1.

a)
$$(P \Rightarrow Q) \land \neg Q \land \neg P$$

Satisfiabile, nevalida.

Р	Q	¬P	¬Q	$P \Rightarrow Q$	¬Q ∧ ¬P	ΑΛΒ
				notat cu A	notat cu B	
1	1	0	0	1	1	1
1	0	0	1	0	1	0
0	1	1	0	1	0	0
0	0	1	1	1	1	1

b)
$$(P \Rightarrow Q) \Rightarrow ((Q \Rightarrow S) \Rightarrow ((P \lor Q) \Rightarrow R))$$

Satisfiabile, nevalida.

Р	Q	S	R	P⇒Q	Q⇒S	PVQ	C⇒R	B⇒D	A⇒E
				notat cu A	notat cu B	notat cu C	notat cu D	notat cu E	
1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	1	1	0	0	0
1	1	0	1	1	0	1	1	1	1
1	1	0	0	1	0	1	0	1	1
1	0	1	1	0	1	1	1	1	1
1	0	1	0	0	1	1	0	0	1
1	0	0	1	0	1	1	1	1	1
1	0	0	0	0	1	1	0	0	1
0	1	1	1	1	1	1	1	1	1
0	1	1	0	1	1	1	0	0	0
0	1	0	1	1	0	1	1	1	1

0	1	0	0	1	0	1	0	1	1
0	0	1	1	1	1	0	1	1	1
0	0	1	0	1	1	0	1	1	1
0	0	0	1	1	1	0	1	1	1
0	0	0	0	1	1	0	1	1	1

c) $\neg (P \Rightarrow Q) \Leftrightarrow ((P \lor R) \land (\neg P \Rightarrow Q))$

Satisfiabile, nevalida.

Р	Q	R	¬P	P⇒Q	PVR	¬P ⇒Q	¬ A	ВЛС	¬ A ⇔ D
				notat cu A	notat cu B	notat cu C		notat cu D	
1	1	1	0	1	1	1	0	1	0
1	1	0	0	1	1	1	0	1	0
1	0	1	0	0	1	1	1	1	1
1	0	0	0	0	1	1	1	1	1
0	1	1	1	1	1	1	0	1	0
0	1	0	1	1	0	1	0	0	1
0	0	1	1	1	1	0	0	1	0
0	0	0	1	1	0	0	0	0	1

d) $(P \Leftrightarrow Q) \Leftrightarrow (\neg(P \Rightarrow \neg Q))$

Satisfiabile, nevalida.

Р	Q	¬Q	P⇔Q	P⇒¬Q	¬ B	A ⇔¬ B
			notat cu A	notat cu B		
1	1	0	1	0	1	1

1	0	1	0	1	0	1
0	1	0	0	1	0	1
0	0	1	1	1	0	0

2.

Reguli de reducere

a) $(F \Leftrightarrow G) \sim (F \Rightarrow G) \land (G \Rightarrow F)$,

a) (i ↔	a) $(r \leftrightarrow 0) \sim (r \rightarrow 0) \land (0 \rightarrow r)$,										
F	G	F⇒G	G ⇒F	AΛB	F⇔G						
		Notat cu A	Notat cu B								
1	1	1	1	1	1						
1	0	0	1	0	0						
0	1	1	0	0	0						
0	0	1	1	1	1						

b) $(F \Rightarrow G) \sim (\neg F \lor G)$.

F	G G	¬F	F⇒G	¬F V G
1	1	0	1	1
1	0	0	0	0
0	1	1	1	1
0	0	1	1	1

Reguli pentru comutativitate a) F V G \sim G V F, b) F \wedge G \sim G \wedge F, c) F \Leftrightarrow G \sim G \Leftrightarrow F.

