SolidGen: An Autoregressive Model

for Direct B-rep Synthesis

- 거의 모든 object는 CAD를 통해서 생성한다.
- Boundary representation format (B-rep)을 통해 CAD object를 표현한다.
- 최근 연구는 B-rep 형식의 기본 3D 기하학 정보를 사용하는 대신 CAD 모델링
 작업 시퀀스를 생성하는 데 초점을 맞추고 있다. [1, 2, 3]
- CAD에서 널리 사용되는 Fillet이나 Chamfer는 Sketch & Extrude에서는 사용하기 복잡하다.

[1] Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G. Lambourne, Armando Solar-Lezama, and Wojciech Matusik. 2021. Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD Construction from Human Design Sequences. ACM Transactions on Grap hics (TOG) 40, 4 (2021).

[2] Rundi Wu, Chang Xiao, and Changxi Zheng. 2021. DeepCAD: A Deep Generative Network for Computer-Aided Design Models. In IEEE International Conference on Computer Vision (ICCV). 6772–6782.

[3] Xianghao Xu, Wenzhe Peng, Chin-Yi Cheng, Karl D.D. Willis, and Daniel Ritchie. 2021. Inferring CAD Modeling Sequences Using Zone Graphs. In IEEE Conference on Comp uter Vision and Pattern Recognition (CVPR). 6062–6070.

Boundary representation format (B-rep)

Face		Edge		Vertex	
Face	Edges	Edge	Vertices	Vertex	Coordinate
F ₁ (앞)	$E_{1}E_{6}E_{9}E_{5}$	E_1	V_1V_2	V_1	$x_1 y_1 z_1$
F ₂ (오른)	$E_2E_7E_{10}E_6$	E_2	V_2V_3	V_2	$x_2y_2z_2$
F ₃ (뒤)	$E_3E_8E_{11}E_7$	E_3	V_3V_4	V_3	$x_3y_3z_3$
F ₄ (왼)	$E_4 E_5 E_{12} E_8$	E_4	V_4V_1	V_4	$x_4 y_4 z_4$
F ₅ (아래)	$E_1E_2E_3E_4$	E_5	V_5V_1	V_5	$x_5y_5z_5$
F ₆ (위)	$E_9E_{10}E_{11}E_{12}$	E_6	V_6V_2	V_6	$x_6 y_6 z_6$
		E_7	V_7V_3	V_7	$x_{7}y_{7}z_{7}$
		E_8	V_8V_4	V_8	$x_8y_8z_8$
		E ₉	V_5V_6		
		E ₁₀	V_6V_7		
		E ₁₁	V_7V_8		
		E ₁₂	V_8V_5		

- B-rep 합성 장점
- 많은 데이터셋을 구하기 쉽다.
 - 주로 과정을 저장하는 경우보다는 생성된 결과만 저장하는 경우가 많다.
- 기하학이랑 위상학은 비슷하게 표현되기 때문에 다음과 같은 경우도 B-rep으로 생성 가능하다.
 - Freeform curve and surface (예: Bezier & non-uniform rational B-spline)
 - advanced topological structure (예: T-spline & Catmull-Clark subdivision mesh)
- CAD의 몇가지 문제는 B-rep 형식으로만 해결 가능하다.
 - 예: 데이터 교환으로 인해 생기는 평면이 사라지거나 잘린 경우에 생기는 구멍을 메우는 작업

SolidGen Contibution

- CAD 시퀀스를 사용하지 않고 B-rep CAD model을 직접 합성하는 딥러닝 모델이다.
- 새로운 표현 방식을 제시한다.
 - Indexed Boundary Representation
 - B-rep을 숫자 배열로 변경하여 ML에 적용하였다.
 - 다시 원본 B-rep으로 완벽하게 복원 가능하다.
- 정량적 평가와 정성적 평가 모두 진행한다.
 - 아무 조건 없이 모델을 생성 하는 경우
 - Class를 조건으로 제공해서 모델을 생성하는 경우

2. Representation

Boundary Representation

- B-rep 데이터 구조는 face, wire, edge, vertex으로 이뤄져 있다.
- B-rep 데이터 구조는 solid modeling에서는 효율적이지만, 머신 러닝을 통해 학습하기에는 복잡한 표현이다.
- 최근 B-rep 인코딩[4, 5, 6]에는 상당한 진전이 있었지만,
 생성기반 작업을 위한 B-rep 디코딩은 여전히 미해결 과제이다.

