

1 Les rationnels \mathbb{Q}

Exercice 1

- 1. Démontrer que si $r \in \mathbb{Q}$ et $x \notin \mathbb{Q}$ alors $r + x \notin \mathbb{Q}$ et si $r \neq 0$ alors $r \neq 0$.
- 2. Montrer que $\sqrt{2} \notin \mathbb{Q}$,
- 3. En déduire : entre deux nombres rationnels il y a toujours un nombre irrationnel.

Indication ▼

Correction ▼

[000451]

Exercice 2

Montrer que $\frac{\ln 3}{\ln 2}$ est irrationnel.

 [000461

Exercice 3

- 1. Soit $N_n = 0, 1997 \, 1997 \dots 1997$ (*n* fois). Mettre N_n sous la forme $\frac{p}{q}$ avec $p, q \in \mathbb{N}^*$.
- 2. Soit M = 0,199719971997... Donner le rationnel dont l'écriture décimale est M.
- 3. Même question avec : P = 0,11111...+0,22222...+0,33333...+0,44444...+0,55555...+0,66666...+0,77777...+0,88888...+0,99999...

Indication ▼

Correction ▼

[000459]

Exercice 4

Soit $p(x) = \sum_{i=0}^{n} a_i \cdot x^i$. On suppose que tous les a_i sont des entiers.

- 1. Montrer que si p a une racine rationnelle $\frac{\alpha}{\beta}$ alors α divise a_0 et β divise a_n .
- 2. On considère le nombre $\sqrt{2} + \sqrt{3}$. En calculant son carré, montrer que ce carré est racine d'un polynôme de degré 2. En déduire, à l'aide du résultat précédent qu'il n'est pas rationnel.

Indication ▼

Correction ▼

[000457]

2 Maximum, minimum, borne supérieure...

Exercice 5

Le maximum de deux nombres x, y (c'est-à-dire le plus grand des deux) est noté $\max(x, y)$. De même on notera $\min(x, y)$ le plus petit des deux nombres x, y. Démontrer que :

$$\max(x,y) = \frac{x+y+|x-y|}{2}$$
 et $\min(x,y) = \frac{x+y-|x-y|}{2}$.

Trouver une formule pour $\max(x, y, z)$.

Indication ▼

Correction ▼

[000464]

Exercice 6

Déterminer la borne supérieure et inférieure (si elles existent) de : $A = \{u_n \mid n \in \mathbb{N}\}$ en posant $u_n = 2^n$ si n est pair et $u_n = 2^{-n}$ sinon.

Indication ▼ Correction ▼ [000465]

Exercice 7

Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants :

$$[0,1] \cap \mathbb{Q} , \quad]0,1[\cap \mathbb{Q} , \quad \mathbb{N} , \quad \left\{ (-1)^n + \frac{1}{n^2} \mid n \in \mathbb{N}^* \right\}.$$

Correction ▼ [000466]

Exercice 8

Soient *A* et *B* deux parties bornées de \mathbb{R} . On note $A + B = \{a + b \mid (a, b) \in A \times B\}$.

- 1. Montrer que $\sup A + \sup B$ est un majorant de A + B.
- 2. Montrer que $\sup(A+B) = \sup A + \sup B$.

Indication ▼ Correction ▼ [000476]

Exercice 9

Soit A et B deux parties bornées de \mathbb{R} . Vrai ou faux ?

- 1. $A \subset B \Rightarrow \sup A \leqslant \sup B$,
- 2. $A \subset B \Rightarrow \inf A \leqslant \inf B$,
- 3. $\sup(A \cup B) = \max(\sup A, \sup B)$,
- 4. $\sup(A+B) < \sup A + \sup B$,
- 5. $\sup(-A) = -\inf A$,
- 6. $\sup A + \inf B \leq \sup (A + B)$.

Indication ▼ Correction ▼ [000477]

3 Divers

Exercice 10

Soit $f : \mathbb{R} \to \mathbb{R}$ telle que

$$\forall (x, y) \in \mathbb{R}^2$$
 $f(x+y) = f(x) + f(y)$.

