

The random timestep Euler method and its continuous dynamics

Jonas Latz

Department of Mathematics, University of Manchester

The random timestep Euler method and its continuous dynamics

preprint: L. (2024): arXiv:2408.01409.

funding: Isaac Newton Institute, Cambridge / EPSRC

Consider some initial value problem on $X := \mathbb{R}^d$:

$$u' = f(u), \qquad u(0) = u_0.$$

Consider some initial value problem on $X := \mathbb{R}^d$:

 $u'=f(u), \qquad u(0)=u_0.$

The Euler method:

$$\widehat{u}_k = \widehat{u}_{k-1} + h_k f(\widehat{u}_{k-1}), \qquad \widehat{u}_0 = u_0.$$

Consider some initial value problem on $X := \mathbb{R}^d$:

 $u'=f(u), \qquad u(0)=u_0.$

The Euler method:

$$\widehat{u}_k = \widehat{u}_{k-1} + h_k f(\widehat{u}_{k-1}), \qquad \widehat{u}_0 = u_0.$$

Linear interpolation

▶ Approximate the path $(u(t))_{t\geq 0}$ by linearly interpolating pairwise points obtained from the Euler method and obtain the linear interpolant:

$$\widehat{u}(t) := rac{t_{\mathcal{K}} - t}{t_{\mathcal{K}} - t_{\mathcal{K}-1}} \widehat{u}_{\mathcal{K}-1} + rac{t - t_{\mathcal{K}-1}}{t_{\mathcal{K}} - t_{\mathcal{K}-1}} \widehat{u}_{\mathcal{K}} \qquad (t \in [t_{\mathcal{K}-1}, t_{\mathcal{K}}], \mathcal{K} \in \mathbb{N}).$$

▶ The path $(\widehat{u}(t))_{t\geq 0}$ does not have a lot of structure and is difficult to analyse

.....

Linear interpolation

Approximate the path $(u(t))_{t\geq 0}$ by linearly interpolating pairwise points obtained from the Euler method and obtain the linear interpolant:

$$\widehat{u}(t) := \frac{t_{\mathcal{K}} - t}{t_{\mathcal{K}} - t_{\mathcal{K}-1}} \widehat{u}_{\mathcal{K}-1} + \frac{t - t_{\mathcal{K}-1}}{t_{\mathcal{K}} - t_{\mathcal{K}-1}} \widehat{u}_{\mathcal{K}} \qquad (t \in [t_{\mathcal{K}-1}, t_{\mathcal{K}}], \mathcal{K} \in \mathbb{N}).$$

▶ The path $(\widehat{u}(t))_{t>0}$ does not have a lot of structure and is difficult to analyse

This talk:

- ▶ The linear interpolant has a lot of structure in case we randomise the timestep sizes
- ► Analyse the convergence/approximation properties of this linear interpolant and its stability

Overview

The random timestep Euler method

Convergence and accuracy

Stability

Conclusions

The random timestep Euler method

We discretise the ODE $u' = f(u), u(0) = u_0$ with the random timestep Euler method:

$$\widehat{V}_k = \widehat{V}_{k-1} + H_k f(\widehat{V}_{k-1}), \qquad \widehat{V}_0 = u_0$$

with exponentially distributed stepsizes $H_1, H_2, \ldots \sim \operatorname{Exp}(h^{-1})$ i.i.d. and a stepsize parameter $\mathbb{E}[H_1] = h > 0$. We also define the jump times $T_k := \sum_{i=1}^k H_i$ $(k \in \mathbb{N})$ and $T_0 := 0$.

.....

The random timestep Euler method

We discretise the ODE $u' = f(u), u(0) = u_0$ with the random timestep Euler method:

$$\widehat{V}_k = \widehat{V}_{k-1} + H_k f(\widehat{V}_{k-1}), \qquad \widehat{V}_0 = u_0$$

with exponentially distributed stepsizes $H_1, H_2, \ldots \sim \operatorname{Exp}(h^{-1})$ i.i.d. and a stepsize parameter $\mathbb{E}[H_1] = h > 0$. We also define the jump times $T_k := \sum_{i=1}^k H_i$ $(k \in \mathbb{N})$ and $T_0 := 0$.

