Recommendation Systems theory

A/Prof Richard Yi Da Xu Yida.Xu@uts.edu.au Wechat: aubedata

https://github.com/roboticcam/machine-learning-notes

University of Technology Sydney (UTS)

February 18, 2018

What is a Recommendation System?

▶ A hypothetical example of an online survey asking people to give rating of M movies with a score 1 − 5:

	$Item_1$	$Item_2$	$Item_3$	$Item_4$	$Item_5$	$Item_6$	 $Item_{M-1}$	$Item_M$
User 1	0	5	0	0	0	0	 0	0
User 2	0	0	1	0	0	0	 0	0
User 3	1	4	0	0	0	0	 0	0
User N	0	0	5	0	0	0	 0	0

- **zeros** doesn't mean a zero score, it means the User has not scored this public service yet.
- Extremely sparse and very large Utility matrix
- ▶ In most literature, Columns called "User" and Rows are called "Items"
- ► The question is what would the score be, if the User is to score these zero entries.

Recommendation System

The previous example is too futuristic, so let's get back to the movie and rating example from now:

For example, User 101 has the following rating:

- ▶ User 101 has ONLY rated three items ($Item_2 = 5$), ($Item_5 = 3$) and ($Item_{M-1} = 2$)
- From these existing ratings, system needs to decide "recommended" ratings for the rest M − 3 items
- ▶ The question is how does $Item_2$, $Item_5$ and $Item_{M-1}$ each contribute to these decisions?

Recommendation System: A Collaborative Filtering Approach

Needless to say **statistics from ALL users** needed for recommendation decision for **individual User**

In Collaborative Filtering, for each pair of items (x, y):

First obtain statistics $r_{x,y}$, for example:

	Item56	Item ₇₈		Item56	Item78
User 102	1	5	User 2321	4	5
User 202	2	5	User 1232	4	4
User 376	5	1	User 3533	1	1
User 2121	4	1	User 8839	5	4

- ▶ Then compute $S_{x,y}$, which similarity measure between item x and y.
- Then recommendation for each item becomes the weighted average of these similarities measures

Pearson correlation similarity of ratings:

cosine-based approach of ratings:

$$S_{x,y} = \frac{\sum\limits_{i \in I_{xy}} (r_{x,i} - \bar{r_x})(r_{y,i} - \bar{r_y})}{\sqrt{\sum\limits_{i \in I_{xy}} (r_{x,i} - \bar{r_x})^2 \sum\limits_{i \in I_{xy}} (r_{y,i} - \bar{r_y})^2}}$$

$$S_{x,y} = \frac{\sum\limits_{i \in I_{xy}} r_{x,i} r_{y,i}}{\sqrt{\sum\limits_{i \in I_{x}} r_{x,i}^2} \sqrt{\sum\limits_{i \in I_{y}} r_{y,i}^2}}$$

Recommendation System: A Collaborative Filtering Approach (2)

- ▶ Weighted average of these contributions is then applied
- Sometimes, clustering of users may be needed and recommendation is user-group specific.
 For example, Netflix users.

Recommendation System: what if it's not "ratings", but "counts"?

► Another hypothetical example of number of "views" people looking at the VET Users :

student 1 student 2 student 3	Course ₁ 0 0	Course ₂ 5 0 4	Course ₃ 0 16	Course ₄ 0 0	Course ₅ 0 32	Course ₆ 0 0	 Course _M - 1 0 0	Course _M 0 0
student S student N							 	

- The counts are unbounded.
- "Ratings of 1" means negativity rating, but "Views of 1" does NOT necessarily mean negativity.
- Negative correlation doesn't make sense; We only have "how strong" the positive correlation is.
- ► Recently latent Poisson Model may be used.

Content-based recommendations with Poisson factorization

An example of a probabilistic approach: (Gopalan, Charlin, Blei, 2014):

- ▶ Draw Item intensities $\theta_{dk} \sim \text{Gamma}(c, d)$
- ▶ Draw User preferences $\eta_{uk} \sim \text{Gamma}(e, f)$
- ▶ Draw Item topic offsets $\epsilon_{dk} \sim \text{Gamma}(g, h)$
- ▶ Draw $r_{ud} \sim \text{Poisson}(\eta_u^\top (\theta_d + \epsilon_d)).$

Recommendation System: Matrix factorisation approach, why it works?

$$\mathbf{R} \approx \mathbf{P} \times \mathbf{Q}^T = \hat{\mathbf{R}} \qquad \qquad \hat{r}_{ij} = p_i^T q_j = \sum_{k=1}^K p_{ik} q_{kj}$$

$$\mathbf{q} \qquad \qquad = \qquad \qquad \mathbf{r}_{ij}$$

- ▶ number of columns of P and number of rows of Q must **agree**. However, this number *K* is somewhat arbitrary.
- each row of a user matrix represent a latent "user" feature vector
- ▶ each column of a item matrix represent a latent "item" feature vector
- ► In words, try to find matrices **P** and **Q**, such that when they multiply together the **existing** ratings have minimum changes
- The rest of zeros are replaced by non-zero numbers through matrix multiplication (think about why)
- ► See demo

Objective function in Matrix factorisation

- ▶ The objective function: what are we try to minimise?
- We just said in the previous slide that, "such that when they multiply together the existing ratings have minimum changes":

$$e_{ij}^2 = (r_{ij} - \hat{r}_{ij})^2 = \left(r_{ij} - \sum_{k=1}^K p_{ik} q_{kj}\right)^2$$
 $E = \sum_{k=1}^K e_{ij}^2 = \sum_{k=1}^K \left(r_{ij} - \sum_{k=1}^K p_{ik} q_{kj}\right)^2$

