

PLATAFORMA DE DRAMATIZACIÓN ROBÓTICA MODULAR

David Stiven Ávila González

Miguel Ángel Bermeo Ayerbe

Fabián Andrés Merchán Jimenez

Alejandra María González Correal

Enrique González Guerrero

AGENDA

OPORTUNIDAD

CONTEXTO

Rama de investigación en SIDRE

Robots actores basados en modelo BDI

- Robot versátil

- Enseñar diferentes materias

OBJETIVOS

Desarrollar una plataforma robótica modular orientada a la dramatización

Módulo de manipulación

Diseñar y ejecutar pruebas de integración

Realizar una validación operativa

RETOS

Entender el modelo de agentes BDI

Familiarización con los frameworks

Diseño mecánico

Integración electrónica, informática y mecánica

METODOLOGÍA

Diseño arquitectura

- Detectección de los requerimientos arquitecturalmente significantes.
- · Familiarización y adaptación de la arquitectura del modelo de agentes BDI y ROBOACT
- ANSI/IEEE 1471-2000

Diseño del prototipo

- Diseño una plataforma robótica que se adapte a la arquitectura propuesta.
- Selección de los componentes adecuados para la plataforma.
- Top-Down

Pruebas

- · Ejecución del protocolo de pruebas
- IEEE std 1500

Implementación arquitectura

· Implementación de la arquitectura propuesta con base en los frameworks existentes.

Desarrollo del prototipo

- Desarrollo de cada uno de los módulos Validación con usuarios. mencionados en los objetivos.
- Diseño de la estructura mecánica.

Validación

- Validación con los stakeholders
- IEEE Std 1012TM-2012

Product Owners

Alejandra González Correal

Enrique González Guerrero

Scrum Master

David Stiven Ávila

Scrum Team

Miguel Ángel Bermeo

Fabián Andrés Merchán

Extreme Programming

Reuniones semanales con el cliente

Programación en parejas

Validación cruzada

HERRAMIENTAS

Scrum Board	Versionamiento	Repositorio
Pivotal Tracker	Git Google Drive	Github (8 Repositorios)

REQUERIMIENTOS

RECOLECCIÓN

Análisis de plataformas comerciales

9 Encuestas a ingenieros y profesores

1 Entrevista a experto robótica

1 Entrevista a experta educación

REQUERIMIENTOS SIGNIFICATIVOS

Adaptabilidad

Modificabilidad

Entendimiento

SOLUCIÓN

Modularidad

Orientación a servicios

Modelo de agentes

Adaptabilidad al contexto

Escalabilidad

Distribución de procesamiento

Mantenibilidad

Personalización

Flexibilidad

Reusabilidad

Escalabilidad

Interoperabilidad

Mantenibilidad

Proactivo

Cooperativo

Situado

Racional

Autónomo

SOLUCIÓN

ARQUITECTURA

ACTOR

ACTOR

MÓDULO

SISTEMA

NUEVO RETO

¿Cómo utilizar estructuras de control usando composición de servicios?

SISTEMA

OBJETIVOS

Desarrollar una plataforma robótica modular orientada a la dramatización

Diseñar unwamputiteturarió bigio afísica i baswaela el med de loca BDI

Módulo de procesamiento

Módulo de manipulación

Módulo audiovisual

Diseñar y ejecutar pruebas de integración

Módulo de movilidad

Realizar una validación operativa

PROTOTIPO

REQUERIMIENTOS SIGNIFICATIVOS

DESPLIEGUE

MÓDULO DE PROCESAMIENTO

- **EJECUTAR ESCENA**
- CARGAR DESCRIPCIÓN DEL PERSONAJE
- **CARGAR MODELO DEL MUNDO**
- **CARGAR DICCIONARIO SEMANTICO**
- **CARGAR MODULOS VIRTUALES**
- CARGAR MALAS PALABRAS

MÓDULO DE PROCESAMIENTO

DETALLES TÉCNICOS

Odroid C2

Java

Ubuntu Mate

Spring

2Gb RAM

Gradle

Procesador 1.5GHz

5VDC - 2A(MAX)

Desarrollar una plataforma robótica modular orientada a la dramatización

Diseñar una arquitectura lógica y física basada en el modelo BDI

Módultodeprocesamiento procesamiento

Módulo audiovisual

Módulo de movilidad

Módulo de manipulación

Diseñar y ejecutar pruebas de integración

Realizar una validación operativa

MÓDULO AUDIOVISUAL

- INFORMAR NECESIDAD
- ACTUALIZAR ESTADO BATERIA
- **DECIR**
- REPRODUCIR VIDEO
- REPRODUCIR AUDIO
- PREGUNTAR

MÓDULO AUDIOVISUAL

DETALLES TÉCNICOS

Socket IO

NodeJS

HTML

Pantalla táctil

HDMI

800px x 480px

500mA

Tarjeta de sonido

Micrófono

Parlante

Desarrollar una plataforma robótica modular orientada a la dramatización

- Diseñar una arquitectura lógica y física basada en el modelo BDI
- Módulo de procesamiento
- Módulbæudiövisisalal
- Módulo de movilidad

Módulo de manipulación

Diseñar y ejecutar pruebas de integración

Realizar una validación operativa

MÓDULO DE MOVILIDAD

MÓDULO DE MOVILIDAD

DETALLES TÉCNICOS

Odroid C2

C++

DC Motors

ADC

Socket IO

298:1

10 Bits

WiringPl

2 PWM

10MHz

DETALLES TÉCNICOS

Control de velocidad

Control proporcional

Encoder

2 PWM

Control seguidor de línea

Control PID

Sensores de línea

Desarrollar una plataforma robótica modular orientada a la dramatización

- Diseñar una arquitectura lógica y física basada en el modelo BDI
- Módulo de procesamiento
- Módulo audiovisual
- Módullodemovilidadd

Módulo de manipulación

Diseñar y ejecutar pruebas de integración

Realizar una validación operativa

MÓDULO DE MANIPULACIÓN

DETALLES TÉCNICOS

PWM

UART

C

10mA

Desarrollar una plataforma robótica modular orientada a la dramatización

- Diseñar una arquitectura lógica y física basada en el modelo BDI
- Módulo de procesamiento
- Módulo audiovisual
- Módulo de movilidad

Módultodæmanipplalaióión

Diseñar y ejecutar pruebas de integración

Realizar una validación operativa

VALIDACIÓN

1 Egresado

1 Usuario no relacionado a áreas de TI

2 Profesores

2 Estudiantes

Desarrollar una plataforma robótica modular orientada a la dramatización

- Diseñar una arquitectura lógica y física basada en el modelo BDI
- Módulo de procesamiento
- Módulo audiovisual
- Módulo de movilidad

- Módulo de manipulación
- Diseñar y ej pouta a pretetra de dia fegeagrisorión
- Realizar umævælidaæióóopppativáva

RESULTADOS

(

RESULTADOS

Desarrollo en C++, java y JavaScript de módulos con los estándares establecidos

Ajustes a frameworks del grupo de investigación

Desarrollo de un prototipo funcional

CONCLUSIONES ARQUITECTURA

- Desacoplar el motor BDI de la ejecución de las acciones
- Ejecutar tareas distribuidas y en paralelo eficientemente
- Reducir la complejidad del desarrollo

- Tener redundancia de servicios
- Aumentar la tolerancia a fallos
- Tener flexibilidad

(

TRABAJOS FUTUROS

Agregar un modelo emocional para el actor independiente al del personaje

Paralelizar la evaluación de deseos

Aumentar la base de conocimiento del actor

Desarrollar una interfaz de usuario para elaborar los scripts