(11) EP 0 931 834 A2

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication:28.07.1999 Bulletin 1999/30
- (21) Application number: 98310497.7
- (22) Date of filing: 21.12.1998

- (51) Int Cl.⁶: **C12N 15/54**, C12N 9/10, C12N 1/15, C12N 1/21, C12Q 1/48
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 23.12.1997 US 68658 P
- (71) Applicant: ELI LILLY AND COMPANY Indianapolis, Indiana 46285 (US)

- (72) Inventors:
 - Ma, Doreen Indianapolis, Indiana 46236 (US)
 - Dixon, Colleen Kay
 Cary, North Carolina 27513 (US)
- (74) Representative: Denholm, Anna Marie et al Ell Lilly and Company Limited, Lilly Research Center, Erl Wood Manor Windlesham, Surrey GU20 6PH (GB)
- (54) Echinocandin binding domain of 1,3-Beta-glucan synthase
- (57) The invention relates to a substantially purified ECB binding domain of 1,3-β-glucan synthase, comprising an at least 46 amino acid peptide fragment or fusion

protein of glucan synthase that binds echinocandins, useful in a method for identifying new antifungal compounds. Also disclosed are nucleic acid molecules that encode said peptide.

Description

- [0001] This invention claims the benefit of U.S. Provisional Application No. 60/068,658, filed December 23, 1997.
- [0002] This invention relates to recombinant DNA technology. In particular the invention pertains to a fungal glucan synthase, and to a sub-region thereof that mediates echinocandin binding and antifungal activity. Also contemplated is the use of said echinocandin binding region in screens for compounds that bind glucan synthase.
 - [0003] The incidence of life-threatening fungal infections is increasing at an alarming rate. About 90% of nosocomial fungal infections are caused by species of *Candida*, with the remaining 10% being attributable to *Aspergillus*, *Cryptococcus*, and *Pneumocystis*. While effective antifungal compounds have been developed for *Candida*, there is growing concern over escalating resistance in other pathogenic fungi. Since *anti-Candida* compounds rarely are clinically effective against other fungi, new compounds are needed for effective antifunal therapy.
 - [0004] The present invention provides an echinochandin binding domain of a fungal 1,3,β-glucan synthase (hereinafter " glucan synthase") that is useful in identifying compounds that bind and inhibit glucan synthase activity. The compositions of this invention enable identification of new and better antifungal compounds.
- 15 [0005] In one embodiment the present invention relates to a nucleic acid molecule that encodes an echinocandin binding domain of fungal glucan synthase.
 - [0006] In another embodiment the present invention relates to a peptide that comprises an echinocandin binding site of fungal glucan synthase.
 - [0007] In another embodiment, the present invention relates to a method for identifying compounds that bind an echinocandin binding domain of fungal glucan synthase.
 - [0008] "ECB binding domain" or "ECB binding site" or "ECB binding fragment" refers to a subregion of the yeast glucan synthase molecule (i.e. product of *FKS1* gene in *S. cerevisiae*), wherein said subregion retains, either alone or in combination with another protein, for example, as a fusion protein, the capacity to bind echinocandins such as ECB. For example, in one embodiment the present invention relates to a subregion of SEQ ID NO:2 comprising amino acid residues 583 to 672. ECB binding fragments may be verified by any suitable test for binding to ECB or other echinocandin, or papulocandin, or related compounds.
 - [0009] The term "fusion protein" denotes a hybrid protein molecule not found in nature comprising a translational fusion or enzymatic fusion in which two or more different proteins or fragments thereof are covalently linked on a single polypeptide chain.
- [0010] The term "plasmid" refers to an extrachromosomal genetic element. The starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accordance with published procedures. In addition, equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.
- [0011] "Recombinant DNA cloning vector" as used herein refers to any autonomously replicating agent, including, but not limited to, plasmids and phages, comprising a DNA molecule to which one or more additional DNA segments can or have been added.
 - [0012] The term "recombinant DNA expression vector" as used herein refers to any recombinant DNA cloning vector, for example a plasmid or phage, in which a promoter and other regulatory elements are present to enable transcription of the inserted DNA.
- 40 [0013] The term "vector" as used herein refers to a nucleic acid compound used for introducing exogenous DNA into host cells. A vector comprises a nucleotide sequence which may encode one or more protein molecules. Plasmids, cosmids, viruses, and bacteriophages, in the natural state or which have undergone recombinant engineering, are examples of commonly used vectors.
 - [0014] The terms "complementary" or "complementarity" as used herein refers to the capacity of purine and pyrimidine nucleotides to associate through hydrogen bonding in double stranded nucleic acid molecules. The following base pairs are complementary: guanine and cytosine; adenine and thymine; and adenine and uracil.
 - [0015] "Isolated nucleic acid compound" refers to any RNA or DNA sequence, however constructed or synthesized, which is locationally distinct from its natural location.
- [0016] A *primer* is a nucleic acid fragment which functions as an initiating substrate for enzymatic or synthetic elongation of, for example, a nucleic acid molecule.
 - [0017] The term "promoter" refers to a DNA sequence which directs transcription of DNA to RNA.
 - [0018] A "probe" as used herein is a labeled nucleic acid compound which hybridizes with another nucleic acid compound.
- [0019] The term "hybridization" as used herein refers to a process in which a single-stranded nucleic acid molecule joins with a complementary strand through nucleotide base pairing. "Selective hybridization" refers to hybridization under conditions of high stringency. The degree of hybridization depends upon, for example, the degree of complementarity, the stringency of hybridization, and the length of hybridizing strands.
 - [0020] The term "stringency" refers to hybridization conditions. High stringency conditions disfavor non-homologous

basepairing. Low stringency conditions have the opposite effect. Stringency may be altered, for example, by temperature and salt concentration.

[0021] "Low stringency" conditions comprise, for example, a temperature of about 37° C or less, a formamide concentration of less than about 50%, and a moderate to low salt (SSC) concentration; or, alternatively, a temperature of about 50° C or less, and a moderate to high salt (SSPE) concentration, for example 1M NaCl.

[0022] "High stringency" conditions comprise, for example, a temperature of about 42° C or less, a formamide concentration of less than about 20%, and a low salt (SSC) concentration; or, alternatively, a temperature of about 65° C, or less, and a low salt (SSPE) concentration. For example, high stringency conditions comprise hybridization in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C (Ausubel, F.M. et al. <u>Current Protocols in Molecular Biology</u>, Vol. I, 1989; Green Inc. New York, at 2.10.3).

[0023] "SSC" comprises a hybridization and wash solution. A stock 20X SSC solution contains 3M sodium chloride, 0.3M sodium citrate, pH 7.0.

[0024] "SSPE" comprises a hybridization and wash solution. A 1X SSPE solution contains 180 mM NaCl, 9mM Na₂HPO₄, 0.9 mM NaH₂PO₄ and 1 mM EDTA, pH 7.4.

[0025] "Substantially pure" used in reference to a peptide or protein means that said peptide or protein is separated from a large fraction of all other cellular and non-cellular molecules, including other protein molecules. A substantially pure preparation would be about at least 85% pure; preferably about at least 95% pure. For example, a "substantially pure" protein as described herein could be prepared by the IMAC protein purification method, or any other suitable method.

[0026] Cell walls are essential to the viability of fungi, but have no existence in mammalian cells. This makes synthesis of the fungal cell wall a useful target for antifungal compounds. Two polysaccharide polymers, chitin and 1,3-β-glucan, are essential components of fungal cell walls. Therefore, antibiotics that interfere with the synthesis of these polymers are useful in mycosis therapy. Polysaccharides have been estimated to account for as much as 80% to 90% of the Saccharomyces cerevisiae cell wall. The major cell wall polymers are glucan and mannan, and small amounts of chitin. [0027] In S. cerevisiae, cell wall synthesis is thought to involve at least a subunit of glucan synthase, which is encoded by the FKS1 gene (Douglas et.al. Proc. Nat. Acad. Sci. 91, 12907-911, 1994). FKS1 encodes a 215 kD integral membrane protein of 1876 amino acid residues that is the likely target of ECB and other echinocandins (Id.) For example, resistance to ECB and other echinocandins maps to the FKS1 locus. More specifically, a domain of FKS1, which resides at amino acid residues 583 to 672 defines a cytoplasmic loop thought to be necessary and sufficient to comprise an echinocandin binding domain.

Gene Isolation Procedures

30

[0028] Those skilled in the art will recognize that the nucleic acids of this invention may be obtained by a plurality of applicable genetic and recombinant DNA techniques including, for example, polymerase chain reaction (PCR) amplification, or *de novo* DNA synthesis. (See e.g., J.Sambrook et al. Molecular Cloning, 2d Ed. Chap. 14 (1989)).

[0029] Skilled artisans will recognize that a nucleic acid encoding the ECB binding domain could be isolated by PCR amplification of any suitable genomic DNA or cDNA using oligonucleotide primers targeted to the appropriate region of FKS1 (viz. encoding amino acid residues 587 to 672 of SEQ ID NO:2). The preferred template source for PCR amplification is S. cerevisiae genomic DNA. Methods for PCR amplification are widely known in the art. See e.g. PCR Protocols: A Guide to Method and Application, Ed. M. Innis et al., Academic Press (1990). The amplification reaction comprises genomic DNA, suitable enzymes, primers, and buffers, and is conveniently carried out in a DNA Thermal Cycler (Perkin Elmer Cetus, Norwalk, CT). A positive result is determined by detecting an appropriately-sized DNA fragment following agarose gel electrophoresis.

