Teoremi sulle funzioni derivabili

Iniziamo con la definizione di punto di massimo o minimo relativo di una funzione:

Definizione

a) $x_0 \in D_f$ è un punto di massimo relativo se esiste un intorno I_{x_0} tale che :

$$f(x_0) \ge f(x) \qquad \forall x \in I_{x_0}$$

b) $x_0 \in D_f$ è un punto di minimo relativo se esiste un intorno I_{x_0} tale che :

$$f(x_0) \le f(x) \qquad \forall x \in I_{x_0}$$

Diamo ora la definizione di massimo e minimo assoluto:

Definizione

a) $x_0 \in D_f$ è il punto di massimo assoluto se :

$$f(x_0) \ge f(x) \qquad \forall x \in D$$

 $f(x_0) \geq f(x) \qquad \forall x \in D_f$ e $f(x_o) = M$ è il massimo assoluto della funzione;

b) $x_0 \in D_f$ è il punto di minimo assoluto se:

$$f(x_0) \le f(x) \qquad \forall x \in D$$

e $f(x_0) = m$ è il minimo assoluto della funzione

OSSERVAZIONE: un punto di massimo (minimo) assoluto è anche un punto di massimo (minimo) relativo ma il viceversa non è vero.

a e x_2 sono punti di minimo relativo; a è punto di minimo assoluto;

 x_1 e b sono punti di massimo relativo e x_1 è punto di massimo assoluto.

Per studiare il grafico di una funzione è fondamentale la ricerca di punti di massimo (minimo) relativi. Per capire come possano essere individuati vediamo alcuni teoremi riguardanti le funzioni derivabili. Partiremo da un teorema riguardante i massimi (minimi) relativi interni al dominio (per es. x_1 e x_2 nel grafico dell'esempio precedente) in cui la funzione è derivabile e poi dimostreremo tre teoremi (Rolle, Cauchy, Lagrange) che ci permetteranno di dimostrare il legame tra l'"andamento" di una funzione (funzione crescente, decrescente) e il segno della sua derivata.

Teorema di Fermat

Punti di massimo (minimo) relativi interni al dominio

Sia $f:[a,b] \to \Re$ continua in [a,b] e derivabile in (a,b).

Se x_0 è un punto di massimo (minimo) relativo interno al dominio $\Rightarrow f'(x_0) = 0$ (cioè la tangente al grafico è parallela all'asse x)

Dimostrazione

Supponiamo che x_0 sia un punto di massimo relativo interno al dominio (vedi figura).

Allora
$$\exists I_{x_0}: f(x_0) \ge f(x) \quad \forall x \in I_{x_0} \text{ e quindi } f(x) - f(x_0) \le 0 \quad \forall x \in I_{x_0}$$

Calcoliamo $f'(x_0)$:

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0 \text{ perché } f(x) - f(x_0) \le 0 \text{ e } x - x_0 > 0$$

mentre
$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$
 perché $f(x) - f(x_0) \le 0$ e $x - x_0 < 0$

Ma se f(x) è derivabile in x_0 i due limiti devono coincidere e quindi l'unica possibilità è che siano entrambi uguali a $0 \Rightarrow f'(x_0) = 0$.

Osservazione: è importante che se x_0 è un punto di massimo o minimo relativo ma non è interno al dominio (per es. a e b nella figura) non è detto che in x_0 la derivata sia nulla (vedi figura).

NOTA: il viceversa del teorema non è vero perché se in x_0 si ha $f'(x_0) = 0$ significa che la **tangente al grafico è orizzontale** e x_0 potrebbe anche essere un "punto di flesso" a tangente orizzontale cioè un punto in cui il grafico cambia concavità come vedremo in seguito.

Teorema di Rolle (matematico francese)

Sia $f:[a,b] \to \Re$ continua in [a,b] e derivabile in (a,b) e se

$$f(a) = f(b) \Rightarrow \exists x_0 \in (a,b) : f'(x_0) = 0$$

cioè esiste **almeno** un punto $x_0 \in (a,b)$: $f'(x_0) = 0$

Dimostrazione

Se f(x) è costante allora $\forall x \in (a,b)$ f'(x) = 0.

Se f(x) non è costante, per il teorema di Weierstrass ha massimo e minimo assoluti. Poiché però f(a) = f(b) il massimo e il minimo assoluti non possono essere assunti entrambi negli estremi dell'intervallo e quindi **almeno uno deve essere interno** al dominio \Rightarrow (per il teorema precedente) $\exists x_0 \in (a,b): f'(x_0) = 0$

NOTA: se la funzione non fosse derivabile in (a,b) il teorema non sarebbe vero.

