Базовый монитор и протокол обмена с мастером

Руководство программиста

История изменений документа

22.09.2006 Текст, много лет назад подготовленный как текст DOS, перенесен в формат Word

с изменениями на 23.09.06 18:22

Ремарка 2006 года --

Настоящий документ в данное время скорее надо рассматривать как объяснение принципов построения форматов команд.

Документ содержит многочисленные анахронизмы, вызванные применяемыми ранее микроконтроллерами семейства MCS-51.

Если в тексте документа встретится термин "процессор", надо понимать "микроконтроллер", что более правильно.

Настоящий документ описывает базовый монитор и логический уровень базового протокола обмена между управляющим (ведущим) компьютером -- далее по тексту - MACTEP -- и контроллером. При построении протокола обмена для каждого нового контроллера семейства как правило сохраняются все возможности базового протокола.

Используемые сокращения:

MP - модуль расширения [базового монитора];

03У - оперативное запоминающее устройство;

ОЭВМ - однокристалльная микроЭВМ;

ПЗУ - постоянное запоминающее устройство;

РПД - резидентная память данных; РСФ - регистр специальных функций;

Общие положения

Поскольку все контроллеры семейства имеют одинаковую базовую архитектуру, была разработана программа базового монитора, который обеспечивает выполнение следующих функций:

- поддержка связи с мастером;
- обеспечение доступа программы мастера к ресурсам контроллера (ОЗУ, регистры);
- возможность исполнения программ, загружаемых в ОЗУ контроллера.

Внимание! НЕ ВСЕ команды, описанные в данном документе, обязательно поддерживаются системой команд конкретного типа контроллера.

Система связи контроллера с мастером

Как правило, контроллер имеет связь с мастером для передачи данных и команд управления. В случае автономного использования контроллера использование базового монитора бывает полезно на этапе отладки и обкатки программ контроллера.

Инициатором обмена с контроллером в общем случае выступает мастер, ведомый контроллер передает информацию лишь по его запросам. Возможность инициирования обмена контроллером устанавливается в каждом конкретном случае.

Если обмен осуществляется по последовательному каналу, скорость обмена, формат байтов, тип физического протокола ("токовая петля" либо "стык C2") определяются в каждом конкретном случае.

Программа базового монитора контроллера может отслеживать перевод линии канала последовательного обмена в состояние разрыва "break" по инициативе мастера. При обнаружении разрыва монитор сбрасывает в исходное состояние систему связи с мастером (в том числе устанавливается первоначальное значение скорости обмена, если в процессе работы она была изменена).

В случае наличия у контроллера канала параллельного обмена, взаимодействие с мастером строится по правилам настоящего протокола за исключением передачи информации по каналам прямого доступа к памяти и инициирования аппаратных прерываний компьютера.

Далее в этом разделе приводятся базовые команды протокола обмена. При построении системы команд каждого контроллера семейства как правило сохраняются все команды базового монитора, каждый класс команд может быть расширен.

Все числовые константы в форматах команд приведены в шестнадцатеричной нотации. Причем может присутствовать как форма представления шестнадцатеричных чисел 03h, так и 0x03. При описании форматов команд применяются следующие обозначения управляющих символов:

```
      ETX
      03h
      - признак окончания режима эха;

      ACK
      06h
      - положительное подтверждение;

      NAK
      15h
      - неподтверждение;

      SYN
      16h
      - синхронизатор команды.

      ESC
      18h
      - запрет обращения по записи
```

При описании форматов команд применяются следующие соглашения об использовании скобок:

```
[] - факультативная часть;
{} - повторение 1 и более раз;
{}n - повторение n раз;
<> - один байт;
() - нечто требующее дальнейшей конкретизации.
```

Элементарной процедурой общения мастера и контроллера является передача контроллеру нескольких байтов, составляющих команду и вычитывание определенного количества байтов ответа, если передача ответа предусмотрена данной командой.

Все команды протокола строятся как последовательность байтов по следующей cxeme:

<SYN><код команды>[<адрес>][(параметры)[(тело пакета)<к.с.>]]

- контрольная сумма == сумма по модулю 256 всех байтов тела пакета.

Код команды строится следующим образом:

биты 7,6 : задают класс команды;

бит 5 : 1 - сетевой вариант; 0 - обычное исполнение;

биты 4..0 : задают код команды внутри класса.

