(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002—226943

(P2002-226943A) (43)公開日 平成14年8月14日(2002.8.14)

(51) Int. Cl. 7	: 識別記号	FI	テーマコード (参え					
C22C 38/00	301	C22C 38/00						
C21D 9/46		C21D 9/46	6 т					
C22C 38/12		C22C 38/12	2					
38/38		38/38	8					
		審査請求	未請求 請求項の数3 OL (全8頁)					
(21)出願番号	特願2001-25280(P2001-25280)	(71)出願人	000001258					
(a a) 111777 —			川崎製鉄株式会社					
(22)出願日	平成13年2月1日(2001.2.1)		兵庫県神戸市中央区北本町通1丁目1番28 号					
		(72)発明者						
		(12))2914	千葉県千葉市中央区川崎町1番地 川崎製					
			鉄株式会社技術研究所内					
		(72)発明者	•					
			千葉県千葉市中央区川崎町1番地 川崎製					
			鉄株式会社技術研究所内					
		(74)代理人	100072051					
·			弁理士 杉村 興作 (外1名)					
			最終頁に続く					

(54) 【発明の名称】加工性に優れた高降伏比型高張力熱延鋼板およびその製造方法

(57)【要約】

【課題】 熱延ままで、加工性、特に伸びと伸びフランジ性に優れ、しかも溶接性や化成処理性にも優れた高降 伏比型高張力熱延鋼板を提供する。

【解決手段】 質量百分率で、 $C:0.02\sim0.15\%$ 、 $Si:0.2\sim1.5\%$ 、 $Mn:1.0\sim3.5\%$ 、 $Mo:0.1\sim1.0\%$ 、P:0.03%以下およびS:0.001%以下を含有し、残部はFeおよび不可避的不純物の組成にすると共に、主相がフェライトで、ベイナイトまたは一部マルテンサイトを含むベイナイトからなる第2相を体積分率で $10\sim40\%$ 含む鋼組織とし、しかも第2相の平均粒径(d_1)が8 μ III 以下で、かつ主相の平均粒径(d_1)に対する比 d_1 を $0.7\sim1.3$ の範囲に制御する。

Best Available Copy

1

【特許請求の範囲】

【請求項1】 質量百分率で

 $C: 0.02 \sim 0.15\%$

 $Si: 0.2 \sim 1.5 \%$

 $Mn: 1.0 \sim 3.5 \%$

 $Mo: 0.1 \sim 1.0 \%$

Al: 0.01~0.1 %,

P:0.03%以下および

S:0.001 %以下

を含有し、残部はFeおよび不可避的不純物の組成になり、主相がフェライトで、ベイナイトまたは一部マルテンサイトを含むベイナイトからなる第2相を体積分率で $10\sim40\%$ 含む鋼組織になり、しかも第2相の平均粒径が $8~\mu$ m 以下で、かつ主相との平均粒径の比が、次式 $1.3 \ge d$, $\angle d$, ≥ 0.7

ただし、d,: 主相の平均粒径、

d,:第2相の平均粒径

の範囲を満足することを特徴とする、加工性に優れた高 降伏比型高張力熱延鋼板

【請求項2】 請求項1において、鋼が、質量百分率 で、さらに

Cr: 0.3 %以下、

 $B:0.0005\sim0.01\%$

Ca: 0.001 ~0.005 %および

REM: 0.001 ~0.005 %

のうちから選んだ1種または2種以上を含有する組成に なることを特徴とする、加工性に優れた高降伏比型高張 力熱延鋼板。

【請求項3】 質量百分率で

 $C: 0.02 \sim 0.15\%$

 $Si: 0.2 \sim 1.5 \%$

 $Mn: 1.0 \sim 3.5 \%$

Mo: $0.1 \sim 1.0 \%$.

Al:0.01~0.1 %、 P:0.03%以下および

S:0.001 %以下

を含有する組成になる鋼スラブを、仕上げ温度:820 ~970 ℃の条件で熱間圧延し、熱間圧延終了後1秒以内に5~50℃/sの速度で750~700 ℃まで冷却し、ついで750~650 ℃のフェライト相析出温度域に2~30秒滞留させたのち、5~50℃/sの速度で冷却し、350~650 ℃の温度で巻取ることを特徴とする、加工性に優れた高降伏比型高張力熱延鋼板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】自動車の構造部材や、ホイール・リム・シャーシなど足回り部材、パンパー・ドアガードパーなど強度部材には、引張り強さだけでなく、剛性も併せて必要とされ、かかる剛性を確保するためには高降伏比型の材料が求められる。この発明は、かような

高降伏比型の高張力熱延網板およびその製造方法に関するもので、引張り強さが 590 MPa級~980 MPa 級で、加工性とくに伸びおよび伸びフランジ性に優れた高張力熱延網板を提供しようとするものである。

[0002]

