

SEQUENCE LISTING

<110> CHEN, Li How
MEADE, Harry

<120> NOVEL MODIFIED NUCLEIC ACID SEQUENCES AND METHODS FOR
INCREASING mRNA LEVELS AND PROTEIN EXPRESSIONS IN CELL
SYSTEMS

<130> 107.637.121B

<140> U.S.S.N. 09/175,683

<141> 1998-10-20

<160> 8

<170> PatentIn Ver. 2.0

<210> 1

<211> 1065

<212> DNA

<213> preferably, a bacterium, virus, or parasite

<400> 1

gccgtcaactc cctccgtcat cgataacatc ctgtccaaga tcgagaacga gtacgaggtg 60
ctgtaccta agccgctggc aggggtctac cggagcctga agaaggcagct ggagaacaac 120
gtgatgacct tcaacgtgaa cgtgaaggat atcctgaaca gccggttcaa caagcgggag 180
aacttcaaga acgtgctgga gagcgatctg atccccatac aggatctgac cagcagcaac 240
tacgtggta aggatcccta caagttcctg aacaaggaga agagagataa gttcctgagc 300
agttacaact acatcaagga tagcattgat accgatatca acttcgc当地 ctagtgc当地 360
ggataactaca agatcctgta cgagaagtac aagagcgtc tggattcaat caagaagtac 420
atcaacgata agcagggaga gaacgagaag tacctgc当地 tcctgaacaa catcgagacc 480
ctgtacaaga ccgtcaacga taagattgat ctgttc当地 tccacctgga ggccaaggc 540
ctgaactaca catatgagaa gagcaacgtg gaggtcaaga tcaaggagct gaattacctg 600
aagaccatcc aggataagct ggccgatttc aagaagaaca acaacttcgt cgggatcgcc 660
gatctgagca ccgattacaa ccacaacaac ctgctgacca agttcctgag caccggatg 720
gtcttc当地 acctggccaa gaccgtc当地 agcaacctgc tggatggaa cctgc当地 780
atgctgaaca tcagccagca ccagtgtgtg aagaaggcgt gtc当地 cagcgggtgt 840
ttcagacacc tggatgagag agaggagtgt aagtgtctgc tgaactacaa gcaggaagg 900
gataagtgtg tggaaaaccc caatcctact tgtaacgaga acaatggtg atgtgatgcc 960
gatgccaagt gtaccgagga ggattcaggg agcaacggg agaagatcac ctgtgagtg 1020
accaagcctg attcttatcc actttcgat ggtatcttct gtagt 1065

<210> 2

<211> 1088

<212> DNA

<213> preferably, a bacterium, virus, or parasite

<400> 2

gcagtaactc cttccgtaat tgataacata ctttctaaaa ttgaaaatga atatgaggtt 60
ttatatttaa aacctttagc aggtgtttat agaagttaa aaaaacaatt agaaaataac 120
gttatgacat ttaatgttaa tgtaaggat attttaaatt cacgatttaa taaacgtgaa 180
aattcaaaa atgttttaga atcagattta attccatata aagatttaac atcaagtaat 240
tatgttgtca aagatccata taaatttctt aataaagaaa aaagagataa attcttaagc 300
agttataatt atattaagga ttcaatagat acggatataa attttgcaaa tgatgttctt 360
ggatattata aaatattatc cgaaaaatataa aatcagatt tagattcaat taaaaaatat 420
atcaacgaca aacaaggtaa aaatgagaaa taccttcctt ttttaaacaa tattgagacc 480
ttatataaaa cagttaatga taaaattgat ttatgtttaa ttcattttaga agcaaaaagt 540
ctaaattata catatgagaa atcaaacgta gaagttaaaa taaaagaact taattactta 600
aaaacaattc aagacaaattt ggcagattt aaaaaaaaaata acaatttcgt tggattgct 660
gatttatcaa cagattataa ccataataac ttattgacaa agttccttag tacaggtatg 720
gttttgaaa atcttgctaa aaccgtttta tctaatttac ttgatggaaa cttgcaaggt 780
atgttaaaca tttcacaaca ccaatgcgta aaaaaacaat gtccacaaaa ttctggatgt 840
ttcagacatt tagatgaaag agaagaatgt aaatgtttat taaattacaa acaagaaggt 900
gataaatgtg ttgaaaatcc aaatcctact tgtaacgaaa ataatggtgg atgtgatgca 960
gatgccaaat gtaccgaaga agattcaggt agcaacggaa agaaaatcac atgtgaatgt 1020
actaaacctg attcttatcc actttcgat ggtatTTCT gcagtcacca ccaccaccac 1080
cactaact 1088

