Mathematical Probability and Statistics Supplementary Notes

Fall 2018

David Lyons Mathematical Sciences Lebanon Valley College

David Lyons Mathematical Sciences Lebanon Valley College Copyright ©2018

Contents

1	Probability		1
	1.1	Algebras of Sets	1
	1.2	Probability Spaces and Probability Measures	2
	1.3	Independence and conditional probability $\ \ldots \ \ldots \ \ldots$	3
2 Random Variables		ndom Variables	4
_		idoni varabios	-
	2.1	Random variables: definitions and properties	4

1 Probability

1.1 Algebras of Sets

(1.1.1) Some notation from set theory. Given a set S, we write $\mathcal{P}(S)$ to denote the **power set** of S, that is, the set of all subsets of S.

$$\mathcal{P}(S) = \{A \colon A \subseteq S\}$$

Given two sets A, B, we write $A \setminus B$ to denote the set

$$A \setminus B = \{x \in A \colon x \notin B\}.$$

In a context in which a set A is understood to be an element of a power set $\mathcal{P}(\Omega)$ of a particular set Ω , we write A^c to denote the set $\Omega \setminus A$, also called the **complement** of A relative to Ω .

(1.1.2) **Definition.** Let Ω be a set and let \mathcal{A} be a nonempty subset of the power set of Ω , that is, the elements of \mathcal{A} are subsets of Ω . We say \mathcal{A} is an **algebra of** subsets of Ω if the following hold.

- 1. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
- 2. $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$
- (1.1.3) **Examples.** Examples of set algebras.
- (1.1.4) **Proposition.** Let A be an algebra of subsets of a set Ω . Then we have
 - 1. $\emptyset, \Omega \in \mathcal{A}$, and
 - 2. $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$.

Proof.

(1.1.5) **Definition.** Let Ω be a set and let \mathcal{A} be a nonempty subset of the power set of Ω , that is, the elements of \mathcal{A} are subsets of Ω . We say \mathcal{A} is a σ -algebra (pronounced "sigma algebra") of subsets of Ω if the following hold.

- 1. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
- 2. $A_n \in \mathcal{A}$ for all $n \in \mathbb{N} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$

(Condition 2 can be expressed by saying A is "closed under countable unions".)

(1.1.6) **Propolsition.** All σ -algebras are set algebras. Not all set algebras are σ -alebras.

(1.1.7) **Proposition.** Let A be a σ -algebra of subsets of a set Ω . Then we have

$${A_n \colon n \in \mathbf{N}} \in \mathcal{A} \Rightarrow \bigcap_{n \in \mathbf{N}} A_n \in \mathcal{A},$$

that is, σ -algebras are closed under countable intersections.

(1.1.8) **Examples.** Examples of σ -algebras: the whole power set, Borel sets of the real line, several non-examples.

1.2 Probability Spaces and Probability Measures

(1.2.1) **Definition.** A *probability space* or *probability measure* is a triple (Ω, \mathcal{A}, P) , where Ω is a set, \mathcal{A} is a σ -algebra of subsets of Ω , and $P: \mathcal{A} \to [0, 1]$ satisfies the following.

- 1. $P(\Omega) = 1$
- 2. for every countable collection A_1, A_2, \ldots of disjoint elements of \mathcal{A} we have

$$P\left(\bigcup_{n\in\mathbf{N}}A_n\right) = \sum_{n\in\mathbf{N}}P(A_n)$$

(Here, the term **disjoint** means $A_i \cap A_j = \emptyset$ for all i, j in **N**.)

(1.2.2) **Terminology and conventions.** It is common to use the phrase "the probability space Ω " or "the probability measure P" to refer to the triple (Ω, \mathcal{A}, P) . Another term for Ω is $sample\ space$. Elements of Ω are called out-comes and elements of \mathcal{A} are called events. If Ω is countable (that is, finite or countably infinite), it is common to assume that the σ -algebra of events is the entire power set $\mathcal{P}(\Omega)$ of Ω . When $\mathcal{A} = \mathcal{P}(\Omega)$, then \mathcal{A} is called the discrete algebra of events and Ω is called a discrete sample space. For an event A, the symbols P(A) are pronounced "the probability of A". Given an element $\omega \in \Omega$, we usually write $P(\omega)$ instead of the more cumbersome $P(\{\omega\})$. Disjoint events (that is, events A, B such that $A \cap B = \emptyset$) are called $mutually\ exclusive$. The complement A^c of an event A is also called the opposite of A.

(1.2.3) **Remark.** It is a remarkable fact that when Ω is uncountable, it is impossible to satisfy the axioms of a probability space for the discrete σ -algebra $\mathcal{A} = \mathcal{P}(\Omega)$.

(1.2.4) **Propositions.**

- 1. $P(\emptyset) = 0$
- 2. $A \subseteq B \Rightarrow P(A) \leq P(B)$
- 3. the addition rule
- 4. the opposite rule

(1.2.5) Proposition (construction of discrete sample spaces). Let Ω be a countable set and let $p: \Omega \to [0,1]$ satisfy the condition that $\sum_{\omega \in \Omega} p(\omega) = 1$. Let $P: \mathcal{P}(\Omega) \to [0,1]$ be given by

$$P(A) = \sum_{\omega \in A} p(\omega)$$

for $A \in \mathcal{P}(\Omega)$. Then the triple $(\Omega, \mathcal{P}(\Omega), P)$ is a (discrete) probability space.

