Let A and B be finite sets and let $f: A \rightarrow B$. Then:

- If |A| > |B|, then f is not one-to-one and
- ② if |A| < |B|, then f is not onto.

Contrapositive

Thus:

D[if |A|=161, then f is bijective] is not the

er.

B (A1=1B)=2, fis not bijective

How do we compare the size of two collections of objects?

Without counting, determine which of the two collections below has more elements/members.

One-to-one Correspondence

one-to-one B. Ove-to-one Sijecter Correspondence = bijecter

Recall: A and B are finite sets and there is a bijection f from A to B, then |A| = |B|. We ask: can we compare "the size/cardinality" of infinite sets in a similar way?

Definition

Two sets A and B have the same cardinality provided that there is a bijection $f: A \rightarrow B$, or a *one-to-one correspondence* between the elements in sets A and B.

Consider the set of natural numbers

$$N = \{0, 1, 2, 3, 4, 5, \ldots\}$$

and the set of natural number 1 and greater

$$|W - \{0\}| = |W|^* = \{1, 2, 3, 4, 5, 6, ...\}$$

Which of the above sets is "larger" (i.e., has more elements)?

(Poll Everywhere)

Two possible arguments

not a one-to-one correspondence.

Instead:

for n = 0, 1, 2...

Formally: There exists a bijection between those two sets. Let
$$f: N \to N-\{0\}$$
) Observe that $f'' = g$.

Of let $g: N-\{0\} \to N$) Eff: prove that $n \mapsto n-1$ of $f'(org)$ is bijective

Example

Show that \mathbb{N} and \mathbb{Z} have the same cardinality.

Rewrite
$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \dots\}$$
 $\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6, \dots\}$

This enumeration is generalizable to an expression.

 $f: \mathbb{N} \to \mathbb{Z}$
 $f(n) = \begin{cases} -\frac{1}{2}n & \text{if } n \text{ is even} \\ \frac{1}{2}n & \text{if } n \text{ is even} \end{cases}$

We propose a function $f : \mathbb{N} \to \mathbb{Z}$ as follows:

$$f(n) = \begin{cases} -\frac{n}{2} & \text{if } n \text{ is even} \\ \frac{n+1}{2} & \text{if } n \text{ is odd} \end{cases}$$

That is,

n	$\int f(n)$
0	0
1	1
2	-1
3	2
4	-2
5	3
6	-3
:	

Note that f is indeed a function from \mathbb{N} to \mathbb{Z} . We only need to show that f is one-to-one and onto.

First, we show that f is one-to-one. Suppose that $m, n \in \mathbb{N}$ and f(m) = f(n). Since even numbers and mapped to negative numbers and odd numbers mapped to nonnegative numbers, then it must be the case that both m and n are even, or both m and n are odd.

► If both are even, then

$$-\frac{m}{2}=-\frac{n}{2}.$$

Multiply both sides by -2; then, m = n.

► If both are odd, then

$$\frac{m+1}{2} = \frac{n+1}{2}.$$

Multiply both sides by 2 and subtract 1; then, m = n.

So, f is one-to-one.

Next, we show that f is onto. Consider an arbitrary $y \in \mathbb{Z}$.

▶ Suppose $y \le 0$. Let n = -2y. Note that n is even and $n \in \mathbb{N}$. So, $n \in \text{dom } f$. Also note that

$$f(n) = -\frac{n}{2} = -\frac{-2y}{2} = y.$$

▶ Suppose that y > 0. Let n = 2y - 1. Note that n is odd, and $n \in \mathbb{N}$. So, $n \in \text{dom } f$. Also note that

$$f(n) = \frac{n+1}{2} = \frac{2y-1+1}{2} = y.$$

So, f is onto.

Therefore, \mathbb{N} and \mathbb{Z} have the same cardinality.

Examples

Using the notion of one-to-one correspondence, compare the cardinality of the given pairs of sets.

▶ The set of all natural numbers and the set of all even natural numbers.

If this sounds counter-intuitive to you...

Keep in mind:

- Our intuition about sizes is largely confined by our experience, which is mostly with finite sets!
- When cardinality of infinite sets are involved, rely on one-to-one correspondence.

