Prabhala, Nagpurnanand R. (1997), Conditional methods in event studies and an equilibrium justification for standard event-study procedures, *Review of Financial Studies* 10 (1), 1–38

Nagpurnanand R. Prabhala Maryland

Abstract

- Conditional event-study methods: standard event-study procedures are misspecified if
 - o Events are voluntary and
 - o Investors are rational
- However, this paper argues that standard procedures
 - o Provides statistically valid inferences and
 - o Are superior even under the rational expectations specifications (by conditional methods papers)
- Displays an equilibrium justification; Suggests a link between conditional versus standard models

Intro

- Event studies test
 - o Existence of an information effect
 - o Factors that explains changes in firm value on the event date
- Fama et al. (1969, IER)
 - o Significance of a stock-price reaction on the event date
 - o Linear regression to identify factors that explain the cross-section of announcement effects
- Conditional methods: Acharya (1998, JF; 1993, JF), Eckbo, Maksimovic and Williams (1990, RFS)
 - o Traditional methods are misspecified in a rational expectations context
 - o Unexpected portion of such information should determine the stock-price reaction to the event
 - o Resulting nonlinear cross-sectional regressions: conventional methods should not be used

- This paper displays
 - o Simple exposition of conditional methods (specifically, their economic content)
 - o Traditional techniques are misspecified, but still valid under usual conditions
 - For example, under Acharya's setup, (1) FFJR method is still valid and (2) the conventional cross-sectional method yields parameter estimates proportional to the true model parameters
 - Equilibrium justification for the conventional event-study procedures
 - o Choice between conventional vs. conditional: depends on the ∃ of NE firms in the data
 - If ∃ NE samples: conditional > conventional

1. Conditional Methods

- Empirical procedure for carrying out event studies
 - 1. Estimate the unexpected information that the event reveals (for each firm)
 - 2. Compute the cross-correlation between information and abnormal return

 τ_i = the information arrives at firm i on an information arrival date = subsequently revealed to markets via the event on an event date

- Three possible assumptions
 - 1. (assumption) Markets know that τ_i has arrived at firm i before the event (Acharya, 1988)
 - 2. Markets don't know the arrival (Eckbo, Maksimovic and Williams, 1990)
 - 3. Market assess a probability $p \in (0,1)$ that τ_i has arrived at firm i (Prabhala, 1997)

Under Assumption 1 (Acharya, 1988)

$$\begin{split} E_{-1}[\tau_i] &= \underline{\theta}' \underline{x}_i = \boldsymbol{\theta}^\mathsf{T} \boldsymbol{x}_i, & \text{where } x_i = \text{firm specific variables} \\ \psi_i &= \tau_i - E_{-1}[\tau_i], & \text{where } \psi_i = \text{firm i's private information} \end{split}$$

The firm's decision depends on its information τ_i (endogenous choice of firms)

$$E \Leftrightarrow \tau_i \ge 0 \Leftrightarrow \psi_i + \theta^\mathsf{T} x_i \ge 0$$

$$NE \Leftrightarrow \tau_i < 0 \Leftrightarrow \psi_i + \theta^\mathsf{T} x_i < 0$$

- Firm i's choice between E and NE partially reveals its private information ψ_i
- If \exists an information effect, abnormal returns should be related to unexpected information
 - 4. (assumption) Investors are risk-neutral towards the event risk
 - 5. Conditioning information is a linear signal of expected return, i.e. $E(r_i|\psi) = \pi \psi_i$

Hence if \exists an information effect, then π should be significant in the following nonlinear specifications

$$\underbrace{E[\epsilon_i|E]}_{\substack{\text{expected}}} = \underbrace{\pi E[\psi_i|E]}_{\substack{\text{by Assumption 5}}} = \pi E[\psi_i|\boldsymbol{\theta}^\mathsf{T}\boldsymbol{x}_i + \psi_i \geq 0] = \pi \underbrace{E[\psi_i|\psi_i \geq -\boldsymbol{\theta}^\mathsf{T}\boldsymbol{x}_i]}_{\substack{\text{truncated}}}$$

