Interval Estimation

Ryan Miller

Sampling and Statistical Inference

- ► A fundamental goal of statisticians is to use information from a sample to make reliable statements about a population
 - ► This idea is called **statistical inference**

 $Image\ credit:\ http://testofhypothesis.blogspot.com/2014/09/the-sample.html$

Statistical Inference - Notation

Statisticians use different notation to distinguish *population* parameters (things we want to know) from *estimates* (things derived from a sample). For a few common measures, this notation is summarized below:

	Population Parameter	Estimate (from sample)
Mean	μ	\bar{x}
Standard Deviation	σ	S
Proportion	р	$\hat{\rho}$
Correlation	ρ	r
Regression	$eta_{f 0},eta_{f 1}$	b_0, b_1

For example, μ is the mean of the target population, while \bar{x} is the mean of the cases that ended up in the sample

Point Estimation

- ▶ If a sampling protocol is *unbiased*, the sample average is a sensible estimate of the population mean
 - ► This is called a **point estimate**, referring to the fact that it is a single value

Point Estimation

- ▶ If a sampling protocol is *unbiased*, the sample average is a sensible estimate of the population mean
 - This is called a **point estimate**, referring to the fact that it is a single value
- From our study of sampling distributions, we know that the existence of sampling variability means a point estimate is almost certainly wrong (at least to some degree)
 - This suggests that we can more appropriately describe what we think is true of the population by reporting an interval estimate that accounts for sampling variability

Point vs. Interval Estimation

To summarize:

- ▶ Point estimation uses sample data to produce a single "most likely" estimate of a population characteristic, which will almost always miss the target (at least by some degree)
- ▶ **Interval estimation** uses sample data to produce a range of plausible estimates of a population characteristic, an approach that has a much better chance at capturing the truth

Point vs. Interval Estimation

To summarize:

- ▶ Point estimation uses sample data to produce a *single "most likely" estimate* of a population characteristic, which will almost always miss the target (at least by some degree)
- ▶ **Interval estimation** uses sample data to produce a *range of plausible estimates* of a population characteristic, an approach that has a much better chance at capturing the truth

A popular analogy:

Using only a point estimate is like fishing in a murky lake with a spear. We can throw a spear where we saw a fish, but we will probably miss. On the other hand, if we toss a net in that area, we have a good chance of catching the fish.

Margin of Error

Most interval estimates have the form:

Point Estimate \pm Margin of Error

We often report these intervals using only their endpoints:

$$(\mathsf{Est}-\mathsf{MOE},\mathsf{Est}+\mathsf{MOE})$$

Margin of Error

Most interval estimates have the form:

Point Estimate \pm Margin of Error

We often report these intervals using only their endpoints:

$$(\mathsf{Est}-\mathsf{MOE},\mathsf{Est}+\mathsf{MOE})$$

- We'd like the margin of error to be constructed in way that carries a quantifiable claim of precision
 - ie: 80% of the time an interval with this type of margin of error will contain the population characteristic
 - Without an accompanying claim regarding precision, reporting a margin of error is not particularly useful

So, what can we say about a population proportion, p, based upon an observed sample proportion, \hat{p} ? Consider a representative sample of 100 infants used to estimate the proportion of all babies who are born prematurely

▶ True or false? "We observed $\hat{p} = 0.14$, so we know that 14% of all babies are born prematurely"

- ► True or false? "We observed $\hat{p} = 0.14$, so we know that 14% of all babies are born prematurely"
 - False point estimates have variability

- ► True or false? "We observed $\hat{p} = 0.14$, so we know that 14% of all babies are born prematurely"
 - False point estimates have variability
- ▶ True or false? "We observed $\hat{p} = 0.14$, it's probably true 14% of all babies are born prematurely"

- ▶ True or false? "We observed $\hat{p} = 0.14$, so we know that 14% of all babies are born prematurely"
 - False point estimates have variability
- ▶ True or false? "We observed $\hat{p} = 0.14$, it's probably true 14% of all babies are born prematurely"
 - ► False sampling distributions show the point estimate is likely off by some degree

- ► True or false? "We observed $\hat{p} = 0.14$, so we know that 14% of all babies are born prematurely"
 - False point estimates have variability
- ▶ True or false? "We observed $\hat{p} = 0.14$, it's probably true 14% of all babies are born prematurely"
 - ► False sampling distributions show the point estimate is likely off by some degree
- True or false? "Although we don't know p, if we attach a large margin error to our point estimate, the interval estimate $14\% \pm 10\% = (4\%, 24\%)$ probably contains p"

- ► True or false? "We observed $\hat{p} = 0.14$, so we know that 14% of all babies are born prematurely"
 - False point estimates have variability
- ▶ True or false? "We observed $\hat{p} = 0.14$, it's probably true 14% of all babies are born prematurely"
 - ► False sampling distributions show the point estimate is likely off by some degree
- True or false? "Although we don't know p, if we attach a large margin error to our point estimate, the interval estimate $14\% \pm 10\% = (4\%, 24\%)$ probably contains p"
 - ► False we don't know how reliable this margin of error is, perhaps an MOE of 10% is not wide enough

Conclusion

- ▶ This presentation introduces the idea of interval estimation
 - The key concept is that point estimates are almost always off, but by attaching a margin of error we can more reliably describe the population of interest
- ► In class this week, we'll further explore this concept and learn how to use sampling distributions to come up with interval estimates that have meaningful margins of error