第四章 字符串和数组

本章的基本内容是:

- 4.1 串
- 4.2 模式匹配
- 4.3 多维数组
- 4.4 矩阵的压缩存储

4.1 字符串 (string)

- □字符串:零个或多个字符组成的有限序列(简称串)。
- □串长度: 串中所包含的字符个数。
- □空串:长度为0的串,记为:""。
- □特殊的线性表,即元素为字符的线性表。
- □非空串通常记为:

$$S="s_1 s_2 \ldots s_n"$$

其中: S是串名,双引号是定界符,双引号引起来的部分是串值, s_i ($1 \le i \le n$)是一个任意字符。

字符/符号

- □字符(char): 组成字符串的基本单位
- □取值依赖于字符集Σ(结点的有限集合)
 - 二进制字符集: $\Sigma = \{0,1\}$
 - 生物信息中DNA字符集: $\Sigma = \{A,C,G,T\}$
 - 英语语言: $\Sigma = \{26个字符, 标点符号, ...\}$
 - 简体中文标准字符集 GB2312: Σ = {6763个汉字,标点符号,...}

-

字符编码

□ASCII编码

- ▶单字节(8 bits)
- ▶对128个符号(字符集charset)进行编码
- ➤在C和C++中均采用

□其他编码方式

- ▶ANSI编码(本地化,GB2312、BIG5、JIS等,不同ANSI编码间互不兼容)
- ➤UNICODE (国际化,各种语言中的每一个字符具有唯一的数字编号,便于跨平台的文本转换)

- □子串: 串中任意个连续的字符组成的子序列。
- □主串:包含子串的串。
- □子串的位置:子串的第一个字符在主串中的序号。

$$S1="ab12cd"$$
 $S2="ab12"$
 $S3="ab13"$
 $S4="ab12\varphi"$
 $S5=""$
 $S6="\varphi\varphi\varphi"$

□串的比较:通过组成串的字符之间的比较来进行的。

给定两个串: $X=''x_1x_2...x_n''$ 和 $Y=''y_1y_2...y_m''$,则:

- 1. 当n=m且 $x_1=y_1$, …, $x_n=y_m$ 时,称X=Y;
- 2. 当下列条件之一成立时,称X < Y:
- (1) $n < m \perp x_i = y_i$ (1≤ $i \le n$);
- (2)存在 $k \leq \min(m, n)$,使得 $x_i = y_i (1 \leq i \leq k-1)$ 且 $x_k < y_k$ 。

例: S1="ab12cd", S2="ab12", S3="ab13"

与其他数据结构相比,串的操作对象有什么特点?

串的操作通常以串的整体作为操作对象。

求子串操作SubStr(s, i, len)示例

字符串长度

- □理论上,一个字符串的长度是任意且有限的, 但在实际的语言中总有一定的长度
 - 定长: 具有一个固定的最大长度, 所用内存量始 终如一
 - 变长:根据实际需要伸缩。尽管命名为变长,但 实际长度也有限(取决于可用的内存量)

字符串数据类型

- □因语言而不同
 - 简单类型
 - 复合类型
- □字符串常数和变量
 - 字符串常数(string literal)
 - 例如: "\n", "a", "student"....
 - 字符串变量

C++的标准string

- □标准字符串:将C/C++的<string.h>函数库作为字符串数据类型的方案
 - 例如: char S[M];定义了字符串变量 e.g., char s1[7] = "value";
- □串的结束标记:'\0'
 - '\0'是ASCII码中8位BIT全0码,又称为NULL符, 专门用于结束标志
 - 字符串的实际长度为 M-1

C++标准string

```
□串长函数 int strlen(char *s);
□串复制 char *strcpy(char *s1, char*s2);
□串拼接 char *strcat(char *s1, char *s2);
□串比较 int strcmp(char *s1, char *s2);
□输入和输出函数 cin>> cout<<
□定位函数 char *strchr(char *s, char c);
□右定位函数 char *strrchr(char *s, char c);
```

String抽象数据类型

□字符串类(class String):

