

- Автоматное программирование и графы переходов это область информатики, связанная с созданием программ, использующих конечные автоматы для управления процессами.
- 2. Для представления в совершенной конъюнктивной нормальной форме (СКНФ) булевой функции, заданной вектором (1,1,0,1,1,0,1), нужно составить дизъюнкцию всех наборов переменных, при которых функция принимает значение 0. Таким образом, СКНФ будет иметь вид:

$$(x \lor \bar{y} \lor z) \land (\bar{x} \lor y \lor z) \land (\bar{x} \lor \bar{y} \lor z) \land (x \lor y \lor \bar{z}).$$

- 3. Для отношения $R = \{x \text{ имеет общие точки с } y\}$ на множестве прямых линий плоскости, нужно проверить его свойства рефлексивности, симметричности и транзитивности, чтобы определить, является ли оно эквивалентным отношением.
- 4. Для полного графа K_4 (граф, в котором каждая вершина соединена со всеми остальными вершинами) выполним операции:
- а) Удаление ребра (v_1,v_2) приведет к графу K_4-e , где e удаляемое ребро.
- б) Удаление вершины v_1 приведет к графу K_4-v_1 , где v_1 удаляемая вершина.
- в) Добавление вершины v_5 и ребра (v_2,v_5) приведет к графу K_5 .
- г) Отождествление вершин v_1,v_2 приведет к графу $K_4/v_1=K_3$.
- д) Стягивание ребра (v_1,v_2) приведет к графу $K_4/(v_1,v_2)$, где две вершины стягиваются в одну.
- e) Размножение вершины v_1 приведет к графу K_4^st , где вершина v_1 дублируется.
- ж) Расщепление вершины v_1 приведет к графу K_4' , где вершина v_1 разделяется на две.
- з) Разбиение ребра (v_1,v_2) приведет к графу K_4+e , где e новая вершина, соединенная с вершинами v_1 и v_2 .