بسم الله الرحمن الرحيم

المقرر: مقدمة في بحوث العمليات (١٠٠ بحث) الفصل الدراسي ١٣٧/١٤٣٦ هـ الاختبار النهائي

اسم الطالب:	الرقم الجامعي:
أستاذ المقرر:	الدرجة:

أكتب اختيارك لرمز الإجابة الصحيحة لكل سؤال في الجدول التالي:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
C	C	A	D	D	C	В	C	В	C	C	D	C	В	В

30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A	В	C	A	C	В	C	A	C	C	В	В	A	A	C

40	39	38	37	36	35	34	33	32	31
C	В	A	C	В	A	A	В	C	В

السؤال الأول:

					Supply الإمداد	لدينا جدول النقل التالي:
	1	2	1	3	20	
	2	1	3	4	30	
	2	3	4	5	25	
Demand الطلب	25	20	20	10	I	

1. الحل الأساسي الممكن المبدئي باستخدام طريقة الركن الشمالي الغربي هو:

	B	2	1	3	الإمداد		A 1	2	1	3	الإمداد
	20		1		20		20	2	1	3	20
	5	20	5	4	30		5	15	10 3	4	30
	2	3	15	10 5	25		2	5	10	10 5	25
الطلب	25	20	20	10		الطلب	25	20	20	10	
	D				الإمداد		<u>C</u>				الإمداد
	D 1	10 2	1	3	الإمداد 20		<u>C</u> 1	5	1	3	الإمداد 20
	1		1 3 5	3			1		1 3 10	4	
الطلب	1 10 2	10	3		20	الطلب	1 15 2	5	3		20

السؤال الثاني: في جدول النقل التالي (تصغير دالة هدف)، لدينا الحل الأساسي الممكن المعطى كما يلي:

	v_1	=	$v_2 =$		v_3 =	=	$v_4 =$		الإمداد
0		6		2		5		0	20
$u_1 = 0$	15		15						30
		4		7		2		4	15
$u_2 =$			5		10				15
		3		8		3		1	20
$u_3 =$					10		20	•	30
الطلب	1:	5	20)	20		20	0	

2. عند اختبار امثلية الحل الأساسي الممكن الحالي، ستكون قيم سير العلى المرب المرب المرب المرب المرب المرب المرب

D	$(u_1, u_2, u_3) = (0, -5, -6)$	C	$(u_1, u_2, u_3) = (0, -2, -3)$	В	$(u_1, u_2, u_3) = (0, 5, 6)$	A	$(u_1, u_2, u_3) = (0, 2, 3)$
	•				•		•

3. عند اختبار امثلية الحل الأساسي الممكن الحالي، ستكون قيم ٧٤, ٧٤, ٧٤, ٥٤ هي:

4. عند اختبار امثلية الحل الأساسي الممكن الحالي، ستكون قيم δ_{ii} هي:

5. الخلية التي نبدأ منها حلقة التحوير (أي الخلية الغير مملؤة التي سنحاول ملؤها بأكبر كمية ممكنة) هي التي لها δ_{ii} تساوي:

6. حلقة التحوير لتحسين الحل هي:

7. بعد معرفة حلقة التحوير و إجراء الحسابات، فإن الحل الأساسي الممكن الجديد هو:

	(D)		-	(C)				(B)				(A)			
15	5	10			10		20		10	20			10	20		
	15					15					15		5		10	
		10	20		5		5	20	5		5	20			10	20

السوال الثالث: في مسألة النقل ذات البيانات الأتية (تصغير دالة الهدف):

	$v_1 =$		v_2	=	$v_3 =$		$v_4 =$		الإمداد
0		6		2		5		0	20
$u_1 = 0$	10		20		•				30
		4		7		2		4	15
$u_2 =$	•				15				15
		3		8		3		1	25
$u_3 =$	5				0		20		25
الطلب	15	5	20)	15		20)	

8. تكلفة الحل الأساسي الممكن الحالي هي:

D	162	C	165	В	170	A	70
---	-----	---	-----	---	-----	---	----

9. عند اختبار امثلية الحل الأساسي الممكن الحالي، ستكون قيم ساري العلى هي:

