Lecture 6

Simple Linear Regression V & Introduction to Multiple Linear Regression

Reading: Chapter 11, 12

STAT 8020 Statistical Methods II September 2, 2019

> Whitney Huang Clemson University

Agenda

- Regression Diagnostics and Remedies
- 2 Multiple Linear Regression

Notes

Notes

MaxHeartRate vs. Age Residual Plot Revisited

N	01	tes	

A Non-Linear Pattern

Possible Remedies:

- Transform X
- Nonlinear regression

Notes _____

Non-Constant Variance

Possible Remedies:

- Transform Y
- Weighted least squares

Notes

Correlated Errors

A Possible Remedy:

Allow correlated errors in SLR

Notes	

Extrapolation in SLR

Extrapolation beyond the range of the given data can lead to seriously biased estimates if the assumed relationship does not hold the region of extrapolation

Notes			
-			

Summary of SLR

- Model: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$
- Estimation: Use the method of least squares to estimate the parameters
- Inference
 - Hypothesis Testing
 - Confidence/prediction Intervals
 - ANOVA
- Model Diagnostics and Remedies

Notes

Multiple Linear Regression

Goal: To model the relationship between two or more explanatory variables (X's) and a response variable (Y) by fitting a **linear equation** to observed data:

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{p-1} X_{p-1} + \varepsilon_i, \quad \varepsilon_i \overset{i.i.d.}{\sim} N(0, \sigma^2)$$

Example: Species diversity on the Galapagos Islands. We are interested in studying the relationship between the number of plant species (Species) and the following geographic variables: Area, Elevation, Nearest, Scruz, Adjacent.

Regression V & Introduction to Multiple Linear Regression
CLEMS N
Multiple Linear Regression

Notes				

How Do Geographic Variables Affect Species Diversity?

${\tt Species} = \beta_0 + \beta_1 {\tt Area} + \beta_2 {\tt Elevation} + \\$ β_3 Nearest + β_4 Scruz + β_5 Adjacent + **error**

Fit a Multiple Linear Regression using R

```
ies ~ Area + Elevation + Nearest + Scruz + Adjacent
gnif. codes:
'***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 sidual standard error: 60.98 on 24 degrees of freedom
Litiple R-squared: 0.7658, Adjusted R-squared: 0.7171
statistic: 15.7 on 5 and 24 DF, p-value: 6.838e-07
```

Simple Linear Regression V & Introduction to Multiple Linear Regression
Regression Diagnostics and Remedies Multiple Linear
Regression
6.11

N	otes	

Notes

Multiple Linear Regression in Matrix Notation

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} 1 & X_{1,1} & X_{2,1} & \cdots & X_{p-1,1} \\ 1 & X_{1,2} & X_{2,2} & \cdots & X_{p-1,2} \\ \vdots & \cdots & \ddots & \vdots \\ 1 & X_{1,n} & X_{2,n} & & X_{p-1,n} \end{pmatrix}$$

We can express MLR as

$$Y = X\beta + \varepsilon,$$

where
$$\beta=(\beta_0,\cdots,\beta_{p-1})^T$$
 and $\varepsilon=(\varepsilon_1,\cdots,\varepsilon_n)^T$

Error Sum of Squares (SSE) $= \sum_{i=1}^n (Y_i - \beta_0 - \sum_{j=1}^{p-1} \beta_j X_j)^2 \text{ can be expressed in Matrix notation as:}$

$$(Y - X\beta)^T (Y - X\beta)$$

Regression V & Introduction to Multiple Linear Regression
CLEMS N
Multiple Linear Regression

Notes			

Multiple Linear Regression Topics

Similar to SLR, we will discuss

- Estimation
- Inference
- Diagnostics and Remedies

We will also discuss some new topics

- Model Selection
- Multicollinearity

Notes	
Notes	
Notes	