CARLINGFORD HIGH SCHOOL

DEPARTMENT OF MATHEMATICS

Year 12 Mathematics 2U

Term2 Assessment Task 2013

Time allowed: 55 minutes			
Name:	Class:	Teacher	
Gong / Cheng / Strilakos / Nicolaou /	' Lobejko / Kellahan / W	hite	

Instructions:

- All questions should be attempted.
- Show ALL necessary working on your own paper.
- Marks may not be awarded for careless or badly arranged work.
- Only board-approved calculators may be used.
- Start each question on a new page and only write on one side of each sheet of paper.

	Q1	Q2	Q3	Q4	Q5	Q6	TOTAL
Н3		/9	/8			/8	/25
H5	- /9			/9	/7		/25
TOTAL	/9	/9	/8	/9	/7	/8	/50

Question 1 (9 marks) (Start a new page)

(a) Convert 36° to radians, giving your answer in terms of π .

[1]

(b) What is the period of the function $y = \tan\left(x + \frac{\pi}{2}\right)$?

Fn.1

[1]

(c) Evaluate correct to three significant figures:

[2]

- (i) $log_e 8$
- (ii) log_37

(d) What is the exact value of $\cot \frac{\pi}{6}$

[1] .

(e) Solve $4^{x-3} = 20$ (correct to two decimal places)

[2]

(f) An arc length of 5 units subtends an angle θ at the centre of a circle of radius 3 units.

Find the value of θ to the nearest degree.

[2]

Question 2 (9 marks) (Start a new page)

(a) Differentiate:

(i) e^{-3x}

[1]

(ii) ln(5x-1)

[1]

(iii) $x^2 \ln x$

[2]

(b) Evaluate:

$$(i) \quad \int_0^1 6x e^{x^2} dx$$

[2]

(ii)
$$\int_{1}^{e^{3}} \frac{4}{x} dx$$

[3]

Question 3 (8 marks) (Start a new page)

(a) Given that $log_ab=2.75$ and $log_ac=0.25$ find the value of:

[2]

(i)
$$log_a\left(\frac{b}{c}\right)$$

(ii) $log_a(bc)^2$

(b) Find the gradient of the normal to the curve y = 6lnx when x = e

[2]

(c) Find
$$\int \frac{x}{x^2+3} dx$$
 [2]

(d) Differentiate $log_e \frac{x+1}{3x-4}$

[2]

Question 4 (9 marks) (Start a new page)

(a) Differentiate:

[3]

(i)
$$4x + tanx$$

(ii)
$$sin(3x+1)$$

(iii)
$$cos(x^2)$$

(b) Evaluate
$$\int_0^{\frac{\pi}{2}} \cos x \, dx$$

[2]

(c) In the diagram below PQ and SR are arcs of concentric circles with centre 0. $< POQ = \frac{\pi}{3} radians$ and OP = 3cm.

(i) Find the area of the sector POQ

[1]

(ii) If OR is rcm find the area of the sector OSR in terms of r

[1]

(iii) If the shaded area is $\frac{27\pi}{6}$ cm², find the length of PS.

[2]

Question 5 (7 marks) (Start a new page)

In the domain $-2\pi \le x \le 2\pi$ answer the following:

- (a) Sketch $y = 5\cos\frac{x}{2}$ stating the amplitude and period of the function. [3]
- (b) From your graph:
 - (i) How many solutions are there to the equation $5\cos\frac{x}{2} = 1$? [1]
 - (ii) What are the approximate solutions? [1]
- (c) Solve the equation $5\cos\frac{x}{2} = 1$ calculating your answer in radians to two decimal places. [2]

Question 6 (8 marks) (Start a new page)

- (a) Show that the derivative of $log_e cos x$ is -tan x [2]
- (b) Show that $\int \frac{x+5}{x+1} dx = x + 4ln(x+1) + C$ [2]
- (c) (i) Sketch the curve y = lnx [1]
 - (ii) Write y = lnx in index form. [1]
 - (iii) Hence, find the area between the curve, the y axis and the lines y=2 and y=4 leaving your answer in exact form. [2]

