

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P _s =	18.56 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
$C_s =$	0.82	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 26.53 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.100 (Proceure)	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	<i>прристанта</i>) и ин ин также и и и и и и и и и и и и и и и и и и и

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>847.53</u>	<u>7348.41</u>	k
Compressive Load =	3827.81	<u>5350.81</u>	k
Lateral Load =	<u>291.68</u>	<u>3918.71</u>	k
Moment (Weak Axis) =	<u>0.57</u>	0.23	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 186033.7 in-lbs Resisting Force Required = 2818.69 lbs A minimum 132in long x 39in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4697.82 lbs to resist overturning. Minimum Width = <u>39 in</u> in Weight Provided = 7775.63 lbs Sliding 942.01 lbs Force = Use a 132in long x 39in wide x 18in tall Friction = 0.4 Weight Required = 2355.03 lbs ballast foundation to resist sliding. Resisting Weight = 7775.63 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 942.01 lbs Cohesion = 130 psf Use a 132in long x 39in wide x 18in tall 35.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3887.81 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c =

 Bearing Pressure

 Ballast Width

 39 in
 40 in
 41 in
 42 in

 Pftg = (145 pcf)(11 ft)(1.5 ft)(3.25 ft) =
 7776 lbs
 7975 lbs
 8174 lbs
 8374 lbs

ASD LC		1.0D ·	+ 1.0S			1.0D+	- 1.0W		1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W				
Width	39 in	40 in	41 in	42 in	39 in	40 in	41 in	42 in	39 in	40 in	41 in	42 in	39 in	40 in	41 in	42 in
FA	1076 lbs	1076 lbs	1076 lbs	1076 lbs	1619 lbs	1619 lbs	1619 lbs	1619 lbs	1919 lbs	1919 lbs	1919 lbs	1919 lbs	-402 lbs	-402 lbs	-402 lbs	-402 lbs
FB	1057 lbs	1057 lbs	1057 lbs	1057 lbs	2354 lbs	2354 lbs	2354 lbs	2354 lbs	2458 lbs	2458 lbs	2458 lbs	2458 lbs	-3529 lbs	-3529 lbs	-3529 lbs	-3529 lbs
F _V	133 lbs	133 lbs	133 lbs	133 lbs	1678 lbs	1678 lbs	1678 lbs	1678 lbs	1347 lbs	1347 lbs	1347 lbs	1347 lbs	-1884 lbs	-1884 lbs	-1884 lbs	-1884 lbs
P _{total}	9909 lbs	10108 lbs	10308 lbs	10507 lbs	11748 lbs	11948 lbs	12147 lbs	12346 lbs	12153 lbs	12353 lbs	12552 lbs	12751 lbs	734 lbs	853 lbs	973 lbs	1093 lbs
M	2865 lbs-ft	2865 lbs-ft	2865 lbs-ft	2865 lbs-ft	4686 lbs-ft	4686 lbs-ft	4686 lbs-ft	4686 lbs-ft	5392 lbs-ft	5392 lbs-ft	5392 lbs-ft	5392 lbs-ft	3730 lbs-ft	3730 lbs-ft	3730 lbs-ft	3730 lbs-ft
е	0.29 ft	0.28 ft	0.28 ft	0.27 ft	0.40 ft	0.39 ft	0.39 ft	0.38 ft	0.44 ft	0.44 ft	0.43 ft	0.42 ft	5.08 ft	4.37 ft	3.83 ft	3.41 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	233.5 psf	233.1 psf	232.7 psf	232.3 psf	257.1 psf	256.1 psf	255.2 psf	254.3 psf	257.7 psf	256.7 psf	255.7 psf	254.8 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	320.9 psf	318.3 psf	315.8 psf	313.5 psf	400.1 psf	395.6 psf	391.2 psf	387.1 psf	422.2 psf	417.1 psf	412.2 psf	407.6 psf	361.0 psf	151.1 psf	113.9 psf	99.8 psf

Maximum Bearing Pressure = 422 psf Allowable Bearing Pressure = 1500 psf Use a 132 ${\it in}$ long x 39 ${\it in}$ wide x 18 ${\it in}$ tall ballast foundation for an acceptable bearing pressure.

Length =

8 in

Seismic Design

Overturning Check

 $M_0 = 2389.4 \text{ ft-lbs}$

Resisting Force Required = 1470.40 lbs S.F. = 1.67

Weight Required = 2450.67 lbs Minimum Width = 39 in in Weight Provided = 7775.63 lbs A minimum 132in long x 39in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		39 in			39 in		39 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	241 lbs	500 lbs	165 lbs	664 lbs	1773 lbs	606 lbs	97 lbs	146 lbs	22 lbs	
F _V	171 lbs	168 lbs	173 lbs	127 lbs	124 lbs	133 lbs	171 lbs	169 lbs	172 lbs	
P _{total}	9867 lbs	10126 lbs	9791 lbs	9827 lbs	10937 lbs	9770 lbs	2912 lbs	2961 lbs	2837 lbs	
M	661 lbs-ft	652 lbs-ft	666 lbs-ft	494 lbs-ft	492 lbs-ft	515 lbs-ft	659 lbs-ft	651 lbs-ft	661 lbs-ft	
е	0.07 ft	0.06 ft	0.07 ft	0.05 ft	0.04 ft	0.05 ft	0.23 ft	0.22 ft	0.23 ft	
L/6	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft	0.54 ft	
f _{min}	241.9 psf	249.6 psf	239.5 psf	249.4 psf	280.5 psf	246.7 psf	47.4 psf	49.2 psf	45.2 psf	
f _{max}	310.1 psf	316.9 psf	308.3 psf	300.4 psf	331.3 psf	299.9 psf	115.5 psf	116.4 psf	113.5 psf	

Maximum Bearing Pressure = 331 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 39in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 39in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	2.944 k	Maximum Axial Load =	4.977 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>40%</u>	Utilization =	<u>67%</u>
Diagonal Strut			
Maximum Axial Load =	2.601 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	or double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>35%</u>		
	A-4		
	·	Struts under compression are transfer from the girder. Single end of the strut and are subjections.	le M12 bolts are l

shown to demonstrate the load e M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 46.89 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 0.938 in Max Drift, Δ_{MAX} = 0.437 in 0.437 ≤ 0.938, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 93 \text{ in}$$

$$J = 0.432$$

$$257.282$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 93 \\ \mathsf{J} &= 0.432 \\ &= 163.616 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_L} &= 29.2 \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 28.1 \text{ ksi}$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 0t$$
 141.0

$$\phi F_L = 1.17 \phi y F c y$$

$$\varphi F_{L} = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

Compression

3.4.9

$$\begin{array}{lll} b/t = & 32.195 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 25.1 \text{ ksi} \\ \\ b/t = & 37.0588 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))}/(1.6b/t) \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1.94 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1.94 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 $L_{b} = 88.9 \text{ in}$ J = 1.08 152.913 $S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$ S1 = 0.51461 $S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$

S1 = 0.51461

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56
 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
 $\phi F_I = 29.4 \text{ ksi}$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

Weak Axis:

3.4.14
$$L_{b} = 88.9$$

$$J = 1.08$$

$$161.829$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\varphi F_{L} = \varphi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

$$\varphi F_{I} = 29.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.60t}\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$φF_L = φb[Bt-Dt*√(Rb/t)]$$

 $φF_L = 31.1 \text{ ksi}$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L St = 29.4 \text{ ksi}$$

$$lx = 984962 \text{ mm}^4$$

$$2.366 \text{ in}^4$$

$$y = 43.717 \text{ mm}$$

$$Sx = 1.375 \text{ in}^3$$

$$M_{max} St = 3.363 \text{ k-ft}$$

43.2 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

 $\phi F_L =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$51 = 0.514$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{by}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

0.672 in⁴

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

 $S1 = 1.1$
 $S2 = C_t$
 $S2 = 141.0$
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$φF_L = 1.3φyFcy$$

$$φF_L = 43.2 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &= & 28.2 \text{ ksi} \\ lx &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ y &= & 27.5 \text{ mm} \end{aligned}$$

$$y = 0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

$\underline{\text{Compression}}$

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \ ksi \\ ly = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ x = & 27.5 \ mm \\ Sy = & 0.621 \ in^3 \\ M_{max} W k = & 1.460 \ k\text{-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$
 $A = 663.99 \text{ mm}^2$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

 $P_{max} =$

3.4.14

$$L_b = 63.42 \text{ in}$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_L =$$

Weak Axis:

