

Applied Functionalanalysis

Script of "Applied Functionalanalysis" by Prof. Peter Kumlin

Tim Keil

October 5, 2016

foreword — cooperation

This document is a transcript of the lecture "Applied Functionalanalysis, WiSe 2016/2017, Term 1", by Prof. Peter Kumlin. It mainly contains the written content of the lecture. I will not assume any responsibility for the correctness of the content! For questions, remarks and mistakes please write an email to keil.menden@web.de. I'm grateful for every email.

Contents

1	Introduction	1
	1.1 Introduction example	1
	1.2 Mappings between normed spaces	30
	1.3 Fixed point theory	38
	1.4 Completion of normed spaces	53
2	Hilbert spaces	57
	2.1 Orthogonal Systems	61
	2.2 Orthogonal decomposition in Hilbert spaces	66
	2.3 Bounded linear functionals on Hilbert spaces	69
	2.4 Linear operators on Hilbert spaces	78

B

1 Introduction

1.1 Introduction example

We have

$$\begin{cases} f'' + f = g, & \text{in } I = [0, 1] \\ f(0) = 1, \ f'(0) = 1 \end{cases}$$

where g is a known continous function on I. We will now consider different cases:

1. g = 0

$$\Rightarrow f(x) = A\cos(x) + B\sin(x), x \in I$$

where $A, B \in \mathbb{R}$.

2. g arbitrary. We will now introduce the Method of variation of constants. Set

$$f(x) = A(x)\cos(x) + B(x)\sin(x)$$

Differentiate

$$f'(x) = A'(x)\cos(x) + B'(x)\sin(x) - A(x)\sin(x) + B(x)\cos(x)$$

Aussume (This is part of the method)

$$A'(x)\cos(x) + B'(x)\sin(x) = 0, \qquad x \in I$$

Differentiate f'(x) and get

$$f''(x) = \underbrace{-A(x)\cos(x) - B(x)\sin(x)}_{=-f(x)} - A'(x)\sin(x) + B'(x)\cos(x)$$

We get

$$g(x) = f''(x) + f(x) = -A'(x)\sin(x) + B'(x)\cos(x).$$

Now:

$$\begin{cases} A'(x)\cos(x) + B'(x)\sin(x) = 0, & x \in I \\ -A'(x)\sin(x) + B'(x)\cos(x) = g(x), & x \in I \\ A(0) = 1, & B(0) = 0 \end{cases}$$

We get

$$A'(x) = -g(x)\sin(x)$$

$$A(0) = 1$$

$$B'(x) = g(x)\cos(x)$$

$$B(0) = 0$$

This implies

$$A(x) = A(0) + \int_0^x A'(t) dt = 1 - \int_0^x g(t) \sin(t) dt$$
$$B(x) = B(0) + \int_0^x B'(t) dt = 0 + \int_0^x g(t) \cos(t) dt$$

Hence

$$f(x) = \cos(x) - \int_0^x g(t)\sin(t) dt \cos(x) + \int_0^x g(t)\cos(t) dt \sin(x)$$

$$= \cos(x) + \int_0^x (\underbrace{\sin(x)\cos(t) - \sin(t)\cos(x)}_{=\sin(x-t)})g(t) dt$$

$$= \cos(x) + \int_0^x \sin(x-t)g(t) dt \qquad (*)$$

Check that f(x) in (*) satisfies the PDE.

special case:

Assume for $x \in I$

$$q(x) = k(x) f(x)$$

Here k is a known continous function on I. Insert this in (*). We obtain

$$f(x) = \cos(x) + \int_0^x \sin(x - t)k(t)f(t) dt, \qquad x \in I \qquad (**)$$

Observe that f appears both in LHS and RHS. (**) is a reformulation of the PDE with g=kf. Pick a continous function in I. call it f_0 . Set

$$f_1(x) = \cos(x) + \int_0^x \sin(x - t)k(t)f_0(t) dt$$

$$f_2(x) = \cos(x) + \int_0^x \sin(x - t)k(t)f_1(t) dt$$

$$\vdots \qquad \vdots$$

$$f_{n+1}(x) = \cos(x) + \int_0^x \sin(x - t)k(t)f_n(t) dt, \qquad n = 1, 2, 3, ...$$

Hope:

 f_n tends to some continous function f on I, denoted $f_n \to f$. 'Tends to' has to be more precis!

$$f_{n+1}(x) = \cos(x) + \int_0^x \sin(x-t)k(t)f_n(t) dt$$

$$\downarrow \qquad \downarrow$$

$$f(x) = \cos(x) + \int_0^x \sin(x-t)k(t)f(t) dt$$

for $x \in I$. Simplify notation set for $v \in C(I)$

$$\begin{cases} u(x) &= \cos(x) \\ kv(x) &= \int_0^x \sin(x-t)k(t)v(t) dt \end{cases}$$

We have $f_0 \in C(I)$, $f_{n+1} = u + kf_n$ for n = 0, 1, 2, ... (!) Facts from previous calculus classes:

Definition (Sequenze of continous functions).

$$v_n \in C(I), \qquad n = 1, 2, \dots$$

We say that $(v_n)_{n=1}^{\infty}$ converges uniformly in I if

$$\max_{x \in I} |v_n(x) - v_m(x)| \to 0, \qquad n, m \to \infty$$

i.e.

$$\forall \varepsilon > 0 \exists N : \forall n, m \ge N : \max_{x \in I} |v_n(x) - v_m(x)| < \varepsilon$$

Lemma . Suppose that $(v_n)_{n=1}^\infty$ converges uniformly on I. then there exists $v \in C(I)$ such that

$$\max_{x \in I} |v_m(x) - v(x)| \to 0 \quad \text{as } m \to \infty$$

Back to (!):

More Notation:

$$k(kv) = k^2 v, \qquad v \in C(I)$$

and

$$k^{n+1}v = k(k^n v), \qquad n = 1, 2, \dots$$

We have

$$f_0 \in C(I)$$

$$f_1 = u + kf_0$$
 and
$$f_2 = u + kf_1 = u + k(u + kf_0)$$

and so on. Note that

$$k(v+w) = kv + kw$$

Then

$$f_2 = u + k(u + kf_0) = k + ku + k(kf_0) = u + ku + k^2 f_0$$

$$f_3 = u + kf_2 = u + ku + k^2 u + k^3 f_0$$

and in general for $n = 1, 2, \dots$

$$f_n = ku + \ldots + k^{n-1}u + k^n f_0, \qquad n = 1, 2, \ldots$$

Assume n > m then

$$f_n - f_m = k^m u + \ldots + k^{n-1} u + k^n f_0 - k^m f_0$$

Set for $v \in C(I)$

$$||v|| = \max_{x \in I} |v(x)|$$

Note

$$||v + w|| \le ||v|| + ||w||$$
 for $v, w \in C(I)$

and

$$||-v|| = ||v||.$$

We have

$$||f_n - f_m|| = ||k^m u + \dots + k^{n-1} u + k^n f_0 - k^m f_0||$$

$$\leq ||k^m u|| + \dots + ||k^{n-1} u|| + ||k^n f_0|| + ||-k^m f_0||.$$

Assumption:

$$\sum_{l=1}^{\infty} \left\| k^l v \right\| < \infty \qquad \text{for all } v \in C(I) \qquad (***).$$

Under this assumption

$$\|f_n - f_m\| \to 0$$
 as $n, m \to \infty$

since

$$\sum_{l=1}^{\infty} \left\| k^l u \right\| < \infty \qquad (u(x) = \cos(x))$$

$$\sum_{l=1}^{\infty} \left\| k^l f_0 \right\| < \infty \qquad (f_0 \in C(I))$$

conclusion: $(f_n)_{n=1}^{\infty}$ converges uniformly on I. By lemma above there exists $f \in C(I)$ such that

$$\max_{x \in I} |f_n(x) - f(x)| \to 0, \qquad n \to \infty$$

i.e.

$$||f_n - f|| \to 0, \qquad n \to \infty$$

'Back hope': f_n tends to f, denoted $f_n \to f$ shall be interpretated as

$$||f_n - f|| \to 0, \qquad n \to \infty$$

Remember

$$f_{n+1}(x) = u(x) + kf_n(x) \to ?$$

For $x \in I$ there is

$$|kf_{n}(x) - kf(x)| = \left| \int_{0}^{x} \sin(x - t)k(t)f_{n}(t) dt - \int_{0}^{x} \sin(x - t)k(t)f(t) dt \right|$$

$$\leq \int_{0}^{x} |\sin(x - t)k(t)| \underbrace{\left| f_{n}(t) - f(t) \right|}_{\leq ||f_{n} - f||} dt$$

$$\leq \int_{0}^{x} |\sin(x - t)k(t)| dt ||f_{n} - f||$$

In particular

$$||kf_n - kf|| \le \max_{x \in I} \int_0^x \underbrace{|\sin(x - t)|}_{\max_{t \in I} |k(t)| < \infty} \frac{|k(t)|}{\det ||f_n - f||}$$

$$\le ||k|| ||f_n - f||$$

We have, provided (***) holds, shown

$$f_{n+1} = u + kf_n$$

$$\downarrow$$

$$f = u + kf$$

Let us try to prove (***). For $v \in C(I)$ arbitrary and for $x \in I$

$$||kv(x)|| = |\int_0^x \sin(x-t)k(t)v(t) dt|$$

$$\leq \int_0^x \underbrace{|\sin(x-t)||k(t)|}_{\leq 1} |v(t)| dt$$

$$\leq \int_0^x \underbrace{|v(t)|}_{\leq ||v||} dt ||k||$$

$$\leq ||k|| ||v||x$$

In particular

$$||kv|| \le ||k|| ||v||$$

and

$$|k^{2}v(x)| \leq \int_{0}^{x} |kv(t)| \, dt ||k||$$

$$\leq \int_{0}^{x} ||k|| ||v|| t \, dt \cdot ||k||$$

$$= ||k||^{2} ||v|| \frac{x^{2}}{2}$$

In particular

$$||k^2v|| \le ||k||^2 ||v|| \frac{1}{2}$$

By induction we get

$$|k^n v(x)| \le ||k||^n ||v|| \frac{x^m}{m!}$$
 $x \in I$
 $||k^n v|| \le ||k||^n ||v|| \frac{1}{n!}$

So

$$\begin{split} \sum_{l=1}^{\infty} & \left\| k^{l} v \right\| \leq \sum_{l=1}^{\infty} \| k \|^{l} \| v \| \frac{1}{l!} \\ &= \| v \| \sum_{l=1}^{\infty} \frac{\| k \|^{l}}{l!} \\ &\leq \| v \| e^{\| k \|} < \infty \end{split}$$

consider Taylor expansion. \Rightarrow (* * *) holds true.

We have now shown that f = u + kf where $u(x) = \cos(x)$ and

$$kv = \int_0^x \sin(x-t)k(t)v(t) dt$$

 $x \in I$ for $v \in C(I)$, has a solution $f \in C(I)$.

Question:

Is the solution unique?

Assume $f, \tilde{f} \in C(I)$ such that f = u + kf and $\tilde{f} = u + k\tilde{f}$. Set

$$v = f - \tilde{f} \in C(I)$$

$$\Rightarrow v = (u + kf) - (u + k\tilde{f})$$

$$= kf - k\tilde{f}$$

$$= k(f - \tilde{f})$$

$$= kv$$

We have v = kv, implies that $kv = k(kv) = k^2v$. So for n = 1, 2, ...

$$v = kv = k^2v = \dots = k^nv.$$

We know

$$\sum_{n=1}^{\infty} \lVert k^n \hat{v} \rVert < \infty \qquad \text{for all } \hat{v} \in C(I).$$

Apply this to $\hat{v} = v$:

$$\sum_{n=1}^{\infty} \underbrace{\|k^n v\|}_{=\|v\|} < \infty.$$

So $\|v\|=0$ with implies v(x)=0 for all $x\in I$. So we have $f(x)=\tilde{f}(x)$ for $x\in I$. \Rightarrow Answer to the question above: YES!

We have more or less proved the following theorem:

Theorem 1.1. Set I = [0,1]. Suppose $u \in C(I)$ and $k \in C(I \times I)$. Consider

$$f(x) = u(x) + \int_0^x k(x,t)f(t) dt, \qquad x \in I$$
 (1)

Then (1) has a unique solution $f \in C(I)$

With the same technology we can prove:

Theorem 1.2. Set I=[0,1]. Suppose $u\in C(I)$, $k\in C(I\times I)$ and $\max_{(x,t)\in I\times I}|k(x,t)|<1$. Consider

$$f(x) = u(x) + \int_0^1 k(x, t)f(t) dt, \qquad x \in I$$
 (2).

Then (2) has a unique solution $f \in C(I)$.

Different notions: see introductional example.

Definition (vector space). C(I) with the operations for $x \in I$

addition
$$v, w \in C(I)$$
: $(v+w)(x) = v(x) + w(x)$

mult. by scalar
$$v \in C(I)$$
, $\lambda \in \mathbb{R}$: $(\lambda v)(x) = \lambda v(x)$

Note that $v + w, \lambda v \in C(I)$.

Definition (norm). norm on C(I) for instance

$$||v|| = \max_{x \in I} |v(x)|$$

with norm given we can talk about convergence and continuity.

Definition (Cauchy sequence). In our example a sequence $(f_n)_{n=1}^{\infty}$ is called Cauchy sequence if $||f_n - f_m|| \to 0$ for $n, m \to \infty$.

Definition . $\ C(I)$ with the max-norm. Lemma above says that every Cauchy sequence converges i.e.

$$||v_n - v_m|| \to 0, \qquad n, m \to \infty$$

This applies

$$\exists v \in C(I) : ||v_n - v|| \to 0, \qquad n \to \infty$$

This is the defining property of a Banach space.

K linear mapping $C(I) \rightarrow C(I)$ with

$$K(v + w) = K(v) + K(w)$$
$$K(\lambda v) = \lambda K(v)$$

for $v, w \in C(I)$, $\lambda \in \mathbb{R}$.

K bounded linear:

$$||Kv|| \le M||v|| \quad \forall v \in C(I)$$

where M > 0 independent of v.

Definition (operator norm). Define

$$||K|| := \inf\{M > 0 \mid ||Kv|| \le M||v|| \text{ for all } v \in C(I)\}.$$

fixed point results:

Our example: f = u + kf =: T(f) and $f_0 \in C(I)$ fixed.

Form sequence of iterants $(f_n)_{n=1}^{\infty}$, $f_n = T(f_{n-1})$, n = 1, 2, ... if

$$||T(v) - T(w)|| \le c||v - w||$$

for all $v,w\in C(I)$ for some c<1. Then there is a unique $v\in C(I)$ such that v=T(v). This is Banach's fixed point theorem.

Definition (Green's function). Our example:

$$L = \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2 + 1$$

differential operator. Boundary conditions

$$f(0) = f'(0) = 0.$$

Then

$$f(x) = \int_0^1 g(x, t)h(t) dt$$

is a solution to

$$\begin{cases} f'' + f &= h, \\ f(0) = f'(0) &= 0 \end{cases}$$

Definition (real vector space). We say that E is a real vector space if it is a non-empty set with the operations

addition $E \times E \to E$, $(x,y) \mapsto x + y$

mult. with scalar $\mathbb{R} \times E \to E$, $(\lambda, x) \mapsto \lambda x$

satisfying the axioms:

(1) x + y = y + x, for all $x, y \in E$

(2) x + (y + z) = (x + y) + z, for all $x, y, z \in E$

(3) For all $x, y \in E$ there exists $z \in E$ such that x + z = y

(4) $\alpha(\beta x) = (\alpha \cdot \beta)x$, for all $\alpha, \beta \in \mathbb{R}, x \in E$

(5) $\alpha(x+y) = \alpha x + \alpha y$, for all $\alpha \in \mathbb{R}, x, y \in E$

(6) $(\alpha + \beta)x = \alpha x + \beta x$, for all $\alpha, \beta \in \mathbb{R}, x \in E$

(7) $1 \cdot x = x$, for all $x \in E$.

Remark. E is a complex vector space if all \mathbb{R} in the definition above are replaced by \mathbb{C} .

Remark. (1)

$$\exists \, ! 0 \in E : \qquad x + 0 = x \qquad \text{ for all } x \in E.$$

since: Fix $x \in E$, by (3), $\exists 0_x$ such that $0_x + x = x$.

Fix $y \in E$. We want to show that $y + 0_y = y$. By (3), there exists $z \in E$ such that x + z = y. So

$$y + 0_x = (x + z) + 0_x$$

$$\stackrel{(1)}{=} (z + x) + 0_x$$

$$\stackrel{(2)}{=} z + (x + 0_x)$$

$$= z + x$$

$$\stackrel{(1)}{=} x + z$$

$$= y.$$

Assume $x + 0_1 = x$, $x + 0_2 = x$ for all $x \in E$. We want to show $0_1 = 0_2$:

$$0_1 = 0_1 + 0_2 = 0_2 + 0_1 = 0_2$$

(2)

$$\forall x \in E : \exists ! - x \in E : x + (-x) = 0$$

proof: exercise.

(3)

$$0x = 0 \qquad \text{ for all } x \in E$$

$$(-1)x = -x \qquad \text{ for all } x \in E$$

Examples (Examples of real vector spaces). 1) \mathbb{R} with standard addition and mult. by scalar.

2)
$$\mathbb{R}^n$$
, $n=2,3,\ldots$
addition $(x_1,x_2,\ldots)+(y_1,y_2,\ldots)=(x_1+y_1,x_2+y_2,\ldots)$
mult. $\lambda(x_1,x_2,\ldots)=(\lambda x_1,\lambda x_2,\ldots)$

3)
$$\mathbb{R}^{\infty} = \{(x_1, \dots, x_n, \dots) \mid x_n \in \mathbb{R}, n = 1, 2, \dots \}$$

4) $1 \le p < \infty$,

$$l^p = \left\{ (x_1, \dots, x_n, \dots) \in \mathbb{R}^{\infty} \left| \left(\sum_{n=1}^{\infty} |x_n|^p \right)^{\frac{1}{p}} < \infty \right. \right\}$$

with the same addition and mult. by scalar as in \mathbb{R}^{∞} . We have to check:

(1)
$$x, y \in l^p$$
 \Rightarrow $x + y \in l^p$

(2)
$$x \in l^p, \lambda \in \mathbb{R}$$
 \Rightarrow $\lambda x \in l^p$

For (1) we assume $x=(x_1,\ldots,x_n,\ldots)$ and $y=(y_1,\ldots,y_n,\ldots)$.

$$x \in l^p$$
 \Rightarrow $\sum_{n=1}^{\infty} |x_n|^p < \infty$
 $y \in l^p$ \Rightarrow $\sum_{n=1}^{\infty} |y_n|^p < \infty$

$$\Rightarrow x+y=(x_1+y_1,\ldots)\stackrel{?}{\in} l^p?$$

$$\Rightarrow \sum_{n=1}^{\infty} |x_n + y_n|^p \le \{|x_n + y_n| \le |x_n| + |y_n| \le 2 \max\{|x_n|, |y_n|\}\}\}$$

$$\{|x_n + y_n|^p \le 2^p (|x_n|^p + |y_n|^p)\}$$

$$\le \sum_{n=1}^{\infty} 2^p (|x_n|^p + |y_n|^p)$$

$$= 2^p \sum_{n=1}^{\infty} |x_n|^p + 2^p \sum_{n=1}^{\infty} |y_n|^p < \infty$$

and

$$\sum_{n=1}^{\infty} |\lambda x_n|^p = \sum_{n=1}^{\infty} |\lambda|^p \cdot |x_n|^p = |\lambda|^p \sum_{n=1}^{\infty} |x_n|^p < \infty$$

5) function spaces, say real-valued functions on I.

addition: $(f+g)(x) = f(x) + g(x), \qquad x \in I$

mult. by scalar: $(\lambda f)(x) = \lambda f(x)$ for functions f and g

- 6) C(I): addition and mult. by scalar as in (5). f,g continuous in I implies that f+g is continuous in I. Also if f is continuous and $\lambda \in \mathbb{R}$ then (λf) is continuous in I.
- 7) P(I) = polynomials in I.
- 8) $P_k(I) = \text{polynomials of degree at most } k \text{ in } I.$

Theorem 1.3 (Hölder's inequality). Assume $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. Let $(x_1, \ldots, x_n, \ldots)$ and $(y_1, y_2, \ldots, y_n, \ldots)$ be sequences of complex numbers. Then

$$\sum_{n=1}^{\infty} |x_n y_n| \le \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{n=1}^{\infty} |y_n|^q\right)^{\frac{1}{q}}$$

Remark there the LHS can be infinity, but the RHS can also be infinity.

proof. Step 1 We're going to proof

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}, \quad \text{for all } a, b > 0.$$

$$\int_0^a x^{p-1} \, \mathrm{d}x = \frac{a^p}{p}$$

Note $y = x^{p-1}$ gives

$$x = y^{\frac{1}{p-1}} = y^{\frac{1}{\frac{1}{1-\frac{1}{q}}-1}} = y^{\frac{1}{\frac{q}{q-1}-1}} = y^{q-1}$$

SO

$$\int_0^b y^{q-1} \, \mathrm{d}y = \frac{b^q}{q}$$

We get

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

(You also get condition for =)

Step 2 It is enough to consider the cases LHS > 0 and RHS $< \infty$. There exists an integer N such that

$$0 < \sum_{n=1}^{N} |x_n|^p, \sum_{n=1}^{N} |y_n|^q < \infty.$$

Set

$$a = \frac{|x_k|}{\left(\sum_{n=1}^{N} |x_n|^p\right)^{\frac{1}{p}}}, \qquad k = 1, 2, \dots, N,$$

$$b = \frac{|y_k|}{\left(\sum_{n=1}^{N} |y_n|^q\right)^{\frac{1}{q}}}, \qquad k = 1, 2, \dots, N.$$

Insert into

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

$$\frac{|x_k y_k|}{\left(\sum_{n=1}^N |x_n|^p\right)^{\frac{1}{p}} \left(\sum_{n=1}^N |y_n|^q\right)^{\frac{1}{q}}} \le \frac{|x_k|^p}{p \sum_{n=1}^N |x_n|^p} + \frac{|y_k|^q}{q \sum_{n=1}^N |y_n|^q}, \qquad k = 1, 2, \dots, N.$$

We sum over k from 1 to N.

$$\sum_{k=1}^{N} |x_k y_k| \le \left(\sum_{n=1}^{N} |x_n|^p \right)^{\frac{1}{p}} \cdot \left(\sum_{n=1}^{N} |y_n|^q \right)^{\frac{1}{q}}$$

Let $N \to \infty$. First in RHS and then in LHS.

