Design and Analysis of Algorithms

Section VI: Graph Algorithms

Chapter 25: All-Pairs Shortest Paths

Graph Algorithms

All-Pairs Shortest Paths

CLIFFORD STEIN

$$\begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

Chapter 25 All-Pairs Shortest Paths

$$\begin{pmatrix}
0 & 3 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{pmatrix}$$

INTRODUCTION TO

ALGORITH

All-Pairs Shortest Paths Problem

- Given:
 - Weighted, Directed Graph G=(V, E)
 - Weight Function w: E ->
 - Edges -> Real-Valued Weights
- Weight of path $P=\langle v_0, v_1, ..., v_k \rangle$
 - $w(p) = \sum w(v_{i-1}, v_i)$
- Shortest-Path Weight $\delta(u,v)$ is the minimum weight path w(p) that goes from u to v, otherwise ∞
- The shortest path from u to v is any path p with a weight of $\delta(u,v)$
- ALL-PAIRS SHORTEST PATHS
 - − For all pairs of vertices $u,v \in V$, $\delta(u,v)$

All-Pairs Shortest Paths

- Adjacency-List Representation
- Assume vertices are numbered 1, 2, ..., |V|
- Input: n x n weight matrix W of an n-vertex directed graph G=(V,E)
- $W = (w_{ij}), w_{ij} =$
 - > 0,
 - > the weight of directed edge (i, j),
 - $\geqslant \infty$

if i ≠ j & (i,j)∈E

if i ≠ j & (i,j)∉E

All-Pairs Shortest Paths Output

- $n \times n$ matrix D = (d_{ij})
 - d_{ij} = weight of shortest path from vertex i to vertexj.
 - $>\delta(i,j)$
- Predecessor Matrix $\Pi = (\pi_{ij})$
- π_{ii}=
 - > NIL, if i=j or no path from i to j.
 - predecessor to j on some shortest path from i to j.

Predecessor Subgraph

- $G_{\pi,i} = (V_{\pi,i}, E_{\pi,i})$
- $V_{\pi,i} = \{j \in V : \pi_{ij} \neq nil\} \cup \{i\}$
- $E_{\pi,i} = \{(\pi_{ij}, j) : j \in V_{\pi,l} \{i\}$

Print-All-Pairs-Shortest-Path

```
PRINT-ALL-PAIRS-SHORTEST-PATH (\Pi, i, j)

1 if i == j

2 print i

3 elseif \pi_{ij} == \text{NIL}

4 print "no path from" i "to" j "exists"

5 else PRINT-ALL-PAIRS-SHORTEST-PATH (\Pi, i, \pi_{ij})

6 print j
```

Dynamic Programming Steps

- Characterize the structure of optimal solution
- Recursively define the value of an optimal solution
- Compute the value of an optimal solution bottom-up.

 Construct the optimal solution from computed information.

Simple Recursive Solution

- Define $l_{ij}^{(m)}$ as the minimum weight of any path from vertex i to j that contains at most m edges.
- $l_{ij}^{(0)} =$ > 0 if i = j $> \infty \text{ if } i \neq j$

Single Source Relaxation Process

- Relax Edge (u, v) By:
 - Testing possible shortest path improvement to
 v by using current path to u
 - When improvements are possible update:
 - v.d: estimated shortest-path weight
 - v.π: v's parent

Recursive Solution

- Define $l_{ij}^{(m)}$ as the minimum weight of any path from vertex i to j that contains at most m edges.
- $l_{ij}^{(0)} =$ > 0 if i = j $> \infty \text{ if } i \neq j$
- Compute $l_{ij}^{(m)}$ as the minimum
 - $> l_{ij}^{(m-1)}$ the minimum weight path from i to j with m-1 edges
 - $> l_{ik}^{(m)} + w_{kj}$: for all possible k's.

