CLAIMS

What is claimed is:

ı	1.	A computer system that comprises:
2		an expansion bus that includes a plurality of expansion bus signals;
3		a bus bridge coupled to the expansion bus; and
4		a signal gate configurable to isolate the bus bridge from one of the expansion bus signals.
1	2.	The computer system of claim 1, further comprising:
2		a controller configured to receive said one of the expansion bus signals and configured to
3		determine whether said one of the expansion bus signals is driven in a non-standard
4		manner, wherein the controller sets the signal gate to isolate the bus bridge from the
5		expansion bus signal if the controller determines that the expansion bus signal is
6		driven in a non-standard manner.
1	3.	The computer system of claim 2, wherein said one of the expansion bus signals is a wake-
2	up sign	nal.
1	4.	The computer system of claim 2, wherein said bus bridge is the south bridge.
1	5.	The computer system of claim 2, wherein said one of the expansion bus signals is a power
2	manag	ement event (PME#) signal, and wherein said controller determines that the PME# signal is
3	driven	in a non-standard manner if the PME# signal is determined to be low at a predetermined
4	time d	elay after a Power Good signal goes low.

18006.02/1662.22700 - 14 -

1	7.	A computer system that comprises:
2		a user input device;
3		a computer chassis that contains at least:
4		a system memory configured to store an operating system;
5		a central processor coupled to the memory and configured to execute the operating
6		system;
7		an expansion bus that couples the user input device to the central processor;
8		a bus bridge coupled to the expansion bus, wherein the bus bridge includes:
9		a power management controller coupled to the expansion bus and
10		configured to receive a wake-up signal from a device resident on the
11		expansion bus, wherein the power management controller isolates
12		the wake-up signal from the bus bridge device if the device drives
13		the wake-up signal in a non-compliant manner.
1	8.	The computer system of claim 7, wherein the bus bridge is a south bridge.
1	9.	The computer system of claim 7, wherein the wake-up signal is a power management event

(PME#) signal, and wherein the controller isolates the PME# signal from the bus bridge if the

PME# signal is low following a predetermined delay after a Power Good signal is de-asserted.

The computer system of claim 2, wherein the controller is a power management controller.

1

2

3

6.

18006.02/1662.22700 - 15 -

1	10.	The computer system of claim 9, further comprising:
2		a signal gate that couples the wake-up signal to the bus bridge, wherein the signal gate is
3		set to a "pass" state by the controller if the PME# signal is high following after a
4		predetermined delay following the de-assertion of the Power Good signal, and
5		wherein the signal gate is set by the controller to a "no-pass" state otherwise.
1	11.	A method for handling non-compliant devices in a computer, wherein the method
2	comp	rises:
3		detecting a transition of the computer to a reduced-power state;
4		pausing for a predetermined delay;
5		sampling one or more wake-up signals from one or more devices;
6.		establishing a signal block against any asserted wake-up signals.
1	12.	The method of claim 11, further comprising:
2		removing any signal blocks against sampled wake-up signals that are de-asserted.
1	13.	The method of claim 11, wherein said detecting includes:
2		monitoring a Power Good signal; and
3		sensing a transition of the Power Good signal from an asserted state to a de-asserted state.
1	14.	The method of claim 11, wherein the one or more wake-up signals are power management
2	event	(PME#) signals from devices resident on a peripheral component interconnect (PCI) bus.

- 1 15. The method of claim 11, wherein the establishing includes:
 2 setting a signal gate to isolate the asserted wake-up signals from a bus bridge.
- 1 16. A computer system that comprises:
- an expansion bus that includes a plurality of expansion bus signals;
- a bus bridge coupled to the expansion bus; and
- a controller coupled to receive at least one of the expansion bus signals and configured to
- provide a gated signal to the bus bridge, wherein the gate signal is asserted only if
- an received expansion bus signal is asserted and not blocked.
- 1 17. The computer system of claim 16, wherein the controller determines whether the received
- 2 signals are driven in a non-standard manner, and wherein the controller blocks any received
- 3 expansion bus signals that the controller determines are driven in a non-standard manner.
- 1 18. The computer system of claim 16, wherein the received expansion bus signals are wake-up
- 2 signals.
- 1 19. The computer system of claim 16, wherein the receive expansion bus signals are power
- 2 management event (PME#) signals, and wherein said controller determines that a PME# signal is
- 3 driven in a non-standard manner if the PME# signal is determined to be low at a predetermined
- 4 time delay after a Power Good signal goes low.

- 1 20. The computer system of claim 16, wherein the controller is a power management
- 2 controller.

18006.02/1662.22700 - 18 -