Problem Set #2

Reiko Laski

Exercise 1

(i) Proof:

$$\begin{split} \langle \mathbf{x}, \mathbf{y} \rangle &= \frac{1}{4} (||\mathbf{x} + \mathbf{y}||^2 - ||\mathbf{x} - \mathbf{y}||^2) \\ &= \frac{1}{4} (\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle - \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle) \\ &= \frac{1}{4} (\langle \mathbf{x}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle - \langle \mathbf{x}, \mathbf{x} - \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle) \\ &= \frac{1}{4} (\langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle - \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{y} \rangle) \\ &= \frac{1}{4} (\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle) \\ &= \frac{1}{4} (2\langle \mathbf{x}, \mathbf{y} \rangle + 2\langle \mathbf{y}, \mathbf{x} \rangle) \\ &= \frac{1}{4} (4\langle \mathbf{x}, \mathbf{y} \rangle) \\ &= 4\langle \mathbf{x}, \mathbf{y} \rangle \end{split}$$

(ii) Proof:

$$||\mathbf{x}||^{2} + ||\mathbf{y}||^{2} = \frac{1}{2}(||\mathbf{x} + \mathbf{y}||^{2} + ||\mathbf{x} - \mathbf{y}||^{2})$$

$$= \frac{1}{2}(\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle)$$

$$= \frac{1}{2}(\langle \mathbf{x}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{x} - \mathbf{y}, \mathbf{x} \rangle - \langle \mathbf{x} - \mathbf{y}, \mathbf{y} \rangle)$$

$$= \frac{1}{2}(\langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle)$$

$$= \frac{1}{2}(2\langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{y}, \mathbf{y} \rangle)$$

$$= \langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{y}, \mathbf{y} \rangle$$

$$= ||\mathbf{x}||^{2} + ||\mathbf{y}||^{2}$$

Exercise 2

Proof:

$$\begin{split} \langle \mathbf{x}, \mathbf{y} \rangle &= \frac{1}{4} (||\mathbf{x} + \mathbf{y}||^2 - ||\mathbf{x} - \mathbf{y}||^2 + i||\mathbf{x} - i\mathbf{y}||^2 - i||\mathbf{x} + i\mathbf{y}||^2) \\ &= \frac{1}{4} (||\mathbf{x} + \mathbf{y}||^2 - ||\mathbf{x} - \mathbf{y}||^2) + \frac{1}{4} (i||\mathbf{x} - i\mathbf{y}||^2 - i||\mathbf{x} + i\mathbf{y}||^2) \\ &= \langle \mathbf{x}, \mathbf{y} \rangle + \frac{1}{4} (i||\mathbf{x} - i\mathbf{y}||^2 - i||\mathbf{x} + i\mathbf{y}||^2) \\ &= \langle \mathbf{x}, \mathbf{y} \rangle + \frac{1}{4} (i\langle \mathbf{x} - i\mathbf{y}, \mathbf{x} - i\mathbf{y} \rangle - i\langle \mathbf{x} + i\mathbf{y}, \mathbf{x} + i\mathbf{y} \rangle) \\ &= \langle \mathbf{x}, \mathbf{y} \rangle + \frac{1}{4} (i\langle \mathbf{x}, \mathbf{x} - i\mathbf{y} \rangle + i^2 \langle \mathbf{y}, \mathbf{x} - i\mathbf{y} \rangle - i\langle \mathbf{x}, \mathbf{x} + i\mathbf{y} \rangle + (-i)^2 \langle \mathbf{y}, \mathbf{x} + i\mathbf{y} \rangle) \\ &= \langle \mathbf{x}, \mathbf{y} \rangle + \frac{1}{4} (i\langle \mathbf{x}, \mathbf{x} \rangle + i^2 \langle \mathbf{x}, \mathbf{y} \rangle + i^2 \langle \mathbf{y}, \mathbf{x} \rangle + i^3 \langle \mathbf{y}, \mathbf{y} \rangle \\ &- i\langle \mathbf{x}, \mathbf{x} \rangle + (-i)^2 \langle \mathbf{x}, \mathbf{y} \rangle + (-i)^2 \langle \mathbf{y}, \mathbf{x} \rangle + (-i)^2 \langle \mathbf{y}, \mathbf{x} \rangle) \\ &= \langle \mathbf{x}, \mathbf{y} \rangle + \frac{1}{4} (i^2 \langle \mathbf{x}, \mathbf{y} \rangle + i^2 \langle \mathbf{y}, \mathbf{x} \rangle + (-i)^2 \langle \mathbf{x}, \mathbf{y} \rangle + (-i)^2 \langle \mathbf{y}, \mathbf{x} \rangle) \\ &= \langle \mathbf{x}, \mathbf{y} \rangle + \frac{1}{4} (-\langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle) \\ &= \langle \mathbf{x}, \mathbf{y} \rangle \end{split}$$

