AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior listings of claims.

1.-20 (Cancelled)

- 21. (Previously presented) A product containing (a) a compound as defined in claim 25, and (b) another antiretroviral compound, as a combined preparation for simultaneous, separate or sequential use in the treatment of HIV infection.
- 22. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) a compound as defined in claim 25 and (b) another antiretroviral compound.
- 23. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredient a therapeutically effective amount of a compound as claimed in claim 25.
- 24. (Previously Presented) A process for preparing a pharmaceutical composition comprising mixing a therapeutically effective amount of a compound as claimed in claim 25 with a pharmaceutically acceptable carrier.
 - 25. (Currently Amended) A compound selected from the group consisting of:

Docket No.: 026038.0281PTUS

Application No. 10/573,364 Reply to Office Action of June 17, 2010 Amendment dated October 14, 2010

or a pharmaceutically acceptable addition salt, or stereochemically <u>E (entgegen) or Z</u> (zusammen) isomeric forms thereof.

26. (Previously Presented) A compound of formula

$$\begin{array}{c|c}
C & B \\
N & A
\end{array}$$

$$\begin{array}{c|c}
C & A & (I)
\end{array}$$

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof, wherein

A and B each represents a radical of formula

$$-N$$
 $=$ R^2 (a) or $-X_1$ $=$ R^3 (b) wherein

ring E represents phenyl, pyridyl, pyridazinyl, pyrimidinyl or pyrazinyl; ring F represents phenyl, pyridyl, pyridazinyl, pyrimidinyl or pyrazinyl;

 R^1 represents hydrogen; aryl; formyl; C_{1-6} alkylcarbonyl; C_{1-6} alkyloxycarbonyl; C_{1-6} alkylcarbonyl, optionally substituted with formyl, C_{1-6} alkylcarbonyl,

 C_{1-6} alkyloxycarbonyl, C_{1-6} alkylcarbonyloxy; or C_{1-6} alkyloxy C_{1-6} alkyloxycarbonyl; or C_{1-6} alkyloxycarbonyl;

 R^2 represents cyano; C_{1-6} alkyl substituted with cyano, aminocarbonyl or mono- or $di(C_{1-4}$ alkyl)aminocarbonyl; C_{2-6} alkenyl substituted with cyano, aminocarbonyl or mono- or $di(C_{1-4}$ alkyl)aminocarbonyl; or C_{2-6} alkynyl substituted with cyano, aminocarbonyl or mono- or $di(C_{1-4}$ alkyl)aminocarbonyl;

 $X_1 \text{ represents -NR}^5\text{-; -NH-NH-; -N=N-; -O-; -C(=O)-; -C$_{1-4}alkanediyl-; -CHOH-; -S-; -S(=O)$_p-; -X$_2-C$_{1-4}alkanediyl-; -C$_{1-4}alkanediyl-X$_2-; or }$

-C₁₋₄alkanediyl-X₂-C₁₋₄alkanediyl-;

 X_2 represents -NR⁵-; -NH-NH-; -N=N-; -O-; -C(=O)-; -CHOH-; -S-; or -S(=O)_p-; m represents an integer of value 1, 2, 3 or 4;

 R^3 represents cyano; aminocarbonyl; amino; halo; NHR¹³; NR¹³R¹⁴; -C(=O)-NHR¹³; -C(=O)-NR¹³R¹⁴; -C(=O)-R¹⁵; -CH=N-NH-C(=O)-R¹⁶; C₁₋₆alkyl optionally substituted with one or more substituents each independently selected from R^{3a} ;

 $C_{1\text{-}6}$ alkyloxy optionally substituted with one or more substituents each independently selected from R^{3a} ; $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyl optionally substituted with one or more substituents each independently selected from R^{3a} ; $C_{2\text{-}6}$ alkenyl optionally substituted with one or more substituents each independently selected from R^{3a} ; $C_{2\text{-}6}$ alkynyl optionally substituted with one or more substituents each independently selected from R^{3a} ; $-C(=N\text{-}O\text{-}R^8)$ - $-C_{1\text{-}4}$ alkyl; R^7 or $-X_3$ - R^7 ;

