Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum II

,				1	Λ
ĽΠ	-	na	×	•	u
U	w	Iа	U.	_	•

Název úlohy: Měření s torzním magnetometrem					
Jméno: Vladislav Wohlrath	Obor: FOF FAF FMUZV				
Datum měření: .10. 10. 2016	Datum odevzdání:				

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Pracovní úkoly

- 1. Změřte závislost výchylky magnetometru na proudu protékajícím cívkou. Měření proveďte pro obě cívky a různé počty závitů (5 a 10).
- 2. Výsledky měření znázorněte graficky.
- 3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona.
- 4. Změřte direkční moment vlákna metodou torzních kmitů.
- 5. Určete magnetický moment magnetu užívaného při měření (v Coulombových i Ampérových jednotkách).

Teoretická část

Malý permanentní tyčový magnet o neznámém Coulombově magnetickém momentu p zavěsíme vodorovně na tenké vlákno a umístíme do středu kruhové cívky kolmo k jeho ose. Pokud bude cívka mít poloměr r, počet závitů N a poteče jí proud I, vytvoří v místě magnetu podle Biotova-Savartova[1] zákona magnetické pole o intenzitě

$$H = \frac{NI}{2r} \,. \tag{1}$$

Vektor intenzity pole bude kolmý na magnetický moment magnetu a na magnet bude působit moment síly

$$M = pH, (2)$$

a vychýlí se z původní polohy o úhelⁱ

$$\alpha = \frac{M}{D} = \frac{pH}{D} = \frac{pNI}{2rD} \,, \tag{3}$$

kde D je direkční moment vlákna. Z Biotova-Savartova zákona tedy vyplývá závislost

$$\alpha \propto \frac{NI}{r}$$
, (4)

kterou experimentálně ověříme.

Direkční moment D určíme metodou torzních kmitů. Na vlákno zavěsíme vodorovně mosaznou tyč. Jestliže je moment setrvačnosti tyče vzhledem k ose otáčení J a zanedbáme momenty ostatních částí magnetometru, bude kyvadlo kmitat s periodou

$$T = 2\pi \sqrt{\frac{J}{D}} \,. \tag{5}$$

Ze známého direkčního momentu a naměřené závislosti (4) můžeme pomocí (3) vypočítat magnetický moment p.

Kromě Coulombova magnetického momentu p definujeme též Ampérův magnetický moment

$$m = \frac{p}{\mu_0} \tag{6}$$

Výsledky měření

Pokud není uvedeno jinak, uvedené odchylky jsou standardní a odchylku nepřímo měřených veličin určujeme metodou přenosu chyby. Používáme zápis $x=10(1)\,\mathrm{cm}$, kde číslo v závorce vyjadřuje odchylku v řádu poslední uvedené číslice, tedy $x=(10\pm1)\,\mathrm{cm}$.

Pokus probíhal při normálním tlaku a pokojové teplotě ($t \approx 22$ °C).

Měření jsme provedli se dvěma kruhovými cívkami, které budeme důsledně nazývat větší ($d = 2r = 40.5(5) \,\mathrm{cm}$) a menší ($d = 20.0(2) \,\mathrm{cm}$). Obě cívky měly 10 závitů a umožňovaly zapojení, ve kterém tekl proud jen 5 závity. Měřili jsme tyčový magnet označený jako MAGNET2.

Na magnet jsme připevnili malé zrcadlo a zamířili jsme na něj laserový paprsek. Do vzdálenosti L = 1,14(1) m od magnetu jsme umístili stínítko tak, aby na něj v rovnovážné poloze s nulovým proudem cívkou paprsek dopadal kolmo.

ⁱPlatí pro malé úhly

Pro obě cívky jsme měnili proud v rozmezí 0–4 A a měřili výchylku místa dopadu laseru na stínítko. Proud jsme měřili vnějším ampérmetrem. Pokud se vychýlil o Δl , úhel otočení magnetu určíme jako

$$\alpha = \frac{1}{2}\arctan\frac{\Delta l}{L} \,. \tag{7}$$

Přímo hodnoty Δl neuvádíme, naměřené úhly jsou uvedeny v tabulce 1 a zaneseny do grafu 1

	menš	í cívka	větší cívka		
	r = 10(1) cm		r = 20,3(3) cm		
	N=5	N = 10	N=5	N = 10	
I(A)	$\alpha(^{\circ})$	$\alpha(^{\circ})$	$\alpha(^{\circ})$	$\alpha(^{\circ})$	
0,5	0,40	0,80	0,23	0,45	
1,0	0,80	1,63	0,43	0,85	
1,5		2,43		_	
2,0	1,63	3,23	0,83	1,68	
2,5		4,04		_	
3,0	2,43	4,83	1,26	2,48	
3,5	_	5,61		_	
4,0	3,23	6,38	1,68	3,30	