[4] Pradeep Kumar Jayaraman, Aditya Sanghi, Joseph G. Lambourne, Karl D.D. Willis, Thomas Davies, Hooman Shayani, and Nigel Morris. 2021. UV-Net: Learning From Boundary Representations. In IEEE Conference on Comp uter Vision and Pattern Recognition (CVPR). 11703–11712. [5] Joseph G. Lambourne, Karl D.D. Willis, Pradeep Kumar Jayaraman, Aditya Sanghi, Peter Meltzer, and Hooman Shayani. 2021. BRepNet: A Topological Message Passing System for Solid Models. In IEEE Conference on Comp uter Vision and Pattern Recognition (CVPR). 12773–12782.

[6] Karl DD Willis, Pradeep Kumar Jayaraman, Hang Chu, Yunsheng Tian, Yifei Li, Daniele Grandi, Aditya Sanghi, Linh Tran, Joseph G Lambourne, Armando Solar-Lezama, et al. 2021. JoinABLe: Learning Bottom-up Assembly of Parametric CAD Joints. arXiv:2111.12772 (2021).

2. Representation

- Indexed Boundary Representation
- B-rep 데이터를 ML에 사용하기 적합한 숫자 배열로 변경한다.
- Curve (line & arc)와 Surface (plane, cylinder, cone, sphere, torus)로 제한한다.
- B-spline과 Conic Section은 사용하지 않는다.

2. Representation

torus

Conic Section

B-spline

- PolyGen[7]과 CurveGen[8]을 기반으로 SolidGen을 만들었다.
 - PolyGen은 n각형의 mesh의 분포를 학습하는 모델
 - CurveGen은 2D Sketch의 분포를 학습하는 모델
- SolidGen에서 학습하고자 하는 분포

$$p(\mathcal{B}) = p(\mathcal{V}, \mathcal{E}, \mathcal{F}).$$
 (1) - Vertices: \mathcal{V} - Edges: \mathcal{E}
$$p(\mathcal{B}) = p(\mathcal{F}|\mathcal{E}, \mathcal{V})p(\mathcal{E}|\mathcal{V})p(\mathcal{V}),$$
 (2) - Faces: \mathcal{F}

[7] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. 2020. Polygen: An autoregressive generative

추가적으로 조건을 사용하고자 하는 경우 (z: 조건)

$$p(\mathcal{B}) = p(\mathcal{F}|\mathcal{E}, \mathcal{V})p(\mathcal{E}|\mathcal{V})p(\mathcal{V}|z)p(z)$$

Vertex Model

- B-rep 데이터를 ML에 사용하기 적합한 숫자 배열로 변경한다.
- Vertex 𝑢를 사전순으로 정렬(x, y, z 순서)하여 1D list으로 평탄화하고 끝에 <EOS>을 추가한다.

$$\mathcal{V}^{\text{seq}} = \{v_1, v_2, \dots, v_{|\mathcal{V}^{\text{seq}}|-1}, < EOS > \} (|\mathcal{V}^{\text{seq}}| = (|\mathcal{V}| \times 3) + 1)$$

- 모델은 다음과 같은 분포를 학습한다.
- 단, $\theta_{\mathcal{V}}$ 는 Transformer Decoder의 학습 가능한 매개변수이다.

$$p(\mathcal{V}^{\text{seq}}; \theta_{\mathcal{V}}) = \prod_{t=1}^{|\mathcal{V}^{\text{seq}}|} p(v_t \mid v_1, v_2, \dots, v_{t-1}; \theta_{\mathcal{V}}), \tag{3}$$

Vertex Model

Positional Embedding

토큰이 속한 Vertex index의 위치를 나타낸다.

Coordinate Embedding

• 토큰이 x, y, z 좌표인지 여부를 나타낸다.

Value Embedding

- 8비트로 양자화된 x, y, z 좌표값을 나타낸다.
- <EOS>토큰까지 포함해서 2⁸ + 1차원으로 양자화한다.

Class Label Embedding (Optional)

- Class Label을 임베딩을 한다.
- 추후 위에 임베딩하고 Concat을 통해 결합한다.

Vertex Model

- 각 단계에서 모델은 다음 토큰에 대한
 모든 가능한 꼭짓점 위치의 확률 분포를 예측한다.
- 각 단계마다 2⁸ + 1차원의 정규화 되지 않은
 로그 확률이 출력된다.

