C*-ALGEBRAS GENERATED BY MULTIPLICATION OPERATORS AND COMPOSITION OPERATORS WITH RATIONAL SYMBOL

HIROYASU HAMADA

ABSTRACT. Let R be a rational function of degree at least two, let J_R be the Julia set of R and let μ^L be the Lyubich measure of R. We study the C*-algebra \mathcal{MC}_R generated by all multiplication operators by continuous functions in $C(J_R)$ and the composition operator C_R induced by R on $L^2(J_R, \mu^L)$. We show that the C*-algebra \mathcal{MC}_R is isomorphic to the C*-algebra $\mathcal{O}_R(J_R)$ associated with the complex dynamical system $\{R^{on}\}_{n=1}^{\infty}$.

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane and $H^2(\mathbb{D})$ the Hardy space of analytic functions whose power series have square-summable coefficients. For an analytic self-map φ on the unit disk \mathbb{D} , the composition operator C_{φ} on the Hardy space $H^2(\mathbb{D})$ is defined by $C_{\varphi}g = g \circ \varphi$ for $g \in H^2(\mathbb{D})$. Let \mathbb{T} be the unit circle in the complex plane and $L^2(\mathbb{T})$ the square integrable measurable functions on \mathbb{T} with respect to the normalized Lebesgue measure. The Hardy space $H^2(\mathbb{D})$ can be identified as the closed subspace of $L^2(\mathbb{T})$ consisting of the functions whose negative Fourier coefficients vanish. Let P_{H^2} be the projection from $L^2(\mathbb{T})$ onto the Hardy space $H^2(\mathbb{D})$. For $a \in L^{\infty}(\mathbb{T})$, the Toeplitz operator T_a on the Hardy space $H^2(\mathbb{D})$ is defined by $T_a f = P_{H^2} a f$ for $f \in H^2(\mathbb{D})$. Recently several authors considered \mathbb{C}^* -algebras generated by composition operators (and Toeplitz operators). Most of their studies have focused on composition operators induced by linear fractional maps ([6, 7, 13, 14, 15, 18, 20, 21, 22]).

There are some studies about C*-algebras generated by composition operators and Toeplitz operators for finite Blaschke products. Finite Blaschke products are examples of rational functions. For an analytic self-map φ on the unit disk \mathbb{D} , we denote by \mathcal{TC}_{φ} the Toeplitz-composition C*-algebra generated by both the composition operator C_{φ} and the Toeplitz operator T_z . Its quotient algebra by the ideal \mathcal{K} of the compact operators is denoted by \mathcal{OC}_{φ} . Let R be a finite Blaschke product of degree at least two with R(0) = 0. Watatani and the author [5] proved that the quotient algebra \mathcal{OC}_R is isomorphic to the C*-algebra $\mathcal{OR}_R(J_R)$ associated with the complex dynamical system introduced in [11]. In [4] we extend this result for general finite Blaschke products. Let R be a finite Blaschke product R of degree at least two. We showed that the quotient algebra \mathcal{OC}_R is isomorphic to a certain Cuntz-Pimsner algebra and there is a relation between the quotient algebra \mathcal{OC}_R

1

²⁰¹⁰ Mathematics Subject Classification. Primary 46L55, 47B33; Secondary 37F10, 46L08. Key words and phrases. composition operator, multiplication operator, Frobenius-Perron operator, C*-algebra, complex dynamical system.

and the C*-algebra $\mathcal{O}_R(J_R)$. In general, two C*-algebras \mathcal{OC}_R and $\mathcal{O}_R(J_R)$ are slightly different.

In this paper we give a relation between a C^* -algebra containing a composition operator and the C^* -algebra $\mathcal{O}_R(J_R)$ for a general rational function R of degree at least two. In the above studies we deal with composition operators on the Hardy space $H^2(\mathbb{D})$, while we consider composition operators on L^2 spaces in this case. Composition operators on L^2 spaces has been studied by many authors (see for example [23]). Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let φ a non-singular transformation on Ω . We define a measurable function by $C_{\varphi}f = f \circ \varphi$ for $f \in L^2(\Omega, \mathcal{F}, \mu)$. If C_{φ} is bounded operator on $L^2(\Omega, \mathcal{F}, \mu)$, we call C_{φ} the composition operator with φ .

