Universidade Federal do Rio de Janeiro

Lista I - Sistemas Lineares I

Alunos Igor Abreu da Silva

DRE 112053874

Curso Engenharia Eletrônica

Turma 2016/2

Professor Natanael Nunes de Moura Junior

Rio de Janeiro, 16 de Setembro de 2016

Conteúdo

1	Que	estão 1	- Con	heci	m	eı	\mathbf{nt}	OS	s I	Bá	ís	ic	os								1
	1.1	Item a																			1
		1.1.1	Sinal ((a) .																	1
		1.1.2	Sinal ((b) .																	1
		1.1.3	Sinal ((c) .																	1
		1.1.4	Sinal ((d) .																	1
	1.2	Item b																			2
		1.2.1	Sinal ((a) .																	2
		1.2.2	Sinal ((b) .																	2
		1.2.3	Sinal ((c) .																	2
		1.2.4	Sinal ((d) .																	2
		1.2.5	Sinal ((e) .																	2
	1.3	Item c																			3
		1.3.1	Sinais	(a)																	3
		1.3.2	Sinais	(b)																	4
		1.3.3	Sinais	(c)																	4
	1.4	Item d																			5
		1.4.1	Sinais	(a)																	5
		1.4.2	Sinais	(b)																	5
		1.4.3	Sinais	(c)																	5
	1.5	Item e																			6
		1.5.1	Sinais	(a)																	6
		1.5.2	Sinais	(b)																	6
		1.5.3	Sinais	(c)																	7
		1.5.4	Sinais	(d)																	7
	1.6	Item f																			7
		1.6.1	Sinais	(a)																	7
		1.6.2	Sinais	(b)																	8
		1.6.3	Sinais	(c)																	8
		1.6.4	Sinais	(d)																	8
		1.6.5	Sinais	(e)																	8
		1.6.6	Sinais	(f)																	8
	1.7	Item g																			8
		1.7.1	Sinais	(a)																	8
		1.7.2	Sinais	` /																	8
		1.7.3	Sinais	\ /																	8
		1.7.4	Sinais	` /																	8
		1.7.5	Sinais	` '																	8
		1.7.6	Sinais	` /																	9

	1.7.7	Sinais	(g)														9
	1.7.8	Sinais															9
1.8	Item h	ı															9
	1.8.1	Sinais	(a)														9
	1.8.2	Sinais	` /														9
	1.8.3	Sinais	` /														9
	1.8.4	Sinais	(d)														9
	1.8.5	Sinais	(e)														9
	1.8.6	Sinais	(f)														9
1.9	Item i																10
	1.9.1	Sinais	(a)														10
	1.9.2	Sinais	(b)														10
1.10	Item j																10
	1.10.1	Sinais	(a)														10
	1.10.2	Sinais	(b)														10
	1.10.3	Sinais	(c)														10
	1.10.4	Sinais	(d)														11
	1.10.5	Sinais	(e)														11
	1.10.6	Sinais	(f)														11
	1.10.7	Sinais	(g)														11
	1.10.8	Sinais	(h)														12
1.11	Item k																12
	1.11.1	Sinais	(a)														12
	1.11.2	Sinais	(b)														12
	1.11.3	Sinais	(c)														12
	1.11.4	Sinais	(d)														12
	1.11.5	Sinais	(e)														12
	1.11.6	Sinais	(f)														13
1.12	Item 1																13
1.13	Item n	n															13
	1.13.1	Sinais	(a)														13
	1.13.2	Sinais	(b)														13
	1.13.3	Sinais	(c)														13
	1.13.4	Sinais	(d)														14
	1.13.5	Sinais	(e)														14
1.14	Item n	١															14
			_			_											
•	estão 2																15
2.1	Item a																15
	2.1.1	Sinais	` /														15
	2.1.2	Sinais	(b)														15

