PRIVACY PROTECTION USING T - CLOSENESS THROUGH MICRO - AGGREGATION

Final Project Report

Fall 2022-23

BCI2001 – DATA PRIVACY

Guided by:

Prof. Jasmin.T.Jose

Submitted by:

Yenigandla Venislaus Ashish - 20BCI0016 Chatakondu Naga Sai - 20BCI0089 Esikela Shanmuka Sainath - 20BCI0095 Kanugo Krishna Ganesh - 20BCI0149 Ranjana Tarini R - 20BCI0160 Abhishek Raj Chauhan - 20BCI0161

SLOT: B2+TB2

B.Tech.

in

Computer Science and Engineering with Specialization in Information Security

School of Computer Science & Engineering

ABSTRACT:

Preserving privacy includes limiting disclosure and protecting data subjects' privacy. Our project aims to improve this through Microaggregation. It has been used to create k-anonymous data sets, where each subject's identity is concealed inside a group of k individuals, as an alternative to generalization and suppression. Microaggregation disturbs the data in a different way than generalization, and this extra masking freedom enables improving the value of the data in a number of ways, including enhancing data granularity, minimizing the influence of outliers, and avoiding discretization of numerical data. On the other hand, attribute disclosure is not protected by k-Anonymity and happens when there is insufficient variation in a set of k individuals' secret values. Several improvements to k-anonymity, including t-closeness, have been proposed to address this problem.

Key Words: MDAV, K-ANONYMIZATION, T-CLOSENESS, MICROAGGREGATION.

INTRODUCTION:

A file with a number of records and variables specific to each record about a respondent, who can be a person or an organization, makes up a microdata collection. Many organizations are increasingly publishing microdata – tables that contain unaggregated information about individuals. These tables can include medical, voter registration, census, and customer data. Microdata is a valuable source of information for the allocation of public funds, medical research, and trend analysis. However, if individuals can be uniquely identified in microdata, then their private information (such as their medical condition) would be disclosed, and this is unacceptable. To avoid the identification of records in microdata, uniquely identifying information like names and social security numbers are removed from the table. However, this first masking still does not ensure the privacy of individuals in the data. So we go for the data privacy mechanisms such as K-Anonymization, L-diversity and T-closeness etc., Only by using those mechanisms we cannot provide enough balance between privacy and utility for the data. So we combine the perturbative and non-perturbative mechanisms to enhance privacy which includes combining MDAV based micro-aggregation and anonymization techniques such as Kanonymization and T-closeness

Literature Survey Table:

