PROBLEM 1

$$E(\vec{\beta}_0) = E(\vec{\gamma} - \vec{\beta}_1 \vec{X})$$

Remember B, + X are constants

 $E(\nabla - \beta, \overline{X}) = E(\nabla) - \beta, \overline{X}$

= n E (2 /) - B X

Since Vi i=1, n are independent

E(2, 1/2) = = = E(1/2) = = [Bo+B, X2]

=>

 $E(\beta_0) = E(\overline{y} - \beta, \overline{x}) = \overline{\gamma} \sum_{i=1}^{n} [\beta_0 + \beta, x;] - \beta, \overline{x}$

= nBo/n + B, EX; -B, X

Now you finish it

(SEE ATTACHED)

PROBLEM 1 Continued
$E(\hat{\beta}_{i}) = \left(\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}\right)$
$= \frac{1}{\sum (x_i - x_i)^2} = \frac{1}{\sum (x_i - x_i)^2}$
$\sum_{x=1}^{\infty} (x_x - \overline{x})^2$ $\sum_{x=1}^{\infty} (x_x - \overline{x})^2$
E(y:-y) = E(ye)-+== E(ye)
$=\beta_0+\beta_1\times\ldots-+\frac{2}{2\pi}\left[-\beta_0+\beta_1\times\ldots\right]$
$=\beta(x, x)$
Now you finish it!
(SEE ATTACHED)

.

PROBLEM 1, PART 1

guien $E(\beta_0) = \frac{n\beta_0}{n} + \frac{\beta_1 \cdot 2 \times i}{n} - \beta_1 \cdot \overline{X}$ $= \beta_0 + \frac{\beta_1 \cdot 2 \times i}{n} - \beta_1 \cdot \overline{X}$

 $E(\beta_o) = \beta_o + \beta_i \overline{X} - \beta_i \overline{X}$

PROBLEM 1, PART 2

guen $E(\beta_i) = \frac{1}{z(x_i - \overline{x})^2} E(x_i - \overline{x}) E(y_i - \overline{y})$

also that $E(y_i - \overline{y}) = \beta_i(x_i - \overline{x})$

 $E(\beta_{i}) = \frac{1}{2(x-x)^{2}} \sum_{x} (x-x) \beta_{i}(x-x)$

 $E(\hat{\beta}_i) = \beta_i$ UNBIASED

tro	RL	EK	٨	
	Sand and		h /	Concessors.

$$J(\beta) = -n \log(\sqrt{2\pi 6^2}) - \frac{2}{25^2} (y_i - \beta_i x_i)^2$$

Since 62 is constant we have the minimization results in

Now you finish it!

$$\sum_{i=1}^{n} x_{i}' y_{i} - \sum_{i=1}^{n} \beta x_{i}'^{2} = 0$$

B, \$ xi = \$ xi 4i

$$\beta = \sum_{i=1}^{N} \frac{x_i u_i}{x_i^2}$$

TROBLEM 3
$\hat{S} = \sum_{i} (x_i - \bar{x})^2$ $\hat{N} = 1$
Assume X, ~N(u,62)
$E(3) = \frac{1}{N-1} E\left[\frac{2}{3}(x^2-2x)x + x^2\right]$ Now You Finish IT!
HENT: USE THE SLIDES * CALCULATING BIAS * VARIANCE For help on this
(SEE ATTACHED)

,

POBLEM 3

use
$$\bar{X} = \frac{2}{\lambda} \frac{Xi}{n}$$
.

or
$$n\bar{X} = \sum_{i=1}^{n} x_i$$

$$E(\hat{S}) = \frac{1}{n-1} E\left[\sum_{i=1}^{n} x_i^2 - 2\bar{x}\sum_{i=1}^{n} x_i^2 + n\bar{x}^2\right]$$

$$=\frac{1}{n-1}\left[\sum_{i=1}^{n}x_{i}^{2}-2n\bar{x}^{2}+n\bar{x}^{2}\right]$$

$$= \frac{1}{n-1} E \left[\sum_{i=1}^{n} X_i - N \bar{X}^2 \right]$$

$$=\frac{1}{n-1}\left[\frac{1}{2}E(x_i^2)-nE(\hat{x}^2)\right]$$

$$\mathcal{J}^{2} = E(x^{2}) - 2E(xE(x)) + E(x)^{2}$$

$$= E(x^{2}) - 2\mu E(x) + \mu^{2}$$

$$= E(x^{2}) - 2\mu^{2} + \mu^{2}$$

$$\#E(x^{2}) = \mathcal{J}^{2} + \mu^{2}$$

(over)

PROBLEM 3 (ONT.) quien $\bar{X} \sim N(\mu, \bar{\tau}^2 z_n)$ or $Var(\bar{x}) = \bar{\eta}^2$ Nor $(\bar{x}) = \frac{\overline{y}^2}{n} = E(\hat{x}^2) - 2E(\bar{x}E(\bar{x})) + E(\bar{x})^2$ $\frac{\sigma'}{h} = E(\bar{x}^2) - 2\mu^2 + \mu^2$ $E(\bar{x}^2) = \sqrt{n + \mu^2}$ substituting the walnes: $E(\hat{S}) = \frac{1}{n-1} \left[\sum_{i=1}^{n} E(X_i^2) - n E(\bar{X}^2) \right]$ $=\frac{1}{n-1}\left[n\sigma^2+n\mu-\frac{n\sigma^2}{n}-n\mu^2\right]$ $=\frac{1}{n!}\left[\sigma^2(n!)\right]$ the sample mariane = estimated meriand. It is unleased