

International Standard

ISO/IEC/IEEE 8802-1Q

Telecommunications and exchange between information technology systems — Requirements for local and metropolitan area networks —

Part 1Q: **Bridges and bridged networks**

Télécommunications et échange entre systèmes informatiques — Exigences pour les réseaux locaux et métropolitains —

Partie 1Q: Ponts et réseaux pontés

Third edition 2024-08

COPYRIGHT PROTECTED DOCUMENT

© IEEE 2022

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from IEEE at the address below.

Institute of Electrical and Electronics Engineers, Inc 3 Park Avenue, New York NY 10016-5997, USA

Email: stds.ipr@ieee.org Website: <u>www.ieee.org</u> Published in Switzerland

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or www.iso.org/directives<

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

ISO and IEC draw attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO and IEC take no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO and IEC had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents and https://patents.iec.ch. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. In the IEC, see www.iso.org/iso/foreword.html.

ISO/IEC/IEEE 8802-1Q was prepared by the LAN/MAN of the IEEE Computer Society (as IEEE Std 802.1Q-2022) and drafted in accordance with its editorial rules. It was adopted, under the "fast-track procedure" defined in the Partner Standards Development Organization cooperation agreement between ISO and IEEE, by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 6, *Telecommunications and information exchange between systems*.

This third edition cancels and replaces the second edition (ISO/IEC/IEEE 8802-1Q:2020), which has been technically revised. It also incorporates the Amendments: ISO/IEC/IEEE 8802-1Q:2020/Amd 2:2021, ISO/IEC/IEEE 8802-1Q:2020/Amd 31:2021.

A list of all parts in the ISO/IEC/IEEE 8802 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user's national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/national-
committees.

(Revision of IEEE Std 802.1Q-2018)

IEEE Standard for Local and metropolitan area networks—

Bridges and Bridged Networks

LAN/MAN Standards Committee of the IEEE Computer Society

Approved 21 September 2022

IEEE SA Standards Board

Abstract: This standard specifies how the Media Access Control (MAC) Service is supported by Bridged Networks, the principles of operation of those networks, and the operation of MAC Bridges and VLAN Bridges, including management, protocols, and algorithms.

Keywords: Bridged Network, IEEE 802.1Q[™], LAN, local area network, MAC Bridge, metropolitan area network, MSTP, Multiple Spanning Tree Protocol, PBN, Provider Bridged Network, Rapid Spanning Tree Protocol, RSTP, Shortest Path Bridging Protocol, SPB Protocol, Time-Sensitive Networking, TSN, Virtual Bridged Network, virtual LAN, VLAN Bridge

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published 22 December 2022. Printed in the United States of America.

IEEE and 802 are registered trademarks in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics Engineers, Incorporated.

PDF: ISBN 978-1-5044-9188-4 STD25783 Print: ISBN 978-1-5044-9189-1 STDPD25783

IEEE prohibits discrimination, harassment, and bullying.

For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

The Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA

Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE Standards documents are made available for use subject to important notices and legal disclaimers. These notices and disclaimers, or a reference to this page (https://standards.ieee.org/ipr/disclaimers.html), appear in all standards and may be found under the heading "Important Notices and Disclaimers Concerning IEEE Standards Documents."

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents

IEEE Standards documents are developed within IEEE Societies and subcommittees of IEEE Standards Association (IEEE SA) Board of Governors. IEEE develops its standards through an accredited consensus development process, which brings together volunteers representing varied viewpoints and interests to achieve the final product. IEEE Standards are documents developed by volunteers with scientific, academic, and industry-based expertise in technical working groups. Volunteers are not necessarily members of IEEE or IEEE SA and participate without compensation from IEEE. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

IEEE makes no warranties or representations concerning its standards, and expressly disclaims all warranties, express or implied, concerning this standard, including but not limited to the warranties of merchantability, fitness for a particular purpose and non-infringement. In addition, IEEE does not warrant or represent that the use of the material contained in its standards is free from patent infringement. IEEE standards documents are supplied "AS IS" and "WITH ALL FAULTS."

Use of an IEEE standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity, nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: THE NEED TO PROCURE SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Translations

The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard is translated, only the English version published by IEEE is the approved IEEE standard.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE SA Standards Board Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its committees and shall not be considered to be, nor be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that the presenter's views should be considered the personal views of that individual rather than the formal position of IEEE, IEEE SA, the Standards Committee, or the Working Group. Statements made by volunteers may not represent the formal position of their employer(s) or affiliation(s).

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation with IEEE or IEEE SA. However, **IEEE does not provide interpretations, consulting information, or advice pertaining to IEEE Standards documents**.

Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its Societies and subcommittees of the IEEE SA Board of Governors are not able to provide an instant response to comments, or questions except in those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to interpretation requests. Any person who would like to participate in evaluating comments or in revisions to an IEEE standard is welcome to join the relevant IEEE working group. You can indicate interest in a working group using the Interests tab in the Manage Profile & Interests area of the IEEE SA myProject system. An IEEE Account is needed to access the application.

Comments on standards should be submitted using the Contact Us form.²

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any IEEE Standards document does not constitute compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Data privacy

Users of IEEE Standards documents should evaluate the standards for considerations of data privacy and data ownership in the context of assessing and using the standards in compliance with applicable laws and regulations.

¹ Available at: https://development.standards.ieee.org/myproject-web/public/view.html#landing.

² Available at: https://standards.ieee.org/content/ieee-standards/en/about/contact/index.html.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under US and international copyright laws. They are made available by IEEE and are adopted for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making these documents available for use and adoption by public authorities and private users, neither IEEE nor its licensors waive any rights in copyright to the documents.

Photocopies

Subject to payment of the appropriate licensing fees, IEEE will grant users a limited, non-exclusive license to photocopy portions of any individual standard for company or organizational internal use or individual, non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400; https://www.copyright.com/. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every 10 years. When a document is more than 10 years old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit <u>IEEE Xplore</u> or <u>contact IEEE</u>.³ For more information about the IEEE SA or IEEE's standards development process, visit the IEEE SA Website.

Errata

Errata, if any, for all IEEE standards can be accessed on the <u>IEEE SA Website</u>. Search for standard number and year of approval to access the web page of the published standard. Errata links are located under the Additional Resources Details section. Errata are also available in <u>IEEE Xplore</u>. Users are encouraged to periodically check for errata.

Patents

IEEE Standards are developed in compliance with the IEEE SA Patent Policy.⁵

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has

³ Available at: https://ieeexplore.ieee.org/browse/standards/collection/ieee.

⁴ Available at: https://standards.ieee.org/standard/index.html.

⁵ Available at: https://standards.ieee.org/about/sasb/patcom/materials.html.

filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE SA Website at https://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.

IMPORTANT NOTICE

IEEE Standards do not guarantee or ensure safety, security, health, or environmental protection, or ensure against interference with or from other devices or networks. IEEE Standards development activities consider research and information presented to the standards development group in developing any safety recommendations. Other information about safety practices, changes in technology or technology implementation, or impact by peripheral systems also may be pertinent to safety considerations during implementation of the standard. Implementers and users of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.

Participants

At the time this standard was submitted to the IEEE-SA Standards Board for approval, the IEEE 802.1 Working Group had the following membership:

Glenn Parsons, Chair Jessy V. Rouyer, Vice Chair John Messenger, Editor Mick Seaman, Editor

Astrit Ademaj Jerome Henry Silvana Rodrigues Venkat Arunarthi Marc Holness Atsushi Sato Ralf Assmann Daniel Hopf Frank Schewe Huajie Bao Woojung Huh Maik Seewald Satoko Itaya Rudy Belliardi Ramesh Sivakolundu Christian Boiger Yoshihiro Ito Johannes Specht Paul Bottorff Michael Karl Marius Stanica Radhakrishna Canchi Stephan Kehrer Guenter Steindl Randy Kelsey Feng Chen Nemanja Stamenic Abhijit Choudhury Marcel Kiessling Karim Traore Paul Congdon Gavin Lai Max Turner Rodney Cummings Joao Lopes Balazs Varga Josef Dorr Lily Lv Ganesh Venkatesan Xinyuan Wang Hesham M. Elbakoury Christophe Mangin Anna Engelmann Scott Mansfield Tongtong Wang Karl Weber Thomas Enzinger Olaf Mater János Farkas David McCall Leon Wessels Donald W. Fedyk Larry McMillan Ludwig Winkel Norman Finn Hiroki Nakano Jordon Woods Geoffrey Garner Don Pannell Takahiro Yamaura Amrit Gopal Razvan Petre Yue Yin Craig Gunther Michael Potts Uwe Zeier Marina Gutierrez Dieter Proell Nader Zein Stephen Haddock Karen Randall William Zhao Mark Hantel Maximilian Riegel Helge Zinner

The following members of the individual balloting committee voted on this standard. Balloters may have voted for approval, disapproval, or abstention.

Robert Aiello Raj Jain R. K. Rannow Thomas Alexander Pranav Jha Alon Regev Maximilian Riegel Harry Bims Lokesh Kabra Christian Boiger Jessy V. Rouyer Piotr Karocki Stephan Kehrer Peter Saunderson Rich Boyer Vern Brethour Randy Kelsey Frank Schewe William Byrd Stuart Kerry Mick Seaman Evgeny Khorov Paul Cardinal Johannes Specht Yongbum Kim Juan Carreon Guenter Steindl Pin Chang Jeff Koftinoff Eugene Stoudenmire Walter Struppler Diego Chiozzi Gavin Lai Paul Congdon Mitsutoshi Sugawara Hyeong Ho Lee Michael Cowan James Lepp Bo Sun David Tepen János Farkas Joseph Levy Christophe Mangin David Tremblay Avraham Freedman Craig Gunther Scott Mansfield Max Turner Roger Marks Stephen Haddock John Vergis Mark Hantel Stephen McCann Stephen Webb Jonathon Mclendon Karl Weber Jerome Henry Satoshi Obara Scott Willy Marco Hernandez Werner Hoelzl Glenn Parsons Andreas Wolf Arumugam Paventhan Oliver Holland Dayin Xu Marc Holness Clinton Powell Yu Yuan Yoshihiro Ito Dieter Proell Oren Yuen

When the IEEE SA Standards Board approved this standard on 21 September 2022, it had the following membership:

David J. Law, Chair Ted Burse, Vice Chair Gary Hoffman, Past Chair Konstantinos Karachalios, Secretary

Edward A. Addy Johnny Daozhuang Lin Mark Siira Ramy Ahmed Fathy Kevin Lu Dorothy V. Stanley J. Travis Griffith Daleep C. Mohla Lei Wang F. Keith Waters Guido R. Hiertz Andrew Myles Yousef Kimiagar Damir Novosel Karl Weber Joseph L. Koepfinger* Annette D. Reilly Sha Wei Thomas Koshy Philip B. Winston Robby Robson John D. Kulick Jon Walter Rosdahl Daidi Zhong

^{*}Member Emeritus

Historical participants

Since the initial publication, many IEEE standards have added functionality or provided updates to material included in this standard. The following is a historical list of participants who have dedicated their valuable time, energy, and knowledge to the creation of this material:

IEEE 802.1Q Standard	Date approved by IEEE	Officers at the time of Working Group Ballot
IEEE Std 802.1Q-1998	8 December 1998	William P. Lidinsky, Chair Mick Seaman, Chair, Interworking Task Group Tony Jeffree, Coordinating Editor Anil Rijsinghani, Richard Hausmann, Michele Wright, Paul Langille, P. J. Singh, Editorial Team
IEEE Std 802.1u-2001	17 March 2001	Tony Jeffree, Chair Neil Jarvis, Vice Chair Mick Seaman, Chair, Interworking Task Group
IEEE Std 802.1v-2001	17 March 2001	Tony Jeffree, Chair Neil Jarvis, Vice Chair Mick Seaman, Chair, Interworking Task Group David Delany, Editor Andrew Smith, Editor
IEEE Std 802.1s-2002	11 December 2002	Tony Jeffree, Chair Neil Jarvis, Vice Chair Mick Seaman, Chair, Interworking Task Group Norman W. Finn, Editor
IEEE Std 802.1ad-2005	28 March 2005	Tony Jeffree, Chair Paul Congdon, Vice Chair Mick Seaman, Chair, Interworking Task Group Stephen R. Haddock, Editor
IEEE Std 802.1Q-2005	7 December 2005	Tony Jeffree, Chair and Editor Paul Congdon, Vice Chair Mick Seaman, Chair, Interworking Task Group
IEEE Std 802.1ak-2007	22 March 2007	Tony Jeffree, Chair and Editor Paul Congdon, Vice Chair Mick Seaman, Chair, Interworking Task Group
IEEE Std 802.1ag-2007	27 September 2007	Tony Jeffree, Chair Paul Congdon, Vice Chair Stephen R. Haddock, Chair, Interworking Task Group Norman W. Finn, Editor-in-Chief David V. Elie-Dit-Cosaque, Dinesh Mohan, Oscar Rodriguez, Ali Sajassi, Assistant Editors

IEEE 802.1Q Standard	Date approved by IEEE	Officers at the time of Working Group Ballot
IEEE Std 802.1ah-2008	12 June 2008	Tony Jeffree, Chair Paul Congdon, Vice Chair Stephen R. Haddock, Chair, Interworking Task Group Paul Bottorff, Stephen Haddock, and Muneyoshi Suzuki, Editors
IEEE Std 802.1Q-2005/Cor-1-2008	26 September 2008	Tony Jeffree, Chair and Editor Paul Congdon, Vice Chair Stephen R. Haddock, Chair, Interworking Task Group
IEEE Std 802.1ap-2008	10 December 2008	Tony Jeffree, Chair Paul Congdon, Vice Chair Stephen R. Haddock, Chair, Interworking Task Group Glenn Parsons, Editor David Levi, Assistant Editor
IEEE Std 802.1Qaw-2009	17 June 2009	Tony Jeffree, Chair Paul Congdon, Vice Chair Stephen R. Haddock, Chair, Interworking Task Group Linda Dunbar, Editor
IEEE Std 802.1Qay-2009	17 June 2009	Tony Jeffree, Chair Paul Congdon, Vice Chair Stephen R. Haddock, Chair, Interworking Task Group Panagiotis Saltsidis, Editor
IEEE Std 802.1aj-2009	9 December 2009	Tony Jeffree, Chair Paul Congdon, Vice Chair Stephen R. Haddock, Chair, Interworking Task Group John Messenger, Editor Brian Hassink, MIB Editor
IEEE Std 802.1Qav-2009	9 November 2009	Tony Jeffree, Chair and Editor Paul Congdon, Vice Chair Michael Johas Teener, Chair, Audio Video Bridging Task Group
IEEE Std 802.1Qau-2010	25 March 2010	Tony Jeffree, Chair Paul Congdon, Vice Chair Patricia Thaler, Chair, Data Center Bridging Task Group Norman W. Finn, Editor
IEEE Std 802.1Qat-2010	30 September 2010	Tony Jeffree, Chair Paul Congdon, Vice Chair Michael Johas Teener, Chair, Audio Video Bridging Task Group Craig Gunther, Editor

IEEE 802.1Q Standard	Date approved by IEEE	Officers at the time of Working Group Ballot
IEEE Std 802.1Q-2011	16 May 2011	Tony Jeffree, Chair and Editor Paul Congdon, Vice Chair Stephen Haddock, Chair, Interworking Task Group
IEEE Std 802.1Qbe-2011	16 June 2011	Tony Jeffree, Chair Paul Congdon, Vice Chair Stephen Haddock, Chair, Interworking Task Group Norman Finn, Editor
IEEE Std 802.1Qbc-2011	16 June 2011	Tony Jeffree, Chair Paul Congdon, Vice Chair Stephen Haddock, Chair, Interworking Task Group Thomas Mack-Crane, Editor
IEEE Std 802.1Qbb-2011	16 June 2011	Tony Jeffree, Chair Paul Congdon, Vice Chair Patricia Thaler, Chair, Data Center Bridging Task Group Claudio DeSanti, Editor
IEEE Std 802.1Qaz-2011	16 June 2011	Tony Jeffree, Chair Paul Congdon, Vice Chair Patricia Thaler, Chair, Data Center Bridging Task Group Craig W. Carlson, Editor
IEEE Std 802.1Qbf-2011	7 December 2011	Tony Jeffree, Chair Paul Congdon, Vice Chair Stephen Haddock, Chair, Interworking Task Group Robert Sultan, Editor
IEEE Std 802.1aq-2012	29 March 2012	Tony Jeffree, Chair Glenn Parsons, Vice Chair Stephen Haddock, Chair, Interworking Task Group Donald Fedyk, Mick Seaman, Editors
IEEE Std 802.1Qbg-2012	14 May 2012	Tony Jeffree, Chair and Editor Paul Congdon, Vice Chair Patricia Thaler, Chair, Data Center Bridging Task Group Paul Bottorff, Editor, Clauses 12 and 17
IEEE Std 802.1Q-2011/Cor-2-2012	19 October 2012	Tony Jeffree, Chair and Editor Glenn Parsons, Vice Chair and Chair, Maintenance Task Group
IEEE Std 802.1Qbp-2014	27 March 2014	Tony Jeffree, Chair Glenn Parsons, Vice Chair Stephen Haddock, Chair, Interworking Task Group Ben Mack-Crane, Editor

IEEE 802.1Q Standard	Date approved by IEEE	Officers at the time of Working Group Ballot
IEEE Std 802.1D-2004	9 February 2004	Tony Jeffree, Chair and Editor Paul Congdon, Vice Chair Mick Seaman, Chair, Interworking Task Group and Editor
IEEE Std 802.1D-2004	3 November 2014	Glenn Parsons, Chair John Messenger, Vice-Chair Tony Jeffree, Editor Stephen Haddock, Chair, Interworking Task Group
IEEE Std 802.1Qcd-2015	16 February 2015	Glenn Parsons, Chair John Messenger, Vice Chair Patricia Thaler, Chair, Data Center Bridging Task Group Eric Multanen, Editor
IEEE Std 802.1Qca-2015	3 September 2015	Glenn Parsons, Chair John Messenger, Vice-Chair János Farkas, Editor Stephen Haddock, Chair, Interworking Task Group
IEEE Std 802.1Q-2014/Cor 1-2015	5 December 2015	Glenn Parsons, Chair John Messenger, Vice-Chair and Chair, Maintenance Task Group Tony Jeffree, Editor
IEEE Std 802.1Qbv-2015	5 December 2015	Glenn Parsons, Chair John Messenger, Vice-Chair Michael Johas Teener, Chair, Time-Sensitive Networking Task Group Tony Jeffree, Editor
IEEE Std 802.1Qbu-2016	30 June 2016	Glenn Parsons, Chair John Messenger, Vice-Chair Michael Johas Teener, Chair, Time-Sensitive Networking Task Group Tony Jeffree, Editor
IEEE Std 802.1Qbz-2016	30 June 2016	Glenn Parsons, Chair John Messenger, Vice-Chair Michael Johas Teener, Chair, Time-Sensitive Networking Task Group Norm Finn, Editor
IEEE Std 802.1Qci-2017	14 February 2017	Glenn Parsons, Chair John Messenger, Vice-Chair János Farkas, Chair, Time-Sensitive Networking Task Group Tony Jeffree, Editor
IEEE Std 802.1Qch-2017	15 May 2017	Glenn Parsons, Chair John Messenger, Vice-Chair János Farkas, Chair, Time-Sensitive Networking Task Group Tony Jeffree, Editor

IEEE 802.1Q Standard	Date approved by IEEE	Officers at the time of Working Group Ballot
IEEE Std 802.1Qcc-2018	14 June 2018	Glenn Parsons, Chair John Messenger, Vice Chair and Acting Chair Jessy V. Rouyer, Acting Vice Chair János Farkas, Chair, Time-Sensitive Networking Task Group Rodney Cummings, Editor
IEEE Std 802.1Qcp-2018	14 June 2018	Glenn Parsons, Chair John Messenger, Vice Chair and Acting Chair Jessy V. Rouyer, Acting Vice Chair János Farkas, Chair, Time-Sensitive Networking Task Group Marc Holness, Editor
IEEE Std 802.1Qcy-2019	21 March 2019	Glenn Parsons, Chair John Messenger, Vice Chair and Acting Chair Jessy V. Rouyer, Acting Vice Chair János Farkas, Chair, Time-Sensitive Networking Task Group Yizhou Li, Editor Paul Bottorff, Editor
IEEE Std 802.1Qcx-2020	4 June 2020	Glenn Parsons, Chair John Messenger, Vice Chair János Farkas, Chair, Time-Sensitive Networking Task Group Marc Holness, Editor
IEEE Std 802.1Qcr-2020	24 September 2020	Glenn Parsons, Chair John Messenger, Vice Chair Jessy V. Rouyer, Secretary János Farkas, Chair, Time-Sensitive Networking Task Group Craig Gunther, Vice Chair, Time-Sensitive Networking Task Group Johannes Specht, Editor

Osama Aboul-Magd Chi Chong Karanvir Grewal Jin-Seek Choi Steve Adams John Grinham Chris Christ Stephen Ades Yingjie Gu Fumio Akashi Marc Cochran Craig Gunther Zehavit Alon Paul Congdon Mitch Gusat Ken Alonge Glenn Connery Stephen Haddock Ann Ambler Alex Conta Sharam Hakimi Paul D. Amer Jim Corrigan Mogens Hansen Diego Crupnicoff Mark Hantel Yafan An Ting Ao David Cullerot Harold Harrington Charles Arnold Rodney Cummings John Hart Peter Ashwood-Smith Uri Cummings Scott Harvell Siamack Ayandeh Ted Davies Mike Harvey Floyd Backes Andy Davis Takashi Hasegawa Ann Ballard Peter Dawe Brian Hassink Richard Bantel Stan Degen Wayne Hathaway John Bartlett Arjan de Heer Brian Hausauer Sy Bederman Frank Deignan Richard Hausman Alexei Beliaev David Delaney Hitoshi Hayakawa Les Bell Prakash Desai Vic Hayes Amatzia Ben-Artzi Claudio DeSanti Asif Hazarika Avner Ben-Dor Ron Dhondy David Head Michael Berger Patrick Diamond Gaby Hecht Caitlin Bestler Aboubacar Kader Diarra Deepak Hegde Jan Bialkowski Jeffrey Dietz Ariel Hendel James S. Binder Russell Dietz Bob Herbst Robert Bledsoe Zhemin Ding John Hickey Rob Boatright **Kurt Dobbins** Jeremy Hitt Kwami Boakave Eiji Doi David Hollender Barbara J. Don Carlos Christian Boiger Marc Holness Brad Booth Linda Dunbar Steve Horowitz Jean-Michel Bonnamy Craig Easley **Bob Hott** Donald Eastlake, III Mike Borza Michelle Hsiung Paul Bottorff Peter Ecclesine Charles Hudson David Brady J. J. Ekstrom Jack R. Hung Anush Elangovan Rudolf Brandner Rita Hunt Martin Brewer Hesham M. Elbakoury David Husak Frank Bruns Walter Eldon Altaf Hussain Juan Bulnes David Elie-Dit-Cosaque Rahil Hussain Bill Bunch János Farkas Thomas Hytry Jim Burns Donald W. Fedyk Romain Insler Peter Carbone Eldon D. Feist Ran Ish-Shalom **Bob Cardinal** Felix Feifei Feng Jay Israel Craig W. Carlson Norman Finn Atsushi Iwata Paul Carroll Len Fishler Vipin K. Jain Marco Carugi Kevin Flanagan Neil Jarvis Jeffrey Catlin Yishai Fraenkel Tony Jeffree Dennis Cave Paul Frantz Paul Hongkyu Jeong Dirceu Cavendish David Frattura Pankaj Jha Alan Chambers Robert Frazier Markus Jochim Steve Chan Lars Henrik Frederiksen Michael Johas Teener David W. Chang Andre Fredette Girault Jones Xin Chang John Fuller Peter Jones Frank Chao Ilango Ganga Shyam Kaluve Ken Chapman Geoffrey Garner Daya Kamath Abhay Karandikar Anoop Ghanwani Alice Chen David Chen Franz Goetz Allen Kasey Feng Chen Pat Gonia Prakash Kashyap Weiying Cheng Gerrard Goubert Toyayuki Kato Rao Cherukuri Richard Graham Manu Kaycee Taesik Cheung Mark Gravel Hal Keen Jade Chien Michael A. Gravel Srikanth Keesara

