Mathematics Extension I CSSA HSC Trial Examination 2001 Marking Guidelines

Question 1

(a) Outcomes Assessed: H5, H9

Marking Guidelines

Criteria	Marks
one mark for simplification of sum one mark for value of sum	2

Answer:

$$\sum_{k=1}^{4} (-1)^{k} k! = -1! + 2! - 3! + 4! = 19$$

(b) Outcomes Assessed: P4

Marking Guidelines

	Criteria	Marks
one mark for values of gradients		
• one mark for value of $\tan \theta$		3
• one mark for size of angle		

Answer:

AB has gradient
$$m_1 = 3$$

 $x + 2y + 1 = 0$ has gradient $m_2 = -\frac{1}{2}$ $\Rightarrow \tan \theta = \left| \frac{3 - \left(-\frac{1}{2} \right)}{1 + 3 \left(-\frac{1}{2} \right)} \right| = 7$ $\therefore \theta = 81^{\circ} 52'$

(c) Outcomes Assessed: (i) P5 (ii) PE3

Marking Guidelines

Criteria	Marks
(i) • one mark for showing $P(x)$ is odd	_
(ii) • one mark for showing remainder is $-P(2)$	3
• one mark for value of remainder	:

$$P(-x) = (-x)^5 + a (-x)^3 + b (-x)$$

$$= -x^5 - a x^3 - b x$$

$$= -(x^5 + a x^3 + b x)$$

$$= -P(x) \quad \text{for all } x$$

$$\therefore P(x) \text{ is odd.}$$

(ii) When
$$P(x)$$
 is divided by $(x+2)$,
remainder is $P(-2) = -P(2)$ since $P(x)$ is odd
= -5 since $P(2) = 5$

Marking Guidelines

Criteria	Marks
(i) • no marks for copying diagram	
(ii) • one mark for reason	
(iii) • one mark for reason	4
(iv) • one mark for showing $\angle MAB = \angle ABD$	·
• one mark for showing $\angle ACB = \angle ACD$	

Answer:

(i)

(ii) $\angle ACB = \angle MAB$ because the angle between the tangent MA and the chord AB through the point of contact A is equal to the angle ACB in the alternate segment.

(iii) $\angle ACD = \angle ABD$ because the angles subtended in the same segment at B and C by the arc AD are equal.

(iv)

$$\angle MAB = \angle ABD$$
 (equal alternate angles, $MN \parallel BD$)
 $\angle ACB = \angle ACD$ ($\angle MAB = \angle ACB$, $\angle ABD = \angle ACD$)
 $\therefore AC$ bisects $\angle BCD$

Question 2

(a) Outcomes Assessed: P7, PE5

Marking Guidelines

Criteria	Marks
• one mark for first derivative	2
• one mark for second derivative using product rule.	-

Answer:

$$\frac{d}{dx} e^{x^2} = 2x e^{x^2} \qquad \frac{d^2}{dx^2} e^{x^2} = \frac{d}{dx} 2x e^{x^2} = 2(e^{x^2}) + (2x)(2x e^{x^2}) = 2(1 + 2x^2) e^{x^2}$$

(b) Outcomes Assessed: P4

Marking Guidelines

Criteria Criteria	Marks
• one mark for equation in x	
• one mark for equation in y	3
• one mark for coordinates of B	

$$\frac{5x - 3 \times (-1)}{5 - 3} = 14 \implies 5x + 3 = 28 \qquad \therefore x = 5$$

$$\frac{5y - 3 \times (4)}{5 - 3} = -6 \implies 5y - 12 = -12 \qquad \therefore y = 0$$

(c) Outcomes Assessed: PE3

Marking Guidelines

Warking Odidenies	
Criteria	Marks
• one mark for number of arrangements of vowels	
• one mark for number of arrangements of consonants	3
• one mark for total number of arrangements	

Answer:

The vowels (E, E, I, O) can be arranged in positions 2, 4, 6, 8 in $\frac{4!}{2!} = 12$ ways.

The consonants (N,N,S,T,X) can be arranged in positions 1, 3, 5, 7, 9 in $\frac{5!}{2!} = 60$ ways.

Hence the total number of arrangements is $12 \times 60 = 720$.