Disep Domingo-Ferrer and Jordi Soria-Comas. Steered Wilroaggregation: A Unified Primitive for Anonymization of Data Sets and Data Streams 1. They have presented the idea of steered microaggregation algorithm for algorithms. This is finished by adding fake credits with suitable loads that impact the microaggregation. 2. Requirement of t-closeness in a static informational index. This is finished by presenting a fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October 2019 David Sánchez, Josep Domingo-Ferrer, Jordi Soria-Comas and Montserrat Batet. µ-ANT: Semantic Microaggregation- 1. They have presented the idea of steered microaggregation, which is a general way to deal microaggregation algorithm for stream k-anonymity, but it sat the maximum delay constrain the maximum delay constrain stream k-anonymity, but it sat the maximum delay constrain of steered microaggregation. 2. Requirement of t-closeness in a static informational index. This is finished by adding fake credits with suitable loads that impact the microaggregation. 2. Requirement of t-closeness in a static informational index. This is finished by adding fake credits with suitable loads that impact the microaggregation algorithm for the microaggregation algorithm for stream k-anonymity, but it sat the maximum delay constrain the maximum delay constrain stream k-anonymity, but it sat the maximum delay constrain stream k-anonymity, but its affect the microaggregation algorithm for stream k-anonymity, but its affect the microaggregation algorithms for the microaggregation algorithms. This is finished by adding fake credits with suitable loads that impact the microaggregation algorithms. This is finished by adding fake credits with suitable loads that impact the microaggregation algorithms. This is finished by adding fake credits with suitable	
Josep Domingo- Ferrer and Jordi Soria-Comas. Steered Microaggregation: A Uniffed Primitive for Anonymization of Data Sets and Data Streams Streams 1. They have presented the idea of steered microaggregation, which is a general way to deal with guide standard microaggregation algorithm for stream k-anonymity, but it sat the maximum delay constrain algorithms. This is finished by adding fake credits with suitable loads that impact the microaggregation. 2. Requirement of t-closeness in a static informational index. This is finished by presenting a fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October 2019 David Sánchez, Sergio Martínez , Josep Domingo-Ferrer, Jordi Soria-Comas and Montserrat Batet. µ-ANT, a useful and flexible tool for (healthcare) data anonymization. 2. It uses several cutting-edge techniques to provide strong	
Ferrer and Jordi Soria-Comas. Steered Microaggregation: A Unified Primitive for Anonymization of Data Sets and Data Streams Streams Steems Microaggregation: A Unified Primitive for Anonymization of Data Sets and Data Streams Stream k-anonymity, but it sat the maximum delay constrain the maximum delay constrain algorithm for stream k-anonymity, but it sat the maximum delay constrain the maximum delay constrain algorithm for stream k-anonymity, but it sat the maximum delay constrain algorithm for stream k-anonymity, but it sat the maximum delay constrain algorithm for stream k-anonymity, but it sat the maximum delay constrain algorithm for stream k-anonymity, but it sat the maximum delay constrain algorithm for stream k-anonymity, but it sat the maximum delay constrain algorithm for stream k-anonymity, but it sat the maximum delay constrain algorithm for stream k-anonymity, but it sat the maximum delay constrain algorithm for stream k-anonymity, but it sat the maximum delay constrain algorithm for stream k-anonymity, but it sat the maximum delay constrain algorithm for stream k-anonymity, but it sat the maximum delay constrain algorithm for stream k-anonymity, but it sat the maximum delay constrain algorithm for stream k-anonymity, but it sat the maximum delay constrain algorithm for stream k-anonymity, but it sat the maximum delay constrain algorithm for stream k-anonymity but it sat the maximum delay constrain algorithm for stream k-anonymity but it sat the maximum delay constrain the maximum delay constrain algorithm for streams the maximum delay constrain the maximum delay constrain algorithm for streams the maximum delay constrain the maximum delay constrain algorithm	
Soria-Comas. Steered Microaggregation: A Unified Primitive for Anonymization of Data Sets and Data Streams Streams Which is a general way to deal with guide standard microaggregation algorithms. This is finished by adding fake credits with suitable loads that impact the microaggregation. 2. Requirement of t-closeness in a static informational index. This is finished by presenting a fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October 2019 David Sánchez, Sergio Martínez, Josep Domingo Ferrer, Jordi Soria-Comas and Montserrat Batet. ANT: Semantic which is a general way to deal with guide standard microaggregation algorithm for stream k-anonymity, but it sat the maximum delay constrain dations the maximum delay constrain dations the maximum delay constrain the	ntee
Steered Microaggregation: A Unified Primitive for Anonymization of Data Sets and Data Streams Streams 2. Requirement of t-closeness in a static informational index. This is finished by presenting a fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October 2019 David Sánchez, Sergio Martínez , Josep Domingo-Ferrer, Jordi Soria-Comas and Montserrat Batet. ANT: Semantic with guide standard microaggregation tolgorithms. This is finished by adding fake credits with suitable loading fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the delicate quality. 3. In this paper, authors in the maximum delay constrain	
Microaggregation: A Unified Primitive for Anonymization of Data Sets and Data Streams Contact	r
Unified Primitive for Anonymization of Data Sets and Data Streams Streams 2. Requirement of t-closeness in a static informational index. This is finished by presenting a fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October 2019 David Sánchez, Sergio Martínez , Josep Domingo-Ferrer, Jordi Soria-Comas and Montserrat Batet. μ-ANT: Semantic Montserrat Batet. μ-ANT: Semantic Lin this paper, authors introduced and discussed about μ-ANT, a useful and flexible techniques to provide strong	
Anonymization of Data Sets and Data Streams adding fake credits with suitable loads that impact the microaggregation. 2. Requirement of t-closeness in a static informational index. This is finished by presenting a fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October David Sánchez, Sergio Martínez , Josep Domingo-Ferrer, Jordi Soria-Comas and Montserrat Batet. Montserrat Batet. ANT: Semantic Adding fake credits with suitable loads that impact the microaggregation. 2. Requirement of t-closeness in a static informational index. This is finished by presenting a fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October 2019 David Sánchez, I. In this paper, authors introduced and discussed about p-ANT, a useful and flexible tool for (healthcare) data anonymization. 2. It uses several cutting-edge techniques to provide strong	
Data Sets and Data Streams Data Sets and Data Data Sets and Data	
Streams microaggregation. 2. Requirement of t-closeness in a static informational index. This is finished by presenting a fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October David Sánchez, Sergio Martínez, Josep Domingo- Ferrer, Jordi Soria- Comas and Montserrat Batet. ANT: Semantic microaggregation. 2. Requirement of t-closeness in a static informational index. This is finished by presenting a fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 1. In this paper, authors introduced and discussed about p-ANT, a useful and flexible tool for (healthcare) data anonymization. 2. It uses several cutting-edge techniques to provide strong	
2. Requirement of t-closeness in a static informational index. This is finished by presenting a fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October 2019 David Sánchez, Sergio Martínez, Josep Domingo-Ferrer, Jordi Soria-Comas and Montserrat Batet. Montserrat Batet. ANT: Semantic 2. Requirement of t-closeness in a static informational index. This is finished by presenting a fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 1. In this paper, authors introduced and discussed about μ-ANT, a useful and flexible tool for (healthcare) data anonymization. 2. It uses several cutting-edge techniques to provide strong	
a static informational index. This is finished by presenting a fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October David Sánchez, Josep Domingo- Ferrer, Jordi Soria- Comas and Montserrat Batet. ANT: Semantic a static informational index. This is finished by presenting a fake characteristic that controls the controls the controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 1. In this paper, authors introduced and discussed about part and flexible tool for (healthcare) data anonymization. 2. It uses several cutting-edge techniques to provide strong	
This is finished by presenting a fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October David Sánchez, Josep Martínez, Josep Domingo- Ferrer, Jordi Soria- Comas and Montserrat Batet. ANT: Semantic This is finished by presenting a fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 1. In this paper, authors introduced and discussed about particular and flexible tool for (healthcare) data anonymization. 2. It uses several cutting-edge techniques to provide strong	
fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October David Sánchez, Josep Domingo- Ferrer, Jordi Soria- Comas and Montserrat Batet. ANT: Semantic fake characteristic that controls the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 1. In this paper, authors introduced and discussed about µ-ANT, a useful and flexible tool for (healthcare) data anonymization. 2. It uses several cutting-edge techniques to provide strong	
the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October David Sánchez, Sergio Martínez, Josep Domingo- Ferrer, Jordi Soria- Comas and Montserrat Batet. ANT: Semantic the inside group inconstancy of the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 1. In this paper, authors introduced and discussed about µ-ANT, a useful and flexible tool for (healthcare) data anonymization. 2. It uses several cutting-edge techniques to provide strong	
the delicate quality. 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October David Sánchez, Sergio Martínez, Josep Domingo- Ferrer, Jordi Soria- Comas and Montserrat Batet. ANT: Semantic tool for (healthcare) data anonymization. 2.It uses several cutting-edge techniques to provide strong	
3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October David Sánchez, Sergio Martínez, Josep Domingo- Ferrer, Jordi Soria- Comas and Montserrat Batet. Montserrat Batet. ANT: Semantic 3. Explained the best way to utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 1. In this paper, authors introduced and discussed about μ-ANT, a useful and flexible tool for (healthcare) data anonymization. 2. It uses several cutting-edge techniques to provide strong	
utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October David Sánchez, Sergio Martínez, Josep Domingo- Ferrer, Jordi Soria- Comas and Montserrat Batet. μ- ANT: Semantic utilize steered microaggregation to work on the safeguarding of the first request of the tuples in the anonymized information stream. 1. In this paper, authors introduced and discussed about μ-ANT, a useful and flexible tool for (healthcare) data anonymization. 2.It uses several cutting-edge techniques to provide strong	
to work on the safeguarding of the first request of the tuples in the anonymized information stream. 17 October David Sánchez, Sergio Martínez, Josep Domingo- Ferrer, Jordi Soria- Comas and Montserrat Batet. Montserrat Batet. ANT: Semantic to work on the safeguarding of the tuples in the anonymized information It has paper, authors introduced and discussed about particular and flexible tool for (healthcare) data anonymization. 2.It uses several cutting-edge techniques to provide strong	
the first request of the tuples in the anonymized information stream. 17 October David Sánchez, 1. In this paper, authors 2019 Sergio Martínez, introduced and discussed about Josep Domingo- µ-ANT, a useful and flexible Ferrer, Jordi Soria- tool for (healthcare) data anonymization. Montserrat Batet. µ- ANT: Semantic 2. It uses several cutting-edge techniques to provide strong	
the anonymized information stream. 17 October David Sánchez, Sergio Martínez, Josep Domingo- Ferrer, Jordi Soria- Comas and Montserrat Batet. Montserrat Batet. ANT: Semantic the anonymized information stream. 1. In this paper, authors introduced and discussed about μ-ANT, a useful and flexible tool for (healthcare) data anonymization. 2.It uses several cutting-edge techniques to provide strong	
stream. 17 October David Sánchez, 2019 Sergio Martínez , introduced and discussed about Josep Domingo- Ferrer, Jordi Soria- Comas and Montserrat Batet. μ- ANT: Semantic stream. 1. In this paper, authors introduced and discussed about μ-ANT, a useful and flexible tool for (healthcare) data anonymization. 2.It uses several cutting-edge techniques to provide strong	
17 October 2019 David Sánchez, Sergio Martínez, Josep Domingo- Ferrer, Jordi Soria- Comas and Montserrat Batet. μ- ANT: Semantic 1. In this paper, authors introduced and discussed about μ-ANT, a useful and flexible tool for (healthcare) data anonymization. 2.It uses several cutting-edge techniques to provide strong	
Sergio Martínez , introduced and discussed about Josep Domingo- µ-ANT, a useful and flexible tool for (healthcare) data anonymization. Montserrat Batet. µ- ANT: Semantic introduced and discussed about µ-ANT, a useful and flexible tool for (healthcare) data anonymization. 2.It uses several cutting-edge techniques to provide strong	
Josep Domingo- Ferrer, Jordi Soria- Comas and Montserrat Batet. ANT, a useful and flexible tool for (healthcare) data anonymization. 2.It uses several cutting-edge techniques to provide strong	
Ferrer, Jordi Soria- Comas and Montserrat Batet. ANT: Semantic tool for (healthcare) data anonymization. 2.It uses several cutting-edge techniques to provide strong	
Comas and anonymization. Montserrat Batet. µ- ANT: Semantic anonymization. 2.It uses several cutting-edge techniques to provide strong	
Montserrat Batet. µ- 2.It uses several cutting-edge ANT: Semantic techniques to provide strong	
ANT: Semantic techniques to provide strong	
based Anonymization anonymised data's usefulness as	
Tool. intact as you can.	
3. Many developers interested in	
data anonymization can benefit	
from μ-ANT, which also	
supports the heterogeneous	
attribute types frequently found	
in electronic medical records.	

2000	J.M. MATEO-	1.In this papers, authors	1. The cause is that
	SANZ J and	discussed about variant	microaggregation and one-
	DOMINGO-	microaggregation methods and	dimensional data projection are
	FERRER.	their performances	both sources of information loss in
	A	2. Compared to univariate	univariate microaggregation.
	COMPARATI	methods, multivariate methods	2. The only information loss in
	VE STUDY	exhibit much superior	multivariate microaggregation
	OF	behaviour.	comes from the microaggregation
	MICROAGGR	3. For the data set used, UFS _{FPC}	
	EGATION	performs marginally better than	1. 3. MFS typically will in
	METHODS.		general make a greater
	WILTHODS.	the other univariate approaches.	number of gatherings than
		4. For the data set used, the new	• •
		approach MFS _{MD} outperforms	MDO, and consequently
		the competition among	requires more distance
		multivariate algorithms.	calculations to finish the
		5 The entimal continu	microaggregation cycle.
		5. The optimal sorting	
		criterion for multivariate	
		microaggregation appears to	
		be the MD sorting criterion.	
		It is extremely reliable,	
		produces the greatest	
		outcomes, and takes	
		minimum calculation.	
2010	David Rebollo-	1.In this paper, authors given a	1. Even in this straightforward
	Monedero, Jordi	definition of the privacy-	scenario, the QGLB cannot be
	Forne, and Josep	distortion trade-off in	reached by the k-anonymity
	Domingo-Ferrer.	information-theoretic terms is	methods.
	From t-	given for applications like	2.If a critical attribute became
	Closeness-Like	microdata anonymization and	multidimensional, both
	Privacy to	location privacy in location-	algorithms performances would
	Postrandomizati	based services.	likely depart more from ideality.
	on via	2.Comparing experimental	interf depart more from ideality.
	Information	findings with discretized	
	Theory.	statistics to well-known	
	Theory.	deterministic aggregation	
		techniques reveals superior	
		performance.	
		3. The usage of PRAM for	
		characteristics with finite	
		alphabets and noise addition for	
		continuous cases is supported	
		by this research.	
		4. The use of deterministic	
		aggregation, like that	
		employed by MDAV and	
		-Approx, cannot	
		theoretically result in	
		inferior performance than	
		randomised perturbation	
		rules because they are	
		=	
		more broad.	

