WHAT IS CLAIMED IS:

 \frown 1. \New camptothecin derivatives of the general formula:

$$X-C-O$$

$$O$$

$$10$$

$$A$$

$$B$$

$$C$$

$$N$$

$$D$$

$$HO$$

$$E$$

$$O$$

$$O$$

$$O$$

wherein R¹ is a hydrogen atom, a halogen atom or an alkyl group with 1-4 carbon atoms and X is a chlorine atom or -NR²R³ where R² and R³ are the same or different and each represents a hydrogen atom, a substituted or unsubstituted alkyl group with 1-4 carbon atoms or a substituted or unsubstituted carbocyclic or heterocyclic group, with the proviso that when both R² and R³ are the substituted or unsubstituted alkyl groups, they may be combined together with the nitrogen atom, to which they are bonded, to form a heterocyclic ring which may be interrupted with -O-, -S- and/or >N-R⁴ in which R⁴ is a hydrogen atom, a substituted or unsubstituted alkyl group with 1-4 carbon atoms or a substituted or unsubstituted alkyl group and wherein the grouping -O-CO-X is bonded to a carbon atom located in any of the 9-, 10-and 11-positions in the ring A,

as well as an ammonium salt or an alkali metal salt thereof.

- 2. New camptothecin derivatives according to claim 1, wherein R^2 , R^3 or R^4 in case of the alkyl group is substituted by one or more substituents selected from the following atoms and/or groups:
 - (A) -F, -Cl, -Br and -I,
 - (B) -OH and $-OR^5$,

- 57 -

(D)

(C) $-\cos^6$, $-\cos_3 R^6$ and $-PO_3 (R^6)_2$, $(R^7)_n$

(D) -(R')n and -N(R')n

(E) $-NR^8R^9$ and $-CONR^8R^9$, and

(F) $-Q-A-OR^{\frac{1}{2}}$, $-Q-A-NR^{8}R^{9}$ and $-Q-A-Q-R^{5}$

wherein R^5 is an alkyl group with 1-4 carbon atoms or a phenyl group which may be substituted by a halogen atom or an alkyl group with 1-4 carbon atoms, R^6 is a hydrogen atom or an alkyl group with 1-4 carbon atoms, R^7 is a hydrogen atom, a halogen atom, an alkyl group with 1-4 carbon atoms or an alkoxy group with 1-4 carbon atoms, n is an integer of 1-3, R^8 and R^9 are the same or different and each represents a hydrogen atom or an alkyl group with 1-4 carbon atoms with the proviso that when both R^8 and R^9 are the alkyl groups, they may be combined together with the nitrogen atom, to which they are bonded, to form a heterocyclic group which may be interrupted with -O-, -S- or $N-R^6$, Q is the grouping -O-CO- or -CO-O-, and A is a straight or branched chain alkylene group with 1-4 carbon atoms.

3. 29-Chlorocarbonyloxy-7-R¹-camptothecins.

10-Chlorocarbonyloxy-7-R¹-camptothecins.

11-Chlorocarbonyloxy-7-R¹-camptothecins.

6.0.9=[N-R8-N-(R8R9amino)C1-4alkyl]carbonyloxy-7-R1-camptothecins

7. $9-(4-R^4-piperazino)$ carbonyloxy-7- R^1 -camptothecins.

8. $9 - (R^8 R^9 N - C_{1-4} - alkyl)$ carbonyloxy-7-R¹-camptothecins.

9. 9-[4-(1-piperidino]-1-piperidino] carbonyloxy-7-R¹-camptothecins.

10.____10-C₁₋₄-alkylaminocarbonyloxy-7-R¹-camptothecins.

11. 10-(di-C₁₋₄-alkylamino)carbonyloxy-7-R¹-camptothecins.

12. $10-(4-R^4$ -piperazino) carbonyloxy-7- R^1 -camptothecins.

13. $10-(R^8R^9N-C_{1-4}-alkyl)$ carbonyloxy-7- R^1 -camptothecins.

ga.

15

20

5

10

14. 10-[4-(1-piperidino)-1-piperidino]carbonyloxy-7-R¹-camptothecins.

15. 11-[N-C] 4 alkyl-N-(R⁸R⁹amino)C₁₋₄alkyl]carbonyloxy-7-R¹-camptothecins.

5

10

15

20

16. 11-(4-R4-Riperazino) carbonyloxy-7-R1-camptothecins.
17. 11-[4-(1-piperidino)-1-piperidino] carbonyloxy-7-R1-camptothecins.