(d) Outcomes Assessed: (i) PE3, PE4 (ii) PE3 (iii) PE3

Marking Guidelines

Criteria	Marks
(i) • one mark for equation of tangent	
(ii) • one mark for coordinates of T	4
• one mark for coordinates of M	
(iii) • one mark for equation of locus	

(i)
$$y = \frac{1}{4}x^2 \implies \frac{dy}{dx} = \frac{1}{2}x$$

 \therefore tangent at $P(2t, t^2)$ has gradient $\frac{1}{2}(2t) = t$
and equation $y - t^2 = t(x - 2t)$
 $tx - y - t^2 = 0$

(ii) At
$$T$$
, $y = 0 \implies tx - 0 - t^2 = 0 \implies x = t$
Hence T has coordinates $(t, 0)$, and M is the midpoint of $P(2t, t^2)$ and $T(t, 0)$, with coordinates $\left(\frac{2t+t}{2}, \frac{t^2+0}{2}\right) \equiv \left(\frac{3t}{2}, \frac{t^2}{2}\right)$.

(iii) At
$$M$$
, $x = \frac{3t}{2} \implies t = \frac{2x}{3}$

$$\therefore y = \frac{1}{2}t^2 = \frac{1}{2}\left(\frac{2x}{3}\right)^2 = \frac{2x^2}{9}$$
Hence the locus has equation $2x^2 = 9y$.

(a) Outcomes Assessed: (i) P4 (ii) PE3

Marking Guidelines

with this outcomes	
Criteria	Marks
(i) • one mark for expansion and expressions for cos 2 A, sin 2 A	
• one mark for simplification to obtain final expression for $\cos 3A$ in terms of $\cos A$	
(ii) • one mark for expressing $2\cos 3A$ in terms of $\left(x+\frac{1}{x}\right)$	5
• one mark for binomial expansion of $\left(x+\frac{1}{x}\right)^3$	
• one mark for simplification to obtain final expression for $\cos 3A$ in terms of x	

Answer:

(i)
$$\cos 3A = \cos(2A + A)$$
 (ii) $2\cos 3A = 8\cos^3 A - 6\cos A$ $= \cos 2A\cos A - \sin 2A\sin A$ $= (2\cos^2 A - 1)\cos A - (2\sin A\cos A)\sin A$ $= (2\cos^3 A - \cos A - 2\sin^2 A\cos A)$ $= (x + \frac{1}{x})^3 - 3(x + \frac{1}{x})$ $= x^3 + 3x + \frac{3}{x} + (\frac{1}{x})^3 - 3x - \frac{3}{x}$ $= x^3 + \frac{1}{x^3}$

(b) Outcomes Assessed: (i) P5, HE4 (ii) P5, HE4 (iii) P4

Marking Guidelines

Criteria	Marks
 (i) • one mark for finding the inverse function • one mark for the domain of the inverse function (ii) • one mark for the graph of y = f(x) and intercepts • one mark for the graph of y = f⁻¹(x) and intercepts • one mark for the line y = x passing through the point of intersection (iii) • one mark for the equation • one mark for the coordinates of the point of intersection 	7

Answer:

Hence intersection point of the curves is (3,3).

- (a) Outcomes Assessed: HE2

Marking Guidelines	
Criteria	Marks
• one mark for establishing the truth of $S(1)$	
• one mark for $S(k)$ true $\Rightarrow 5^k + 2(11^k) = 3M$ for some integer M.	
• one mark for $5^{k+1} + 2(11^{k+1}) = 5(5^k) + 22(11^k)$	5
• one mark for deducing $S(k)$ true $\Rightarrow S(k+1)$ true	
• one mark for deducing $S(n)$ true for all integers $n \ge 1$	

Answer:

Define the sequence of statements S(n): $5^n + 2(11^n)$ is a multiple of 3, n = 1, 2, 3, ...

Consider
$$S(1)$$
: $5^1 + 2(11^1) = 27 = 3 \times 9$: $S(1)$ is true.

If
$$S(k)$$
 is true, then $5^k + 2(11^k) = 3M$ for some integer M. **

Consider
$$S(k+1)$$
: $5^{k+1} + 2(11^{k+1}) = 5(5^k) + 22(11^k) = 5\{(5^k) + 2(11^k)\} + 12(11^k)$
 $\therefore 5^{k+1} + 2(11^{k+1}) = 5(3M) + 12(11^k) = 3\{5M + 4(11^k)\} \text{ if } S(k) \text{ is true, using **}$
But M and k integral $\Rightarrow \{5M + 4(11^k)\} \text{ is an integer.}$
 $\therefore S(k) \text{ true } \Rightarrow S(k+1) \text{ true }, k=1,2,3,...$

Hence S(1) is true, and if S(k) is true, then S(k+1) is true. S(2) is true, and then S(3) is true, and so on. Hence by Mathematical Induction, S(n) is true for all positive integers n.