Для сетевого исполнения контроллера за кодом команды передается байт, задающий адрес (номер) контроллера в сети, которому эта команда предназначена. При необходимости издать циркулярную команду (всем контроллерам системы) байт адреса должен содержать значение <OFFh>. Недопустимо издавать циркулярную команду, исполнение которой подразумевает передачу контроллером ответа.

В дальнейшем при описании форматов команд даются два варианта: для одноконтроллерной схемы и для сетевого варианта.

Например, команда запроса идентификатора испролняемой программы <SYN><00h> для сетевого варианта будет иметь формат <SYN><20h><adr>, где <adr>> задает адрес (номер) контроллера в сети.

Простые команды (без параметров)

Все простые команды имеют длину 2(3) байта и строятся по следующей схеме:

<SYN><код команды>

- для одноконтроллерной схемы

<SYN><код команды><adr>

- для сетевого варианта

Код команды должен содежать нули в 7 и 6 битах: 00nxxxxx. При расширении базового протокола для конкретного контроллера эта группа команд дополняется командами не требующими передачи дополнительных параметров.

Запрос идентификатора исполняемой программы

Формат:

<SYN><00h>

<SYN><20h><adr>

Ответ:

один байт, содержащий идентификатор.

Комментарий:

Команда используется для первичной проверки наличия подключенного к компьютеру контроллера и исправности канала обмена, а также для запроса версии исполняемой в контроллере программы.

Перевод контроллера в режим эха

Формат:

<SYN><01h>

<SYN><21h><adr>

Orвer:

нет

Действия:

В режиме эха контроллер возвращает в линию каждый принятый байт вплоть до поступления байта $\langle ETX \rangle$.

Комментарий:

Режим эха может быть использован для тестирования канала обмена.

Запрос контрольной суммы последнего пакета

Формат:

<SYN><02h>

<SYN><22h><adr>

Ответ

один байт, содержащий контрольную сумму последнего переданного или принятого пакета.

Комментарий:

Данная возможность может быть использована при загрузке данных в контроллер для подтверждения правильности передачи.

Перезапуск программы контроллера

Формат:

<SYN><03h>

<SYN><23h><adr>

Ответ:

нет

Действия:

Программа, исполняемая в контроллере перезапускается.

Запрос блока информации о программе

Формат:

<SYN><04h>

<SYN><24h><adr>

Ответ

шесть байт, содержащих блок информации о программе (код модификации и серийный номер)

Комментарий:

Формат кода модификации см. далее в разделе "Данные, зашитые в ПЗУ по фиксированным адресам" настоящего документа.

<SYN><05h>

<SYN><25h><adr>

<SYN><06h>

<SYN><26h><adr>

- зарезервировано

<SYN><07h>

<SYN><27h><adr>

- зарезервировано

Команды с одним параметром

Все команды с одним параметром имеют длину 3(4) байта и строятся по следующей схеме:

<SYN><код команды><параметр>

- для одноконтроллерной схемы

<SYN><код команды><adr><параметр>

- для сетевого варианта

Код команды должен содежать нуль в 7 бите и единицу в 6 бите: 01nxxxxx. При расширении базового протокола эта группа команд может быть дополнена командами, для передачи параметров которых достаточно одного байта.

Обнуление прямоадресуемого бита в РПД процессора

Формат:

<SYN><40h><AD>

<SYN><60h><adr><AD>

<AD> - адрес прямоадресуемого бита в РПД

Ответ:

нет

Пействия:

указанный прямоадресуемый бит в РПД процессора обнуляется. Примечание.

Данная команда используется также для обращения к РСФ процессора, если это предусмотрено модификацией базового монитора (см. раздел "Замечание о доступе к РСФ процессора" настоящего руководства).

Установка прямоадресуемого бита в РПД процессора

Формат:

<SYN><41h><AD>

<SYN><61h><adr><AD>

<AD> - адрес прямоадресуемого бита в РПД

Ответ:

нет

Лействия:

указанный прямоадресуемый бит в РПД процессора устанавливается в 1.

Примечание.

Данная команда используется также для обращения к РСФ процессора, если это предусмотрено модификацией базового монитора (см. раздел "Замечание о доступе к РСФ процессора" настоящего руководства).