.....

Random timestep ODE solvers are used if...

- ► ...f is of very low regularity (i.e., no point evaluations) [Eisenmann+al. 2019] [Jentzen+Neuenkirch 2009]
- \blacktriangleright ... $(u(t))_{t>0}$ is chaotic and its stationary behaviour shall be analysed [Abdulle+Garegnani 2020]
- ► ...in stochastic optimisation [Jin+L.+Liu+Schönlieb 2023] [L. 2020]

The random timestep Euler method

We discretise the ODE $u' = f(u), u(0) = u_0$ with the random timestep Euler method:

$$\widehat{V}_k = \widehat{V}_{k-1} + H_k f(\widehat{V}_{k-1}), \qquad \widehat{V}_0 = u_0$$

with exponentially distributed stepsizes $H_1, H_2, \ldots \sim \operatorname{Exp}(h^{-1})$ i.i.d. and a stepsize parameter $\mathbb{E}[H_1] = h > 0$. We also define the jump times $T_k := \sum_{i=1}^k H_i$ $(k \in \mathbb{N})$ and $T_0 := 0$.

.....

Random timestep ODE solvers are used if...

- ► ...f is of very low regularity (i.e., no point evaluations) [Eisenmann+al. 2019] [Jentzen+Neuenkirch 2009]
- $ightharpoonup ...(u(t))_{t\geq 0}$ is chaotic and its stationary behaviour shall be analysed [Abdulle+Garegnani 2020]
- ► ...in stochastic optimisation [Jin+L.+Liu+Schönlieb 2023] [L. 2020]

Randomised methods have become quite popular in numerical analysis, although not so much when it comes to ODEs [Chen+al. 2024] [Halko+al. 2011] [Robbins+Monro 1951] [Stuart+Teckentrup 2018]

Back to the initial example

Consider some initial value problem on $X := \mathbb{R}^n$:

$$u'=f(u), \qquad u(0)=u_0.$$

The random timestep Euler method:

$$\widehat{V}_k = \widehat{V}_{k-1} + H_k f(\widehat{V}_{k-1}), \quad \widehat{V}_0 = u_0$$

$$H_1, H_2, \dots \sim \operatorname{Exp}(h^{-1}) \text{ i.i.d.}$$

Back to the initial example

Consider some initial value problem on $X := \mathbb{R}^n$:

$$u'=f(u), \qquad u(0)=u_0.$$

The random timestep Euler method:

$$\widehat{V}_k = \widehat{V}_{k-1} + H_k f(\widehat{V}_{k-1}), \quad \widehat{V}_0 = u_0$$

$$H_1, H_2, \dots \sim \operatorname{Exp}(h^{-1}) \text{ i.i.d.}$$

Idea: Write the linear interpolation $(V(t))_{t\geq 0}$ of the random timestep Euler trajectory $(\widehat{V}_k)_{k=0}^{\infty}$ as an ODE with jumps after exponential waiting times.

Idea: Write the linear interpolation $(V(t))_{t\geq 0}$ of the random timestep Euler trajectory $(\widehat{V}_k)_{k=0}^{\infty}$ as an ODE with jumps after exponential waiting times.

On every time interval $[T_k, T_{k+1})$, we have

$$V(t) = \widehat{V}_k + (t - T_k)f(\widehat{V}_k)$$

Idea: Write the linear interpolation $(V(t))_{t\geq 0}$ of the random timestep Euler trajectory $(\widehat{V}_k)_{k=0}^{\infty}$ as an ODE with jumps after exponential waiting times.

On every time interval $[T_k, T_{k+1})$, we have

$$V(t) = \widehat{V}_k + (t - T_k) f(\widehat{V}_k) \qquad \Leftrightarrow \qquad egin{cases} V'(t) &= f(\widehat{V}_k) & (t \in (T_k, T_{k+1})) \ V(T_k) &= \widehat{V}_k \end{cases}$$

Idea: Write the linear interpolation $(V(t))_{t\geq 0}$ of the random timestep Euler trajectory $(\widehat{V}_k)_{k=0}^{\infty}$ as an ODE with jumps after exponential waiting times.

