الإحصاء

1) الحصيص و الحصيص المتراكم

حصيص قيمة هو عدد المرات التي تتكرر فيه تلك القيمة

مثال: إذا اعتبرنا سلسلة النقط: 10_10_18_18_9 هـ 8_9

- حصيص 10 هو 3 و حضيض 8 هو 2
- عادة ما نجمع تلك القيم في جدول يسمى جدول الحصيصات كاتالي:

(جدول 1)

11	10	9	8	قيم الميزة
				الحصيص

الحصيص المتراكم التزايدي لقيمة معينة هو مجموع حصيصها و حصيصات جميع القيم الأصغر منها .

مثال: الحصيص المتراكم التزايدي للقيمة 10 هو 3+1+2=6

(جدول 2)	11	10	9	8	x_i قيمة الميزة
					n_i الحصيصات
					الحصيصات المتراكمة تزايديا
					الحصيصات المتراكمة تناقصيا

حصيص صنف هو عدد المرات التي تأخذ فيها الميزة قيمة تنتمي لهذا الصنف

مثال: في المثال السابق إذا صنفنا النقط إلى صنفين: [8,10] و [10,12] فإن عدد النقط المختلفة أو المتساوية,التي تنتمي إلى الصنف [8,10] هو:

2) التردد و التردد المتراكم

تردد قيمة أو صنف ميزة هو خارج هذه القيمة أو الصنف على الحصيص الإجمالي

 $f_i = \frac{n_i}{N}$ إذا كان x_i هو العدد x_i هو كان و كان n_i حصيص القيمة العدد x_i هو العدد

مثال: لتكن المتسلسلة الإحصائية الممثلة في الجدول:

(جدول 3)

الثانية باكالوريا	الأولى باكالوريا	الجذع المشترك	المستويات
6	8	12	عدد الأقسام
			الترددات

مجموع الترددات يساوي دائما 1

التردد المتراكم التزايدي لقيمة ميزة هو مجموع تردد هذه القيمة و جميع ترددات القيم الأصغر منها

مثال: في الجدول 2 ,تردد القيمة 8 هووتردد 9 هو إذن التردد المتراكم للقيمة 9 هو

3) النسبة المئوية

 $100 \times \frac{a}{b}$ النسبة المنوية لعدد a إلى عدد غير منعدم b هو العدد

النسبة المئوية لقيمة أو صنف ميزة هو جداء تردد هذه القيمة أو الصنف في مئة و يرمز له ب p_i و لدينا $p_i=100\times f_i$

مجموع النسب المنوية لقيم و أصناف ميزة إحصائية يساوي 100

4) المعدل الحسابي لمتسلسلة إحصائية:

حالة ميزة كمية و قيم غير مجمعة.

 $\overline{x} = \frac{x_1 + x_2 + + x_N}{N}$ المعدل الحسابي لمتسلسلة إحصائية $x_1, x_2,, x_n$ هو العدد الحسابي المتسلسلة إحصائية المعدل الحسابي المتسلسلة الحسابي المتسلسلة المعدل الحسابي المتسلسلة المتسلسلة

 \overline{x} المعدل الحسابي لمتسلسلة إحصائية $(x_1,n_1);(x_2,n_2);....;(x_p,n_p)$ هو العدد $\overline{x}=\frac{n_1x_1+n_2x_2+....+n_px_p}{n_1+n_2+....+n_p}$

مثال: يمثل الجدول التالى مقاييس الأمطار ب mm خلال أسبوع.

49	28	70	x_i مقاييس الأمطار
4	2	1	n_i عدد الأيام

معدل مقاییس الأمطار خلال هذا الأسبوع هو \overline{x} بحیث:

 $\overline{x} = \dots$

: المعدل الحسابي لمتسلسلة إجصائية
$$\overline{x}$$
 $\overline{x} = f_1 x_1 + f_2 x_2 + \dots + f_p x_p$

مثال: يمثل الجدول التالي عدد الكيلومترات التي قطعها سائق سيارة حسب السرعة الكيلومترية.

