ODEJMOWANIE I DODAWANIE

Algorytm dodawania i odejmowania pozycyjnego

Problem: Obliczyć reprezentację $\mathbf{S} = \{..., s_{i+1}, s_i, s_{i-1}, ...\}_{\beta}$ sumy $\mathbf{X} + \mathbf{Y}$ i różnicy $\mathbf{X} - \mathbf{Y}$ liczb $\mathbf{X} = \{..., x_{i+1}, x_i, x_{i-1}, ...\}_{\beta}$, $\mathbf{Y} = \{..., y_{i+1}, y_i, y_{i-1}, ...\}_{\beta}$ danych w notacji pozycyjnej. Jeśli zbiór cyfr jest **standardowy**, $\mathbf{D} = \{0, 1, ..., \beta - 1\}$ a podstawa naturalna, to

Algorytm odejmowania:

- 1. Oblicz na pozycji *i*: $u_i = x_i y_i c_i$
- 2. Jeśli $u_i \ge 0$, to $s_i = u_i$ oraz $c_{i+1} = 0$, w przeciwnym razie: $(u_i < 0)$ $s_i = u_i + \beta$ oraz $c_{i+1} = 1$, albo: $x_i y_i c_i = -\beta c_{i+1} + s_i$, gdzie $x_i, y_i, s_i \in \{0, 1, ..., \beta 1\}, c_i \in \{0, 1\}$

Algorytm dodawania:

- 1. Oblicz na pozycji *i*: $u_i = x_i + y_i + c_i$
- 2. Jeśli $u_i < \beta$, to $s_i = u_i$ oraz $c_{i+1} = 0$, w przeciwnym razie: $(u_i \ge \beta)$ $s_i = u_i \beta$ oraz $c_{i+1} = 1$. albo: $x_i + y_i + c_i = \beta c_{i+1} + s_i$, gdzie $x_i, y_i, s_i \in \{0, 1, ..., \beta 1\}, c_i \in \{0, 1\}$
 - wynik działania na pozycji nie zależy od wartości cyfr z wyższych pozycji
 - przeniesienie c_{i+1} jest jedynym powiązaniem pozycji bieżącej z poprzednią, dla reprezentacji (prawostronnie) skończonych na pozycji "-m" jest $c_{-m} = 0$

Odejmowanie i dodawanie

Odejmowanie

- tworzy system pełny:
 - o umożliwia proceduralne wytworzenie 0 (0=X-X),
 - o umożliwia proceduralne wytworzenie liczby przeciwnej ($\underline{X}=0-X$),
- *dodawanie* przez odejmowanie liczby przeciwnej: $X+Y=^{df}X-((X-X)-Y)$.

Dodawanie – działanie arytmetyczne powszechnie uznawane za podstawowe, chociaż:

- jest łączne i przemienne
- *odejmowanie* przez dodawanie liczby przeciwnej: **X**–**Y**=^{df} **X**+(<u>Y</u>) wymaga **utworzenia** reprezentacji <u>Y</u> liczby przeciwnej do **Y**, ale:
 - o proceduralne wytworzenie "–Y" przez dodawanie nie jest możliwe
 - o proceduralne wytworzenie "0" przez dodawanie nie jest możliwe
 - o w systemach uzupełnieniowych (ang. radix-complement)

$$\underline{X} = 0 - X = Q + Q - X = Q + \overline{X}$$

gdzie $\mathbf{Q} = \{..., \beta - 1, \beta - 1, ...\}$, $\overline{\mathbf{X}} = \{..., \overline{x}_{i+1}, \overline{x}_i, \overline{x}_{i-1}, ...\}_{\beta} = \mathbf{Q} - \mathbf{X}$ to *dopełnienie* liczby \mathbf{X} , a $\mathbf{Q} = \mathbf{ulp} = [0,...,0,1]$ dla reprezentacji (prawostronnie) skończonych albo $\mathbf{Q} = \mathbf{0}$ dla reprezentacji nieskończonych (np. *ułamki okresowe*).

Uniwersalny schemat dodawania i odejmowania

Zamienność dodawania i odejmowania w systemach uzupełnieniowych $(X-Y=X+\underline{Y})$

Zamienność dodawania i odejmowania w systemach uzupełnieniowych $(X - Y = \overline{X} + Y)$

Schemat dodawania i odejmowania w systemach pozycyjnych

 (x_e) , (y_e) – ciąg cyfr rozszerzenia lewostronnego (0 w systemach naturalnych)

Jeśli s_k nie jest cyfrą rozszerzenia dla $\mathbf{S} = \{s_{k-1},...,s_1,s_0\}_{\beta}$, to zakres jest przekroczony

Poprawność wytworzonej sumy lub różnicy

$$|\{(x_e), x_{k-1}, \dots, x_1, x_0\}|_{\beta} = -\sigma(x_e)\beta^k + \sum_{i=0}^{k-1} x_i \beta^i,$$

gdzie $\sigma(z) = \frac{1}{2}(1 + \text{sgn}(2z - \beta + 1)) (\sigma(0) = 0, \sigma(\beta - 1) = 1).$

Suma lub różnica liczb $X = |\mathbf{X} = \{(x_e), x_{k-1}, ..., x_1, x_0\}|_{\beta}$ oraz $Y = |\mathbf{Y} = \{(y_e), y_{k-1}, ..., y_1, y_0\}_{\beta}|$ może być zawsze zapisana poprawnie przy użyciu jednej dodatkowej cyfry:

$$X \pm Y = |\mathbf{X} \pm \mathbf{Y} = \mathbf{S} = \{(s_e), s_k, s_{k-1}, ..., s_1, s_0\}|_{\beta}$$

Jeśli $s_k \neq s_e$, to wynik jest poza zakresem ustalonym dla argumentów, a wskaźnikiem *nadmiaru stałoprzecinkowego* lub *przepełnienia* jest $\sigma(s_k) \neq \sigma(x_k) \pm \sigma(\overline{y}_k) \pm c_{k+1}$.

Odejmowanie liczb w systemie naturalnym przez dodanie uzupełnienia

Odejmowanie liczb $|\{x_{k-1},...,x_1,x_0\}_{\beta}|$ i $|\{y_{k-1},...,y_1,y_0\}_{\beta}|$ jest równoważne dodawaniu $|\{(0),x_{k-1},...,x_1,x_0\}_{U\beta}|$ oraz $|\{(\beta-1),\overline{y}_{k-1},...,\overline{y}_1,\overline{y}_0\}_{U\beta}|+1$ w systemie uzupełnieniowym. Ponieważ $\overline{y}_k=\beta-1$, $x_k=0$, więc różnica jest poprawna ($s_k=0$) jeśli $c_{k+1}=1$.

Praktyczne aspekty wykrywania nadmiaru

W systemie pozycyjnym o podstawie β lewostronne rozszerzenie rozmiaru liczby o 1 pozycję daje β -krotne rozszerzenie zakresu, a ponieważ

$$-2\min(|X|,|Y|) \le X \pm Y \le 2\max(|X|,|Y|)$$
, wiec:

WNIOSEK 1: W rozszerzonej lewostronnie o 1 pozycję reprezentacji naturalnej lub uzupełnieniowej suma nie więcej niż β liczb musi być poprawna.

WNIOSEK 2: Aby wykryć nadmiar w dodawaniu (odejmowaniu) należy dodać operandy rozszerzone lewostronnie o 1 pozycję $x_e = \sigma(x_{k-1})(\beta-1)$, $y_e = \sigma(y_{k-1})(\beta-1)$ i sprawdzić dodatkową pozycję sumy (różnicy) s_e .

