Design FIR, linear phase, using the Fourier series method.
- Center w of the ideal filter, where applicable, in the
center of the transition period to account for the
smearing of the window
Use the minimum # of samples, unless otherwise specified.
Design a LPF, # of h(n) samples odd, to need the
F = 48 KHZ
F ₁ = 9.2 KHZ
$F_p = 5.2 \text{ KHz}$ $f_p = f_i - f_s - f_s$ Stopband atten > 50 dB
passband ripple < -3 d B
Use the Hamming window if feasible
[Print coefficient values h(n), plot freq response, mag & phend.
(1,2)
Design a BP filter WITTA + 1dB
- Panhand 300 -> 500 Hz
transition band 100 HZ
parsband rupple 1/dB 200Hz 300 500 600 Hz
stopband atten 60 d.B.
$\frac{1}{1} = 2 \times 1$
Ise the blackman window if feasible
(3) Design a Hilbert transformer h(n), n=0 to 40. Use a
Design a Hilbert transformer h(n), n=0 to 40. Use a my
Plot may I pluse of HO(W) for w from 0 to us

band $B_{+} = 20 \log 1 + 82$ gwo $J_{0}(x) - 1 + \sum_{k=1}^{\infty} \left[\frac{1}{k!} \left(\frac{x}{2}\right)^{k}\right]^{2}$ fast converging the ind $B_{+} = 7$ ransition $B_{+} = W_{0} - W_{0}$ $\omega_{c} = \frac{\omega_{p} + \omega_{e}}{2} , h(nT) = \frac{\sin \omega_{c}Tn}{TT n}$ $S_{1} = \frac{-0.05 A_{e}}{10^{20}}, S_{2} = \frac{10^{20}}{10^{20}}$ From specs choose $S = min(S_1, S_2)$ Calculate $A_{\alpha} = -20 log(minS_1, S_2)$ Namo das bollows chanse Das follows 5.9222 for Aa <21 $\frac{\left(A_{a}-7.95 fn A_{a}\right) 21}{14.36}$ Select the lowest odd # N satisfying N=1+1 Form $W_k(nT)$ using (1) B_{ℓ} -n $-H(z) = z^{\frac{1}{2}} \sum_{k=1}^{\infty} \omega(n\tau) \cdot h(n\tau) z$

	•
Kaiser window	
$\omega_{k}(n) = \begin{cases} \frac{\Gamma_{o}(B)}{\Gamma_{o}(a)} & n \leq \frac{L}{2} \end{cases}$	
- therwise	
R-15.20.2	
$\beta = \langle \gamma 1 - (\frac{2n}{L})^2$	
I(x) is the xeroeth-order modified Bessel function of the first kind.)	·
$I_{o}(x) = 1 + \sum_{k=1}^{\infty} \left[\frac{1}{k!} \left(\frac{x}{2} \right)^{k} \right]^{2}$	
k=1	
1. Design a digital differentiator (o to $\frac{\omega_s}{2}$), $L=20$,	
a using rectangular window	
b-using a Hamming windows	
a using rectangular window b-using a Hamming window Obtain the weights for @ and b Plot magnitude and phase from w-c to w-	
Plot magnitude and share born we to use	US
- la handidaal.	2
for a, b, and ideal.	•