Exercise 3

Exercise 3
(i)
$$\cos \theta = \frac{\langle x, x^5 \rangle}{||x|| \cdot ||x^5||}$$
 $\langle x, x^5 \rangle = \int_0^1 x \cdot x^5 dx = \frac{1}{7}$
 $\langle x, x \rangle = \int_0^1 x \cdot x dx = \frac{1}{3} \implies ||x|| = \frac{1}{\sqrt{3}}$
 $\langle x^5, x^5 \rangle = \int_0^1 x^5 \cdot x^5 dx = \frac{1}{11} \implies ||x^5|| = \frac{1}{\sqrt{11}}$
 $\implies \theta = \cos^{-1}(\frac{\sqrt{33}}{7})$

(ii)
$$\cos \theta = \frac{\langle x^2, x^4 \rangle}{||x^2|| \cdot ||x^4||}$$

 $\langle x^2, x^4 \rangle = \int_0^1 x^2 \cdot x^4 dx = \frac{1}{7}$
 $\langle x^2, x^2 \rangle = \int_0^1 x^2 \cdot x^2 dx = \frac{1}{5} \implies ||x^2|| = \frac{1}{\sqrt{5}}$
 $\langle x^4, x^4 \rangle = \int_0^1 x^4 \cdot x^4 dx = \frac{1}{9} \implies ||x^4|| = \frac{1}{3}$
 $\implies \theta = \cos^{-1}(\frac{3\sqrt{5}}{7})$

(ii)
$$||t|| = \langle t, t \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} t^2 dt = \frac{2\pi^2}{3}$$

(iii)

$$\begin{aligned} proj_X(\cos 3t) &= \langle \cos t, \cos 3t \rangle \cdot \cos t + \langle \sin t, \cos 3t \rangle \cdot \sin t \\ &+ \langle \cos 2t, \cos 3t \rangle \cdot \cos 2t + \langle \sin 2t, \cos 3t \rangle \cdot \sin 2t \\ &= \left(\frac{1}{\pi} \int_{-\pi}^{\pi} \cos t \cos 3t \ dt\right) \cdot \cos t + \left(\frac{1}{\pi} \int_{-\pi}^{\pi} \sin t \cos 3t \ dt\right) \cdot \sin t \\ &+ \left(\frac{1}{\pi} \int_{-\pi}^{\pi} \cos 2t \cos 3t \ dt\right) \cdot \cos 2t + \left(\frac{1}{\pi} \int_{-\pi}^{\pi} \sin 2t \cos 3t \ dt\right) \cdot \sin 2t \\ &= 0 \end{aligned}$$

(iv)

$$proj_X(t) = \langle \cos t, t \rangle \cdot \cos t + \langle \sin t, t \rangle \cdot \sin t$$

$$+ \langle \cos 2t, t \rangle \cdot \cos 2t + \langle \sin 2t, t \rangle \cdot \sin 2t$$

$$= \left(\frac{1}{\pi} \int_{-\pi}^{\pi} (\cos t) t dt\right) \cdot \cos t + \left(\frac{1}{\pi} \int_{-\pi}^{\pi} (\sin t) t dt\right) \cdot \sin t$$

$$+ \left(\frac{1}{\pi} \int_{-\pi}^{\pi} (\cos 2t) t dt\right) \cdot \cos 2t + \left(\frac{1}{\pi} \int_{-\pi}^{\pi} (\sin 2t) t dt\right) \cdot \sin 2t$$

$$= 2 \sin t - \sin(2t)$$

Exercise 9

The rotation matrix R_{θ} is orthonormal since $R_{\theta}R_{\theta}^{H} = I$:

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos^2\theta + \sin^2\theta & \cos\theta\sin\theta - \sin\theta\cos\theta \\ \cos\theta\sin\theta - \sin\theta\cos\theta & \cos^2\theta + \sin^2\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Exercise 10

(i) $Q \in M_n(\mathbb{F}^n)$ is an orthonormal matrix if and only if $Q^HQ = QQ^H = I$. *Proof:*

Let Q be an orthonormal matrix. Then we have that $\langle \mathbf{x}, \mathbf{y} \rangle = \langle Q\mathbf{x}, Q\mathbf{y} \rangle = (Q\mathbf{x})^H Q\mathbf{y} = \mathbf{x}^H Q^H Q\mathbf{y}$. Since we know that $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^H \mathbf{y}$, it must be that $Q^H Q = I$. Also, $QQ^H = I$ since Q is invertible.

