COMP 546

Lecture 20

Head and Ear

Thurs. March 29, 2018

Impulse function at t = 0.

$$I(X,Y,Z,t) = \delta(X - X_0, Y - Y_0, Z - Z_0, t)$$

To define an impulse function properly in a continuous space requires more math. Let's not spend our time doing that, since we just want qualitative behavior here.

Sound obeys the wave equation.

So, how is this function defined $t \neq 0$?

Impulse becomes expanding sphere

One can show that this follows from the wave equation.

$$t = 4 \Delta t$$

$$t = 3 \Delta t$$

$$t = 2 \Delta t$$

$$t = \Delta t$$

Impulse sound energy is spread over a thin sphere of fixed thickness

and of area
$$4\pi r^2$$
 where $r^2 = (X - X_0)^2 + (Y - Y_0)^2 + (Z - Z_0)^2$.

$$r = v t$$

$$I^2 \sim \frac{1}{r^2}$$

So, SPL
$$I \sim \frac{1}{2}$$

$$= \begin{cases} I_{src} \ \delta(X-X_0, Y-Y_0, Z-Z_0), & \text{when } t=0 \\ \\ \frac{I_{src}}{r} \ \delta(r-v\,t), & \text{when } t>0 \text{ and} \\ \\ r=(X-X_0)^2+(Y-Y_0)^2+(Z-Z_0)^2 \end{cases}$$

 I_{src} is constant (~energy in impulse)

We can write a general sound source a sum of impulse functions:

$$I_{src}(t) = \sum_{t'=0}^{T-1} \delta(t - t') I_{src}(t')$$

Far from the source, where *r* is large, the wavefront is approximately locally planar.

Binaural hearing (preview of next lecture)

If the sound arrives from the left (assuming planar wavefronts), what is the interaural delay?

$$t = \frac{d}{v} = \frac{.17}{340}$$

$$\approx .5 ms$$

Naïve model: cone of confusion

Model head, shoulders, ears as a sphere.

All incoming directions on a cone define the same delay & shadow effect.

Exercise: use time delay au to estimate cone angle ϕ

Interaural differences

How can the auditory system estimate the delay and shadowing? Here is a simple model:

Maximum likelihood: find the α and τ that minimize

$$\sum_{t=1}^{T} \{ I_l(t) - \alpha \ I_r(t-\tau) \}^2$$

where $\tau < 0.5 \, ms$.

To find the α and τ that minimize

$$\sum_{t=1}^{T} \{I_l(t)^2 - \alpha I_l(t) I_r(t-\tau) + I_r(t-\tau)^2\}$$

we first find the τ that maximizes

$$\sum_{t} I_{l}(t) I_{r}(t-\tau).$$

This ignores the small dependence of the 3^{rd} term above on τ .

Then estimate α (shadowing):

$$\alpha^{2} = \frac{\sum_{t=1}^{T} I_{l}(t)^{2}}{\sum_{t=1}^{T} I_{r}(t-\tau)^{2}}$$

Note that this gives two cues which we can combine.

The Human Ear

Outer Ear

Next ten slides:

How do head and outer ear transform the sound that arrives at the ear from various directions?

Head related impulse response (HRIR)

Suppose sound is from direction (ϕ, θ) .

The wave is planar when it arrives at the head.

If the source is an impulse then sound measured at the ear drum of ear i is:

$$I(t) = h_i(t; \phi, \theta) * \delta(r - vt)$$

Sound source $I_{src}(t; \phi, \theta)$ transformed

Suppose sound is from direction (ϕ, θ) and emits $I_{src}(t; \phi, \theta)$.

Then the sound measured at the ear drum of ear *i* is:

$$I(t) = h_i(t; \phi, \theta) * I_{src}(t; \phi, \theta)$$

(Ignoring time delay from source to ear.)

KEMAR mannequin

In following slides, I will show HRIR measurements h_i (t; ϕ , θ).

azimuth θ

elevation ϕ

Azimuth θ (Elevation $\phi = 0$)

Suppose sound is measured at right ear drum.

HRIR

Source direction (azimuth)

Arrival time differences are not as significant when azimuth = 0 and elevation is varied.

HRIR

Source direction (elevation)

If head is symmetric about the medial plane (left/right), then:

$$h_{left}(t; \phi, \theta) = h_{right}(t; \phi, -\theta)$$

$$I_{right}(t;\phi,\theta) = h_{right}(t;\phi,\theta) * I_{src}(t;\phi,\theta)$$
HRIR

For each incoming sound direction (ϕ, θ) , what is the Fourier transform with respect to variable t?

$$I_{right}(t;\phi,\theta) = h_{right}(t;\phi,\theta) * I_{src}(t;\phi,\theta)$$

$$HRIR$$

For each incoming sound direction (ϕ, θ) , what is the Fourier transform with respect to t?

$$\hat{I}_{right}(\omega;\phi,\theta) = \hat{h}_{right}(\omega;\phi,\theta) \quad \hat{I}_{src}(\omega;\phi,\theta)$$

Head Related "Transfer Function" (HRTF)

HRTF $\left|\hat{h}_{right}(\omega;\theta,\phi=0)\right|$

(plot for fixed elevation $\phi = 0$)

HRTF $\left| \hat{h}_{right} \left(\omega; \theta = 0, \phi \right) \right|$

(plot for fixed azimuth $\theta = 0$.)

(medial plane)

Curves shifted for visualization

Middle Ear

"Ear drum"

outer middle inner

Inner ear

Cochlea (unrolled)

Cochlea (unrolled)

Recall vibrating string
$$\omega = \frac{c}{L}$$

Both L and c vary on fibres on basilar membrane.

Basilar Membrane (BM)

