特殊関数

介川侑大1

December 20, 2020

第1章 ガンマ関数

	目次
1.1	定義 ・・・・・・・・・・・・・・・・・ 1
1.2	漸化式 ・・・・・・・・・・・・・・・・・・・ 1
	Gauss の公式 · · · · · · · · · · · · · · · · · · ·
	Weiersrtrass の公式 ・・・・・・・・・・・・・・・ 2
	ディガンマ関数 ・・・・・・・・・・・・・・・・・ 2
	Euler の反転公式 ・・・・・・・・・・・・・・・ 2
1.7	Hankel の積分表示 ・・・・・・・・・・・・・・・ 2
1.8	Stirling の公式 ・・・・・・・・・・・・・・・ 2

1.1 定義

目次へ戻る

$$\Gamma(x) := \int_0^\infty e^{-t} t^{x-1} dt \qquad (x > 0)$$
(1.1)

1.2 漸化式

目次へ戻る

$$\Gamma(x+1) = x\Gamma(x) \qquad (x>0) \tag{1.2}$$

特に、

$$\Gamma(1) = 1$$
 $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ (1.3)

から、

$$\Gamma(n+1) = n!$$
 $\Gamma(n+\frac{1}{2}) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}$ (1.4)

1.3 Gauss の公式

$$\Gamma(x) = \lim_{n \to \infty} \frac{n! n^{x-1}}{(x)_n} \tag{1.5}$$

1.4 Weiersrtrass の公式

目次へ戻る

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{n=1}^{\infty} \left(1 + \frac{x}{n}\right) e^{\frac{x}{n}} \tag{1.6}$$

オイラー定数 γ は次のように定義される。

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right) \tag{1.7}$$

1.5 ディガンマ関数

目次へ戻る

$$\psi(x) := \frac{d}{dx} \operatorname{In}\Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)} = -\gamma - \sum_{k=1}^{\infty} \left(\frac{1}{x+k-1} - \frac{1}{k} \right)$$
 (1.8)

1.6 Euler の反転公式

目次へ戻る

$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x} \tag{1.9}$$

1.7 Hankel の積分表示

目次へ戻る

$$\Gamma(x) = -\frac{1}{2i\sin\pi x} \int_{c} (-t)^{x-1} e^{-t} dt$$
 (1.10)

1.8 Stirling の公式

$$\Gamma(x+1) \approx \sqrt{2\pi x} \, e^{-x} x^x \tag{1.11}$$

第2章 ベータ関数

	目次	
2.2 積分表示 ・・・・・	ntent	3

2.1 定義

目次へ戻る

$$B(x,y) := \int_0^1 \mathbf{t}^{x-1} (1-\mathbf{t})^{y-1} dt$$
 (2.1)

2.2 積分表示

目次へ戻る

$$B(x,y) = \int_0^{\infty} \frac{s^{x-1}}{(1+x)^{x+y}} ds$$
 (2.2)

$$B(x,y) = 2\int_0^{\frac{\pi}{2}} \sin^{2x-1}\theta \cos^{2y-1}\theta d\theta$$
 (2.3)

2.3 ガンマ関数表示

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$
 (2.4)

第3章 超幾何関数

	目次
3.2 3.3	定義 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	音が型は幾何方程式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5 積分表示 ・・・・・・・・・・・・・・・・・・ 5

3.1 定義

目次へ戻る

$$_{p}F_{q}\begin{pmatrix} a_{1} & \dots & a_{p} \\ b_{1} & \dots & b_{q} \end{pmatrix} := \sum_{n=0}^{\infty} \frac{(a_{1})_{n} \cdots (a_{p})_{n}}{(b_{1})_{n} \cdots (b_{q})_{n}} \frac{x^{n}}{n!}$$
 (3.1)

3.2 超幾何方程式

目次へ戻る

$$x(1-x)\frac{d^2}{dx^2}u + (c - (a+b+1)x)\frac{d}{dx}u - abu = 0$$
(3.2)