(b) Outcomes Assessed: (i) H5 (ii) P5, H2 (iii) PE3

Marking Guidelines

Walking Galdennes	
Criteria	Marks
(i) • one mark for areas of small circle sector and triangle OPQ	
• one mark for equating expression for shaded area to $\frac{1}{16}$ of large circle area	İ
• one mark for simplification to find equation in required form	7
(ii) • one mark for showing $f(0.5)$, $f(0.6)$ have opposite signs	'
• one mark for using continuity of $f(x)$ to deduce $0.5 < \alpha < 0.6$	
(iii) • one mark for expression for second approximation	:
• one mark for calculation of second approximation	

Answer:

Area of
$$\triangle POQ = \frac{1}{2} (4^2) \sin x$$

Area small circle sector = $\frac{1}{2}(2^2) x$

$$\therefore$$
 shaded area = $8\sin x - 2x$

$$\therefore 8\sin x - 2x = \frac{1}{16}\pi \left(4^2\right) = \pi$$
$$8\sin x - 2x - \pi = 0$$

(ii) Let
$$f(x) = 8\sin x - 2x - \pi$$
. Then $f(0.5) \approx -0.31 < 0$ and $f(0.6) \approx 0.18 > 0$. Hence, since $f(x)$ is continuous, $f(\alpha) = 0$ for some $0.5 < \alpha < 0.6$.

(iii) Taking a first approximation
$$\alpha \approx 0.6$$
,
Newton's method gives a second approximation $f(0.6)$

$$\alpha \approx 0.6 - \frac{f(0.6)}{f'(0.6)}$$

$$= 0.6 - \frac{8\sin(0.6) - 2(0.6) - \pi}{8\cos(0.6) - 2}$$

 ≈ 0.56 to 2 decimal places.

(a) Outcomes Assessed: HE6

Marking Guidelines

Criteria	Marks
one mark for change of limits	
• one mark for change of variable	4
• one mark for integration	
• one mark for evaluation	

Answer:

Let
$$I = \int_{1}^{49} \frac{1}{4(x + \sqrt{x})} dx$$

 $u^{2} = x$, $u > 0$
 $2u = \frac{dx}{du} \implies dx = 2u du$
 $x = 1 \implies u = 1$, $x = 49 \implies u = 7$

Then
$$I = \int_{1}^{7} \frac{1}{4(u^{2} + u)} 2u \, du$$

$$= \int_{1}^{7} \frac{1}{2(u + 1)} \, du$$

$$= \frac{1}{2} \left[\ln(u + 1) \right]_{1}^{7}$$

$$\therefore I = \frac{1}{2} (\ln 8 - \ln 2) = \frac{1}{2} \ln 4 = \ln 2$$

(b) Outcomes Assessed: H5

Marking Guidelines

Criteria	Marks
• one mark for expressing $\sin^2 x$ in terms of $\cos 2x$ • one mark for integration, including constant of integration • one mark for evaluation of $f\left(\frac{\pi}{4}\right)$, $f\left(\frac{3\pi}{4}\right)$	4
• one mark for value of difference	

Answer:

$$\frac{dy}{dx} = \sin^2 x$$

$$= \frac{1}{2} (1 - \cos 2x)$$

$$y = \frac{1}{2} \left(x - \frac{1}{2} \sin 2x \right) + c, \quad c \text{ constant}$$

$$f(x) = \frac{1}{2}x - \frac{1}{4}\sin 2x + c$$

$$\therefore f\left(\frac{3\pi}{4}\right) - f\left(\frac{\pi}{4}\right)$$

$$= \left(\frac{3\pi}{8} - \frac{1}{4}\sin\frac{3\pi}{2} + c\right) - \left(\frac{\pi}{8} - \frac{1}{4}\sin\frac{\pi}{2} + c\right)$$

$$= \left(\frac{3\pi}{8} + \frac{1}{4} + c\right) - \left(\frac{\pi}{8} - \frac{1}{4} + c\right)$$

$$= \frac{\pi}{4} + \frac{1}{2}$$

(c) Outcomes Assessed: (i) HE3 (ii) H5, HE3

Marking Guidelines

Wat aling Goldenies	
<u>Criteria</u>	Marks
(i) • one mark for finding the period of the motion	
(ii) • one mark for expressing v^2 in terms of t	
• one mark for expressing v^2 in terms of x	[4
 one mark for the value of the speed. 	