We want to find all $\{p_{ik}\}$ and $\{q_{kj}\}$ which minimize E

- Note that $arg min(p_{ik})$ depends on one row of **P** and one column of **Q**.
- ▶ We can't just let every $\frac{\partial}{\partial p_{ik}}e_{ij}^2 = 0$ and solve them at once.
- ▶ We need iterative algorithm, called **Gradient Descent** and let's take a look:

Gradient Descend in matrix factorisation

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha_n \nabla f(\mathbf{x}_n), \ n > 0$$

In the case of recommendation system, we have (remember **Chain rule** from high school?)

$$\frac{\partial}{\partial p_{ik}}e_{ij}^2 = -2(r_{ij} - \hat{r}_{ij})(q_{kj}) = -2e_{ij}q_{kj}$$
$$\frac{\partial}{\partial q_{kj}}e_{ij}^2 = -2(r_{ij} - \hat{r}_{ij})(p_{ik}) = -2e_{ij}p_{kj}$$

$$p'_{ik} = p_{ik} - \alpha_n \underbrace{\left(-2e_{ij}q_{kj}\right)}_{\nabla f(\mathbf{x}_n)}$$
$$= p_{ik} + \alpha_n (2e_{ij}q_{kj})$$

$$q'_{kj} = q_{kj} - \alpha_n(\underbrace{-2e_{ij}p_{kj}}_{\nabla f(\mathbf{x}_n)})$$
$$= q_{kj} + \alpha_n(2e_{ij}p_{ik})$$

Recommendation System: A Matrix factorization approach (3)

- ▶ There is this so-called, "identifiability" problem in solving arg $min_{A,B} f(AB)$
- \blacktriangleright Hence let's put a "regulariser" and obtain a new objective function for e_{ij}

$$e_{ij}^2 = (r_{ij} - \sum_{k=1}^K p_{ik} q_{kj})^2 + \frac{\beta}{2} \sum_{k=1}^K (||P||^2 + ||Q||^2)$$

▶ Then, the new gradient descent algorithm becomes that of:

$$p'_{ik} = p_{ik} + \alpha \frac{\partial}{\partial p_{ik}} e_{ij}^2 = p_{ik} + \alpha (2e_{ij}q_{kj} - \beta p_{ik})$$

$$q'_{kj} = q_{kj} + \alpha \frac{\partial}{\partial q_{ki}} e^2_{ij} = q_{kj} + \alpha (2e_{ij}p_{ik} - \beta q_{kj})$$

Recommendation System: A Matrix factorization approach (4)

- An important extension is the requirement that all the elements of the factor matrices P and Q should be non-negative.
- ► Some of my researches are to add **prior probabilities** to the factor matrix, not only make them non-negative, but also enjoy other properties, such as sparsity etc.
- ▶ How we choose the optimal *K*? A lot of my research is in this area.
- ► Cold Start Problem where no rating has been given by the user clustering helps.
- One thing to note is that matrix factorization is very computational expensive. Stochastic Gradient Descent methods are used recently
- ▶ Stochastic is a buzz word of machine learning in BIG DATA era.

Ordinary least squares

▶ In Ordinary Least Squares (OLS) without regulariser, we solve for β by minimizing the squared error $\|y - X\beta\|_2$:

Solution
$$\beta = (X^T X)^{-1} X^T y$$

▶ In Ordinary Least Squares (OLS) with regulariser, we solve for β by minimizing the squared error $\|y - X\beta\|_2 + \lambda \|\beta\|_2$:

Solution
$$\beta = (X^T X + \lambda I)^{-1} X^T y$$

Alternating least squares

$$\beta^* = \operatorname*{arg\,max}_{\beta} \left(\|y - X\beta\|_2 + \lambda \|\beta\|_2 \right) \implies \beta = \left(X^T X + \lambda I \right)^{-1} X^T y$$

ightharpoonup If we fix Q and optimize for P alone, the problem reduced to linear regression:

$$\forall p_i : J(p_i) = ||R_i - p_i Q^T||_2 + \lambda \cdot ||p_i||_2$$

$$\forall q_j : J(q_j) = ||R_j - Pq_j^T||_2 + \lambda \cdot ||q_j||_2$$

Matching solutions for p_i and q_j are:

$$p_i = (Q^T Q + \lambda I)^{-1} Q^T R_i$$
$$q_i = (P^T P + \lambda I)^{-1} P^T R_i$$

Since each p_i doesn't depend on other p_{j≠i}, each step can potentially be introduced to massive parallelization.

Bounded approach to NNMF

▶ In here, we want to assign similarities, i.e., (-1, ... 1) in each entry:

	$Item_1$	$Item_2$	$Item_3$	$Item_4$	Item5	Item ₆	 $Item_{M-1}$	$Item_{M}$
User 1	0	0.6	0	0	0.4	0	 0	0
User 2	0	0.9	0.3	0.2?	0	0.5	 0	0
User 3	0.1	0.4?	0.2	0	0.7	0	 0.2	0
User 4	0	?	0	?	0	0	 0	0
User N	0.5	0	0.6	0	0	0	 0	0

- ▶ This is part of our **new** research
- ▶ We can also set the upper bound to each of the ratings (think about why this is useful?)