Consideriamo per esempio il caso in figura: f(a) = f(b) ma non c'è nessun punto x_0 con tangente al grafico parallela all'asse x (cioè con derivata nulla)

135

In x_0 f(x) non è derivabile.

Esempi

1) Considera $f(x) = \sqrt{4 - x^2}$

• Verifica le ipotesi del teorema di Rolle in I = [-2,2]?

f(x) ha come dominio $4-x^2 \ge 0 \Rightarrow -2 \le x \le 2 \Rightarrow f(x)$ è continua in [-2,2].

Calcoliamo $f'(x) = \frac{1}{2\sqrt{4-x^2}} \cdot (-2x) = \frac{-x}{\sqrt{4-x^2}}$

Quindi f(x) non è derivabile in $x = \pm 2$ (punti a tangente verticale) ma nelle ipotesi del teorema non si richiede la derivabilità negli estremi dell'intervallo.

Verifichiamo infine se f(a) = f(b) cioè f(-2) = f(2)

f(-2) = 0 f(2) = 0 e quindi anche questa ipotesi è verificata.

Quindi f(x) verifica tutte le ipotesi del teorema di Rolle in [-2,2]

• Qual è (o quali sono) il punto x_0 : $f'(x_0) = 0$?

Basta porre f'(x) = 0 e risolvere l'equazione.

Abbiamo $\frac{-x}{\sqrt{4-x^2}} = 0 \Rightarrow x = 0$

Quindi $x_0 = 0$

Del resto disegnando il grafico di $f(x) = \sqrt{4 - x^2}$ (elevando al quadrato $\Rightarrow x^2 + y^2 = 4 \Rightarrow$ semicirconferenza di centro (0,0) e raggio 2) si osserva che in $x_0 = 0$ si ha la tangente orizzontale.

2) Considera $f(x) = |2x - x^2|$ nell'intervallo $I = [1 - \sqrt{2}, 1]$.

La funzione verifica le ipotesi del teorema di Rolle?

$$f(x) = \begin{cases} 2x - x^2 & quando \ 2x - x^2 \ge 0 \Leftrightarrow 0 \le x \le 2 \\ -(2x - x^2) & quando \ 2x - x^2 \le 0 \Leftrightarrow x \le 0 \cup x \ge 2 \end{cases}$$

Quindi

$$f'(x) = \begin{cases} 2 - 2x & 0 < x < 2 \\ -(2 - 2x) & x < 0 \cup x > 2 \end{cases}$$

Disegnando il grafico abbiamo:

Consideriamo l'intervallo assegnato $I=[1-\sqrt{2},1]$: in questo intervallo la funzione è continua e f(a)=f(b) (si verifica facilmente) ma in x=0 (interno a I) non è derivabile perché

$$\lim_{x \to 0^{-}} f'(x) = -2 \text{ mentre } \lim_{x \to 0^{+}} f'(x) = 2$$

Quindi le ipotesi del teorema di Rolle non sono verificate ed infatti osservando il grafico nessun punto interno a *I* ha derivata nulla.

3) Per quali valori di a e b la funzione

$$f(x) = \begin{cases} ax^2 + 1 & -1 \le x \le 0\\ \frac{1}{2}x^2 + b & 0 < x \le \sqrt{2} \end{cases}$$

verifica le ipotesi del teorema di Rolle nell'intervallo $I = \begin{bmatrix} -1; \sqrt{2} \end{bmatrix}$? Qual è il valore x_0 per cui $f'(x_0) = 0$? Disegna il grafico di f(x).

Svolgimento

Perché la funzione sia continua anche in x = 0 occorre che il limite sinistro e destro di f(x) in x=0siano uguali:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} ax^{2} + 1 = 1$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} ax^{2} + 1 = 1$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{1}{2}x^{2} + b = b$$

Quindi si dovrà avere b = 1.

La derivabilità è verificata anche per x = 0 poiché essendo

$$f'(x) = \begin{cases} 2ax & -1 \le x < 0 \\ x & 0 < x \le \sqrt{2} \end{cases}$$

abbiamo che $\lim_{x\to 0^{-}} y' = \lim_{x\to 0^{+}} y' = 0$.

Quindi, perché siano verificate tutte le ipotesi del teorema di Rolle, basta che $f(-1) = f(\sqrt{2})$. Abbiamo:

$$f(-1) = a + 1$$
$$f(\sqrt{2}) = 2$$

e quindi dovrà essere $a+1=2 \Rightarrow a=1$.

