

ctggtcaaaa	ggaaccaaga	tacaaagaac	tctgagctgt	catcgcccc	atctctgtga	2760
gccacaacca	acaggcaggac	ccaaacgcatt	tctgagatcc	ttaaatcaag	gaaaccagtg	2820
tcatgagtt	aatttcctta	ttatggatgc	tagttctgg	ccatctctgg	ctcttcctt	2880
gacacatatt	agcttcttagc	ctttgcttcc	acgactttt	tctttctcc	aacacatcgc	2940
ttaccaatcc	tctctctgtct	ctgttgcttt	ggacttcccc	acaagaattt	caacgactct	3000
caagtcttt	cttccatccc	caccactaac	ctgaatgcct	agacccttat	ttttattaat	3060
ttccaataga	tgtgcctat	gggctatatt	gcttagatg	aacatttagat	atttaaagct	3120
caagagggtc	aaaatccaaac	tcattatctt	ctcttcctt	cacccctctg	ctccctctcc	3180
tatattactg	attgcactga	acagcatggt	ccccaatgt	gccccatgaaa	tgagaaaccc	3240
agtggctct	tgtggtacat	gcatgaaga	ctgtgaagc	cagaaggatg	actgattacg	3300
cctcatgggt	ggaggggacc	actcctggc	cttcgtgatt	gtcaggagca	agacctgaga	3360
tgctccctgc	cttcagtgtc	ctctgcatt	ccctttcta	atgaagatcc	atagaatttg	3420
ctacatttga	gaattccaaat	taggaactca	catgtttt	ctgcccatac	aattttttaa	3480
acttgcgtaa	aattaagttt	tttcaaaatc	tgtccttgta	aattacttt	tcttacagtg	3540
tcttggcata	ctatatcaac	tttgattctt	tgttacaact	tttcttactc	ttttatcacc	3600
aaagtggctt	ttattctctt	tattattatt	attttctttt	actactatat	tacgttgtta	3660
ttattttgtt	ctctatagta	tcaatttatt	tgattttagtt	tcaatttatt	tttattgctg	3720
acttttaaaa	taagtgattc	gggggggtgg	agaacagggg	agggagagca	ttaggacaaa	3780
tacctaattgc	atgtgggact	taaaaacctag	atgatgggtt	gataggtgca	gcaaaccact	3840
atggcacacag	tatacctgtg	taacaaacct	acacattctg	cacatgtatc	ccagaacgta	3900
aagtaaaatt	taaaaaaaag	tga				3923

<210> 619

<211> 3674

<212> DNA

<213> Homo sapien

<400> 619

agaaagtttc	ctttttttt	tttaatggtg	aaaagatata	cacatattta	gaattagcc	60
gctgggctca	gtttagatta	ttccaatttt	gttggcaaca	tccagagcat	cgtaatcagg	120
agccagtgaa	acatattcct	tcttctctcc	atcaggccaa	atcacgggt	tgaccttggc	180
cacatcaatg	tcttagaact	tcttcacagc	ctgttgcatt	tggtgcttgg	tggctttaac	240
atccacaatg	aacacaagt	tgttgcgtc	ttctatctt	ttcgtggta	ctcaatggc	300
agcggaaact	tgtatgatagc	gtatgttca	agcttgcatt	tcctgggagc	gtcttccaa	360
agatatttgg	gctgcctcgg	gagttgcagc	gtcttggcc	gccccaaat	gggtgacgta	420
cgatcttct	ttttttgtt	ggctgtggac	accttcaac	actgttctt	tggctttaa	480
atccttcgct	ttggtttccg	ctataggagg	ggcaggagct	tccttettca	cttcggcgc	540
catcttgta	aaagggaaag	tttccttct	aataccattt	tcacttctcc	cgaattttgt	600
ggatcggttc	tttgttatcta	ccccagatt	caggagtgtt	ggctggatct	taggattgt	660
gaagtcttca	tttccctgtg	gtgagatct	aggcatgatt	ttaaacagtg	tgagggaaagg	720
agatctccag	gcactttat	agaatggaga	agcaggatgg	gatttgagag	gaaatctgat	780
tttgaaaaaa	ggagaactag	agttgagtt	gtatattact	agcacottaa	aggcattca	840
gcatgcccatt	ctgcacatgt	ggtgtatca	ccctacagaa	caaaaacaaa	aagggaaatgg	900
agaggaagct	gtaaaaggact	gtacatgttt	aacttattgt	tatgttgcgt	agccgaaggc	960
ttcacagact	tgaatttcatc	tcccaaggcc	tcttcctgt	ctggaaactc	tgccttaggt	1020
tgcttaaaac	ttgagaaaca	gaatattgt	tcccctgcct	gccttcttga	gtacacttgc	1080
ctacacaaag	atgcacatcc	ttgtttgtt	gtgtgtgtcc	atttgtgtt	acattcttgc	1140
gaaagtcaaa	gtttccctgc	ttgtgacata	cacaagttt	tttggtgccaa	cctgtcagat	1200
gcatccctta	gacaggccct	ttgatactt	ggggaaagaca	ttggacttac	agtcggaaacg	1260
aaaagaaaga	aatgtgat	gtatagcg	cagtggatgt	gagttttacc	tgtattgtt	1320
taatttcaac	aagccgtgagg	actagccaca	aatgttacca	gtttacaat	gaggaaacag	1380
gtgcaaaaag	gttggatcc	gtcaaaggct	gtatgtggca	gagccaaat	ttgagccctag	1440
ttatgtctga	tgaactttagc	ctatgttctt	taaacttctg	aatgttgcacc	attgaggata	1500
tctaaactta	gatcaatttgc	atttccctc	caagactatt	tacttataaa	tacaataata	1560
ccaccttac	caatcttattt	ttttgatc	agactcaat	atgcccata	tatgtaaaag	1620
caacctacaa	gtctctcaat	catgctcacc	taaaagattt	ccgggatcta	ataggtctaa	1680
agaaacttct	tctagaaata	taaaagagaa	aattggatta	tgcaaaaatt	cattattaat	1740

tttttcatc catccttaa ttcagcaaac atttatctgt tggtgacttt atgcagtatg	1800
gcctttaag gattggggga caggtaaga acgggggcc agaatgcac ctcctactaa	1860
tgaggtcgt acacatttgc attttaaaat gccctgtcca gctggcatg gtggatcatg	1920
cctgtatct caacatttgg aggcaaggc aggaggattt ctccagccca ggagttcaag	1980
accaggctgg gcaacataga aagacccat ctctcaatca atcaatcaat gccctgtctt	2040
tgaaaataaa actctttaag aaaggtttaa tggcagggt gtggtagctc atgcctataa	2100
tacagcactt tgggaggctg aggcaaggagg atcaactttag cccagaagtt caagaccagc	2160
ctggcaaca agtgcacact catctcaatt tttaataaaa atgaatacat acataaggaa	2220
agataaaaag aaaagtttaa taaaaaata cagtataaaa caaatctt ggaccta	2280
gtatTTTGT tcaagccaaa tattgtaat cacctctctg tggtgaggat acagaatatc	2340
taagcccagg aactcgagca gaaaggcat gtaactaacta atcaacccga ggcaaggcaa	2400
aaatgagact aactaatcaa tccgaggca gggcaattt agacggaaacc tgactcttgt	2460
ctattaagcg acaactttcc ctctgttgc tttttctttt attcaatgtt aaaggataaa	2520
aactctctaa aactaaaaac aatgtttgtc aggagttaca aaccatgacc aactaattat	2580
gggaaatcat aaaatatgac tttatgagat ctgtatgtt tacaaaatgtt acccaactgtt	2640
aatcaactta aacattaatc aactaaaaaa tgaatttacg gagattggaa tgtttcttc	2700
ctgttgttatt agtggctca ggctccata aaaaaatacc acagactggg aggcttaagt	2760
aacagaaatt catttctcac agttctggg gtcggaaagtc cacgatcaag gtgcaggaaa	2820
ggcaggcttc attctgaggc ccctcttgc gtcacatgt ggccacccctc ccactgcgtg	2880
ctcacatgac ctctttgtgc tcctgaaag agggatgttgggg ggacagaggg aaagagaagg	2940
agagggaaact ctctgggtgc tgcgttca aggccctaa cctggccac tttggccag	3000
gcactgtggg gtgggggggt gtggctgtc tgcgttgcgttggccatgata aagaacacaga	3060
aaaatgttca aagctgtca gcaaaagacaa gcccacccaaac agggatctgc tcatcagtgt	3120
ggggacctcc aagtcggccaa ccctgggggc aagcccccam agagcccatg caaggtggca	3180
gcagcagaag aagggaaattt tccctgtctt tgccacatcc ctcaccgacc tgggtatgt	3240
ggacactgca atgaatgttca atgtggatgtt gatatgtatg gactcccaaa aagggagacc	3300
cagctgctca gttggctgca aatcattaca gccttcatcc tggggaggaa ctggggggct	3360
gtttctgggtt cagagagca cccagtgagg gtggagacta cagcgttcc tgccagctgg	3420
atccccatgc cccgttcaacc agtaatcaag gtcggatca tgggttcc cggagctgg	3480
cttggaaagc cagccctggg gtggatggc tctgtgttgc tgcgttgc tgcgttgc aatattgtca	3540
taaatttcaat gccccttgc atccctttt ctttttttgc tgcgttgc tgcgttgc tataatca	3600
atgcataacta gtctttgttca gtgtttctat tgcgttgc tgcgttgc tgcgttgc tataatca	3660
aaaaaaaaaaaaaaa aaaa	3674

<210> 620

<211> 2051

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(2051)

<223> n = A,T,C or G

<400> 620

ggaccagggg ctgaagtgaa cccccagcac agcacagctg ctctataaaa acgtggccag	60
actttttttt ttgaagcaag tccctgttct ttttcgttct gactagtccc atcaggccc	120
tggatccaa gactcagcat ccaaggcccc ctccaggaaat cctggcagct cagcataactt	180
tatccgtttt catctgagaa caaaaatgtt aatattggatg cacagaaaag tgactcaag	240
tgcttaatgtt ctggatggca gcaagaagag caggacaaac agggccaggcg	300
gtgtcaggag cccaggcttc cagctgggg gaacgtcaac cctgcgttgc gagcaggggc	360
cctttgcaca tccatggcac agatggat ttagacacca caggtaagct gggcttggta	420
cctacccttc cccggattca gaaagaaaacc aaacaaggag ctttggatgg aatggaaacct	480
cctttctcc cagaaggact gtcgttgc tgggttgc cattttgtgg agtggccct	540
tgtttttttt gagggtggc tgggttgc ttttggccct gcccctacaga tcataaagga	600
gaacagcaag acgtccccag caaacatcca cagatggccct tggaaataag tcacccctt	660
caccctgcag gaatggccatg gaacatattt ctgacatctt ggagctcagt acctcatatgt	720
gtaacggcgt cagtagatct gcctgtgttgc ggacttcctg tactaccat tcctggagggg	780

cgtatgttct	gcagggcctg	tgacttggtg	cacaacttca	gacaccatca	tottgcagca	840
gcacccgacc	ctcaactagcc	agggtgttga	tgacttcctc	aaggccaagg	ccacattcaa	900
ggcttcggac	ttcattgtat	cgcttgcgt	gagcaagggt	gcttctccgg	gatettaatt	960
caggaggtag	aatggagctt	gagatcaagt	gtctgatcaa	gcctcagttgt	atggcgctg	1020
ttcatcctct	ggtgctgaag	cagccaagag	acccaagtct	gcctggctgc	ctcttaggt	1080
atgacagcag	agccagtgcc	ctctactaga	tcctgtacaa	cctcacaaaa	caccagaca	1140
tcgggagtgc	tgcgcagcctg	tgatgcaaga	gtcctaattcc	tgaagacatt	aatgacactg	1200
tcgttgtct	gtttttacca	aaaaggatca	tgaggatcag	agagggaaaag	tcacttgccc	1260
aaagtacac	agctgaacag	tggtggagtt	caactttgac	cgtggctgt	ctggccccca	1320
aggtgtatgc	ttgcttctct	cccaagagac	tcctttctta	tcaggctcaa	atgaatgaaa	1380
ggaggatgtt	aaagacaacg	ccattattga	cgagatcact	cccaagcgg	ttggagattg	1440
tcccaatatt	tagacctata	gcaaggcctt	gggagaaatg	gtggtgccagc	aggagagcag	1500
gaacctaacc	attgccatcc	taaggcctc	cattgtgtgg	agcaacgtgg	caccagcttt	1560
tcctgggtt	ggttgataat	ctaaatggat	gtagccgact	cattattgcg	gtatgtatag	1620
ggatgaagaa	gttaactgtaa	tgtatggag	gaatagtaag	aaaattctta	gtgctggctt	1680
agcttaattt	atccaaaaac	ataaatgcta	cttactatc	aattgaagca	tattatttca	1740
attattctgg	ttataatatg	gaggcaggat	gaaattgttt	ttattcttt	agaatttttt	1800
tttatcagga	aaacagaggt	aaagtgtat	caattactat	ttaagagttc	tattttgaaa	1860
agtgagaatt	aaggattttt	cttttctttt	aaaaaaaaac	ttttttaaaa	ataaaaata	1920
aaagaagcaa	aagtcttagg	aaaatgaagc	aagtgcct	gccactctat	gtacagtaat	1980
aacaatatct	gtcccagtt	ttatgtacaa	tattataaaa	aatgtcgcag	acagtaaaaa	2040
aaaaaaaaaa	a					2051

<210> 621

<211> 2841

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(2841)

<223> n = A,T,C or G

<400> 621

gcagagcaca	gcatacgctgc	tttaccaaat	catggccaga	ctgcttctgt	aagcaggccc	60
ctgatcctgt	tccacctcac	tggacaggac	ctcccaactg	gggcctccag	ctaccccccac	120
cagcatccct	tggccaatgg	aaatttgaaa	tgttcctggg	acagagctcc	tggagagagg	180
ggcaggccac	caccttgcgt	gtttgggtga	ctagccgttc	tggcctgcag	gcttggaga	240
gcccaagctg	acaaggggta	gaagagggtc	ctcagcacag	cacagccacg	ctacaaaaac	300
atggccagac	tcttgtttaa	gtcagtcccc	gaacacattt	ctagtcagtg	ggtgaagtct	360
ttcaaccagg	gtctctggct	accttgactg	ctttctctg	gccgacagag	gtctcaggcc	420
tccctgagtc	agagctcccg	gggggaggac	cagattgtca	tctttgtctgt	ttgggtgacc	480
cagccatttc	agccttaggg	tttcagatgt	tctgaggtag	ccagggctg	aagtgaaccc	540
ccagcacagc	acagctgctg	tataaaaacg	tggccagact	ttttctttaa	gcaagtccct	600
gttcttattc	ctccctgacta	ggtaagactt	ctcaacttgc	ctccagccac	atcttatttg	660
tgtgttcaga	ttggcaacag	gtttgtacct	cagtggtaca	gagctccag	aggaagggt	720
aggctatcat	cttccctggaa	aaatacgt	caattaggga	tttgagggg	cccccagcat	780
tccacacgag	cccttcagaa	aagtggccag	actctgtact	tgatggcag	atccctcctgg	840
cctgtgtctc	tagccagccc	accactggag	ctatcaagcc	agtagcaact	cagcagtcc	900
ttggacagag	cttccaggag	caaataaat	cctttctgccc	actgccttt	cagtgaactg	960
cccttgcata	ccctcagaaga	tatatacgg	gagcaaaagac	cctaagtgcc	atataaacac	1020
ctccaataag	ctgcagttga	cccaaagaac	aagccaatcc	atctccca	gttccacac	1080
acactccact	actcatcacc	agacaggaa	ccctggcttg	ggcccacacg	acagaccctc	1140
catccctggc	cgattacact	gagtgtatgc	taactcacat	gtctctggg	tggagcacc	1200
aggagacaag	caaagtggtg	gagcagcaag	tcaggtgtat	tggagccca	agggcaggga	1260
gagctatctc	tctgggctcc	acttgcctt	gtgagacact	ttgtcccagc	actccttagt	1320
ctgcttgcct	ctccccaggcc	cccagctgg	ccacacccgc	ttacagggg	ctctcagatg	1380
cccataccat	agtttctgtg	ctagtgacc	gtaccatatc	agtggagagc	tgcagcaagg	1440

tggccntac	ggccacgcac	cagcctgcac	attaccttc	catactgcag	ccctttat	1500
ggaaacttcc	tacatcaatt	tgctgtgt	gtttacacag	gtggatttg	ctttaacttgc	1560
actgacagca	cacaggaggg	cagcacacac	cccaacccac	atcaactgcc	attaaagaaa	1620
agaaatttca	gcccataatt	tcatgtccag	caaaatttagg	catcataagt	gaaggagaaa	1680
taagatcett	ttcagacaag	caaatgtga	ggaaattcaa	tatcaccaga	tctaccttac	1740
aagagctct	gaaggaagca	ctaaatatgg	aaagaaaaaa	ccatcaccag	ccactacaaa	1800
aatgcagtga	agaacgcagt	gaattacgca	gtccagtgat	gctaaaaacc	aaccacatac	1860
gttaagtctg	caaataacc	agctgacagc	atgacgacag	gataaattca	cacataccat	1920
tactaacctt	aatgaaat	gggcttaat	ctcccattga	aagacatggg	gcaagctgga	1980
taaagaacca	agacccactg	gagtatgt	tcttcaagaa	accatctca	catgcgggtgg	2040
catacatagg	ctcaaaataa	aggaatggag	aaaaatattt	caagcaaattg	gaaaacagaa	2100
aaaagcagg	gttgcactcc	tactttctga	caaaacagac	tatgegaat	agataaaaaa	2160
agagaaggac	attacaatgg	tggcctgac	cttttatata	tctcattgt	tgataccac	2220
ctggctgtt	ttaatttgc	aaanccataa	ggataattt	ctgaggtgt	ggagtttctc	2280
ccctgcagag	agtccctgtat	ctcccaaaat	ttggttgaga	tgtaaggtt	attttgcgt	2340
acaactcctt	tctcgaagtt	ttactcattt	ccaaaaaggaa	aggcaagttt	tcctgccttcc	2400
atgacgatgg	agagcaggca	tctccttcc	tgagtttcag	cttgcatttgc	acagggagg	2460
tgagtgtaa	tttttccag	tttctaagat	ggcagagaac	gatcaccagc	ctgagcctta	2520
tttccaggt	atagactgaa	tttagagttt	gtcttttttt	ttttccttaa	tgataaaaat	2580
gtaagattac	ccaccagctg	cttttaattt	ctcccttagc	attagaacac	tcagtaatca	2640
tatgaattgt	gcatttgttt	gttttgc	tttttttttt	ttttttttat	tttggggttt	2700
tattttgtt	gtttcacitt	tctccatct	tttccact	ttgtcaaaatc	caaaggaatg	2760
ttcgaaattt	ttggggagca	ggcatctgaa	atggctaaaa	ctccgtggc	tgcaaaaaat	2820
agaaataaaa	aaaaaaaaaa	a				2841

<210> 622

<211> 3228

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(3228)

<223> n = A,T,C or G

<400> 622

tccggcccat	tgacgcaa	tttggtaggc	gtgtacggtg	ggaggtctat	ataagcagag	60
ctctcnggct	aactagagaa	cccactgttt	actggctt	cgaaattaat	acgactca	120
atagggagac	ccaagctggc	tagcgtttaa	acttaagctt	ggtaccgagc	tcggatccac	180
tagtccagtg	tgttggaaatt	ccatttgtt	gggcaggaaa	caagcaaagt	ggtggagcag	240
caagtca	gtatgtggagc	ccagagg	ggatggctg	tctctcttgc	gtccacttgc	300
ccttgcaga	cactttatcc	cagca	ggaatactga	ggtcata	ccacatctt	360
atatgcaaga	ttgcccagca	gagatcagg	ccgagat	cttttttttt	aaaaggagac	420
ttgcttaata	aaagaagtct	agccac	gtttagagcg	gtgtgtgt	gtctggggttt	480
cacttttgc	agatgttcc	tctgagac	gatctcttgc	ggctggccaa	tcttgcactt	540
gagatggggc	ttgtctgtc	tca	ttagtctgt	cgccatetccc	atggccccag	600
cctggccaca	cctgcttac	gggcactt	agatgcccac	accataactt	ccatgtctgt	660
ggactgtacc	atatcagtgg	agagctgcag	caagg	ccttagagcc	cgcaccagcc	720
tgcacatttgc	ctctccatac	ggcagcc	tatttggaaa	tttcttaat	cacttgc	780
tgtgtgttta	cacgggtgt	ttttgttta	cttgcctg	gagcaca	cgg	840
cacacccaa	cccacatcaa	ctg	tttgcattaa	aaaaagaaa	tttgc	900
tccagcaaaa	ttaagcatca	taagt	ggagg	aaaaataaga	tttgc	960
gctgagg	tttggtatca	ccagatctac	tttacgagag	tttgc	aa	1020
tatggaaaga	aaagatcatc	actgtctact	acaaaaacac	actgaagtac	acatgtccat	1080
gatgtttaaa	agcaagcaca	tatgt	tttttttttt	ccagctgaca	gcatgacgac	1140
aggataaaat	ccacacatac	cattacta	tttttttttt	aatggctaa	atgtccat	1200
tgaaagacac	ggggcaagct	gggtt	aaaaagaaa	ccaa	tttgc	1260
gcaaccatc	tcacgtcgac	tgccat	tttttttttt	tttttttttt	tttttttttt	1320

tttcaagcaa atggaaaaca gaaaaaaagggt gttgcactcc cagttctga caaaacagac	1380
tctaccataa aagataaaaaa aagagaagga cattacaaag gtggtcctga ccttgataa	1440
atctcattat tgcttgatac caacctggc tattttgtatt gcccaaacga ataggataat	1500
ttgctgaggt tggaggtt ctccccctca cagagtcct gatctccgaa aatttggtg	1560
agatgttaagg ttgatTTGc tgtacaactc cttttttgaa gttttactca ttccaacaa	1620
ggaaggcaag ttttcctgct tccatttgaca aaggagagca ggcacctct ttcttgagtt	1680
tcagcttgct tctgacaggg aaggagctt gagatTTGAA tactggctg ctgggttttg	1740
gacgtgcatt gggcctgtgg tcccatttgt gttatTTTc tggaaattt ctccctttg	1800
gagtgagaaa gtttacccaa tgcctgtacc atcatcgta cttaaaagaa ctccattttt	1860
agttcaggga ctcccttgca gaagagaccg tagccttgta tcagatcata aaggagaaga	1920
gcaagaggc cccggcaaac atccacagat ggcccttgaa ataagtccac ttgctcaccc	1980
tgcagaatg ccagtgaact tattgctgac atcttggagc tcagtcacct catagtgtaa	2040
cggcgtcagc agatctgcct gtgctggac ttccctgtact acccattctt gagggggcgt	2100
gcttcctgcag ggccctgtgac ttggtgccaca acttcagaca ccatcatctt gcagcagcac	2160
cgcaccctca cttagccaggg tggatgtgac ttccctcaagg ccaaggccac attcaaggct	2220
tcggacttca ttgatgcgt tggctgagc aagggtggctt ctccggatc ttaattcagg	2280
aggtagaatg gagcttgaga tcaagtgtct gatcaagcct cagtgtatgg gcgctgtca	2340
tcntctgggt ctgaagcagc caagagaccc aagtctgcct ggctgcntct taggatatga	2400
cagcagagcc agtggccctc actagatcct gtacaaaccc acaaaacacc cagacatcg	2460
gagtgcgtcc agccctgtat gcaagagtcc taatcctgaa gacattgaat gacgtgtcat	2520
tctgctgttt ttaccaaaaaa ggatcatgag gatcagagag gaaaagtac gtcggccaaag	2580
tcacacagct gaacagtggt ggagttcaac tttgaccgtg ggctgtctga ccccaagggt	2640
tatgcttgc tctctccaa gagacaactt tcttatcagg ctcaaatgaa tggaaaggagg	2700
atgttaaagg taggatctct gggccctgtg ccagtggaaac cgccagtcat ggctggcacc	2760
tgtgttctca ttcttaccc attaagagta aagtttattt gttttatttga atttaagtat	2820
cttttagttag atcatatatatt attagtaaga actgggacca aacagattt ctgactctaa	2880
aagagagatt ttccacagaaa cagatataata cctgtaaagta tacagacacg catacacaca	2940
tttcttact gtcataaaaa attagtcctt attagaatgt gggatgtata aatgtaaagag	3000
aatttcatg tttaaatttga cagatacatt tttaaattgt cttaaaataa atttaattat	3060
ttttntttta gaattttcca ttattatgt tttttttatg agaaactata taacttttatt	3120
gataatacat acaataaccc ttgttttc aaattgaaaa tacagtgtat ttgc当地 aata	3180
actaagtctt aattttgtat taaaatttttta aattttcaaa aaaaaaaaaa	3228

<210> 623

<211> 4894

<212> DNA

<213> Homo sapiens

<400> 623

ctgcacgcgc tggctccggg tgacagccgc gcgcctcgcc caggatctga gtgtatgagac	60
gtgtccccac tgagggtcccc cacagcagca ggtgttgagc atgggtctgag aagctggacc	120
ggcacccaaag ggctggcaga aatgggcgcc tggctgatc ctaggcagtt ggcggcagca	180
aggaggagag gcccgcagctt ctggagcaga gcccggacga agcgttctg gagtgcctga	240
acggccccct gggccctacc cgcctggccc actatggtcc agaggctgtg ggtgagccgc	300
ctgctgcggc accggaaagc ccagctctt ctgtcaacc tgctaacctt tggctggag	360
gtgtttttgg ccccaggcat caccatgtg cccctctgc tgctggaaat ggggttagag	420
gagaagtta tggatgttgc tgggggttag tcaatcatac ctccttcctt cctgttccag	480
atacatggca cctggcatgt gggacaggag taccctctgc ctggggatgt ctggggggaa	540
gaggtggct gctggaaagg cattgtctgg caggagggtg accctggct gggggggc	600
accaagagaa agaagagaat accaaggaca taccctcgtc acctctggat ccctggctt	660
gcacagagcc tggctcatag gagacaactgg agaaatgtc ctaaccttt gctagccctt	720
ttataattta tagcgttattt ctcattttat gcttacaacc accattttgag gtgtatccatt	780
ttacagagaa ggaaggcagag gtttttaaga ggttaggtaa gtcttagcca aagccaaata	840
gcagctgaac agtagagctg ggactccatc aaggtctccc agccggagct tgctccctacc	900
ccttaggacaa ggggtggact cctgactctg cagataaattt ctacaaaagc cacagaaggc	960
aagttagtaac cattgtgtga caacccctca ccccccaggaa gagggggcccc tggaggatt	1020
gcaggctctg ggtcacact gttgtgaa acgtgcctc ttaccctccc tagtctgcg	1080

ccttgaata agtacactt cttagttgt ccatgcctca gtttgtccat ctgaaaatgg 1140
gggcacatgt aatgcctgt ttatgaggag taaattacag catccctgt aagacgtac 1200
acagtgtcga gtacggaatg ttatcccatt ccttctcagc gagcttggtt cccctcccc 1260
ttgccccta cttgtccca gcatgtact atactacttc cttcttgca ggcattggc 1320
cagtgtggg cctggctgt gtcccgctcc taggctcagc cagtgaccac tgggtggac 1380
gctatggccg cccggccccc ttcatctggg cactgtcctt gggcatctg ctgagcctct 1440
ttctcatccc aaggccggc tggctagcag ggctgtgtt cccggatccc agggccctgg 1500
agctgcaact gtcatacctg ggcgtggggc tgctggactt ctgtggccag gtgtgttca 1560
ctccactgga ggccctgctc tctgacctt tccgggaccc ggaccactgt cgcaggcc 1620
actctgtcta tgccttcattt atcagtcattt ggggtgcctt gggctaccc ctgcctgcca 1680
ttgactggga caccagtgc cttggccccc acctggcac ccaggaggag tgccctttt 1740
gcctgctcac ctcatacttc ctcacactgc tagcagccac actgtgttgc gctgaggagg 1800
cagcgtggg ccccaaccgag ccagcagaag ggctgtggc cccctcttgc tcgccccact 1860
gctgtccatg cccggccccc ttggcttcc ggaacctggg cggccctgtt cccggctgc 1920
accagctgtc tgccttcattt ccccgaccc tgcggccgtt cttcgtgttgc gagctgtgca 1980
gctggatggc actcatgacc ttcacgtgtt ttacacggg tttcgtggc gaggggtgtt 2040
accaggccgt gcccacagct gagccgggca ccaggccccc gagacactat gatgaaggta 2100
aggccttggc agccacgaga ggctgtgttgc ggacccggcc accagagacg acactcggg 2160
ctgtgtctgg gctgggtgcctt ctcacacttc gcccccactt ctctgtcagg aaagtggga 2220
tggacccat ctgcatacac ggttctcat ggggtggaa catctctgt tgcggtttca 2280
ggaaggccctc tggctgtctt aggagtctga tcaagtcgt tgccccattt tgacacaagg 2340
aaaggccggag ttatttcaaa gtctagaggg agtggaggag ttaaggctgg atttcagatc 2400
tgcctgttca cagccgcattt gtgcctctg ctcccccaac gactttccaa ataatctcac 2460
cagcgccttc cagtcaggc gtccatagaag cgttctgaag cctatggcca gctgtcttt 2520
tgcctgttca ccccgccctg tccctcacatc ttagactccc agggaaacctt cagactaccc 2580
tccctgttca tcaagcaaggc gcttgccttca catttcgttca gggtcagttt aagaacctt 2640
actccatttgc ttagaggatgaa aaggggaaag ggtgtgggg agcaggccgtt gtcacacagca 2700
ggtctgtgc agcaggatc tttgggttccg ctttctcatc tccctgagac tgctccgacc 2760
cttccctccc aggtctgtc ttagggcccc tttccctctg caggcggttc gatggggcagc 2820
ctgggtgttgc ttcgtcattt cgcacatctt cttggctttt ctctggtcat ggacccggctg 2880
gtgcagcgat tcggcacttgc agcagtttat ttggccatgt tggcagctt ccctgtggct 2940
gcccggccca catgcctgtc ccacagtgtt gccgtggta cagtttcagg cgccttcacc 3000
gggttacactt ttcagccctt gcaagatctt ccctacacac tggcctccctt ctaccacccgg 3060
gagaagcagg ttttctgtcc caaaatccca ggggacactt gagggtcttag cagtgaggac 3120
agcctgtatca ccaagtttccctt gccaggccctt aagcttggag cttcccttcc taatggacac 3180
gtgggtgytg gaggcagtgg cctgtccca cttccaccccg cgctctgccc ggcctctgccc 3240
tgtatgtctt cctgtacgtt ggtgggttggg gaggccacccgg aggccaggtt ggttccggg 3300
cgggccatctt gcttggaccc cccatcttgc tatagtgttccctt ccctgtgttccca 3360
ccatccctgtt ttaggggtccctt cattgtccatgtt ctcagccatgtt ctgtcacttc ctatatgggt 3420
tctccgcag gcttgggtctt ggtcgccattt tactttgtca cttccatgtt atttgacaag 3480
agcacttgg ccaaataactt agcgtataaa acttccacatc cttccatgtt gaggcccttc 3540
ctcaacttggg cccagcttccatgtt ttcgttgcattt agcccccattt ggctgcccccc 3600
ttttctgttgc tggccaaatgtt aatgtgttgc ttcgttgcata cccctgtgtt ctgagggttgc 3660
tagctgtcaca gctgggggtt ggggtgtccc ttcctctctt cccctgttgc ttcgttgc 3720
tgactggagg ctttccaaagg gggtttccatgtt ctgtactttt acaggggaggc cagaagggtt 3780
ccatgcactt gaaatgtgggg actctgtcagg tggattaccc aggtcttagg ttaacagacta 3840
gcctcttagt ttagacacac cttttttttttt gttttttttt gctgtataaa ctcagtcacc 3900
tgggttccca ttcgttgcata ctttccatgtt cttccatgtt ttaggtttttt tttttttttt 3960
agttttctagg atgaaacactt ccacccatggg atttgcacat atgaaatgtt tttttttttt 4020
aagagtcttggggccaaaca cacaagaacc aggtcccccctt agcccacacg actgtttttt 4080
tgctgtatccca ccccccattt accttttttccatgtt aggtatgttgc ctgttgc ttcgttgc 4140
atcacagaga cacaggcattt taaatattttt acttattttt ttaacaaatgtt agaaggaaat 4200
ccattgttagt cttttctgtt tttttttttt tttttttttt tttttttttt tttttttttt 4260
atcaggatcttggggccaaaca cacaagaacc aggtcccccctt agcccacacg actgtttttt 4320
gggttggcc ccccaaaaatgtt cttttccatgtt gttttttttt tttttttttt tttttttttt 4380
taatttccaaatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4440
aggtcttcaac gcttcccttacc accacccttccatgtt tttttttttt tttttttttt tttttttttt 4500
tccactccccctt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 4560

tacccccaac tttcccctac ccccaactt ccccaccagg tccacaaccc tgtttgagc 4620
 tactgcagga ccagaagcac aaagtgcggg ttcccaagcc ttgtccatc tcagccccca 4680
 gagtatatct gtgttgggg aatctcacac agaaaacttag gagcacccccc tgcctgagct 4740
 aagggaggtc ttatctctca ggggggggtt aagtgcggg tgcataatg tcgtttatt 4800
 tatttagcggtt ggtaatatt ttatactgtaa atgagcaat cagagtataa tgtttatgg 4860
 gacaaaatta aaggcttct tatatgtta aaaa 4894