		2.1.3 Sinais (c)	15
		2.1.4 Sinais (d)	
		2.1.5 Sinais (e)	
	2.2	Item b	15
		2.2.1 Sinais (a)	15
			15
	2.3	Item c	15
		2.3.1 Sinais (a)	15
		2.3.2 Sinais (b)	16
		2.3.3 Sinais (c)	16
		2.3.4 Sinais (d)	16
	2.4	Item d	16
		2.4.1 Sinais (a)	16
		2.4.2 Sinais (b)	16
		2.4.3 Sinais (c)	16
	2.5	Item e	16
	2.6		17
	2.7		17
			17
			18
		· /	18
			19
		· /	19
		2.7.6 Sinais (f)	20
3	0116	stão 3 - Conhecimentos Básicos	20
J	3.1	Item a	
	3.2	Item b	
	3.3	Item c	
	3.4	Item d	
	3.5	Item e	
4	Que		22
	4.1		22
	4.2		22
	4.3	Item c	22
5	0116	stão 5 - Classificação de Sinais	າງ

6	Que	stão 6 - Classificação de Sistemas	22													
	6.1	Item a	22													
	6.2	Item b	22													
	6.3	Item c	22													
7	Questão 7 - Classificação de Sistemas															
	7.1	Item a	22													
	7.2	Item b	22													
8	Que	stão 8 - Energia e Potência de Sinais	22													
9	Que	Questão 9 - Operação com Sinais														
	9.1	Item a	22													
	9.2	Item b	22													
	9.3	Item c	22													
	9.4	Item d	22													
10	Questão 10 - Operação com Sinais															
	10.1	Item a	22													
	10.2	Item b	22													
${f L}_{f i}$	ista	de Figuras														
	1	Sinais utilizados no Item A	1													
	2	Sinais utilizados no Item B	2													
	3	Sinais utilizados no Item C	3													
	4	Sinais utilizados no Item D	5													
	5	Circuito 1	14													

1 Questão 1 - Conhecimentos Básicos

1.1 Item a

Figura 1: Sinais utilizados no Item A

Analisando os resultados, percebe-se que a inversão ou o deslocamento não alteram a energia do sinal, entretanto, a multiplicação por um fator k altera o sinal em k^2 .

1.1.1 Sinal (a)

$$\int_0^2 1^2 dx + \int_2^3 -1^2 dx \Rightarrow \int_0^2 dx + \int_2^3 dx = 3$$

1.1.2 Sinal (b)

$$\int_0^2 -1^2 dx + \int_2^3 1^2 dx \Rightarrow \int_0^2 dx + \int_2^3 dx = 3$$

1.1.3 Sinal (c)

$$\int_{3}^{5} 1^{2} dx + \int_{5}^{6} -1^{2} dx \Rightarrow \int_{3}^{5} dx + \int_{5}^{5} dx = 3$$

1.1.4 Sinal (d)

$$\int_0^2 2^2 dx + \int_2^3 -2^2 dx \Rightarrow \int_0^2 4 dx + \int_2^3 4 dx = 12$$

1.2 Item b

Figura 2: Sinais utilizados no Item B

Repete-se o que ocorre no Item(a)

1.2.1 Sinal (a)

$$\int_0^1 x^2 dx = \frac{1}{3}$$

1.2.2 Sinal (b)

$$\int_{-1}^{0} (-x)^2 dx = \frac{1}{3}$$

1.2.3 Sinal (c)

$$\int_0^1 (-x)^2 dx = \frac{1}{3}$$

1.2.4 Sinal (d)

$$\int_{1}^{2} (x-1)^{2} dx \Rightarrow \int_{1}^{2} (x^{2} - 2x + 1) dx = \frac{8}{3} - \frac{1}{3} - 4 + 1 + 2 - 1 = \frac{1}{3}$$

1.2.5 Sinal (e)

$$\int_0^1 (2x)^2 dx = \frac{4}{3}$$

1.3 Item c

Figura 3: Sinais utilizados no Item C

Percebe-se que nos Sinais "a"e "b"a energia de x+y é igual a energia de x e y somadas, assim com, x-y é a energia de "a"e "b"subtraída, entretanto, não podemos assumir isso como verdade pois nos Sinais "c"não existe tal relação.

