Charformer: Fast Character Transformers via Gradient-based Subword Tokenization

Tay et al., arXiv 21

Overview

- Trend: Subword-based tokenization
 - Brittle to rare words, perturbations
 - Impact on low-resource languages
 - Mismatch in pre-training and downstream distribution of words
- Quick solution: Char level models
 - Compute/memory complexity
 - Lower performance
- Proposal: Learn latent subword representation from characters

- Gradient-based subword tokenization (GBST)
 - Learn latent subword representations from characters
 - Learns a position-wise soft selection over candidate subword blocks by scoring them with a scoring network
 - Interpretable latent subword
- Charformer Encoder-Decoder model (byte level)
- English (standard/non-standard), Multilingual eval
- Efficiency (Memory, speed)

- Gradient-based subword tokenization
 - Constructing Candidate Latent Subword Blocks
 - Block Scoring Network
 - Forming Latent Subwords
 - Position-wise Score Calibration
 - Downsampling
- Transformer stack

- Gradient-based subword tokenization
 - Input: $X \in \mathbb{R}^{L \times d}$
 - Block = Contiguous span of characters $X_{i:i+b}$
 - Constructing Candidate Latent Subword Blocks

$$X_b = [F(X_{i:i+b}); F(X_{(i+s):(i+s)+b}); \ldots]$$

- Offsets 'h', 'a' missed when b=2
 - Slide window vs. ConvNet output
- Intra-block positions intra block position
 - Position embeddings vs. ConvNet mean pooling

- Gradient-based subword tokenization
 - Block Scoring Network

$$p_{b,i} = F_R(X_{b,i})$$

$$P_i = \operatorname{softmax}([p_{0,i}, p_{1,i}, \cdots, p_{M,i}])$$

Forming latent subwords

$$\hat{X}_i = \sum_{b}^{M} P_{b,i} X_{b,i}$$

• Position-wise calibration $\hat{P} = \operatorname{softmax}(PP^{\top})P$.

- Downsampling
 - Mean pooling with stride $F_D: \mathbb{R}^{L \times d} o \mathbb{R}^{\frac{L}{d_s} \times d}$
- Transformer stack
 - T5 pretraining scheme
 - Tall model Narrow, deep encoder + small decoder
 - Compare against on char level model on params, compute and inference cost

Evaluation - Standard English Datasets

Table 1: Comparison of CHARFORMER against other subword and character-level models with different parameter sizes on diverse standard English datasets.

Model	$ \theta $	SST-2	MNLI	QNLI	MRPC	QQP	STSB	COLA
$BERT_{Base,Subword}$	110M	92.7	84.4/-	88.4	86.7/-	-	_	-
$T5_{Base,Subword}$	220M	92.7	84.2/84.6	90.5	88.9/92.1	91.6/88.7	88.0	53.8
Byte-level T5 _{Small}	45M	89.2	79.7 /79.9	86.7	83.6/88.5	90.2/86.7	82.1	27.3
Funnel T5 _{Small}	45M	89.6	78.7/79.2	86.4	84.8/89.5	90.2/86.8	84.1	28.8
Byte-level T5+LASC _{Small}	47M	87.5	75.6/76.1	84.2	80.4/86.3	88.1/84.2	81.1	17.3
$CHARFORMER_{Small}$	48M	90.4	79.2/ 80.2	87.3	84.8/89.4	90.4/87.1	83.6	32.4
Byte-level T5 _{Base}	200M	91.6	82.5/ 82.7	88.7	87.3 /91.0	90.9/87.7	84.3	45.1
Byte-level T5+LASC _{Base}	205M	90.0	80.0/80.8	87.1	82.8/88.1	89.0/85.4	83.7	25.3
$CHARFORMER_{Base}$	203M	91.6	82.6/82.7	89.0	87.3/91.1	91.2/88.1	85.3	42.6
$CHARFORMER_{Tall}$	134M	91.5	83.7/84.4	91.0	87.5/91.4	91.4/88.5	87.3	51.8

Evaluation – Noisy & Long Documents

Table 2: Results on comment classification on Civil Comments and Wiki Comments. Metrics are accuracy and AUC-PR. T5 baseline results are from [Tay et al., 2021].

