EPSY 5261: Introductory Statistical Methods

Day 17
Confidence Intervals for a Single Mean

Learning Goals

- At the end of this lesson, you should be able to...
 - · Identify when to answer a research question with a confidence interval
 - Explain the need for creating a confidence interval to do statistical inference
 - Know how to calculate a confidence interval by hand and using R Studio for a mean
 - Interpret a confidence interval
 - Explain how the confidence level we choose affects our interval

Confidence Intervals

- Sampling Variability = Samples vary
- We need something to quantify the uncertainty in our estimates

Confidence Intervals

Confidence Intervals

- Sampling Variability = Samples vary
- We need something to quantify the uncertainty in our estimates

Confidence Intervals

Terminology

- 95% confidence interval:
 - Sample statistic +/- (2 x SE)
- Margin of error:
 - A specified number of standard errors that we add and subtract from the sample statistic to get a confidence interval.
 - Margin of error quantifies the amount of sampling error due to variation from sample to sample.

Assumptions needed to use tinterval for single mean

- Assumptions
 - Sample size is large enough (>30)

OR

- Data comes from a population with a normal distribution
 - For small samples, we can proceed if the distribution of the sample looks reasonably normal
 - In practice, better to use a simulation method to get the standard error

Formula

$$CI = \bar{x} \pm t * SE$$

Table 17.1 in text

studied in EPsy 5261.	
Situation	SE
Single Mean	$\frac{\mathrm{SD}}{\sqrt{n}}$

Single Proportion

$$\frac{\hat{p}(1-\hat{p})}{\sqrt{n}}$$

Difference in Means

$$\sqrt{\frac{\mathrm{SD}_1^2}{n_1} + \frac{\mathrm{SD}_2^2}{n_2}}$$

Difference in Proportions

$$\sqrt{rac{\hat{p}_1(1-\hat{p}_1)}{n_1} + rac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

Formula

$$CI = \bar{x} \pm t * \frac{SD}{\sqrt{n}}$$

What is t*?

- * Recall the t-distribution (same one as used for t-test)
- * Use this to find the t*

 value based on the

 desired confidence level

For example 95% confidence

- * Recall that the shape of the tdistribution is based on degrees of freedom (basically our sample size, n-1)
- * To get 95% confidence for our estimate we need to look at how many standard deviations away from the mean we need to be to obtain that level of confidence

$$*t* = 1.984$$

T-distribution with sample size 100

Write your final confidence interval interpretation on the white board for your group.

Summary

- For a research question asking for an estimate, the best way to answer is with a confidence interval
- The confidence interval allows us to take into sampling account variability
- With a higher confidence level we expect a larger confidence interval (more uncertainty in the estimate).