Barycentre de deux points

Exercice 1

Traduire chacun des énoncés ci-dessous par une égalité vectorielle.

- a. G est barycentre de $\{(A, -2), (B, 1)\}$;
- b. F est barycentre de $\{(D, 3(C, 1))\}$;
- c. A est barycentre de $\{(B, -3), (B, 5)\}$;
- d. I est isobarycentre des points A et B.

Exercice 2

- 1. Traduire chaque égalité vectorielle en langage de barycentre.
- a. $3\overrightarrow{GA} + 4\overrightarrow{GB} = \overrightarrow{O}$; b. $\overrightarrow{AB} 2\overrightarrow{AC} = \overrightarrow{O}$;
- c. $7\overrightarrow{EG} 5\overrightarrow{EC} = \overrightarrow{O}$; d. $\overrightarrow{HE} + \overrightarrow{HF} = \overrightarrow{O}$.

Exercice 3

Dans chacun des cas ci-dessous écrire A comme barycentre de B et C affectés de coefficients à préciser.

- a. $\overrightarrow{BA} + 2\overrightarrow{CB} = \overrightarrow{O}$; b. $\overrightarrow{BA} = 3\overrightarrow{BC}$;
- c. $\overrightarrow{CA} = -\frac{4}{3}\overrightarrow{CB}$; d. $\overrightarrow{CB} = \frac{3}{2}\overrightarrow{AB}$.

Exercice 4

Dans chacun des cas ci-dessous construire le barycentre G des points pondérés (A, a), (B, b).

- a. AB = 4 cm, a = 3 et b = -1.
- b. AB = 6 cm, a = 2 et b = 3.
- c. AB = 7.5 cm, a = -4 et b = 1.
- d. AB = 5 cm, a = -3 et b = -1.
- e. AB = 7 cm, a = -10 et b = -10.
- f. AB = 6 cm, $a = \frac{1}{4}$ et b = 1.

Exercice 5

ABCD est un parallélogramme de centre O. Les points M et N sont tels que :

- $3\overrightarrow{AM} 2\overrightarrow{AB} = \overrightarrow{0}$ (1) et $\overrightarrow{CD} + 3\overrightarrow{DN} = \overrightarrow{0}$ (2)
- 1. Exprimer \overrightarrow{AM} en fonction de \overrightarrow{AB} en utilisant (1). Placer M.
- 2. Trouver les réels α et β pour que M soit barycentre des points pondérés (A, α) et (B, β) .
- 3. Exprimer \overrightarrow{CN} en fonction de \overrightarrow{CD} en utilisant (2). Placer N.
- 4. Trouver les réels α ' et β ' pour que N soit barycentre des points pondérés (C, α ') et (D, β ').
- 5. Justifier que le quadrilatère NCMA est un parallélogramme et que 0 est le milieu de [MN].
- 2. Déterminer puis construire l'ensemble (D)

Exercice 6

Soit A et B deux points tels que AB = 4 cm.

1. Déterminer puis construire l'ensemble (E_1) des points M du plan tels que :

$$\|\overrightarrow{MA} + \overrightarrow{MB}\| = 6.$$

2. Déterminer puis construire l'ensemble (E_2) des points M du plan tels que :

$$\|\overrightarrow{MA} + \overrightarrow{MB}\| = \|-\overrightarrow{MA} + 3\overrightarrow{MB}\|.$$

Exercice 7

Soit E et F deux points tels que EF = 5.4 cm.

1. Déterminer puis construire l'ensemble (C) des points M du plan tels que :

$$\|\overrightarrow{MA} - 3\overrightarrow{MB}\| = 7.$$

2. Déterminer puis construire l'ensemble (D) des points M du plan tels que :

$$\|2\overrightarrow{MA} + \overrightarrow{MB}\| = \|\overrightarrow{MA} - 4\overrightarrow{MB}\|.$$

Exercice 8

Soit ABC un triangle isocèle en A tel que BC = 8 cm et BA = 5 cm. Soit I le milieu de [BC].

1. Placer le point F tel que $\overrightarrow{BF} = -\overrightarrow{BA}$ et montrer que F est le barycentre des points A et B pondérés par

des réels que l'on déterminera.

2. P étant un point du plan, réduire (en justifiant) chacune des sommes suivantes :

$$\frac{1}{2}\overrightarrow{PB} + \frac{1}{2}\overrightarrow{PC}$$
$$-\overrightarrow{PA} + 2\overrightarrow{PB}$$
$$2\overrightarrow{PB} - 2\overrightarrow{PA}$$

3. Déterminer et représenter l'ensemble des points M du plan vérifiant :

$$\left\| \frac{1}{2} \overrightarrow{MB} + \frac{1}{2} \overrightarrow{MC} \right\| = \left\| -\overrightarrow{MA} + 2\overrightarrow{MB} \right\|.$$

4. Déterminer et représenter l'ensemble des points N du plan vérifiant :

$$\|\overrightarrow{NB} + \overrightarrow{NC}\| = \|2\overrightarrow{NB} - 2\overrightarrow{NA}\|.$$

Exercice 9

Soit ABC un triangle tels que AB = 4 cm, AC = 5 cm et BC = 4.5 cm.

