Sanders Data Targeting Strategy

April 21, 2019

1 Bernie Sanders Campaign Plan

- 1.0.1 Field Targeting: The Path to 270
- 1.0.2 Author: Josh Kuppersmith and the Sanders Campaign Team
- 1.0.3 Date: April 25, 2019

Description: This notebook will walk through a brief clustering analysis of 2020 polling data to provide projections and clusters of states that we expect to behave similarly in the general election. State clusters are used to determine targets for advertisement and field operations. In-house mapping software is used to provide visuals of our expectations for the election. Target states are then analyzed further by breaking down data for individual counties to determine which to target.

Import software needed for this analysis

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from sklearn.cluster import KMeans
        from sklearn.cluster import DBSCAN
        from sklearn.linear_model import LinearRegression
        from sklearn.preprocessing import PolynomialFeatures
        import statsmodels.api as sm
        import matplotlib.style
        import matplotlib as mpl
        import geopandas as gpd
        import numpy as np
        import matplotlib.pyplot as plt
        import matplotlib.colors
        pd.set_option('display.max_rows', 500)
        pd.set option('display.max columns', 500)
        pd.set_option('display.width', 1000)
        mpl.style.use('classic')
```

2 State Analysis: Path to 270

Load Polling Data

```
In [2]: data = pd.read_csv('polling_data.csv')
       data.head()
Out[2]:
         Unnamed: 0 2012_D
                             2012_R 2012_I 2016_D
                                                   2016_R 2016_I 2020_D
                                                                           2020_R
                                                                                   2020_I E
       0
                 AL 38.40%
                             60.50% 1.10% 34.40%
                                                   62.10%
                                                            3.60% 35.20% 61.80%
                                                                                    3.10%
                                                                                           6
       1
                             55.30% 3.50% 36.60%
                                                   51.30% 12.20% 37.50% 52.10%
                 AK 41.20%
                                                                                  10.40%
                                                                                           4
       2
                 AZ 44.60%
                             53.70% 1.80% 45.10%
                                                   48.70%
                                                            6.20% 49.70% 45.00%
                                                                                    5.30%
                                                                                           7
       3
                 AR 36.90%
                             60.60% 2.60% 33.70% 60.60%
                                                            5.80% 34.30% 60.60%
                                                                                    5.10%
                                                                                           6
       4
                 CA 60.20%
                             37.10% 2.60% 61.70% 31.60%
                                                            6.70% 46.40% 32.70% 20.90% 5
  Data Processing
In [3]: for column in ['2012_D', '2012_R', '2012_I', '2016_D', '2016_R', '2016_I', '2020_D', '3
           data[column] = data[column].apply(lambda x: float(x.split('%')[0]))
       data.head()
Out [3]:
         Unnamed: 0
                     2012_D
                             2012_R 2012_I
                                             2016_D
                                                    2016_R
                                                            2016_I
                                                                    2020_D
                                                                           2020_R
                                                                                    2020_I
       0
                       38.4
                               60.5
                                               34.4
                                                      62.1
                                                               3.6
                                                                      35.2
                                                                              61.8
                                                                                       3.1
                 AL
                                        1.1
       1
                       41.2
                               55.3
                                                              12.2
                                                                      37.5
                                                                              52.1
                 ΑK
                                        3.5
                                               36.6
                                                      51.3
                                                                                      10.4
       2
                 AZ
                       44.6
                               53.7
                                        1.8
                                              45.1
                                                      48.7
                                                               6.2
                                                                      49.7
                                                                              45.0
                                                                                       5.3
                                                                      34.3
       3
                       36.9
                                                               5.8
                                                                                       5.1
                 AR
                               60.6
                                        2.6
                                              33.7
                                                      60.6
                                                                              60.6
       4
                                                               6.7
                 CA
                       60.2
                               37.1
                                        2.6
                                              61.7
                                                      31.6
                                                                      46.4
                                                                              32.7
                                                                                      20.9
```

Generate 2024 Projections using quadratic regression to account for the Blue Wave

```
In [4]: # add 2024 columns for better predictions
    data['2024_D'] = [0] * len(data)
    data['2024_R'] = [0] * len(data)
    data['2024_I'] = [0] * len(data)

for index, row in data.iterrows():

    indices = np.array([2012.0,2016.0,2020.0])
    test_index = np.array(2024.0)
    dems_train = np.array(row[['2012_D', '2016_D', '2020_D']]).reshape(1, -1)
    reps_train = np.array(row[['2012_R', '2016_R', '2020_R']]).reshape(1, -1)
    inds_train = np.array(row[['2012_I', '2016_I', '2020_I']]).reshape(1, -1)

    model_1 = sm.OLS(dems_train[0], indices).fit()
    data.at[index, '2024_D'] = model_1.predict(test_index)

    model_2 = sm.OLS(reps_train[0], indices).fit()
    data.at[index, '2024_R'] = model_2.predict(test_index)
```

```
model_3 = sm.OLS(inds_train[0], indices).fit()
            data.at[index, '2024_I'] = model_3.predict(test_index)
        data.head()
                     2012_D 2012_R 2012_I 2016_D 2016_R 2016_I 2020_D 2020_R 2020_I I
Out[4]:
         Unnamed: 0
       0
                  ΑL
                        38.4
                                60.5
                                         1.1
                                                34.4
                                                        62.1
                                                                 3.6
                                                                        35.2
                                                                                61.8
                                                                                         3.1
       1
                  ΑK
                        41.2
                                55.3
                                         3.5
                                                36.6
                                                        51.3
                                                                12.2
                                                                        37.5
                                                                                52.1
                                                                                        10.4
        2
                                         1.8
                                                                 6.2
                                                                                         5.3
                        44.6
                                53.7
                                                45.1
                                                        48.7
                                                                        49.7
                                                                                45.0
                  ΑZ
        3
                  AR
                        36.9
                                60.6
                                         2.6
                                                33.7
                                                        60.6
                                                                 5.8
                                                                        34.3
                                                                                60.6
                                                                                         5.1
                        60.2
                                                                                32.7
        4
                  CA
                                37.1
                                         2.6
                                                61.7
                                                        31.6
                                                                 6.7
                                                                        46.4
                                                                                        20.9
```

Elbow Plot for Rigorous Optimal Number of Clusters

plt.show()

```
In [5]: # elbow plot for best number of clusters

cols = ['2012_D', '2012_R', '2012_I', '2016_D', '2016_R', '2016_I', '2020_D', '2020_R'
Sum_of_squared_distances = []
K = range(1,30)
for k in K:
    km = KMeans(n_clusters=k, random_state=0).fit(data[cols])
    Sum_of_squared_distances.append(km.inertia_)

plt.plot(K, Sum_of_squared_distances, 'bx-')
plt.xlabel('k')
plt.ylabel('Sum_of_squared_distances')
plt.title('Elbow Method For Optimal k')
```


Perform and Save Results for Optimal K=7

Print Results

```
In [7]: cluster_data = []

for label in list(set(list(data['clust_labels']))):
    data_clust = data[data['clust_labels'] == label]
    individual = {}
    print("Cluster Number: " + str(label))
    print("States: " + str(list(data_clust['Unnamed: 0'])))
    print("Total electoral votes: " + str(sum(data_clust['Votes'])))
    print("2020 Average Dem Support: " + str(np.mean(data_clust['2020_D'])))
    print("2020 Average Rep Support: " + str(np.mean(data_clust['2020_R'])))
    individual['num'] = label
    individual['votes'] = sum(data_clust['Votes'])
    individual['dems'] = np.mean(data_clust['2020_D'])
    individual['reps'] = np.mean(data_clust['2020_R'])
```

