Grundlagen des Schaltplan-und Platinenlayouts

Presentation · January 2017				
DOI: 10.1314	40/RG.2.2.13285.04328			
CITATIONS		READS		
0	,	854		
·				
1 author	r:			
	Michael Heidinger			
	Karlsruhe Institute of Technology			
	18 PUBLICATIONS 49 CITATIONS			
	SEE PROFILE			
Some of the authors of this publication are also working on these related projects:				
Project	VLC Luminaire Systems View project			
	1			
Project	ECO UV View project			

"Das erste mal gleich richtig."

Grundlagen aes Schaltplan- und Platinenlayouts

From Maker to Market

Motivation

- Platine macht das Produkt
 - Produzierbarkeit
 - Testbarkeit
 - Stabilität: Funktion & Mechanisch
 - Kleine Strukturen / Baugröße möglich
- Kosten der Platine
 - 5-10 Euro 10 Stück 100mmx100mm (+Versand)
 - Erstes Layout: 2 Tage Monate
 - Produktionsdauer: 7 Tage
 - Bestücken: 1-3 Tage
- Kosten sind hauptsächlich Zeit

Workflow

Idee

- Was? Wie?

- Hauptkomponenten?

Schaltplan

- Bauteile erstellen
- Schaltung
- Robust gestalten

Layout

- Bauteile platzieren
- Verdrahten: Strategie
- Fallstricke

Inbetriebnahme

- Bestücken
- Fehlersuche

Workshop

Idee zum Schaltplan

- Idee
 - Funktionalität? Wie will ich was machen?
 - Baugruppen?
- Beispiel Touch-LED-Dimmer
 - Blockschaltbild hilfreich

Auswahl der Komponenten (1)

- Getestet?
 - Hauptfunktionalität überprüfen
 - Evalbord?
 - Verbesserungen?
- Gute Dokumentation?
 - Community
 - Literatur
- Komponenten
 - Marge
 - Nicht an die Limits gehen
 - Funktionalität über Kosten
- Schutzkomponenten (z.B. Überspannung) vorsehen

Beispiel LDO

Auszug Datenblatt:

1 Features

- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 1: –40°C to 125°C
 Ambient Operating Temperature Range
 - Device HBM ESD Classification Level 2
 - Device CDM ESD Classification Level C4B
- 4 to 40-V Wide V_I Input Voltage Range With up to 45-V Transient

Checkpoints:

- Überspannung
- Überstrom
- Übertemperatur

Erstellen des Schaltplan Symbols

- Existierende Bauteile verwenden
 - => Fehlervermeidung
 - PCB Library
 - Google
 - Immer überprüfen
- Daten eintragen
 - Partnumber
 - Pinnummern
 - Footprint
 - Datasheet
 - Bestellnummer
- 3x Überprüfen
 - Fehler=Neue Revision

Erstellung des Schaltplans

Von links nach rechts aufbauen

Elektrode LED Blockschaltbild folgen und umsetzen Overvoltage + Power PWR Touch Power Schalter Reverse Polarity Input Supply Output Protection Touch Sense and Control Power Input Pwr Sup PWM>---0₹₽

Arbeiten mit Reference Designs

- Reference Design
- Erklärt Anwendung und Beschaltung
 - Datenblatt
 - "Typical Application Schematic"
 - Application Note

- Darf ich vom Reference Design abweichen?
 - Datasheet!
 - Verstehen!

Table 1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUES	
Input voltage range	4 V to 40 V	
Output voltage	3.3 V, 5 V	
Output current rating	150 mA	
Output capacitor range	2.2 μF to 100 μF	
Output capacitor ESR range	1 mΩ to 2 Ω	

Quelle: Texas Instruments

100nF Regel

- Stabile Versorgungsspannung
 - "Die Lösung ist meist ein Kondensator, die Frage ist nur wo"
- Generell: Kondensatoren
 - Jeder IC: Vcc-Pin enthält 100nF gegen GND
 - Können einige sein bei MCUs.
 - Wert 100pF-1uF
 - Je hochfrequenter, desto kleiner

Kombination möglich

Grundlagen? ATmega88PA-AU V_LED U302 TP308 V_S0 PD3(OC2B/INT1/...) (.../ADC1)PC1 ../ADC0)PC0 PD4(XCK/T0/...) C305 ADC7 **GND** VCC **GND** Mega AREF **GND** AREF 19 ADC6 18 VCC 5V PB6(XTAL1/...) AVCC (.../SCK)PB5 C308 100nF Quelle: Atmel GND