Now suppose that for a matrix Q, we have that $Q^HQ = QQ^H = I$. Consider the inner product $\langle Q\mathbf{x}, Q\mathbf{y} \rangle = (Q\mathbf{x})^HQ\mathbf{y} = \mathbf{x}^HQ^HQ\mathbf{y} = \mathbf{x}^H\mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle$. Therefore, Q must be an orthonormal matrix.

(ii) If $Q \in M_n(\mathbb{F})$ is an orthonormal matrix, then $||Q\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{F}^n$. Proof: $||Q\mathbf{x}|| = \sqrt{\langle Q\mathbf{x}, Q\mathbf{y} \rangle} = \sqrt{\langle \mathbf{x}, \mathbf{y} \rangle} = ||\mathbf{x}||$.

(iii) If $Q \in M_n(\mathbb{F}^n)$ is an orthonormal matrix, then so is Q^{-1} . *Proof:*

Assume Q is an orthonormal matrix. Then we know that $Q^HQ = QQ^H = I$, so $Q^{-1} = Q^H$. To prove that Q^H is orthonormal, we can show that $(Q^H)^HQ^H = Q^H(Q^H)^H = I$.

(iv) The columns of an orthonormal matrix $Q \in M_n(\mathbb{F}^n)$ are orthonormal. *Proof:*

Assume that Q is orthonormal. Consider standard basis vectors $e_i, e_j \in \mathbb{F}^n$. The ith column of Q is $Q\mathbf{e_i}$. Since Q is orthonormal, we have that $\langle Q\mathbf{e_i}, Q\mathbf{e_j} \rangle = \langle e_i, e_j \rangle = \delta_{ij}$. Therefore the columns of Q must be orthonormal.

(v) If $Q \in M_n(\mathbb{F}^n)$ is an orthonormal matrix, then |det(Q)| = 1. Proof: Since Q is orthonormal, we know that $QQ^H = I$. Then $det(QQ^H) = det(I) = 1$. By the properties of determinants, we have that $det(QQ^H) = det(Q) \cdot det(Q^H) = 1$. Using the fact that Q and Q^H have the same determinants, we conclude that |det(Q)| = 1. No. Consider the matrix

 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

(vi) If $Q_1, Q_2 \in M_n(\mathbb{F}^n)$ are orthonormal matrices, then the product Q_1Q_2 is also an orthonormal matrix.

Proof:

$$(Q_1 Q_2)^H Q_1 Q_2 = Q_2^H Q_1^H Q_1 Q_2 = I$$

$$Q_1 Q_2 (Q_1 Q_2)^H = Q_1 Q_2 Q_2^H Q_1^H = I.$$

Therefore Q_1Q_2 is an orthonormal matrix.

Exercise 11

Let $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$ be a linearly dependent set. Assume that the vector \mathbf{x}_k is linearly dependent on $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{k-1}\}$, i.e. $\mathbf{x}_k \in X = Span(\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{k-1}\})$. When we apply the Gram-Schmidt orthonormalization process, we have that $\mathbf{p}_{k-1} = proj_X(\mathbf{x}_k) = \mathbf{x}_k \implies \mathbf{q}_k = \mathbf{0}$. If we remove all the zero vectors from the set, we have an orthonormal set of linearly dependent vectors.

- (i) Let Q_1R_1 and Q_2R_2 be distinct QR decompositions of a matrix A s.t. $Q_2 = Q_1D$ and $R_2 = D^{-1}R_2$ where D is a diagonal matrix with all its diagonal entries ± 1 . Then Q_2 is orthonormal since Q_1 is orthonormal. Also, R_2 is upper triangular since R_1 is upper triangular.
- (ii) Assume that $A = Q_1 R_1 = Q_2 R_2$ s.t. Q_i is orthonormal and R_i is upper triangular with only positive diagonal entries. Thus R_i is invertible and $Q_i Q_i^H = I$. Then we have that $R_1 R_2^{-1} = Q_1^H Q_2$. Since the R_i are upper triangular with only positive entries on the diagonal, $R_1 R_2^{-1}$ must be upper triangular with only positive entries on the diagonal as well. Also, since the Q_i are orthonormal, $Q_1^H Q_2$ must be orthonormal. Then, $R_1 R_2^{-1} = Q_1^H Q_2 = I$, so $R_1 = R_2$ and $Q_1 = Q_2$.

