Lecture 1: Rigid Body Configuration and Velocity

Lecture 1: Rigid Body Configuration and Velocity

Math Basics

Skew symmetric representation

Special Orthogonal Group

Rigid Body Velocity (Twist)

Definition

Change Reference for Twist

Geometric Aspect of Twis: Screw Motion

Definition

Transformation

Screw Motion to Twist

Twist to Screw Motion

Screw Representation of a Twist

Math Basics

Skew symmetric representation

cross product can be expressed as matrix product

$$a \times b = [a]b$$

$$a = egin{bmatrix} a_1 \ a_2 \ a_3 \end{bmatrix} \leftrightarrow [a] = egin{bmatrix} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{bmatrix}$$

$$[a] = -[a]^T$$

Special Orthogonal Group

$$SO(n) = \{R \in \mathbb{R}^{n imes n} : R^TR = I, det(R) = 1\}$$

Rigid Body Velocity (Twist)

Pick an arbitrary reference point r, then for any body-fixed point on the body

$$v_n = v_r + \omega imes \stackrel{
ightarrow}{rp}$$

 v_r is the speed of r w.r.t. rigid body fixed frame.

Definition

Twist, namely spatial velocity

Spatial velocity is a set of **parameters**, not the absolute velocity.

$${\cal V}_r=(\omega_r,v_r)$$

Change Reference for Twist

$${}^{A}\mathcal{V} = {}^{A}X_{B}{}^{B}\mathcal{V}$$

$$T = (R, p)$$

$${}^AX_B = [Ad_T] riangleq egin{bmatrix} R & 0 \ [p]R & R \end{bmatrix}$$

Geometric Aspect of Twis: Screw Motion

Definition

Screw Motion: screw axis q, \hat{s}, h + rotation speed $\dot{\theta}$

- \hat{s} : unit vector in the directrion of the rotation axis
- *q*: any point on the rotation axis
- h: screw pitch: the ratio of the linear velocity along the screw axis to the angular velocity about the screw axis

Theorem (Chasles): **Every rigid body motion can be realized by a screw motion.**

Transformation

Screw Motion to Twist

Fix a reference frame $\{A\}$ with origin o_A

$${}^A\omega={}^A\hat{s}\dot{ heta}$$

$${}^Av_{o_A}={}^Av_q+{}^A\omega imes(-{}^Aq)={}^A\hat{s}(h\dot{ heta})-{}^A\omega imes{}^Aq$$

Twist to Screw Motion

• $\omega = 0$, pure translation

$$\hat{s}=rac{v}{\|v\|},\ \dot{ heta}=\|v\|,\ h=\infty, q$$
 can bre arbitrary

• $\omega \neq 0$

$$\hat{s} = rac{\omega}{\|\omega\|}, \; \dot{ heta} = \|\omega\|, \; q = rac{\omega imes v}{\|\omega\|^2}, \; h = rac{\omega^T v}{\|\omega\|^2}$$

Here v is the velocity of the reference point, not the velocity along the screw axis.

Screw Representation of a Twist

Twist with a unit speed,

$$\mathcal{V} = \hat{\mathcal{S}}\dot{ heta}$$
 $\hat{S} \leftrightarrow (\hat{s},h,q), \dot{ heta} = 1$