 $R^{3a} \ represents \ halo, \ cyano, \ hydroxy, \ NR^9R^{10}, \ -C(=O)-NR^9R^{10}, \ -C(=O)-C_{1-6}alkyl, \ -C(=O)-C_{1-6}alkyl, \ -C(=O)-O-polyhaloC_{1-6}alkyl, \ -C(=O)-D-polyhaloC_{1-6}alkyl, \ -C(=O)-D-polyhaloC_{1-6}alkyl, \ -C(=O)-D-polyhaloC_{1-6}alkyl, \ -C(=O)-D-polyhaloC_{1-6}alkyl, \ -C(=O)-D-polyhaloC_{1-6}alkyl, \$

 X_3 represents $-NR^5$ -; -NH-NH-; -N=N-; -O-; -C(=O)-; -S-; $-S(=O)_p$ -;

- X_{4a} - C_{1-4} alkanediyl-; - C_{1-4} alkanediyl- X_{4b} -; - C_{1-4} alkanediyl- X_{4a} - C_{1-4} alkanediyl-; or -C(=N- OR^8)- C_{1-4} alkanediyl-;

 X_{4a} represents -NR⁵-; -NH-NH-; -N=N-; -C(=O)-; -S-; or -S(=O)_p-;

 X_{4b} represents -NH-NH-; -N=N-; -O-; -C(=O)-; -S-; or -S(=O)_p-;

each R^4 independently represents hydroxy; halo; C_{1-6} alkyl optionally substituted with one or more substituents each independently selected from R^{4a} ; C_{2-6} alkenyl optionally substituted with one or more substituents each independently selected from R^{4a} ;

 C_{2-6} alkynyl optionally substituted with one or more substituents each independently selected from R^{4a} ; C_{3-7} cycloalkyl; C_{1-6} alkyloxy; C_{1-6} alkyloxycarbonyl; C_{1-6} alkyloxycarbonyl; cyano; nitro; amino; mono- or

 $\begin{aligned} &\text{di}(C_{1\text{-}6}\text{alkyl})\text{amino}; \text{ polyhalo}C_{1\text{-}6}\text{alkyl}; \text{ polyhalo}C_{1\text{-}6}\text{alkyloxy}; \text{ polyhalo}C_{1\text{-}6}\text{alkylthio}; \\ &\text{-S(=O)}_pR^6; \text{-NH-S(=O)}_pR^6; \text{-C(=O)}R^6; \text{-NHC(=O)}H; \text{-C(=O)}NHNH_2; \text{NHC(=O)}R^6; \text{C(=NH)}R^6; \\ &\text{or } R^7; \end{aligned}$

R^{4a} represents halo, cyano, NR⁹R¹⁰, hydroxy or -C(=O)R⁶;

 R^5 represents hydrogen; aryl; formyl; C_{1-6} alkylcarbonyl; C_{1-6} alkyloxycarbonyl; C_{1-6} alkylcarbonyl, optionally substituted with formyl, C_{1-6} alkylcarbonyl,

 C_{1-6} alkyloxycarbonyl or C_{1-6} alkylcarbonyloxy; or C_{1-6} alkyloxy C_{1-6} alkyloxycarbonyl;

R⁶ represents C₁₋₆alkyl, amino, mono- or di(C₁₋₄alkyl)amino or polyhaloC₁₋₄alkyl;

R⁷ represents a monocyclic, bicyclic or tricyclic saturated carbocycle; a monocyclic, bicyclic or tricyclic partially saturated carbocycle; a monocyclic, bicyclic or tricyclic aromatic carbocycle; a monocyclic, bicyclic or tricyclic saturated heterocycle; a monocyclic, bicyclic or tricyclic partially saturated heterocycle; or a monocyclic, bicyclic or tricyclic aromatic heterocycle; wherein each of said carbocyclic or heterocyclic ring systems may, whenever possible, optionally be substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, aminoC₁₋₆alkyl, mono or di(C₁₋₆alkyl)aminoC₁₋₆alkyl, formyl, C₁₋₆alkylcarbonyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylthio, cyano, nitro, polyhaloC₁₋₆alkyl, polyhaloC₁₋₆alkyloxy, aminocarbonyl, -CH(=N-O-R⁸), R^{7a}, -X₃-R^{7a} or R^{7a}-C₁₋₄alkanediyl-;

