Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Systems Software & Architecture Lab.

Seoul National University

Fall 2019

Integers

Computer Systems

A computer is a

programmable

machine.

Von Neumann Architecture

By John von Neumann, 1945

Data movement
Arithmetic & logical ops
Control transfer

Byte addressable array
Code + data (user program, OS)
Stack to support procedures

The Advent of the Digital Age

Analog vs. digital?

analog - continuous signal / storing the signal
<-> digit(numbers) everything is converted into the numbers

- Compact Disc (CD)
 - 44.1 KHz, 16-bit, 2-channel
- MP3 frequency(주파수)
 - A digital audio encoding with lossy data compression

LP Record vs. Compact Disc

Electrical Current

Digital Computer

Representing Information

- Information = Bits + Context
- Computers manipulate representations of things
- Things are represented as binary digits
- What can you represent with N bits?
 - -2^N things

- context 알아야 information 이해 가능
- Numbers, characters, pixels, positions, source code, executable files, machine instructions, ...
- Depends on what operations you do on them

Binary Representations

- Why not base 10 representation?
 - Easy to store with bistable elements easy to store compute transfer
 - Straightforward implementation of arithmetic functions
 - Reliably transmitted on noisy and inaccurate wires
- Electronic implementation

Encoding Byte Values

- Binary: 0000000002 to 1111111112
- Octal: 000_8 to 377_8
 - An integer constant that begins with 0 is an octal number in C
- Decimal: θ_{10} to 255_{10}
 - First digit must not be 0 in C
- Hexadecimal: 00₁₆ to
 FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as **0xFA1D37B** or **0xfa1d37b**

•	Decimal Binary		
Hex	Dec	Bina	

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111
	1 2 3 4 5 6 7 8 9 10 11 12 13 14

Representing Integers

Unsigned Integers

Encoding unsigned integers

$$B = [b_{w-1}, b_{w-2}, \dots, b_0] \quad x = 0001 \ 0000 \ 0101 \ 1110_2$$

$$D(x) = \sum_{i=0}^{w-1} b_i \cdot 2^i \qquad = 4096 + 64 + 16 + 8 + 4 + 2 = 4190$$

- What is the range for unsigned values with w bits? 2 to the w 1 maximum val
- Using 64 bits: 0 to +18,446,774,073,709,551,615

Signed Integers

- Encoding positive numbers
 - Same as unsigned numbers
- Encoding negative numbers
 - Sign-magnitude representation
 - Ones' complement representation
 - Two's complement representation

Sign-magnitude Representation

- Two zeros
 - [000...00], [100..00]
- Used for floating-point numbers

$$S(B) = (-1)^{b_{w-1}} \cdot \left(\sum_{i=0}^{w-2} b_i \cdot 2^i\right)$$

2개의 0 0000 +0. 1000 -0.

a-b >0 / a-b == 0 등등 여러 비교 시 +0/-0 사용에 문제

Ones' Complement Representation

- Easy to find -n
- Two zeros
 - [000..00], [111..11]
- No longer used

$$O(B) = -b_{w-1}(2^{w-1} - 1) + \left(\sum_{i=0}^{w-2} b_i \cdot 2^i\right)$$

just invert 0 / 1 flip! 2개의 0 문제점

Two's Complement Representation (I)

- Unique zero
- Easy for hardware
 - leading $0 \ge 0$
 - leading I < 0

- 1001(2) -8. 1. -8 + 1 = -7
- Used by almost all modern machines

$$O(B) = -b_{w-1} \cdot 2^{w-1} + \left(\sum_{i=0}^{w-2} b_i \cdot 2^i\right)$$

Asymmetric range:

$$-2^{n-1} \sim 2^{n-1} - 1$$

Two's Complement Representation (2)

Following holds for two's complement

$$^{\sim} x + 1 == -x$$

- Complement
 - Observation: $^{\sim} x + x == 1111...11_2 == -1$
- Increment

$$^{\sim} x + x == -1$$
 $^{\sim} x + x + (-x + 1) == -1 + (-x + 1)$
 $^{\sim} x + 1 == -x$

