Chapitre 5: Dimension d'un espace vectoriel

Dimension

1.1 Dimension d'un espace vectoriel

Définition 1

Un espace vectoriel est dit de dimension finie s'il possède une base de cardinal fini (c'est-à-dire constituée d'un nombre fini de vecteurs).

Théorème 1 (Théorème/Définition : dimension d'un espace vectoriel)

Soit E un espace vectoriel de **dimension finie** non réduit à $\{0_E\}$.

Alors toutes les bases de E ont le même cardinal (c'est-à-dire possède le même nombre de vecteurs). Ce cardinal est appelé la **dimension** de E et est noté dim(E).

Par convention, la dimension d'un espace vectoriel réduit à zéro $\{0_E\}$ est 0.

Exemple 1 (Voir section 3.3 du chapitre précédent)

1. On a vu que ((1,0,0),(0,1,0),(0,0,1)) est une base de \mathbb{R}^3 . Donc

2. On a vu que la famille ci-dessous est une base de $\mathcal{M}_2(\mathbb{R})$:

$$\left(\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&1\\0&0\end{pmatrix},\begin{pmatrix}0&0\\1&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix}\right).$$

Plus généralement,

Proposition 1 (Dimension des espaces vectoriels de référence)

Soient n et p deux entiers naturels non nuls.

Les espaces vectoriels suivants sont de dimension finie.

- \mathbb{R}^n est de dimension n.
- $\mathcal{M}_{n,p}(\mathbb{R})$ est de dimension $n \times p$.
- $\mathbb{R}_n[X]$ est de dimension n+1.

Remarque 1

Les espaces vectoriels $\mathbb{R}[X]$ et $\mathbb{R}^{\mathbb{N}}$ ne sont pas de dimension finie. On dit qu'ils sont de dimension infinie.

Test 1 (Voir solution.)

Dans chaque cas, montrer que F est un espace vectoriel de dimension finie et en déterminer une base et la dimen-

1. F = Vect((1,2,0),(1,1,1)) 2. F = Vect((1,2),(-2,-4)) 3. $F = \{(x,y,z) \in \mathbb{R}^3 \mid x-y+3z=0\}.$

Test 2 (⋆, *Voir solution*.)

On se place dans $\mathbb{R}[X]$.

- 1. Soient n et p deux entiers naturels non nuls. Soient (P_0, \ldots, P_n) une famille de vecteurs de degrés inférieurs ou égaux à p. Justifier que $Vect(P_0, ..., P_n) \subset \mathbb{R}_p[X]$.
- 2. En déduire que $\mathbb{R}[X]$ ne possède pas de base de cardinal fini.

1.2 Cardinal d'une famille libre/génératrice

Proposition 2 (Dimension et cardinal d'une famille génératrice)

Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et soit \mathscr{G} une famille génératrice de vecteurs de E. Alors $Card(\mathcal{G}) \ge n$. De plus, si $Card(\mathcal{G}) = n$ alors \mathcal{G} est une base de E.

Proposition 3 (Dimension et cardinal d'une famille libre)

Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et soit \mathcal{L} une famille libre de vecteurs de E. Alors $\operatorname{Card}(\mathcal{L}) \leq n$. De plus, si $\operatorname{Card}(\mathcal{L}) = n$ alors \mathcal{L} est une base de E.

Méthode 1

- Si on connaît la dimension de l'espace et qu'on souhaite en trouver une base, il suffit donc de trouver une famille génératrice ou libre dont le cardinal est égal à la dimension!
- On peut aussi se servir des ces résultats pour montrer qu'une famille n'est pas libre/génératrice.

Exe

mple 2	
1.	Dans \mathbb{R}^3 , la famille $\mathscr{F} = ((1,0,2), (0,2,-1), (1,1,1), (-2,1,5))$ est-elle libre?
2.	La famille $(1, (X-1), (X-1)^3)$ est-elle génératrice de $R_3[X]$?
3.	La famille $\mathscr{F} = (1, (X-1), (X-1)^2)$ est-elle une base de $\mathbb{R}_2[X]$?

Test 3 (Voir solution.)

- 1. Montrer que ((1,1,1,1),(1,1,1,0),(1,1,0,3),(1,0,3,3)) est une base de \mathbb{R}^4 .
- 2. Montrer que $(1 + X + X^2, X + X^2, X^2)$ est une base de $\mathbb{R}_2[X]$.
- 3. La famille ((1,1),(1,2),(2,1)) est-elle une base de \mathbb{R}^2 ?