R^{7a} represents a monocyclic, bicyclic or tricyclic saturated carbocycle; a monocyclic, bicyclic or tricyclic partially saturated carbocycle; a monocyclic, bicyclic or tricyclic aromatic carbocycle; a monocyclic, bicyclic or tricyclic saturated heterocycle; a monocyclic, bicyclic or tricyclic partially saturated heterocycle; or a monocyclic, bicyclic or tricyclic aromatic heterocycle; wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto,

 C_{1-6} alkyl, hydroxy C_{1-6} alkyl, amino C_{1-6} alkyl, mono or $di(C_{1-6}alkyl) amino C_{1-6}alkyl, formyl, C_{1-6}alkylcarbonyl, C_{3-7}cycloalkyl, C_{1-6}alkyloxy, C_{1-6}alkyloxycarbonyl, C_{1-6}alkylthio, cyano, nitro, polyhalo <math>C_{1-6}$ alkyl, polyhalo C_{1-6} alkyloxy, aminocarbonyl, -CH(=N-O-R⁸);

R⁸ represents hydrogen, C_{1,4}alkyl optionally substituted with aryl, or aryl;

 R^9 and R^{10} each independently represent hydrogen; hydroxy; $C_{1\text{-}6}$ alkyl; $C_{1\text{-}6}$ alkyloxy; $C_{1\text{-}6}$ alkylcarbonyl; $C_{1\text{-}6}$ alkyloxycarbonyl; amino; mono- or di($C_{1\text{-}6}$ alkyl)amino; mono- or di($C_{1\text{-}6}$ alkyl)aminocarbonyl; -CH(=NR¹¹) or R⁷, wherein each of the aforementioned $C_{1\text{-}6}$ alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy,

 $C_{1\text{-}6}$ alkyloxy, hydroxy $C_{1\text{-}6}$ alkyloxy, carboxyl, $C_{1\text{-}6}$ alkyloxycarbonyl, cyano, amino, imino, monoor di($C_{1\text{-}4}$ alkyl)amino, polyhalo $C_{1\text{-}4}$ alkyl, polyhalo $C_{1\text{-}4}$ alkyloxy, polyhalo $C_{1\text{-}4}$ alkylthio, $-S(=O)_pR^6$, $-NH-S(=O)_pR^6$, $-C(=O)R^6$, -NHC(=O)H, $-C(=O)NHNH_2$, $-NHC(=O)R^6$, $-C(=NH)R^6$, or R^7 : or

R⁹ and R¹⁰ may be taken together to form a bivalent radical of formula

Docket No.: 026038.0281PTUS

 R^{11} represents cyano; C_{1-4} alkyl optionally substituted with C_{1-4} alkyloxy, cyano, amino, mono- or di(C_{1-4} alkyl)amino or aminocarbonyl; C_{1-4} alkylcarbonyl;

C₁₋₄alkyloxycarbonyl; aminocarbonyl; mono- or di(C₁₋₄alkyl)aminocarbonyl;

R¹² represents hydrogen or C₁₋₄alkyl;

 R^{13} and R^{14} each independently represent $C_{1\text{-}6}$ alkyl optionally substituted with cyano, aminocarbonyl or mono- or di($C_{1\text{-}4}$ alkyl)aminocarbonyl; $C_{2\text{-}6}$ alkenyl optionally substituted with cyano, aminocarbonyl or mono- or di($C_{1\text{-}4}$ alkyl)aminocarbonyl;

 C_{2-6} alkynyl optionally substituted with cyano, aminocarbonyl or mono- or di(C_{1-4} alkyl)aminocarbonyl;

