Example 2.4

Given L = Context free, Show that L2 is also context free.

Answer: If S derives L then S, - SS derives L2

Example 2.5

What language is generated by S - a Sbb a? is it CF

OFA-CFG

How to convert DFA to CFG:

Not sure.

- 1. Make a variable R: for each state q; Of the DFA.
- 7. Add the rule Ri ak; to the CFG if S(q;, a) = q; is a transition in the DFA
- 3. Add the rule Ri 2 if Qi is an accept state of the DFA
- 4. Make he the start variable of the grammer where qo is the start state of the machine

Lostly, verify on your own that the resulting GFG generates the same language

S(Ry, accept)

Is this correct?

What does step 2 My implementation mean?

of #3 is correct?

Chapter 66 (Push down Automata ie: PDA)

Example 2.9

The following is the formal description of the PDA that recognizes the language { 0 1 1 n ≥ 0}

Let M, be (Q, Ei, T, S, Q, S, F) where

Q: {q, q, q3, q4}

El = {0,1}

T = {0,\$}

F = { a, a, }

input:			0	1			2	
Stack:	0	\$	2	0	\$ 2	0	\$	2
9,				Authorization (1975) (1986) (1988) (1988) (1986) (1				{(Q,,
a z			{(92,0)}	8(93,2)3				and the same of th
9 3		ASSAULTE PROGRESSION		2(93,2)}				
9							3(0")	

,0-02	
$\left(q_{3}\right)$	

	and the second
Variable	Description
Q	A finite set of States, like the States of a finite automaton
ΣΙ	Is a finite input alphabet analogues to the corresponding component of
	Is the stack alphabet. The finite set of Symbols that we are allowed to push onto the
F	A set of accepting states or final states

PDA do not Start at O (90)

Example 2.10

1: {a'b'ck | i, j, k 20 and i= j or i= k}

We give this by b, a - b ? c, 2-b? We recognize this,

we recognise this (a). because is determined by "= 1 "= K, therefore

values are placed on stack

i=1 a6C

S(92,06C, a).

ZWW8/W € 80,13*3

-w= 0'1'10'

because i=k

Deterministic Vs Non-deterministic

1 Deterministic

- Starts with q,

- Does NOT contain & (Stack not implemented)

U Non-deterministic

- Starts with qu

me recoduise

0,0+2, because

it consist of the

same amount of variables, thus

. WWB | W E {0,13 x)

ie the language

2.11 A (A second solution to problem 2.11)

Luwr = { ww | w { 20,13*} } -- It is a CFL, generated by the grammar B- Obo 116115 * * Designing informal PDA

- Start in a state quo, We stack all values of w while on Stack qo.
- 2. This time, w will be on the stack, with the right end w at the top and the left end at the bottom
- 3. ...

Example 2.11 ((6.3) (generalized transition Diagram) 2,5-12 0,0+2

0.5-05

1, \$ -> 1\$

0,0 - 00

0,1-101

1,0 -10

1,1 -> 11

Initial ID: (90, 111, \$) (my Attempt)

(1) (a, 111, \$) - [1,\$ -15]

(2) (q., 11, 1\$) -> [1, 1->11]

(3) (q0, 1, 11\$) -> [2, 1-1]

(4) (q,,1,11\$) - [1,1-2]

(5) (9,,2,1\$) - Reject! Cannot continue iterating, the input has been exhausted

- This represents InitialID: (a., 1111, \$) rejecting state

- (1) (20,1111, 5) + [2, \$ +8] + (2,,1111, \$)... (a, 1111, \$) - [1, \$ - 1\$] - (a, 111, 1\$)
- (2) (a, 111, 1\$) [2, 1+] (a,, 111, 1\$)... (q0,111,15) - [1,1-11] - (90,11,115)

(3) (q0, 11, 11\$) - [2, 1 - 1] - (q1, 11, 11\$)

- (4) (a,, 11, 115) [1, 1-2] (a,, 1, 15)
- (5) (a,,1,1\$) -> [1,1->2] -> (a,,2,\$)

Value we are Accept

Accept

value we are

taking that's on

the stack already

The value we are outputing to the stack

TM read write

We read "we write an x under on 6 or

the left then

We restore theh stout

Question:

Show that the language L= {ab b : n70, n \$1003 is CF

Answer:

Let L, ={a100b100}, which is regular (finite). Also (L,) is regular L= { a b : n > 0} ((L) c

Therefore it is Context Free

Additional:

(a) {o,1,0,1, ; U50}

Let A = {000000; n203. Let m be the length of the pumping lemma. We show that s = 0 mm 0 mm cannot be pumped. Let s = uv x y z If either vory contain more than one type of alphabet symbol, uvxyz does not contain the symbols in the correct order. Hence it cannot be member of A. Because s cannot be pumped without violating the pumping lemma conditions, A is not context Free

Extra Exercise

Compliment of context free is not context free.

· Union

- ° (on
- 1 *
- · Intersection

Context free Languages

· Reverse (ch)

8.7 Linz (Redo)

Show that language i = {anbn: n/100, n >03 is CF.

potails
$$L = \{a'b', a^{1}b^{1}, a^{3}b^{3}, ...\}$$

$$L = \{a'8b', a^{1}b^{1}, a^{1}b^{2}, ...\}$$

$$C \qquad C$$

Example 2,20 Use the pumping lemma to show that the language B = {anh c'} is not CF

Answer: & Suppose that B is a CFL and Thus B=L(G) for some CFG Let m. be the constant Specified by the pamping lemma (PL)

- Then w= a b c with N ≥ m/3 is in L(6) and has the representative w= avxyz such that v ory is not the empty string 2 (Note that IWI > M
- & Since B is a CFL UVXy'Z EL(6) for each 1=0,1,2...
- # Since IVXYI &m, vxy can contain at most 2 of the 3 symbols from {a, b, c}
- B Since Ivyl > 0, v and y together contain at least one symbol
- 1 Consider the string 42 xy2z
- This String