(1.2.6) **Comment.** There is an issue concerning well-definedness of the countable sums $\sum_{\omega \in \Omega} p(\omega)$ and $\sum_{\omega \in A} p(\omega)$ in the proposition above. In general, the value of a series depends on the ordering of the summands. However, the series in question are absolutely convergent, so the value is independent of any ordering of the summands.

(1.2.7) Exercises.

- 1. explore numerous discrete and continuous examples
- 2. show that axiom 2 of the definition of probability measure implies a finite sum version, show that a finite sum version does *not* imply axiom 2
- 3. show that a version of axiom 2 for only two sets implies a general finite sum version
- 4. show that the set of points $\omega \in \Omega$ such that $P(\omega) \neq 0$ is countable
- 5. prove the properties above

1.3 Independence and conditional probability

(1.3.1) **Definitions.** Events A, B are called **independent** if $P(A \cap B) = P(A)P(B)$, and otherwise A, B are said to be **dependent**. If $P(B) \neq 0$, the **conditional probability of** A **given** B, denoted P(A|B), is defined to be

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

The rearrangement $P(A \cap B) = P(A|B)P(B)$ is sometimes called the **multi-**plication rule.

(1.3.2) Propositions.

- 1. Let (Ω, \mathcal{A}, P) be a probability space, let B be an element of \mathcal{A} with P(B) > 0, and let $P_B : \mathcal{A} \to \mathbf{R}$ be defined by $P_B(A) = P(A|B)$ for all $A \in \mathcal{A}$. Then $(\Omega, \mathcal{A}, P_B)$ is a probability space.
- 2. if $P(B) \neq 0$ then A, B are independent if and only if P(A|B) = P(A).
- 3. Bayes' theorem

(1.3.3) Exercises.

- 1. explore more examples and nonexamples
- 2. prove the propositions above

2 Random Variables

2.1 Random variables: definitions and properties

- (2.1.1) **Definition.** A *random variable* is a function $X: \Omega \to \mathbf{R}$, where (Ω, \mathcal{A}, P) is a probability space, such that $X^{-1}(B)$ is an element of \mathcal{A} for all sets B in the Borel σ -algebra of subsets of the real numbers.
- (2.1.2) **Notation and conventions.** Given a subset S of the real line, we write the symbols ' $X \in S$ ' to denote the set $X^{-1}(S) = \{\omega \in \Omega \colon X(\omega) \in S\}$. In the special case that S is an interval of the form $S = (-\infty, x]$, we write ' $X \leq x$ ' to denote the event $X \in S$. Similarly, we write ' $a < X \leq b$ ' to denote $X \in (a, b] = \{\omega \in \Omega \colon a < X(\omega) \leq b\}$, and we write 'X = a' to denote $X \in \{a\} = \{\omega \in \Omega \colon X(\omega) = a\}$.
- (2.1.3) **Definition.** The *(cumulative) distribution function*, or *cdf*, of the random variable X is the function $F_X \colon \mathbf{R} \to \mathbf{R}$ given by

$$F_X(x) = P(X \le x).$$

- (2.1.4) **Proposition.** A function $F: \mathbf{R} \to \mathbf{R}$ is the cdf of a random variable X if and only if the following properties hold.
 - 1. $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$
 - 2. F is nondecreasing, that is $a \leq b \Rightarrow F(a) \leq F(b)$ for all $a, b \in \mathbf{R}$
 - 3. F is **continuous from the right**, that is, $\lim_{x\to a^+} F(x)$ exists and equals F(a) for all $a\in \mathbf{R}$
- (2.1.5) **Examples.** finite, countable, uncountable examples
- (2.1.6) **Definitions.** Let X be a random variable and let S be the set

$$S = \{x \in \mathbf{R} : P(X = x) > 0\}.$$

The random variable X is called **discrete**, **continuous**, or **mixed**, according to whether $P(X \in S) = 1$, $P(X \in S) = 0$, or $0 < P(X \in S) < 1$, respectively. A continuous random variable X is called **absolutely continuous** if its distribution function F_X is differentiable at all but countably many points.

- (2.1.7) Observations.
 - 1. If Ω is countable, then any random variable on Ω is discrete.
 - 2. The set S is countable.
- (2.1.8) **Definitions.** For a discrete random variable X, the **probability function for** X, also called the **pf for** X, is the function $p_X : \mathbf{R} \to \mathbf{R}$ given by

$$p_X(x) = P(X = x).$$

For an absolutely continuous random variable X, the **probability density** function for X, also called the **pdf for** X, is $f_X = F'_X$.

(2.1.9) **Examples.** pfs, pdfs, a mixed example

(2.1.10) Proposition (Characterization of probability functions). A function $p: \mathbf{R} \to \mathbf{R}$ is the probability function for a discrete random variable X if and only if the following properties hold.

- \bullet p is nonnegative
- the set $S = \{x : p(x) > 0\}$ where p is positive is countable

$$\bullet \ \sum_{x \in S} p(x) = 1$$

(2.1.11) **Remark.** There is a subtle issue involved in writing the expression $\sum_{x \in S} p(x) = 1$. The notation implies that the sum is abolutely convergent, and therefore well-defined, independent of any ordering of S.

(2.1.12) Proposition (Characterization of probability density functions). A function $f : \mathbf{R} \to \mathbf{R}$ is the probability density function for an absolutely continuous random variable X if and only if the following properties hold.

- \bullet f is nonnegative
- \bullet f is piecewise continuous with at most countably many discontinuities

$$\bullet \int_{-\infty}^{\infty} f(x) \ dx = 1.$$