10. عند اختبار امثلية الحل الأساسي الممكن الحالي، ستكون قيم ٧٤, ٧٤, ٧٤, هي:

عند اختبار امثلية الحل الأساسي الممكن الحالي، ستكون قيم δ_{ii} هي:

12. الخلية التي نبدأ منها حلقة التحوير (أي الخلية الغير مملؤة التي سنحاول ملؤها بأكبر كمية ممكنة) هي التي لها δ_{ij} تساوي:

D	4	C	-9	В	-4	A	9	
---	---	---	----	---	----	---	---	--

13. حلقة التحوير لتحسين الحل هي:

14. بعد تكوين حلقة التحوير و إجراء الحساب، فإن الحل الأساسي الممكن الجديد هو:

(D)				
15	15			
		15		
	5	0	20	

(C)				
	20		10	
		15		
15		0	10	

(A)					
	20		10		
5		10			
10		5	10		

15. عند اختبار امثلية الحل الأساسي الممكن الجديد، ستكون قيم سير المثلية الحل الأساسي الممكن الجديد، ستكون قيم ي

$$\mathbf{D} \qquad \begin{array}{c} (u_1, u_2, u_3) = \\ (0, 5, 6) \end{array}$$

$$\mathbf{C} \qquad \begin{array}{c} (u_1, u_2, u_3) = \\ (0, 0, 1) \end{array}$$

$$\mathbf{B} \qquad \begin{array}{c} (u_1, u_2, u_3) = \\ (1, 0, 0) \end{array}$$

$$\mathbf{A} \qquad \begin{array}{c} (u_1, u_2, u_3) = \\ (0, 0, -1) \end{array}$$

16. عند اختبار امثلية الحل الأساسي الممكن الجديد، ستكون قيم ٧٩, ٧٥, ٧٥, عود المثلية الحل الأساسي الممكن الجديد،

$$\mathbf{D} \qquad (v_1, v_2, v_3, v_4) = \\ (6, 2, -3, -5)$$

$$C \begin{array}{|c|} \hline (v_1, v_2, v_3, v_4) = \\ \hline (2, 2, 2, 0) \end{array}$$

$$\mathbf{B} \qquad (v_1, v_2, v_3, v_4) = \\ (1, -2, 3, 3)$$

$$\mathbf{A} \qquad (v_1, v_2, v_3, v_4) = \\ (-2, -2, -2, 0)$$

مي: δ_{ij} عند اختبار امثلية الحل الأساسي الممكن الجديد، ستكون قيم

(A)					
-4		-3			
-2	-5		-4		
	-5				

 (Λ)

18. الحل الأساسي الممكن الجديد يعتبر حل:

A	أمثل

19. قيمة دالة الهدف عند الحل الأساسي الممكن الجديد هي:

D	135
---	-----

A	140

السؤال الرابع:

لدينا الجدول التالي لتخصيص خمسة موظفين لخمس مهام:

	المهمة-1	المهمة-2	المهمة-3	المهمة-4	المهمة-5
الموظف-1	30	50	40	80	20
الموظف-2	90	40	30	50	70
الموظف-3	110	60	80	100	90
الموظف-4	60	100	40	120	50
الموظف-5	30	50	60	40	90

الجدول التالي هو الذي نحصل عليه بعد عملية طرح القيمة الصغرى من كل صف، ثم طرح القيمة الصغرى من كل عمود:

10	a	20	50	0
60	10	0	10	c
50	0	b	30	30
20	60	0	70	10
0	20	30	0	60

a,b,c قيم a,b,c هي:

$$\mathbf{D} \qquad \begin{array}{c} a = 40 \, , b = 20, \\ c = 30 \end{array}$$

C
$$a = 10, b = 40, c = 20$$

$$\mathbf{B} \qquad \begin{array}{c} a = 30 \, , b = 20, \\ c = 40 \end{array}$$

A
$$a = 10, b = 20, c = 40$$

21. بعد معرفة قيم a,b,c في الفقرة السابقة، وعند تغطية جميع القيم الصفرية بأقل عدد من الخطوط كما يلي:

	10	a	20	50	0
	60	10	0	10	c
	50	0	b	30	30
	20	60	0	70	10
	0	20	30	0	60
!					