$$L_b = 63.42$$

 $J = 0.942$

$$S1 - \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1 - \frac{\theta_y}{\theta_b}Fcy}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.2$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ & \text{ly} = & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ & \text{x} = & 27.5 \text{ mm} \\ & \text{Sy} = & 0.621 \text{ in}^3 \\ & M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.46712 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.7854 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 12.7711 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{9} \\ \text{b/t} = & 24.5 \\ \text{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \text{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \text{S1} = & 12.21 \\ \text{S2} = & 32.70 \\ \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Y	-46.9	-46 9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-81.397	-81.397	0	0
2	M14	V	-81.397	-81.397	0	0
3	M15	V	-125.796	-125.796	0	0
4	M16	V	-125.796	-125.796	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	184.994	184.994	0	0
2	M14	V	140.595	140.595	0	0
3	M15	V	73.997	73.997	0	0
4	M16	У	73.997	73.997	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	. Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	807.114	2	1307.564	2	.445	1	.002	1	0	1	0	1
2		min	-974.24	3	-1771.968	3	-34.494	5	174	4	0	1	0	1
3	N7	max	.022	9	1010.808	1	454	12	0	12	0	1	0	1
4		min	232	2	-178.087	3	-224.37	4	435	4	0	1	0	1
5	N15	max	.022	9	2944.468	2	0	11	0	11	0	1	0	1
6		min	-2.419	2	-651.948	3	-215.848	4	423	4	0	1	0	1
7	N16	max	2731.807	2	4116.005	2	0	3	0	3	0	1	0	1
8		min	-3014.394	3	-5652.621	3	-34.575	5	176	4	0	1	0	1
9	N23	max	.028	14	1010.808	1	6.236	1	.013	1	0	1	0	1
10		min	232	2	-178.087	3	-219.522	4	428	4	0	1	0	1
11	N24	max	807.114	2	1307.564	2	043	12	0	12	0	1	0	1
12		min	-974.24	3	-1771.968	3	-34.988	5	175	4	0	1	0	1
13	Totals:	max	4343.152	2	11645.537	2	0	11						
14		min	-4963.592	3	-10204.681	3	-760.705	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	61.642	1	461.679	2	-7.218	12	0	15	.146	1	0	4
2			min	5.073	12	-848.471	3	-134.781	1	015	2	.012	12	0	3
3		2	max	61.642	1	321.987	2	-5.918	12	0	15	.082	4	.623	3
4			min	5.073	12	-597.773	3	-103.162	1	015	2	.002	10	337	2
5		3	max	61.642	1	182.295	2	-4.618	12	0	15	.047	5	1.029	3
6			min	5.073	12	-347.074	3	-71.543	1	015	2	031	1	555	2
7		4	max	61.642	1	42.604	2	-3.318	12	0	15	.026	5	1.22	3
8			min	5.073	12	-96.376	3	-39.924	1	015	2	079	1	651	2
9		5	max	61.642	1	154.323	3	.16	10	0	15	.006	5	1.195	3
10			min	5.073	12	-97.088	2	-24.035	4	015	2	1	1	628	2
11		6	max	61.642	1	405.021	3	23.314	1	0	15	005	12	.955	3
12			min	1.54	15	-236.78	2	-19.701	5	015	2	093	1	484	2
13		7	max	61.642	1	655.72	3	54.933	1	0	15	005	12	.498	3
14			min	-6.387	5	-376.471	2	-17.69	5	015	2	06	1	22	2
15		8	max	61.642	1	906.418	3	86.552	1	0	15	.004	2	.164	2
16			min	-15.226	5	-516.163	2	-15.678	5	015	2	043	4	175	3
17		9	max	61.642	1	1157.117	3	118.171	1	0	15	.089	1	.669	2
18			min	-24.066	5	-655.855	2	-13.667	5	015	2	054	5	-1.063	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
19		10	max	61.642	1	795.546	2	-4.483	12	.003	14	.205	1	1.294	2
20			min	5.073	12	-1407.815	3	-149.79	1	015	2	.002	12	-2.167	3
21		11	max	61.642	1	655.855	2	-3.183	12	.015	2	.089	1	.669	2
22		10	min	5.073	12	-1157.117	3	-118.171	1	0	15	003	3	-1.063	3
23		12	max	61.642	1	516.163	2	-1.883	12	.015	2	.042	4	.164	2
24		10	min	5.073	12	-906.418	3	-86.552	1	0	15	006	3	175	3
25		13	max	61.642	1	376.471	2	583	12	.015	2	.02	5	.498	3
26			min	5.073	12	-655.72	3	-54.933	1	0	15	06	1	22	2
27		14	max	61.642	1	236.78	2	1.237	3	.015	2	0	15	.955	3
28			min	3.613	15	-405.021	3	-27.73	4	0	15	093	1	484	2
29		15	max	61.642	1	97.088	2	8.305	1	.015	2	004	12	1.195	3
30		1.0	min	-3.347	5	-154.323	3	-20.532	5	0	15	1	1	628	2
31		16	max	61.642	1	96.376	3	39.924	1	.015	2	001	12	1.22	3
32			min	-12.186	5	-42.604	2	-18.521	5	0	15	079	1	651	2
33		17	max	61.642	1	347.074	3_	71.543	1	.015	2	.003	3	1.029	3
34			min	-21.026	5	-182.295	2	-16.509	5	0	15	058	4	555	2
35		18	max	61.642	1	597.773	3_	103.162	1	.015	2	.044	1	.623	3
36			min	-29.865	5	-321.987	2	-14.498	5	0	15	064	5	337	2
37		19	max	61.642	1	848.471	3	134.781	1	.015	2	.146	1	0	2
38			min	-38.705	5	-461.679	2	-12.486	5	0	15	076	5	0	3
39	<u>M14</u>	1	max	40.275	4	518.346	2	-7.447	12	.012	3	.183	4	0	1
40			min	2.294	12	-675.806	3	-139.904	1	014	2	.014	12	0	3
41		2	max	33.63	1	378.655	2	-6.147	12	.012	3	.124	4	.5	3
42			min	2.294	12	-486.28	3	-108.285	1	014	2	.004	10	386	2
43		3	max	33.63	1_	238.963	2	-4.847	12	.012	3	.073	5	.837	3
44			min	2.294	12	-296.753	3	-76.666	1	014	2	014	1	652	2
45		4	max	33.63	1	99.271	2	-3.547	12	.012	3	.041	5	1.011	3
46			min	2.294	12	-107.227	3	-47.126	4	014	2	066	1	798	2
47		5	max	33.63	1	82.3	3	377	10	.012	3	.01	5	1.022	3
48			min	-2.539	5	-40.42	2	-38.181	4	014	2	091	1	823	2
49		6	max	33.63	1	271.826	3	18.191	1	.012	3	004	12	.87	3
50			min	-11.378	5	-180.112	2	-32.53	5	014	2	089	1	728	2
51		7	max	33.63	1	461.353	3	49.81	1_	.012	3	005	12	.554	3
52			min	-20.218	5	-319.804	2	-30.518	5	014	2	06	4	513	2
53		8	max	33.63	1	650.88	3	81.429	1	.012	3	.002	2	.075	3
54			min	-29.057	5	-459.495	2	-28.507	5	014	2	074	4	177	2
55		9	max	33.63	1	840.406	3	113.048	1	.012	3	.08	1	.278	2
56			min	-37.897	5	-599.187	2	-26.495	5	014	2	095	5	567	3
57		10	max	58.407	4	738.879	2	-4.254	12	.012	3	.191	1	.855	2
58			min	2.294	12	-1029.933	3	-144.667	1	014	2	.001	3	-1.372	3
59		11	max	49.568	4	599.187	2	-2.954	12	.014	2	.123	4	.278	2
60			min	2.294	12	-840.406	3	-113.048	1	012	3	003	3	567	3
61		12	max	40.728	4	459.495	2	-1.654	12	.014	2	.071	5	.075	3
62			min	2.294	12	-650.88	3	-81.429	1	012	3	006	3	177	2
63		13	max	33.63	1	319.804	2	354	12	.014	2	.038	5	.554	3
64			min	2.294	12	-461.353	3	-49.81	1	012	3	06	1	513	2
65		14	max	33.63	1	180.112	2	1.581	3	.014	2	.007	5	.87	3
66			min	2.294	12	-271.826	3	-38.956	4	012	3	089	1	728	2
67		15	max	33.63	1	40.42	2	13.428	1	.014	2	003	12	1.022	3
68			min	2.294	12	-82.3	3	-32.705	5	012	3	091	1	823	2
69		16	max	33.63	1	107.227	3	45.047	1	.014	2	0	12	1.011	3
70			min	-2.212	5	-99.271	2	-30.693	5	012	3	066	1	798	2
71		17	max	33.63	1	296.753	3	76.666	1	.014	2	.005	3	.837	3
72			min	-11.051	5	-238.963	2	-28.682	5	012	3	078	4	652	2
73		18	max	33.63	1	486.28	3	108.285	1	.014	2	.066	1	.5	3
74			min	-19.891	5	-378.655	2	-26.67	5	012	3	098	5	386	2
75		19	max	33.63	1	675.806	3	139.904	1	.014	2	.173	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
76			min	-28.73	5	-518.346	2	-24.659	5	012	3	12	5	0	3
77	M15	1	max	67.759	5	724.878	2	-7.317	12	.014	2	.229	4	0	2
78			min	-34.839	1	-366.674	3	-139.922	1	01	3	.013	12	0	3
79		2	max	58.92	5	524.014	2	-6.016	12	.014	2	.159	4	.274	3
80			min	-34.839	1	-268.904	3	-108.303	1	01	3	.004	10	538	2
81		3	max	50.08	5	323.151	2	-4.716	12	.014	2	.099	5	.463	3
82			min	-34.839	1	-171.135	3	-76.684	1	01	3	014	1	902	2
83		4	max	41.241	5	122.287	2	-3.416	12	.014	2	.056	5	.568	3
84			min	-34.839	1	-73.366	3	-58.727	4	01	3	066	1	-1.094	2
85		5	max	32.401	5	24.403	3	443	10	.014	2	.016	5	.589	3
86			min	-34.839	1	-78.577	2	-49.782	4	01	3	091	1	-1.113	2
87		6	max	23.562	5	122.173	3	18.173	1	.014	2	004	12	.526	3
88			min	-34.839	1	-279.44	2	-44.105	5	01	3	089	1	959	2
89		7	max	14.722	5	219.942	3	49.792	1	.014	2	005	12	.379	3
90			min	-34.839	1	-480.304	2	-42.093	5	01	3	074	4	632	2
91		8	max	5.883	5	317.711	3	81.411	1	.014	2	.002	10	.148	3
92			min	-34.839	1	-681.168	2	-40.082	5	01	3	098	4	132	2
93		9	max	-1.919	15	415.481	3	113.03	1	.014	2	.08	1	.541	2
94			min	-34.839	1	-882.031	2	-38.07	5	01	3	129	5	168	3
95		10	max	-2.958	10	1082.895	2	-4.384	12	.014	2	.228	4	1.387	2
96			min	-34.839	1	-513.25	3	-144.649	1	01	3	.002	12	568	3
97		11	max	-1.177	15	882.031	2	-3.084	12	.01	3	.157	4	.541	2
98			min	-34.839	1	-415.481	3	-113.03	1	014	2	003	3	168	3
99		12	max	-2.958	10	681.168	2	-1.784	12	.01	3	.095	5	.148	3
100		1	min	-34.839	1	-317.711	3	-81.411	1	014	2	006	3	132	2
101		13	max	-2.958	10	480.304	2	484	12	.01	3	.052	5	.379	3
102		10	min	-34.839	1	-219.942	3	-59.522	4	014	2	06	1	632	2
103		14	max	-2.958	10	279.44	2	1.373	3	.01	3	.012	5	.526	3
104		17	min	-36.676	4	-122.173	3	-50.577	4	014	2	089	1	959	2
105		15	max	-2.958	10	78.577	2	13.446	1	.01	3	003	12	.589	3
106		10	min	-45.515	4	-24.403	3	-44.282	5	014	2	091	1	-1.113	2
107		16	max	-2.958	10	73.366	3	45.065	1	.01	3	0	12	.568	3
108		10	min	-54.355	4	-122.287	2	-42.271	5	014	2	08	4	-1.094	2
109		17	max	-2.958	10	171.135	3	76.684	1	.01	3	.004	3	.463	3
110		1 '	min	-63.194	4	-323.151	2	-40.259	5	014	2	104	4	902	2
111		18	max	-2.958	10	268.904	3	108.303	1	.01	3	.066	1	.274	3
112		10	min	-72.033	4	-524.014	2	-38.248	5	014	2	134	5	538	2
113		19	max	-2.958	10	366.674	3	139.922	1	.01	3	.173	1	<u>550</u>	2
114		13	min	-80.873	4	-724.878		-36.236	5	014	2	166	5	0	5
115	M16	1	max	65.824	5	670.52	2	-6.782	12	.01	2	.174	4	0	2
116	IVITO			-66.224				-135.137		013	3	.011	12	0	3
117		2	max		5	469.656	2	-5.482	12	.013	2	.117	4	.234	3
118			min	-66.224	1	-222.877	3	-103.518		013	3	.003	10	491	2
119		3	max		5	268.793	2	-4.182	12	.013 .01	2	.073	5	.384	3
120		-3	min	-66.224	1	-125.108	3	- 71.899	1	013	3	03	1	809	2
121		4		39.305	5	67.929	2	-2.882	12	<u>013</u> .01	2	.042	5	<u>609</u> .449	3
122		4	max	-66.224				-44.042	4	013	3	079	1	954	2
		E	min		1	-27.339	3	098							
123		5	max	30.466	5	70.431	3		10	.01	2	.013	5	.431	3
124		6	min	-66.224	1 5	-132.935	2	-35.096	4	013	3	1	12	926	2
125		6	max	21.626	5	168.2	3	22.958	1	.01	2	005	12	.328	3
126		7	min	-66.224	1	-333.798	2	-30.647	5	013	3	094	1	725	2
127		7	max		5	265.969	3	54.577	1	.01	2	004	12	.141	3
128			min	-66.224	1	-534.662		-28.635	5	<u>013</u>	3	06	1	<u>351</u>	2
129		8	max	3.948	5	363.739	3	86.196	1	.01	2	.003	2	.196	2
130		_	min	-66.224	1	-735.525	2	-26.624	5	<u>013</u>	3	065	4	<u>13</u>	3
131		9	max	-3.211	15	461.508	3	117.815	1	.01	2	.088	1	.916	2
132			min	-66.224	1	-936.389	2	-24.612	5	013	3	086	5	485	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC		LC
133		10	max	-4.798	12	1137.253	2	-4.919	12	.01	2	.203	1	1.809	2
134			min	-66.224	1_	-559.277	3	-149.434	1	013	3	.003	12	925	3
135		11	max	-2.361	15	936.389	2	-3.619	12	.013	3	.117	4	.916	2
136			min	-66.224	1	-461.508	3	-117.815	1	01	2	0	3	485	3
137		12	max	-4.798	12	735.525	2	-2.318	12	.013	3	.064	4	.196	2
138			min	-66.224	1	-363.739	3	-86.196	1	01	2	005	3	13	3
139		13	max	-4.798	12	534.662	2	-1.018	12	.013	3	.032	5	.141	3
140			min	-66.224	1	-265.969	3	-54.577	1	01	2	06	1	351	2
141		14	max	-4.798	12	333.798	2	.539	3	.013	3	.002	5	.328	3
142			min	-66.224	1	-168.2	က	-38.703	4	01	2	094	1	725	2
143		15	max	-4.798	12	132.935	2	8.661	1	.013	3	004	12	.431	3
144			min	-66.224	1	-70.431	3	-31.462	5	01	2	1	1	926	2
145		16	max	-4.798	12	27.339	3	40.28	1	.013	3	002	12	.449	3
146			min	-66.224	1	-67.929	2	-29.451	5	01	2	079	1	954	2
147		17	max	-4.798	12	125.108	3	71.899	1	.013	3	.002	3	.384	3
148			min	-72.096	4	-268.793	2	-27.439	5	01	2	083	4	809	2
149		18	max	-4.798	12	222.877	3	103.518	1	.013	3	.045	1	.234	3
150			min		4	-469.656	2	-25.428	5	01	2	099	5	491	2
151		19	max	-4.798	12	320.646	3	135.137	1	.013	3	.148	1	0	2
152		10	min	-89.775	4	-670.52	2	-23.416	5	01	2	12	5	0	5
153	M2	1		1101.96	2	1.963	4	.398	1	0	3	0	3	0	1
154	IVIZ		min	-1558.408	3	.479	15	-31.161	4	0	4	0	2	0	1
155		2		1102.388	2	1.907	4	.398	1	0	3	0	1	0	15
156				-1558.087	3	.466	15	-31.534	4	0	4	009	4	0	4
157		3		1102.817	2	1.85	4	.398	1	0	3	0	1	0	15
158		3		-1557.766	3	.452	15	-31.907	4	0	4	018	4	001	4
		1							1		_		_		
159		4		1103.245 -1557.444	3	1.793	4	.398		0	3	028	1	0	15
160		_	_		_	.437	12	-32.281	4	0	4	_	1	002	4
161		5		1103.674	2	1.736	4	.398	1	0	3	0		0	15
162		6	min	-1557.123	3	.415	12	-32.654	4	0	4	037	4	002	4
163		6		1104.102	2	1.679	4	.398	1	0	3	0	1	0	15
164		-		-1556.802	3	.393	12	-33.027	4	0	4	047	4	003	4
165		7		1104.53	2	1.623	4	.398	1	0	3	0	1	0	12
166				-1556.48	3	.371	12	-33.401	4	0	4	056	4	003	4
167		8		1104.959	2	1.566	4	.398	1	0	3	0	1	0	12
168				-1556.159	3	.349	12	-33.774	4	0	4	066	4	004	4
169		9		1105.387	2	1.509	4	.398	1	0	3	0	1	0	12
170				-1555.837	3	.327	12	-34.147	4	0	4	076	4	004	4
171		10		1105.816	2	1.452	4	.398	1_	0	3	.001	1	001	12
172				-1555.516	3	.304	12	-34.521	4	0	4	086	4	004	4
173		11		1106.244		1.396	4	.398	1	0	3	.001	1	001	12
174				-1555.195	3_	.282	12	-34.894	4	0	4	096	4	005	4
175		12		1106.673	2	1.339	4	.398	1	0	3	.001	1	001	12
176				-1554.873	3	.26	12	-35.267	4	0	4	106	4	005	4
177		13		1107.101	2	1.282	4	.398	1	0	3	.001	1	001	12
178				-1554.552	3	.238	12	-35.641	4	0	4	116	4	006	4
179		14		1107.53	2	1.225	4	.398	1	0	3	.001	1	001	12
180			min	-1554.231	3	.216	12	-36.014	4	0	4	127	4	006	4
181		15		1107.958	2	1.172	2	.398	1	0	3	.002	1	001	12
182			min	-1553.909	3	.194	12	-36.387	4	0	4	137	4	006	4
183		16	max	1108.387	2	1.127	2	.398	1	0	3	.002	1	001	12
184				-1553.588	3	.172	12	-36.761	4	0	4	148	4	007	4
185		17		1108.815	2	1.083	2	.398	1	0	3	.002	1	002	12
186				-1553.267	3	.15	12	-37.134	4	0	4	159	4	007	4
187		18		1109.244	2	1.039	2	.398	1	0	3	.002	1	002	12
188				-1552.945	3	.127	12	-37.507	4	0	4	169	4	007	4
189		19		1109.672	2	.995	2	.398	1	0	3	.002	1	002	12
		<u> </u>			_				_						

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
190			min	-1552.624	3	.105	12	-37.881	4	0	4	18	4	008	4
191	M3	1_	max	721.639	2	7.911	4	2.715	4	0	3	0	1	.008	4
192			min	-845.745	3	1.872	15	.008	12	0	4	019	4	.002	12
193		2	max	721.468	2	7.144	4	3.253	4	0	3	0	1	.005	2
194			min	-845.873	3	1.691	15	.008	12	0	4	018	4	0	12
195		3	max	721.298	2	6.377	4	3.792	4	0	3	0	1	.002	2
196			min	-846.001	3	1.511	15	.008	12	0	4	017	4	0	3
197		4	max	721.128	2	5.61	4	4.331	4	0	3	0	1	0	2
198			min	-846.128	3	1.331	15	.008	12	0	4	015	4	002	3
199		5	max	720.957	2	4.842	4	4.87	4	0	3	0	1	0	15
200			min	-846.256	3	1.15	15	.008	12	0	4	013	4	004	3
201		6	max	720.787	2	4.075	4	5.408	4	0	3	0	1	001	15
202			min	-846.384	3	.97	15	.008	12	0	4	011	5	005	6
203		7	max	720.617	2	3.308	4	5.947	4	0	3	0	1_	001	15
204			min	-846.512	3	.79	15	.008	12	0	4	008	5	007	6
205		8	max	720.446	2	2.541	4	6.486	4	0	3	0	1	002	15
206			min	-846.64	3	.609	15	.008	12	0	4	006	5	008	6
207		9	max	720.276	2	1.774	4	7.025	4	0	3	0	1	002	15
208			min	-846.767	3	.429	15	.008	12	0	4	003	5	009	6
209		10	max	720.106	2	1.006	4	7.563	4	0	3	0	1	002	15
210			min	-846.895	3	.211	12	.008	12	0	4	0	5	009	6
211		11	max	719.935	2	.367	2	8.102	4	0	3	.003	4	002	15
212			min	-847.023	3	149	3	.008	12	0	4	0	12	009	6
213		12	max	719.765	2	112	15	8.641	4	0	3	.007	4	002	15
214			min	-847.151	3	597	3	.008	12	0	4	0	12	009	6
215		13	max	719.595	2	292	15	9.18	4	0	3	.011	4	002	15
216			min	-847.278	3	-1.296	6	.008	12	0	4	0	12	009	6
217		14	max	719.424	2	473	15	9.718	4	0	3	.015	4	002	15
218			min	-847.406	3	-2.064	6	.008	12	0	4	0	12	008	6
219		15	max	719.254	2	653	15	10.257	4	0	3	.019	4	002	15
220			min	-847.534	3	-2.831	6	.008	12	0	4	0	12	007	6
221		16	max	719.084	2	833	15	10.796	4	0	3	.023	4	001	15
222			min	-847.662	3	-3.598	6	.008	12	0	4	0	12	006	6
223		17	max	718.913	2	-1.014	15	11.335	4	0	3	.028	4	001	15
224			min	-847.789	3	-4.365	6	.008	12	0	4	0	12	004	6
225		18	max	718.743	2	-1.194	15	11.873	4	0	3	.033	4	0	15
226			min	-847.917	3	-5.132	6	.008	12	0	4	0	12	002	6
227		19	max	718.572	2	-1.374	15	12.412	4	0	3	.038	4	0	1
228			min	-848.045	3	-5.9	6	.008	12	0	4	0	12	0	1
229	M4	1		1007.741	1	0	1	453	12	0	1	.027	4	0	1
230				-180.387	3	0	1	-222.46	4	0	1	0	10	0	1
231		2		1007.912	1	0	1	453	12	0	1	.002	5	0	1
232				-180.259		0	1	-222.608		0	1	0	2	0	1
233		3		1008.082	1	0	1	453	12	0	1	0	12	0	1
234					3	0	1	-222.755		0	1	024	4	0	1
235		4		1008.252	1	0	1	453	12	0	1	0	12	0	1
236				-180.004		0	1	-222.903		0	1	049	4	0	1
237		5		1008.423		0	1	453	12	0	1	0	12	0	1
238			min		3	0	1	-223.051	4	0	1	075	4	0	1
239		6		1008.593	1	0	1	453	12	0	1	0	12	0	1
240		Ť		-179.748	3	0	1	-223.198		0	1	101	4	0	1
241		7		1008.763		0	1	453	12	0	1	0	12	0	1
242				-179.621	3	0	1	-223.346		0	1	126	4	0	1
243		8		1008.934	1	0	1	453	12	0	1	0	12	0	1
244				-179.493		0	1	-223.494		0	1	152	4	0	1
245		9		1009.104		0	1	453	12	0	1	0	12	0	1
246				-179.365		0	1	-223.641		0	1	178	4	0	1
240			1111111	173.303	J	U		220.041	7	U		170	1 4	U	

