

HTF3000LF PVH-3.3

TEMPERATURE AND HUMIDITY MODULE

Compliant with RoHS recommendations

Based on the rugged HS1101LF humidity sensor, HTF3000LF PVH-3.3 is a dedicated humidity and temperature transducer designed for OEM applications where a reliable and accurate measurement is needed. It features a very small size for easy, cost-effective mechanical mounting. Direct interface with a micro-controller is made possible with the module's linear frequency output.

MAIN FEATURES

- One of the smallest humidity / temperature modules on the market
- ⇔ Compliant with RoHS regulation and most of Lead Free Soldering Process
- ⇒ Stable, proportional frequency output from 0 to 100% RH
- ⇒ Calibrated within +/- 3% RH @ 55% RH at 3.30 VDC
- **⇒** High quality thermistor
- ⇒ Stable characteristics with temperature
- ⇒ High reliability and long term stability

HUMIDITY SENSOR SPECIFIC FEATURES

- Instantaneous de-saturation after long periods in saturation phase
- ⇒ Fast response time
- ⇒ High resistance to chemicals
- ⇒ Not affected by water immersion
- ⇒ Part could be washed with distilled water
- ⇒ Patented solid polymer structure

TEMPERATURE SENSOR SPECIFIC FEATURES

- ⇒ 10 kΩ+/- 1% NTC temperature sensor
- ⇒ Stable
- ⇒ High sensitivity

MAXIMUM RATINGS

Ratings	Symbol	Value	Unit
Storage Temperature	Tstg	-40 to 105	°C
Storage Humidity Range	RHstg	0 to 100	% RH
Supply Voltage (Peak)	Vs	16	Vdc
Humidity Operating Range	RH	0 to 100	% RH
Temperature Operating Range	Ta	-40 to 85	°C

CHARACTERISTICS

Humidity sensor ($Ta = 23^{\circ}C$, Vs = 5Vdc, $R_{L} > 100K\Omega$ unless otherwise stated)

Characteristics	Symbol	Min	Тур	Max	Unit
Relative Humidity accuracy (0 to 100 % RH)	RH	Refer	Refer to Chart 2 on page 2		
Voltage supply	Vs	3.1	3.3	3.6	VdC
Nominal output @ RH = 55 % and 5 Vdc	Fout	6419	6455	6491	Hz
Current consumption (Max at 16Vdc)	Ic			0.1	mA
Voltage supply influence (3 to 7 Vdc)	RH		+/-1		% RH
Averaged Sensitivity from 10% to 95% RH	ΔFout /ΔRH	-9	- 11	-12	Hz/% RH
Humidity Hysteresis				+/-1	% RH
Long term stability			0.5		% RH/yr
Time constant (40 to 95% RH, 2m/s, @63 %)	τ			10	S

Relative Humidity Accuracy of HTF 3000LF PVH-3.3 @ 23°C

Chart 2

Suggested modeled Signal output:

Fout = 7083 - 14.47*RH + 0.0736*RH²-0.0003* RH³ (Fout in Hz and RH in %)

Typical response look-up table at 3.3V (Polynomial Reference curve)

RH (%)	0	5	10	15	20	25	30	35	40	45	50
Fout (Hz)	-	7015	6945	6880	6820	6765	6705	6655	6600	6550	6505
RH (%)	55	60	65	70	75	80	85	90	95	100	
Fout (Hz)	6455	6410	6360	6315	6270	6225	6180	6135	6085	-	

Output Voltage: High 4.8 V Min / Low 0.2 V Max with a duty cycle of 50% ±5%

Temperature influence on HTF3000LF PVH-3.3 humidity measurement

Calibration data are traceable to NIST standards through CETIAT laboratory.

CHARACTERISTICS

Temperature sensor

Characteristics	Symbol	Min	Тур	Max	Unit
Nominal resistance @ 25°C			10		kΩ
Beta value : B25/50	В	3600	3730	3800	
Temperature measuring range	Та	-40		85	°C
Nominal Resistance Toleranceat 25°C	Rn		1		%
B value tolerance	В		1		%
Response Time	Т		10		S

Typical temperature output

Depending on the needed temperature measurement range and associated accuracy, we suggest two methods to access to the NTC resistance values.

$$R_{T} = R_{N} \star e$$

$$R_{T} = R_{N} \star e$$

R_τ NTC resistance in Ωat temperature T in K

R_κ NTC resistance in Ωat rated temperature in K

T, T, Temperature in K

B value, material-specific constant of the NTC thermistor

Base of natural logarithm (e =2.71828)

The actual characteristic of an NTC thermistor can, however, only be roughly described by the exponential relation, as the material parame ter B in reality also depends on temperature. So this approach is only suitable for describing a restricted range around the rated temperature or resistance with sufficient accuracy.

