

A hands-on approach to tensor product surfaces

Alexandra Seceleanu joint with H. Schenck, J. Validashti

Surface modeling

Spline surfaces closely following a control grid embedded in \mathbb{R}^3 are standard tools of today's CAD systems.

Figure: A surface following a control point grid

Tensor product surface

Definition

A tensor product surface of bidegree (d_1, d_2) is a piecewise polynomial parametric surface surface that is built by connecting several polynomial patches in a smooth manner:

$$f:[0,1]\times[0,1]\longrightarrow\mathbb{A}^3$$

$$(u,s)\mapsto \sum_{i,j=1}^t P_{ij}B_i(u)B'_j(s)$$

The control points $P_{ij} \in \mathbb{A}^3$ define the control grid of the spline surface. The polynomials $B_i(u), B'_j(s)$ are called blending functions.

Tensor product surface - homogeneous version

Instead of thinking about tensor product surfaces as affine maps:

• we homogenize to get a regular map defined by four polynomials with no common zeros on $\mathbb{P}^1 \times \mathbb{P}^1$:

$$\phi: \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^3$$

$$((s,t),(u,v)) \mapsto (p_0(s,t,u,v):p_1(s,t,u,v):p_2(s,t,u,v):p_3(s,t,u,v))$$

Main problems in geometric modeling

- 1. **Implicitize**: We assume the parametrization ϕ known but the implicit equation F of the surface not known!
- Find singular locus: In general one does not want singular points in the interior of the patch, but singular points on the surface decrease the degree of the implicit equation.

Main idea:

▶ study these problem using the information contained in the resolution of the ideal $I = (p_0 : p_1 : p_2 : p_3)$.

Example

$$\phi: \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^3, \ ((s,t),(u,v)) \mapsto (s^2u,s^2v,t^2u,t^2v+stv)$$
$$I = (s^2u,s^2v,t^2u,t^2v+stv)$$

► the bigraded resolution

$$R(-2,-2) \\ \oplus \\ 0 \leftarrow I \leftarrow R(-2,-1)^4 \leftarrow R(-3,-2)^2 \leftarrow R(-4,-2)^2 \leftarrow 0 \\ \oplus \\ R(-4,-1)^2$$

the implicit equation:

$$X = \mathbf{V}(x_0x_1^2x_2 - x_1^2x_2^2 + 2x_0x_1x_2x_3 - x_0^2x_3^2).$$

▶ the reduced codimension one **singular locus** of *X* is:

$$V(x_0, x_2) \cup V(x_1, x_3) \cup V(x_0, x_1).$$

The surface in the example

The Segre-Veronese variety

From now on I = four-generated bigraded ideal of bidegree (2,1).

Main idea:

study the resolution of I by inspecting how the plane

$$\operatorname{Span}(p_0, p_1, p_2, p_3) \subset \operatorname{Span}(s^2u, s^2v, stu, stv, t^2u, t^2v) = \mathbb{P}^5$$

meets the image $\boldsymbol{\Sigma}_{2,1}$ of the Segre map

$$\mathbb{P}(H^0(\mathcal{O}_{\mathbb{P}^1}(2))) \times \mathbb{P}(H^0(\mathcal{O}_{\mathbb{P}^1}(1))) \longrightarrow \mathbb{P}(H^0(\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(2,1)))$$

The Segre-Veronese variety

Main idea:

study the resolution of I by inspecting how the plane $\mathbb{P}(U) = \operatorname{Span}(p_0, p_1, p_2, p_3)$ meets the image $\Sigma_{2,1}$ of the Segre map

$$\mathbb{P}^2 \times \mathbb{P}^1 \xrightarrow{\sigma_{2,1}} \mathbb{P}^5.$$

Recall at each point of $\Sigma_{2,1}$ there are 2 types of fibers:

- ightharpoonup lines \mathbb{P}^1
- ightharpoonup planes \mathbb{P}^2

Linear syzygies and lines on $\Sigma_{2,1}$

$$\mathbb{P}(U) = \mathrm{Span}(p_0, p_1, p_2, p_3).$$

Proposition

The ideal $I = (p_0, p_1, p_2, p_3)$

- 1. has a unique linear syzygy of bidegree (0,1) iff $F \subseteq \mathbb{P}(U) \cap \Sigma_{2,1}$, where F is a \mathbb{P}^1 fiber of $\Sigma_{2,1}$.
- 2. has a pair of linear syzygies of bidegree (0,1) iff $\mathbb{P}(U) \cap \Sigma_{2,1} = \Sigma_{1,1}$.
- 3. has a unique linear syzygy of bidegree (1,0) iff $F \subseteq \mathbb{P}(U) \cap Q$, where F is a \mathbb{P}^1 fiber of Q.

