Project: Assignment 2

Question 1

We are given a two agent model with three alternatives {a, b, c}.

P_1	P_2	$\parallel { m P}_{1}^{'}$	$P_2^{'}$
a	c	b	a
b	b	a	b
\mathbf{c}	a	c	\mathbf{c}

f is onto SCF with $f(P_1, P_2) = a$.

Part (a)

Claim 1: In the below preference profile $P^{"}$, $f(P_1^{"}, P_2^{"}) = a$.

P_1	P_2	P" ₁	P_2	\hat{P}_1	$\hat{P_2}$
a	c	a	c	a	c
b	b	-	-	c	a
c	a	_	-	b	b

Suppose for contradiction $f(P_1^n, P_2^n) = c$. Consider transition from (P_1, P_2) to (\hat{P}_1, \hat{P}_2) . Preference for a improves for both agents and $f(P_1, P_2) = a$. Thus by monotonicity, $f(\hat{P}_1, \hat{P}_2) = a$. Next consider transition from (P_1^n, P_2^n) to (\hat{P}_1, \hat{P}_2) . Preference for c improves for both agents and $f(P_1^n, P_2^n) = c$. Thus by monotonicity, $f(\hat{P}_1, \hat{P}_2) = c$. But $a \neq c$. This gives us a contradiction. Therefore, $f(P_1^n, P_2^n) = a$.

Claim 2: In the below preference profile P, $f(P_1, P_2) = b$.

P_1	P_2	P_1	P_2	\hat{P}_1	P_2
a	c	b	c	b	c
b	b	-	-	a	-
\mathbf{c}	a	-	-	$\parallel c$	-

Suppose for contradiction $f(P_1^{"}, P_2^{"}) = c$. First we consider transition from $(P_1^{"}, P_2^{"})$ to (\hat{P}_1, P_2) . Notice that this transition satisfies all constraints of Claim 1. Hence, $f(\hat{P}_1, P_2) = c$.

Consider preference profile (P_1, P_2) . At this profile if agent 1 reports P_1 instead of \hat{P}_1 , the outcome is a which she prefers more than the current outcome c, as $f(\hat{P}_1, P_2) = c$ and $f(P_1, P_2) = a$. This is a contradiction to f being strategyproof. Therefore, $f(P_1, P_2) = b$.

Now consider

Suppose for contradiction $f(P_1', P_2') = a$. We first consider transition from (P_1', P_2') to (\hat{P}_1, \hat{P}_2) . This transition follows the constraints of Claim 2. Hence, $f(\hat{P}_1, \hat{P}_2) = c$. Next, we consider transition from

P_1	P_2	$\parallel P_1'$	$\mathrm{P}_{2}^{'}$	\hat{P}_1	$\hat{P_2}$
a	c	b	a	b	c
b	b	ll a	b	a	-
\mathbf{c}	a	$\parallel c$	\mathbf{c}	c	-

 (P_1,P_2) to $(\hat{P_1},\hat{P_2})$. This transition also follows the constraints of Claim 2. Hence $f(\hat{P_1},\hat{P_2})=b$. But $a\neq c$. We have a contradiction. $f(P_1^{'},P_2^{'})=b$.

Part (b)

Now the preferences are generated from a single-peaked preference domain with the common order < over the alternatives being a < b < c.

The earlier conclusion doesn't hold in this case.

The earlier proof can't go through because in proving earlier case we have constructed a profile \hat{P} in claim 1 where agents preference violates the single-peaked preference domain.

Define a mechanism < M, g > such that $M = \Theta$ and g = f and $f : S^3 \to \{a,b,c\}$ where S is the set of single-peaked preferences w.r.t. the common order < is defined as:

$$f(P) = \min_{i \in N} \{P_i(1)\}.$$

Where minimum is taken w.r.t. the order relation <. Hence the f picks the left-most peak among the peaks of the agents. We have proved in lecture notes that this f is SP.

The above f satisfies $f(P_1, P_2) = a$ and also gives $f(P_1^{'}, P_2^{'}) = a$

Question 2

In this setting, Gibbard-Satterthwaite result doesn't apply. Here I am going to show domain restriction in this setting.

Suppose $a_1, a_2 \in X$ and in some profile P, agent i have preference order as $P_i(1) = \{a_1\}, P_i(2) = \{a_2\}, P_i(3) = \{a_1, a_2\}$. I am going to show that this preference order is not possible.

Consider following 2 cases:

Case 1: $a_1P_ia_2$ in linear ordering P_i of agent i. In this case clearly $P_i(3)P_iP_i(2)$. So, agent i can't have above defined preference order.

Case 2: $a_2P_ia_1$ in linear ordering P_i of agent i. In this case clearly $P_i(2)P_iP_i(1)$. So, agent i can't have above defined preference order.

So, agent i can't have above defined preference order which means this type of preference order doesn't exist in domain.

Question 3

Yes, the median voter SCF is group strategy-proof.

Proof: We need to consider only the peak preferences of all the agents. So let us denote the preferences denoted only by their peaks, i.e., $P = (P_1(1), ..., P_i(1), ..., P_n(1))$ and let $f(P) = a \in A$ is the median of these peaks and the phantom peaks. Consider group of agent $K \subseteq N$.

- Consider a case where $\exists i \in K$ such that $P_i(1) = a$. Then the group has no reason to manipulate it because if group tries to change this result such that $f(P_K', P_{-K}) = b \neq a$. Then $f(P_K, P_{-K})P_if(P_K', P_{-K})$ which violates the definition of group manipulable.
- Consider the case where $P_i(1) \neq a$, $\forall i \in K$. Suppose $K_1 = \{k : P_k(1) < a, k \in K\}$ i.e. set of agents in K whose peak is at the left of a. Similarly $K_2 = \{k : P_k(1) > a, k \in K\}$. Consider the following 2 subcases:
 - Suppose P_K' is such that $f(P_K', P_{-K}) = b < a$. Then $\exists k \in K_2$ who reports her peak to the further left of a which means $b < a < P_k(1)$. Since P_k is single peak preference which means $a = f(P_K, P_{-K})P_kf(P_K', P_{-K}) = b$ thus violating the definition of group manipulable.
 - Suppose $P_{K'}$ is such that $f(P'_{K}, P_{-K}) = b > a$. Similar proof as above.

Therefore, median voter SCF is not manipulable by the group of agents.