```
individual['states'] = str(list(data_clust['Unnamed: 0']))
           cluster_data.append(individual)
           print()
           print('----')
           print()
Cluster Number: 0
States: ['AL', 'AK', 'AR', 'IN', 'KS', 'KY', 'LA', 'MS', 'MO', 'MT', 'NE 1', 'SC', 'SD', 'TN',
Total electoral votes: 132
2020 Average Dem Support: 37.45999999999994
2020 Average Rep Support: 57.58
_____
Cluster Number: 1
States: ['CT', 'DE', 'HI', 'IL', 'Maine 1', 'MD', 'MA', 'NJ ', 'OR', 'RI']
Total electoral votes: 81
2020 Average Dem Support: 56.0700000000001
2020 Average Rep Support: 37.74
_____
Cluster Number: 2
States: ['AZ', 'CO', 'FL', 'GA', 'IA', 'Maine 2', 'MI', 'MN', 'NE 2', 'NV', 'NH', 'NC', 'OH',
Total electoral votes: 185
2020 Average Dem Support: 46.75624999999994
2020 Average Rep Support: 47.29374999999996
_____
Cluster Number: 3
States: ['DC']
Total electoral votes: 3
2020 Average Dem Support: 90.9
2020 Average Rep Support: 4.7
Cluster Number: 4
States: ['CA', 'NM', 'NY', 'VT', 'WA']
Total electoral votes: 104
2020 Average Dem Support: 45.58
2020 Average Rep Support: 32.42
_____
Cluster Number: 5
```

States: ['UT']

```
Total electoral votes: 6
2020 Average Dem Support: 24.9
2020 Average Rep Support: 45.0
_____
Cluster Number: 6
States: ['ID', 'NE 3', 'ND', 'OK', 'WV', 'WY']
Total electoral votes: 23
2020 Average Dem Support: 26.73333333333333
2020 Average Rep Support: 66.1166666666667
_____
  Analyze individually states in the 'Battleground' Category
In [8]: import copy
        battleground_states = copy.deepcopy(data[data.clust_labels==2])
        kmeans = KMeans(n_clusters=4, random_state=0).fit(battleground_states[cols])
       border_labels = kmeans.labels_
        battleground states['border clusters'] = border labels
  Perform KMeans Clustering for k=16 and Print Results
In [9]: kmeans = KMeans(n_clusters=16, random_state=0).fit(data[cols])
        labels = kmeans.labels_
        data['clust_labels_take2'] = labels
        cluster_data_2 = []
        for label in list(set(list(data['clust labels take2']))):
            data_clust = data[data['clust_labels_take2'] == label]
            individual = {}
            print("Cluster Number: " + str(label))
```

individual['states'] = str(list(data_clust['Unnamed: 0']))

print("States: " + str(list(data_clust['Unnamed: 0'])))

individual['votes'] = sum(data_clust['Votes'])
individual['dems'] = np.mean(data_clust['2020_D'])
individual['reps'] = np.mean(data_clust['2020_R'])

individual['num'] = label

print("Total electoral votes: " + str(sum(data_clust['Votes'])))

print("2020 Average Dem Support: " + str(np.mean(data_clust['2020_D'])))
print("2020 Average Rep Support: " + str(np.mean(data_clust['2020_R'])))

```
print()
           print('----')
           print()
Cluster Number: 0
States: ['AZ', 'FL', 'GA', 'NE 2', 'NC']
Total electoral votes: 72
2020 Average Dem Support: 47.0599999999995
2020 Average Rep Support: 48.72000000000006
_____
Cluster Number: 1
States: ['DC']
Total electoral votes: 3
2020 Average Dem Support: 90.9
2020 Average Rep Support: 4.7
_____
Cluster Number: 2
States: ['MD', 'MA']
Total electoral votes: 21
2020 Average Dem Support: 60.45
2020 Average Rep Support: 34.05
_____
Cluster Number: 3
States: ['NE 3', 'WY']
Total electoral votes: 4
2020 Average Dem Support: 22.20000000000003
2020 Average Rep Support: 70.75
_____
Cluster Number: 4
States: ['AL', 'AR', 'KY', 'SD', 'TN']
Total electoral votes: 37
2020 Average Dem Support: 34.44
2020 Average Rep Support: 61.160000000000004
_____
Cluster Number: 5
States: ['CO', 'MI', 'MN', 'NV', 'PA', 'VA', 'WI']
Total electoral votes: 84
```

cluster_data_2.append(individual)

2020 Average Dem Support: 48.528571428571425 2020 Average Rep Support: 45.942857142857136

Cluster Number: 6
States: ['UT']

Total electoral votes: 6

2020 Average Dem Support: 24.9 2020 Average Rep Support: 45.0

Cluster Number: 7

States: ['CA', 'NY', 'VT']
Total electoral votes: 87

Cluster Number: 8

States: ['AK', 'KS', 'MT', 'NE 1']

Total electoral votes: 13

2020 Average Dem Support: 36.825 2020 Average Rep Support: 55.45

Cluster Number: 9

States: ['NH', 'NM', 'WA']
Total electoral votes: 21

Cluster Number: 10

States: ['CT', 'DE', 'IL', 'Maine 1', 'NJ', 'OR', 'RI']

Total electoral votes: 56

Cluster Number: 11
States: ['OK', 'WV']

Total electoral votes: 12

```
2020 Average Dem Support: 29.0
2020 Average Rep Support: 66.4499999999999
_____
Cluster Number: 12
States: ['IN', 'LA', 'MS', 'MO', 'SC', 'TX']
Total electoral votes: 82
2020 Average Dem Support: 40.4
2020 Average Rep Support: 56.016666666666
_____
Cluster Number: 13
States: ['HI']
Total electoral votes: 4
2020 Average Dem Support: 63.9
2020 Average Rep Support: 29.6
_____
Cluster Number: 14
States: ['ID', 'ND']
Total electoral votes: 7
2020 Average Dem Support: 29.0
2020 Average Rep Support: 61.15
_____
Cluster Number: 15
States: ['IA', 'Maine 2', 'OH']
Total electoral votes: 25
2020 Average Dem Support: 44.0666666666666
2020 Average Rep Support: 50.333333333333336
______
```

Rank Clustering by Democratic Support (D-R)

```
In [10]: # make a column for ranked clusters by support

dem_supports = []
  for label in list(set(list(data['clust_labels_take2']))):
    data_clust = data[data['clust_labels_take2'] == label]
    dem_support = np.mean(data_clust['2020_D']) - np.mean(data_clust['2020_R'])
    dem_supports.append({'index': label, 'support': dem_support})
```