Montrer que

- 1. $\forall n \in \mathbb{N}$ $f(n) = n \cdot f(1)$.
- 2. $\forall n \in \mathbb{Z}$ $f(n) = n \cdot f(1)$.
- 3. $\forall q \in \mathbb{Q}$ $f(q) = q \cdot f(1)$.
- 4. $\forall x \in \mathbb{R}$ $f(x) = x \cdot f(1)$ si f est croissante.

Indication ▼ Correction ▼ [000497]

Indication pour l'exercice 1

- 1. Raisonner par l'absurde.
- 2. Raisonner par l'absurde en écrivant $\sqrt{2} = \frac{p}{q}$ avec p et q premiers entre eux. Ensuite plusieurs méthodes sont possibles par exemple essayer de montrer que p et q sont tous les deux pairs.
- 3. Considérer $r + \frac{\sqrt{2}}{2}(r' r)$ (faites un dessin!) pour deux rationnels r, r'. Puis utiliser les deux questions précédentes.

Indication pour l'exercice 2 ▲

Raisonner par l'absurde!

Indication pour l'exercice 3 ▲

- 1. Mutiplier N_n par une puissance de 10 suffisament grande pour obtenir un nombre entier.
- 2. Mutiplier *M* par une puissance de 10 suffisament grande (pas trop grande) puis soustraire *M* pour obtenir un nombre entier.

Indication pour l'exercice 4 A

- 1. Calculer $\beta^n p(\frac{\alpha}{\beta})$ et utiliser le lemme de Gauss.
- 2. Utiliser la première question avec $p(x) = (x^2 5)^2 24$.

Indication pour l'exercice 5 ▲

Distinguer des cas.

Indication pour l'exercice 6 ▲

 $\inf A = 0$, A n'a pas de borne supérieure.

Indication pour l'exercice 8 ▲

Il faut revenir à la définition de la borne supérieure d'un ensemble borné : c'est le plus petit des majorants. En particulier la borne supérieure est un majorant.

Indication pour l'exercice 9

Deux propositions sont fausses...

Indication pour l'exercice 10 ▲

- 1. $f(2) = f(1+1) = \cdots$, faire une récurrence.
- 2. $f((-n)+n) = \cdots$
- 3. Si $q = \frac{a}{b}$, calculer $f(\frac{a}{b} + \frac{a}{b} + \dots + \frac{a}{b})$ avec b terms dans cette somme.
- 4. Utiliser la densité de \mathbb{Q} dans \mathbb{R} : pour $x \in \mathbb{R}$ fixé, prendre une suite de rationnels qui croit vers x, et une autre qui décroit vers x.

3

Correction de l'exercice 1

1. Soit $r = \frac{p}{q} \in \mathbb{Q}$ et $x \notin \mathbb{Q}$. Par l'absurde supposons que $r + x \in \mathbb{Q}$ alors il existe deux entiers p', q' tels que $r + x = \frac{p'}{q'}$. Donc $x = \frac{p'}{q'} - \frac{p}{q} = \frac{qp' - pq'}{qq'} \in \mathbb{Q}$ ce qui est absurde car $x \notin \mathbb{Q}$.

De la même façon si $r \cdot x \in \mathbb{Q}$ alors $r \cdot x = \frac{p'}{q'}$ Et donc $x = \frac{p'}{q'} \frac{q}{p}$. Ce qui est absurde.

2. *Méthode* "classique". Supposons, par l'absurde, que $\sqrt{2} \in \mathbb{Q}$ alors il existe deux entiers p,q tels que $\sqrt{2} = \frac{p}{q}$. De plus nous pouvons supposer que la fraction est irréductible (p et q sont premiers entre eux). En élevant l'égalité au carré nous obtenons $q^2 \times 2 = p^2$. Donc p^2 est un nombre pair, cela implique que p est un nombre pair (si vous n'êtes pas convaincu écrivez la contraposée "p impair $\Rightarrow p^2$ impair"). Donc $p = 2 \times p'$ avec $p' \in \mathbb{N}$, d'où $p^2 = 4 \times p'^2$. Nous obtenons $q^2 = 2 \times p'^2$. Nous en déduisons maintenant que q^2 est pair et comme ci-dessus que q est pair. Nous obtenons ainsi une contradiction car p et q étant tous les deux pairs la fraction $\frac{p}{q}$ n'est pas irréductible et aurait pu être simplifiée. Donc $\sqrt{2} \notin \mathbb{Q}$.