【従来の技術】従来、自動車用鋼板の材質強化方法としては、フェライト単相鋼では、主としてSi, Mn, Pといった置換型元素の添加による固溶強化、あるいはフェライト相中にマルテンサイト、ベイナイトまたは残留オー ステナイト等を析出させて強化を図る方法が一般的であった。

【0003】例えば、特開昭56-139654号公報等に記載されているように、加工性や時効性を改善するために、極低炭素鋼にTi, Nbを含有させて高強度化を図ることについては数多くの提案がなされている。その他にも、例えば特開昭60-52528 号公報には、低炭素鋼を高温で焼鈍し、冷却後にマルテンサイト相を析出させることによって延性に優れた高強度鋼板を製造する方法が提案されている。また、特公昭61-12008 号公報には、極低炭素20 鋼にSi, Mn, Pの他、Nb, Bを添加することによって、高強度化を図ると共に、低降伏比で高い焼付硬化性と高 r 値と延性とを兼ね備えた鋼板を製造する方法が提案されている。

【0004】上記のような方法で高強度化を図ることによって、確かに自動車用鋼板の薄肉化は、ある程度進められるようになった。しかしながら、上記の提案では、高強度化、さらには延性、r値の向上については考慮が払われているものの、ホイールディスクなどの各種構造部材で特に重要となる伸びフランジ性については、ほとんど記載されてなく、また記載されているにしても、要求特性を満足するほどには十分な改善がなされていない。従って、上記した従来技術は、自動車車体の軽量化に対して、真に有効な手段を提供するものとは言えなかった。

[0005]

【発明が解決しようとする課題】この発明は、上記の実状に鑑み開発されたもので、鋼成分および熱間圧延条件さらには鋼組織を最適化して、熱延ままで、加工性、特に伸びと伸びフランジ性に優れ、しかも溶接性や化成処理性にも優れた高降伏比型高張力熱延鋼板を、その有利な製造方法と共に提案することを目的とする。

【0006】この発明において、高降伏比を目指した理由は、高強度化に伴って成形性は劣化するが、結晶粒径をある程度まで微細化し、降伏比を高くすることにより、同一強度での伸びは向上し、低降伏比のものに比べると、強度-伸びパランスが改善されるからである。このように、高降伏比型を指向したのは、伸びや伸びフランジ特性を含めて、従来よりも、さらに強度-伸び特性の向上を図るためである。なお、この発明において、高50降伏比とは、降伏比(降伏強度/引張強度×100)が70%

以上であることを意味する。

【0007】また、この発明では、引張り強さが 590 M Pa級~980 MPa 級の鋼板を目標とするが、より具体的に 説明すると、引張り強さが 590~880 MPa の鋼板は、引 張り強さと共に優れた伸びおよび伸びフランジ性を得る 場合であり、一方引張り強さが 880 MPaを超え、1050 M Pa未満の鋼板は、伸び特性は若干犠牲にしてもより高い 引張り強さが要求される場合である。ここに、各場合に おける目標特性は次のとおりである。

・引張り強さ(TS):590 ~880 MPa の場合 $TS \times E1 \ge 20000 \text{ MPa} \cdot \%$, $TS \times \lambda \ge 50000 \text{ MPa} \cdot \%$ ・引張り強さ(TS):880 MPa 超え、1050 MPa未満の場合 TS×El≥ 14000 MPa·%、 TS×λ≥ 30000 MPa·% ただし、λ:穴拡げ率 (%)

[0008]

【課題を解決するための手段】さて、発明者らは、上記 の目的を達成すべく鋭意研究を重ねた結果、鋼成分を適 正に調整すると共に、熱間圧延条件およびその後の冷却 条件を的確に制御して鋼組織を適正に調整することによ って、所期した目的が有利に達成されることの知見を得 20 た。具体的に述べると次のとおりである。

- (1) Moを添加することにより、初期オーステナイト粒が 細粒化され、最終製品での結晶粒が細かくなり、強度ー 伸びパランス特性が改善されるだけでなく、高降伏比と なる結果、伸びフランジ性が改善される。
- (2) 圧延温度を高くすることにより、オーステナイト粒 の再結晶が促進されて、フェライト変態後の主相と第2 相の平均粒径の差が小さくなり、その結果、伸びフラン ジ性が改善される。
- (3) Moに加えて、CrやB等を複合含有させると、フェラ イト、パーライト変態が抑制され、主相と第2相との平 均粒径差が小さくなるだけでなく、第2相がペイナイト を主体とする組織となるため、伸びフランジ性が改善さ れる。
- (4) また、CrとBは、熱延時の圧延荷重を低減させ、同 時に未再結晶オーステナイト域での圧延を少なくするこ とが可能になり、これによる変形帯の減少により、フェ ライト形成サイトが低減し、フェライト変態が抑制され るため、主相と第2相との平均粒径差が小さくなり、ま た第2相がベイナイトを主体とする組織となるため、伸 40 びフランジ性が改善される。
- (5) PおよびSの含有量に上限を設けることにより、伸 びフランジ性および溶接性が改善される。