Stephan Kehrer

Eric W. Gray

Hon Wah Chin

Daniel Kelley	Martin McNealis	James Richmond
Kevin Ketchum	Menucher Menuchery	Maximilian Riegel
Keti Kilcrease	Milan Merhar	Anil Rijsinghani
Doyeon Kim	Margaret A. Merrick	Robert Roden
Yongbum Kim	John Messenger	Edouard Rocher
Alan Kirby	Colin Mick	Guenter Roeck
Kimberly Kirkpatrick	Amol Mitra	John J. Roese
Keith Klamm	Dinesh Mohan	Josef Roese
Steve Kleiman	Gabriel Montenegro	Derek J. Rohde
Philippe Klein	Jim Montrose	Allyn Romanow
Oliver Kleinberg	Matthew Mora	Dan Romascanu
Marcel Kiessling	John Morris	Paul Rosenblum
Yongbum Kim	Bob Moskowitz	Moran Roth
Philippe Klein	Eric Multanen	Jessy V. Rouyer
Bruce Kling	Yaron Nachman	Doug Ruby
Walter Knitl	Yukihiro Nakagawa	Eric Ryu
Mike Ko	Hiroki Nakano	Jonathan Sadler
Raghu Kondapalli	Krishna Narayanaswamy	Ali Sajassi
Jouni Korhonnen	Lawrence Ng	Dolors Sala
Michael Krause	Henry Ngai	Joseph Salowey
Dan Krent	Paul Nikolich	John Salter
James Kristof	Kevin Nolish	Panagiotis Saltsidis
Vinod Kumar	Bob Noseworthy	Sam Sambasivan
Paul Kummer	Don O'Connor	
Bruce Kwan	Karen O'Donoghue	Ray Samora
Paul Lachapelle		Behcet Sarikaya
Kari Laihonen	Jerry O'Keefe Eugene O'Neil	Alan Sarsby
Ashvin Lakshmikantha	Satoshi Obara	Satish Sathe
	Hiroshi Ohta	John M. Sauer
Bill Lane		Ayman Sayed
Paul Langille	David Olsen	Susan Schanning
Roger Lapuh	Toshio Ooka	Ted Schroeder
H. Eugene Latham	Jörg Ottensmeyer	Benjamin Schultz
Loren Larsen	Shlomo Ovadia	Mick Seaman
Yannick Le Goff	Vijoy Pandey	Gerry Segal
Marcus Leech	Don Pannell	Rich Seifert
John Lemon	Luc Pariseau	Lee Sendelbach
Michael Lerer	Glenn Parsons	Koichiro Seto
Lin Li	Richard Patti	Daniel Sexton
Bing Liao	Ken Patton	Himanshu Shah
George Lin	Mark Pearson	Rakesh Sharma
William P. Lidinsky	Joseph Pelissier	Ravi Shenoy
Johann Lindmeyr	Yonadav Perry	Howard Sherry
Marina Lipshteyn	David Peterson	K. Karl Shimada
Gary Littleton	Roger Pfister	Fred Shu
Robert D. Love	Thomas L. Phinney	Wu-Shi Shung
Yuanqui Luo	John Pickens	Taeshi Shimizu
Andy Luque	Walter Pienciak	Phil Simmons
Jeff Lynch	Daniel Pitt	Curtis Simonson
Gael Mace	Hayim Porat	Paramjeet Singh
Thomas Mack-Crane	Gideon Prat	Rosemary V. Slager
Phillip Magnuson	Kirk Preiss	Alexander Smith
Christophe Mangin	Ron L. G. Prince	Andrew Smith
Mahalingam Mani	Max Pritikin	Michel Soerensen
David Martin	Ray Qiu	M. Soha
Peter Martini	Rene Raeber	Stuart Soloway
Riccardo Martinotti	Ananda Rajagopal	Johannes Specht
Marco Mascitto	Steve Ramberg	Nurit Sprecher
Tom McBeath	Nigel Ramsden	Kevin B. Stanton
Keith McCloghrie	Karen Randall	Larry Stefani
Bruce McClure	Shlomo Reches	Wilfried Steiner
Tom McGowan	Frank Reichstein	Dan Stokesberry
Alan McGuire	Dick Reohr	Sundar Subramaniam
James McIntosh	Trudy Reusser	Robert Sultan
	•	

Muneyoshi Suzuki Wendell Turner Glenn Wenig Yoshihiro Suzuki Paul Unbehagen Martin White Bert Wijnen George Swallow Dhadesugoor Vaman Lennart Swartz Steve Van Seters Deborah Wilbert Keith Willette Richard Sweatt Dono van-Mierop Vahid Tabatabaee Peter Videcranz Robert Williams John Viega Val Wilson Attila Takacs Kenta Takumi Maarten Vissers Ludwig Winkel Dennis Volpano Robert Winter Francois Tallet Manoj Wadekar Paul Wainwright Michael Witkowski Robin Tasker **Edward Wong** Angus Telfer John Terry Scott Wasson Jordon Woods Patricia A. Thaler Daniel Watts Michael D. Wright Jonathan Thatcher Yuehua Wei Michele Wright John Wakerly Dave Thompson Chien-Hsien Wu Geoff Thompson Peter Wang Min Xiao Philip Wang Y. C. Wang Yan Wang David Thornburg Ken Young Oliver Thorp Allen Yu Michel Thorsen Wayne Zakowski Fouad Tobagi Trevor Warwick Igor Zhovnirovsky Nathan Tobol **Bob Watson** Carolyn Zimmer Karl Weber Jeremy Touve Helge Zinner Naoki Tsukutari Yuehua Wei Glen Zorn Fred Tuck Brian Weis Nick Zucchero Chait Tumuluri Alan Weissberger Juan-Carlos Zuniga

Introduction

This introduction is not part of IEEE Std 802.1QTM-2022, IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks.

IEEE Std 802.1QTM-2022 incorporates the text of the following amendments into IEEE Std 802.1QTM-2018.

IEEE Std 802.1QccTM-2018 Stream Reservation Protocol (SRP) Enhancements and

Performance Improvements

IEEE Std 802.1QcpTM-2018 YANG Data Model

IEEE Std 802.1QcyTM-2019 Virtual Station Interface (VSI) Discovery and Configuration

Protocol (VDP) Extension to Support Network Virtualization

Overlays Over Layer 3 (NVO3)

IEEE Std 802.1QcxTM-2020 YANG Data Model for Connectivity Fault Management

IEEE Std 802.1Qcr[™]-2020 Asynchronous Traffic Shaping

The 2018 revision of this standard incorporated the text of the following amendments into IEEE Std

802.1Q-2014.

IEEE Std 802.1QcdTM-2015 Application Virtual Local Area Network (VLAN) Type,

Length, Value (TLV)

IEEE Std 802.1QcaTM-2015
Path Control and Reservation
IEEE Std 802.1Q-2014 Cor 1-2015
Technical and editorial corrections
IEEE Std 802.1QbvTM-2015
Enhancements for scheduled traffic

IEEE Std 802.1QbuTM-2016 Frame preemption

IEEE Std 802.1QbzTM-2016 Enhancements to Bridging of IEEE 802.11 Media

IEEE Std 802.1QciTM-2017 Per-Stream Filtering and Policing IEEE Std 802.1QchTM-2017 Cyclic Queuing and Forwarding

The 2014 revision of this standard incorporated the text of the following amendments into IEEE Std

802.1Q-2011.

IEEE Std 802.1Qbe™-2011 Multiple I-SID Registration Protocol

IEEE Std 802.1QbcTM-2011 Provider Bridging—Remote Customer Service Interfaces

IEEE Std 802.1Qbb[™]-2011 Priority-based Flow Control

IEEE Std 802.1QazTM-2011 Enhanced Transmission Selection for Bandwidth Sharing

Between Traffic Classes

IEEE Std 802.1QbfTM-2011 PBB-TE Infrastructure Segment Protection

IEEE Std 802.1Qbg[™]-2012 Edge Virtual Bridging IEEE Std 802.1aq[™]-2012 Shortest Path Bridging

IEEE Std 802.1Q-2011/Cor 2-2012 Technical and editorial corrections
IEEE Std 802.1QbpTM-2014 Equal Cost Multiple Paths (ECMP)

The 2011 revision of this standard incorporated the text of the following amendments into

IEEE Std 802.1Q-2005.

IEEE Std 802.1adTM-2005 Provider Bridges

IEEE Std 802.1ak[™]-2007 Multiple Registration Protocol
IEEE Std 802.1ag[™]-2007 Connectivity Fault Management
IEEE Std 802.1ah[™]-2008 Provider Backbone Bridges

IEEE Std 802-1Q-2005/Cor-1-2008 Corrections to the Multiple Registration Protocol

IEEE Std 802.1ap [™] -2008	Management Information Base (MIB) Definitions for VLAN Bridges
IEEE Std 802.1Qaw [™] -2009	Management of Data Driven and Data Dependent Connectivity Faults
IEEE Std 802.1Qay™-2009	Provider Backbone Bridge Traffic Engineering
IEEE Std 802.1aj™-2009	Two-Port Media Access Control (MAC) Relay
IEEE Std 802.1Qav TM -2009	Forwarding and Queuing Enhancements for Time-Sensitive Streams
IEEE Std 802.1Qau™-2010	Congestion Notification
IEEE Std 802.1QatTM-2010	Stream Reservation Protocol

Clause 13 of IEEE Std 802.1Q-2011 was also revised to include an updated specification of the Rapid Spanning Tree Algorithm and Protocol (RSTP), superseding references to IEEE Std 802.1DTM-2004 [B12].

The 2005 revision of this standard incorporated the text of the following amendments into

IEEE Std 802.1Q-1998.

IEEE Std 802.1uTM-2001 **Technical and Editorial Corrections** IEEE Std 802.1vTM-2001 VLAN Classification by Protocol and Port IEEE Std 802.1sTM-2002 Multiple Spanning Trees

This standard was first published as IEEE Std 802.1Q-1998, making use of the concepts and mechanisms of LAN Bridging that were introduced by IEEE Std 802.1D and defining additional mechanisms to allow the implementation of Virtual Bridged Networks.

For an introduction to this standard that details each of the provisions introduced by amendments and revisions throughout its development, refer to 1.3.

This standard contains state-of-the-art material. The area covered by this standard is undergoing evolution. Revisions are anticipated within the next few years to clarify existing material, to correct possible errors, and to incorporate new related material. Information on the current revision state of this and other IEEE 802 standards may be obtained from

Secretary, IEEE-SA Standards Board 445 Hoes Lane Piscataway, NJ 08854-4141 **USA**

⁶ The numbers in brackets correspond to those of the bibliography in Annex W.

Contents

1.	Over	view	74
	1.1	Scope	74
	1.2	Purpose	
	1.3	Introduction	
2.	Norm	native references	83
3.	Defin	itions	87
4.	Abbro	eviations	109
5.	Confe	ormance	115
٥.	5.1	Requirements terminology	
	5.2	Conformant components and equipment	
	5.3	Protocol Implementation Conformance Statement (PICS)	
	5.4	VLAN Bridge component requirements	
	J. -	5.4.1 VLAN Bridge component options	
		5.4.2 Multiple VLAN Registration Protocol (MVRP) requirements	
		5.4.3 VLAN Bridge requirements for congestion notification	
		5.4.4 Multiple Stream Registration Protocol (MSRP) requirements	
		5.4.5 Shortest Path Bridging (SPB) operation (optional)	
		5.4.6 Path Control and Reservation (PCR) (optional)	
	5.5	C-VLAN component conformance	
	3.3	5.5.1 C-VLAN component options	
		5.5.2 TE-MSTID (optional)	
	5.6	S-VLAN component conformance	
	5.0	5.6.1 S-VLAN component options	
		5.6.2 S-VLAN component requirements for Provider Backbone Bridge Traff	
		Engineering (PBB-TE)	
		5.6.3 S-VLAN component requirements for PBB-TE IPS	
		5.6.4 S-VLAN component requirements for ECMP with flow filtering	
	5.7	I-component conformance	
	5.7	5.7.1 I-component options	
	5.8	B-component conformance	
	5.0	5.8.1 B-component options	
		5.8.2 B-component requirements for PBB-TE	
		5.8.3 B-component requirements for PBB-TE IPS	
		5.8.4 B-component requirements for ECMP with flow filtering	
	5.9	C-VLAN Bridge conformance.	
	• 12	5.9.1 C-VLAN Bridge options	
	5.10	Provider Bridge conformance	
	0.10	5.10.1 S-VLAN Bridge conformance	
		5.10.2 Provider Edge Bridge conformance	
	5.11	System requirements for Priority-based Flow Control (PFC)	
	5.12	Backbone Edge Bridge (BEB) conformance	
	- · · · -	5.12.1 BEB requirements for PBB-TE	
	5.13	MAC Bridge component requirements	
	2.10	5.13.1 MAC Bridge component options	
	5.14	MAC Bridge conformance	
		5 14 1 MAC Bridge ontions	133

	5.15	TPMR component conformance	
		5.15.1 TPMR component options	
	5.16	TPMR conformance	
		5.16.1 TPMR options	
	5.17	T-component conformance	
		5.17.1 T-component options	
	5.18	End station requirements for MMRP, MVRP, and MS	
	•	5.18.1 MMRP requirements and options	
		5.18.2 MVRP requirements and options	
		5.18.3 MSRP requirements and options	
	5.19	VLAN-aware end station requirements for CFM	
	5.20	End station requirements—FQTSS	
	5.21	End station requirements for congestion notification.	
	5.22	MAC-specific bridging methods	
	5.22		
		EVB Bridge requirements	
	5.24	EVB station requirements	
		5.24.1 Edge relay (ER) requirements	
	5.25	End station requirements—enhancements for schedul	
	5.26	End station requirements—enhancements for frame p	
	5.27	End station requirements—PSFP	
	5.28	End station requirements—Cyclic queuing and forward	
	5.29	TSN CNC station requirements	142
	5.30	VDP-NVO3 requirements	
		5.30.1 VDP-NVO3 nNVE requirements	
		5.30.2 VDP-NVO3 tNVE requirements	
	5.31	End station requirements—ATS	
6.	Suppo	ort of the MAC Service	144
	6.1	Basic architectural concepts and terms	
	6.2	Provision of the MAC Service	
		6.2.1 Point-to-point, multipoint-to-multipoint, an	
	6.3	Support of the MAC Service	
	6.4	Preservation of the MAC Service	
	6.5	Quality of service (QoS) maintenance	
		6.5.1 Service availability	147
		6.5.2 Frame loss	
		6.5.3 Frame misordering	
		6.5.4 Frame duplication	149
		6.5.5 Transit delay	
		6.5.6 Frame lifetime	
		6.5.7 Undetected frame error rate	
		6.5.8 Maximum Service Data Unit Size	
		6.5.9 Priority	
		6.5.10 Throughput	
	6.6	Internal Sublayer Service (ISS)	
	6.7	Support of the ISS by specific MAC procedures	
	0.7	6.7.1 Support of the ISS by IEEE Std 802.3 (Ethe	
		* * * * * * * * * * * * * * * * * * * *	
	(0	6.7.2 Frame preemption	
	6.8	Enhanced Internal Sublayer Service (EISS)	
		6.8.1 Service primitives	
		6.8.2 Status parameters	
		6.8.3 Point-to-point parameters	

	6.9	Support of the EISS	
		6.9.1 Data indications	
		6.9.2 Data requests	158
		6.9.3 Priority Code Point encoding	158
		6.9.4 Regenerating priority	160
	6.10	Support of the ISS/EISS by PIPs	161
		6.10.1 Data indications	163
		6.10.2 Data requests	164
		6.10.3 Priority Code Point encoding	164
	6.11	Support of the EISS by CBPs	165
		6.11.1 Data indications	166
		6.11.2 Data requests	167
		6.11.3 Priority Code Point decoding	168
		6.11.4 Regenerating priority	168
	6.12	Protocol VLAN classification	168
		6.12.1 Protocol Templates	170
		6.12.2 Protocol Group Identifiers	170
		6.12.3 Protocol Group Database	170
	6.13	Support of the ISS for attachment to a PBN	171
		6.13.1 Data requests	172
		6.13.2 Data indications	172
	6.14	Support of the ISS within a system	173
	6.15	Support of the ISS by additional technologies	
	6.16	Filtering services in Bridged Networks	
		6.16.1 Purpose(s) of filtering service provision	
		6.16.2 Goals of filtering service provision	
		6.16.3 Users of filtering services	
		6.16.4 Basis of service	
		6.16.5 Categories of service	175
		6.16.6 Service configuration	
		6.16.7 Service definition for Extended Filtering Services	
	6.17	EISS Multiplex Entity	
	6.18	Backbone Service Instance Multiplex Entity	
		6.18.1 Demultiplexing direction	
		6.18.2 Multiplexing direction	
		6.18.3 Priority Code Point encoding	
		6.18.4 Status parameters	
	6.19	TESI Multiplex Entity	
	6.20	Support of the ISS with signaled priority	
		6.20.1 Data indications	
		6.20.2 Data requests	183
	6.21	Infrastructure Segment Multiplex Entity	
	6.22	PDU and protocol discrimination and media	
7.	Princ	iples of Virtual Bridged Network operation	185
	7.1	Network overview	195
	7.1	Use of VLANs	
	7.2	Active topology	
	7.3 7.4	VLAN topology	
	7.5	Locating end stations	
	7.6	Ingress, forwarding, and egress rules	
	7.0	mgress, forwarding, and egress fures	109

Princi	iples of B	ridge operation	190
8.1	Bridge	operation	190
	8.1.1	Relay	
	8.1.2	Filtering and relaying information	
	8.1.3	Duplicate frame prevention	
	8.1.4	Traffic segregation	
	8.1.5	Traffic reduction	192
	8.1.6	Traffic expediting	192
	8.1.7	Conversion of frame formats	192
8.2	Bridge a	architecture	193
8.3	Model o	of operation	195
8.4	Active t	topologies, learning, and forwarding	199
8.5	Bridge 1	Port Transmit and Receive	200
	8.5.1	Bridge Port connectivity	200
	8.5.2	TPMR Port connectivity	201
	8.5.3	Support of Higher Layer Entities	202
8.6	The For	rwarding Process	202
	8.6.1	Active topology enforcement	203
	8.6.2	Ingress filtering	205
	8.6.3	Frame filtering	205
	8.6.4	Egress filtering	208
	8.6.5	Flow classification and metering	208
	8.6.6	Queuing frames	217
	8.6.7	Queue management	218
	8.6.8	Transmission selection	219
	8.6.9	Scheduled traffic state machines	225
	8.6.10	Stream gate control state machines	232
	8.6.11	ATS Scheduler state machines	234
3.7	The Lea	arning Process	238
	8.7.1	Default filtering utility criteria	238
	8.7.2	Enhanced filtering utility criteria	238
	8.7.3	Ageing of Dynamic Filtering Entries	239
8.8	The Filt	tering Database (FDB)	239
	8.8.1	Static Filtering Entries	242
	8.8.2	Static VLAN Registration Entries	243
	8.8.3	Dynamic Filtering Entries	244
	8.8.4	MAC Address Registration Entries	
	8.8.5	Dynamic VLAN Registration Entries	245
	8.8.6	Default Group filtering behavior	246
	8.8.7	Dynamic Reservation Entries	247
	8.8.8	Allocation of VIDs to FIDs	247
	8.8.9	Querying the FDB	248
	8.8.10	Determination of the member set for a VID	252
	8.8.11	Permanent Database	252
	8.8.12	Connection Identifier	252
8.9	MST, S	SPB, and ESP configuration information	253
	8.9.1	MST Configuration Table	254
	8.9.2	MST configuration identification	
	8.9.3	FID to MSTI Allocation Table	
	8.9.4	SPT Configuration Identification	
8.10	Spannir	ng Tree Protocol Entity	
8.11		ntities	
8.12	Bridge]	Management Entity	256

	8.13	Addressing	256		
		8.13.1 End stations	256		
		8.13.2 Bridge Ports	256		
		8.13.3 Use of LLC by Spanning Tree Protocol Entities	257		
		8.13.4 Reserved MAC addresses	257		
		8.13.5 Group MAC addresses for spanning tree entity	257		
		8.13.6 Group MAC addresses for MRP Applications	259		
		8.13.7 Bridge Management Entities	260		
		8.13.8 Unique identification of a Bridge	260		
		8.13.9 Points of attachment and connectivity for Higher Layer Entities	260		
		8.13.10 VLAN attachment and connectivity for Higher Layer Entities	264		
		8.13.11 CFM entities	265		
9.	Tagge	Tagged frame format			
	9.1	Purpose of tagging	267		
	9.2	Representation and encoding of tag fields			
	9.3	Tag format			
	9.4	TPID formats			
	9.5	Tag Protocol identification			
	9.6	VLAN Tag Control Information (TCI)			
	9.7	Backbone Service Instance Tag Control Information (I-TAG TCI)			
10.	Multi	iple Registration Protocol (MRP) and Multiple MAC Registration Protocol (MMRP)	272		
	10.1	MRP overview	272		
	10.2	MRP architecture			
	10.3	MRP Attribute Propagation (MAP)			
		10.3.1 MAP Context			
	10.4	Requirements to be met by MRP			
	10.5	Requirements for interoperability between MRP Participants			
	10.6	Protocol operation			
	10.7	Protocol specification			
		10.7.1 Notational conventions and abbreviations			
		10.7.2 Registrar Administrative Controls			
		10.7.3 Applicant Administrative Controls			
		10.7.4 Protocol timers	287		
		10.7.5 Protocol event definitions	288		
		10.7.6 Protocol Action definitions	290		
		10.7.7 Applicant state machine	292		
		10.7.8 Registrar state machine			
		10.7.9 LeaveAll state machine	292		
		10.7.10 PeriodicTransmission state machine	295		
		10.7.11 Timer values	295		
		10.7.12 Operational reporting and statistics	296		
		10.7.13 Interoperability considerations			
		10.7.14 External control			
	10.8	Structure and encoding of Multiple Registration Protocol Data Units (MRPDUs)			
		10.8.1 Structure			
		10.8.2 Encoding of MRPDU parameters	299		
		10.8.3 Packing and parsing MRPDUs	302		
	10.9	Multiple MAC Registration Protocol (MMRP)—Purpose	304		

	10.10	MMRP 1	Model of operation	305		
		10.10.1	Propagation of Group Membership information	306		
		10.10.2	Propagation of Group service requirement information	307		
		10.10.3	Source pruning	307		
		10.10.4	Use of Group service requirement registration by end stations	307		
	10.11	Default (Group filtering behavior and MMRP propagation	307		
	10.12	Definition	on of the MMRP application	309		
		10.12.1	Definition of MRP elements			
		10.12.2	Provision and support of Extended Filtering Services	311		
		10.12.3	**			
		10.12.4	Attribute value support requirements			
		10.12.5	Registrar Administrative Controls			
11.	V/I AN	I tanalaa	y management	214		
11.			•			
	11.1		nd dynamic VLAN configuration			
	11.2		e VLAN Registration Protocol (MVRP)			
		11.2.1	MVRP overview			
		11.2.2	VLAN registration service definition			
		11.2.3	Definition of the MVRP application			
		11.2.4	VID translation table			
		11.2.5	Use of "new" declaration capability	321		
		11.2.6	New-Only Participant and Registrar Administrative Controls	321		
		11.2.7	Attribute value support requirements	321		
12.	Duida		ment	222		
12.	·	·				
	12.1	_	ment functions			
		12.1.1	Configuration Management			
		12.1.2	Fault Management			
		12.1.3	Performance Management			
		12.1.4	Security Management			
		12.1.5	Accounting Management			
	12.2	VLAN E	Bridge objects	323		
	12.3	- 71				
	12.4	Bridge N	Management Entity	325		
		12.4.1	Bridge Configuration	325		
		12.4.2	Port configuration	328		
	12.5	MAC en	ntities			
			ISS Port Number table managed object (optional)			
	12.6		ling process			
		12.6.1	The Port Counters			
		12.6.2	Priority handling			
		12.6.3	Traffic Class Table			
	12.7		g Database (FDB)			
	12.7	12.7.1	The Filtering Database object			
		12.7.2	A Static Filtering Entry object			
		12.7.2	A Dynamic Filtering Entry object			
		12.7.3	A MAC Address Registration Entry object			
		12.7.4				
			A VLAN Registration Entry object			
		12.7.6	Permanent Database object			
	12.0	12.7.7	General FDB operations			
	12.8	_	Protocol Entity			
		12.8.1	The Protocol Entity			
		12.8.2	Bridge Port	348		

