Homework 3, MAT 258A

Santiago Morales UC Davis moralesduarte@ucdavis.edu

April 28, 2025

1. KKT conditions at (4,2) show non-optimality. Write the constraints in the form

$$g_1(x) = x_1 - x_2 - 2 \le 0,$$
 $g_2(x) = -x_1 \le 0,$ $g_3(x) = -x_2 \le 0.$

For a maximisation problem the Lagrangian is $L(x,\lambda) = f(x) - \sum_{i=1}^{3} \lambda_i g_i(x)$ with $\lambda_i \geq 0$. The objective is $f(x) = x_1/(x_2+1)$ and its gradient $\nabla f(x) = ((x_2+1)^{-1}, -x_1(x_2+1)^{-2})$. At the candidate point (4,2) the active set is $g_1 = 0$; $g_2, g_3 < 0$. Stationarity therefore requires

$$\nabla f(4,2) - \lambda_1 \nabla g_1(4,2) = 0 \Longrightarrow (1/3, -4/9) - \lambda_1(1,-1) = 0,$$

which yields $\lambda_1 = 1/3$ from the first component and $\lambda_1 = -4/9$ from the second—a contradiction. Hence (4,2) violates KKT and cannot be optimal.

2. A point satisfying the KKT conditions. Because the denominator $x_2 + 1$ should be as small as possible while the numerator x_1 should be as large as possible, optimality must occur on the boundary $x_1 - x_2 = 2$ with x_2 minimal, i.e. $x_2 = 0$, $x_1 = 2$.

At
$$(2,0)$$
 we have $g_1 = g_3 = 0$, $g_2 < 0$. With multipliers $\lambda_1 = \lambda_3 = 1$, $\lambda_2 = 0$,

$$\nabla f(2,0) - \lambda_1 \nabla g_1 - \lambda_3 \nabla g_3 = (1,-2) - (1,-1) - (0,-1) = (0,0),$$

and complementary slackness holds. Thus (2,0) satisfies all KKT conditions.

3. The problem is *not* **convex.** A maximisation problem is convex only when the objective is *concave* on a convex feasible set. The feasible region here is a simplex and is therefore convex; the issue is the objective $f(x) = x_1/(x_2 + 1)$.

Take A = (0, 2) and B = (2, 0), both feasible. Their midpoint is C = (1, 1). Now

$$f(A) = \frac{0}{3} = 0$$
, $f(B) = \frac{2}{1} = 2$, $f(C) = \frac{1}{2} = 0.5$.

Concavity would demand $f(C) \ge \frac{1}{2}f(A) + \frac{1}{2}f(B) = 1$. But f(C) = 0.5 < 1, violating the concavity inequality. Hence f is not concave on the feasible region, so the optimisation problem is non-convex.

4. Optimal solution. On the active face $x_1-x_2=2$ we have $f=(x_2+2)/(x_2+1)=1+1/(x_2+1)$, which is strictly decreasing in $x_2 \geq 0$. Hence the maximum is attained at the minimal admissible x_2 , namely $x_2^*=0$, with $x_1^*=2$. Therefore

$$x^* = (2,0), f^* = 2$$

(Joint work with Ian Gallagher)