

Project Report On Temperature Sensor

NAME: ADITYA J

SRN: PES2UG22EC012

SEM : 5

FOR OFFICE USE

INSTRUCTOR: DR. SHASHIDAR TANTRY

SIGNATURE:

Project Report

Temperature Sensing with LM35 and Op-Amp

Abstract

This project explores a **temperature sensing system** using an **LM35 temperature sensor** and an **operational amplifier (op-amp)** for signal amplification. The LM35 provides an output voltage that varies linearly with temperature. This output is amplified to improve sensitivity before being read by an **Arduino microcontroller**, which converts it into a temperature reading in degrees Celsius and displays it via the Serial Monitor.

This system is ideal for applications requiring **precise temperature monitoring**, as the amplified signal allows the system to detect small temperature changes accurately. The project highlights the **design**, **implementation**, **and real-time data display** of a simple yet effective temperature monitoring solution.

Objective

The primary goal of this project is to accurately read temperature values using the LM35 sensor. The output signal from the LM35 is amplified using an op-amp to improve sensitivity before being processed and displayed in Celsius.

Components Used

- LM35 Temperature Sensor A precision sensor that outputs 10 mV per °C.
- **Operational Amplifier (Op-Amp)** Amplifies the LM35 output, making the analog readings more sensitive to small temperature changes.
- Arduino Board Reads the amplified signal, converts it into temperature values, and outputs it to the Serial Monitor.

Code Implementation

```
// Temperature Sensing using LM35 and Op-Amp

// Define the analog pin connected to the op-amp output
const int tempPin = A0;

void setup() {
    Serial.begin(9600); // Initialize serial communication at 9600 baud
}

void loop() {
    // Read the amplified analog value from the op-amp
    int sensorValue = analogRead(tempPin);
```

```
// Convert the analog value to voltage (Arduino ADC: 10-bit resolution)
float voltage = sensorValue * (5.0 / 1023.0);

// Define op-amp gain factor (adjust based on circuit configuration)
float gain = 10.0;

// Convert voltage to temperature in Celsius
float temperatureC = (voltage / gain) * 100.0; // LM35: 10mV per °C

// Display temperature on Serial Monitor
Serial.print("Temperature: ");
Serial.print(temperatureC);
Serial.println(" °C");

delay(1000); // Wait for 1 second before next reading
}
```

Code Explanation

- **Pin Definition**: The analog pin A0 is used to read the amplified output from the op-amp.
- **Setup Function**: Initializes serial communication at **9600 baud rate** to display temperature readings.
- Loop Function:
 - Reads the analog signal from the op-amp.
 - Converts the analog reading into voltage.
 - o Applies **gain compensation** to determine the correct temperature.
 - o Displays the temperature value on the **Serial Monitor** every second.

Adjusting Gain Factor

The gain variable must be modified based on the actual gain configuration of the **op-amp circuit**. If the gain differs from 10, adjust the value accordingly to maintain accurate readings.

Output

- The temperature readings are displayed in Celsius on the Serial Monitor.
- The readings update every second, providing real-time temperature output.

```
Message (Enter to send message to 'Arduino Uno' on 'COM3')

Ammiricature: 17.79 °C

Temperature: 17.79 °C

Temperature: 17.84 °C

Temperature: 17.84 °C

Temperature: 17.84 °C

Temperature: 17.84 °C

Temperature: 17.79 °C
```

Observations & Remarks

- **Accuracy**: The accuracy of the temperature readings depends on:
- The gain factor of the op-amp circuit.
- The calibration of the LM35 sensor.
 - **✓** Applications:
- Suitable for environmental monitoring.
- Can be used in temperature-sensitive industrial applications.
- Ideal for projects requiring real-time temperature tracking.

Conclusion

This project successfully demonstrates the **design and implementation** of a temperature sensing system using the **LM35 sensor and op-amp**, with **Arduino providing real-time data processing and display**. The amplified signal ensures **high sensitivity**, making it suitable for applications requiring **precise temperature monitoring**.