Bounded approach to NNMF: Taking in the Popularities

► Looking at the following "viewing" scores:

	$Item_1$	$Item_2$	Item ₃	$Item_4$	Item5	Item ₆	 $Item_{M-1}$	$Item_M$
User 1	3	0	15	0	4	0	 6	0
User 2	12	24	20	0	0	0	 0	0
User 3	1	3	12	0	7	0	 2	0
User 4	0	1	0	1	0	0	 0	0
User N	5	0	6	0	0	0	 0	0

- Some items are just popular!
- ▶ And some users may tend to have lot of views
- ▶ So can we create individual bounds for each (user, item) pairs?

Factorization Machines

\bigcap	Feature vector x															Tai	get y					
X ⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0		13	0	0	0	0	[]	5	y ⁽¹⁾
X ⁽²⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0		14	1	0	0	0		3	y ⁽²⁾
X ⁽³⁾	1	0	0		0	0	1	0		0.3	0.3	0.3	0		16	0	1	0	0		1	y ⁽²⁾
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	0.5	0.5		5	0	0	0	0		4	y ⁽³⁾
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	0.5	0.5		8	0	0	1	0		5	y ⁽⁴⁾
X ⁽⁶⁾	0	0	1		1	0	0	0		0.5	0	0.5	0		9	0	0	0	0		1	y ⁽⁵⁾
X ⁽⁷⁾	0	0	1		0	0	1	0		0.5	0	0.5	0		12	1	0	0	0		5	y ⁽⁶⁾
	Α	B Us	C		TI	NH	SW Movie	ST		TI Ot					Time	╚	NH Last I	SW Movi	ST e rate			

$$\hat{y}(\mathbf{x}) = w_0 + \sum_{i}^{n} w_i x_i + \mathbf{x}^{\top} \operatorname{triu}(\mathbf{W}) \mathbf{x}$$

$$= w_0 + \sum_{i}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \mathbf{W}_{i,j} x_i x_j$$

$$= w_0 + \sum_{i}^{n} w_i x_i + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$$

Some computation-efficient factor

$$\begin{split} &\sum_{i}^{n} \sum_{j=i+1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle x_{i} x_{j} \\ &= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle x_{i} x_{j} - \frac{1}{2} \sum_{i=1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle x_{i} x_{i} \\ &= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{f=1}^{k} v_{i,f} v_{j,f} x_{i} x_{j} - \frac{1}{2} \sum_{i=1}^{n} \sum_{f=1}^{k} v_{i,f} v_{i,f} x_{i} x_{i} \\ &= \frac{1}{2} \sum_{f=1}^{k} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} v_{i,f} v_{j,f} x_{i} x_{j} - \sum_{i=1}^{n} v_{i,f} v_{i,f} x_{i} x_{i} \right) \\ &= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{j=1}^{n} v_{j,f} x_{j} \right) \left(\sum_{i=1}^{n} v_{i,f} x_{i} \right) - \sum_{i=1}^{n} \left(v_{i,f} x_{i} \right)^{2} \right) \\ &= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_{i} \right)^{2} - \sum_{i=1}^{n} \left(v_{i,f} x_{i} \right)^{2} \right) \end{split}$$

computational complexity is O(kn)

Faster NNMF convergence: Multiplicative Update Rule

- ▶ NNMF using Gradient Descend can be prohibitively slow when matrix is large
- ► A much faster (convergence) approach is to use "Multiplicative Update Rule".
- ► A "nature" publication and popular since Year 2000.

Faster NNMF convergence: Multiplicative Update Rule

- ▶ **Apologies** for the notations (this is to inline with each paper) $P \to W$ and $Q \to H$
- ► Task: Minimize $||V WH||_2$ with respect to W and H, subject to the constraints W, H > 0.
- ▶ The Euclidean distance ||V WH|| is non-increasing under the update rules:

$$H_{a\mu} \leftarrow H_{a\mu} \frac{(W^{\top} V)_{a\mu}}{(W^{\top} W H)_{a\mu}} \qquad W_{ia} \leftarrow W_{ia} \frac{(V H^{\top})_{ia}}{(W H H^{\top})_{ia}}$$

▶ It looks so easier, but why this update rule works?

Multiplicative Update Rule

- Let's assume it's **hard** to minimize F(h)
- ▶ and it's easier to minimize $G(h, h^t)$. Let's find some **auxiliary function** $G(h, h^t)$ s.t.,:

$$G(h, h^t) \ge F(h), \qquad G(h, h) = F(h)$$

Let
$$h^{t+1} = \underset{h}{\operatorname{arg \, min}} G(h, h^t)$$

$$F(h^t) = G(h^t, h^t) \ge \underbrace{G(h^{t+1}, h^t) \ge F(h^{t+1})}_{\text{true for all } h \text{ include } h^{t+1}}$$