Let R be a rational function of degree at least two. We consider the Julia set J_R of R, the Borel σ -algebra $\mathcal{B}(J_R)$ on J_R and the Lyubich measure μ^L of R. Let us denote by \mathcal{MC}_R the C*-algebra generated by multiplication operators M_a for $a \in C(J_R)$ and the composition operator C_R on $L^2(J_R, \mathcal{B}(J_R), \mu^L)$. We regard the C*-algebra \mathcal{MC}_R and multiplication operators as replacements of Toeplitz-composition C*-algebras and Toeplitz operators, respectively. We prove that the C*-algebra \mathcal{MC}_R is isomorphic to the C*-algebra $\mathcal{O}_R(J_R)$ associated with the complex dynamical system.

There are two important points to prove this theorem. First one is to analyze operators of the form $C_R^*M_aC_R$ for $a\in C(J_R)$. We now consider a more general case. Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space and φ is a non-singular transformation. If C_{φ} is bounded, then we have $C_{\varphi}^*M_aC_{\varphi}=M_{\mathcal{L}_{\varphi}(a)}$ for $a\in L^{\infty}(\Omega, \mathcal{F}, \mu)$, where \mathcal{L}_{φ} is the Frobenius-Perron operator for φ . This is an extension of covariant relations considered by Exel and Vershik [2]. Moreover similar relations have been studied on the Hardy space $H^2(\mathbb{D})$. Let φ be an inner function on \mathbb{D} . Jury showed a covariant relation $C_{\varphi}^*T_aC_{\varphi}=T_{A_{\varphi}(a)}$ for $a\in L^{\infty}(\mathbb{T})$, where A_{φ} is the Aleksandrov operator.

Second important point is an analysis based on bases of Hilbert bimodules. In [4] and [5], a Toeplitz-composition C*-algebra for a finite Blaschke product R is isomorphic to a certain Cuntz-Pimsner algebra of a Hilbert bimodule X_R , using a finite basis of X_R . Let R be a rational function of degree at least two. The C*-algebra $\mathcal{O}_R(J_R)$ associated with complex dynamical system is defined as a Cuntz-Pimsner algebra of a Hilbert bimodule Y. Unlike the cases of [4] and [5], the Hilbert bimodule Y does not always have a finite basis. Kajiwara [9], however, constructed a concrete countable basis of Y. Thanks to this basis, we can prove the desired theorem.

2. Covariant relations

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let $\varphi: \Omega \to \Omega$ be a measurable transformation. Set $\varphi_*\mu(E) = \mu(\varphi^{-1}(E))$ for $E \in \mathcal{F}$. Then $\varphi_*\mu$ is a measure on Ω . The measurable transformation $\varphi: \Omega \to \Omega$ is said to be *non-singular* if $\varphi_*\mu(E) = 0$ whenever $\mu(E) = 0$ for $E \in \mathcal{F}$. If φ is non-singular, then $\varphi_*\mu$ is absolutely continuous with respect to μ . When μ is σ -finite, we denote by h_{φ} the Radon-Nikodym derivative $\frac{d\varphi_*\mu}{d\mu}$.

Let $1 \leq p \leq \infty$. We shall define the composition operator on $L^p(\Omega, \mathcal{F}, \mu)$. Every non-singular transformation $\varphi : \Omega \to \Omega$ induces a linear operator C_{φ} from $L^F p(\Omega, \mathcal{F}, \mu)$ to the linear space of all measurable functions on $(\Omega, \mathcal{F}, \mu)$ defined as $C_{\varphi} f = f \circ \varphi$ for $f \in L^p(\Omega, \mathcal{F}, \mu)$. If $C_{\varphi} : L^p(\Omega, \mathcal{F}, \mu) \to L^p(\Omega, \mathcal{F}, \mu)$ is bounded, it is called a *composition operator* on $L^p(\Omega, \mathcal{F}, \mu)$ induced by φ . Let $(\Omega, \mathcal{F}, \mu)$ be σ -finite. For $1 \leq p < \infty$, C_{φ} is bounded on $L^p(\Omega, \mathcal{F}, \mu)$ if and only if the Radon-Nikodym derivative h_{φ} is bounded (see for example [23, Theorem 2.1.1]). If C_{φ} is bounded on $L^p(\Omega, \mathcal{F}, \mu)$ for some $1 \leq p < \infty$, then C_{φ} is bounded on $L^p(\Omega, \mathcal{F}, \mu)$ for any $1 \leq p < \infty$ since h_{φ} is independent of p. For $p = \infty$, C_{φ} is bounded on $L^{\infty}(\Omega, \mathcal{F}, \mu)$ for any non-singular transformation.