```
new_support = sorted(dem_supports, reverse=True, key=lambda k: k['support'])
        ranked_cluster_list = []
        for i in range(len(data)):
            cluster = list(data.clust_labels_take2)[i]
            for j in range(len(new_support)):
                if new_support[j]['index'] == cluster:
                    ranked_cluster_list.append(j)
        data['ranked_cluster'] = ranked_cluster_list
  Tipping Point Analysis
In [11]: # GO THROUGH AND SHOW TIPPING POINT
        print("TIPPING POINT ANALYSIS")
        print("RANKING CLUSTERS BY DEMOCRATIC FAVORABILITY")
        print()
        print()
        print()
        max_clust = np.max(np.array(list(data.ranked_cluster)))
        total_states = []
        total votes = 0
        for i in range(max_clust):
            data_clust = data[data['ranked_cluster'] == i]
            print("Step " + str(i) + ":")
            print("States Won: " + str(list(data_clust['Unnamed: 0'])))
            total_states.extend(list(data_clust['Unnamed: 0']))
            print("New States Dem Pref: " + str(np.mean(data_clust['2020_D'])) + ", New State
            print("Total States: " + str(total_states))
            print("Electoral Votes Won: " + str(sum(data_clust['Votes'])))
            total_votes = total_votes + sum(data_clust['Votes'])
            print("Total Electoral Votes: " + str(total_votes))
            print()
            print('----')
            print()
TIPPING POINT ANALYSIS
RANKING CLUSTERS BY DEMOCRATIC FAVORABILITY
```

New States Dem Pref: 90.9, New States Rep Pref: 4.7 Total States: ['DC'] Electoral Votes Won: 3 Total Electoral Votes: 3 -----Step 1: States Won: ['HI'] New States Dem Pref: 63.9, New States Rep Pref: 29.6 Total States: ['DC', 'HI'] Electoral Votes Won: 4 Total Electoral Votes: 7 -----Step 2: States Won: ['MD', 'MA'] New States Dem Pref: 60.45, New States Rep Pref: 34.05 Total States: ['DC', 'HI', 'MD', 'MA'] Electoral Votes Won: 21 Total Electoral Votes: 28 ._____ Step 3: States Won: ['CA', 'NY', 'VT'] New States Dem Pref: 46.7999999999999, New States Rep Pref: 31.26666666666667 Total States: ['DC', 'HI', 'MD', 'MA', 'CA', 'NY', 'VT'] Electoral Votes Won: 87 Total Electoral Votes: 115 Step 4: States Won: ['CT', 'DE', 'IL', 'Maine 1', 'NJ ', 'OR', 'RI'] New States Dem Pref: 53.69999999999999, New States Rep Pref: 39.957142857142856 Total States: ['DC', 'HI', 'MD', 'MA', 'CA', 'NY', 'VT', 'CT', 'DE', 'IL', 'Maine 1', 'NJ ', ' Electoral Votes Won: 56 Total Electoral Votes: 171 _____

States Won: ['DC']

Step 5:

States Won: ['NH', 'NM', 'WA']

11

Total States: ['DC', 'HI', 'MD', 'MA', 'CA', 'NY', 'VT', 'CT', 'DE', 'IL', 'Maine 1', 'NJ ', '

New States Dem Pref: 42.7999999999999, New States Rep Pref: 36.26666666666666

Electoral Votes Won: 21 Total Electoral Votes: 192

Step 6:

States Won: ['CO', 'MI', 'MN', 'NV', 'PA', 'VA', 'WI']

New States Dem Pref: 48.528571428571425, New States Rep Pref: 45.942857142857136

Total States: ['DC', 'HI', 'MD', 'MA', 'CA', 'NY', 'VT', 'CT', 'DE', 'IL', 'Maine 1', 'NJ ', '

Electoral Votes Won: 84
Total Electoral Votes: 276

Step 7:

States Won: ['AZ', 'FL', 'GA', 'NE 2', 'NC']

New States Dem Pref: 47.05999999999999, New States Rep Pref: 48.720000000000000

Total States: ['DC', 'HI', 'MD', 'MA', 'CA', 'NY', 'VT', 'CT', 'DE', 'IL', 'Maine 1', 'NJ ', '

Electoral Votes Won: 72
Total Electoral Votes: 348

Step 8:

States Won: ['IA', 'Maine 2', 'OH']

Total States: ['DC', 'HI', 'MD', 'MA', 'CA', 'NY', 'VT', 'CT', 'DE', 'IL', 'Maine 1', 'NJ', '

Electoral Votes Won: 25 Total Electoral Votes: 373

Step 9:

States Won: ['IN', 'LA', 'MS', 'MO', 'SC', 'TX']

New States Dem Pref: 40.4, New States Rep Pref: 56.01666666666666

Total States: ['DC', 'HI', 'MD', 'MA', 'CA', 'NY', 'VT', 'CT', 'DE', 'IL', 'Maine 1', 'NJ ', '

Electoral Votes Won: 82 Total Electoral Votes: 455

Step 10:

States Won: ['AK', 'KS', 'MT', 'NE 1']

New States Dem Pref: 36.825, New States Rep Pref: 55.45

Total States: ['DC', 'HI', 'MD', 'MA', 'CA', 'NY', 'VT', 'CT', 'DE', 'IL', 'Maine 1', 'NJ ', '

Electoral Votes Won: 13 Total Electoral Votes: 468

```
Step 11:
States Won: ['UT']
New States Dem Pref: 24.9, New States Rep Pref: 45.0
Total States: ['DC', 'HI', 'MD', 'MA', 'CA', 'NY', 'VT', 'CT', 'DE', 'IL', 'Maine 1', 'NJ ', '
Electoral Votes Won: 6
Total Electoral Votes: 474
Step 12:
States Won: ['AL', 'AR', 'KY', 'SD', 'TN']
New States Dem Pref: 34.44, New States Rep Pref: 61.1600000000000004
Total States: ['DC', 'HI', 'MD', 'MA', 'CA', 'NY', 'VT', 'CT', 'DE', 'IL', 'Maine 1', 'NJ', '
Electoral Votes Won: 37
Total Electoral Votes: 511
Step 13:
States Won: ['ID', 'ND']
New States Dem Pref: 29.0, New States Rep Pref: 61.15
Total States: ['DC', 'HI', 'MD', 'MA', 'CA', 'NY', 'VT', 'CT', 'DE', 'IL', 'Maine 1', 'NJ ', '
Electoral Votes Won: 7
Total Electoral Votes: 518
_____
Step 14:
States Won: ['OK', 'WV']
Total States: ['DC', 'HI', 'MD', 'MA', 'CA', 'NY', 'VT', 'CT', 'DE', 'IL', 'Maine 1', 'NJ', '
Electoral Votes Won: 12
Total Electoral Votes: 530
```

2.0.1 Visualize Results

Load State Boundary Data for Mapping

1	Washington	2	53	Pacific	WA	(POLYGON
2	Montana	3	30	Mountain	MT	POLYGON
3	Maine	4	23	New England	ME	(POLYGON
4	North Dakota	5	38	West North Central	ND	POLYGON
5	South Dakota	6	46	West North Central	SD	POLYGON
6	Wyoming	7	56	Mountain	WY	POLYGON
7	Wisconsin	8	55	East North Central	WI	(POLYGON
8	Idaho	9	16	Mountain	ID	POLYGON
9	Vermont	10	50	New England	VT	POLYGON
10	Minnesota	11	27	West North Central	MN	POLYGON
11	Oregon	12	41	Pacific	OR	POLYGON
12	New Hampshire	13	33	New England	NH	POLYGON
13	Iowa	14	19	West North Central	IA	POLYGON
14	Massachusetts	15	25	New England	MA	(POLYGON
15	Nebraska	16	31	West North Central	NE	POLYGON
16	New York	17	36	Middle Atlantic	NY	(POLYGON
17	Pennsylvania	18	42	Middle Atlantic	PA	POLYGON
18	Connecticut	19	09	New England	CT	POLYGON
19	Rhode Island	20	44	New England	RI	(POLYGON
20	New Jersey	21	34	Middle Atlantic	NJ	POLYGON
21	Indiana	22	18	East North Central	IN	POLYGON
22	Nevada	23	32	Mountain	NV	POLYGON
23	Utah	24	49	Mountain	UT	POLYGON
24	California	25	06	Pacific	CA	(POLYGON
25	Ohio	26	39	East North Central	ОН	POLYGON
26	Illinois	27	17	East North Central	IL	POLYGON
27	District of Columbia	28	11	South Atlantic	DC	POLYGON
28	Delaware	29	10	South Atlantic	DE	POLYGON
29	West Virginia	30	54	South Atlantic	WV	POLYGON
30	Maryland	31	24	South Atlantic	MD	(POLYGON
31	Colorado	32	08	Mountain	CO	POLYGON
32	Kentucky	33	21	East South Central	KY	(POLYGON
33	Kansas	34	20	West North Central	KS	POLYGON
34	Virginia	35	51	South Atlantic	VA	(POLYGON
35	Missouri	36	29	West North Central	МО	POLYGON
36	Arizona	37	04	Mountain	AZ	POLYGON
37	Oklahoma	38	40	West South Central	OK	POLYGON
38	North Carolina	39	37	South Atlantic	NC	(POLYGON
39	Tennessee	40	47	East South Central	TN	POLYGON
40	Texas	41	48	West South Central	TX	(POLYGON
41	New Mexico	42	35	Mountain	NM	POLYGON
42	Alabama	43	01	East South Central	AL	POLYGON
43	Mississippi	44	28	East South Central	MS	POLYGON
44	Georgia	45	13	South Atlantic	GA	(POLYGON
45	South Carolina	46	45	South Atlantic	SC	(POLYGON
46	Arkansas	47	05	West South Central	AR	POLYGON
47	Louisiana	48	22	West South Central	LA	(POLYGON
48	Florida	49	12	South Atlantic	FL	(POLYGON
10	1101144	10		South Holdhold		(1 021 0011

