Introduction to total positivity

Slides available at snkarp.github.io

Steven N. Karp (University of Notre Dame, Institute for Advanced Study)

April 24, 2025 Institute for Advanced Study

Pre-history

• Let var(v) denote the number of sign changes of $v \in \mathbb{R}^n$.

$$var(0,4,3,0,-1,-3,0,7,5) = 2$$

Theorem (Descartes (1637))

The nonzero real polynomial $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \in \mathbb{R}[x]$ has at most $var(a_0, \ldots, a_n)$ positive real zeros.

Theorem (Perron (1907), Frobenius (1912))

Let A be an $n \times n$ matrix with positive entries. Then A has a simple eigenvalue $\lambda > 0$ such that $\lambda > |\mu|$ for all other eigenvalues $\mu \in \mathbb{C}$. The eigenvector $v \in \mathbb{R}^n$ of λ has positive entries (up to rescaling).

Totally positive kernels

• A kernel is a continuous function $K : [0,1]^2 \to \mathbb{R}$. It acts on $\mathcal{C}([0,1])$:

$$(Kf)(x) := \int_0^1 K(x,y)f(y)dy.$$

• We call K totally positive if

$$\det \begin{bmatrix} K(x_1,y_1) & \cdots & K(x_n,y_n) \\ \vdots & \ddots & \vdots \\ K(x_n,y_1) & \cdots & K(x_n,y_n) \end{bmatrix} > 0 \qquad \qquad \text{for all } n \geq 1,$$

$$0 \leq x_1 < \cdots < x_n \leq 1,$$

$$0 \leq y_1 < \cdots < y_n \leq 1.$$

• e.g. $K(x, y) = e^{xy}$.

Theorem (Kellogg (1918), Gantmakher (1936))

Let $K : [0,1] \to \mathbb{R}$ be a totally positive kernel.

- (i) The eigenvalues of K are positive and distinct: $\lambda_1 > \lambda_2 > \cdots > 0$.
- (ii) If the corresponding eigenfunctions are $f_1, f_2, ...$, then f_k has exactly k-1 zeros on [0,1], and the zeros of f_k and f_{k+1} on [0,1] interlace.

Totally positive matrices

• A matrix is totally positive if all of its minors are positive.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} \quad \begin{array}{l} \lambda_1 = 10.60 \cdots \\ \lambda_2 = 1.24 \cdots \\ \lambda_3 = 0.15 \cdots \end{array} \quad v_1 = \begin{bmatrix} 0.13 \cdots \\ 0.43 \cdots \\ 0.89 \cdots \end{bmatrix} \quad v_2 = \begin{bmatrix} 0.81 \cdots \\ 0.50 \cdots \\ -0.30 \cdots \end{bmatrix} \quad v_3 = \begin{bmatrix} 0.66 \cdots \\ -0.73 \cdots \\ 0.17 \cdots \end{bmatrix}$$

minor = 3

Theorem (Gantmakher–Krein (1937, 1950))

Let A be an $n \times n$ totally positive matrix.

- (i) The eigenvalues of A are positive and distinct: $\lambda_1 > \cdots > \lambda_n > 0$.
- (ii) If the corresponding eigenvectors are v_1, \ldots, v_n , then $var(v_k) = k 1$, and the sign changes of v_k and v_{k+1} interlace.
- Proof: apply the Perron–Frobenius theorem to A acting on $\bigwedge^k \mathbb{R}^n$.
- Koteljanskii (1963): For part (i), we only need the principal and almost-principal minors of A to be positive.

Work of Schoenberg

- Pólya (1912): Which linear maps $A : \mathbb{R}^m \to \mathbb{R}^n$ weakly diminish sign variation (i.e. $var(Av) \le var(v)$ for all $v \in \mathbb{R}^m$)?
- Motivation: a discrete analogue of functions which weakly decrease the number of real zeros of a continuous function.

Theorem (Schoenberg (1930))

If A is injective, then A weakly diminishes sign variation if and only if for all $1 \le k \le m$, all nonzero $k \times k$ minors of A have the same sign.

• e.g.

$$A = \begin{bmatrix} 1 & 4 & 9 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$

• Motzkin (1933) solved the problem for all A.

Real-rooted polynomials

Theorem (Aissen–Schoenberg–Whitney (1952))

Let $f(x) := a_0 + a_1x + \cdots + a_nx^n$ have at least one positive coefficient. Then all complex zeros of f are ≤ 0 if and only if the Toeplitz matrix

$$M:=\begin{bmatrix} a_0 & a_1 & a_2 & \cdots \\ 0 & a_0 & a_1 & \cdots \\ 0 & 0 & a_0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \text{ is totally nonnegative (i.e. all its minors are } \geq 0\text{)}.$$

- Edrei (1952) extended the result to power series. It can be used to state the Riemann hypothesis: M is totally nonnegative when $f(x) := \xi(\sqrt{x} + \frac{1}{2})$.
- If all 2×2 minors of M are nonnegative, then (a_0, \ldots, a_n) is log-concave.

