

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{28} - u^{27} + \dots - 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 28 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{28} - u^{27} + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{8} - 5u^{6} + 7u^{4} - 2u^{2} + 1 \\ u^{8} - 4u^{6} + 4u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{8} - 5u^{6} + 7u^{4} - 2u^{2} + 1 \\ u^{8} - 4u^{6} + 4u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{12} - 7u^{10} + 17u^{8} - 16u^{6} + 6u^{4} - 5u^{2} + 1 \\ -u^{14} + 8u^{12} - 23u^{10} + 28u^{8} - 14u^{6} + 6u^{4} - 3u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{21} - 12u^{19} + \dots - 8u^{3} + 3u \\ u^{21} - 11u^{19} + \dots - 3u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{26} + 60u^{24} 384u^{22} 4u^{21} + 1364u^{20} + 48u^{19} 2940u^{18} 236u^{17} + 4000u^{16} + 608u^{15} 3604u^{14} 884u^{13} + 2428u^{12} + 784u^{11} 1376u^{10} 560u^{9} + 576u^{8} + 384u^{7} 180u^{6} 148u^{5} + 40u^{4} + 52u^{3} 4u^{2} 16u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{28} - u^{27} + \dots + u^2 - 1$
c_2	$u^{28} + u^{27} + \dots - u - 2$
c_{3}, c_{6}	$u^{28} - 5u^{27} + \dots + 20u - 7$
c_4, c_5, c_9 c_{10}	$u^{28} - u^{27} + \dots - 2u - 1$
<i>c</i> ₈	$u^{28} + 13u^{27} + \dots - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{28} + 13y^{27} + \dots - 2y + 1$
c_2	$y^{28} - 3y^{27} + \dots - 109y + 4$
c_{3}, c_{6}	$y^{28} + 17y^{27} + \dots + 118y + 49$
c_4, c_5, c_9 c_{10}	$y^{28} - 31y^{27} + \dots - 2y + 1$
c ₈	$y^{28} + 5y^{27} + \dots - 26y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.586405 + 0.574893I	1.11175 + 8.20859I	-6.53568 - 8.40980I
u = -0.586405 - 0.574893I	1.11175 - 8.20859I	-6.53568 + 8.40980I
u = 0.543996 + 0.566433I	3.04585 - 3.16640I	-3.13756 + 4.02500I
u = 0.543996 - 0.566433I	3.04585 + 3.16640I	-3.13756 - 4.02500I
u = 0.755212 + 0.133146I	-3.40408 - 3.35246I	-13.3032 + 5.3092I
u = 0.755212 - 0.133146I	-3.40408 + 3.35246I	-13.3032 - 5.3092I
u = 0.430218 + 0.577744I	3.38107 - 0.75823I	-1.91828 + 3.18448I
u = 0.430218 - 0.577744I	3.38107 + 0.75823I	-1.91828 - 3.18448I
u = -0.567490 + 0.434707I	-1.58402 + 1.32970I	-10.44616 - 3.85928I
u = -0.567490 - 0.434707I	-1.58402 - 1.32970I	-10.44616 + 3.85928I
u = -0.376046 + 0.601172I	1.72778 - 4.19313I	-4.61655 + 2.23475I
u = -0.376046 - 0.601172I	1.72778 + 4.19313I	-4.61655 - 2.23475I
u = -0.561801	-0.921591	-10.5330
u = 1.45325 + 0.12481I	-4.10153 + 1.71282I	-8.00356 - 2.41214I
u = 1.45325 - 0.12481I	-4.10153 - 1.71282I	-8.00356 + 2.41214I
u = -1.48911 + 0.14533I	-2.88101 + 3.25978I	-6.00000 - 3.24223I
u = -1.48911 - 0.14533I	-2.88101 - 3.25978I	-6.00000 + 3.24223I
u = -1.54219 + 0.16548I	-3.89171 + 5.80125I	-6.94144 - 3.19136I
u = -1.54219 - 0.16548I	-3.89171 - 5.80125I	-6.94144 + 3.19136I
u = -0.144411 + 0.424497I	-0.54493 + 1.50370I	-4.95413 - 4.12502I
u = -0.144411 - 0.424497I	-0.54493 - 1.50370I	-4.95413 + 4.12502I
u = 1.55614 + 0.12966I	-8.73279 - 3.39810I	-13.35777 + 1.97434I
u = 1.55614 - 0.12966I	-8.73279 + 3.39810I	-13.35777 - 1.97434I
u = 1.56158	-8.21476	-10.3100
u = 1.55803 + 0.17307I	-6.03932 - 10.93770I	-10.01109 + 7.20566I
u = 1.55803 - 0.17307I	-6.03932 + 10.93770I	-10.01109 - 7.20566I
u = -1.59109 + 0.02596I	-11.35240 + 3.87127I	-14.4294 - 3.8096I
u = -1.59109 - 0.02596I	-11.35240 - 3.87127I	-14.4294 + 3.8096I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{28} - u^{27} + \dots + u^2 - 1$
c_2	$u^{28} + u^{27} + \dots - u - 2$
c_{3}, c_{6}	$u^{28} - 5u^{27} + \dots + 20u - 7$
c_4, c_5, c_9 c_{10}	$u^{28} - u^{27} + \dots - 2u - 1$
<i>C</i> ₈	$u^{28} + 13u^{27} + \dots - 2u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{28} + 13y^{27} + \dots - 2y + 1$
c_2	$y^{28} - 3y^{27} + \dots - 109y + 4$
c_3, c_6	$y^{28} + 17y^{27} + \dots + 118y + 49$
c_4, c_5, c_9 c_{10}	$y^{28} - 31y^{27} + \dots - 2y + 1$
c ₈	$y^{28} + 5y^{27} + \dots - 26y + 1$