2012-1: Transmission Lines and

Javier Leonardo Araque Quijano jlaraqueq@unal.edu.co Of: 453 – 204 Ext. 14083

Properties of the S-Matrix

 $\mathbf{S} = \mathbf{S}^T$ for reciprocal networks

$$\sum_{k=1}^{N} |S_{k,n}|^2 \le 1 \quad \forall n \text{ for passive networks}$$
 i.e. norm of column vectors is always ≤ 1 (equality holds for lossless networks)

$$\mathbf{S} = (\mathbf{Z}/Z_0 + \mathbf{I})^{-1} (\mathbf{Z}/Z_0 - \mathbf{I}) \qquad \mathbf{Z} = Z_0 (\mathbf{I} + \mathbf{S}) (\mathbf{I} - \mathbf{S})^{-1}$$
$$\mathbf{S} = (\mathbf{I} + \mathbf{Y}/Y_0)^{-1} (\mathbf{I} - \mathbf{Y}/Y_0) \qquad \mathbf{Y} = Y_0 (\mathbf{I} - \mathbf{S}) (\mathbf{I} + \mathbf{S})^{-1}$$

I is the identity matrix and Z_0 and Y_0 are the port reference where \mathbf{Z} and \mathbf{Y} are the impedance and admittance matrices, impedance/admittance.

Scattering Matrix

The Scattering Matrix (S-Matrix) is the preferred representation at microwave frequencies as voltage/currents are not well defined in all cases as required for usual matrix representations (Z, Y, etc.))

The ABCD matrix

- 2-ports are probably the most common device.
- · These are usually cascaded.
- ABCD matrix of a cascade of 2-ports is the matrix product of the individual ABCD matrices.

$$_{\text{vi}}$$
 Generic Linear $_{\text{c}}$ $_{\text{v}}$ $_{\text{c}}$ $_{\text{c}}$ $_{\text{c}}$ $_{\text{i}_1}$ $_{\text{l}}$ $_{\text{l}}$ $_{\text{c}}$ $_{\text{l}}$ $_{\text{l}$

- A is the ratio between an applied voltage v_1 and the resulting open-circuit voltage v_2 (i.e. $i_2=0)$ B is the ratio between an applied voltage v_1 and the
 - C is the ratio between an applied current i_1 and the resulting short-circuit current i_2 (i.e. $v_2 = 0$)

 - resulting short-circuit current i_2 (i.e. $v_2 = 0$)

Properties of the ABCD matrix

$$\begin{bmatrix} S_{1,1} & S_{1,2} \\ S_{2,1} & S_{2,2} \end{bmatrix} = \underbrace{ \begin{bmatrix} A+B/Z_0 - CZ_0 - D & 2(AD-BC) \\ 2 & -A+B/Z_0 - CZ_0 + D \end{bmatrix} }_{A+B/Z_0 + CZ_0 + D}$$

$$\left[\begin{array}{c} A & B \\ C & D \end{array} \right] = \underbrace{\left[\begin{array}{c} (1+S_{1,1})(1-S_{2,2}) + S_{1,2}S_{2,1} \\ ((1-S_{1,1})(1-S_{2,2}) - S_{1,2}S_{2,1})/S_0 \\ (1-S_{1,1})(1+S_{2,2}) + S_{1,2}S_{2,1} \end{array} \right]}_{2S_{2,1}}$$

- For reciprocal networks, determinant of ABCD matrix AD-BC=1
- For symmetrical networks $A = D = \pm sqrt(1+BC)$