<210> 624

<211> 2904

<212> DNA

<213> Homo sapiens

<400> 624

gtctatgcct tcatgatcag tcttggggc tgccctggct acctcctgcc tgccattgac 60
 tggcaccca gtgcctggc cccctacctg ggacccagg aggagtgcct ctggccctg 120
 ctcaccctca ttccctcac ctgcgttagca gccacactgc tgggtggctga ggaggcagcg 180
 ctggggccca ccgagccagc agaaggcgctg tggcccccct cttgtcgcc ccactgctgt 240
 ccatgccggg cccgcgttgc ttcccgaaac ctgggcgcgg tgcttcccg gctgcaccag 300
 ctgtgctgcc gcatgcggcc caccctgcgc cggtcttgc tggctgagct gtgcagctgg 360
 atggcactca tgacccctac gctgtttac acggatttcg tgggcgaggg gctgtaccag 420
 ggcgtgcccga gagctgagcc gggcacccag gccggagac actatgtga aggaaggcct 480
 ctggctgctc taggagtctg atcagagtctg ttgcggcagt ttgacagaag gaaaggcgga 540
 gcttattcaa agtcttaggg gagtggagga gttaaaggctg gatttcagat ctgcctgggtt 600
 ccagccgcag tggccctct gctcccca cgttttcca aataatctca ccagccgcctt 660
 ccagctcagg cgtcctagaa gctgttgc gctatggcc agctgtctt gtgtccctc 720
 tcacccgcct gtcctcacag ctgagactcc caggaaacct tcagactacc ttcccttgcc 780
 ttcagcaagg ggcgttgcgg acattctctg agggcggttcg gatggcgacg ctggggctgt 840
 tcctgcgtt cgcacatctcc ctggcttct ctctggtcat ggacccgctg gtgcagcgat 900
 tcggcactcg agcagtctat ttggccagtg tggcagctt ccctgtggct gccggtgcca 960
 catgcgtgc ccacagtgtg gccgtggta cagttcage cgccctcacc gggttcacct 1020
 tctcagccct gcaagatctg ccctacacac tggcctccct ctaccacccg gagaagcagg 1080
 tggccctgc caaataaccga ggggacactg gaggtgttag cagtgaggac agcctgtatga 1140
 ccagcttccct gccaggccct aagcctggag ctcccttccc taatggacac gtgggtgtg 1200
 gaggcagtgg ctgttccca cctccaccccg cgctctgcgg ggcctctgcc tggatgtct 1260
 ccgtacgtgt ggtgggtggg gagccaccc agggcagggt gttccggcc cggggcatct 1320
 gcctggaccc cggccatctg gatagtgcct tccgtgtgc ccaggtggcc ccatccctgt 1380
 ttatggctc cattgtccag ctgcggcagt ctgtcaactgc ctatatgtt tctggcccgag 1440
 gcctgggtct ggtgcatt tacttgcata cacaggtgt atttgacaag agcacttgg 1500
 ccaaataactc agcgttagaaa acttccagca catgggggt gaggccctgc ctcactgggt 1560
 cccagctccc cgtctctgtt agcccatgg ggctggccggg ctggccgcca gtttctgtt 1620
 ctgccaaagt aatgtggctc tctgtgcac ccctgtgtc ctgagggtgc tagtgcaca 1680
 gctggggct gggcgtccc tctccctct cccagtc tggctgtcc tgactggagg 1740
 ccttccaagg ggtttcagt ctggacttat acagggaggg cagaagggtt ccatgcactg 1800
 gaatgcgggg actctgcagg tggattaccc aggtcaggg ttaacagcta gcctccatgt 1860
 tgagacacac cttagagaagg gttttggga gctgaataaa ctgcgttacc tggttccca 1920
 tctctaagcc ccttaacctg cagcttcgtt taatgttagt ctgcgttggg agttctagg 1980
 atgaaacact cctccatggg atttgcacat atgaaagtt tttgttagggg aagagtccctg 2040
 agggcaaca cacaagaacc aggtccctc agcccacagc actgtcttt tgctgtatcca 2100
 ccccccctt accttttatac aggtgtggc ctgttggcc ttctgttgc atcacagaga 2160
 cacaggcatt taaatattta acttatttat ttaacaaagt agaaggaaat ccattgtctag 2220
 ctttctgtt ggtgtgtcta atatttgggt aggtggggg atcccaaca atcaggctcc 2280
 ctgagatagc tggcatttgg gctgatcatt gccagaatct tcttctctg ggtctggcc 2340
 ccccaaaatg cctaaccagg gacccctggaa attctactca tcccaaatga taattccaaa 2400
 tgctgttacc caaggttagg gtgttgaagg aagtagagg gtggggctc aggtctcaac 2460
 ggcttcccta accaccctc ttctcttgc ccagccgtt gccccccact tccactcccc 2520
 tctactctc ttaggactgg gctgatgaaag gcactgccc aaatttcccc taccccaac 2580
 ttcccttac ccccaactt ccccaaccagg tccacaaacc tggttggagc tactgcagga 2640

ccagaagcac aaagtgcggt ttcccaagcc tttgtccatc tcagccccca gaggataatct 2700
gtgcttgggg aatctcacac agaaactcgag ggcacccccc tgccctgagct aaggagggtc 2760
ttatctctca ggggggggtt aagtgcgggt tgcaataatg tcgtcttatt tatttagcg 2820
ggtgaatatt ttatactgtta agtgagcaat cagagtataa tgtttatgtt gacaaaatta 2880
aaggctttct tatatgttta aaaa 2904

<210> 625

<211> 4034

<212> DNA

<213> Homo sapiens

<400> 625

aaccaggctg cacgcgctgg ctccgggtga cagccgcgcg cctcgccag gatctgagtg 60
atgagacgtg tccccactga ggtgccccac agcagcagggt gttgagcgtg ggctgagaag 120
ctggaccggc accaaagggc tggcagaaat gggcgctgg ctgattccta ggcagttggc 180
ggcagcaagg aggagaggcc gcagctctg gacgagaccc gagacgaagc agttctggag 240
tgcctgaacg gccccctgaa ccctacccgc ctggcccaact atggccaga ggctgtgggt 300
gagccgcctg ctgcggcacc gaaaaagccca gcttgcgtg gtcaacccgtc taacctttgg 360
cctggaggtg ttttggccg caggcatcac ctatgtccg cctctgcgtc tggaaagtggg 420
ggttagaggag aagttcatga ccatggtgct gggcattgtt ccagtgcgtg gcctggctg 480
tgtcccgctc cttaggcgtc ccaagtgacca ctggcgtggc cgctatggc gcccgggccc 540
tttcatctgg gcaactgtcct tgggcacccct gctgagccctc ttctcatcc caaggggccgg 600
ctggctagca gggctgctgt gcccggatcc caggccccctg gagctggcac tgctcatct 660
gggcgtgggg ctgctggact tctgtggcca ggtgtgttcc actccactgg aggccctgt 720
ctctgacccctc ttccgggacc cggaccactg tcggcaggcc tactctgtct atgccttcat 780
gatcagtctt gggggctgcc tgggcacccct cctgcctgcc attgactggg acaccaggc 840
cctggccccc tacctggca cccaggagga gtgcctctt ggcctgcata ccctcatctt 900
cctcacctgc gtacgagcca cactgtggcgtt ggctgaggag gcagcgcgtt gcccaccga 960
gccagcagaa gggctgtcg cccctctt gtcggccac ctcgtgtccat gcccggccgg 1020
cttggcttc cgaacactgg ggcgcctgct tcccccggctg caccagctgt gtcggccat 1080
gccccgcacc ctgcggccggc tcttcgtggc tgagctgtc agctggatgg cactcatgac 1140
cttcacgctg ttttacacggg atttcgtggg cgaggggctg taccaggccg tgcccaagac 1200
tgagccggc accgaggccc ggagacacta tgatgaaggta aaggcctgg cagccagcag 1260
aggctgtgtt gggagccccc caccagagac gacactcggt gctgtgtctg ggctgggtcc 1320
tctccatctt ggcggcgact tctctgtcag gaaagtgggg atggacccca tctgcataca 1380
cggcttctca tgggtgtggc acatctctgc ttgcgggttc aggaaggccct ctggctgtc 1440
taggagtctg atcagagtcg ttgcggccatgt ttgacagaag gaaaggccga gcttattcaa 1500
agtctagagg gagtggagga gttaaaggctg gatttcagat ctgcctgtt ccagccgcag 1560
tgtgcctct gctcccccac caacttcca aataatctca ccagcgcctt ccagctcagg 1620
cgtccttagaa gctgtttgaa gcctatggcc agctgtctt gtgttccctc tcacccgcct 1680
gtcctcacag ctgagactcc cagggaaacct tcagactacc ttccctgtcc ttcaqcaagg 1740
ggcgttgcacc acattctctg agggtcgtg gaagaaccta gactccatt gctagaggta 1800
gaaaggggaa ggggtgtggg gacgagggt ggtccacagc aggtctcggt cagcaggta 1860
ctgtggttcc gccttctcat ctccctgaga ctgcctccgac cttccctcc caggctctgt 1920
ctgatggccc ctctccctct gcaaggcttc ggatggccag cctggggctg ttccctgcgt 1980
gcccacatctc cctggcttcc tctctgtca tggaccggct ggtgcagcga ttccggcactc 2040
gagcagtcta ttggccagt gtggcagctt tccctgtggc tgccgggtcc acatgcctgt 2100
ccacacgtgt gcccgtggc acagcttcag ccgcctcacc cgggttccacc ttctcagccc 2160
tgcagatctt gccttacaca ctggcctccc tctaccaccg ggagaagcag gtgttccgtc 2220
ccaaataccg agggacact ggagggtcta gcagtggaga cagcctgtat accagctcc 2280
tgccaggccc taagcctggc gtccttcc ctaatggaca cgtgggtgtt ggaggcagt 2340
gcctgtccc acctccaccc gctgtgtcg gggctctgc ctgtgtatgtc tccgtacgt 2400
tggtgggtggg tgagccaccg gaggccagggt tggttccggg cccggggccatc tgcctggacc 2460
tcgcccattt ggtatgtgc ttccctgtgtt cccagggtggc cccatccctg tttatgggt 2520
ccattgtcca gctcagccag tctgtcaactg cctatatgtt gtctggccca ggcctgggtc 2580
tggtcggccat ttactttgtt acacaggttag tatttgacaa gagcgtactt gccaaataact 2640
cagcgttagaa aacttccagc acattgggtt ggaggccctg ctcacttggg tcccagctcc 2700

ccgctcctgt tagccccatg gggctgcgg gctggccgcc agtttctgtt gctccaaag 2760
 taatgtggct ctctgctgcc accctgtgtc gtggagggtgc gtagctgcac agctggggc 2820
 tggggcggtcc ctctcccttc tccccagttt ctagggctgc ctgactggag gccttccaag 2880
 ggggtttcag tctggactta tacagggagg ccagaaggc tccatgcact ggaatgcggg 2940
 gactctgcag gtggattacc caggetcagg gtaaacagct agcctccatg ttgagacaca 3000
 cctagagaag gggttttggg agctgaataa actcagtac ctgggtttcc atctctaagc 3060
 cccttaaacct gcagcttcgt ttaatgttagc tcttgcattgg gagtttctag gatgaaacac 3120
 tcctccatgg gatttgaaca tatgaaaagttt atttgttaggg gaagagtcct gaggggcaac 3180
 acacaagaac caggccccct cagccccacag cactgtctt ttgctgatcc acccccctct 3240
 taccttttat caggatgtgc ctgttgggcc ttctgttgcc atcacagaga cacaggcatt 3300
 taaatattta acttattttt ttaacaaaagt agaaggaaat ccattgttag ctttctgtg 3360
 ttgggtgtcta atatttgggt agggtggggg atccccaaaca atcaggctcc ctgagatagc 3420
 tggtcattgg gctgatcatt gccagaatct tcttctcctg gggctggcc ccccaaatg 3480
 cctAACCCAG gaccctggaa attctactca tcccaaataa taattccaaa tgctgttacc 3540
 caaggtagg gtgttgaagg aaggttagagg gtggggcttc aggtctcaac ggctccctaa 3600
 accacccttc ttctcttggc ccagcttggt tccccccact tccactcccc tctactctct 3660
 ctaggactgg gctgatgaag gcactgccc aaatttcccc taccggccac ttcccttctac 3720
 ccccaacttt ccccacccagg tccacacaccc tggggggggc tactgcagga ccagaagcac 3780
 aaagtgcgggt ttcccaagcc tttgtccatc tcagccccca gaggataatct gtgttgggg 3840
 aatctcacac agaaactca gggcccccc tgcctgagct aaggggaggtc ttatctctca 3900
 gggggggttt aagtgcgtt tgcaataatg tgcgttattt tatttagcgg ggtgaatatt 3960
 ttatactgta agtgagcaat cagagataaa tggggatggt gacaaaatta aaggcttct 4020
 tataatgttta aaaa 4034

<210> 626
 <211> 6976
 <212> DNA
 <213> Homo sapiens

<400> 626
 gaagctggac cggcaccaaa gggctggcag aaatgggcgc ctggctgatt cctaggcagt 60
 tggcggcagc aaggaggaga gcccgcagct tctggaggcag agccgagacg aaggagttct 120
 ggagtgcctg aacggcccccc tgagccctac ccgcctggcc cactatggc cagaggctgt 180
 gggtgagccg cctgctgcgg cacccggaaag cccagctttt gctggtaaac ctgctaacct 240
 ttggccttgg ggtgtgtttt gccgcaggca tcacctatgt gcccctctg ctgttggaaag 300
 tgggggtaga ggagaagtcc atgaccatgg tgcgtgggtga gtcactacat cctcccttct 360
 tcctgttcca gatacatgccc acctggcatg tggacaggg gtaaccttcg cctgggagct 420
 gcttggaggg agaggtggtc tgcgtggaaag gcattgttgg gcaggaggg gaccctggc 480
 tgagggggca caccaagaga aagaagagaa taccaaggac ataccccaat caccctcttgg 540
 tccctgttcc tgcacagacg ctggctcata ggagacactg gagaatgt cctaaccctt 600
 ggctagccct ttataattt atagcgatata tctcatattaa tgcttacaa caccatttga 660
 ggtgttccat ttacagaga aggaaggaga ggcttttaag aggttagta agtcttagcc 720
 aaagccaaat agcagctgaa cagtagagct gggactccat caaggtctcc cagccggagc 780
 ttgctcttcc cccctaggaca aggggtggac tcctgactct gcaagataat tctacaaaag 840
 ccacagaagg caagtagtaa ccattgtgtg acaacccttc acccccacca agagggccc 900
 ctgtgaggat tgcaggctct ggagtccacac tgcttggta aacgctgcct cttaccctcc 960
 ctaggtctgc gcctttgaat aagtatctact tmttagttgc tccatgcctc agtttgccttca 1020
 tctgaaaatg ggggcattctg taatgcctgt gttatggaa gtaaaattaca gcatccctgt 1080
 gaagacgttag cacagtgtcg agtacgaaat gttatttcca tccttctcact ggaggttgg 1140
 tcccccttccctt ctggccctt acttgccttca gcaattgact catactactt cccttcttgc 1200
 aggcatgttggt ccagtgtctgg gcctggcttg tggcccttc cttaggtctcg ccagtgcacca 1260
 ctggcggtgg cgtatggcc gcccggcccttccatctgg gcactgttcc tgggcattcc 1320
 gctgagccctc ttctctatcc caagggccgg ctggcttagca gggctgtgtt gcccggatcc 1380
 caggccccctg gagctggcac tgctcatctt gggcgtgggg ctgcgtggact tctgtggcca 1440
 ggtgtgttcc actccactgg agggccctgct ctctgaccc tcctccgggacc cggaccactg 1500
 tcggccaggcc tactctgtct atgccttcat gatcagtctt gggggctgccc tgggttaccc 1560
 cctgctgcatttgcatttgc cccaccatggc cctggccccc tacctggca cccaggagga 1620

gtgcctcttt ggctgctca ccctcatctt cctcacctgc gtagcagcca cactgctgg 1680
 ggctgaggag gcagcgctgg gccccaccga gccagcagaa gggctgtcgg ccccttcctt 1740
 gtcgccccac tgctgtccat gcccggcccg ctggcttc cggAACCTGG gggccctgt 1800
 tccccggctg caccagctgt gctgcccatt gccccgcacc ctgcgcggc ttctgtggc 1860
 tgagctgtgc agctggatgg cactcatgac cttcacgtg ttttacacgg attctgtgg 1920
 cgaggggctg taccaggggcg tgcccaagagc tgagccggc accgaggccc ggagacacta 1980
 tgatgaaggta aaggccttgg cagccacgag aggtctgggt gggagccccc caccagagac 2040
 gacactcggg gctgtgtcgg gctgggtgcc ttccatctt gggccctact tctctgtcag 2100
 gaaagtgggg atggacccca tctgcataca cggcttctca tgggtgtgg aacatctctgc 2160
 ttgcgttcc aggaaggccct ctggctgtc taggactgtc atcagactg ttgccccagt 2220
 ttgacagaag gaaaggcgga gcttattcaa agtcttaggg gagtggagga gttaaaggctg 2280
 gatttcagat ctgcctgggt ccagccgcag tggccctctt gccccccca cgactttcca 2340
 aataatctca ccagcgccctt ccagctcagg cgtccttagaa gcttcttggaa gctatggcc 2400
 agctgtctt ttgttccctc tcacccggcgt gtcctcacag ctgagactcc caggaaacct 2460
 tcagactacc ttccctctgc tttagcaagg ggcgttgcctt acattctctg agggtcagt 2520
 gaagaaccta gactcccatt gctagaggtt gaaaggggaa ggggtctggg gagcagggt 2580
 ggtccacage aggtctctgt cagcaggatc ctgtggttcc gcttctcat ctccttgaga 2640
 ctgctccgac cttccctcc caggctctgt ctatggccc ctctccctt ctaggggttc 2700
 ggtatggccag cttggggctg ttctctgtc ggcctatctc cttggcttcc tctctggta 2760
 tggaccggct ggtgcagcgtt tccggcactc gacgtcttca tttggccaaat gtggcagett 2820
 tccctgtggc tgccgggtgc acatgcttgtt cccacagtgtt ggcgttggg acagcttcag 2880
 ccgccttcac cgggttccac ttctcagcccc tgacatctt gccctacaca ctggccccc 2940
 tctaccaccg ggagaagcag gtactcattt ggcaggatggg ggtatgggggg 3000
 ggtctgggtt ttggggaggc caactagctc agaacctggg atctggcaag caactttgg 3060
 gaatgcttct ttgaatcaga gaagaagctt atcctagccc cagggccaga ggcttggg 3120
 gcagaaacagt gttagattaga ttctggaaat gacttccctgg ggtcaggact gttagact 3180
 tgaatggatg attgcaggaa atgcaaaaata cgatagttttt ggtatgggggg 3240
 gcaggagccc taggcttcta ggctgggtt tctatggaga ggcaggccgc tgaatcagat 3300
 gacccctggg catttcagcc tcagcagacg ggagtggggaa tggccagcc ttagcaacac 3360
 ctttcttcag ggagcagca cctgacttag cttgtatctt actctgtct ctgagatggg 3420
 gcaggctctt tcctacccccc ttctttctt gcttattttt cttttctgtc taattccctt 3480
 ttctttctt gcatcccttc ttgccttctt tccctttctc cttcccttc ccctccccc 3540
 gtggcagata tctgagctt acacctgacc cactcacttgg ggcactgtgt aagtgtggg 3600
 gaccccttc ttgggtggcc ctacactaac cagcccttc agggccccc ttcottggg 3660
 agccaccta cccaggtagt gtggcatcc ttgtccccctt cactgaccc actgagctac 3720
 aaacctgggtt gotggactctt gcttgggg gcatgaagtt ggggttccc aaggaggag 3780
 gagatgcagg actgctctca tagagctctc agactgttagg gaagacccgc ccctcgct 3840
 cgtagactt gaggagagga gttagtaagt tctgtactt gaggctgtt aactgttag 3900
 gtagctgcag ggggtggaggg tatggggggg aggggtcaag gttttgggtt ggggagccctg 3960
 gtccctgaga cccctgttag cccactgtata accttcttca gccttcactc ttctgttgc 4020
 ctgggtggg ggcaggggggc tggcatcggc ggcaggccct gaggatgtgc tgcgtgtcc 4080
 gggaaacgttc tggggcttagc catcttcctt agatggggaa gcatgtctgt cctccggacca 4140
 ctccagactc caacccatcgc ggacattctt ggggtggccag gcaggagggaa gaagtctgg 4200
 gaggccctt cctaacagca gctgtatggca gacttggccac tgcacgtgtt ctgcctgtt 4260
 ctgttccac ttgtttagt gcatgggtt ccgtgggtt ccctgggttcc aggtttggc 4320
 tctgccttgc ctccccatctc gcaaatgtcag ccaactcaac tcttctggca tggggacaat 4380
 gttggataag acctggccctt gtccttaaat aggaggctt gggccatcaa gggcaggggg 4440
 tggggggatg ttgttgcacc agtcaacttgc atctaagtca gacaggccggg aggaagttag 4500
 aaggccctcaaa cattagcaca gctggggctg gggggagggtt gaaaggggac attctctctg 4560
 ctgggggtctt actggattctt ccctggggccca aggtggggaa caagggagct catggcagg 4620
 cagctaccctt atggcatctt gggacccttccag agaggccaggat gttctctgtca ccgggcaatg 4680
 aggatttccca gatgtcgagg tggaggccag gcaaggaaaggat aggttaggg agcctcgctg 4740
 gggtttgggc catcaggggc cctgccttgg ctgggttcc tctgttctgt gcatcttta 4800
 ccaccgttcc cattccctt gtttttttcc ttttaccccttgg agtctgttcc tctctgtatct 4860
 gtgatattga gtttgcaccatg ttttaccccttgc tttaagagg ttagaggaga cctagacttc 4920
 tgggttccaca ttgttccccc ccctaccccg ttacccttctt cccactctgtt aggaagggtc 4980
 ctggtttagac ttggaccaag tagggtctcc atcttctctc ctgttccatgaa tttctcatgaa 5040
 gtcccatgtc ccctggggatg gaggcaaggat gttttctca cagctgggggtt ggtggccagtt 5100

ctgggtacac	acctgtccctc	ttccccctttt	cttcacccct	ctgccttagg	tgttccgtcc	5160	
caaataccga	ggggacactg	gaggtgctag	cagtgaggac	aycctgatga	ccagcttcct	5220	
gccaggccct	aagcctggag	ctcccttccc	taatggacac	gtgggtgctg	gaggcagtgg	5280	
cctgctccca	cctccaccccg	cgctctgcgg	ggcccttgcc	tgtgatgtct	ccgtacgtgt	5340	
ggtgtgtgggt	gagccccaccg	aggccagggt	gttccgggc	cggggcatct	gcctggacct	5400	
cgccatcctg	gatagtgcct	tcctgctgtc	ccagggtggcc	ccatccctgt	ttatgggctc	5460	
cattgtccag	ctcagccagt	ctgtcaactgc	ctatatggtg	tctgcccga	gcctgggtct	5520	
ggtcgcccatt	tacttgcta	cacaggtagt	atttgcacaag	agcga	tttgc	5580	
agcgtagaaa	actttccagca	cattgggtg	gagggc	ctcactgggt	ccca	5640	
cgctcctgtt	agccccatgg	ggctgcccgg	ctggcccca	gttctgtt	ctgcca	5700	
aatgtggctc	tctgctgcca	ccctgtgtc	ctgagg	tg	tcaca	5760	
ggggcgcccc	tctccctctc	ccccag	taggg	tgcc	tgactggagg	5820	
gggttca	ctggacttat	acagg	ggc	cagaagg	gt	ccatgcactg	5880
actctgcagg	tggattaccc	aggctcagg	ttaac	agct	gc	ttctcctag	5940
ctagagaagg	gttttggga	gctgaataaa	ctcag	tacc	tggtt	ccca	6000
ccttaac	cgtt	taatgtag	cttgc	atggg	gg	atgttctagg	6060
cctccatgg	at	tttgc	atggg	atggg	gggg	atggaaacact	6120
cacaagaacc	agg	tttgc	atggg	atggg	gggg	caaca	6180
ac	tttgc	aggatgtggc	ctgttgg	ttctgtt	gc	ttctc	6240
taaatatta	acttattt	ttaacaa	agaagg	gaat	ccatt	gtctag	6300
ttgggtct	at	tttgg	agggtgg	atccc	aca	atcagg	6360
tggcat	gg	cttgc	atggg	atccc	aca	ctgagat	6420
cctaacc	gac	tttgc	attctact	tcc	aaat	tgctgttacc	6480
caagg	tttgc	agg	aaggtag	gtgg	gttcc	agg	6540
accac	cc	cttgc	ccag	ccact	tcc	actccc	6600
ctaggact	gg	gtgt	gact	cc	act	ctct	6660
ccccaa	tttgc	cc	cc	cc	cc	cc	6720
aaagtgc	tttgc	aa	tttgc	tttgc	tttgc	tttgc	6780
aatctcac	ac	actc	ag	cc	cc	cc	6840
gggggggtt	aa	gtgc	cc	tttgc	tttgc	tttgc	6900
ttatactgt	at	gtg	ag	ca	at	aa	6960
tatatgtt	ta	aaaaaa					6976

<210> 627
<211> 123
<212> PRT
<213> *Homo sapiens*

<400> 627
Met Gly Ser Leu Gly Leu Phe Leu Gln Cys Ala Ile Ser Leu Val Phe
5 10 15

Ser Leu Val Met Asp Arg Leu Val Gln Arg Phe Gly Thr Arg Ala Val
20 25 30

Tyr Leu Ala Ser Val Ala Ala Phe Pro Val Ala Ala Gly Ala Thr Cys
35 40 45

Leu Ser His Ser Val Ala Val Val Thr Ala Ser Ala Ala Leu Thr Gly
50 55 60

Phe Thr Phe Ser Ala Leu Gln Ile Leu Pro Tyr Thr Leu Ala Ser Leu
65 70 75 . 80

Tyr His Arg Glu Lys Gln Val Leu Ile Gly Gln Trp Val Glu Ser Gly
 85 90 95

Trp Glu Gly Trp Ser Gly Phe Leu Gly Gly Gln Leu Ala Gln Asn Leu
100 105 110

Val Ser Gly Lys Gln Leu Trp Arg Met Leu Leu
115 120

<210> 628

<211> 150

<212> PRT

<213> Homo sapiens

<400> 628

Met Val Gln Arg Leu Trp Val Ser Arg Leu Leu Arg His Arg Lys Ala
5 10 15

Gln Leu Leu Leu Val Asn Leu Leu Thr Phe Gly Leu Glu Val Cys Leu
20 25 30

Ala Ala Gly Ile Thr Tyr Val Pro Pro Leu Leu Leu Glu Val Gly Val
35 40 45

Glu Glu Lys Phe Met Thr Met Val Leu Gly Glu Ser Leu His Pro Pro
50 55 60

Ser Phe Leu Phe Gln Ile His Ala Thr Trp His Val Gly Gln Glu Tyr
65 70 75 80

Leu Cys Pro Gly Ser Cys Leu Glu Gly Glu Val Val Cys Trp Glu Gly
85 90 95

Ile Ala Gly Gln Glu Gly Asp Pro Gly Leu Arg Gly His Thr Lys Arg
100 105 110

Lys Lys Arg Ile Pro Arg Thr Tyr Pro Ser His Leu Trp Ile Pro Gly
115 120 125

Pro Ala Gln Ser Leu Ala His Arg Arg His Trp Arg Asn Ala Pro Asn
130 135 140

Leu Trp Leu Ala Leu Leu
145 150

<210> 629

<211> 371

<212> PRT

<213> Homo sapiens

<400> 629

Met Leu Phe Pro Ser Phe Ser Arg Ser Leu Val Pro Leu Pro Leu Ala
5 10 15

Leu Tyr Leu Ser Gln Pro Leu Thr His Thr Ser Leu Leu Ala Gly
20 25 30

Ile Gly Pro Val Leu Gly Leu Val Cys Val Pro Leu Leu Gly Ser Ala
35 40 45

Ser Asp His Trp Arg Gly Arg Tyr Gly Arg Arg Arg Pro Phe Ile Trp
50 55 60

Ala Leu Ser Leu Gly Ile Leu Leu Ser Leu Phe Leu Ile Pro Arg Ala
65 70 75 80

Gly Trp Leu Ala Gly Leu Leu Cys Pro Asp Pro Arg Pro Leu Glu Leu
85 90 95

Ala Leu Leu Ile Leu Gly Val Gly Leu Leu Asp Phe Cys Gly Gln Val
100 105 110

Cys Phe Thr Pro Leu Glu Ala Leu Leu Ser Asp Leu Phe Arg Asp Pro
115 120 125

Asp His Cys Arg Gln Ala Tyr Ser Val Tyr Ala Phe Met Ile Ser Leu
130 135 140

Gly Gly Cys Leu Gly Tyr Leu Leu Pro Ala Ile Asp Trp Asp Thr Ser
145 150 155 160

Ala Leu Ala Pro Tyr Leu Gly Thr Gln Glu Glu Cys Leu Phe Gly Leu
165 170 175

Leu Thr Leu Ile Phe Leu Thr Cys Val Ala Ala Thr Leu Leu Val Ala
180 185 190

Glu Glu Ala Ala Leu Gly Pro Thr Glu Pro Ala Glu Gly Leu Ser Ala
195 200 205

Pro Ser Leu Ser Pro His Cys Cys Pro Cys Arg Ala Arg Leu Ala Phe
210 215 220

Arg Asn Leu Gly Ala Leu Leu Pro Arg Leu His Gln Leu Cys Cys Arg
225 230 235 240

Met Pro Arg Thr Leu Arg Arg Leu Phe Val Ala Glu Leu Cys Ser Trp
245 250 255

Met Ala Leu Met Thr Phe Thr Leu Phe Tyr Thr Asp Phe Val Gly Glu
260 265 270

Gly Leu Tyr Gln Gly Val Pro Arg Ala Glu Pro Gly Thr Glu Ala Arg
275 280 285

Arg His Tyr Asp Glu Gly Lys Ala Leu Ala Ala Ser Arg Gly Trp Cys
290 295 300

Gly Ser Arg Pro Pro Glu Thr Thr Leu Gly Ala Val Ser Gly Leu Val
305 310 315 320

Pro Leu His Pro Gly Pro Asp Phe Ser Val Arg Lys Val Gly Met Asp
325 330 335

Pro Ile Cys Ile His Gly Phe Ser Trp Val Trp Asn Ile Ser Ala Cys
340 345 350

Gly Phe Arg Lys Ala Ser Gly Cys Ser Arg Ser Leu Ile Arg Val Val
355 360 365

Ala Pro Val
370

<210> 630
<211> 2983
<212> DNA
<213> *Homo sapiens*

<400> 630
agagatagag tcttccctgg cattgcagga gagaatctga agggatgatg gatgcatcaa 60
aagagctca agttctccac attgacttct tgaatcagga caaccccggt tctcaccaca 120
catggagtt ccaaaccgagc agtcctgtgt tcggcgagg acaggtgttt cacctgcggc 180
tggtgctgaa ccagccccata caaatcctacc accaactgaa actggaattc agcacaggc 240
cgaatcttag catgccaaa cacaccctgg tggtgctcg cccgaggacg ccctcagacc 300
actacaactg gcaggcaacc cttcaaaatg agtctggcaa agaggtcaca gtggctgtca 360
ccagttcccc caatgccatc ctggcaagt accaactaaa cgtaaaaact gaaaccaca 420
tccttaagtc tgaagaaaaac atcctatacc ttctcttcaa cccatgggt aaagaggaca 480
tggtttcat gcctgatgag gacgagcga aagagtacat cctcaatgac acgggctgcc 540
attacgtggg ggctgccaga agtatcaaat gcaaaacctg gaactttgtt cagtttgaga 600
aaaatgtct ggactgctgc attccctgc tgactgagag ctccctcaag cccacagata 660
ggagggaccc cgtgctggtg tgcagggcca tgtgtctat gatgagctt gagaaaggcc 720
agggcgtgt cattggaat tggactgggg actatgaagg tggcacagcc ccatacaagt 780
ggacaggcag tgcccgatc ctgcagca gactacaacac gaagcaggct gtgtcttgc 840
gccagtgtc ggtgtttgct gggatcctga ctacagtgc gagagcgtt ggcattccag 900
cacgcagtgt gacaggctt gattcagctc acgacacaga aaggaacactc acggtgac 960
cctatgtgaa tgagaatggc aagaaaatca ccagtatgac ccacgactct gtctggatt 1020
tccatgtgtg gacggatgcc tggatgaagc gaccggatct gcccaaggcc tacgacggct 1080
ggcaggctgt ggacgcacg ccgcaggagc gaagccaggg tgtcttctgc tggggccat 1140
caccactgac cgccatccgc aaaggtgaca tctttattgt ctatgacacc agattgtct 1200
tctcagaagt gaatggtgac aggctcatct ggttggtaa gatggtaat gggcaggagg 1260
agttacacgt aatttcaatg gagaccacaa gcatcggaa aaacatcagc accaaggcag 1320
tgggccaaga caggcggaga gatatcacct atgagtacaa gtatccagaa ggctccctg 1380
aggagaggca ggtcatggat catgccttcc tccttctcag ttctgagagg gagcacagac 1440
gaccgttaaa agagaacttt cttcacatgt cggtacaatc agatgatgtg ctgctggaa 1500
actctgttaa ttccaccgtg attcttaaaa ggaagaccgc tgccctacag aatgtcaaca 1560
tcttgggctc ctttgaacta cagttgtaca ctggcaagaa gatggcaaaa ctgtgtgacc 1620
tcaataagac ctcgcagatc caaggtcaag tatcagaagt gactctgacc ttggactcca 1680
agacctacat caacagctg gctatattag atgatgagcc agttatcaga gtttcatca 1740
ttgcggaaat tggaggtct aaggaaatca tggccctctga agtattcagc tctttccagt 1800
accctgagtt ctctatagag ttgcctaaca caggcagaat tggccagcta ctgtctgca 1860
attgtatctt caagaatacc ctggccatcc ctttgactga cgtcaagttc tctttggaaa 1920
gcctgggcat ctcccacta cagacctctg accatggac ggtgcagcct ggtgagacca 1980
tccaatccca aataaaatgc accccaataaa aaactggacc caagaaattt atcgtcaagt 2040
taagttccaa acaagtggaa gagattaatg ctcagaagat tggatctcatc accaagtgc 2100
cttgtctgt gctgtggagc tttagttgag atttcagcat ttccctacatt gtgttagct 2160
ttcagattat ggatgattaa atttgatgac ttatatgagg gcagattcaa gagccagcag 2220
gtcaaaaagg ccaacacaac cataaggcagc cagaccacca aggccaggc ctgtgtatc 2280
acagggtcac ctcttttaca gttagaaaaca ccagccgagg ccacagaatc ccatccctt 2340
cctgagtcat ggcctcaaaa atcagggcca ccattgtctc aattcaaatc catagatttc 2400
gaagccacag agtctctccc tggagcagca gactatgggc agcccaatgc tgccacactc 2460
tgacgaccc tggatggctg ccatatctt aggccatggg ttccaccagcc ctgaaggcac 2520
ctgtcaactg gagtgtctc ttagcactgg gatggccctg atagaagtgc attctctcc 2580

tattgcctcc attctcctct ctctatccc gaaatccagg aagtccctct cctggtgctc 2640
 caagcagttt gaagcccaat ctgcaaggac atttctcaag ggc当地gtgg ttttcagac 2700
 aaccctgtcc tcagggctga actcaccata gagacccatg tcagcaaaacg gtgaccagca 2760
 aatcccttc ccttattctta aagctgcccc ttgggagact ccagggagaa ggc当地gtggctt 2820
 cctcccttgt gtgaactctt tctttgttat tccatccact atcctggcaa ctcaaggctg 2880
 cttctgttaa ctgaaagcctg ctccttctt ttctggccctc cagagattt gtc当地atgtat 2940
 caataagctt taaaattaaac tctacttcaa gaaaaaaaaa ccg 2983

