تسن ١ تعقق دسيات

11.19/EV9 Vill cable

مدن مندس در می بود و سرمایه وزمان منرب میگود سی مجدولات ما دو منرب مله و طه خواهد بود

ا بترجه به ندل فعا قروز رند تنها ناصر ای است که عواب درآن مرار دارد و سب معل تدافق این دوخط جایی است که عام هدف ما ماسیم که ند

$$\begin{cases} \triangle \Re a + Y \Re b = Y \\ Y \Re a + \triangle \Re b = Y \end{cases} \longrightarrow \Re a = \frac{Y}{r} \Rightarrow \Re b = \frac{Y}{r}$$

nagimize
$$\forall \alpha_1 - \alpha_{1} + \forall \alpha_{1} \rightarrow \cdots \rightarrow \cdots$$

Subject to $\bigcirc \forall \alpha_1 + \alpha_{1} \neq \forall \alpha_{2} \rightarrow \cdots \neq \forall \alpha_{n} \neq \forall \alpha_{n}$

1	out	no	864	, a,	mr	9C 4	RHS
-2	0	0	-٢	L	+1	0	0
22	1	0	0	. 4	1	0	10
ro	ò	1	- ٢	1	Y	0	1
24	•	0	4	. 0	1	1	0

1	308	wa	ne	(m)	96 x	024	RAS
-2	0	0	0	-Y	+ Y	+1	+0
95	1	0	0	7	(0	10
Res	0	1	0	11	٣		V
ne	0	0	1	0	+	Ŧ	0

2000 , shows &

	911	90	911	24	ax	NY	RHS
-2	-4	0	0	. 0	۲	1	۵
RI	Y	0	0	, 1	1	0	10
20	1	1		0	4	,	1
20	0	0	1		1/2	1/5	100

	21	Ra	916	ne	nr	84	RHS
-7	0	0	0	١	۴	1	10
71	1	O	0	+	4	0	8
20	0	1	0	-14	뜾	1	1
20	0	0	1	0	+	+	182

$$\Rightarrow \begin{array}{c} \mathcal{R}_{1} = 0 & \mathcal{R}_{2} = 0 \\ \mathcal{R}_{3} = 1 & \mathcal{R}_{4} = 0 \\ \mathcal{R}_{4} = \frac{\alpha}{r} & \mathcal{R}_{4} = 0 \end{array}$$

Minimize Pai + Yar+ Force

Subject to Orai+ xx+ Mac = 40

where mixo nexo nexo

@ rx, + rx++ 090 > 110 > @ rx++090 - 2 = 110 2170

1	DLY	nr	91,	ne	RAS
-2	Y	٤	٣	0	0
91	1	4	۲	0	40
ns	٣	0	٣	-1	170

	ny	n4.	SI.	ns	143
-2	0	- 1	-1	0	16
914	1	p	۲	0	40
nr	Ø	-15	-10	-1	-90

1	NA	96	21	20 5.	
-2	P	0	010	90	-90
91	1	0	-1/2	- 5	10
94	0	-1-	72	1/2	+10

$$\Rightarrow \begin{cases} 2e_1 = 0 \\ 9e_2 = 0 \\ 2e_1 = 10 \end{cases}$$

$$2e_1 = 0$$

$$2e$$

2) همانگونه که در ویدیو اموزشی دیدیم به صورت زیر متغیر ها ، قیود و تابع هدف را تعریف میکنیم. معادلات را در سوال 1 به دست اورده بودیم. سپس نوع بهینه سازی را ماکسیمایز انتخاب کرده و solver را نیز انتخاب میکنیم و نتایج را نشان می دهیم.

```
1 import pyomo.environ as pyo
 2 from pyomo.environ import *
 3 from pyomo.opt import SolverFactory
 5 model = pyo.ConcreteModel()
 7 model.xa = pyo.Var(bounds=(0,1))
 8 model.xb = pyo.Var(bounds=(0,1))
10 xa = model.xa
11 xb = model.xb
12
13 model.c1 = pyo.Constraint(expr= 5000*xa+4000*xb==6000)
14 model.c2 = pyo.Constraint(expr= 400*xa+500*xb<=600)
15
16 model.obj = pyo.Objective(expr= 4500*xa+4500*xb, sense=maximize)
17
18 opt = SolverFactory('glpk')
19 opt.solve(model)
20
21 model.pprint()
22
23 xaval = pyo.value(xa)
24 xbval = pyo.value(xb)
25
26 print('xa = ',xaval)
27 print('xb = ',xbval)
28
29 print('maximize J = ',4500*xaval+4500*xbval)
```

نتیجه بهینه سازی به صورت زیر می شود که این اطلاعات را خود مدل در اختیار ما میگذارد.

2 Var Declarations

xa : Size=1, Index=None

xb : Size=1, Index=None

1 Objective Declarations

obj : Size=1, Index=None, Active=True
Key : Active : Sense : Expression

None: True: maximize: 4500*xa + 4500*xb

2 Constraint Declarations

c1 : Size=1, Index=None, Active=True

Key : Lower : Body : Upper : Active
None : 6000.0 : 5000*xa + 4000*xb : 6000.0 : True

c2 : Size=1, Index=None, Active=True

Key : Lower : Body : Upper : Active
None : -Inf : 400*xa + 500*xb : 600.0 : True

5 Declarations: xa xb c1 c2 obj

حال مقادیر xa و xb را فراخوانی میکنیم و مقدار تابع هدف را محاسبه میکنیم.

xa = 0.66666666666666

xb = 0.66666666666667

maximize J = 5999.9999999998

5) دو متغیر x و y داریم و برای مثلث مد نظر، باید دو شرط را در نظر بگیریم. شرط اول نا منفی بودن اضلاع و شرط دوم این است که مجموع دوضلع از ضلع دیگر بزرگتر باشد. به این ترتیب δ قید داریم و تابع هدف را نیز تعریف میکنیم و پاسخ را برای ان محاسبه میکنیم.