【0009】この発明は、上記の知見に立脚するもので ある。すなわち、この発明の要旨構成は次のとおりであ る。

1. 質量百分率でC:0.02~0.15%、Si:0.2~1.5 %、Mn:1.0 ~3.5 %、Mo:0.1 ~1.0 %、Al:0.01~ 0.1 %、P:0.03%以下およびS:0.001 %以下を含有 がフェライトで、ペイナイトまたは一部マルテンサイト を含むペイナイトからなる第2相を体積分率で10~40% 含む鋼組織になり、しかも第2相の平均粒径が8μm以 下で、かつ主相との平均粒径の比が、次式

 $1.3 \ge d_1 / d_1 \ge 0.7$

ただし、 d, : 主相の平均粒径、

d: 第2相の平均粒径

の範囲を満足することを特徴とする、加工性に優れた高 降伏比型高張力熱延鋼板

【0010】2.上記1において、鋼が、質量百分率 10 で、さらにCr:0.3 %以下、B:0.0005~ 0.01 %、C a:0.001 ~0.005 %およびREM:0.001 ~0.005 %のう ちから選んだ1種または2種以上を含有する組成になる ことを特徴とする、加工性に優れた高降伏比型高張力熱

【0011】3. 質量百分率でC:0.02~0.15%、Si: $0.2 \sim 1.5 \%$, Mn: $1.0 \sim 3.5 \%$, Mo: $0.1 \sim 1.0 \%$, Al:0.01~0.1%、P:0.03%以下およびS:0.001% 以下を含有する組成になる鋼スラブを、仕上げ温度:82 0~970℃の条件で熱間圧延し、熱間圧延終了後1秒以 内に5~50℃/sの速度で 750~700 ℃まで冷却し、つい で 750~650 ℃のフェライト相析出温度域に 2~30秒滞 留させたのち、5~50℃/sの速度で冷却し、 350~650 ℃の温度で巻取ることを特徴とする、加工性に優れた高 降伏比型高張力熱延鋼板の製造方法。

【0012】以下、この発明を具体的に説明する。ま ず、この発明において鋼の成分組成を上記の範囲に限定 した理由について説明する。 なお、以下に示す成分組成 の%表示は「質量%」である。

 $C: 0.02 \sim 0.15\%$ 30

> Cは、強度の向上に有効に寄与し、この発明で所期した 引張り強さを得るためには少なくとも0.02%を必要とす るが、0.15%を超えると溶接性が急激に劣化するため、 Cは0.02~0.15%の範囲に限定した。

 $[0\ 0\ 1\ 3]\ Si: 0.2 \sim 1.5\ \%$

Siは、固溶強化能が大きく、降伏比および強度-伸びバ ランスを損なうことなしに強度上昇を図れる有用元素で ある。また、 $\gamma \rightarrow \alpha$ 変態を活性化して、 γ 相へのC濃化 を促進させるなど、混合組織の形成には不可欠な元素で ある。さらに、製鋼時の脱酸元素として、鋼の清浄化に も有効に寄与する。しかしながら、含有量が 0.2%に満 たないとその派加効果に乏しく、一方 1.5%を超えると その効果は飽和に達するだけでなく、表面性状の劣化、 化成処理性の悪化などの不利が生じるので、Siは 0.2~ 1.5 %の範囲に限定した。

 $[0\ 0\ 1\ 4]\ Mn: 1.0 \sim 3.5\ \%$

Mnは、強度の向上に寄与するだけでなく、焼入れ性を向 上させる作用もあり、特に第2相を一部マルテンサイト を含むペイナイト組織とするのに有用な成分である、し し、残部はFeおよび不可避的不純物の組成になり、主相 50 かしながら、含有量が 1.0%に満たないと上記の効果が

20

期待できず、一方 3.5%を超えるとバンド状の圧延組織を形成し易くなって、伸びフランジ性や溶接性の劣化を招くので、Mnは 1.0~3.5 %の範囲に限定した。

[0015] Mo: 0.1 \sim 1.0 %

Moは、この発明において特に重要な元素である。すなわち、Moは、強度への寄与は勿論のこと、焼入れ性の向上にも寄与し、また結晶粒を細粒化して、強度一伸びパランスを改善するだけでなく、パーライト変態を抑制して第2相でのペイナイトの形成を容易にし、さらに高降伏比とすることで伸びフランジ性の改善にも寄与する。上 10記の効果を発揮させるには、少なくとも 0.1%の添加を必要とするが、1.0%を超えるとその効果は飽和に達し、むしろコストの上昇や溶接性の劣化などの悪影響が生じるので、Moは 0.1~1.0%とした。特に好ましくは 0.1~0.5%の範囲である。