2 For practical applications a more precise description of the real R/T curve may be required. Either more complicated approaches (e.g. the Steinhart-Hart equation) are used or the resistance/temperature relation as given in tabulated form. The below table has been experimentally determined with utmost accuracy for temperature increments of 1 degree.

	Danistanas	Max.	ıx Max Max Max						Max.		
Temp °C	Resistance (Ohm)	deviation	Temp °C	Resistance (Ohm)	deviation	Temp °C	Resistance (Ohm)	deviation	Temp °C	Resistance (Ohm)	deviation
-40	262960	35403	-5	38279	2756	30	8178	296	65	2304	171
-39	247217	32777	-4	36455	2568	31	7866	294	66	2229	168
-38	232539	30358	-3	34731	2393	32	7568	292	67	2158	165
-37	218845	28130	-2	33100	2230	33	7283	290	68	2089	161
-36	206064	26075	-1	31557	2078	34	7011	287	69	2022	158
-35	194110	24178	0	30029	1932	35	6734	284	70	1960	155
-34	182852	22416	1	28627	1799	36	6484	281	71	1898	152
-33	172332	20791	2	27299	1675	37	6244	278	72	1839	149
-32	162498	19290	3	26042	1560	38	6015	275	73	1782	146
-31	153299	17905	4	24852	1452	39	5796	271	74	1727	143
-30	144790	16636	5	23773	1355	40	5575	267	75	1673	140
-29	136664	15444	6	22708	1261	41	5373	264	76	1622	138
-28	129054	14343	7	21698	1174	42	5180	260	77	1573	135
-27	121925	13325	8	20739	1093	43	4995	257	78	1526	132
-26	115243	12383	9	19829	1017	44	4817	253	79	1480	130
-25	109030	11516	10	18959	946	45	4636	248	80	1432	127
-24	103115	10705	11	18128	879	46	4473	245	81	1390	124
-23	97565	9953	12	17338	817	47	4316	241	82	1349	122
-22	92354	9257	13	16588	759	48	4166	237	83	1310	119
-21	87460	8612	14	15876	705	49	4021	233	84	1272	117
-20	82923	8020	15	15207	654	50	3874	229	85	1235	115
-19	78581	7463	16	14569	607	51	3737	225	86	1199	112
-18	74497	6947	17	13962	563	52	3606	221	87	1163	110
-17	70655	6468	18	13384	522	53	3481	217	88	1130	108
-16	67039	6023	19	12834	484	54	3360	213	89	1097	106
-15	63591	5606	20	12280	447	55	3237	208	90	1067	104
-14	60381	5222	21	11777	413	56	3126	204	91	1038	102
-13	57356	4865	22	11297	382	57	3019	200	92	1009	100
-12	54503	4533	23	10840	353	58	2917	197	93	982	98
-11	51813	4225	24	10404	325	59	2819	193	94	955	96
-10	49204	3932	25	10000	300	60	2720	189	95	927	94
-9	46767	3662	26	9600	300	61	2629	185	96	901	92
-8	44467	3411	27	9218	300	62	2542	182	97	877	90
-7	42296	3177	28	8853	299	63	2458	178	98	853	89
-6	40247	2960	29	8506	297	64	2378	175	99	830	87

QUALIFICATION PROCESS

Resistance to physical and chemical stresses

- HTF3000LF PVH-3.3 has passed through qualification processes of MEAS FRANCE including vibration, shock, storage, high temperature and humidity
- Additional tests under harsh chemical conditions demonstrate good operation in presence of salt atmosphere, SO2 (0.5%, H2S (0.5%), 03, NOx, NO, CO, CO2, Softener, Soap, Toluene, acids (H2SO4, HNO3,HCI), HMDS, Insecticide, Cigarette smoke,....
- ⇒ ESD: HTF3000LF PVH-3.3 is able to sustain a minimum of ±8KV (contact discharge)

PACKAGE OUTLINE

HTF3000LF PVH-3.3

Dim	Α	В	С	D	Ε	F	K
Min	17.9	12.0	10.7	14.25	4.80	1.76	0.54
Max	18.9	13.0	11.7	14.95	5.40	3.76	0.74

Dimensions in millimeters

Weight: 2.1g

Recommended Through Hole FootPrint

Ordering information: HPP808H035 for HTF3000LF PVH-3.3 Storage: Tube M.Q.P of 48 parts; Box M.Q.P of 1008 parts (21 tubes)

Temperature And Humidity Module

SOLDERING INFORMATION

HTF3000LF PVH-3.3:

Hand soldering or wave soldering.

EUROPE

Measurement Specialties, Inc - MEAS France Impasse Jeanne Benozzi CS 83 163 31027 Toulouse Cedex **3** FRANCE

Tél: +33 (0)5 820 822 02 Fax: +33(0)5 820 821 51

Sales: humidity.sales@meas-spec.com

TE.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2015 TE Connectivity Ltd. family of companies All Rights Reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TE Connectivity:

HTF3000LF HTF3000LFPVH HPP808H031