Model Name

Schletter, Inc.HCV

110 V

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1009.274	1	0	1	453	12	0	1	0	12	0	1
248			min	-179.237	3	0	1	-223.789	4	0	1	203	4	0	1
249		11	max	1009.445	1	0	1	453	12	0	1	0	12	0	1
250			min	-179.11	3	0	1	-223.936	4	0	1	229	4	0	1
251		12	max	1009.615	1	0	1	453	12	0	1	0	12	0	1
252			min	-178.982	3	0	1	-224.084	4	0	1	255	4	0	1
253		13	max	1009.785	1	0	1	453	12	0	1	0	12	0	1
254			min	-178.854	3	0	1	-224.232	4	0	1	28	4	0	1
255		14	max	1009.956	1	0	1	453	12	0	1	0	12	0	1
256			min	-178.726	3	0	1	-224.379	4	0	1	306	4	0	1
257		15	max	1010.126	1	0	1	453	12	0	1	0	12	0	1
258			min	-178.598	3	0	1	-224.527	4	0	1	332	4	0	1
259		16	max	1010.296	1	0	1	453	12	0	1	0	12	0	1
260			min	-178.471	3	0	1	-224.675	4	0	1	358	4	0	1
261		17	max	1010.467	1	0	1	453	12	0	1	0	12	0	1
262			min	-178.343	3	0	1	-224.822	4	0	1	384	4	0	1
263		18	max	1010.637	1	0	1	453	12	0	1	0	12	0	1
264			min		3	0	1	-224.97	4	0	1	409	4	0	1
265		19	max	1010.808	1	0	1	453	12	0	1	0	12	0	1
266			min	-178.087	3	0	1	-225.118	4	0	1	435	4	0	1
267	M6	1	max	3442.118	2	2.471	2	0	1	0	1	0	4	0	1
268			min	-4976.832	3	107	3	-31.46	4	0	4	0	1	0	1
269		2	max	3442.546	2	2.427	2	0	1	0	1	0	1	0	3
270			min	-4976.511	3	14	3	-31.833	4	0	4	009	4	0	2
271		3	max	3442.975	2	2.383	2	0	1	0	1	0	1	0	3
272			min		3	173	3	-32.207	4	0	4	018	4	001	2
273		4	max	3443.403	2	2.338	2	0	1	0	1	0	1	0	3
274			min	-4975.868	3	206	3	-32.58	4	0	4	028	4	002	2
275		5	max	3443.832	2	2.294	2	0	1	0	1	0	1	0	3
276			min	-4975.547	3	24	3	-32.953	4	0	4	037	4	003	2
277		6		3444.26	2	2.25	2	0	1	0	1	0	1	0	3
278			min	-4975.226	3	273	3	-33.327	4	0	4	047	4	003	2
279		7	max	3444.689	2	2.206	2	0	1	0	1	0	1	0	3
280			min		3	306	3	-33.7	4	0	4	057	4	004	2
281		8	max	3445.117	2	2.161	2	0	1	0	1	0	1	0	3
282			min	-4974.583	3	339	3	-34.073	4	0	4	067	4	005	2
283		9	max	3445.546	2	2.117	2	0	1	0	1	0	1	0	3
284			min	-4974.261	3	372	3	-34.447	4	0	4	077	4	005	2
285		10	max	3445.974	2	2.073	2	0	1	0	1	0	1	0	3
286			min	-4973.94	3	406	3	-34.82	4	0	4	087	4	006	2
287		11		3446.403	2	2.029	2	0	1	0	1	0	1	0	3
288			min		3	439	3	-35.193	4	0	4	097	4	007	2
289		12	max	3446.831	2	1.984	2	0	1	0	1	0	1	0	3
290			min		3	472	3	-35.567	4	0	4	107	4	007	2
291		13		3447.26	2	1.94	2	0	1	0	1	0	1	.001	3
292			min		3	505	3	-35.94	4	0	4	117	4	008	2
293		14	max	3447.688	2	1.896	2	0	1	0	1	0	1	.001	3
294			min		3	538	3	-36.313	4	0	4	128	4	008	2
295		15		3448.117	2	1.852	2	0	1	0	1	0	1	.001	3
296			min		3	572	3	-36.687	4	0	4	139	4	009	2
297		16		3448.545	2	1.807	2	0	1	0	1	0	1	.002	3
298		'	min		3	605	3	-37.06	4	0	4	149	4	009	2
299		17		3448.974		1.763	2	0	1	0	1	0	1	.002	3
300			min		3	638	3	-37.433	4	0	4	16	4	01	2
301		18		3449.402	2	1.719	2	0	1	0	1	0	1	.002	3
302		10	min		3	671	3	-37.807	4	0	4	171	4	01	2
303		10		3449.831	2	1.675	2	0	1	0	1	0	1	.002	3
JUJ		נון	IIIax	0443.00 l		1.070		U		U		U		.002	

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	LC
304			min	-4971.048	3	704	3	-38.18	4	0	4	182	4_	011	2
305	M7	1		2473.847	2	7.91	6	2.532	4	0	1	0	_1_	.011	2
306		_	min	-2598.286	3	1.857	15	0	1	0	4	019	4_	002	3
307		2		2473.677	2	7.142	6	3.071	4	0	1	0	_1_	.008	2
308			min	-2598.414	3	1.677	15	0	1	0	4	018	4_	004	3
309		3		2473.506	2	6.375	6	3.61	4	0	1	0	_1_	.006	2
310			min	-2598.541	3	1.497	15	0	1	0	4	017	4_	005	3
311		4		2473.336	2	5.608	6	4.149	4	0	1	0	1	.003	2
312			min	-2598.669	3	1.316	15	0	1	0	4	015	4	006	3
313		5		2473.165	2	4.841	6	4.687	4	0	1	0	1	.001	2
314			min	-2598.797	3	1.136	15	0	1	0	4	013	4_	007	3
315		6		2472.995	2	4.074	6	5.226	4	0	1_	0	_1_	0	2
316			min	-2598.925	3	.956	15	0	1	0	4	011	4	008	3
317		7		2472.825	2	3.306	6	5.765	4	0	_1_	0	_1_	002	15
318			min	-2599.052	3	.745	12	0	1	0	4	009	4	008	3
319		8	max	2472.654	2	2.632	2	6.303	4	0	_1_	0	_1_	002	15
320			min	-2599.18	3	.446	12	0	1	0	4	006	4	009	3
321		9	max	2472.484	2	2.034	2	6.842	4	0	1	0	<u>1</u>	002	15
322			min	-2599.308	3	.147	12	0	1	0	4	004	5	009	3
323		10	max	2472.314	2	1.436	2	7.381	4	0	1	0	_1_	002	15
324			min	-2599.436	3	281	3	0	1	0	4	0	5	009	4
325		11	max	2472.143	2	.839	2	7.92	4	0	1_	.002	4	002	15
326			min	-2599.563	3	729	3	0	1	0	4	0	1	009	4
327		12	max	2471.973	2	.241	2	8.458	4	0	1	.006	4	002	15
328			min	-2599.691	3	-1.178	3	0	1	0	4	0	1	009	4
329		13	max	2471.803	2	307	15	8.997	4	0	1	.01	4	002	15
330			min	-2599.819	3	-1.626	3	0	1	0	4	0	1	009	4
331		14	max	2471.632	2	487	15	9.536	4	0	1	.013	4	002	15
332			min	-2599.947	3	-2.075	3	0	1	0	4	0	1	008	4
333		15	max	2471.462	2	668	15	10.075	4	0	1	.018	4	002	15
334			min	-2600.074	3	-2.831	4	0	1	0	4	0	1	007	4
335		16	max	2471.292	2	848	15	10.613	4	0	1	.022	4	001	15
336			min	-2600.202	3	-3.599	4	0	1	0	4	0	1	006	4
337		17	max	2471.121	2	-1.028	15	11.152	4	0	1	.026	4	001	15
338			min	-2600.33	3	-4.366	4	0	1	0	4	0	1	004	4
339		18	max	2470.951	2	-1.209	15	11.691	4	0	1	.031	4	0	15
340			min	-2600.458	3	-5.133	4	0	1	0	4	0	1	002	4
341		19	max	2470.781	2	-1.389	15	12.23	4	0	1	.036	4	0	1
342			min	-2600.585	3	-5.9	4	0	1	0	4	0	1	0	1
343	M8	1	max	2941.402	2	0	1	0	1	0	1	.026	4	0	1
344				-654.248	3	0	1	-216.224	4	0	1	0	1	0	1
345		2		2941.572	2	0	1	0	1	0	1	.001	5	0	1
346			min		3	0	1	-216.371	4	0	1	0	1	0	1
347		3	max	2941.743	2	0	1	0	1	0	1	0	1	0	1
348				-653.993		0	1	-216.519	4	0	1	024	4	0	1
349		4		2941.913		0	1	0	1	0	1	0	1	0	1
350				-653.865		0	1	-216.667	4	0	1	048	4	0	1
351		5		2942.083		0	1	0	1	0	1	0	1	0	1
352				-653.737	3	0	1	-216.814	4	0	1	073	4	0	1
353		6		2942.254	2	0	1	0	1	0	1	0	1	0	1
354				-653.609		0	1	-216.962		0	1	098	4	0	1
355		7		2942.424		0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	-217.11	4	0	1	123	4	0	1
357		8		2942.594	2	0	1	0	1	0	1	0	1	0	1
358			min			0	1	-217.257	4	0	1	148	4	0	1
359		9		2942.765		0	1	0	1	0	1	0	1	0	1
360				-653.226		0	1	-217.405		0	1	173	4	0	1
500											_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max	2942.935	2	0	1	0	1	0	1	0	1	0	1
362			min	-653.098	3	0	1	-217.553	4	0	1	198	4	0	1
363		11	max	2943.106	2	0	1	0	1	0	1	0	1	0	1
364			min	-652.971	3	0	1	-217.7	4	0	1	223	4	0	1
365		12	max	2943.276	2	0	1	0	1	0	1	0	1	0	1
366			min	-652.843	3	0	1	-217.848	4	0	1	248	4	0	1
367		13	max	2943.446	2	0	1	0	1	0	1	0	1	0	1
368			min	-652.715	3	0	1	-217.995	4	0	1	273	4	0	1
369		14	max	2943.617	2	0	1	0	1	0	1	0	1	0	1
370			min	-652.587	3	0	1	-218.143	4	0	1	298	4	0	1
371		15		2943.787	2	0	1	0	1	0	1	0	1	0	1
372			min	-652.459	3	0	1	-218.291	4	0	1	323	4	0	1
373		16		2943.957	2	0	1	0	1	0	1	0	1	0	1
374		1.0	min		3	0	1	-218.438	4	0	1	348	4	0	1
375		17		2944.128	2	0	1	0	1	0	1	0	1	0	1
376			min		3	0	1	-218.586	4	0	1	373	4	0	1
377		18		2944.298	2	0	1	0	1	0	1	0	1	0	1
378		10	min	-652.076	3	0	1	-218.734	4	0	1	398	4	0	1
379		19	+	2944.468	2	0	1	0	1	0	1	0	1	0	1
380		19		-651.948	3	0	1	-218.881	4	0	1	423	4	0	1
381	M10	1	min max		2	1.886	6	03	12	0	1	0	2	0	1
	IVITO		min	-1558.408	3	.427	15	-31.391	4	0	5	0	3	0	1
382		2		1102.388		1.829	6		12		1	0			15
383				-1558.087	2			03		0	_		10	0	
384			min		3_	.413	15	-31.764	4	0	5	009	4	0	6
385		3		1102.817	2	1.772	6	03	12	0	1	0	10	0	15
386		1	min	-1557.766	3	.4	15	-32.138	4	0	5	018	4	001	6
387		4	max		2	1.716	6	03	12	0	1	0	10	0	15
388		-	min	-1557.444	3	.387	15	-32.511	4	0	5	028	4	002	6
389		5		1103.674	2	1.659	6	03	12	0	1	0	10	0	15
390			min	-1557.123	3	.373	15	-32.884	4	0	5	037	4	002	6
391		6	max		2	1.602	6	03	12	0	1	0	10	0	15
392		<u> </u>	min	-1556.802	3	.36	15	-33.258	4	0	5	047	4	003	6
393		7	max		2	1.545	6	03	12	0	1	0	10	0	15
394		_	min	-1556.48	3	.346	15	-33.631	4	0	5	057	4	003	6
395		8		1104.959	2	1.488	6	03	12	0	1	0	10	0	15
396			min	-1556.159	3	.333	15	-34.004	4	0	5	066	4	003	6
397		9	max		2	1.437	2	03	12	0	1	0	10	0	15
398			min	-1555.837	3	.32	15	-34.378	4	0	5	076	4	004	6
399		10		1105.816	2	1.393	2	03	12	0	1	0	10	0	15
400			min	-1555.516	3	.304	12	-34.751	4	0	5	086	4	004	6
401		11	max	1106.244	2	1.349	2	03	12	0	_1_	0	10	001	15
402			min	-1555.195	3	.282	12	-35.124	4	0	5	097	4	005	6
403		12		1106.673	2	1.304	2	03	12	0	1	0	10	001	15
404			min		3	.26	12	-35.498	4	0	5	107	4	005	6
405		13	max	1107.101	2	1.26	2	03	12	0	1	0	12	001	15
406			min	-1554.552	3	.238	12	-35.871	4	0	5	117	4	005	6
407		14	max	1107.53	2	1.216	2	03	12	0	1	0	12	001	15
408			min	-1554.231	3	.216	12	-36.244	4	0	5	128	4	006	6
409		15	max	1107.958	2	1.172	2	03	12	0	1	0	12	001	15
410			min	-1553.909	3	.194	12	-36.618	4	0	5	138	4	006	6
411		16		1108.387	2	1.127	2	03	12	0	1	0	12	001	15
412			min	-1553.588	3	.172	12	-36.991	4	0	5	149	4	006	6
413		17		1108.815	2	1.083	2	03	12	0	1	0	12	001	15
414			min		3	.15	12	-37.364	4	0	5	16	4	007	2
415		18		1109.244	2	1.039	2	03	12	0	1	0	12	002	15
416		10	min		3	.127	12	-37.738	4	0	5	171	4	002	2
417		19	_	1109.672	2	.995	2	03	12	0	1	0	12	002	12
-T 1 /		10	IIIIav	1100.012					14				14	.002	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

440	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC
418	N444	4	min	-1552.624	3_	.105	12	-38.111	4_	0	5	182	4	007	2
419	M11	1	max	721.639	2	7.858	6	2.652	4	0	1_1	0	12	.007	2
420		2	min	-845.745	3	1.835	15	108	1_1	0	4_	019	4	.002	12
421		2	max	721.468	2	7.09	6	3.191	4	0	1_1	0	12	.005	2
422		2	min	-845.873	3	1.655	15	108	1_1	0	4_	018	4	0	12
423		3	max	721.298	2	6.323	6 1E	3.73	4	0	1_1	0	12	.002	2
424		4	min	-846.001	3	1.475	15	108	1_1	0	4_	017	4	0	3
425		4	max		2	5.556	6	4.268	4	0	1_	0	12	0	2
426		_	min	-846.128	3	1.294	15	108	1_	0	4	015	4	002	3
427		5	max	720.957	2	4.789	6	4.807	4	0	1_	0	12	0	15
428			min	-846.256	3	1.114	15	108	1_1	0	4	013	4	004	3
429		6	max	720.787	2	4.022	6	5.346	4	0	1_	0	12	001	15
430		-	min	-846.384	3	.934	15	108	1_1	0	4	011	4	005	4
431		7	max		2	3.254	6	5.885	4	0	1_	0	12	002	15
432			min	-846.512	3	.753	15	108	1_	0	4_	009	4	007	4
433		8	max	720.446	2	2.487	6	6.423	4	0	1_	0	12	002	15
434			min	-846.64	3	.573	15	108	1_	0	4	006	4	008	4
435		9	max		2	1.72	6	6.962	4	0	1	0	12	002	15
436		40	min	-846.767	3	.393	15	108	1_	0	4	003	4	009	4
437		10	max	720.106	2	.965	2	7.501	4_	0	1	0	12	002	15
438			min	-846.895	3	.211	12	108	1_	0	4_	0	1_	009	4
439		11	max	719.935	2	.367	2	8.04	4	0	1	.003	5	002	15
440			min	-847.023	3_	149	3	108	<u>1</u>	0	4_	0	1_	01	4
441		12	max		2	148	15	8.578	4	0	_1_	.006	5	002	15
442			min	-847.151	3_	597	3	108	_1_	0	4_	0	1_	01	4
443		13	max	719.595	2	329	15	9.117	4	0	1	.01	4	002	15
444			min	-847.278	3_	-1.35	4	108	<u>1</u>	0	4_	0	1	009	4
445		14	max		2	509	15	9.656	_4_	0	_1_	.014	4	002	15
446				-847.406	3	-2.117	4	108	1_	0	4	0	1_	008	4
447		15	max	719.254	2	689	15	10.195	_4_	0	1	.018	4	002	15
448			min	-847.534	3	-2.884	4	108	1_	0	4	0	1	007	4
449		16	max	719.084	2	87	15	10.733	_4_	0	_1_	.023	4	001	15
450			min	-847.662	3	-3.652	4	108	1_	0	4	0	1	006	4
451		17	max		2	-1.05	15	11.272	4	0	_1_	.027	4	001	15
452			min	-847.789	3	-4.419	4	108	1_	0	4	0	1	004	4
453		18	max	718.743	2	-1.23	15	11.811	_4_	0	_1_	.032	4	0	15
454			min	-847.917	3	-5.186	4	108	1_	0	4	0	1	002	4
455		19	max	718.572	2	-1.411	15	12.35	4	0	_1_	.037	4	0	1
456				-848.045	3	-5.953	4	108	1	0	4	001	1	0	1
457	M12	1		1007.741	_1_	0	1_	6.423	_1_	0	_1_	.027	4	0	1
458				-180.387	3	0	1	-218.749	4	0	1_	0	1	0	1
459		2		1007.912	_1_	0	1	6.423	_1_	0	_1_	.002	5	0	1
460			1	-180.259	3	0	1	-218.896	4	0	1_	0	3	0	1
461		3		1008.082	_1_	0	1	6.423	_1_	0	_1_	0	1	0	1
462				-180.132	3	0	1	-219.044	4	0	1_	023	4	0	1
463		4		1008.252	_1_	0	1	6.423	_1_	0	_1_	.001	1_	0	1
464				-180.004	3	0	1	-219.192	4	0	1	049	4	0	1
465		5		1008.423	_1_	0	1	6.423	_1_	0	1_	.002	1	0	1
466				-179.876	3	0	1	-219.339	4	0	1	074	4	0	1
467		6		1008.593	1	0	1	6.423	1_	0	1_	.003	1	0	1
468				-179.748	3	0	1	-219.487	4	0	1	099	4	0	1
469		7	max	1008.763	1_	0	1	6.423	1	0	1_	.004	1	0	1
470			min	-179.621	3	0	1	-219.634	4	0	1	124	4	0	1
471		8	max	1008.934	1	0	1	6.423	1	0	1	.004	1	0	1
472			min	-179.493	3	0	1	-219.782	4	0	1	149	4	0	1
473		9	max	1009.104	1	0	1	6.423	1	0	1	.005	1	0	1
474			min	-179.365	3	0	1	-219.93	4	0	1	175	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

