PCG - 2010

પ્રશ્ન પુસ્તિકાનો નંબર: 220402

આ પસ્તિકાનો કલ બન્નીસ પાના છે.

જ્યાં સુધી આ પ્રશ્ન પુસ્તિકા ખોલવાની સૂચના ન મળે ત્યાં સુધી ખોલવી નહીં.

યહત્ત્વની સૂચનાઓ :

- આ પ્રશ્નપુસ્તિકામાં ભૌતિક-રસાયણ વિજ્ઞાનના કુલ 80 હેતુલક્ષી પ્રશ્નો આપેલા છે. પ્રત્યેક પ્રશ્નનો 1 ગુણ છે. 1 સાચા પ્રત્યુત્તરનો 1 ગુણ મળશે. પ્રત્યેક ખોટા પ્રત્યુત્તર માટે ¼ ગુણ કાપવામાં આવશે. વધુમાં વધુ 80 ગુણ પ્રાપ્ત થઇ શકશે.
- આ કસોટી 2 કલાકની રહેશે.
- પ્રશ્નના પ્રત્યુત્તર માટે આપવામાં આવેલ OMR ઉત્તર પત્રિકામાં પ્રત્યુત્તર માટેની નિયત જગ્યામાં ફક્ત કાળી શાહીવાળી બોલપેન વડે 🌑 જ કરવું.
- રફકામ કરવા માટે પ્રશ્ન પુસ્તિકામાં દરેક પાના ઉપર નિયત જગ્યા આપવામાં આવેલી છે, તે જ જગ્યામાં રફકામ કરવું. 4.
- આ વિષયની કસોટી પૂર્ણ થયા બાદ ઉમેદવારે તેમની ઉત્તર પત્રિકા ખંડ નિરીક્ષકને ફરજિયાત સોંપવાની રહેશે. ઉમેદવાર કસોટી પૂર્ણ થયા બાદ પ્રશ્ન પુસ્તિકા તેમની સાથે લઇ જઇ શકશે.
- આ પ્રશ્ન પુસ્તિકાનો પ્રકાર (CODE) B છે. પ્રશ્ન પુસ્તિકાનો પ્રકાર અને તમોને આપવામાં આવેલ ઉત્તર પત્રિકાનો પ્રકાર 6. સરખા જ હોવા જોઈએ. આ અંગે કોઈ ફેરફાર હોય તો નિરીક્ષકનું તાતકાલિક ધ્યાન દોરવું, જેથી પ્રશ્ન પુસ્તિકા અને ઉત્તર પત્રિકા સંરખા પ્રકાર ધરાવતી આપી શકાય.
- ઉમેદવાર ઉત્તર પત્રિકામાં ગળ ન પડે, લીટા ન પડે, તે રીતે સાચવીને ઉત્તરો આપવાં.
- ઉત્તર પત્રિકા પ્રશ્ન પુસ્તિકામાં નિયત કરેલ જગ્યા સિવાય ઉમેદવારે તેમને ફાળવેલ બેઠક નંબર લખવો નહિ કે અન્ય કોઈ જગ્યાએ ઓળખ થાય તેવી નિશાની/ચિન્હો કરવા નહીં. આવું કરનાર ઉમેદવાર સામે ગેરરીતિનો કેસ નોંધવામાં આવશે,
- વ્હાઈટ ઇંક લગાડવા માટે પરવાનગી નથી.
- દરેક ઉમેદવારે પરીક્ષા ખંડમાં પ્રવેશ માટે ખંડ નિરીક્ષકને પ્રવેશપત્ર બતાવવું જરૂરી છે.
- 11. કોઈપણ ઉમેદવારને અપવાદ રૂપ સંજોગો સિવાય પરીક્ષાખંડ છોડવાની પરવાનગી મળશે નહીં. આ અંગેની પરવાનગી ખંડ નિરીક્ષક-સ્થળ સંચાલક સંજોગો ધ્યાનમાં લઈને આપશે.
- 12. ઉમેદવાર કકત સાદુ ગણનયંત્ર વાપરી શકશે..
- 13. દરેક ઉમેદવારે પરીક્ષાખંડ છોડ્યા પહેલા ઉત્તર પત્રિકા ખંડ નિરીક્ષકને સોંપી ઉત્તર પત્રિકા પરત કર્યા બદલની સહી પત્રક - 01 (હાજરી પત્રક) માં કરવાની રહેશે. જો ઉમેદવારે ઉત્તર પત્રિકા આપ્યા બદલની સહી પત્રક - 01 માં કરેલ નહિ હોય, તો ઉત્તર પત્રિકા આપેલ નથી તેમ માનીને ગેરરીતિનો કેસ નોંધવામાં આવશે.
- 14. દરેક ઉમેદવારે પરીક્ષા માટેના બોર્ડ દ્વારા બહાર પાડેલ નિયમો અને બોર્ડના નીતિ નિયમોનું ચુસ્તપણે પાલન કરવાનું રહેશે. દરેક પ્રકારના ગેરરીતિના કેસોમાં બોર્ડના નિયમો લાગુ પડશે.
- 15. કોઈપણ સંજોગોમાં પ્રશ્ન પુસ્તિકા-ઉત્તર પુસ્તિકાનો કોઈ ભાગ જુદો પાડવો નહીં.
- ઉમેદવારે સહી પત્રક 01 (હાજરી પત્રક) અને પ્રવેશપત્રમાં પ્રશ્ન પુસ્તિકા અને ઉત્તર પુસ્તિકા ઉપર છાપેલ પ્રકાર લખવાનો

ઉમેદવારનું નામ :	× x x x x x x x x x x x x x x x x x x x
પરીક્ષા બેઠક નંબર : (અંકમાં)	(શબ્દોમાં)
પરીક્ષા કેન્દ્રનું નામ :	
પ્રશ્ન પુસ્તિકાનો પ્રકાર :	પ્રશ્ન પુસ્તિકાનો નંબર :

..... Block Supt. Sign. Candidate's Sign. AG-104 (B)

1.

