Author index to volume 43

Agrawal, B.L., see Sharma, S.K.	29
Antonio, M.J., see Sahu, S.N.	223
Araújo, G.L., see Martí, A.	203
Ba, B. and M. Kane, Erratum: Influence of wavelength on transient short-circuit current	
in polycrystalline silicon solar cells	321
Başol, B.M., V.K. Kapur, C.R. Leidholm, A. Halani and K. Gledhill, Flexible and	
light weight copper indium diselenide solar cells on polyimide substrates	93
Basu, P.K., B.C. Chakravarty, S.N. Singh, P. Dutta and R. Kesavan, Measurement	
of shallow dopant impurity profile in silicon using anodic sectioning and Lange	
method of Hall measurement	15
Bauer, S., R.O. Dusane, W. Herbst, F. Diehl, B. Schröder and H. Oechsner, p-i	
interface engineering and i-layer control of hot-wire a-Si:H based p-i-n solar cells	
using in-situ ellipsometry	413
Baumgartner, F.P., see Nigge, KM.	335
Beier, J., see Moons, E.	73
Bell, J.M., see Wang, J.	377
Benati, A., M.A. Butturi, C. Capperdoni, M.C. Carotta, G. Martinelli, M. Merli, L.	
Passari, G. Sartori, R. Van Steenwinkel and G.M. Youssef, Comparison between	
normal and reverse thin crystalline silicon solar cells	183
Bucher, E., see Nigge, KM.	335
Bucher, E., see Schön, J.H.	59
Burstein, L., see Moons, E.	73
Butturi, M.A., see Benati, A.	183
Cahen, D., see Moons, E.	73
Capperdoni, C., see Benati, A.	183
Caputo, D. and G. de Cesare, Activation of dopant in the p-layer of amorphous silicon	
solar cells under illumination	263
Carotta, M.C., see Benati, A.	183
Chakrabarti, R., B. Maiti, S. Chaudhuri and A.K. Pal, Photoconductivity of Cu(In,	
Ga)Se ₂ films	233
Chakravarty, B.C., see Basu, P.K.	15
Chaudhuri, S., see Chakrabarti, R.	23
Chuan, M., see Dohrmann, J.K.	273
Czanderna, A.W. and F.J. Pern, Encapsulation of PV modules using ethylene vinyl	
acetate copolymer as a pottant: A critical review	10
Dai, X.M. and Y.H. Tang, A simple general analytical solution for the quantum	
efficiency of front-surface-field solar cells	36

Datta, S.K., see Pal, P.K.	1
de Cesare, G., see Caputo, D.	263
De Paoli, MA., see Micaroni, L.	79
Diehl, F., see Bauer, S.	413
Ding, L., see Wang, H.	345
Dlamini, M.D., Electrical/electronic effects of titanium and iron impurities in EFG and	
FZ solar cell silicon: SPV/EBIC analysis	353
Dohrmann, J.K., M. Chuan and NS. Schaaf, Photocalorimetry at semiconductor	
electrodes: theory, technique and applications	273
Dugas, J., Modelling of material properties influence on back junction thin polycrys-	
talline silicon solar cells	193
Dusane, R.O., see Bauer, S.	413
Dutta, P., see Basu, P.K.	15
Fujitani, M., see Yae, S.	311
Gal, D., see Moons, E.	73
Gledhill, K., see Başol, B.M.	93
Grätzel, M., see Roušar, I.	249
Green, M. and K. Pita, Non-stoichiometry in thin film dilute tungsten bronzes:	
M_xWO_{3-y}	393
Guillén, C. and J. Herrero, Improvement of the optical properties of electrodeposited	
CuInSe ₂ thin films by thermal and chemical treatments	47
Guillén, C., see Martínez, M.A.	297
Gutiérrez, M.T., see Martínez, M.A.	297
Halani, A., see Başol, B.M.	93
Hariskos, D., see Moons, E.	73
Herbst, W., see Bauer, S.	413
Herrero, J., see Guillén, C.	47
Herrero, J., see Martínez, M.A.	297
Hodes, G., see Moons, E.	73
Hryniewicz, T., see Sienicki, W.	67
Kane, M., see Ba, B.	321
Kapur, V.K., see Başol, B.M.	93
Kavan, L., see Roušar, I.	249
Kesavan, R., see Basu, P.K.	15
Kronik, L., see Moons, E.	73
Lee, C., K. Lim and J. Song, Highly textured ZnO thin films doped with indium	
prepared by the pyrosol method	37
Leidholm, C.R., see Basol, B.M.	93
Lihui, G., Z. Yibin and S. Tietun, Energy band structure and sheet resistance of MIS	15
inversion layer for silicon solar cells	325
Lim, K., see Lee, C.	37
Lukášek, P., see Roušar, I.	249
Maiti, B., see Chakrabarti, R.	237
Martí, A. and G.L. Araújo, Limiting efficiencies for photovoltaic energy conversion in	231
multigap systems	203
Martinelli, G., see Benati, A.	183
Martínez, M.A., C. Guillén, M.T. Gutiérrez and J. Herrero, Optimisation of	165
CdS-TCO bilayers for their application as windows in photovoltaic solar cells	297
Merli, M., see Benati, A.	183