In conclusione abbiamo a = 1, b = 1 e il grafico risulta quello in figura.

Il punto x_0 in cui si annulla la derivata è $x_0 = 0$.

ESERCIZITEOREMA DI ROLLE

1) Considera la funzione f(x) = |2 - x|Si può applicare il teorema di Rolle in I = [0,4]? Disegna il grafico di f(x).

[no, perché ...]

2) Considera $f(x) = 1 + \sqrt{1 - x^2}$. Si può applicare il teorema di Rolle in I = [-1,1]? Disegna il grafico di f(x).

[si; $x_0 = 0$]

3) Considera $f(x) = \left| \frac{1-x}{x} \right|$. Si può applicare il teorema di Rolle in $I = \left[\frac{3}{4}, \frac{3}{2} \right]$? Disegna il grafico di f(x).

[no, perché ...]

4) Considera f(x) = |arctgx|. Si può applicare il teorema di Rolle in I = [-1,1]? Disegna il grafico di f(x).

[no, perché ...]

5) Considera $f(x) = e^{-x^2}$. Si può applicare il teorema di Rolle in I = [-1,1]?

[si; $x_0 = 0$]

6) Considera $f(x) = |x^3|$. Si può applicare il teorema di Rolle in I = [-1,1]? Disegna il grafico di f(x).

[si; $x_0 = 0$]

Teorema di Cauchy (matematico francese)

Siano $f:[a,b] \to \Re$ e $g:[a,b] \to \Re$ due funzioni continue in [a,b] e derivabili in (a,b) e inoltre sia $g'(x) \neq 0 \quad \forall x \in (a,b)$

$$\Rightarrow \exists \ x_0 \in (a,b) : \ \frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Dimostrazione

Osserviamo innanzitutto che $g(a) \neq g(b)$ perché se fosse g(a) = g(b) per il teorema di Rolle

 $\exists x_0 \in (a,b): g'(x_0) = 0$ e questo è contrario all'ipotesi che $g'(x) \neq 0 \quad \forall x \in (a,b)$.

Consideriamo la funzione $F(x)\cos x$ definita:

$$F(x) = (g(b) - g(a)) \cdot f(x) - (f(b) - f(a)) \cdot g(x)$$

Poiché F(x) è continua in [a,b] e derivabile in (a,b) e, come si può verificare facilmente,

$$F(a) = F(b)$$

per il teorema di Rolle $\exists x_0 \in (a,b): F'(x_0) = 0$

Ma
$$F'(x) = (g(b) - g(a)) \cdot f'(x) - (f(b) - f(a)) \cdot g'(x)$$

e quindi $F'(x_0) = (g(b) - g(a)) \cdot f'(x_0) - (f(b) - f(a)) \cdot g'(x_0) = 0$ e quindi $\exists x_0 \in (a,b)$:

$$\frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Dal teorema di Cauchy segue subito il seguente teorema di Lagrange (matematico torinese).

Teorema di Lagrange

Se $f:[a,b] \to \Re$ è continua in [a,b] e derivabile in (a,b)

$$\Rightarrow \exists x_0 \in (a,b): f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Interpretazione geometrica: poiché $\frac{f(b)-f(a)}{b-a}$ è l'inclinazione della retta passante per gli estremi del grafico, il teorema afferma che esiste almeno un punto $P(x_0, f(x_0))$ in cui la tangente al grafico è parallela alla retta passante per gli estremi del grafico.

Dimostrazione

Basta considerare come seconda funzione g(x) = x (continua, derivabile e con $g'(x) \neq 0$) ed applicare il teorema di Cauchy.

Infatti poiché $g'(x) = 1 \quad \forall x \in (a,b) \text{ e } g(b) = b, \quad g(a) = a \text{ avremo che}$

$$\exists x_0 \in (a,b): \frac{f'(x_0)}{1} = \frac{f(b) - f(a)}{b - a}$$

cioè quello che volevamo dimostrare.

Esempi

- 1) Consideriamo $f(x) = x^3$ nell'intervallo I = [-1,1].
 - Verifica le ipotesi del teorema di Lagrange? Poiché f(x) è continua e derivabile in \Re lo è sicuramente anche in I e quindi verifica le ipotesi del teorema di Lagrange.
 - Determina il punto x_0 (o i punti): $f'(x_0) = \frac{f(b) f(a)}{b a}$ Nel nostro caso f(-1) = -1 f(1) = 1 e quindi, essendo $f'(x) = 3x^2$ devo risolvere:

$$3x^2 = \frac{1 - (-1)}{2}$$

$$3x^2 = 1 \Rightarrow x_{1,2} = \pm \frac{1}{\sqrt{3}}$$

I valori sono interni all'intervallo *I* e quindi entrambi accettabili.