Exercise 17

Let
$$A = \hat{Q}\hat{R}$$
.
 $A^{H}A\mathbf{x} = A^{H}\mathbf{b}$
 $\implies (\hat{Q}\hat{R})^{H}\hat{Q}\hat{R}\mathbf{x} = (\hat{Q}\hat{R})^{H}\mathbf{b}$
 $\implies \hat{R}^{H}\hat{Q}^{H}\hat{Q}\hat{R}\mathbf{x} = \hat{R}^{H}\hat{Q}^{H}\mathbf{b}$
 $\implies \hat{Q}\hat{R}\mathbf{x} = \mathbf{b}$
 $\implies \hat{R}\mathbf{x} = \hat{Q}^{H}\mathbf{b}$

Exercise 23

By the triangle inequality,

$$||\mathbf{x}|| = ||(\mathbf{x} - \mathbf{y}) + \mathbf{y}|| < ||\mathbf{x} - \mathbf{y}|| + ||\mathbf{y}|| \Leftrightarrow ||\mathbf{x}|| - ||\mathbf{y}|| < ||\mathbf{x} - \mathbf{y}||.$$

Similarly and by scale preservation,

$$||\mathbf{y}|| = |-1| \cdot ||\mathbf{y}|| = ||-\mathbf{y}|| = ||(\mathbf{x} - \mathbf{y}) + \mathbf{x}|| \le ||\mathbf{x} - \mathbf{y}|| + ||\mathbf{y}|| \Leftrightarrow ||\mathbf{y}|| - ||\mathbf{x}|| \le ||\mathbf{x} - \mathbf{y}||$$

$$\implies |||\mathbf{x}|| - ||\mathbf{y}||| \le ||\mathbf{x} - \mathbf{y}||$$

- (i) $||f||_{L^1} = \int_a^b |f(t)| dt$
- 1. Positivity: $|f(t)| \ge 0$ for all $x \implies \int_a^b |f(t)| dt \ge 0$. Also, $\int_a^b |f(t)| dt = 0$ if and only if |f(t)| = 0.
- 2. Scale preservation: $||af||_{L^1} = \int_a^b |af(t)|dt = |a| \int_a^b |f(t)|dt = |a| ||f||_{L^1}$
- 3. Triangle inequality: Consider $f, g \in C[a, b]$.

$$||f + g||_{L^{1}} = \int_{a}^{b} |f(t) + g(t)| dt$$

$$\leq \int_{a}^{b} (|f(t)| + |g(t)|) dt$$

$$= \int_{a}^{b} |f(t)| dt + \int_{a}^{b} |g(t)| dt$$

$$= ||f||_{L^{1}} + ||g||_{L^{1}}$$

- (ii) $||f||_{L^2} = (\int_a^b |f(t)|^2 dt)^{\frac{1}{2}}$
- 1. Positivity: $|f(t)|^2 \ge 0$ for all $x \implies (\int_a^b |f(t)|^2 dt)^{\frac{1}{2}} \ge 0$. Also, $(\int_a^b |f(t)|^2 dt)^{\frac{1}{2}} = 0$ if and only if |f(t)| = 0.
- 2. Scale preservation: $||af||_{L^2} = (\int_a^b |af(t)|^2 dt)^{\frac{1}{2}} = |a|(\int_a^b |f(t)|^2 dt)^{\frac{1}{2}} = |a|||f||_{L^2}$

3. Triangle inequality: Consider $f, g \in C[a, b]$.

$$||f+g|| = \left(\int_a^b |f(t)+g(t)|^2 dt\right)^{\frac{1}{2}}$$

$$\leq \left(\int_a^b |f(t)|^2 dt + \int_a^b |g(t)|^2 dt\right)^{\frac{1}{2}}$$

$$\leq ||f||_{L^2} + ||g||_{L^2}$$

(iii) $||f||_{L^{\infty}} = \sup_{x \in [a,b]|f(x)|}$ 1. Positivity: $|f(x)| \ge 0$ for all $x \implies \sup_{x \in [a,b]} |f(x)| \ge 0$. Also, $\sup_{x \in [a,b]} |f(x)| = 0$ if and only if |f(x)| = 0.