If
$$\psi_i \sim N(0, \sigma^2)$$
, then $\underbrace{E[\epsilon_i | E] = \pi \sigma \underbrace{\frac{n(\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}_i / \sigma)}{N(\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}_i / \sigma)}}_{\text{Acharya (1988)}}^{\text{revealed information}} = \pi \sigma \underbrace{\lambda_E(\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}_i / \sigma)}^{\text{revealed information}}$

- Two tests are possible though Acharya's model
 - o \exists information effect: Significant π indicates the \exists of an information effect
- \circ Factors explaining announcement effect: Significant θ implies that x_j can explain ϵ_i Note that

$$E[\psi_i|\psi_i \ge -\mathbf{\theta}^{\mathsf{T}}\mathbf{x}_i] = E[Z|Z \ge -\mathbf{\theta}^{\mathsf{T}}\mathbf{x}_i/\sigma] = \frac{n(-\mathbf{\theta}^{\mathsf{T}}\mathbf{x}_i/\sigma)}{1 - N(-\mathbf{\theta}^{\mathsf{T}}\mathbf{x}_i/\sigma)}\sigma = \underbrace{\frac{n(-c) = n(c)}{n(\mathbf{\theta}^{\mathsf{T}}\mathbf{x}_i/\sigma)}}_{1 - N(-c) = N(c)}\sigma$$

Under Assumption 2 (Eckbo, Maksimovic and Williams, 1990)

$$E[\epsilon_i|E] = \pi E[\tau_i|E] = \pi E[\tau_i|\tau_i \geq 0] = \pi[\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}_i + \sigma \lambda_E(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}_i/\sigma)] = \underbrace{\pi\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}_i + \pi \sigma \lambda_E(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}_i/\sigma)}_{truncated\ regression}$$

- In Acharya's model, the price incorporates the unconditional expectation $\theta^T x_i$ prior to the event
- In EMV model, pre-event expectations were not formed; hence $\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}_i$ appears on the event date Under Assumption 3 (Prabhala, 1997): nests both Acharya and EMW cases

$$E[\epsilon_i|E] = \underbrace{\pi(1-p)\boldsymbol{\theta}^\mathsf{T}\mathbf{x}_i + \sigma\lambda_E(\boldsymbol{\theta}^\mathsf{T}\mathbf{x}_i/\sigma)}_{\text{truncated regression}} = \begin{cases} \text{Acharya's model,} & \text{as } p \to 1 \\ \text{EMW model,} & \text{as } p \to 0 \end{cases}$$

This paper hereafter focuses on Acharya's model.

2. On Inferences Via Traditional Methods

- Even when event-study data are generated exactly under Acharya's environment
 - FFJR procedure is well-specified as a test for \exists of information effect (i.e. H_0 : π =0)
 - \circ Traditional cross-sectional procedure yields β s proportional to the true cross-sectional θ s
- Misspecification problem may not be as serious as the previous paper suggests
 Recall Acharya's specification

$$E[\varepsilon_i|E] = \pi \sigma \lambda_E(\mathbf{\theta}^\mathsf{T} \mathbf{x}_i/\sigma), \qquad \cdots (7)$$

The specification of conventional methods

$$E[\epsilon_i|E] = \beta_0 + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_i, \qquad \cdots (12)$$

<u>Pivotal question</u>: Are β related in some way to the true parameters θ ?

• The true slope s_i of (7) is attenuated relative to θ_i .

$$s_{j} = \frac{\partial E[\varepsilon_{i}|E]}{\partial x_{ij}} = -\theta_{j} \times \underbrace{\pi}_{\in (-1,1)} \times \underbrace{\lambda_{E}\left(\frac{\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}_{i}}{\sigma}\right) \left[\lambda_{E}\left(\frac{\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}_{i}}{\sigma}\right) + \boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}_{i}\right]}_{=\delta(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}_{i}/\sigma) \in (0,1)}$$

- O Each $β_i$ has the opposite sign of $θ_i$ if π>1
- O Underestimation is greater if $|\pi|$ is small (i.e. low announcement effect)
- o Underestimation is greater if $\delta(\mathbf{0}^{\mathsf{T}}\mathbf{x}_{\mathsf{i}}/\sigma)$ is small (i.e. highly anticipated events)