▶ How are we going to prove:

$$F(h^t) = G(h^t, h^t) \ge G(h^{t+1}, h^t) \ge F(h^{t+1})$$

 \triangleright $F(h^t)$ in the context of non-negative matrix factorization is:

$$F(h) = \frac{1}{2} \|v - Wh\|^2$$

$$= \frac{1}{2} (v^\top v - v^\top Wh - h^\top W^\top v + h^\top W^\top Wh) = \frac{1}{2} (v^\top v - 2v^\top Wh + h^\top W^\top Wh)$$
where $\nabla F(h) = W^\top Wh - W^\top v$

$$= F(h^t) + (h - h^t)^\top \nabla F(h^t) + \frac{1}{2} (h - h^t)^\top \underline{(W^\top W)} (h - h^t) \qquad \text{taylor expansion}$$

$$G(h, h^t) = F(h^t) + (h - h^t)^\top \nabla F(h^t) + \frac{1}{2} (h - h^t)^\top \underline{K(h^t)} (h - h^t)$$
where $K_{a,b}(h^t) = \frac{\delta_{a,b} (W^\top Wh^t)_a}{h^t_a}$

$$G(h, h^{t}) \geq F(h) \implies \frac{1}{2}(h - h^{t})^{\top} \underline{K(h^{t})}(h - h^{t}) \geq \frac{1}{2}(h - h^{t})^{\top} \underline{(W^{\top}W)}(h - h^{t}) \geq 0$$

$$\implies \frac{1}{2}(h - h^{t})^{\top} (K(h^{t}) - W^{\top}W)(h - h^{t}) \geq 0$$

$$\implies (K(h^{t}) - W^{\top}W) \text{ is a positive definite matrix } \mathbf{need to prove it}$$

 \blacktriangleright At each iteration, we just need to find: we simplify K(h) with K:

$$G(h, h^{t}) = F(h^{t}) + (h - h^{t})^{\top} \nabla F(h^{t}) + \frac{1}{2} (h - h^{t})^{\top} K(h - h^{t})$$

$$= F(h^{t}) + (h - h^{t})^{\top} \nabla F(h^{t}) + \frac{1}{2} (h^{\top} Kh \underbrace{-h^{t^{\top}} Kh - h^{\top} Kh^{t}}_{=-2h^{\top} Kh^{t}} + h^{t^{\top}} Kh^{t})$$

$$\nabla G(h, h^t) = \nabla F(h^t) + Kh - Kh^t = 0$$

$$\implies Kh = Kh^t - \nabla F(h^t)$$

$$h = h^t - K^{-1} \nabla F(h^t)$$

writing it properly:

$$h^{(t+1)} \leftarrow h^t - K^{-1}(h^t) \nabla F(h^t)$$

▶ We need to put the following:

$$h^{(t+1)} \leftarrow h^t - K^{-1}(h^t) \nabla F(h^t)$$

in the form of:

$$H_{a\mu} \leftarrow H_{a\mu} \frac{(W^\top V)_{a\mu}}{(W^\top W V)_{a\mu}} \quad \text{or} \quad h_a \leftarrow h_a \frac{(W^\top V)_a}{(W^\top W V)_a}$$

$$K_{a,b}(h^t) = \frac{\delta_{a,b}(W^\top Wh^t)_a}{h_a^t} \implies K(h^t) = \begin{bmatrix} \frac{(W^\top Wh^t)_1}{h_1^t} & \dots \\ \dots & \frac{(W^\top Wh^t)_N}{h_N^t} \end{bmatrix}$$

$$\implies K^{-1}(h^t) = \begin{bmatrix} \frac{h_1^t}{(W^\top Wh^t)_1} & \dots \\ \dots & \frac{h_N^t}{(W^\top Wh^t)_N} \end{bmatrix}$$

therefore.

$$\begin{split} h_a^t - \left(K^{-1}(h^t) \underbrace{\nabla F(h^t)}_{W^\top Wh - W^\top v}\right)_a &= h_a^t - \frac{h_a^t}{(W^\top Wh^t)_a} (W^\top Wh^t - W^\top v)_a \\ &= h_a^t - \frac{h_a^t (W^\top Wh^t - W^\top v)_a}{(W^\top Wh^t)_a} \\ &= \frac{h_a^t (W^\top Wh^t)_a - h_a^t (W^\top Wh^t)_a - h_a^t (W^\top v)_a}{(W^\top Wh^t)_a} \\ &= h_a^t \frac{(W^\top v)_a}{(W^\top Wh^t)_a} \end{split}$$

▶ One can obtain update for *W* in a similar fashion.

Lastly, how do we know $(K(h^t) - W^\top W)$ is a positive definite matrix?

$$K_{a,b}(h') = \frac{\delta_{a,b}(W^{\top}Wh')_a}{h_a^t} = \frac{\delta_{a,b}\sum_i (W^{\top}W)_{a,i}h_i^t}{h_a^t}$$

Therefore,

$$\begin{split} & \sum_{a,b} v_a \left[h_a^l K_{a,b} (h^l) h_b^l \right] v_b \\ & = \sum_{a,b} v_a h_a^l \left(\frac{\delta_{a,b} \sum_i (W^\top W)_{a,i} h_i^l}{h_a^l} \right) h_b^l v_b \\ & = \sum_a v_a h_a^l \left(\frac{\sum_i (W^\top W)_{a,i} h_i^l}{h_a^l} \right) h_a^l v_a \\ & = \sum_a \left(\sum_i (W^\top W)_{a,i} h_i^l \right) h_a^l v_a^2 \\ & = \sum_{a,b} (W^\top W)_{a,b} h_b^l h_a^l v_a^2 \end{split}$$

Lastly, how do we know $(K(h^t) - W^\top W)$ is a positive definite matrix?