<210> 3

<211> 88

<212> DNA

<213> preferably, a bacterium, virus, or parasite

<400> 3

tcgacgagag ccatgaaggc cctcatcctt gcctgtctgg tggctctggc cattgcaaga 60
gagcaggaag aactcaatgt agtcggta 88

<210> 4

<211> 88

<212> DNA

<213> preferably, a bacterium, virus, or parasite

<400> 4

gatctaccga ctacatttagt ttcttcctgc tctcttgcaaa tggccagagc caccagacag 60
gcaaggatga ggaccttcat ggctctcg 88

<210> 5

<211> 60

<212> DNA

<213> preferably, a bacterium, virus, or parasite

<400> 5

taactcgagc gaaccatgaa ggtcctcattc cttgcctgatc tggggctct ggccattgca 60

<210> 6

<211> 48
<212> DNA
<213> preferably, a bacterium, virus, or parasite

<400> 6
aattctcgag ttagtggtgg tgggtggt gactgcagaa ataccatc 48

<210> 7
<211> 31
<212> DNA
<213> preferably, a bacterium, virus, or parasite

<400> 7
aatagatctg cagtaactcc ttccgtaatt g 31

<210> 8
<211> 1142
<212> DNA
<213> preferably, a bacterium, virus, or parasite

<400> 8
atgaaggcct tcataattgc ctgtctggtg gctctggcca ttgcagccgt cactccctcc 60
gtcatcgata acatcctgtc caagatcgag aacgagtacg aggtgctgtta cctgaaggccc 120
ctggcaggag tctacaggag cctgaagaag cagctggaga acaacgttat gaccttcaac 180
gtgaacgtga aggatatcctt gaacagcagg ttcaacaaga gggagaactt caagaacgtg 240
ctggagagcg atctgatccc ctacaaggat ctgaccagca gcaactacgt ggtcaaagat 300
ccctacaagt tcctgaacaa ggagaagaga gataagttcc tgagcagttt caattacatc 360
aaggatagca ttgacaccga tatcaacttc gccaacgtat tcctggata ctacaagatc 420
ctgtccgaga agtacaagag cgatctggat agcatcaaga agtacatcaa cgataagcag 480
ggagagaacg agaagtacctt gcccttcctt aacaacatcg agaccctgtt caagaccgtc 540
aacgataaga ttgatctgtt cgtatccac ctggaggcca aggtcctgtca gtacacat 600
gagaagagca acgtggaggtt caagatcaag gagctgaattt acctgaagac catccagat 660
aagctggccg atttcaagaa gaacaacaac ttctgtggaa tcgccccatctt gaggcaccat 720
tacaaccaca acaacctgtt gaccaagtcc ctgagcaccc gaatggttt cggaaaacctg 780
gccaagaccg tcctgagcaa cctgtggat ggaaacctgc agggaaatgtt gcagatcagc 840
cagcaccatgtt gtgtgaagaa gcagttccc cagaacacgcg gatgtttt acacctggat 900
gagaggagg agtgcaagttt cctgtgttac tacaaggcagg aaggagataa gtgtgtggaa 960
aacccttatac tttttttttttaa cgagaacaat ggaggatgcg atgcccattgc caagtgttacc 1020
gaggaggattt caggaagcaa cggaaagaag atcacctgcg agtgttaccaa gcctgattct 1080
tatccactgt tcgatggtat tttctgtttt caccaccacc accaccacta actcgaggat 1140
cc 1142