Задание 2. Вытекание

Часть 1. Бросок

В данной части вам необходимо описать движение тела, брошенного вертикально вверх, в не совсем обычной системе координат. Сопротивлением воздуха можно пренебречь.

Небольшой шарик брошен вертикально вверх с начальной скоростью v_0 . Обозначим максимальную высоту подъема шарика h_0 . Введем ось координат z, направленную вертикально вниз, начало отсчета которой совпадает с максимальной высотой подъема. Далее под скоростью v_z и ускорением a_z подразумеваются проекции скорости и ускорения шарика на ось z.

- **1.1** Выразите максимальную высоту подъема шарика h_0 через начальную скорость v_0 и ускорение свободного падения g .
- **1.2** Чему равны проекции ускорения и начальной скорости шарика на ось z a_z , v_{0z} ?
- **1.3** Найдите зависимость скорости шарика v_z от координаты $z v_z(z)$.
- **1.4** Найдите зависимость координаты шарика z от времени z(t). В качестве параметров этой функции используйте только начальную скорость v_0 и ускорение свободного падения g.
- **1.5** Постройте схематический график зависимости z(t). Укажите характерные точки этого графика.

Обозначим $au_{0,5}$ («время полуподъема») - время, за которое шарик поднимается на высоту $\frac{h_0}{2}$, равную половине максимальной высоты. Это время $au_{0,5}$ может быть выражено через максимальную высоту подъема h_0 и ускорение свободного падения следующим образом:

$$\tau_{0.5} = Ch_0^{\alpha} g^{\beta}, \tag{1}$$

где C - некоторый безразмерный численный коэффициент, α,β - постоянные показатель степеней.

- **1.6** Найдите значения показателей степеней α , β в формуле (1).
- **1.7** Рассчитайте численное значение коэффициента C в формуле (1).

Часть 2. Дырявый сосуд

В данной части задачи вам необходимо описать процесс вытекания жидкости из сосуда, в стенке которого имеется небольшое отверстие.

В боковой стенке вертикального цилиндрического сосуда с диаметром поперечного сечения D проделали малое круглое отверстие диаметра d вблизи дна сосуда. Обозначим отношение этих диаметров $\eta = \frac{d}{D} << 1$

В сосуд наливают воду. Уровень воды z в сосуде отсчитывается от середины отверстия. Ось z направлена вертикально вверх. Считайте, что диаметр отверстия значительно меньше высоты уровня воды в сосуде d << z. Обозначим скорость вытекания воды из отверстия \vec{v}_1 , скорость опускания уровня воды в сосуде \vec{V} . Вязкостью

скорость опускания уровня воды в сосуде V. Вязкостью воды следует пренебречь, в этом приближении сохраняется механическая энергия воды, т.е. тепловых потерь нет.

- **2.1** Найдите зависимость скорости вытекания воды из отверстия v_1 от высоты уровня воды в сосуде $v_1(z)$.
- **2.2** Найдите зависимость проекции на ось z скорости опускания V_z от высоты уровня z. В качестве параметров этой функции используйте только ускорение свободного падения g и отношение диаметров η .
- **2.3** Чему равно ускорение, с которым опускается уровень воды в сосуде a_z ?
- **2.4** Найдите зависимость высоты уровня воды в сосуде от времени z(t). При t=0 высота уровня воды в сосуде равна h_0 . В качестве параметров функции используйте величины g,h_0,η .
- **2.5** Найдите через, какое время $au_{0.5}$ уровень воды в сосуде уменьшится в два раза.
- **2.6** Рассчитайте численное значение времени «полувытекания» $au_{0,5}$, если $h_0=20~c$ м, $\eta=\frac{1}{20}$, $g=10\frac{M}{c^2}$.