Please show and explain your work where necessary. Good luck!!

1. (5 points) For each of the following,

Circle all of the following expression which are differential equations.

(i)
$$g'(x) + g(x) = 0$$
 (vi) $y^2x = x^2$ (vii) $(\frac{d}{dt})^5 f(t) + \frac{d}{dt} f(t) + f(t) = 0$ (viii) $\csc(y'') + \sin(x) - y = 0$ (viii) $\sin(x) \frac{d^2 f}{dx^2} + \frac{df}{dx} + e^x = \frac{d^3 f}{dx^3}$ (viii) $x^2 \frac{\partial^2 y}{\partial t^2} + y^2 \frac{\partial x}{\partial s} = s + t$ (ix) $e^{y''} + e^x = 3y$ (x) $x \frac{\partial^2 y}{\partial t^2} = y \frac{\partial x}{\partial s}$

2. (3 points) For the following equations, provide the dependent variable.

a.
$$(1 pt)$$
 $f'(x) - f(x) = 0$ $f(x)$

b. (1 pt)
$$\frac{d^2g}{dt^2} - e^t g(t) = 3$$

c.
$$(1 pt)$$
 $\sin(x)y' + y = 0$

- **3.** (2 points) Consider the function $y = x^3$.
 - **a.** (1 pt) Compute y' and y''.

$$\mathbb{Z}^{3'}=3\mathcal{Z}, \mathbb{Z}^{3''} \rightarrow \mathbb{Z}^{3} = 6x$$

b. (1 pt) Does y satisfy the differential equation $x^2y'' - 5y = 0$? Justify your answer.

