Números ambiciosos

<u>Cumple</u> la propiedad siguiente: sea N un numero natural, si se suman sus divisores propios y del resultado se vuelven a sumar sus divisores propios y del resultado se vuelven a sumar sus divisores propios... y el resultado es un numero perfecto, entonces N es un numero Ambicioso.

95 es ambicioso ya que sus divisores son 1+5+19=25 Y los divisores de 25 son 1+5=6 y 6 es perfecto.

Un numero **curioso** es un "n" tal que n^2 tiene al propio "n" como última cifra.

25^2 = 625

Halla todos los números curiosos en un intervalo

203 = 2² + 0² + 3² = 4+0+9=13 13 = 1² + 3² = 1+9 = 10 10 = 1² + 0² = 1

Primos de Fermat

Todo numero n natural de la forma $2^{2^{n}} + 1$ para algún n. si n resulta ser primo se denomina primo de Fermat.

Halla todos los primos de Fermat en un intervalo.

Todo número natural de la forma $n=2^p-1$, siendo p un primo, si n es primo entonces se denomina primo de **Mersenne.**

Un **número narcisista** es un numero de k dígitos que cumple que es igual a la suma de las potencias k de sus dígitos.

 $153 = 1^3 + 5^3 + 3^3 = 1 + 125 + 27 = 153$ Halla todos los números narcisistas en un intervalo.

Números poderosos

Sea N un numero si existe N%p = 0 para algún p primo divisor entonces p^2 también es divisor de N.

 $36 \rightarrow 36\%2 = 0 \rightarrow 36\%4 = 0$ $36 \rightarrow 36\%3 = 0 \rightarrow 36\%9 = 0$

Todo numero natural N que cumple que es producto de 2 números consecutivos es un **número oblongo.**

30 = 5x642 = 6x7

56 = 8x7

Numero intocable

Todo numero que no es la suma de los divisores propios de ningún número es intocable. El 52 y 88 son números intocables

Primos gemelos

Dos primos son gemelos si son consecutivos

5 y 7

3 y 5

7 y 11

Dado un N haz

 $N = 1 \rightarrow 3 y 5$

 $N = 2 \rightarrow 5 y 7$

 $N = 3 \rightarrow 7 y 11$

Para todo N > 0

dibujossincolorear.com

Collatz

4/2=2

2/2=1

1*3 + 1= 3 + 1= 4

Puede el lector escribir un programa que valide esta conjetura para algún N > 0 dado

Un **numero perfecto** es un numero que es la suma de sus divisores propios.

6 = 1 + 2 + 3

Halla los números perfectos en un rango

2	
Primos sexys	
Un numero primo P es sexy <u>si</u> P+6 también es primo.	
Haya todos los pares de primos sexys en un	
intervalo.	
5 → 5 + 6 = 11 y 11 es primo	
(5,11)	
(-)	
 ₩	
West, Mary	
7	
F 3	
d -TT- b	