1.3.1 Sinais (a)

$$E_x = \int_0^2 1^2 dx = 2$$

$$E_y = \int_0^1 1^2 dx + \int_1^2 -1^2 dx \Rightarrow 1 + 1 = 2$$

$$E_{x+y} = \int_0^1 2^2 dx = 4$$

$$E_{x-y} = \int_{1}^{2} -2^{2} dx = 4$$

1.3.2 Sinais (b)

$$E_{x} = \int_{0}^{2\pi} \sin^{2}(x) dx \Rightarrow \int_{0}^{2\pi} \frac{1 - \cos(2x)}{2} \Rightarrow \frac{1}{2} \int_{0}^{2\pi} 1 dx - \frac{1}{2} \int_{0}^{2\pi} \cos(2x) dx = \pi + 0 = \pi$$

$$E_{y} = \int_{0}^{2\pi} 1^{2} dx = 2\pi$$

$$E_{x+y} = \int_{0}^{2\pi} (\sin(x) + 1)^{2} dx \Rightarrow \int_{0}^{2\pi} \frac{1 - \cos(2x)}{2} + 2\sin(x) + 1 \Rightarrow$$

$$\frac{1}{2} \int_{0}^{2\pi} 1 dx - \frac{1}{2} \int_{0}^{2\pi} \cos(2x) dx + 2 \int_{0}^{2\pi} \sin(x) dx + \int_{0}^{2\pi} 1 dx = \pi + 0 + 0 + 2\pi = 3\pi$$

$$E_{x-y} = \int_{0}^{2\pi} (\sin(x) - 1)^{2} dx \Rightarrow \int_{0}^{2\pi} \frac{1 - \cos(2x)}{2} - 2\sin(x) + 1 \Rightarrow$$

$$\frac{1}{2} \int_{0}^{2\pi} 1 dx - \frac{1}{2} \int_{0}^{2\pi} \cos(2x) dx - 2 \int_{0}^{2\pi} \sin(x) dx + \int_{0}^{2\pi} 1 dx = \pi + 0 + 0 + 2\pi = 3\pi$$

1.3.3 Sinais (c)

$$E_x = \int_0^{\pi} \sin^2(x) dx \Rightarrow \int_0^{\pi} \frac{1 - \cos(2x)}{2} = \frac{\pi}{2} + 0 = \frac{\pi}{2}$$

$$E_y = \int_0^{\pi} 1^2 dx = \pi$$

$$E_{x+y} = \int_0^{\pi} (\sin + 1)^2 dx \Rightarrow \int_0^{\pi} \frac{1 - \cos(2x) dx}{2} + \int_0^{\pi} 2\sin(x) + \int_0^{\pi} dx = \frac{\pi}{2} + 4 + \pi = \frac{3\pi}{2} + 4$$

$$E_{x-y} = \int_0^{\pi} (\sin - 1)^2 dx \Rightarrow \int_0^{\pi} \frac{1 - \cos(2x) dx}{2} + \int_0^{\pi} -2\sin(x) + \int_0^{\pi} dx = \frac{\pi}{2} - 4 + \pi = \frac{3\pi}{2} - 4$$

1.4 Item d

Figura 4: Sinais utilizados no Item D

$$P(x) = \frac{1}{4} \int_{-2}^{2} (x^3)^2 dx = \frac{64}{7}$$

Percebe-se, que a inversão do sinal não altera a potência, entretanto a multiplicação por um escalar C, altera a potência em C^2 , um comportamento igual ao já provado no calculo de energia.

