Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$	$r_5\partial_{lpha}\omega_{\lambda\theta}^{\alpha}\partial^{\lambda}\omega^{eta\kappa}_{\kappa}+rac{1}{2}r_3\partial_{eta}\omega_{\lambda\alpha}^{\alpha}\partial^{\lambda}\omega^{eta\kappa}_{\kappa}-r_5\partial_{eta}\omega_{\lambda\alpha}^{\alpha}\partial^{\lambda}\omega^{eta\kappa}_{\kappa}$	$\frac{2}{3} r_2 \partial^{\beta} \omega_{\prime}^{\ \lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \ \prime} - 4 r_3 \partial^{\beta} \omega_{\prime}^{\ \lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \ \prime} - \frac{1}{2} r_3 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \ \kappa} +$	$\frac{1}{3} r_2 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_2 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_2 \partial^{\beta} \omega_{\alpha}^{\ \alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\ \prime} +$	$\frac{1}{6}t_2\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\lambda\alpha} - \frac{1}{6}t_2\partial_{\kappa}f^{\ \lambda}_{\theta}\partial^{\kappa}f^{\ \theta}_{\lambda} + \frac{1}{6}t_2\partial_{\kappa}f^{\lambda}_{\ \theta}\partial^{\kappa}f^{\ \lambda}_{\lambda} + \frac{1}{6}t_2\partial_{\kappa}f^{\lambda}_{\ \theta}\partial^{\kappa}f^{\ \lambda}_{\lambda} + \frac{1}{6}t_2\partial_{\kappa}f^{\lambda}_{\ \theta}\partial^{\kappa}f^{\ \lambda}_{\lambda} + \frac{1}{6}t_2\partial_{\kappa}f^{\lambda}_{\ \theta}\partial^{\kappa}f^{\lambda}_{\lambda} + \frac{1}{6}t_2\partial_{\kappa}f^{\lambda}_{\lambda} + \frac{1}{6}t_2\partial_{\kappa}f^{\lambda}_{\lambda}$	$\frac{1}{3}t_2 \omega_{i\theta\kappa} \partial^{\kappa} f^{i\theta} - \frac{2}{3}t_2 \omega_{i\kappa\theta} \partial^{\kappa} f^{i\theta} - \frac{1}{3}t_2 \omega_{\thetai\kappa} \partial^{\kappa} f^{i\theta} + \frac{2}{3}t_2 \omega_{\theta\kappa} \partial^{\kappa} f^{i\theta} -$	$\frac{1}{6}t_2\partial^{\alpha}f_{\theta\kappa}\partial^{\kappa}f_{\alpha}^{\ \theta} - \frac{1}{6}t_2\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \theta} + \frac{1}{6}t_2\partial^{\alpha}f_{\kappa}^{\lambda}\partial^{\kappa}f_{\alpha\lambda} +$	$r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \ \theta} \partial_{\kappa} \omega^{\kappa \lambda \theta} + r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 2 r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} +$	$\frac{1}{2} r_3 \partial_\theta \omega_{\lambda}^{\alpha}{}_{\alpha} \partial_\kappa \omega^{\theta \kappa \lambda} + r_5 \partial_\theta \omega_{\lambda}^{\alpha}{}_{\alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - \frac{1}{2} r_3 \partial_\alpha \omega_{\lambda}^{\alpha}{}_{\theta} \partial_\kappa \omega^{\kappa \lambda \theta} -$	$\frac{2}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{ \ \ \kappa} \partial_\kappa \omega^{\theta\alpha\beta} + \frac{1}{2} r_3 \partial_\alpha \omega_\lambda^{ \alpha}_{ \ \theta} \partial_\kappa \omega^{\theta\kappa\lambda} - r_5 \partial_\alpha \omega_\lambda^{ \alpha}_{ \ \theta} \partial_\kappa \omega^{\theta\kappa\lambda} -$	$r_5 \partial_i \omega^{\kappa\lambda}_{\ \ \kappa} \partial^i \omega_{\lambda}^{\ \alpha}_{\ \alpha} + \frac{2}{3} r_2 \partial^\beta \omega^{\theta\alpha}_{\ \kappa} \partial_\theta \omega_{\alpha\beta}^{\ \kappa} - \frac{1}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{\ \kappa} \partial_\kappa \omega^{\alpha\beta\theta} -$	$\frac{2}{3}t_2\;\omega_{_K}^{~\kappa\lambda}\;\omega_{_{K}\lambda}^{~\prime}+\frac{1}{3}t_2\;\omega_{_{K}\lambda}^{~\prime}\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	Lagrangian density
---	--	--	---	---	--	---	--	---	--	---	---	--------------------

