NAGA VS RAVITEJA CHAPPA

@ nchappa@uark.edu 📞 +1 (463) 206-4132 👂 Fayetteville, Arkansas 🔏 https://nchappa.github.io in www.linkedin.com/in/chapparaviteja/

SUMMARY

A highly motivated and aspiring doctoral student with a focus on Computer Vision/ Machine Learning/ Autonomous Embedded Systems, eagerly looking for an opportunity to tackle challenges in all aspects of computer vision applications including human behavior analysis and group activity recognition.

EDUCATION

Doctor of Philosophy, Computer Engineering University of Arkansas Fayetteville -GPA: 3.76

max Jan 2021 - May 2025

♀ Fayetteville, Arkansas

Masters of Science, Electrical and Computer Engineering

Purdue School of Engineering and Technology -GPA: 3.47

August 2018 - May 2020

♥ Indianapolis, Indiana

EXPERIENCE

Research Assistant

Computer Vision and Image Understanding Laboratory

🛗 January 2021 - Present

- **♀** Fayeteville, Arkansas
- Working towards the development of deep learning algorithms for behavioral analysis in the task of Group Activity Recognition (GAR) which is a part of Autism Children Group Behavior Analysis project. Also have hands-on experience working on Image deblurring techniques, Image segmentation and domain adaptation methods.
- My work based on self-supervised approach for GAR using Volleyball and NBA datasets is accepted to CVPRW 2023, Vancouver, Canada. Currently, I have two submissions for CVPR 2024 in the topics: action retrieval and video scene graph generation.

Research Assistant

IoT Collaboratory

• Worked towards the enhancement of accuracy and training speed for Neural Network Architectures using PyTorch Framework along with its implementation on NXP iMX-RT1060 EVKB and NXP BlueBox. I developed ADAS systems using this enhancements and also worked with Radar and Lidar sensors integration and simulation.

Instrumentation Engineering Intern **Defence Research Development Laboratory**

May 2017 - July 2017

♥ Hyderabad, India

• Project titled "Measurement of C-type Thermocouple Using K-type Signal Conditioning Unit" is done on MATLAB by using the standard thermocouple datasheet to obtain the respective thermocouple co-efficients, which are helpful for the conversion of one thermocouple output to other. Performed Static Analysis, Unit testing and Integration testing of this software.

TECHNICAL SKILLS

- Python, Pytorch, Tensorflow
- · Git, Bitbucket
- NXP S32DS, MCUXpresso, Eclipse, Keil uVision, Multisim
- MATLAB and Simulink- MBDT Toolbox
- Microsoft Visual Studio, MS Office
- Xilinx SDK, Vivado, ISE
- LabView, MentorGraphics, Solidworks
- Linux OS (Fedora/Ubuntu/CentOS)
- Verilog/System Verilog, VHDL

PUBLICATIONS

SPARTAN: Self-Supervised Spatiotemporal Transformers Approach to Group Activity Recognition (CVPRW 2023)

SoGAR: Self-supervised Spatiotemporal Attention-based Social Group Activity **Recognition** (Under review for PR journal)

REACT: Recognize Every Action Everywhere All At Once (Under review for ISVC journal)

HAtt-Flow: Hierarchical Attention-Flow Mechanism for Group Activity Scene Graph Generation in Videos (Under review for Sensors journal)

Please visit https://nchappa.github.io/ publications/ for more information about each publication.

PROJECTS

Alexa Controlled Drone Using Amazon Web Services

• Used NXP LPC54018 IoT module and iMX-RT1060 microcontrollers for reading the voice input and controlling the drone respectively.

Implementation of YOLOv3 using Bluebox and RTMaps

• Built and tested YOLOv3 using Tensorflow framework on RTX 2080Ti GPU.

Design and Implementation of Music Synthesizer

- Built a music keyboard on Zyng-7000 board with different buttons assigned with different audio frequencies using channel equalization.
- Controlled the gains of audio inputs from multiple sources using Xilinx Vivado and Xilinx

EMC Testing for an Automative ECU

• Built a testing unit using modeling of signal processing and digital communications in Matlab. Later, developed the same unit in C++ using Keil uVision.