KOSHA GUIDE

H - 19 - 2023

벤젠의 생물학적 노출지표물질 분석에 관한 기술지침

2023. 8.

한국산업안전보건공단

안전보건기술지침은 산업안전보건기준에 관한 규칙 등 산업안전보건법령의 요구사항을 이행하는데 참고하거나 사업장 안전·보건 수준향상에 필요한 기술적 권고 지침임

안전보건기술지침의 개요

○ 작성자 : 한국산업안전보건공단 산업안전보건연구원 양정선

○ 개정자 : (1차) 한국산업안전보건공단 산업안전보건연구원 이미영

(2차) 한국산업안전보건공단 산업안전보건연구원 유계묵

(3차) 한국산업안전보건공단 산업안전보건연구원 이미영

○ 제·개정 경과

- 2000년 3월 KOSHA Code 산업의학분야 제정위원회 심의(제정)
- 2007년 8월 KOSHA Code 산업의학분야 제정위원회 심의(1차 개정)
- 2011년 6월 KOSHA Guide 산업의학분야 제정위원회 심의(2차 개정)
- 2017년 6월 KOSHA Guide 산업의학분야 제정위원회 심의(3차 개정)
- 2021년 8월 산업의학분야 표준제정위원회 심의(법령 및 규격 최신화)
- 2023년 7월 산업의학분야 표준제정위원회 심의(개정)

○ 관련규격 및 자료

- 한국산업안전보건공단 산업안전보건연구원. 생물학적 노출평가 기준 및 분석방법 연구: 크실렌 등 유기용제 16종. 연구원 2010-64-880. 2010
- American Conference of Governmental Industrial Hygienists(ACGIH): Documentation of the Threshold Limit Values and Biological Exposure Indices. 7th Ed
- Tranfo G, Paci E, Sisto R, Pigini D. Validation of an HPLC/MS/MS method with isotopic dilution for quantitative determination of trans,trans-muconic acid in urine samples of workers exposed to low benzene concentrations. Journal of Chromatography B. 2008;867:26 31
- 관련법규·규칙·고시 등
- 산업안전보건법 시행규칙 [별표 24] 특수건강진단·배치전건강진단·수 시건강진단의 검사항목(제206조 관련)
- 고용노동부고시 제2020-61호(특수건강진단기관의 정도관리에 관한 고시)
- 고용노동부고시 제2020-60호(근로자 건강진단 실시기준)
- 한국산업안전보건공단 산업안전보건연구원. 「근로자건강진단 실무지침」제1권 특수 건강진단 개요. 2022-산업안전보건연구원-777
- 안전보건기술지침의 적용 및 문의
- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고 하시기 바랍니다.
- 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2023년 8월 24일

제 정 자 : 한국산업안전보건공단 이사장

<u>목 차</u>

1.	목적1
2.	적용범위1
3.	용어의정의1
4.	분석개요2
5.	분석방법2
5.1	소변 중 t,t-뮤콘산2
5.2	소변 중 S-페닐머캅토산7
5.3	혈액 중 베제15

벤젠의 생물학적 노출지표물질 분석에 관한 기술지침

1. 목적

이 지침은 산업안전보건법(이하 "법"이라고 한다) 제130조(특수건강진단) 및 같은 법 시행규칙(이하 "시행규칙"이라고 한다) 제206조(특수건강진단 등의 검사항목 및 실시방법 등) 별표 24, 고용노동부고시 제2020-61호(특수건강진단기관의 정도관리에 관한 고시) 및 고용노동부고시 제2020-60호(근로자 건강진단 실시기준)에 따라 벤젠에 노출된 근로자의 생물학적 노출평가와 관련된 생물학적노출지표물질 분석 방법의 제시를 목적으로 한다.

2. 적용범위

이 지침은 법, 시행규칙 및 고용노동부고시에 따라 실시하는 근로자 건강진단 중 벤젠에 노출되는 근로자의 생물학적 노출평가에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 뜻은 다음과 같다.
 - (가) "생물학적 노출평가"란 혈액, 소변 등 생체시료 중 유해물질 자체 또는 유해물질의 대사산물이나 생화학적 변화산물 분석값을 이용한, 유해물질 노출에 의한 체내 흡수정도나 건강영향 가능성 등의 평가를 의미한다.
 - (나) "생물학적 노출지표물질"이란 생물학적 노출평가를 실시함에 있어 생체 흡수 정도를 반영하는 물질로 유해물질 자체나 그 대사산물, 생화학적 변화물 등을 말한다.
 - (다) "생물학적 노출기준값"이란 일주일에 40시간 작업하는 근로자가 고용노동부고시에서 제시하는 작업환경 노출기준 정도의 수준에 노출될 때 혈액 및 소변 중에서 검출되는 생물학적 노출지표물질의 값이다.

