Q-balls in a U(1) gauge theory coupled to $U(1) \times U(1)$ symmetric scalars

Based on 2008.09844 [Phys. Rev. D 102, 076017 (2020)] and 2011.01634

Árpád Lukács, in collaboration with Péter Forgács

UPV/EHU Leioa, Spain Wigner RCP RMKI, Budapest, Hungary

Solitons at Work Seminar Series, 2. December 2020.

Outline

- 1 Introduction
 What's a Q-ball
 Motivation
- 2 Q-balls in the Abelian gauge theory coupled to a $U(1) \times U(1)$ symmetric scalar sector

 The model considered

 Ansatz

 Energy and charges
- 3 Numerical solutions
- 4 Varying ω Varying charges
- **5** Summary

Why Q-balls?

Theoretical motivation: solitons in 3d

Derrick's theorem

- consider scalar fields with "usual" action
- rescaling $\phi_{\lambda}(x) = \phi(\lambda x)$: scaling of energy terms
- $\partial E/\partial \lambda = 0$
- no finite-energy, purely scalar solitons in d > 2

Hobart 1963, Derrick 1964, Rosen 1966

Why Q-balls?

Theoretical motivation: solitons in 3d

Derrick's theorem

- consider scalar fields with "usual" action
- rescaling $\phi_{\lambda}(x) = \phi(\lambda x)$: scaling of energy terms
- $\partial E/\partial \lambda = 0$
- no finite-energy, purely scalar solitons in d>2

Hobart 1963, Derrick 1964, Rosen 1966

Evade DT?

- Infinite energy (cosmic strings)
- Higher spin (e.g., gauge) fields (monopoles)
- Higher derivatives (Skyrmions)
- Time-dependent fields (Q-balls)

Why Q-balls?

Theoretical motivation: solitons in 3d

Derrick's theorem

- consider scalar fields with "usual" action
- rescaling $\phi_{\lambda}(x) = \phi(\lambda x)$: scaling of energy terms
- $\partial E/\partial \lambda = 0$
- no finite-energy, purely scalar solitons in d > 2

Hobart 1963, Derrick 1964, Rosen 1966

Evade DT?

- Infinite energy (cosmic strings)
- Higher spin (e.g., gauge) fields (monopoles)
- Higher derivatives (Skyrmions)
- Time-dependent fields (Q-balls)

What's a Q-ball?

- finite-energy
- localised
- contains scalar field oscillating in time

What's a Q-ball?

- finite-energy
- localised
- contains scalar field oscillating in time

Oscillating scalar
$$\rightarrow$$
 charge

Important consequence: stability

particle number

$$N = Q/q$$

What's a Q-ball?

- finite-energy
- localised
- contains scalar field oscillating in time

Oscillating scalar
$$\rightarrow$$
 charge

Important consequence: stability

particle number

$$N = Q/q$$

bound if

$$E < E_{\text{free}}$$
, $E_{\text{free}} = mN$

Rosen 1968, Coleman 1985, Lee & Pang 1992

Motivation

Physics of Q-balls

- Q-balls in SM extensions Kusenko 1997
- Q-balls as Dark Matter Frieman, Gelmini, Gleiser & Kolb 1988; Kusenko & Shaposhnikov 1998
- Role in baryogenesis Dodelson & Widrow 1990, Enqvist & McDonald 1998

Motivation

Physics of Q-balls

- Q-balls in SM extensions Kusenko 1997
- Q-balls as Dark Matter Frieman, Gelmini, Gleiser & Kolb 1988; Kusenko & Shaposhnikov 1998
- Role in baryogenesis Dodelson & Widrow 1990, Enqvist & McDonald 1998

Previous work

- Screening in the Abelian Higgs model
- Interior of screened Q-balls homogeneous
- Existence of Q-balls of arbitrary large charge

Motivation

Physics of Q-balls

- Q-balls in SM extensions Kusenko 1997
- Q-balls as Dark Matter Frieman, Gelmini, Gleiser & Kolb 1988; Kusenko & Shaposhnikov 1998
- Role in baryogenesis Dodelson & Widrow 1990, Enqvist & McDonald 1998

Previous work

- Screening in the Abelian Higgs model
- Interior of screened Q-balls homogeneous
- Existence of Q-balls of arbitrary large charge

Self-interaction? Limiting cases?

