Homework 1

Due on Feb 6, 2023

Problem1

Express function below in terms of growth functions using the best fit.

- a) $2^n + n^2 + n$
- b) $(\frac{n+3}{5})^2$

Solution:

- a) Since $2^n >= n^2$ in general, thus, $2^n + n^2 + n \le 2^n + 2^n + 2^n = 3 \cdot 2^n$. $c_1 = 3$, $g(n) = 2^n$, and $n_0 = 1$. The big O notion is $O(2^n)$.
- b)

$$\left(\frac{n+3}{5}\right)^2 = \frac{n^2 + 6n + 9}{25}$$
$$= \frac{n^2}{25} + \frac{6n}{25} + \frac{9}{25}$$

Thus,

$$\frac{n^2}{25} \le f(n) \le \frac{n^2}{25} + \frac{6n^2}{25} + \frac{9n^2}{25} = \frac{16}{25}n^2$$

$$c_1 = \frac{1}{25}, \ c_2 = \frac{16}{25}, \ n_0 = 1, \ {\rm and} \ g(n) = n^2.$$
 Thus it's $\Theta(n^2)$

Problem 2

Determine which of the two functions in the pair of of the function below grows faster: $(n)^{\sqrt{n}}$ vs $(\sqrt{n})^n$

Solution:

 $^{^*2\}mathrm{nd}$ year PhD student in Economics Department at Fordham University. Email: wye22@fordham.edu

Make monotone transformation for each of the functions. $\lg(n_{-}^{\sqrt{n}}) = \sqrt{n} \lg n_{1} \lg((\sqrt{n})^{n}) =$ $n \lg \sqrt{n}$. Make monotone transformation again, $\lg \sqrt{n} \lg n = \lg(\sqrt{n} \lg n) = \lg \sqrt{n} + \lg \lg n = \lg \sqrt{n}$ $\frac{1}{2}\lg n + \lg\lg n, \ \lg n\lg\sqrt{n} = \lg n + \lg\frac{1}{2}\lg n.$ $\text{WLOG let } \lg n = Z, \text{ thus compare } \frac{1}{2}Z + \lg Z \text{ and } Z + \lg\frac{1}{2}Z$ $\text{Make substraction: } Z + \lg\frac{1}{2}Z - (\frac{1}{2}Z + \lg Z) = \frac{1}{2}Z + \lg\frac{1}{2}Z + \lg\frac{1}{2}Z + \lg\frac{1}{2}Z = \frac{1}{2}Z + \lg\frac{1}{2}Z = \frac{1}{2}Z + \lg\frac{1}{2}Z = \frac{1}{2}Z + \lg\frac{1}{2}Z + \lg\frac{1}{2}Z = \frac{1}{2}Z + \lg\frac{1}{2}Z + \lg\frac{1}{2}Z = \frac{1}{2}Z + \lg\frac{1}{2}Z + \lg\frac{1}{2}$

When $n \ge 4$, $(\sqrt{n})^n \ge (n)^{\sqrt{n}}$, otherwise, $(\sqrt{n})^n < (n)^{\sqrt{n}}$

Thus, $(\sqrt{n})^n$ grows faster.