Theorem 1.4 (Minkowski's inequality). Assume $1 \le p < \infty$. and $X, Y \in l^p$. Then

$$||X + Y||_{l^p} \le ||X||_{l^p} + ||Y||_{l^p}.$$

12

proof. p=1:

$$||X + Y||_{l^{1}} = ||(x_{1}, x_{2}, \dots, x_{n}, \dots) + (y_{1}, y_{2}, \dots, y_{n}, \dots)||_{l^{1}}$$

$$= ||(x_{1} + y_{1}, \dots, x_{n} + y_{n}, \dots)||_{l^{1}}$$

$$= \sum_{n=1}^{\infty} |x_{n} + y_{n}|$$

$$\leq \sum_{n=1}^{\infty} (|x_{n}| + |y_{n}|)$$

$$= \sum_{n=1}^{\infty} |x_{n}| + \sum_{n=1}^{\infty} |y_{n}|$$

$$= ||X||_{l^{1}} + ||Y||_{l^{1}}$$

1 :

$$||X + Y||_{l^p}^p = \sum_{n=1}^{\infty} |x_n + y_n|^p$$

$$= \sum_{n=1}^{\infty} |x_n + y_n| |x_n + y_n|^{p-1}$$

$$\leq \sum_{n=1}^{\infty} |x_n| |x_n + y_n|^{p-1} + \sum_{n=1}^{\infty} |y_n| |x_n + y_n|^{p-1}.$$

Use Hölder to get

$$\sum_{n=1}^{\infty} |x_n| |x_n + y_n|^{p-1} \le \underbrace{\left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}}}_{=\|X\|_{l^p}} \cdot \left(\sum_{n=1}^{\infty} |x_n + y_n|^{(p-1)q}\right)^{\frac{1}{q}}$$

$$= \left\{ (p-1)q = (p-1)\frac{1}{1 - \frac{1}{p}} = p \right\}$$

$$= \|X\|_{l^p} \left(\sum_{n=1}^{\infty} |x_n + y_n|^p\right)^{\frac{1}{q}}.$$

We have

$$||X + Y||_{l^p}^p \le (||X||_{l^p} + ||Y||_{l^p}) ||X + Y||_{l^p}^{\frac{p}{q}}.$$

If $||X + Y||_{l^p} \neq 0$ then

$$||X + Y||_{l^p}^{p - \frac{p}{q}} \le ||X||_{l^p} + ||Y||_{l^p}$$

there

$$p - \frac{p}{q} = p(1 - \frac{1}{q}) = p\frac{1}{p} = 1.$$

Remark. $f \in C([0,1])$ then for $1 \le p < \infty$

$$||f||_{L^p} = \left(\int_0^1 |f(t)|^p dt\right)^{\frac{1}{p}}.$$

Claim:

$$||fq||_{L^1} = \int_0^1 |f(t) \cdot g(t)| dt \le ||f||_{L^p} \cdot ||g||_{L^q}$$

where $\frac{1}{p} + \frac{1}{q} = 1$. Also we have

$$||f + q||_{L_p} \le ||f||_{L_p} + ||g||_{L_p}$$

This is proven with the same technique as we used for l^p . $\sum_{n=1}^{\infty}$ is replaced by $\int_0^1 \mathrm{d}t$. E real/complex vector space. $x_1,\ldots,x_n\in E$, $\lambda_1,\ldots,\lambda_n$ scalar. We say that

$$\lambda_1 x_1, \ldots, \lambda_n x_n$$

is a linear combination of x_1, \ldots, x_n . We say that x_1, \ldots, x_n are linear independent if

$$\alpha_1 x_1 + \ldots + \alpha_n x_n = 0$$
 \Rightarrow $\alpha_1 = \ldots = \alpha_n = 0.$

If $A \subset E$, we say that A is linear independant if every linear combination of vectors in A is linear independent.

Examples. (1) Set E=P([0,1]) and $A=\left\{p_k\,\middle|\, p_k(x)=x^k, x\in[0,1], k=0,1,\ldots\right\}$. A is linear independant since: consider

$$\alpha_0 p_0 + \alpha_1 p_1 + \ldots + \alpha_n p_n = 0$$

i.e.

$$\alpha_0 p_0(x) + \alpha_1 p_1(x) + \ldots + \alpha_n p_n(x) = 0(x), \quad x \in [0, 1]$$

i.e.

$$\alpha_0 + \alpha_1 x + \ldots + \alpha_n x^n = 0, \qquad x \in [0, 1]$$

If x = 0 then $\alpha_0 = 0$

$$\alpha_1 x + \ldots + \alpha_n x^n = 0, \qquad x \in [0, 1].$$

Differentiate

$$\alpha_1 + 2\alpha_2 x + \ldots + n\alpha_n x^{n-1} = 0$$

gives $\alpha_1 = 0$. Continue and get

$$\alpha_0 = \alpha_1 = \ldots = \alpha_n = 0.$$

Set $B \subset E$ where

span $B = \{ \text{set of all linear combinations of elements in B} \}$

$$= \left\{ \sum_{k=1}^{n} lambda_k x_k \,\middle|\, x_k \in B, \lambda_k \in \mathbb{R}, k = 1, 2, \dots, n \text{ where n is a positive integer} \right\}$$

Remark.

$$\sum_{k=1}^{n} \lambda_k x_k \in E$$

$$\sum_{k=1}^{\infty} \lambda_k x_k$$
 has no meaning

 $C \subset E$ is called a basis for E if

- 1) C linear independent.
- 2) span C = E

continue of the example above:

Claim: A is a basis for E.

(2) Set $E=l^2$ and

$$A = \{X_k \mid k = 1, 2, \ldots\}$$

$$X_k = (0, 0, \dots, 0, 1, 0, 0, \dots)$$

Claim: A is linear independent since

$$\alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_n X_n = 0$$

Here

$$\alpha_1 X_1 = (\alpha_1, 0, 0, \ldots), etc$$

and

$$0 = (0, 0, \ldots)$$

So

$$(\alpha_1, \alpha_2, \dots, \alpha_n, 0, \dots) = (0, 0, \dots)$$

So $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$.

Question: Is A a basis for l^2 ? We note: If $X \in \text{span } A$ then

$$X = (x_1, x_2, \dots, x_n, 0, 0, \dots)$$

for some positive integer n, i.e. X has only finitely many nonzero positions. Cosider:

$$X := (1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$$

$$||X||_{l^2} = \left(\sum_{n=1}^{\infty} \frac{1}{n^2}\right)^{\frac{1}{2}} < \infty$$

So $X \in l^2 \setminus \operatorname{span} A$.

Remark. Every vector space has a basis (if we are allowed to use Axiom of Choice/ zorns lemma).

Basis = vector space basis = Hamel basis

Assume x_1, \ldots, x_n is a basis for E. Then every basis for E must contain n different elements.

$$n = \dim E$$

is well-defined. (System of linear equations, homogeneous with more unknowns than equations. Then there exists a nontrivial solution.)

Definition (norm). E vector space. We say that $\|.\|: E \to [0, \infty)$ is a norm on E if

1)
$$||x|| = 0$$
 $\Rightarrow x = 0$

2)
$$\|\lambda x\| = |\lambda| \|x\|$$
 for all $x \in E, \lambda \in \mathbb{R}$

3)
$$||x + y|| \le ||x|| + ||y||$$
 for all $x, y \in E$

Remark.

$$||0|| = ||0 \cdot 0|| = \underbrace{|0|}_{=0} ||0|| = 0$$

Examples. (1) 1 and

$$||X||_{l^p} = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}}$$

is a norm on l^p . Check 1),2) and 3) above:

1)
$$0 = \|X\|_{l^p} = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}}$$

It follows

$$x_n = 0,$$
 $n = 1, 2, ...$
 $\Rightarrow X = (x_1, x_2, ...) = (0, 0, ...) = 0$

2)
$$\|\lambda X\|_{l^p} = \left(\sum_{n=1}^{\infty} |\lambda x_n|^p\right)^{\frac{1}{p}} = \left(|\lambda|^p \sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} = |\lambda| \|X\|_{l^p}$$

3)

$$\|X+Y\|_{l^p} \leq \{ \text{Minkowski's inequality} \} \leq \|X\|_{l^p} + \|Y\|_{l^p}$$

(2) E = C([0,1]) and $f \in E$

$$||f|| = \max_{t \in [0,1]} |f(t)| \in [0,\infty)$$

Check the axioms above

1) If ||f|| = 0 it follows

$$|f(t)| = 0$$
 for all $t \in [0,1]$, $\Rightarrow f = 0$

2)

$$\|\lambda f\| = \max_{t \in [0,1]} \underbrace{|\underbrace{(\lambda f)(t)}_{\lambda f(t)}|}_{|\lambda||f(t)|} = |\lambda| \max_{t \in [0,1]} |f(t)| = |\lambda| \|f\|$$

3)

$$\|f+g\| = \max_{t \in [0,1]} |\underbrace{(f+g)(t)}_{f(t)+g(t)}| = \max_{t \in [0,1]} \left(|f(t)| + |g(t)|\right) \leq \max_{t \in [0,1]} |f(t)| + \max_{t \in [0,1]} |g(t)| = \|f\| + \|g\|$$

(3) E = C([0,1]) and $f \in E$.

$$||f||_{L^1} = \int_0^1 |f(t)| \, \mathrm{d}t$$

defines also a norm on E.

3)

$$\begin{split} \|f+g\|_{L^{1}} &= \int_{0}^{1} \underbrace{|(f+g)(t)|}_{f(t)+g(t)} \, \mathrm{d}t \\ &\leq \int_{0}^{1} (|f(t)|+|g(t)|) \, \mathrm{d}t \\ &= \int_{0}^{1} |f(t)| \, \mathrm{d}t + \int_{0}^{1} |g(t)| \, \mathrm{d}t \\ &= \|f\|_{L^{1}} + \|g\|_{L^{1}} \end{split}$$

2)

$$\|\lambda f\| = \int_0^1 \underbrace{|(\lambda f)(t)|}_{=|\lambda||f(t)|} dt = |\lambda| \|f\|_{L^1}$$

1)

$$0 = ||f||_{L^1} = \int_0^1 |f(t)| \, \mathrm{d}t$$

This implies f(t) = 0 for $t \in [0, 1]$ since f is continuous! i.e. f = 0

Theorem 1.5 (equivalent norm). E vector space with norms $\|.\|$ and $\|.\|_*$. We say that $\|.\|$ and $\|.\|_*$ are equivalent if there exists $\alpha, \beta > 0$ such that

$$\alpha \|x\|_{\star} \le \|x\| \le \beta \|x\|_{\star}$$
 for all $x \in E$.

Example.

E = C([0,1]). Choose y = f(t) and y = |f(t)|

$$\|f\| = \max_{t \in [0,1]} \lvert f(t) \rvert, \qquad \|f\|_* = \|f\|_{L^1} = \mathsf{area}.$$

Question: Are these norms equivalent?

Claim: $f \in C([0,1])$

$$||f||_* = \int_0^1 \underbrace{|f(t)|}_{\leq ||f||} dt \leq ||f||$$

Choose $f_n(t)$ such that

$$||f_n|| = 1, \qquad ||f_n||_* = \frac{1}{2n}$$

So

$$\frac{\|f_n\|_*}{\|f_n\|} = \frac{1}{2n} \to 0 \qquad n \to \infty$$

The norms are not equivalent! Answer: NO!

Theorem 1.6. E vector space with $\dim E < \infty$.

 \Rightarrow All norms on E are equivalent.

proof. Assume $n=\dim E$ with a positive integer n. Let x_1,x_2,\ldots,x_n be a basis for E. For every $x\in E$

$$x = \alpha_1(x)x_1 + \ldots + \alpha_n(x)x_n$$

where $\alpha_1(x), \ldots, \alpha_n(x)$ unique. Set

$$||x||_{*} = |\alpha_{1}(x)| + \ldots + |\alpha_{n}(x)|, \quad x \in E$$

Claim: $\|.\|_*$ defines a norm on E (easy proof)

Fix an arbitrary norm $\|.\|$ on E.

Claim: $\|.\|_*$ and $\|.\|$ are equivalent.

Note for $x \in E$

$$||x|| = ||\alpha_1(x)x_1 + \ldots + \alpha_n(x)x_n||$$

$$\leq |\alpha_1(x)|||x_1|| + \ldots + |\alpha_n(x)|||x_n||$$

$$\leq \max_{k=1,2,\ldots,n} ||x_k|| (\underbrace{|\alpha_1(x)| + \ldots + |\alpha_n(x)|}_{=||x||_*})$$

Set
$$\beta = \max_{k=1,2,\dots,n} \lVert x_k \rVert$$
. Then

$$||x|| \le \beta ||x||_*$$
 for all $x \in E$.

Remains to prove: There exists $\alpha>0$ such that

$$\alpha \|x\|_* \le \|x\|$$
 for all $x \in E$ (*)

Let E be a vector space with norm $\|.\|$ and $(v_m)_{m=1}^\infty$ a sequence in E. We say that $(v_m)_{m=1}^\infty$ converges in $(E,\|.\|)$ if there exists $v\in E$ such that $\|v_m-v\|\to 0$ for $n\to\infty$. Notation: $v_m\to v$ in $(E,\|.\|)$.

Note: If we have $\|.\|$ and $\|.\|_*$ are equivalent, then

$$v_n \to v \text{ in } (E, \|.\|) \qquad \Leftrightarrow \qquad v_n \to v \text{ in } (E, \|.\|_*)$$

Back to (*): Argue by contradiction. Assume there is no $\alpha > 0$ such that

$$\alpha \|x\|_* \le \|x\|$$
 for all $x \in E$

For $k=1,2,3,\ldots$ there are $y_k\in E$ such that

$$\frac{1}{k} ||y_k||_* > ||y_k||. \tag{**}$$

We have

$$y_k = \alpha_1^{(k)} x_1 + \ldots + \alpha_n^{(k)} x_n$$

where $\alpha_1^{(k)},\dots,\alpha_n^{(k)}$ are unique scalars and $k=1,2,\dots$ (**) implies that

$$k||y_k|| < |\alpha_1^{(k)}| + \ldots + |\alpha_n^{(k)}|$$

WLOG we can assume $|lpha_1^{(k)}|+\ldots+|lpha_n^{(k)}|=1.$ (If not consider

$$\lambda z = \lambda(\alpha_1(z)x_1 + \ldots + \alpha_n(z)x_n)$$

$$= (\lambda \alpha_1(z))x_1 + \ldots + (\lambda \alpha_n(z))x_n$$

$$= \alpha_1(\lambda z)x_1 + \ldots + \alpha_n(\lambda z)x_n$$

We have

$$\alpha_k(\lambda z) = \lambda \alpha_k(z), \qquad k = 1, 2, \dots, n$$

We have

$$k||y_k|| < 1$$
 $k = 1, 2, \dots$

which implies $y_k \to 0$ in (E, ||.||).

IF:

$$\alpha_1^{(k)} \to \bar{\alpha_1}$$

$$\alpha_2^{(k)} \to \bar{\alpha_2}$$

$$\vdots$$

$$\alpha_n^{(k)} \to \bar{\alpha_n}$$

for $k \to \infty$. Then set

$$\bar{y} = \bar{\alpha_1}x_1 + \ldots + \bar{\alpha_n}x_n$$

and get

$$||y_k - \bar{y}|| = \left\| (\alpha_1^{(k)} - \bar{\alpha_1})x_1 + \ldots + (\alpha_n^{(k)} - \bar{\alpha_n})x_n \right\|$$

$$\leq \underbrace{|\alpha_1^{(k)} - \bar{\alpha_1}| ||x_1||}_{\to 0} + \ldots + \underbrace{|\alpha_n^{(k)} - \bar{\alpha_n}| ||x_n||}_{\to 0} \to 0, \qquad k \to \infty$$

$$||\bar{y}|| = ||\bar{y} - y_k + y_k|| \leq \underbrace{\bar{y} - y_k}_{\to 0} + \underbrace{||y_k||}_{\to 0} \to 0, \qquad k \to \infty$$

So $\|\bar{y}\|=0$ hence $\bar{y}=0$. But

$$|\bar{\alpha_1}| + |\bar{\alpha_2}| + \ldots + |\bar{\alpha_n}| = 1.$$

This contradicts x_1, \ldots, x_n is a basis.

We have for $k=1,2,\ldots$ the vector $(\alpha_1^{(k)},\alpha_2^{(k)},\ldots,\alpha_n^{(k)})$ where

$$|\alpha_1^{(k)}| + \ldots + |\alpha_n^{(k)}| = 1$$

We focus on the first one and we have

$$|\alpha_1^{(k)}| \le 1, \qquad k = 1, 2, \dots$$

By Bolzano-Weierstraß then there exists a converging subsequence $(\alpha_{1,1}^{(k)})_{k=1}^\infty$ of $(\alpha_1^{(k)})_{k=1}^\infty$. Set

$$\bar{\alpha_1} = \lim_{k \to \infty} \alpha_{1,1}^{(k)}$$

consider

$$(\alpha_{1,1}^{(k)}, \alpha_{2,1}^{(k)}, \dots, \alpha_{n,1}^{(k)}), \qquad k = 1, 2, \dots$$

We have

$$|\alpha_{2,1}^{(k)}| \le 1, \qquad k = 1, 2, \dots$$

Bolzano-Weierstraß implies that there exists a converging subsequenz $(\alpha_{2,2}^{(k)})_{k=1}^{\infty}$ of $(\alpha_{2,1}^{(k)})_{k=1}^{\infty}$. Set

$$\bar{\alpha_2} = \lim_{k \to \infty} \alpha_{2,2}^{(k)}$$

Definition (normed space). Let E be a vector space over $\mathbb R$ or $\mathbb C$. $\|.\|:E\to\mathbb R$ a norm on E if

(i)
$$\|x\| > 0$$
 for any $x \in E \setminus \{0\}$

(ii)
$$\|\lambda x\| = |\lambda x|$$
 for any $\lambda \in \mathbb{C}, x \in E$.

(iii)
$$\|x+y\| \le \|x\| + \|y\|$$
 for any $x,y \in E$.

Obs. $\|x\|=0$ if x=0. $(E,\|.\|)$ is called a normed space. A norm generates a distance

20

function (metric)

$$L(x,y) := \|x-y\| \qquad \text{ for any } x,y \in E.$$

Examples. • \mathbb{R}^n with $\|x\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ is the eukledian norm.

• C([0,1]) continuous functions in [0,1] with

$$L(f,g) = \|f - g\|_{\infty} := \max_{x \in [0,1]} |f(x) - g(x)|$$

Definition (balls). Let $x \in E$, r > 0. Define

$$\begin{split} B(x,r) &:= \{y \in E \,|\, \|x-y\| < r\} \qquad \text{open ball} \\ \bar{B}(x,r) &:= \{y \in E \,|\, \|x-y\| \le r\} \qquad \text{closed ball} \end{split}$$

Definition (open/closed). A subset $A \subset E$ of a normed space $(E, \|.\|)$ is called open of any point x of A is inner, i.e

$$\exists r > 0 : B(x,r) \subset A$$
.

It is called closed if the complement $E \setminus A$ is open.

Remark. • open balls are open sets.

- · closed balls are closed.
- $(C([0,1]),\|.\|_{\infty})$ with $\|f\|_{\infty}=\max_{x\in[0,1]}|f(x)|.$

$$A := \{g \in C([0,1])\} | f(x) < g(x), \forall x \in [0,1]$$

is an open set C([0,1]).

$$B := \{ g \in C([0,1]) \} | f(x) \le g(x), \, \forall \, x \in [0,1]$$

is a closed set.

Properties

- Any union of open sets is an open set.
- Any finite intersection of open sets is open.
- \emptyset , E are both closed and open.
- · Normed spaces are topological spaces.

Definition (convergence in normed spaces). Let (E, ||.||) be a normed space $\{x_n\}_n \subset E$. We say that x_n converges to $x \in E$ if

$$||x_n - x|| \to 0, \qquad n \to \infty$$

One can define open and closed using the definition of convergence:

Statement 1.7. $A \subseteq E$ is closed if any convergent sequence in A has a limit in A, i.e

$$for \underset{x_n \in A}{n \to \infty} \Rightarrow x \in A$$

proof. \Rightarrow : Assume that A is closed and $x_n \to x$. $x_n \in A$, but $x_n \notin A$. (try to get a contradiction).

A is closed $\Rightarrow E \setminus A$ is open and hence $\exists r > 0$ such that

$$B(x,r) \subset E \setminus A$$
.

Hence $||x_n - x|| \ge r$ for any n. This is a contradiction because in that case $x_n \not\to x$

 \Leftarrow : Assume that for any sequence $\{x_n\} \subset A$ such that $x_n \to x$ we have $x \in A$. We try to get a contradiction and assume that A is not closed. Hence $E \setminus A$ is not open and therefore $\exists x \in E \setminus A$ which is not inner.

$$\Rightarrow \forall B(x, \frac{1}{n}) \text{ containts points outside } E \setminus A$$

i.e.

$$\exists x_n \in B(x, \frac{1}{n}), x_n \in A.$$

We get a sequence $\{x_n\} \subset A$ such that

$$||x_n - x|| < \frac{1}{n} \qquad \Rightarrow \qquad x_n \to x$$

This is a contradiction

Definition (closure). $A \subset E$. The closure of A is the minimal closed subset containing A. We write \bar{A} .

Proposition 1.8. \bar{A} is the set of all limit points of A which means

$$\bar{A} := \{x \in E \mid \text{there exists } \{x_n\} \subseteq A \text{ such that } x_n \to x\}$$

proof. exercise.

22

Definition (dense). $A \subset E$ is dense in E if

$$\bar{A} = E$$
.

Remark. This definition of dense is equivalent to the following definition:

$$\forall x \in E, \forall \varepsilon > 0 \exists y \in A \text{ such that } ||x - y|| < \varepsilon.$$

Examples. 1) $\mathbb{Q} \subseteq \mathbb{R}$ with |.| usual absolut value function. \mathbb{Q} is dense in \mathbb{R} .

