常微分方程

2021年8月7日 星期六

1.
$$\frac{dy}{dx} = f(ax+by+c)$$

$$\frac{dy}{dx} = ax+by+c$$

$$\frac{dy}{dx} = a+b\frac{dy}{dx}$$

2.
$$\frac{dy}{dx} = f(\frac{y}{x})$$

$$\frac{2}{2} u = \frac{y}{x}, y = xu$$

$$\frac{dy}{dx} = u + x \frac{du}{dx}$$

3.
$$\frac{dy}{dx} = f\left(\frac{a_1x + b_1y + C_1}{a_2x + b_2y + C_2}\right)$$

其中 G 与 C2 不同时为 O.
若 $a_1b_2 - b_1a_2 \neq 0$ 若 $a_1b_2 - b_1a_2 = 0$
 $\frac{1}{2}u = a_1x + b_1y + G$ $\frac{1}{2}u = a_1x + b_1y$
 $1 = a_2x + b_2y + C_2$

ド重文特征根入(k引)
$$e^{\lambda x}$$
, $\chi e^{\lambda x}$, ..., χ^{kd} $e^{\lambda x}$
k重共轭复根入= $\alpha \pm i\beta$ $e^{\alpha x} \cos \beta x$ $e^{\alpha x} \sin \beta x$
 $\chi e^{\alpha x} \cos \beta x$ $\chi^{kd} e^{\alpha x} \sin \beta x$
 $\chi^{kd} e^{\alpha x} \cos \beta x$ $\chi^{kd} e^{\alpha x} \sin \beta x$