CI.	No	:023/CSE/BTech/150/Set	

18.	(a) Find the generating function of the following recurrence relation: (7 marks) $a_r - 7a_{r-1} + 12a_{r-2} = 0$; $a_0 = 5$, $a_1 = 7$	(10)	CO4	BL4
	(b) Using truth tables, check if the following proposition is a tautology, contradiction or contingency. (3 marks)			
	(p∨q) ∧(~p∧~ q)			
19	Find the DNF(Disjunctive Normal Form) of the following propositions: (a) p $V\{\sim p \rightarrow (q \ V \ (q \rightarrow \sim r))\}$	(10)	CO2	BL5
	$(b) \sim \{ \sim (b \leftrightarrow q) \land r \}$			
	All the laws used must be clearly mentioned.			
20	Find the Disjunctive Normal Form of the following propositions: (a) $p \rightarrow \{(p \rightarrow q) \land \sim (\sim q \ v \ \sim p)\}$ (5 marks)	(10)	CO3	BL4
	(b) $\{p \land \sim (q \land r)\} \lor (p \rightarrow q) (5 \text{ marks})$			
	All the laws must be clearly mentioned.			
21	(a) (5 marks) Find the conjunctive normal form of the following proposition:	(10)	CO1	BL2
	$\{(q \lor (p \land r)\} \land \sim \{(p \lor r) \land q\}$			
	(b) Show that a bipartite graph cannot have a triangle as its subgraph ($\mbox{3}\mbox{ marks})$			
	(c) Can we have a simple graph with the degree sequence $(3,3,1,1)$? (2 marks)			

12/12/2023 12:13:34 PM

JIS University, ESE, Odd 2023

Jis	
UNIVERSITY	

oll Number						

JIS University

End Semester Examinations - Odd 2023

YMT3001 - Discrete Structures

Time: 2 Hrs

Maximum Marks: 50

SI, No.: 023/CSE/BTech/150/Set 2

Instructions to the candidate:

Figures to the right indicate full marks.

Draw neat sketches and diagram wherever is necessary.

Candidates are required to give their answers in their own words as far as practicable

Part A

Answer any Ten (10x1=10 Marks)

(1) CO1 BL1

- (a) is simple
- (b) is self-complementary

1. Choose the correct statement

The graph with the degree sequence (3,2,1,1)

- (c) is always planar
- (d) does not exist.
- 2. Question: Let * be a binary operation on the set of all real
- (1) CO1 BL1

(1) CO2 BL2

(1) CO1 BL1

- numbers defined by a*b=a. Then
 a)* is commutative but not associative
- b) * is associative but not commutative
- c) is associative but not commutative
- d) none of the above.
- Let G be a planar graph. If G has 16 edges and 12 vertices, then the number of bounded regions in the planar diagram of G is
- (a) 5
- (b) 4
- (c) 6
- (d) None
- Let * be a binary operation on the set of all real numbers defined by
 (1) CO1 BL1
 a*b=a+b+2. Then
- a) -2 is the identity element
- b) 2 is the identity element
- a) 3 is the identity element
- c) -3 is the identity elementd) 3 is the identity element
- 5. If a graph G has 20 vertices each of degree 4, then the number of edges of G is

JIS University, ESE, Odd 2023

12/12/2023 12:13:34 PM

JIS University, ESE, Odd 2023

12/12/2023 12:13:34 PM

(c) has exactly 3 outputs as false

JIS University, ESE, Odd 2023

12/12/2023 12:13:34 PM

		-	 				
Roll Number							

JIS University End Semester Examinations - Odd 2023 YMT3002 - Probability and Statistics

Time: 2 Hrs

Maximum Marks: 50

Instructions to the candidate:

Figures to the right indicate full marks. Draw neat sketches and diagram wherever is necessary. Candidates are required to give their answers in their own words as far as practicable