در حالت اول تابع هدف را ماکسیمایز میکنیم.

```
model = pyo.ConcreteModel()
model.x = pyo.Var()
model.y = pyo.Var()
x = model.x
y = model.y
model.c1 = pyo.Constraint(expr= 8-x-0.5*y>=0)
model.c2 = pyo.Constraint(expr= 7+x-1.5*y>=0)
model.c3 = pyo.Constraint(expr= 1+x>=0)
model.c4 = pyo.Constraint(expr= 8-x-0.5*y+7+x-1.5*y>=1+x)
model.c5 = pyo.Constraint(expr= 8-x-0.5*y+1+x>=7+x-1.5*y)
model.c6 = pyo.Constraint(expr= 7+x-1.5*y+1+x>=8-x-0.5*y)
model.obj = pyo.Objective(expr= 16+x-2*y, sense=maximize)
opt = SolverFactory('glpk')
opt.solve(model)
model.pprint()
xval = pyo.value(x)
yval = pyo.value(y)
print('x = ',xval)
print('y = ',yval)
print('Triangle Districts = {} , {} , {}'.format(8-xval-0.5*yval , 7+xval-1.5*yval , 1+xval ))
print('maximize J = ',16+xval-2*yval)
```

خروجی solver به صورت زیر است:

```
2 Var Declarations
   x : Size=1, Index=None
       Key : Lower : Value : Upper : Fixed : Stale : Domain
       None: None: -1.0: None: False: False: Reals
   y : Size=1, Index=None
       Key : Lower : Value : Upper : Fixed : Stale : Domain
       None : None : -3.0 : None : False : False : Reals
1 Objective Declarations
   obj : Size=1, Index=None, Active=True
       Key : Active : Sense : Expression
       None: True: maximize: 16 + x - 2*y
6 Constraint Declarations
   c1 : Size=1, Index=None, Active=True
       Key : Lower : Body : Upper : Active
       None : 0.0 : 8 - x - 0.5*y : +Inf : True
   c2 : Size=1, Index=None, Active=True
       Key : Lower : Body
                            : Upper : Active
       None : 0.0 : 7 + x - 1.5*y : +Inf : True
   c3 : Size=1, Index=None, Active=True
       Key : Lower : Body : Upper : Active
       None: 0.0:1+x:+Inf: True
   c4 : Size=1, Index=None, Active=True
       Key : Lower : Body
                                                         : Upper : Active
       None: -Inf: 1 + x - (8 - x - 0.5*y + 7 + x - 1.5*y): 0.0: True
   c5 : Size=1, Index=None, Active=True
       Key : Lower : Body
                                                        : Upper : Active
       None: -Inf: 7 + x - 1.5*y - (8 - x - 0.5*y + 1 + x): 0.0: True
   c6 : Size=1, Index=None, Active=True
       Key : Lower : Body
                                                        : Upper : Active
       None: -Inf: 8 - x - 0.5*y - (7 + x - 1.5*y + 1 + x): 0.0: True
9 Declarations: x y c1 c2 c3 c4 c5 c6 obj
                                              حال مقادیر x و y و اضلاع و محیط را نمایش میدهیم:
x = -1.0
y = -3.0
Triangle Districts = 10.5, 10.5, 0.0
maximize J = 21.0
```

در حالت دوم تابع هدف را مینیمم میکنیم:

```
2 Var Declarations
   x : Size=1, Index=None
       Key : Lower : Value : Upper : Fixed : Stale : Domain
       None: None: 2.0: None: False: False: Reals
   y : Size=1, Index=None
       Key : Lower : Value : Upper : Fixed : Stale : Domain
       None: None: 6.0: None: False: False: Reals
1 Objective Declarations
   obj : Size=1, Index=None, Active=True
       Key : Active : Sense : Expression
       None: True: minimize: 16 + x - 2*y
6 Constraint Declarations
   c1 : Size=1, Index=None, Active=True
       Key : Lower : Body : Upper : Active
       None: 0.0:8-x-0.5*y:+Inf: True
   c2 : Size=1, Index=None, Active=True
       Key : Lower : Body
                           : Upper : Active
       None: 0.0:7+x-1.5*y:+Inf: True
   c3 : Size=1, Index=None, Active=True
       Key : Lower : Body : Upper : Active
       None: 0.0:1+x:+Inf: True
   c4 : Size=1, Index=None, Active=True
       Key : Lower : Body
                                                        : Upper : Active
       None: -Inf: 1 + x - (8 - x - 0.5*y + 7 + x - 1.5*y): 0.0: True
   c5 : Size=1, Index=None, Active=True
       Key : Lower : Body
                                                         : Upper : Active
       None: -Inf: 7 + x - 1.5*y - (8 - x - 0.5*y + 1 + x): 0.0: True
   c6 : Size=1, Index=None, Active=True
       Key : Lower : Body
                                                       : Upper : Active
       None: -Inf: 8 - x - 0.5*y - (7 + x - 1.5*y + 1 + x): 0.0: True
9 Declarations: x y c1 c2 c3 c4 c5 c6 obj
                                               مقادیر اضلاع به صورت زیر می شود:
x = 2.0
V = 6.0
Triangle Districts = 3.0, 0.0, 3.0
 minimize J = 6.0
```