2018	Shi, Yancheng	1. In this study, the subject of	1. Clustering time is increased
2010	&Zhang,	data privacy protection is	because of the greater number
	0	data privacy protection is	of tuples.
	Zhenjiang & Shen,	investigated, and a dynamic	-
	Bo. "Data Privacy	updating mechanism based on	
	Protection Based	micro aggregation is suggested.	
	on Micro	2. In order to achieve privacy	
	Aggregation with	protection while the data is	
	Dynamic Sensitive	altered, the technique also	
	Attribute	suggests a dynamic updating	
	Updating"	strategy. 3.Additionally, a	
		Laplace noise technique is	
		used to safeguard the delicate	
		properties of the result set.	
		4. With its dynamic updating	
		function, this method	
		effectively lowers	
		1	
		information loss and ensures	
		information availability after	
•		data anonymization.	
2019	Yuichi Sei, Hiroshi	1.In this paper, Numerous	1. It is still possible for disclosure
	Okumura, Takao	studies have been conducted on	to occur even if we remove all
	Takenouchi, Akihiko	the models of l-diversity and t-	explicit identifiers from a
	Ohsuga.	closeness for privacy	database.
	Anonymization	protection.	
	of Sensitive	2. They put forth two brand-	
	Quasi-Identifiers	new privacy models, (11,,	
	for 1-Diversity	lq)-diversity and (t1,, tq)-	
	and t-Closeness.	closeness, as well as	
		reconstruction and	
		anonymization algorithms that	
		can handle sensitive QIDs.	
		can handle sensitive Q1Ds.	

2014	Salvatore Ruggieri. Using t-closeness anonymity to control for non- discrimination	1. This paper made two contributions in total. 2. The analytical methods of t-closeness in privacy data anonymization and of α-protection in non-discrimination data analysis have first been associated.	1.For low-dimensionality datasets, experiments have shown that dSabre outperforms dMondrian, however it also has a dimensionality problem.
		3.Second, we have methodically developed dMondrian, a multidimensional generalisation algorithm, and dSabre, a bucketization and redistribution algorithm, as adaptations of well-known algorithms for k-anonymity and tcloseness, by taking advantage of the observed implication. This is a methodological advancement that connects non-discrimination research with	
2013	Liang, H., Yuan, H. On the Complexity of <i>t</i> -Closeness Anonymization and Related Problems.	data anonymization research. 1. Authors of the paper started the first comprehensive theoretical investigation of the t-closeness principle in accordance with the widely-	1.No theoretical method for finding the most appropriate t value. 1. 2. NP – hardness of the t-closeness.
2016		used attribute suppression concept. We show that finding an ideal t-closeness is NP-hard for every constant t such that 0 ≤ t < 1, expansion of a specific table. 2. Additionally, they gave the first polynomial time precise algorithm for 2-Diversity and a conditionally improved approximation approach for k-Anonymity.	
May 2016	S.Sarswathi and K,ThiruKumar. Enhancing utility and privacy using t-closeness for multiple sensitive attributes.	1. For enhancing the utility of any organization the data they have must be analyzed to provide the better user experience. 2. The SLOMS method which helps to tackle the linkage attacks have been introduced.	1. The more the utility for a dataset the more there will be the disclosure risk that means the less privacy. 2. Just generalizing the data cannot be protected from the linkage attacks. 3. Even though the usage of
		3. In SLOMS method the sensitive attributes are divided in magnetic based on the	SLOMs method there is a chance for the probabilistic inference

		principle that is highly co related. 4.Introduced about the different types of attacks on a dataset such as probabilistic inference attack, slicing attack and many techniques such as t-closeness, discretization and MSB KACA algorithm which generalizes the quasi identifiers to implement the k-anonymization.	
May 2013	Debaditya Roy, Determining t in t- closeness using Multiple Sensitive Attributes	1.As the k-anonymization failed to protect the data over linkage attacks and l-diversity failure over the skewness attack the t-closeness method is introduced. 2. There are two methods till now to find the t-value for the single attribute data those are Earth Movers DItance and Hellinger Distance method. 3. Decompose+ a framework which was introduced for the attacks on the multiple sensitive attributes. 4. The lower the value of t i.e. $t \rightarrow 0$; the more diverse the original data is and the equivalence class is required to be as close to original data as possible to give the Required anonymization. Secondly, the higher the value of $t \rightarrow 1$, the less diverse the original data and the equivalence class is required to be as different as possible from the original data to give the appropriate anonymization.	method for determining <i>t</i> . 2.If the optimum value of <i>t</i> has to be determined using the utility vs. privacy curve it is not possible do so because of the inherent nature of the curve i.e. diverging. 3.The Inference method cannot be applied for finding the value of t for the single valued attributes.

ъ .	Sergio	1.Removal of external identifiers	1.Implementation of the different
Decemb	Martínez,	cannot solve the problem related to	methods on a dataset can be hard
er 2012	David Sánchez,	1 71	because of the multi attributes in the
	Aida Valls, A	this the statistical disclosure control	data.
	semantic	methods have been proposed.	2. The major limitation for any
	framework to	2.The general framework is	privacy protection technique is the
	protect the	introduced that enables the	proportion to the utility.
	privacy of	anonymization of structured non-	3. Even after the implementation
	electronic	numerical medical data such as	of the framework the dataset released is vulnerable to the
	health records	names of symptoms or diagnosis	probabilistic inference attack.
	with	from a semantic perspective. 3. The framework uses the three	p. 00 mo. 1.1. 01 01 10 0 mo. 10 11 11 11 11 11 11 11 11 11 11 11 11
	non-numerical	main methods those are	
	attributes	comparison, aggregation and	
		sorting to protect the privacy.	
		4. The framework is used to adapt	
		three well differenced	
		SDC methods, so that structured	
		non-numerical data	
		could be k-anonymised while	
		retaining their semantics as much	
		as possible.	
		5. After the proposed framework	
		is implemented on the dataset the	
		utility and privacy of release data	
		is improved to the highest	
		possibility.	
June 2018	Gordon Sande,	1.Microaggregation is a perturbated	1.Without the usage of the
	METHODS	method that release the average	computational geometry the
	FOR	clustered groups of the data instead	determination of the variable size in
	DATA	of the anonymized data such that no	
	DIRECTED	attribute is over dominated.	2. The robustness and quality of the
	MICROAGGR		•
	EGATON	technique can	approximation techniques are not
	IN ONE OR	be extended to allow for varying	manageable for most of the
	MORE	group size.	companies the release data can have
	DIMENSIO	This permits the groups to be	more diverse data in it.
	NS	chosen for greater within group	3.For two or more-dimensional data
	1 12	homogeneity.	the Adjacency can make quite
		3. The data at first is sorted into	normal but the simplicity of the
		fixed groups based on the	code implementation is not well
		homogentisic attributed and then	defined because of the no proper
		shuffled to vary the size.	sorting techniques.
		4. There are different approaches of	
		micro aggregation to protect the	
		privacy such as clustering approach	
		and optimal approach and reference	
		approach.	
		5.Using clustering and optimal	
		approaches can give most privacy	
		protected data with much utility	