Theorem (Schoenberg (1955))

Fix $k \ge 1$. If all $k \times k$ minors of M are nonnegative, then f has no complex zeros $z \ne 0$ in the sector $|\arg(z)| < \frac{k}{n+k-1}\pi$, and this bound is tight.

Tests and parametrizations

• Adjacent positive row and column operations on $m \times n$ matrices preserve total nonnegativity. Whitney (1952) inverted these operations to test for total nonnegativity in time $O((m+n)^3)$ (also called "Neville elimination").

Corollary (Loewner (1955))

For $1 \le i \le n-1$, define matrices differing from the identity I_n as follows:

$$x_i(t) := egin{array}{ccc} i & i+1 \ 1 & t \ 0 & 1 \end{array} \Big] \quad \text{ and } \quad y_i(t) := x_i(t)^\mathsf{T} = egin{array}{ccc} i & i+1 \ 1 & 0 \ t & 1 \end{array} \Big].$$

Let (i_1, \ldots, i_ℓ) and (j_1, \ldots, j_ℓ) be reduced words for $w_0 \in \mathfrak{S}_n$, where $\ell := \binom{n}{2}$. Then every totally positive $n \times n$ matrix is uniquely expressed as

$$y_{j_{\ell}}(*)\cdots y_{j_1}(*)$$
 $\begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix} x_{i_1}(*)\cdots x_{i_{\ell}}(*), \quad \text{where the *'s are in } \mathbb{R}_{>0}.$

• e.g.
$$n = 3$$
.
$$\begin{bmatrix} 1 & 0 & 0 \\ * & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & * & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ * & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & * & 0 \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix}$$

Lusztig's theory of total positivity for G (1994)

- Let G be a real reductive algebraic group with simple roots I. Fix a pinning $(T, B, B_-, x_i, y_i)_{i \in I}$. Then:
 - $G_{\geq 0}$ is the semigroup generated by $x_i(t)$, $y_i(t)$, and $T_{>0}$ for t>0; and
 - $G_{>0} := y_{j_\ell}(*) \cdots y_{j_1}(*) \cdot T_{>0} \cdot x_{i_1}(*) \cdots x_{i_\ell}(*)$, where the *'s are in $\mathbb{R}_{>0}$, and (i_1, \dots, i_ℓ) and (j_1, \dots, j_ℓ) are reduced words for the longest element w_0 of the Weyl group W.

Theorem (Lusztig (1994))

Every $g \in G_{>0}$ is conjugate to an element of $T_{>0}$.

- Proof: apply the Perron–Frobenius theorem to g acting on the irreducible G-module V_{λ} , which has positive coefficients in the *canonical basis* of V_{λ} defined by Lusztig (1990).
- Fomin–Zelevinsky (2000) characterized $G_{\geq 0}$ and $G_{>0}$ by nonnegativity and positivity, respectively, of *generalized minors*.

Fomin–Zelevinsky's cluster algebras (2000)

• Let U_n be the set of upper-triangular unipotent $n \times n$ matrices, and $U_n^{>0}$ be the subset where all minors (which are not identically zero) are positive.

• e.g.
$$U_3^{>0} = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} : a, b, \cancel{c}, ac - b > 0 \right\}$$

Theorem (Cryer (1972); Gasca-Peña (1992))

 $U_n^{>0}$ is the subset of U_n where all contiguous topmost minors are positive.

Berenstein–Fomin–Zelevinsky's proof (1996):

(positive) exchange relation: $\Delta_2\Delta_{1,3}=\Delta_1\Delta_{2,3}+\Delta_{1,2}\Delta_3$

• For larger n, we get exchange relations not coming from braid moves. These generate positive functions on $U_n^{>0}$ called *cluster variables*.

Totally nonnegative partial flag varieties $(G/P)_{\geq 0}$

• Lusztig (1998): Given a parabolic subgroup $P \subseteq G$, define

$$(G/P)_{>0}:=G_{>0}/P \quad \text{ and } \quad (G/P)_{\geq 0}:=\overline{(G/P)_{>0}}.$$

• e.g. Grassmannian $Gr_{k,n}(\mathbb{C}) := \{k\text{-dimensional subspaces of } \mathbb{C}^n\}.$

$$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \mathsf{Gr}_{2,4}^{>0}$$

$$\Delta_{1,2}=1, \ \Delta_{1,3}=3, \ \Delta_{1,4}=2, \ \Delta_{2,3}=4, \ \Delta_{2,4}=3, \ \Delta_{3,4}=1$$

- The *Plücker coordinates* $\Delta_I(V)$ are the $k \times k$ minors of V (modulo global rescaling), indexed by k-subsets I of $\{1, \ldots, n\}$.
- Rietsch (2009): $\operatorname{Gr}_{k,n}^{>0} = \{ V \in \operatorname{Gr}_{k,n}(\mathbb{C}) : \Delta_I(V) > 0 \text{ for all } I \}$ (and similarly for $\operatorname{Gr}_{k,n}^{\geq 0}$).

Totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$

Theorem (Gantmakher–Krein (1950))

Let $V \in Gr_{k,n}(\mathbb{R})$.