12.9	MRP Ent	ities	. 352
	12.9.1	The MRP Timer object	. 352
	12.9.2	The MRP Attribute Type object	. 353
	12.9.3	Periodic state machine objects	. 354
12.10	Bridge V	LAN managed objects	. 354
	12.10.1	Bridge VLAN Configuration managed object	. 355
	12.10.2	VLAN Configuration managed object	. 360
	12.10.3	The VID to FID allocation managed object	. 361
12.11	MMRP e	ntities	. 363
	12.11.1	MMRP Configuration managed object	. 363
12.12	MST con	figuration entities	. 365
	12.12.1	The MSTI List	
	12.12.2	The FID to MSTID Allocation Table	. 366
	12.12.3	The MST Configuration Table	. 367
12.13	Provider	Bridge management	. 369
	12.13.1	Provider Bridge Port Type managed object	. 370
	12.13.2	Customer Edge Port Configuration managed object	. 371
	12.13.3	Remote Customer Access managed object	. 374
12.14	CFM ent	ities	. 376
	12.14.1	Maintenance Domain list managed object	. 376
	12.14.2	CFM Stack managed object	. 378
	12.14.3	Default MD Level managed object	. 379
	12.14.4	Configuration Error List managed object	. 380
	12.14.5	Maintenance Domain managed object	. 381
	12.14.6	Maintenance Association managed object	
	12.14.7	Maintenance association Endpoint managed object	. 386
		e Core Bridge (BCB) management	
12.16	Backbon	e Edge Bridge (BEB) management	
	12.16.1	BEB configuration managed object	
	12.16.2	BEB/PB/VLAN Bridge Port configuration managed object	
	12.16.3	VIP configuration managed object	
	12.16.4	PIP configuration managed object	
	12.16.5	CBP Configuration managed object	
12.17		entities	
	12.17.1	DDCFM Stack managed object	
	12.17.2	Reflection Responder managed object	
	12.17.3	RFM Receiver managed object	
	12.17.4	Decapsulator Responder managed object	
		SFM Originator managed object	
12.18		Protection Switching managed objects	
	12.18.1	TE protection group list managed object	
	12.18.2	TE protection group managed object	
12.19		anaged objects	
	12.19.1	TPMR management entity	
	12.19.2	MAC and PHY entities	
	12.19.3	Forwarding Process	
10.50	12.19.4	MAC Status Propagation Entity (MSPE)	
12.20	_	nent entities for FQTSS	
	12.20.1	The Bandwidth Availability Parameter Table	
	12.20.2	The Transmission Selection Algorithm Table	
	12.20.3	The Priority Regeneration Override Table	
	12.20.4	SR Class to Priority Manning Table	434

12.21	Congesti	on Notification managed objects	435
		CN component managed object	
		CN component priority managed object	
		CN Port priority managed object	
		Congestion Point managed object	
		Reaction Point port priority managed object	
		Reaction Point group managed object	
12.22		Reservation Protocol (SRP) entities	
	12.22.1	SRP Bridge Base Table	
	12.22.2	SRP Bridge Port Table	
	12.22.3	SRP Latency Parameter Table	
	12.22.4	SRP Stream Table	
	12.22.5	SRP Reservations Table	
	12.22.6	SRP Stream Preload Table	
	12.22.7	SRP Reservations Preload Table	
12 23		based Flow Control objects	
		-TE IPS managed objects	
12.27		IPG list managed object	
		IPG managed object	
12.25		Path Bridging managed objects	
12.23		The SPB System managed object	
		The SPB MTID Static managed object	
	12.25.3	The SPB Topology Instance Dynamic managed object	453
	12.25.4	The SPB ECT Static Entry managed object	
	12.25.5	The SPB ECT Dynamic Entry managed object	
	12.25.6	The SPB Adjacency Static Entry managed object	
	12.25.7	The SPB Adjacency Dynamic Entry managed object	
	12.25.8	The SPBM BSI Static Entry managed object	
	12.25.9	The SPB Topology Node Table managed object	
		The SPB Topology ECT Table managed object	
		The SPB Topology Edge Table managed object	
		The SPBM Topology Service Table managed object	
		The SPBV Topology Service Table managed object	
		The ECMP ECT Static Entry managed object	
12.26	-	tual Bridging (EVB) management	
		EVB system base table	
	12.26.2	SBP table entry	469
		VSI table entry	
	12.26.4	S-channel configuration and management	471
	12.26.5	ER management	473
12.27	Edge Con	ntrol Protocol (ECP) management	474
	12.27.1	ECP table entry	474
12.28	Path Con	atrol and Reservation (PCR) management	475
	12.28.1	The PCR ECT Static Entry managed object	
	12.28.2	The PCR Topology ECT Table managed object	
12.29		d objects for scheduled traffic	
	12.29.1	The Gate Parameter Table	
	12.29.2	Timing points for scheduled traffic	
12.30		d objects for frame preemption	
	_	Frame Preemption Parameter table	

	12.31	Managed objects for per-stream classification and metering	484
		12.31.1 The Stream Parameter Table	484
		12.31.2 The Stream Filter Instance Table	485
		12.31.3 The Stream Gate Instance Table	487
		12.31.4 The Flow Meter Instance Table	490
		12.31.5 The Scheduler Instance Table	490
		12.31.6 The Scheduler Group Instance Table	491
		12.31.7 The Scheduler Port Parameter Table	492
		12.31.8 The Scheduler Timing Characteristics Table	492
	12.32	Stream reservation remote management	494
		12.32.1 Bridge Delay	494
		12.32.2 Propagation Delay	496
		12.32.3 Static Trees	
		12.32.4 MRP External Control	497
13.	Spann	ing tree protocols	501
	13.1	Protocol design requirements	
	13.2	Protocol support requirements	
		13.2.1 MSTP support requirements	503
		13.2.2 SPB support requirements	503
	13.3	Protocol design goals	504
	13.4	RSTP overview	504
		13.4.1 Computation of the active topology	
		13.4.2 Example topologies	
	13.5	MSTP overview	509
		13.5.1 Example topologies	510
		13.5.2 Relationship of MSTP to RSTP	
		13.5.3 Modeling an MST or SPT Region as a single Bridge	513
	13.6	SPB overview	
	13.7	Compatibility and interoperability	515
		13.7.1 Designated Port selection	515
		13.7.2 Force Protocol Version	
	13.8	MST Configuration Identifier (MCID)	516
	13.9	Spanning tree priority vectors	517
	13.10	CIST Priority Vector calculations	519
	13.11	MST Priority Vector calculations	521
	13.12	Port Role assignments	523
	13.13	Stable connectivity	524
	13.14	Communicating spanning tree information	525
	13.15	Changing spanning tree information	526
	13.16	Changing Port States with RSTP or MSTP	527
		13.16.1 Subtree connectivity and priority vectors	528
		13.16.2 Root Port transition to Forwarding	528
		13.16.3 Designated Port transition to Forwarding	528
		13.16.4 Master Port transition to Forwarding	
	13.17	Changing Port States with SPB	
		13.17.1 Agreement Digest	
	13.18	Managing spanning tree topologies	
		Updating learned station location information	
		Managing reconfiguration	
		Partial and disputed connectivity	
		In-service upgrades	
		Fragile Bridges	541

Spanning	tree protocol state machines	. 541
State mad	chine timers	543
13.25.1	edgeDelayWhile	544
13.25.2	fdWhile	544
13.25.3	helloWhen	544
13.25.4	mdelayWhile	544
13.25.5	rbWhile	544
13.25.6	rcvdInfoWhile	544
13.25.7	rrWhile	545
13.25.8	tcDetected	545
13.25.9	tcWhile	545
13.25.10	pseudoInfoHelloWhen	545
Per Bridg	ge variables	545
13.26.1	agreementDigest	546
13.26.2	BridgeIdentifier	546
13.26.3	BridgePriority	546
13.26.4	BridgeTimes	546
13.26.5	ForceProtocolVersion	547
13.26.6	MigrateTime	547
13.26.7	MstConfigId	547
13.26.8	AuxMstConfigId	547
13.26.9	rootPortId	. 547
13.26.10	rootPriority	547
13.26.11	rootTimes	. 547
13.26.12	TxHoldCount	547
	State made 13.25.1 13.25.2 13.25.3 13.25.4 13.25.5 13.25.6 13.25.7 13.25.8 13.25.10 Per Bridge 13.26.1 13.26.2 13.26.3 13.26.4 13.26.5 13.26.6 13.26.7 13.26.8 13.26.9 13.26.10 13.26.11	13.25.2 fdWhile 13.25.3 helloWhen 13.25.4 mdelayWhile 13.25.5 rbWhile 13.25.6 rcvdInfoWhile 13.25.7 rrWhile 13.25.8 tcDetected 13.25.9 tcWhile 13.25.10 pseudoInfoHelloWhen Per Bridge variables 13.26.1 agreementDigest 13.26.2 BridgeIdentifier 13.26.3 BridgePriority 13.26.4 BridgeTimes 13.26.5 ForceProtocolVersion 13.26.6 MigrateTime 13.26.7 MstConfigId 13.26.8 AuxMstConfigId

13.27	Per port variables			
	13.27.1	AdminEdge	. 550	
	13.27.2	ageingTime	. 550	
	13.27.3	agree	. 550	
	13.27.4	agreed	. 550	
	13.27.5	agreedAbove	. 550	
	13.27.6	agreedDigest	. 550	
	13.27.7	agreedDigestValid	. 550	
	13.27.8	agreeDigest	. 550	
	13.27.9	agreeDigestValid	. 550	
	13.27.10	agreedMisorder	. 551	
	13.27.11	agreedN	. 551	
	13.27.12	agreedND	. 551	
	13.27.13	agreedPriority	. 551	
		agreedTopology		
		agreementOutstanding		
		agreeN		
		agreeND		
		AutoEdge		
		AutoIsolate		
		designatedPriority		
		designatedTimes		
		disputed		
		enableBPDUrx		
		enableBPDUtx		
		ExternalPortPathCost		
		isL2gp		
		isolate		
		fdbFlush		
		forward		
		forwarding		
		infoInternal		
		infoIs		
		InternalPortPathCost		
		learn		
		learning		
		master		
		mastered		
		mcheck		
		msgPriority		
		msgTimes		
		neighbourPriority		
		newInfo		
		newInfoMsti		
		operEdge		
		portEnabled		
		portId		
		portPriority		
		portTimes		
		proposed		
		proposing		
		pseudoRootId		
		revdBPDU		
		revdInfo		

	13.27.54	rcvdInternal	. 556
	13.27.55	rcvdMsg	. 556
	13.27.56	rcvdRSTP	. 556
	13.27.57	revdSTP	. 556
	13.27.58	revdTc	. 556
	13.27.59	revdTcAck	. 556
	13.27.60	revdTen	. 557
	13.27.61	reRoot	. 557
	13.27.62	reselect	. 557
	13.27.63	restrictedDomainRole	. 557
		restrictedRole	
		restrictedTcn	
		role	
	13.27.67	selected	. 557
	13.27.68	selectedRole	. 557
		sendRSTP	
	13.27.70	sync	. 558
	13.27.71	synced	. 558
	13.27.72	tcAck	. 558
	13.27.73	tcProp	. 558
		tick	
		txCount	
		updtInfo	
13.28	State mad	chine conditions and parameters	
	13.28.1	allSptAgree	
	13.28.2	allSynced	
	13.28.3	allTransmitReady	
	13.28.4	BestAgreementPriority	
	13.28.5	cist	
	13.28.6	cistRootPort	
	13.28.7	cistDesignatedPort	
	13.28.8	EdgeDelay	
	13.28.9	forwardDelay	
		FwdDelay	
		HelloTime	
	13.28.12	MaxAge	. 560
		msti	
		mstiDesignatedOrTCpropagatingRootPort	
	13.28.15	mstiMasterPort	. 560
		operPointToPoint	
		rcvdAnyMsg	
		rcvdCistMsg	
		rcvdMstiMsg	
		reRooted	
		rstpVersion	
	13.28.22	spt	. 561
		stpVersion	
		updtCistInfo	. 561
	13.28.25	updtMstiInfo	. 561

13.29	State macl	nine procedures	561
	13.29.1	betterorsameInfo(newInfoIs)	562
	13.29.2	clearAllRcvdMsgs()	562
	13.29.3	clearReselectTree()	562
	13.29.4	disableForwarding()	563
	13.29.5	disableLearning()	563
	13.29.6	enableForwarding()	563
	13.29.7	enableLearning()	563
	13.29.8	fromSameRegion()	563
	13.29.9	newTcDetected()	563
	13.29.10	newTcWhile()	563
	13.29.11	pseudoRcvMsgs()	564
	13.29.12	revInfo()	564
	13.29.13	rcvMsgs()	565
	13.29.14	rcvAgreements()	565
	13.29.15	recordAgreement()	565
	13.29.16	recordDispute()	566
		recordMastered()	
	13.29.18	recordPriority()	566
	13.29.19	recordProposal()	566
	13.29.20	recordTimes()	566
	13.29.21	setReRootTree()	567
	13.29.22	setSelectedTree()	567
	13.29.23	setSyncTree()	567
	13.29.24	setTcFlags()	567
	13.29.25	setTcPropTree()	567
	13.29.26	syncMaster()	567
	13.29.27	txConfig()	567
	13.29.28	txRstp()	568
	13.29.29	txTcn()	568
	13.29.30	updtAgreement()	568
	13.29.31	updtBPDUVersion()	569
	13.29.32	updtDigest()	569
	13.29.33	updtRcvdInfoWhile()	570
	13.29.34	updtRolesTree()	571
		uptRolesDisabledTree()	
13.30	The Port T	Timers state machine	572
		ve state machine	
13.32	Port Proto	col Migration state machine	574
		tection state machine	
13.34	Port Trans	mit state machine	575
13.35	Port Inform	mation state machine	576
13.36	Port Role	Selection state machine	577
		Transitions state machine	
13.38		Transition state machine	
		Port State transitions for the CIST and MSTIs	
	13.38.2	Port State transitions for SPTs	583
13.39	Topology	Change state machine	584
13.40	Laver 2 G	ateway Port Receive state machine	585

	13.41	CEP spanning tree operation	585			
		13.41.1 PEP operPointToPointMAC and operEdge	585			
		13.41.2 updtRolesTree()				
		13.41.3 setReRootTree(), setSyncTree(), setTcPropTree()	586			
		13.41.4 allSynced, reRooted	586			
		13.41.5 Configuration parameters	586			
	13.42	Virtual Instance Port (VIP) spanning tree operation	587			
14.	Encod	ing of Bridge Protocol Data Units (BPDUs)	588			
	14.1	BPDU Structure	588			
		14.1.1 Transmission and representation of octets	588			
		14.1.2 Common BPDU fields	588			
	14.2	Encoding of parameter types				
		14.2.1 Encoding of Protocol Identifiers				
		14.2.2 Encoding of Protocol Version Identifiers				
		14.2.3 Encoding of BPDU types				
		14.2.4 Encoding of flags				
		14.2.5 Encoding of Bridge Identifiers				
		14.2.6 Encoding of External Root Path Cost and Internal Root Path Cost				
		14.2.7 Encoding of Port Identifiers				
		14.2.8 Encoding of Timer Values				
		14.2.9 Encoding of Port Role values				
		14.2.10 Encoding of Length Values				
		14.2.11 Encoding of Hop Counts				
	14.3	Transmission of BPDUs				
	14.4	Encoding and decoding of STP Configuration, RST, MST, and SPT BPDUs				
	1 1	14.4.1 MSTI Configuration Messages				
	14.5	Validation of received BPDUs				
	14.6	Validation and interoperability				
15.	Suppo	rt of the MAC Service by PBNs	597			
	15.1	Service transparency	597			
	15.2	Customer service interfaces.				
	15.3	Port-based service interface				
	15.4	C-tagged service interface				
	15.5	S-tagged service interface				
	15.6	Remote customer service interfaces (RCSIs)				
	15.7	Service instance segregation				
	15.8	Service instance selection and identification				
	15.9	Service priority selection				
		Service access protection				
16.	Princi	Principles of Provider Bridged Network (PBN) operation				
	16.1	PBN overview	606			
		Provider Bridged Network (PBN)				
	16.2 16.3	Service instance connectivity				
		·				
	16.4	Service provider learning of customer end station addresses				
	16.5	Detection of connectivity loops through attached networks				
	16.6	Network management	612			
17.	Manag	gement Information Base (MIB)	613			
	17.1	Internet Standard Management Framework	613			

17.2	Structure	e of the MIB	613
	17.2.1	Structure of the IEEE8021-TC-MIB	615
	17.2.2	Structure of the IEEE8021-BRIDGE-MIB	616
	17.2.3	Structure of the IEEE8021-SPANNING-TREE MIB	620
	17.2.4	Structure of the IEEE8021-Q-BRIDGE-MIB	
	17.2.5	Structure of the IEEE8021-PB-MIB	
	17.2.6	Structure of the IEEE8021-MSTP-MIB	
	17.2.7	Structure of the IEEE8021-CFM-MIB	
	17.2.8	Structure of the IEEE8021-PBB-MIB	
	17.2.9	Structure of the IEEE8021-DDCFM-MIBs	
	17.2.10	Structure of the IEEE8021-PBBTE-MIB	
	17.2.11	Structure of the TPMR MIB	
	17.2.12	Structure of the IEEE8021-FQTSS-MIB	
	17.2.13	Structure of the IEEE8021-CN-MIB	
	17.2.14	Structure of the IEEE8021-SRP-MIB	
	17.2.15	Structure of the IEEE8021-MVRPX-MIB	
	17.2.16	Structure of the IEEE8021-MIRP-MIB	
	17.2.17	Structure of the IEEE8021-PFC-MIB	
	17.2.18	Structure of the IEEE8021-TEIPS-MIB	
	17.2.19	Structure of the IEEE8021-SPB-MIB	
	17.2.20	Structure of the IEEE8021-EVB-MIB	
	17.2.21	Structure of the IEEE8021-ECMP-MIB	
	17.2.22	Structure of the IEEE8021-ST-MIB	
	17.2.23	Structure of the IEEE8021-Preemption-MIB	
	17.2.24	Structure of the IEEE8021-PSFP-MIB	
	17.2.25	Structure of the IEEE8021-TSN-REMOTE-MANAGEMENT-MIB	
17.3	MIB mo	dule relationships	
	17.3.1	Relationship of the IEEE8021-TC-MIB to other MIB modules	
	17.3.2	Relationship of the IEEE8021-BRIDGE-MIB to other MIB modules	
	17.3.3	Relationship of the IEEE8021-RSTP MIB to other MIB modules	
	17.3.4	Relationship of the IEEE8021-Q-BRIDGE-MIB to other MIB modules	
	17.3.5	Relationship of the IEEE8021-PB-BRIDGE MIB to other MIB modules	
	17.3.6	Relationship of the IEEE8021-MSTP-MIB to other MIB modules	
	17.3.7	Relationship of the IEEE8021-CFM-MIB to other MIB modules	
	17.3.8	Relationship of the IEEE8021-PBB-MIB to other MIB modules	
	17.3.9	Relationship of the IEEE8021-DDCFM to other MIB modules	
	17.3.10	Relationship of the IEEE8021-PBBTE-MIB to other MIB modules	
	17.3.11	Relationship of the IEEE8021-TPMR MIB to other MIB modules	
		Relationship of the IEEE8021-FQTSS-MIB to other MIB modules	681
	17.3.13	Relationship of the IEEE802-CN-MIB to other MIB modules	
	17.3.14	Relationship of the IEEE8021-SRP-MIB to other MIB modules	
	17.3.15	Relationship of the IEEE8021-MVRPX-MIB to other MIB modules	
	17.3.16	Relationship of the IEEE8021-MIRP-MIB to other MIB modules	
	17.3.17	Relationship of the IEEE8021-PFC-MIB to other MIB modules	
	17.3.18	Relationship of the IEEE8021-TEIPS-MIB to other MIB modules	
	17.3.19	Relationship of the IEEE8021-SPB-MIB to other MIB modules	
	17.3.20	Relationship of the IEEE8021-EVB-MIB to other MIB modules	
	17.3.21	Relationship of the IEEE8021-ECMP-MIB to other MIB modules	
	17.3.21	Relationship of the IEEE8021-ST-MIB to other MIB modules	
	17.3.23	Relationship of the IEEE8021-Preemption-MIB to other MIB modules	
	17.3.24	Relationship of IEEE8021-PSFP-MIB to other MIB modules	
	17.3.25	Relationship of IEEE8021-TSN-REMOTE-MANAGEMENT-MIB to other	
	1,.5.25	modules	

17.4	Security	considerations	684
	17.4.1	Security considerations of the IEEE8021-TC-MIB	
	17.4.2	Security considerations of the IEEE8021-BRIDGE-MIB	685
	17.4.3	Security considerations of the IEEE8021-SPANNING-TREE MIB	
	17.4.4	Security considerations of the IEEE8021-Q-BRIDGE-MIB	686
	17.4.5	Security considerations of the IEEE8021-PB-MIB	687
	17.4.6	Security considerations of the IEEE8021-MSTP-MIB	
	17.4.7	Security considerations of the IEEE8021-CFM-MIB	688
	17.4.8	Security considerations of the IEEE8021-PBB-MIB	690
	17.4.9	Security considerations of the IEEE8021-DDCFM-MIB	691
	17.4.10	Security considerations of the IEEE8021-PBBTE-MIB	
	17.4.11	Security considerations of the IEEE8021-TPMR-MIB	692
	17.4.12	Security considerations of the IEEE8021-FQTSS-MIB	
	17.4.13	Security considerations of the IEEE8021-CN-MIB	693
	17.4.14	Security considerations of the IEEE8021-SRP-MIB	695
	17.4.15	Security considerations of the IEEE8021-MVRPX-MIB	
	17.4.16	Security considerations of the IEEE8021-MIRP-MIB	696
	17.4.17	Security considerations of the IEEE8021-PFC-MIB	
	17.4.18	Security considerations of the IEEE8021-TEIPS-MIB	
	17.4.19	Security considerations of the IEEE8021-SPB-MIB	
	17.4.20	Security considerations of the IEEE8021-EVB-MIB	
	17.4.21	Security considerations of the IEEE8021-ECMP-MIB	
	17.4.22	Security considerations of the IEEE8021-ST-MIB	
	17.4.23	Security considerations of the IEEE8021-Preemption-MIB	700
	17.4.24	Security considerations of the IEEE8021-PSFP-MIB	700
	17.4.25	Security considerations of the IEEE8021-TSN-REMOTE-MANAGEME	NT-MIB
		702	
17.5	Dynamic	c component and Port creation	703
	17.5.1	Overview of the dynamically created Bridge entities	
	17.5.2	Component creation	704
	17.5.3	Port creation	705
17.6	MIB ope	erations for service interface configuration	715
	17.6.1	Provisioning PBN service interfaces	
	17.6.2	Provisioning Backbone Bridged Network service interfaces	718

	17.7	MIB mo	dules	724
		17.7.1	Definitions for the IEEE8021-TC-MIB module	724
		17.7.2	Definitions for the IEEE8021-BRIDGE-MIB module	733
		17.7.3	Definitions for the IEEE8021-SPANNING-TREE-MIB module	766
		17.7.4	Definitions for the IEEE8021-Q-BRIDGE-MIB module	781
		17.7.5	Definitions for the IEEE8021-PB-MIB module	819
		17.7.6	Definitions for the IEEE8021-MSTP-MIB module	834
		17.7.7	Definitions for the CFM MIB modules	858
		17.7.8	Definitions for the IEEE8021-PBB-MIB module	926
		17.7.9	Definitions for the IEEE8021-DDCFM-MIB module	945
		17.7.10	Definitions for the IEEE8021-PBBTE-MIB module	960
		17.7.11	Definitions for the IEEE8021-TPMR-MIB module	
		17.7.12	Definitions for the IEEE8021-FQTSS-MIB module	
		17.7.13	Definitions for the IEEE8021-CN-MIB module	
		17.7.14	Definitions for the IEEE8021-SRP-MIB module	
		17.7.15	Definitions for the IEEE8021-MVRPX-MIB module	
		17.7.16	Definitions for the IEEE8021-MIRP-MIB module	
		17.7.17	Definitions for the IEEE8021-PFC-MIB module	
		17.7.18	Definitions for the IEEE8021-TEIPS-V2-MIB module	
		17.7.19	Definitions for the IEEE8021-SPB-MIB module	
		17.7.20	Definitions for the IEEE8021-EVB-MIB module	
		17.7.21	Definitions for the IEEE8021-ECMP-MIB module	
		17.7.22	Definitions for the IEEE8021-ST-MIB module	
		17.7.23	Definitions for the IEEE8021-Preemption-MIB module	
		17.7.24	Definitions for the IEEE8021-PSFP-MIB module	
		17.7.25	Definitions for the IEEE8021-TSN-REMOTE-MANAGEMENT-MI 1173	B module
18.	Princi	iples of Co	onnectivity Fault Management operation	1182
	18.1	Mainten	ance Domains and DoSAPs	1183
	18.2	Service	instances and MAs	1185
	18.3	Mainten	ance Domain Levels	1186
19.	CFM	entity ope	ration	1190
	19.1	Mainten	ance Points (MPs)	1190