On every time interval $[T_k, T_{k+1})$, we have

$$V(t) = \widehat{V}_k + (t - T_k) f(\widehat{V}_k) \qquad \Leftrightarrow \qquad egin{cases} V'(t) &= f(\widehat{V}_k) \ V(T_k) &= \widehat{V}_k \end{cases} (t \in (T_k, T_{k+1}))$$

Now, instead of denoting the dependence on \widehat{V}_k , we introduce a second process

$$\overline{V}(t) = \widehat{V}_k \qquad (t \in [T_k, T_{k+1})).$$

Idea: Write the linear interpolation $(V(t))_{t\geq 0}$ of the random timestep Euler trajectory $(\widehat{V}_k)_{k=0}^{\infty}$ as an ODE with jumps after exponential waiting times.

On every time interval $[T_k, T_{k+1})$, we have

$$V(t) = \widehat{V}_k + (t - T_k) f(\widehat{V}_k) \qquad \Leftrightarrow \qquad egin{cases} V'(t) &= f(\widehat{V}_k) \ V(T_k) &= \widehat{V}_k \end{cases} (t \in (T_k, T_{k+1}))$$

Now, instead of denoting the dependence on \widehat{V}_k , we introduce a second process

$$\overline{V}(t) = \widehat{V}_k \qquad (t \in [T_k, T_{k+1})).$$

Then, however, we do not need $(\widehat{V}_k)_{k=0}^{\infty}$ at all, we can just update $(\overline{V}(t))_{t\geq 0}$ from $(V(t))_{t\geq 0}$:

$$\overline{V}(T_k) = V(T_k -)$$

The linear interpolation of $(\hat{V}_k)_{k=0}^{\infty}$ satisfies the following ODE with (random) jumps:

$$V'(t) = f(\overline{V}(t))$$
 $(t \in (T_{k-1}, T_k], k \in \mathbb{N})$
 $\overline{V}'(t) = 0$ $(t \in (T_{k-1}, T_k), k \in \mathbb{N})$
 $\overline{V}(T_k) = V(T_{k-1})$ $(k \in \mathbb{N})$
 $V(0) = \overline{V}(0) = u_0$

where, still, $T_K := \sum_{k=1}^K H_k$ $(K \in \mathbb{N})$ and $T_0 := 0$ are the jump times.

We refer to $(V(t), \overline{V}(t))_{t\geq 0}$ (or just $(V(t))_{t\geq 0}$) as stochastic Euler dynamics and to $(\overline{V}(t))_{t\geq 0}$ as companion process.

V(t) is the linear interpolant of the random timestep Euler method $\overline{V}(t)$ remembers the value of V(t) at the last jump time

Due to the memorylessness of the exponential distribution, one can show that $(V(t), \overline{V}(t))_{t\geq 0}$ forms a continuous-time Markov process, more specifically it is a

► piecewise-deterministic Markov process

[Davis 1984]

i.e. a piecewise-ODE with random switches/jumps

► Feller process,

[Davis 1993]

i.e., we can describe its behaviour by a differential equation

Due to the memorylessness of the exponential distribution, one can show that $(V(t), \overline{V}(t))_{t\geq 0}$ forms a continuous-time Markov process, more specifically it is a

► piecewise-deterministic Markov process

[Davis 1984]

- i.e. a piecewise-ODE with random switches/jumps
- ► Feller process.

[Davis 1993]

i.e., we can describe its behaviour by a differential equation

Indeed, we can compute the infinitesimal generator of $(V(t), \overline{V}(t))_{t \geq 0}$ as

$$\mathcal{A}_h\varphi(v,\overline{v}) = \langle f(\overline{v}), \nabla_v\varphi(v,\overline{v})\rangle + \frac{1}{h}(\varphi(v,v) - \varphi(v,\overline{v})) \qquad (v,\overline{v} \in X)$$

for appropriate test functions $\varphi: X^2 \to \mathbb{R}$ and use it to, e.g., compute $\mathbb{P}((V(t), \overline{V}(t)) \in \cdot)$ $(t \ge 0)$.

