02-24-00201 Probability and Statistics II

DR. AHMED TAYEL

Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University

ahmed.tayel@alexu.edu.eg

Outline

- 1. Review.
- 2. Case of two populations.
- 3. Distributions derived from the Normal distribution.
 - 1. The Chi-squared distribution [This lecture].
 - 1. Distribution of s^2 .
 - 2. The t-distribution [Next lecture].
 - 3. The F-distribution [Next lecture].

1. Review

The Sampling Process

Central Tendency in the Sample Definition:

If $X_1, X_2, ..., X_n$ represents a random sample of size n, then the sample mean is defined to be the statistic:

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Variability in the Sample

Definition:

If $X_1, X_2, ..., X_n$ represents a random sample of size n, then the sample variance is defined to be the statistic:

the statistic:
$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1} = \frac{(X_{1} - \overline{X})^{2} + (X_{2} - \overline{X})^{2} + \dots + (X_{n} - \overline{X})^{2}}{n-1} \text{ (unit)}^{2}$$

Definition:

The sample standard deviation is defined to

be the statistic:

$$S = \sqrt{S^2} = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}} \quad \text{(unit)}$$

The Sampling Distribution

• If $X_1, X_2, ..., X_n$ is a random sample of size n from $N(\mu, \sigma)$, then $\overline{X} \sim N(\mu_{\overline{X}}, \sigma_{\overline{X}})$ or $\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$.

•
$$\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}}) \iff Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

What if the population is not normally distributed?

Theorem: (Central Limit Theorem)

If $X_1, X_2, ..., X_n$ is a random sample of size n from any distribution (population) with mean μ and finite variance σ^2 , then, if the sample size n is large, the random variable $n \geq 30$

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

is approximately standard normal random variable, i.e.,

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1) \text{ approximately.}$$

Case of σ^2 is unknown

If $n \ge 30$, the central limit theorem (CLT) is still valid.

If we replace σ^2 by s^2

$$Z = \frac{X - \mu}{s / \sqrt{n}} \sim N(0,1)$$

Summary

Given the random sample $X_1, X_2, ..., X_n$. We have **three cases** for the distribution of \overline{X}

[1]

- Sample taken from a normal population
- σ^2 is known

$$\overline{X} \sim Norm\left(\mu, \frac{\sigma^2}{n}\right)$$

[2]

• $n \ge 30$ and sample taken from any distribution

$$\overline{X} \sim Norm\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\overline{X} \sim Norm\left(\mu, \frac{s^2}{n}\right)$$

[3]

- *n* < 30
- σ^2 is unknown
- Next lecture

2. Case of two populations

Sampling Distribution of the Difference between Two Means

Suppose that we have **two** populations:

- 1-st population with mean μ₁ and variance σ²₁
 2-nd population with mean μ₂ and variance σ²₂
- We are interested in comparing μ_1 and μ_2 , or equivalently, making inferences about $\mu_1 - \mu_2$.
- We independently select a random sample of size n_1 from the 1-st population and another random sample of size n_2 from the 2-nd population:
- Let \overline{X}_1 be the sample mean of the 1-st sample.
- Let \overline{X}_2 be the sample mean of the 2-nd sample.
- The sampling distribution of $\bar{X}_1 \bar{X}_2$ is used to make inferences about $\mu_1 - \mu_2$.

Case of two populations

Var(ax+b)
zvar(x)
= a

Since $\overline{X_1}$ and $\overline{X_2}$ are independent

$$E(\overline{X_1} - \overline{X_2}) = E(\overline{X_1}) - E(\overline{X_2}) = \mu_1 - \mu_2$$

$$V(\overline{X_1} - \overline{X_2}) = V(\overline{X_1}) + V(\overline{X_2}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

If
$$\overline{X_1} \sim N\left(\mu_1, \frac{\sigma_1^2}{n_1}\right)$$
 and $\overline{X_2} \sim N\left(\mu_2, \frac{\overline{\sigma_2^2}}{n_2}\right)$

Then

$$\begin{array}{l}
= & \\
\text{Vow}(X-Y) \\
= & \text{Vow}(X) + (-1) & \text{Vow}(Y) \\
= & \text{Vow}(X) + (-1) & \text{Vow}(Y)
\end{array}$$

$$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

 $\bar{X}_1 - \bar{X}_2 \sim N(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_1}})$

What if the population is not normally distributed?