- 2. Scale preservation: $||af||_{L^{\infty}} = \sup_{x \in [a,b]} |a||f(x)| = |a| \sup_{x \in [a,b]} |f(x)| = |a|||f||_{L^{\infty}}$
- 3. Triangle inequality: For any $x \in [a, b]$

$$\begin{split} |f(x) + g(x)| &\leq |f(x)| + |g(x)| \\ &\leq \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |g(x)| \\ &= ||f||_{L^{\infty}} + ||g||_{L^{\infty}} \\ &\implies \sup_{x \in [a,b]} |f(x) + g(x)| = ||f + g||_{L^{\infty}} \leq ||f||_{L^{\infty}} + ||g||_{L^{\infty}} \end{split}$$

Exercise 26

Prove that topological equivalence is an equivalence relation. We check that it satisfies the three conditions:

- 1. Reflexivity: $||\cdot||_a \sim ||\cdot||_a$ We see that $m||\mathbf{x}||_a \leq ||\mathbf{x}||_a \leq M||\mathbf{x}||_a$ holds for a choice of constants m=1 and M=2.
- 2. Symmetry: $||\cdot||_a \sim ||\cdot||_b \implies ||\cdot||_b \sim ||\cdot||_a$ If $m||\mathbf{x}||_a \leq ||\mathbf{x}||_b \leq M||\mathbf{x}||_a$, then the relation holds for $\frac{1}{M}||\mathbf{x}||_b \leq ||\mathbf{x}||_a \leq \frac{1}{m}||\mathbf{x}||_b$.
- 3. Transitivity: $||\cdot||_a \sim ||\cdot||_b$ and $||\cdot||_b \sim ||\cdot||_c \implies ||\cdot||_a \sim ||\cdot||_c$ If $m_1||\mathbf{x}||_a \leq ||\mathbf{x}||_b \leq M_1||\mathbf{x}||_a$ and $m_2||\mathbf{x}||_b \leq ||\mathbf{x}||_c \leq M_2||\mathbf{x}||_b$, then the relation holds for $m_1 m_2 ||\mathbf{x}||_a \le ||\mathbf{x}||_c \le M_1 M_2 ||\mathbf{x}||_a$.
- (i) Show that $||\mathbf{x}||_2 \le ||\mathbf{x}||_1 \le \sqrt{n}||\mathbf{x}||_2$.

$$||\mathbf{x}||_2 \le ||\mathbf{x}||_1 \le \sqrt{n}||\mathbf{x}||_2$$

$$\left(\sum_{j=1}^{n} |x_j|^2\right)^{\frac{1}{2}} \le \sum_{j=1}^{n} |x_j| \le \sqrt{n} \left(\sum_{j=1}^{n} |x_j|^2\right)^{\frac{1}{2}}$$

(ii) Show that $||\mathbf{x}||_{\infty} \leq ||\mathbf{x}||_2 \leq \sqrt{n} ||\mathbf{x}||_{\infty}$.

Exercise 28

Exercise 29

Exercise 30

Exercise 37

We define $S = 1, x, x^2$ to be the basis of the space V. Then we can evaluate L on the basis vectors: $L[1] = 0, L[x] = 1, L[x^2] = 2$. Every function $p \in V$ can be written as a linear combination of the basis vectors:

$$p = a_1 + a_2 x + a_3 x^2 \implies L[p] = a_1 L[1] + a_2 L[x] + a_3 L[x^2]$$

$$L[p] = \begin{bmatrix} L[1] & L[x] & L[x^2] \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \langle (0, 1, 2), x \rangle$$

Exercise 38

We again define $S = 1, x, x^2$ to be the basis of the space V, and we evaluate D on the basis vectors: $D[1](x) = 0, Dx = 1, D[x^2](x) = 2x$. The matrix representation of D with respect to this basis is

$$D = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Using intergration by parts,

$$\langle q, D[p] \rangle = \int_{-\infty}^{\infty} q(x)p'(x)dx = -\int_{-\infty}^{\infty} q'(x)p(x)dx = -\langle D[q], [p] \rangle.$$

Therefore the matrix representation of the adjoint of D with respect to the basis is

$$D^* = -D = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

Exercise 39

Exercise 40

Exercise 45

Exercise 46

Exercise 47

Let
$$P = A(A^H A)^{-1}A^H$$

(i) $P^2 = P$
Proof:

$$P^{2} = A(A^{H}A)^{-1}A^{H}A(A^{H}A)^{-1}A^{H}$$

$$= AI_{n}(A^{H}A)^{-1}A^{H}$$

$$= A(A^{H}A)^{-1}A^{H}$$

(ii)
$$P^H = P$$

Proof:

$$P^{H} = (A(A^{H}A)^{-1}A^{H})^{H}$$

$$= A((A^{H}A)^{-1})^{H}A^{H}$$

$$= A((A^{H}A)^{H})^{-1}A^{H}$$

$$= A(A^{H}A)^{-1}A^{H}$$

(iii)
$$rank(P) = n$$

Exercise 48