```
49 Michigan 50 26 East North Central MI (POLYGON 50 Alaska 51 02 Pacific AK (POLYGON
```

Merge State Boundary Data with Cluster Data

```
In [13]: clusters = []

for index, row in us_map.iterrows():
    state = row['STATE_ABBR']
    cluster = list(data[data.State == state].ranked_cluster)
    if len(cluster) > 1:
        cluster = [-1]

    clusters.append(int(cluster[0]))

us_map['cluster'] = clusters
    us_map
```

	us_m	ap					
Out[13]:		STATE_NAME	DRAWSEQ	STATE_FIPS	SUB_REGION	STATE_ABBR	
	0	Hawaii	1	15	Pacific	HI	(POLYGON
	1	Washington	2	53	Pacific	WA	(POLYGON
	2	Montana	3	30	Mountain	MT	POLYGON
	3	Maine	4	23	New England	ME	(POLYGON
	4	North Dakota	5	38	West North Central	ND	POLYGON
	5	South Dakota	6	46	West North Central	SD	POLYGON
	6	Wyoming	7	56	Mountain	WY	POLYGON
	7	Wisconsin	8	55	East North Central	WI	(POLYGON
	8	Idaho	9	16	Mountain	ID	POLYGON
	9	Vermont	10	50	New England	VT	POLYGON
	10	Minnesota	11	27	West North Central	MN	POLYGON
	11	Oregon	12	41	Pacific	OR	POLYGON
	12	New Hampshire	13	33	New England	NH	POLYGON
	13	Iowa	14	19	West North Central	IA	POLYGON
	14	Massachusetts	15	25	New England	MA	(POLYGON
	15	Nebraska	16	31	West North Central	NE	POLYGON
	16	New York	17	36	Middle Atlantic	NY	(POLYGON
	17	Pennsylvania	18	42	Middle Atlantic	PA	POLYGON
	18	Connecticut	19	09	New England	CT	POLYGON
	19	Rhode Island	20	44	New England	RI	(POLYGON
	20	New Jersey	21	34	Middle Atlantic	NJ	POLYGON
	21	Indiana	22	18	East North Central	IN	POLYGON
	22	Nevada	23	32	Mountain	NV	POLYGON
	23	Utah	24	49	Mountain	UT	POLYGON
	24	California	25	06	Pacific	CA	(POLYGON
	25	Ohio	26	39	East North Central	OH	POLYGON
	26	Illinois	27	17	East North Central	IL	POLYGON
	27	District of Columbia	28	11	South Atlantic	DC	POLYGON
	28	Delaware	29	10	South Atlantic	DE	POLYGON

29	West Virginia	30	54	South Atlantic	VW	POLYGON
30	Maryland	31	24	South Atlantic	MD	(POLYGON
31	Colorado	32	08	Mountain	CO	POLYGON
32	Kentucky	33	21	East South Central	KY	(POLYGON
33	Kansas	34	20	West North Central	KS	POLYGON
34	Virginia	35	51	South Atlantic	VA	(POLYGON
35	Missouri	36	29	West North Central	MO	POLYGON
36	Arizona	37	04	Mountain	AZ	POLYGON
37	Oklahoma	38	40	West South Central	OK	POLYGON
38	North Carolina	39	37	South Atlantic	NC	(POLYGON
39	Tennessee	40	47	East South Central	TN	POLYGON
40	Texas	41	48	West South Central	TX	(POLYGON
41	New Mexico	42	35	Mountain	NM	POLYGON
42	Alabama	43	01	East South Central	AL	POLYGON
43	Mississippi	44	28	East South Central	MS	POLYGON
44	Georgia	45	13	South Atlantic	GA	(POLYGON
45	South Carolina	46	45	South Atlantic	SC	(POLYGON
46	Arkansas	47	05	West South Central	AR	POLYGON
47	Louisiana	48	22	West South Central	LA	(POLYGON
48	Florida	49	12	South Atlantic	FL	(POLYGON
49	Michigan	50	26	East North Central	MI	(POLYGON
50	Alaska	51	02	Pacific	AK	(POLYGON

Important Mapping Settings

Plot Lower 48 States + DC

```
In [15]: import geoplot

    states = list(range(1,50))
    states.remove(3)
    states.remove(15)

fig = plt.figure(1)
    ax1 = plt.subplot(111)
```

```
fig.set_figheight(8)
fig.set_figwidth(14)

p1 = geoplot.choropleth(us_map.loc[states, :], hue='cluster', cmap=cmap_politics, ax=
p2 = geoplot.choropleth(us_map[3:4], hue='cluster', ax=ax1, color= "purple", edgecolor
p3 = geoplot.choropleth(us_map[15:16], hue='cluster', ax=ax1, color= "purple", edgecolor
plt.xlim(-125,-60)
plt.ylim(22,50)
plt.axis('off')
plt.show()
```

/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/pysal/__init__.py:65: VisibleDepredictionWarning)

/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: Future return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/pysal/esda/mapclassify.py:702: Ru: gadf = 1 - self.adcm / adam

/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/matplotlib/patches.py:83: UserWarnings.warn("Setting the 'color' property will override"

/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/matplotlib/patches.py:83: UserWarnings.warn("Setting the 'color' property will override"

/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/matplotlib/patches.py:83: UserWarnings.warn("Setting the 'color' property will override"

Hawaii

Alaska

3 County Analysis: Winning Key Votes

We want to target young, diverse, urban communities in these key states to drive high turnout in these communities and capitalize on 2018 gains in these challenging state to flip the state for 2020.

Load Census Data on Age and Race to build County Database