Vision Dapers 10 TH 12 TH JEE NEET

BOOKLET B

BOOL

- 1. 100π કળા તફાવત = પથ તફાવત
 - (A) 50λ

(B) 100 λ

(C) 10λ

- (D) 25λ
- 2. 500nm તરંગલંબાઈવાળા પ્રકાશ દ્વારા 0.50mm પહોળાઈની સ્લિટ દ્વારા મળતા ફોનહોફર વિવર્તનમાં પ્રથમ ક્રમના મહત્તમનો વિવર્તન કોણ કેટલો?
 - (A) 1.5×10^{-4} રેડિયન

(B) 1.5×10^{-3} રેડિયન

(C) 1 × 10⁻³ रेડियन

- (D) 3×10^{-3} રેડિયન
- m માં ક્રમના ન્યુનતમની વિવર્તન માટેની શરત છે.
 - (A) $d \sin \theta m = (m+1)\frac{\lambda}{2}, m=1, 2, 3...$
 - (B) $d \sin \theta m = (m-1)\frac{\lambda}{2}, m=1, 2, 3...$
 - (C) $d \sin \theta m = m\lambda$, m = 1, 2, 3...
 - (D) $d \sin \theta m = \frac{m\lambda}{2}, m = 1, 2, 3...$

4	l. ઉદ્ભવસ્થાનમાંથી 8.196 × 10 ⁶ Hz આવૃત્તિના	ા વિદ્યુતચુંબકીય તરંગો પ્રસરે છે. તો આ વિદ્યુત ચુંબકીય	
	તરંગોની તરંગ લંબાઈ કેટલી થાય?	ા જાત મુખકાય	
	(A) 4230 cm	(B) 3660 cm	
	(C) 5090 cm	(D) 4050 cm	
5.	$\frac{1}{\mu_0 \in_0}$ નું પારિમાણિક સૂત્ર છે.		
	(A) $M^0 L^1 T^{-1}$	(B) $M^0L^2T^{-2}$	
	(C) $M^0 L^1 T^{-2}$	(D) $M^0L^{-2}T^{-2}$	
6.	ફોટોઈલેક્ટ્રિક અસર દર્શાવે છે કે,	Healf field and the	
	(A) પ્રોટોન તરંગ સ્વરૂપ ધરાવે છે.	out being people being being in an	

(Space for Rough Work)

(B) ઈલેક્ટ્રોન તરંગ-સ્વરૂપ ધરાવે છે.

(C) પ્રકાશ કણ સ્વરૂપ ધરાવે છે.

(D) આપેલામાંથી એકપણ નહીં

7. નીચેની સંક્રાંતિઓ પૈકી કઈ હાઈડ્રોજન પરમાણુની સંક્રાંતિમાં મહત્તમ આવૃત્તિ ધરાવતી વર્ણપટ્ટ રેખા મળે?

(A) n = 3 to n = 10

- (B) n = 10 to n = 3
- (C) n = 1 to n = 2
- (D) n = 2 to n = 1

8. $_{92}U^{235}$ ના ન્યુક્લીયસમાં પ્રોટોન કરતાં કેટલા ન્યુટ્રોન વધારે હશે?

(A) 51

(B) 143

(C) 54

(D) 49

9.સમઘટક (isomer) ની એક જોડ ધરાવે છે.

- (A) ${}_{6}C^{12}$, ${}_{6}C^{13}$
- (B) $_{36}Kr^{86}$, $_{37}Rb^{87}$
- (C) $_{92}U^{235}$

(D) $_{35}Br^{80}$

	AG-104 (B)
10.	પરમાણુબોમ્બના વિસ્ફોટમાં ઉદ્દભવતી ઊર્જા મુખ્યત્વે શાને કારણે મળે?
	(A) નિયંત્રિત ન્યુક્લિયર શૃંખલા પ્રક્રિયા (B) ન્યુક્લિયર વિખંડન
	(C) ન્યુક્લિયર સંલયન (D) આપેલામાંથી એકપણ નહીં
11.	X -ray ટ્યૂબને $5~\mathrm{kV}$ જેટલો વિદ્યુતસ્થિતિમાનનો તફાવત લાગુ પાડતાં તેમાંથી $3.2~\mathrm{mA}$ પ્રવાહ પસાર થાય છે, તો ટ્યુબના ટાર્ગેટ પર દર સેકન્ડે અથડાતા ઇલેક્ટ્રોનની સંખ્યા છે. $(e=1.6\times 10^{-19}~\mathrm{C}~\mathrm{Gl.})$
	(A) 4×10^{16} (B) 2×10^{16}
	(C) 1.6×10^6 (D) 2×10^{-6}
7.0	
12.	બોહર હાઈડ્રોજન પરમાણુની દ્વિતી <mark>ય કક્ષામાં રહેલ ઈલેક્ટ્રોનની રે</mark> ખીય વેગમાનની ચાકમાત્રા છે.
	(A) $\frac{2h}{\pi}$ (B) $\frac{h}{\pi}$

(Space for Rough Work)

(D)

 $2\pi h$

BOOKLET B

(C) $n\pi_{_{e}}$

BOOKLE

13.

