Final

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2010**

MSc and EEE/ISE PART IV: MEng and ACGI

IMPERIAL COLLEGE LONDON

INFORMATION THEORY

Monday, 10 May 10:00 am

Time allowed: 3:00 hours

There are SIX questions on this paper.

Answer FOUR questions.

All questions carry equal marks

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

C. Ling

Second Marker(s): A. Manikas

Information for students

Notation:

- (a) Random variables are shown in Tahoma font. x, x, X denote a random scalar, vector and matrix respectively.
- (b) The size of a set A is denoted by |A|.
- (c) The normal distribution is denoted by $N(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}}.$
- (d) ⊕ denotes the exclusive-or operation, or modulo-2 addition.
- (e) "i.i.d." means "independent identically distributed".
- (f) Entropy function for a binary source $H(p) = -p \log_2 p (1-p) \log_2 (1-p)$; its derivative $H'(p) = \log_2 (1-p) \log_2 p$.
- (g) $C(x) = \frac{1}{2}\log_2(1+x)$ is the capacity function for the Gaussian channel in bits/channel use.

The Questions

1.

a) Let the joint distribution of two random variables X and Y be given by

p(x,y)	<i>y</i> =0	<i>y</i> =1	<i>y</i> =2
x =0	0	1/8	1/8
<i>x</i> =1	1/8	1/8	0
<i>x</i> =2	1/4	0	1/4

Compute:

- i) The entropy H(x), H(y)
- ii) The conditional entropy H(x|y), H(y|x)
- iii) The joint entropy H(x,y)
- iv) The mutual information I(x, y)
- v) Draw a Venn diagram for the above quantities.

[10]

- b) Let X be a discrete random variable taking integer values. What is the general inequality relationship between H(X) and H(Y) if
 - i) $y=e^x$
 - ii) $y = \sin(x^2)$.

[8]

Let X be a discrete random variable. Show that the entropy of a function of X is less than or equal to the entropy of X, i.e., $H(f(X)) \le H(X)$ for any function f.

[7]

- a)
- i) Explain what is meant by a uniquely decodable code.
- ii) Explain what is meant by an instantaneous code.
- Suppose an instantaneous code for a source X has codeword lengths l_1 , $l_2, \ldots, l_{|X|}$. Use the code tree to justify the Kraft inequality $\sum_{i=1}^{|X|} 2^{-l_i} \le 1$ for any discrete sources. The following example shows such a tree for a four-symbol source and is only meant to be a hint.

Fig. 2.1. The coding tree.

[10]

b) Lempel-Ziv coding. Give the LZ78 parsing and encoding of the following sequence:

11001011010100110110101

[Note: For this question, you will see less than 15 phrases; so ALWAYS use four bits to represent the location of a phrase. Do not worry about how to save such bits.]

[5]

- c) If $X_i \in \{A, B\}$ are i.i.d. with probability mass vector $\{0.8, 0.2\}$. Using binary Huffman codes, determine the coding redundancy (i.e. the difference between the entropy and the number of bits used per symbol) when
 - i) Each x_i is encoded individually,
 - ii) Pairs of X_i are encoded together (i.e. X_1X_2 followed by X_3X_4 etc) and
 - iii) Triplets of X_i are encoded together.

Justify each step of the following proof that mutual information is concave in the a) input distribution.

Proof: Consider two random variables U and V with probability mass vectors $\mathbf{p}_{\mathbf{u}}$ and \mathbf{p}_v . Define a Bernoulli random variable Z with $p(z=1) = \lambda$. Let x = u if z=1and x=v if z=0. Thus,

$$\begin{aligned}
\mathbf{p}_{x} &= \lambda \mathbf{p}_{u} + (1 - \lambda) \mathbf{p}_{v}. \\
\text{Since } I(x, z; y) &= I(x; y) + I(z; y \mid x) = I(z; y) + I(x; y \mid z) \\
\text{and } I(z; y \mid x) &= H(y \mid x) - H(y \mid x, z) = 0, \\
\text{We have } I(x; y) &\geq I(x; y \mid z) \\
&= \lambda I(x; y \mid z = 1) + (1 - \lambda) I(x; y \mid z = 0) \\
&= \lambda I(u; y) + (1 - \lambda) I(v; y)
\end{aligned}$$

$$\Rightarrow I(x; y) \text{ is concave in } \mathbf{p}_{x}.$$

[9]

b) Calculate the capacity of the following channels with probability transition matrix

i)
$$\mathbf{Q} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \end{bmatrix} \quad x, y \in \{0, 1, 2\}$$

ii)
$$\mathbf{Q} = \begin{bmatrix} p & 1-p & 0 & 0 \\ 1-p & p & 0 & 0 \\ 0 & 0 & q & 1-q \\ 0 & 0 & 1-q & q \end{bmatrix} \quad x, y \in \{0,1,2,3\}$$