 R^{15} represents C_{1-6} alkyl optionally substituted with cyano, aminocarbonyl or mono- or $di(C_{1-4}$ alkyl)aminocarbonyl;

 R^{16} represents C_{1-6} alkyl optionally substituted with cyano, aminocarbonyl or mono- or $di(C_{1-4}$ alkyl)aminocarbonyl; or R^7 ;

-C-D- represents a bivalent radical of formula

$$-N=CH-NR^{17}-$$
 (c-1); or $-NR^{17}-CH=N-$ (c-2);

 $R^{17} \ represents \ hydrogen; \ C_{1\text{-}6} alkyl \ optionally \ substituted \ with \ hydroxy, \ cyano,$ aminocarbonyl, mono-or di(C_{1\text{-}4} alkyl) aminocarbonyl, C_{1\text{-}4} alkyloxycarbonyl \ or \ aryl;

p represents an integer of value 1 or 2;

aryl represents phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, amino C_{1-6} alkyl, mono or di $(C_{1-6}$ alkyl)amino C_{1-6} alkyl,

Docket No.: 026038.0281PTUS

C₁₋₆alkylcarbonyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxycarbonyl,

 C_{1-6} alkylthio, cyano, nitro, polyhalo C_{1-6} alkyl, polyhalo C_{1-6} alkyloxy, aminocarbonyl, R^7 or $-X_3$ - R^7 ;

provided that when A represents a radical of formula (a) then B represents a radical of formula (b) and when A represents a radical of formula (b) then B represents a radical of formula (a).

27. (Previously presented) A compound according to claim 26 wherein the compound has the formula

$$(R^4)_m$$
 F
 R^3
 $(I-A)$
 R
 R

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof.

wherein R^1 , R^2 , R^3 , R^4 , ring E, ring F, C, D, X_1 and m are as defined in claim 26.

28. (Previously presented) A compound according to claim 27 wherein the compound of formula (I-A) has the formula

$$R^4$$
 R^3
 R^4
 R^4

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof,

Docket No.: 026038.0281PTUS

wherein R^1 , R^2 , R^3 , R^4 , ring E, ring F, C, D and X_1 are as defined in claim 26.

29. (Previously presented) A compound according to claim 26 wherein the compound has the formula

$$\begin{array}{c|c} R^1 & E \\ \hline \\ R^1 & E \\ \hline \\ R^2 \\ \hline \\ R^4)_m & (I-B) \\ \hline \\ R^3 \end{array}$$

or a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof,

wherein R^1 , R^2 , R^3 , R^4 , ring E, ring F, C, D, X_1 and m are as defined in claim 26.

30. (Previously presented) A compound according to claim 29 wherein the compound of formula (I-B) has the formula

Docket No.: 026038.0281PTUS

$$R^{1}$$
 E
 R^{2}
 R^{2}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{3}

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof,

wherein R^1 , R^2 , R^3 , R^4 , ring E, ring F, C, D and X_1 are as defined in claim 26.

- 31. (Previously Presented) A compound according to claim 26 wherein ring E is phenyl.
- 32 (Previously Presented) A compound according to claim 26 wherein ring F is phenyl.
- 33. (Previously presented) A compound according to claim 26 wherein the compound has the formula

$$(R^{4})_{m} = \begin{vmatrix} R^{3} \\ -b^{1} \\ b^{2} \end{vmatrix}$$

$$b^{2} = b^{3}$$

$$X_{1} \qquad X_{1} \qquad A^{1} = a^{2} \qquad R^{2}$$

$$R^{1} \qquad A^{2} \qquad A^{3} \qquad (I')$$

or a pharmaceutically acceptable addition salt, or a stereochemically isomeric form thereof, wherein

```
-a^1=a^2-C(R^2)=a^3-a^4= represents a bivalent radical of formula
-CH=CH-C(R^2)=CH-CH= (a-1);
-N=CH-C(R^2)=CH-CH=
-CH=N-C(\mathbb{R}^2)=CH-CH=
                            (a-3);
-N=CH-C(R^2)=N-CH=
                            (a-4);
-N=CH-C(R^2)=CH-N=
                           (a-5);
-CH=N-C(R^2)=N-CH=
                            (a-6); or
-N=N-C(R^2)=CH-CH=
                           (a-7);
-b<sup>1</sup>=b<sup>2</sup>-b<sup>3</sup>=b<sup>4</sup>- represents a bivalent radical of formula
-CH=CH-CH=CH-
                            (b-1);
-N=CH-CH=CH-
                            (b-2);
-N=CH-N=CH-
                            (b-3);
-N=CH-CH=N-
                            (b-4); or
```