(i) Period is
$$2\pi \div \frac{\pi}{2} = 4$$
 seconds
(ii)
$$x = 5\cos\frac{\pi}{2}t$$

$$v = \frac{dx}{dt} = 5\left(-\frac{\pi}{2}\sin\frac{\pi}{2}t\right)$$

$$v^2 = \left(\frac{\pi^2}{4}\right).25\sin^2\frac{\pi}{2}t$$

$$v^{2} = \left(\frac{\pi^{2}}{4}\right) \cdot 25 \left(1 - \cos^{2} \frac{\pi}{2} t\right)$$

$$= \frac{\pi^{2}}{4} \left(25 - 25 \cos^{2} \frac{\pi}{2} t\right)$$

$$v^{2} = \frac{\pi^{2}}{4} \left(25 - x^{2}\right)$$

$$x = 4 \implies v^{2} = \frac{\pi^{2}}{4} \left(25 - 16\right) = \frac{9\pi^{2}}{4}$$
Speed is $\frac{3\pi}{2}$ ms⁻¹

(a) Outcomes Assessed: (i) P4, HE4 (ii) HE4, HE5 (iii) H5

Marking	Guidelines
---------	------------

Walking Guidelines	
Criteria	Marks
(i) • one mark for expression for θ	
(ii) • one mark for expression for $\frac{d\theta}{dr}$	
ux	
• one mark for expression for $\frac{d\theta}{dt}$	5
(iii) • one mark for value of $\frac{d\theta}{dt}$	
$ullet$ one mark for value of $oldsymbol{ heta}$	

Answer:

(i)

(alt. ∠ s, parallel lines)

$$\tan \theta = \frac{200}{x}$$

 $\angle TAP = \theta$

$$\theta = \tan^{-1} \frac{200}{x}$$

$$\frac{d\theta}{dx} = \frac{1}{1 + \left(\frac{200}{x}\right)^2} \left(-\frac{200}{x^2}\right) = \frac{-200}{x^2 + 40000}$$

$$\frac{d\theta}{dt} = \frac{d\theta}{dx} \cdot \frac{dx}{dt} = \frac{-200}{x^2 + 40000} (-80)$$

$$\therefore \frac{d\theta}{dt} = \frac{16000}{x^2 + 40000}$$

(iii) When
$$\theta = \frac{\pi}{4}$$
, $TP = AP \implies x = 200$, and $\frac{d\theta}{dt} = \frac{16000}{(200)^2 + 40000} = 0.2$ radians per second.

Hence θ is increasing at 11° s^{-1} (correct to the nearest degree)

(b) Outcomes Assessed: (i) HE5 (ii) H3, H5, HE4 (iii) HE3, HE7

Marking Guidelines

Criteria	Marks
(i) • one mark for expression for a in terms of x	
(ii) • one mark for expressing t as an integral with respect to x	
• one mark for integration to find t in terms of x	
• one mark for expression for x^2 in terms of t	7
(iii) • one mark for graph of x^2 as a function of t	
• one mark for limiting values of x, v, a	
 one mark for description of limiting behaviour in words 	

$$v^{2} = \left(\frac{32}{x} - \frac{x}{2}\right)^{2} = \frac{1024}{x^{2}} - 32 + \frac{x^{2}}{4}$$

$$a = \frac{d}{dx}\left(\frac{1}{2}v^{2}\right) = \frac{1}{2}\frac{d}{dx}\left(\frac{1024}{x^{2}} - 32 + \frac{x^{2}}{4}\right)$$

$$\therefore a = \frac{-1024}{r^{3}} + \frac{x}{4}$$

(ii)
$$\frac{dx}{dt} = v = \frac{32}{x} - \frac{x}{2} = \frac{64 - x^2}{2x}$$

$$\therefore \frac{dt}{dx} = \frac{2x}{64 - x^2}$$

$$t = \int \frac{2x}{64 - x^2} dx$$

$$t = -\ln(64 - x^{2}) + c , \qquad t = 0 \\ x = 2 \end{cases} \implies c = \ln 60$$

$$-t = \ln\left(\frac{64 - x^{2}}{60}\right) , \qquad e^{-t} = \frac{64 - x^{2}}{60}$$

$$\therefore x^{2} = 64 - 60 e^{-t}$$

As
$$t \to \infty$$
, $x \to 8^-$, $v \to \frac{32}{8} - \frac{8}{2} = 0^+$, $a \to \frac{-1024}{512} + \frac{8}{4} = 0^-$

Hence the particle is moving right and slowing down as it approaches its limiting position 8 metres to the right of O.