Part A Answer any Ten (10x1=10 Marks) 1. In a binomial distribution the probability of getting a success is 1/4. (1) CO2 BL2 The standard deviation is 3. Then mean is. (a) 6(b) 8 (c) 10(et) 12 2. In a binomial distribution, n=4, P(X=0)=16/81, then P(X=4) is (1) CO1 BL₁ (a)1/16(b) 1/81 (c) 1/27 (d) 1/8 3. If $b_{xy} = 0.4$, $b_{yx} = 0.8$, then r_{xy} is (1) CO1 BL1 **a**)0.56 b)0.65

c)0.75 d)None

4. If the correlation coefficient between X and Y is 0.85, covariance is 27 and variance of X is 36, then what is the variance of Y?	(1)	CO3	BL1		9. There are 3 red balls, 4 green balls, and 5 black balls in a basket. (1) CO1 The probability of not getting the red balls is (a) 1/4	BL1
					(b) 1/3	
(a) 5.3					(c) 5/12 (d) None	
(b) 6.3						
(c) 4.3					10. A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that	BL1
(d) None					it is rusted or is a nail is: (a) 3/16	
 If 3z-x=4, where z is a standard normal variate, then x is a normal variate with mean 4 and standard deviation 3 	(1)	CO1	BL2		(b) 5/16	
 b) x is a normal variate with mean 3 and standard deviation 4 c)x is a normal variate with mean -4 and standard deviation 3 					(c) 11/16	
d)None of the above					(d) 14/16	
 The probability that a missile will strike a target is 70%. If 10 missiles are dropped, find mean. a) 3, b) 0.3, 	(1)	CO2	BL2		11. A dice is thrown 20 times. If getting a number >4 is a success, find the mean of the number of success (a) 6.66	BL2
c) 7					(b) 4 44	
d) 0.7					(c) 7.77	
 A bag contains 5 brown and 4 white socks. A man pulls out two socks. The probability that these are of the same colour is (a) 5/108 	(1)	CO2	BL3		(d) None	
(b) 18/108					 The covariance between X and Y is 15, variance of X is 4, and variance of Y is 49, then the correlation coefficient is (a) 0.75 	BL2
(c) 30/108					(b) 0.25	
(d) None of the above					(c) 0.5	
8. The probability of getting a correct answer is $\frac{x}{12}$. If the probability of	(1)	CO1	BL3	i	(d) None	
not gettting a correct answer is $\frac{2}{3}$.					Part B	
Then x is equal to					Answer any Two (2x5=10 Marks) 13. If 4X–5Y+33 = 0 is the regression equation of Y on X, and 20X-9Y– (5) CO4 107 = 0 is the regression equation of X on Y, calculate the value of	BL2
(a) 2					correlation coefficient r _{xy} .	
(b) 3					Is it possible for the line $4X-5Y+33 = 0$ to be the regression equation of X on Y, and $20X-9Y-107 = 0$ to be the regression	
(c) 4					equation of Y on X? Why/ Why not?	
(d) None					14. Calculate Spearman's Rank correlation for the following data: (5) CO1	BL1
					X 56 18 89 23 62 32 45 26 - O 02 4	
JIS University, ESE, Odd 2023 12/14/2023 1:25:53 PM			_		JIS University, ESE, Odd 2023 12/14/2023 1:25:53 PM	

Υ follows:

57

15.)The probability density function of a random variable X is given as

CO2 BL3

CO4 BL5

 $f(x) = ax^{2}(b-x); 0 < x < 1$

0:elsewhere

Find the values of a and b if the mean of X is 600. Hence calculate P(X<0.5).

16. Let X be a random variable with the following probability density function

$$f(x) = \begin{cases} cx^2; 1 \le x \le 2\\ cx; 2 < x < 3\\ 0; elsewhere \end{cases}$$

Find the constant c, P(X>2) and $P(\frac{1}{2} < X < \frac{3}{2})$

Part C

Answer any Three (3x10=30 Marks)

17. Calculate the correlation coefficient and the regression line of y on x (10) CO1 BL1 and regression line of x on y from the following data.

Х 30 48 Υ 22 20 25 36

18. (a) The contents of 3 urns are as follows:

(10) CO3 BL3

Urn I: 7 white, 3 black balls Urn II: 4 white 6 black balls and

Urn III: 2 white, 8 black balls.

The probability of choosing Urn I, Urn II, and Urn III are respectively 0.20, 0.60 and 0.20 respectively. An urn is chosen at random and two balls are drawn at random. If both the balls are white, find the probability that it is from Urn III. (5 marks)

(b) Bag I contains 4 red and 3 black balls. Bag II contains 5 red and 4 black

balls. One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be red in color. Find the probability

that the transferred ball is black. (5 marks)

BL2 CO4 19. The probability density function of a random variable X is given as $f(x)=kx^2(3-x)$ for 0 < x < 3.

