# 超低功耗 Sub-1GHz 射频收发器

## 特性

- 频率范围: 140 至1020MHz
- 调制解调方式: OOK, (G)FSK 和(G)MSK
- 数据率: 0.5 至 300 kbps
- 灵敏度: -121 dBm 2.0kbps, F<sub>RF</sub> = 433.92 MHz
  - -111 dBm 50kbps,  $F_{RF} = 433.92 \text{ MHz}$
- 电压范围: 1.8 至 3.6 V
- 发射电流: 23 mA @ 13 dBm, 433.92 MHz, FSK 72 mA @ 20 dBm, 433.92 MHz, FSK,
- 接收电流: 8.5 mA @ 433.92 MHz, FSK (高功耗) 7.2 mA @ 433.92 MHz, FSK (低功耗)
- 支持超低功耗接收模式
- 睡眠电流
  - 300 nA, DutyCycle = OFF
  - 800 nA, DutyCycle = ON
- 4-wireSPI接口
- 支持直通及包模式
- 可配置包处理机及 64-Byte FIFO
- 不归零,曼切斯特,数据白化编解码
- 支持前向纠错
- 16 管脚 QFN3x3 封装

# 描述

CMT2300A 是一款超低功耗,高性能,适用于各种 140 至 1020 MHz 无线应用的 OOK,(G)FSK 射频收发器。它是 CMOSTEK NextGenRF™射频产品线的一部分,这条产品线包含完整的发射器,接收器和收发器。CMT2300A 的高集成度,简化了系统设计中所需的外围物料。高达+20 dBm 及-121 dBm 的灵敏度优化了应用的链路性能。它支持多种数据包格式及编解码方式,使得它可以灵活的满足各种应用对不同数据包格式及编解码的需求。另外,CMT2300A 还支持 64-byte Tx/Rx FIFO,丰富的 GPIO 及中断配置,Duty-Cycle 运行模式,信道侦听,高精度 RSSI,低电压检测,上电复位,低频时钟输出,手动快速跳频,静噪输出等功能,使得应用设计更加灵活,实现产品差异化设计。CMT2300A 工作于 1.8 V至3.6 V。当达到-121 dBm 灵敏度的时候仅消耗8.5 mA 电流,超低功耗接收模式可以进一步降低芯片的接收功耗;以13dBm 输出是仅消耗 23 mA 发射电流。

## 应用

- 自动抄表
- 家居安防及楼宇自动化
- ISM 波段数据通讯
- 工业监控及控制
- 遥控及安防系统
- 遥控钥匙进入
- 无线传感器节点
- 标签读写器

## 订购信息

| 型号           | 频率         | 封装    | 最小启订量     |
|--------------|------------|-------|-----------|
| CMT2300A-EQR | 433.92 MHz | QFN16 | 5,000 pcs |
| 更多订购信息:见第    | 第33页表 29   |       |           |





# 目录

| 1. | 电气  | 特性                     | 4  |
|----|-----|------------------------|----|
|    | 1.1 | 推荐运行条件                 | 4  |
|    |     | 绝对最大额定值                |    |
|    |     | 功耗                     |    |
|    |     | 接收机                    |    |
|    |     | 发射机                    |    |
|    |     | 稳定时间                   |    |
|    |     | 频率综合器                  |    |
|    |     | <u> </u>               |    |
|    |     | 低频振荡器                  |    |
|    |     | 低电压检测                  |    |
|    |     | 数字接口                   |    |
|    |     |                        |    |
|    |     | 描述                     |    |
| 2  | 曲刑  | 应用原理图                  | 11 |
| J. |     |                        |    |
|    |     | 直接(Direct Tie) 原理图     |    |
|    |     | 射频开关(Switch Type) 原理图  |    |
| 4. | 功能  | 描述                     | 14 |
| •  |     |                        |    |
|    |     | 发射器                    |    |
|    |     | 接收机                    |    |
|    | 4.3 | 辅助模块                   |    |
|    |     | 4.3.1 晶体振荡器            |    |
|    |     | 4.3.2 睡眠计时器            |    |
|    |     | 4.3.3 低电压检测            |    |
|    |     | 4.3.4 接收信号强度指示器 (RSSI) |    |
|    |     | 4.3.6 快速手动跳频           |    |
|    |     |                        |    |
| 5. | 芯片  | 运行                     | 17 |
|    | 5.1 | SPI 接口                 | 17 |
|    |     | FIFO                   |    |
|    |     | 5.2.1 FIFO 读操作         | 18 |
|    |     | 5.2.2 FIFO 写操作         |    |
|    |     | 5.2.3 FIFO 相关中断        | 18 |
|    | 5.3 | 工作状态,时序及功耗             | 19 |
|    |     | 5.3.1 启动时序             | 19 |
|    |     | 5.3.2 工作状态             |    |
|    | 5.4 | GPIO 和中断               | 21 |
| 6. | 数据  | 包及包处理机                 | 24 |
|    |     |                        |    |
|    | 6.1 | 数据包格式                  |    |
|    | 6.2 | 数据模式                   | 24 |

|     |      | 6.2.1 直通模式       | 25 |
|-----|------|------------------|----|
|     |      | 6.2.2 包模式        | 25 |
| 7.  | 低功   | 功耗运行             | 27 |
|     | 7.1  | Duty Cycle 运转模式  | 27 |
|     | 7.2  | 2 超低功耗(SLP)接收模式  | 27 |
| 8.  | 用户   | 户寄存器             | 29 |
|     | 8.1  | CMT ⊠            | 29 |
|     | 8.2  | 2 系统区            | 30 |
|     | 8.3  | 3 频率区            | 30 |
|     | 8.4  | <b>基本</b>        |    |
|     | 8.5  |                  |    |
|     | 8.6  |                  |    |
|     |      | · 控制 1 区         |    |
|     |      | 3 控制 2 区         |    |
| 9.  |      | 购信息              |    |
| 10  | 封装   | <b>装信息</b>       | 34 |
| 11. | 顶部   | 部丝印              | 35 |
|     |      | .1 CMT2300A 顶部丝印 |    |
|     |      | 它文档              |    |
| 13  | 文档   | 档变更记录            | 37 |
|     | TO 2 | er the de        |    |

# 1. 电气特性

 $V_{DD}$ = 3.3 V, $V_{DD}$ = 25 °C, $V_{RF}$  = 433.92 MHz,灵敏度是通过接收一个PN9 序列及匹配至50 Ω阻抗下,0.1% BER 的标准下测得。除非另行声明,所有结果都是在评估板CMT2300A-EM 上测试得到。

### 1.1 推荐运行条件

表 1. 推荐运行条件

| 参数     | 符号              | 条件 | 最小  | 典型 | 最大  | 単位         |
|--------|-----------------|----|-----|----|-----|------------|
| 运行电源电压 | $V_{DD}$        |    | 1.8 |    | 3.6 | V          |
| 运行温度   | T <sub>OP</sub> |    | -40 |    | 85  | $^{\circ}$ |
| 电源电压斜率 |                 |    | 1   |    |     | mV/us      |

### 1.2 绝对最大额定值

表 2. 绝对最大额定值[1]

| 参数                    | 符号               | 条件            | 最小   | 最大  | 単位         |
|-----------------------|------------------|---------------|------|-----|------------|
| 电源电压                  | $V_{DD}$         |               | -0.3 | 3.6 | V          |
| 接口电压                  | V <sub>IN</sub>  |               | -0.3 | 3.6 | V          |
| 结温                    | TJ               |               | -40  | 125 | $^{\circ}$ |
| 储藏温度                  | T <sub>STG</sub> |               | -50  | 150 | $^{\circ}$ |
| 焊接温度                  | T <sub>SDR</sub> | 持续至少30秒       |      | 255 | $^{\circ}$ |
| ESD 等级 <sup>[2]</sup> |                  | 人体模型(HBM)     | -2   | 2   | kV         |
| 栓锁电流                  |                  | <b>@ 85</b> ℃ | -100 | 100 | mA         |

#### 备注:

- [1]. 超过"绝对最大额定参数"可能会造成设备永久性损坏。该值为压力额定值,并不意味着在该压力条件下设备功能受影响,但如果长时间暴露在绝对最大额定值条件下,可能会影响设备可靠性。
- [2]. CMT2300A 是高性能射频集成电路,对本芯片的操作和装配只应该在具有良好 ESD 保护的工作台上进行。



警告! ESD敏感器件. 对芯片进行操作的时候应注意做好ESD防范措施, 以免芯片的性能下降或者功能丧失。

# 1.3 功耗

表 3. 功耗规格

| 参数         | 符号                   | 条件                                             | 最小 | 典型   | 最大  | 参数 |
|------------|----------------------|------------------------------------------------|----|------|-----|----|
| Clean 中海   |                      | 睡眠模式,睡眠计数器关闭                                   |    | 300  |     | nA |
| Sleep 电流   | I <sub>SLEEP</sub>   | 睡眠模式,睡眠计数器开启                                   |    | 800  |     | nA |
| Standby 电流 | I <sub>Standby</sub> | 晶体振荡器开启                                        |    | 1.45 |     | mA |
|            |                      | 433 MHz                                        |    | 5.7  |     | mA |
| RFS 电流     | I <sub>RFS</sub>     | 868 MHz                                        |    | 5.8  |     | mA |
|            |                      | 915 MHz                                        |    | 5.8  | . ( | mA |
|            |                      | 433 MHz                                        |    | 5.6  |     | mA |
| TFS 电流     | I <sub>TFS</sub>     | 868 MHz                                        |    | 5.9  |     | mA |
|            |                      | 915 MHz                                        |    | 5.9  |     | mA |
|            |                      | FSK, 433 MHz, 10 kbps,10 kHz F <sub>DEV</sub>  |    | 8.5  |     | mA |
| RX 电流(高功耗) | I <sub>Rx-HP</sub>   | FSK, 868 MHz, 10 kbps, 10 kHz F <sub>DEV</sub> |    | 8.6  |     | mA |
|            |                      | FSK, 915 MHz, 10 kbps,10 kHz F <sub>DEV</sub>  |    | 8.9  |     | mA |
|            | I <sub>Rx-LP</sub>   | FSK, 433 MHz, 10 kbps, 10 kHz F <sub>DEV</sub> |    | 7.2  |     | mA |
| RX 电流(低功耗) |                      | FSK, 868 MHz, 10 kbps, 10 kHz F <sub>DEV</sub> |    | 7.3  |     | mA |
|            |                      | FSK, 915 MHz, 10 kbps, 10 kHz F <sub>DEV</sub> |    | 7.6  |     | mA |
|            |                      | FSK, 433 MHz, +20 dBm (直连)                     |    | 72   |     | mA |
|            |                      | FSK, 433 MHz, +20 dBm (RF 开关)                  |    | 77   |     | mA |
|            |                      | FSK, 433 MHz, +13 dBm (直连)                     |    | 23   |     | mA |
|            |                      | FSK, 433 MHz, +10 dBm (直连)                     |    | 18   |     | mA |
|            |                      | FSK, 433 MHz, -10 dBm (直连)                     |    | 8    |     | mA |
|            |                      | FSK, 868 MHz, +20 dBm (直连)                     |    | 87   |     | mA |
|            |                      | FSK, 868 MHz, +20 dBm (RF 开关)                  |    | 80   |     | mA |
|            | I <sub>Tx</sub>      | FSK, 868 MHz, +13 dBm (直连)                     |    | 27   |     | mA |
| TX 电流      |                      | FSK, 868 MHz, +10 dBm (直连)                     |    | 19   |     | mA |
|            |                      | FSK, 868 MHz, -10 dBm (直连)                     |    | 8    |     | mA |
|            |                      | FSK, 915 MHz, +20 dBm (直连)                     |    | 70   |     | mA |
|            |                      | FSK, 915 MHz, +20 dBm (RF 开关)                  |    | 75   |     | mA |
|            |                      | FSK, 915 MHz, +13 dBm (直连)                     |    | 28   |     | mA |
|            |                      | FSK, 915 MHz, +10 dBm (直连)                     |    | 19   |     | mA |
|            |                      | FSK, 915 MHz, -10 dBm (直连)                     |    | 8    |     | mA |

