

Lenus Data Scientist Case Brief

Customer Segmentation Challenge

Introduction

Description

With the data provided in the file customer_data_sample.csv using any method you deem fit, answer the question:

"What are the most important factors for predicting whether a customer has converted or not?"

Converted customer is represented in the data in the field "converted", and the nature of what this conversion means is (intentionally) unknown in the context of the challenge.

Fields

field	explanation
customer_id	Numeric id for a customer
converted	Whether a customer converted to the product (1) or not (0)
customer_segment	Numeric id of a customer segment the customer belongs to
gender	Customer gender
age	Customer age
related_customers	Numeric - number of people who are related to the customer
family_size	Numeric - size of family members
initial_fee_level	Initial services fee level the customer is enrolled to
credit_account_id	Identifier (hash) for the customer credit account. If customer has none, they are
shown as "9b2d5b4678781e53038e91ea5324530a03f27dc1d0e5f6c9bc9d493a23be9de0"

branch | Which branch the customer mainly is associated with |

Agenda

- Descriptive statistics
- Correlation analysis
- What are the important factors?
- Conclusions and further discussion
- Appendix

Agenda

- Descriptive statistics
- Correlation analysis
- What are the important factors?
- Conclusions and further discussion
- Appendix

Descriptive statistics*

Descriptive statistics – initial observations

- There are some nulls values in the data that have been excluded from the analysis (mostly in the Age variable)
- In Age there a re 7 customers that have less than one year. (can be typos or customer registered by their parents and have few month only). All those are actually converted*. Normally I would double check these information with the data owner. In this "experiment" I will simply point this out and proceed with the analysis.
- "Converted" seems to be younger and have higher initial fee level compared to "not converted". There seems to be a tendency for female to be more prone to "convert" despite most customers are male.
- Segment 11 seems to have more "converted" in proportion compared to the other segments (but most customer are in seg 13). Same for Tampere Branch (also here most of customer are in Helsinki branch).
- The number of converted seems to increase when the number of people related to the customer is one and the family size is between 1 and 2 (in their respective groups). In both cases, the majority of customers are in the category 0

Agenda

- Descriptive statistics
- Correlation analysis
- What are the important factors?
- Conclusions and further discussion
- Appendix

Correlation Analysis

- 0.6

- 0.4

- 0.2

- 0.0

Correlation Analysis

I created a dummy variable for the credit account id. It seems to be a correlation with the segments. Most of the customers in seg 12 and 13 does not have a customer credit account.

Correlation Analysis

Gender, initial fee level and customer segment seems to be relevantly correlated with the conversion rate of the customers.

Agenda

- Descriptive statistics
- Correlation analysis
- What are the important factors?
- Conclusions and further discussion
- Appendix

- In order to find the relevant factors I need to look at the nature of the problem and it's component: we are trying to understand how much the probability of an event to happen (converted or not) given the behavior of the other variables (independent variables).
- The nature of the dependent variable is categorical (dicotomical) and the nature of the dependent variables is different for each variable (categorical and/or interval (continuous), since we are dealing with different variables.)
- literature* suggests to use a multiple logistic regression to identify the variable that best explain the probability to convert.

After creating dummy variables for all the explanatory variable we try our first regression inserting all the data that are
already dicotomical or continuous: "'female', 'age_r', 'initial_fee_level','credit_account_id_dummy'"

All p_values are significant

- Gender has a terrific impact on the conversion rate: a female customer increase the probability to convert by a magnitude of ~12
- Much lower impact of the other variables: initial fees has a very minor impact (very close to 0) but positive
- This analysis confirms that younger customers tend to convert, but the magnitude is not as strong as for the gender
- It seems that having a credit_account_id increase the probability to convert with a magnitude of 0.2

Segment analysis

- Being in Segment 11 has a positive impact on the conversion compared to segment 13 – Magnitude ~0.3.
- Impact on seg 12 is much smaller and in any case not significant.

Related Customer*

- Having zero related customer has a negative impact on the conversion compared to having only one related customer – Magnitude ~0.58.
- The other groups are not significant a part from related_customer_4 with a magnitude = 0.2

Family size*

- Having a family size of 1 has a positive impact on the conversion compared to having zero family size— Magnitude ~0.54.
- The other groups were not statistically significant

branch analysis

- Being in Tampere branch has a positive impact on the conversion compared to Branch Helsinki– Magnitude ~0.56 and branch Turku – magnitude= 0.4.
- Impact on seg 12 is much smaller and in any case not significant.

Using all relevant variables:

Optimization terminated successfully.												
Current function value: 0.466059												
Iterations 6												
Logit Regression Results												
======================================					742							
Dep. Variable:	converted		No. Observations:		712							
Model:	Logit Df Residuals:			704								
Method:	MLE Df Model:			7								
	, 03 Mar 2024				0.3093							
Time:		12:52:41 Log-Likelihood:			-331.83							
converged:	True LL-Null:		-480.45									
Covariance Type:	nonrobust LLR p-value:			2.355e-60								
		std err		 P> z	 Γ0.025	0 07E1						
	coef 		z 	P> Z	[0.025 	0.975] 						
female	2.4851	0.205	12.134	0.000	2.084	2.887						
age_r	-0.0319	0.007	-4.489	0.000	-0.046	-0.018						
initial_fee_level	0.0003	0.001	0.251	0.802	-0.002	0.003						
<pre>credit_account_id_dummy)</pre>	-1.2264	0.236	-5.204	0.000	-1.688	-0.764						
customer_segment_11	0.8626	0.375	2.298	0.022	0.127	1.598						
related_customers_0	0.1925	0.205	0.940	0.347	-0.209	0.594						
family_size_1	0.2698	0.264	1.021	0.307	-0.248	0.788						
branch_Tampere	0.4292	0.266	1.611	0.107	-0.093	0.952						
	 Odds Ratio	========= 95% CI Lower	95% CI U	======== Jpper	========	======						
female	12.002753	8.034236	17.9 3	31524								
age_r	0.968607	0.955212	0.98	32190								
initial fee level	1.000293	0.998010	1.00	2581								
credit_account_id_dummy	0.293350	0.184835	0.46	55574								
customer_segment_11	2.369264	1.135426	4.94	13884								
related_customers_0	1.212276	0.811454	1.81	1087								
family_size_1	1.309682	0.780099	2.19	8781								
branch_Tampere	1.536072	0.911147	2.58	89613								