Definition. Let $(\Omega, \mathcal{F}, \mu)$ be a σ -finite measure space, let $\varphi : \Omega \to \Omega$ be a non-singular transformation and let $f \in L^1(\Omega, \mathcal{F}, \mu)$. We define $\nu_{\varphi, f}$ by

$$\nu_{\varphi,f}(E) = \int_{\varphi^{-1}(E)} f d\mu$$

for $E \in \mathcal{F}$. Then $\nu_{\varphi,f}$ is an absolutely continuous measure with respect to μ . By the Radon-Nikodym theorem, there exists $\mathcal{L}_{\varphi}(f) \in L^1(\Omega, \mathcal{F}, \mu)$ such that

$$\int_{E} \mathcal{L}_{\varphi}(f) d\mu = \int_{\varphi^{-1}(E)} f d\mu$$

for $E \in \mathcal{F}$. We can regard \mathcal{L}_{φ} as a bounded operator on $L^1(\Omega, \mathcal{F}, \mu)$ (see for example [16, Proposition 3.1.1]). We call \mathcal{L}_{φ} the Frobenius-Perron operator.

Lemma 2.1. Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space and let $\varphi : \Omega \to \Omega$ be a non-singular transformation. Suppose that $C_{\varphi} : L^1(\Omega, \mathcal{F}, \mu) \to L^1(\Omega, \mathcal{F}, \mu)$ is bounded. Then the restriction $\mathcal{L}_{\varphi}|_{L^{\infty}(\Omega, \mathcal{F}, \mu)}$ is a bounded operator on $L^{\infty}(\Omega, \mathcal{F}, \mu)$ and $C_{\varphi}^* = \mathcal{L}_{\varphi}|_{L^{\infty}(\Omega, \mathcal{F}, \mu)}$.

Proof. Let $f \in L^{\infty}(\Omega, \mathcal{F}, \mu)$. First we shall show $\mathcal{L}_{\varphi}(f) \in L^{\infty}(\Omega, \mathcal{F}, \mu)$. There exists M > 0 such that $|f| \leq M$. It follows from [16, Proposition 3.1.1] that $|\mathcal{L}_{\varphi}(f)| \leq \mathcal{L}_{\varphi}(|f|) \leq M\mathcal{L}_{\varphi}(1)$. Since $\mathcal{L}_{\varphi}(1) = h_{\varphi}$ and C_{φ} is bounded on $L^{1}(\Omega, \mathcal{F}, \mu)$, we have $\mathcal{L}_{\varphi}(1) \in L^{\infty}(\Omega, \mathcal{F}, \mu)$. Hence $\mathcal{L}_{\varphi}(f) \in L^{\infty}(\Omega, \mathcal{F}, \mu)$.

By the definition of \mathcal{L}_{φ} , we have

$$\int_{\Omega} \chi_E \mathcal{L}_{\varphi}(f) d\mu = \int_{\Omega} \chi_{\varphi^{-1}(E)} f d\mu = \int_{\Omega} (C_{\varphi} \chi_E) f d\mu$$

for $E \in \mathcal{F}$, where χ_E and $\chi_{\varphi^{-1}(E)}$ are characteristic functions on E and $\varphi^{-1}(E)$ respectively. Since C_{φ} is bounded on $L^1(\Omega, \mathcal{F}, \mu)$ and the set of integrable simple functions is dense in $L^1(\Omega, \mathcal{F}, \mu)$, the restriction map $\mathcal{L}_{\varphi}|_{L^{\infty}(\Omega, \mathcal{F}, \mu)}$ is bounded on $L^{\infty}(\Omega, \mathcal{F}, \mu)$ and $C_{\varphi}^* = \mathcal{L}_{\varphi}|_{L^{\infty}(\Omega, \mathcal{F}, \mu)}$.

Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space and $\varphi : \Omega \to \Omega$ a non-singular transformation. We consider the restriction of \mathcal{L}_{φ} to $L^{\infty}(\Omega, \mathcal{F}, \mu)$. From now on, we use the same notation \mathcal{L}_{φ} if no confusion can arise.

For $a \in L^{\infty}(\Omega, \mathcal{F}, \mu)$, we define the multiplication operator M_a on $L^2(\Omega, \mathcal{F}, \mu)$ by $M_a f = af$ for $f \in L^2(\Omega, \mathcal{F}, \mu)$. We show the following covariant relation.

