Hash-Based Multi-Signatures for Post-Quantum Ethereum

Benedikt Wagner, Ethereum Foundation

Joint work with Justin Drake, Dmitry Khovratovich, Mikhail Kudinov

Context: Beam Chain

Context: Beam Chain

Paper

Hash-Based Multi-Signatures for Post-Quantum Ethereum

Justin Drake ¹ Dmitry

Dmitry Khovratovich ¹ Mikhail Kudinov ² Benedikt Wagner ¹

January 14, 2025

¹ Ethereum Foundation

{justin.drake,dmitry.khovratovich,benedikt.wagner}@ethereum.org

² Eindhoven University of Technology

mishel.kudinov@gmail.com

Abstract

With the threat posed by quantum computers on the horizon, systems like Ethereum must transition to cryptographic primitives resistant to quantum attacks. One of the most critical of these primitives is the non-interactive multi-signature scheme used in Ethereum's proof-of-stake consensus, currently implemented with BLS signatures. This primitive enables validators to independently sign blocks, with their signatures then publicly aggregated into a compact aggregate signature.

In this work, we introduce a family of hash-based signature schemes as post-quantum alternatives to BLS. We consider the folklore method of aggregating signatures via (hash-based) succinct arguments, and our work is focused on instantiating the underlying signature scheme. The proposed schemes are variants of the XMSS signature scheme, analyzed within a novel and unified framework. While being generic, this framework is designed to minimize security loss, facilitating efficient parameter selection. A key feature of our work is the avoidance of random oracles in the security proof. Instead, we define explicit standard model requirements for the underlying hash functions. This eliminates the paradox of simultaneously treating hash functions as random oracles and as explicit circuits for aggregation. Furthermore, this provides cryptanalysts with clearly defined targets for evaluating the security of hash functions. Finally, we provide recommendations for practical instantiations of hash functions and concrete parameter settings, supported by known and novel heuristic bounds on the standard model properties.

Code

Outline

The Problem

Overall Paradigm

Signature Design

Next Steps

Outline

The Problem

Overall Paradigm

Signature Design

Next Steps

Chain Chain

Chain $pk_1, pk_2, pk_3, pk_4, pk_5$

Chain $pk_1, pk_2, pk_3, pk_4, pk_5$

Chain $pk_1, pk_2, pk_3, pk_4, pk_5$

Currently: BLS Signatures

Currently: BLS Signatures

Quantum Insecurity!

Goal: Post-Quantum Multi-Signatures for Ethereum

Goal: Post-Quantum Multi-Signatures for Ethereum

Post-Quantum Cryptography

Goal: Post-Quantum Multi-Signatures for Ethereum

Post-Quantum Cryptography

Lattices and Codes

Goal: Post-Quantum Multi-Signatures for Ethereum

Post-Quantum Cryptography

Lattices and Codes

Isogenies

Multivariate

Goal: Post-Quantum Multi-Signatures for Ethereum

Post-Quantum Cryptography

Lattices and Codes

Isogenies

Multivariate

Hash Functions

Goal: Post-Quantum Multi-Signatures for Ethereum

Post-Quantum Cryptography

Lattices and Codes

Isogenies

Multivariate

Hash Functions

Outline

The Problem

Overall Paradigm

Signature Design

Next Steps

Outline

The Problem

Overall Paradigm

Signature Design

Next Steps

Individual Signature Scheme

Public Aggregation Process

Multi-Signature Scheme

Signature Requirements

Goal: Post-Quantum Multi-Signatures for Ethereum

Goal: Post-Quantum Multi-Signatures for Ethereum

Aggregation-Friendly Hash-Based Signatures

Goal: Post-Quantum Multi-Signatures for Ethereum Aggregation-Friendly Hash-Based Signatures Small Signatures

Goal: Post-Quantum Multi-Signatures for Ethereum Aggregation-Friendly Hash-Based Signatures Small Signatures Bandwidth

