

دانشکده مهندسی کامپیوتر

ارائه راهکاری برای یکپارچه سازی دستگاههای اینترنت اشیاء با سکوی کوبرنیتز

پروژه کارشناسی مهندسی کامپیوتر گرایش مهندسی نرمافزار

سينا شعباني كومله

استاد راهنما

دكتر محسن شريفي

تابستان ۱۴۰۲

تأییدیهی هیأت داوران جلسهی دفاع از پروژه

نام دانشکده: دانشکده مهندسی کامپیوتر

نام دانشجو: سینا شعبانی کومله

عنوان پروژه: ارائه راهکاری برای یکپارچه سازی دستگاههای اینترنت اشیاء با سکوی کوبرنیتز

تاریخ دفاع: تابستان ۱۴۰۲

رشته: مهندسی کامپیوتر

گرایش: مهندسی نرمافزار

امضــــا	دانشگاه یا مؤسسه	مرتبه	نام و نام خانوادگی	سمت	رديف
		دانشگاهی			
	دانشگاه	استاد تمام	دكتر	استاد راهنما	١
	علم و صنعت ایران		محسن شريفي		
	دانشگاه	دانشيار	دكتر	داور نهایی	۲
	علم و صنعت ایران		TODO		

تأییدیهی صحت و اصالت نتایج

باسمه تعالى

اینجانب سینا شعبانی کومله به شماره دانشجویی 97521351 دانشجوی رشته مهندسی کامپیوتر مقطع تحصیلی

کارشناسی تأیید مینمایم که کلیهی نتایج این پروژه حاصل کار اینجانب و بدون هرگونه دخل و تصرف است و موارد

نسخهبرداری شده از آثار دیگران را با ذکر کامل مشخصات منبع ذکر کرده ام. درصورت اثبات خلاف مندرجات فوق، به

تشخیص دانشگاه مطابق با ضوابط و مقررات حاکم (قانون حمایت از حقوق مؤلفان و مصنفان و قانون ترجمه و تکثیر کتب

و نشریات و آثار صوتی، ضوابط و مقررات آموزشی، پژوهشی و انضباطی ...) با اینجانب رفتار خواهد شد و حق هرگونه

اعتراض درخصوص احقاق حقوق مكتسب و تشخيص و تعيين تخلف و مجازات را از خويش سلب مينمايم. در ضمن،

مسؤولیت هرگونه پاسخگویی به اشخاص اعم از حقیقی و حقوقی و مراجع ذی صلاح (اعم از اداری و قضایی) به عهدهی

اینجانب خواهد بود و دانشگاه هیچگونه مسؤولیتی در این خصوص نخواهد داشت.

نام و نام خانوادگی: سینا شعبانی کومله

تاریخ و امضا:

مجوز بهرهبرداری از پایاننامه

که توسط استاد راهنما به شرح زیر	بهرهبرداری از این پایاننامه در چهارچوب مقررات کتابخانه و با توجه به محدودیتی ^ک
	عيين مىشود، بلامانع است:
	🗆 بهرهبرداری از این پایاننامه برای همگان بلامانع است.
	🗆 بهرهبرداری از این پایاننامه با اخذ مجوز از استاد راهنما، بلامانع است.
	🗆 بهرهبرداری از این پایاننامه تا تاریخ
دكتر محسن شريفي	استاد راهنما:
	تاريخ:
	امضا:

چکیده

در حال حاضر، مدیریت و نظارت بر دستگاههای اینترنت اشیاء 1 به یک چالش عمده تبدیل شده است. راه حلهای موجود برای کنترل و نظارت بر این دستگاهها اغلب ناسازگاریها و محدودیتهایی دارند که موجب کاهش کارایی و پیچیدگی مدیریت در مقیاس بالا می شوند. به منظور حل این مسئله، این پروژه تلاش می کند تا با استفاده از کوبرنیتز 2 و پروژه کوبلت مجازی 3 یک سازوکار جامع برای نظارت و مدیریت دستگاههای اینترنت اشیاء ارائه دهد. انگیزه اصلی پروژه متمرکز کردن کنترل و نظارت بر دستگاههای اینترنت اشیاء مورت یکپارچه و موثر است. راه حلهای کنونی اغلب ناسازگاریهایی با استانداردها و فناوریهای مختلف دستگاههای اینترنت اشیاء دارند و به تنهایی قادر به ارائه یک محیط یکپارچه برای مدیریت و نظارت نیستند. این پروژه شامل سه بخش اصلی، یعنی تامین کننده 4 ، کنترلکننده 5 و دستگاهها این بخشها با یکدیگر ارتباط برقرار میکنند تا اطلاعات مفیدی درباره دستگاههای اینترنت اشیاء مورد کنترل ارائه دهند و این اطلاعات را در دسترس خوشه کوبرنیتز قرار دهند.

واژگان کلیدی: اینترنت اشیاء، کوبرنیتز، کوبلت مجازی، نظارت یکپارچه، پایش مقیاس پذیز

Internt Of Things (IoT)¹

Kubernetes²

Virtual Kubelet³

Provider⁴

Controller⁵

Device⁶

فهرست مطالب

7																								ير	صاوب	ست ت	فهرد
خ																								اِل	بداو	ست ح	فهرد
1																						d	دم	مق		:1	فصل
1 .																						له .	سأ	رح ہ	ش	1-1	
2 .																						وژه	، پر	داف	اھ	2-1	
2 .	•		•		•				•			•		•							ر	زارش	ر گ	اختا	س	3-1	
3																					يه	بم پا	اھي	مف		:2 ८	فصل
3 .																								لدمه	مق	1-2	
3 .			•		•																		.ري	ىتر ا	بس	2-2	
4 .																		•			نز	إبرنية	ِ کو	کوی		3-2	
5										 											نينر	کان		1-3-	-2		
6										 												پاد		2-3-	-2		
6										 												گره	:	3-3-	-2		
7										 											لت	کوب	4	4-3-	-2		
8								•		 			•		•			تز	برني	کو	شه	خو	:	5-3-	-2		
8 .																		•	ن .	متر	فرا	نقال	، انت	إرداد	قر	4-2	
9										 			٠.	ىتر	را ہ	_ ف	قال	انت	داد	رار	ع ق	تواب		1-4-	-2		
Λ													 . 1	à	11 #	ed	.sl.	s.1	ن ق	•	خمار		,	2_4_	_2		