1.4.1 Sinais (a)

$$P(-x) = \frac{1}{4} \int_{-2}^{2} (-x^3)^2 dx = \frac{64}{7}$$

1.4.2 Sinais (b)

$$P(2x) = \frac{1}{4} \int_{-2}^{2} (2x^3)^2 dx = \frac{256}{7}$$

1.4.3 Sinais (c)

$$P(Cx) = \frac{1}{4} \int_{-2}^{2} (Cx^3)^2 dx = \frac{64C^2}{7}$$

1.5 Item e

1.5.1 Sinais (a)

1.5.2 Sinais (b)

1.5.3 Sinais (c)

1.5.4 Sinais (d)

1.6 Item f

1.6.1 Sinais (a)

Impulso unitário em $\sin(0)=0$

1.6.2 Sinais (b)

$$\frac{2}{9}\delta(\omega)$$

1.6.3 Sinais (c)

$$1(\cos(-60)) = \frac{1}{2}\delta(t)$$

1.6.4 Sinais (d)

$$\frac{\sin(\frac{-\pi}{2})}{(1)^2+4} = \frac{-1}{5}\delta(1-t)$$

1.6.5 Sinais (e)

Substituindo-se $\omega + 3$ em ω , teremos: $\frac{1}{-3j+2}\delta(\omega + 3)$

1.6.6 Sinais (f)

Usando L'hopital em $\frac{\sin(k\omega)}{\omega}$, temos: $k\cos(k\omega)$ que com $\omega=0$ temos: $k\delta(\omega)$

1.7 Item g

1.7.1 Sinais (a)

Como o impulso é localizado em $\tau = t$, nesse caso temos $x(\tau) = x(t)$ logo, essa integral é igual a x(t).

1.7.2 Sinais (b)

Em $\delta(\tau)$ o impulso é realizado em $\tau=0,$ sendo $\tau=0,$ temos o resultado = x(t).

1.7.3 Sinais (c)

O impulso ocorre em t=0 nesta caso temos $e^0 = 1$.

1.7.4 Sinais (d)

O impuso ocorre em t = 0, logo $sin(3\pi) = 0$.

1.7.5 Sinais (e)

O impulso ocorre em t = -3, logo o resultado sera e^3 .

1.7.6 Sinais (f)

O impulso ocorre em t = 1, logo o resultado sera $1^3 + 4 = 5$.

1.7.7 Sinais (g)

O impulso ocorre em t = 3, logo o resultado sera x(2-3) = x(-1).

1.7.8 Sinais (h)

O impulso ocorre quando t = 3, logo o resultado sera $e^{3-1}cos(-\pi) = -e^2$.

1.8 Item h

1.8.1 Sinais (a)

 $cos(\omega t)=\frac{e^{\alpha t+j\omega t}+e^{\alpha t-j\omega t}}{2},~\alpha=0$ pois e função é uma senoide e $\omega=3,$ sabendo-se que $s=\alpha+j\omega$ temos: $s_1=j3$ e $s_2=-j3$

1.8.2 Sinais (b)

Nesse caso, temos $\alpha = -3$ e $\omega = 3$, logo $s_1 = -3 + j3$ e $s_2 = -3 - j3$

1.8.3 Sinais (c)

Nesse caso, temos $\alpha = 2$ e $\omega = 3$, logo $s_1 = 2 + j3$ e $s_2 = 2 - j3$

1.8.4 Sinais (d)

Nesse caso, temos $\alpha = -2$ e $\omega = 0$, logo s = -2

1.8.5 Sinais (e)

Nesse caso, temos $\alpha=2$ e $\omega=0$, logo s=2

1.8.6 Sinais (f)

Nesse caso, temos $\alpha=0$ e $\omega=0,$ logo ke^0 tendo k=5

1.9 Item i

1.9.1 Sinais (a)

Pode se dizer que $x(t)_{par} = \frac{x(t)}{2} + \frac{x(-t)}{2}$ e $x(t)_{impar} = \frac{x(t)}{2} + \frac{-x(-t)}{2}$, logo $\int_{-\infty}^{\infty} [\frac{x(t)}{2} + \frac{x(-t)}{2}] [\frac{x(t)}{2} + \frac{-x(-t)}{2}] = \int_{-\infty}^{\infty} (\frac{x(t)}{2})^2 - (\frac{x(-t)}{2})^2$ como o modulo de x(t) é igual ao modulo de x(-t) essa integral resultara em 0.