Инвертирование прямоадресуемого бита в РПД процессора

Формат:

<SYN><42h><AD>

<SYN><62h><adr><AD>

<AD> - адрес прямоадресуемого бита в РПД

OTBET:

нет

Действия:

указанный прямоадресуемый бит в РПД процессора инвертируется.

Примечание.

Данная команда используется также для обращения к РСФ процессора, если это предусмотрено модификацией базового монитора (см. раздел "Замечание о доступе к РСФ процессора" настоящего руководства).

Запрос одного байта из РПД процессора

Формат:

OTBET:

один байт, содержащий считанное значение.

Действия:

из пространства резидентной памяти данных процессора считывается один байт по указанному адресу и передается в линию связи.

Примечание.

Данная команда используется также для обращения к РСФ процессора, если это предусмотрено модификацией базового монитора (см. раздел "Замечание о доступе к РСФ процессора" настоящего руководства).

<SYN><44h><>

```
<SYN><64h><adr><>
<SYN><45h><>
<SYN><65h><adr><>
<SYN><66h><adr><>
<SYN><46h><>
<SYN><66h><adr><>
<SYN><66h><adr><>
<adr></a>

<a href="mailto:square;">
<a href="mail
```

Команды с параметрами

Все команды с параметрами имеют длину 5(6) байт и строятся по следующей схеме:

Код команды должен содержать единицу в 7 бите и нуль 6 бите: 10nxxxxx. При расширении базового протокола эта группа команд может быть дополнена командами, для передачи параметров которых достаточно трех байт.

```
Запрос содержимого внешней памяти данных контроллера (MCS-51) Запрос содержимого DataSpace памяти микроконтроллера (AVR)
```

Формат:

<SYN><80h><LoAD><HiAD><Len>
<SYN><A0h><adr><LoAD><HiAD><Len>

Ответ:

<SYN><80h><LoAD><HiAD><Len>{<байт тела пакета>}<CS>

<LoAD> - младший байт адреса; <HiAD> - старший байт адреса;

<Len> - длина массива, причем 0 означает длину 256 байт;

<CS> - контрольная сумма (сумма по модулю 256 всех байтов тела пакета).

Действия:

из адресного пространства внешней памяти данных контроллера (ОЗУ, ПЗУ, порты микроконтроллера) считывается массив байтов и передается в линию связи.

Примечание.

Диапазон адресов массива не может пересекать границу страницы в 256 байт (т.е. 100H, 200H, 300H и т.д.)

Для контроллеров WA48, TA53, 207, 202, Q(209) и других, в которых запрос данных осуществляется через временный буфер выгрузки, передаваемая в составе команды запроса длина массива не должна превышать размер буфера. Размер буфера выгрузки следует запрашивать с помощью команды $\langle SYN \rangle \langle OD \rangle$.

Запрос содержимого резидентной памяти данных процессора (MCS-51)

Формат:

```
<SYN><81h><LoAD><HiAD><Len>
<SYN><A1h><adr><LoAD><HiAD><Len>
Other:
```

<SYN><81h><LoAD><HiAD><Len>{<байт тела пакета>}<СS>

<LoAD> - младший байт адреса;

<ніAD> - старший байт адреса:

01 - при обращении к старшей половине (диапазон адресов 80..ffh) расширенной РПД,

00 - во всех остальных случаях (обращение к простой РПД либо к младшей половине расширенной РПД, обращение к $PC\Phi$);

<Len> - длина массива, причем 0 означает длину 256 байт;

<CS> - контрольная сумма (сумма по модулю 256 всех байтов тела пакета).

Действия:

из пространства резидентной памяти данных процессора считывается массив байтов и передается в линию связи. Примечание.

Данная команда используется также для обращения к РСФ процессора, если это предусмотрено модификацией базового монитора (см. раздел "Замечание о доступе к РСФ процессора" настоящего руководства).

Данная команда используется также для обращения к старшей половине (диапазон адресов 80..ffh) расширенной РПД процессора, если это предусмотрено модификацией базового монитора (см. раздел " Замечание о доступе к расширенной РПД процессора " настоящего руководства).

Для контроллеров WA48, TA53, 207, 202, Q(209) и других, в которых запрос данных осуществляется через временный буфер выгрузки, передаваемая в составе команды запроса длина массива не должна превышать размер буфера. Размер буфера выгрузки следует запрашивать с помощью команды $\langle SYN \rangle \langle OD \rangle$.

