Familles libres, liées, génératrices et bases

Exercice 1 ★

Soient E un \mathbb{K} -espace vectoriel et a, b, c trois vecteurs de l'espace E.

1. Soient $\lambda, \lambda', \mu, \mu'$ quatre scalaires. Critiquer l'implication suivante,

$$\lambda a + \mu b = \lambda' a + \mu' b \implies \lambda = \lambda' \text{ et } \mu = \mu'.$$

2. Critiquer l'implication suivante,

$$(a,b)$$
 liée $\implies b \in \text{vect}(a)$.

3. Critiquer l'implication suivante,

$$(a, b, c)$$
 liée $\implies c \in \text{vect}(a, b)$.

Exercice 2 ★★

Soient $m \in \mathbb{R}$. Donner une *condition nécessaire et suffisante* sur m pour que la famille

$$(m,1,1), (2m,-1,m), (1,5,2)$$

soit libre dans \mathbb{R}^3 .

Exercice 3 ★

Montrer de deux manières que la famille

$$x \mapsto e^x \quad x \mapsto x^2 \quad x \mapsto \ln(x)$$

est libre dans l'espace vectoriel des applications de $]0, +\infty[$ dans \mathbb{R} .

Exercice 4

Etude d'une famille

Soient $a \in \mathbb{R}$ et u = (a, 1, 1), v = (1, a, 1) et w = (1, 1, a). Déterminer une CNS pour que (u, v, w) soit libre dans $E = \mathbb{R}^3$.

Exercice 5 ★

Parmi les familles suivantes, déterminer les familles génératrices de \mathbb{R}^3 :

- **1.** $(u_1, u_2) = ((1, 2, 3), (2, 1, 0));$
- **2.** (u_1, u_2, u_3) vaut

$$((1,1,1),(0,1,2),(3,2,-1));$$

3. (u_1, u_2, u_3) vaut

4. (u_1, u_2, u_3) vaut

$$((1,-1,1),(-1,1,-1),(2,3,-1));$$

5. (u_1, u_2, u_3) vaut

$$((1,2,-1),(1,-3,4),(3,1,2));$$

6. (u_1, u_2, u_3, u_4) vaut

$$((1,0,3),(0,2,1),(3,1,1),(2,1,-1)).$$

Exercice 6

Soient dans \mathbb{R}^4 les vecteurs

$$e_1 = (1, 2, 3, 4)$$
 et $e_2 = (1, -2, 3, -4)$.

1. Peut-on déterminer x et y pour que

$$(x, 1, y, 1) \in \text{vect}(e_1, e_2)$$
 ?

2. Même question pour $(x, 1, 1, y) \in \text{vect}(e_1, e_2)$?

Exercice 7

Pour $a \in \mathbb{R}$, on pose $f_a : x \mapsto e^{ax}$. Montrer que la famille $(f_a)_{a \in \mathbb{R}}$ est une famille libre de $\mathbb{R}^{\mathbb{R}}$.

Exercice 8

Pour $\lambda \in \mathbb{R}$, on pose $f_a : x \mapsto |x - a|$. Montrer que $(f_a)_{a \in \mathbb{R}}$ est une famille libre de $\mathbb{R}^{\mathbb{R}}$.

Exercice 9

Pour $n \in \mathbb{N}^*$, on pose $f_n : x \mapsto \sin(nx)$.

- 1. Pour $(m, n) \in (\mathbb{N}^*)^2$, calculer $\int_0^{2\pi} f_m(t) f_n(t) dt$.
- **2.** En déduire que $(f_n)_{n\in\mathbb{N}^*}$ est une famille libre de $\mathbb{R}^{\mathbb{R}}$.

Exercice 10

Montrer que $(1, \sqrt{2}, \sqrt{3})$ est une famille libre du \mathbb{Q} -espace vectoriel \mathbb{R} .

Exercice 11

Soit $(a, b, c) \in \mathbb{R}^3$. On pose $f: x \mapsto \sin(x+a), g: x \mapsto \sin(x+b)$ et $h: x \mapsto \sin(x+c)$. Déterminer le rang de la famille (f, g, h).

Exercice 12

Soit (v_1, \dots, v_n) une famille libre de vecteurs d'un \mathbb{K} -espace vectoriel \mathbb{E} .

- **1.** La famille $(v_1 v_2, v_2 v_3, ..., v_{n-1} v_n, v_n v_1)$ est -elle libre?
- **2.** La famille $(v_1 + v_2, v_2 + v_3 \dots, v_{n-1} + v_n, v_n + v_1)$ est -elle libre?
- **3.** On pose $w_k = \sum_{j=1}^k v_j$. La famille (w_1, \dots, w_n) est-elle libre?