1.9.2 Sinais (b)

Pode se dizer que $x(t)_{par} = \frac{x(t)}{2} + \frac{x(-t)}{2}$, logo $\int_{-\infty}^{\infty} \frac{x(t)}{2} + \frac{x(-t)}{2}$ como $x(t) = x(-t) \int_{-\infty}^{\infty} x(t)$.

1.10 Item j

1.10.1 Sinais (a)

$$x_1(t) \Rightarrow ay_1'(t) + 2ay_1(t) = ax_1^2(t)$$

 $x_2(t) \Rightarrow by_2'(t) + 2by_2(t) = bx_2^2(t)$

$$\begin{split} x_3(t) &\Rightarrow y_3^{'}(t) + 2y_3(t) = x_3^2(t) \Rightarrow (ax_1(t) + bx_2(t))^2 \Rightarrow a^2x_1^2(t) + 2abx_1(t)x_2(t) + b^2x_2^2(t) \\ a^2x_1^2(t) + 2abx_1(t)x_2(t) + b^2x_2^2(t) \text{ não \'e igual \`a } ax_1^2(t) + bx_2^2(t), \text{ logo o sistema não \'e linear.} \end{split}$$

1.10.2 Sinais (b)

$$x_{1}(t) \Rightarrow ay'_{1}(t) + 3aty_{1}(t) = ax_{1}t^{2}(t)$$

$$x_{2}(t) \Rightarrow by'_{2}(t) + 3bty_{2}(t) = bx_{2}t^{2}(t)$$

$$x_{3}(t) \Rightarrow y'_{3}(t) + 3ty_{3}(t) = x_{3}t^{2}(t) \Rightarrow (ax_{1}(t) + bx_{2}(t))t^{2}$$

 $(ax_1(t)+bx_2(t))t^2$ é igual à $ax_1t^2(t)+bx_2t^2(t),$ logo o sistema é linear

1.10.3 Sinais (c)

$$x_1(t) \Rightarrow a3y_1(t) + 2 = ax_1(t)$$

$$x_2(t) \Rightarrow b3y_2(t) + 2 = bx_2(t)$$

$$x_3(t) \Rightarrow y_3(t) + 2 = x_3(t) \Rightarrow [a3y_1(t) + b3y_2(t)] + 2 = [ax_1(t) + bx_2(t)]$$

isso é diferente de $a3y_1(t) + b3y_2(t) + 4 = [ax_1(t) + bx_2(t)]$ logo não é linear

1.10.4 Sinais (d)

$$x_{1}(t) \Rightarrow ay_{1}^{'}(t) + ay_{1}^{2}(t) = ax_{1}(t)$$

$$x_{2}(t) \Rightarrow by_{2}^{'}(t) + by_{2}^{2}(t) = bx_{2}(t)$$

$$x_{3}(t) \Rightarrow y_{3}^{'}(t) + y_{3}^{2}(t) = x_{3}(t) \Rightarrow [ay_{1}^{'}(t) + by_{2}^{'}(t)] + [ay_{1}(t) + by_{2}(t)]^{2} = [ax_{1}(t) + bx_{2}(t)]$$

, o valor quadrático gerará um termo que fara com que esse sistema não seja linear.

1.10.5 Sinais (e)

$$x_1(t)\Rightarrow ay_1^{'2}(t)+2ay_1(t)=ax_1(t)$$

$$x_2(t)\Rightarrow by_2^{'2}(t)+2by_2(t)=bx_2(t)$$

$$x_3(t)\Rightarrow y_3^{'2}(t)+2y_3(t)=x_3(t)\Rightarrow [ay_1^{'}(t)+by_2^{'}(t)]^2+2[ay_1(t)+by_2(t)]=[ax_1(t)+bx_2(t)]$$
 o valor quadrático gerará um termo que fara com que esse sistema não seja linear.

