

CS7.404: Digital Image Processing

Monsoon 2023: Morphological Image Processing 1

Anoop M. Namboodiri
Biometrics and Secure ID Lab, CVIT,
IIIT Hyderabad

Plant Phenotyping

Recognizing Scene Text

https://cvit.iiit.ac.in/research/projects/cvit-projects/scene-text-understanding

Document Image Analysis

ကြောင်းများသည် ကြောင်းကို ရှိသည် ကြောင်းမှ ကြောင်းမှာကြောင်းမှ ကြောင်းမှ ကြောင်းမှာ ကြောင်းမှာ ကြောင်းမှ ကြောင်းမှာ ကြောင်

b) Noise reduction image

ပေရတဲ့ရှာများပြီပခွဲ(ရ ခါ ၁၄၄ဂ(ဟစ်) နှင့်လုံးရှိမှီမှီမှီ နှင့်လုံး တာလွှဲဆုံးကို ____ တာဟည် လွေ့လွှင့်လေ နမ္ဗီး(ခရာ ရှိခ ငယ်ငံမွီ ရှိသစ်ပဲမို့တာကိုပြုရှိသည် လွှဲလုံးရာ ရှိချင်းကို ရှာ ငယ်ငံမွီ ရှိသို့သည် ပြုနှင့် နှင့်လုံးရှိသည် လွှဲလုံးရာ ရှိချင်းကို ရှိသည်။ ငယ်ငံမွီ ရှိသည် ပြုနှင့် မြောင်းကို မြောင်းမှာ မြောင်းမှာ မြောင်းမှာ မြောင်းမှာ မြောင်းမှာ မြောင်းမှာ မြောင်းမှာ

c) Binary image by Otsu's algorithm

ောင်းသည်နှင့် ရှိသမားမြေသည် ရှိသည် မောင်းသည် မောင်းသည် မောင်းသည် မောင်းသည် မောင်းသည်။ မောင်းသည် မောင်းသည် မောင် သည် မောင်းသည် မောင်း မောင်းသည် မောင်းသည် မောင်းသည် မောင်းသည် မောင်းသည် မောင်းသည် မောင်းသည် မောင်းသည် မောင်းသည်။ မောင်းသည် မောင်းသည်

d) Binary image by Niblack's algorithm

ా క్రిట్ క్కి

e) Binary image by Sauvola's algorithm

Figure 2. Samples of palm leaf images

Background Subtraction

- Basic idea:
 - Object/Region = <u>set of pixels</u> (or coordinates of pixels)

- 0 = background
- 1 = foreground

Basic Operations

a b c d e

FIGURE 9.1

(a) Two sets A and B. (b) The union of A and B.
(c) The intersection of A and B. (d) The complement of A.
(e) The difference between A and B.

Basic operations on shapes

Structuring Element

3x3 5x5

Box 1 1 1 1 1 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

15x15

Disc

0	1 1		1	0
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
0	1	1	1	0

I	0	0	0	0	8	1	1	1	1	1	Q	0	0	0	0
I	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0
I	0	9	1	1	1	1	1	1	1	1	1	1	1	Q	0
ı	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0
I	0	1	1	1	1	1	1	1	1	1	1	1	1	1	V
I	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
/	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
I	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
V	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
١	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
I	þ	1	1	1	1	1	1	1	1	1	1	1	1	1	Þ
I	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0
I	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0
I	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0
	0	0	0	0	D	1	1	1	1	1	U	0	0	0	0

Structuring Element (Kernel)

- Can have varying sizes
- Have an origin
- Usually, element values are 0,1 and none(!)
 - For thinning, other values are possible

Empty spots in the Structuring Elements are

don't care's!

		1	1	1		
	1	1	1	1	1	
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
	1	1	1	1	1	
		1	1	1		

/ A	
999	Brushes
Tools	

1	1	
1	0	
1		0

1	1	1
1	0	1
1	1	1

Operations on Structuring Elements

•
$$(B)_z = \{c \mid c = b + z, \text{ for } b \in B\}$$

$$\bullet \hat{B} = \{ w | w = -b, b \in B \}$$

Erosion

Erosion

Erosion: Effect

1	1	1
1	1	1
1	1	1

If, for a particular location of Structuring Element (SE) origin, SE lies **fully within the region**, retain the location, else set to 0

SEs Operate w.r.t. an origin $A \ominus B = \{z | (B)_z \subseteq A\}$

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Erosion: Effect of Structuring Element

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

The shape of SE decides the directions of removal of foreground pixels

Alternately:

$$A \ominus B = \{z | (B)_z \cap A^c = \emptyset\}$$

- Shrinks foreground objects
- Thin features are removed
- Touching objects are separated
- NOTE: Multiple iterations of dilation

Example: Counting coins

- Difficult because they touch each other!
- Solution: Binarization and Erosion separates them!

