L-6: Inferential statistics

Agenda

- ➤ Quick Review of the topics covered in previous class
- Testing of Hypothesis

Statistical Inferences

Theory of statistical inference is divided into two major areas

Estimation

> Tests of hypothesis

Estimation

Point Enterval Estimation Estimation

Interval Estémation

How?

$$P\left(-\frac{2}{4} \times \frac{3}{4} \times \frac{3}{4}\right) = 1-2$$

$$\frac{3}{4} \times \frac{1}{4}$$

$$-\frac{2}{4} \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}$$

$$P\left(3 - \frac{2}{4} \times \frac{3}{4} \times \frac{3}$$

Esternate for

Example:

A company wants to estimate the S.D. average life of the product. The S.D. 5 Known to be 100 hours. Arendom Sample of 50 gare a semple average life of 350 hours. Estimate lue confidence interval for we mean.

Examp-A company wants to estimate the s.D. is Known to be 100 ho gare confidence interval

Examplead $350 \pm 1.96.$ $\sqrt{550}$ - いろ (350 ± 27. フコ) (100) confidence (322.28 1317.12) asil is Los suppose

Hypothesis Testing Steps

- ➤ Null and alternative hypotheses
- > Test statistic
- > P-value and interpretation
- > Significance level (optional)

and one sided roo. Sides left right Level of Significant Coitical region Decision

Example

Null hypothesis $H_{0:} \mu = 170$ The alternative hypothesis can be either $H_{1:} \mu > 170$ (one-sided test) or $H_{1:} \mu \neq 170$ (two-sided test)

Example

A. Hypotheses:

 H_0 : $\mu = 100 \text{ versus}$

 H_a : $\mu > 100$ (one-sided)

 H_a : $\mu \neq 100$ (two-sided)

B. Test statistic:

$$SE_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{15}{\sqrt{9}} = 5$$

$$z_{\text{stat}} = \frac{\overline{x} - \mu_0}{SE_{\overline{x}}} = \frac{112.8 - 100}{5} = 2.56$$

C. *P*-value: $P = Pr(Z \ge 2.56) = 0.0052$

 $P = .0052 \Rightarrow$ it is unlikely the sample came from this null distribution \Rightarrow strong evidence against H_0

Hypothesis Testing

Test Result	- H ₀ True	H ₀ False
True State H ₀ True	Correct Decision	Type I Error
H ₀ False	Type II Error	Correct Decision

$$\alpha = P(Type\ I\ Error)$$
 $\beta = P(Type\ II\ Error)$

ullet Goal: Keep lpha, eta reasonably small

Problem

It is claimed that a random sample 49 tyres has a mean life of 15200 kms. This sample was drawn from a population whose mean is 15150 kms and a standard deviation of 1200kms. Test the significance at 0.05 level.

Solution:

- 1. Null hypothesis H_0 : $\mu = 15200$
- 2. Alternate hypothesis H_1 : $\mu \neq 15200$
- 3. Level of significance $\alpha = 0.05$
- 4. critical region :- This is a two tailed test (large sample). So reject H₀ if $(Z_{cal}=Z) < -Z_{\frac{\alpha}{2}}$ or $(Z=Z_{cal}) > Z_{\frac{\alpha}{2}}$ Here $\alpha = 0.05$

$$\frac{\alpha}{2} = \frac{0.05}{2}$$

$$= 0.025$$

From table we get

$$\therefore Z_{\frac{\alpha}{2}} = 1.96$$

i.e; if

 $Z_{cal}=Z < -1.96$ or $Z_{cal} > 1.96$ we reject null hypothesis.

6. Computation:

Test statistic

$$Z_{\text{cal}} = Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{15200 - 15150}{\frac{1200}{\sqrt{49}}}$$

$$=0.2916$$

7. Decesion:

Since $Z_{cal} = 0.2916 < 1.96$ we accept the mull hypothesis.

Problem

A trucking firm is suspicious of the claim that the average life time of certain tyres is at least 28,000 miles. To check the claim, the firm puts 40 of these tyres on its trucks and get a mean life of 27,463 miles with a standard deviation of 1,348 miles. What can it conclude if the probability of Type I error is to be at most 0.01

Solution

1. Null hypothesis : H_0 : $\mu \ge 28,000$ miles

2. Alternate hypothesis: H₁: μ < 28,000 miles

3. Level of significance: $\alpha = 0.01$

4. Critical region

This is a left tailed test (large sample)

If $Z=Z_{cal}$ < - Z_{α} we reject null hypothesis

If $Z=Z_{cal}$ < - Z_{α} =- $Z_{0.01}$ = -2.33 we reject null hypothesis

5. Computation

Test statistic

$$Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{27,463 - 28,000}{\frac{1,348}{\sqrt{40}}} = -2.52$$

6.Conclusion

Since $Z = Z_{cal} = -2.52 < -2.33$, we reject null hypothesis at level of significance 0.01. In other words the trucking firm's suspicion that μ < 28,000 miles is confirmed.

Hypothesis concerning one mean (small sample)

Procedure

- 1. Null hypothesis $H_0: \mu = \mu_0$
- 2. Alternate Hypothesis $H_1: \mu \neq \mu_0$ (Two tailed test)

Or

 $H_1: \mu > \mu_0$ (Right tailed test)

Or

 H_1 : $\mu < \mu_0$ (left tailed test)

3. Level of significance : α

4. Critical region

For two tailed test $H_1: \mu \neq \mu_0$

Reject H_0 if $t < -t_{\frac{\alpha}{2}}$ or

 $t > t_{\frac{\alpha}{2}}$ with (n-1) degrees of freedom

For right tailed test $H_1: \mu > \mu_0$

Reject H_0 if $t > t_{\alpha}$ with (n-1) degrees of freedom

For left tailed test H_1 : $\mu < \mu_0$

Reject H_0 if $t < -t_{\alpha}$ (n-1) degrees of freedom

5. Test statistic

$$t = \frac{\bar{x} - L}{\frac{S}{\sqrt{n}}} \text{ with (n-1) degrees of freedom}$$

- 6. Calculation
- 7. Decision

Example:

A random sample of 6 steel beams has a mean compressive strength of 58,392 p.s.i (pounds per square inch) with a standard deviation of 648 p.s.i . use this information at the level of significance $\alpha = 0.05$ to test

whether the true average compressive strength of steel from which the sample came is 58,000 p.s.i

A random sample of 6 steel beams has a mean compressive strength of 58,392 p.s.i (pounds per square inch) with a standard deviation of 648 p.s.i . use this information at the level of significance $\alpha = 0.05$ to test

whether the true average compressive strength of steel from which the sample came is 58,000 p.s.i

M: 58,000

p + 58,000 -> + too + ailed

108t

Small sarople

1, - test.

Thanks