Numerical Solutions for Viscous Burgers Equation Course project for the course titled MATH F422

Sidhant Singh Karthik A. Shardool Kulkarni

Birla Institute of Technology and Science

October, 2016

Outline

Introduction

BTCS Method

Crank Nicholson Method

DuFort Frankel Scheme

Numerical results and Analysis

Introduction

Burgers Equation

- ▶ Burgers Equation $u_t + uu_x = \alpha u_{xx}$ is a non-linear, parabolic, one dimensional PDE.
- ▶ For a given field u(x,t) and the viscosity α this is the general form of the Viscous Burgers' Equation.
- ▶ An acoustic wave of a finite amplitude while travelling in a viscous medium steepens in it's waveform. Such steepening is governed by the Burgers Equation.

BTCS Method

- ▶ The domain for the PDE is defined as 0<x<1 , t>0
- ▶ The initial condition for the problem is taken as

$$u(x,0) = sin(\pi x)$$

The Boundary conditions are

$$u(0, t) = u(1, t) = 0$$

Burger's equation can be written as

$$u_t + f[u]_x = \alpha u_{xx}$$

Where f[u] is $\frac{u^2}{2}$ this is done so as to write in a conserved form ;

▶ The discretization is as follows:

$$\frac{u_j^n - u_j^{n-1}}{\delta t} + \frac{(u_{j-1}^n)^2 - (u_{j+1}^n)^2}{4(\delta x)} = \alpha \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{2(\delta x)^2}$$

▶ The scheme is of the order of

$$O(\delta x^2 + \delta t)$$

Crank Nicholson Scheme

- ▶ The domain for the PDE is defined as 0<x<1 , t>0
- The initial condition for the problem is taken as

$$u(x,0)=\sin(\pi x)$$

▶ The Boundary conditions are

$$u(0,t)=u(1,t)=0$$

▶ The discretization is as follows:

$$\frac{u_{j}^{n+1}-u_{j}^{n}}{\delta t}+\frac{u_{j}^{n}(u_{j+1}^{n+1}-u_{j-1}^{n+1})+u_{j}^{n+1}(u_{j+1}^{n}-u_{j-1}^{n})}{4\delta x}$$

$$=\alpha\frac{(u_{j+1}^{n+1}-2u_{j}^{n+1}+u_{j-1}^{n+1}+u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n})}{2(\delta x)^{2}}$$

The scheme is of the order of

$$O(\delta x^2 + \delta t^2)$$

DuFort Frankel Scheme

- ▶ The domain for the PDE is defined as 0<x<1 , t>0
- ▶ The initial condition for the problem is taken as

$$u(x,0)=\sin(\pi x)$$

► The Boundary conditions are

$$u(0, t) = u(1, t) = 0$$

Burger's equation can be written as

$$u_t + f[u]_x = \alpha u_{xx}$$

Where f[u] is $\frac{u^2}{2}$ this is done so as to write in a conserved form;

▶ The discretization is as follows:

$$\frac{u_j^{n+1} - u_j^{n-1}}{2\delta t} + \frac{(u_{j+1}^n)^2 - (u_{j-1}^n)^2}{4(\delta x)} = \alpha \frac{(u_{j+1}^n + u_{j-1}^n - u_j^{n+1} - u_j^{n-1})}{(\delta x)^2}$$

▶ The scheme is of the order of

$$O(\delta x^2 + \delta t^2)$$

Numerical results and Analysis

► For N=80, dt=0.001, α =0.1 .

Figure: BTCS Scheme

Numerical results and Analysis

► For N=80, dt=0.001, α =0.1 .

Figure: Crank Nicholson Scheme

Numerical results and Analysis

► For N=80, dt=0.001, α =0.1 .

Figure: Dufort Frankel Scheme

- ▶ The exact solution was found by taking a very fine mesh which was used to find I_{∞} norm.
- ▶ The order of convergence for all three schemes was found using l_{∞} norm and it was found to be '2' for spatial convergence.

Summary

- ► This study was aimed at exploring different Finite Difference Schemes to numerically solve the Viscous Burgers Equation.
- ► The schemes used were BTCS , Crank Nicholson and Dufort-Frankel
- BTCS was solved using the Newtons Method.
- Dufort-Frankel was solved in an Explicit manner.
- Outlook
 - Other Boundary conditions can be studied.
 - Crank Nicolson and Dufort-Frankel can be done implicitly by using the Newton's Method.
 - L-2 norm and methods of higher order of accuracy can be studied.

Bibliography I

- Sachin Wani. and Sarita Thakkar

 Crank Nicolson Type Method for Burgers Equation

 International Journal of Applied Physics and Mathematics,

 Vol. 3, No. 5, September 2013
- K Pandey.,Lajja Verma. and Amit Verma
 Du FortFrankel finite difference scheme for Burgers equation
 Arab J Math (2013) 2:91101 DOI 10.1007/s40065-012-0050-1
- Mikel Landajuela
 Burgers Equation
 BCAM 2011