Filter Coefficients to Popular Wavelets

Pascal Getreuer, May 2006

Over the last two decades, wavelets have gained a lot of popularity and become a standard tool for many disciplines. Despite all the attention, it can be difficult to obtain filter coefficients for even the most commonly used wavelets. This document is a reference, listing filters for wavelets in the Daubechies, symlets, Coiflets, and biorthogonal spline families and the CDF 9/7 wavelet. For some wavelets, a filter sequence for lifting scheme implementation is also provided.

Notes

- Wavelets are indexed by the number of vanishing moments, for example, "Daubechies 2" has 2 vanishing moments and 4-tap filters.
- Wavelets can have more than one name; for example, "Symlet 2" is also known as "Daubechies 2."
- There are different conventions for filter scale factors.

Background

Let h and g be the wavelet decomposition (analysis) filters, where h is a lowpass filter and g is a highpass filter. Let the dual filters \tilde{h} and \tilde{g} be the wavelet reconstruction (synthesis) filters. One stage of decomposition followed by reconstruction is

$$v \xrightarrow{h} \downarrow \xrightarrow{s} \uparrow \tilde{h} \downarrow \downarrow v$$

The wavelet filters $h, g, \tilde{h}, \tilde{g}$ must satisfy the perfect reconstruction conditions,

$$h(z)\tilde{h}(z) + g(z)\tilde{g}(z) = 2,$$

$$h(z)\tilde{h}(-z) + g(z)\tilde{g}(-z) = 0.$$

Scaling the filters by some scale factors α , β and shifting by some even integers 2j, 2k

$$\begin{split} h'(z) &= \alpha z^{2j} h(z), & g'(z) = \beta z^{2k} g(z), \\ \tilde{h}'(z) &= \alpha^{-1} z^{-2j} \tilde{h}(z), & \tilde{g}'(z) = \beta^{-1} z^{-2k} \tilde{g}(z), \end{split}$$

preserves the perfect reconstruction conditions. Exchanging the primal filters h, g with the dual filters \tilde{h} , \tilde{g} also produces a valid wavelet.

Any FIR (compact support) wavelet transform can be expressed as a lifting scheme [2]. The lifting scheme analysis is described with a sequence of "predict" and "update" filters, denoted p_1, p_2, \ldots for predict filters and u_1, u_2, \ldots for update filters. After the filtering steps, x_e is multiplied by K_s and x_o is multiplied by K_d . For the inverse transform, undo the K_s and K_d scale factors, change additions to subtractions, and perform the filtering steps in the reverse order.

1 Daubechies' Maximally Flat Wavelets

1.1 Daubechies 2

Daubechies 2 is an orthogonal wavelet with two vanishing moments.

$$\begin{array}{rcl} h(z) & = & h_{-2}z^2 + h_{-1}z + h_0 + h_1z^{-1}, & \tilde{h}(z) & = & h_1z + h_0 + h_{-1}z^{-1} + h_{-2}z^{-2}, \\ g(z) & = & -h_1z^2 + h_0z - h_{-1} + h_{-2}z^{-1}, & \tilde{g}(z) & = & h_{-2}z - h_{-1} + h_0z^{-1} - h_1z^{-2}, \\ \\ h_{-2} & = & \frac{1+\sqrt{3}}{4\sqrt{2}}, & h_{-1} & = & \frac{3+\sqrt{3}}{4\sqrt{2}}, & h_0 & = & \frac{3-\sqrt{3}}{4\sqrt{2}}, & h_1 & = & \frac{1-\sqrt{3}}{4\sqrt{2}}. \end{array}$$

The dual filters are $\tilde{h}(z) = h(z^{-1})$ and $\tilde{g}(z) = g(z^{-1})$.

The filters for lifting scheme implementation are

$$p_1(z) = -\sqrt{3}$$

$$u_1(z) = \frac{1}{4}(\sqrt{3} - 2)z + \frac{1}{4}\sqrt{3}$$

$$p_2(z) = z^{-1}$$

with $K_s = \frac{\sqrt{3}+1}{\sqrt{2}}$ and $K_d = \frac{\sqrt{3}-1}{\sqrt{2}}$.