Proposition 2.2. Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space and let $\varphi : \Omega \to \Omega$ be a non-singular transformation. If $C_{\varphi} : L^2(\Omega, \mathcal{F}, \mu) \to L^2(\Omega, \mathcal{F}, \mu)$ is bounded, then we have

$$C_{\varphi}^* M_a C_{\varphi} = M_{\mathcal{L}_{\varphi}(a)}$$

for $a \in L^{\infty}(\Omega, \mathcal{F}, \mu)$.

Proof. For $f, g \in L^2(\Omega, \mathcal{F}, \mu)$, we have

$$\langle C_{\varphi}^* M_a C_{\varphi} f, g \rangle = \langle M_a C_{\varphi} f, C_{\varphi} g \rangle = \int_{\Omega} a(f \circ \varphi) \overline{(g \circ \varphi)} d\mu$$
$$= \int_{\Omega} a C_{\varphi} (f \overline{g}) d\mu = \int_{\Omega} \mathcal{L}_{\varphi}(a) f \overline{g} d\mu$$
$$= \langle M_{\mathcal{L}_{\varphi}(a)} f, g \rangle$$

by Lemma 2.1, where C_{φ} is also regarded as the composition operator on $L^{1}(\Omega, \mathcal{F}, \mu)$.

3. C*-algebras associated with complex dynamical systems

We recall the construction of Cuntz-Pimsner algebras [19] (see also [12]). Let A be a C*-algebra and let X be a right Hilbert A-module. A sequence $\{u_i\}_{i=1}^{\infty}$ of X is called a countable basis of X if $\xi = \sum_{i=1}^{\infty} u_i \langle u_i, \xi \rangle_A$ for $\xi \in X$, where the right hand side converges in norm. We denote by $\mathcal{L}(X)$ the C*-algebra of the adjointable bounded operators on X. For ξ , $\eta \in X$, the operator $\theta_{\xi,\eta}$ is defined by $\theta_{\xi,\eta}(\zeta) = \xi \langle \eta, \zeta \rangle_A$ for $\zeta \in X$. The closure of the linear span of these operators is denoted by $\mathcal{K}(X)$. We say that X is a Hilbert bimodule (or C*-correspondence) over A if X is a right Hilbert A-module with a *-homomorphism $\phi: A \to \mathcal{L}(X)$. We always assume that ϕ is injective.

A representation of the Hilbert bimodule X over A on a C*-algebra D is a pair (ρ, V) constituted by a *-homomorphism $\rho: A \to D$ and a linear map $V: X \to D$ satisfying

$$\rho(a)V_{\xi} = V_{\phi(a)\xi}, \quad V_{\xi}^*V_{\eta} = \rho(\langle \xi, \eta \rangle_A)$$

for $a \in A$ and $\xi, \eta \in X$. It is known that $V_{\xi}\rho(b) = V_{\xi b}$ follows automatically (see for example [12]). We define a *-homomorphism $\psi_V : \mathcal{K}(X) \to D$ by $\psi_V(\theta_{\xi,\eta}) = V_{\xi}V_{\eta}^*$ for $\xi, \eta \in X$ (see for example [10, Lemma 2.2]). A representation (ρ, V) is said to be *covariant* if $\rho(a) = \psi_V(\phi(a))$ for all $a \in J(X) := \phi^{-1}(\mathcal{K}(X))$. Suppose the Hilbert bimodule X has a countable basis $\{u_i\}_{i=1}^{\infty}$ and (ρ, V) is a representation of X. Then (ρ, V) is covariant if and only if $\|\sum_{i=1}^n \rho(a)V_{u_i}V_{u_i}^* - \rho(a)\| \to 0$ as $n \to \infty$ for $a \in J(X)$, since $\{\sum_{i=1}^n \theta_{u_i,u_i}\}_{n=1}^{\infty}$ is an approximate unit for $\mathcal{K}(X)$.

Let (i, S) be the representation of X which is universal for all covariant representations. The Cuntz-Pimsner algebra \mathcal{O}_X is the C*-algebra generated by i(a) with $a \in A$ and S_{ξ} with $\xi \in X$. We note that i is known to be injective [19] (see also [12, Proposition 4.11]). We usually identify i(a) with a in A.

