



# Computational Health Informatics Vorlesung WiSe 2020/21

- Einführung:
  - 1. Organisatorisches
  - 2. Fachgebiet CHI & Veranstaltungen
  - 3. Lernziele und Inhalte
  - 4. Begriffsbestimmung CHI
  - 5. Beispiele (auch aus FG CHI)





### Kurze Wiederholung 1. VL

- Computational Health Informatics ...
  - ist ein sehr junges Forschungsgebiet
  - ... ist multi- und interdisziplinär
  - " ... is the Informatics part of health informatics"
     CHI Lab Uni Waterloo





- Anforderungen u.a.:
  - Denken in Systemen
  - Kenntnisse von Sprache, Denkkulturen, Wissen und Methoden anderer (ergänzender, teilw. überlappender) Fachgebiete
- Ziele:
  - Medizinische Fragestellungen zu beantworten
  - Aufbereitung und Verfügbarmachung medizinischen Wissens (& Daten, Informationen)
  - Verbesserung der Gesundheitsversorgung





### COVID-19: Epidemiologische Modelle







### Agenten-basierte Modellierung I

 Epidemiologische Untersuchung: HIV-Ausbreitung NYC [MarWhi12]







### Agenten-basierte Modellierung II

- Gewebesimulationen (Agenten: einzelne Zellen)
  - Grafische Modellierung des Zellverhaltens in epithelialen Gewebe, EPISIM-Plattform

Reepithelialization of Acute Cutaneous Wounds



2D-/3D-Videos:

http://tigacenter.bioquant.uni-heidelberg.de/simulation-movies.html





### Numerische Strömungsmechanik (CFD)

- Prävalenz zerebraler Aneurysmen: ~ 3%
- Ruptur ⇒ 50% Mortalitätsrate







### Personalisierte Medizin: Digitales Herz









 Anwendung: Katheterablation bei Vorhofflimmern (AF, atrial fibrillation)







### Entscheidungsunterstützung

- Therapieprozessmodell Kehlkopfkrebs generisch durch Expertenwissen → Bayessches Netz
  - Individuelle Anpassung durch Patientendaten
  - Berechnung der restlichen Parameter











## Digitales Patientenmodell → Entscheidungsunterstützung







- Vorteile bei Unterstützung von Expertentreffen:
  - Zusätzlicher (unbeeinflussbarer) Input
    - → Gruppendynamik, Hierarchien
  - Berücksichtigung von Randbedingungen (Patientenwünsche, -gewichtungen)
  - Nachvollziehbarkeit (→ Bayessches Netz)
    - Output nicht nur erfolgversprechende
       Therapien, sondern auch widersprüchliche
       Studien, Alternativen, etc.
  - Modulare Erweiterbarkeit
    - Bilddaten, neue Studienergebnisse, ...





- Mögliche Weiterentwicklungen:
  - Einbindung weiterer Experten bis hin zu webbasierten Tools für die Teilnahme
  - Berücksichtigung von weltweiten Leitlinien
  - Zusätzliche Ergebnisse klinischer Studien und Forschungsergebnisse
  - Interaktivität bei Berücksichtigung von Teilen des Modells
    - Gewichtungen von Diagnosen u.ä. anpassen





### Unterstützung des klinischen Alltags

- Organisation: Digitaler Anamnesebogen
- Vor- und Nachsorge: Diagnostik,
   Schmerzbehandlung
- OP-Unterstützung
  - Ergonomie: Steuerung von Geräten
  - (Intraoperative) Bildgebende Verfahren
  - Wach-OPs: Reizsteuerung, Feedbackmessung

### CHI-Projekte (Auswahl)





### Kooperation mit der MHH

- Institut f\u00fcr Diagnostische und Interventionelle Radiologie
  - Speziell: Magnetresonanztomographie (MRT) & perkutane Ablationen (Leber)
    - Exzellenter Weichteilkontrast von MRT
    - Messung der Temperatur möglich
- Ziel: Bildverarbeitung/-auswertung in Echtzeit (i.S. der Medizin, nicht Informatik)









- Aufbau einer Bildverarbeitungspipeline parallel zu der des MRT unter Verwendung von Gadgetron
  - Programmierung von Gadgets zur Bildrekonstruktion
  - Entwicklung neuer Algorithmen und Pulssequenzen
  - Performanzmessungen auf Kernel-Ebene







### Informationssicherheit, IT-Infrastruktur

- Software Supply Chain Security
- Risikoanalyse der Verarbeitung medizinischer Daten im Fachgebiet CHI
- Containervirtualisierung, Mikro-VM-Runtimes u.ä.
- Automatisierung von (CHI-internen) IT-Aufgaben (Systemadministration, CI/CD-Pipelines, Forschungs- und Lehrplattformen, ...)





#### Weitere Themen

- App-Entwicklung
- Neuronale Netze & Mobilgeräte
- Einsatz von Open-Source-Software in der Medizin
- ...
- Quantencomputing



### Quellen





- [Duga17] M. Dugas, **Medizininformatik**, Springer Vieweg, 2017
- [MarWhi12] B. D. L. Marshall et al., A Complex Systems Approach to Evaluate HIV Prevention in Metropolitan Areas: Preliminary Implications for Combination Intervention Strategies, PLoS ONE, vol. 7, no. 9, p. e44833, Sep. 2012
- [MidZim16] E. A. Middleton, A. S. Weyrich, G. A. Zimmerman, Platelets in Pulmunary Immune Responses and Inflammatory Lung Diseases, Physiol. Rev. 96 (2016), 1211-1259