北京化工大学 2006——2007 学年第二学期

《机械原理》期末考试试卷

	课程什	代码	М	E	E	2	4	4	0	T	
班级:					学号:			分数:			
题号			:		四	Б	六		5	八	总分
得分											
一、填空题(13分,每空1分)											
1. 在圆锥齿轮传动中,为了计算和测量的方便,通常取											
2. 当四杆机构的压力角α=90°时,传动角等于,该机构处于位置。											
3. 用标准齿条插刀加工标准齿轮时,是刀具的											
3. 在单销四槽的外槽轮机构中,槽轮转动的时间与静止的时间之比为。槽数											
z=4 ß	的外啮合槽	轮机构。	主动销	激驗多	应为_	22					
5. 为了限制过大的轴向力。通常斜齿轮的螺旋角取为。											
6. 标准渐开线直齿圆柱齿轮的最小不根切齿数是											
7. 机拉	自具有确定证	医动的条	件是	-					- ^		
8. 蜗车	伦蜗杆传 家	协的证 例	爾明合	条件员	2						
9. 回转	构件的直径	D 和轴向	可宽度 8	之比と	/ <i>D</i> 满	Ť.		条件或	有重要	作用的回	2转构件,
必须满人	足动平衡条	件方能平	稳地运	特。如	1不平衡	,必须3	至少在_		个技	江平面	上各自适
当地加。	上或去除平	衡质量,	方能获	得乎復	Ī.				,•		

- 二、(10分)试验出图示平面图杆机构的名称,并回答:
- :(1) 此机构有无急回作用?
- (2) 此机构有无死点?在什么条件下出现死点?
- (3) 构件 AB 主动时,在什么位置有最小传动角?

三、(12分) 计算图示机构的自由度。如存在复合铰链、局部自由度或虚约束。 補明确指 出。然后对机构进行结构分析(拆成杆组后商出), 并指出该机构是几级机构。

四、(12分) 试用图解法设计图示曲柄摇杆机构 ABCD。已知摇杆 $\frac{1}{3c}=40$ mm, 摆角 $\phi=45^\circ$,行程速度变化系 数 K=1.2,机架长度 $\frac{1}{30}=b-a$ (a 为曲柄长,b 为连杆长)。

五、(12 分) 图示为对心直动滚子从动件盘形凸轮机构,凸轮为一偏心圆盘。已知圆盘半径 $R=40\,\mathrm{mm}$,该圆盘的回转中心与几何中心间的距离 $A0=25\,\mathrm{mm}$,滚了半径 $r_r=9\,\mathrm{mm}$ 。试

- 1) 面出理论廓线,并求该凸轮的基圈半径 7%
- 2) 从动件的行程 λ:
- 3) 标出图示位置的压力角及其所对应的从动件的位移 s

六、(18分) 已知一对直齿圆柱标准齿轮传动,实际中心距 a'=100~mm, m=4~mm, $\alpha=20^\circ$, h'=1, z=20, z=30, 试计算:

- (1) 两轮的齿顶圆 r_n、 r_{n2} 及基圆 r_n、 r_{n2}:
- (2) 喊合角α:
- (3) 分度圆片、桌及节圆片、桌:
- (4) 该对齿轮传动的重合度 \mathcal{E}_a 。

参考计算公式: $\varepsilon_{\alpha} = \frac{1}{2\pi} \left[z_1 \left(\tan \alpha_{\sigma 1} - \tan \alpha' \right) + z_2 \left(\tan \alpha_{\sigma 2} - \tan \alpha' \right) \right]$

七、11 分)图示轮系中,已知 $z_1 = 24, z_2 = 33, z_3 = 21, z_4 = 36, z_5 = 18, z_6 = 30, z_7 = 78$,求 传动比 i_{17} 。

八、(12 分) 己知机器一个运动循环内的等效配力矩 M。的变化曲线如图示, 其等效驱动力 短为恒定值,平均角速度 $\omega_a=20$ rad/s。 要求运转速度不均匀系数 $\delta=0.05$ 。 若忽略除飞轮 以外的等效转动慢量,试问:

- (1) 等效驱动力矩 M=?
- (2) 等效构件的最大角速度 $\omega_{\scriptscriptstyle{
 m min}}$ 和最小角速度 $\omega_{\scriptscriptstyle{
 m min}}$ 发生在什么位置?
- (3) 最大盈亏功 △ W *** =? ·
- (4) 安装在等效构件上的飞轮转动惯量 J, 的大小、

參考计算公式:
$$J_p = \frac{\Delta W_{\text{max}}}{\delta \omega_m^2} = \frac{900 \Delta W_{\text{max}}}{\delta \pi^2 n^2}$$