Protein Production Methods

[0030] The present invention also relates to a substantially purified peptide, or fusion protein, comprising a subregion of glucan synthase that functions as an echinocandin binding site.

[0031] Skilled artisans will recognize that the proteins and peptides of the present invention can be synthesized by any number of different methods including solid phase chemical synthesis or recombinant methods. Both methods are described in U.S. Patent 4,617,149, incorporated herein by reference.

[0032] The principles of solid phase chemical synthesis are well known in the art and may be found in general texts in the area. See, e.g., H. Dugas and C. Penney, <u>Bioorganic Chemistry</u> (1981) Springer-Verlag, New York, 54-92. For example, peptides may be synthesized by solid-phase methodology utilizing an Applied Biosystems 430A peptide synthesizer (Applied Biosystems, Foster City, CA) and synthesis cycles supplied by Applied Biosystems. Protected amino acids, such as t-butoxycarbonyl-protected amino acids, and other reagents are commercially available from many chemical supply houses.

[0033] The peptide of the present invention can also be produced by recombinant DNA methods using a cloned nucleic acid. Recombinant methods are preferred if a high yield of the peptide is desired. Expression of a cloned nucleic acid can be carried out in a variety of suitable hosts, well known to those skilled artisan. For example, the cloned DNA is introduced into a host cell by any suitable means, well known to those skilled in the art. While chromosomal integration of the cloned nucleic acid is within the scope of the present invention, it is preferred that it comprise part of a suitable extra-chromosomally maintained expression vector.

[0034] The basic steps in the recombinant production of the peptides of this invention are:

- a) constructing a natural, synthetic or semisynthetic DNA encoding said protein, peptide, or fusion protein;
- b) integrating said DNA into an expression vector in a manner suitable for expressing the protein, either alone or as a fusion protein;
- c) transforming or otherwise introducing said vector into an appropriate eucaryotic or prokaryotic host cell, forming a recombinant host cell,
 - d) culturing said recombinant host cell in a manner to express the protein; and
 - e) recovering and substantially purifying the protein by any suitable means.

10

15

20

30

Expressing a Recombinant ECB Binding Domain in Procaryotic and Eucaryotic Host Cells

[0035] In general, procaryotes are used for cloning DNA sequences and for constructing the vectors of the present invention. Procaryotes may also be used in the production of the ECB binding peptide. For example, the *Escherichia coli* K12 strain 294 (ATCC No. 31446) is particularly useful for the prokaryotic expression of foreign proteins. Other strains of *E. coli*, bacilli such as *Bacillus subtilis*, enterobacteriaceae such as *Salmonella typhimurium* or *Serratia marcescans*, various Pseudomonas species and other bacteria, such as *Streptomyces*, may also be employed as host cells in the cloning and expression of the recombinant proteins of this invention.

[0036] Promoter sequences suitable for driving the expression of genes in procaryotes include β-lactamase [e.g. vector pGX2907, ATCC 39344, contains a replicon and β-lactamase gene], lactose systems [Chang et al., Nature (London), 275:615 (1978); Goeddel et al., Nature (London), 281:544 (1979)], alkaline phosphatase, and the tryptophan (trp) promoter system [vector pATH1 (ATCC 37695) which is designed to facilitate expression of an open reading frame as a trpE fusion protein under the control of the trp promoter]. Hybrid promoters such as the tac promoter (isolatable from plasmid pDR540, ATCC-37282) are also suitable. Still other bacterial promoters, whose nucleotide sequences are generally known, enable one of skill in the art to ligate such promoter sequences to DNA encoding the proteins of the instant invention using linkers or adapters to supply any required restriction sites. Promoters for use in bacterial systems also will contain a Shine-Dalgarno sequence operably-linked to the DNA encoding the desired polypeptides. These examples are illustrative rather than limiting.

[0037] The peptides of this invention may be synthesized de *novo*, or they may be produced as a fusion protein comprising the peptide of interest (viz. ECB binding fragment) as a translational fusion with another protein or peptide that may be removable by enzymatic or chemical cleavage. It is often observed that expression as a fusion protein prolongs the lifespan, increases the yield of a desired peptide, and provides a convenient means of purifying the protein. A variety of peptidases (e.g. enterokinase and thrombin) which cleave a polypeptide at specific sites or digest the peptides from the amino or carboxy termini (e.g. diaminopeptidase) of the peptide chain are known. Furthermore, particular chemicals (e.g. cyanogen bromide) cleave a polypeptide chain at specific sites. The skilled artisan will appreciate the modifications necessary to the amino acid sequence (and synthetic or semisynthetic coding sequence if recombinant means are employed) to incorporate site-specific internal cleavage sites. See e.g., P. Carter, "Site Specific Proteolysis of Fusion Proteins", Chapter 13, in *Protein Purification: From Molecular Mechanisms to Large Scale Processes*, American Chemical Society, Washington, D.C. (1990).

[0038] The present invention contemplates ECB binding fusion proteins comprising a fragment of glucan synthase in fusion with another protein, thereby facilitating isolation, purification, and assay of said ECB binding fragment. A variety of embodiments and methods for producing fusion proteins are known in the art and are suitable for the present invention. For example, foreign proteins may be fused with the carboxy terminus of Sj26, a 26 kDa glutathione Stransferase (GST), encoded by the parasitic helminth Schistosoma japonicum. Such fusion proteins may be expressed in E. coli or other suitable procaryote, or in eucaryotic hosts, such as yeast. In this regard, the method and vectors of Smith and Johnson are especially suitable (Gene, 67, 31-40, 1988), the entire contents of which is incorporated by reference. It is desirable that the fusion protein remain in solution to facilitate ease of purification.

[0039] In addition to procaryotes, a variety of mammalian cell systems and eucaryotic microorganisms such as yeast

are suitable host cells for the recombinant expression of proteins or fusion proteins. The yeast Saccharomyces cerevisiae is the most commonly used eucaryotic microorganism. A number of other yeasts such as Kluyveromyces lactis and Schizosaccharomyces pombe are also suitable. For expression in Saccharomyces, the plasmid YRp7 (ATCC-40053), for example, may be used. See, e.g., D. Stinchcomb, et al., Nature, 282:39 (1979); J. Kingsman et al., Gene, 7:141 (1979); S. Tschemper et al., Gene, 10:157 (1980). Plasmid YRp7 contains the TRP1 gene which provides a selectable marker for use in a trpl auxotrophic mutant. For expression in S. pombe suitable vectors include those containing the nmt1 promoter as well as the adh promoter and the SV40 promoter (See e.g. S. Forsburg, Nuc. Acid. Res. 21, 2955, 1993).

Purification of Recombinantly-Produced ECB Binding Peptide

[0040] An expression vector comprising a cloned nucleic acid encoding an ECB binding domain is transformed or transfected into a suitable host cell using standard methods. Cells that contain the vector are propagated under conditions suitable for expression of the peptide. If the gene is controlled by an inducible promoter, suitable growth conditions should incorporate the appropriate inducer. Recombinantly-produced peptide may be purified from cellular extracts of transformed cells by any suitable means. In one process for peptide purification, the gene is modified at the 5' end to incorporate several histidine residues at the amino terminus of the peptide. This "histidine tag" enables a single-step protein purification method referred to as "immobilized metal ion affinity chromatography" (IMAC), essentially as described in U.S. Patent 4,569,794 which hereby is incorporated by reference. The IMAC method enables rapid isolation of substantially pure peptide starting from a crude cellular extract.

[0041] Other embodiments of the present invention comprise isolated nucleic acid sequences that comprise SEQ ID NO:2, wherein said sequences encode amino acid residues 583 to 672 of SEQ ID NO:2. As skilled artisans will recognize, the amino acid compounds of the invention can be encoded by a multitude of different nucleic acid sequences because most of the amino acids are encoded by more than one codon due to the degeneracy of the genetic code. Because these alternative nucleic acid sequences would encode the same amino acid sequences, the present invention further comprises these alternate nucleic acid sequences.