- (라) "정밀도(Precision)"란 일정한 물질에 대하여 반복측정·분석을 했을 때 나타나는 자료분석치의 변동의 크기를 나타낸다. 이 경우 같은 조건에서 측정했을 때 일어나는 우연오차(Random error)에 의한 분산(Dispersion)의 정도를 측정값의 변이계수(Coefficient of variation)로 표시한다.
- (마) "정확도(Accuracy)"란 분석치가 참값에 접근한 정도를 의미한다. 다만, 인증표준물질이 있는 경우는 상대오차로 표시하고, 인증표준물질이 없는 경우는 시료에 첨가한 값으로부터 구한 평균회수율로 표시한다.
- (바) "검출한계(Limit of detection: LOD)"란 공시료 신호값(Blank signal, background signal)과 통계적으로 유의하게 다른 신호값(Signal)을 나타낼 수 있는 최소의 농도를 의미한다. 이 경우 가장 널리 사용하는 공시료 신호값과의 차이가 공시료 신호값 표준편차의 3배인 경우로 한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전 보건기준에 관한 규칙에서 정하는 바에 따른다.

4. 분석개요

소변 중 뮤콘산, S-페닐머캅토산, 전혈 중 벤젠을 분석하며, 분석장비는 고성능액체크로마토그라프-자외선검출기(High performance liquid chromatograph-ultraviolet detector, HPLC-UVD), 고성능 액체크로마토그라프-질량분석기(High performance liquid chromatograph -mass spectrometer, HPLC-MS), 헤드스페이스 기체크로마토그라프-불꽃이온화검출기(Headspace gas chromatograph -flame ionization detector, HS GC-FID), 기체크로마토그라프-질량분석검출기(Gas chromatograph-mass selective detector, GC-MSD)를 사용한다.

5. 분석방법

- 5.1 소변 중 t.t-뮤콘산(trans,trans-muconic acid)
- 5.1.1 분석원리 및 시료채취

(1) 분석원리

벤젠은 체내로 흡수된 후 벤젠 노출량의 1.9%가 t,t-뮤콘산으로 대사되어 소변에서 검출된다. 소변 중 t,t-뮤콘산은 0.25 ppm까지의 벤젠 노출을 반영하는 노출 지표로, 자외선 검출기 파장 259 nm에서 가장 흡수 강도가 크므로 이 파장에서 t,t-뮤콘산을 검출한다. 소변 시료중의 t,t-뮤콘산을 고상추출(Solid phase extraction) 카트리지로 분리하고 농축하여 HPLC-UVD로 분석한다.

(2) 시료채취

(가) 시료채취 시기

소변 시료는 당일 작업종료 2시간 전부터 작업종료 사이에 채취한다.

- (나) 시료채취 요렁
- ① 채취용기는 밀봉이 가능한 용기를 사용하고, 시료는 10 mL 이상 채취한다.
- ② 채취한 시료 용기를 밀봉하고 채취 후 5일 이전에 분석하며 4 ℃(2~8 ℃)에서 보관한다. 단, 분석까지 보관 기간이 5일 이상 걸리면 시료를 냉동보관용 저온바이알에 옮겨 영하 20 ℃이하에서 보관한다.

5.1.2 고성능 액체크로마토그라피 자외선검출법

(1) 기구 및 시약

- (가) 기구
 - ① 자동피펫 100 1,000 µL, 1,000 µL
 - ② 용량 플라스크 10 mL 6개, 100 mL 1개, 1,000 mL 1개
 - ③ 고상추출(SPE) 카트리지(강음이온 교환수지(SAX) 100 mg)
 - ④ 용매여과장치
 - ⑤ HPLC용 바이알
 - ⑥ 혈액혼합기
- (나) 시약
- ① t,t-뮤콘산
- ② 제2인산나트륨(Na₂HPO₄)
- ③ 제1인산칼륨(KH₂PO₄)

- ④ 인산
- ⑤ 초산
- ⑥ 메탄올(HPLC용)
- ⑦ 탈이온수(18 MΩ/cm 이상)

(2) 시약 조제

(가) 표준용액 조제를 위한 희석용 소변

벤젠에 노출되지 않은 정상인 소변을 채취하여 냉동 보관한다. 냉동한 소변을 상온에서 녹이고, 여과지를 사용하여 여과한 후 여액을 표준용액 조제를 위한 희석용 소변으로 사용한다. 단, 사용 이전에 미리 소변을 분석하여 소변 중 뮤콘산이 없는 것을 확인한 소변을 표준용액 조제에 사용한다.

