电子科技大学

嵌入式智能计算研究团队

珊瑚-I 内核手册

ACORAL-I KERNEL MANUAL

Revision History

版本号	内容	日期	负责人
0.1	开始编写,修改 latex 模板,确定大纲	2022.05.15	王彬浩

目 录

第一	章	绪 论	1
1	1.1	珊瑚(aCoral)简介	1
1	1.2	aCoral 内核结构	1
1	1.3	本文的主要贡献与创新	1
1	.4	本论文的结构安排	1
第二	章	时域积分方程基础	2
2	2.1	时域积分方程的类型	2
2	2.2	空间基函数与时间基函数	2
		2.2.1 空间基函数	2
		2.2.2 时间基函数	3
2	2.3	入射波	3
2	2.4	本章小结	4
第三	章	时域积分方程数值方法研究 spgspg	5
3	3.1	时域积分方程时间步进算法的阻抗元素精确计算	5
		3.1.1 时域积分方程时间步进算法产生的阻抗矩阵的特征	5
		3.1.2 数值算例与分析	5
3	3.2	时域积分方程时间步进算法矩阵方程的求解	6
3	3.3	本章小结	6
第四:	章	时域积分方程数值方法研究	7
4	1.1	时域积分方程时间步进算法的阻抗元素精确计算	7
4	1.2	时域积分方程时间步进算法阻抗矩阵的存储	7
		4.2.1 时域积分方程时间步进算法产生的阻抗矩阵的特征	7
		4.2.2 数值算例与分析	7
		时域积分方程时间步进算法矩阵方程的求解	
4	1.4	本章小结	8
第五:	章	全文总结与展望	9
5	5.1	全文总结	9
5	5.2	后续工作展望	9
致	谢		10
附录	A	中心极限定理的证明	11

目录

A.1 高斯分布和伯努利实验	11
外文资料原文	12
外文资料译文	13

第一章 绪 论

1.1 珊瑚 (aCoral) 简介

珊瑚(aCoral)是电子科技大学信息与软件工程学院嵌入式智能计算研究团队 开发的一款嵌入式实时操作系统,具有开源、高可配、高扩展性的特点。

珊瑚(aCoral)目前拥有单核(aCoral-I)和多核(aCoral-II)两个版本。本文档将介绍珊瑚操作系统的单核版本 aCoral-I。出于方便的目的,下文中将全部简称为 aCroal。单核版本的珊瑚(aCoral-I)对于主流的开发平台都有支持,像s3c2440,s3c2410,s3c44b0,lpc2313,lpc2200,stm3210。本文档在硬件平台 mini2440下编写。

1.2 aCoral 内核结构

时域积分方程方法的研究始于上世纪 60 年代,C.L.Bennet 等学者针对导体目标的瞬态电磁散射问题提出了求解时域积分方程的时间步进(marching-on in-time, MOT)算法。

1.3 本文的主要贡献与创新

本论文以时域积分方程时间步进算法的数值实现技术、后时稳定性问题以及 两层平面波加速算法为重点研究内容,主要创新点与贡献如下:

1.4 本论文的结构安排

本文的章节结构安排如下:

第二章 时域积分方程基础

时域积分方程(TDIE)方法作为分析瞬态电磁波动现象最主要的数值算法之一,常用于求解均匀散射体和表面散射体的瞬态电磁散射问题。

2.1 时域积分方程的类型

2.2 空间基函数与时间基函数

利用数值算法求解时域积分方程,首先需要选取适当的空间基函数与时间基函数对待求感应电流进行离散。

2.2.1 空间基函数

RWG 基函数是定义在三角形单元上的最具代表性的基函数。它的具体定义如下:

$$f_{n}(\mathbf{r}) = \begin{cases} \frac{l_{n}}{2A_{n}^{+}} \boldsymbol{\rho}_{n}^{+} = \frac{l_{n}}{2A_{n}^{+}} (\mathbf{r} - \mathbf{r}_{+}) & \mathbf{r} \in T_{n}^{+} \\ \frac{l_{n}}{2A_{n}^{-}} \boldsymbol{\rho}_{n}^{-} = \frac{l_{n}}{2A_{n}^{-}} (\mathbf{r}_{-} - \mathbf{r}) & \mathbf{r} \in T_{n}^{-} \\ 0 & \text{otherwise} \end{cases}$$
(2-1)

