Home-work/Quiz Boolean Formulas

Madhav P. Desai

January 21, 2022

We will be considering Boolean formulas on n variables $x_1, x_2, ..., x_n$ and the corresponding Boolean functions $f: B_2^n \to B_2$.

- 1. Corresponding to every Boolean formula, there is a well defined Boolean function. Explain.
- 2. Consider the Boolean formula (n = 3):

$$((x_1.(x_2+x.3))+((\neg x_1).((\neg x_2)+(\neg x_3))))$$

What is the Boolean function (truth-table) represented by this formula?

- 3. Corresponding to every Boolean formula, there is a well defined subset of B_2^n . Explain.
- 4. Prove the following equivalences between Boolean formulas.
 - (a) $(x_1.(x_2+x_3)) \equiv ((x_1.x_2)+(x_1.x_3))$
 - (b) $(x_1 + (x_2.x_3)) \equiv ((x_1 + x_2) + (x_1 + x_3))$
 - (c) $((x_1 + x_2)) \equiv ((x_1).(x_2))$
 - (d) $((x_1.x_2) + (x_1.(x_2))) \equiv x_1$
- 5. Let n=4. Describe the subsets of B_2^4 defined by the following Boolean Formulas.
 - (a) x_1
 - (b) $x_1.x_2$
 - (c) $x_1.x_2.x_3$

- (d) $x_1.x_2.x_3.x_4$
- (e) $x_1 + x_2$
- (f) $x_1 + x_2 + x_3 + x_4$
- 6. For each of the formulas in the previous question illustrate the Shannon decomposition using variable x_1 .
- 7. Let $f(x_1, x_2, ..., x_n)$ be a Boolean formula. Remember that we defined:

$$\exists_{x_1} f = f|_{x_1} + f|_{\overline{x_1}} \forall_{x_1} f = f|_{x_1} \cdot f|_{\overline{x_1}}$$

Show that

$$\exists_{x_1} f = (\neg \forall_{x_1} (\neg f))$$

and

$$\forall x_1 f = (\neg \exists_{x_1} (\neg f))$$