Zusammenfassung zur Vorlesung Gruppentheorie I

Yanick Sebastian Kind yanick.kind@udo.edu

03.03.2023

Inhaltsverzeichnis

1	Abs	Abstrakte Gruppentheorie						
	1.1	Definition: Gruppe						
		1.1.1 endliche Gruppe						
	1.2	Multiplikationstabelle						
		1.2.1 Rearrangement Theorem						
	1.3	Zyklische Gruppe						
	1.4	Untergruppen und Nebenklassen						
		1.4.1 Satz: Disjunkheit oder Gleichheit						

List of Theorems

1 Abstrakte Gruppentheorie

1.1 Definition: Gruppe

Eine Menge $\mathcal{G} = \{A_2, A_3, ...\}$ bildet eine Gruppe, wenn mit einer Gruppenverknüpfung * folgende vier Eigenschaften erfüllt sind:

- 1. **Abgeschlossenheit**: Mit $A_i, A_j \in \mathcal{G}$ folgt $A_i * A_j = A_k \in \mathcal{G}$, d.h. die Verknüpfung zweier Elemente ergibt wieder ein Element der Gruppe.
- 2. Assoziativität: Es gilt mit $A_i, A_j, A_k \in \mathcal{G}$, dass $(A_i * A_j) * A_k = A_i * (A_j * A_k)$.
- 3. Neutrale Element: Es exestiert ein eindeutiges Element $E \in \mathcal{G}$ mit $E * A_i = A_i * E = A_i$.
- 4. **Inverse Element**: Zu jedem Element $A_i \in \mathcal{G}$ exestiert ein eindeutiges inverses Element A_i^{-1} , so dass $A_i^{-1} * A_i = A_i * A_i^{-1} = E$ gilt.

1.1.1 endliche Gruppe

Eine Gruppe mit einer endlichen Anzahl an Elementen heißt endliche Gruppe. Eine Gruppe $\mathcal{G} = \{E, A_2, \dots, A_h\}$ ist eine endliche Gruppe der Ordnung h.

1.2 Multiplikationstabelle

Die Multiplikationstabelle gibt einfach an, welche Verknüpfungen welches Gruppenelement ergeben. Bsp. Symmetrische Gruppe S_3 :

	$\mid e \mid$	a	a^2	b	c	d
\overline{e}	$ \begin{array}{c} e \\ a \\ a^2 \\ b \\ c \\ d \end{array} $	a	a^2	b	c	d
a	a	a^2	e	c	d	b
a^2	a^2	e	a	d	b	c
b	b	d	c	e	a^2	a
c	c	b	d	a	e	a^2
d	d	c	b	a^2	a	e

1.2.1 Rearrangement Theorem

Sallop gesacht: In jeder Zeile und Spalte einer Multiplikationstabelle kann ein Gruppenelemnt nur einmal auftreten.

Mathematisch: In der Sequenz $EA_k, A_2A_k, \cdots, A_hA_k$ kommt jedes Element A_i nur einmal vor.

¹Im Folgenden wird das Symbol der Verknüpfung und die Angabe, dass ein Element ein Element einer Gruppe ist, weggelassen, sofern es eindeutig ist.

1.3 Zyklische Gruppe

Bei einer zyklischen Gruppe kann jedes Element durch mehrfacher Multiplikation eines Elements reproduziert werden, so dass sich jede zyklische Gruppe \mathcal{G} als

$$\mathcal{G} = \{X, X^2, \dots, X^n = E\}$$

schreiben lässt, wobei die Ordnung die Periode der zyklischen Gruppe ist (Bsp.: Translationsgruppe eines Kirstalls)

1.4 Untergruppen und Nebenklassen

Sei $\mathcal{S} = \{E, S_2, \dots, S_g\}$ eine Untergruppe der Ordnung h der Gruppe \mathcal{G} der Ordnung h, dann ist

$$X\mathcal{S} = \{EX, S_2X, \dots, S_qX\}$$

eine rechte Nebenklasse von S (linke Nebenklasse analog). Wäre $X \in S$, dann wäre XS wieder S selbst und damit enthält eine Nebenklasse kein einziges Element der Untergruppe.

1.4.1 Satz: Disjunkheit oder Gleichheit

Zwei (linke oder rechte) Nebenklassen XS, YS einer Untergruppe S sind entweder disjunkt oder gleich.