18. A process for the preparation of new camptothecin derivatives of the general formula:

$$X-C-O \xrightarrow{10} A \xrightarrow{B} C \xrightarrow{N} O$$

$$\downarrow 0$$

wherein R^1 is a hydrogen atom, a halogen atom or an alkyl group with 1-4 carbon atoms and X is a chlorine atom or $-NR^2R^3$ where R^2 and R^3 are the same of different and each represents a hydrogen atom, a substituted or unsubstituted alkyl group with 1-4 carbon atoms or a substituted or unsubstituted carbocyclic or heterocyclic group, with the proviso that when both R^2 and R^3 are the substituted or unsubstituted alkyl groups, they may be combined together with the nitrogen atom, to which they are bonded, to form a heterocyclic ring which may be interrupted with -O-, -S- and/or $>N-R^4$ in which R^4 is a hydrogen atom, a substituted or unsubstituted alkyl group with 1-4 carbon atoms or a substituted or unsubstituted phenyl group and wherein the grouping -O-CO-X is bonded to a carbon atom located in any of the 9-, 10-*and 11-

positions in the ring A, as well as ammonium salts or alkali metal salts thereof, which comprises reacting a hydroxycamptothecin derivative of the general formula:

wherein R¹ has the same meaning as given above and the hydroxy group OH is bonded to a carbon atom located in any of the 9-, 10- and 11-positions in the ring A,

5

10

with phosgen to form a chlorocarbonyloxycamptothecin derivative of the general formula:

$$C1-C-O \xrightarrow{10} A \xrightarrow{B} C \xrightarrow{N} O$$

$$HO \xrightarrow{B} C$$

$$(III)$$

wherein R¹ has the same meaning as given above and the grouping Cl-CO-O- is bonded to a carbon atom located in any of the 9-, 10- and ll-positions in the ring A,

and, if necessary, treating the chlorocarbonyloxycamptothecin derivative with an amine of the general formula:

$$HN < \frac{R^2}{R^3}$$
 (IV)

wherein R^2 and R^3 have the same meaning as given above, and if desired, converting R^2 and/or R^3 in the resultant aminocarbonyloxycamptothecin derivative of the general formula (I) where X is $-N < \frac{R^2}{R^3}$ into another R^2 and/or R^3 by N-alkylation or O-alkylation according to the method known per se and/or converting the resultant aminocarbonyloxycamptothecin derivative into an ammonium salt thereof with an acid or into an alkali metal salt thereof with a strong alkali metal base.

- 19. A process according to claim 18, wherein the reaction is carried out in the presence of an anhydrous solvent and an acid-binding agent.
- 20. A process for the preparation of new camptothecin derivatives of the general formula:

wherein R^1 is a hydrogen atom, a halogen atom or an alkyl group with 1-4 carbon atoms and R^2 and R^3 are the same or different and each represents a hydrogen atom, a substituted or unsubstituted alkyl group with 1-4 carbon atoms or a substituted or unsubstituted carbocyclic or heterocyclic group with the proviso that when both R^2 and R^3 are the substituted or unsubstituted alkyl groups, they may be combined together with the nitrogen atom, to which they are bonded, to form a heterocyclic ring which may be interrupted with -O-, -S- and/or $>N-R^4$ in which R^4 is a hydrogen atom, a substituted or unsubstituted alkyl group

20

15

with 1-4 carbon atoms or a substituted or unsubstituted phenyl group and wherein the grouping $-0-CO-N < \frac{R^2}{R^3}$ is bonded to a carbon atom located in any of the 9-, 10- and 11-positions in the ring A, as well as ammonium salts or alkali metal salts thereof, which comprises reacting a hydroxycamptothecin of the general formula:

wherein R¹ has the same meaning as given above and the hydroxy group OH is bonded to a carbon atom located in any of the 9-, 10- and 11-positions in the ring A,

with a carbamoyl chloride of the general formula:

$$C1-CO-N < \frac{R^2}{R^3}$$
 (V)

wherein R^2 and R^3 have the same meanings as given above, and if desired, converting R^2 and/or R^3 in the resultant aminocarbonyloxycamptothecin derivative of the general formula (I') into another R^2 and/or R^3 by O-alkylation or N-alkylation according to the method known per se and/or converting the resultant aminocarbonyloxycamptothecin derivative into an ammonium salt thereof with an acid or into an alkali metal salt thereof with a strong alkali metal base.

21. A process according to claim 20, wherein the reaction is carried out in the presence of an aprotic solvent and an acid-binding agent.

20

15

10

22. A process according to claim 20, wherein the carbamoyl chloride is used in a theoretical excess amount.

add Bâ