_	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1}^{\#2}{}_{lphaeta}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1^-lpha}^{\#1}$	$\sigma_{1}^{\#2}$ α	$\tau_{1}^{\#1}{}_{\alpha}$	$\tau_{1-\alpha}^{\#2}$
$\sigma_{1}^{\sharp 1} \dagger^{lphaeta}$	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
$\sigma_{1}^{\#2} \dagger^{lphaeta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$ au_{1}^{\#1} \dagger^{lphaeta}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#1} \dagger^{lpha}$	0	0	0	$\frac{2}{k^2(r_3+2r_5)}$	0	0	0
$\sigma_1^{\#2} \uparrow^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#1} \uparrow^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} \uparrow^{\alpha}$	0	0	0	0	0	0	0

$\omega_{0^{-}}^{*1}$ †	$f_{0+}^{#2}$ †	f_{0+}^{*1} †	$\omega_{0^{+}}^{*1}$ †	
0	0	0	0	$\omega_{0^+}^{\#1}$
0	0	0	0	$f_{0}^{#1}$
0	0	0	0	$f_{0+}^{#2}$
$k^2 r_2 + t_2$	0	0	0	$\omega_{0^{ ext{-}}}^{\#1}$

$\tau_{0}^{\#2}$ †	$\tau_{0^{+}}^{\#1}$ †	$\sigma_{0^{+}}^{*1}$ †	
0	0	0	$\sigma_{0^+}^{\#1}$
0	0	0	$\tau_0^{\#1}$
0	0	0	$ au_0^{\#2}$
0	0	0	σ_{0}^{*1}
	$\tau_{0+}^{\#2} + 0 0 0 0 0$	τ ₀ ^{#1} † 0 0 0 0 0 0 τ ₀ ^{#2} † 0 0 0 0	

Total #:	$\tau_{2+}^{\#1}\alpha\beta == 0$	$\sigma_{2}^{\#1}{}^{\alpha\beta\chi} == 0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\sigma_{1}^{\#2\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#2\alpha} == 0$	$\sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
25	5	J	ω	ω	ω	ω	1	1	1	#	

		$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
($\omega_{1}^{\sharp 1} \dagger^{\alpha \beta}$	$k^2 (2r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
($\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	<u>t2</u> 3	<u>i kt2</u> 3	0	0	0	0
	$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$-\frac{1}{3}i\sqrt{2}kt_2$	$-\frac{1}{3}\bar{l}kt_2$	$\frac{k^2t_2}{3}$	0	0	0	0
	$\omega_1^{\sharp 1} \dagger^{\alpha}$	0	0	0	$\frac{1}{2} k^2 (r_3 + 2 r_5)$	0	0	0
	$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	0	0	0	0
	$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
	$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	0	0	0	0

$\sigma_{2^{-}}^{#1} \dagger^{\alpha\beta\chi}$	$\tau_{2+}^{*1} + \alpha \beta$	$\sigma_{2^+}^{*1} \dagger^{\alpha\beta}$	
0	0	$-\frac{2}{3k^2r_3}$	$\sigma_{2}^{\#1}_{\alpha\beta}$
0	0	0	$\tau_{2}^{\#1} \alpha \beta$
0	0	0	$\sigma_{2^{+}\alpha\beta}^{*+} \; \tau_{2^{+}\alpha\beta}^{*+} \; \sigma_{2^{-}\alpha\beta\chi}^{*+}$

Unitarity conditions $r_2 < 0 \&\& r_3 < 0 \&\& r_5 < -\frac{r_3}{2} \&\& t_2 > 0 \parallel r_2 < 0 \&\& r_3 < 0 \&\& r_5 > -2 r_3 \&\& t_2 > 0 \parallel$ $r_2 < 0 \&\& r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2} \&\& t_2 > 0$

	Massive particl	le
?	Pole residue:	$-\frac{1}{r_2}$ >
0 - 0	Polarisations:	1
$\overrightarrow{k^{\mu}}$	Square mass:	$-\frac{t_2}{r_2}$ >
?	Spin:	0
·	Parity:	Odd