Proposition 1 (1) E occurs iff $\theta_0 + \mathbf{0}^T \mathbf{x}_i + \psi > 0$

- (2) Information ψ and abnormal return ϵ are bivariate Normal with correlation π and marginal distributions $N(0,1^2)$
- (3) Regressor \mathbf{x}_i is multivariate Normal, independent of ψ

then
$$\begin{split} \beta_j &= -\theta_j \pi \frac{(1-R^2)(1-t)}{t+(1-R^2)(1-t)} = -\theta_j \pi \mu \\ \text{where } t &= \frac{Var[\tau|E]}{Var[\tau]}, \qquad \tau = \pmb{\theta}^\top \pmb{x}_i + \psi \\ R^2 &= R^2 \text{ in the population regression of } \tau \text{ on } \pmb{x}_i \\ \mu &= \frac{(1-R^2)(1-t)}{t+(1-R^2)(1-t)}, \qquad \text{proportionality factor} \end{split}$$

- The term μ represents the unexpected component of information τ revealed by event E
- Also represents the fraction of information τ that remains in event E
 - ο μ is small when the event reveals little information
 - μ is large for highly surprising events

Lemma 1

- (1) $0 < \mu < 1$
- (2) μ is small when event E is highly anticipated
- o Downward bias: $|\beta_i| \le |\theta_i|$
- o Opposite sign: $sign(\beta_i) \neq sign(\theta_i)$
- o More attenuation when $|\pi|$ is small (i.e. low announcement impact)
- o More attenuation when E are highly anticipated (i.e. not surprising event)
- Overall, Proposition 1 implies that <u>the traditional cross-sectional procedure may be used for cross-</u>sectional inferences in event studies
- Specifically, tests for β are equivalent to tests for θ of the conditional model

3. Issues in Choosing Event-Study Methodology

- Then what do we have to choose? Traditional model? Conditional model?
 - o All assumptions are satisfied
 - If data have both E and NE, then Conditional > Traditional
 - If data only have E, then Traditional > Conditional
 - NE data include
 - 1) Set of firms that were anticipated to announce but chose not to announce the event
 - 2) The time when markets learn of the non-announcement
 - 3) Cross-sectional and announcement effect data on this date
 - Usually such information cannot be obtained: Lanen and Thompson (1988, JAE)
 - o Some assumptions are not satisfied
 - Non-Normality of the private information ψ
 - Noise in announcement effect (difficult to isolate the portion attributable to announcement)
 - Cross-sectional correlation: Brown and Warner (1985, JFE)

- o Computational issues
 - If we have both E and NE
 - 1) ML
 - 2) NLS
 - 3) Two-step procedure (Heckman, 1979): Estimate $\hat{\theta}$, $\hat{\lambda}_C(\cdot)$ by Probit and \hat{w} by OLS
 - ✓ Free from the noise in announcement-effect data
 - ✓ Simple and consistent, but inefficient (just slightly)
 - If we only have E
 - 1) Two-step procedure is unavailable
 - 2) Must be estimated via ML or NLS, but computationally expensive

4. Experiment Design

1. Event

$$\begin{split} E &\Leftrightarrow \theta_0 + \theta_1 x_{1i} + \theta_2 x_{2i} + \psi_i \geq 0 \\ NE &\Leftrightarrow \theta_0 + \theta_1 x_{1i} + \theta_2 x_{2i} + \psi_i < 0 \\ \theta_0 &= 1, \qquad \theta_2 = -1, \qquad \theta_2 = .01 \\ x_{2i} &\sim \text{Uniform}(0,100), \qquad \text{fixed for all 400 simulations} \\ x_{1i} &\sim \text{Uniform}, \qquad \text{fixed as well,} \qquad \text{supports vary} \\ \psi_i &\sim N(0,1), \qquad \text{Laplace,} \qquad \text{Logistic,} \qquad \chi^2, \qquad \text{Student's t} \end{split}$$

The supports of x_{1i} depend on the average event probability $\in \{25\%, 50\%\}$

