```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_csv("AirPassengers.csv")
df.head()
                               1
          Month #Passengers
     0 1949-01
                         112
     1 1949-02
                         118
     2 1949-03
                         132
     3 1949-04
                         129
     4 1949-05
                         121
```

plt.rcParams.update({'figure.figsize':(12,6)})
df['#Passengers'].plot()

▼ Method 1 : Differencing and seasonal differencing

```
#Differencing meaning y(t) = y(t) - y(t-1)

df['#Passengers_diff'] = df['#Passengers'] - df['#Passengers'].shift(1)

df.head()
```

	Month	#Passengers	#Passengers_diff	1
0	1949-01	112	NaN	
1	1949-02	118	6.0	
2	1949-03	132	14.0	
3	1949-04	129	-3.0	
4	1949-05	121	-8.0	

df['#Passengers_diff'].dropna().plot()

Seasonal Differencing meaning : y(t) = y(t) - Y(t-n)

df['#Passengers_diff_7'] = df['#Passengers'] - df['#Passengers'].shift(7)
df['#Passengers_diff_7'].dropna().plot()

df.head(10)

	Month	#Passengers	#Passengers_diff	#Passengers_diff_7
0	1949-01	112	NaN	NaN
1	1949-02	118	6.0	NaN
2	1949-03	132	14.0	NaN
3	1949-04	129	-3.0	NaN
4	1949-05	121	-8.0	NaN
5	1949-06	135	14.0	NaN
6	1949-07	148	13.0	NaN
7	1949-08	148	0.0	36.0
8	1949-09	136	-12.0	18.0
9	1949-10	119	-17.0	-13.0

▼ Method 2: Transformation

```
df['adj_log'] = np.log(df['#Passengers'])
df['adj_sqrt'] = np.sqrt(df['#Passengers'])
df['adj_cbrt'] = np.cbrt(df['#Passengers'])
df['adj_log'].dropna().plot()
```


df['adj_sqrt'].dropna().plot()

df['adj_cbrt'].dropna().plot()


```
df['#Passengers_log_diff'] = df['adj_log'] - df['adj_log'].shift(1)
df['#Passengers_log_diff'].dropna().plot()
```


df['#Passengers_sqrt_diff'] = df['adj_sqrt'] - df['adj_sqrt'].shift(1)
df['#Passengers_sqrt_diff'].dropna().plot()

df['#Passengers_cbrt_diff'] = df['adj_cbrt'] - df['adj_cbrt'].shift(1)
df['#Passengers_cbrt_diff'].dropna().plot()

✓ 0s completed at 11:30 AM