	19.2	MA End	lpoints (MEPs)	
		19.2.1	MEP identification	1190
		19.2.2	MEP functions	1192
		19.2.3	MEP architecture	1192
		19.2.4	MP Type Demultiplexer	1194
		19.2.5	MP Multiplexer	
		19.2.6	MP Level Demultiplexer	
		19.2.7	MP OpCode Demultiplexer	
		19.2.8	MEP Continuity Check Receiver	
		19.2.9	MEP Continuity Check Initiator	
		19.2.10	MP Loopback Responder	
		19.2.11	MEP Loopback Initiator	
		19.2.12	MEP Linktrace Initiator	
		19.2.12	MEP LTI SAP	
		19.2.14	MEP Linktrace SAP	
		19.2.14	MEP CCM Database	
		19.2.15	MEP Fault Notification Generator	
		19.2.10	MEP Decapsulator Responder (DR)	
	10.2	19.2.18	MEP RFM Receiver	
	19.3		If Function	
		19.3.1	MHF identification	
		19.3.2	MHF functions	
		19.3.3	MHF architecture	
		19.3.4	MHF Level Demultiplexer	
		19.3.5	MHF Type Demultiplexer	
		19.3.6	MHF OpCode Demultiplexer	
		19.3.7	MHF Multiplexer	
		19.3.8	MHF Loopback Responder	
		19.3.9	MHF Continuity Check Receiver	1199
		19.3.10	MIP CCM Database	1199
		19.3.11	MHF Linktrace SAP	1199
		19.3.12	MHF DR	1199
		19.3.13	MHF RFM Receiver	1199
	19.4	MP addr	ressing	1200
	19.5		e Output Multiplexer (LOM)	
	19.6		e Responder	
20.	CFM	protocols.		1203
	20.1	Continui	ity Check protocol	1204
		20.1.1	MAC status reporting in the CCM	
		20.1.2	Defects and Fault Alarms	
		20.1.2	CCM reception	
	20.2		Ek protocol	
	20.2	20.2.1	LBM transmission	
		20.2.1	LBM reception and LBR transmission	
		20.2.2	LBR reception and LBR transmission LBR reception	
	20.2		•	
	20.3		e protocol	
		20.3.1	LTM origination	
		20.3.2	LTM reception, forwarding, and replying	
	20.4	20.3.3	LTR reception	
	20.4	CFM sta	te machines	1213

20.5	CFM stat	e machine timers	1213
	20.5.1	LTFwhile	1213
	20.5.2	CCIwhile	1213
	20.5.3	errorCCMwhile	1214
	20.5.4	xconCCMwhile	1215
	20.5.5	LBIwhile	1215
	20.5.6	FNGwhile	1215
	20.5.7	mmCCMwhile	1215
	20.5.8	mmLocwhile	
	20.5.9	mmFNGwhile	
	20.5.10	rMEPwhile	
20.6		cedures	
	20.6.1	CCMtime()	
20.7		nce Domain variable	
	20.7.1	mdLevel	
20.8		ibles	
20.0	20.8.1	CCMinterval	
20.9		iables	
20.9	20.9.1	MEPactive	
	20.9.2	enableRmepDefect	
	20.9.3	MAdefectIndication	
	20.9.4	allRMEPsDead	
	20.9.5	lowestAlarmPri	
	20.9.6	presentRDI	
	20.9.7	MEPprimaryVID	
	20.9.8	presentTraffic	
	20.9.9	presentmmLoc	
	20.9.10	ISpresentTraffic	
	20.9.11	ISpresentmmLoc	
	20.9.11	EpMEP	
20.10		ntinuity Check Initiator variables	
20.10	20.10.1	CCIenabled	
	20.10.1	CCIsentCCMs	
	20.10.2	MACstatusChanged	
	20.10.3	Npaths	
	20.10.4	flowHash[]	
	20.10.5	pathN	
	20.10.0	CCMent	
20.11		ntinuity Check Initiator procedures	1220
20.11	20.11.1	xmitCCM()	
20.12		ntinuity Check Initiator state machine	
∠0.13	20.13.1	ntinuity Check Receiver variables	
	20.13.1	MHFCCMPDU	
20.14		ntinuity Check Receiver procedures	
∠0.14		MHFprocessCCM()	
20.15		ntinuity Check Receiver state machine	1222

20.16	MEP Continuity Check Receiver variables				
	20.16.1	CCMreceivedEqual	1223		
	20.16.2	CCMequalPDU	1223		
	20.16.3	CCMreceivedLow	1223		
	20.16.4	CCMlowPDU	1223		
	20.16.5	recvdMacAddress	1223		
	20.16.6	recvdRDI	1223		
	20.16.7	recvdInterval			
	20.16.8	recvdPortState			
	20.16.9	recvdInterfaceStatus			
		recvdSenderId			
		recvdFrame			
		CCMsequenceErrors			
		revdTrafficBit			
20.17		ntinuity Check Receiver procedures			
20.17		MEPprocessEqualCCM()			
		MEPprocessLowCCM()			
20.10	20.17.2 MED Con	ntinuity Check Receiver state machine	1225		
		MEP variables			
20.19					
		rMEPCCMdefect			
		rMEPlastRDI and rMEPlastRDI[i]			
	20.19.3	rMEPlastPortState			
	20.19.4	rMEPlastInterfaceStatus			
	20.19.5	rMEPlastSenderId			
	20.19.6	rCCMreceived			
	20.19.7	rMEPmacAddress			
	20.19.8	rMEPportStatusDefect			
	20.19.9	rMEPinterfaceStatusDefect			
		lastPathN			
20.20		MEP state machine			
20.21	Remote N	MEP Error variables	1227		
	20.21.1	errorCCMreceived	1228		
	20.21.2	errorCCMlastFailure	1228		
	20.21.3	errorCCMdefect	1229		
20.22	Remote N	MEP Error state machine	1229		
20.23	MEP Cro	ss Connect variables	1229		
	20.23.1	xconCCMreceived	1229		
	20.23.2	xconCCMlastFailure	1229		
		xconCCMdefect			
20.24		ss Connect state machine			
		smatch variables			
		mmCCMreceived			
		mmCCMdefect			
		mmCCMTime			
		disableLocdefect			
		mmLocdefect			
20.26		smatch state machines			
		back Responder variables			
20.27		LBMreceived			
		LBMPDU			
20.29					
20.28	-	back Responder procedures			
		ProcessLBM()			
20.20	20.28.2	xmitLBR()			
70 79	JVIP Loon	back Responder state machine	1234		

20.30	MEP Loopback Initiator variables				
	20.30.1	LBMsToSend	. 1235		
	20.30.2	nextLBMtransID	. 1235		
	20.30.3	expectedLBRtransID	. 1235		
	20.30.4	LBIactive	. 1235		
	20.30.5	xmitReady	. 1235		
	20.30.6	LBRreceived			
	20.30.7	LBRPDU	. 1235		
20.31	MEP Loc	opback Initiator transmit procedures	. 1235		
	20.31.1	xmitLBM()			
20.32	MEP Loc	opback Initiator transmit state machine			
20.33		opback Initiator receive procedures			
		ProcessLBR()			
20.34		opback Initiator receive state machine			
20.35		ılt Notification Generator variables			
	20.35.1	fngPriority			
	20.35.2	fngDefect			
	20.35.3	fngAlarmTime			
	20.35.4	fngResetTime			
	20.35.5	someRMEPCCMdefect			
	20.35.6	someMACstatusDefect			
	20.35.7	someRDIdefect			
	20.35.8	highestDefectPri			
	20.35.9	highestDefect			
20.36	MEP Fau	alt Notification Generator procedures			
	20.36.1	xmitFaultAlarm()			
20.37	MEP Fau	ult Notification Generator state machine			
20.38		smatch Fault Notification Generator variables			
	20.38.1	mfngAllowed			
	20.38.2	mmdefectIndication			
	20.38.3	mfngAlarmTime			
	20.38.4	mfngResetTime			
20.39		smatch Fault Notification Generator procedures			
	20.39.1	xmitFaultAlarm()			
20.40		smatch Fault Notification Generator state machine			
20.41		ktrace Initiator variables			
	20.41.1	nextLTMtransID			
		ltmReplyList			
20.42		ktrace Initiator procedures			
	20.42.1	xmitLTM()			
20.43		ktrace Initiator receive variables			
		LTRreceived			
		LTRPDU			
20.44		ktrace Initiator receive procedures			
		ProcessLTR()			
20.45		ktrace Initiator receive state machine			
		Responder variables			
20.10		nPendingLTRs			
		LTMreceived			
		LTMPDU			

	20.47	LTM Red	ceiver procedures	1247
		20.47.1	ProcessLTM()	1247
		20.47.2	clearPendingLTRs()	1251
		20.47.3	ForwardLTM()	1251
		20.47.4	enqueLTR()	1252
	20.48	LTM Red	ceiver state machine	1254
	20.49	LTR Trai	nsmitter procedure	1254
		20.49.1	xmitOldestLTR()	
	20.50	LTR Trai	nsmitter state machine	1254
			U validation and versioning	
		20.51.1		
		20.51.2	PDU transmission	
		20.51.3	PDU validation	
			Validation pass	
			Execution pass	
			Future extensions	
	20.52		ntification	
			ansaction IDs and sequence numbers	
	20.00	000 01 11		1200
21.	Encod	ing of CFN	M PDUs	1260
		•		
	21.1 21.2	Structure	, representation, and encoding	1260
			apsulation	
	21.3	21.3.1	uest and indication parameters	
			destination_address parameter	
	21.4	21.3.2	source_address parameter	
	21.4		CFM Header	
		21.4.1	MD Level	
		21.4.2	Version	
		21.4.3	OpCode	
		21.4.4	Flags	
	21.5	21.4.5	First TLV Offset	
	21.5		nat	
		21.5.1	General format for CFM TLVs	
		21.5.2	Organization-Specific TLV	
		21.5.3	Sender ID TLV	
		21.5.4	Port Status TLV	
		21.5.5	Interface Status TLV	
		21.5.6	Data TLV	
	21.6	21.5.7	End TLV	
	21.6		mat	
		21.6.1	Flags	
		21.6.2	First TLV Offset	
		21.6.3	Sequence Number	
		21.6.4	Maintenance association Endpoint Identifier	
		21.6.5	Maintenance Association Identifier	
		21.6.6	Defined by ITU-T G.8013/Y.1731	
	21 -	21.6.7	Optional CCM TLVs	
	21.7		LBR formats	
		21.7.1	Flags	
		21.7.2	First TLV Offset	
		21.7.3	Loopback Transaction Identifier	
		21.7.4	Additional LBM/LBR TLVs	
		21.7.5	PBB-TE MIP TLV	1274

	21.8	LTM for	mat	1275
		21.8.1	Flags	1276
		21.8.2	First TLV Offset	1276
		21.8.3	LTM Transaction Identifier	1276
		21.8.4	LTM TTL	1276
		21.8.5	Original MAC Address	1276
		21.8.6	Target MAC Address	1276
		21.8.7	Additional LTM TLVs	
		21.8.8	LTM Egress Identifier TLV	
	21.9	LTR form	nat	
		21.9.1	Flags	
		21.9.2	First TLV Offset	
		21.9.3	LTR Transaction Identifier	
		21.9.4	Reply TTL	
		21.9.5	Relay Action	
		21.9.6	Additional LTR TLVs	
		21.9.7	LTR Egress Identifier TLV	
		21.9.8	Reply Ingress TLV	
		21.9.9	Reply Egress TLV	
		21.7.7	Topij Egioss 12 v	1201
22.	CFM i	in systems		1283
		•		
	22.1		ms in Bridges	
		22.1.1	Preliminary positioning of MPs	
		22.1.2	CFM and the Forwarding Process	
		22.1.3	Up/Down separation of MPs	
		22.1.4	Service instances over multiple Bridges	
		22.1.5	Multiple VID service instances	
		22.1.6	Untagged CFM PDUs	
		22.1.7	MPs and non-VLAN-aware Bridges	
		22.1.8	MPs and other standards	
		22.1.9	CFM and IEEE 802.3 OAM	
	22.2		ance Entity creation	
		22.2.1	Creating Maintenance Domains and MAs	
		22.2.2	Creating MEPs	
		22.2.3	Creating MIPs	
		22.2.4	CFM configuration errors	
	22.3	-	rts, and MD Level assignment	
	22.4		and CFM	
	22.5		ty of CFM	
	22.6		Provider Bridges	
		22.6.1	MPs and C-VLAN components	
		22.6.2	Maintenance C-VLAN on a Port-based service interface	
		22.6.3	Maintenance C-VLAN on a C-tagged service interface	
		22.6.4	MPs and Port-mapping S-VLAN components	
	22.7		nent Port MEPs and CFM in the enterprise environment	
	22.8	Impleme	nting CFM on Bridges that implement earlier revisions of IEEE Std 802.1Q	1306
23.	MAC	status proj	pagation	1307
	23.1		f operation	
	43.1	23.1.1		
			MAC Status Shim (MSS)	
	22.2	23.1.2	atus Protocol (MSP) overview	
	23.2		te machines	1310
	/. 1 7	TATE STATE	A. HIJACHIII (A	1) 1)

	23.4	State machine timers	
		23.4.1 linkNotifyWhen	
		23.4.2 linkNotifyWhile	316
		23.4.3 macNotifyWhile	316
		23.4.4 macRecoverWhile	316
	23.5	MSP performance parameters	316
		23.5.1 LinkNotify	317
		23.5.2 LinkNotifyWait	
		23.5.3 LinkNotifyRetry	
		23.5.4 MACNotify	
		23.5.5 MACNotifyTime	
		23.5.6 MACRecoverTime 1	
	23.6	State machine variables 11	
	23.0		
		23.6.1 BEGIN	
		23.6.2 addConfirmed	
		23.6.3 disableMAC	
		23.6.4 disabledMAC	
		23.6.5 disableMSS	
		23.6.6 lossConfirmed	
		23.6.7 macOperational	
		23.6.8 mssOperational	318
		23.6.9 prop	318
		23.6.10 rxAck	318
		23.6.11 rxAdd	318
		23.6.12 rxAddConfirm	318
		23.6.13 rxLoss	318
		23.6.14 rxLossConfirm	318
		23.6.15 txAck	318
		23.6.16 txAdd	318
		23.6.17 txAddConfirm	
		23.6.18 txLoss	
		23.6.19 txLossConfirm	
	23.7	State machine procedures	
	23.8	Status Transition state machine (STM)	
	23.9	Status Notification state machine (SNM)	
		Receive Process 11	
		Transmit Process 1	
		Management of MSP 11	
	23.13	MSPDU transmission, addressing, and protocol identification	
		23.13.1 Destination MAC Address	
		23.13.2 Source MAC Address	
		23.13.3 Priority	
		23.13.4 EtherType use and encoding	
		Representation and encoding of octets	
	23.15	MSPDU structure	
		23.15.1 Protocol Version	
		23.15.2 Packet Type	
		Validation of received MSPDUs	
	23.17	Other MSP participants	323
24.	Bridge	performance	324
	24.1	Guaranteed Port Filtering Rate	324
	24.1	Guaranteed Port Filtering Rate	
	∠4.∠	Ouaraniceu difuge Ketaynig Kate	2∠4

	24.3	RSTP pe	erformance requirements	1324
25.	Suppo	rt of the N	AAC Service by PBBNs	1326
	25.1	Service t	transparency	1328
	25.2		er service interface.	
	25.3		ed service interface	
	25.4		I service interface	
	25.5		service interface	
	25.6		instance segregation	
	25.7		instance selection and identification	
	25.8		priority and drop eligibility selection	
	25.9		access protection	
		25.9.1	Class II redundant LANs access protection	
		25.9.2	Class III simple redundant LANs and nodes access protection	
	25.10		of the MAC Service by a PBB-TE Region	
	20110	25.10.1	Provisioning TESIs	
		25.10.2		
	25.11		rent service interface	
26.			ovider Backbone Bridged Network (PBBN) operation	
	26.1		verview	
	26.2	PBBN ex	xample	1345
	26.3		V connectivity	
	26.4		ne addressing	
		26.4.1	Learning individual backbone addresses at a PIP	
		26.4.2	Translating backbone destination addresses at a CBP	
		26.4.3	Backbone addressing considerations for CFM MPs	
	26.5	Detection	n of connectivity loops through attached networks	
	26.6		of PBBs	
		26.6.1	Hierarchal PBBNs	1350
		26.6.2	Peer PBBNs	1351
	26.7	Network	management	1351
	26.8	CFM in	PBBs	1351
		26.8.1	CFM over Port-based and S-tagged service interfaces	1356
		26.8.2	CFM over I-tagged Service Interfaces	
		26.8.3	CFM over hierarchal E-NNI	
		26.8.4	CFM over peer E-NNI	1358
	26.9	CFM in	a PBB-TE Region	
		26.9.1	Addressing PBB-TE MEPs	
		26.9.2	TESI identification	1359
		26.9.3	PBB-TE MEP placement in a Bridge Port	1359
		26.9.4	PBB-TE MIP placement in a Bridge Port	1360
		26.9.5	TESI Maintenance Domains	
		26.9.6	PBB-TE enhancements of the CFM protocols	1360
		26.9.7	Addressing Infrastructure Segment MEPs	1362
		26.9.8	Infrastructure Segment identification	1363
		26.9.9	Infrastructure Segment MEP placement in a Bridge Port	
		26.9.10	Infrastructure Segment Maintenance Domains	
		26.9.11	IPS extensions to Continuity Check operation	
	26.10	Protectio	on switching for point-to-point TESIs	1365
		26.10.1	Introduction	
		26.10.2	1:1 point-to-point TESI protection switching	1366
		26.10.3	Protection Switching state machines	

	26.11	IPS in PBB-TE Region	1375				
		26.11.1 Infrastructure Segment monitoring	1376				
		26.11.2 1:1 IPS	1376				
		26.11.3 IPS Control entity	1379				
		26.11.4 1:1 IPS state machines	1380				
		26.11.5 M:1 IPS	1381				
	26.12	Mismatch defect	1386				
	26.13	Signaling VLAN registrations among I-components	1387				
27.	Shorte	est Path Bridging (SPB)	1388				
	27.1	Protocol design requirements.	1390				
	27.2	Protocol support					
	27.3	Protocol design goals					
	27.4	ISIS-SPB VLAN configuration					
	_,	27.4.1 SPT Region and ISIS-SPB adjacency determination					
	27.5	ISIS-SPB information					
	27.6	Calculating CIST connectivity					
	27.7	Connectivity between regions in the same domain					
	27.8	Calculating SPT connectivity					
	27.0	27.8.1 ISIS-SPB overload					
	27.9	Loop prevention					
		SPVID and SPSourceID allocation					
		Allocation of VIDs to FIDs					
		2 SPBV SPVID translation					
		VLAN topology management					
	27.14	Individual addresses and SPBM					
		27.14.1 Loop mitigation					
	27.15	27.14.2 Loop prevention					
		SPBM group addressing					
		Backbone service instance topology management					
		7 Equal cost shortest paths, ECTs, and load spreading					
	27.18	Connectivity Fault Management for SPBM					
		27.18.1 SPBM MA types					
		27.18.2 SPBM MEP placement in a Bridge Port					
		27.18.3 SPBM MIP placement in a Bridge Port					
		27.18.4 SPBM modifications of the CFM protocols					
	27.19	Using SPBV and SPBM modes					
		27.19.1 Shortest Path Bridging—VID					
		27.19.2 Shortest Path Bridging—MAC					
	27.20	Security considerations	1412				
28.	ISIS-S	SPB Link State Protocol	1413				
	28.1	ISIS-SPB control plane MAC	1413				
	28.2	Formation and maintenance of ISIS-SPB adjacencies					
	28.3	Loop prevention					
	28.4	The Agreement Digest					
	20.1	28.4.1 Agreement Digest Format Identifier					
		28.4.2 Agreement Digest Format Capabilities					
		28.4.3 Agreement Digest Convention Identifier					
		28.4.4 Agreement Digest Convention Capabilities					
		28.4.5 Agreement Digest Convention Capabilities					
		28.4.6 The Computed Topology Digest					
	28.5	Symmetric shortest nath tie breaking					

	28.6	Symmetr	ic ECT framework	1419			
	28.7	Symmetr	ric ECT	1420			
	28.8	Symmetr	ric ECT Algorithm details	1421			
	28.9		gration				
		28.9.1	Use of a new ECT Algorithm in SPBV	1422			
		28.9.2	Use of a new ECT Algorithm in SPBM	1423			
	28.10	MAC add	dress registration	1424			
	28.11	Circuit II	Os and Port Identifiers	1424			
	28.12	ISIS-SPE	3 TLVs				
		28.12.1	MT-Capability TLV	1425			
		28.12.2	SPB MCID sub-TLV	1425			
		28.12.3	SPB Digest sub-TLV				
		28.12.4	SPB Base VLAN-Identifiers sub-TLV	1427			
		28.12.5	SPB Instance sub-TLV				
		28.12.6	SPB Instance Opaque ECT Algorithm sub-TLV				
		28.12.7	SPB Link Metric sub-TLV				
		28.12.8	SPB Adjacency Opaque ECT Algorithm sub-TLV	1431			
		28.12.9	SPBV MAC address sub-TLV	1432			
		28.12.10	SPBM Service Identifier and Unicast Address (ISID-ADDR) sub-TLV	1433			
29.	DDCF	DDCFM operations and protocols					
	29.1	-	s of DDCFM operation				
		29.1.1	Data-driven and data-dependent faults (DDFs)				
		29.1.2	Basic principle to diagnose and isolate DDFs				
	29.2	DDCFM	Entity operation	1439			
		29.2.1	DDCFM implementation				
		29.2.2	FPT RR	1440			
		29.2.3	RR-related parameters	1441			
		29.2.4	Reflection Target and RFM Receiver				
		29.2.5	RPT-related parameters				
		29.2.6	Decapsulator Responder (DR)				
		29.2.7	SFM Originator				
	29.3	DDCFM	protocols	1444			
		29.3.1	RR variables	1444			
		29.3.2	RR Filter procedures				
		29.3.3	RR Encapsulation procedures				
		29.3.4	RR Transmit procedure				
		29.3.5	RR-related state machines				
		29.3.6	RFM Receiver variables				
		29.3.7	RFM Receiver procedure				
		29.3.8	DR variables				
		29.3.9	DR procedures	1452			
		29.3.10	Decapsulator Responder state machine				
	29.4		g of DDCFM PDUs				
		29.4.1	RFM and SFM Header				
		29.4.2	RFM format				
		29.4.3	SFM format				
30.	Princi	ples of cor	gestion notification	1457			
	30.1	_	on notification design requirements				
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		1 /			

	30.2	Quantiz	red Congestion Notification protocol (QCN)	1459
		30.2.1	The CP algorithm	1460
		30.2.2	Basic RP algorithm	1461
		30.2.3	RP algorithm with timer	1462
	30.3	Congest	tion Controlled Flow (CCF)	
	30.4	Congest	tion Notification Priority Value (CNPV)	1464
	30.5	Congest	tion Notification tag (CN-TAG)	1464
	30.6		tion Notification Domain (CND)	
	30.7		st data	
	30.8		tion notification and additional tags	
31.	Cong	estion not	ification entity operation	1467
	31.1	Congest	tion-aware Bridge Forwarding Process	1467
	31.1	31.1.1	Congestion Point (CP)	
		31.1.2	CP ingress multiplexer	
	31.2		tion-aware end station functions	
	31.2	31.2.1	Output flow segregation	
		31.2.1	Per-CNPV station function	
		31.2.2	Flow Select Database	
		31.2.4	Flow multiplexer	
		31.2.5	CNM demultiplexer	
		31.2.6	Input flow segregation	
		31.2.7	End station input queue	
		31.2.8	Reception selection	14/3
32.	Conge	estion not	ification protocol	1474
	32.1	CND or	perations	1474
		32.1.1	CND defense	1474
		32.1.2	Automatic CND recognition	1476
		32.1.3	Variables controlling CND defense	
	32.2	CN con	nponent variables	
		32.2.1	cngMasterEnable	
		32.2.2	cngCnmTransmitPriority	
		32.2.3	cngDiscardedFrames	
		32.2.4	cngErroredPortList	
	32.3		tion notification per-CNPV variables	
	02.0	32.3.1	cncpDefModeChoice	
		32.3.2	cncpAlternatePriority	
		32.3.3	cncpAutoAltPri	
		32.3.4	cncpAdminDefenseMode	
		32.3.5	cncpCreation	
		32.3.6	cncpLldpInstanceChoice	
		32.3.7	cncpLldpInstanceSelector	
		J2.J.1		····· 17/2

32.4	CND defense per-Port per-CNPV variables				
	32.4.1	cnpdDefModeChoice	. 1480		
	32.4.2	cnpdAdminDefenseMode	. 1480		
	32.4.3	cnpdAutoDefenseMode	. 1481		
	32.4.4	cnpdLldpInstanceChoice			
	32.4.5	cnpdLldpInstanceSelector	. 1481		
	32.4.6	cnpdAlternatePriority			
	32.4.7	cnpdXmitCnpvCapable			
	32.4.8	cnpdXmitReady			
	32.4.9	cncpDoesEdge	. 1482		
	32.4.10	cnpdAcceptsCnTag			
	32.4.11	cnpdRcvdCnpv			
	32.4.12	cnpdRcvdReady			
	32.4.13	cnpdIsAdminDefMode			
	32.4.14	cnpdDefenseMode			
32.5	_	ense procedures			
32.3	32.5.1	DisableCnpvRemapping()			
	32.5.2	TurnOnCnDefenses()			
	32.5.3	TurnOffCnDefenses()			
32.6		Pense state machine			
32.7		on notification protocol			
32.7	CP variables1				
32.0	32.8.1	cpMacAddress			
	32.8.2	cpId			
	32.8.3	•			
		cpQSp			
	32.8.4	cpQLen			
	32.8.5	cpQLenOld			
	32.8.6	cpW			
	32.8.7	cpQOffset			
	32.8.8	cpQDelta			
	32.8.9	cpFb			
	32.8.10	cpEnqued			
	32.8.11	cpSampleBase			
	32.8.12	cpDiscardedFrames			
	32.8.13	cpTransmittedFrames			
	32.8.14	cpTransmittedCnms			
	32.8.15	cpMinHeaderOctets			
32.9		dures			
	32.9.1	Random			
	32.9.2	NewCpSampleBase()			
	32.9.3	EM_UNITDATA.request (parameters)			
	32.9.4	GenerateCnmPdu()			
32.10		ort per-CNPV variables	. 1489		
	32.10.1	rpppMaxRps	. 1489		
	32.10.2	rpppCreatedRps	. 1489		
	32.10.3	rpppRpCentiseconds	1490		