```
In [18]: age = pd.read_csv('demographics/age.csv')
         age['County'] = age.Geography.apply(lambda x: x.split(' County')[0])
         age['State'] = age.Geography.apply(lambda x: x.split('County, ')[1])
         print(len(age))
         age.head()
341
Out[18]:
                        Ιd
                             Id2
                                                  Geography Estimate; Total: Margin of Error; '
           0500000US04001
                            4001
                                     Apache County, Arizona
                                                                         71602
         1 0500000US04003
                            4003
                                    Cochise County, Arizona
                                                                        126516
         2 0500000US04005
                            4005
                                   Coconino County, Arizona
                                                                        138639
         3 0500000US04007
                                       Gila County, Arizona
                            4007
                                                                         53145
         4 0500000US04009 4009
                                     Graham County, Arizona
                                                                         37700
            Margin of Error; Male: - 40 to 44 years Estimate; Male: - 45 to 49 years Margin of
         0
                                                 189
                                                                                    2000
                                                 320
         1
                                                                                    3549
         2
                                                 343
                                                                                    3547
         3
                                                 168
                                                                                    1395
         4
                                                 173
                                                                                    1276
                                                                                          Estimat
            Estimate; Female: - 5 to 9 years Margin of Error; Female: - 5 to 9 years
         0
                                         2722
                                                                                     190
                                         3818
         1
                                                                                     318
         2
                                         4232
                                                                                     325
         3
                                         1457
                                                                                     153
         4
                                         1433
                                                                                     198
                                                Margin of Error; Female: - 55 to 59 years
            Estimate; Female: - 55 to 59 years
         0
                                           2351
                                                                                         157
         1
                                           4176
                                                                                         374
         2
                                           4559
                                                                                         250
         3
                                           2203
                                                                                         292
         4
                                            812
                                                                                         112
In [19]: race = pd.read_csv('demographics/race.csv')
```

age['County'] = age.Geography.apply(lambda x: x.split('County')[0])

```
race.head()
Out[19]:
                        Ιd
                             Id2
                                                  Geography Estimate; Total: Margin of Error; '
         0 0500000US04001
                            4001
                                     Apache County, Arizona
                                                                         71602
                                    Cochise County, Arizona
         1 0500000US04003 4003
                                                                        126516
         2 0500000US04005 4005 Coconino County, Arizona
                                                                        138639
         3 0500000US04007 4007
                                       Gila County, Arizona
                                                                         53145
         4 0500000US04009 4009
                                     Graham County, Arizona
                                                                         37700
            Estimate; Total: - Two or more races: - Two races excluding Some other race, and the
         0
                                                          1437
         1
                                                          4753
         2
                                                          4361
         3
                                                          1382
         4
                                                           743
In [20]: counties = pd.read_csv('county_data/county_fips.csv')
         counties.head()
Out [20]:
              msa
                   pmsa
                                  county state
                                                county_fips state_fips
         0
              {\tt NaN}
                        Aleutians East
                    {\tt NaN}
                                            AK
                                                         13
                                                                       2
         1
              NaN
                    {\tt NaN}
                         Aleutians West
                                            AK
                                                         16
                                                                       2
         2 380.0
                                            ΑK
                                                         20
                                                                       2
                    {\tt NaN}
                               Anchorage
                                                                       2
         3
              \mathtt{NaN}
                                  Bethel
                                            ΑK
                                                         50
                    NaN
         4
              {\tt NaN}
                    {\tt NaN}
                            Bristol Bay
                                            AK
                                                         60
  Load County Voting Dataset
In [21]: voting = pd.read_csv('county_pres.csv')
         voting.head()
Out [21]:
            year
                    state state_po
                                      county
                                                FIPS
                                                         office
                                                                       candidate
                                                                                       party car
         0 2000 Alabama
                                AL Autauga 1001.0 President
                                                                         Al Gore
                                                                                    democrat
         1 2000 Alabama
                                    Autauga 1001.0 President George W. Bush republican
                                AL
         2 2000 Alabama
                                    Autauga 1001.0 President
                                                                     Ralph Nader
                                 AL
                                                                                       green
         3 2000 Alabama
                                 o Autauga 1001.0 President
                                                                           Other
                                                                                         NaN
         4 2000 Alabama
                                AL Baldwin 1003.0 President
                                                                         Al Gore
                                                                                    democrat
In [22]: states = ['Arizona', 'Georgia', 'Florida', 'North Carolina']
         voting = voting[voting['state'].isin(states)]
         counties = set(list(voting.county))
         county_list = []
         d_2016 = []
         r_2016 = []
         d_2012 = []
         r_2012 = []
         geography = []
```

age['State'] = age.Geography.apply(lambda x: x.split('County, ')[1])

```
for state in states:
             state_data = voting[voting['state'] == state]
             counties = set(list(state_data.county))
             for county in counties:
                 county_list.append(county)
                 county_data = voting[voting.county == county]
                 data_2016 = county_data[county_data.year == 2016]
                 data_2012 = county_data[county_data.year == 2012]
                 dem_2016 = data_2016[data_2016.party == 'democrat']
                 dem_2012 = data_2012[data_2012.party == 'democrat']
                 rep_2016 = data_2016[data_2016.party == 'republican']
                 rep_2012 = data_2012[data_2012.party == 'republican']
                 d_2016.append(list(dem_2016.candidatevotes)[0]*1.0/list(dem_2016.totalvotes)[
                 d_2012.append(list(dem_2012.candidatevotes)[0]*1.0/list(dem_2012.totalvotes)[
                 r_2016.append(list(rep_2016.candidatevotes)[0]*1.0/list(rep_2016.totalvotes)[0]
                 r_2012.append(list(rep_2012.candidatevotes)[0]*1.0/list(rep_2012.totalvotes)[0]
                 geography.append(county + " County, " + str(state))
         county_voting = pd.DataFrame({'County': list(county_list), 'Geography': geography, '2'
         county_voting['2016_r'].apply(lambda x: x*100.0)
         county_voting['2012_r'].apply(lambda x: x*100.0)
         county_voting['2016_d'].apply(lambda x: x*100.0)
         county_voting['2012_d'].apply(lambda x: x*100.0)
         #county_voting['Geography'] = county_voting['County'].apply(lambda x: x + " County")
         county_voting.to_csv("County_voting.csv")
         county_voting.head()
Out [22]:
                                     Geography
             County
                                                  2016_r
                                                            2012_r
                                                                      2016_d
                                                                                2012_d
        O Greenlee Greenlee County, Arizona 0.364407 0.535306 0.210324 0.440484
                       Cochise County, Arizona 0.561671 0.601943 0.348895 0.378467
         1
            Cochise
         2
                          Gila County, Arizona 0.386462 0.625000 0.190833 0.357534
                Gila
         3
                        Graham County, Arizona 0.395203 0.681232 0.162563 0.304429
              Graham
                        Apache County, Arizona 0.297892 0.319174 0.617584 0.663378
              Apache
  Merge Datasets
In [23]: demographic_data = pd.merge(age, race, on='Geography')
        print(len(demographic_data))
        demographic_data.head()
341
Out [23]:
                      Id x Id2 x
                                                  Geography Estimate; Total: x Margin of Erro
        0 0500000US04001
                             4001
                                     Apache County, Arizona
                                                                          71602
                                    Cochise County, Arizona
         1 0500000US04003
                             4003
                                                                         126516
```