Author	index	to	vol	ume	43

Author index to volume 43		
Micaroni, L. and MA. De Paoli, Photoelectrochemistry of poly(3-methylthiophene),		
I: Surface morphology and thickness effect	79	
Mishori, B., see Moons, E.	73	
Moons, E., D. Gal, J. Beier, G. Hodes, D. Cahen, L. Kronik, L. Burstein, B.		
Mishori, Y. Shapira, D. Hariskos and HW. Schock, Effect of air annealing on		
the electronic properties of CdS/Cu(In,Ga)Se ₂ solar cells	73	
Mukhopadhyay, K., see Pal, P.K.	1	
Nakanishi, I., see Yae, S.	311	
Nakato, Y., see Yae, S.	311	
Nigge, KM., F.P. Baumgartner and E. Bucher, CVT-growth of AgGaSe ₂ single	311	
crystals: electrical and photoluminescence properties	335	
crystais. electrical and photofallinescence properties	333	
O 1 II B G	412	
Oechsner, H., see Bauer, S.	413	
Ozer, N., Sol-Gel Optics: Processing and Applications, Lisa C. Klein (Ed.), Kluwer	210	
Academic Publishers, Boston, 1994. 592 pages. ISBN: 0-7923-9424-0	319	
Pal, A.K., see Chakrabarti, R.	237	
Pal, P.K., S.K. Datta, K. Mukhopadhyay and H. Saha, Role of antireflection coating		
in microgrooved silicon solar cells	1	
Papageorgiou, N., see Roušar, I.	249	
Passari, L., see Benati, A.	183	
Pern, F.J., see Czanderna, A.W.	101	
Pita, K., see Green, M.	393	
Roušar, I., M. Rudolf, P. Lukášek, L. Kavan, N. Papageorgiou and M. Grätzel,		
Optimization of parameters of an electrochemical photovoltaic regenerative solar cell	249	
Rudolf, M., see Roušar, I.	249	
Saha, H., see Pal, P.K.	1	
Sahu, S.N., M.J. Antonio and C. Sanchez, Composition, surface topography, structure,		
Raman, and electrochemical/photoelectrochemical characterisation of Cd _x Hg _{1-x} Te		
films	223	
Sanchez, C., see Sahu, S.N.	223	
Sartori, G., see Benati, A.	183	
Schaaf, NS., see Dohrmann, J.K.	273	
Schock, HW., see Moons, E.	73	
Schön, J.H. and E. Bucher, Computer modeling of the performance of some metal/di-		
electric multilayers for high-temperature solar selective absorbers	59	
Schröder, B., see Bauer, S.	413	
Shapira, Y., see Moons, E.	73	
Sharma, S.K., N. Srinivasamurthy and B.L. Agrawal, Investigation of the current		
break-down phenomena in solar cells	29	
Sienicki, W. and T. Hryniewicz, Tungsten diselenide heterojunction photoelectrodes	67	
Singh, S.N., see Basu, P.K.	15	
Smestad, G., Book reviews	425	
Song, J., see Lee, C.	37	
Srinivasamurthy, N., see Sharma, S.K.	29	
Suresh, M.S., Measurement of solar cell parameters using impedance spectroscopy	21	
outesis, istass, isteasurement of solar cen parameters using impedance spectroscopy	21	
Tone VII Del VIII	262	
Tang, Y.H., see Dai, X.M.	363	
Tietun, S., see Lihui, G.	325	
Tsuda, R., see Yae, S.	311	