Jeśli s_e nie jest cyfrą rozszerzenia dla s_{k-1} , czyli $s_e \neq \sigma(s_{k-1})(\beta-1)$, to w dodawaniu (odejmowaniu) ustalonego zakresu (k-pozycyjnym) wystąpił nadmiar.

Reprezentacja liczby przeciwnej w systemie uzupełnieniowym

W zapisie uzupełnieniowym nieskończony ciąg cyfr rozszerzenia lewostronnego $(\beta-1)$ reprezentuje wartość -1, więc $(\beta-1)+1=(0)$, a zatem $(x_e$ – cyfra rozszerzenia)

Podejście formalne (rozwinięcie prawostronnie skończone) potwierdza powyższy wynik:

Mamy
$$-1 = -\beta^k + (\beta^{k-1} + ... + \beta^1 + \beta^0)(\beta - 1)$$
 i $\sigma(y_{k-1}) = 1 - \sigma(\overline{y}_{k-1})$, wiec

$$(1-1) - \left[-\sigma(y_{k-1})\beta^k + \sum_{i=0}^{k-1} y_i \beta^i \right] = \sigma(y_{k-1})\beta^k + \sum_{i=0}^{k-1} [(\beta-1) - y_i]\beta^i - \beta^k + 1 =$$

$$= \sigma(\overline{y}_{k-1})\beta^k + \sum_{i=0}^{k-1} \overline{y}_i \beta^i + 1$$

czyli $\mathbf{0} - \mathbf{Y} = \overline{\mathbf{Y}} + \mathbf{ulp}$, gdzie $\mathbf{ulp} = \{...001\}$ (jedynka na najniższej pozycji).

Systemy dwójkowe

Reprezentacja liczby przeciwnej w dwójkowym systemie uzupełnieniowym (rozwinięcie skończone)

W szczególnym przypadku β =2 otrzymujemy dla reprezentacji k-pozycyjnej:

$$\underline{X} = (-1 - X) + 1 = [-2^{k-1} + (2^{k-2} + \dots + 2^1 + 2^0) - (-x_{k-1} 2^{k-1} + \sum_{i=0}^{k-2} x_i 2^i)] + 1, \text{ wiec}$$

$$\underline{X} = [-(1 - x_{k-1})2^{k-1} + \sum_{i=0}^{k-2} (1 - x_i)2^i] + 1 = \overline{X} + 1$$

Uwaga: Jeśli **X**={100...0} operacja jest niewykonalna (wystąpi nadmiar) *algorytmy mnemotechniczne*: ("1" – jednostka na najniższej pozycji, *ulp*)

- zaneguj bity oryginału i do uzyskanego kodu dodaj pozycyjnie "1"
- zaneguj bity oryginału, oprócz prawostronnego ciągu zer i poprzedzającej go "1" (propagacja dodawanej "1" kończy się na pozycji najniższej "1" oryginału)

Wykrywanie nadmiaru w systemach dwójkowych uzupełnieniowych

W zapisie uzupełnieniowym rozszerzeniem lewostronnym jest kopia wiodącego bitu, w zapisie naturalnym 0. Na pozycji wiodącej obliczoną sumą lub różnicą jest $s_{k-1} = x_{k-1} \pm y_{k-1} \pm c_{k-1} \mp 2c_k$, na pozycji rozszerzenia $s_k = x_{k-1} \pm y_{k-1} \pm c_k \mp 2c_{k+1}$, co oznacza, że $s_k = s_{k-1}$ tylko wtedy, gdy $c_k = c_{k-1}$, bo ostatni składnik jest parzysty.

Dodawanie i odejmowanie w dwójkowych systemach spolaryzowanych

Gdy
$$N = 2^{k-1}$$
 jest $X_{+N} = \sum_{i=0}^{k-1} x_i 2^i - 2^{k-1} = -(1 - x_{k-1}) 2^{k-1} + \sum_{i=0}^{k-2} x_i 2^i$,
(ii) $\Rightarrow |\{x_{k-1}, x_{k-2}, ..., x_0\}_{U2}| = |\{\overline{x}_{k-1}, x_{k-2}, ..., x_0\}_{+2\uparrow(k-1)}|$

Gdy
$$N = 2^{k-1} - 1$$
, to ponieważ $(2^{k-1} - 1) = \sum_{i=0}^{k-2} 2^i$, więc otrzymamy
$$X_{+N} = \sum_{i=0}^{k-1} x_i 2^i - (2^{k-1} - 1) = x_{k-1} 2^{k-1} + \sum_{i=0}^{k-2} (x_i - 1) 2^i = -\left(-x_{k-1} 2^{k-1} + \sum_{i=0}^{k-2} (1 - x_i) 2^i\right)$$

$$(ii) \Rightarrow -|\{x_{k-1}, x_{k-2}, ..., x_0\}_{U2}| = |\{x_{k-1}, \overline{x}_{k-2}, ..., \overline{x}_0\}_{+2\uparrow(k-1)-1}|$$

Łatwa konwersja (bitowa) na i z kodu U2 uzasadnia celowość algorytmu:

ALGORYTM

- 1. Wykonaj konwersję argumentów na U2 zgodnie z formułą (i) (lub (ii))
- 2. Wykonaj działanie w U2 i sprawdź poprawność (nadmiar)
- 3. Wykonaj konwersję sumy/różnicy zgodnie z formułą (i) (lub (ii))

Logika dodawania i odejmowania w systemie dwójkowym*

Arytmetyczny algorytm dodawania/odejmowania: $x_i \pm y_i \pm c_i = \pm 2c_{i+1} + s_i$ definujący funkcje sumy/różnicy i przeniesienia, prowadzi do następujących wyrażeń logicznych:

• sumy arytmetycznej s_i operandów dwójkowych x_i , y_i , c_i na pozycji i-tej

$$s_i = x_i \oplus y_i \oplus c_i,$$

ullet przeniesienia c_{i+1} na wyższą pozycję

$$c_{i+1} = x_i y_i + (x_i \oplus y_i) c_i = x_i y_i + (x_i + y_i) c_i$$

definiujące sumator pełny (full adder, FA), albo

• różnicy arytmetycznej s_i operandów dwójkowych x_i, y_i, c_i na pozycji i-tej

$$\overline{s}_i = \overline{x}_i \oplus y_i \oplus c_i,$$

 \bullet pożyczki c_{i+1} z wyższej pozycji

$$c_{i+1} = \overline{x}_i y_i + (\overline{x}_i \oplus y_i) c_i = \overline{x}_i y_i + (\overline{x}_i + y_i) c_i$$

definiujące *subtraktor pełny* (full subtracter, FS)

półsumator (half adder, HA) – realizuje funkcje $s_i = x_i \oplus c_i$, $c_{i+1} = x_i c_i$ *półsubtraktor* (half subtracter, HS) – realizuje funkcje $s_i = x_i \oplus c_i$, $c_{i+1} = \overline{x}_i c_i$

Sumator, subtraktor, półsumator

Dodawanie wieloargumentowe w systemach naturalnych (1)

• dodawanie jest przemienne i łączne, więc:

$$X + Y + Z + \dots = \sum_{i=0}^{n-1} x_i \beta^i + \sum_{i=0}^{n-1} y_i \beta^i + \sum_{i=0}^{n-1} z_i \beta^i + \dots = \sum_{i=0}^{n-1} (x_i + y_i + z_i \dots) \beta^i$$

• każda suma wartości cyfr na każdej pozycji i może być zapisana jako liczba wielocyfrowa o wadze takiej jak waga pozycji (β^i):

$$x_i + y_i + ... + z_i = ... + \beta^2 r_{i+2} + \beta v_{i+1} + u_i$$

przy tym
$$x_i, y_i, ..., z_i, u_i, v_{i+1}, r_{i+2} \in \{0, 1, ..., \beta - 1\}$$

• przekształcenie redukuje m składników do 1+log $_{\beta}m$ składników

$$X + Y + \dots = \sum_{i=0}^{n-1} (u_i + v_{i+1} + r_{i+2} \dots) \beta^i = \sum_{i=0}^{n-1} u_i \beta^i + \sum_{i=1}^n v_i \beta^i + \sum_{i=2}^{n+1} r_i \beta^i + \dots$$

- redukcja może być wykonana równolegle na poszczególnych pozycjach, co pozwala szybko zredukować sumowanie m liczb n-pozycyjnych do sumowania dwóch liczb o rozmiarze m+log $_{\beta}m$ pozycji każda
- procedurę można powtarzać rekurencyjnie.