475	Member	Sec		Axial[lb]						Torque[k-ft]				l _	1
475		10		1009.274	1_	0	1	6.423	1	0	1	.006	1	0	1
476		4.4	min	-179.237	3	0	1	-220.077	4	0	1	2	4	0	1
477		11		1009.445	1	0	1	6.423	11	0	<u>1</u> 1	.007	1_4	0	1
478		40	min		3	0	1	-220.225	4	0	•	225	4	0	
479		12		1009.615	1	0	1	6.423	1_1	0	<u>1</u> 1	.007	1	0	1
480		40		-178.982	3	0		-220.373	4	0		25	4	0	
481		13		1009.785	1_	0	1	6.423	11	0	1	.008	1	0	1
482		4.4	_	-178.854	3_	0	1_	-220.52	4	0	1_	276	4	0	1
483		14		1009.956	1	0	1_	6.423	1	0	1	.009	1	0	1
484		4.5		-178.726	3	0	1_	-220.668	4	0	1_	301	4	0	1
485		15		1010.126	1_	0	_1_	6.423	1	0	1	.01	1	0	1
486		1.0	min	-178.598	3	0	1	-220.815	4	0	1	326	4	0	1
487		16		1010.296	_1_	0	1	6.423	1	0	1	.01	1	0	1
488				-178.471	3	0	1	-220.963	4	0	1	352	4	0	1
489		17		1010.467	_1_	0	_1_	6.423	_1_	0	_1_	.011	1_	0	1
490				-178.343	3	0	1	-221.111	4	0	1_	377	4	0	1
491		18		1010.637	_1_	0	_1_	6.423	1	0	_1_	.012	1_	0	1
492				-178.215	3	0	1_	-221.258	4	0	1_	403	4	0	1
493		19		1010.808	_1_	0	_1_	6.423	1	0	_1_	.013	1	0	1
494			min	-178.087	3	0	1	-221.406	4	0	1	428	4	0	1
495	M1	1	max	134.786	_1_	848.432	3	38.682	5	0	2	.146	1	0	15
496			min	-12.486	5	-461.116	2	-61.585	1	0	3	076	5	015	2
497		2	max	135.392	1	847.459	3	39.923	5	0	2	.114	1	.229	2
498			min	-12.204	5	-462.414	2	-61.585	1	0	3	055	5	45	3
499		3	max	522.322	3	574.036	2	10.558	5	0	3	.081	1	.46	2
500			min	-304.681	2	-629.966	3	-61.292	1	0	2	034	5	879	3
501		4	max	522.776	3	572.738	2	11.799	5	0	3	.049	1	.158	2
502			min	-304.075	2	-630.94	3	-61.292	1	0	2	028	5	546	3
503		5	max	523.23	3	571.439	2	13.041	5	0	3	.017	1	004	15
504			min	-303.47	2	-631.913	3	-61.292	1	0	2	022	5	213	3
505		6	max	523.684	3	570.141	2	14.282	5	0	3	001	12	.121	3
506			min	-302.865	2	-632.887	3	-61.292	1	0	2	018	4	445	2
507		7	max	524.138	3	568.843	2	15.523	5	0	3	004	12	.455	3
508				-302.259	2	-633.861	3	-61.292	1	0	2	048	1	746	2
509		8	max	524.592	3	567.545	2	16.765	5	0	3	.002	5	.79	3
510			min	-301.654	2	-634.834	3	-61.292	1	0	2	08	1	-1.045	2
511		9	max	536.378	3	51.458	2	46.658	5	0	9	.05	1	.922	3
512			min	-245.829	2	.391	15	-94.948	1	0	3	1	5	-1.195	2
513		10		536.832	3	50.16	2	47.899	5	0	9	0	10	.899	3
514		10		-245.224	2	001	5	-94.948	1	0	3	076	4	-1.222	2
515		11		537.286	3	48.862	2	49.14	5	0	9	004	12	.876	3
516				-244.618	2	-1.633	4	-94.948	1	0	3	061	4	-1.248	2
517		12	max		3	412.291	3	122.842	5	0	2	.079	1	.766	3
518		12		-188.7	2	-675.241	2	-60.124	1	0	3	174	5	-1.107	2
519		13		549.319	3	411.318	3	124.084	5	0	2	.048	1	.549	3
520		13		-188.094	2	-676.539	2	-60.124	1	0	3	109	5	75	2
		11		549.773					-		2				
521 522		14		-187.489	<u>3</u> 2	410.344 -677.837	2	125.325 -60.124	<u>5</u>	0	3	.016 043	<u>1</u> 5	.332 393	2
		4.5											_		
523		15		550.227	3	409.37	3	126.567	5	0	2	.023	5	.116	3
524		40		-186.884	2	-679.136	2	-60.124	1	0	3	016	1	05	1
525		16		550.681	3_	408.397	3	127.808	5	0	2	.09	5	.324	2
526		4-		-186.278	2	-680.434	2	-60.124	1_	0	3	047	1	1	3
527		17		551.135	3_	407.423	3	129.05	5	0	2	.158	5_	.683	2
528				-185.673	2	-681.732	2	-60.124	1	0	3	079	1	315	3
529		18	max	23.133	_5_	672.311	2	-4.798	12	0	5_	.16	5	.344	2
530				-135.739	<u>1</u>	-319.75	3	-91.037	4	0	2	113	1_	156	3
531		19	max	23.416	5	671.013	2	-4.798	12	0	5	.12	5	.013	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