- 适应字符串长度动态变化的复杂性
- 不再以字符数组char S[M]的形式出现,而采用
 - 一种动态变长的存储结构

C++ String 部分操作列表

操作类别	方法	描述
子串	substr ()	返回一个串的子串
拷贝/交换	swap ()	交换两个串的内容
	copy ()	将一个串拷贝到另一个串中
赋值	assign ()	把一个串、一个字符、一个子串赋值给另一个串中
	=	把一个串或一个字符赋值给另一个串中
插入/追加	insert()	在给定位置插入一个字符、多个字符或串
	+=	将一个字符或串追加到另一个串后
	append ()	将一个或多个字符、或串追加在另一个串后
拼接	+	通过将一个串放置在另一个串后面来构建新串
查询	find ()	找到并返回一个子序列的开始位置
替换/清除	replace ()	替换一个指定字符或一个串的字串
	clear ()	清除串中的所有字符
统计	size ()	返回串中字符的数目
	length ()	返回size ()
	max_size ()	返回串允许的最大长度

字符串的存储结构和实现

- □字符串的顺序存储
- □字符串类class String的存储结构
- □C++标准串的运算实现
- □String类的运算实现

字符串的顺序存储

- □对于串长变化不大的字符串,可以有三种处理方案:
 - (1) 用S[0]作为记录串长的存储单元 (Pascal)
 - 缺点: 限制了串的最大长度不能超过256
 - (2) 为存储串的长度,另辟一个存储的地方
 - 一 缺点: 串的最大长度一般是静态给定的,不是动态申请数组空间
 - (3) 用一个特殊的末尾标记'\0'(C/C++)
 - 例如: C++语言的string函数库(#include <string.h>)采用 这一存储结构

字符串类class String的存储结构

字符串运算的算法实现

- 1. 串长函数 int strlen(char *s);
- 2. 串复制 char *strcpy(char *d, char*s);
- 3. 串拼接 char *strcat(char *s1, char *s2);
- 4. 串比较 int strcmp(char *s1, char *s2);
- 5. 寻找字符 char * strchr(char *d, char ch) char * strrchr(char *d, char ch)

C++标准串运算的实现

● 字符串的复制 char *strcpy(char *d, char *s) {//这个程序的毛病是,如果字符串s比字符串d要 //这个程序没有检查拷贝出界,没有报告错误。 //可能会造成d的越界 int i = 0; while $(s[i] != '\0')$ d[i] = s[i]; i++; $d[i] = '\0';$ return d;

● 字符串的比较 int strcmp(char *d, char *s) int i = 0; while $(s[i] != '\0' \&\& d[i] != '\0')$ if (d[i] > s[i])return 1; else if (d[i] < s[i])return -1;

```
i ++;
}
if( d[i] = ='\0' && s[i] != '\0')
  return -1;
else if (s[i] = = '\0' && d[i] != '\0')
  return 1;
return 0;
}
```

```
● 求字符串的长度
int strlen(char d[])
{
  int i =0;
  while (d[i]!=0)
  i++;
  return i;
}
```

● 寻找字符 char * strchr(char *d, char ch) { //按照数组指针d依次寻找字符ch, //按照数组指针d依次寻找字符ch, //如果找到ch, 则将指针位置返回, //如果没有找到ch, 则为0值。 i = 0;

● 反向寻找字符 char * strrchr(char *d, char ch) //按照数组指针d,从其尾部反着寻找字符ch, //如果找到ch,则将指针位置返回, //如果没有找到ch,则为0值。 i = 0;//找串尾 while (d[i] != '\0') i++;

```
//循环跳过那些不是ch的字符
while (i \ge 0 \&\& d[i] != ch)
  //当本串不含字符ch,则在串尾结束;
  //当成功寻找到ch,返回该位置指针
if (i < 0)
 return 0;
else
 return &d[i];
```

```
//循环跳过那些不是ch的字符
while (d[i] != 0 \&\& d[i] != ch)
                          i++;
 //当本串不含字符ch,则在串尾结束;
//当成功寻找到ch,返回该位置指针
if (d[i] = 0)
 return 0;
else
 return &d[i];
```

