CSE499b.18

Md Al Amin	1811904042
Mohaimen Azad	2013174042
Aminul Islam Arafat	2132536042

System Design for Intelligent Tutoring System (ITS)

1. System Overview

The *Intelligent Tutoring System* is an Al-driven personalised tutoring platform that adapts to real-time student performance. It provides:

- Personalised Learning Paths tailored to each student.
- Real-time assessment to dynamically adjust the difficulty.
- Self-paced learning with hints and explanations.
- Enhanced Accessibility for students of all backgrounds.

2. System Architecture

The system consists of the following components:

- User Interface (UI)
 - Web/Mobile application for student interactions.
 - Interactive dashboard for progress tracking.
- Al-Powered Tutoring Engine
 - Large Language Models (LLMs): Fine-tuned models like PHI-2 and GEMMA process student queries.
 - LangChain Framework: Orchestrates multi-turn conversations.
- Real-Time Adaptive Learning
 - Uses RAG (Retrieve and Generate) to fetch relevant explanations.
 - Implements **LoRA fine-tuning** to specialise in math tutoring.
- Assessment & Feedback System
 - Tracks student responses and errors.
 - Provides hints and explanations dynamically.
- Ethical & Secure Data Handling
 - Ensures privacy, fairness, and accessibility.

3. Multi-Turn Instructional Design

Your system will engage students with step-by-step explanations, scaffolding learning based on their understanding. Here's an example:

Example Conversation for a Math Problem

Problem: Solve the equation: $x2+4=(x+1)(x+3)x^2+4=(x+1)(x+3)x^2+4=(x+1)(x+3)$.

- **Student:** "Solve $x2+4=(x+1)(x+3)x^2+4=(x+1)(x+3)x^2+4=(x+1)(x+3)$."
- **2** System: "Let's expand (x+1)(x+3)(x+1)(x+3)(x+1)(x+3). Do you know how to expand binomials? (Yes/No)"
- 3 Student: "No."
- **System:** "No problem! Here's how we expand: x*x=x2x*x = x²x*x=x2, x*3=3xx*3 = 3xx*3=3x, 1*x=x1*x = x1*x=x, and 1*3=31*3 = 31*3=3. So, x2+4x+3x² + 4x + 3x2+4x+3. Do you get it now?"
- 5 Student: "Yes!"
- **6 System:** "Great! Now subtract $x2x^2x2$ from both sides to get 4=4x+34=4x+34=4x+3. What's the next step?"
- 7 Student: "Subtract 3!"
- **System:** "Correct! You get 1=4x1 = 4x1=4x. Now, solve for xxx."
- **9 Student:** "Divide by 4, so x=1/4x = 1/4x=1/4!"
- System: "Excellent! Would you like to try a similar problem?"

4. Implementation Details

Technology Stack

- 1. Frontend: React (Next.js) for UI
- 2. Backend: FastAPI (Python) for AI processing
- 3. Database: PostgreSQL for tracking user progress
- 4. LLMs: GEMMA & PHI-2 via LangChain
- 5. Model Fine-tuning: LoRA for efficiency

Workflow

- 1. **Student Input:** The user submits a problem.
- 2. Al Processing: The model retrieves relevant hints.
- 3. **Dynamic Scaffolding:** The system adapts based on user responses.
- 4. **Assessment:** Tracks progress and recommends next steps.

5. Ethical Considerations

- Fairness & Bias Mitigation: Ensuring AI does not favor specific learning styles unfairly.
- Privacy & Security: Handling student data responsibly.
- Inclusivity: Supporting accessibility for students with disabilities.

Here is a visual representation of the *architecture of the Intelligent Tutoring System (ITS)*, *demonstrat*ing an advanced and structured approach. The figure illustrates the interactions between different components, making it easier to understand.

- User Interface (UI): The front end where students interact.
- Al-Powered Tutoring Engine: The system's core processes student queries.
- Real-Time Assessment: Evaluates student performance and adjusts content accordingly.
- RAG (Retrieve & Generate): Fetches relevant hints and explanations.
- LoRA Fine-Tuning: Optimizes LLMs for better responses.
- Large Language Models (GEMMA, PHI-2): The Al models powering tutoring.
- Student Progress Database: Stores student learning history.
- Ethics & Privacy Management: Ensures responsible Al use