解は、

$$u = {}_{2}F_{1}(a,b;c;x) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{x^{n}}{n!}$$
(3.3)

3.3 積分表示

$${}_{2}F_{1}(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(c-a)} \int_{0}^{1} t^{a-1} (1-t)^{c-a-1} (1-xt)^{-b} dt$$
 (3.4)

3.4 合流型超幾何方程式

目次へ戻る

$$x\frac{d^2}{dx^2}u + (c-x)\frac{d}{dx}u - au = 0$$
(3.5)

解は、

$$u = {}_{1}F_{1}(a, c; x) = \sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} \frac{x^{n}}{n!}$$
(3.6)

3.5 積分表示

$$_{1}F_{1}(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(c-a)} \int_{0}^{1} t^{a-1} (1-t)^{c-a-1} e^{xt} dt$$
 (3.7)

第4章 Legendre 関数

	目次
4.1	Legendre の微分方程式 ・・・・・・・・・・ 6
4.2	定義 ・・・・・・・・・・・・・・・・・・・ 6
4.3	超幾何関数表示 ・・・・・・・・・・・・・・ 6
4.4	Rodrigues の公式 ・・・・・・・・・・ 7
4.5	直行性 ・・・・・・・・・・・・・・・・・・ 7
4.6	シュレーフリの積分表示 ・・・・・・・・・・・ 7
4.7	母関数 ・・・・・・・・・・・・・・・・・・・ 7
4.8	隣接3項間漸化式 ・・・・・・・・・・・・・・ 7
4.9	Legendre 陪多項式 ・・・・・・・・・・・ 7
	4.9.1 微分方程式 ・・・・・・・・・・・・・ 7
	4.9.2 定義 ・・・・・・・・・・・・・・・・ 7
	4.9.3 直行性 ・・・・・・・・・・・・・・ 7

4.1 Legendre の微分方程式

目次へ戻る

$$\frac{d}{dx}\{(1-x^2)\frac{d}{dx}u\} + \nu(\nu+1)u = 0 \tag{4.1}$$

4.2 定義

目次へ戻る

 $\nu=n(\in\mathbb{N})$ の時、

$$P_n(x) := \frac{1}{2^n} \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{(-1)^k}{k!} \frac{(2n-2k)!}{(n-2k)!(n-k)!} x^{n-2k}$$
(4.2)

4.3 超幾何関数表示

$$P_n(x) = {}_{2}F_1(n+1, -n; 1; \frac{1-x}{2})$$
(4.3)

4.4 Rodrigues の公式

目次へ戻る

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n \tag{4.4}$$

4.5 直行性

目次へ戻る

$$(P_n(x), P_m(x)) := \int_{-1}^1 P_n(x) P_m(x) dx = \frac{2}{2n+1} \delta_{n,m}$$
 (4.5)

4.6 シュレーフリの積分表示

目次へ戻る

$$P_n(x) = \frac{1}{2^n \cdot 2\pi i} \oint \frac{(z^2 - 1)^n}{(z - x)^{n+1}} dz$$
 (4.6)

4.7 母関数

目次へ戻る

$$\sum_{n=0}^{\infty} P_n(x)\zeta^n = \frac{1}{\sqrt{1 - 2x\zeta + \zeta^2}}$$
 (4.7)

4.8 隣接3項間漸化式

目次へ戻る

$$(n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0 (4.8)$$

4.9 Legendre 陪多項式

目次へ戻る

4.9.1 微分方程式

$$\frac{d}{dx}\{(1-x^2)\frac{d}{dx}u\} - \frac{k^2}{1-x^2}u + n(n+1)u = 0$$
(4.9)

4.9.2 定義

$$P_n^k(x) := (-1)^k (1 - x^2)^{\frac{k}{2}} \frac{d^k}{dx^k} P_n(x)$$
(4.10)

4.9.3 直行性

$$\int_{-1}^{1} P_n^k(x) P_m^k(x) dx = \frac{2(n+k)!}{(2n+1)!(n-k)!} \delta_{n,m}$$
(4.11)