1.2 Daubechies 3

Orthogonal wavelet with three vanishing moments

$$\begin{split} h(z) &= h_{-3}z^3 + h_{-2}z^2 + h_{-1}z + h_0 + h_1z^{-1} + h_2z^{-2}, \\ g(z) &= -h_2z^3 + h_1z^2 - h_0z + h_{-1} - h_{-2}z^{-1} + h_{-3}z^{-2}, \\ h_{-3} &= \sqrt{2} \left(1 + \sqrt{10} + \sqrt{5 + 2\sqrt{10}} \right) / 32, \quad h_{-2} &= \sqrt{2} \left(5 + \sqrt{10} + 3\sqrt{5 + 2\sqrt{10}} \right) / 32, \\ h_{-1} &= \sqrt{2} \left(10 - 2\sqrt{10} + 2\sqrt{5 + 2\sqrt{10}} \right) / 32, \quad h_0 &= \sqrt{2} \left(10 - 2\sqrt{10} - 2\sqrt{5 + 2\sqrt{10}} \right) / 32, \\ h_1 &= \sqrt{2} \left(5 + \sqrt{10} - 3\sqrt{5 + 2\sqrt{10}} \right) / 32, \quad h_2 &= \sqrt{2} \left(1 + \sqrt{10} - \sqrt{5 + 2\sqrt{10}} \right) / 32. \\ \tilde{h}(z) &= h(z^{-1}) \text{ and } \tilde{g}(z) = g(z^{-1}). \end{split}$$

The filters for lifting scheme implementation are

$$\begin{array}{rcl} u_1(z) & = & \alpha \\ \\ p_1(z) & = & \beta z + \beta' \\ \\ u_2(z) & = & \gamma + \gamma' z^{-1} \\ \\ p_2(z) & = & \delta \end{array}$$

with scale factors $K_s = \zeta$ and $K_d = 1/\zeta$ where

1.3 Daubechies 4, 5, 6, 7, 8, 9

$$h(z) = \sum_{k} h_k z^{-k}, \qquad g(z) = zh(-z^{-1}), \qquad \tilde{h}(z) = h(z^{-1}), \qquad \tilde{g}(z) = g(z^{-1}).$$

Daubechies 4

Daubechies 5

h_0	$\dot{=}$	$0.160\ 102\ 397\ 974,$
h_1	÷	0.603 829 269 797,
h_2	÷	$0.724\ 308\ 528\ 438,$
h_3	Ė	$0.138\ 428\ 145\ 901,$
h_4	Ė	$-0.242\ 294\ 887\ 066,$
h_5	÷	$-0.032\ 244\ 869\ 585,$
h_6	÷	0.077 571 493 840,
h_7	÷	-0.006 241 490 213,
h_8	$\dot{=}$	-0.012 580 751 999,
h_9	$\dot{=}$	$0.003\ 335\ 725\ 285$

Daubechies 6

h_0	$\dot{=}$	0.111	540	743	350,
h_1	$\dot{=}$	0.494	623	890	398,
h_2	$\dot{=}$	0.751	133	908	021,
h_3	$\dot{=}$	0.315	250	351	709,
h_4	$\dot{=}$	-0.226	264	693	965,
h_5	$\dot{=}$	-0.129	766	867	567,
h_6	$\dot{=}$	0.097	501	605	587,
h_7	$\dot{=}$	0.027	522	865	530,
h_8	$\dot{=}$	-0.031	582	039	317,
h_9	$\dot{=}$	0.000	553	842	201,
h_{10}	$\dot{=}$	0.004	777	257	511,
h_{11}	$\dot{=}$	-0.001	077	301	085

Daubechies 7

h_0	$\dot{=}$	0.077	852	054	085,
h_1	$\dot{=}$	0.396	539	319	482,
h_2	$\dot{=}$	0.729	132	090	846,
h_3	$\dot{=}$	0.469	782	287	405,
h_4	Ė	-0.143	906	003	929,
h_5	÷	-0.224	036	184	994,
h_6	$\dot{=}$	0.071	309	219	267,
h_7	÷	0.080	612	609	151,
h_8	÷	-0.038	029	936	935,
h_9	÷	-0.016	574	541	631,
h_{10}	÷	0.012	550	998	556,
h_{11}	÷	0.000	429	577	973,
h_{12}	÷	-0.001	801	640	704,
h_{13}	÷	0.000	353	713	800