F	G	FVG	G VF	FΛG	GΛF	F⇔G	G⇔F	
1	1	1	1	1	1	1	1	
1	0	1	1	0	0	0	0	

0	1	1	1	0	0	0	0
0	0	0	0	0	0	1	1

Reguli pentru asociativitate

a) $(F \lor G) \lor H \sim F \lor (G \lor H)$,

F	G	Н	F V G	GVH	AVH	FVB
			Notat cu A	Notat cu B		
1	1	1	1	1	1	1
1	1	0	1	1	1	1
1	0	1	1	1	1	1
1	0	0	1	0	1	1
0	1	1	1	1	1	1
0	1	0	1	1	1	1
0	0	1	0	1	1	1
0	0	0	0	0	0	0

b) (F \wedge G) \wedge H \sim F \wedge (G \wedge H),

F	G	Н	FΛG	GΛH	АЛН	FΛB
			Notat cu A	Notat cu B		
1	1	1	1	1	1	1
1	1	0	1	0	0	0
1	0	1	0	0	0	0
1	0	0	0	0	0	0
0	1	1	0	1	0	0
0	1	0	0	0	0	0
0	0	1	0	0	0	0
0	0	0	0	0	0	0

c) $(F \Leftrightarrow G) \Leftrightarrow H \sim F \Leftrightarrow (G \Leftrightarrow H)$.

F	G	Н	F ⇔ G Notat cu A	G ⇔ H Notat cu B	A⇔H	F ⇔ B
1	1	1	1	1	1	1
1	1	0	1	0	0	0
1	0	1	0	0	0	0
1	0	0	0	1	1	1
0	1	1	0	1	0	0
0	1	0	0	0	1	1
0	0	1	1	0	1	1
0	0	0	1	1	0	0

Reguli de distributivitate

a) F V (G \wedge H) \sim (F V G) \wedge (F V H),

		, ,,						
F	G	Н	GΛH		FVG	FVH	FVA	ВЛС
			Notat cu A		Notat	Notat cu C		
					cu B			
1	1	1	1	1		1	1	1
1	1	0	0	1		1	1	1
1	0	1	0	1		1	1	1
1	0	0	0	1		1	1	1
0	1	1	1	1		1	1	1
0	1	0	0	1		0	0	0
0	0	1	0	0		1	0	0
0	0	0	0	0		0	0	0

b) $F \wedge (G \vee H) \sim (F \wedge G) \vee (F \wedge H)$,

- / - /	, (. , , ,	(, ,					
F	G	Н	G V H (=A)	F ∧ G (=B)	F ∧ H (=C)	FΛA	BVC
1	1	1	1	1	1	1	1

_			5) (C (A)	F . II / D)	6 . 11 (6)		D 4 C
c)	$(F \lor G) \Rightarrow H \sim (F \Rightarrow H) \land (G \Rightarrow H),$						
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	0	1	1	1
1	1	0	1	1	0	1	1

٠,	(1 7 0) / 11						
F	G	Н	F V G (=A)	F ⇒ H (=B)	G ⇒ H (=C)	A ⇒ H	ВЛС
1	1	1	1	1	1	1	1
1	1	0	1	0	0	0	0
1	0	1	1	1	1	1	1
1	0	0	1	0	1	0	0
0	1	1	1	1	1	1	1
0	1	0	1	1	0	0	0
0	0	1	0	1	1	1	1
0	0	0	0	1	1	1	1

Reguli de absorbție: a) F V (F \wedge G) \sim F

F	G	F ∧ G (=A)	FVA
1	1	1	1
1	0	0	1

0	1	0	0
0	0	0	0

b) $F \wedge (F \vee G) \sim F$.

5/171(1.1.6)			
F	G	F ∨ G (=A)	FΛA
1	1	1	1
1	0	1	1
0	1	1	0
0	0	0	0

Reguli de anihilare:

a) $F \lor \neg F \sim T$, ("tertium non datur")

F	notF	Т	F V notF
1	0	1	1
0	1	1	1

b) F ∧ ¬F ~ ⊥,

/	— <i>/</i>		
F	notF	_l_	F ∧ notF
1	0	0	0
0	1	0	0

c) $F \Rightarrow F \sim T$

F	Т	$F \Rightarrow F$
1	1	1
0	1	1

Reguli pentru negație

a) $\neg(\neg F) \sim F$, ("dublă negație")

a, (), (), and a negative /					
F	notF	notnotF			
1	0	1			
0	1	0			

b) $\neg (F \lor G) \sim \neg F \land \neg G$, ("De Morgan")