C++标准string

比如, 字符串s:

寻找字符O, strchr(s,'o')结果返回4;

反方向寻找r, strrchr(s,'o')结果返回7

String串运算的实现

```
String::String(char *s) {
 // 先要确定新创字符串实际需要的存储空间, s的类型为(char*),
 // 作为新创字符串的初值。确定s的长度,用标准字符串函数
  //strlen(s)计算长度
  size = strlen(s);
 // 然后,在动态存储区域开辟一块空间,用于存储初值s,把结束
 // 字符也包括进来
  str = new char [size + 1];
  // 开辟空间不成功时,运行异常,退出
  assert(str != '\0');
  // 用标准字符串函数strcpy,将s完全复制到指针str所指的存储空间
  strcpy(str, s);
```

String串的创建运算

s1

String串运算的实现

```
// 析构函数
String::~String() {
    // 必须释放动态存储空间
    delete [] str;
}
```

String串运算的实现

// 赋值算子

```
String String::operator= (String& s) {
 // 参数 s 将被赋值到本串。 若本串的串长和s的串长不同,则应该释放本串的
 // str存储空间,并开辟新的空间
 if (size != s.size) {
  delete [] str; // 释放原存储空间
  str = new char [s.size+1];
  // 若开辟动态存储空间失败,则退出正常运行
  assert(str!=0);
  size = s.size;
 strcpy(str, s.str);
 // 返回本实例,作为String类的一个实例
 return *this;
```

String的赋值运算

```
String s2 = "Hello world";
并通过赋值语句: s1 = s2;
s2
      private:
       char *str;
      s1
       private:
        char *str; ____
       \0
                                                 11
```

String串运算的实现

//抽取子串函数

```
String String::Substr(int index , int count ) {
 // 取出一个子串返回,自下标index开始,长度为count
 int i;
 // 本串自下标index开始向右数直到串尾,长度为left
 int left = size - index;
 String temp;
 char *p, *q;
 // 若下标index值太大,超过本串实际串长,则返回空串
 if (index >= size)
   return temp;
 // 若count超过自index以右的实际子串长度,则把count变小
 if (count > left )
   count = left;
 // 释放原来的存储空间
 delete [] temp.str;
```

String串运算的实现

```
// 若开辟动态存储空间失败,则退出
temp.str = new char [count+1];
assert(temp.str != 0);
// p的内容是一个指针,指向目前暂无内容的字符数组的首字符处
p = temp.str;
// q的内容是一个指针,指向本实例串的str数组的下标index字符
q = &str[index];
// 用q指针取出它所指的字符内容后,指针加1
// 用p该指针所指的字符单元接受拷贝,该指针也加1
for (i = 0; i < count; i++)
  p++ = q++;
// 循环结束后,让temp.str的结尾为'\0'
*p = 0:
temp.size = count;
return temp;
```

String抽取子串

s2 = s1.Substr(6, 5);

字符串模式匹配

- □模式匹配(pattern matching)
 - 一个目标对象T(字符串)
 - 一个模式(pattern)P(字符串)

在目标T中寻找一个给定的模式P的过程

□应用

- 文本编辑时的特定词、句的查找
- DNA信息的提取
- 确认是否具有某种结构

— •••

模式匹配目标

- □在大文本(诸如,句子、段落,或书本)中定位 (查找)特定的模式
 - 对于大多数的算法而言,匹配的主要考虑在于 其速度和效率
 - 有相当数目的算法用于解决模式匹配问题,将介绍朴素(Brute Force)、 Knuth-Morris-Pratt (KMP) 算法

例: 主串S=''ababcabcacbab'', 模式T=''abcac''

例: 主串S=''ababcabcacbab'',模式T=''abcac''

例: 主串S=''ababcabcacbab'',模式T=''abcac''

例: 主串S=''ababcabcacbab'',模式T=''abcac''

