

planetmath.org

Math for the people, by the people.

full families of Hopfian (co-Hopfian) groups

Canonical name FullFamiliesOfHopfiancoHopfianGroups

Date of creation 2013-03-22 18:36:05 Last modified on 2013-03-22 18:36:05

Owner joking (16130) Last modified by joking (16130)

Numerical id 7

Author joking (16130) Entry type Theorem Classification msc 20A99 **Proposition.** Let $\{G_i\}_{i\in I}$ be a full family of groups. Then each G_i is Hopfian (co-Hopfian) if and only if $\bigoplus_{i\in I} G_i$ is Hopfian (co-Hopfian).

Proof. $,,\Rightarrow$ " Let

$$f: \bigoplus_{i\in I} G_i \to \bigoplus_{i\in I} G_i$$

be a surjective (injective) homomorphism. Since $\{G_i\}_{i\in I}$ is full, then there exists family of homomorphisms $\{f_i:G_i\to G_i\}_{i\in I}$ such that

$$f = \bigoplus_{i \in I} f_i.$$

Of course since f is surjective (injective), then each f_i is surjective (injective). Thus each f_i is an isomorphism, because each G_i is Hopfian (co-Hopfian). Therefore f is an isomorphism, because

$$f^{-1} = \bigoplus_{i \in I} f_i^{-1}. \quad \Box$$

,, \Leftarrow " Fix $j \in I$ and assume that $f_j : G_j \to G_j$ is a surjective (injective) homomorphism. For $i \in I$ such that $i \neq j$ define $f_i : G_i \to G_i$ to be any automorphism of G_i . Then

$$\bigoplus_{i \in I} f_i : \bigoplus_{i \in I} G_i \to \bigoplus_{i \in I} G_i$$

is a surjective (injective) group homomorphism. Since $\bigoplus_{i\in I} G_i$ is Hopfian (co-Hopfian) then $\bigoplus_{i\in I} f_i$ is an isomorphism. Thus each f_i is an isomorphism. In particular f_i is an isomorphism, which completes the proof. \square

Example. Let $\mathcal{P} = \{ p \in \mathbb{N} \mid p \text{ is prime} \}$ and \mathcal{P}_0 be any subset of \mathcal{P} . Then

$$\bigoplus_{p \in P_0} \mathbb{Z}_p$$

is both Hopfian and co-Hopfian.

Proof. It is easy to see that $\{\mathbb{Z}_p\}_{p\in\mathcal{P}}$ is full, so $\{\mathbb{Z}_p\}_{p\in\mathcal{P}_0}$ is also full. Moreover for any $p\in P_0$ the group \mathbb{Z}_p is finite, so both Hopfian and co-Hopfian. Therefore (due to proposition)

$$\bigoplus_{p \in P_0} \mathbb{Z}_p$$

is both Hopfian and co-Hopfian. \Box