

CATÁLOGO STEM

CIBERSEGURIDAD • MATEMÁTICAS DISCRETAS

PROPIEDADES DE LAS RELACIONES

Andrés Merino • Agosto 2025

EJERCICIO 1. Dado el conjunto $A = \{1, 2, 3\}$ y las relaciones sobre A, definidas por:

i.
$$R_1 = \{(1,1), (2,2), (3,3)\}.$$

II.
$$R_2=\{(1,3),(1,1),(2,2),(3,3)\}.$$
 III. $R_3=\{(1,1),(2,2)\}.$ IV. $R_4=\{(1,1),(1,2)\}.$

III.
$$R_3 = \{(1, 1), (2, 2)\}$$

IV.
$$R_4 = \{(1,1), (1,2)\}$$

Determine si cada una de las relaciones son reflexivas. Represéntelas en forma ma-

Solución.

I. La relación R₁ es reflexiva, pues se tiene que todo elemento de A está relacionado consigo mismo y su representación matricial está dada por

$$M_{R_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

II. La relación R₂ es reflexiva, pues se tiene que todo elemento de A está relacionado consigo mismo y su representación matricial está dada por

$$M_{R_2} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

III. La relación R₃ no es reflexiva, pues el elemento 3 no está relacionado consigo mismo, es decir, $(3,3) \notin R_3$. La representación matricial de R_3 está dada por

$$M_{R_3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

IV. La relación R₄ no es reflexiva, pues el elemento 2 no está relacionado consigo mismo, es decir, $(2,2) \notin R_4$. La representación matricial de R_4 está dada por

$$M_{R_4} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

EJERCICIO 2. Dado el conjunto $A = \{1, 2, 3\}$ y las relaciones sobre A, definidas por:

i.
$$R_1 = \{(1,1), (2,2), (3,3)\}.$$

$$\text{II. } R_2 = \{(1,3), (1,1), (2,2), (3,3)\}.$$

III.
$$R_3 = \{(1,3), (3,1)\}$$

$$\label{eq:R3} \begin{split} \text{III.} & \; R_3 = \{(1,3),(3,1)\}. \\ \\ \text{IV.} & \; R_4 = \{(1,1),(1,2)\}. \end{split}$$

Determine si cada una de las relaciones son simétricas. Represéntelas en forma ma-

Solución.

I. La relación R_1 es simétrica, pues para todo elemento $x,y \in A$ se tiene que $(x,y) \in R_1$ implica que $(y,x) \in R_1$. La representación matricial de R_1 está dada por

$$M_{R_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

и. La relación R_2 no es simétrica, pues $(1,3) \in R_2$, pero $(3,1) \not\in R_2$. La representación matricial de R₂ está dada por

$$M_{R_2} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

III. La relación R_3 es simétrica, pues para todo elemento $x, y \in A$ se tiene que $(x, y) \in R_3$ implica que $(y, x) \in R_3$. La representación matricial de R_3 está dada por

$$M_{R_3} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

IV. La relación R_4 no es simétrica, pues $(1,2) \in R_4$, pero $(2,1) \notin R_4$. La representación matricial de R₄ está dada por

$$M_{R_4} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

EJERCICIO 3. Dado el conjunto $A = \{1, 2, 3\}$ y las relaciones sobre A, definidas por:

$$I. \ R_1 = \{(1,1), (2,2), (3,3)\}.$$

II.
$$R_2 = \{(1,3), (1,1), (2,2), (3,3)\}.$$
 III. $R_3 = \{(1,3), (3,1)\}.$ IV. $R_4 = \{(1,1), (1,2)\}.$

III.
$$R_3 = \{(1,3), (3,1)\}$$

IV.
$$R_4 = \{(1,1), (1,2)\}$$

Determine si cada una de las relaciones son antisimétricas. Represéntelas en forma matricial.

Solución.

