Wersja:	$oldsymbol{A}$

Numer indeksu:	
000000	

$Grupa^1$:		
8–10 s.104	8 - 10 s. 105	8-10 s. 139
	10–12 s. 5	10-12 s. 104
10-12 s. 105	10–12 s.140	10-12 s. 141

Logika dla informatyków

Kolokwium nr 3, 13 stycznia 2017 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Jeśli istnieją dwie różne relacje równoważności na zbiorze $\{0, 1, 2\}$, które mają tyle samo klas abstrakcji, to w prostokąt poniżej wpisz dowolne dwie takie relacje. W przeciwnym przypadku wpisz uzasadnienie, dlaczego takie relacje nie istnieją.

$$R_1 = \{ \langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 0, 1 \rangle, \langle 1, 0 \rangle \}, R_2 = \{ \langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 0, 2 \rangle, \langle 2, 0 \rangle \}$$

Zadanie 2 (2 punkty). Rozważmy funkcje

$$f: (A \times B)^C \to (A \times C)^B,$$
 $g: C \to A \times B,$
 $h: A \times B \to (A \times C)^B$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne, jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C) jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(a) nie jest poprawne, bo $a \notin (A \times B)^C$. Jeśli wyrażenie jest poprawne, to przez jego typ rozumiemy zbiór do którego należy element oznaczany przez to wyrażenie. Np. typem wyrażenia h(a,b) jest $(A \times C)^B$. W prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne, wpisz odpowiedni typ wyrażenia. W pozostałe prostokąty wpisz słowo "NIE".

Zadanie 3 (2 punkty). Niech funkcja $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ będzie dana wzorem $f(n, m) = 3^n \cdot 4^m$. W prostokąt poniżej wpisz obliczony obraz zbioru $\{0, 1\} \times \{0, 1\}$ przez funkcję f.

$$f[\{0,1\} \times \{0,1\}] = \begin{cases} \{1,3,4,12\} \end{cases}$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). Rozważmy funkcję $F:[0,1]^{\mathbb{N}} \to [2,3]^{\mathbb{N}}$, która dla argumentów $f \in [0,1]^{\mathbb{N}}$ przyjmuje takie wartości $F(f): \mathbb{N} \to [2,3]$, że (F(f))(n) = f(n) + 2. Jeśli funkcja F ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną do F. W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.

$$G:[2,3]^{\mathbb{N}}\to [0,1]^{\mathbb{N}}$$
, dla $g:\mathbb{N}\to [2,3]$ definiujemy $G(g):\mathbb{N}\to [0,1]$ wzorem
$$(G(g))(n)=g(n)-2$$

Zadanie 5 (2 punkty). Na zbiorze $\mathcal{P}(\mathbb{N})$ definiujemy relację binarną \simeq w następujący sposób:

 $X \simeq Y$ wtedy i tylko wtedy, gdy zbiór $X \cap Y$ jest skończony.

Jeśli \simeq jest relacją równoważności, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz uzasadnienie, dlaczego \simeq nie jest relacją równoważności.

 \simeq nie jest zwrotna, np. zbiór $\mathbb{N}\cap\mathbb{N}$ nie jest skończony

Wersja:

Numer indeksu:	
000000	

α 1	
(trupat	٠
Grupa	

8–10 s.104	8-10 s. 105	8–10 s.139
	10–12 s. 5	10–12 s.104
10-12 s. 105	10-12 s. 140	10-12 s.141

Zadanie 6 (5 punktów). Konstruując odpowiednią bijekcję udowodnij, że dla dowolnego zbioru A zbiory $A^{\{0,1\}}$ i $A \times A$ są równoliczne.

Zadanie 7 (5 punktów). Udowodnij, że każda relacja równoważności, która jednocześnie jest funkcją, jest także bijekcją.

