Can we predict the population increase inside California's high-risk areas of wildfire using demographic and home price data?

Shenyue Jia

February 2023

Why does population increase inside wildland-urban interface (WUI, a high risk area of wildfires) matter?

Where did the population increase the most from **2010** to 2019?

Project Description

Predict the **rate of population increase** from 2010 to 2019 in California at the census tract level based on

- Home values and home affordability (income, income to mortgage ratio)
- Demographic indicators (ethnic diversity, renting/owning ratio, etc.)

Feature Dataset

Feature Name	Description	Feature Name	Description
House affordability index	Derived based on income to mortgage ratio	Median home value	Median of home value inside a census tract
Rent-own ratio	# of residents renting vs. # residents owning	Diversity index (DI)	How ethnically diverse is a census tract (high DI, highly diverse)
Wildfire hazard potential (WHP)	Multi-year average of wildfire risk	Per capita income	Mean income for every person
Wildfire risk to homes	Multi-year average wildfire risk to homes and properties	Median household income	Median of household income inside a census tract

Stakeholders I

This analysis can be utilized by

- **Insurance companies** to decide the potential area for marketing as more people are now living in high-risk wildfire area
- Emergency response agencies to adjust responding plans to meet the needs
 of communities with a fast pace of population increase, especially those with
 high wildfire risk

Stakeholders II

This analysis can also be utilized by

- Real-estate developers to determine new developing projects
 - Option 1: develop in area where median home values are high to make more profit in a relatively competitive market
 - Option 2: develop multi-level apartment complex or condos in area where rent-own ratio is high
 - Option 3: develop in area (or purchase land) where homes are more affordable (high House Affordability Index) to meet needs in a currently less competitive, but with high potential of growth in the future

Key findings from data

- Census tracts with the greatest population increase often have a highly ethnically diverse population (high Diversity Index)
- In contrast, ethnically homogeneous tracts often have a much lower population growth rate

Key findings from data

- In highly ethnically diverse tracts with significant population increase, median home values are generally lower
 - Infer: home price is a major driver of population increase in these tracts
 - This pattern can also be confirmed by Diversity Index vs. Per Capita Income

Modeling Results

- Preprocess: 1) outlier removal, 2) min_max scaler, 3) PCA
- Model format: random forest with hyperparameter tuning

	Train	Test
R ²		
MAE		
RMSE		

Summary

- Data used in this project (home affordability and demographics) cannot successfully predict population increase rate in California
- Why
 - This question is highly related with geographic location, which was missing in the features
 - Only census tracts with the biggest increase responses well with the change of features
- Possible improvements
 - Geographic location needs to be included in the future model
 - Further filter or manipulate the target variable to focus on those with the biggest increase only

	Train	Test
R ²	0.49	0.12
MAE	14.29	17.91
RMSE	21.50	29.46