Tabla de distribuciones utilizadas en el curso

V1.1 - agosto de 2018

1. Distribuciones discretas univariadas

$\mathbf{var}(X)$	$\frac{(n+1)(n-1)}{12}$	p(1-p)	np(1-p)	$(1-p)/p^2$	$k(1-p)/p^2$	η	$\frac{nd(N-d)(N-n)}{N^2(N-1)}$	
$\mathbf{E}[X]$	$\frac{n+1}{2}$	p	du	1/p	k/p	ή	$\frac{nd}{N}$	
Parámetros	$n \in \mathbb{N}$	$p \in (0,1)$	$p \in (0,1), n \in \mathbb{N}$	$p \in (0,1)$	$p \in (0,1), k \in \mathbb{N}$	$\mu > 0$	$\llbracket m, M \rrbracket^\dagger d \le N, \ n \le N \in \mathbb{N}$	
Soporte	$\llbracket 1, n \rrbracket$	$\{0, 1\}$	$\llbracket 0,n rbracket$	Z	\mathbb{Z}_k	\mathbb{Z}_0	$\llbracket m,M \rrbracket^\dagger$	
Función de probabilidad $p_X(x)$	$\frac{1}{n}$	$p^x(1-p)^{1-x}$	$\binom{n}{x}p^x(1-p)^{n-x}$	$(1-p)^{x-1}p$	$\binom{x-1}{k-1} (1-p)^{x-k} p^k$	$(\mu^x e^{-\mu})/x!$	$\frac{\binom{d}{x}\binom{N-d}{n-x}}{\binom{N}{n}}$	
Notación	$\mathcal{U}(n)$	$\mathrm{Ber}(p)$	$\mathcal{B}(n,p)$	$\mathcal{G}(p)$	$\operatorname{Pas}(k,p)$	$\operatorname{Poi}(\mu)$	$\mathcal{H}(N,d,n)$	
Distribución	Uniforme	Bernoulli	Binomial	Geométrica	Pascal	Poisson	Hipergeométrica	-

 $^{\dagger}m=\min\{0,d+n-N\},M=\min\{n,d\}$

Votación.

1.1. Notas

- La función de probabilidad tabulada $p_X(x)$ vale para $x \in \mathbb{Z}$ en el soporte indicado, y vale 0 para cualquier otro valor de x.
- La forma de definir los parámetros de las variables aleatorias no tiene una convención universal. En las tablas se intentó respetar el siguiente orden de prioridad: [1], [2], [3]. Al consultar un libro o usar funciones de un software lea atentamente la definición que usa para los parámetros de cada distribución.
- El número combinatorio (binomial coefficient) se define:

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} \qquad n \in \mathbb{N}, \ r = 0, \ 1 \dots n$$

y el combinatorio generalizado (multinomial coefficient):

$$\binom{n}{r_1 \, r_2 \dots r_k} = \frac{n!}{r_1! r_2! \dots r_k!} \qquad n \in \mathbb{N}, \ r_i = 0, 1 \dots n, \ \sum_{i=1}^k r_i = n.$$

Algunos autores llaman "binomial negativa" a la distribución Pascal.

1.2. Algunos modelos

La variable ...

- Uniforme modela la probabilidad de obtener un resultado en un espacio finito $\{1...n\}$ equiprobable (o de Laplace).
- Bernoulli modela el resultado de un experimento con dos resultados posibles, se asigna valor 1 a éxito (con probabilidad p) y 0 a fracaso (con probabilidad 1-p).
- \blacksquare Binomial modela la cantidad de *éxitos* obtenidos al repetir n veces de forma independiente un experimento de Bernoulli con probabilidad p de *éxito*.
- \blacksquare Geométrica modela la cantidad de ensayos necesarios hasta obtener 1 éxito si se repite de forma independiente un experimento de Bernoulli con probabilidad p de éxito.
- Pascal modela la cantidad de ensayos necesarios hasta obtener k éxitos si se repite de forma independiente un experimento de Bernoulli con probabilidad p de éxito.
- Hipergeométrica modela la cantidad de éxitos en n extracciones sin reposición de una población de tamaño total N, de los cuales d individuos son éxito y N-d individuos son fracaso.