1.3 Dimension d'un sous espace vectoriel

Proposition 4 (Dimension d'un sous-espace vectoriel)

Soit E un espace vectoriel de dimension finie et F un sous-espace vectoriel de E. Alors F est de dimension finie et

$$\dim(F) \leq \dim(E)$$
.

De plus, dim(E) = dim(F) si et seulement si F = E.

Méthode 2

Pour montrer que deux espaces vectoriels sont égaux, on peut donc

1. montrer que $F \subset E$,

2. puis que dim(E) = dim(F).

Test 4 (Voir solution.)

Montrer que $\mathbb{R}^2 = \text{Vect}((1,2),(2,1))$.

2 Rang

2.1 Rang d'une famille de vecteurs

Définition 2 (Rang d'un famille de vecteurs)

Soit E un espace vectoriel de dimension finie. Soient $n \in \mathbb{N}^*$ et $(u_1, ..., u_n)$ une famille de vecteurs de E. On appelle **rang** de cette famille, et on note $\operatorname{rg}(u_1, ..., u_n)$, la dimension de l'espace vectoriel $\operatorname{Vect}(u_1, ..., u_n)$.

Remarque 2

Dans un espace vectoriel E de dimension finie, on a, pour toute famille $(u_1, ..., u_n)$ de vecteurs (où $n \in \mathbb{N}^*$):

- 1. $\operatorname{rg}(u_1,\ldots,u_n) \leqslant \dim(E)$ avec égalité si et seulement si $E = \operatorname{Vect}(u_1,\ldots,u_n)$ d'après la proposition 4.
- 2. $rg(u_1,...,u_n) \le n$ avec égalité si et seulement si $(u_1,...,u_n)$ est libre.

Exemple 3

Déterminons le rang des familles suivantes.

1.
$$\mathscr{F}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

2.
$$\mathscr{F}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix}$$
:

Test 5 (Voir solution.)

Déterminer le rang des familles suivantes :

$$1. \ \mathscr{F}_1 = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right).$$

$$2. \ \mathscr{F}_2 = \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right).$$

$$1. \ \mathscr{F}_1 = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right). \qquad \qquad 2. \ \mathscr{F}_2 = \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right). \qquad \qquad 3. \ \mathscr{F}_3 = \left(\begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right).$$

Proposition 5 (Rang et opérations)

Le rang d'une famille de vecteurs reste inchangé si :

- on change l'ordre des vecteurs,
- on multiplie un des vecteurs par un scalaire non nul,
- on retire de la famille un vecteur qui s'écrit comme combinaison linéaire des autres,
- on ajoute à l'un des éléments de la famille une combinaison linéaires des autres.

Remarque 3

Comparer avec la proposition 1 du chapitre 4.

Méthode 3

Pour trouver le rang d'une famille $\mathcal{F} = (u_1, \dots, u_p)$, on peut appliquer successivement les opérations de la proposition 5 pour transformer la famille en une famille de même rang dont on connaît le rang.

Exemple 4

Déterminons le rang de la famille

$$\mathscr{F} = \left(\begin{pmatrix} 1\\3\\0 \end{pmatrix}, \begin{pmatrix} 0\\5\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\2 \end{pmatrix}, \begin{pmatrix} 0\\0\\0 \end{pmatrix} \right)$$

Test 6 (Voir solution.)

Déterminer le rang des familles suivantes :

1.
$$\mathscr{F}_1 = \begin{pmatrix} 0\\1\\0\\2 \end{pmatrix}, \begin{pmatrix} 3\\-1\\1\\0\\2 \end{pmatrix}, \begin{pmatrix} 0\\4\\-1\\4 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0\\2 \end{pmatrix}, \begin{pmatrix} 0\\5\\0\\2 \end{pmatrix};$$

$$2. \ \mathscr{F}_2 = \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right).$$

2.2 Rang d'une matrice

Définition 3 (rang d'une matrice)

Soient n et p deux entiers naturels non nuls et $A \in \mathcal{M}_{n,p}(\mathbb{R})$. On appelle **rang** de A, et on note $\operatorname{rg}(A)$, le rang de la famille de $\mathcal{M}_{n,1}(\mathbb{R})$ formée des vecteurs colonnes de A.