2000	Domina	1 They have developed (Is a con-	
2008	Doming	1. They have developed (k, p, q, r)-	
	o-Ferrer,	anonymity computational method	
	Josep &	to attain this new model that relies	
	Sebé,	on microaggregation as a brand	
	Francesc	new security model which	
	&	outperforms most current security	
	Solanas,	models within the literature.	
	Agusti.	2. The model behaves in a very	
	An	pragmatic way to scale back	
	Anonym	information loss.	
	ity		
	Model		
	Achieva		
	ble Via		
	Microag		
	gregatio		
	n		
2012	Domingo-	1.They have proposed two	
1	Ferrer, Josep &	heuristics for trajectory	
	Trujillo-Rasua,	anonymization which yield	
	Rolando.	anonymized directions shaped by	
	(2012).	completely exact genuine unique	
	Microaggregati	areas. 2. The principal heuristic	
	on- and	depends on direction	
	permutation-	microaggregation utilizing the	
	based		
		above distance and on the spot	
	anonymization	change; it successfully	
	of movement	accomplishes trajectory k-	
	data.	anonymity.	
		2. The subsequent heuristic depends	
		just on the spot stage; it surrenders	
		direction k-secrecy and focuses on	
		the spot k-diversity. The solid point	
		of the subsequent heuristic is that it	
		considers reachability limitations	
		when	
		registering anonymized directions.	
2017	Sonu	1. By using microaggregation, the	1. Other privacy models like k-
	Khapekar,	suggested t-closeness model	anonymity and l-diversity do not
	-	effectively and securely preserves	offer attribute disclosure protection.
		· · · · · · · · · · · · · · · · · · ·	2. On the other hand, attribute
		the healthcare system.	disclosure is not protected by k-
	Sensitive	2. The microaggregation causes	Anonymity and happens when there
	Microdata in	data to be perturbed, and this	is insufficient variation in a set of k
	Healthcare	additional masking freedom enables	
		l ————————————————————————————————————	and viduals secret values.
	System using t-	boosting data utility in a number of	
	Closeness	ways, including enhancing data	
	through	granularity, minimising the	
	Microaggregati	influence of outliers, and avoiding	
	on	discretization of numerical data.	

2015	Josep	1.Several linkages between k-	1. Basic k-anonymity only protects
	Domingo-	anonymity, t-closeness, and ε-	against identity disclosure.
		differential privacy have been	2. The effects of the distance
		identified and taken advantage of in	
		this paper.	the article and the earth mover's
	Closeness to	2. They have demonstrated that	distance could also be compared in
	Differential	stochastic t-closeness is produced	terms of privacy and utility.
	Privacy and	via k-anonymity for the	
	Vice Versa in	quasiidentifiers and -differential	
	Data	privacy for the private attributes,	
	Anonymization.	with t being a function of, the size	
		of the data set, and the size of the	
		equivalence classes.	
2015	Jordi Soria-	1.To achieve k-anonymous t-	1. The attribute disclosure that
	Comas, Josep	closeness, they suggested and tested	happens if the variability of the
	Domingo-	the usage of microaggregation.	secret values in a group of k
	_	2. To produce kanonymous t-close	participants is too small is not
	· · ·	data sets, they have proposed and	protected by k-Anonymity.
	Sergio	assessed three distinct	2. Generalization-based methods
		microaggregation-based techniques.	have some limitations.
		The first is a straightforward	
		merging process that may be applied	
		following any microaggregation	
		procedure. the two additional	
		algorithms, t-closeness-first and k-	
		anonymity-first.	
	Utility	anonymity-mst.	
	Preservation		
2013	Jordi Soria-	1. They demonstrated the validity	1.The proposed approach for
2013	Comas, Josep	of the k-anonymity family of	nominal confidential attributes
	Domingo-	models.	cannot
	_	strong enough to achieve context-	be ordered.
	Ferrer Differential		be ordered.
		differentiated privacy	
	Privacy via t-	of publishing data.	
		2. They have demonstrated that	
		$\exp(\varepsilon)$ -closeness implies	
		approximate -differential privacy for	
		informed intruders and ε-differential	
		privacy for ignorant intruders using	
• • • •		a suitable approach.	
2012	Jordi Soria-	1. They have provided two	1. Like general k-anonymity,
	Comas, Josep	computational strategies to attain	probabilistic k-anonymity ensures
	Domingo-	probabilistic k-anonymity,	that the chance of accurate re-
	Ferrer	primarily based totally on	identity is at maximum 1/k, however
	Probabilistic k-	microaggregation and swapping.	with out explicitly requiring that the
	Anonymity	2. This is in particular applicable	quasi-idetifier attributes take equal
	through	whilst handling an information set	values inside every organization of k
	Microaggregati	that includes many quasi-identifier	records.
	on and Data	attributes.	
	Swapping		
	B		<u> </u>

2009	Jun-Lin Lin,	1. This paper demonstrates how	
	Tsung-Hsien	microaggregation problem of	
		minimizing information loss has	
	Hsieh, Pei-	been shown to be NPhard for	
	Chann Chang,	multivariate data.	
	Density-based	2. None of the methods based on	
	microaggregati	heuristics performs the best for	
	on for	every microdata set and various k	
	statistical	values.	
	disclosure	3. This work presents a density	
	control.	based	
		algorithm (DBA) for	
		microaggregation. The performance	
		of the DBA is compared against the	
		latest microaggregation methods.	
2007	Josep	1. As optimal microaggregation can	
	Domingo-	only be computed in polynomial	
	Ferrer_,	time for univariate data.	
	Francesc	2. For multivariate data, it has been	
	Seb´e, Agusti	shown to be NP-hard. 3. In this	
	Solanas,	paper a polynomial-time	
	A polynomial-	approximation to microaggregate	
	time	multivariate numerical data for	
	approximation	which bounds to optimal	
	to optimal	microaggregation can be derived at	
	multivariate	least for two different optimality	
	microaggregati	criteria: minimum within-groups.	
	on.		
2017	Prof. Sarita	1. In microaggregation, the data	
	Lalchand	perturbs and masking allows	
	Tanay, Prof.	improving data in many ways.	
	Vivek Jaysing	2. K-Anonymity, alone cannot	
	Nagargoje,	provide the protection for the	
		data, as it provides protection	
	Inamdar,	against identity disclosure but	
	Security for	prone to attribute disclosure.	
	Personal	3. To solve this problem, many	
	Credentials in	refinements	
	Big Data:	of k-anonymity is being proposed,	
	Through	in which t-closeness is one	
	Microaggregati	providing the solution for personal	
	on and	privacy for information of the	
	TCloseness.	subjects.	
2017		1. As K-Anonymity, alone cannot	
		provide protection against identity	
		disclosure but is prone to attribute	
		disclosure.	
		2. Hence t-closeness is one	
		providing the solution for personal	
		privacy for information of the	
	on: Strict	subjects.	
	Privacy With		
	Enhanced		

	Utility Preservation.		
2018	Wang, R., Zhu, Y., Chen, T.S. and Chang, C.C., 2018. Privacy-preserving algorithms for multiple sensitive attributes satisfying t-closeness.	1.Extend the definition of t- closeness of a single attribute to a new definition of multiple attributes. 2.The values of SAs in an equivalence class must be spread to the maximum extent possible over all of the data to make the class satisfy t-closeness. 3.The main aim of proposed algorithms is to heterogenize the values of the SAs in different equivalence classes. And the more similar the QI attribute values of all records in an equivalence class are, the lower the information loss caused by anonymization should be. 4.t-closeness of multiple sensitive attributes is based on considering each attribute separately, namely, if an equivalence class satisfies t- closeness, all sensitive attributes of it should satisfy t-closeness, respectively. 5.Proposed Algorithm - Cluster- Based Algorithm for Multiple Sensitive Attributes Satisfying t- Closeness, PCA-Based Algorithm for Multiple Sensitive Attributes Satisfying t-Closeness. 6.The first algorithm partitions all records into different clusters and generates equivalence classes by selecting records from these clusters separately. The second algorithm processes the multiple sensitive attributes by analyzing the principal components, sorts the original records according to the results of the projection, and partitions these records into different subsets by the sorting order.	

