



## MARWADI UNIVERSITY

## **Faculty of Technology**

CE-FOT1 (MU), CE, BIOINFO FOT(MU)

B.Tech. SEM:3 MID-SEM. EXAM: I SEPTEMBER-2024

Subject: - (Probability & Statistics ) (01CE0309)

Date: 17/09/2024 Time: - 75 Minutes

## Total Marks:-30 **Instructions:**

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Question: 1. [6]

(a) Answer in Short.

1 a 2 a 3 b 4 a 5 b 6 b

Question: 2. [12]

(a) Bag I contain 4 white and 6 black balls while Bag II contains 4 white and 3 black balls. One ball is drawn at random from one of the bags, and it is found to be black. Find the probability that it was drawn from i) Bag I ii) Bag II.

Let B1 be the event of choosing bag I, B2 the event of choosing bag II, and A be the event of drawing a black ball.

Then, 
$$P(B1) = P(B2) = 1/2$$

Also,

P(A|B1) = P(drawing a black ball from Bag I) = 6/10 = 3/5

P(A|B2) = P(drawing a black ball from Bag II) = 3/7

By using Bayes' theorem, the probability of drawing a black ball from bag I out of two bags,

$$P(B1|A) = (P(A|B1)P(B1))/(P(A|B1) \cdot P(B1) + P(A|B2) \cdot P(B2))$$

$$= ((3/5)*(1/2))/((3/5)*(1/2) + (3/7)*(1/2))$$

$$= 7/12$$

(b) Find the regression coefficient  $b_{xy}$  and  $b_{yx}$ , hence find the correlation coefficient between

x and y. [06]

| X | 4 | 2 | 3 | 4 | 2 |
|---|---|---|---|---|---|
| Y | 2 | 3 | 2 | 4 | 4 |

Solution: n = 5

| x             | у             | $x^2$           | $y^2$           | xy             |
|---------------|---------------|-----------------|-----------------|----------------|
| 4             | 2             | 16              | 4               | 8              |
| 2             | 3             | 4               | 9               | 6              |
| 3             | 2             | 9               | 4               | 6              |
| 4             | 4             | 16              | 16              | 16             |
| 2             | 4             | 4               | 16              | 8              |
| $\sum x = 15$ | $\sum y = 15$ | $\sum x^2$ = 49 | $\sum y^2 = 49$ | $\sum xy = 44$ |

$$b_{yx} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}} = \frac{44 - \frac{(15)(15)}{5}}{49 - \frac{(15)^2}{5}} = -0.25$$

$$b_{xy} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum y^2 - \frac{(\sum y)^2}{n}} = \frac{44 - \frac{(15)(15)}{5}}{49 - \frac{(15)^2}{5}} = -0.25$$

$$r = \sqrt{b_{yx}b_{xy}} = \sqrt{(-0.25)(-0.25)} = 0.25$$

$$b_{xy} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum y^2 - \frac{(\sum y)^2}{n}} = \frac{44 - \frac{(15)(15)}{5}}{49 - \frac{(15)^2}{5}} = -0.25$$

$$r = \int b_{yx}b_{xy} = \sqrt{(-0.25)(-0.25)} = 0.25$$

Since  $b_{yx}$  and  $b_{xy}$  are negative, r is negative

$$r = -0.25$$

(b) Calculate the coefficient of correlation

| X | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2 | 1 |
|---|----|----|----|----|----|----|----|---|---|
| Y | 15 | 16 | 14 | 13 | 11 | 12 | 10 | 8 | 9 |

$$r = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sqrt{\sum x^2 - \frac{(\sum x)^2}{n}} \sqrt{\sum y^2 - \frac{(\sum y)^2}{n}}}$$

$$r = \frac{597 - \frac{(45)(108)}{9}}{\sqrt{285 - \frac{45^2}{9}} \sqrt{1356 - \frac{108^2}{9}}}$$

$$r = 0.95$$

**Question: 3**. [12]

a) The competitors in a beauty contest are ranked by three judges in the following order. Use rank correlation coefficient to discuss which pair of judges has the nearest approach to beauty.

[08]

[06]

| 1st Judge             | 1 | 5 | 4 | 8 | 9 | 6  | 10 | 7 | 3 | 2 |
|-----------------------|---|---|---|---|---|----|----|---|---|---|
| 2 <sup>nd</sup> Judge | 4 | 8 | 7 | 6 | 5 | 9  | 10 | 3 | 2 | 1 |
| 3 <sup>rd</sup> Judge | 6 | 7 | 8 | 1 | 5 | 10 | 9  | 2 | 3 | 4 |