第5章 Tchebysheff多項式

	目次
5.1	微分方程式 ・・・・・・・・・・・・・・・・・ 8
5.2	超幾何関数表示 ・・・・・・・・・・・・・・・ 8
5.3	Rodrigues の公式 ・・・・・・・・・・・ 8
5.4	直行性・・・・・・・・・・・・・・・・・・・・・・ 8
5.5	母関数 ・・・・・・・・・・・・・・・・・・・・ 9
5.6	隣接3項間漸化式 ・・・・・・・・・・・・・・・ 9
5.7	三角関数関係 ・・・・・・・・・・・・・・・・ 9

5.1 微分方程式

目次へ戻る

$$\frac{d}{dx}\left\{\sqrt{1-x^2}\frac{d}{dx}u\right\} + \frac{n^2}{\sqrt{1-x^2}}u = 0$$
 (5.1)

5.2 超幾何関数表示

目次へ戻る

$$T_n(x) = \frac{(\frac{1}{2})_n}{n!} {}_2F_1(-n, n; \frac{1}{2}; \frac{1-x}{2})$$
(5.2)

5.3 Rodrigues の公式

目次へ戻る

$$T_n(x) = \frac{(-1)^n}{(2n-1)!!} \sqrt{1-x^2} \frac{d^n}{dx^n} (1-x^2)^{n-\frac{1}{2}}$$
 (5.3)

5.4 直行性

$$\int_{-1}^{1} T_n(x) T_m(x) \frac{dx}{\sqrt{1-x^2}} = \begin{cases} \pi & \text{n=m=0} \\ \frac{\pi}{2} \delta_{n,m} & \text{otherwise} \end{cases}$$
 (5.4)

5.5 母関数

目次へ戻る

$$\sum_{n=0}^{\infty} T_n(x)\zeta^n = \frac{1 - x\zeta}{1 - 2x\zeta + \zeta^2}$$
 (5.5)

5.6 隣接3項間漸化式

目次へ戻る

$$T_{n+1}(x) - 2xT_n(x) + T_{n-1}(x) = 0 (5.6)$$

5.7 三角関数関係

$$T_n(\cos\theta) = \cos(n\theta) \tag{5.7}$$

第6章 Hermite関数

	目次
C 1	10
6.1	Hermite の微分方程式 ・・・・・・・・・ 10
6.2	定義 ・・・・・・・・・・・・・・・・・・ 10
6.3	合流型超幾何関数表示 ・・・・・・・・・・・ 10
6.4	Rodrigues の公式 ・・・・・・・・・・ 11
6.5	直行性 ・・・・・・・・・・・・・・・・・・・ 11
6.6	積分表示 ・・・・・・・・・・・・・・・・・・ 11
6.7	母関数 ・・・・・・・・・・・・・・・・・ 11
6.8	隣接 3 項間漸化式 ・・・・・・・・・・・・・・・・・・・・・ 11

6.1 Hermiteの微分方程式

目次へ戻る

$$\frac{d}{dx}\left\{e^{-x^2}\frac{d}{dx}u\right\} + 2ne^{-x^2}u = 0\tag{6.1}$$

6.2 定義

目次へ戻る

$$H_n(x) := \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \frac{n!}{k!(n-2k)!} (2x)^{n-2k}$$
(6.2)

6.3 合流型超幾何関数表示

$$H_{2n}(x) = (-1)^n \frac{(2n)!}{n!} {}_1F_1(-n, \frac{1}{2}; x^2)$$
(6.3)

$$H_{2n+1}(x) = (-1)^n \frac{2(2n+1)!}{n!} x_1 F_1(-n, \frac{3}{2}; x^2)$$
(6.4)

6.4 Rodrigues の公式

目次へ戻る

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$
(6.5)

6.5 直行性

目次へ戻る

$$(H_n(x), H_m(x)) := \int_{-\infty}^{\infty} H_n(x) H_m(x) e^{-x^2} dx = 2^n n! \delta_{n,m}$$
 (6.6)