Remarque 4

En d'autres termes, si
$$A = \begin{pmatrix} | & \dots & | \\ C_1 & \dots & C_p \\ | & \dots & | \end{pmatrix} \in \mathcal{M}_{n,p}(\mathbb{R})$$
 alors

$$\operatorname{rg}(A) = \operatorname{rg}(C_1, \dots, C_p) = \dim(\operatorname{Vect}(C_1, \dots, C_p)).$$

Remarque 5

D'après la proposition 5, le rang d'une matrice est invariant par opération élémentaire sur les colonnes (voir aussi la proposition 8 ci-dessous).

D'après la remarque 2, on a:

Proposition 6

Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. Alors

$$rg(A) \le n$$
 et $rg(A) \le p$.

Exemple 5

Déterminons le rang de la matrice $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$.

On procède par opération sur les colonnes pour se ramener à une matrice dont le rang est facile à calculer :

Une matrice et sa transposée ont même rang.

Remarque 6

En particulier, le rang d'une matrice est aussi égal à la dimension de l'espace vectoriel engendré par ses lignes.

En conséquence, le rang est aussi invariant par opérations élémentaires sur les lignes :

Proposition 8

Le rang d'une matrice est inchangée si

- on multiplie l'une des colonnes ou l'une des lignes par un scalaire non nul;
- on ajoute à l'une des colonnes (resp. lignes) une combinaison linéaire des autres colonnes (resp. lignes);
- en échangeant deux colonnes ou deux lignes entre elles.

Méthode 4

Pour déterminer le rang d'une matrice, on effectue des opérations sur les lignes et les colonnes pour obtenir une matrice de même rang et dont le rang est facile à calculer. Par exemple, la matrice

$$\begin{pmatrix} a_1 & \cdots & \cdots & \cdots & \cdots \\ 0 & a_2 & \cdots & \cdots & \cdots \\ \vdots & \vdots & \ddots & & & \\ 0 & 0 & \cdots & a_r & \cdots \\ 0 & 0 & \cdots & 0 & \cdots \\ \vdots & \vdots & \cdots & \vdots & \cdots \\ 0 & 0 & \cdots & 0 & \cdots \end{pmatrix}$$

où $a_1, ..., a_r$ sont non nuls, est de rang r.

Si on agit sur les lignes, l'algorithme du pivot de Gauss permet d'obtenir une telle matrice!

Exemple 6

 $D\'{e}terminons \ le \ rang \ de \ la \ matrice \ A = \begin{pmatrix} -1 & 1 & 2 & 1 & 0 \\ 1 & -1 & 0 & 1 & 2 \\ 2 & 2 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$

1. Effectuer la méthode du pivot de Gauss (opération sur les lignes)

Test 7 (Voir solution.)

Déterminer le rang des matrices

1.
$$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 3 & 5 & -1 & 2 & 0 \\ 0 & 0 & 1 & 2 & 0 \end{pmatrix}$$
.

2.
$$B = \begin{pmatrix} 4 & 1 & 11 & 3 \\ -2 & 1 & -7 & -9 \\ 1 & -1 & 4 & 7 \\ 1 & 2 & 1 & -8 \end{pmatrix}.$$

⚠La méthode du pivot de Gauss marche à tous les coups mais dans certain cas, on peut déterminer le rang bien plus facilement!

Test 8 (Voir solution.)

Déterminer le rang des matrices

2.
$$B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{pmatrix}.$$

3.
$$C = \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}$$

Proposition 9 (Rang et inversibilité)

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Alors A est inversible si et seulement si rg(A) = n.

Remarque 7

Cette proposition sera utile dans les chapitres suivants. Pour le moment, elle est déjà pratique pour montrer que certaines matrices ne sont pas inversibles.

Test 9 (Voir solution.)

Les matrices suivantes sont-elles inversibles?

$$1. \ \mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 2 & 0 & 7 \end{pmatrix}.$$

1.
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 2 & 0 & 7 \end{pmatrix}$$
. 2. $B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & -1 & 2 \end{pmatrix}$. 3. $C = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$.

3.
$$C = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$

Objectifs 3

- 1. Connaître et avoir compris les notions de dimension, rang.
- 2. Connaître la dimension des espaces vectoriels de référence.
- 3. Savoir déterminer la dimension d'un espace vectoriel en déterminant une base.
- 4. Montrer qu'une famille est une base en montrant
 - qu'elle est libre et que son cardinal est la dimension de l'espace;
 - ou qu'elle est génératrice et que son cardinal est la dimension de l'espace.

7

- 5. Savoir calculer le rang d'une famille de vecteur, d'une matrice.
- 6. Savoir caractériser l'inversibilité d'une matrice en terme de rang.