Chromium

From Wikipedia, the free encyclopedia

Chromium is a chemical element with symbol **Cr** and atomic number 24. It is the first element in Group 6. It is a steely-grey, lustrous, hard and brittle metal^[3] which takes a high polish, resists tarnishing, and has a high melting point. The name of the element is derived from the Greek word $\chi \rho \tilde{\omega} \mu \alpha$, *chrōma*, meaning color,^[4] because many of the compounds are intensely colored.

Ferrochromium alloy is commercially produced from chromite by silicothermic or aluminothermic reactions; and chromium metal by roasting and leaching processes followed by reduction with carbon and then aluminium. Chromium metal is of high value for its high corrosion resistance and hardness. A major development was the discovery that steel could be made highly resistant to corrosion and discoloration by adding metallic chromium to form stainless steel. Stainless steel and chrome plating (electroplating with chromium) together comprise 85% of the commercial use.

Trivalent chromium (Cr(III)) ion is an essential nutrient in trace amounts in humans for insulin, sugar and lipid metabolism, although the issue is debated.^[5]

While chromium metal and Cr(III) ions are not considered toxic, hexavalent chromium (Cr(VI)) is toxic and carcinogenic. Abandoned chromium production sites often require environmental cleanup.

Characteristics

Physical

Chromium is remarkable for its magnetic properties: it is the only elemental solid which shows antiferromagnetic ordering at room temperature (and below). Above 38 °C, it changes to paramagnetic.^[2]

Passivation

Chromium, 24Cr

chromium crystals

General properties

Name, symbol chromium, Cr Appearance silvery metallic

Chromium in the periodic table

Atomic number (Z) 24

Group, block group 6, d-block

Period period 4

Element category

| transition metal

Standard atomic weight (\pm) (A_r)

51.9961(6)^[1]

Electron configuration

[Ar] 3d⁵ 4s¹

per shell 2, 8, 13, 1

Physical properties

Phase solid

Melting point 2180 K (1907 °C, 3465 °F)

Boiling point 2944 K (2671 °C, 4840 °F)

Density near r.t. 7.19 g/cm³

Chromium metal left standing in air is passivated by oxidation, forming a thin, protective, surface layer. This layer is a spinel structure only a few molecules thick. It is very dense, and prevents the diffusion of oxygen into the underlying metal. This is different from the oxide that forms on iron and carbon steel, through which elemental oxygen continues to migrate, reaching the underlying material to cause incessant rusting.^[6] Passivation can be enhanced by short contact with oxidizing acids like nitric acid. Passivated chromium is stable against acids. Passivation can be removed with a strong reducing agent that destroys the protective oxide layer on the metal. Chromium metal treated in this way readily dissolves in weak acids.^[7]

Chromium, unlike such metals as iron and nickel, does not suffer from hydrogen embrittlement. However, it does suffer from nitrogen embrittlement, reacting with nitrogen from air and forming brittle nitrides at the high temperatures necessary to work the metal parts.^[8]

Occurrence

Crocoite (PbCrO₄)

Chromium is the 22nd most abundant element in Earth's crust with an average concentration of 100 ppm. [9] Chromium compounds are found in the environment from the erosion of chromium-containing rocks, and can be redistributed by volcanic eruptions. Typical background concentrations of chromium in environmental media are: atmosphere <10 ng m $^{-3}$; soil <500 mg kg $^{-1}$; vegetation <0.5 mg kg $^{-1}$; freshwater <10 ug L $^{-1}$; seawater <1 ug L $^{-1}$; sediment <80 mg kg $^{-1}$.[10]

Chromium is mined as chromite ($FeCr_2O_4$) ore.^[11] About two-fifths of the chromite ores and concentrates in the world are produced in South Africa, while Kazakhstan, India, Russia, and Turkey are also substantial producers. Untapped chromite deposits are plentiful, but geographically concentrated in Kazakhstan and southern Africa.^[12]

when liquid, at m.p. 6.3 g/cm³

Heat of fusion 21.0 kJ/mol

Heat of 347 kJ/mol

vaporization

Molar heat 23.35 J/(mol·K) capacity

Vapor pressure

P (Pa)	1	10	100	1 k	10 k	100 k
at T (K)	1656	1807	1991	2223	2530	2942

Atomic properties

Oxidation states 6, 5, 4, **3**, 2, 1, -1, -2, -4

(depending on the

oxidation state, an acidic,

basic, or amphoteric

oxide)