Graficamente infatti si verifica che esistono due punti del grafico in cui la tangente è parallela alla retta per A(-1,-1) e B(1,1)

2) Consideriamo
$$f(x) = |1 - x^2|$$
 in $I = [0,2]$. Si può applicare il teorema di Lagrange? Poiché $f(x) = \begin{cases} 1 - x^2 & -1 \le x \le 1 \\ -(1 - x^2) & x \le -1 \ \lor \ x \ge 1 \end{cases}$

$$f'(x) = \begin{cases} -2x & -1 < x < 1 \\ 2x & x < -1 \ \lor \ x > 1 \end{cases}$$

Poiché $\lim_{x\to 1^-} f'(x) = -2$ e $\lim_{x\to 1^+} f'(x) = 2$ si ha che f(x) non è derivabile in x = 1 (interno a I) e quindi il teorema di Lagrange non si può applicare.

3) La funzione

$$f(x) = \begin{cases} 1 - x^2 & -1 \le x \le 0 \\ 1 + x^2 & 0 < x \le 1 \end{cases}$$

verifica le ipotesi di Lagrange nell'intervallo I = [-1;1]? Se la risposta è affermativa qual è il punto x_0 (o i punti) previsto dal teorema? Traccia il grafico di f(x).

Svolgimento

La funzione è continua anche in x = 0 poiché

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} 1 - x^{2} = 1$$
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} 1 + x^{2} = 1$$

Per la derivabilità poiché abbiamo:

$$f'(x) = \begin{cases} -2x & -1 \le x < 0 \\ 2x & 0 < x \le 1 \end{cases}$$

la funzione è derivabile anche per x = 0 poiché limite sinistro e destro di y' per $x \to 0$ sono uguali (entrambi zero).

Sono quindi verificate le ipotesi del teorema di Lagrange.

Calcoliamo

$$\frac{f(b)-f(a)}{b-a} = \frac{f(1)-f(-1)}{2} = \frac{2}{2} = 1$$

Quindi per determinare x_0 tale che $y'(x_0) = \frac{f(b) - f(a)}{b - a}$ poniamo:

$$-2x = 1 \rightarrow x = -\frac{1}{2}$$
$$2x = 1 \rightarrow x = \frac{1}{2}$$

Abbiamo quindi due valori di x_0 (vedi grafico).

ESERCIZI TEOREMA DI LAGRANGE

Considera $f(x) = x^3 - 8$. Si può applicare il teorema di Lagrange in I = [0,2]? Disegna il grafico di f(x).

[si;
$$x_0 = +\frac{2}{\sqrt{3}}$$
]

2) Considera
$$f(x) = \begin{cases} \frac{3 - x^2}{2} & 0 \le x \le 1\\ \frac{1}{x} & 1 \le x \le 2 \end{cases}$$

Si può applicare il teorema di Lagrange? Disegna il grafico di f(x).

[si;
$$x_1 = \frac{1}{2}$$
, $x_2 = \sqrt{2}$]

3) Considera
$$f(x) = \begin{cases} e^x & x < 0 \\ x+1 & x \ge 0 \end{cases}$$

Si può applicare il teorema di Lagrange in I = [-1,1]?

[si;
$$x_0 = \ln\left(1 - \frac{1}{2e}\right)$$
]

4) Considera
$$f(x) = \begin{cases} 1 - x - x^2 & -1 \le x \le 0 \\ e^{-x} & 0 \le x \le 1 \end{cases}$$

Si può applicare il teorema di Lagrange in I = [-1,1]?

[si;
$$x_0 = -\frac{1+e}{4e}$$
]

5) Considera

$$f(x) = \begin{cases} x^2 & x \le 0 \\ \frac{1}{2}x^2 & x > 0 \end{cases}$$

Si può applicare il teorema di Lagrange in I = [-1,2]?

[si;
$$x_0 = \frac{1}{3}$$
]

Teoremi funzioni derivabili

6) Considera
$$f(x) = 2x^3 - 3x^2$$

Si può applicare il teorema di Lagrange in $I = [-1,2]$?