2) C([a,b]). The Weierstraß-Theorem says that the set of all polynomials are dense in $(C([a,b],\|.\|_{\infty}))$:

$$\forall\, f\in C([a,b]),\, \forall\, \varepsilon>0\, \exists\, p-\text{polynomial such that } \max_{x\in[a,b]} |f(x)-p(x)|<\varepsilon.$$

Another example is $(C_0, \|.\|_{\infty})$ where

$$C_0 = \{x = (x_1, x_2, \ldots) \mid x_k \to 0 \text{ as } k \to \infty\}$$
$$\|x\|_{\infty} = \sup_i |x_i|$$

 $(C_0, \|.\|_{\infty})$ is a normed space.

$$C_F = \{x = (x_1, x_2, \dots) \mid \text{ only a finite number of } x_i \neq 0\} \subset C_0$$

Statement 1.9. C_F is dense in C_0

proof.

$$\begin{split} \forall\, x \in C_0 \,\forall\, \varepsilon > 0 \text{ must find } y \in C_F \text{ such that } \|y - x\|_\infty < \varepsilon. \\ x \in C_0 \qquad \Rightarrow \qquad x_k \to 0 \text{ for } k \to \infty \\ \Rightarrow \qquad \forall\, \varepsilon > 0 \,\exists\, K \text{ such that } |x_k| < \varepsilon \,\forall\, k \ge K \end{split}$$

Let now $y=(x_1,x_2,\ldots,x_K,0,\ldots)\in C_F$. Then

$$||x - y||_{\infty} = ||(0, 0, \dots, 0, x_{K+1}, x_{K+2}, \dots)||_{\infty} = \sup_{k > K} |x_k| < \varepsilon$$

Definition (separable). A normed space $(E, \|.\|)$ is called <u>separable</u> if it contains a countable dense subset.

Examples. • $(\mathbb{R}, |.|)$ is separable as \mathbb{Q} is countable and dense in \mathbb{R} .

• $(\mathbb{R}^n,\|.\|_2)$ is separable, \mathbb{Q}^n is countable and dense in \mathbb{R} .

23

Definition (compact set). For a normed space (E, ||.||) is $A \subset E$ a compact set if any sequence $\{x_n\} \subset A$ has a subsequence convergent to an element $x \in A$.

Example. Any bounded and closed subset in $\mathbb{R}, \mathbb{R}^n, \mathbb{C}^n$ is compact. A sequence $\{x_n\}$ of a bounded set is bounded. From real Analysis one knows it has a subsequence that is convergent. If the subset is closed then the limit point is inside the set.

Lemma . $S\subset \text{compact in }(E,\|.\|)$ implies that S is closed and bounded. (Bounded means that $S\subset B(0,R)$ for some R>0)

proof. Let S be a compact subset of E. Assume that S is not bounded. Hence for any n > 0 there exists points in S which are outside B(0, n), i.e.

$$\exists x_n \in S : ||x_n|| > n.$$

Then $\{x_n\}$ can not have a convergent subsequence as if $x_{n_k} \to x$ then

$$n_k < ||x_{n_k}|| = ||x_{n_k} - x + x|| \le ||x_{n_k} - x|| + ||x|| \to ||x||$$

but $n_k \to \infty$. This is a contradiction, hence S must be bounded.

S must be closed, because if $x_n \to x$ then any subsequence converges to x. From the definition of compactness and uniqueness of the limit we have $x \in S$.

Remark. In general, S bounded and closed doesn't imply that S is compact.

For instance let E=C([0,1]). Then $S=\{g\in C([0,1\,|\,)\}]\|g\|_{\infty}\leq 1$ is closed and bounded, but not compact.

Take $x_n(t) := t^n$. Then $x_n \in S$. $\{x_n\}$ does not have a subsequence convergent to a continuous function.

Theorem 1.10. $(E,\|.\|)$ normed space and $\dim E < \infty$ iff

 $\forall A \subset E, A \text{ compact } \Leftrightarrow A \text{ is closed and bounded}$

proof. \Rightarrow : If dim $E < \infty$ then A is compact iff A is bounded and closed (exsercise)

Enough to prove the following:

If $\dim E = \infty$ then the unit ball $S = \{x \in E \mid ||x|| \le 1\}$ is not compact.

Lemma 1.11 (Riesz's lemma). If X is a proper closed subspace of a normed space $(E, \|.\|)$ then for every $\varepsilon \in (0, 1)$ there exists an $x_{\varepsilon} \in E$ with $\|x_{\varepsilon}\| = 1$ such that

$$||x_{\varepsilon} - x|| \ge \varepsilon \quad \forall x \in X.$$

proof. Let $z \in E \setminus X$ (X proper and hence $E \setminus X \neq \emptyset$). Set

$$d := \inf_{x \in X} ||z - x||$$

As X is closed, d>0, otherwise z is a limit point in $E\setminus X$. Fix $\varepsilon\in(0,1)$. Then there exists $x_0\in X$ such that

$$d \le ||z - x_0|| < \frac{d}{\varepsilon}.$$

Let $x_{arepsilon}:=rac{z-x_0}{\|z-x_0\|};$ We have $\|x_{arepsilon}\|=1$ and

$$||x - x_{\varepsilon}|| = \left| \left| x - \frac{z - x_0}{||z - x_0||} \right| \right|$$

$$= \frac{||x||z - x_0|| - z + x_0||}{||z - x_0||}$$

$$= \frac{||\overbrace{x||z - x_0|| + x_0} - z||}{||z - x_0||}$$

$$\geq \frac{d}{d}\varepsilon = \varepsilon$$

Continue now proof of the theorem above:

Let $x_1 \in S$. Consider $X = \text{span}\{x_1\}$ which is a proper closed subspace of E. Hence by Riesz's lemma exists x_2 with $||x_2|| = 1$ such that

$$||x_2 - x_1|| \ge \frac{1}{2}$$

and

$$||x_2 - x|| \ge \frac{1}{2} \qquad \forall x \in X.$$

Now consider span $\{x_1, x_2\}$ which is a proper closed subspace of E. By Riesz's lemma follows

$$\exists x_3 \in E, ||x_3|| = 1 : ||x_3 - x_1|| \ge \frac{1}{2}, ||x_3 - x_2|| \ge \frac{1}{2}.$$

Continuing in the same fashion we get $\{x_n\}$, $||x_n|| = 1$ such that

$$||x_n - x_m|| \ge \frac{1}{2}$$
 $\forall n, m, n \ne m.$

Clearly $\{x_n\} \subset S$ has no convergent subsequence. Hence S is not compact. \square

25

Definition (Cauchy sequence). $(E, \|.\|)$ normed space. $\{x_n\} \subseteq E$ is called Cauchy if

$$\forall \varepsilon > 0 \,\exists \, N : \, ||x_n - x_m|| < \varepsilon \, \text{ for any } n, m \ge N.$$

Example. $(C_F,\|.\|_{\infty})$, $\|x\|_{\infty}=\sup_{k\in\mathbb{N}}|x_k|$ where $x=(x_1,x_2,\ldots)$. Define

$$x_n = (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, \dots)$$

Then $\{x_n\}$ is Cauchy, as for n > m

$$||x_n - x_m||_{\infty} = \left\| (0, \dots, 0, \frac{1}{m+1}, \dots, \frac{1}{n}, 0, \dots) \right\|_{\infty}$$

$$= \frac{1}{m+1}$$

Observe that x_n is convergent in $(C_0, \|.\|_{\infty})$

$$\underbrace{x_n}_{\in C_F} \to (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots) \in C_0 \setminus C_F$$

Statement 1.12. A convergent sequence is always a Cauchy sequence.

Definition (complete space). A normed vector space $(E, \|.\|)$ is called <u>complete</u> if any Cauchy sequence in E is convergent in E.

 $(C_F, \|.\|_{\infty})$ is not complete.

Definition (Banach space). A complete normed space is called Banach space.

Examples. • $(\mathbb{R}, |.|)$ is a Banach space.

- $(\mathbb{C}, |.|)$ is a Banach space.
- $(l^2, ||.||_2)$ where

$$l^{2} = \left\{ (x_{1}, x_{2}, \dots) \middle| \sum_{i=1}^{\infty} |x_{i}|^{2} < \infty, x_{i} \in \mathbb{C} \right\}$$

and

$$\|(x_1, x_2, \ldots)\|_2 = \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{\frac{1}{2}}$$

 $(l^2, \|.\|_2)$ is complete.

proof. Let $x_n = (x_1^n, x_2^n, \ldots)$ be a Cauchy sequence in l^2 . We must show that it has a limit in l^2 . We will do it in a few steps:

Step 1: Find a candidate for a limit a

Step 2: Show that $a \in l^2$.

Step 3: $||x_n - a||_2 \to 0$ as $n \to \infty$.

Step 1: Let

$$x_1 = (x_1^1, x_2^1, \dots)$$

$$x_2 = (x_1^2, x_2^2, \dots)$$

$$\vdots \qquad \vdots$$

$$x_n = (x_1^n, x_2^n, \dots)$$

For each k consider sequence $\{x_k^n\}\subset \mathbb{C}$ (k-th coordinates in each x_n). Each sequence is Cauchy, as for all $n,m\geq N$

$$|x_k^n - x_k^m| < \left(\sum_{k=1}^{\infty} |x_k^n - x_k^m|^2\right)^{\frac{1}{2}} = ||x_n - x_m||_2 < \varepsilon$$

As $(\mathbb{C},|.|)$ is complete, $\{x_k^n\}_n$ has a limit $a_k\in\mathbb{C}$. Candidate for limit of x_n is

$$a = (a_1, a_2, \dots, a_k, \dots).$$

Step 2: Write

$$a = \underbrace{x_n}_{\in l^2} - (x_n - a)$$

In order to show that $a\in l^2$ it is enough to see that $x_n-a\in l^2$ for some n. $\{x_n\}$ Cauchy implies

$$\forall \varepsilon > 0 \,\exists \, N : \forall n, m \geq N : \|x_n - x_m\|_2 < \varepsilon.$$

Consider for some u > 0

$$\sum_{i=1}^{u} |x_i^n - x_i^m|^2 \le \sum_{i=1}^{\infty} |x_i^n - x_i^m|^2 = ||x_n - x_m||_2^2 < \varepsilon^2$$

Let $m \to \infty$. We get

$$\sum_{i=1}^{m} |x_i^n - a_i|^2 \le \varepsilon^2$$

This holds for any $u \in \mathbb{N}$. Hence for any $n \geq \mathbb{N}$

$$\underbrace{\sum_{i=1}^{\infty} |x_i^n - a_i|^2}_{=\|x_n - a\|_2^2} \le \varepsilon^2.$$

Hence $x_n - a \in l^2$ and moreover $||x_n - a|| \to 0$ as $n \to \infty$.

- $(C([a,b]), \|.\|_{\infty})$ is a Banach space.
- $(l^p, \|.\|_{l^p})$ for $1 \le p < \infty$ are all Banach spaces.
- $(C([a,b]), \|.\|_2)$ with

$$||f||_2 = \left(\int |f(t)|^2 dt\right)^{\frac{1}{2}}$$

One can prove that $(C([a,b]), \|.\|_2)$ is not a Banach space.

Exercise:

[a, b] = [0, 1] and

$$f_n(t) = \begin{cases} 0, & \text{falls } t < \frac{1}{2} - \frac{1}{n} \\ 1, & \text{falls } t > \frac{1}{2} \end{cases}.$$

Show that $\{f_n\}$ is Cauchy in $C([0,1],\|.\|_2)$ but $f_n \not\to f \in C([0,1])$.

Definition (Convergent and absolutely convergent series). A series $\sum_{n=1}^{\infty} x_n$ in E is called convergent if $\{\sum_{n=1}^m x_n\}_m$, a sequence of partial sums, is convergent in E. If $\sum_{n=1}^{\infty} \|\overline{x_n}\| < \infty$ then we say that $\sum_{n=1}^{\infty} x_n$ converges absolutely.

Theorem 1.13. A normed space E is complete iff every absolutely convergent series converges in E.

proof. \Rightarrow : Suppose X is complete and $\sum_{n=1}^{\infty} ||x_n|| < \infty$. Let

$$S_N := \sum_{n=1}^N x_n \in E.$$

For M > N:

$$||S_N - S_M|| = \left\| \sum_{n=N+1}^M x_n \right\|$$

$$\leq \sum_{n=N+1}^M ||x_n||$$

$$\leq \sum_{n=N+1}^\infty ||x_n|| \to 0 \quad \text{as } N \to \infty$$

Hence $\{S_N\}$ is Cauchy. As E is complete, S_N has a limit in E i.e. $\sum_{n=1}^{\infty} x_n$ converges in E.

 \Leftarrow : Assume that every absolut convergent series is convergent in E. We want to see that E is complete.

Let $\{x_n\}$ be a Cauchy sequence. We want to prove that $\{x_n\}$ has a limit in E. We know that

$$\forall k \exists n_k : ||x_n - x_m|| < \frac{1}{2^k} \qquad \forall n, m \ge n_k.$$

We can assume that $\{n_k\}$ is an increasing sequence. Write

$$x_{n_k} = (x_{n_k} - x_{n_{k-1}}) + (x_{n_{k-1}} - x_{n_{k-2}}) + \dots + (x_{n_1} - \underbrace{x_{n_0}}_{=0}) = \sum_{l=1}^k (x_{n_l} - x_{n_{l-1}}).$$

$$\sum_{l=1}^{\infty} ||x_{n_l} - x_{n_{l-1}}|| \le \sum_{l=1}^{\infty} \frac{1}{2^l} < \infty$$

Hence $\sum_{l=1}^{\infty}(x_{n_l}-x_{n_{l-1}})$ is absolutely convergent. By assumption

$$\sum_{l=1}^{\infty} (x_{n_l} - x_{n_{l-1}})$$

is convergent in E. Hence the partial sums is convergent. Subsequence is convergent. $\{x_{n_k}\}$ is convergent to some $x \in E$.

Exercise:

Show that the whole $\{x_n\} \to x$.

Recall:

converging squences $(x_n)_{n=1}^{\infty}$ in $(E, \|.\|)$. $\|x_n - x\| \to 0$ for $n \to \infty$ for some $x \in E$. (Notation: $x_n \to x$ in $(E, \|.\|)$)

Remark. Assume $x_n \to x$ in (E, ||.||) Then

- 1) $||x_n|| \to ||x||$ in (E, ||.||).
- $2) \sup_{n} ||x_n|| < \infty.$

because

1)

$$||x_n|| \le ||x_n - x|| + ||x||$$

so

$$||x_n|| - ||x|| \le ||x_n - x||$$

it follows

$$-(||x_n|| - ||x||) \le ||x_n - x||$$

So

$$|||x_n|| - ||x||| \le ||x_n - x|| \to 0,$$
 for $n \to \infty$

Cauchy sequence in $(x_n)_{n=1}^\infty$ in $(E,\|.\|)$ if $\|x_n-x_m\|\to 0$ for $n,m\to\infty$. We obtain: $(x_n)_{n=1}^\infty$ converges in $(E,\|.\|)$ \Rightarrow $(x_n)_{n=1}^\infty$ Cauchy sequence in $(E,\|.\|)$. ($\not =$ in general). If $\not =$ then we call $(E,\|.\|)$ a Banach space.

 $\begin{array}{l} \sum_{n=1}^{\infty} x_m \text{ converges in } (E,\|.\|) \text{ if } \left(\sum_{n=1}^k x_n\right)_{k=1}^{\infty} \text{ converges in } (E,\|.\|). \\ \sum_{n=1}^{\infty} x_m \text{ converges absolutely in } (E,\|.\|) \text{ if } \sum_{n=1}^{\infty} \|x_n\| \text{ converges } (\mathbb{R},\|.\|). \end{array}$

1.2 Mappings between normed spaces

Definition . Let $(E_1, \|.\|_1)$, $(E_2, \|.\|_2)$ be normed spaces. $T: E_1 \to E_2$ (not necessarily linear) is called continuous at $x_0 \in E_1$, if

$$x_n \to x_0 \text{ in } (E_1, \|.\|_1) \implies T(x_n) \to T(x_0) \text{ in } (E_2, \|.\|_2)$$

T is called <u>continuous</u> if it is continuous at $x_0 \in E_1$ for all $x_0 \in E_1$. We say that $T: E_1 \to E_2$ is <u>linear</u> if

$$T(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 T(x_1) + \lambda_2 T(x_2)$$

for all scalars λ_1 , λ_2 and $x_1, x_2 \in E_1$.

 $T:E_1 \rightarrow E_2$ linear is called <u>bounded</u> if there exists M>0 such that

$$||T(x)||_2 \le M||x||_1$$
 for all $x \in E_1$.

If T is bounded linear $E_1 \rightarrow E_2$ define

$$||T|| = ||T||_{E_1 \to E_2} := \inf\{M \ge 0 \mid ||T(x)||_2 \le M||x||_1 \text{ for all } x \in E_1\}$$

Lemma.

$$||T|| = \sup_{\substack{x \in E_1 \\ x \neq 0}} \frac{||T(x)||_2}{||x||_1} = \sup_{\substack{x \in E_1 \\ ||x||_1 = 1}} ||T(x)||_2$$

Proposition 1.14. Assume $T: E_1 \to E_2$ linear. Then all the following statements are equivalent:

- (1) T continuous at $0 \in E_1$.
- (2) T continuous at $x_0 \in E_1$ for some $x_0 \in E_1$.
- (3) T continuous at $x_0 \in E_1$ for all $x_0 \in E_1$.

(4) T is bounded.

proof. (1) \Rightarrow (4): Assume T is continuous at $0 \in E_1$. i.e.

$$x_n \to 0 \text{ in } (E_1, \|.\|_1) \qquad \Rightarrow \qquad T(x_n) \to T(\underbrace{0}_{\in E_1}) = \underbrace{0}_{\in E_2} \text{ in } (E_2, \|.\|_2)$$

We want to prove that T is bounded. We search a M>0 such that

$$||T(x)||_2 \leq M||x||_1$$

We assume that this doesn't hold true.

For n = 1, 2, ... there exists $x_n \in E_1$ such that

$$||T(x_n)||_2 > n||x_n||_1$$
.

Set for $n = 1, 2, \dots$

$$z_n := \frac{1}{n \|x_n\|_1} x_n$$

(Note that $||x_n||_1 > 0$. Otherwise we would get a contradiction.) Note

$$||z_n||_1 = \left\|\frac{1}{n||x_n||_1}\right\|_1 = \frac{1}{n||x_n||_1}||x_n||_1 = \frac{1}{n} \to 0, \quad \text{for } n \to \infty$$

We have $z_n \to 0$ in $(E_1, \|.\|_1)$. But

$$||T(z_n)||_2 = \left\| \frac{1}{n||x_n||_1} T(x_n)_2 \right\| = \frac{1}{n||x_n||_1} ||T(x_n)||_2 > 1$$
 for all n .

Hence

$$T(z_n) \not\to 0$$
 in $(E_2, ||.||_2)$.

This is a contradiction.

 $(1) \Leftarrow (4)$: Assume T is bounded. For some M > 0

$$||T(x)||_2 \le M||x||_1$$
, for all $x \in E_1$.

We need to show that T is continuous at $0 \in E_1$, i.e.

$$x_n \to 0 \text{ in } (E_1, \|.\|_1)$$
 \Rightarrow $T(x_n) \to T(0) = 0 \text{ in } (E_2, \|.\|_2)$

From

$$||T(x_n)||_2 \le M||x_n||_1 \to 0$$

SO

$$T(x_n) \to \underbrace{0}_{=T(0)} \text{ in } (E_2, \|.\|_2).$$

Examples. (A) $E_1 = E_2 = C([0,1])$, $\|.\|_1 = \|.\|_2 = \|.\|_{\infty} =: \|.\|$, i.e.

$$||f|| := \max_{x \in [0,1]} |f(x)|.$$

$$T(f)(x) = \int_0^{1-x} \min(x, y) f(y) \, \mathrm{d}y, \qquad \text{for } f \in C([0, 1]), x \in [0, 1].$$

- (1) $T(f) \in C([0,1])$ for $f \in C([0,1])$,
- (2) T linear,
- (3) T bounded,
- (4) Calculate ||T||.

proof. (1) Fix $f \in C([0,1])$ arbitrary and fix $x \in [0,1]$. Show that T(f) is continuous at x. Consider a sequence $(x_n)_{n=1}^\infty$ in [0,1] such that $x_n \to x$ in $(\mathbb{R},|.|)$. To show $T(f)(x_n) \to T(f)(x)$ in $(\mathbb{R},|.|)$

$$\begin{split} |T(f)(x_n) - T(f)(x)| &= \{ \text{assume that } x_n \leq x \} \\ &= |\int_0^{1-x_n} \min(x_n, y) f(y) \, \mathrm{d}y - \int_0^{1-x} \min(x, y) f(y) \, \mathrm{d}y | \\ &\leq |\int_0^{1-x} (\min(x_n, y) - \min(x, y)) f(y) \, \mathrm{d}y | \\ &+ |\int_{1-x}^{1-x_n} \min(x_n, y) f(y) \, \mathrm{d}y | \\ &\leq \underbrace{\int_0^{1-x} \underbrace{|\min(x_n, y) - \min(x, y)||f(y)|}_{\leq |x_n - x|} \, \mathrm{d}y}_{\leq |x_n - x| ||f||} \\ &+ \underbrace{\int_{1-x}^{1-x_n} \underbrace{\min(x_n, y)|f(y)|}_{0 \leq \dots \leq |x_n - x| \cdot ||f||} \, \mathrm{d}y}_{0 \leq \dots \leq |x_n - x| \cdot ||f||} \, \mathrm{as } \, n \to \infty \end{split}$$

If $x_n > x$ we get a similar calculation. Conclusion:

$$T(f)(x_n) \to T(f)(x)$$
 in $(\mathbb{R}, |.|)$ as $n \to \infty$.