- 1. 在串S和串T中设比较的起始下标i和j;
- 2. 循环直到S或T的所有字符均比较完;
 - 2.1 如果S[i]=T[j],继续比较S和T的下一个字符;
 - 2.2 否则,将i和j回溯,准备下一趟比较;
- 3. 如果T中所有字符均比较完,则匹配成功,返回 匹配的起始比较下标;否则,匹配失败,返回0;

匹配算法实现

```
#include "String.h"
#include <assert.h>
int NaiveStrMatching (String T, String P) {
                                     // 模式的下标变量
   int i = 0;
                                     // 目标的下标变量
   int j = 0;
                                     // 模式的长度
   nt pLen = P.length();
                                     // 目标的长度
   int tLen = T.length();
                       // 如果目标比模式短,匹配无法成功
   if (tLen < pLen)
         return (-1);
                                     // 反复比较对应字符来开始匹配
   while (i < pLen \&\& j < tLen)
         if (T[i] == P[i])
                  i++, j++;
         else {
                  i = i - i + 1;
                  i = 0:
   if (i > = pLen)
         return (j - pLen+1);
   else return (-1);
```

设串S长度为n,串T长度为m,在匹配成功的情况下,考虑两种极端情况:

(1) 最好: 不成功的匹配都发生在串T的第一个字符。

例如: S=''aaaaaaaaaabcdccccc''

T="bcd"

设串S长度为n,串T长度为m,在匹配成功的情况下,考虑两种极端情况:

最好情况:不成功的匹配都发生在串T的第一个字符。

设匹配成功发生在 s_i 处,则在i-1趟不成功的匹配中共比较了i-1次,第i趟成功的匹配共比较了m次,所以总共比较了i-1+m次,所有匹配成功的可能情况共有n-m+1种,则:

$$\sum_{i=1}^{n-m+1} p_i (i-1+m) = \frac{(n+m)}{2} = O(n+m)$$

设串S长度为n,串T长度为m,在匹配成功的情况下,考虑两种极端情况:

最坏情况:不成功的匹配都发生在串T的最后一个字符。

例如: S="aaaaaaaaaaaabccccc"

T="aaab"

设串S长度为n,串T长度为m,在匹配成功的情况下,考虑两种极端情况:

最坏情况:不成功的匹配都发生在串T的最后一个字符。

设匹配成功发生在 s_i 处,则在i-1趟不成功的匹中共比较了(i-1)×m次,第i趟成功的匹配共比较了m次,所以总共比较了i×m次,因此(一般地,m<<n)

$$\sum_{i=1}^{n-m+1} p_i(i \times m) = \frac{m(n-m+2)}{2} = O(n \times m)$$

4.3 多维数组

数组(array)的定义

数组是由一组类型相同的数据元素构成的有序集合,每个数据元素称为一个数组元素(简称为元素),每个元素受 $n(n \ge 1)$ 个线性关系的约束,每个元素在n个线性关系中的序号 i_1 、 i_2 、…、 i_n 称为该元素的下标,并称该数组为n 维数组。

数组的特点

- >元素本身可以具有某种结构,属于同一数据类型;
- >数组是一个具有固定格式和数量的数据集合。

数组示例

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \dots & \mathbf{a}_{2n} \\ \dots & \dots & \dots \\ \mathbf{a}_{m1} & \mathbf{a}_{m2} & \dots & \mathbf{a}_{mn} \end{pmatrix}$$

例如,元素a₂₂受两个线性关系的约束,在行上有一个行前驱a₂₁和一个行后继a₂₃,在列上有一个列前驱a₁₂和和一个列后继a₃₂。

数组——线性表的推广

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 其中:
$$A = (A_1, A_2, \dots, A_n)$$
其中:
$$A_i = (a_{1i}, a_{2i}, \dots, a_{mi})$$

$$(1 \le i \le n)$$

二维数组是数据元素为线性表的线性表。

数组的基本操作

在数组中插入(或)删除一个元素有意义吗?