Rozwiązanie. Niech $f \subseteq A \times A$ będzie relacją równoważności i funkcją. Wtedy f jest zwrotna, a stąd dla każdego argumentu $a \in A$ mamy $\langle a, a \rangle \in f$, czyli f(a) = a. Zatem f jest funkcją identycznościową na zbiorze A, która oczywiście jest bijekcją.

Zadanie 8 (5 punktów). Niech R_1 i R_2 będą takimi relacjami równoważności na zbiorze A, że $R_1 \cap R_2 = I_A$ (tutaj I_A jest relacją identyczności na zbiorze A). Dla $i \in \{1,2\}$ niech A/R_i będzie rodziną klas abstrakcji relacji R_i , tzn. $A/R_i = \{[a]_{R_i} \mid a \in A\}$. Udowodnij, że funkcja $f: A \to A/R_1 \times A/R_2$ zdefiniowana wzorem $f(x) = \langle [x]_{R_1}, [x]_{R_2} \rangle$ jest różnowartościowa.

Rozwiązanie. Rozważmy takie $x_1, x_2 \in A$, że $f(x_1) = f(x_2)$. Wtedy $\langle [x_1]_{R_1}, [x_1]_{R_2} \rangle = \langle [x_2]_{R_1}, [x_2]_{R_2} \rangle$, a stąd $[x_1]_{R_1} = [x_2]_{R_1}$ oraz $[x_1]_{R_2} = [x_2]_{R_2}$, czyli $\langle x_1, x_2 \rangle \in R_1$ oraz $\langle x_1, x_2 \rangle \in R_2$. Ale $R_1 \cap R_2 = I_A$, więc $\langle x_1, x_2 \rangle \in I_A$, czyli $x_1 = x_2$. Zatem f jest różnowartościowa.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersja:	\mathbf{D}

Ī	Numer indeksu:	
	000000	

$Grupa^1$:		
8–10 s.104	8-10 s. 105	8-10 s. 139
	10–12 s. 5	10–12 s.104
10-12 s. 105	10–12 s.140	10-12 s.141

Logika dla informatyków

Kolokwium nr 3, 13 stycznia 2017 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Rozważmy funkcje

$$\begin{array}{lll} f & : & (A \times B)^C \to (A \times C)^B, & & g & : & C \to A \times B, \\ h & : & A \times B \to (A \times C)^B & & & \end{array}$$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne, jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C) jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(a) nie jest poprawne, bo $a \notin (A \times B)^C$. Jeśli wyrażenie jest poprawne, to przez jego typ rozumiemy zbiór do którego należy element oznaczany przez to wyrażenie. Np. typem wyrażenia h(a,b) jest $(A \times C)^B$. W prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne, wpisz odpowiedni typ wyrażenia. W pozostałe prostokąty wpisz słowo "NIE".

$$h(a,b)$$
 $A \times C$ $A \times C$

Zadanie 2 (2 punkty). Rozważmy funkcję $F: \mathbb{N}^{[0,1]} \to \mathbb{N}^{[2,3]}$, która dla argumentów $f \in \mathbb{N}^{[0,1]}$ przyjmuje takie wartości $F(f): [2,3] \to \mathbb{N}$, że (F(f))(x) = f(x-2). Jeśli funkcja F ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną do F. W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.

$$G:\mathbb{N}^{[2,3]}\to\mathbb{N}^{[0,1]},$$
dla $g:[2,3]\to\mathbb{N}$ definiujemy $G(g):[0,1]\to\mathbb{N}$ wzorem
$$(G(g))(x)=g(x+2)$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 3 (2 punkty). W tym zadaniu relację równoważności nazwiemy jednorodną, jeśli wszystkie jej klasy abstrakcji są równoliczne. Jeśli istnieją dwie różne jednorodne relacje równoważności na zbiorze $\{0,1,2\}$, to w prostokąt poniżej wpisz dowolne dwie takie relacje. W przeciwnym przypadku wpisz uzasadnienie, dlaczego takie relacje nie istnieją.

$$R_1 = \{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle\}, \qquad R_2 = \{0, 1, 2\} \times \{0, 1, 2\}$$

Zadanie 4 (2 punkty). Na zbiorze $\mathcal{P}(\mathbb{N})$ definiujemy relację binarną \simeq w następujący sposób:

 $X \simeq Y$ wtedy i tylko wtedy, gdy zbiór $X \setminus Y$ jest skończony.

