Matemática (Econometría) - Final - 29/05/2023

Ej. 1 (25pts.)	Ej. 2 (25pts.)	Ej. 3 (25pts.)	Ej. 4 (25pts.)	Ej. Xtra (15pts.)	Calificación

Ejercicio 1. Clasifique las siguientes formas cuadráticas, según los valores del parámetro $\alpha \in \mathbb{R}$.

$$Q(x, y, z) = x^{2} + 9y^{2} + z^{2} + 2\alpha xy + xz + yz.$$

Ejercicio 2. Considere la siguiente ecuación en diferencias:

$$y_{t+2} - 5y_{t+1} + 4y_t = e^t + 1.$$

- a) Halle todas sus soluciones.
- b) Halle la única solución de la ecuación homogénea asociada, que cumple con los datos iniciales $y_0 = 1, y_1 = 10000$.

Ejercicio 3. Sean $A, B \in \mathbb{R}^{3\times 3}$ las siguientes matrices:

$$A = \begin{pmatrix} k+1 & 1 & k \\ 1 & k & 1 \\ 0 & -1 & 1 \end{pmatrix} \quad \mathbf{y} \quad B = \begin{pmatrix} 1 & 2 & k \\ -1 & 1 & k \\ 1 & 0 & 1 \end{pmatrix}$$

Hallar, si existen, todos los valores de $k \in \mathbb{R}$ para los cuales el sistema

$$(A^{2023}B^{2022} - A^{2022}B^{2023}) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

admite infinitas soluciones.

Ejercicio 4. Sea $A = \begin{pmatrix} 3 & 1 & 2 \\ -2 & a & 1 \\ 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3\times 3}$, tal que (3,3,0) es autovector de A.

a) ¿Cuál es el valor de a?

- c) Es A inversible?
- b) ¿Cuáles son todos los autovalores de A?
- d) Es A diagonalizable?

Ejercicio 5 (Xtra). Sea A una matriz en $\mathbb{R}^{3\times 3}$, de la que sabemos que la traza de A es igual a 11, el $\det(A) = 36$, y el $\operatorname{Rg}(A - 2I_3) = 2$.

En base a la información suministrada, halle todos los números reales α, β, γ y δ tales que

$$\alpha A^3 + \beta A^2 + \gamma A + \delta I_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$