

VINICIUS SOARES

https://www.linkedin.com/in/vinicius-soares/

Engenheiro de Telecomunicações // MBA em Marketing Área de atuação:

Tecnologia para atendimento ao cliente. Assistentes pessoais, voicebots, chatbots.

Desenvolvimento de projetos em hardware & software.

Empresas:

Gupshup: Technical Evangelist (API oficial para WhatsApp)

FIAP: Professor nos cursos de I.A. e Tech Driven Leadership.

AGENDA

- AGILE / SCRUM
- CRISP-DM
- PERFIS DE PROFISSIONAL DE IA / FORMAÇÃO DE TIMES
- DEVOPS / AIOPS
- EVOLUÇÃO DE MODELOS DE ML EM PRODUÇÃO
- CANVAS COGNITIVO

https://PollEv.com/vsoares233

+ + .

_ • • •

POR QUE?

. .

□ · · • •

Não é sobre reportar.

É sobre atingir resultados, planejar, organizar e documentar.

Pessoas > Processos Interações > Ferramentas "Não importa o quão bom seja o seu software,

porque se a documentação não for boa o suficiente, as pessoas não vão usá-lo.

Mesmo que por algum motivo eles tenham que usá-lo porque eles não têm escolha, sem uma boa documentação, eles não vão usá-lo efetivamente ou do jeito que você gostaria que eles usassem."

- Daniele Procida

AGILE MANIFESTO

Working software over comprehensive documentation

Não é "instead of"

AGILE MANIFESTO

Individuals and interactions over processes and tools

Não é "instead of"

Ferramentas dão estrutura para uma decisão baseada em dados.

A diferença entre o remédio e o veneno é a dose.

Peso da gestão do projeto proporcional ao tamanho do projeto.

"Dimensione de 10 a 20% do tempo você estará trabalhando em um projeto de ciência de dados apenas para organizar e documentar seu trabalho."

Jeffery Leek

• • + •

Processos ágeis são uma trilha, não um trilho.

Responding to change over following a plan

Não é "instead of"

As dores

O modelo/insight gerado não é útil. Não confiam nos dados ou no modelo.

A equipe não é produtiva (stakeholders não entendem o que é necessário para fazer um projeto de machine learning).

A equipe não está focada nas tarefas de maior prioridade

Em muitos aspectos, o processo que os times de ciência de dados usam é semelhante à forma como as equipes de software são lideradas há 30 anos —

Os times se concentram no que fazer, mas não em como fazê-lo.

COMO CONECTAR A GESTÃO DA CIÊNCIA DE DADOS COM A GESTÃO DE PROJETOS?

• • + • -

Projetos com ML são diferentes, especialmente no início.

- Limpeza de dados
- Avaliação de técnicas
- Treinamento

Turnarounds

Algoritmo de referência simula respostas e permite o desenvolvimento do entorno.

Aprimoramento da acuracidade do algoritmo faz parte do backlog (ao pé da letra não seria, mas para ML faz sentido).

Não solte o release se o Product Owner não está satisfeito com a acuracidade.

AGILE – SCRUM

.

□ · · • •

SCRUM FRAMEWORK

Todos sabemos o que está acontecendo. Transparência Verifique seu trabalho na medida que o executa. Adaptação Inspeção Tudo bem mudar a direção.

SCRUM

Prós: foco no cliente; adaptável e flexível com grande grau de autonomia; em termos de ciência de dados, permite otimizar a previsibilidade.

Contras: a natureza ligada ao tempo pode causar problemas durante a fase de estimativa quando há muitas questões desconhecidas; não funciona para projetos de longo prazo.

□ · · • •

Backlog de Planejamento Sprint Sprint Sprint

Favorece projetos orientados a produtos, que nem sempre é a melhor escolha para projetos de dados.

Ciência de dados às vezes é composta por longas análises exploratórias, que podem não necessariamente se traduzir em características ou requisitos do produto.

Por outro lado, SCRUM pode acelerar análises para um caminho mais orientado a resultados, reduzindo o tempo às vezes desperdiçado em divagações intelectuais.

