Week 8

Juan Patricio Carrizales Torres Section 1: Trivial and Vacuous Proofs

September 15, 2021

Problem 1. Let $x \in \mathbb{R}$. Prove that if 0 < x < 1, then $x^2 - 2x + 2 \neq 0$.

Proof. Note that

$$x^2 - 2x + 1 = (x - 1)^2 \ge 0$$

Thus, $x^2 - 2x + 2 = (x - 1)^2 + 1 \ge 1 > 0$. Hence, $x^2 - 2x + 2 \ne 0$ is true for all $x \in \mathbb{R}$ and the implication is true trivially.

Problem 2. Let $n \in \mathbb{N}$. Prove that if $|n-1|+|n+1| \leq 1$, then $|n^2-1| \leq 4$.

Proof. Note that for $n \in \mathbb{N}$, $|n+1| \ge 2 > 1$. Thus, $|n-1| + |n+1| \le 1$ is false for all $n \in \mathbb{N}$ and the implication follows vacuously.

Problem 3. Let $r \in \mathbb{Q}^+$. Prove that if $\frac{r^2+1}{r} \leq 1$, then $\frac{r^2+2}{r} \leq 2$.

Proof. Note that $\frac{r^2+1}{r}=r+\frac{1}{r}$. If $r\geq 1$, then $r+\frac{1}{r}>1$. On the other hand, if 0< r<1, then $\frac{1}{r}>1$ and $r+\frac{1}{r}>1$. Hence, $\frac{r^2+1}{r}\leq 1$ is false for all $r\in\mathbb{Q}^+$ and the implication follows vacuously.

Problem 4. Let $x \in \mathbb{R}$. Prove that if $x^3 - 5x - 1 \ge 0$, then $(x - 1)(x - 3) \ge -2$.

Solution . Note that $(x - 1)(x - 3) = x^2 - 4x + 3$. Also,

$$x^2 - 4x + 4 = (x - 2)^2 \ge 0$$

Thus, $x^2 - 4x + 3 = (x - 2)^2 - 1 \ge -1$. Therefore, $(x - 1)(x - 3) \ge -2$ is true for all $x \in \mathbb{R}$ and this implication is true trivially.

Problem 5. Let $n \in \mathbb{N}$. Prove that if $n + \frac{1}{n} < 2$, then $n^2 + \frac{1}{n^2} < 4$.

Solution. For $n=1, n+\frac{1}{n}=2$. On the other cases, $n\geq 2$. Thus, $n+\frac{1}{n}<2$ is false for all $n\in\mathbb{N}$ and this implication follows vacuously.

Problem 6. Prove that if a, b and c are odd integers such that a + b + c = 0, then abc < 0. (You are permitted to use well-known properties of integers here.)

Solution. Let a=2m+1, b=2k+1 and c=2n+1 for some $m,k,n\in\mathbb{Z}$. Note that a+b+c=2(m+k+n)+3. The sum of three odd integers is an odd integer. Since 0 is an even integer, it follows that a+b+c=0 is false for all odd integers a,b,c. This implication is true vacuously.

Problem 7. Prove that if x, y and z are three real numbers such that $x^2 + y^2 + z^2 < xy + xz + yz$, then x + y + z > 0.

Solution. Since $(x-y)^2+(y-z)^2+(z-x)^2\geq 0$, it follows that $2x^2+2y^2+2z^2-2xy-2yz-2xz\geq 0$. Therefore, $x^2+y^2+z^2\geq xy+xz+yz$ for all $x,y,z\in\mathbb{R}$. This implication is true vacuously.