第5周:

P36 2/2)(补充: 得最优解后求该解得检验数,判别是否满足最优性条件),4(选做),P118 1/1)4)写出初始 单纯形表及对应的基可行解,判别是否为最优解。

P36 2/2) (补充: 得最优解后求该解得检验数,判别是否满足最优性条件)

$$A = (p_1, p_2, p_3, p_4) = \begin{pmatrix} -1 & 1 & 1 & 1 \\ 2 & -1 & 0 & 2 \end{pmatrix}$$

a)
$$\mathbf{B} = (\mathbf{p}_1, \mathbf{p}_2)$$
, $\begin{cases} \mathbf{A}\mathbf{x} = \mathbf{b} \\ x_3 = x_4 = 0 \end{cases}$, 得关于 \mathbf{B} 的基本可行解 $\mathbf{x}^0 = (30, 50, 0, 0)^T$, 目标值-10

b)
$$\mathbf{B} = (\mathbf{p}_1, \mathbf{p}_3)$$
, $\begin{cases} \mathbf{A}\mathbf{x} = \mathbf{b} \\ x_2 = x_4 = 0 \end{cases}$, 得关于 \mathbf{B} 的基解 $\mathbf{x}^0 = (5, 0, 25, 0)^T$, 目标值 15

b)
$$\mathbf{B} = (\mathbf{p}_1, \mathbf{p}_3)$$
, $\begin{cases} \mathbf{A}\mathbf{x} = \mathbf{b} \\ x_2 = x_4 = 0 \end{cases}$, 得关于 \mathbf{B} 的基解 $\mathbf{x}^0 = (5,0,25,0)^T$, 目标值 15 c) $\mathbf{B} = (\mathbf{p}_1, \mathbf{p}_4)$, $\begin{cases} \mathbf{A}\mathbf{x} = \mathbf{b} \\ x_2 = x_3 = 0 \end{cases}$, 得关于 \mathbf{B} 的基解 $\mathbf{x}^0 = (-15/2,0,0,25/2)^T$, 不可行

d)
$$\mathbf{B} = (\mathbf{p}_2, \mathbf{p}_3)$$
, $\begin{cases} \mathbf{A}\mathbf{x} = \mathbf{b} \\ x_1 = x_4 = 0 \end{cases}$, 得关于 \mathbf{B} 的基解 $\mathbf{x}^0 = (0, -10, 30, 0)^T$, 不可行

e)
$$\mathbf{B} = (\mathbf{p}_2, \mathbf{p}_4)$$
, $\begin{cases} \mathbf{A}\mathbf{x} = \mathbf{b} \\ x_1 = x_3 = 0 \end{cases}$, 得关于 \mathbf{B} 的基可行解 $\mathbf{x}^0 = (0,10,0,10)^T$, 目标值 110

f)
$$\mathbf{B} = (\mathbf{p}_3, \mathbf{p}_4)$$
, $\begin{cases} \mathbf{A}\mathbf{x} = \mathbf{b} \\ x_1 = x_2 = 0 \end{cases}$, 得关于 \mathbf{B} 的基可行解 $\mathbf{x}^0 = (0, 0, 15, 5)^T$, 目标值 65

因已知该问题存在最优解,因此一定存在最优基可行解,因此 a)对应的基可行解为最优解,即最优解 $\mathbf{x}^* = (30, 50, 0, 0)^T$,最优值-10。

补充:
$$\mathbf{x}^* = (30,50,0,0)^T$$
 是关于 $\mathbf{B} = (\mathbf{p}_1,\mathbf{p}_2) = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$ 的基可行解,因此 $\mathbf{c}_{\mathbf{B}}^T = (-2,1), \mathbf{c}_{N}^T = (1,10), \mathbf{N} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$,检验数 $\mathbf{r}_{N}^T = \mathbf{c}_{\mathbf{B}}^T \mathbf{B}^{-1} \mathbf{N} - \mathbf{c}_{N}^T = (-1,-12) \le \mathbf{0}^T$,即满足最优性条件。