[0042] Nucleic acids encoding an ECB binding domain of SEQ ID NO:2 may be produced by synthetic methods. Fragments of the proteins disclosed herein may be generated by any number of suitable techniques, including chemical synthesis of a suitable portion of SEQ ID NO:2, proteolytic digestion of SEQ ID NO:2, or most preferably, by recombinant DNA mutagenesis techniques, well known to the skilled artisan. See. e.g. K. Struhl, * Reverse biochemistry: Methods and applications for synthesizing yeast proteins in vitro," Meth. Enzymol. 194, 520-535. For example, in a preferred method, a nested set of deletion mutations are introduced into the intact FKS1 gene (SEQ ID NO:1) encoding the native glucan synthase protein, such that varying amounts of the protein coding region are deleted, either from the amino terminal end, or from the carboxyl end of the protein molecule, and wherein said deletions produce molecules that retain amino acid residues from about 605 to 650, or more preferably amino acid residues from about 583 to 672 of SEQ ID NO:2. Internal fragments of the intact protein can also be produced in which both the carboxyl and amino terminal ends are removed. Several nucleases can be used to generate deletions, for example Bal 31, or in the case of a single stranded nucleic acid molecule, mung bean nuclease. For simplicity, it is preferred that the intact FKS1 gene be cloned into a single-stranded cloning vector, such as bacteriophage M13, or equivalent. If desired, the resulting gene deletion fragments can be subcloned into any suitable vector for propagation and expression of said fragments in any suitable host cell. It is preferred that the fragments be subcloned into a plasmid, for example pGEX-1 (Smith & Johnson, Gene, 67, 31, 1988), enabling the production of a fusion protein comprising an ECB binding domain

[0043] The present invention provides fragments of the intact glucan synthase protein disclosed herein wherein said fragments retain the ability to bind ECB or other echinocandin or papulocandin.

[0044] ECB binding fragments of the intact proteins disclosed herein may be produced as described above, preferably using cloning techniques to produce fragments of the intact *FKS1* gene. Peptide fragments of glucan synthase or fusion proteins comprising a peptide fragment of glucan synthase may be tested for binding activity using any suitable assay. [0045] The synthesis of nucleic acids is well known in the art. *See, e.g.*, E.L. Brown, R. Belagaje, M.J. Ryan, and H. G. Khorana, *Methods in Enzymology*, 68:109-151 (1979). The nucleic acids of this invention could be generated using a conventional DNA synthesizing apparatus, such as the Applied Biosystems Model 380A or 380B DNA synthesizers (Applied Biosystems, Inc., 850 Lincoln Center Drive, Foster City, CA 94404) which employ phosphoramidite chemistry. Alternatively, phosphotriester chemistry may be employed to synthesize the nucleic acids of this invention. [See, e.g., M.J. Gait, ed., Oligonucleotide Synthesis, A Practical Approach, (1984).]

[0046] In an alternative methodology, namely PCR, the nucleic acids comprising a portion or all of SEQ ID NO:1 can be generated from *S. cerevisiae* genomic DNA using suitable oligonucleotide primers complementary to SEQ ID NO:1 or region therein, as described in U.S. Patent No. 4,889,818, which hereby is incorporated by reference. Suitable protocols for performing the PCR are disclosed in, for example, PCR Protocols: A Guide to Method and Applications, Ed. Michael A. Innis et al., Academic Press, Inc. (1990).

[0047] The ribonucleic acids of the present invention may be prepared using the polynucleotide synthetic methods discussed *supra*, or they may be prepared enzymatically using RNA polymerase to transcribe a DNA template.

[0048] The most preferred systems for preparing the ribonucleic acids of the present invention employ the RNA polymerase from the bacteriophage T7 or the bacteriophage SP6. These RNA polymerases are highly specific, requiring the insertion of bacteriophage-specific sequences at the 5' end of the template to be transcribed. See, J. Sambrook, et al., supra, at 18.82-18.84.

[0049] This invention also provides nucleic acids, RNA or DNA, which are complementary to the nucleic acids encoding the ECB binding domain of SEQ ID NO:2.

[0050] The present invention also provides probes and primers useful for a variety of molecular biology techniques including, for example, hybridization screens of genomic or subgenomic libraries. A nucleic acid compound comprising SEQ ID NO:1, or a complementary sequence thereof, or a fragment thereof, and which is at least 18 base pairs in length, and which will selectively hybridize to *Saccharomyces cerevisiae* DNA or mRNA encoding *FKS1*, is provided. Preferably, the 18 or more base pair compound is DNA. A probe or primer length of at least 18 base pairs is dictated by theoretical and practical considerations. *See e.g.* B. Wallace and G. Miyada,

"Oligonucleotide Probes for the Screening of Recombinant DNA Libraries," In <u>Methods in Enzymology</u>, Vol. 152, 432-442, Academic Press (1987).

[0051] These probes and primers can be prepared by enzymatic methods well known to those skilled in the art (See e.g. Sambrook et al. supra). In a most preferred embodiment these probes and primers are synthesized using chemical means as described above.

[0052] Another aspect of the present invention relates to recombinant DNA cloning vectors and expression vectors comprising the nucleic acids of the present invention. Many of the vectors encompassed within this invention are described above. The preferred nucleic acid vectors are those which comprise DNA. The most preferred recombinant DNA vectors comprise nucleic acid encoding the ECB binding domain of SEQ ID NO:2.

[0053] The skilled artisan understands that choosing the most appropriate cloning vector or expression vector depends upon a number of factors including the availability of restriction enzyme sites, the type of host cell into which the vector is to be transfected or transformed, the purpose of the transfection or transformation (e.g., stable transformation as an extrachromosomal element, or integration into the host chromosome), the presence or absence of readily assayable or selectable markers (e.g., antibiotic resistance and metabolic markers of one type and another), and the number of copies of the gene to be present in the host cell.

[0054] Vectors suitable to carry the nucleic acids of the present invention comprise RNA viruses, DNA viruses, lytic bacteriophages, lysogenic bacteriophages, stable bacteriophages, plasmids, viroids, and the like. The most preferred vectors are plasmids.

[0055] When preparing an expression vector the skilled artisan understands that there are many variables to be considered, for example, whether to use a constitutive or inducible promoter. Inducible promoters are preferred because they enable high level, regulatable expression of an operably linked gene. The skilled artisan will recognize a number of inducible promoters which respond to a variety of inducers, for example, carbon source, metal ions, heat, and others. The practitioner also understands that the amount of nucleic acid or protein to be produced dictates, in part, the selection of the expression system. The addition of certain nucleotide sequences is useful for directing the localization of a recombinant protein. For example, a sequence encoding a signal peptide preceding the coding region of a gene, is useful for directing the extra-cellular export of a resulting polypeptide.

[0056] The present invention also provides a method for constructing a recombinant host cell capable of expressing the ECB binding domain of SEQ ID NO:2, said method comprising transforming or otherwise introducing into a host cell a recombinant DNA vector that comprises an isolated DNA sequence encoding amino acid residues from about 583 to 672 of SEQ ID NO:2. Suitable host cells include any strain of *E. coli* or S. *cerevisiae* that can accommodate high level expression of an exogenously introduced gene. Transformed host cells may be cultured under conditions well known to skilled artisans such that the ECB binding domain is expressed, thereby producing ECB binding peptide in the recombinant host cell.

[0057] Agents that bind the ECB binding domain may identify new antifungal compounds. Substances that bind the ECB binding peptide can be identified by contacting the peptide with a test compound and monitoring the interaction by any suitable means.

[0058] The instant invention provides a screening method for discovering compounds that bind the ECB binding peptide, said method comprising the steps of:

- a) preparing the binding peptide, preferably as a fusion protein;
- b) exposing said peptide or protein to a test compound; and
- c) quantifying the binding of said compound to said peptide by any suitable means.

6

[0059] In one embodiment, a protein comprising a fusion of the 89 amino acid residue ECB binding domain of SEQ ID NO:2 and a GST protein is expressed in yeast or *E. coli*, and purified for use in a microtiter plate ELISA screen. The ELISA screen enables an assay for the displacement of ECB from the ECB binding domain by a test compound. Bound ECB, or ECB free in solution can be detected using an ECB-specific antibody prepared using standard methods. If a test compound displaces ECB from the binding domain there will be a diminution in the ELISA signal. This method involves coating the wells of a microtiter plate with, for example, a GST-FKS1 fusion protein. After blocking residual binding sites the plates are rinsed to remove unbound fusion protein and then incubated with ECB. After rinsing again to remove unbound ECB, a test compound is added, incubated, and rinsed to remove unbound test compound or displaced ECB. The plates are then incubated with an antibody against ECB that is covalently linked to alkaline phosphatase (anti-ECB-AP). The plates are developed by adding an appropriate substrate, e.g. p-nitrophenyl phosphate for colorimetric detection, or 4-methylumbelliferyl phosphate for fluorimetric detection.

[0060] This screening method may be adapted to automated procedures such as a PANDEX® (Baxter-Dade Diagnostics) system, allowing for efficient high-volume screening of potential therapeutic agents.

[0061] In such a screening protocol an ECB binding peptide is prepared as described herein, preferably using recombinant DNA technology. A test compound is introduced into the reaction vessel containing the peptide.

[0062] Skilled artisans will recognize that IC_{50} values are dependent on the selectivity of the compound tested. For example, a compound with an IC_{50} which is less than 10 nM is generally considered an excellent candidate for drug therapy. However, a compound which has a lower affinity, but is selective for a particular target, may be an even better candidate. The skilled artisan will recognize that any information regarding inhibitory activity or selectivity of a particular compound is beneficial in the pharmaceutical arts.

[0063] The following examples more fully describe the present invention. Those skilled in the art will recognize that the particular reagents, equipment, and procedures described are merely illustrative and are not intended to limit the present invention in any manner.