将元素 x 插入 到数组中第1行第2列。

删除数组中 第1行第2列元素。

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

数组的基本操作

- (1) 存取: 给定一组下标,读出对应的数组元素;
- (2) 修改: 给定一组下标,存储或修改与其相对应的数组元素。

存取和修改操作本质上只对应一种操作——寻址

② 数组应该采用何种方式存储?

数组没有插入和删除操作,所以,不用预留空间,适合采用顺序存储。

数组的存储结构与寻址——一维数组

设一维数组的下标的范围为闭区间 [l, h],每个数组元素占用 c 个存储单元,则其任一元素 a_i 的存储地址可由下式确定:

在C语言中,如何计算 $Loc(a_i)$?

数组的存储结构与寻址——二维数组

常用的映射方法有两种:

- ➤按行优先: 先行后列, 先存储行号较小的元素, 行号相同者先存储列号较小的元素。
- ▶按列优先: 先列后行, 先存储列号较小的元素, 列号相同者先存储行号较小的元素。

按行优先存储的寻址

每行元素个数 整行数 本行中aii前面的元素个数

a_{ii} 前面的元素个数

- =阴影部分的面积
- =整行数×每行元素个数+本行中
- a_{ii} 前面的元素个数

$$=(i-l_1)\times(h_2-l_2+1)+(j-l_2)$$

按行优先存储的寻址

$$Loc(a_{ij}) = Loc(a_{l1l2}) + ((i-l1) \times (h2-l2+1) + (j-l2)) \times c$$

练习: 习题4,1(4)

按列优先存储的寻址方法与此类似。

数组的存储结构与寻址 ——多维数组(multi-array)

n(n>2)维数组一般也采用按行优先和按列优先两种存储方法。

$$Loc(a_{iik}) = Loc(a_{000}) + (i \times m_2 \times m_3 + j \times m_3 + k) \times c$$

数组的应用——问题迷宫

在计算机模拟实现中,可以用一个较大的数组表示迷宫, 其中元素0表示走得通,元素1表示走不通(受阻),行走路径 只考虑水平和垂直两个方向(上、下、左、右)。

一般来说,我们用一个m行n列的矩阵maze表示迷宫,并且假设老鼠从maze[0][0](左上角)进入迷宫,而迷宫的唯一出口在maze[m-1][n-1]处(右下角)。任一时刻老鼠在迷宫中的位置用行、列号[i][j]来表示,这时它有四个方向可以进行试探,即从图上看是上下左右,设下一位置是[g][h],显然[g][h]的值与走的方向有关。

一个迷宫示意图

走迷宫的步骤

- (1) 令老鼠处在迷宫入口,此为当前位置;
- (2) 在当前位置上从右方开始,然后依下、左、上的顺序探测 前进方向;
- (3) 向可以进入的方向前进,即目标位置的maze和mark值全为0。前进一步后,目标位置为当前位置,将mark矩阵的当前位置赋值为1,并且将前一位置坐标及进入当前位置的方向入栈;
- (4) 重复步骤(2)和(3);
- (5) 若找不到前进通路,从原路后退一步(退栈),改变探测方向,再重复步骤(2)、(3),以寻找另一条新的通路。
- (6) 重复步骤(2)-(5),直到走出迷宫或宣布迷宫无出路为止。

走迷宫的C++算法

```
// maze为扩大了的迷宫矩阵
void mazepath(maze)
        // 初始化,老鼠进入迷宫
        mark[1][1] = 1;
        top = 0;
        i = 1; j = 1; d = 0;
        do
                 g = i + move[0][d];
                 h = j+move[1][d]; // 进行试探
                 if ((maze[g][h] == 0)&&(mark[g][h] == 0))
                         mark[g][h] = 1; // 进入新位置
                         top = top+1;
                         stack[top].i = i;
                         stack[top].j = j;
                         stack[top].d = d;
                         i = g; j = h; d = 0;
                 };
```

```
else
                if(d<3)
                         d = d+1; // 换新方向再试探
                else
                         if(top>0)
                                          // 后退一步再试
                                 i = stack[top].i;
                                 j = \text{stack}[\text{top}].j;
                                 d = stack[top].d;
                         else
                            cout<<"Have no path"; // 迷宫无通路
                            return;
cout <<"Success!"; // 走出迷宫
```

