Codierungstheorie

Reinhold Hübl

Vorlesung 5 - Herbst 2022

1/38

Betrachte einen endlichen Körper $k = \mathbb{F}_q$ und eine Teilmenge $U \subseteq k^n$.

Definition

U heißt **Untervektorraum** von k^n , wenn gilt

- U ≠ ∅.
- Ist $u \in U$ und $r \in k$, so ist $r \cdot u \in U$.
- Sind $u, v \in U$, so ist auch $u + v \in U$.

Definition

Ein **linearer** $[n,k]_q$ -Code ist ein \mathbb{F}_q -Untervektorraum $C \subseteq \mathbb{F}_q^n$ der Dimension k.

Bemerkung

Ein linearer $[n,k]_q$ -Code ist ein $[n,k]_q$ -Code im Sinne der ursprünglichen Definition, also ein Code der Länge n und der logarithmischen Kardinalität k.

Beispiel

 $C = \{(0,0,0,0,), (1,0,1,0), (0,1,0,1), (1,1,1,1)\}$ ist ein linearer $[4,2]_2$ -Code.

Definition

Ist $C \subseteq \mathbb{F}_q^n$ ein lineare Code und $c = (c_1, \ldots, c_n) \in C$, so heißt

$$w(c) = d(c,0) = |\{i \in \{1,\ldots,n\} | c_i \neq 0\}|$$

das Gewicht von c.

Beispiel

Für
$$C = \{(0,0,0), (1,0,1), (0,1,1), (1,1,0)\}$$
 ist
$$\begin{aligned} w((0,0,0)) &= 0 \\ w((1,0,1)) &= 2 \\ w((0,1,1)) &= 2 \end{aligned}$$

$$w((1,1,0)) = 2$$

Satz

Ist $C \subseteq \mathbb{F}_q^n$ ein linearer $[n, k]_q$ -Code, so gilt

$$d(C) = \min\{w(c)|\ c \in C \setminus \{0\}\}$$

Folgerung

Ist C ein linearer $[n,1]_q$ -Code und bildet der Vektor v eine Basis von C, so gilt

$$d(C) = w(v)$$

Beispiel

Der lineare $[n, 1]_a$ -Code

$$C = \{(r, r, \dots, r, r) \mid r \in \mathbb{F}_a\}$$

hat Minimalabstand d(C) = n.

Übung

Berechnen Sie d(C) für den linearen $[6,2]_2$ –Code $C\subseteq \mathbb{F}_2^6$ mit Basis

$$v_1 = (1, 1, 1, 1, 1, 1), \quad v_2 = (1, 1, 0, 1, 1, 0)$$

Erzeugermatrix

Jeder $[n,k]_q$ -Code $C \subseteq \mathbb{F}_q^n$ besitzt eine Basis g_1,\ldots,g_k , bestehend aus k Vektoren.

lst

$$g_i = (g_{i,1}, g_{i,2}, \dots, g_{i,n})$$
 $(i = 1, \dots, k)$

so heißt

$$G = \begin{pmatrix} g_{1,1} & g_{1,2} & \cdots & g_{1,n} \\ g_{2,1} & g_{2,2} & \cdots & g_{2,n} \\ \vdots & \ddots & \vdots & \vdots \\ g_{k,1} & g_{k,2} & \cdots & g_{k,n} \end{pmatrix}$$

Erzeugermatrix von C.

Beispiel

Der $[5, 2]_2$ -Code

$$C = \{(0,0,0,0,0), (1,0,1,0,1), (0,1,0,1,1), (1,1,1,1,0)\}$$

hat Erzeugermatrix

$$G = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

aber auch

$$G' = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Die Erzeugermatrix eines Codes ist also nicht eindeutig bestimmt.

