Step-1

a) D is invertible $\Rightarrow DD^{-1} = D^{-1}D = I$ and CD = -DC, $\hat{a} \in \hat{a} \in \{1\}$

Let us consider C = IC

 $=(D^{-1}D)C$

= $D^{-1}(DC)$ By associativity of multiplication of matrices

 $=D^{-1}(-CD)$ By (1)

 $=D^{-1}(-C)D$

Therefore C is similar to -C.

Step-2

b) If two matrices are similar, then their eigen values are equal.

We have C is similar to -C.

But we follow that the eigen values are respectively the roots of $|C - \lambda I| = 0$, $|C + \lambda I| = 0$

So, it follows that if $\lambda_1, \lambda_2, ..., \lambda_n$ are eigen values of C then

 $-\lambda_1, -\lambda_2, ..., -\lambda_n$ are eigen values of $\hat{a} \in C$

Therefore, we confirm that the eigen values of the matrices C and $\hat{a} \in C$ are the plus $\hat{a} \in C$ minus pairs of $\hat{\lambda}_1, \hat{\lambda}_2, \dots, \hat{\lambda}_n$.

Step-3

c) Given that $Cx = \lambda x$

Then C(Dx) = (CD)x

$$=(-DC)x$$

$$=-D(Cx)$$

$$=-D(\lambda x)$$

$$=-\lambda(Dx)$$

Therefore $C(Dx) = -\lambda(Dx)$