(2) Fix $f_1, f_2 \in C([0,1])$ and λ_1, λ_2 scalars. Then

$$T(\lambda_{1}f_{1} + \lambda_{2}f_{2})(x) = \int_{0}^{1-x} \min(x, y) \underbrace{(\lambda_{1}f_{1} + \lambda_{2}f_{2})(y)}_{=\lambda_{1}f_{1}(y) + \lambda_{2}f_{2}(y)} dy$$

$$= \lambda_{1} \int_{0}^{1-x} \min(x, y)f_{1}(y) dy + \lambda_{2} \int_{0}^{1-x} \min(x, y)f_{2}(y) dy$$

$$= \lambda_{1}T(f_{1})(x) + \lambda_{2}T(f_{2})(x) \quad \text{for } x \in [0, 1]$$

(3) Fix $f \in C([0,1])$. For $x \in [0,1]$

$$|T(f)(x)| = |\int_0^{1-x} \underbrace{\min(x,y)f(y)}_{\geq 0} \, \mathrm{d}y|$$

$$\stackrel{(*_1)}{\leq} \int_0^{1-x} \min(x,y) \underbrace{|f(y)|}_{\leq ||f||} \, \mathrm{d}y$$

$$\stackrel{(*_2)}{\leq} \int_0^{1-x} \min(x,y) \, \mathrm{d}y ||f||$$

Clearly

$$\max_{x \in [0,1]} \int_0^{1-x} \min(x,y) \, \mathrm{d}y \le 1$$

This gives:

$$\|T(f)\| = \max_{x \in [0,1]} \lvert T(f)(x) \rvert \leq 1 \cdot \|f\|, \qquad \text{for all } f \in C([0,1]).$$

Conclusion: T is bounded with (M = 1)

(4) Consider the unequality above. $(*_1)$ is an equality if f has a constant sign. $(*_2)$ is an equality if f is a constant function. So we have to calculate

$$\int_0^{1-x} \min(x, y) \, \mathrm{d}y \qquad \text{for } x \in [0, 1].$$

case 1: $1-x \le x$ i.e. $\frac{1}{2} \le x$ and we get

$$\int_0^{1-x} \underbrace{\min(x,y)}_{=y} dy = \left[\frac{1}{2}y^2\right]_0^{1-x}$$
$$= \frac{1}{2}(1-x)^2$$

case 2: x < 1 - x i.e. $x < \frac{1}{2}$ and we get

$$\int_0^{1-x} \min(x, y) \, dy = \int_0^x y \, dy + \int_x^{1-x} x \, dy$$
$$= \frac{1}{2}x^2 + x(1 - 2x)$$
$$= x - \frac{3}{2}x^2$$

Claim:

$$||T|| = \max\left(\max_{x \in [\frac{1}{2}, 1]} \frac{1}{2} (1 - x)^2, \max_{x \in [0, \frac{1}{2}]} \left(x - \frac{3}{2} x^2\right)\right) = \dots = \frac{1}{6}$$

Note

1 Introduction 33

- $||T(f)|| \le ||T|| \cdot ||f||$ for all $f \in C([0,1])$,
- $||T(1)|| = ||T|| \cdot ||1||$ where 1(x) = 1 for $x \in [0, 1]$.

(B) $E_1=C([0,1])$ with maximumnorm, $E_2=\mathbb{R}$ with absolut value. $T:E_1\to E_2$ with

$$T(f) = \int_0^{\frac{1}{2}} f(y) dy - \int_{\frac{1}{2}}^1 f(y) dy$$
 for $f \in E_1$

$$|T(f)| = \left| \int_0^{\frac{1}{2}} f(y) \, dy - \int_{\frac{1}{2}}^1 f(y) \, dy \right|$$

$$\leq \left| \int_0^{\frac{1}{2}} f(y) \, dy \right| + \left| \int_{\frac{1}{2}}^1 f(y) \, dy \right|$$

$$\leq \int_0^{\frac{1}{2}} \underbrace{|f(y)|}_{\leq ||f||} \, dy + \int_{\frac{1}{2}}^1 \underbrace{|f(y)|}_{\leq ||f||} \, dy$$

$$\leq 1||f||$$

Hence T is bounded and $||T|| \leq 1$.

$$T(f) = \int_0^1 k(y)f(y) \, \mathrm{d}y$$

where

$$T(f_n)=\left\{nachholen,\quad \text{falls } case \right.$$

$$T(f_n)\leq 1\left(\frac{1}{2}-\frac{1}{2n}+\frac{1}{2}-\frac{1}{2n}\right)=1-\frac{1}{n}, \qquad n=1,2,\dots$$

note

$$k(y)f_n(y) \ge 0$$
 for $y \in [0, 1]$.

Hence $\|T\| \leq 1 - \frac{1}{n}$ for $n = 1, 2, \ldots$ Note $\|f_n\| = 1$ for all n. Conclusion $\|T\| = 1$. Here

$$|T(f)| \leq \underbrace{\|T\|}_{<1} \|f\| \text{ for all } f \in C([0,1])$$

but

$$|T(f)|<\|T\|\|f\|\qquad \text{ for all } f\in C([0,1]).$$

Statement 1.15. T_1,T_2 bounded linear mappings $(E_1,\|.\|_1) \to (E_2,\|.\|_2)$ and λ scalar. Set

$$(T_1 + T_2)(x) = T_1(x) + T_2(x)$$
 $x \in E_1$
 $(\lambda T_1)(x) = \lambda T_1(x)$ $x \in E_1$

Claim:

- (1) $T_1 + T_2$ and λT_1 are both linear mappings $(E_1, \|.\|_1) \to (E_2, \|.\|_2)$,
- (2) T_1+T_2 and λT_1 are both bounded mappings $(E_1,\|.\|_1) \to (E_2,\|.\|_2)$. $B(E_1,E_2)$ denote the vector space of all bounded linear mappings $(E_1,\|.\|_1) \to (E_2,\|.\|_2)$.

(3) $\|T\|_{E_1\to E_2}:=\inf\{M>0\,|\,\|T(x)\|_2\leq M\|x\|_1 \text{ for all } x\in E_1\}$ defines a norm in $B(E_1,E_2).$

proof. (1) ||T|| = 0 implies that $||T(x)||_2 = 0$ for all $x \in E_1 \Rightarrow T(x) = 0 \in E_2$.

$$T=0\in B(E_1,E_2)$$

(2) $T \in B(E_1, E_2)$ and λ scalar.

$$\begin{split} \|\lambda T\| &= \inf\{M>0 \,|\, \|(\lambda T)(x)\|_2 \leq M \|x\|_1 \text{ for all } x \in E_1\} \\ &= \inf\{M>0 \,|\, |\lambda| \|T(x)\|_2 \leq M \|x\|_1 \text{ for all } x \in E_1\} \\ &= \{\text{if } \lambda \neq 0\} \\ &= \inf\left\{\underbrace{M}_{=|\lambda|\tilde{M}}>0 \,\bigg|\, \|T(x)\|_2 \leq \underbrace{\frac{M}{|\lambda|}}_{=\tilde{M}} \|x\|_1 \text{ for all } x \in E_1\right\} \\ &= |\lambda| \inf\left\{\tilde{M}>0 \,\bigg|\, \|T(x)\|_2 \leq \tilde{M} \|x\|_1 \text{ for all } x \in E_1\right\} \\ &= |\lambda| \|T\| \end{split}$$

(3) Set $T_1, T_2 \in B(E_1, E_2)$.

$$\begin{split} \|T_1 + T_2\| &= \inf\{M > 0 \, | \, \|(T_1 + T_2)(x)\|_2 \leq M \|x\|_1 \text{ for all } x \in E_1\} \\ &\leq \inf\{M_1 + M_2 > 0 \, | \, \|T_1(x)\|_2 \leq M_1 \|x\|_1, \, \|T_2(x)\|_2 \leq M_2 \|x\|_1 \text{ for all } x \in E_1\} \\ &= \|T_1\| + \|T_2\| \end{split}$$

Conclusion: $(B(E_1, B_2), ||.||_{E_1 \to E_2})$ is a normed space.

Statement 1.16. $(B(E_1,B_2),\|.\|_{E_1\to E_2})$ is a Banach space if $(E_2,\|.\|_2)$ is a Banach space.

1 Introduction 35

proof. Assume $(T_n)_{n=1}^\infty$ is a Cauchy sequence in $(B(E_1,B_2),\|.\|_{E_1\to E_2})$ where $(E_2,\|.\|_2)$ is a Banach space. Fix $x\in E_1$

$$||T_n(x) - T_m(x)||_2 = ||(T_n - T_m)(x)||_2$$

$$\leq \underbrace{||T_n - T_m||_{E_1 \to E_2}}_{n, m \to \infty} \cdot ||x||_1 \to 0, \qquad n, m \to \infty$$

Hence $(T_n(x))_{n=1}^{\infty}$ is a Cauchy sequence in $(E_2, \|.\|_2)$. This is a Banach space which implies that $(T_n(x))_{n=1}^{\infty}$ converges in $(E_2, \|.\|_2)$. Call the limit $T(x) \in E_2$ for all $x \in E_1$. Show now

- (1) $T: E_1 \rightarrow E_2$ is linear,
- (2) T is bounded,
- (3) $||T_n T||_{E_1 \to E_2} \to 0 \text{ for } n \to \infty.$
- (1) Observe

$$T(\lambda_1 x_1 + \lambda_2 + x_2) \leftarrow T_n(\lambda_1 x_1 + \lambda_2 x_2) = \{T \text{ linear}\} = \underbrace{\lambda_1 \underbrace{T_n(x_1)}_{\to T(x_1)} + \lambda_2 \underbrace{T_n(x_2)}_{\to T(x_2)}}_{\to \lambda_1 T(x_1)} \underbrace{\lambda_2 T_n(x_2)}_{\to \lambda_2 T(x_2)}$$

So for $n \to \infty$ it is

$$T(\lambda_1 x_1 + \lambda_2 + x_2) = \lambda_1 T(x_1) + \lambda_2 T(x_2)$$
 in $(E_2, \|.\|_2)$.

(2) Fix $\varepsilon > 0$. Then there exists N such that:

$$||T_n - T_m||_{E_1 \to E_2} < \varepsilon$$
 for $n, m \ge N$

So for $x \in E_1$

$$||T_n(x) - T_m(x)||_2 \le ||T_n - T_m||_{E_1 \to E_2} ||x||_1 < \varepsilon ||x||_1$$
 for $n, m \ge N$

Let $m \to \infty$.

$$\|T_n(x) - T(x)\|_2 \le \varepsilon \|x\|_1$$
 for $n \ge N$

So

$$\begin{split} \|T(x)\|_{2} &\leq \|T(x) - T_{N}(x)\|_{2} + \|T_{N}(x)\|_{2} \\ &\leq \varepsilon \|x\|_{1} + \|T_{N}\|_{E_{1} \to E_{2}} \cdot \|x\|_{1} \\ &= \left(\varepsilon + \|T_{N}\|_{E_{1} \to E_{2}}\right) \|x\|_{1} \quad \text{ for } x \in E_{1} \end{split}$$

(3) Look above and get

$$||T_n - T||_{E_1 \to E_2} \to 0, \qquad n \to \infty.$$

Theorem 1.17 (Banach-Steinhaus Theorem (uniform boundedness principle)). Set $(E_1, \|.\|_1)$ Banach space, $(E_2, \|.\|_2)$ normed space and $\mathcal{F} \subset B(E_1, E_2)$. Assume

$$\sup_{T \in \mathcal{F}} \|T(x)\|_2 < \infty \qquad \text{for all } x \in E_1$$

then

$$\sup_{T\in\mathcal{F}}||T||_{E_1\to E_2}<\infty.$$

Remark. The implication \Leftarrow is easy to prove. If $\mathcal F$ is a finite set, the theorem is trivial. **proof.** Step 1: Assume

$$\exists x_0 \in E_1 \,\exists r > 0 \,\exists M > 0 : \, \forall x \in \overline{B(x_0, r)} \,\forall T \in \mathcal{F} : \, ||T(x)||_2 \leq M$$

We have to show that

$$\sup_{T \in \mathcal{F}} ||T||_{E_1 \to E_2} < \infty.$$

Fix $T \in \mathcal{F}$. For $||x||_1 \le r$

$$||T(x_0+x)||_2 \le M$$

Note that $x_0 + x \in \overline{B(x_0, r)}$.

$$\begin{split} \|T(x)\|_2 &= \|T(x_0 + x - x_0)\|_2 \\ &= \{T \text{ linear}\} \\ &= \|T(x_0 + x) - T(x_0)\|_2 \\ &\leq \|T(x_0 + x)\|_2 + \|T(x_0)\|_2 \\ &< 2M \end{split}$$

For $0 \neq x \in E_1$

$$\left\| T\left(\frac{r}{\|x\|_1}x\right) \right\|_2 \le 2M$$

 $\frac{r}{\|x\|_1}$ has the $\|.\|_1$ -norm equal to r. This implies , since T linear,

$$\frac{r}{\|x\|_1} \|T(x)\|_2 \le 2M$$

i.e.

$$\left\|T(x)\right\|_2 \leq \frac{2M}{r} \|x\|_1 \qquad \text{for all } 0 \neq x \in E_1.$$

We have

$$\|t\|_{E_1 \to E_2} \leq \underbrace{\frac{2M}{r}}_{\mbox{independant of } T} < \infty$$

$$\sup_{T\in\mathcal{F}} \lVert T\rVert_{E_1\to E_2} \leq \frac{2M}{r} < \infty$$

Step 2: Justify the assumption in step 1. This assumption is equivalent to

$$\exists x_0 \in E_1 \exists r > 0 \exists M > 0 : \forall x \in B(x_0, r) \forall T \in \mathcal{F} : ||T(x)||_2 \le M$$

(Note $\overline{B(x_0,r_1)} \subset B(x_0,r) \subset B(x_0,r_2)$ for $0 < r_1 < r < r_2$).

Argue by contradiction. Assume that the assumption is false. Then it holds

$$\forall x_0 \in E_1 \, \forall r > 0 \, \forall M > 0 : \, \exists x \in B(x_0, r) \, \exists T \in \mathcal{F} : \, ||T(x)||_2 > M.$$

Idea: Find a converging sequence $x_n \in E_1$, $x_n \to x$ in $(E_1, \|.\|_1)$ and a sequence $(T_n)_{n=1}^\infty \subset \mathcal{F}$ such that

$$||T_n(x_n)||_2 > n$$
 for all n , and $||T_n(x)||_2 > n$ for all n .

We have from above $x_1 \in B(0,1)$ and $T_1 \in \mathcal{F}$ such that

$$||T_1(x_1)||_2 > 1.$$

 T_1 is bounded linear, hence continuous. This implies that there exists $0 < r_1 < \frac{1}{2}$ such that

$$||T_1(x)||_2 > 1$$
 for $x \in B(x_1, r_1)$

and

$$\overline{B(x_1,r_1)} \subset B(0,1).$$

1.3 Fixed point theory

Example. Consider

$$f(x) + 5 \int_0^{1-x} \min(x, y) f(y) dy = g(x), \qquad x \in [0, 1]$$
 (*)

where $g \in C([0,1])$.

Claim: There exists an unique solution $f \in C([0,1])$ that (*).

Idea:

$$f(x) = f(x) - 5 \int_0^{1-x} \min(x, y) f(y) \, dy, \qquad x \in [0, 1]$$

Set für $x \in [0, 1]$

$$\tilde{T}(f)(x) = RHS(x)$$

To find a solution to (*) is the same finding $f \in C([0,1])$ such that

$$f = \tilde{T}(f)$$

Clearly $\tilde{T}: C([0,1]) \to C([0,1])$. (continual later).

Theorem 1.18 (Banach's fixed point theorem). (E, ||.||) Banach space. $T: E \to E$ (no assumption on linearity) is a contraction on E, i.e. there exists c > 1 such that

$$||T(x) - T(\tilde{x})|| \le c||x - \tilde{x}||$$
 for all $x, \tilde{x} \in E$.

Then there exists a unique $\bar{x} \in E$ such that

$$\bar{x} = T(\bar{x})$$

(\bar{x} is a fixed point)

proof. Uniqueness: Assume $T(\bar{x}) = \bar{x}$ and $T(\tilde{x}) = \tilde{x}$. Then

$$\underbrace{\|\bar{x} - \tilde{x}\|}_{>0} = \|T(\bar{x}) - T(\tilde{x})\| \le \underbrace{c}_{<1} \|\bar{x} - \tilde{x}\|$$

Thus $\|\bar{x} - \tilde{x}\| = 0$, i.e. $\bar{x} = \tilde{x}$.

Existence: Pick an arbitrary $x_0 \in E$. Set

$$x_{n+1} = T(x_n), \qquad n = 0, 1, 2, \dots$$

Claim: $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence in $(E, \|.\|)$. Note:

$$||x_{n+1} - x_n|| = ||T(x_n) - T(x_{n-1})||$$

$$\leq c||x_n - x_{n-1}||$$

$$\leq \dots$$

$$\leq c^n ||x_1 - x_0||, \qquad n = 1, 2, \dots$$

For n > m

$$\begin{aligned} \|x_n - x_m\| &= \|x_n - x_{n-1} + x_{n-1} - \ldots + x_{m+1} - x_m\| \\ &\leq \|x_n - x_{n-1}\| + \|x_{n-1} - x_{n-2}\| + \ldots + \|x_{m+1} - x_m\| \\ &\leq (c^{n-1} + c^{n-2} + \ldots c^m) \|x_1 - x_0\| \\ &\leq \frac{c^m}{1 - c} \|x_1 - x_0\| \to 0 \quad \text{ as } n, m \to \infty \end{aligned}$$

Hence $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence in $(E, \|.\|)$. $(E, \|.\|)$ is a Banach space. So $(x_n)_{n=1}^{\infty}$ converges in $(E, \|.\|)$. Call the limit \bar{x} .

Claim: \bar{x} is a fixed point for T.

$$\|\bar{x} - T(\bar{x})\| = \|\bar{x} - x_{n+1} + x_{n+1} - T(\bar{x})\|$$

$$\leq \|\bar{x} - x_{n+1}\| + \left\|\underbrace{x_{n+1}}_{T(x_n)} - T(\bar{x})\right\|$$

$$\leq \underbrace{\|\bar{x} - x_{n+1}\|}_{\to 0} + c\underbrace{\|x_n - \bar{x}\|}_{\to 0} \to 0, \qquad n \to \infty$$

Remark. (1) $x_n \to \bar{x}$ for $n \to \infty$ independend of the choice of x_0

(2) Fix $z \in E$

$$\begin{split} \|\bar{x} - z\| &= \|T(\bar{x}) - T(z) + T(z) - z\| \\ &\leq \|T(\bar{x}) - T(z)\| + \|T(z) - z\| \\ &\leq c\|\bar{x} - z\| + \|T(z) - z\| \end{split}$$

Hence

$$\|\bar{x} - z\| \le \frac{1}{1 - c} \|T(z) - z\|$$

Example. Consider now the example from above: $(C([0,1]), \|.\|)$ with $\|f\| = \max_{x \in [0,1]} |f(x)|$ is a Banach space! To apply Banach's fixed point theorem we need \tilde{T} to be a contraction. Fix $f_1, f_2 \in C([0,1])$ and get for $x \in [0,1]$

$$|(\tilde{T}(f_1) - \tilde{T}(f_2))(x)| = |5 \int_0^{1-x} \min(x, y) f_2(y) \, dy - 5 \int_0^{1-x} \min(x, y) f_1(y) \, dy|$$

$$= |5 \int_0^{1-x} \min(x, y) (f_2(y) - f_1(y)) \, dy|$$

$$\leq 5 \int_0^{1-x} \min(x, y) \underbrace{|f_2(y) - f_1(y)|}_{\leq ||f_2 - f_1||} \, dy$$

$$\leq 5 \underbrace{\int_0^{1-x} \min(x, y) \, dy}_{0 \leq \dots \leq \frac{1}{6}}$$

$$\leq \frac{5}{6} ||f_2 - f_1||$$

Hence

$$\|\tilde{T}(f_1) - \tilde{T}(f_2)\| \le \frac{5}{6} \|f_1 - f_2\|$$

We conclude that \tilde{T} is a contraction. We can take $c=\frac{5}{6}$. By Banach's fixed point theorem \tilde{T} has a unique fixed point. Finally (*) has a unique solution $f\in C([0,1])$ which is the fixed point.

Theorem 1.19 (Banach's fixed point theorem (generalization)). $(E, \|.\|)$ Banach space. $T: F \to F$ where F is a closed set in E. N positive integer. Assume $T^N = \underbrace{T \circ T \circ \ldots \circ T}_{N-\text{times}}$

is a contraction on F, i.e. there exists c > 1 such that

$$\left\|T^N(x)-T^N(\tilde{x})\right\|\leq c\|x-\tilde{x}\|,\qquad \text{for all } x,\tilde{x}\in F.$$

40 1 Introduction

Then T has unique fixed point \bar{x} , i.e.

$$\bar{x} = T(\bar{x}) \in F$$

proof. N=1: Fix $x_0\in F$ and consider $(x_n)_{n=1}^\infty$ where $x_{n+1}=T(x_n)$ for $n=0,1,2,\ldots$ There $(x_n)_{n=1}^\infty$ is a Cauchy sequence and hence this converges in E since this is a Banach space. Call the limit \bar{x} . Note

$$\underbrace{x_n}_{\in F} \to \bar{x} \text{ in } E \text{ and } F \text{ is closed}$$

implies $\bar{x} \in F$. The rest of the argument is the same as before.

N>1: By previous result we know that T^N has a unique fixpoint $\bar{x}\in F$, i.e. $\bar{x}=T^N(\bar{x})$. Claim: \bar{x} is a fixed point for T.

$$||T(\bar{x}) - \bar{x}|| = ||T(T^N(\bar{x})) - T^N(\bar{x})||$$

$$= ||T^N(T(\bar{x})) - T^N(\bar{x})||$$

$$< c||T(\bar{x}) - \bar{x}||$$

This gives

$$||T(\bar{x} - \bar{x})|| = 0,$$
 i.e. $\bar{x} = T(\bar{x}).$

Existence of a fixed point for T done. For the uniqueness assume $\bar{x}=T(\bar{x})$ and $\tilde{x}=T(\tilde{x})$. Then

$$\bar{x} = T(\bar{x}) = T^2(\bar{x}) = \dots = T^N(\bar{x})$$

$$\tilde{x} = T(\tilde{x}) = T^2(\tilde{x}) = \ldots = T^N(\tilde{x})$$

But T^N has a unique fixed point so

$$\bar{x} = \tilde{x}$$

Remark. (1) $T:(0,1]\to (0,1]$ where $T(x)=\frac{x}{2}$. Clearly T is a contraction on (0,1] but has no fixed point. Note that (0,1] is not a closed intervall.

(2) $T:[0,\infty)\to [0,\infty)$, where $T(x)=x+\frac{1}{x}$. Clearly $[0,\infty)$ is a closed intervall in $\mathbb R$ but T has no fixed point.

Claim: T is not a contraction but 'close' to be a contraction.

$$|T(x)-T(\tilde{x})|<|x-\tilde{x}|\qquad \text{ for } x,\tilde{x}\in[1,\infty), x\neq\tilde{x}$$

Note

$$|T(x)-T(\tilde{x})| = |\underbrace{T'(x)}_{\substack{(1-\frac{1}{t}) \leq 1 \\ \text{for } t \in [1,\infty)}} ||x-\tilde{x}|$$

for some t betweeen x and \tilde{x} .