Overview

The random timestep Euler method

Convergence and accuracy

Stability

Conclusions

Figure: The trajectory of an underdamped harmonic oscillator $u_1' = u_2, u_2' = -u_1 - u_2$ with initial value $u(0) = (1,0)^T$ and realisations of the corresponding stochastic Euler dynamics $(V(t))_{t \geq 0}$ for $h \in \{0.25, 0.125, 0.0625\}$. We show the ground truth $(u(t))_{t \geq 0}$ and one realisation of $(V(t))_{t \geq 0}$ for each of the stepsize parameters. The stochastic Euler dynamics approaches the ODE solution as h decreases.

Does $(V(t))_{t\geq 0}$ converge to $(u(t))_{t\geq 0}$ as $h\downarrow 0$? In which sense?

Jonas Latz (Manchester) 13 of 25

Theorem 3.4.

[L. 2024]

Let $f: X \to X$ be Lipschitz continuous and let $(u(t))_{t \ge 0}$ and $(V(t), \overline{V}(t))_{t \ge 0}$ be the associated ODE solution and stochastic Euler dynamics with initial values $u_0 \in X$, respectively. Moreover, we assume that we have access to the jump time process $(\overline{T}(t))_{t \ge 0}$. Then,

$$(V(t))_{t\geq 0} \Rightarrow (u(t))_{t\geq 0} \ (h\downarrow 0).$$

► Convergence in probability/weak convergence on the probability space and convergence w.r.t. a weighted uniform metric in time:

$$d_{C}((x(t))_{t\geq 0},(y(t))_{t\geq 0}) = \int_{0}^{\infty} \exp(-t) \min\left\{1, \sup_{s\leq t} \|x(s) - y(s)\|\right\} dt \quad (x,y \in C^{0}[0,\infty)).$$

▶ Theorem 3.4 shows convergence of the complete path $(V(t))_{t\geq 0}$, but in a weighted metric, so it rather shows uniform convergence on all bounded intervals [0, T].

Theorem 3.4.

[L. 2024]

Let $f: X \to X$ be Lipschitz continuous and let $(u(t))_{t \ge 0}$ and $(V(t), \overline{V}(t))_{t \ge 0}$ be the associated ODE solution and stochastic Euler dynamics with initial values $u_0 \in X$, respectively. Moreover, we assume that we have access to the jump time process $(\overline{T}(t))_{t \ge 0}$. Then,

$$(V(t))_{t\geq 0} \Rightarrow (u(t))_{t\geq 0} \qquad (h\downarrow 0).$$

- ▶ $(\overline{T}(t))_{t\geq 0}$ is the Markov jump process with jump times $(T_k)_{k=1}^{\infty}$ and $\overline{T}(T_k) = T_k$ $(k \in \mathbb{N}_0)$.
- ► The statement doesn't indicate a convergence rate
- ▶ Proof is based on the perturbed test function theory by Kushner

[Kushner 1990]

- ▶ Show tightness of a truncated version of the process $(V(t))_{t\geq 0}$
- ▶ Show convergence of the A_h to the infinitesimal generator of u' = f(u) as $h \downarrow 0$

Theorem 3.4.

[L. 2024]

Let $f: X \to X$ be Lipschitz continuous and let $(u(t))_{t \ge 0}$ and $(V(t), \overline{V}(t))_{t \ge 0}$ be the associated ODE solution and stochastic Euler dynamics with initial values $u_0 \in X$, respectively. Moreover, we assume that we have access to the jump time process $(\overline{T}(t))_{t \ge 0}$. Then,

$$(V(t))_{t\geq 0} \Rightarrow (u(t))_{t\geq 0} \qquad (h\downarrow 0).$$

- ▶ $(\overline{T}(t))_{t\geq 0}$ is the Markov jump process with jump times $(T_k)_{k=1}^{\infty}$ and $\overline{T}(T_k) = T_k$ $(k \in \mathbb{N}_0)$.
- ► The statement doesn't indicate a convergence rate
- ▶ Proof is based on the perturbed test function theory by Kushner

[Kushner 1990]

- ▶ Show tightness of a truncated version of the process $(V(t))_{t\geq 0}$
- ▶ Show convergence of the A_h to the infinitesimal generator of u' = f(u) as $h \downarrow 0$
- ODE limits of continuous-time Markov process are usual in, e.g., chemical reaction networks

[Darling+Norris 2008]

Jonas Latz (Manchester) 15 of 25

Convergence statement without rate is not as useful for computations - what can we do?