Daubechies 8

h_0	$\dot{=}$	0.054	415	842	243,
h_1	$\dot{=}$	0.312	871	590	914,
h_2	$\dot{=}$	0.675	630	736	297,
h_3	$\dot{=}$	0.585	354	683	654,
h_4	$\dot{=}$	-0.015	829	105	256,
h_5	$\dot{=}$	-0.284	015	542	962,
h_6	$\dot{=}$	0.000	472	484	574,
h_7	$\dot{=}$	0.128	747	426	620,
h_8	$\dot{=}$	-0.017	369	301	002,
h_9	$\dot{=}$	-0.044	088	253	931,
h_{10}	$\dot{=}$	0.013	981	027	917,
h_{11}	$\dot{=}$	0.008	746	094	047,
h_{12}	$\dot{=}$	-0.004	870	352	993,
h_{13}	$\dot{=}$	-0.000	391	740	373,
h_{14}	$\dot{=}$	0.000	675	449	406,
h_{15}	$\dot{=}$	-0.000	117	476	784

Daubechies 9

h_0	Ė	$0.038\ 077\ 947\ 364,$
h_1	Ė	$0.243\ 834\ 674\ 613,$
h_2	Ė	$0.604\ 823\ 123\ 690,$
h_3	$\dot{=}$	$0.657\ 288\ 078\ 051,$
h_4	$\dot{=}$	$0.133\ 197\ 385\ 825,$
h_5	÷	$-0.293\ 273\ 783\ 279,$
h_6	Ė	-0.096 840 783 223,
h_7	Ė	$0.148\ 540\ 749\ 338,$
h_8	Ė	$0.030\ 725\ 681\ 479,$
h_9	Ė	-0.067 632 829 061,
h_{10}	Ė	$0.000\ 250\ 947\ 115,$
h_{11}	Ė	$0.022\ 361\ 662\ 124,$
h_{12}	Ė	-0.004723204758,
h_{13}	÷	$-0.004\ 281\ 503\ 682,$
h_{14}	Ė	$0.001\ 847\ 646\ 883,$
h_{15}	Ė	$0.000\ 230\ 385\ 764,$
h_{16}	÷	-0.000 251 963 189,
h_{17}	÷	$0.000\ 039\ 347\ 320$

2 Symlets

Symlets are Daubechies' approximately symmetry wavelets, orthogonal wavelets where the scaling function is close to symmetric.