(나) 표준용액

- ① t,t-뮤콘산 표준시약 5 mg을 100 mL 용량플라스크에 옮기고 탈이온수로 표선을 채워 50 mg/L의 표준용액을 조제한다.
- ② 50 mg/L의 표준용액을 20 mL 취하여 100 mL 용량플라스크에 옮기고 희석용 소변으로 표선을 채워 10 mg/L의 표준용액 원액을 조제한다.
- ③ 표준용액 원액을 0.5, 1, 3, 5 mL를 취하여 10 mL 용량플라스크에서 희석용 소변으로 희석하여 뮤콘산 0.1, 0.5, 1, 3, 5 mg/L의 표준용액을 조제하여 검량선을 작성한다. 희석용 소변을 공시료로 한다.

(다) 고상추출용 초산 수용액

초산 100mL와 탈이온수 900mL를 혼합하여 10% 초산 1,000 mL를 조제한다. 10% 초산 1 mL를 1,000 mL 용량플라스크에 옮기고 탈이온수로 표선을 채워 0.1% 초산을 조제한다.

(라) 시료 희석용 인산완충용액 (pH 7.4)

제1인산칼륨 1.179 g과 제2인산나트륨 4.303 g을 정확하게 달아 1,000 mL 용량플라스크에 옮기고 탈이온수 100 mL를 넣고 교반하여 녹인 다음, 탈이온수로 1,000 mL 표선을 맞춘다.

(마) 이동상

제2인산나트륨 1.36 g을 1,000 mL 용량플라스크에 옮기고 탈이온수를 가하여 흔들어 녹인다. 탈이온수로 표선을 채워 10 mM 인산 완충용액을 만

들고 여기에 인산 850 μL를 가한다. 조제한 수용액을 0.45 μm 여과막을 이용하여 여과한 여액을 탈기한 후 이동상으로 사용한다.

(3) 시료 및 표준용액 전처리

- ① 고상추출 카트리지(Solid phase extraction)에 메탄올 1 mL를 3 회, 0.1% 초산 1 mL를 3회 통과시켜 활성화시킨다.
- ② 소변시료 또는 표준용액을 3분간 혈액혼합기에서 잘 섞어준 후, 500 μL 에 인산완충용액(pH 7.4) 300 μL를 넣고 혼합한 후, 카트리지에 주입한다. 소변 시료가 카트리지에 모두 스며들 때까지 그대로 방치한다.
- ③ 0.1% 초산 1 mL를 가하여 카트리지를 세척한다.
- ④ 10% 초산 1 mL를 2회 가하여 용리시킨 여액에 탈이온수를 가하여 최종 부 피를 3 mL로 맞춘 후 잘 섞고 HPLC 바이알에 옮겨 분석용 검액으로 한다.

(4) 고성능 액체크로마토그라프 분석 조건

- (가) 컬럼: Capcell Pak MF Ph-1 SG 80 컬럼(150 mm × 4.6 mm, 입경 5 μm) 또는 이와 동등한 수준으로 분리가 가능한 컬럼.
- (나) 이동상 : 10 mM 제2인산나트륨 수용액 1,000 mL + 인산 850 μL
- (다) 유속: 0.5 mL/min
- (라) 시료 주입량 : 50 uL
- (마) 검출기: 자외선검출기(259nm)

(5) 분석 결과 크로마토그램 예시

<그림 1> 소변 시료 중 t,t-뮤콘산의 HPLC-UVD 크로마토그램

(6) 농도계산

검량선용 표준용액의 농도를 가로(x)축으로 하고 시료의 피크 면적을 세로 (y)축으로 하여 검량선을 작성하고, y=ax+b의 회귀방정식에 시료의 피크 면적을 대입하여 시료 중 포함된 t,t-뮤콘산의 농도(mg/L)를 구한다. t,t-뮤콘산의 농도값을 크레아티닌으로 보정하여(mg/g 크레아티닌) 벤젠의 생물학적 노출평가 결과값을 계산한다.

(7) 생물학적 노출기준

(가) 기준값 : 500 μg/g 크레아티닌

(나) 소변 중 크레아티닌 농도

소변 중 생물학적 노출평가지표물질 보정에 사용하는 크레아티닌 농도는 0.3 - 3.4 g/L 범위이며, 크레아티닌 농도가 이 범위를 벗어난 소변은 다시 채취한다.

(8) 정밀도(예)

	농도(mg/L)	변이계수(%)*
 t,t-뮤콘산	0.5	3.6
1,1一年七位	5.0	3.4

^{*} 같은 농도의 시료를 7개 분석한 결과로부터 구함.