Mikrocontroller: ADC

- Analog zu Digital Wandler (ADCs) haben Eingangskapzität
 - Messen=Verfälschen
- Eingange mit OpAmp treiben

- Bandbreite am Eingang begrenzen mit RC-Tiefpass
 - $F_S >= 2F_G$
- Analoge Versorgungsspannung filtern
 - Tiefpass (R=10 C=100p || 100n || 10u)
 - Ferritperle

Mikrocontroller: Digital

100nF Regel

- Programmier-Pins (ISP)
 - Pins nicht doppelt belegen
 - Programmier Connector

- UART Verbindung vorsehen
 - Extern: ESD-Schutz vorsehen

Sicherheitsmaßnahmen

- Vor falscher Polarität schützen
 - Verpolungsschutzdiode
- Überspannung schützen
 - TVS Diode: Transient Voltage Surpressor
 - Diode wird leitend bei Überspannung
- ESD: Elektro-Static Discharge
 - Datenleitungen (z.B. USB)
- Überlast
 - Linearregler mit Strombegrenzung
 - Keine Sicherung (zu langsam)

Quelle: Elektronik-Kompendium

Quelle: RF Wireless World

Testpunkte

- Strukturen klein
 - Vereinfachtes testen relevanter Signale
 - Schnelleres Debugging durch Beschriftung
 - Mechanisch stabiles Messen
- Testpunkte
 - 0.6mm 1.2mm
 - Platzieren wo Platz
 - Kurz, knapp und präzise beschriften
 - Möglichst alles immer auf einer Höhe

Let's play: Mean Questions

Spiel: Man denkt sich einen möglichen Fehlerfall aus, und sehlussfallsart was an einer

schlussfolgert was passiert.

- Beispiel LDO
 - Was passiert bei Transienten? (z.B. Blitzschlag).
- Überspannung könnte zu Ausfall führen

Abhilfe: TVS Diode

Abhilfe: High Voltage LDO

Abhilfe: Filter R2 / C2

Mean Questions: Frage 2

- Was passiert, wenn MosFET Q2 induktive Lasten schaltet?
 - Q2 sieht Überspannung
- Avalanche
 - Energie wird im MosFET aufgenommen
 - MosFET erwärmt sich im besten Fall
 - MosFET wird wegen Überspannung zerstört.

- Abhilfe:
 - 1. Freilaufdiode (D6) oder TVS

Welche Bauform?

- Schaltplan Bauform zuordnen
- Je kleiner eine Bauform, desto kleiner das Layout
 - Bauform sollte leicht zu verlöten sein.

1206

- True-Hole vermeiden
 - Viel Platz, Baugruppen groß
 - Auslöten schwer
- Empfehlenswerte Bauformen:
 - SOT23, SOIC, 1206, 0805

0603

0805

0402

BGA, 0402, etc.

2 Lagig vs 4 Lagig

- 101 Platinenlagen:
 - Je mehr Lagen, desto leichter
 - Je mehr Lagen, desto teurer
- Anwendungen:
 - Standardprojekte: 2 lagig
 - 4 Lagig kann bei komplizierteren Projekten Sinn machen
- 2 lagig: Jede Lage kann beliebig genutzt werden.
- 4 lagig: Äußere Lagen sind Signale, innere GND und VCC.

Quelle: aerospacepal

Vorurteile Lagenanzahl

- 4 lagig: unbezahlbar
 - Ca. 30% teurer
- 4 lagig: bessere EMV
 - GND Plane hilft sehr
 - Schlechtes Design kann Layout trotzdem ruinieren
- 4 Lagig Layout einfacher
 - Auch nur 2 Signallagen
 - Versorgungsspannungen sind leichter

Quelle: aerospacepal

PCB: Deutschland vs Asien

"Recommended Specs" des Leiterplattenherstellers:

Deutschland (Multi Circuit Boards) Asien (All PCB.com)

■ Leiterbahn, Leiterbahnabstand: 125µm

■ Restring umlaufend: 125µm

■ Bohrungen: 0.2mm

Leiterbahnabstand: 150um

Bohrungen: 0.3mm

Preis(inc. Versand):

100x100mm: 1 Stück 45 Euro

Preis(inc. Versand):

100x100mm: 10 Stück 30 Dollar

- Asiaten sind billiger, aber schlechter
- Kommunikation in Europa leichter (Kulturunterschiede)
- Lieferzeit (inc. Versand) in etwa ähnlich
- DHL: Märchengebühr von 12.50 Euro

PCB: Einstellungen übernehmen (Track)

PCB

- **Erster Schritt:**
- Einstellungen des Herstellers übernehmen
 - Leiterbahnabstand
 - Min. Leiterbahndicke
 - Lötstoppmaske Abstand
 - Lötstoppmaske Mindestdicke

Michael Heidinger, M. Sc.

