	Math 461	9/4/19
	AH: Man & Tues 4-5pm LGRT 1235H	
	First hu due 9/18/19 {get compass}.	
	L. Eucidean geometry / plane geometry Axiomatic approach - Euclid 300BC	
	(Theorems and proofs starting from axioms).	
	* Rules and compass constructions	
+	2. Coordinate geometry	
	y=mx+c/Ax+By=C * Descartes (~1500, France)	
(D)	$(x-a)^{2} + (y-b)^{2} = c^{2}$	
	*Symmetries (Rigid motions) F. Klein (~1800) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$	
	preserves distances $d(p,q) = distance$ from $p \neq 0$ q $d(T(p),T(q)) = d(p,q) \cdot for all p,q \in \mathbb{R}^2$	
	3. Sonerical geometry	
	Shortest path from A to B?	
	4. Hyperbolic geometry (~1800)	
	+ parallel axiom (Euclidean geometry) -> doesn't work in hyperbolic geometry)	U
1	L line M through P parallel to L (meaning L?)	M=Ø)
	+infinite surface, looks the same at every point and in every direct	- •
	Ly hyperbolic plane	