PRAKTIKUM Z ASTRONOMIE 1

Tomáš Plšek

Praktikum č. 2

Úkoly:

- 1. Načtěte snímky blazaru BL Lacertae, opravte je o příslušný dark a zohledněte i gain CCD kamery (g=1.5).
- 2. Proveď te aperturní fotomertii pomocí čtyř kalibračních hvězd (obrázek 3).
- 3. Ze vzorce 3 vypočtěte očekávaný počet fotonů v daném filtru a porovnejte jej s celkovou intenzitou kalibračních hvězd. Výsledky zprůměrujte.
- 4. Vypočtěte hustotu světelného toku F pro blazar BL Lacertae a určete jeho zářivý výkon L.

1. Načtení a oprava snímků

Byly mi přiděleny následující snímky:

BL Lac $_2017-10-17_20-03-13_R_0013$.fits

BL Lac $_2017-10-17_20-04-46_V_0014$.fits

Obrázek 1,2: Snímky BL Lacertae v R a V filtrech (opraveny o dark a gain).

2. Aperturní fotometrie

Pro vybrané kalibrační hvězdy (obrázek 3) spočteme jejich celkovou hodnotu v countech odečtenou o hodnotu pozadí:

$$I = \sum_{i}^{2d+1} \sum_{j}^{2d+1} \omega_{ij} \tag{1}$$

$$I_{star} = I'_{star} - I_{back},, (2)$$

kde I_{back} je hodnota pozadí v countech na plošce $(2d+1)^2$ a I'_{star} je celková hodnota v countech v oblasti hvězdy.

Comparison stars

star		В	V	R	I
В	16.27(0.09)	14.52(0.04)	12.78(0.04)	11.93(0.05)	11.09(0.06)
С	15.53(0.06)	15.09(0.03)	14.19(0.03)	13.69(0.03)	13.23(0.04)
					12.93(0.04)
K	16.48(0.08)	16.26(0.05)	15.44(0.03)	14.88(0.05)	14.34(0.10)

Obrázek 3, 4: Kalibrační hvězdy pro aperturní fotometrii a jejich hvězdné velikosti v jednotlivých filtrech.

Pomocí vhodného softwaru, který dokáže zobrazovat fotografie ve formátu fits, otevřeme snímky a odhadneme středy kalibračních hvězd (pixel s nejvyšší hodnotou nebo optický střed objektu). Pomocí vzorce 2, kde d zvolíme d=4 pixely, spočteme hodnotu toku hvězdy:

Tabulka 1: Hodnoty celkového toku kalibračních hvězd ($I_{back} = 148\,436$ pixel value).

Star	I'_{star} [pixel value]
В	479496
\mathbf{C}	217882
Η	213690
K	170275

3. Porovnání s očekávaným počtem fotonů

Ze vzorce 3 spočteme očekávaný počet fotonů N a porovnáme jej s námi naměřeným tokem. Výsledné parametry t pro jednotlivé kalibrační hvězdy zprůměrujeme.

$$N = T \cdot A \cdot F_{\lambda}^{0}(\lambda_{0}) \cdot \Delta \lambda \cdot \frac{\lambda_{0}}{hc} \cdot 10^{-m/2.5}$$
(3)

kde T je čas expozice, A plocha zrcadla, $F_{\lambda}^{0}(\lambda_{0})$ je hustotu intenzity pro Vegu v závislosti na vlnové délce, $\Delta\lambda$ je šířka filtru a λ_{0} je vlnová délka filtru (poloha maxima propustnosti daného filtru).

Předpokládaný počet fotonů srovnáme s naměřenou intenzitou a získáme parametr t:

$$N = t \cdot I_{star} \tag{4}$$

Tabulka 2a: Určení parametru t pro jednot. kalibrační hvězdy (R filter).

Star	I_{star} [pixel value]	N [photons]	t
В	331060	2680051	8.095
\mathbf{C}	69446	529838	7.629
\mathbf{H}	65254	575630	8.821
K	21839	177069	8.108

Parametr $t_R = 8.164$.

Tabulka 2b: Určení parametru t pro jednot. kalibrační hvězdy (V filter).

Star	I_{star} [pixel value]	N [photons]	t
В	120780	974398	8.068
\mathbf{C}	32567	265911	8.165
Η	27444	238087	8.675
K	9958	84088	8.444

Parametr $t_V = 8.338$.

4. Určení hustoty světelného toku a závřivého výkonu blazaru

Pro určení hustoty světelého toku budeme postupovat opačným spůsobem jako v případě určování parametru t (vztah 3). Víme, že pro hustotu toku platí vztah:

$$F = F_{\lambda}^{0}(\lambda_0) \cdot \Delta \lambda \cdot 10^{-m/2.5}.$$
 (5)

Zářivý výkon (v jednotkách zářivého výkonu slunce) následně určíme ze vztahu:

$$L = 4\pi d^2 F / L_{\odot},\tag{6}$$

kde d = 0.276 Gpc [1] je vzdálenost blazaru.

Tabulka 3: Výsledné parametry blazaru BL Lacertae.

Filter	$F [W/m^2]$	m [mag]	$L [GL_{\odot}]$
R.	1.16e-14	13.41	27.5
3.7		-	
V	6.05e-15	14.10	14.4

5. Závěr

Vidíme, že pro náš blazar BL Lacertae vychází opravdu enormní hodnota závřivého výkonu (tabulka 3). Je to způsobeno tím, že se s největší pravděpodobností jedná o supermasivní černou díru v centru tzv. aktivní galaxie (active galaxtic nuclei). Aktivní galaktická jádra na rozdíl od hvězd září synchrotroně (brzdné záření elektronů uvolněných z materiálu v akrečním disku) a valná část záření navíc výchází pouze ve formě úzkých svazků (jetů) na pólech. Enormní zářivý výkon má tedy na svědomí fakt, že naše Země (potažmo sluneční soustava) se nachází ve směru jednoho z jetů.

6. Zdroje

[1] WIKIPEDIA.ORG. BL Lacertae. Dostupný z https://en.wikipedia.org/wiki/BL_Lacertae.