	32.11	RP group	p variables	1490
			rpgEnable	
		32.11.2	rpgTimeReset	1490
		32.11.3	rpgByteReset	
		32.11.4	rpgThreshold	
		32.11.5	rpgMaxRate	
		32.11.6	rpgAiRate	
		32.11.7	rpgHaiRate	
		32.11.8	rpgGd	
		32.11.9	rpgMinDecFac	
) rpgMinRate	
	32 12		r	
	32.12	32.12.1	RpWhile	
	32 13		ibles	
	32.13	32.13.1	rpEnabled	
		32.13.1	•	
		32.13.2	rpByteStage	
		32.13.3	rpTimeStage	
		32.13.4	rpTargetRate	
		32.13.5	rpCurrentRate	
		32.13.0	rpFreeze	
			rpLimiterRate	
		32.13.8	1	
	22 14	32.13.9	rpFb	
	32.14		edures	
		32.14.1	ResetCnm	
		32.14.2	TestRpTerminate	
		32.14.3	TransmitDataFrame	
		32.14.4	ReceiveCnm	
		32.14.5	ProcessCnm	
	22.15	32.14.6	AdjustRates	
			control state machine	
	32.16	Congesti	ion notification and encapsulation interworking function	1497
33.	Encod	ing of cor	ngestion notification PDUs	1499
	33.1	Structure	e, representation, and encoding	1499
	33.2		G format	
		33.2.1	Flow Identifier	
	33.3	Congesti	ion Notification Message (CNM)	
	33.4		ion Notification Message PDU format	
		33.4.1	Version	
		33.4.2	ReservedV	
		33.4.3	Quantized Feedback	
		33.4.4	Congestion Point Identifier	
		33.4.5	cnmQOffset	
		33.4.6	cnmQDelta	
		33.4.7	Encapsulated priority	
		33.4.8	Encapsulated destination MAC address	
		33.4.9	Encapsulated MSDU length	
		33.4.10	Encapsulated MSDU	
		33.4.11	CNM Validation	
		JJ. T. 11	Orani validation	1302
34.	Forwa	rding and	Queuing Enhancements for time-sensitive streams (FQTSS)	1503
	34 1	Overviev	W	1503
	J 10.1			

	34.2	Detection	of SRP domains	1503
	34.3	The bandy	vidth availability parameters	1504
			deltaBandwidth when lockClassBandwidth is false	
			deltaBandwidth when lockClassBandwidth is true	
		34.3.3	Bandwidth availability parameter management	1505
	34.4		actual bandwidth requirements from the size of the MSDU	
	34.5	_	R class configuration	
	34.6		ion selection	
	3 1.0		Credit-based shaper	
			Strict priority	
			Scheduled traffic	
2.5	Q.			
35.	Stream	n Reservatio	on Protocol (SRP)	1512
	35.1	Multiple S	Stream Registration Protocol (MSRP)	1513
		35.1.1	MSRP and Shared Media	1514
		35.1.2	Behavior of end stations	1515
		35.1.3	Behavior of Bridges	1517
			SRP domains and status parameters	
	35.2		of the MSRP application	
	33.2		Definition of internal state variables	
			Definition of MRP elements	
			Provision and support of Stream registration service	
			MSRP Attribute Propagation	
			Operational reporting and statistics	
			1 1 0	
			Encoding	
		35.2.7	Attribute value support requirements	1559
36.	Priori	ty-based Flo	ow Control (PFC)	1560
	36.1	PFC opera	ution	1560
		36.1.1	Overview	1560
		36.1.2	PFC primitives	1561
			Detailed specification of PFC operation	
	36.2		e system queue functions	
			PFC Initiator	
			PFC Receiver	
37.	Enhai		ission Selection (ETS)	
	37.1			
		37.1.1	Relationship to other transmission selection algorithms	1566
	37.2	ETS confi	guration parameters	1566
	37.3	ETS algor	ithm	1566
	37.4	Legacy co	nfiguration	1567
38.	Data	Center Bridg	ging eXchange protocol (DCBX)	1568
	38.1			
	38.2			
	38.3			
	30.3	• 1	DCBX attributesInformational attributes	
	20.4			
	38.4		d LLDP	
			Asymmetric attribute passing	
		38.4.2	Symmetric attribute passing	1570

39.	Multiple I-SID Registration Protocol (MIRP)				
	39.1	MIRP ov	verview	1572	
		39.1.1	Behavior of I-components		
		39.1.2	Behavior of B-components		
	39.2	Definition	on of the MIRP application		
		39.2.1	Definition of MRP elements		
		39.2.2	Alternate MIRP model for B-components		
		39.2.3	Use of "new" declaration capability		
		39.2.4	Attribute value support requirements		
		39.2.5	MRP Message filtering		
40.	Edga	Vietuol De	idaina (EVD)	1500	
40.			idging (EVB)		
	40.1		chitecture without S-channels		
	40.2		chitecture with S-channels		
	40.3		etric EVB architecture without S-channels		
	40.4		tus parameters		
		40.4.1	EVBMode = Not supported		
		40.4.2	EVBMode = EVB Bridge		
		40.4.3	EVBMode = EVB station	1586	
		40.4.4	EVBMode = NVO3 Mode		
	40.5	EVB Sta	atus Parameter for NVO3 Mode Support		
		40.5.1	NVERole = nNVE		
		40.5.2	NVERole = tNVE	1587	
41.	VSI E	Discovery a	and Configuration Protocol (VDP)	1588	
	41.1		nager ID TLV definition		
		41.1.1	TLV type		
		41.1.2	TLV information string length		
		41.1.3	VSI Manager ID		
	41.2	_	sociation TLV definitions		
	71.2	41.2.1	TLV type		
		41.2.1	TLV type TLV information string length		
		41.2.3	Status		
		41.2.3	VSI Type ID (VTID)		
		41.2.4	VSI Type (VTID) VSI Type Version		
		41.2.5	VSIID format		
		41.2.7	VSIID		
		41.2.7	Filter Info format		
		41.2.8	Filter Info field		
	41.2	41.2.10	VDP TLV type and status semantics		
	41.3	-	ationally defined TLV definitions		
		41.3.1	TLV type		
		41.3.2	TLV information string length		
		41.3.3	Organizationally unique identifier (OUI) or Company ID (CID)		
	41.4	41.3.4	Organizationally defined information		
	41.4	Validatio	on rules for VDP TLVs	1599	

	41.5	VDP sta	te machines	1599
		41.5.1	State machine conventions	1599
		41.5.2	Bridge VDP state machine	1600
		41.5.3	Station VDP state machine	
		41.5.4	VDP state machine timers	1602
		41.5.5	VDP state machine variables and parameters	1602
		41.5.6	Command-Response TLV field references in state machines	
		41.5.7	VDP state machine procedures	
			•	
42.	S-Cha		overy and Configuration Protocol (CDCP)	
	42.1		iscovery and configuration	
	42.2	CDCP st	ate machine overview	1607
	42.3	CDCP c	onfiguration state machine	1608
	42.4	CDCP c	onfiguration variables	1609
		42.4.1	AdminChnCap	1609
		42.4.2	AdminRole	1610
		42.4.3	AdminSVIDWants	1610
		42.4.4	LastLocalSVIDPool	1610
		42.4.5	LastRemoteSVIDList	
		42.4.6	LastSVIDWants	
		42.4.7	LocalSVIDPool	
		42.4.8	OperChnCap	
		42.4.9	OperRole	
		42.4.10	OperSVIDList	
		42.4.11	RemoteChnCap	
		42.4.12	RemoteRole	
		42.4.13	RemoteSVIDList	
		42.4.14		
	42.5		schState	
	42.3		onfiguration procedures	
		42.5.1	SetSVIDRequest (OperRole, AdminSVIDWants, OperSVIDList)	
		42.5.2	RxSVIDConfig (OperSVIDList, LastRemoteSVIDList)	1012
		42.5.3	TxSVIDConfig (OperChnCap, RemoteChnCap, LastLocalSVIDPool,	1.610
			RemoteSVIDList, OperSVIDList)	1612
43.	Edge	Control Pr	rotocol (ECP)	1613
	43.1	ECP ope	ration	1613
	43.2	Edge Co	ntrol Sublayer Service (ECSS)	1614
	43.3	ECP stat	e machines	1614
		43.3.1	State machine conventions	1614
		43.3.2	Overview	1614
		43.3.3	Edge Control Protocol Data Unit (ECPDU)	
		43.3.4	ECP transmit state machine	
		43.3.5	ECP receive state machine	
		43.3.6	ECP state machine timers	
		43.3.7	ECP state machine variables and parameters	
		43.3.8	ECP state machine procedures	
	_		•	
44.	•		tiple Paths (ECMP)	
	44.1		CMP	
		44.1.1	ECMP Operation	
		44.1.2	ECMP ECT Algorithm	1621
		44 1 3	Loop prevention for ECMP	1623

	44.2	Support for Flow Filtering		1623
		44.2.1	Flow filtering tag (F-TAG)	
		44.2.2	F-TAG processing	
		44.2.3	Forwarding process extension for flow filtering	
		44.2.4	TTL Loop mitigation	
		44.2.5	CFM for ECMP with flow filtering	
		44.2.6	Operation with selective support for flow filtering	
45.	Path (Control and	d Reservation (PCR)	1630
	45.1	Explicit	trees	1630
		45.1.1	Tree structures	1634
		45.1.2	Explicit ECT Algorithms	1635
		45.1.3	ISIS-PCR VLAN configuration	
		45.1.4	Use of VIDs for strict explicit trees	
		45.1.5	MAC addresses and ISIS-PCR	
		45.1.6	Filtering Database entries for explicit trees	
		45.1.7	ISIS-PCR support	
		45.1.8	Attributes for path computation	
		45.1.9	Topology sub-TLV	
		45.1.10	Hop sub-TLV	
		45.1.11	Administrative Group sub-TLV	
		45.1.12	•	
	45.2	-	ion	
		45.2.1	Bandwidth Assignment sub-TLV	
		45.2.2	Timestamp sub-TLV	
		45.2.3	Precedence ordering	
	45.3		ncy	
		45.3.1	Loop-free alternates for unicast data flows	
		45.3.2	Static redundant trees	
		45.3.3	Maximally Redundant Trees (MRTs)	
		45.3.4	MRTs with centralized GADAG computation	
46.	Time-	Sensitive 1	Networking (TSN) configuration	1664
	46.1	Overviev	w of TSN configuration	1664
	10.1	46.1.1	User/Network Interface (UNI)	
		46.1.2	Modeling of user/network configuration information	
		46.1.3	TSN configuration models	
			Stream transformation	
	46.2		work configuration information	
	40.2	46.2.1	Data types	
		46.2.2	Protocol integration	
		46.2.3	Talker	
		46.2.4	Listener	
		46.2.5	Status	
	46.3		Fraction	
47.	Asyno	chronous T	Traffic Shaping (ATS) in end stations	1693
	47.1		ansmission behavior	
	7/.1	47.1.1	ATS traffic class model in Talkers	
		47.1.1	Simplified ProcessFrame(frame) procedure	
		47.1.2	System clock functions and processing delays	
	47.2		System clock functions and processing delays	1693 1694

18.	YAN	G Data Mo	odels	1695
	48.1	YANG I	Framework	1696
		48.1.1	Interface Management (IETF RFC 8343) Model	1697
	48.2	IEEE 80	2.1Q YANG models	1698
		48.2.1	VLAN Bridge components model	1698
		48.2.2	Two-Port MAC Relay (TPMR) model	1701
		48.2.3	Customer VLAN Bridge model	1702
		48.2.4	Provider Bridge model	1703
		48.2.5	CFM Model	1706
		48.2.6	Stream filters and stream gates model	
		48.2.7	Asynchronous Traffic Shaping (ATS) model	1711
	48.3	Structure	e of the YANG models	
		48.3.1	VLAN Bridge components model	1713
		48.3.2	Two-Port MAC Relay model	1713
		48.3.3	Customer VLAN Bridge model	1713
		48.3.4	Provider Bridge model	
		48.3.5	CFM model	
		48.3.6	Stream filters and stream gates model	
		48.3.7	Asynchronous Traffic Shaping (ATS) model	
	48.4	Security	considerations	
		48.4.1	Security considerations of the VLAN Bridge components model	
		48.4.2	Security considerations of the Two-Port MAC Relay model	
		48.4.3	Security considerations of the Customer VLAN Bridge model	
		48.4.4	Security considerations of the Provider Bridge model	
		48.4.5	Security considerations of the CFM model	
		48.4.6	Security considerations of the Stream filters and stream gates model	
		48.4.7	Security considerations of the Asynchronous Traffic Shaping model	
	48.5		schema tree definitions	
		48.5.1	Schema for the ieee802-types YANG module	
		48.5.2	Schema for the ieee802-dot1q-types YANG module	
		48.5.3	Schema for the ieee802-dot1q-tsn-types YANG module	
		48.5.4	Schema for the ieee802-dot1q-bridge YANG module	
		48.5.5	Schema for the ieee802-dot1q-tpmr YANG module	
		48.5.6	Schema for the ieee802-dot1q-pb YANG module	
		48.5.7	Schema for the ieee802-dot1q-cfm-types YANG module	
		48.5.8	Schema for the ieee802-dot1q-cfm YANG module	
		48.5.9	Schema for the ieee802-dot1q-cfm-bridge YANG module	
		48.5.10	Schema for the ieee802-dot1q-cfm-alarm YANG module	
		48.5.11	Schema for the ieee802-dot1q-stream-filters-gates YANG module	
	40.6	48.5.12	Schema for the ieee802-dot1q-ats YANG module	
	48.6		modules	
		48.6.1	The ieee802-types YANG module	
		48.6.2	The ieee802-dot1q-types YANG module	
		48.6.3	The ieee802-dot1q-tsn-types YANG module	
		48.6.4	The ieee802-dot1q-bridge YANG module	
		48.6.5	The ieee802-dot1q-tpmr YANG module	
		48.6.6	The ieee802-dot1q-pb YANG module	
		48.6.7	The ieee802-dot1q-cfm-types YANG module	
		48.6.8	The ieee802-dot1q-cfm YANG module	
		48.6.9	The ieee802-dot1q-cfm-bridge YANG module	
		48.6.10	The ieee802-dot1q-cfm-alarm YANG module	
		48.6.11	The ieee802-dot1q-stream-filters-gates YANG module The ieee802-dot1q-ats YANG module	
		48.6.12	THE RECOVE-COULTY-ARS LAING HOUGHE	1040

Anne	x A (noi	rmative) PICS proforma—Bridge implementations	1851
	A.1	Introduction	1851
	A.2	Abbreviations and special symbols	
		A.2.1 Status symbols	
		A.2.2 General abbreviations	1851
	A.3	Instructions for completing the PICS proforma	
		A.3.1 General structure of the PICS proforma	
		A.3.2 Additional information	
		A.3.3 Exception information	1852
		A.3.4 Conditional status	1853
	A.4	PICS proforma for IEEE Std 802.1Q—Bridge implementations	1854
		A.4.1 Implementation identification	1854
		A.4.2 Protocol summary, IEEE Std 802.1Q	1854
	A.5	Major capabilities	1855
	A.6	Media access control methods	1860
	A.7	Relay and filtering of frames	1861
	A.8	Basic Filtering Services	1862
	A.9	Addressing	1863
	A.10	Rapid Spanning Tree Protocol (RSTP)	1865
	A.12	Implementation parameters	1867
	A.11	BPDU encoding	1867
	A.13	Performance	1868
	A.14	Bridge management	
	A.15	Remote management	1879
	A.16	Expedited traffic classes	1880
	A.17	Extended Filtering Services	1880
	A.18	Multiple Spanning Tree Protocol (MSTP)	1881
	A.19	VLAN support	1883
	A.20	Multiple MAC Registration Protocol (MMRP)	
	A.21	Multiple VLAN Registration Protocol (MVRP)	
	A.22	Multiple Registration Protocol (MRP)	
	A.23	Connectivity Fault Management (CFM)	
	A.24	Management Information Base (MIB)	
	A.25	Protection Switching (PS)	
	A.26	Data-driven and data-dependent connectivity fault management (DDCFM)	
	A.27	Two-Port MAC Relay (TPMR)	
	A.28	MAC Status Protocol (MSP)	
	A.29	Forwarding and Queuing Enhancements for time-sensitive streams (FQTSS)	
	A.30	Congestion notification	
	A.31	Stream Reservation Protocol (SRP)	
	A.32	Multiple I-SID Registration Protocol (MIRP)	
	A.34	Enhanced Transmission Selection (ETS)	
	A.33	Priority-based Flow Control (PFC)	
	A.35	Data Center Bridging eXchange protocol (DCBX)	
	A.36	Infrastructure Protection Switching (IPS)	
	A.38	EVB Bridge	
	A.37	Shortest Path Bridging (SPB)	
	A.39	EVB station	
	A.40	Edge relay (ER)	
	A.42	VDP, CDCP, and ECP	
	A.41	VEB and VEPA ER components Path Control and Reservation	
	A.43 A 44	Path Control and Reservation	1912
	4 44	ACREDITION OF A STORY	1914

A.4	5 Frame preemption	1012					
	· · ·						
A.4	8						
A.4							
A.4	-						
	A.49 TSN Centralized Network Configuration (CNC) station A.50 VDP for NVO3 nNVE Devices						
A.5							
A.5	2 Asynchronous Traffic Shaping	1920					
Annex B	(normative) PICS proforma—End station implementations	1921					
B.1	Introduction	1921					
B.2							
D.2	B.2.1 Status symbols						
	B.2.2 General abbreviations						
B.3							
В.3	B.3.1 General structure of the PICS proforma						
	B.3.2 Additional information						
	B.3.3 Exception information						
D 4	B.3.4 Conditional status						
B.4	1						
	B.4.1 Implementation identification						
	B.4.2 Protocol summary, IEEE Std 802.1Q						
B.5	J 1						
B.6	1 8						
B.8	1 8						
B.7	1 6						
B.9							
B.1	·						
B.1	1 Congestion notification	1932					
B.1	3 Enhanced Transmission Selection (ETS)	1934					
B.1	4 Data Center Bridging eXchange protocol (DCBX)	1934					
B.1	2 Priority-based Flow Control (PFC)	1934					
B.1	6 Frame Preemption	1935					
B.1	7 Per-Stream Filtering and Policing	1935					
B.1							
B.1							
Anney C	(normative) Designated MSRP Node (DMN) Implementations	1037					
C.1							
	C.1.1 CSN characteristics						
	C.1.2 DMN handling on CSN						
	C.1.3 MSRPDU handling on a CSN						
	C.1.4 CSN bandwidth fluctuations						
C.2							
	C.2.1 DMN Selection on MoCA Network						
	C.2.2 MoCA network bandwidth management						
C.3							
	C.3.1 MSRP handling	1946					
	C.3.2 BSS DMN selection	1949					
	C.3.3 BSS network bandwidth management	1950					

Annex	D	(normative)	IEEE 802.1 Organizationally Specific TLVs	1953
	D.1	Requiren	nents of the IEEE 802.1 Organizationally Specific TLV sets	1953
	D.2		tionally Specific TLV definitions	
		D.2.1	Port VLAN ID TLV	1954
		D.2.2	Port And Protocol VLAN ID TLV	1954
		D.2.3	VLAN Name TLV	1955
		D.2.4	Protocol Identity TLV	1956
		D.2.5	VID Usage Digest TLV	
		D.2.6	Management VID TLV	1957
		D.2.7	Congestion Notification TLV	
		D.2.8	ETS Configuration TLV	
		D.2.9	ETS Recommendation TLV	
		D.2.10	Priority-based Flow Control Configuration TLV	
		D.2.11	Application Priority TLV	
		D.2.12	EVB TLV	
		D.2.13	CDCP TLV	
		D.2.14	Application VLAN TLV	
	D.3		2.1 Organizationally Specific TLV management	
		D.3.1	IEEE 802.1 Organizationally Specific TLV selection management	
		D.3.2	IEEE 802.1 managed objects—TLV variables	
	D.4	_	oforma for IEEE 802.1 Organizationally Specific TLV extensions	
		D.4.1	Implementation identification	
		D.4.2	Protocol summary, IEEE Std 802.1Q	
		D.4.3	Major capabilities and options	
	D.5	_	2.1/LLDP extension MIB	
		D.5.1	Internet Standard Management Framework	
		D.5.2	Structure of the IEEE 802.1/LLDP extension MIB	
		D.5.3	Relationship to other MIBs	
		D.5.4	Security considerations for IEEE 802.1 LLDP extension MIB module	
		D.5.5	IEEE 802.1 LLDP extension MIB module—version 2	
		D.5.6	EVB extensions to the IEEE 802.1 LLDP extension MIB module	
		2.5.0	EVB extensions to the IBBE 00211 EBBT extension WIB module	2017
Annex	Ε ((normative)	Notational conventions used in state diagrams	2054
Annex	F (informative) Shared and Independent VLAN Learning (SVL and IVL)	2056
	F.1	Requiren	nents for Shared and Independent Learning	2056
		F.1.1	Connecting independent VLANs	
		F.1.2	Duplicate MAC addresses	
		F.1.3	Asymmetric VLANs and Rooted-Multipoint connectivity	
		F.1.4	Shared learning and Shortest Path Bridging VID (SPBV) mode	
		F.1.5	Generic constraints on SVL and IVL use	
Annex	G	(informative	e) MAC method-dependent aspects of VLAN support	2065
	G.1	Example	tagged IEEE 802.3 EtherType-encoded frame format	2065
	G.2		and frame size considerations	
		G.2.1	Treatment of PAD fields in IEEE 802.3 frames	2065
		G.2.2	Maximum PDU size	2066
		G.2.3	Minimum PDU size	2066
	G3	Tag inse	rtion and removal for LLC media	2067

G.4	IEEE 802.11 and PMPN media	2068
	G.4.1 IEEE 802.11 Portal convergence	2068
	G.4.2 Point-to-Multipoint Network convergence: multiple connections	2068
	G.4.3 Point-to-Multipoint Network convergence: single connection	2068
Annex H (informative) Interoperability considerations	2069
H.1	Requirements for interoperability	2069
	H.1.1 Static filtering requirements	2069
	H.1.2 Configuration requirements for VLAN-tagging	
H.2	Homogeneous VLAN-aware networks	2070
	H.2.1 Consistency of static VLAN filtering	2070
	H.2.2 Consistent view of the "untagged VLAN(s)" on a given LAN	2071
H.3	Heterogeneous networks: Intermixing MAC Bridges (M) and VLAN Bridges (V)	
	H.3.1 Example: Adding a VLAN Bridge to provide filtering to a MAC Bridge 2072	
	H.3.2 Example: Adding a MAC Bridge to a (previously) Homogeneous VLAN	N Bridged
	Network	2073
H.4	Intermixing Port-based classification and Port-and-Protocol-based classification of	r future
	enhancements in VLAN Bridges	2073
	H.4.1 Example: Intermixing Protocol-based ingress rules	2074
	H.4.2 Differing views of untagged traffic on a given LAN	2074
Annex I (in	nformative) Priority and drop precedence	2075
I.1	Traffic types	2075
I.2	Managing latency and throughput	
I.3	Traffic type to traffic class mapping	
I.4	Traffic types and priority values	
I.5	Supporting the credit-based shaper algorithm	
I.6	Supporting drop precedence	
I.7	Priority Code Point allocation.	
I.8	Interoperability	
Annex J (i	nformative) CFM protocol design and use	2083
J.1	Origin of CFM	2002
J.1 J.2	Deployment of CFM	
J.2 J.3	MD Level allocation alternative	
J.3 J.4		
	Relationship of IEEE Std 802.1Q CFM to other standards	
J.5	Interpreting Linktrace results	
J.6	MP addressing: Individual and Shared MP addresses	
	J.6.1 Individual MP address model	
Ì	informative) TPMR use cases	
K.1	Use case 1—TPMR as User to Network Interface (UNI) demarcation device	
K.2	Use case 2—TPMRs with aggregated links	
K.3	Use case 3—Multiple TPMRs	
K.4	Special cases	2092
Annex L (i	nformative) Operation of the credit-based shaper algorithm	2095
L.1	Overview of credit-based shaper operation	2095
I 2	"Class measurement intervals" in Bridges	2100