4.4 矩阵的压缩存储

特殊矩阵(special matrix):矩阵中有很多值相同的元素并且它们的分布有一定的规律。

稀疏矩阵(sparse matrix): 矩阵中有很多零元素。

压缩存储的基本思想是:

- (1) 为多个值相同的元素只分配一个存储空间;
- (2) 对零元素不分配存储空间。

1、特殊矩阵的压缩存储——对称矩阵

$$A = \begin{bmatrix} 3 & 6 & 4 & 7 & 8 \\ 6 & 2 & 8 & 4 & 2 \\ 4 & 8 & 1 & 6 & 9 \\ 7 & 4 & 6 & 0 & 5 \\ 8 & 2 & 9 & 5 & 7 \end{bmatrix}$$

对称矩阵特点:

$$a_{ij} = a_{ji}$$

如何压缩存储?

只存储下三角部分的元素。

对称矩阵的压缩存储:

(a) 下三角矩阵

(b) 存储说明

(c) 计算方法

对称矩阵的压缩存储

对于下三角中的元素 a_{ij} $(i \ge j)$,在一维数组中的下标 $k = i \times (i+1)/2 + j$ 。

对于上三角中的元素 a_{ij} (i < j),因为 $a_{ij} = a_{ji}$,则访问和它对应的元素 a_{ji} 即可,即: $k = j \times (j+1)/2 + i$ 。

2、特殊矩阵的压缩存储——三角矩阵

(a) 下三角矩阵

$$\begin{bmatrix}
3 & 4 & 8 & 1 & 0 \\
c & 2 & 9 & 4 & 6 \\
c & c & 1 & 5 & 7 \\
c & c & c & 0 & 8 \\
c & c & c & 7
\end{bmatrix}$$

(b) 上三角矩阵

如何压缩存储?

只存储上三角(或下三角)部分的元素。

下三角矩阵的压缩存储

矩阵中任一元素 a_{ij} 在数组中的下标k与i、j的对应关系:

$$k = \begin{cases} i \times (i+1)/2 + j & \exists i \ge j \\ n \times (n+1)/2 & \exists i < j \end{cases}$$

上三角矩阵的压缩存储

矩阵中任一元素 a_{ij} 在数组中的下标k与i、j的对应关系:

$$k = \begin{cases} i \times (2n-i+1)/2 + j - i & \exists i \leq j \\ n \times (n+1)/2 & \exists i \geq j \end{cases}$$

3、稀疏矩阵的压缩存储

$$A = \begin{pmatrix} 15 & 0 & 0 & 0 & 0 & 0 \\ 0 & 11 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 9 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

② 如何只存储非零元素?

注意:稀疏矩阵中的非零元素的分布没有规律。

稀疏矩阵的压缩存储

```
将稀疏矩阵中的每个非零元素表示为:
(行号,列号,非零元素值)——三元组
稀疏矩阵的三元组表示:
typedef int dataType; // 数组元素的整型
struct element
                //行号,列号
  int row, col;
                //非零元素值
  dataType item;
```

稀疏矩阵的压缩存储

三元组表: 将稀疏矩阵的非零元素对应的三元组所 构成的集合,按行优先的顺序排列成一个线性表。

$$A = \begin{pmatrix} 15 & 0 & 0 & 0 & 0 & 0 \\ 0 & 11 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 9 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

三元组表=((0,0,15),(1,1,11),(2,3,6),(4,0,9))

? 如何存储三元组表?

稀疏矩阵的压缩存储——三元组顺序表

采用顺序存储结构存储三元组表

$$A = \begin{pmatrix} 15 & 0 & 0 & 22 & 0 & -15 \\ 0 & 11 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 91 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

三元组顺序表是否 需要预留存储空间?

