Estatística Matemática

Lista 2 - Estimação pontual

AUTOR

Paulo Cerqueira Jr ≥ 0

AFILIAÇÕES

Programa de Pós-Graduação em Matemática e Estatística - PPGME

Universidade Federal do Pará - UFPA

Exercício 1 Seja X_1,\ldots,X_n uma amostra aleatória obtida a partir da distribuição $f(x)=\theta x^{\theta-1}I_{(0,1)}(x)$, com $\theta>0$. Encontre uma estatística suficiente para θ . Calcule o valor esperado desta estatística.

Exercício 2 Seja X_1, X_2 uma amostra aleatória da variável $X \sim Poisson(\theta)$. Mostre que $T = X_1 + 2X_2$ não é suficiente para θ .

Exercício 3 Seja X_1,\ldots,X_n uma amostra aleatória obtida a partir da distribuição $f(x)=\exp\{-(x-\theta)\}I_{(\theta,\infty)}(x)$, com $\theta>0$. Encontre uma estatística suficiente para θ .

Exercício 4 Mostre que a distribuição, indicada em cada um dos itens abaixo, pertence à família exponencial.

- a. $Gama(\alpha, \beta)$ com α e β desconhecidos.
- b. $Gama(\alpha, \beta)$ com α conhecido e β desconhecido.
- c. $Beta(\alpha, \beta)$ com α e β desconhecidos.
- d. $Beta(\alpha, \beta)$ com α conhecido e β desconhecido.
- e. $Poisson(\lambda)$.
- f. Binomial Negativa com numero de sucessos r conhecido e 0 desconhecido

Exercício 5 Para cada um dos itens do <u>Exercício 4</u>, encontre uma estatística suficiente para o parâmetro(s) de interesse.

Exercício 6 Nos <u>Exercício 1</u> e <u>Exercício 3</u> determine se a estatística suficiente encontrada pode ser classificada como minimal.

Exercício 7 Seja X_1,\ldots,X_n uma amostra aleatória com f.d

$$f(x|\mu,\sigma^2) = rac{1}{\sigma} \mathrm{exp} \left\{ -rac{(x-\mu)}{\sigma}
ight\}, \; \mathrm{para} \; \mu < x < \infty, \; 0 < \sigma < \infty.$$

Encontre uma estatística suficiente bi-dimensional para (μ, σ) .

Exercício 8 Seja X_1, \ldots, X_n uma amostra aleatória com f.d.'s

$$f(x| heta) = rac{1}{2i heta}, ext{ para } -i(heta-1) < x_i < i(heta+1), \; heta > 0.$$

Encontre uma estatística suficiente bi-dimensional para θ .

Exercício 9 Suponha que X_1 e X_2 sao i.i.d. com p.d.f. $f(x|\alpha) = \alpha x^{\alpha-1} \exp{-x^{\alpha} I_{(0,\infty)}(x)}$ sendo $\alpha>0$. Mostre que $\log(X_1)/\log(X_2)$ e uma estatística ancilar.

Exercício 10 Seja X_1, \ldots, X_n uma amostra aleatória de uma família de locação. Mostre que $M-\overline{X}$ e uma estatística ancilar, sendo M a mediana amostral.

Exercício 11 Sejam X_1, \ldots, X_n uma amostra aleatória com f.d. indicada nos itens abaixo. Em cada caso, encontre uma estatística suficiente completa, ou mostre que tal estatística não existe.

a.
$$f(x| heta)=rac{2x}{ heta^2}I_{(0, heta)}(x), ext{ para } heta>0.$$

b.
$$f(x| heta)=rac{ heta}{(1+x)^{1+ heta}}I_{(0,\infty)}(x), ext{ para } heta>0.$$

c.
$$f(x|\theta)=\binom{2}{x}\theta^x(1-\theta)^{2-x}, ext{ para } x=0,1,2,\ldots ext{ e } heta\in[0,1].$$

Exercício 12 Seja X uma única observação da Bernoulli (θ) . Considere os estimadores $T_1(X)=X$ e $T_2(X)=1/2$.

- a. $T_1(X)=X$ e $T_2(X)=1/2$ são estimadores não viciados para θ ?
- b. Calcule o erro quadrático médio de $T_1(X) = X$ e $T_2(X) = 1/2$.

Exercício 13 Seja X_1,\dots,X_n uma amostra aleatória de alguma densidade cujo valor esperado é igual a μ e a variância é σ^2 . Mostre que $\sum\limits_{i=1}^n a_i X_i$ é um estimador não viciado de para qualquer conjunto de constantes conhecidas a_1,\dots,a_n satisfazendo $\sum\limits_{i=1}^n a_i = 1$.

Exercício 14 Seja X_1, \ldots, X_n uma amostra aleatória da distribuição com função de probabilidade $f(x \mid \theta) = \theta^x (1 - \theta)^{1-x} I(x)_{\{0,1\}}, \ \ 0 < \theta < 1.$

- a. Encontre o estimador do método dos momentos para θ .
- b. Encontre o estimador de m'axima verossimilhança para θ .
- c. Calcule o erro quadrático médio dos estimadores obtidos nos itens a. e b.

Exercício 15 Em estudos de genética, o modelo Binomial é frequentemente utilizado exceto quando a observação x=0 é impossível de ocorrer; nestes casos, a amostragem será realizada a partir da seguinte distribuição truncada:

$$\binom{m}{x} \frac{p^x (1-p)^{m-x}}{1-(1-p)^m} I_{\{1,2,\ldots,m\}}(x)$$

Encontre o estimador de máxima verossimilhança de p para o caso onde m=2 e o tamanho amostral é n.

