

IR MOSFET™

Features

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Ease of Paralleling
- Simple Drive Requirements
- Lead-Free

Description

IR MOSFET™ technology from Infineon utilizes advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and rugged device design that IR MOSFET™ devices are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole.

V _{(BR)DSS}	200V
R _{DS(on)} max.	0.04Ω
I _D	50A

G	D	S
Gate	Drain	Source

Base part number	Packago Typo	Standard Pack		Orderable Part Number
base part number	Package Type	Form Quantity		Orderable Fait Number
IRFP260MPbF	TO-247AD	Tube	25	IRFP260MPbF

Absolute Maximum Ratings

Symbol Parameter		Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	50	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	35	Α
I _{DM}	Pulsed Drain Current ①⑤	200	
P _D @T _C = 25°C	Maximum Power Dissipation	300	W
	Linear Derating Factor	2.0	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS} Single Pulse Avalanche Energy ②⑤		560	mJ
Avalanche Current ①⑤		50	Α
E _{AR} Repetitive Avalanche Energy ①		30	mJ
dv/dt Peak Diode Recovery dv/dt③⑤		10	V/ns
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range	-55 10 + 175	°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case		0.50	
$R_{ heta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{ heta JA}$	Junction-to-Ambient		40	

2020-05-28

Electrical characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.26		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.04	Ω	V _{GS} = 10V, I _D = 28A ④
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Trans conductance	27			S	$V_{DS} = 50V, I_{D} = 28A$
ı	Drain-to-Source Leakage Current			25		$V_{DS} = 200V, V_{GS} = 0V$
IDSS	Dialii-to-Source Leakage Current			250	μΑ	$V_{DS} = 160V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
	Gate-to-Source Forward Leakage			100	nΛ	$V_{GS} = 20V$
IGSS	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -20V$

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

•	• • • • • • • • • • • • • • • • • • • •	•	•		
Q_g	Total Gate Charge	 	234		I _D = 28A
Q_{gs}	Gate-to-Source Charge	 	38	nC	V _{DS} = 160V
Q_{gd}	Gate-to-Drain Charge	 	110		V _{GS} = 10V, See Fig.6 and 13 ④
$t_{d(on)}$	Turn-On Delay Time	 17			V _{DD} = 100V
t _r	Rise Time	 60		,,,	$I_D = 28A$
$t_{d(off)}$	Turn-Off Delay Time	 55		ns	$R_G = 1.8\Omega$
t _f	Fall Time	 48			V _{GS} = 10V, See Fig.10⊕
L _D	Internal Drain Inductance	 5.0			Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance	 13			from package and center of die contact
C _{iss}	Input Capacitance	 4057			$V_{GS} = 0V$
C _{oss}	Output Capacitance	 603		рF	$V_{DS} = 25V$
C_{rss}	Reverse Transfer Capacitance	 161			f = 1.0MHz, See Fig.5

Diode Characteristics

<u> </u>	ilalacteristics			1		T
	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			50		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			200		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C,I _S = 28A,V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time		268	402	ns	T _J = 25°C ,I _F = 28A
Q_{rr}	Reverse Recovery Charge		1.9	2.8	μC	di/dt = 100A/µs ④

Notes

- $\, \mathbb{O} \,$ Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Starting T_J = 25°C, L = 1.5mH, R_G = 25 Ω , I_{AS} = 28A.(See fig. 12).
- $\label{eq:local_local_local_local} \mbox{\Im} \quad I_{SD} \leq 28A, \ di/dt \leq 486A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C.$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.

2020-05-28

Fig. 1 Typical Output Characteristics

Fig. 2 Typical Output Characteristics

Fig. 3 Typical Transfer Characteristics

Fig. 4 Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10a. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig. 12a. Unclamped Inductive Test Circuit

Fig. 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 13b. Gate Charge Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. Peak Diode Recovery dv/dt Test Circuit for N-Channel IR MOSFET™

2020-05-28

TO-247AD Package Outline (Dimensions are shown in millimeters (inches))

TO-247AD Part Marking Information

EXAMPLE: THIS IS AN IRGP30B120KD-E WITH ASSEMBLY

LOT CODE 5657

ASSEMBLED ON WW 35, 2000

IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

Revision History

Date	Comments		
	Updated datasheet with corporate template		
05/28/2020 • Updated Package picture-page1			
03/26/2020	Corrected from "Hexfet power MOSFET" to " IR MOSFET™" -page1 &7		
	Corrected part marking from TO-247AC to TO-247AD on page 8.		

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.