[Hint: This channel is a union of two binary symmetric channels (BSC), whose capacity C satisfies $2^{C} = 2^{C_1} + 2^{C_2}$ where C_1 and C_2 are the capacity of the BSC's.]

[6]

c) Consider a cascade of *n* identical independent binary symmetric channels (BSC), each with raw error probability p. No encoding or decoding takes place at the intermediate terminals $X_0, X_1, ..., X_n$. Show that it is equivalent to a single BSC with error probability $\frac{1}{2}(1-(1-2p)^n)$, compute the channel capacity and comment on it limit as n tends to infinity.

Fig. 3.1. The cascade channel.

- 4.
- a) Given a correlation matrix **K** of zero-mean continuous-valued random process, it is well known that the Gaussian distribution

$$\varphi(\mathbf{x}) = \left| 2\pi \mathbf{K} \right|^{-\frac{1}{2}} \exp\left(-\frac{1}{2} \mathbf{x}^T \mathbf{K}^{-1} \mathbf{x} \right)$$

has the maximum entropy. Justify the steps in the following proof.

$$0 \leq D(f \parallel \varphi) \stackrel{(2)}{=} - h_f(\mathbf{X}) - E_f \log \varphi(\mathbf{X})$$

$$\Rightarrow h_f(\mathbf{X}) \stackrel{(3)}{\leq} - (\log e) E_f \left(-\frac{1}{2} \ln \left(\left| 2\pi \mathbf{K} \right| \right) - \frac{1}{2} \mathbf{X}^T \mathbf{K}^{-1} \mathbf{X} \right)$$

$$\stackrel{(4)}{=} \frac{1}{2} (\log e) \left(\ln \left(\left| 2\pi \mathbf{K} \right| \right) + \operatorname{tr} \left(E_f \mathbf{X} \mathbf{X}^T \mathbf{K}^{-1} \right) \right)$$

$$\stackrel{(5)}{=} \frac{1}{2} (\log e) \left(\ln \left(\left| 2\pi \mathbf{K} \right| \right) + \operatorname{tr} (\mathbf{I}) \right)$$

$$\stackrel{(6)}{=} \frac{1}{2} \log \left(\left| 2\pi e \mathbf{K} \right| \right) \stackrel{(7)}{=} h_{\varphi}(\mathbf{X})$$

[7]

b) Parallel channels and waterfilling. Consider a pair of parallel Gaussian channels, i.e.,

$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} + \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$$

where

$$\begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} \sim N \left(0, \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} \right)$$

and there is a power constraint $E(X_1^2 + X_2^2) \le 2P$. Assume that $\sigma_1^2 \ge \sigma_2^2$. Compute the channel capacity.

[8]

c) Let x be a non-negative continuous random variable with mean constraint, i.e., E[x] = m. Show that the exponential distribution $f(x) = \lambda e^{-\lambda x}$, $x \ge 0$, $(m = 1/\lambda)$ has the maximum differential entropy $h(x) = -\int f(x) \log_2 f(x) dx = \log_2(e/\lambda)$.

a) Consider the rate-distortion function $R(D) = \min I(X; \hat{X})$, $E_{X,\hat{X}} d(X,\hat{X}) \leq D$. Justify each step in the following derivation of the rate-distortion function for a Gaussian source $X \sim N(0, \sigma^2)$ and $d(X, \hat{X}) = (X - \hat{X})^2$.