$$h(z) = \sum_{k} h_k z^{-k}, \qquad g(z) = zh(-z^{-1}), \qquad \tilde{h}(z) = h(z^{-1}), \qquad \tilde{g}(z) = g(z^{-1}).$$
 Symlet 2 Symlet 3 Symlet 4
$$h_0 = 0.482 \ 962 \ 913 \ 145, \qquad h_0 = 0.332 \ 670 \ 552 \ 951, \qquad h_0 = 0.032 \ 223 \ 100 \ 604, \\ h_1 = 0.836 \ 516 \ 303 \ 737, \qquad h_1 = 0.806 \ 891 \ 509 \ 313, \qquad h_1 = -0.012 \ 603 \ 967 \ 262, \\ h_2 = 0.224 \ 143 \ 868 \ 042, \qquad h_2 = 0.459 \ 877 \ 502 \ 119, \qquad h_2 = -0.099 \ 219 \ 543 \ 577, \\ h_3 = -0.129 \ 409 \ 522 \ 551 \qquad h_3 = -0.135 \ 011 \ 020 \ 010, \qquad h_3 = 0.297 \ 857 \ 795 \ 606, \\ h_4 = -0.085 \ 441 \ 273 \ 882, \qquad h_4 = 0.803 \ 738 \ 751 \ 807, \\ h_5 = 0.035 \ 226 \ 291 \ 882 \qquad h_5 = 0.497 \ 618 \ 667 \ 633, \\ h_6 = -0.029 \ 635 \ 527 \ 646, \\ h_7 = -0.075 \ 765 \ 714 \ 789$$
 Symlet 5 Symlet 6 Symlet 7
$$h_0 = 0.019 \ 538 \ 882 \ 735, \qquad h_0 = -0.007 \ 800 \ 708 \ 325, \qquad h_0 = 0.010 \ 268 \ 176 \ 709, \\ h_1 = -0.021 \ 101 \ 834 \ 025, \qquad h_1 = 0.001 \ 767 \ 711 \ 864, \qquad h_1 = 0.004 \ 010 \ 244 \ 872, \\ h_2 = -0.175 \ 328 \ 089 \ 908, \qquad h_2 = 0.044 \ 724 \ 901 \ 771, \qquad h_2 = -0.107 \ 808 \ 237 \ 704, \\ h_3 = 0.016 \ 602 \ 105 \ 765, \qquad h_3 = -0.021 \ 060 \ 292 \ 512, \qquad h_3 = -0.140 \ 047 \ 240 \ 443, \\ h_4 = 0.633 \ 978 \ 963 \ 458, \qquad h_4 = -0.072 \ 637 \ 522 \ 786, \qquad h_4 = 0.288 \ 629 \ 631 \ 752, \\ h_5 = 0.723 \ 407 \ 690 \ 402, \qquad h_5 = 0.337 \ 929 \ 421 \ 728, \qquad h_5 = 0.767 \ 764 \ 317 \ 003, \\ h_6 = 0.199 \ 397 \ 533 \ 977, \qquad h_6 = 0.787 \ 641 \ 141 \ 030, \qquad h_6 = 0.536 \ 101 \ 917 \ 992, \\ h_7 = -0.039 \ 134 \ 249 \ 302, \qquad h_7 = 0.049 \ 1055 \ 941 \ 927, \qquad h_7 = 0.017 \ 441 \ 255 \ 087, \\ h_8 = 0.029 \ 519 \ 490 \ 926, \qquad h_8 = -0.048 \ 311 \ 742 \ 586, \qquad h_8 = -0.049 \ 552 \ 834 \ 937, \\ h_{10} = 0.027 \ 333 \ 068 \ 345 \qquad h_{9} = -0.117 \ 990 \ 111 \ 148, \qquad h_{9} = 0.067 \ 892 \ 693 \ 501, \\ h_{10} = 0.003 \ 490 \ 712 \ 084, \qquad h_{10} = 0.001 \ 638 \ 889, \\ h_{11} = -0.010 \ 047 \ 384 \ 889, \\ h_{12} = -0.001 \ 047 \ 384 \ 889, \\ h_{13} = 0.002 \ 681 \ 814 \ 568$$

Symlet 8

```
h_0
           0.001 889 950 333,
h_1
     \doteq -0.000 302 920 515,
h_2
     \doteq -0.014 952 258 337,
h_3
     \doteq 0.003 808 752 014,
h_4 \doteq 0.049 \ 137 \ 179 \ 674,
h_5 \doteq -0.027 \ 219 \ 029 \ 917,
h_6 \quad \doteq \quad -0.051 \ 945 \ 838 \ 108,
h_7 \doteq 0.364 \ 441 \ 894 \ 835,
h_8 \quad \doteq \quad 0.777 \ 185 \ 751 \ 701,
h_9 \doteq 0.481 \ 359 \ 651 \ 258,
h_{10} \doteq -0.061\ 273\ 359\ 068,
h_{11} \doteq -0.143 \ 294 \ 238 \ 351,
h_{12} \doteq 0.007 607 487 325,
h_{13} \doteq 0.031 695 087 811,
h_{14} \doteq -0.000 542 132 332,
h_{15} \doteq -0.003 \ 382 \ 415 \ 951
```

3 Coiflets

$$h(z) = \sum_{k} h_k z^{-k}, \qquad g(z) = zh(-z^{-1}), \qquad \tilde{h}(z) = h(z^{-1}), \qquad \tilde{g}(z) = g(z^{-1}).$$

Coiflet 1

Coiflet 2

Coiflet 3

 $h_0 \doteq -0.003793512864,$ $h_1 \doteq 0.007782596427,$ $h_2 \doteq 0.023 \ 452 \ 696 \ 142,$ $h_3 \doteq -0.065771911282,$ $h_4 \doteq -0.061 \ 123 \ 390 \ 003,$ $h_5 \doteq 0.405 \ 176 \ 902 \ 410,$ $h_6 = 0.793777222626,$ $h_7 = 0.428 483 476 378,$ $h_8 \doteq -0.071799821619,$ $h_9 \doteq -0.082 \ 301 \ 927 \ 107,$ $h_{10} \doteq 0.034\ 555\ 027\ 573,$ $h_{11} \doteq 0.015 880 544 864,$ $h_{12} \doteq -0.009\ 007\ 976\ 137,$ $h_{13} \doteq -0.002\ 574\ 517\ 689,$ $h_{14} \doteq 0.001 \ 117 \ 518 \ 771,$ $h_{15} \doteq 0.000 \ 466 \ 216 \ 960,$ $h_{16} \doteq -0.000\ 070\ 983\ 303,$ $h_{17} \doteq -0.000 \ 034 \ 599 \ 773$

