8. Zadania do wykładu Analiza IB, R. Szwarc

1. Pokazać, że każde z poniższych równań ma rozwiązanie w podanym przedziale.

$$x^3 - x - 5 = 0$$
, $[0, 2]$ $x = \cos x$, $[0, \pi/2]$ $\sin x = 1 - x$, $[0, \pi/6]$ $e^x = 2 + x^2$, $[0, 2]$ $\sqrt{x} + 1 = x^2$, $[1, 2]$

- 2. Pokazać, że wielomian $p(x) = x^3 3x + 1$ posiada trzy pierwiastki rzeczywiste.
- **3.** Funkcja f(x) jest ciągła na odcinku [0, 1] i spełnia warunki f(0) = 1 i f(1) = 0. Pokazać, że f(x) = x dla pewnego punktu x, 0 < x < 1.
- 4. Wyznaczyć rozwiązanie równania $x^3 = 3$ z dokładnością do 1/16.
- 5. Obliczyć $\sqrt{0.7}$ z dokładnością do 1/16.
- 6. Na odcinku drogi długości 100 km, kontrolowanym na końcach przez policję, obowiązuje ograniczenie prędkości 90 km/h. Samochód przejechał ten odcinek w czasie 54 minut, przy czym na początku i na końcu jechał z przepisową prędkością. Kierowca otrzymał mandat od policjanta, który stwierdził, że w pewnym momencie nastąpiło przekroczenie prędkości o dokładnie 10km/h. Czy policjant miał rację? Ile przynajmniej razy nastąpiło to przekroczenie?
- 7. Pokazać, że wielomian stopnia nieparzystego zeruje się przynajmniej w jednym punkcie.
- 8. Pokazać, że dla wielomianu w(x) stopnia parzystego istnieje liczba M taka, że dla c > M wielomian w(x) c lub w(x) + c ma przynajmniej dwa miejsca zerowe.
- 9. Pokazać, że dla wielomianu w(x) stopnia 3 istnieje liczba a taka, że wielomian w(x) ax ma 3 miejsca zerowe.
- *10. f jest funkcją ciągłą na przedziale [0,1] oraz f(0)=f(1). Udowodnić, że dla każdego $n \in \mathbb{N}$ istnieje $x,\ 0 \leqslant x \leqslant 1$, taki, że $f(x)=f\left(x+\frac{1}{n}\right)$. Czy stwierdzenie to pozostanie prawdziwe jeśli zamiast $\frac{1}{n}$ rozważymy dowolną liczbę $c,\ 0 < c < 1$?
- *11. Udowodnić, że nie istnieje funkcja ciągła na \mathbb{R} przyjmująca każdą swoją wartość dokładnie dwa razy. Zbadać dla jakich $n \in \mathbb{N}$ istnieje funkcja ciągła na \mathbb{R} przyjmująca każdą wartość rzeczywistą n razy.
- *12. Pokazać, że jeśli f jest ciągła na (a,b) oraz $x_1, x_2, \ldots, x_n \in (a,b)$, to istnieje $t \in (a,b)$ takie, że $f(t) = \frac{1}{n} (f(x_1) + f(x_2) + \ldots + f(x_n))$.
- 13. Korzystając z twierdzenia o funkcji odwrotnej uzasadnić, że funkcje $\arcsin x$, $\arccos x$ oraz $\arctan x$ są ciągłe na przedziałach [-1,1], [-1,1] i $(-\infty,\infty)$, odpowiednio.
- 14. Obliczyć granice

$$\lim_{x \to 0} \frac{\arctan x}{x} \quad \lim_{x \to 1^{-}} \frac{(\arccos x)^2}{1 - x} \quad \lim_{x \to 1^{-}} e^{\frac{\sqrt{1 - x^2}}{\pi/2 - \arcsin x}}$$

*15. f jest funkcją ciągłą i ograniczoną na przedziale $(a, +\infty)$. Pokazać, że dla dowolnej liczby T, istnieje ciąg $x_n \to \infty$ taki, że $\lim_{n \to \infty} \left(f(x_n + T) - f(x_n) \right) = 0$.