Exercice 13 ★★

Soient $(x_i)_{1 \le i \le n}$ une famille libre d'un espace vectoriel E et $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$. On pose $y = \sum_{k=1}^n \alpha_k x_k$. Donner une *condition nécessaire et suffisante* sur les α_i pour que $(y + x_i)_{1 \le i \le n}$ soit une famille libre.

Dimension d'un espace vectoriel

Exercice 14 ★★

Calculs de coordonnées

Soient F le sous-ensemble de \mathbb{R}^4 défini par l'équation

$$x + z = t + y$$
,

et G défini par y + t = x - y - z = 0.

- 1. Déterminer la dimension ainsi qu'une base de F. Soit a=(3,1,2,4). Déterminer les coordonnées de a dans cette base.
- **2.** Déterminer la dimension ainsi qu'une base de G. Soit b = (4, 1, 3, -1). Déterminer les coordonnées de b dans cette base.
- **3.** Déterminer la dimension et une base de $F \cap G$.

Exercice 15 ★

EDL et espaces vectoriels

Revenons un instant aux équations différentielles ...

1. Soit

$$\mathcal{S} = \left\{ y : \mathbb{R} \to \mathbb{C}, \ \mathcal{C}^2 \mid y'' + y' + y = 0 \right\}.$$

Déterminer une base de S en tant que \mathbb{C} -espace vectoriel. Quelle est sa dimension?

- 2. Déterminer une base de $\mathcal S$ en tant que $\mathbb R\text{-espace}$ vectoriel. Quelle est sa dimension ?
- **3.** Donner une base du sous-espace vectoriel \mathcal{S}' de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ défini par la condition suivante,

$$f'' + 4f = 0$$
, $f(\pi) = 0$.

Exercice 16 ★ Basique

Soit E le sous-ensemble de \mathbb{R}^4 défini par les équations suivantes,

$$x=2y-z\ ,\ t=x+y+z.$$

Prouver que E est un sous-espace vectoriel de \mathbb{R}^4 . Quelle est sa dimension? En donner une base.

Exercice 17 ★

Calculs de rangs

Courage!...

1. Quelle est la dimension du sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs

$$a = (1, 2, 0)$$
 et $b = (-1, 1, 1)$?

2. Quelle est la dimension du sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs

$$a = (3, 0, -2)$$
, $b = (0, 3, 1)$ et $c = (-1, 4, 2)$?

3. Quelle est la dimension du sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs

$$a = (1, 1, -2)$$
, $b = (1, 3, 1)$, $c = (-2, 1, 2)$,

$$d = (1, -1, 1), e = (0, 1, 2), f = (-3, 1, 0), g = (4, 5, 1)$$
?

Exercice 18 *

Le corps $\mathbb C$ peut-être considéré comme un $\mathbb R$ ou un $\mathbb C$ -espace vectoriel...

- **1.** Déterminer la dimension et une base de $\mathbb C$ considéré comme espace vectoriel sur lui-même. Quels sont alors les sous-espaces vectoriels de $\mathbb C$?
- **2.** Déterminer la dimension et une base de $\mathbb C$ considéré comme espace vectoriel sur $\mathbb R$. Décrire alors les sous-espaces vectoriels de $\mathbb C$.

Exercice 19 ★

Quelle est la dimension du sous-espace vectoriel du \mathbb{R} -espace vectoriel $E=\mathbb{R}^\mathbb{N}$ constitué des suites arithmétiques ? En déterminer une base.

Exercice 20

Un plan de K⁴

Soit

$$F = \{(\lambda + \mu, 2\lambda - \mu, 3\lambda + 4\mu, 2\mu) \mid (\lambda, \mu) \in \mathbb{K}^2\}.$$

- 1. Montrez que F est un sous-espace vectoriel de \mathbb{K}^4 .
- **2.** Déterminez la dimension de F.

Exercice 21

Premiers calculs

Expliquez pourquoi les ensembles suivants sont des sous-espaces vectoriels de $\mathbb{R}^3\,$ et déterminez leurs dimensions.

- 1. E = vect((1, 2, 3), (3, 2, 1), (1, 1, 1));
- **2.** $F = \{(x, y, z) \mid x = y\};$
- **3.** G = {(x, y, z) | x + 3y = y + z = 2x z = 0};
- **4.** H = {(x, y, z)|x + 3y = y + z = x + 2y z = 0};
- 5. L = $\{(x, y, z) \mid x + 3y = y + z = 2x z\}$.