"Grundlagen Schaltplan- und Platinenlayout"

Platine erstellen

- 0. Platinengröße (Outline)
- 1. Zuerst externe Komponenten platzieren
 - LEDs
 - Schalter
 - Stecker
- 2. zentrale Komponenten (MCU) zentral platzieren.
- 3. Funktionsgruppen um MCU anbinden
 - Hauptkomponente (z.B. OpAmp)
 - Hilfskomponente (z.B. Widerstand)
- 4: Hilfskomponenten (Widerstände, Kondensatoren) platzieren
 - Verbindungslänge minimieren

Verbindungen

- Leitungen:
 - Kurz & Dick
 - Kompakt: Weniger Platz & niedrigere Induktivität
 - Direkt: (Keine Umgehungsstraße)
- Leiterbahnbreite
 - Signale: Minimal
 - (typ. 200um)
 - Leistung: Strom

- Abstand zwischen Leiterbahnen
 - Signale: Hersteller
 - Hochspannung: Spannungsfestigkeit beachten
- KiCAD: PCB-Calculator

Komponenten verdrahten

Autorouter:

Return to Zero

PCB

Komponenten verdrahten 4 Lagig

- VCC und GND, einfach Via setzen.
- 100n angrenzend platzieren

26

Beispiel 100nF an TSSOP

- 100nF soll möglichst direkt angebunden werden
- Beispiel: 1 lagige Platine 100n

GND-Plane

- Füllen aller offene Fläche mit GND
- Vorteile
 - Starkes GND reduziert Störungen
- Keine GND-Plane
 - Unter Spulen (Induktionsheizung)
 - Hohe Spannungssprünge

Einige Vias zur Durchkontaktierung

Design Rule Checking überprüft aufgestellte Regeln

- DRC findet viele Fehler, aber nicht alle
 - Nicht auf DRC verlassen, sondern selbst alles überprüfen.

Checkliste

- Was könnte beim Layout schief gegangen sein?
 - Paranoid: Alles
 - Ausgangskondensator / Überspannungsschutz
 - GND Fläche fehlt
- Alles verbunden?
 - Schaltplan
- Strahlt Digital in Analog ein?
 - Trennen von Analog und HF (z.B. Schaltregler)
- Bestückungsdruck schön?

State of Mind: Be paranoid!

- "Compile-Time" sind 2 Wochen
 - Fix möglich
 - Iteration startet erneut
- Fehler:
 - Oder Gatter

Source: NetDoctor

- Paranoid:
 - "Only the paranoid survives" or "Murphy always gets you"
 - Jeder Schritt könnte gefährlich sein – Darf ich das wirklich?
- Abhilfe schafft sauberes, gewissenhaftes Arbeiten und stetige Qualitätskontrolle

Panelizing

PCB Sarlsruher Institut für Technologie

- Fräßen
 - Kontur wird gefräst
 - Typisch: 0.8mm (1.2mm)
 - Design von Breakouts:
 - Mehrere Bohrungen nebeneinander
- PCB Rand
 - 5mm-10mm für SMD Bestückungsmaschine
 - Beschriftung

- Anbringen von Befestigungen
- Beakouts-Nachteil: Rauer Rand
 - Bohrungen nach Möglichkeit nach Innen verschieben

PCB

Bestellen der Platine – Welche Layer

- Welche Layer für was?
 - F.Cu: Kupfer Vorderseite
 - B. Cu: Kupfer Rückseite
 - Adhes: Kleber für Komponente
 - Paste: Lötpaste
 - Silk: Bestückungsdruck
 - Mask: Lötstopplack
 - Edge: Kanten / Außenmaße
 - Fab: Fabrikation Layer (Bauteilewerte)
 - Eventuell nützlich für Bestückung
 - Bohrdatei

Stencil

- Inbetriebn.
- PCB

- Stencil hilft Lötpaste gleichmäßig aufzutragen
- Höhere Lötqualität
- Kosten: ca. 20 Euro
- Generell empfehlenswert
- Lötpaste
 - Viele kleinen Kugeln Lot
 - Flußmittel
 - Lötpaste kühl lagern
 - Lötpaste nach ½-1 Jahr neu kaufen

Quelle: Hoelektronik

Quelle: Taube Elektronik

Bestellen der Komponenten

PCB

Inbetriebn.

