model specifications

(1) we" Il make use of some well-known properties:

Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for $\mathbf x$ and a conditional Gaussian distribution for y given x in the form

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}) \tag{2.113}$$

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1})$$
 (2.114)

the marginal distribution of y and the conditional distribution of x given y are

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathrm{T}})$$
 (2.115)

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathrm{T}})$$
(2.115)
$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{x}|\mathbf{\Sigma}\{\mathbf{A}^{\mathrm{T}}\mathbf{L}(\mathbf{y} - \mathbf{b}) + \boldsymbol{\Lambda}\boldsymbol{\mu}\}, \boldsymbol{\Sigma})$$
(2.116)
$$\boldsymbol{\Sigma} = (\boldsymbol{\Lambda} + \mathbf{A}^{\mathrm{T}}\mathbf{L}\mathbf{A})^{-1}.$$
(2.117)

$$\Sigma = (\mathbf{\Lambda} + \mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A})^{-1}. \tag{2.117}$$

$$\theta_{i} \sim Nr \left(Q_{i} R(P_{i}) \right)$$
 $f(y_{i}| \Delta_{i} Q_{i}^{2}) = Nr \left(y_{i} | \Delta_{i} + A Q_{i}, Q_{i}^{2} A_{i} \right)$
 $Joing 2.344$
 $f(y_{i}| \Delta_{i} Q_{i}^{2}) = Nr \left(y_{i} | \Delta_{i} Q_{i} + \Delta_{i}, \Delta_{i} R(P_{i}) A_{i}^{T} + \sigma_{i}^{2} A_{r} \right)$
 $f(y_{i}| \Delta_{i} Q_{i}^{2}) = Nr \left(y_{i} | \Delta_{i}, R(P_{i}) + \sigma_{i}^{2} A_{r} \right)$

$$\begin{aligned} &\sigma_{i} \mid \Sigma_{a} \sim Np(\Omega_{i} \Sigma_{a}) \\ &f(y_{i} \mid \underline{\omega}_{i} \sigma_{e}^{2}) = Nr(y_{i} \mid \Xi_{ai}, w_{i}) \\ &Uning 2.116 \\ &V_{a} = (Z^{T}W_{i}^{-1}Z + \Sigma_{a}^{-1}) \\ &f(\underline{\omega}_{i} \mid y_{i}, \sigma_{e}^{2}, \Sigma_{a}) \sim N(\underline{\omega}_{i} \mid V_{a} Z^{T}W_{i}^{-1}y_{i} + \Sigma_{a}^{-1}\Omega) \\ &f(\underline{\omega}_{i} \mid y_{i}, \sigma_{e}^{2}, \Sigma_{a}) \sim N(\underline{\omega}_{i} \mid V_{a} Z^{T}W_{i}^{-1}y_{i} + \Sigma_{a}^{-1}\Omega) \end{aligned}$$

(2)
$$\sigma_{E_{i}}^{2} \sim IG_{v}(G_{i}^{E}, c_{1}^{E})$$
 $y_{i} = \frac{1}{2}d_{i} + \theta_{i} + \frac{C_{i}}{4}$
 $y_{i} = \frac{1}{2}d_{i} + \theta_{i} + \frac{C_{i}}{4}$

Inv. commo is conjugate prior for the Gaustian likelihood

Odj² NIGO (
$$G^{\alpha}$$
, C_{α}^{α})

Ai Np (O_{α} , Σ_{α}) where $\Sigma_{\alpha}:= diag(G_{\alpha}^{\alpha},...,G_{\alpha}^{\alpha})$

Inv. Commo is conjugate prior for the Gowston likelihood

Odj: [y, rest ~ IGO ($G^{\alpha} + \frac{1}{2}$, $C_{1}^{\alpha} + \frac{1}{2}\sum_{i=1}^{n} dij - 0$) $j = 1,...,p$ (3)

(4)
$$\theta_{i} \sim N_{\tau} \left(\underbrace{\mathcal{D}_{i}R(\rho_{i})}_{i} \right) = N_{\tau} \left(\underbrace{y_{i} \mid 2\underline{w}_{i} + 1\underline{\theta}_{i}}_{i}, \underbrace{\sigma_{\epsilon_{i}}^{2}Al_{i}}_{i} \right)$$

Applying 2.416
$$S_{\theta} = \left(\underbrace{R(\rho_{i})^{-2} + \left(\underbrace{\sigma_{\epsilon_{i}}^{2}Al_{i}}_{i} \right)^{2}}_{i} \right)^{-2}$$

$$\underbrace{\theta_{i} \mid y_{i} \sigma_{\epsilon_{i}}^{2} R(\rho_{i})_{Ai} \sim N_{\tau} \left(\underbrace{\theta_{i}}_{i}, \underbrace{S_{\theta}}_{i} \right)^{-1} \left(\underbrace{y_{i} - 2\underline{w}}_{i} \right) + \underbrace{R^{-1}(R) \mathcal{D}_{i}}_{i}, \underbrace{S_{\theta}}_{i} \left(\underbrace{S_{\epsilon_{i}}^{2}Al_{i}}_{i} \right)^{-1} \left(\underbrace{y_{i} - 2\underline{w}}_{i} \right) + \underbrace{R^{-1}(R) \mathcal{D}_{i}}_{i}, \underbrace{S_{\theta}}_{i} \left(\underbrace{S_{\epsilon_{i}}^{2}Al_{i}}_{i} \right)^{-1} \left(\underbrace{S_{\epsilon_{i}}^{2}Al_{i}}_{i} \right$$

let $c = (c_1, ..., c_n)$ labels Ripotrametrizational 41/4,8 NF (801) Cilp ~ Discrete (Ps, ..., Pw) √c ~ po PN Dirichlet (2)

P(y; (Sipe2, 0) = N(y | 2di, JE:21-+R(Pi))

Algoritmo.

 $P(a=c|C_{1,...},C_{-i}) = \frac{hic + \frac{c}{k}}{\frac{1}{k}}$ For 1=4..., N

let m; the number of distinct of per j=i

h=mi + nax

Draw a new vouve for a from 21,..., h y

When following probabilities: $P(\alpha = C \mid C_{-i}, y_i, r_{1}, r_n) = \begin{cases} b \frac{h_i c}{n-1+2^p} + (y_i \mid k_c, \alpha_i, \sigma_{z_i}^2) \\ b \frac{\alpha_i n_{aux}}{n-1+2^p} + (y_i) k_c^*(\alpha_i, \sigma_{z_i}^2) \end{cases}$

where nix is the number of G for Iti are equal to c and b the appropriate normalising constant. the value of the where miscale are dian indipendently from pa

DAN JINTETIC

1.FIX 2

2. Sample σ_{E} : and σ_{GL}^2 having fixed co^{E} , co^{E} , co^{C}

3. sample (P102) ~ DP using strak-4. P(Y1|Pipe2) = N(Y|Zx1, ozi21/T+R(Pi))