

Université Libre de Bruxelles

Synthèse

Instrumentation et électronique analogique ELEC-H314

Auteur:

Cédric Hannotier

Professeur:

Antoine Nonclercq

Année 2015 - 2016

Appel à contribution

Synthèse Open Source

Ce document est grandement inspiré de l'excellent cours donné par Antoine Nonclercq à l'EPB (École Polytechnique de Bruxelles), faculté de l'ULB (Université Libre de Bruxelles). Il est écrit par les auteurs susnommés avec l'aide de tous les autres étudiants et votre aide est la bienvenue! En effet, il y a toujours moyen de

l'améliorer surtout que si le cours change, la synthèse doit être changée en conséquence. On peut retrouver le code source à l'adresse suivante

https://github.com/nenglebert/Syntheses

Pour contribuer à cette synthèse, il vous suffira de créer un compte sur *Github.com*. De légères modifications (petites coquilles, orthographe, ...) peuvent directement être faites sur le site! Vous avez vu une petite faute? Si oui, la corriger de cette façon ne prendra que quelques secondes, une bonne raison de le faire!

Pour de plus longues modifications, il est intéressant de disposer des fichiers : il vous faudra pour cela installer LATEX, mais aussi git. Si cela pose problème, nous sommes évidemment ouverts à des contributeurs envoyant leur changement par mail ou n'importe quel autre moyen.

Le lien donné ci-dessus contient aussi le README contient de plus amples informations, vous êtes invités à le lire si vous voulez faire avancer ce projet!

Licence Creative Commons

Le contenu de ce document est sous la licence Creative Commons : Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). Celle-ci vous autorise à l'exploiter pleinement, compte- tenu de trois choses :

- 1. Attribution; si vous utilisez/modifiez ce document vous devez signaler le(s) nom(s) de(s) auteur(s).
- 2. Non Commercial; interdiction de tirer un profit commercial de l'œuvre sans autorisation de l'auteur
- 3. Share alike; partage de l'œuvre, avec obligation de rediffuser selon la même licence ou une licence similaire

Si vous voulez en savoir plus sur cette licence :

http://creativecommons.org/licenses/by-nc-sa/4.0/

Merci!

Table des matières

1	Blocs et dimensionnement d'une chaîne d'acquisition	1
1	Introduction	2
	1.1 Chaîne d'acquisition	2
	1.1.1 Que peut-on mesurer?	2
	1.1.2 Composition	2
	1.1.3 Transducteur et capteur	3
	1.1.4 Conditionneur	3
	1.1.5 Organe de traitement	3
	1.2 Rappels d'électricité et d'électronique	4
2	Propriétés génériques d'un capteur	5
3	Bruits et parasites	6
4	Conditionnement du signal	7
5	Conversion A/N	8
6	Dimensionner et analyser	9
II	Filtrage numérique, analyse du signal de sortie, capteurs	10
II	I Les capteurs	11

Première partie

Blocs et dimensionnement d'une chaîne d'acquisition

Introduction

Instrumentation technique visant à créer un système d'acquisition de données ou de commande à base de capteurs, conditionneurs, régulateurs et actionneurs.

1.1 Chaîne d'acquisition

Une chaîne d'acquisition est « un système électronique permettant d'exploiter une grandeur physique » $^{\rm 1}$

1.1.1 Que peut-on mesurer?

Les grandeurs mesurables sont très diversifiées. Il y a donc de nombreuses solutions pour les mesurer. On préférera donc utiliser leurs points communs pour pouvoir formaliser un problème générique et sa solution.

L'instrumentation consistera donc a créer une chaîne d'acquisition afin d'extraire les données pertinentes du processus, afin de les traiter.

1.1.2 Composition

Figure 1.1 – Vue « fonctionnelle » (cas standard)

^{1.} https://fr.wikipedia.org/wiki/Cha%C3%AEne_d%27acquisition

1.1.3 Transducteur et capteur

transducteur dispositif qui réalise intrinsèquement la conversion de la grandeur à mesurer en une grandeur électrique « brute » (plus facile à exploiter)

capteur protection mécanique du transducteur (+ parfois une partie du conditionnement)

Un transducteur utilise des phénomènes multi-physiques comme la thermoélectricité et la magnétorésistance. Il sera donc constitué la plupart du temps d'un matériau particulier \wedge Abus de langage entre transducteur et capteur \wedge

1.1.4 Conditionneur

conditionneur dispositif assurant la conversion de la grandeur électrique de sortie du transducteur (brute) en une grandeur électrique exploitable par l'organe de traitement

Ce sera donc un montage électronique. Il pourra néanmoins assurer d'autres fonctions comme l'amplification ou le multiplexage.

Multiplexage

Il arrivera souvent de n'avoir qu'un seul organe de traitement pour plusieurs capteurs. Il faudra donc multiplexer ² les signaux dans le temps.

La fonction de multiplexage peut être assuré par le conditionneur, la carte d'acquisition ou un organe spécifique

FIGURE 1.2 – Multiplexage

1.1.5 Organe de traitement

L'organe de traitement est dans le langage courant un appareil de mesure ou un assemblage type « ordinateur + carte d'acquisition + logiciel » dont les principales fonctions sont :

- la lecture par l'utilisateur de la grandeur à mesurer
- le traitement du signal
- l'utilisation dans une régulation/commande d'actionneurs

Carte d'acquisition

Une carte d'acquisition est un périphérique informatique assurant l'acquisition, par un PC, de la grandeur de sortie du conditionneur dont les principales fonctions sont :

- la communication avec le processeur (driver)
- la conversion analogique/numérique (résolution et fréquence d'échantillonnage)
- d'autres fonctions comme le multiplexage et les I/O numériques

^{2. «} Assembler des signaux indépendants en un seul signal composite à partir duquel ils peuvent être restitués. » (https://fr.wiktionary.org/wiki/multiplexer)

1.2 Rappels d'électricité et d'électronique

Tout ceci n'est qu'un nème rappel, je vous invite donc a lire cette partie du paquet de slides $n^{\circ}1$ (Introduction) à partir de la p.22 (page pdf) si vous n'êtes pas à l'aise avec ces principes (adaptation d'impédance, équivalent de Thévenin, AOP, semi-conducteurs).

Propriétés génériques d'un capteur

Bruits et parasites

Conditionnement du signal

Conversion A/N

Dimensionner et analyser

Deuxième partie

Filtrage numérique, analyse du signal de sortie, capteurs

Troisième partie

Les capteurs