Autre méthode. Supposons par l'absurde que $\sqrt{2} \in \mathbb{Q}$. Alors $\sqrt{2} = \frac{p}{q}$ pour deux entiers $p, q \in \mathbb{N}^*$. Alors nous avons $q \cdot \sqrt{2} \in \mathbb{N}$. Considérons l'ensemble suivant :

$$\mathscr{N} = \left\{ n \in \mathbb{N}^* \mid n \cdot \sqrt{2} \in \mathbb{N} \right\}.$$

Cet ensemble \mathscr{N} est une partie de \mathbb{N}^* qui est non vide car $q \in \mathscr{N}$. On peut alors prendre le plus petit élément de \mathscr{N} : $n_0 = \min \mathscr{N}$. En particulier $n_0 \cdot \sqrt{2} \in \mathbb{N}$. Définissons maintenant n_1 de la façon suivante : $n_1 = n_0 \cdot \sqrt{2} - n_0$. Il se trouve que n_1 appartient aussi à \mathscr{N} car d'une part $n_1 \in \mathbb{N}$ (car n_0 et $n_0 \cdot \sqrt{2}$ sont des entiers) et d'autre part $n_1 \cdot \sqrt{2} = n_0 \cdot 2 - n_0 \cdot \sqrt{2} \in \mathbb{N}$. Montrons maintenant que n_1 est plus petit que n_0 . Comme $0 < \sqrt{2} - 1 < 1$ alors $n_1 = n_0(\sqrt{2} - 1) < n_0$ et est non nul.

Bilan : nous avons trouvé $n_1 \in \mathcal{N}$ strictement plus petit que $n_0 = \min \mathcal{N}$. Ceci fournit une contradiction. Conclusion : $\sqrt{2}$ n'est pas un nombre rationnel.

3. Soient r, r' deux rationnels avec r < r'. Notons $x = r + \frac{\sqrt{2}}{2}(r' - r)$. D'une part $x \in]r, r'[$ (car $0 < \frac{\sqrt{2}}{2} < 1$) et d'après les deux premières questions $\sqrt{2}\left(\frac{r' - r}{2}\right) \notin \mathbb{Q}$ donc $x \notin \mathbb{Q}$. Et donc x est un nombre irrationnel compris entre r et r'.

Correction de l'exercice 2 A

Par l'absurde supposons que $\frac{\ln 3}{\ln 2}$ soit un rationnel. Il s'écrit alors $\frac{p}{q}$ avec $p\geqslant 0, q>0$ des entiers. On obtient $q\ln 3=p\ln 2$. En prenant l'exponentielle nous obtenons : $\exp(q\ln 3)=\exp(p\ln 2)$ soit $3^q=2^p$. Si $p\ge 1$ alors 2 divise 3^q donc 2 divise 3, ce qui est absurde. Donc p=0. Ceci nous conduit à l'égalité $3^q=1$, donc q=0. La seule solution possible est p=0, q=0. Ce qui contredit $q\ne 0$. Donc $\frac{\ln 3}{\ln 2}$ est irrationnel.

Correction de l'exercice 3 ▲

- 1. Soit p = 19971997...1997 et $q = 100000000...0000 = 10^{4n}$. Alors $N_n = \frac{p}{q}$.
- 2. Remarquons que $10\,000 \times M = 1997, 1997\,1997\dots$ Alors $10\,000 \times M M = 1997$; donc $9999 \times M = 1997$ d'où $M = \frac{1997}{9999}$.
- 3. $0,111...=\frac{1}{9},0,222...=\frac{2}{9}$, etc. D'où $P=\frac{1}{9}+\frac{2}{9}+\cdots+\frac{9}{9}=\frac{1+2+\cdots+9}{9}=\frac{45}{9}=5$.