Dodawanie wieloargumentowe w systemach naturalnych (2)

Jeśli jest ≤ β +1 składników jednocyfrowych, to ich suma jest dwucyfrowa:

$$\{v_{i+1}, u_i\} = \{k, x_i + y_i + \dots + z_i - k\beta\} \text{ gdy } 0 \le x_i + y_i + \dots + z_i - k\beta < \beta,$$

Jeśli składników jest więcej procedurę można powtarzać rekurencyjnie, sumując cyfry o tej samej wadze w grupach małej liczności ($\leq \beta+1$)

Dodawanie liczb można wykonać etapami:

- niezależnie obliczyć sumę cyfr o tej samej wadze (na każdej pozycji),
- dodać otrzymane liczby dwucyfrowe, a jeśli tych liczb jest więcej niż $\beta+1$, powtórzyć procedurę .

	χ_{k-1}	χ_{k-2}	X k–3		<i>X-m</i> +3	<i>X</i> –m+2	χ_{-m+1}	X -т
	<i>yk</i> –1	<i>y</i> k–2	<i>y</i> k–3	•••	<i>y-m</i> +3	<i>y</i> -m+2	<i>y-m</i> +1	у -т
		•••	•••	•••	• • •		• • •	
<u>±</u>	Z k-1	Zk-2	Z k-3	•••	Z-m+3	<i>Z</i> –m+2	Z– m + 1	Z-m
	U k–1	U k–2	U k–3		<i>U-m</i> +3	<i>U</i> –m+2	<i>U–m+</i> 1	U -m
$\mathcal{U}k$	V k−1	<i>℧k</i> −2	• • •	\mathcal{U} – m +4	<i>V-m</i> +3	<i>V-m</i> +2	<i>V</i> –m+1	
Sk	Sk-1	Sk-2	•••	•••	S-m+3	S-m+2	S-m+1	S-m

Rekurencyjne dodawanie wieloargumentowe

 \rightarrow jeśli liczba argumentów $k>\beta+1$, to dodawanie można wykonać etapami

		0	0	a_{k-1}	<i>a</i> k–2		a 3	a 2	a 1	a 0
> $eta+1$ argumentów		0	0	b_{k-1}	b_{k-2}		<i>b</i> 3	b_2	b_1	b_0
nme		0	0	<i>Ck</i> –1	<i>Ck</i> –2		C 3	<i>C</i> 2	C 1	C 0
1 arg		0	0	d_{k-1}	<i>d</i> _{k-2}		d_3	<u>d</u> 2	d_1	d_0
+ <i>β</i> <		***	***	•••			•••			
	+	0	0	p_{k-1}	pk-2		рз	p_2	p_1	p_0
		•••	•••	•••	•••	•••	•••	•••	•••	•••
		•••	•••	•••	•••	•••	•••	•••	•••	•••
		0	0	$^{(0)}\mathcal{X}_{k-1}$	$(0)_{\chi_{k-2}}$		$^{(0)}\chi_3$	$^{(0)}\chi_2$	$^{(0)}\chi_1$	$^{(0)}\chi_0$
l arg		0	$^{(1)}\chi_{k-1}$	$(1)_{\chi_{k-2}}$		$^{(1)}\chi_3$	$(1)\chi_2$	$^{(1)}\chi_1$	$(1)\chi_0$	0
$\leq \beta+1$ arg.		$(2)\chi_{k-1}$	$(2)\chi_{k-2}$		$(2)\chi_3$	$(2)\chi_2$	$^{(2)}\chi_1$	$(2)\chi_0$	0	0
	+	• • •	• • •	• • •	• • •	•••	• • •	• • •	•••	•••
arg	• • •	$^{(0)}u_{k+1}$	(0) u_k	$^{(0)}u_{k-1}$	$^{(0)}u_{k-2}$		$^{(0)}u_3$	$^{(0)}u_2$	$^{(0)}u_1$	$(0)\chi_0$
2	•••	$^{(1)}u_k$	$^{(1)}u_{k-1}$	$^{(1)}u_{k-2}$		$^{(1)}u_3$	$^{(1)}u_2$	$^{(1)}u_1$	0	
	•••	<i>Sk</i> +1	Sk	Sk-1	Sk–2		<i>S</i> 3	<i>S</i> 2	$^{(0)}u_1$	$^{(0)}\chi_0$

Dodawanie wieloargumentowe w systemach uzupełnieniowych

W dodawaniu *m* argumentów zakres wyniku jest o log 2*m* bitów większy, więc

- \rightarrow jeśli liczba argumentów $m>\beta+1$ dodawanie należy wykonać rekurencyjnie
- \rightarrow należy użyć co najmniej $\lceil \log_{\beta} m \rceil$ cyfr lewostronnego rozszerzenia

Dodawanie można wykonać dwuetapowo (z użyciem cyfr rozszerzenia):

- na każdej pozycji obliczyć wielopozycyjne (wektorowe) sumy argumentów jednocyfrowych (w dowolnej kolejności są niezależne)
- dodać wielocyfrowe sumy z uwzględnieniem ich wag

	(x_e)		χ_{k-1}	Xk-2	•••	X 3	<i>X</i> 2	χ_1	χ_0
•••	(y_e)	(y_e)	y_{k-1}	<i>y</i> _{k-2}	•••	y 3	y_2	y_1	y_0
•••	1	•••	•••		•••	•••			
+	(z_e)	(z_e)	Zk–1	Zk-2	•••	Z 3	Z 2	Z 1	Z 0
	•••	•••	•••	•••		•••	•••	•••	•••
	()	()	 U k–1	 Uk-2		 u 3	 U2	 U1	 u o

Dodawanie wieloargumentowe w systemach uzupełnieniowych

W zapisie **uzupełnieniowym** należy użyć $\lceil \log_{\beta} m \rceil$ cyfr lewostronnego rozszerzenia każdego argumentu (suma ma zakres $\lceil \log_{\beta} m \rceil$ razy większy niż argument).