Example Graph

690

Chapter 25 All-Pairs Shortest Paths

L(1)

$$\begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

Shortest Path of length 1 weights =

$$-(1, 2)$$
 w/ w(1,2) = 3

- Shortest Path of length 1 weights =
 - -(1, 2) w/ w(1,2) = 3
 - -(4, 1) w/w(4,1) = 2

- Shortest Path of length 1 weights =
 - -(1, 2) w/ w(1,2) = 3
 - -(4, 1) w/w(4,1) = 2
 - -(3, 2) w/ w(3,2) = 4

Shortest Path of length 1 weights =

$$-(1, 2)$$
 w/ w(1,2) = 3

$$-(4, 1) w/w(4,1) = 2$$

$$-(3, 2)$$
 w/ w(3,2) = 4

Floyd-Warshall

Assume no negative-weight cycles

Use a different dynamic-programming formulation

Shortest Path Structure: Intermediate Vertex

- $P = \langle v_1, v_2, ..., v_i \rangle$
 - Intermediate Vertex is any vertex {v₂, ..., v_{i-1}}
 - Does not include start/end v₁, v_i
- Given that we are using vertices {1, 2, ..., n}
 - There is a linear ordering of our vertices
- Consider a subset of these vertices less than some value k.
- Explore paths using only intermediate vertices v<k
 - Iteratively Expand k
 - Construct paths using v<k from those using v<k-1

Shortest Path Structure: Intermediate Vertex

- Then consider a subset of vertices < k
 - $-\{1, 2, 3, ..., k\}$
- Then consider pairs of vertices i, j
 - consider all paths between i,j using only intermediate v in {1, 2, ..., k}
 - Let p be minimum-weight path from previous set.
- Floyd-Warshall uses relationship between:
 - minimum-weight path using v<k-1
 - and that using v<k.</p>

Shortest Path Structure First Case

- Then consider:
 - subset of vertices $v < k-1 = \{1, 2, 3, ..., k-1\}$
 - Let p be minimum-weight path between i,j with intermediate v only from {1, 2, 3, ..., k-1}
- Then q the minimum path with intermediate v only in {1, 2, 3, ..., k} has property:
 - k is not intermediate of q
 - Then the shortest path from k-1 case is same as case with k
 - Then all intermediate vertices must be only in {1, 2, ..., k-1}

Shortest Path Structure Second Case

- k is intermediate of q (our new shortest path)
 then we can break it into two pieces
 - k is an intermediate node, and there are no cycles so it must break q into two parts: $i p_1 k p_2 j$
 - Both p₁ and p₂ must have all of their vertices v in {1, 2, ..., k-1}
 - $-p_1$ and p_2 must both be shortest paths from there start and finish vertices using only v < k-1.

all intermediate vertices in $\{1, 2, \dots, k-1\}$ all intermediate vertices in $\{1, 2, \dots, k-1\}$

p: all intermediate vertices in $\{1, 2, \dots, k\}$

 Now we want to exploit this and develop recursive solution. all intermediate vertices in $\{1, 2, ..., k-1\}$ all intermediate vertices in $\{1, 2, ..., k-1\}$

p: all intermediate vertices in $\{1, 2, \dots, k\}$

- Now we want to exploit this and develop recursive solution.
- Develop matrix:
 - d_{ij}^(k) = the weight of a shortest path from i to j using only intermediate v<k</p>
 - \rightarrow d_{ii}⁽⁰⁾ = No intermediate v means edge from i to j.
 - $> d_{ij}^{(0)} = W_{ij}$

$$d_{ij}^{(k)}$$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{if } k \ge 1. \end{cases}$$
(25.5)

$$d_{ij}^{(k)}$$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$
(25.5)

• d_{ij}⁽ⁿ⁾ will have out shortest path info.