<210> 631

<211> 3064

<212> DNA

<213> Homo sapiens

<400> 631

aattctaaaa atgctttgc aagcttgcatt gcctgcagg gc当地cgcccg ccagtggtat 60
 ggatatctgc agaattcggc ttgc当地tgcag ctggaaattcc gc当地agatag agtcttccct 120
 ggc当地tgcag gagagaatct gaaggatga tggatgc当地c aaaagagctg caagttctcc 180
 acatttgcattt ct当地aatcag gacaaccccg tttctcacca cacatgggag ttccaaacg 240
 gc当地tgcgt gttccggc当地 ggacagggtt ttc当地ctgc当地 gctggtgctg aaccaggcccc 300
 tacaatcccta cc当地caactg aaactgaaat tcagcacagg gcc当地atctt agcatcgcca 360
 aacacaccctt ggtggc当地tgc当地 gacccgagga cggccctc当地a cc当地actaac tggcaggc 420
 cc当地tcaaaa tgtagtctggc aaagaggctca cagtggtctt caccaggcttcc cccaaatgcca 480
 tcctggc当地aa gtaccaacta aacgtaaaaa ctggaaacca catccttaag tctgaaagaaa 540
 acatcctata ccttcttcttcc aacccatggt gt当地aaagagga catggtttc atgc当地tgc当地 600
 aggacgagcg caaagagttt acatcttcaatg acacccggctg cc当地attacgtg ggggctgcca 660
 gaagttatcaa atgcaaaaccctt tggaaactttt gtc当地gttgc当地 gaaaaatgtc ctggactgtt 720
 gc当地tccctt gctgactgag agtccctca agccacacca taggaggag cccgtgctgg 780
 tggc当地ggc当地 catgtgtctt atgatgagct ttgagaaaagg cc当地aggctg ctc当地tggg 840
 attggacttgg ggactacgaa ggtggcacag ccccatcacaat gttggacaggc agtgc当地ccg 900
 tcctgc当地ca gtactacaac acgaacgc当地 ctgtgtctt tggccactgc当地 tgggtgtttt 960
 ctgggatccctt gactacagtt ctgagagcgt tggc当地atccc agc当地acgc当地t gtgacaggct 1020
 tc当地attcagc tc当地acgc当地aca gaaaggaaacc tc当地cggatggc当地 cacctatgtt aatgagaatg 1080
 gcgagaaaat caccaggatg acccactactt ctgtctggaa ttccatgtt gggacaggat 1140
 cctggatgaa gcgaccctac gacggc当地tggc当地 aggtgttgc当地 cgcaacgccc当地 caggagc 1200
 gccagggtgtt cttctgtctt gggccatcac cactgaccgc catccgcaaa ggtgacatct 1260
 ttatttgc当地ta tgacaccaga ttctgtcttctt cagaactgtt ggtgacagg ctc当地atgtt 1320
 tggtaagat ggtgaatggg caggaggatg tacacgttaat ttcaatggg accacaagca 1380
 tc当地ggggaaaaa catcagc当地 aaggc当地tgg gccaagacag gccc当地agat atcacctatg 1440
 agtacaagta tccagaaggc ttctctgagg agaggcaggatg catggatcat gc当地tccctcc 1500
 ttctc当地gttcc tgagaggagg cacagacagc ctgtaaaaga gaaacttctt cacatgtc当地 1560
 tacaatcaga tgatgtcttctt ctggaaact ctgttaattt caccgttattt cttaaaaggaa 1620
 agaccgctgc cctacagaat gtcaacatct tgggcttccctt tgaactacag tttgtacactg 1680
 gcaagaaat ggc当地aaactg tggacttca ataagaccctc gcaagatccaa ggtcaagat 1740
 cagaagtgac tctgaccctt gactccaaaga cctacatcaa cagc当地ctgctt atatttagatg 1800
 atgaggccactt tatcagaggat ttc当地atcttctt cggaaattt ggtcttcaag gaaatcatgg 1860
 cctctgaaatg attcacaatc aaccaggatcc ctgaggcttctt tataaggatg cctaaacacag 1920
 gc当地agaattgg cc当地agctactt gtctgc当地attt gtaatcttcaaa gaataccctg gccatccctt 1980
 tgactgacgtt caagttctctt tggaaagcc tggc当地atctc ctc当地actacag acctctgacc 2040
 atgggacggt gcaaggcttggt gagaccatcc aatcccaataaaataaaatg caccatccaa 2100
 ctggaccctaa gaaatttatac gtcaaggtaa gttccaaaca agtggaaagat attaatgtctc 2160
 agaagattgt ttc当地atctc当地 aagtagccctt gtctgatgtt gttggagcctt agttgagatt 2220
 tc当地agcttcc ttctaccccttctt cttagcttcc agattatggta tgatgtactt 2280
 tatgagggca gattcaagag cc当地aggctc当地 aaaaaggccca acacaaccat aagc当地gccc当地 2340
 acccacaagg cc当地aggcttccctg tgctatccaca gggc当地accctc ttttacagtt agaaacacca 2400
 gccc当地ggccca cagaatccca tcccttccctt gaggcatggc ctccaaaatc aggccc当地acca 2460
 ttgtctcaat taaaatccat agatttc当地aa gccacagac gtc当地ccctgg agc当地agc当地 2520
 tatggc当地ggc当地 cc当地aggcttccctg cacctgttca cggcccttgc当地 gaagctgcca tatcttctt 2580
 cccatgggatcc accagccctg aaggc当地acttgc当地 tcaactggag tggctcttca gcaactgggat 2640

gggcctgata gaagtgcatt ctcctccat tgcctccatt ctcctctc tatccctgaa 2700
 atccaggaag tccctctccat ggtgtccaa gcagtttcaa gcccaatctg caaggacatt 2760
 tctcaaggc catgtggttt tgcagacaac cctgtccctca ggcctgaact caccatagag 2820
 acccatgtca gcaaaccggc accagcaaat cctctccct tattctaaag ctgcccctg 2880
 ggagactcca gggagaaggc attgcttccct ccctgggtgtg aactttct ttggtattcc 2940
 atccactatc ctggcaactc aaggctgctt ctgttaactg aagcctgctc cttcttggttc 3000
 tgccctccag agatttgctc aaatgatcaa taagcttaa attaaaccgg aatccgcggg 3060
 attc 3064

<210> 632

<211> 684

<212> PRT

<213> Homo sapiens

<400> 632

Met	Met	Asp	Ala	Ser	Lys	Glu	Leu	Gln	Val	Leu	His	Ile	Asp	Phe	Leu
5									10					15	

Asn	Gln	Asp	Asn	Ala	Val	Ser	His	His	Thr	Trp	Glu	Phe	Gln	Thr	Ser
20							25						30		

Ser	Pro	Val	Phe	Arg	Arg	Gly	Gln	Val	Phe	His	Leu	Arg	Leu	Val	Leu
35							40				45				

Asn	Gln	Pro	Leu	Gln	Ser	Tyr	His	Gln	Leu	Lys	Leu	Glu	Phe	Ser	Thr
50							55				60				

Gly	Pro	Asn	Pro	Ser	Ile	Ala	Lys	His	Thr	Leu	Val	Val	Leu	Asp	Pro
65							70			75			80		

Arg	Thr	Pro	Ser	Asp	His	Tyr	Asn	Trp	Gln	Ala	Thr	Leu	Gln	Asn	Glu
85									90			95			

Ser	Gly	Lys	Glu	Val	Thr	Val	Ala	Val	Thr	Ser	Ser	Pro	Asn	Ala	Ile
100							105					110			

Leu	Gly	Lys	Tyr	Gln	Leu	Asn	Val	Lys	Thr	Gly	Asn	His	Ile	Leu	Lys
115							120					125			

Ser	Glu	Glu	Asn	Ile	Leu	Tyr	Leu	Leu	Phe	Asn	Pro	Trp	Cys	Lys	Glu
130							135				140				

Asp	Met	Val	Phe	Met	Pro	Asp	Glu	Arg	Lys	Glu	Tyr	Ile	Leu		
145							150			155		160			

Asn	Asp	Thr	Gly	Cys	His	Tyr	Val	Gly	Ala	Ala	Arg	Ser	Ile	Lys	Cys
165								170				175			

Lys	Pro	Trp	Asn	Phe	Gly	Gln	Phe	Glu	Lys	Asn	Val	Leu	Asp	Cys	Cys
180								185				190			

Ile	Ser	Leu	Leu	Thr	Glu	Ser	Ser	Leu	Lys	Pro	Thr	Asp	Arg	Arg	Asp
195								200			205				

Pro	Val	Leu	Val	Cys	Arg	Ala	Met	Cys	Ala	Met	Met	Ser	Phe	Glu	Lys
210							215				220				

Gly Gln Gly Val Leu Ile Gly Asn Trp Thr Gly Asp Tyr Glu Gly Gly

225	230	235	240
Thr Ala Pro Tyr Lys Trp Thr Gly Ser Ala Pro Ile Leu Gln Gln Tyr 245	250	255	
Tyr Asn Thr Lys Gln Ala Val Cys Phe Gly Gln Cys Trp Val Phe Ala 260	265	270	
Gly Ile Leu Thr Thr Val Leu Arg Ala Leu Gly Ile Pro Ala Arg Ser 275	280	285	
Val Thr Gly Phe Asp Ser Ala His Asp Thr Glu Arg Asn Leu Thr Val 290	295	300	
Asp Thr Tyr Val Asn Glu Asn Gly Lys Lys Ile Thr Ser Met Thr His 305	310	315	320
Asp Ser Val Trp Asn Phe His Val Trp Thr Asp Ala Trp Met Lys Arg 325	330	335	
Pro Asp Leu Pro Lys Gly Tyr Asp Gly Trp Gln Ala Val Asp Ala Thr 340	345	350	
Pro Gln Glu Arg Ser Gln Gly Val Phe Cys Cys Gly Pro Ser Pro Leu 355	360	365	
Thr Ala Ile Arg Lys Gly Asp Ile Phe Ile Val Tyr Asp Thr Arg Phe 370	375	380	
Val Phe Ser Glu Val Asn Gly Asp Arg Leu Ile Trp Leu Val Lys Met 385	390	395	400
Val Asn Gly Gln Glu Glu Leu His Val Ile Ser Met Glu Thr Thr Ser 405	410	415	
Ile Gly Lys Asn Ile Ser Thr Lys Ala Val Gly Gln Asp Arg Arg Arg 420	425	430	
Asp Ile Thr Tyr Glu Tyr Lys Tyr Pro Glu Gly Ser Ser Glu Glu Arg 435	440	445	
Gln Val Met Asp His Ala Phe Leu Leu Ser Ser Glu Arg Glu His 450	455	460	
Arg Arg Pro Val Lys Glu Asn Phe Leu His Met Ser Val Gln Ser Asp 465	470	475	480
Asp Val Leu Leu Gly Asn Ser Val Asn Phe Thr Val Ile Leu Lys Arg 485	490	495	
Lys Thr Ala Ala Leu Gln Asn Val Asn Ile Leu Gly Ser Phe Glu Leu 500	505	510	
Gln Leu Tyr Thr Gly Lys Lys Met Ala Lys Leu Cys Asp Leu Asn Lys 515	520	525	
Thr Ser Gln Ile Gln Gly Gln Val Ser Glu Val Thr Leu Thr Leu Asp 530	535	540	

Ser Lys Thr Tyr Ile Asn Ser Leu Ala Ile Leu Asp Asp Glu Pro Val
545 550 555 560
Ile Arg Gly Phe Ile Ile Ala Glu Ile Val Glu Ser Lys Glu Ile Met
565 570 575

Ala Ser Glu Val Phe Thr Ser Phe Gln Tyr Pro Glu Phe Ser Ile Glu
580 585 590

Leu Pro Asn Thr Gly Arg Ile Gly Gln Leu Leu Val Cys Asn Cys Ile
595 600 605

Phe Lys Asn Thr Leu Ala Ile Pro Leu Thr Asp Val Lys Phe Ser Leu
610 615 620

Glu Ser Leu Gly Ile Ser Ser Leu Gln Thr Ser Asp His Gly Thr Val
625 630 635 640

Gln Pro Gly Glu Thr Ile Gln Ser Gln Ile Lys Cys Thr Pro Ile Lys
645 650 655

Thr Gly Pro Lys Lys Phe Ile Val Lys Leu Ser Ser Lys Gln Val Lys
660 665 670

Glu Ile Asn Ala Gln Lys Ile Val Leu Ile Thr Lys
675 680

<210> 633

<211> 679

<212> PRT

<213> Homo sapiens

<400> 633

Met Met Asp Ala Ser Lys Glu Leu Gln Val Leu His Ile Asp Phe Leu
5 10 15Asn Gln Asp Asn Ala Val Ser His His Thr Trp Glu Phe Gln Thr Ser
20 25 30Ser Pro Val Phe Arg Arg Gly Gln Val Phe His Leu Arg Leu Val Leu
35 40 45Asn Gln Pro Leu Gln Ser Tyr His Gln Leu Lys Leu Glu Phe Ser Thr
50 55 60Gly Pro Asn Pro Ser Ile Ala Lys His Thr Leu Val Val Leu Asp Pro
65 70 75 80Arg Thr Pro Ser Asp His Tyr Asn Trp Gln Ala Thr Leu Gln Asn Glu
85 90 95Ser Gly Lys Glu Val Thr Val Ala Val Thr Ser Ser Pro Asn Ala Ile
100 105 110Leu Gly Lys Tyr Gln Leu Asn Val Lys Thr Gly Asn His Ile Leu Lys
115 120 125

Ser Glu Glu Asn Ile Leu Tyr Leu Leu Phe Asn Pro Trp Cys Lys Glu
 130 135 140
 Asp Met Val Phe Met Pro Asp Glu Asp Glu Arg Lys Glu Tyr Ile Leu
 145 150 155 160
 Asn Asp Thr Gly Cys His Tyr Val Gly Ala Ala Arg Ser Ile Lys Cys
 165 170 175
 Lys Pro Trp Asn Phe Gly Gln Phe Glu Lys Asn Val Leu Asp Cys Cys
 180 185 190
 Ile Ser Leu Leu Thr Glu Ser Ser Leu Lys Pro Thr Asp Arg Arg Asp
 195 200 205
 Pro Val Leu Val Cys Arg Ala Met Cys Ala Met Met Ser Phe Glu Lys
 210 215 220
 Gly Gln Gly Val Leu Ile Gly Asn Trp Thr Gly Asp Tyr Glu Gly Gly
 225 230 235 240
 Thr Ala Pro Tyr Lys Trp Thr Gly Ser Ala Pro Ile Leu Gln Gln Tyr
 245 250 255
 Tyr Asn Thr Lys Gln Ala Val Cys Phe Gly Gln Cys Trp Val Phe Ala
 260 265 270
 Gly Ile Leu Thr Thr Val Leu Arg Ala Leu Gly Ile Pro Ala Arg Ser
 275 280 285
 Val Thr Gly Phe Asp Ser Ala His Asp Thr Glu Arg Asn Leu Thr Val
 290 295 300
 Asp Thr Tyr Val Asn Glu Asn Gly Glu Lys Ile Thr Ser Met Thr His
 305 310 315 320
 Asp Ser Val Trp Asn Phe His Val Trp Thr Asp Ala Trp Met Lys Arg
 325 330 335
 Pro Tyr Asp Gly Trp Gln Ala Val Asp Ala Thr Pro Gln Glu Arg Ser
 340 345 350
 Gln Gly Val Phe Cys Cys Gly Pro Ser Pro Leu Thr Ala Ile Arg Lys
 355 360 365
 Gly Asp Ile Phe Ile Val Tyr Asp Thr Arg Phe Val Phe Ser Glu Val
 370 375 380
 Asn Gly Asp Arg Leu Ile Trp Leu Val Lys Met Val Asn Gly Gln Glu
 385 390 395 400
 Glu Leu His Val Ile Ser Met Glu Thr Thr Ser Ile Gly Lys Asn Ile
 405 410 415
 Ser Thr Lys Ala Val Gly Gln Asp Arg Arg Arg Asp Ile Thr Tyr Glu
 420 425 430
 Tyr Lys Tyr Pro Glu Gly Ser Ser Glu Glu Arg Gln Val Met Asp His

435	440	445
Ala Phe Leu Leu Leu Ser Ser Glu Arg Glu His Arg Gln Pro Val Lys		
450	455	460
Glu Asn Phe Leu His Met Ser Val Gln Ser Asp Asp Val Leu Leu Gly		
465	470	475
Asn Ser Val Asn Phe Thr Val Ile Leu Lys Arg Lys Thr Ala Ala Leu		
485	490	495
Gln Asn Val Asn Ile Leu Gly Ser Phe Glu Leu Gln Leu Tyr Thr Gly		
500	505	510
Lys Lys Met Ala Lys Leu Cys Asp Leu Asn Lys Thr Ser Gln Ile Gln		
515	520	525
Gly Gln Val Ser Glu Val Thr Leu Thr Leu Asp Ser Lys Thr Tyr Ile		
530	535	540
Asn Ser Leu Ala Ile Leu Asp Asp Glu Pro Val Ile Arg Gly Phe Ile		
545	550	555
Ile Ala Glu Ile Val Glu Ser Lys Glu Ile Met Ala Ser Glu Val Phe		
565	570	575
Thr Ser Asn Gln Tyr Pro Glu Phe Ser Ile Glu Leu Pro Asn Thr Gly		
580	585	590
Arg Ile Gly Gln Leu Leu Val Cys Asn Cys Ile Phe Lys Asn Thr Leu		
595	600	605
Ala Ile Pro Leu Thr Asp Val Lys Phe Ser Leu Glu Ser Leu Gly Ile		
610	615	620
Ser Ser Leu Gln Thr Ser Asp His Gly Thr Val Gln Pro Gly Glu Thr		
625	630	635
Ile Gln Ser Gln Ile Lys Cys Thr Pro Ile Lys Thr Gly Pro Lys Lys		
645	650	655
Phe Ile Val Lys Leu Ser Ser Lys Gln Val Lys Glu Ile Asn Ala Gln		
660	665	670
Lys Ile Val Leu Ile Thr Lys		
675		

<210> 634
 <211> 5668
 <212> DNA
 <213> Homo sapiens

<400> 634
 gtcacttagg aaaaggtgtc ctttcggca gccgggctca gcatgaggaa cagaaggaat 60
 gacactctgg acagcacccg gaccctgtac tccagcgcgt ctcggagcac agacttgtct 120
 tacagtggaa gcgacttggt gaattttatt caagcaaatt ttaagaaaacg agaatgtgtc 180

ttctttacca aagattccaa ggccacggag aatgtgtgca aagtggcta tgcccagac 240
cagcacatgg aaggcaccca gatcaaccaa agtgagaaat ggaactacaa gaaacacacc 300
aaggaatttc ctaccgacgc ctttgggat attcagttt agacactggg gaagaagg 360
aagtatatac gtctgtcctg cgacacggac gcgaaatcc tttacgagct gctgacccag 420
caactgcacc taaaaacacc caacctggtc atttctgtga ccgggggcgc caagaacttc 480
gccctgaagg cgccatgcg caagatctt acgggctca tctacatcgc gcagtccaaa 540
ggtgcttggta ttctcacggg aggacccat tatggcctga cgaagtacat cggggaggtg 600
gtgagagata acaccatcg caggagttca gaggagaata ttgtggccat tggcatagca 660
gcttgggca tggcttccaa ccggacacc ctcatcagga attgcgtgc tgaggctat 720
tttttagccc agtacccat ggatgacttc acaaggatc cactgtatat cctggacaac 780
aaccacacac atttgcgtct cgtggacaat ggctgtcatg gacatccac tgcgaagca 840
aagctccgaa atcagctaga gaagcatatc tctgagcgc ctattcaaga ttccaactat 900
ggtgccaga tccccattgt gtgtttgcc caaggaggtg gaaaagagac ttgaaagcc 960
atcaatacct ccatcaaaaaaaa taaaattcct tgggtgggtt tggaaaggctc gggccggatc 1020
gctgatgtga tcgcgtaccc ggtggaggtg gaggatgccc cgacatctt tgcgtcaag 1080
gagaagctgg tgcgtttt accccgcacg gtgtcccgcc tgcgtgggaa ggagactgag 1140
agttgatca aatggctaa agaaaattctc gaatgttctc acctattaac agttattaaa 1200
atggagaag ctggggatga aattgtgagc aatggcatct cctacgcctt atacaaagcc 1260
ttcagcacca gtgagcaaga caaggataac tggaatgggc agctgaagct tctgtggag 1320
tggaaaccagc tggacttagc caatgtgag attttcacca atgaccggc atggagatct 1380
gctgacccctt aagaagtcat gtttacggct ctcataaagg acagacccaa gtttgtccgc 1440
ctcttctgg agaardggctt gaacctacgg aagtttctca cccatgtgt cctcaactgaa 1500
ctcttctcca accacttcag cacgcttgc taccggaaatc tgcagatcc caagaattcc 1560
tataatgtatg ccctcctcac gtttgcgtgg aaactgggtt cgaacttcc aagaggcttc 1620
cggaaggaag acagaaatgg ccgggacggatggacatag aactccacca cgtgtctcct 1680
attactcgcc accccctgca agctcttcc atctgggcca ttcttcagaa taagaaggaa 1740
ctctccaaag tcatttggga gcagaccagg ggctgcactc tggcagccct gggagccagc 1800
aagcttctga agactctggc caaagtgaag aacgacatca atgctgtgg ggagtccgag 1860
gagctggcta atgagttacga gacccgggtt gttgagctgt tcaactgtgt ttacagcgc 1920
gatgaagact tggcagaaca gctgtggc tattcctgtg aagcttgggg tggaaagcaac 1980
tgtctggagc tggcggtggaa ggcacacagac cagcatttca ccccccagcc tggggtccag 2040
aattttcttt ctaagcaatg gtatggagag atttcccggg acaccaagaa ctggaaagatt 2100
atccctgttc tggttattat acccttggg ggtgtggct ttgtatcatt taggaagaaaa 2160
cctgtcgaca agcacaagaa gctgtttgg tactatgtgg cgttcttcac ctcccccttc 2220
gtggcttctt cctggaatgt ggtcttctac atgccttcc tcctgtgtt tgcctacgtg 2280
ctgctcatgg attccattt ggtgccacac ccccccggc tggctctgtt ctcgtggc 2340
tttgcctct tctgtgtatga agttagacag tggtagctaa atgggggttaa ttatttact 2400
gacctgtgga atgtgtatggc cacgctgggg ctttttact tcatagcagg aattgtat 2460
cggtccact ctctaaataa aagcttttgc tattctggac gagtcattt ctgtctggac 2520
tacattattt tcaactctaag attgatccac attttactg taagcagaaa cttaggaccc 2580
aagattataa tgcgtcagag gatgtgtatc gatgtgttct tcctccttgc 2640
gtgtggatgg tggccttgg cgtggccagg caaggatcc ttaggcagaa tgagcagcgc 2700
tggagggttga tattccgttc ggtcatctac gagccctacc tggccatgtt cggccagggtg 2760
cccaagtgtac tggatggatc cacgtatgac tttcccact gcacccatc tggaaatgag 2820
tccaagccac tgggtgtggaa gctggatgag cacaacctgc cccgggttccc cgagtggatc 2880
accatcccc tgggtgtcat ctacatgttca tccaccaaca tcctgtgtt caactgtctg 2940
gtccatgtt tggcttacac ggtggccacc gtccaggaga acaatgacca ggtctggaaag 3000
ttccagggat attccctgtt gcaaggatgtc tgcagccgc tcaatatccc ctcccccttc 3060
atcgcttctg ctacttcttca catgggtgtt aagaagtgct tcaagtgttgc tgcaggag 3120
aaaaacatgg agtcttctgtt ctgtgtttc aaaaatgtaa acaatgagac tctgtcatgg 3180
gagggtgtca tgaaggaaaa ctaccttgc aagatcaaca caaaagccaa cgacaccc 3240
gaggaaatgtt ggcacatcgatt tagacaactg gatacaaaagc ttaatgtatctt caagggtctt 3300
ctgaaagaga ttgctaataa aatcaataa aactgtatga aactctaag gagaaaaatc 3360
taattatgtc aagatcatat taaggtatgc tggatgacaa ttttgcattt gactactaaa 3420
tgagagatgtt tcagacccctt gggatcatgg tggatgatctt taaatccccc tagtgtctg 3480
agacccatgg aataaaatgtt gtgatgtttt tcataacttgc agacggatataa aagaaagaa 3540
tatttcctt atgtgtttctt ccagaatgtt gcctgttttctt ctctgtgttcaatgcctgg 3600
gactggaggt tggatgttttca agtgtgttctt taccgcctcc tttttccctt aatcttattt 3660

<210> 635

<211> 1095

<212> PRT

<213> *Homo sapiens*

<400> 635

Met Arg Asn Arg Arg Asn Asp Thr Leu Asp Ser Thr Arg Thr Leu Tyr

5

10

10

Ser Ser Ala Ser Arg Ser Thr Asp Leu Ser Tyr Ser Glu Ser Asp Leu
20 25 30

20

3

30

Val Asn Phe Ile Gln Ala Asn Phe Lys Lys Arg Glu Cys Val Phe Phe
35 40 45

3 □

19

19

50

58

60

Gln Ser Gln His Met Glu Gly Thr Gln Ile Asn Gln Ser Glu Lys Trp
65 70 75 80

65

70

75

Asn Tyr Lys Lys His Thr Lys Glu Phe Pro Thr Asp Ala Phe Gly Asp
85 90 95

85

95

四

Ile Gln Phe Glu Thr Leu Gly Lys Lys Gly Lys Tyr Ile Arg Leu Ser
100 105 110

Cys Asp Thr Asp Ala Glu Ile Leu Tyr Glu Leu Leu Thr Gln His Trp
115 120 125

His Leu Lys Thr Pro Asn Leu Val Ile Ser Val Thr Gly Gly Ala Lys
130 135 140

Asn Phe Ala Leu Lys Pro Arg Met Arg Lys Ile Phe Ser Arg Leu Ile
145 150 155 160

Tyr Ile Ala Gln Ser Lys Gly Ala Trp Ile Leu Thr Gly Gly Thr His
165 170 175

Tyr Gly Leu Thr Lys Tyr Ile Gly Glu Val Val Arg Asp Asn Thr Ile
180 185 190

Ser Arg Ser Ser Glu Glu Asn Ile Val Ala Ile Gly Ile Ala Ala Trp
195 200 205

Gly Met Val Ser Asn Arg Asp Thr Leu Ile Arg Asn Cys Asp Ala Glu
210 215 220

Gly Tyr Phe Leu Ala Gln Tyr Leu Met Asp Asp Phe Thr Arg Asp Pro
225 230 235 240

Leu Tyr Ile Leu Asp Asn Asn His Thr His Leu Leu Leu Val Asp Asn
245 250 255

Gly Cys His Gly His Pro Thr Val Glu Ala Lys Leu Arg Asn Gln Leu
260 265 270

Glu Lys His Ile Ser Glu Arg Thr Ile Gln Asp Ser Asn Tyr Gly Gly
275 280 285

Lys Ile Pro Ile Val Cys Phe Ala Gln Gly Gly Lys Glu Thr Leu
290 295 300

Lys Ala Ile Asn Thr Ser Ile Lys Asn Lys Ile Pro Cys Val Val Val
305 310 315 320

Glu Gly Ser Gly Arg Ile Ala Asp Val Ile Ala Ser Leu Val Glu Val
325 330 335

Glu Asp Ala Pro Thr Ser Ser Ala Val Lys Glu Lys Leu Val Arg Phe
340 345 350

Leu Pro Arg Thr Val Ser Arg Leu Ser Glu Glu Glu Thr Glu Ser Trp
355 360 365

Ile Lys Trp Leu Lys Glu Ile Leu Glu Cys Ser His Leu Leu Thr Val
370 375 380

Ile Lys Met Glu Glu Ala Gly Asp Glu Ile Val Ser Asn Ala Ile Ser
385 390 395 400

Tyr Ala Leu Tyr Lys Ala Phe Ser Thr Ser Glu Gln Asp Lys Asp Asn
405 410 415

Trp Asn Gly Gln Leu Lys Leu Leu Glu Trp Asn Gln Leu Asp Leu
420 425 430

Ala Asn Asp Glu Ile Phe Thr Asn Asp Arg Arg Trp Glu Ser Ala Asp
435 440 445

Leu Gln Glu Val Met Phe Thr Ala Leu Ile Lys Asp Arg Pro Lys Phe
450 455 460

Val Arg Leu Phe Leu Glu Asn Gly Leu Asn Leu Arg Lys Phe Leu Thr
465 470 475 480

His Asp Val Leu Thr Glu Leu Phe Ser Asn His Phe Ser Thr Leu Val
485 490 495

Tyr Arg Asn Leu Gln Ile Ala Lys Asn Ser Tyr Asn Asp Ala Leu Leu
500 505 510

Thr Phe Val Trp Lys Leu Val Ala Asn Phe Arg Arg Gly Phe Arg Lys
515 520 525

Glu Asp Arg Asn Gly Arg Asp Glu Met Asp Ile Glu Leu His Asp Val
530 535 540

Ser Pro Ile Thr Arg His Pro Leu Gln Ala Leu Phe Ile Trp Ala Ile
545 550 555 560

Leu Gln Asn Lys Lys Glu Leu Ser Lys Val Ile Trp Glu Gln Thr Arg
565 570 575

Gly Cys Thr Leu Ala Ala Leu Gly Ala Ser Lys Leu Leu Lys Thr Leu
580 585 590

Ala Lys Val Lys Asn Asp Ile Asn Ala Ala Gly Glu Ser Glu Glu Leu
595 600 605

Ala Asn Glu Tyr Glu Thr Arg Ala Val Glu Leu Phe Thr Glu Cys Tyr
610 615 620

Ser Ser Asp Glu Asp Leu Ala Glu Gln Leu Leu Val Tyr Ser Cys Glu
625 630 635 640

Ala Trp Gly Gly Ser Asn Cys Leu Glu Leu Ala Val Glu Ala Thr Asp
645 650 655

Gln His Phe Thr Ala Gln Pro Gly Val Gln Asn Phe Leu Ser Lys Gln
660 665 670

Trp Tyr Gly Glu Ile Ser Arg Asp Thr Lys Asn Trp Lys Ile Ile Leu
675 680 685

Cys Leu Phe Ile Ile Pro Leu Val Gly Cys Gly Phe Val Ser Phe Arg
690 695 700

Lys Lys Pro Val Asp Lys His Lys Lys Leu Leu Trp Tyr Tyr Val Ala

705	710	715	720
Phe Phe Thr Ser Pro Phe Val Val Phe Ser Trp Asn Val Val Phe Tyr			
725	730	735	
Ile Ala Phe Leu Leu Leu Phe Ala Tyr Val Leu Leu Met Asp Phe His			
740	745	750	
Ser Val Pro His Pro Pro Glu Leu Val Leu Tyr Ser Leu Val Phe Val			
755	760	765	
Leu Phe Cys Asp Glu Val Arg Gln Trp Tyr Val Asn Gly Val Asn Tyr			
770	775	780	
Phe Thr Asp Leu Trp Asn Val Met Asp Thr Leu Gly Leu Phe Tyr Phe			
785	790	795	800
Ile Ala Gly Ile Val Phe Arg Leu His Ser Ser Asn Lys Ser Ser Leu			
805	810	815	
Tyr Ser Gly Arg Val Ile Phe Cys Leu Asp Tyr Ile Ile Phe Thr Leu			
820	825	830	
Arg Leu Ile His Ile Phe Thr Val Ser Arg Asn Leu Gly Pro Lys Ile			
835	840	845	
Ile Met Leu Gln Arg Met Leu Ile Asp Val Phe Phe Leu Phe Leu			
850	855	860	
Phe Ala Val Trp Met Val Ala Phe Gly Val Ala Arg Gln Gly Ile Leu			
865	870	875	880
Arg Gln Asn Glu Gln Arg Trp Arg Trp Ile Phe Arg Ser Val Ile Tyr			
885	890	895	
Glu Pro Tyr Leu Ala Met Phe Gly Gln Val Pro Ser Asp Val Asp Gly			
900	905	910	
Thr Thr Tyr Asp Phe Ala His Cys Thr Phe Thr Gly Asn Glu Ser Lys			
915	920	925	
Pro Leu Cys Val Glu Leu Asp Glu His Asn Leu Pro Arg Phe Pro Glu			
930	935	940	
Trp Ile Thr Ile Pro Leu Val Cys Ile Tyr Met Leu Ser Thr Asn Ile			
945	950	955	960
Leu Leu Val Asn Leu Leu Val Ala Met Phe Gly Tyr Thr Val Gly Thr			
965	970	975	
Val Gln Glu Asn Asn Asp Gln Val Trp Lys Phe Gln Arg Tyr Phe Leu			
980	985	990	
Val Gln Glu Tyr Cys Ser Arg Leu Asn Ile Pro Phe Pro Phe Ile Val			
995	1000	1005	
Phe Ala Tyr Phe Tyr Met Val Val Lys Lys Cys Phe Lys Cys Cys Cys			
1010	1015	1020	