EXAMPLE 1

30

50

Expression Vector Encoding the ECB Binding Domain

[0064] A vector for expressing a fusion protein in yeast comprising the ECB binding domain of yeast glucan synthase and glutathione S-transferase (GST) is prepared as follows. Plasmid pGEX-1 (Smith and Johnson, Gene, 67, 31-40, 1988) is an *E. coli* expression vector that comprises the *tac* promoter and the complete coding sequence of Sj26 (viz. GST), in which the normal termination codon is replaced by a polylinker containing unique BamH1, Sma1, and EcoR1 restriction sites, followed by a termination codon in all 3 reading frames. A fragment of pGEX-1 containing the described GST gene is isolated by any suitable subcloning method, well known to the skilled artisan. It is convenient, but not necessary, for subsequent cloning steps, to attach to the fragment containing the GST gene of pGEX-1 oligonucleotides containing specific restriction enzyme sites. For convenience, the GST fragment thus described is cloned into the multiple cloning site of yeast expression vector pREP1 (K. Maundrell, *J. Biol. Chem.* 265, 10857, 1990), in the correct orientation, downstream of the LEU2 gene, and *nmt*1 promoter. pREP1 also contains an ARS element for replication in the host yeast. The resulting plasmid, pREP1-GST, is linearized at any one or more of BamH1, Sma1, or EcoR1 sites at the 3' end of the GST fragment, for cloning in the ECB binding domain.

[0065] A DNA fragment encoding the ECB binding domain of SEQ ID NO:2 is conveniently prepared by PCR. Oligonucleotide primers are prepared for priming DNA synthesis on opposite strands from nucleotide positions 1747 through 2016 of SEQ ID NO:1. It is convenient to include suitable restriction sites at the appropriate 5' or 3' end of the PCR primers for subsequent cloning. The ECB binding fragment so prepared is purified by any suitable method, for example, isolation by get electrophoresis. The purified ECB binding fragment is ligated into pREP1-GST so that the ECB binding fragment is linked to the 3' end of the GST gene. This construct, pREP1-GST-ECB, produces a fusion protein comprising a GST-ECB binding domain.

EXAMPLE 2

E. coli Expression Vector Encoding the ECB Binding Domain

[0066] A vector for expressing a fusion protein in *E. coli* comprising the ECB binding domain of yeast glucan synthase and glutathione S-transferase (GST) is prepared as follows. Plasmid pGEX-1 (Smith and Johnson, Gene, 67, 31-40, 1988) is an *E. coli* expression vector that comprises the *tac* promoter and the complete coding sequence of Sj26 (viz. GST), in which the normal termination codon is replaced by a polylinker containing unique BamH1, Sma1, and EcoR1 restriction sites, followed by a termination codon in all 3 reading frames.

[0067] A DNA fragment encoding the ECB binding domain of SEQ ID NO:2 is conveniently prepared by PCR. Oli-

gonucleotide primers are prepared for priming DNA synthesis on opposite strands, from nucleotide positions 1747 through 2016 of SEQ ID NO:1. It is convenient to design into the oligonucleotide sequence suitable restriction sites at the termini for subsequent cloning steps. The ECB binding fragment so prepared is purified by any suitable method, for example, isolation from a gel following electrophoresis. The purified ECB binding fragment is ligated into pGEX-1 so that the ECB binding fragment is linked to the 3' end of the GST gene. This construct, pGST-ECB, produces a fusion protein comprising a GST-ECB binding domain.

EXAMPLE 3

10 Expression of ECB Fusion Protein in S. pombe

[0068] Expression plasmid pREP1-GST-ECB (Example 1) is transformed into any suitable strain of *S. pombe*, for example, a leul strain (*See e.g.* R. Sikorski & P. Hieter, *Genetics*, 122, 19-26, 1989; K. Maundrell, *J. Biol. Chem.* 265, 10857, 1990) using standard methods, for example, spheroplast transformation, or lithium acetate transformation (*See e.g.* Sambrook *et al. Supra*; Okazaki *et al. Nuc. Acid Res.* 18, 6485-89 (1990); Moreno *et al. Meth.Enzym.* 194, 795-823 (1991). Transformants, chosen at random, are tested for the presence of the plasmid by agarose gel electrophoresis using quick plasmid preparations. *Id.* Transformants are grown overnight under conditions suitable to induce the *nmt*1 promoter, for example, in minimal medium lacking thiamine (Beach & Nurse, *Nature*, 290, 140, 1981). The overnight culture was diluted into fresh medium and allowed to grow to mid-log phase. The induced-culture was pelleted by centrifugation in preparation for protein purification.

EXAMPLE 4

20

25

30

35

40

45

50

55

Affinity Purification of a Recombinantly-Produced ECB Binding Domain

[0069] Overnight cultures of transformed *E. coli* or yeast cells, (*See e.g.* Example 3), are lysed by sonication with glass beads, or by spheroplast formation in MTPBS (150 mM NaCl, 16 mM Na₂HPO₄, 4 mM NaH₂PO₄ (pH 7.3) and including 1% Triton X-100 (BDH Chemicals). Lysed cells are subjected to centrifugation at 10,000 x g for 5 minutes at 4° C. The supernatant is mixed on a rotating platform with 1 to 2 ml 50% glutathione-agarose beads (sulphur linkage, Sigma). After absorption for 2 minutes, beads are collected by brief centrifugation at 500 x g and washed 3 times with 50 ml MTPBS. Fusion protein is eluted by competition with free glutathione, using 2 x 2 minute washes with 1 bead volume of 50 mM Tris HCl, pH 8, containing 5 mM reduced glutathione (Sigma), pH 7.5.

Annex to the description

[0070]

5

SEQUENCE LISTING

	(1) GENERAL INFORMATION:	
10 15	(i) APPLICANT: ELI LILLY AND COMPANY (B) STREET: Lilly Corporate Center (C) CITY: Indianapolis (D) STATE: Indiana (E) COUNTRY: United States of America (F) ZIP: 46285	
	(ii) TITLE OF INVENTION: Echinocandin Binding Site of 1,3-B-Glucan Synthase	
	(iii) NUMBER OF SEQUENCES: 2	
20	(iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: A. M. Denholm (B) STREET: Erl Wood Manor (C) CITY: Windlesham (D) STATE: Surrey (E) COUNTRY: United Kingdom	
25	(F) ZIP: GU20 6PH	
30	(v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.30	!
	(2) INFORMATION FOR SEQ ID NO:1:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5631 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
40	(iv) ANTI-SENSE: NO	
	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 15628	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
	ATG AAC ACT GAT CAA CAA CCT TAT CAG GGC CAA ACG GAC TAT ACC CAG Met Asn Thr Asp Gln Gln Pro Tyr Gln Gly Gln Thr Asp Tyr Thr Gln 1 5 10 15	48
50	GGA CCA GGT AAC GGG CAA AGT CAG GAA CAA GAC TAT GAC CAA TAT GGC Gly Pro Gly Asn Gly Gln Ser Gln Glu Gln Asp Tyr Asp Gln Tyr Gly 20 25 30	96
	CAG CCT TTG TAT CCT TCA CAA GCT GAT GGT TAC TAC GAT CCA AAT GTC Gln Pro Leu Tyr Pro Ser Gln Ala Asp Gly Tyr Tyr Asp Pro Asn Val	144
<i>55</i>	35 40 45	

	GCT GCT Ala Ala 50	Gly								192
5	TCT TAC Ser Ty: 65									240
10	AAT ATO Asn Met									288
•	GGC CCT Gly Pro									336
15	GCT TC' Ala Se		Met							384
20	CCA ATT	Yr e								432
20	AAT GAA Asn Glu 145									480
25	ATC GAG									52 ' β
	TTC CA									576
30	TTG GAG									624
35	TTA CAT Leu Hi: 21	s Ala								672
	TAT TT Tyr Pho 225									720
40	ATG AG Met Se								Lys	768
	AAC AAG Asn Ly									816
45	TTA AAG Leu Asi									864
50	TGG AAG Trp Lys 29	s Ala								912

	ATC Ile 305	GCC Ala	TTA Leu	TAT Tyr	CTG Leu	TTA Leu 310	TGT Cys	TGG Trp	GGT Gly	GAA Glu	GCT Ala 315	AAT Asn	CAA Gln	GTC Val	AGA Arg	TTC Phe 320		960
5					TTA Leu 325												1	800
10					TGC Cys												:	056
					GTC Val												1	.104
15					GTT Val												1	.152
20					GGT Gly												1	.200
20					AAG Lys 405												1	248
25			Leu		GAA Glu												1	.29 ⁶
					AAA Lys												1	344
30					AAC Asn												1	.392
<i>35</i>					TAT Tyr												1	.440
33					AAC Asn 485												1	.488
40					ACT Thr												1	.536
					TTC Phe												1	.584
45					TGG Trp												1	.632
					GTT Val												1	.680
50	GCT	GCA	CAC	GTT	GTT	GCT	GCT	GTT	ATG	TTC	TTT	GTT	GCG	GTT	GCT	ACC	1	728