Tabulka 1: Naměřená závislost úhlu otočení magnetu na volbě cívky a proudu jí protékajícím

Pro změření direkčního momentu vlákna jsme na něj zavěsili mosaznou tyč o délce $l_t = 24,0(1)$ cm, hmotnosti $m_t = 56,6$ g a průměru $d_t = 6$ mm. Moment setrvačnosti takové tyče vzhledem k ose procházející průměrem v jejím středu je podle [2]

$$J = m(d_t^2 + \frac{1}{12}l_t^2) = 2.74 \cdot 10^{-4} \,\mathrm{kg} \,\mathrm{m}^2.$$
 (8)

Změřili jsme dobu 20 kmitů 80,5 s, tedy perioda T=4,03 s. Direkční moment vlákna jsme určili podle (5) $D=6,6(2)\cdot 10^{-4}\,\mathrm{N}\,\mathrm{m}\,\mathrm{rad}^{-1}$. Odchylku jsme odhadli na 3%.

Naměřenou závislost (3) jsme nafitovali Coulombovým magnetickým momentem $p=3.8(2)\cdot 10^{-7}\,\mathrm{Wb\,m}$. Vzhledem k nepřesnostem při měření jsme odchylku odhadli na 5 %. Ampérův magnetický moment vypočítáme podle (6) jako $m=0.30(2)\,\mathrm{A\,m^2}$. Teoretickou závislost (3) jsme zanesli do grafu 1 pro porovnání s naměřenými veličinami.

Diskuze

Z Biotova-Savartova zákona plyne, že bychom pro jeden konkrétní magnet měli být schopni najít konstantu p tak, že naměřené hodnoty pro obě cívky a všechny proudy budou odpovídat vzorci (3). Takovou konstantu se nám skutečně podařilo najít, naměřené hodnoty vykazují dobrou shodu s teoretickou závislostí (viz graf 1). Můžeme soudit, že naše výsledky jsou ve shodě s Biotovým-Savartovým zákonem.

Domnělým zdrojem velkých nepřesností byly otřesy v místnosti, avšak i po důkladném dupání v bezprostřední blízkosti aparatury nebyly naměřeny žádné odchylky. Další chyby mohly být způsobeny nedokonalým tvarem cívek, nelinearitou vlákna či kolísáním proudu, tyto chyby však považujeme za malé a měření za neobyčejně přesné.

Naopak měření direkčního momentu vlákna považujeme za nepříliš přesné, k měření délky mosazné tyče byl k dispozici pouze svinovací metr a ostatní parametry tyče byly napsané na přiloženém papírku bez údaje o jejich přesnosti. Kromě toho jsme zanedbávali ostatní části aparatury zavěšené na vlákně. Ve vzorci (8) jsme mohli zanedbat první člen.

Závěr

Změřili jsme závislost výchylky magnetometru na proudu procházejícím cívkou pro dvě různé cívky a různé počty závitů. Naměřené hodnoty jsou uvedeny v tabulce 1 a zaneseny do grafu 1. Do grafu je též vynesena teoretická závislost vyplývající z Biotova-Savartova zákona. Hodnoty se dobře shodují, takže Biotův-Savartův zákon zůstává v platnosti.

Dále jsme metodou torzních kmitů změřili direkční moment vlákna v magnetometru $D=6.6(2)\cdot 10^{-4}\,\mathrm{N}\,\mathrm{m}\,\mathrm{rad}^{-1}$. Z naměřené závislosti jsme určili Coulombův magnetický moment $p=3.8(2)\cdot 10^{-7}\,\mathrm{Wb}\,\mathrm{m}$ nebo též Ampérův magnetický moment $m=0.30(2)\,\mathrm{A}\,\mathrm{m}^2$.

Graf 1: Naměřená závislost úhlu otočení magnetu na volbě cívky a proudu jí protékající, teoretická závislost (3) s nafitovaným magnetickým momentem p

Seznam použité literatury

- 1. SEDLÁK, Bedřich; ŠTOLL, Ivan. *Elektřina a magnetismus*. Praha: Karolinum, 2012. ISBN 978-80-246-2198-2.
- 2. SERWAY, Raymond A. Physics for Scientists and Engineers, second ed. 1986. ISBN 0-03-004534-7.