Alternatywą jest przekodowanie argumentów i korekcja sumy:

- dodanie do k-cyfrowej liczby całkowitej w zapisie uzupełnieniowym wartości $\frac{1}{2}\beta^k$ zamienia każdy argument na liczbę dodatnią
- suma tak otrzymanych m liczb dodatnich wymaga korekcyjnego odjęcia wartości ½ $m\beta^k$, czyli liczby o wartości ½ $m\beta$ i wadze β^{k-1}
- zapis liczby ½ $m\beta$ wymaga użycia tylko 1+ $\lceil \log_{\beta} m/2 \rceil$ cyfr

W dwójkowym systemie uzupełnieniowym (U2)

wyeliminowanie cyfr (bitów) lewostronnego rozszerzenia w dodawaniu *m* liczb można wykonać jako **zanegowanie wiodącego bitu** każdego operandu, bo:

$$|\mathbf{X}| = -x_{k-1}2^{k-1} + \sum_{i=0}^{k-1} x_i 2^i = -2^{k-1} + [(1-x_{k-1})2^{k-1} + x_{k-2}2^{k-2} + x_{k-3}2^{k-3} + \dots + x_0]$$

więc $|\mathbf{X} = \{x_{k-1}, x_{k-2}, ..., x_0\}|_{U^2} = |\{\overline{x}_{k-1}, x_{k-2}, ..., x_0\}|_{2} = \mathbf{X}'| - 2^{k-1}$, oraz odjęcie liczby $m 2^{k-1}$.

MNOŻENIE

Skalowanie w systemach naturalnych i uzupełnieniowych

Skalowanie ("przesuwanie przecinka") – mnożenie przez całkowitą potęgę podstawy β^k

- skalowania można składać ponieważ $\beta^k X = \beta ... \beta \beta X$
- mnożenie przez całkowitą potęgę podstawy powoduje cykliczne przemieszczenie cyfr w lewo (potęga dodatnia), lub w prawo (potęga ujemna), ponieważ

$$\beta^r \sum x_i \beta^i = \sum x_i \beta^{i+r} \sum x_{i-r} \beta^i$$

W reprezentacji ograniczonej, jeśli *najwyższą pozycją* liczby *nie jest* cyfra rozszerzenia $x_k = \sigma(x_{k-1})(\beta - 1)$, to w wyniku skalowania przez β wystąpi *nadmiar*:

$$\mathbf{X}_{e} = \{ \sigma(x_{k-1})(\beta - 1), x_{k-1}, x_{k-2}, ..., x_{0} \} \Rightarrow \beta \mathbf{X}_{e} = \{ x_{k-1}, x_{k-2}, ..., x_{0}, 0 \},$$

Wynik skalowania odwrotnego (mnożenia przez β^{-1}) jest zawsze poprawny:

$$\mathbf{X} = \{x_{k-1}, x_{k-2}, ..., x_1, x_0\} \Rightarrow \beta^{-1}\mathbf{X} = \{\sigma(x_{k-1})(\beta - 1), x_{k-1}, x_{k-2}, ..., x_1\}$$

W systemie *dwójkowym* (U2) $\sigma(x_{k-1}) = x_{k-1}$, więc

$$\mathbf{X} = \{x_{k-1}, x_{k-2}, \dots, x_1, x_0\}_{U2} \Rightarrow 2^{-1}\mathbf{X} = \{x_{k-1}, x_{k-1}, x_{k-2}, \dots, x_1\}$$

W reprezentacji prawostronnie skończonej każdą liczbę można wyrazić jako skalowaną liczbę całkowitą: $X = \sum_{i=-s} x_i \beta^i = \beta^{-s} \sum_{i=0} x_{i+s} \beta^i = \beta^{-s} X_C$, $x_i \in \{0,1,...,\beta-1\}$.

Skalowanie jako złożenie przesunięć

Ponieważ $\beta^{k=\sum x_i 2^i} = \beta^{x_0} \beta^{2x_1} \beta^{4x_2}$... więc *mnożenie* przez β^k jest *złożeniem przesunięć* w lewo gdy k>0, albo w prawo gdy k<0

W systemie dwójkowym mnożenie przez podstawę jest sumą liczby i jej samej:

$$x_i + x_i + c_i = 2c_{i+1} + s_i \implies c_{i+1} = x_i, \ s_i = c_i \implies s_{i+1} = x_i$$

W systemie uzupełnieniowym, przesunięcie logiczne (logical shift):

$$\mathbf{X}_{e} = \{x_{k-1}, x_{k-1}, x_{k-2}, ..., x_{1}, x_{0}\} \Rightarrow \mathbf{X}_{e} + \mathbf{X}_{e} = \{x_{k-1}, x_{k-2}, ..., x_{1}, x_{0}, 0\},$$

a przesunięcie arytmetyczne (arithmetic shift) (mnożenie przez 2^{-1}) daje w wyniku:

$$\mathbf{X}_{e} = \{x_{k-1}, x_{k-2}, ..., x_{1}, x_{0}\} \Rightarrow \frac{1}{2}\mathbf{X}_{e} = \{x_{k-1}, x_{k-1}, x_{k-2}, ..., x_{1}\}$$

Skalowanie iloczynu

W reprezentacji *prawostronnie skończonej* każdą liczbę można wyrazić jako skalowaną liczbę całkowitą: $Z = \sum_{i=-s} z_i \beta^i = \beta^{-s} \sum_{i=0} z_{i+s} \beta^i = \beta^{-s} Z_C$, $z_i \in \{0,1,...,\beta-1\}$, gdzie s określa położenie przecinka pozycyjnego (s pozycji w lewo od najniższej). Iloczynem $\mathbf{A} = \{..., a_{i+1}, a_i, ..., a_{-s}\}_{\beta}$ i $\mathbf{X} = \{..., x_{j+1}, x_j, ..., x_{-r}\}_{\beta}$ jest $AX = (\beta^{-s} A_C)(\beta^{-r} X_C) = \beta^{-(s+r)} A_C X_C$.

Iloczynem liczb całkowitych $A = \{a_{s-1},...,a_1,a_0\}_{\beta} \mid \text{oraz } X = |\{x_{k-1},...,x_1,x_0\}_{\beta} \mid \text{jest} \}$

$$A \cdot X = A \cdot \left(\sum_{i=0}^{k-1} x_i \beta^i\right) = \sum_{i=0}^{k-1} \beta^i (x_i A)$$

Iloczyn częściowy $x_iA = x_ia_0\beta^0 + x_ia_1\beta^1 + x_ia_2\beta^2 + ... + x_ia_{s-1}\beta^{s-1}$ jest wielokrotnością mnożnej (ang. multiplicand) przez wartość cyfry mnożnika (ang. multiplier) i jaki taki jest sumą skalowanych iloczynów elementarnych x_ia_j , z których każdy może być liczbą dwucyfrową $x_ia_j = u_{i,j} + v_{i,j+1}\beta$, gdzie $u_{i,j} = x_ia_j \mod \beta$, $v_{i,j} = x_ia_j \inf \beta$ Algorytm pisemny – akumulacja skalowanych iloczynów częściowych ($S_0 = 0$)

$$S_{i+1} = S_i + \beta^i(x_i A), \quad i = 0, 1, ..., k-1, \quad S_k = A \cdot X$$

Sekwencyjny algorytm mnożenia w systemie naturalnym

Iloczyn elementarny $x_i a_j = u_{i,j} + v_{i,j+1} \beta$ można interpretować jako dwa wektory cyfr reprezentujących liczby w zapisie pozycyjnym $\{u_{i,s-1},...,u_{i,1},u_{i,0}\}$, $\{v_{i,s},...,v_{i,2},v_{i,1}\}$.

Algorytm dodaj-przesuń (add-and-shift) – skalowanie sum częściowych

i wtedy
$$P_i = \beta^{-i} S_i$$

$$P_{i+1} = \beta^{-1} (P_i + x_i A)$$

$$\beta^k P_k = P_0 + A \{ \sum_{i=0}^{k-1} x_i \beta^i \} = A \cdot X$$

Dodawanie iloczynów częściowych jest dodawaniem wieloargumentowym.

