# SYSC 4106: Assignment 3

Name: Nem Zutkovic Student #: 101085982

#### **Question 1**

| Year       | Project 1 Cash Flow (\$) | Discount Factor @ 8% | Discounted Cash Flow |
|------------|--------------------------|----------------------|----------------------|
| 0          | -100,000                 | 1.0000               | -100,000             |
| 1          | 10,000                   | 0.9259               | 9,529                |
| 2          | 10,000                   | 0.8573               | 8,573                |
| 3          | 10,000                   | 0.7938               | 7,938                |
| 4          | 20,000                   | 0.7350               | 14,700               |
| 5          | 100,000                  | 0.6806               | 68,060               |
| Net Profit | 50,000                   |                      | NPV = \$8800         |

A. The ROI of the project is  $(10,000 / 100,000) \times 100 = 10\%$ .

B. See table.

C. See table.

### **Question 2**

A. Based on the Laplace rule, Xenon Software would purchase C1 equipment because it has the highest average payoff.

| Equipment | P1  | P2 | Р3  | Average Payoff             |  |
|-----------|-----|----|-----|----------------------------|--|
| C1        | 100 | 90 | 60  | (100+90+60) / 3 = 83.3333  |  |
| C2        | 30  | 30 | 140 | (30+30+140) / 3 = 66.6667  |  |
| C3        | 70  | 80 | 90  | (70+80+90) / 3 = 80.0000   |  |
| C4        | 100 | 20 | 120 | (100+20+120) / 3 = 80.0000 |  |

B. Based on the Maximin rule, Xenon Software would purchase C3 equipment because it is the best of the worst payoffs.

| Equipment | P1  | P2 | Р3  | <b>Worst Payoff</b> |
|-----------|-----|----|-----|---------------------|
| C1        | 100 | 90 | 60  | 60                  |
| C2        | 30  | 30 | 140 | 30                  |
| C3        | 70  | 80 | 90  | 70                  |
| C4        | 100 | 20 | 120 | 20                  |

C. Based on the Maximax rule, Xenon Software would purchase C2 equipment because it has the best payoff of the best payoffs.

| Equipment | P1  | P2 | Р3  | Best Payoff |
|-----------|-----|----|-----|-------------|
| C1        | 100 | 90 | 60  | 100         |
| C2        | 30  | 30 | 140 | 140         |
| C3        | 70  | 80 | 90  | 90          |
| C4        | 100 | 20 | 120 | 120         |

D. Based on the Hurwicz rule, Xenon Software would purchase C3 equipment because it has the best of the blended payoffs.

| Equipment | Best Payoff | Worst Payoff | $\alpha$ = 0.3    | Blended Payoff |
|-----------|-------------|--------------|-------------------|----------------|
| C1        | 100         | 60           | 0.3*100 + 0.70*60 | 72             |
| C2        | 140         | 30           | 0.3*140 + 0.70*30 | 63             |
| C3        | 90          | 70           | 0.3*90 + 0.70*70  | 76             |
| C4        | 120         | 20           | 0.3*120 + 0.70*20 | 50             |

E. Based on the Minimax Regret rule, Xenon Software would purchase C3 equipment because it has the smallest maximum regret.

| Equipment | State of Nature 1 | State of Nature 2 | State of Nature 3 | Maximum Regret |
|-----------|-------------------|-------------------|-------------------|----------------|
| C1        | 100-100=0         | 90-90=0           | 140-60=80         | 80             |
| C2        | 100-30=70         | 90-30=60          | 140-140=0         | 70             |
| C3        | 100-70=30         | 90-80=10          | 140-90=50         | 50             |
| C4        | 100-100=0         | 90-20=70          | 140-120=20        | 70             |