```
4005 Coconino County, Arizona
                              4007
         3 0500000US04007
                                        Gila County, Arizona
                                                                             53145
         4 0500000US04009
                              4009
                                      Graham County, Arizona
                                                                             37700
            Margin of Error; Male: - 40 to 44 years Estimate; Male: - 45 to 49 years Margin of
         0
                                                                                    2000
                                                  189
         1
                                                  320
                                                                                    3549
         2
                                                  343
                                                                                    3547
         3
                                                  168
                                                                                    1395
         4
                                                  173
                                                                                    1276
            Estimate; Female: - 5 to 9 years Margin of Error; Female: - 5 to 9 years
                                                                                           Estimate
         0
                                         2722
                                                                                      190
         1
                                         3818
                                                                                     318
         2
                                         4232
                                                                                     325
         3
                                         1457
                                                                                     153
         4
                                         1433
                                                                                     198
            Estimate; Female: - 55 to 59 years Margin of Error; Female: - 55 to 59 years
         0
                                            2351
                                                                                          157
         1
                                            4176
                                                                                          374
         2
                                            4559
                                                                                          250
         3
                                            2203
                                                                                         292
         4
                                            812
                                                                                          112
            Margin of Error; Total: - Black or African American alone Estimate; Total: - Amer
         0
                                                            134
         1
                                                            413
         2
                                                            241
         3
                                                            112
         4
                                                             95
In [24]: demographic_data = pd.merge(demographic_data, county_voting, on='Geography')
```

2 0500000US04005

Analyze list of available features for these counties and Make new features that are representative of our target audience

'Geography', 'County', 'State', 'percent_male_0_17', Selected features: cent_male_18_24' ,'percent_male_25_34', 'percent_male_35_44', 'percent_male_45_59', 'percent_male_60_79', 'percent_male_80_up', 'percent_female_0_17', 'percent_female_18_24', 'percent_female_25_34', 'percent_female_35_44', 'percent_female_45_59', 'percent_female_60_79', 'percent_female_80_up', 'percent_white', 'percent_black', 'percent_native', 'percent_asian', 'percent_hawaiian', 'percent_other', 'percent_two', 'percent_two_other', 'percent_three'

```
In [25]: #for col in demographic_data.columns:
                                                                                                                                                                                                       print(col)
                                                                                                                                     clustering_cols = ['Geography', 'County_x', 'State', 'percent_male_0_17', 'percent_male_0_17'
```

```
demographic_data['percent_male_0_17'] = demographic_data[['Estimate; Male: - Under 5 ]
                demographic_data['percent_male_18_24'] = demographic_data[['Estimate; Male: - 18 and
                demographic_data['percent_male_25_34'] = demographic_data[['Estimate; Male: - 25 to 2
                demographic_data['percent_male_35_44'] = demographic_data[['Estimate; Male: - 35 to 3
                demographic data['percent male 45 59'] = demographic data[['Estimate; Male: - 45 to 4
                demographic_data['percent_male_60_79'] = demographic_data[['Estimate; Male: - 60 and
                demographic_data['percent_male_80_up'] = demographic_data[['Estimate; Male: - 80 to 8
               demographic_data['percent_female_18_24'] = demographic_data[['Estimate; Female: - 18 
                demographic_data['percent_female_25_34'] = demographic_data[['Estimate; Female: - 25']
                demographic data['percent female 35 44'] = demographic data[['Estimate; Female: - 35']
                demographic data['percent female 45_59'] = demographic_data[['Estimate; Female: - 45']
                demographic_data['percent_female_60_79'] = demographic_data[['Estimate; Female: - 60 | ]
                demographic data['percent female 80 up'] = demographic data[['Estimate; Female: - 80 '
                demographic_data['percent_white'] = demographic_data['Estimate; Total: - White alone']
               demographic_data['percent_black'] = demographic_data['Estimate; Total: - Black or Afr
                demographic_data['percent_native'] = demographic_data['Estimate; Total: - American In-
                demographic_data['percent_asian'] = demographic_data['Estimate; Total: - Asian alone']
                demographic_data['percent_hawaiian'] = demographic_data['Estimate; Total: - Native Ha
                demographic_data['percent_other'] = demographic_data['Estimate; Total: - Some other re-
                demographic_data['percent_two'] = demographic_data['Estimate; Total: - Two or more ra
                demographic_data['percent_two_other'] = demographic_data['Estimate; Total: - Two or m
                demographic_data['percent_three'] = demographic_data['Estimate; Total: - Two or more :
                demographic_data['percent_male'] = demographic_data['Estimate; Male:'].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].div(demographic_data['].di
                demographic_data['percent_female'] = demographic_data['Estimate; Female:'].div(demographic_data['percent_female'])
                demographic_data[clustering_cols].head()
Out [25]:
                                                Geography County_x
                                                                                                     percent_male_0_17
                                                                                                                                       percent_male_18_24
                                                                                         State
                                                                                                                      0.139298
               0
                         Apache County, Arizona
                                                                                                                                                          0.052526
                                                                       Apache Arizona
                1
                       Cochise County, Arizona
                                                                                                                      0.110381
                                                                                                                                                          0.047630
                                                                     Cochise
                                                                                    Arizona
                2 Coconino County, Arizona Coconino
                                                                                                                      0.109082
                                                                                                                                                          0.093949
                                                                                     Arizona
```

0.035714

0.059761

Split by State

3

Gila County, Arizona

Graham County, Arizona

Gila

Graham Arizona

Arizona

0.104318

0.139178

Number of counties in AZ: 15 Number of counties in NC: 100

3.0.1 Arizona County Analysis

3 0.357534

In [27]: az_data.head()

Out[27]:	0500000US 0500000US	504003 4003 Coch 504005 4005 Cocon 504007 4007 (Geography ache County, Arizona hise County, Arizona nino County, Arizona Gila County, Arizona aham County, Arizona	126516 138639 53145	_
	_	f Error; Male: - 40	•	te; Male: - 45 to 49	•
C			189		2000
1			320		3549
3			343 168		3547 1395
4			173		1276
-	•		170		1210
	Estimate;	; Female: - 5 to 9 y	years Margin of Err	or; Female: - 5 to 9	years Estimate
C)		2722		190
1			3818		318
2	2		4232		325
3			1457		153
4	Ŀ		1433		198
	Eatimata	. Fomolo.	O wooms Mommin of E	mmom. Comolo. EE +:	o EO wooma Eats
C		; remare: - 55 to 58	years margin of E 2351	rror; Female: - 55 to	o 59 years Est: 157
1			4176		374
2			4559		250
3			2203		292
4			812		112
		f Error: Total: - Bl		ican alone Estimate	
C	_	,		34	,
1			4	13	
2	?		2	41	
3	3		1	12	
4	ŀ			95	
	2012_d	percent_male_0_17	percent_male_18_24	percent_male_25_34	percent_male_;
C	0.663378	0.139298	0.052526	-	0.0
1	0.378467	0.110381	0.047630	0.071564	0.0
2	0.565560	0.109082	0.093949	0.070211	0.0

0.104318 0.035714

0.048979

0.0

