

Mathématiques

Bac MATHS (TOP 50-2) Classe:

Révision DC 1 Série 12:

Nom du Prof: M. ZOGHBI Naoufel

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

(5) 30 min

5 pts

Soit f la fonction définie et continue sur]0;+∞[et possédant les propriétés suivantes :

- pour tous réels strictement positifs a et b ; $f\left(\frac{a}{b}\right) = f(a) f(b)$
- pour tout réel x de]0; 1[; f(x) < 0
- 1°)a) Montrer que f est strictement croissante sur]0;+∞[
 - b) Montrer que, pour tout $x \in]0; +\infty[$ on a : $f(x) = 0 \Leftrightarrow x = 1$:
- 2°)a) Montrer pour tous réels strictement positifs a et b ; f (ab) = f (a) + f (b) :
 - b) Montrer que f n'est pas majorée sur $]0;+\infty[$.
 - c) Montrer que $\lim_{+\infty} f = +\infty$ et en déduire $\lim_{0^+} f$
- 3°) Soit g la fonction définie par $g(x) = f\left(\frac{x-1}{x+1}\right)$.
 - a) Déterminer l'ensemble de définition de g.
 - b) Montrer que g est strictement croissante sur $]1;+\infty[$
 - c) Montrer que $g(]1;+\infty[)=]-\infty;0[$.
- d) Montrer que pour tout $n \in \mathbb{N}^*$; l'équation g (x) + n = 0 admet, dans]1; + ∞ [une unique solution α_n .
- 4°) Soit $(\alpha_n)_{n\in\mathbb{N}^*}$ la suite de terme général α_n définie précédemment.
 - a) Montrer que la suite $(\alpha_n)_{n\in\mathbb{N}^*}$ est décroissante.
 - b) Montrer que la suite $(\alpha_n)_{n\in\mathbb{N}^*}$ est convergente vers un réel L.
 - c) Montrer que L = 1.

Exercice 2

(\$\) 35 min

4 pts

Le plan est rapporté à un repère orthonormé direct (O,u,v); (unité 5 cm)

Soit $\theta \in [0; \pi] \setminus \left\{ \frac{\pi}{2} \right\}$. On considère les points A;B et C d'affixes respectives

- 1; $b = ie^{i\theta}$ et $c = -e^{i2\theta}$
- 1°)a) Mettre les nombres complexes b et c sous forme exponentielle .
 - b) Justifier que les points A, B et C forment un triangle.
- 2°) Soit H le point d'affixe h = 1+b+c.
 - a) Montrer que le nombre complexe $\frac{1 + ie^{i\theta}}{1 ie^{i\theta}}$ est imaginaire pur.
 - b) Montrer que H est l'orthocentre du triangle ABC.
- 3°) Donner alors un procédé de construction puis construire le point $\Omega\left(1+ie^{\frac{i^2\pi}{3}}-e^{-i\frac{2\pi}{3}}\right)$.
- 4°)a) Résoudre dans $\mathbb C$ l'équation $z^2-iz-1=0$.

- b) On note par G; le centre de gravité du triangle ABC. Déterminer l'affixe de G.
- c) Déterminer les valeurs de θ pour que H et G soient confondus.

Exercice 3

(S) 35 min

6 pt

Soit la suite $\left(u_{n}\right)$ définie par $u_{0}=\frac{1}{4}$ et $u_{n+1}=u_{n}(1-u_{n})$ pour tout $n\in\mathbb{N}$.

Partie A

- 1°) Montrer que pour tout $n \in \mathbb{N}$; on a $0 < u_n < 1$.
- 2°)a) Montrer que (u,) est monotone.
 - b) En déduire qu'elle est convergente et préciser sa limite.
- 3°) Soit (v_n) la suite définie sur N par $v_n = nu_n$.
 - a) Montrer que la fonction $f: x \mapsto x x^2$ est strictement croissante sur $\left[0; \frac{1}{2}\right[$.
 - b) Montrer que pour tout $n \in \mathbb{N}$; un $< \frac{1}{n+1}$.
 - c) Vérifier que pour tout $n \in \mathbb{N}$; $v_{n+1} v_n = u_n [1 (n + 1)u_n]$.
 - d) Montrer que la suite (v_n) est convergente vers un réel $L \in [0;1]$.

Partie B

On pose, pour tout $n \in \mathbb{N}$; $w_n = n (v_{n+1} - v_n)$.

- 1°) Montrer que (w_n) converge vers le réel $(L-L^2)$:
- 2°) On suppose que $L \neq 1$.
 - a) Montrer qu'il existe un entier naturel n_0 tel que, pour tout entier $n \ge n_0$;

on a:
$$\frac{L-L^2}{2} < w_n < \frac{3}{2}(L-L^2)$$
.

- b) Montrer que pour tout $n \ge 1$; on a : $\sum_{k=n}^{2n-1} \frac{1}{k} \ge \frac{1}{2}$.
- c) Montrer que pour tout entier $n \ge n_0$, on a : $\frac{L-L^2}{4} < v_{2n} v_n$.
- 3°) Déterminer alors le réel L.