6.6 積分表示

目次へ戻る

$$H_n(x) = \frac{n!}{2\pi i} \oint \frac{e^{2xz-z^2}}{z^{n+1}} dz$$
 (6.7)

6.7 母関数

目次へ戻る

$$\sum_{n=0}^{\infty} \frac{H_n(x)}{n!} \zeta^n = e^{-\zeta^2 + 2x\zeta}$$

$$\tag{6.8}$$

6.8 隣接3項間漸化式

$$H_{n+1}(x) - 2xH_n(x) + 2nH_{n-1}(x) = 0 (6.9)$$

第7章 Laguerre関数

	目次
7.1	Laguerre の微分方程式 ・・・・・・・・・・ 12
7.2	定義 ・・・・・・・・・・・・・・・・・・ 12
7.3	合流型超幾何関数表示 ・・・・・・・・・・・・ 13
7.4	Rodrigues の公式 ・・・・・・・・・・ 13
7.5	直行性 ・・・・・・・・・・・・・・・・・・ 13
7.6	積分表示 ・・・・・・・・・・・・・・・・・ 13
7.7	母関数 ・・・・・・・・・・・・・・・ 13
7.8	隣接3項間漸化式 ・・・・・・・・・・・・・・ 13
7.9	Laguerre 陪多項式 ・・・・・・・・・・・・・ 13
	7.9.1 微分方程式 ・・・・・・・・・・・・・・ 13
	7.9.2 定義 ・・・・・・・・・・・・・・・ 14
	7.9.3 合流型超幾何関数表示 ・・・・・・・・・ 14
	7.9.4 Rodriguess の公式 ・・・・・・・・・ 14
	7.9.5 直行性 ・・・・・・・・・・・・・・ 14
	7.9.6 母関数 ・・・・・・・・・・・・・ 14
	7.9.7 隣接 3 項間漸化式 ・・・・・・・・・・ 14

7.1 Laguerre の微分方程式

目次へ戻る

$$\frac{d}{dx}\{xe^{-x}\frac{d}{dx}u\} + ne^{-x}u = 0 (7.1)$$

7.2 定義

$$L_n(x) := \sum_{k=0}^n \frac{(-1)^k (n!)^2}{(k!)^2 (n-k)!} x^k$$
(7.2)

7.3 合流型超幾何関数表示

目次へ戻る

$$L_n(x) = n!_1 F_1(-n, 1; x)$$
(7.3)

7.4 Rodrigues の公式

目次へ戻る

$$L_n(x) = e^x \frac{d^n}{dx^n} (e^{-x} x^n)$$

$$\tag{7.4}$$

7.5 直行性

目次へ戻る

$$(L_n(x), L_m(x)) := \int_0^\infty L_n(x) L_m(x) e^{-x} dx = (n!)^2 \delta_{n,m}$$
 (7.5)

7.6 積分表示

目次へ戻る

$$L_n(x) = \frac{n!}{2\pi i} \oint_c \frac{e^{-xz/(1-z)}}{(1-z)z^{n+1}} dz$$
 (7.6)

7.7 母関数

目次へ戻る

$$\sum_{n=0}^{\infty} \frac{L_n(x)}{n!} \zeta^n = \frac{e^{\frac{-x\zeta}{1-\zeta}}}{1-\zeta} \tag{7.7}$$

7.8 隣接3項間漸化式

目次へ戻る

$$L_{n+1}(x) + (x - (2n+1))L_n(x) + n^2L_{n-1}(x) = 0$$
(7.8)

7.9 Laguerre 陪多項式

目次へ戻る

7.9.1 微分方程式

$$\frac{d}{dx}\{x^{k+1}e^{-x}\frac{d}{dx}u\} + nx^k e^{-x}\frac{d}{dx}u = 0$$
 (7.9)

7.9.2 定義

$$L_n^k(x) := (-1)^k \frac{d^k}{dx^k} L_{n+k}(x) = \sum_{l=0}^n (-1)^l \frac{((n+k)!)^2}{(n-l)!(l+k)!(l)!} x^l$$
 (7.10)

