

人脑组成

860亿个神经元,至少被开发利用了90%

每个神经元1万连接(组合连接无限)

学习可以增强连接

● 功耗10-23瓦

什么是神经网络?

100位同学 60 牛肉面

神经元模型

感知机模型-1958年

Frank Rosenblatt

知识点: 非线性
$$\text{output} = \left\{ egin{array}{ll} 0 & ext{if } \sum_j w_j x_j \leq ext{threshold} \\ 1 & ext{if } \sum_j w_j x_j > ext{threshold} \end{array} \right.$$

感知机-逻辑表示

马文 明斯基 《感知机》-1969年

$$0 \land 0 = 0$$

 $0 \land 1 = 1$
 $1 \land 0 = 1$
 $1 \land 1 = 0$

异或问题-感知机


```
import numpy as np
def step(x):
    return (np. sign(x)+1)/2

def f1(x, y):
    return step(x+y-0.5)

def f2(x, y):
    return step(-x-y+1.5)

def xor(x, y):
    return step(f1(x, y)+f2(x, y)-1.5)

x = np. array([0, 0, 1, 1])
y = np. array([0, 1, 0, 1])
z = xor(x, y)

for i in range(len(x)):
    print("xor(%d, %d)=%d" % (x[i], y[i], z[i]))
```

知识点:深层网络比浅层网络拥有更强的表达能力。

神经网络的表达能力

神经网络的表达能力

神经网络的表达能力

神经网络发展历史

两层神经网络 单层神经网络 2012 2020 CNN Winter? 神经元 第三次 兴起 2006 1986 DBN BP 第二次 1982 兴起 1995 Hopfield **SVM** 1958 1969 Perceptron "Al Winter" 第一次 1943 兴起 1949 MP Hebb 诞生 2007 1981 1946 1950 1940 1960 1970 1980 1990 2000 2010 2020

知识点总结

- > 激活函数非线性
- > 深层网络比浅层网络拥有更强的表达能力
- > 三层神经网络可以表示任意函数 (足够隐藏单元)

- ▶ 神经网络与图灵机(现代计算机)等价
- > 计算性能的发展带动神经网络的发展
- > 深层神经网络可以充分利用计算机的性能

▶图像识别

f(

9

▶围棋

▶ 机器翻译

"你好!"

Thank you! Questions?