臺北區 107 學年度第二學期 指定科目第二次模擬考試

物理考科

--作答注意事項--

考試範圍:基礎物理(一)、基礎物理(二)B(上)(下)、

選修物理(上)(下)

考試時間:80分鐘

作答方式:

- •選擇題用 2B 鉛筆在「答案卡」上作答;更正時, 應以橡皮擦擦拭,切勿使用修正液(帶)。
- 非選擇題用筆尖較粗之黑色墨水的筆在「答案 卷」上作答;更正時,可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

祝考試順利

版權所有・翻印必究

第壹部分:選擇題(占80分)

一、單選題(占60分)

說明:第1.題至第20.題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇題答案區」。各題答對者,得3分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

1. 下雨天路面溼滑,常有機車騎士在轉彎時發生滑倒的事故,機車若要在水平路面安全過彎,需要物理條件的配合。表 1 為柏油路面分別在乾燥與潮溼的情況下,輪胎與路面間之摩擦係數。若過彎速率 v=36 km/h,則過彎半徑 R 為下列何者時,在乾燥路面可安全過彎、在潮溼路面卻會發生危險?(重力加速度 g=10 m/s²)

表 1							
路面情況摩擦係數	乾燥路面	潮溼路面					
靜摩擦係數 μς	0.7	0.6					
動摩擦係數 μ _k	0.5	0.4					

(A) R = 12 m

(B) R = 15 m

(C) R = 18 m

(D) R = 24 m

(E) R = 27 m

2. 若由半徑為R的星球A表面,以一初速鉛直向上發射一個沒有推進力的物體,則此物體上升的最高點與星球表面之距離為R。若有一星球B,質量與半徑分別為星球A的兩倍與一半,當以相同初速在星球B表面鉛直向上發射同一物體,則此物體上升的最高點與星球B表面之距離為下列何者?(不計阻力)

(A) 2R

- (B) $\frac{23R}{14}$
- (C) $\frac{15R}{14}$
- $(D)\frac{4R}{7}$
- $(E)\frac{R}{14}$
- 3. 如圖 1 所示,以力常數 200 N/m 的彈簧連接質量為 5 kg 的物體 O,若將彈簧壓縮一小段後釋放,物體 O 會在桌面上來回運動。當彈簧為原長時,物體 O 恰位於 b 點。若在 ab 範圍桌面光滑、bc 範圍桌面粗糙且與木塊間的動摩擦係數為 0.45。將彈

簧壓縮 50 cm 後釋放,當彈簧第一次達到最大伸長量時,伸長量為多少 cm?

(重力加速度 $g=10 \,\mathrm{m/s^2}$)

(A) 10

(B) 20

(C) 30

(D) 40

(E) 50

4. 如圖 2 所示,以輕繩繫住小球,繞一水平軸在一鉛垂面作順時針、半徑為 R 的圓周運動,O 點為其圓心。相對 O 點而言,若忽略空氣阻力,則該小 球角動量的時變率量值在圖中哪一處最大?

(A) 甲

(B)

(C)丙

(D)

(E)一樣大

5. 圖 3 為一隻小鳥在密閉箱子裡作各種不同方式的運動示意圖,忽略箱中空氣阳力,將箱子 放在磅秤上,請比較箱中小鳥在甲 \sim 戊(圖中箭頭為加速度a的方向)磅秤讀數之大小關 係為何?(圖中磅秤指針讀數為示意參考用)

- (A)丁>甲=乙=丙=戊
- (C)甲>乙>丙>丁=戊
- (E)甲>乙>丁=戊>丙

- (D)丙>丁=戊>乙>甲
- 6. 質量 2 公斤的物體(視為質點) 沿+x 軸在水平桌面運動,其與水平桌面間的動摩擦係數 $\mu_k = 0.1$, 當物體通過原點時, 其速度為 2 公尺 / 秒, 此刻施一沿 x 方向的水平作用力 F 於 物體上。已知施力 F 與物體坐標 x 的關係式為 $\overline{F}(x) = -x + 6$ (F 的單位為牛頓,x 的單位為 公尺),試問當物體在x=6時,物體瞬間的速度量值為多少公尺/秒?

(重力加速度g=10公尺/0²)

- (A) $\sqrt{6}$
- (B) $\sqrt{10}$
- (C) $\sqrt{12}$
- (D) $\sqrt{18}$
- (E) $\sqrt{30}$
- 7. 一直線形水波在水波槽中的折射情形如圖 4, 已知淺水區與深 水區的波速比為 3:4,淺水區的波長為 9公分,則下列敘述 何者正確?

- (A)入射角為 53°
- (B) $\sin \theta = \frac{3}{5}$
- (C)折射後,水波行進方向偏向法線
- (D)深水區的波長為 12 公分
- (E)折射波與入射波的頻率比為 3:4
- 8. 如圖 5 所示,一個可調音頻的喇叭,對著兩端開口的空心玻璃管播音,管長為 17公分。假設聲波在管中的速度為340公尺/秒,若聲波在管內形成駐波,則下 列敘述何者下確?
 - A)管內節點數一定是偶數
 - (B)能否在管内形成駐波,與聲波的頻率及管口半徑有關
 - (C)頻率為每秒振動 1000 次、2000 次或 3000 次的聲波, 皆可在管內形成駐波
 - D)若將底端封閉,再對空心玻璃管播音,則空心玻璃管的基音頻率會變大
 - (E)承(D),將喇叭改換成500赫茲的音叉,使管內形成駐波,此時將管長增為原來的3倍時, 形成的駐波頻率會變為原來的一倍

9. 半徑均為 R 的半球形玻璃(折射率為 1.5),分別置放於空氣(折射率為 1)與透明液體(折射率為 1.3)中, B_1 、 B_2 、 B_3 、 B_4 均為點光源,分別從其正上方等高處附近 E_1 、 E_2 、 E_3 、 E_4 往下觀察,如圖 6 所示。若半徑 $\overline{A_1B_1}$ 、 $\overline{A_2B_2}$ 、 $\overline{A_3B_3}$ 、 $\overline{A_4B_4}$ 看起來的深度分別為 h_1 、 h_2 、 h_3 、 h_4 ,則四者深度的大小關係為何?