-C-D- represents a bivalent radical of formula

-N=CH-NR¹⁷-

(c-1); or

(b-5);

-NR¹⁷-CH=N-

-N=N-CH=CH-

(c-2);

m represents an integer of value 1, 2, 3 and in case $-b^1=b^2-b^3=b^4$ is (b-1), then m may also be 4;

 $R^{1} \ represents \ hydrogen; \ aryl; \ formyl; \ C_{1\text{-}6} alkylcarbonyl; \ C_{1\text{-}6} alkyloxycarbonyl; \ C_{1\text{-}6} alkyloxycarbonyl; \ C_{1\text{-}6} alkylcarbonyl,$ optionally substituted with formyl, $C_{1\text{-}6} alkylcarbonyl$,

 C_{1-6} alkyloxycarbonyl, C_{1-6} alkylcarbonyloxy; or C_{1-6} alkyloxy C_{1-6} alkyloxycarbonyl; or C_{1-6} alkyloxycarbonyl;

 R^2 represents cyano; C_{1-6} alkyl substituted with cyano, aminocarbonyl or mono- or $di(C_{1-4}$ alkyl)aminocarbonyl; C_{2-6} alkenyl substituted with cyano, aminocarbonyl or mono- or $di(C_{1-4}$ alkyl)aminocarbonyl; or C_{2-6} alkynyl substituted with cyano, aminocarbonyl or mono- or $di(C_{1-4}$ alkyl)aminocarbonyl;

 X_1 represents $-NR^5$ -, -NH-NH-, -N=N-, -O-, -C(=O)-, C_{1-4} alkanediyl, -CHOH-, -S-, $-S(=O)_p$ -, $-X_2$ - C_{1-4} alkanediyl- or $-C_{1-4}$ alkanediyl- X_2 -;

$$X_2$$
 represents $-NR^5$ -, $-NH-NH$ -, $-N=N$ -, $-O$ -, $-C(=O)$ -, $-CHOH$ -, $-S$ -, $-S(=O)_p$ -;

 R^3 represents NHR¹³; NR¹³R¹⁴; -C(=O)-NHR¹³; -C(=O)-NR¹³R¹⁴; -C(=O)-R¹⁵; -CH=N-NH-C(=O)-R¹⁶; cyano; halo; C_{1-6} alkyl; polyhalo C_{1-6} alkyl; C_{1-6} alkyl substituted with one or more substituents each independently selected from cyano, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁₋₆alkyl or R⁷; C_{1-6} alkyl substituted with hydroxy and a second substituent selected from cyano, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁₋₆alkyl or R⁷; C_{1-6} alkyloxy C_{1-6} alkyl optionally substituted with one or more substituents each independently selected from cyano, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁₋₆alkyl or R⁷; C_{1-6} alkyloxy optionally substituted with one or more substituents each independently selected from cyano, NR⁹R¹⁰, -C(=O)-C₁₋₆alkyl or R⁷; C_{2-6} alkenyl optionally substituted with one or more substituents each independently selected from halo, cyano, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-NR⁹R¹