Correction de l'exercice 4 A

1. Soit $\frac{\alpha}{\beta} \in \mathbb{Q}$ avec $\operatorname{pgcd}(\alpha, \beta) = 1$. Pour $p(\frac{\alpha}{\beta}) = 0$, alors $\sum_{i=0}^{n} a_i \left(\frac{\alpha}{\beta}\right)^i = 0$. Après multiplication par β^n nous obtenons l'égalité suivante :

$$a_n\alpha^n + a_{n-1}\alpha^{n-1}\beta + \dots + a_1\alpha\beta^{n-1} + a_0\beta^n = 0.$$

En factorisant tous les termes de cette somme sauf le premier par β , nous écrivons $a_n\alpha^n + \beta q = 0$. Ceci entraı̂ne que β divise $a_n\alpha^n$, mais comme β et α^n sont premier entre eux alors par le lemme de Gauss

 β divise a_n . De même en factorisant par α tous les termes de la somme ci-dessus, sauf le dernier, nous obtenons $\alpha q' + a_0 \beta^n = 0$ et par un raisonnement similaire α divise a_0 .

2. Notons $\gamma = \sqrt{2} + \sqrt{3}$. Alors $\gamma^2 = 5 + 2\sqrt{2}\sqrt{3}$ Et donc $(\gamma^2 - 5)^2 = 4 \times 2 \times 3$, Nous choisissons $p(x) = (x^2 - 5)^2 - 24$, qui s'écrit aussi $p(x) = x^4 - 10x^2 + 1$. Vu notre choix de p, nous avons $p(\gamma) = 0$. Si nous supposons que γ est rationnel, alors $\gamma = \frac{\alpha}{\beta}$ et d'après la première question α divise le terme constant de p, c'est-à-dire 1. Donc $\alpha = \pm 1$. De même β divise le coefficient du terme de plus haut degré de p, donc β divise 1, soit $\beta = 1$. Ainsi $\gamma = \pm 1$, ce qui est évidemment absurde!

Correction de l'exercice 5

Explicitons la formule pour $\max(x, y)$. Si $x \ge y$, alors |x - y| = x - y donc $\frac{1}{2}(x + y + |x - y|) = \frac{1}{2}(x + y + x - y) = x$. De même si $x \le y$, alors |x - y| = -x + y donc $\frac{1}{2}(x + y + |x - y|) = \frac{1}{2}(x + y - x + y) = y$.

Pour trois éléments, nous avons $\max(x, y, z) = \max(\max(x, y), z)$, donc d'après les formules pour deux éléments :

$$\max(x, y, z) = \frac{\max(x, y) + z + |\max(x, y) - z|}{2}$$
$$= \frac{\frac{1}{2}(x + y + |x - y|) + z + |\frac{1}{2}(x + y + |x - y|) - z|}{2}.$$

Correction de l'exercice 6

 $(u_{2k})_k$ tend vers $+\infty$ et donc A ne possède pas de majorant, ainsi A n'a pas de borne supérieure (cependant certains écrivent alors sup $A = +\infty$). D'autre part toutes les valeurs de (u_n) sont positives et $(u_{2k+1})_k$ tend vers 0, donc infA = 0.

Correction de l'exercice 7

- 1. $[0,1] \cap \mathbb{Q}$. Les majorants : $[1,+\infty[$. Les minorants : $]-\infty,0]$. La borne supérieure : 1. La borne inférieure : 0. Le plus grand élément : 1. Le plus petit élément 0.
- 2. $]0,1[\cap \mathbb{Q}]$. Les majorants : $[1,+\infty[$. Les minorants : $]-\infty,0]$. La borne supérieure : 1. La borne inférieure : 0. Il nexiste pas de plus grand élément ni de plus petit élément.
- 3. N. Pas de majorants, pas de borne supérieure, ni de plus grand élément. Les minorants : $]-\infty,0]$. La borne inférieure : 0. Le plus petit élément : 0.
- 4. $\left\{ (-1)^n + \frac{1}{n^2} \mid n \in \mathbb{N}^* \right\}$. Les majorants : $\left[\frac{5}{4}, +\infty \right[$. Les minorants : $\left[-\infty, -1 \right]$. La borne supérieure : $\frac{5}{4}$. La borne inférieure : -1. Le plus grand élément : $\frac{5}{4}$. Pas de plus petit élément.