圖 6

- (A) $h_1 = h_2 > h_4 > h_3$
- (B) $h_4 > h_2 > h_1 = h_3$
- (C) $h_2 > h_4 > h_1 > h_3$
- (D) $h_1 > h_3 = h_4 > h_2$
- (E) $h_2 > h_4 = h_1 > h_3$
- 10. 光碟表面以固定深度的凹點記錄訊息,其放大側視的示意圖如圖 7 所示。以波長為 λ 的紅光雷射光束照射在光碟表面,由反射光的干 涉結果(建設性干涉代表位元 1,破壞性干涉代表位元 0)來讀取 0 與 1 的訊息,圖中甲、乙、丙、丁表示四個不同位置處的入射與 反射的光束,則下列敘述何者正確?

- (A)甲與乙反射光疊加時,屬於破壞性干涉
- (B)丙與丁的光程差可為 A
- (C)承(B),圖中凹點底部的最小深度為 $\frac{1}{2}\lambda$
- (D)若將紅光雷射光束改用藍光雷射光束進行實驗,欲得到相同的訊息(干涉結果),則凹點的最小深度應變大
- (E)若整個光碟與紅光雷射裝置改放在折射率大於 1 的環境中, 欲得到與真空中相同的訊息, 則凹點的最小深度應變小
- 11. 某生用單狹縫來測量未知波長的雷射光,已知狹縫寬度為a,狹縫與屏幕間的距離為L,若 屏幕上第二亮帶中心與中央亮帶中心的距離為S,則通過單狹縫兩端的光到屏幕上第二亮帶 中心的光程差為何?

$$(\!A\!)\frac{LS}{a}$$

(B)
$$\frac{aS}{L}$$

$$(C)\frac{aL}{S}$$

$$(D)\frac{5LS}{2a}$$

$$(\mathrm{E})\frac{5aS}{2L}$$

12. 如圖 8 所示,質量與電量皆均勻分布的細棒,長為 ℓ 、質量為 m、單位長度的電荷為 λ ,其一端繫於定點 O,並可繞 O 自由轉動。棒置於水平向右的均勻電場(電場強度為 E)中,平衡時棒與鉛直線的夾角為 θ ,若重力加速度為 g,則 $\tan\theta$ 為何?

(A) $\frac{mg}{\lambda \ell E}$

 $(B)\frac{\lambda \ell E}{mg}$

 $(C)\frac{\lambda\ell}{mgE}$

 $(D)\frac{gE}{m\lambda\ell}$

(E) $\frac{\lambda \ell g}{mE}$

13. 空間中的電位 V 與位置 x 的關係如圖 9 所示,有一質 v(v) 子於 x=6 cm 處釋放,釋放時動能為 2 eV,整個運動過程只受靜電力作用。若釋放時朝-x 軸方向運動,則下列敘述何者正確?

- (A)質子所受靜電力方向為-x 軸方向
- (B)朝-x 軸方向運動過程,質子動能增加
- (C)質子於 x=4 cm 處,電位能為 9 eV
- (D)質子於x=5 cm 處,系統的力學能為 6 eV
- (E)質子於 x=4 cm 處折返,開始朝 +x 軸方向運動
- 14. 圖 10 中的 a 點電場量值為 E_a 、a 點電位為 V_a ,b 點電場量值為 E_b 、b 點電位為 V_b ,關於各種帶電體的電力線或等位線圖形及電場量值、電位之關係,下列選項何者正確?

- (A)帶等量異性電之無限大金屬板中,等位線(虛線)如圖 10 甲,且 $V_{\rm a}\!>\!V_{\rm b}$
- (B)帶電量-Q、半徑為 R 之金屬球殼,等位線(虛線)如圖 10 乙,且 $V_{\rm a} > V_{\rm b}$
- (C)帶電量-Q、半徑為R之金屬球殼,其產生的電力線如圖 10 丙,且 $E_b > E_a$
- (D)帶電量-Q之點電荷,其產生的電力線如圖 10 丁,且 $E_b > E_a$
- (E)帶等量異性電之無限大金屬板中,電力線如圖 10 戊,且 $E_a > E_b$
- 15. 利用一內電阻 300 Ω 的伏特計與內電阻 5Ω 的安培計測量電阻 R 之電阻值,如圖 11 之電路中理想電池電動勢 $\varepsilon=9$ V。若電阻 R 實際值為 95Ω ,則下列敘述何者正確?

- (A)安培計的讀數為 0.12 A
- (B)伏特計的讀數為8V
- (C)利用伏特計讀數及安培計讀數所得之電阻測量值為 100 Ω
- (D)若使安培計內電阻變大,則可使電阻 R 測量值更接近實際值
- (E)若使伏特計內電阻變大,則可使電阻 R 測量值更接近實際值

9 百

共

16. 如圖 12 所示,一通有電流 I 的小直導線段 $\Delta \ell$ 位在圓心處(電流方向向上),在圓周上有五個等間隔的點 $A \times B \times C \times D \times E$,其中 A 與 E 位在 $\Delta \ell$ 的軸線上,C 為位在圓心的正右方,則下列敘述何者正確?

- (A)磁場量值 E 點大於 A 點
- (B)磁場量值 A 點大於 B 點
- (C) B、D 兩點磁場量值相等
- (D) C 點磁場量值最小
- (E) E 點磁場量值最大
- 17. 半徑 r 的圓形線圈置於一垂直射入紙面之均勻磁場 B 內,如圖 13 所示,若此磁場 B 隨時間 t 的變化如圖 14,t=1、t=3、t=5、t=7、t=9 的瞬時應電動勢量值分別為 ε_1 、 ε_3 、 ε_5 、 ε_5 、 ε_9 ,則不同時刻的應電動勢量值關係何者正確?