P364(选做)

分析: 题目要求 A_1 满足: $A_1x^0=b_1$, $r(A_1)=n$ 即 A_1 的 n 个行向量线性无关, 因此先对 A 和 b 进行行分块:

$$A = \begin{pmatrix} A' \\ A'' \end{pmatrix}$$
, $b = \begin{pmatrix} b' \\ b'' \end{pmatrix}$: $A'x^0 = b'$, $A''x^0 > b''$ 。 只要 $r(A') = n$ (即列满秩),那么 A' 中就可以找到 n 个线性无关的

行向量,这些行向量组成的矩阵就可以作为 A_1 。可以反证r(A') = n,即假设r(A') < n,则A'v = 0有非零解, 由此来构造S上两个不同点,并且 x^0 表示成这两个点的严格凸组成,那么就与 x^0 是极点矛盾了。 证明:

必要性:
$$\Leftrightarrow A = \begin{pmatrix} A' \\ A'' \end{pmatrix}, b = \begin{pmatrix} b' \\ b'' \end{pmatrix}$$
: $A'x^0 = b', A''x^0 > b''$ 。 下证 $r(A') = n$ 。

否则r(A') < n,则存在 $y \neq 0$,使A'y = 0,则当 $|\theta| > 0$ 充分小时,

$$A'(\mathbf{x}^0 \pm \theta \mathbf{y}) = \mathbf{b}', A''(\mathbf{x}^0 \pm \theta \mathbf{y}) > \mathbf{b}''$$

即当 $|\theta| > 0$ 充分小时 $x^0 \pm \theta y \in S$, $x^0 + \theta y \neq x^0 - \theta y$ 并且

$$x^{0} = \frac{1}{2}[(x^{0} + \theta y) + (x^{0} - \theta y)]$$

与 x^0 是S的极点矛盾,故r(A')=n。取A'中n个线性无关的行向量组成 A_1 ,则 A_1 的秩为n,A中除 A_1 外余下部分记作 A_2 ,则 $A=\begin{pmatrix}A_1\\A_2\end{pmatrix}$,对应记 $b=\begin{pmatrix}b_1\\b_2\end{pmatrix}$,则 $A_1x^0=b_1,A_2x^0\geq b_2$ 。

充分性: 假设 x^0 不是 S 的极点,则存在 $x^1, x^2 \in S, x^1 \neq x^2, \lambda \in (0,1)$,使 $x^0 = \lambda x^1 + (1-\lambda)x^2$,则 $A_1 x^0 = \lambda A_1 x^1 + (1-\lambda)A_1 x^2$,即

$$A_1 x^0 - b_1 = \lambda (A_1 x^1 - b_1) + (1 - \lambda)(A_1 x^2 - b_1)$$

因为 $A_1x^0 - b_1 = 0, \lambda > 0, A_1x^1 - b_1 \ge 0, 1 - \lambda > 0, A_1x^2 - b_1 \ge 0$, 因此

$$A_1 x^1 - b_1 = 0, A_1 x^2 - b_1 = 0$$

即 $x^1 = x^2 = A_1^{-1}b_1$,与 $x^1 \neq x^2$ 矛盾。

P118 1/1) 写出初始单纯形表及对应的基可行解,判别是否为最优解

基变量	x_1	x_2	x_3	x_4	右端项
<i>x</i> ₃	1	<mark>4</mark>	1	0	80
x_4	2	3	0	1	90
检验数	9	16	0	0	0

对应的基可行解 x^0 = $(0,0,80,90)^T$,目标值 z_0 =0,检验数没有都小于等于零,不是最优解。

P119 1/4) 写出初始单纯形表及对应的基可行解,判别是否为最优解

	x_1	x_2	x_3	<i>x</i> ₄	<i>x</i> ₅	x_6	<i>x</i> ₇	
<i>x</i> ₅	1	1	1	0	1	0	0	4
<i>x</i> ₆	4	-1	1	2	0	1	0	6
<i>X</i> 7	-1	1	2	3	0	0	1	12
	-3	5	2	1	0	0	0	0

