

언라인 국제 트리즈 경진대회

일시: 2019년 11월 26일

장소: 한국산업기술대학교

What is ADRIGE?

ADRIGE 알고리즘

현대 트리즈에서 문제분석(Analysis), 과제정의(Define), 자원탐색 (Resource),

이상적 해결안(IFR), 아이디어 도출(Generate), 아이디어 평가(Evaluate)의 단계를 줄인 단어

9-windows

작은 사람 모델

MATCEM

ADRIGE는 문제를 효과적으로 해결할 수 있는 수 단

ADRIGE Algorithm을 이용한

언라인 국제 트리즈 경진대회 착용중인 운동화 내부 온도 관리하

Zarnoh National Institute of Technology

팀명 : GROOT 소속: 금오공과대학교

Fresheshsteses

기계시스템공학과 14"이영환 기계시스템공학과 15"김영서 기계시스템공학과 15"김진민 전 자 공 학 부 15"서범섭 기계시스템공학과 16"전상엽

- 문제 정보
- ☑ 구성요소분석
- ☑ 프로세스분석
- ☑ 원인분석

- 🗹 모순 정의
- 🗹 과제 정의

- ☑ 자원탐색
- ☑ 물질-장분석

- 아이디어 제안2
- 이 아이디어 제안3

^{문제 분석} 문제 정보

필요성/배경

통풍 안되는 신발·세균 증식이 발냄새 만든다

뉴스1 입력 2019-06-02 07:40 수정 2019-06-02 07:40

발 깨끗이 씻고 물기 모두 제거해야 예방효과

무더운 날씨에 땀을 많이 흘리면 발 냄새가 심해진다. 이런 특성 때문에 발 냄새는 땀 에 의한 것으로 생각하기 쉬운데, 사실은 그렇지 않다.

우리 몸에서 배출하는 땀은 대부분 수분이며, 그 자체로는 냄새가 나지 않는다. 그렇다면 왜 발에서 고약한 냄새가 나는 것일까?

발 냄새는 발에 서식하는 다양한 종류의 세균이 원인이다. 땀에 의해 둘러진 각질에 세균이 작용해 시큼한 악취를 풍기는 이소발레릭산이라는 화학물질을 만들어낸다.

이것이 발 냄새가 나는 이유다. 특히 여름철에는 땀이 많이 나고 고운다습해 세균이 번식하기 좋은 환경이 되고, 발 냄새가 더 심해질 수 있다. 목표

예상 기대효과

Humidity

Control

구성 요소 분석 - 9windows

프로세스 분석 - 기능도

프로세스 분석 - 기능도

	발	인솔	미드솔	아웃솔	어퍼	신발끈	외부 환경
발		+	-	-	+	+	ı
인솔	+		+	-	-	ı	ı
미드솔	-	+		+	+	•	-
아웃솔	-	-	+		-	-	+
어퍼	+	-	+	-		+	+
신발끈	+	_	-	_	+		-
외부 환경	-	-	-	+	+	-	

원인 분석 - RCA

무엇이 (문제가 무엇인 가?)	운동화의 통풍		
<mark>어디서</mark> (문제가 어디서 발 생)	운동화 내부에서		
<mark>언제</mark> (문제가 언제 발생)	운동을 시작하고 일정시간이 지난 후		
<mark>왜</mark> (문제가 왜 발생)	통풍이 너무 안되서 땀이 차기 때문		

원인 분석 - 작은 사람 모델 (Smart Little People)

원인 분석 - Cause Effect Chain Analysis

- 문제 정보
- ☑ 구성요소분석
- ☑ 프로세스분석
- ☑ 원인분석

- 🗹 모순 정의
- 🗹 과제 정의

- ☑ 자원탐색
- ☑ 물질-장분석

- 아이디어 제안2
- 이 아이디어 제안3

과제 정의

모순 정의

^{과제 정의} **과제 정의**

- 문제 정보
- ☑ 구성요소분석
- ☑ 프로세스분석
- ☑ 원인분석

- 🗹 모순 정의
- 🗹 과제 정의

- ☑ 자원탐색
- ☑ 물질-장분석

이 아이디어 제안3

^{자원} 자원 탐색

위치	자원	자원의 특성 및 에너지 특성		
	✔ 땀(물)	액체 – 기화시 열 흡수		
✔공기(바람)사람 체온사람 무게(압력)	✔ 공기(바람)	물의 증발을 도와줌		
시스템	사람 체온	36.5도		
	사람 무게(압력)	걸을 때마다 신발 밑창에 압력제공		
	신발과 발의 마찰력	움직일 때마다 발생		
	외부의 기온 차단			
	✔ 운동 강도	운동이 격해질수록 시스템 자원들의 반응성 증가		
환경 및	바람	물을 증발시킬 수 있음		
상위 시스템	습도	우리나라 기준 여름 -높음/ 겨울 -낮음		
	계절별 기후	여름 – 높은 온도 / 겨울 – 낮은 온도		