(A) $\varepsilon_3 > \varepsilon_7$

(B) $\varepsilon_5 > \varepsilon_3$

(C) $\varepsilon_5 > \varepsilon_1$

(D) $\varepsilon_3 = \varepsilon_7$

- (E) $\varepsilon_5 = \varepsilon_9$
- 18. 以下為五位同學談到他們最敬佩的科學家在近代物理上的貢獻:
 - 甲同學說:「普朗克首提量子論,完整解釋黑體輻射能量分布的實驗結果,開啟近代物理 研究之門」。
 - 乙同學說:「拉塞福由 α 粒子的散射實驗,發現原子核內的中子與質子,使人類對原子核 結構的了解更為深入」。
 - 丙同學說:「湯姆森的陰極射線實驗發現電子是普遍存在於物質中的粒子,並且測出電子 的質量」。
 - 丁同學說:「波耳依據德布羅意的物質波假說,提出氫原子角動量與能量的量子化,使人 類對原子結構的了解跨進一大步」。
 - 戊同學說:「愛因斯坦以光量子說完美解釋光電效應的實驗結果,驗證牛頓的光微粒說是 對的」。
 - 請問五位同學的談話內容,正確的為哪幾位?
 - (A)僅有甲
 - (B)僅有甲、戊
 - (C)僅有甲、丙、戊
 - (D)僅有甲、乙、丙、戊
 - (E)甲、乙、丙、丁、戊

19. 在光電效應中,已知電子要由 A 金屬內部移出脫離其表面,所需的最小能量為 3.1~eV。某生欲使用氣態 B 原子中的電子在 4 個能階之間躍遷時,其所發出的不同波長之光波,分別照射 A 金屬。若此 4 個能階分別為-13.6~eV、-3.4~eV、-1.5~eV 與-0.85~eV,在 B 原子所發出之不同特定波長的光分別照射下,則某生預測 A 金屬所產生之光電子的最大動能有可能為何?

(A) 0.3 eV

(B) 1.9 eV

(C) 2.55 eV

(D) 6.9 eV

(E) 9.65 eV

20. 一自由電子被局限在位置坐標 x=0 與 x=a 之間作直線運動,而 a 為奈米尺度,因此該電子的物質波形成兩端為節點的駐波,圖 15 為 n=1 與 n=2 的駐波狀態。設 h 為普朗克常數、m 為電子質量,則 此自由電子處於第 n 個駐波狀態的動能 K_n 為何?

- $(A)\frac{n^2h^2}{2ma}$
- $(B)\frac{n^2h^2}{4ma^2}$
- $(C)\frac{n^2h^2}{8ma^2}$
- (D) $\frac{n^2h^2}{10ma^2}$
- $(E)\frac{n^2h^2}{12ma^2}$

二、多選題(占20分)

說明:第21.題至第24.題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫 記在答案卡之「選擇題答案區」。各題之選項獨立判定,所有選項均答對者,得5分; 答錯1個選項者,得3分;答錯2個選項者,得1分;答錯多於2個選項或所有選項 均未作答者,該題以零分計算。

21. 如圖 16 所示,質量為 m 的小物體自傾斜角為 θ 、質量為 M、長為 ℓ 的斜面頂端滑下來(原本兩者皆靜止)到斜面底端,M 與水平地面間無摩擦力,下列哪些物理量的量值與斜面是否光滑無關?

- (A) m 滑到斜面底端所經歷的時間
- (B)當 m 滑到斜面底端時, M 對地的位移
- (C)當m滑到斜面底端時,對M的末速度
- (D)當m滑到斜面底端時,m、M系統的質心位移
- (E)當m滑到斜面底端時,m、M系統的水平總動量

22. 一絕熱良好的容器內,以絕熱良好的隔板隔成體積分別為 $5V \times 2V$ 的 甲、乙兩室,如圖 17 所示。甲室裝入溫度 300 K 的理想氣體氦(4 He),乙室裝入溫度 600 K 的理想氣體氖(20 Ne),兩氣體總質量相等,則下列敘述哪些正確?

- (A)甲、乙兩室中,氣體分子數比為 5:2
- (B)甲、乙兩室中,氣體壓力比為1:1
- (C)甲、乙兩室中,氣體的總動量比為 $1:\sqrt{10}$
- (D)將隔板抽走,容器內混合後的甲、乙兩氣體分子方均根速率比為 $\sqrt{5}:1$
- (E)將隔板抽走,容器內混合後的氣體分子溫度為 350 K
- 23. 如圖 18 所示,有一帶電粒子在垂直射出紙面的均勻磁場中運動,虛線為其運動軌跡,中央是一塊薄的金屬板。abc 與 cde 均為半圓,且ac: ec=3:4,則下列敘述哪些正確?

- (B)粒子運動的方向是 edcba
- (C)粒子帶正電
- (D)粒了在大半圓之圓周運動的時間等於小半圓之圓周運動的時間
- (E)粒子在大小兩半圓之圓周運動的向心加速度之量值比為1:1

24. 光電效應實驗裝置如圖 19,當電極 $C \times T$ 間的電壓 V 為負且漸漸增大至光電流 I 為零時,此時的逆向電壓稱為截止電壓 V_s 。今以 $A \times B$ 兩金屬做光電效應實驗,截止電壓 V_s 與入射光頻率 v 之關係如圖 20 所示。若 v_a : v_b =1:2,則下列敘述哪些正確?(h 為普朗克常數,e 為基本電量)

- (A) A、B 兩條直線的斜率皆為 $\frac{h}{e}$
- (B) A、B的功函數比為 2:1
- (C) A、B的底限波長比為1:2
- (D)若以頻率為 $3v_a$ 的光照射 $A \times B$ 兩金屬表面時, $A \times B$ 的截止電壓比為 2:1
- (E)承(D),若以相同頻率 $3v_a$ 且強度增為 3 倍的光照射 A 金屬表面,可測得的光電子最大動能亦增為 3 倍

第貳部分:非選擇題(占20分)

