Support Vector Machine (SVM)-II Nonlinear predictors

Guowei Wei Department of Mathematics Michigan State University

References:
Duc D. Nguyen's lecture notes
Wikipedia

SVM for Nonlinear Classifiers

Linear predictor:

$$p_{\mathbf{c}}(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$$

= $c_0 + c_1 x_1 + \dots + c_n x_n$

Nonlinear predictor => nonlinear decision boundary:

•
$$p_{\mathbf{c}}(\mathbf{x}) = c_0 + c_{11}x_1 + \cdots + c_{1k}x_1^k + c_{21}x_2 + \cdots$$

•
$$p_{\mathbf{c}}(\mathbf{x}) = c_0 + c_1 x_1 + c_2 x_1^2 + c_3 x_1 x_2 + \dots + c_m x_{n-1} x_n$$

Drawback: High risk of overfitting

SVM for Nonlinear Classifiers

- Use kernel (Kernel method, Vapnik 1963)
 - A similarity function $k(\mathbf{x}, \mathbf{z})$
 - k(x,z) define how similar a given data point x to the pre-defined landmark z
 - $\mathbf{x}^{(1)}$ is more similar (or close) to \mathbf{z} than $\mathbf{x}^{(2)}$ if $k(\mathbf{x}^{(1)}, \mathbf{z}) > k(\mathbf{x}^{(2)}, \mathbf{z})$

SVM for Kernel Classifiers

Kernel functions:

$$k(\mathbf{x}, \mathbf{z}) = \frac{1}{1 + \|\mathbf{x} - \mathbf{z}\|}$$
$$k(\mathbf{x}, \mathbf{z}) = \frac{1}{1 + \left(\frac{\|\mathbf{x} - \mathbf{z}\|}{n}\right)^{\nu}} \quad \text{(lorentz)}$$

Use kernel

- A similarity function $k(\mathbf{x}, \mathbf{z})$
- k(x, z) define how similar a given data point x to the pre-defined landmark z
- $\mathbf{x_1}$ is more similar (or close) to \mathbf{z} than $\mathbf{x_2}$ if $k(\mathbf{x_1}, \mathbf{z}) > k(\mathbf{x_2}, \mathbf{z})$

SVM for kernel Classifiers

Use kernel

- $\mathbf{x}^{(1)}$ is more similar (or close) to \mathbf{z} than $\mathbf{x}^{(2)}$ if $k(\mathbf{x}^{(1)}, \mathbf{z}) > k(\mathbf{x}^{(2)}, \mathbf{z})$
- Kernel functions:

$$k(\mathbf{x}, \mathbf{z}) = \frac{1}{1 + \|\mathbf{x} - \mathbf{z}\|}$$

$$k(\mathbf{x}, \mathbf{z}) = \frac{1}{1 + \left(\frac{\|\mathbf{x} - \mathbf{z}\|}{\sigma}\right)^{\nu}} \text{ (Lorentz)}$$

$$1 + \left(\frac{\|\mathbf{x} - \mathbf{z}\|}{\sigma}\right)^{\nu}$$

$$k(\mathbf{x}, \mathbf{z}) = e^{-\left(\frac{\|\mathbf{x} - \mathbf{z}\|}{\sigma}\right)^{\nu}} \text{ (exponential)}$$

- if **x** very close to $\mathbf{z} \Rightarrow ||\mathbf{x} \mathbf{z}|| \rightarrow 0 \Rightarrow k(\mathbf{x}, \mathbf{z}) \rightarrow 1$
- if **x** far away from $\mathbf{z} \Rightarrow \|\mathbf{x} \mathbf{z}\| \rightarrow \infty \Rightarrow k(\mathbf{x}, \mathbf{z}) \rightarrow 0$
- In exponential kernel, when v=2 we get Gauss kernel $e^{-\left(\frac{\|x-z\|}{\sigma}\right)^2}$

SVM for Nonlinear Classifiers

- Gaussian kernel: $k(\mathbf{x}, \mathbf{z}) = e^{-\left(\frac{\|\mathbf{x} \mathbf{z}\|}{\sigma}\right)^2}$
- σ : standard deviation
- σ^2 : variance, define how steep from the landmark (the top) to the ground
- $z = (3,5)^T$ with three σ^2 values: 1, 0.5, and 3.0

Predictor with Kernels

• Make use the predictor for linear classifier $p_{\mathbf{c}}(\mathbf{x}) = c_0 + c_1 x_1 + \dots + c_n x_n$

If we use landmarks = use similarity functions
 = use kernels

How to Choose Landmarks?

