河海大学常州校区 2018-2019 学年第一学期

《大学物理 II》(机电工程学院 2017 级)期末(课内)考试(A)

卷

授课班号 6	6610510-	专业	<u></u>		学号		姓名	
题号	斯 <u></u>			总分	审核			
越与		1	2	3	4	5		
题分	40	8	8	14	14	16		
得分								

1、 **有关常量:** 真空电容率(真空介电常量) $\varepsilon_0 = 8.854187817 \times 10^{-12} C^2 / (N m^2)$

真空磁导率 $\mu_0 = 4\pi \times 10^{-7} \,\text{TCm/A}$

2、有关公式:

库仑力
$$\vec{F}_{12} = -\vec{F}_{21} = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r_{12}^2} \vec{e}_{r12}$$

点电荷电场强度 $\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \vec{e}_r$

电偶极矩(电矩) $\vec{p}=q\vec{l}$

静电场中的高斯定理 $\iint \vec{E} \, d\vec{S} = \frac{1}{\varepsilon} \sum_{i} q_{i}$

电势
$$V_a = \int_a^\infty \vec{E} \, \Box d\vec{l} = \int \frac{dq}{4\pi\varepsilon_0 r}$$

电势差
$$U_{ab}=\int_a^b ar{E} \Box dar{l}=rac{A_{ab}}{q_0}$$

电势 $V_a=\int_a^\infty ar{E}\Box dar{l}=\int rac{dq}{4\piarepsilon_0 r}$ 电势差 $U_{ab}=\int_a^b ar{E}\Box dar{l}=rac{A_{ab}}{q_0}$ 带电导体表面附近电场 $ar{E}=rac{\sigma}{arepsilon_0}ar{e}_n$

电容器电容
$$C = \frac{q}{V_A - V_B}$$

平行板电容器
$$C = \frac{\varepsilon_0 S}{d}$$

圆柱形电容器
$$C = \frac{2\pi\varepsilon_0}{\ln\frac{R_B}{R}}$$

球形电容器
$$C = 4\pi\varepsilon_0 \frac{R_A R_B}{R_B - R_A}$$

电场能量
$$W_e = \iiint_V \frac{1}{2} \varepsilon_0 E^2 dV = \frac{1}{2} \frac{Q^2}{C}$$

恒定电流的磁场

毕奥一萨伐尔定律
$$B = \frac{\mu_0}{4\pi} \int_L \frac{Id\vec{l} \times \vec{r}}{r^3}$$

载流长直导线磁场
$$B = \frac{\mu_0 I}{4\pi r} \left(\sin \beta_1 - \sin \beta_2 \right)$$

载流圆线圈轴线上磁场
$$B = \frac{\mu_0 I R^2}{2(R^2 + x^2)^{3/2}}$$

磁矩 $\bar{m} = IS\bar{e}_n$

无限长直螺线管磁场:内部 $B = \mu_0 nI$;外部B = 0

磁通量
$$\Phi_m = \iint_S \vec{B} \Box d\vec{S}$$

安培环路定理
$$\iint_L \vec{B} \Box d\vec{l} = \mu_0 \sum I$$

洛伦兹力 $\vec{F} = q\vec{v} \times \vec{B}$

洛伦兹力
$$\vec{F}=q\vec{v} imes\vec{B}$$
 马吕斯定律 $I_2=I_1\cos^2\alpha$ 安培定律 $\vec{F}=\int_L Id\vec{l} imes\vec{B}$ 布儒斯特定律 $\tan i_0=\frac{n_2}{n_2}$

磁力矩 $\vec{M} = \vec{m} \times \vec{B}$

布儒斯特定律 $\tan i_B = \frac{n_2}{n}$

电磁感应

法拉第电磁感应定律

$$\xi_i = -\frac{d\Phi_m}{dt}$$

动生电动势 $\xi_i = \int_{\mathcal{L}} (\bar{v} \times \bar{B}) \Box d\bar{l}$

自感系数
$$L = \frac{\Phi_m}{I} = -\frac{\xi_i}{dI/dt}$$

互感系数
$$M = \frac{\Phi_m}{I} = -\frac{\xi_i}{dI/dt}$$

双缝干涉

双缝干涉明纹位置

$$x = \pm k \frac{D\lambda}{d}, k = 0, 1, 2, \cdots$$

双缝干涉暗纹位置

$$x = \pm (2k+1) \frac{D\lambda}{d}, k = 0, 1, 2, \cdots$$

光程 nx

位相差与光程差的关系

$$\Delta \phi = \frac{2\pi\delta}{\lambda}$$

膜干涉

薄膜干涉反射光光程差

$$\delta = 2d\sqrt{n_2^2 - n_1^2 \sin^2 i} + \begin{cases} 0, n_1 < n_2 < n_3 \\ 0, n_1 > n_2 > n_3 \\ \frac{\lambda}{2}, \text{ $\rlap/$E} \end{cases}$$

$$= \begin{cases} k\lambda, k = 1, 2, 3, \dots 明 \\ (2k+1)\frac{\lambda}{2}, k = 1, 2, 3, \dots 暗 \\ \end{cases}$$