	Ala	Ala	His	Vāl	Val 565	Ala	Ala	Val	Met	Phe 570	Phe	Val	Ala	Val	Ala 575	Thr	
5								CCA Pro									1776
10	ATC Met	AAA Lys	AAA Lys 595	TCT Ser	ACA Thr	AGG Arg	CGT Arg	TAT Tyr 600	GTT Val	GCA Ala	TCT Ser	CAA Gln	ACA Thr 605	TTC Phe	ACT Thr	GCT Ala	1324
,,,								TTA Leu									1872
15								AAA Lys									1920
								ATT Ile									1968
20								TGG Trp									2016
25	CCC Pro	AAG Lys	ATT Ile 675	GTC Val	TTA Leu	GGT Gly	TTG Leu	GTT Val 680	ATC Ile	GCT Ala	ACC Thr	GAC Asp	TTC Phe 685	ATT Ile	CTT Leu	TTC Phe	2054
20								TAC Tyr									2112
30								GGT Gly									2160
								AAA Lys									2208
35					Glu			TAC Tyr									2256
40								TCA Ser 760									2304
								CTA Leu									2352
45								GCT Ala									2400
								TTT Phe									2448
50								CAA Gln									2496

•		820	825	830	
5		Val Asp Asn Me		ACA GTA TTG ACT CCT Thr Val Leu Thr Pro 845	
		Arg Ile Leu Le		GAA ATT ATT CGT GAA Glu Ile Ile Arg Glu 860	
10			Thr Leu Leu Glu '	TAT CTA AAA CAA TTA Tyr Leu Lys Gln Leu 875	
45				ACT AAG ATT TTG GCT Thr Lys Ile Leu Ala 895	Glu
15				GAA GCT GAA AAG GAA Glu Ala Glu Lys Glu 910	
20		Ser Gln Ile A		TTT TAT TGT ATT GGT Phe Tyr Cys Ile Gly 925	
		Ala Pro Glu T		ACG AGA ATT TGG GCT Thr Arg Ile Trp Ala 940	
25			Tyr Arg. Thr. Ile:	TCA GGG TTC ATG AAT Ser Gly Phe Met Asn 955	
30				GAA AAT CCT GAA ATT Glu Asn Pro Glu Ile 975	Val
				GAA AGA GAG CTA GAA Glu Arg Glu Leu Glu 990	
35		Arg Lys Phe Ly		TCT ATG CAG AGA TTG Ser Met Gln Arg Leu 1005	
		Pro His Glu L		GAG TTT TTG TTG AGA Glu Phe Leu Leu Arg 1020	
40			Ala Tyr Leu Asp	GAA GAG CCA CCT TTG Glu Glu Pro Pro Leu 1035	
45				TTG ATT GAT GGA CAT Leu Ile Asp Gly His 105	Cys
				AAG TTT AGA GTT CAA Lys Phe Arg Val Glo 1070	
50	TCT GGT AAC Ser Gly Asn 107	Pro Ile Leu G	GGT GAC GGT AAA ' Gly Asp Gly Lys : 1080	TCT GAT AAC CAA AAC Ser Asp Asn Gln Asn 1085	CAT4 His

5	GCT Ala	TTG Leu 109	ATT Ile	TTT Phe	TAC Tyr	AGA Arg	GGT Gly 109	Glu	TAC Tyr	ATT Ile	CAA Gln	TTA Leu 110	Ile	GAT Asp	GCC Ala	AAC Asn	3312
J	110	Asp 5	AAC Asn	Tyr	Leu	Glu 111	Glu C	Cys	Leu	Lys	Ile 111	Arg 5	Ser	Val	Leu	Ala 1120	3360
10	GAA Glu	TTT Phe	GAG Glu	GAA Glu	TTG Leu 112	Asn	GTT Val	GAA Glu	CAA Gln	GTT Val 113	Asn	CCA Pro	TAT Tyr	GCT Ala	CCC Pro 113	Gly	3408
	Leu	Arg	тат Туг	Glu 114	Glu O	Gln	Thr	Thr	Asn 114	His 5	Pro	Val	Ala	11e 115	Val O	Gly	3456
15	Ala	Arg	GAA Glu 115	Tyr 5	Ile	Phe	Ser	Glu 116	Asn O	Ser	Gly	Val	Leu 116	Gly 5	Asp	Val	3504
20	Ala	117		Lys	Glu	Gln	Thr 1179	Phe S	Gly	Thr	Leu	Phe 118	Ala	Arg	Thr	Leu	3552
	118:	Gin 5	ATT	Gly	Gly	Lys 119	Leu)	His	Tyr	Gly	His 119	Pro 5	Asp	Phe	Ile	Asn 1200	3600
25	 Ala	Thr		Met	Thr 1205	Thr	Arg	Gly	Gly	Val 121	Ser	Lys	Ala	Gln	Lys 121	Gly	3648
	rea	nıs	TTA Leu	1220	Giu	Asp	Ile	Tyr	Ala 122	Gly 5	Met	Asn	Ala	Met 1230	Leu)	Arg	3696
30	GIY	GIA	CGT Arg 123	Ile	Lys	His	Cys	Glu 1240	Tyr)	Tyr	Gln	Cys	Gly 1245	Lys	Gly	Arg	3744
35	 Asp	Leu 125		Phe	Gly	Thr	Ile 1255	Leu	Asņ	Phe	Thr	Thr 1260	Lys	Ile	Gly	Ala	3792
	1265	Met	GGT Gly	Glu	Gln	Met 1270	Leu)	Ser	Arg	Glu	Tyr 1275	Tyr	Tyr	Leu	Gly	Thr 1280	3840
40	Gin	Leu	CCA Pro	Val	Asp 1285	Arg	Phe	Leu	Thr	Phe 1290	Tyr)	Tyr	Ala	His	Pro 1295	Gly	3888
	Pne	HIS	TTG Leu	1300	Asn)	Leu	Phe	Ile	Gln 1305	Leu	Ser	Leu	Gln	Met 1310	Phe	Met	3936
45	reu	Inr	TTG Leu 1315	val	Asn	Leu	Ser	Ser 1320	Leu	Ala	His	Glu	Ser 1325	Ile	Met	Cys	3984
50	ATT Ile	TAC Tyr 1330	GAT Asp	AGG Arg	AAC Asn	Lys	CCA Pro 1335	Lys	ACA Thr	GAT Asp	GTT Val	TTG Leu 1340	Val	CCA Pro	ATT Ile	GGG Gly	4032

--

5	TGT Cys 134	TAC Tyr	AAC Asn	TTC Phe	CAA Gln	CCT Pro 135	Ala	GTT Val	GAT Asp	TGG Trp	GTG Val 135	Arg	CGT Arg	TAT Tyr	ACA Thr	TTG Leu 1360	4080
	TCT Ser	ATT Ile	TTC Phe	ATT Ile	GTT Val 136	Phe	TGG Trp	ATT Ile	GCC Ala	TTC Phe 137	Val	CCT Pro	ATT Ile	GTT Val	GTT Val 137	Gln	4128
10	GAA Glu	CTA Leu	ATT Ile	GAA Glu 138	Arg	GGT Gly	CTA Leu	TGG Trp	AAA Lys 138	Ala	ACC Thr	CAA Gln	AGA Arg	TTT Phe 139	Phe	TGC Cys	4176
	CAC His	CTA Leu	TTA Leu 139	Ser	TTA Leu	TCC Ser	CCT Pro	ATG Met 140	Phe	GAA Glu	GTG Val	TTT Phe	GCG Ala 140	Gly	CAA Gln	ATC Ile	4224
15	Tyr	TCT Ser 141	Ser O	Ala	Leu	Leu	Ser 141	Asp	Leu	Ala	Ile	Gly 1420	Gly	Ala	Arg	Tyr	4272
20	11e 142		Thr	Gly	Arg	Gly 1430	Phe)	Ala	Thr	Ser	Arg 143	Ile 5	Pro	Phe	Ser	Ile 1440	4320
	Leu.	TAT Tyr	Ser	Arg	Phe 1449	Ala	Gly	Ser	Ala	11e 145	Tyr)	Met	Gly	Ala	Arg 145	Ser 5	4368 !
25	met	TTA Leu	met	1460	Leu)	Phe	Gly	Thr	Val 146	Ala	His	Trp	Gln	Ala 1470	Pro	Leu	4415
	Leu	TGG Trp	Phe 1475	Trp	Ala	Ser	Leu	Ser 1480	Ser	Leu	Ile	Phe	Ala 1485	Pro	Phe	Val	4464
30	Pne	AAT Asn 1490	Pro	His	Gln	Phe	Ala 1495	Trp	Glu	Asp	Phe	Phe 1500	Leu)	Asp	Tyr	Arg	4512
35	150!		TT6	Arg	Trp	Leu 1510	Ser	Arg	Gly	Asn	Asn 151	Gln	Tyr	His	Arg	Asn 1520	4560
	261	TGG Trp	116	GIĀ	1525	vai	Arg	Met	Ser	Arg 1530	Ala	Arg	Ile	Thr	Gly 1539	Phe 5	4608
40	Lys	Arg	ьys	1540	Vai	Gly	Asp	Glu	Ser 1545	Glu	Lys	Ala	Ala	Gly 1550	Asp)		4656
	ser	AGG Arg	A1a 1555	His	Arg	Thr	Asn	Leu 1560	Ile	Met	Ala	Glu	Ile 1565	Ile	Pro	Суз	4704
45	Ala ,	ATT Ile 1570	Tyr	Ala	Ala	Gly	Cys 1575	Phe	Ile	Ala	Phe	Thr 1580	Phe	Ile	Asn	Ala	4752
50	CAA Gln 1585	ACC Thr	GGT Gly	GTC Val	Lys	ACT Thr 1590	Thr	GAT Asp	GAT Asp	GAT Asp	AGG Arg 1595	Val	AAT Asn	TCT Ser	GTT Val	TTA Leu 1600	4800
	CGT	ATC	ATC .	TTA	TGT	ACC	TTG	GCG	CCA	ATC	GCC	GTT	AAC	CTC	GGT	GTT	4848

