

IMÁGENES SATELITALES. BONDADES.

Bondades de las imágenes satelitales

- 1. Objetiva
- 2. Metódica
- 3. Periódica (- nubes)
- 4. Documento
- 5. Veo el pasado!
- 6. Ven más que el ojo humano

Alfredo Campos Matha Rofey & Bobs . Silving

OMO CLASIFICACIÓN VISUAL OCLASIFICACIÓN NO SUPERVISADA (ej: Kmeans) CLASIFICACIÓN SUPERVISADA (ej: SVM, NN, Decision Trees)

metrics.accuracy_score(y true, y pred, *[,])	Accuracy classification score.
metrics.auc(X, y)	Compute Area Under the Curve (AUC) using the trapezoidal rule
metrics.average_precision_score(y_true,)	Compute average precision (AP) from prediction scores
metrics.balanced_accuracy_score(y true,)	Compute the balanced accuracy
metrics.brier score loss(y true, y prob, *)	Compute the Brier score.
metrics.classification_report(y true, y pred, *)	Build a text report showing the main classification metrics.
metrics.cohen_kappa_score(y1, y2, *[,])	Cohen's kappa: a statistic that measures inter-annotator agreement.
metrics.confusion_matrix(y true, y pred, *)	Compute confusion matrix to evaluate the accuracy of a classification.
metrics.dcg_score(y_true, y_score, *[, k,])	Compute Discounted Cumulative Gain.
metrics.f1_score(y_true, y_pred, *[,])	Compute the F1 score, also known as balanced F-score or F-measure
metrics.fbeta_score(y true, y pred, *, beta)	Compute the F-beta score
metrics.hamming_loss(y_true, y_pred, *[,])	Compute the average Hamming loss.
<pre>metrics.hinge_loss(y_true, pred_decision, *)</pre>	Average hinge loss (non-regularized)
metrics.jaccard_score(y_true, y_pred, *[,])	Jaccard similarity coefficient score
metrics.log_loss(y_true, y_pred, *[, eps,])	Log loss, aka logistic loss or cross-entropy loss.
metrics.matthews_corrcoef(y_true, y_pred, *)	Compute the Matthews correlation coefficient (MCC)
<pre>metrics.multilabel_confusion_matrix(y_true,)</pre>	Compute a confusion matrix for each class or sample
<pre>metrics.ndcg_score(y_true, y_score, *[, k,])</pre>	Compute Normalized Discounted Cumulative Gain.
metrics.precision_recall_curve(y_true,)	Compute precision-recall pairs for different probability thresholds
metrics.precision_recall_fscore_support()	Compute precision, recall, F-measure and support for each class
metrics.precision_score(y_true, y_pred, *[,])	Compute the precision
metrics.recall_score(y_true, y_pred, *[,])	Compute the recall
metrics.roc_auc_score(y_true, y_score, *[,])	Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.
<pre>metrics.roc_curve(y_true, y_score, *[,])</pre>	Compute Receiver operating characteristic (ROC)
metrics.zero_one_loss(y_true, y_pred, *[,])	Zero-one classification loss.

EJEMPLOS

DESAFIOS

EJEMPLOS CON

DISCLAIRMER: ESTE CODIGO ES A MODO DE EJEMPLO DIDÁCTICO, NO CONTIENE CONTROL DE ERRORES, NI SOFISTICACIONES, NI MEJORAS DE PERFORMANCE. TODOS LOS USOS DE LIBRERIAS EXTERNAS PUEDEN SER MEJORADAS EN SU IMPLEMENTACIÓN.

EJEMPLO 1

DESAFÍOS

QUE HAREMOS

- · Usaremos la librería gdal.
- · Vamos a abrir una imagen Sentinel 2 y armaremos una hipermatriz.
- · Vamos a visualizar RGB y un «falso color».
- · Calcularemos y visualizaremos el ndvi.
- Calcularemos y visualizaremos donde hay lugares con poco o nada de vegetación.

QUE USAREMOS

• Imagen Sentinel descargada con las bandas B-G-R-NIR-SWIR1-SWIR2

EJEMPLO 2

DESAFIOS AGTECH

QUE HAREMOS

- Usaremos la librería gdal y sklearn.
- Vamos a abrir una imagen Sentinel 2.
- Aplicaremos una clasificación no supervisada (Kmeans).
- · Visualizaremos los resultados.

QUE USAREMOS

• Imagen Sentinel 2 descargada con las bandas B-G-R-NIR-SWIR1-SWIR2

edo Campos MatbaRofex 🙆 🗠 📸

EJEMPLO 3

DESAFÍOS AGTECH

QUE HAREMOS

- Usaremos la librería ee (Google Earth Engine).
- Abriremos unos puntos de entrenamiento y obtendremos sus datos asociados.
- Visualizaremos los valores asociados a cada uno de los puntos.

QUE USAREMOS

• Archivo con puntos de entrenamiento (previamente filtrados para apoyar en la img)

EJEMPLO 4

DESAFÍOS AGTECH

QUE HAREMOS

- · Usaremos la librería gdal.
- · Vamos a abrir una imagen Sentinel 2.
- Abriremos unos puntos de entrenamiento y obtendré sus datos asociados.
- · Clasificaremos con Random Forest los puntos de testeo.
- · Clasificaremos con Random Forest la imagen completa.

QUE USAREMOS

- Imagen Sentinel 2 descargada con las bandas B-G-R-NIR-SWIR1-SWIR2.
- Archivo con puntos de entrenamiento (previamente filtrados para apoyar en la img)
- Archivo con puntos de testeo (previamente filtrados para apoyar en la img)

fredo Campos MatbaRofex 🙆 🕬 📆 📆

EJEMPLO 5

QUE HAREMOS

- · Usaremos la librería gdal.
- · Vamos a abrir una imagen Sentinel 2.
- Abriremos unos puntos de entrenamiento y obtendremos sus datos asociados.
- · Clasificaremos con SVM los puntos de testeo.

QUE USAREMOS

- Archivo con puntos de entrenamiento (previamente filtrados para apoyar en la img)
- Archivo con puntos de testeo (previamente filtrados para apoyar en la img)

Ifredo Campos Matha Rofey 🔊 🗠 . 🔊 🕅

EJEMPLO 6

DESAFIOS

QUE HAREMOS

- · Usaremos la librería gdal.
- · Vamos a abrir una imagen Sentinel 2.
- Abriremos unos puntos de entrenamiento y los dividiremos en dos sets.
- Clasificaremos con Random Forest, SVM y Aleatoriamente los puntos.
- · Correremos algunas metricas.

QUE USAREMOS

• Archivo con puntos de entrenamiento (previamente filtrados para apoyar en la img)

DESAFÍOS

GRACIAS!

https://github.com/camposalfredo/

