电力输配电线路综合监控解决方案 西安维思自动化工程有限公司

- () 1 PART ONE 项目背景
- ①2 PART TWO 设备结构
- O3 PART THREE 研究方法
- ()4 PART FOUR 项目管理

CONTENTS

PART ONE 项目背景

PART ONE 项目背景

存在问题

由于用于所在地集电线路处在高山地带, 极易发生线路舞动、雷击、断线等故障。 线路过长,给集电线路故障查找带来诸多 不便

功能需求

采集线路运行工况,判断分析线路故障, 免维护设计,无线信号传输

PART ONE 项目背景

项目重点及难点

- 供电方式,采用太阳能或开口CT的方式取电
- 无线传输,通讯网络与近场通讯技术结合
- 保护精度,满足灵敏度要求,不误判
- 可靠性高,设计使用寿命及运行时间长

PART TWO

设备结构

PART TWO 设备结构

主控部分

• 主控部分由服务器、数据库、网关、操作站等组成,负责终端数据的采集、显示、报告、分析等功能

通讯部分

• 通讯部分由主控部分的千兆有限通讯和无线通讯两部分组成,无 线通讯又分GPRS (SMS) 与ZigBee两部分

终端部分

• 终端部分包含电源、传感器及终端处理器等主要功能模块。

PART TWO 设备结构

数据库结构采用MariaDB (MySQL),数据保存容量不小于 10年

主控部分采用Hadoop数据引擎,通过对数据的积累与分析,实现专家系统的自动优化与判断功能

无线传输部分采用通讯运营商网络与 ZigBee近场结合技术,近场通讯距离 不小于400m 终端模块采用免维护设计,利用太阳 能板结合开口CT的方式,保证电力供 应。

设备绝缘、耐压、交变湿热等所有试 验满足用户现场使用情况要求,设计 使用寿命15年。

PART THREE 研究方法

PART THREE 研究方法

通讯与数据传输

采用先进的编解码技术进行数据 压缩与传输,在最小的数据传输 量情况下保证采集精度

传感器

采用可靠的传感器对电量与非电量参数进行采集,耗电量低,传感器与采集芯片精度高。

专家系统

采用了大数据引擎对数据进行收 集与分析,并实现自学习的专家 数据分析系统。

PART THREE 研究方法

项目主要技术分析

结合高电压、电源、主控与通讯技术

我公司在在线监测、无线传输及 电源方面均有成熟技术及应用, 可满足本项目学科与进度要求

PART FOUR 项目管理

PART FOUR 项目管理

采用PMI组织推荐的矩阵式项目结构。 从项目与专业角度多层次进行项目组 织与管理规划。

组织结构

01

采用先进的项目管理技术, 搭建私有项目管理网站, 对项目整个实施过程进行追溯与管理。

02

04

质量管理

进度管理

03

沟通管理

通过搭建的项目管理网站,设置里程碑、问题跟踪及工作分配制度,实时动态进行进度管理,同时用户可随时观察进度状况。

采用钉钉等OA系统与软件,移动端、 电脑端便捷实用,便于项目组内部及 项目组与用户间的沟通管理。

PART FOUR 项目管理

进度计划

- 1个月内完成设备选型设计、厂内调试
- 2个月内完成科研项目涉及工程施工和产品安装及现场调试
- 3个月内完成试运行