Lys Glu Lys Asn Met Glu Ser Ser Val Cys Cys Phe Lys Asn Glu Asp
 1025 1030 1035 1040

Asn Glu Thr Leu Ala Trp Glu Gly Val Met Lys Glu Asn Tyr Leu Val
1045 1050 1055

Lys Ile Asn Thr Lys Ala Asn Asp Thr Ser Glu Glu Met Arg Arg
1060 1065 1070

Phe Arg Gln Leu Asp Thr Lys Leu Asn Asp Leu Lys Gly Leu Leu Lys
1075 1080 1085

Glu Ile Ala Asn Lys Ile Lys
1090 1095

<210> 636
<211> 3639
<212> DNA
<213> *Homo sapiens*

<400> 636
gattacgcaa gctattttagg tgacactata gaatwctcag cttgcataa gcttggtacc 60
gagctcgat ccctagtaac ggccgccagt gtgctggaat tcgccccttc agccgggctc 120
agcatgagga acagaaggaa tgacactctg gacagcaccc ggaccctgtt ctccagecg 180
tctcggagca cagacttgc ttacagtgaa agcgaacttgg tgaattttat tcaagcaaat 240
tttaagaaac gagaatgtgt cttcttacc aaagattcca aggccacgga gaatgtgtc 300
aagtgtggct atgcccagag ccagcacatg gaaggcaccc agatcaacca aagtgagaaa 360
tggaactaca agaaacacac caaggaattt cctaccgacg cctttgggaa tattcagttt 420
gagacactgg ggaagaaaagg gaagtatata cgtctgtcct gcgcacacgga cgccgaaatc 480
ctttacgagc tgctgaccca gcactggcac ctgaaaacac ccaacacctgtt catttctgtg 540
accgggggacg ccaagaactt cggccctgaag ccgcgcacatgc gcaagatctt cagccggctc 600
atctacatcg cgcagtccaa aggtgcttgg atttcacgg gaggcacccca ttatggcctg 660
atgaagtaca tcggggaggt ggtgagagat aacaccatca gcaggagatc agaggagaat 720
attgtggcca ttggcatagc agcttgggac atggcttcca accggggacac cctcatcagg 780
aattgcatgt ctgagggtca ttttttagcc cagtaccta tggatgactt cacaagagat 840
ccactgtata tcctggacaa caaccacaca cattgctgc tcgtggacaa tggctgtcat 900
ggacatccca ctgtcgaaagc aaagctccgg aatcagctag agaagtataat ctctgagcgc 960
actattcaag attccaacta tggtgcaag atccccattt tggttttgc ccaaggaggt 1020
ggaaaagaga ctttggaaagc catcaatacc tccatcaaaaa ataaaattcc ttgtgtggg 1080
gtggaaagct cggggccagat cgctgatgtg atcgctagcc tgggtggaggt ggaggatgoc 1140
ctgacatctt ctggcgtaa ggagaagctg gtgcgtttt taccggcac ggtgtcccg 1200
ctgcctgagg aggagactga gagttggatc aaatggctca aagaaattct cgaatgttct 1260
cacctattaa cagttattaa aatggaaagaa gctggggatg aaattgttag caatggcato 1320
tcctacgctc tatacaaagc cttcagcacc agtgagcaag acaaggataaa ctggaatggg 1380
cagctgaagc ttctgttgg gttggaaaccag ctggacttag ccaatgatga gattttcacc 1440
aatgaccgcc gatggggatc tgctgacccctt caagaagtca tggttacggc tctcataaaag 1500
gacagacca agtttgtccg ccttttctg gagaatggct tgaacctacg gaagtttctc 1560
accctatgtat tcctcaactga actcttctcc aaccacttca gcacgcttgc gtaccggaaat 1620
ctgcagatcg ccaagaattt ctataatgtat gccctcctca ctggacttag ccaatgatga gaaactgggt 1680
gcgaacttcc gaagaggctt ccggaaaggaa gacagaaatg gccgggacgga gatggacata 1740
gaactccacg acgtgtctcc tattactcgg cacccttgc aagctctttt catctggcc 1800
atttttcaga ataagaagga actctccaaat gtcatttggg agcagaccag gggctgcact 1860
ctggcagcccc tgggagccag caagcttctg aagactctgg ccaaagtggaa gaacgacatc 1920
aatgctgtg gggagttccga ggagctggct aatgagtacg agacccgggc tggtagctg 1980
ttcaactgagt gttacagcag cgtatgaagac ttggcagaac agctgctggg ctattcctgt 2040

gaagcttggg gtggaagcaa ctgtctggag ctggcggtgg aggccacaga ccagcatttc 2100
 atcgcccagc ctgggggtcca gaattttctt tctaagcaat ggtatggaga gatttccccga 2160
 gacaccaaga actggaagat tatcctgtgt ctgtttatta tacccttggg gggctgtggc 2220
 ttgttatcat ttaggaagaa acctgtcgac aagcacaaga agctgctttg gtactatgtg 2280
 gcgttctca cctccccctt cgtggcttcc tccttggaaatg tggcttcta catcgcccttc 2340
 ctccctgtgt ttgcctacgt gctgctcatg gatttccatt cggtgccaca cccccccgag 2400
 ctggctctgt actcgctgg tttgtcttc ttctgtgtatg aagttagac gttgtacgt 2460
 aatgggtga attattttac tgacctgtgg aatgtgtatgg acacgctggg gctttttac 2520
 ttcatagcag gaattgtatt tcggctccac tcttctaata aaagctttaatgat 2580
 cgagtcattt tctgtctggaa ctacattatt ttcaactctaa gattgatcca cattttact 2640
 gtaaggcagaa acttaggacc caagattata atgctgcaga ggatgctgat cgatgtgttc 2700
 ttcttcctgt tcctcttgc gwgwtgtatg gtggcccttg gcgtggccag gcaagggatc 2760
 cttaggcaga atgagcagcg ctggaggtgg atattccgtt cggcatctta cgagccctac 2820
 ctggccatgt tcggccaggt gcccagtgtac gtggatggta ccacgtatga ctggcccac 2880
 tgcacccatca ctgggaatga gtccaaagcca ctgtgtgtgg agctggatga gcacaacctg 2940
 ccccggttcc cccaggtggat caccatcccc ctgggtgtca tctacatgtt atccaccaac 3000
 atccctgtgg tcaacactgtt ggtcgccatg tttggctaca cggtgggcac cgtccaggag 3060
 aacaatgacc aggtctggaa gttccagagg tacttccctgg tgcaggagta ctgcagccgc 3120
 ctcaatatcc ccttccccctt catcgcttcc gcttacttctt acatgggtgtt gaagaagtgc 3180
 ttcaagtgtt gtcgcaagga gaaaaacatg gaggcttctg tctgctgtt caaaaatgaa 3240
 gacaatgaga ctctggcatg ggagggtgtc atgaaggaaa actacctgtt caagatcaac 3300
 aaaaaagcca accgacacccctc agaggaaatg aggcatcgat ttagacaact ggatacaaag 3360
 cttaatgatc tcaagggtct tctgaaagag attgctaata aaatcaaata aaactgtatg 3420
 aactctaattt gaaaaaaatc taattatagc aagatcatat taaggaatgc tgatgaacaa 3480
 ttttgcatac gactactaaa tgagagattt tcagacccctt gggtacatgg tggatgattt 3540
 taaatcaccc tagtgtgtctg agaccttgag aataaagtgtt gaagggcgaa ttctgcagat 3600
 atccatcaca ctggcgcccg ctcgagcatg catctagag 3639

<210> 637

<211> 1095

<212> PRT

<213> Homo sapiens

<220>

<221> VARIANT

<222> (1)...(1095)

<223> Xaa = Any Amino Acid

<400> 637

Met	Arg	Asn	Arg	Arg	Asn	Asp	Thr	Leu	Asp	Ser	Thr	Arg	Thr	Leu	Tyr
							5						10		15

Ser	Ser	Ala	Ser	Arg	Ser	Thr	Asp	Leu	Ser	Tyr	Ser	Glu	Ser	Asp	Leu
								20				25			30

Val	Asn	Phe	Ile	Gln	Ala	Asn	Phe	Lys	Lys	Arg	Glu	Cys	Val	Phe	Phe
								35				40			45

Thr	Lys	Asp	Ser	Lys	Ala	Thr	Glu	Asn	Val	Cys	Lys	Cys	Gly	Tyr	Ala
								50				55			60

Gln	Ser	Gln	His	Met	Glu	Gly	Thr	Gln	Ile	Asn	Gln	Ser	Glu	Lys	Trp
								65				70			80

Asn	Tyr	Lys	Lys	His	Thr	Lys	Glu	Phe	Pro	Thr	Asp	Ala	Phe	Gly	Asp
								85				90			95

Ile	Gln	Phe	Glu	Thr	Leu	Gly	Lys	Gly	Lys	Tyr	Ile	Arg	Leu	Ser
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

	100	105	110
Cys Asp Thr Asp Ala Glu Ile Leu Tyr Glu Leu Leu Thr Gln His Trp			
115	120	125	
His Leu Lys Thr Pro Asn Leu Val Ile Ser Val Thr Gly Gly Ala Lys			
130	135	140	
Asn Phe Ala Leu Lys Pro Arg Met Arg Lys Ile Phe Ser Arg Leu Ile			
145	150	155	160
Tyr Ile Ala Gln Ser Lys Gly Ala Trp Ile Leu Thr Gly Gly Thr His			
165	170	175	
Tyr Gly Leu Met Lys Tyr Ile Gly Glu Val Val Arg Asp Asn Thr Ile			
180	185	190	
Ser Arg Ser Ser Glu Glu Asn Ile Val Ala Ile Gly Ile Ala Ala Trp			
195	200	205	
Gly Met Val Ser Asn Arg Asp Thr Leu Ile Arg Asn Cys Asp Ala Glu			
210	215	220	
Gly Tyr Phe Leu Ala Gln Tyr Leu Met Asp Asp Phe Thr Arg Asp Pro			
225	230	235	240
Leu Tyr Ile Leu Asp Asn Asn His Thr His Leu Leu Leu Val Asp Asn			
245	250	255	
Gly Cys His Gly His Pro Thr Val Glu Ala Lys Leu Arg Asn Gln Leu			
260	265	270	
Glu Lys Tyr Ile Ser Glu Arg Thr Ile Gln Asp Ser Asn Tyr Gly Gly			
275	280	285	
Lys Ile Pro Ile Val Cys Phe Ala Gln Gly Gly Lys Glu Thr Leu			
290	295	300	
Lys Ala Ile Asn Thr Ser Ile Lys Asn Lys Ile Pro Cys Val Val Val			
305	310	315	320
Glu Gly Ser Gly Gln Ile Ala Asp Val Ile Ala Ser Leu Val Glu Val			
325	330	335	
Glu Asp Ala Leu Thr Ser Ser Ala Val Lys Glu Lys Leu Val Arg Phe			
340	345	350	
Leu Pro Arg Thr Val Ser Arg Leu Pro Glu Glu Glu Thr Glu Ser Trp			
355	360	365	
Ile Lys Trp Leu Lys Glu Ile Leu Glu Cys Ser His Leu Leu Thr Val			
370	375	380	
Ile Lys Met Glu Glu Ala Gly Asp Glu Ile Val Ser Asn Ala Ile Ser			
385	390	395	400
Tyr Ala Leu Tyr Lys Ala Phe Ser Thr Ser Glu Gln Asp Lys Asp Asn			
405	410	415	

Trp Asn Gly Gln Leu Lys Leu Leu Glu Trp Asn Gln Leu Asp Leu
420 425 430

Ala Asn Asp Glu Ile Phe Thr Asn Asp Arg Arg Trp Glu Ser Ala Asp
435 440 445

Leu Gln Glu Val Met Phe Thr Ala Leu Ile Lys Asp Arg Pro Lys Phe
450 455 460

Val Arg Leu Phe Leu Glu Asn Gly Leu Asn Leu Arg Lys Phe Leu Thr
465 470 475 480

His Asp Val Leu Thr Glu Leu Phe Ser Asn His Phe Ser Thr Leu Val
485 490 495

Tyr Arg Asn Leu Gln Ile Ala Lys Asn Ser Tyr Asn Asp Ala Leu Leu
500 505 510

Thr Phe Val Trp Lys Leu Val Ala Asn Phe Arg Arg Gly Phe Arg Lys
515 520 525

Glu Asp Arg Asn Gly Arg Asp Glu Met Asp Ile Glu Leu His Asp Val
530 535 540

Ser Pro Ile Thr Arg His Pro Leu Gln Ala Leu Phe Ile Trp Ala Ile
545 550 555 560

Leu Gln Asn Lys Lys Glu Leu Ser Lys Val Ile Trp Glu Gln Thr Arg
565 570 575

Gly Cys Thr Leu Ala Ala Leu Gly Ala Ser Lys Leu Leu Lys Thr Leu
580 585 590

Ala Lys Val Lys Asn Asp Ile Asn Ala Ala Gly Glu Ser Glu Glu Leu
595 600 605

Ala Asn Glu Tyr Glu Thr Arg Ala Val Glu Leu Phe Thr Glu Cys Tyr
610 615 620

Ser Ser Asp Glu Asp Leu Ala Glu Gln Leu Leu Val Tyr Ser Cys Glu
625 630 635 640

Ala Trp Gly Gly Ser Asn Cys Leu Glu Leu Ala Val Glu Ala Thr Asp
645 650 655

Gln His Phe Ile Ala Gln Pro Gly Val Gln Asn Phe Leu Ser Lys Gln
660 665 670

Trp Tyr Gly Glu Ile Ser Arg Asp Thr Lys Asn Trp Lys Ile Ile Leu
675 680 685

Cys Leu Phe Ile Ile Pro Leu Val Gly Cys Gly Phe Val Ser Phe Arg
690 695 700

Lys Lys Pro Val Asp Lys His Lys Lys Leu Leu Trp Tyr Tyr Val Ala
705 710 715 720

Phe Phe Thr Ser Pro Phe Val Val Phe Ser Trp Asn Val Val Phe Tyr
725 730 735

Ile Ala Phe Leu Leu Leu Phe Ala Tyr Val Leu Leu Met Asp Phe His
740 745 750

Ser Val. Pro His Pro Pro Glu Leu Val Leu Tyr Ser Leu Val Phe Val
755 760 765

Leu Phe Cys Asp Glu Val Arg Gln Trp Tyr Val Asn Gly Val Asn Tyr
770 775 780

Phe Thr Asp Leu Trp Asn Val Met Asp Thr Leu Gly Leu Phe Tyr Phe
785 790 795 800

Ile Ala Gly Ile Val Phe Arg Leu His Ser Ser Asn Lys Ser Ser Leu
805 810 815

Tyr Ser Gly Arg Val Ile Phe Cys Leu Asp Tyr Ile Ile Phe Thr Leu
820 825 830

Arg Leu Ile His Ile Phe Thr Val Ser Arg Asn Leu Gly Pro Lys Ile
835 840 845

Ile Met Leu Gln Arg Met Leu Ile Asp Val Phe Phe Leu Phe Leu
850 855 860

Phe Ala Xaa Trp Met Val Ala Phe Gly Val Ala Arg Gln Gly Ile Leu
865 870 875 880

Arg Gln Asn Glu Gln Arg Trp Arg Trp Ile Phe Arg Ser Val Ile Tyr
885 890 895

Glu Pro Tyr Leu Ala Met Phe Gly Gln Val Pro Ser Asp Val Asp Gly
900 905 910

Thr Thr Tyr Asp Phe Ala His Cys Thr Phe Thr Gly Asn Glu Ser Lys
915 920 925

Pro Leu Cys Val Glu Leu Asp Glu His Asn Leu Pro Arg Phe Pro Glu
930 935 940

Trp Ile Thr Ile Pro Leu Val Cys Ile Tyr Met Leu Ser Thr Asn Ile
945 950 955 960

Leu Leu Val Asn Leu Leu Val Ala Met Phe Gly Tyr Thr Val Gly Thr
965 970 975

Val Gln Glu Asn Asn Asp Gln Val Trp Lys Phe Gln Arg Tyr Phe Leu
980 985 990

Val Gln Glu Tyr Cys Ser Arg Leu Asn Ile Pro Phe Pro Phe Ile Val
995 1000 1005

Phe Ala Tyr Phe Tyr Met Val Val Lys Lys Cys Phe Lys Cys Cys Cys
1010 1015 1020

Lys Glu Lys Asn Met Glu Ser Ser Val Cys Cys Phe Lys Asn Glu Asp

1025	1030	1035	1040
Asn Glu Thr Leu Ala Trp Glu Gly Val Met Lys Glu Asn Tyr Leu Val			
1045	1050	1055	
Lys Ile Asn Thr Lys Ala Asn Asp Thr Ser Glu Glu Met Arg His Arg			
1060	1065	1070	
Phe Arg Gln Leu Asp Thr Lys Leu Asn Asp Leu Lys Gly Leu Leu Lys			
1075	1080	1085	
Glu Ile Ala Asn Lys Ile Lys			
1090	1095		

<210> 638
<211> 15
<212> PRT
<213> Homo sapiens

<400> 638
Arg Met Pro Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser
5 10 15

<210> 639
<211> 45
<212> DNA
<213> Homo sapiens

<400> 639
agaatgccta ccgtgctgca gtgcgtgaac gtgtcgggtgg tgtct 45

<210> 640
<211> 45
<212> DNA
<213> Homo sapiens

<400> 640
gagccaggga gccagatgg gggaggccagc ctctccgtac ggcac 45

<210> 641
<211> 45
<212> DNA
<213> Homo sapiens

<400> 641
gaggccgacc aagagccagg gagccagatg gtggaggcca gcctc 45

<210> 642
<211> 45
<212> DNA
<213> Homo sapiens

<400> 642
ggcctgcaca gtcttgaggc cgaccaagag ccagggagcc agatg 45

<210> 643
<211> 45
<212> DNA
<213> Homo sapiens

<400> 643
tacaccatcg ggctgggcct gcacagtctt gaggccgacc aagag 45

<210> 644
<211> 42
<212> DNA
<213> Homo sapiens

<400> 644
ttccagaact cctacaccat cgggctggc ctgcacagtc tt 42

<210> 645
<211> 45
<212> DNA
<213> Homo sapiens

<400> 645
ctgtcagccg cacactgttt ccagaactcc tacaccatcg ggctg 45

<210> 646
<211> 45
<212> DNA
<213> Homo sapiens

<400> 646
catccgcagt ggggtctgtc agccgcacac tggccaga actcc 45

<210> 647
<211> 45
<212> DNA
<213> Homo sapiens

<400> 647
tcgggcgtcc tggtgcatcc gcagtgggtg ctgtcagccg cacac 45

<210> 648
<211> 45
<212> DNA
<213> Homo sapiens

<400> 648
aacgaattgt tctgctcggg cgtcctggtg catccgcagt gggtg 45

<210> 649
<211> 45
<212> DNA
<213> Homo sapiens

<400> 649
gcactggtca tggaaaacga attgttctgc tcgggcgtcc tggtg 45

<210> 650
<211> 51

<212> DNA

<213> Homo sapiens

<400> 650

tcgcagccct ggcaggcggc actggcatg gaaaacgaat tgttctgctc g

51

<210> 651

<211> 45

<212> DNA

<213> Homo sapiens

<400> 651

atcagcattg cttcgactgt ccctaccgcg gggaaactctt gcctc

45

<210> 652

<211> 45

<212> DNA

<213> Homo sapiens

<400> 652

tccgtgtccg agtctgacac catccggagc atcagcattg cttcg

45

<210> 653

<211> 45

<212> DNA

<213> Homo sapiens

<400> 653

atcaagttgg acgaatccgt gtccgagtct gacaccatcc ggagc

45

<210> 654

<211> 45

<212> DNA

<213> Homo sapiens

<400> 654

aacgacctca tgctcatcaa gttggacgaa tccgtgtccg agtct

45

<210> 655

<211> 45

<212> DNA

<213> Homo sapiens

<400> 655

agacccttgc tcgctaacga cctcatgctc atcaagttgg acgaa

45

<210> 656

<211> 15

<212> PRT

<213> Homo sapiens

<400> 656

Glu Pro Gly Ser Gln Met Val Glu Ala Ser Leu Ser Val Arg His

5

10

15

<210> 657

<211> 15

<212> PRT
<213> Homo sapiens

<400> 657
Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val Glu Ala Ser Leu
5 10 15

<210> 658
<211> 15
<212> PRT
<213> Homo sapiens

<400> 658
Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met
5 10 15

<210> 659
<211> 15
<212> PRT
<213> Homo sapiens

<400> 659
Tyr Thr Ile Gly Leu Gly Leu His Ser Leu Glu Ala Asp Gln Glu
5 10 15

<210> 660
<211> 14
<212> PRT
<213> Homo sapiens

<400> 660
Phe Gln Asn Ser Tyr Thr Ile Gly Leu Gly Leu His Ser Leu
5 10

<210> 661
<211> 15
<212> PRT
<213> Homo sapiens

<400> 661
Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu
5 10 15

<210> 662
<211> 15
<212> PRT
<213> Homo sapiens

<400> 662
His Pro Gln Trp Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser
5 10 15

<210> 663
<211> 15
<212> PRT
<213> Homo sapiens

<400> 663
Ser Gly Val Leu Val His Pro Gln Trp Val Leu Ser Ala Ala His
5 10 15

<210> 664
<211> 15
<212> PRT
<213> Homo sapiens

<400> 664
Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp Val
5 10 15

<210> 665
<211> 15
<212> PRT
<213> Homo sapiens

<400> 665
Ala Leu Val Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val
5 10 15

<210> 666
<211> 17
<212> PRT
<213> Homo sapiens

<400> 666
Ser Gln Pro Trp Gln Ala Ala Leu Val Met Glu Asn Glu Leu Phe Cys
5 10 15

Ser

<210> 667
<211> 15
<212> PRT
<213> Homo sapiens

<400> 667
Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly Asn Ser Cys Leu
5 10 15

<210> 668
<211> 15
<212> PRT
<213> Homo sapiens

<400> 668
Ser Val Ser Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser
5 10 15

<210> 669
<211> 15
<212> PRT
<213> Homo sapiens

<400> 669
Ile Lys Leu Asp Glu Ser Val Ser Glu Ser Asp Thr Ile Arg Ser
5 10 15

<210> 670
<211> 15
<212> PRT
<213> Homo sapiens

<400> 670
Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser
5 10 15

<210> 671
<211> 15
<212> PRT
<213> Homo sapiens

<400> 671
Arg Pro Leu Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu
5 10 15

<210> 672
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 672
ggaccagcat atgaggaaca gaaggaatga cactc 35

<210> 673
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 673
ccgctcgagt ccaccccaag cttcacagg 29

<210> 674
<211> 1959
<212> DNA
<213> *Homo sapiens*

<400> 674
atgaggaaca gaaggaatga cactctggac agcacccgga ccctgtactc cagcgcgtct 60
cggagcacag acttgtctta cagtgaaagc gacttggta attttattca agcaaatttt 120
aagaaaacgag aatgtgtctt ctttacccaa gattccaagg ccacggagaa tggtgcaag 180
tgtggctatg cccagagcca gcacatggaa ggcacccaga tcaaccaaag tgagaaatgg 240
aactacaaga aacacaccaa ggaatttcct accgacgcct ttggggatata tcagtttag 300
acactgggaa agaaaaggaa gtatatacgt ctgtcctgcg acacggacgc gaaaaatcctt 360
tacgagctgc tgacccagca ctggcacctg aaaacaccca acctggcat ttctgtgacc 420
gggggcgccca agaacttcgc cctgaagccg cgcatgcgc agattttcag cggctcattc 480
tacatcgccg agtccaaagg tgcttggatt ctcacggag gcacccatta tggctgtatg 540
aagtacatcg gggaggtgtt gagagataac accatcagca ggagttcaga ggagaatatt 600
gtggccattt gcatagcgc ttggggcatg gtctccaacc gggacaccct catcaggaat 660
tgcgatgctg agggctattt ttagccccag taccttatgg atgacttcac aagagatcca 720
ctgtatatacc tggacaacaa ccacacacat ttgctgctcg tggacaatgg ctgtcatgaa 780
catcccactg tcgaagcaaa gctccggaa cagctagaga agtataatctc tgagcgcact 840
attcaagatt ccaactatgg tggcaagatc cccattgtgt gttttggcca aggaggtgga 900
aaagagactt taaaagccat caataccccc atcaaaaata aaatttcctt tgggggtgg 960
gaaggctcgg gccagatcgc tgatgtgatc gctagcctgg tggaggtgaa ggatgcctg 1020
acatcttctg cggcaagga gaagctggg cgcttttac cccgcacggt gtcccggtg 1080
cctgaggagg agactgagag ttggatcaaa tggctcaaaag aaattctcgat atgttctcac 1140
ctattaacag ttataaaat ggaagaagct gggatgaaa ttgtgagca tgccatctcc 1200
tacgctctat acaaaggcctt cagcaccagt gagcaagaca aggataactg gaatggcag 1260
ctgaagcttc tgctggagtg gaaccagctg gacttagcca atgatgagat ttccaccaat 1320
gaccggccat gggagtctgc tgacccctaa gaagtcatgt ttacggctct cataaaggac 1380
agaccccaagt ttgtccgcct ctttctggag aatggcttga acctacggaa gtttctcacc 1440
catgatgtcc tcactgaact cttctccaaac cacttcagca cgcttgcgtt ccggaaatctg 1500
cagatcgcca agaattccctaa taatgtatgcc ctcctcacgt ttgtctggaa actgggtgc 1560
aacttccgaa gaggctccg gaaggaagac agaaatggcc gggacggat ggacatagaa 1620
ctccacgcacg tgtctcttat tactcgac cccctgcacat ctctttcat ctggccatt 1680
cttcagaata agaaggaact ctccaaagtc atttggagc agaccagggg ctgcactctg 1740
gcagccctgg gagccagcaa gttctgttgcg actctggccaa aagtgaagaa cgacatcaat 1800
gctgctgggg agtccgagga gctggctaat gatgtacgaga cccgggctgt tgagctgttc 1860
actgagtgtt acagcagcga tgaagacttgc gcaaaacagc tgctggcttca ttctgtgaa 1920
gcttgggggtg gactcgagca ccaccacccac caccactqa 1959

<210> 675
<211> 652
<212> PRT
<213> *Homo sapiens*

<400> 675
Met Arg Asn Arg Arg Asn Asp Thr Leu Asp Ser Thr Arg Thr Leu Tyr
5 10 15

Ser Ser Ala Ser Arg Ser Thr Asp Leu Ser Tyr Ser Glu Ser Asp Leu
20 25 30

Val Asn Phe Ile Gln Ala Asn Phe Lys Lys Arg Glu Cys Val Phe Phe
35 40 45

Thr Lys Asp Ser Lys Ala Thr Glu Asn Val Cys Lys Cys Gly Tyr Ala
50 55 60

Gln Ser Gln His Met Glu Gly Thr Gln Ile Asn Gln Ser Glu Lys Trp
65 70 75 80

Asn Tyr Lys Lys His Thr Lys Glu Phe Pro Thr Asp Ala Phe Gly Asp
85 90 95

Ile Gln Phe Glu Thr Leu Gly Lys Lys Gly Lys Tyr Ile Arg Leu Ser
100 105 110

Cys Asp Thr Asp Ala Glu Ile Leu Tyr Glu Leu Leu Thr Gln His Trp
115 120 125

His Leu Lys Thr Pro Asn Leu Val Ile Ser Val Thr Gly Gly Ala Lys
130 135 140

Asn Phe Ala Leu Lys Pro Arg Met Arg Lys Ile Phe Ser Arg Leu Ile
145 150 155 160

Tyr Ile Ala Gln Ser Lys Gly Ala Trp Ile Leu Thr Gly Gly Thr His
165 170 175

Tyr Gly Leu Met Lys Tyr Ile Gly Glu Val Val Arg Asp Asn Thr Ile
180 185 190

Ser Arg Ser Ser Glu Glu Asn Ile Val-Ala Ile Gly Ile Ala Ala Trp
195 200 205

Gly Met Val Ser Asn Arg Asp Thr Leu Ile Arg Asn Cys Asp Ala Glu
210 215 220

Gly Tyr Phe Leu Ala Gln Tyr Leu Met Asp Asp Phe Thr Arg Asp Pro
225 230 235 240

Leu Tyr Ile Leu Asp Asn Asn His Thr His Leu Leu Leu Val Asp Asn
245 250 255

Gly Cys His Gly His Pro Thr Val Glu Ala Lys Leu Arg Asn Gln Leu
260 265 270

Glu Lys Tyr Ile Ser Glu Arg Thr Ile Gln Asp Ser Asn Tyr Gly Gly
275 280 285

Lys Ile Pro Ile Val Cys Phe Ala Gln Gly Gly Lys Glu Thr Leu
290 295 300

Lys Ala Ile Asn Thr Ser Ile Lys Asn Lys Ile Pro Cys Val Val Val
305 310 315 320

Glu Gly Ser Gly Gln Ile Ala Asp Val Ile Ala Ser Leu Val Glu Val
325 330 335

Glu Asp Ala Leu Thr Ser Ser Ala Val Lys Glu Lys Leu Val Arg Phe
340 345 350

Leu Pro Arg Thr Val Ser Arg Leu Pro Glu Glu Glu Thr Glu Ser Trp
355 360 365

Ile Lys Trp Leu Lys Glu Ile Leu Glu Cys Ser His Leu Leu Thr Val

370	375	380
Ile Lys Met Glu Glu Ala Gly Asp Glu Ile Val Ser Asn Ala Ile Ser		
385	390	395
Tyr Ala Leu Tyr Lys Ala Phe Ser Thr Ser Glu Gln Asp Lys Asp Asn		
405	410	415
Trp Asn Gly Gln Leu Lys Leu Leu Leu Glu Trp Asn Gln Leu Asp Leu		
420	425	430
Ala Asn Asp Glu Ile Phe Thr Asn Asp Arg Arg Trp Glu Ser Ala Asp		
435	440	445
Leu Gln Glu Val Met Phe Thr Ala Leu Ile Lys Asp Arg Pro Lys Phe		
450	455	460
Val Arg Leu Phe Leu Glu Asn Gly Leu Asn Leu Arg Lys Phe Leu Thr		
465	470	475
480		
His Asp Val Leu Thr Glu Leu Phe Ser Asn His Phe Ser Thr Leu Val		
485	490	495
Tyr Arg Asn Leu Gln Ile Ala Lys Asn Ser Tyr Asn Asp Ala Leu Leu		
500	505	510
Thr Phe Val Trp Lys Leu Val Ala Asn Phe Arg Arg Gly Phe Arg Lys		
515	520	525
Glu Asp Arg Asn Gly Arg Asp Glu Met Asp Ile Glu Leu His Asp Val		
530	535	540
Ser Pro Ile Thr Arg His Pro Leu Gln Ala Leu Phe Ile Trp Ala Ile		
545	550	555
560		
Leu Gln Asn Lys Lys Glu Leu Ser Lys Val Ile Trp Glu Gln Thr Arg		
565	570	575
Gly Cys Thr Leu Ala Ala Leu Gly Ala Ser Lys Leu Leu Lys Thr Leu		
580	585	590
Ala Lys Val Lys Asn Asp Ile Asn Ala Ala Gly Glu Ser Glu Glu Leu		
595	600	605
Ala Asn Glu Tyr Glu Thr Arg Ala Val Glu Leu Phe Thr Glu Cys Tyr		
610	615	620
Ser Ser Asp Glu Asp Leu Ala Glu Gln Leu Leu Val Tyr Ser Cys Glu		
625	630	635
640		
Ala Trp Gly Gly Leu Glu His His His His His		
645	650	

<210> 676

<211> 132

<212> PRT
<213> Homo sapien

<400> 676
Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly Phe
1 5 10 15
Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser
20 25 30
Gly Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly
35 40 45
Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val
50 55 60
Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val
65 70 75 80
Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala
85 90 95
Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp
100 105 110
Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu
115 120 125
Gly Pro Pro Ala
130