稀疏矩阵的修改操作

三元组顺序表的插入/删除操作

稀疏矩阵的压缩存储——三元组顺序表

采用顺序存储结构存储三元组表

$$A = \begin{pmatrix} 15 & 0 & 0 & 22 & 0 & -15 \\ 0 & 11 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 91 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

	row	col	item
0	0	0	15
1	0	3	22
2	0	5	-15
3	1	1	11
4	1	2	3
5	2	3	6
6	4	0	91
	空	空	空
MaxTerm-1	闲	闲	闲
,	7(非	零元	个数)
	5(矩	阵的	行数)
	6(矩	阵的	列数)

稀疏矩阵的压缩存储——三元组顺序表

```
存储结构定义:
 const int MaxTerm=100;
 typedef int dataType;
 struct SparseMatrix
   dataType data[MaxTerm]; //存储非零元素
                   //行数,列数,非零元个数
   int mu, nu, tu;
 };
```

三元组顺序表操作——转置操作

例:

$$A = \begin{pmatrix} 15 & 0 & 0 & 22 & 0 & -15 \\ 0 & 11 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 91 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 15 & 0 & 0 & 0 & 91 \\ 0 & 11 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 22 & 0 & 6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -15 & 0 & 0 & 0 & 0 \end{pmatrix}$$

	row	col	item		row	col	item
0	0	0	15	0	0	0	15
1	0	3	22	1	0	4	91
2	0	5	-15	2	1	1	11
3	1	1	11	3	2	1	3
4	1	2	3	4	3	0	22
5	2	3	6	5	3	2	6
6	4	0	91	6	5	0	-15
	空	空	空		空	空	空
MaxTerm-1	闲	闲	闲	MaxTerm-1	闲	闲	闲
	5(矩	阵的	行数)		6(矩	阵的	行数)
	6(矩	阵的	列数)		5(矩	阵的	列数)
	7(非	零元	个数)		7(非	零元	个数)

三元组顺序表转置算法

基本思想:直接取,顺序存。

即在A的三元组顺序表中依次找第0列、第1列、... 直到最后一列的三元组,并将找到的每个三元组的 行、列交换后顺序存储到B的三元组顺序表中。

设置矩阵B的行数、列数、非零元个数

	row	col	item		row	col	item
0	0	0	15	0			
1	0	3	22	1			
2	0	5	-15	2			
3	1	1	11	3			
4	1	2	3	4			
5	2	3	6	5			
6	4	0	91	6			
	空	空	空				
MaxTerm-1	闲	闲	闲	MaxTerm-1			
	5(矩	阵的	行数)		6(矩	阵的	行数)
,	6(矩	阵的	列数)		5 (矩	阵的	列数)
	7(非	零元	个数)		7(非	零元	个数)

在矩阵A中查找第0列非零元,顺序存储到矩阵B中

	row	col	item		row	col	item
$\longrightarrow 0$	0	0	15	0	0	0	15
1	0	3	22	1	0	4	91
2	0	5	-15	2			
3	1	1	11	3			
4	1	2	3	4			
5	2	3	6	5			
\rightarrow 6	4	0	91	6			
	空	空	空				
MaxTerm-1	闲	闲	闲	MaxTerm-1			
	5(矩	阵的	行数)		6(矩	阵的	行数)
	6 (矩	阵的	列数)		5 (矩	阵的	列数)
	7(非	零元	个数)		7(非	零元	个数)

在矩阵A中查找第1列非零元,顺序存储到矩阵B中

	row	col	item		row	col	item
0	0	0	15	0	0	0	15
1	0	3	22	1	0	4	91
2	0	5	-15	2	1	1	11
→ 3	1	1	11	3			
4	1	2	3	4			
5	2	3	6	5			
6	4	0	91	6			
	空	空	空				
MaxTerm-1	闲	闲	闲	MaxTerm-1			
	5(矩	阵的	行数)		6(矩	阵的	行数)
	6 (矩	阵的	列数)		5 (矩	阵的	列数)
	7(非	零元	个数)		7 (非	零元	个数)

