CDI-II

Integrais duplas em coordenadas cartesianas

Exercícios

1. Calcule:

(a)
$$\iint_{\mathcal{R}} (xy + x) dxdy$$
 $R = [1; 4] \times [0; 2]$

(a)
$$\iint_{R} (xy + x) dxdy$$
 $R = [1; 4] \times [0; 2]$
(b) $\iint_{R} (x^2 - y) dxdy$ $R = [-2; 1] \times [2; 7]$

(c)
$$\iint\limits_R (xy+x)\,dxdy \qquad R \ \'e \ a \ região \ delimitada \ pelas \ curvas$$

$$y = 4 e y = x^2$$

$$y = 4 e y = x^{2}$$
(d) $\iint_{R} (xy^{2}) dxdy$ $R = \{(x; y); 1 + x^{2} \le y \le 9 - x^{2}\}$

(e)
$$\iint_{R} (x^2 + y^2) dxdy$$
 R é o triângulo com vertíces nos pontos

(f)
$$\iint_{R} (3y+x) dxdy$$

$$(0;0); (1;4) e (2;2)$$

$$R = \{(x;y); y^{2} \le x \le 4y - 3\}$$

- 2. Calcule o volume do sólido cuja altura é dada pela função f(x;y) = x + y e a base é a região no plano $x \circ y$ delimitada pelas curvas $y = \frac{1\dot{5}}{x}$ e y = -x + 8;
- 3. Calcule o volume do sólido limitado superiormente pelo parabolóide $z = 4 - x^2 - y^2$ e inferiormente pelo plano $x \circ y$.
- 4. Utilize a integral dupla para calcular a área da região:
 - (a) Delimitada pelas curvas $y = x^2 8$ e $y = 2x^2 6x$;
 - (b) Delimitada pelas curvas $y = -x^2 + 8$ e $y = \frac{15}{x}$;
 - (c) $R = \{(x; y); x \le y \le -x^2 + 6\}$
- 5. Inverta a ordem de integração:

(a)
$$\int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) dxdy$$

(b)
$$\int_{1}^{e} \int_{\ln x}^{x} f(x, y) dy dx$$

(c)
$$\int_{0}^{1} \int_{y}^{y+3} f(x,y) dxdy$$

(d)
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(x,y) \, dy dx$$