1.10.6 Sinais (f)

$$\begin{aligned} x_1(t) &\Rightarrow ay_1^{'}(t) + asin(t)y_1(t) = ax_1^{'}(t) + 2ax_1(t) \\ x_2(t) &\Rightarrow by_2^{'}(t) + bsin(t)y_2(t) = bx_2^{'}(t) + 2bx_2(t) \\ x_3(t) &\Rightarrow y_3^{'}(t) + sin(t)y_3(t) = x_3^{'}(t) + 2x_3(t) \Rightarrow \\ [ay_1^{'}(t) + by_2^{'}(t)] + sin(t)[ay_1(t) + by_2(t)] &= [ax_1^{'} + bx_2^{'}] + 2[ax_1(t) + bx_2(t)] \end{aligned}$$

. O sistema é linear.

1.10.7 Sinais (g)

$$x_{1}(t) \Rightarrow ay_{1}^{'}(t) + 2ay_{1}(t) = ax_{1}(t)x_{1}^{'}(t)$$

$$x_{2}(t) \Rightarrow by_{2}^{'}(t) + 2by_{2}(t) = bx_{2}(t)x_{2}^{'}(t)$$

$$x_{3}(t) \Rightarrow y_{3}^{'}(t) + 2y_{3}(t) = x_{3}(t)x_{3}^{'}(t) \Rightarrow [ay_{1}^{'}(t) + by_{2}^{'}(t)] + 2[ay_{1}(t) + 2by_{2}(t)] = [ax_{1}(t) + bx_{2}(t)][x_{1}^{'}(t) + x_{2}^{'}(t)]$$

. A multiplicação cruzada do ultimo termo gerará um valor tal que o sistema não será linear.

1.10.8 Sinais (h)

$$x_1(t) \Rightarrow ay_1(t) = \int_{-\infty}^t x_1(\tau)d\tau$$

$$x_2(t) \Rightarrow by_2(t) = \int_{-\infty}^t x_2(\tau)d\tau$$

$$x_3(t) \Rightarrow y_3(t) = \int_{-\infty}^t x_3(\tau)d\tau \Rightarrow [ay_1(t) + by_2(t)] = \int_{-\infty}^t [x_1(\tau) + x_2(\tau)]d\tau$$

. O Sistema é linear.

1.11 Item k

1.11.1 Sinais (a)

 $y_1(t)=x_1(t-2)$ considerando $x_2(t)=x_1(t-2-t_0)$, temos: $y_2(t)=x_2(t)=x_1(t-2-t_0)$. $y_1(t-t_0)=x_1(t-2-t_0)$, logo pode-se concluir que $y_2(t)=y_1(t-t_0)$ com isso o sistema é invariante no tempo.

1.11.2 Sinais (b)

 $y_1(t) = x_1(-t)$, considerando $x_2(t) = x_1(-t-t_0)$, temos: $y_2(t) = x_2(-t) = x_1(-t-t_0)$, logo $y_1(-t-t_0) = x_1(t+t_0)$. O sistema é variante com o tempo.

1.11.3 Sinais (c)

 $y_1(t) = x_1(at)$, considerando $x_2(at) = x_1(at - t_0)$, temos: $y_2(t) = x_2(at) = x_1(at - t_0)$, logo $y_1(at - t_0) = x_1(a(at + t_0))$. O sistema é variante com o tempo.

1.11.4 Sinais (d)

 $y_1(t) = tx_1(t-2)$ considerando $x_2(t) = x_1(t-2-t_0)$, temos: $y_2(t) = tx_2(t) = tx_1(t-2-t_0)$. $y_1(t-t_0) = (t-t_0)x_1(t-2-t_0)$, logo pode-se concluir que é variante no tempo.