Assume our training data is

$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(M)}, y^{(M)})$$

 How to choose landmarks for a given training data? (The kernel trick, Guyon and Vapnik, 1992)

How to Choose Landmarks?

Assume our training data is

$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(M)}, y^{(M)})$$

• How to choose landmarks for a given training data? $\mathbf{z}^{(1)} = \mathbf{x}^{(1)}, \mathbf{z}^{(2)} = \mathbf{x}^{(2)}, \dots, \mathbf{z}^{(M)} = \mathbf{x}^{(M)}$

Loss Function with Kernels

Predictor

$$p_{\mathbf{c}}(\mathbf{x}) = c_0 + c_1 k(\mathbf{x}, \mathbf{x}^{(1)}) + \dots + c_M k(\mathbf{x}, \mathbf{x}^{(M)})$$

Loss function without kernel

$$L(\mathbf{c}) = \sqrt{c_1^2 + c_2^2 + \dots + c_n^2} + \lambda \sum_{i=1}^{M} \max(0, 1 - y^{(i)} \mathbf{c}^T \mathbf{x}^{(i)})$$

Loss function with kernels

$$L(\mathbf{c})$$

$$= \sqrt{c_1^2 + c_2^2 + \dots + c_M^2} + \lambda \sum_{i=1}^{M} \max(0, 1 - y^{(i)} \mathbf{c}^T \mathbf{K}(\mathbf{x}^{(i)}))$$

Loss Function with Kernels

Predictor

$$p_{\mathbf{c}}(\mathbf{x}) = c_0 + c_1 k(\mathbf{x}, \mathbf{x}^{(1)}) + \dots + c_M k(\mathbf{x}, \mathbf{x}^{(M)})$$

Loss function with kernels
 L(c)

$$= \sqrt{c_1^2 + c_2^2 + \dots + c_M^2} + \lambda \sum_{i=1}^{M} \max(0, 1 - y^{(i)} \mathbf{c}^T \mathbf{K}(\mathbf{x}^{(i)}))$$

$$\mathbf{K}(\mathbf{x}^{(i)}) \equiv \left(1, k(\mathbf{x}^{(1)}, \mathbf{x}^{(i)}), k(\mathbf{x}^{(2)}, \mathbf{x}^{(i)}), \dots, k(\mathbf{x}^{(M)}, \mathbf{x}^{(i)})\right)^{T}$$

Kernel Selections for SVM

 Not all similarity kernels are valid. Must satisfy Mercer's theorem

$$k: \mathbf{x} \times \mathbf{x} \to \mathbb{R}$$
 $k(\mathbf{x}, \mathbf{z}) = k(\mathbf{z}, \mathbf{x})$ (symmetric)
$$\iint g(\mathbf{x}) k(\mathbf{x}, \mathbf{y}) g(\mathbf{y}) d\mathbf{x} d\mathbf{y} \ge 0$$
 (positive semidefinite)

for all vector $g \in \mathcal{H}$ and k

$$\int \int |k(\mathbf{x}, \mathbf{y})|^2 d\mathbf{x} d\mathbf{y} < \infty \qquad \text{(Hilbert–Schmidt operator)}$$

Mercer's requirement ensures that the loss function is convex in the dual form when using quadratic optimization method.

Kernel Selections for SVM

If kernel does not meet the Mercer conditions, no global minimum is guarantee, but one can use gradient descent to find a local minimum.

