72. Test for convergence:
$$\sum_{1} \frac{1^{3}+2^{3}+\cdots+n^{3}}{(n+1)!}$$

73. Discuss convergence:

a)
$$\sum_{1} \left[\frac{1.\cdots(2n-1)}{2\cdots(2n)} \right]^{p}$$

a)
$$\sum_{1} \left[\frac{1.\cdots(2n-1)}{2\cdots(2n)} \right]^{p}$$
 b) $\sum_{1} \left| \frac{1.\cdots(2n-1)}{2\cdots(2n)} \frac{4n+3}{2n+2} \right|^{2}$

74. Test for convergence:

a)
$$\sum_{1} \frac{1}{(2n-1)(2n+1)}$$
 b) $\sum_{1} \frac{1}{1+e^{1/n}}$

b)
$$\sum_{1} \frac{1}{1+e^{1/n}}$$

75. Test for convergence by comparison:

a)
$$\sum_{1} \frac{1}{n^3 - 1}$$

b)
$$\sum_{1} \frac{sinn}{n^3}$$

b)
$$\sum_{1} \frac{\sin n}{n^3}$$
 c) $\sum_{0} \frac{n+5}{n^2-3n-5}$ d) $\sum_{2} \frac{1}{\sqrt{n \ln n}}$

d)
$$\sum_{1} \frac{1}{\sqrt{n} lnn}$$

76. Show convergence of

a)
$$\sum_{0} e^{-a_n}$$

b)
$$\sum_{0} ln(1-\frac{1}{a_n})$$

where $a_n > 0$ and $a_n \to \infty$.

77. Find the sums:

a)
$$\sum_{(1)} \frac{1}{(2n+1)(2p+2n+1)}$$
b) $\sum_{1} \frac{n(n+1)}{(n+2)(n+3)(n+4)(n+5)}$

$$,(p\epsilon N)$$

78.Test for convergence:

a)
$$\sum_{0} (\frac{n+1}{n+2}) n^2$$

a)
$$\sum_{0} (\frac{n+1}{n+2})n^2$$
 b) $\sum_{1} (\frac{(n-1)(n-2)}{n^2})n^2$

79. If $\sum u_n$, $\sum v_n$ are series of positive terms, show that

a)
$$\sum G_n$$

b)
$$\sum H_n$$

are convergent, where H_n , G_n are geometric and harmonic means of u_n, v_n respectively.

80.Test for convergence:

a)
$$\sum_{1} \frac{1}{a^n + n^{1/a}}$$

a)
$$\sum_{1} \frac{1}{a^n + n^{1/a}}$$
 b) $\sum_{1} a sin \frac{1}{n}, (a \neq 0)$

81.Test for convergence: