- L6 ANSWER 24 OF 34 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on STN
- AN 1993:428737 BIOSIS
- DN PREV199396083362
- TI Engineering proteins for nonnatural environments.
- AU Arnold, Frances H.
- CS Div. Chem. Chemical Eng., Calif. Inst. Technol., Pasadena, CA 91125, USA
- SO FASEB (Federation of American Societies for Experimental Biology) Journal, (1993) Vol. 7, No. 9, pp. 744-749.

 CODEN: FAJOEC. ISSN: 0892-6638.
- DT Article
- LA English
- ED Entered STN: 22 Sep 1993
 - Last Updated on STN: 22 Sep 1993

tolerating nonnatural environments.

- AB The ability to use proteins in nonnatural environments greatly expands their potential applications in biotechnology. Because nature has not paid much attention to optimizing proteins for in vitro applications under conditions that differ substantially from their natural surroundings,
- there is generally room for improvement through alterations in the amino acid sequence. The most effective approach to this protein engineering task depends on the level to which the molecular basis for the desired property is understood. Consistently successful "rational" design using site-directed mutagenesis requires a high level of understanding of
- structure and mechanisms or, alternatively, a particularly simple strategy for obtaining the desired feature. An example of a generally applicable and easy-to-implement protein stabilization strategy is metal ion
 - and easy-to-implement protein stabilization strategy is metal ion chelation by specific surface dihistidine sites, which can affect thermal stability as well as the protein's ability to withstand denaturants such
 - stability as well as the protein's ability to withstand denaturants such as guanidinium chloride. Random mutagenesis, on the other hand, can be effective even when structure or mechanisms are poorly understood,
 - provided one can conveniently screen or select for the property of interest. This approach is illustrated by the sequential accumulation of random mutations that greatly enhance the catalytic activity of
 - a serine protease, subtilisin E, in polar organic solvents. The random mutagenesis approach, which mimics the natural evolutionary refinement process, can be used to "coax" enzymes into

L11 ANSWER 48 OF 49 MEDLINE ON STN DUPLICATE 22

AN 82280203 MEDLINE

DN PubMed ID: 7051707

TI [Thermitase, a thermostable serine protease of Thermoactinomyces vulgaris: interaction of the active center and the SH-group of the enzyme].

Thermitase, eine thermostabile Serin-Protease aus Thermo- actinomyces vulgaris: Wechselwirkung zwischen aktivem Zentrum und SH-Gruppe des

AU Hansen G; Frommel C; Hausdorf G; Bauer S

SO Acta biologica et medica Germanica, (1982) 41 (2-3) 137-44. Journal code: 0370276. ISSN: 0001-5318.

GERMANY, EAST: German Democratic Republic

DT Journal; Article; (JOURNAL ARTICLE)

LA German

CY

FS Priority Journals

EM 198210

ED Entered STN: 19900317

Last Updated on STN: 20000303 Entered Medline: 19821021

Modification of the serine and histidine residue in the active centre of AB thermitase with diisopropylfluorophosphate (DFP) or L-1-tosylamide-2phenylethyl chloromethylketon (TPCK), and of the only SH-group of the enzyme, with Hg-compounds causes an activity loss against hydrolysis of 4-nitrophenylacetate. While the modification of cysteine prevents reaction of serine and histidine in the active centre of the enzyme with DFP and TPCK, respectively, the Hg2+and CF3Hg+-binding to the SH-group after modification of essential amino acid residues in the active centre is retained. To elucidate the interaction of the SH-group with the active centre, the modified products of thermitase were investigated for their thermostability. Ca2+-ions were found to have a stabilizing effect on all the modified products of thermitase, as well as on the native enzyme. Simultaneous modification of the cysteine and serine leads to an increase in thermostability of thermitase, whilst double modification at the cysteine and histidine causes destabilization of the enzyme.

```
Database : Issued_Patents_AA:*
    1: /cgn2_6/ptodata/2/iaa/5A_COMB.pep:*
    2: /cgn2_6/ptodata/2/iaa/5B_COMB.pep:*
    3: /cgn2_6/ptodata/2/iaa/6A_COMB.pep:*
    4: /cgn2_6/ptodata/2/iaa/6B_COMB.pep:*
    5: /cgn2_6/ptodata/2/iaa/PCTUS_COMB.pep:*
    6: /cgn2_6/ptodata/2/iaa/backfiles1.pep:*
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		ક				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
		-		- -		Garage 2 Appli
1	4681	100.0	855	2	US-09-027-337-2 5972616	Sequence 2, Appli
2	4681	100.0	855	4	US-09-644-600-2 6451500	Sequence 2, Appli
3	4681	100.0	855	4	US-09-654-600A-2 6649741	Sequence 2, Appli
4	3810	81.4	902	4	US-09-644-600-10	Sequence 10, Appl
5	3810	81.4	902	4	US-09-654 - 600A-10	Sequence 10, Appl
6	703.5	15.0	798	1	US-08-200-900A-2	Sequence 2, Appli
7	703.5	15.0	798	5	PCT-US94-00616-2	Sequence 2, Appli
8	588	12.6	407	4	US-09-734-675-4	Sequence 4, Appli
9	560.5	12.0	492	4	US-09-685-166A-895	Sequence 895, App
10	558.5	11.9	492	3	US-09-342-749-2	Sequence 2, Appli
11	558.5	11.9	492	4	US-09-691-840-2	Sequence 2, Appli
12	547.5	11.7	235	3	US-08-944-483-65	Sequence 65, Appl
13	544.5	11.6	235	3	US-08-807-151-3	Sequence 3, Appli
14	544.5	11.6	235	4	US-09-478-957-3	Sequence 3, Appli

```
RESULT 1
US-09-027-337-2
; Sequence 2, Application US/09027337B
 Patent No. 5972616
 GENERAL INFORMATION:
  APPLICANT: O'Brien, Timothy J.
  APPLICANT: Tanimoto, Hirotoshi
  TITLE OF INVENTION: TADG-15: An Extracellular Serine Protease Overexpressed
in
  TITLE OF INVENTION: Breast and Ovarian Carcinomas
  FILE REFERENCE: D6064
  CURRENT APPLICATION NUMBER: US/09/027,337B
  CURRENT FILING DATE: 1998-02-20
  NUMBER OF SEO ID NOS: 13
 SEO ID NO 2
   LENGTH: 855
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   OTHER INFORMATION: Amino acid sequence of TADG-15 encoded by nucleotides
   OTHER INFORMATION: 23 to 2589 of Sequence 1
; Patent No. 5972616
US-09-027-337-2
                     100.0%; Score 4681; DB 2; Length 855;
 Query Match
                     100.0%;
                            Pred. No. 0;
 Best Local Similarity
                                             Indels
                                                                0;
 Matches 855; Conservative
                          0; Mismatches
                                          0;
          1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60
Qy
           1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60
Db
         61 VLIGLLLVLLGIGFLVWHLQYRDVRVQKVFNGYMRITNENFVDAYENSNSTEFVSLASKV 120
Qу
           61 VLIGLLLVLLGIGFLVWHLQYRDVRVQKVFNGYMRITNENFVDAYENSNSTEFVSLASKV 120
Db
        121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180
Qy
            121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180
Db
        181 LPPRARSLKSFVVTSVVAFPTDSKTVQRTQDNSCSFGLHARGVELMRFTTPGFPDSPYPA 240
Qу
            181 LPPRARSLKSFVVTSVVAFPTDSKTVQRTQDNSCSFGLHARGVELMRFTTPGFPDSPYPA 240
Db
        241 HARCOWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS 300
QУ
            241 HARCOWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS 300
Db
        301 YNLTFHSSONVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY 360
Qy
            301 YNLTFHSSONVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY 360
Db
        361 PPNIDCTWNIEVPNNOHVKVSFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS 420
Qу
            361 PPNIDCTWNIEVPNNQHVKVSFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS 420
Db
        421 NSNKITVRFHSDOSYTDTGFLAEYLSYDSSDPCPGOFTCRTGRCIRKELRCDGWADCTDH 480
Qу
```

ά. ...

```
421 NSNKITVRFHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRCDGWADCTDH 480
Db
        481 SDELNCSCDAGHOFTCKNKFCKPLFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK 540
Qу
           481 SDELNCSCDAGHQFTCKNKFCKPLFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK 540
Db
        541 SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK 600
Qу
           541 SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK 600
Db
                      ر کاھا ل
        601 DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCVID 660
Qy
           601 DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID 660
Db
        661 DRGFRYSDPTOWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELEKP 720
Qу
           661 DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELEKP 720
Db
        721 AEYSSMVRP(CLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTCENLL 780
Qу
           721 AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTGENLL 780
Db
        781 PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT 840
Qу
           781 PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT 840
Db
        841 RLPLFRDWIKENTGV 855
Qу
           841 RLPLFRDWIKENTGV 855
Db
RESULT 2
US-09-644-600-2
 Sequence 2, Application US/09644600
 Patent No. 6451500
; GENERAL INFORMATION:
  APPLICANT: O'Brien, Timothy J.
  APPLICANT: Tanimoto, Hirotoshi
  TITLE OF INVENTION: TADG-15: An Extracellular Serine Protease
  TITLE OF INVENTION: Overexpressed in Carcinomas
  FILE REFERENCE: D6064CIP/D
  CURRENT APPLICATION NUMBER: US/09/644,600
  CURRENT FILING DATE: 2000-08-23
  PRIOR APPLICATION NUMBER: 09/421,213
  PRIOR FILING DATE: 1999-10-20
  PRIOR APPLICATION NUMBER: 09/027,337
  PRIOR FILING DATE: 1998-02-20
  NUMBER OF SEO ID NOS: 98
 SEQ ID NO 2
   LENGTH: 855
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   OTHER INFORMATION: TADG-15
US-09-644-600-2
```

Score 4681; DB 4; Length 855; 100.0%; Query Match 100.0%; Pred. No. 0; Best Local Similarity Gaps 0; 0; Mismatches 0; Indels 0; Matches 855; Conservative 1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60 Qу 1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60 Db 61 VLIGLLLVLLGIGFLVWHLQYRDVRVQKVFNGYMRITNENFVDAYENSNSTEFVSLASKV 120 Qy 61 VLIGLLLVLLGIGFLVWHLQYRDVRVQKVFNGYMRITNENFVDAYENSNSTEFVSLASKV 120 Db 121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180 Qy 121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180 Dh 181 LPPRARSLKSFVVTSVVAFPTDSKTVQRTQDNSCSFGLHARGVELMRFTTPGFPDSPYPA 240 Qy 181 LPPRARSLKSFVVTSVVAFPTDSKTVQRTQDNSCSFGLHARGVELMRFTTPGFPDSPYPA 240 Db 241 HARCQWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS 300 Qу 241 HARCQWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS 300 Db 301 YNLTFHSSONVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY 360 Qу 301 YNLTFHSSONVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY 360 Db 361 PPNIDCTWNIEVPNNQHVKVSFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS 420 Qy 361 PPNIDCTWNIEVPNNQHVKVSFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS 420 Db 421 NSNKITVRFHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRCDGWADCTDH 480 Qу 421 NSNKITVRFHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRCDGWADCTDH 480 Db 481 SDELNCSCDAGHQFTCKNKFCKPLFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK 540 Qу 481 SDELNCSCDAGHQFTCKNKFCKPLFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK 540 Db 541 SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK 600 Qу 541 SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK 600 Db 601 DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID 660 Qу 601 DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID 660 Db 661 DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELEKP 720 Qy 661 DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELEKP 720 Db 721 AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL 780 Qy 721 AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL 780 Db 781 PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT 840 Qy

```
781 POOITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT 840
Db
        841 RLPLFRDWIKENTGV 855
Qу
           11111111111111
        841 RLPLFRDWIKENTGV 855
Db
RESULT 3
US-09-654-600A-2
; Sequence 2, Application US/09654600A
 Patent No. 6649741
 GENERAL INFORMATION:
  APPLICANT: O'Brien, Timothy J.
  APPLICANT: Tanimoto, Hirotoshi
  TITLE OF INVENTION: TADG-15: An Extracellular Serine Protease
  TITLE OF INVENTION: Overexpressed in Carcinomas
  FILE REFERENCE: D6064CIP/D
  CURRENT APPLICATION NUMBER: US/09/654,600A
  CURRENT FILING DATE: 2000-09-01
  PRIOR APPLICATION NUMBER: 09/421,213
    09/027,337
  PRIOR FILING DATE: 1999-10-20
    1998-02-20
  NUMBER OF SEQ ID NOS: 98
 SEQ ID NO 2
;
   LENGTH: 855
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   OTHER INFORMATION: TADG-15
US-09-654-600A-2
                             Score 4681; DB 4;
 Query Match
                     100.0%;
                                             Length 855;
 Best Local Similarity
                     100.0%;
                             Pred. No. 0;
 Matches 855; Conservative
                           0; Mismatches
                                             Indels
                                                         Gaps
                                                                0;
                                          0;
          1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60
Qу
            1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60
Db
         61 VLIGLLLVLLGIGFLVWHLQYRDVRVQKVFNGYMRITNENFVDAYENSNSTEFVSLASKV 120
Qу
            61 VLIGLLLVLLGIGFLVWHLQYRDVRVQKVFNGYMRITNENFVDAYENSNSTEFVSLASKV 120
Db
        121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180
Qу
            121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180
Db
        181 LPPRARSLKSFVVTSVVAFPTDSKTVQRTQDNSCSFGLHARGVELMRFTTPGFPDSPYPA 240
Qу
            181 LPPRARSLKSFVVTSVVAFPTDSKTVORTODNSCSFGLHARGVELMRFTTPGFPDSPYPA 240
Db
        241 HARCQWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS 300
Qу
            Db
        241 HARCQWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS 300
```

Qy	301	YNLTFHSSQNVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY	360
Db	301	YNLTFHSSQNVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY	360
Qу	361	PPNIDCTWNIEVPNNQHVKVSFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS	420
Db	361	PPNIDCTWNIEVPNNQHVKVSFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS	420
Qy	421	NSNKITVRFHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRCDGWADCTDH	480
Db	421	NSNKITVRFHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRCDGWADCTDH	480
Qy	481	SDELNCSCDAGHQFTCKNKFCKPLFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK	540
Db	481	SDELNCSCDAGHQFTCKNKFCKPLFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK	540
Qу	541	SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK	600
Db	541	SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK	600
Qу	601	DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID	660
Db	601	DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID	660
Qy	661	DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELEKP	720
Db	661	DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELEKP	720
Qy	721	AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL	780
Db	721	AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL	780
Qy	781	PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT	840
Db	781	PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT	840
Qy	841	RLPLFRDWIKENTGV 855	
Db	841		

```
RESULT 1
JC7731
membrane-bound arginine-specific serine proteinase precursor - rat
C; Species: Rattus norvegicus (Norway rat)
C;Date: 14-Dec-2001 #sequence revision 14-Dec-2001 #text_change 03-Feb-2003
C:Accession: JC7731; JC7775
R; Kishi, K.; Yamazaki, K.; Yasuda, I.; Yahagi, N.; Ichinose, M.; Tsuchiya, Y.;
Athauda, S.B.P.; Inoue, H.; Takahashi, K.
J. Biochem. 130, 425-430, 2001
A; Title: Characterization of a membrane-bound arginine-specific serine protease
from rat intestinal mucosa.
A: Reference number: JC7731; MUID: 21421307; PMID: 11530019
A; Accession: JC7731
A; Molecule type: mRNA
A; Residues: 1-855 < KIS>
A; Cross-references: DDBJ:AB049189
A; Experimental source: strain Male, 7-week-old
R;Satomi, S.; Yamasaki, Y.; Tsuzuki, S.; Hitomi, Y.; Iwanaga, T.; Fushiki, T.
Biochem. Biophys. Res. Commun. 287, 995-1002, 2001
A; Title: A role for membrane-type serine protease (MT-SP1) in intestinal
epithelial turnover.
A; Reference number: JC7775; PMID:11573963
A; Contents: Small intestine
A; Accession: JC7775
A; Molecule type: mRNA
A; Residues: 1-855 <SAT>
A; Cross-references: DDBJ: AB037898
C; Comment: This enzyme, an epithelial-derived, type II integral membrane serine
protease. It localized mainly on brushborder membranes of the intestine and
participates in the processing or digestion of specific proteins or peptides on
the brushborder membranes. It also participates in the control of intestinal
epithelial turnover by regulating the cell-substratum adhesion associated with
epithelial migration and/or cell loss.
C; Genetics:
A; Gene: mt-sp1
A; Map position: basolateral cell surface
C; Superfamily: membrane-bound arginine-specific serine proteinase
C; Keywords: protein digestion
                        83.0%; Score 3883; DB 2; Length 855;
  Query Match
                        81.1%; Pred. No. 4.5e-247;
  Best Local Similarity
                                                  Indels
                                                                       0;
  Matches 693; Conservative 79; Mismatches 83;
           1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60
Qy
             1 MGNNRGRKAGGGSQDFGAGLKYNSRLENMNGFEEGVEFLPVNNAKQVEKRGPRRWVVMVA 60
Db
          61 VLIGLLLVLLGIGFLVWHLQYRDVRVQKVFNGYMRITNENFVDAYENSNSTEFVSLASKV 120
Qу
                  61 VVFSFLLLSLMAGLLVWHFHYRNVRIQKVFNGHLRITNENFLDAYENSTSTEFISLASQV 120
Db
         121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180
Qу
             121 KEALKLMYSEVPVLGPYHKKSTVTAFSEGSVIAYYWSEFSIPPHLEEEVDRAMAVERVVT 180
Db
         181 LPPRARSLKSFVVTSVVAFPTDSKTVORTODNSCSFGLHARGVELMRFTTPGFPDSPYPA 240
Qу
```

Db	181	${\tt LPPRARALKSFVLTSVVAFPIDPRMLQRTQDNSCSFALHARGRTVTRFTTPGFPNSPYPA}$	240
Qу	241	HARCQWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS	300
Db	241	HARCQWVLRGDADSVLSLTFRSFDVAPCDGHDSDLVTVYDSLSPMEPHAVVRLCGTFSPS	300
Qу	301	YNLTFHSSQNVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY	360
Db	301	YNLTFLSSQNVFLVTLITNTDRRHPGFEATFFQLPKMSSCGGLLSEAQGTFSSPYYPGHY	360
QУ	361	PPNIDCTWNIEVPNNQHVKVSFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS	420
Db	361	PPNINCTWNIKVPNNRNVKVRFKLFYLVDPNIPVGSCTKDYVEINGEKFCGERSQFVVSS	420
Qу	421	NSNKITVRFHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRCDGWADCTDH :	480
Db	421	NSSKITVHFHSDHSYTDTGFLAEYLSYDSNDPCPGMFMCKTGRCIRKDLRCDGWADCPDY	480
Qу	481	SDELNCSCDAGHQFTCKNKFCKPLFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK	540
Db	481	SDERHCRCNATHQFMCKNQFCKPLFWVCDSVNDCGDGSDEEGCSCPAGSFKCSNGKCLPQ	540
Qy	541	SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK	600
Db		SQQCNGKDDCGDGSDEASCDNVNAVSCTKYTYRCQNGLCLNKGNPECDGKKDCSDGSDEK	
Qу		DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID:	
Db		NCDCGLRSFTKQARVVGGTNADEGEWPWQVSLHALGQGHLCGASLISPDWLVSAAHCFQD	
Qy		DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELEKP: :	
Db	661	ETIFKYSDHTMWTAFLGLLDQSKRSASGVQEHKLKRIITHPSFNDFTFDYDIALLELEKP	720
Qy		AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL	
Db		AEYSTVVRPICLPDNTHVFPAGKAIWVTGWGHTKEGGTGALILQKGEIRVINQTTCEELL	
Qy	781	PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT	840
Db	781	PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEKDGRIFQAGVVSWGEGCAQRNKPGVYT	840
Qy	841	RLPLFRDWIKENTGV 855	
Dh	841	RIPEVROWIKEOTGV 855	

125- . N. N.

Database : SPTREMBL_25:* 1: sp_archea:* 2: sp_bacteria:* 3: sp_fungi:* 4: sp_human:* 5: sp invertebrate:* 6: sp_mammal:* 7: sp_mhc:* 8: sp_organelle:* 9: sp_phage:* 10: sp_plant:* 11: sp_rodent:* 12: sp_virus:* 13: sp_vertebrate:* 14: sp_unclassified:* 15: sp_rvirus:* 16: sp_bacteriap:* 17: sp_archeap:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		፟				
Result		Query				•
No.	Score	Match	Length	DB	ID	Description
			- 	- -	- -	
1	3883	83.0	855	11	Q9JJI7	Q9jji7 rattus norv
2	2664	56.9	845	13	Q9DGR1	Q9dgr1 xenopus lae
3	2379	50.8	422	4	Q8WVC1	Q8wvc1 homo sapien
4	1011.5	21.6	572	11	Q8BIK6	Q8bik6 mus musculu
5	717.5	15.3	855	4	Q7Z410	Q7z410 homo sapien
6	717.5	15.3	1059	4	Q7Z411	Q7z411 homo sapien
7	690.5	14.8	1111	11	Q80YN4	Q80yn4 rattus norv
8	687	14.7	777	11	Q8CAN9	Q8can9 mus musculu
9	644.5	13.8	767	13	Q9DGR2	Q9dgr2 xenopus lae
10	636.5	13.6	680	5	Q868H7	Q868h7 branchiosto
11	623.5	13.3	680	5	Q868H5	Q868h5 branchiosto
12	617	13.2	581	5	Q9XZM7	Q9xzm7 strongyloce
13	612	13.1	688	5	Q868H6	Q868h6 branchiosto
14	601	12.8	490	11	Q7TN04	Q7tn04 mus musculu
15	600	12.8	490	11	Q920K3	Q920k3 rattus norv

```
Published Applications AA:*
Database :
                   /cgn2_6/ptodata/2/pubpaa/US07_PUBCOMB.pep:*
                    /cgn2 6/ptodata/2/pubpaa/PCT_NEW_PUB.pep:*
                    /cgn2_6/ptodata/2/pubpaa/US06_NEW_PUB.pep:*
                    /cgn2_6/ptodata/2/pubpaa/US06_PUBCOMB.pep:*
                4:
                    /cqn2 6/ptodata/2/pubpaa/US07 NEW_PUB.pep:*
                5:
                    /cqn2 6/ptodata/2/pubpaa/PCTUS PUBCOMB.pep:*
                    /cgn2_6/ptodata/2/pubpaa/US08_NEW_PUB.pep:*
                7:
                    /cgn2 6/ptodata/2/pubpaa/US08 PUBCOMB.pep:*
                8:
                    /cgn2_6/ptodata/2/pubpaa/US09A_PUBCOMB.pep:*
                    /cgn2 6/ptodata/2/pubpaa/US09B_PUBCOMB.pep:*
                10:
                     /cgn2_6/ptodata/2/pubpaa/US09C_PUBCOMB.pep:*
                11:
                     /cgn2_6/ptodata/2/pubpaa/US09_NEW_PUB.pep:*
                12:
                     /cgn2_6/ptodata/2/pubpaa/US10A_PUBCOMB.pep:*
                13:
                     /cgn2 6/ptodata/2/pubpaa/US10B PUBCOMB.pep:*
                    /cgn2 6/ptodata/2/pubpaa/US10C PUBCOMB.pep:*
                15:
                    /cgn2 6/ptodata/2/pubpaa/US10_NEW_PUB.pep:*
                16:
                     /cgn2_6/ptodata/2/pubpaa/US60_NEW_PUB.pep:*
                17:
                     /cgn2_6/ptodata/2/pubpaa/US60_PUBCOMB.pep:*
                18:
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	4681	100.0	855	10	US-09-776-191 - 2	Sequence 2, Appli
2	4681	100.0	855	12	US-10-072-012-352	Sequence 352, App
3	4681	100.0	855	12	US-10-072-012-411	Sequence 411, App
4	4681	100.0	855	12	US-10-072-012-418	Sequence 418, App
5	4681	100.0	855	14	US-10-099-700A-2	Sequence 2, Appli
6	4681	100.0	855	14	US-10-190-030B-2	Sequence 2, Appli
7	4681	100.0	855	14	US-10-302-840A-2	Sequence 2, Appli
8	4681	100.0	855	14	US-10-267-219-2	Sequence 2, Appli
. 9	4681	100.0	855	14	US-10-112-221A-2	Sequence 2, Appli
10	4681	100.0	855	14	US-10-104-271-2	Sequence 2, Appli
11	4681	100.0	855	15	US-10-147-211A-2	Sequence 2, Appli
12	4681	100.0	855	15	US-10-156-214A-2	Sequence 2, Appli
13	4681	100.0	855	16	US-10-600-187-2	Sequence 2, Appli
14	4676	99.9	855	12	US-10-072-012-353	Sequence 353, App
15	4676	99.9	855	12	US-10-072-012-412	Sequence 412, App
16	4676	99.9	855	12	US-10-072-012-419	Sequence 419, App
17	4676	99.9	855	15	US-10-295-027 - 1185	Sequence 1185, Ap
18	4672	99.8	855	12	US-10-072-012-354	Sequence 354, App
19	4672	99.8	855	12	US-10-072-012-420	Sequence 420, App
20	4672	99.8	855	12	US-10-037-417-132	Sequence 132, App
21	4631	98.9	851	12	US-10-276-774-1798	Sequence 1798, Ap
22	4631	98.9	851	12	US-10-296-115-1143	Sequence 1143, Ap
23	4175.5	89.2	782	14		Sequence 312, App
24	4175	89.2	762			Sequence 1, Appli
25	4111	87.8	757			Sequence 44, Appl
26	3901	83.3	855		US-09-900-751-2	Sequence 2, Appli
27	3901	83.3	855			Sequence 355, App
28	3901	83.3	855	12	US-10-072-012-413	Sequence 413, App

29	3883	83.0	855	12	US-10-072-012-356	Sequence 356, App
30	3883	83.0	855	12	US-10-072-012-414	Sequence 414, App
31	3883	83.0	855	12	US-10-072-012-417	Sequence 417, App
32	3810	81.4	902	12	US-10-333-743-3	Sequence 3, Appli
33	3810	81.4	902	16	US-10-600-187-10	Sequence 10, Appl
34	3810	81.4	902	16	US-10-297-987B-11	Sequence 11, Appl
35	2980	63.7	620	9	US-09-925-301-1193	Sequence 1193, Ap
36	2664	56.9	845	12	US-10-072-012-415	Sequence 415, App
37	1319	28.2	241	10	US-09-776-191-50	Sequence 50, Appl
38	1319	28.2	241	14	US-10-099-700A-4	Sequence

•

Database :

SwissProt_42:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		용				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	4676	99.9	855	1	ST14 HUMAN	Q9y5y6 homo sapien
2	3901	83.3	855	1	ST14 MOUSE	P56677 mus musculu
3	1124.5	24.0	811	1	TMS6 MOUSE	Q9dbi0 mus musculu
4	1124	24.0	811	1	TMS6 HUMAN	Q8iu80 homo sapien
5	727	15.5	1034	1	ENTK PIG	P98074 sus scrofa
6	712.5	15.2	1035	1	ENTK_BOVIN	P98072 bos taurus
7	692	14.8	1042	1	CORI_HUMAN	Q9y5q5 homo sapien
8	682.5	14.6	1019	1	ENTK_HUMAN	P98073 homo sapien
9	676.5	14.5	1069	1	ENTK_MOUSE	P97435 mus musculu
10	663.5	14.2	1113	1	CORI_MOUSE	Q9z319 mus musculu
11	600	12.8	490	1	TMS2_MOUSE	Q9jiq8 mus musculu
12	588	12.6	422	1	DES1_HUMAN	Q9ul52 homo sapien
13	586.5	12.5	704	1	CRAR_MOUSE	P98064 mus musculu
14	574	12.3	699	1	CRAR_HUMAN	P48740 h complemen
15	558.5	11.9	492	1	TMS2_HUMAN	015393 homo sapien
16	546	11.7	453	1	TMS3_MOUSE	Q8k1t0 mus musculu
17	533.5	11.4	638	1	KAL_MOUSE	P26262 mus musculu
18	533	11.4	454	1	TMS3_HUMAN	P57727 homo sapien
19	518	11.1	603	1	CFAI_MOUSE	Q61129 mus musculu
20	518	11.1	604	1	CFAI_RAT	Q9wuw3 rattus norv
21	514.5	11.0	638	1	KAL_RAT	P14272 rattus norv
22	513	11.0	455	1	TMS5_MOUSE	Q9er04 mus musculu
23	511.5	10.9	418	1	HATT HUMAN	O60235 homo sapien

Database :

A_Geneseq_29Jan04:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

6: geneseqp2003as:*

7: geneseqp2003bs:*

8: geneseqp2004s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		ક			SOMMACIES	
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	4681	100.0	855	2	AAY06671	Aay06671 Tumour an
2	4681	100.0	855	4	AAB98500	Aab98500 Human TAD
3	4681	100.0	855	4	AAE06930	Aae06930 Human mem
4	4681	100.0	855	5	AA022929	Aao22929 Type II t
5	4681	100.0	855	6	ABP56619	Abp56619 Human mem
6	4681	100.0	855	6	AAO30146	Aao30146 Human mem
7	4681	100.0	855	6	AAE29820	Aae29820 Human mem
8	4681	100.0	. 855	6	AAE29791	Aae29791 Human mem
9	4681	100.0	855	6	ABP72376	Abp72376 Transmemb
10	4681	100.0	855	7	ADB97551	Adb97551 Human MTS
11	4676	99.9	855	3	AAB19552	Aab19552 Human mat
12	4676	99.9	855	4	AAB35465	Aab35465 Human mem
13	4631	98.9	851	4	AAM25628	Aam25628 Human pro
14	4631	98.9	851	4	ABB11428	Abb11428 Human mem
15	4319	92.3	932	4	ABG21442	Abg21442 Novel hum
16	4175.5	89.2	782	5	ABG96427	Abg96427 Human ova
17	4175	89.2	762	3	AAY90284	Aay90284 Human pep
18	3901	83.3	855	5	AAE23083	Aae23083 Epithin p
19	3810	81.4	902	4	AAB98507	Aab98507 Murine ep
20	3810	81.4	902	5	AAU80517	Aau80517 Mouse epi
21	3810	81.4	902	5	AAU77549	Aau77549 Murine ty
22	3781	80.8	683	3	AAB19551	Aab19551 Human mat
23	2980	63.7	620	3	AAB43748	Aab43748 Human can
24	1352	28.9	362	4	ABG21441	Abg21441 Novel hum

Database :

PIR_78:*

1: pir1:*

2: pir2:*

3: pir3:* 4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		ક				
Result		Query			•	
No.	Score	Match	Length	DB	ID	Description
1	3883	83.0	855	2	JC7731	membrane-bound arg
2	727	15.5	1034	1	A53663	enteropeptidase (E
3	712.5	15.2	1035	1	A43090	enteropeptidase (E
4	682.5	14.6	1019	1	A56318	enteropeptidase (E
5	663.5	14.2	1113	2	JE0315	low-density lipopr
6	578.5	12.4	1524	2	T30337	polyprotein - Afri
7	574	12.3	699	1	I54763	Ra-reactive factor
8	533.5	11.4	638	1	KQMSPL	plasma kallikrein
9	514.5	11.0	638	1	KQRTPL	plasma kallikrein
10	509.5	10.9	790	1	PLPG	plasmin (EC 3.4.21
11	506	10.8	613	2	S15468	complement C3b/C4b
12	502	10.7	460	2	B61545	plasmin (EC 3.4.21
13	501.5	10.7	786	1	A47547	serine proteinease
14	500	10.7	638	1	KQHUP	plasma kallikrein
15	497	10.6	810	1	PLHU	plasmin (EC 3.4.21
16	492.5	10.5	583	2	A29154	complement factor
17	491.5	10.5	812	1	PLMS	plasmin (EC 3.4.21
18	491	10.5	416	1	KFBO	coagulation factor
19	490.5	10.5	812	1	PLBO	plasmin (EC 3.4.21
20	490	10.5	417	1	S00845	hepsin (EC 3.4.21

```
RESULT 1
09JJI7
                 PRELIMINARY;
                                    PRT;
                                           855 AA.
ID
     Q9JJI7
     Q9JJI7;
AC
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-OCT-2003 (TrEMBLrel. 25, Last annotation update)
DT
     Membrane bound serine protease (Membrane bound arginine specific
DE
DE
     serine protease).
GN
     MBSP.
OS
     Rattus norvegicus (Rat).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Rattus.
OC
     NCBI TaxID=10116;
OX
RN
     [1]
     SEQUENCE FROM N.A.
RP
     STRAIN=WISTAR; TISSUE=Jejunum;
RC
RA
     Tsuzuki S.;
     "A membrane bound serine protease expressed in rat small intestine.";
RT
     Submitted (JAN-2000) to the EMBL/GenBank/DDBJ databases.
RL
RN
     SEQUENCE FROM N.A.
RP
     STRAIN=Wistar; TISSUE=Duodenum;
RC
     Inoue H., Takahashi K., Kishi K.;
RA
     "membrane-bound arginine specific serine protease.";
RT
RL
     Submitted (SEP-2000) to the EMBL/GenBank/DDBJ databases.
     -!- SIMILARITY: BELONGS TO PEPTIDASE FAMILY S1.
CC
CC
     -!- SIMILARITY: CONTAINS 2 CUB DOMAINS.
     EMBL; AB037898; BAB03502.1; -.
DR
DR
     EMBL; AB049189; BAB13765.1; -.
DR
     PIR; JC7731; JC7731.
DR
     HSSP; P00763; 1DPO.
     MEROPS; S01.302; -.
DR
     GO; GO:0004263; F:chymotrypsin activity; IEA.
DR
DR
     GO; GO:0008233; F:peptidase activity; IEA.
     GO; GO:0004295; F:trypsin activity; IEA.
DR
     GO; GO:0006508; P:proteolysis and peptidolysis; IEA.
DR
     InterPro; IPR000859; CUB.
DR
DR
     InterPro; IPR009003; Cys_Ser_trypsin.
DR
     InterPro; IPR002172; LDL_receptor_A.
DR
     InterPro; IPR001254; Peptidase S1.
     InterPro; IPR001314; Peptidase_S1A.
DR
     Pfam; PF00431; CUB; 2.
DR
     Pfam; PF00057; ldl recept_a; 4.
DR
     Pfam; PF00089; trypsin; 1.
DR
DR
     PRINTS; PR00722; CHYMOTRYPSIN.
DR
     PRINTS; PR00261; LDLRECEPTOR.
     SMART; SM00042; CUB; 2.
DR
DR
     SMART; SM00192; LDLa; 3.
     SMART; SM00020; Tryp SPc; 1.
DR
     PROSITE; PS01180; CUB; 2.
DR
     PROSITE; PS01209; LDLRA_1; 2.
DR
     PROSITE; PS50068; LDLRA 2; 4.
DR
     PROSITE; PS50240; TRYPSIN_DOM; 1.
DR
     PROSITE; PS00134; TRYPSIN_HIS; 1.
DR
     PROSITE; PS00135; TRYPSIN_SER; 1.
KW
     Hydrolase; Protease; Serine protease.
```

665 $K \rightarrow N$. 665 FTVARIANT 35806B7ECF6CF03D CRC64; 94955 MW; SEQUENCE 855 AA; SO 83.0%; Score 3883; DB 11; Length 855; Query Match 81.1%; Pred. No. 0; Best Local Similarity 0: Gaps 79; Mismatches 83; Indels Matches 693; Conservative 1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60 Qy 1 MGNNRGRKAGGGSQDFGAGLKYNSRLENMNGFEEGVEFLPVNNAKQVEKRGPRRWVVMVA 60 Db 61 VLIGLLLVLLGIGFLVWHLQYRDVRVQKVFNGYMRITNENFVDAYENSNSTEFVSLASKV 120 Qу 61 VVFSFLLLSLMAGLLVWHFHYRNVRIQKVFNGHLRITNENFLDAYENSTSTEFISLASQV 120 Db 121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180 Qу 121 KEALKLMYSEVPVLGPYHKKSTVTAFSEGSVIAYYWSEFSIPPHLEEEVDRAMAVERVVT 180 Db 181 LPPRARSLKSFVVTSVVAFPTDSKTVQRTQDNSCSFGLHARGVELMRFTTPGFPDSPYPA 240 Qу 181 LPPRARALKSFVLTSVVAFPIDPRMLQRTQDNSCSFALHARGRTVTRFTTPGFPNSPYPA 240 Db 241 HARCQWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS 300 Qу 241 HARCQWVLRGDADSVLSLTFRSFDVAPCDGHDSDLVTVYDSLSPMEPHAVVRLCGTFSPS 300 Db 301 YNLTFHSSQNVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY 360 Qу 1711 | 1711 | 1:1711:11:11:11| | 111| | 11| | 111| | 11| | 301 YNLTFLSSQNVFLVTLITNTDRRHPGFEATFFQLPKMSSCGGLLSEAQGTFSSPYYPGHY 360 Db 361 PPNIDCTWNIEVPNNQHVKVSFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS 420 Qy 361 PPNINCTWNIKVPNNRNVKVRFKLFYLVDPNIPVGSCTKDYVEINGEKFCGERSQFVVSS 420 Db 421 NSNKITVRFHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRCDGWADCTDH 480 Qy 421 NSSKITVHFHSDHSYTDTGFLAEYLSYDSNDPCPGMFMCKTGRCIRKDLRCDGWADCPDY 480 Db 481 SDELNCSCDAGHQFTCKNKFCKPLFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK 540 Qу 481 SDERHCRCNATHQFMCKNQFCKPLFWVCDSVNDCGDGSDEEGCSCPAGSFKCSNGKCLPQ 540 Db 541 SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK 600 Qу 541 SQQCNGKDDCGDGSDEASCDNVNAVSCTKYTYRCQNGLCLNKGNPECDGKKDCSDGSDEK 600 Db 601 DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID 660 Qу 601 NCDCGLRSFTKQARVVGGTNADEGEWPWQVSLHALGQGHLCGASLISPDWLVSAAHCFQD 660 Db 661 DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELEKP 720 Qу 661 ETIFKYSDHTMWTAFLGLLDQSKRSASGVQEHKLKRIITHPSFNDFTFDYDIALLELEKP 720 Db 721 AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL 780

]]]]::||]||]]]]] :||]||]|

Qу

Db	721 AEYSTVVRPICLPDNTHVFPAGKAIWVTGWGHTKEGGTGALILQKGEIRVINQTTCEELL 780
Qy	781 PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT 840
Db	781 PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEKDGRIFQAGVVSWGEGCAQRNKPGVYT 840
Qy	841 RLPLFRDWIKENTGV 855 :
Db	841 RIPEVRDWIKEQTGV 855

.

```
RESULT 2
ST14 MOUSE
                                    PRT;
                                           855 AA.
     ST14 MOUSE
                    STANDARD;
ID
     P56677;
AC
     15-JUL-1999 (Rel. 38, Created)
DT
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     10-OCT-2003 (Rel. 42, Last annotation update)
DT
     Suppressor of tumorigenicity 14 (EC 3.4.21.-) (Epithin).
DΕ
     ST14 OR PRSS14.
GN
     Mus musculus (Mouse).
os
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OC
     NCBI TaxID=10090;
OX
RN
     SEOUENCE FROM N.A.
RP
     STRAIN=C.B.17SCID; TISSUE=Thymus;
RC
     MEDLINE=99216440; PubMed=10199918;
RX
     Kim M.G., Chen C., Lyu M.S., Cho E.G., Park D., Kozak C.,
RA
     Schwartz R.H.;
RA
     "Cloning and chromosomal mapping of a gene isolated from thymic
RT
     stromal cells encoding a new mouse type II membrane serine protease,
RT
     epithin, containing four LDL receptor modules and two CUB domains.";
RT
     Immunogenetics 49:420-428(1999).
RL
RN
     REVISIONS TO 23; 321; 325; 343; 409-410 AND C-TERMINUS.
RP
     STRAIN=C.B.17SCID; TISSUE=Thymus;
RC
     Kim M.G., Chen C., Cho E.G., Park D., Schwartz R.H.;
RA
     Submitted (MAR-2000) to the EMBL/GenBank/DDBJ databases.
RL
RN
     SEOUENCE FROM N.A.
RP
     TISSUE=Breast tumor;
RC
     MEDLINE=22388257; PubMed=12477932;
RX
     Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G.,
RA
     Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D.,
RA
     Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K.,
RA
     Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F.,
RA
     Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L.,
RA
     Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E.,
RA
     Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C.,
RA
     Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J.,
RA
     Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H.,
RA
     Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W.,
RA
     Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A.,
RA
     Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A.,
RA
     Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G.,
RA
     Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C.,
RA
     Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M.,
RA
     Butterfield Y.S.N., Krzywinski M.I., Skalska U., Smailus D.E.,
RA
     Schnerch A., Schein J.E., Jones S.J.M., Marra M.A.;
RA
     "Generation and initial analysis of more than 15,000 full-length
RT
     human and mouse cDNA sequences.";
      Proc. Natl. Acad. Sci. U.S.A. 99:16899-16903(2002).
RL
      -!- SUBCELLULAR LOCATION: Type II membrane protein (Probable).
CC
      -!- TISSUE SPECIFICITY: Highly expressed in intestine, kidney, lung,
CC
          and thymus. Not expressed in skeletal muscle, liver, heart,
CC
CC
          testis and brain.
      -!- SIMILARITY: Belongs to peptidase family S1.
CC
```

```
-!- SIMILARITY: Contains 2 CUB domains.
CC
    -!- SIMILARITY: Contains 4 LDL-receptor class A domains.
CC
    ______
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
    _______
CC
DR
    EMBL; AF042822; AAD02230.3; -.
DR
    EMBL; BC005496; AAH05496.1; -.
DR
    HSSP; P20231; 1AAO.
DR
    MEROPS; S01.302; -.
DR
    MGD; MGI:1338881; St14.
DR
    GO; GO:0005576; C:extracellular; IDA.
DR
    GO; GO:0019897; C:extrinsic to plasma membrane; IDA.
    GO; GO:0008236; F:serine-type peptidase activity; IDA.
DR
DR
    InterPro; IPR000859; CUB.
DR
    InterPro; IPR009003; Cys Ser trypsin.
DR
    InterPro; IPR002172; LDL receptor_A.
DR
    InterPro; IPR001254; Peptidase_S1.
DR
    InterPro; IPR001314; Peptidase S1A.
DR
    Pfam; PF00431; CUB; 2.
    Pfam; PF00057; ldl_recept_a; 4.
DR
DR
    Pfam; PF00089; trypsin; 1.
DR
    PRINTS; PR00722; CHYMOTRYPSIN.
DR
    PRINTS; PR00261; LDLRECEPTOR.
    SMART; SM00042; CUB; 2.
DR
DR
    SMART; SM00192; LDLa; 4.
DR
    SMART; SM00020; Tryp SPc; 1.
    PROSITE; PS01180; CUB; 2.
DR
    PROSITE; PS01209; LDLRA 1; 2.
DR
DR
    PROSITE; PS50068; LDLRA 2; 4.
DR
    PROSITE; PS50240; TRYPSIN_DOM; 1.
    PROSITE; PS00134; TRYPSIN_HIS; 1.
DR
DR
    PROSITE; PS00135; TRYPSIN SER; 1.
KW
    Signal-anchor; Glycoprotein; Hydrolase; Serine protease;
KW
    Transmembrane; Repeat.
FT
    DOMAIN
                                CYTOPLASMIC (POTENTIAL).
                 1
                      55
                                SIGNAL-ANCHOR (TYPE-II MEMBRANE PROTEIN)
FT
    TRANSMEM
                 56
                       76
FT
                                (POTENTIAL).
FT
    DOMAIN
                77
                      855
                                EXTRACELLULAR (POTENTIAL).
                      331
                                CUB 1.
FT
    DOMAIN
                214
FT
    DOMAIN
                340
                    444
                                CUB 2.
FT
    DOMAIN
                451
                       488
                                LDL-RECEPTOR CLASS A 1.
                                LDL-RECEPTOR CLASS A 2.
FT
    DOMAIN
                489
                      522
                                LDL-RECEPTOR CLASS A 3.
FT
    DOMAIN
                523
                      561
                                LDL-RECEPTOR CLASS A 4.
FT
    DOMAIN
                565
                      604
FT
    DOMAIN
                615
                    854
                                SERINE PROTEASE.
    ACT SITE
               656
                      656
                                CHARGE RELAY SYSTEM (BY SIMILARITY).
FT
                                CHARGE RELAY SYSTEM (BY SIMILARITY).
FT
    ACT SITE
               711 711
    ACT SITE
                805 805
                                CHARGE RELAY SYSTEM (BY SIMILARITY).
FT
FT
                107 107
                                N-LINKED (GLCNAC. . .) (POTENTIAL).
    CARBOHYD
                    302
                                N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
    CARBOHYD
                302
FT
                                N-LINKED (GLCNAC. . .) (POTENTIAL).
    CARBOHYD
                365
                      365
```

```
N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
   CARBOHYD
            421
                  421
            489
                  489
                         N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
   CARBOHYD
            772
                  772
                         N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
   CARBOHYD
                           4F10E84DA2146DD5 CRC64;
                   94654 MW;
SQ
   SEQUENCE
            855 AA;
                   83.3%;
                         Score 3901; DB 1; Length 855;
 Query Match
                   81.8%;
                         Pred. No. 6.2e-261;
 Best Local Similarity
                                                          0;
                                                 0;
 Matches 699; Conservative
                        73;
                            Mismatches
                                         Indels
                                                    Gaps
         1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60
Qy
          1 MGSNRGRKAGGGSODFGAGLKYNSRLENMNGFEEGVEFLPANNAKKVEKRGPRRWVVLVA 60
Db
        61 VLIGLLLVLLGIGFLVWHLOYRDVRVOKVFNGYMRITNENFVDAYENSNSTEFVSLASKV 120
Qy
              Ш
        61 VLFSFLLLSLMAGLLVWHFHYRNVRVQKVFNGHLRITNEIFLDAYENSTSTEFISLASQV 120
Db
       121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180
Qу
           121 KEALKLLYNEVPVLGPYHKKSAVTAFSEGSVIAYYWSEFSIPPHLAEEVDRAMAVERVVT 180
Db
       181 LPPRARSLKSFVVTSVVAFPTDSKTVQRTQDNSCSFGLHARGVELMRFTTPGFPDSPYPA 240
Qy
           181 LPPRARALKSFVLTSVVAFPIDPRMLQRTQDNSCSFALHAHGAAVTRFTTPGFPNSPYPA 240
Db
       241 HARCQWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS 300
Qу
           241 HARCQWVLRGDADSVLSLTFRSFDVAPCDEHGSDLVTVYDSLSPMEPHAVVRLCGTFSPS 300
Db
       301 YNLTFHSSONVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY 360
Qy
           301 YNLTFLSSONVFLVTLITNTDRRHPGFEATFFOLPKMSSCGGFLSDTQGTFSSPYYPGHY 360
Db
       361 PPNIDCTWNIEVPNNQHVKVSFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS 420
Qy
           361 PPNINCTWNIKVPNNRNVKVRFKLFYLVDPNVPVGSCTKDYVEINGEKYCGERSQFVVSS 420
Db
       421 NSNKITVRFHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRCDGWADCTDH 480
Qу
           421 NSSKITVHFHSDHSYTDTGFLAEYLSYDSNDPCPGMFMCKTGRCIRKELRCDGWADCPDY 480
Db
       481 SDELNCSCDAGHOFTCKNKFCKPLFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK 540
Qу
              481 SDERYCRCNATHQFTCKNQFCKPLFWVCDSVNDCGDGSDEEGCSCPAGSFKCSNGKCLPQ 540
Db
       541 SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK 600
Qу
           541 SQKCNGKDNCGDGSDEASCDSVNVVSCTKYTYRCQNGLCLSKGNPECDGKTDCSDGSDEK 600
Db
       601 DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID 660
Qу
           601 NCDCGLRSFTKQARVVGGTNADEGEWPWQVSLHALGQGHLCGASLISPDWLVSAAHCFQD 660
Db
       661 DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELEKP 720
Qу
           661 DKNFKYSDYTMWTAFLGLLDQSKRSASGVQELKLKRIITHPSFNDFTFDYDIALLELEKS 720
Db
```

Qy	721	AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL 780	0
Db	721	VEYSTVVRPICLPDATHVFPAGKAIWVTGWGHTKEGGTGALILQKGEIRVINQTTCEDLM 780	0
Qy	781	PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT 84	0
Db	781	PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSAEKDGRMFQAGVVSWGEGCAQRNKPGVYT 84	0
QУ	841	RLPLFRDWIKENTGV 855	
Db	841	RLPVVRDWIKEHTGV 855	

```
RESULT 1
ST14 HUMAN
                                           855 AA.
     ST14 HUMAN
                    STANDARD;
                                   PRT;
ID
     Q9Y5Y6; Q9BS01; Q9H3S0; Q9HB36; Q9HCA3;
AC
     16-OCT-2001 (Rel. 40, Created)
DT
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     10-OCT-2003 (Rel. 42, Last annotation update)
DT
     Suppressor of tumorigenicity 14 (EC 3.4.21.-) (Matriptase) (Membrane-
DE
     type serine protease 1) (MT-SP1) (Prostamin) (Serine protease TADG-15)
DE
     (Tumor associated differentially-expressed gene-15 protein).
DE
     ST14 OR PRSS14 OR SNC19 OR TADG15.
GN
     Homo sapiens (Human).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
     NCBI TaxID=9606;
RN
     [1]
     SEQUENCE FROM N.A.
RP
     MEDLINE=99303581; PubMed=10373424;
RX
     Lin C.Y., Anders J., Johnson M., Sang Q.A., Dickson R.B.;
RA
     "Molecular cloning of cDNA for matriptase, a matrix-degrading serine
RT
     protease with trypsin-like activity.";
RT
     J. Biol. Chem. 274:18231-18236(1999).
RL
RN
     [2]
     SEQUENCE FROM N.A.
RP
     MEDLINE=99432178; PubMed=10500122;
RX
     Takeuchi T., Shuman M.A., Craik C.S.;
RA
     "Reverse biochemistry: Use of macromolecular protease inhibitors to
RT
     dissect complex biological processes and identify a membrane-type
RT
     serine protease in epithelial cancer and normal tissue.";
RT
     Proc. Natl. Acad. Sci. U.S.A. 96:11054-11061(1999).
RL
RN
     [3]
RP
     SEQUENCE FROM N.A.
RC
     TISSUE=Prostate;
     Yamaguchi N., Mitsui S.;
RA
     "Molecular cloning of a novel transmembrane serine protease expressed
RT
     in human prostate.";
ŘΤ
     Submitted (JUL-1999) to the EMBL/GenBank/DDBJ databases.
RL
RN
     SEQUENCE FROM N.A.
RP
     Tanimoto H., Underwood L.J., Wang Y., Shigemasa K., Parmley T.H.,
RA
     O'Brien T.J.;
RA
     Submitted (APR-1998) to the EMBL/GenBank/DDBJ databases.
RL
RN
     SEQUENCE FROM N.A.
RP
     TISSUE=Blood, and Muscle;
RC
     MEDLINE=22388257; PubMed=12477932;
RX
     Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G.,
RA
     Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D.,
RA
     Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K.,
RA
     Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F.,
RA
     Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L.,
RA
     Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E.,
RA
     Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C.,
RA
     Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J.,
RA
     Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H.,
RA
     Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W.,
RA
     Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A.,
RΑ
```

```
Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A.,
RA
    Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G.,
RA
    Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C.,
RA
    Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M.,
RA
    Butterfield Y.S.N., Krzywinski M.I., Skalska U., Smailus D.E.,
RA
    Schnerch A., Schein J.E., Jones S.J.M., Marra M.A.;
RA
     "Generation and initial analysis of more than 15,000 full-length
RT
    human and mouse cDNA sequences.";
RT
     Proc. Natl. Acad. Sci. U.S.A. 99:16899-16903(2002).
RL
RN
     SEQUENCE OF 340-664 FROM N.A.
RP
     Cao J., Fan W., Zheng S.;
RA
     "Genomic analysis of a novel human serine protease SNC19.";
RT
     Submitted (JUN-2000) to the EMBL/GenBank/DDBJ databases.
RL
RN
     CHARACTERIZATION.
RP
     TISSUE=Milk;
RC
     MEDLINE=99303582; PubMed=10373425;
RX
     Lin C.Y., Anders J., Johnson M., Dickson R.B.;
RA
     "Purification and characterization of a complex containing matriptase
RT
     and a Kunitz-type serine protease inhibitor from human milk.";
RT
     J. Biol. Chem. 274:18237-18242(1999).
RL
     -!- FUNCTION: Degrades extracellular matrix. Proposed to play a role
CC
         in breast cancer invasion and metastasis. Exhibits trypsin-like
CC
         activity as defined by cleavage of synthetic substrates with Arg
CC
         or Lys as the P1 site.
CC
     -!- SUBCELLULAR LOCATION: Type II membrane protein (Probable).
CC
     -!- SIMILARITY: Belongs to peptidase family S1.
CC
     -!- SIMILARITY: Contains 2 CUB domains.
CC
     -!- SIMILARITY: Contains 4 LDL-receptor class A domains.
CC
     ______
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     _____
CC
     EMBL; AF118224; AAD42765.2; -.
DR
     EMBL; AF133086; AAF00109.1; -.
DR
     EMBL; AB030036; BAB20376.1; -.
DR
     EMBL; AF057145; AAG15395.1; -.
DR
     EMBL; BC005826; AAH05826.1; -.
DR
     EMBL; BC030532; AAH30532.1; -.
DR
     EMBL; AF283256; AAG13949.1; -.
DR
     HSSP; P00763; 1DPO.
DR
     Genew; HGNC:11344; ST14.
DR
     MIM; 606797; -.
DR
DR
     MEROPS; S01.302; -.
     GO; GO:0005887; C:integral to plasma membrane; TAS.
DR
     GO; GO:0008236; F:serine-type peptidase activity; TAS.
DR
     GO; GO:0006508; P:proteolysis and peptidolysis; TAS.
DR
DR
     InterPro; IPR000859; CUB.
     InterPro; IPR009003; Cys_Ser_trypsin.
DR
     InterPro; IPR002172; LDL_receptor_A.
DR
     InterPro; IPR001254; Peptidase_S1.
DR
```

```
DR
    InterPro; IPR001314; Peptidase S1A.
DR
    Pfam; PF00431; CUB; 2.
    Pfam; PF00057; ldl_recept_a; 4.
DR
DR
    Pfam; PF00089; trypsin; 1.
    PRINTS; PR00722; CHYMOTRYPSIN.
DR
    PRINTS; PR00261; LDLRECEPTOR.
DR
    SMART; SM00042; CUB; 2.
DR
    SMART; SM00192; LDLa; 3.
DR
    SMART; SM00020; Tryp SPc; 1.
DR
    PROSITE; PS01180; CUB; 2.
DR
    PROSITE; PS01209; LDLRA 1; 2.
DR
    PROSITE; PS50068; LDLRA_2; 4.
DR
    PROSITE; PS50240; TRYPSIN DOM; 1.
DR
    PROSITE; PS00134; TRYPSIN_HIS; 1.
DR
DR
    PROSITE; PS00135; TRYPSIN SER; 1.
    Signal-anchor; Glycoprotein; Hydrolase; Serine protease;
KW
KW
    Transmembrane; Repeat.
                                 CYTOPLASMIC (POTENTIAL).
FT
    DOMAIN
                  1
                        55
    TRANSMEM
                 56
                        76
                                 SIGNAL-ANCHOR (TYPE-II MEMBRANE PROTEIN)
FΤ
FT
                                 (POTENTIAL).
                 77
                       855
                                 EXTRACELLULAR (POTENTIAL).
    DOMAIN
FT
                                 CUB 1.
FT
    DOMAIN
                214
                       334
                                 CUB 2.
FT
    DOMAIN
                340
                       447
                                 LDL-RECEPTOR CLASS A 1.
    DOMAIN
                452
                       487
FT
                                 LDL-RECEPTOR CLASS A 2.
    DOMAIN
                487
                       524
FT
                                 LDL-RECEPTOR CLASS A 3.
FT
    DOMAIN
                524
                       560
                       603
                                 LDL-RECEPTOR CLASS A 4.
FT
    DOMAIN
                566
                615
                       854
                                 SERINE PROTEASE.
    DOMAIN
FT
                                 CHARGE RELAY SYSTEM (BY SIMILARITY).
    ACT SITE
                656
                       656
FT
                                 CHARGE RELAY SYSTEM (BY SIMILARITY).
    ACT SITE
FT
                711
                       711
                                 CHARGE RELAY SYSTEM (BY SIMILARITY).
    ACT SITE
                805
                       805
FT
                                 N-LINKED (GLCNAC. . .) (POTENTIAL).
    CARBOHYD
                109
                       109
FT
                                 N-LINKED (GLCNAC. . .) (POTENTIAL).
FT
    CARBOHYD
                302
                       302
                                 N-LINKED (GLCNAC. . .) (POTENTIAL).
FΤ
    CARBOHYD
                485
                       485
                                 N-LINKED (GLCNAC. . .) (POTENTIAL).
    CARBOHYD
                772
                       772
FΤ
                                 FEA -> GTR (IN REF. 5; AAH05826).
FΤ
    CONFLICT
                327
                       329
FT
    CONFLICT
                381
                       381
                                 R \rightarrow S (IN REF. 4).
FΤ
    CONFLICT
                674
                       674
                                 A \rightarrow V (IN REF. 3).
    SEOUENCE
               855 AA; 94769 MW; 26143132C01F99C9 CRC64;
SO
 Query Match
                         99.9%;
                                 Score 4676; DB 1;
                                                    Length 855;
                         99.9%;
  Best Local Similarity
                                 Pred. No. 2.7e-314;
                                0; Mismatches
                                                                           0;
 Matches 854; Conservative
                                                     Indels
                                                                   Gaps
           1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60
Qy
              1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60
Db
          61 VLIGLLLVLLGIGFLVWHLQYRDVRVQKVFNGYMRITNENFVDAYENSNSTEFVSLASKV 120
Qy
              61 VLIGLLLVLLGIGFLVWHLQYRDVRVQKVFNGYMRITNENFVDAYENSNSTEFVSLASKV 120
Db
         121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180
Qу
              Db
         121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180
Qу
         181 LPPRARSLKSFVVTSVVAFPTDSKTVORTODNSCSFGLHARGVELMRFTTPGFPDSPYPA 240
```

Db	181		240
Qy	241	HARCQWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS	300
Db			
Qy	301	YNLTFHSSQNVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY	360
Db	301		360
Qу	361	PPNIDCTWNIEVPNNQHVKVSFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS	420
Db	361		420
Qy	421	NSNKITVRFHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRCDGWADCTDH	480
Db	421	NSNKITVRFHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRCDGWADCTDH	480
Qу	481	SDELNCSCDAGHQFTCKNKFCKPLFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK	540
Db	481	SDELNCSCDAGHQFTCKNKFCKPLFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK	540
Qу	541	SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK	600
Db	541	SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK	600
Qy	601	DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID	660
Db	601	DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID	660
Qy	661	DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELEKP	720
Db	661	DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELEKP	720
Qy	721	AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL	780
Db	721	AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL	780
Qy	781	PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT	840
Db	781	PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT	840
Qy	841	RLPLFRDWIKENTGV 855	
Db	841	RLPLFRDWIKENTGV 855	