Model	Civil Comments	Wiki Comments
$T5_{Base,Subword}$	81.2 / -	91.5 / -
Byte-level T5 _{Small}	83.1 / 78.6	92.9 / 76.2
Byte-level T5+LASC _{Small}	82.4 / 77.2	92.9 / 76.3
$CHARFORMER_{Small}$	83.1 / 78.7	93.3 / 78.2
Byte-level $T5_{Base}$	82.8 / 78.7	93.2 / 75.4
Byte-level T5+LASC _{Base}	82.9 / 78.2	93.0 / 75.0
$CHARFORMER_{Base}$	83.0 / 78.8	92.7 / 79.7
$CHARFORMER_{Tall}$	83.0 / 78.9	93.5 / 75.5

Table 3: Results on text classification on long documents.

Model	IMDb	News
$T5_{Base,Subword}$	94.2	93.5
Byte-level T5 _{Small}	90.1	93.8
Funnel T5 _{Small}	90.6	93.5
Byte-level T5+LASC _{Small}	90.6	92.5
$CHARFORMER_{Small}$	90.6	93.9
Byte-level T5 _{Base}	91.5	93.6
Byte-level T5+LASC _{Base}	91.1	93.5
$CHARFORMER_{Base}$	91.5	94.0
$CHARFORMER_{Tall}$	94.4	94.1

Evaluation – Multilingual Documents

		In-Language	Translate-Train-All				Zer	Zero-Shot	
Model	$ \theta $	TyDiQA-GoldP	XQuAD	MLQA	XNLI	PAWS-X	XNLI	PAWS-X	
mBERT _{Base} (Subword) mT5 _{Base} (Subword)	179M 582M	77.6/68.0 80.8/70.0	-/- 75.3/59.7	-/- 67.6/48.5	- 75.9	89.3	65.4 75.4	81.9 86.4	
Byte-level T5 $_{Small}$ Byte-level T5+LASC $_{Small}$ CHARFORMER $_{Small}$	45M 47M 48M	71.6/60.7 64.9/53.6 69.8/59.4	64.6/50.0 58.7/44.2 63.2/48.8	58.3/40.9 52.8/35.9 56.8/39.8	69.4 64.3 68.7	37.9 36.9 84.8	49.5 49.2 50.9	30.9 31.6 77.1	
Byte-level T5 $_{Base}$ Byte-level T5+LASC $_{Base}$ CHARFORMER $_{Base}$	200M 205M 203M	75.6/65.4 70.6/59.7 75.9/65.6	68.6/54.3 66.8/52.1 70.2/55.9	61.8/44.4 58.8/41.1 62.6/44.9	69.4 67.9 71.1	87.1 84.8 87.2	57.4 55.2 57.6	80.9 79.0 81.6	
$\begin{array}{c} \textbf{CHARFORMER}_{Tall} \\ \textbf{CHARFORMER}_{Tall,LongPT} \end{array}$	134M 134M	79.1/68.8 81.2/71.3	73.6/59.0 74.2/59.8	66.3/48.5 67.2/49.4	72.2 72.8	88.2 88.6	66.6 67.8	85.2 83.7	

Evaluation – Speed, Peak Mem., Parameters

Model	L	d_s	heta	Speed (steps/s)	FLOPS	Peak Mem.
T5 _{Small} (Subword)	512	-	77.1M	28	3.6×10^{12}	-
$T5_{Base}$ (Subword)	512	-	220M	9.3	1.1×10^{13}	-
Byte-level T5 _{Small}	1024	1	45.0M	29	7.2×10^{12}	989MB
Byte-level T5+LASC _{Small}	1024	4	47.4M	55	2.5×10^{12}	530MB
Funnel T5 _{Small}	1024	*	45.1M	38	4.2×10^{12}	740MB
$CHARFORMER_{Small}$	1024	2	48.5M	32	3.5×10^{12}	765MB
$CHARFORMER_{Small}$	1024	3	48.5M	56	2.6×10^{12}	528MB
$CHARFORMER_{Small}$	1024	5	48.5M	68	1.9×10^{12}	507MB
Byte-level T5 _{Base}	1024	1	200M	8.2	2.9×10^{13}	3.09GB
Byte-level T5+LASC _{Base}	1024	4	205M	15	9.9×10^{12}	1.62GB
$CHARFORMER_{Base}$	1024	2	206M	11	1.6×10^{13}	1.95GB
$CHARFORMER_{Base}$	1024	3	203M	15	1.1×10^{13}	1.63GB
$CHARFORMER_{Tall}$	1024	2	134M	14	1.3×10^{13}	1.73GB
C HARFORMER $_{Tall}$	1024	3	134M	20	8.7×10^{12}	1.34GB

Latent Subwords

