

AVATAR Advanced Virtual and Augmented Reality Toolkit for Learning

Development of a 3D environment for extended reality

Smart manufacturing laboratory

Eren Enver - 10947639 Saverio Rocchi - 10631378

Introduction

The context

AVATAR, an Erasmus+ project

<u>Laboratory objective</u>

- Learn about VR/AR technologies
- Understand how to generate a workflow

How?

- 1. Create a guide for the Joint Learning Lab
- 2. Participate the Joint Learning Lab
- 3. Feedback and improvements

Introduction

Phase	Task	Start	Finish	20-Feb	08-Ma	ay 15-Ma	ay 19-June
1	Creation of the guide	20/2	8/5				
2	Joint Learning Lab	8/5	15/5		L		
3	Updating the guide	15/5	19/6				

Guide creation – part 1

Guide

Contents of the guide

How to create a virtual representation of STIIMA - CNR robotic laboratory using free to use tools.

Guide

Models Assembly Animate

The workflow

Activities explained in the guide

Activities – Define and create the 3D models

- 1) List of the models
 - Dimensions
- 2) Already existing models:
 - Laboratory structure
 - Robot
- 3) From scratch:
 - Conveyor
 - Robot Base
 - Tool

Activities – Define and create the 3D models

Activities – Define and create the 3D models

Activities – import in the environment

To import the models:

1) Use of Excel file provided

2) Programming of a json file

Activities – import in the environment

```
"id": "Conveyor",
"representations": [
     "file": "Conveyor.glb",
     "unit": 1
"position": [
"rotation": [
   0,
   0,
```

Activities – Upload and check the 3D environment

Position check and Json code updating

Activities – Animations (Workflow for conversion and crucial points)

Activities – Animations (Conventions for coordinate plane)

Different conventions

VEB.js convention: Yup

Computer graphics applications, including game engines, modelling software, and physics simulations.

URDF convention: Zup

Geospatial applications, such as geographic information systems (GIS) and mapping software, where the elevation or altitude is important.

It's important to **be aware of** the **convention** being used in a particular context to ensure proper orientation and alignment of objects in a 3D space.

Activities – Animations (Information about form of anim.json file)

```
"context": {
                                                                        Context:
               "assetTrail": false,
                                                                                  Movement tracking
               "UnitOfMeasureScale": 1,
                                                                                  Unit of measure
              "Zup": false,
                                                                                  Convention
               "RepoAnim": ""
                                                                                  Animation files location
          },
          "nodes": [
                                                                        Nodes:
                                                                                  Contains all the moving parts
                   "id": "comau_ns16hand.Link_1"
10
                                                                                  The "Id" identify the moving part
                   "actions": [
11
12
                                                                        Trigger:
13
                            "trigger": {
                                                                                  Type of trigger
                                "type": "timestamp",
14
                                                                                  When action will start
                                "data": "200"
15
17
                            "event": {
                                "type": "show",
                                                                        Event:
18
                                                                                  Type of event
                                "rotation": [
19
                                                                                  Specifications of the event
20
                                     0,
21
                                     0.0.
22
                                     0
23
                                 "placementRelTo": "comau_ns16hand.Joint_1"
```

Documentation

https://github.com/savixy/AVATARrepository/blob/main/images/documentation.md

Joint Learning Lab – part 2

Timetable

	Monday May 8 th 2023	Tuesday May 9 th 2023	Wednesday May 10 th 2023	Thursday May 11 th 2023	Friday May 12 th 2023
	POLIMI	STIIMA-CNR	STIIMA-CNR	POLIMI	POLIMI
09:15 - 10:15	Welcome	Visit to the laboratories (VR lab, Robotics lab)			
10:15 - 11:15	Introduction Lectures Room Sala Ovale		Groupwork with tutors (Meeting	XR Laboratory Activities	Groupwork
11:15 – 12:15	Visit to the	Groupwork with	rooms)	Room L.04	Room MEL LAB 1
12:15 – 13:15	VR Cave	tutors (Meeting rooms)			
13:15 – 14:15	LUNCH	LUNCH	LUNCH	LUNCH	LUNCH
14:15 – 15:15		Groupwork with tutors (Meeting rooms)	Groupwork with tutors (Meeting rooms)	XR Laboratory Activities Room L.04	Presentations of the Groupworks Room MEL LAB 1
15:15 – 16:15	Room L.09		Visit to the Robotics lab		
16:15 – 17:15	1100111 2100		Group work with		Conclusions
17:15 – 18:15			tutors (Meeting rooms)		Farewell Room MEL LAB 1

Teams

Group C

Matija Žuža

Kristina Golo

Enver Eren

Kan Kouakou

Marco Varisco

Alessandra Lupo

Group D

Kaveh Bekhrad

Nađa Belić

Aleksandar Ćosić Leonardo Lomacci

Saverio Rocchi

Matteo Speranza

Gantt

Challenges

Challenge #1 - Visualize Trajectories

- 1. Visualize the scene
- 2. Elaborate trajectories
- 3. Visualize trajectories
- 4. Check trajectories effectiveness

Challenge #2 - Receive a Trajectory via MQTT

- 1. Receive and check the trajectory
- 2. Create an MQTT client

Challenge #3 - Generate a Trajectory

- 1. Given starting and target position
- 2. Check the generated trajectory

Challenge #1 – Scene visualization

VEB.js

Tool

Scene

Workpiece 1

Workpiece 6

Unity

Conveyor

Conveyor

Scene

Workpiece 1

Workpiece 6

25

Content of the input file

```
"J1": 9.543069579201951e-05,
    "J10": 0.
    "J2": 0.00019278800445174266,
    "J3": -1.5700661261488627,
    "J4": 3.6954891742914644e-05,
    "J5": 1.5697658312829736,
    "J6": -2.8212182286010996e-05,
    "J7": 0.
    "J8": 0.
    "J9": 0
},
```