The model

$$S = \int \mathrm{d}^4 x \left[-rac{1}{4} F_{\mu
u} F^{\mu
u} + D_\mu \phi^* D^\mu \phi + D_\mu \psi^* D^\mu \psi - V
ight]$$

- ϕ Higgs, complex scalar, $\langle \phi \rangle \neq 0$
- ψ matter, complex scalar, $\langle \psi \rangle = 0$
- A_{μ} gauge field

$$g = \operatorname{diag}(+, -, -, -), \ F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\mu}A_{\nu}, \ D_{\mu}\phi = (\partial_{\mu} - \mathrm{i}e_{1}A_{\mu})\phi, \\ D_{\mu}\psi = (\partial_{\mu} - \mathrm{i}e_{2}A_{\mu})\psi$$

The model

$$S = \int \mathrm{d}^4 x \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + D_\mu \phi^* D^\mu \phi + D_\mu \psi^* D^\mu \psi - V \right]$$

- ϕ Higgs, complex scalar, $\langle \phi \rangle \neq 0$
- ψ matter, complex scalar, $\langle \psi \rangle = 0$
- A_{μ} gauge field

$$g = \operatorname{diag}(+, -, -, -), \ F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\mu}A_{\nu}, \ D_{\mu}\phi = (\partial_{\mu} - ie_{1}A_{\mu})\phi, \ D_{\mu}\psi = (\partial_{\mu} - ie_{2}A_{\mu})\psi$$

Potential: most general $U(1) \times U(1)$ with $\langle \phi \rangle \neq 0$, $\langle \psi \rangle = 0$:

$$V = \frac{\lambda_1}{2} (|\phi|^2 - \eta^2)^2 + \frac{\lambda_2}{2} |\psi|^4 + \lambda_{12} (|\phi|^2 - \eta^2) |\psi|^2 + \frac{m^2}{2} |\psi^2|$$

Forgács & ÁL 2016

The model

$$S = \int \mathrm{d}^4 x \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + D_{\mu} \phi^* D^{\mu} \phi + D_{\mu} \psi^* D^{\mu} \psi - V \right]$$

- ϕ Higgs, complex scalar, $\langle \phi \rangle \neq 0$
- ψ matter, complex scalar, $\langle \psi \rangle = 0$
- A_{μ} gauge field

$$g = \operatorname{diag}(+, -, -, -), \ F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\mu}A_{\nu}, \ D_{\mu}\phi = (\partial_{\mu} - \mathrm{i}e_{1}A_{\mu})\phi, \\ D_{\mu}\psi = (\partial_{\mu} - \mathrm{i}e_{2}A_{\mu})\psi$$

Potential: most general $U(1) \times U(1)$ with $\langle \phi \rangle \neq 0$, $\langle \psi \rangle = 0$:

$$V = \frac{\lambda_1}{2} (|\phi|^2 - \eta^2)^2 + \frac{\lambda_2}{2} |\psi|^4 + \lambda_{12} (|\phi|^2 - \eta^2) |\psi|^2 + \frac{m^2}{2} |\psi^2|$$

Forgács & ÁL 2016

Rescaling:

$$\eta \to 1$$
, $e_i \to q_i = e_i/e$, $\lambda_{1,2,12} \to \beta_{1,2,12} = \lambda_{1,2,12}/e^2$, $\mu = m^2/(e^2\eta^2)$

Ansatz

Spherically symmetric solution

$$A_0 = \alpha(r), \quad \phi = f_1(r), \quad \psi = e^{i\omega t} f_2(r)$$

 α , $f_{1,2}$ profile functions, solved for numerically

Ansatz

Spherically symmetric solution

$$A_0 = \alpha(r), \quad \phi = f_1(r), \quad \psi = e^{i\omega t} f_2(r)$$

 α , $f_{1,2}$ profile functions, solved for numerically

- radial equations from Action S
- boundary conditions at r = 0 from regularity

$$f_{1,2} \sim f_{1,2}(0) + f_{1,2}^{(2)}r^2 + \dots, \quad \alpha \sim \alpha(0) + \alpha^{(2)}r^2 + \dots$$

• boundary conditions at $r \to \infty$: approach vacuum

$$f_1 \rightarrow 1$$
, $f_2 \rightarrow 0$, $\alpha \rightarrow 0$

Energy and charges

Energy of spherical configuration

$$E = \frac{4\pi}{e} \eta \int_0^\infty \mathrm{d}r r^2 \left[(f_1')^2 + (f_2')^2 + \frac{1}{2} (\alpha')^2 + q_1^2 \alpha^2 f_1^2 + (q_2 \alpha - \omega)^2 f_2^2 + V \right]$$

where

$$V = \frac{\beta_1}{2}(f_1^2 - 1)^2 + \frac{\beta_2}{2}f_2^4 + \beta_{12}(f_1^2 - 1)f_2^2 + \mu f_2^2$$