سنكمل الحل ونحصل على الجدول التالى:

 (\mathbf{D})

	(D)					
0	30	20	40	0		
50	10	0	0	40		
40	0	20	20	30		
10	60	0	60	10		
0	20	30	0	60		

(C)

	1	•	•	•
40	0	20	20	30
10	60	0	60	10
0	30	40	0	70

(B)

0	40	20	60	0
50	20	0	0	40
40	10	20	30	30
10	70	0	70	10
0	10	40	0	70

(A)

				:(<u>1</u>	رية فقم	م الصفر	سع القيد	(تم وظ	التالي (ئي الأمثل	ليكن لدينا الجدول النها
				0				0			
						0	0				
					0						
						0					
				0			0				
					اع	ول لأد	ظف الأ	ل المو	خصيص	ل، سيتم ت	23. في هذا الحل الأمث
D	المهمة الثالثة	C	المهمة الأولى		В	۽ ج	لة الثاني	المهم		A	المهمة الخامسة
ſ					لأداء				خصيص	ل، سيتم ت 	24. في هذا الحل الأمث
D	المهمة الخامسة	C	المهمة الأولى		В	۽ ج	ة الثاني	المهم		A	المهمة الرابعة
									اوي:	الأمثل يس	25. تكلفة التخصيص
D	240	C	210		В		200)		A	190
									<u>'</u>		

B

 \mathbf{C}

5

D

3

22. في الجدول الذي اخترته في الفقرة السابقة، أقل عدد من الخطوط لتغطية القيم الصفرية هو:

4

A

6

السؤال الخامس:

لديك جدول الأرباح التالي:

	حالات الطبيعة					
البدائل	S_1	S_2	S_3	S_4		
A_1	10	12	-4	11		
A_2	9	16	2	-3		
A_3	-5	17	8	15		

26. يعتبر هذا القرار من نوع:

القرار الأمثل وفقا لمعيار

$$\mathbf{C}$$
 A_1

$$\mathbf{B}$$
 A_3

$$\mathbf{A}$$
 A_2

$$\mathbf{C}$$
 A_3

$$\mathbf{B}$$
 A_1

$$\mathbf{A}$$
 A_2

$$\mathbf{C}$$
 A_1

$$\mathbf{B}$$
 A_2

$$\mathbf{A}$$
 A_3

$$\alpha = 0.4$$
 هورويز بمعامل $\alpha = 0.4$ هو:

$$\mathbf{C}$$
 A_2

$$\mathbf{B}$$
 A_3

$$\mathbf{A}$$
 A_{I}

$$P(S_1) = 0.4$$

$$P(S_2)=0.2$$

$$P(S_3) = 0.15$$

$$P(S_4) = 0.25$$

$$P(S_3) = 0.15$$
 $P(S_4) = 0.25$ الآن افترض أن:

31. عندئذ يعتبر هذا القرار من نوع:

القرار الأمثل وفقا لمعيار

$$\mathbf{C}$$
 A_1

$$\mathbf{B}$$
 A_2

$$\mathbf{A}$$
 A_3

$$C A_3$$

 A_2

$$\begin{array}{c|c} \mathbf{B} & A_1 \\ \hline \mathbf{B} & A_3 \end{array}$$

$$egin{array}{c|c} \mathbf{A} & A_2 \\ \hline \mathbf{A} & A_I \\ \hline \end{array}$$

 \mathbf{C}

السؤال السادس:

لديك جدول التكاليف التالي:

	حالات الطبيعة					
البدائل	S_1	S_2	S_3	S_4		
A_1	11	12	-5	11		
A_2	13	17	20	6		
A_3	3	16	13	18		

القرار الأمثل وفقا لمعيار

$$P(S_1) = 0.1$$

$$P(S_2)=0.2$$

$$P(S_3) = 0.5$$

$$P(S_4) = 0.2$$

$P(S_4) = 0.2$ الآن افترض أن:

القرار الأمثل وفقا لمعيار