Exercício 16 Seja X_1, \ldots, X_n uma amostra aleatória obtida a partir da distribuição Exponencial (λ) com densidade $f(x \mid \lambda) = \lambda \exp\{-\lambda x\} I_{[0,\infty)}(x)$. Encontre o estimador de máxima verossimilhança para λ .

Exercício 17 Seja X_1,\ldots,X_n uma amostra aleatória obtida a partir da densidade $f(x\mid\theta)=rac{2x}{\theta}I_{[0,\theta)}(x)$, $\theta>0$. Encontre o estimador de máxima verossimilhança para θ .

Exercício 18 Seja X_1,\ldots,X_n uma amostra aleatória obtida a partir da densidade $f(x\mid\theta)=rac{1}{2 heta}I_{[- heta, heta)}(x)$, heta>0. Encontre o estimador de máxima verossimilhança para heta.

Exercício 19 Seja X_1,\ldots,X_n uma amostra aleatória obtida a partir da densidade $f(x\mid\theta)=\theta(1+x)^{(-(1+\theta))}I_{[0,\infty)}(x)$, $\theta>0$.

- a. Encontre o estimador de máxima verossimilhança para $1/\theta$.
- b. Encontre o limite inferior de Cramér-Rao para a variância de um estimador não viciado de $1/\theta$.

Exercício 20 Seja X_1, \ldots, X_n uma amostra aleatória obtida a partir da distribuição Poisson(λ). Encontre o estimador de máxima verossimilhança para $\tau(\lambda) = (1 + \lambda) \exp{\{-\lambda\}}$.

Exercício 21 Seja X_1, \ldots, X_n uma amostra aleatória obtida a partir da densidade $f(x \mid \theta) = \theta x^{\theta-1} I_{[0,1)}(x)$, $\theta > 0$.

- a. Encontre o estimador de máxima verossimilhança para θ .
- b. Encontre o estimador de máxima verossimilhança para $g(\theta) = \theta/(1+\theta)$.
- c. Use os resultados da teoria assintótica dos EMVs para determinar a distribuição aproximada dos estimadores obtidos nos items a. e b. quando n é grande.

Exercício 22 Seja X_1, \ldots, X_n uma amostra aleatória obtida da $N(\theta, 1)$.

- a. Encontre o estimador de máxima verossimilhança para θ . Calcule o EQM deste estimador.
- b. Encontre o estimador de máxima verossimilhança para $P(X_i > 0)$.
- c. Encontre o limite inferior de Cramér-Rao para a variância de um estimador não viciado de θ .
- d. O estimador encontrado no item a. é eficiente?

Exercício 23 Considere o resultado obtido no exercício 5. para uma amostra aleatória da Exponencial(λ).

- a. Encontre o estimador de máxima verossimilhança de $g(\lambda)=P(X>1)$.
- b. Use os resultados da teoria assintótica dos EMVs para determinar a distribuição aproximada do estimador obtido em a. quando n é grande.

Exercício 24 Sejam Y_1, \ldots, Y_n variáveis aleatórias independentes com $Y_i \sim N(\alpha + \beta x_i, \sigma^2)$, onde x_i é conhecido para todo $i = 1, \ldots, n$. Encontre os estimadores de áxima verossimilhança de α , β e σ^2 .

Exercício 25 Seja X_1,\ldots,X_n uma amostra aleatória obtida a partir da densidade $f(x\mid\theta)=\frac{x}{\theta^2}\exp\{-x\theta\}I_{[0,\infty)}(x)$, $\theta>0$. Encontre o estimador de máxima verossimilhança de θ e verifique se ele é eficiente.

Exercício 26 Sejam X_1,\ldots,X_n i.i.d. Bernoulli(p). Mostre que a variância de \bar{X} atinge o limite inferior de Cramér-Rao e, portanto, \bar{X} é o melhor estimador não viciado de p.

Exercício 27

- 15. Sejam X_1, \ldots, X_n i.i.d. $\mathsf{Exp}(\lambda)$.
- a. Encontre um estimador não viciado para baseado apenas em $Y=min(X_1,\ldots,X_n)$.
- b. Encontre um estimador que é melhor do que aquele obtido em a. Prove que é melhor.

Exercício 28 Sejam X_1,\ldots,X_n v.a's i.i.d. $N(\theta,\theta^2)$, com $\theta>0$. Para este modelo \bar{X} e cS são estimadores não viciados para θ , sendo $c=\sqrt{n-1}\Gamma[(n-1)/2]/\sqrt{2}\Gamma[n/2]$.

- a. Prove que para qualquer número a o estimador $a\bar{X}+(1a)cS$ é um estimador não viciado para θ .
- b. Encontre o valor de a que determina o estimador com variância mínima.

Exercício 29 Suponha que X_1,\ldots,X_n é uma amostra aleatória da distribuição Normal com média desconhecida $\theta \neq 0$ e variância desconhecida σ^2 . Utilize o Método Delta para determinar a distribuição assintótica de \bar{X}^3 .

Exercício 30 Suponha que X_1, \ldots, X_n é uma amostra aleatória da distribuição Exponencial com parâmetro β . A densidade é dada por

$$f(x\mid eta) = eta \exp\{-eta x\} I_{[0,\infty)}(x)$$

a.Encontre $\hat{\beta}_n$ o estimador de máxima verossimilhança para β .

- b. Se n é grande, a distribuição de $\hat{\beta}_n$ será aproximadamente Normal com média β . Mostre que a variância desta distribuição Normal será β^2/n .
- c. Use o Método Delta para encontrar a distribuição assintótica de $1/\hat{eta}_n$.