Energy and charges

Energy of spherical configuration

$$E = \frac{4\pi}{e} \eta \int_0^\infty \mathrm{d}r r^2 \left[(f_1')^2 + (f_2')^2 + \frac{1}{2} (\alpha')^2 + q_1^2 \alpha^2 f_1^2 + (q_2 \alpha - \omega)^2 f_2^2 + V \right]$$

where

$$V = \frac{\beta_1}{2}(f_1^2 - 1)^2 + \frac{\beta_2}{2}f_2^4 + \beta_{12}(f_1^2 - 1)f_2^2 + \mu f_2^2$$

Charges: $Q_{\phi,\psi} = \int 4\pi r^2 \mathrm{d}r \rho_{\phi,\psi}$

$$\rho_{\phi} = 2q_1^2 \alpha f_1^2, \qquad \rho_{\psi} = 2q_2(q_2 \alpha - \omega) f_2^2.$$

Energy and charges

Energy of spherical configuration

$$E = \frac{4\pi}{e} \eta \int_0^\infty \mathrm{d}r r^2 \left[(f_1')^2 + (f_2')^2 + \frac{1}{2} (\alpha')^2 + q_1^2 \alpha^2 f_1^2 + (q_2 \alpha - \omega)^2 f_2^2 + V \right]$$

where

$$V = \frac{\beta_1}{2}(f_1^2 - 1)^2 + \frac{\beta_2}{2}f_2^4 + \beta_{12}(f_1^2 - 1)f_2^2 + \mu f_2^2$$

Charges: $Q_{\phi,\psi} = \int 4\pi r^2 \mathrm{d}r \rho_{\phi,\psi}$

$$\rho_{\phi} = 2q_1^2 \alpha f_1^2, \qquad \rho_{\psi} = 2q_2(q_2 \alpha - \omega) f_2^2.$$

Both conserved. Perfect charge screening (Gauss' thm):

$$Q_{\phi}+Q_{\psi}=0$$

 \rightarrow test of numerical solution

Forgács & ÁL 2020

Effective action

$$S_{
m eff} = I_1 - I_3 \,, \quad I_1 = 4\pi \int {
m d} r r^2 K_{
m eff} \,, \quad I_3 = 4\pi \int {
m d} r r^2 U_{
m eff}$$

kinetic term:

$$K_{\mathrm{eff}} = (f_1')^2 + (f_2')^2 - (\alpha')^2/2$$
,

effective potential

$$U_{\text{eff}} = -\beta_1 (f_1^2 - 1)^2 / 2 - \beta_2 f_2^4 / 2 - \beta_{12} (f_1^2 - 1) f_2^2 - \mu f_2^2 + q_1^2 \alpha^2 f_1^2 + (q_2 \alpha - \omega)^2 f_2^2$$

Effective action

$$S_{
m eff} = I_1 - I_3 \,, \quad I_1 = 4\pi \int {
m d} r r^2 K_{
m eff} \,, \quad I_3 = 4\pi \int {
m d} r r^2 U_{
m eff} \,$$

kinetic term:

$$K_{\text{eff}} = (f_1')^2 + (f_2')^2 - (\alpha')^2/2$$
,

effective potential

$$U_{\text{eff}} = -\beta_1 (f_1^2 - 1)^2 / 2 - \beta_2 f_2^4 / 2 - \beta_{12} (f_1^2 - 1) f_2^2 - \mu f_2^2 + q_1^2 \alpha^2 f_1^2 + (q_2 \alpha - \omega)^2 f_2^2$$

Virial argument $(r \rightarrow \lambda r)$: $I_1 = 3I_3$,

$$\frac{E}{\eta} = -\omega \frac{Q_{\psi}}{q_2} + \frac{2}{3e} I_1$$

Effective action

$$S_{
m eff} = I_1 - I_3 \,, \quad I_1 = 4\pi \int {
m d} r r^2 K_{
m eff} \,, \quad I_3 = 4\pi \int {
m d} r r^2 U_{
m eff}$$

kinetic term:

$$K_{\text{eff}} = (f_1')^2 + (f_2')^2 - (\alpha')^2/2$$
,

effective potential

$$U_{\text{eff}} = -\beta_1 (f_1^2 - 1)^2 / 2 - \beta_2 f_2^4 / 2 - \beta_{12} (f_1^2 - 1) f_2^2 - \mu f_2^2 + q_1^2 \alpha^2 f_1^2 + (q_2 \alpha - \omega)^2 f_2^2$$

