Exercice 9

- A) $(x,y) \mapsto x^2 + y^2$ est de classe C^1 sur \mathbb{R}^2 can polymoniale. Por composition avec $x \mapsto x \in x$ de classe C^1 sur \mathbb{R} , on en deduit que $f((x,y)\mapsto (x^2+y^2)$ est de classe C^1 sur \mathbb{R}^2 .
- 2) $\forall (x,y) \in \mathbb{R}^2$, $\partial_1(\beta)(x,y) = (2x 2x(x^2+y^2)) e^{-(x^2+y^2)}$ = $2x(4 - (x^2+y^2)) e^{-(x^2+y^2)}$

et 22(1)(x/y) = 2y(1-(x2+y2))e-(x2+y2)

Soit (a,y) ER?

$$\nabla f(x,y) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{cases} 2x(1-(x^2+y^2))e^{-(x^2+y^2)} = 0 \\ 2y(1-(x^2+y^2))e^{-(x^2+y^2)} = 0 \end{cases}$$

$$\begin{cases} 2x(1-(x^2+y^2)) = 0 \\ 2y(1-(x^2+y^2)) = 0 \end{cases} \iff 2^2+y^2-1 \text{ ou } (x,y)=(0,0)$$

Ainsi, l'ensemble des points critique est {(0,0) { U}(x,y) EIR2 | x2+y2=1}

3) 9 est derivable sur R+ et pour tout xER+

9'(2) = (1-x)ex

0'à: x 10 1 . +=

n particular, pour lout $(x,y) \in \mathbb{R}^2$ on a $g(0) = 0 \ (g(x^2+y^2) = f(x,y) \ (e^{-1} = g(1))$ Finsi, comme f(0,0) = 0 et que $\forall (x,y) \in \mathbb{R}^2$ tel que $x^2+y^2 = f(x,y) = e^{-1}$, On deduit que

e f possède un maximum global en tout point de f(z,y) EIR² | zc² +y² =1 } qui vaut e-> ef possède un minimum global en co,o) qui vaut o,

Exercice lo

1) f est de classe C^2 sur IR^2 can polynomiale. Pour tout $(r_1)ER^2$ $\partial_1(f)(x,y) = 3y - 3x^2$; $\partial_2(f)(x,y) = 3x - 3y^2$ $\partial_{1,1}^2(f)(x,y) = -6x$; $\partial_{2,2}^2(f)(x,y) = -6y$ $\partial_{1,2}^2(f)(x,y) = \partial_{2,1}^2(f)(x,y) = 3$

Etude des points citiques: soit $(x,y) \in \mathbb{R}^2$ $\nabla(\beta)(x,y) = \binom{0}{0} \iff \begin{cases} 3y - 3x^2 = 0 \\ 3x - 3y^2 = 0 \end{cases} \implies \begin{cases} y = x^2 \\ x = y^2 \end{cases}$ (a) $\begin{cases} y = x^2 \\ 3x - 3y^2 = 0 \end{cases} \implies \begin{cases} x = y^2 \end{cases} \implies \begin{cases} x = x^4 \end{cases}$ (b) $\begin{cases} x = x^2 \\ 3x - 3y^2 = 0 \end{cases} \implies \begin{cases} x = x^4 \end{cases} \implies \begin{cases} x = x^4 \end{cases}$ (c) $\begin{cases} x = x^2 \\ 3x - 3y^2 = 0 \end{cases} \implies \begin{cases} x = x^4 \end{cases} \implies \begin{cases} x = x^4 \end{cases}$ (d) $\begin{cases} x = x^4 \end{cases} \implies \begin{cases} x = x^4$

Etude de (0,0): $\nabla^2(f)(0,0) = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}$

Les valeus propres de $\nabla^2(f)(0,0)$ sont les réels λ tels que $\begin{bmatrix} -\lambda & 3 \\ 3 & -\lambda \end{bmatrix}$ n'est pas inversible c'ad tels que $\lambda^2 - 9 = 0$ Donc $Sp(\nabla^2(f)(0,0)) : \frac{1}{3} - 3;3$

Comme f'est de classe C² sur l'ouvert 18° et que les valeins propres de la hessiemme de f aux points critiques (0,0) sont ma mulles et de signes opposées, (0,0) est un point selle

Etude de (1,1): $\nabla^2(f)(1,4) = \begin{bmatrix} -6 & 3 \\ 3 & -6 \end{bmatrix}$ Soit $\lambda \in \mathbb{R}$.