$$I(X; \hat{X}) \stackrel{(1)}{=} h(X) - h(X \mid \hat{X}) \stackrel{(2)}{=} \frac{1}{2} \log 2\pi e \sigma^{2} - h(X - \hat{X} \mid \hat{X})$$

$$\stackrel{(3)}{\geq} \frac{1}{2} \log 2\pi e \sigma^{2} - h(X - \hat{X}) \stackrel{(4)}{\geq} \frac{1}{2} \log 2\pi e \sigma^{2} - \frac{1}{2} \log \left(2\pi e \operatorname{Var}\left(X - \hat{X}\right)\right)$$

$$\stackrel{(5)}{\geq} \frac{1}{2} \log 2\pi e \sigma^{2} - \frac{1}{2} \log 2\pi e D$$

$$\Rightarrow R(D) \stackrel{(6)}{\geq} \max \left(\frac{1}{2} \log \frac{\sigma^{2}}{D}, 0\right)$$

[6]

b) Consider the inference channel in Fig. 5.1. There are two senders with equal power P, two receivers, with crosstalk coefficient a. The noise is Gaussian with zero mean and variance N. Show that the capacity under very strong interference (i.e., $a^2 \ge 1 + P/N$) is equal to the capacity under no interference at all.

Fig. 5.1. Interference channel.

[9]

Consider a two-user multiple access Gaussian channel with reference to Fig. 5.2, where C(x) is the capacity function, N is the noise power, and P_1 and P_2 are the powers of the two users.

Fig. 5.2. Capacity region of multi-access channel.

The "quarter circle" in Fig. 5.2 is the capacity region of FDMA

$$R_1 \leq W_1 C \left(\frac{P_1}{N_0 W_1} \right), \quad R_2 \leq W_2 C \left(\frac{P_2}{N_0 W_2} \right)$$

where N_0 is the single-sided power spectral density of the noise. Show that the FDMA region is not larger than the capacity region of the multiple access channel (i.e., CDMA region) with the same bandwidth $W = W_1 + W_2$. (Hint: the function $x \log(1+1/x)$ is increasing and concave for x > 0.)

6. Consider discrete-valued random vectors \mathbf{x} and \mathbf{y} of length n where each pair (x_i, y_i) is drawn i.i.d. from the joint probability distribution function $p_{xy}(x,y)$. The jointly typical set $J_s^{(n)}$ is the set of vector pairs satisfying the following conditions:

$$J_{\varepsilon}^{(n)} = \left\{ \mathbf{x}, \mathbf{y} : \left| -n^{-1} \log_2 p_{\mathbf{x}}(\mathbf{x}) - H(\mathbf{x}) \right| < \varepsilon, \\ \left| -n^{-1} \log_2 p_{\mathbf{y}}(\mathbf{y}) - H(\mathbf{y}) \right| < \varepsilon, \\ \left| -n^{-1} \log_2 p_{\mathbf{x}\mathbf{y}}(\mathbf{x}, \mathbf{y}) - H(\mathbf{x}, \mathbf{y}) \right| < \varepsilon \right\}$$

where $p_{x}(x)$ and $p_{y}(y)$ are the probability distribution functions of X_{i} and Y_{i} respectively. Since the sequences are i.i.d., the probability $p_{x}(\mathbf{x}) = \prod_{i=1}^{n} p_{x}(x_{i})$ and $p_{x}(\mathbf{x})$ and $p_{xy}(\mathbf{x}, \mathbf{y})$ can be written in a similar fashion.

a) Let x' and y' be mutually independent random variables with probability distribution functions $p_x(x') = p_x(x)$ and $p_y(y) = p_y(y')$ respectively. Generate vectors x' and y' where each pair is also i.i.d. Show that the probability that x' and y' are jointly typical is small by justifying each step (1) to (7) in the following derivation:

$$p\left(\mathbf{x}',\mathbf{y}'\in J_{\varepsilon}^{(n)}\right)^{(1)} = \sum_{\mathbf{x}',\mathbf{y}\in J_{\varepsilon}^{(n)}} p(\mathbf{x}',\mathbf{y}') = \sum_{\mathbf{x}',\mathbf{y}\in J_{\varepsilon}^{(n)}} p(\mathbf{x}')p(\mathbf{y}')$$