Coiflet 4

Coiflet 5

h_0	$\dot{=}$	0.000	892	313	669,	h_{i}	O	$\dot{=}$	-0.00
h_1	$\dot{=}$	-0.001	629	492	013,	h	1	$\dot{=}$	0.00
h_2	$\dot{=}$	-0.007	346	166	328,	h_{i}	2	$\dot{=}$	0.00
h_3	$\dot{=}$	0.016	068	943	965,	h_{i}	3	$\dot{=}$	-0.00
h_4	$\dot{=}$	0.026	682	300	156,	h.	4	$\dot{=}$	-0.01
h_5	$\dot{=}$	-0.081	266	699	681,	h	5	$\dot{=}$	0.02
h_6	$\dot{=}$	-0.056	077	313	317,	h	6	$\dot{=}$	0.02
h_7	$\dot{=}$	0.415	308	407	030,	h	7	$\dot{=}$	-0.09
h_8	$\dot{=}$	0.782	238	930	921,	h_i	8	$\dot{=}$	-0.05
h_9	$\dot{=}$	0.434	386	056	491,	h_{i}	9	$\dot{=}$	0.42
h_{10}	$\dot{=}$	-0.066	627	474	263,	h	10	$\dot{=}$	0.77
h_{11}	$\dot{=}$	-0.096	220	442	034,	h	11	$\dot{=}$	0.43
h_{12}	$\dot{=}$	0.039	334	427	123,	h	12	$\dot{=}$	-0.06
h_{13}	$\dot{=}$	0.025	082	261	845,	h	13	$\dot{=}$	-0.10
h_{14}	$\dot{=}$	-0.015	211	731	528,	h	14	$\dot{=}$	0.04
h_{15}	$\dot{=}$	-0.005	658	286	687,	h	15	$\dot{=}$	0.03
h_{16}	$\dot{=}$	0.003	751	436	157,	h	16	$\dot{=}$	-0.01
h_{17}	$\dot{=}$	0.001	266	561	929,	h	17	$\dot{=}$	-0.00
h_{18}	$\dot{=}$	-0.000	589	020	756,	h	18	$\dot{=}$	0.00
h_{19}	$\dot{=}$	-0.000	259	974	552,	h	19	$\dot{=}$	0.00
h_{20}	$\dot{=}$	0.000	062	339	034,	h	20	$\dot{=}$	-0.00
h_{21}	$\dot{=}$	0.000	031	229	876,	h_{i}	21	$\dot{=}$	-0.00
h_{22}	$\dot{=}$	-0.000	003	259	680,	h_{i}	22	$\dot{=}$	0.00
h_{23}	$\dot{=}$	-0.000	001	784	985	h_{i}	23	$\dot{=}$	0.00
						h	24	$\dot{=}$	-0.00
						h_{i}	25	$\dot{=}$	-0.00
						h	26	$\dot{=}$	0.00

4 Biorthogonal Spline Wavelets

Godavarthy [3] shows how to algorithmically construct wavelets in this family. Given N and \tilde{N} such that $M = \frac{1}{2}(N + \tilde{N}) - 1$ is integer, the filters for Spline $N.\tilde{N}$ are

$$\begin{split} h(z) &= \sqrt{2} \, z^{\lfloor N/2 \rfloor} \left(\frac{1+z^{-1}}{2} \right)^N, \\ \tilde{h}(z) &= \sqrt{2} \, z^{\lceil \tilde{N}/2 \rceil} \left(\frac{1+z^{-1}}{2} \right)^{\tilde{N}} \sum_{n=0}^M \binom{M+n}{n} \, (-4)^{-n} (z-2+z^{-1})^n, \\ g(z) &= z^{-1} \tilde{h}(-z), \qquad \tilde{g}(z) = zh(-z), \end{split}$$

where $\lfloor \cdot \rfloor$ denotes the floor function. The filters for particular N and \tilde{N} are listed below:

$$h(z) = \sum_{k} h_k z^{-k}, \qquad \tilde{h}(z) = \sum_{k} \tilde{h}_k z^{-k}, \qquad g(z) = z^{-1} \tilde{h}(-z), \qquad \tilde{g}(z) = z h(-z).$$