Correction de l'exercice 8 ▲

- 1. Soient A et B deux parties bornées de \mathbb{R} . On sait que $\sup A$ est un majorant de A, c'est-à-dire, pour tout $a \in A$, $a \leqslant \sup A$. De même, pour tout $b \in B$, $b \le \sup B$. On veut montrer que $\sup A + \sup B$ est un majorant de A + B. Soit donc $x \in A + B$. Cela signifie que x est de la forme a + b pour un $a \in A$ et un $b \in B$. Or $a \leqslant \sup A$, et $b \le \sup B$, donc $x = a + b \leqslant \sup A + \sup B$. Comme ce raisonnement est valide pour tout $x \in A + B$ cela signifie que $\sup A + \sup B$ est un majorant de A + B.
- 2. On veut montrer que, quel que soit $\varepsilon > 0$, sup $A + \sup B \varepsilon$ n'est pas un majorant de A + B. On prend donc un $\varepsilon > 0$ quelconque, et on veut montrer que $\sup A + \sup B \varepsilon$ ne majore pas A + B. On s'interdit donc dans la suite de modifier ε . Comme sup A est le plus petit des majorants de A, $\sup A \varepsilon/2$ n'est pas un majorant de A. Cela signifie qu'il existe un élément a de A tel que $a > \sup A \varepsilon/2$. Attention: $\sup A \varepsilon/2$ n'est pas forcément dans A; $\sup A$ non plus. De la même manière, il existe $b \in B$ tel que $b > \sup B \varepsilon/2$. Or l'élément x défini par x = a + b est un élément de A + B, et il vérifie $x > (\sup A \varepsilon/2) + (\sup B \varepsilon/2) = \sup A + \sup B \varepsilon$. Ceci implique que $\sup A + \sup B \varepsilon$ n'est pas un majorant de A + B.

3. $\sup A + \sup B$ est un majorant de A + B d'après la partie 1. Mais, d'après la partie 2., dès qu'on prend un $\varepsilon > 0$, $\sup A + \sup B - \varepsilon$ n'est pas un majorant de A + B. Donc $\sup A + \sup B$ est bien le plus petit des majorants de A + B, c'est donc la borne supérieure de A + B. Autrement dit $\sup (A + B) = \sup A + \sup B$.

Correction de l'exercice 9 A

- 1. Vrai.
- 2. Faux. C'est vrai avec l'hypothèse $B \subset A$ et non $A \subset B$.
- 3. Vrai.
- 4. Faux. Il y a égalité.
- 5. Vrai.
- 6. Vrai.

Correction de l'exercice 10 ▲

- 1. Calculons d'abord f(0). Nous savons f(1) = f(1+0) = f(1) + f(0), donc f(0) = 0. Montrons le résultat demandé par récurrence : pour n = 1, nous avons bien $f(1) = 1 \times f(1)$. Si f(n) = nf(1) alors f(n+1) = f(n) + f(1) = nf(1) + f(1) = (n+1)f(1).
- 2. 0 = f(0) = f(-1+1) = f(-1) + f(1). Donc f(-1) = -f(1). Puis comme ci-dessus f(-n) = nf(-1) = -nf(1).
- 3. Soit $q = \frac{a}{b}$. Alors $f(a) = f(\frac{a}{b} + \frac{a}{b} + \dots + \frac{a}{b}) = f(\frac{a}{b}) + \dots + f(\frac{a}{b})$ (*b* terms dans ces sommes). Donc $f(a) = bf(\frac{a}{b})$. Soit $af(1) = bf(\frac{a}{b})$. Ce qui s'écrit aussi $f(\frac{a}{b}) = \frac{a}{b}f(1)$.
- 4. Fixons $x \in \mathbb{R}$. Soit (α_i) une suite croissante de rationnels qui tend vers x. Soit (β_i) une suite décroissante de rationnels qui tend vers x:

$$\alpha_1 \leq \alpha_2 \leq \alpha_3 \leq \ldots \leq x \leq \cdots \leq \beta_2 \leq \beta_1$$
.

Alors comme $\alpha_i \le x \le \beta_i$ et que f est croissante nous avons $f(\alpha_i) \le f(x) \le f(\beta_i)$. D'après la question précédent cette inéquation devient : $\alpha_i f(1) \le f(x) \le \beta_i f(1)$. Comme (α_i) et (β_i) tendent vers x. Par le "théorème des gendarmes" nous obtenons en passant à la limite : $xf(1) \le f(x) \le xf(1)$. Soit f(x) = xf(1).