4096 Validators

Goal: Post-Quantum Multi-Signatures for Ethereum Aggregation-Friendly Hash-Based Signatures Small Signatures Bandwidth 32 KiB ► I Gib/s

Outline

The Problem

Overall Paradigm

Signature Design

Next Steps

Outline

The Problem

Overall Paradigm

Signature Design

Next Steps

SPHINCS Signatures

XMSS Signatures

One-Time Signature

One-Time Signature

Sign only once

Two signatures leak secret key

Good fit for PoS

One-Time Signature

Sign only once

Two signatures leak secret key

Synchronized Many-Time Signature

Sign with respect to slots

Sign only once per slot

Synchronized One-Time Signature Many-Time Signature Sign with respect to slots Sign only once Two signatures leak secret key Sign only once per slot Winternitz OTS **XMSS**

Good fit for PoS

L = Key lifetime

L = Key lifetime

$$pk_1^{\text{OTS}}$$
 ... pk_L^{OTS} sk_1^{OTS}

Signing message m wrt slot i

- I. OT Public Key pk_i^{OTS}
- 2. Merkle Path
- 3. OT Sig $Sig(sk_i^{OTS}, m)$

Signing message m wrt slot i

- I. OT Public Key pk_i^{OTS}
- 2. Merkle Path
- 3. OT Sig $Sig(sk_i^{OTS}, m)$

Verification

- I. Check Merkle Path
- 2. Check OT Sig wrt to OT Public Key

Signing message m wrt slot i

- 1. OT Public Key pki
- 2. Merkle Path
- 3. OT Sig $Sig(sk_i^{OTS}, m)$

Verification

- I. Check Merkle Path
- 2. Check OT Sig wrt to OT Public Key

One-Time Signatures via Hash Chains

Example: v = 4 chains of length $2^w = 4$

$$sk^{OTS} =$$
 s_1 s_2 s_3 s_4

Message
$$m \rightarrow$$
 Encoding \rightarrow ($x_1, ..., x_v$) Positions in Chains Randomness $\rho \rightarrow$

Message
$$m \rightarrow$$
 Encoding \rightarrow ($x_1, ..., x_v$) Positions in Chains

Message
$$m \rightarrow$$
 Encoding \rightarrow ($x_1, ..., x_v$) Positions in Chains

Message
$$m \rightarrow$$
 Encoding \rightarrow ($x_1, ..., x_v$) Positions in Chains

Message
$$m \rightarrow$$
 Encoding \rightarrow ($x_1, ..., x_v$) Positions in Chains

Message
$$m \rightarrow$$
 Encoding \rightarrow ($x_1, ..., x_v$) Positions in Chains

Message
$$m \rightarrow$$
 Encoding \rightarrow ($x_1, ..., x_v$) Positions in Chains