14.

15.

(A

(B

(C

(D)

26.2	1977/1976
13/4	(15)
W. T.	100

- ટ્રાન્ઝિસ્ટરના કોમન બેઝ પ્રકારના જોડાણમાં પ્રવાહ ગેઈન 0.9 છે. આ પરિપથમાં એમીટર પ્રવાહમાં
 mA જેટલો ફેરફાર કરતાં કલેક્ટર પ્રવાહનો ફેરફાર થાય.
 - (A) 5.6 mA

(B) 0 mA

(C) 4 mA

(D) 4.5 mA

14. N-P-N ટ્રાન્ઝિસ્ટરના CE પરિપથમાં એમીટર પ્રવાહ

- (A) બેઝ પ્રવાહ કરતા ઓછો હોય છે.
- (B) કલેક્ટર પ્રવાહ અને બેઝ પ્રવાહના તફાવત જેટલો હોય છે.
- (C) કલેક્ટર પ્રવાહ કરતાં વધુ હોય છે.
- (D) કલેક્ટર પ્રવાહ કરતાં ઓછો હોય છે.
- 15. ક્યું full duplex પ્રસારણ (transmission) તંત્ર છે?
 - (A) ટેલિફોન
 - (B) વોકી-ટોકી (wireless used in the Army)
 - (C) ટિ.વ્હી.
 - (D) રેડિઓ

- 16. આચનોસ્ફ્રીયર માટે મહત્તમ ઇલેક્ટ્રોન ઘતતા N_{max} અને ક્રાંતિક આવૃત્તિ f_{c} વચ્ચેનો સંબંધ વડે આપી શકાય છે.
- 19.

(A) $f_c = 9\sqrt{N_{max}}$

(B) $f_c = \sqrt{9} N_{max}$

(C) $f_c = \sqrt{9 N_{max}}$

(D) આપેલામાંથી એકપણ નહીં

20.

21.

- 17. એક અર્ધવાહક પર મહત્તમ $6000 \, {\rm \AA}$ ની તરંગલંબાઈવાળો પ્રકાશ આપાત કરતાં ઇલેક્ટ્રોન હોલના જોડકાં ઉદ્દભવે છે. આ અર્ધવાહકની બેન્ડગેપ ઊર્જા કેટલી હશે? ($h=6.62 \times 10^{-34} \, {
 m Js}$)
 - (A) $2.07 \times 10^{-19} \text{J}$

- (B) 2.07 J
- į
- (C) $3.31 \times 10^{-19} \text{J}$

- (D) $3.07 \times 10^{-19} \text{J}$
- 18. કો-એક્ષીઅલ કેબલનો લાંક્ષણિક ઈમ્પિડન્સનો વિસ્તાર કેટલો છે?
 - (A) 0Ω થી 50Ω વચ્ચે

- (B) 100Ω થી 150Ω વચ્ચે
- (C) 150 Ω थी 600 Ω वश्ये
- (D) 50Ω થી 70Ω વચ્ચે

22.

(Space for Rough Work)

BOOKLET B

BOOL

ડકા

- **19.** અલગ કરેલા R ત્રિજ્યાના વાહક ગોળાનું કેપેસિટન્સ શાના સમપ્રમાણમાં હોય છે?
 - (A) R^{-2}

(B) R

(C) R^{-1}

- (D) R²
- 20. બે પ્લેટો એકબીજાથી 20 cm દૂર છે. તેમની વચ્ચે વિદ્યુતસ્થિતિમાનનો તફાવત 10 volt છે, તો બે પ્લેટો વચ્ચે વિદ્યુતક્ષેત્ર
 - (A) $0.5 Vm^{-1}$

(B) $20 Vm^{-1}$

(C) 50 Vm⁻¹

- (D) $500 Vm^{-1}$
- 21. સમબાજુ ત્રિકોણના ત્રણે શિરોબિંદુઓ પર q જેટલો સમાન વિદ્યુતભાર છે. તો ત્રિકોણના મધ્યકેન્દ્ર પર વિદ્યુતક્ષેત્ર છે.
 - (A) $\frac{kq}{\sqrt{2}r^2}$

(B) $\frac{3kq}{r^2}$

(C) । शून्य

- (D) $\frac{\sqrt{2} kq}{r^2}$
- 22. એક કેપેસિટરને વિદ્યુતભારિત કરતાં તેમાં *u* જેટલી ઊર્જા સંગ્રહિત થાય છે. ચાર્જિંગ બેટરીને છૂટી પાડ્યા બાદ આ કેપેસિટરને તેના જ જેવા બીજા કેપેસિટર સાથે સમાંતર જોડવામાં આવે છે, તો કેપેસિટરોના આ તંત્રની કુલ ઊર્જા છે.
 - (A) $\frac{3u}{2}$

(B) $\frac{3u}{4}$

(C) $\frac{u}{4}$

(D) $\frac{u}{2}$

(Space for Rough Work)

BOOKLET B

26

27

28

23. વિદ્યુત ડાઈપોલના કેન્દ્રથી અક્ષ પર 'r' અંતરે વિદ્યુતક્ષેત્રની તીવ્રતાનો અંતર 'r' સાથેનો સંબંધ (જ્યાં r>>2a)

(A) $E \alpha \frac{1}{r^4}$

(B) $E \propto \frac{1}{r^3}$

(C) $E \alpha \frac{1}{r}$

(D) $E \propto \frac{1}{r^2}$

24. બે તાંબાના ગોળાઓમાંનો દ્ર ગોળો પોલો છે અને y ગોળો નક્કર છે. આ ગોળાઓના પરિમાણો સરખા છે. તેમને સમાન વિદ્યુત સ્થિતિમાને વિદ્યુતભારિત કરતાં બન્ને ગોળા પરના વિદ્યુતભાર વિશે શું કહી શકાય?