E	فهرست مطالب

2-4-2 پاسخ قرارداد انتقال فرا متن	
4-4-2 انتقال حالت نمایشی	
5-4-2 رابط کاربردی قابل برنامهریزی	
معماری فن آوت	5-2
كوبلت مجازى	6-2
1-6-2 معماری کوبلت مجازی	
اينترنت اشياء	7-2
معماری بازخوانی	8-2
جمعبندی	9-2
کارهای مرتبط کارهای مرتبط	فصل 3:
مقدمه	1-3
روش پیشنهادی	فصل 4:
	فصل 4: 1-4
مقدمه	1-4
عدمه	1-4
21	1-4
21	1-4
21	1-4 2-4
21	1-4 2-4 3-4
21	1-4 2-4 3-4 غصل 5:
21 مقدمه 22 معماری سامانه 22 اییادهسازی تامین کننده کوبلت مجازی 24 اربط برقراری ارتباط با کنترل کنندهها 24 ع-2-4 24 مبیهساز 25 رابط گرافیکی نحوه کارکرد نحوه کارکرد 32 ارزیابی روش پیشنهادی	1-4 2-4 3-4 غصل 5:
21 مقدمه 22 معماری سامانه 22 اییادهسازی تامین کننده کوبلت مجازی 24 اربط برقراری ارتباط با کنترل کنندهها 24 ع-2-4 24 مبیهساز 25 رابط گرافیکی نحوه کارکرد نحوه کارکرد 32 ارزیابی روش پیشنهادی	1-4 2-4 3-4 :5 فصل
21 مقدمه 22 معماری سامانه 22 پیادهسازی تامین کننده کوبلت مجازی 24 2-2-4 24 شبیهساز 25 شبیهساز 25 رابط گرافیکی 3-2-4 خوه کارکرد نحوه کارکرد ارزیابی روش پیشنهادی 32 مقدمه مقدمه مقدمه	1-4 2-4 3-4 :5 فصل 1-5

í	€	فهرست مطالب
	33	3-6 کارهای آینده
	35	واژونامه انگلیسی به فارسی

فهرست تصاوير

1-2	معماری کلی کوبرنیتز	 	•	5.
2-2	نمای کلی درخواست و پاسخ قرارداد انتقال فرا متن	 		9.
3-2	نمای کلی از انتقال حالت نمایشی	 		13.
4-2	نمای کلی از رابط کاربردی قابل برنامهریزی	 		14.
5-2	نمای کلی از معماری فنآوت	 		15 .
6-2	کوبلت مجازی در یک خوشه کوبرنیتز	 		16.
7-2	نمای کلی از اینترنت اشیاء	 		18.
1-4	نمای کلی معماری			22
2-4	گره مجازی			
3-4	رابط کاربردی قابل برنامهنویسی شبیهساز	 		25 .
4-4	صفحه اصلی رابط گرافیکی	 		26.
5-4	صفحه گرههای کوبرنیتز	 		26.
6-4	صفحه کنترلکننده های کوبرنیتز کوبرنیتز	 		27 .
7-4	دستگاههای اینترنت اشیاء ساخته شده در شبیهساز	 		29 .
8-4	پاد ساخته شده از روی مستند در وضعیت عدم آمادگی	 		30.
9-4	پاد ساخته شده از روی مستند در وضعیت آماده	 		30.
10-4	تغییر وضعیت قفل مرکزی در رابط گرافیکی	 		31.
11-4	تغییر وضعیت یاد بدلیل تغییر وضعیت قفل مرکزی	 		31.

فهرست جداول

فصل 1

مقدمه

1-1 شرح مسأله

یکی از مسائلی که امروزه در زمینه کنترل و پایش دستگاههای اینترنت اشیاء وجود دارد، عدم یکپارچگی و هماهنگی میان دستگاههای مختلف است. این دستگاهها از فناوریها، پروتکلها و استانداردهای متنوعی برای ارتباط و عملکرد استفاده میکنند، که این تنوع باعث پیچیدگی و مشکلاتی در کنترل و پایش مرکزی آنها میشود. به عنوان مثال، در یک بستر اینترنت اشیاء ممکن است دستگاههایی با پروتکلهای ارتباطی مختلف، مانند MQTT ، HTTP و PMQTT و GOAP داشته باشند که هر کدام نیازمند روشها و فناوریهای جداگانه برای کنترل و پایش خود هستند. همچنین، دستگاههای اینترنت اشیاء ممکن است از نظر تکنولوژی و نوع عملکرد با هم تفاوت داشته باشند. برای مثال، یک سنسور دما و یک قفل هوشمند دارای نیازهای کنترل و پایش متفاوتی هستند. این تنوع در دستگاهها باعث پیچیدگی در توسعه و اجرای یک سیستم کنترل یکپارچه میشود. محدودیت منابع نیز یک چالش اساسی در محیطهای اینترنت اشیاء است. این دستگاهها منابع محدودی نظیر پردازشگر، حافظه و پهنای باند شبکه دارند که توان محاسباتی آنها را به شدت کاهش میدهد. بنابراین، ضرورت بهره برداری بهینه از این منابع و مدیریت آنها به منظور افزایش کارایی و بهرهوری دستگاهها مطرح میشود. همچنین، امنیت و حفاظت از اطلاعات حساس در محیطهای اینترنت اشیاء نیز از اهمیت بالایی برخوردار است، زیرا این دستگاهها اطلاعاتی حساس را در محیط شبکه منتقل میکنند که به تهدیدات امنیتی از جمله نفوذ، جاسوسی و دسترسی دستگاهها اطلاعاتی حساس را در محیط شبکه منتقل میکنند که به تهدیدات امنیتی از جمله نفوذ، جاسوسی و دسترسی دستگاهها اطلاعاتی حساس را در محیط شبکه منتقل میکنند که به تهدیدات امنیتی از جمله نفوذ، جاسوسی و دسترسی

Hypertext Transfer Protocol¹

Message Queuing Telemetry Transport²

Constrained Application Protocol³

فصل 1. مقدمه 1–2. اهداف پروژه

غيرمجاز معرض هستند.

2-1 اهداف يروژه

هدف اصلی پروژه امکانسنجی، طراحی، پیادهسازی و ارزیابی سیستمی برای کنترل و پایش دستگاههای اینترنت اشیاء بر سکوی کوبنیتز است.

1-3 ساختار گزارش

در این پروژه هدف ارائه روشی نو برای حل مسئله کنترل و پایش دستگاههای اینترنت اشیاء بر سکوی کوبرنیتز است. در ابتدا به معرفی مفاهیم پایه استفاده شده در این پروژه و سپس به معرفی روشها و کارهای مرتبط پرداخته خواهد شد. پس از آن به معرفی روش و ارزیابی آن پرداخته شده است. در انتها نتیجه گیری و کارهای آینده معرفی میشوند.

فصل 2

مفاهيم يايه

1-2 مقدمه

در این بخش به معرفی مفاهیم پایه درباره سکوی کوبرنیتز، پروژه کوبلت مجازی، اینترنت اشیاء و برخی معماریهایی که در این پروژه استفاده شده اند به مانند استخر کارگران 1 پرداخته شده است.

2-2 بستر ابری

بستر ابری² به محیطی اشاره دارد که منابع محاسباتی، شبکه و ذخیره سازی را برای ارائه خدمات به صورت ابری و توسط یک ارائه دهنده ابری فراهم می کند. در این محیط، خدمات و برنامهها بر روی خدمت دهندههای فیزیکی مجازی سازی شده قرار می گیرند و کاربران می توانند به آنها از طریق اینترنت وصل شوند و از آنها استفاده کنند. با استفاده از محیط ابری، امکاناتی مانند انعطاف پذیری بالا، قابلیت مقیاس پذیری، اشتراک گذاری منابع و مدیریت آسانتر برای خدمات فراهم می شود. همچنین یکی از مزیتهای بستر ابری ساده سازی ساخت، مدریت و انتشار یک خدمت می باشد.

Worker Pool¹

Cloud Environment²

فصل 2. مفاهیم پایه 2–3. سکوی کوبرنیتز

2-3 سکوی کوبرنیتز

کوبرنیتز 5 یک سامانه مدیریت کانتینرها 4 است که توسط گوگل توسعه داده شده است و در حال حاضر تحت نظارت و پشتیبانی مؤسسه 5 درد. این ابزار به توسعه دهندگان و مدیران سامانه امکان می دهد برنامه ها و خدمات را در بسترهای ابری 6 مدیریت کنند.