Example. $(E, \|.\|)$ Banach space. K compact set in E and $T: K \to K$ where

$$||T(x) - T(\bar{x})|| < ||x - \bar{x}||$$
 for all $x, \bar{x} \in K, x \neq \bar{x}$.

Show: T has a unique fixed point in K.

Uniqueness: Assume $\bar{x}=T(\bar{x})$ and $\tilde{x}=T(\tilde{x})$ and $\bar{x}\neq\tilde{x}$ for $\bar{x},\tilde{x}\in K$. Then

$$\|\bar{x} - \tilde{x}\| = \|T(\bar{x}) - \tilde{x}\| < \|\bar{x} - \tilde{x}\|$$

Contradiction because then $\bar{x} = \tilde{x}$.

Existence: To show: There exists $x \in K$ such that x = T(x), i.e.

$$||T(x) - x|| = 0.$$

Set $d := \inf_{x \in K} ||T(x) - x||$. Let $(x_n)_{n=1}^{\infty}$ be a sequence in K such that

$$||T(x_n) - x_n|| \to d$$
, as $n \to \infty$.

K compact implies that there exists a subsequence $(\tilde{x}_n)_{n=1}^\infty$ of $(x_n)_{n=1}^\infty$ such that $(\tilde{x}_n)_{n=1}^\infty$ converges in K. Call the limit element $\bar{x} \in K$. We know

$$\tilde{x}_n \to \bar{x}$$
 in K

and

$$||T(\tilde{x}_n) - \tilde{x}_n|| \to d.$$

Question:

$$T(\tilde{x}_n) \to T(\bar{x})$$
 in K ?

But since

$$\|T(x) - T(\tilde{x})\| \le \|x - \tilde{x}\|$$
 for all $x, \tilde{x} \in K$

we have

$$\tilde{x}_n \to \bar{x}$$
 in K

which implies

$$T(\tilde{x}_n) \to T(\bar{x})$$
 in K .

Hence:

$$||T(\bar{x}) - \bar{x}|| \leftarrow ||T(\tilde{x}_n) - \tilde{x}_n|| \to d, \quad n \to \infty.$$

We obtain

$$||T(\bar{x}) - \bar{x}|| = d.$$

Question: Is d = 0?

If d > 0 then $\bar{x} \neq T(\bar{x})$, $\bar{x}, T(\bar{x}) \in K$

$$||T(\bar{x}) - T(T(\bar{x}))|| < ||\bar{x} - T(\bar{x})|| = d = \inf_{x \in K} ||x - T(x)||.$$

This is a contradiction which gives d=0 and so $\bar{x}=T(\bar{x})$.

Example. Consider

$$f(x) = \int_0^x k(x, y)h(y, f(y)) \, \mathrm{d}y + g(x), \qquad x \in [0, 1] \qquad (*)$$

where $g \in C([0,1])$, $k \in C([0,1] \times [0,1])$ and $h:[0,1] \times \mathbb{R} \to \mathbb{R}$ continuous and satisfies: There exists M>0 such that

$$|h(x, z_1) - h(x, z_2)| \le M|z_1 - z_2|$$
 for all $x \in [0, 1], z_1, z_2 \in \mathbb{R}$

$$T(f)(x) = \int_0^x k(x, y)h(y, f(y)) dy + g(x)$$
 $x \in [0, 1].$

Here $T(f)(x) \in C([0, 1])$.

Want to show: $T: C([0,1]) \to C([0,1])$ has a unique fixed point.

Start with the Banach space (C([0,1]), max-norm). Check if T is a contraction in C([0,1]). Fix $f_1, f_2 \in C([0,1])$

$$T(f_1)(x) - T(f_2)(x) = \int_0^x k(x, y)(h(y, f_1(y)) - h(y, f_2(y))) dy$$

k is continuous on the compact set $[0,1] \times [0,1]$ so

$$\sup_{(x,y)\in[0,1]\times[0,1]} \lvert k(x,y) \rvert =: N < \infty.$$

We obtain

$$|(T(f_1) - T(f_2))(x)| \le \int_0^x \underbrace{|k(x,y)|h(y, f_1(y)) - h(y, f_2(y))}_{\le N} dy$$

$$\le M\underbrace{f_1(y) - f_2(y)}_{\le \|f_1 - f_2\|}$$

$$\le \int_0^x NM dy \|f_1 - f_2\|$$

$$\le NM \|f_1 - f_2\|$$

this yields

$$||T(f_1) - T(f_2)|| \le NM||f_1 - f_2||.$$

IF: NM < 1 Then T is a contaction.

Trick: For a > 0 set

$$||f||_a = \max_{x \in [0,1]} e^{-ax} |f(x)|$$

for $f \in C([0,1])$.

Claim: $\|.\|_a$ defines a norm on C([0,1]). This is easy to check.

1 Introduction 43

Claim: $\|.\|$ and $\|.\|_a$ are equivalent.

This follows from

$$e^{-a}||f|| \le ||f||_a \le ||f||$$

for all $f \in C([0,1])$ (note that $\|.\|$ is the max-norm).

 $\textbf{Claim:} \quad (C([0,1]),\|.\|_a) \text{ is a Banach space.}$

This follows from the fact that $\|.\|$ und $\|.\|_a$ are equivalent and $(C([0,1]),\|.\|)$ is a Banach space.

Claim: T is a contraction on $(C([0,1]), \|.\|_a)$ for a > 0 large enough.

For $f_1, f_2 \in C([0,1])$ and $x \in [0,1]$ we have

$$|(T(f_1) - T(f_2))(x)| \le \int_0^x NM |(f_1 - f_2)(y)| \, dy$$

$$= \int_0^x NM e^{ay} \cdot \underbrace{e^{-ay} |(f_1 - f_2)(x)|}_{\le ||f_1 - f_2||_a} \, dy$$

$$\le NM \underbrace{\int_0^x e^{ay} \, dy}_{\frac{1}{a}(e^{ax} - 1)} ||f_1 - f_2||_a$$

So

$$e^{-ax}|(T(f_1)-T(f_2))(x)| \le \frac{NM}{a}(1-e^{-ax})||f_1-f_2||_a$$

and

$$||T(f_1) - T(f_2)||_a \le \frac{NM}{a} ||f_1 - f_2||_a$$

For a>NM is T a contraction on $(C([0,1]),\|.\|_a)$. Banach fixed point theorem implies that there is a unique $f\in C([0,1])$ that solves (*).

Theorem 1.20. (E, ||.||) Banach space, (Y, ||.||) normed space. $T: E \times Y \to E$ where

(1) There exists a C > 1 such that

$$||T(x,y) - T(\tilde{x},y)|| \le C||x - \tilde{x}||$$
 for all $x, \tilde{x} \in E, y \in Y$.

- (2) $T_x: Y \to E$ where $T_x(y) = T(x,y)$ is continuous for all $x \in E$.
- \Rightarrow For every $y \in Y$ there exists a unique $g(y) \in E$ such that

$$g(y) = T(g(y), y)$$

and $g: Y \to E$ is continuous.

proof. The existence of a unique element $g(y) \in E$ for every $y \in Y$ follows from Banach's fixed point theorem.

Assume $y_n \to \tilde{y}$ in $(Y, \|.\|_*)$, i.e.

$$\|y_n - \tilde{y}\|_* \to 0, \qquad n \to \infty$$

Remains to show

$$g(y_m) \to g(\tilde{y})$$
 in $(E(, \|.\|))$

$$||g(y_n) - g(\tilde{y})|| = ||T(g(y_n), y_n) - T(g(\tilde{y}), \tilde{y})||$$

$$\leq \underbrace{||T(g(y_n), y_n) - T(g(\tilde{y}), y_n)||}_{\stackrel{(1)}{\leq c}||g(y_n) - g(\tilde{y})||} + \underbrace{||T(g(\tilde{y}), y_n) - T(g(\tilde{y}), \tilde{y})||}_{\stackrel{(2)}{\leq 0}, n \to \infty}$$

We obtain

$$||g(y_n) - g(\tilde{y})|| \le \frac{1}{1 - c} ||T(g(\tilde{y}), y_n) - T(g(\tilde{y}), \tilde{y})|| \to 0, \quad n \to \infty.$$

Theorem 1.21 (Brouwer's fixed point theorem). K compact (= closed and bounded) convex subset of \mathbb{R}^n and $T:K\to K$ continuous. Then T has a fixed point, i.e. there exists $\bar{x}\in K$ with

$$T(\bar{x}) = \bar{x}$$
.

Remark. • No uniqueness! Consider the case $T = id_K$.

• Set $K \subseteq \mathbb{R}^n$ (in general) is convex if

$$x, \tilde{x} \in K \text{ and } \lambda \in [0, 1]$$
 \Rightarrow $\lambda x + (1 - \lambda)\tilde{x} \in K$.

Theorem 1.22 (Perron's theorem). A real-valued $n \times n$ -Matrix with positive entries. $A = [a_{ij}]_{i,j=1,\dots,n}$ all $a_{ij} > 0$.

 \Rightarrow The mapping for $x \in \mathbb{R}^n$

$$x \mapsto Ax$$

has an eigenvalue >0 with an eigenvecto with positive entries, i.e. there exists $\lambda>0$ and $\tilde{x}\in\mathbb{R}^n$ with $A\tilde{x}=\lambda\tilde{x}$ and all entries in \tilde{x} are positive.

proof. We use Brouwer's fixed point theorem. Set

$$K := \left\{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \,\middle|\, x_k \ge 0, \, \sum_{i=1}^n x_i = 1 \right\}$$

Claim: K is closed, bounded and a convex set in \mathbb{R}^n . Thus K is compact (since $K \subseteq \mathbb{R}^n$). Set

$$T(x_1, \dots, x_n) = \underbrace{\frac{1}{\|Ax\|_{l^1}} A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}}_{\in K} \quad \text{for all } (x_1, \dots, x_n) \in K$$

1 Introduction 45

Claim: $T: K \to K$ is continuous.

Since

$$x_k \to x$$
 in K w.r.t. l^1 – norm.

To show:

$$T(x_k) \to T(x)$$
 in K w.r.t. l^1 – norm.

Set

$$x = (x_1, x_2, \dots, x_n)$$

 $x_k = (x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)})$ $k = 1, 2, \dots$

Consider

$$\begin{split} \|T(x_k) - T(x)\|_{l^1} &= \left\| \frac{1}{\|Ax_k\|_{l^1}} Ax_k - \frac{1}{\|Ax\|_{l^1}} Ax \right\|_{l^1} \\ &\leq \left\| \frac{1}{\|Ax_k\|_{l^1}} Ax_k - \frac{1}{\|Ax\|_{l^1}} Ax_k \right\|_{l^1} + \left\| \frac{1}{\|Ax\|_{l^1}} Ax_k - \frac{1}{\|Ax\|_{l^1}} Ax \right\|_{l^1} \\ &= \left| \frac{1}{\|Ax_k\|_{l^1}} - \frac{1}{\|Ax\|_{l^1}} \|Ax_k\|_{l^1} + \frac{1}{\|Ax\|_{l^1}} \|A(x - x_k)\|_{l^1} \end{split}$$

and

$$||A(x - x_k)||_{l^1} = \sum_{i=1}^n |\sum_{j=1}^n a_{ij} (x_j - x_j^{(k)})|$$

$$\leq \sum_{i=1}^n \sum_{j=1}^n a_{ij} |x_j - x_j^{(k)}|$$

$$\leq \underbrace{n \cdot \max_{i,j} a_{ij}}_{<\infty} ||x - x_k||_{l^1} \to 0, \qquad k \to \infty$$

So

$$Ax_k \to Ax$$
 in l^1 .

This implies

$$||Ax_k||_{l^1} \to ||Ax||_{l^1}$$
 in \mathbb{R}

Brouwer's fixed point theorem implies that T has a fixed point $\bar{x} \in K$.

$$\bar{x} = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$$
$$\bar{x} = T(\bar{x}) = \frac{1}{\|A\bar{x}\|_{l^1}} A\bar{x}$$

Hence $A\bar{x}=\|A\bar{x}\|_{l^1}\bar{x}$ where $|A\bar{x}|_l^1>0$ and \bar{x} has all entries >0.

Theorem 1.23 (Schander's fixed point theorem). $(E, \|.\|)$ Banach space. K compact, convex set in $E. T: K \to K$ continuous. $\Rightarrow T$ has a fixed point in K.

Example.

$$S = \{f \in C([0,1\,|\,)\}] \\ f(0) = 0, \ f(1) = 1, \ \|f\| = \max_{x \in [0,1]} |f(x)| \le 1$$

 $T:S \to S$ defined by

$$T(f)(x) = f(x^2), \qquad x \in [0, 1].$$

C([0,1]) is equipped with the max-norm.

Claim:

- S is closed, bounded and convex in C([0,1]).
- $T: S \rightarrow S$ is continuous
- ullet T has no fixed point in S
- S bounded: $f \in S$ implies $||f|| \le 1$.
- S closed: $f_n \to f$ in $(C([0,1]),\|.\|)$. To show: $f \in S$.

Note

$$\max_{x \in [0,1]} |f_n(x) - f(x)| \to 0, \qquad n \to \infty$$

This implies

$$|f(0)| = |f_n(0) - f(0)| \to 0, \quad n \to \infty.$$

So f(0) = 0.

$$|1 - f(1)| = ||f_n(1) - f(1)|| \to 0, \quad n \to \infty.$$

So f(1) = 1. For $x \in [0, 1]$ we get

$$|f(x)| \le ||f(x) - f_n(x)|| + |f_n(x)||$$

 $\le \underbrace{||f - f_n||}_{\to 0} + \underbrace{||f_n||}_{<1}.$

Conclusion $f \in S$

$$||f|| = \max_{x \in [0,1]} |f(x)| \le 1.$$

• $f, \tilde{f} \in S$ and $\lambda \in [0, 1]$. To show:

$$\lambda f + (1 - \lambda)\tilde{f} \in S$$

Trivial since

$$(\lambda f + (1 - \lambda)\tilde{f})(0) = 0$$

$$(\lambda f + (1 - \lambda)\tilde{f})(1) = \lambda f(1) + (1 - \lambda)\tilde{f}(1) = 1$$

and

$$\left\|\lambda f + (1-\lambda)\tilde{f}\right\| \leq |\lambda| \|f\| + |1-\lambda| \left\|\tilde{f}\right\| \leq 1$$

We want to show that $T:S\to S$ is continuous. (obvious that $T(S)\subseteq S$) Assume $f_n\to f$ in S in max-norm, i.e.

$$\max_{x \in [0,1]} |f_n(x) - f(x)| \to 0, \qquad n \to \infty$$

To show: $T(f_n) \to T(f)$ in S in max-norm.

$$||T(f_n) - T(f)|| = \max_{x \in [0,1]} |T(f_n)(x) - T(f)(x)|$$

$$= \max_{x \in [0,1]} |f_n(x^2) - f(x^2)|$$

$$= ||f_n - f|| \to 0, \qquad n \to \infty$$

 $T: S \to S$ has no fixed point. If $f \in S$ is a fixed point for T then

$$f(x^2) = T(f)(x) = f(x), \qquad x \in [0, 1].$$

To show: there can be no such $f \in S$.

Set $a=\inf\{x\in[0,1\,|\,]\}f(x)=\frac{1}{2}\neq\emptyset$ since f is continuous. $a\in(0,1)$ since if a=0 then there exists a sequence

$$a_n \in \{x \in [0, 1 \mid]\} f(x) = \frac{1}{2}$$

such that $a_n \to a$ in \mathbb{R} as $n \to \infty$. Contradiction since

$$\frac{1}{2} = f(a_n) \to f(a) = f(0) = 0$$

since f is continuous.

But $0 < a^2 < a$ and $f(a^2) = f(a) = \frac{1}{2}$. This is a contradiction.

If we believe in Schauder then we can conclude that $S \subseteq C([0,1])$ is not compact.

Theorem 1.24 (Arzela-Ascoli theorem). Assume K is a compact set in \mathbb{R}^n (e.g. K=[0,1] in \mathbb{R} n n=1) and $S\subseteq C(K)$ where C(K) is equipped with the max-norm. \Rightarrow S is relatively compact in C(K) iff

- (1) S uniformly bounded.
- (2) S is equicontinuous.

48 1 Introduction

Definition . (i) S is uniformly bounded if

$$\sup_{f \in S} ||f|| < \infty$$

(ii) S is equicontinuous if: for every $\varepsilon>0$ there exists $\delta>0$ such that

$$|x - \tilde{x}| < \delta, \ x, \tilde{x} \in K$$
 \Rightarrow $|f(x) - f(\tilde{x})| < \varepsilon.$

 $\delta = \delta(\varepsilon)$ must not depend on f.

S is relatively compact in C(K) if for every sequence $(f_n)_{n=1}^{\infty}$ in S there exists a converging subsequence in C(K).

To show: S is relatively compact in C(K) iff the closure \bar{S} is compact in C(K).

Things to do:

- (1) Proof of Schander's theorem
- (2) Proof of Arzela-Ascoli theorem
- (3) Application with Schander
- (4) Proof of Brouwer's thereom (special case)
- (5) Completion of normed spaces

For (4) wie consider the following lemma

Lemma 1.25 (Sperner's lemma). Big triangle T

$$T = \bigcup_{a \in A} T_a$$

 $\{T_a\}_{a\in A}$ is triangle of T, i.e. for any pair T_a , $T_{\tilde{a}}$ in the triangulation

 $T_a \cup T_{\tilde{a}} = \{\emptyset \text{ or common vertrex or common side or } T_a = T_{\tilde{a}}\}.$

 \Rightarrow There must exists a triangle T_a with all vertices colored differently. MISSING FIGURE!

Proof of Schander's fixed point theorem: To prove: $(E, \|.\|)$ Banach space, K compact convex set in E and $T: K \to K$ continuous.

Claim: T has a fixed point.

1 Introduction 49

Lemma . Assume $(x_n)_{n=1}^{\infty}$ sequence in K such that

$$||T(x_n) - x_n|| \to 0, \qquad n \to \infty$$

T has a fixed point in K

proof. Consider $(T(x_n))_{n=1}^{\infty}$ in K. K compact implies that there exists a $z \in K$ and a subsequence $(T(\tilde{x}_n))_{n=1}^{\infty}$ of $(T(x_n))_{n=1}^{\infty}$ such that

$$T(\tilde{x}_n) \to z$$
 in K as $n \to \infty$.

Then

$$\left\| \underbrace{T(\tilde{x}_n)}_{z} - \tilde{x}_n \right\| \to 0, \quad \text{as } n \to \infty$$

So $\tilde{x}_n \to z$ for $n \to \infty$. But T continuous implies

$$z \leftarrow T(\tilde{x}_n) \to T(z), \qquad n \to \infty.$$

Conclusion: z = T(z) so z is a fixed point.

Lemma. K compact set in E. Let $\varepsilon > 0$. Then there exists a finite set $x_1, \ldots, x_n \in K$ such that for all $x \in K$

$$\min_{k=1,\dots,N} ||x - x_k|| < \varepsilon$$

proof. Assume there is no finite sequence x_1,\ldots,x_N . Then there exists a sequence $(x_n)_{n=1}^\infty$ such that

$$||x_k - x_l|| \ge \varepsilon$$
, for $k \ne l$

Clearly $(x_n)_{n=1}^{\infty}$ has no converging subsequence. This contradicts K beeing compact. \Box

Fix positive integer n. Apply previous lemma with $\varepsilon=\frac{1}{\varepsilon}$. then there exists a finite set x_1,\ldots,x_N such that

$$K \subset \bigcup_{k=1}^{N} B\left(x_k, \frac{1}{n}\right)$$

Set

 $K_n = \{ \text{set of all convex combinations of } x_1, \dots, x_N \}$

$$= \left\{ \sum_{k=1}^{N} \lambda_k x_k \, \middle| \, \lambda_k \ge 0 \text{ for all } k, \, \sum_{k=1}^{N} \lambda_k = 1 \right\}$$

This set is a closed and bounded set in span (K_n) finite dimensional. Also K_n is convex. (want $T_n: K_n \to K_n$ where T_n close to T)

50 1 Introduction

Set $f_k(x)=\max\left(0,\frac{1}{n}-\|x-x_k\|\right)$ for $x\in K$ and $k=1,2,\ldots,N$. For each $x\in K$ there exists a k such that $f_k(x)>0$. Set

$$P_n(x) = \frac{f_1(x)x_1 + f_2(x_2) + \dots + f_N(x_N)}{f_1(x) + f_2(x) + \dots + f_N(x)}, \quad x \in K.$$

 P_n is a convex combination of x_1, \ldots, x_N for every $x \in K$. So $P_n(x) \in K_n$ for every $x \in K$.

Claim: $||P_n(x) - x|| < \frac{1}{n}$ for all $x \in K$. Set T_n to be defined like

$$T_n := P_n T : K_n \to K_n$$

Here T_n is continuous since T and P_n are continuous. K_n is compact and convex in a finite dimensional space. Brouwer's fixed point theorem implies that T_n has a fixed point in K_n ,i.e. there exists $x_n \in K_n$ such that

$$x_n = T_n(x_n) = P_n(x_n).$$

But then

$$||x_n - T(x_n)|| \le \underbrace{\left\|x_n - \underbrace{P_n T(x_n)}_{=T_n}\right\|}_{=0} + \underbrace{\left\|P_n T(x_n) - T(x_n)\right\|}_{<\frac{1}{n}}$$

The first lemma above gives that T has a fixed point in K.

Example. Assume k(x,y) continuous on $[0,1] \times [0,1]$ and h(y,z) continuous on $[0,1] \times \mathbb{R}$ and

$$\sup_{(y,z)\in[0,1]\times\mathbb{R}}|h(y,z)|\equiv B<\infty$$

Then there exists a solution $f \in C([0,1])$ to

$$f(x) = \int_0^1 k(x, y)h(y, f(y)) dy, \qquad x \in [0, 1]$$

Method: Set $f \in C([0,1])$ and

$$T(f)(x) = \int_0^1 k(x, y)h(y, f(y)) \, \mathrm{d}y, \qquad x \in [0, 1] \qquad (*)$$

We want to apply (a generalized version of) Schander's fixed point theorem. Assume $(E, \|.\|)$ is a Banach space and F closed convex subset of E. Moreover assume $T: E \to E$ continuos and T(F) relatively compact in $(E, \|.\|)$. Then T has a fixed point in F.

Step 1: T as in (*).

