Objetivo Aprobar

¿Cómo podemos identificar a los alumnos que tienen riesgo de desaprobar curso antes de que lo hagan?

Contamos con información de un conjunto de alumnos.

La información refiere a características de cursadas.

Tenemos información sobre qué exámenes rindió, con qué nota, a qué altura del curso.

También, sobre qué actividades (TP, Integradoras, etc) desarrolló, con su nota y momento de entrga.

No tenemos información sobre características idiosincráticas del alumno, como sexo, edad, educación previa, residencia, características de padres, condiciones ambientales, etc.

Dado esto, ¿podemos <u>predecir</u> si un alumno va a aprobar o no una materia?

Hay múltiples posibles estrategias o caminos para responder esto con los datos disponibles: elegimos una.

Procesamos información para obtener características de la cursada hasta el día del primer examen.

Características (Features):

- > Nota del primer examen.
- Score promedio de actividades previas a primer examen.

- > Tiempo promedio de entrega de actividades.
- Cantidad de días desde inicio hasta el primer examen.

Target:

¿Desaprobó la materia?

Análisis Descriptivo

Nota de Primer Parcial

cola a la izquierda.

Score de Actividades

El promedio es 88.3 y la mediana es 91, distribución con cola a la izquierda.

Boxplot de Nota Actividades por Aprobo

Tiempo hasta entrega de actividades

Boxplot de Tiempo promedio de submision por Aprobo

Días hasta primer examen

simétrica.

Aprendizaje Automático

Target:

¿Desaprobó la materia?

Se hizo un estudio preliminar para ver qué algoritmos tendían a predecir mejor

Top 10

De cada 100 cursadas que desaprobaron en la realidad, ¿cuántas es capaz el modelo de predecir?

	Accuracy	Balanced Accuracy	POC ALIC	E1 Score	recall score	Time Taken
	Accuracy	Dalanceu Accuracy	NOC AUC	r i score	recail_score	Tillie Takeli
Model						,
BernoulliNB	0.70	0.77	0.77	0.80	0.85	0.01
Passive Aggressive Classifier	0.80	0.75	0.75	0.87	0.70	0.01
Perceptron	0.75	0.75	0.75	0.84	0.75	0.01
NearestCentroid	0.76	0.73	0.73	0.84	0.70	0.01
Quadratic Discriminant Analysis	0.84	0.70	0.70	0.89	0.55	0.01
Calibrated Classifier CV	0.85	0.68	0.68	0.90	0.50	0.03
LogisticRegression	0.85	0.68	0.68	0.90	0.50	0.01
LinearSVC	0.85	0.68	0.68	0.90	0.50	0.07
Ridge Classifier CV	0.84	0.68	0.68	0.89	0.50	0.01
Ridge Classifier	0.84	0.68	0.68	0.89	0.50	0.01

Tomamos el mejor y sumamos algunos de los usados en general por la ciencia de datos

		precision	recall	f1-score	support
Bernoulli	0	0.99	0.69	0.82	772
Derriouiii	1	0.07	0.85	0.12	20
Naive Bayes	accuracy			0.70	792
•	macro avg	0.53	0.77	0.47	792
	weighted avg	0.97	0.70	0.80	792
		precision	recall	f1-score	support
Extreme	0	0.98	0.97	0.97	772
Gradient	1	0.08	0.10	0.09	20
Gradient				0.05	702
Boosting	accuracy	0.53	0.53	0.95 0.53	792 792
3	macro avg weighted avg	0.95	0.95	0.95	792 792
	mergineed dvg	0.55	0.55	0.55	,,,
		precision	recall	f1-score	support
	0	0.00	0.85	0.91	772
	1	0.98	0.50	0.91	20
Red Neuronal		0.08	0.30	0.13	20
	accuracy			0.84	792
	macro avg	0.53	0.67	0.52	792
	weighted avg	0.96	0.84	0.89	792

Anexo: Importancia de las Features

Usamos Regresión Logística para obtener el orden de importancia

- 1. nota_parcial (1.57)
- 2. tiempo_hasta_submision (0.13)
 - 3. Score (0.11)
- 4. dias_hasta_primer_examen (0.02)

¡Gracias!