$$\begin{split} \mathbf{v}^{\top} M \mathbf{v} &= \sum_{ab} \mathbf{v}_a M_{a,b} (h') \mathbf{v}_b = \sum_{a_1 b} \mathbf{v}_a \underbrace{\left[h'_a (K(h') - \mathbf{W}^{\top} \mathbf{W})_{a_1 b} h'_b \right]}_{M_{a_1 b} (h')} \mathbf{v}_b \\ &= \sum_{a_1 b} \mathbf{v}_a \left[h'_a K_{a_1 b} (h') h'_b \right] \mathbf{v}_b - \sum_{a_1 b} \mathbf{v}_a \left[h'_a (\mathbf{W}^{\top} \mathbf{W})_{a_1 b} h'_b \right] \mathbf{v}_b \\ &= \sum_{a_1 b} \left[(\mathbf{W}^{\top} \mathbf{W})_{a_1 b} h'_b h'_a \mathbf{v}_a^2 \right] - \left[\mathbf{v}_a h'_a (\mathbf{W}^{\top} \mathbf{W})_{a_1 b} h'_b \mathbf{v}_b \right] \quad \text{see previous slide} \\ &= \sum_{a_1 b} (\mathbf{W}^{\top} \mathbf{W})_{a_1 b} h'_a h'_b \left[\mathbf{v}_a^2 - \mathbf{v}_a \mathbf{v}_b \right] \\ &= \frac{1}{2} \left(\sum_{a_1 b} (\mathbf{W}^{\top} \mathbf{W})_{a_1 b} h'_a h'_b \left[\mathbf{v}_a^2 - \mathbf{v}_a \mathbf{v}_b \right] + (\mathbf{W}^{\top} \mathbf{W})_{a_1 b} h'_a h'_b \left[\mathbf{v}_a^2 - \mathbf{v}_a \mathbf{v}_b \right] \right) \\ &= \frac{1}{2} \left(\sum_{a_1 b} (\mathbf{W}^{\top} \mathbf{W})_{a_1 b} h'_a h'_b \left[\mathbf{v}_a^2 - \mathbf{v}_a \mathbf{v}_b \right] + (\mathbf{W}^{\top} \mathbf{W})_{b_1 a} h'_b h'_a \left[\mathbf{v}_b^2 - \mathbf{v}_b \mathbf{v}_a \right] \right) \\ &= \frac{1}{2} \left(\sum_{a_1 b} (\mathbf{W}^{\top} \mathbf{W})_{a_1 b} h'_a h'_b \left[\mathbf{v}_a^2 - \mathbf{v}_a \mathbf{v}_b \right] + (\mathbf{W}^{\top} \mathbf{W})_{b_1 a} h'_b h'_a \left[\mathbf{v}_b^2 - \mathbf{v}_b \mathbf{v}_a \right] \right) \\ &= \frac{1}{2} \left(\sum_{a_1 b} (\mathbf{W}^{\top} \mathbf{W})_{a_1 b} h'_a h'_b \left[\mathbf{v}_a^2 - \mathbf{v}_a \mathbf{v}_b + \mathbf{v}_b^2 - \mathbf{v}_b \mathbf{v}_a \right] \right) \\ &= \frac{1}{2} \sum_{a_1 b} (\mathbf{W}^{\top} \mathbf{W})_{a_1 b} h'_a h'_a h'_b \left[\mathbf{v}_a - \mathbf{v}_b \right]^2 \quad \text{since } \mathbf{W}, h' \text{ are all non-negative} \end{split}$$

Restrictive Botzmann Machine

Define:
$$\begin{split} E(\mathbf{v}, \mathbf{h}) &= -b^{\top} \mathbf{v} - c^{\top} \mathbf{h} - \mathbf{v}^{\top} W \mathbf{h} \\ &= -\sum_{j} b_{j} v_{j} - \sum_{i} c_{i} h_{i} - \sum_{i} \sum_{j} v_{j} W_{ij} h_{i} \\ p(\mathbf{v}, \mathbf{h}) &= \exp(-E(\mathbf{v}, \mathbf{h})) = \exp\left(b^{\top} \mathbf{v} + c^{\top} \mathbf{h} + \mathbf{v}^{\top} W \mathbf{h}\right) \end{split}$$

- There are two separate offset parameters: b and c, associated with v and h respectively.
- Note that there is no interconnecting terms between elements of \mathbf{v} and \mathbf{h} . Otherwise, there will be a term $\mathbf{v}^\top W_\nu \mathbf{v}$ and $\mathbf{h}^\top W_\nu \mathbf{h}$
- In this presentation, v and h are binary arrays.
- v and h can take other values, for example Softmax and Gaussian.

RBM Marginal

$$p(\mathbf{v}, \mathbf{h}) = \exp(-E(\mathbf{v}, \mathbf{h})) = \exp\left(b^{\top}\mathbf{v} + c^{\top}\mathbf{h} + \mathbf{v}^{\top}W\mathbf{h}\right) = \exp\left(\sum_{j} b_{j}v_{j} + \sum_{i} c_{i}h_{i} + \sum_{i} \sum_{j} v_{j}W_{ij}h_{i}\right)$$

$$p(\mathbf{v}) = \frac{1}{Z} \sum_{\mathbf{h}} p(\mathbf{v}, \mathbf{h}) = \frac{1}{Z} \sum_{\mathbf{h}} \exp\left(b^{\top}\mathbf{v} + c^{\top}\mathbf{h} + \mathbf{v}^{\top}W\mathbf{h}\right)$$

$$= \frac{1}{Z} \exp(b^{\top}\mathbf{v}) \sum_{\mathbf{h}} \exp\left(c^{\top}\mathbf{h} + \mathbf{v}^{\top}W\mathbf{h}\right)$$