SCRUM - PAPÉIS

PAPÉIS

- Product Owner
- Scrum Master
- Membro da equipe de desenvolvimento

PRODUCT OWNER

Criação, gestão e priorização do Backlog do produto

SCRUM MASTER

Evangelista do framework
Remoção de obstáculos
Sincronismo com Product Owner

Service to Others

Holistic Approach to Work

Servant
Leadership

Promote a Sense of Community

Shared Decision-Making Power

SCRUM - EVENTOS

. . . .

EVENTOS

- Sprint
- Planejamento da Sprint
- Reunião Diária
- Revisão da Sprint
- Retrospectiva da Sprint

PLANEJAMENTO DA SPRINT

O QUE?

COMO?

- Inspeção do progresso
- Sincronização das atividades
- Criação de um plano
- Por e para os desenvolvedores
- 15 minutos
- Auto-organização

Papel do Product Owner na Reunião Diária

- Avaliação do status da sprint e das possibilidades de sua conclusão no prazo.
- Possíveis ajustes no escopo da Sprint de acordo com o grau de conclusão.
- Comunicação de mudanças importantes do escopo.
- Aprovação de alterações devido a requisitos não planejados em caso de alteração de escopo durante o Sprint em andamento.

Papel do Scrum Master na Reunião Diária

- Identificação de problemas comuns relacionados às tarefas no quadro, erros de processo e gargalos do fluxo de valor antes da reunião.
- Preparação de espaço e ferramentas para o encontro.
- Moderar a reunião.
- Anotar as restrições e informar aos membros da equipe sobre status de limitações da equipe anteriormente reportadas.

Papel da equipe na Reunião Diária

- Sincronizar o trabalho dos membros da equipe.
- Atualizar as tarefas concluídas.
- Identificar as tarefas que cada membro da equipe estará trabalhando nesse dia.
- Atualizar o tempo restante das tarefas em andamento no quadro Kanban.
- Identificar limitações.
- Identificar o status da Sprint e propor modificações para atingir as metas da Sprint.

Revisão da Sprint

Apresentação do incremento — o produto com as novas características integradas.

Product Owner e os stakeholders dão feedback.

O backlog do produto é refinado.

RETROSPECTIVA DA SPRINT

Como melhorar os próprios processos e relacionamentos.

O processo começa novamente.

SCRUM - ARTEFATOS

ARTEFATOS

- Backlog de Produto
- Backlog da Sprint

SCRUM - COMPETÊNCIAS

Understanding and Applying the Scrum Framework

- Empiricismo
- Valores Scrum
- Papéis
- Eventos
- Artefatos
- "Pronto"
- Escala

- Equipes auto-organizadas
- Facilitação
- Estilos de liderança
- Coaching & Mentoring
- Teaching

Managing Products with Agility

- Previsão e planejamento do release
- Visão do Produto
- Valor do Produto
- Gestão do backlog do produto
- Estratégia do negócio
- Stakeholders e clientes

- •
- Desenvolvimento de software emergente
- Gestão do risco técnico
- Qualidade contínua
- Integração contínua
- Entrega contínua
- Otimização do fluxo

Evolving the Agile Organization

- Cultura e Design da organização
- Planejamento do portfólio
- Gestão baseada em evidências

.

.

SCRUM - FERRAMENTAS

JIRA

inline style-should use a class TIS-68 TIS-23

Trello

+

.

DATA DRIVEN SCRUM

- +
 - DDS

Experimentos ou hipóteses

Tarefas

- Criação
- Observação
- Análise

SEMELHANÇAS COM SCRUM

- PAPÉIS
- EVENTOS
- GESTÃO DO BACKLOG

• • + • 🗆

+

•

EXEMPLO

A equipe era composta por um Product Owner, um Especialista em Processos e quatro membros da equipe DDS. O Process Master e o Product Owner estavam em tempo parcial dentro de cada equipe. Como esperado, durante o projeto, o Especialista em Processos ajudou a equipe a aderir ao framework DDS.O projeto foi analisar um grande conjunto de dados de respostas de pesquisa de usuários para um cliente. Os requisitos iniciais para o projeto eram de nível muito alto. Especificamente, a equipe tinha o objetivo de "ajudar a equipe de gestão a entender as pesquisas de clientes e o que gera satisfação no cliente". Assim, a equipe teve que refinar seus objetivos (requisitos) à medida que entendia incrementalmente os dados e o que poderia ser possível, em termos de insights gerados via análise de dados.Para fazer a análise, as equipes foram obrigadas a aplicar muitas técnicas típicas de ciência de dados, como estatísticas descritivas, algoritmos de machine learning e análise de informações geográficas. O trabalho foi feito na linguagem de programação R, uma ferramenta popular de ciência de dados que é usada tanto na indústria quanto na academia.