Virial argument $(r \rightarrow \lambda r)$: $I_1 = 3I_3$,

$$\frac{E}{\eta} = -\omega \frac{Q_{\psi}}{q_2} + \frac{2}{3e} I_1$$

Asymmetry in ϕ, ψ : gauge choice $(Q_{\phi} = -Q_{\psi})$

Forgács & ÁL 2020

Domain of existence

For other parameters fixed:

$$\omega_{\min} < \omega < \omega_{\max}$$

Domain of existence

For other parameters fixed:

$$\omega_{\min} < \omega < \omega_{\max}$$

ω_{\min} :

- Interior of solution: "true" vacuum of $U_{\rm eff}$
- Exterior of solution: "false" vacuum of $U_{\rm eff}$ (true vac.)
- at $\omega = \omega_{\min} \ U_{ ext{eff}}(ext{``true vac''}) = U_{ ext{eff}}(ext{``false'' vac})$

Domain of existence

For other parameters fixed:

$$\omega_{\rm min} < \omega < \omega_{\rm max}$$

ω_{\min} :

- Interior of solution: "true" vacuum of $U_{\rm eff}$
- Exterior of solution: "false" vacuum of $U_{
 m eff}$ (true vac.)
- at $\omega = \omega_{\min} \ U_{\mathrm{eff}}$ ("true vac") $= U_{\mathrm{eff}}$ ("false" vac)

ω_{max}

• asymptotic solution $f_2 \sim \exp(-\sqrt{\mu - \omega^2}r)/r$

$$\omega_{\rm max}^2 = \mu$$

+ positivity conditions, $\beta_1 < \beta_{12}/2$ $(q_1 = q_2)$

Radial equations

Ansatz, $\delta S_{\text{eff}} = 0$:

$$\frac{1}{r^2}(r^2f_1')' = f_1 \left[-q_1^2\alpha^2 + \beta_1(f_1^2 - 1) + \beta_{12}f_2^2 \right]
\frac{1}{r^2}(r^2f_2')' = f_2 \left[-(q_2\alpha - \omega)^2 + \beta_2f_2^2 + \mu + \beta_{12}(f_1^2 - 1) \right]
\frac{1}{r^2}(r^2\alpha')' = 2 \left[q_1^2\alpha f_1^2 + q_2(q_2\alpha - \omega)f_2^2 \right]$$

Radial equations

Ansatz, $\delta \mathcal{S}_{ ext{eff}} = 0$:

$$\begin{split} &\frac{1}{r^2}(r^2f_1')' = f_1\left[-q_1^2\alpha^2 + \beta_1(f_1^2 - 1) + \beta_{12}f_2^2\right] \\ &\frac{1}{r^2}(r^2f_2')' = f_2\left[-(q_2\alpha - \omega)^2 + \beta_2f_2^2 + \mu + \beta_{12}(f_1^2 - 1)\right] \\ &\frac{1}{r^2}(r^2\alpha')' = 2\left[q_1^2\alpha f_1^2 + q_2(q_2\alpha - \omega)f_2^2\right] \end{split}$$

Boundary conditions

- $f_{1,2}(0) = \alpha(0) = 0$
- $f_1(\infty) = 1$, $f_2(\infty) = \alpha(\infty) = 0$

Numerical solution:

- large interval 0 . . . L
- collocation, COLNEW package (Ascher 1987)

A solution

Numerical solution

- $\beta_2 \neq 0$ does not change much
- charge cancellation local

Method: collocation, error estimate: 2×10^{-6}

Varying ω

$$\beta_1 = 0.5$$
, $\beta_{12} = \mu = 1.4$, $\beta_2 = 0$

 $\omega = 1.174$ Approaching ω_{\min} Whole Q-ball core expands

 $\omega=1.183$ Approaching $\omega_{
m max}$ ψ component "tail" becomes long

Varying ω

$$\beta_1 = 0.5$$
, $\beta_{12} = \mu = 1.4$, $\beta_2 = 0$

 $\omega = 1.174$ Approaching ω_{\min} Whole Q-ball core expands

 $\omega = 1.183$ Approaching $\omega_{\rm max}$ ψ component "tail" becomes long

Changing other parameters: ω_{\min} or ω_{\max}

$$\beta_1 = 0.5, \, \beta_{12} = \mu = 1.4, \, \text{and} \, \, \beta_2 = 0.25$$

Energy and charge diverges at both limits Very similar for $\beta_2=0$ and $\beta_2\neq 0$

