Project

- Group registration due today
 - No more than 5 people in a group.
- Proposal presentation
 - Dec. 14, 16
 - 5-10min per group (depending on the number of groups)

Reinforcement Learning

- A new class of problems: Reward-based
 - E.g. Autonomous driving

- What is my next move?
 - Reaching the destination with minimum cost

Reinforcement Learning

- Common theme: control problems where
 - Your actions beget rewards
 - Win the Go game
 - Make money by investing
 - Get home sooner
 - But not deterministically
 - A world out there that is not predictable
- From experience of belated/delayed rewards, you must learn to act rationally

- Agent operates in an environment
 - Agent may be you..
 - Environment is the game, the market, the road..

A cartoon of the world

Agent takes actions which affect the environment

- Agent takes actions which affect the environment
- Which changes in a somewhat unpredictable way

- Agent takes actions which affect the environment
- Which changes in a somewhat unpredictable way
- Which affects the agent's situation

- The agent also receives rewards..
- Which may be apparent immediately
- Or not apparent for a very long time

Problem to solve

How must the agent behave to maximize its rewards?

Markov Decision Processes

AIMA Chapter 17

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions a ∈ A
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

 This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

Policies

 In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

• For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$

- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent

Optimal Policies

R(s) = "living reward"

$$R(s) = -0.4$$

$$R(s) = -0.03$$

R(s) = -2.0

Example: Racing

A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

Two actions: Slow, Fast

Racing Search Tree

MDP Search Trees

Each MDP state projects an expectimax-like search tree

Utilities of Sequences

Utilities of Sequences

What preferences should an agent have over reward sequences?

• More or less? [1, 2, 2] or [2, 3, 4]

• Now or later? [0, 0, 1] or [1, 0, 0]

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

How to discount?

 Each time we descend a level, we multiply in the discount once

Why discount?

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge

Example: discount of 0.5

- U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
- U([1,2,3]) < U([3,2,1])

Solving MDPs

Optimal Quantities

The value (utility) of a state s:

V*(s) = expected utility starting in s and acting optimally

The value (utility) of a q-state (s,a):

Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

The optimal policy:

 $\pi^*(s)$ = optimal action from state s

Gridworld V Values

Noise = 0.2 Discount = 0.9 Living reward = 0

Gridworld Q Values

Noise = 0.2 Discount = 0.9 Living reward = 0

Values of States

- How to compute the value of a state
 - Expected utility under optimal action
 - This is just what expectimax computed!
- Recursive definition of value:

$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

The Bellman Equation

Recall: Expectimax Search

- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities, i.e. taking weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertain-result problems as Markov Decision Processes

Racing Search Tree

Racing Search Tree

Problems with Expectimax

- Problem 1: States are repeated
 - Idea: Only compute needed quantities once
- Problem 2: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1

Value Iteration

Time-Limited Values

- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s

Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values

Example: Value Iteration

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_2$$

S: 1+2=3

F: .5*(2+2)+.5*(2+1)=3.5

2

1

0

$$V_0$$
 0 0 0

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_0$$
 $\left(\begin{array}{cccc} \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array} \right)$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)

Suppose we get this reward by taking an "exit" action at a goal state

k = 100

Policy Extraction

Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

Let's imagine we have the optimal q-values:

- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

- Important: actions are easier to select from q-values than values!
- Q-values can also be computed in value iteration

Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$
 - Given V_k , calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$
 - Given Q_k, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$