- (A) y ગોળા પર વધુ વિદ્યુતભાર હશે.
- (B) x ગોળાપર વધુ વિદ્યુતભાર હશે.
- (C) બન્ને ગોળા પર વિદ્યુતભાર શૂન્ય હશે.
- (D) બન્ને ગોળા પર સમાન વિદ્યુતભાર હશે.

25. આપેલ પરિપથમાં A અને B બિંદુઓ વચ્ચે સમતુલ્ય અવરોઘ કેટલો હશે?

- (A) $\frac{8}{3}\Omega$
- (B) $\frac{3}{8}\Omega$
- (C) 4Ω
- (D) 2Ω

(Space for Rough Work)

BOOKLET B

ВО

200	000	1000
167-	104	(33)

26. સમાન ગતિઊર્જા ધરાવતા એક પ્રોટોન, એક ક્યુટેરોન અને એક α-કણ નિયમિત ચુંબકીય ક્ષેત્રમાં ક્ષેત્રને લંબરૂપે દાખલ થાય છે તો તેમની વર્તુળાકાર ગતિપથની ત્રિજ્યાઓનો ગુણોત્તર

(A) √2:1:1

(B) $\sqrt{2}:\sqrt{2}:1$

(C) $1:\sqrt{2}:\sqrt{2}$

(D) 1:√2:1

રખા કહી

27. એક આપેલી લંબાઈના તારનું વર્તુળ બનાવી તેમાંથી પ્રવાહ પસાર કરતા વર્તુળના કેન્દ્ર પાસે ચુંબકીય ક્ષેત્ર B છે. જો આજ તારમાંથી બે આંટાવાળુ વર્તુળ બનાવી તેટલો જ પ્રવાહ પસાર કરીએ તો હવે આ વર્તુળના કેન્દ્ર પર ચુંબકીય ક્ષેત્ર હશે.

(A) $\frac{B}{2}$

(B) 16B

(C) 4B

(D) $\frac{B}{4}$

28. બે બલ્બ પર અનુક્રમે 25W, 220V અને 100W, 220V લખાણ છે. તેમને શ્રેણીમાં જોડી 440V નો સપ્લાય આપતાં કયો બલ્બ ઉડી જશે?

(A) બન્ને બલ્બ

(B) એકપણ નહીં

(C) 25W નો બલ્બ

(D) 100W નો બલ્બ

	(Space for R	ough Work)	
Salion .	The same to the sa	Serie Asyrch and the series	
	(C) 1Ω	(D) 2Ω	
	(A) 0.5Ω	(B) 1.5Ω	
	વહેતો પ્રવાહ સરખો હોય તો દરેક કોષનો આંતરિક	અવરોધ =	34.
31.	2Ω ના અવરોધ સાથે બે એકસમાન કોષોને શ્રેણીમ	ાં કે સમાંતરમાં જોડતા જો 2Ω ના અવરોધમાંથી	
	(C) TJ ⁻¹	(D) JT ⁻¹	
	(A) Am ⁻²	(B) Am^{-1}	
30.	ચુંબકીય ચાકમાત્રા (મોમેન્ટ)નો એકમ	. 8). Here with 1-1 and 15 and	33,
	(C) 550°C	(D) 560°C	
	(A) 570°C	(B) 580°C	
	હોય, તો પ્રતિતાપમાન થશે.		
	$0^{0}\mathrm{C}$ तापभाने होय त्यारे प्रतितापभान $t_{i}=570^{0}\mathrm{C}$	ે મળે છે, પણ જો ઢંડું તાપમાન $10^{0}\mathrm{C}$ તાપમાને	
29.	$Cu\text{-}Fe$ થમાંકપલ માટે તટસ્થ તાપમાન $t_n=285^\circ$	'C જેટલુ નિશ્ચિત હોય છે, જ્યારે તેનું ઠેડું જેક્શન	32

(£

(C

શન તાને

- 32. $L=200~\mathrm{mH}$ જેટલું આત્મપ્રેરકત્વ ધરાવતા ગૂંચળામાં $4\mathrm{A}$ જેટલો વિદ્યુતપ્રવાહ સ્થાપિત કરવા ઊર્જા જોઈએ.
 - (A) 0.40 J

(B) 1.6 J

(C) 0.16 J

- (D) 0.18 J
- 33. આદર્શ ટ્રાન્સફોર્મરમાં ઈનપુટની સાપેક્ષમાં કઈ રાશિ આઊટપુટમાં બદલાતી નથી?
 - (A) આવૃત્તિ

(B) সবাঙ

(C) વોલ્ટેજ

(D) આપેલામાંથી એકપણ નહીં

થી

- 34. $R=6\Omega$ નો અવરોધ, $L=1{
 m H}$ નું ઈન્ડક્ટર અને $C=17.36\,\mu F$ નું કેપેસિટર A.C. પ્રાપ્તિસ્થાન (source) સાથે શ્રેણીમાં જોડવામાં આવેલ છે, તો Q-ફેક્ટર શોધો.
 - (A) 2.37

(B) 80

(C) = 3.72

(D) 40 ·

(Space for Rough Work)

BOOKLET B

38.

39.

(1

((

(A

(C

40.