500	Member	Sec	:	Axial[lb]						Torque[k-ft]					
532	NAC.	4		-135.133	1_	-320.723	3	-89.796	4	0	2	148	1	01	2
533	<u>M5</u>	1	max	299.57	1	2815.585	3	73.788	5	0	1_	0	1	.03	2
534		2	min	8.967	12	-1588.215	2	75,000	1	0	4	158	4	0	15
535		2	max	300.175	1	2814.612 -1589.513	3	75.029	5	0	11	0	1	.868	2
536		2	min	9.27	<u>12</u>		2	0	1_4	0	4	119	1	<u>-1.481</u>	3
537		3	max	1639.774	3	1631.667 -1922.547	2	47.44	4	0	4	0		1.669	2
538		4	min	-999.665	2		3	0		0	1_4	08	4	-2.909	3
539		4		1640.228	3_	1630.369	2	48.681	4	0	<u>4</u> 1	0	1	.808	2
540		_	min	-999.06	2	-1923.52	3	0	1	0		054	4	-1.894	3
541		5		1640.682	3	1629.07 -1924.494	2	49.923	4	0	4	0	1	.02	9
542		_	min	-998.454	2		3	0	_	0	1_4	028	4	879	3
543		6		1641.136	3	1627.772	2	51.164	4	0	4	0	1	.137	3
544		-	min	-997.849	2	-1925.468	3	0	1	0	1_	002	5	911	2
545		7	max		3	1626.474	2	52.406	4	0	4	.026	4	1.153	3
546			min	-997.244	2	-1926.441	3	0	1	0	1_	0	1	-1.77	2
547		8	max		3	1625.176	2	53.647	4	0	4_	.054	4	2.17	3
548			min	-996.638	2	-1927.415	3	0	1	0	1_	0	1	-2.628	2
549		9		1654.938	3	173.578	2	152.787	4	0	1	0	1	2.499	3
550		40		-875.275	2	.39	15	0	1	0	1	148	4	-2.998	2
551		10		1655.392	3_	172.28	2	154.028	4	0	1	0	1	2.414	3
552		4.4		-874.669	2	002	15	0	1	0	1_	067	4	-3.089	2
553		11		1655.846	3_	170.981	2	155.27	4	0	1	.014	4	2.329	3
554		4.0	min	-874.064	2	-1.554	6	0	1_	0	1_	0	1_	-3.18	2
555		12		1669.153	3	1222.657	3	174.839	4	0	_1_	0	1	2.041	3
556				-752.887	2	-1974.982	2	0	1_	0	4_	25	4	-2.846	2
557		13		1669.607	3	1221.683	3	176.081	4	0	1	0	1	1.396	3
558			min	-752.282	2	-1976.28	2	0	1	0	4_	157	4	-1.804	2
559		14		1670.061	3_	1220.71	3	177.322	4	0	_1_	0	1_	.752	3
560				-751.677	2	-1977.578	2	0	1	0	4	064	4	761	2
561		15		1670.515	3	1219.736	3	178.564	4	0	1	.03	4	.283	2
562				-751.071	2	-1978.877	2	0	1	0	4	0	1	001	13
563		16	max	1670.969	3_	1218.762	3_	179.805	4	0	_1_	.125	4	1.328	2
564			min	-750.466	2	-1980.175	2	0	1	0	4	0	1	535	3
565		17		1671.423	3	1217.789	3	181.047	4	0	_1_	.22	4	2.373	2
566			min	-749.861	2	-1981.473	2	0	1	0	4	0	1	-1.178	3
567		18	max	-10.139	12	2278.098	2	0	1	0	4_	.25	4	1.222	2
568			min	-299.48	_1_	-1117.868	3	-20.133	5	0	1_	0	1_	617	3
569		19	max	-9.836	12	2276.8	2	0	1	0	4_	.24	4	.02	2
570			min	-298.875	_1_	-1118.842	3	-18.891	5	0	1_	0	1	027	3
571	M9	1	max	134.786	_1_	848.432	3	61.585	1	0	3	012	12	0	15
572			min		12	-461.116	2	5.073	12	0	4	146	1	015	2
573		2	max		<u>1</u>	847.459	3	62.054	4	0	3	009	12	.229	2
574			min	7.52	12	-462.414	2	5.073	12	0	4	114	1	45	3
575		3	max	522.322	3	574.036	2	61.292	1	0	2	007	12	.46	2
576			min		2	-629.966	3	5.04	12	0	3	081	1	879	3
577		4	max	522.776	3	572.738	2	61.292	1	0	2	004	12	.158	2
578			min	-304.075	2	-630.94	3	5.04	12	0	3	049	1	546	3
579		5	max	523.23	3	571.439	2	61.292	1	0	2	001	10	004	15
580			min	-303.47	2	-631.913	3	5.04	12	0	3	028	4	213	3
581		6	max	523.684	3	570.141	2	61.292	1	0	2	.016	1	.121	3
582				-302.865	2	-632.887	3	5.04	12	0	3	013	5	445	2
583		7		524.138	3	568.843	2	61.292	1	0	2	.048	1	.455	3
584				-302.259	2	-633.861	3	5.04	12	0	3	0	5	746	2
585		8		524.592	3	567.545	2	61.292	1	0	2	.08	1	.79	3
586				-301.654	2	-634.834	3	5.04	12	0	3	.006	12	-1.045	2
587		9		536.378	3	51.458	2	94.948	1	0	3	004	12	.922	3
588				-245.829	2	.399	15	7.33	12	0	9	119	4	-1.195	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	536.832	3	50.16	2	94.948	1	0	3	0	1	.899	3
590			min	-245.224	2	.007	15	7.33	12	0	9	076	4	-1.222	2
591		11	max	537.286	3	48.862	2	94.948	1	0	3	.051	1	.876	3
592			min	-244.618	2	-1.582	6	7.33	12	0	9	043	5	-1.248	2
593		12	max	548.865	3	412.291	3	145.367	4	0	3	006	12	.766	3
594			min	-188.7	2	-675.241	2	4.353	12	0	2	204	4	-1.107	2
595		13	max	549.319	3	411.318	3	146.609	4	0	3	004	12	.549	3
596			min	-188.094	2	-676.539	2	4.353	12	0	2	127	4	75	2
597		14	max	549.773	3	410.344	3	147.85	4	0	3	001	12	.332	3
598			min	-187.489	2	-677.837	2	4.353	12	0	2	049	4	393	2
599		15	max	550.227	3	409.37	3	149.092	4	0	3	.029	4	.116	3
600			min	-186.884	2	-679.136	2	4.353	12	0	2	.001	12	05	1
601		16	max	550.681	3	408.397	3	150.333	4	0	3	.108	4	.324	2
602			min	-186.278	2	-680.434	2	4.353	12	0	2	.003	12	1	3
603		17	max	551.135	3	407.423	3	151.574	4	0	3	.188	4	.683	2
604			min	-185.673	2	-681.732	2	4.353	12	0	2	.006	12	315	3
605		18	max	-7.085	12	672.311	2	66.279	1	0	2	.201	4	.344	2
606			min	-135.739	1	-319.75	3	-67.185	5	0	3	.008	12	156	3
607		19	max	-6.783	12	671.013	2	66.279	1	0	2	.174	4	.013	3
608			min	-135.133	1	-320.723	3	-65.943	5	0	3	.011	12	01	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.129	2	.009	3	1.063e-2	2	NC	1	NC	1
2			min	455	4	027	3	005	2	-2.428e-3	3	NC	1	NC	1
3		2	max	0	1	.163	3	.015	1	1.177e-2	2	NC	4	NC	1
4			min	455	4	.001	15	009	5	-2.266e-3	3	976.25	3	NC	1
5		3	max	0	1	.318	3	.036	1	1.291e-2	2	NC	5	NC	2
6			min	455	4	029	1	012	5	-2.104e-3	3	538.399	3	5172.739	1
7		4	max	0	1	.414	3	.053	1	1.405e-2	2	NC	5	NC	2
8			min	455	4	059	1	009	5	-1.942e-3	3	421.871	3	3492.628	1
9		5	max	0	1	.438	3	.061	1	1.519e-2	2	NC	5	NC	3
10			min	455	4	056	1	003	5	-1.78e-3	3	399.516	3	3026.407	1
11		6	max	0	1	.394	3	.058	1	1.633e-2	2	NC	5	NC	2
12			min	455	4	02	1	002	10	-1.618e-3	3	441.859	3	3200.579	1
13		7	max	0	1	.294	3	.044	1	1.747e-2	2	NC	4	NC	2
14			min	455	4	.001	15	005	10	-1.456e-3	3	579.045	3	4228.67	1
15		8	max	0	1	.166	3	.028	3	1.861e-2	2	NC	1	NC	2
16			min	455	4	.003	15	008	10	-1.294e-3	3	962.496	3	8067.609	1
17		9	max	0	1	.221	2	.028	3	1.975e-2	2	NC	4	NC	1
18			min	455	4	.004	15	015	2	-1.133e-3	3	2028.132	2	9873.078	3
19		10	max	0	1	.253	2	.028	3	2.089e-2	2	NC	4	NC	1
20			min	455	4	004	3	02	2	-9.707e-4	3	1503.469	2	9869.036	3
21		11	max	0	12	.221	2	.028	3	1.975e-2	2	NC	4	NC	1
22			min	455	4	.004	15	015	2	-1.133e-3	3	2028.132	2	9873.078	3
23		12	max	0	12	.166	3	.028	3	1.861e-2	2	NC	1	NC	2
24			min	455	4	.003	15	008	10	-1.294e-3	3	962.496	3	8067.609	1
25		13	max	0	12	.294	3	.044	1	1.747e-2	2	NC	4	NC	2
26			min	455	4	0	15	005	10	-1.456e-3	3	579.045	3	4228.67	1
27		14	max	0	12	.394	3	.058	1	1.633e-2	2	NC	5	NC	2
28			min	455	4	02	1	002	10	-1.618e-3	3	441.859	3	3200.579	1
29		15	max	0	12	.438	3	.061	1	1.519e-2	2	NC	5	NC	3
30			min	455	4	056	1	0	10	-1.78e-3	3	399.516	3	3026.407	1
31		16	max	0	12	.414	3	.053	1	1.405e-2	2	NC	5	NC	2
32			min	455	4	059	1	0	10	-1.942e-3	3	421.871	3	3492.628	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			C	(n) L/y Ratio			LC
33		17	max	0	12	.318	3	.036	1 1.291	e-2 2	2	NC	5	NC	2
34			min	455	4	029	1	001	10 -2.104	e-3	3	538.399	3	5172.739	1
35		18	max	0	12	.163	3	.016	4 1.177	e-2 2	2	NC	4	NC	1
36			min	455	4	0	15	003	10 -2.266		3	976.25	3	NC	1
37		19	max	0	12	.129	2	.009	3 1.063		2	NC	1	NC	1
38			min	455	4	027	3	005	2 -2.428		3	NC	1	NC	1
39	M14	1	max	0	1	.278	3	.008	3 6.046		2	NC	1	NC	1
40	IVIIT	<u> </u>	min	352	4	402	2	005	2 -4.903		3	NC	1	NC	1
41		2		0	1	.492	3	003 .01				NC		NC	1
			max								2		5		1
42			min	352	4	601	2	014	5 -5.822			867.751	3	NC	
43		3	max	0	1	.678	3	.028	1 8.095		2	NC	5	NC	2
44			min	352	4	779	2	018	5 -6.741		_	464.938	3	6706.199	-
45		4	max	0	1	.815	3	.044	1 9.119		2	NC	5	NC	2
46			min	352	4	918	2	013	5 -7.66	e-3 (3	346.188	3	4199.95	1
47		5	max	0	1	.894	3	.053	1 1.014	e-2 2	2	NC	5	NC	2
48			min	352	4	-1.011	2	003	5 -8.579		3	302.049	3	3490.256	
49		6	max	0	1	.913	3	.052	1 1.117		2	NC	5	NC	2
50			min	352	4	-1.057	2	002	10 -9.499			284.172	2	3592.559	
51		7	max	0	1	.882	3	.04	1 1.219		2	NC	5	NC	2
52		-		352			2	004	10 -1.042			282.864		4652.784	
		0	min		4	-1.06							2		
53		8	max	0	1	.819	3	.028	4 1.322		2	NC	5	NC 2000 044	2
54			min	352	4	-1.033	2	007	10 -1.134		3	294.773	2	6939.211	4
55		9	max	0	1	.752	3	.025	3 1.424		2	NC	<u>5</u>	NC	1
56			min	352	4	997	2	014	2 -1.226		3	312.825	2	NC	1
57		10	max	0	1	.72	3	.025	3 1.526		2	NC	5	NC	1
58			min	352	4	977	2	018	2 -1.317	e-2	3	323.398	2	NC	1
59		11	max	0	12	.752	3	.025	3 1.424	e-2 2	2	NC	5	NC	1
60			min	352	4	997	2	015	5 -1.226		3	312.825	2	NC	1
61		12	max	0	12	.819	3	.025	3 1.322		2	NC	5	NC	2
62		'-	min	352	4	-1.033	2	017	5 -1.134		3	294.773	2	8707.86	1
63		13	max	0	12	.882	3	.04	1 1.219		2	NC	5	NC	2
		13	min	352	4		2	011	5 -1.042		3	282.864	2	4652.784	_
64		4.4			_	<u>-1.06</u>					_				-
65		14	max	0	12	.913	3	.052	1 1.117		2	NC	5_	NC 0500,550	2
66			min	352	4	-1.057	2	002	10 -9.499		3	284.172	2	3592.559	
67		15	max	0	12	.894	3	.053	1 1.014		2	NC	5_	NC	2
68			min	352	4	-1.011	2	0	10 -8.579		3	302.049	3	3490.256	
69		16	max	0	12	.815	3	.044	1 9.119		2	NC	5	NC	2
70			min	352	4	918	2	0	10 -7.66	e-3 (3	346.188	3	4199.95	1
71		17	max	0	12	.678	3	.029	4 8.095	e-3 2	2	NC	5	NC	2
72			min	352	4	779	2	001	10 -6.741		3	464.938	3	6320.034	4
73		18	max	0	12	.492	3	.019	4 7.07e		2	NC	5	NC	1
74			min	352	4	601	2	003	10 -5.822			867.751		9452.827	
75		19	max	0	12	.278	3	.008	3 6.046		2	NC	1	NC	1
76		15	min	352	4	402	2	005	2 -4.903			NC	1	NC	1
	NAAE	1						.003			_	NC	1		
77	M15	1	max	0	10	.284	3		3 4.176	3-3	3			NC NC	1
78			min	294	4	401	2	005	2 -6.291		2	NC	1_	NC NC	1
79		2	max	0	10	.432	3	.01	1 4.958		3	NC	5	NC NC	1
80			min	295	4	646	2	02	5 -7.362		2	759.623	2	8514.033	
81		3	max	0	10	.563	3	.028	1 5.739		3	NC	5	NC	2
82			min	295	4	86	2	026	5 -8.433	e-3 2	2	405.296	2	6677.572	
83		4	max	0	10	.668	3	.044	1 6.526		3	NC	5	NC	2
84			min	295	4	-1.022	2	019	5 -9.505		2	299.645	2	4183.321	1
85		5	max	0	10	.74	3	.053	1 7.302		3	NC	5	NC	2
86		—	min	295	4	-1.12	2	006	5 -1.058		2	258.69	2	3475.304	
87		6		- <u>295</u> 0	10	.778	3	.052	1 8.083		<u>~</u> 3	NC	5	NC	2
		0	max										2		
88		7	min	295	4	<u>-1.154</u>	2	001	10 -1.165		2	247.134		3573.452	
89		7	max	0	10	.785	3	.04	1 8.865	ყ-ა :	3	NC	5	NC	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	295	4	-1.132	2	004	10 -1.272e-2	2	254.559	2	4616.189	
91		8	max	0	10		3	.034	4 9.646e-3	3	NC	5	NC	2
92			min	295	4	<u>-1.074</u>	2	007	10 -1.379e-2	2	276.624	2	5636.679	
93		9	max	0	10	.747	3	.024	4 1.043e-2	3	NC 200 204	5	NC 0047.046	1
94		40	min	295	4	<u>-1.008</u>	2	013	2 -1.486e-2	2	306.321	2	8017.016	4
95		10	max	0	1	.735	3	.023	3 1.121e-2 2 -1.593e-2	3	NC	5	NC NC	1
96		11	min	295	1	<u>976</u>	3	017		3	323.636 NC	<u>2</u> 5	NC NC	
97 98			max	0 295	4	.747 -1.008	2	.023 02	3 1.043e-2 5 -1.486e-2	2	306.321	2	9349.628	5
99		12		- <u>.295</u> 0	1	<u>-1.006</u> .77	3	.023	3 9.646e-3	3	NC	5	NC	2
100		12	max min	295	4	-1.074	2	023	5 -1.379e-2	2	276.624	2	7967.507	5
101		13	max	0	1	.785	3	<u>023</u> .04	1 8.865e-3	3	NC	5	NC	2
102		13	min	295	4	-1.132	2	016	5 -1.272e-2	2	254.559	2	4616.189	1
103		14	max	0	1	.778	3	.052	1 8.083e-3	3	NC	5	NC	2
104		14	min	295	4	-1.154	2	002	5 -1.165e-2	2	247.134	2	3573.452	1
105		15	max	0	1	<u>-1.154 </u>	3	.053	1 7.302e-3	3	NC	5	NC	2
106		10	min	294	4	-1.12	2	0	10 -1.058e-2	2	258.69	2	3475.304	1
107		16	max	0	1	.668	3	.044	1 6.52e-3	3	NC	5	NC	2
108		10	min	294	4	-1.022	2	0	10 -9.505e-3	2	299.645	2	4183.321	1
109		17	max	0	1	.563	3	.037	4 5.739e-3	3	NC	5	NC	2
110			min	294	4	86	2	001	10 -8.433e-3	2	405.296	2	5017.944	4
111		18	max	0	1	.432	3	.025	4 4.958e-3	3	NC	5	NC	1
112			min	294	4	646	2	002	10 -7.362e-3	2	759.623	2	7260.588	4
113		19	max	0	1	.284	3	.008	3 4.176e-3	3	NC	1	NC	1
114			min	294	4	401	2	005	2 -6.291e-3	2	NC	1	NC	1
115	M16	1	max	0	12	.115	2	.007	3 7.75e-3	3	NC	1	NC	1
116			min	121	4	097	3	004	2 -8.965e-3	2	NC	1	NC	1
117		2	max	0	12	.008	9	.015	1 8.76e-3	3	NC	4	NC	1
118			min	121	4	043	3	016	5 -9.727e-3	2	1391.71	2	NC	1
119		3	max	0	12	0	15	.036	1 9.769e-3	3	NC	5	NC	2
120			min	121	4	124	2	02	5 -1.049e-2	2	777.399	2	5164.742	1
121		4	max	0	12	.014	3	.053	1 1.078e-2	3	NC	5	NC	3
122			min	121	4	183	2	016	5 -1.125e-2	2	623.902	2	3475.754	1
123		5	max	0	12	.006	12	.062	1 1.179e-2	3	NC	5	NC	3
124			min	121	4	187	2	007	5 -1.201e-2	2	616.484	2	3000.543	1
125		6	max	0	12	0	5	.059	1 1.28e-2	3	NC	5	NC	2
126			min	121	4	136	2	0	10 -1.278e-2	2	739.069	2	3155.346	1
127		7	max	0	12	.01	9	.045	1 1.381e-2	3	NC	3	NC	2
128			min	121	4	079	3	003	10 -1.354e-2	2	1163.816	2	4122.546	1
129		8	max	0	12	.077	1	.025	14 1.482e-2	3	NC	4	NC	2
130			min	121	4	139	3	006	10 -1.43e-2	2	3861.545	2	7608.524	1
131		9	max	0	12	.166	2	.02	3 1.583e-2	3	NC	4	NC	1
132			min	121	4	191	3	011	2 -1.506e-2	2	1974.216	3	NC	1
133		10	max	0	1	.211	2	.02	3 1.684e-2	3	NC	4	NC	1_
134			min	121	4	214	3	015	2 -1.582e-2	2	1587.522	3	NC	1
135		11	max	0	1	.166	2	.02	3 1.583e-2	3	NC	4_	NC	1
136			min	121	4	191	3	012	5 -1.506e-2	2	1974.216	3	NC	1
137		12	max	0	1	.077	1	.024	1 1.482e-2	3	NC	4_	NC	2
138			min	121	4	139	3	013	5 -1.43e-2	2	3861.545	2	7608.524	1
139		13	max	0	1	.01	9	.045	1 1.381e-2	3	NC	3	NC	2
140			min	121	4	079	3	006	5 -1.354e-2	2	1163.816	2	4122.546	
141		14	max	0	1	0	15	.059	1 1.28e-2	3	NC	5	NC	2
142			min	121	4	136	2	0	10 -1.278e-2	2	739.069	2	3155.346	
143		15	max	0	1	.006	12	.062	1 1.179e-2	3	NC	5	NC	3
144			min	121	4	187	2	.001	10 -1.201e-2	2	616.484	2	3000.543	
145		16	max	0	1	.014	3	.053	1 1.078e-2	3	NC	5	NC	3
146			min	121	4	183	2	.001	10 -1.125e-2	2	623.902	2	3475.754	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
147		17	max	0	1	0	15	.036	1	9.769e-3	3	NC	5	NC	2
148			min	121	4	124	2	0	10	-1.049e-2	2	777.399	2	5164.742	1
149		18	max	0	1	.008	9	.022	4	8.76e-3	3	NC	4_	NC	1
150			min	121	4	043	3	002	10	-9.727e-3	2	1391.71	2	8307.843	
151		19	max	0	1	.115	2	.007	3	7.75e-3	3	NC	1_	NC	1
152	140	-	min	121	4	097	3	004	2	-8.965e-3	2	NC	1_	NC	1
153	M2	1_	max	.007	2	.008	2	.005	1	1.279e-3	5	NC .	1	NC	1
154		+_	min	009	3	013	3	<u>43</u>	4	-1.246e-4	_1_	7754.588	2	145.919	4
155		2	max	.006	2	.007	2	.004	1	1.335e-3	_5_	NC	1_	NC 450.007	1
156		-	min	009	3	<u>012</u>	3	395	4	-1.17e-4	<u>1</u>	8829.876	2	158.827	4
157		3	max	.006	2	.006	2	.004	1	1.392e-3	5_	NC	1_	NC 474.445	1
158		+ .	min	008	3	012	3	36	4	-1.094e-4	_1_	NC	1_	174.145	4
159		4	max	.006	2	.005	2	.004	1	1.448e-3	_5_	NC	1_	NC Total	1
160			min	008	3	<u>011</u>	3	326	4	-1.018e-4	1_	NC	1_	192.501	4
161		5_	max	.005	2	.004	2	.003	1	1.505e-3	5_	NC	1_	NC	1
162			min	007	3	011	3	292	4	-9.426e-5	1_	NC	1_	214.744	4
163		6	max	.005	2	.003	2	.003	1	1.561e-3	5	NC	1_	NC 040.054	1
164		+_	min	007	3	01	3	259	4	-8.667e-5	1_	NC	1_	242.051	4
165		7	max	.004	2	.003	2	.002	1	1.618e-3	_5_	NC		NC	1
166		-	min	006	3	01	3	227	4	-7.908e-5	<u>1</u>	NC	1_	276.089	4
167		8	max	.004	2	.002	2	.002	1	1.674e-3	5_	NC	1	NC 040,007	1
168		_	min	006	3	009	3	196	4	-7.149e-5	<u>1</u>	NC	1_	319.287	4
169		9	max	.004	2	.001	2	.002	1	1.73e-3	5_	NC	1	NC 075 004	1
170		4.0	min	005	3	008	3	<u>167</u>	4	-6.391e-5	1_	NC	1_	375.291	4
171		10	max	.003	2	0	2	.001	1	1.789e-3	4_	NC	1_	NC 440.704	1
172		4.4	min	005	3	008	3	139	4	-5.632e-5	1_	NC NC	1_	449.791	4
173		11	max	.003	2	0	2	.001	1	1.848e-3	4	NC	1	NC 550,000	1
174		10	min	004	3	007	3	<u>114</u>	4	-4.873e-5	1_	NC	1_	552.066	4
175		12	max	.003	2	0	2	0	1	1.907e-3	4	NC	1_	NC 000 440	1
176		40	min	004	2	006	3	09	4	-4.114e-5	1_	NC NC	1_1	698.119	4
177		13	max	.002		0	15	0	1	1.966e-3	4	NC NC	1_	NC	1
178		4.4	min	003	3	006	3	068	4	-3.355e-5	1_	NC NC	1_	917.528	4
179		14	max	.002	2	0	15	0	1	2.025e-3	4	NC	1	NC	1
180		4.5	min	003	3	005	3	049	4	-2.596e-5	1	NC NC	•	1270.16	4
181		15	max	.001	2	0	15	0 033	1	2.084e-3	4	NC NC	1	NC 4002.00	1
182		10	min	002	3	004	3		4	-1.837e-5	1_	NC NC	_	1893.06	4
183		16	max	.001	2	0	15	0	1	2.143e-3 -1.079e-5	4	NC NC	1_1	NC 3161.334	1
184		4.7	min	002	3	003	3	02	1		1_	NC NC	1_		4
185		17	max	0	3	0	15	0	-	2.202e-3	4	NC	1	NC C444 400	1
186 187		10	min max	001	2	002 0	15	01 0	1	-3.196e-6 2.261e-3	<u>1</u> 4	NC NC	1	6444.183 NC	1
188		10		0	3	001	3	003		-2.69e-7	3	NC NC	1	NC NC	1
189		19	min	0	1				1	2.32e-3	4	NC	1	NC NC	1
190		19	max min	0	1	0 0	1	<u> </u>	1		12	NC NC	1	NC NC	1
	M3	1			1		1		1	4.951e-7 -2.047e-7		NC NC	1	NC NC	1
191 192	IVIS		max	<u> </u>	1	<u> </u>	1	<u> </u>	1	-5.662e-4	<u>12</u> 4	NC NC	1	NC NC	1
193		2	min	0	3	0	15	.011	4	9.624e-6	-	NC	1	NC NC	1
		+-	max	0	2						1_	NC NC	1		
194		2	min		3	002	15	0	12	-5.304e-5	<u>5</u>		1	8235.151	4
195		3	max	0		0		.021	4	4.654e-4	4	NC NC		NC	1
196 197		4	min	<u> </u>	3	003 001	15	<u> </u>	1 <u>2</u>	1.668e-6 9.813e-4	<u>12</u> 4	NC NC	<u>1</u> 1	4274.538 NC	4
198		4	max		2					9.813e-4 2.604e-6		NC NC	1		1
		E	min	001		005	6	0	12		<u>12</u>		•	2956.223	
199		5	max	.002	3	002	15	.039	4	1.497e-3	4	NC NC	1	NC	1
200		6	min	001	2	007	6	0	12	3.541e-6	<u>12</u>	NC NC	<u>1</u> 1	2297.52	4
201		6	max	.002 002	3	002 009	15	<u>.048</u> 0	12	2.013e-3 4.477e-6	<u>4</u> 12	NC NC	1	NC 1901.698	4
202		7	min		3							NC NC	•		
203		//	max	.002	⊥ S	002	15	.055	4	2.529e-3	4	INC	_1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