說明:本部分共有兩大題,答案必須寫在「答案卷」上,並於題號欄標明大題號(一、二) 與子題號(1.、2.、……)。作答時不必抄題,但必須寫出計算過程或理由,否則將 酌予扣分。作答務必使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。每一子題 配分標於題末。

一、如圖 21 所示(圖形未依實際比例繪製),一質量為 m、可視為質點的小球於左右兩側的光滑牆壁來回碰撞。從左牆頂端以 v=1 公尺 / 秒的初速水平射出,下落了 h₁=4 公尺的鉛直距離後,第一次撞擊右側牆壁,發生非彈性碰撞。反彈後下落到 h₂=49 公尺的鉛直距離時,與左側牆壁發生第二次撞擊,過程中不計空氣阻力。

(重力加速度g=10公尺/0²)

- 1. 左、右牆之間的距離為何?(2分)
- 2. 第一次撞擊右側牆壁前瞬間之速度量值為何?(2分)
- 3. 小球撞擊牆壁的接觸時間與小球的飛行時間相比,極小可忽略。從第一次撞擊到第二次撞擊,共花多少時間?(3分)
- 4. 從右側牆壁反彈後的水平速度量值為何?(3分)

二、圖 22 為「電流天平」實驗示意圖,將電流天平的 U 形導線放入螺線管中,電流天平線路與螺線管線路分別接通直流電源,假設流經電流天平的電流為 I_1 ,流經螺線管的電流為 I_2 ,M 為小掛鉤之總質量,而電流天平的 U 形導線之長與寬分別為 ℓ_a 與 ℓ_b ,示意圖如圖 23。

1. 甲生實驗時,先固定螺線管的電流 I_2 為 2.0 安培,增加小掛鉤總質量 M,逐次調整電流天平的電流 I_1 ,使電流天平恢復平衡,如此取得對應的 $M \cdot I_1$ 五組數據如表 2:

	12 2				
小掛鉤總質量 M (毫克)	5	10	15	20	25
電流天平的電流 I1(安培)	0.4	0.8	1.2	1.6	2.0

- (1) 請畫出表 2 中小掛鉤總質量 M 與 I_1 關係的圖線。(2 分)
- (2) 再依據圖線的結果,寫下電流天平所受磁力與電流 I_1 之關係,並說明原因。(3分)
- 2. 承 1. 題,電流天平的 U 形導線之長與寬分別為 ℓ_a 與 ℓ_b , ℓ_a =8 公分、 ℓ_b =2.5 公分,則 甲生實驗時,螺線管內部的磁場量值為何?(重力加速度 g=10 公尺 / 秒²)(3 分)
- 3. 乙生與甲生用同一套設備進行相同的實驗,但乙生得到小掛鉤總質 M量 M與 I_1 關係的圖線如圖 24,則乙生在實驗的過程中發生了什麼錯 誤?(2分)

物理考科詳解

題號	1.	2.	3.	4.	5.	6.	7.	8.	9.
答案	(B)	(E)	(D)	(D)	(A)	(B)	(D)	(C)	(A)
題號	10.	11.	12.	13.	14.	15.	16.	17.	18.
答案	(E)	(B)	(B)	(E)	(C)	(C)	(C)	(A)	(A)
題號	19.	20.	21.	22.	23.	24.	100		
答案	(E)	(C)	(B)(D)(E)	(B)(D)(E)	(B)(D)	(A)(D)	3000		

第壹部分:選擇題

一、單選題

1. (B)

出處:基礎物理(二) B上 牛頓運動定律的應用

目標:分析過程,找出相關數量之間關係的能力

內容:提供轉彎之向心力為「靜摩擦力」,圓周運動

解析:機車騎士藉由「靜摩擦力」轉彎,故轉彎時 所需之向心力須小於路面可提供之最大靜摩

$$f_s = m \frac{v^2}{R} \le f_{s,max} = mg\mu_s$$

$$\Rightarrow \frac{v^2}{R} \le g\mu_s$$
 時,不打滑

若要符合題目敘述「在乾燥路面可安全過彎、 在潮溼路面卻會發生危險」,則過彎條件需 介於以下範圍

$$\Rightarrow 10 \times 0.6 \le \frac{v^2}{R} \le 10 \times 0.7$$

$$\Rightarrow 6 \le \frac{v^2}{R} \le 7$$

速度的單位須作轉換,v=36 km / h=10 m / s

(A)
$$\frac{v^2}{R} = \frac{10^2}{12} = 8.3 \text{ (m/s}^2)$$

(B)
$$\frac{v^2}{R} = \frac{10^2}{15} = 6.7 \text{ (m/s}^2)$$
 ,符合

(C)
$$\frac{v^2}{R} = \frac{10^2}{18} = 5.6 \text{ (m/s}^2)$$

(D)
$$\frac{v^2}{R} = \frac{10^2}{24} = 4.2 \text{ (m/s}^2)$$

(E)
$$\frac{v^2}{R} = \frac{10^2}{27} = 3.7 \text{ (m/s}^2\text{)}$$

2. (E)

出處:基礎物理(二)B下 位能與力學能守恆律

目標:直接運用基本觀念、方法與原理的能力

內容:力學能守恆

解析:物體在運動過程中,僅受萬有引力作用,力 學能守恆。

在星球 A:
$$-\frac{GMm}{R}+K=-\frac{GMm}{R+R}+0$$

在星球 B:
$$-\frac{G(2M)m}{\frac{R}{2}}+K=-\frac{G(2M)m}{R'}+0$$

$$\Rightarrow R' = \frac{4}{7}R$$

距離星球 B 地表高度 =
$$\frac{4}{7}R - \frac{R}{2}$$
 = $\frac{R}{14}$

3. (D)

出處:基礎物理(二)B下 位能與力學能守恆律

目標:綜合運用基本觀念、方法與原理的能力

內容:非保守力作功,力學能不守恆

解析:在 bc 範圍間運動,受到動摩擦力 f_k 作負功。 設彈簧第一次達最大伸長量時,伸長量為 d

 $W_{\sharp \text{R} \oplus \text{T}} = \Delta E = \Delta U_{\text{s}} + \Delta K$