Let R be a rational function of degree at least two. We recall the definition of the C*-algebra $\mathcal{O}_R(J_R)$. Since the Julia set J_R is completely invariant under R, that is, $R(J_R) = J_R = R^{-1}(J_R)$, we can consider the restriction $R|_{J_R}: J_R \to J_R$. Let $A = C(J_R)$ and $Y = C(\operatorname{graph} R|_{J_R})$, where $\operatorname{graph} R|_{J_R} = \{(z, w) \in J_R \times J_R \mid w = R(z)\}$ is the graph of $R|_{J_R}$. We denote by $e_R(z)$ the branch index of R at z. Then Y is an A-A bimodule over A by

$$(a \cdot f \cdot b)(z, w) = a(z)f(z, w)b(w), \quad a, b \in A, f \in Y.$$

We define an A-valued inner product \langle , \rangle_A on Y by

$$\langle f, g \rangle_A(w) = \sum_{z \in R^{-1}(w)} e_R(z) \overline{f(z, w)} g(z, w), \quad f, g \in Y, w \in J_R.$$

Then Y is a Hilbert bimodule over A. The C*-algebra $\mathcal{O}_R(J_R)$ is defined as the Cuntz-Pimsner algebra of the Hilbert bimodule $Y = C(\operatorname{graph} R|_{J_R})$ over $A = C(J_R)$.

4. Main theorem

Let R be a rational function. We define the backward orbit $O^-(w)$ of $w \in \hat{\mathbb{C}}$ by $O^-(w) = \{z \in \hat{\mathbb{C}} \mid R^{\circ m}(z) = w \text{ for some non-negative integer } m\}.$

A point w in $\hat{\mathbb{C}}$ is an exceptional point for R if the backward orbit $O^-(w)$ of w is finite. We denote by E_R the set of exceptional points.

Definition (Freire-Lopes-Mañé [3], Lyubich [17]). Let R be a rational function and $n = \deg R$. Let δ_z be the Dirac measure at $z \in \hat{\mathbb{C}}$. For $w \in \hat{\mathbb{C}} \setminus E_R$ and $m \in \mathbb{N}$, we define a probability measure μ_m^w on $\hat{\mathbb{C}}$ by

$$\mu_m^w = \frac{1}{n^m} \sum_{z \in (R^{\circ m})^{-1}(w)} e_{R^{\circ m}}(z) \delta_z.$$

The sequence $\{\mu_m^w\}_{m=1}^{\infty}$ converges weakly to a probability measure μ^L , which is called the *Lyubich measure* of R. The measure μ^L is independent of the choice of $w \in \hat{\mathbb{C}} \setminus E_R$.

Let R be a rational function of degree at least two. We will denote by $\mathcal{B}(J_R)$ the Borel σ -algebra on the Julia set J_R . In this section we consider the finite measure space $(J_R, \mathcal{B}(J_R), \mu^L)$. It is known that the support of the Lyubich measure μ^L is regular on the Julia set J_R . Moreover the Lyubich measure μ^L is regular on the Julia set J_R and a invariant measure with respect to R, that is, $\mu^L(E) = \mu^L(R^{-1}(E))$ for $E \in \mathcal{B}(J_R)$. Thus the composition operator C_R on $L^2(J_R, \mathcal{B}(J_R), \mu^L)$ is an isometry.

Definition. For a rational function R of degree at least two, we denote by \mathcal{MC}_R the C*-algebra generated by all multiplication operators by continuous functions in $C(J_R)$ and the composition operator C_R on $L^2(J_R, \mathcal{B}(J_R), \mu^L)$.

Let a rational function R of degree at least two. In this section we shall show that the C*-algebra \mathcal{MC}_R is isomorphic to the C*-algebra $\mathcal{O}_R(J_R)$. First we give a concrete expression of the restriction of \mathcal{L}_R to $C(J_R)$. This result immediately follows from [17] and Lemma 2.1.

Proposition 4.1 (Lyubich [17, Lemma, p.366]). Let R be a rational function of degree n at least two. Then $\mathcal{L}_R: C(J_R) \to C(J_R)$ and

$$(\mathcal{L}_R(a))(w) = \frac{1}{n} \sum_{z \in R^{-1}(w)} e_R(z)a(z), \quad w \in J_R$$

for $a \in C(J_R)$.