L.3	Determining worst-case latency contribution and buffering requirements	2101
	L.3.1 Interference delay	2102
	L.3.2 Maximum interference delay and maximum buffer requirement	2110
L.4	Operation of credit-based shaper in Coordinated Shared Network (CSN)	2111
Annex M	(normative) Support for PFC in link layers without MAC Control	2112
	•	
M.		
M.2	PFC PDU format	2112
Annex N	(informative) Buffer requirements for PFC	2113
N.1		
N.2	Delay model	2113
N.3	Interface Delay	2116
N.4	Cable Delay	2116
N.5	Higher Layer Delay	2116
N.6	Computation example	2117
	('C ') D ' d 'd 'G CEGG C 11 ' MACD '1	2110
Annex O	(informative) Preserving the integrity of FCS fields in MAC Bridges	
0.1		
O.2	Basic mathematical ideas behind CRC and FCS	2119
0.3	Detection Lossless Circuit approach	2120
0.4	Algorithmic modification of an FCS	2121
	O.4.1 Data changed, length unchanged	2121
	O.4.2 Length changed, original data unchanged	2122
	O.4.3 Preservation of detectability	2123
0.5	Conclusions	2124
Annex P	(informative) Frame duplication and misordering	2125
P.1	Background	2125
P.2		
P.3	1	
P.4	S .	
Annex Q	(informative) Traffic scheduling	2128
Q.1	Motivation	2128
Q.1 Q.2		
Q.2 Q.3		
Q.4 Q.4	·	
Q.5 Q.5		
۷.۰	·	
Annex R	(informative) Preemption and IEEE 802.1AE MAC Security	2131
Annex S	(informative) Preemption and scheduled traffic	2133
S.1	Scheduling used in isolation	2133
S.2	Preemption used in isolation	2133
S.3	Scheduling and preemption used in combination, no HOLD/RELEASE	2134
S.4		
S.5		

Annex T (in	formative) Cyclic queuing and forwarding	2136
T.1	Overview of CQF	2136
T.2	An approach to CQF implementation	2137
T.3	Use of Per-Stream Filtering and Policing for CQF	
	T.3.1 Stream filter configuration	
	T.3.2 Stream gate configuration	
T.4	Use of traffic scheduling for CQF	
T.5	Timing considerations	
	T.5.1 Choice of T	2140
	T.5.2 Cycle interleaving	2141
	T.5.3 Cycle alignment between adjacent Ports	
Annex U (ir	nformative) TSN configuration examples	2144
U.1	Examples for time-aware talker	2144
	U.1.1 Using enhancements for scheduled traffic	2145
	U.1.2 Using strict priority	
	U.1.3 Using per-stream scheduling	2147
U.2	Example of workflow for fully centralized models	
Annex V (informative) Asynchronous Traffic Shaping delay analysis framework	2152
V.1	General assumptions	2152
V.2	End-to-end delay modeling approach	2152
V.3	Buffering delays	2153
V.4	Media-dependent delays	2155
V.5	Bridge—Internal arrival time recognition delays	2155
V.6	Bridge—Internal processing delays	2155
V.7	Bridge—Internal clock offset variations	
V.8	Inter-device clock rate deviations	2156
V.9	Combined delay bounds	2157
Annex W (i	nformative) Bibliography	2158

Figures

Figure 6-1	Internal organization of the MAC sublayer	144
Figure 6-2	Provider Instance Ports (PIPs)	162
Figure 6-3	B-Component CBP	
Figure 6-4	Example of operation of Port-and-Protocol-based classification	168
Figure 6-5	Service access priority selection	171
Figure 6-6	Two back-to-back EISS Multiplex Entities	177
Figure 6-7	Two back-to-back Backbone Service Instance Multiplex Entities	178
Figure 6-8	Backbone Service Instance Multiplex Entities with example CFM shims	178
Figure 6-9	Two back-to-back Up and Down TESI Multiplex Entities	181
Figure 6-10	Supporting the ISS with signaled priority	
Figure 6-11	Two back-to-back Up and Down Infrastructure Segment Multiplex Entities	183
Figure 7-1	VLAN Bridging overview	185
Figure 8-1	A Bridged Network	
Figure 8-2	VLAN Bridge architecture	193
Figure 8-3	MAC Bridge architecture	194
Figure 8-4	Relaying MAC frames	196
Figure 8-5	Observation of network traffic	196
Figure 8-6	Operation of Spanning Tree Protocol Entity	197
Figure 8-7	Operation of MRP	197
Figure 8-8	Management Port transmission and reception	198
Figure 8-9	Infrastructure Segment MEP placement in a PNP	198
Figure 8-10	Bridge Port Transmit and Receive	201
Figure 8-11	TPMR Port Transmit and Receive	201
Figure 8-12	Forwarding process functions	203
Figure 8-13	Flow classification and metering	
Figure 8-14	Per-stream classification for PSFP	210
Figure 8-15	Per-stream classification and metering for ATS	
Figure 8-16	Transmission selection with gates	222
Figure 8-17	Frame timing at gate-close events	
Figure 8-18	Scheduled traffic state machines—overview and relationships	
Figure 8-19	Cycle Timer state machine	
Figure 8-20	List Execute state machine	
Figure 8-21	List Config state machine	
Figure 8-22	Logical points of attachment of the Higher Layer and Relay Entities	
Figure 8-23	Effect of control information on the forwarding path	
Figure 8-24	Per-Port points of attachment	
Figure 8-25	Single point of attachment—relay permitted	
Figure 8-26	Single point of attachment—relay not permitted	
Figure 8-27	Effect of Port State	
Figure 8-28	Controlled and Uncontrolled Port connectivity	
Figure 8-29	Ingress/egress control information in the forwarding path	
Figure 9-1	VLAN TCI format	
Figure 9-2	I-TAG TCI format	
Figure 10-1	Example—Attribute value propagation from one station	
Figure 10-2	Example—Attribute value propagation from two stations	
Figure 10-3	Example—Registrations as pointers to the sources of declarations	
Figure 10-4	MRP architecture	
Figure 10-5	Format of the major components of an MRPDU	
Figure 10-6	Operation of MMRP for a single VLAN Context	
Figure 10-7	Example Directed Graph	
Figure 10-8	Example of MMRP propagation in a VLAN Context	
Figure 11-1	Operation of MVRP	316

Figure 12-1	Relationships among CFM managed objects	377
Figure 12-2	Relationship among BEB managed objects	394
Figure 12-3	SPB managed objects (MOs)	
Figure 12-4	Relationships among EVB Bridge managed objects	465
Figure 12-5	Relationship among EVB station managed objects	
Figure 12-6	Timing points for scheduled traffic	
Figure 12-7	Timing points for PSFP	
Figure 13-1	Diagrammatic conventions for spanning tree topologies	506
Figure 13-2	Physical topology and active topology	
Figure 13-3	Port Roles and Port States	
Figure 13-4	A Backup Port	
Figure 13-5	"Ring Backbone" example	
Figure 13-6	An MST Bridge network	
Figure 13-7	CIST Priority Vectors, Port Roles, and MST Regions	
Figure 13-8	MSTI Active Topology in Region 2	
Figure 13-9	CIST and MSTI active topologies in Region 1 of the example network	
Figure 13-10	Agreements and Proposals	
Figure 13-11	CIST and MSTI Active Topologies in Region 2 of Figure 13-6	
Figure 13-12	Enhanced Agreements	
Figure 13-13	Spanning tree protocol state machines—overview and relationships	
Figure 13-14	MSTP overview notation	
Figure 13-15	Port Timers state machine	
Figure 13-16	Port Receive state machine	
Figure 13-10	Port Protocol Migration state machine	
Figure 13-17	Bridge Detection state machine	
Figure 13-19	Port Transmit state machine	
	Port Information state machine	
_	Port Role Selection state machine	
_	Disabled Port role transitions	
Figure 13-22	Port Role Transitions state machine—MasterPort	
Figure 13-23		
Figure 13-24	Port Role Transitions state machine—RootPort	
Figure 13-25	Port Role Transitions state machine—DesignatedPort	
Figure 13-26	Port Role Transitions state machine—AlternatePort and BackupPort	
Figure 13-27	Port State Transition state machine	
Figure 13-28	Topology Change state machine	
-	L2 Gateway Port Receive state machine	
Figure 14-1	RST, MST, SPT, and STP Configuration BPDU format	
Figure 14-2	STP TCN BPDU format	
Figure 14-3	MSTI Configuration Message parameters and format	
Figure 15-1	Internal organization of the MAC sublayer in a PBN	
Figure 15-2	Port-based service interface to a PBN	
Figure 15-3	Port-based service interface to a PBN	
Figure 15-4	C-tagged service interface to a PBN	
Figure 15-5	C-tagged service interface to a PBN	
Figure 15-6	Customer Edge Ports (CEPs)	
Figure 15-7	S-tagged service interface to a PBN	
Figure 15-8	S-tagged interface to a PBN	
Figure 15-9	RCSIs to a PBN	
Figure 15-10	Remote Customer Access Ports (RCAPs)	
Figure 15-11	C-tagged RCSI to a PBN	
Figure 15-12	Port-based RCSI to a PBN	
Figure 15-13	Provider Network Port (PNP) interface	
Figure 16-1	PBN with interface examples	
Figure 16-2	Examples of remote customer service access via a second PBN	609

Figure 16-3	Access service separation and "Hairpin Switching"	610
Figure 16-3	Access service separation and "Hairpin Switching"	610
Figure 17-1	C-VLAN component internal LAN managed system	675
Figure 17-2	I/B-component internal LAN managed system	680
Figure 18-1	One Maintenance Domain: operator's view	1184
Figure 18-2	One service instance: operator's view	1185
Figure 18-3	One service instance: customer's view	1185
Figure 18-4	MEP and MIP Symbols	1186
Figure 18-5	MAs: one service instance in a provider network	
Figure 18-6	MAs: Expansion of Figure 18-5	
Figure 18-7	MEPs, MIPs, and MD Levels	
Figure 19-1	CFM Protocol shims	
Figure 19-2	MA Endpoint (MEP)	
Figure 19-3	MIP Half Function (MHF)	
Figure 19-4	LOM shim	
Figure 19-5	LOM architecture	
Figure 20-1	MEP state machines—overview and relationships	
Figure 20-2	MEP Continuity Check Initiator state machine	
Figure 20-3	MHF Continuity Check Receiver state machine	
Figure 20-4	MEP Continuity Check Receiver state machine	
Figure 20-5	Remote MEP state machine	
Figure 20-6	Remote MEP Error state machine	
Figure 20-7	MEP Cross Connect state machine	
Figure 20-7	MEP Traffic Field Mismatch state machine	
Figure 20-8	MEP Local Mismatch state machine	
Figure 20-10	MP Loopback Responder state machine	
Figure 20-11	MEP Loopback Initiator transmit state machine	
Figure 20-12	MEP Loopback Initiator receive state machine	
Figure 20-13	MEP Fault Notification Generator state machine	
Figure 20-14	MEP Mismatch Fault Notification Generator state machine	
Figure 20-15	MEP Linktrace Initiator receive state machine.	
Figure 20-16	Linktrace Responder, MEPs, MHFs, and LOMs	1248
Figure 20-17	LTM Receiver state machine	
Figure 20-18	LTR Transmitter state machine	
Figure 22-1	MEPs and MIPs distinguished by VID (incomplete picture)	
Figure 22-2	Alternate view of Forwarding process	
Figure 22-3	Combining per-VLAN MPs into two shims	
Figure 22-4	More complete picture of MP placement in a Bridge Port	
Figure 22-5	Service instance spanning two Bridges protected by Up MPs	
Figure 22-6	Service instance spanning two Bridges protected by Down MPs	
Figure 22-7	MP placement in a non-VLAN-aware Bridge Port	
Figure 22-8	MP placement relative to other standards	
Figure 22-9	Creating MEPs and MIPs	
Figure 22-10	CFM in a Provider Edge Bridge C-tagged service interface	
Figure 22-11	CFM in a Provider Edge Bridge C-tagged RCSI	
Figure 22-12	Up MEPs in a Management Port	
Figure 22-13	CFM in the enterprise environment	
Figure 22-14	CFM on a Bridge that implements IEEE Std 802.1Q-2005	
Figure 23-1	TPMR connecting two Bridge Ports	
Figure 23-2	TPMR chain connecting Bridge Ports	
Figure 23-3	MSSs and the MSPE	1309
Figure 23-4	Adding connectivity	1311
Figure 23-5	Losing connectivity	1312
Figure 23-6	TPMR recovery	1313

Figure 23-7	Notification from one end of the link to the other	1314
Figure 23-8	Immediate MAC status notification at the end of a link	1314
Figure 23-9	MSPE state machine overview	1315
Figure 23-10	Status Transition state machine (STM)	1319
Figure 23-11	Status Notification state machine (SNM)	1320
Figure 23-12	MSPDU structure	1322
Figure 25-1	Internal organization of the MAC sublayer in a PBBN	1326
Figure 25-2	PBB terminology	1327
Figure 25-3	Customer service interface types	1328
Figure 25-4	Port-based service interface	1329
Figure 25-5	Port-based interface equipment	
Figure 25-6	Encapsulated service frames at ISS	
Figure 25-7	S-tagged service interface	1331
Figure 25-8	S-tagged service interface equipment	1332
Figure 25-9	I-tagged service interface	1333
Figure 25-10	I-tagged service interface equipment	
Figure 25-11	S-tagged and Port-based service interface access classifications	1335
Figure 25-12	I-tagged service interface access protection classifications	1336
Figure 25-1	Internal organization of the MAC sublayer in a PBB-TE Region	1339
Figure 25-14	PBB-TE Region	1341
Figure 25-15	Transparent service interface	1342
Figure 25-16	Transparent service interface equipment	1343
Figure 26-1	PBBN example	1345
Figure 26-2	CFM shim model	1352
Figure 26-3	CFM example applied to a Port-based and S-tagged service interface	1353
Figure 26-4	CFM example applied to an I-tagged Service Interface	1354
Figure 26-5	CFM example applied to a hierarchal E-NNI, CBP-PIP Demarc	1355
Figure 26-6	CFM example applied to a peer E-NNI, CBP-PIP	
Figure 26-7	Independent ESPs using the same ESP-DAs and ESP-VIDs	1359
Figure 26-8	PBB-TE MEP placement in a CBP	
Figure 26-9	Independent Infrastructure Segments distinguished by SMP-SA	1363
Figure 26-10	Infrastructure Segment MEP placement in a PNP	1364
Figure 26-11	Protection switching architecture	1365
Figure 26-12	PBB-TE point-to-point protection switching	1367
Figure 26-13	Mapping data traffic to the protection entity	1368
Figure 26-14	Relationships of the Protection switching state machines—overview	1369
Figure 26-15	Hold-off state machine	
	Clear Manual Switch state machine	
Figure 26-17	Service Mapping state machine	1374
Figure 26-18	Segment terminology and properties	1375
Figure 26-19	Infrastructure Segment monitoring	1376
Figure 26-20	Working Segment and Protection Segment	1377
Figure 26-21	Nested IPGs	1378
Figure 26-22	IPS Control entity	1380
Figure 26-23	M:1 IPS	
Figure 26-24	M:1 IPS state machines	
Figure 26-25	M:1 Hold-off state machine	
Figure 26-26	Protection Segment Selection state machine	
Figure 27-1	Configuring VLAN support in an SPT Region (example)	
Figure 27-2	SPBM group MAC address—general format	
Figure 27-3	SPBM group MAC addresses—source rooted SPT	
Figure 27-4	SPBM group MAC addresses—shared tree	
Figure 27-5	SPBM MEP placement in a CBP	
Figure 27-6	SPBV campus network example	1410

Figure 27-7	SPT Bridge Network using SPBM example	1411
Figure 28-1	Agreement Digest field format	
Figure 28-2	MT-Capability TLV	
Figure 28-3	SPB MCID sub-TLV	
Figure 28-4	SPB Digest sub-TLV	1426
Figure 28-5	SPB Base VLAN-Identifiers sub-TLV	1427
Figure 28-6	SPB Instance sub-TLV	
Figure 28-7	SPB Instance Opaque ECT-ALGORITHM sub-TLV	1430
Figure 28-8	ECMP ECT-ALGORITHM sub-TLV	
Figure 28-9	SPB Link Metric sub-TLV	1431
Figure 28-10	SPB Adjacency Opaque ECT-ALGORITHM sub-TLV	
Figure 28-11	SPBV MAC Address sub-TLV	
Figure 28-12	SPBM Service Identifier and Unicast Address sub-TLV	1434
Figure 29-1	Forward path test (FPT)	1437
Figure 29-2	Return path test (RPT)	
Figure 29-3	Combination of FPT and RPT	
Figure 29-4	Detailed functions of RR	1440
Figure 29-5	RFM Receiver on an non-MP	1443
Figure 29-6	Return Path DR	1444
Figure 29-7	RR Filter state machine	1449
Figure 29-8	RR Encapsulation state machine	
Figure 29-9	RR Transmit state machine	
Figure 29-10	RFM Receiver state machine	1451
Figure 29-11	Decapsulator Responder state machine	1454
Figure 30-1	Congestion detection in QCN CP	
Figure 30-2	Sampling (reflection) probability in QCN CP as a function of Fb	
Figure 30-3	QCN RP operation	
Figure 30-4	Byte Counter and Timer interaction with Rate Limiter	1463
Figure 30-5	CP–RP peering in VLAN Bridged Network	
Figure 30-6	CP-RP peering in PBBN	
Figure 31-1	CPs and congestion-aware queues in a Bridge	
Figure 31-2	Congestion-aware queue functions in an end station	
Figure 31-3	Per-CNPV station function	
Figure 32-1	CND defense state machine	
Figure 32-2	RP rate control state machine	
Figure 32-3	CP-RP peering in any hierarchical Bridged Network	
Figure 34-1	Queuing model for a Talker station	
Figure 35-1	Operation of MSRP	
Figure 35-2	Format of the components of the reservation FirstValue fields	
Figure 35-3	Format of the components of the Domain FirstValue	
Figure 35-4	Value of StreamID TLV	
Figure 35-5	Value of StreamRank TLV	1535
Figure 35-6	Value of InterfaceID TLV	
Figure 35-7	Value of IEEE802-MacAddresses TLV	
Figure 35-8	Value of IEEE802-VlanTag TLV	1536
Figure 35-9	Value of IPv4-tuple TLV	
Figure 35-10	Value of IPv6-tuple TLV	
Figure 35-11	Value of TrafficSpecification TLV	
Figure 35-12	Value of TSpecTimeAware TLV	
Figure 35-13	Value of UserToNetworkRequirements TLV	
Figure 35-14	Value of InterfaceCapabilities TLV	
Figure 35-15	Value of StatusInfo TLV	
Figure 35-16	Value of AccumulatedLatency TLV	
_	Value of TimeAwareOffset TLV	1544

Figure 36-1	PFC peering	1560
Figure 36-2	PFC Receiver state diagram for priority n	1562
Figure 36-3	PFC-aware system queue functions	
Figure 36-4	PFC-aware system queue functions with Link Aggregation	1565
Figure 38-1	DCBX Asymmetric state machine	
Figure 38-2	Symmetric state machine	1571
Figure 39-1	Operation of MIRP in an I-component	1573
Figure 39-2	Operation of MIRP in a B-component	
Figure 39-3	Alternate model for MIRP in a B-component	
Figure 40-1	EVB architecture overview	
Figure 40-2	EVB architecture without S-channels	1582
Figure 40-3	EVB architecture with S-channel	1582
Figure 40-4	EVB components and internal LANs with S-channels	1583
Figure 40-5	EVB architecture without S-channels, with EVB Bridge S-VLAN component	1585
Figure 40-6	EVB architecture without S-channels, with EVB station S-VLAN component	
Figure 41-1	VSI manager ID TLV	1588
Figure 41-2	VDP association TLV	1589
Figure 41-3	VID Filter Info format	1594
Figure 41-4	MAC/VID filter format	1594
Figure 41-5	GroupID/VID filter format	1595
Figure 41-6	GroupID/MAC/VID filter format	1595
Figure 41-7	GroupID/VID/IPv4 filter format	1595
Figure 41-8	GroupID/MAC/VID/IPv4 filter format	1596
Figure 41-9	GroupID/VID/IPv6 filter format	1596
Figure 41-10	GroupID/MAC/VID/IPv6 filter format	1597
Figure 41-11	Organizationally defined TLV	1598
Figure 41-12	Bridge VDP state machine	1600
Figure 41-13	Station VDP state machine	1601
Figure 42-1	CDCP state machine—Station role	1608
Figure 42-2	CDCP state machine—Bridge role	1609
Figure 43-1	Example ECP exchange	1613
Figure 43-2	ECPDU structure	
Figure 43-3	ECP transmit state machine	
Figure 43-4	ECP receive state machine	
Figure 44-1	Flow Filtering TCI format	
Figure 44-2	SPBM VID MEP and ECMP path MEP placement in a CBP	1628
Figure 45-1	An SPT Region controlled by a single PCE	
Figure 45-2	An SPT Region controlled by multiple PCEs	
Figure 45-3	The use of the SPB Instance sub-TLV for MRT	1640
Figure 45-4	Shared Risk Link Group (SRLG) TLV	
Figure 45-5	Topology sub-TLV	
Figure 45-6	A strict tree and its descriptor Topology sub-TLV	1646
Figure 45-7	Topology sub-TLV of a loose tree	
Figure 45-8	Hop sub-TLV	
Figure 45-9	Administrative Group sub-TLV	
Figure 45-10	Bandwidth Constraint sub-TLV	
Figure 45-11	Bandwidth Assignment sub-TLV	
Figure 45-12	Timestamp sub-TLV	
Figure 45-13	A GADAG and its descriptor Topology sub-TLV	
Figure 45-14	MRT-Blue and MRT-Red for MRT Root 55	
Figure 45-15	A GADAG for a topology with multiple blocks	
Figure 46-1	Fully distributed model	
Figure 46-2	Centralized network/distributed user model	
Figure 46-3	Fully centralized model	1668

Figure 46-4	Example of Stream transformation in Talker end station	1669
Figure 46-5	Example of IEEE 802.1CB functions in Talker end station	1670
Figure 46-6	Example of IEEE 802.1CB functions in Listener end station	
Figure 48-1	General YANG hierarchy	
Figure 48-2	YANG root hierarchy with IEEE 802.1Q YANG modules	1696
Figure 48-3	Interface YANG model	1697
Figure 48-4	VLAN Bridge components model (MAC Relay Entities)	1699
Figure 48-5	Bridge Port model	
Figure 48-6	TPMR model (MAC Relay Entity)	1701
Figure 48-7	TPMR port model	
Figure 48-8	Provider Bridge model	1703
Figure 48-9	Provider Edge Bridge C-VLAN Interface model	1704
Figure 48-10	Provider Edge Bridge S-VLAN interface model	1705
Figure 48-11	Bridge to CFM YANG model	1707
Figure 48-12	CFM CFM MEP model relationships model relationships	
Figure 48-13	CFM MEP model	1709
Figure 48-14	CFM operations structure	
Figure 48-15	Stream filters and stream gates model MEP model	
Figure 48-16	Asynchronous Traffic Shaping model	1711
Figure C-1	CSN backbone	
Figure C-2	Bridge's CSN model for bandwidth reservation	1938
Figure C-3	Talker MSRPDU flow	1939
Figure C-4	Listener MSRPDU flow	1939
Figure C-5	IEEE DMN Device Attribute IE	1941
Figure C-6	DMN Confirmation Transaction	1943
Figure C-7	Bandwidth reservation—bridge model for IEEE 802.11 BSS	
_	(STA downstream Port)	1945
Figure C-8	Bandwidth reservation—bridge model for IEEE 802.11 BSS	
	(STA upstream Port)	1946
Figure C-9	Bandwidth reservation—bridge model for IEEE 802.11 BSS	
	(direct link setup)	1946
Figure C-10	MSRP/IEEE 802.11 query flows	
Figure C-11	MSRP/802.11 Talker STA to Listener STA reservation flows	
Figure C-12	MSRP/802.11 "Bridged" Listener to Talker STA reservation flows	1948
Figure C-13	MSRP/802.11 Listener STA to "Bridged" Talker reservation flows	1948
Figure D-1	Port VLAN ID TLV format	1954
Figure D-2	Port And Protocol VLAN ID TLV format	1954
Figure D-3	VLAN Name TLV format	
Figure D-4	Protocol Identity TLV format	1956
Figure D-5	VID Usage Digest TLV format	
Figure D-6	Management VID TLV format	1957
Figure D-7	Congestion Notification TLV format	
Figure D-8	ETS Configuration TLV format	
Figure D-9	ETS Recommendation TLV format	
Figure D-10	Priority-based Flow Control Configuration TLV format	1962
Figure D-11	Application Priority TLV format	
Figure D-12	EVB TLV format	
Figure D-13	CDCP TLV structure	
Figure D-14	Application VLAN TLV format	
Figure F-1	Connecting independent VLANs—1	
Figure F-2	Connecting independent VLANs—2	
Figure F-3	Duplicate MAC addresses	
Figure F-4	Asymmetric VID use: "multi-netted server"	
Figure F-5	Asymmetric VLAN use: "Rooted-Multipoint"	2061