204	5 1 572 4 82 4 6 1 152 4 7 1 973 4 7 1 91 4 7 1 81 4 81 4 81 4
Min 002 2 012 6 0 12 6.35e-6 12 7859.747 6 1444.	572 4 3 1 82 4 5 1 152 4 5 1 973 4 6 1 91 4 6 1 65 4
207 9 max .003 3 003 15 .07 4 3.56e-3 4 NC 2 NC 208 min 003 2 012 6 0 12 7.286e-6 12 7322.637 6 1297. 209 10 max .004 3 003 15 .077 4 4.076e-3 4 NC 2 NC 210 min 003 2 013 6 0 12 8.222e-6 12 7060.913 6 1180. 211 11 max .004 3 003 15 .084 4 4.529e-3 4 NC 2 NC 212 min 003 2 013 6 0 12 9.159e-6 12 7035.912 6 1081. 214 min 004 2 013 6 0 12 9.159e-6 12 7249.344 6 <	1 82 4 6 1 152 4 6 1 152 4 6 1 1 1 1 1 1 1 1 1
208 min 003 2 012 6 0 12 7.286e-6 12 7322.637 6 1297. 209 10 max .004 3 003 15 .077 4 4.076e-3 4 NC 2 NC 210 min 003 2 013 6 0 12 8.222e-6 12 7060.913 6 1180. 211 11 max .004 3 003 15 .084 4 4.592e-3 4 NC 2 NC 212 min 003 2 013 6 0 12 9.159e-6 12 7035.912 6 1081. 213 12 max .005 3 003 15 .091 4 5.108e-3 4 NC 2 NC 214 min 004 2 013 6 0 12 1.009e-5 12	82 4 1152 4 153 4 15973 4 1591 4 151 1 1531 4 1565 4
209 10 max .004 3 003 15 .077 4 4.076e-3 4 NC 2 NC 210 min 003 2 013 6 0 12 8.222e-6 12 7060.913 6 1180. 211 11 max .004 3 003 15 .084 4 4.592e-3 4 NC 2 NC 212 min 003 2 013 6 0 12 9.159e-6 12 7035.912 6 1081.9 213 12 max .005 3 003 15 .091 4 5.108e-3 4 NC 2 NC 214 min 004 2 013 6 0 12 1.009e-5 12 7249.344 6 997.1 215 13 max .005 3 003 15 .098 4 5.624e-3 <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
210 min 003 2 013 6 0 12 8.222e-6 12 7060.913 6 1180. 211 11 max .004 3 003 15 .084 4 4.592e-3 4 NC 2 NC 212 min 003 2 013 6 0 12 9.159e-6 12 7035.912 6 1081.9 213 12 max .005 3 003 15 .091 4 5.108e-3 4 NC 2 NC 214 min 004 2 013 6 0 12 1.009e-5 12 7249.344 6 997.1 215 13 max .005 3 003 15 .098 4 5.624e-3 4 NC 1 NC 216 min 004 2 012 6 0 12 1.103e-5 12	152 4 3 1 973 4 3 1 91 4 3 1 81 4 65 4
211 11 max .004 3 003 15 .084 4 4.592e-3 4 NC 2 NC 212 min 003 2 013 6 0 12 9.159e-6 12 7035.912 6 1081.9 213 12 max .005 3 003 15 .091 4 5.108e-3 4 NC 2 NC 214 min 004 2 013 6 0 12 1.009e-5 12 7249.344 6 997.1 215 13 max .005 3 003 15 .098 4 5.624e-3 4 NC 1 NC 216 min 004 2 012 6 0 12 1.103e-5 12 7745.843 6 921.8 217 14 max .005 3 002 15 .106 4 6.14e-3 <td>973 4 973 4 91 4 91 4 91 4 91 4 91 4 91 4</td>	973 4 973 4 91 4 91 4 91 4 91 4 91 4 91 4
212 min 003 2 013 6 0 12 9.159e-6 12 7035.912 6 1081.91 213 12 max .005 3 003 15 .091 4 5.108e-3 4 NC 2 NC 214 min 004 2 013 6 0 12 1.009e-5 12 7249.344 6 997.1 215 13 max .005 3 003 15 .098 4 5.624e-3 4 NC 1 NC 216 min 004 2 012 6 0 12 1.103e-5 12 7745.843 6 921.8 217 14 max .005 3 002 15 .106 4 6.14e-3 4 NC 1 NC 218 min 005 2 011 6 0 12 1.197e-5 12	973 4 3 1 91 4 5 1 81 4 65 4
213 12 max .005 3 003 15 .091 4 5.108e-3 4 NC 2 NC 214 min 004 2 013 6 0 12 1.009e-5 12 7249.344 6 997.1 215 13 max .005 3 003 15 .098 4 5.624e-3 4 NC 1 NC 216 min 004 2 012 6 0 12 1.103e-5 12 7745.843 6 921.8 217 14 max .005 3 002 15 .106 4 6.14e-3 4 NC 1 NC 218 min 005 2 011 6 0 12 1.197e-5 12 8636.217 6 853.1 219 15 max .006 3 002 15 .115 4 6.655e-3	91 4 3 1 81 4 5 1 65 4
214 min 004 2 013 6 0 12 1.009e-5 12 7249.344 6 997.1 215 13 max .005 3 003 15 .098 4 5.624e-3 4 NC 1 NC 216 min 004 2 012 6 0 12 1.103e-5 12 7745.843 6 921.8 217 14 max .005 3 002 15 .106 4 6.14e-3 4 NC 1 NC 218 min 005 2 011 6 0 12 1.197e-5 12 8636.217 6 853.1 219 15 max .006 3 002 15 .115 4 6.655e-3 4 NC 1 NC 220 min 005 2 009 6 0 12 1.29e-5 12	91 4 3 1 81 4 5 1 65 4
215 13 max .005 3 003 15 .098 4 5.624e-3 4 NC 1 NC 216 min 004 2 012 6 0 12 1.103e-5 12 7745.843 6 921.8 217 14 max .005 3 002 15 .106 4 6.14e-3 4 NC 1 NC 218 min 005 2 011 6 0 12 1.197e-5 12 8636.217 6 853.1 219 15 max .006 3 002 15 .115 4 6.655e-3 4 NC 1 NC 220 min 005 2 009 6 0 12 1.29e-5 12 NC 1 789.4 221 16 max .006 3 001 15 .124 4 7.171e-3	1 81 4 5 1 65 4
216 min 004 2 012 6 0 12 1.103e-5 12 7745.843 6 921.3 217 14 max .005 3 002 15 .106 4 6.14e-3 4 NC 1 NC 218 min 005 2 011 6 0 12 1.197e-5 12 8636.217 6 853.1 219 15 max .006 3 002 15 .115 4 6.655e-3 4 NC 1 NC 220 min 005 2 009 6 0 12 1.29e-5 12 NC 1 789.4 221 16 max .006 3 001 15 .124 4 7.171e-3 4 NC 1 NC 222 min 005 2 007 6 0 12 1.384e-5 12	81 4 3 1 65 4
217 14 max .005 3 002 15 .106 4 6.14e-3 4 NC 1 NC 218 min 005 2 011 6 0 12 1.197e-5 12 8636.217 6 853.1 219 15 max .006 3 002 15 .115 4 6.655e-3 4 NC 1 NC 220 min 005 2 009 6 0 12 1.29e-5 12 NC 1 789.4 221 16 max .006 3 001 15 .124 4 7.171e-3 4 NC 1 NC 222 min 005 2 007 6 0 12 1.384e-5 12 NC 1 729.6 223 17 max .007 3 0 15 .134 4 7.687e-3 4 NC 1 NC 224 min 006 2 005 1 0 12	65 4
218 min 005 2 011 6 0 12 1.197e-5 12 8636.217 6 853.1 219 15 max .006 3 002 15 .115 4 6.655e-3 4 NC 1 NC 220 min 005 2 009 6 0 12 1.29e-5 12 NC 1 789.4 221 16 max .006 3 001 15 .124 4 7.171e-3 4 NC 1 NC 222 min 005 2 007 6 0 12 1.384e-5 12 NC 1 729.6 223 17 max .007 3 0 15 .134 4 7.687e-3 4 NC 1 NC 224 min 006 2 005 1 0 12 1.478e-5 12 NC <td>65 4</td>	65 4
219 15 max .006 3 002 15 .115 4 6.655e-3 4 NC 1 NC 220 min 005 2 009 6 0 12 1.29e-5 12 NC 1 789.4 221 16 max .006 3 001 15 .124 4 7.171e-3 4 NC 1 NC 222 min 005 2 007 6 0 12 1.384e-5 12 NC 1 729.6 223 17 max .007 3 0 15 .134 4 7.687e-3 4 NC 1 NC 224 min 006 2 005 1 0 12 1.478e-5 12 NC 1 673.0 225 18 max .007 3 0 15 .146 4 8.203e-3 4 NC 1 619.2 26 min 006 2 004 1 0 12 1.571e-	
220 min 005 2 009 6 0 12 1.29e-5 12 NC 1 789.4 221 16 max .006 3 001 15 .124 4 7.171e-3 4 NC 1 NC 222 min 005 2 007 6 0 12 1.384e-5 12 NC 1 729.6 223 17 max .007 3 0 15 .134 4 7.687e-3 4 NC 1 NC 224 min 006 2 005 1 0 12 1.478e-5 12 NC 1 673.0 225 18 max .007 3 0 15 .146 4 8.203e-3 4 NC 1 619.2 26 min 006 2 004 1 0 12 1.571e-5 12 NC	,
221 16 max .006 3 001 15 .124 4 7.171e-3 4 NC 1 NC 222 min 005 2 007 6 0 12 1.384e-5 12 NC 1 729.6 223 17 max .007 3 0 15 .134 4 7.687e-3 4 NC 1 NC 224 min 006 2 005 1 0 12 1.478e-5 12 NC 1 673.0 225 18 max .007 3 0 15 .146 4 8.203e-3 4 NC 1 NC 226 min 006 2 004 1 0 12 1.571e-5 12 NC 1 619.2	
222 min 005 2 007 6 0 12 1.384e-5 12 NC 1 729.6 223 17 max .007 3 0 15 .134 4 7.687e-3 4 NC 1 NC 224 min 006 2 005 1 0 12 1.478e-5 12 NC 1 673.0 225 18 max .007 3 0 15 .146 4 8.203e-3 4 NC 1 NC 226 min 006 2 004 1 0 12 1.571e-5 12 NC 1 619.2	
223 17 max .007 3 0 15 .134 4 7.687e-3 4 NC 1 NC 224 min 006 2 005 1 0 12 1.478e-5 12 NC 1 673.0 225 18 max .007 3 0 15 .146 4 8.203e-3 4 NC 1 NC 226 min 006 2 004 1 0 12 1.571e-5 12 NC 1 619.2	
224 min 006 2 005 1 0 12 1.478e-5 12 NC 1 673.0 225 18 max .007 3 0 15 .146 4 8.203e-3 4 NC 1 NC 226 min 006 2 004 1 0 12 1.571e-5 12 NC 1 619.2	
226 min006 2004 1 0 12 1.571e-5 12 NC 1 619.2	
	1
227 19 max 007 3 0 5 150 4 8 719 ₀₋ 3 4 NC 1 NC	27 4
10 11 110 1 1 1 1 1 1	1
228 min006 2002 1 0 12 1.665e-5 12 NC 1 568.1	
229 M4 1 max .002 1 .006 2 0 12 2.83e-4 4 NC 1 NC	
230 min 0 3008 3159 4 3.36e-6 12 NC 1 155.6	
231 2 max .002 1 .006 2 0 12 2.83e-4 4 NC 1 NC	
232 min 0 3007 3147 4 3.36e-6 12 NC 1 169.1	
233 3 max .002 1 .005 2 0 12 2.83e-4 4 NC 1 NC	
234 min 0 3007 3134 4 3.36e-6 12 NC 1 185.2	
235 4 max .002 1 .005 2 0 12 2.83e-4 4 NC 1 NC	
236 min 0 3006 3121 4 3.36e-6 12 NC 1 204.5	
237 5 max .002 1 .005 2 0 12 2.83e-4 4 NC 1 NC	
238 min 0 3006 3109 4 3.36e-6 12 NC 1 228.0	
239 6 max .002 1 .004 2 0 12 2.83e-4 4 NC 1 NC	
240 min 0 3005 3097 4 3.36e-6 12 NC 1 256.8 241 7 max .002 1 .004 2 0 12 2.83e-4 4 NC 1 NC	
243 8 max .001 1 .004 2 0 12 2.83e-4 4 NC 1 NC 244 min 0 3005 3073 4 3.36e-6 12 NC 1 338.7	
245 9 max .001 1 .003 2 0 12 2.83e-4 4 NC 1 NC	
246 min 0 3004 3062 4 3.36e-6 12 NC 1 398.3	
247	
248 min 0 3004 3052 4 3.36e-6 12 NC 1 477.6	
249 11 max .001 1 .003 2 0 12 2.83e-4 4 NC 1 NC	
250 min 0 3003 3042 4 3.36e-6 12 NC 1 586.9	
251	
252 min 0 3003 3033 4 3.36e-6 12 NC 1 743.2	
253 13 max 0 1 .002 2 0 12 2.83e-4 4 NC 1 NC	
254 min 0 3003 3025 4 3.36e-6 12 NC 1 978.9	
255	
256 min 0 3002 3018 4 3.36e-6 12 NC 1 1359	
257	
258 min 0 3002 3012 4 3.36e-6 12 NC 1 2035	.38 4
259 16 max 0 1 0 2 0 12 2.83e-4 4 NC 1 NC	38 4
260 min 0 3001 3007 4 3.36e-6 12 NC 1 3422.	.38 4 3 1 .16 4