Edge Model

- B-rep 데이터를 ML에 사용하기 적합한 숫자 배열로 변경한다.
- Edge \mathcal{E} 를 1D list으로 평탄화하고 새 에지 시작을 <NEW_EDGE>, 마지막을 <EOS>으로 추가한다.

$$\mathcal{E}^{seq} = \{e_1, e_2, \langle NEW_EDGE \rangle, \dots, e_{|\mathcal{E}^{seq}|-1}, \langle EOS \rangle \}$$

$$|\mathcal{E}^{seq}| = \sum_{E \in \mathcal{E}} (|E| + 1)$$

- 모델은 다음과 같은 분포를 학습한다.
- \mathbf{t} 단, $\theta_{\mathcal{E}}$ 는 신경망의 학습 가능한 매개변수이다.

$$p(\mathcal{E}^{\text{seq}}|\mathcal{V};\theta_{\mathcal{E}}) = \prod_{j=1}^{|\mathcal{E}^{\text{seq}}|} p(e_j \mid e_1, e_2, \dots, e_{j-1}|\mathcal{V};\theta_{\mathcal{E}}), \tag{4}$$

Edge Model

Value Embedding

- 8비트로 양자화된 x, y, z 좌표값을 나타낸다.
- <EOS>토큰까지 포함해서 2⁸ + 1차원으로 양자화한다.
- $\mathcal{V} = \{(x_i, y_i, z_i)\}_{i=0}^{|\mathcal{V}|-1}$
- $\mathbf{h}_{\mathcal{V}} = \{ \operatorname{Embed}_{x}(x_{i}) + \operatorname{Embed}_{y}(y_{i}) + \operatorname{Embed}_{z}(z_{i}) \}_{i=0}^{|\mathcal{V}|-1},$ (5)

Transformer Encoder

- Vertex, <EOS>, <NEW_EDGE>의 임베딩 값을 입력으로 준다.
- $\mathbf{h}_{\text{inp}} = T_{\text{enc}}^{\mathcal{E}}(\mathbf{h}_{\leq \text{EOS}} \parallel \mathbf{h}_{\leq \text{NEW_EDGE}} \parallel \mathbf{h}_{\mathcal{V}}),$
- h_{inp} : (|V| + 2,256) 차원

Edge Model

Positional Embedding & Edge Index Embedding

- 각 토큰의 위치를 임베딩한다.
- 각 토큰을 해당 에지에 매핑한다.

Edge Embedding

- $\mathcal{E}^{seq}_{< t}$ 의 vertex index에 상응하는 h_{inp} 을 추출한다.
- $\mathbf{h}_{\mathcal{E}_{< t}^{\text{seq}}} = \{\mathbf{h}_{\text{inp}}[e_j]\}_{j=1}^{t-1}. \ (|\mathcal{E}_{< t}^{\text{seq}}| \times 256$ 차원)

Transformer Decoder

$$\mathbf{p}_{t} = T_{\text{dec}}^{\mathcal{E}}(\mathbf{h}_{\mathcal{E}_{< t}^{\text{seq}}}),$$

$$p(e_{t} = k \mid \mathcal{E}_{< t}^{\text{seq}}, \mathcal{V}) = \text{softmax}_{k}(\mathbf{p}_{t} \cdot \mathbf{h}_{\text{inp}}[k]).$$

Face Model

- B-rep 데이터를 ML에 사용하기 적합한 숫자 배열로 변경한다.
- Face \mathcal{F} 를 1D list으로 평탄화하고 새 면 시작을 <NEW_FACE>, 마지막을 <EOS>으로 추가한다.
- 모델은 다음과 같은 분포를 학습한다.
- \mathbf{C} 단, $\theta_{\mathcal{F}}$ 는 신경망의 학습 가능한 매개변수이다.

$$p(\mathcal{F}^{\text{seq}}|\mathcal{E}, \mathcal{V}; \theta_{\mathcal{F}}) = \prod_{t=1}^{|\mathcal{F}^{\text{seq}}|} p(f_t \mid f_1, f_2, \dots, f_{t-1} | \mathcal{E}, \mathcal{V}; \theta_{\mathcal{F}}), \quad (6)$$

Face Model

Value Embedding

•
$$\mathbf{h}_{\mathcal{E}} = \{ \sum_{v \in E} \mathbf{h}_{\mathcal{V}}[v] \}_{E \in \mathcal{E}}.$$

Face Embedding

$$\mathbf{h}_{\mathcal{F}_{< t}^{\text{seq}}} = \{\mathbf{h}_{\mathcal{E}}[f_k]\}_{k=1}^{t-1}.$$

Transformer Encoder

- Vertex, <EOS>, <NEW_EDGE>의 임베딩 값을 입력으로 준다.
- $\mathbf{h}_{\text{inp}} = T_{\text{enc}}^{\mathcal{F}}(\mathbf{h}_{\leq \text{EOS}} \parallel \mathbf{h}_{\leq \text{NEW_FACE}} \parallel \mathbf{h}_{\mathcal{E}}).$
- h_{inp} : ($|\mathcal{V}| + 2,256$) 차원

- Face Model
- Transformer Decoder

$$\begin{aligned} \mathbf{p}_t &= T_{\mathrm{dec}}^{\mathcal{F}}(\mathbf{h}_{\mathcal{F}^{\mathrm{seq}}_{< t}}), \\ p(f_t = k \mid \mathcal{F}^{\mathrm{seq}}_{< t}, \mathcal{E}, \mathcal{V}) &= \mathrm{softmax}_k(\mathbf{p}_t \cdot \mathbf{h}_{\mathcal{E}}[k]). \\ &\qquad \qquad h_{inp} \end{aligned}$$