Figure F-6	Rooted-Multipoint with tagged interfaces	2062
Figure F-7	SPBV VLAN Shared Learning and VID Translation	
Figure G-1	Example of IEEE 802.3 MAC frame format	
Figure G-2	Methods for Bridge access to IEEE 802.11 and PMPN media: example	2068
Figure H-1	Static filtering inconsistency	2071
Figure H-2	Interoperability with MAC Bridges: example 1	2072
Figure H-3	Interoperability with MAC Bridges: example 2	2073
Figure H-4	Interoperability between Port-based and	
_	Port-and-Protocol-based classification	2074
Figure J-1	Up MPs in a CFM Port	
Figure K-1	TPMR as UNI demarcation device	2090
Figure K-2	TPMRs with aggregated links	2091
Figure K-3	Multiple TPMRs	2091
Figure K-4	Recovery at the end of a chain	2092
Figure K-5	Near simultaneous recoveries	2093
Figure K-6	Near simultaneous failure and recovery	2093
Figure K-7	Loss with quick recovery	2094
Figure L-1	Credit-based shaper operation—no conflicting traffic	2097
Figure L-2	Credit-based shaper operation—conflicting traffic	
Figure L-3	Credit-based shaper operation—burst traffic	2099
Figure L-4	Interference and latency	
Figure L-5	Burst behavior and credit	2103
Figure L-6	Fan-in scenario	2107
Figure L-7	Permanent delay scenario	
Figure L-8	Building up buffer occupancy—1	2109
Figure L-9	Building up buffer occupancy—2	2109
Figure L-10	Building up buffer occupancy—3	
Figure L-11	Building up buffer occupancy—4	
Figure M-1	PFC PDU format	2112
Figure N-1	PFC delays	
Figure N-2	Delay model	
Figure N-3	Worst-case delay	
Figure O-1	Converting a CRC to an FCS	
Figure O-2	Detection Lossless Circuit	
Figure O-3	Field change adjustment	
Figure O-4	Field insertion adjustment	
Figure P-1	Frame duplication scenario	
Figure P-2	Frame misordering scenario	
Figure Q-1	Establishing a guard band	
Figure Q-2	Using gate operations	
Figure T-1	Example Stream Filter and Stream Gate configuration for CQF	
Figure T-2	Traffic scheduling example for CQF	
Figure T-3	Example Stream Filter and Stream Gate configuration with two values of T	
Figure T-4	Traffic scheduling example with two values of T	
Figure T-5	Interleaving example—factor of 2	2142
Figure U-1	Example of enhancements for scheduled traffic	
Figure V-1	Path of frames along a single hop with index k with two Bridges	2153

Tables

Table 6-1	Bridge transit delay	151
Table 6-2	Priority Code Point encoding	
Table 6-3	Priority Code Point decoding	
Table 6-4	Priority regeneration	
Table 6-5	Default SRP domain boundary port priority regeneration override values	
Table 6-6	Service Access Priority	
Table 6-7	Encapsulated Addresses EtherType	
Table 8-1	C-VLAN and MAC Bridge component Reserved addresses	
Table 8-2	S-VLAN component Reserved addresses	
Table 8-3	TPMR component Reserved addresses	
Table 8-4	Stream gate control operations	
Table 8-5	Recommended priority to traffic class mappings	
Table 8-6	Transmission selection algorithm identifiers	
Table 8-7	Gate operations	
Table 8-8	Scheduled Traffic and Stream Gate procedures/variables	
Table 8-9	Ageing time parameter value	
Table 8-10	Combining Static and Dynamic Filtering Entries for an individual MAC address	
Table 8-11	Combining Static Filtering Entry and MAC Address Registration Entry for	217
14010 0 11	"All Group Addresses" and "All Unregistered Group Addresses"	250
Table 8-12	Forwarding or Filtering for specific group MAC addresses	
Table 8-13	Forwarding or Filtering with Dynamic Reservation Entries	
Table 8-14	Determination of whether a Port is in a VID's member set	
Table 8-15	Standard LLC address assignment.	
Table 8-17	ISIS-SPB Recommended Address Usage	
Table 8-16	ISIS-SPB reserved addresses	
Table 8-18	CCM group destination MAC addresses	
Table 8-19	LTM group destination MAC addresses	
Table 9-2	Reserved VID values	
Table 9-1	IEEE 802.1Q™ EtherType allocations	
Table 9-3	Reserved I-SID values	
Table 10-1	MRP application addresses	
Table 10-1	MRP EtherType values	
Table 10-2	Applicant state table	
Table 10-3	Registrar state table	
Table 10-4	LeaveAll state table	
Table 10-5	PeriodicTransmission state table	
Table 10-7	MRP timer parameter default values	
Table 12-1	Component table entry managed object	
Table 12-2	Port table entry	
Table 12-3	ISS Port Number table entry	
Table 12-4	Bandwidth Availability Parameter Table row elements	
Table 12-5	Transmission Selection Algorithm Table row elements	
Table 12-6	Priority Regeneration Override Table row elements	
Table 12-7	SR Class to Priority Mapping Table row elements	
Table 12-9	CN component priority managed object row elements	
Table 12-8	CN component managed object row elements	
Table 12-10	CN Port priority managed object row elements	
Table 12-10	Congestion Point managed object row elements	
Table 12-11	Reaction Point group managed object row elements	
Table 12-13	Reaction Point port priority managed object row elements	
Table 12-14	SRP Bridge Base Table row elements	
Table 12-15	SRP Bridge Port Table row elements	440

Table 12-16	SRP Latency Parameter Table row elements	
Table 12-17	SRP Stream Table row elements	441
Table 12-19	SRP Stream Preload Table row elements	442
Table 12-18	SRP Reservations Table row elements	442
Table 12-20	SRP Reservations Preload Table row elements	443
Table 12-21	Priority-based Flow Control objects	444
Table 12-22	EVB system base table	
Table 12-24	SBP table entry	
Table 12-23	EVB system parameter defaults	
Table 12-25	VSI table entry	
Table 12-27	UAP table entry parameters	
Table 12-26	VSI MAC/VLAN table entry	
Table 12-28	UAP table entry	
Table 12-29	S-channel interface table entry	
Table 12-31	ECP table entry	
Table 12-30	URP table entry	
Table 12-32	The Gate Parameter Table	
Table 12-33	Frame Preemption Parameter table	
Table 12-34	The Stream Parameter Table	
Table 12-35	Stream Filter Instance Table	
Table 12-36	The Stream Gate Instance Table	
Table 12-37	The Flow Meter Instance Table	
Table 12-37	The Scheduler Group Instance Table	
Table 12-39	The Scheduler Instance Table	401
Table 12-36	The Scheduler Port Parameter Table	
Table 12-40	The Timing Characteristics Table	
Table 12-41 Table 12-38	Bridge Delay attributes	
Table 12-39	Propagation Delay attributes	
Table 12-40	MRP External Control attributes	
Table 12-41		
Table 13-1	Configuration Digest Signature Key	
Table 13-2	Sample Configuration Digest Signature Keys	
Table 13-3	Bridge and Port Priority values	
Table 13-4	Port Path Cost values	
Table 13-5	Timer and related parameter values	
Table 17-1	IEEE 802.1Q MIB modules	
Table 17-2	IEEE8021-TC-MIB structure	
Table 17-3	IEEE8021-BRIDGE-MIB structure	616
Table 17-4	IEEE 802.1D objects not in the IEEE8021-BRIDGE-MIB	
Table 17-5	IEEE8021-SPANNING-TREE MIB structure	
Table 17-6	Clause 12 objects not in the IEEE8021-SPANNING-TREE MIB	
Table 17-7	IEEE8021-Q-BRIDGE MIB structure	
Table 17-8	Clause 12 management not in IEEE8021-Q-BRIDGE-MIB	
Table 17-9	IEEE8021-PB-MIB structure	
Table 17-10	IEEE8021-MSTP-MIB structure	
Table 17-11	IEEE8021-CFM-MIB structure	
Table 17-12	IEEE8021-CFM-V2-MIB structure	
Table 17-13	IEEE8021-PBB-MIB structure	
Table 17-14	IEEE8021-DDCFM-MIB structure	
Table 17-15	IEEE8021-PBBTE-MIB structure	
Table 17-16	Example of ieee8021PbbTeTeSiEspTable	
Table 17-17	IEEE8021-TPMR-MIB structure	
Table 17-18	IEEE8021-FQTSS-MIB structure	
Table 17-19	IEEE8021-CN-MIB structure	650

Table 17-20	IEEE8021-SRP-MIB structure	652
Table 17-21	IEEE8021-MVRPX-MIB structure	654
Table 17-22	IEEE8021-MIRP-MIB structure	654
Table 17-23	PFC-MIB structure	655
Table 17-24	IEEE8021-TEIPS MIB structure	655
Table 17-25	IEEE8021-SPB-MIB structure	657
Table 17-26	IEEE8021-EVB-MIB structure	662
Table 17-27	IEEE8021-ECMP-MIB structure	666
Table 17-28	IEEE8021-ST-MIB structure	667
Table 17-29	IEEE8021-Preemption-MIB structure	668
Table 17-30	IEEE8021-PSFP-MIB structure	668
Table 17-31	IEEE8021-TSN-REMOTE-MANAGEMENT-MIB structure	671
Table 17-31	PBB-TE required MIB compliances	681
Table 17-32	Sensitive managed objects: tables and notifications	689
Table 17-33	Sensitive managed objects: variables in dot1agCfmMdTable	
Table 17-34	Sensitive managed objects (of DDCFM): tables and notifications	
Table 17-35	Sensitive managed objects (of DDCFM) for read	
Table 17-36	Sensitive managed objects (of EVB): tables and notifications	698
Table 17-37	Sensitive managed objects (of EVB) for read	699
Table 17-38	Provider Bridge service interface parameters	
Table 17-39	PBB service interface parameters	
Table 19-1	Actions taken by MP OpCode Demultiplexers	
Table 19-2	SAP use for LTMs and LTRs	
Table 20-1	Fault Alarm defects and priorities	
Table 20-2	Deriving enableRmepDefect and Port Status TLV in a Bridge	
Table 21-1	CFM PDU Encapsulation EtherType	1260
Table 21-3	OpCode Field range assignments	
Table 21-2	Common CFM Header format	
Table 21-4	TLV format	1263
Table 21-5	Type Field values	1264
Table 21-6	Organization-Specific TLV format	1264
Table 21-7	Sender ID TLV format	
Table 21-8	Port Status TLV format	1266
Table 21-10	Interface Status TLV format	1267
Table 21-11	Interface Status TLV values	1267
Table 21-9	Port Status TLV values	1267
Table 21-12	Data TLV format	1268
Table 21-13	End TLV format	1268
Table 21-14	CCM format	1269
Table 21-15	CCM Interval field encoding	1270
Table 21-16	CCM Maintenance Association Identifier field format:	
	Maintenance Domain present	1271
Table 21-17	CCM Maintenance Association Identifier field format:	
	Maintenance Domain not present	1271
Table 21-19	Short MA Name Format	
Table 21-18	Maintenance Domain Name Format	1272
Table 21-20	LBM and LBR formats	
Table 21-21	PBB-TE MIP TLV format	1274
Table 21-22	LTM format	1275
Table 21-23	LTM Flags field	
Table 21-24	LTM Egress Identifier TLV format	1277
Table 21-25	LTR format	1278
Table 21-26	LTR Flags field	
Table 21-27	Relay Action field values	1279

Table 21-28	LTR Egress Identifier TLV format	1279
Table 21-29	Reply Ingress TLV format	
Table 21-30	Ingress Action field values	
Table 21-31	Reply Egress TLV format	
Table 21-32	Egress Action field values	
Table 22-1	MEP creation	
Table 22-2	MIP creation	
Table 22-3	Bandwidth required for CCMs for 1 MA	1299
Table 22-4	Bandwidth required for CCMs for 1000 MAs	
Table 23-1	Time sequence diagram symbols	
Table 23-2	MSP performance parameters	
Table 23-3	MSP EtherType assignment	
Table 23-4	MSP Packet Types	
Table 24-1	Transmission and reception delays	
Table 26-1	Backbone Service Instance Group address OUI	
Table 26-2	Protection Requests Hierarchy	
Table 27-1	Allocation of VIDs to FIDs and FIDs to MSTIDs in an SPT Region (example)	
Table 28-1	Bridge Priority Masking	
Table 29-1	RFM format	
Table 29-2	SFM format	
Table 32-1	LLDP instance selection managed object overrides	
Table 32-2	CND defense mode selection managed object overrides	
Table 32-3	Determining cnpdIsAdminDefMode and cnpdDefenseMode	
Table 32-4	Correspondence of QCN and CCF message fields	1485
Table 32-5	NewCpSampleBase() return value as a function of cpFb	
Table 33-2	CNM Encapsulation	
Table 33-1	CN-TAG Encapsulation	
Table 33-3	Congestion Notification Message PDU	
Table 34-1	Default priority to traffic class mappings for SR classes A and B	
Table 34-2	Default priority to traffic class mappings for SR class B only	
Table 35-1	AttributeType Values	
Table 35-2	AttributeLength Values	
Table 35-3	FourPackedEvent Values	1523
Table 35-4	MSRP FirstValue NumberOfValues example	
Table 35-5	TSpec components examples	
Table 35-6	SR class ID	
Table 35-7	TLV types	1533
Table 35-8	Summary of Talker primitives	
Table 35-9	Summary of Listener primitives	1546
Table 35-10	Talker attribute propagation per port	1550
Table 35-11	Translation of Talker attributes	
Table 35-12	Incoming Listener attribute propagation per port	
Table 35-15	Listener Declaration Type Summation	
Table 35-13	Updating Dynamic Reservation Entries	
Table 35-14	Updating operIdleSlope(N)	
Table 35-16	Translation of Listener attributes	1556
Table 41-1	VDP TLV types	
Table 41-2	Flag values in VDP requests	
Table 41-3	Error types in VDP responses	
Table 41-4	Flag values in VDP responses	
Table 41-6	Filter Info format values	
Table 41-5	VSIID format values	
Table 43-1	ECP subtypes	
Table 44-1	ECMP ECT-ALGORITHM values	1623

Table 44-2	F-TAG EtherType	1624
Table 45-1	ECT-ALGORITHM values for explicit trees	
Table 45-2	Bridge Priority Masking for the LT and LTS ECT Algorithms	
Table 45-3	Hop sub-TLV flags	
Table 46-1	StreamID elements	
Table 46-2	StreamRank elements	
Table 46-3	InterfaceID elements	1675
Table 46-4	IEEE802-MacAddresses elements	
Table 46-5	IEEE802-VlanTag elements	
Table 46-6	IPv4-tuple elements	
Table 46-7	IPv6-tuple elements	
Table 46-8	TrafficSpecification elements	
Table 46-9	TSpecTimeAware elements	
Table 46-10	UserToNetworkRequirements elements	
Table 46-11	InterfaceCapabilities elements	
Table 46-12	StatusInfo elements	
Table 46-13	TalkerStatus enumeration	
Table 46-14	Listener Status enumeration	
Table 46-15	TSN Failure Codes.	
Table 46-16	AccumulatedLatency elements	
Table 48-1	Summary of the YANG modules	
Table 48-2	VLAN Bridge component model YANG modules	
Table 48-3	Two-Port MAC Relay (TPMR) model YANG modules	
Table 48-4	Customer VLAN Bridge model YANG modules	
Table 48-6	CFM model YANG modules	
Table 48-7	Stream filters and stream gates model YANG modules	
Table 48-5	Provider Bridge model YANG modules	
Table 48-8	ATS model YANG modules	
Table C-1	SRP to MoCA PQoS Transaction mapping	
Table C-1	SRP TSpec to MoCA TSPEC mapping	
Table C-2	SRP StreamID to MoCA PQoS Flow transaction mapping	
Table C-4	SRP to MLME QoS Services mapping	
Table C-5	EDCA-AC for AV Streams	
Table C-6	HCCA for AV Streams	
Table D-1	IEEE 802.1 Organizationally Specific TLVs	
Table D-2	Port and protocol capability/status	
Table D-3	Priority assignment table	
Table D-3	Traffic class bandwidth assignment table	
Table D-4	TSA Assignment Table	
Table D-5	PFC Enable bit vector	
Table D-7	Application Priority Table Entry format	
Table D-8	Sel field values	
Table D-9	RRSAT flag values and meanings	
Table D-10	EVB Mode values	
Table D-10	NVE Role values	
Table D-11	Application VLAN Table Entry format	
Table D-12	Sel field values	
Table D-13	IEEE 802.1 extension MIB object group conformance requirements	
Table D-14 Table D-15	IEEE 802.1/LLDP extension MIB object cross reference	
Table D-13	State machine symbols	
Table I-1	Traffic type to traffic class mapping	
Table I-1	7.2	
Table I-2	Traffic type acronyms	
Table I-3	Defining traffic types—Credit-based shaper support of SR class B only	2078
LADIC 1-4	TACHIND HATTIC LYDES—CLEUR-DANCU SHADEL SHIDDOH OF AN CIASS IN OHLY	/11/9

Table I-5	Defining traffic types—Credit-based shaper support of SR classes A and B	2080
Table I-6	Priority Code Point encoding	2082
Table I-7	Priority Code Point decoding	2082
Table J-1	Provider MD Level allocation	2084
Table J-2	IEEE / ITU-T terminology differences	2084
Table N-1	IEEE 802.3 Interface Delays	2116

IEEE Standard for Local and metropolitan area networks—

Bridges and Bridged Networks

1. Overview

IEEE 802® Local Area Networks (LANs, 3.110)⁷ of all types can be connected together with Media Access Control (MAC) Bridges (3.150) or Virtual Local Area Network (VLAN) Bridges (3.296), collectively known as Bridges (3.24). This standard defines the operation of Bridges and Bridged Networks. VLANs facilitate the administration of logical groups of stations. Stations in the same VLAN communicate as if they were on the same LAN, while traffic between VLANs is restricted. Management of VLAN Bridges and stations allows stations to be added to, removed from, or moved between VLANs.

This standard further extends the specification of VLAN Bridges to enable a service provider organization to use a common infrastructure of Bridges and LANs to offer the equivalent of separate LANs, Bridged, or Virtual Bridged Networks to independent customer organizations.

This standard specifies protocols and protocol entities within the architecture of Bridges that provide capabilities for detecting, verifying, and isolating connectivity failures in Bridged Networks. These capabilities can be used in networks operated by multiple independent organizations, each with restricted management access to each other's equipment.

1.1 Scope

This standard specifies Bridges that interconnect individual LANs, each supporting the IEEE 802 MAC Service using a different or identical media access control method, to provide Bridged Networks and VLANs.

1.2 Purpose

Bridges, as specified by this standard, allow the compatible interconnection of information technology equipment attached to separate individual LANs.

⁷ IEEE and IEEE 802 are registered trademarks in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics Engineers, Incorporated.

IEEE Std 802.1Q-2022 IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks

1.3 Introduction

For the purpose of compatible interconnection of information technology equipment using the IEEE 802 MAC Service supported by interconnected IEEE 802 standard LANs using different or identical media access control methods, this standard specifies the operation of MAC Bridges and VLAN Bridges. To this end, it:

- a) Positions the support of VLANs within an architectural description of the MAC Sublayer.
- b) Defines the principles of operation of the MAC Bridge and VLAN Bridge in terms of the support and preservation of the MAC Service, and the maintenance of quality of service (QoS).
- c) Specifies an Enhanced Internal Sublayer Service (EISS) provided to the Media Access-Independent functions that provide frame relay in a VLAN Bridge.
- d) Establishes the principles and a model of Virtual Bridged Network operation.
- e) Identifies the functions to be performed by Bridges, and provides an architectural model of the operation of a Bridge in terms of processes and entities that provide those functions.
- f) Specifies a frame format that allows a VLAN Identifier (VID) and priority information to be carried by VLAN-tagged user data frames.
- g) Specifies the rules that govern the addition or removal of VLAN tags to and from user data frames.
- h) Establishes the requirements for automatic configuration of VLAN topology.
- i) Establishes the requirements for VLAN Bridge Management in a Virtual Bridged Network, identifying managed objects and defining management operations.
- j) Defines SMIv2 (IETF STD 58)⁸ Management Information Based (MIB) modules for the management of VLAN Bridge capabilities including spanning tree protocols and Provider Bridges.
- k) Define YANG configuration and operational state models (Clause 48) in support of Two-Port MAC Relays, Customer VLAN Bridges, and Provider Bridges, including Connectivity Fault Management (CFM) for those Bridges.
- 1) Defines the operation of the Multiple Spanning Tree Algorithm and Protocol (MSTP).
- m) Describes the protocols and procedures necessary to support interoperation between Multiple Spanning Tree (MST) and Single Spanning Tree (SST) Bridges in the same Virtual Bridged Networks.
- n) Specifies the requirements to be satisfied by equipment claiming conformance to this standard.

To enable a service provider to use a Virtual Bridged Network to provide separate instances of the IEEE 802 MAC Service, MAC Internal Sublayer Service (ISS), and EISS to multiple independent customers, in a manner that does not require cooperation among the customers and that requires a minimum of cooperation between the customers and the provider of the MAC Service, this standard further specifies the operation of Provider Bridges. To this end, it:

- o) Differentiates Customer VLANs (C-VLANs) that are under the administrative control of a single customer of a service provider, from the Service VLANs (S-VLANs) that are used by a service provider to support different customers.
- p) Specifies VLAN tag formats for both C-VLANs and S-VLANs, allowing each to be distinguished and separately applied and administered by customers and by a service provider.
- q) Specifies the functionality of a generic VLAN Bridge component within a system and the specific requirements of derived C-VLAN and S-VLAN components.
- r) Specifies a C-VLAN Bridge as comprising a single C-VLAN component, and a Provider Bridge as encompassing Bridges that comprise a single S-VLAN component and no C-VLAN components (S-VLAN Bridge) or a single S-VLAN component and one or more C-VLAN components (Provider Edge Bridge).

⁸ Information on references can be found in Clause 2.

IEEE Std 802.1Q-2022 IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks

- s) Specifies parameters and mappings that allow the EISS to support traffic classes that comprise distinct aggregate flows supporting different QoS characteristics and provide independent guarantees to different customers, through support of priority and drop precedence marking.
- t) Specifies the incorporation of flow metering, transmission queue management, and transmission selection algorithms within the forwarding process of a Bridge.
- u) Positions the support of S-VLANs within the architectural description of the MAC Sublayer and specifies their relationship to media access method-dependent functions and to the mediaindependent functions used by customers to administer their networks, including the support of C-VLANs.
- Allocates the reserved multicast addresses to media access method-dependent, provider network, and customer network functions, specifying the filtering to be applied in each type of VLAN Bridge component.
- w) Defines the principles of network operation in terms of the support and preservation of the MAC Service, and the maintenance of QoS for each service instance, including the segregation of data belonging to different organizations.
- x) Specifies customer interfaces to a Provider Bridged Network (PBN) in terms of the operation and configuration of the VLAN Bridge components of Provider Bridges, including interfaces that:
 - 1) Provide access to a single service instance through a Bridge Port.
 - 2) Allow a customer to select among and identify service instances by Customer VLAN Identifier (C-VID).
 - 3) Allow a customer to select among and identify service instances by Service VLAN Identifier (S-VID).
 - 4) Support customer signaling of priority information on a frame by frame basis.
 - 5) Multiplex service instances over LANs that provide access to a provider network.
 - 6) Support fault tolerance through redundant provision of access LANs and equipment.
- y) Describes the functions to be performed within the PBN in order to support and maintain the connectivity provided to customer service instances.
- z) Establishes the requirements for Bridge Management in the PBN, identifying the managed objects and defining the management operations.
- aa) Specifies performance requirements, and recommends default values and applicable ranges for the operational parameters of a Provider Bridge.

This standard specifies protocols, procedures, and managed objects to support Connectivity Fault Management (CFM). These allow discovery and verification of the path, through Bridges and LANs, taken for frames addressed to and from specified network users, and support detection and isolation of a connectivity fault to a specific Bridge or LAN. To this end, it:

- ab) Defines Maintenance Domains, Maintenance Associations (MAs), their constituent Maintenance Points (MPs), and the managed objects required to create and administer them.
- ac) Describes the protocols and procedures used by MPs to detect and diagnose connectivity faults within a Maintenance Domain.