Exercice 22

Dans \mathbb{R}^4 , on considère la famille de vecteurs suivante :

$$u_1 = (1, 2, -1, 3), u_2 = (2, 3, -3, 2,), u_3 = (0, 1, 1, 4)$$

et $u_4 = (1, 0, -3, -5)$. Déterminer le rang de cette famille, préciser les relations de liaison entre ces vecteurs et donner une base de vect (u_1, u_2, u_3, u_4) .

Exercice 23 ★

Supplémentaire commun

Soient E un espace vectoriel de dimension finie, F et G deux sous-espaces vectoriels de E. Montrer que F et G admettent un supplémentaire commun dans E si et seulement si dim(F) = dim(G).

Exercice 24

Rang d'une famille de vecteurs

On pose

$$u_1 = (\alpha, 1, \beta, 1), \quad u_2 = (1, \alpha, \beta, \alpha), u_3 = (\alpha, \beta, \alpha, 1),$$

 $u_4 = (\alpha, \beta, \alpha, \beta), \quad u_5 = (1, \alpha, 1, \beta),$

pour α et β réels. Discuter le rang du système (u_1,u_2,u_3,u_4,u_5) .

Exercice 25 ★

Intersection de deux hyperplans

Soient H_1 et H_2 deux hyperplans distincts d'un espace vectoriel E de dimension finie n.

- **1.** Prouver que $n \ge 2$.
- 2. Montrer que dim $(H_1 \cap H_2) = n 2$.

Exercice 26 ***

Soit $0 = x_0 < x_1 < \cdots < x_n = 1$ une subdivision de [0;1] et F l'ensemble des fonctions de [0;1] dans $\mathbb R$ dont la restriction à chaque intervalle $[x_i;x_{i+1}]$ est affine. Donner la dimension de F ainsi qu'une base.

Exercice 27 ★★

Espaces vectoriels de dimension infinie

- **1.** Pour $i \in \mathbb{N}$, on pose $u_i = (\delta_{in})_{n \in \mathbb{N}}$. Montrer que pour tout $k \in \mathbb{N}$, la famille (u_0, u_1, \dots, u_k) est libre dans $\mathbb{R}^{\mathbb{N}}$. Que peut-on en déduire quant à la dimension du \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{N}}$.
- **2.** Pour $i \in \mathbb{N}$, on pose $f_i : x \in \mathbb{R} \mapsto x^i$. Montrer que pour tout $k \in \mathbb{N}$, la famille (f_0, f_1, \dots, f_k) est libre dans $\mathcal{C}^{\infty}(\mathbb{R})$. Que peut-on en déduire quant à la dimension de $\mathcal{C}^{\infty}(\mathbb{R})$, $\mathcal{C}^n(\mathbb{R})$ pour $n \in \mathbb{N}$, de $\mathbb{R}^{\mathbb{R}}$?

Exercice 28 ★★★

Pour $p \in \mathbb{N}^*$, on note E_p l'ensemble des suites réelles p-périodiques.

- **1.** Montrer que E_p est un sous-espace vectoriel du \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{N}}$.
- 2. Pour $0 \le k \le p-1$, on définit la suite u^k par

$$\forall n \in \mathbb{N}, \ u_n^k = \begin{cases} 1 & \text{si } n \equiv k[p] \\ 0 & \text{sinon} \end{cases}$$

Montrer que $(u^0, u^1, \dots, u^{p-1})$ est une base de E_p .

- 3. Que peut-on en déduire quant à la dimension de E_p ?
- **4.** Justifier que E₂ est un sous-espace vectoriel de E₄.
- **5.** On note F1'ensemble des suites $u \in \mathbb{R}^{\mathbb{N}}$ telles que pour tout $n \in \mathbb{N}$, $u_{n+2} + u_n = 0$. Montrer que F est un sous-espace vectoriel de E_4 .
- **6.** Montrer que F est un supplémentaire de E₂ dans E₄.

Exercice 29 ★

Soient $a, b \in \mathbb{C}$. Montrer que l'ensemble des solutions à valeurs complexes de l'équation différentielle y'' + ay' + by = 0 est un \mathbb{C} -espace vectoriel dont on précisera la dimension.

Exercice 30 ★

Soient F et G deux plans vectoriels de \mathbb{R}^3 . On suppose F et G distincts. Montrer que $\mathbb{R}^3 = F + G$. La somme est-elle directe?