2. Abnormal return

$$\epsilon_i = w\psi_i + v_i, \qquad \text{where } v_i \sim \text{iid}, \qquad E[v_i] = 0, \qquad \text{Var}[v_i] = 1 - w^2 \\ w \in \{.30,.50,.75\}$$

The distribution of v_i is identical to that of ψ_i ; N(0,1), Laplace, Logistic, χ^2 and Student's t

- 3. Sample size: Each set of 400 simulations was repeated for two sample sizes ∈ {100,250}
- 4. Number of replications: 400 replications of each simulation
- Recipe
 - \circ Choose the target event probability, sample size, w and the distribution of ψ_i
 - \circ Generate x_{1i} and x_{2i} and use them for all 400 simulations
 - o Generate ψ_i (and hence E or NE) and ϵ_i
 - \circ Estimate θ , w and β and compute corresponding t-stat
- Mean, standard error and mean t-statistic are reported.

5. Simulation Results

Table 1
Performance of conditional model base case

		Sam	Sample size = 100		Sam	ple size =	: 250		
Model parameter	Truth	Mean	Std. error	Mean <i>t</i> -stat	Mean	Std. error	Mean <i>t</i> -stat		
Average event probability = 25%									
$egin{array}{c} w \ w \ heta_0 \ heta_1 \ 100 heta_2 \end{array}$	0.30 0.50 0.75 1.00 -1.00 1.00	0.31 0.50 0.74 1.04 -1.04 1.02	0.13 0.13 0.11 0.51 0.52 0.52	2.30 3.81 6.38 2.05 -1.97 1.99	0.30 0.50 0.75 0.99 -0.98 0.96	0.09 0.08 0.08 0.31 0.32 0.31	4.27 6.01 10.13 3.27 -3.12 3.08		
Average ever	nt probability	= 50%							
$egin{array}{c} w \ w \ heta_0 \ heta_1 \ 100 heta_2 \end{array}$	0.30 0.50 0.75 1.00 -1.00 1.00	0.30 0.50 0.76 0.99 -1.00 1.00	0.12 0.12 0.11 0.75 0.48 0.47	2.37 4.12 6.83 1.36 -2.15 2.20	0.32 0.50 0.74 0.97 -0.98 1.02	0.08 0.08 0.07 0.46 0.30 0.29	4.45 6.64 10.74 2.08 -3.36 3.46		

Base case

- θ is close to truth
- 'w's are close to truth
- Standard error estimates are close to the true standard error

Table 2
Normality-based estimator when information is laplace listributed

			ple size =	100	Sample size = 250		
Model parameter	Truth	Mean	Std. error	Mean <i>t</i> -stat	Mean	Std. error	Mean <i>t</i> -stat
Average eve	nt probability	= 25%					
$w \\ w \\ \theta_0 \\ \theta_1 \\ 100\theta_2$	0.30 0.50 0.75 1.00 -1.00 1.00	0.28 0.47 0.70 1.26 -1.25 1.25	0.14 0.14 0.12 0.59 0.53 0.53	2.13 3.40 6.06 2.22 -2.41 2.43	0.28 0.47 0.70 1.24 -1.23 1.21	0.09 0.07 0.08 0.36 0.31 0.31	3.32 5.55 8.86 3.46 -3.85 3.85
Average eve	nt probability	= 50%					
$w \\ w \\ \theta_0 \\ \theta_1 \\ 100\theta_2$	0.30 0.50 0.75 1.00 -1.00 1.00	0.27 0.46 0.60 1.41 -1.41 1.40	0.13 0.12 0.12 0.80 0.50 0.49	2.10 3.73 6.40 1.80 -2.80 2.82	0.28 0.45 0.69 1.36 -1.36 1.35	0.08 0.07 0.07 0.46 0.30 0.31	3.50 5.77 9.76 2.90 4.54 4.44

Bad case (Non-normality)