I. La relación R_1 es antisimétrica, pues para todo $x,y \in A$, se tiene que $(x,y) \in R_1$ y $(y,x) \in R_1$ implica x = y. La representación matricial de R_1 está dada por

$$M_{R_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

II. La relación R_2 es antisimétrica, pues para todo $x,y \in A$, se tiene que $(x,y) \in R_2$ y $(y,x) \in R_2$ implica x = y. La representación matricial de R_2 está dada por

$$M_{R_2} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

III. La relación R_2 no es antisimétrica, pues $(1,3) \in R_2$ y $(3,1) \in R_2$, pero $1 \neq 3$. La representación matricial de R₃ está dada por

$$M_{R_3} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

IV. La relación R_4 es antisimétrica, pues para todo $x,y \in A$, se tiene que $(x,y) \in R_4$ y $(y,x) \in R_4$ implica x = y. La representación matricial de R_4 está dada por

$$M_{R_4} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

JERCICIO 4. Dado el conjunto $A = \{1, 2, 3\}$ y las relaciones sobre A, definidas por:

i.
$$R_1 = \{(1, 1), (2, 2), (3, 3)\}$$

I.
$$R_1=\{(1,1),(2,2),(3,3)\}.$$
 II.
$$R_2=\{(1,3),(1,1),(2,2),(3,3)\}.$$
 III.
$$R_3=\{(1,3),(3,1)\}.$$
 IV.
$$R_4=\{(1,1),(1,2)\}.$$

III.
$$R_3 = \{(1,3), (3,1)\}.$$

IV.
$$R_4 = \{(1,1), (1,2)\}.$$

Determine si cada una de las relaciones son transitivas. Represéntelas en forma ma-

Solución.

I. La relación R_1 es transitiva, pues para todo $x,y,z \in A$, se tiene que $(x,y) \in R_1$ y $(y,z) \in R_1$ implica $(x,z) \in R_1$. La representación matricial de R_1 está dada por

$$M_{R_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

II. La relación R_2 es transitiva, pues para todo $x,y,z \in A$, se tiene que $(x,y) \in R_2$ y $(y,z) \in R_2$ implica $(x,z) \in R_2$. La representación matricial de R_2 está dada por

$$M_{R_2} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

III. La relación R_3 no es transitiva, pues $(1,3) \in R_3$ y $(3,1) \in R_3$, pero $(1,1) \notin R_3$. La representación matricial de R₃ está dada por

$$M_{R_3} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

IV. La relación R_4 es transitiva, pues para todo $x,y,z\in A$, se tiene que $(x,y)\in R_4$ y $(y,z) \in R_4$ implica $(x,z) \in R_4$. La representación matricial de R_4 está dada por

$$M_{R_4} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

EJERCICIO 5. Dado el conjunto $A = \{1, 2, 3, 4\}$, considere las siguientes relaciones so-

I. $R_1=\{(1,1),(1,2)\}.$ II. $R_2=\{(1,1),(2,3),(4,1)\}.$ III. $R_3=\{(1,3),(2,4)\}.$ IV. $R_4=\{(1,1),(2,2),(3,3)\}.$ V. $R_5=A\times A.$

Establecer para cada caso si es o no: simétrica, antisimétrica, transitiva y reflexiva. También representar cada relación a través de una matriz.

Solución.

١.

- La relación R_1 no es reflexiva, pues $(2,2) \notin R_1$.
- La relación R_1 no es simétrica, pues $(1,2) \in R_1$, pero $(2,1) \notin R_1$.
- La relación R_1 es antisimétrica pues para todo $x,y \in A$, se tiene que $(x,y) \in R_1$ $y(y,x) \in R_1 \text{ implica } x = y.$
- La relación R_1 es transitiva pues para todo $x, y, z \in A$, se tiene que $(x, y) \in R_1$ y $(y,z) \in R_1$ implica $(x,z) \in R_1$.

La representación matricial de R₁ está dada por

11.

- La relación R_2 no es reflexiva, pues $(2,2) \notin R_2$.
- La relación R_2 no es simétrica, pues $(2,3) \in R_2$, pero $(3,2) \notin R_2$.
- La relación R_2 es antisimétrica pues para todo $x,y \in A$, se tiene que $(x,y) \in R_2$ $y(y,x) \in R_2$ implica x=y.
- La relación R_2 es transitiva pues para todo $x,y,z\in A$, se tiene que $(x,y)\in R_2$ y $(y,z)\in R_2$ implica $(x,z)\in R_2$.

La representación matricial de R₂ está dada por

$$M_{R_2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

III.