(9) 정확도(예)

	농도(mg/L)	회수율(%)*
 t,t-뮤콘산	0.5	100.6
1,1一开七位	5.0	99.7

^{*} 같은 농도의 시료를 7개 분석한 결과로부터 구함.

(10) 검출한계

(가) 검출한계

예) 소변 중 t.t-뮤콘산 0.02 mg/L(S/N 비 3)1)

¹⁾ 배경 반응값(noise, N)의 3배인 시료 반응값(signal, S)을 나타내는 농도를 검출한계로 함.

(나) 산출방법

검량선에 의한 표준용액의 농도와 면적간의 회귀식을 구하고 이 회귀식의 표준오차와 기울기를 이용하여 검출한계를 산출한다.

$$LOD = 3 \times \frac{\sqrt{\frac{\sum (Y_{ei} - Y_i)^2}{N-2}}}{b}$$

 Y_{ei} : 회귀식에 의해 구한 각 시료량에 대한 반응값

 Y_i : 각 시료량에 대한 반응값

N: 표준용액 시료 수 b: 회귀방정식의 x계수

5.2 소변 중 S-페닐머캅토산

5.2.1 분석원리 및 시료채취

(1) 분석원리

벤젠 노출량의 0.05% 정도가 S-페닐머캅토산으로 대사되어 소변으로 배설된다. S-페닐머캅토산은 t,t-뮤콘산보다 더 민감하고 특이적인 벤젠 노출 지표이다. 소변 중의 S-페닐머캅토산을 고성능액체크로마토그래프로 분리하고질량분석기를 사용하여 검출하거나, S-페닐머캅토산을 유기용제로 추출한후 휘발성 유도체를 만들어 기체크로마토그래프-질량분석검출기로 분석한다.

(2) 시료의 채취

(가) 시료채취 시기

소변 시료는 당일 작업종료 2시간 전부터 작업종료 사이에 채취한다.

(나) 시료채취 요령

① 채취용기는 밀봉이 가능한 용기를 사용하고. 시료는 10 mL 이상 채취한다.

② 채취한 시료 용기를 밀봉하고 채취 후 5일 이전에 분석하며 4 ℃(2~8 ℃)에서 보관한다. 단, 분석까지 보관 기간이 5일 이상 걸리면 시료를 냉동보관용 저온바이알에 옮겨 영하 20 ℃이하에서 보관한다.

5.2.2 기체크로마토그라피 질량분석검출법

(1) 기구 및 시약

(가) 기구

- ① 자동피펫 100 1000 µL
- ② 용량플라스크 100 mL 5개, 1,000 mL 2개
- ③ 마개달린 시험관 10 mL
- ④ 시료증발농축기
- ⑤ 원심분리기

(나) 시약

- ① S-페닐머캅토산(S-phenylmercapturic acid)
- ② 헵타데카논산(Heptadecanoic acid)
- ③ 염산
- ④ 에틸아세테이트
- ⑤ 클로로포름
- ⑥ 메탄올(HPLC급)
- ⑦ 탈이온수(18 MΩ/cm 이상)

(2) 시약 조제

(가) 표준용액 조제를 위한 희석용 소변

벤젠에 노출되지 않은 정상인 소변을 채취하여 냉동 보관한다. 냉동한 소변을 상온에서 녹이고, 여과지를 사용하여 여과한 후 여액을 표준용액조제를 위한 희석용 소변으로 사용한다. 단, 사용 이전에 미리 소변을 분석하여 소변 중 S-페닐머캅토산이 없는 것을 확인한 소변을 표준용액 조제에 사용한다.

(나) 표준용액

① S-페닐머캅토산 약 10 mg을 정밀하게 달아 1,000 mL 용량 플라스크에 넣고 10 mL의 2 M 염산 용액을 가하여 용해시키고 증류수로 표선을 채워 10 mg/L 표준용액 원액을 만든다.

② 표준용액 원액을 0.1, 0.5, 1.0, 5.0, 10.0 mL 취하여 100 mL 용량플라스크에 옮기고 희석용 소변으로 표선을 채워 10, 50, 100, 500, 1,000 µg/L의 표준용액을 조제한다. 희석용 소변을 공검액으로 한다.

(다) 내부 표준용액

헵타데카논산 약 10 mg을 정밀하게 재서 25 mL 용량 플라스크에 넣고 메 탄올로 표선을 채워 0.4 mg/L 용액을 조제한다.

(라) 유도체화 시약

진한 염산 5 mL를 100 mL의 메탄올에 가해 기체크로마토그래피용 유도 체화 시약을 조제한다.