- θ is quite different from its true value
 - \circ Normality-based estimator is inconsistent when ψ is non-Normal
 - o But the sign and order are similar to the previous case
 - o The associated t-statistics are also of a similar magnitude
 - o There seems to be little impact on one's inferences
- 'w's are close to truth but are slightly attenuated
 - Non-Normality \Rightarrow "measurement error" into $\lambda_k(\cdot) \Rightarrow$ errors-in-variables bias
 - o The amount of attenuation is small
- Non-Normality does lead to <u>inconsistent</u> parameter estimates but <u>does not appear to impact one's inferences</u> about the significance of model parameters

Noise in announcement effects (just qualitative descriptions): The two-step procedure does <u>stand up to moderate amounts of noise</u> at levels typical of event studies that use windows of a few days to measure announcement effects

Cross-sectional correlation in information (just qualitative descriptions): Non-Normality and cross-sectional correlation in private information in private information <u>appear to matter less than imprecisely measured announcement effects</u>

Table 3
Performance of conventional cross-sectional procedure

Panel A: Normally distributed information and 25% average event probability

		Sample size = 100			Samı	250	
True parameter	Estimated parameter	Mean	Std. error	Mean t-stat	Mean	Std. error	Mean <i>t</i> -stat
Correlation $(w) =$	= 0.30						
$\theta_1 = 1.00$ $\theta_1 = -1.00$ $100\theta_2 = 1.00$	$egin{array}{c} eta_0 \ eta_1 \ 100eta_2 \end{array}$	0.05 0.21 -0.22	0.33 0.33	0.62 -0.64	0.02 0.22 -0.23	0.47 0.20 0.20	0.04 1.05 -1.11
Correlation (w) =	= 0.50						
$\theta_0 = 1.00$ $\theta_1 = -1.00$ $100\theta_2 = 1.00$	$egin{array}{c} eta_0 \ eta_1 \ 100eta_2 \end{array}$	0.39 -0.38	0.71 0.32 0.29	0.02 1.26 -1.29	0.05 0.39 -0.38	0.48 0.22 0.19	0.10 1.86 -1.95
Correlation (w) =	= 0.75						
$\theta_0 = 1.00$ $\theta_1 = -1.00$ $100\theta_2 = 1.00$	$eta_0 \ eta_1 \ 100eta_2$	0.57 -0.57	0.58 0.25 0.26	2.21 -2.18	0.02 0.57 -0.56	0.42 0.18 0.18	0.02 3.25 -3.31

Panel B: Normally distributed information and 50% average event probability

		Sample size = 100		: 100	Sam	ple size =	= 250
True parameter	Estimated parameter	Mean	Std. error	Mean t-stat	Mean	Std. error	Mean <i>t</i> -stat
Correlation (w) =	= 0.30						
$\theta_0 = 1.00$ $\theta_1 = -1.00$ $100\theta_2 = 1.00$	$egin{array}{c} oldsymbol{eta}_0 \ oldsymbol{eta}_1 \ 100oldsymbol{eta}_2 \end{array}$	0.17 -0.19	0.58 0.38 0.32	0.14 0.47 -0.60	0.05 0.19 -0.18	0.35 0.20 0.23	0.16 0.89 -0.89
Correlation (w) =	= 0.50						
$\theta_0 = 1.00$ $\theta_1 = -1.00$ $100\theta_2 = 1.00$	$eta_0 \ eta_1 \ 100oldsymbol{eta}_2$	0.30 -0.30	0.55 0.35 0.33	0.22 0.90 -0.92	0.08 0.32 -0.31	0.32 0.20 0.22	0.26 1.50 -1.48
Correlation (w) =	= 0.75						
$\theta_0 = 1.00$ $\theta_1 = -1.00$ $100\theta_2 = 1.00$	$eta_0 \ eta_1 \ 100eta_2$	0.47 -0.47	0.50 0.29 0.28	0.30 1.57 -1.68	0.15 0.47 -0.48	0.27 0.16 0.17	0.66 2.70 -2.89

Conventional cross-sectional procedure (Table 3 Panel A and Panel B)