7.9.3 合流型超幾何関数表示

$$L_n^k(x) = \frac{((n+k)!)^2}{n!k!} {}_1F_1(-n,k+1;x)$$
(7.11)

7.9.4 Rodriguess の公式

$$L_n^k(x) = e^x x^{-k} \frac{(n+k)!}{n!} \frac{d^n}{dx^n} (e^{(-x)} x^{n+k})$$
(7.12)

7.9.5 直行性

$$(L_n^k(x), L_m^k(x)) := \int_0^\infty L_n^k(x) L_m^k(x) e^{-x} x^k dx = \frac{((n+k)!)^3}{n!} \delta_{n,m}$$
(7.13)

7.9.6 母関数

$$\sum_{n=0}^{\infty} L_n^k(x) \frac{\zeta^n}{(n+k)!} = \frac{e^{\frac{-x\zeta}{(1-\zeta)}}}{(1-\zeta)^{k+1}}$$
 (7.14)

7.9.7 隣接 3 項間漸化式

$$\frac{n+1}{n+1+k}L_{n+1}^k(x) + (x - (2n+k+1))L_n^k(x) + (n+k)^2L_{n-1}^k(x)$$
 (7.15)

第8章 Bessel関数

	目次	
8.1	Bessel の微分方程式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
8.2	定義 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
8.3	合流型超幾何関数表示・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
8.4	直行性 ・・・・・・・・・・・・・・・・・・・・・	16
8.5	性質 ・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
8.6	積分表示 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
	8.6.1 シュレーフリの積分表示 ・・・・・・・・・・	17
	8.6.2 ポアソンの積分表示 ・・・・・・・・・・・・	17
8.7	母関数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
8.8	漸化式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
8.9	ノイマン関数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
	8.9.1 定義 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
8.10	ハンケル関数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
	8.10.1 定義 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
8.11	変形ベッセル関数 ・・・・・・・・・・・・・・・・	18
	8.11.1 定義 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
	8.11.2 微分方程式 ・・・・・・・・・・・・・・・・・	18
	8.11.3 合流型超幾何関数表示 ・・・・・・・・・・・・	18
	8.11.4 母関数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
	8.11.5 漸化式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
8.12		18
	8.12.1 微分方程式 ・・・・・・・・・・・・・・・・	18
	8.12.2 定義 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
	8.12.3 Rodrigues の公式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
	8.12.4 直行性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
	8.12.5 性質 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
	8.12.6 母関数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
	8.12.7 隣接 3 項間漸化式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
8.13		19
0.10	8.13.1 定義 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
	8.13.2 Rodrigues の公式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
	8.13.3 展開公式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
	OLDIO PARIMAPA	10

	性質・・・・・・・・・・・・・・・・ 20	
8.13.5	母関数 ・・・・・・・・・・・・・・ 20)
8.13.6	隣接3項間漸化式・・・・・・・・・・・・・・・ 20)

8.1 Bessel の微分方程式

目次へ戻る

$$\left\{\frac{d}{dx}\left(x\frac{d}{dx}\right) - \frac{\nu^2}{x}\right\}u + xu = 0\tag{8.1}$$

または、

$$\frac{d^2}{dx^2}u + \frac{1}{x} + \left(1 - \frac{\nu^2}{x^2}\right)u = 0 \tag{8.2}$$

8.2 定義

目次へ戻る

$$J_{\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(\nu+k+1)} \left(\frac{x}{2}\right)^{2k}$$
 (8.3)

8.3 合流型超幾何関数表示

目次へ戻る

$$J_{\nu}(x) = \frac{e^{-ix}}{\Gamma(\nu)} \left(\frac{x}{2}\right)^{\nu} {}_{1}F_{1}(\nu + \frac{1}{2}; 2\nu + 1; 2ix)$$
(8.4)