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC y [in] LC z [in]		LC x Rotate [r LC (n) L/y Ratio LC (n) L/z Ratio LC						LC		
261		17	max	0	1	0	2	0	12	2.83e-4	4	NC	1_	NC	1
262			min	0	3	0	3	004	4	3.36e-6	12	NC	1	7065.454	4
263		18	max	0	1	0	2	0	12	2.83e-4	4	NC	1	NC	1
264			min	0	3	0	3	001	4	3.36e-6	12	NC	1	NC	1
265		19	max	0	1	0	1	0	1	2.83e-4	4	NC	1	NC	1
266			min	0	1	0	1	0	1	3.36e-6	12	NC	1	NC	1
267	M6	1	max	.021	2	.028	2	0	1	1.333e-3	4	NC	4	NC	1
268	IVIO		min	03	3	04	3	434	4	0	1	1566.284	3	144.674	4
269		2	max	.02	2	.026	2	454	1	1.388e-3	4	NC	4	NC	1
					3				4		1	1662.216	3		4
270			min	028		038	3	398	_	0	_			157.475	
271		3	max	.018	2	.023	2	0	1	1.443e-3	4	NC 1	4	NC	1
272			min	027	3	035	3	363	4	0	_1_	1770.626	3	172.665	4
273		4	max	.017	2	.021	2	0	1	1.498e-3	_4_	NC	4_	NC	_1_
274			min	025	3	033	3	329	4	0	1	1894.063	3	190.868	4
275		5	max	.016	2	.019	2	0	1	1.553e-3	4	NC	4	NC	1
276			min	023	3	031	3	295	4	0	1	2035.805	3	212.927	4
277		6	max	.015	2	.017	2	0	1	1.608e-3	4	NC	4	NC	1
278			min	022	3	029	3	261	4	0	1	2200.141	3	240.008	4
279		7	max	.014	2	.015	2	0	1	1.663e-3	4	NC	1	NC	1
280			min	02	3	026	3	229	4	0	1	2392.795	3	273.767	4
281		8		.013	2	.013	2	<u>229</u> 0	1	1.718e-3	4	NC	1	NC	1
		0	max								_				
282			min	018	3	024	3	<u>198</u>	4	0	_1_	2621.575	3	316.61	4
283		9	max	.012	2	.011	2	0	1	1.773e-3	4	NC	1_	NC	1
284			min	017	3	022	3	169	4	0	1_	2897.419	3	372.158	4
285		10	max	.01	2	.009	2	0	1	1.828e-3	4	NC	1_	NC	1
286			min	015	3	019	3	141	4	0	1	3236.132	3	446.054	4
287		11	max	.009	2	.007	2	0	1	1.883e-3	4	NC	1	NC	1
288			min	013	3	017	3	115	4	0	1	3661.431	3	547.506	4
289		12	max	.008	2	.006	2	0	1	1.938e-3	4	NC	1	NC	1
290			min	012	3	015	3	091	4	0	1	4210.6	3	692.393	4
291		13	max	.007	2	.004	2	0	1	1.993e-3	4	NC	1	NC	1
292		13	min	01	3	013	3	069	4	0	1	4945.79	3	910.069	4
		11								-			_		4
293		14	max	.006	2	.003	2	0	1	2.048e-3	4_	NC FOZO COA	1_	NC 4050.055	1
294			min	008	3	01	3	05	4	0	_1_	5978.901	3	1259.955	4
295		15	max	.005	2	.002	2	0	1	2.103e-3	_4_	NC	1_	NC	1
296			min	007	3	008	3	033	4	0	1_	7533.758	3	1878.098	4
297		16	max	.003	2	.001	2	0	1	2.158e-3	4	NC	1_	NC	1_
298			min	005	3	006	3	02	4	0	1	NC	1_	3136.974	4
299		17	max	.002	2	0	2	0	1	2.213e-3	4	NC	1	NC	1
300			min	003	3	004	3	01	4	0	1	NC	1	6396.729	4
301		18	max	.001	2	0	2	0	1	2.268e-3	4	NC	1	NC	1
302			min	002	3	002	3	003	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	2.323e-3	4	NC	1	NC	1
304		13	min	0	1	0	1	0	1	0	1	NC	1	NC	1
	N 17	1			1		1		1	0	1	NC	1	NC	1
305	<u>M7</u>	1	max	0		0	•	0							_
306			min	0	1	0	1	0	1	-5.664e-4	4	NC NC	1_	NC NC	1
307		2	max	.001	3	0	2	.011	4	0	_1_	NC	1_	NC	1
308			min	001	2	003	3	0	1	-6.263e-5	5	NC	1_	8226.235	4
309		3	max	.003	3	0	2	.021	4	4.418e-4	4	NC	1_	NC	1
310			min	002	2	005	3	0	1	0	1	NC	1	4271.932	4
311		4	max	.004	3	001	15	.031	4	9.459e-4	4	NC	1_	NC	1
312			min	004	2	008	3	0	1	0	1	NC	1	2956.263	4
313		5	max	.005	3	002	15	.039	4	1.45e-3	4	NC	1	NC	1
314			min	005	2	01	3	0	1	0	1	NC	1	2299.358	4
315		6	max	.006	3	002	15	.048	4	1.954e-3	4	NC	1	NC	1
316		U		006	2	002 012	3	<u>046</u>	1	0	1	8499.435	3	1905.051	4
		7	min						-						
317		7	max	.008	3	003	15	.055	4	2.458e-3	4	NC	1_	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
318			min	007	2	014	3	0	1	0	1	7599.949	3	1641.112	
319		8	max	.009	3	003	15	.062	4	2.962e-3	4	NC	1_	NC	1
320			min	008	2	01 <u>5</u>	3	0	1	0	1_	7069.056	3	1450.721	4
321		9	max	.01	3	003	15	.069	4	3.466e-3	4	NC 0700.0	1_	NC 1005 011	1
322		40	min	01	2	01 <u>5</u>	3	0	1	0	1	6796.9	3	1305.344	4
323		10	max	.011	3	003	15	.076 0	1	3.971e-3	4	NC	1	NC	4
324 325		11	min	011	3	016	3		4	0	1_4	6734.397 NC	<u>3</u> 1	1189.04 NC	1
326		+	max	.013 012	2	003 016	15	<u>.083</u>	1	4.475e-3	4	6869.55	3	1092.194	
327		12	max	.012 .014	3	003	15	.09	4	4.979e-3	4	NC	<u>ა</u> 1	NC	1
328		12	min	013	2	003 015	3	<u>.09</u>	1	0	1	7221.968	3	1008.685	-
329		13	max	.015	3	003	15	.097	4	5.483e-3	4	NC	<u> </u>	NC	1
330		13	min	014	2	015	3	0	1	0.4006-0	1	7743.48	4	934.475	4
331		14	max	.016	3	003	15	.104	4	5.987e-3	4	NC	1	NC	1
332		17	min	016	2	014	3	0	1	0.307 C 3	1	8633.675	4	866.859	4
333		15	max	.018	3	002	15	.113	4	6.491e-3	4	NC	1	NC	1
334			min	017	2	012	3	0	1	0	1	NC	1	804.037	4
335		16	max	.019	3	002	15	.122	4	6.995e-3	4	NC	1	NC	1
336			min	018	2	011	3	0	1	0	1	NC	1	744.848	4
337		17	max	.02	3	001	15	.131	4	7.499e-3	4	NC	1	NC	1
338			min	019	2	009	3	0	1	0	1	NC	1	688.593	4
339		18	max	.021	3	0	15	.143	4	8.004e-3	4	NC	1	NC	1
340			min	02	2	007	3	0	1	0	1	NC	1	634.912	4
341		19	max	.023	3	0	15	.155	4	8.508e-3	4	NC	1	NC	1
342			min	022	2	005	3	0	1	0	1	NC	1	583.675	4
343	M8	1	max	.007	2	.02	2	0	1	2.12e-4	4	NC	1_	NC	1
344			min	002	3	023	3	155	4	0	1	NC	1_	159.945	4
345		2	max	.007	2	.019	2	0	1	2.12e-4	4	NC	1_	NC	1
346			min	001	3	022	3	143	4	0	1	NC	1_	173.822	4
347		3	max	.006	2	.018	2	0	1	2.12e-4	4	NC	_1_	NC	1
348			min	001	3	021	3	13	4	0	1_	NC	1_	190.343	4
349		4	max	.006	2	.017	2	0	1	2.12e-4	4	NC	1_	NC	1
350		-	min	001	3	019	3	<u>118</u>	4	0	1_	NC	1_	210.192	4
351		5	max	.005	2	.016	2	0	1	2.12e-4	4	NC	1_	NC 004 004	1
352			min	001	2	018	3	<u>106</u>	4	0	1_1	NC NC	1_	234.301	1
353		6	max	.005 001	3	.015 017	3	0 094	4	2.12e-4 0	1	NC NC	1	NC 263.964	4
354 355		7	min	.005	2	.01 <i>7</i>	2	<u>094</u> 0	1	2.12e-4	4	NC NC	1	NC	1
356			max min	005	3	015	3	082	4	0	1	NC NC	1	301.013	4
357		8	max	.004	2	.012	2	<u>062</u> 0	1	2.12e-4	4	NC	1	NC	1
358		-	min	0	3	014	3	071	4	0	1	NC	1	348.124	
359		9	max	.004	2	.011	2	0	1	2.12e-4	4	NC	1	NC	1
360		Ť	min	0	3	013	3	061	4	0	1	NC	1	409.322	4
361		10	max	.004	2	.01	2	0	1	2.12e-4	4	NC	1	NC	1
362			min	0	3	012	3	051	4	0	1	NC	1	490.902	4
363		11	max	.003	2	.009	2	0	1	2.12e-4	4	NC	1	NC	1
364			min	0	3	01	3	041	4	0	1	NC	1	603.156	4
365		12	max	.003	2	.008	2	0	1	2.12e-4	4	NC	1	NC	1
366			min	0	3	009	3	032	4	0	1	NC	1	763.888	4
367		13	max	.002	2	.007	2	0	1	2.12e-4	4	NC	1	NC	1
368			min	0	3	008	3	025	4	0	1	NC	1	1006.14	4
369		14	max	.002	2	.006	2	0	1	2.12e-4	4	NC	1	NC	1
370			min	0	3	006	3	018	4	0	1	NC	1	1397.114	4
371		15	max	.002	2	.005	2	0	1	2.12e-4	4	NC	1	NC	1
372			min	0	3	005	3	012	4	0	1	NC	1	2091.693	4
373		16	max	.001	2	.003	2	0	1	2.12e-4	4	NC	1	NC	1
374			min	0	3	004	3	007	4	0	1	NC	1	3517.899	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

0.75	Member	Sec	1	x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
375		17	max	0	2	.002	2	0	1	2.12e-4	4_	NC	1	NC 7000 050	1
376		40	min	0	3	003	3	003	4	0	1_	NC NC	1_	7262.053	4
377		18	max	0	3	.001	2	0	1	2.12e-4	<u>4</u> 1	NC NC	1	NC NC	1
378		40	min	0		001	3	001	4	0	•	NC NC		NC NC	•
379		19	max	0	1	0	1	0	1	2.12e-4	<u>4</u> 1	NC NC	1	NC NC	1
380	M4O	4	min	0	•	0		0		1 2210 2		NC NC	1	NC NC	1
381	M10	1	max	.007	2	.008	2	0	10	1.331e-3	4	NC		NC 4.44.004	
382		_	min	009	3	013	3	433	4	1.025e-5	10	7754.588	2	144.981	4
383		2	max	.006	2	.007	2	0	10	1.386e-3	4	NC	1	NC	1
384		-	min	009	3	012	3	397	4	9.615e-6	10	8829.876	2	157.808	4
385		3	max	.006	2	.006	2	0	12	1.44e-3	4	NC NC	1	NC	1
386		4	min	008	3	012	3	362	4	8.975e-6	<u>10</u>	NC NC		173.031	4
387		4	max	.006	2	.005	2	0	12	1.495e-3	4	NC NC	1	NC	1
388		-	min	008	3	011	3	328	4	8.336e-6	10	NC NC		191.273	4
389		5	max	.005	2	.004	2	0	12	1.549e-3	4	NC NC	1	NC	1
390		-	min	007	3	<u>011</u>	3	294	4	7.697e-6	10	NC NC		213.379	4
391		6	max	.005	3	.003	2	0	12	1.604e-3 7.058e-6	4	NC NC	1	NC	1
392		7	min	007		01	3	261	4		<u>10</u>			240.518	4
393			max	.004	2	.003	2	0	12	1.659e-3	4	NC NC	1	NC 074 040	1
394		-	min	006	3	01	3	229	4	6.419e-6	10	NC NC	1_	274.349	1
395		8	max	.004	2	.002	2	0	12	1.713e-3	4	NC NC	1	NC 247 205	•
396			min	006	3	009	3	198	4	5.779e-6	<u>10</u>	NC NC	1_	317.285 NC	4
397		9	max	.004	2	.001	2	0 168	12	1.768e-3	4		1		1
398		10	min	005	3	008	3		4	5.14e-6	10	NC NC	_	372.952	4
399		10	max	.003	3	0 008	3	0	12	1.822e-3	4	NC NC	1	NC	1
400		4.4	min	005				<u>14</u>	4	4.501e-6	10			447.009	4
401		11	max	.003	2	0 007	2	0	12	1.877e-3	4	NC NC	1	NC F40, COO	1
		40	min	004	3		2	114	4	3.862e-6	<u>10</u>	NC NC	1	548.682	1
403		12	max	.003	3	0		0	12	1.931e-3	4		1	NC CO2 CO2	
404		13	min	004		006 0	3	09	12	3.223e-6	<u>10</u>	NC NC	1	693.888	1
406		13	max	.002	3	006	3	0 069		1.986e-3	4	NC NC	1	NC	4
407		14	min	003 .002	2	<u>006</u> 0			12	2.583e-6	10	NC NC		912.049 NC	1
		14	max		3	005	3	0 05		2.04e-3 1.944e-6	<u>4</u> 10	NC NC	1	1262.724	4
408		15	min	003 .001		005 0		05	4	2.095e-3		NC NC	1	NC	1
409 410		15	max	002	3	004	15	033	12	1.305e-6	<u>4</u> 10	NC NC	1	1882.29	4
		16	min		2		15					NC NC	1	NC	1
411		16	max	.001 002	3	003		0 02	12	2.149e-3 6.658e-7	4	NC NC	1	3144.149	
413		17	min		2	003 0	3 15			2.204e-3	10	NC NC	1	NC	1
414		17	max	0 001	3	002	3	0 01	10		10	NC NC	1	6412.007	4
		10				<u>002</u> 0		<u>01</u> 0		2 2590 2			1		4
415		18	max min	0 0	3	001	15	003	4	2.258e-3 -4.392e-6	4	NC NC	1	NC NC	1
417		19		0	1	<u>001</u> 0	1	003 0	1	2.313e-3	4	NC NC	1	NC NC	1
418		13	max	0	1	0	1	0	1	-1.198e-5	1	NC NC	1	NC NC	1
419	M11	1	max	0	1	0	1	0	1	4.137e-6	1	NC NC	1	NC NC	1
420	IVI I I		min	0	1	0	1	0	1	-5.638e-4	4	NC NC	1	NC NC	1
421		2	max	0	3	0	15	.011	4	-7.316e-7	12	NC	1	NC	1
422		-	min	0	2	002	4	0	1	-7.516e-7 -5.594e-5	4	NC NC	1	8262.017	4
423		3	max	0	3	<u>002</u> 0	15	.021	4	4.519e-4	4	NC NC	1	NC	1
424			min	0	2	004	4	0	1	-2.339e-5	1	NC NC	1	4290.424	
425		4	max	.001	3	004 001	15	.03	4	9.598e-4	4	NC NC	1	NC	1
426		4	min	001	2	006	4	<u>.03</u>	1	-3.715e-5	1	NC NC	1	2968.747	
427		5	max	.002	3	008 002	15	.039	4	1.468e-3	4	NC NC	1	NC	1
428		5	min	001	2	002	4	<u>.039</u>	1	-5.091e-5	1	NC NC	1	2308.606	_
429		6	max	.002	3	008 002	15	.047	4	1.976e-3	4	NC NC	1	NC	1
430			min	002	2	002 01	4	0	1	-6.467e-5	1	9857.363	4	1912.13	4
431		7	max	.002	3	003	15	.055	4	2.483e-3	4	NC	1	NC	1
T-J I			шал	.002	J	000	IJ	.000	1 4	2.7000-3		INC		INC	