Part 1 – Python code

```
import json
 1
 2
 3
     with open("animations/trajectory_1.json", "r") as read_file:
         mylist = json.load(read_file)
 5
     def conv(data):
         second_dict = {}
 7
         second dict["context"] = {"assetTrail": False,"UnitOfMeasureScale": 1,"Zup": False,"RepoAnim": ""}
 8
         second_dict["nodes"] = []
 9
         second_dict["sequences"] = []
10
         second_dict["bookmarks"] = []
11
         actual_time = 0
12
         for name, value in data[0].items():
13
             if int(name[1:]) <= 6:</pre>
14
                  node = {"id": "Robot_1.Link_" + name[1:],
15
                      "actions": [{"trigger": {"type": "timestamp", "data": str(actual time)},
16
                          "event": {"type": "show", "rotation": [0, value, 0], "placementRelTo": "Robot_1. Joint_" + name[1:]}}]}
17
                  second dict["nodes"].append(node)
18
```

Part 2 – Python code

```
for link in data[1:]:
19
20
              actual_time += 100
21
              for name, value in link.items():
22
                  if int(name[1:]) <= 6:</pre>
23
                      action = {"trigger": {"type": "timestamp", "data": str(actual_time)},
                          "event": {"type": "show", "rotation": [0, value, 0], "placementRelTo": "Robot 1. Joint " + name[1:]}}
24
                      second_dict["nodes"][int(name[1:])-1]["actions"].append(action)
25
26
27
          with open("animations/anim_traj1.json", "w") as outfile:
                  json.dump(second_dict, outfile)
28
29
          outfile.close()
30
31
     conv(mylist)
     read_file.close()
32
```

Content of the output file

```
context": {
    "assetTrail": false,
    "UnitOfMeasureScale": 1,
    "Zup": false,
    "RepoAnim":
"nodes": [
        "id": "Robot_1.Link_1",
        "actions": [
                "trigger": {
                     "type": "timestamp",
                     "data": "0"
                    "type": "show",
                     "rotation": [
                         9.543069579201951e-05,
                      placementRelTo": "Robot 1.Joint
```

Challenge #1 – Visualization of trajectories

Trajectory 1

Trajectory 2

Trajectory 4

	Tj.1	Tj.2	Tj.3	Tj.4
Have collision	yes	yes	no	no
Reach the goal	yes	no	yes	yes
Distance from target [m]	0,0368	0,1712	0,0368	0,0368

Challenge #2 – Receive a trajectory via MQTT and check it

OntoGuiWeb - MQTT Synchronization

Challenge #2 – Receive a trajectory via MQTT and check it

MQTT message received

```
10:35:26: Message received for topic /DF/anim/json/123: 
{"J1":0.6556662531785147,"J10":0,"J2":0.5834180389332906,"J3":-2.193686758680806,"J4":0.00 ... (truncated) 
10:35:26: Message received for topic /DF/anim/json/123: 
{"J1":0.6558994867353635,"J10":0,"J2":0.5841238371720711,"J3":-2.196200976708661,"J4":0.00 ... (truncated) 
10:35:26: Message received for topic /DF/anim/json/123: 
{"J1":0.6561057934978732,"J10":0,"J2":0.5847881355730468,"J3":-2.1985983572854773,"J4":0.0 ... (truncated) 
10:35:26: Message received for topic /DF/anim/json/123:
```

Challenge #2 – Receive a trajectory via MQTT and check it

	Trajectory 5
Collision	No
Goal	No
Distance [m]	0,0799

Challenge #3 – Create a trajectory

- Set starting position of the joints in Unity
- Set manually the final positions for each joint, so the robot is touching the workpiece
- Add a middle position to avoid collision
- Fill the animator and play
- Export the file with the .anim extension

	New trajectory
Goal	Yes
Collision	No
Distance	0,0455

JLL - outcome

Successfully tackled complex tasks that required different skills and knowledge thanks to the collaboration

Collaborative and inclusive environment where all team
members felt valued and
encouraged to express their
ideas

JLL

The **support** provided enabled to **achieve** our goals more **efficiently** and **effectively**.

Importance of having people with different skills within a team

Updating the Guide – part 3

37

Target of Challenges - Enhancing Skills and Understanding

Challenges targets:

- 1) Develop new skills
- 2) Learn a workflow
- 3) How to use new tools

Challenge #1: Trajectories

Focuses on visualizing trajectories in a virtual environment.

Challenge #2: MQTT

Receiving trajectories via MQTT, a messaging protocol.

Challenge #3: Generating Trajectories

Generating trajectories based on specific requirements.

Feedback and Insights

1

Obtain valuable insights during the JLL about the difficulties participants faced.

2

Discussions within the groups to gather feedback on the challenges

Difficulties and Benefit of Solutions File

According to the feedbacks

Problems in programming aspects

Provide a solutions file

Assist participants in overcoming programming difficulties.

Benefits of the provided solution file

Example solutions for challenges

Easily understand the solution process

Understanding of the challenge also by who dind't worked on it

Updating Guide & Challenges Document

Add workflow diagram to understand the overall process

Incorporate additional clarifications in areas where we have identified potential ambiguities.

Broken links, corrected typos, and made other necessary updates to overall coherence and smoothness of the documentation.

Guide Workflows Added to Challenges

Thanks for your attention

