

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof. Adriano Barbosa

Tópicos de Álgebra Linear — Avaliação P1

1	
2	
3	
4	
5	
Total	

Aluno(a):.....

(1) Em \mathbb{R}^2 , defina as seguintes operações de soma e produto por escalar:

$$(x_1, y_1) + (x_2, y_2) = (3y_1 + 3y_2, -x_1 - x_2)$$

$$\alpha(x, y) = (3\alpha y, -\alpha x).$$

Verifique se \mathbb{R}^2 , com estas operações, é um espaço vetorial.

- (2) Sejam F_1 e F_2 subespaços de um espaço vetorial E. Verifique quais das seguintes afirmações são verdadeiras justificando sua resposta:
 - (a) $F = F_1 \cup F_2$ é um subespaço de E.
 - (b) $F = \{v_1 + v_2; v_1 \in F_1 \text{ e } v_2 \in F_2\}$ é um subespaço de E.
- (3) Seja X um conjunto infinito. Para cada $a \in X$, seja $f_a : X \to \mathbb{R}$ a função tal que $f_a(a) = 1$ e $f_a(x) = 0$ se $x \neq a$. Prove que o conjunto $Y \subset \mathcal{F}(X;\mathbb{R})$ formado por estas funções é linearmente independente. Prove ainda que Y não gera $\mathcal{F}(X;\mathbb{R})$.
- (4) Uma matriz quadrada $A = [a_{ij}]$ chama-se simétrica (respectivamente anti-simétrica) quando $a_{ij} = a_{ji}$ (respectivamente $a_{ij} = -a_{ji}$) para todo i e todo j. Prove que o conjunto S das matrizes simétricas e o conjunto A das matrizes anti-simétricas $n \times n$ são subespaços vetoriais de $\mathbb{M}(n \times n)$ e que se tem $\mathbb{M}(n \times n) = S \oplus A$.
- (5) Seja $\mathcal{M}(n \times n)$ o espaço vetorial das matrizes $n \times n$ e seja B uma matriz $n \times n$ fixa. Se

$$T(A) = AB - BA$$

verifique se T é uma transformação linear de $\mathcal{M}(n \times n)$ em $\mathcal{M}(n \times n)$.

- (6) Seja $A: E \to F$ uma transformação linear
 - (a) Se os vetores $Av_1, Av_2, \dots, Av_m \in F$ são L.I., prove que $v_1, v_2, \dots, v_m \in E$ também são L.I
 - (b) Se F = E e os vetores Av_1, Av_2, \ldots, Av_m geram E, prove que v_1, v_2, \ldots, v_m geram E. [Dica: use o item (a)]
 - (c) Valem as recíprocas de (a) e (b)? Seria (b) verdadeira com $F \neq E$?

Boa Prova!