Let $X = C(J_R)$ and $n = \deg R$. Then X is an A-A bimodule over A by

$$(a \cdot \xi \cdot b)(z) = a(z)\xi(z)b(R(z))$$
 $a, b \in A, \xi \in X.$

We define an A-valued inner product $\langle \ , \ \rangle_A$ on X by

$$\langle \xi, \eta \rangle_A(w) = \frac{1}{n} \sum_{z \in R^{-1}(w)} e_R(z) \overline{\xi(z)} \eta(z) \ \left(= (\mathcal{L}_R(\overline{\xi}\eta))(w) \right), \quad \xi, \eta \in X.$$

Then X is a Hilbert bimodule over A. Put $\|\xi\|_2 = \|\langle \xi, \xi \rangle_A\|_{\infty}^{1/2}$ for $\xi \in X$, where $\|\cdot\|_{\infty}$ is the sup norm on J_R . It is easy to see that X is isomorphic to Y as Hilbert bimodules over A. Hence the C*-algebra $\mathcal{O}_R(J_R)$ is isomorphic to the Cuntz-Pimsner algebra \mathcal{O}_X constructed from X.

We need some analyses based on bases of the Hilbert bimodule X to show an equation containing the composition operator C_R and multiplication operators.

Lemma 4.2. Let $u_1, \ldots, u_N \in X$. Then

$$\sum_{i=1}^{N} M_{u_i} C_R C_R^* M_{u_i}^* a = \sum_{i=1}^{N} u_i \cdot \langle u_i, a \rangle_A$$

for $a \in A$.

Proof. Since $a = M_a C_R 1$, we have

$$\sum_{i=1}^{N} M_{u_i} C_R C_R^* M_{u_i}^* a = \sum_{i=1}^{N} M_{u_i} C_R C_R^* M_{u_i}^* M_a C_R 1$$

$$= \sum_{i=1}^{N} M_{u_i} C_R C_R^* M_{\overline{u}_i a} C_R 1$$

$$= \sum_{i=1}^{N} M_{u_i} C_R M_{\mathcal{L}_R(\overline{u}_i a)} 1 \quad \text{by Proposition 2.2}$$

$$= \sum_{i=1}^{N} M_{u_i} M_{\mathcal{L}_R(\overline{u}_i a) \circ R} C_R 1$$

$$= \sum_{i=1}^{N} u_i \mathcal{L}_R(\overline{u}_i a) \circ R$$

$$= \sum_{i=1}^{N} u_i \cdot \langle u_i, a \rangle_A,$$

which completes the proof.

Lemma 4.3. Let $\{u_i\}_{i=1}^{\infty}$ be a countable basis of X. Then

$$0 \le \sum_{i=1}^{N} M_{u_i} C_R C_R^* M_{u_i}^* \le I.$$

Proof. Set $T_N := \sum_{i=1}^N M_{u_i} C_R C_R^* M_{u_i}^*$. It is clear that T_N is a positive operator. We shall show $T_N \leq I$. By Lemma 4.2,

$$\langle T_N f, f \rangle = \int_{J_R} (T_N f)(z) \overline{f(z)} d\mu^L(z) = \int_{J_R} \left(\sum_{i=1}^N u_i \cdot \langle u_i, f \rangle_A \right) (z) \overline{f(z)} d\mu^L(z)$$

for $f \in C(J_R)$. Since $\{u_i\}_{i=1}^{\infty}$ is a countable basis of X, for $f \in C(J_R)$, we have $\sum_{i=1}^{N} u_i \cdot \langle u_i, f \rangle_A \to f$ with respect to $\| \|_2$ as $N \to \infty$. Since the two norms $\| \|_2$ and $\| \|_{\infty}$ are equivalent (see the proof of [11, Proposition 2.2]), $\sum_{i=1}^{N} u_i \cdot \langle u_i, f \rangle_A$ converges to f with respect to $\| \|_{\infty}$. Thus

$$\langle T_N f, f \rangle \to \int_{J_R} f(z) \overline{f(z)} d\mu^L(z) = \langle f, f \rangle \text{ as } N \to \infty$$

for $f \in C(J_R)$. Therefore $\langle T_N f, f \rangle \leq \langle f, f \rangle$ for $f \in C(J_R)$. Since the Lyubich measure μ^L on the Julia set J_R is regular, $C(J_R)$ is dense in $L^2(J_R, \mathcal{B}(J_R), \mu^L)$. Hence we have $T_N \leq I$. This completes the proof.