Theorem

If n_1 and n_2 are large, then the sampling distribution of $\overline{X}_1 - \overline{X}_2$ is approximately normal with mean $n_1 \ge 30$ and $n_2 \ge 30$

$$E(\overline{X}_1 - \overline{X}_2) = \mu_{\overline{X}_1 - \overline{X}_2} = \mu_1 - \mu_2$$

and variance

$$Var(\overline{X}_{1} - \overline{X}_{2}) = \sigma_{\overline{X}_{1} - \overline{X}_{2}}^{2} = \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}$$

$$\overline{X}_{1} - \overline{X}_{2} \sim N(\mu_{1} - \mu_{2}, \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}})$$

$$\Leftrightarrow$$

$$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0, 1)$$

Case of σ_1^2 and σ_2^2 are unknown

If $n_1 \ge 30$ and $n_2 \ge 30$, the central limit theorem (CLT) is still valid.

If we replace σ_1^2 , σ_2^2 by s_1^2 , s_2^2

$$\overline{X}_1 - \overline{X}_2 \sim N(\mu_1 - \mu_2, \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}})$$

$$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim N(0,1)$$

Note:

$$\sigma_{\overline{X}_{1}-\overline{X}_{2}} = \sqrt{\sigma_{\overline{X}_{1}-\overline{X}_{2}}^{2}} = \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}} = \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}} + \sqrt{\frac{\sigma_{2}^{2}}{n_{1}}} + \sqrt{\frac{\sigma_{2}^{2}}{n_{2}}} = \frac{\sigma_{1}}{\sqrt{n_{1}}} + \frac{\sigma_{2}}{\sqrt{n_{2}}}$$

Example

The television picture tubes of manufacturer A have a mean lifetime of (6.5 years) and standard deviation of 0.9 year, while those of manufacturer B have a mean lifetime of 6 years and standard deviation of 0.8 years What is the probability that a random sample of 36) types from manufacturer A will have a mean lifetime that is at least 1 year more than the mean lifetime of a random sample of (49) tubes from manufacturer B?

Solution:

Population 1	Population 2
$\mu_1 = 6.5$	$\mu_2 = 6.0$
$\sigma_1 = 0.9$	$\sigma_2 = 0.8$
$n_1 = 36$	$n_2 = 49$

We need to find the probability that the mean lifetime of manufacturer A is at least 1 year more than the mean lifetime of manufacturer B which is $P(\bar{X}_1 \ge \bar{X}_2 + 1)$

The sampling distribution of $\overline{X}_1 - \overline{X}_2$ is

$$\overline{X}_1 - \overline{X}_2 \sim N(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}})$$

$$E(\overline{X}_1 - \overline{X}_2) = \mu_{\overline{X}_1 - \overline{X}_2} = \mu_1 - \mu_2 = 6.5 - 6.0 = 0.5$$

$$Var(\overline{X}_1 - \overline{X}_2) = \sigma_{\overline{X}_1 - \overline{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} = \frac{(0.9)^2}{36} + \frac{(0.8)^2}{49} = \frac{0.03556}{49}$$

$$\sigma_{\overline{X}_1 - \overline{X}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \sqrt{0.03556} = 0.189$$

$$\overline{X}_1 - \overline{X}_2 \sim N(0.5, 0.189)$$

$$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

$$P(\overline{X}_{1} \geq (\overline{X}_{2}) + 1) = P(\overline{X}_{1} - \overline{X}_{2} \geq 1) \sim N(0.5)$$

$$\frac{-0.5}{0.189}$$

$$= P \left(\frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \ge \frac{1 - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \right)$$

$$= P \left(Z \ge \frac{1 - 0.5}{0.189} \right)$$

$$= P(Z \ge 2.65)$$

$$= 1 - P(Z \le 2.65)$$

$$= 1 - 0.9960^4$$

$$= 0.0040$$

3. Distributions derived from the Normal distribution

3.1 The Chi-squared distribution

Definition of Chi-squared distribution

Howard Libertically distributed

• If Z_1, Z_2, \dots, Z_k are i.i.d. $\sim N(0,1)$

• Let
$$U = Z_1^2 + Z_2^2 + \dots + Z_k^2$$

• Then $U \sim \chi_k^2$ "Chi-squared distribution with k degrees of freedom (df)"