[si;
$$x_{1,2} = \frac{1 \pm \sqrt{3}}{2}$$
]

7) Considera

$$f(x) = \begin{cases} x^2 & 0 \le x \le 1 \\ -x^2 + 4x - 2 & 1 < x \le 2 \end{cases}$$

Si può applicare il teorema di Lagrange in I = [0,2]? Disegna il grafico di f(x).

[si;
$$x_1 = \frac{1}{2}$$
; $x_2 = \frac{3}{2}$]

8) Considera $f(x) = \frac{2x}{x+1}$. Si può applicare il teorema di Lagrange in I = [1,3]? Disegna il grafico di f(x).

[si;
$$x_0 = 2\sqrt{2} - 1$$
]

9) Considera $f(x) = \sqrt{x}$. Si può applicare il teorema di Lagrange in I = [4,9]? [si; $x_0 = \frac{25}{4}$]

10) Considera $f(x) = \ln x$. Si può applicare il teorema di Lagrange in I = [1, e]? [si; $x_0 = e - 1$]

Considera $f(x) = x^2 + |x|$. Si può applicare il teorema di Lagrange in I = [-1,2]? [no, perché ...]

12) Considera

$$f(x) = \begin{cases} x - 1 & 0 \le x < 1 \\ \ln x & x \ge 1 \end{cases}$$

Si può applicare il teorema di Lagrange in I = [0,2]?

[si;
$$x_0 = \frac{2}{\ln 2 + 1}$$
]

13) Considera

$$f(x) = \begin{cases} 2 - x^2 & 0 \le x \le 1 \\ \frac{2 - x}{x} & 1 < x \le 2 \end{cases}$$

Si può applicare il teorema di Lagrange in I = [0,2]? [si; $x_1 = \frac{1}{2}$; $x_2 = \sqrt{2}$]

Teorema di De l'Hospital

(senza dimostrazione)

Se $\lim_{\substack{x \to x_0 \\ (x \to \infty)}} \frac{f(x)}{g(x)}$ si presenta in forma indeterminata $\frac{0}{0}, \frac{\infty}{\infty}$ e se esiste $\lim_{\substack{x \to x_0 \\ (x \to \infty)}} \frac{f'(x)}{g'(x)}$ (finito o infinito)

$$\Rightarrow \lim_{\substack{x \to x_0 \\ (x \to \infty)}} \frac{f(x)}{g(x)} = \lim_{\substack{x \to x_0 \\ (x \to \infty)}} \frac{f'(x)}{g'(x)}$$
 (la dimostrazione si basa sul teorema di Cauchy)

NOTA: se $\lim_{\substack{x \to x_0 \\ (x \to \infty)}} \frac{f'(x)}{g'(x)}$ si presenta ancora in forma indeterminata possiamo cercare di calcolare

$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} \frac{f''(x)}{g''(x)} \text{ eccetera...}$$

Esempi

1)
$$\lim_{x \to 0} \frac{senx}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$$

2)
$$\lim_{x \to 0} \frac{e^{x} - 1}{x} = \lim_{x \to 0} \frac{e^{x}}{1} = 1$$

3)
$$\lim_{x \to +\infty} \frac{\ln x}{x^2} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{2x} = \lim_{x \to +\infty} \frac{1}{2x^2} = 0$$

In generale se
$$\alpha > 0$$
: $\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\alpha \cdot x^{\alpha - 1}} = 0$

Si dice che la funzione $y = \ln x$ è un "infinito" di ordine inferiore rispetto alla funzione $y = x^{\alpha}$ $(\alpha > 0)$, quando $x \to +\infty$.

4)
$$\lim_{x \to +\infty} \frac{e^{x}}{x^{2}} = \lim_{x \to +\infty} \frac{e^{x}}{2x} = \lim_{x \to +\infty} \frac{e^{x}}{2} = +\infty$$

In generale se
$$\alpha > 0$$
: $\lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = \dots = +\infty$

Si dice che la funzione $y = e^x$ è un "infinito" di ordine superiore rispetto alla funzione $y = x^{\alpha}$ $(\alpha > 0)$, quando $x \to +\infty$.

$$\lim_{x \to +\infty} \frac{x + senx}{x + \cos x}$$

Derivando troviamo $\lim_{x\to +\infty} \frac{1+\cos x}{1-senx}$: questo limite non esiste e quindi non possiamo applicare il teorema di De l'Hospital.

In questo caso il limite dato può essere calcolato dividendo numeratore e denominatore per x:

$$\lim_{x \to +\infty} \frac{x + senx}{x + \cos x} = \frac{1 + \left(\frac{senx}{x}\right)}{1 + \left(\frac{\cos x}{x}\right)} = 1$$

6) Il teorema di De l'Hospital può essere utilizzato anche per determinare limiti che si presentano nella forma indeterminata 0·∞ del prodotto ma solo dopo aver scritto il prodotto come un quoziente "opportuno".