Docket No.: 026038.0281PTUS

 $X_3 \text{ is } -NR^5\text{-, -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p\text{-, -X}_{4b}\text{-}C_{1\text{-}4}\text{alkanediyl-,} \\ -C_{1\text{-}4}\text{alkanediyl-X}_{4a}\text{-, -C}_{1\text{-}4}\text{alkanediyl-X}_{4b}\text{-}C_{1\text{-}4}\text{alkanediyl, -C(=N-OR}^8\text{)-C}_{1\text{-}4}\text{alkanediyl-;} \\ \text{with } X_{4a} \text{ being -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p-; and} \\ \text{with } X_{4b} \text{ being -NH-NH-, -N=N-, -C(=O)-, -S-, -S(=O)_p-;} \\ \text{each } R^4 \text{ independently represents halo, hydroxy, C}_{1\text{-}6}\text{alkyl, C}_{3\text{-}7}\text{cycloalkyl,} \\ \text{constant}$

 C_{1-6} alkyloxy, hydroxy C_{1-6} alkyl, amino C_{1-6} alkyl, cyano, nitro, polyhalo C_{1-6} alkyl, polyhalo C_{1-6} alkyloxy, aminocarbonyl, mono- or di $(C_{1-4}$ alkyl)aminocarbonyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkylcarbonyl, formyl, amino, mono- or di $(C_{1-4}$ alkyl)amino or R^7 ;

 R^6 is C_{1-4} alkyl, amino, mono- or di $(C_{1-4}$ alkyl)amino or polyhalo C_{1-4} alkyl;

R⁷ is a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic carbocycle or a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic heterocycle, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted where possible with one, two, three, four or five substituents each independently

selected from halo, hydroxy, mercapto, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, amino C_{1-6} alkyl, mono or di(C_{1-6} alkyl)amino C_{1-6} alkyl, formyl, C_{1-6} alkylcarbonyl, C_{3-7} cycloalkyl, C_{1-6} alkyloxy, C_{1-6} alkyloxycarbonyl,

 C_{1-6} alkylthio, cyano, nitro, polyhalo C_{1-6} alkyl, polyhalo C_{1-6} alkyloxy, aminocarbonyl, -CH(=N-O-R⁸), R^{7a}, -X₃-R^{7a} or R^{7a}-C₁₋₄alkanediyl-;

 R^{7a} is a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic carbocycle or a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic heterocycle, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted where possible with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, amino C_{1-6} alkyl, mono or di(C_{1-6} alkyl)amino C_{1-6} alkyl, formyl, C_{1-6} alkylcarbonyl, C_{3-7} cycloalkyl, C_{1-6} alkyloxy, C_{1-6} alkyloxycarbonyl,

 C_{1-6} alkylthio, cyano, nitro, polyhalo C_{1-6} alkyl, polyhalo C_{1-6} alkyloxy, aminocarbonyl, or -CH(=N-O-R⁸);

R⁸ is hydrogen, C₁₋₄alkyl optionally substituted with aryl, or aryl;

 R^9 and R^{10} each independently are hydrogen; $C_{1\text{-}6}$ alkyl; $C_{1\text{-}6}$ alkylcarbonyl; $C_{1\text{-}6}$ alkyloxycarbonyl; amino; mono- or di($C_{1\text{-}6}$ alkyl)amino; mono- or di($C_{1\text{-}6}$ alkyl)aminocarbonyl; -CH(=NR¹¹) or R⁷, wherein each of the aforementioned $C_{1\text{-}6}$ alkyl

groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C_{1-6} alkyloxy, hydroxy C_{1-6} alkyloxy, carboxyl,

C₁₋₆alkyloxycarbonyl, cyano, amino, imino, mono- or di(C₁₋₄alkyl)amino, polyhaloC₁₋₄alkyl, polyhaloC₁₋₄alkyloxy,

polyhalo C_{1-4} alkylthio, $-S(=O)_pR^6$, $-NH-S(=O)_pR^6$, $-C(=O)R^6$, -NHC(=O)H, $-C(=O)NHNH_2$, $-NHC(=O)R^6$, $-C(=NH)R^6$, R^7 ; or

 R^9 and R^{10} may be taken together to form a bivalent radical of formula

$$-CH_2-CH_2-O-CH_2-CH_2-$$
 (d-3);

$$-CH_2-CH_2-S-CH_2-CH_2-$$
 (d-4);