由釋放到彈簧最大伸長量

$$(0.45 \times 5 \times 10) \times d = (\frac{1}{2} \times 200 \times d^2 + \frac{1}{2} \times 200 \times 0.5^2) + (0 + 0)$$

$$\Rightarrow d = \frac{2}{5} \text{ (m)}$$
$$= 40 \text{ (cm)}$$

4. (D)

出處:基礎物理(二)B下 動量與動量守恆律

目標:分析過程,找出相關數量之間關係的能力

內容:角動量的時變率為力矩

解析:角動量的時變率量值為力 矩量值。如右圖所示,小 球作鉛直圓周運動時,受 到繩張力、重力作用。相 對 O 點而言,繩張力之力

臂長度為零,不會造成力矩,故判斷角動量 時變率須由重力產生之力矩量值決定。當小 球運動至「丁」點時,重力所產生之力矩量

值最大。

5. (A)

出處:基礎物理(二)B上 牛頓運動定律

目標:直接運用基本觀念、方法與原理的能力

內容:牛頓第二運動定律的力,視重

解析:磅秤所受垂直於秤臺面的力,即為磅秤讀數, 只有丁的小鳥作用在磅秤,故可知磅秤讀數 之大小關係為丁>甲=乙=丙=戊。

6. (B)

出處:基礎物理(二)B下 功與動能

目標:綜合運用基本觀念、方法與原理的能力

內容:定力所作的功,變力所作的功,功能定理與

動能

解析:桌面對物體的動摩擦力 $f_k = \mu_k mg = 2$ (牛頓) 動摩擦力 f_k 所作的功= -2x6 = -12 (焦耳) 施力所作的功為 F-x 圖形中力與位置關係線下 的面積,如下圖

$$W = \frac{1}{2} \times 6 \times 6 = 18$$
 (焦耳)
由功能定理 $W = \Delta K$
 $18 - 12 = \frac{1}{2} \times 2 \times (v^2 - 2^2)$

$$\Rightarrow v = \sqrt{10} \quad (公尺/秒)$$

7. (D)

出處:選修物理(上) 波動

目標:分析過程,找出相關數量之間關係的能力

內容:水波折射特性分析

解析:(A) 如下圖,入射角為37°。

(B)
$$\frac{\sin\theta_{\central{R}}}{\sin\theta_{\central{R}}} = \frac{v_{\central{R}}}{v_{\central{R}}} \Rightarrow \frac{\sin 37^{\circ}}{\sin \theta} = \frac{3}{4} \Rightarrow \sin \theta = \frac{4}{5}$$

(C) 折射後,因水波波速變大,水波行進方向 偏離法線。

(D)
$$\frac{\lambda_{\cline{k}}}{\lambda_{\cosep}} = \frac{v_{\cline{k}}}{v_{\cosep}} \Rightarrow \frac{9}{\lambda_{\cosep}} = \frac{3}{4} \Rightarrow \lambda_{\cosep} = 12 (公分)$$

(E) 折射波與入射波的頻率比為1:1。

8. (C)

出處:選修物理(上) 聲波

目標:分析過程,找出相關數量之間關係的能力

內容:駐波特性分析

解析:(A) 節點數可為奇數或偶數。

(B) 能否形成駐波與聲音的頻率有關,但與管 口半徑無關。

(C)
$$L = \frac{\lambda}{2}n \ (n=1 \cdot 2 \cdot 3 \cdot \dots)$$

$$\Rightarrow \lambda = \frac{2L}{n} = \frac{2 \times 0.17}{n}$$

$$f = \frac{v}{\lambda} = \frac{340n}{2 \times 0.17}$$

$$= 1000n \ (n=1 \cdot 2 \cdot 3 \cdot \dots)$$

$$\Rightarrow f = 1000 \cdot 2000 \cdot 3000 \cdot \dots$$
 (赫茲)

(D) $f=\frac{\nu}{\lambda}$,當聲速不變,底端封閉形成節點, 管長為 $\frac{1}{4}$ 波長,使基音波長變大,則頻率 會變小。

(E) 因為音叉頻率為固定,故形成駐波之頻率

也是固定的,當管長增加,只會增加駐波的節點個數。

9. (A)

出處: 選修物理(上) 幾何光學

目標:分析過程,找出相關數量之間關係的能力

內容:折射現象分析

解析:(1) h_1 與 h_2 皆等於實深 R。

(2)
$$\frac{h_3}{n_{\text{reg}}} = \frac{R}{n_{\text{trig}}} \Rightarrow h_3 = \frac{n_{\text{reg}}}{n_{\text{trig}}} \times R = \frac{1}{1.5} R$$

$$(3) \quad \frac{h_4}{n_{\rm 誘明液體}} = \frac{R}{n_{\rm 缺璃}}$$

$$\Rightarrow h_4 = \frac{n_{\text{透明液體}}}{n_{\text{tytis}}} \times R = \frac{1.3}{1.5} R$$

(4) 綜合上述可知 $h_1 = h_2 > h_4 > h_3$

10. (E)

出處: 選修物理(上) 物理光學

目標:分析過程,找出相關數量之間關係的能力

內容:光的干涉現象分析

解析:(A) 甲與乙反射光疊加時,由於光程差為零, 故為建設性干涉。

> (B) 丙與丁反射光疊加成為破壞性干涉時,其 光程差等於半波長的奇數倍,即

光程差=
$$(m-\frac{1}{2})\lambda, m=1, 2, \dots$$

(C) 令最小深度為 d ,丙光線經凹點底部反射 後比丁多走了 2d 的距離,即光程差為 2d , 故

$$2d = (m - \frac{1}{2}) \lambda, m = 1 \cdot 2 \cdot \cdots$$

取最小值
$$m=1 \Rightarrow 2d = \frac{1}{2} \lambda \Rightarrow d = \frac{1}{4} \lambda$$