- Checkliste Komponenten-Bestellung:
 - Partnumber?
 - Bauform?
 - lieferbar?
- Wie viele Komponenten brauche ich?
 - Lötfehler miteinkalkulieren (je kleiner desto wahrscheinlicher)
 - Nachlieferung/Nachbestellen kostet Zeit
 - Zeit teurer als Verschwendung
 - Billig: 10 Stück mindestens oder + 30%
 - Teuer: 2 mehr bestellen
- Widerstände/Kondensatoren
 - Rollen 5k/10k Stück können sich lohnen
- Bauteile immer einsortieren & beschriften
 - Nicht beschriftete Bauteile sind wertlos!

Inbetriebnahme

- Schaltplan: Computer
- Visuelle Kontrolle
 - Lötverbindungen
 - Korrekte Bauteile
- Stromversorgung
 - Ausgangsspannung überprüfen
- MCU
 - Programmierbar?
- Weitere Sektionen dann in Betrieb nehmen und langsam testen
 - Power
 - Actio
 - Reaction
- Überlegt vorgehen
- Wichtig: Alle Änderungen protokollieren

Fehler protokollieren mit GitLab

- Gesamtes Projekt auf GitLab hochladen
- Issue erstellen und beschriften
- Kategorien nutzen

☐ Check is Dual PNP is availiable in larger footprint #14 · opened 3 weeks ago by greenscreenflicker ② Second revision Function Manufacturing
■ MosFETs Pin1 marker not visible on SilkScreen #13 · opened 3 weeks ago by greenscreenflicker ② Second revision Estetic Manufacturing
☐ Q1 polarity marker missing on silk screen #12 · opened 3 weeks ago by greenscreenflicker ② Second revision Manufacturing
R9 copper at boarder too small #11 · opened 3 weeks ago by greenscreenflicker ② Second revision Function
Add polarity marker for P1 #10 · opened 3 weeks ago by greenscreenflicker Second revision Manufacturing
Add polarity marker for D75 #9 · opened 3 weeks ago by greenscreenflicker ② Second revision Manufacturing
Rotate C73 180° to improve RF performace(=reduce wire) #8 · opened 3 weeks ago by greenscreenflicker ② Second revision Function
☐ Make copper pour more uniform #7 · opened 3 weeks ago by greenscreenflicker ② Second revision Estetic
☐ MosFETs incorrectly wired #6 · opened 3 weeks ago by greenscreenflicker ② Second revision Function

Inbetriebnahme: Dont's

- Schaltplan anders bestücken als auf Dokument angegeben
 - Änderungen sofort notieren
- Einfach mal Strom und schauen was passiert
 - Gefahr: Zerstörung der noch funktionierenden Schaltungsteile
 - Stattdessen: Sehr konservativ Schritt f
 ür Schritt
- Übermüdung
 - Nur frisch und entspannt
 - Pause einlegen / keine Aufputschmittel
- "Ich wills' jetzt wissen…"
 - ... und booom.
 - Stattdessen: Schaltplan & Nachdenken
- Große Sektion Code auf einmal programmieren
 - Stattdessen: Code schritt für Schritt etappenweise gliedern
 - Komplexe Algorithmen auf PC vortesten

Hilfe!?!

Return to Zero

EEWeb.com

- Schritt für Schritt testen
 - Problem zerlegen und Fehler lokalisieren
- Einzelne Baugruppen gezielt außer Betrieb nehmen
 - Fehlerursachen minimieren
 - Langsam vortasten
- Schaltung in Forum posten

Take Home Message

- Platinen machen ein Elektronikprodukt.
 - Produzierbar
 - Verlässlich
 - Testbar
- Compile-Time: 2 Wochen
 - Genau & präzise Arbeiten
- Platinenlayout ist einfach, wenn man sich an die Regeln hält
 - Jeder Schritt überlegt
 - Jeden Schritt doppelt überprüfen
 - ERC/DRC nutzen
 - Nicht schludern / eigenmächtig handeln
 - Nachlesen & nachfragen beim Hersteller

Kontakt

- Doktorrand
- Michael Heidinger, M. Sc.
 - Engesserstrasse 13, Geb. 30.34
 - Arbeitsgruppe Licht- und Plasmatechnologien
 - Geb. Raum: 212
- Kontakt
 - michael.heidinger@kit.edu