F	G	notF	notG	F V G (=A)	not A	notF ∧ notG
1	1	0	0	1	0	0
1	0	0	1	1	0	0
0	1	1	0	1	0	0
0	0	1	1	0	1	1

c) $\neg (F \land G) \sim \neg F \lor \neg G$, ("De Morgan")

F	G	notF	notG	F ∧ G (=A)	not A	notF V notG
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

d) $\neg (F \Rightarrow G) \sim F \land (\neg G)$

-/ (/	(-/				
F	G	notG	$F \Rightarrow G (=A)$	notA	F Λ notG
1	1	0	1	0	0
1	0	1	0	1	1
0	1	0	1	0	0
0	0	1	1	0	0

e) \neg (F \Leftrightarrow G) \sim F \Leftrightarrow (\neg G).

F	G	notG	F ⇔ G (=A)	notA	F ⇔ notG
1	1	0	1	0	0
1	0	1	0	1	1
0	1	0	0	1	1
0	0	1	1	0	0

Alte reguli:

a) $F \Rightarrow G \sim F \Leftrightarrow (F \land G)$,

	1 - //			
F	G	$F \Rightarrow G$	$F \wedge G (=A)$	$F \Leftrightarrow A$
1	1	1	1	1
1	0	0	0	0
0	1	1	0	0
0	0	1	0	1

b) $F \Rightarrow G \sim G \Leftrightarrow (F \lor G)$.

F	G	$F \Rightarrow G$	F V G (=A)	$G \Leftrightarrow A$
1	1	1	1	1
1	0	0	1	0
0	1	1	1	0
0	0	1	0	1

3

A-Superman poate sa previna raul

B- Superman vrea sa previna raul

C- Superman previne raul

D- Superman este lipsit de puteri

E- Superman e malefic

F – Superman exista

$$(A \land B \Rightarrow C) \land (\neg A \Rightarrow D) \land (B \Rightarrow E) \land \neg C \land (F \Rightarrow \neg D \lor \neg E)$$

Propozitia formata este conectata operatorul si. Pentru ca enuntul sa fie adevarat trebuie ca toate afirmatiile sa fie adevarate.

Avem urmatoarele tabele de adevar:

Α	▼	В 🔻			A ∧ B => C ▼		Α 🔻	D v	¬A ▼	$\neg A \Rightarrow D$	
	0						0	0	1	0	
	0	0	1	0	1		0	1	1	1	
	0	1	0	0	1		1	0	0	1	
	0	1	1	0	1		1	1	0	1,	
	1	0	0	0	1						
	1	0	1	0	1						
	1	1	0	1	0		В	E 🔻	B⇒E ▼		
	1	1	1	1	1		0	0	1		
							0	1	1		
							1	0	0		
С	~	¬C _					1	1	1,		
	0	1									
	0	1									
	1	0			F 🔻	D 🔻	E 🔻	¬D 🔻	¬E ▼	¬D V ¬E 🔻	F ⇒ ¬D V ¬E
	1	0,			0	0	0	1	1	1	1
					0	0	1	1	0	1	1
					0	1	0	0	1	1	1
					0	1	1	0	0	0	1
					1	0	0	1	1	1	1
					1	0	1	1	0	1	1
					1	1	0	0	1	1	1
					1	1	1	0	0	0	(

Din cauza primei conditii putem spune ca:

- a) $\neg A \Rightarrow D = 1$ deci A si D trebuie sa fie diferite de 0.
- b) $B \Rightarrow E = 1$ deci B trebuie sa fie diferit de 1 si E diferit de 0.
- c) $F \Rightarrow \neg D \lor \neg E = 1$. Stergand liniile ce contin E=0, D=0 sau $F \Rightarrow \neg D \lor \neg E = 0$ obtinem urmatorul tabel:

De aici rezulta ca "Superman nu exista" este o consecinta logica a propozitiei.