HW7 DL Applications

Slack (Recommend): Lin Qiuxia

TA Email: qiuxia.lin@u.nus.edu

Content

- Three python notebooks
 - Homework_07_Q1.ipynb, Homework_07_Q2.ipynb, Homework_07_Q3.ipynb
- Point assignment (10 points)
 - Q1 (4 points), Q2 (3 points), Q1 (3 points)

Cautions

- DO NOT copy the code from the internet, e.g. GitHub.
- DO NOT use external libraries like Tensorflow, keras in your implementation.
- Submission
 - Please zip your answers under a folder named with your STUDENT ID: eg. `A0123456G.zip`
 and submit the zipped folder to Canvas. If we unzip the file, the structure should be like
 this:

```
A0123456G/
Homework_07_Q1.ipynb
Homework_07_Q2.ipynb
Homework 07 Q3.ipynb
```

Q1 Object detection

Fast R-CNN

convolutional network

- Truck&bus detection
- What you need to do
 - Implement the structure of FRCNN
 - RolPool, classifier, boundary regressor
 - Implement the forward function
 - Implement the loss calculation part
 - Classifier: nn.CrossEntropyLoss()
 - Boundary regressor: nn.L1Loss()

Fig. Architecture guideline for Fast RCNN taken from cs5242 lecture10

ROIPOOL

See roi_pool().

forward(input: torch.Tensor, rois: torch.Tensor) \rightarrow torch.Tensor [SOURCE]

- input (Tensor[N, C, H, W]) The input tensor, i.e. a batch with N elements. Each element contains C feature maps of dimensions H × W.
- **boxes** (*Tensor*[*K*, *S*] *or List*[*Tensor*[*L*, *4*]]) the box coordinates in (x1, y1, x2, y2) format where the regions will be taken from. The coordinate must satisfy 0 <= x1 < x2 and 0 <= y1 < y2. If a single Tensor is passed, then the first column should contain the index of the corresponding element in the batch, i.e. a number in [0, N 1]. If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i in the batch.
- output_size (int or Tuple[int, int]) the size of the output after the cropping is performed, as (height, width)
- spatial_scale (float) a scaling factor that maps the box coordinates to the input coordinates. For
 example, if your boxes are defined on the scale of a 224x224 image and your input is a 112x112 feature map
 (resulting from a 0.5x scaling of the original image), you'll want to set this to 0.5. Default: 1.0

Fig. The official intro about function ROIPOOL[link]

Q2 Semantic Segmentation

- U-Net
 - What you need to do
 - Implement network architecture
 - Skip connection, up-conv, conv to aggregate
 - Implement forward function

Fig. The overall architecture of U-Net taken from paper[link]

Q3 GANs

- Deep Convolutional GAN
 - Human face generation
 - What you need to do
 - Implement the structure of Discriminator
 - Implement the structure of Generator

Fig. The overall architecture of DCGAN generator taken from paper[link]

Types of GAN

- DCGAN (Deep Convolutional GAN)
 - Use batch norm for most layers of D and G
 - except last layer of G and first layer of D
 - For D, use strided convolutions instead of pooling layers
 - For G, use transpose convolutions to <u>upsample</u> the latent vector to the generated image
 - No fully-connected layers with the exception of the last layer of D
 - · LeakyRelu activations for all the layers (except the output layer) of D and G
 - Output of G: Tanh
 - · Output of D: Logistic
 - Use Adam

11. DL Applications II

Slide credit: Wang Wei

Deadline

• 6 Nov 2022, 23:59

S Oct	M	Т	W	Т	F	S
23	<mark>24</mark>	25	26	27	28	29
30	31	Nov 1	2	3	4	5

6 After due date, 15% off per day late⊗