Efficient modelling of signalling networks using Integer Linear Programming

Enio Gjerga

Paris, France - July 2017

Sylectivative et al. J Bioinformatics, 2012

Logic modeling to link signaling networks with perturbation data

MacNamara et al. Phys Biol, 2012

Traynard et al., CPT:PSP, in press

Core task: Optimisation of model against data

CellNOpt pipeline

Prior Knowledge Network

Preprocessing

Training

models within CellNOpt

CellNOpt pipeline - Inputs

Data

Code	Description	handled in CellNOptR	
ID	identifiers		
TR	treatment	yes	
DA	Data aquistion	yes	
DV	Data value	yes	

MIDAS Minimum Information for Data Analysis in Systems Biology

CSV format file containing the cues, signals and readouts

Inhibitors are coded by adding the letter *i* after the name

TR:mock:CellLine	TR:EGF	TR:TNFa	TR:PI3Ki	DA:Akt	DA:Hsp27	DV:Akt	DV:Hsp27
1	1	0	0	0	0	0	0
1	0	1	0	0	0	0	0
1	1	0	0	10	10	1	0.2
1	0	1	0	10	10	1	0.5

Saez-Rodriguez et.al. Bioinformatics 2007

Prior Knowledge Network

nodeA relationship nodeB nodeC relationship nodeA nodeD relationship nodeE nodeF nodeB

SBMLqual data format can also be used to load a model

Chaouiya et.al., BMC Sys Biol, 2013

SIF - Simple Interaction Format

Cytoscape compatible

relationship can be 1 or -1 (for inhibition)

Simple, but no layout information included

Omnipath: Integration of existing pathway resources to improve modelling

www.omnipathdb.org

Networks

Omnipath: Integration of existing pathway resources to improve modelling

www.omnipathdb.org

Networks

Modelling combinations of data-types

Data

Networks

- Antibody-based population data (protein arrays, luminex, ...)
- Single cell
- Mass spectrometry phospho-proteomics
 - Limited conditions & replicates
- Metabolic regulation

Using incomplete & noisy mass spectrometry data to build logic models of signal transduction

10

PHONEMeS

E. Gjerga

PHONEMeS

J. Wirbel

Computational & algorithmically developments

Learning algorithms (optimization):

- Metaheuristics &
 Bayesian Inference
 (MCMC)
 (Egea et al. *BMC Bioinf* 2014;
 (Henriques et al. *Bioinf* 2015)
- Ensembles of models (Henriques et al. *PLoS CB*, 2017)
- Use of Answer Set Programming (Guziolowski et al. *Bioinf* 2013, Videla et al. *Bioinf* 2017) and Integer Linear Programming (Mitsos et al *PLoS CB* 2009)

Computational & algorithmically developments

PHONEMeS ILP Implementation

ILP is a mathematical optimisation problem in which the objective function and constraints are linear while the variables are integers

General ILP statement:

$$\min_{x} (c^T x)$$

$$st: Ax \le b, x \in \mathbb{Z}^n$$

Problems with binary decision variables occur often in many signalling model formulations

ILP implementations for CellNOpt and PHONEMeS

CPLEX solver

ILP implementation of CellNOpt

ILP implementation for CellNOpt (*Mitsos et.al.*)

Comparisons between different algorithms applied

Accelerating model building from mass spectrometry data with ILP

17

Accelerating model building from mass spectrometry data with ILP

E. Gjerga

Can we make it faster??

Massive speed up with ILP

PHONEMeS ILP is orders of magnitude more efficient than the previous implementation - Time Efficient !!!

Ongoing work with ILP and Phonemes

Modelling through multiple targets

Modelling of perturbation propagation from a receptor level through hybrid interactions

Time course PHONEMeS

CellNOpt new features - MaBoSS

MaBoSS implementation in CellNOpt

MaBoSS, an algorithm for modelling biological networks in discrete framework with continuous time

Simulates the probabilities for each species to be active at each condition

MaBoSS simulator for CellNOpt

Stoll et.al., BMC Sys Biol, 2012

C. Chevalier

CellNOpt new features - CNORode2017

New **CNORode** version released in *Github*

CNORode allows a quantitative description of a boolean model through the identification of logic ODE parameters

New features:

L1 regularisation penalty term is added to the objective function

An additional **steady state penalty** priorities this parameter sets in which the steady state is reached

Bootstrap or optimisation with random resampling allows to determine the confidence intervals for each parameter

Download package in: https://github.com/saezlab/CNORode2017

Acknowledgements

Saez-Rodriguez group, specially:

Luis Tobalina

Aurelien Dugourd

Jakob Wirbel

Attila Gabor

Celine Chevalier

Federica Eduati

Panuwat Trairatphisan

Funding: H2020 SymbioSys - Marie Skłodowska-Curie Action

Collaborators: Julio Banga Bioprocess Engineering Group Vigo, Spain

Thank You

www.saezlab.org@sysbiomed