Spline 1.3

Spline 1.5

Spline 2.2 (also CDF 5/3)

$$\begin{array}{rclcrcl} h_{-1} & = & \frac{1}{4}\sqrt{2}, & \tilde{h}_{-2} & = & -\frac{1}{8}\sqrt{2}, \\ h_{0} & = & \frac{1}{2}\sqrt{2}, & \tilde{h}_{-1} & = & \frac{1}{4}\sqrt{2}, \\ h_{1} & = & \frac{1}{4}\sqrt{2} & \tilde{h}_{0} & = & \frac{3}{4}\sqrt{2}, \\ & & \tilde{h}_{1} & = & \frac{1}{4}\sqrt{2}, \\ & \tilde{h}_{2} & = & -\frac{1}{8}\sqrt{2}. \end{array}$$

Spline 2.4

Spline 3.3

$$\begin{array}{rclcrcl} h_{-1} & = & \frac{1}{8}\sqrt{2}, & \tilde{h}_{-4} & = & \frac{3}{64}\sqrt{2}, \\ h_{0} & = & \frac{3}{8}\sqrt{2}, & \tilde{h}_{-3} & = & -\frac{9}{64}\sqrt{2}, \\ h_{1} & = & \frac{3}{8}\sqrt{2}, & \tilde{h}_{-2} & = & -\frac{7}{64}\sqrt{2}, \\ h_{2} & = & \frac{1}{8}\sqrt{2} & \tilde{h}_{-1} & = & \frac{45}{64}\sqrt{2}, \\ & & \tilde{h}_{0} & = & \frac{45}{64}\sqrt{2}, \\ & & \tilde{h}_{1} & = & -\frac{7}{64}\sqrt{2}, \\ & & \tilde{h}_{2} & = & -\frac{9}{64}\sqrt{2}, \\ & & \tilde{h}_{3} & = & \frac{3}{64}\sqrt{2}. \end{array}$$

Cohen-Daubechies-Fauraue 4.4

This wavelet is often also called the CDF 9/7 wavelet (where 9 and 7 denote the number of filter taps). It is used by the FBI for fingerprint compression and one of the wavelets selected for the JPEG2000 image format.

$$h(z) = h_3(z^3 + z^{-3}) + h_2(z^2 + z^{-2}) + h_1(z+1) + h_0$$

$$g(z) = g_4(z^4 + z^{-4}) + g_3(z^3 + z^{-3}) + g_2(z^2 + z^{-2}) + g_1(z+1) + g_0$$

$$\tilde{h}(z) = \tilde{h}_4(z^4 + z^{-4}) + \tilde{h}_3(z^3 + z^{-3}) + \tilde{h}_2(z^2 + z^{-2}) + \tilde{h}_1(z+1) + \tilde{h}_0$$

$$\tilde{g}(z) = \tilde{g}_3(z^3 + z^{-3}) + \tilde{g}_2(z^2 + z^{-2}) + \tilde{g}_1(z+1) + \tilde{g}_0$$

The filters for lifting scheme implementation are

$$p_1(z) = \alpha(z+1)$$

$$u_1(z) = \beta(1+z^{-1})$$

$$p_2(z) = \gamma(z+1)$$

$$u_2(z) = \delta(1+z^{-1})$$

with scale factors $K_s = \zeta$ and $K_d = 1/\zeta$ where

References

- [1] I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, 1992.
- [2] I. Daubechies and W. Sweldens. Factoring Wavelet Transforms into Lifting Steps. Sep. 1996.
- [3] S. Godavarthy. "Generating Spline Wavelets." Proceedings of the 36th Annual Southeast Regional Conference, 1998.
- [4] V. Spiliotopoulos, N. Zervas, Y. Andreopoulos, G. Anagnostopoulos, and C. Goutis. *Quantization Effect on VLSI Implementations for the 9/7 DWT Filters*. University of Patras, Dept. of ECE.