Erosion: Example

486 x 486 image

From: Digital Image Processing, Gonzalez, & Woods

Erosion by square SE:

11 x 11

45 x 45

15 x 15

Erosion operation and min filter

1	1	1
1	1	1
1	1	1

	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	
	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
	0	0	1	1	1	1	1	0	0	0	0	1	1	1	0	0	
	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	
	0	0	0	1	1	0	0	0	0	1	1	1	1	1	0	0	
	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	
	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	
	0	0	0	0	0	0	-	1	1	1	1	0	0	0	0	0	
	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	
	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	
	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	
1.00	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	
K ST	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

$$SE = 3x3$$

I3 = imerode(I2, SE);

1	1	1
1	1	1
1	1	1

Simple application of pattern matching

Dilation operation (max filter)

1	1	1
1	1	1
1	1	1

Dilation: Effect of Structuring Element

$$A \oplus B = \left\{ z | \left[\left(\widehat{B} \right)_z \cap A \right] \neq \emptyset \right\}$$

The shape of SE decides the directions of addition of foreground pixels

Alternately:

$$A \oplus B = \left\{ z | \left[\left(\hat{B} \right)_z \cap A \right] \subseteq A \right\}$$

- Expands foreground objects
- Foreground holes are shrunk / removed
- Broken objects are connected
- NOTE: Multiple iterations of dilation

Dilation: Application

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

1	1	1
1	1	1
1	1	1

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Duality of Erosion and Dilation

 Erosion and dilation are duals of each other with respect to set complementation and reflection.

$$(A \ominus B)^c = A^c \oplus \widehat{B}$$

$$(A \oplus B)^c = A^c \ominus \widehat{B}$$

Duality of Erosion and Dilation

 Erosion and dilation are duals of each other with respect to set complementation and reflection.

Duality of Erosion and Dilation

Duality: Proof

- By definition: $A \ominus B = \{z | (B)_z \subseteq A\} = \{z | (B)_z \cap A^c = \emptyset\}$
- Therefore: $(A \ominus B)^c = (\{z | (B)_z \cap A^c = \emptyset\})^c$
- Note: Complement of the set z satisfying $(B)_z \cap A^c = \emptyset$ is the set z that satisfies $(B)_z \cap A^c \neq \emptyset$.
- Therefore: $(A \ominus B)^c = \{z | (B)_z \cap A^c \neq \emptyset\}$
- i.e., $(A \ominus B)^c = A^c \oplus \hat{B}$

$$A \oplus B = \left\{ z | \left[\left(\hat{B} \right)_z \cap A \right] \neq \emptyset \right\}$$

Opening and Closing

- We would like to maintain the size of objects while filling holes or removing connections
- Opening: Erode, then Dilate

$$A \circ B = (A \ominus B) \oplus B$$

Closing: Dilate, then Erode

$$A \cdot B = (A \oplus B) \ominus B$$

Opening:

Erosion

Followed by dilation ...

Opening: Example

Opening with a 11 pixel diameter disc

Opening: Another Example

• 3x9 Structuring Element

Opening: Another Example

3x9 and 9x3 Structuring Element

Use Opening for Separating Blobs

- Use large structuring element that fits into the big blobs
- Structuring Element: 11 pixel disc

- Similar to Erosion
 - Spot and noise removal
 - Less destructive
- Erosion followed by Dilation
- Same structuring element for both operations.
- Opening is idempotent
 - Repeated application has no further effects!

Closing (Dilation then Erosion)

Structuring element: 3x3 square

	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0	0
	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0
	0	0	0	0	0	0	0	0	-	7	1	0	0	0	0	0
	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	0
	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0
	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0
	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	0	1	0	0	0	1	1	1	1	1	0	0	0	0	0	0
	0	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0
0 1 1 1 0 0 0 1 1 0 0 0 0 0 0	0	1	0	0	0	0	0	1	1	1	0	0	0	0	0	0
	0	1	1	0	0	0	0	1	1	1	1	1	0	0	0	0
0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0	0	1	1	1	0	0	0	1	1	0	0	0	0	0	0	0
	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
00000000000000000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Closing: Example

- Closing operation with a 22 pixel disc
- Closes small holes in the foreground

Closing Example

- 1. Threshold
- 2. Closing with disc of size 20

Thresholded

Closed

Application of Closing

 Good for further processing: E.g. Skeleton operation looks better for closed image!

Questions?