```
4 0.304429
                             0.139178
                                                 0.059761
                                                                    0.089284
                                                                                       0.0
In [28]: \#clustering\_cols\_analysis = ['2012\_d', '2012\_r', '2016\_d', '2016\_r', 'percent\_male\_0\_1]
        clustering_cols_analysis = ['2012_d', '2012_r', '2016_d', '2016_r', 'percent_male_18_2
        kmeans = KMeans(n_clusters=3, random_state=0).fit(az_data[clustering_cols_analysis])
        labels = kmeans.labels_
        az_data['az_clusters'] = labels
        #az_data.head()
/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:6: SettingW
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
In [29]: cluster_data = []
        print("Expecting Cococino, Navajo, Apache, Maricopa, Pima, Santa Cruz")
        print()
        print()
        for label in list(set(list(az_data['az_clusters']))):
            data_clust = az_data[az_data['az_clusters'] == label]
            individual = {}
            print("Cluster Number: " + str(label))
            print("Counties: " + str(list(data_clust['County_x'])))
            print("Percent 18-24: " + str(np.average(list(data_clust['percent_male_18_24'])+ :
            print("Percent White: " + str(np.average(list(data_clust['percent_white']))*100.0
            print("Percent Black: " + str(np.average(list(data_clust['percent_black']))*100.0
            print("Percent Other: " + str(np.average(list(data_clust['percent_other']))*100.0
            print("Percent Male: " + str(np.average(list(data_clust['percent_male']))*100.0) +
            print("Percent Female: " + str(np.average(list(data_clust['percent_female']))*100
            print("Percent Dem: " + str(np.average(list(data_clust['2016_d']))*100.0) + "%")
            print()
            print('----')
            print()
Expecting Cococino, Navajo, Apache, Maricopa, Pima, Santa Cruz
Cluster Number: 0
```

Percent 18-24: 8.076219342642531% Percent White: 83.77142934028477% Percent Black: 1.9192058677049266%

Counties: ['Cochise', 'Gila', 'Graham', 'Greenlee', 'La Paz', 'Mohave', 'Pinal', 'Yavapai']

```
Percent Native American: 7.016827393991859%
Percent Other: 3.3682159500233304%
Percent Male: 51.2587880487463%
Percent Female: 48.7412119512537%
Percent Dem: 25.953447081957837%
Cluster Number: 1
Counties: ['Apache', 'Coconino', 'Navajo']
Percent 18-24: 13.27111416362613%
Percent White: 44.74338973261921%
Percent Black: 0.9215862648670751%
Percent Native American: 48.0126883673408%
Percent Other: 2.262869136228706%
Percent Male: 49.56516151279517%
Percent Female: 50.434838487204836%
Percent Dem: 52.26916603956886%
-----
Cluster Number: 2
Counties: ['Maricopa', 'Pima', 'Santa Cruz', 'Yuma']
Percent 18-24: 10.738596695770477%
Percent White: 78.54421001048408%
Percent Black: 2.8527495520351063%
Percent Native American: 1.7751143151573008%
Percent Other: 11.614904330566288%
Percent Male: 49.49658973016402%
Percent Female: 50.50341026983598%
Percent Dem: 53.917193321978495%
In [30]: binary = []
        for index, row in az_data.iterrows():
             if row.az_clusters == 0:
                binary.append(2)
             else:
                binary.append(1)
         az_data['binary_clusters'] = binary
```

/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:8: SettingW A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm

3.0.2 Florida County Analysis

```
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
In [33]: cluster_data = []
        for label in list(set(list(fl_data['fl_clusters']))):
            data_clust = fl_data[fl_data['fl_clusters'] == label]
            individual = {}
            print("Cluster Number: " + str(label))
            print("Counties: " + str(list(data_clust['County_x'])))
            print("Percent 18-24: " + str(np.average(list(data_clust['percent_male_18_24'])+ :
            print("Percent White: " + str(np.average(list(data_clust['percent_white']))*100.0
            print("Percent Black: " + str(np.average(list(data_clust['percent_black']))*100.0
            print("Percent Other: " + str(np.average(list(data_clust['percent_other']))*100.0
            print("Percent Male: " + str(np.average(list(data_clust['percent_male']))*100.0) + print("Percent_male'])
            print("Percent Female: " + str(np.average(list(data_clust['percent_female']))*100
            print("Percent Dem: " + str(np.average(list(data_clust['2016_d']))*100.0) + "%")
            print('----')
            print()
Cluster Number: 0
Counties: ['Baker', 'Bay', 'Bradford', 'Calhoun', 'Clay', 'Columbia', 'Dixie', 'Franklin', 'Gi
Percent 18-24: 8.254400265935418%
Percent White: 82.19533669628824%
Percent Black: 12.674482342540038%
Percent Native American: 0.48237761753699887%
Percent Other: 1.3346839003247681%
Percent Male: 53.829176761967034%
Percent Female: 46.170823238032966%
Percent Dem: 22.841300984641023%
Cluster Number: 1
Counties: ['Brevard', 'Charlotte', 'Citrus', 'Collier', 'Escambia', 'Flagler', 'Glades', 'Hami
Percent 18-24: 7.644140415005304%
Percent White: 83.01945966908968%
Percent Black: 10.667609197060838%
Percent Native American: 0.5535211411889396%
Percent Other: 1.8657831497436514%
Percent Male: 49.778534002622585%
Percent Female: 50.22146599737742%
```

/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:5: SettingW

```
Percent Dem: 37.27347267867142%
Cluster Number: 2
Counties: ['Alachua', 'Broward', 'Duval', 'Gadsden', 'Hillsborough', 'Jefferson', 'Leon', 'Mad
Percent 18-24: 10.779946009433996%
Percent White: 65.1442296519164%
Percent Black: 26.490241984654073%
Percent Native American: 0.26724388438947577%
Percent Other: 2.7944530976374997%
Percent Male: 49.238901513275145%
Percent Female: 50.761098486724855%
Percent Dem: 56.14042315179603%
In [34]: binary = []
         for index, row in fl_data.iterrows():
             if row.fl_clusters == 2:
                 binary.append(1)
             else:
                 binary.append(2)
         fl_data['binary_clusters'] = binary
/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:8: SettingW
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
In [35]: def strip(string):
             punctuations = '''!()-[]{};:'"\,<>./?@#$\%^&*_~'''
             no_punct = ""
             for char in string:
                 if char not in punctuations:
                     no_punct = no_punct + char
             return no_punct
In [36]: county = gpd.read_file('scuov/scuo.shp')
         county = county[county.STATE == 'FL']
         #print(len(county[county.STATE == 'FL']))
         #print(len(fl_data))
```

county.head()

```
county.rename(columns={'NAME':'County_x'},inplace=True)
county['county_lower'] = county['County_x'].str.lower().apply(lambda x: strip(x))
fl_data['county_lower'] = fl_data['County_x'].str.lower().apply(lambda x: strip(x))
county = pd.merge(fl_data[['county_lower', 'binary_clusters']], county, on='county_lower', 'binary_clusters']], county, on='county_lower', 'recounty = gpd.GeoDataFrame(county)
county = gpd.GeoDataFrame(county)
county.plot(column="binary_clusters", cmap=cmap_politics_2)
plt.axis('off')
plt.show()
```

/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:8: SettingW A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm

3.0.3 Georgia County Analysis