8.4 直行性

目次へ戻る

$$\int_{0}^{1} J_{\nu}(\lambda_{k}x) J_{\nu}(\lambda_{l}x) x dx = \frac{1}{2} \{J_{\nu+1}(\lambda_{k})\}^{2} \delta_{k,l}$$
(8.5)

8.5 性質

$$\frac{d}{dx}\{x^{\nu}J_{\nu}(x)\} = x^{\nu}J_{\nu-1}(x) \qquad \frac{d}{dx}\{x^{-\nu}J_{\nu}(x)\} = -x^{-\nu}J_{\nu+1}(x) \tag{8.6}$$

$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$
 $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$ (8.7)

8.6 積分表示

目次へ戻る

$$J_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(x\sin\phi - n\phi)} d\phi$$
 (8.8)

8.6.1 シュレーフリの積分表示

$$J_{\nu}(x) = \frac{1}{2\pi i} \int_{C} e^{\frac{x}{2}(z - \frac{1}{z})} z^{-\nu - 1}$$
(8.9)

8.6.2 ポアソンの積分表示

$$J_{\nu}(x) = \frac{\sqrt{\pi}\Gamma(\nu + \frac{1}{2})}{1} \left(\frac{x}{2}\right)^{\nu} \int_{-1}^{1} e^{\pm ixt} (1 - t^{2})^{\nu - \frac{1}{2}} dt$$
 (8.10)

8.7 母関数

目次へ戻る

$$\sum_{n=-\infty}^{\infty} J_n(x)\zeta^n = e^{\frac{1}{2}x(\zeta - \frac{1}{\zeta})}$$
(8.11)

8.8 漸化式

目次へ戻る

$$J_{\nu-1}(x) + J_{\nu+1}(x) = \frac{2\nu}{r} J_{\nu}(x) \qquad J_{\nu-1}(x) - J_{\nu+1}(x) = 2J_{\nu}'(x) \tag{8.12}$$

8.9 ノイマン関数

目次へ戻る

8.9.1 定義

$$Y_{\nu}(x) := \frac{\cos(\nu \pi) J_{\nu}(x) - J_{-\nu}(x)}{\sin(\nu x)} \tag{8.13}$$

$$Y_n(x) = \lim_{\nu \to n} Y_{\nu}(x) = \frac{1}{\pi} \left[\frac{\partial J_{\nu}}{\partial \nu} - (-1)^n \frac{\partial J_{-\nu}}{\partial \nu} \right]_{\nu=n}$$
(8.14)

8.10 ハンケル関数

目次へ戻る

8.10.1 定義

$$H_{\nu}^{(\pm)} := J_{\nu}(x) \pm iY_{\nu}(x) \tag{8.15}$$

8.11 変形ベッセル関数

8.11.1 定義

第一種変形ベッセル関数は次のように定義される。

$$I_{\nu}(x) = i^{-\nu} J_{\nu}(ix) \tag{8.16}$$

$$I_{\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{1}{k!\Gamma(k+\nu+1)} \left(\frac{x}{2}\right)^{2k}$$
 (8.17)

8.11.2 微分方程式

$$\frac{d^2}{dx^2}u + \frac{1}{x}\frac{d}{dx}u - (x^2 + \nu^2) = 0$$
(8.18)

8.11.3 合流型超幾何関数表示

$$I_{\nu}(x) = \frac{e^{-x}}{\nu!} \left(\frac{x}{2}\right)^{\nu} {}_{1}F_{1}(\nu + \frac{1}{2}; 2\nu + 1; 2x)$$
(8.19)

8.11.4 母関数

$$\sum_{n=-\infty}^{\infty} I_n(x)\zeta^n = e^{\frac{x}{2}(\zeta + \frac{1}{\zeta})}$$
(8.20)

8.11.5 漸化式

$$I_{\nu-1}(x) - I_{\nu+1}(x) = \frac{2\nu}{x} I_{\nu}(x), \quad I_{\nu-1}(x) + I_{\nu+1}(x) = 2I'_{\nu}(x)$$
 (8.21)