(3) 시료 및 표준용액 전처리

- (가) 소변시료는 채취 후, 진한 염산을 1 mL/100 mL 의 농도가 되게 가하여 소변의 pH가 2.0 이하가 되게 한다.
- (나) 소변시료 또는 표준용액을 3분간 혈액혼합기에서 잘 섞어준 후, 1 mL를 취하여 0.2 mL의 내부표준용액을 가한 후, 2 mL의 에틸아세테이트를 첨가한 다음 20분간 흔들어 주고 1,500 rpm으로 4분간 원심분리하여 유기층을 추출한다.
- (다) 추출한 유기층은 시료증발농축장치에서 50 ℃로 가온하며 유기용매를 증발, 건조시킨 다음, 유도체화시약을 1 mL 가하여 녹인 후 60 ℃에서 40 분간 반응시킨다.
- (라) 반응이 끝난 용액에 클로로포름 1 mL와 탈이온수 2 mL를 가하여 20분 간 흔들어 추출한 후, 원심분리기에서 1,500 rpm으로 4분간 원심분리하여 수층과 클로로포름층을 분리하고 수층을 먼저 제거한 후, 클로로포름층을 기체크로마토그래프에 주입한다.
- (마) 소변 대신 공시료 및 표준시료에 대하여 소변시료와 마찬가지로 위와 같이 처리한다.

(4) 기체크로마토그라프 분석 조건

(가) 컬럼 : HP-5MS(30 m x 0.25 mm ID, 0.25 μm 막) 또는 이와 동등한 수준으로 분리가 가능한 컬럼

(나) 온도조건 : 오븐 80 ℃(1분) → 10 ℃/분 → 240 ℃(6분)

주입구 250 °C 검출기 250 °C

(다) 유속: 0.9 mL/min

(라) 분할주입비율: 비분할, 0.5 분 후 분할주입비 1/20

(마) 주입량: 3 uL

(바) 검출기 : 질량분석검출기

① 이온화 타입: 전자충돌 이온화(Electron impact)

② 검출 방법 : 선택적 이온 검출법(Selective ion monitoring, SIM)

m/z 194, 253

(5) 분석 결과 크로마토그램 예시

<그림 2>] 소변 중 S-페닐머캅토산의 GC-MSD 크로마토그램

(6) 농도계산

검량선용 표준용액의 농도를 가로(x)축으로 하고 시료의 피크 면적을 내부 표준물질의 피크 면적으로 보정한 값을 세로(y)축으로 하여 검량선을 작성하고, y= ax+b의 회귀방정식에 시료의 피크 면적을 대입하여 시료 중 포함된 S-페닐머캅토산의 농도(μg/L)를 구한다. S-페닐머캅토산의 농도값을 크레아티닌으로 보정하여(μg/g 크레아티닌) 벤젠의 생물학적 노출평가 결과 값을 계산한다.

(7) 생물학적 노출평가 기준

(가) 기준값 : 25 μg/g 크레아티닌

(나) 소변 중 크레아티닌 농도

소변 중 생물학적 노출평가지표물질 보정에 사용하는 크레아티닌 농도는 0.3 - 3.4 g/L 범위이며, 크레아티닌 농도가 이 범위를 벗어난 소변은 다시 채취한다.

(8) 정밀도(예)

	농도(μg/L)	변이계수(%)*
 S-페닐머캅토산	10	3.5
5-페틸미집도앤	100	2.5

(9) 정확도(예)

	농도(μ g /L)	회수율(%)*
	19.8	109
S-페틸미집도건 	77.1	106

(10) 검출한계

(가) 검출한계

예) 소변 중 S-페닐머캅토산 3.6 µg/L(S/N 비 3)2)

(나) 산출방법

검량선에 의한 표준용액의 농도와 면적간의 회귀식을 구하고 이 회귀식의 표준오차와 기울기를 이용하여 검출한계를 산출한다.

$$LOD = 3 \times \frac{\sqrt{\frac{\sum (Y_{ei} - Y_i)^2}{N - 2}}}{b}$$

 Y_{ei} : 회귀식에 의해 구한 각 시료량에 대한 반응값

 Y_i : 각 시료량에 대한 반응값

N: 표준용액 시료 수

b: 회귀방정식의 x계수

²⁾ 배경 반응값(noise, N)의 3배인 시료 반응값(signal, S)을 나타내는 농도를 검출한계로 함.