(a) Find the value of k (2 marks)

JIS University, ESE, Odd 2023 12/14/2023 1:25:53 PM (b) Find the mean of X (2 marks)

Hence, find the distribution. (4 marks)

(c) Find P(X>2) (2 marks)

(d) If s denotes the standard deviation of X and m denotes the mean of X, find the value of m+2s. (4 marks)

20. Find the two degree curve that best fits the following data:

72 38 28 50 39

(10) CO3 (a) The sum of mean and variance of a binomial distribution is 1.8. If the number of observations is 5, find the values of p and q.

(b) The sum of the mean and variance of a binomial distribution is 14. Moreover, the product of the mean and variance of a binomial stribution is 128. Find the values of p,q and n. Hence, find the stribution. (6 marks)

Jniversity, ESE, Odd 2023

12/14/2023 1:25:53 PM

SI. No.: 023/CSE/BTech/151/Set 2

(10) CO2 BL2

BL4

	1	1		-	-		 	-	ı
Roll Number									

JIS University

End Semester Examinations - Odd 2023 YCS3001 - Digital Circuits and Logic Design

Time: 2 Hrs

Maximum Marks: 50

Instructions to the candidate:

Figures to the right indicate full marks.

Draw neat sketches and diagram wherever is necessary.

Candidates are required to give their answers in their own words as far as practicable

Part A Answer any Ten (10x1=10 Marks) 1. Identify the logic gate as universal gate (1) CO2 BL2 a) AND b) NAND c) OR d) NOT 2. Convert $(775)_8 = (?)_{16}$ BL₂ (1) CO1 a) (1FA)₁₆ b) (1FD)₁₆ c) (5EF)₁₆ d) None of these 3. Solve the 1's complement of 1101 (1) CO1 BL3 a) 0100 b) 1100 c) 0010 d) 0011 4. Convert $(24)_8 = (?)_2$ (1) CO1 BL₂ a) (110100)₂ b) (010101)₂ c) (010100)₂ d) None of these 5. Solve the 2's complement of 011 (1) CO1 BL₃ a) 001 b) 101 c) 011 d) 111 6. Convert $(ABC)_{16} = (?)_2$ (1) CO1 BL₂ a) 101010111100 b) 111010111100 c) 101010111101

d) None of these			
7. Solve : A+AB = ? a) 0 b) 1 c) A d) AB	(1)	CO2	BL3
8. Calculate the result of binary addition of two binary numbers 001+101 = ? a) 010 b) 100 c) 110 d) None of these	(1)	CO1	BL4
9. Convert binary number 1100 to gray code : a) 1101 b) 1110 c) 1011 d) 1010	(1)	CO1	BL2
Another name of Asynchronous counter is Serial counter Parallel counter Parallel / Serial counter None of these	(1)	CO4	BL1
11. Choose the example of combinational logic circuit a) Multiplexer b) Latch c) Flip Flop d) Counter	(1)	СОЗ	BL3
12. The input value of A= 1 and B=1 for NOR gate, the output Y will be expressed as a) 0 b) 1 c) 10 d) A	(1)	CO2	BL2
Part B Answer any Two (2x5=10 Marks) 13. Analyze and simplify the following expression using k-map method : $Y=\sum_m (\ 0,1,4,5,6,8,9,12,13,14)$	(5)	CO5	BL4
14. Analyze and simplify the following expression using k-map method : Y= \prod (0,2,8,10)	(5)	CO5	BL4
 Design 4-to-1 Multiplexer circuit with proper truth table and block diagram. 	(5)	соз	BL5

16. Design D flip flop circuit and explain with proper truth table.	(5)	CO4	BL5
/ Part C			
Answer any Three (3x10=30 Marks)			
17. Answer all	(10)		
a) Demonstrate the function Y= AB by implementing it, using (i) NOR gate only (ii) NAND gate only	(5)	СОЗ	BL3
b) Explain full adder circuit with suitable diagram and truth table.	(5)	СОЗ	BL5
18. Answer All	(10))	
 a) Write down the De-Morgan's law in Boolean algebra and prove it with truth table. 	(5)	CO2	BL1
b) Design the logical expression below using Basic Gates : $Y=(\overline{A}+\overline{B}+C)$. $(B+\overline{C})$. $(C+A)$	(5)	CO2	BL3
19. Answer All	(10)	
a) Explain S-R flip flop circuit with proper truth table.	(5)	CO4	BL5
b) Design 3-to-8 Decoder circuit with proper truth table and block diagram	(5)	соз	BL5
20. Answer All	(10))	
 a) Describe Exclusive-OR gate with the help of logic symbol, logical expression and truth table. 	al (5)	CO2	BL2
b) Implement the following function using a multiplexer and explain truth table. F (A,B,C) = \sum (1,3,5,6)	with (5)	соз	BL6
Explain the logic diagram of a 4-bit binary synchronous counter using J K flip-flops that trigger on the negative - edge transition. Also make the truth table and output waveforms.	(10) CO4	BL6
JIS University, ESE, Odd 2023 12/16/2023 10:43:	59 AM	6	

	_	_	 					ı
Roll Number								

JIS University

End Semester Examinations - Odd 2023 YCS3002 - Data Structures and Algorithms

Time: 2 Hrs Maximum Marks: 50

Instructions to the candidate:

Figures to the right indicate full marks.

Draw neat sketches and diagram wherever is necessary.

Candidates are required to give their answers in their own words as far as practicable

Part A Answer any Ten (10x1=10 Marks) 1. Which data structure is used for implementing recursion? a) Queue b) Array c) Stack d) Tree	(1)	CO5	BL1
 2. When a pop() operation is called on an empty queue, what is the condition called? a) Overflow b) Underflow c) Syntax Error d) Garbage Value 	(1)	CO1	BL1
3. The prefix form of A-B/ (C * D ^ E) is? a) -A/B*C^DE b) -A/BC*^DE c) -ABCD*^DE d) -/*^ACBDE	(1)	CO1	BL1
4. What is an AVL tree? a) a tree which is unbalanced and is a height balanced tree b) a tree which is balanced and is a height balanced tree c) a tree with atmost 3 children d) a tree with three children	(1)	CO1	BL1
5. What is a dequeue? a) A queue implemented with both singly and doubly linked lists b) A queue with insert/delete defined for front side of the queue c) A queue with insert/delete defined for both front and rear ends of the queue d) A queue implemented with a doubly linked list	(1) ueue	CO1	BL1
6. Which of the following is a Divide and Conquer algorithm? a) Bubble Sort b) Selection Sort c) Heap Sort	(1)	CO1	BL1

JIS University, ESE, Odd 2023 12/19/2023 2:50:12 PM				JIS University, ESE, Odd 2023 12/19/2023 2:50:12 PM			
14Write the algorithm to push and pop an element from a stack using array. What is linked list.	(5)	CO2	BL5	What is BFS and DFS?			
What are benefits of ADT?				_21. Write an algorithm for Tower of Hanoi. Write an algorithm for BFS.	10)	CO4	BL3
Part B Answer any Two (2x5=10 Marks) 13. Define ADT (Abstract Data Type) Mention the features of ADT.	(5)	CO2	BL1	Write down the algorithms for inserting and deleting an element from queue.			
a) Tightly Connected b) Strongly Connected c) Weakly Connected d) Loosely Connected				Difference between Stack and Queue.	10)	СОЗ	BL3
12. A graph having an edge from each vertex to every other vertex is called a	(1)	CO1	BL1	Write time complexity of linear search.			
a) 2 b) any number of children c) 0 or 1 or 2 d) 0 or 1				19. What are the difference between Linear search and Binary search. Write an algorithm for linear Search with example.	(10)	CO3	BL3
11. How many children does a binary tree have?	(1)	CO1	BL1	Define Insertion sort.			
b) O(n2) c) O(nlogn) d) O(logn)				18. Write down an algorithm for Insertion sort with example. Explain the time complexities of Insertion sort, Selection sort.	(10)	CO4	BL4
the basis of key is: a) O(n)				What is a undirected graph?			
The time complexity used for inserting a node in a priority queue on	(1)	CO1	BL1	What are the two traversal strategies used in traversing a graph and tree?			
from a source node to all other nodes in a weighted graph? a) BFS. b) Djikstra's Algorithm. c) Prims Algorithm. d) Kruskal's Algorithm.				Part C Answer any Three (3x10=30 Marks) 17. Define non-linear data structure What is a minimum spanning tree?What is the use of Kruskal's and prim's algorithm?	(10)	CO2	BL2
d) All of the above.9. Which of the following algorithms are used to find the shortest path	(1)	CO1	BL1	Define circular queue			
a) The height of an AVL Tree always remains of the order of O(logn) c) AVL Trees are a type of self-balancing Binary Search Trees.				How do you test for an empty queue?			
8. Which of the following statements is true about AVL Trees?	(1) more t	CO1 han 1.	BL1	16. What are the postfix and prefix forms of the expression? A+B*(C-D)/(P-R)	(5)	CO2	BL2
c) O(log2n) d) O(n^2)				What is meant by binary search tree?			
7. What is the line complexity of the smally state of the small of the	. ,		DLI	What is a balance factor in AVL trees?			
d) Merge Sort7. What is the time complexity of the binary search algorithm?	(1)	CO1	DI 4	15. What is meant by pivot node? Define leaf?	5) .	CO2	BL2

Roll Number						

JIS University

End Semester Examinations - Odd 2023 YCS3003 - Object Oriented Programming

Time: 2 Hrs

Instructions to the candidate: Figures to the right indicate full marks. Draw neat sketches and diagram wherever is necessary Candidates are required to give their answers in their own words as far as practicable Part A Answer any Ten (10x1=10 Marks) (1) CO1 BL1 1. C++ uses which approach? a) right-left b) Top-down c) left-right d) bottom-up (1) CO1 BL1 2. Identify the correct extension of the user-defined header file in C++. b) hg c) .h d) hf 3. Which of the following statement is correct with respect to the use of (1) CO1 BL₁ friend keyword inside a class? a) A private data member can be declared as a friend. b) A class may be declared as a friend. c) An object may be declared as a friend. d) We can use friend keyword as a class name. BL1 (1) CO1 4. What is C++? a) C++ is an object oriented programming language b) C++ is a procedural programming language c) C++ supports both procedural and object oriented programming language d) C++ is a functional programming language 5. Which of the following data type is supported in C++ but not in C? BL1 CO1 a) bool b) int c) double d) float 6. Which header file is required to use file I/O operations? (1) CO1 BL₁ a) ifstream b) ostream

c) fstream

SI. No.:O23/CSE/BTech/136/Set 1

d) jostream			
7. By default, what a program does when it detects an exception? a) Continue running b) Results in the termination of the program c) Calls other functions of the program d) Removes the exception and tells the programmer about an exception	(1)	CO1	BL1
8. Which of the following is not a type of Constructor in C++? a) Default constructor b) Parameterized constructor c) Copy constructor d) Friend constructor	(1)	CO1	BL1
9. Inheritance allow in C++ Program? a) Class Re-usability b) Creating a hierarchy of classes c) Extendibility d) All of the above	(1)	CO1	BL1
How Exception handling is implemented in the C++ program? a) Using Exception keyword b) Using try-catch block c) Using Exception block d) Using Error handling schedules	(1)	CO1	BL1
underlines the feature of Polymorphism in a class. Virtual Function Inline function Enclosing class Nested class	(1)	CO1	BL1
When the inheritance is private, the private methods in base class are in the derived class (in C++). a) Inaccessible b) Accessible c) Protected d) Public	(1)	CO1	BL1
Part B			
Answer any Two (2x5=10 Marks) 13. In C++,a variable can be declared anywhere in the scope. What is the significance of this feature?	(5)	CO1	BL1
14. How is polymorphism achieved at compile time and run time?	(5)	CO4	BL1
15. Can we pass class objects as function arguments? Explain with the help of an example.	(5)	CO1	BL1
16. When do we use multiple catch handlers? Part C Answer any Three (3x10=30 Marks)	(5)	CO4	BL1

SI. No.:023/CSE/BToch/136/Set 1

그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	100	1
17. Let us design a class bank Account. A bank account has an	(10) CO3	BL1
account number. The bank gives each account a different, unique	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	i.
number. Each instance of this class maintains one account with an	1. 機造的	1.
owner, an account number and current balance. Normally, the account numbers start with some +ve integer and keep on	1464	
increasing as the new accounts are created. We need a way to	THE R	23
assign a new account number to each instance as it is created. A	136	1 2
new account can be created by giving the owner's name and an	150	
initial amount. Nobody should be able to manipulate instance	14.23	1117
variables directly. Methods must be provided to access (I) name of	1. 数读数	
the owner (ii) account number (iii) current balance, and (IV) deposit money in the account.		
		1011
18. 1. To write a C++ program to implement the friend function concept.	(10) CO3	BL1
19. Write a Program to implement the exception handling with	(10) / CO3	BL1
rethrowing in exception.		1
	1 概 1 4	
	(10) CO2	2014
20. We know that a private member of a base class is not inheritable. Is it anyway possible for the objects of a derived class to access the	(IUI) CUZ	37
private members of the base class?If yes,how?	1. 翻造板	
	(40)	DI 1
21. Write a Program to implement the exception handling with try and	(10) (CO4	175
catch statements.	4 301 4 4	17.00
JIS University, ESE, Odd 2023 12/22/2023 1:11:06 PM	一個和	