Let $\mathcal{B}(R)$ be the set of branched points of a rational function R. We now recall a description of the ideal J(X) of A. By [11, Proposition 2.5], we can write $J(X) = \{a \in A \mid a \text{ vanishes on } \mathcal{B}(R)\}$. We define a subset $J(X)^0$ of J(X) by $J(X)^0 = \{a \in A \mid a \text{ vanishes on } \mathcal{B}(R) \text{ and has compact support on } J_R \setminus \mathcal{B}(R)\}$. Since $\mathcal{B}(R)$ is a finite set ([1, Corollary 2.7.2]), $J(X)^0$ is dense in J(X).

Lemma 4.4. There exists a countable basis $\{u_i\}_{i=1}^{\infty}$ of X such that

$$\sum_{i=1}^{\infty} M_a M_{u_i} C_R C_R^* M_{u_i}^* = M_a$$

for $a \in J(X)$.

Proof. By [9, Subsection 3.1], there exists a countable basis $\{u_i\}_{i=1}^{\infty}$ of X satisfying the following property. For any $b \in J(X)^0$, there exists M > 0 such that supp $b \cap \sup u_m = \emptyset$ for $m \geq M$. Since $J(X)^0$ is dense in J(X), for any $a \in A$ and any $\varepsilon > 0$, there exists $b \in J(X)^0$ such that $||a - b|| < \varepsilon/2$. Let $m \geq M$. Then by Lemma 4.2 and $bu_i = 0$ for $i \geq m$, it follows that

$$\sum_{i=1}^{m} M_b M_{u_i} C_R C_R^* M_{u_i}^* f = \sum_{i=1}^{m} b u_i \cdot \langle u_i, f \rangle_A = \sum_{i=1}^{\infty} b u_i \cdot \langle u_i, f \rangle_A = b f = M_b f$$

for $f \in C(J_R)$. Since $C(J_R)$ is dense in $L^2(J_R, \mathcal{B}(J_R), \mu^L)$, we have

$$\sum_{i=1}^{m} M_b M_{u_i} C_R C_R^* M_{u_i}^* = M_b.$$

From Lemma 4.3 it follows that

$$\left\| \sum_{i=1}^{m} M_{a} M_{u_{i}} C_{R} C_{R}^{*} M_{u_{i}}^{*} - M_{a} \right\| \leq \left\| \sum_{i=1}^{m} M_{a} M_{u_{i}} C_{R} C_{R}^{*} M_{u_{i}}^{*} - \sum_{i=1}^{m} M_{b} M_{u_{i}} C_{R} C_{R}^{*} M_{u_{i}}^{*} \right\| + \left\| M_{b} - M_{a} \right\|$$

$$+ \left\| \sum_{i=1}^{m} M_{b} M_{u_{i}} C_{R} C_{R}^{*} M_{u_{i}}^{*} - M_{b} \right\| + \left\| M_{b} - M_{a} \right\|$$

$$\leq \left\| M_{a} - M_{b} \right\| \left\| \sum_{i=1}^{m} M_{u_{i}} C_{R} C_{R}^{*} M_{u_{i}}^{*} \right\| + \left\| M_{a} - M_{b} \right\|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

which completes the proof.

The following theorem is the main result of the paper.

Theorem 4.5. Let R be a rational function of degree at least two. Then \mathcal{MC}_R is isomorphic to $\mathcal{O}_R(J_R)$.

Proof. Put
$$\rho(a)=M_a$$
 and $V_{\xi}=M_{\xi}C_R$ for $a\in A$ and $\xi\in X$. Then we have $\rho(a)V_{\xi}=M_aM_{\xi}C_R=M_{a\xi}C_R=V_{a\cdot\xi}$

and

$$V_{\xi}^* V_{\eta} = C_R^* M_{\xi}^* M_{\eta} C_R = C_R^* M_{\overline{\xi}\eta} C_R = M_{\mathcal{L}_R(\overline{\xi}\eta)} = \rho(\mathcal{L}_R(\overline{\xi}\eta)) = \rho(\langle \xi, \eta \rangle_A)$$

for $a \in A$ and $\xi, \eta \in X$ by Proposition 2.2. Let $\{u_i\}_{i=1}^{\infty}$ be a countable basis of X. Then, applying Lemma 4.4,

$$\sum_{i=1}^{\infty} \rho(a) V_{u_i} V_{u_i}^* = \sum_{i=1}^{\infty} M_a M_{u_i} C_R C_R^* M_{u_i}^* = M_a = \rho(a)$$

for $a \in J(X)$. Since the support of the Lyubich measure μ^L is the Julia set J_R , the *-homomorphism ρ is injective. By the universality and the simplicity of $\mathcal{O}_R(J_R)$ ([11, Theorem 3.8]), the C*-algebra \mathcal{MC}_R is isomorphic to $\mathcal{O}_R(J_R)$.