از طریق کوبرنیتز، میتوان کانتینرها را بر روی یک خدمت دهنده مجازی 8 یا فیزیکی 9 اجرا کرده و مدیریت آنها را ساده تر و مؤثرتر نمود. این سامانه با بهره گیری از روشهایی مانند اتوماسیون 10 ، توازن بار 11 و تشخیص خودکار اشکال 11 مدیریت و کنترل بهبود یافتهای در محیطهای مبتنی بر کانتینر فراهم می کند. این ابزار برای حل مشکلات زیر موثر است:

- 1. مقیاسپذیری: کوبرنیتز میتواند تعداد کانتینرها و پیشنمونههای برنامه را بر اساس نیازهای ترافیک و خدمت تنظیم کند. با استفاده از مدیریت منابع مبتنی بر درخواست، میزان منابع مورد استفاده توسط برنامه را به طور خودکار تنظیم می کند.
- 2. توازن بار: با استفاده از کوبرنیتز، می توان بار کار را به طور متوازن بین نودها و خدمت دهنده های مختلف تقسیم کرد. این باعث بهبود عملکرد و عدم وقوع اختلال در سامانه می شود. همچنین، در صورتی که یک نود یا خدمت دهنده دچار مشکل شود، کوبرنیتز به طور خودکار کار را به سایر نودها منتقل می کند.
- د. مدیریت پیچیدگی: کوبرنیتز امکاناتی را برای مدیریت پیچیدگی سامانههای کانتینری فراهم می کند. این ابزار اجرا، مدیریت، نظارت و زندگی دوباره سازی کانتینرها را ساده می کند. همچنین امکاناتی برای مدیریت تنظیمات، آپدیتها، و تغییرات در حال اجرا نیز در اختیار کاربران قرار می دهد.
- 4. قابلیت انتقال: کوبرنیتز امکان انتقال برنامهها و خدمات بین بسترهای مختلف را فراهم می کند. با استفاده از این امکان، می توان برنامهها را بین محیطهای توسعه، آزمون و تولید به راحتی منتقل کرد. کوبرنیتز با استفاده از

 $Kubernetes^3\\$

Containers⁴

Cloud Native Computing Foundation⁵

Cloud Environment⁶

Distributed Environment⁷

Virtual Machine⁸

Physical Server⁹

automation¹⁰

Load Balancing¹¹

Automatic Diagnostics¹²

فصل 2. مفاهیم پایه _____ 2–3. سکوی کوبرنیتز

این قابلیتها و خصوصیات، به توسعه دهندگان و مدیران سامانه امکان می دهد برنامه ها را به صورت مؤثر، قابلیت مقیاس پذیری و قابل اطمینان در محیطهای کانتینری مدیریت کنند و عملکرد سامانه را بهبود دهند.

شکل 2-1: معماری کلی کوبرنیتز

1-3-2 كانتينر

کانتینرهایک فناوری پیشرفته در زمینه مدیریت و اجرای نرمافزار هستند. یک کانتینر، یک واحد نرمافزاری است که تمام نیازمندی های لازم برای اجرای یک نرمافزار را شامل می شود. در واقع، کانتینرها مجموعه ای از عملیات سامانه ای، کدها و تنظیماتی هستند که با یکدیگر در یک بستر محصور می شوند. از ویژگی های برجسته کانتینرها، می توان به استقلال و حمل پذیری آنها اشاره کرد. به عبارتی دیگر، یک کانتینر می تواند بدون تغییر و با حفظ کارایی خود، بین بسترها و سامانه های عامل منتقل شود. این ویژگی باعث شده است که کانتینرها در صنعت فناوری اطلاعات بسیار محبوب شوند. برای مدیریت کانتینرها، ابزارهای مختلفی وجود دارند. یکی از محبوب ترین ابزارها برای مدیریت کانتینرها، داکر ۱۵ است. داکر یک بستر توسعه نرمافزار مبتنی بر کانتینر است که به توسعه دهندگان امکان می دهد تا برنامه های خود را در یک

Docker¹³

فصل 2. مفاهیم پایه 2–3. سکوی کوبرنیتز

کانتینر قرار داده و آن را در هر سامانهای اجرا کنند. با استفاده از کانتینرها، عملیات توسعه، آزمون و استقرار نرمافزارها سریعتر و ساده تر می شود. با توجه به این که هر کانتینر دارای محیط مستقلی است، احتمال بروز تداخل بین برنامهها به حداقل می رسد و تغییرات در یک کانتینر بر روی سایر کانتینرها تأثیری نمی گذارد. همچنین، سبک بودن کانتینرها امکان مقیاس پذیری بالایی را فراهم می آورد.

2-3-2

پادها¹⁴ در کوبنیتز واحد اصلی اجرا و مدیریت برنامهها و خدمات هستند. یک پاد شامل یک یا چند کانتینر مرتبط است که به صورت مشترک منابع شبکه و ذخیرهسازی را به اشتراک می گذارند. همچنین، هر پاد دارای یک آدرس یکتا درون کلاستر است. پادها به صورت لایهای مجازی شبیه سازی می شوند و انتزاعی از یک ماشین مجازی یا سامانه عامل فیزیکی هستند. این انتزاع به برنامهها امکان می دهد تا بدون احتیاج به اطلاعات جزئیات بستری که برای اون اجرا می شوند، در محیط کنترلی کوبرنیتز اجرا شوند. بنابراین، پادها برای توسعه دهندگان و مدیران سامانه، یک واسط سطح بالا و یک فضای کاری است.

3-3-2 گره

در بستر کوبنیتز، گرهها¹⁵ از اجزای کلیدی هستند که برنامهها و خدمات در آنها اجرا میشوند. یک گره معمولاً یک خدمت دهنده فیزیکی یا ماشین مجازی است که بر روی آن کانتینرها اجرا میشوند. هر گره شامل عناصر زیر است:

- 1. پلتفرم سختافزاری: این شامل خدمت دهندهها، سامانههای فیزیکی، یا ماشینهای مجازی است که منابع سختافزاری مانند پردازنده، حافظه، و دیسک را فراهم میکنند. گرهها بسته به نیازهای برنامهها و خدمات، میتوانند از طریق شبکه به یکدیگر متصل شوند.
- 2. کوبلت¹⁶: مسئول مدیریت و اجرای کانتینرها در گره است. آن بر روی هر گره نصب شده و با کنترل کنندههای کوبرنیتز برای دریافت توصیف کانتینرها و مدیریت آنها در ارتباط است.

¹⁴پادs

Node¹⁵

Kublet16

فصل 2. مفاهیم پایه 2–3. سکوی کوبرنیتز

3. پروکسی¹⁷: یک کنترل کننده شبکه است که مسئول مدیریت ترافیک شبکه بین کانتینرها در گره است. این عملکرد به ارتباط و مسیریابی درخواستها بین کانتینرها و اجزای دیگر کوبرنیتز مرتبط است.