其中, l_n 为三角形单元 T_n^+ 和 T_n^- 公共边的长度, A_n^+ 和 A_n^- 分别为三角形单元 T_n^+ 和 T_n^- 的面积(如图2-1所示)。

图 2-1 RWG 基函数几何参数示意图

由于时域混合场积分方程是时域电场积分方程与时域磁场积分方程的线性组合,因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程

时间步进算法的阻抗矩阵特征相同。

$$\mathbf{r}_{i,j} = \begin{cases} 1, f(\mathbf{x}^i; \mathbf{w}) \cdot f(\mathbf{x}^j; \mathbf{w}) \ge u(\lambda), \\ 0, f(\mathbf{x}^i; \mathbf{w}) \cdot f(\mathbf{x}^j; \mathbf{w}) < l(\lambda), 1 \le i, j \le n. \end{cases}$$

$$f(\mathbf{x}^i; \mathbf{w}) \cdot f(\mathbf{x}^j; \mathbf{w}), \text{ otherwise,}$$
(2-2)

时域积分方程时间步进算法的阻抗元素直接影响算法的后时稳定性,因此阻抗元素的计算是算法的关键之一,采用精度高效的方法计算时域阻抗元素是时域积分方程时间步进算法研究的重点之一。

2.2.2 时间基函数

- 2.2.2.1 时域方法特有的展开函数
- 2.2.2.2 频域方法特有的展开函数

2.3 入射波

如图2-2(a)和图2-2(b)所示分别给出了参数 $E_0 = \hat{x}$, $a_n = -\hat{z}$, $f_0 = 250MHz$, $f_w = 50MHz$, $t_w = 4.2\sigma$ 时,调制高斯脉冲的时域与频域归一化波形图。

图 2-2 调制高斯脉冲时域与频率波形,时域阻抗元素的存储技术也是时间步进算法并行化的关键技术之一。(a) 调制高斯脉冲信号的时域波形; (b) 调制高斯脉冲信号的频域波形

时域阻抗元素的存储技术也是时间步进算法并行化的关键技术之一,采用合适的阻抗元素存储方式可以很大的提高并行时间步进算法的计算效率。

2.4 本章小结

本章首先从时域麦克斯韦方程组出发推导得到了时域电场、磁场以及混合场积分方程。

第三章 时域积分方程数值方法研究 spgspg

3.1 时域积分方程时间步进算法的阻抗元素精确计算

时域积分方程时间步进算法的阻抗元素直接影响算法的后时稳定性,因此阻 抗元素的计算是算法的关键之一,采用精度高效的方法计算时域阻抗元素是时域 积分方程时间步进算法研究的重点之一。

3.1.1 时域积分方程时间步进算法产生的阻抗矩阵的特征

由于时域混合场积分方程是时域电场积分方程与时域磁场积分方程的线性组合,因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程时间步进算法的阻抗矩阵特征相同。时域阻抗元素的存储技术也是关键技术之一,采用合适的阻抗元素存储方式可以提高并行算法的计算效率。

3.1.2 数值算例与分析

由于时域混合场积分方程是时域电场积分方程与时域磁场积分方程的线性组合,因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程时间步进算法的阻抗矩阵特征相同。

由于时域混合场积分方程是时域电场积分方程与时域磁场积分方程的线性组合,因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程

时间步进算法的阻抗矩阵特征相同。

3.2 时域积分方程时间步进算法矩阵方程的求解

3.3 本章小结

本章首先研究了时域积分方程时间步进算法的阻抗元素精确计算技术,分别 采用 DUFFY 变换法与卷积积分精度计算法计算时域阻抗元素,通过算例验证了 计算方法的高精度。