Electronegativity Pauling scale: 1.66

Ionization1st: 652.9 kJ/molenergies2nd: 1590.6 kJ/mol

3rd: 2987 kJ/mol

(more)

Atomic radius empirical: 128 pm

Covalent radius 139±5 pm

Miscellanea

Crystal structure body-centered cubic (bcc)

Speed of sound 5940 m/s (at 20 °C)

thin rod

Thermal 4.9 μ m/(m·K) (at 25 °C)

expansion

Thermal 93.9 W/(m·K)

conductivity

Although rare, deposits of native chromium exist.^{[13][14]} The Udachnaya Pipe in Russia produces samples of the native metal. This mine is a kimberlite pipe, rich in diamonds, and the reducing environment helped produce both elemental chromium and diamond.^[15]

The relation between Cr(III) and Cr(VI) strongly depends on pH and oxidative properties of the location. In most cases, Cr(III) is the dominating species, [16] but in some areas, the ground water can contain up to 39 μ g/liter of

total chromium of which 30 µg/liter is Cr(VI).[17]

Isotopes

Naturally occurring chromium is composed of three stable isotopes; 52 Cr, 53 Cr and 54 Cr, with 52 Cr being the most abundant (83.789% natural abundance). 19 radioisotopes have been characterized, with the most stable being 50 Cr with a half-life of (more than) 1.8×10^{17} years, and 51 Cr with a half-life of 27.7 days. All of the remaining radioactive isotopes have half-lives that are less than 24 hours and the majority less than 1 minute. This element also has 2 meta states. $^{[18]}$

 53 Cr is the radiogenic decay product of 53 Mn (half-life = 3.74 million years), $^{[19]}$ and chromium isotopes are typically collocated (and compounded) with manganese isotopes. This circumstance is useful in isotope geology. Mangenese-chromium isotope ratios reinforce the evidence from 26 Al and 107 Pd concerning the early history of the solar system. Variations in 53 Cr/ 52 Cr and Mn/Cr ratios from several meteorites indicate an initial 53 Mn/ 55 Mn ratio that suggests Mn-Cr isotopic

Electrical 125 nΩ·m (at 20 °C) resistivity Magnetic ordering antiferromagnetic (rather: SDW)[2] Young's modulus 279 GPa **Shear modulus** 115 GPa 160 GPa **Bulk modulus** 0.21 Poisson ratio 1060 MPa **Vickers hardness Brinell hardness** 687-6500 MPa **CAS Number** 7440-47-3 History Louis Nicolas Vauguelin **Discovery and** first isolation (1797, 1798)Most stable isotopes of chromium half-life DM DE (MeV) NA iso 4.345% is stable with 26 neutrons 50Cr

iso NA half-life DM DE (MeV) DP 50Cr 4.345% is stable with 26 neutrons $_{51Cr}$ syn $_{27.7025}$ d $_{7}$ $_{9.320}$ $_{7}$ $_{52Cr}$ 83.789% is stable with 28 neutrons $_{53Cr}$ 9.501% is stable with 29 neutrons $_{54Cr}$ 2.365% is stable with 30 neutrons

composition must result from in-situ decay of ⁵³Mn in differentiated planetary bodies. Hence ⁵³Cr provides additional evidence for nucleosynthetic processes immediately before coalescence of the solar system.^[20]

The isotopes of chromium range in atomic mass from 43 u (43 Cr) to 67 u (67 Cr). The primary decay mode before the most abundant stable isotope, 52 Cr, is electron capture and the primary mode after is beta decay. $^{[18]}$ 53 Cr has been posited as a proxy for atmospheric oxygen concentration. $^{[21]}$

Source

Wikipedia: Chromium (https://en.wikipedia.org/wiki/Chromium)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Chromium&oldid=753698857"