عافظه مشترک¹⁸: گرهها از یک حافظه مشترک برای ذخیره و به اشتراک گذاری اطلاعاتی مانند پیکربندیها و وضعیت گرهها استفاده می کنند. این حافظه مشترک معمولاً از طریق ابزارهای ذخیرهسازی مانند ETCD ییاده سازی می شود.

با استفاده از گرهها، کوبرنیتز قادر است برنامهها و خدمات را بر روی یک سری از خدمت دهندهها یا ماشینهای مجازی توزیع کند و به طور همزمان و مقیاس پذیر اجرا کند. این باعث افزایش انعطاف پذیری، بهرهوری و پایداری در محیطهای ابری و مجازی می شود.

4-3-2 كوبلت

کوبلت یکی از اجزای اصلی سامانه مدیریت کانتینرها کوبرنیتز است. کوبلت مسئول اجرا و مدیریت کانتینرها در یک گره میباشد. کوبلت در هر گره از خوشه ¹⁹ کوبرنیتز نصب شده و وظیفهای اساسی را بر عهده دارد که شامل موارد زیر است:

- 1. مدیریت کانتینرها: کوبلت مسئول ساخت و اجرای کانتینرها بر اساس توصیفهایی که از طرف کنترل کنندههای کوبرنیتز به آن ارسال می شود، می باشد. این توصیفها شامل اطلاعاتی مانند نرم افزار مورد نظر، تنظیمات شبکه و منابع مصرفی کانتینر می شوند.
- 2. پایش²⁰منابع: کوبلت مسئول نظارت بر منابع مصرفی کانتینرها است و اطلاعات مربوط به استفاده از پردازنده، حافظه، شبکه و دیگر منابع سامانه را جمع آوری کرده و گزارش می دهد. این اطلاعات به کنترل کننده های کوبرنیتز ارسال می شوند تا بتوانند به طور هوشمند منابع را تخصیص دهند و بهینه سازی منابع را انجام دهند.
- 3. بروزرسانی و نگهداری کانتینرها: کوبلت مسئول بروزرسانی و نگهداری کانتینرها است. اگر نسخه جدیدی از نرمافزار موجود باشد، کوبلت قادر است آن را دریافت و کانتینرها را بروزرسانی کند. همچنین، در صورت خطا در اجرای کانتینر یا توقف آن، کوبلت تلاش می کند کانتینر را به طور خود کار مجدداً راه اندازی کند.

 $Kube\hbox{-}proxy^{17}$

Shared Memory¹⁸

Cluster¹⁹

 $Monitoring^{20} \\$

4. ارتباط با سایر اجزا: کوبلت وظیفه برقراری ارتباط با اجزای دیگر کوبرنیتز را نیز دارد. به عنوان مثال، با کنترل کننده ²¹ برای دریافت جدولبندی پیشنهادی و با کنترل کننده شبکه در ارتباط است.

به طور خلاصه، کوبلت یکی از اجزای کلیدی کوبرنیتز است که وظیفه مدیریت و اجرای کانتینرها را در گرههای سامانه بر عهده دارد. این کامپوننت از طریق ارتباط با سایر اجزا و دریافت توصیفهای مربوطه، به ایجاد و مدیریت یک محیط توزیع شده و مقیاس پذیر برای اجرای برنامهها و خدمات در کوبرنیتز کمک می کند.

2-3-2 خوشه کوبرنیتز

یک خوشه کوبنیتز²⁴ یک بستر توزیع شده است که شامل مجموعهای از گرهها است که برای مدیریت و اجرای برنامهها و ارائه خدمات از طریق کوبنیتز استفاده می شود. خوشه کوبنیتز شامل اجزا و خدماتی متعددی است که با همکاری میان گرهها، برنامهها را مدیریت می کنند.

2-4 قرارداد انتقال فرا متن

قرارداد انتقال فرا متن ²⁵ یک پروتکل ارتباطی است که در اینترنت استفاده می شود و برای انتقال اطلاعات بین خدمت دهنده ²⁶ و خدمت گیرنده ²⁷ استفاده می شود. به طور کلی، قرارداد انتقال فرا متن به عنوان روشی برای انتقال اطلاعات و محتوا در وب مورد استفاده قرار می گیرد. در یک ارتباط ،HTTP خدمت گیرنده در خواستی به خدمت دهنده می فرستد و سپس خدمت دهنده با پاسخ مناسب به در خواست خدمت گیرنده پاسخ می دهد. این در خواست و پاسخ در قالب پیامهای متنی انجام می شود، که ممکن است شامل سرآیندها ²⁸ و محتوای پیام ²⁹ باشند. سرآیندها شامل اطلاعاتی مانند نوع محتوا، تاریخ، طول پیام و سایر جزئیات مربوط به ارتباط است. قرارداد انتقال فرا متن برای انتقال انواع مختلف منابع و اطلاعات در وب استفاده می شود. مثلاً می توان از قرارداد انتقال فرا متن برای دریافت صفحات وب، تصاویر، ویدیوها و

 $kube\text{-}controller\text{-}manager^{21}$

kube-scheduler²²

kube-proxy²³

Kubernetes Cluster²⁴

Hypertext Transfer Protocol (HTTP)²⁵

Server²⁶

Client²⁷

Header²⁸

Body²⁹

سایر منابع در خدمت دهنده استفاده کرد. همچنین، قرارداد انتقال فرا متن از مدل درخواست-پاسخ پیروی می کند، به این معنی که خدمت گیرنده درخواستی ارسال می کند و خدمت دهنده با یک پاسخ مناسب به آن پاسخ می دهد. قرارداد انتقال فرا متن اساسی است در عملکرد وب و تعامل بین سرویس دهنده و خدمت گیرنده. این پروتکل به صورت گسترده در نرم افزارها و سرویس های وب مورد استفاده قرار می گیرد و امکان انتقال اطلاعات و ارتباط بین کامپیوترها و دستگاهها را فراهم می کند.

شكل 2-2: نماى كلى درخواست و پاسخ قرارداد انتقال فرا متن

2-4-1 توابع قرارداد انتقال فرا متن

قرارداد انتقال فرا متن توابع³⁰ مختلفی را برای تعیین نوع عملیاتی که باید انجام شود تعریف کرده است که عبارت است از:

- 1. دریافت³¹: این تابع برای دریافت (خواندن) اطلاعات از یک منبع مشخص درخواست می شود. مثلاً با استفاده از تابع دریافت می توانید صفحات وب، تصاویر یا سایر منابع را از خدمت دهنده دریافت کنید. درخواست دریافت، بدون تغییر و اثری روی منبع مورد درخواست، انجام می شود.
- 2. ساخت³²: این تابع برای ارسال داده ها به خدمت دهنده استفاده می شود. از تابع ساخت برای ایجاد یا ارسال داده جدید به خدمت دهنده استفاده می شود، مانند ارسال فرمها در وب، ارسال نظرات یا انجام عملیاتهای پردازشی.

متن فرا انتقال قرارداد Methods 30

GET³¹

POST³²

درخواست ساخت می تواند تغییراتی روی منبع مورد درخواست ایجاد کند.