Note: Just because we can't find an expression for the bijection, it does not mean that one does not exist. For example, consider the set S: $S = \left\{ x \in \mathbb{N} \mid 3 \mid x \text{ or } x \text{ is prime} \right\}$ $S = \left\{ 0, 2, 3, 5, 6, 9, 11, 12, 13, 15, 17, \dots \right\}$ $N = \left\{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \dots, 205, 3 \right\}$

$$Q = \left\{ \frac{a}{b} \mid a \in \mathbb{Z}^* \right\}$$

True or False: there are more rational numbers than natural numbers.

What about
$$\mathbb{Q}$$
?

The set of all natural numbers and the set of all (nonnegative) rational numbers

$$\frac{1}{3}$$
 $\frac{2}{3}$ $\frac{3}{3}$ $\frac{4}{3}$...

$$\frac{1}{4}$$
 $\frac{2}{4}$ $\frac{3}{4}$ $\frac{4}{4}$...

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, --- \} = iN$$
 $\{0, \frac{1}{1}, \frac{2}{7}, \frac{1}{3}, \frac{3}{4}, \frac{4}{7}, \frac{3}{7}, \frac{2}{7}, \frac{1}{4}, \dots \} = iN$

$$\{0,\frac{1}{1},\frac{2}{7},\frac{1}{2},\frac{3}{3},\frac{4}{1},\frac{3}{7},\frac{2}{7},\frac{1}{7},\frac{3}{7},\frac{2}{7},\frac{1}{7},\dots\} = \mathbb{Q}^{+}$$

Can you come up with a similar argument for the set of all natural numbers and the set of all rational numbers?

The set of natural numbers:

$$\{0,1,2,3,4,5,6,\ldots\}.$$

The set of real numbers:

(how to list **all** real numbers systematically?)

Furthermore, do you think that we will be able to find a one-to-one correspondence between the natural numbers and the real numbers?

Theorem $ dots$ $ \mathbb{N} $ and $ \mathbb{R} $ have different care	countably infurite	uncountally infrite
	To and IRI. Flaleph-0\$3	= 7/1 (\$ \aleph-1\$)
	m/= m*/= IE	1= P = W3 = No mony more)
*Pf: We will she have dif.	ferent condunalities. ¡U show that there is N and (0,1)	0,1)={XER/ocxci

Theorem

 \mathbb{N} and \mathbb{R} have different cardinality.

Proof	(idea): BWOC, suppose that there exists a bijection
Canta	
diag	the elements in that encluderation in a particular
OG U	min way, who is assume the following to see
	x ∈ (0,1) 0,334178 Let y = 0.311101451
(0.4[5670··· y = 0.42[1562···
2	0.000121 (take the its decimal place from the
3	12.1234567 ith elament in the enumeration
4	12.2178059 and maily it by addity 1 1211.
5	(0,07435 [b, et. 2, charge 1, 10 500)
	Then y & in the enemeration.

Conclusion

- ► For **any** pairing of natural numbers with real numbers, we can always point out a real number that has not been listed.
- ▶ Any such pairing is **not** a one-to-one correspondence between \mathbb{N} and \mathbb{R} .
- ► Therefore, the real numbers are "more numerous" than the natural numbers.

The cardinality of the real numbers is larger than the cardinality of the natural numbers!

► This argument is called "Cantor's Diagonalization Argument"

► There are infinitely-many natural numbers and infinitely-many real numbers

but "the infinity of the real numbers is larger than the infinity of the natural numbers" ? countability

▶ We refer to the cardinality of the natural numbers as **countable infinity** and the cardinality of the real numbers as **uncountable infinity**.

Continuum Hypothesis: let S be an infinite sited set.

(AS | No < (S) < X1)

Cantor Diagonalization Argument

To prove Cantor's Power Set Theorem

if A is a finite sel;
$$|A| = n$$
.
Then $|P(A)| = |2^A| = 2^n > n$.
Power set

Cantor's Power Set Theorem

For any set S (finite or infinite), the cardinality of the power set of S is strictly greater than the cardinality of S.

Theorem (Cantor's Theorem)

Let A be a set. If $f: A \to 2^A$, then f is not onto.

Note that if A is a finite set, then the proof is simple: Suppose that n = |A|. Since $|A| = n < 2^n = |2^A|$, then by the pigeonhole principle, f is not onto.

However, the theorem applies to both finite and infinite set. Therefore, the proof needs to be more general.

 $P(A) = \begin{cases} \{11, \{2\}, \\ 4, \{1, 2\} \end{cases}$ 1=2: $A = {1,23}$ This is always