

August 2013

LM78XX / LM78XXA 3-Terminal 1 A Positive Voltage Regulator

Features

- Output Current up to 1 A
- Output Voltages: 5, 6, 8, 9, 10, 12, 15, 18, 24 V
- Thermal Overload Protection
- Short-Circuit Protection
- Output Transistor Safe Operating Area Protection

Description

The LM78XX series of three-terminal positive regulators is available in the TO-220 package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut-down, and safe operating area protection. If adequate heat sinking is provided, they can deliver over 1 A output current. Although designed primarily as fixed-voltage regulators, these devices can be used with external components for adjustable voltages and currents.

Ordering Information(1)

Product Number	Output Voltage Tolerance	Package	Operating Temperature	Packing Method
LM7805CT				
LM7806CT				
LM7808CT				
LM7809CT				
LM7810CT	±4%		-40°C to +125°C	
LM7812CT				
LM7815CT		TO-220		Rail
LM7818CT		(Single Gauge)		Naii
LM7824CT				
LM7805ACT				
LM7809ACT				
LM7810ACT	±2%		0°C to +125°C	
LM7812ACT				
LM7815ACT				

1

Note:

1. Above output voltage tolerance is available at 25°C.

Block Diagram

Figure 1. Block Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Paramete	Value	Unit		
V _I	Input Voltage	V _O = 5 V to 18 V	35	V	
		V _O = 24 V	40		
$R_{\theta JC}$	Thermal Resistance, Junction-Case (TO-220)		5	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-Air (TO-220)		65	°C/W	
T _{OPR}	Operating Temperature Benge	LM78xx	-40 to +125	- °C	
	Operating Temperature Range	LM78xxA	0 to +125		
T _{STG}	Storage Temperature Range		- 65 to +150	°C	

Electrical Characteristics (LM7805)

Refer to the test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 10 V, C_I = 0.1 μF , unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		4.80	5.00	5.20	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}, P_O \le 15 \text{ W},$ $V_I = 7 \text{ V to 20 V}$		4.75	5.00	5.25	
Dogling	Line Regulation ⁽²⁾	T _J = +25°C	V _I = 7 V to 25 V		4.0	100.0	- mV
Regline			V _I = 8 V to 12 V		1.6	50.0	
Regload	Load Regulation ⁽²⁾	T _{.1} = +25°C	I _O = 5 mA to 1.5 A		9.0	100.0	- mV
		1j = +25 C	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		4.0	50.0	
IQ	Quiescent Current	T _J =+25°C			5.0	8.0	mA
Al-	Quiescent Current	$I_O = 5 \text{ mA to } 1$	1 A		0.03	0.50	mA
ΔI_{Q}	Change	$V_1 = 7 \text{ V to } 25$	V		0.30	1.30	ША
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽³⁾	I _O = 5 mA			-0.8		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 100 kHz, T _A = +25°C			42.0		μV/V _O
RR	Ripple Rejection ⁽³⁾	f = 120 Hz, V _I = 8 V to 18 V		62.0	73.0		dB
V_{DROP}	Dropout Voltage	T _J = +25°C, I _O = 1 A			2.0		V
R _O	Output Resistance ⁽³⁾	f = 1 kHz			15.0		mΩ
I _{SC}	Short-Circuit Current	$T_J = +25^{\circ}C, V_I = 35 V$			230		mA
I _{PK}	Peak Current ⁽³⁾	$T_J = +25^{\circ}C$			2.2		Α

Notes:

- 2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 3. These parameters, although guaranteed, are not 100% tested in production.

Typical Applications

Figure 6. DC Parameters

Figure 7. Load Regulation

Figure 8. Ripple Rejection

Figure 9. Fixed-Output Regulator

Notes:

- 29. To specify an output voltage, substitute voltage value for "XX". A common ground is required between the input and the output voltage. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.
- 30. C_I is required if regulator is located an appreciable distance from power supply filter.
- 31. C_{O} improves stability and transient response.

Figure 10.

Figure 11. Circuit for Increasing Output Voltage

Physical Dimensions

TO-220 (SINGLE GAUGE)

Figure 19. TO-220, MOLDED, 3-LEAD, JEDEC VARIATION AB (ACTIVE)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/dwg/TO/TO220B03.pdf.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: http://www.fairchildsemi.com/packing_dwg/PKG-TO220B03_TC.pdf.