$$p\left(\mathbf{x}',\mathbf{y}'\in J_{\varepsilon}^{(n)}\right)^{(3)} \le \left|J_{\varepsilon}^{(n)}\right| \max_{\mathbf{x}',\mathbf{y}'\in J_{\varepsilon}^{(n)}} p(\mathbf{x}')p(\mathbf{y}') \stackrel{(4)}{\le} 2^{n(H(\mathbf{x},\mathbf{y})+\varepsilon)} 2^{-n(H(\mathbf{x})-\varepsilon)} 2^{-n(H(\mathbf{y})-\varepsilon)} \stackrel{(5)}{=} 2^{-n(I(\mathbf{x};\mathbf{y})-3\varepsilon)}$$

$$p\left(\mathbf{x}',\mathbf{y}'\in J_{\varepsilon}^{(n)}\right)^{(6)} = \lim_{\mathbf{x}',\mathbf{y}'\in J_{\varepsilon}^{(n)}} p(\mathbf{x}')p(\mathbf{y}') \stackrel{(7)}{\ge} (1-\varepsilon) 2^{n(H(\mathbf{x},\mathbf{y})-\varepsilon)} 2^{-n(H(\mathbf{x})+\varepsilon)} 2^{-n(H(\mathbf{y})+\varepsilon)} \stackrel{(8)}{\ge} (1-\varepsilon) 2^{-n(I(\mathbf{x};\mathbf{y})+3\varepsilon)}$$
[10]

b) Suppose n = 5, $\varepsilon = 0$, and the joint distribution $p_{xy}(x,y)$ is given by

$p_{xy}(x,y)$	y = 0	y = 1
x = 0	1/5	1/5
x = 1	2/5	1/5

 $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ are drawn i.i.d. from the above distribution.

- Show that sequence \mathbf{x} is in the typical set $A_{\varepsilon}^{(n)}(\mathbf{x}) = {\mathbf{x} : \left| -n^{-1} \log_2 p_{\mathbf{x}}(\mathbf{x}) H(\mathbf{x}) \right| < \varepsilon}$ if and only if \mathbf{x} contains three 1's. Compute the probability $P(\mathbf{x} \in A_{\varepsilon}^{(n)}(\mathbf{x}))$ of the typical set.
- ii) Of the 32 possible sequences \mathbf{y} , how many of them are in the typical set $A_{\varepsilon}^{(n)}(\mathbf{y}) = \{\mathbf{y} : \left| -n^{-1} \log_2 p_{\mathbf{y}}(\mathbf{y}) H(\mathbf{y}) \right| < \varepsilon \}$? Compute the probability $P(\mathbf{y} \in A_{\varepsilon}^{(n)}(\mathbf{y}))$ of the typical set.
- iii) Compute the probability $P(\mathbf{x}, \mathbf{y} \in J_{\varepsilon}^{(n)})$ of the jointly typical set.