120	100	90	60	$x_i \frac{km}{h}$ السرعة
0.05	0.35	0.45	0.15	الترددات

معدل السرعة هو :أي

($\mathbb R$ منزة كمية قيمتها أصناف (مجالات من

المعدل الحسابي لمتسلسلة إحصائية قيم ميزتها أصناف من الشكل $[a_i,a_{i+1}]$ هو العدد \overline{x} بحيث:

$$c_i = \frac{a_i + a_{i+1}}{2}$$
 و a_i, a_{i+1} و $\overline{x} = \frac{n_1 c_1 + n_2 c_2 + \dots + n_p c_p}{n_1 + n_2 + \dots + n_p}$

. $\left[a_{i},a_{i+1}\right[$ هو عدد الأصناف و n_{i} هو معدد الأصناف و p

مثال : الجدول التالي يعطي توزيع تلاميذ قسم حسب قاماتهم ب cm .

[150,160[[140,150[[130,140[القامات ب cm
10	12	8	الحصيصات

 $\overline{x} = \dots$

المعدل الحسابي لمتسلسلة إحصائية, f_i تردد الصنف a_i,a_{i+1} و مركز هذا الصنف. $\overline{x}=f_1c_1+f_2c_2+\dots+f_pc_p$

5) وسط متسلسلة إحصائية.

وسط متسلسلة إحصائية هي كل قيمة تجزء قيم هذه المتسلسلة إلى جزئين لهما نفس الحصيص.

لتكن ساكنة إحصائية حصيصها الإجمالي N و قيمها مرتبة (مع تكرار المتساوية منها).

- N+1 إذا كان N فرديا فوسطها هو القيمة الموجودة بالرتبة N إذا كان N
- $\frac{N}{2}$ إذا كان N زوجيا فوسطها هو كل عدد محصور بين القيمتين الموجودتين بالرتبة $\frac{N}{2}$ و

 $\frac{N}{2} + 1$

مثال: لتكن متسلسلتان إحصائيتان A و B بحيث:

18 18 16 14 14 14 12 : A

80_45_40_40_40_36_36_25_17_17: *B*

- بالنسبة للمتسلسلة A, الحصيص الإجمالي هو (عدد) إذن وسطها هو القيمة الموجودة بالرتبة
- بالنسبة للمتسلسلة B, الحصيص الإجمالي هو و هو عدد إذن يمكن أن ناخذ الوسط هو معدل وقيمة الرتبة) و وقيمة الربة) أي وسط لهذه المتسلسلة.

6) المنوال - الصنف المنوالي.

منوال متسلسلة إحصائية هو كل قيمة لها أكبر حصيص

مثال: الجدول التالي يعطي توزيع محطات الارصاد الجوية حسب درجة الحرارة (deg ré Celsus)

8°	6°	2°	0°	-4°	-5°	-7°	x_i الدرجات
2	1	6	1	3	6	1	n_i الحصيصات

لاحظ أن لكل من القيمتين ... و ... أكبر حصيص . إذن فلهذه المتسلسلة منوالان ... و

صنف منوالي لمتسلسلة إحصائية هو كل صنف له أكبر حصيص

مثال: إذا جمعنا المعطيات السابقة في أصناف نحصل مثلا على:

[5,9[[1,5[[-3,1[[-7,-3[الأصناف
				الحصيصات

بما أن هو أكبر حصيص فإن الصنف]....... هو الصنف المنوالي الوحيد لهذه المتسلسلة .

7) المغايرة

مغايرة متسلسلة إحصانية,
$$(x_1,n_1);(x_2,n_2);....;(x_p,n_p)$$
 هي العدد V بحيث:
$$V=\frac{n_1|x_1-\overline{x}|^2+n_2|x_2-\overline{x}|^2+....+n_px_p}{n_1+n_2+....+n_p}$$

مثال: نعتبر المتسلسلة الاحصائية المعرفة بالجدول:

			,	3
7	6	3	2	x_i قيمة الميزة
3	2	4	6	n_i الحصيصات
				$ x_i - \overline{x} $ القيم
				$\left x_{i}-\overline{x}\right ^{2}$ القيم

المعدل الحسابي لهذه المتسلسلة هو : مغايرة هذه المتسلسلة هي V بحيث:

V =

8) الانحراف الطرازي

الانحراف الطرازي لمتسلسلة إحصائية مغايرتها V هو العدد σ بحيث $\sigma = \sqrt{V}$

 $\sigma\simeq$ أي $\sigma=\sqrt{....}$ أي مثال: في المثاب السابق , $\sigma=\sqrt{....}$ الانحراف الطرازي لهذه المتسلسلة هو