1998	Masking	1.In order to minimise data	1.It is an empirical approach
1//0	Microdata	losses, it is proposed that the	based on empirical rules
			•
	Using Micro-	different unidimensional	which have proved useful,
	Aggregation D.	variables be aggregated	rather than on pure statistical
	Defays and	separately, by sorting the values	theory.
	M.N. Anwar	according to their ranks, and by	2. This method is not much
		an aggregation in size groups of	powerful and still can be
		contiguous values.	edeveloped a lot in theoretical
		2.Creation of classes of three	front.
		individuals of minimum variance,	
		using the average as a	
		replacement value.	
		3.Micro-aggregation is also one	
		way to recode data or to replace	
		them by missing values.	
		4. When applied to numerical	
		variables, micro-aggregation can	
		be seen as a disturbance method.	
		5. Micro aggregation is simple	
		and flexible in its approach, it	
		offers a compromise between	
2021	G 1	data protection and utility.	101 1
2021	Sarah	1. They have proposed two	1.Other better ways to anonymize
	Zouinina*,	techniques to achieve k-	data.
	Younès	anonymity through	2. They are experiencing 1D
	Bennani,	microaggregation: k-CMVM and	clustering as a way to anonymize
	Nicoleta	Constrained-CMVM. The first	data without loosing the
	Rogovschi, and	one determines the k levels	information it is containing and
	Abdelouahid	automatically and the second	we want to explore new methods
	Lyhyaoui	defines it by exploration.	to anonymize unbalanced
	Data		datasets.
	Anonymization		
	through	2.Multi-view collaborative Self	
	Collaborative	Organizing Maps to achieve data	
	Multi-view	anonymization.	
	Microaggregati	3.Multi-view clustering is an	
	on	efficient way to deal with	
		multisources data and high	
		dimensional elements.	
		4.Constrained collaborative Self	
		Organizing Maps to attain a	
		predetermined k anonymity level.	
		5. The introduction of the	
		discriminative information and	
		the use of the pLVQ2 to achive	
		highest anonymity levels with a	
		good utility trade-off.	
		6.pLVQ2 is used which gives	
		weights to each of the features	
		what results in better preservation	
		of the utility of the anonymized	

2018	Wang, M., Jiang, Z., Zhang, Y. and Yang, H.T- closeness slicing: A new privacy- preserving approach for transactional data publishing	1.This study develops a novel method named t-closeness slicing (TCS) to better protect transactional data against various attacks. The time complexity of TCS is O(nlogn), where n is the number of records in the dataset, hence the algorithm scales well with large data. 2.Connections among the three types of disclosures - Membership Disclosure, Identity Disclosure , Attribute Disclosure. Identity disclosure can lead to membership disclosure and attribute disclosure, However membership disclosure may not cause identity disclosure may occur even without identity disclosure. 3.Vertical partition divides the item set into columns based on the correlations between the sensitive item and non-sensitive items. I c the time complexity of vertical partition is O([(log_2 n)] ^2). 5.Horizontal partition divides the transactional dataset D into b buckets based on the correlations between the values of their QIs. the time complexity of horizontal partition algorithm is O(nlog_2 n). TCS offers a high level of privacy protection, reduces the risks of multiple types of privacy disclosures including membership disclosure, identity	1.Similarity attack and skewness attacks are more subtle in nature and have not been as well analyzed and protected against as the other types of attacks. 2.Lacks to preserve more correlations between items. 3.Don't have a more in-depth study with a clear focus on protecting membership privacy. They have considered only single attribute to protect in their study.
		<u> </u>	
2015	NAUSHEEN FATHIMA1, MISBAH KOUSER, Privacy Preserving with Utility Preservation through	1. Author describes how k- anonymity does not secure against trait divulgence, which happens if the changeability of the private values in a gathering of k subjects is too little. 2. To address this issue, a few refinements of k-secrecy have been proposed, among which t-	1.Other better ways to anonymize data. 2.They are experiencing 1D clustering as a way to anonymize data without loosing the information it is containing and we want to explore new methods to anonymize unbalanced datasets.

	Microaggregati on.	closeness emerges as giving one of the strictest security ensures.	
	OII.	of the strictest security ensures.	
2012	Dangi, A.P. and Mogili, R., 2012. Privacy preservation measure using t-closeness with combined l-diversity and k-anonymity	(n, t)- closeness model better protects the data while improving the utility of the released data.(n, t)- closeness allows us to take advantage of anonymization techniques other than generalization of quasi-identifier and suppression of records.Extended the closeness with Anticloseness or diversity. After removing closeness from data, again data rows are re-grouped such that no similar data even after reduction appears together.combining both diversity and anonymity based methods – Entorpy measures, closeness of columns and their aggregation, rows reduction by group	1.(n,t) – closeness technique does not affect quasiidentifiers, it does not help achieve k-anonymity. Removing a sensitive value in a group reduces diversity and therefore, it does not help in achieving l-diversity. 2.Technique proposed is not enough if more rows are added which increases the redundancy in data.
2008	Solanas, A. and Pietro, R.D. A linear-time multivariate microaggregation for privacy protection in uniform very large data sets. In International Conference on Modeling Decisions for Artificial Intelligence (pp. 203-214). Springer, Berlin, Heidelberg	aggregate. 1. The microaggregation - Given a data set D with n records in a characteristic space Rd, the problem consists in obtaining a k-partition2 P of D, so that the SSE of P is minimised. Once P is obtained, each record of every part of P is replaced by the average record of the part. 2. Micro-aggregating the group which belongs to the same hyperspace(Hpercube). 3. This method saves Time and Information loss does not have significant different from the other solutions. The difference between MDAV and proposed method tends to decrease when the number of records increases 4.complete characterisation for	1. Even though there is not significant loss in the information, it is still present and is more if the size of the data is less.

	parameters only: n, k(security parameter), and ε. The error probability (Pr[Bad]) decreases exponentially fast as free parameters increase. 5. Current micro-aggregation algorithms are very costly (i.e. at least O(n2)) but proposed algorithm is able to microaggregate very large data sets in linear time O(n).	
--	---	--

GAPS IDENTIFIED:

An order preservation guarantee is not provided by the micro aggregation algorithm for stream k-anonymity. Also there are several better algorithms such as L-diversity and T-closeness etc.. which are used in protecting the data more securely than K-anonymization but they alone cannot provide a balance between utility and privacy of the data.

PROBLEM STATEMENT:

K-anonymous data sets are prone to attribute disclosure even though k-anonymity protects against identity disclosure. The l-diversity principle represents an important step beyond k-anonymity in protecting against attribute disclosure but it can undergo skewness attack. It is difficult to achieve and may not provide sufficient privacy protection against attribute disclosure. So, we are using t-closeness through micro aggregation which can withstand more than k-anonymization and l-diversity in protecting the data and to have a better utility of the data.

PROPOSED WORK:

This project's work flow begins with classifying the data according to its data kinds, attributes, and identities. Suppression is first applied on Explicit Identifiers, followed by MDAV clustering and K anonymization and finally T-closeness on Quasi Identifiers. The data is clustered using the MDAV Clustering method. The mean and variance of the equivalence classes are determined using MDAV clustering prior to K anonymization, and this information is then used to perturb the equivalence class using Microaggregation based K anonymization. By clustering up to the point where the t-closeness criteria must be met, micro aggregation is carried out. Then the anonymized data is subsequently subjected to T-closeness. We must mix all of these to achieve privacy that fulfils the required t-closeness. UML Class Diagram of main classes in Anonymization package:

METHODOLOGY:

Our project will involve a few key steps, including:

- 1. Data Classification
- 2. MDAV
- 3. Cluster construction and Anonymization through micro-aggregation
- 1.Data Classification: Here, we classify the data by dividing it into categories by watching the data types and values to numeric, categoric etc... Later, we categorize them by observing the attributes and the identities of the data into groups of Explicit Identifiers, Quasi Identifiers, Confidential and Non-Confidential. After the classification, we apply suppression on the Explicit Identifiers of the data to protect the privacy of the users.
- 2.MDAV: A popular micro aggregation-based method called MDAV (Maximum Distance to Average Vector) which divides the dataset into homogeneous clusters.

In order to run this algorithm, we need two inputs:

- (i) a dataset centroid
- (ii) a distance measure that calculates the distance between records in order to determine how similar they are.

In light of this, the records are grouped into clusters according to their distance scores.

3.Cluster construction and Anonymization through micro-aggregation: The original data set's records are divided up into a number of clusters, by the help of MDAV algorithm and then we apply k anonymization on the clustered data each of which has at least k records. And we could see the anonymized data by the help of K-Anonymization. Using the distance between the quasi-identifiers of the micro-aggregated clusters as the quality criterion, we choose which groups are to be merged after micro-aggregating and merging groups of records in the micro-aggregated data set. The original data set's quasi-identifier properties are first used to execute the micro aggregation method. Then, until t-closeness is satisfied, clusters of micro-aggregated records are combined. By first choosing the cluster that is the furthest from satisfying t-closeness (i.e., the one that has the most different confidential attribute distribution from the confidential attribute distribution across the board), and then by merging it with the cluster that is closest to it in terms of quasi-identifiers, we incrementally increase the level of t-closeness.

