Teoria di Galois 1 - Tutorato III

Alfonso Pesiri

Giovedì 19 Aprile 2007

Esercizio 1. Ricordando che se E_1, E_2 sono entrambe estensioni di Galois su \mathbb{Q} tali che $E_1 \cap E_2 = \mathbb{Q}$, si ha che $Gal(E_1E_2/\mathbb{Q}) \simeq Gal(E_1/\mathbb{Q}) \times Gal(E_2/\mathbb{Q})$, si calcoli il gruppo di Galois di ciascuno dei seguenti polinomi:

- a. $(x^2+1)\phi_5$;
- b. $x^4 4$:
- c. $x^4 9x^2 + 20$;
- d. $x^4 11x^3 + 41x^2 61x + 30$;
- e. $x^4 + x^3 + 2x^2 + 4x + 2$;
- f. $x^4 2x^3 8x 3$:

Esercizio 2. Descrivere gli elementi del gruppo di Galois del polinomio x^5-2 mostrando che ha 20 elementi.

Esercizio 3. Trovare, $\forall H$ sottogruppo del gruppo simmetrico S_3 , un polinomio $f(x) \in \mathbb{Q}[x]$ tale che $Gal(\mathbb{Q}_f/\mathbb{Q}) \simeq H$.

Esercizio 4. Mostrare che se f è un polinomio irriducibile di grado tre a coefficienti in un campo F, G_f è di tipo A_3 se e solo se F_f non contiene sottocampi quadratici.

Esercizio 5. Mostrare che $\Phi_{p^r}(x) = \Phi_p(x^{p^{r-1}})$ e dedurne una formula per il discriminante di $\Phi_{p^r}(x)$.

Esercizio 6. Sia $\Phi_p(x) = 1 + x + \cdots + x^{p-1}$ il polinomio ciclotomico. Mostrare che

disc
$$\Phi_p(x) = (-1)^{(p-1)/2} p^{p-2}$$
.

Esercizio 7. Trovare $f(x) \in \mathbb{Q}[x]$ tale che $Gal(\mathbb{Q}_f/\mathbb{Q}) \simeq C_5$. Si utilizzi il teorema di Dirichlet cercando $p \equiv 1 \mod 5$.