Acknowledgement. The author wishes to express his thanks to Professor Hiroyuki Takagi for several helpful comments concerning to composition operators.

References

- A. F. Beardon, *Iteration of rational functions*, Complex analytic dynamical systems, Graduate Texts in Mathematics, 132, Springer-Verlag, New York, 1991.
- [2] R. Exel and A. Vershik, C*-algebras of irreversible dynamical systems, Canad. J. Math. 58 (2006), 39–63.
- [3] A. Freire, A. Lopes and R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 45–62.
- [4] H. Hamada, Quotient algebras of Toeplitz-composition C*-algebras for finite Blaschke products, Complex Anal. Oper. Theory 8 (2014), 843–862.
- [5] H. Hamada and Y. Watatani, Toeplitz-composition C*-algebras for certain finite Blaschke products, Proc. Amer. Math. Soc. 138 (2010), 2113–2123.
- [6] M. T. Jury, The Fredholm index for elements of Toeplitz-composition C*-algebras, Integral Equations Operator Theory 58 (2007), 341–362.
- [7] M. T. Jury, C*-algebras generated by groups of composition operators, Indiana Univ. Math. J. 56 (2007), 3171–3192.
- [8] M. T. Jury, Completely positive maps induced by composition operators, preprint.
- [9] T, Kajiwara, Countable bases for Hilbert C*-modules and classification of KMS states, Operator structures and dynamical systems, 73–91, Contemp. Math., 503, Amer. Math. Soc., Providence, RI, 2009.
- [10] T. Kajiwara, C. Pinzari and Y. Watatani, Ideal structure and simplicity of the C*-algebras generated by Hilbert bimodules, J. Funct. Anal. 159 (1998), 295–322.
- [11] T. Kajiwara and Y. Watatani, C*-algebras associated with complex dynamical systems, Indiana Math. J. 54 (2005), 755-778.
- [12] T. Katsura, On C*-algebras associated with C*-correspondences, J. Funct. Anal. 217 (2004), 366–401.
- [13] T. L. Kriete, B. D. MacCluer and J. L. Moorhouse, Toeplitz-composition C*-algebras, J. Operator Theory 58 (2007), 135–156.
- [14] T. L. Kriete, B. D. MacCluer and J. L. Moorhouse, Spectral theory for algebraic combinations of Toeplitz and composition operator, J. Funct. Anal. 257 (2009), 2378–2409.
- [15] T. L. Kriete, B. D. MacCluer and J. L. Moorhouse, Composition operators within singly generated composition C*-algebras, Israel J. Math. 179 (2010), 449–477.
- [16] A. Lasota and M. C. Mackey, Chaos, fractals, and noise, Stochastic aspects of dynamics, Second edition, Applied Mathematical Sciences, 97, Springer-Verlag, New York.
- [17] M. J. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), 351–385.
- [18] E. Park, Toeplitz algebras and extensions of irrational rotation algebras, Canad. Math. Bull. 48 (2005), 607–613.
- [19] M. V. Pimsner, A class of C*-algebras generating both Cuntz-Krieger algebras and crossed product by Z, Free Probability Theory, Fields Inst. Commun., Vol 12, Amer. Math. Soc., Providence, RI, pp. 189–212.
- [20] K. S. Quertermous, A semigroup composition C*-algebra, J. Operator Theory 67 (2012), 581–604.
- [21] K. S. Quertermous, Fixed point composition and Toeplitz-composition C*-algebras, J. Funct. Anal. 265 (2013), 743–764.

- [22] M. K. Sarvestani and M. Amini, The C*-algebra generated by irreducible Toeplitz and composition operators, arXiv:1408.1057.
- [23] R. K. Singh and J. S. Manhas, *Composition operators on function spaces*, North-Holland Mathematics Studies, **179**, North-Holland Publishing Co., Amsterdam, 1993.

NATIONAL INSTITUTE OF TECHNOLOGY, SASEBO COLLEGE, OKISHIN, SASEBO, NAGASAKI, 857-1193, JAPAN.

 $E\text{-}mail\ address{:}\ \texttt{h-hamada@sasebo.ac.jp}$