5.2.3 고성능액체크로마토그래피 질량분석법

(1) 기구 및 시약

(가) 기구

- ① 자동피펫 100 1.000 µL
- ② 용량플라스크 100 mL 5개, 1,000 mL 2개
- ③ 시험관 5 mL
- ④ 주사기 2 mL
- ⑤ 멤브레인필터 0.45 μm

(나) 시약

- ① S-페닐머캅토산(표준시약)
- ② 포름산
- ③ 아세토니트릴(HPLC용)
- ④ 탈이온수(18 MΩ/cm 이상)

(2) 시약 조제

(가) 표준용액 조제를 위한 희석용 소변

벤젠에 노출되지 않은 정상인 소변을 채취하여 냉동 보관한다. 냉동한 소변을 상온에서 녹이고, 여과지를 사용하여 여과한 후 여액을 표준용액 조제를 위한 희석용 소변으로 사용한다. 단, 사용 이전에 미리 소변을 분석하여 소변 중 S-페닐머캅토산이 없는 것을 확인한 소변을 표준용액 조제에 사용한다.

(나) 표준용액

- ① S-페닐머캅토산 약 10 mg을 정밀하게 달아 1,000 mL 용량 플라스크에 넣고 10 mL의 2 M 염산 용액을 가하여 용해시키고 증류수로 표선을 채워 10 mg/L 표준용액 원액을 만든다.
- ② 표준용액 원액을 0.1, 0.5, 1.0, 5.0, 10.0 mL 취하여 100 mL 용량플라스크 에 옮기고 희석용 소변으로 표선을 채워 10, 50, 100, 500, 1,000 μg/L의 표준용액을 조제한다. 희석용 소변을 공검액으로 한다.

(3) 시료 및 표준용액 전처리

- (가) 소변시료 또는 표준용액을 3분간 혈액혼합기에서 잘 섞어준다.
- (나) 시료 100 uL를 취한 후, 증류수로 100배 희석한다.
- (다) 희석액을 0.45 µm 멤브레인 필터로 여과하여 시료를 준비한다.
- (4) 고성능액체크로마토그라피 분석 조건
- (가) 컬럼 : C₁₈ 컬럼(75 mm × 2.0 mm, 입경 3 μm) 또는 이와 동등한 수준으로 분리가 가능한 컬럼
- (나) 이동상
- ① A 용액: 0.1 % 포름산
- ② B 용액: HPLC용 아세토니트릴
- ③ 농도 구배 프로그램(Gradient Program)

B 용액 0 - 0.2분(5%)

10.01 - 12분(50%)

12.01 - 20분(5%)

- (다) 유속: 0.2 mL/min
- (라) 검출기: 질량분석기
- ① 이온화 방법: 전자분무법(음이온 검출)
- ② 검출 방법 : 선택적 이온 검출법(Selective ion monitoring, SIM) m/z 238
- (5) 분석 결과 크로마토그램 예시

<그림 3> 소변 중 S-페닐머캅토산의 HPLC-MS 크로마토그램

(6) 농도계산

검량선용 표준용액의 농도를 가로(x)축으로 하고 시료의 피크 면적을 내부표 준물질의 피크 면적으로 보정한 값을 세로(y)축으로 하여 검량선을 작성하고, y=ax+b의 회귀방정식에 시료의 피크 면적을 대입하여 시료 중 포함된 S-페 닐머캅토산의 농도($\mu g/L$)를 구한다. S-페닐머캅토산의 농도값을 크레아티닌으로 보정하여($\mu g/g$ 크레아티닌) 벤젠의 생물학적 노출평가 결과값을 계산한다.

(7) 생물학적 노출평가 기준

(가) 기준값 : 25 ug/g 크레아티닌

(나) 소변 중 크레아티닌 농도

소변 중 생물학적 노출평가지표물질 보정에 사용하는 크레아티닌 농도는 0.3 - 3.4 g/L 범위이며, 크레아티닌 농도가 이 범위를 벗어난 소변은 다시 채취한다.

(8) 정밀도(예)

	농도(μg/L)	변이계수(%)*
S-페닐머캅토산	50	6.0
	500	2.5

^{*} 같은 농도의 시료를 7개 분석한 결과로부터 구함.

(9) 정확도(예)

	농도(μg/L)	회수율(%)*
S-페닐머캅토산	50	96.7
	500	99.6

^{*} 같은 농도의 시료를 7개 분석한 결과로부터 구함.

(10) 검출한계

(가) 검출한계

예) 소변 중 S-페닐머캅토산 5 μg/L(S/N 비 3)³⁾

³⁾ 배경 반응값(noise, N)의 3배인 시료 반응값(signal, S)을 나타내는 농도를 검출한계로 함.