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				
432			min	002	2	011	4	0	1	-7.843e-5	1_	8468.317	4	1646.518	
433		8	max	.003	3	003	15	.062	4	2.991e-3	4	NC	_1_	NC	1
434			min	002	2	012	4	0	1	-9.219e-5	1_	7611.636	4_	1454.708	
435		9	max	.003	3	003	15	.069	4	3.499e-3	4	NC 7400 450	2	NC 4000.05	1
436 437		10	min	003 .004	3	013 003	15	<u> </u>	4	-1.06e-4 4.007e-3	<u>1</u> 4	7106.156 NC	<u>4</u> 2	1308.05 NC	1
438		10	max min	003	2	003 014	4	001	1	-1.197e-4	1	6864.052	4	1190.543	_
439		11	max	.003	3	014 003	15	.083	4	4.515e-3	4	NC	2	NC	1
440			min	003	2	014	4	001	1	-1.335e-4	1	6849.735	4	1092.547	4
441		12	max	.005	3	003	15	.09	4	5.023e-3	4	NC	2	NC	1
442		1-	min	004	2	014	4	002	1	-1.472e-4	1	7066.204	4	1007.933	_
443		13	max	.005	3	003	15	.097	4	5.531e-3	4	NC	1	NC	1
444			min	004	2	013	4	002	1	-1.61e-4	1	7557.96	4	932.673	4
445		14	max	.005	3	003	15	.105	4	6.039e-3	4	NC	1	NC	1
446			min	005	2	012	4	002	1	-1.748e-4	1	8433.977	4	864.078	4
447		15	max	.006	3	003	15	.113	4	6.547e-3	4	NC	1_	NC	1
448			min	005	2	01	4	003	1	-1.885e-4	1	9935.402	4	800.368	4
449		16	max	.006	3	002	15	.122	4	7.054e-3	4	NC	1_	NC	1
450			min	005	2	008	4	003	1	-2.023e-4	1	NC	1_	740.404	4
451		17	max	.007	3	002	15	.132	4	7.562e-3	4	NC	1_	NC	1
452		4.0	min	006	2	006	4	004	1	-2.16e-4	1	NC	1_	683.507	4
453		18	max	.007	3	001	15	.144	4	8.07e-3	4	NC	1_	NC	1
454		40	min	006	2	004	1	004	1	-2.298e-4	1_	NC	1_	629.329	4
455		19	max	.007	3	0	10	.157	4	8.578e-3	4	NC	1_	NC F77.740	1
456	M12	1	min	006	2	002	2	005	1	-2.436e-4	1_	NC NC	1	577.746 NC	2
457 458	IVI I Z		max	.002 0	3	.006 008	3	.005 157	1 4	2.622e-4 -4.139e-5	<u>5</u> 1	NC NC	1	158.321	4
459		2	min max	.002	1	.006	2	.004	1	2.622e-4	5	NC NC	1	NC	2
460			min	0	3	007	3	144	4	-4.139e-5	1	NC	1	172.05	4
461		3	max	.002	1	.005	2	.004	1	2.622e-4	5	NC	1	NC	2
462		T .	min	0	3	007	3	132	4	-4.139e-5	1	NC	1	188.395	4
463		4	max	.002	1	.005	2	.004	1	2.622e-4	5	NC	1	NC	2
464			min	0	3	006	3	119	4	-4.139e-5	1	NC	1	208.033	4
465		5	max	.002	1	.005	2	.003	1	2.622e-4	5	NC	1	NC	2
466			min	0	3	006	3	107	4	-4.139e-5	1	NC	1	231.888	4
467		6	max	.002	1	.004	2	.003	1	2.622e-4	5	NC	1_	NC	2
468			min	0	3	005	3	095	4	-4.139e-5	1	NC	1	261.237	4
469		7	max	.002	1	.004	2	.002	1	2.622e-4	5	NC	1_	NC	1
470			min	0	3	005	3	083	4	-4.139e-5	1	NC	1_	297.894	4
471		8	max	.001	1	.004	2	.002	1	2.622e-4	_5_	NC	_1_	NC	1
472			min		3	005	3	072		-4.139e-5		NC	1_	344.507	4
473		9	max	.001	1	.003	2	.002	1	2.622e-4	5_	NC	1	NC 405.050	1
474		40	min	0	3	004	3	061	4	-4.139e-5	1_	NC NC	1_	405.059	4
475		10	max	.001	3	.003	2	.001	1	2.622e-4	5	NC	<u>1</u> 1	NC	1
476 477		11	min max	.001	1	004 .003	2	051 .001	1	-4.139e-5 2.622e-4	<u>1</u> 5	NC NC	1	485.776 NC	1
477			min	0	3	003	3	042	4	-4.139e-5	1	NC NC	1	596.844	4
479		12	max	0	1	.002	2	0	1	2.622e-4	5	NC	1	NC	1
480		12	min	0	3	003	3	033	4	-4.139e-5	1	NC	1	755.876	4
481		13	max	0	1	.002	2	033	1	2.622e-4	5	NC	1	NC	1
482		10	min	0	3	003	3	025	4	-4.139e-5	1	NC	1	995.564	4
483		14	max	0	1	.002	2	0	1	2.622e-4	5	NC	1	NC	1
484			min	0	3	002	3	018	4	-4.139e-5	1	NC	1	1382.397	4
485		15	max	0	1	.001	2	0	1	2.622e-4	5	NC	1	NC	1
486			min	0	3	002	3	012	4	-4.139e-5	1	NC	1	2069.611	4
487		16	max	0	1	0	2	0	1	2.622e-4	5	NC	1	NC	1
488			min	0	3	001	3	007	4	-4.139e-5	1	NC	1	3480.676	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
489		17	max	0	1	0	2	0	1	2.622e-4	5	NC	1_	NC	1
490			min	0	3	0	3	003	4	-4.139e-5	1_	NC	1_	7185.01	4
491		18	max	0	1	0	2	0	1	2.622e-4	5	NC	_1_	NC	1
492			min	0	3	0	3	001	4	-4.139e-5	1	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	2.622e-4	5	NC	1_	NC	1
494			min	0	1	0	1	0	1	-4.139e-5	1	NC	1_	NC	1
495	M1	1	max	.009	3	.129	2	.455	4	8.461e-3	2	NC	<u>1</u>	NC	1
496			min	005	2	027	3	0	12	-1.914e-2	3	NC	1	NC	1
497		2	max	.009	3	.061	2	.443	4	5.605e-3	4	NC	4	NC	1
498			min	005	2	011	3	003	1	-9.47e-3	3	1706.453	2	NC	1
499		3	max	.009	3	.014	3	.43	4	9.855e-3	4	NC	5	NC	1
500			min	005	2	011	2	005	1	-1.099e-4	3	824.873	2	8924.546	5
501		4	max	.009	3	.055	3	.416	4	8.493e-3	4	NC	5	NC	1
502			min	005	2	091	2	004	1	-4.034e-3	3	522.963	2	6403.307	5
503		5	max	.009	3	.108	3	.402	4	7.321e-3	2	NC	5	NC	1
504			min	005	2	175	2	003	1	-7.957e-3	3	378.822	2	5129.338	5
505		6	max	.009	3	.165	3	.388	4	1.097e-2	2	NC	15	NC	1
506			min	005	2	256	2	001	1	-1.188e-2	3	299.211	2	4354.366	5
507		7	max	.008	3	.219	3	.373	4	1.461e-2	2	NC	15	NC	1
508			min	005	2	328	2	0	3	-1.58e-2	3	252.113	2	3807.463	4
509		8	max	.008	3	.264	3	.359	4	1.826e-2	2	NC	15	NC	1
510			min	005	2	385	2	0	12	-1.973e-2	3	224.207	2	3397.465	4
511		9	max	.008	3	.293	3	.343	4	2.057e-2	2	9883.51	15	NC	1
512			min	005	2	421	2	0	1	-2.003e-2	3	209.661	2	3122.558	4
513		10	max	.008	3	.304	3	.325	4	2.2e-2	2	9676.9	15	NC	1
514			min	005	2	433	2	0	10	-1.793e-2	3	205.394	2	3026.364	4
515		11	max	.008	3	.297	3	.306	4	2.343e-2	2	9883.007	15	NC	1
516			min	005	2	42	2	0	12	-1.583e-2	3	210.364	2	3064.368	4
517		12	max	.008	3	.272	3	.286	4	2.251e-2	2	NC	15	NC	1
518		1	min	005	2	383	2	0	1	-1.35e-2	3	226.317	2	3240.458	4
519		13	max	.007	3	.232	3	.262	4	1.804e-2	2	NC	15	NC	1
520		1	min	005	2	323	2	0	1	-1.08e-2	3	257.189	2	3767.802	4
521		14	max	.007	3	.181	3	.237	4	1.358e-2	2	NC	15	NC	1
522			min	005	2	249	2	0	12	-8.111e-3	3	309.951	2	4913.973	<u> </u>
523		15	max	.007	3	.123	3	.21	4	9.121e-3	2	NC	5	NC	1
524		'0	min	004	2	166	2	0	12	-5.419e-3	3	400.709	2	7459.142	4
525		16	max	.007	3	.063	3	.184	4	7.294e-3	4	NC	5	NC	1
526		10	min	004	2	083	2	0	12	-2.726e-3	3	568.596	2	NC	1
527		17	max	.007	3	.005	3	.16	4	8.384e-3	4	NC	5	NC	1
528		1,	min	004	2	006	2	0	12	-3.371e-5	3	927.084	2	NC	1
529		18	max	.007	3	.058	2	.139		6.716e-3		NC	4	NC	1
530		10	min	004	2	047	3	0	12	-2.669e-3	3	1964.614	2	NC	1
531		19	max	.007	3	.115	2	.121	4	1.349e-2	2	NC	1	NC	1
532		13	min	004	2	097	3	0	1	-5.429e-3	3	NC	1	NC	1
533	M5	1	max	.028	3	.253	2	.455	4	0	1	NC	1	NC	1
534	IVIO		min	02	2	004	3	<u>.433</u>	1	-6.161e-6	4	NC	1	NC	1
535		2	max	.028	3	.119	2	.445	4	5.051e-3	4	NC	5	NC	1
536		 	min	02	2	.002	15	<u>.445</u>	1	0	1	865.825	2	NC	1
		2					3			_				NC NC	1
537 538		3	max min	.028 02	3	.043 033	2	.433 0	1	9.951e-3 0	<u>4</u> 1	NC 406.039	<u>5</u> 2	7369.143	
		1			3		3	.419	-	-	•	NC	15	NC	4
539		4	max	.027		.136			4	8.107e-3	4				1
540		-	min	019	2	21 <u>5</u>	2	0	1	0	1_	247.461	2	5647.924	
541		5	max	.027	3	.266	3	.404	1	6.263e-3	4	9317.901	<u>15</u>	NC	1
542		_	min	019	2	<u>413</u>	2	0		0 4 4400 2	1_	173.581	2	4804.086	
543		6	max	.026	3	.414	3	389	1	4.419e-3	4	7158.097	<u>15</u>	NC 4275 002	1
544		7	min	019	2	<u>611</u>		272		0	1_	133.835		4275.093	
545		7	max	.026	3	.56	3	.373	4	2.576e-3	4	5913.969	15	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
546			min	018	2	79	2	0	1	0	1_	110.827	2	3855.864	4
547		8	max	.025	3	.682	3	.358	4	7.319e-4	4_		<u>15</u>	NC	1
548			min	018	2	933	2	0	1	0	1_	97.427	2	3453.019	4
549		9	max	.025	3	.761	3	.343	4	0	_1_		15	NC	1
550			min	018	2	-1.025	2	0	1	-4.271e-6	5	90.548	2	3116.134	4
551		10	max	.024	3	.789	3	.325	4	0	<u>1</u>		<u>15</u>	NC	1_
552			min	017	2	-1.056	2	0	1	-4.124e-6	5	88.537	2	3048.878	4
553		11	max	.024	3	.769	3	.306	4	0	_1_		<u>15</u>	NC	1_
554			min	017	2	-1.025	2	0	1	-3.976e-6	5	90.875	2	3102.003	4
555		12	max	.023	3	.702	3	.287	4	5.976e-4	4		15	NC	1
556			min	017	2	93	2	0	1	0	1	98.51	2	3183.581	4
557		13	max	.023	3	.595	3	.263	4	2.104e-3	4	5915.117	15	NC	1
558			min	017	2	778	2	0	1	0	1	113.663	2	3693.598	4
559		14	max	.022	3	.459	3	.236	4	3.61e-3	4	7160.273	15	NC	1
560			min	016	2	59	2	0	1	0	1	140.282	2	5055.648	4
561		15	max	.021	3	.309	3	.208	4	5.115e-3	4	9322.111	15	NC	1
562			min	016	2	387	2	0	1	0	1	187.768	2	8860.703	4
563		16	max	.021	3	.156	3	.18	4	6.621e-3	4	NC	15	NC	1
564			min	016	2	189	2	0	1	0	1	279.912	2	NC	1
565		17	max	.02	3	.014	3	.156	4	8.127e-3	4	NC	5	NC	1
566			min	016	2	018	2	0	1	0	1	487.268	2	NC	1
567		18	max	.02	3	.108	2	.136	4	4.126e-3	4	NC	5	NC	1
568			min	015	2	106	3	0	1	0	1	1088.601	2	NC	1
569		19	max	.02	3	.211	2	.121	4	0	1	NC	1	NC	1
570			min	015	2	214	3	0	1	-3.414e-6	4	NC	1	NC	1
571	M9	1	max	.009	3	.129	2	.455	4	1.914e-2	3	NC	1	NC	1
572			min	005	2	027	3	0	1	-8.461e-3	2	NC	1	NC	1
573		2	max	.009	3	.061	2	.445	4	9.47e-3	3	NC	4	NC	1
574			min	005	2	011	3	0	12	-4.154e-3	2	1706.453	2	NC	1
575		3	max	.009	3	.014	3	.432	4	9.92e-3	4	NC	5	NC	1
576			min	005	2	011	2	0	10	-3.452e-5	10	824.873	2	7754.695	4
577		4	max	.009	3	.055	3	.419	4	7.862e-3	5	NC	5	NC	1
578			min	005	2	091	2	0	10	-3.675e-3	2	522.963	2	5814.074	4
579		5	max	.009	3	.108	3	.404	4	7.957e-3	3	NC	5	NC	1
580		Ť	min	005	2	175	2	0	10	-7.321e-3	2	378.822	2	4847.129	4
581		6	max	.009	3	.165	3	.389	4	1.188e-2	3		15	NC	1
582			min	005	2	256	2	0	10	-1.097e-2	2	299.211	2	4248.843	4
583		7	max	.008	3	.219	3	.373	4	1.58e-2	3		15	NC	1
584		<u> </u>	min	005	2	328	2	0	1	-1.461e-2	2	252.113	2	3806.244	4
585		8	max	.008	3	.264	3	.358	4	1.973e-2	3		15	NC	1
586			min	005	2	385	2	0	1	-1.826e-2		224.207	2	3423.254	
587		9	max	.008	3	.293	3	.343	4	2.003e-2	3		15	NC	1
588		Ť	min	005	2	421	2	0	12	-2.057e-2	2	209.661	2	3114.754	4
589		10	max	.008	3	.304	3	.325	4	1.793e-2	3		15	NC	1
590		10	min	005	2	433	2	0	1	-2.2e-2	2	205.394	2	3027.376	4
591		11	max	.008	3	.297	3	.306	4	1.583e-2	3		15	NC	1
592			min	005	2	42	2	0	1	-2.343e-2	2	210.364	2	3073.477	4
593		12		.003	3	.272	3	.286	4	1.35e-2	3		15	NC	1
594		12	max	005	2	383	2	<u>200</u>	12	-2.251e-2	2	226.317	2	3217.273	4
		12					3						15		1
595 596		13	max min	.007 005	3	.232 323	2	.262 0	10	1.08e-2 -1.804e-2	2	257.189	2	NC 3765.058	4
597		1.1		005 .007			3			8.111e-3				NC	
		14	max		3	.181		.236	4		3		1 <u>5</u>		1
598		4.5	min	005	2	249	2	001	1	-1.358e-2	2	309.951	2	5036.856	5
599		15	max	.007	3	.123	3	.209	4	5.419e-3	3	NC	5	NC	1
600		40	min	004	2	166	2	003	1	-9.121e-3	2	400.709	2	8058.556	5
601		16	max	.007	3	.063	3	.182	4	6.564e-3	5	NC FCO FOC	5	NC NC	1
602			min	004	2	083	2	004	1	-4.66e-3	2	568.596	2	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.007	3	.005	3	.157	4	8.215e-3	4	NC	5	NC	1
604			min	004	2	006	2	005	1	-3.374e-4	1	927.084	2	NC	1
605		18	max	.007	3	.058	2	.137	4	4.023e-3	5	NC	4	NC	1
606			min	004	2	047	3	003	1	-6.716e-3	2	1964.614	2	NC	1
607		19	max	.007	3	.115	2	.121	4	5.429e-3	3	NC	1	NC	1
608			min	004	2	097	3	0	12	-1.349e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2915.5	1524.0	0.0	1524.0
2	2915.5	1524.0	0.0	1524.0
Sum	5831.0	3048.0	0.0	3048.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5831 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}}c_{a1}^{1.5}$	° (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Vc / Avco) Yec, v Ye	$_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
666.00	648.00	1.000	0.969	1.000	1.000	15593	0.70	10875

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}\lambda}\sqrt{f'_{c}c_{a1}}^{1.}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	16.16	24369		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
872.64	1175.16	1.000	1.000	1.000	24369	0.70	25334

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / A Nco) Ψ ec,N Ψ	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	N _a (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2916	6071	0.48	Pass
Concrete breakout	5831	10231	0.57	Pass
Adhesive	5831	8093	0.72	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1524	3156	0.48	Pass (Governs)
T Concrete breakout x+	3048	10875	0.28	Pass
Concrete breakout y-	1524	25334	0.06	Pass
Pryout	3048	20601	0.15	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 37-42 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.72 0.48 120.3 % 1.2 Pa	3C. D.7.3	0.72	0.48	120.3 %	1.2	Pas
-------------------------------------	-----------	------	------	---------	-----	-----

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.