Per esempio:

 $\lim_{x \to -\infty} x \cdot e^x \text{ si presenta in forma indeterminata } \infty \cdot 0$

Se scriviamo
$$\lim_{x \to -\infty} x \cdot e^x = \lim_{x \to -\infty} \frac{x}{e^{-x}} = \lim_{x \to -\infty} \frac{1}{-e^{-x}} = 0$$

Attenzione: se avessimo scritto $x \cdot e^x = \frac{e^x}{\frac{1}{x}}$ non saremmo riusciti a calcolare il limite con

l'Hospital perché derivando la forma sarebbe rimasta indeterminata:

$$\lim_{x \to -\infty} x \cdot e^x = \lim_{x \to -\infty} \frac{e^x}{\frac{1}{x}} = \lim_{x \to -\infty} \frac{e^x}{-\frac{1}{x^2}} = \frac{0}{0} \quad \text{che è ancora una forma indeterminata...}$$

Occorre quindi fare attenzione a come si trasforma il prodotto.

ESERCIZI TEOREMA DI DE L'HOSPITAL

Calcola i seguenti limiti

1)
$$\lim_{x \to +\infty} \frac{x^2}{\ln x}$$
 [+\infty]

$$\lim_{x \to +\infty} \frac{x^3}{e^x}$$
 [0]

$$\lim_{x \to 0^+} x \cdot \ln x \tag{0}$$

4)
$$\lim_{x \to +\infty} \frac{\ln x + x}{x^2}$$
 [0]

$$\lim_{x \to -\infty} x^2 \cdot e^x \tag{0}$$

6)
$$\lim_{x \to \frac{\pi}{2}} \left(\frac{\pi}{2} - x \right) \cdot tgx$$
 [1]
7)
$$\lim_{x \to +\infty} x \cdot \left(arctgx - \frac{\pi}{2} \right)$$
 [-1]

7)
$$\lim_{x \to +\infty} x \cdot \left(arctgx - \frac{\pi}{2} \right)$$
 [-1]

8)
$$\lim_{x \to +\infty} x^2 \cdot e^{-x}$$
 [0]

9)
$$\lim_{x \to 0^+} \frac{\ln x}{\cot gx}$$
 [0]

$$\lim_{x \to 0^+} x^2 \cdot \ln x \tag{0}$$

$$\lim_{x \to 0} \frac{sen3x}{2x + tgx}$$
 [1]

$$\lim_{x \to 0} \frac{\ln(1+x)}{x}$$
 [1]

$$\lim_{x \to 0^+} \frac{\ln(1+x)}{x^2}$$
 [+\infty]

14)
$$\lim_{x \to 0} \frac{e^{2x} - 1}{x}$$
 [2]

Corollari del teorema di Lagrange

1) Se $f:[a,b] \to \Re$ è continua in [a,b], derivabile in (a,b)e $f'(x) = 0 \quad \forall x \in (a,b) \implies f(x) = k \text{ cioè } f(x) \text{ è una funzione costante.}$

Dimostrazione

Sia $x \in (a,b)$: poiché f(x) è continua anche in [a,x] e derivabile in (a,x), posso applicare il teorema di Lagrange a questo intervallo.

$$\Rightarrow \exists x_0 \in (a,x): f'(x_0) = \frac{f(x) - f(a)}{x - a}$$

Ma
$$f'(x_0) = 0$$
 e quindi $f(x) - f(a) = 0 \implies f(x) = f(a)$

Poiché questo accade comunque si scelga $x \in (a,b)$ si è dimostrato che f(x) = k (cioè la funzione è costante).

2) Se $f:[a,b] \to \Re$ e $g:[a,b] \to \Re$ sono continue in [a,b], derivabili in (a,b) e se

$$f'(x) = g'(x) \quad \forall x \in (a,b)$$

$$\downarrow \downarrow$$

$$f(x) - g(x) = k \quad \forall x \in [a,b]$$

Dimostrazione

Consideriamo F(x) = f(x) - g(x)

Poiché F'(x) = f'(x) - g'(x) = 0 $\forall x \in (a,b)$ applicando il primo corollario si ha F(x) = k e quindi f(x) - g(x) = k cioè le due funzioni differiscono per una costante.