Mnożenie sekwencyjne w systemach uzupełnieniowych

Wartością mnożnika w systemie uzupełnieniowym jest

$$X = -\sigma(x_{k-1})\beta^{k} + \sum_{i=0}^{k-1} x_{i}\beta^{i}$$
,

 $\sigma(x_{k-1}) = \frac{1}{2}(1 + \text{sgn}(2x_{k-1} + 1 - \beta))$ – funkcja znaku (1 gdy X<0 albo 0 gdy X\ge 0). Zatem:

$$A \cdot X = A \cdot \left(-\sigma(x_{k-1})\beta^k + \sum_{i=0}^{k-1} x_i \beta^i \right) = \sigma(x_{k-1})(-A)\beta^{k-1} + \sum_{i=0}^{k-1} \beta^i(x_i A)$$

WNIOSKI:

W mnożeniu w systemach uzupełnieniowych rozszerzenie mnożnika zapewnia, że wartością najwyższej cyfry jest zawsze 0 albo -1 (" $\beta-1$ ").

W mnożeniu przez k-cyfrowy mnożnik należy użyć k cyfr lewostronnego rozszerzenia mnożnej (akumulacja iloczynów jest na k+m pozycjach)

Inny sposób:

Funkcja $z_{k-1} = x_{k-1} - \beta \sigma(x_{k-1})$ opisuje przekształcenie zbioru $\mathbf{D} = \{0, 1, ..., \beta - 1\}$ na nieredundantny zbiór cyfr znakowanych $\mathbf{D}_S = \{-\frac{1}{2}\beta, ..., -1, 0, 1, ..., \frac{1}{2}\beta - 1\}$

Mnożenie pisemne w dziesiętnym systemie uzupełnieniowym - przykład

bez rozszerzenia mnożnika

$$A=-124$$

$$X=-231$$

$$x_0=9$$

$$x_1=6$$

$$x_2=-3$$

$$X \cdot A$$

$$A=124$$

$$X=-231$$

$$x_0=9$$

$$x_1=6$$

$$x_2=-3$$

$$X \cdot A$$

z rozszerzeniem mnożnika

$$A=-124$$

$$X=-231$$

$$x_0=9$$

$$x_1=6$$

$$x_2=7$$

$$x_3=-1$$

$$X \cdot A$$

$$A=124$$

$$X=-231$$

$$x_0=9$$

$$x_1=6$$

$$x_2=7$$

$$x_3=-1$$

$$X \cdot A$$

0	0	0	0	0	1	2	4
				9	7	6	9
0	0	0	0	1	1	1	6
0	0	0	0	7	4	4	
0	0	0	8	6	8		
9	9	8	7	6			
9	9	9	7	1	3	5	6

Algorytm mnożenia sekwencyjnego w systemach uzupełnieniowych

Algorytm mnożenia dodaj-przesuń (add-and-shift) – $[x_{k-1} = (\beta - 1)\sigma(x_{k-1})]$

0.
$$x_k = (\beta - 1)\sigma(x_{k-1})$$
 ; dopisz pozycję rozszerzenia
1. $P_0 = 0$, $i = 0$
2. $M_i = x_i A$; oblicz iloczyn częściowy
3. $P_{i+1} = \beta^{-1}(P_i + M_i)$; przeskaluj (przesuń) sumę częściową
4. $i++$; zwiększ i
5. **if** $i < k$ **goto** 3 ; powtarzaj do przedostatniego
6. $P_{k+1} = P_k + \sigma(x_k)(-A)$; dodaj dopełnienie mnożnej lub 0
7. $A \cdot X = \beta^k P_{k+1}$; iloczyn

!! *UWAGA*: Wszystkie sumy częściowe są przesuwane w prawo więc muszą być obliczane z lewostronnym rozszerzeniem

Mnożenie "dodaj-przesuń" w dziesiętnym systemie uzupełnieniowym

$$\begin{array}{c|c}
X = -231 \\
\hline
x_0 = 9 \\
+9A \\
\rightarrow \\
x_1 = 6 \\
+6A \\
\rightarrow \\
x_2 = -3 \\
-3A \\
\end{array}$$

A = -124

 $X \cdot A$

$$\begin{array}{ccc}
A = 124 \\
X = -231 \\
\hline
x_0 = 9 & +9A \\
\rightarrow & \\
x_1 = 6 & +6A \\
\hline
& \rightarrow & \\
x_2 = -3 & -3A \\
\hline
X \cdot A & \\
\hline$$

$$\begin{array}{ccc}
 & \rightarrow \\
 \hline
 x_2 = 7 & +7A \\
 & \rightarrow \\
 \hline
 x_3 = -1 & -A \\
 \hline
 X \cdot A
\end{array}$$

				••			
0	0	0	8	5	5	6	
0	0	8	_	_			
0	_			3		6	
0	0	0	9	5 6	3	5	6
9	9	8	7	6			
9	9	9	7	1	3	5	6

Mnożenie maszynowe w dwójkowych systemach uzupełnieniowych

W dwójkowych systemach uzupełnieniowych $\sigma(x_{k-1}) = x_{k-1}$, więc

$$X = -x_{k-1}2^{k-1} + \sum_{i=0}^{k-2} x_i 2^i$$

1.
$$P_0=0$$
, $i=0$
2. $M_i=x_iA$; oblicz iloczyn częściowy
3. $S_{i+1}=P_i+M_i$; oblicz sumę częściową
4. $P_{i+1}=2^{-1}S_{i+1}$; przeskaluj sumę (przesuń w prawo)
5. $i++$; zwiększ i
6. **if** $i < k-1$ **goto** 3 ; powtarzaj do przedostatniego
7. $P_k=P_{k-1}+x_{k-1}(-A)$; dodaj dopełnienie mnożnej lub 0
8. $A \cdot X=2^{k-1}P_k$; iloczyn

działania na wszystkich pozycjach sum częściowych

Mnożenie w dwójkowym systemie uzupełnieniowym (U2)

Mnożenie pisemne

A = -7			1	1	1	1	1	0	0	1
X=-5							1	0	1	1
$x_0 = 1$			1	1	1	1	1	0	0	1
$x_1 = 1$			1	1	1	1	0	0	1	
$x_2=0$			0	0	0	0	0	0		
$x_3 = 1$	(-A)		0	0	1	1	1			
$X \cdot A = 35$			0	0	1	0	0	0	1	1
A = -7				1	0	0	1			
X=-5				1	0	1	1			
$P_0 = 0$			0	0	0	0	0	_		
$x_0 = 1$	+ <i>A</i>	+	1	1	0	0	1			
			1	1	0	0	1	_		
(Shr)										
(-111)	\rightarrow		1	1	1	0	0	1		
$x_1 = 1$	<i>→</i> + <i>A</i>	+	1 1	1	1 0	0	0	0		
		+								
		+	1	1	0	0	1	0	1	
	+A	+	1 1	1 0	0	0	1	0	1 1	. 1
$x_1 = 1$	+ <i>A</i> →	+	1 1 1	1 0 1	0 1 0	0 0 1	1 1 0	0 1 1		1

							1.4	1110	20111	۲ı
A = +5						0	1	0	1	
X=-3						1	1	0	1	_
$x_0 = 1$		0	0	0	0	0	1	0	1	='
$x_1 = 0$		0	0	0	0	0	0	0	0	
$x_2 = 1$		0	0	0	1	0	1			
$x_3 = 1$	(-A)	1	1	0	1	1	0	0	0	
$X \cdot A = -15$		1	1	1	1	0	0	0	1	_