Jeśli \simeq jest relacją równoważności, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz uzasadnienie, dlaczego \simeq nie jest relacją równoważności.

 \simeq nie jest symetryczna, np. zbiór $\emptyset\setminus\mathbb{N}$ jest, a $\mathbb{N}\setminus\emptyset$ nie jest skończony

Zadanie 5 (2 punkty). Niech funkcja $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ będzie dana wzorem $f(n, m) = 3^n \cdot 4^m$. W prostokąt poniżej wpisz obliczony przeciwobraz zbioru $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ przez funkcję f.

$$f^{-1}[\{0,1,2,3,4,5,6,7,8,9\}] = \{\langle 0,0\rangle, \langle 0,1\rangle, \langle 1,0\rangle, \langle 2,0\rangle\}$$

Wersja:

 \mathbf{D}

8–10 s.104	8–10 s.105	8–10 s.139
	10–12 s. 5	10-12 s. 104
10-12 s. 105	10-12 s.140	10–12 s.141

Zadanie 6 (5 punktów). Mówimy, że funkcja $f: \mathbb{N} \to \mathbb{N}$ jest ściśle rosnąca, jeśli spełnia warunek $\forall n \in \mathbb{N}$. f(n) < f(n+1). Udowodnij, że każda funkcja $f: \mathbb{N} \to \mathbb{N}$, która jednocześnie jest relacją równoważności, jest ściśle rosnąca.

Rozwiązanie. Niech $f: \mathbb{N} \to \mathbb{N}$ będzie funkcją i jednocześnie relacją równoważności. Wtedy f jest zwrotna, a stąd dla wszystkich $n \in \mathbb{N}$ mamy $\langle n, n \rangle \in f$, czyli f(n) = n. Zatem f jest funkcją identycznościową na zbiorze \mathbb{N} , która oczywiście jest ściśle rosnąca, bo f(n) = n < n + 1 = f(n+1).

Zadanie 7 (5 punktów). Konstruując odpowiednią bijekcję udowodnij, że dla dowolnego zbioru A zbiory $A \times A^{\mathbb{N}}$ i $A^{\mathbb{N}}$ są równoliczne.

Zadanie 8 (5 punktów). Niech R_1 i R_2 będą takimi relacjami równoważności na A, że $R_1; R_2 = A \times A$. Dla $i \in \{1, 2\}$ niech A/R_i będzie rodziną klas abstrakcji relacji R_i , tzn. $A/R_i = \{[a]_{R_i} \mid a \in A\}$. Udowodnij, że funkcja $f: A \to A/R_1 \times A/R_2$ zdefiniowana wzorem $f(x) = \langle [x]_{R_1}, [x]_{R_2} \rangle$ jest "na".

Rozwiązanie. Rozważmy dowolną parę klas abstrakcji $\langle [y]_{R_1}, [z]_{R_2} \rangle \in A/_{R_1} \times A/_{R_2}$. Ponieważ $R_1; R_2 = A \times A$, więc istnieje taki $x \in A$, że $\langle y, x \rangle \in R_1$ i $\langle x, z \rangle \in R_2$. Weźmy ten x. Wtedy $[x]_{R_1} = [y]_{R_1}$ oraz $[x]_{R_2} = [z]_{R_2}$, czyli $f(x) = \langle [x]_{R_1}, [x]_{R_2} \rangle = \langle [y]_{R_1}, [z]_{R_2} \rangle$. Zatem f jest "na".

¹Proszę zakreślić właściwą grupę ćwiczeniową.