- Recall the findings of Lemma 1
 - o Downward bias: $|\beta_i| \le |\theta_i|$
 - Everywhere
 - Opposite sign: $sign(\beta_i) \neq sign(\theta_i)$
 - Everywhere
 - o More attenuation when $|\pi|$ (|w| in this case) is small (i.e. low announcement impact)
 - For 100 sample size and 25% average event probability
 - $\hat{\beta}_1 = .21$ for w = .30
 - $\hat{\beta}_1 = .39$ for w = .50
 - $\hat{\beta}_1 = .57 \text{ for } w = .75$
 - o More attenuation when E are highly anticipated (i.e. not surprising event)
 - For 100 sample size and w=30%
 - $\hat{\beta}_1 = .21$ for 25% average event probability
 - $\hat{\beta}_1 = .17$ for 50% average event probability
- Simulation results are consistent with its implied comparative statics
- The usual OLS standard errors seem to be appropriate for carrying out significance tests for cross-sectional parameters β
 - o For 25% average event probability, 100 sample size, w=30%
 - Standard error estimate=.21/.62=.3387
 - True standard error=.33
- The t-statistics for the linear regression coefficients are generally smaller
 - Even though the linear model produces smaller standard errors, it is less powerful than the conditional model in picking up cross-sectional effects
- Measurement error in announcement effects: β is affected (low t-stat), but θ is remain unchanged
- Attenuation: low |w| and high event probability cause this underestimation
- The statistical significance of the linear regression coefficients β serves as a <u>lower bound</u> on significance of the θ
 - o Conservative means of conducting cross-sectional inferences
 - o If one rejects the hypothesis $\beta_i=0$ at significance level α , one also rejects the hypothesis $\theta_i=0$

Table 4 Performance	of condition	nal model wi	th trunca	ted sample	50% average	event pr	obability	
		Sam	ple size =	100	Sample size = 250			
Parameter	Truth	Mean	Std. error	Mean t-stat	Mean	Std. error	Mean t-stat	
w = 0.30								
$w_1 = \frac{u}{\sqrt{1-u^2}}$	0.31	0.93	1.19	1.39	0.67	0.79	1.91	
θ_0 θ_1 $100\theta_2$	1.00 -1.00 1.00	2.43 -2.24 2.46	11.98 6.09 4.96	2.41 -0.73 0.69	0.91 -1.19 1.90	3.32 2.39 2.99	0.37 -0.79 0.99	
w = 0.50								
$w_1 = \frac{w}{\sqrt{1 - v^2}}$	0.58	1.12	1.39	1.69	0.89	0.81	2.37	
$w_1 = \frac{\frac{u}{\sqrt{1 - u^2}}}{\theta_0}$ $\frac{\theta_0}{\theta_1}$ $100\theta_2$	1.00 -1.00 1.00	-1.56 -1.00	2.15 2.00	0.66 -0.96 0.99	1.17 -1.37 1.17	1.84 1.34 1.08	1.02 -1.51 1.40	
w = 0.75								
$w_1 = \frac{w}{\sqrt{1 - w^2}}$	1.13	1.45	1.07	1.91	1.17	0.54	2.77	
$ \begin{array}{c} \sqrt{1-w^2} \\ \theta_0 \\ \theta_1 \\ 100\theta_2 \end{array} $	1.00 -1.00 1.00	0.91 -1.20 1.53	1.29 0.82 1.00	1.03 -1.54 1.45	0.90 -1.16 1.17	0.85 0.63 0.54	1.52 -2.28 2.21	

Conditional model without nonevent information

- Absent NE data, how does the (conditional) model perform?
 - o The conditional model may be estimated by NLS or ML
- The t-statistics reported in Table 4 are much smaller than those in Table 1
 - o Severe negative impact on the conditional model's performance
- Why are NE data so crucial?
 - o By combining both data, one increases the sample size
 - o Use of NE data expands the type of information being used in estimation
- Results also indicate that the properties of the ML estimator are unsatisfactory
 - o Parameter estimates are upward-biased
 - o Standard errors are slightly understated
 - o The t-statistics are no better than those produced by OLS
- Absent NE data, there is little evidence that the specification of the conditional model analyzed here has any practical value, relative to the much simpler OLS procedure