$$= \frac{1}{Z} \exp(b^{\top}\mathbf{v}) \sum_{h_{1}} \sum_{h_{2}} \cdots \sum_{h_{N}} \exp\left(\sum_{i} h_{i} + \sum_{i} \sum_{j} v_{j}W_{ij}\right)$$

$$= \frac{1}{Z} \exp(b^{\top}\mathbf{v}) \sum_{h_{1}} \sum_{h_{2}} \cdots \sum_{h_{N}} \exp\left(\sum_{i} h_{i} + \sum_{j} v_{j}W_{ij}\right)$$

$$= \frac{1}{Z} \exp(b^{\top}\mathbf{v}) \sum_{h_{1}} \exp^{h_{1}\left(c_{1} + \sum_{j} w_{1j}v_{j}\right)} \sum_{h_{2}} \exp^{h_{2}\left(c_{i} + \sum_{j} w_{2j}v_{j}\right)} \cdots \sum_{h_{N}} \exp^{h_{N}\left(c_{N} + \sum_{j} w_{Nj}v_{j}\right)}$$

$$= \frac{1}{Z} \exp\sum_{j} b_{j}v_{j} \prod_{i=1}^{N} \sum_{h_{i}} \exp^{h_{1}\left(c_{i} + \sum_{j} w_{ij}v_{j}\right)}$$

$$= \frac{1}{Z} \prod_{i} \exp^{b_{j}v_{j}} \prod_{i=1}^{N} \sum_{h_{i}} \left(1 + \exp^{c_{i} + \sum_{j} w_{ij}v_{j}}\right)$$

RBM conditional

$$\begin{split} p(\mathbf{v},\mathbf{h}) &= \exp(-E(\mathbf{v},\mathbf{h})) = \exp\left(b^{\top}\mathbf{v} + c^{\top}\mathbf{h} + \mathbf{v}^{\top}W\mathbf{h}\right) = \exp\left(\sum_{j}b_{j}v_{j} + \sum_{i}c_{i}h_{i} + \sum_{i}\sum_{j}v_{j}W_{ij}h_{i}\right) \\ p(V_{l} = 1|\mathbf{h}) &= \frac{p(V_{l} = 1,\mathbf{h})}{p(\mathbf{h})} = \frac{p(V_{l} = 1,\mathbf{h})}{\sum_{V_{l}}p(V_{l} = 1,\mathbf{h})} \\ &= \frac{\exp\left(1 \times b_{l} + \sum_{i}1 \times W_{il}h_{i}\right)}{\sum_{V_{l}}\exp\left(b_{l}v_{l} + \sum_{i}v_{l}W_{il}h_{i}\right)} \quad \text{reduce } \sum_{j} \text{ into a single term} \\ &= \frac{\exp\left(b_{l} + \sum_{i}W_{il}h_{i}\right)}{\sum_{V_{l} = 0} + \exp\left(b_{l} + \sum_{i}W_{il}h_{i}\right)} \\ &= \sigma\left(b_{l} + \sum_{l}W_{il}h_{i}\right) \end{split}$$

By symmetry,

$$p(H_i = 1 | \mathbf{v}) = \sigma \left(c_i + \sum_j v_j W_{ij} \right)$$

The derivative of general Markov Random Field Likelihood

In here, we did NOT use the structure of RBM, i.e., $p(\mathbf{v}, \mathbf{h}) = \exp\left(b^{\top}\mathbf{v} + c^{\top}\mathbf{h} + \mathbf{v}^{\top}W\mathbf{h}\right) = \exp\left(\sum_{i}b_{i}v_{j} + \sum_{i}c_{i}h_{i} + \sum_{i}\sum_{i}v_{i}W_{ij}h_{i}\right)$:

$$\begin{split} \mathcal{L}_{\mathbf{v}}(\theta) &= \log(p(\mathbf{v})) = \log\left(\sum_{\mathbf{h}} \exp^{-E(\mathbf{v},\mathbf{h})}\right) - \log\left(Z\right) \\ &= \log\left(\sum_{\mathbf{h}} \exp^{-E(\mathbf{v},\mathbf{h})}\right) - \log\left(\sum_{\mathbf{h},\mathbf{v}} \exp^{-E(\mathbf{v},\mathbf{h})}\right) \\ &\Longrightarrow \frac{\partial \mathcal{L}_{\mathbf{v}}(\theta)}{\partial \theta} = \frac{1}{\sum_{\mathbf{h}} \exp^{-E(\mathbf{v},\mathbf{h})}} \sum_{\mathbf{h}} \frac{\partial \exp^{-E(\mathbf{v},\mathbf{h})}}{\partial \theta} - \frac{1}{\sum_{\mathbf{h},\mathbf{v}} \exp^{-E(\mathbf{v},\mathbf{h})}} \sum_{\mathbf{h},\mathbf{v}} \frac{\partial \exp^{-E(\mathbf{v},\mathbf{h})}}{\partial \theta} \\ &= -\frac{1}{\sum_{\mathbf{h}} \exp^{-E(\mathbf{v},\mathbf{h})}} \sum_{\mathbf{h}} \exp^{-E(\mathbf{v},\mathbf{h})} \frac{\partial E(\mathbf{v},\mathbf{h})}{\partial \theta} + \frac{1}{\sum_{\mathbf{h},\mathbf{v}} \exp^{-E(\mathbf{v},\mathbf{h})}} \sum_{\mathbf{h},\mathbf{v}} \exp^{-E(\mathbf{v},\mathbf{h})} \frac{\partial E(\mathbf{v},\mathbf{h})}{\partial \theta} \\ &= -\sum_{\mathbf{h}} \frac{\exp^{-E(\mathbf{v},\mathbf{h})}}{\sum_{\mathbf{h}} \exp^{-E(\mathbf{v},\mathbf{h})}} \frac{\partial E(\mathbf{v},\mathbf{h})}{\partial \theta} + \sum_{\mathbf{h},\mathbf{v}} \frac{\exp^{-E(\mathbf{v},\mathbf{h})}}{\sum_{\mathbf{h},\mathbf{v}} \exp^{-E(\mathbf{v},\mathbf{h})}} \frac{\partial E(\mathbf{v},\mathbf{h})}{\partial \theta} \\ &= -\sum_{\mathbf{h}} p(\mathbf{h}|\mathbf{v}) \frac{\partial E(\mathbf{v},\mathbf{h})}{\partial \theta} + \sum_{\mathbf{h},\mathbf{v}} p(\mathbf{v},\mathbf{h}) \frac{\partial E(\mathbf{v},\mathbf{h})}{\partial \theta} \end{split}$$