[15]

```
Information Theory SOLUTIONS
  a) Marginal distribution of X.
          riginal distribution of X. E - \text{new example}

P(X=0) = \frac{1}{4} P(X=1) = \frac{1}{4} P(X=2) = \frac{1}{2}
       8020
       Marginal distribution of Y:
           P(y=0) = \frac{3}{8} P(y=1) = \frac{1}{4} P(y=2) = \frac{3}{8}
                                                                      [2E]
        H(Y) = \frac{3}{8} \log \frac{8}{3} + 4 \log \frac{4}{8} + \frac{3}{8} \log \frac{8}{3} = 1.56
   ii) Conditional entropy H(y(x) = average row entropy
         H(y|x) = p(x=0) H(y|x=0) + p(x=1) H(y|x=1) + p(x=2) H(y|x=2)
                  = 本日(生)+ 本日(生)+ 生日(生)
                                                                      [2 E]
          H(X|Y) = P(Y=0) H(\frac{1}{3}) + P(Y=1) H(\frac{1}{2}) + P(Y=2) H(\frac{1}{3})
                   = \frac{3}{8} \cdot 0.918 + \frac{1}{4} \cdot 1 + \frac{3}{8} \cdot 0.918
                   = 0.94
   jìì)
         H(X,Y) = H(X) + H(Y|X) = \frac{3}{5} + 1 = \frac{5}{5} = 2.5
                                                                      [2E]
           I(X;Y) = H(X) - H(X|Y) = \frac{3}{2} - 0.94 = 0.56
    iV)
                                                                      [2E]
                         H(XIY) (I(X)X) H(YIX)
    V)
                                                                      [2B]
                                1+(x, y)
b) i)
        H(x) = 1-1(y)
                                                                    [4E]
    ii) H(y) \leq H(x)
                                                                    [46]
C)
          H(f(x), x) = H(x) + H(f(x)|x) = H(x) + 0 = H(x)
                         = H(f(x)) + H(x) f(x)) > H(f(x))
```

```
2, a) i) "uniquely decodable" means than the mapping between symbols [3B]
         and codewords is one-to-one, and there is no ambiguity in decoding
       (i) "Thistantaneous" means that the codewords are instantaneously
         decodable, is, no codewords are a prefix of another codeword
      iii) We plot a coding tree where each node has at most
          two branches. Codewords are the leaves, and the number of
          branches starting from the root is the length of the codeword.
          we assign probability I to the root, and a node on level &
          has probability 2-1. Obviously, the probabilities of all leaves
          is never greater than 1. => $2-li <1
                                                              [4B]
    b) Parsing: 1,10,0,101,1010,100,11,01,10101
                                                              [5 E]
         location: 1234 5 6 78 9
         encoding: (0000, 1), (0001,0), (0000,0), (0010,1), (0100,0)
                 (0010,0), (0001,1), (0011,1). (0101,1)
    (1) 1/(x) = -0.2 \log 0.2 - 0.8 \log 0.8 = 0.72
                                                              12 B]
       i) Redundancy = 1 - 0.72 = 0.28
                                                              [2 E]
      11) AA $ 0.64 - 0.64 - 0.64 - 1

AB $2 0.16 ,0.2 - 0.36 1
                                         average length
        = 1x0.64 + 2x0.16 + 3x0.16 + 3x0.04
         BA $ 0.16 97
                                         = 0.64 + 0.32 + 0.6
                                                             [3E]
        BB # 0.04 1
                                         = 1,56
            Redundancy = 1.56 - 0.72 = 0.78 - 0.72 = 0.06
      111)
                0.512 - 0.512 - 0.512 - 0.512 - 0.512 - 0.512
   O
          AAA
                AAB
   100
    101
          ABA
                BAA
                                                             [3 E]
    110
           ABB
    11600
                0.032 0.032
                                        average length
          BBA
    11110
                                         = 1x0.512+3x0.384+5x0./04
                0.008 1
    11111
                         2 Redundancy = \frac{2.18}{3} -0.72 = 0.728 - 0.72 = 0.008
```

(1) total probability theorem

[B] each step

(2) Chain rule (3) Chain rule

(4) definition (5) H(Y/X,Z) = H(Y/X) if X is known, Z is known

(6) I(z; y|x) = |H(y|x) - |H(y|x,z) = 0 $\Rightarrow I(x; y) = I(z; y) + I(x; y|z) \ge I(x; y|z)$

(7) total prob. theorem

(8) Z=1 => X=U, Z=0 => X=V

(q) definition of concavity

b) i) Symmetric Channel

[3E]

 $C = (og|y| - H(Q_{1,1}) = log 3 - H(\frac{1}{2}) = 0.58$

ii) C1 = 1 - H(p) (2 = 1 - H(q)

[3 E]

 $2^{c} = 2^{c_1} + 2^{c_2}$ C = log (2 1-H(p) + 2 1-H(p))

() There are many proofs. One is by induction: [2 A]

When n=1, Pe = \frac{1}{2}(1-11-2p)) = p

[AA]

Suppose it's correct when n = k-1.

Done.

 $C = 1 - H(\frac{1}{2}(1 - (1-2p)^{n}))$

[2A]

As $n \rightarrow \infty$, $(1-2p)^n \rightarrow 0$ unless p = 0

Therefore $C \rightarrow 1 - H(\frac{1}{2}) = 0$

[2A]

LIBI each step

$$tr(AB) = tr(BA)$$
 (5) $E_f \times x^7 = K$

b) It is when $2P = \sigma_1^2 - \sigma_2^2$ that the channel starts

to behave like two channels

When 2P < Ti- Ti, all water is filled into the second channel,

Thus $C = \frac{1}{2} \log \left(1 + \frac{2\beta}{\sigma_{\lambda}^{2}} \right)$

