^+ state in 24 Mg (revised from Sheline et al., 1988).

rotating harmonic oscillator. The present configuration of 20 Ne should thus be denoted as $\Sigma_{\alpha} = 14, \Sigma_{\beta} = 22$ (and $\Sigma_{1} = 14$).

In the harmonic oscillator approximation, it is now trivial to calculate the properties of the ground state configuration of 20 Ne from the explicit formulae given above. The maximum spin of the configuration is $I_{\text{max}} = 8$