35.	અંક	પર્ણ	ચક	પર	A.C.	વોલ્ટેજનું	સરેરાશ	મલ્ય	કેટલં	ચાય?
	5.00	0.45	100	0.00				0	- 3	

7.65	$2V_{max}$
(A)	π

(B) $\frac{V_{max}}{2}$

(C) , शून्य

- (D) V_{max}
- 36. એક નાના (short) ગિજયા ચુંબકની લંબાઈ 2l અને ચુંબકીય ચાકમાત્રા $10 {
 m Am}^2$ છે. તેના કેન્દ્રથી અક્ષ પર $z=0.1~{
 m m}$ અંતરે ચુંબકીય ક્ષેત્ર શોધો. અહીં z ના સાપેક્ષમાં l અવગણ્ય છે.
 - (A) $1 \times 10^{-3} \text{ T}$

(B) $4 \times 10^{-3} \text{ T}$

(C) $2 \times 10^{-3} \text{ T}$

- (D) 3×10^{-3} T
- 37. એક ટૂંકો (short) ગજિયા ચુંબકને 0.32 T ના સમાન ચુંબકીય ક્ષેત્રમાં ક્ષેત્રની સાથે 30° નો ખૂણો બનાવે તેમ મૂકતાં 0.64 J ટોર્ક અનુભવે છે. આથી આ ચુંબકની ચુંબકીય ચાકમાત્રા છે.
 - (A) 6Am²
- (B) 4Am^2

(C) 2Am2

(D) આપેલામાંથી એકપણ નહીં

(Space for Rough Work)

BOOKLET B

[14]

BOOKL

ન્દ્રથી

(A) $\frac{\pi R^2}{\mu_0 r}$

(B) $\frac{\mu_0 \pi r}{2R}$

(C) $\frac{\mu_0 \pi r^2}{2R}$

(D) $\frac{\mu_0 \pi R^2}{2r}$

ખૂણો .. છે.

- 39. ટેલિસ્કોપની વિવર્ધન શક્તિ m છે. જો આઇપીસની કેન્દ્રલંબાઈ અડધી કરવામાં આવે તો તેની વિવર્ધન શક્તિનું મૂલ્યથશે.
 - (A) $\frac{1}{2m}$

(B) 4m

(C) 2m

- (D) $\frac{m}{2}$
- 40. સમતલ અરીસાની મોટવણી (magnification) m = છે.
 - (A) शून्य

(B) अनंत

(C) -1

(D) +1

(Space for Rough Work)

BOOKLET B VISION AND INTERNAL BEAUTIFF N

(Space for Rough Work)

41. Gd

(B)

(C)

(D)

Vision Dapers

Vision Dapers

(A)

(C)

BOOKLET B Vision Dapers

BOOKL

CHEMISTRY

- દ્વિતીયક અને તૃતીયક એમાઇન કાર્બાઇલએમાઇન કસોટી આપતા નથી. કારણ કે.....
 - (A) એમાઈન સમૂહના N-પરમાણ પર પર્યાપ્ત યાત્રામાં H-પરમાણ નથી.
 - (B) આપેલા બધાજ કારણો સાચા છે.
 - (C) આ પદાર્થો $CHCl_3$ સાથે જોડાઈને સ્થાયી પદાર્થ આપે છે.
 - (D) આ પદાર્થો આલ્કોહોલિય *KOH* સાથે પ્રક્રિયા આપે છે.
- આપેલ સ્ફટિક રચના કયા પ્રકારની ખામી દર્શાવે છે?

K^{+}	Cl^-	K^+	Cl^-	K^+	Cl^{-}
Cl^-		Cl^-	K^+		K^{+}
			Cl^-		
			K^+		

(A) શોતકી અને ફ્રેન્કલ ખામી

વિસ્થાપનીય અવ્યવસ્થા

(C) શોત્કી ખામી

(D) ફ્રેન્કલ ખામી

(Space for Rough Work)

BOOKLET B

[17]

(A) $Cl_2C = C \cdot Cl_2$

(B) $F_2C = CF_2$

(C) $CH_2 = CHCl$

(D) $CH_2 = C \cdot Cl - CH = CH_2$

44. આપેલા H_3PO_2 , H_3PO_3 , H_3PO_4 અને $H_4P_2O_7$ ઓક્સિએસીડો પૈકી ક્યો ઓક્સિએસીડ ક્ષારની બે શ્રેણી બનાવશે?

(A) H₃PO₄

(B) $H_4P_2O_7$

(C) H_3PO_2

(D) H_3PO_3

45. ઇલેક્ટ્રોન રચના $1s^2, 2s^2, 2p^5, 3s^1$ શું સૂચવે છે?

- (A) નિયોનની ઉત્તેજત અવસ્થા
- (B) O_2^- આયનની ઉત્તેજત અવસ્થા
- (C) ફ્લોરીનની ધરા અવસ્થા
- (D) ફ્લોરીનની ઉત્તેજીત અવસ્થા

(Space for Rough Work)

BOOKLET B

[18]

ВООК

- AG-104 (I 46. જો રેડિઓ એક્ટીવ પદાર્થનો $\frac{3}{4}$ ભાગ ક્ષય થવા માટે 2 કલાકનો સમય લાગતો હોય, તો તેનો અર્ધ આયુષ્ય સમય કેટલો હશે?
 - (A) 30 મિનિટ