Using all relevant variables – controlling for the multicollinearity:

Optimization terminated successfully. Current function value: 0.509169 Iterations 6											
Logit Regression Results											
Dep. Variable:	converted		No. Observations:			 712					
Model:	Logit		Df Residuals:			708					
Method:	MLE		Df Model:			3					
Date:	Sun, 03 Mar 2024					0.2454					
Time:	13:08:54					-362.53					
converged:		True	LL-Nu			-480.45					
Covariance Type:	nonr	obust	LLR p	-value:		7.524e-51					
	coef	====== std 6	====== err	======= Z 	P> z	[0.025	0.975]				
female	2.1776	0.1	L88	11.599	0.000	1.810	2.546				
related_customers_0	-0.5699	0.1	L64	-3.482	0.000	-0.891	-0.249				
customer_segment_11	0.9954	0.2	200	4.984	0.000	0.604	1.387				
branch_Helsinki	-1.2365	0.1	l61	-7.677	0.000	-1.552	-0.921				
=========	Odds Ratio 95% CI Lower 95% CI Upper										
female	8.825198	6.	.108289	12.75	0563						
related_customers_0		0.	.410361								
customer_segment_11	2.705847		.829349		2302						
branch_Helsinki	0.290387	0.	.211777	0.39	8178						

Using only the variables that are not correlated among them (avoiding multicollinearity) we have that:

- Gender is strongly the most significant discriminator for predicting the conversion rate
- Having at least one related customer, increase the probability to conversion.
- Being part of segment 11 increase the
- Branch Toperne seems to increase the probability to covert a customer compared to Helsinki

Agenda

- Descriptive statistics
- Correlation analysis
- What are the important factors?
- Conclusions and further discussion
- Appendix

Conclusions I

From a descriptive analysis, "Converted" customers seems to be younger, pay higher initial fee, be Female, be in Segment 11, be from Tampere Branch, have at least one person related, have family size is between 1 and 2

From **our logistic regressions*** independently run we learned:

- 1. Gender has a terrific impact on the conversion rate: a female customer increase the probability to convert by a magnitude of ~12
- 2. Younger customers tend to convert, but the magnitude of ~0.98
- 3. Having a credit_account_id increase the probability to convert with a magnitude of 0.2
- 4. Being in Segment 11 has a positive impact on the conversion compared to segment 13 Magnitude \sim 0.3.
- 5. Having zero related customer has a negative impact on the conversion compared to having only one related customer Magnitude ~0.58.
- 6. Having a family size of 1 has a positive impact on the conversion compared to having zero family size—Magnitude ~0.54.
- 7. Being in Tampere branch has a positive impact on the conversion compared to Branch Helsinki Magnitude ~0.56 and branch Turku magnitude= 0.4.

Conclusions II

Due to some correlation among some of the independent variable I had to select only some of the variables to the overall logistic regression.

Specifically I had to choose one between:

- age, related customers and family size (as they seems to be somehow correlated)
- Initial_fee_level, credit_accoiunt_id, customer segment (as they seems to be somehow correlated)

From **our overall logistic regression*** we learned:

- 1. Being Female is the most significant discriminator for predicting the conversion rate magnitude of ~8.8
- 2. Having at least one related customer, increase the probability to conversion magnitude of ~0.56
- 3. Being part of Segment 11 increase the probability to conversion with a magnitude of ~2.7
- 4. Branch Toperne seems to increase the probability to covert a customer compared to Helsinki with a magnitude of ~0.29

Changing the variable used (e.g. "age" instead of "related customers") will give similar results to the ones we saw in the independent logistic statistics run before.

Further discussion

Since I couldn't communicate with the **data/product owner**, there are some assumption I had to make. A deeper knowledge of the data would lead to a different analysis.

Selecting different independent variables would also push the results in slightly different direction, based on the point of view we want to give to our data.

We were "lucky" this time as the data fit all the assumption for a logistic regression. But what if it was not the case? Based on the different assumptions that were not satisfied we could have used a different "solution".

In the worst case scenario, and there was no way to fix the assumptions, we could have made a "one by one" analysis of the independent variables.

Specifically to Test whether the variable converted is correlated with any of the other categorical variables using a chi-square analysis.

While to test the correlation with age and/or initial_fee_level, I would have use a simple **T-test**, in case that all the assumptions were satisfied. If the T-test assumption were not satisfied I would have used the Non-parametric version of it: "**Wilcoxon-Mann Whitney test**"*

Running the tests as described above, they all confirm the logistic regression results

Agenda

- Descriptive statistics
- Correlation analysis
- What are the important factors?
- Conclusions and further discussion
- Appendix

Descriptive statistics - Converted

Descriptive statistics - Not Converted

Correlation

Logistic analysis

Logistic analysis

Logistic analysis – final graph

Logistic analysis – final graph

