- 1. (a) Using superposition theorem, find the current through R_3 for the network below. Draw the circuits for each source (2 circuits), write all the formulas properly and also provide the current direction.
 - (b) Apply thevenin's theorem for the network external to R_3 . Draw the circuits required to find Eth and Rth. Finally draw the thevenin equivalent circuit and find the current through R_3 . Compare the results with (a).

2. Using superposition theorem, find the voltage across R_4 for this network with all necessary steps, formula and diagram.

3. Apply thevenin's theorem for the network external to R_L with all necessary steps and formula. Draw the circuits required to find Eth and Rth. Finally draw the thevenin equivalent circuit and find the current through R_L if R_L = 10 kilo ohm.

- 4. a) Find the Thévenin equivalent circuit for the portions of the networks external to points *a* and *b*. Show all necessary steps, formula and diagram. Also find the current I₁ flowing through this portion a and b (or flowing through R=47 kilo ohm resistor).
 - b) Find the Norton's equivalent circuit for the portions of the networks external to the points a and b with all necessary steps, formula and diagram.

- 5. a. Find the mathematical expressions for the transient behavior of the voltage v_C and the current i_C if the capacitor was initially uncharged and the switch is thrown into position 1 at t=0 s.
 - b. Find the mathematical expressions for the voltage v_C and the current i_C if the switch is moved to position 2 at $t = 8\tau$.
 - c. Find the mathematical expressions for the voltage v_C and the current if the switch is thrown into position 3 at $t = 12\tau$.
 - d. Plot the waveforms obtained in parts (a)–(c)

Demonstrate all necessary steps, formulas and calculations properly.

6. Find currents I_1 and I_2 and voltages V_1 and V_2 for the network below. Also determine the charge stored by the capacitor C_2 and energy stored by the inductor L_1 .