Definition of Chi-squared distribution

- Ex: Let X_1 , X_2 , ..., X_n be i.i.d. $\sim N(\mu, \sigma^2)$
- Chi-squared are the sum of standard normal.

$$\bullet U = \left(\frac{X_1 - \mu}{\sigma}\right)^2 + \left(\frac{X_2 - \mu}{\sigma}\right)^2 + \dots + \left(\frac{X_n - \mu}{\sigma}\right)^2 \sim \chi_n^2$$

- No –ve values of χ_k^2 "sum of square values"
- Not symmetric.
- For small df curve is skewed to the right.
- As df increases the shape
 becomes more symmetric
 approximated to normal.

Fig. $1.1\chi_{\nu}^2$ distribution curves for various values of v

$$\bullet E\left[\chi_k^2\right] = k$$

Proof not required

$$E[X] = \int_0^\infty x f_X(x) dx$$

$$= \int_0^\infty x e^{n/2-1} \exp\left(-\frac{1}{2}x\right) dx$$

$$= c \int_0^\infty x^{n/2} \exp\left(-\frac{1}{2}x\right) dx$$

$$= c \left\{ \left[-x^{n/2} 2 \exp\left(-\frac{1}{2}x\right) \right]_0^\infty + \int_0^\infty \frac{n}{2} x^{n/2-1} 2 \exp\left(-\frac{1}{2}x\right) dx \right\} \quad \text{(integrating by parts)}$$

$$= c \left\{ (0-0) + n \int_0^\infty x^{n/2-1} \exp\left(-\frac{1}{2}x\right) dx \right\}$$

$$= n \int_0^\infty cx^{n/2-1} \exp\left(-\frac{1}{2}x\right) dx$$

$$= n \int_0^\infty f_X(x) dx$$

$$= n \text{ (integral of a pdf over its support equals 1)}$$

$$\bullet V[\chi_k^2] = 2 k$$

Proof not required

$$E[X^{2}] = \int_{0}^{\infty} x^{2} f_{X}(x) dx$$

$$= \int_{0}^{\infty} x^{2} cx^{n/2-1} \exp\left(-\frac{1}{2}x\right) dx$$

$$= c \int_{0}^{\infty} x^{n/2+1} \exp\left(-\frac{1}{2}x\right) dx$$

$$= c \left\{ \left[-x^{n/2+1} 2 \exp\left(-\frac{1}{2}x\right)\right]_{0}^{\infty} + \int_{0}^{\infty} \left(\frac{n}{2} + 1\right) x^{n/2} 2 \exp\left(-\frac{1}{2}x\right) dx \right\} \text{ (integrating by parts)}$$

$$= c \left\{ (0 - 0) + (n + 2) \int_{0}^{\infty} x^{n/2} \exp\left(-\frac{1}{2}x\right) dx \right\}$$

$$= c(n + 2) \left\{ \int_{0}^{\infty} x^{n/2} \exp\left(-\frac{1}{2}x\right) dx \right\}$$

$$= c(n + 2) \left\{ \left[-x^{n/2} 2 \exp\left(-\frac{1}{2}x\right)\right]_{0}^{\infty} + \int_{0}^{\infty} \frac{n}{2} x^{n/2-1} 2 \exp\left(-\frac{1}{2}x\right) dx \right\} \text{ (integrating by parts)}$$

$$= c(n + 2) \left\{ (0 - 0) + n \int_{0}^{\infty} x^{n/2-1} \exp\left(-\frac{1}{2}x\right) dx \right\}$$