2. Distribuciones continuas univariadas

Distribución	Notación	Función de densidad $f_X(x)$	Soporte	Parámetros	$\mathbf{E}[X]$	$\mathbf{var}(X)$
Uniforme	$\mathcal{U}[a,b]$	1/(b-a)	[a,b]	a < b	(a + b)/2	$(b-a)^2/12$
Exponencial	$\mathcal{E}(\lambda)$	$\lambda e^{-\lambda x}$	$[0,+\infty)$	λ > 0	$1/\lambda$	$1/\lambda^2$
Gamma	$\Gamma(u,\lambda)$	$\frac{\lambda^{\nu}}{\Gamma(\nu)} x^{\nu - 1} e^{-\lambda x}$	$[0,+\infty)$	$\nu > 0, \lambda > 0$	ν/λ	ν/λ^2
Normal	$\mathcal{N}(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	凶	$\mu \in \mathbb{R}, \sigma^2 > 0$	π	σ^2
Chi cuadrado	χ_k^2	$\frac{1}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})}x^{\frac{k}{2}-1}e^{-\frac{x}{2}}$	$[0, +\infty)$	$k \in \mathbb{N}$	ĸ	2k
t-Student	$t_{ u}$	$\frac{\Gamma(rac{ u+1}{2})}{\sqrt{ u\pi\Gamma(rac{ u}{2})}}\left(1+rac{t^2}{ u} ight)^{-rac{ u+1}{2}}$	24	$\nu > 0$	0	$\frac{\nu}{\nu-2}$
Weibull	$\mathrm{Wei}(c, lpha)$	$rac{c}{lpha} (rac{x}{lpha}) c^{-1} e^{-(rac{x}{lpha})^c}$	$[0,+\infty)$	$c > 0, \alpha > 0$	$\alpha\Gamma(1+\frac{1}{c})$	$\alpha^2 \left[\Gamma(1 + \frac{2}{c}) - \Gamma^2 (1 + \frac{1}{c}) \right]$
Rayleigh	$\mathrm{Ray}(\sigma)$	$\frac{x}{\sigma^2} e^{-x^2/2\sigma^2}$	$[0,+\infty)$	$\sigma > 0$	$\sigma\sqrt{\pi/2}$	$\frac{4-\pi}{2}\sigma^2$
Pareto	$\operatorname{Par}(m,\alpha)$	$\frac{\alpha m^{\alpha}}{x^{\alpha+1}}$	$[m, +\infty)$	$m > 0, \alpha > 0$	$\frac{\alpha m}{\alpha - 1}$ †	$\frac{m^2\alpha}{(\alpha-1)^2(\alpha-2)} \ddagger$
Beta	$\beta(a,b)$	$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}$	(0,1)	a > 0, b > 0	a/(a+b)	$\frac{ab}{(a+b)^2(a+b+1)}$
Cauchy	$\operatorname{Cau}(x_0,\gamma)$	$\frac{1}{\pi\gamma}\left[\frac{\gamma^2}{(x\!-\!x_0)^2\!+\!\gamma^2}\right]$	¥	$x_0 \in \mathbb{R}, \gamma > 0$	no existe	no existe

. Válida si $\alpha > 1$. † Válida si $\alpha > 2$.

2.1. Notas

- La función de densidad (o función de densidad puntual, fdp, pdf) tabulada $f_X(x)$ vale para todo x real en el soporte indicado, y vale 0 para cualquier otro valor de x.
- La forma de definir los parámetros de las variables aleatorias no tiene una convención universal. En las tablas se intentó respetar el siguiente orden de prioridad: [1], [2], [3]. Al consultar

un libro o usar funciones de un software lea atentamente la definición que usa para los parámetros de cada distribución.

■ La función Gamma se define $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$. Crece muy rápidamente, y para evitar problemas numéricos en algunos algoritmos conviene adaptar las fórmulas para que aparezca el logaritmo de la función log $|\Gamma(t)|$ (las barras de módulo no molestan pues usaremos habitualmente valores positivos). Algunas propiedades:

$$\Gamma(n) = (n-1)!$$
 para $n \in \mathbb{N}$

$$\Gamma(t+1) = t\Gamma(t)$$
 $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

2.2. Algunas funciones de supervivencia

Sea T una variable aleatoria continua, $S(t) = \mathbf{P}(T > t)$ (función de supervivencia o survival function), vale que:

- si $T \sim \mathcal{E}(\lambda)$ entonces $S(t) = e^{-\lambda t}$ para $t \geq 0$.
- si $T \sim \Gamma(k, \lambda)$ con $k \in \mathbb{N}$ entonces $S(t) = \sum_{n=0}^{k-1} \frac{e^{-\lambda t} (\lambda t)^n}{n!}$ para t > 0.
- si $T \sim \text{Wei}(c, \alpha)$ entonces $S(t) = e^{-(t/\alpha)^c}$ para $t \geq 0$.
- si $T \sim \text{Ray}(\sigma)$ entonces $S(t) = e^{-t^2/(2\sigma^2)}$ para $t \ge 0$.
- si $T \sim \operatorname{Par}(m, \alpha)$ entonces $S(t) = (m/t)^{\alpha}$ para $t \geq m$.