6. Conclusions

- Acharya's (1988) model is empirically valuable when
 - One has a set of NE firms in addition to data on E firms
 - o If such data are available, the conditional model is valuable means of inference
 - o In this case, Heckman's (1979, EMA) method is useful for estimating the conditional model
 - Free from usual data problems (event-date uncertainty, clustering of event dates)
 - Inferences are not severely affected by incorrect distributional assumptions
 - Also valid for other conditional models (Eckbo, Maksimovic and Williams, 1990)
- In reality, NE data are not available
 - o Conditional model becomes computationally burdensome and less powerful
 - o Results concerning traditional methods assume the greatest force
 - β in the traditional model is proportional to θ in the conditional model
 - OLS standard errors appear to be appropriate
 - Traditional OLS method may be used for carrying out cross-sectional inferences (though the coefficients are potentially inconsistently estimated)
- In a nutshell
 - o Conditional model>OLS when both E and NE data are available
 - o OLS≻Conditional model when one has E data only
- If you have both E and NE data: Use the conditional model
- If you only have E data: Use OLS and the results are conservative lower bounds

Replicated results of Table 1

	Size=100		e=100	Siz	ze=250
Parameter	Truth	Mean	Standard Err.	Mean	Standard Err.
		Probab	oility=25%		
ω	.25	.25	.15	.25	.10
ω	.50	.51	.14	.50	.09
ω	.75	.75	.11	.75	.07
θ_0	1.00	1.03	1.33	1.04	.76
θ_1	-1.00	-1.04	.59	-1.03	.33
$100\theta_2$	1.00	1.06	.49	1.03	.32
		Probab	oility=50%		
ω	.25	.25	.13	.26	.08
ω	.50	.50	.12	.50	.07
ω	.75	.74	.10	.75	.07
θ_0	1.00	1.01	.78	1.02	.47
Θ_1	-1.00	-1.01	.47	-1.01	.29
$100\theta_2$	1.00	1.02	.47	.99	.28

• Standard errors for θ_0 s are bigger than those from Table 1

Replicated results of Table 2 Panel A

Probability=25%		Siz	ze=100	Size=250				
True	Estimated	Mean	Standard Err.	Mean	Standard Err.			
Correlation ω =.25								
$\theta_0 = 1.00$	eta_0	.03	.79	.03	.54			
$\theta_1 = -1.00$	β_1	.18	.35	.18	.24			
$100\theta_2 = 1.00$	$100\beta_2$.20	.34	20	.23			
Correlation ω=.50								
$\theta_0 = 1.00$	β_0	01	.75	.00	.47			
$\theta_1 = -1.00$	β_1	.38	.33	.38	.21			
$100\theta_2 = 1.00$	$100\beta_2$	34	.31	36	.20			
	Correlation ω=.75							
$\theta_0 = 1.00$	eta_0	01	.64	01	.42			
$\theta_1 = -1.00$	β_1	.58	.29	.58	.19			
$100\theta_2 = 1.00$	$100\beta_2$.57	.27	56	.18			

Replicated results of Table 2 Panel B

Probability=50%		Siz	e=100	Size=250				
True	Estimated	Mean	Standard Err.	Mean	Standard Err.			
Correlation ω =.25								
$\theta_0 = 1.00$	eta_0	.06	.52	.05	.34			
$\theta_1 = -1.00$	β_1	.15	.33	.16	.22			
$100\theta_2 = 1.00$	$100\beta_2$	15	.35	16	.22			
Correlation ω=.50								
$\theta_0 = 1.00$	eta_0	.07	.47	.08	.32			
$\theta_1 = -1.00$	β_1	.32	.31	.32	.20			
$100\theta_2 = 1.00$	$100\beta_2$	28	.32	31	.20			
Correlation ω=.75								
$\theta_0 = 1.00$	eta_0	.14	.45	.14	.29			
$\theta_1 = -1.00$	β_1	.47	.30	.46	.18			
$100\theta_2 = 1.00$	$100\beta_2$	46	.30	45	.18			

- For each simulation, the author generates 100 or 250 samples containing only 'E' observations
- If one draws 100 or 250 samples and uses just 'E' data, then the standard errors will be different from those reported by the author