2. La sfera

Equazione della sfera di centro $C(\alpha; \beta; \gamma)$ e raggio r

$$(x - \alpha)^2 + (y - \beta)^2 + (z - \gamma)^2 = r^2$$

Se a, b, c,
$$d \in \mathbb{R}$$
 e $a^2 + b^2 + c^2 - 4d \ge 0$,

l'equazione

$$x^2 + y^2 + z^2 + ax + by + cz + d = 0$$

rappresenta una sfera di centro C e raggio r uguali a:

$$C\left(-\frac{a}{2}; -\frac{b}{2}; -\frac{c}{2}\right)$$
 $r = \sqrt{\frac{a^2}{4} + \frac{b^2}{4} + \frac{c^2}{4} - d}$

Esercizi

Scrivere l'equazione della sfera di centro C e raggio r :

1.
$$C(0;0;0)$$
, $r=4$

2.
$$C(4; -2,1), r = \sqrt{2}$$

3.
$$C(1; -3; 4)$$
, $r = \sqrt{22}$

4.
$$C(0;2;-1)$$
, $r=2$

Stabilire se le seguenti equazioni rappresentano una sfera e, in caso affermativo, determinarne centro C e raggio r:

5.
$$x^2 + y^2 + z^2 - 4x + 2y + 1 = 0$$

6.
$$x^2 + y^2 + z^2 - 2x - 6y - 2z + 15 = 0$$

7.
$$x^2 + y^2 - z^2 - 4x + 3y + 5z + 3 = 0$$

8.
$$4x^2 + 4y^2 + 4z^2 - 4x - 12y + 4z + 7 = 0$$

Piano tangente a una sfera data in un suo punto

Esempio

Determinare l'equazione del piano tangente alla sfera

$$x^2 + y^2 + z^2 + 4x - 2y + 2z - 28 = 0$$

nel suo punto A(3; 1; 2).

La sfera ha centro C(-2;1;-1), il piano cercato è perpendicolare in A alla retta

CA. Il vettore $\overrightarrow{CA} = (5; 0; 3)$ è il vettore direttore della retta CA, pertanto il

fascio di piani perpendicolari a \overrightarrow{CA} ha equazione del tipo

$$5x + 3z + t = 0$$

Imponendo il passaggio per A si ottiene l'equazione del piano cercato:

$$5x + 3z - 21 = 0$$

Esercizi

(gli esercizi con asterisco sono avviati)

Determinare l'equazione del piano α tangente a una sfera S in un suo punto

9. S:
$$x^2 + y^2 + z^2 - 2x + 4y - 2z - 8 = 0$$
 $A(0; 1; -1)$

10.
$$S: x^2 + y^2 + z^2 - 2y + 2z - 4 = 0$$
 $A(-2; 2; 0)$

11.
$$S: x^2 + y^2 + z^2 - 6x - 4y - 8z + 20 = 0$$
 $A(1; 1; 2)$

12.
$$S: x^2 + y^2 + z^2 + 8y + 2 = 0$$
 $A(-3; -2; 1)$

13. Verificare che la sfera di equazione

$$x^2 + y^2 + z^2 - 2y + 4z = 0$$

è tangente nell'origine al piano y = 2z.

14. Verificare che la sfera di equazione

$$x^2 + y^2 + z^2 + 4x - 2y + 2z = 0$$

è tangente nell'origine al piano 2x - y + z = 0.

15. Scrivere l'equazione del piano tangente alla sfera

$$x^2 + y^2 + z^2 - 2x - 2z - 7 = 0$$

nel suo punto (3; -2; 0)

16. Scrivere l'equazione del piano tangente alla sfera

$$x^2 + y^2 + z^2 - 2x - 4y - 4z - 2 = 0$$

nel suo punto (0; -1; 1)

- 17. Scritta l'equazione della sfera di centro l'origine , determinare l'equazione del piano tangente nel suo punto $\left(1;\frac{1}{2};1\right)$.
- *18. Determinare le equazioni delle due sfere di raggio $2\sqrt{3}\,$ e tangenti al piano

$$\alpha$$
: $x - y + z - 1 = 0$ nel suo punto $A(-2; -2; 1)$.

*19. Considerate le sfere di centri $C_1\left(2;\frac{1}{2};3\sqrt{2}\right)$ e $C_2\left(3;\frac{3}{2};2\sqrt{2}\right)$ di uguale raggio e tangenti esternamente, determinare l'equazione del piano tangente a entrambe nel punto medio di C_1C_2 .

Soluzioni

1. S.
$$x^2 + y^2 + z^2 - 16 = 0$$
; **2. S.** $x^2 + y^2 + z^2 - 8x + 4y - 2z + 19 = 0$;

3. S.
$$x^2 + y^2 + z^2 - 2x + 6y - 8z + 4 = 0$$
; **4. S.** $x^2 + y^2 + z^2 - 4y + 2z + 1 = 0$;

5. S.
$$C(2;-1;0)$$
, $r=2$; **6. S.** no; **7. S.** no; **8. S.** $C(\frac{1}{2};\frac{3}{2};-\frac{1}{2})$, $r=1$;

Piano tangente a una sfera data in un suo punto

9. S.
$$\alpha$$
: $x - 3y + 2z + 5 = 0$; **10. S.** α : $2x - y - z + 6 = 0$;

11. S.
$$\alpha$$
: $2x + y + 2z - 7 = 0$; **12.** S. α : $3x - 2y - z + 6 = 0$; **15.** S. $2x - 2y - z - 10 = 0$;

16. S.
$$x + 3y + z + 2 = 0$$
; **17. S.** $4x + 2y + 4z - 9 = 0$;

*18. S. i centri delle due sfere appartengono alla retta r perpendicolare al piano α in A:

retta
$$r$$
:
$$\begin{cases} x = t - 2 \\ y = -t - 2; \\ z = t + 1 \end{cases}$$

determiniamo i punti di r che hanno distanza $2\sqrt{3}$ da A , cioè $\overline{\mathit{CA}}^2 = 12 \Rightarrow$

$$(t-2+2)^2 + (-t-2+2)^2 + (t+1-1)^2 = 12 \implies t = \pm 2$$
; i due centri

sono $C_1(0; -4; 3)$ e $C_2(-4; 0; -1)$ e le rispettive circonferenze :

$$x^{2} + y^{2} + z^{2} + 8y - 6z + 13 = 0$$
; $x^{2} + y^{2} + z^{2} + 8x + 2z + 5 = 0$;

*19. S. $2x + 2y - 2\sqrt{2}z + 3 = 0$; (il piano cercato passa per il punto medio di C_1C_2 cioè per $M\left(\frac{5}{2};1;\frac{5}{2}\sqrt{2}\right)$ ed è perpendicolare al vettore $\overrightarrow{C_1C_2}=\left(1;1;-\sqrt{2}\right)$ (vedi fig. es.19), quindi ha equazione:

$$1 \cdot \left(x - \frac{5}{2}\right) + 1 \cdot (y - 1) - \sqrt{2} \cdot \left(z - \frac{5}{2}\sqrt{2}\right) = 0 \implies 2x + 2y - 2\sqrt{2}z + 3 = 0$$
);

Fig. es. 19