劈尖膜相邻明纹或暗纹间距

$$l = \frac{\lambda}{2\sin\theta} \approx \frac{\lambda}{2\tan\theta} \approx \frac{\lambda}{2\theta}$$

单缝符射

暗纹公式 $a \sin \theta = \pm 2k \frac{\lambda}{2}, k = 1, 2, 3, \cdots$

明纹公式 $a\sin\theta = \pm(2k+1)\frac{\lambda}{2}, k=1,2,\cdots$

中央明纹的半角宽度

$$\Box \theta_0 = \theta_1 = \arcsin \frac{\lambda}{a} \approx \frac{\lambda}{a}$$

中央明纹线宽度 $\Box x \approx 2D\theta_1 = \frac{2\lambda D}{2}$

光栅衍射 光栅方程(a+b)sin $\theta=k\lambda$

缺级
$$k = \frac{a+b}{a}k', k' = \pm 1, \pm 2, \cdots$$

两相邻主极大之间有N-1个极小值,N-2个次极大

<u> </u>	埴空颙	(共40分,	每空2分)
•		ヘノヘ せひ ノノリ		/

阅卷	得分

d b ____

填1图

2、 如填 2 图所示,边长为 *a* 的等边三角形的三个顶点均放置带电量为+*q* 的点电荷,则三角形中心处的电场强度为_____,电势为______;若将一点电荷+*Q* 从无穷远处移到正三角形中心处,电场力将作功

填2图

3、 如填 3 图所示,在一导体 B 的左侧放一无限大均匀带电平面 A (面电荷密度为 σ_1),现测得 B 的外表面靠 P 点处的电荷 面密度为 σ_2 ,P 点很靠近导体,则 P 点处的场强为_______; P' 点在导体内部很靠近 P 点,则 P' 点处的场强为______。

填3图

- **4、** 一平行板电容器充电后仍与电源连接(电容器电压保持不变),若将电容器两极板间距拉大,则极板上的电荷量 |Q| 将______、电场强度的大小 $|\bar{E}|$ 将_____、电容器储存的电场能量 W 将_____。(此题三空均**ょ** Q "增大"、"减小"或"不变")
- 5、 如填 5 图所示,在真空中电流由长直导线 1 沿半径方向经 a 点流入一电阻均匀分布的圆环,再由 b 点沿切向流出,经长直导线 2 返回电源。已知直导线上的电流强度为 I ,圆环半径为 R ,

 $\angle aob = 90^{\circ}$,则圆心O点处的磁感应强度 \bar{B}_{o} 的方向垂直纸面向__

(此空建構 填5图

"里"或"外"); 磁感应强度 \vec{B}_o 的大小 $|\vec{B}_o|$ = _____。

6、如填 6 图所示,两根长直导线通有电流 I,图示三种环路,

在每种情况下, $\oint \vec{B} \cdot d\vec{l} =$ _____(对环路 a);

$$\oint \vec{B} \cdot d\vec{l} =$$
 (对环路 b); $\oint \vec{B} \cdot d\vec{l} =$ (对环路 c)。

填6图

二、计算题(共60分)

1、(本题 8 分) 使自然光通过两个偏振化方向夹角为 60° 的偏振片时,透射光强为 I_1 ,今在这两个偏振片之间再插入一偏振片,它的偏振化方向与前两个偏振片的偏振化方向均成 30° ,问此时透射光强I与 I_1 之比为多少?

阅卷	得分

2、(本题 8 分) 在玻璃 (折射率 $n_3 = 1.60$)表面镀一层氟化镁

阅卷	得分

 MgF_2 (折射率 $n_2 = 1.38$)薄膜作为增透膜。为了使波长为

 $\lambda = 700nm$ 的光从空气 $(折射率n_1 = 1.00)$ 垂直入射时尽可能少反射,氟化镁 MgF_2 薄膜的最少厚度应是多少?

3、(本题 14 分)波长 $\lambda = 650nm$ 的单色光垂直入射到一光柵

阅卷 得分

上,测得第三级主极大的衍射角为 30° ,且第四级是缺级。求:

- (1) 光栅常数(b+b')等于多少? (4分)
- (2) 透光缝可能的最小宽度 b 等于多少? (6分)
- (3) 选定了上述(b+b')和b之后,求在屏幕上可能呈现的全部主极大的级次。(4分)

4、(本题 14 分) 如图所示,在 oxy 平面内有一圆心在原点,半径为 R 的带电半圆环,圆环上所带电荷的线密度为 $\lambda = A\cos\theta$,其中 A 为常数,求原点处的场强。

阅卷	得分

5、(本题 16分)如图所示,一截面为矩形的螺绕环流有电流

阅卷 得分

- I, 内外半径分别为 R_1 和 R_2 , 高为 h, 绕有 N 匝线圈。求:
- (1) 螺绕环管子内的磁感应强度大小; (4分)
- (2) 螺绕环管子截面上的磁通量; (8分)
- (3) 螺绕环的自感系数。(4分)