	Arg Ile Ile Cys Thr Leu Ala Pro Ile Ala Val Asn Leu Gly Val 1605 1610 1615	
5	CTA TTC TTC TGT ATG GGT ATG TCA TGC TGC TCT GGT CCC TTA TTT GGT 4895 Leu Phe Phe Cys Met Gly Met Ser Cys Cys Ser Gly Pro Leu Phe Gly 1620 1625 1630	
	ATG TGT TGT AAG AAG ACA GGT TCT GTA ATG GCT GGA ATT GCC CAC GGT Met Cys Cys Lys Lys Thr Gly Ser Val Met Ala Gly Ile Ala His Gly 1635 1640 1645	
10	CTT GCT GTT ATT GTC CAC ATT GCC TTT TTC ATT GTC ATG TGG GTT TTG 4992 Val Ala Val Ile Val His Ile Ala Phe Phe Ile Val Met Trp Val Leu 1650 1660	
15	GAG AGC TTC AAC TTT GTT AGA ATG TTA ATC GGA GTC GTT ACT TGT ATC Glu Ser Phe Asn Phe Val Arg Met Leu Ile Gly Val Val Thr Cys Ile 1665 1670 1675 1680	
	CAA TGT CAA AGA CTC ATT TTT CAT TGC ATG ACA GCG TTA ATG TTG ACT 5088 Gln Cys Gln Arg Leu Ile Phe His Cys Met Thr Ala Leu Met Leu Thr 1685 1690 1695	
20	CGT GAA TTT AAA AAC GAT CAT GCC AAT ACA GCC TTC TGG ACT GGT AAG Arg Glu Phe Lys Asn Asp His Ala Asn Thr Ala Phe Trp Thr Gly Lys 1700 1705 1710	
	TGG TAT GGT AAA GGT ATG GGT TAC ATG GCT TGG ACC CAG CCA AGT AGA Trp Tyr Gly Lys Gly Met Gly Tyr Met Ala Trp Thr Gln Pro Ser Arg 1715 1720 1725	
25	GAA TTA ACC GCC AAG GTA ATT GAG CTT TCA GAA TTT GCA GCT GAT TTT 5232 Glu Leu Thr Ala Lys Val Ile Glu Leu Ser Glu Phe Ala Ala Asp Phe 1730 1735 1740	
30	GTT CTA GGT CAT GTG ATT TTA ATC TGT CAA CTG CCA CTC ATT ATA ATC Val Leu Gly His Val Ile Leu Ile Cys Gln Leu Pro Leu Ile Ile Ile 1745 1750 1755 1760	,
	CCA AAA ATA GAT AAA TTC CAC TCG ATT ATG CTA TTC TGG CTA AAG CCC 5328 Pro Lys Ile Asp Lys Phe His Ser Ile Met Leu Phe Trp Leu Lys Pro 1765 1770 1775	
35	TCT CGT CAA ATT CGT CCC CCA ATT TAC TCT CTG AAG CAA ACT CGT TTG . 5376 Ser Arg Gln Ile Arg Pro Pro Ile Tyr Ser Leu Lys Gln Thr Arg Leu 1780 1785 1790	
	CGT AAG CGT ATG GTC AAG AAG TAC TGC TCT TTG TAC TTT TTA GTA TTG Arg Lys Arg Met Val Lys Lys Tyr Cys Ser Leu Tyr Phe Leu Val Leu 1795 1800 1805	
40	GCT ATT TTT GCA GGA TGC ATT ATT GGT CCT GCT GTA GCC TCT GCT AAG Ala Ile Phe Ala Gly Cys Ile Ile Gly Pro Ala Val Ala Ser Ala Lys 1810 1820	
45	ATC CAC AAA CAC ATT GGA GAT TCA TTG GAT GGC GTT GTT CAC AAT CTA 5520 Ile His Lys His Ile Gly Asp Ser Leu Asp Gly Val Val His Asn Leu 1825 1830 1835 1840	1
	TTC CAA CCA ATA AAT ACA ACC AAT AAT GAC ACT GGT TCC CAA ATG TCA 5568 Phe Gln Pro Ile Asn Thr Thr Asn Asn Asp Thr Gly Ser Gln Met Ser 1845 1850 1855	i
50	ACT TAT CAA AGT CAC TAC TAT ACT CAT ACG CCA TCA TTA AAG ACC TGG Thr Tyr Gln Ser His Tyr Tyr Thr His Thr Pro Ser Leu Lys Thr Trp	,

				1000	,				100	•				10/	U		
5		ACT Thr			TAA												5631
	(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO : 2	:								
10			(i)	(B)	LEI TYI	NGTH	: 18°	ERIST 76 ar 5 aci	mino id		ds						
		{:	ii)	MOLEC	CULE	TYPE	E: p:	rote	in								
		()	xi) :	SEQUE	ENCE	DESC	RIP	rion	: SE	Q ID	NO:	2 :					
15	Met 1	Asn	Thr	Asp	Gln 5	Gln	Pro	Tyr	Gln	Gly 10	Gln	Thr	Asp	Tyr	Thr 15	Gln	
	Gly	Pro	Gly	Asn 20	Gly	Gln	Ser	Gln	Glu 25	Gln	Asp	Tyr	Asp	Gln 30	туг	Gly	
20	Gln	Pro	Leu 35	Tyr	Pro	Ser	Gln	Ala 40	Asp	Gly	Tyr	Туr	Asp 45	Pro	Asn	Val	
	Ala	Ala 50	Gly	Thr	Glu	Ala	Asp 55	Met	Tyr	Gly	Gln	Gln 60	Pro	Pro	Asn	Glu	
25	Ser 65	Tyr	Asp	Gln	Asp	Туг 70	Thr	Asn	Gly	Glu	Tyr 75	Tyr	Gly	G1n	Pro	Pro .80	•
	Asn	Met	Ala	Ala	Gln 85	Asp	Gly	Glu	Asn	Phe 90	ser	Asp	Phe	Ser	Ser 95	Tyr	
30	Gly	Pro	Pro	Gly 100	Thr	Pro	Gly	Tyr	Asp 105	Ser	Tyr	Gly	Gly	Gln 110	Tyr	Thr	
	Ala	Ser	Gln 115	Met	Ser	Tyr	Gly	Glu 120	Pro	Asn	Ser	Ser	Gly 125	Thr	Ser	Thr	
35	Pro	11e 130		Gly			Asp 135	Pro	Asn		Ile	Ala 140	Met	Ala	Leu	Pro	
	Asn 145	Glu	Pro	Tyr	Pro	Ala 150	Trp	Thr	Ala	Asp	Ser 155	Gln	Ser	Pro	Val	Ser 160	
	Ile	Glu	Gln	Ile	Glu 165	Asp	Ile	Phe	Ile	Asp 170	Leu	Thr	Asn	Arg	Leu 175	Gly	
40	Phe	Gln	Arg	Asp 180	Ser	Met	Arg	Asn	Met 185	Phe	Asp	His	Phe	Met 190	Val	Leu	
	Leu	Asp	Ser 195	Arg	Ser	Ser	Arg	Met 200	Ser	Pro	Asp	Gln	Ala 205	Leu	Leu	Ser	
45	Leu	His 210	Ala	qzA	Tyr	Ile	Gly 215	Gly	Asp	Thr	Ala	Asn 220	Tyr	Lys	Lys	Trp	
	Tyr 225	Phe	Ala	Ala	Cln	Leu 230	Asp	Met	Asp	Asp	Glu 235	Ile	Gly	Phe	Arg	Asn 240	
50	Met	Ser	Leu	Gly	Lys 245	Leu	Ser	Arg	Lys	Ala 250	Arg	Lys	Ala	Lys	Lys 255	Lys	