(D) 由 $d = \frac{1}{4} \lambda$ 可知,藍光 λ 變小,欲得到相同的干涉結果,則凹點深度 d 應變小。

(E) 環境折射率大於 1 時,紅光雷射在此環境中的波長會小於 λ ,由 $d=\frac{1}{4}\lambda$ 可知,當 λ 變小,欲得到相同的干涉結果,則凹點深度 d 應變小。

11. (B)

出處:選修物理(上) 物理光學

目標:分析過程,找出相關數量之間關係的能力

內容:光的繞射現象分析

解析:
$$\frac{5}{2} \Delta y = S \Rightarrow \frac{5L\lambda}{2a} = S \Rightarrow \lambda = \frac{2aS}{5L}$$

光程差= $\frac{5}{2} \lambda = \frac{5}{2} \times \frac{2aS}{5L} = \frac{aS}{L}$

12. (B)

出處:基礎物理(二) B 上 靜力學; 選修物理(上) 靜雷學

目標:直接運用基本觀念、方法與原理的能力 內容:電場與電力之關係,靜力平衡之觀念 解析:細棒的電量 $q=\lambda \ell$,此細棒可視為將質量與電荷 q 集中在質心處的情況相同。T 為 O 點施力給細棒之力,因棒平衡,所以合力矩為零,以 O 為支點

$$mg \cdot \frac{\ell}{2} \sin \theta = qE \cdot \frac{\ell}{2} \cos \theta$$

$$\Rightarrow \tan \theta = \frac{qE}{mg} = \frac{\lambda \ell E}{mg}$$

另解:如下圖,因棒平衡,所以合力為零,即 $\overrightarrow{T}+m\overrightarrow{g}+q\overrightarrow{E}=0$ 。三力形成一封閉三角 形,且為直角三角形,T為斜邊,T邊 與 mg 邊夾角為 θ

$$\therefore \tan \theta = \frac{qE}{mg} = \frac{\lambda \ell E}{mg}$$

13. (E)

出處:選修物理(上) 靜電學

目標:綜合運用基本觀念、方法與原理的能力

內容:電位與電位能之關係,力學能守恆

解析:如題圖,x=6 cm 處之電位為 5 V,質子於該 處釋放其電位能為 5 eV、動能為 2 eV、力學 能為 7 eV,因整個運動過程只受靜電力作用, 故質子的力學能守恆。

- (A) 2 cm < x < 10 cm,電場方向指向+x 軸, 質子於x = 6 cm 處釋放,所受靜電力指向 +x 軸。
- (B) 朝-x 軸方向運動過程,質子電位能增加,因力學能守恆,故動能減少。
- (C) 質子於 x=4 cm 處,電位能為 7 eV。
- (D) 質子於x=5 cm 處,系統的力學能為7 eV。
- (E) 質子於 x=4 cm 處,力學能為 7 eV、電位 能為 7 eV,故動能為 0,又質子所受靜電 力指向+x 軸,則質子於 x=4 cm 處折返, 開始朝+x 軸方向運動。

14. (C)

出處:選修物理(上) 靜電學

目標:分析過程,找出相關數量之間關係的能力

內容:等位線、電場、電力線之關係判斷

解析:(A) 帶等量異性電之無限大金屬板中,等位線

圖(一

(B) 帶電量-Q、半徑為R之金屬球殼,為一等位體,金屬球殼表面與內部等電位, $V_{\rm a}=V_{\rm b}$

(D) 帶電量-Q之點電荷,其產生的電力線如圖 \Box , $E=\frac{kQ}{2}$,且 $E_{\rm b}{<}E_{\rm a}$

(E) 帶等量異性電之無限大金屬板中,電力線如圖曰,為均勻電場,且 $E_a=E_b$

15. (C)

出處:選修物理(下) 電流、電阻與電路

目標:綜合運用基本觀念、方法與原理的能力

內容:電流、電壓、電阻之關係判斷

解析:(A)(B) 伏特計的讀數為9V

流過安培計之電流 $I = \frac{9}{95+5} = 0.09$ (A)

(C) 電阻測量值 = $\frac{$ 伏特計的讀數 = $\frac{9}{0.09}$ = $100 (\Omega)$

- (D) 安培計內電阻若變大,會使得流過安培計 之電流變小,電阻測量值與實際值會差距 更大。
- (E) 在本題中, 伏特計內電阻變大不影響伏特計的讀數, 不會改變電阻測量值。

16. (C)

出處:選修物理(下) 電流的磁效應

目標:理解基本觀念、方法與原理的能力

內容:載流導線的磁場之原理與分析

解析:由必歐一沙伐定律 $\Delta B = \frac{\mu_0}{4\pi} \frac{I\Delta\ell}{r^2} \sin\theta$,且因等間隔分布, $A \times B \times C \times D \times E$ 各點的 θ 分別為 $0^{\circ} \times 45^{\circ} \times 90^{\circ} \times 135^{\circ} \times 180^{\circ}$,所以 $A \times E$ 兩點磁場為零;C 點磁場量值最大; $B \times D$ 兩點磁場量值相等, θ

17. (A)

出處:選修物理(下) 電磁感應

目標:綜合運用基本觀念、方法與原理的能力

內容:磁場隨時間的變化率與應電動勢之關係

解析:依法拉第電磁感應定律 $\varepsilon=-\frac{d\Phi_B}{dt}$,因圓形線圈面積不變,可依磁場 B 對時間 t 關係圖中,各點切線斜率的絕對值比較瞬時應電動勢量值: $\varepsilon_3\!>\!\varepsilon_1\!=\!\varepsilon_2\!>\!\varepsilon_1\!=\!\varepsilon_5$

18. (A)