Mnożenie maszynowe

							IV	1no	zeni	e ma
A = +5				0	1	0	1			
X=-3				1	1	0	1			
$P_0 = 0$			0	0	0	0	0			
$x_0 = 1$	+ <i>A</i>		0	0	1	0	1			
			0	0	1	0	1	_		
	\rightarrow		0	0	0	1	0	1		
$x_1 = 0$	\rightarrow		0	0	0	0	1	0	1	
$x_2 = 1$	+ <i>A</i>	+	0	0	1	0	1	0	0	
			0	0	1	1	0	0	1	="
	\rightarrow		0	0	0	1	1	0	0	1
$x_3 = 1$	-A	+	1	1	0	1	1	0	0	0
$X \cdot A = -15$			1	1	1	1	0	0	0	1

Uproszczenie mnożenia w dwójkowym systemie uzupełnieniowym

W dwójkowym systemie uzupełnieniowym

$$\left[-x_{k-1}2^{k-1} + \sum_{i=0}^{k-2} x_i 2^i\right] + 2^{k-1} = (1 - x_{k-1})2^{k-1} + \sum_{i=0}^{k-2} x_i 2^i \ge 0$$

Iloczyn można więc przedstawić jako sumę przekształconych iloczynów częściowych (x_iA+2^{k-1}) 2^i pomniejszoną o sumę ($2^{k-1}+2^{k-1}+...+2^{k+m-1}$):

$$AX = -2^{m-1}x_{m-1}A + \sum_{i=0}^{m-1} 2^{i}x_{i}A = 2^{m-1}(x_{m-1}(-A)^{+} - 2^{k-1}) + \sum_{i=0}^{m-1} 2^{i}(x_{i}A^{+} - 2^{k-1}).$$

a zatem:

$$AX = \left[2^{m-1}(x_{m-1}(-A)^+) + \sum_{i=0}^{m-1} 2^i(x_i A^+)\right] + \left[-2^{m+k-1} + 2^{k-1}\right]$$

 \rightarrow algorytm (Baugh'a-Wooley'a)

- zastąpić bit wiodący iloczynu częściowego (mnożnej, jej uzupełnienia lub zera) jego dopełnieniem (zero→10...00)
- dodać stałą korekcyjną $2^{k-1} 2^{m+k-1}$ ("1" na pozycji najwyższego bitu mnożnej i pozycjach wyższych od najwyższego bitu ostatniego iloczynu)

Schemat dodawania iloczynów częściowych w kodzie U2

b)		Α	9	8	7	6	5	4	3	2	1	0	
							•	o	o	o	o	0	
						•	o	o	o	o	o		
					•	o	o	o	o	o			
				•	o	o	o	o	o				
			•	o	o	o	o	o					
		•	0	0	0	0	0						
+	(1)	0	0	0	0	0	1						

Matryca iloczynów częściowych: a) z rozszerzeniem (* – bit najwyższy i jego kopia), b) bez rozszerzeń (• – dopełnienie najbardziej znaczącego bitu)

1	1	1	1	1	0	1	1	0	1	
0	0	0	0	0	0	0	0	0		
1	1	1	0	1	1	0	1			
1	0	1	0	0	1	1				
	0	0	0	1	1	1	0	0	1	

				0	0	1	1	0	1
			1	0	0	0	0	0	
		0	0	1 0	1	0	1		
	1	1	0	0	1	1			
(1)	0	0	0	1					
(0)	0	0	0	1	1	1	0	0	1

Schemat mnożenia binarnego metodą "dodaj-przesuń"

 $A \leftarrow A$, $X/P \leftarrow X$, $S/P \leftarrow 0$, i=1.

Krok 1. S/P \leftarrow (S/P) + x_i (A)

$$Krok\ 2.\ S/P \mid |X/P \leftarrow \beta^{-1}(S/P) \mid |X/P) = S-R(S/P) \mid |X/P|$$

Krok 3. i=i+1. Jeśli i < k+m, wróć do kroku 1.

Wynik:
$$A \cdot X = (S/P \mid |X/P)$$

Schemat blokowy układu mnożącego metodą "dodaj-przesuń" (ang. add-and-shift) : S – rejestr sum częściowych, X – rejestr mnożnika, A – rejestr mnożnej, P – rejestr iloczynu

Zakres iloczynu w systemie naturalnym i uzupełnieniowym

Wynik mnożenia *k*-pozycyjnej mnożnej przez *p*-pozycyjny mnożnik można zawsze zapisać na *k*+*p* pozycjach iloczynu.

$$-2^{k-1} \le A < 2^{k-1}, -2^{p-1} \le X < 2^{p-1} \Longrightarrow -2^{k+p-2} < AX \le 2^{k+p-2}$$

(A oraz X są argumentami przeskalowanymi do wartości całkowitych)

W układach cyfrowych wymaga się często, aby operandy (argumenty i wynik działania) były takiego samego rozmiaru. Przekroczenie zakresu odpowiadającego rozmiarowi operandu jest zwykle sygnalizowane jako nadmiar.

Wyróżnia się ponadto:

- mnożenie *dolne* wynikiem jest niższa część (połowa bitów) iloczynu sygnalizacja nadmiaru jeśli wyższe bity nie są rozszerzeniem
- mnożenie górne wynikiem jest wyższa część (połowa bitów) iloczynu, odpowiada mnożeniu ułamków z obcięciem niższych bitów, nadmiar nie może wystąpić
- mnożenie z normalizacją ustalona liczba bitów części całkowitej

Redukcja liczby iloczynów częściowych – przekodowanie Booth'a

(Andrew D.Booth, 1949)

• zastąpienie serii dodawań jednym odejmowaniem i jednym dodawaniem

$$2^{s-1} + 2^{s-2} + ... + 2^{l+1} + 2^{l} = 2^{s} - 2^{l}$$

$$|\{...0[11...11]0...\}_{U2}| = |\{...1[00...00]0...\}_{U2}| - |\{...0[00...01]0...\}_{U2},$$

$$|\{...0[11...11]0...\}_{SD2}| = |\{...1[00...0\underline{1}]0...\}_{SD2}|$$

- → reguła Booth'a = *przekodowanie mnożnika* na kod SD
- reprezentacja w systemie NB lub U2 jest reprezentacją w systemie SD, ale przekodowanie według reguły Booth'a:
 - U2 \rightarrow SD wykonalne, bo [x1...11]0...= [(1-x)0...00]0... [00...01]0...
 - NB \rightarrow SD niewykonalne bez rozszerzenia gdy {1,1,...,1,0,x,...}, bo $x \ge 0 \land z \ne 1 \Rightarrow |\{1,x,...,x,x\}_{SD}| > |\{z,y,y,...,y\}_{SD}|$
 - \Rightarrow konieczne rozszerzenie $\{1,...,1,0,x,...\}_{NB} = \{0,1,...,1,0,x,...\}_{U2}$

Algorytm Booth'a

Uzasadnienie teoretyczne – równoważność X=2X-X ($x_{i>n-1}=x_e=x_{n-1}$, $x_{i<0}=0$)

$$X = \left[\sum_{i=n+1}^{\infty} x_{n-1} 2^{i} + \sum_{i=0}^{n-1} x_{i} 2^{i+1}\right] - \left[\sum_{i=n}^{\infty} x_{n-1} 2^{i} + \sum_{i=0}^{n-1} x_{i} 2^{i}\right] = \sum_{i=0}^{n-1} (x_{i-1} - x_{i}) 2^{i} = 2\sum_{i=0}^{n-2} (x_{i} - x_{i+1}) 2^{i} - x_{0}$$