▶ In ODE timestepping, we often compute truncation errors, e.g. for the Euler method

$$\|\widehat{u}_1 - u(h_1)\| = \|u_0 + h_1 f(u_0) - u(h_1)\| = O(h_1^2; h_1 \downarrow 0).$$

Convergence statement without rate is not as useful for computations - what can we do?

▶ In ODE timestepping, we often compute truncation errors, e.g. for the Euler method

$$\|\widehat{u}_1 - u(h_1)\| = \|u_0 + h_1 f(u_0) - u(h_1)\| = O(h_1^2; h_1 \downarrow 0).$$

▶ In the random timestep Euler method, the stepsize H_1 is random, so we cannot really compute the truncation after a single step; it is not clear how to interpret

$$\|\widehat{V}_1 - u(H_1)\| = \|u_0 + H_1 f(u_0) - u(H_1)\| = "O(H_1^2; H_1 \downarrow 0)"$$

Convergence statement without rate is not as useful for computations – what can we do?

▶ In ODE timestepping, we often compute truncation errors, e.g. for the Euler method

$$\|\widehat{u}_1 - u(h_1)\| = \|u_0 + h_1 f(u_0) - u(h_1)\| = O(h_1^2; h_1 \downarrow 0).$$

▶ In the random timestep Euler method, the stepsize H_1 is random, so we cannot really compute the truncation after a single step; it is not clear how to interpret

$$\|\widehat{V}_1 - u(H_1)\| = \|u_0 + H_1 f(u_0) - u(H_1)\| = "O(H_1^2; H_1 \downarrow 0)"$$

Instead, we compute the root mean square truncation error

$$\mathbb{E}[\|u(\varepsilon)-V(\varepsilon)\|^2]^{1/2}=O(\varepsilon^p;\varepsilon\downarrow 0),$$

for $\varepsilon > 0$ which either does not depend on h or is set $\varepsilon = h$

Convergence statement without rate is not as useful for computations - what can we do?

▶ In ODE timestepping, we often compute truncation errors, e.g. for the Euler method

$$\|\widehat{u}_1 - u(h_1)\| = \|u_0 + h_1 f(u_0) - u(h_1)\| = O(h_1^2; h_1 \downarrow 0).$$

▶ In the random timestep Euler method, the stepsize H_1 is random, so we cannot really compute the truncation after a single step; it is not clear how to interpret

$$\|\widehat{V}_1 - u(H_1)\| = \|u_0 + H_1 f(u_0) - u(H_1)\| = "O(H_1^2; H_1 \downarrow 0)"$$

▶ Instead, we compute the root mean square truncation error

$$\mathbb{E}[\|u(\varepsilon)-V(\varepsilon)\|^2]^{1/2}=O(\varepsilon^p;\varepsilon\downarrow 0),$$

for $\varepsilon > 0$ which either does not depend on h or is set $\varepsilon = h$

▶ Computing $\mathbb{E}[\|u(\varepsilon) - V(\varepsilon)\|^2]^{1/2}$, is non-trivial, as we do not know how many jumps have occurred in $(V(t))_{t\geq 0}$ on the interval $[0,\varepsilon]$, which leaves us with no expression for for $V(\varepsilon)$

Idea: Define a Poisson process $(K(t))_{t\geq 0}$ that has the same jump times as $(V(t))_{t\geq 0}$. Then, K(t) counts the number of jumps up to $t\geq 0$ and allows us to compute

$$\mathbb{E}[\|u(\varepsilon) - V(\varepsilon)\|^2 | K(\varepsilon) = k]^{1/2}$$

for any $k \in \mathbb{N}$. We obtain $\mathbb{E}[\|u(\varepsilon) - V(\varepsilon)\|^2]^{1/2}$ from the law of total probability.