(나) 산출방법

검량선에 의한 표준용액의 농도와 면적간의 회귀식을 구하고 이 회귀식의 표준오차와 기울기를 이용하여 검출한계를 산출한다.

$$LOD = 3 \times \frac{\sqrt{\frac{\sum (Y_{ei} - Y_i)^2}{N - 2}}}{b}$$

 Y_{ei} : 회귀식에 의해 구한 각 시료량에 대한 반응값

 Y_i : 각 시료량에 대한 반응값

N: 표준용액 시료 수

b: 회귀방정식의 x계수

5.3 혈액 중 벤젠

5.3.1 분석원리 및 시료채취

(1) 분석원리

벤젠은 체내로 흡수된 후 빠르게 지방 조직으로 이동하여, 혈액에 남아있는 벤젠은 노출 후 10-15분, 40-60분, 16-20시간이 지나면서 반씩 감소한다. 혈액 중의 벤젠은 벤젠 노출을 반영하는 민감한 지표로, 헤드스페이스 기체크로마토그라피법을 이용해 분석한다. 밀폐된 바이알에 시료를 넣고 적당한온도를 유지하여 액체상과 기체상(헤드스페이스)에 존재하는 벤젠이 상평형(Phase equilibrium)을 이루게 한 후, 헤드스페이스 기체 일정량(보통 1 mL)을 기체크로마토그래프에 주입하여 분석한다.

(2) 시료의 채취

(가) 시료채취 시기

혈액 시료는 당일 작업종료 2시간 전부터 작업종료 사이에 채취한다.

(나) 시료채취 요령

- ① 근로자의 정맥혈을 ethylenediaminetetraacetic acid(EDTA) 또는 헤파린 처리된 튜브와 일회용 주사기 또는 진공채혈관을 이용하여 채취한다. 채 취 용기는 유리 용기를 사용하고, 시료는 용기의 90% 이상 채취한다.
- ② 채취한 시료는 바로 4 °C(2 8 °C)에서 냉장 보관하고, 채취 후 5일 이 내에 분석하다.

5.3.2 헤드스페이스 기체크로마토그라피 불꽃이온화검출법

(1) 기구 및 시약

(가) 기구

- ① 자동피펫 10-100 µL, 100-1000 µL
- ② 용량플라스크 100 mL 1 개, 50 mL 1 개, 10 mL 6 개
- ③ 헤드스페이스 GC 바이알

(나) 시약

- ① 톨루엔
- ② 이소부탄올
- ③ 구연산나트륨
- ④ 덱스트로즈
- ⑤ 구연산
- ⑥ 탈이온수(18 MΩ/cm 이상)

(2) 시약 조제

(가) 표준용액

- ① 벤젠 10 mg(12 µL)을 10 mL 용량플라스크에 옮기고 증류수로 표선을 채워 1,000 mg/L의 표준용액 원액을 조제한다. 표준용액 조제에 사용하는 탈이온수는 미리 분석하여 벤젠이 없는 것을 확인한다.
- ② 표준용액 원액을 100 µL 취하여 10 mL 용량플라스크에 옮기고 탈이온수로 표선을 채워 10 mg/L 용액을 만든다. 10 mg/L 용액을 200 µL 취하여 10 mL 용량플라스크에 옮기고 탈이온수로 표선을 채워 200 µg/L 용액을 만든다. 이 용액을 0.05, 0.25, 0.5, 0.75, 1 mL씩 취하여 10 mL 용량플라스크에서 탈이온수로 희석하고, 1, 5, 10, 15, 20 µg/L의 용액을 만들어검량선용 표준용액으로 한다. 탈이온수를 공시료로 한다.

(나) 내부표준용액

- ① 이소부탄올 10 mg(12 µL)을 100 mL 용량플라스크에 옮기고 증류수로 표선을 채워 100 mg/L 용액을 만든다. 이 용액을 100 µL 취하여 10 mL 용량플라스크에 옮기고 탈이온수로 표선을 채워 1 mg/L 내부표준용액을 조제한다.
- ② 1 mg/L 내부표준용액을 1,000 μL 취하여 50 mL 용량플라스크에서 탈이온 수로 희석하여 20 μg/L의 내부 표준용액을 조제한다.

(다) 구연산 덱스트로즈 용액

구연산 0.48 g, 구연산나트륨 1.32 g, 덱스트로즈 1.47 g을 100 mL 용량플라스크에 옮기고 탈이온수로 표선을 채워 구연산 덱스트로즈 용액을 조제한다.