3. Distribuciones multivariadas

3.1. Variable Multinomial

La variable aleatoria Multinomial $\operatorname{Mul}(n, p_1, p_2, \dots p_k)$ modela la cantidad de observaciones de cada resultado posible al repetir n veces de forma independiente un experimento que toma valores en $\{1 \dots k\}$ (variable categórica o Bernoulli generalizada) con probabilidades p_i para cada resultado $i \in \{1 \dots k\}$.

Su función de probabilidad es:

$$p_{\mathbf{X}}(n, x_1, x_2 \dots x_k) = \binom{n}{x_1 x_2 \dots x_k} p_1^{x_1} \cdot p_2^{x_2} \cdots p_k^{x_k}$$

con soporte $\{\mathbf{x} \in \{0 \dots n\}^k, \sum_{i=1}^k x_i = n\}$ y parámetros:

$$0 < p_i < 1, \qquad \sum_{i=1}^k p_i = 1, \qquad n \in \mathbb{N}.$$

Sus marginales son:

$$X_i \sim \mathcal{B}(n, p_i)$$

una de sus condicionales es:

$$(X_2, X_3, \dots, X_k)|X_1 = x_1 \sim \text{Mul}\left(n - x_1, \frac{p_2}{1 - p_1}, \frac{p_3}{1 - p_1}, \dots, \frac{p_k}{1 - p_1}\right)$$

y sus momentos:

$$\mathbf{E}(X_i) = np_i, \quad \mathbf{cov}(X_i, X_j) = \begin{cases} np_i(1 - p_i) & i = j \\ -np_ip_j & i \neq j \end{cases}.$$

3.2. Variable Normal bivariada

La variable normal bivariada $\mathcal{N}(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ tiene función de densidad:

$$f_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(\frac{-1}{2(1-\rho^2)} \left[\frac{(x_1-\mu_1)^2}{\sigma_1^2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2} - \frac{2\rho(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} \right] \right)$$

con soporte \mathbb{R}^2 y parámetros:

$$\mu_1$$
, μ_2 , $\sigma_1^2 > 0$, $\sigma_2^2 > 0$, $-1 \le \rho \le 1$.

La covarianza vale $\mathbf{cov}(X_1, X_2) = \rho \sigma_1 \sigma_2$. Los parámetros se pueden presentar en forma matricial como el vector de medias y la matriz de covarianzas

$$\mu = \left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right), \quad \boldsymbol{\Sigma} = \left(\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array} \right).$$

Sus marginales y condicionales son:

$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$$

$$X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$$

$$X_1 | X_2 = x_2 \sim \mathcal{N}\left(\mu_1 + \rho\sigma_1\left(\frac{x_2 - \mu_2}{\sigma_2}\right), (1 - \rho^2)\sigma_1^2\right)$$

$$X_2 | X_1 = x_1 \sim \mathcal{N}\left(\mu_2 + \rho\sigma_2\left(\frac{x_1 - \mu_1}{\sigma_1}\right), (1 - \rho^2)\sigma_2^2\right)$$

La variable Normal bivariada se generaliza al caso n-dimensional como la Normal multivariada.

4. Equivalencias

Se usa como notación el signo equivalente \equiv para indicar que dos distribuciones coinciden para determinados parámetros. Se indican sólo algunas equivalencias que se dan en el curso.

4.1. Discretas

- \blacksquare Ber $(p) \equiv \mathcal{B}(1,p)$
- $\mathcal{G}(p) \equiv \operatorname{Pas}(1,p)$

4.2. Continuas

- $\mathcal{U}(0,1) \equiv \beta(1,1)$
- $\mathcal{E}(\lambda) \equiv \Gamma(1,\lambda) \equiv \operatorname{Wei}(1,\frac{1}{\lambda})$
- $\mathcal{E}(\frac{1}{2}) \equiv \chi_2^2 \equiv \Gamma(1, \frac{1}{2})$
- $\chi_k^2 \equiv \Gamma(\frac{k}{2}, \frac{1}{2}) \text{ con } k \in \mathbb{N}$

Historial de versiones

- 1.0 21 de septiembre de 2017 Primera emisión para alumnos
- 1.1 20 de junio de 2018 Segunda emisión. Ajustes de formato.

Referencias

- [1] Grynberg, S. Variables Aleatorias: momentos (Borradores, Curso 23). Buenos Aires: [digital], 27 de marzo de 2013
- [2] Maronna, R. Probabilidad y Estadística Elementales para Estudiantes de Ciencia. 1ra ed. La Plata: [digital], 1995
- [3] Varios artículos ['· distribution', 'Gamma function']. En Wikipedia, The Free Encyclopedia. Consultados en Julio 2016.
- [4] DeGroot, M. H. *Probability and Statistics*. 2nd. ed. EE.UU.: Addison-Wesley Publishing Company, 1989.
- [5] Feller, W. An Introduction to Probability Theory and Its Applications, Vol. I. 2da ed. New York: John Wiley & Sons, 1957.