3) Ma la conseguenza più interessante del teorema di Lagrange è rappresentata dal seguente teorema:

Teorema

Relazione tra il segno della derivata f'(x) e "andamento" della funzione

Data $f:[a,b] \to \Re$ continua in [a,b] e derivabile in (a,b) abbiamo che:

- se $f'(x) > 0 \quad \forall x \in (a,b) \implies f(x)$ è crescente in (a,b)
- se $f'(x) < 0 \quad \forall x \in (a,b) \implies f(x)$ è decrescente in (a,b)

Dimostrazione

Consideriamo $x_1, x_2 \in [a, b]$ con $x_1 < x_2$.

Poiché f(x) è continua in $[x_1, x_2]$ e derivabile in (x_1, x_2) applicando il teorema di Lagrange all'intervallo $[x_1, x_2]$

$$\exists x_0 \ con \qquad x_1 < x_0 < x_2 : \quad f'(x_0) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Ma
$$f'(x_0) > 0$$
 per ipotesi e $x_2 - x_1 > 0 \implies f(x_2) - f(x_1) > 0 \implies f(x_2) > f(x_1)$

Quindi, poiché questo vale comunque scelga $x_1 < x_2$, abbiamo dimostrato che la funzione è crescente.

Analogamente si dimostra che se $f'(x) < 0 \quad \forall x \in (a,b) \implies f(x)$ è decrescente.

Osservazione: infatti "geometricamente" si osserva che quando una funzione è crescente i coefficienti angolari delle tangenti sono positivi, mentre se è decrescente sono negativi (vedi figura).

Nota

Osserviamo che se f(x) è crescente in $[a,b] \Rightarrow f'(x) \ge 0$ poiché può esserci anche un flesso a tangente orizzontale.

Questo teorema è fondamentale per lo studio del grafico di una funzione poiché, come vedremo, ci permette di individuare i punti di massimo, minimo e flesso a tangente orizzontale.

CONCAVITA' E FLESSI

Nello studio di un grafico è importante determinare anche la "**concavità**" del grafico: i punti in cui c'è un cambio di concavità sono detti punti di flesso.

Definiamo cosa si intende per "concavità verso l'alto" o "verso il basso" del grafico di una funzione in x_0 :

Definizione: diciamo che in x_0 il grafico di f(x) volge la concavità verso l'alto quando esiste un intorno di x_0 I_{x_0} in cui il grafico si trova sopra alla tangente in $P(x_0; f(x_0))$

Poiché l'equazione della tangente risulta

$$t: y - f(x_0) = f'(x_0)(x - x_0) \implies y = f(x_0) + f'(x_0)(x - x_0)$$

possiamo anche dire che in x_0 il grafico volge la concavità verso l'alto

se
$$\exists I_{x_0} : \forall x \in I_{x_0} \quad f(x) \ge f(x_0) + f'(x_0)(x - x_0)$$

Definizione: diciamo che in x_0 il grafico di f(x) volge la concavità verso il basso quando esiste un intorno di x_0 I_{x_0} in cui il grafico si trova sotto alla tangente in $P(x_0; f(x_0))$ cioè

se
$$\exists I_{x_0} : \forall x \in I_{x_0} \quad f(x) \le f(x_0) + f'(x_0)(x - x_0)$$

Per determinare la concavità è necessario studiare la derivata seconda perché abbiamo il seguente teorema:

Teorema: sia f(x) continua in I con f'(x), f''(x) continue e $x_0 \in I$.

- Se $f''(x_0) > 0 \Rightarrow$ in x_0 il grafico di f(x) volge la concavità verso l'alto.
- Se $f''(x_0) < 0 \Rightarrow$ in x_0 il grafico di f(x) volge la concavità verso il basso.

Dimostrazione

Supponiamo che $f''(x_0) > 0$

Consideriamo
$$\varphi(x) = f(x) - [f(x_0) + f'(x_0)(x - x_0)]$$

Osserviamo che $\varphi(x)$ rappresenta lo scarto funzione-tangente: per dimostrare che la concavità è rivolta verso l'alto basterà dimostrare che $\exists I_{x_0}$ in cui $\varphi(x) \ge 0$

Determiniamo:

$$\varphi'(x) = f'(x) - f'(x_0)$$

$$\varphi''(x) = f''(x)$$

Poiché quindi $\varphi''(x_0) = f''(x_0) > 0 \; \exists \; I_{x_0}$ in cui $\varphi''(x) > 0$ (per la continuità di f''(x)). Possiamo scrivere $\varphi''(x) = D(\varphi'(x)) > 0$ e allora, avendo derivata positiva, $\varphi'(x)$ è una funzione crescente.