Question 7

(a) Outcomes Assessed: (i) HE3 (ii) HE3

Marking Guidelines

Wiatking Guidennes	
<u>Criteria</u>	Marks
 (i) • one mark for value of probability (ii) • one mark for expression for probability of two 6's on first roll and no 6's on second • one mark for expression for probability of one 6 on first roll and one 6 on second • one mark for expression for probability of no 6's on first roll and two 6's on second • one mark for value of probability 	5
	i e

Answer:

- (i) $P(one \ 6 \ on \ first \ roll) = {}^4C_1 \left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^3 \approx 0.39$ (to 2 decimal places)
- (ii) $P(two\ 6\ s\ on\ first\ roll\ and\ no\ 6\ s\ on\ second\ roll) = {}^4C_2(\frac{1}{6})^2(\frac{5}{6})^2\times{}^2C_0(\frac{1}{6})^0(\frac{5}{6})^2\approx 0.0804$ $P(one\ 6\ on\ first\ roll\ and\ one\ 6\ on\ second\ roll) = {}^4C_1(\frac{1}{6})^1(\frac{5}{6})^3\times{}^3C_1(\frac{1}{6})^1(\frac{5}{6})^2\approx 0.1340$ $P(no\ 6\ s\ on\ first\ roll\ and\ two\ 6\ s\ on\ second\ roll) = {}^4C_0(\frac{1}{6})^0(\frac{5}{6})^4\times{}^4C_2(\frac{1}{6})^2(\frac{5}{6})^2\approx 0.0558$ $\therefore P(two\ 6\ s\ overall)\approx 0.0804+0.1340+0.0558\approx 0.27$ (to 2 decimal places)

(b) Outcomes Assessed: (i) HE3 (ii) HE3 (iii) P4, H2 (iv) P4, H2

Marking Guidelines

Wat king Outdernies	
<u>Criteria</u>	Marks
(i) • one mark for expressions for x and y in terms of θ and t	
(ii) • one mark for expression for y in terms of x	1
ullet one mark for rearrangement as quadratic in $ an heta$	
(iii) • one mark for discriminant in terms of X and Y	7
• one mark for using discriminant > 0 to give required inequality	
(iv) • one mark for the values of the sum and product of $\tan \alpha$, $\tan \beta$ in terms of X	
• one mark for the value of $\alpha + \beta$	

Answer:

(i)
$$x = 50 t \cos \theta$$
 and $y = 50 t \sin \theta - 5t^2$
(ii) $t = \frac{x}{50 \cos \theta} \implies y = x \frac{\sin \theta}{\cos \theta} - \frac{5x^2}{2500 \cos^2 \theta}$
 $500 y = 500 x \tan \theta - x^2 \sec^2 \theta$
 $= 500 x \tan \theta - x^2 \left(1 + \tan^2 \theta\right)$
 $= 500 x \tan \theta - x^2 - x^2 \tan^2 \theta$
 $\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$

(iii) Projectile passes through the point (X, Y) if $\tan \theta$ satisfies the quadratic equation $X^2 \tan^2 \theta - 500 \ X \tan \theta + (X^2 + 500 \ Y) = 0$ This equation has two distinct solutions for $\tan \theta$, and hence for θ , provided its discriminant $\Delta > 0$. $\Delta = (-500 \ X)^2 - 4 \ X^2 (X^2 + 500 \ Y)$ $= 4X^2 (62500 - X^2 - 500 \ Y)$ $\therefore \Delta > 0 \text{ provided} \quad 500 \ Y < 62500 - X^2$

(iv) If the projectile passes through the point
$$(X, X)$$
 where $500X < 62500 - X^2$, then the equation $X^2 \tan^2 \theta - 500 X \tan \theta + (X^2 + 500 X) = 0$ has two distinct real roots $\tan \alpha$, $\tan \beta$ where $\tan \alpha + \tan \beta = \frac{500 X}{X^2} = \frac{500}{X}$ and $\tan \alpha \tan \beta = \frac{X^2 + 500 X}{X^2} = 1 + \frac{500}{X}$

$$\therefore \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha} = \frac{500}{X} \div \left(-\frac{500}{X}\right) = -1$$
Since $0 < \alpha + \beta < \pi$, $\alpha + \beta = \frac{3\pi}{4}$.