- 3. بروزرسانی ³³: این تابع برای بهروزرسانی (بازنویسی) یک منبع مشخص استفاده می شود. با استفاده از تابع بروزرسانی، می توانید اطلاعات موجود در خدمت دهنده را با داده های جدید جایگزین کنید. در خواست بروزرسانی می تواند تغییراتی روی منبع مورد در خواست اعمال کند یا در صورت عدم وجود، یک منبع جدید ایجاد کند.
- 4. حذف³⁴: این تابع برای حذف یک منبع مشخص استفاده می شود. با استفاده از تابع حذف می توانید یک منبع را از خدمت دهنده حذف می کند.
- .5. بروزرسانی مقطعی³⁵: این تابع برای اعمال تغییرات جزئی روی یک منبع مشخص استفاده می شود. با استفاده از تابع بروزرسانی مقطعی، می توانید تغییرات کوچکی را روی یک منبع اعمال کنید بدون ایجاد تغییرات بزرگتری در داده های موجود.

این توابع به عنوان پایههای قرارداد انتقال فرا متن عمل می کنند و به خدمت گیرنده و خدمت دهنده امکان ارتباط و انجام عملیاتهای مختلف را می دهند. درخواستها و پاسخهای قرارداد انتقال فرا متن بر اساس این توابع تعریف می شوند و برای تعامل موثر بین سرویس دهنده و خدمت گیرنده استفاده می شوند.

2-4-2 درخواست قرارداد انتقال فرا متن

در قرارداد انتقال فرا متن، وقتی که خدمت گیرنده (مانند مرورگر وب یا برنامهای که درخواست ارسال میکند) برای دستیابی به منبع مورد نظر خود، درخواستی ³⁶ ایجاد میکند، یک درخواست قرارداد انتقال فرا متن ایجاد می شود. درخواست شده هستند. در زیر توضیحی از مهمترین اجزای یک درخواست قرارداد انتقال فرا متن را می یابید:

1. توابع قرارداد انتقال فرا متن: تابع مشخص می کند خدمت گیرنده درخواست انجام چه عملیاتی را بر روی منبع مورد نظر دارد.

PUT³³

DELETE³⁴

PATCH³⁵

HTTP Request³⁶

- 2. درس³⁷: مشخص می کند که منبع مورد نظر کجا قرار دارد و آدرس دقیق آن چیست. آدرس شامل پروتکل، نام دامنه خدمت دهنده ³⁸ و مسیر ³⁹ منبع مورد نظر است.
- 3. سرآیندها: درخواست قرارداد انتقال فرا متن می تواند شامل سرآیندها باشد که اطلاعات اضافی درباره درخواست و مشخصات خدمت گیرنده را ارائه می دهند. به عنوان مثال، سرآیندها می توانند شامل اطلاعات مربوط به نوع محتوا، زبان مورد نظر، تاریخ و غیره باشند.
- 4. بدنه درخواست ⁴⁰: بدنه درخواست، در صورتی که درخواست ارسالی دارای دادههای ارسالی است، این دادهها را در خود نگه میدارد. بدنه درخواست به صورت متنی یا در قالب دادههای باینری میتواند باشد و معمولاً در درخواستهایی مانند ساخت و بروزرسانی استفاده می شود.

هنگامی که خدمت گیرنده درخواست قرارداد انتقال فرا متن را به خدمت دهنده ارسال می کند، خدمت دهنده با استفاده از اطلاعات درخواست، منبع مورد نظر را پیدا کرده و به مناسبت درخواست، پاسخ مناسب را به خدمت گیرنده ارسال می کند. درخواست های قرارداد انتقال فرا متن بسته به نوع و عملیات مورد نظر، تعیین می کنند که چه عملیاتی باید در سمت خدمت دهنده انجام شود و اطلاعات مربوطه را برگردانند.

2-4-2 ياسخ قرارداد انتقال فرا متن

هنگامی که یک درخواست از سوی خدمت گیرنده به خدمت دهنده ارسال می شود، خدمت دهنده با یک پاسخ ⁴¹ مناسب به آن درخواست پاسخ می دهد. پاسخهای قرارداد انتقال فرا متن حاوی اطلاعات مربوط به نتیجه درخواست و ضعیت آن است.

- 1. کد وضعیت ⁴²: هر پاسخ قرارداد انتقال فرا متن دارای یک کد وضعیت است که نشان می دهد در خواست با موفقیت انجام شده است یا با مشکل مواجه شده است. بر خی از کدهای وضعیت رایج عبارتند از:
 - (آ) کد ۲۰۰: درخواست با موفقیت انجام شده است و پاسخ داده مورد نظر در دسترس است.

Uniform Resource Locator (URL)³⁷

Domain Name³⁸

Path³⁹

Request Body⁴⁰

HTTP Response⁴¹

Status Code⁴²

- (ب) کد ۴۰۴: منبع مورد نظر پیدا نشد.
- (ج) کد ۵۰۰: مشکلی در سمت خدمت دهنده رخ داده است که موجب عدم توانایی در ارسال پاسخ مورد نظر شده است.
- 2. سرآیندها: پاسخ قرارداد انتقال فرا متن شامل سرآیندها است که اطلاعات اضافی در مورد پاسخ و منبع مورد نظر را ارائه میدهند. به عنوان مثال، سرآیندها میتوانند شامل اطلاعات مربوط به نوع محتوا، طول پاسخ، تاریخ ارسال، و غیره باشند.
- 3. محتوای پاسخ ⁴³: پاسخ قرارداد انتقال فرا متن ممکن است حاوی محتوای مورد نظر باشد که توسط خدمت دهنده ارسال می شود. محتوای پاسخ می تواند اطلاعاتی مانند متن، تصویر، ویدیو یا سایر منابع مورد نیاز را شامل شود.

پاسخهای قرارداد انتقال فرا متن ارسال شده توسط خدمت دهنده معمولاً به در خواستهای ارسالی از سوی مشتری پاسخ میدهند و اطلاعات مورد نیاز را در اختیار مشتری قرار میدهند. این پاسخها با کدهای وضعیت، سرآیندها و محتوای پاسخ کامل شده و تعیین می کنند که در خواست با موفقیت انجام شده است یا خطا رخ داده است.

4-4-2 انتقال حالت نمایشی

انتقال حالت نمایشی ⁴⁴ یک معماری نرمافزاری است که برای طراحی سامنههای توزیعشده و مبتنی بر وب استفاده می شود. انتقال حالت نمایشی بر اساس مجموعهای از اصول و محدودیتها ساختاردهی شده است که در تبادل اطلاعات بین خدمت دهنده و خدمت گیرنده نقش مهمی دارد. یکی از اصول اساسی انتقال حالت نمایشی، تعریف یکپارچگی ⁴⁵ برای سامنه است. این به این معنی است که سامنه باید یک مجموعهی مشخص از روشهای استاندارد را برای تعاملات در نظر بگیرد. معمولاً در سامنههای انتقال حالت نمایشی، از متدهای قرارداد انتقال فرا متن مانند دریافت، ساخت، بروزرسانی و حذف برای تعیین عملیات مورد نیاز استفاده می شود. همچنین، منابع ⁴⁶ در سامنه انتقال حالت نمایشی به صورت یکتا شناسایی می شوند و آدرسهای مشخصی برای آنها تعیین می شود. با توجه به این اصول و محدودیتها، سامنههای انتقال حالت نمایشی مجدد را فراهم

Response Body⁴³

Representational State Transfer (REST)⁴⁴

Uniform Interface⁴⁵

Resources⁴⁶

می کنند. از طریق روشهای استاندارد و اصول انتقال حالت نمایشی، سامنهها قادر به تعامل با یکدیگر بدون توجه به جزئیات داخلی و پیچیدگیهای نحوه پیاده سازی هستند.