- (3) 시료 및 표준용액 전처리
- (가) 시료 또는 표준용액을 3분간 혈액혼합기에서 잘 섞어준 후 1 mL를 취하여 헤드스페이스 GC 바이알에 옮긴다.
- (나) 내부표준용액 0.5 mL, 구연산 텍스트로즈 용액 0.5 mL를 가하고 마개를 닫아 5 분간 잘 섞어준 후 헤드스페이스 GC 분석 시료로 한다.
- (4) 헤드스페이스 기체크로마토그라프 분석 조건
- (가) 컬럼 : DB-624 (60 m x 0.25 mm ID, 1.4 µm 막) 또는 이와 동등한 수준으로 분리가 가능한 컬럼
- (나) 온도조건 : 오븐 $40~\mathbb{C}(1\mathbb{H}) \to 15~\mathbb{C}/\mathbb{H} \to 240~\mathbb{C}(1\mathbb{H})$

주입구 250 °C 검출기 250 °C

- (다) 컬럼 유속 : 2 mL/분
- (라) 분할주입비율 : 비분할, 0.5 분 후 분할주입비 1/20
- (마) 주입량: 1 µL
- (바) 검출기 : 불꽃이온화검출기
- (사) 헤드스페이스 조건
 - ① 온도 : 시료 오븐 70 ℃ 주입관 150 ℃
 - ② 시간 : 가열 10분가압 10초주입 30초
- (아) 일반 오븐을 사용하는 경우
- ① 헤드스페이스 자동 주입장치가 없는 경우, 시료를 일반 오븐을 사용하여 가 온하고 기체크로마토그라프에 주입한다. 이때, 먼저 주입되는 시료와 나중 에 주입되는 시료간의 가온 시간의 차이가 있으면 안 되므로 주의를 요한다.
- ② 주입시 사용하는 주사기는 가스가 새지 않는 주사기(Gas tight syringe)를 사용하며, 주입전 시료와 함께 오븐에서 가온한 후 사용한다.

(5) 분석 결과 크로마토그램

(6) 농도계산

검량선용 표준용액의 농도를 가로(x)축으로 하고 시료의 피크 면적을 내부 표준물질의 피크 면적으로 보정한 값을 세로(y)축으로 하여 검량선을 작성하고, y=ax+b의 회귀방정식에 시료의 피크 면적을 대입하여 시료 중 포함된 톨루엔의 농도(mg/L)를 구한다.

(7) 생물학적 노출기준

- 기준값 : 5 μg/L

(8) 정밀도(예)

	농도(μg/L)	변이계수(%)*
<u> </u>	0.5	3.2
빈엔 	10.0	3.0

^{*} 같은 농도의 시료를 7개 분석한 결과로부터 구함.

(9) 정확도(예)

	농도(μg/L)	회수율(%)*
ਮ <u>ੀ</u> ਨੀ	0.5	98.2
벤젠 	10.0	93.5

* 같은 농도의 시료를 7개 분석한 결과로부터 구함.

(10) 검출한계

- (가) 검출한계
 - 예) 혈액 중 벤젠 0.5 μg(S/N 비 3)⁴⁾
- (나) 산출방법

검량선에 의한 표준용액의 농도와 면적간의 회귀식을 구하고 이 회귀식의 표준오차와 기울기를 이용하여 검출한계를 산출한다.

$$LOD = 3 \times \frac{\sqrt{\frac{\sum (Y_{ei} - Y_i)^2}{N - 2}}}{b}$$

 Y_{ei} : 회귀식에 의해 구한 각 시료량에 대한 반응값

 Y_i : 각 시료량에 대한 반응값

N: 표준용액 시료 수

b: 회귀방정식의 x계수

⁴⁾ 배경 반응값(noise, N)의 3배인 시료 반응값(signal, S)을 나타내는 농도를 검출한계로 함.

지침 개정 이력

□ 개정일 : 2023. 8. 24.

○ 개정자 : 산업안전보건연구원 이미영

- 개정사유 : 노출기준 강화 후 삭제되지 않은 생물학적 노출지표 삭제
- 생물학적 노출평가의 의미가 없는 소변 중 페놀을 벤젠의 생물학적 노출 평가 실무에서 제외하고자 함.
- 2010년부터 2차에 걸쳐 벤젠의 작업환경 노출 기준이 1 ppm->0.5 ppm으로 강화되었고, [근로자건강진단 실무지침]에도 소변 중 페놀은 10 ppm이상 벤젠 노출 시의 생물학적 노출지표라고 구분했지만, 벤젠 노출이 저농도로 강화된 후에도 소변 중 페놀 분석 결과가 보고되고 있어 부적절한노출평가가 계속 이루어지고 있음.
- 주요 개정내용
- 소변 중 페놀을 벤젠의 생물학적 노출평가 실무에서 제외