<210> 677
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 677
gggaaattca tgatccggga gaaatttgcc cactgc 36

<210> 678
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 678
gggctcgagt caggagttt agaccagcct ggc 33

<210> 679
<211> 675
<212> DNA
<213> Homo sapiens

<400> 679
atgcatcacc atcaccatca cacggccgcg tccgataact tccagctgtc ccaggggtggg 60
cagggattcg ccattccgat cgggcaggcg atggcgatcg cgggccagat caagcttccc 120

accgttcata tcgggcctac cgcccttcctc ggcttgggtg ttgtcgacaa caacggcaac 180
 ggcgcacgag tccaaacgcgt ggtcgggagc gctccggcgg caagtctcg catctccacc 240
 ggcgcacgtga tcaccgcgt cgacggcgt ccgatcaact cggccaccgc gatggcggac 300
 gcgctaacg ggcattcatcc cggtgacgtc atctcggtga cctggcaaac caagtccggc 360
 ggcacgcgtc cagggaacgt gacattggcc gagggacccc cggccgaatt catgatccgg 420
 gagaatttg cccactgcac cgtgctaacc attgcacaca gattgaacac cattattgac 480
 agcgacaaga taatggttt agattcagga agactgaaag aatatgtga gccgtatgtt 540
 ttgctgaaa ataaagagag cctattttac aagatggtgc aacaactggg caaggcagaa 600
 gccgcgtgccc tcactgaaac agcaaaacag agatgggtt tcaccatgtt ggcaggctg 660
 gtctcaaaact cctga 675

<210> 680
 <211> 291
 <212> DNA
 <213> Homo sapiens

<400> 680
 atggggatcc gggagaaatt tgcccaactgc accgtgctaa ccattgcaca cagattgaac 60
 accattattt acagcgacaa gataatggtt ttagattcag gaagactgaa agaatatgtat 120
 gagccgtatg ttttgcgtca aaataaaagag agcctatttt acaagatggt gcaacaactg 180
 ggcaaggcag aagccgctgc cctcaactgaa acagcaaaac agagatgggg tttcaccatg 240
 ttggccaggc tggctctcaaa ctccctcgag caccaccacc accaccactg a 291

<210> 681
 <211> 1074
 <212> DNA
 <213> Homo sapiens

<400> 681
 atgtcagcca ttgagagggt gtcagaggca atcgtcagca tccgaagaat ccagaccttt 60
 ttgctacttg atgagatatac acagcgcaac cgtcagctgc cgtcagatgg taaaaagatg 120
 gtgcgtgtgc aggattttac tgcttttgg gataaggcat cagagacccc aactctacaa 180
 ggccttcct ttactgtcag acctggcgaa ttgttagctg tggtcggccc cgtgggagca 240
 gggaaatcat cactgttaag tgccgtgctc ggggaattgg ccccaagtca cgggctggc 300
 agcgtcgtcga gaagaattgc ctatgtgtct cagcagccct ggggtttctc gggaaactctg 360
 aggagaata ttttattttgg gaagaaatac gaaaaggaaac gatatgaaaa agtcataaaag 420
 gcttgtgtc taaaaaagga ttacagctg tggaggatg gtgatctgac tgtgatagga 480
 gatcggggaa ccacgctgag tggaggcag aaacgacacggg taaaccttc aagagcagtg 540
 tatcaagatg ctgacatcta tctcctggac gatccctca gtgcagtaga tgccgaaatg 600
 agcagacact tgttcgaact gtgtatttgta caaaattttgc atgagaagat cacaatttt 660
 gtgactcata agttcgtact cctcaaaat gcaagtcaaa ttctgtatatt gaaagatgg 720
 aaaatggtgc agaaggggac ttacactgag ttccctaaat ctggtataga ttttggctcc 780
 cttttaaga aggataatga ggaaatgaa caacccctcag ttccaggaac tccccacacta 840
 aggaatcgtc ccttctcaga gtcttgggtt tggctcaac aatcttcttag accctccctt 900
 aaagatggtg ctctggagag ccaagatata gagaatgtcc cagttacact atcagaggg 960
 aaccgttctg aaggaaaatg tggttttcag gcctataaga attacttcg agctgggtgt 1020
 cactggatttgc tcttcatttt ccttatttctc gagcaccacc accaccacca ctga 1074

<210> 682
 <211> 224
 <212> PRT
 <213> Homo sapiens

<400> 682
 Met His His His His His His Thr Ala Ala Ser Asp Asn Phe Gln Leu
 5 10 15

Ser Gln Gly Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala

20

25

30

Ile Ala Gly Gln Ile Lys Leu Pro Thr Val His Ile Gly Pro Thr Ala
 35 40 45

Phe Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val
 50 55 60

Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr
 65 70 75 80

Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr
 85 90 95

Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser
 100 105 110

Val Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr
 115 120 125

Leu Ala Glu Gly Pro Pro Ala Glu Phe Met Ile Arg Glu Lys Phe Ala
 130 135 140

His Cys Thr Val Leu Thr Ile Ala His Arg Leu Asn Thr Ile Ile Asp
 145 150 155 160

Ser Asp Lys Ile Met Val Leu Asp Ser Gly Arg Leu Lys Glu Tyr Asp
 165 170 175

Glu Pro Tyr Val Leu Leu Gln Asn Lys Glu Ser Leu Phe Tyr Lys Met
 180 185 190

Val Gln Gln Leu Gly Lys Ala Glu Ala Ala Ala Leu Thr Glu Thr Ala
 195 200 205

Lys Gln Arg Trp Gly Phe Thr Met Leu Ala Arg Leu Val Ser Asn Ser
 210 215 220

<210> 683

<211> 357

<212> PRT

<213> Homo sapiens

<400> 683

Met Ser Ala Ile Glu Arg Val Ser Glu Ala Ile Val Ser Ile Arg Arg
 5 10 15

Ile Gln Thr Phe Leu Leu Asp Glu Ile Ser Gln Arg Asn Arg Gln
 20 25 30

Leu Pro Ser Asp Gly Lys Met Val His Val Gln Asp Phe Thr Ala
 35 40 45

Phe Trp Asp Lys Ala Ser Glu Thr Pro Thr Leu Gln Gly Leu Ser Phe

50	55	60
Thr Val Arg Pro Gly Glu Leu Leu Ala Val Val Gly Pro Val Gly Ala		
65	70	75
Gly Lys Ser Ser Leu Leu Ser Ala Val Leu Gly Glu Leu Ala Pro Ser		
85	90	95
His Gly Leu Val Ser Val His Gly Arg Ile Ala Tyr Val Ser Gln Gln		
100	105	110
Pro Trp Val Phe Ser Gly Thr Leu Arg Ser Asn Ile Leu Phe Gly Lys		
115	120	125
Lys Tyr Glu Lys Glu Arg Tyr Glu Lys Val Ile Lys Ala Cys Ala Leu		
130	135	140
Lys Lys Asp Leu Gln Leu Leu Glu Asp Gly Asp Leu Thr Val Ile Gly		
145	150	155
Asp Arg Gly Thr Thr Leu Ser Gly Gly Gln Lys Ala Arg Val Asn Leu		
165	170	175
Ala Arg Ala Val Tyr Gln Asp Ala Asp Ile Tyr Leu Leu Asp Asp Pro		
180	185	190
Leu Ser Ala Val Asp Ala Glu Val Ser Arg His Leu Phe Glu Leu Cys		
195	200	205
Ile Cys Gln Ile Leu His Glu Lys Ile Thr Ile Leu Val Thr His Gln		
210	215	220
Leu Gln Tyr Leu Lys Ala Ala Ser Gln Ile Leu Ile Leu Lys Asp Gly		
225	230	235
Lys Met Val Gln Lys Gly Thr Tyr Thr Glu Phe Leu Lys Ser Gly Ile		
245	250	255
Asp Phe Gly Ser Leu Leu Lys Lys Asp Asn Glu Glu Ser Glu Gln Pro		
260	265	270
Pro Val Pro Gly Thr Pro Thr Leu Arg Asn Arg Thr Phe Ser Glu Ser		
275	280	285
Ser Val Trp Ser Gln Gln Ser Ser Arg Pro Ser Leu Lys Asp Gly Ala		
290	295	300
Leu Glu Ser Gln Asp Thr Glu Asn Val Pro Val Thr Leu Ser Glu Glu		
305	310	315
Asn Arg Ser Glu Gly Lys Val Gly Phe Gln Ala Tyr Lys Asn Tyr Phe		
325	330	335
Arg Ala Gly Ala His Trp Ile Val Phe Ile Phe Leu Ile Leu Glu His		
340	345	350
His His His His His		
355		

<210> 684

<211> 96

<212> PRT

<213> Homo sapiens

<400> 684

Met Gly Ile Arg Glu Lys Phe Ala His Cys Thr Val Leu Thr Ile Ala
5 10 15

His Arg Leu Asn Thr Ile Ile Asp Ser Asp Lys Ile Met Val Leu Asp
20 25 30

Ser Gly Arg Leu Lys Glu Tyr Asp Glu Pro Tyr Val Leu Leu Gln Asn
35 40 45

Lys Glu Ser Leu Phe Tyr Lys Met Val Gln Gln Leu Gly Lys Ala Glu
50 55 60

Ala Ala Ala Leu Thr Glu Thr Ala Lys Gln Arg Trp Gly Phe Thr Met
65 70 75 80

Leu Ala Arg Leu Val Ser Asn Ser Leu Glu His His His His His His
85 90 95

<210> 685

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 685

cgcccatgg gatccgggag aaatttgc cc actgc 35

<210> 686

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 686

cgcctcgagg gagtttgaga ccagcctggc caaca 35

<210> 687

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 687
gcatggacca tatgtcagcc attgagaggg tgtcagag 38

<210> 688
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 688
ccgctcgaga ataaggaaaa tgaagacaat ccag 34

<210> 689
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 689
gttgaattca tgcacgggcc ccaggtg 27

<210> 690
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 690
cccctcgagt cactatggtc tgcctttga 30

<210> 691
<211> 915
<212> DNA
<213> Homo sapiens

<400> 691
atgcattcacc atcaccatca cacggccgcg tcggataact tccagctgtc ccaggggtggg 60
cagggattcg ccattcccgat cgggcaggcg atggcgatcg cggggccagat caagcttccc 120
accgttcata tcgggcctac cgccttcctc ggcttgggtg ttgtcgacaa caacggcaac 180
ggcgacacgag tccaacgcgt ggtcgggagc gctccggcg 240
ggcgacacgtga tcaccgcggc cgacggcgct ccgatcaact cggccacccgcatccacc 300
gcccgttaacg ggcattcatcc cggtgacgtc atctcggtga cctggcaaac caagtccggc 360
ggcacacgtta cagggaacgt gacattggcc gagggacccc cggccgaatt catgcacggg 420
ccccagggtgc tgccacgtc ctccgagtgt gcttgtctgc cttggctgc cacctctgcg 480
gggggtgcgtc tgaggggggt ggaccggcca ccaaccttac ccagtcaagg aagtggatgg 540
ccatgttccc acacgcctgag tggctggcac ctgtatggctg atggagcaaa ggccttagga 600
aaacgcacatg gcccttggcc ctacccctttt gttagaaagaa ctgtatgttcc atgtccctgca 660
gcgagtgagg ttgggtggctg tgcccccagc tcctggccgcg ccctcgacaga ggtgactgg 720

tgctcttgg gccctttgg ccttgccag catgcacaag cctcagtgct actactgtgc 780
 tacaatgga gccatatagg ggaaacgagc accatctca ggagcaaggt gtatgtgcc 840
 ttggggct ccagtccctt cctcaagggt cttatgtcac tgtgggcttc ttgggtgtca 900
 agaggcagac catag 915

<210> 692
 <211> 304
 <212> PRT
 <213> Homo sapiens

<400> 692
 Met His His His His His Thr Ala Ala Ser Asp Asn Phe Gln Leu
 5 10 15

Ser Gln Gly Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala
 20 25 30

Ile Ala Gly Gln Ile Lys Leu Pro Thr Val His Ile Gly Pro Thr Ala
 35 40 45

Phe Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val
 50 55 60

Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr
 65 70 75 80

Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr
 85 90 95

Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser
 100 105 110

Val Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr
 115 120 125

Leu Ala Glu Gly Pro Pro Ala Glu Phe Met His Gly Pro Gln Val Leu
 130 135 140

Ala Arg Cys Ser Glu Cys Ala Cys Pro Ala Leu Ala Ala Thr Ser Ala
 145 150 155 160

Gly Val Arg Leu Glu Gly Val Asp Arg Pro Pro Thr Leu Pro Ser Gln
 165 170 175

Gly Ser Gly Trp Pro Cys Ser His Ser Leu Ser Gly Cys His Leu Met
 180 185 190

Ala Asp Gly Ala Lys Ala Leu Gly Lys Ala Asp Gly Pro Trp Pro Tyr
 195 200 205

Leu Phe Val Arg Arg Thr Asp Val Pro Cys Pro Ala Ala Ser Glu Val
 210 215 220

Gly Gly Cys Ala Pro Ser Ser Trp Arg Ala Leu Ala Glu Val Thr Gly
 225 230 235 240

Cys Ser Leu Gly Pro Leu Gly Leu Ala Gln His Ala Gln Ala Ser Val
 245 250 255

Leu Leu Leu Cys Tyr Lys Trp Ser His Ile Gly Glu Thr Ser Ser His
260 265 270

Leu Arg Ser Lys Val Tyr Ala Ala Phe Gly Gly Ser Ser Pro Cys Leu
275 280 285

Lys Gly Leu Met Ser Leu Trp Ala Ser Trp Leu Ser Arg Gly Arg Pro
290 295 300

<210> 693

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 693

cgaagtcacg tggaggccag cctc

24

<210> 694

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 694

cctgaccgaa ttcatataact ggcctggac

29

<210> 695

<211> 166

<212> PRT

<213> Homo sapiens

<220>

<221> VARIANT

<222> (1)...(166)

<223> Xaa = Any Amino Acid

<400> 695

Met Gly His His His His His Val Glu Ala Ser Leu Ser Val Arg
1 5 10 15

His Pro Glu Tyr Asn Arg Pro Leu Leu Ala Asn Asp Leu Met Leu Ile
20 25 30

Lys Leu Asp Glu Ser Val Ser Glu Ser Asp Thr Ile Arg Ser Ile Ser
35 40 45

Ile Ala Ser Gln Cys Pro Thr Ala Gly Asn Ser Cys Leu Val Ser Gly
50 55 60

Trp Gly Leu Leu Ala Asn Gly Arg Met Pro Thr Val Leu Gln Cys Val
65 70 75 80

Asn Val Ser Val Val Ser Glu Glu Val Cys Ser Lys Leu Tyr Asp Pro

85	90	95
Leu Tyr His Pro Ser Met Phe Cys Ala Gly Gly Gln Xaa	Gly Gln Xaa	
100	105	110
Asp Ser Cys Asn Gly Asp Ser Gly Gly Pro Leu Ile Cys Asn Gly Tyr		
115	120	125
Leu Gln Gly Leu Val Ser Phe Gly Lys Ala Pro Cys Gly Gln Val Gly		
130	135	140
Val Pro Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Glu Trp Ile Glu		
145	150	155
Lys Thr Val Gln Ala Ser		160
		165

<210> 696

<211> 504

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(504)

<223> n = A,T,C or G

<400> 696

atgggccatc atcatcatca tcacgtggag gccagccctc ccgtacggca cccagagttac	60
aacagaccct tgctcgctaa cgacccatg ctcatcaagt tggacgaatc cgtgtccgag	120
tctgacaccca tccggagcat cagcattgtct tcgcagtgcc ctaccgcggg gaactcttgc	180
ctcgtttctg gctggggctct gctggcaac ggcagaatgc ctaccgtct gcagtgcgtg	240
aacgtgtcgg tgggtctga ggaggcttc agtaagctct atgaccgcgt gtaccacccc	300
agcatgttct ggcggccgg aggcaanac cagaangact cctgcaacgg tgactctggg	360
ggccacctqa tctgcaacgg gtacttgacgg ggccttgtgt ctccggaaa agccccgtgt	420
ggccaagttt gctgtccagg tgtctacacc aaccctctgca aattcactga gtggatagag	480
aaaaccgtcc aggccagtta atga	504

<210> 697

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 697

ctcagggttc cggagccgcg g

21

<210> 698

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 698

ctatagaatt cattaccaaa aagctggct ccagc

35

<210> 699

<211> 241
<212> PRT
<213> Homo sapiens

<400> 699

Met	Gln	His	His	His	His	Leu	Arg	Val	Pro	Glu	Pro	Arg	Pro		
1						10						15			
Gly	Glu	Ala	Lys	Ala	Glu	Gly	Ala	Ala	Pro	Pro	Thr	Pro	Ser	Lys	Pro
			20				25					30			
Leu	Thr	Ser	Phe	Leu	Ile	Gln	Asp	Ile	Leu	Arg	Asp	Gly	Ala	Gln	Arg
	35					40					45				
Gln	Gly	Gly	Arg	Thr	Ser	Ser	Gln	Arg	Gln	Arg	Asp	Pro	Glu	Pro	Glu
	50					55					60				
Pro	Glu	Pro	Glu	Pro	Glu	Gly	Gly	Arg	Ser	Arg	Ala	Gly	Ala	Gln	Asn
65						70			75		80				
Asp	Gln	Leu	Ser	Thr	Gly	Pro	Arg	Ala	Ala	Pro	Glu	Glu	Ala	Glu	Thr
		85					90					95			
Leu	Ala	Glu	Thr	Glu	Pro	Glu	Arg	His	Leu	Gly	Ser	Tyr	Leu	Leu	Asp
		100					105					110			
Ser	Glu	Asn	Thr	Ser	Gly	Ala	Leu	Pro	Arg	Leu	Pro	Gln	Thr	Pro	Lys
	115					120					125				
Gln	Pro	Gln	Lys	Arg	Ser	Arg	Ala	Ala	Phe	Ser	His	Thr	Gln	Val	Ile
	130					135					140				
Glu	Leu	Glu	Arg	Lys	Phe	Ser	His	Gln	Lys	Tyr	Leu	Ser	Ala	Pro	Glu
145					150				155				160		
Arg	Ala	His	Leu	Ala	Lys	Asn	Leu	Lys	Leu	Thr	Glu	Thr	Gln	Val	Lys
			165				170				175				
Ile	Trp	Phe	Gln	Asn	Arg	Arg	Tyr	Lys	Thr	Lys	Arg	Lys	Gln	Leu	Ser
		180				185					190				
Ser	Glu	Leu	Gly	Asp	Leu	Glu	Lys	His	Ser	Ser	Leu	Pro	Ala	Leu	Lys
	195					200					205				
Glu	Glu	Ala	Phe	Ser	Arg	Ala	Ser	Leu	Val	Ser	Val	Tyr	Asn	Ser	Tyr
	210					215					220				
Pro	Tyr	Tyr	Pro	Tyr	Leu	Tyr	Cys	Val	Gly	Ser	Trp	Ser	Pro	Ala	Phe
225					230				235				240		
Trp															

<210> 700
<211> 729
<212> DNA
<213> Homo sapiens

<400> 700

atgcagcata	accaccatca	ccacctcagg	gttccggagc	cgcggcccg	ggagggcgaaa	60
gcggagggggg	ccgcgcgcgc	gacccgtcc	aagccgtca	cgtccttcct	catccaggac	120
atcctgcgg	acggcgcgca	gcggcaaggc	ggccgcacga	gcagccagag	acagcgcgac	180
ccggagccgg	agccagagcc	agagccagag	ggaggacgca	gccgcgcgg	ggcgcagaac	240
gaccagctga	gcaccggggcc	ccgcgcggcg	ccgatgagg	ccgagacgct	ggcagagacc	300
gagccagaaa	ggcacttgggg	gtcttatctg	ttggactctg	aaaacacttc	agggccctt	360
ccaaggcttc	cccaaaccccc	taagcagccg	cagaagcgct	cccgagctgc	tttcccccac	420
actcaggtga	tgcagttgga	gaggaagtgc	agccatcaga	agtacctgtc	ggcccttgaa	480
cgggcccacc	tggccaagaa	cctcaagctc	acggagaccc	aagtgaagat	atggttccag	540
aacagacgt	ataagactaa	gcgaaagcag	ctctcctcg	agctgggaga	cttgagaag	600
cactccttt	tgccggccct	gaaagaggag	gccttcctcc	gggcctccct	ggtctccgtg	660
tataaacagct	atcctacta	cccatacctg	cactgcgtgg	gcagctggag	cccagctttt	720
tggtaatga						729

<210> 701
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 701
ctactaagcg ctggagttag ggatca

27

<210> 702
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 702
catcgagaat tcactactct ctgactagat gtc

33

<210> 703
<211> 161
<212> PRT
<213> Homo sapiens

<400> 703
Met Gln His His His His His Ala Gly Val Arg Asp Gln Gly Gln
1 5 10 15
Gly Ala Arg Trp Pro His Thr Gly Lys Arg Gly Pro Leu Leu Gln Gly
20 25 30
Leu Thr Trp Ala Thr Gly Gly His Cys Phe Ser Ser Glu Glu Ser Gly
35 40 45
Ala Val Asp Gly Ala Gly Gln Lys Lys Asp Arg Ala Trp Leu Arg Cys
50 55 60
Pro Glu Ala Val Ala Gly Phe Pro Leu Gly Ser Asp Cys Arg Glu Gly
65 70 75 80
Gly Arg Gln Gly Cys Gly Gly Ser Asp Asp Glu Asp Asp Leu Gly Val
85 90 95
Ala Pro Gly Leu Ala Pro Ala Trp Ala Leu Thr Gln Pro Pro Ser Gln
100 105 110
Ser Pro Gly Pro Gln Ser Leu Pro Ser Thr Pro Ser Ser Ile Trp Pro
115 120 125
Gln Trp Val Ile Leu Ile Thr Glu Leu Thr Ile Pro Ser Pro Ala His
130 135 140
Gly Pro Pro Trp Leu Pro Asn Ala Leu Glu Arg Gly His Leu Val Arg
145 150 155 160
Glu

<210> 704
<211> 489
<212> DNA
<213> Homo sapiens

<400> 704

atgcacgatc accaccatca ccacgctgga	gtgagggatc	aggggcaggg	cgcgagatgg	60
cctcacacag ggaagagagg	gcccctccctg	cagggcctca	cctgggccac	120
tgccttcct ctgaggagtc	aggagctgtg	gatggtgctg	gacagaagaa	180
tggctcagggt	gtccagaggc	tgtcgctggc	ttcccttgg	240
gggcggcagg	gttgtgggg	gagtgacgat	gaggatgacc	300
gcccctgcct	gggcctcac	ccagcctccc	tcacagtctc	360
tccactccat	cctccatctg	gcctcagtgg	gtcattctga	420
agccctgccc	acggccctcc	atggctcccc	aatgccctgg	480
gagtagtga				489

<210> 705

<211> 132

<212> PRT

<213> Homo sapiens

<400> 705

Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly	Gly Gln Gly Phe		
1	5	10	15
Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly	Gln Ile Arg Ser		
20	25	30	
Gly Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala	Phe Leu Gly		
35	40	45	
Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg	Val Gln Arg Val		
50	55	60	
Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr	Gly Asp Val		
65	70	75	80
Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr	Ala Met Ala		
85	90	95	
Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser	Val Asn Trp		
100	105	110	
Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr	Leu Ala Glu		
115	120	125	
Gly Pro Pro Ala			
130			

<210> 706

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 706

gggaaattca tcacctatgt gccgcctctg c

31

<210> 707

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 707

gggctcgagt cactcgccca cgaaatccgt gtaaaacagc

40

<210> 708

<211> 1203

<212> DNA

<213> Homo sapiens

<400> 708

atgcattcacc atcaccatca cacggccgcg tccgataact tccagctgtc ccagggtggg 60
 cagggattcg ccattccat cgggcaggcg atggcgatcg cgggccagat caagttccc 120
 accgttcata tcgggcctac cgccttcctc ggcttgggtg ttgtcgacaa caacggcaac 180
 ggcgcacgag tccaacgcgt ggtcgggagc gctccggcg caagtctcg catctccacc 240
 ggcgcacgtga tcaccgcgt cgacggcgct ccgatcaact cggccaccgc gatggcggac 300
 gcgcttaacg ggcattcatcc cggtgacgtc atetcggta cctggcaaac caagtccggc 360
 ggcacgcgt a cgggaaacgt gacattggcc gagggacccc cggccgaatt catcacatat 420
 gtggccctc tgctgctgga agtggggta gagggagaagt tcatgaccat ggtgctggc 480
 attggtccag tgctgggcct ggtctgtgc cgcctccat gctcagccag tgaccactgg 540
 cgtggacgct atggccgcgc cggcccttc atctggcac tgctcttggg catctctgt 600
 agcctttc tcatccaaag ggccggctgg cttagcaggc tgctgtggc ggatcccagg 660
 cccctggagc tggcactgtc catcctggc gtggggctgc tggacttctg tggccagggt 720
 tgcttcactc cactggaggc cctgctctc gacctttcc gggacccgga ccactgtcgc 780
 caggcctact ctgtctatgc cttcatgatc agtcttgggg gctgcctgg ctacccctgt 840
 cctgcatttgc actgggacac cagtgcctg gccccctacc tgggcaccca ggaggagtgc 900
 ctcttggcc tgctcacccct catcttctc acctgcgtag cagccacact gctggggct 960
 gagggaggcgc cgcctggccc caccgagcca gcagaaggcc tgctggccccc ctccttgc 1020
 ccccaactgtc gtccatgcgc ggccgcctt gcttccggc acctgggcgc cctgcctccc 1080
 cggctgcacc actgtgtgcgc cgcatgcgc cgcacccgtc gccggctt cgtggctgag 1140
 ctgtgcagct ggatggcact catgaccctc acgctgtttt acacggattt cgtggcgcag 1200
 tga 1203

<210> 709

<211> 400

<212> PRT

<213> Homo sapiens

<400> 709

Met	His	His	His	His	His	Thr	Ala	Ala	Ser	Asp	Asn	Phe	Gln	Leu
							5	10					15	

Ser	Gln	Gly	Gly	Gln	Gly	Phe	Ala	Ile	Pro	Ile	Gly	Gln	Ala	Met	Ala
						20		25				30			

Ile	Ala	Gly	Gln	Ile	Lys	Leu	Pro	Thr	Val	His	Ile	Gly	Pro	Thr	Ala
						35		40			45				

Phe	Leu	Gly	Leu	Gly	Val	Val	Asp	Asn	Asn	Gly	Asn	Gly	Ala	Arg	Val
						50		55		60					

Gln	Arg	Val	Val	Gly	Ser	Ala	Pro	Ala	Ala	Ser	Leu	Gly	Ile	Ser	Thr
						65		70		75		80			

Gly	Asp	Val	Ile	Thr	Ala	Val	Asp	Gly	Ala	Pro	Ile	Asn	Ser	Ala	Thr
						85		90		95					

Ala	Met	Ala	Asp	Ala	Leu	Asn	His	His	Pro	Gly	Asp	Val	Ile	Ser
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

	100	105	110
Val Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr			
115	120	125	
Leu Ala Glu Gly Pro Pro Ala Glu Phe Ile Thr Tyr Val Pro Pro Leu			
130	135	140	
Leu Leu Glu Val Gly Val Glu Glu Lys Phe Met Thr Met Val Leu Gly			
145	150	155	160
Ile Gly Pro Val Leu Gly Leu Val Cys Val Pro Leu Leu Gly Ser Ala			
165	170	175	
Ser Asp His Trp Arg Gly Arg Tyr Gly Arg Arg Arg Pro Phe Ile Trp			
180	185	190	
Ala Leu Ser Leu Gly Ile Leu Leu Ser Leu Phe Leu Ile Pro Arg Ala			
195	200	205	
Gly Trp Leu Ala Gly Leu Leu Cys Pro Asp Pro Arg Pro Leu Glu Leu			
210	215	220	
Ala Leu Leu Ile Leu Gly Val Gly Leu Leu Asp Phe Cys Gly Gln Val			
225	230	235	240
Cys Phe Thr Pro Leu Glu Ala Leu Leu Ser Asp Leu Phe Arg Asp Pro			
245	250	255	
Asp His Cys Arg Gln Ala Tyr Ser Val Tyr Ala Phe Met Ile Ser Leu			
260	265	270	
Gly Gly Cys Leu Gly Tyr Leu Leu Pro Ala Ile Asp Trp Asp Thr Ser			
275	280	285	
Ala Leu Ala Pro Tyr Leu Gly Thr Gln Glu Glu Cys Leu Phe Gly Leu			
290	295	300	
Leu Thr Leu Ile Phe Leu Thr Cys Val Ala Ala Thr Leu Leu Val Ala			
305	310	315	320
Glu Glu Ala Ala Leu Gly Pro Thr Glu Pro Ala Glu Gly Leu Ser Ala			
325	330	335	
Pro Ser Leu Ser Pro His Cys Cys Pro Cys Arg Ala Arg Leu Ala Phe			
340	345	350	
Arg Asn Leu Gly Ala Leu Leu Pro Arg Leu His Gln Leu Cys Cys Arg			
355	360	365	
Met Pro Arg Thr Leu Arg Arg Leu Phe Val Ala Glu Leu Cys Ser Trp			
370	375	380	
Met Ala Leu Met Thr Phe Thr Leu Phe Tyr Thr Asp Phe Val Gly Glu			
385	390	395	400

<210> 710
<211> 20
<212> PRT
<213> Homo sapiens

<400> 710
Leu Leu Pro Pro Pro Ala Leu Cys Gly Ala Ser Ala Cys Asp Val
5 10 15

Ser Val Arg Val
20

<210> 711
<211> 60
<212> DNA
<213> Homo sapiens

<400> 711
ctgctccac ctccacccgc gctctgcggg gcctctgcct gtgatgtctc cgtacgtgtg 60

<210> 712
<211> 10
<212> PRT
<213> Homo sapiens

<400> 712
Ala Ser Ala Cys Asp Val Ser Val Arg Val
5 10

<210> 713
<211> 30
<212> DNA
<213> Homo sapiens

<400> 713
gcctctgcct gtgatgtctc cgtacgtgtg 30

<210> 714
<211> 9
<212> PRT
<213> Homo sapiens

<400> 714
Ala Ser Ala Cys Asp Val Ser Val Arg
1 5

<210> 715
<211> 9
<212> PRT
<213> Homo sapiens

<400> 715
Ser Ala Cys Asp Val Ser Val Arg Val
5

<210> 716
<211> 27

<212> DNA
<213> Homo sapiens

<400> 716
tctgcctgtg atgtctccgt acgtgtg

27

<210> 717
<211> 19
<212> PRT
<213> Homo sapiens

<400> 717
Gly Ile Gly Pro Val Leu Gly Leu Val Cys Val Pro Leu Leu Gly Ser
5 10 15

Ala Ser Asp

<210> 718
<211> 19
<212> PRT
<213> Homo sapiens

<400> 718
Val Pro Pro Leu Leu Leu Glu Val Gly Val Glu Glu Lys Phe Met Thr
5 10 15

Met Val Leu

<210> 719
<211> 19
<212> PRT
<213> Homo sapiens

<400> 719
Met Val Gln Arg Leu Trp Val Ser Arg Leu Leu Arg His Arg Lys Ala
5 10 15

Gln Leu Leu

<210> 720
<211> 57
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(57)
<223> n = A,T,C or G

<400> 720
ggnathggnc cngtnytnng nytngtntgy gtncnnytny tnggnwsngc nwsngay 57

<210> 721
<211> 57
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(57)
<223> n = A,T,C or G

<400> 721
gtnccnccny tnytnytnga rgtnggngtn gargaraart tyatgacnat ggtynytn 57

<210> 722
<211> 57
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(57)
<223> n = A,T,C or G