شكل 2-3: نماى كلى از انتقال حالت نمايشي

2-4-5 رابط كاربردى قابل برنامهريزى

رابط کاربردی قابل برنامهریزی ⁴⁷ به قوانین، پروتکلها و دستوراتی گفته می شود که برای ارتباط و تعامل بین نرم افزارها، خدمات و برنامههای مختلف به کار می رود. به طور کلی، رابط کاربردی قابل برنامه ریزی نقش یک میانجی بین سامانهها را بازی می کند و به برنامه نویسان اجازه می دهد با استفاده از آن، به منابع و امکانات موجود در سامانه دیگر دسترسی پیدا کنند. رابط کاربردی قابل برنامه ریزی ها می توانند در دو شکل مختلف عمل کنند: به صورت وب خدمت یا به صورت کتابخانه برنامه نویسی. در حالت وب خدمت، رابط کاربردی قابل برنامه ریزی بر روی یک خدمت دهنده میزبان شده است و از طریق پروتکلهای اینترنتی مانند قرارداد انتقال فرا متن قابل دسترسی است. در حالت کتابخانه برنامه نویسی، دستورات و توابع مشخصی به برنامه اضافه می شوند که برنامه نویسان می توانند از آنها به عنوان قسمتی از برنامه خود استفاده کنند. و از مستفاده از رابط کاربردی قابل برنامه ریزی ها به برنامه نویسان امکان می دهد که بخشی از دستورات را استفاده کنند و از خدمات و قابلیتهای ارائه شده توسط یک سامانه دیگر بهره ببرند. این راهکار می تواند زمان و هزینه توسعه برنامه را کاهش

Application Programming Interface⁴⁷

فصل 2. مفاهیم پایه 2–5. معماری فن آوت

داده و امکان ادغام بین نرمافزارها را فراهم کند. به طور خلاصه، رابط کاربردی قابل برنامهریزی .مانند یک پل ارتباطی است که برنامهنویسان می توانند از آن استفاده کنند تا بین نرمافزارها و خدمات اطلاعات را به اشتراک بگذارند و تعامل کنند.

شکل 2-4: نمای کلی از رابط کاربردی قابل برنامهریزی

2-5 معماری فن آوت

معماری فنآوت⁴⁸: الگوی طراحی است که به طور معمول در سامانههای توزیعشده برای مدیریت همزمان یا موازی درخواستها استفاده می شود. این معماری به توزیع درخواستهای ورودی به چند واحد پردازش ، که به عنوان کارگرها شناخته می شوند، برای انجام عملیات مورد نیاز می پردازد. معماری فنآوت با بهره گیری از پردازش موازی و توازن بار، امکان مقیاس پذیری و بهبود عملکرد سیستم را فراهم می کند. در معماری فنآوت، هنگامی که یک درخواست دریافت می شود، آن را به چندین کارگر مستقل تکرار یا ارسال می کنند تا هر کدام از آنها قادر به پردازش درخواست به صورت

Fan-out⁴⁸

فصل 2. مفاهیم پایه فصل 2. مفاهیم پایه

مستقل باشند. این رویکرد به چندین کارگر اجازه می دهد تا به صورت همزمان روی بخشهای مختلف در خواست کار کنند و بهبود ظرفیت تولید و کاهش زمان پاسخ را به همراه داشته باشد.

شكل 2-5: نماى كلى از معمارى فن آوت

6-2 **کوبلت مجازی**

کوبلت مجازی ⁴⁹ یک پروژه متن باز است که با گسترش رابط کاربردی قابل برنامهریزی کوبرنیتز، امکان ادغام ⁵⁰ خدمات و سامانههای خارجی را در قالب گرههای کوبرنیتز فراهم می کند. این پروژه این امکان را می دهد که یک گره "مجازی" بسازیم که توسط کوبرنیتز قابل مدیریت باشد و امکان ادغام سامانههای متنوع را در داخل خوشه کوبرنیتز به صورت یک پارچه فراهم کند.

Virtual Kubelet⁴⁹

 $Integration ^{50} \\$

فصل 2. مفاهیم پایه وصل 2. مفاهیم پایه

شکل 2-6: کوبلت مجازی در یک خوشه کوبرنیتز

معماری کوبلت مجازی 1-6-2

کوبلت مجازی از چندین بخش کلیدی تشکیل شده است:

- 1. تامین کننده: تامین کننده مسئول پیاده سازی رابط کوبلت مجازی است و به عنوان پل ارتباطی بین سامانه یا خدمت خارجی و کوبرنیتز عمل می کند. این بخش، فراخوانی های رابط کاربردی قابل برنامه ریزی کوبرنیتز را به عملیات مناسب در سامانه خارجی ترجمه می کند.
- 2. گره: گره مجازی نمایانگریک سامانه یا خدمت خارجی در خوشه کوبرنیتز است. عملکرد آن شبیه یک گره کوبرنیتز عادی است، اما به جای اجرا در زیرساخت فیزیکی، از طریق تامین کننده با سامانه خارجی ارتباط برقرار می کند.

فصل 2. مفاهيم پايه 2-7. اينترنت اشياء

3. پاد: پاد در کوبرنیتز، شامل یک یا چند کانتینر است. در کوبلت مجازی، پادها نماینده کارها⁵¹ هستند که در گرههای مجازی ایجاد شده توسط سامانه خارجی اجرا میشوند.

4. برنامهریز ⁵²: برنامهریز کوبرنیتز مسئول تخصیص پادها به گرههای موجود بر اساس نیازهای منابع و محدودیتها است. در کوبلت مجازی، برنامهریز مسئول زمانبندی پادها به گرههای مجازی ایجاد شده توسط تامین کننده است. این بخش تضمین می کند که منابع بصورت بهینه استفاده شده و کارها به طور مناسب در سامانه خارجی توزیع شوند.

7-2 اینترنت اشیاء

اینترنت اشیاء ⁵³ به مجموعهای از دستگاهها، سنسورها، دستگاههای هوشمند و شبکههای مرتبط که قادر به تبادل اطلاعات با یکدیگر از طریق اتصال به اینترنت هستند، اشاره دارد. این اشیاء میتوانند شامل تلفن همراهها و ساعت هوشمند تا لوازم خانگی هوشمند، خودروهای متصل و تجهیزات صنعتی باشند. اینترنت اشیاء با اتصال اشیاء و جمعآوری اطلاعات، امکان برقراری ارتباط و کنترل بیشتری را بین دنیای فیزیکی و دنیای دیجیتال فراهم میکند. مزیت اصلی اینرنت اشیاء در جمعآوری و تبادل دادهها است. سنسورها و دستگاهها در اینترنت اشیاء میتوانند اطلاعات مربوط به بستر، شرایط، موقعیت جغرافیایی، وضعیت و دادههای دیگر را جمعآوری کرده و به خدمت دهندهها یا سامانههای مرکزی ارسال کنند. این اطلاعات در خدمت دهندهها تحلیل میشوند و میتوانند به عنوان منبعی برای ارائه دادههای مفید، تجزیه و تحلیل ترافیک، پیشبینی و اتخاذ تصمیمهای هوشمند استفاده شوند. از جمله کاربردهای اینترنت اشیاء میتوان به موارد زیر اشاره کرد:

- 1. خانه هوشمند: اتصال لوازم خانگی مانند تلویزیون، سامانههای روشنایی، دستگاههای گرمایشی و سرمایشی، سامانههای امنیتی و سایر دستگاهها به اینترنت به کاربران امکان میدهد تا این دستگاهها را از راه دور کنترل و مدیریت کنند.
- 2. صنعت هوشمند: در صنعت، اینترنت اشیاء می تواند در جمع آوری داده ها از تجهیزات و سنسورها به منظور نظارت بر فرآیندها، پیشگیری از خرابیها، بهینه سازی استفاده از منابع و افزایش بهره وری مورد استفاده قرار گیرد.