$$p(\mathbf{h}|\mathbf{v}) = \frac{p(\mathbf{v}, \mathbf{h})}{p(\mathbf{v})} = \frac{\frac{1}{Z} \exp^{-E(\mathbf{v}, \mathbf{h})}}{\frac{1}{Z} \sum_{\mathbf{h}} \exp^{-E(\mathbf{v}, \mathbf{h})}} = \frac{\exp^{-E(\mathbf{v}, \mathbf{h})}}{\sum_{\mathbf{h}} \exp^{-E(\mathbf{v}, \mathbf{h})}}$$

note that the two Z are equal

The derivative of RBM Likelihood

$$\begin{split} p(\mathbf{v},\mathbf{h}) &= \exp(-E(\mathbf{v},\mathbf{h})) = \exp\left(b^{\top}\mathbf{v} + c^{\top}\mathbf{h} + \mathbf{v}^{\top}W\mathbf{h}\right) = \exp\left(\sum_{j}b_{j}v_{j} + \sum_{i}c_{i}h_{i} + \sum_{i}\sum_{j}v_{j}W_{ij}h_{i}\right) \\ E(\mathbf{v},\mathbf{h}) &= -b^{\top}\mathbf{v} - c^{\top}\mathbf{h} - \mathbf{v}^{\top}W\mathbf{h} \\ &\frac{\partial \mathcal{L}_{\mathbf{v}}(\theta)}{\partial \theta} = -\sum_{\mathbf{h}}p(\mathbf{h}|\mathbf{v})\frac{\partial E(\mathbf{v},\mathbf{h})}{\partial \theta} + \sum_{\mathbf{h},\mathbf{v}}p(\mathbf{v},\mathbf{h})\frac{\partial E(\mathbf{v},\mathbf{h})}{\partial \theta} \\ &\Longrightarrow \frac{\partial \mathcal{L}_{\mathbf{v}}(\theta)}{\partial w_{ij}} = -\sum_{\mathbf{h}}p(\mathbf{h}|\mathbf{v})\frac{\partial E(\mathbf{v},\mathbf{h})}{\partial w_{ij}} + \sum_{\mathbf{h},\mathbf{v}}p(\mathbf{v},\mathbf{h})\frac{\partial E(\mathbf{v},\mathbf{h})}{\partial w_{ij}} \\ &= +\sum_{\mathbf{h}}p(\mathbf{h}|\mathbf{v})v_{j}h_{i} - \sum_{\mathbf{v}}p(\mathbf{v},\mathbf{h})v_{j}h_{i} & \text{note the sign change} \\ &= \sum_{\mathbf{h}}p(\mathbf{h}|\mathbf{v})v_{j}h_{i} - \sum_{\mathbf{v}}p(\mathbf{v})\sum_{\mathbf{h}}p(\mathbf{h}|\mathbf{v})v_{j}h_{i} \\ &= p(H_{i} = 1|\mathbf{v})v_{j} - \sum_{\mathbf{v}}p(\mathbf{v})p(H_{i} = 1|\mathbf{v})v_{j} \end{split}$$

Because:
$$\underbrace{\sum_{\mathbf{h}} p(\mathbf{h}|\mathbf{v})v_{j}h_{i}}_{\mathbf{h}} = \sum_{h_{1}} \cdots \sum_{h_{N}} \prod_{k=1}^{N} p(h_{k}|\mathbf{v})v_{j}h_{i} = \sum_{h_{i}} p(h_{i}|\mathbf{v})v_{j}h_{i} \times \underbrace{\sum_{\mathbf{h}_{k\neq i}} \prod_{k\neq i}^{N} p(h_{k}|\mathbf{v})}_{\mathbf{h}_{i}\neq i}$$
$$= \sum_{h_{i}} p(h_{i}|\mathbf{v})v_{j}h_{i} = p(H_{i}=1|\mathbf{v})v_{j} = \sigma\left(c_{i} + \sum_{j} v_{j}W_{ij}\right)v_{j}$$