Sign Extension

short s : 16-bit int i : 32-bit

• Signed: w bits $\rightarrow w+k$ bits

s = i i = s (filling with zero but, if it's minus

- Given w-bit signed integer x
- Convert it to **w+k**-bit integer with same value
- Replicate the sign bit to the left
 - $+2:0000\ 0010 \rightarrow 0000\ 0000\ 0000\ 0010$

unsigned는 상관없으니 0으로 채운다 type에 따라서 다르게 적용

- In RISC-V instruction set
 - 1b: sign-extend loaded byte
 - 1bu: zero-extend loaded byte

Manipulating Integers

Bit-Level Operations in C

- Operations &, |, ~, ^ available in C
 - Apply to any "integral" data type
 - (unsigned) long, int, short, char
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (char data type)

~0x41 → 0xBE	~01000001 ₂ → 10111110 ₂
~0x00 → 0xFF	~00000000 ₂ → 11111111 ₂
0x69 & 0x55 → 0x41	$01101001_2 \& 01010101_2 \rightarrow 01000001_2$
0x69 0x55 → 0x7D	$01101001_2 \& 01010101_2 \rightarrow 01111101_2$
0x69 ^ 0x55 → 0x3C	$01101001_2 \& 01010101_2 \rightarrow 00111100_2$

Logic Operations in C

- **&** &&, | |, !
 - View 0 as "False", anything nonzero as "True"
 - Always return 0 or I
 - Early termination
- Examples (char data type)

```
!0x41 \rightarrow 0x00
!0x00 \rightarrow 0x01
!!0x41 \rightarrow 0x01
0x69 && 0x55 \rightarrow 0x01
0x69 || 0x55 \rightarrow 0x01
if (p && *p) ... // avoids null pointer access
```

Shift Operations

- Left shift: **x** << **y**
 - Shift bit-vector **x** left **y** positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right shift: x >> y
 - Shift bit-vector **x** right **y** positions
 - Throw away extra bits on right
 - Logical shift: fill with 0's on left
 - Arithmetic shift: replicate MSB on right
 - Useful with two's complement integer representation
- Undefined if y < 0 or $y \ge word$ size

Argument x	01100010		
<< 3	00010000		
Log. >> 2	00011000		
Arith. >> 2	00011000		

Argument x	10100010		
<< 3	00010 <u>000</u>		
Log. >> 2	<u>00</u> 101000		
Arith. >> 2	11 101000		

Addition

Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands: No overflow
 - Adding two +ve operands: Overflow if result sign is I
 - Adding two –ve operands: Overflow if result sign is 0

Addition: Signed vs. Unsigned

Signed addition in C

- Ignores carry output
- The low-order w bits are identical to unsigned addition

Examples for 3-bit integer

Mode	Х	у	x + y	Truncated x + y
Unsigned	4 [100]	3 [011]	7 [0111]	7 [111]
Two's comp.	-4 [100]	3 [011]	-1 [1111]	-1 [111]
Unsigned	4 [100]	7 [111]	11 [1011]	3 [011]
Two's comp.	-4 [100]	-1 [111]	-5 [1011]	3 [011]
Unsigned	3 [011]	3 [011]	6 [0110]	6 [110]
Two's comp.	3 [011]	3 [011]	6 [0110]	-2 [110]

Subtraction

Add negation of second operand

```
• Example: 7 - 6 = 7 + (-6)
```

```
+7: 0000 0000 ... 0000 0111
-6: 1111 1111 ... 1111 1010
```

+1: 0000 0000 ... 0000 0001

- Overflow if result out of range
 - Subtracting two +ve or two -ve operands: No overflow
 - Subtracting +ve from –ve operand: Overflow if result sign is 0
 - Subtracting –ve from +ve operand: Overflow if result sign is I

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit/16-bit data
 - Use 64-bit adder,
 with partitioned carry chain
 - Operate on 8x8-bit, 4x16-bit, or 2x32-bit vectors
 - SIMD (Single-Instruction, Multiple-Data)

Saturating operations

- On overflow, result is largest representable value
- e.g., clipping in audio, saturation in video