(B) 15 AA2

(C) 60 મિનિટ

(D) 45 મિનિટ

ાકિસએસીડ

સ્થા

- 47. એમિનો એસિડના ઉભયગુણધર્મી આયનનું સમવિભવ બિન્દુ સામાન્ય રીતે કયા *pOH* મૂલ્યોમાં મળે છે?
 - (A) 7.7 웹 8.5

(B) 9.0 웹 10.7

(C) 5.5 웹 6.3

- (D) 2.5 થી 5.0
- 48. મરક્યુરસ ક્લોરાઈડ (કેલોમલ) ની બનાવટ માટે નીચેના પૈકી કઈ રાસાયણિક પ્રક્રિયા દ્વારા મેળવી શકાય છે?
 - (A) $HgCl_2 + SnCl_2 \longrightarrow$.
- (B) (A) અને (C) બન્ને

(C) $HgCl_2 + Hg \xrightarrow{\Delta}$

(D) $Hg + Cl_2 \longrightarrow$

51. (

(1

(1

(F

(I

- 49. પ્રોપેનોલ કરતાં ગ્લીસરોલની ધનતા વધુ છે. કારણ કે
 - (A) આયોનિક બંધ
 - (B) વધુ સંખ્યામાં રહેલા સહસંયોજક બંધ
 - (C) વાન્ડર વાલ્સ આકર્ષણ
 - (D) હાઈડ્રોજન બંધ
- 50. નીચેનાપૈકી કઈ પ્રક્રિયા ΔG^o_f ને વ્યાખ્યાદિત કરે છે?
 - (A) $H_4P_2O_7 + H_2O \longrightarrow 2H_3PO_4$
 - (B) $SO_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow SO_{3}(g)$
 - (C) $C_{\text{(diamond)}} + O_{2(g)} \longrightarrow CO_{2(g)}$
 - $\text{(D)} \quad \frac{1}{2}H_{2\left(g\right)} + \frac{1}{2}F_{2\left(g\right)} \longrightarrow HF\left(g\right)$

(Space for Rough Work)

BOOKLET B

[20]

ROOK

- 51. $C_2H_5\cdot NH_2 \xrightarrow{-HNO_2} A \xrightarrow{PCl_3} B \xrightarrow{NH_3} C$ મળે છે, તો મળતો C પદાર્થ કર્યો હશે?
 - (A)' ઈથાઈલએમાઈન

(B) એસીટામાઈડ

(C) પ્રોપેનનાઈટ્રાઈલ

- (D) મિથાઈલએમા**ઈ**ન
- 52. અચળ તાપમાને નીચેના પૈકી કયા જલીય દ્રાવણનું બાષ્પદબાણ મહત્તમ હશે? $(અણુભાર: NaCl~58.5,~H_2SO_4~98.0~\rm ગ્રામ.મોલ<math>^{-1})$
 - (A) 1 મોલલ $H_2SO_{4\ (aq)}$
- (B) 1 મોલર *H*₂*SO*_{4 (aq)}

- (C) 1 મોલલ *NaCl_(aq)*
- (D) 1 મોલર *NaCl_(ag)*
- 53. નીચે આપેલા 0.1 M સંકિર્ણ સંયોજનોના દ્રાવણો પૈકી કયા દ્રાવણની વિદ્યુતવાહકતા સૌથી ઓછી હશે?
 - (A) ડાયક્લોરો ટેટ્રાએમાઈન પ્લેટીનમ (IV) ક્લોરાઈડ
 - (B) ટ્રાયક્લોરો ટ્રાયએમાઈન પ્લેટીનમ (IV) ક્લોરાઈડ
 - (C) હેક્ઝાએમાઈન પ્લેટીનમ (IV) ક્લોરાઈડ
 - (D) ક્લોરોપેન્ટાએમાઈન પ્લેટીનમ (IV) ક્લોરાઈડ

(Space for Rough Work)

BOOKLET B

54. નીચેના પૈકી કયું ટેફ્લોનનું મોનોમર છે?

57.

58.

59.

((

- (A) ટેટ્રાફ્લોરોઈથેન
- (B) ટાયકલોરોઈથેન
- (C) ડાયફલોરોઈથેન
- (D) આપેલામાંથી એકપણ નહીં

-55. આપેલા ${\it O}_2$, ${\it O}_2^{+1}$, ${\it O}_2^{+2}$ અને ${\it O}_2^{-2}$ માં બંધ ક્રમાંકનો કયો ચઢતો ક્રમ સાચો છે?

- (A) $O_2^{+2} < O_2 < O_2^{+1} < O_2^{-2}$ (B) $O_2^{+1} < O_2^{-2} < O_2 < O_2^{+2}$
- (C) $O_2 < O_2^{-2} < O_2^{+2} < O_2^{+1}$ (D) $O_2^{-2} < O_2 < O_2^{+1} < O_2^{+2}$

56. નીચેના પૈકી કર્યું સંયોજન \dot{SO}_2 સાથે એસીડીક માધ્યમમાં ક્લોરીન ડાયોક્સાઈડ આપે છે?