<400> 722
atggtnca rm gnytntgggt nwsnmqnytn ytnmgncaym gnaargenca rytnytn 57

<210> 723
<211> 9
<212> PRT
<213> Homo sapiens

<400> 723
Val Leu Gln Cys Val Asn Val Ser Val
1 5

<210> 724
<211> 9
<212> PRT
<213> Homo sapiens

<400> 724
Arg Met Pro Thr Val Leu Gln Cys Val
1 5

<210> 725
<211> 9
<212> PRT
<213> Homo sapiens

<400> 725
Asn Leu Cys Lys Phe Thr Glu Trp Ile
1 5

<210> 726
<211> 9
<212> PRT

<213> Homo sapiens

<400> 726

Met Leu Ile Lys Leu Asp Glu Ser Val
1 5

<210> 727

<211> 9

<212> PRT

<213> Homo sapiens

<400> 727

Leu Leu Ala Asn Asp Leu Met Leu Ile
1 5

<210> 728

<211> 10

<212> PRT

<213> Homo sapiens

<400> 728

Leu Leu Ala Asn Gly Arg Met Pro Thr Val
1 5 10

<210> 729

<211> 10

<212> PRT

<213> Homo sapiens

<400> 729

Leu Met Leu Ile Lys Leu Asp Glu Ser Val
1 5 10

<210> 730

<211> 10

<212> PRT

<213> Homo sapiens

<400> 730

Val Leu Gln Cys Val Asn Val Ser Val Val
1 5 10

<210> 731

<211> 10

<212> PRT

<213> Homo sapiens

<400> 731

Gly Leu Leu Ala Asn Gly Arg Met Pro Thr
1 5 10

<210> 732

<211> 10

<212> PRT

<213> Homo sapiens

<400> 732

Thr Val Leu Gln Cys Val Asn Val Ser Val

1 5 10

<210> 733
<211> 9
<212> PRT
<213> Homo sapiens

<400> 733
Gly Val Leu Val His Pro Gln Trp Val
1 5

<210> 734
<211> 9
<212> PRT
<213> Homo sapiens

<400> 734
Val Leu Val His Pro Gln Trp Val Leu
1 5

<210> 735
<211> 1195
<212> DNA
<213> Homo sapiens

<400> 735
ccgagactca cggtaagct aaggcgaaga gtgggtggct gaagccatac tattttatag 60
aattaatgga aacgcagaaaa gacatcacaa accaagaaga actttggaaa atgaagccta 120
ggagaaaattt agaagaagac gattatttgc ataaggacac gggagagacc agcatgctaa 180
aaagacctgt gttttgcat ttgcacccaa cagcccatgc tgatgaattt gactgccctt 240
cagaacctca gcacacacaa gaaacttttc cacagtggca cttgcacaaat aaaatagcty 300
ctattatagc atctctgact tttcttaca ctcttctgag ggaagtaatt cacccttttag 360
caactccccca tcaacaatat ttttataaaaa ttccaatctt ggtcatcaac aaagtcttgc 420
caatggtttc catcactctc ttggcattgg tttacctgcc aggtgtgata gcagcaattt 480
tccaaacttca taatggAACC aagtataaga agtttccaca ttgggttgat aagtggatgt 540
taacaagaaa gcaagtttggg cttctcagtt tctttttgc tgtactgcat gcaattttata 600
gtctgtctta cccaaatgagg cgatccatacata gatacaagtt gctaaactgg gcataatcaac 660
aggccaaca aaataaaagaa gatgccttgg ttgagcatga tgtttggaga atggagattt 720
atgtgtctct gggaaatttgtt ggattggcaa tactggctct gttggctgt acatctattc 780
catctgttag tgactctttg acatggagag aatttcacta tattcagagc aagctaggaa 840
ttgtttccct totactgggc acaatacacg cattgatttt tgcctggat aagtggatag 900
atataaaaaca atttgtatgg tatacacctc caacttttat gatacgctttt ttccttccaa 960
ttgttgtcct gatattttaaa agcataactat tcctgcccattt cttgaggaag aagataactga 1020
agattagaca tggttggaa gacgtcacca aaattaacaa aactgagata tggtttccagt 1080
tgtagaattt ctgtttacac acattttgtt tcaatattga tatattttat caccaacattt 1140
tcaaggttgtt atttgttaat aaaatgatta ttcaaggaaa aaaaaaaaaaaaaaaa 1195

<210> 736
<211> 339
<212> PRT
<213> Homo sapiens

<400> 736
Met Glu Ser Arg Lys Asp Ile Thr Asn Gln Glu Glu Leu Trp Lys Met
5 10 15

Lys Pro Arg Arg Asn Leu Glu Glu Asp Asp Tyr Leu His Lys Asp Thr
20 25 30

Gly Glu Thr Ser Met Leu Lys Arg Pro Val Leu Leu His Leu His Gln
35 40 45

Thr Ala His Ala Asp Glu Phe Asp Cys Pro Ser Glu Leu Gln His Thr
50 55 60

Gln Glu Leu Phe Pro Gln Trp His Leu Pro Ile Lys Ile Ala Ala Ile
65 70 75 80

Ile Ala Ser Leu Thr Phe Leu Tyr Thr Leu Leu Arg Glu Val Ile His
85 90 95

Pro Leu Ala Thr Ser His Gln Gln Tyr Phe Tyr Lys Ile Pro Ile Leu
100 105 110

Val Ile Asn Lys Val Leu Pro Met Val Ser Ile Thr Leu Leu Ala Leu
115 120 125

Val Tyr Leu Pro Gly Val Ile Ala Ala Ile Val Gln Leu His Asn Gly
130 135 140

Thr Lys Tyr Lys Lys Phe Pro His Trp Leu Asp Lys Trp Met Leu Thr
145 150 155 160

Arg Lys Gln Phe Gly Leu Leu Ser Phe Phe Ala Val Leu His Ala
165 170 175

Ile Tyr Ser Leu Ser Tyr Pro Met Arg Arg Ser Tyr Arg Tyr Lys Leu
180 185 190

Leu Asn Trp Ala Tyr Gln Gln Val Gln Gln Asn Lys Glu Asp Ala Trp
195 200 205

Ile Glu His Asp Val Trp Arg Met Glu Ile Tyr Val Ser Leu Gly Ile
210 215 220

Val Gly Leu Ala Ile Leu Ala Leu Leu Ala Val Thr Ser Ile Pro Ser
225 230 235 240

Val Ser Asp Ser Leu Thr Trp Arg Glu Phe His Tyr Ile Gln Ser Lys
245 250 255

Leu Gly Ile Val Ser Leu Leu Leu Gly Thr Ile His Ala Leu Ile Phe
260 265 270

Ala Trp Asn Lys Trp Ile Asp Ile Lys Gln Phe Val Trp Tyr Thr Pro
275 280 285

Pro Thr Phe Met Ile Ala Val Phe Leu Pro Ile Val Val Leu Ile Phe
290 295 300

Lys Ser Ile Leu Phe Leu Pro Cys Leu Arg Lys Lys Ile Leu Lys Ile
305 310 315 320

Arg His Gly Trp Glu Asp Val Thr Lys Ile Asn Lys Thr Glu Ile Cys

325

330

335

Ser Gln Leu

<210> 737
<211> 2172
<212> DNA
<213> Homo sapiens

<400> 737
aaaatgtaat attgagatac cattcttag tttacccaca tgggtttctg 60
aaaatattgg aattttatto atcttaaaaa ttggaccggg ccttatttac catcttaat 120
ccatttttagt actatgggtg agtacatggg attgaagtct ggcttaaattc ttcagaaagt 180
tatatatatcta ttttttttta ttggatttgc acagagtctc gctgtgtcac ccaggctgga 240
gtgcgtgtcc acaatcttgg ctcaactgcaa cctctgagtc ccaggttcaa gcgataactca 300
tgcctcggcc tcctgagtag ctgggactac agggtgtcac caccacatct ggctaatctt 360
tttttgattt ttttagtagag acgggggttc actgtgtctt ccattctctg acctcgtgtat 420
ccgcctgcct cccaaatgtc tggttgcata ggcattgagcc accgcacaca gctgggactg 480
ggtaatttat aaagaaaaaa ggtttaatga ctcaacatgc cgcattgtc gagaggcctc 540
aggaactta caatcatgtt ggaaggcgaa ggggaagcaa ggcacgtctt acatgggtgc 600
aggagagaac gagtggggg ggagactgcc acaaactttt ttttttgag acaagagtct 660
ggccctgttg cccaggctgg agtgcgtgg catgatctca gtcactgca acctctgcct 720
cacagttca agcaattctc atgcctcagc ctccccatca gctgggacca caggtatgca 780
ccaccacacc tagctaattt ttgttagttt agtagagat gggctctact atgtgtctca 840
ggctggctta aaactcctgg gtcctcagcaa tccgcctgcct ttggcctccc aaagtgtctgg 900
ggttacaggc ataagccacc acatccagcc tgccacatctt ttttaaacta tcaggtctca 960
tgagaactca tgcaactatca caagaatagc atggggaaaa tccccccat aatccaatca 1020
cctccacca ggtctcctcc gacacgtggg atttgggtgg gacacagagc caaaccgtat 1080
cagatgctgc aggggctggg gacactgaga ccactcagac ctgggtgtctc tgtcaactt 1140
ctgggtctgt ctgtctcca ggacccctt cccctccat ggtatagaag gaaagtgtctg 1200
taagggtcaa attgcacagg aactccctaa gacatacatc atccactcag cagttttagg 1260
ttcgccagcaa aatgggatggg aaggaacaga aatttccctgt gcacccctcc cggctgtctc 1320
cgccatatcg gcatcctgca tccagagtgg tggactggg acaggctatg aacccatct 1380
gatgcggcac caccacccag agtccacggg ttatgttggt tcacatttac tcttgctgtg 1440
gtatggctta taggtttggc cagatgtccg ataatccctt ttacattttg gcatccttgg 1500
gtagctcgtc ttgttaggaat ggacttgcctt caaagtggag gcaggcagat ccttcagacg 1560
ggtatatggc gccctgtttt cagttgtttt tctaatttctc tcttattcgtt tacctcaaaa 1620
tcttccttagt gtctcgctt cttttaaaat cttgtctac tttgcagcat cactctgaca 1680
ctccattgtat tccctcagcac ctactgacta cacggtagg agtgcaaggg tagaattcat 1740
gttttattca tctttgggtc tgtagcaccc agcaaagtgc tcagtaaatg cgcagtaatt 1800
gatttgcacct ctgaacaaat acacactgta ctaagaatct acacaccgaa agacaaaaac 1860
aagacaaaatt tgagtgtac aggtgtcacg ctggcatca cacaatgtgcc tgggtattcc 1920
tcttaggtgtt taccaggagc tctggccactg catgtccact agtgacgggt tcgctccacc 1980
accccagctg ggtagccgt gctctcacat aaggggtcca attaaaattt ccaggaataa 2040
atccccccgg acttgactt ctcaagagct aagaaggttt gctgagttt ctggcatgtat 2100
gtttgggtat caaacaactg ctggccaaaa atgatgagta tttcccccctc ttgctgaaga 2160
tgtgtccat ac 2172

<210> 738
<211> 2455
<212> DNA
<213> Homo sapiens

<400> 738
cagttaaaaa atggtttctt gaaatcagt attagcattc actcaccagt acccctacta 60
aggggttaggc actgggttgtt actcctggga atacaggagt acaccagaat ttatttctgc 120

tatttgcctt	tgttgcaaat	gccgtggcctt	catctgagga	attctagaat	tcagagggtt	180
tagccctcca	ctctgctgtc	ttgcttatctg	ctctcattgc	atccgtttaa	cctgcattct	240
gaaagatgtt	tctcagggtt	ttccttgcacg	attttcttct	tttctgattt	tgacaatgtt	300
ttaaatcatt	gtactgttgt	tatcattttct	ctgcattttat	tttaccatc	ttccttgtt	360
acttgtctta	ttgtctttta	atttctgcct	gttctttatg	gtttcaact	tcataaataa	420
catgtttctt	caaatctctt	tgtgaatttcc	agagagggccc	aggcacgggt	gtcacatct	480
gtaatcccaag	cactttgggg	aggctgagac	gggtggatca	cttgagggt	ggagtttag	540
accagccctgg	ccaaacatggt	gaaatccccgt	ttcactaaaaa	ataaaaaat	tacccaggca	600
ttgtggcgccc	cgcctgtaat	cccaggtaact	cgggaggctg	agggaggaga	atcgcttga	660
cctggggaggc	tgagggagga	gaatcgctt	aaccggggag	gcagagggtt	cagtgaaccg	720
agatcatgtt	gtgcactcc	agcctggtca	acagagcaag	actctgcctc	aaaaacaaac	780
aaataaaacaa	acaaacaaac	aaaacagaga	gattttctgt	caatgtacaa	ggagcaattt	840
gtccttttaa	aaaaataatt	tttggccagg	cacagtggct	cacacctgt	atcccagcac	900
tttgggaagc	caagggtgggt	ggatcatttgc	aggtcaggag	ttttagatca	gcctggccaa	960
catgtgaaa	cactatctct	attaaaaata	caaaaatgt	ctcagtgtt	ttgtgcacat	1020
ctgtaatctc	agcctcccg	atagctggta	ccacaggat	gcaccaccac	acctagctaa	1080
tttttgtagt	tttagtagag	atggggtctc	actatgttgc	tcaggctgtt	ctaaaactcc	1140
tgggctccag	caatccgcct	gccttggcct	cccaaagtgc	ttgggttaca	ggcataagcc	1200
accacatcca	gcctgccaca	tacttttaaa	ctatcaggtc	tcatgagaa	tcatgcacta	1260
tcacaagaat	agcatgggg	aaatcccccc	cataatccaa	tcacccccc	ccaggtctcc	1320
tccgacacgt	gggattgggt	ggggacacag	agccaaacccg	tatcagatgc	tgcagggtt	1380
ggggacactg	agaccactca	gacctgggt	ctctgtact	tttctgggt	ctgtctgt	1440
ccaggacactc	cctccccctt	catggtata	aaggaaaagt	ctgtaaagg	caaattgcac	1500
aggaactct	taagacatac	atcatccact	cagcagt	ttt aggttgc	caaaatggag	1560
tggaaaggAAC	agaaaatttcc	tgtgcacccc	tccccctgt	ctccgcata	tcggcatct	1620
gcatccagAG	tggggactg	gttacaggct	atgaacctac	actgtatgc	caccaccacc	1680
cagagtccac	aggttatgtt	ggttcacatt	tactttgtt	gtggatgtt	ctataggtt	1740
ggacagatgt	cogataatcc	tttttacatt	ttggcatct	ttggtagct	gtttgttag	1800
aatggacttg	cttccaaagt	gaggcaggca	gatccctcag	acgggtat	ggagccctgt	1860
tttcagttgc	ttttctaatt	ctctcttata	gttacactca	aatcttct	gaggtctcgc	1920
ttccctttaa	aatcctgtc	tactttgcag	catcactct	acactccatt	gattccctcag	1980
cacctactga	ctacacgg	aggagtgc	gggtagaatt	catgtttat	tcatcttgg	2040
gtctgttagca	cccacggaa	tgctcagta	atgcgcagta	attgtatttga	cctctgaaca	2100
aatacacact	gtactaagaa	tctacacacc	gaaagacaaa	aacaagacaa	atttgagtgc	2160
tacagggtgtc	acgcttggca	tcacacatgt	gcctgtgtat	tcctcttaggt	gttaccagg	2220
agctctgcca	ctgcacatgtcc	actagtgc	gttgcgtcc	accacccac	ctqggtagcc	2280
gctgctctca	cataagggg	ccaaattaaa	ttggcaggaa	taaattcccc	cggacttga	2340
cttctcaaga	gctaaagaagg	tttgcgttagt	attctggcat	gatgtttgtt	gatcaaacaa	2400
ctgctggcca	aaaatgtatga	gtatccccc	ctcttgcgt	agatgtgc	catac	2455

<210> 739

<211> 2455

<212> DNA

<213> Homo sapiens

<400> 739

cagctaaaaa	atggttctt	gaaatcagt	attagcattc	actcaccagt	acccctacta	60
aggggtaggc	actgggttgg	actcctggg	atacaggagt	acaccagaat	ttatttctgc	120
ttattgcctt	tgttgcaaat	gccgtggct	catctgagga	attctagaat	tcagagggtg	180
tagccctcca	ctctgctgtc	ttgctatctg	ctctcattgc	atccgtttaa	cctgcattct	240
gaaagatgtt	tctcagggtt	ttccttgacg	attttcttct	tttctgattc	tgacaatgtt	300
ttaaatcatt	gtactgttgt	tatcattttct	ctgcatttat	tttacccatc	ttccttgtt	360
acttgtctta	ttgtctttta	atttctgcct	gttctttatg	gctttcaact	tcataaaataa	420
catgtttctt	caaatctctt	tgtgaattcc	agagagggccc	aggcacggtg	gctcacatct	480
gtaatcccg	cacttgggg	aggctgagac	gggtggatca	cttgaggatca	ggagtttgag	540
accagcctgg	ccaacatgtt	gaaatcccgt	ttcaactaaaa	atacaaaaat	tacccaggca	600
tggtggccggg	cgcctgtaat	cccaggtaact	cgggaggctg	agggaggaga	atcgcttga	660
cctgggaggc	tgagggagga	aatcgcttgc	aaccggggag	gcagaggttg	cagtgaaccg	720

agatcatgtt gctgcactcc agcctggta acagagcaag actctgcctc aaaaacaaac 780
 aaataaaacaa acaaacaac aaaacagaga gattttgctg caatgtacaa ggagcaattt 840
 gtccttaa aaaaataatt ttggccagg cacagtggct cacacctgta atcccagcac 900
 ttgggaagc caaggtgggt ggatcattt aggtcaggag tttgagatca gcctggccaa 960
 catggtaaa cactatctc attaaaaata caaaaatgtg ctcaagtgtgg tggtgacat 1020
 ctgtaatctc agcctcccgcc atagctggg ccacaggat gcaccaccac acctagctaa 1080
 tttttagt tttagtagag atgggtctc actatgttgc tcaggcttgt ctaaaactcc 1140
 tgggtccag caatccgcct gcctggccct cccaaagtgc tgggttaca ggcataagcc 1200
 accacatcca gcctggccaca tactttaaa ctatcaggta tcatgagaac tcatgcacta 1260
 tcacaagaat agcatgggaa aaatccccca cataatccaa tcaccccca ccaggtctcc 1320
 tccgacacgt gggattgggt ggggacacag agccaaacccg tatcagatgc tgcaagggct 1380
 ggggacactg agaccactca gacctgggt ctctgtact cttctggct ctgtctgtct 1440
 ccaggacctc cctcccttc catggatag aaggaaagtgc ctgtaaaggta caaattgcac 1500
 aggaactct taagacatac atcatccact cagcagttt aggttcgcag caaatggag 1560
 tggaaaggaac agaaatttcc tgcacccccc tcccgctgt ctccgcata tcggcatcct 1620
 gcatccagag tggtgactg gttacaggct atgaacccctac actgtatgcgg caccaccacc 1680
 cagágtccac aggttatgtt gttcacatt tactttgtc gtggtatgtt ctataggtt 1740
 ggacagatgt ccgataatcc tttttacatt ttggcatctt tggtagtgc gtcttgtagg 1800
 aatggacttgc tttcaaaatgtt gaggcaggca gatccttcag acgggtatataa ggagccctgt 1860
 tttcaatttgc ttttcaatttcttcttacatgttca aatcttcctt gaggctcgc 1920
 ttcctttaa aatccttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc 1980
 cacctactga ctacacgggtt aggagtgc ggtttagattt catgttttcatgttttgc 2040
 gtctgttagca cccagcaaaatgtt gtttgc gtttgc gtttgc gtttgc gtttgc gtttgc 2100
 aatacacact gtactaagaa ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc 2160
 tacagtgatgtt acgttgc gtttgc gtttgc gtttgc gtttgc gtttgc gtttgc gtttgc 2220
 agctctgcca ctgcatgttcc actagtgc gtttgc gtttgc gtttgc gtttgc gtttgc gtttgc 2280
 gctgtctca cataagggtt ccaatttttttttgc ttttgc ttttgc ttttgc ttttgc ttttgc 2340
 cttcttcaaga gctaagaagg ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc ttttgc 2400
 ctgttgc gtttgc gtttgc gtttgc gtttgc gtttgc gtttgc gtttgc gtttgc gtttgc 2455

<210> 740

<211> 62

<212> PRT

<213> Homo sapiens

<400> 740

Met	Thr	His	Ser	Ser	Ala	Trp	Leu	Glu	Arg	Pro	Gln	Glu	Thr	Tyr	Asn
5													10		15

His	Gly	Gly	Arg	Arg	Arg	Gly	Ser	Lys	Ala	Arg	Leu	Thr	Trp	Trp	Gln
20													30		

Glu	Arg	Thr	Ser	Glu	Gly	Gly	Asp	Cys	His	Lys	Leu	Phe	Phe	Phe	Glu
35													40		45

Thr	Arg	Val	Trp	Pro	Cys	Cys	Pro	Gly	Trp	Ser	Ala	Val	Ala		
50													55		60

<210> 741

<211> 135

<212> PRT

<213> Homo sapiens

<400> 741

Met	Val	Glu	Gly	Glu	Gly	Glu	Ala	Arg	His	Val	Leu	His	Gly	Gly	Arg
5													10		15

Arg Glu Arg Val Arg Gly Glu Thr Ala Thr Asn Phe Phe Phe Leu Arg
20 25 30

Gln Glu Ser Gly Pro Val Ala Gln Ala Gly Val Gln Trp His Asp Leu
35 40 45

Ser Ser Leu Gln Pro Leu Pro His Arg Phe Lys Gln Phe Ser Cys Leu
50 55 60

Asn Phe Cys Ser Phe Ser Arg Asp Gly Val Ser Leu Cys Cys Ser Gly
85 90 95

Trp Ser Lys Thr Pro Gly Leu Gln Gln Ser Ala Cys Leu Gly Leu Pro
100 105 110

Lys Cys Trp Gly Tyr Arg His Lys Pro Pro His Pro Ala Cys His Ile
115 120 125

Leu Leu Asn Tyr Gln Val Ser
130 135

<210> 742

<211> 77

<212> PRT

<213> Homo sapiens

<400> 742

Met His ?

20 25 30

35 40 45

Leu Arg Thr Glu Val Ser Val Thr Leu Leu Glu Ser Val Cys Leu Glu
50 55 60

Asp Leu Phe Pro Leu Pro Ile Tyr Arg Arg Lys Val Leu
65 70 75

<210> 743

<211> 60

<212> PRT

<213> Homo sapiens

<400> 743

Met Leu Val His Ile Tyr Ser Cys Cys Gly Met Val Tyr Arg Phe Gly
5 10 15

Gln Met Ser Asp Asn Pro Phe Tyr Ile Leu Ala Ser Leu Gly Ser Ser
 20 25 30

Ser Cys Arg Asn Gly Leu Ala Ser Lys Trp Arg Gln Ala Asp Pro Ser
35 40 45

Asp Gly Tyr Met Glu Pro Cys Phe Gln Leu Leu Phe
50 55 60

<210> 744

<211> 76

<212> PRT

<213> Homo sapiens

<400> 744

Met Cys Leu Cys Ile Pro Leu Gly Gly Tyr Gln Glu Leu Cys His Cys
5 10 15

Met Ser Thr Ser Asp Gly Phe Ala Pro Pro Pro Gln Leu Gly Ser Arg
20 25 30

Cys Ser His Ile Arg Gly Pro Ile Lys Ile Ala Arg Asn Lys Phe Pro
35 40 45

Arg Thr Leu Thr Ser Gln Glu Leu Arg Arg Phe Ala Glu Tyr Ser Gly
50 55 60

Met Met Phe Gly Asp Gln Thr Thr Ala Gly Gln Lys
65 70 75

<210> 745

<211> 76

<212> PRT

<213> Homo sapiens

<400> 745

Met Val Lys Ser Arg Phe Thr Lys Asn Thr Lys Ile Thr Gln Ala Trp
5 10 15

Trp Arg Ala Pro Val Ile Pro Gly Thr Arg Glu Ala Glu Gly Gly Glu
20 25 30

Ser Leu Glu Pro Gly Arg Leu Arg Glu Glu Asn Arg Leu Asn Pro Gly
35 40 45

Gly Arg Gly Cys Ser Glu Pro Arg Ser Cys Cys Cys Thr Pro Ala Trp
50 55 60

Ser Thr Glu Gln Asp Ser Ala Ser Lys Thr Asn Lys
65 70 75

<210> 746

<211> 80

<212> PRT

<213> Homo sapiens

<400> 746

Met Leu Leu His Ser Ser Leu Val Asn Arg Ala Arg Leu Cys Leu Lys

5	10	15
---	----	----

Asn Lys Gln Ile Asn Lys Gln Thr Asn Lys Thr Glu Arg Phe Cys Cys		
20	25	30

Asn Val Gln Gly Ala Ile Cys Ser Phe Lys Lys Ile Ile Phe Gly Gln		
35	40	45

Ala Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Glu Ala Lys Val		
50	55	60

Gly Gly Ser Phe Glu Val Arg Ser Leu Arg Ser Ala Trp Pro Thr Trp		
65	70	75

<210> 747

<211> 72

<212> PRT

<213> Homo sapiens

<400> 747

Met His Tyr His Lys Asn Ser Met Gly Lys Ile Pro Pro His Asn Pro		
5	10	15

Ile Thr Ser His Gln Val Ser Ser Asp Thr Trp Asp Trp Val Gly Thr		
20	25	30

Gln Ser Gln Thr Val Ser Asp Ala Ala Gly Ala Gly Asp Thr Glu Thr		
35	40	45

Thr Gln Thr Trp Cys Leu Cys His Ser Ser Gly Leu Cys Leu Ser Pro		
50	55	60

Gly Pro Pro Ser Pro Ser Met Val		
65	70	

<210> 748

<211> 77

<212> PRT

<213> Homo sapiens

<400> 748

Met His Tyr His Lys Asn Ser Met Gly Lys Ile Pro Pro Ile Ile Gln		
5	10	15

Ser Pro Pro Thr Arg Ser Pro Pro Thr Arg Gly Ile Gly Trp Gly His		
20	25	30

Arg Ala Lys Pro Tyr Gln Met Leu Gln Gly Leu Gly Thr Leu Arg Pro		
35	40	45

Leu Arg Pro Gly Val Ser Val Thr Leu Leu Gly Ser Val Cys Leu Gln		
50	55	60

Asp Leu Pro Pro Leu Pro Trp Tyr Arg Arg Lys Val Leu		
65	70	75

<210> 749
<211> 60
<212> PRT
<213> Homo sapiens

<400> 749
Met Leu Val His Ile Tyr Ser Cys Cys Gly Met Val Tyr Arg Phe Gly
5 10 15
Gln Met Ser Asp Asn Pro Phe Tyr Ile Leu Ala Ser Leu Gly Ser Ser
20 25 30
Ser Cys Arg Asn Gly Leu Ala Ser Lys Trp Arg Gln Ala Asp Pro Ser
35 40 45
Asp Gly Tyr Met Glu Pro Cys Phe Gln Leu Leu Phe
50 55 60

<210> 750
<211> 76
<212> PRT
<213> Homo sapiens

<400> 750
Met Cys Leu Cys Ile Pro Leu Gly Gly Tyr Gln Glu Leu Cys His Cys
5 10 15
Met Ser Thr Ser Asp Gly Phe Ala Pro Pro Pro Gln Leu Gly Ser Arg
20 25 30
Cys Ser His Ile Arg Gly Pro Ile Lys Ile Ala Arg Asn Lys Phe Pro
35 40 45
Arg Thr Leu Thr Ser Gln Glu Leu Arg Arg Phe Ala Glu Tyr Ser Gly
50 55 60
Met Met Phe Gly Asp Gln Thr Thr Ala Gly Gln Lys
65 70 75

<210> 751
<211> 2479
<212> DNA
<213> Homo sapiens

<400> 751
gtcatattga acattccaga tacctatcat tactcgatgc tggataac agcaagatgg 60
ctttaactc aggtcacca ccagctattg gacctaacta tgaaaaccat ggataccaac 120
cggaaaaccc ctatcccgca cagcccactg tggccccac tgtctacagag gtgcattccgg 180
ctcagtacta cccgtccccc gtgccccagt acgccccgag ggtcctgacg caggcttcca 240
accccgtcgt ctgcacgcag cccaaatccc catccgggac agtgtgcacc tcaaagacta 300
agaaagcact gtgcatcacc ttgaccctgg ggaccttct cgtggagct gcgctggccg 360
ctggcctact ctggaagtcc atgggcagca agtgcctcaa ctctggata gagtgcgact 420
cctcaggtac ctgcataac ccctctaact ggtgtatgg cgtgtcacac tgccccggcg 480
gggaggacga gaatcggtgt ttgcctct acgaccaaa cttcatcctt cagatgtact 540
catctcagag gaagtccctgg caccctgtgt gccaagacga ctggaaacgag aactacgggc 600

gggcggcctg cagggacatg ggctataaga ataatttta ctctagccaa ggaatagtgg 660
 atgacagcgg atccaccagg tttatgaaac tgaacacaag tgccggcaat gtcgatatct 720
 ataaaaact gtaccacagt gatgcctgtt cttcaaaaagc agtggttct ttacgcgttt 780
 tagcctgcgg ggtcaactt aactcaagcc gccagagcag gatcgtggc ggtgagagcg 840
 cgctcccggg ggcctggccc tggcaggatca gcctgcacgt ccagaacgtc cacgtgtgc 900
 gaggctccat catcaccccc gaggatcg tgacagccgc ccactgcgtg gaaaaacctc 960
 ttaacaatcc atggcatttg acggcatttg cggggatttt gagacaatct ttcatgttct 1020
 atggagccgg ataccaagta caaaaagtga ttctcatcc aaattatgac tccaagacca 1080
 agaacaatga cattgcgtc atgaagctgc agaaggctct gactttcaac gacctagtga 1140
 aaccagtgtg tctgcccac ccaggcatga tgctgcagcc agaacagtc tgctggattt 1200
 cccgggtgggg ggcacccggag gagaaggaa agacccaga agtgctgaac gctgccaagg 1260
 tgcttcctcat tgagacacag agatgcaaca gcagatgt ctatgacaac ctgatcacac 1320
 cagccatgtat ctgtgcggc ttctgcagg ggaacgtcga ttctgcacag ggtgacagtg 1380
 gaggccctct ggtcaacttc aacaacaata tctgggtgt gataggggat acaagctggg 1440
 gttctggctg tgccaaagct tacagaccag gagtgtacgg gaatgtatgc gtattcacgg 1500
 actggattta tcgacaaatg aaggcaaaacg gctaattccac atggcttcg tccttgacgt 1560
 cgtttacaa gaaaacaatg gggctggttt tgctccccg tgcatgatctt actcttagag 1620
 atgattcaga ggtcaactca tttttatcaa acatgtact tgctggctt tggcaacttc 1680
 tgccatactg tgcaggctgc agtggctccc ctgcccagcc tgcttcctt aacccttgt 1740
 ccccaagggg tgatggccgg ctgggtgtgg gcactggcgg tcaattgtgg aaggaagagg 1800
 gttggaggct gccccccattg agatcttcct gctgatgtt ttccaggggc caattttgga 1860
 tgagcatgga gctgtcaactt ctcagctgt ggtgactt agatgaaaaa ggagagacat 1920
 ggaaaggag acagccagg ggcacctgca gcccgtgccc tctggggcca cttggtagtg 1980
 tccccagcct acttcacaag gggattttgc tgatgggttc ttagagcctt agcagccctg 2040
 gatggtgccc agaaaataaaag ggaccagccc ttcatgggtg gtgacgtgtt agtcaacttgt 2100
 aaggggaaaca gaaaacattt tgttcttatg gggtgagaat atagacagt cccttggtg 2160
 gagggaaagca attgaaaagg aacttgcctt ggcactcctt ggtgcagtc tccacctgca 2220
 cattgggtgg ggctcctggg agggagactc agccttcctc ctcatccctt ctgaccctgc 2280
 tccttagcacc ctggagagtg aatgcccctt ggtccctggc aqggcgccaa gtttggcacc 2340
 atgtccgcct cttcaggcct gatagtcatt gggaaatttgag gtccatgggg gaaatcaagg 2400
 atgctcagtt taaggtacac tgttccatg ttatgttct acacattgtt ggtggcacc 2460
 ctgaggtaaa agccatctt 2479

<210> 752

<211> 492

<212> PRT

<213> Homo sapiens

<400> 752

Met	Ala	Leu	Asn	Ser	Gly	Ser	Pro	Pro	Ala	Ile	Gly	Pro	Tyr	Tyr	Glu
							5					10			15

Asn	His	Gly	Tyr	Gln	Pro	Glu	Asn	Pro	Tyr	Pro	Ala	Gln	Pro	Thr	Val
							20					25			30

Val	Pro	Thr	Val	Tyr	Glu	Val	His	Pro	Ala	Gln	Tyr	Tyr	Pro	Ser	Pro
							35					40			45

Val	Pro	Gln	Tyr	Ala	Pro	Arg	Val	Leu	Thr	Gln	Ala	Ser	Asn	Pro	Val
							50					55			60

Val	Cys	Thr	Gln	Pro	Lys	Ser	Pro	Ser	Gly	Thr	Val	Cys	Thr	Ser	Lys
							65					70			80

Thr	Lys	Lys	Ala	Leu	Cys	Ile	Thr	Leu	Thr	Leu	Gly	Thr	Phe	Leu	Val
							85					90			95

Gly	Ala	Ala	Leu	Ala	Ala	Gly	Leu	Leu	Trp	Lys	Phe	Met	Gly	Ser	Lys
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

100	105	110
Cys Ser Asn Ser Gly Ile Glu Cys Asp Ser Ser Gly Thr Cys Ile Asn		
115	120	125
Pro Ser Asn Trp Cys Asp Gly Val Ser His Cys Pro Gly Gly Glu Asp		
130	135	140
Glu Asn Arg Cys Val Arg Leu Tyr Gly Pro Asn Phe Ile Leu Gln Met		
145	150	155
Tyr Ser Ser Gln Arg Lys Ser Trp His Pro Val Cys Gln Asp Asp Trp		
165	170	175
Asn Glu Asn Tyr Gly Arg Ala Ala Cys Arg Asp Met Gly Tyr Lys Asn		
180	185	190
Asn Phe Tyr Ser Ser Gln Gly Ile Val Asp Asp Ser Gly Ser Thr Ser		
195	200	205
Phe Met Lys Leu Asn Thr Ser Ala Gly Asn Val Asp Ile Tyr Lys Lys		
210	215	220
Leu Tyr His Ser Asp Ala Cys Ser Ser Lys Ala Val Val Ser Leu Arg		
225	230	235
240		
Cys Leu Ala Cys Gly Val Asn Leu Asn Ser Ser Arg Gln Ser Arg Ile		
245	250	255
Val Gly Gly Glu Ser Ala Leu Pro Gly Ala Trp Pro Trp Gln Val Ser		
260	265	270
Leu His Val Gln Asn Val His Val Cys Gly Gly Ser Ile Ile Thr Pro		
275	280	285
Glu Trp Ile Val Thr Ala Ala His Cys Val Glu Lys Pro Leu Asn Asn		
290	295	300
Pro Trp His Trp Thr Ala Phe Ala Gly Ile Leu Arg Gln Ser Phe Met		
305	310	315
320		
Phe Tyr Gly Ala Gly Tyr Gln Val Gln Lys Val Ile Ser His Pro Asn		
325	330	335
Tyr Asp Ser Lys Thr Lys Asn Asn Asp Ile Ala Leu Met Lys Leu Gln		
340	345	350
Lys Pro Leu Thr Phe Asn Asp Leu Val Lys Pro Val Cys Leu Pro Asn		
355	360	365
Pro Gly Met Met Leu Gln Pro Glu Gln Leu Cys Trp Ile Ser Gly Trp		
370	375	380
Gly Ala Thr Glu Glu Lys Gly Lys Thr Ser Glu Val Leu Asn Ala Ala		
385	390	395
400		
Lys Val Leu Leu Ile Glu Thr Gln Arg Cys Asn Ser Arg Tyr Val Tyr		
405	410	415