This standard specifies protocols, procedures, and managed objects to allow support of provisioning systems that explicitly select traffic engineered paths within Provider Backbone Bridged Networks (PBBNs) by allowing a network operator to disable unknown destination address forwarding, source address learning and spanning tree protocols for administratively selected VIDs, while allowing other network control protocols to dynamically determine active topologies for other services. These interoperable capabilities are supported by management of individual Bridges by Simple Network Management Protocol (SNMP) using an SMIv2 MIB, by extensions to the other control protocols specified in this standard, by the use of CFM with the addresses and VIDs that specify traffic engineered connections, and by 1:1 path protection switching capable of load sharing. To this end, it:

IEEE Std 802.1Q-2022 IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks

- ad) Enables construction of active topologies by an external agent that is responsible for setting up Ethernet Switched Paths (ESPs) by splitting the B-VID space between distributed spanning tree protocols and provisioned control.
- ae) Supports discard of frames with unknown destination addresses for B-VIDs under provisioned control.
- af) Supports the operation of Continuity Check, Loopback, and Linktrace protocols on provisioned traffic engineered paths.
- ag) Supports 1:1 protection switching capable of load sharing for Traffic Engineering service instances (TESIs).
- ah) Supports protection of a group of TESIs that traverses a sequence of LANs and intervening Bridges using a method that does not require the modification of data or control frames.
- ai) Provides required extension to SNMP management by SMIv2 MIB modules.

This standard does not specify operation of ESPs through multiple Provider Backbone Bridge Traffic Engineering (PBB-TE) Regions. All the Backbone Edge Bridges (BEBs) specified for use in a PBB-TE Region are combined I type and B type Backbone Edge Bridges (IB-BEBs).

This standard specifies protocols, procedures, and managed objects to support the Multiple Registration Protocol (MRP). MRP allows participants in an MRP Application to register attributes with other participants in a Bridged Network. Four applications are defined—one to register VIDs [Multiple VLAN Registration Protocol (MVRP)], one to register MAC addresses [Multiple MAC Registration Protocol (MMRP)], one to register Streams and configure associated network resources [Multiple Stream Registration Protocol (MSRP)], and one that provides the ability to flush learned MAC Address Entries held in the Filtering Database (FDB) of an I-component on a per-I-SID basis [Multiple I-SID Registration Protocol (MIRP)]. MVRP will furthermore provide for the rapid healing of network failures without interrupting services to unaffected VLANs. To this end, it specifies the following:

- aj) MRP and the operation of MRP entities.⁹
- ak) The generic frame formats used in MRP exchanges.
- al) The MMRP application of MRP, and the frame formats that it uses.
- am) The MVRP application of MRP, and the frame formats that it uses.

To allow scaling of Provider Networks to at least 2^{24} S-VLANs, this standard further specifies the operation of Provider Backbone Bridges (PBBs) by means of an architecture and Bridge protocols compatible and interoperable with PBN protocols and equipment, allowing interconnection of multiple PBNs. To this end, it:

- an) Introduces BEBs that, by exchanging backbone frames that encapsulate the addresses, VLAN tags, and data of customer frames, support the virtual, media-independent equivalent of a number of independent instances of the service provided by media-dependent frame transmission procedures.
- ao) Extends the parameters of the ISS and EISS to include a connection identifier, capable of referencing the backbone addresses and other parameters, used to convey customer frames from one BEB to all, or one of, the other BEBs supporting a particular backbone service instance.
- ap) Specifies the format of the Backbone Service Instance tag (I-TAG) that encapsulates the customer addresses, and introduces a Backbone Service Instance Identifier (I-SID) that allows each BEB to support a number of backbone service instances and permits the unambiguous identification of up to 2²⁴ backbone service instances within a single PBBN.
- aq) Provides a model of BEB operation in terms of VLAN Bridge components that allows the use of Provider Bridges as Backbone Core Bridges (BCBs), with PBBN traffic carried as frames

⁹ MRP replaces the Generic Attribute Registration Protocol (GARP), defined in IEEE Std 802.1D[™]-2004 [B12], that was used to support GVRP and GMRP in earlier revisions of IEEE Std 802.1Q. Similarly, GVRP and GMRP are replaced by MVRP and MMRP, respectively.

IEEE Std 802.1Q-2022 IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks

- containing I-TAGs on particular Backbone VLANs (B-VLANs) potentially coexisting with PBN traffic carried as frames without I-TAGs on other B-VLANs.
- ar) Specifies the interfaces that a PBBN can provide to transport service frames. These comprise a Port-based service interface that assigns all received untagged and priority-tagged frames to a single S-VLAN transported over a single backbone service instance, an S-tagged service interface capable of mapping individual S-VLANs to different backbone service instances, and an I-tagged service interface capable of mapping frames from one set of backbone service instances to another.
- as) Describes the use of redundant Bridges and access LANs to protect backbone service access against failure of any of those systems or components.
- at) Specifies the management of BEBs in terms of the model of operation [item ap) above], making use of defined management objects for the individual VLAN Bridge components, and adding managed objects to facilitate service creation.
- au) Describes the use of CFM to detect and isolate faults in the connectivity provided to individual S-VLANs across the PBBN, in the connectivity provided to the group of S-VLANs supported by a single backbone service instance (identified by an I-SID), and in the connectivity provided to individual B-VLANs within the backbone itself.
- av) Specifies extensions to MSTP to allow network administrators to protect against loops through peered PBBNs without requiring coupling of spanning trees that operate independently for each PBBN.

This standard specifies CFM protocols, procedures, and managed objects that provide confirmation of successful transmission of frames conveying specified data. This capability supports diagnosis of faults sensitive to, or caused by, particular data patterns, and their isolation to part of the transmission path. Connectivity verification can be carried out from any single point with bridged connectivity to MPs on the path, can isolate failures to communicate in a specific direction, and can be carried out while service is being provided to other users of the data path. To this end, it:

- aw) Defines the extensions to CFM capabilities defined by Clause 18 through Clause 22 to facilitate diagnosis and isolation of faults sensitive to, or caused by, particular data patterns in frames transmitted by a service user.
- ax) Describes the protocols and procedures for data-driven and data-dependent connectivity fault management (DDCFM).

This standard specifies the function of a Two-Port MAC Relay (TPMR), along with protocols and procedures that support its operation. A TPMR is a type of Bridge that has only two externally accessible Bridge Ports, and supports a subset of the functionality of a MAC Bridge. A TPMR is transparent to all frame-based media-independent protocols, except those explicitly addressed to it and those that are destined for reserved MAC addresses that the relay function of the TPMR is defined not to forward. It is remotely manageable through at least one of its external MACs, and signals a failure of either MAC's LAN through the other MAC. A TPMR should only be attached to point-to-point LANs. The conformance requirements for a TPMR are stated in 5.13 and 5.15.

This standard allows Bridges to provide performance guarantees for time-sensitive (i.e., bounded latency and latency variation) loss-sensitive real-time audio/video (AV) data stream transmission (AV traffic). It specifies priority regeneration and controlled bandwidth queue draining algorithms. VLAN tag encoded priority values are allocated, in aggregate, to segregate frames among queues that support AV traffic and queues that support non-AV traffic, allowing simultaneous support of both AV traffic and other bridged traffic over and between wired and wireless Local Area Networks (LANs). To this end, it:

- ay) Defines status parameters that allow the boundaries of a Stream Reservation Protocol (SRP—see Clause 35) domain (35.1.4) to be identified and maintained.
- az) Specifies how the priority information in frames received at SRP domain boundary ports is regenerated.

IEEE Std 802.1Q-2022 IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks

NOTE 1—The priorities in frames transmitted from outside an SRP domain to a Bridge inside an SRP domain are remapped in order to ensure that traffic that is not associated with a reservation does not disrupt traffic that is associated with a reservation. Hence, traffic entering an SRP domain that uses Priority Code Point values associated with reserved traffic classes will be remapped to Priority Code Point values that are not associated with reserved traffic classes. ¹⁰

- ba) Specifies how priority information is used to determine the traffic classes to be used for timesensitive streams.
- bb) Defines a credit-based shaper algorithm to shape traffic in accordance with stream reservations. NOTE 2—The credit-based shaper algorithm operates on the outbound queues; the mechanisms specified for the support of time-sensitive AV traffic do not involve any form of ingress metering or policing.

This standard specifies protocols, procedures, and managed objects to support congestion notification. These allow a Virtual Bridged Network or a portion thereof, with a limited bandwidth-delay product, to transfer long-lived data flows with a significantly reduced chance of frame loss compared to a network without congestion notification. To this end, it:

- bc) Defines a means for VLAN Bridges that support congestion notification to form Congestion Managed Domains within a Virtual Bridged Network.
- bd) Defines a means for detecting congested queues in end stations and VLAN Bridges, for signaling such congestion to the end stations sourcing the frames causing the congestion, and for those end stations to control the rate of transmission of those frames.

To enable the end-to-end management of resource reservation for QoS guaranteed streams, this standard further specifies protocols, procedures, and managed objects, usable by existing higher layer mechanisms, that allow network resources to be reserved for specific traffic streams traversing a Bridged Network. To this end, it:

- be) Specifies the use of Dynamic Reservation Entries (8.8.7) in the FDB to control the forwarding of frames associated with a particular Stream.
- bf) Specifies a Stream Reservation Protocol (SRP). SRP facilitates the registration, deregistration, and maintenance of stream reservation information in relevant Bridges to establish end-to-end stream paths.

This standard specifies protocols, procedures, and managed objects to support topology change signaling to alter the binding (held in an I-Component) of Customer addresses to backbone addresses on a per-I-SID basis. This is accomplished by extending the use of MRP. To this end, it specifies the MIRP application of MRP and the frame formats that it uses.

NOTE 3—MIRP can only trigger the flushing of learned MAC address information; it does not propagate the registration of I-SIDs. The name Multiple I-SID Registration Protocol is chosen because MIRP is a Multiple Registration Protocol (MRP) application and can be extended to perform I-SID registrations.

This standard allows an S-tagged service interface connecting two independently administered PBNs to be used to handle traffic (identified by a single S-VID) for a given customer attached to one PBN as if the customer were directly attached to the other PBN using a Port-based or C-tagged service interface. To this end, it:

bg) Specifies the use of a Port-mapping S-VLAN component to associate selected S-VIDs registered on an external port with distinct internal ports, each of which supports a separate service interface.

This standard specifies protocols, procedures, and managed objects to support Priority-based Flow Control (PFC). These allow a Virtual Bridged Network, or a portion thereof, to enable flow control per traffic class on IEEE 802 point-to-point full-duplex links. To this end, it:

¹⁰ Notes in text, tables, and figures of a standard are given for information only and do not contain requirements needed to implement this standard.

IEEE Std 802.1Q-2022 IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks

bh) Defines a means for a system to inhibit transmission of data frames on certain priorities from the remote system on the link.

This standard specifies protocols, procedures, and managed objects for enhancement of transmission selection to support allocation of bandwidth among traffic classes. When the offered load in a traffic class does not use its allocated bandwidth, Enhanced Transmission Selection (ETS) will allow other traffic classes to use the available bandwidth. Bandwidth is used by traffic classes subject to ETS when there are no frames to be transmitted for traffic classes subject to strict priority or credit-based shaper algorithms. It defines the Data Center Bridging eXchange protocol (DCBX), which controls the application of ETS and PFC.

This standard specifies Shortest Path Bridging (SPB) of unicast and multicast frames, specifying protocols to calculate multiple active topologies that can share learned station information, and support of a VLAN by multiple, per-topology, Shortest Path VLAN Identifiers (SPVIDs). To this end, it:

- bi) Describes the use of shortest paths to increase throughput and minimize transit delay, while introducing a negligible rate of frame misordering.
- bj) Requires that active topologies calculated by spanning tree protocols and Shortest Path Tree (SPT) protocols be stable, predictable, and reproducible to maintain the characteristics of the MAC Service provided.
- bk) Requires, except in the case of SPB using Equal Cost Multiple Paths (ECMP), active topologies that are reverse path congruent and unicast-multicast congruent to permit learning of station location from the source addresses of all frames and simplify the detection and management of faults.
 - NOTE 4—ECMP operation does not provide (nor does this standard attempt to define for ECMP VLANs) reverse path congruence and unicast-multicast congruence as these concepts cease to have utility in an ECMP context.
- bl) Specifies the calculation of symmetric sets of SPTs, each rooted at a Bridge within an SPT Region comprising Bridges operating compatible protocols and configurations.
- bm) Specifies the use of Bridge Protocol Data Units (BPDUs) to identify and bound SPT Regions and to ensure loop-free interoperability with regions using the Rapid Spanning Tree Algorithm and Protocol (RSTP) and MSTP.
- bn) Specifies both Shortest Path Bridging VID (SPBV) and Shortest Path Bridging MAC (SPBM) modes:
 - for SPBV, identifying each SPT by SPVID and locating end stations by source MAC address learning.
 - 2) for SPBM, identifying each SPT by VID and source MAC address and distributing end station location information explicitly.
- bo) Supports management selection of the Common Spanning Tree (CST), a Multiple Spanning Tree Instance (MSTI), or SPB for support of any given VLAN within an SPT Region.
- bp) Specifies a protocol that automatically assigns SPVIDs for each VLAN supported by SPBV.
- bq) Supports load sharing by Equal Cost Trees (ECTs) through the calculation of multiple SPT Sets, with each shortest path VLAN being assigned to one SPT Set.
- br) Specifies Intermediate System to Intermediate System Protocol for Shortest Path Bridging (ISIS-SPB): the use of and extensions to the Intermediate System to Intermediate System (IS-IS) Protocol to calculate SPTs for both SPBV and SPBM.
- bs) Describes the addressing of ISIS-SPB entities and specifies the group MAC addresses they use.
- bt) Specifies the use of loop prevention (for SPBV and for multicast frames for SPBM) and loop mitigation (for unicast frames for SPBM).
- bu) Specifies an Agreement Protocol that prevents loops, specifying the necessary state information and computation as part of ISIS-SPB and communicating agreement information for the CIST and (as a compact Digest) for SPTs in each BPDU.

IEEE Std 802.1Q-2022 IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks

This standard specifies protocols, procedures, and managed objects that:

- bv) Provide for the discovery, configuration, and control of a pair of direct-attached Port-mapping S-VLAN components to extend the operation of a Customer Bridge to remote ports and enable coexistence of multiple services on station-resident ports (e.g., embedded bridging).
- bw) Provide for discovery, configuration, and operation of reflective relay (8.6.1) for a Bridge Port.
- bx) Provide for discovery of, and coordinated configuration of, edge relays (ERs) and other devices that utilize the reflective relay service.
- by) Provide for dynamic profile-driven port configuration.
- bz) Specifies load spreading by distributing unicast traffic over the set of available equal cost paths and assigning multicast traffic flows to a variety of trees.
- ca) Specifies a flow filtering tag (F-TAG) containing a flow hash used in unicast ECMP traffic distribution and a TTL (time-to-live) field used to mitigate the effects of traffic loops resulting from transient conditions or control software errors or faults.

This standard also specifies further protocol extensions, procedures, and managed objects to IS-IS for providing capabilities beyond Shortest Path Bridging (SPB) for Bridged Networks. These extensions involve explicit path control, bandwidth reservation, and redundancy (protection, restoration) for data flows. Thus, this standard specifies bridging on explicit paths for unicast and multicast frames, specifying protocols to determine multiple active topologies. To this end, it:

- cb) Describes the use of explicit trees, e.g., to improve resiliency and decrease the probability of congestion.
- cc) Requires that active topologies calculated by one or multiple entities external to the routing protocol are such that the characteristics of the MAC Service are provided.
- cd) Supports management selection of explicit trees for support of any given VLAN within an SPT Region.
- ce) Specifies Intermediate System to Intermediate System Path Control and Reservation (ISIS-PCR): the use of and extensions to the Intermediate System to Intermediate System (IS-IS) protocol to establish explicit trees.
- cf) Specifies the use of ISIS-PCR for recording bandwidth assignments.
- cg) Specifies redundancy for ISIS-SPB and ISIS-PCR.

This standard also:

- ch) Provides for the use of IEEE 802.11TM media as links internal to, as well as links providing access to, a Bridged Network or Virtual Bridged Network.
- Defines enhancements for scheduled traffic to allow transmissions scheduled relative to a known timescale.
- cj) Defines frame preemption to interrupt transmission of preemptable frames by express frames.

This standard specifies protocols, procedures, and managed objects that:

- ck) Allow for the filtering and policing of individual traffic streams.
- cl) Allow for Asynchronous Traffic Shaping (ATS) over full-duplex links with constant bit data rates.

This standard specifies enhancements to protocols, procedures, and managed objects for the configuration of network resources for time-sensitive (i.e., bounded latency) applications. The enhancements address Time-Sensitive Networking (TSN) application requirements beyond audio/video (AV) traffic. To this end, it:

cl) Specifies a software interface between the user (i.e., time-sensitive application) and network components, such that the user provides Stream requirements (e.g., for bounded latency), and the network configures resources from Talker to Listeners to meet those requirements. This user/network interface (UNI) is specified as an information model that can be applied to any protocol.

IEEE Std 802.1Q-2022 IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks

- cm) Specifies three models for the UNI: fully distributed, centralized network/distributed user, and fully centralized.
- cn) Specifies enhancements to the Stream Reservation Protocol (SRP), using a new application version, MSRPv1. MSRPv1 integrates the UNI TLVs for the benefits of enhanced configuration. For compatibility, MSRPv1 translates to the previous version (MSRPv0).
- co) Specifies enhancements to the managed objects for forwarding and queuing enhancements for time-sensitive streams (FQTSS).
- cp) Specifies enhancements to the managed objects for SRP.
- cq) Specifies managed objects for configuration of Bridges by a Centralized Network Configuration (CNC) component.

This standard specifies protocols, procedures, and managed objects that:

cr) Provide for Network Virtualization Overlays over Layer 3 (NVO3)-related port configuration.

IEEE Std 802.1Q-2022

IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks

2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must be understood and used, so each referenced document is cited in text and its relationship to this document is explained). For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies.

ANSI X3.159, American National Standards for Information Systems—Programming Language—C. 11

IEEE Std 802®, IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture. 12, 13

IEEE Std 802dTM-2017, IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture—Amendment 1: Allocation of Uniform Resource Name (URN) Values in IEEE 802® Standards.

IEEE Std 802.1ABTM, IEEE Standard for Local and metropolitan area networks—Station and Media Access Control Connectivity Discovery.

IEEE Std 802.1ACTM, IEEE Standard for Local and metropolitan area networks—Media Access Control (MAC) Service Definition.

IEEE Std 802.1AETM, IEEE Standard for Local and metropolitan area networks—Media Access Control (MAC) Security.

IEEE Std 802.1AS™, IEEE Standard for Local and metropolitan area networks—Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks.

IEEE Std 802.1AXTM, IEEE Standard for Local and metropolitan area networks—Link Aggregation.

IEEE Std 802.1BRTM, IEEE Standard for Local and metropolitan area networks—Virtual Bridged Local Area Networks—Bridge Port Extension.

IEEE Std 802.1CB™, IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability.

IEEE Std 802.1XTM, IEEE Standard for Local and Metropolitan Area Networks—Port-Based Network Access Control.

IEEE Std 802.3™, IEEE Standard for Ethernet.

IEEE Std 802.11TM, Standard for Information Technology—Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

IEEE Std 802.20TM, IEEE Standard for Local and metropolitan area networks—Part 20: Air Interface for Mobile Broadband Wireless Access Systems Supporting Vehicular Mobility—Physical and Media Access Control Layer Specification.

IETF RFC 1035 (STD 13), Domain Names—Implementation and Specification, November 1987. 14

¹¹ ANSI publications are available from the IHS Standards Store (<u>https://global.ihs.com/</u>).

The IEEE standards or products referred to in Clause 2 are trademarks owned by The Institute of Electrical and Electronics Engineers, Incorporated.

13 IEEE publications are available from The Institute of Electrical and Electronics Engineers (https://standards.ieee.org/).

IEEE Std 802.1Q-2022

IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks

IETF RFC 1042, A Standard for the Transmission of IP Datagrams over IEEE 802 Networks, February 1988.

IETF RFC 1390 (STD 36), Transmission of IP and ARP over FDDI Networks, January 1993.

IETF RFC 2104, HMAC: Keyed-Hashing for Message Authentication, February 1997.

IETF RFC 2119 (BCP 14), Key words for use in RFCs to Indicate Requirement Levels, March 1997.

IETF RFC 2205, Resource ReSerVation Protocol (RSVP)—Version 1 Functional Specification, September 1997.

IETF RFC 2271, An Architecture for Describing SNMP Management Frameworks, January 1998.

IETF RFC 2474, Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers, December 1998.

IETF RFC 2578 (STD 58), Structure of Management Information Version 2 (SMIv2), April 1999.

IETF RFC 2579 (STD 58), Textual Conventions for SMIv2, April 1999.

IETF RFC 2580 (STD 58), Conformance Statements for SMIv2, April 1999.

IETF RFC 2685, Virtual Private Networks Identifier, September 1999.

IETF RFC 2737, Entity MIB (Version 2), December 1999.

IETF RFC 2750, RSVP Extensions for Policy Control, January 2001.

IETF RFC 2863, The Interfaces Group MIB, June 2000.

IETF RFC 3046, DHCP Relay Agent Information Option, January 2000.

IETF RFC 3410, Introduction and Applicability Statements for Internet Standard Management Framework, December 2002.

IETF RFC 3411, An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks, December 2002.

IETF RFC 3413 (STD 62), Simple Network Management Protocol (SNMP) Applications, December 2002.

IETF RFC 3414 (STD 62), User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3), December 2002.

IETF RFC 3415 (STD 62), View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP), December 2002.

IETF RFC 3417 (STD 62), Transport Mappings for the Simple Network Management Protocol (SNMP), December 2002.

IETF RFC 3418 (STD 62), Management Information Base (MIB) for the Simple Network Management Protocol (SNMP), December 2002.

IETF RFC 3419, Textual Conventions for Transport Addresses, December 2002.

IEEE Std 802.1Q-2022

IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks

IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005.

IETF RFC 4188, Definitions of Managed Objects for Bridges, September 2005.

IETF RFC 4291, IP Version 6 Addressing Architecture, February 2006.

IETF RFC 4318, Definitions of Managed Objects for Bridges with Rapid Spanning Tree Protocol, December 2005.

IETF RFC 4363, Definitions of Managed Objects for Bridges with Traffic Classes, Multicast Filtering, and Virtual LAN Extensions, January 2006.

IETF RFC 4789, Simple Network Management Protocol (SNMP) over IEEE 802 Networks, November 2006.

IETF RFC 5120, M-ISIS: Multi Topology (MT) Routing in Intermediate System to Intermediate Systems (IS-ISs), February 2008.

IETF RFC 5303, Three-Way Handshake for IS-IS Point-to-Point Adjacencies, October 2008.

IETF RFC 5305, IS-IS Extensions for Traffic Engineering, October 2008.

IETF RFC 5307, IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS), October 2008.

IETF RFC 6165, Extensions to IS-IS for Layer-2 Systems, April 2011.

IETF RFC 7365, Framework for Data Center (DC) Network Virtualization, October 2014.

IETF RFC 7810, IS-IS Traffic Engineering (TE) Metric Extensions, May 2016.

IETF RFC 7811, An Algorithm for Computing IP/LDP Fast Reroute Using Maximally Redundant Trees (MRT-FRR), June 2016.

IETF RFC 7950, The YANG 1.1 Data Modeling Language, August 2016.

IETF RFC 8343, A YANG Data Model for Interface Management, March 2018.

IETF RFC 8394, Split Network Virtualization Edge (Split-NVE) Control-Plane Requirements, May 2018.

ISO/IEC 7498-1, Information technology—Open Systems Interconnection—Basic Reference Model: The Basic Model. 15

ISO/IEC 8802-2, Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements—Part 2: Logical link control.

ISO/IEC 8802-11, Telecommunications and information exchange between systems—Specific requirements for local and metropolitan area networks—Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications.

¹⁵ ISO/IEC publications are available from the International Organization for Standardization (https://www.iso.org/) and the International Electrotechnical Commission (https://www.iec.ch/). ISO/IEC publications are also available from the American National Standards Institute (https://www.ansi.org/).

IEEE Std 802.1Q-2022 IEEE Standard for Local and metropolitan area networks—Bridges and Bridged Networks

ISO/IEC TR 9577:1999, Information technology—Protocol identification in the network layer.

ISO/IEC 10589:2002, Information technology—Telecommunications and information exchange between systems—Intermediate System to Intermediate System intra-domain routeing information exchange protocol for use in conjunction with the protocol for providing the connectionless-mode network service (ISO 8473).

ISO/IEC TR 11802-5:1997, Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Technical reports and guidelines—Part 5: Media Access Control (MAC) Bridging of Ethernet V2.0 in Local Area Networks.

ITU-T Recommendation X.690 (2002), Information technology—ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER).16

ITU-T Recommendation G.8013/Y.1731, Operation, administration and maintenance (OAM) functions and mechanisms for Ethernet-based networks.

MEF Technical Specification 10.3 (MEF 10.3), Ethernet Services Attributes Phase 3, October 2013. 17

¹⁶ ITU-T publications are available from the International Telecommunications Union (https://www.itu.int/).

¹⁷ MEF publications are available from the MEF Forum (<u>https://www.mef.net/</u>).