	Asn	Ĺys	Lys	Ala 260	Met	Glu	Glu	Ala	Asn 265	Pro	Glu	Asp	Thr	Glu 270	Glu	Thr
5	Leu	Asn	Lys 275	Ile	Glu	Gly	Asp	Asn 280	Ser	Leu	Glu	Ala	Ala 285	Asp	Phe	Arg
	Trp	Lys 290	Ala	Lys	Met	Asn	Gln 295	Leu	Ser	Pro	Leu	Glu 300	Arg	Val	Arg	His
10	Ile 305	Ala	Leu	Tyr	Leu	Leu 310	Cys	Trp	Gly	Glu	Ala 315	Asn	Gln	Val	Arg	Phe 320
	Thr	Ala	Glu	Сув	Leu 325	Cys	Phe	Ile	Tyr	Lys 330	Cys	Ala	Leu	Asp	Tyr 335	Leu
15	Asp	Ser	Pro	Leu 340	Суs	Gln	Gln	Arg	Gln 345	Glu	Pro	Met	Pro	Glu 350	Gly	Asp
	Phe	Leu	Asn 355	Arg	Val	Ile	Thr	Pro 360	Ile	Tyr	His	Phe	11e 365	Arg	Asn	Gln
20	Val	Tyr 370	Glu	Ile	Val	Asp	Gly 375	Arg	Phe	Val	Lys	Arg 380	Glu	Arg	Asp	His
	Asn 385	Lys	Ile	Val	Gly	Tyr 390		Asp	Leu	Asn	Gln 395	Leu	Phe	Trp	Tyr	Pro 400
25	Glu	Gly	Ile	Ala	Lys 405	lle	Val	Leu	Glu	Asp 410	Gly	Thr	Lys	Leu	Ile 415	Glu
	Leu	Pro	Leu	Glu 420	Glu	Arg	Tyr	Leu	Arg 425	Leu	Gly	Asp	Val	Val 430	Trp	Asp
30	Asp	Val	Phe 435	Phe	Lys	Thr	Tyr	Lys 440	Glu	Thr	Arg	Thr	Trp 445	Leu	His	Leu
	Val	Thr 450	Asn	Phe	Asn	Arg	Ile 455	Trp	Val	Met	His	Ile 460	Ser	Ile	Phe	Trp
<i>35</i>	Met 465	Tyr	Phe	Ala	Tyr	Asn 470	Ser	Pro	Thir	Phe	Tyr 475	Thr	His	Asn	Tyr	Gln 480
	Gln	Leu	Val	Asp	Asn 485	Gln	Pro	Leu	Ala	Ala 490	Tyr	Lys	Trp	Ala	Ser 495	Cys
40	Ala	Leu	Gly	Gly 500	Thr	Val	Ala	Ser	Leu 505	Ile	Gln	Ile	Val	Ala 510	Thr	Lėu
•	Cys	Glu	Trp 515	Ser	Phe	Va1	Pro	Arg 520	Lys	Trp	Ala	Gly	Ala 525	Gln	His	Leu
45	Ser	Arg 530	Arg	Phe	Trp	Phe	Leu 535	Cys	Ile	Ile	Phe	Gly 540	Ile	Asn	Leu	Gly
	Pro 545	Ile	Ile	Phe	Val	Phe 550	Ala	Tyr	Asp	Lys	Asp 555	Thr	Val	Tyr	Ser	Thr 560
50	Ala	Ala	His	Val	Val 565	Ala	Ala	Val	Met	Phe 570	Phe	Val	Ala	Val	Ala 575	Thr
	Ile	Ile	Phe	Phe 580	Ser	Ile	Met	Pro	Leu 585	Gly	Gly	Leu	Phe	Thr 590	Ser	Tyr
55	Met	Lys	Lys	Ser	Thr	Arg	Arg	Tyr	Val	Ala	Ser	Gln	Thr	Phe	Thr	Ala

			595					600					605			
5	Ala	Phe 610	Ala	Pro	Leu	His	Gly 615	Leu	Asp	Arg	Trp	Met 620	Ser	Tyr	Leu	Val
	Trp 625	Val	Thr	Val	Phe	Ala 630	Ala	Lys	Tyr	Ser	Glu 635	Ser	Tyr	Tyr	Phe	Leu 640
10	Val	Leu	Ser	Leu	Arg 645	Asp	Pro	Ile	Arg	Ile 650	Leu	Ser	Thr	Thr	Ala 655	Met
,,	Arg	Cys	Thr	Gly 660	Glu	Tyr	Trp	Trp	Gly 665	Ala	Val	Leu	Cys	Lys 670	Val	Gln
15	Pro	Lys	Ile 675	Val	Leu	Gly	Leu	Val 680	Ile	Ala	Thr	Asp	Phe 685	Ile	Leu	Phe
	Phe	Leu 690	Asp	Thr	Tyr	Leu	Trp 695	Tyr	Ile	Ile	Val	Asn 700	Thr	Ile	Phe	Ser
20	Val 705	Gly	Lys	Ser	Phe	Tyr 710	Leu	Gly	Ile	Ser	Ile 715	Leu	Thr	Pro	Trp	Arg 720
	Asn	Ile	Phe	Thr	Arg 725	Leu	Pro	Lys	Arg	Ile 730	Tyr	Ser	Lys	Ile	Leu 735	Ala
25	Thr	Thr	Asp	Met 740	Glu	Ile	Lys	Tyr	Lys 745	Pro	Lys	Val	Leu	Ile 750	Ser	Gln
	Val	Trp	Asn 755	Ala	Ile	Ile	Ile	Ser 760	Met	Tyr	Arg	Glu	His 765	Leu	Leu	Ala
30	Ile	Asp 770	His	Val	Gln	Lys	Leu 775	Leu	Tyr	His	Gln	Val 780	Pro	Ser	Glu	Ile
00	Glu 785	Gly	Lys	Arg	Thr	Leu 790	Arg	Ala	Pro	Thr	Phe 795	Phe	Val	Ser	Gln	Asp 800
<i>35</i>	Asp	Asn	Asn	Phe	Glu 805	Thr	Glu	Phe	Phe	Pro 810	Arg	Asp	Ser	Glu	Ala 815	Glu
55	Arg	Arg	Ile	Ser 820	Phe	Phe	Ala	Gln	Ser 825	Leu	Ser	Thr	Pro	Ile 830	Pro	Glu
40	Pro	Leu	Pro 835	Val	Asp	Asn	Met	Pro 840	Thr	Phe	Thr	Val	Leu 845	Thr	Pro	His
40	Туг	Ala 850	Glu	Arg	Ile	Leu	Leu 855	Ser	Leu	Arg	Glu	11e 860	Ile	Arg	Glu	Asp
45	Asp 865	Gln	Phe	Ser	Arg	Val 870	Thr	Leu	Leu	Glu	Tyr 875	Leu	Lys	Gln	Leu	His 880
45			Glu		885					890					895	
	Glu	Thr	Ala	Ala 900	Tyr	Glu	Gly	Asn	Glu 905	Asn	Glu	Ala	Glu	Lys 910	Glu	Asp
50			Lys 915					920					925			
	Lys	Ser 930	Ala	Ala	Pro	Glu	Tyr 935	Thr	Leu	Arg	Thr	Arg 940	Ile	Trp	Ala	Ser
55																

	Leu Ar 945	g Ser	Gln	Thr	Leu 950	Tyr	Arg	Thr	Ile	Ser 955	Gly	Phe	Met	Asn	Туг 960
5	Ser Ar	g Ala	Ile	Lys 965	Leu	Leu	Tyr	Arg	Val 970	Glu	Asn	Pro	Glu	11e 975	Val
	Gln Me	t Phe	Gly 980	Gly	Asn	Ala	Glu	Gly 985	Leu	Glu	Arg	Glu	Leu 990	Glu	Lys
10	Met Al	a Arg 995	Arg	Lys	Phe	Lys	Phe 1000		Val	Ser	Met	Gln 1005		Leu	Ala
	Lys Ph	e Lys 10	Pro	His	Glu	Leu 1015		Asn	Ala	Glu	Phe 1020		Leu	Arg	Ala
15	Tyr Pr 1025	o Asp	Leu	Gln	11e 1030		Tyr	Leu	Asp	Glu 1035		Pro	Pro	Leu	Thr 1040
	Glu Gl	y Glu	Glu	Pro 1045		Ile	Tyr	Ser	Ala 1050		Ile	Asp	Gly	His 1055	-
20	Glu Il	e Leu	Asp 1060		Gly	Arg	Arg	Arg 1065		Lys	Phe	Arg	Val 1070		Leu
•	Ser Gl	y Asn 107		Ile	Leu	Gly	Asp 1080		Lys	Ser	Asp	Asn 1085		Asn	His
25	Ala Le 10	u Ile 90	Phe	Tyr	Arg	Gly 1095		Tyr	Ile	Gln	Leu 1100		Asp	Ala	Asn ·
	Gln As 1105	p Asn	Tyr	Leu	Glu 1110		Cys	Leu	Lys	11e 1115		Ser	Val	Leu	Ala 1120
30	Glu Ph	e Glu	Glu	Leu 1125		Val	Glu	Gln	Val 1130		Pro	Tyr	Ala	Pro 1135	_
	Leu Ar	g Tyr	Glu 1140		Gln	Thr	Thr	Asn 1145		Pro	Val	Ala	11e 115		Gly
35	Ala Ar	g Glu 115		Ile	Phe	Ser	Glu 1160		Ser	Gly	Val	Leu 1169		Asp	Val
r	Ala Al 11	a Gly 70	Ĺys	Glu	Gln	Thr 1175		Gly	Thr	Leu	Phe 1180		Arg	Thr	Leu
40 .	Ser Gl 1185	n Ile	GJA	Gly	Lys 1190		His	Tyr	Gly	His 1199		Asp	Phe	Ile	Asn 1200
	Ala Th	r Phe	Met	Thr 1205		Arg	Gly	Gly	Val 1210		Lys	Ala	Gln	Lys 121	_
45	Leu Hi	s Leu	Asn 1220		Asp	Ile	Tyr	Ala 122		Met	Asn	Ala	Met 1230		Arg
	Gly Gl	123	5				1240)				124	5		
50		50				1255	5				1260)		-	
	Gly Me 1265				1270)				1279	5				1280
55	Gln Le	u Pro	Val	Asp 1285		Phe	Leu	Thr	Phe 1290		Tyr	Ala	His	Pro 1299	