## **Question 3**

| NUMBER OF RECORDS (s) | ROUTINE 1 (t = 7.5s2 – 570s + 12112) | ROUTINE 1 (s per t) | ROUTINE 2 (t = 4s2 - 384s + 9621) | ROUTINE 2 (s per t) |
|-----------------------|--------------------------------------|---------------------|-----------------------------------|---------------------|
| 1                     | 11549.50                             | 11549.50            | 9241.00                           | 9241.00             |
| 10                    | 7162.00                              | 716.20              | 6181.00                           | 618.10              |
| 20                    | 3712.00                              | 185.60              | 3541.00                           | 177.05              |
| 30                    | 1762.00                              | 58.73               | 1701.00                           | 56.70               |
| 35                    | 1349.50                              | 38.56               | 1081.00                           | 30.89               |
| 40                    | 1312.00                              | 32.80               | 661.00                            | 16.53               |
| 45                    | 1649.50                              | 36.66               | 441.00                            | 9.80                |
| 46                    | 1762.00                              | 38.30               | 421.00                            | 9.15                |
| 47                    | 1889.50                              | 40.20               | 409.00                            | 8.70                |
| 48                    | 2032.00                              | 42.33               | 405.00                            | 8.44                |
| 49                    | 2189.50                              | 44.68               | 409.00                            | 8.35                |
| 50                    | 2362.00                              | 47.24               | 421.00                            | 8.42                |
| 55                    | 3449.50                              | 62.72               | 601.00                            | 10.93               |
| 60                    | 4912.00                              | 81.87               | 981.00                            | 16.35               |
| 70                    | 8962.00                              | 128.03              | 2341.00                           | 33.44               |
| 80                    | 14512.00                             | 181.40              | 4501.00                           | 56.26               |
| 90                    | 21562.00                             | 239.58              | 7461.00                           | 82.90               |
| 100                   | 30112.00                             | 301.12              | 11221.00                          | 112.21              |
| 1000                  | 6942112.00                           | 6942.11             | 3625621.00                        | 3625.62             |
| 10000                 | 744312112.00                         | 74431.21            | 396169621.00                      | 39616.96            |
| 100000                | 74943012112.00                       | 749430.12           | 39961609621.00                    | 399616.10           |
| 1000000               | 7499430012112.00                     | 7499430.01          | 3999616009621.00                  | 3999616.01          |
| 10000000              | 749994300012112.00                   | 74999430.00         | 39996160009621.00                 | 39999616.00         |
| 100000000             | 74999943000012100.00                 | 749999430.00        | 3999961600009600.00               | 399999616.00        |
| 1000000000            | 749999430000010000.00                | 7499999430.00       | 399999616000010000.00             | 399999616.00        |

To get the best overall optimal performance, where t is the execution time (in milliseconds), *Routine 2* should be selected because regardless of the number of records, because the time required to process data is always lower. The size of the input stream should be *49 records* because the number of records processed per millisecond is at the fastest rate.

### **Question 4**

| Components | Defects       | mR        |
|------------|---------------|-----------|
| 1          | 12            | 4         |
| 2          | 16            | 2         |
| 3          | 18            | 14        |
| 4          | 32            | 10        |
| 5          | 22            | 6         |
| 6          | 16            | 7         |
| 7          | 23            | 12        |
| 8          | 35            | 20        |
| 9          | 15            | 12        |
| 10         | 27            | 11        |
| 11         | 16            | 9         |
| 12         | 25            | 5         |
| 13         | 20            | 6         |
| 14         | 26            | 6         |
| 15         | 20            | 3         |
| 16         | 23            | 0         |
| 17         | 23            | 13        |
| 18         | 36            | 14        |
| 19         | 22            | 5         |
| 20         | 27            | 10        |
| 21         | 17            |           |
| Average    | Am = 22.42857 | mR = 8.45 |

A. See table.

B. **UCL** = mR \* 3.268 = 8.45 \*3.268 = **27.62** 

C. See Moving Range Control Chart graph on next page.

D. All of the defect values are inside the UCL meaning the data dispersion is stable. This means that there are no signals in the process data that indicates that a process is not in control.

E. **UNPL** = mR \* 2.660 + Am = **44.91** 

F. **LNPL** = Am - mR \* 2.660 = **-0.05** (Need not be plotted because it is < 0 and the metrics are all >= 0)

G. See Individual Control Chart graph on next page.

H. The data dispersion is capable because all of zone/test rules are false. There is not single metric value that is outside the UNPL. There are no metric values that lie more than one or two standard deviations away from Am. Lastly, eight consecutive metrics never lie on onside of Am. This shows that there is no process out of control.