When 2P 7 or2 - or2, two channels

are filled with water

 $2p = v - \sigma_1^2 + v - \sigma_2^2 \Rightarrow v = \frac{2p + \sigma_1^2 + \sigma_2^2}{2} = p + \frac{\sigma_1^2 + \sigma_2^2}{2}$ $C = \frac{1}{2} \left(\frac{1 - \sigma_1^2}{\sigma_1^2} + \frac{\sigma_1^2 - \sigma_2^2}{\sigma_1^2} \right) + \frac{\sigma_1^2 - \sigma_2^2}{2} + \frac{\sigma_1^2 - \sigma_2^2}{\sigma_2^2}$ $C = \frac{1}{2} \left(\frac{1 + \frac{P_1}{\sigma_1^2}}{\sigma_1^2} \right) + \frac{1}{2} \left(\frac{1 + \frac{P_2}{\sigma_2^2}}{\sigma_2^2} \right)$ $= \frac{1}{2} \log \left(1 + \frac{P}{\sigma_{1}^{2}} - \frac{\sigma_{1}^{2} - \sigma_{2}^{2}}{2\sigma_{1}^{2}}\right) + \frac{1}{2} \log \left(1 + \frac{P}{\sigma_{2}^{2}} + \frac{\sigma_{1}^{2} - \sigma_{1}^{2}}{2\sigma_{2}^{2}}\right)$

() If X has exponetral distribution, then

$$m = E[x] = \int_0^\infty \lambda x e^{-\lambda x} dx = \frac{1}{\lambda}$$

[2A]

Differential entropy $h(x) = -\int_0^\infty f(x) \log_2 f(x) dx = -\log_2 e \int_0^\infty f(x) \ln f(x) dx$ = $-\log e \int_0^\infty \lambda e^{-\lambda x} (\ln \lambda - \lambda x) dx = -\log e (\ln \lambda - \int_0^\infty \lambda x e^{-\lambda x} d\lambda x) = \log(e/\lambda)$ bits

Apply relative entropy, for any distribution q

$$0 \leq D(q || f) = -h_g(x) - E_g(og f(x))$$

[2A]

=> hg(x) < -loge Eg (ln x - xx)

[3A]

= -loge
$$(\ell_n \lambda - \lambda E_g(x)) = -loge (\ell_n \lambda - 1)$$

$$= (og(e/x) = hf(x)$$

[3A]

5. a) (1) definition

[1B] each

(2) differential entropy of Gaussian, translation invariance

(3) conditioning reduces entropy

(4) Gaussian has maximum entropy

(5) entropy of Gaussian

(6) R is not negative

b) Without interference: $C = \frac{1}{2} \log \left(1 + \frac{P}{N}\right)$ [2B] With very strong interference: Y_i firstly decodes X_2 , Subtracts it out, then decodes X1. [3B]

YI can decode X_2 up to rate $\frac{1}{2} \log \left(1 + \frac{a^2 Y}{P + N}\right)$

Capacity is not changed as long as [4B] 1 log (1 + app) > 1 log (1+ PN) $\Rightarrow \frac{a^2P}{P+N} \Rightarrow \frac{P}{N} \Rightarrow a^2 \Rightarrow \frac{P+N}{N}$

C) We need to show that for FDMA

 $R_1 \leq C(\frac{P_1}{N})$ $R_2 \leq C(\frac{P_2}{N})$ $R_3 \leq C(\frac{P_2}{N})$ $R_4 \leq C(\frac{P_2}{N})$ $R_5 \leq C(\frac{P_2}{N})$ $R_6 \leq C(\frac{P_2}{N})$ $R_1 + R_2 \leq \left(\left(\frac{P_1 + P_2}{4} \right) \right)$

 $\frac{W_{i}}{2} \log \left(1 + \frac{P_{i}}{N_{o}W_{i}}\right) \leq \frac{W}{2} \log \left(1 + \frac{P_{i}}{N_{o}W}\right)$ (I) [2A]

 $\frac{W_2}{2} \left(\log \left(1 + \frac{P_2}{N_2 W_2} \right) \right) \leq \frac{W}{2} \left(\log \left(1 + \frac{P_2}{N_2 W} \right) \right)$

 $\frac{W_1}{2}\log\left(1+\frac{P_1}{N_2W_1}\right)+\frac{W_2}{2}\log\left(1+\frac{P_2}{N_2W_2}\right)\leq \frac{W}{2}\log\left(1+\frac{P_1+P_2}{N_2W_2}\right)$ (3)

