- **1.**The system in question has 1MiB of physical memory, 32-bit virtual addresses, and 256 physical pages. The memory management system uses a fully associative TLB with 128 entries and an LRU replacement scheme.
- a. What is the size of the physical pages in bytes?²¹²bytes
- b. What is the size of the virtual pages in bytes?²¹²bytes
- c. What is the maximum number of virtual pages a process can use?²⁰pages
- d. What is the minimum number of bits required for the page table base address register?20bits

2.Everybody Got Choices

- e. Answer "True!" or "False!" to the following questions
- i. The page table is stored in main memory True!
- ii. Every virtual page is mapped to a physical page False!
- iii. The TLB is checked before the page table True!
- iv. The penalty for a page fault is about the same as the penalty for a cache miss False!
- v. A linear page table takes up more memory as the process uses more memory False!
- 3. Example: Mapping VAs to PAs

Suppose • virtual memory of 2^32 (4G) bytes • physical memory of 2^30 (1G) bytes • page size is 2^14 (16 K) bytes

- 1). How many pages can be stored in physical memory at once? 2³⁰⁻¹⁴=2¹⁶=64K
- 2). How many entries are there in the page table? 2³²⁻¹⁴=2¹⁸=256K
- 3). How many bits are necessary per entry in the page table? (Assume each entry has PPN, resident bit, dirty bit) 16+2=18
- 4). A portion of the page table is given to the below. What is the physical address for virtual address 0x00004110?000000000000011100000100000B=0x0001C110

VPN R I	D PPN
0 0 (0 2
1 1 :	1 7
2 1 (0 0
3 1 (0 5
4 100	0 5
5 1 (0 3
6 1 :	1 2
7 11	0 4
8 1 (0 1

- 4.某计算机系统有一个 TLB 和一个 L1 Data Cache。该系统按字节编址,虚拟地址 16 位,物理地址 14 位,页大小为 128B,TLB 采用四路组相联方式,共 16 个页表项, L1 Data Cache 采用直接映射方式,块大小为 4B,共 16 行。系统运行到某一时刻时,TLB、页表和 L1 Data Cache 中部分内容如图示。请问:
- (1)虚拟地址中哪几位表示虚拟页号?哪几位表示页内偏移?虚拟页号中哪几位表示 TLB 标记?哪几位表示 TLB 索引?高 9 位表示虚拟页号,低 7 位表示页偏移;虚拟页号中高 7 位表示 TLB 标记,低 2 位表示 TLB 索引
- (2)物理地址中哪几位表示物理页号?哪几位表示页内偏移?高 7 位表示物理页号,低 7 位表示页内偏移

- (3)主存物理地址如何划分标记字段、行索引字段和块地址字段?高8位为标记字段,中间4位为行索引字段,低2位为块地址字段
- (4)CPU 从地址 06FAH 中取出的值是多少?说明 CPU 读取地址 06FAH 中内容的过程。

06FAH=0000 0110 1111 1010,故虚页号为 000001101,对应 TLB 的第 01 组,将 0000011 (03)与 TLB 第 1 组的所有标记比较,有一个相等但有效位为 0,故 TLB 不行,需要访问主存中的慢表。

查看 000001101=0D 处的页表项,有效位为 1,页框号 2D=0101101B,和页内偏移 111 1010 拼接起来,根据最低 2 位前的中间 4 位 1110 找到 CACHE 的第 14(0E)行,有效位为 1,标记为 5B=01011011B,命中,而物理地址最后两位为 10,故取出字节 2 中的数为 5AH.

TLB

行号		页 框 号	有效位	标记	页框号	有效位	标记	页框号	有效位	标记	页框号	有效位
0	03		0	09	0D	1	00		0	07	02	1
1	03	2D	1	02		0	04		0	0A		0
2	02		0	08		0	06		0	03		0
3	07		0	63	0D	1	0A	34	1	72		0

数据缓存 CACHE

行 索 引	标记	有效位	字节 3	字节 2	字节 1	字节 0
00	19	0	12	56	C9	AC
01	15	1				
02	1B	0	03	45	12	CD
03	36	0				
04	32	1	23	34	C2	2A
05	0D	1	46	67	23	3D
06		0				
07	16	1	12	54	65	DC
08	24	1	23	62	12	3A
09	2D	0				
0A	2D	1	43	62	23	C3
ОВ		0				
0C	12	1	76	83	21	35
0D	16	1	А3	F4	23	11
OE	5B	1	3D	5A	45	55
OF	14	0				

页表

虚页号	页框号	有效位
00	08	1
01	03	1
02	14	1
03	02	1
04		0
05	16	1
06		0
07	07	1
08	13	1
09	17	1
0A	09	1
ОВ		0
ОС	19	1
0D	2D	1
OE	11	1
OF	0D	1