Example: v = 4 chains of length $2^w = 4$

Need incomparability

Bad Case

Bad Case

Bad Case

Incomparable Encoding: Only Good Case

• • •

• • •

• • •

Security Properties for Hash-Functions

Security Properties for Hash-Functions

Security of XMSS Variants

Security Properties for Hash-Functions

Security of XMSS Variants

Hash Function Properties

Multi-Target Preimage Resistance

Multi-Target Undetectability

Multi-Target Collision Resistance

Multi-Target Collision Resistance with random Sampling

Security Properties for Hash-Functions

Concrete Targets for Cryptanalysis

Efficiency

	Encoding	Parameters	Gen [s]	Sign [μ s]	Ver [μs]	Sig [KiB]	π_{16} AC	π_{24} AC	π_{16} WC	π_{24} WC
Lifetime $L=2^{18}$	W	w = 1	179.01	362.59	416.54	4.97	81	97	158	97
	W	w = 2	168.19	350.04	408.67	2.75	122	59	237	59
	W	w=4	330.52	638.08	769.41	1.66	325	41	615	41
	W	w = 8	2717.28	4820	5820	1.11	2917	31	5355	31
	TSW	$w=1, \delta=1$	172.67	541.45	396.56	4.75	77	93	77	93
Ľ	TSW	$w=1, \delta=1.1$	172.29	898.22	376.62	4.75	69	93	69	93
	TSW	$w=2, \delta=1$	166.51	530.83	372.93	2.65	117	57	117	57
	TSW	$w=2, \delta=1.1$	166.22	888.55	351.37	2.65	105	57	105	57
	TSW	$w=4, \delta=1$	312.49	1090.00	650.82	1.58	292	39	292	39
	TSW	$w=4, \delta=1.1$	312.64	1670.00	602.75	1.58	263	39	263	39
	TSW	$w=8, \delta=1$	2501.01	9760.00	4900.00	1.06	2550	30	2550	30
	TSW	$w = 8, \delta = 1.1$	2499.97	14570.00	4320.00	1.06	2295	30	2295	30
2^{20}	W	w = 1	780.89	362.44	418.31	5.03	82	99	158	99
II	W	w=2	705.42	336.30	400.60	2.81	122	61	237	61
Lifetime L	W	w=4	1353.18	617.48	746.28	1.72	326	43	615	43
	W	w = 8	11122.95	4981.20	6039.40	1.34	2917	35	5355	35
fet	TSW	$w=1, \delta=1$	752.57	520.42	401.32	4.81	77	95	<i>7</i> 7	95
E.	TSW	$w=1, \delta=1.1$	731.79	844.01	381.23	4.81	69	95	69	95
	TSW	$w=2, \delta=1$	667.76	527.17	379.56	2.7	117	59	117	59
	TSW	$w=2, \delta=1.1$	668.14	853.66	354.09	2.7	105	59	105	59
	TSW	$w=4, \delta=1$	1249.52	1057.40	661.61	1.64	292	41	292	41
	TSW	$w=4, \delta=1.1$	1248.35	1600.00	603.65	1.64	263	41	263	41
	TSW	$w=8, \delta=1$	9972.32	9509.50	4870.60	1.27	2550	34	2550	34
	TSW	$w=8, \delta=1.1$	9927.97	14271.00	4358.60	1.27	2295	34	2295	34

Efficiency

	Encoding	Parameters	Gen [s]	Sign [μs]	Ver [μs]	Sig [KiB]	π_{16} AC	π_{24} AC	π_{16} WC	π_{24} WC
Lifetime $L=2^{18} $	W	w = 1	179.01	362.59	416.54	4.97	81	97	158	97
	W	w=2	168.19	350.04	408.67	2.75	122	59	237	59
	W	w=4	330.52	638.08	769.41	1.66	325	41	615	41
	W	w = 8	2717.28	4820	5820	1.11	2917	31	5355	31
feti	TSW	$w=1, \delta=1$	172.67	541.45	396.56	4.75	77	93	77	93
: i	TSW	$w=1, \delta=1.1$	172.29	898.22	376.62	4.75	69	93	69	93
	TSW	$w=2, \delta=1$	166.51	530.83	372.93	2.65	117	57	117	57
	TSW	$w=2, \delta=1.1$	166.22	888.55	351.37	2.65	105	57	105	57
	TSW	$w=4, \delta=1$	312.49	1090.00	650.82	1.58	292	39	292	39
	TSW	$w=4, \delta=1.1$	312.64	1670.00	602.75	1.58	263	39	263	39
	TSW	$w=8, \delta=1$	2501.01	9760.00	4900.00	1.06	2550	30	2550	30
	TSW	$w = 8, \delta = 1.1$	2499.97	14570.00	4320.00	1.06	2295	30	2295	30
2^{20}	W	w = 1	780.89	362.44	418.31	5.03	82	99	158	99
II	W	w=2	705.42	336.30	400.60	2.81	122	61	237	61
F T	W	w=4	1353.18	617.48	746.28	1.72	326	43	615	43
Lifetime	W	w = 8	11122.95	4981.20	6039.40	1.34	2917	35	5355	35
let	TSW	$w=1, \delta=1$	752.57	520.42	401.32	4.81	77	95	77	95
二	TSW	$w=1, \delta=1.1$	731.79	844.01	381.23	4.81	69	95	69	95
	TSW	$w=2, \delta=1$	667.76	527.17	379.56	2.7	117	59	117	59
	TSW	$w = 2, \delta = 1.1$	668.14	853.66	354.09	2.7	105	59	105	59
	TSW	$w=4, \delta=1$	1249.52	1057.40	661.61	1.64	292	41	292	41
	TSW	$w=4, \delta=1.1$	1248.35	1600.00	603.65	1.64	263	41	263	41
	TSW	$w=8, \delta=1$	9972.32	9509.50	4870.60	1.27	2550	34	2550	34
	TSW	$w = 8, \delta = 1.1$	9927.97	14271.00	4358.60	1.27	2295	34	2295	34