Asp Asn Leu Ile Thr Pro Ala Met Ile Cys Ala Gly Phe Leu Gln Gly
 420 425 430

Asn Val Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Thr Ser
 435 440 445

Asn Asn Asn Ile Trp Trp Leu Ile Gly Asp Thr Ser Trp Gly Ser Gly
 450 455 460

Cys Ala Lys Ala Tyr Arg Pro Gly Val Tyr Gly Asn Val Met Val Phe
 465 470 475 480

Thr Asp Trp Ile Tyr Arg Gln Met Lys Ala Asn Gly
 485 490

<210> 753

<211> 683

<212> DNA

<213> Homo sapiens

<400> 753

gtcatattga acattccaga tacctatcat tactcgatgc tggataaac agcaagatgg 60
 ctttgaactc agggcacca ccagctattg gacottacta tgaaaaccat ggataccaac 120
 cggaaaaccc ctatcccgca cagcccactg tggccccac tgtctacagag gtgcattccgg 180
 ctcagacta cccgtccccc gtgccccagt acgccccgag ggtcctgacg caggcttcca 240
 accccgtcgt ctgcacgcag cccaaatccc catccgggac agtgtgcacc tcaaagacta 300
 agaaagact gtgcattcacc ttgacctgg ggaccttcct cgtggagact ggcgtggccg 360
 ctggcctact ctggaagttc atgggcagca agtgctccaa ctctggata gagtgcgact 420
 cctcaggtac ctgcattcaac ccctctaact ggtgtatgg cgtgtcacac tgccccggcg 480
 gggaggacga gaatcggtgt gttcgctct acggaccaaa cttcatcctt cagatgtact 540
 catctcagag gaagtccctgg caccctgtgt qccaaagacga ctggAACGAG aactacgggc 600
 gggcggcctg cagggacatg ggctataaga ataattttta ctctagccaa ggaatagtgg 660
 atgacagcgg atccaccaggc ttt 683

<210> 754

<211> 209

<212> PRT

<213> Homo sapiens

<400> 754

Met	Ala	Leu	Asn	Ser	Gly	Ser	Pro	Pro	Ala	Ile	Gly	Pro	Tyr	Tyr	Glu
1		5					10					15			
Asn	His	Gly	Tyr	Gln	Pro	Glu	Asn	Pro	Tyr	Pro	Ala	Gln	Pro	Thr	Val
	20						25					30			
Val	Pro	Thr	Val	Tyr	Glu	Val	His	Pro	Ala	Gln	Tyr	Tyr	Pro	Ser	Pro
	35						40					45			
Val	Pro	Gln	Tyr	Ala	Pro	Arg	Val	Leu	Thr	Gln	Ala	Ser	Asn	Pro	Val
	50						55					60			
Val	Cys	Thr	Gln	Pro	Lys	Ser	Pro	Ser	Gly	Thr	Val	Cys	Thr	Ser	Lys
	65						70					75			80
Thr	Lys	Lys	Ala	Leu	Cys	Ile	Thr	Leu	Thr	Leu	Gly	Thr	Phe	Leu	Val
	85						90					95			

Gly Ala Ala Leu Ala Ala Gly Leu Leu Trp Lys Phe Met Gly Ser Lys
 100 105 110
 Cys Ser Asn Ser Gly Ile Glu Cys Asp Ser Ser Gly Thr Cys Ile Asn
 115 120 125
 Pro Ser Asn Trp Cys Asp Gly Val Ser His Cys Pro Gly Gly Glu Asp
 130 135 140
 Glu Asn Arg Cys Val Arg Leu Tyr Gly Pro Asn Phe Ile Leu Gln Met
 145 150 160
 Tyr Ser Ser Gln Arg Lys Ser Trp His Pro Val Cys Gln Asp Asp Trp
 165 170 175
 Asn Glu Asn Tyr Gly Arg Ala Ala Cys Arg Asp Met Gly Tyr Lys Asn
 180 185 190
 Asn Phe Tyr Ser Ser Gln Gly Ile Val Asp Asp Ser Gly Ser Thr Ser
 195 200 205
 Phe

<210> 755
<211> 27
<212> PRT
<213> Homo sapiens

<400> 755
Val Gly Glu Gly Leu Tyr Gln Gly Val Pro Arg Ala Glu Pro Gly Thr
 1 5 10 15
Glu Ala Arg Arg His Tyr Asp Glu Gly Val Arg
 20 25

<210> 756
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 756
ggatccgccc ccaccatgtc actttcttagc ctgct 35

<210> 757
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 757
gtcgactcag ctggaccaca gccgcag 27

<210> 758
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 758
ggatccgccc ccaccatggg ctgcaggctg ctct 34

<210> 759
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 759
gtcgacttag aaatccttcc tcttgac 27

<210> 760
<211> 936
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...()
<223> n = A,T,C or G

<400> 760
atgggctgca ggctgntctg ctgtcggtt ctctgtctcc tgggagcggt ccccatggaa 60
acgggagtta cgccagacacc aagacacctg gtcatggaa tgacaaaataa gaagtctttg 120
aatgtgaac aacatctggg tcataacgct atgtatttgt acaagcaaag tgctaagaag 180
ccactggagc tcatgtttgt ctacagtctt gaagaacggg ttgaaaacaa cagtgtgcc 240
agtcgcctct cacctgaatg ccccaacagc tctcacttat tccttcaccc acacaccctg 300
cagccagaag actcgccct gtatctctgc gccagcagcc aagaccggac aagcagctcc 360
tacgagcagt acttcggccg gggcaccagg ctacacgtca cagaggaccc gaaaaacgtg 420
ttcccccccg aggtcgctgt gtttgagcca tcagaaggcag agatctccca caccctaaag 480
gccacactgg tttgcctggc cacaggcttc taccggacc acgtggagct gagttgggg 540
gtgaatggga aggaggtgca cagttgggtc agcacagacc cgcagccct caaggagcag 600
cccgccctca atgactccag atactggctg agcagccgcc tgagggtctc ggccaccc 660
tggcagaacc cccgcaacca cttccgctgt caagtccagt tctacgggtc ctcggagaat 720
gacgagtggc cccaggatag ggcacaaacct gtcacccaga tcgtcagcgc cgaggcctgg 780
ggttagagcag actgtggctt cacctccgag tcttaccaggc aagggttctt gtctgccacc 840
atcctctatg agatcttgct agggaaaggcc accttgtatg ccgtgctgggt cagtggccctc 900
gtgctgatgg ccatggtcaa gagaaaggat ttctga 936

<210> 761
<211> 834
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...()
<223> n = A,T,C or G

<400> 761
atgtcaactt ctggcctgct naaggtggtc acagcttac tgggtttagg acctggcatt 60
gcccagaaga taactcaaacc ccaaccaggaa atgttcgtgc agggaaaagga ggctgtgact 120
ctggactgca catatgacac cagtgtatggc tcttctggta caagcagcc 180

agcagtgggg	aatgatttt	tcttattttat	cagggtctt	atgacgagca	aaatgcaaca	240
gaaggtcgct	actcattgaa	tttccagaag	gcaagaaaat	ccgccaacct	tgtcatctcc	300
gcttcacaaac	tggggactc	agcaatgtat	ttctgtgaa	tgagagaggg	cgcggagga	360
ggaaacaaac	tcaccttgg	gacaggcact	cagctaaaag	ttgaactcaa	tatccagaac	420
cctgaccctg	ccgtgtacca	gctgagagac	tctaaatcca	gtgacaagtc	tgtctgccta	480
ttcacccgatt	ttgattctca	aacaaatgt	tcacaaaagta	aggattctga	tgtgtatata	540
acagacaaaa	ctgtgttaga	catgaggct	atggacttca	agagcaacag	tgctgtggcc	600
tggagcaaca	aatctgactt	tgcattgtca	aacgccttca	acaacagcat	tattccagaa	660
gacacccct	tccccagccc	agaaaagttcc	tgtgtatgtca	agctggtcga	aaaaagcttt	720
gaaacagata	cgaacctaaa	ctttcaaaac	ctgtcagtga	ttgggttccg	aatccctcctc	780
ctgaaaqtqq	ccgggtttaa	tctqctcatq	acqctgcqgc	tgtqgtccaq	ctqa	834

<210> 762

<211> 311

<212> PRT

<213> Homo sapiens

<220>

<221> variant

<222> (1) .. (311)

<223> Xaa = Any amino acid

<400> 762

Met Gly Cys Arg Leu Xaa Cys Cys Ala Val Leu Cys Leu Leu Gly Ala
5 10 15

Val Pro Met Glu Thr Gly Val Thr Gln Thr Pro Arg His Leu Val Met
20 25 30

Gly Met Thr Asn Lys Lys Ser Leu Lys Cys Glu Gln His Leu Gly His
35 40 45

Asn Ala Met Tyr Trp Tyr Lys Gln Ser Ala Lys Lys Pro Leu Glu Leu
 50 55 60

Met Phe Val Tyr Ser Leu Glu Glu Arg Val Glu Asn Asn Ser Val Pro
65 70 75 80

Ser Arg Phe Ser Pro Glu Cys Pro Asn Ser Ser His Leu Phe Leu His
85 90 95

Leu His Thr Leu Gln Pro Glu Asp Ser Ala Leu Tyr Leu Cys Ala Ser
 100 105 110

Ser Gln Asp Arg Thr Ser Ser Ser Tyr Glu Gln Tyr Phe Gly Pro Gly
115 120 125

Thr Arg Leu Thr Val Thr Glu Asp Leu Lys Asn Val Phe Pro Pro Glu
130 135 140

Val Ala Val Phe Glu Pro Ser Glu Ala Glu Ile Ser His Thr Gln Lys
145 150 155 160

Ala Thr Leu Val Cys Leu Ala Thr Gly Phe Tyr Pro Asp His Val Glu
165 170 175

Leu Ser Trp Trp Val Asn Gly Lys Glu Val His Ser Gly Val Ser Thr
180 . . . 185 . . . 190

Asp Pro Gln Pro Leu Lys Glu Gln Pro Ala Leu Asn Asp Ser Arg Tyr
195 200 205

Cys Leu Ser Ser Arg Leu Arg Val Ser Ala Thr Phe Trp Gln Asn Pro
210 215 220

Arg Asn His Phe Arg Cys Gln Val Gln Phe Tyr Gly Leu Ser Glu Asn
225 230 235 240

Asp Glu Trp Thr Gln Asp Arg Ala Lys Pro Val Thr Gln Ile Val Ser
245 250 255

Ala Glu Ala Trp Gly Arg Ala Asp Cys Gly Phe Thr Ser Glu Ser Tyr
260 265 270

Gln Gln Gly Val Leu Ser Ala Thr Ile Leu Tyr Glu Ile Leu Leu Gly
275 280 285

Lys Ala Thr Leu Tyr Ala Val Leu Val Ser Ala Leu Val Leu Met Ala
290 295 300

Met Val Lys Arg Lys Asp Phe
305 310

<210> 763

<211> 277

<212> PRT

<213> Homo sapiens

<400> 763

Met Ser Leu Ser Ser Leu Leu Lys Val Val Thr Ala Ser Leu Trp Leu
5 10 15

Gly Pro Gly Ile Ala Gln Lys Ile Thr Gln Thr Gln Pro Gly Met Phe
20 25 30

Val Gln Glu Lys Glu Ala Val Thr Leu Asp Cys Thr Tyr Asp Thr Ser
35 40 45

Asp Gln Ser Tyr Gly Leu Phe Trp Tyr Lys Gln Pro Ser Ser Gly Glu
50 55 60

Met Ile Phe Leu Ile Tyr Gln Gly Ser Tyr Asp Glu Gln Asn Ala Thr
65 70 75 80

Glu Gly Arg Tyr Ser Leu Asn Phe Gln Lys Ala Arg Lys Ser Ala Asn
85 90 95

Leu Val Ile Ser Ala Ser Gln Leu Gly Asp Ser Ala Met Tyr Phe Cys
100 105 110

Ala Met Arg Glu Gly Ala Gly Gly Asn Lys Leu Thr Phe Gly Thr
115 120 125

Gly Thr Gln Leu Lys Val Glu Leu Asn Ile Gln Asn Pro Asp Pro Ala
130 135 140

Val Tyr Gln Leu Arg Asp Ser Lys Ser Ser Asp Lys Ser Val Cys Leu
145 150 155 160

Phe Thr Asp Phe Asp Ser Gln Thr Asn Val Ser Gln Ser Lys Asp Ser
165 170 175

Asp Val Tyr Ile Thr Asp Lys Thr Val Leu Asp Met Arg Ser Met Asp
 180 185 190

Phe Lys Ser Asn Ser Ala Val Ala Trp Ser Asn Lys Ser Asp Phe Ala
195 200 205

Cys Ala Asn Ala Phe Asn Asn Ser Ile Ile Pro Glu Asp Thr Phe Phe
210 215 220

Pro Ser Pro Glu Ser Ser Cys Asp Val Lys Leu Val Glu Lys Ser Phe
225 230 235 240

Glu Thr Asp Thr Asn Leu Asn Phe Gln Asn Leu Ser Val Ile Gly Phe
245 250 255

Arg Ile Leu Leu Leu Lys Val Ala Gly Phe Asn Leu Leu Met Thr Leu
260 265 270

Arg Leu Trp Ser Ser
275

<210> 764
<211> 1536
<212> DNA
<213> *Homo sapiens*

<400> 764

atgtacaacc	tgttgctgtc	ctacgcacaga	catggggacc	acctgcagcc	cctggacacc	60
gtgcccatac	accagggtct	caccccttcc	aagctggctg	gagtggaggg	taacactgtg	120
atgtttcagc	acctgtatca	gaagcggaag	cacacccagt	ggacgtatgg	accactgacc	180
tcgactctct	atgacccatc	agagatcgac	tcctcagggg	atgagcagtc	cctgctggaa	240
cttatcatca	ccaccaagaa	gccccggggt	cgccagatcc	tggaccagac	gccgggtgaag	300
gagctggta	gcctcaagt	gaagcggtac	ggggccgggt	acttctgcat	gctgggtgcc	360
atatatctgc	tgtacatcat	ctgcttcacc	atgtgctgca	tctaccggcc	cctcaagccc	420
aggaccaata	accgcacgag	ccccccggac	aacaccctct	tacagcagaa	gctacttcag	480
gaagcctaca	tgacccctaa	ggacgatatac	cggtgggtcg	gggagctggg	gactgtcatt	540
ggggctatca	tcatctctgt	ggtagaggtt	ccagacatct	tcagaatggg	ggtcactcgc	600
ttctttggac	agaccatct	tggggccca	ttccatgtcc	tcatcatcac	ctatgccttc	660
atggtgcgtg	tgaccatgt	gatgcggctc	atcagtgcca	gcggggaggt	ggtacccatg	720
tcctttgcac	tcgtgctgg	ctggtgcaac	gtcatgtact	tcgccccgagg	attccagatg	780
ctaggccct	tcaccatcat	gattcagaag	atgatttttt	gcgacctgtat	gcgattctgc	840
tggctgtatgg	ctgtggtcat	cctgggctt	gcttcagcct	tctatatacat	cttccagaca	900
gaggaccccg	aggagctagg	ccacttctac	gactacccca	tggccctgtt	cagcacccctc	960
gagctgttcc	ttaccatcat	cgatggccca	gc当地actaca	acgtggaccc	gcccttcatg	1020
tacagcatca	cctatgtgc	cttgcacatc	atcgccacac	tgctcatgt	caaccccttc	1080
attgccatga	tggcgacac	tcactggcga	gtggcccatg	agcggggatga	gctgtggagg	1140
gcccagattg	tggccaccac	ggtgatgt	gagcggaaagc	tgccctcgctg	cctgtggcc	1200
cgctccggaa	tctgcggacg	ggagtatggc	ctgggagacc	gctgggtcc	gccccggaa	1260
gacaggcaag	atctcaaccg	gcagcggatc	caacgcctacg	cacaggccct	ccacacccgg	1320
ggctctgagg	atttggacaa	agactcagtg	aaaaaactag	agctggctg	tcccttcagc	1380

ccccacctgt cccttcctat gcccctcagt tctcgaagta cctcccgcaag cagtgccaaat 1440
 tgggaaaggc ttccggcaagg gaccctgagg agagacctgc gtgggataat caacaggggt 1500
 ctggaggacg gggagagctg ggaatatcag atctga 1536

<210> 765

<211> 1533

<212> DNA

<213> Homo sapiens

<400> 765

atgtacaacc tggtgctgtc ctacgacaga catggggacc acctgcagcc cctggaccc 60
 gtgccaatc accagggtct caccccttgc aagctggctg gagttggaggg taacactgtg 120
 atgtttcage acctgtatcga gaagcggaaag cacacccagt ggacgtatgg accactgacc 180
 tcgactctct atgacatcac agagatcgac tcctcagggg atgagcagtc cctgtggaa 240
 cttatcatca ccaccaagaa gcggggaggt cgccagatcc tggaccagac gccggtaag 300
 gagctgtgtgaa gcctcaagtg gaagcgggtac gggcggccgt acttctgtcat gctgggtgcc 360
 atatatctgc tgcatacatcat ctgcttcacc atgtgtgtca tctaccggcc cctcaagccc 420
 aggaccaata accgcacgag ccccccggac aacaccctct tacagcagaa gctacttcag 480
 gaagcctaca tgacccctaa ggacgatata cggtgtgtcg gggagctgtgt gactgtcatt 540
 ggggctatca tcatcctgtc ggttagaggtt ccagacatct tcagaatggg ggtcactcgc 600
 ttcttggac agaccatctt tggggggccca ttccatgtcc tcatcatcac ctatgccttc 660
 atgggtgtgg tgaccatgtt gatgcggctc atcagtgcac gccccggaggt ggtacccatg 720
 tccttgcac tcgtgctggg ctgggtcaac gtcatgtact tcgcccggagg attccagatg 780
 cttagccccct tcaccatcat gattcagaag atgatttttg gcgacctgtat gcgattctgc 840
 tggctgtatgg ctgtgtgtcat cctgggtttt gcttcagcc tctatatcat cttccagaca 900
 gaggaccccg aggagctagg ccacttctac gactacccca tggccctgtt cagcacccctc 960
 gagctgttcc ttaccatcat cgatggccca gccaactaca acgtggaccc gccccttcattg 1020
 tacagcatca cctatgctgc ctttgcattc atcgcacac tgctcatgt caaccccttc 1080
 attgcattca tgggcgcacac tcactggcga gtggcccatg agcgggatga gctgtggagg 1140
 gcccagattg tggccaccac ggtgtatgtc gagcggaaagc tgcctcgctg cctgtggct 1200
 cgctccggga tctgcggacg ggagtatggc ctggggagacc gctgggttctt gccccggaa 1260
 gacaggcaag atctcaaccc gcagcggatc caacgctacg cacaggcctt ccacacccgg 1320
 ggctctgagg atttggacaa agactcaatg gaaaaacttag agctgggtcg tcccttcagc 1380
 ccccacctgt cccttcctat gcccctcagt tctcgaagta cctcccgcaag cagtgccaaat 1440
 tgggaaaggc ttccggcaagg gaccctgagg agagacctgc gtgggataat caacaggggt 1500
 ctggaggacg gggagagctg ggaatatcag atc 1533

<210> 766

<211> 511

<212> PRT

<213> Homo sapiens

<400> 766

Met	Tyr	Asn	Leu	Leu	Leu	Ser	Tyr	Asp	Arg	His	Gly	Asp	His	Leu	Gln
5															

5	10	15
---	----	----

Pro	Leu	Asp	Leu	Val	Pro	Asn	His	Gln	Gly	Leu	Thr	Pro	Phe	Lys	Leu
20															

20	25	30
----	----	----

Ala	Gly	Val	Glu	Gly	Asn	Thr	Val	Met	Phe	Gln	His	Leu	Met	Gln	Lys
35															

35	40	45
----	----	----

Arg	Lys	His	Thr	Gln	Trp	Thr	Tyr	Gly	Pro	Leu	Thr	Ser	Thr	Leu	Tyr
50															

50	55	60
----	----	----

Asp	Leu	Thr	Glu	Ile	Asp	Ser	Ser	Gly	Asp	Glu	Gln	Ser	Leu	Leu	Glu
65															

65	70	75	80
----	----	----	----

Leu Ile Ile Thr Thr Lys Lys Arg Glu Ala Arg Gln Ile Leu Asp Gln
85 90 95

Thr Pro Val Lys Glu Leu Val Ser Leu Lys Trp Lys Arg Tyr Gly Arg
100 105 110

Pro Tyr Phe Cys Met Leu Gly Ala Ile Tyr Leu Leu Tyr Ile Ile Cys
115 120 125

Phe Thr Met Cys Cys Ile Tyr Arg Pro Leu Lys Pro Arg Thr Asn Asn
130 135 140

Arg Thr Ser Pro Arg Asp Asn Thr Leu Leu Gln Gln Lys Leu Leu Gln
145 150 155 160

Glu Ala Tyr Met Thr Pro Lys Asp Asp Ile Arg Leu Val Gly Glu Leu
165 170 175

Val Thr Val Ile Gly Ala Ile Ile Leu Leu Val Glu Val Pro Asp
180 185 190

Ile Phe Arg Met Gly Val Thr Arg Phe Phe Gly Gln Thr Ile Leu Gly
195 200 205

Gly Pro Phe His Val Leu Ile Ile Thr Tyr Ala Phe Met Val Leu Val
210 215 220

Thr Met Val Met Arg Leu Ile Ser Ala Ser Gly Glu Val Val Pro Met
225 230 235 240

Ser Phe Ala Leu Val Leu Gly Trp Cys Asn Val Met Tyr Phe Ala Arg
245 250 255

Gly Phe Gln Met Leu Gly Pro Phe Thr Ile Met Ile Gln Lys Met Ile
260 265 270

Phe Gly Asp Leu Met Arg Phe Cys Trp Leu Met Ala Val Val Ile Leu
275 280 285

Gly Phe Ala Ser Ala Phe Tyr Ile Ile Phe Gln Thr Glu Asp Pro Glu
290 295 300

Glu Leu Gly His Phe Tyr Asp Tyr Pro Met Ala Leu Phe Ser Thr Phe
305 310 315 320

Glu Leu Phe Leu Thr Ile Ile Asp Gly Pro Ala Asn Tyr Asn Val Asp
325 330 335

Leu Pro Phe Met Tyr Ser Ile Thr Tyr Ala Ala Phe Ala Ile Ile Ala
340 345 350

Thr Leu Leu Met Leu Asn Leu Leu Ile Ala Met Met Gly Asp Thr His
355 360 365

Trp Arg Val Ala His Glu Arg Asp Glu Leu Trp Arg Ala Gln Ile Val
370 375 380

Ala Thr Thr Val Met Leu Glu Arg Lys Leu Pro Arg Cys Leu Trp Pro

385	390	395	400
Arg Ser Gly Ile Cys Gly Arg Glu Tyr Gly Leu Gly Asp Arg Trp Phe			
405		410	415
Leu Arg Val Glu Asp Arg Gln Asp Leu Asn Arg Gln Arg Ile Gln Arg			
420		425	430
Tyr Ala Gln Ala Phe His Thr Arg Gly Ser Glu Asp Leu Asp Lys Asp			
435		440	445
Ser Val Glu Lys Leu Glu Leu Gly Cys Pro Phe Ser Pro His Leu Ser			
450		455	460
Leu Pro Met Pro Ser Val Ser Arg Ser Thr Ser Arg Ser Ser Ala Asn			
465		470	475
Trp Glu Arg Leu Arg Gln Gly Thr Leu Arg Arg Asp Leu Arg Gly Ile			
485		490	495
Ile Asn Arg Gly Leu Glu Asp Gly Glu Ser Trp Glu Tyr Gln Ile			
500		505	510

<210> 767

<211> 134

<212> PRT

<213> Homo sapiens

<400> 767

Met Tyr Asn Leu Leu Leu Ser Tyr Asp Arg His Gly Asp His Leu Gln		
5	10	15

Pro Leu Asp Leu Val Pro Asn His Gln Gly Leu Thr Pro Phe Lys Leu		
20	25	30

Ala Gly Val Glu Gly Asn Thr Val Met Phe Gln His Leu Met Gln Lys		
35	40	45

Arg Lys His Thr Gln Trp Thr Tyr Gly Pro Leu Thr Ser Thr Leu Tyr		
50	55	60

Asp Leu Thr Glu Ile Asp Ser Ser Gly Asp Glu Gln Ser Leu Leu Glu		
65	70	75
		80

Leu Ile Ile Thr Thr Lys Lys Arg Glu Ala Arg Gln Ile Leu Asp Gln		
85	90	95

Thr Pro Val Lys Glu Leu Val Ser Leu Lys Trp Lys Arg Tyr Gly Arg		
100	105	110

Pro Tyr Phe Cys Met Leu Gly Ala Ile Tyr Leu Leu Tyr Ile Ile Cys		
115	120	125

Phe Thr Met Cys Cys Ile		
130		

<210> 768
<211> 55
<212> PRT
<213> Homo sapiens

<400> 768
Ala Tyr Arg Pro Leu Lys Pro Arg Thr Asn Asn Arg Thr Ser Pro Arg
5 10 15

Asp Asn Thr Leu Leu Gln Gln Lys Leu Leu Gln Glu Ala Tyr Met Thr
20 25 30

Pro Lys Asp Asp Ile Arg Leu Val Gly Glu Leu Val Thr Val Ile Gly
35 40 45

Ala Ile Ile Ile Leu Leu Val
50 55

<210> 769
<211> 39
<212> PRT
<213> Homo sapiens

<400> 769
Glu Val Pro Asp Ile Phe Arg Met Gly Val Thr Arg Phe Phe Gly Gln
5 10 15

Thr Ile Leu Gly Gly Pro Phe His Val Leu Ile Ile Thr Tyr Ala Phe
20 25 30

Met Val Leu Val Thr Met Val
35

<210> 770
<211> 19
<212> PRT
<213> Homo sapiens

<400> 770
Met Arg Leu Ile Ser Ala Ser Gly Glu Val Val Pro Met Ser Phe Ala
5 10 15

Leu Val Leu

<210> 771
<211> 52
<212> PRT
<213> Homo sapiens

<400> 771
Gly Trp Cys Asn Val Met Tyr Phe Ala Arg Gly Phe Gln Met Leu Gly
5 10 15

Pro Phe Thr Ile Met Ile Gln Lys Met Ile Phe Gly Asp Leu Met Arg

20

25

30

Phe Cys Trp Leu Met Ala Val Val Ile Leu Gly Phe Ala Ser Ala Phe
35 40 45
Tyr Ile Ile Phe
50

<210> 772
<211> 213
<212> PRT
<213> Homo sapiens

<400> 772
Gln Thr Glu Asp Pro Glu Glu Leu Gly His Phe Tyr Asp Tyr Pro Met
5 10 15

Ala Leu Phe Ser Thr Phe Glu Leu Phe Leu Thr Ile Ile Asp Gly Pro
20 25 30

Ala Asn Tyr Asn Val Asp Leu Pro Phe Met Tyr Ser Ile Thr Tyr Ala
35 40 45

Ala Phe Ala Ile Ile Ala Thr Leu Leu Met Leu Asn Leu Leu Ile Ala
50 55 60

Met Met Gly Asp Thr His Trp Arg Val Ala His Glu Arg Asp Glu Leu
65 70 75 80

Trp Arg Ala Gln Ile Val Ala Thr Thr Val Met Leu Glu Arg Lys Leu
85 90 95

Pro Arg Cys Leu Trp Pro Arg Ser Gly Ile Cys Gly Arg Glu Tyr Gly
100 105 110

Leu Gly Asp Arg Trp Phe Leu Arg Val Glu Asp Arg Gln Asp Leu Asn
115 120 125

Arg Gln Arg Ile Gln Arg Tyr Ala Gln Ala Phe His Thr Arg Gly Ser
130 135 140

Glu Asp Leu Asp Lys Asp Ser Val Glu Lys Leu Glu Leu Gly Cys Pro
145 150 155 160

Phe Ser Pro His Leu Ser Leu Pro Met Pro Ser Val Ser Arg Ser Thr
165 170 175

Ser Arg Ser Ser Ala Asn Trp Glu Arg Leu Arg Gln Gly Thr Leu Arg
180 185 190

Arg Asp Leu Arg Gly Ile Ile Asn Arg Gly Leu Glu Asp Gly Glu Ser
195 200 205

Trp Glu Tyr Gln Ile
210

<210> 773
<211> 1302
<212> DNA
<213> *Homo sapiens*

<400>	773					
tggacaaaagg	gggtcacaca	ttccttccat	acggttgagc	ctctaccctgc	ctggtgtctgg	60
tcacagtta	gcttcttcat	gatggtgat	ccaaatggca	atgaatccag	tgctacatac	120
ttcatcttaa	taggctccc	tggttagaa	gaggctcagt	tctgggtggc	cttccattg	180
tgcctccct	accttattgc	tgtgctaggt	aacttgacaa	tcatctacat	tgtgcggact	240
gagcacagcc	tgcattgagcc	catgtatata	tttcttgca	tgctttcagg	cattgacatc	300
ctcatctcca	cctcatccat	gcccaaattg	ctggccatct	tctggttcaa	ttccactacc	360
atccagtttgc	atgcttgc	gctacagatg	tttgcacatcc	actccttatac	tggcatggaa	420
tccacagtgc	tgctggccat	ggcttttgac	cgctatgtgg	ccatctgtca	cccaactgcgc	480
catgccacag	tacttacgtt	gcctcgtgtc	acccaaaattg	gtgtggctgc	tgtggtgccg	540
ggggctgcac	tgatggcacc	ccttcgtgtc	ttcatcaagc	agctgcctt	ctgcccgtcc	600
aatatccctt	cccatctcta	ctgcctacac	caagatgtca	tgaagctggc	ctgtatgtat	660
atccgggtca	atgtcgctta	tggccttatac	gtcatcatct	ccgccccattgg	cctggactca	720
cttctcatct	ccttcata	tctgcttatt	cttaagactg	tgttgggctt	gacacgtgaa	780
gccccaggcca	aggcatttgg	cacttgcgtc	tctcatgtgt	gtgtgtgttt	catattctat	840
gtaccttca	ttggattgtc	catggtgcat	cgctttagca	agccggcgtga	ctctcccgctg	900
cccgcatct	tggccaatat	ctatctgtc	gttccctcctg	tgctcaaccc	aattgtctat	960
ggagtgaaga	caaaggagat	tcgacagcgc	atccttcgcac	tttccatgt	ggccacacac	1020
gcttcagagc	cctagggtgtc	agtgtatcaa	cttctttcc	attcagagtc	ctctgattca	1080
gattttatgt	ttaacatttt	ggaagacagt	attcagaaaa	aaaatttcc	taataaaaaat	1140
acaactcaga	tccttcaaata	atgaaactgg	ttggggaaatc	tccatttttt	caatattatt	1200
ttcttcttttgc	ttttcttgc	acatataatt	attaataccc	tgactaggtt	gtggtttgag	1260
ggtttattact	tttcatatata	ccatgcagtc	caaataaaa	ct		1302

<210> 774
<211> 2061
<212> DNA
<213> *Homo sapiens*

cttaggcattt ggaatcaggc atttttgc ttgagggctt attaccaagg gttaataggt 1380
ttcatcttca acaggatatg acaacagtgt taaccaggaa actcaaatta caaatactaa 1440
aacatgttatgat cccatatgtg gtaagttca ttttctttt caatcctcg gttccctgtat 1500
atggatttctt ataacatgct ttcatccccct ttgtatggg atatcatatt tgaaatgcc 1560
tatttaatac ttgtatgtc tgctggactg taagcccatg agggcactgt ttattattga 1620
atgtcatctc tggtcatcat tgactgctt ttgctcatca tttgatcccc cagcaaaatg 1680
ccttagaacat aatagtgcctt atgcgtgaca ccggttatattt ttcatcaaac ctgattccctt 1740
ctgtccctgaa cacatagccca ggcaattttc cagcccttctt tgagttgggtt attattaaat 1800
tctggccattt acttccaatg tgagtggaaag tgacatgtgc aatttctata cctggctcat 1860
aaaacccctcc catgtgcagc ctttcatgtt gacattaaat gtgacttggg aagctatgtg 1920
ttacacagag taaatcacca gaaaggctggaa tttctggaaaa aactgtgcag agccaaacct 1980
ctgtcatttg caactccccac ttgtatgtt acgaggcagt tggataagtg aaaataaaag 2040
tactattgtt tcaagtctctt g 2061