Average derivative of RBM Likelihood over data

$$\frac{\partial \mathcal{L}_{\mathbf{v}}(\theta)}{\partial w_{ij}} = \sum_{\mathbf{h}} p(\mathbf{h}|\mathbf{v})v_j h_i - \sum_{\mathbf{h},\mathbf{v}} p(\mathbf{v},\mathbf{h})v_j h_i$$
$$= p(H_i = 1|\mathbf{v})v_j - \sum_{\mathbf{v}} p(\mathbf{v})p(H_i = 1|\mathbf{v})v_j$$

when we are given a set of observed v:

$$\begin{split} \frac{1}{N} \sum_{\mathbf{v} \in S} \frac{\partial \mathcal{L}_{\mathbf{v}}(\boldsymbol{\theta})}{\partial w_{ij}} &= \frac{1}{N} \sum_{\mathbf{v} \in S} \sum_{\mathbf{h}} p(\mathbf{h}|\mathbf{v}) v_j h_i - \sum_{\mathbf{h}, \mathbf{v}} p(\mathbf{v}, \mathbf{h}) v_j h_i \\ &= \frac{1}{N} \sum_{\mathbf{v} \in S} \left(\mathbb{E}_{p(\mathbf{h}|\mathbf{v})} [v_j h_i] - \mathbb{E}_{p(\mathbf{h}, \mathbf{v})} [v_j h_i] \right) \\ &= \langle v_j h_i \rangle_{p(\mathbf{h}|\mathbf{v})q(\mathbf{v})} - \langle v_j h_i \rangle_{p(\mathbf{h}, \mathbf{v})} \\ &\qquad \qquad \text{where } q(\mathbf{v}) \text{ is the sample distribution} \end{split}$$

without going through the normal contrast divergence equation, we put RBM in the CD form above:

$$\frac{\partial - \mathcal{L}_{\mathbf{v}}(\theta)}{\partial w_{ij}} \propto \langle v_j h_i \rangle_{p(\mathbf{h}, \mathbf{v})} - \langle v_j h_i \rangle_{p(\mathbf{h}|\mathbf{v})q(\mathbf{v})}$$

- **Exercise** how complex is $\langle v_j h_i \rangle_{p(\mathbf{h}|\mathbf{v})q(\mathbf{v})}$? say **h** and **v** each have 100 nodes?
- Exercise how can we deal with such complexity?

RBM LLE via Contrast Divergence

the **answer** is to use Gibbs sampling: In each step of Gradient Descend, one performs the following:

- ▶ Obtain a new set of Monte-Carlo sampled v iteratively:
 - sample $h^{(t)} \sim p(h_i|\mathbf{v}^{(t)})$ sample $v_i^{(t+1)} \sim p(v_i|\mathbf{h}^{(t)})$
 - until we obtain $\mathbf{v}^{(k)}$
- ▶ Update parameters $\{W_{i,j}\}$, $\{b_j\}$ and $\{c_i\}$ as the gradients:

$$\frac{\partial \mathcal{L}_{\mathbf{v}}(\theta)}{\partial W_{i,j}} \approx p(H_i = 1 | \mathbf{v}^{(k)}) v_j^{(k)} - p(H_i = 1 | \mathbf{v}^{(0)}) v_j^{(0)}
\frac{\partial \mathcal{L}_{\mathbf{v}}(\theta)}{\partial b_j} \approx v_j^{(k)} - v_j^{(0)}
\frac{\partial \mathcal{L}_{\mathbf{v}}(\theta)}{\partial c_i} \approx p(H_i = 1 | \mathbf{v}^{(k)}) - p(H_i = 1 | \mathbf{v}^{(0)})$$

RBM Collaborative Filtering

- **each user** can rate one of the m available movies, with a score between $\{1 \dots K\}$
- therefore, **each user** has a V, observed binary indicator matrix sized $K \times m$
- with $v_i^k = 1$ if a user rated movie i as k and 0 otherwise.
- it's a **softmax** function with $\sum_{k=1}^{K} p(v_i^k = 1 | \mathbf{h}) = 1$:

$$p(v_i^k = 1 | \mathbf{h}) = \frac{\exp\left(b_i^k + \sum_{j=1}^F h_j W_{ij}^k\right)}{\sum_{k=1}^K \exp\left(b_i^k + \sum_{j=1}^F h_j W_{ij}^k\right)} = \frac{\exp\left(b_i^k + W_{i,:}^k \mathbf{h}\right)}{\sum_{k=1}^K \exp\left(b_i^l + W_{i,:}^k \mathbf{h}\right)}$$

- each user has $\mathbf{h} \in \{0, 1\}^F$, a binary values of hidden variables
- thought of as representing stochastic binary features that have different values for different users:

$$p(h_j = 1 | \mathbf{V}) = \sigma \left(b_j + \sum_{i=1}^{m} \sum_{k=1}^{K} v_i^k W_{ij}^k \right) = \sigma \left(b_j + \sum_{k=1}^{K} (W_{:,j}^k)^\top \mathbf{v}^k \right)$$

Recommendation via RBM

traditional RBM joint energy

$$E(\mathbf{v}, \mathbf{h}) = -\sum_{i}^{m} b_{i} v_{i} - \sum_{j}^{F} b_{j} h_{j} - \sum_{i}^{m} \sum_{j}^{F} v_{i} W_{ij} h_{j}$$

- **Exercise** in terms of recommendation engine, how is traditional RBM useful?
- ▶ In recommendation setting with a rating range, it has changed to:

$$E(\mathbf{v}, \mathbf{h}) - \sum_{i}^{m} \sum_{k=1}^{K} b_{i} v_{i}^{k} - \sum_{j}^{F} b_{j} h_{j} - \sum_{i}^{m} \sum_{j}^{F} \sum_{k=1}^{K} v_{i} W_{ij}^{k} h_{j} v_{i}^{k}$$