Chapter 25 All-Pairs Shortest Paths

D(0)

- Shortest Path with intermediates ≤ 0 =
 - -(1, 2) w/ w(1,2) = 3
 - -(4, 1) w/w(4,1) = 2
 - -(3, 2) w/ w(3,2) = 4

 $\Pi^{(0)}$

$$\begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

Shortest Path with intermediates ≤ 0 =

 $\Pi^{(0)}$

$$\begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

Shortest Path with intermediates ≤ 0 =

 $\begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$

 $\Pi^{(0)}$

$$\begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

Shortest Path with intermediates ≤ 0 =

$$\mathsf{D^{(1)}} \begin{pmatrix}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix}$$

• Shortest Path with intermediates ≤ 1 =

$$-p=(4, 1, 5)$$

$$-w(p) = -2$$

$$\Pi^{(1)} \begin{pmatrix}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix}$$

• Shortest Path with intermediates ≤ 1 =

$$-p=(4, 1, 5), w(p) = -2$$

FLOYD-WARSHALL(W) 1 n = W.rows2 $D^{(0)} = W$ 3 **for** k = 1 **to** n4 let $D^{(k)} = (d_{ij}^{(k)})$ be a new $n \times n$ matrix 5 **for** i = 1 **to** n6 **for** j = 1 **to** n7 $d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$ 8 **return** $D^{(n)}$

Shortest Path with intermediates ≤ 1 =

- p=(4, 1, 5), w(p) = -2
-
$$d_{4,5}^{(1)}$$
 = min of
• $d_{4,1}^{(0)} + d_{1,5}^{(0)}$
• or: $d_{4,5}^{(0)}$

$$D^{(2)}$$

Shortest Path with intermediates ≤ 2 =

$$-p=(1, 2, 4), w(p) = 4$$

$$-d_{1,4}^{(2)} = \min of$$

•
$$d_{1,2}^{(1)} + d_{2,4}^{(1)}$$

$$\begin{pmatrix}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix}$$

D(3)

• Shortest Path with intermediates ≤ 3 =

$$\begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

D(3)

- Shortest Path with intermediates ≤ 3 =
 - -p=(4, 3, 2), w(p) = -1
 - $-D_{4,2}^{(3)} = \min of$
 - $d_{4,3}^{(2)} + d_{3,2}^{(2)}$
 - or: d_{4,2}⁽²⁾

$$\begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

- Shortest Path with intermediates ≤ 3 =
 - -p=(4, 3, 2), w(p) = -1
 - $-D_{4,2}^{(3)} = \min of$
 - $d_{4,3}^{(2)} + d_{3,2}^{(2)}$
 - or: d_{4.2}⁽²⁾

$$\begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

 $D^{(4)}$

• Shortest Path with intermediates ≤ 4 =

/ 0	3	8	4	−4 \
/ ∞	0	∞	1	7
∞	4	0	5	11
2	-1	-5	0	-2
\ ∞	∞	∞	6	0/

$$D^{(4)}$$

$$\Pi^{(4)}$$

NIL

NIL

NIL

5

NIL

$$\begin{pmatrix}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{pmatrix}^{NIL}$$

Shortest Path with intermediates ≤ 4 =

$$\begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(5)}$$

$$\begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

• Shortest Path with intermediates ≤ 5 =

$$\begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

Computing Path

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

(25.6)

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$$
(25)

(25.7)

Floyd-Warshall Application: Transitive Closure

Transitive Closure of a DAG

- Define Transitive Closure Graph G*=(V, E*)
- $E^* = \{(i, j) : if path from i to j in G\}$

Transitive Closure of a DAG: Example Application

- Consider the graph G underlying any spreadsheet model,
 - The nodes are cells
 - And there is an arc from cell i to cell j if the result of cell j depends on cell i.
- When the value of a given cell is modified, the values of all reachable cells must also be updated.
- The identity of these cells is revealed by the transitive closure of G.
- Doing it fast is important

Transitive Closure of a DAG Simple Solution

- Run Floyd-Warshall with edge weights set to 1.
- If d_{ij} < n, there is a path,
- If $d_{ij} = \infty$, there is no path

Transitive Closure of a DAG Simple Solution

- Run Floyd-Warshall with edge weights set to 1.
- If d_{ij} < n, there is a path,
- If $d_{ij} = \infty$, there is no path
- Complexity = $\Theta(n^3)$

Transitive Closure of a DAG Better Solution

- Modify Floyd-Warshall by substituting logical AND and logical OR for MIN and ADD
- Complexity still $\Theta(n^3)$, but better in practice