4. Masking Invalid Outputs

Invalid Outputs

- 모델이 출력한 vertex 시퀀스의 길이 1(<EOS>)이 3으로 나눠지지 않는 경우
- <NEW_EDGE> 토큰이 line, arc 뒤에 나오지 않은 경우
- 동일한 edge에 속하는 edge token이 유일하지 않은 경우 (인덱스가 겹치는 경우)
- 각 face이 edge들로 닫힌 boundary가 아닌 경우

Implementation Details

- Pytorch로 구현, Adam optimizer 사용, Learning Rate의 초기값: 10⁻⁴
- Teacher-forcing을 사용하기 때문에 3가지 모델 모두 병렬로 학습 가능하다.
- Solid Modeling kerne은 OpenCascade/pythonOCC을 사용한다.

Datasets

Parametric Variations (Pvar) Dataset

- SolidGen을 Class 조건을 추가해서 testing하기 위한 데이터셋
- 60개의 template Solid(즉, Class)이며, sketch 차원, 확장 거리, 확장된 wire를 조절할 수 있는 parameter가 있다.
- 이러한 parameter을 변경해서 기하학적으로 다르지만 위상은 거의 동일한 Solid Sample 생성한다.
- 총 120,000 models 생성, 각 template Solid마다 2,000개 생성한다.
- 데이터를 90% (학습) / 5% (테스트) / 5% (검증) 으로 나눠서 사용한다.

DeepCAD Dataset

- 기존 데이터에 중복이 상당 부분이 있어서 해시 기반으로 중복을 제거한다.
- 간단한 모델 (< 8 faces)이나 복잡한 모델 (> 130 faces)는 제거하였다.
- 64,449개 학습 데이터 / 3,578개 검증 데이터 / 3,577개 테스트 데이터로 나눠서 사용한다.

Metrics

Valid

- (1) 모든 face는 적어도 하나의 삼각형은 포함해야 한다.
- (2) wire의 각 edge는 제대로 정렬되어야 한다.
- (3) wire는 교차를 하지 말아야 한다.

Novel

Valid 중에서 training set에 없는 경우이며, 값이 작을수록 모델이 학습 데이터를 기억하는 것을 의미한다.

Unique

Valid 중에서 서로 겹치지 않는 경우이며, 값이 작을수록 생성 데이터의 분산이 작은 것을 의미한다.

Accuracy

• Class를 조건으로 주고 생성한 경우에만 측정한다.

- Unconditional Generation
- DeepCAD와 비교 (정성적 평가)

Unconditional Generation

- DeepCAD와 비교 (정량적 평가)
 - DeepCAD 데이터셋을 이용하여 학습한 모델을 통해 1000 랜덤 샘플 생성
 - Valid가 높은 이유: (1) 최종 B-rep를 index B-rep을 통해 기존보다 더 잘 표현하였다.
 - (2) 마스킹을 통해 불필요한 출력을 일부 제거하였다.
 - (3) B-rep을 여러 요소로 분해해서 어려운 문제를 단순화하여 표현해서 학습하였다.
 - Novel, Unique가 낮은 이유:
 - DeepCAD의 유효한 샘플 중 많은 수가 노이즈가 많고 비현실적이어서 독특하기 때문이다.
 - 결과

Method	Valid (↑)	Novel (↑)	Unique (†)
Ours	92.133	86.638	89.146
DeepCAD	72.067	99.214	99.861

Unconditional Generation

Human Perceptual Evaluation

- 생성된 샘플을 Amazon의 Mechanical Turk service를 통해 인지 평가를 진행하였다.
- 인지 평가 작업자에게 SolidGen이나 DeepCAD으로 생성된 CAD와 학습 데이터의 랜덤 선택된 CAD를 비교하여 둘 중 어느 것이 더 현실적인지 평가하도록 한다.

Conditional Generation

- PVar Dataset을 통해 학습 및 평가한다.
- Unconditional Generation에서 사용한 모델을 동일하게 사용한다.
- 40개의 Class를 사용하여 2400개의 샘플을 생성한 결과

Valid (↑)	Novel (↑)	Unique (†)	Accuracy (†)
99.167	90.294	98.655	75.198

Conditional Generation

- PVar Dataset을 통해 학습 및 평가한다.
- Unconditional Generation에서 사용한 모델을 동일하게 사용한다.
- 40개의 Class를 사용하여 2400개의 샘플을 생성한 결과

SolidGen: An Autoregressive Model

for Direct B-rep Synthesis

감사합니다