$[0\ 0\ 1\ 6]\ Al: 0.01\sim0.1\ \%$

Alは、脱酸剤として有用な元素であるが、含有量が0.01 %未満では脱酸剤としての効果がなく、一方 0.1%を超えるとこの効果が飽和するだけでなくコストの上昇を招くので、Alは0.01~0.1 %の範囲に限定した。

【0017】P:0.03%以下

Pは、この発明では有害な元素であるので、その上限値の設定は重要である。すなわち、Pが多量に含有されると、溶接性が劣化し、また中心偏析に起因するフェライトパンドの形成により、伸びフランジ性の著しい劣化を引き起こす。これらの現象は、P量が0.03%を超えると顕著になるので、Pは0.03%以下に抑制するものとした。

【0018】S:0.001%以下

Sも、Pと同様、この発明では有害な成分である。すな 30 わち、Sが多量に含有されると、溶接性が劣化するだけでなく、MnSの形成による伸びフランジ性の劣化を招く。この発明では、引張り強さを上昇させるために、Mnを多量に添加する傾向にあるので、S量の上限値を限定することは特に重要である。上記したような特性の劣化は、S量が 0.001%を超えると顕著となるので、Sは 0.001%以下に抑制するものとした。

【0019】以上、必須成分および抑制成分について説明したが、この発明では、その他にも以下の元素を適宜含有させることができる。

Cr: 0.3 %以下

Crは、2相組織を得るために有用なだけでなく、パーライト変態を抑制して第2相をペイナイト主体の組織とする上でも有用な元素である。しかしながら、含有量が0.3%を超えると、化成処理性が著しく低下するだけでなく、溶接性にも悪影響が生じ、また添加コストも増大するので、Crは 0.3%以下で含有させるものとした。

[0020] B:0.0005~ 0.01 %

Bは、ペイナイトを主体とする第2相を出現させるのに 有用な元素であり、この効果は含有量が0.0005%以上で 50 得られるが、0.01%を超えるとこの効果は飽和し、むしろ熱延時に鋼板に割れが生じ易くなるので、Bは0.0005~0.01%の範囲で含有させるものとした。

[0 0 2 1] $Ca: 0.001 \sim 0.005 \%$

Caは、硫化物の大きさを細かくする作用を有し、伸びおよび伸びフランジ性の改善に有効に寄与する。しかしながら、含有量が 0.001%に満たないとその効果に乏しく、一方 0.005%を超えると効果が飽和に達するだけでなく、鋼の清浄度が劣化し、また経済的でもなくなるので、Caは 0.001~0.005 %の範囲で含有させるものとした。

[0022] REM: 0.001 ~0.005 %

REM (希土類元素) も、Caと同様、硫化物の大きさを制御して伸びおよび伸びフランジ性を向上させる効果があるが、含有量が 0.001%に満たないとその効果に乏しく、一方 0.005%を超えると効果が飽和に達するだけでなく、鋼の清浄度が劣化し、また経済的でもなくなるので、REM は 0.001~0.005 %の範囲で含有させるものとした。

【0023】以上、この発明の好適成分組成範囲につい て説明したが、この発明では、成分組成を上記の範囲に 制限するだけでは不十分で、鋼組織も併せて調整するこ とが重要である。すなわち、主相をフェライトとし、か つ第2相をペイナイトまたは一部マルテンサイトを含む ベイナイト組織とすることが重要である。 ここに、第2 相をペイナイト主体(一部マルテンサイトを含む)の組 織としたのは、髙い降伏比を得るためと、マルテンサイ ト、パーライトより軟質な第2相とすることで、フェラ イトとの硬度差を小さくして、伸びフランジ変形時の初 期クラックの発生を少なくするためである。さらに、第 2相の分率が10%に満たないと、十分な強度レベルが得 られず、一方40%を超えると伸びが著しく低下し、プレ ス成形性の劣化を招く。従って、この発明では、第2相 の分率は10~40%の範囲とした。好ましくは、20~30% の範囲である。なお、この発明において、主相であるフ エライトの分率は60~90%望ましくは70~80%とするの が好ましい。また、第2相中におけるペイナイトの分率 は70%以上とすることが好ましい。

【0024】また、第2相の平均粒径を8μm以下とし 40たのは、8μmを超えると高降伏比で良好な強度-伸び 特性が得られないからである。さらに、主相と第2相と の平均粒径の差を次式

 $1.3 \ge d_1 / d_1 \ge 0.7$

ただし、 d : 主相の平均粒径、

d: 第2相の平均粒径

の範囲に限定したのは、この範囲を外れると組織の均質性が劣化する、すなわち主相と第2相との粒径差が大きくなって、伸びフランジ変形時の初期クラックの発生が多くなるためである。