8.12.1

8.12 球ベッセル関数と球ノイマン関数 目次へ戻る

微分方程式

$$\frac{d^2}{dx^2}u + \frac{1}{x}\frac{d}{dx}u + \left(1 - \frac{l(l+1)}{x^2}\right)u = 0 \tag{8.22}$$

8.12.2 定義

$$\begin{cases} j_l(x) \coloneqq \sqrt{\frac{\pi}{2x}} J_{l+\frac{1}{2}}(x) \\ y_l(x) \coloneqq \sqrt{\frac{\pi}{2x}} Y_{l+\frac{1}{2}}(x) \end{cases}$$

$$(8.23)$$

8.12.3 Rodrigues の公式

$$\begin{cases} j_l(x) = (-1)^l x^l \left(\frac{1}{x} \frac{d}{dx}\right)^l \frac{\sin x}{x} \\ n_l(x) = (-1)^l x^l \left(\frac{1}{x} \frac{d}{dx}\right)^l \frac{\cos x}{x} \end{cases}$$
 (l = 0, 1, 2, ...) (8.24)

8.12.4 直行性

8.12.5 性質

$$\begin{cases}
f_{l+1}(x) = \left(\frac{l}{x} - \frac{d}{dx}\right) f_l(x) \\
f_{l-1}(x) = \left(\frac{l+1}{x} - \frac{d}{dx}\right) f_l(x)
\end{cases}$$

$$f_l(x) = j_l(x), y_l(x)$$
(8.25)

8.12.6 母関数

$$\begin{cases}
\sum_{l=0}^{\infty} \frac{j_{l-1}(x)}{l!} \zeta^{l} = \frac{\cos\sqrt{x^{2} - 2x\zeta}}{x} \\
\sum_{l=0}^{\infty} \frac{n_{l-1}(x)}{l!} \zeta^{l} = -\frac{\sin\sqrt{x^{2} - 2x\zeta}}{x}
\end{cases} (8.26)$$

8.12.7 隣接 3 項間漸化式

$$f_{l+2}(x) - \frac{2l+3}{x} f_{l+1}(x) + f_l(x) = 0 \quad (f_l(x) = j_l(x), y_l(x))$$
 (8.27)

8.13 球ハンケル関数

目次へ戻る

8.13.1 定義

$$h_l^{(\pm)}(x) = n_l(x) \pm ij_l(x)$$
 (8.28)

8.13.2 Rodrigues の公式

$$h_l^{(\pm)}(x) = (-1)^l x^l \left(\frac{1}{x} \frac{d}{dx}\right)^l \frac{e^{\pm ix}}{x}$$
 (8.29)

8.13.3 展開公式

$$h_l^{(\pm)}(x) = (R_l(x) \pm iS_l(x)) \frac{e^{\pm ix}}{x}$$
 (8.30)

ただし、

$$R_l(x) \pm iS_l(x) = \sum_{k=0}^{l} \frac{(\mp i)^{l-k}}{2^k k!} \frac{(l+k)!}{(l-k)!} x^{-k}$$
(8.31)

8.13.4 性質

$$\begin{cases}
h_{l+1}^{(\pm)}(x) = \left(\frac{l}{x} - \frac{d}{dx}\right) h_l^{(\pm)}(x) \\
h_{l-1}^{(\pm)}(x) = \left(\frac{l+1}{x} + \frac{d}{dx}\right) h_l^{(\pm)}(x)
\end{cases}$$
(8.32)

8.13.5 母関数

$$\sum_{l=0}^{\infty} \frac{h_{l-1}^{(\pm)}(x)}{l!} \zeta^l = \frac{\pm i e^{\pm i\sqrt{x^2 - 2x\zeta}}}{x}$$
 (8.33)

8.13.6 隣接 3 項間漸化式

$$h_{l+2}^{(\pm)}(x) - \frac{2l+3}{x}h_{l+1}^{(\pm)}(x) + h_l^{(\pm)}(x) = 0$$
(8.34)