Uetsuji, M., see Yae, S.	311
Van Steenwinkel, R., see Benati, A.	183
Wang, H., M. Zhang, S. Yang, L. Zhao and L. Ding. Preparation and properties of electrochromic tungsten oxide film	345
Wang, J. and J.M. Bell, Influence of deposition temperature on electrochromic properties of sputtered ${\rm WO}_3$ thin films	377
Yae, S., M. Fujitani, I. Nakanishi, M. Uetsuji, R. Tsuda and Y. Nakato. Minority carrier controlled PEC solar cells, using n-Si electrodes modified with LB layers of	
ultrafine Pt particles	311
Yang, S., see Wang, H.	345
Yibin, Z., see Lihui, G.	325
Youssef, G.M., see Benati, A.	183
Zhang, M., see Wang, H.	345
7hao I see Wang H	246

Subject index to volume 43

Absorptance	59	Electrochromic	393
Acetic acid enhanced-degradation of EVA	101	Electrochromism 34	5, 377
AgGaSe ₂	335	Ellipsometry	413
Amorphous materials	345	Energy band structure	325
Amorphous silicon	263, 413	Energy efficiency	273
Annealing	353	Ethylene Vinyl Acetate (EVA) encapsulant	101
Anodic oxidation	15	EVA degradations mechanisms	101
AR coating	1	EVA discoloration and browning	101
		EVA stabilization and formulations	101
Back junction solar cells	193	EVA yellowing	101
Band diagram	73		
Band line-up	73	Factors that affect the EVA discoloration	
BSFR cell	21	rate	101
		Flexible solar cell	93
Cadmium sulfide	297	Formation of discoloring chromophores in	
Cd, Hg ₁₋ ,Te	223	EVA	101
Cd _x ng _{1-x} re	73	Future prospects of EVA as a PV module	
Cell performance losses from EVA disco		encapsulant	101
oration	101	•	
Chemical Vapor Transport	335	n-GaAs	273
Competitive reactions	273	Grain boundaries and size	353
Conductive polymers	79		
Conversion efficiency	413	Hall voltage	15
Copper indium selenide	47, 93	Heterojunction	73
Crystalline silicon	311	Heterojunction	13
Crystals annealing	335		21
Cu(In,Ga)Se ₂	73, 237	Impedance spectroscopy	21
CuInSe ₂	73, 237	Indium doped	37
Curing generated chromophores in EVA	101	Indium tin oxide	297
Current break-down	29	Interband impact generation Intercalation	29
Current break-down	29		67
B 13	2/2	Interfaces Interface state	413
Degradation	263		325 273
Diffusion capacitance	21, 29	Internal quantum efficiency	213
Dopant activation	263		
Dopant profile	15	Junction break-down	29
Efficiency	73	Lightweight solar cell	93
Electrical conductivity	335	Limiting efficiency	203
Electrical properties	345, 353	Line current collectors	249
Electrochemical electrodes	377	Liquid junctions	311

Metal/dielectric multilayers	59	Semiconductors	67, 223, 237
Microgrooved	1	Semiconductors device models	
MIS/IL	325	Semiconductor thin films	
Multigap	203	Service lifetime prediction of PV cells from	
		accelerated life testing	101
Non-stoichiometric	393	Sheet resistance	325
		Short-circuit currents	363
Open-circuit photovoltages	311	Silicon	1, 183
Optical properties	47	Simulation	59
Optical shutter	393	Solar cells 1, 2	1, 203, 223, 263, 363
Optimization	73, 249	Space solar cell	93
		Spectral response	223, 377
Peltier heat	273	Spreading resistance	15
Photocalorimetry	273	Sputtered coatings	377
Photoconductivity	237	Summary: EVA as an encapsu	lant - What is
Photoelectrochemical cells	311	and is not known	101
Photoelectrochemistry	79		
Photoelectrodes	67, 311	Textured surface	37
Photoelectrolysis	273	73 Thermal analysis	
Photothermal degradation of EVA	101	Thermal and chemical treatments	
Photovoltaics	203	Thermal degradation of EVA	
Polycrystalline	73, 237	7 Thermodynamics	
Polycrystalline silicon	193, 353	53 Thin cell	
Processing effects on EVA stability	101	01 Thin films 47, 7.	
PV cell encapsulation	101	11 Thin film solar cells	
PV module failures	101	TiO ₂	273
PV module performance losses	101	1 Transition metals	
Pyrosol spray	37	Transparent conducting oxide	s 37
		Tungsten bronze	393
Quantum mechanical tunneling	29		
		I-V characteristics	413
Raman	223		
Regenerative solar cell	249	XRD	
SEM	223	Zinc oxide	297
Semiconductor junctions	363	ZnO	73