Transitive Closure

- Define $T_{ij}^{(k)}$ as 1 if there exists a path from i to j with all itermediate vertices < k
- $E^* = \{(i,j) : T_{ij}^{(n)}\}$
- $T_{ij}^{(0)} =$
 - -0 if i ≠ j and (i, j) \notin E
 - -1 if i = j or $(i, j) \in E$
- k≥1

$$\succ t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor (t_{ik}^{(k-1)} \land t_{kj}^{(k-1)})$$

$$T^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$T^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$T^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$T^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad T^{(3)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$T^{(3)} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Transitive-Closure(G) $T^{(3)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$ $1 \quad n = |G.V|$ 2 let $T^{(0)} = (t_{ij}^{(0)})$ be a new $n \times n$ matrix for i = 1 to nfor j = 1 to nif i == j or $(i, j) \in G.E$ for k = 1 to nlet $T^{(k)} = (t_{ij}^{(k)})$ be a new $n \times n$ matrix for i = 1 to nfor j = 1 to n $t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{ki}^{(k-1)})$ 12

return $T^{(n)}$

Another Approach to All-Pairs Shortest Paths

Johnson's Algorithm

- For Sparse Graphs Better than Floyd-Warshall or Repeated Matrix Squaring
- $O(V^2 \lg V + VE)$

Returns a matrix of shortest-path weights
 OR Reports Negative Weight Cycle

Johnson's Algorithm w/ Reweighting

- Given Graph G=(V,E) with all edge weights w>=0.
- Dijkstra's shortest path run on each vertex v in V w/ Fibonacci-Heap min-priority queue
 - $O(V^2 \lg V + VE)$
- If G has edge weights less than 0
 - Compute new set of non-negative weights

Dijkstra

- Solves the single-source shortest-paths problem on a weighted, directed graph G=(V,E)
- Requires all edge weights are nonnegative.
 - Assumes w(u,v) >= 0 for each edge (u,v) in E.
- With a good implementation, the running time of Dijkstra's algorithm is lower than that of the Bellman-Ford algorithm.

Dijkstra

- Dijkstra's algorithm maintains a set S of vertices whose final shortest-path weights from the source s have already been determined
- The algorithm:
 - repeatedly selects the vertex u from V-S with the minimum shortest-path estimate,
 - adds u to S,
 - and relaxes all edges leaving u.
- Book implementation uses min-priority queue Q of vertices, keyed by their d values.

Dijkstra

```
DIJKSTRA(G, w, s)
  INITIALIZE-SINGLE-SOURCE (G, s)
S = \emptyset
Q = G.V
  while Q \neq \emptyset
       u = \text{EXTRACT-MIN}(Q)
       S = S \cup \{u\}
        for each vertex v \in G.Adj[u]
            Relax(u, v, w)
```


Figure 24.6 The execution of Dijkstra's algorithm. The source s is the leftmost vertex. The shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values. Black vertices are in the set S, and white vertices are in the min-priority queue Q = V - S. (a) The situation just before the first iteration of the **while** loop of lines 4–8. The shaded vertex has the minimum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration of the **while** loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration. The d values and predecessors shown in part (f) are the final values.

Johnson's Algorithm w/ Reweighting : \hat{w}

- 1. $\forall u, v \in V$, a shortest path between u and v with w must also be a shortest path with \widehat{w}
- 2. \hat{w} is nonnegative for all edges

Computing New Weights

- Reweight \widehat{w} using function h(v) for v in V.
- $\widehat{w}(u, v) = w(u, v) + h(u) h(v)$