对应的基可行解 \mathbf{x}^0 = $(0,0,0,0,4,6,12)^T$,目标值 z_0 =0,检验数没有都小于等于零,不是最优解。

第6周:

P118 1/1)4) (继续第 5 周求解), 2/2) 4), 6 (补充:并且证明 c 与 d 的内积<0)

P118 1/1) (继续第 5 周求解)

基变量	x_1	x_2	<i>x</i> ₃	<i>X</i> 4	右端项	基变量	x_1	x_2	<i>x</i> ₃	<i>X</i> 4	右端项
x_3	1	<mark>4</mark>	1	0	80	x_2	1/4	1	1/4		20
x_4	2	3	0	1	90	x_4	<mark>5/4</mark>	0	-3/4	1	30
检验数	9	16	0	0	0	检验数	5	0	-4	0	-320

基变量	x_1	x_2	<i>x</i> ₃	χ_4	右端项
x_2	0		2/5	-1/5	14
x_1	1	0	-3/5	4/5	24
检验数	0	0	-1	-4	-440

$$\mathbf{x}^* = (24,14,0,0)^T$$
, $z^* = -440$.

P118 1/4) (继续第 5 周求解)

	x_1	x_2	x_3	<i>x</i> ₄	<i>x</i> ₅	x_6	<i>x</i> ₇	
<i>x</i> ₅	1	1	1	0	1	0	0	4
<i>x</i> ₆	4	-1	1	2	0	1	0	6
<i>X</i> 7	-1	1	2	3	0	0	1	12
	-3	5	2	1	0	0	0	0

	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	
x_2	1	1	1	0	1	0	0	4
<i>x</i> ₆	5	0	2	2	1	1	0	10
<i>x</i> ₇	-2	0	1	3	-1	0	1	8
	-8	0	-3	1	-5	0	0	-20

	x_1	x_2	<i>x</i> ₃	<i>X</i> ₄	<i>x</i> ₅	x_6	<i>x</i> ₇	
x_2	1	1	1	0	1	0	0	4
x_6	19/3	0	4/3	0	5/3	1	-2/3	14/3
<i>X</i> ₄	-2/3	0	1/3	1	-1/3	0	1/3	8/3
	-22/3	0	-10/3	0	-14/3	0	-1/3	-68/3

 $x^* = (0,4,0,8/3,0,14/3,0)^T$, $z^* = -68/3$

P119 2/2):

$$\min z = -2x_1 - x_2$$
s.t. $x_1 + x_2 + x_3 = 5$
 $-x_1 + x_2 + x_4 = 0$
 $6x_1 + 2x_2 + x_5 = 21$
 $x_j \ge 0, j = 1, \dots, 5$

	x_1	x_2	x_3	<i>x</i> ₄	x_5	
<i>x</i> ₃	1	1	1	0	0	5
<i>X</i> 4	-1	1	0	1	0	0
<i>x</i> ₅	<mark>6</mark>	2	0	0	1	21
	2	1	0	0	0	0

	x_1	x_2	<i>x</i> ₃	<i>X</i> 4	<i>x</i> ₅	
<i>x</i> ₃	0	2/3	1	0	-1/6	3/2
<i>x</i> ₄	0	4/3	0	1	1/6	7/2
x_1	1	1/3	0	0	1/6	7/2
	0	1/3	0	0	-1/3	-7

	x_1	x_2	x_3	χ_4	<i>x</i> ₅	
x_2	0	1	3/2	0	-1/4	9/4
<i>X</i> 4	0	0	-2	1	1/2	1/2

x_1	1	0	-1/2	0	1/4	11/4
	0	0	-1/2	0	-1/4	-31/4

 $x^* = (11/4, 9/4, 0, 1/2, 0)^T, \quad z^* = 31/4$

P119 2/4):