Erzeugermatrix

Übung

Bestimmen Sie eine Erzeugermatrix G des linearen $[3,2]_7$ -Codes

$$C = \{(x, y, z) \mid x + 2y + 4z = 0\}$$

Ein Ergebnis der linearen Algebra besagt, dass jeder Untervektorraum von \mathbb{F}_q^n als Lösungsmenge eines homogenen Gleichungssystems geschrieben werden kann.

Satz

Ist $C \subseteq \mathbb{F}_q^n$ ein $[n,k]_q$ -Code, so gibt es eine $(n-k) \times n$ -Matrix H vom Rang n-k mit

$$C = \{c \in \mathbb{F}_q^n \mid H \cdot \overrightarrow{c} = \overrightarrow{0}\}\$$

Die Matrix H heißt **Paritätsprüfmatrix** von C.

Beispiel

Der $[5, 2]_2$ -Code

$$C = \{(0,0,0,0,0), (1,0,1,0,1), (0,1,0,1,1), (1,1,1,1,0)\}$$

hat Paritätsprüfmatrix

$$H = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

aber auch

$$H' = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Die Paritätsprüfmatrix eines Codes ist also nicht eindeutig bestimmt.

Beispiel

Der erste systematische fehlerkorrigierende Code (aus der zweiten Vorlesung) war ein lineare $[7,5]_{11}$ -Code mit Paritätsprüfmatrix

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{pmatrix}$$

Übung

Bestimmen Sie eine Paritätsprüfmatrix H des linearen $[3,1]_7$ -Codes

$$C = \{(r, 3r, 6r) \mid r \in \mathbb{F}_7\}$$

Aus der Paritätsprüfmatrix kann die Zuverlässigkeit des Codes direkt abgeleitet werden:

Satz

Ist H die Paritätsprüfmatrix eines linearen $[n, k]_q$ -Codes und ist d = d(C) der Minimalabstand von C, so gilt

- Es gibt d Spalten von H, die lineare abhängig sind.
- 2 Je d-1 Spalten von H sind linear unabhängig.

Bemerkung

Ist die Zuverlässigkeit d = d(C) eines linearen $[n, k]_q$ -Codes bekannt, so spricht man auch von einem $[n, k, d]_q$ -Code.

Beispiel

Wir betrachten den linearen [4,2]₂-Code mit Paritätsprüfmatrix

$$H = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

Er hat Zuverlässigkeit d(C) = 2.

Übung

Bestimmen Sie die Zuverlässigkeit des $[4,2]_5$ -Codes mit Paritätsprüfmatrix

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

Aus einer Paritätsprüfmatrix H kann eine Erzeugermatrix G leicht gewonnen werden:

1 Bestimme eine Basis g_1, \ldots, g_k des Lösungsraums von

$$H \cdot \overrightarrow{x} = \overrightarrow{0}$$

Setze

$$G = \begin{pmatrix} g_{1,1} & \cdots & g_{1,n} \\ \vdots & \ddots & \vdots \\ g_{k,1} & \cdots & g_{k,n} \end{pmatrix}$$

G ist Erzeugermatrix von C.

Beispiel

Der lineare [5,2]₂-Code mit Paritätsprüfmatrix

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

hat Erzeugermatrix

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Übung

Bestimmen Sie eine Erzeugermatrix zu dem lineare $[4,2]_5$ -Code mit Paritätsprüfmatrix

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$

Das Dualitätsprinzip der linearen Algebra besagt, dass eine Paritätsprüfmatrix aus einer Erzeugermatrix genauso gewonnen werden kann:

① Bestimme eine Basis h_1, \ldots, h_{n-k} des Lösungsraums von

$$G \cdot \overrightarrow{x} = \overrightarrow{0}$$

Setze

$$H = \begin{pmatrix} h_{1,1} & \dots & h_{1,n} \\ \vdots & \ddots & \vdots \\ h_{n-k,1} & \dots & h_{n-k,n} \end{pmatrix}$$

H ist Paritätsprüfmatrix von C.