```
In [37]: clustering_cols_analysis = ['2012_d', '2012_r', '2016_d', '2016_r', 'percent_male_18_2a
                 kmeans = KMeans(n_clusters=3, random_state=0).fit(ga_data[clustering_cols_analysis])
                 labels = kmeans.labels_
                 ga_data['ga_clusters'] = labels
/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:5: SettingW
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
In [38]: for label in list(set(list(ga_data['ga_clusters']))):
                         data_clust = ga_data[ga_data['ga_clusters'] == label]
                         individual = {}
                         print("Cluster Number: " + str(label))
                         print("Counties: " + str(list(data_clust['County_x'])))
                         print("Percent 18-24: " + str(np.average(list(data_clust['percent_male_18_24'])+ :
                         print("Percent White: " + str(np.average(list(data_clust['percent_white']))*100.0
                         print("Percent Black: " + str(np.average(list(data_clust['percent_black']))*100.0
                        print("Percent Other: " + str(np.average(list(data_clust['percent_other']))*100.0
                         print("Percent Male: " + str(np.average(list(data_clust['percent_male']))*100.0) +
                         print("Percent Female: " + str(np.average(list(data_clust['percent_female']))*100
                         print("Percent Dem: " + str(np.average(list(data_clust['2016_d']))*100.0) + "%")
                         print('----')
                        print()
Cluster Number: 0
Counties: ['Baldwin', 'Bibb', 'Burke', 'Chatham', 'Clarke', 'Clayton', 'DeKalb', 'Dooly', 'Dou
Percent 18-24: 10.31077530305337%
Percent White: 42.48359794672628%
Percent Black: 51.7109685099099%
Percent Native American: 0.15900394987587643%
Percent Other: 2.0658484417585576%
Percent Male: 49.4800963534584%
Percent Female: 50.5199036465416%
Percent Dem: 57.17616733282734%
 -----
Cluster Number: 1
Counties: ['Appling', 'Bacon', 'Banks', 'Barrow', 'Bartow', 'Berrien', 'Brantley', 'Bryan', 'Counties: ['Appling', 'Bacon', 'Banks', 'Barrow', 'Ba
Percent 18-24: 8.502606707818076%
```

```
Percent White: 86.21194137230563%
Percent Black: 8.414656938105042%
Percent Native American: 0.313710159801181%
Percent Other: 1.9246788406649131%
Percent Male: 49.22737838783696%
Percent Female: 50.77262161216305%
Percent Dem: 19.321639811931874%
Cluster Number: 2
Counties: ['Atkinson', 'Baker', 'Ben Hill', 'Bleckley', 'Brooks', 'Bulloch', 'Butts', 'Calhoun
Percent 18-24: 9.724561202507553%
Percent White: 63.10235513398429%
Percent Black: 31.611743776961287%
Percent Native American: 0.24526766549575946%
Percent Other: 2.2658655179404383%
Percent Male: 49.91925428188878%
Percent Female: 50.08074571811122%
Percent Dem: 32.28358612847163%
In [39]: binary = []
         for index, row in ga_data.iterrows():
             if row.ga_clusters == 0:
                 binary.append(1)
             else:
                 binary.append(2)
         ga_data['binary_clusters'] = binary
/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:8: SettingW
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
In [40]: county = gpd.read_file('scuov/scuo.shp')
         county = county[county.STATE == 'GA']
         #print(len(county[county.STATE == 'FL']))
```

county.rename(columns={'NAME':'County_x'},inplace=True)

#print(len(fl_data))

county.head()

```
county['county_lower'] = county['County_x'].str.lower().apply(lambda x: strip(x))
ga_data['county_lower'] = ga_data['County_x'].str.lower().apply(lambda x: strip(x))
county = pd.merge(ga_data[['county_lower', 'binary_clusters']], county, on='county_lower', 'binary_clusters']], county, on='county_lower', 'recounty = gpd.GeoDataFrame(county)
county.plot(column="binary_clusters", cmap=cmap_politics_2)
plt.axis('off')
plt.show()
```

/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:8: SettingW A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm

3.0.4 North Carolina

```
In [41]: clustering_cols_analysis = ['2012_d', '2012_r', '2016_d', '2016_r', 'percent_male_18_2a
        kmeans = KMeans(n_clusters=3, random_state=0).fit(nc_data[clustering_cols_analysis])
        labels = kmeans.labels_
        nc_data['nc_clusters'] = labels
/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:5: SettingW
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
In [42]: for label in list(set(list(nc_data['nc_clusters']))):
            data_clust = nc_data[nc_data['nc_clusters'] == label]
            individual = {}
            print("Cluster Number: " + str(label))
            print("Counties: " + str(list(data_clust['County_x'])))
            print("Percent 18-24: " + str(np.average(list(data_clust['percent_male_18_24'])+ :
            print("Percent White: " + str(np.average(list(data_clust['percent_white']))*100.0
            print("Percent Black: " + str(np.average(list(data_clust['percent_black']))*100.0
            print("Percent Other: " + str(np.average(list(data_clust['percent_other']))*100.0
            print("Percent Male: " + str(np.average(list(data_clust['percent_male']))*100.0) +
            print("Percent Female: " + str(np.average(list(data_clust['percent_female']))*100
            print("Percent Dem: " + str(np.average(list(data_clust['2016_d']))*100.0) + "%")
            print()
            print('----')
            print()
Cluster Number: 0
Counties: ['Alexander', 'Alleghany', 'Ashe', 'Avery', 'Brunswick', 'Caldwell', 'Camden', 'Carte
Percent 18-24: 8.304250966050086%
Percent White: 86.4926336957563%
Percent Black: 7.846066385145869%
Percent Native American: 0.8393503494104979%
Percent Other: 2.0434490689251716%
Percent Male: 49.30048360411178%
Percent Female: 50.699516395888224%
Percent Dem: 28.321563270359295%
```

```
Counties: ['Alamance', 'Beaufort', 'Bladen', 'Buncombe', 'Burke', 'Cabarrus', 'Caswell', 'Chat
Percent 18-24: 9.117285768681912%
Percent White: 69.53801025892716%
Percent Black: 22.934815931335358%
Percent Native American: 1.4442829372636043%
Percent Other: 2.602371252792902%
Percent Male: 49.20365919312344%
Percent Female: 50.79634080687656%
Percent Dem: 41.964321191485595%
_____
Cluster Number: 2
Counties: ['Anson', 'Bertie', 'Cumberland', 'Durham', 'Edgecombe', 'Guilford', 'Halifax', 'Her
Percent 18-24: 10.086594294190613%
Percent White: 46.856345672424325%
Percent Black: 42.60668791504097%
Percent Native American: 3.8942458073961475%
Percent Other: 2.490314611557077%
Percent Male: 48.65237326893738%
Percent Female: 51.34762673106261%
Percent Dem: 58.292207444924756%
_____
In [43]: binary = []
         for index, row in nc_data.iterrows():
             if row.nc_clusters == 2:
                binary.append(1)
             else:
                binary.append(2)
        nc_data['binary_clusters'] = binary
/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:8: SettingW
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html
```

Cluster Number: 1

In [44]: county = gpd.read_file('scuov/scuo.shp')

county = county[county.STATE == 'NC']
#print(len(county[county.STATE == 'FL']))

```
#print(len(fl_data))
county.head()
county.rename(columns={'NAME':'County_x'},inplace=True)
county['county_lower'] = county['County_x'].str.lower().apply(lambda x: strip(x))
nc_data['county_lower'] = nc_data['County_x'].str.lower().apply(lambda x: strip(x))
county = pd.merge(nc_data[['county_lower', 'binary_clusters']], county, on='county_lower', 'binary_clusters']], county, on='county_lower', 'county = gd.GeoDataFrame(county)
county.plot(column="binary_clusters", cmap=cmap_politics_2)
plt.axis('off')
plt.show()
```

/Users/joshkuppersmith/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:8: SettingW A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html

In []: