Kræsjkurs MNF130

Steinar Simonnes og Carina Seidel

Institutt for Informatikk Universitetet i Bergen

22. Mai 2024

Agenda

Intro Følger og summer

Slides 'n' Slido

Dere kan stille spørsmål digitalt og anonymt her: sli.do, med koden "MNF130"

Dere finner presentasjonen og kildekoden på mittuib, eller her: tinyurl.com/MNF130-Slides

Følger (Sequences)

Definisjon

- diskret struktur som representerer en ordnet liste
- funksjon fra en undermengde av heltall (vanligvis $\mathbb N$ eller $\mathbb N_0$) til en mengde S
- vanlig notasjon er $\{a_n\}$ der a_n kalles for en term av følgen.
- OBS! IKKE bland med mengdenotasjon!

Eksempel: Følge $\{a_n\}$ der $a_n=\frac{1}{n}$, altså $a_1=\frac{1}{1}=1, a_2=\frac{1}{2}, \dots$

Geometrisk Progresjon (Geometric Progression)

Definisjon

- Følge som har form $a, ar, ar^2, ..., ar^n, ...$
- a kalles for startterm (initial term) og r kalles for fellesforhold (common ratio)

Eksempler:

- Følge $\{b_n\}$ der $b_n=2\cdot 5^n$, altså $b_1=2\cdot 5^0=2, b_2=10, b_3=50, \dots$
- Følge $\{c_n\}$ der $c_n = 6 \cdot \left(\frac{1}{3}\right)^n$, altså $c_1 = 6 \cdot \left(\frac{1}{3}\right)^0 = 6, c_2 = 2, c_3 = \frac{2}{3}, \dots$

Aritmetisk Progresjon (Arithmetic Progression)

Definisjon

- følge som har form a, a+d, a+2d, ..., a+nd, ...
- ullet a kalles for *startterm* og d kalles for *fellesdifferanse* (common difference)

Eksempler:

- • Følge $\{s_n\}$ der $s_n=-1+4n$, altså $s_1=-1+4\cdot 0=-1, s_2=3, s_3=7, \ldots$
- Følge $\{t_n\}$ der $t_n = 7 3n$, altså $t_1 = 7 3 \cdot 0 = 7, t_2 = 4, t_3 = 1, ...$

Rekurrensrelasjoner (Recurrence Relations)

Definisjon

- uttrykker a_n med forrige termer i følgen, dvs. noen av $a_0, a_1, ..., a_{n-1}$
- en følge kalles for løsning av en rekurrensrelasjon hvis det tilfredstiller alle kravene.

Eksempler:

- La $\{a_n\}$ være løsningen for rekurrensrelasjonen $a_n=a_{n-1}+3$ for $n\in\mathbb{N}$ og $a_0=2$. Hva er a_1 , a_2 og a_3 ?
- Svar: $a_1 = 5$, $a_2 = 8$ og $a_3 = 11$, ikke noe overraskelse her
- Fun fact: Kravet $a_0 = 2$ kalles for startbetingelsen (initial condition)

Summeringer (Summations)

$$a_m + a_{m+1}?... + a_n = \sum_{j=m}^n a_j$$

j heter da $\mathit{summeringsindeks},\ m$ heter $\mathit{nedre\ grense}$ og n heter $\mathit{øvre\ grense}$

Geometrisk rekke (Geometric series)

For $a \in \mathbb{R}$ og $r \in \mathbb{R} \setminus \{0\}$

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1}-a}{r-1} & \text{if } r \neq 0\\ (n+1)a & \text{if } r = 0 \end{cases}$$

Lykke til på eksamen!

Takk for oss :)