Beispiel

Der lineare [4, 2]₂-Code mit Erzeugermatrix

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

hat Paritätsprüfmatrix

$$H = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

Übung

Bestimmen Sie eine Paritätsprüfmatrix zu dem lineare $[4,2]_5$ -Code mit Erzeugermatrix

$$G = \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 3 & 2 \end{pmatrix}$$

Definition

Ist C ein linearer $[n,k]_q$ -Code mit d(C)=d, und ist $t=\lfloor \frac{d-1}{2} \rfloor$, so heißt C **vollkommen**, wenn es für jedes $a\in \mathbb{F}_q^n$ ein $c\in C$ gibt mit $d(c,a)\leq t$.

Beispiel

Der trivial $[n, n]_q$ -Code ist vollkommen (mit d(C) = 1, t = 0).

Beispiel

Der $[3,1]_2$ -Code $C = \{(0,0,0),(1,1,1)\}$ ist vollkommen (mit d(C) = 3, t = 1).

Betrachte auf \mathbb{F}_q^n die Paarung

$$\langle \ , \ \rangle : \mathbb{F}_q^n \times \mathbb{F}_q^n \longrightarrow \mathbb{F}_q$$

mit

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \cdot y_i$$

wobei $x = (x_1, \dots, x_n)$ und $y = (y_1, \dots, y_n)$ (dh. $\langle x, y \rangle = x \cdot y^\top$).

Definition

ist $C \subseteq \mathbb{F}_q^n$ ein $[n,k]_q$ -Code, so heißt

$$C^{\perp} = \{ v \in \mathbb{F}_q^n | \langle u, v \rangle = 0 \quad \forall u \in C \}$$

der zu C duale Code.

Beispiel

Für $C = \{(0,0,0), (1,0,1), (0,1,1), (1,1,0)\}$ ist

$$C^{\perp} = \{(0,0,0),(1,1,1)\}$$

Beispiel

Für $C = \{(0,0,0,0), (1,0,1,0), (0,1,0,1), (1,1,1,1)\}$ ist

$$C^{\perp} = \{(0,0,0,0), (1,0,1,0), (0,1,0,1), (1,1,1,1)\}$$

In diesem Fall gilt also

$$C=C^{\perp}$$

Ein linearer Code mit $C = C^{\perp}$ heißt **selbstdual**.

Satz

Ist C ein $[n, k]_q$ -Code, so gilt

- C^{\perp} ist ein $[n, n-k]_q$ -Code.
- **1** Ist G eine Erzeugermatrix von C, so ist G eine Paritätsprüfmatrix von C^{\perp} und ist H eine Paritätsprüfmatrix von C, so ist H eine Erzeugermatrix von C^{\perp} .

Übung

Bestimmen Sie eine Paritätsprüfmatrix des dualen Codes C^{\perp} zum linearen [4,2]3–Code C mit Paritätsprüfmatrix

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$

Qualitätsschranken

Regel

Für einen beliebigen $[n, k, d]_q$ -Code gelten die folgenden Schranken

- Singleton–Schranke: $k + d \le n + 1$.
- **2** Griesemer–Schranke: $n \ge \sum_{i=0}^{k-1} \lceil \frac{d}{q^i} \rceil$.
- 3 Plotkin–Schranke: $d \leq \frac{nq^k(q-1)}{(q^k-1)q}$.

Qualitätsschranken

Definition

Ein linearer $[n, k]_q$ -Code C heißt **MDS-Code** (minimal distance separable code), wenn

$$d(C) = n + 1 - k$$

wenn für diesen Code also die Singleton-Schranke angenommen wird.

Beispiel

Der lineare [4,1]2-Code

$$C = \{(0,0,0,0), (1,1,1,1)\} \subseteq \mathbb{F}_2^4$$

ist ein MDS-Code.

Qualitätsschranken

Ein "positives" Ergebnis liefert

Satz

(Gilbert-Varshamov-Schranke) Falls

$$q^{n-k} \ge \sum_{i=0}^{d-2} \binom{n-1}{i} \cdot (q-1)^i$$

so gibt es einen lineare $[n, k, d]_q$ -Code.

