Álgebra Lineal para Computación (MA-2405)

Tiempo: 2 horas 10 minutos

Total: 33 puntos I Semestre 2015

Segundo Examen Parcial

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar todos los pasos necesarios o procedimientos que le permitieron obtener cada una de las respuestas. Trabaje en forma ordenada, clara y utilice bolígrafo para resolver el examen. No son procedentes la apelaciones que se realicen sobre exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono móvil.

- Se dice que una estructura algebraica (A,*) es un monoide si la operación es asociativa y el conjunto posee elemento neutro.
 Muestre dos ejemplos de estructuras que sean monoides pero que no sean grupos.
 (2 puntos)
- 2. $A = \{1, 2, 3, 4, 5, 6\}$. Sobre A se define la operación * de la siguiente manera:

*	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	1	4	3	6	5
3	3	5	1	6	2	4
4	4	6	2	(5)	1	3
5_	5	3	6	1	4	2
6	6	5	4	2	3	1

Si se sabe que (A, *) es un grupo.

(a) Calcule todos los subgrupos de (A, *).

(4 puntos)

(b) Determine el valor de x que satisface la ecuación $(5*x)^{-1} = 4^{-1}*3$.

(2 puntos) \checkmark

- 3. Si (G,*) es un grupo y H_1 y H_2 son subgrupos de G:
 - (a) Pruebe que $H_1 \cap H_2$ es subgrupo de G.

(4 puntos)

(b) Muestre, con un contraejemplo, que $H_1 \cup H_2$ no es, necesariamente, subgrupo de G.

(2 puntos)

- 4. Si C es un campo y $a, b \in C$, pruebe que si $a^2 = b^2$ entonces, $a = b \lor a = -b$.

 (3 puntos)
- 5. Determine todos los divisores de cero del anillo \mathbb{Z}_{15} . (2 puntos)
- 6. En el espacio vectorial P_2 , considere el conjunto $B = \{(x+1)^2, x-1, -3\}$. Escriba, si es posible, el vector $p(x) = 2x^2 + 3x + 2$ como combinación lineal de los elementos de B.

(3 puntos)

7. Sea V un espacio vectorial. Si se sabe que $\{x,y,z\}$ es un conjunto linealmente independiente en V, determine si el conjunto $\{x+y,2x+y+z,2z-y+2x\}$, es un conjunto linealmente independiente o no.

(3 puntos)

8. Pruebe que $W=\{ax^2+bx+c\in P_2(\mathbb{R})\ /\ a+2b-3c=0\}$ es subespacio vectorial del espacio vectorial $P_2(\mathbb{R})$.

(4 puntos)

9. Considere el espacio vectorial

$$W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) \ / \ a+b+c = 0 \land a+3b+5c-d = 0 \right\}$$

Determine un conjunto S de manera que gen(S) = W.

(4 puntos)