Workload⁵¹

Scheduler⁵²

Internt of Things (IoT)⁵³

فصل 2. مفاهیم پایه فصل 2. معماری بازخوانی

3. شهر هوشمند: با استفاده از سنسورها و دستگاههای اینترنت اشیاء، میتوان شهرها را هوشمندتر کرده و بهبود امکانات شهری مانند مدیریت ترافیک، پارکینگ هوشمند، مدیریت پسماند و رصد آلودگی هوا را فراهم کرد.

4. سلامتی هوشمند: استفاده از دستگاههای پوشیدنی، سنسورها و دستگاههای پزشکی هوشمند، امکان نظارت بر سلامتی فرد، جمع آوری دادههای پزشکی، پیشگیری از بیماریها و ارائه مراقبت بهتر را فراهم می کند.

به طور کلی، اینترنت اشیاء با اتصال اشیاء به اینترنت و جمع آوری داده ها، امکانات جدیدی را در دسترس قرار می دهد و قابلیت های جدیدی را برای کنترل، مدیریت و بهبود عملکرد اشیا فراهم می کند.

شكل 2-7: نماى كلى از اينترنت اشياء

8-2 معماری بازخوانی

نرم افزارهای مبتنی بر بازخوانی ⁵⁴، الگوها و روشهایی در برنامهنویسی هستند که در آن بخشی از کد به عنوان ورودی به یک تابع دیگر داده می شود، و آن تابع در زمان لازم، این ورودی را به صورت بازخوانی ⁵⁵ فراخوانی می کند. با این روش، کاربر می تواند اجرای برنامه را کنترل کند و در زمانهای خاص، تابع مورد نظر خود را صدا کند. یکی از استفاده های متداول

Callback-Based Software⁵⁴

Callback⁵⁵

فصل 2. مفاهیم پایه 2–9. جمعبندی

این الگو در پاسخ به وقوع رویدادها است. در این حالت، یک تابع بازخوانی به عنوان ورودی به یک رویداد مرتبط ارسال می شود. وقتی که رویداد رخ دهد، نرمافزار بازخوانی را فراخوانی می کند و عملیات مورد نظر را اجرا می کند. این روش به به برنامهنویس امکان می دهد تا همزمان با اجرای دیگر بخشهای برنامه، به رویدادها واکنش نشان دهد. در نرمافزارهای مبتنی بر بازخوانی، تعامل بین بخشهای مختلف برنامه به صورت غیر همزمان انجام می شود. با این روش، برنامهنویس می تواند به طور کنترل شده تغییرات را پیگیری کند و اقدامات مناسبی را در زمان لازم انجام دهد. این الگو به برنامهنویسان امکان می دهد تا برنامههای پیچیده تر و قابل اطمینان تری را طراحی کنند، زیرا تعاملات غیر همزمان میان بخشها را کنترل می کند و بهبود قابلیت اطمینان سیستم را فراهم می کند. بنابراین، نرمافزارهای مبتنی بر بازخوانی، با استفاده از تابع بازخوانی به عنوان مکانیزم اصلی برای تعامل بین بخشهای مختلف برنامه، سبب افزایش انعطاف پذیری، کنترل و قابلیت اطمینان در طراحی و پیاده سازی نرمافزارها می شوند.

2-9 جمعبندي

فصل 3

کارهای مرتبط

1-3 مقدمه

فصل 4

روش پیشنهادی

1-4 مقدمه

TODO

2-4 معماری سامانه

اجزای اصلی سامانه متشکل از پیاده سازی تامین کننده کوبلت مجازی، رابط بین تامین کننده و کنترل کننده ها، کنترل کننده ها و دستگاه ها می باشد که در ادامه به تعریف هرکدام پرداخته فصل 4. روش پیشنهادی 4-2. معماری سامانه

شكل 4-1: نماي كلى معماري

1-2-4 پیادهسازی تامین کننده کوبلت مجازی

کوبلت مجازی با در اختیار گذاشتن رابطهایی برای برنامهنویس، این امکان را میدهد که بتوان گرههای کوبرنیتز با پشتوانههای سفارشیسازی شده داشته باشیم. برای مثال رابط زیر چرخه وجودی یک پاد را نشان میدهد. حال با پیادهسازی این رابط، ما این امکان را داریم که از ساختهشدن، بروزرسانی شدن، حذف شدن و حتی تغییر وضعیتهای پادهای مورد نظر خود با خبر شویم.

فصل 4. روش پیشنهادی 4-2. معماری سامانه

رابط کنترل کننده چرخه وجودی پاد: 1-4 Listing

```
type PodLifecycleHandler interface {
    CreatePod(ctx context.Context, pod *corev1.Pod) error

    UpdatePod(ctx context.Context, pod *corev1.Pod) error

    DeletePod(ctx context.Context, pod *corev1.Pod) error

GetPod(ctx context.Context, namespace, name string)
          (*corev1.Pod, error)

GetPodStatus(ctx context.Context, namespace, name string)
          (*corev1.PodStatus, error)

GetPods(context.Context) ([]*corev1.Pod, error)
}
```

پیاده سازی این رابط امکان این را می دهد که بتوانیم یک پاد بر روی کوبرنیتز اعمال کرده و سپس بوسیله کوبرنیتز فراخوانی شده تا پاد مورد نظر را بسازیم. در این پروژه یک پاد نقش یک دستگاه اینترنت اشیاء را دارد. همچنین برای ارسال وضعیت گره مجازی ساخته شده، نیاز به پیاده سازی رابط دیگری داریم.

رابط كنترل كننده وضعيت گره : 2-4 Listing

```
type NodeProvider interface {
    Ping(context.Context) error

NotifyNodeStatus(ctx context.Context, cb func(*corev1.Node))
}
```

پیاده سازی این رابط باعث می شود هنگامی که کد مربوطه در حال اجرا می باشد، گره مورد در نظر در خوشه کوبرنیتز بصورت آماده ظاهر شود. بعد از ثبت این دو رابط و انجام چند مرحله دیگر، تامین کننده ما آماده استفاده می شود و بصورت یک گره در کوبرنیتز ظاهر خواهد شد.