Exercice 31 ★★

Soit \mathcal{S} l'ensemble des solutions à valeurs complexes de l'équation différentielle y'' + y' + y = 0.

- 1. Déterminer une base de $\mathcal S$ en tant que $\mathbb C$ -espace vectoriel. En déduire sa dimension.
- **2.** Déterminer une base de S en tant que \mathbb{R} -espace vectoriel. En déduire sa dimension.

Exercice 32 ★★

Soit $E = \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions à valeurs réelles de classe \mathcal{C}^2 sur \mathbb{R} . On considère l'ensemble F des solutions sur \mathbb{R} de l'équation différentielle

$$(\mathcal{E}): y'' = (1+x^2)y$$

- 1. Montrer que F est un sous-espace vectoriel de E.
- 2. Soient f et g les applications définies par

$$\forall x \in \mathbb{R}, \ f(x) = e^{x^2/2}$$
 et $g(x) = e^{x^2/2} \int_0^x e^{-t^2} dt$

Montrer que f et g appartiennent à F.

- **3.** Montrer que si v et w appartiennent à F, alors la fonction v'w vw' est constante sur \mathbb{R} .
- **4.** Soit h un élément de F. Montrer qu'il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que $h = \alpha f + \beta g$. On pourra calculer la dérivée de la fonction $\frac{h}{f}$.
- **5.** Montrer que F = vect(f, g).
- **6.** En déduire la dimension de F.

Sommes et dimension

Exercice 33

Soient E le \mathbb{R} -espace vectoriel des fonctions continues sur [0,1] à valeurs réelles et $F = \left\{ f \in \mathbb{E} \mid \forall k \in [1,10], \ f\left(\frac{1}{k}\right) = 0 \right\}$.

- 1. Montrer que F est un sous-espace vectoriel de E.
- 2. Déterminer un supplémentaire de F dans E.

Exercice 34

- **1.** Dans cette question, $E = \mathbb{R}^3$, $F = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$ et G = vect((1, 1, 1)).
 - a. Donner la dimension de G.
 - **b.** Montrer que F est un sous-espace vectoriel de E et déterminer une base de F. En déduire sa dimension.
 - c. Montrer que F et G sont supplémentaires dans E.
 - **d.** On pose a = (1, 2, 3). Déterminer la projection de a sur F parallélement à G et la projection de a sur G parallélement à F.
- **2.** On se donne maintenant $n \in \mathbb{N}^*$. On pose $E = \mathbb{R}^n$, $F = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 + \dots + x_n = 0\}$ et $G = \text{vect}((1, \dots, 1))$.
 - a. Donner la dimension de G.
 - **b.** Montrer que F est un sous-espace vectoriel de E et déterminer une base de F. En déduire sa dimension.
 - c. Montrer que F et G sont supplémentaires dans E.
- **3.** On suppose maintenant que E est un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$. On se donne F un hyperplan de E et G = vect(u) où $u \in E \setminus F$. Montrer que F et G sont supplémentaires dans E.

Exercice 35

Calculs de projections

On note $E = \mathbb{R}^4$,

G =
$$\{(x, y, z, t) \in E \mid z = t = 0\}$$

et on pose $F = A \cap B$ où

$$A = \{(x, y, z, t) \in E \mid x - y + z - t = 0\}$$

et

$$B = \{(x, y, z, t) \in E \mid 2x - y + 3z - 4t = 0 \}.$$

- 1. Prouver que F et G sont des sous-espaces vectoriels de l'espace E.
- **2.** Montrer que F et G sont supplémentaires dans E. Trouver une base de E adaptée à cette décomposition en somme directe.
- **3.** Calculer la projection sur F parallèlement à G d'un vecteur (x, y, z, t) de E. Même question en permutant F et G.

Exercice 36

Projections

On note $E = \mathbb{R}^3$ et

$$F = \{(x, y, z) \in E \mid x + z = 0\}$$

et

$$G = \{(x, y, z) \mid x = 2y = z\}.$$

- 1. Etablir que F et G sont des sous-espaces vectoriels supplémentaires dans E.
- **2.** Calculer la projection du vecteur X = (x, y, z) de E sur F parallèlement à G.

Exercice 37 ★

Supplémentaires d'un hyperplan

Soient $n \ge 2$, H le sous-ensemble de $E = \mathbb{R}^n$ défini par l'équation

$$x_1 + \dots + x_n = 0,$$

et $u = (1, ..., 1) \in E$.

- **1.** H et $\mathbb{R}u$ sont-ils supplémentaires dans E?
- **2.** Soit $v \notin H$. Que dire de $\mathbb{R}v$?