出處:選修物理(下) 近代物理的重大發現、原子結 構與原子核

目標:累積知識並加以記憶的能力

內容:了解近代物理的發展史

解析:乙同學:拉塞福利用α粒子的散射實驗,發現

原子核的存在;中子為查兌克發現。

丙同學:湯姆森的實驗測出電子的荷質比。

丁同學:波耳提出角動量與能量量子化的假設

(1913年),並非依據德布羅意的

物質波假說(1923~1924年)。

戊同學:愛因斯坦的光量子說與牛頓的光微粒

說是不相同的。

19. (E)

出處:選修物理(下) 近代物理的重大發現

目標:綜合運用基本觀念、方法與原理的能力

內容:光電效應與電子能階躍遷的綜合應用

解析:B原子最低的 ————————— -0.85e

可產生的光子

-3.4 - (-13.6) = 10.2 (eV)

-1.5-(-13.6) = 12.1 (eV)

能量分別為

-0.85 - (-13.6) = 12.75 (eV)

-1.5-(-3.4) = 1.9 (eV)

-0.85 - (-3.4) = 2.55 (eV)

-0.85-(-1.5) = 0.65 (eV)

電子要由 A 金屬內部移出脫離其表面所需的 最小能量為 3.1 eV,小於此值的光子無法產 生光電子,故僅有 10.2 eV、12.1 eV、12.75 eV 這三種光子可以產生光電子。

產生之光電子的最大動能分別為

$$10.2 - 3.1 = 7.1 \text{ (eV)}$$

$$12.1 - 3.1 = 9.0 \text{ (eV)}$$

12.75 - 3.1 = 9.65 (eV)

故選(E)。

20. (C)

出處:選修物理(下) 原子結構與原子核

目標:分析過程,找出相關數量之間關係的能力

內容:電子直線運動形成駐波的能階

解析:由兩端為節點的駐波原理,電子處於第n個 駐波狀態時之物質波波長 λ 與兩端長度a之 間的關係為

$$a = \frac{\lambda}{2} \times n \Rightarrow \lambda = \frac{2a}{n}$$

而根據德布羅意物質波理論,物質波波長

$$\lambda = \frac{h}{p \text{ (動量)}}$$

$$\Rightarrow p = \frac{h}{\lambda} = \frac{h}{2a} = \frac{nh}{2a}$$

則電子動能
$$K_n = \frac{p^2}{2m} = \frac{(\frac{nh}{2a})^2}{2m} = \frac{n^2h^2}{8ma^2}$$

二、多撰題

21. (B)(D)(E)

出處:基礎物理(二)B下 動量與動量守恆律 目標:分析過程,找出相關數量之間關係的能力

內容:質心的運動只受外力影響,且與系統內各質 點之間的內力完全無關

解析:(A)(C) m 滑下的時間及末速度與接觸面間之摩 擦係數有關。

> (B) 水平方向不受外力: $F_x = 0$ 質心水平位移= $0 = \frac{m(\ell \cos \theta + x_M) + Mx_M}{m + M}$

 \therefore 斜面水平位移 $x_M = \frac{-m}{M+m} \ell \cos \theta$

⇒ 質心水平位移與重力(外力)有關,與 摩擦力(內力)無關

(D) $F_x=0$,系統質心的水平位移為零。 $F_y\neq 0$ (受地心引力作用),系統質心的鉛 宜位移= $\frac{m\ (\ell\sin\theta)}{m+M}$

⇒ 系統之質心位移與重力(外力)有關, 與摩擦力(內力)無關

(E) 水平方向不受外力,系統之水平總動量為零,與摩擦力(內力)無關。

22. (B)(D)(E)

出處:選修物理(上) 熱學

目標:分析過程,找出相關數量之間關係的能力

內容:混合氣體特性分析

解析:(A) 兩氣體質量相等 → 分子數比=莫耳數比

$$\Rightarrow \frac{m}{4} : \frac{m}{20} = 5 : 1$$

(B)
$$\boxplus PV = nRT \Rightarrow P = \frac{nRT}{V}$$

$$\Rightarrow P_{\parallel}: P_{Z} = \frac{5 \times 300}{5} : \frac{1 \times 600}{2}$$

$$= 1: 1$$

(C) 甲、乙兩室中,各氣體的總動量相同,皆 為 0。

(D)
$$\frac{1}{2}mv^2 = \frac{3}{2}RT$$
 ⇒ 混合後溫度相同 $\Rightarrow v \propto \frac{1}{\sqrt{m}}$ $\Rightarrow \frac{v_{\text{\tiny H}}}{v_{\text{\tiny Z}}} = \frac{\sqrt{m_{\text{\tiny Z}}}}{\sqrt{m_{\text{\tiny H}}}} = \frac{\sqrt{20}}{\sqrt{4}} = \frac{\sqrt{5}}{1}$

(E) 由能量守恆:

$$\frac{3}{2} n_{\text{\tiny H}}RT_{\text{\tiny H}} + \frac{3}{2} n_{\text{\tiny Z}}RT_{\text{\tiny Z}} = \frac{3}{2} (n_{\text{\tiny H}} + n_{\text{\tiny Z}}) RT_{\text{\tiny R}}$$

$$\Rightarrow T_{\text{\tiny R}} = \frac{n_{\text{\tiny H}}T_{\text{\tiny H}} + n_{\text{\tiny Z}}T_{\text{\tiny Z}}}{n_{\text{\tiny H}} + n_{\text{\tiny Z}}} = \frac{5 \times 300 + 1 \times 600}{5 + 1}$$

$$= 350 (K)$$

23. (B)(D)

出處:基礎物理(二) B 上 牛頓運動定律的運用; 選修物理(下) 電流的磁效應

目標:直接運用基本觀念、方法與原理的能力

內容:帶電質點在磁場所受的磁力與等速圓周運動 之關係

解析:(A)(B) 動能損失 ∴速率變小

而 $r = \frac{mv}{qB}$,故粒子運動的方向是由半徑

大至半徑小,即 edcba。

- (C) 運動方向為逆時針方向,由右手定則知其 帶負電。
- (D) $T = \frac{2\pi m}{qB}$ 與半徑無關,故在兩半圓之圓 周運動的時間相等。
- (E) $: a = \frac{4\pi^2 r}{T^2}$,由(D)得知 T相同,a 正比於 r,向心加速度之量值比為 4 : 3 。