Claim: $T(C([0,1])) \subseteq C([0,1]).$

To proof this we note that k is continuous on $[0,1] \times [0,1]$ whicht is compact in \mathbb{R}^2 .

1 Introduction 51

This implies that k is uniformly continuous on $[0,1]\times[0,1]$. Fix now $\varepsilon>0$. Then there exists $\delta=\delta(\varepsilon)>0$ such that

$$|k(x_1, y_1) - k(x_2, y_2)| < \frac{\varepsilon}{B}$$

for
$$|(x_1, y_1) - (x_2, y_2)| < \delta$$
.
Fix $f \in C([0, 1])$

$$\begin{split} |T(f)(x_1) - T(f)(x_2)| &= |\int_0^1 (k(x_1,y) - k(x_2,y))h(y,f(y)) \,\mathrm{d}y| \\ &\leq \int_0^1 \underbrace{|k(x_1,y) - k(x_2,y)||h(y,f(y))|}_{<\frac{\varepsilon}{B} \text{ if } |x_1 - x_2| < \delta} \,\mathrm{d}y < \varepsilon, \qquad \text{provided } |x_1 - x_2| < \delta \end{split}$$

Conclusion: $T(f) \in C([0,1])$ for $f \in C([0,1])$

Step 2: Choose F.

k is a continuous function on a compact set $[0,1] \times [0,1]$ implies

$$\sup_{(x,y)\in[0,1]\times[0,1]}\lvert k(x,y)\rvert\equiv A<\infty.$$

Hence

$$|T(f)(x)| \le AB$$
 for all $f \in C([0,1])$.

Set

$$F := \{ f \in C([0,1\,|\,)\}] \|f\| = \max_{x \in [0,1]} |f(x)| \le AB$$

Clearly F is closed convex in $(C([0,1]), \|.\|)$ which is a Banach space.

Step 3: Claim: T(F) is relatively compact.

To prove this we use the Arzela-Ascoli Theorem.

Let K be a compact set in \mathbb{R}^n . Let $\mathcal{S} \subset C(K)$ (realvalued continuous functions on K). Then \mathcal{S} is relatively compact in $(C(K), \|.\|_{\infty})$ if

(1) S uniformly bounded, i.e.

$$\sup_{f \in \mathcal{S}} ||f|| < \infty$$

(2) equicontinuity of $f \in \mathcal{S}$, i.e.

$$\forall \varepsilon > 0 \,\exists \, \delta = \delta(\varepsilon) > 0 : \, \forall \, f \in \mathcal{S} :$$
$$|x_1 - x_2| < \delta, \, x_1, x_2 \in K \qquad \Rightarrow \qquad |f(x_2) - f(x_1)| < \varepsilon$$

In our example it is S = F, K = [0,1] in \mathbb{R} . Check that (1) and (2) in AA-Theorem are satisfied.

52 1 Introduction

(1) F is uniformly bounded since

$$\sup_{f \in F} \lVert f \rVert \le AB < \infty$$

(2) Equicontinuity follows from calculations in Step 1.

Conclusion: T(F) is relatively compact.

Step 4: Claim: $T: F \rightarrow F$ continuous

In step 1 we had $f \in F$ and $x_n \to x$ in [0,1]. We have shown that $T(f)(x_n) \to T(f)(x)$ in \mathbb{R} . So T(f) is a continuous function.

Now we want to show that for $f_n \to f$ in F we've got $T(f_n) \to T(f)$ in C([0,1]).

Note that $h:[0,1]\times[-AB,AB]\to\mathbb{R}$ is continuous and $[0,1]\times[-AB,AB]$ is compact set in \mathbb{R}^2 . So $h:[0,1]\times[-AB,AB]\to\mathbb{R}$ is uniformly continuous.

Fix $\varepsilon > 0$. Then there exists a $\delta = \delta(\varepsilon) > 0$ such that

$$|h(y_1, z_1) - h(y_2, z_2)| < \frac{\varepsilon}{A}$$

for $|(y_1, z_1) - (y_2, z_2)| < \delta$. For $f_1, f_2 \in F$ with

$$||f_1 - f_2|| < \delta$$

We have

$$|T(f_1)(x) - T(f_2)(x)| = |\int_0^1 k(x, y)(h(y, f_1(y)) - h(y, f_2(y))) \, dy|$$

$$\leq \int_0^1 \underbrace{|k(x, y)||h(y, f_1(y)) - h(y, f_2(y))|}_{\leq A} \, dy < \varepsilon$$

Conclusion: $T: F \to F$ is continuous.

Step 5: Apply Schander's fixed point theorem.

1.4 Completion of normed spaces

 $(E,\|.\|)$ normed spaces. We say that $(\tilde{E},\|.\|_*)$ is a completion of $(E,\|.\|)$ if $(\tilde{E},\|.\|_*)$ is a normed space such that

- (1) $\exists \Phi : E \to \tilde{E}$ injective and linear.
- (2) $||x|| = ||\Phi(x)||_*$ for all $x \in E$.
- (3) $\Phi(E)$ is dense in \tilde{E} .
- (4) $(\tilde{E}, \|.\|_*)$ is a Banach space.

Construction:

Let $(x_n)_{n=1}^\infty$ and $(y_n)_{n=1}^\infty$ be Cauchy sequences in $(E,\|.\|)$. We say that $(x_n)_{n=1}^\infty$ and $(y_n)_{n=1}^\infty$ are equivalent, denoted by $(x_n)\sim (y_n)$, if

$$||x_n - y_n|| \to 0, \qquad n \to \infty.$$

Set

$$\tilde{E} = \{((x_n))_N \mid (x_n)_{n=1}^{\infty} \text{ Cauchy sequence in } (E, \|.\|) \}$$

Vecotr space structure:

$$\begin{cases} [(x_n)]_N + [(\tilde{x}_n)]_N &= [(x_n + \tilde{x}_n)]_N \\ \lambda [(x_n)]_N &= [(\lambda x)_n]_N \end{cases}$$

Show that these definitions are well-defined, i.e. independent of the choice of representative Norm

$$\|[(x_n)]_N\|_* = \lim_{n \to \infty} \|x_n\|$$

Note

$$(x_n) \sim (y_n)$$

implies

$$\lim_{n \to \infty} ||x_n|| = \lim_{n \to \infty} ||y_n||.$$

Since

$$|||x_n|| - ||y_n||| \le ||x_n - y_n|| \to 0, \quad n \to \infty$$

Check that the axioms for being a norm are satisfied.

Now we have $(\tilde{E}, \|.\|_*)$ is a normed space.

Define Φ : For $x \in E$ set $\Phi(x) = [(x)_{n=1}^{\infty}]_N$ where

$$(x)_{n=1}^{\infty} = (x, x, x, \ldots).$$

Claim 1 & 2: easy to prove.

Claim 3: item $\Phi(E)$ dense in $(\tilde{E}, \|.\|_*)$. Fix $[(x_n)]_N \in \tilde{E}$. Consider $\Phi(x_k)$ where x_k is the element in the k-th position in the sequence $(x_1, x_2, \ldots, x_n, \ldots)$.

$$\|[(x_n)]_N - \Phi(x_k)\|_* = \lim_{n \to \infty} \|x_n - x_k\| \to 0 \qquad k \to \infty$$

Since $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence.

Claim 4: item $(\tilde{E}, \|.\|_*)$ is a Banach space.

Consider a Cauchy sequence $z_n \in \tilde{E}$ such that $||z_n - z|| \to 0$ as $n \to \infty$.

To show: There exists $z \in \tilde{E}$ such that

$$||z_n - z|| \to 0, \qquad n \to \infty.$$

By 3 we have that $\Phi(E)$ is dense in \tilde{E} so for $n=1,2,\ldots$ there exists $x_n\in E$, $n=1,2,\ldots$ such that

$$||z_n - \Phi(z_n)|| < \frac{1}{n}, \quad n = 1, 2, \dots$$

Set $z =: [(x_n)]_N$.

Need to show that $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence

$$||x_n - x_m|| = ||\Phi(x_n) - \Phi(x_m)||_*$$

$$\leq ||\Phi(x_n) - z_n||_* + ||z_n - z_m||_* + ||z_m - \Phi(x_m)||_*$$

$$< \frac{1}{n} + ||z_n - z_m|| + \frac{1}{m} \to 0, \qquad n, m \to \infty$$

Conclusion: $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence in $(E, \|.\|)$. Remains to show:

$$||z_n - z||_* \to 0, \qquad n \to \infty$$

$$||z_n - z||_* \le \underbrace{||z_n - \Phi(x_n)||_*}_{<\frac{1}{n}} + \underbrace{||\Phi(x_n) - z||_*}_{=\lim_{n \to \infty} ||x_n - x_m||} \to 0, \quad n \to \infty.$$

Consider $f \in C([0,1])$

- max-norm: $||f|| = \max_{x \in [0,1]} |f(x)|$. Then (C([0,1]), ||.||) is a Banach space.
- $p \ge 1$:

$$||f||_{L^p} = \left(\int_0^1 |f(x)|^p dx\right)^{\frac{1}{p}}$$

defines a norm for C([0,1])

Remark. • Consider piecewise linear $f_n \in C([0,1])$ for $n=1,2,\ldots$

$$f_n(x) = \begin{cases} 1, & \text{if } \frac{1}{2} \le x \le 1\\ 0, & \text{if } x \le \frac{1}{2} - \frac{1}{2n} \end{cases}$$

with

$$||f_n - f_m||_{L^1} \le \frac{1}{2} \frac{1}{\min(m, n)} \to 0, \quad n, m \to \infty$$

So $(f_n)_{n=1}^\infty$ is a Cauchy sequence in $(C([0,1]),\|.\|_{L^1})$ but $(f_n)_{n=1}^\infty$ does not converge in $(C([0,1]),\|.\|_{L^1})$ since if $\|f_n-f\|_{L^1}\to 0$ as $n\to\infty$ and $f\in C([0,1])$ then

$$f(x) = \begin{cases} 0, & \text{if } x \in [0, \frac{1}{2}) \\ 1, & \text{if } x \in [\frac{1}{2}, 1] \end{cases}$$

Conclusion: $(C([0,1]),\|.\|_{L^1})$ is not a Banach space.

· Consider:

$$f(x) = \begin{cases} 1, & \text{if } x = \frac{1}{2} \\ 0, & \text{if } x \in [0, 1] \setminus \left\{ \frac{1}{2} \right\} \end{cases}$$

Then

$$||f||_{L^1} = 0 = ||0||_{L^1}.$$

Compare this with the first axiom for a norm function.

• Replace [0,1] with $\mathbb{R}.$ For $f:\mathbb{R} \to \mathbb{R}$ set

$$\operatorname{supp}(f) = \{ x \in \mathbb{R} \mid f(x) \neq 0 \}$$

Set

$$C_0(\mathbb{R}) = \{ f \in C(\mathbb{R}) \mid \text{supp}(f) \text{ is compact in } \mathbb{R} \}$$

Claim: $C_0(\mathbb{R})$ forms a vector space and for every $p \geq 1$ and $f \in C_0(\mathbb{R})$

$$||f||_{L^p} = \left(\int_{\mathbb{R}} |f(x)|^p \,\mathrm{d}x\right)^{\frac{1}{p}}$$

defines a norm on $C_0(\mathbb{R})$.

Problem: $(C_0(\mathbb{R}), \|.\|_{L^p})$ for $p \ge 1$ are not Banach spaces.

 $(L^{1}(\mathbb{R}), \|.\|_{L^{1}})$ is a completion of $(C_{0}(\mathbb{R}), \|.\|_{L^{1}})$.

Note $A \subset \mathbb{R}$ and A bounded. Define

$$f_A(x) \begin{cases} 1, & x \in A \\ 0, \text{elsewhere} \end{cases}$$

Lebesguesmeasure of $A=\|f_A\|_{L^1}=\mu(f_A).$ $A\subset\mathbb{R}$ and A unbounded

$$\mu(A) = \lim_{n \to \infty} \mu(A \cap [-n, n]).$$

We say that $A \subset \mathbb{R}$ is a 0- set if for all $\varepsilon > 0$ there exist open intervals I_n , n = 1, 2, ... such that

- (1) $A \subseteq \bigcup_{n=1}^{\infty} I_n$
- (2) $\sum_{n=1}^{\infty}$ lenghts of $I_m < \varepsilon$

In particular

$$A = \mathbb{Q} = \{r_n \mid n = 1, 2, \ldots\}$$
 is a 0-set

56 1 Introduction

2 Hilbert spaces

Example. Consider $\mathbb{C}^n=\{(x_1,x_2,\ldots,x_n)\,|\,x_i\in\mathbb{C}\}$ and $x,y\in\mathbb{C}^n$ with $x=(x_1,\ldots,x_n)$, $y=(y_1,\ldots,y_n)$. Define the inner product of x,y (scalar product)

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \bar{y}_i \in \mathbb{C}$$

We have a map

$$\mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$$
$$(x, y) \mapsto \langle x, y \rangle$$

This mapping has properties:

•
$$x \neq 0$$
 folgt $\langle x, x \rangle = \sum_{i=1}^{n} x_i \bar{x}_i = \sum_{i=1}^{n} |x_i|^2 > 0$

•
$$\langle \lambda x \,,\, y \rangle = \lambda \langle x \,,\, y \rangle$$
 for $x,y \in \mathbb{C}^n$, $\lambda \in \mathbb{C}$.

•
$$\langle x\,,\,y\rangle=\sum_{i=1}^n x_i\bar{y}_i=\overline{\sum_{i=1}^n y_i\bar{x}_i} \text{ for } x,y\in\mathbb{C}^n.$$
 In particular $\langle x\,,\,\lambda y\rangle=\bar{\lambda}\langle x\,,\,y\rangle$ for $\lambda\in\mathbb{C}.$

•
$$\langle x+y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$
 for $x, y, z \in \mathbb{C}^n$.

Definition . An inner product space V is a complex vector space with an inner product which is a map

$$\langle ., . \rangle : V \times V \to \mathbb{C}$$

satisfying

•
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$
 for any $x, y \in V, \lambda \in \mathbb{C}$

•
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$
 for any $x, y, z \in V$

•
$$\langle x, y \rangle = \overline{\langle x, y \rangle}$$
 for any $x, y \in V$

•
$$\langle x, x \rangle > 0$$
 for any $x \in V, x \neq 0$

Can we generalize \mathbb{C}^n ?

$$\mathbb{C}^{\mathbb{N}}\{(x_1, x_2, \ldots) \mid x_i \in \mathbb{C}\}\$$

with

$$\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \bar{y}_i$$

This is not necessarily convergent.

Examples. (1)

$$l^{2} = \left\{ (x_{1}, x_{2}, \ldots) \middle| \sum_{i=1}^{\infty} |x_{i}|^{2} < \infty \right\}.$$

We have with Cauchy Schwarz

$$\sum_{i=1}^{n} |x_i \bar{y}_i| \le \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} |y_i|^2\right)^{\frac{1}{2}}$$

if $x \in l^2$ and $y \in l^2$ we get

$$\sum_{i=1}^{n} |x_i \bar{y}_i| \le \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{\infty} |y_i|^2\right)^{\frac{1}{2}} < \infty.$$

It follows that $\sum_{i=1}^{\infty} x_i \bar{y}_i$ converges absolutely and hence it is convergent. The following

$$\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \bar{y}_i$$

is well-defined for vectors $x,y\in l^2$. Like for \mathbb{C}^n one can easily check that $\langle .\,,\,.\rangle$ satisfies the axioms for inner products.

 $(l^2, \langle ., . \rangle)$ is an inner product space.

(2) Consider C([0,1]) with the inner product

$$\langle f, g \rangle = \int_0^1 f(t) \overline{g(t)} \, dt \qquad \forall f, g \in C([0, 1])$$

 $\langle \lambda f, g \rangle = \int_0^1 \lambda f(t) \overline{g(t)} \, dt = \lambda \int_0^1 f(t) \overline{g(t)} \, dt = \lambda \langle f, g \rangle$

 $\langle f, f \rangle = \int_0^1 f(t) \overline{f(t)} \, dt = \int_0^1 |f(t)|^2 \, dt > 0$

If we take \mathbb{R}^3 with the Eukledian norm on \mathbb{R}^3

$$\|(x_1, x_2, x_3)\| = \sqrt{x_1^2 + x_2^2 + x_3^2} = \left(\sum_{i=1}^3 |x_i|^2\right)^{\frac{1}{2}} = \langle x, x \rangle^{\frac{1}{2}}$$

Let V be an inner product space with $\langle .\,,\,.\rangle$ as the inner product. Let for $x\in V$

$$||x|| := \langle x, x \rangle^{\frac{1}{2}}$$

Statement 2.1. The $x \mapsto ||x||$ with ||.|| defined above is a norm.

We are going to prove the norm axioms but first we need another theorem

Theorem 2.2 (Cauchy-Schwarz inequality). For any $x, y \in V$ (inner product space)

$$|\langle x\,,\,y\rangle| \leq \langle x\,,\,x\rangle^{\frac{1}{2}} \langle y\,,\,y\rangle^{\frac{1}{2}}$$

The equality holds iff x, y are linearly dependent.

proof. Assume x,y linearly dependent. We can assume that $x=\lambda y$ for some $\lambda\in\mathbb{C}$.

$$|\langle x\,,\,y\rangle| = |\langle \lambda y\,,\,y\rangle| = |\lambda|\langle y\,,\,y\rangle$$

and

$$\begin{split} \langle x\,,\,x\rangle^{\frac{1}{2}}\langle y\,,\,y\rangle^{\frac{1}{2}} &= \langle \lambda y\,,\,\lambda y\rangle^{\frac{1}{2}}\langle y\,,\,y\rangle^{\frac{1}{2}} \\ &= |\lambda|\langle y\,,\,y\rangle^{\frac{1}{2}}\langle y\,,\,y\rangle^{\frac{1}{2}} \\ &= |\lambda|\langle y\,,\,y\rangle \end{split}$$

Hence

$$|\langle x\,,\,y\rangle| = \langle x\,,\,x\rangle^{\frac{1}{2}}\langle y\,,\,y\rangle^{\frac{1}{2}}.$$

Assume x,y are linearly independent. Hence $x+\lambda y\neq 0$ for any $\lambda\in\mathbb{C}$. By an axiom for inner product we get

$$0 < \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + \lambda \langle y, x \rangle + \overline{\lambda} \langle x, y \rangle + |\lambda|^2 \langle y, y \rangle$$

Pick now

$$\lambda = -\frac{\langle x\,,\,y\rangle}{\langle y\,,\,y\rangle}$$

(Note that $y \neq 0$ as x, y linearly independent.) We have

$$0 < \langle x , x \rangle - \frac{\overbrace{\langle x , y \rangle \langle y , x \rangle}^{=|\langle x, y \rangle|^{2}}}{\langle y , y \rangle} - \frac{\overbrace{\langle x , y \rangle \langle x , y \rangle}^{=|\langle x, y \rangle|^{2}}}{\langle y , y \rangle} + \frac{|\langle x , y \rangle|^{2}}{\langle y , y \rangle^{2}} \langle y , y \rangle$$
$$= \langle x , x \rangle - \frac{|\langle x , y \rangle|^{2}}{\langle y , y \rangle}$$

This gives

$$\frac{\left|\left\langle x\,,\,y\right\rangle\right|^{2}}{\left\langle y\,,\,y\right\rangle} < \left\langle x\,,\,x\right\rangle$$

and it follows

$$\left|\langle x\,,\,y\rangle\right|^2 < \langle x\,,\,x\rangle\langle y\,,\,y\rangle$$

2 Hilbert spaces 59

Now we can use this inequality to proof the statement above:

proof. (i) ||x|| > 0 for all $x \neq 0$ in V (Exercise)

- (ii) $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in V$, $\lambda \in \mathbb{C}$ (Exercise)
- (iii) Let $x, y \in V$. Then

$$\begin{split} \left\|x+y\right\|^2 &= \langle x+y\,,\, x+y\rangle \\ &= \langle x\,,\, x\rangle + \langle x\,,\, y\rangle + \langle y\,,\, x\rangle + \langle y\,,\, y\rangle \\ &= \langle x\,,\, x\rangle + 2\mathrm{Re}(\langle x\,,\, y\rangle) + \langle y\,,\, y\rangle \\ &\leq \langle x\,,\, x\rangle + 2|\langle x\,,\, y\rangle| + \langle y\,,\, y\rangle \\ &\leq \langle x\,,\, x\rangle + 2\langle x\,,\, x\rangle^{\frac{1}{2}}\langle y\,,\, y\rangle^{\frac{1}{2}} + \langle y\,,\, y\rangle \\ &= \left(\langle x\,,\, x\rangle^{\frac{1}{2}} + \langle y\,,\, y\rangle^{\frac{1}{2}}\right)^2 \end{split}$$

So

$$||x + y||^2 \le (||x|| + ||y||)^2$$

Theorem 2.3 (The Parallelogram Law). Let $(V,\langle .\,,\,.\rangle)$ be an inner product space. Let $\|x\|=\langle x\,,\,x\rangle^{\frac{1}{2}}$. Then

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2) \quad \forall x, y \in V.$$

Statement 2.4. l^p has inner product $\langle . , . \rangle_{l^p}$ such that

$$\left\|x\right\|_{p} = \sqrt{\langle x\,,\,x\rangle_{l^{p}}}$$

iff p=2.

proof. Enough to show that $\|.\|_p$ -norm does not satisfy the parallelogram law for some $x,y\in l^p$ if $p\neq 2$. Take for example $x=(1,0,0,\ldots)$ and $y=(0,1,0,\ldots)$. Note that $\|x\|_{l^p}=\|y\|_{l^p}=1$

$$\begin{aligned} \|x+y\|_{l^p}^2 &= \|(1,1,0,\ldots)\|_{l^p} = 2^{\frac{2}{p}} \\ \|x-y\|_{l^p}^2 &= \|(1,-1,0,\ldots)\|_{l^p} = 2^{\frac{2}{p}} \\ \|x+y\|_{l^p}^2 + \|x-y\|_{l^p}^2 &= 2 \cdot 2^{\frac{2}{p}} = 2(\|x\|_{l^p}^2 + \|y\|_{l^p}^2) = 2 \cdot 2 \end{aligned}$$

All l^p with $p \neq 2$ are not inner product spaces.

Exercise:

Show that $(C([0,1]), \|.\|_{\infty})$ is not an inner product space.