Degree (0,2) syzygies and quadrics on $\Sigma_{2,1}$

Proposition

There is a minimal first syzygy on I of bidegree (0,2) iff there exists $\mathbb{P}(W) \simeq \mathbb{P}^2 \subseteq \mathbb{P}(U)$ such that $\mathbb{P}(W) \cap \Sigma_{2,1}$ is a smooth conic.

Degree (0,2) syzygies and quadrics on $\Sigma_{2,1}$

Proposition

There is a minimal first syzygy on I of bidegree (0,2) iff there exists $\mathbb{P}(W) \simeq \mathbb{P}^2 \subseteq \mathbb{P}(U)$ such that $\mathbb{P}(W) \cap \Sigma_{2,1}$ is a smooth conic.

Proposition

Only minimal first syzygies of bidegrees (1,0) and (0,2) are compatible.

Main result

Theorem

There are exactly 6 resolutions for ideals generated by four bidegree (2,1) forms without basepoints :

The six Betti types

Туре	Bigraded Minimal Free Resolution of I					
6	$0 \leftarrow I \leftarrow R(-2, -1)^4 \leftarrow \begin{array}{c} R(-2, -2)^2 \\ \oplus \\ R(-4, -1)^2 \end{array} \leftarrow R(-4, -2) \leftarrow 0$					
5	$R(-2,-2) \\ \oplus \\ 0 \leftarrow I \leftarrow R(-2,-1)^4 \leftarrow R(-3,-2)^2 \leftarrow R(-4,-2)^2 \leftarrow 0 \\ \oplus \\ R(-4,-1)^2$					
4	$R(-2,-3) \\ \oplus \\ R(-3,-1) \\ \oplus \\ 0 \leftarrow I \leftarrow R(-2,-1)^4 \leftarrow R(-3,-2)^2 \leftarrow R(-4,-3) \leftarrow R(-5,-3) \leftarrow 0$ $\oplus \\ R(-4,-2) \\ \oplus \\ R(-5,-1)$					

The six Betti types - continued

Туре	Bigraded Minimal Free Resolution of I
Турс	R(-2,-4)
	R(-3,-1)
	\oplus $R(-3,-4)^2$
	$R(-3,-2)^2 \oplus R(-4,-4)$
3	$0 \leftarrow I \leftarrow R(-2,-1)^4 \leftarrow \oplus \leftarrow R(-4,-3)^2 \leftarrow \oplus \leftarrow 0$
	$0 \leftarrow I \leftarrow R(-2,-1)^4 \leftarrow \begin{array}{cccc} R(-3,-2)^2 & \oplus & R(-4,-4) \\ \oplus & \oplus & \leftarrow & R(-4,-3)^2 & \leftarrow & \oplus \\ R(-3,-3) & \oplus & & R(-5,-3) \end{array}$
	\oplus $R(-5,-2)^2$
	R(-4, -2)
	⊕
	R(-5,-1)
	R(-2, -3)
2	\oplus $R(-3,-3)^2$
	$ 0 \leftarrow I \leftarrow R(-2, -1)^4 \leftarrow R(-3, -2)^4 \leftarrow \bigoplus_{R(-4, -2)^3} \leftarrow R(-4, -3) \leftarrow 0 $
	$R(-4,-1)^2$
	R(-2, -4)
1	\oplus $R(-3,-4)^2$
	$0 \leftarrow I \leftarrow R(-2,-1)^4 \leftarrow R(-3,-2)^4 \leftarrow \bigoplus_{R(-4,-2)^3} \leftarrow R(-4,-4) \leftarrow 0$
	\oplus $R(-4,-2)^3$
	$R(-4,-1)^2$

Table: The six Betti types for bidegree (2,1) four-generated ideals

Relations between syzygies and singularity types

Type	Lin. Syz.	Emb. Pri.	Sing. Loc.	Example
1	none	m	T	$ (s^2u+stv, t^2u, s^2v+stu, t^2v+stv) $
2	none	\mathfrak{m}, P_1	$C \cup L_1$	$\left(s^2u,t^2u,s^2v+stu,t^2v+stv\right)$
3	1 type (1,0)	m	L_1	$(s^2u + stv, t^2u, s^2v, t^2v + stu)$
4	1 type (1,0)	\mathfrak{m}, P_1	L_1	$(stv, t^2v, s^2v - t^2u, s^2u)$
5a	1 type (0,1)	P_{1}, P_{2}	$L_1 \cup L_2 \cup L_3$	$(s^2u, s^2v, t^2u, t^2v + stv)$
5b	1 type (0,1)	P_1	$L_1 \cup L_2$	$(s^2u, s^2v, t^2u, t^2v + stu)$
6	2 type (0,1)	none	Ø	(s^2u, s^2v, t^2u, t^2v)

Table: The primary decomposition and singularities for the six Betti types

- ▶ T = twisted cubic curve, C = smooth plane conic L_i = lines
- $\mathfrak{m} = \langle s, t, u, v \rangle$, $P_i = \langle I_i, s, t \rangle$, $I_i = \text{linear form of bidegree } (0,1)$