5	Phe	His	Leu	Asn 130	Asn 0	Leu	Phe	Ile	Gln 130		Ser	Leu	Gln	Met 131		Met
J	Leu	Thr	Leu 131	Val	Asn	Leu	Ser	Ser 132	Leu 0	Ala	His	Glu	Ser 132		Met	Cys
10	Ile	Tyr 133	Asp 0	Arg	Asn	Lys	Pro 133	Lys 5	Thr	Asp	Val	Leu 134	Val 0	Pro	Ile	Gly
,,,	Суs 134	Tyr 5	Asn	Phe	Gln	Pro 135	Ala O	Val	Asp	Trp	Val 135		Arg	Tyr	Thr	Leu 1360
15	Ser	Ile	Phe	lle	Val 136		Trp	Ile	Ala	Phe 137		Pro	Ile	Val	Val 137	
				138					138	5				139	0	_
20			139	כ	Leu			140	0				140	5		
		141	U		Leu		141	•				1420				
25	142	•			Arg	1430)				1435	5				1440
					Phe 1445	•				1450)				145	5
30		-		146					146	5				1470)	
			14/	5	Ala			1480)				1485	5		
35		1490	J		Gln		1495	•				1500)			
	1502	•			Trp	1510)				1515	•			-	1520
40 .					Tyr 1525)				1530)		,		1535	•
				1540					1545	•				1550		
45			100:	•	Arg			1560)				1565			
		13/0	,		Ala		1575					1580				
50	1363					1590					1595					1600
50					Cys 1605					1610					1615	
				1020					1625				*	1630		
55	met	Cys	Cys	Lys	Lys '	Thr (Gly	Ser	Val	Met .	Ala	Gly	Ile	Ala	His	Gly

			1635	5				1640)				1649	5		
5	Val	Ala 1650	Val	Ile	Val	His	Ile 1655		Phe	Phe	Ile	Val 1660		Trp	Val	Leu
	Glu 1665		Phe	Asn	Phe	Val 1670		Met	Leu	Ile	Gly 1675		Val	Thr	Cys	Ile 1680
10	Gln	Cys	Gln	Arg	Leu 1685		Phe	His	Cys	Met 1690		Ala	Leu	Met	Leu 1695	
	Arg	Glu	Phe	Lys 1700		Asp	His	Ala	Asn 1705		Ala	Phe	Trp	Thr 1710	-	Lys
15	Trp	Tyr	Gly 1715		Gly	Met	Gly	Tyr 1720		Ala	Trp	Thr	Gln 1725		Ser	Arg
	Glu	Leu 1730	Thr	Ala	Lys	Val	Ile 1735		Leu	Ser	Glu	Phe 1740		Ala	Asp	Phe
20	Val 1745		Gly	His	Val	Ile 1750		Ile	CĀ	Gln	Leu 1755		Leu	Ile	Ile	Ile 1760
	Pro	Lys	Ile	Asp	Lys 1765		His	Ser	Ile	Met 1770		Phe	Trp	Leu	Lys 1775	
25	Ser	Arg	Gln	Ile 1780		Pro	Pro	Ile	Tyr 1785		Leu	Lys	Gln	Thr 1790	_	Leu
	Arg	Lys	Arg 1795		Val	Lys	Lys	Tyr 1800		Ser	Leu	Tyr	Phe 1805		Val	Leu
30	Ala	Ile 1810	Phe)	Ala	Gly	Cys	Ile 1815		Gly	Pro	Ala	Val 1820		Ser	Ala	Lys
	Ile 1825		Lys	His	Ile	Gly 1830		Ser	Leu	Asp	Gly 1835		Val	His	Asn	Leu 1840
35	Phe	Gln	Pro	Ile	Asn 1845		Thr	Asn	Asn	Asp 1850		Gly	Ser	Gln	Met 1855	
	Thr	Tyr	Gln	Ser 1860		Tyr	Tyr	Thr	His 1865		Pro	Ser	Leu	Lys 1870		Trp
40	Ser	Thr	Ile 1875		-											

Claims

45

50

- 1. A substantially pure ECB binding peptide comprising at least 46 contiguous amino acid residues of SEQ ID NO:2.
 - 2. A substantially pure ECB binding peptide, as in Claim 1 comprising the amino acid sequence defined by residues 605 to 650 of SEQ ID NO:2.
 - 3. An isolated nucleic acid compound encoding a peptide of Claim 1 or Claim 2.
 - 4. An isolated nucleic acid encoding a peptide of Claim 1 wherein said nucleic acid has a sequence selected from the group consisting of:

- (a) (a) residues 1747 to 2016 of SEQ ID NO:1; or (b) a nucleic acid compound complementary to (a).
- 5. A vector comprising an isolated nucleic acid compound of Claim 3.
- 6. A host cell containing a vector of Claim 5.

10

15

20

25

30

35

40

45

50

- A method for constructing a recombinant host cell having the potential to express an ECB binding domain of SEQ ID NO:2, said method comprising introducing into said host cell by any suitable means a vector of Claim 5.
- 8. A method for expressing an ECB binding domain of SEQ ID NO:2 in the recombinant host cell of Claim 7, said method comprising culturing said recombinant host cell under conditions suitable for gene expression.
- 9. A method for identifying compounds that bind an ECB binding domain, comprising the steps of:
 - a) admixing in a suitable reaction buffer
 - i) a substantially pure ECB binding peptide, as claimed in Claim 1; and
 - ii) a test inhibitory compound;
 - b) measuring by any suitable means a binding between said peptide and said compound.

(12)

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 26.06.2002 Bulletin 2002/26
- (43) Date of publication A2: 28.07.1999 Bulletin 1999/30
- (21) Application number: 98310497.7
- (22) Date of filing: 21.12.1998

- (51) Int CI.7: **C12N 15/54**, C12N 9/10, C12N 1/15, C12N 1/21, C12Q 1/48
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 23.12.1997 US 68658 P
- (71) Applicant: ELI LILLY AND COMPANY Indianapolis, Indiana 46285 (US)

- (72) Inventors:
 - Ma, Doreen Indianapolis, Indiana 46236 (US)
 - Dixon, Colleen Kay
 Cary, North Carolina 27513 (US)
- (74) Representative: Denholm, Anna Marie et al Eli Lilly and Company Limited, Lilly Research Center, Erl Wood Manor Windlesham, Surrey GU20 6PH (GB)
- (54) Echinocandin binding domain of 1,3-Beta-glucan synthase
- (57) The invention relates to a substantially purified ECB binding domain of 1,3- β -glucan synthase, comprising an at least 46 amino acid peptide fragment or fusion protein of glucan synthase that binds echinocandins,

useful in a method for identifying new antifungal compounds. Also disclosed are nucleic acid molecules that encode said peptide.

EUROPEAN SEARCH REPORT

Application Number EP 98 31 0497

	DOCUMENTS CONSID	PERED TO BE	RELEVANT		<u></u>
Category	Citation of document with of relevant pas	indication, where app sages	ropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (InLCI.5)
Υ	WO 95 10625 A (DOUG JENNIFER NIELSEN (I ARTH) 20 April 1999 * page 13, line 30 figures 6,7; examp	US); PARENT S 5 (1995-04-20 - line 34; c	TEPHEN)	9	C12N15/54 C12N9/10 C12N1/15 C12N1/21 C12Q1/48
Y	DOUGLAS C M ET AL the FKS1 gene of Carsential target of synthase inhibitors ANTIMICROBIAL AGENT vol. 41, no. 11, No pages 2471-2479, XFUnited States * abstract *	andida albica f 1,3-beta-D- s" IS AND CHEMOT ovember 1997	ns as the glucan HERAPY,	9	
			·		TECHNICAL FIELDS SEARCHED (Int.CL6) C12N C12Q
	The present search report has	•			
	Place of search		pletion of the search		Examiner
	MUNICH	2 May	2002	Mea	cock, S
X : parti Y : parti docu A : tech O : non-	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with anot ment of the same category notogical background -written disclosure mediato document		T: theory or principle E: earlier patent docs after the filling date D: document ched in L: document ched for 8: member of the sai document	ument, but public the application rother reasons	shed on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 98 31 0497

This armex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

02-05-2002

Patent document cited in search repo	ort	Publication date		Patent fan member(:	111y 5)	Publicatio date
WO 9510625	A	20-04-1995	CA EP JP WO US	2173956 0724644 9504431 9510625 5821353	Al T Al	20-04-1999 07-08-1999 06-05-1999 20-04-1999 13-10-1998
•						
			•			
nore details about this ar						