

[CSE4152] 고급소프트웨어 실습 I Week 5

서강대학교 공과대학 컴퓨터공학과 교수 임 인 성

본 강의에서 제작하여 제공하는 PDF 파일, 동영상, 그리고 예제 코드 등의 강의 자료의 저작권은 특별히 명기되어 있지 않은 한 서강대학교에 있습니다. 본인의 학습 목적 외에 공개된 장소에 올리거나 타인에게 배포하는 등의 행위를 금합니다. 협조 부탁합니다.

Probability Distribution and Stochastic Event

• 5주차 실습의 목표

- 특정 확률 분포(probability distribution)를 따르는 확률 사건(stochastic event)를 수치적으로 충실하게 시뮬레이션을 해봄.
 - 4주차에 배운 Newton-Raphson 방법과 같은 비선형 방정식의 수치풀이 방법
 - Composite trapezoidal rule과 같은 수치 적분 방법

확률론(probability theory)

- 통계학의 수학적 기초로서 확률에 대해 연구하는 수학의 한 분야
 - 확률 변수(random variable), 확률 과정(stochastic process), 사건(event) 등의 내용을 다룸.
- 비 결정론적(nondeterministic) 현상을 수학적으로 기술함을 목표로 함.
- 응용분야
 - 무궁무진!

확률 변수(Random Variable)

• 확률변수란?

- 주어진 범위 내에서 임의의 값을 가질 수 있는 변수
 - 이산 확률 변수(discrete random variable)
 - 주사위를 던질 때 나오는 값 X (X = 1, 2, 3, 4, 5, 6)
 - 연속 확률 변수(continuous random variable)
 - 스마트폰을 새로 사서 고장이 날 때까지의 시간 Y (Y는 양의 실수)
- 주어진 실험을 통하여 변수 값이 발생함.
- 그러한 값이 어떠한 패턴으로 발생하는지를 확률을 통하여 모델링함.
 - 주사위를 던질 때 5가 나올 가능성은?
 - 스마트폰을 새로 사서 3년 동안 고장 나지 않고 사용할 가능성은?

[CSE 4152] 고급 소프트웨어 실습 I

『GPS 수신기 위치 계산 문제』

수치 컴퓨팅 실험 2: 특정 확률 사건의 생성

담당교수: 컴퓨터공학과 임인성 (AS-905, 02-705-8493, ihm@sogang.ac.kr) 담당조교: 컴퓨터공학과 안재풍 (AS-914, 02-711-5278, ajp5050@sogang.ac.kr)

Why randomisation and probabilistic techniques?

Probability theory is used widely in such areas of study as mathematics, statistics, finance, gambling, science (in particular physics), artificial intelligence/machine learning, computer science, game theory, and philosophy to, for example, draw inferences about the expected frequency of events. Probability theory is also used to describe

확률 밀도 함수(Probability Density Function, pdf)

정의 (변수 1개)

 $p_X(x)$ 를 실수 공간에서 정의된 연속 확률 변수 X의 확률 밀도 함수라 할 때, 이 함수는 다음과 같은 조건을 만족해야 한다.

- 1. 모든 실수 값 x에 대해, $p_X(x) \geq 0$
- $2. \int_{-\infty}^{\infty} p_X(x) dx = 1$

• 확률 밀도 함수와 확률 간의 관계

- 확률 밀도 함수는 정확히 말해서 확률값을 나타내는 함수가 아니라 확률 변수 X가 특정 값을 가질 정도를 나타내주는 함수임.
 - 아주 작은 양수 ϵ 에 대해, $P(x \leq X \leq x + \epsilon) \approx p_X(x) \cdot \epsilon$
- 확률 변수 X가 어떤 범위의 값을 가질 확률은 다음과 같음.
 - 구간 [a,b]에 대해 $P(a \le X \le b) = \int_a^b p_X(x) dx$

• 정의 (변수 2개)

 $p_{X,Y}(x)$ 를 실수 공간에서 정의된 연속 확률 변수 X와 Y의 결합 확률 밀도 함수라 할 때, 이 함수는 다음과 같은 조건을 만족해야 한다.

- 1. 모든 실수 값 x와 y에 대해, $p_{X,Y}(x,y) \geq 0$
- $2. \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p_{X,Y}(x,y) \, dx \, dy = 1$

누적 분포 함수(Cumulative Distribution Function, cdf)

• 정의

어떤 확률 변수가 특정 값보다 작거나 같을 확률을 기술해주는 함수. $F_X(x)$ 를 연속 확률 변수 X의 누적 밀도 함수라 하면,

•
$$F_X(x) = P(X \le x) = \int_{-\infty}^x p_X(t) dt$$

• 누적 분포 함수와 확률 밀도 함수와의 관계

누적 분포 함수의 순간 변화율, 즉 x가 순간적으로 증가 함에 따라 $F_X(x)$, 즉 X가 x보다 같거나 작을 확률이 증가하는 정도가 바로 $p_X(x)$ 라는 것을 의미함.

$$\bullet \ p_X(x) = \frac{dF_X}{dx}(x)$$

• 누적 분포 함수의 중요한 성질

0과 1 사이의 값을 가지는 누적 분포 함수는 단초 비감소 함수 (monotonically nondecreasing function)임.