			(2^{n-1})		(2^{i+1})	(2^{i})	(2^{i-1})		(2^1)	(2^0)	
	$2X_{U2}$	<i>Xn</i> −1	<i>Xn−</i> 2	•••	χ_i	<i>Xi</i> –1	<i>Xi</i> −2	•••	χ_0	0	$(x_{-1}=0)$
	$-X_{U2}$	<i>—x</i> _{n−1}	<i>—x</i> _{n−1}	•••	<i>−xi</i> +1	$-\chi_i$	− <i>Xi</i> −1	•••	$-x_1$	- x0	
proste	γ_{SD2}	(0)	<i>y</i> n–1	• • •	y_{i+1}	y_i	<i>yi</i> −1	•••	y_1	y_0	$y_i = x_{i-1} - x_i \in \{\underline{1}, 0, 1\}$
przesunięte	$2Y_{\text{SD2}}+x_0$	(0)	у п–2	•••	y_i	<i>yi</i> −1	<i>yi</i> −2	•••	y_0	- x ₀	$y_i = x_i - x_{i+1} \in \{\underline{1}, 0, 1\}$

Wady:

– nieefektywne kodowanie izolowanych jedynek –...010101(0) \rightarrow ...111111.

Sąsiednie cyfry y_{i+1}, y_i są różne lub równe 00 (00,01,10,0<u>1</u>,<u>1</u>0,1<u>1</u>,<u>1</u>1), ale 1<u>1</u>=01 i <u>1</u>1=0<u>1</u>

WNIOSEK (przekodowanie Booth'a Mc Sorley'a):

Możliwe jest przekodowanie mnożnika, które zawiera co najmniej połowę zer.

Maksymalizacja liczby zer: przekodowanie kanoniczne (czasochłonne)

⁻ zmienna liczba działań arytmetycznych, zależna od kodu liczby,

Usprawnienie – algorytm Booth'a-McSorley'a

Wynik algorytmu Booth'a można przekodować tak, aby w *każdej parze* sąsiednich cyfr wystąpiło *najmniej jedno zero* (00,01,10,0<u>1</u>,<u>1</u>0).

Wynikiem przekodowania na kolejnych parach pozycji yi+1, yi jest:

<i>3</i>	•		(2^{k-1})	(2^{k-2})		(2^{i+1})					(2^2)	(2^1)	(2^{0})
	2XU2	x_{k-1} x_{k-1}											
	$-X_{U2}$	$-x_{k-1}$ $-x_{k-1}$	$-x_{k-1}$	<i>—Xk</i> −2	• • •	<i>−xi</i> +1	$-x_i$	$-\chi_i$		•••	<i>−</i> x ₂	$-x_1$	- x ₀
proste	γ_{SD2}	(0)	<i>y</i> k–1	<i>y</i> k–2	• • •	<i>yi</i> +1	Уi	<i>yi</i> −1	<i>yi</i> –2	• • •		y_1	y_0
przesunięte	$2Y_{\text{SD2}}+x_0$	(0)	<i>y</i> k–2	y k–3	•••	Уi	<i>yi</i> −1	<i>yi</i> −2	y i−3		y_1	y 0	χ_0

$$2^{i+1}(x_i-x_{i+1})+2^{i}(x_{i-1}-x_i)=2^{i}[-2x_{i+1}+x_i+x_{i-1})]=2^{i}(2y_{i+1}+y_i)\in\{\underline{2},\underline{1},0,1,2\}$$

Jeśli *i* jest parzyste (2*s*), to $z_s = 2y_{2s+1} + y_{2i} = \text{wartość cyfry liczby Z w bazie 2}^2 = 4$:

$$\sum_{i=0}^{n-1} (x_{i-1} - x_i) 2^i = \sum_{s=0}^{n/2} (2y_{2s+1} + y_{2s}) 2^{2s} = \sum_{s=0}^{n/2} z_s 4^s$$

Jeśli *i* jest nieparzyste (2s+1), to $z_s=2y_{2s+2}+y_{2s+1}=$ wartość cyfry liczby 2Z w bazie $2^2=4$:

$$\sum_{i=0}^{n-1} (x_{i-1} - x_i) 2^i = \sum_{s=0}^{n/2} (x_{2s} + x_{s2+1} - 2x_{2s+2}) 2^{2s+1} - x_0 = \sum_{s=0}^{n/2} (2y_{2s+2} + y_{2s+1}) 2^{2s+1} - x_0 = 2\sum_{s=0}^{n/2} z_s 4^s - x_0$$

Algorytm Booth'a i Booth'a-McSorley'a - przykłady

 $X = \{(1), 1, 0, 1, 1, 0, 0, 1\}$ _{U2} – w bazie 2 – $Y = \{\underline{1}, 1, 0, \underline{1}, 0, 1, \underline{1}\}$ _{SD2}

– alternatywne w bazie 4 – $\mathbf{Y} = \{0\underline{1}, 10, \underline{1}0, 01\}_{SD4}$

A = -19	1 0 1 1 0 1	1 0 1 1 0 1
X = -39	<u>1</u> 1 0 <u>1</u> 0 1 <u>1</u>	0 <u>1</u> 1 0 <u>1</u> 0 0 1
-A	0 0 0 0 0 0 0 0 0 1 1 0 0 1 1	A 1111111 1 0 1 1 0 1
+ <i>A</i>	<mark>1 1 1 1 1 1</mark> 1 0 1 1 0 1	-2 <i>A</i>
0	<mark>0 0 0 0 0</mark> 0 0 0 0 0 0	2 <i>A</i>
- A	0 0 0 0 0 0 1 0 0 1 1	-A 0 0 1 0 0 1 1
0	<mark>0 0 0 </mark> 0 0 0 0 0 0	0 0 0 1 0 1 1 1 0 0 1 0 1
+ <i>A</i>	<mark>1 </mark>	
-A	0 0 1 0 0 1 1	
$\overline{XA} = 741$	0 0 0 1 0 1 1 1 0 0 1 0 1	

Uwaga: W polach zacienionych wpisano cyfry rozszerzenia znakowego.

Alternatywny algorytm Booth'a i Booth'a-McSorley'a - przykłady

Efektem przekodowania przesuniętego (alternatywnego) jest ustalenie początkowej wartości sumy iloczynów częściowych jako $P_0 = -x_0 A$ zamiast $P_0 = 0$.

$$X=\{1,1,0,1,0,1\}$$
u2 — w bazie 2 — $Y=\{0,\underline{1},1,\underline{1},1\}$ SD2, — alternatywnie w bazie 4 — $Y=\{00,0\underline{1},0\underline{1}\}$ SD4, $P_0=-x_0A$

	$\mathbf{Y}^{(2R)}$		$\mathbf{Y}^{(4\mathrm{R})}$
A = -3		1 1 1 1 0 1	1 1 1 1 0 1
X = -11		0 <u>1</u> 1 <u>1</u> 1	0 0 0 <u>1</u> 0 <u>1</u>
P_0 =	$-x_0A$	0 0 0 0 0 0 0 0 0 1 1	$-x_0A$ 0 0 0 0 0 0 1 1
	+2 <i>A</i>	1 1 1 1 1 1 1 0 1	$-2A \mid 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1$
	-2 <i>A</i>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-2A \mid 0 \ 0 \ 0 \ 1 \ 1$
	+2 <i>A</i>	1 1 1 1 1 0 1	0 0 0 1 0 0 0 0 1
	-2 <i>A</i>	0 0 0 0 0 1 1	
XA = 33		$m{0}^{\ 0} \ \ 0 \ \ 0 \ \ 0 \ \ 1 \ \ 0 \ \ 0 \ \ 0 \ \ 1$	

Uwaga: W polach zacienionych wpisano cyfry rozszerzenia znakowego.