> (1), (2) are true because $\chi(\log(1+\frac{1}{\chi}))$ is increasing and WZW1, WZW2 (W=W1+W2) [IA]

$$\frac{W}{P_{1} + P_{2}} = \frac{P_{1}}{P_{1} + P_{2}} \frac{W_{1}}{P_{1}} + \frac{P_{2}}{P_{1} + P_{3}} \frac{W_{2}}{P_{2}} \qquad [IA]$$

$$\frac{W}{2} \log \left(1 + \frac{P_{1} + P_{2}}{N_{0}W}\right)$$

$$= (P_{1} + P_{2}) \frac{W}{2(P_{1} + P_{2})} \log \left(1 + \frac{P_{1} + P_{2}}{N_{0}W}\right)$$

$$\geq (P_{1} + P_{2}) \sqrt{P_{1} + P_{2}} \frac{W}{N_{0}W} + \frac{P_{1} + P_{2}}{N_{0}W}$$

$$\geq (P_{1} + P_{2}) \left[\frac{P_{1}}{P_{1} + P_{2}} \cdot \frac{W_{1}}{2P_{1}} \log \left(1 + \frac{P_{1}}{N_{0}W_{1}}\right) + \frac{P_{2}}{P_{1} + P_{2}} \cdot \frac{W_{2}}{2P_{2}} \log \left(1 + \frac{P_{2}}{N_{0}W_{2}}\right) \right]$$

$$= \frac{W_{1}}{2} \log \left(1 + \frac{P_{1}}{N_{0}W_{1}}\right) + \frac{W_{2}}{2} \log \left(1 + \frac{P_{2}}{N_{0}W_{2}}\right).$$

$$\left[2A\right]$$

E. a) (1) definition [B](2) independence [IB] (3) P(x') P(y') < max p(x') p(y') [| B] (4) $|J_{\xi}^{(n)}| \leq 2^{n(|t(X,Y)+\xi)}$ typicality (5) algebra [IB] (6) p(x',y') > min p(x',y') (7) typicality (8) algebra [18]
[18] b) E=0 => typical sequences are those containing Correct portions of o's and 1's i) $p(x=0) = \frac{2}{5}$ $p(x=1) = \frac{3}{5}$ $p(x \in A_{\epsilon}^{(n)}(x)) = C_{5}^{3}(\frac{2}{5})(\frac{3}{5})^{3} = 0.3456$ => X is typical if it contains three is. [5A] ii) $P(y=0) = \frac{3}{5}$ $P(y=1) = \frac{2}{5}$ $P(y \in A_{\epsilon}^{(h)}(x)) = C_{5}^{2}(\frac{3}{5})^{3}(\frac{2}{5})^{2} = 0.3456$ ⇒ y is typical if it contains two I's There are $C_5^2 = 10$ such sequences. [5 A] $P(X,y \in J_{\varepsilon}^{(n)}) = P(X,y \in J_{\varepsilon}^{(n)} \mid X \in A_{\varepsilon}^{(n)}(X)) P(X \in A_{\varepsilon}^{(n)}(X))$

 $= C_{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot C_{3} \left(\frac{2}{3}\right)^{2} \cdot \frac{1}{3} \cdot C_{5}^{3} \left(\frac{2}{5}\right)^{2} \left(\frac{3}{5}\right)^{3} = 0.0768$ $| y_{i}=1 \text{ out of } 2 \text{ is}$ $| y_{i}=1 \text{ out of } 3 \text{ is}$ $| y_{i}=1 \text{ out of } 3 \text{ is}$ $| y_{i}=1 \text{ out of } 3 \text{ is}$ $| y_{i}=1 \text{ out of } 3 \text{ is}$ $| y_{i}=1 \text{ out of } 3 \text{ is}$ $| y_{i}=1 \text{ out of } 3 \text{ is}$ $| y_{i}=1 \text{ out of } 3 \text{ is}$ $| y_{i}=1 \text{ out of } 3 \text{ is}$ $| y_{i}=1 \text{ out of } 3 \text{ is}$ $| y_{i}=1 \text{ out of } 3 \text{ is}$