Ma sostituendo x_0 abbiamo $\varphi'(x_0) = 0$ e quindi il segno di $\varphi'(x)$ sarà il seguente (poiché $\varphi'(x)$ deve essere crescente):

Ma allora $\varphi(x)$ ha un minimo in x_0 cioè

$$\exists \ I_{x_0}: \forall x \in I_{x_0} \qquad \varphi(x) \ge \varphi(x_0)$$

Ma sostituendo $x_0 \varphi(x_0) = 0$ e quindi

$$\exists I_{x_0}: \forall x \in I_{x_0} \qquad \varphi(x) \ge 0$$

Cioè il grafico volge la concavità verso l'alto (in x_0).

La dimostrazione della seconda parte è analoga.

Flessi di una funzione

Definizione: x_0 si dice un punto di flesso per f(x) se in x_0 il grafico della funzione **cambia** concavità e quindi il grafico "attraversa" la tangente in $P_0(x_0; f(x_0))$.

A seconda dell'inclinazione della tangente possiamo avere:

• **flesso a tangente verticale** : in questo caso f(x) non è derivabile in x_0 e $\lim_{x \to x_0} f'(x) = +\infty$ o $\lim_{x \to x_0} f'(x) = -\infty$

• flesso a tangente orizzontale : in x_0 $f'(x_0) = 0$ ma f'(x) non cambia segno in x_0 Cambia segno invece f''(x) in x_0 (perché cambia la concavità) e $f''(x_0) = 0$.

• flesso a tangente obliqua : in x_0 $f'(x_0) \neq 0$ ma c'è un cambio di concavità e quindi $f''(x_0) = 0$ e f''(x) cambia segno.

Ricerca dei punti di massimo, minimo, flesso a tangente orizzontale

Consideriamo un punto $x_0 \in D_f$ in cui $f'(x_0) = 0$, cioè un punto in cui la tangente è parallela all'asse x.

Potrebbe essere un punto di massimo o un punto di minimo o un punto di flesso a tangente orizzontale.

Per capirlo studiamo il segno di f'(x).

1) Se il segno della derivata ha questo andamento

cioè negativo e poi positivo, poiché la f(x) prima di x_0 decresce e poi cresce $\Rightarrow x_0$ è un punto di **MINIMO**.

2) Se il segno della derivata ha questo andamento

la funzione prima di x_0 cresce e poi decresce $\Rightarrow x_0$ è un punto di **MASSIMO**.

3) Se f'(x) non cambia segno in $x_0 \Rightarrow x_0$ è un punto di **FLESSO A TANGENTE ORIZZONTALE** (ascendente o discendente)

Flesso ascendente

Flesso discendente

Teoremi funzioni derivabili

NOTA

Massimi, minimi e flessi con lo studio di $f''(x_0)$

Per individuare massimi e minimi possiamo utilizzare lo studio di f''(x) piuttosto dello studio del segno di f'(x).

• Se in x_0 abbiamo $f'(x_0) = 0$ e $f''(x_0) < 0$ (concavità verso il basso) $\Rightarrow x_0$ è un punto di MASSIMO

Se in x_0 $f'(x_0) = 0$ e $f''(x_0) = 0$ dobbiamo studiare il segno di f''(x): se cambia in x_0 allora x_0 è un punto di flesso a tangente orizzontale.

Si può dimostrare che

1) Se in x_0 $f'(x_0) = 0$ e $f''(x_0) = f'''(x_0) = \dots = 0$ e $f^{(n)}(x_0) \neq 0$, cioè se la derivata n-esima è la prima derivata diversa da 0 in x_0 :

se n è pari
$$\Rightarrow x_0$$
 è un punto di massimo se $f^{(n)}(x_0) < 0$ è un punto di minimo se $f^{(n)}(x_0) > 0$

se n è dispari $\Rightarrow x_0$ è un punto di flesso a tangente orizzontale

2) Se in x_0 $f'(x_0) \neq 0$ ma $f''(x_0) = f'''(x_0) = ... = 0$ e $f^{(n)}(x_0) \neq 0$, cioè la derivata n-esima è la prima derivata diversa da 0 in x_0 :

se n è pari
$$\Rightarrow$$
 in x_0 il grafico volge la concavità verso l'alto se $f^{(n)}(x_0) > 0$ il grafico volge la concavità verso il basso se $f^{(n)}(x_0) < 0$ se n è dispari $\Rightarrow x_0$ è un punto di flesso a tangente obliqua