$$\min z = x_1 - 3x_2 + x_3 + My$$
s.t. $2x_1 - x_2 + x_3 = 8$

$$2x_1 + x_2 - x_4 + y = 2$$

$$x_1 + 2x_2 + x_5 = 10$$

$$x_j \ge 0, j = 1, \dots, 5, y \ge 0$$

		1	-3	1	0	0	M	
		x_1	x_2	x_3	<i>x</i> ₄	x_5	y	
1	<i>x</i> ₃	2	-1	1	0	0	0	8
M	у	2	1	0	-1	0	1	2
0	<i>x</i> ₅	1	2	0	0	1	0	10
		2M+1	M+2	0	-M	0	0	2M+8

		1	-3	1	0	0	M	
		x_1	x_2	x_3	x_4	x_5	y	
1	<i>x</i> ₃	0	-2	1	1	0	-1	6
1	x_1	1	1/2	0	-1/2	0	1/2	1
0	<i>x</i> ₅	0	3/2	0	1/2	1	-1/2	9
		0	3/2	0	1/2	0	-M-1/2	7

	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	
<i>x</i> ₃	4	0	1	-1	0	10
x_2	2	1	0	-1	0	2
<i>x</i> ₅	-3	0	0	2	1	6
	-3	0	0	2	0	4

	x_1	x_2	<i>x</i> ₃	<i>X</i> 4	X 5	
<i>x</i> ₃	5/2	0	1	0	1/2	13
x_2	1/2	1	0	0	1/2	5
<i>X</i> 4	-3/2	0	0	1	1/2	3
	0	0	0	0	-1	-2

 $\mathbf{x}^* = (0,5,13,3,0)^T$, $z^* = -2$.

P120 6 (补充:并且证明 $c^T d < 0$):

证明:
$$\Leftrightarrow d = \begin{pmatrix} d_B \\ d_N \end{pmatrix}$$
, $d_B = -p_k^0 = -B^{-1}p_k$, $d_k = 1, d_j = 0, j \in I_N \setminus \{k\}$, 则

$$Ad = (B N) \begin{pmatrix} d_B \\ d_N \end{pmatrix} = Bd_B + Nd_N = -p_k + p_k = 0 , \quad d \ge 0$$

因此 d 是可行域的方向(d 是可行域的方向当且仅当 $Ad = 0, d \ge 0$)

假设 d 不是可行域的极向,则存在可行域的不同方向 $d^1, d^2: Ad^1 = Ad^2 = 0, d^1, d^2 \ge 0$ 和 $a_1, a_2 > 0$,使 $d = a_1 d^1 + a_2 d^2$,则由 $a_1, a_2 > 0$ 和 $d_j^1, d_j^2 \ge 0$ 得

$$0 = d_i = a_1 d_i^1 + a_2 d_i^2 \Rightarrow d_i^1 = d_i^2 = 0, \forall j \in I_N \setminus \{k\}$$

$$0 = \mathbf{A}\mathbf{d}^{1} = \mathbf{B}\mathbf{d}_{\mathbf{B}}^{1} + d_{k}^{1}\mathbf{p}_{k} \Longrightarrow \mathbf{d}_{\mathbf{B}}^{1} = -d_{k}^{1}\mathbf{B}^{-1}\mathbf{p}_{k} = d_{k}^{1}\mathbf{p}_{k}^{0}$$

因此 $d^1 = d_k^1 d$,同理 $d^2 = d_k^2 d$,因此 d^1, d^2 同方向,矛盾。因此d是可行域的极向。

$$c^T d = c_B^T d_B + c_N^T d_N = -c_B^T B^{-1} p_k + c_k = -r_k < 0$$
,故这时原问题无界。