 $\lambda \in Sp(\nabla^2(f)(1,1)) = \begin{bmatrix} -6-\lambda & 3-7 \\ 3 & -6-\lambda \end{bmatrix}$ n'est pas inversible

(=)
$$(-6-\lambda)^2 - 9 = 0$$

(=) $(6+\lambda-3)(6+\lambda+3) = 0$
(=) $\lambda = -300 \lambda = -9$

'Amis Sp(\(\frac{1}{2}(f)(1/1)) = \{-9, -3\}

point intique de f et les voluis propre de $\nabla^2(f)(1,1)$ sent strictement mégatives denc f possède un maximum local en (1,1).) f_2 est phynomiale denc de classe C^2 sur IR^2 .

Pour tout $(x_{1/2}) \in IR^2$, $\partial_1(f)(x_{1/2}) = 2x_- y$ et $\partial_2(f)(x_{1/2}) = 2y_- x$ $\partial_{1,1}^2(f)(x_{1/2}) = 2$; $\partial_{2,2}(f)(x_{1/2}) = 2$ $\partial_{1,2}^2(f)(x_{1/2}) = \partial_{2,1}^2(f)(x_{1/2}) = -1$

Points citique: soit $(z,y) \in \mathbb{R}^2$ $\nabla \beta(z,y) = \binom{0}{0} \iff 52x-y=0 \iff 5x=0$ $(2y-x=0) \iff 3x=0 \iff 7=0$ Le scul point citique de f est (0,0)

Soit $\lambda \in \mathbb{R}$, $(2-\lambda^{-1}) = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ Soit $\lambda \in \mathbb{R}$, $(2-\lambda^{-1}) = \begin{bmatrix} 2-\lambda & -1 \\ -1 & 2-\lambda \end{bmatrix}$ m'est pas inversible

$$(2-\lambda)^{2}=1=0$$

$$(2-\lambda-1)(2-\lambda+1)=0$$

La faction fest de classe (2 sur l'ouvert 1R2, co,0)
est un point critique et les valeus propres de $\nabla^2(f)$ (0,0)
sont strictement positives. Dans fipossale un minimum

local en (0,0).

3) On a vu à l'exo 8 que (x,y) \rightarrow \langle \langle \langle \text{ ot de classe } \\
\text{C}^2 sun \text{IR} \cdot \text{x} \text{IR}. Par composition avec la fonction courée, \\
\text{de classe } \text{C}^2 sun \text{IR}, on en diduit que (x,y) \rightarrow \langle \langle \langle \langle \text{L}(x)^2 \\
\text{est de classe } \text{C}^2 sun \text{IR} \cdot \text{x} \text{IR}.

l'an somme puis produit avec des fonctions polymoniales (donc de classe CZ) on déduit que f'ent de classe CZ sen IR # x IR.

Pour tout $(x,y) \in \mathbb{R}^{2}_{+} \times \mathbb{R}$ on a: $\partial_{1}(f)(x,y) = h(x)^{2} + y^{2} + x(2 \frac{h(x)}{x})$

$$\partial_{1}(f)(x,y) = \ln(x)^{2} + y^{2} + 2(2 \frac{\ln(x)}{2})$$

 $= \ln(x)^{2} + 2\ln(x) + y^{2}$
 $\partial_{2}(f)(x,y) = 2xy$

$$\frac{\partial_{1,n}^{2}(f)(x,y)}{\partial_{2,2}(f)(x,y)} = 2 \frac{\ln(n)}{n} + \frac{2}{n} \left[\frac{\partial_{1,2}^{2}(f)(x,y)}{\partial_{2,2}^{2}(f)(x,y)} + \frac{\partial_{2,1}^{2}(f)(x,y)}{\partial_{2,2}^{2}(f)(x,y)} \right] = 2n$$

Points aitiques: $\nabla(\beta(x,y)=(0) \Leftrightarrow \beta \ln(x)^2 + 2\ln(x) + y^2 = 0$ xy=0

(=)
$$\begin{cases} h(x)(h(x)+2) = 0 \\ y = 0 \end{cases}$$
 can $x > 0$
(=) $\begin{cases} h(x) = 0 \\ y = 0 \end{cases}$ $\begin{cases} h(x) = -2 \\ (=)(x,y) = (1,0) \end{cases}$ (=) $\begin{cases} y = 0 \end{cases}$ $\begin{cases} y = 0 \end{cases}$

f possède donc 2 points critiques (1,0) et (e=,0)

Etude de (1,0): $\nabla^2(f)(1,0) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

Pest de classe C^2 sur l'ouvert $IR_+^* \times IR$, (1,0) est un point aitique de f et les valeurs propres de $\nabla^2(f)(1,0)$ sent strictement positives. Donc Proposètée un minimum local en (1,0).

Étude de (e_0^2) : $\nabla^2(f)(e^{-2},0) = \begin{bmatrix} -2c^20 \\ 0 & 2c^2 \end{bmatrix}$ $(e^{-2},0)$ cot un point selle.