1. Déterminer puis construire l'ensemble (C) des points M du plan tels que :

$$\|\overrightarrow{MA} - 2\overrightarrow{MB}\| = BC.$$

Exercice 14

Soit ABC un triangle et I le milieu de [BC]. Soit G

des points M du plan tels que :

$$\|\overrightarrow{MA} + \overrightarrow{MB}\| = \|\overrightarrow{MA} - 3\overrightarrow{MC}\|.$$

3. Déterminer puis construire l'ensemble (Δ) des points M tels que les vecteurs $2\overrightarrow{MA} + \overrightarrow{MB}$ et $\overrightarrow{MA} - \overrightarrow{MC}$ soient colinéaires.

Barycentre de trois points

Exercice 10

Soit ABC un triangle tels que AB = 5 cm, AC = 6 cm et BC = 4.5 cm.

Construire:

- 1. G barycentre des points pondérés (A, 1), (B, 2) et (C, 3).
- 2. H barycentre des points pondérés (A, -2), (B, 1) et (C, 2).
- 3. K barycentre des points pondérés (A,-2), (B,1) et (C,-3).
- 4. O isobarycentre des points A, B et C.

Exercice 11

Soit ABCD un parallélogramme.

- 1. Définir A comme barycentre des points B, C et D affectés de coefficients à préciser.
- 2. Soit G le barycentre des points (A,1), (B, 1) et (D, 2).
- a. Ecrire le vecteur \overrightarrow{CG} en fonction des vecteurs \overrightarrow{CA} , \overrightarrow{CB} et \overrightarrow{CD} .
- b. Ecrire plus simplement le vecteur

$$\frac{1}{4}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$$
.

Exercice 12

Soit A, B, C et D quatre points.

Pour tout point M du plan déterminer une écriture simplifiée de chacune des sommes vectorielles ci-dessous.

- 1. $2\overrightarrow{MA} + \overrightarrow{MB} \overrightarrow{MC}$;
- 2. $2\overrightarrow{MA} \overrightarrow{MB} \overrightarrow{MC}$;
- 3. $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MD}$;
- 4. $-\overrightarrow{MA} + 3\overrightarrow{MB} 2\overrightarrow{MC}$.

Exercice 13

Soit un triangle ABC rectangle en A tel que AB = 4 cm et AC = 6 cm.

- 1. Placer le point G tel que : $\overrightarrow{AG} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$.

 Calculer AG.
- 2. Démontrer que G est le barycentre de A, B, C affectés de coefficients que l'on précisera.
- 3. déterminer l'ensemble (E) des points M du plan tels que : $\|-\overline{MA} + 2\overline{MB} + \overline{MC}\| = 10$. Montrer que (E) passe par C et A.

le barycentre de (A, -1), (B, 2) et (C, 2).

- 1. Montrer que G appartient à la droite (AI).
- 2. Soit H le symétrique de A par rapport à B. Montrer que C, G et H sont alignés

Exercice 15

Soit ABC un triangle. On considère I le barycentre de (A, 2) et (C, 1); J le barycentre de (A; 1) et (B; 2) et K le barycentre de (C, 1) et (B, -4).

- 1. Montrer que B est le barycentre de (K, 3) et (C, 1).
- 2. En déduire le barycentre de (A, 2), (K, 3) et (C, 1).
- 3. Montrer que J est le milieu de [IK].

Exercice 16

Dans un triangle ABC on définit I le barycentre de (B, 2), (C, 1), J le barycentre de (A, 3), (C, 2) et K le barycentre de (A, 3) et (B, 4).

- 1. Faire une figure.
- 2. En considérant G le barycentre de (A, 3),
- (B, 4) et (C, 2), montrer que les droites (AI),
- (BJ) et (CK) sont concourantes en G.

Exercice 17

Soit ABC un triangle et I, J et K les points définis par : I est le milieu de [AB] ; $\overrightarrow{JC} = \frac{2}{3} \overrightarrow{JA}$; $\overrightarrow{BK} = 3\overrightarrow{BC}$.

1. Déterminer les coefficients pour lesquels I

est le barycentre de (A, a), (B, b), I celui de (A, a'), (C, c) et K celui de (B, b'),

(C , c').

2. Démontrer que les droites (AK), (BJ) et (CI) sont concourantes en un point à préciser.

Exercice 18

1. Construire un triangle ABC tel que AC = 12 cm, BA = 10 cm et CB = 8 cm puis

placer le barycentre G de (A, 1), (B, 2) et (C, 1).

2. Déterminer et représenter l'ensemble (E₁) des points M du plan tels que :

 $\|\overrightarrow{MA} + 2 \overrightarrow{MB} + \overrightarrow{MC}\| = AC.$

- 3. Soit (E₂) l'ensemble des points M du plan tels que : $\|\overrightarrow{MA} + 2 \overrightarrow{MB} + \overrightarrow{MC}\| = \|\overrightarrow{BA} + \overrightarrow{BC}\|$.
- a) Montrer que B appartient à (E₂).
- b) Déterminer et représenter l'ensemble (E2).
- 4. Déterminer et représenter l'ensemble (E₃) des points M du plan tels que :

 $\|\overrightarrow{MA} + 2 \overrightarrow{MB} + \overrightarrow{MC}\| = \|\overrightarrow{3MA} + \overrightarrow{MC}\|.$