0 【0025】次に、この発明に従う製造方法について説

明する。この発明において、熱間圧延仕上げ温度を 820 ~970 ℃としたのは、仕上げ温度が 970℃を超えると、 最終的な第2相の平均粒径が粗大となるため、粒径の微 細化が達成できず、一方 820℃未満では、歪みの蓄積が 大きくなり、引き続く急冷後の緩冷過程(フェライト相 の析出過程)においてフェライト相への変態が過度に進 行して、主相と第2相との粒径差が大きくなるだけでな く、ペイナイトを主体とする第2相が形成され難くなる からである。なお、さらに低温になると、2相域での圧 延となり、フェライト相が展伸粒となって、伸びフラン 10 ジ性に悪影響を及ぼす。この点、 820~970 ℃の温度範 囲で圧延を終了すると、適度なオーステナイトの粒成長 と、引き続く急冷後の緩冷過程においてフェライト相へ の変態と粒成長が起こり、主相と第2相の粒径差が小さ くなる。なお、より好ましい仕上げ温度は 880~930 ℃ である。

【0026】ついで、上記の熱間圧延終了後、1秒以内 に 5~50℃/sの速度で冷却を開始するのは、急冷により オーステナイト粒の過度な粗大化を抑制すると共に、オ ーステナイトでの歪蓄積を図るためである。ここに、急 20 冷却停止温度、T,は緩冷温度(フェライト相析出温 冷開始時間が1秒を超えたり、また冷却速度が5℃/s未 満では、圧延加工歪みが開放され、引き続く緩冷過程で のフェライト相への変態が遅延し、逆に冷却速度が50℃ /sを超えると、過度の歪み蓄積により、フェライト変態 が促進され、主相と第2相との粒径差が大きくなるだけ でなく、ペイナイトを主体とする第2相が形成され難く なる。より好ましい急冷開始時間は 0.5秒以内、またよ り好ましい冷却速度は10~30℃/sである。

【0027】次に、上記の冷却を停止する温度を 750~ 700 ℃としたのは、この温度が 700℃に満たなかった り、750 ℃を超えると、フェライト相の析出ノーズから 外れて、緩冷過程でのフェライト変態が遅延するからで ある.

【0028】次に、 750~650 ℃の範囲に2~30秒間滯 留させるのは、この温度範囲が最適なフェライト相の析 出温度域だからである。また、この温度域での滞留時間 が2秒未満ではフェライトへの変態が充分起こらず、ア → α の 2 相分離が進行せず、 γ 中への C 濃化が不十分 で、続く巻き取り工程での第2相のベイナイト変態が起 こりにくくなり、目的とする組織が得られない。一方、 滞留時間が30秒を超えるとフェライト変態が過度に進行 し、 $\gamma \rightarrow \alpha$ の2相分離が促進され、主相と第2相との粒 径差が大きくなるだけでなく、ペイナイトを主体とする 第2相が形成され難くなると共に、パーライト変態が始 まり、ペイナイト相の生成が減少するからである。より 好適な滞留時間は4~10秒である。

【0029】上記した緩冷過程(フェライト相析出過 程)でのγ→αの2相分離処理後、さらに5~50℃/sの 速度で冷却し、350~650 ℃の温度でコイルに巻き取

パーライトが生成するため、巻取り後にペイナイトを主 体とする第2相が得られず、一方50℃/sを超える速度で 冷却すると、マルテンサイトが多く生成して、やはりペ イナイトを主体とする第2相が得られず、降伏比が低下 して、伸びフランジ性が低下するからである。また、巻 取り温度が 350℃未満では、マルテンサイトが多く生成 して、降伏比が低下し、また過度の巻取り温度の低下 は、鋼板の形状が波打つような形状になり、その制御が 困難ともなる。一方、巻取り温度が 650℃超では、パー ライトが析出して、ペイナイト相の生成量が減少し、伸 び一強度バランスが低下するだけでなく、高降伏比が得 られず、伸びフランジ性が著しく劣化する。より好まし い巻取り温度は 550~400 ℃の範囲である。

[0030]

【実施例】実施例1

表1に示す成分組成になる鋼スラブを、表2に示す条件 で、熱間圧延した後、冷却し、ついでコイルに巻取っ た。表2中、FDTは熱間圧延仕上温度、t, は熱延終 了後の冷却開始時間、 v,はその冷却速度、 T,はその 度)、t, はその温度域での滞留時間、v, はその温度 域からの冷却速度、そしてCTは巻取り温度である。か くして得られた熱延板の組織、機械的特性および化成処 理性について調べた結果を表3に示す。