第四章 时域积分方程数值方法研究

4.1 时域积分方程时间步进算法的阻抗元素精确计算

时域积分方程时间步进算法的阻抗元素直接影响算法的后时稳定性,因此阻抗元素的计算是算法的关键之一,采用精度高效的方法计算时域阻抗元素是时域积分方程时间步进算法研究的重点之一。

4.2 时域积分方程时间步进算法阻抗矩阵的存储

时域阻抗元素的存储技术也是时间步进算法并行化的关键技术之一,采用合适的阻抗元素存储方式可以很大的提高并行时间步进算法的计算效率。

4.2.1 时域积分方程时间步进算法产生的阻抗矩阵的特征

由于时域混合场积分方程是时域电场积分方程与时域磁场积分方程的线性组合,因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程时间步进算法的阻抗矩阵特征相同。

4.2.2 数值算例与分析

如表4-1所示给出了时间步长分别取 0.4ns、0.5ns、0.6ns 时的三种存储方式的存储量大小。

表 4-1 计算 $2m \times 2m$ 理想导体平板时域感应电流采用的三种存储方式的存储量比较。

时间步长		存储方式	
	非压缩存储方式	完全压缩存储方式	基权函数压缩存储方式
0.4ns	5.59 MB	6.78 MB	6.78 MB
0.5ns	10.17 MB	5.58 MB	5.58 MB
0.6ns	8.38MB	4.98 MB	4.98 MB

如图4-1(a)所示给出了时间步长选取为 0.5ns 时采用三种不同存储方式计算的 平板中心处x 方向的感应电流值与 IDFT 方法计算结果的比较,……。如图4-1(b)所示给出了存储方式为基权函数压缩存储方式,时间步长分别取 0.4ns、0.5ns、0.6ns 时平板中心处x 方向的感应电流计算结果,从图中可以看出不同时间步长的计算结果基本相同。

图 4-1 $2m \times 2m$ 的理想导体平板中心处感应电流 x 分量随时间的变化关系。 (a) 不同存储方式的计算结果与 IDFT 方法的结果比较; (b) 不同时间步长的 计算结果比较比较比较

由于时域混合场积分方程是时域电场积分方程与时域磁场积分方程的线性组合,因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程时间步进算法的阻抗矩阵特征相同。

4.3 时域积分方程时间步进算法矩阵方程的求解

定理 4.1 如果时域混合场积分方程是时域电场积分方程与时域磁场积分方程 的线性组合。

证明:由于时域混合场积分方程是时域电场积分方程与时域磁场积分方程的线性组合,因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程时间步进算法的阻抗矩阵特征相同。■

推论 4.2 时域积分方程方法的研究近几年发展迅速,在本文研究工作的基础上,仍有以下方向值得进一步研究。

引理 4.3 因此时域混合场积分方程时间步进算法的阻抗矩阵特征与时域电场积分方程时间步进算法的阻抗矩阵特征相同。

4.4 本章小结

本章首先研究了时域积分方程时间步进算法的阻抗元素精确计算技术,分别 采用 DUFFY 变换法与卷积积分精度计算法计算时域阻抗元素,通过算例验证了 计算方法的高精度。

第五章 全文总结与展望

5.1 全文总结

本文以时域积分方程方法为研究背景,主要对求解时域积分方程的时间步进 算法以及两层平面波快速算法进行了研究。

5.2 后续工作展望

时域积分方程方法的研究近几年发展迅速,在本文研究工作的基础上,仍有以下方向值得进一步研究:

致 谢

在攻读博士学位期间,首先衷心感谢我的导师 XXX 教授

附录 A 中心极限定理的证明

A.1 高斯分布和伯努利实验

外文资料原文

1 The OFDM Model of Multiple Carrier Waves

外文资料译文

1 基于多载波索引键控的正交频分多路复用系统模型