Math 142a October 31, 1997 Name:

Midterm

1. (9 pts.) Give an example of a function f(x) defined on $\{0 < x < 1\}$ which is continuous, but which is not bounded from below. (Hint: it's not hard.)

2. (12 pts.) Use the Mean Value Theorem to prove

 $\log x < x - 1 \quad \text{for } x > 1.$

3. (15 pts) Prove directly from the definition of the limit of a sequence that if $\lim a_n = 1/2$ and $a_n > 1/5$ for all n, then $\lim \frac{1}{a_n} = 2$.

4. (15 pts) Find $\limsup a_n$ and $\liminf a_n$ for the sequence

$$a_n = (-1)^n \frac{\sin\frac{1}{n}}{\frac{2}{n}} + \frac{\sin 2n}{n}$$

(Show work. You may use the identity $\lim_{x\to 0} \frac{\sin x}{x} = 1$ without proving it.)

5. (15 pts) Let

$$a_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \ldots + \frac{1}{\sqrt{n^2 + n}}.$$

(i) Show that $a_n \leq 1$ for each n.

(ii) Show that
$$a_n \ge \frac{1}{\sqrt{1+\frac{1}{n}}}$$

(iii) Find $\lim a_n$.

6. (15 pts) Find $\lim_{x\to\infty} \left(\frac{x+a}{x-a}\right)^x$.

7. (9 pts.) Suppose that f is a continuous function on $I = \{a \le x \le b\}$ such that f(a) = 1 and $f(x) \ne 0$ for all $x \in I$. Show that f(x) > 0 for all $x \in I$. (Hint: cite a theorem.)

8. (9 pts.) If f(x) = |x| for $-1 \le x \le 1$, then f(-1) = f(1), but there is no x_0 , $-1 < x_0 < 1$ for which $f'(x_0) = 0$. Explain why the Mean Value Theorem does not apply to this example.