

Andrew Asper, Thomas Weatherly, Andrej Vrtanoski, Samy Amer, Vivien Orellana, Anson Chau, Sarita Botero, Tejeshwar Natarajan, Ethan Yang

Project Goals

The goal which we laid out for ourselves this project was to learn Chisel, a high level hardware description language, and its surrounding framework. We aim to learn how to synthesize a circuit originally written in Chisel onto a PYNQ-Z2 FPGA to prepare us for creating hardware-based accelerators.

What is Chisel?

Chisel is a hardware construction language that is based off of Scala, a Java like object oriented language. As shown below, Chisel code can generate Verilog code from these descriptions via elaboration. HDLs are primarily limited to creating hardware instances - Chisel's feature of parameterization addresses this to allow creation of hardware generators.

Schematic FIFO Queue for PYNQ-Z2

Semester Progress and Results

Chisel Project

- Worked through HDLBits to have a solid foundation with Verilog and hardware description languages in general.
- All members completed basic Chisel bootcamp from GitHub.
- Prototyped basic FIFO queue in Chisel.
- Learned to compile Chisel code down to Verilog.

Lessons Learned

- FPGA basics.
- System Prototyping on FPGA.
- CLI Tools (SSH, git, objdump).
- Scala and Chisel.
- Online on-demand FPGA access.

Setting up PYNQ-Z2 for RISC-V

- Installed riscv-gnu-toolchain and compiled it onto the PYNQ-Z2.
- Synthesized PicoRV32
 processor and generated a
 bitstream for the PYNQ-Z2.
 Hardware Design Flow
- Learnt how to design real life hardware systems on FPGAs, and how to progress a project through the entire design flow.
- Walked through the FPGA design process to generate a bitstream for our FIFO Queue for the PYNQ-Z2 board.
- Looking to add overlays in order to be able to interact with the design through AXI LITE protocol.

Documentation

- Created background resources that introduces FPGAs, HDLs, and Chisel for sub-team members unfamiliar with those topics
- Added documentation regarding FPGA synthesis using the FIFO
 Queue created in Chisel for PYNQ-Z2 on Xilinx Vivado with setup

Next Steps and Future Challenges

- Perform RTL simulation on the synthesised circuit.
- Compare to Verilog implementation.
- Learn entire FPGA design flow using Vivado.
- Benchmark critical path latency using synthetic benchmark.
- Create and design a matrix multiplication accelerator using ChipYard and Chisel.