Beispiel

Der *n*-fache Wiederholungscode $C \subseteq \mathbb{F}_q^n$ ist der $[n,1,n]_q$ -Code

$$C = \{(r, r, \dots, r) \in \mathbb{F}_q^n | r \in \mathbb{F}_q\}$$

Beispiel

Der **Paritätsprüfcode** $C \subseteq \mathbb{F}_q^n$ der Länge n ist der $[n, n-1, 2]_q$ -Code

$$C = \{(x_1, \ldots, x_n) \in \mathbb{F}_q^n \mid \sum_{i=1}^n x_i = 0\}$$

Bemerkung

Der *n*–fache Wiederholungscode hat Erzeugermatrix

$$G = (1 \ 1 \dots 1)$$

und der Paritätsprüfcode der Länge n hat die Paritätsprüfmatrix

$$H = (1 \ 1 \dots 1)$$

Die beiden Codes sind also dual zueinander.

Übung

Bestimmen Sie eine Paritätsprüfmatrix des 5–fachen Wiederholungscodes über \mathbb{F}_7 .

Wir betrachen ein n von der Form $n=2^k-1$ und alle möglichen binären

$$k ext{-Tupel }v=egin{pmatrix} a_1 \ dots \ a_k \end{pmatrix}$$
 (also mit $a_i\in\{0,1\}$) **ohne** das Nulltupel $egin{pmatrix} 0 \ dots \ 0 \end{pmatrix}$.

Hiervon gibt es genau n Stück $v_1,\ldots,v_n.$ Wir betrachten die $k\times n$ -Matrix

$$H = (v_1 \ldots v_n)$$

mit den v_i als Spalten.

Satz

Die Matrix H ist die Paritätsprüfmatrix eines vollkommenen $[n, n-k]_2$ -Codes C mit d(C)=3.

Definition

Dieser Code C heißt Hammingcode

Übung

Bestimmen Sie eine Paritätsprüfmatrix und eine Erzeugermatrix für den [7, 4, 3]₂–Hamming–Code

zyklische Codes

Definition

Ein linearer $[n,k]_q$ -Code $C \subseteq \mathbb{F}_q^n$ heißt **zyklisch**, wenn gilt:

Ist
$$c = (c_1, c_2, ..., c_{n-1}, c_n) \in C$$
, so ist auch

$$\widetilde{c}=(c_n,c_1,c_2,\ldots,c_{n-1})\in C.$$

Beispiel

Der lineare [6, 2]₂-Code

$$C = \{(0,0,0,0,0,0), (1,0,1,0,1,0), (0,1,0,1,0,1), (1,1,1,1,1,1)\} \subseteq \mathbb{F}_2^6$$

ist zyklisch.

zyklische Codes

Übung

Überprüfen Sie, ob der lineare $[4,2]_7$ –Code C mit Erzeugermatrix

$$G = \begin{pmatrix} 1 & 3 & 1 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

zyklisch ist.

zyklische Codes

Für ein $c=(c_1,c_2,\ldots,c_{n-1},c_n)\in\mathbb{F}_q^n$ bezeichnen wir mit $c^{[1]}=(c_n,c_1,c_2,\ldots,c_{n-1})$ das Element von \mathbb{F}_q^n , das dadurch entsteht, dass wir alle Komponenten um eine Stelle nach rechts verschieben.

Regel

Ein linearer $[n, k]_q$ -Code C ist genau dann zyklisch, wenn gilt

$$c \in C \Longrightarrow c^{[1]} \in C$$

Satz

Ist $\mathbf{g_1}, \dots, \mathbf{g_k}$ Basis eines $[n, k]_q$ -Codes C, so ist C genau dann zyklisch, wenn $\mathbf{g_1}^{[1]}, \dots, \mathbf{g_k}^{[1]} \in C$.