Least-Squares Problems $\begin{array}{l} \text{Optimization Equation} \\ \text{Application to the Least-Squares Problem for } E_{dist} \\ \text{Application to the Least-Squares Problem for } E_{spring} \\ \text{Residual Sum of Squares (RSS) for the linear regression.} \\ \text{Solving in the global context.} \end{array}$

I study the linear least squares problem here to understand do_1fit() of the mesh optimization.

Least-Squares Problems

- The Least-Squares problem is to find ${\bf x}$ to make $A{\bf x}$ as close as possible to ${\bf b}$ in $A{\bf x}={\bf b}$ problem.
- We can convert the above problem into finding ${\bf x}$ such that $||{\bf b}-A{\bf x}||$ is as smallest as possible.
- If $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, a least-squares solution of $A\mathbf{x} = \mathbf{b}$ is an $\hat{\mathbf{x}} \in \mathbb{R}^n$ such that $||\mathbf{b} A\hat{\mathbf{x}}|| \le ||\mathbf{b} A\mathbf{x}||$ for all \mathbf{x} in \mathbb{R}^n .
- According to the Best Approximation Theorem, $\hat{\mathbf{b}} = \operatorname{proj}_{ColA} \mathbf{b}$ is the closest point in $\operatorname{Col} A$ to \mathbf{b} , so the solution of the least squares problem is to find $\hat{\mathbf{x}}$ such that $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$. According to the Orthogonal Decomposition Theorem, $\mathbf{b} \hat{\mathbf{b}} = \mathbf{b} A\hat{\mathbf{x}}$ is the orthogonal to $\operatorname{Col} A$, which means $A^T(\mathbf{b} A\hat{\mathbf{x}}) = \mathbf{0}$.
- Therefore, the solution is solving this equation $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$, and finally $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$.

Optimization Equation

$$egin{aligned} E(K,V,B) &= E_{dist}(K,V) + E_{spring}(K,V) \ &= \sum_{i=1}^{n} ||\mathbf{x}_i - \phi_V(\mathbf{b}_i)||^2 + E_{spring}(K,V) \ &= \sum_{i=1}^{n} ||\mathbf{x}_i - \phi_V(\mathbf{b}_i)||^2 + \sum_{\{j,k\} \in K} \kappa ||\mathbf{v}_j - \mathbf{v}_k||^2 \end{aligned}$$

- The K and B are fixed. You need to solve $\mathop{\arg\min}_{V} \, E(K,V,B)$
- \mathbf{x}_i is the randomly sampled points from a mesh. \mathbf{b}_i is the barycentric coordinates for the newly fitted point V and other two points to form a triangle. ϕ_V calculates the closest point to the triangle from the data point \mathbf{x}_i .

Application to the Least-Squares Problem for $E_{\it dist}$

- As for the $E_{dist}(K, V)$, we want to fit a vertex V to the data point \mathbf{x} , so we should minimize $||\mathbf{x} \phi_V(\mathbf{b})||^2$. However, it's not easy to directly represent the equation in the linear least squares problem, because of the $\phi_V(\mathbf{b})$.
- To put it simply, we have three vertices of a triangle such as V, P_1 , P_2 , where the V is the one to change to minimize the energy. When we project the data point $\mathbf x$ to the triangle VP_1P_2 , we will get one point $\mathbf y$ on the triangle which is also closest to the data point $\mathbf x$, and the $\mathbf y$ is the $\phi_V(\mathbf b)$. so we want to the change V so that the distance between $\mathbf x$ and $\mathbf y$ should be minimized.
- If we represent the above statement as the equation,

$$\min_{V} ||(uV + vP_1 + wP_2) - \mathbf{x}|| \tag{1}$$

,where u, v, w are the barycentric coordinates evaluated by projecting \mathbf{x} to the triangle VP_1P_2 . If we rewrite some part of the above equation in the matrix form,

$$uV + vP_1 + wP_2 - \mathbf{x} = \begin{bmatrix} V & P_1 & P_2 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} - \mathbf{x}.$$
 (2)

However, this matrix equation can't be used for the least-squares problem, because the vector u,v,w will be the one to evaluated in the linear least-squares problem (For example, if the linear least-squares problem is $C\mathbf{r}=\mathbf{d}$, then \mathbf{r} will be the barycentric coordinate vectors.) So, V should be on the place of the barycentric coordinate vector to have an equation like this:

$$[? ? ?] \begin{bmatrix} V_x \\ V_y \\ V_z \end{bmatrix} - \mathbf{@}, \tag{3}$$

so that we can change V to minimize the energy as a linear least-squares problem.