# 1.4 接收机

表 4. 接收器规格

| 参数            | 符号                  | 条件                                                                           | 最小  | 典型   | 最大  | 参数   |
|---------------|---------------------|------------------------------------------------------------------------------|-----|------|-----|------|
| 数据率           | DR                  | ООК                                                                          | 0.5 |      | 40  | kbps |
| <b>数</b> 据举   | DK                  | FSK 和 GFSK                                                                   | 0.5 |      | 300 | kbps |
| 频偏            | F <sub>DEV</sub>    | FSK和 GFSK                                                                    | 2   |      | 200 | kHz  |
|               |                     | DR = 2.0 kbps, F <sub>DEV</sub> = 10 kHz                                     |     | -121 |     | dBm  |
|               |                     | $DR = 10 \text{ kbps}, F_{DEV} = 10 \text{ kHz}$                             |     | -116 |     | dBm  |
|               |                     | DR = 10 kbps, F <sub>DEV</sub> = 10 kHz(低功耗设置)                               |     | -115 |     | dBm  |
|               |                     | $DR = 20 \text{ kbps}, F_{DEV} = 20 \text{ kHz}$                             |     | -113 |     | dBm  |
| 灵敏度 @ 433 MHz | S <sub>433-HP</sub> | DR = 20 kbps, F <sub>DEV</sub> = 20 kHz (低功耗设置)                              |     | -112 |     | dBm  |
|               |                     | $DR = 50 \text{ kbps}, F_{DEV} = 25 \text{ kHz}$                             |     | -111 |     | dBm  |
|               |                     | DR =100 kbps, F <sub>DEV</sub> = 50 kHz                                      |     | -108 |     | dBm  |
|               |                     | DR =200 kbps, F <sub>DEV</sub> = 100 kHz                                     |     | -105 |     | dBm  |
|               |                     | DR =300 kbps, F <sub>DEV</sub> = 100 kHz                                     |     | 103  |     | dBm  |
|               |                     | DR = 2.0 kbps, F <sub>DEV</sub> = 10 kHz                                     |     | -119 |     | dBm  |
|               |                     | DR = 10 kbps, F <sub>DEV</sub> = 10 kHz                                      |     | -113 |     | dBm  |
|               |                     | DR = 10 kbps, F <sub>DEV</sub> = 10 kHz(低功耗设置)                               |     | -111 |     | dBm  |
|               |                     | DR = 20 kbps, F <sub>DEV</sub> = 20 kHz                                      |     | -111 |     | dBm  |
| 灵敏度 @ 868 MHz | S <sub>868-HP</sub> | DR = 20 kbps, F <sub>DEV</sub> = 20 kHz (低功耗设置)                              |     | -109 |     | dBm  |
|               |                     | DR = 50 kbps, F <sub>DEV</sub> = 25 kHz                                      |     | -108 |     | dBm  |
|               |                     | DR =100 kbps, F <sub>DEV</sub> = 50 kHz                                      |     | -105 |     | dBm  |
|               |                     | DR =200 kbps, F <sub>DEV</sub> = 100 kHz                                     |     | -102 |     | dBm  |
|               |                     | DR =300 kbps, F <sub>DEV</sub> = 100 kHz                                     |     | -99  |     | dBm  |
|               |                     | DR = 2.0 kbps, F <sub>DEV</sub> = 10 kHz                                     |     | -117 |     | dBm  |
|               |                     | DR = 10 kbps, F <sub>DEV</sub> = 10 kHz                                      |     | -113 |     | dBm  |
|               |                     | DR = 10 kbps, F <sub>DEV</sub> = 10 kHz(低功耗设置)                               |     | -111 |     | dBm  |
|               |                     | $DR = 20 \text{ kbps}, F_{DEV} = 20 \text{ kHz}$                             |     | -111 |     | dBm  |
| 灵敏度 @ 915 MHz | S <sub>915-HP</sub> | DR = 20 kbps, F <sub>DEV</sub> = 20 kHz (低功耗设置)                              |     | -109 |     | dBm  |
|               |                     | $DR = 50 \text{ kbps}, F_{DEV} = 25 \text{ kHz}$                             |     | -109 |     | dBm  |
|               |                     | DR =100 kbps, F <sub>DEV</sub> = 50 kHz                                      |     | -105 |     | dBm  |
|               |                     | DR =200 kbps, F <sub>DEV</sub> = 100 kHz                                     |     | -102 |     | dBm  |
|               |                     | DR =300 kbps, F <sub>DEV</sub> = 100 kHz                                     |     | 99   |     | dBm  |
| 饱和输入电平        | P <sub>LVL</sub>    |                                                                              |     |      | 20  | dBm  |
|               |                     | F <sub>RF</sub> =433 MHz                                                     |     | 35   |     | dBc  |
| 镜像抑制比         | IMR                 | F <sub>RF</sub> =868 MHz                                                     |     | 33   |     | dBc  |
|               |                     | F <sub>RF</sub> =915 MHz                                                     |     | 33   |     | dBc  |
| 接收信道带宽        | BW                  | 接收信道带宽                                                                       | 50  |      | 500 | kHz  |
| 同信道干扰抑制比      | CCR                 | DR = 10 kbps, F <sub>DEV</sub> = 10 kHz;                                     |     | -7   |     | dBc  |
| 邻信道干扰抑制比      | ACR-I               | DR = 10 kbps, F <sub>DEV</sub> = 10 kHz; BW=100kHz,<br>200 kHz 信道间隔,带相同调制的干扰 |     | 30   |     | dBc  |
| 隔道干扰抑制比       | ACR-II              | DR = 10 kbps, F <sub>DEV</sub> = 10 kHz; BW=100kHz,<br>400 kHz 信道间隔,带相同调制的干扰 |     | 45   |     | dBc  |

| 参数        | 符号   | 条件                                                                      | 最小   | 典型  | 最大 | 参数  |
|-----------|------|-------------------------------------------------------------------------|------|-----|----|-----|
|           |      | DR = 10 kbps, F <sub>DEV</sub> = 10 kHz; ±1 MHz 偏移,<br>连续波干扰            |      | 70  |    | dBc |
| 阻塞抑制比     | ВІ   | DR = 10 kbps, F <sub>DEV</sub> = 10 kHz; ± 2 MHz 偏移,<br>连续波干扰           |      | 72  |    | dBc |
|           |      | DR = 10 kbps, F <sub>DEV</sub> = 10 kHz; ±10 MHz 偏移,<br>连续波干扰           |      | 75  |    | dBc |
| 输入3阶交调点   | IIP3 | DR = 10 kbps, F <sub>DEV</sub> = 10 kHz; 1 MHz 和 2 MHz 偏移的双音测试,最大系统增益设置 |      | -25 |    | dBm |
| RSSI 测量范围 | RSSI |                                                                         | -120 |     | 20 | dBm |

# 1.5 发射机

表 5. 发射机规格

| 参数                            | 符号                   | 条件                                                                | 最小  | 典型  | 最大  | 参数  |
|-------------------------------|----------------------|-------------------------------------------------------------------|-----|-----|-----|-----|
| 输出功率                          | P <sub>OUT</sub>     | 不同的频段需要特定的外围物料                                                    | -20 |     | +20 | dBm |
| 输出功率步进                        | P <sub>STEP</sub>    |                                                                   |     | 1   |     | dB  |
| GFSK高斯滤波系数                    | ВТ                   |                                                                   | 0.3 | 0.5 | 1.0 | -   |
| 不同温度下输出功率变化                   | P <sub>OUT-TOP</sub> | 温度从-40 至+85 °C                                                    |     | 1   |     | dB  |
| 42 64 7. #k/r= 64             |                      | $P_{OUT} = +13 \text{ dBm},433\text{MHz}, F_{RF} < 1 \text{ GHz}$ |     |     | -42 | dBm |
| 发射杂散辐射                        |                      | 1 GHz 至 12.75 GHz,含谐波                                             |     |     | -36 | dBm |
| F <sub>RF</sub> = 433 MHz的谐波输 | H2 <sub>433</sub>    | 2 次谐波 +20 dBm Р <sub>оит</sub>                                    |     | -46 |     | dBm |
| 出[1]                          | H3 <sub>433</sub>    | 3 次谐波 +20 dВm Роит                                                |     | -50 |     | dBm |
| F <sub>RF</sub> = 868 MHz的谐波输 | H2 <sub>868</sub>    | 2 次谐波 +20 dBm P <sub>OUT</sub>                                    |     | -43 |     | dBm |
| 出[1]                          | H3 <sub>868</sub>    | 3 次谐波 +20 dBm P <sub>OUT</sub>                                    |     | -52 |     | dBm |
| F <sub>RF</sub> = 915 MHz的谐波输 | H2 <sub>868</sub>    | 2 次谐波 +20 dBm P <sub>OUT</sub>                                    |     | -48 |     | dBm |
| 出[1]                          | H3 <sub>868</sub>    | 3 次谐波 +20 dBm P <sub>OUT</sub>                                    |     | -53 |     | dBm |
| F <sub>RF</sub> = 433 MHz的谐波输 | H2 <sub>433</sub>    | 2 次谐波 +13 dBm P <sub>OUT</sub>                                    |     | -52 |     | dBm |
| 出[1]                          | H3 <sub>433</sub>    | 3 次谐波 +13 dBm P <sub>OUT</sub>                                    |     | -52 |     | dBm |
| F <sub>RF</sub> = 868 MHz的谐波输 | H2 <sub>868</sub>    | 2 次谐波 +13 dBm P <sub>OUT</sub>                                    |     | -52 |     | dBm |
| 出[1]                          | H3 <sub>868</sub>    | 3 次谐波 +13 dBm P <sub>OUT</sub>                                    |     | -52 |     | dBm |
| F <sub>RF</sub> = 915 MHz的谐波输 | H2 <sub>868</sub>    | 2 次谐波 +13 dBm P <sub>OUT</sub>                                    |     | -52 |     | dBm |
| 出[1]                          | H3 <sub>868</sub>    | 3 次谐波 +13 dBm P <sub>OUT</sub>                                    |     | -52 |     | dBm |

# 1.6 稳定时间

表 6. 稳定时间

| 参数   | 符号                  | 条件                                                   | 最小 | 典型                           | 最大 | 参数 |
|------|---------------------|------------------------------------------------------|----|------------------------------|----|----|
|      | T <sub>SLP-RX</sub> | 从 Sleep 到 RX                                         |    | 1000                         |    | us |
|      | T <sub>SLP-TX</sub> | 从 Sleep 到 TX                                         |    | 1000                         |    | us |
|      | T <sub>STB-RX</sub> | 从 Standby 到 RX                                       |    | 300                          |    | us |
|      | T <sub>STB-TX</sub> | 从 Standby 到 TX                                       |    | 300                          |    | us |
| 稳定时间 | T <sub>RFS-RX</sub> | 从 RFS 到 RX                                           |    | 10                           |    | us |
|      | T <sub>TFS-RX</sub> | 从 TFS 到 TX                                           |    | 10                           |    | us |
|      | T <sub>TX-RX</sub>  | 从 TX 到 RX<br>(Ramp Down 需要 2T <sub>symbol</sub> 的时间) |    | 2T <sub>symbol</sub><br>+300 |    | us |
|      | T <sub>RX-TX</sub>  | 从 RX 到 TX                                            |    | 300                          |    | us |

## 1.7 频率综合器

表 7. 频率综合器规格

| 参数            | 符号                | <b>条件</b>       | 最小  | 典型   | 最大       | 参数     |
|---------------|-------------------|-----------------|-----|------|----------|--------|
|               |                   |                 | 840 |      | 1020     | MHz    |
|               |                   |                 | 420 |      | 510      | MHz    |
| 频率范围          | F <sub>RF</sub>   | <br>  需要不同的匹配网络 | 280 |      | 340      | MHz    |
|               |                   |                 | 210 |      | 255      | MHz    |
|               |                   |                 | 140 |      | 170      | MHz    |
| 综合器频率分辨率      | F <sub>RES</sub>  |                 |     | 25   | <b>\</b> | Hz     |
| 频率调谐时间        | t <sub>TUNE</sub> |                 |     | 150  |          | us     |
|               |                   | 10 kHz 频率偏移     |     | -94  |          | dBc/Hz |
|               | PN <sub>433</sub> | 100 kHz 频率偏移    |     | -99  |          | dBc/Hz |
| 相位噪声@ 433 MHz |                   | 500 kHz 频率偏移    |     | -118 |          | dBc/Hz |
|               |                   | 1MHz 频率偏移       |     | -127 |          | dBc/Hz |
|               |                   | 10 MHz 频率偏移     |     | -134 |          | dBc/Hz |
|               |                   | 10 kHz 频率偏移     |     | -92  |          | dBc/Hz |
|               |                   | 100 kHz 频率偏移    |     | 95   |          | dBc/Hz |
| 相位噪声@ 868 MHz | PN <sub>868</sub> | 500 kHz 频率偏移    |     | -114 |          | dBc/Hz |
|               |                   | 1MHz 频率偏移       |     | -121 |          | dBc/Hz |
|               |                   | 10 MHz 频率偏移     |     | -130 |          | dBc/Hz |
|               |                   | 10 kHz 频率偏移     |     | -89  |          | dBc/Hz |
|               |                   | 100 kHz 频率偏移    |     | -92  |          | dBc/Hz |
| 相位噪声@ 915 MHz | PN <sub>915</sub> | 500 kHz 频率偏移    |     | -111 |          | dBc/Hz |
|               |                   | 1MHz 频率偏移       |     | -121 |          | dBc/Hz |
|               |                   | 10 MHz 频率偏移     |     | -130 |          | dBc/Hz |