【0031】なお、引張り特性は、圧延幅方向(C方 向) より採取した板厚:3.2 mmの JIS5 号引張試験片を 用いて、引張り試験を行い、降伏強度(Y.S.)、引張強度 (T.S.)、伸び(E1)を測定し、また降伏比(Y.R.)を求め た。また、伸びフランジ性の調査は穴拡げ試験により行 った。穴拡げ試験は、日本鉄鋼連盟規格 JFS-T1001-199 6 穴拡げ試験法に準拠し、試験材の鋼板に穴径=10mmφ をクリアランス:12.5%で打ち抜いて初期穴 (d。)を開 けたのち、初期穴のバリのある側をダイ側(パンチと反 対側)として、頂角:60°の円錐パンチを初期穴に挿入 して穴を拡げ、亀裂が板厚を貫通する時点での穴径

(d) を求め、次式により穴拡げ率λ(%)を算出し

 $\lambda = \{ (d - d_0) / d_0 \} \times 100$ ここで、d:割れ発生時の径

40 d。: 打ち抜き径

30

【0032】さらに、フェライトおよび第2相の粒径の 測定は、電子顕微鏡で写真撮影したのち、JIS G 0552に 示される鋼のフェライト結晶粒度試験方法中の、切断法 により求めた。また、第2相の分率は、電子顕微鏡写真 を画像解析することにより求めた。

【0033】化成処理性については、質量W。の試験材 の鋼板を、洗浄・脱脂後、化成剤(りん酸亜鉛溶液)を 含む溶液中に一定時間浸漬し、さらに洗浄後、質量を測 定(W)し、りん酸亜鉛結晶の付着による単位面積当た る。というのは、上記の冷却速度が 5 ℃/sに満たないと 50 りの質量増加分($W-W_o$)により評価した。目標は

9

2.0 g/m 以上である。 【0034】

【表1】

劉記号	成))	粗	ı	成	(mass%)	
BL 7	С	Si	Mn	Р	S	Мо	Al	その他	備考
A	0. 04	1.2	1. 5	0.012	0.0005	0.30	0. 030	_	発明鋼
В	0. 05	0. 96	1.4	0.013	0.0007	0.40	0. 032	Cr: 0.1, Ca:0.002	"
С	0.05	1.0	1.0	0.010	0.0008	0.30	0. 033	B : 0.001, REM : 0.003	"
D	0.01	1.0	1.4	0.010	0.0008	0. 20	0. 032	Cr : 0.5	比較劉
E	0.08	0.01	2.0	0. 012	0.0007	1. 20	0. 035	Ca: 0.002	"
F	0. 14	2.5	1.5	0.011	0.0020	0.40	0.035	_	"
G	0. 15	1.4	0.1	0.050	0.0030	0. 50	0.034	REM : 0. 01	"
H	0. 20	0.6	0.5	0.011	0. 0008	0. 30	0.030		"
1	0.08	1. 2	1.5	0.011	0.0020		0. 033	B: 0.02, Ca: 0.01	"
J	0. 08	0.8	2. 0	0.012	0.0007	0. 50	0. 032	_	発明鋼

[0035]

【表2】

	45					r			
No.	制記号	FDT	t,	v,	T,	t,	Т,	V 1	СТ
		(2)	(s)	(°C/s)	(T)	(s)	(3)	(°C/s)	(T)
1	A	890	0. 5	30	720	3	700	30	460
2	1	930	1.0	20	700	4	670	30	550
3		920	0.5	25	730	2	710	20	520
4		800	1.0	20	710 -	4	680	30	500
5	-	900	0.5	<u>60</u>	720	6	670	_60_	480
6	"	990	0.5	30	700	4	670	30	530
7	В	900	0.5	30	700	3	680	30	500
8	"	950	1.0	30	780	3	760	35	470
9	"	920	<u>3. 0</u>	30	740	5	700	25	550
10	"	840	0. 5	10	680	10	620	20	570
11	"	900	0.5	20	750	_35_	650	30	600
12	C	880	0.5	30	720	5	690	40	400
13	_D_	900	0.5	25	720	6	680	25	550
14	<u>E</u>	930	0.5	40	750	4	720	25	600
15	<u> P</u>	890	1.0	30	720	5	690	30	450
16	_G_	950	0.5	45	740	4	700	40	500
17	<u>H</u>	870	1.0	20	700	7	660	20	530
18		840	1.0	10	700	3	680	35	410
19	J	910	0.5	40	750	15	670	30	540