| $R_1$ | $R_2$ | $R_3$ | $R_1 - R_2 = d_1$ | $R_1 - R_3 = d_2$ | $R_2 - R_3 = d_3$ | $d_1^2$             | $d_2^2$            | $d_3^2$           |
|-------|-------|-------|-------------------|-------------------|-------------------|---------------------|--------------------|-------------------|
| 1     | 4     | 6     | -3                | -5                | -2                | 9                   | 25                 | 4                 |
| 5     | 8     | 7     | -3                | -2                | 1                 | 9                   | 4                  | 1                 |
| 4     | 7     | 8     | -3                | -4                | -1                | 9                   | 16                 | 1                 |
| 8     | 6     | 1     | 2                 | 7                 | 5                 | 4                   | 49                 | 25                |
| 9     | 5     | 5     | 4                 | 4                 | 0                 | 16                  | 16                 | 0                 |
| 6     | 9     | 10    | -3                | -4                | -1                | 9                   | 16                 | 1                 |
| 10    | 10    | 9     | 0                 | 1                 | 1                 | 0                   | 1                  | 1                 |
| 7     | 3     | 2     | 4                 | 5                 | 1                 | 16                  | 25                 | 1                 |
| 3     | 2     | 3     | 1                 | 0                 | -1                | 1                   | 0                  | 1                 |
| 2     | 1     | 4     | 1                 | -2                | -3                | 1                   | 4                  | 9                 |
|       |       |       |                   |                   |                   | Σď <sup>2</sup> -74 | $\sum d_2^2 = 156$ | $\sum d_3^2 - 44$ |

(1) Correlation coefficient between first and second judge= 
$$1 - \frac{6 \sum d_1^2}{n(n^2 - 1)}$$

(2) Correlation coefficient between first and third judge= 
$$1-\frac{6\sum d_2^2}{n(n^2-1)}$$

$$= 1-\frac{6(156)}{10(100-1)}$$

$$= 0.05$$

(3) Correlation coefficient between second and third judge= 
$$1-\frac{6\sum d_3^2}{n\Big(n^2-1\Big)}$$
 =  $1-\frac{6\Big(44\Big)}{10\Big(100-1\Big)}$  = 0.73

b) 
$$P(A) = 6/30 = 1/5$$

$$P(B) = 4/30 = 2/15$$

$$P(C) = 10/30 = 1/3$$

Now, (ii) probability of getting multiple of 3 or  $7 = P(C \cup B)$ 

Thus, 
$$P(C \cup B) = P(C) + P(B) - P(C \cap B)$$
  
=  $10/30 + 4/30 - 1/30 = 13/30$ 

OR

The number of bacterial cells (y) per unit volume in a culture at different hours (x) is given below.

|   | [08] |    |    |    |     |     |     |     | J   |     |
|---|------|----|----|----|-----|-----|-----|-----|-----|-----|
| X | 0    | 1  | 2  | 3  | 4   | 5   | 6   | 7   | 8   | 9   |
| У | 43   | 46 | 82 | 98 | 123 | 167 | 199 | 213 | 245 | 272 |

Fit lines of regression of y on x and x on y. Also, estimate the number of bacterial cells after 15 hours.

Solution: 
$$b_{yx} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}} = \frac{8924 - \frac{(48)(1488)}{10}}{285 - \frac{(45)^2}{10}} = 27.0061$$

$$b_{xy} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum y^2 - \frac{(\sum y)^2}{n}} = \frac{8924 - \frac{(45)(1488)}{10}}{282290 - \frac{(1488)^2}{10}} = 0.0366$$

$$\bar{x} = \frac{\sum x}{n} = \frac{45}{10} = 4.5$$
The equation of the line of regression of  $y$  on  $x$  is 
$$y - \bar{y} = b_{yx}(x - \bar{x})$$

$$y - 148.8 = 27.0061(x - 4.5)$$

$$y = 27.0061x + 27.2726$$
The equation of the line of regression of  $x$  on  $y$  is 
$$x - \bar{x} = b_{xy}(y - \bar{y})$$

$$x - 4.5 = 0.0366(y - 148.8)$$

$$x = 0.0366y - 0.9461$$

$$b_{xy} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum y^2 - \frac{(\sum y)^2}{n}} = \frac{8924 - \frac{(45)(1488)}{10}}{282290 - \frac{(1488)^2}{10}} = 0.0366$$

$$\bar{x} = \frac{\sum x}{n} = \frac{45}{10} = 4.5$$

$$\bar{y} = \frac{\sum y}{n} = \frac{1488}{10} = 148.8$$

$$y - \bar{y} = b_{yx}(x - \bar{x})$$
$$y - 148.8 = 27.0061(x - 4.5)$$
$$y = 27.0061x + 27.2726$$

The equation of the line of regression of 
$$x$$
 o  $x-\bar{x}=b_{xy}(y-\bar{y})$   $x-4.5=0.0366(y-148.8)$   $x=0.0366y-0.9461$  At  $x=15$  hours,  $y=27.0061(15)+27.2726=4$ 

At 
$$x = 15$$
 hours,

$$y = 27.0061(15) + 27.2726 = 432.3641$$

b) In a certain assembly plant, three machines B1, B2, and B3 make 30%, 45%, and 25% respectively, of the products. It is known from past experience that 2%, 3%, and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected. What is the probability that it is defective? [04]

We have P(B1) = 0.3, P(B2) = 0.45 and P(B3) = 0.25. Also, we know that 2%, 3%, and 2% of the products made by each machine, respectively, are defective.

Thus, P(A|B1) = 0.02, P(A|B2) = 0.03 and P(A|B3) = 0.02Applying the rule of total probability, we can write P(A) = P(B1) P(A|B1) + P(B2) P(A|B2) + P(B3) P(A|B3) = (0.3)(0.02) + (0.45)(0.03) + (0.25)(0.02) = 49/2000 = 0.0245

---Best of Luck---

**4** | P a g e M U