E1-B10:BUCK CONVERTOR

Objective:

a) Specifications: Input 20 V, Output 7.5 V, Switching frequency 7.5 kHz, Output current 1 A.

Waveforms of inductor current and diode voltage in CCM.

b) Increase load resistance to demonstrate DCM.

Apparatus:

PWM Module, MOSFET Driver, Power MOSFET, Power Diode, 1mH Inductor, 470µF Capacitor, and Rheostat.

Observations:

Convertor me made:

Pulse Width Modulator:

a)MATLAB generated waveforms:

1. Inductor current:

2. Diode Voltage:

3. Output Voltage:

4. Switch current and voltage:

Observed waveform(Practical)

4. Pulse Width Modulator:

b) The factor by which the load resistance needs to be decreased to transition from CCM to DCM can be calculated using the critical conduction ratio(k):

K=v(out)/v(in)

So we have taken reading at 60ohm load resistance and the observed waveform is as follow

Conclusion:

1. We tried to make Buck Convertor with the required specifications, on MATLAB readings we saw Vout=DVin,

where:

Vout: output voltage

Vin: input voltage

D: Duty cycle ratio.

2. Supply voltage increases when we increase the load but output voltage remains constant.