## 1.8 晶体

表 8. 晶体规格

| 参数                    | 符号                | 条件 | 最小 | 典型  | 最大 | 参数  |
|-----------------------|-------------------|----|----|-----|----|-----|
| 晶体频率 <sup>[1]</sup>   | F <sub>XTAL</sub> |    |    | 26  |    | MHz |
| 晶体频率容差[2]             | ppm               |    |    | 20  |    | ppm |
| 负载电容                  | $C_LOAD$          |    |    | 15  |    | pF  |
| 晶体等效电阻                | Rm                |    |    | 60  |    | Ω   |
| 晶体启动时间 <sup>[3]</sup> | t <sub>XTAL</sub> |    |    | 400 |    | us  |

#### 备注:

- [1]. CMT2300A 可以直接用外部参考时钟通过耦合电容驱动 XIN 管脚工作。外部时钟信号的峰峰值要求在 0.3 到 0.7 V 之间。
- [2]. 该值包括 (1) 初始误差; (2) 晶体负载; (3) 老化; 和(4) 随温度的改变。可接受的晶体频率误差受限于接收机的带宽和与之搭配的发射器之间射频频率偏差。
- [3]. 该参数很大程度上与晶体相关。

## 1.9 低频振荡器

表 9. 低频振荡器规格

| 参数        | 符号                     | 条件   | 最小 | 典型    | 最大 | 参数   |
|-----------|------------------------|------|----|-------|----|------|
| 校准频率[1]   | F <sub>LPOSC</sub>     |      |    | 32    |    | kHz  |
| 频率精确度     |                        | 校准以后 |    | 1     |    | %    |
| 温度系数[2]   |                        |      |    | -0.02 |    | %/°C |
| 电源电压系数[3] |                        |      |    | +0.5  |    | %/V  |
| 初始校准时间    | t <sub>LPOSC-CAL</sub> |      |    | 4     |    | ms   |

#### 备注:

- [1]. 低频振荡器在 PUP 阶段自动校准到晶体振荡器频率,并周期性的在这个阶段校准。
- [2]. 校准后频率随着温度变化的漂移。
- [3]. 校准后频率随着电源电压改变而漂移。

## 1.10 低电压检测

表 10. 低电压检测规格

| 参数      | 符号                 | 条件 | 最小 | 典型 | 最大 | 参数 |
|---------|--------------------|----|----|----|----|----|
| 低电压检测精度 | LBD <sub>RES</sub> |    |    | 50 |    | mV |

## 1.11 数字接口

表 11. 数字接口规格

| 参数        | 符号               | 条件                        | 最小      | 典型 | 最大  | 参数       |
|-----------|------------------|---------------------------|---------|----|-----|----------|
| 数字信号输入高电平 | V <sub>IH</sub>  |                           | 0.8     |    |     | $V_{DD}$ |
| 数字信号输入低电平 | $V_{IL}$         |                           |         |    | 0.2 | $V_{DD}$ |
| 数字信号输出高电平 | V <sub>OH</sub>  | @I <sub>OH</sub> = -0.5mA | Vdd-0.4 |    |     | <b>V</b> |
| 数字信号输出低电平 | V <sub>OL</sub>  | @I <sub>OL</sub> = 0.5mA  |         |    | 0.4 | V        |
| SCL 频率    | F <sub>SCL</sub> |                           |         |    | 5   | MHz      |
| SCL 为高时间  | T <sub>CH</sub>  |                           | 50      |    |     | ns       |
| SCL 为低时间  | T <sub>CL</sub>  |                           | 50      |    |     | ns       |
| SCL 上升沿时间 | T <sub>CR</sub>  |                           | 50      |    |     | ns       |
| SCL 下降沿时间 | T <sub>CF</sub>  |                           | 50      |    |     | ns       |

# 2. 管脚描述



图 1. CMT2300A 管脚排列 表 12.CMT2300A 管脚描述

| 管脚号               | 名称    | 1/0 | 功能说明                                             |
|-------------------|-------|-----|--------------------------------------------------|
| 1                 | RFIP  | I   | RF 信号输入 P                                        |
| 2                 | RFIN  | I   | RF 信号输入 N                                        |
| 3                 | PA    | 0   | PA 输出                                            |
| 4                 | AVDD  | Ю   | 模拟 VDD                                           |
| 5                 | AGND  | Ю   | 模拟 GND                                           |
| 6                 | DGND  | Ю   | 数字 GND                                           |
| 7                 | DVDD  | Ю   | 数字 VDD                                           |
| 8 <sup>[1]</sup>  | GPIO3 | 10  | 可配置为: CLKO, DOUT/DIN, INT2, DCLK (TX/RX)         |
| 9                 | SCLK  | I   | SPI 的时钟                                          |
| 10                | SDIO  | Ю   | SPI 的数据输入和输出                                     |
| 11                | CSB   | I   | SPI 访问寄存器的片选                                     |
| 12                | FCSB  | I   | SPI 访问 FIFO 的片选                                  |
| 13                | XI    | I   | 晶体电路输入                                           |
| 14                | хо    | 0   | 晶体电路输出                                           |
| 15 <sup>[1]</sup> | GPIO2 | Ю   | 可配置为: INT1, INT2, DOUT/DIN, DCLK (TX/RX), RF_SWT |
| 16 <sup>[1]</sup> | GPIO1 | Ю   | 可配置为: DOUT/DIN, INT1, INT2, DCLK (TX/RX), RF_SWT |
| 17                | GND   | I   | 模拟 GND,必须接地                                      |

#### 备注:

[1]. INT1 和 INT2 是中断; DOUT 是解调输出; DIN 是调制输入; DCLK 是调制或者解调数据率同步时钟,在 TX/RX 模式切换时自动切换。

# 3. 典型应用原理图

# 3.1 直接(Direct Tie) 原理图.



图 2. 直连(Direct Tie)典型应用原理图

表 13. 13dBm 直连(Direct Tie)典型应用物料清单

|     |                              |                    | 元件值               |                   |     |              |
|-----|------------------------------|--------------------|-------------------|-------------------|-----|--------------|
| 标号  | 描述                           | 433 MHz<br>+13 dBm | 868 MHz<br>+13dBm | 915 MHz<br>+13dBm | 单位  | 供应商          |
| C1  | ±5%, 0603 NP0, 50 V          | 15                 | 22                | 22                | pF  |              |
| C2  | ±5%, 0603 NP0, 50 V          | 5.6                | 6.2               | 6.2               | pF  |              |
| С3  | ±5%, 0603 NP0, 50 V          | 7.5                | 3.6               | 3.3               | pF  |              |
| C4  | ±5%, 0603 NP0, 50 V          | 24                 | 24                | 24                | pF  |              |
| C5  | ±5%, 0603 NP0, 50 V          | 24                 | 24                | 24                | pF  |              |
| C6  | ±5%, 0603 NP0, 50 V          | 4.7                | 2.2               | 2.2               | pF  |              |
| C7  | ±5%, 0603 NP0, 50 V          | 4.7                | 2.2               | 2.2               | pF  |              |
| C8  | ±5%, 0603 NP0, 50 V          | 4.7                |                   |                   | uF  |              |
| C9  | ±5%, 0603 NP0, 50 V          |                    | 470               |                   | pF  |              |
| C10 | ±5%, 0603 NP0, 50 V          |                    | 0.1               |                   | uF  |              |
| C11 | ±5%, 0603 NP0, 50 V          |                    | 0.1               |                   | uF  |              |
| L1  | ±5%, 0603 叠层贴片电感             | 180                | 100               | 100               | nH  | Sunlord SDCL |
| L2  | ±5%, 0603 叠层贴片电感,            | 56                 | 10                | 8.2               | nH  | Sunlord SDCL |
| L3  | ±5%, 0603 叠层贴片电感             | 39                 | 8.2               | 6.8               | nH  | Sunlord SDCL |
| L4  | ±5%, 0603 叠层贴片电感             | 18                 | 10                | 8.2               | nH  | Sunlord SDCL |
| L5  | ±5%, 0603 叠层贴片电感             | 18                 | 10                | 8.2               | nH  | Sunlord SDCL |
| L6  | ±5%, 0603 叠层贴片电感             | 27                 | 15                | 12                | nH  | Sunlord SDCL |
| L7  | ±5%, 0603 叠层贴片电感             | 27                 | 15                | 12                | nH  | Sunlord SDCL |
| L8  | ±5%, 0603 叠层贴片电感             | 68                 | 12                | 12                | nH  | Sunlord SDCL |
| Y1  | ±10 ppm, SMD32*25 mm         |                    | 26                |                   | MHz | EPSON        |
| U1  | CMT2300A,超低功耗 Sub-1GHz 射频收发器 |                    |                   |                   | -   | CMOSTEK      |

|     |                      | 元件值                |                    |                    |     |              |
|-----|----------------------|--------------------|--------------------|--------------------|-----|--------------|
| 标号  | 描述                   | 433 MHz<br>+20 dBm | 868 MHz<br>+20 dBm | 915 MHz<br>+20 dBm | 单位  | 供应商          |
| C1  | ±5%, 0603 NP0, 50 V  | 15                 | 18                 | 18                 | pF  |              |
| C2  | ±5%, 0603 NP0, 50 V  | 3.0                | 3.6                | 3.6                | pF  |              |
| С3  | ±5%, 0603 NP0, 50 V  | 6.2                | 3.3                | 3.3                | pF  |              |
| C4  | ±5%, 0603 NP0, 50 V  | 24                 | 24                 | 24                 | pF  |              |
| C5  | ±5%, 0603 NP0, 50 V  | 24                 | 24                 | 24                 | pF  |              |
| C6  | ±5%, 0603 NP0, 50 V  | 4.7                | 2                  | 1.8                | pF  |              |
| C7  | ±5%, 0603 NP0, 50 V  | 4.7                | 2                  | 1.8                | pF  |              |
| C8  | ±5%, 0603 NP0, 50 V  |                    | 4.7                |                    | uF  |              |
| C9  | ±5%, 0603 NP0, 50 V  |                    | 470                |                    | pF  |              |
| C10 | ±5%, 0603 NP0, 50 V  |                    | 0.1                |                    | uF  |              |
| C11 | ±5%, 0603 NP0, 50 V  |                    | 0.1                |                    | uF  |              |
| L1  | ±5%, 0603 叠层贴片电感     | 180                | 100                | 100                | nH  | Sunlord SDCL |
| L2  | ±5%, 0603 叠层贴片电感,    | 22                 | 12                 | 12                 | nH  | Sunlord SDCL |
| L3  | ±5%, 0603 叠层贴片电感     | 电容 15pF            | 15                 | 15                 | nH  | Sunlord SDCL |
| L4  | ±5%, 0603 叠层贴片电感     | 33                 | 6.2                | 6.2                | nH  | Sunlord SDCL |
| L5  | ±5%, 0603 叠层贴片电感     | 33                 | 33 6.2 6.2         |                    | nH  | Sunlord SDCL |
| L6  | ±5%, 0603 叠层贴片电感     | 27                 | 15                 | 15                 | nH  | Sunlord SDCL |
| L7  | ±5%, 0603 叠层贴片电感     | 27                 | 15                 | 15                 | nH  | Sunlord SDCL |
| L8  | ±5%, 0603 叠层贴片电感     | 68                 | 12                 | 12                 | nH  | Sunlord SDCL |
| Y1  | ±10 ppm, SMD32*25 mm |                    | 26                 |                    | MHz | EPSON        |