Outline

The Problem

Overall Paradigm

Signature Design

Outline

The Problem

Overall Paradigm

Signature Design

Poseidon2 Security

Poseidon2 Security

"Poseidon2 is 170-bit multi-target collision resistant"

Efficiency

Post-Quantum Multi-Signatures for Ethereum

Post-Quantum Multi-Signatures for Ethereum

Our Work

XMSS Variants + Succinct Argument

Post-Quantum Multi-Signatures for Ethereum

Our Work

XMSS Variants + Succinct Argument

Tight Proofs without RO

Post-Quantum Multi-Signatures for Ethereum

Our Work

XMSS Variants + Succinct Argument

Tight Proofs without RO

Hash Function
Security Requirements

Post-Quantum Multi-Signatures for Ethereum

Our Work

XMSS Variants + Succinct Argument

Tight Proofs without RO

Hash Function
Security Requirements

Post-Quantum Multi-Signatures for Ethereum

Our Work

XMSS Variants + Succinct Argument

Tight Proofs without RO

Hash Function
Security Requirements

Next Steps

Is Poseidon2 secure enough?

Post-Quantum Multi-Signatures for Ethereum

Our Work

XMSS Variants + Succinct Argument

Tight Proofs without RO

Hash Function
Security Requirements

Next Steps

Is Poseidon2 secure enough?

Is this efficient enough?

Thank you!

Paper

Hash-Based Multi-Signatures for Post-Quantum Ethereum

Justin Drake 1

Dmitry Khovratovich ¹ Benedikt Wagner ¹

Mikhail Kudinov ²

January 14, 2025

¹ Ethereum Foundation

{justin.drake,dmitry.khovratovich,benedikt.wagner}@ethereum.org

² Eindhoven University of Technology

mishel.kudinov@gmail.com

bstract

With the threat posed by quantum computers on the horizon, systems like Ethereum must transition to cryptographic primitives resistant to quantum attacks. One of the most critical of these primitives is the non-interactive multi-signature scheme used in Ethereum's proof-of-stake consensus, currently implemented with BLS signatures. This primitive enables validators to independently sign blocks, with their signatures then publicly aggregated into a compact aggregate signature.

In this work, we introduce a family of hash-based signature schemes as post-quantum alternatives to BLS. We consider the folklore method of aggregating signatures via (hash-based) succinct arguments, and our work is focused on instantiating the underlying signature scheme. The proposed schemes are variants of the XMSS signature scheme, analyzed within a novel and unified framework. While being generic, this framework is designed to minimize security loss, facilitating efficient parameter selection. A key feature of our work is the avoidance of random oracles in the security proof. Instead, we define explicit standard model requirements for the underlying hash functions. This eliminates the paradox of simultaneously treating hash functions as random oracles and as explicit circuits for aggregation. Furthermore, this provides cryptanalysts with clearly defined targets for evaluating the security of hash functions. Finally, we provide recommendations for practical instantiations of hash functions and concrete parameter settings, supported by known and novel heuristic bounds on the standard model properties.

Code