RESULTS AND DISCUSSION: SNAP SHOTS OF CODES:

Here we attached few snapshots of different functions of our code:

```
for(String attr:rec){
            s = s.substring(beginIndex: 0, s.length()-1);
            bw.newLine();
       bw.close();
        e.printStackTrace();
    System.out.println("Protected file saved: " + locationAnonymized);
public InformationLossResult calculateInformationLoss() throws InvalidValueException[
    InformationLossResult informationLossResult;
    double SSE, recordDist;
    double originalVariance[], originalMean[], anonymizedVariance[], anonymizedMean[];
    int numAttr, numRecords;
    String values[];
    numAttr = Record.getNumAttr();
    numRecords = dataOri.length;
    originalVariance = new double[numAttr];
    originalMean = new double[numAttr];
    anonymizedVariance = new double[numAttr];
    anonymizedMean = new double[numAttr];
    Distances.calculateTypicalDeviations(dataOri);
    for(int i=0; i<numRecords; i++){</pre>
        recordDist = Distances.euclideanDistNorm(dataOri[i], dataAnom[i]);
        SSE += (recordDist*recordDist);
    SSE /= numRecords;
  for(int i=0; i<numAttr; i++)
```

```
public String[] getAttributes() {
    return attributes;
private void checkAttributesInXml() throws AttributeNameNotFoundException{
   String nameInXml;
    for(int j=0; j<Record.getListNames().size(); j++){</pre>
       nameInXml = Record.getListNames().get(j);
       ok = false;
       for(int i=0; i<attributes.length; i++){</pre>
           if(nameInXml.equalsIgnoreCase(attributes[i])){
        if(!ok){
           throw new AttributeNameNotFoundException(nameInXml);
private static void reOrderListsAccordingAttributeParameter(String attributes[]) {
   ArrayList<String>newListNames = new ArrayList<String>();
   ArrayList<String>newListAttrTypes = new ArrayList<String>();
   ArrayList<String>newListDataTypes = new ArrayList<String>();
   String attr, name;
   boolean ok;
   for(int i=0; i<attributes.length; i++){</pre>
       for(int j=0; j<Record.getListNames().size(); j++){</pre>
           name = Record.getListNames().get(j);
           if(attr.equals(name)){
               newListNames.add(name);
                         newcistactrypes.auu(necoru.gettistattrypes().get())
                         newListDataTypes.add(Record.getListDataTypes().get(j));
                         ok = true;
                         break;
              if(!ok){
                   newListNames.add(attr);
                   newListAttrTypes.add(Constants.non confidential);
```

```
newListDataTypes.add(Record.getListDataTypes().get(j));
ok = true;
break;
}

if(!ok){
    newListNames.add(attr);
    newListAttrTypes.add(Constants.non_confidential);
    newListDataTypes.add(Constants.categoric);
}

Record.setListNames(newListNames);
Record.setListAttrTypes(newListAttrTypes);
Record.setListDataTypes(newListDataTypes);
Record.setListDataTypes(newListDataTypes);
Record.setNumAttr(newListNames.size());
}
```

```
private long calculateMean(int attr) throws InvalidValueException{
    long mean;
    String value = null;
        mean = 0;
        for(RecordQ reg:elements){
           value = reg.attrValues[attr];
            mean += Long.parseLong(value);
       mean /= elements.size();
       throw new InvalidValueException(value);
private long calculateMeanDouble(int attr) throws InvalidValueException{
    String value = null;
        for(RecordQ reg:elements){
           value = reg.attrValues[attr];
           mean += Long.parseLong(value);
       mean /= elements.size();
        throw new InvalidValueException(value);
    return (long)mean;
```

```
private double originalVariance[];
private double originalMean[];
private double anonymizedVariance[];
this.originalVariance = originalVariance;
     this.originalMean = originalMean;
      this.anonymizedVariance = anonymizedVariance;
      this.anonymizedMean = anonymizedMean;
public double getSSE() {
    return SSE;
public double[] getOriginalVariance() {
     return originalVariance;
public double[] getOriginalMean() {
    return originalMean;
public double[] getAnonymizedVariance() {
     return anonymizedVariance;
public double[] getAnonymizedMean() {
    return anonymizedMean;
public String toString(){
     s = "\n";
s += "SSE: " + SSE + "\n";
      for(int i=0; i<originalVariance.length; i++){</pre>
          s += "Mean anonymized dataset attribute " + i + ": " + originalMean[i] + "\n";
s += "Variance original dataset attribute " + i + ": " + originalVariance[i] + "\n";
s += "Mean anonymized dataset attribute " + i + ": " + anonymizedMean[i] + "\n";
s += mean anonymized dataset attribute " + i + : " + anonymizedmean[i] + \n ;
s += "Variance anonymized dataset attribute " + i + ": " + anonymizedVariance[i] + "\n";
```

OUTPUTS:

Original Dataset text file:

```
Edit View

Patient_ID,First_Name,Last_name_1,Last_name_2,Sex,Age,PinCode,Serial_ID,Discharge_date,Admission_date,Mob_no,Systolic_number 00009946,Raquel,Manzano,Gallego,F,46,BCNCI,762656099,2015/08/21,2015/08/30,762656099,0000000001 00005923,Mireia,Calvo,Roman,F,40,BCNCI,722372005,2015/07/03,2015/07/17,722372005,0000000001 000029756,Teresa,Garcia,Guerrero,F,45,BCNPR,202821008,2015/11/08,2015/12/07,202821008,0000000021 00017868,Loida,Gomez,Vazquez,F,63,BCNCI,734009000,2015/11/19,2015/12/07,202821008,0000000033 00015553,Maria,Garcia,Padilla,F,73,BCNCI,716324008,2015/12/19,2015/01/13,716324008,0000000045 00022957,Sandra,Lopez,Jimenez,F,31,BCNPR,365445003,2015/07/21,2015/08/06,365445003,0000000057 00000364,Josefa,Gomez,Martinez,F,23,BCNCI,7240413006,2015/03/21,2015/08/06,249413006,0000000067 00015556,Francisco,Diaz,Garcia,M,69,BCNCI,168627008,2015/03/02,2015/03/02,2015/03/05,209367000,000000007 00015556,Francisco,Diaz,Garcia,M,69,BCNCI,168627008,2015/03/02,2015/03/05,2015/03/05,209367000,000000009 00018092,T,249H1008,2015/09/21,249411008,0000000001 00012929,Maria,Lopez,Hernandez,F,24,BCNCI,2493116001,2015/07/19,2015/07/20,423316001,000000001 00012929,Maria,Lopez,Hernandez,F,24,BCNCI,423316001,2015/07/19,2015/07/20,423316001,000000001 00012929,Maria,Lopez,Hernandez,F,24,BCNCI,423316001,2015/07/19,2015/07/20,423316001,000000001 00012929,Maria,Lopez,Hernandez,F,24,BCNCI,423316001,2015/07/19,2015/07/20,423316001,000000001 00012929,Maria,Lopez,Hernandez,F,24,BCNCI,423316001,2015/07/19,2015/07/20,423316001,000000001 00012184,Luis,Fernandez,R,36,BCNCI,423316001,2015/06/02,2015/06/02,1015/06/02,1015/06/02,015/06/06,320840000001 00001200,Sandra,Galvez,Calvo,F,76,BCNCI,299016006,2015/06/02,2015/06/02,2015/06/02,2015/06/06,2000000001 00001200,Sandra,Galvez,Calvo,F,76,BCNCI,299016006,2015/03/04,2015/06/02,2015/06/02,4090000001 00001200,Sandra,Galvez,Calvo,F,76,BCNCI,299016006,2015/03/04,2015/03/24,299016006,000000001
```

2 - Anonymized Dataset

```
File Edit View

Patient_ID,First_Name,Last_name_1,Last_name_2,Sex,Age,PinCode,Serial_ID,Discharge_date,Admission_date,Mob_no,Systolic_number

*,*,*,*,F,38,BcNCI,722372065,2015/07/33,2015/07/27,722372065,00000000012

*,*,*,*,*,F,35,BcNCI,365445003,2015/07/12,2015/07/27,365445003,0000000057

*,*,*,*,*,F,39,BcNCI,249411008,2015/09/07,2015/08/20,249411008,00000000010

*,*,*,*,*,F,39,BcNCI,423316001,2015/07/19,2015/08/20,423316001,0000000010

*,*,*,*,*,F,47,BcNCI,716324008,2015/12/19,2015/04/16,716324008,0000000045

*,*,*,*,F,47,BcNCI,716324008,2015/12/19,2015/04/16,716324008,0000000045

*,*,*,*,F,53,BcNCI,299367000,2015/03/05,2015/03/28,299367000,00000000013

*,*,*,*,F,54,BcNCI,202821008,2015/11/08,2015/12/06,202821008,00000000013

*,*,*,*,F,54,BcNCI,7020821008,2015/11/08,2015/12/06,734009000,0000000001

*,*,*,*,F,56,BcNCI,202821008,2015/11/19,2015/12/06,734009000,0000000001

*,*,*,*,F,56,BcNCI,202821008,2015/11/19,2015/12/06,734009000,0000000001

*,*,*,*,F,56,BcNCI,202821008,2015/11/19,2015/12/06,734009000,0000000001

*,*,*,*,F,56,BcNCI,202821008,2015/03/04,2015/04/29,422840005,0000000011

*,*,*,*,M,63,BcNCI,164314006,2015/06/02,2015/05/10,64314006,0000000012
```