Stability: E/E_{free}

$$eta_1=$$
 0.5, $eta_2=$ 0.25 and 0, $eta_{12}=\mu=$ 1.4

$$N=Q_\psi/q_2\,,\quad E_{
m free}=mN=\sqrt{\mu}N$$

Stable branch for large N, Q (other branch not energetically favourable)

$q_1 \neq q_2$, limiting cases

Small q_1

- Positivity condition $\beta_1 < \mu q_1^2/2$
- $q_1 = 0$ cannot be reached
- distinct family of solutions (q1 = 0 Lee & Yoon 1989)

$q_1 \neq q_2$, limiting cases

Small q_1

- Positivity condition $\beta_1 < \mu q_1^2/2$
- $q_1 = 0$ cannot be reached
- distinct family of solutions (q1 = 0 Lee & Yoon 1989)

Small q_2

- a quite simple limit
- in the limiting case, $\alpha \to 0$
- reproduces known result (Friedberg, Lee & Sirlin, 1979)

$q_1 \neq q_2$, limiting cases

Small q_1

- Positivity condition $\beta_1 < \mu q_1^2/2$
- $q_1 = 0$ cannot be reached
- distinct family of solutions (q1 = 0 Lee & Yoon 1989)

Small q_2

- a quite simple limit
- in the limiting case, lpha
 ightarrow 0
- reproduces known result (Friedberg, Lee & Sirlin, 1979)

$$\beta_{1,2} \rightarrow 0$$

Cusp on E/E_{free} vs. N not observed

Summary

- Q-balls: nontopological solitons with time-periodic scalars
- Screened, gauged Q-balls extended to most general $U(1) \times U(1)$ symmetric scalar potential
- limiting cases $q_1 \rightarrow 0$, $q_2 \rightarrow 0$, $\beta_{1,2} \rightarrow 0$
- depending on parameters: 2 distinct families of Q-balls

Summary

- Q-balls: nontopological solitons with time-periodic scalars
- Screened, gauged Q-balls extended to most general $U(1) \times U(1)$ symmetric scalar potential
- limiting cases $q_1 \rightarrow 0$, $q_2 \rightarrow 0$, $\beta_{1,2} \rightarrow 0$
- depending on parameters: 2 distinct families of Q-balls

THANK YOU FOR YOUR ATTENTION!

References 1

- G. Rosen, J. Math. Phys. 7, 2066 (1966).
- R.H. Hobart, Proc. Phys. Soc. 82, 201 (1963).
- G.H. Derrick, J. Math. Phys. 5, 1252–1254 (1964).
- T.W.B. Kibble, J. Phys. A 9, 1387 (1976).
- G. 't Hooft, Nucl. Phys. B 79, 276–284 (1974).
- A.M. Polyakov, JETP Lett. 20, 194–195 (1974)
- T.H.R. Skyrme, Proc. Roy. Soc. London A 260, 127-138 (1961);
 Proc. Roy. Soc. London A 262, 237-245 (1961); Nucl. Phys. 31, 556-569 (1962).
- G. Rosen, J. Math. Phys. 9, 996 (1968).
- S. Coleman, Nucl. Phys. B 262, 263-283 (1985).
- T.D. Lee and Y. Pang, Phys. Rept. 221, 251-350 (1992).
- S. Dodelson and L. Widrow, Phys. Rev. Lett. 64, 340-343 (1990).
- J. Frieman, G. Gelmini, M. Gleiser, and E. Kolb, *Phys. Rev. Lett.* 60, 2101 (1988).

References II

- A. Kusenko and M. Shaposhnikov, Phys. Lett. **B 418**, 46-54 (1998).
- A. Kusenko, Phys. Lett. B 405, 108-113 (1997).
- K. Enqvist and J. McDonald, Phys. Lett. B 425, 309-321 (1998).
- H. Ishihara and T. Ogawa, arXiv:1811.10848 [hep-th].
- H. Ishihara and T. Ogawa, Phys. Rev. D 99, 056019 (2019).
- H. Ishihara and T. Ogawa, Prog. Theor. Exp. Phys. 2019, 021B01 (2019).
- P. Forgács and ÁL, Nucl. Phys. B 762, 271-275 (2016); Phys. Rev. D 94, 125018 (2016).
- U. Ascher, SIAM J. Sci. Stat. Comput. 8, 483-500 (1987).
- C.H. Lee and S.U. Yoon, Mod. Phys. Lett. A6, 1665 (1989).
- M. Speight, Phys. Rev. D 55, 3830 (1997)