Запрос содержимого EEPROM памяти микроконтроллера (AVR)

Формат:

<SYN><81h><LoAD><HiAD><Len>
<SYN><A1h><adr><LoAD><HiAD><Len>

OTBET:

<SYN><81h><LoAD><HiAD><Len>{<байт тела пакета>}<СS>

<LoAD> - младший байт адреса; <HiAD> - старший байт адреса:

<Len> - длина массива, причем 0 означает длину 256 байт;

<CS> - контрольная сумма (сумма по модулю 256 всех байтов тела пакета).

Действия:

из пространства EEPROM-памяти микроконтроллера считывается массив байтов и передается в линию связи в виде пакета с заголовком и контрольной суммой.

Для контроллеров WA48, TA53, 207, 202, Q(209) и других, в которых запрос данных осуществляется через временный буфер выгрузки, передаваемая в составе команды запроса длина массива не должна превышать размер буфера. Размер буфера выгрузки следует запрашивать с помощью команды $\langle SYN \rangle \langle OD \rangle$.

Переход по указанному адресу

Формат:

<SYN><82h><LoAD><HiAD><параметр 2> <SYN><A2h><adr><LoAD><HiAD><параметр 2> <LoAD> - младший байт адреса перехода;

<НіAD> - старший байт адреса перехода;

OTBET:

нет

Действия:

в процессоре инициируется команда безусловного перехода по указанному абсолютному адресу.

Комментарий:

Данная команда используется для запуска программы,

Запись одного байта в РПД процессора

```
Формат:
     <SYN><83h><LoAD><HiAD><Val>
     <SYN><A3h><adr><LoAD><HiAD><Val>
       <LoAD> - младший байт адреса;
       <ніAD> - старший байт адреса (всегда 0);
       <Val> - записываемое значение;
Ответ:
    нет
Действия:
     в резидентную память данных процессора по указанному адресу
     записывается переданный байт.
Примечание.
    Данная команда используется также для обращения к РСФ
    процессора, если это предусмотрено модификацией базового
    монитора (см. раздел "Замечание о доступе к РСФ процессора"
    настоящего руководства).
```

Команды загрузки пакета

Код команды должен содежать единицы в 7 и 6 бите: 11nxxxxx. При расширении базового протокола эта группа может быть дополнена командами, исполнение которых помимо загрузки массива байтов в выбранное адресное пространство контроллера должно сопровождаться некоторыми дополнительными действиями.

Запись массива байтов во внешнюю память данных контроллера Φ ормат:

<SYN><C0h><LoAD><HiAD><Len>{<байт тела пакета>}<CS><SYN><E0h><adr><LoAD><HiAD><Len>{<байт тела пакета>}<CS>

границу страницы в 256 байт (т.е. 100H, 200H, 300H и т.д.) Комментарий:

Данная команда применяется для загрузки в контроллер рабочих программ и других данных.

Запись массива байтов в резидентную память данных процессора Формат:

<SYN><C1h><LoAD><HiAD><Len>{<байт тела пакета>}<CS><SYN><E1h><adr><LoAD><HiAD><Len>{<байт тела пакета>}<CS>

<LoAD> - младший байт адреса;

<НіAD> - старший байт адреса:

01 - при обращении к старшей половине (диапазон адресов 80..ffh) расширенной РПД,

00 - во всех остальных случаях (обращение к простой РПД либо к младшей половине расширенной РПД, обращение к РСФ);

<Len> - длина массива, причем 0 означает длину 256 байт;

<CS> - контрольная сумма (сумма по модулю 256 всех байтов тела пакета).

Ответ:

квитанция длиной 2 байта:

<SYN><ACK> в случае совпадения контрольной суммы
<SYN><NAK> в случае несовпадения контрольной суммы

Действия:

в резидентную память данных процессора по указанному адресу записывается переданный массив байтов.

Примечание.

Данная команда используется также для обращения к РСФ процессора, если это предусмотрено модификацией базового монитора (см. раздел "Замечание о доступе к РСФ процессора" настоящего руководства).

Данная команда используется также для обращения к старшей половине (диапазон адресов 80..ffh) расширенной РПД процессора, если это предусмотрено модификацией базового монитора (см. раздел " Замечание о доступе к расширенной РПД процессора " настоящего руководства).