 R^{11} represents cyano; C_{1-4} alkyl optionally substituted with C_{1-4} alkyloxy, cyano, amino, mono- or di(C_{1-4} alkyl)amino or aminocarbonyl; C_{1-4} alkylcarbonyl;

C₁₋₄alkyloxycarbonyl; aminocarbonyl; mono- or di(C₁₋₄alkyl)aminocarbonyl;

R¹² represents hydrogen or C₁₋₄alkyl;

 R^{13} and R^{14} each independently represent $C_{1\text{-}6}$ alkyl optionally substituted with cyano, aminocarbonyl or mono- or di($C_{1\text{-}4}$ alkyl)aminocarbonyl; $C_{2\text{-}6}$ alkenyl optionally substituted with cyano, aminocarbonyl or mono- or di($C_{1\text{-}4}$ alkyl)aminocarbonyl;

 C_{2-6} alkynyl optionally substituted with cyano, aminocarbonyl or mono- or di $(C_{1-4}$ alkyl)aminocarbonyl;

 R^{15} represents $C_{1\text{-}6}$ alkyl substituted with cyano, aminocarbonyl or mono- or $di(C_{1\text{-}4}$ alkyl)aminocarbonyl;

 R^{16} represents C_{1-6} alkyl optionally substituted with cyano, aminocarbonyl or mono- or $di(C_{1-4}$ alkyl)aminocarbonyl; or R^7 ;

 R^{17} represents hydrogen; C_{1-6} alkyl; or C_{1-6} alkyl substituted with aryl; p is 1 or 2;

aryl represents phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, amino C_{1-6} alkyl, mono or di $(C_{1-6}$ alkyl)amino C_{1-6} alkyl,

C₁₋₆alkylcarbonyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxycarbonyl,

 $C_{1\text{-}6}$ alkylthio, cyano, nitro, polyhalo $C_{1\text{-}6}$ alkyl, polyhalo $C_{1\text{-}6}$ alkyloxy, aminocarbonyl, R^7 or $-X_3$ - R^7 .

- 34. (Previously presented) A compound according to claim 26 wherein R² represents cyano.
- 35. (Previously presented) A compound according to claim 26 wherein R³ is cyano; aminocarbonyl; C₁₋₆alkyl optionally substituted with cyano or aminocarbonyl;

 $C_{1\text{-}6}$ alkyloxy optionally substituted with cyano or aminocarbonyl; $C_{2\text{-}6}$ alkenyl substituted with cyano or aminocarbonyl.

36. (Previously Presented) A compound according to claim 26 wherein m is 2; R¹ represents hydrogen; R² represents cyano; R³ represents cyano;

 C_{1-6} alkyl; C_{1-6} alkyl substituted with cyano; C_{1-6} alkyloxy optionally substituted with cyano; C_{2-6} alkenyl substituted with cyano or -C(=O)-NR 9 R 10 ; each R 4 independently represents halo, C_{1-6} alkyl or C_{1-6} alkyloxy; X_1 represents $-NR^5$ - or -O-; R 5 represents hydrogen; R 9 and R 10 each independently are hydrogen or C_{1-6} alkyl; or R 9 and R 10 may be taken together to form a bivalent radical of formula $-CH_2$ - CH_2 - CH_2 - CH_2 -(d-3); R 17 is hydrogen; C_{1-6} alkyl optionally substituted with hydroxy, cyano, aminocarbonyl, C_{1-4} alkyloxycarbonyl or aryl; aryl is phenyl substituted with C_{1-6} alkyloxy.

- 37. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of claim 26.
- 38. (Previously Presented) A process for preparing a pharmaceutical composition comprising mixing a therapeutically effective amount of a compound of claim 26 with a pharmaceutically acceptable carrier.
 - 39. (Cancelled)
- 40. (Previously presented) A product containing (a) a compound as defined in claim 26, and (b) another antiretroviral compound, as a combined preparation for simultaneous, separate or sequential use in the treatment of HIV infection.
- 41. (Previously presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) a compound as defined in claim 26, and (b) another antiretroviral compound.