Домашняя работа (Аверьянов Тимофей ПМ 3-1) МПИР Характеристическая функция кооперативной игры

Задача №1. Три врача решили объединиться для совместной практики. Постоянные расходы (на аренду помещений, зарплату помощника и др.) в год составляют \$ 75 тыс. Врачи имеют следующие доходы и переменные расходы:

Врач	Доходы, тыс. \$	Переменные расходы, тыс. \$
1	155	40
2	160	35
3	140	38

Определите характеристическую функцию и вектор Шепли для данной игры. Является ли вектор Шепли стабильным дележом?

Решение:

Определим характеристическую функцию данной игры. Функция v называется характеристической функцией кооперативной игры, где v(S) есть выйгрыш коалиции S. Тогда получаем следующую характеристическую функцию:

$$v(S) = \begin{cases} 0 & , S = \{\emptyset\} \\ 155 - 40 - 75 = 40 & S = \{1\} \\ 160 - 35 - 75 = 50 & S = \{2\} \\ 140 - 38 - 75 = 27 & S = \{3\} \\ 115 + 125 - 75 = 165 & S = \{1, 2\} \\ 115 + 102 - 75 = 142 & S = \{1, 3\} \\ 125 + 102 - 75 = 152 & S = \{2, 3\} \\ 115 + 125 + 102 - 75 = 267 & S = \{1, 2, 3\} \end{cases}$$

Для того, чтобы выяснить стабильность дележа Шепли нам в будущем понадобится ядро, поэтому сразу найдём его. Ядро этой игры задаётся следующими неравенствами:

$$x_1 + x_2 + x_3 = 267,$$

 $x_1 \ge 40,$
 $x_2 \ge 50,$
 $x_3 \ge 27,$
 $x_1 + x_2 \ge 165,$
 $x_1 + x_3 \ge 142,$
 $x_2 + x_3 \ge 152.$

Найдём вектор Шепли для данной игры. Значением Шепли кооперативной игры называют:

$$\phi(v) \stackrel{\text{def}}{=} (\phi_1(v), \dots, \phi_n(v))^T,$$
 где $\phi_i(v) = \sum_{S \subseteq N} \frac{(|S|-1)!(n-|S|)!}{n!} (v(S)-v(S\setminus\{i\}))$

Доля $\phi_i(v)$ игрока i – й равна средней велечине его вкладов во все коалиции. $\frac{(|S|-1)!(n-|S|)!}{n!}$ можно интерпретировать, как вероятность образования коалиции $S\setminus\{i\}$.

$$v(S) = \begin{cases} 0 & S = \{\emptyset\} \\ 155 - 40 - 75 = 40 & S = \{1\} \\ 160 - 35 - 75 = 50 & S = \{2\} \\ 140 - 38 - 75 = 27 & S = \{3\} \\ 115 + 125 - 75 = 165 & S = \{1, 2\} \\ 115 + 102 - 75 = 142 & S = \{1, 3\} \\ 125 + 102 - 75 = 152 & S = \{2, 3\} \\ 115 + 125 + 102 - 75 = 267 & S = \{1, 2, 3\} \end{cases}$$

Перестановка	1	2	3
(1, 2, 3)	40	125	102
(1, 3, 2)	40	125	102
(2, 1, 3)	115	50	102
(2, 3, 1)	115	50	102

(3, 1, 2)	115	125	27
(3, 2, 1)	115	125	27
Вектор Шепли	90	100	77

Видно, что дележ принадлежит ядру, а значит является стабильным.

Задача №2. Трем фирмам нужны склады для хранения некоторого продукта. Фирмы могут строить склады самостоятельно, а также могут кооперироваться и строить совместно используемые склады. Первой фирме нужен склад площадью 100 м², второй – 200 м², третьей – 300 м². Стоимость строительства склада в зависимости от площади представлена в следующей таблице:

100 м ²	200 м ²	300 м ²	400 _M ²	500 м ²	600 м ²
10	18	25	30	34	36

Для каждой из фирм определите ее затраты на строительство склада, вычислив: вектор Шепли; сердцевину игры.

Решение:

Вычислим вектор Шепли для этого составим характеристическую функцию данной игры:

$$v(s) = \begin{cases} 0 & , S = \{\emptyset\} \\ 10 & , S = \{1\} \\ 18 & , S = \{2\} \\ 25 & , S = \{3\} \\ 25 & , S = \{1, 2\} \\ 30 & , S = \{1, 3\} \\ 34 & , S = \{2, 3\} \\ 36 & , S = \{1, 2, 3\} \end{cases}$$

Перестановка	1	2	3
(1,2,3)	10	15	11
(1, 3, 2)	10	6	20
(2, 1, 3)	7	18	11
(2, 3, 1)	2	18	16
(3, 1, 2)	5	6	25
(3, 2, 1)	2	9	25
Вектор Шепли	6	12	18

 \mathcal{L} ефецит коалиции $S \subset N$ определяется как разность

$$d(x,S) \stackrel{\text{def}}{=} v(S) - \sum_{i \in S} x_i$$

между тем, что коалиция может получить действуя самостоятельно, и тем, что получат члены коалиции, если реализуется дележ x. Если дележ x принадлежит ядру, то дефициты всех коалиций неположительны.

Сердцевина — это такой дележ, когда нельзя уменьшить дефицит ни одной коалиции, не сделав так, что дефицит какой-нибудь другой коалиции станет больше дефицита той коалиции, дефицит которой уменьшаем.

S	v(S)	d(x,S)	(6,12,18)	(5,12,19)	(7,12,17)
{1}	10	$10 - x_1$	4	5	4
{2}	18	$18 - x_2$	6	6	6
{3}	25	$25 - x_3$	7	6	8
{1,2}	25	$25 - x_1 - x_2$	7	8	6
{1,3}	30	$30 - x_1 - x_3$	6	6	6
{2,3}	34	$34 - x_2 - x_3$	4	3	5

Пропорциональный дележ (6,12,18): доля каждой фирмы пропорциональна её площади. Максимальный дефицит у коалиций $\{3\},\{1,2\}$. Мы можем уменьшить дефицит $\{3\}$, увеличив x_3 , но тогда дефицит $\{1,2\}$ станет больше чем, тот который уменьшали 8>6. Такая же ситуация с $\{1,2\}$ уменьшая его нам надо уменьшить x_3 , но тогда $\{3\}$ равно 8 8>6. Для остальных дефицитов такая же ситуация. Тогда получается, что (6,12,18) и есть *сердцевина* рассматриваемой игры.

Так же отметим, что в данной задаче вектор Шепли и сердцевина совпадают это связано с тем, что вектор Шепли в общем случае неудовлетворяет условию индивидуальной рациональности, кроме того вектор Шепли зачастую не является стабильным дележём (принадлежит ядру). В нашем случае получилось обратное, что означает, что они могут сопадать.