$$= (n + 2) n \int_{0}^{\infty} cx^{n/2-1} \exp\left(-\frac{1}{2}x\right) dx$$

$$= (n + 2) n \int_{0}^{\infty} f_{X}(x) dx$$

$$= (n + 2) n \int_{0}^{\infty} f_{X}(x) dx$$

$$= (n + 2) n \text{ (integral of a pdf over its support equals 1)}$$

$$E[X]^{2} = n^{2}$$

$$Var[X] = E[X^{2}] - E[X]^{2}$$

$$= (n + 2) n - n^{2} = n(n + 2 - n) = 2n$$

•
$$\chi^2 \alpha k$$

$$\bullet P(U > \chi^2_{\alpha,k}) = \alpha$$

$$\bullet F_{CDF}(\chi^2_{\alpha,k}) = 1 - \alpha$$

$$\bullet \chi^2_{\alpha,k} = F_{CDF}^{-1}(1-\alpha)$$

Fig. 1.2 Percentages point of the chi-squared distribution

•
$$F(\chi^2_{0.05,12}) = ?$$
 0.95

•
$$\chi^2_{0.05,12} = ?$$

Using MINITAB or R

• Let U_1 , U_2 , ..., U_n be i.i.d. RVs having Chi-squared distribution with k_1 , k_2 , ..., k_n dfs.

•Then $V = \sum_{1}^{n} U_i \sim \chi_{k_1 + k_2 + \dots + k_n}^2$

• Ex:
$$U_1 \sim \chi_3^2 \rightarrow U_1 = Z_1^2 + Z_2^2 + Z_3^2$$

•
$$U_2 \sim \chi_5^2 \Rightarrow U_2 = Z_4^2 + Z_5^2 + Z_6^2 + Z_7^2 + Z_8^2$$

• Ex:
$$U_1 \sim \chi_3^2 \Rightarrow U_1 = Z_1^2 + Z_2^2 + Z_3^2$$

• $U_2 \sim \chi_5^2 \Rightarrow U_2 = Z_4^2 + Z_5^2 + Z_6^2 + Z_7^2 + Z_8^2$
• $V = U_1 + U_2$
= $Z_1^2 + Z_2^2 + Z_3^2 + Z_4^2 + Z_5^2 + Z_6^2 + Z_7^2 + Z_8^2$
• $V \sim \chi_{84}^{26}$

•
$$V \sim \chi_8^2$$

3.1.1 Distribution of s^2

Distribution of s^2

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}$$

$$(n-1)$$
 $s^2 = \sum_{i=1}^n (X_i - \overline{X})^2$ [Add and subtract μ]

•
$$\rightarrow (n-1) s^2 = \sum_{i=1}^n ((X_i - \mu) - (\bar{X} - \mu))^2$$

•
$$= \sum_{i=1}^{n} (X_i - \mu)^2 + \sum_{i=1}^{n} (\bar{X} - \mu)^2 - 2\sum_{i=1}^{n} ((X_i - \mu)(\bar{X} - \mu))^2$$

$$= n (\overline{X} - \mu)^{2}$$

$$= -2 (\overline{X} - \mu) \sum_{i=1}^{n} (X_{i} - \mu)$$

$$= -2 (\overline{X} - \mu) \sum_{i=1}^{n} (X_{i} - \mu)$$

$$= -2 (\overline{X} - \mu) \sum_{i=1}^{n} (X_{i} - \mu)$$

= 5+5+5+...+5

Distribution of s^2

•
$$(n-1)$$
 $s^2 = \sum_{i=1}^n (X_i - \mu)^2 - n (\overline{X} - \mu)^2$

[Divide both sides by σ^2]
• $\frac{(n-1)s^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \mu)^2}{\sigma^2}$

$$= \sum_{i=1}^n (X_i - \mu)^2$$

$$= (\overline{X} - \mu)^2$$

$$\bullet \frac{(n-1) s^2}{\sigma^2} \sim \chi_{n-1}^2$$

Distribution of s^2

$$\frac{(n-1) s^2}{\sigma^2} \sim \chi_{n-1}^2$$

$$E\left(\frac{(n-1)s^2}{\sigma^2}\right) = n-1$$

$$\frac{(n-1)}{\sigma^2}E(s^2)=n-1$$

$$E(s^2) = \sigma^2$$

Recall:

$$E\left[\chi_k^2\right] \equiv k$$

$$V[\chi_k^2] = 2k$$

$$V\left(\frac{(n-1)s^2}{\sigma^2}\right) = 2(n-1)$$

$$\frac{(n-1)^2}{\sigma^4}V(s^2)=2(n-1)$$

$$V(s^2) = \frac{2\sigma^4}{n-1}$$