1.11.5 Sinais (e)

 $y_1(t) = \int_{-5}^5 x_1(\tau) d\tau$ considerando $x_2(\tau) = x_1(\tau - t_0)$, temos: $y_2(t) = \int_{-5}^5 x_2(\tau) d\tau = \int_{-5}^5 x_1(\tau - t_0) d\tau$. $y_1(\tau - t_0) = \int_{-5}^5 x_1(\tau - t_0) d\tau$, logo pode-se concluir que é invariante no tempo.

1.11.6 Sinais (f)

 $y_1(t)=x_1^{'2}(t)$ considerando $x_2(t)=x_1(t-t_0)$, temos: $y_2(t)=x_2^{'2}(t)=x_1^{'2}(t-t_0)$. $y_1(t-t_0)=x_1^{'2}(t-t_0)$, logo pode-se concluir que é invariante no tempo.

1.12 Item l

$$y_1 = \frac{x_1^2(t)}{x_1'(t)}$$

$$y_2 = \frac{x_2^2(t)}{x_2'(t)}$$

$$y_3 = \frac{x_3^2(t)}{x_3'(t)} \Rightarrow [y_1 + y_2] = \frac{(x_1(t) + x_2(t))^2}{x_1'(t) + x_2'(t)}$$

não é aditiva.

$$ay_1 = \frac{(ax_1)^2(t)}{ax_1'(t)} \Rightarrow y_1 = a\left[\frac{(x_1)^2(t)}{x_1'(t)}\right] = ay_1$$

é homogênea.

1.13 Item m

Pode-se reorganizar essa funcao da seguinte forma: $\int_{-\infty}^{\infty} \frac{x(\tau)\delta(t-\tau)}{2} - \frac{x(\tau)\delta(t+\tau)}{2}$ ou seja, $\frac{x(t)-x(-t)}{2}.$

1.13.1 Sinais (a)

E um sistema que extra a parte impar do sinal.

1.13.2 Sinais (b)

O sistema é BIBO estável.

1.13.3 Sinais (c)

$$y_1(t) \Rightarrow ay_1(t) = \frac{ax_1(t) - ax_1(-t)}{2}$$

 $y_2(t) \Rightarrow by_2(t) = \frac{bx_2(t) - bx_2(-t)}{2}$

$$y_3(t) \Rightarrow y_3(t) = \frac{[ax_1(t) + bx_2(t)] - [ax_1(-t) + bx_2(-t)]}{2}$$

é linear.

1.13.4 Sinais (d)

Não, no instante t ele precisa conhecer o -t.

1.13.5 Sinais (e)

Não, pois ele pode depender de valores no futuro. p.e: quando t=-10 ele precisará conhecer o instante t=10

1.14 Item n

Figura 5: Circuito 1

$$x(t) = y_1'(t) + 3y_1(t)$$

2 Questão 2 - Conhecimentos Básicos

- 2.1 Item a
- 2.1.1 Sinais (a)

n < 1 e n > 7

2.1.2 Sinais (b)

 $n<\!\!\text{-}6$ e n $>\!\!0$

2.1.3 Sinais (c)

n > 2 e n < -4

2.1.4 Sinais (d)

n > 4 e n < -2

2.1.5 Sinais (e)

n > 0 e n < -6

- **2.2** Item b
- 2.2.1 Sinais (a)

Não é periodico pois como é multiplicado por um degrau é 0 para todo o valor menor que 0.

2.2.2 Sinais (b)

Esse sinal é 1 para todo o dominio, logo é periodico com periodo = 1.

