Analysis of Algorithms CS 477/677

Binary Search Trees

Instructor: George Bebis

(Appendix B5.2, Chapter 12)

Binary Search Trees

Tree representation:

 A linked data structure in which each node is an object

Node representation:

- Key field
- Satellite data
- Left: pointer to left child
- Right: pointer to right child
- p: pointer to parent (p [root [T]] = NIL)
- Satisfies the binary-search-tree property!!

Binary Search Tree Property

- Binary search tree property:
 - If y is in left subtree of x,
 then key [y] ≤ key [x]
 - If y is in right subtree of x,then key [y] ≥ key [x]

Binary Search Trees

- Support many dynamic set operations
 - SEARCH, MINIMUM, MAXIMUM, PREDECESSOR,
 SUCCESSOR, INSERT, DELETE
- Running time of basic operations on binary search trees
 - On average: ⊕(lgn)
 - The expected height of the tree is Ign
 - In the worst case: $\Theta(n)$
 - The tree is a linear chain of n nodes

Worst Case

- If the tree is very **unbalanced**, then running time will be $\Theta(n)$

Traversing a Binary Search Tree

Inorder tree walk:

- Root is printed between the values of its left and right subtrees: left, root, right
- Keys are printed in sorted order
- Preorder tree walk:
 - root printed first: root, left, right
- Postorder tree walk:
 - root printed last: left, right, root

Inorder: 2 3 5 5 7 9

Preorder: 5 3 2 5 7 9

Postorder: 2 5 3 9 7 5

Traversing a Binary Search Tree

```
Alg: INORDER-TREE-WALK(x)
   if x \neq NIL
      then INORDER-TREE-WALK (left [x])
           print key [x]
3.
           INORDER-TREE-WALK (right [x])
4.
   E.g.:
                    5
                                 Output: 2 3 5 5 7 9
```

- Running time:
 - $\Theta(n)$, where n is the size of the tree rooted at x

Searching for a Key

Given a pointer to the root of a tree and a key k:

- Return a pointer to a node with key k
 if one exists
- Otherwise return NIL

Idea

- Starting at the root: trace down a path by comparing k with the key of the current node:
 - If the keys are equal: we have found the key
 - If k < key[x] search in the left subtree of x
 - If k > key[x] search in the right subtree of x

Example: TREE-SEARCH

Search for key 13:

$$-15 \rightarrow 6 \rightarrow 7 \rightarrow 13$$

Searching for a Key

Alg: TREE-SEARCH(x, k)

- 1. if x = NIL or k = key[x]
- 2. then return x
- if k < key [x]
- 4. then return TREE-SEARCH(left [x], k)
- 5. else return TREE-SEARCH(right [x], k)

Running Time: O (h), h – the height of the tree

Finding the Minimum in a Binary Search Tree

Goal: find the minimum value in a BST

 Following left child pointers from the root, until a NIL is encountered

Alg: TREE-MINIMUM(x)

- 1. while left $[x] \neq NIL$
- 2. do $x \leftarrow left[x]$
- 3. return x

Minimum = 2

Running time: O(h), h – height of tree

Finding the Maximum in a Binary Search Tree

- Goal: find the maximum value in a BST
 - Following right child pointers from the root, until a NIL is encountered

Alg: TREE-MAXIMUM(x)

- 1. while right $[x] \neq NIL$
- 2. $do x \leftarrow right [x]$
- 3. return x

Maximum = 20

Running time: O(h), h – height of tree

Successor

Def: successor(x) = y, such that key [y] is the smallest key > key [x]

- E.g.: successor(15) = 17 successor(13) = 15successor(9) = 13
- Case 1: right (x) is non empty
 - successor(x) = the minimum in right(x)
- Case 2: right (x) is empty
 - go up the tree until the current node is a left child: successor(x) is the parent of the current node
 - if you cannot go further (and you reached the root):
 x is the largest element

Finding the Successor

Alg: TREE-SUCCESSOR (x)

- 1. if right $[x] \neq NIL$
- 2. **then return** TREE-MINIMUM(right [x])
- 3. $y \leftarrow p[x]$
- 4. while $y \neq NIL$ and x = right [y]
- 5. do $x \leftarrow y$
- 6. $y \leftarrow p[y]$
- 7. return y

Running time: O (h), h – height of the tree

Predecessor

Def: predecessor (x) = y, such that key [y] is the biggest key < key [x]

• E.g.: predecessor (15) = 13predecessor (9) = 7predecessor (7) = 6

- Case 1: left (x) is non empty
 - predecessor (x) = the maximum in left (x)
- Case 2: left (x) is empty
 - go up the tree until the current node is a right child: predecessor(x) is the parent of the current node
 - if you cannot go further (and you reached the root):
 x is the smallest element

Insertion

Goal:

Insert value v into a binary search tree

Idea:

- If key [x] < v move to the right child of x,
 else move to the left child of x
- When x is NIL, we found the correct position
- If v < key [y] insert the new node as y's left child
 else insert it as y's right child
- Begining at the root, go down the tree and maintain:
 - Pointer x: traces the downward path (current node)
 - Pointer y : parent of x ("trailing pointer")

Insert value 13

Example: TREE-INSERT

Tree Shape

Tree shape.

- Many BSTs correspond to same input data.
- Cost of search/insert is proportional to depth of node.

10

Deletion

- Goal:
 - Delete a given node z from a binary search tree
- Idea:
 - Case 1: z has no children
 - Delete z by making the parent of z point to NIL

Deletion

- Case 2: z has one child
 - Delete z by making the parent of z point to z's child, instead of to z

Deletion

Case 3: z has two children

- z's successor (y) is the minimum node in z's right subtree
- y has either no children or one right child (but no left child)
- Delete y from the tree (via Case 1 or 2)
- Replace z's key and satellite data with y's.

TREE-DELETE(T, z)

- 1. if left[z] = NIL or right[z] = NIL
- 2. then $y \leftarrow z$

z has one child

- 3. else y ← TREE-SUCCESSOR(z) z has 2 children
- 4. if left[y] ≠ NIL
- 5. then $x \leftarrow left[y]$
- 6. **else** $x \leftarrow right[y]$
- 7. if $x \neq NIL$
- 8. then $p[x] \leftarrow p[y]$

TREE-DELETE(T, z) – cont.

```
9. if p[y] = NIL
10. then root[T] \leftarrow x
11. else if y = left[p[y]]
                                                     (13)
                then left[p[y]] \leftarrow x
else right[p[y]] \leftarrow x
12.
13.
14. if y \neq z
15. then key[z] \leftarrow key[y]
               copy y's satellite data into z
16.
17. return y
                                              Running time: O(h)
```

Lazy Deletion Trick

- One trick to do, is to have an extra flag per node
- Each time you need to delete a node, just mark it as deleted
- Do batch processing
- That is after N deletion, rebuild the tree from start
- This is not so efficient, but a nice trick if you need to delete and worry of coding mistakes

Binary Search Trees - Summary

Operations on binary search trees:

- SEARCH	O(h)
- PREDECESSOR	O(h)
- SUCCESOR	O(h)
- MINIMUM	O(h)
- MAXIMUM	O(h)
- INSERT	O(h)
– DELETE	O(h)

 These operations are fast if the height of the tree is small – otherwise their performance is similar to that of a linked list