자원

물질-장 분석 (MATCEM)

장	종 류			
	중력, 총돌, 마찰(력), 접촉(direct contact)			
	진동, 공명, 충격, 파동			
✓ Mechanical (기계장)	가스/유체 역학(Gas/Fluid dynamics), 바람(풍력), 압축(compression), 진공			
(21218)	기계적 작용(가공, 드릴 링 등)			
	변형, 혼합, (기계적 작용을 위한)참가물, 폭발			
Acoustic (소리장)	음성(소리: 20-15,000hz), 초음파, 초저주파(불가청음), 케비테이션			
✓ Thermal	가열, 냉각, 단열, 열팽창			
	상(Phase/state) 변화, 발열반응, 흡열반응			
❤ (열장)	불, 열복사, 대류(convection)			
	화학반응, 반응물질, 화학물질, 화합물			
Chemical	촉매, 억제재, 지시약 (pH)			
(화학장)	용해, 결정화, 중합화(polymerization)			
` '	냄새, 맛, 색변화, 페하(pH)			
	정전하, 전도채, 부도채			
Electrical	전기장, 전류			
(전기장)	초전도성, 전기분해, 압전연상(효과)			
` ′	이온화, 방전, 스파크			
Magnetic(자기장)	자기장, 자성물질, 자기유도(induction)			
ElectroMagnetic	전자기파(X-ray, Microwaves, etc.)			
(전자기장)	광학, 시력, 색/투명도 변환(투명 반투명), 영상			

- 문제 정보
- ☑ 구성요소분석
- ☑ 프로세스분석
- ☑ 원인분석

- 🗹 모순 정의
- 🗹 과제 정의

- ☑ 자원탐색
- ☑ 물질-장분석

이 아이디어 제안3

이상적 해결안 구상

- 문제 정보
- ☑ 구성요소분석
- ☑ 프로세스분석
- ☑ 원인분석

- 🗹 모순 정의
- 🗹 과제 정의

- ☑ 자원탐색
- ☑ 물질-장분석

- 아이디어 제안2
- 이 아이디어 제안3

센서 적용대상	(1) 펠티어 소자	(2) 압전소자	(3) 바이메탈
기능 및 특징	전기 공급 => 냉각/가열 냉각/가열 => 전기 발생	압력 => 전기	공기 흐름 스위칭
(A) 신발 혀	✓		
(B) 밑창	✓	✓	
(へ) も人			

- <mark>압전소자</mark>를 밑창에 설치하여 걸을때 마다 자체적으로 전류를 생성해, 펠티어 소자로 공 급
- 바이메탈을 호스의 양 갈래길에 설치하여, 별도의 조작없이 자동으로 온도를 가열/냉 각

코완다 효과에 대한 설명, 원리 첨부

코완다 효과에 대한 설명, 원리 첨부

- 문제 정보
- ☑ 구성요소분석
- ☑ 프로세스분석
- ☑ 원인분석

- ☑ 모순 정의
- ☑ 과제 정의

- ☑ 자원탐색
- ☑ 물질-장분석

- 아이디어 제안2
- 이 아이디어 제안3

아이디어 평가 **아이디어 평가 - 아이디어 1**

■ 압전소자-펠티어소자-바이메탈

원 리	아이디어 평가(● : 5, ○ : 3, △ : 1)				
	용	유익기능 증가	적용가능성	점수	
복합재료/분할	0	0	Δ	7	

2차 문제 탐색

- 전류 공급이 어려워 적용 가능성 낮다
- 바이메탈을 사용함으로써, 기술적 복잡성이 높 아져 적용 가능성 조금 하락

아이디어 평가 - 아이디어 2

■ A-1 (신발혀- 펠티어소자)

원 리	아이디어 평가(● : 5, ○ : 3, △ : 1)				
	비용	유익기능 증가	적용가능성	점수	
복합재료/분할	•	•	0	13	

코완다 아이디어 사진

2차 문제 탐색

• 코완다 효과에 대한 2차 문제

아이디어 평가 **기대효과**

폐자원 재사용

낭비되는 운동 에너지를 코완다 효과를 이용하여 재사 용

습도 관리

코완다 효과를 이용하여 외부 공기와 운동화 내부 순환하여 통풍

체온 조절

외부 공기가 운동화 내부의 습도를 가져감으로써 체온 조절