Quadratic optimization:

Minimize
$$\frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{Q}\mathbf{x} + \mathbf{c}^{\mathrm{T}}\mathbf{x}$$

Subject to $Ax \leq b$

Q –real symmetric matrix $(n \times n)$

A $-\text{real matrix}(m \times n)$

b – real vector (m)

Commonly used Kernels

Linear kernel (or dot product kernel)

$$k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^T \mathbf{z}$$

Polynomial

$$k(\mathbf{x}, \mathbf{z}) = (\alpha \mathbf{x}^T \mathbf{z} + r)^d$$

Radial basis function (RBF)

$$k(\mathbf{x}, \mathbf{z}) = e^{-\left(\frac{\|\mathbf{x} - \mathbf{z}\|}{\sigma}\right)^{\nu}}$$

Sigmoid

$$\frac{1}{1 + e^{-\gamma \mathbf{x}^T \mathbf{z}}} \text{ or } \tanh(\gamma \mathbf{x}^T \mathbf{z} + r)$$

Are these kernels Hilbert-Schmidt?

Discussions How to Choose Kernel?

- Radial basic functions are commonly used
- Use polynomial for linear separation
- Sigmoid often performs worst
- Should try a variety of kernels for a given problem

Discussions -- Examples

Discussions -- Examples

rbf

- Support vector clustering (for unsupervised learning), a fundamental method in data science
- Multiclass SVM:
 - multiple binary classification problems:
 https://link.springer.com/chapter/10.1007%2
 F11494683 28.
 - single optimization problem:
 http://jmlr.csail.mit.edu/papers/volume2/crammer01a.pdf

Support vector regression (SVR) (Vladimir N. Vapnik)

Minimize
$$\frac{1}{2} ||\bar{c}||^2$$

subject to
$$\begin{cases} y^{(i)} - \mathbf{c}^T \mathbf{x}^{(i)} \le \varepsilon \\ \mathbf{c}^T \mathbf{x}^{(i)} - y^{(i)} \le \varepsilon \end{cases}$$
 (where $\varepsilon \ge 0$)

 Least squares support vector machine (LS-SVM): (Suykens and Vandewalle)

- Mathematical issues?
 - Kernels (Reproducing-kernel-Hilbert-space kernels; Wavelets; Frames; Splines; Separable, etc.)
 - 2. Regularization and stability (Tikhonov)

arg min
$$L(\mathbf{c}) + \mathcal{R}(\mathbf{K})$$
, where $\mathcal{R}(f) = \gamma_A ||f||_{\mathcal{H}}^2$

$$L(\mathbf{c}) = \sqrt{c_1^2 + \dots + c_M^2} + \lambda \sum_{i=1}^{M} \max(0, 1 - y^{(i)} \mathbf{c}^T \mathbf{K}(\mathbf{x}^{(i)}))$$

$$f = \sum_{i=1}^{M} \mathbf{c}^T \mathbf{K}(\mathbf{x}^{(i)})$$

 Transductive support vector machines (semisupervised learning): The training and test sets are minimized together.

Training set:
$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) | \mathbf{x}^{(i)} \in \mathbb{R}^n, y^{(i)} \in \{-1,1\} \}_{i=1}^M$$

Test set: $\mathcal{D}^* = \{ \mathbf{x}^{(i)} | \mathbf{x}^{(i)} \in \mathbb{R}^n \}_{i=1}^N$

Manifold learning for semi-supervised learning:

$$\arg \min_{f \in \mathcal{H}} L(\mathbf{c}) + \mathcal{R}(f),$$

$$\mathcal{R}(f) = \gamma_{A} ||f||_{\mathcal{H}}^{2} + \gamma_{I} ||f||_{I}^{2}$$

$$||f||_{I}^{2} = \frac{1}{(M+N)^{2}} \sum_{i,j=1}^{M+N} W_{ij} \left(f(\mathbf{x}_{i}) - f(\mathbf{x}_{j}) \right)$$

This will be discussed further in future.