REALIZACJA PROGRAMOWA

Programowa realizacja działań rozszerzonej precyzji

Słowo procesora o rozmiarze *n* bitów reprezentuje **jedną cyfrę** systemu liczbowego o podstawie **2**^{*n*}

Wniosek:

W systemie naturalnym:

działania rozszerzonej precyzji można opisać jako sekwencję powiązanych ze sobą działań jednopozycyjnych

W systemie uzupełnieniowym:

konieczne uwzględnienie cyfr rozszerzenia nieskończonego

W dodawaniu i odejmowaniu – przeniesienie można interpretować jako cyfrę wyższej wagi o wartości 0 lub 1

W mnożeniu – iloczyn liczb 1-cyfrowych jest liczbą 2-cyfrową (wyjątek: system dwójkowy) iloczyn dolny – niższa cyfra iloczynu 2-cyfrowego iloczyn górny – wyższa cyfra iloczynu 2-cyfrowego

Dodawanie i odejmowanie rozszerzonej precyzji

- architektura IA-32, cyfra=słowo 32-bitowe, konwencja LE (*little endian*)
- wskaźniki i rozmiar argumentów i wyniku przekazywane przez stos

```
.type exadd @function
                                           # definicja funkcji
exsub: push %ebp
         movl %esp, %ebp
                                           # wskaźnik parametrów wywołania
         mov1 8(,%ebp,4), %ecx
                                           # rozmiar argumentów ze stosu
         movl 12(,%ebp,4), %edx
                                           # adres odjemnej ze stosu
         movl 16(,%ebp,4), %ebx
                                           # adres odjemnika ze stosu
         mov1 20(,%ebp,4), %edi
                                           # adres różnicy/sumy ze stosu
         movl $-1, %esi
                                           # wartość początkowa wskaźnika
         c
                                           # ustawienie CF=0
         inc %esi
next:
         mov1 (%ebx,%esi,4), %eax
         sbb %eax, (%edx,%esi,4)
                                           # w dodawaniu adc zamiast sbb
         movl (%ebx,%esi,4), %eax
         loop next
                                           # licznik pętli w %ecx
         mov1 %ebp, %esp
                                           # przywrócenie wskaźników
         pop %ebp
         ret
                                           # wskaźnik nadmiaru w OF lub CF
```

Zmiana znaku i wartość bezwzględna liczby rozszerzonej precyzji

- architektura IA-32, cyfra=słowo 32-bitowe, konwencja LE (*little endian*)
- wskaźnik i rozmiar argumentu przekazywane przez stos

```
.type exabs @function
                                             # definicja funkcji
exabs: push %ebp
                                             # .....
          mov1 %esp, %ebp
                                             # wskaźnik parametrów wywołania
          mov1 8(,%ebp,4), %ecx
                                             # rozmiar argumentu ze stosu
          movl 12(,%ebp,4), %ebx
                                             # adres argumentu ze stosu
          add $0, -4(%ebx,%ecx,4)
                                             # sprawdzenie znaku liczby
          ige end
                                             # koniec, jeśli dodatnia
                                             # zmiana znaku
                                             # wartość początkowa wskaźnika
          movl $-1, \%esi
          stc
                                             # ustawienie CF=1 (ulp)
          inc %esi
next:
          notl (%ebx,%esi,4)
                                             # dopełnienie (negacja bitów) cyfry
          adc $0, (%edx,%esi,4)
                                             # dodawanie ulp
          loop next
                                             # licznik pętli w %ecx
end:
          movl %ebp, %esp
                                             # przywrócenie wskaźników
          pop %ebp
          ret
                                             # wskaźnik nadmiaru w OF
```

Dekrementacja/inkrementacja liczby rozszerzonej precyzji

• architektura IA-32, cyfra=słowo 32-bitowe, konwencja LE (*little endian*)

```
• wskaźniki argumentów i wskaźnik wyniku przekazywane przez stos
    .tvpe exdec @function
                                                # definicja funkcji
    exdec: push %ebp
             mov1 %esp, %ebp
                                                # wskaźnik parametrów wywołania
             mov1 8(,%ebp,4), %ecx
                                                # rozmiar argumentu ze stosu
             movl 12(,%ebp,4), %ebx
                                                # adres argumentu ze stosu
             movl $-1, %esi
                                                # wartość początkowa wskaźnika
              stc
                                                # ustawienie CF=1 (ulp)
             inc %esi
    next:
              sbb $0, (%edx,%esi,4)
                                                # inkrementacja: adc zamiast sbb
              loop next
                                                # licznik pętli w %ecx
             movl %ebp, %esp
    end:
                                                # przywrócenie wskaźników
              pop %ebp
              ret
                                                # wskaźnik nadmiaru w OF
albo:
               c
                                                  # dekrementacja przez dodanie -1
               inc %esi
     next:
               adc $-1, (%edx,%esi,4)
                                                  \# -1=(1) ciąg "1" takiej długości
               loop next
```

Mnożenie rozszerzonej precyzji – kontekst funkcji

- system naturalny
- architektura IA-32, cyfra=słowo 32-bitowe, konwencja LE (*little endian*)
- wskaźniki argumentów i wskaźnik wyniku przekazywane przez stos

```
.type exadd @function
                                            # definicja funkcji
exmul: push %ebp
         movl %esp, %ebp
                                            # wskaźnik parametrów wywołania
         movl 8(,%ebp, 4), %ecx
                                            # rozmiar mnożnej ze stosu
         movl 12(,%ebp, 4), %esi
                                            # adres mnożnej ze stosu
         movl 16(,%ebp, 4), %eax
                                            # rozmiar mnożnika ze stosu
         movl 20(,%ebp, 4), %edi
                                            # adres mnożnika ze stosu
         mov1 24(,%ebp, 4), %ebx
                                            # adres iloczynu ze stosu
         call prod
                                            # obliczenie iloczynu
         mov1 %ebp, %esp
                                            # przywrócenie wskaźników
         push %ebp
         ret
```

• mnożenie uzupełnieniowe przez przekodowanie na zapis znak-moduł

Mnożenie rozszerzonej precyzji – algorytm

• system naturalny, architektura IA-32, cyfra=słowo maszynowe 32-bitowe mov1 \$0, (%ebx) prod: # zerowanie najniższych cyfr iloczynu mov1 \$0, 4(%ebx) push %eax accum: # licznik cyfr mnożnika (iloczynów częściowych) push %ebx # bieżący indeks najniższej cyfry iloczynu mov1 8(,%ebp,4), %ecx # odtworzenie licznika cyfr mnożnej movl (,%esi,4), %eax partp: # kolejna cyfra mnożnej movl (,%edi,4), %edx # kolejna cyfra mnożnika mull %edx # iloczyn częściowy w %edx:eax add1 %eax, (,%ebx,4) # aktualizacja niższej cyfry iloczynu częściowego adcl %eax. 4(.%ebx.4) # aktualizacja wyższej cyfry iloczynu częściowego incl %esi # wskaźnik kolejnej cyfry mnożnej loop partp # zliczanie cyfr mnożnej pop %ebx # przygotowanie obliczenia następnego inc %ebx # iloczynu częściowego inc %edi # wskaźnik kolejnej cyfry mnożnika pop %eax dec %eax # zliczanie cyfr mnożnika jnz accum ret