END OF PAPER

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0

DOLUTIONS

YRI2 Mathematics	2U Term 2 2013
$Q = 36^{\circ} = 36 \times 12^{\circ}$	$\int_{0}^{\infty} \left(\frac{1}{6} x e^{x^{2}} dx - 3x \right) \frac{1}{2} x e^{x^{2}} dx$
= 1 180 = 15	$= 3 \left[e^{\chi^2} \right]^{\frac{1}{2}}$
(b) period = 17 (c) (i) 2.08	$=3\left(e^{1}-e^{0}\right)$
— (i) 1.77	= 3 (e-1) $= 3 (e-1)$
(d) $\cot T = \sqrt{3}$	$\frac{(1)}{x} \int \frac{1}{x} dx = 4 \int \frac{1}{x} dx$
$\frac{8}{2} $	$= 4 \left[\ln \alpha \right]$
$2.1609 = x-3$ $\therefore x = 5.1609$	$= 4 (lne^{3} - ln1)$ $= 4 (3lne - 0)$
$\frac{x \neq 5 \cdot 16(2dp)}{x = 5 \cdot 16(2dp)}$	= 4 x 3 = 12
$ \begin{array}{cccc} $	$0.3 (a) (i) \log_a(\frac{b}{c}) = \log_a b - \log_a c$
0 = 5 rad.	$63 \text{ (a) (i)} \log_a(\frac{b}{c}) = \log_a b - \log_a c$ = 2.75 - 0.25 = 2.5
= \frac{5}{3} \times \frac{180}{17} = 95.49.0	$(in \log_a (bc)^2 = 2 \log_a (bc)$
÷ 95°	$= 2(\log_{a}b + \log_{a}c)$ $= 2(2.75 + 0.25)$ $= 2 \times 2$
$Q_2(a) (i) \frac{d}{dx} (e^{-3x}) = -3e^{-3x}$	$= 2x^{3}$ $= 6$ $= 6$ $= 6$
$\lim_{x \to \infty} \frac{d}{dx} \ln (5x-1) = \frac{5}{5x-1}$	$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial}{\partial x}$
$\frac{(ii) y = x^2 \ln x}{(iii)}$	When $x=e$, $dy=6$
$\frac{\partial y}{\partial x} = \frac{\alpha^2 x}{\beta c} + \ln \alpha x dx$ $= \alpha + 2\alpha \ln \alpha$	
$= \frac{2c + 2c + 2c}{2c}$	$(c) \int \frac{x}{x^2 + 3} dx = \frac{1}{2} \int \frac{2x}{x^2 + 3} dx$
	$= \frac{1}{2} \ln(3t^2+3) + C$

(d) $y = \log \frac{x+1}{3x-4}$ $= \log_e(x+1) - \log_e(3x-4)$ $= \frac{3x-4-3x-3}{(x+1)(3x-4)}$ period = 411 Q5 (a) $= \frac{-7}{(x+1)(3x-4)}$ amplitude = 504 (a) (i) d (4x+tanx) $= 4 + sec^2x$ (b (i) 2 solutions (must graph y=1) (ii) $\frac{d}{dx}$ $\sin(3x+1)$ (ii) -3 and 3 to -2.5 and 2.5 = 3 cos (3x+1) -217 \ x \ 217 (c) 5 cos = 1 (iii) of cos(x2) -17 5 25 ET COS & = 5 $=-2x\sin(x^2)$ = 1.3694 .. 8-1.3694. (b) $\int_{-\infty}^{\infty} \cos x \, dx$ $\therefore x = 2.7388... 8 - 2.7388.$ ac = 2.74 8 - 2.74 Q6(a) $y = log_e cos x$ (c) (i) = sin 1 - sin 0 (c) (i) Area of sector POQ <u>(ii)</u> $=\frac{1}{2}\gamma^2\theta$ $=\frac{1}{2}(3)^{2}(\frac{\pi}{3})$ (b) $\left(\frac{x+5}{x+1}dx\right)$ $=\frac{311}{2}$ cm² (ii) Area of sector OSR $= e^{4} - e^{2}$ = + (r)2(=) (| dx + (+ dx $= e^2(e^2 - 1) \text{ unit}$ 2c + 4 (n/x+1) + C