• 만약 $x_0 \leq x_1$ 이라면, $F_X(x_0) \leq F_X(x_1)$

• 예: 균등 분포(uniform distribution)

$$p_X(x) = \begin{cases} 1, & \text{if } 0 \le x \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

$$F_X(x) = \int_0^x 1 \, dt = x, \quad 0 \le x \le 1$$

• 예: 지수 분포(exponential distribution)

$$p_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0, \\ 0, & \text{otherwise.} \end{cases} \qquad F_X(x) = \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}, \quad x \ge 0$$

- To model the time until something happens in the process.
- Memoryless!

$$P(Y > t \mid X > s) = P(X > s + t \mid X > s) = \frac{P(X > s + t)}{P(X > s)} = e^{-\lambda t}$$

• 예: 정규 분포(normal distribution)

$$p_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$F_X(x) = ????$$

Inversion Method

• 문제

사용자가 임의로 정의한 확률 밀도 함수 $p_X(x)$ 를 따르는 확률 변수 X를 모사해 주는 난수 수열 $X_0, X_1, X_2, X_3, \cdots$ 를 발생시켜라.

 $p_X(x)$ 를 따르는 난수란 이를 무한히 많이 발생시켜 x값에 대한 분포를 계산할 경우, 그 분포가 $p_X(x)$ 에 수렴함을 의미함.

100 5.6767	68		
20.000000	9.000000		
25.676767	11.591169		
31.353535	15.391957		
37.030304	20.120052		
42.707069	25.132595		
:			
564.969727	47.323036		
570.646484	42.336571		
576.323242	36.826424		
582.000000	32.999992		

• 본 과목 제공 pdf 생성 코드

 아래와 같이 곡선 생성을 통하여 대략적인 그래프를 구한 후, 전체 면적으로 함수 값을 나누어 원하는 pdf를 생성함.


```
100 5.676768
20.000000
           9.000000
25.676767
           11.591169
31.353535
           15.391957
37.030304
           20.120052
42.707069
           25.132595
564.969727
            47.323036
570.646484
            42.336571
576.323242
            36.826424
582.000000
            32.999992
```


FILE 샘플링결과저장 Curve생성 샘플링개수 초기화 Curve샘플링

• PDF와 CDF 간의 관계

 $U_0, U_1, U_2, U_3, \dots$ 를 [0,1] 구간의 값을 가지는 균등 확률 변수에 대하여 생성한 난수 수열이라고 하자. $F_X(x)$ 를 주어진 확률 밀도 함수 $p_X(x)$ 에 대한 누적 분포 함수라 할 때, 난수 수열 값 $X_i = F_X^{-1}(U_i)$ 의 직관적인 의미는?

• 방법

 $U_0, U_1, U_2, U_3, \dots$ 를 [0,1] 구간의 값을 가지는 균등 확률 변수에 대하여 생성한 난수 수열이라고 하자. $F_X(x)$ 를 주어진 확률 밀도 함수 $p_X(x)$ 에 대한 누적분포 함수라 하면, 이 확률 분포를 따르는 난수 수열 값 X_i $(i = 0, 1, 2, 3, \dots)$ 는 $X_i = F_X^{-1}(U_i)$ 와 같이 구할 수 있다.

$$p_X(x) \rightarrow F_X(x) = P(X \le x) = \int_{-\infty}^x p_X(t) dt \rightarrow U_i \text{ from } U[0,1] \rightarrow X_i = F_X^{-1}(U_i)$$

Intuitive explanation

$$P(X_i \le x) = P(F_X^{-1}(U_i) \le x) = P(U_i \le F_X(x)) = F_X(x)$$

• 예: 지수 분포

$$U_i = F_X(X_i) = 1 - e^{-\lambda X_i} \longrightarrow X_i = -\frac{\ln 1 - U_i}{\lambda}$$

$$p_X(x) \rightarrow F_X(x) = P(X \le x) = \int_{-\infty}^x p_X(t) dt \rightarrow U_i \text{ from } U[0,1] \rightarrow X_i = F_X^{-1}(U_i)$$

• 몇 가지 문제점

 일반적으로 확률 밀도 함수가 수식으로 표현이 되는 경우도 있지만 이산적인 형태로 근사적으로 주어지기도 함 > 적절한 가공이 필요함.

1. 모든 실수 값
$$x$$
에 대해, $p_X(x) \ge 0$
2. $\int_{-\infty}^{\infty} p_X(x) dx = 1$ $p_X(x) = \frac{f(x)}{\int_{x_0}^{x_n} f(x) dx}, \quad x \in [x_0, x_n]$

 누적 분포 함수의 역함수를 수식으로 표현하는 것이 불가능하거나 매우 어려움 → 비선형 방정식의 근을 구하는 방식으로 해결 가능.

$$X_i = F_X^{-1}(U_i) \to F_X(x) = U_i \to f(x) \equiv F_X(x) - U_i = 0, \ x \in [x_0, x_n] \to X_i$$

Newton iteration:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

 누적 분포 함수 값을 구하기 위한 적분 계산을 정확한 수식을 사용하는 것이 불가능하거나 매우 어려움 > 수치적인 방법을 사용하여 적분 값을 계산함.

Mathematical Function in Real-life

$x \mid$	$ x_0 $	$ x_1 $	x_2	•••	x_{n-1}	x_n
y	y_0	y_1	y_2		y_{n-1}	y_n

$$\Delta h = \frac{b-a}{n}, \quad x_i = a+i \cdot \Delta h \ (i=0,1,2,\dots,n), \quad y_i = f(x_i) \ (i=0,1,2,\dots,n)$$

수치 적분 (Numerical Integration)

• 합성 사다리꼴 공식(composite trapezoidal rule)

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta h}{2} \{ f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \}$$

$$E = -\frac{f''(\xi)(x_n - x_0)}{12}h^2, \ \xi \in [x_0, x_n]$$

$$\Delta h = \frac{b-a}{n}, \quad x_i = a + i \cdot \Delta h \ (i = 0, 1, 2, \dots, n), \quad y_i = f(x_i) \ (i = 0, 1, 2, \dots, n)$$