24. (A)(D)

出處:選修物理(下) 近代物理的重大發現

目標:分析過程,找出相關數量之間關係的能力

內容:光電效應的概念與應用

解析:(A) 根據愛因斯坦光電方程式

$$eV_s = h v - h v_0$$

$$⇒ V_s = \frac{h}{e} v - \frac{h v_0}{e}$$
 ,可知斜率為 $\frac{h}{e}$

- (B) 當 v=0 時,W (功函數) $=hv_0=-eV_s$ 因 $v_a: v_b=1:2$,故 $A \cdot B$ 的功函數比為 1:2。
- (C) $c = \nu \lambda$, c 為定值,則 ν 與 λ 成反比 $\Rightarrow \lambda_a : \lambda_b = \nu_b : \nu_a = 2 : 1$
- (D) 照 A 金屬表面 $e (V_s)_a = 3hv_a hv_a = 2hv_a$ 照 B 金屬表面

$$e(V_s)_b = 3hv_a - hv_b = 3hv_a - h(2v_a) = hv_a$$

 $\therefore (V_s)_a : (V_s)_b = 2 : 1$

(E) 光強度增為 3 倍代表光量子個數增為 3 倍,並不影響每個光量子的能量,也不影響電子可得到的最大動能。

第貳部分:非選擇題

$$-\cdot 1.$$
 $\frac{2\sqrt{5}}{5}$ 公尺 2. 9公尺/秒 3. $\sqrt{5}$ 秒

4. 0.4 公尺 / 秒

出處:基礎物理(二) B 上 運動學 ——平面運動

目標:綜合運用基本觀念、方法與原理的能力

內容:運動獨立性,動量衝量計算

解析: 1. 由射出到第一次撞擊期間,物體僅受重力作用,假設下落 h₁所需時間為 t₁。 鉛直方向作初速為零的等加速運動

水平方向作等速運動,兩牆間距為

$$vt_1 = 1 \times \frac{2\sqrt{5}}{5} = \frac{2\sqrt{5}}{5} \ (\triangle \mathbb{R})$$

2. 設撞擊前瞬間之速度為 v_1 水平方向作等速運動,撞擊前瞬間 $v_{1x}=v=1$ 公尺 / 秒 鉛直方向作等加速運動 $v_{1y}^2=0^2+2gh_1$ $\Rightarrow v_{1y}=\sqrt{2gh_1}=4\sqrt{5}$ (公尺 / 秒) $v_1=\sqrt{v_{1x}^2+v_{1y}^2}=\sqrt{1+80}=9$ (公尺 / 秒)

3. 反彈後之速度可藉由鉛直方向的運動求得。 假設下落 h_1 所需時間為 t_1 ,下落 h_2 所需時間為 t_2 ,則下落 h_2-h_1 之距離,費時 t_2-t_1

$$h_1 = \frac{1}{2}g{t_1}^2 \Rightarrow t_1 = \sqrt{\frac{2h_1}{g}} = \frac{2\sqrt{5}}{5} \ (\not\!\!\! D)$$

$$h_2 = \frac{1}{2} g t_2^2 \Rightarrow t_2 = \sqrt{\frac{2h_2}{g}} = \frac{7\sqrt{5}}{5} \ (\ \text{P})$$

$$t_2 - t_1 = \sqrt{5} \ (?)$$

4. 假設第一次撞擊後瞬間之速度為 v_2 ,則 $v_{1x}t_1=v_{2x}$ (t_2-t_1)

⇒
$$v_{2x} = \frac{v_{1x}t_1}{t_2 - t_1} = \frac{1 \times \frac{2\sqrt{5}}{5}}{\sqrt{5}} = 0.4 \; (公尺/秒)$$

二、1. (1)見解析 (2)成正比,見解析

2. 5×10⁻³ 特斯拉 3. 未歸零

出處:選修物理(下) 電流的磁效應

目標:綜合運用基本觀念、方法與原理的能力

內容:電流天平之實驗過程及原理

解析: 1. (1) I1(安培)

(2) M與 I_1 關係如上圖,M與 I_1 的關係圖線為通過原點之斜直線,M與 I_1 成正比,故磁力與 I_1 成正比。

原因:電流天平達平衡時,小掛鉤所 受重力與電流天平所受磁力相等,故 磁力與 I_1 成正比。

電流天平達平衡時,小掛鉤所受重力與電流天平所受磁力相等

 $Mg = I_1 \ell_b B$

 $\Rightarrow 10 \times 10^{-6} \times 10 = 0.8 \times 2.5 \times 10^{-2} \times B$

⇒ *B*=5×10⁻³ (特斯拉)

3. 題圖 24,當電流天平之電流為 0 時,小掛 鉤質量不為 0,代表乙生進行實驗時並未 將電流天平校正歸零。

※非選擇題評分標準

 $-\cdot 1$. 算出下落所需時間 $t_1 = \frac{2\sqrt{5}}{5}$ 秒得 1 分。

算出兩牆間距得1分。

- 2. 算出 ν_{1x} =1 公尺 / 秒、 ν_{1y} =4 $\sqrt{5}$ 公尺 / 秒得 1 分。 算出 ν_1 =9 公尺 / 秒得 1 分。
- 3. 算出 $t_1 = \frac{2\sqrt{5}}{5}$ 秒得 1 分。

算出
$$t_2 = \frac{7\sqrt{5}}{5}$$
 秒得 1 分。

算出 $t_2-t_1=\sqrt{5}$ 秒得 1 分。

- 4. 算出 v_{2x}=0.4 公尺 / 秒得 3 分。
- 二、1. (1) 圖形與坐標軸標示正確得 2 分 (x-y 軸物理量可對調)。
 - (2) 磁力與 I₁ 的關係正確得 1 分,原因解釋正確得 2 分。
 - 2. 答案正確得3分。
 - 3. 解釋正確得2分。