<210> 775
<211> 957
<212> DNA
<213> *Homo sapiens*

```

<400> 775
atgatggtgg atcccaatgg caatgaatcc agtgctacat attcatcct aataggcctc 60
cctggtttag aagaggctca gttctgggttgcctccat tggctccct ctaccttatt 120
gctgtgttag gtaacttgac aatcatctac attgtgcggatctgagcacag cctgcacatgag 180
cccatgtata tatttttttgcata catgctttca ggcattgaca tcctcatctc cacccatcc 240
atgccccaaa tgctggccat ttctgggttca aatcccacta ccatccaggttgatgtttgt 300
ctgctacaga tgtttgcctt ccactcccta tctggcatgg aatccacagt gctgtggcc 360
atggcttttgc accgctatgt ggccatctgt caccctactgc gccatgccac agtacttaacg 420
ttgcctcgtag tcacccaaaat tggtgtgtgttgcgttgcgggggctgc actgtatggca 480
cccttcctgt tcttcatcaa gcagctcccc ttctggccgttccatatatccttccatttcc 540
tactgcctac accaagatgt catgaagctg gcctgtgtatgatatccgggttcaatgtcg 600
tatggcccta tcgtcatcat ctccggcatttgcctggacttcaacttctcatctcatttcata 660
tatctgccta ttcttaagac tgggttgggttgcacacgtg aagcccaaggccaaggcattt 720
ggcacttgcg tcttcatgt gtgtgtgtgttcatattcttgcgttgcgttgcgttgcgttgc 780
tccatggtgc atcgcttttag caagcggcgt gactctccgc tgccctgtcatctggccaaat 840
atctatctgc tggttccctcc tgggtcaac ccaattgtcttgcgttgcgttgcgttgcgttgc 900
attcgacacgc gcatecttcg acttttccat gtggccacac acgcttcaga gccctag 957

```

<210> 776
<211> 954
<212> DNA
<213> *Homo sapiens*

<400> 776
atgatggtag atcccaatgg caatgaatcc agtgctacat acttcacatc aataggcctc 60
cctggtttag aagaggctca gttctgggtg gccttccat tgcgtccct ctacctatt 120
gtctgtctag gtaacttgac aatcatctac attgtcgaa ctgagcacag cctgcatgag 180
ccccatgtata tatttctttg catgtttca ggcattgaca tcctcatctc cacctcatcc 240
atgccccaaa tgctggccat cttctgggtc aattccacta ccattccagtt tgatgttgt 300
ctgtctacaga tggttgccat ccactccta tctggcatgg aatccacagt gctgctggcc 360
atggcttttgc accgctatgt ggccatctgt caccactgc gccatgccac agtacttacg 420
ttgcctcgtag tcacaaaaat tgggtggct gctgtggtag ggggggctgc actgatggca 480
cccccttcgt tcttcataa gcagctgccc ttctggcgct ccaatatcct ttccctattcc 540
tactgcctac accaagatgt catgaagctg gcctgtgatg atatccgggt caatgtcgtc 600
tatggccta tcgtcatcat ctccggcatt ggcctggact cacttctcat ctcccttctca 660
tatctgctta ttcttaagac tgggtggc ttgacacgtg aagcccaggc caaggcattt 720
ggcacttgcg tcttcataatgt gtgtgtgtg ttcatattct atgtacattt cattggattt 780
tccatggtag atcgctttag caagcggcgt gacttcggc tgccctgtcat cttggccaaat 840

atctatctgc tggccctcc tgtgctcaac ccaattgtct atggagtgaa gacaaaggag 900
attcgacgc gcatccctcg actttccat gtggccacac acgcttcaga gccc 954

<210> 777

<211> 318

<212> PRT

<213> Homo sapiens

<400> 777

Met Met Val Asp Pro Asn Gly Asn Glu Ser Ser Ala Thr Tyr Phe Ile
5 10 15

Leu Ile Gly Leu Pro Gly Leu Glu Glu Ala Gln Phe Trp Leu Ala Phe
20 25 30

Pro Leu Cys Ser Leu Tyr Leu Ile Ala Val Leu Gly Asn Leu Thr Ile
35 40 45

Ile Tyr Ile Val Arg Thr Glu His Ser Leu His Glu Pro Met Tyr Ile
50 55 60

Phe Leu Cys Met Leu Ser Gly Ile Asp Ile Leu Ile Ser Thr Ser Ser
65 70 75 80

Met Pro Lys Met Leu Ala Ile Phe Trp Phe Asn Ser Thr Thr Ile Gln
85 90 95

Phe Asp Ala Cys Leu Leu Gln Met Phe Ala Ile His Ser Leu Ser Gly
100 105 110

Met Glu Ser Thr Val Leu Leu Ala Met Ala Phe Asp Arg Tyr Val Ala
115 120 125

Ile Cys His Pro Leu Arg His Ala Thr Val Leu Thr Leu Pro Arg Val
130 135 140

Thr Lys Ile Gly Val Ala Ala Val Val Arg Gly Ala Ala Leu Met Ala
145 150 155 160

Pro Leu Pro Val Phe Ile Lys Gln Leu Pro Phe Cys Arg Ser Asn Ile
165 170 175

Leu Ser His Ser Tyr Cys Leu His Gln Asp Val Met Lys Leu Ala Cys
180 185 190

Asp Asp Ile Arg Val Asn Val Val Tyr Gly Leu Ile Val Ile Ile Ser
195 200 205

Ala Ile Gly Leu Asp Ser Leu Leu Ile Ser Phe Ser Tyr Leu Leu Ile
210 215 220

Leu Lys Thr Val Leu Gly Leu Thr Arg Glu Ala Gln Ala Lys Ala Phe
225 230 235 240

Gly Thr Cys Val Ser His Val Cys Ala Val Phe Ile Phe Tyr Val Pro
245 250 255

Phe Ile Gly Leu Ser Met Val His Arg Phe Ser Lys Arg Arg Asp Ser
260 265 270

Pro Leu Pro Val Ile Leu Ala Asn Ile Tyr Leu Leu Val Pro Pro Val
275 280 285

Leu Asn Pro Ile Val Tyr Gly Val Lys Thr Lys Glu Ile Arg Gln Arg
290 295 300

Ile Leu Arg Leu Phe His Val Ala Thr His Ala Ser Glu Pro
305 310 315

<210> 778

<211> 28

<212> PRT

<213> Homo sapiens

<400> 778

Met Met Val Asp Pro Asn Gly Asn Glu Ser Ser Ala Thr Tyr Phe Ile
5 10 15

Leu Ile Gly Leu Pro Gly Leu Glu Glu Ala Gln Phe
20 25

<210> 779

<211> 9

<212> PRT

<213> Homo sapiens

<400> 779

Arg Thr Glu His Ser Leu His Glu Pro
5

<210> 780

<211> 21

<212> PRT

<213> Homo sapiens

<400> 780

Lys Met Leu Ala Ile Phe Trp Phe Asn Ser Thr Thr Ile Gln Phe Asp
5 10 15

Ala Cys Leu Leu Gln
20

<210> 781

<211> 20

<212> PRT

<213> Homo sapiens

<400> 781

Asp Arg Tyr Val Ala Ile Cys His Pro Leu Arg His Ala Thr Val Leu
5 10 15

Thr Leu Pro Arg
20

<210> 782
<211> 37
<212> PRT
<213> Homo sapiens

<400> 782
Phe Ile Lys Gln Leu Pro Phe Cys Arg Ser Asn Ile Leu Ser His Ser
5 10 15

Tyr Cys Leu His Gln Asp Val Met Lys Leu Ala Cys Asp Asp Ile Arg
20 25 30

Val Asn Val Val Tyr
35

<210> 783
<211> 13
<212> PRT
<213> Homo sapiens

<400> 783
Lys Thr Val Leu Gly Leu Thr Arg Glu Ala Gln Ala Lys
5 10

<210> 784
<211> 10
<212> PRT
<213> Homo sapiens

<400> 784
Val His Arg Phe Ser Lys Arg Arg Asp Ser
5 10

<210> 785
<211> 22
<212> PRT
<213> Homo sapiens

<400> 785
Lys Thr Lys Glu Ile Arg Gln Arg Ile Leu Arg Leu Phe His Val Ala
5 10 15

Thr His Ala Ser Glu Pro
20

<210> 786
<211> 3245
<212> DNA
<213> Homo sapiens

<400> 786

gtcgacccac gctccgcgc gagctaagca ggaggcggag gcggaggcgg agggcgaggg 60
gcggggagcg ccgcctggag cgccgcagg catattgaac attccagata cctatcatta 120
ctcgatgtg ttgataaacag caagatggct ttaactcg ggtcaccacc agctattgga 180
ccttactatg aaaaccatgg ataccaaccg gaaaaccctt atcccgcaca gcccaactgtg 240
gtccccactg tctacgaggt gcatccggct cagtaactacc cgtccccgt gcccagtac 300
gccccgaggg tcctgacgca ggcttccaac cccgtcgct gcacgcagcc caaatcccc 360
tccgggacag tggcacctc aaagactaaag aaagcactgt gcatcacctt gaccctgggg 420
accttccctcg tgggagctgc gctggcgtctt ggcctactct ggaagttcat gggcagcaag 480
tgctccaact ctgggataga gtgcgactcc tcaggtacctt gcatcaaccc ctcttaactgg 540
tgtgatggcg tggcacactg ccccgccgg gggacgaga atcgggtgt tgcctctac 600
ggatcaaact tcatccctca ggttactca tctcagagga agtccctggca ccctgtgtgc 660
caagacgact ggaacgagaa ctacggccgg gcggcgtca gggacatggg ctataagaat 720
aattttact ctggcaagg aatagtggat gacagcggat ccaccagtt tatgaaactg 780
aacacaagtg ccggcaatgt cgatatat aaaaaactgt accacagtgta tgccctttct 840
tcaaaaacg tgggtttttt acgtgtata gcctgcgggg tcaacttgaa ctcaagccgc 900
cagagcagga ttgtggccgg cgagagcgcg ctccggggg cctggccctg gcaggtcage 960
ctgcacgtcc agaacgttca cgtgtcgga ggctccatca tcaccccgta gtggatcg 1020
acagccccc actgcgtgg aaaaacctt aacaatccat ggcatggac ggcatttgcg 1080
gggattttga gacaatctt catgttctat ggagccggat accaagtata aaaagtatt 1140
tctcatccaa attatgactc caagaccaag aacaatgaca ttgcgtgtat gaagctgcag 1200
aaggctctga ctttcaacga cctagtggaa ccagtgtgtc tgcccaaccc aggcatgtat 1260
ctgcagcccg aacagctctg ctggatttcc ggggggggg ccaccgagga gaaaggaaag 1320
acctcagaag tggtaacgc tgccaagggtt ctttcttattt agacacagag atgcaacagc 1380
agatatgtct atgacaacct gatcacacca gccatgtatc gtccgggtt cctgcagggg 1440
aacgtcgatt ctggccaggg tgacagtggaa gggctctgg tcacttcgaa gaacaatata 1500
tgggtggctga tagggatac aagctgggt tctggctgtg ccaaagctta cagaccagga 1560
tgttacggga atgtgtatgtt attcacggac tggattttatc gacaaatggag ggcagacggc 1620
taatccacat ggtcttcgtc cttagcgtcg tttacaaga aaaaaatggg gctgttttg 1680
cttccccgt catgattttac ttttagagat gattcagagg tcacttcatt tttattaaac 1740
agtgaacttg tctggctttg gcaactcttg ccattctgtg caggctgcag tggctccct 1800
gcccagccctg ctctccctaa ccccttgcc gcaaggggtt atggccggct gtttggggc 1860
actggcggtc aagtgtggag gagaggggtt gaggtgtccc catttagatc ttccctgtga 1920
gtccttcca gggccaatt ttggatgagc atggagctgt cacctctcag ctgcgtggat 1980
acttgagatg aaaaaggaga gacatggaaa gggagacagc caggtggcac ctgcagccgc 2040
tgcctctgg gcccacttgg tagtgtcccc agcttaccc tccacaaggg gattttgtg 2100
atgggttctt agagccttag cagccctggaa tgggtggccat aaataaaggg accagccctt 2160
catgggtgtt gacgtggtag tcacttgtaa ggggaacaga aacatttttgc ttcttatggg 2220
gtgagaatat agacagtgc cttggcga gggaaagcaat tgaaaaggaa cttggccctga 2280
gcactctgg tgcaggcttc cacctgcaca ttgggtgggg ctccctggag ggagactcag 2340
ccttcctctt catcctccct gaccctgtc cttagcaccct ggagagtgc catgccccctt 2400
ggtcctggca gggcgcacag tctggcaccat tgggtggctc ttccaggctg cttagtactg 2460
gaaatttgggg tccatggggg aaatcaagga tgctcagttt aaggtagact gtttccatgt 2520
tatgtttcta cacattgtca cctcgtgtt cctggaaact tagcttttgat gtttccaaag 2580
tagtccaccc tcatatgttact ctttggaaact gtatcatctt tgccaaagttt gagggtggc 2640
ctatccatc tgccttgcata aaatgactgg ctcctgactt aacgttctat aaatgaatgt 2700
gctgaagca aatggccatg gtggcggcga agaagagaaa gatgtgtttt gtttggact 2760
ctctgtggc ctttccatg ctgtgggtt ccaaccaggg gaagggtccc ttttgcattt 2820
ccaaagtgc taaccatgag cactactta ccatggttct gcctctggc caaggaggct 2880
ggtttgcag aatgaaatgt aatgatttttact agctaggact taaccttgcata atggaaatgtc 2940
ttgcaatccc atttgcagga tccgtctgtc cacatgcctc ttttttttttgcattt 3000
gggaccccttgg aaacagtgg cactgtaaagg tgcttgcattt ccaagacaca tcctaaaagg 3060
tgggtgtatg gtggaaatgtt ctttccctt tatttttttttgcattt gtttccaaatgtc 3120
gtttgtctt tttttgtatct ttttttttttgcattt gtttccaaatgtc atttgtgaaaa tgaatatcat 3180
gcaaaaaat tatgcgattt ttttttcaaa gtaaaaaaaaaaaaaaaa aaaaaggccg 3240
gcccgc 3245

<210> 787
<211> 1479
<212> DNA
<213> *Homo sapiens*

<400> 787

atggcttga	actcagggtc	accaccagct	attggacctt	actatgaaaa	ccatggatac	60
caaccggaaa	acccttatcc	cgcacagccc	actgttgtcc	ccactgtcta	cgaggtgcat	120
ccggctcagt	actaccggc	ccccgtgccc	cagtagcccc	cgaggtgcct	gacgcaggct	180
tccaaccgg	tcgtctgcac	gcagccaaa	tcccccattccg	ggacagtgt	cacctcaaaag	240
actaagaaaag	cactgtgcat	cacccgttgg	ctggggaccc	tcctcggtgg	agctgcgctg	300
gcccgtggcc	tactctggaa	gttcatgggc	agcaaatgtct	ccaactctgg	gatagagtgc	360
gactcctcag	gtacccgtcat	caaccctct	aactgggtgt	atggcggtgc	acactgcccc	420
ggccggggagg	acgagaatcg	gtgtgttccg	ctctacggat	caaacttcat	ccttcagggt	480
tactcatctc	agaggaagtc	ctggcaccc	gtgtgccaag	acgactggaa	cgagaactac	540
gggcggggcg	cctgcaggga	catgggctat	aagaataatt	tttactctag	ccaaggaaata	600
gtggatgaca	gcccgtccac	cagctttatg	aaactgaaca	caagtgcgg	caatgtcgat	660
atctataaaa	aactgtacca	cagtgtatgcc	tgttttcaaa	aagcagtgtt	ttctttacgc	720
tgtatagct	gccccgtcaaa	cttgaactca	agccgcccaga	gcaggattgt	gggcggcgcag	780
agcgcgtcc	cgggggcctg	gccctggcag	gtcagcctgc	acgtcccgaa	cgtccacgt	840
tgccggaggct	ccatcatcac	ccccgagttgg	atcgtgtacag	ccgccccactg	cgtggaaaaaa	900
cctcttaaca	atccatggca	ttggacggca	tttgcgggg	ttttgagaca	atctttcatg	960
ttctatggag	ccggatcacca	agtagaaaaaa	gtgatttctc	atccaaatta	tgactccaag	1020
accaagaaca	atgacattgc	gctgtatgaag	ctgcagaagc	ctctgacttt	caacgaccta	1080
gtgaaaccag	tgtgtctgcc	caaccaggc	atgatgtgc	agccagaaca	gctctgctgg	1140
atttccgggt	qggggggccac	cgaggagaaa	ggaaagaccc	cagaagtgc	gaacgtgccc	1200
aagggtctc	tcatttgcac	acagagatgc	aacagcagat	atgtctatga	caacctgatc	1260
acaccagcca	tgatctgtgc	cggtttccctg	caggggaacg	tcgattcttg	ccaggggtgac	1320
agtggagggc	ctctggtcac	ttcgaagaac	aatatctgtt	ggctgtatgg	ggatacaagc	1380
tggggttctg	gctgtgcacca	agcttacaga	ccaggagtgt	acgggaatgt	gatggatttc	1440
acggacttgg	tttatcgaca	aatggggca	gacggctaa			1479

<210> 788
<211> 1476
<212> DNA
<213> *Homo sapiens*

<400> 788

atggcttga	actcagggtc	accaccagct	attggacctt	actataaaa	ccatggatac	60
caacctggaaa	acccttatcc	cgcacagccc	actgtggtcc	ccactgtcta	cgaggtgcat	120
ccggctcagt	actacccgtc	ccccgtgcc	cagtacgccc	cgagggtcct	gacgcaggct	180
tccaaccccg	tcgtctgcac	gcagccaaa	tccccatccg	ggacagtgt	cacctcaaag	240
actaagaaaag	cactgtgcat	cacccgtgacc	ctggggacct	tcctcgtgg	agctgcgctg	300
gcccgtggcc	tactctggaa	gttcatggc	agcaagtgt	ccaactctgg	gatagagtgc	360
gactcccttag	gtacctgcat	caaccctct	aactgggtgt	atggcgtgtc	acactgcccc	420
ggcggggagg	acgagaatcg	gtgtgttgc	ctctacggat	caaacttcat	ccttcagggt	480
tactcatctc	agaggaagtgc	ctggcaccc	gtgtgccaag	acgactggaa	cgagaactac	540
gggcggggcg	cctgcaggga	catgggctat	aagaataatt	tttactctag	ccaagaata	600
gtggatgaca	gccccatccac	cagctttatg	aaactgaaca	caagtgcgg	aatgtcgat	660
atctataaaa	aactgtacca	cagtgtatgc	tgttcttcaa	aagcagtgg	ttctttacgc	720
tgtatagct	ggggggtcaa	cttgaactca	agccgcccaga	gcaggattgt	gggcggcgag	780
agcgcgtcc	cgggggctg	gccctggcag	gtcagcctgc	acgtcccgaa	cgtccacgt	840
tgcggaggt	cicatcatcac	ccccgagttg	atcgtgacag	ccgcccactg	cgtggaaaaaa	900
cctcttaaca	atccatggca	ttggacggca	tttgcgggga	ttttgagaca	atctttcatg	960
ttctatggag	ccggatacca	agtagaaaaaa	gtgatttctc	atccaaattta	tgactccaag	1020
accaagaaca	atgacattgc	gctgtatgaag	ctgcagaagc	ctctgacttt	caacgcaccta	1080
gtgaaaccag	tgtgtctgcc	caaccaggc	atgatgctgc	agccagaaca	gctctgctgg	1140

atttccgggt ggggggccac cgaggagaaa ggaaagacct cagaagtgc gaacgctgcc 1200
 aagggtcttc tcattgagac acagagatgc aacacgcat atgtctatga caaccgtatc 1260
 acaccagcca tatatctgtgc cggcttccctg caggggaacg tcgattcttg ccagggtgac 1320
 agtggagggc ctctggtcac ttcaagaac aatatctggt ggctgatagg ggatataaagc 1380
 tgggttctg gctgtgcaca agcttacaga ccaggagtgt acggaaatgt gatggtattc 1440
 acggactgga ttatcgaca aatgaggca gacggc 1476

<210> 789
 <211> 492
 <212> PRT
 <213> Homo sapiens

<400> 789
 Met Ala Leu Asn Ser Gly Ser Pro Pro Ala Ile Gly Pro Tyr Tyr Glu
 5 10 15
 Asn His Gly Tyr Gln Pro Glu Asn Pro Tyr Pro Ala Gln Pro Thr Val
 20 25 30
 Val Pro Thr Val Tyr Glu Val His Pro Ala Gln Tyr Tyr Pro Ser Pro
 35 40 45
 Val Pro Gln Tyr Ala Pro Arg Val Leu Thr Gln Ala Ser Asn Pro Val
 50 55 60
 Val Cys Thr Gln Pro Lys Ser Pro Ser Gly Thr Val Cys Thr Ser Lys
 65 70 75 80
 Thr Lys Lys Ala Leu Cys Ile Thr Leu Thr Leu Gly Thr Phe Leu Val
 85 90 95
 Gly Ala Ala Leu Ala Ala Gly Leu Leu Trp Lys Phe Met Gly Ser Lys
 100 105 110
 Cys Ser Asn Ser Gly Ile Glu Cys Asp Ser Ser Gly Thr Cys Ile Asn
 115 120 125
 Pro Ser Asn Trp Cys Asp Gly Val Ser His Cys Pro Gly Gly Glu Asp
 130 135 140
 Glu Asn Arg Cys Val Arg Leu Tyr Gly Ser Asn Phe Ile Leu Gln Val
 145 150 155 160
 Tyr Ser Ser Gln Arg Lys Ser Trp His Pro Val Cys Gln Asp Asp Trp
 165 170 175
 Asn Glu Asn Tyr Gly Arg Ala Ala Cys Arg Asp Met Gly Tyr Lys Asn
 180 185 190
 Asn Phe Tyr Ser Ser Gln Gly Ile Val Asp Asp Ser Gly Ser Thr Ser
 195 200 205
 Phe Met Lys Leu Asn Thr Ser Ala Gly Asn Val Asp Ile Tyr Lys Lys
 210 215 220
 Leu Tyr His Ser Asp Ala Cys Ser Ser Lys Ala Val Val Ser Leu Arg
 225 230 235 240
 Cys Ile Ala Cys Gly Val Asn Leu Asn Ser Ser Arg Gln Ser Arg Ile
 245 250 255
 Val Gly Gly Glu Ser Ala Leu Pro Gly Ala Trp Pro Trp Gln Val Ser
 260 265 270
 Leu His Val Gln Asn Val His Val Cys Gly Gly Ser Ile Ile Thr Pro
 275 280 285
 Glu Trp Ile Val Thr Ala Ala His Cys Val Glu Lys Pro Leu Asn Asn
 290 295 300
 Pro Trp His Trp Thr Ala Phe Ala Gly Ile Leu Arg Gln Ser Phe Met
 305 310 315 320
 Phe Tyr Gly Ala Gly Tyr Gln Val Glu Lys Val Ile Ser His Pro Asn
 325 330 335
 Tyr Asp Ser Lys Thr Lys Asn Asn Asp Ile Ala Leu Met Lys Leu Gln
 340 345 350

Lys Pro Leu Thr Phe Asn Asp Leu Val Lys Pro Val Cys Leu Pro Asn
 355 360 365
 Pro Gly Met Met Leu Gln Pro Glu Gln Leu Cys Trp Ile Ser Gly Trp
 370 375 380
 Gly Ala Thr Glu Glu Lys Gly Lys Thr Ser Glu Val Leu Asn Ala Ala
 385 390 395 400
 Lys Val Leu Leu Ile Glu Thr Gln Arg Cys Asn Ser Arg Tyr Val Tyr
 405 410 415
 Asp Asn Leu Ile Thr Pro Ala Met Ile Cys Ala Gly Phe Leu Gln Gly
 420 425 430
 Asn Val Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Thr Ser
 435 440 445
 Lys Asn Asn Ile Trp Trp Leu Ile Gly Asp Thr Ser Trp Gly Ser Gly
 450 455 460
 Cys Ala Lys Ala Tyr Arg Pro Gly Val Tyr Gly Asn Val Met Val Phe
 465 470 475 480
 Thr Asp Trp Ile Tyr Arg Gln Met Arg Ala Asp Gly
 485 490

<210> 790
<211> 100
<212> PRT
<213> Homo sapiens

<400> 790
 Met Ala Leu Asn Ser Gly Ser Pro Pro Ala Ile Gly Pro Tyr Tyr Glu
 5 10 15
 Asn His Gly Tyr Gln Pro Glu Asn Pro Tyr Pro Ala Gln Pro Thr Val
 20 25 30
 Val Pro Thr Val Tyr Glu Val His Pro Ala Gln Tyr Tyr Pro Ser Pro
 35 40 45
 Val Pro Gln Tyr Ala Pro Arg Val Leu Thr Gln Ala Ser Asn Pro Val
 50 55 60
 Val Cys Thr Gln Pro Lys Ser Pro Ser Gly Thr Val Cys Thr Ser Lys
 65 70 75 80
 Thr Lys Lys Ala Leu Cys Ile Thr Leu Thr Leu Gly Thr Phe Leu Val
 85 90 95
 Gly Ala Ala Leu
 100

<210> 791
<211> 393
<212> PRT
<213> Homo sapiens

<400> 791
 Leu Ala Ala Gly Leu Leu Trp Lys Phe Met Gly Ser Lys Cys Ser Asn
 5 10 15
 Ser Gly Ile Glu Cys Asp Ser Ser Gly Thr Cys Ile Asn Pro Ser Asn
 20 25 30
 Trp Cys Asp Gly Val Ser His Cys Pro Gly Gly Glu Asp Glu Asn Arg
 35 40 45
 Cys Val Arg Leu Tyr Gly Ser Asn Phe Ile Leu Gln Val Tyr Ser Ser
 50 55 60
 Gln Arg Lys Ser Trp His Pro Val Cys Gln Asp Asp Trp Asn Glu Asn
 65 70 75 80

Tyr Gly Arg Ala Ala Cys Arg Asp Met Gly Tyr Lys Asn Asn Phe Tyr
 85 90 95
 Ser Ser Gln Gly Ile Val Asp Asp Ser Gly Ser Thr Ser Phe Met Lys
 100 105 110
 Leu Asn Thr Ser Ala Gly Asn Val Asp Ile Tyr Lys Lys Leu Tyr His
 115 120 125
 Ser Asp Ala Cys Ser Ser Lys Ala Val Val Ser Leu Arg Cys Ile Ala
 130 135 140
 Cys Gly Val Asn Leu Asn Ser Ser Arg Gln Ser Arg Ile Val Gly Gly
 145 150 155 160
 Glu Ser Ala Leu Pro Gly Ala Trp Pro Trp Gln Val Ser Leu His Val
 165 170 175
 Gln Asn Val His Val Cys Gly Gly Ser Ile Ile Thr Pro Glu Trp Ile
 180 185 190
 Val Thr Ala Ala His Cys Val Glu Lys Pro Leu Asn Asn Pro Trp His
 195 200 205
 Trp Thr Ala Phe Ala Gly Ile Leu Arg Gln Ser Phe Met Phe Tyr Gly
 210 215 220
 Ala Gly Tyr Gln Val Glu Lys Val Ile Ser His Pro Asn Tyr Asp Ser
 225 230 235 240
 Lys Thr Lys Asn Asn Asp Ile Ala Leu Met Lys Leu Gln Lys Pro Leu
 245 250 255
 Thr Phe Asn Asp Leu Val Lys Pro Val Cys Leu Pro Asn Pro Gly Met
 260 265 270
 Met Leu Gln Pro Glu Gln Leu Cys Trp Ile Ser Gly Trp Gly Ala Thr
 275 280 285
 Glu Glu Lys Gly Lys Thr Ser Glu Val Leu Asn Ala Ala Lys Val Leu
 290 295 300
 Leu Ile Glu Thr Gln Arg Cys Asn Ser Arg Tyr Val Tyr Asp Asn Leu
 305 310 315 320
 Ile Thr Pro Ala Met Ile Cys Ala Gly Phe Leu Gln Gly Asn Val Asp
 325 330 335
 Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Thr Ser Lys Asn Asn
 340 345 350
 Ile Trp Trp Leu Ile Gly Asp Thr Ser Trp Gly Ser Gly Cys Ala Lys
 355 360 365
 Ala Tyr Arg Pro Gly Val Tyr Gly Asn Val Met Val Phe Thr Asp Trp
 370 375 380
 Ile Tyr Arg Gln Met Arg Ala Asp Gly
 385 390

<210> 792
 <211> 595
 <212> PRT
 <213> Homo sapiens

<400> 792
 Met Ser Phe Leu Asn Phe Thr Ala Val Leu Phe Ala Ala Ser Ser Ala
 1 5 10 15
 Leu Ala Ala Pro Val Asn Thr Thr Thr Glu Asp Glu Thr Ala Gln Ile
 20 25 30
 Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe Asp
 35 40 45
 Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu Phe
 50 55 60
 Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val Ser
 65 70 75 80

Gly Ser Ile Val Gln Leu Ser Gln Ser Val Thr Ala Tyr Met Val Ser
545 550 555 560
Ala Ala Gly Leu Gly Leu Val Ala Ile Tyr Phe Ala Thr Gln Val Val
565 570 575
Phe Asp Lys Ser Asp Leu Ala Lys Tyr Ser Ala Gly Gly His His His
580 585 590
His His His
595

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 01/01574

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	C12N15/12	C12N15/11	C12N1/21	C12N5/10	C07K14/47
	C07K16/18	C07K19/00	A61K38/17	A61K48/00	G01N33/68
	C12Q1/68	C12N5/08			

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N A61K C07K G01N C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, EMBL, BIOSIS, WPI Data, SEQUENCE SEARCH

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 37093 A (CORIXA CORP) 27 August 1998 (1998-08-27)	1-5,7,9, 12-14
Y	the whole document	6,10,11, 15-18
X	---	1-6,9, 15-17
Y	WO 98 37418 A (CORIXA CORP) 27 August 1998 (1998-08-27)	6,15-17
Y	the whole document	---
A	WO 97 33909 A (CORIXA CORP) 18 September 1997 (1997-09-18)	---
	---	-/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"E" earlier document but published on or after the international filing date

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"O" document referring to an oral disclosure, use, exhibition or other means

"A" document member of the same patent family

"P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

Date of mailing of the international search report

4 September 2001

10.01.02

Name and mailing address of the ISA

Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

VAN DER SCHAAL C.A.

INTERNATIONAL SEARCH REPORT

Internal Application No	PCT/US 01/01574
-------------------------	-----------------

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	SJOGREN H O: "Therapeutic immunization against cancer antigens using genetically engineered cells" IMMUNOTECHNOLOGY, ELSEVIER SCIENCE PUBLISHERS BV, NL, vol. 3, no. 3, 1 October 1997 (1997-10-01), pages 161-172, XP004097000 ISSN: 1380-2933 the whole document ---	10,11,18
P,X	WO 00 04149 A (CORIXA CORP) 27 January 2000 (2000-01-27) the whole document ---	1-7,9-18
E	WO 01 25272 A (CORIXA CORP ;REED STEVEN G (US); XU JIANGCHUN (US); CHEEVER MARTIN) 12 April 2001 (2001-04-12) SEQ ID NO 1 claims ----	1-7,9-18
E	WO 01 34802 A (HARLOCKER SUSAN L ;CORIXA CORP (US); DAY CRAIG H (US); JIANG YUQIU) 17 May 2001 (2001-05-17) SEQ ID NO 1 claims -----	1-7,9-18

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 01/01574

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

Although claims 10 13 14 and 18 are (partially) directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

Claims 1-7, 9-18 partially.
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: Invention 1: Claims 1-7 9-18 partially

A polypeptide comprising at least an immunogenic portion of a prostate tumor protein encoded by SEQ ID 1 (according to the Description of the Sequence Identifiers), fragments and variants thereof, fusion proteins comprising it, polynucleotides or oligonucleotides derived therefrom, antibodies binding to the polypeptide, their use in the treatment of cancer, in methods for diagnosing cancer, or for expanding and/or stimulating T-cells.

2. Claims: Inventions 2-527: Claims 1-18 partially and as far as applicable

As for subject 1 but concerning respectively SEQ IDs 2-111,115-171,173-175,177,179-305,307-315,326,328, 330,332-335,340-375,381,382,384-476,524,526,530,531,533,535 536,552,569-572,587,591,593-606,618-626,630,631,634,636,639-6 55,674,680,681,711,713,716,720-722,735,737-739,751,753,764,76 5,773-776 and 786-788

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/US 01/01574

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9837093	A	27-08-1998		US 6261562 B1 AU 731840 B2 AU 6181898 A BR 9808881 A CN 1252837 T EP 1005546 A2 HU 0002095 A2 NO 994069 A PL 335348 A1 TR 9902053 T2 US 6262245 B1 WO 9837093 A2 US 6329505 B1 ZA 9801585 A		17-07-2001 05-04-2001 09-09-1998 11-09-2001 10-05-2000 07-06-2000 28-10-2000 22-10-1999 25-04-2000 21-04-2000 17-07-2001 27-08-1998 11-12-2001 04-09-1998
WO 9837418	A	27-08-1998		AU 6536898 A BR 9807734 A EP 0972201 A2 JP 2001513886 T WO 9837418 A2 ZA 9801536 A		09-09-1998 31-10-2000 19-01-2000 04-09-2001 27-08-1998 08-01-1999
WO 9733909	A	18-09-1997		AU 728186 B2 AU 2329597 A BR 9708082 A CA 2249742 A1 EP 0914335 A2 NO 984229 A WO 9733909 A2 US 6034218 A		04-01-2001 01-10-1997 27-07-1999 18-09-1997 12-05-1999 13-11-1998 18-09-1997 07-03-2000
WO 0004149	A	27-01-2000		AU 5314899 A CN 1315998 T EP 1097208 A2 NO 20010196 A WO 0004149 A2 US 6329505 B1		07-02-2000 03-10-2001 09-05-2001 12-03-2001 27-01-2000 11-12-2001
WO 0125272	A	12-04-2001		AU 7994200 A WO 0125272 A2		10-05-2001 12-04-2001
WO 0134802	A	17-05-2001		US 6329505 B1 AU 1656501 A AU 6158700 A WO 0104143 A2 WO 0134802 A2		11-12-2001 06-06-2001 30-01-2001 18-01-2001 17-05-2001