

+ Algorithm with Backpropagation

Algorithm: Backpropagation. Neural network learning for classification or prediction, using the backpropagation algorithm.

Input:

- D, a data set consisting of the training tuples and their associated target values;
- l, the learning rate;
- network, a multilayer feed-forward network.

Output: A trained neural network.

+ Algorithm with Backpropagation

```
Initialize all weights and biases in network;
      while terminating condition is not satisfied {
(3)
           for each training tuple X in D {
                   // Propagate the inputs forward:
(4)
                   for each input layer unit j {
(5)
                           O_i = I_i; // output of an input unit is its actual input value
(6)
                   for each hidden or output layer unit j {
(7)
                           I_j = \sum_i w_{ij} O_i + \theta_j; //compute the net input of unit j with respect to the
(8)
                                 previous layer, i
                           O_j = \frac{1}{1+e^{-I_j}}; \(\right\) // compute the output of each unit j
(9)
                   // Backpropagate the errors:
(10)
                   for each unit j in the output layer
(11)
                           \mathit{Err}_j = O_j(1-O_j)(T_j-O_j); // compute the error
(12)
                   for each unit j in the hidden layers, from the last to the first hidden layer
(13)
                           Err_j = O_j(1 - O_j) \sum_k Err_k w_{jk}; // compute the error with respect to the
(14)
                                     next higher layer, k
                   for each weight w_{ij} in network {
(15)
                           \Delta w_{ij} = (l) Err_j O_i; // weight increment w_{ij} = w_{ij} + \Delta w_{ij}; } // weight update
(16)
(17)
                   for each bias \theta_i in network {
(18)
                           \Delta \Theta_j = (l) Err_j; // bias increment
(19)
                           \theta_i = \theta_i + \Delta \theta_i; \(\right\) bias update
(20)
(21)
```


+ Example

Initial input, weight, and bias values.

x_1	x_2	<i>x</i> ₃	w_{14}	w ₁₅	w ₂₄	w ₂₅	w34	w35	w46	w56	θ_4	θ_5	θ_6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

The net input and output calculations.

Unit j	Net input, I_j	Output, O j
4	0.2 + 0 - 0.5 - 0.4 = -0.7	$1/(1+e^{0.7})=0.332$
5	-0.3+0+0.2+0.2=0.1	$1/(1+e^{-0.1}) = 0.525$
6	(-0.3)(0.332) - (0.2)(0.525) + 0.1 = -0.105	$1/(1+e^{0.105})=0.474$

Calculation of the error at each node.

Unit j	Err _j
6	(0.474)(1-0.474)(1-0.474) = 0.1311
5	(0.525)(1-0.525)(0.1311)(-0.2) = -0.0065
4	(0.332)(1-0.332)(0.1311)(-0.3) = -0.0087

+

Calculations for weight and bias updating.

Weight or bias	New value
w ₄₆	-0.3 + (0.9)(0.1311)(0.332) = -0.261
w ₅₆	-0.2 + (0.9)(0.1311)(0.525) = -0.138
w_{14}	0.2 + (0.9)(-0.0087)(1) = 0.192
w ₁₅	-0.3 + (0.9)(-0.0065)(1) = -0.306
w_{24}	0.4 + (0.9)(-0.0087)(0) = 0.4
w ₂₅	0.1 + (0.9)(-0.0065)(0) = 0.1
w34	-0.5 + (0.9)(-0.0087)(1) = -0.508
w35	0.2 + (0.9)(-0.0065)(1) = 0.194
θ_6	0.1 + (0.9)(0.1311) = 0.218
θ_5	0.2 + (0.9)(-0.0065) = 0.194
θ_4	-0.4 + (0.9)(-0.0087) = -0.408