(A) સોડીયમ પરકલોરેટ

(B) સોડીયમ ક્લોરાઈટ

(C) સોડીયમ ક્લોસઈડ

(D) સોડીયમ ક્લોરેટ

(Space for Rough Work)

BOOKLET B

[22]

BOOK

 02^{+2}

12+2

57. 25^{0} સે તાપમાને આપેલા વિદ્યુત રાસાયણિક કોષનો કોષ પોટેન્શિયલ $1.92 \mathrm{V}$ છે. તો $x M = \dots$

$$Mg_{\left(s\right)}\mid Mg_{\left(aq\right)}^{+2}x\mid M\mid \mid Fe_{\left(aq\right)}^{+2}0.01\mid Fe_{\left(s\right)}$$

$$E^0 Mg/Mg_{(aq)}^{+2} = 2.37V; E^0 Fe/Fe_{(aq)}^{+2} = 0.45V$$

(A) $x > 0.01 \,\text{M}$

(B) x ની પૂર્ણ ધારણા થઈ શકે નહીં

(C) $x = 0.01 \,\text{M}$

(D) x < 0.01 M

58. મિથેનાલ અને મિથેનોઇક એસિડમાં કાર્બોનિલ કાર્બનનો ઓક્સિડેશન આંક અનુક્રમે

(A) +1 અને +2

(B) +1 અને +3

(C) 0 અને 0

(D) 0 અને +2

59. Au (sol.) મેળવવા માટેની પ્રક્રિયા કયા પ્રકારની છે?

પ્રક્રિયા : $2AuCl_3 + 3HCHO + 3H_2O \longrightarrow 2Au(sol) + 3HCOOH + 6HCl$

- (A) રિડક્શન
- (B) દ્ધિ-વિઘટન
- (C) જળવિભાજન

(D) ઓક્સિડેશન

60.	એક મિતિગ્રામ વજનનો એક કણ 3600 કિ. મી./કલ	ાકની ઝડપ પ્રાપ્ત કરે ત્યારે તેની સાથે સંકળાયેલ	63
	તરંગલંબાઈ કેટલી થશે? $(h=6.626\times 10^{-27}$ અ	ર્ગ-સેકન્ડ)	Đ.
	- FIRE-B	STATE OF THE PARTY	
	(A) 6.626 × 10 ⁻³⁰ સે.મી.	(B) 6.626×10^{-31} સે.મી.	
	(C) 6.626×10 ⁻²⁸ સે.મી.	(D) 6.626×10 ⁻²⁹ સે.મી.	
	The same by the PM -	ELEMICE AND	
61.	$^{238}_{92}U$ માંથી એક $lpha$ -કણ ઉત્સર્જિત થાય તો નવો	ન્યૂટ્રોન-પ્રોટોન ગુણોત્તર કેટલો થશે?	
	(A) 146/90	(B) 144/90	64
	(C) 146/92	(D) 144/92	
62.	$1 \mathrm{N} \ CH_{3}COOH$ નો અવરોધ 250 ઓહમ છે વ	ાહકતા કોષનો કોષ અચળાંક 1.15 સેમી ⁻¹ છે,	
	તો 1N CH_3COOH ની તુલ્યવાહકતા (ઓહમ $^{-1}$	સેમી² તુલ્ય ^{–1}) કેટલી થશે?	Name (B), 1959.
	(A) 9.2 HOUSE CONTRACTOR OF	(B) 18.4	ethaler character
			CE

(Space for Rough Work)

BOOKLET B

(C) 2.3

BOOK

સંકળાયેલ

મી⁻¹ છે.

- 63. ભૌતિક અધિશોષણ માટે નીચેના પૈકી કર્યું વિધાન ખોટું છે?
 - (A) અધિશોષણ ઊર્જાનું મૂલ્ય ઓછું હોય છે.
 - (B) નીચા તાપમાને થતી પ્રક્રિયા છે.
 - (C) પ્રતિવર્તી પ્રક્રિયા છે.
 - (D) પ્રક્રિયા માટે સક્રિયકરણ ઊર્જાની જરૂર રહે છે.
- 64. નીચેના પૈકી કયા ડિટરજન્ટનો ઉપયોગ સૌંદર્ય પ્રસાધનોમાં થાય છે?
 - (A) સીટાઈલટ્રાયમિથાઈલએમોનિયમ ક્લોરાઈડ
 - (B) LAS
 - (C) DDBS
 - (D) પોલીઈથીલીન ગ્લાયકોલ
- 65. β -હાઇડ્રોક્સી કિટોન કઈ પ્રક્રિયા દ્વારા મેળવી શકાય છે?
 - (A) ક્રોસ આલ્ડોલ સંઘનન

(B) કેનીઝારો પ્રક્રિયા

(C) સંઘનન પ્રક્રિયા

(D) આલ્ડોલ સંઘનન

(Space for Rough Work)

BOOKLET B

[25]

(PTO)

66. આ આકૃતિ કયા પ્રકારનો સીલીકેટ છે?

(A) મેટા સીલીકેટ

(B) પાયરો સીલીકેટ

(C) ઓર્ચો સીલીકેટ

- (D) આપેલાપૈકી એકપણ નહીં
- 67. સાઈકલો આલ્કેન પદાર્થો કયા પદાર્થીના સમઘટકો છે?
 - (A) આલ્કાઈન **પદા**ર્થો

(B) એરીન પદાર્થો

(C) આલ્કેન પદાર્થો

- (D) આલ્કીન પદાર્થો
- 68. પ્રત્યેક 10K તાપમાનના વધારા સાથે પ્રક્રિયાનો વેગ બમણો થાય છે. જ્યારે તાપમાન 303K થી 353 K સુધી વધારવામાં આવે તો પ્રક્રિયાનો વેગ કેટલા ગણો મળશે?
 - (A) 16

(B) 32

(C) 4

(D) 8

(Space for Rough Work)

BOOKLET B

[26]

