Kyung Hee University Communications and Quantum Information Laboratory

Notes: Introduction to Quantum Algorithms

Amirul Adlil Hakim Director: Hyundong Shin

(This is a note that I made by myself to study quantum algorithms from [1]. All the contents was in the original source, I just paraphrased it here.)

1 Preliminaries on quantum computation

1.1 Postulates on quantum mechanics

1.1.1 State space postulate

A state space is a complex vector space with inner product structure, known as the Hilbert space \mathcal{H} , that is formed by a set of all quantum states of a quantum system. The space \mathcal{H} is isomorphic to some \mathbb{C}^N if it is finite dimensional, and can be taken as $\mathcal{H}=\mathbb{C}^N$. We assume that $N=2^n$ for some non-negative integer n which we will refer as qubits. A quantum state $\psi\in\mathbb{C}^N$ can be expressed in terms of its components as

$$\psi = \begin{bmatrix} \psi_0 \\ \psi_1 \\ \vdots \\ \psi_{N-1} \end{bmatrix}, \tag{1}$$

that has a Hermitian conjugate which is

$$\psi^{\dagger} = \begin{bmatrix} \psi_0^* & \psi_1^* & \cdot & \cdot & \psi_{N-1}^* \end{bmatrix}. \tag{2}$$

We use the Dirac notation, $|\psi\rangle$ for the quantum state and $\langle\psi^{\dagger}|$ for its Hermitian conjugate. Using this notation, we can denote the inner product between two quantum states as below

$$\langle \psi | \phi \rangle = \psi^{\dagger} \phi = \sum_{i=0}^{N-1} \psi_i^* \phi_i. \tag{3}$$

We can denote the basis of \mathbb{C}^N as $\{|i\rangle\}$, then to find the i-th component of $|\phi\rangle$, we can use the inner product $|\phi_i\rangle = \langle i|\phi\rangle$. A projection operator can be defined as a matrix that is constructed by the outer product $\langle \phi||\psi\rangle$. To find the (i,j)-th component of the projection operator matrix, we can use

$$\langle i | | \phi \rangle \langle \psi | | j \rangle = \langle i | \phi \rangle \langle \psi | j \rangle.$$
 (4)

We assume that the state $|\psi\rangle$ is always normalized, $\langle\psi|\psi\rangle=1$, because the state vectors $|\psi\rangle$ and $c\,|\psi\rangle$ correspond to the same physical state. If $|\phi\rangle$ is normalized, then $c=e^{i\theta}$ for some $\theta\in[0,2\pi)$, which we refer as the global phase.

For example, a single qubit can be expressed as a vector that lives in $\mathcal{H}=\mathbb{C}^2$. We can choose one basis for this Hilbert space, namely

$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}, \quad |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}. \tag{5}$$

In the context of spin- $\frac{1}{2}$ system which the space state is isomorphic to \mathbb{C}^2 , the basis above can be seen as representing the spin-up ($|0\rangle$) and spin-down ($|1\rangle$). By using this basis, we can represent a general vector in this space state

$$|\psi\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha |0\rangle + \beta |1\rangle,$$
 (6)

which implies $|\alpha|^2+|\beta|^2=1$ because of normalization. More generally, we can write $|\psi\rangle$ as

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \cos(\theta/2) |0\rangle + e^{i\phi} \sin(\theta/2) |1\rangle,$$
 (7)

where $0 \le \theta < \pi$, $0 \le \psi < 2\pi$. By using these angles, we can represent any single qubit state in a three-dimensional sphere known as the Bloch Sphere, where each state can be represented As

$$a = (\sin \theta \cos \psi, \sin \theta \sin \psi, \cos \theta)^{T}. \tag{8}$$

1.1.2 Quantum operator postulate

A quantum state can evolve from $|\psi\rangle \to |\psi'\rangle \in \mathbb{C}^N$ if a unitary operator $U \in \mathbb{C}^{N \times N}$ acts on it, such that

$$\left|\psi'\right\rangle = U\left|\psi\right\rangle. \tag{9}$$

The gate in quantum computing typically use this unitary operator, one example is the Pauli matrices defined as follows

$$\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$
 (10)

Another examples are the Hadamard gate, the phase gate, and the T gate

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}, \quad P = \begin{bmatrix} 1 & 0\\ 0 & i \end{bmatrix}, \quad T = \begin{bmatrix} 1 & 0\\ 0 & e^{i\pi/4} \end{bmatrix}. \tag{11}$$

As mentioned before, the evolution of a quantum state at time t_1 into t_2 is caused by a unitary operator $U(t_2, t_1)$, in which the two quantum states has a linear relation

$$|\psi(t_2)\rangle = U(t_2, t_1) |\psi(t_1)\rangle. \tag{12}$$

If a time-independent Hamiltonian acts on a quantum state, then we have the following Schrödinger equation,

$$i\frac{d|\psi(t)\rangle}{dt} = H|\psi(t)\rangle, \qquad (13)$$

where $H=H^{\dagger}$ is Hermitian. From the above equation, we can obtain the time evolution operator based on the Hamiltonian

$$U(t_2, t_1) = e^{-iH(t_2 - t_1)}. (14)$$

1.1.3 Quantum measurement postulate

The type of quantum measurement that will be discussed here is the projective measurement. The projective measurement can be used to express all quantum measurements of the type positive operator-valued measure (POVM).

Any finite dimensional quantum observable can be represented by a Hermitian matrix that has spectral decomposition

$$M = \sum_{m=0}^{M-1} \lambda_m P_m,\tag{15}$$

where $\lambda_m \in \mathbb{R}$ are the eigenvalues of M and P_m are the projection operator onto the eigenspace of λ_m . The measurement of a quantum state by an observable M will always result in one of its eigenvalues λ_m with probability

$$p(m) = \langle \psi | P_m | \psi \rangle. \tag{16}$$

A measurement will change the quantum state in a non-unitary manner

$$\left|\psi'\right\rangle = \frac{P_m \left|\psi\right\rangle}{\sqrt{p(m)}}.\tag{17}$$

To calculate the expectation value of a quantum observable, we first notice that

$$\sum_{m} P_{m} = I \implies \sum_{m} p_{m} = \sum_{m} \langle \psi | P_{m} | \psi \rangle = 1.$$
 (18)

This and the fact that $p_m \ge 0$ implies that $\{p_m\}$ is a probability distribution. Therefore, the expectation value of the measurement outcome can be calculated as

$$\mathbb{E}_{\psi}(M) = \sum_{m} \lambda_{m} p(m) = \sum_{m} \lambda_{m} \langle \psi | P_{m} | \psi \rangle = \left\langle \psi \middle| \sum_{m} \lambda_{m} P_{m} \middle| \psi \right\rangle = \left\langle \psi | M | \psi \right\rangle. \tag{19}$$

As an example, suppose that M = X, then

$$X\left|\pm\right\rangle = \lambda_{\pm}\left|\pm\right\rangle,\tag{20}$$

where $|\pm\rangle = \frac{1}{\sqrt{2}}(|0\rangle \pm |1\rangle)$ and $\lambda_{\pm} = \pm 1$. From this, we can obtain the eigendecomposition of M,

$$M = X = |+\rangle \langle +|-|-\rangle \langle -|. \tag{21}$$

If we have a quantum state $|0\rangle = \frac{1}{\sqrt{2}}(|+\rangle + |-\rangle)$, then the expectation value of X is $\frac{1}{2}$.

References

[1] L. Lin, "Lecture notes on quantum algorithms for scientific computation," arXiv preprint arXiv:2201.08309, 2022.