表 14. 20dBm 直连(Direct Tie)典型应用物料清单

# 3.2 射频开关(Switch Type) 原理图.

CMT2300A,超低功耗 Sub-1GHz 射频收发器



图 3. 射频开关(Switch Type)典型应用原理图

CMOSTEK

## 表 15.射频开关典型应用物料清单

|     |                                  | 元        | <br>.件值      |     |              |
|-----|----------------------------------|----------|--------------|-----|--------------|
| 标号  | 描述                               | 434 MHz  | 868 /915 MHz | 单位  | 供应商          |
|     |                                  | +20 dBm  | +20 dBm      |     |              |
| C1  | ±5%, 0402 NP0, 50 V              | 15       | 15           | pF  |              |
| C2  | ±5%, 0402 NP0, 50 V              | 10       | 3.9          | pF  |              |
| C3  | ±5%, 0402 NP0, 50 V              | 8.2      | 2.7          | pF  |              |
| C4  | ±5%, 0402 NP0, 50 V              | 8.2      | 2.7          | pF  |              |
| C5  | ±5%, 0402 NP0, 50 V              | 18 nH    | 220          | pF  |              |
| C6  | ±5%, 0402 NP0, 50 V              | 4.7      | 2            | pF  |              |
| C7  | ±5%, 0402 NP0, 50 V              | 4.7      | 2            | pF  |              |
| C8  | ±5%, 0402 NP0, 50 V              | 220      | 220          | uF  |              |
| C9  | ±5%, 0402 NP0, 50 V              | 220      | 220          | pF  |              |
| C10 | ±5%, 0402 NP0, 50 V              |          | 0.1          | uF  |              |
| C11 | ±5%, 0402 NP0, 50 V              |          | 0.1          | uF  |              |
| C12 | ±5%, 0402 NP0, 50 V              | 4        | 470          | pF  |              |
| C13 | ±5%, 0402 NP0, 50 V              | 2        | 2200         | pF  |              |
| C14 | ±5%, 0402 NP0, 50 V              |          | 4.7          | uF  |              |
| C15 | ±5%, 0402 NP0, 50 V              | 24       | 24           | pF  |              |
| C16 | ±5%, 0402 NP0, 50 V              | 24       | 24           | pF  |              |
| C17 | ±5%, 0402 NP0, 50 V              | 10       | 10           | pF  |              |
| C18 | ±5%, 0402 NP0, 50 V              | 10 10    |              | pF  |              |
| C19 | ±5%, 0402 NP0, 50 V              |          | 27           | pF  |              |
| C20 | ±5%, 0402 NP0, 50 V              |          | 27           | pF  |              |
| C21 | ±5%, 0402 NP0, 50 V              |          | 27           | pF  |              |
| C22 | ±5%, 0402 NP0, 50 V              |          | 27           | pF  |              |
| L1  | ±5%, 0603 叠层贴片电感                 | 180      | 100          | nH  | Sunlord SDCL |
| L2  | ±5%, 0402 叠层贴片电感                 | 27       | 6.8          | nH  | Sunlord SDCL |
| L3  | ±5%, 0402 叠层贴片电感                 | 18       | 12           | nH  | Sunlord SDCL |
| L4  | ±5%, 0402 叠层贴片电感                 | 33       | 22           | nH  | Sunlord SDCL |
| L5  | ±5%, 0402 叠层贴片电感                 | 15       | 10           | nH  | Sunlord SDCL |
| L6  | ±5%, 0402 叠层贴片电感                 | 27       | 12           | nH  | Sunlord SDCL |
| L7  | ±5%, 0402 叠层贴片电感                 | 27       | 12           | nH  | Sunlord SDCL |
| L8  | ±5%, 0402 叠层贴片电感                 | 68       | 18           | nH  | Sunlord SDCL |
| Y1  | ±10 ppm, SMD32*25 mm 26          |          | 26           | MHz | EPSON        |
| U1  | CMT2300A, 超低功耗 Sub-1GHz 射频收发器    |          | -            | -   | CMOSTEK      |
| U2  | AS179, PHEMT GaAs IC SPDT Switch | -        |              | -   | SKYWORKS     |
| R1  | ±5%, 0402                        |          | 2.2          | kΩ  |              |
| R2  | ±5%, 0402                        | 5%, 0402 |              |     |              |

## 4. 功能描述

CMT2300A 是一款适用于 140 至 1020MHz 应用的超低功耗,高性能,支持 OOK, (G)FSK, (G)MSK 的射频收发芯片。该产品属于 CMOSTEK NextGenRF™ 系列,该系列产品包括发射器、接收器和收发器等完整的产品系列。CMT2300A 的内部系统框图如下图所示。



图 4. 功能系统框图

在接收机部分,该芯片采用 LNA+MIXER+IFFILTER+LIMITTER+PLL 的低中频结构实现 1G 以下频率的无线接收功能;采用 PLL+PA 结构实现 1G 以下频率的无线发射功能。

在接收机系统内,模拟电路负责将射频信号下混频至中频,并通过 Limiter 模块做对中频信号数模转换处理,输出 I/Q 两路单比特信号到数字电路做后续的(G)FSK 解调。同时,会通过 ADC 将实时的 RSSI 转换为 8-bit 的数字信号,并送给数字部分做后续的 OOK 解调和其它处理。数字电路负责将中频信号下混频到零频(基带)并进行一系列滤波和判决处理,同时进行 AFC 和 AGC 动态地控制模拟电路,最后将 1-bit 的原始的信号解调出来。信号解调出来之后,会送到解码器里面进行解码并填入 FIFO,或者直接输出到 PAD。

在发射机系统内,数字电路会对数据进行编码打包处理,并将处理后的数据送到调制器(也可不经过编码打包,直接送到调制器),调制器会直接控制 PLL 和 PA,对数据进行(G) FSK 或者 OOK 调制并发射出去。

#### 4.1 发射器

CMT2300A 发射器是基于射频频率直接综合的发射器。其载波频率是由一个低噪声小数分频频率综合器产生。

调制数据由一个高效的单端功率放大器(PA)发射出去。输出功率可以通过寄存器读写,以1dB的步进从-20dBm配置到+20dBm。

当 PA 快速开关时,其改变的输入阻抗瞬间干扰 VCO 的输出频率,此效应成为 VCO 牵引,它会在所需载波附近产生频谱的杂散和毛刺。通过缓慢升降(Ramping)PA 输出功率,PA 的瞬时毛刺可以减到最小。CMT2300A 内建 PA 缓慢升降的机制,当 PA Ramp打开时,PA 输出功率可以在设置的速率缓慢升降值所需的幅度,以降低不需要的频谱成分。

根据不同的应用需求,用户可以设计一个 PA 匹配网络在所需的输出功率底下优化发射效率。典型应用原理图和所需的 BOM 陈述与第三章"典型应用原理图"。更多的应用原理图细节和版图指南,请参考"AN141 CMT230xA Schematic and PCB Layout Design Guideline"。

发射器可以工作在直通模式和包模式下。在直通模式下,待发射的数据直接通过芯片的 DIN 管脚送入芯片,并直接发射。在包模式下,数据可以在 STBY, TFS 和 Tx 状态下预先装入芯片的 FIFO 中,再配合其他的包元素一起发射出去。

### 4.2 接收机

CMT2300A 内建一个超低功耗,高性能低中频 OOK, FSK 接收器。天线感应进来的射频信号,通过低噪声放大器放大以后,通过正交混频器下变频至中频,由镜像抑制滤波器滤波,限幅放大器进一步放大后送入数字域做数字解调处理。在上电复位(POR)的时候每一个模拟模块都会被校准到内部的参考电压。这使得芯片能更好的工作在不同的温度和电压底下。基带滤波和解调由数字解调器完成。当芯片工作在大带外干扰信号的环境时,通过 LNA 旁边的宽带功率检测器及衰减网络,自动增益控制环路调节系统的增益,以获得最佳的系统线性度,选择性,灵敏度等性能。

沿用 CMOSTEK 的低功耗设计技术,当接收器常开时仅消耗非常低的功耗。它的周期运行模式和空中唤醒功能可以在对功耗有严格要求的应用中进一步降低系统的平均功耗。

与发射器类似,CMT2300A 接收器可以工作于直通模式和包模式。在直通模式下,解调器输出的数据可以通过芯片的 DOUT 管脚直接输出。DOUT 可以由 GPIO1/2/3 配置而成。在包模式下,解调器的数据输出先送至数据包处理器当中解码,然后填入 FIFO中,再由 MCU 通过 SPI 接口对 FIFO 进行读取。

### 4.3 辅助模块

#### 4.3.1 晶体振荡器

晶体振荡器用于为锁相环提供基准时钟,为数字模块提供系统时钟。负载电容取决于晶体指定 CL 参数。XI 与 XO 之间的总的负载电容应该等于 CL,以使晶体准确振荡在 26 MHz。

$$C_L = \frac{1}{1/C11 + 1/C12} + C_{par} + 2.5pF$$

C9 和 C10 分别为晶体两端挂的负载电容,Cpar 为 PCB 上的寄生电容。芯片内部加的 5pF 电容,差分等效就是 2.5pF。晶体的等效串联电阻应在指定规格之内,以使晶体能有一个可靠的起振。也可以用一个外部信号源连接至 XI 管脚来取代传统的晶体。这个时钟信号推荐峰峰值在 300mV 到 700mV 之间,并用电容耦合值 XI 管脚。

#### 4.3.2 睡眠计时器

CMT2300A 集成了一个由 32 kHz 低功耗振荡器(LPOSC)驱动的睡眠计时器。当该功能使能时,该计时器周期性的将芯片从睡眠中唤醒。当芯片工作于周期运行模式时,睡眠时间可以配置从 0.03125 ms 至 41,922,560 ms。由于低功耗振荡器的频率会随着温度和电压的改变而漂移,它会在上电阶段自动校准,并且会被周期性的校准。这些校准会使得该振荡器的频率容差保持在±1%以内。

#### 4.3.3 低电压检测

芯片设置了低电压检测的功能。每当芯片调谐到某个频率时,该检测就会进行一次。当芯片从 SLEEP/STBY 状态跳转到 RFS/TFS/TX/RX 状态时都会进行频率调谐。检测结果可以通过 LBD\_VALUE 寄存器读取。

如果 LBD\_STOP\_EN 设为 1, 当检测到电源电压低于预设的值时, 芯片会停止在 LOW\_VDD(CHIP\_MODE\_STA<3:0> = 1000, Addr=0x61)阶段, 等待 MCU 通过 SPI 发送让芯片切换到 SLEEP 或 Standby 模式的命令。

#### 4.3.4 接收信号强度指示器 (RSSI)

RSSI用于评估调谐的信道内的信号的强度的。级联 I/Q 对数放大器在信号送入解调器之前将其放大。I 路和 Q 路的对数放大器内部包含了接收信号指示器,其产生的 DC 电压与输入信号强度成正比。RSSI 的输出结果是两路信号值的和,从灵敏度附近延伸80dB 动态范围。信号强度通过 ADC 采样以后,经过平滑滤波得到较为平滑的 RSSI值。滤波阶数可以通过 RSSI\_AVG\_MODE<2:0>(Addr=0x16)来设定。滤波之后将码值转化为 dBm 值,用户可以通过读取寄存器获得相应的 RSSI 码值(RSSI\_CODE<7:0>,

Addr=0x6F) 或 dBm 值(RSSI\_DBM<7:0>, Addr=0x70)。

CMT2300A 在芯片出厂的时候已经做了一定程度的校准,为了获取更精准的 RSSI 测量结果,用户需要在实际的方案中做生产校准,具体使用方法请用户参照相关的 AN 文档。

#### 4.3.5 相位跳变检测 (PJD)

PJD 是指 Phase Jump Detector。在芯片进行 FSK 解调的时候,可用通过观察接收信号的跳变特性,来决定进来的是噪声还是有用信号。PJD 认为输入信号从 0 到 1 或者从 1 到 0 切换就是一次相位跳变,用户仅仅需要去配置 PJD\_WIN\_SEL<1:0>(Addr=0x17),来告诉 PJD 需要检测多少次信号跳变才能输出判断结果。



图 5.接收信号跳变图

如果上图所示,一共接收了 8 个 symbol, 但是跳变只出现了 6 次, 因此跳变数并不能等同于 symbol 数量。只有在接收 preamble 时,跳变数才等同于 symbol 数。用户需要注意这一点。

PJD 可以用于实现超低功耗(SLP)接收模式。总的来说,PJD 跳变次数越多,判断结果越可靠;越少,就越快完成。如果接收的时间窗口很小,那么就需要将检测次数减少来满足窗口设置的要求。一般来说,跳变次数是 4 次就已经可以达到比较可靠的检测效果,即不会将噪声误判为有用信号,有用信号来的时候不会检测不到。

#### 4.3.6 快速手动跳频

在需要多信道的应用当中,用户不需要每次改变频率就配置复杂的寄存器,而只需要在基础频率上配置一个寄存器就可以实现。

FREQ = 基础频点 + 2.5 kHz × FH\_OFFSET < 7:0 >× FH\_CHANNEL < 7:0 >

一般来说,用户可以先在上电初始化配置的阶段,将 FH\_OFFSET<7:0>(Addr=0x64)设置好,然后在应用中通过不停地改动 FH\_CHANNEL<7:0> (Addr=0x63)来切换频道就可以。

## 5. 芯片运行

### 5.1 SPI 接口

MCU 和芯片之间的通讯是通过 4 线 SPI 接口进行的。低有效的 CSB 意味着 MCU 要访问芯片的寄存器。低有效的 FCSB 意味着 MCU 要访问芯片的 FIFO。CSB 和 FCSB 不能同时为低。SCLK 是串口时钟。对于 MCU 和芯片,数据总是在 SCLK 的下降 沿发射,上升沿采样。SDIO 是一个双向的数据管脚。地址和数据总是从 MSB 开始发送。

当访问寄存器的时候,需要发一个 R/W(读/写)位,随后是 7 位寄存器地址。在送入 R/W 位之前,MCU 必须将 CSB 拉低至少半个 SCLK 周期。当发送最后一个 SCLK 下降沿以后, MCU 必须至少等待半个 SCLK 周期才能再将 CSB 拉高。



图 6. SPI 读寄存器时序



图 7. SPI 写寄存器时序

### **5.2 FIFO**

FIFO 用来在 Rx 模式中存储接收数据,在 Tx 模式中存储即将发射的数据。FIFO 可以通过 SPI 接口读取。用户可以通过设置 FIFO\_CLR\_TX/RX(Addr=0x6C)位来清空 FIFO。并且,用户可以通过设置 FIFO\_RESTORE 来重复发射之前填入的数据,无需重新填入数据。

通过设置寄存器 FIFO\_MERGE\_EN(Addr=0x69),用户可以选择是使用一个 32 字节 FIFO 专门用于 Rx 模式和另一个 32 字节 FIFO 专门用于 Tx 模式,还是通过合并 2 个 32 字节 FIFO 成为 1 个 64 字节 FIFO 后用于 Tx 或者 Rx 模式。当 FIFO 是 64 字节 的时候,它表示能存入芯片的最大字节数为 64 字节。如果没有使用合并,当 32 字节 RX FIFO 被填入时,用户可以同时为下一次发射填入 32 字节的 Tx FIFO,以节省系统操作时间。

#### 5.2.1 FIFO 读操作

当从 FIFO 读取数据时,每读一个字节,内部读指针就会自动增加 1。MCU 必须将 FCSB 拉低一个 SCLK 周期才能释放第一个 SCLK 的上升沿。在发出最后一个 SCLK 下降沿以后,MCU 必须等待至少 2us 才能将 FCSB 拉回高电平。并且,在读取 FIFO 的下一个字节之前,FCSB 需要拉高至少 4 us。它使得芯片可以根据现状产生相应的 FIFO 中断。



图 8. SPI 读取 FIFO 时序

#### 5.2.2 FIFO 写操作

当写入 FIFO 的时候,每写入一个字节,内部读指针就会自动增加 1。SDIO 上的数据在 SCLK 的上升沿采集。MCU 必须将 FCSB 拉低一个 SCLK 周期才能释放第一个 SCLK 的上升沿。在发出最后一个 SCLK 下降沿以后,MCU 必须等待至少 2us 才能将 FCSB 拉回高电平。并且,在写入 FIFO 的下一个字节之前,FCSB 需要拉高至少 4 us。它使得芯片可以根据现状产生相应的 FIFO 中断。



图 9. SPI 写入 FIFO 时序

#### 5.2.3 FIFO 相关中断

CMT2300A 提供了丰富的与 FIFO 相关的中断源,作为芯片高效的运作的辅助手段,其中 Rx 和 Tx 相关的 FIFO 中断时序如下图所示。



图 10. CMT2300ARX FIFO 中断时序示意图



图 11. CMT2300A TX FIFO 中断时序示意图

### 5.3 工作状态,时序及功耗

#### 5.3.1 启动时序

芯片在 VDD 上电后,通常需要等待大概 1ms 的时间,POR 才会释放。POR 释放之后,晶体也会启动,启动时间默认为 N ms,根据晶体本身特性而定;启动后需要等待晶体稳定系统才能开始工作,默认设置的稳定时间是 2.48ms,这个时间在后面可以通过写入 XTAL\_STB\_TIME <2:0>(Addr=0x0E)进行修改。在晶体稳定之前,芯片都会停留在 IDLE 状态。在晶体的稳定之后,芯片就会离开 IDLE,开始做各个模块的校正。芯片完成校正后就会停留在 SLEEP,等待用户进行初始化配置。在任何时候,只要进行复位,芯片就会回到 IDLE 并重新进行一次上电流程。



图 12. 上电时序

当校准完成后芯片进入 SLEEP 模式,从这时开始,MCU 可以通过设置寄存器 CHIP\_MODE\_SWT<7:0>(Addr=0x60)将芯片切换至不同的运行状态。

### 5.3.2 工作状态

CMT2300A 一共有 7 种工作状态: IDLE, SLEEP, STBY, RFS, RX, TFS 和 TX, 如下表所列

| 状态    | 二进制码 | 切换命令     | 开启模块                                    | 可选择开启模块            |
|-------|------|----------|-----------------------------------------|--------------------|
| IDLE  | 0000 | soft_rst | SPI, POR                                | 无                  |
| SLEEP | 0001 | go_sleep | SPI, POR, FIFO                          | LFOSC, Sleep Timer |
| STBY  | 0010 | go_stby  | SPI, POR, XTAL, FIFO                    | CLKO               |
| RFS   | 0011 | go_rfs   | SPI, POR, XTAL, PLL, FIFO               | CLKO               |
| TFS   | 0100 | go_tfs   | SPI, POR, XTAL, PLL, FIFO               | CLKO               |
| RX    | 0101 | go_rx    | SPI, POR, XTAL, PLL, LNA+MIXER+IF, FIFO | CLKO, RX Timer     |
| TX    | 0110 | go_tx    | SPI, POR, XTAL, PLL, PA, FIFO           | CLKO               |

表 16. CMT2300A 状态和模块开启表



图 13.状态切换图

### ■ SLEEP 状态

在 SLEEP 下芯片的功耗是最低的,几乎所有的模块都关闭了。SPI 是开启的,配置区和控制区 1 的寄存器可以被访问,FIFO 之前被填入的内容,也会保持不变,但是 FIFO 不能被操作。如果用户打开了定时唤醒的功能,那么 LFOSC 和睡眠计数器就会开启并工作。从 IDLE 切换到 SLEEP 所需要的时间就是上面介绍的上电流程时间。从其余状态切换到 SLEEP 都会立即完成。

#### ■ STBY 状态

在 STBY 下,晶体开启了,数字电路的 LDO 也会开启,电流会稍微增加,FIFO 可以被操作。用户可以选择是否输出 CLKO (系统时钟)到 GPIOn 引脚上。由于晶体以及开启,所以相比起 SLEEP,从 STBY 切换到发射或者接收所需要的时间都会比较短。从 SLEEP 切换到 STBY 需要等待晶体开启和稳定的时间后才能完成。从其他状态切换到 STBY 会立即完成。

### ■ RFS 状态

RFS 是切换到 RX 之前的一个过渡状态,除了接收机的 RF 模块是关闭之外,其它模块都开启了,电流会比 STBY 大。由于在 RFS 的时候,PLL 已经锁定在 RX 的频点了,所以不能切换到 TX。从 STBY 切换到 RFS 大概需要 350us 的 PLL 校正和稳定时间,从 SLEEP 切换到 RFS 就需要加上晶体启动和稳定的时间,从其它状态切换到 RFS 会立即完成。

#### ■ TFS 状态

TFS 是切换到 TX 之前的一个过渡状态,除了发射机的 RF 模块是关闭之外,其它模块都开启了,电流会比 STBY 大。由于在 TFS 的时候,PLL 已经锁定在 TX 的频点了,所以不能切换到 RX。从 STBY 切换到 TFS 大概需要 350us 的 PLL 校正和稳定时间,从 SLEEP 切换到 TFS 就需要加上晶体启动和稳定的时间,从其它状态切换到 TFS 会立即完成。

#### ■ RX 状态

在 RX 所有关于接收机的模块都会打开。从 RFS 切换到 RX 只需要 20us。从 STBY 切换到 RX 需要加上 350us 的 PLL 校正 和稳定时间。从 SLEEP 切换到 RX 需要加上晶体启动和稳定的时间。在 TX 可以通过发送 go\_switch 命令来快速切换到 RX,无论 TX 和 RX 设置的频点是否相同,都需要等待 350us 的 PLL 重新校正和稳定时间才能切换成功。

#### ■ TX 状态

在 TX 所有关于发射机的模块都会打开。从 TFS 切换到 TX 只需要 20us。从 STBY 切换到 TX 需要加上 350us 的 PLL 校正和稳定时间。从 SLEEP 切换到 TX 需要加上晶体启动和稳定的时间。在 RX 可以通过发送 go\_switch 命令来快速切换到 TX,无论 RX 和 TX 设置的频点是否相同,都需要等待 350us 的 PLL 重新校正和稳定时间才能切换成功。需要注意的是,RX 和 TX 状态之间的直接切换只能用 go\_switch。

#### 5.4 GPIO 和中断

CMT2300A 有 3 个 GPIO,每个 GPIO 都可以配置成不同的输入或者输出; CMT2300A 有 2 个中断口,可以配置到不同的 GPIO 输出。

管脚号 名字 1/0 功能 10 可配置为: DOUT/DIN, INT1, INT2, DCLK (TX/RX), RF\_SWT 16 GPIO1 10 15 GPIO2 可配置为: INT1, INT2, DOUT/DIN, DCLK (TX/RX), RF\_SWT 可配置为: CLKO, DOUT/DIN, INT2, DCLK (TX/RX) 8 GPIO3 IO

表 17. CMT2300A GPIO

下面给出中断映射表, INT1 和 INT2 的映射是一样的, 下面以 INT1 为例说明

表 18. CMT2300A 中断映射表

| 名称              | 名称 INT1_SEL 描述 |                                              |        |  |
|-----------------|----------------|----------------------------------------------|--------|--|
| RX_ACTIVE 00000 |                | 指示准备进入 RX 和已经进入 RX 的中断,在 PLL 校正和 RX 状态下为 1,  | Auto   |  |
|                 |                | 其余时候为0。                                      |        |  |
| TX_ACTIVE       | 00001          | 指示准备进入 TX 和已经进入 TX 的中断,在 PLL 校正和 TX 状态下为 1,其 | Auto   |  |
|                 |                | 余时候为 0。                                      |        |  |
| RSSI_VLD        | 00010          | 指示 RSSI 是否有效的中断                              | Auto   |  |
| PREAM_OK        | 00011          | 指示成功收到 Preamble 的中断                          | by MCU |  |
| SYNC_OK         | 00100          | 指示成功收到 Sync Word 的中断                         | by MCU |  |
| NODE_OK         | 00101          | 指示成功收到 Node ID 的中断                           | by MCU |  |
| CRC_OK          | 00110          | 指示成功收到并通过 CRC 校验的中断                          | by MCU |  |
| PKT_OK          | 00111          | 指示完整收到一个数据包的中断                               | by MCU |  |
| SL_TMO          | 01000          | 指示 SLEEP 计数器超时的中断                            | by MCU |  |
| RX_TMO          | 01001          | 指示 RX 计数器超时的中断                               | by MCU |  |
| TX_DONE         | 01010          | 指示 TX 完成的中断                                  | by MCU |  |
| RX_FIFO_NMTY    | 01011          | 指示 RX FIFO 非空的中断                             | Auto   |  |
| RX_FIFO_TH      | 01100          | 指示 RX FIFO 未读内容超过 FIFO TH 的中断                | Auto   |  |
| RX_FIFO_FULL    | 01101          | 指示 RX FIFO 填满的中断                             | Auto   |  |
| RX_FIFO_WBYTE   | 01110          | 指示 RX FIFO 每写入一个 BYTE 的中断,是脉冲                | Auto   |  |
| RX_FIFO_OVF     | 01111          | 指示 RX FIFO 溢出的中断                             | Auto   |  |
| TX_FIFO_NMTY    | 10000          | 指示 TX FIFO 非空的中断                             | Auto   |  |
| TX_FIFO_TH      | 10001          | 指示 TX FIFO 未读内容超过 FIFO TH 的中断                | Auto   |  |
| TX_FIFO_FULL    | 10010          | 指示 TX FIFO 满的中断                              | Auto   |  |
| STATE_IS_STBY   | 10011          | 指示当前状态是 STBY 的中断                             | Auto   |  |
| STATE_IS_FS     | 10100          | 指示当前状态是 RFS 或 TFS 的中断                        | Auto   |  |
| STATE_IS_RX     | 10101          | 指示当前状态是 RX 的中断                               | Auto   |  |
| STATE_IS_TX     | 10110          | 指示当前状态是 TX 的中断                               | Auto   |  |
| LBD             | 10111          | 指示低电压检测有效(VDD 低于设置的 TH)的中断                   | Auto   |  |
| TRX_ACTIVE      | 11000          | 指示准备进入RX或者RX和已经进入RX或者TX的中断,在PLL校正,RX         | Auto   |  |
|                 |                | 状态,或 TX 状态下为 1,其余时候为 0。                      |        |  |
| PKT_DONE        | 11001          | 指示当前的数据包已经接收完成,会有下面 4 种情况:                   | by MCU |  |
|                 |                | 1. 完整地接收到整个数据包                               |        |  |
|                 |                | 2. 曼切斯特解码错误,解码电路自动重启                         |        |  |
|                 |                | 3. NODE ID 接收错误,解码电路自动重启                     |        |  |
|                 |                | 4. 发现信号冲突,解码电路不自动重启,等待 MCU 处理                |        |  |

中断默认是 1 有效,但是可以通过将 INT\_POLAR(Addr=0x66)这个寄存器比特设置成 1,使所有中断都变成 0 有效。下面还是以 INT1 为例,画出了所有中断源的控制和选择图。对于控制和映射来说,INT1 和 INT2 也是一样的。



图 14. CMT2300A INT1 中断映射图

## 6. 数据包及包处理机

### 6.1 数据包格式

CMT2300A 采用了 TX 和 RX 统一配置,比较典型,比较灵活的包格式,可以分为可变包(Length 在 Node ID 前面),可变包(Length 在 Node ID 后面)和固定包三种,分别如下:



图 15. 可变包(Length 在 Node ID 前面)



图 16. 可变包 (Length 在 Node ID 后面)



图 17. 固定包

### 6.2 数据模式

数据模式(Data Mode)指的外部 MCU 通过什么模式来输入发射数据或获取接收数据,CMT2300A 支持直通模式和包模式两种,区别如下。

- Direct 直通模式,仅支持 preamble 和 sync 检测,FIFO 不工作
- Packet 包模式,支持所有包格式配置,FIFO工作

#### 6.2.1 直通模式



图 18.直通模式的数据通路

#### Rx 处理

在直通模式中,数据从解调器的输出直接通过 DOUT 发送到外部 MCU, DOUT 可以设置为 GPIO1, 2 或 3。典型的直通模式的 Rx 工作顺序如下。

- 1. 通过CUS\_IO\_SEL(Addr=0x65)寄存器配置GPIOs。
- 2. 配置DATA\_MODE = 0(Addr=0x38)。
- 3. 发送go\_rx 命令。
- 4. 连续地从DOUT捕获接收数据。
- 5. 发送go\_sleep/go\_stby/go\_rfs命令以节省功耗

#### Tx 处理

直通模式下,待发射的数据直接由外部 MCU 通过芯片的 DIN 送入芯片,数据率只要在芯片使用规范内都可以由 MCU 指定。而如果是用 GFSK 的调制方式的话,需要提前配置芯片的数据率,并且 MCU 发射的数据率在指定的容差范围之内。典型的直通模式的 Tx 工作顺序如下。

- 1. 将寄存器TX\_DIN\_EN (Addr=0x69) 设为1来使能GPIO的DIN功能。
- 2. 设TX\_DIN\_SEL(Addr=0x69)为 0来配置GPIO1 为DIN, 或1来配置 GPIO2 为DIN。
- 3. 用逻辑0或1驱动DIN。
- 4. 发送go\_tx 命令,芯片开始发送DIN上面的数据。
- 5. 持续发送数据到DIN上,数据立即被发送出去。
- 6. 发送go\_sleep/go\_stby/go\_rfs命令来节省功耗。

#### 6.2.2 包模式



图 19.包模式的数据通路

#### Rx 处理

在包模式中,从解调器输出的数据会先被移送至包处理机中进行解码,然后填入 FIFO。包处理机提供多种解码引擎和判断数据有效性的选项,这些可以减轻用户的 MCU 资源。典型的包模式的 Rx 工作顺序如下。

- 1. 通过CUS\_IO\_SEL (Addr=0x65)配置GPIO。
- 2. 通过CUS\_INT1\_CTL(Addr=0x66), CUS\_INT2\_CTL(Addr=0x67)和CUS\_INT\_EN(Addr=0x68)设置中断。
- 3. 发送go\_rx 命令。
- 4. 根据相关的中断状态读取FIFO。
- 5. 发送go\_sleep/go\_stby/go\_rfs 命令以节省功耗。
- 6. 通过CUS\_INT\_CLR1/2(Addr=0x6A/B)清楚包中断状态。

#### Tx处理

在包模式中,MCU 可以提前将数据在 STBY 和 TFS 的状态下填入 FIFO 中,或者在芯片发送数据的同时写入 FIFO,或者以上两种方法的结合。典型的包模式的 Tx 工作顺序如下。

- 1. 通过CUS\_IO\_SEL (Addr=0x65)配置GPIO。
- 2. 在有数据需要提前装入FIFO的时候发送go\_stby/go\_tfs 命令。
- 3. 发送go\_tx 命令。
- 4. 在相应的中断状态中将数据写入FIFO。
- 5. 发送go\_sleep/go\_stby/go\_rfs 命令以节省功耗。 低功耗运行

## 7. 低功耗运行

## 7.1 Duty Cycle 运转模式

CMT2300A 通过配置相关寄存器使得芯片的 Tx 和 Rx 工作于 duty cycle 运转模式以节省芯片功耗。其中,RX 的 Duty Cycle 模式可以分为以下 5 种模式。

- 1. 全手动控制
- 2. 自动 SLEEP 唤醒
- 3. 自动 SLEEP 唤醒,自动进入 RX
- 4. 自动 SLEEP 唤醒,自动退出 RX
- 5. 全自动接收

TX的 Duty Cycle 可以分为以下 3种模式。

- 1. 自动退出 TX
- 2. 自动 SLEEP 唤醒,自动退出 TX
- 3. 全自动发射

#### 7.2 超低功耗 (SLP) 接收模式

CMT2300A 提供了一系列的选项,能够帮助用户在不同的应用需求下实现超低功耗(SLP – Supper Low Power)的接收。这些选项都必须在 RX\_TIMER\_EN 被设置为 1,即 RX 计时器有效的时候才会生效。SLP 接收的核心内容是如何让接收机在无信号的时候尽量缩短 RX 的时间,在有信号的时候又能够恰当地延长 RX 的时间进行接收,最终达到功耗最小化并稳定接收的效果。

传统的短距离无线收发系统,一般都会以下面这种基本的方案实现低功耗收发。CMT2300A 同样兼容这种方案,并且在这个基础上扩展出 13 种更加节省功耗的方案。下面先介绍一下最基本的方案,即将 RX\_EXTEND\_MODE<3:0>设置为 0 时就可以实现的方案。



图 20. 基本的低功耗收发方案

传统低功耗收发方案以及在此基础上延伸的 13 种低功耗方案罗列如下表。

表 19. 低功耗收发模式

| 编号 | RX 的延长方式                         | RX 的延长条件                            |
|----|----------------------------------|-------------------------------------|
| 0  | 如果配置成 0,就不做任何延长,T1 计时结束就离开       | 无                                   |
|    | RX                               |                                     |
| 1  | <br>  T1 内一旦满足检测条件,就离开 T1,将控制权交给 | RSSI_VLD 有效                         |
| 2  | MCU                              | PREAM_OK 有效                         |
| 3  | IVICO                            | RSSI_VLD 与 PREAM_OK 同时有效            |
| 4  | T1 内只要检测到 RSSI 有效,就退出 T1 并一直处于   | RSSI_VLD 有效                         |
|    | RX,直到 RSSI 不满足就退出 RX             | N331_VLD 有效                         |
| 5  |                                  | RSSI_VLD 有效                         |
| 6  |                                  | PREAM_OK 有效                         |
| 7  | T1 内一旦满足检测条件,就切换到 T2, T2 计时结束    | RSSI_VLD 与 PREAM_OK 同时有效            |
| 8  | 后就退出 RX                          | PREAM_OK 或 SYNC_OK 任意一个有效           |
| 9  |                                  | PREAM_OK 或 NODE_OK 任意一个有效           |
| 10 |                                  | PREAM_OK 或 SYNC_OK 或 NODE_OK 任意一个有效 |
| 11 | T1 内一旦满足检测条件,就切换到 T2, T2 内一旦检    | RSSI_VLD 有效                         |
| 12 | 测到 SYNC 就退出 T2 并将控制权交给 MCU,否则 T2 | PREAM_OK 有效                         |
| 13 | 计时结束后就退出 RX                      | RSSI_VLD 与 PREAM_OK 同时有效            |

表格里面提到的 T1 和 T2 分别是指可用寄存器设定的 RX T1 和 T2 时间窗口。具体的低功耗方案的设置方法请参照相关的技术文档。

# 8. 用户寄存器

下面给出寄存器的列表,关于寄存器的具体使用,请参照 AN146 CMT2300A 使用手册。这些寄存器分区中,除了控制 2 区不可再 SLEEP 下访问以外,其他皆可以在 SLEEP 底下访问。

表 20.寄存器分区

| 地址范围      |                                | 名称                | RFPDK          | 备注                                        |  |  |  |
|-----------|--------------------------------|-------------------|----------------|-------------------------------------------|--|--|--|
| 0x00~0x0B |                                | 内部参数区             | CMT Bank       | 由 RFPDK 导出,不建议客户修改                        |  |  |  |
| 0x0C~0x17 | 配置区(该                          | 系统运作区             | System Bank    | 该区域主要牵涉 DutyCycle 工作配置                    |  |  |  |
| 0x18~0x1F | 区配置值可                          | 频率配置区             | Frequency Bank | 该区域是配置收发工作频率                              |  |  |  |
| 0x20~0x37 | 以通过<br>RFPDK 软                 | 数据率区              | Data Rate Bank | 该区域是关联通讯速率以及针对该速率和发射频偏对应的接收配置(即接收解调/带宽关联) |  |  |  |
| 0x38~0x54 | 件的 Export<br>功能导出)             | 基带区               | Baseband Bank  | 该区域主要涉及数据包结构(编码格式、报文结构、<br>校验、纠错、同步字等)    |  |  |  |
| 0x55~0x5F |                                | 发射参数区             | TX Bank        | 该区域主要牵涉发射频偏和发射功率部分                        |  |  |  |
| 0x60~0x6A | 控制区 1<br>(根据 MCU 需<br>RFPDK 生成 | ·<br>京求配置,不由<br>) |                | 工作状态、跳频配置、GPO 配置、中断源开关等                   |  |  |  |
| 0x6B~0x71 | 控制区 2<br>(根据 MCU 需<br>RFPDK 生成 | 言求配置,不由<br>)      |                | 中断源标志、FIFO 控制、RSSI 测量等                    |  |  |  |

### 8.1 CMT 区

CMT 区主要存放产品相关的信息和其他的功能寄存器,并且还包含一些芯片内部使用的寄存器。

表 21.CMT 区

| Addr | R/W | Name      | Bit 7 | Bit 6                                 | Bit 5 | Bit 4      | Bit 3            | Bit 2 | Bit 1 | Bit 0 |
|------|-----|-----------|-------|---------------------------------------|-------|------------|------------------|-------|-------|-------|
| 0x00 | RW  | CUS_CMT1  |       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |       |            |                  |       |       |       |
| 0x01 | RW  | CUS_CMT2  |       |                                       |       |            |                  |       |       |       |
| 0x02 | RW  | CUS_CMT3  |       |                                       |       |            |                  |       |       |       |
| 0x03 | RW  | CUS_CMT4  |       |                                       |       |            |                  |       |       |       |
| 0x04 | RW  | CUS_CMT5  |       |                                       |       |            |                  |       |       |       |
| 0x05 | RW  | CUS_CMT6  |       |                                       | В     |            | 5 控用 D C D D V 件 | 出 D ) |       |       |
| 0x06 | RW  | CUS_CMT7  |       |                                       | Н     | 11. 儿沙吐胖,」 | 1.1女用 KFPUK主     | 风寸八   |       |       |
| 0x07 | RW  | CUS_CMT8  |       |                                       |       |            |                  |       |       |       |
| 0x08 | RW  | CUS_CMT9  |       |                                       |       |            |                  |       |       |       |
| 0x09 | RW  | CUS_CMT10 |       |                                       |       |            |                  |       |       |       |
| 0x0A | RW  | CUS_CMT11 |       |                                       |       |            |                  |       |       |       |
| 0x0B | RW  | CUS_RSSI  |       |                                       |       |            |                  |       |       |       |

## 8.2 系统区

系统区主要配置与计时器相关的参数,实现 Duty Cycle 和超低功耗模式的工作。

#### 表 22.系统区

| Addr | R/W | Name      | Bit 7           | Bit 6         | Bit 5              | Bit 4       | Bit 3                                | Bit 2      | Bit 1        | Bit 0       |
|------|-----|-----------|-----------------|---------------|--------------------|-------------|--------------------------------------|------------|--------------|-------------|
| 0x0C | RW  | CUS_SYS1  | LMT_VT          | R [1:0]       | MIXER              | BIAS [1:0]  | LNA_MC                               | DE [1:0]   | LNA_B        | IAS [1:0]   |
| 0x0D | RW  | CUS_SYS2  | LFOSC_RECAL_EN  | LFOSC_CAL1_EN | LFOSC_CAL2_EN      | RX_TIMER_EN | SLEEP_TIMER_EN                       | TX_DC_EN   | RX_DC_EN     | DC_PAUSE    |
| 0x0E | RW  | CUS_SYS3  | SLEEP_BYPASS_EN |               | XTAL_STB_TIME [2:0 | 0]          | TX_EXIT_S                            | TATE [1:0] | RX_EXIT_     | STATE [1:0] |
| 0x0F | RW  | CUS_SYS4  |                 |               |                    | SLEEP_      | TIMER_M [7:0]                        |            |              |             |
| 0x10 | RW  | CUS_SYS5  |                 |               | SLEEP_TIMER_M [10  | :8]         | SLEEP_TIMER_R [3:0]                  |            |              |             |
| 0x11 | RW  | CUS_SYS6  |                 |               |                    | RX_TIM      | ER_T1_M [7:0]                        |            |              |             |
| 0x12 | RW  | CUS_SYS7  |                 |               | RX_TIMER_T1_M [10  | :8]         |                                      | RX_TIME    | R_T1_R [3:0] |             |
| 0x13 | RW  | CUS_SYS8  |                 |               |                    | RX_TIM      | ER_T2_M [7:0]                        |            |              |             |
| 0x14 | RW  | CUS_SYS9  |                 |               | RX_TIMER_T2_M [10  | :8]         |                                      | RX_TIME    | R_T2_R [3:0] |             |
| 0x15 | RW  | CUS_SYS10 | COL_DET_EN      | COL_OFS_SEL   | RX_AUTO_EXIT_DIS   | DOUT_MUTE   | TE RX_EXTEND_MODE [3:0]              |            |              |             |
| 0x16 | RW  | CUS_SYS11 | PJD_TH_SEL      | RSSI_VLE      | )_SRC [1:0]        | RSSI_DET_   | SI_DET_SEL [1:0] RSSI_AVG_MODE [2:0] |            |              |             |
| 0x17 | RW  | CUS_SYS12 | PJD_WIN_        | SEL [1:0]     | RESV               |             |                                      | RESV       |              |             |

## 8.3 频率区

频率区主要存放实现频率调谐功能的寄存器。

### 表 23.频率区

| Addr | R/W | Name    | Bit 7 | Bit 6 | Bit 5 | Bit 4      | Bit 3        | Bit 2 | Bit 1 | Bit 0 |
|------|-----|---------|-------|-------|-------|------------|--------------|-------|-------|-------|
| 0x18 | RW  | CUS_RF1 |       |       |       |            |              |       |       |       |
| 0x19 | RW  | CUS_RF2 |       |       |       |            |              |       |       |       |
| 0x1A | RW  | CUS_RF3 |       |       |       |            |              |       |       |       |
| 0x1B | RW  | CUS_RF4 |       |       | FF    | ]户无须理解, [  | 与按用DCDDV件    | 中 √   |       |       |
| 0x1C | RW  | CUS_RF5 |       |       | /t    | 17 元次共主胜,上 | 1.1女用 KFPUK主 | 风寸八   |       |       |
| 0x1D | RW  | CUS_RF6 |       |       |       |            |              |       |       |       |
| 0x1E | RW  | CUS_RF7 |       |       |       |            |              |       |       |       |
| 0x1F | RW  | CUS_RF8 |       |       |       |            |              |       |       |       |

## 8.4 数据率区

数据率区存放于数据率相关,与 FSK 相关及 OOK 相关的寄存器。

#### 表 24.数据率区

| Addr | R/W | Name     | Bit 7 | Bit 6 | Bit 5 | Bit 4    | Bit 3             | Bit 2 | Bit 1 | Bit 0 |
|------|-----|----------|-------|-------|-------|----------|-------------------|-------|-------|-------|
| 0x20 | RW  | CUS_RF9  |       |       |       |          |                   |       |       |       |
| 0x21 | RW  | CUS_RF10 |       |       |       |          |                   |       |       |       |
| 0x22 | RW  | CUS_RF11 |       |       |       |          |                   |       |       |       |
| 0x23 | RW  | CUS_RF12 |       |       |       |          |                   |       |       |       |
| 0x24 | RW  | CUS_FSK1 |       |       |       |          |                   |       |       |       |
| 0x25 | RW  | CUS_FSK2 |       |       |       |          |                   |       |       |       |
| 0x26 | RW  | CUS_FSK3 |       |       |       |          |                   |       |       |       |
| 0x27 | RW  | CUS_FSK4 |       |       |       |          |                   |       |       |       |
| 0x28 | RW  | CUS_FSK5 |       |       |       |          |                   |       |       |       |
| 0x29 | RW  | CUS_FSK6 |       |       |       |          |                   |       |       |       |
| 0x2A | RW  | CUS_FSK7 |       |       |       |          |                   |       |       |       |
| 0x2B | RW  | CUS_CDR1 |       |       |       | 用户无须理解,〕 | 古 埣 田 D C D D V 仕 | 出 已 ) |       |       |
| 0x2C | RW  | CUS_CDR2 |       |       |       | 用厂儿须垤畔,」 | 且按用KFPUK主         | 、风寸八  |       |       |
| 0x2D | RW  | CUS_CDR3 |       |       |       |          |                   |       |       |       |
| 0x2E | RW  | CUS_CDR4 |       |       |       |          |                   |       |       |       |
| 0x2F | RW  | CUS_AGC1 |       |       |       |          |                   |       |       |       |
| 0x30 | RW  | CUS_AGC2 |       |       |       |          |                   |       |       |       |
| 0x31 | RW  | CUS_AGC3 |       |       |       |          |                   |       |       |       |
| 0x32 | RW  | CUS_AGC4 |       |       |       |          |                   |       |       |       |
| 0x33 | RW  | CUS_OOK1 |       |       |       |          |                   |       |       |       |
| 0x34 | RW  | CUS_OOK2 |       |       |       |          |                   |       |       |       |
| 0x35 | RW  | CUS_OOK3 |       |       |       |          |                   |       |       |       |
| 0x36 | RW  | CUS_OOK4 |       |       |       |          |                   |       |       |       |
| 0x37 | RW  | CUS_OOK5 |       |       |       |          |                   |       |       |       |

## 8.5 基带区

基带区存放与包格式设置相关的寄存器。

### 表 25.基带区

| Addr | R/W | Name      | Bit 7            | Bit 6           | Bit 5             | Bit 4         | Bit 3          | Bit 2             | Bit 1             | Bit 0       |
|------|-----|-----------|------------------|-----------------|-------------------|---------------|----------------|-------------------|-------------------|-------------|
| 0x38 | RW  | CUS_PKT1  |                  |                 | RX_PREAM_SIZE [4: | 0]            | •              | PREAM_LENG_UNIT   | DATA_MO           | DE [1:0]    |
| 0x39 | RW  | CUS_PKT2  |                  |                 |                   | TX_PF         | EAM_SIZE [7:0] |                   |                   |             |
| 0x3A | RW  | CUS_PKT3  |                  |                 |                   | TX_PR         | AM_SIZE [15:8] |                   |                   |             |
| 0x3B | RW  | CUS_PKT4  |                  |                 |                   | PREA          | M_VALUE [7:0]  |                   |                   |             |
| 0x3C | RW  | CUS_PKT5  | RESV             |                 | SYNC_TOL [2:0]    |               |                | SYNC_SIZE [2:0]   |                   | SYNC_MAN_EN |
| 0x3D | RW  | CUS_PKT6  |                  |                 |                   | SYN           | _VALUE [7:0]   |                   |                   |             |
| 0x3E | RW  | CUS_PKT7  |                  |                 |                   | SYNC          | _VALUE [15:8]  |                   |                   |             |
| 0x3F | RW  | CUS_PKT8  |                  |                 |                   | SYNC          | VALUE [23:16]  |                   |                   |             |
| 0x40 | RW  | CUS_PKT9  |                  |                 |                   |               | VALUE [31:24]  |                   |                   |             |
| 0x41 | RW  | CUS_PKT10 |                  |                 |                   |               | VALUE [39:32]  |                   |                   |             |
| 0x42 | RW  | CUS_PKT11 |                  |                 |                   | SYNC          | VALUE [47:40]  |                   |                   |             |
| 0x43 | RW  | CUS_PKT12 |                  |                 |                   |               |                |                   |                   |             |
| 0x44 | RW  | CUS_PKT13 |                  |                 |                   | SYNC          | VALUE [63:56]  |                   |                   |             |
| 0x45 | RW  | CUS_PKT14 | RESV             |                 | PAYLOAD_LENG [10: | 8]            | AUTO_ACK_EN    | NODE_LENG_POS_SEL | PAYLOAD_BIT_ORDER | PKT_TYPE    |
| 0x46 | RW  | CUS_PKT15 |                  |                 |                   | PAYLO         | AD_LENG [7:0]  |                   |                   |             |
| 0x47 | RW  | CUS_PKT16 | RESV             | RESV            | NODE_FREE_EN      | NODE_ERR_MASK |                | _SIZE [1:0]       | NODE_DET_N        | 10DE [1:0]  |
| 0x48 | RW  | CUS_PKT17 |                  |                 |                   | NOD           | E_VALUE [7:0]  |                   |                   |             |
| 0x49 | RW  | CUS_PKT18 |                  |                 |                   | NODI          | _VALUE [15:8]  |                   |                   |             |
| 0x4A | RW  | CUS_PKT19 |                  |                 |                   |               | _VALUE [23:16] |                   |                   |             |
| 0x4B | RW  | CUS_PKT20 |                  |                 |                   | NODE          | _VALUE [31:24] |                   |                   |             |
| 0x4C | RW  | CUS_PKT21 | FEC_TYPE         | FEC_EN          | CRC_BYTE_SWAP     | CRC_BIT_INV   | CRC_RANGE      | CRC_TYI           | PE [1:0]          | CRC_EN      |
| 0x4D | RW  | CUS_PKT22 |                  |                 |                   |               | _SEED [7:0]    |                   |                   |             |
| 0x4E | RW  | CUS_PKT23 |                  |                 |                   |               | _SEED [15:8]   |                   |                   |             |
| 0x4F | RW  | CUS_PKT24 | CRC_BIT_ORDER    | WHITEN_SEED [8] | WHITEN_SEED_TYPE  | WHITEN_       | TYPE [1:0]     | WHITEN_EN         | MANCH_TYPE        | MANCH_EN    |
| 0x50 | RW  | CUS_PKT25 |                  |                 |                   | WHIT          | EN_SEED [7:0]  |                   |                   |             |
| 0x51 | RW  | CUS_PKT26 | RESV             | RESV            | RESV              | RESV          | RESV           | RESV              | TX_PREFIX_1       | YPE [1:0]   |
| 0x52 | RW  | CUS_PKT27 |                  |                 |                   |               | KT_NUM [7:0]   |                   |                   | · ·         |
| 0x53 | RW  | CUS_PKT28 |                  |                 |                   | TX_I          | KT_GAP [7:0]   |                   |                   |             |
| 0x54 | RW  | CUS_PKT29 | FIFO_AUTO_RES_EN |                 |                   | ·             | FIFO_TH [6:0]  |                   |                   |             |

## 8.6 发射区

发射区存放与发射功率,频偏及相关的寄存器。

# 表 26. 发射区

| Addr | R/W | Name     | Bit 7 | Bit 6 | Bit 5 | Bit 4    | Bit 3     | Bit 2 | Bit 1 | Bit 0 |
|------|-----|----------|-------|-------|-------|----------|-----------|-------|-------|-------|
| 0x55 | RW  | CUS_TX1  |       |       |       |          |           |       |       |       |
| 0x56 | RW  | CUS_TX2  |       |       |       |          |           |       |       |       |
| 0x57 | RW  | CUS_TX3  |       |       |       |          |           |       |       |       |
| 0x58 | RW  | CUS_TX4  |       |       |       |          |           |       |       |       |
| x59  | RW  | CUS_TX5  | 1     |       |       |          |           |       |       |       |
| )x5A | RW  | CUS_TX6  | 1     |       | 月     | 月户无须理解,直 | 直接用RFPDK生 | 成导入   |       |       |
| 0x5B | RW  | CUS_TX7  | 1     |       |       |          |           |       |       |       |
| 0x5C | RW  | CUS_TX8  | 1     |       |       |          |           |       |       |       |
| x5D  | RW  | CUS_TX9  | 1     |       |       |          |           |       |       |       |
| )x5E | RW  | CUS_TX10 |       |       |       |          |           |       |       |       |
| )x5F | RW  | CUS_LBD  |       |       |       |          |           |       |       |       |

## 8.7 控制 1 区

控制 1 区存放各种功能模块的使能,功能选择等的寄存器

### 表 27.控制 1 区

| Addr | R/W | Name          | Bit 7           | Bit 6        | Bit 5          | Bit 4                                                                          | Bit 3         | Bit 2          | Bit 1              | Bit 0       |
|------|-----|---------------|-----------------|--------------|----------------|--------------------------------------------------------------------------------|---------------|----------------|--------------------|-------------|
| 0x60 | RW  | CUS_MODE_CTL  |                 |              |                | CHIP_M                                                                         | ODE_SWT [7:0] |                |                    |             |
| 0x61 | RW  | CUS_MODE_STA  | RESV            | RESV         | RSTN_IN_EN     | CFG_RETAIN CHIP_MODE_STA [3:0]                                                 |               |                |                    |             |
| 0x62 | RW  | CUS_EN_CTL    | RESV            | RESV         | UNLOCK_STOP_EN | LBD_STOP_EN RESV RESV RESV RESV                                                |               |                |                    | RESV        |
| 0x63 | RW  | CUS_FREQ_CHNL |                 |              |                | FH_CH                                                                          | HANNEL [7:0]  |                |                    |             |
| 0x64 | RW  | CUS_FREQ_OFS  | FH_OFFSET [7:0] |              |                |                                                                                |               |                |                    |             |
| 0x65 | RW  | CUS_IO_SEL    | RESV            | RESV         | GPIO3          | _SEL [1:0]                                                                     | GPIO2_5       | SEL [1:0]      | GPIO1_             | SEL [1:0]   |
| 0x66 | RW  | CUS_INT1_CTL  | RF_SWT1_EN      | RF_SWT2_EN   | INT_POLAR      |                                                                                |               | INT1_SEL [4:0] |                    |             |
| 0x67 | RW  | CUS_INT2_CTL  | RESV            | LFOSC_OUT_EN | TX_DIN_INV     |                                                                                |               | INT2_SEL [4:0] |                    |             |
| 0x68 | RW  | CUS_INT_EN    | SL_TMO_EN       | RX_TMO_EN    | TX_DONE_EN     | PREAM_OK_EN SYNC_OK_EN NODE_OK_EN CRC_OK_EN PKT_DONE_EN                        |               |                |                    | PKT_DONE_EN |
| 0x69 | RW  | CUS_FIFO_CTL  | TX_DIN_EN       | TX_DIN       | _SEL [1:0]     | FIFO_AUTO_CLR_DIS FIFO_TX_RD_EN FIFO_RX_TX_SEL FIFO_MERGE_EN SPI_FIFO_RD_WR_SE |               |                | SPI_FIFO_RD_WR_SEL |             |
| 0x6A | W   | CUS_INT_CLR1  | RESV            | RESV         | SL_TMO_FLG     | RX_TMO_FLG                                                                     | TX_DONE_FLG   | TX_DONE_CLR    | SL_TMO_CLR         | RX_TMO_CLR  |

# 8.8 控制 2 区

控制 1 区存放与标志位相关的寄存器及 RSSI,LBD 相关的寄存器。注意,该区寄存器不可以在 SLEEP 状态下访问。

表 28. 控制 2 区

| Addr | R/W | Name           | Bit 7   | Bit 6            | Bit 5            | Bit 4          | Bit 3           | Bit 2            | Bit 1            | Bit 0          |  |
|------|-----|----------------|---------|------------------|------------------|----------------|-----------------|------------------|------------------|----------------|--|
| 0x6B | W   | CUS_INT_CLR2   | RESV    | RESV             | LBD_CLR          | PREAM_OK_CLR   | SYNC_OK_CLR     | NODE_OK_CLR      | CRC_OK_CLR       | PKT_DONE_CLR   |  |
| 0x6C | W   | CUS_FIFO_CLR   | RESV    | RESV             | RESV             | RESV           | RESV            | FIFO_RESTORE     | FIFO_CLR_RX      | FIFO_CLR_TX    |  |
| 0x6D | R   | CUS_INT_FLAG   | LBD_FLG | COL_ERR_FLG      | PKT_ERR_FLG      | PREAM_OK_FLG   | SYNC_OK_FLG     | NODE_OK_FLG      | CRC_OK_FLG       | PKT_OK_FLG     |  |
| 0x6E | R   | CUS_FIFO_FLAG  | RESV    | RX_FIFO_FULL_FLG | RX_FIFO_NMTY_FLG | RX_FIFO_TH_FLG | RX_FIFO_OVF_FLG | TX_FIFO_FULL_FLG | TX_FIFO_NMTY_FLG | TX_FIFO_TH_FLG |  |
| 0x6F | R   | CUS_RSSI_CODE  |         |                  |                  | RSSI           | _CODE [7:0]     |                  |                  |                |  |
| 0x70 | R   | CUS_RSSI_DBM   |         | RSSI_DBM [7:0]   |                  |                |                 |                  |                  |                |  |
| 0x71 | R   | CUS_LBD_RESULT |         | LBD RESULT [7:0] |                  |                |                 |                  |                  |                |  |

# 9. 订购信息

#### 表 29. CMT2300A 订购信息

| 型号                          | 描述                             | 封装          | 包装选项 | 运行条件                       | 最小起订量 |
|-----------------------------|--------------------------------|-------------|------|----------------------------|-------|
| CMT2300A-EQR <sup>[1]</sup> | CMT2300A,超低功耗Sub-1GHz<br>射频收发器 | QFN16 (3x3) | 编带盘装 | 1.8 to 3.6V,<br>-40 to 85℃ | 5,000 |

#### 备注:

[1]. "E" 代表扩展型工业产品等级,其支持的温度范围是从-40 到+85 ℃。

"Q"代表 QFN16 的封装类型。

"R"代表编带及盘装类型,最小起订量(MOQ)是 5,000 片。

如需了解更多产品及产品线信息,请访问 <u>www.cmostek.com</u>。

有关采购或价格需求,请联系 <u>sales@cmostek.com</u>或者当地销售代表。

# 10.封装信息

CMT2300A 的封装 QFN16(3x3)封装信息如下图及下表所示。



图 21. 16-Pin QFN 3x3 封装

表 30. 16-Pin QFN 3x3 封装尺寸

| AND ET | 尺寸 (毫 | 张 mm) |
|--------|-------|-------|
| 符号     | 最小值   | 最大值   |
| Α      | 0.7   | 0.8   |
| A1     | _     | 0.05  |
| b      | 0.18  | 0.30  |
| С      | 0.18  | 0.25  |
| D      | 2.90  | 3.10  |
| D2     | 1.55  | 1.75  |
| е      | 0.50  | BSC   |
| E      | 2.90  | 3.10  |
| E2     | 1.55  | 1.75  |
| L      | 0.35  | 0.45  |

# 11.顶部丝印

# 11.1 CMT2300A 顶部丝印



图 22. CMT2300A 顶部丝印

表 31. CMT2300A 顶部丝印说明

| 丝印方式    | 激光                                 |
|---------|------------------------------------|
| 三十八八    | IX/L                               |
| 管脚 1 标记 | 圆圈直径 = 0.3 mm                      |
| 字体尺寸    | 0.5 mm, 右对齐                        |
| 第一行丝印   | 300A, 代表型号 CMT2300A                |
| 第二行丝印   | ①②③④内部跟踪编码                         |
| 第三行丝印   | 日期代码,由封装厂分配, Y 表示年的最后一位数,WW 表示工作周。 |

# 12. 其它文档

表 32. CMT2300A 相关其它文档

| 文档号        | 文档名称                              | 描述                                  |  |  |
|------------|-----------------------------------|-------------------------------------|--|--|
| AN141      | CMT2300A Schematic and PCB Layout | CMT2300A PCB 原理图和版图设计规则,RF 匹配网络和其他版 |  |  |
| ANT41      | Design Guideline                  | 图设计相关的设计注意事项。                       |  |  |
| AN142      | CMT2300A Configuration Guideline  | 在 RFPDK 上面配置 CMT2300A 的功能的介绍。       |  |  |
| A N 14 4 2 | CMT2300A Dual-Way RF Link         | CMT2300A的开发套件的使用说明,包含评估板(RF-EB),评估  |  |  |
| AN143      | Development Kits User's Guide     | 模块(EM), USB Programmer 及 RFPDK 的介绍。 |  |  |
| AN146      | CMT2300A 使用说明                     | CMT2300A 详细功能的使用及配置说明。              |  |  |

# 13. 文档变更记录

表 33. 文档变更记录表

| 版本号                  | 章节     | 变更描述                                          | 日期         |
|----------------------|--------|-----------------------------------------------|------------|
| Preliminary          | All    | Preliminary version for internal verification | 2015-06-09 |
| Darelinein en co. O. | 5.14.1 | Update 1 <sup>st</sup> paragraph              | 0045 00 40 |
| Preliminary 0.2      | 5.14.2 | Update Table 34                               | 2015-06-10 |
| 0.6                  | All    | Split Chapter 5 and 6 from Chapter 4          | 2015-08-06 |
| 0.7                  | All    | 量产版本芯片的初始发布版本                                 | 2017-02-27 |

# 14.联系信息

无锡泽太微电子有限公司深圳分公司

中国广东省深圳市南山区前海路鸿海大厦 203 室

邮编: 518000

电话: +86 - 755 - 83235017 传真: +86 - 755 - 82761326 销售: <u>sales@cmostek.com</u> 技术支持: <u>support@cmostek.com</u> 网址: <u>www.cmostek.com</u>

#### Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.