Γ	主相フェライト 第 2 相								12								
No.		ェライト	<u> </u>		郑 2 档				4	化成皮膜							
	平均粒径 d ((μ m)	713/1 分率(00)	粗器	分率(R)	平均粒径 d (/ u a)	dı∕dı	第2相 分率(%)	Y.S. (MPa)	T.S. (MPa)	E1 (96)	Y. R. (96)	TS - E3	λ	TS · A	質量 (g/m²)	備考	
1	7.6	70	B+M	80	6.5	0.86	30	443	608	35	73	21280	106	64448	3.6	発明例	
2	8.8	80	B+M	85	7.4	0.84	20	460	596	36	77	21456	98	58408	3.2	"	
3	10. Z	70	В	100	7. 6	0.75	30	467	614	33	76	20262	95	58330	3.2	,	
4	11.2	94	M+B	20_	5.1	0.46	<u>6</u>	337	542	35	62	18970	33	17886	3.5	比較例	
5	9.5	92	B+M	60	4.8	0.51	<u>B</u> .	405	527	35	77	18445	46	24242	3.2	"	
6	8.5	65	B+M	70	10.7	1. 26	35	458	610	30	75	18300	57	34770	3.2	,	
7	8.2	75	B+M	80	7.5	0.91	25	462	613	34	75	20842	110	67430	3.0	発明例	
8	6.3	40	B+M	40	9.5	1.51	_60_	455	680	28	67	19040	38	25840	2.8	比较例	
9	5.6	35	B+M	30	8.0	_1.43_	65	441	704	Z 6	63	18304	51	35904	2.9	,	
30	7.5	30	B+M	30	11.3	1.51	70	462	708	29	65	20532	42	29736	2.7	N	
11	10.9	85	PHBHM	_10_	6.2	0.57	15	431	564	33	76	18612	48	27072	2.8		
12	10.2	70	B+M	90	7.8	0. 76	30	532	630	32	84	20160	104	65520	3.3	発明 例	
13	13.0	95	B+M	60	4.7	0.36	5	399	541	36	74	19476	46	24886	0.8	比較網	
14	9.6	70	P+B+N	_20_	7.6	0. 79	30	416	570	30	73	17100	70	39900	3.8		
15	10.5	80	B+M	70	4.5	0.43	20	447	617	28	72	17276	24	14808	2.7		
16	7.6	60	B+M	30	<u>_1L.8</u>	1,55	40	503	665	25	76	16625	3D	19950	3.2	•	
17	7.8	40	B+M	70	9.5	1_ 22	_60_	640	725	23	88	16675	55	39875	3.6		
18	9.7	50	B+M	70	9.3	0.96	_50_	565	625	27	89	16875	33	20625	3.0		
19	9. 2	80	B+M	70	6.7	0.73	20	624	806	26	77	20956	85	68510	3.5	発明例	

+ 第2相中におけるペイナイトの分率

【0037】表3に示したとおり、この発明に従い得られた発明例はいずれも、引張り強さ (TS)、伸び (E1) および穴拡げ率 (λ)に優れていて、TS×E1が 20000 MPa・%以上という優れた強度ー伸びパランスおよびTS× λが 50000 MPa・%以上という優れた強度一穴拡げパランスを得ることができた。

【0038】実施例2

表4に示す成分組成になる例スラブを、表5に示す条件 30 で、熱間圧延した後、冷却し、ついでコイルに巻取っ

た。表5中、FDTは熱間圧延仕上温度、 t, は熱延終 了後の冷却開始時間、 v, はその冷却速度、 T, はその 冷却停止温度、 T, は緩冷温度(フェライト相析出温 度)、 t, はその温度域での滞留時間、 v,はその温度 域からの冷却速度、そしてCTは巻取り温度である。 か くして得られた熱延板の組織、機械的特性および化成処 理性について調べた結果を表6に示す。

【0039】 【表4】

制記号		戌	分	組	成	(ma	ss%)		
2. 7	С	Si	Ma	P	S	Ио	Al	その他	備考
к	0. 15	1. 2	2.5	0.010	0. 0005	0. 30	0.035	_	発明鋼
L	0. 11	0. 5	3.0	0.011	0.0007	0. 60	0.034	Cr : 0. 2	"
М	0. 12	2.0	2.5	0.011	0.0007		0. 033		比較觸

[0040]

[表5]

						IX O			
No.	劉記号	FDT	t,	V i	T ₁	t,	Tz	V:	СТ
	2.3	(2)	(s)	(°C/s)	(3)	(s)	(%)	(°C/s)	(t)
1	К	890	1.0	20	730	8	690	40	450
2	"	930	1.0	30	730	6	680	30	500
3	"	870	0. 5	30	750	1	740	45	430
4	L	900	0. 5	35	700	6	670	35	510
5	"	830	1. 0	40	700	7	650	50	300
6	"	940	0. 5	15	750	3	730	10	680
7	<u>M</u>	910	0.5	40	720	8	680	30	350

[0041]

