Effict of Transmission Type on MPG

Introduction

In this report aim to explore the relationship between set of variables and miles per gallon (MPG) (outcome).

Data Processing

Some data has to be prepared

variables correlation

First we take a look at variables correlation with MPG column

```
sort(abs(cor(mtcars)[, c("mpg")]), decreasing = T)

## mpg wt cyl disp hp drat vs am carb gear

## 1.0000 0.8677 0.8522 0.8476 0.7762 0.6812 0.6640 0.5998 0.5509 0.4803

## qsec

## 0.4187
```

Exploratory Analysis

Exploratory Analysis had been done and showed relations between variables Check the appendix

Model selection

Attempt to fit a model with the most correlated variables

```
carsfit <- Im(mpg \sim tm + as.factor(cyl) + wt + disp + hp - 1, data = mcars)
```

Now We Exclude Number of Cylenders and dispalcement variables because they are not statistically segnificant.

and fit a model with significant values.

```
carsfit <- Im(mpg \sim tm + wt + hp - 1 + tm * wt * hp, data = mcars)
```

But that didn't worked, it has many many insignificant values.

So, let's try it with less details.

```
carsfit <- Im(mpg ~ tm + wt + hp - 1, data = mcars) summary(carsfit)
```

```
## Call:
## lm(formula = mpg \sim tm + wt + hp - 1, data = mcars)
## Residuals:
## Min 1Q Median 3Q Max
## -3.422 -1.792 -0.379 1.225 5.532
##
## Coefficients:
##
        Estimate Std. Error t value Pr(>|t|)
## tmautomatic 34.00288 2.64266 12.87 2.8e-13 ***
## tmmanual 36.08659 1.73634 20.78 < 2e-16 ***
         -2.87858 0.90497 -3.18 0.00357 **
         ## hp
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
## Residual standard error: 2.54 on 28 degrees of freedom
## Multiple R-squared: 0.987, Adjusted R-squared: 0.985
## F-statistic: 538 on 4 and 28 DF, p-value: <2e-16
```

Now we got a sutable model.

Conclusion

The Answer

From the model we can say that manual transmission cars are little bit better for MPG by an average of **2.0837** miled per US galon.

Model Uncertainty

The model used is very statistically significant one, with 0.9853 Adjusted R-squared. the data given is too small data and that is why we couldn't build a model with more details and variables.

Appendix

Exploratory analysis Plots

```
qplot(y = mpg, x = wt, data = mcars, colour = disp, size = hp, facets = . ~ \\ tm, geom = c("point"), ylab = "MPG", xlab = "Weight (lb/1000)", main = "MPG with displacement, wieght, and Gross horsepower")
```


 $\begin{aligned} &\text{qplot}(y = mpg, \, x = as.factor(cyl), \, data = mcars, \, geom = c("boxplot", "jitter"), \\ &\text{facets} = . &\sim tm, \, main = "MPG \, with \, Number \, of \, cylinders", \, ylab = "MPG", \, xlab = "Number \, of \, cylinders") \end{aligned}$


```
qplot(y = mpg, x = hp, data = mcars, color = tm, geom = c("point", "smooth"),
method = "Im", main = "MPG with Gross horsepower", ylab = "MPG", xlab = "Gross horsepower")
```


Rsiduals

```
qplot(y = resid(carsfit), x = carsfit$fitted.values, data = mcars, color = tm,
    xlab = "Fitted Values", ylab = "Residuals", main = "Residuals plot") + geom_abline(slope = 0,
    intercept = 0) + geom_smooth()
```

geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = x' to change the smoothing method.