- La relación R_3 no es reflexiva, pues $(2,2) \notin R_3$.
- La relación R_3 no es simétrica, pues $(1,3) \in R_3$, pero $(3,1) \notin R_3$.
- La relación R_3 es antisimétrica pues para todo $x,y \in A$, se tiene que $(x,y) \in R_3$ y $(y,x) \in R_3$ implica x=y.
- La relación R_3 es transitiva pues para todo $x,y,z\in A$, se tiene que $(x,y)\in R_3$ y $(y,z)\in R_3$ implica $(x,z)\in R_3$.

La representación matricial de R₃ está dada por

$$M_{R_3} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

IV.

- La relación R₄ no es reflexiva, pues (4, 4) ∉ R₄.
- La relación R_4 es simétrica, para todo $x,y \in A$, se tiene que $(x,y) \in R_4$ implica $(y,x) \in R_4$.
- La relación R_4 es antisimétrica pues para todo $x,y \in A$, se tiene que $(x,y) \in R_4$ y $(y,x) \in R_4$ implica x=y.

• La relación R_4 es transitiva pues para todo $x, y, z \in A$, se tiene que $(x, y) \in R_4$ y $(y, z) \in R_4$ implica $(x, z) \in R_4$.

La representación matricial de R₄ está dada por

$$M_{R_4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

٧.

- La relación R_5 es reflexiva, pues, para todo $x \in A$, se tiene que $(x, x) \in R_5$.
- La relación R_5 es simétrica, para todo $x,y \in A$, se tiene que $(x,y) \in R_5$ implica $(y,x) \in R_5$.
- La relación R_5 no es antisimétrica pues $(1,2) \in R_5$ y $(2,1) \in R_5$, pero $1 \neq 2$.
- La relación R_5 es transitiva pues para todo $x, y, z \in A$, se tiene que $(x, y) \in R_5$ y $(y, z) \in R_5$ implica $(x, z) \in R_5$.

La representación matricial de R₄ está dada por

1. PROPIEDADES DE CERRADURA

EJERCICIO 6. Dado el conjunto $A = \{x, y, z\}$ y la relación

$$R = \{(x, y), (y, z), (x, x), (y, y)\},\$$

determinar:

- ı. La relación reflexiva más pequeña que contiene a R.
- II. La relación simétrica más pequeña que contiene a R.
- III. La relación transitiva más pequeña que contiene a R

Solución.

ı. Llamemos R_1 a la relación buscada. Tenemos que

$$\begin{split} R_1 &= R \cup \Delta_A \\ &= \{(x,y), (y,z), (x,x), (y,y)\} \cup \{(x,x), (y,y), (z,z)\} \\ &= \{(x,y), (y,z), (x,x), (y,y), (z,z)\} \end{split}$$

Por lo tanto, la relación reflexiva más pequeña que contiene a R es

$$R_1 = \{(x, y), (y, z), (x, x), (y, y), (z, z)\}.$$

II. Llamemos R_2 a la relación buscada. Tenemos que

$$R_2 = R \cup R^{-1}$$

$$= \{(x, y), (y, z), (x, x), (y, y)\} \cup \{(y, x), (z, y), (x, x), (y, y)\}$$

$$= \{(x, y), (y, z), (x, x), (y, y), (y, x), (z, y)\}.$$

Por lo tanto, la relación simétrica más pequeña que contiene a R es

$$R_2 = \{(x,y), (y,z), (x,x), (y,y), (y,x), (z,y)\}$$

III. Llamemos R_3 a la relación buscada. Tenemos que $R_3 = R \cup R^2 \cup R^3$, además

$$R^2 = \{(x, x), (x, y), (x, z), (y, y), (y, z)\}$$

У

$$R^3 = \{(x, x), (x, y), (x, z), (y, y), (y, z)\},\$$

por lo tanto

$$\begin{split} R_3 &= R \cup R^2 \cup R^3 \\ &= \{(x,y),(y,z),(x,x),(y,y)\} \cup \{(x,x),(x,y),(x,z),(y,y),(y,z)\} \\ &\quad \cup \{(x,x),(x,y),(x,z),(y,y),(y,z)\} \\ &= \{(x,x),(x,y),(x,z),(y,y),(y,z)\}. \end{split}$$

Así, la relación transitiva más pequeña que contiene a R es

$$R_3 = \{(x, x), (x, y), (x, z), (y, y), (y, z)\}.$$