Idea: Define a Poisson process $(K(t))_{t\geq 0}$ that has the same jump times as $(V(t))_{t\geq 0}$. Then, K(t) counts the number of jumps up to $t\geq 0$ and allows us to compute

$$\mathbb{E}[\|u(\varepsilon) - V(\varepsilon)\|^2 | K(\varepsilon) = k]^{1/2}$$

for any $k \in \mathbb{N}$. We obtain $\mathbb{E}[\|u(\varepsilon) - V(\varepsilon)\|^2]^{1/2}$ from the law of total probability.

Theorem 3.6.

[L. 2024]

Let $(V(t), \overline{V}(t))_{t\geq 0}$ be the stochastic Euler dynamics corresponding to u' = Au, $u(0) = u_0$, with $A \in \mathbb{R}^{d \times d}$, and let $(K(t))_{t\geq 0}$ be the associated Poisson process. Then,

- (i) $\mathbb{E}[\|V(\varepsilon)-u(\varepsilon)\|^2|K(\varepsilon)=k]^{1/2}=O(\varepsilon^2;\varepsilon\downarrow 0)\ (k\in\mathbb{N}_0),$
- (ii) $\mathbb{E}[\|V(\varepsilon)-u(\varepsilon)\|^2]^{1/2}=O(\varepsilon^2;\varepsilon\downarrow 0).$

Idea: Define a Poisson process $(K(t))_{t\geq 0}$ that has the same jump times as $(V(t))_{t\geq 0}$. Then, K(t) counts the number of jumps up to $t\geq 0$ and allows us to compute

$$\mathbb{E}[\|u(\varepsilon) - V(\varepsilon)\|^2 | K(\varepsilon) = k]^{1/2}$$

for any $k \in \mathbb{N}$. We obtain $\mathbb{E}[\|u(\varepsilon) - V(\varepsilon)\|^2]^{1/2}$ from the law of total probability.

Theorem 3.6.

[L. 2024]

Let $(V(t), \overline{V}(t))_{t\geq 0}$ be the stochastic Euler dynamics corresponding to u' = Au, $u(0) = u_0$, with $A \in \mathbb{R}^{d \times d}$, and let $(K(t))_{t\geq 0}$ be the associated Poisson process. Then,

- (i) $\mathbb{E}[\|V(\varepsilon) u(\varepsilon)\|^2 | K(\varepsilon) = k]^{1/2} = O(\varepsilon^2; \varepsilon \downarrow 0) \ (k \in \mathbb{N}_0),$
- (ii) $\mathbb{E}[\|V(\varepsilon)-u(\varepsilon)\|^2]^{1/2}=O(\varepsilon^2;\varepsilon\downarrow 0).$
 - ▶ Would expect a similar result for f nonlinear, but the proof technique should be rather different

Accuracy: Numerical Experiment

Figure: Estimated root mean square truncation error for the stochastic Euler dynamics corresponding (black) to u' = -u, u(0) = 1 using 10^5 samples; the orange lines refer to the second order stochastic Euler dynamics that we don't discuss during this talk.

The random timestep Euler method

Convergence and accuracy

Stability

Conclusions

Consider u' = -Au with $u(0) = u_0$ and A being symmetric positive semi-definite.

- ▶ What are the assumptions on the stepsize parameter $h = \mathbb{E}[H_1]$ that will lead to a stable stochastic Euler dynamics $(V(t), \overline{V}(t))_{t>0}$?
- ▶ What is the speed of convergence of $V(t) \rightarrow 0$ $(t \rightarrow \infty)$?

Consider u' = -Au with $u(0) = u_0$ and A being symmetric positive semi-definite.

- ▶ What are the assumptions on the stepsize parameter $h = \mathbb{E}[H_1]$ that will lead to a stable stochastic Euler dynamics $(V(t), \overline{V}(t))_{t\geq 0}$?
- ▶ What is the speed of convergence of $V(t) \rightarrow 0$ $(t \rightarrow \infty)$?

Idea: Apply Foster-Lyapunov criteria to the infinitesimal generator

[Meyn+Tweedie 1993]

- ▶ Find a 'norm-like' function L, with $A_hL \leq -\kappa L$ for some $\kappa > 0$, then apply Grönwall's Lemma
- ▶ For the stochastic Euler dynamics in d=1 dimension, $L(v, \overline{v}) = v^2 + c(v \overline{v})^2$ for a c>0 works
- ▶ Go from d = 1 to d > 1 by diagonalising A

Theorem 4.3.