3 - Anonymized Dataset

```
File
        Edit View
Patient_ID,First_Name,Last_name_1,Last_name_2,Sex,Age,PinCode,Serial_ID,Discharge_date,Admission_date,Mob_no,Systolic_number
*,*,*,*,F,41,BCNCI,762656009,2015/08/21,2015/08/23,762656009,00000000001
*,*,*,*,F,41,BCNCI,249411008,2015/09/07,2015/08/23,249411008,0000000001
           F,41,BCNCI,423316001,2015/07/19,2015/08/23,423316001,0000000010
          ,F,45,BCNCI,716324008,2015/12/19,2015/02/16,716324008,0000000045
,F,45,BCNCI,249413006,2015/02/26,2015/02/16,249413006,000000067
           F,45,BCNCI,299367000,2015/03/05,2015/02/16,299367000,00000000089
          ,F,46,BCNPR,202821008,2015/11/08,2015/10/26,202821008,0000000021
           F,46,BCNPR,734009000,2015/11/19,2015/10/26,734009000,00000000033
           F,46,BCNPR,365445003,2015/07/21,2015/10/26,365445003,00000000057
         , F, AG, GURRA, 303443005, 2015/07/12, 2015/07/01, 74743005, 000000000017
*, M, 55, BCNCI, 722372005, 2015/07/03, 2015/06/01, 722372005, 00000000012
*, M, 55, BCNCI, 64314006, 2015/06/02, 2015/06/01, 64314006, 0000000012
          ,M,55,BCNCI,168627008,2015/03/02,2015/06/01,168627008,0000000076
           ,F,59,BCNCI,711374009,2015/04/04,2015/04/26,711374009,0000000013
          *,F,59,BCNCI,299016006,2015/03/04,2015/04/26,299016006,0000000014
         *,F,59,BCNCI,422840005,2015/05/12,2015/04/26,422840005,0000000011
```

4 - Anonymized Dataset

Information Loss Result for 2- Anonymized Dataset

```
SSE: 132.09578464919207
Mean original dataset attribute 0: 0.0
Variance original dataset attribute 0: 0.0
Mean anonymized dataset attribute 0: 0.0
Variance anonymized dataset attribute 0: 0.0
Mean original dataset attribute 1: 0.0
Variance original dataset attribute 1: 0.0
Mean anonymized dataset attribute 1: 0.0
Variance anonymized dataset attribute 1: 0.0
Mean original dataset attribute 2: 0.0
Variance original dataset attribute 2: 0.0
Mean anonymized dataset attribute 2: 0.0
Variance anonymized dataset attribute 2: 0.0
Mean original dataset attribute 3: 0.0
Variance original dataset attribute 3: 0.0
Mean anonymized dataset attribute 3: 0.0
Variance anonymized dataset attribute 3: 0.0
Mean original dataset attribute 4: 0.0
Variance original dataset attribute 4: 0.0
Mean anonymized dataset attribute 4: 0.0
Mean anonymized dataset attribute 5: 49.4
Variance anonymized dataset attribute 5: 78.24
Mean original dataset attribute 6: 0.0
Variance original dataset attribute 6: 0.0
Mean anonymized dataset attribute 6: 0.0
Variance anonymized dataset attribute 6: 0.0
Mean original dataset attribute 7: 0.0
Variance original dataset attribute 7: 0.0
Mean anonymized dataset attribute 7: 0.0
Variance anonymized dataset attribute 7: 0
Mean original dataset attribute 8: 1.43540676E12
Variance original dataset attribute 8: 7.12908324864E19
Mean anonymized dataset attribute 8: 1.43540676E12
Variance anonymized dataset attribute 8: 7.12908324864E19
Mean original dataset attribute 9: 1.43468676E12
Variance original dataset attribute 9: 7.02162100224E19
Mean anonymized dataset attribute 9: 1.4346522E12
```

Information Loss Result for 3 - Anonymized Dataset

```
SSE: 136.36105644443438
Mean original dataset attribute 0: 0.0
Variance original dataset attribute 0: 0.0
Mean anonymized dataset attribute 0: 0.0
Variance anonymized dataset attribute 0: 0.0
Mean original dataset attribute 1: 0.0
Variance original dataset attribute 1: 0.0
Mean anonymized dataset attribute 1: 0.0
Variance anonymized dataset attribute 1: 0.0
Mean original dataset attribute 2: 0.0
Variance original dataset attribute 2: 0.0
Mean anonymized dataset attribute 2: 0.0
Variance anonymized dataset attribute 2: 0.0
Mean original dataset attribute 3: 0.0
Variance original dataset attribute 3: 0.0
Mean anonymized dataset attribute 3: 0.0
Variance anonymized dataset attribute 3: 0.0
Mean original dataset attribute 4: 0.0
Variance original dataset attribute 4: 0.0
Mean anonymized dataset attribute 4: 0.0
Variance anonymized dataset attribute 4: 0.0
Mean original dataset attribute 5: 49.53333333333333
Variance original dataset attribute 5: 283.71555555555557
Mean anonymized dataset attribute 5: 49.2
Variance anonymized dataset attribute 5: 44.96000000000001
Mean original dataset attribute 6: 0.0
Variance original dataset attribute 6: 0.0
Mean anonymized dataset attribute 6: 0.0
Variance anonymized dataset attribute 6: 0.0
Mean original dataset attribute 7: 0.0
Variance original dataset attribute 7: 0.0
Mean anonymized dataset attribute 7: 0.0
Variance anonymized dataset attribute 7: 0.0
Mean original dataset attribute 8: 1.43540676E12
Variance original dataset attribute 8: 7.12908324864E19
Mean anonymized dataset attribute 8: 1.43540676E12
Variance anonymized dataset attribute 8: 7.12908324864E19
Mean original dataset attribute 9: 1.43468676E12
Variance original dataset attribute 9: 7.02162100224E19
```

Information Loss Result for 4 - Anonymized Dataset

```
Command Prompt
SSE: 288.1887437371673
Mean original dataset attribute 0: 0.0
Variance original dataset attribute 0: 0.0
Mean anonymized dataset attribute 0: 0.0
Variance anonymized dataset attribute 0: 0.0
Mean original dataset attribute 1: 0.0
Variance original dataset attribute 1: 0.0
Mean anonymized dataset attribute 1: 0.0
Variance anonymized dataset attribute 1: 0.0
Mean original dataset attribute 2: 0.0
Variance original dataset attribute 2: 0.0
Mean anonymized dataset attribute 2: 0.0
Variance anonymized dataset attribute 2: 0.0
Mean original dataset attribute 3: 0.0
Variance original dataset attribute 3: 0.0
Mean anonymized dataset attribute 3: 0.0
Variance anonymized dataset attribute 3: 0.0
Mean original dataset attribute 4: 0.0
Variance original dataset attribute 4: 0.0
Mean anonymized dataset attribute 4: 0.0
Variance anonymized dataset attribute 4: 0.0
Mean original dataset attribute 5: 49.533333333333333
Variance original dataset attribute 5: 283.7155555555557
Mean anonymized dataset attribute 5: 49.333333333333333
Variance anonymized dataset attribute 5: 11.555555555555555
Mean original dataset attribute 6: 0.0
Variance original dataset attribute 6: 0.0
Mean anonymized dataset attribute 6: 0.0
Variance anonymized dataset attribute 6: 0.0
Mean original dataset attribute 7: 0.0
Variance original dataset attribute 7: 0.0
Mean anonymized dataset attribute 7: 0.0
Variance anonymized dataset attribute 7: 0.0
Wariance anonymized dataset attribute 8: 1.43540676E12
Variance original dataset attribute 8: 7.12908324864E19
Mean anonymized dataset attribute 8: 1.43540676E12
Variance anonymized dataset attribute 8: 7.12908324864E19
Mean original dataset attribute 9: 1.43468676E12
Variance original dataset attribute 9: 7.02162100224E19
Mean anonymized dataset attribute 9: 1.4346522E12
```

EFFICIENCY:

Thus, from the results generated, the calculation of SSE which is a parameter of Euclidean distance is done using the metrics such as Mean and Variance of the data in the clusters. Therefore, higher the value of SSE the higher the privacy of the data.

