Atendimento 1

Prof. Dr. Caio¹, Prof. Akira²

Exercício 1. Um conjunto pistão-cilindro contém 1kg de gás nitrogênio (N_2) . O gás expande a partir de um estado inicial onde $T_1 = 700K$ e $P_1 = 5$ bar para um estado final em que $P_2 = 2$ bar. Durante o processo a pressão e o volume específico são relacionados por PV^1 , 3 = k, com $k \in \mathbb{R}$ constante. Assuma o comportamento de gás ideal. Pede-se para determinar a quantidade de calor transferida durante o processo em kJ. Dado: R = 0.2968kJ/kgK

- 1. Determine as hipóteses simplificadoras para a resolução do problema.
- 2. Calcule o volume nos estados inicial e final.
- 3. Calcule a temperatura no estado final.
- 4. Calcule o trabalho envolvido no processo.
 - 5. Sabendo que em 300K o calor específico é $c_{v_0} = 0.745kJ/kgK$, calcule a quantidade de calor transferida. Dica: em volume constate a energia interna específica pode ser calculada como $u = c_{v_0}T$.
 - 6. Usando a tabela de propriedades, calcule a quantidade de calor transferida.
- 7. Calcule o erro relativo da quantidade de calor tomando como referência a quantidade de calor calculada no exercício anterior. Discuta o resultado.

 $^{^{1}}$ caiofrs@insper.edu.br.

²pauloafe@insper.edu.br.