在矩阵A中查找第2列非零元,顺序存储到矩阵B中

	row	col	item		row	col	item
0	0	0	15	0	0	0	15
1	0	3	22	1	0	4	91
2	0	5	-15	2	1	1	11
3	1	1	11	3	2	1	3
→ 4	1	2	3	4			
5	2	3	6	5			
6	4	0	91	6			
	空	空	空				
MaxTerm-1	闲	闲	闲	MaxTerm-1			
	5(矩	阵的	行数)		6(矩	阵的	行数)
	6 (矩	阵的	列数)		5 (矩	阵的	列数)
	7(非	零元	个数)			零元	

在矩阵A中查找第3列非零元,顺序存储到矩阵B中

	row	col	item		row	col	item
0	0	0	15	0	0	0	15
$\rightarrow 1$	0	3	22	1	0	4	91
2	0	5	-15	2	1	1	11
3	1	1	11	3	2	1	3
4	1	2	3	4	3	0	22
→ 5	2	3	6	5	3	2	6
6	4	0	91	6			
	空	空	空				
MaxTerm-1	闲	闲	闲	MaxTerm-1			
	5(矩	阵的	行数)		6(矩	阵的	行数)
	6 (矩	阵的	列数)		5(矩	阵的	列数)
	7(非	零元	个数)		7(非	零元	个数)

在矩阵A中查找第4列非零元,顺序存储到矩阵B中

	row	col	item		row	col	item
0	0	0	15	0	0	0	15
1	0	3	22	1	0	4	91
2	0	5	-15	2	1	1	11
3	1	1	11	3	2	1	3
4	1	2	3	4	3	0	22
5	2	3	6	5	3	2	6
6	4	0	91	6			
	空	空	空				
MaxTerm-1	闲	闲	闲	MaxTerm-1			
	5(矩	阵的	行数)		6(矩	阵的	行数)
'	6 (矩	阵的	列数)		5(矩	阵的	列数)
	7(非	零元	个数)			零元	

在矩阵A中查找第5列非零元,顺序存储到矩阵B中

	row	col	item		row	col	item
0	0	0	15	0	0	0	15
1	0	3	22	1	0	4	91
$\longrightarrow 2$	0	5	-15	2	1	1	11
3	1	1	11	3	2	1	3
4	1	2	3	4	3	0	22
5	2	3	6	5	3	2	6
6	4	0	91	6	5	0	-15
	空	空	空				
MaxTerm-1	闲	闲	闲	MaxTerm-1			
	5(矩	阵的	行数)		6(矩	阵的	行数)
	6 (矩	阵的	列数)	,	5(矩	阵的	列数)
	7(非	零元	个数)			零元	

在矩阵A中查找第6列非零元,顺序存储到矩阵B中

	row	col	item		row	col	item
0	0	0	15	0	0	0	15
1	0	3	22	1	0	4	91
2	0	5	-15	2	1	1	11
3	1	1	11	3	2	1	3
4	1	2	3	4	3	0	22
5	2	3	6	5	3	2	6
6	4	0	91	6	5	0	-15
	空	空	空				
MaxTerm-1	闲	闲	闲	MaxTerm-1			
	5(矩	阵的	行数)		6(矩	阵的	行数)
	6 (矩	阵的	列数)		5(矩	阵的	列数)
	7(非	零元	个数)		7(非	零元	个数)

三元组顺序表转置算法——伪代码

- 1. 设置转置后矩阵B的行数、列数和非零元个数;
- 2. 在B中设置初始存储位置pb;
- 3. for (col=最小列号; col<=最大列号; col++)
 - 3.1 在A中查找列号为col的三元组;
 - 3.2 交换其行号和列号, 存入B中pb位置;
 - 3.3 pb++;

稀疏矩阵的压缩存储——十字链表

采用链接存储结构存储三元组表,每个非零元素对应的三元组存储为一个链表结点,结构为:

row: 存储非零元素的行号

col: 存储非零元素的列号

item: 存储非零元素的值

right: 指针域,指向同一行中的下一个三元组

down: 指针域,指向同一列中的下一个三元组

稀疏矩阵的压缩存储——十字链表

本章作业

习题4 (P96): 4,5