Dataset #2: Movie Ratings

This is a dataset about Movies, obtained using data from IMDB. (You can get amazing amounts of IMDB information from ftp://ftp.fu-berlin.de/pub/misc/movies/database/ (ftp://ftp.fu-berlin.de/pub/misc/movies/database/)

Goal: predict the IMDB rating of a move. Specifically: given the attributes of each input movie, predict its IMDB rating.

The Rating column of the training set gives examples. Each rating is a value of the form X.Y, where X and Y are single digits. Your job is to predict these values as closely as possible.

A histogram of rating values is shown below, near the end of this notebook.

Schema of the Dataset

The dataset has the following columns:

Title	movie title
Year	year released
Length	length in minutes
Budget	production budget in US dollars (usually NA)
Rating	average rating of IMDB users
Votes	number of voting IMDB users
R1	approximate percentage of users voting for rating: 1
R2	approximate percentage of users voting for rating: 2
R3	approximate percentage of users voting for rating: 3
R4	approximate percentage of users voting for rating: 4
R5	approximate percentage of users voting for rating: 5
R6	approximate percentage of users voting for rating: 6
R7	approximate percentage of users voting for rating: 7
R8	approximate percentage of users voting for rating: 8
R9	approximate percentage of users voting for rating: 9
R10	approximate percentage of users voting for rating: 10
MPAA	MPAA parental guidance rating (blank, NC-17, PG, PG-13, R)
Action	1 if Action, 0 otherwise
Animation	1 if Animation, 0 otherwise
Comedy	1 if Comedy, 0 otherwise
Drama	1 if Drama, 0 otherwise
Documentary	1 if Documentary, 0 otherwise
Romance	1 if Romance, 0 otherwise
Short	1 if Short Film, 0 otherwise

Caution

The dataset has missing values (such as "NA" Budget values and blank MPAA ratings).

A First Look at the Dataset

```
In [1]: import pandas as pd
import numpy as np

Movies = pd.DataFrame.from_csv('Movies.csv')

Movies.head()
```

Out[1]: R1 R2 R3 R4 R5 Animation Comedy Year Length Budget Rating Votes R9 R10 MPAA Action Drama Documentary Romance Short Title 348 1971 5 5 5 121 NaN 64 15 5 NaN O n n ი n \$1000 a 5 1939 71 NaN 6.0 20 0 15 25 15 5 15 NaN 0 0 0 0 0 0 Touchdown \$21 a Day 1941 7 NaN 8.2 5 0 0 0 0 0 25 25 NaN 0 0 0 0 Once a Month \$40,000 1996 70 NaN 8.2 6 15 0 0 0 0 35 45 NaN 0 0 0 0 0 0 \$50,000 Climax 1975 17 25 5 n 15 15 25 Λ n n n n n 71 NaN 34 Λ NaN Show, The

5 rows × 23 columns

```
In [6]: movie_years = Movies[['Year']].values
    earliest = np.min(movie_years)
    latest = np.max(movie_years)
    print((earliest, latest))
(1893, 2005)
```

In [7]: import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (12.0, 10.0)

```
In [8]: plt.hist( movie_years, bins=len(range(earliest,latest))+2 )
plt.show()
```


Out[11]: 49

In [13]: plt.hist(Movies[['Rating']].values, bins=45)
 plt.title('histogram of movie rating values')
 plt.show()

What the program's output should look like

The program should output lines consisting of predicted rating values for the test set, like:

5.6

7.2

9.1

8.4

Each rating should be numeric value of the form X.Y, where X and Y are single digits.