69. şt

(A

((

70. ની

((

71. pl

(A

(C

OOT

- 69. ફોસ્ફરસ પેન્ટોક્સાઈડ શાના માટે ઉપયોગી છે?
 - (A) ઓક્સીડાઈઝીંગ એજન્ટ

(B) રીડ્યુસિંગ એજન્ટ

(C) બ્લીચીંગ એજન્ટ

- (D) ડીહાઈડ્રેટીંગ એજન્ટ
- 70. નીચેના પૈકી કયા પદાર્થને 483 K તાપમાને ગરમ કરવાથી તેનું કેરેમલમાં રૂપાન્તર થાય છે?
 - (A) §52b3

(B) લેક્ટોઝ

(C) ગ્લુકોઝ

- (D) સુક્રોઝ
- 71. m pH=0.00 મૂલ્ય ધરાવતા જલીય H_2SO_4 ના 250 m ml દ્રાવણની નોર્માલિટી કેટલી હશે?
- 303K થી (A) 1 N

(B) 2 N

(C) 0.25 N

(D) 0.50 N

I)

H

II

IV

(A

(C

72. $Na_{g}S_{g}O_{g}$ તેના કયા ગુણધર્મના કારણે ફોટોગ્રાફીમાં ઉપયોગી છે? 74. 9 (A) ઓક્સિડેશનકર્તા (B) રિડક્શનકર્તા (C) ફોટોકેમિકલ ગુણધર્મ (D) સંકીર્ણ રચવાનો ગુણધર્મ 73. નીચેનામાંથી કઈ ઘટનામાં એન્ટ્રોપી ઘટે છે? (A) કપૂરનું ઉદર્વપાતન 75. -il: (B) લોખંડ ઉપર કાટ લાગવાની ક્રિયા (C) દ્રાવણમાંથી સુક્રોઝનું સ્ફ**ટિકીક**રણ (D) બરફનું ગલન

(Space for Rough Work)

BOOKLET B

[28]

BOOKI

74. વિટામીન (ભાગ-I) અને તેના ઉણપથી થતા રોગ (ભાગ-II) સરખાવો.

	ાગ્યાં – 1	8 45		બાગ – II
I)	વિટામિન B ₁₂	7 13	a)	નપુંસકતા
II)	વિટામિન B ₆		b)	રક્તસ્ત્રાવ
III)	વિટામિન E		c)	વિનાશી રક્ત અલ્પતા
IV)	વિટામિન K	0 1	d)	ચર્મરોગ

- (A) I c, II d, III a, IV b
- (B) I c, II d, III b, IV a
- (C) I a, II b, III c, IV d
- (D) I b, II c, III d, IV a

75. નીચેના પૈકી ફિનાઈલ ઈથેનોએટ કયું છે?

(C) \bigcirc COOCH₃

(Space for Rough Work)

BOOKLET B

80. D

(1

Œ

(C

(D

- **76.** $[Co(H_2O)_4SO_3]\cdot Cl$ સંક્રીર્ણમાં ધાતુ આયનનો સવર્ગાંક ઓક્સિડેશન આંક, d-કક્ષકમાં ઈલેક્ટ્રોનની સંખ્યા, તે-કક્ષકમાં અયુગ્મીત ઈલેક્ટ્રોનની સંખ્યા અનુક્રમે
 - (A) 5, 3, 6, 4

(B) 5, 3, 6, 0

(C) 6, 3, 6, 4

- (D) 6, 3, 6, 0
- 77. નિષ્ક્રિય ધ્રુવો વડે $M_{\it Q}SO_4$ ના જલીય દ્રાવણનું વિદ્યુત વિભાજન કરવાથી કેથોડ અને એનોડ ઉપર અનુક્રમે કઈ નીપજ મળે છે?
 - (A) $O_{2(g)}$ અને $Mg_{(s)}$
- (B) $O_{_2}$ અને $SO_{_2}$ વાયુ

- નાયલોન અને પોલિએસ્ટરના રેસાઓ ઉપર રંગકામ માટે ક્યા પ્રકારના રંગકો વપરાતા નથી?
 - (A) વિક્ષેપિત રંગકો

(B) અદ્રાવ્ય રંગકો (એઝો રંગકો)

(C) વાટ રંગકો

(D) બેઝિક રંગકો

(Space for Rough Work)

BOOKLET B

[30]

BOOKLI

(G-104 (B)

્રીનની

79. વાયુરૂપ પદાર્થો વચ્ચેની પ્રક્રિયા માટે પ્રક્રિયાનો વેગ = K[A] [B], જો પાત્રનું કદ પ્રારંભિક કંદના $\frac{1}{4}$ જેટલું કરવામાં આવે તો મળતો વેગ પ્રારંભિક વેગ કરતા કેટલા ગણો હશે? $(પ્રક્રિયા \ 2\ A + B \to C + D)$

 $(A) \quad \frac{1}{8} \quad \text{ord}$

(B) $\frac{1}{16}$ appl

(C) 16 ગણો

(D) 4 ગણો

ઉપર

80. D-ગ્લીસરાલ્ડીહાઈડમાં સમૂહોનો અગ્રિમતા ક્રમ સાચો કયો છે?

- (A) $CH_2OH_2(1)$, CHO(2), OH(3) અને H(4) થશે.
- (B) CHO(1), OH(2), $CH_2OH(3)$ અને H(4) થશે.
- (C) OH(1), CHO(2), CH₂OH(3) अने H(4) थशे.
- (D) OH (1), CH2OH (2), CHO (3) અને H (4) થશે.

(Space for Rough Work)

BOOKLET B

[31]

(Space for Rough Work)

Vision Dapers
10TH 12TH JEE NEET

Pision Dapers 10TH 12TH JEE NEET

BOOKLET B

[32]