[L. 2024]

Let $A \in \mathbb{R}^{d \times d}$ be symmetric positive definite and let $(V(t), \overline{V}(t))_{t \geq 0}$ be the stochastic Euler dynamics corresponding to u' = -Au. Let $\lambda_1 \leq \cdots \leq \lambda_d$ be the eigenvalues of A, let h be chosen such that $\lambda_d h < 1$, and let $\kappa' \in (0, \min\{2\lambda_1, 1/(2h)\})$. Then,

$$\mathbb{E}\left[\|V(t)\|^{2}\right] + c_{3}'\mathbb{E}[\|V(t) - \overline{V}(t)\|^{2}] \leq \exp(-\kappa' t)\|u_{0}\|^{2},$$

with $c_3' := \min\{1/\max\{(1/h - \kappa)/\kappa, (\kappa - 1/h + \lambda_\ell)/\lambda_\ell\} : \ell \in \{1, \ldots, d\}\}.$

Theorem 4.3. [L. 2024]

Let $A \in \mathbb{R}^{d \times d}$ be symmetric positive definite and let $(V(t), \overline{V}(t))_{t \geq 0}$ be the stochastic Euler dynamics corresponding to u' = -Au. Let $\lambda_1 \leq \cdots \leq \lambda_d$ be the eigenvalues of A, let A be chosen such that $A \leq A \leq 1$, and let $A \leq A \leq 1$ and let $A \leq A \leq 1$. Then,

$$\mathbb{E}\left[\|V(t)\|^{2}\right] + c_{3}'\mathbb{E}[\|V(t) - \overline{V}(t)\|^{2}] \leq \exp(-\kappa' t)\|u_{0}\|^{2},$$

with $c_3' := \min\{1/\max\{(1/h - \kappa)/\kappa, (\kappa - 1/h + \lambda_{\ell})/\lambda_{\ell}\} : \ell \in \{1, \dots, d\}\}.$

- ▶ We certainly need $\lambda_d h < 1$, which is stronger than stability in the Euler method
- ▶ We know that $||u(t)||^2 \le \exp(-2\lambda_1 t)||u_0||^2$, we have the same bound above, if $h \le 1/(4\lambda_1)$
- Theory does not contain complex-valued eigenvalues/non-diagonalisable matrices for the moment

Stability: Numerical Experiment

Figure: Stochastic Euler dynamics $(V(t))_{t\geq 0}$ approximating u'=-u, $u(0)=u_0$ for $h=2^{-3},\ldots,2^1$; sample means and standard deviations are estimated using 10^6 independent samples.

Jonas Latz (Manchester) 22 of 25

Overview

The random timestep Euler method

Convergence and accuracy

Stability

Conclusions

Conclusions

further results

- \blacktriangleright Also study deterministic Euler dynamics, an ODE arising from an approximation of \mathcal{A}_h
- ► Brief study of certain second order stochastic Euler dynamics
- ► Some experiments on an underdamped harmonic oscillator (*A* not positive definite)

Conclusions

further results

- \blacktriangleright Also study deterministic Euler dynamics, an ODE arising from an approximation of \mathcal{A}_h
- ▶ Brief study of certain second order stochastic Euler dynamics
- ► Some experiments on an underdamped harmonic oscillator (A not positive definite)

take-home messages

- Stochastic Euler dynamics are an exciting framework for the analysis of (randomised) ODE solvers
- ▶ Use infinitesimal generators/first-order PDEs to analyse ODE solvers
- ▶ The theory of classical ODE solvers is partially recovered, partially quite different

A lot of open questions remain!

Open positions@UoM:

Professor of Applied Mathematics (general)

Professor of Applied Mathematics (interface between applied maths and AI, ML, data science)

Senior Lecturer/Reader in Computational Statistics (=Associate Professor)

Lecturer in Numerical Analysis and Data Science (=Assistant Professor)

PhD position in UKRI-CDT 'Image segmentation in radioastronomy with physical models on graphs' with JL and Prof. Anna Scaife