Screening in the Abelian Higgs model

Abelian Higgs model (A,ϕ) & external charge $\rho_{\rm ext}$ Global screening: consequence of Gauss' theorem:

$$\int \mathrm{d}^3x (m_A^2A^0-\rho_{\rm ext}-\rho_\phi) = -\int \mathrm{d}^3x \nabla^2A^0 = \int \mathrm{d}^2x \partial_nA^0 = 0$$

Perturbation theory: $\phi = \eta + \chi/\sqrt{2}$,

$$A_0^{(1)} = \epsilon A_0^{(1)} + \epsilon^2 A_0^{(2)} + \dots, \quad \chi = \epsilon^2 \chi^{(2)} + \dots$$
$$(\nabla^2 - m_e^2) \chi^{(k)} = -\xi^{(k)}, \quad (\nabla^2 - m_A^2) A_0^{(k)} = -\sigma_0^{(k)}$$

 $(\nabla^2 - m_s^2)\chi^{(k)} = -\xi^{(k)}, \quad (\nabla^2 - m_A^2)A_0^{(k)} = -\sigma_0^{(k)}$

$$\begin{split} \xi^{(1)} &= 0 \,, \qquad \qquad \sigma_0^{(1)} = \rho_{\rm ext}^{(1)} \,, \\ \xi^{(2)} &= e^2 v A_{\mu}^{(1)} A^{(1)\mu} \,, \qquad \sigma_0^{(2)} = -2 e^2 v \chi^{(1)} A_0^{(1)} \,, \end{split}$$

Order-by-order cancellation:

Solution using Green's functions:

$$\begin{split} A_0^{(k)}(x_i) &= \int \mathrm{d}^3 x' G_A(x_i - x_i') \sigma_0^{(k)}(x_i') \,, \qquad G_A(\mathbf{x}) = \frac{1}{4\pi |\mathbf{x}|} \exp(-m_A |\mathbf{x}|) \,, \\ \chi^{(k)}(x_i) &= \int \mathrm{d}^3 x' G_s(x_i - x_i') \xi^{(k)}(x_i') \,, \qquad G_s(\mathbf{x}) = \frac{1}{4\pi |\mathbf{x}|} \exp(-m_S |\mathbf{x}|) \,. \end{split}$$

Consequently,

$$Q_A^{(k)} = -\int \mathrm{d}^3 x m_A^2 A^{(k)} = -m_A^2 \int \mathrm{d}^3 x \mathrm{d}^3 x' G_A(x_i - x_i') \sigma_0^{(k)}(x_i') = -Q_\phi^{(k)}$$

Including
$$Q_A^{(1)} = -Q_{\mathrm{ext}}^{(1)}$$

Point charge

Point charge: $\rho_{\rm ext} = q\delta^3(\mathbf{r})$

$$e = 1$$
, $\lambda = 2.0$, $q = 0.4$

$$A_0^{(1)}(r) = \frac{1}{4\pi r} e^{-m_A r},$$

$$\chi^{(2)}(r) = -\frac{e^2 v}{2(4\pi)^2 m_s r} \left[e^{-m_s r} \left(\text{Ei}[(m_s - 2m_A)r] - \log \frac{|m_s - 2m_A|}{m_s + 2m_A} \right) - e^{m_s r} \text{Ei}[-(m_s + 2m_A)r] \right].$$

Point charges

Numerical and leading order agrees within line width

Perturbative solution to calculate interaction between point charges Two length scales: $1/m_A$ (screening) and $1/m_s$ (scalar pertrubations)

Type II: $m_s > m_A$: due to gauge field

$$V_{\rm II}(r) = \frac{q_1 q_2}{4\pi r} \mathrm{e}^{-m_A r}$$

Type I: $m_s < m_A$: due to scalar field

$$V_{\rm I}(r) = \frac{{\rm e}^4 v^2 q_1^2 q_2^2}{4(4\pi)^3 m_{\rm s} m_{\rm A}} \log \frac{2m_{\rm A} - m_{\rm s}}{2m_{\rm A} + m_{\rm s}} \frac{{\rm e}^{-m_{\rm s} r}}{r}$$

For type I: like charges attract!

Analogy: superconductivity; method: Speight, 1997

Forgács & ÁL 2020