Особенности исполнения команд записи массива байтов для некоторых типов контроллеров

Для контроллеров СКУД Проекта Q (209) -- QM4 QM5 QFx QLx - доступ по записи как в DataSpace (команда <SYN><0xC0><>><> $\{<>\}<>$), так и в EEPROM (команда <SYN><0xC1><>><> $\{<>\}<>$) -- ЗАПРЕЩЕН. В ответ на эти команды контроллером передается негативная квитанция длиной два байта:

Мнемоника либо	Экспликация
значение	
<syn></syn>	== <16h>
<esc></esc>	== <1Bh>

Замечание о доступе к расширенной РПД процессора

При использовании модификации монитора для ОЭВМ клона i8051 с расширенной резидентной памятью данных (например I87C51FA) доступ к ячейкам второй половины РПД (адреса 80..ff) возможен лишь с использованием команд

```
<SYN><81h>... - для запроса содержимого и <SYN><C1h>... - для записи массива байтов. (либо их сетевых вариантов)
```

При этом старший байт адреса должен быть равен <01>.

Настоящее ограничение вызвано предотвращением конфликта адресации к ячейкам второй половины РПД и РСФ процессора (см. раздел "Замечание о доступе к РСФ процессора" настоящего руководства).

Замечание о доступе к РСФ процессора

Команды обращения к резидентной памяти данных процессора по чтению и записи:

используется также для обращения к регистрам специальных функций микропроцессора, если модификацией программы базового монитора предусмотрена такая возможность. При этом установлены в 1 соответствующие биты кода модификации монитора.

Для чтения доступны следующие РСФ:

РСФ	Псевдоадрес	РСФ	Псевдоадрес
P0	080h	TH0	08Ch
SP	081h	TH1	08Dh
DPL	082h	P1	090h
DPH	083h	SCON	098h
PCON	087h	P2	0A0h
TCON	088h	IE	0A8h
TMOD	089h	P3	0B0h
TL0	08Ah	IP	0B8h
TL1	08Bh	PSW	0D0h

Для записи и операций с битами доступны следующие РСФ:

РСФ	Псевдоадрес	РСФ	Псевдоадрес
P0	080h	TH0	08Ch
DPL	082h	TH1	08Dh
DPH	083h	P1	090h
PCON	087h	SCON	098h
TCON	088h	P2	0A0h
TMOD	089h	IE	0A8h
TL0	08Ah	P3	0B0h
TL1	08Bh	IP	0B8h

Внимание! Модификация РСФ процессора, который сам и исполняет программу, дело тонкое. Осторожно.

Типовое распределение памяти контроллера семейства 95

Базовый протокол.

Содержимое данного раздела рассматривать как атавизм, полностью утративший актуальность, и не читать

диапазон	ЛИП	назначение		
Протокол обме	на контр	оллеров СКУД.	24.09.06	стр. 10

адресов (hex)		
0000 07FF	ПЗУ	основная программа контроллера (базовый монитор)
0800 OFFF	ОЗУ	для размещения измененных рабочих программ
1000 17FF	ОЗУ	для размещения данных
1800 1FFF	ОЗУ	резерв, может быть установлен при необходимости

Данные, зашитые в ПЗУ по фиксированным адресам

адрес (hex)	длина	описание
0002	1	адрес размещения в ПЗУ блока информации, содержащего код модификации программы и серийный номер <mcsn></mcsn>
<mcsn></mcsn>	2	код модификации программы
<mcsn>+2</mcsn>	4	серийный номер

Значение битов кода модификации:

```
бит f : << резерв >>
бит е : << резерв >>
бит d : << резерв >>
бит c : << резерв >>
бит b : << резерв >>
бит a : << резерв >>
```

- бит 9 : 1 исполнение монитора для процессоров с расширенной РПД
- бит 8: 1 поддерживается отслеживание разрыва линии последовательного канала и сброс системы коммуникации монитора
- бит 7: 1 поддерживается работа с модулями расширения
- бит 6:1 поддерживаются команды сетевого варианта

бит 4 : 1 - поддерживается обращение к РСФ по очистке битов бит 3 : 1 - поддерживается обращение к РСФ по установке битов бит 2 : 1 - поддерживается обращение к РСФ по инвертированию битов бит 1 : 1 - поддерживается обращение к РСФ по записи

бит 1:1 - поддерживается обращение к РСФ по записи бит 0:1 - поддерживается обращение к РСФ по чтению