7 ×	c	1
LZX.	o	1

主相フュ	こライト			摄板的特性							化成皮膜				
平均粒径 d (μm)	7:7() 分平(0)	相載	44小, 分率(M)	平均粒径 d₁(μm)	d:/d,	第2相 分率(X)	Y.S. (MPa)	T. S. (MPa)	81 (%)	Y. R. (96)	TS - EI	λ	TS - A	質量	備考
9.8	85	B+M	80	7.3	0.74	15	742	902	20	82	18040	41	36982	3. 2	発明例
10. 1	70	В	100	7. 7	0.76	30	803	970	15	83	14550	40	38800	3. 2	,
5.8	50	B+M	20	8.0	1.38	_50_	798	947	16	84	15152	22	20834		比较例
6. 3	70	B+M	75	6.4	1. 02	30	760	990	18	77	17820				発明例
10.5	80	<u>M+B</u>	10	5.8	0.55	20	635	1012	19	63	19228				比較例
8.3	60	PIBIN	20	11.2	1. 35	40	797	970	20	82					##XV9
11.0	80	<u>M+B</u>	15	ã. 9	0.54	20	602	888	-				 		<u>"</u>
	平均粒径 d (µm) 9.8 10.1 5.8 6.3 10.5 8.3	d (µn) 分率の 9.8 85 10.1 70 5.8 50 6.3 70 10.5 80 8.3 60	平均粒径 7.1分 相 数 9.8 85 B+M 10.1 70 B 5.8 50 B+M 6.3 70 B+M 10.5 80 M+B 8.3 60 P+B+M	平均粒径 プェライト 相 級 ペナイト・ 分率(N) 9.8 85 B+M 80 10.1 70 B 100 5.8 50 B+M 20 6.3 70 B+M 75 10.5 80 M+B 10 8.3 60 円田地 20	平均粒径 d ₁ (µn) 7₁分1 分平(0) 相 総 分平(0) 平均粒径 d ₁ (µn) 9.8 85 B+M 80 7.3 10.1 70 B 100 7.7 5.8 50 B+M 20 8.0 6.3 70 B+M 75 6.4 10.5 80 M+B 10 5.8 8.3 60 PBM 20 11.2	平均粒径 1.74	平均粒径	平均粒径	平均程程 d1(µm) 7:71 分平(0) 相 載 分平(0) 平均程径 d2(µm) d2(qm) 7:50 分平(0) 7:50 分平(0) 9.8 85 B+M 80 7.3 0.74 15 742 902 10.1 70 B 100 7.7 0.76 30 803 970 5.8 50 B+M 20 8.0 1.38 50 798 947 6.3 70 B+M 75 6.4 1.02 30 760 990 10.5 80 M+B 10 5.8 0.55 20 635 1012 8.3 60 PBH 20 11.2 1.35 40 797 970	平均程程 7:71 相 数 分字(0) 年均程径 d:/d, 第2相 分字(0) (0Pa) (96) (96) 9.8 85 B+M 80 7.3 0.74 15 742 902 20 10.1 70 B 100 7.7 0.76 30 803 970 15 5.8 50 B+M 20 8.0 1.38 50 798 947 16 6.3 70 B+M 75 6.4 1.02 30 760 990 18 10.5 80 M+B 10 5.8 0.55 20 635 1012 19 8.3 60 PBM 20 11.2 1.35 40 797 970 20	平均粒径	平均粒径 1.71	平均程程 1.71 相 数 分子(5) 平均程程 d 1./ d 第2相 分字(5) (NPa) (96) (96) TS·El 2 9.8 85 B+M 80 7.3 0.74 15 742 902 20 82 18040 41 10.1 70 B 100 7.7 0.76 30 803 970 15 83 14550 40 5.8 50 B+M 20 8.0 1.38 50 798 947 16 84 15152 22 6.3 70 B+M 75 6.4 1.02 30 760 990 18 77 17820 44 10.5 80 M+B 10 5.8 0.55 20 635 1012 19 63 19228 18 8.3 60 丹田州 20 11.2 1.35 40 797 970 20 82 19400 23	平均粒径 d1(μm) 分率(0) 相 被 分付 か字(0)	平均粒径 d1(μm) 分率(0) 相 被 分付け、 平均粒径 d2(μm) 付2(μm) 分率(0) (μm) 分率(0) (μm) 分率(0) (μm) 分率(0) (μm) (μm) 分率(0) (μm) (μm) (μm) (μm) (μm) (μm) (μm) (μm

* 第2相中におけるペイナイトの分率

【0042】この例は、引張り強さが880 MPa超えの場合であるが、このように引張り強さが高くても、TS×El ≥ 14000 MPa・%という優れた強度-伸びバランスとTS×λ≥ 30000 MPa・%という優れた強度-穴拡げバランスが得られている。

[0043]

【発明の効果】かくして、この発明によれば、熱延ままで、加工性、特に伸びと伸びフランジ性に優れ、しかも 溶接性や化成処理性にも優れた高降伏比型高張力熱延鋼 板を安定して得ることができる。

フロントページの続き

Fターム(参考) 4K037 EA01 EA02 EA05 EA06 EA09

EA11 EA15 EA16 EA17 EA23

EA25 EA27 EA28 EA36 EB05

EB08 EB09 EB11 FB00 FC03

FC04 FD02 FD03 FD04 FD08

FE01 FE02 JA07

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.