CONCLUSIONS AND FUTURE ENHANCEMENTS:

The suggested t-closeness model uses micro aggregation to maintain the privacy of sensitive characteristics safely and effectively in any system. Other privacy models like k-anonymity and 1-diversity do not offer attribute disclosure protection. The micro aggregation disturbs the data, and the additional masking freedom enables enhancing the usability of the data in several ways, including enhancing data granularity, minimizing the influence of outliers, and avoiding discretization of numerical data. One of the tightest privacy assurances is provided by the suggested micro aggregation technique to produce t-close data sets in microdata. Thus, this study demonstrates the use of microaggregation to provide k-anonymous t-closeness. The microaggregation-based t-closeness algorithm is described and analyzed using three different K values. The algorithm we have used is based on executing micro aggregation in the typical manner, followed by clustering to the extent required to meet the t-closeness criteria. Although it is easy to use and can be used with any method, it could not perform well in terms of utility since clusters could become quite large. This can be accepted as a challenge and included in our future work to potentially enhance this value for huge data clusters. In an effort to increase the usefulness of the anonymized data, one potential enhancement could involve changing the Microaggregation method to take t-closeness into consideration.

VIDEO LINK:

Presentation Link

REFERENCES:

1.Josep Domingo-Ferrer and Jordi Soria-Comas. "Steered Microaggregation: A Unified Primitive for

Anonymization of Data Sets and Data Streams". IEEE Transactions on Information Forensics and Security (Volume: 14, Issue: 12, December 2019)

- 2. David Sánchez, Sergio Martínez , Josep Domingo-Ferrer, Jordi Soria-Comas and Montserrat Batet. "μ-ANT: Semantic Microaggregation-based Anonymization Tool". Bioinformatics, Volume 36, Issue 5, March 2020, Pages 1652–1653
- 3. J.M. MATEO-SANZ J and DOMINGO-FERRER. "A COMPARATIVE STUDY OF MICROAGGREGATION METHODS". Institut d'Estadística de Catalunya.
- 4. D. Rebollo-Monedero, J. Forné and J. Domingo-Ferrer, "From t-Closeness-Like Privacy to Postrandomization via Information Theory," in IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 11, pp. 1623-1636, Nov. 2010, doi: 10.1109/TKDE.2009.190.
- 5. Shi, Yancheng & Zhang, Zhenjiang & Shen, Bo. "Data Privacy Protection Based on Micro Aggregation with Dynamic Sensitive Attribute Updating". Sensors. 18. 2307. 10.3390/s18072307. (2018).
- 6. Y. Sei, H. Okumura, T. Takenouchi and A. Ohsuga, "Anonymization of Sensitive Quasi-Identifiers for l-Diversity and t-Closeness," in IEEE Transactions on Dependable and Secure Computing, vol. 16, no. 4, pp. 580-593, 1 July-Aug. 2019, doi: 10.1109/TDSC.2017.2698472.
- 7. Salvatore Ruggieri. "Using t-closeness anonymity to control for non-discrimination".

Transactions on Data PrivacyVolume 7,Issue 2-August 2014 pp 99–129

- 8. Liang, H., Yuan, H. (2013). On the Complexity of t-Closeness Anonymization and Related Problems. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds) Database Systems for Advanced Applications. DASFAA 2013. Lecture Notes in Computer Science, vol 7825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37487-6_26
- 9.Saraswathi, S., and K. Thirukumar. "Enhancing utility and privacy using t-closeness for multiple sensitive attributes." Advances in Natural and Applied Sciences, vol. 10, no. 5, May 2016, pp. 6+. Gale Academic OneFile, link.gale.com/apps/doc/A465808911/AONE?u=anon~eb9b9c21&sid=googleScholar &xid=edbf2d02. Accessed 12 Sept. 2022.
- 10.Roy, Debaditya & Jena, Sanjay. (2013). Determining t in t-closeness using Multiple Sensitive Attributes. International Journal of Computer Applications. 70. 47-51. 10.5120/12179-8291.
- 11. Sergio Martínez, David Sánchez, Aida Valls, A semantic framework to protect the privacy of electronic health records with non-numerical attributes, Journal of Biomedical Informatics, Volume 46, Issue 2,2013, Pages 294-303.
- 12.Sande, Gordon. "Methods for Data Directed Microaggregation in One Dimension." Proceedings of the NTTS&ETK 2001 (2001).

- 13.Domingo-Ferrer, Josep & Sebé, Francesc & Solanas, Agusti. (2008). An Anonymity Model Achievable Via Microaggregation. 209-218. 10.1007/978-3-540-85259-9_14.
- 14.Domingo-Ferrer, Josep & Trujillo-Rasua, Rolando. (2012). Microaggregation-and permutation-based anonymization of movement data. Information Sciences. 208. 55–80. 10.1016/j.ins.2012.04.015.
- 15.Khapekar, Sonu V., and Lomesh Ahire. "Privacy Protection of Sensitive Microdata in Healthcare System using t-Closeness through Microaggregation." (2017).
- 16.Domingo-Ferrer, Josep, and Jordi Soria-Comas. "From t-closeness to differential privacy and vice versa in data anonymization." Knowledge-Based Systems 74 (2015): 151-158.
- 17. Soria-Comas, Jordi, et al. "t-closeness through microaggregation: Strict privacy with enhanced utility preservation." IEEE Transactions on Knowledge and Data Engineering 27.11 (2015): 3098-3110.
- 18. Soria-Comas, Jordi, and Josep Domingo-Ferrert. "Differential privacy via t-closeness in data publishing." 2013 Eleventh Annual Conference on Privacy, Security and Trust. IEEE, 2013.
- 19.Soria-Comas, Jordi, and Josep Domingo-Ferrer. "Probabilistic k-anonymity through microaggregation and data swapping." 2012 IEEE International Conference on Fuzzy Systems. IEEE, 2012.
- 20. Solanas, A. and Pietro, R.D., 2008, October. A linear-time multivariate microaggregation for privacy protection in uniform very large data sets. In International Conference on Modeling Decisions for Artificial Intelligence (pp. 203-214). Springer, Berlin, Heidelberg.
- 21. Dangi, A.P. and Mogili, R., 2012. Privacy preservation measure using t-closeness with combined l-diversity and k-anonymity. International Journal of Advanced Research in Computer Science and Electronics Engineering (IJARCSEE), 1(8), pp.28-33.
- 22. Wang, R., Zhu, Y., Chen, T.S. and Chang, C.C., 2018. Privacy-preserving algorithms for multiple sensitive attributes satisfying t-closeness. Journal of Computer Science and Technology, 33(6), pp.1231-1242.
- 23. Wang, M., Jiang, Z., Zhang, Y. and Yang, H., 2018. T-closeness slicing: A new privacy-preserving approach for transactional data publishing. INFORMS Journal on Computing, 30(3), pp.438-453.
- 24. Zouinina, S., Bennani, Y., Rogovschi, N. and Lyhyaoui, A., 2021. Data anonymization through collaborative multi-view microaggregation. Journal of Intelligent Systems, 30(1), pp.327-345.
- 25. Defays, D. and Anwar, M.N., 1998. Masking microdata using micro-aggregation. Journal of Official Statistics, 14(4), p.449.
- 26. FATHIMA, N. and KOUSAR, M., 2017. Privacy Preserving with Utility Preservation through Microaggregation.
- 27. PRAVALLIKA, A. and SAPTHAMI, I., 2017. T-Closeness Through Microaggregation: Strict Privacy With Enhanced Utility Preservation.

- 28. Tanay, I.S.L., Nagargoje, V.J. and Inamdar, A., 2013. Security for Personal Credentials in Big Data: Through Microaggregation and TCloseness.
- 29. Domingo-Ferrer, J., Sebé, F. and Solanas, A., 2008. A polynomial-time approximation to optimal multivariate microaggregation. Computers & Mathematics with Applications, 55(4), pp.714-732.
- 30. Lin, J.L., Wen, T.H., Hsieh, J.C. and Chang, P.C., 2010. Density-based microaggregation for statistical disclosure control. Expert Systems with Applications, 37(4), pp.3256-3263.