Remark. Whenever a norm satisfies the parallelogram law then there exists an inner product on ${\cal V}$ such that

$$||x|| = \langle x, x \rangle^{\frac{1}{2}}$$

Theorem 2.5 (The Polarization Identity). Let $(V, \langle ., . \rangle)$ be an inner product space. Then

$$4\langle x, y \rangle = \|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2$$

Definition 2.6. Let $(V, \langle ., . \rangle)$ be an inner product space. We say that x, y in V are othogonal if $\langle x, y \rangle = 0$ (We write $x \perp y$). Let $M \subseteq V$ Define the orthogonal complement

$$M^{\perp} = \{ x \in V \mid x \perp y \text{ for any } y \in M \}$$

Proposition 2.7. If $M \subseteq V$ then M^{\perp} is a subspace of V

Theorem 2.8 (Pythagorean formula). $x, y \in V$ (inner product space). Then

$$x \perp y$$
 iff $||x + y||^2 = ||x||^2 + ||y||^2$.

2.1 Orthogonal Systems

Let $(V, \langle ., . \rangle)$ be an inner product space $\{u_n\} \subseteq V$ is called orthogonal system (with n finite or infinite) if $u_n \perp u_m$ for all $n \neq m$. It is an orthonormal system if in addition $||u_n|| = 1$.

Examples. 1) $\{e_k\}_{k=1}^{\infty} \subseteq l^2$ with

$$\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \bar{y}_i$$

with

$$e_k = (0, \dots, 1, 0, \dots)$$

 $\Rightarrow \{e_k\}$ is an ON-system.

2) $C([-\pi,\pi])$ with

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(t) \overline{g(t)} \, dt.$$

$$\left\{ \frac{1}{\sqrt{2\pi}} e^{-int} \, \middle| \, n \in \mathbb{Z} \right\}$$

is an orthonormal system.

Definition 2.9. Let $\{a_n \mid n \in \mathbb{N}\}$ be an orthonormal system in V. The formal series

$$\sum_{n=1}^{\infty} \langle x \,,\, a_n \rangle a_n$$

is called a fourier series of x corresponding $\{a_n \mid n \in \mathbb{N}\}$ and $\langle x, a_n \rangle$ are called fourier coefficients of x corresponding to $\{a_n \mid n \in \mathbb{N}\}$.

Theorem 2.10 (Bessel's Equality and Inequality). If $\{u_n\}$ orthonormal system in an inner product space V, then for all $x \in V$

$$\left\| x - \sum_{k=1}^{n} \langle x \,,\, a_k \rangle a_k \right\|^2 = \|x\|^2 - \sum_{k=1}^{n} |\langle x \,,\, a_k \rangle|^2$$

and

$$\sum_{k=1}^{\infty} |\langle x, a_k \rangle|^2 \le ||x||^2$$

proof.

$$\left\| x - \sum_{k=1}^{n} \langle x, a_k \rangle a_k \right\|^2 = \langle x - \sum_{k=1}^{n} \langle x, a_k \rangle a_k, x - \sum_{k=1}^{n} \langle x, a_k \rangle a_k \rangle$$

$$= \langle x, x \rangle - \sum_{k=1}^{n} \overline{\langle x, a_k \rangle} \langle x, a_k \rangle - \sum_{k=1}^{n} \langle x, a_k \rangle \langle a_k, x \rangle$$

$$+ \langle \sum_{k=1}^{n} \langle x, a_k \rangle a_k, \sum_{k=1}^{n} \langle x, a_k \rangle a_k \rangle$$

$$= \|x\|^2 - \sum_{k=1}^{n} |\langle x, a_k \rangle|^2 - \sum_{k=1}^{n} |\langle x, a_k \rangle|^2 + \sum_{k=1}^{n} |\langle x, a_k \rangle|^2$$

$$= \|x\|^2 - \sum_{k=1}^{n} |\langle x, a_k \rangle|^2$$

This gives also:

$$\sum_{k=1}^{n} |\langle x, a_k \rangle|^2 = ||x||^2 - \left| |x - \sum_{k=1}^{n} \langle x, a_k \rangle a_k \right| \le ||x||^2$$

for all $n \in \mathbb{N}$. Hence

$$\sum_{k=1}^{\infty} |\langle x, a_k \rangle|^2 \le ||x||^2$$

Definition 2.11 (Hilbert space). A Hilbert space is an inner product space which is complete w.r.t. the norm is defined through the inner product.

Examples. • \mathbb{C}^n is an inner product space and complete w.r.t the Eukledean norm. Hence \mathbb{C}^n is a Hilbert space.

• l^2 is a Banach space w.r.t.

$$||x||_{l^2} = \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{\frac{1}{2}}$$

and

$$||x||_{l^2} = \langle x \,,\, x \rangle^{\frac{1}{2}}$$

where

$$\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \bar{y}_i$$

- $(C([0,1]),\|.\|_{\infty})$ is a Banach space but not an inner product space. Hence it is no Hilbert space.
- $(C([0,1]), \langle ., . \rangle)$ is an inner product space $f, g \in C([0,1])$ with

$$\langle f, g \rangle = \int_0^1 f(t) \overline{g(t)} \, \mathrm{d}t$$

and the corresponding

$$||f||_2 = \langle f, f \rangle = \int_0^1 |f(t)|^2 dt.$$

Remark. Other l^p spaces are not Hilbert spaces!!!! They are not inner product spaces.

Statement 2.12. $(C([0,1]),\langle.\,,\,.\rangle)$ is not a Hilbert space since $(C([0,1]),\|.\|_2)$ is not complete.

proof. Sketch: Show that $f_n(t)$, which is defined as a piecewise continuous function for example

$$f_n(x) = \begin{cases} 1, & \text{if } x \in [0, \frac{1}{2}] \\ 0, & \text{if } x \in [\frac{1}{2} + \frac{1}{n}] \\ \text{continuous}, & \text{else} \end{cases}$$

is a Cauchy sequence w.r.t $\|.\|_2$ but has no limit in C([0,1]).

Consider

$$C_F = \{(x_1, x_2, \dots) \mid \text{only finite } x_i \neq 0\}$$

2 Hilbert spaces 63

with

$$\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \bar{y}_i$$

Show that $(C_F, \langle ., . \rangle)$ is not a Hilbert space.

Definition 2.13 (strongly and weakly convergent). A sequence $\{x_n\} \subseteq H$, where H is a Hilbert space, is called strongly convergent $(x_n \to x \in H)$ if

$$||x_n - x|| \to 0, \qquad n \to \infty.$$

(Norm induced by an inner product)

We say that x_n is weakly convergent $(x_n \rightharpoonup x)$ if

$$\langle x_n, y \rangle \to \langle x, y \rangle, \quad \forall y \in H.$$

Statement 2.14. $x_n \to x \Rightarrow x_n \rightharpoonup x$.

proof. Assume strong convergence for $(x_n)_{n\in\mathbb{N}}$. Then

$$\begin{aligned} |\langle x_n, y \rangle - \langle x, y \rangle| &= |\langle x_n - x, y \rangle| \\ &\leq \underbrace{\langle x_n - x, x_n - x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}}}_{=||x_n - x||} \\ &= \underbrace{x_n - x}_{\to 0} ||y|| \to 0, \qquad n \to \infty \end{aligned}$$

Hence $\langle x_n, y \rangle \to \langle x, y \rangle$.

Remark. The converse is not true in general: Take $H=l^2$ and

$$x_n = e_n = (0, \dots, 1, 0, \dots)$$

 $y = (y_1, y_2, \dots) \in l^2$

We have for all $y \in H$

$$\langle e_n, y \rangle = y_n \to 0, \qquad n \to \infty$$

as

$$||e_n - 0||_{l^2} = ||e_n||_{l^2} = 1.$$

Statement 2.15. $x_n \to x$ and $y_n \to y$ yields

$$\langle x_n, y_n \rangle \to \langle x, y \rangle$$
.

In particular

$$x_n \to x \qquad \Rightarrow \qquad ||x_n|| \to ||x||.$$

proof.

$$\begin{aligned} |\langle x_n \,,\, y_n \rangle - \langle x \,,\, y \rangle| &= |\langle x_n \,,\, y_n \rangle - \langle x \,,\, y_n \rangle + \langle x \,,\, y_n \rangle - \langle x \,,\, y \rangle| \\ &= |\langle x_n - x \,,\, y_n \rangle + \langle x \,,\, y_n - y \rangle| \\ &\leq |\langle x_n - x \,,\, y \rangle| + |\langle x \,,\, y_n - y \rangle| \\ &\leq \underbrace{\|x_n - x\|\|y_n\|}_{\to 0} + \underbrace{\|x\|\|y_n - y\|}_{\to 0} \to 0, \qquad n \to \infty \end{aligned}$$

Check $\{\|y_n\|\}$ is bounded

$$||y_n|| = ||y_n - y + y|| \le \underbrace{0}_{||y_n - y||} + \underbrace{||y||}_{<\infty} \to 0, \quad n \to \infty$$

Statement 2.16. $x_n \rightharpoonup x$ and $\|x_n\| \to \|x\|$ yields

$$x_n \to x$$
.

proof.

$$||x_{n} - x||^{2} = \langle x_{n} - x, x_{n} - x \rangle$$

$$= \underbrace{\langle x_{n}, x_{n} \rangle}_{=||x_{n}||^{2}} - \langle x, x_{n} \rangle - \langle x_{n}, x \rangle + \langle x, x \rangle$$

$$= ||x_{n}||^{2} - \overline{\langle x_{n}, x \rangle} - \langle x_{n}, x \rangle + ||x||^{2}$$

$$= ||x_{n}||^{2} - ||x||^{2} - ||x||^{2} + ||x||^{2} = 0$$

We have proved

$$x_n \to x \qquad \Rightarrow \qquad \{\|x_n\|\} \text{ is bounded}$$

Theorem 2.17.

$$x_n \rightharpoonup x \qquad \Rightarrow \qquad \sup_{n \in \mathbb{N}} ||x_n|| < \infty$$

proof. Let $x_n \rightharpoonup x$. Consider $f_n : H \to \mathbb{C}$ where

$$f_n(y) = \langle y, x_n \rangle, \quad y \in H.$$

• f_n is a linear functional for every $n \in \mathbb{N}$.

• $\forall\,n\in\mathbb{N}\ f_n$ is a bounded (\Leftrightarrow continuous) linear functional as if

$$y_k \stackrel{k \to \infty}{\to} y \qquad \Rightarrow \qquad f_n(y_k) = \langle y_k, x_n \rangle \to \langle y, x_n \rangle = f_n(y), \qquad k \to \infty$$

• $f_n(y) \to \langle y, x \rangle$.

 $\{f_n(y)\}_n$ is a convergent sequence in $\mathbb C$ and hence bounded for all $y\in H.$ Hence it exists M_y such that

$$|f_n(y)| \leq M_y$$

By Banach-Steinhaus-Theorem it holds

$$||f_n|| \leq M$$
 for some $M > 0$.

We are done if we proof that $||f_n|| = ||x_n||$.

$$|f_n(y)| = |\langle y, x_n \rangle| \le ||y|| ||x_n||, \qquad \forall y \in H$$

Hence

$$||f_n|| \le ||x_n|| \tag{1}$$

On the other Hand we have

$$f_n(x_n) = \langle x_n , x_n \rangle = ||x_n||^2$$

and thus

$$||f_n|| = \sup_{x \in H} \frac{|f_n(x)|}{||x||} \ge \frac{|f_n(x_n)|}{||x_n||} = ||x_n||$$
 (2)

With (1) and (2) we are finished.

2.2 Orthogonal decomposition in Hilbert spaces

Remember Linear Algebra. Take \mathbb{R}^n and a subspace $M\subseteq\mathbb{R}^n$

$$\Rightarrow$$
 $\forall x \in \mathbb{R}^n$ $x = z + y$, where $z \in M, y \in M^{\perp}$

This can be done in a unique way

$$M = \operatorname{span} \{e_z\}$$

 $M^{\perp} = \operatorname{span} \{e_y\}$

and

$$z = \mathrm{proj}_{M^{\perp}} x, \qquad \qquad \|x - \mathrm{proj}_{M} x\| = \min_{y \in M} \|x - y\|$$

General Hilbert space case

66

Proposition 2.18. $M \subseteq H$, then M^{\perp} is a closed subspace and

$$\left(M^{\perp}\right)^{\perp} = \overline{\operatorname{span}\,M}$$

Statement 2.19. H Hilbert space and M-closed subspace of H and $x \in H$. Then there exists a unique $z \in M$ such that

$$||x - z|| = \operatorname{dist}(x, M) := \inf_{y \in M} ||x - y||$$

(z analog of the $proj_M x$ in the other case)

Proposition 2.20. Taking $z \in M$ from the previous proposition. We have $x - z \in M^{\perp}$, i.e.

$$x = \underbrace{z}_{\in M} + \underbrace{(x - z)}_{\in M^{\perp}}$$

Theorem 2.21 (Orthogonal Decompostion Theorem). Let $(E, \langle . , . \rangle)$ be a Hilbert space and S be a closed subspace of E.

$$\Rightarrow$$
 $E = S \oplus S^{\perp}$

which means that for every $x \in E$ there exists an unique decomposition

$$x = y + z$$

with $y \in S$ and $z \in S^{\perp}$.

Example. Let $A \subseteq E$ where E is a Hilbert space. It follows

$$\overline{\operatorname{span} A} = \left(A^{\perp}\right)^{\perp}$$

Note

$$A\subseteq\underbrace{\left(A^{\perp}\right)^{\perp}}_{\text{subspace of }E}\qquad\Rightarrow\qquad \operatorname{span}\ A\subseteq\underbrace{\left(A^{\perp}\right)^{\perp}}_{\text{closed}}\qquad\Rightarrow\qquad \overline{\operatorname{span}\ A}\subseteq\left(A^{\perp}\right)^{\perp}$$

$$A\subseteq \overline{\operatorname{span}\, A}\qquad \Rightarrow \qquad \overline{\operatorname{span}\, A}^\perp\subseteq A^\perp\qquad \Rightarrow \qquad \left(A^\perp\right)^\perp\subseteq \left(\overline{\operatorname{span}\, A}^\perp\right)^\perp$$

Hence

$$\overline{\operatorname{span}\, A}\subseteq \left(A^\perp\right)^\perp\subseteq \left(\overline{\operatorname{span}\, A}^\perp\right)^\perp$$

2 Hilbert spaces 67

By the Orthogonal Decomposition Theorem we get

$$E = \overline{\operatorname{span} A} \oplus \overline{\operatorname{span} A}^{\perp} = \overline{\operatorname{span} A}^{\perp} \oplus \left(\overline{\operatorname{span} A}^{\perp}\right)^{\perp}$$

which implies

$$\overline{\operatorname{span} A} = \left(\overline{\operatorname{span} A}^{\perp}\right)^{\perp}$$

$$\Rightarrow \left(A^{\perp}\right)^{\perp} = \overline{\operatorname{span} A}$$

Now we are going to prove the Orthogonal Decomposition Theorem. **Step 1:** S is a closed convex set in a Hilbert space E. This implies that

$$\forall x \in E \exists ! y \in S: \qquad ||x - y|| \le ||x - \tilde{y}|| \qquad \forall \tilde{y} \in S.$$

which means

$$||x - y|| = \inf_{\tilde{y} \in S} ||x - \tilde{y}||.$$

Fix $x \notin S$ with

$$\inf_{\tilde{y} \in S} ||x - \tilde{y}|| = d > 0.$$

Take a sequence $(y_n)_{n=1}^{\infty}$ in S such that

$$||x - y_n|| \to d, \qquad n \to \infty.$$

Claim: This is a Cauchy sequence. (use Parallelogram-law for $\|.\|$)

Step 2: S as in ODT.

Note: S must be convex. Fix $x \in E$, choose $y \in S$ with

$$||x - y|| < ||x - \tilde{y}||, \quad \forall \, \tilde{y} \in S$$

Set

$$\underbrace{x}_{\in E} = \underbrace{y}_{\in S} + (x - y)$$

To show: $x - y \in S^{\perp}$. A variational argument of this is

$$\langle x - y, v \rangle = 0, \quad \forall v \in S.$$

We know

$$\begin{split} \|x-y\|^2 &\leq \|x-y+\alpha v\|^2 & \forall \operatorname{scalars} \, \alpha \\ \|x-y\|^2 &\leq \langle x-y+\alpha v \,,\, x-y+\alpha v \rangle \\ &= \|x-y\|^2 + \alpha \langle v \,,\, x-y \rangle + \bar{\alpha} \langle x-y \,,\, v \rangle + |\alpha|^2 \|v\|^2 \end{split}$$

and

$$0 \le 2\operatorname{Re}(\alpha\langle x+y,v\rangle) + |\alpha|^2||v||$$

Set

$$\alpha = t \overline{\langle x - y, v \rangle}, \qquad t \in \mathbb{R}.$$

$$\Rightarrow \qquad 0 \le 2t |\langle x - y, v \rangle|^2 + t^2 |\langle x - y, v \rangle|^2 ||v||^2$$

Assume $\langle x-y\,,\,v\rangle\neq 0$: We have

$$0 \le 2t + t^2 ||v||^2 \qquad \forall t \in \mathbb{R}$$

$$\Rightarrow \qquad -2t \le t^2 ||v||^2, \qquad \text{Let } t < 0$$

$$\Leftrightarrow \qquad 2 \le -t ||v||^2, \qquad t < 0$$

Let $t \to 0$, then

$$2 \leq 0$$

which is a contradiction.

2.3 Bounded linear functionals on Hilbert spaces

Consider $(H, \langle ., . \rangle)$ - Hilbert space (inner product space which is complete w.r.t. to a norm $||x|| = \sqrt{\langle x, x \rangle}$).

Let M be a closed subspace of H.

$$\mathcal{M}^{\perp} = \{ y \in H \, | \, \langle x \,, \, y \rangle = 0, \, \forall \, x \in M \}.$$

Then we know $H=M+M^{\perp}$, i.e. for any $x\in H$ there exists a unique $y\in M$ and $z\in M^{\perp}$ such that

$$x = y + z$$
.

Theorem 2.22 (Riesz-Frechét represantation theorem). Let $(H, \langle . , . \rangle)$ be a Hilbert space. Let f be a bounded linear functionall on H. Then there exists a unique $x_f \in H$ such that

$$f(x) = \langle x, x_f \rangle, \quad \forall x \in H.$$

Moreover

$$||f|| = ||x_f||_H$$

Remark. If $f:H\to\mathbb{C}$ is of the form

$$f(x) = \langle x, y \rangle$$
, for all $x \in H$ and some $y \in H$.

Then f is bounded and linear (easy with Cauchy-Schwarz and properties of the scalar product).

2 Hilbert spaces 69

proof. Existence of x_f : If f is a zero linear functional, i.e. f(x) = 0 for all $x \in H$ take $x_f = 0$. Assume now that f is not the zero functional. Consider

$$N(f) := \ker f = \{x \in H \mid f(x) = 0\}.$$

Then N(f) is a closed subspace of H: For $x_1, x_2 \in N(f)$, $\alpha, \beta \in \mathbb{C}$ it holds

$$f(\alpha x_1, \beta x_2) \stackrel{\text{lin}}{=} \alpha f(x_1) + \beta f(x_2).$$

Hence $\alpha x_1 + \beta x_2 \in N(f)$ and N(f) is a subspace. N(f) is closed since if $x_n \in N(f)$ with $x_n \to x$ strongly. Then

$$f(x_n) \to f(x)$$

because of bounded and hence continuous. But we know that $f(x_n)=0$ so the limit has to be f(x)=0, i.e $x\in N(f)$. N(f) is a proper closed subspace. $(N(f)\neq H)$. Consider now $N(f)^{\perp}$ which is non-zero.

• $\dim N(f)^{\perp}=1$. Assume that $x_1\neq 0, x_2\neq 0\in N(f)^{\perp}$. Then we have $f(x_1), f(x_2)\neq 0$. It exists $a\in\mathbb{C}$ such that

$$f(x_1) + af(x_2) = 0$$

And also

$$f(x_1 + ax_2) = 0$$

which gives

$$x_1 + ax_2 \in N(f) \cap N(f)^{\perp} = \{0\}.$$

Hence

$$x_1 + ax_2 = 0$$

Any two vectors are linearly dependent in $N(f)^{\perp}$ which gives

$$\dim N(f)^{\perp} = 1$$

Take $y' \in N(f)^{\perp}$ with ||y'|| = 1 and let

$$x_f = \overline{f(y')}y'.$$

We get

$$\langle x \,,\, x_f \rangle = \begin{cases} 0, & \text{if } x \in N(f) \\ \langle \lambda y' \,,\, \overline{f(y')}y' \rangle = f(y')\lambda \underbrace{\langle y' \,,\, y' \rangle}_{=1}, & \text{if } x = \lambda y' \end{cases}$$

Furthermore

$$\langle x, x_f \rangle = \begin{cases} f(x), & \text{if } x \in N(f) \\ f(\lambda y') = f(x), & \text{if } x = \lambda y' \end{cases}$$

Since every element in H is given by $x + \lambda y'$. For $x \in N(f)$ and $\lambda \in \mathbb{C}$. Using linearity we get

$$f(x + \lambda y') = f(x) + f(\lambda y') = \langle x, x_f \rangle + \langle \lambda y', x_f \rangle = \langle x + \lambda y', x_f \rangle$$

uniqueness: Assume there exists $x_1, x_2 \in H$ such that

$$f(x) = \langle x, x_1 \rangle = \langle x, x_2 \rangle, \quad \forall x \in H$$

We get

$$\langle x, x_1 - x_2 \rangle = 0, \quad \forall x \in H.$$

It holds in particular for $x = x_1 - x_2$ the following equality

$$\langle x_1 - x_2, x_1 - x_2 \rangle = 0 \qquad \Rightarrow \qquad x_1 - x_2 = 0.$$

norm equality We must see that

$$||f|| = ||x_f||_H$$

From remark we have

$$f(x) = \langle x, x_f \rangle \qquad \Rightarrow \qquad ||f|| \le ||x_f||$$

We have for $x_f \neq 0$:

$$||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||} \ge \frac{|f(x_f)|}{||x_f||} = \frac{||x_f||^2}{||x_f||} = ||x_f||$$

This gives the desired result.

Example.

$$E = C_F = \{(x_1, x_2, \ldots) \mid \text{only finite number of } x_i \neq 0\} \subseteq l^2$$

On C_F consider l^2 -inner-product

$$\langle x, y \rangle = \sum_{i=1}^{\infty} x_i \bar{y}_i \quad \text{for } x, y \in C_F$$

1. C_F is not a Hilbert space as it is not complete w.r.t

$$||x||_2 = \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{\frac{1}{2}}$$

Find a Cauchy sequence that is not convergent to an element in C_F .

