TASK 4 - IPV4 ADDRESSING EXERCISES

CHRISTIAN MILLÁN SORIA

1° DAW TARDE

1. Enumera las clases de direcciones IPv4 existentes. Describe el rango del primer byte para cada una de ellas.

CLASE	DIRECCIONES DISPONIBLES		CANTIDAD DE	CANTIDAD DE	APLICACIÓN
	DESDE	HASTA	REDES	HOSTS	APLICACION
Α	0.0.0.0	127.255.255.255	128*	16.777.214	Redes grandes
В	128.0.0.0	191.255.255.255	16.384	65.534	Redes medianas
С	192.0.0.0	223.255.255.255	2.097.152	254	Redes pequeñas
D	224.0.0.0	239.255.255.255	no aplica	no aplica	Multicast
E	240.0.0.0	255.255.255.255	no aplica	no aplica	Investigación

^{*} El intervalo 127.0.0.0 a 127.255.255.255 está reservado como dirección loopback y no se utiliza.

Hay 5 clases de direcciones IPv4:

- Clase A: El primer byte de una dirección de Clase A está en el rango de 1 a 126. Los primeros bits (el primer bit es siempre 0) representan el número de red y los últimos tres bytes representan el número de host.
- Clase B: El primer byte de una dirección de Clase B está en el rango de 128 a 191. Los primeros dos bytes representan el número de red y los últimos dos bytes representan el número de host.
- Clase C: El primer byte de una dirección de Clase C está en el rango de 192 a 223. Los primeros tres bytes representan el número de red y el último byte representa el número de host.
- Clase D: El primer byte de una dirección de Clase D está en el rango de 224 a 239. Las direcciones de Clase D se utilizan para multicast.
- Clase E: El primer byte de una dirección de Clase E está en el rango de 240 a 255. Las direcciones de Clase E se reservan para uso experimental y no se utilizan para la comunicación en Internet.

Los rangos de direcciones IPv4 son cada vez más escasos, debido al aumento constante del número de dispositivos conectados a Internet. Se está trabajando en una transición a IPv6, que utiliza direcciones más largas y ofrece un rango de direcciones mucho mayor.

2. Determina el rango de direcciones privadas existentes.

Las direcciones IP privadas son direcciones que no están asignadas a dispositivos conectados directamente a Internet, sino que se utilizan en redes privadas, como redes domésticas o de oficina. Estas direcciones se definen en el RFC 1918 de la IETF y se pueden utilizar en cualquier red local sin necesidad de registro o pago a una autoridad central. Los rangos de direcciones IP privadas son los siguientes:

- 10.0.0.0 a 10.255.255.255 (rango de Clase A)
- 172.16.0.0 a 172.31.255.255 (rango de Clase B)
- 192.168.0.0 a 192.168.255.255 (rango de Clase C)

Las direcciones IP privadas no son enrutables a través de Internet y que deben utilizarse en combinación con un enrutador NAT (traducción de direcciones de red) para permitir que los dispositivos en la red privada se comuniquen con dispositivos en Internet.

Las direcciones privadas de Internet están definidas en RFC 1918:							
Clase	Rango de direcciones internas RFC 1918	Prefijo CIDR					
Α	10.0.0.0 a 10.255.255.255	10.0.0.0/8					
В	172.16.0.0 a 172.31.255.255	172.16.0.0/12					
С	192.168.0.0 a 192.168.255.255	192.168.0.0/16					

3. ¿Cuál es la máscara de subred predeterminada para cada una de las clases de IPv4?

Cada clase de direcciones IPv4 tiene una máscara de subred predeterminada, que se utiliza para determinar la parte de la dirección que corresponde a la red y la parte que corresponde al host. Las máscaras de subred se expresan en términos de bits y se pueden representar como una dirección IPv4 de 32 bits, en la que los bits de red se establecen en 1 y los bits de host se establecen en 0. Las máscaras de subred predeterminadas son las siguientes:

Clase A: 255.0.0.0Clase B: 255.255.0.0Clase C: 255.255.255.0

• Clase D y Clase E no tienen máscaras de subred predeterminadas, ya que se utilizan para fines especiales y no para la identificación de hosts en redes.

Clase	Comienzo de clase	Final de clase	Máscara de red	Bits de red reservados (R)	Cantidad de redes 2 ^{n-R}	Cantidad de host 2 ^m -2	
Α	0.0.0.0	127.255.255.255	255.0.0.0	1	128	16.777.214	
В	128.0.0.0	191.255.255.255	255.255.0.0	2	16.384	65.534	
С	192.0.0.0	223.255.255.255	255.255.255.0	3	2.097.152	254	
D	224.0.0.0	239.255.255.255	No se aplica				
E	240.0.0.0	255.255.255					

4. Traduce a decimal el siguiente código binario (8 bits). Trata de hacerlo mentalmente:

• 10010010