- (i) We have $V \in Gr_{k,n}^{\geq 0}$ if and only if $var(v) \leq k-1$ for all $v \in V$.
- (ii) We have $V \in Gr_{k,n}^{>0}$ if and only if $var(w) \ge k$ for all nonzero $w \in V^{\perp}$.
- We have $\{m \times n \text{ totally positive matrices}\} \cong \mathsf{Gr}_{m,m+n}^{>0}$.

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \hookrightarrow \begin{bmatrix} 1 & 0 & -d & -e & -f \\ 0 & 1 & a & b & c \end{bmatrix} \in \mathsf{Gr}_{2,5}(\mathbb{C})$$

We can regard $Gr_{m,m+n}^{\geq 0}$ as a natural compactification.

Theorem (Purbhoo (2018))

If $V \in Gr_{k,n}^{\geq 0}$, then the polynomial $\sum_{I} \Delta_{I}(V) \cdot \prod_{i \in I} x_{i}$ is stable (i.e. it is nonzero on \mathcal{H}^{n} , where $\mathcal{H} \subseteq \mathbb{C}$ is the upper half-plane).

Cell decomposition of $Gr_{k,n}^{\geq 0}$

• Postnikov (2006): $\operatorname{Gr}_{k,n}^{\geq 0}$ decomposes into positroid cells, by specifying whether each Δ_I is zero or positive. Every cell is parametrized by a plabic graph.

$$\operatorname{Gr}_{2,4}^{>0} = \begin{bmatrix} 1 & 0 & -bc & -a - bcd \\ 0 & 1 & c & cd \end{bmatrix} \iff \begin{pmatrix} 4 & a & b \\ d & b & b \\ 3 & & 2 \end{pmatrix}$$

• $\operatorname{Gr}_{1,n}^{\geq 0}$ is the standard simplex in \mathbb{RP}^{n-1} . Lam (2014) studied *Grassmann polytopes*, motivated by scattering amplitudes. This led to the theory of *positive geometries*.

$$\Delta_2,\Delta_3=0$$

$$\Delta_1,\Delta_3=0$$

$$\Delta_2=0$$

$$\Delta_2=0$$

$$\Delta_1,\Delta_3=0$$

$$\Delta_1,\Delta_2=0$$

$$\Delta_1,\Delta_2=0$$

Totally nonnegative partial flag varieties of \mathbb{C}^n

- For $1 \le k_1 < \dots < k_r \le n-1$, let $\mathsf{Fl}_{k_1,\dots,k_r;n}(\mathbb{C})$ denote the set of all tuples $V_{\bullet} = (0 \subset V_{k_1} \subset \dots \subset V_{k_r} \subset \mathbb{C}^n)$, where $\dim(V_{k_i}) = k_i$ for all i.
- e.g. $\operatorname{Fl}_{k,n}(\mathbb{C})=\operatorname{Gr}_{k,n}(\mathbb{C})$, and $\operatorname{Fl}_{1,\dots,n-1,n}(\mathbb{C})$ is the *complete flag variety*.
- e.g. $FI_{1,2;3}^{\geq 0}$

Theorem (Bloch-Karp (2023))

- (i) If $V_{\bullet} \in \mathsf{Fl}_{k_1,\ldots,k_r;n}^{\geq 0}$, then $\Delta_I(V_{k_i}) \geq 0$ for all i and all k_i -subsets I.
- (ii) The converse holds for all V_{\bullet} if and only if k_1, \ldots, k_r are consecutive.

Total positivity and regular CW complexes

• A regular CW complex is a cell decomposition where every cell closure is homeomorphic to a closed ball (e.g. a polytope decomposed into its faces).

- Björner (1984): Every regular CW complex is uniquely determined by its closure poset (up to homeomorphism). Conversely, any poset which is *graded*, *thin*, and *shellable* is the poset of some regular CW complex.
- Edelman (1981): The Bruhat order on \mathfrak{S}_n is graded, thin, and shellable.

• Björner (1984): Is there a 'natural' regular CW complex with poset \mathfrak{S}_n ?

Regular CW complexes

• Fomin–Shapiro (2000) conjectured that $link_{I_n}(U_n^{\geq 0})$ is a regular CW complex with poset \mathfrak{S}_n . This was proved by Hersh (2014) in all Lie types.

$$\mathsf{link}_{I_3}(U_3^{\geq 0}) = \left\{ egin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} & a+c=1, \\ & \mathsf{all\ minors} \geq 0 \right\}$$

- Other (potential) examples of regular CW complexes:
 - totally nonnegative part of a toric variety (Sottile (2003));
 - toric cubes (Basu–Gabrielov–Vorobjov (2013));
 - $(G/P)_{\geq 0}$ (Galashin–Karp–Lam (2022), Bao–He (2024));
 - nonnegative matroid Schubert varieties (He–Simpson–Xie (2023));
 - amplituhedra and Grassmann polytopes (?);
 - totally nonnegative cluster varieties (?);
 - spaces of Lorentzian polynomials (?).

Thank you!