Find a proper closed subspace M such that $M^{\perp} = \{0\}$ (This would mean in particular that $C_F \neq M + M^{\perp}$)

Consider

$$M = \left\{ (x_1, x_2, \dots) \in C_F \left| \sum_{k=1}^{\infty} x_k \frac{1}{k} = 0 \right. \right\}$$
$$x_f = (1, \frac{1}{2}, \frac{1}{3}, \dots) \in l^2$$

$$M = \ker f \cap C_F$$

where

$$f: l^2 \to \mathbb{C}$$

$$f(x) = \langle x, x_f \rangle = \sum_{k=1}^{\infty} x_k \frac{1}{k}$$

 M^{\perp} = all elements in C_F which are in $(\ker f)^{\perp}$

From the proof of Riesz-Frechet theorem we have $(\ker f)^{\perp}$ is 1-dimensional and

$$x_f \in (\ker f)^{\perp}$$

Hence

$$(\ker f)^{\perp} = \{\lambda x_f \mid \lambda \in \mathbb{C}\}\$$

We have

$$\underbrace{(\ker f)^{\perp} \cap C_F}_{=M^{\perp}} = \{0\}.$$

2. $(H,\langle.\,,\,.\rangle)$ Hilbert space and $\{u_i\}\subseteq H$ finite or infinite i. $\{u_i\}$ is an orthogonal system if

$$\langle u_i, u_j \rangle = 0, \quad \forall i \neq j.$$

and an orthonormal system if

$$\langle u_i, u_j \rangle = \delta_{ij} = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases}$$

Proposition 2.23. Orthogonal system of non-zero vectors are linearly independent. (See linear algebra)

Having linearly independent family of vectors we can make it orthogonal with for example using Gram-Schmidt orthogonalization procedure. (See linear algebra for details). Recall that we can write a Fourier series of x with $\langle x\,,\,u_i\rangle$ Fourier coefficients

$$x \in H$$
 \Rightarrow $x = \sum_{i=1}^{\infty} \langle x, u_i \rangle u_i$

with $\{u_i\}$ -ON-system.

 $C([-\pi,\pi])$ and $\{u_k\}=\left\{rac{1}{\sqrt{2\pi}}e^{ikt}\,\Big|\,k\in\mathbb{Z}
ight\}$ equipped with the scalar product

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(t) \overline{g(t)} \, \mathrm{d}t$$

It holds for the Fourier-series

$$\langle f, u_k \rangle = \hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(t)e^{-ikt} dt$$

We want to see when

$$\sum_{i=1}^{\infty} \langle x, u_i \rangle u_i$$

is convergent to x.

Definition 2.24. \mathcal{A}_n ON-system is called an ON-basis for H if its span is dense in H. We say that an ON-system is complete if every $x \in H$ is

$$\sum_{i=1}^{\infty} \langle x, u_i \rangle u_i$$

Theorem 2.25. $(H, \langle ., . \rangle)$ - Hilbert space, $\{u_k\}$ is ON-system in H. The following statements are equivalent.

- (1) $\{u_n\}$ is a complete ON-system.
- (2) $\{u_n\}$ is an ON-basis for H.
- (3) (Parsevals's Identity)

$$||x|| = \left(\sum_{k=1}^{\infty} |\langle x, u_k \rangle|^2\right)^{\frac{1}{2}}, \quad \forall x \in H.$$

- (4) $\langle x\,,\,y\rangle=\sum_{k=1}^\infty\langle x\,,\,u_k\rangle\overline{\langle y\,,\,u_k\rangle}$ for all $x,y\in H$.
- (5) $\langle x \,,\, u_k \rangle = 0$ for all $k \in \mathbb{N}$ follows x = 0.

proof. (1) \Rightarrow (2): We have

$$x = \sum_{i=1}^{\infty} \langle x \,, \, u_i \rangle w_i$$

it means

$$x = \lim_{n \to \infty} \sum_{i=1}^{n} \langle x, u_i \rangle w_i \in \operatorname{span} \{ u_i \mid i \ge 1 \}$$

This is implies that any $x \in H$ is in $\overline{\text{span } \{u_i \mid i \geq 1\}}$, i.e. $\{w_i\}$ is ON-basis.

(2) \Rightarrow (5): Let $\{u_i\}$ be a ON-basis. Assume

$$\langle x, u_k \rangle = 0, \quad \forall k \in \mathbb{N}$$

2 Hilbert spaces 73

Then

$$\langle x, u \rangle = 0, \quad \forall u \in \text{span } \{u_k \mid k \geq 1\}.$$

By the property that strong convergence implies weak convergence we will have

$$\langle x \,,\, u \rangle = 0, \qquad \forall \, u \in \operatorname{span} \, \{u_k \,|\, k \geq 1\} = H.$$

In particular

$$\langle x, u \rangle = 0, \quad \text{for } u = x$$

which means

$$\langle x, x \rangle = 0 \qquad \Leftrightarrow \qquad x = 0.$$

(5) \Rightarrow (1) Recall Bessel's equality. For $\{u_k\}$ - ON-system then

$$\left\| x - \sum_{i=1}^{k} \langle x, u_k \rangle u_k \right\|^2 = \|x\|^2 - \sum_{i=1}^{k} |\langle x, u_k \rangle|^2$$

Assume (5), i.e.

$$\langle x, u_k \rangle = 0, \quad \forall k \quad \Rightarrow \quad x = 0$$

We must see

$$x = \sum_{k=1}^{n} \langle x, u_k \rangle w_k \qquad \forall x \in H.$$

From Bessel's equality we have

$$\sum_{k=1}^{n} |\langle x \,, \, w_k \rangle| = \|x\|^2 - \left\| x - \sum_{k=1}^{n} \langle x \,, \, u_k \rangle w_k \right\|^2 \le \|x\|^2, \qquad \forall \, k \in \mathbb{N}$$

and hence $\sum_{k=1}^{n} |\langle x, w_k \rangle|^2$ is convergent. It implies that for n > m we have

$$\begin{split} \left\| \sum_{k=1}^{n} \langle x \,,\, u_k \rangle w_k - \sum_{k=1}^{n} \langle x \,,\, u_k \rangle w_k \right\|^2 &= \left\| \sum_{k=m+1}^{n} \langle x \,,\, u_k \rangle w_k \right\|^2 \\ &= \sum_{k=m+1}^{n} |\langle x \,,\, u_k \rangle|^2 \|w_k\|^2 \\ &\to 0, \qquad n,m \to 0 \qquad (*) \end{split}$$

Note that if $\{x_i\}$ are paarwise orthogonal it holds

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \sum_{i=1}^{n} \|x\|^2.$$

From (*) we know that the partial sum

$$S_n := \sum_{k=1}^n \langle x \,, \, u_k \rangle w_k$$

is a Cauchy sequence. As H is a Hilbert space, H is complete and hence S_n has a limit in H. Write

$$\sum_{i=1}^{\infty} \langle x \,,\, u_i \rangle w_i$$

for the limit. We must see that the limit is x. Consider

$$y := x - \sum_{i=1}^{\infty} \langle x, u_i \rangle w_i$$

Then

$$\langle y, u_i \rangle = \langle x, w_i \rangle - \langle x, w_i \rangle = 0, \quad \forall i$$

By assumption (5) it follows

$$y = 0$$
 \Leftrightarrow $x = \sum_{i=1}^{\infty} \langle x, u_i \rangle w_i$

(1) \Rightarrow (3): From Bessel's equality we have again

$$\left\| x - \sum_{i=1}^{n} \langle x, u_i \rangle w_i \right\|^2 = \|x\|^2 - \sum_{i=1}^{n} |\langle x, u_i \rangle|^2$$

By assumption (1) the LHS tends to 0 as $n \to \infty$. On the other hand the RHS goes to

$$\to ||x||^2 - \sum_{i=1}^{\infty} |\langle x, u_i \rangle|^2, \qquad n \to \infty.$$

This gives

$$||x||^2 - \sum_{i=1}^{\infty} |\langle x, u_i \rangle^2| = 0$$

- (3) \Rightarrow (5) trivial.
- (4) \Rightarrow (5) trivial (take y = x)
- $(1) \Rightarrow (4)$ We have

$$x = \sum_{k=1}^{\infty} \langle x \,, \, u_k \rangle u_k$$

Then

$$\langle x, y \rangle = \sum_{k=1}^{\infty} \langle x, w_k \rangle \langle u_k, y \rangle = \sum_{k=1}^{\infty} \langle x, u_k \rangle \overline{\langle y, u_k \rangle}$$

Example. $L^2([-\pi,\pi])$ with

$$\left\{ \frac{1}{\sqrt{2\pi}} e^{int} \,\middle|\, n \in \mathbb{Z} \right\}$$

is an ON-system in $L^2([-\pi,\pi])$ where

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(t) \overline{g(t)} \, \mathrm{d}t$$

Statement 2.26. The system above is an ON-basis for $L^2([-\pi,\pi])$. In particular, for any $f \in L^2([-\pi,\pi])$

$$f = \sum_{k \in \mathbb{Z}} \hat{f}(k)e^{ikt}$$

convergent in the L^2 -norm.

$$||f||_{L^2} = \left(\int_{-\pi}^{\pi} |f(t)|^2 dt\right)^{\frac{1}{2}}$$

which is equivalent to

$$\left\| f - \sum_{k=-n}^{n} \hat{f}(k)e^{ikt} \right\|_{L^{2}}^{2} \to 0$$

Sketch of the proof:

- (1) Stein-Weierstraß-Theorem. X compact set $C(X,\mathbb{C})$ continuous functions with complex values. Let $M\subseteq C(X,\mathbb{C})$ be a subspace that satisfies
 - (a) it seperates points of X, i.e.

$$\forall x_1, x_2 \in X, x_1 \neq x_2 \,\exists f \in M : f(x_1) \neq f(x_2)$$

- (b) M contains the constant function 1 $(f(x) = 1 \text{ for all } x \in X)$
- (c) It is closed under complex conjugation, i.e.

$$f \in M \qquad \Rightarrow \qquad \bar{f} \in M$$

and closed under product, i.e.

$$f_1, f_2 \in M \qquad \Rightarrow \qquad f_1 \cdot f_2 \in M$$

Then M is dense in $C(X,\mathbb{C})$ w.r.t. $\|.\|_{\infty}$ (Continuous function by Polynomials) From this it follows

$$M = \{all complex polynomials\}$$

are dense in C([a,b]).

(2) C([a,b]) is dense in $L^2([a,b])$ w.r.t. $\|.\|_{L^2}$ -norm.

We will use (1) and (2) to show that span $\left\{\frac{1}{\sqrt{2\pi}}e^{int}\,\Big|\,n\in\mathbb{Z}\right\}$ is dense in $L^2([-\pi,\pi])$. proof. Let

$$M := \operatorname{span} \left\{ \frac{1}{\sqrt{2\pi}} e^{int} \,\middle|\, n \in \mathbb{Z} \right\} \subseteq \{ f \in C([-\pi,\pi \,|\,) \}] f(\pi) = f(-\pi)$$

M seperates points, it contains the constant function 1 and it is closed under complex conjugation. Furthermore M is closed under taking products. With Stein-Weierstraß it follows that M is dense in

$$\{f \in C([-\pi,\pi\,|\,)\}] f(\pi) = f(-\pi).$$

By (2) we have $C([-\pi,\pi])$ is dense in $L^2([-\pi,\pi])$ w.r.t. the L^2 -norm. From this one can see that even $\{f \in C([-\pi,\pi])\}]f(\pi) = f(-\pi)$ is dense in $L^2([-\pi,\pi])$:

$$\forall \varepsilon > 0, \ \forall f \in L^2 \ \exists g \in C([-\pi, \pi]): \qquad \|f - g\|_{L^2}^2 = \int_{-\pi}^{\pi} |f(t) - g(t)|^2 \, \mathrm{d}t < \varepsilon$$

Define g_{ε} such that it has a pike in $x=\pi-\varepsilon$ but it is continuous and is equal to g for $x<\pi-\varepsilon$. Then

$$g_{\varepsilon} \in C([-\pi, \pi]), g_{\varepsilon}(-\pi) = g_{\varepsilon}(\pi).$$

It holds

$$\begin{aligned} \|f - g_{\varepsilon}\|_{L^{2}} &\leq \underbrace{\|f - g\|_{L^{2}}}_{<\sqrt{\varepsilon}} + \|g - g_{\varepsilon}\|_{L^{2}} \\ &\leq \sqrt{\varepsilon} + \left(\int_{\pi - \varepsilon}^{\pi} |g(t) - g_{\varepsilon}(t)| \, \mathrm{d}t\right)^{\frac{1}{2}} \\ &\leq \sqrt{\varepsilon} + \sqrt{\max_{x \in [-\pi - \varepsilon, \pi]} |g - g_{\varepsilon}| \varepsilon} \\ &= \sqrt{\varepsilon} + \sqrt{C} \sqrt{\varepsilon} \end{aligned}$$

We conclude: any $f=L^2-\text{limit }g_n$ with $g_n\in C([-\pi,\pi])$ and $g_n(-\pi)=g_n(\pi).$ Each $g_n=\|.\|_\infty$ -norm limit of an element in span $\left\{\frac{1}{\sqrt{2\pi}}e^{int}\,\middle|\,n\in\mathbb{Z}\right\}$ as

$$||g - f||_{L^2} \le ||g - f||_{\infty}^{\frac{1}{2}} (2\pi)^{\frac{1}{2}}$$

Note that

$$\left(\int_{-\pi}^{\pi} |g(t) - f(t)|^2 dt \right)^{\frac{1}{2}} \le \max_{x \in [-\pi, \pi]} |g(t) - f(t)| \left(\int_{-\pi}^{\pi} dt \right)^{\frac{1}{2}}$$

We get that each g_n can be approximated in the L^2 -norm by elements in span $\left\{\frac{1}{\sqrt{2\pi}}e^{int}\ \middle|\ n\in\mathbb{Z}\right\}$ hence

$$\operatorname{span}\left\{\frac{1}{\sqrt{2\pi}}e^{int}\,\middle|\,n\in\mathbb{Z}\right\}\subseteq L^2([-\pi,\pi]).$$

2.4 Linear operators on Hilbert spaces

Set $(H_1,\langle.\,,\,.\rangle_1)$ and $(H_2,\langle.\,,\,.\rangle_2)$ Hilbert spaces. A bounded linear mapping $A:H_1\to H_2$ is called bounded linear operator.

Bounded means in our case

$$||Ax||_2 \le C||x||_1$$
 $\forall x \in H$ and some constant C

Example. Set $H_1=H_2=L^2([0,1])$ and $K:[0,1]\times[0,1]\to\mathbb{C}$. Assume that K is continuous. Consider

$$(Af)(x) = \int_0^1 K(x, y) f(y) \, \mathrm{d}y$$

A is linear (trivial). Show that A is bounded:

$$\begin{split} \|Af\|_2 &= \int_0^1 |\int_0^1 K(x,y) f(y) \, \mathrm{d}y|^2 \, \mathrm{d}x \\ & \stackrel{\mathsf{CS}}{\leq} \int_0^1 \left(\int_0^1 |K(x,y)|^2 \, \mathrm{d}y \cdot \int_0^1 |f(y)|^2 \, \mathrm{d}y \right) \, \mathrm{d}x \\ &= \underbrace{\int_0^1 \left(\int_0^1 |K(x,y)|^2 \, \mathrm{d}y \right) \, \mathrm{d}x}_{<\infty} \cdot \underbrace{\int_0^1 |f(y)|^2 \, \mathrm{d}y}_{=\|f\|_2^2} \end{split}$$

Hence

$$||A|| \le \left(\int_0^1 \int_0^1 |K(x,y)|^2 dx dy\right)^{\frac{1}{2}}.$$

Products $(A \cdot B)$ of operators $H \to H$ with $A : H \to H$ and $B : H \to H$ are defined by

$$(A \cdot B)(f) := A(Bf)$$

Statement 2.27. If A and B are bounded, then $A \cdot B$ is also bounded and

$$||AB|| \le ||A|| ||B||.$$

In particular: for all $n \in \mathbb{N}$ A^n is bounded and

$$||A^n|| \le ||A||^n$$

Example. $E = L^2([0,1])$ and $f, g \in E$ with

$$\langle f, g \rangle_{L^2} = \int_0^1 f(x) \overline{g(x)} \, dx, \qquad \|f\|_{L^2} = \left(\int_0^1 |f(x)|^2 \, dx\right)^{\frac{1}{2}}$$

78 2 Hilbert spaces

Set $h \in C([0,1] \times [0,1])$ and for $f \in L^2([0,1])$

$$A(f)(x) = \int_0^1 h(x, y) f(y) dy, \qquad x \in [0, 1]$$

Then

$$||A|| \le \left(\int_0^1 \left(\int_0^1 |h(x,y)|^2 dy\right) dx\right)^{\frac{1}{2}} < \infty$$

Example. Let $(E, \|.\|)$ be a normed space. Then there are no $A, B \in B(E, E)$ such that

$$AB - BA = I$$

where I is the identity $(I(x) = x \text{ for } x \in E)$.

Example. $(E,\langle .,.\rangle)$ Hilbert space, $(x_n)_{n=1}^{\infty}$ ON-basis and $(\lambda_n)_{n=1}^{\infty}$ sequence of scalars. Set

$$T(x) = \sum_{n=1}^{\infty} \lambda_n \langle x, x_n \rangle x_n, \quad x \in E$$

Claim:

- 1) $T \in B(E, E)$ \Leftrightarrow $(\lambda_n)_{n=1}^{\infty}$ is a bounded sequence in \mathbb{C} .
- 2) $T \in K(E, E)$ \Leftrightarrow $\lambda_n \to 0$ for $n \to \infty$.

Note $x \in E$ and the Parseval's formula

$$||x||^2 = \sum_{n=1}^{\infty} |\langle x, x_n \rangle|^2$$

For $T(x) \in E$ we have

$$||T(x)||^2 = \sum_{n=1}^{\infty} |\lambda_n|^2 |\langle x, x_n \rangle|^2$$

If $(\lambda_n)_{n=1}^{\infty}$ bounded sequence in \mathbb{C} . Then $\sup |\lambda_n| \equiv M < \infty$ and

$$||T(x)||^2 \le \sum_{n=1}^{\infty} M^2 |\langle x, x_n \rangle|^2 = M^2 ||x||^2$$

If $(\lambda_n)_{n=1}^{\infty}$ is not bounded then there exists a sequence $(\lambda_{n_k})_{k=1}^{\infty}$ such that $|\lambda_{n_k}| \to \infty$ as $k \to \infty$. But

$$||T(x_{n_k})|| = |\lambda_{n_k}|||x_{n_k}|| = |\lambda_{n_k}| \to \infty, \qquad k \to \infty$$

$$\sup_{\|x\|=1} ||T(x)|| = \infty$$

So 1) is done. For 2) we assume $\lambda_n \to 0$ for $n \to \infty$. Set

$$T_k(x) = \sum_{n=1}^k \lambda_n \langle x, x_n \rangle x_n, \qquad x \in E$$

 T_k is a finite rank operator for $k=1,2,\ldots$ SO $T_k\in K(E,E)$ for all k.

$$||T - T_k||_{E \to E} = \sup_{\|x\| = 1} ||(T - T_k)(x)||$$

$$= \sup_{\|x\| = 1} \left\| \sum_{k=n+1}^{\infty} \lambda_n \langle x, x_n \rangle x_n \right\|$$

$$\leq \sup_{n=k+1, k+2, \dots} |\lambda_n| \to 0, \quad k \to \infty$$

Assume $\lambda_n \not\to 0$ for $n\to\infty$. Then there exists $\varepsilon>0$ and a sequence $(\lambda_{n_k})_{k=1}^\infty$ such that

$$|\lambda_{n_k}| \ge \varepsilon$$

Note

$$T(x_{n_k}) = \lambda_{n_k} x_{n_k}, \qquad k = 1, 2, \dots$$

 $||T(x_{n_k})|| = |\lambda_{n_k}| ||x_{n_k}|| = |\lambda_{n_k}| \ge \varepsilon, \qquad k = 1, 2, \dots$

 $x_{n_k} \stackrel{\mathsf{w}}{\to} 0 \text{ in } (E, \langle ., . \rangle) \text{ since for } y \in E$

$$\langle x_{n_k}, y \rangle = \langle x_{n_k}, \sum_{n=1}^{\infty} \langle y, x_n \rangle x_n \rangle = \overline{\langle y, x_{n_k} \rangle} \to 0$$

since

$$\sum_{n=1}^{\infty} |\langle y \, , \, x_n \rangle|^2 = ||y||^2 < \infty$$

If $T \in K(E,E)$ then $T(x_{n_k}) \to T(0) = 0$ but

$$||T(x_{n_k})|| \ge \varepsilon$$
, for all k

Hence

$$T \notin K(E, E)$$

Example. $(E, \langle ., . \rangle)$ Hilbert space, $A \in K(E, E)$ and I(x) = x for all $x \in E$. It follows $\Rightarrow R(I - A)$ closed in E

Remark.

$$R(I - A)^{\perp} = N((I - A)^*) = N(I - A^*)$$
$$\overline{R(I - A)} = R(I - A)^{\perp \perp} = N(I - A^*)^{\perp}$$

If $A \in K(E, E)$ then

$$\overline{R(I-A)} = R(I-A).$$

Solve

$$x = A(x) + y \Leftrightarrow (I - A)(x) = y$$

Compare 'Fredholm alternative'.

proof. Take a sequence $(y_n)_{n\in\mathbb{N}}\subseteq R(I-A)$ such that $y_n\to y$ in $(E,\|.\|)$. To show: $y\in R(I-A)$, i.e. y=(I-A)(x) for some $x\in E$ and $y_n=(I-A)(x_n)$ for some $x_n \in E$.

$$x_n \in E = N(I - A) + N(I - A)^{\perp}$$

such that

$$x_n = \tilde{x}_n + \hat{x}_n$$

with

$$||x_n||^2 = ||\tilde{x}_n||^2 + ||\hat{x}_n||^2$$

Step 1: Show $(\hat{x}_n)_{n=1}^{\infty}$ bounded in E. Step 2: $y_n = (I-A)(\hat{x}_n) = \hat{x}_n - A(\hat{x}_n)$.

Step 2:
$$y_n = (I - A)(\hat{x}_n) = \hat{x}_n - A(\hat{x}_n)$$
.