Computing New Weights

- Reweight \widehat{w} using function h(v) for v in V.
- $\widehat{w}(u, v) = w(u, v) + h(u) h(v)$
- Reweighting doesn't change Shortest Path

$$\widehat{w}(p) = \sum_{i=1}^{k} \widehat{w}(\nu_{i-1}, \nu_{i})$$

$$= \sum_{i=1}^{k} (w(\nu_{i-1}, \nu_{i}) + h(\nu_{i-1}) - h(\nu_{i}))$$

$$= \sum_{i=1}^{k} w(\nu_{i-1}, \nu_{i}) + h(\nu_{0}) - h(\nu_{k})$$

$$= w(p) + h(\nu_{0}) - h(\nu_{k}) .$$
Telescopes

Computing New Weights

- Reweight \widehat{w} using function h(v) for v in V.
- $\widehat{w}(u, v) = w(u, v) + h(u) h(v)$
- Reweighting doesn't change Shortest Path
- Reweighting maintains negative weight cycles

$$\widehat{w}(c) = w(c) + h(v_0) - h(v_k)$$
$$= w(c),$$

Example Constraint Graph

24.4 Difference constraints and shortest paths

667

 Uses similar graph to produce reweighting function h(v)

Reweighting Function h(v)

- Given: G=(V,E) w/ w : E -> R
- Make G' = (V',E') where
 - $-V' = V + \{s\}$
 - $E' = E + \{(s, v) : v \text{ in } V\}$
- Same as our Difference Constraints Graph

Reweighting Function h(v)

- Given: G=(V,E) w/ w : E -> R
- Make G' = (V',E') where
 - $-V' = V + \{s\}$
 - $E' = E + \{(s, v) : v \text{ in } V\}$
- Now G':
 - No shortest path include s unless they start with s.
 - No negative weight-cycle unless in G.
- Define $h(v) = \delta(s,v)$ for all v in V'

Reweighting Function h(v)

- Given: G=(V,E) w/ w : E -> R
- Make G' = (V',E') where
 - $V' = V + \{s\}$
 - $E' = E + \{(s, v) : v \text{ in } V\}$
- Define $h(v) = \delta(s,v)$ for all v in V'
 - $-h(v) \le h(u) + w(u,v)$
 - $-0 \le h(u) h(v) + w(u,v)$
 - $-\widehat{w}(u, v) = w(u, v) + h(u) h(v) \ge 0$
 - NONNEGATIVE

- $\delta(s,3) = -5$
- $\delta(s,2) = -1$
- $\widehat{w}(3, 2) = w(3,2) + \delta(s,3) \delta(s,2) = 4 + (-5) (-1)$

•
$$\delta(u,v) = \hat{\delta}(u,v) + h(v) - h(u)$$

 $- \hat{w}(u,v) = w(u,v) + h(u) - h(v)$
 $- \hat{w}(u,v) + h(v) - h(u) = w(u,v)$

•
$$\delta(1,3) = w(1,5) + w(5,4) + w(4,3)$$

•
$$\delta(1,4) = -4 + 6 + -5 = -3$$

•
$$\hat{\delta}(1,4) = \hat{w}(1,5) + \hat{w}(5,4) + \hat{w}(4,3)$$

•
$$\delta(1,4) = 0 + 2 + 0 = 2$$

•
$$\delta(1,3) = \hat{\delta}(1,3) + h(3) - h(1)$$

•
$$\delta(1,3) = 2 + -5 - 0 = -3$$


```
JOHNSON(G, w)
     compute G', where G' \cdot V = G \cdot V \cup \{s\},
          G'.E = G.E \cup \{(s, v) : v \in G.V\}, \text{ and }
           w(s, v) = 0 for all v \in G.V
     if Bellman-Ford(G', w, s) == \text{False}
 3
          print "the input graph contains a negative-weight cycle"
     else for each vertex v \in G'. V
 4
 5
                set h(v) to the value of \delta(s, v)
                     computed by the Bellman-Ford algorithm
 6
          for each edge (u, v) \in G'.E
                \widehat{w}(u,v) = w(u,v) + h(u) - h(v)
 8
          let D = (d_{uv}) be a new n \times n matrix
 9
          for each vertex u \in G.V
               run DIJKSTRA(G, \widehat{w}, u) to compute \widehat{\delta}(u, v) for all v \in G.V
10
11
                for each vertex v \in G.V
                     d_{uv} = \widehat{\delta}(u, v) + h(v) - h(u)
12
13
          return D
```

Johnson Analysis

- Fibonacci Heap yields O(V² lg V + VE)
- Binary Min-Heap yields O(VE lg V)