. .

· · • •

EXEMPLO DE ITERAÇÃO

A equipe do DDS trabalhou coletivamente para determinar o que especificamente precisava ser feito durante uma iteração, quais dados deveriam ser observados e analisados especificamente e o que seria necessário para coletar e analisar as informações geradas a partir dessa iteração. Ao preparar e priorizar, a equipe estimou quanto esforço foi necessário para executar um experimento específico (ou seja, realizar um ciclo de criação, observação e análise). Essa estimativa foi feita em alto nível (com estimativas altas, médias e baixas). Em seguida, durante a seleção de backlog do produto, a equipe revisou coletivamente seus itens de backlog de produtos para chegar a um experimento específico para executar.

Um exemplo no backlog do produto da equipe foi explorar a satisfação do cliente por idade. Essa tarefa foi dividida para explorar a idade através da satisfação geral do cliente, bem como a satisfação por geografia (por exemplo, por cada estado dos Estados Unidos). A equipe determinou que o item exigia quatro tarefas no quadro, duas relacionadas a manipulação de dados, uma para calcular a satisfação do cliente em diferentes níveis de fidelidade por idade, bem como um esforço para explorar a satisfação do cliente por idade a partir de uma base geográfica.

· · • •

EXEMPLO DE ITERAÇÃO

Esse experimento (item) foi priorizado como importante porque a equipe supôs que a idade poderia ser uma característica importante da satisfação do cliente. Além disso, com base em experimentos anteriores (iterações), o nível de lealdade foi considerado potencialmente interessante. Uma vez que ficou claro como a equipe iria criar, analisar e observar seu experimento, a equipe começou sua iteração.

Durante essa iteração (e todas as outras iterações), o board da equipe foi definido com as seguintes colunas ("fazer", "em andamento", "validar", "feito"). As equipes utilizaram essas colunas, pois havia a crença de que a validação da tarefa deveria ser feita para todas as tarefas. Todos os dias, a equipe fazia sua reunião diário para identificar problemas e obstáculos. Note-se que, devido a uma variedade de questões logísticas, isso nem sempre foi feito através de uma reunião presencial. Esta iteração específica levou 1,5 dias.

. . . .

EXEMPLO DE REVISÃO DA ITERAÇÃO

Uma vez que a equipe havia concordado em ter uma reunião de revisão de iteração semanalmente, uma vez que a iteração tinha sido concluída, na próxima reunião semanal de revisão de iteração, a equipe discutiu suas descobertas e chegou a um consenso sobre alguns possíveis próximos experimentos que foram então adicionados ao backlog do produto.

• • + • 🗅

+

.

EXEMPLO DE RETROSPECTIVA

Para essa equipe, as retrospectivas ocorrem mensalmente. A equipe concordou coletivamente que, para ficar claro se uma tarefa estava focada na criação, observação da análise, o tipo de tarefa era explicitamente codificada por cores para futuras iterações.

	DDS	Scrum	Scrumban	Kanban
Iteration	Capability / Item-based	Time-based	Time-based	No iteration
Unplanned /Ops work via	New task on board	Buffers	Buffers	New task on board
Exploratory work via	Work tasks as long as needed	Not Defined	Work tasks as long as needed	Not Defined
Iteration &Retrospective reviews	Time-based	After each sprint	After each sprint	Not defined
Iteration coordination	Kanban flow	Not defined	Kanban flow	Kanban flow
Task Estimation Usage	Only for BItem prioritization	PBI priority & What fits into a sprint	PBI priority & What fits into a sprint	No Task Estimation
Use of backlog items	Yes	Yes	Yes	Yes
Backlog selection	When there is capacity (to start new iteration)	When sprint completes	When sprint completes	When there is capacity
Daily Standup	Yes	Yes	Yes	Not defined
Roles	Proc Master, DDS Team member, PO	Proc Master, Dev Team, PO	Proc Master, Dev Team, PO	None Defined

OBRIGADO

Copyright © 2018 | Professor (a) Vinicius Soares
Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente
proibido sem consentimento formal, por escrito, do professor/autor.

#