UGANDA MARTYRS UNIVERSITY, NKOZI

FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS

UNIVERSITY SPECIAL/SUPPLEMENTARY EXAMINATIONS

Second Year Bachelor of Science (FM and GEN)

MTC 2101 Calculus III

Date : Friday Aug 7^{th} , 2015

Time : 3 Hours (10:00 am - 1:00 pm)

Instructions

- (i) Read through the paper carefully and follow instructions on the answer booklet.
- (ii) Attempt any Four (4) questions.
- (iii) Do not write any thing on this question paper:
- (iv) Calculators and mathematical tables may be used.
- (v) Neat work is highly recommended.

- 1. (a) Given two vectors A and B, define the following:
 - (i) Dot product of A and B

(2 marks)

(ii) Cross product of A and B.

(2 marks)

- (b) The diagonals of a parallelogram are given by A = 3i 4j k and B = 2i + 3j 6k. Show that the parallelogram is a Rhombus and determine the length of it's sides and it's angles [6 marks]
- $c(i) \ \text{ If } \mathbf{A} = \mathbf{A_1i} + \mathbf{A_2j} + \mathbf{A_3k}. \\ \mathbf{B} = \mathbf{B_1i} + \mathbf{B_2j} + \mathbf{B_3k}.$

Prove that $\mathbf{A.B} = A_1 B_1 + A_2 B_2 + A_3 B_3$

[5 marks]

- (ii) If $\mathbf{A} = 2\mathbf{i} 3\mathbf{j} + -\mathbf{k}$ and $\mathbf{B} = \mathbf{i} + 4\mathbf{j} 2\mathbf{k}$, find
- (.) $\mathbf{A} \times \mathbf{B}$

2 marks

 $(..) (\mathbf{A} + \mathbf{B}) \times (\mathbf{A} - \mathbf{B})$

[4 marks]

- (d) Determine the value of ${\bf a}$ so that ${\bf A}=2{\bf i}+{\bf a}{\bf j}+{\bf k}$ and ${\bf B}=4{\bf i}-2{\bf j}-2{\bf k}$ [4 marks]
- 2. (a) Plot the points with the given polar coordinates and then find the rectangular coordinates
 - (i) $A(3, \frac{\pi}{3})$

[4 marks]

(ii) $B(-1, \frac{\pi}{4})$

[4 marks]

- (b) Convert the following polar equations to rectangular forms and sketch the resulting graphs
- (i) $sin\theta = \frac{r}{4}$

[6 marks]

(ii) $r^2 \sin 2\theta = 8$

[6 marks]

- (c) Find the area of the region enclosed by the Limacon with equation $r=3+2sin\theta;\, 0\leq\theta\leq2\pi \tag{5 marks}$
- 3. (a) State what is meant by curl and divergence of a vector field \mathbf{F} .

 Hence given $\mathbf{F}(x, y, z) = xz\mathbf{i} + xyz\mathbf{j} y^2\mathbf{k}$ find curl \mathbf{F} , div \mathbf{F} and div curl \mathbf{F} . [8 marks]
 - (b) If $A = xy^2\mathbf{i} 3yx^2\mathbf{j} + 2xy^2z\mathbf{k}$ and $\phi = 2y^3 + xz$ Find:
 - (i) $A \times \nabla(\phi)$ [04 marks]
 - (ii) $(A \times \nabla)\phi$ [04 marks]
 - (iii) $\nabla .(\phi A)$ [03 marks]
 - (c) If $B = zy^2\mathbf{i} 2yx^2\mathbf{j} + 3xyz^3\mathbf{k}$: Find $B \times (\nabla \phi)$ [06 marks]
- 4. a(i) Define gradient of a scalar ϕ [2 marks]
 - (ii) If $\phi = 3x^2 y^2z^3 + 4x^3y + 2x 3y 5$, find $\nabla^2 \phi$ [6 marks]
 - b A particle moves so that its position vector is given by $\mathbf{r}=cos\omega t\mathbf{i}+sin\omega t\mathbf{j}$ where ω is a constant. Show that
 - (i) the velocity \mathbf{v} of the particle is perpendicular to \mathbf{r} [4 marks]
 - (ii) the acceleration **a** is directed toward the origin and has magnitude proportional to the distance from the origin [4 marks]
 - (iii) $\mathbf{r} \times \mathbf{v} = \text{constant}$ [4 marks]
 - (c) If $B = zy^2\mathbf{i} + 2yx^2\mathbf{j} + 3xyz^3\mathbf{k}$ Find $B \times \nabla \phi$ [5 marks]
 - 5. a(i) Given the region R in the xy plane bounded by x + y = 6, x y = 2 and y = 0. Find the area bounded by R [7 marks]

- (ii) Sketch the region represented by $\int_0^1 \int_y^1 dx dy$ [4 marks]
- (b) If $\phi = 2xyz^2$, $F = xy\mathbf{i} z\mathbf{j} + x^2\mathbf{k}$ and C is the curve $x = t^2$, y = 2t. $Z = t^3$ from t = 0 to t = 1, evaluate the line integrals

(i)
$$\int_{\mathcal{C}} \phi dr$$
 (05 marks)

(ii)
$$\int_{\mathcal{C}} F \times dr$$
 (05 marks)

- (c) Given $5x^3z x^2y + 4z^2 2yz 5x = 0$; Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ (04 marks)
- 6. a(i) Define are length of a curve [2 marks]
 - (ii) Find the length of $r(t) = 4cost\mathbf{i} + 4sint\mathbf{j} + 3t\mathbf{k}, 0 \le t \le \frac{\pi}{2}$ [5 marks]
 - b(i) Evaluate the integral $\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} (x+y+z) dy dx dz$ [6 marks]
 - (b) Compute the value of triple integral $\int \int \int_D f(x,y,z) dv$ for the following:
 - (i) f(x, y, z) = xysinz; D is a cube bounded by $0 \le x \le \pi.0 \le y \le \pi$ and $0 \le z \le \pi$ [6 marks]
 - ,(ii) f(x,y,z)=x+y; D is the region between the surfaces z=2-x and $z=x^2 \text{ for } 0 \leq y \leq 3, -1 \leq y \leq 1$ [6 marks]

Success

END