- 2.3 Item c
- 2.3.1 Sinais (a)

 $2A^{0t}cos(0t+\pi)$

2.3.2 Sinais (b)

 $\sqrt{2}[\cos(\frac{\pi}{4})+jsen(\frac{\pi}{4})]cos(3t+2\pi)$ removendo a parte imaginaria composta por seno e fazendo as devidas substituições, temos: $\sqrt{2}\frac{1}{\sqrt{2}}e^0cos(3t+2\pi)$ como cosseno é periódico em 2π , o resultado é: $e^0cos(3t)$

2.3.3 Sinais (c)

$$e^{-1t}cos(3t + \frac{\pi}{2})$$

2.3.4 Sinais (d)

Por essa exponencial ter um "j" multiplicando, sabe-se que é um seno, sabe-se também que $e^{(a+jw)t} = e^{at}cos(wt+\phi)$, logo $e^{-2t}cos(100t+\frac{\pi}{2})$

2.4 Item d

sabe-se que
$$T = \frac{2\pi}{\omega}$$

2.4.1 Sinais (a)

 $\omega=10,$ logo é periódico e o período fundamental é: $T=\frac{2\pi}{10}=\frac{\pi}{5}$

2.4.2 Sinais (b)

 $\omega=1$, seria periódico e o período fundamental é: $T=\frac{2\pi}{1}=2\pi$, entretanto a multiplicação de α por -1 faz com que se transforme em uma exponencial decrescente.

2.4.3 Sinais (c)

 $\omega=7\pi n,$ logo é periódico e o período fundamental é: $T=\frac{2\pi}{7\pi n}=\frac{2}{7n}$

2.5 Item e

O período da primeira parte da função é $T=\frac{2\pi}{10}=\frac{\pi}{5}$, na segunda função temos: $T=\frac{2\pi}{4}=\frac{\pi}{2}$. Logo a soma das funções será periódica com período igual a MMC dos periodos que é π

2.6 Item f

$$t < -2 = 0$$

 $t > 2 = 0$
 $-2 <= t <= -2, = 1$

$$E = \int_{-2}^{2} dt = 4$$

2.7 Item g

2.7.1 Sinais (a)

2.7.2 Sinais (b)

2.7.3 Sinais (c)

2.7.4 Sinais (d)

2.7.5 Sinais (e)

2.7.6 Sinais (f)

3 Questão 3 - Conhecimentos Básicos

Equação de Euller $e^{j\theta} = cos(\theta) + jsen(\theta)$

3.1 Item a

$$|a|e^{j\phi_a} = |a|[con(\phi_a) + jsin(\phi_a)] = |a|con(\phi_a) + |a|jsin(\phi_a)$$

3.2 Item b

 $|a|e^{-j\phi_a}=|a|[con(-\phi_a)+jsin(-\phi_a)]$ pelas propriedades de funções pares e impares temos: $|a|cos(\phi_a)-|a|jsin(\phi_a)$

3.3 Item c

Somando os dois itens anteriores, temos $e^{j\phi_a}+e^{-j\phi_a}=2cos(\phi_a)$, logo $cos(\phi_a)=\frac{e^{j\phi_a}+e^{-j\phi_a}}{2}$

3.4 Item d

Subtraindo o item a e o item b, temos $e^{j\phi_a}-e^{-j\phi_a}=2jsin(\phi_a)$, logo $sin(\phi_a)=\frac{e^{j\phi_a}-e^{-j\phi_a}}{2j}$

3.5 Item e

Sabe-se que
$$\cos^2(\phi) = \frac{1}{2}(e^{j\phi_a} + e^{-j\phi_a})^2 = \frac{1}{2}(e^{2j\phi_a} + 1 + e^{-2j\phi_a}) = \frac{1+\cos(2\phi)}{2}$$

- 4 Questão 4 Conhecimentos Básicos
- 4.1 Item a
- 4.2 Item b
- 4.3 Item c
- 5 Questão 5 Classificação de Sinais
- 6 Questão 6 Classificação de Sistemas
- 6.1 Item a
- 6.2 Item b
- 6.3 Item c
- 7 Questão 7 Classificação de Sistemas
- 7.1 Item a
- 7.2 Item b
- 8 Questão 8 Energia e Potência de Sinais
- 9 Questão 9 Operação com Sinais
- 9.1 Item a
- 9.2 Item b
- 9.3 Item c
- 9.4 Item d
- 10 Questão 10 Operação com Sinais
- 10.1 Item a
- 10.2 Item b