

Bitácora técnica

Competencia mecatrónica

David Cano Rangel

Luis Fernando Saucedo Serrano

Jorge Martínez Vazquez

Durante este día de pruebas se preparó el entorno para el Arduino Nano; a partir de ahí se compilaron y cargaron las rutinas de movimiento al microcontrolador, conectando el sensor JS40F a una entrada digital para detectar presencia de oponente y los QTR-1A a entradas analógicas para lectura de reflectancia; seguidamente se ejecutó una serie de pruebas de banco en las que se ajustaron iterativamente parámetros de muestreo y respuesta (retardos cortos de lectura para el JS40F y umbral de borde para los QTR-1A calculado con el método de extremos blanco/negro), observando la telemetría por consola y el comportamiento del robot para refinar velocidades, aceleraciones y condiciones de seguridad hasta obtener una ejecución estable en la que la carga del firmware fue consistente, la detección del oponente resultó firme a ~40 cm y la detección de línea respondió de forma predecible bajo la iluminación del laboratorio y la superficie del dohyo.

Resultados de pruebas:

- Detección de oponente: el JS40F entregó 0 sin objetivo y 1 con objetivo a ~40 cm, coherente con su interfaz digital y el ejemplo de lectura; se confirmó estabilidad con muestreo de 100 ms.
- Detección de borde: tras calibración, los QTR-1A mostraron separación clara entre blanco y negro; el umbral medio brindó disparos consistentes al aproximarse al borde, alineado con la metodología de calibración reportada para QTR-1A.
- Comportamiento del robot: con umbral afinado, el robot retrocede ante borde blanco y acelera hacia el oponente cuando JS40F=1; este flujo corresponde al uso típico de sensores de reflectancia para límite y un detector IR digital para oponente en minisumo.

Próximos ajustes después de realizar pruebas:

- Probar la implementación de un parámetro de delay() y filtrado por mayoría en 3 lecturas para JS40F manteniendo la semántica digital del ejemplo oficial, buscando mejorar la latencia de ataque.
- Repetir calibración QTR en la pista de competencia para capturar condiciones de iluminación real, tal como aconsejan guías de calibración de reflectancia para evitar falsos positivos por luz ambiente.

Reflexión individual:

Jorge Martínez Vázquez: El JS40F simplificó la lógica al ofrecer una salida digital estable y un patrón de muestreo conocido, lo cual ayudó a iterar rápido en la máquina de estados de ataque y a validar con consola serie como en el ejemplo oficial. Por otro lado, la calibración metódica de los QTR-1A con extremos del dohyo permitió fijar un umbral reproducible y reducir falsos, tal y como sugieren las prácticas de calibración de estos sensores en mini sumo.

Luis Fernando Saucedo:

Fue interesante pensar la lógica como si estuvieses dentro del robot. Cómo accionar de correcta manera si detectas que estás en el borde de el dohjo, Buscar un oponente y atacarlo en cuanto lo veas. Y más que nada idear estrategias para contrarrestar las acciones de tu contrincante. Con la ayuda de los sensores QTR y los JS40F podemos programar el robot para que realice estas acciones de forma autónoma en base a la información que esté recibiendo en tiempo real. Solo queda seguir ideando estrategias, pero la práctica de colocado y calibración van tomando forma con el avance que logramos.

David Cano: Durante esta práctica se logró configurar correctamente el sistema de detección y control del robot minisumo, asegurando que los sensores JS40F y QTR-1A respondieran de manera estable y precisa. La calibración y las pruebas permitieron ajustar los parámetros de forma efectiva, logrando un desempeño confiable en la detección de oponentes y límites del dohyo. En general, la experiencia fortaleció la comprensión sobre la integración de sensores y la importancia de las pruebas iterativas para alcanzar un funcionamiento óptimo.