갈탄건류라르의 수첨반응에서 합리적인 파라메터의 선택

황만철, 서의화

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《전략수행기간 석탄가스화에 의한 탄소하나화학공업을 창설하고 갈탄을 리용하는 석 탄건류공정을 꾸리며 회망초를 출발원료로 하는 탄산소다공업을 완비하여 메라놀과 합성 연유, 합성수지를 비롯한 화학제품생산의 주체화를 높은 수준에서 실현하여야 합니다.》

갈탄타르를 원료로 하는 연유생산방법에서 촉매에 의한 수첨방법이 합리적인 방법으로 인정되면서부터 최근에 이 방법에 대한 연구가 심화되고있으며 이미 공업화단계에 들어섰다.[1] 그러나 갈탄원료 및 건류방법의 차이에 의하여 타르의 조성과 물리화학적성질도 서로 다르므로 수첩공정의 조작값들도 선택된 원료에 따라 달라지게 된다.

우리는 갈탄타르수첨공정에서 주요수첨반응파라메터들을 확정하기 위한 연구를 하였다.

실 험 방 법

갈란타르는 00지구의 갈란을 저온건류하여 얻은것으로서 검은색의 점성액체이고 밀도는 $1.03g/cm^3$ 이며 류동성이 거의 없다. 갈란타르에는 150여종의 방향족화합물과 함산소 및함류황화합물들이 들어있다.

실험은 소형고정층반응기에서 선행연구[2]에서와 같은 방법으로 하였다. 타르 10mL를 예비처리하여 반응기속에 장입된 촉매층우에서 수첨반응시켰다. 실험에서는 온도와 압력, 수소/타르체적비와 같은 주요반응파라메터들을 변화시키면서 밀도변화와 H/C변화를 고찰하였다.

실험결과 및 해석

반응온도의 영향 수첨반응에서 온도는 중요한 인자로서 온도를 높일 때 반응은 잘 진행되며 분자량이 큰 방향족화합물이 분자량이 작은 방향족탄화수소나 포화탄화수소로 된다. 그러나 온도가 지나치게 높으면 제품속에 기체조성이 많아지며 점결현상이 일어날수 있다.

반응기의 초기압력이 14MPa일 때 반응온도에 따르는 반응생성물의 밀도와 H/C변화는 표 1과 같다.

표 1에서 보는바와 같이 반응온도가 390℃일 때생성물의 밀도와 H/C가 목적한 값(밀도 0.9g/cm³이하, H/C 1.7)과 제일 근사하였다. 따라서 반응온도를 390℃로 설정하였다.

표 1. 반응온도에 따르는 반응생성물의 밀도와 H/C변화

온도/℃	밀도/(g·cm ⁻³)	H/C
350	0.951	1.42
370	0.908	1.56
390	0.865	1.67
410	0.862	1.50

반응압력이 영향 반응온도가 390℃일 때 반응압력에 따르는 수첩생성물의 밀도와 H/C 변화는 표 2와 같다.

표 2에서 보는바와 같이 반응압력이 15MPa일 때 목적하 값과 근사하였다. 따라서 반 응압력을 15MPa로 설정하였다.

수소/라르체적비의 영향 수소/타르체적비에 따르는 수첨생성물의 밀도와 H/C변화는 표 3 과 같다.

미드아 H/C벼하

르고피 11/0건회				
압력/MPa	밀도/(g·cm ⁻³	³) H/C		
12	0.925	1.58		
13	0.889	1.60		
14	0.865	1.67		
15	0.871	1.72		
16	0.868	1.73		

표 2. 반응압력에 따르는 수첨생성물의 표 3. 수소/라르체적비에 따르는 수첨생성물의 밀도아 H/C변화

수소/타르체적비	밀도/(g·cm ⁻³)	H/C		
1 000:1	0.881	1.62		
1 200:1	0.861	1.70		
1 400 : 1	0.878	1.72		
1 600:1	0.835	1.75		
1 800:1	0.832	1.76		

표 3에서 보는바와 같이 수소/타르체적비가 너무 작으면 수소량이 적으므로 방향족타 화수소와 올레핀의 수첨반응이 제대로 진행되지 못하여 거둠률이 낮아지게 된다. 반대로 수 소/타르체적비가 너무 크면 수소량이 많아져 원가가 높아지게 된다. 따라서 수소/타르체적 비를 1 200:1로 하는것이 합리적이다.

이때 반응의 전환률은 85~90%였다. 수첨반응시킨 후 투명한 연황색의 생성물을 얻었다. 타르원료와 생성물을 분석한 결과는 표 4와 같다.

분석내용		수첨생성물	타르원료		
밀 <u>도</u> /(g·cm ⁻³)		0.86	1.03		
	초류점(HK)	96	170		
	10%	129	238		
	30%	185	282		
류분조성	50%	210	321		
	70%	247	349		
	90%	291	373		
	종비점	302	373		
잔탄/%		0.005	3.85		
수분/%		없음	5.3		
회 분/%		없음	0.05		
응고점/℃		-20	15		
점 도(40°C)/(mm²·s ⁻¹)		2.1	35		
총질소함량/%		0.000 8	0.53		
총류황합량/%		0.000 7	0.35		

표 4. 라르원료와 생성물의 분석결과

맺 는 말

갈란건류타르의 수첨촉매반응에서 합리적인 조건은 반응온도 390℃, 반응압력 15MPa, 수소/타르체적비 1 200:1이다. 갈란타르로부터 수첨반응생성물의 전환률은 85~90%이다.

참고문 헌

- [1] 马宝岐; 煤焦油制燃料油品, 化学工业出版社, 103~140, 2010.
- [2] 水恒福 等; 煤焦油分离与精制, 化学工业出版社, 55~64, 2007.

주체108(2019)년 4월 5일 원고접수

Selection of Suitable Parameters for Hydrogenation Reaction of Lignite Carbonization Tar

Hwang Man Chol, So Ui Hwa

The suitable conditions of hydrogenation reaction of lignite carbonization tar are as follows: the reaction temperature is 390° C, the reaction pressure is 15MPa and the volume ratio of hydrogen and tar is $1\ 200\ :\ 1$.

Key words: lignite, hydrogenation reaction, carbonization