Multiplication

Long-multiplication approach

Multiplication Hardware

Optimized Multiplier

Perform steps in parallel: add / shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplication is low

Multiplication Example (1)

 $= 3_{10} \times 5_{10} = 00000011_2 \times 00000101_2$

Multiplication Example (2)

• $MP_0 = I$: Add MC to P, shift right P and MP by I bit

Multiplication Example (3)

• $MP_0 = 0$: Shift right P and MP by I bit

Multiplication Example (4)

• $MP_0 = I$: Add MC to P, shift right P and MP by I bit

Multiplication Example (5)

• $MP_0 = 0$ (5 times): Shift right P and MP by I bit (5 times)

Multiplication Example (6)

Final product available in P + MP

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

Multiplication: Signed vs. Unsigned

Signed multiplication in C

- Ignores high order w bits
- The low-order w bits are identical to unsigned multiplication

Examples for 3-bit integer

Mode	Х	у	х·у	Truncated x · y
Unsigned	5 [101]	3 [011]	15 [001111]	7 [111]
Two's comp.	-3 [101]	3 [011]	-9 [110111]	-1 [111]
Unsigned	4 [100]	7 [111]	28 [011100]	4 [100]
Two's comp.	-4 [100]	-1 [111]	4 [000100]	-4 [100]
Unsigned	3 [011]	3 [011]	9 [001001]	1 [001]
Two's comp.	3 [011]	3 [011]	9 [001001]	1 [001]

Division

- Check for 0 divisor
- If divisor ≤ dividend bits:I bit in quotient, subtract
- Otherwise: 0 bit in quotient,
 bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back

n-bit operands yield *n*-bit quotient and remainder

Division Hardware

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Division Example (I)

 $-15_{10} / 4_{10} = 00001111_2 / 00000100_2$

Division Example (2)

■ R - D < 0: Shift left R and Q by I bit, $Q_0 = 0$

Division Example (3)

■ R - D < 0: Shift left R and Q by I bit, $Q_0 = 0$ (6 times)

Division Example (4)

■ $R - D \ge 0$: R = R - D, shift left R and Q by I bit, $Q_0 = I$

Division Example (5)

■ $R - D \ge 0$: R = R - D, shift left Q by I bit, $Q_0 = I$

More on Division

Signed division

- Divide using absolute values
- Adjust sign of quotient and remainder as required

- (e.g.)
$$7 / 2$$
: $Q = 3$, $R = I$
 $(-7) / 2$: $Q = -3$, $R = -I$
 $7 / (-2)$: $Q = -3$, $R = I$
 $(-7) / (-2)$: $Q = 3$, $R = -I$

$$-\left(\frac{x}{y}\right) = = \frac{(-x)}{y}$$

 $Dividend = Quotient \times Divisor + Remainder$

Faster division

- Can't use parallel hardware as in multiplier Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division) generate multiple quotient bits per step, but still require multiple steps

Shift for Multiplication/Division

- Power-of-2 multiplication with left shift
 - u << k gives u * 2^k

$$-$$
 e.g. $u << 3 == u * 8$, $(u << 5) - (u << 3) == u * 24$

- Both signed and unsigned
- Faster than multiply
- Power-of-2 division with right shift
 - $u \gg k$ gives $\lfloor u / 2^k \rfloor$
 - Only for unsigned integers

- e.g.
$$10_{10} / 4_{10} = 2_{10}$$
, $00001010_2 >> 2 = 00000010_2 = 2_{10}$
 $-10_{10} / 4_{10} = -2_{10}$, $11110110_2 >> 2 = 11111101_2 = -3_{10}$

- For negative numbers, should be computed as (u + (1 << k) 1) >> k

Summary

- Two's complement for representing negative numbers
- Sign extension preserves the value
- Same hardware can be used for both signed and unsigned addition. This
 is also true for multiplication. But their overflow conditions are different.
- Remember?

```
int x = 50000;
printf ("%s\n", (x*x >= 0)? "Yes" : "No");
```

 Using shift right for power-of-2 division requires correction for negative numbers