فصل 4. روش پیشنهادی 4-2. معماری سامانه

```
→ examples git:(docs) x kubectl get nodes

NAME STATUS ROLES AGE VERSION

minikube Ready control-plane 59d v1.26.3

vkube Ready agent 5d17h test-v0.0.1

→ examples git:(docs) x
```

شکل 4-2: گره مجازی

2-2-4 رابط برقراری ارتباط با کنترل کنندهها

بعد از اتصال به کوبرنیتز و دریافت درخواستها و بروزرسانیها از سوی این سکو، باید با دستگاههای اینترنت اشیاء ارتباط برقرار کرده و وضعیتشان را در اختیار کوبرنیتز قرار دهیم. منطق ارتباط با کنترل کنندههای دستگاههای اینترنت اشیاء به این صورت است که بصورت مداوم درخواستهای خاصی به سمت کنترل کنندهها می فرستد تا از وضعیت خود کنترل کنندهها و همچنین دستگاههای اینترنت اشیاء تحت کنترلشان با خبر شود و درصورت نیاز کوبرنیتز را بروزرسانی کند. این درخواستها چیزی نیست جز درخواستهای قرارداد انتقال فرا متن. همچنین برای اینکه بتوان تعداد زیادی دستگاه اینترنت اشیاء را با یک کنترل کننده، کنترل کرد؛ از روش تکرار مقطعی استفاده شده است. این روش به ما کمک می کند تا وضعیت دستگاهها را بصورت مقطعی (نه یکجا) دریافت کرده که بتوان در صورت امکان از همزمانی، برای تسریع

این رابط برای اینکه دادههای مربوط به وضعیت دستگاهها و کنترل کنندهها را در اختیار تامین کننده قرار دهد، از معماری بازخوانی استفاده می کند.

3-2-4 شبيهساز

در این پروژه یک شبیهساز هم پیادهسازی شده که نقش کنترلکننده دستگاههای اینترنت اشیاء و همچنین خود این دستگاهها را ایفا میکند. این شبیهساز یک خدمتدهنده قرارداد انتقال فرامتن میباشد که امکانات زیر را هم برای کنترل کننده و هم برای دستگاههای اینترنت اشیاء فراهم میکند:

1. ساخت

2. ساخت جمعی (برای ارزیابی ساده)

Callback1

- 3. بروزرسانی
 - 4. حذف
- 5. دریافت تکی، همه و مقطعی

دستگاههای اینترنت اشیاء شبیهسازی شده قفلهای هوشمند یک ساختمان میباشند که امکان باز کردن و بستن قفل را دارند.

شكل 4-3: رابط كاربردى قابل برنامهنويسى شبيهساز

4-2-4 رابط گرافیکی

با توجه به اینکه هدف این پروژه امکانسنجی و پیاده سازی روشی برای پایش دستگاه های اینترنت اشیاء بوسیله بستر کوبرنیتز است، اما رابط گرافیکی نیز طراحی شد برای نمایش دادن هرچه بهتر اجزای پروژه. این رابط از دو بخش تشکیل شده است.

- 1. بخشی که با کنترل کننده دستگاههای اینترنت اشیاء ارتباط دارد و کمک به تسهیل ساخت و نمایش دستگاههای اینترنت اشیاء می کند.
- 2. بخش دیگر که با تامین کننده در ارتباط است و بصورت مداوم وضعیت گرهها و پادهای مجازی را بروزرسانی می کند.

شكل 4-4: صفحه اصلى رابط گرافيكي

شكل 4-5: صفحه گرههای كوبرنيتز

فصل 4. روش پیشنهادی 4-3. نحوه کارکرد

شكل 4-6: صفحه كنترل كنندههاى كوبرنيتز كوبرنيتز

3-4 نحوه کارکرد

ابتدا باید یک مستند پاد که در ذیل آمده مهیا کرده و در کوبرنیتز اعمال کنیم. بعد از اعمال این مستند، کوبرنیتز تامین کننده را از ایجاد این مستند با خبر می کند. حال تامین کننده با بازفراخوانی رابط کنترل کنندهها منجر به شروع دریافت وضعیت این دستگاه اینترنت اشیاء بصورت مداوم از کنترل کننده تعریف شده در مستند می شود. بنابراین رابط کنترل کنندهها بصورت مداوم با رابط کاربردی قابل برنامهنویسی شبیه ساز ارتباط گرفته و وضعیت دستگاهها را بروزرسانی می کند.

فصل 4. روش پیشنهادی 4-3. نحوه کارکرد

مستند ساخت پاد در کوبرنیتز : Listing 4-3

```
apiVersion: v1
kind: Pod
metadata:
 name: lock-main
 annotations:
   controllerName: "controller1"
   controllerAddress: "localhost:5000"
spec:
 containers:
 # this is so that kubernetes validation will pass
   - image: doesntmatter/smart_lock
     name: lock1
 dnsPolicy: ClusterFirst
 nodeSelector:
   kubernetes.io/role: agent
   kubernetes.io/os: linux
   type: virtual-kubelet
 tolerations:
 # this will target Virtual Kubelets nodes only
   - key: itzloop.dev/virtual-kubelet
     operator: Exists
```

قبل از اعمال مستند بالا، از طریق رابط گرافیکی در شبیهساز چهار دستگاه ساخته که در شکل زیر مشاهده می کنید.

شكل 4-7: دستگاههای اینترنت اشیاء ساخته شده در شبیهساز

در ادامه مستند پاد را اعمال می کنیم. همانطور که در مستند آماده است فقط یکی از این دستگاه ها یعنی قفل مرکزی 2 را از طریق کوبرنیتز رصد می کنیم. بعد از اعمال این مستند پادهای کوبرنیتز را مشاهده کرده که ابتده در وضعیت عدم آمادگی 3 می باشند.

lock-main² Not-Ready³

شکل 4-8: پاد ساخته شده از روی مستند در وضعیت عدم آمادگی

پس از گذر مدتی (مدت زمانی که طول می کشد رابط ارتباط با کنترل کننده ها وضعیت قفل مرکزی را از شبیه ساز دریافت کند) خواهیم دید که یاد مورد نظر در کوبرنیتز به وضعیت آماده 4 در می آید.

شکل 4-9: پاد ساخته شده از روی مستند در وضعیت آماده

Ready⁴

فصل 4. روش پیشنهادی

حال اگر با استفاده از رابط گرافیکی، وضعیت قفل مرکزی در شبیه ساز را به وضعیت عدم آمادگی تغییر دهیم خواهیم دید که بعد از مدتی وضعیت پاد نیز تغییر می کند.

شكل 4-10: تغيير وضعيت قفل مركزي در رابط گرافيكي

شكل 4-11: تغيير وضعيت پاد بدليل تغيير وضعيت قفل مركزي

فصل 5

ارزیابی روش پیشنهادی

1-5 مقدمه

فصل 6

نتیجهگیری و کارهای آینده

1-6 نتيجهگيري

2-6 دستاوردها

3-6 كارهاى آينده

واژهنامه فارسی به انگلیسی

واژهنامه انگلیسی به فارسی

No	de
Clieخدمت گير	en
Servخدمت ده	/e1
ProtocProtocقرار	20
Interfa	ıce
Application Programming Interfa رابط کاربردی قابل برنامهنوید	ıce
Hypertext Transfer Protoc	20
Backer	nc
	cl

Abstract

TODO

Keywords: Internet of Things, Kubernetes, Virtual Kubelet, Centeralized Monitoring, Scalable Monitoring

Iran University of Science and Technology Computer Engineering Department

A K8-Based Mechanism for Remote Monitoring and Control of IoT Devices

Bachelor of Science Thesis in Computer Engineering - Software Engineering

By:

Sina Shabani Kumeleh

Supervisor:

Dr. Mohsen Sharifi

Summer 2023