• Because we already know all of the terms in the equation (2), we can complete the equation (3). If we specify the equation (2) in more details,

$$\begin{bmatrix} V & P_1 & P_2 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} - \mathbf{x} = \begin{bmatrix} uV_x + vP_{1,x} + wP_{2,x} - \mathbf{x}_x \\ uV_y + vP_{1,y} + wP_{2,y} - \mathbf{x}_y \\ uV_z + vP_{1,z} + wP_{2,z} - \mathbf{x}_z \end{bmatrix}. \tag{4}$$

We can rewrite this equation in the form of the equation (3),

$$\begin{bmatrix} u & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & u \end{bmatrix} \begin{bmatrix} V_x \\ V_y \\ V_z \end{bmatrix} - (\mathbf{x} - vP_1 - wP_2) \tag{5}$$

Now, it's also in the form of the linear least-squares problem, where you can evaluate the V.

• In the linear least-squares form $C\mathbf{r} = \mathbf{d}$, the solution is $\mathbf{r} = (C^TC)^{-1}C^T\mathbf{d}$, so we can easily know what C^TC and $C^T\mathbf{d}$ are.

$$C^T C = uI^T uI = u^2 I$$

 $C^T \mathbf{d} = u(\mathbf{x} - vP_1 - wP_2)$

Because C^TC is u^2I and $(C^TC)^{-1}$ is $\frac{1}{u^2}I$, the ${\bf r}$ will be finally solved like this

$$\mathbf{r} = (C^T C)^{-1} C^T \mathbf{d} = \frac{1}{n} (\mathbf{x} - vP_1 - wP_2).$$

Application to the Least-Squares Problem for E_{spring}

- As for the E_{spring} , we also want to fit a vertex V_j to another vertex V_k to minimize $\kappa ||V_j V_k||^2$. To do this in the least-squares problem, we need to move the κ inside the length operator like this $\kappa ||V_j V_k||^2 = ||\sqrt{\kappa}(V_j V_k)||^2$.
- We can minimize the above equation in the linear least-squares form like this

$$\begin{bmatrix} \sqrt{\kappa} & 0 & 0 \\ 0 & \sqrt{\kappa} & 0 \\ 0 & 0 & \sqrt{\kappa} \end{bmatrix} \begin{bmatrix} V_{j,x} \\ V_{j,y} \\ V_{j,z} \end{bmatrix} - \sqrt{\kappa} \begin{bmatrix} V_{k,x} \\ V_{k,y} \\ V_{k,z} \end{bmatrix},$$

so that you can solve the linear least-squares problem.

ullet In the linear least-squares form $C{f r}={f d}$,

$$C^T C = \sqrt{\kappa} I^T \sqrt{\kappa} I = \kappa I$$
$$C^T \mathbf{d} = \sqrt{\kappa} I^T \sqrt{\kappa} V_k = \kappa V_k$$

the ${f r}$ will be finally solved like this

$$\mathbf{r} = \frac{1}{\kappa} I \kappa V_k = V_k$$

• Here the ${f r}$ is just the V_k , but you need to consider that the ${f r}$ will be cumulated with other vertices.

Residual Sum of Squares (RSS) for the linear regression.

According to the comment in the mesh optimization code, he says that the RSS $||C{f r}-{f d}||^2$ can be converted like this :

$$RSS = ||\mathbf{d}||^2 - ||C\mathbf{r}||^2 = ||\mathbf{d}||^2 - \mathbf{r}^T\mathbf{r}||C||^2.$$

He says that he got this from Werner Stuetzle, the last paper author. This term is used later for optimizing simplicial complex when using edge operations. I don't know exactly what his RSS is based on. I could use the normal RSS later, and compare the result.

Solving in the global context.

Now I study global_fit of the mesh optimization. It's similar to the local_fit, but you consider all of the vertices in the linear least-squares problem format $||A\mathbf{x} - \mathbf{b}||^2$.

For example, If we have d randomly sampled points and e edges of a mesh, the number of the row of A in the linear least squares problem is m=d+e. The number of the column of A is the number of vertices n. So, the dimension of A is $m\times n$. $\mathbf x$ is the vertices of the mesh to be optimized. So its dimension is $n\times 3$. $\mathbf b$ is the randomly sampled points, so its dimension is $m\times 3$ with the row for edges begin zero. To visualize the encoding of the data into the matrix (you need to forget the symbols in the linear least squares problem here),

 $b_{0,u/v/w}$ is the barycentric coordinates evaluated by projecting the randomly sampled point \mathbf{x}_0 to a closest face of the mesh. The barycentric coordinates is encoded in the location of the indices of the vertices from the closest face of a triangle. \mathbf{v} is the vertices of the mesh. The spring energy function $E_{spring}(K,V)$ is encoded from the d+1 row with $\sqrt{\kappa}$ and $-\sqrt{\kappa}$ in the indices of the two vertices of each edge. Because the matrix is sparse, the authors solved this with their own Sparse Conjugate Gradient approach.