0.0.1 Related result [Section 4.1.12]

Here is a related result:

$$\mathfrak{p}$$
 is the contraction of a prime ideal if and only if $A_{\mathfrak{p}}/\mathfrak{p}_{\mathfrak{p}} \otimes_A B \neq 0$. (1)

This will follow from Claim 1 and Claim 2 below.

Claim 1. Let C_1, \ldots, C_5 be the five *B*-algebras

$$A_{\mathfrak{p}} \otimes_A B/\mathfrak{p}B, \quad (B/\mathfrak{p}B)_{\mathfrak{p}}, \quad B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}}, \quad \frac{A_{\mathfrak{p}}}{\mathfrak{p}_{\mathfrak{p}}} \otimes_A B, \quad (A/\mathfrak{p})_{\mathfrak{p}} \otimes_A B.$$

Then for any $1 \le i, j \le 5$ there is a unique *B*-algebra morphism $C_i \to C_j$, and this morphism is bijective. ???

Proof of Claim 1. Note that C_i has a unique $B_{\mathfrak{p}}$ -algebra structure which extends its natural B-algebra structure. In other words, the image in C_i of any $s \in A \setminus \mathfrak{p}$ is a unit. Moreover, any element of C_i is equal to $\frac{b}{s} \cdot 1$ for some b in B and s in $A \setminus \mathfrak{p}$. This implies that there is at most one morphism of B-algebras $\phi_{ji}: C_i \to C_j$. To prove that such morphisms exist, we proceed as follows. If U is an additive group and V a subgroup, we denote the class in U/V of $u \in U$ by \overline{u} when V is clear from the context. For $i = 1, \ldots, 5$ define the set theoretical map $f_i: A \times (A \setminus \mathfrak{p}) \times B \to C_i$ by

$$(f_1(a,s,b),\ldots,f_5(a,s,b)):=\left(\frac{a}{s}\otimes \overline{b}\,,\,\,\frac{\overline{a\cdot b}}{s}\,,\left(\frac{a\cdot b}{s}\right)^{\overline{}},\left(\frac{a}{s}\right)^{\overline{}}\otimes b\,,\,\,\frac{\overline{a}}{s}\otimes b\right).$$

We leave it to the reader to check that, for i, j = 1, ..., 5, there is a B-algebra morphism $\phi_{ji} : C_i \to C_j$ such that $\phi_{ji}(f_i(a, s, b)) = f_j(a, s, b)$ for all a, s, b.

Note that C_i is an initial object in the category of those *B*-algebras *C* such that the image of $a \in A$ in *C* is zero if $a \in \mathfrak{p}$ and is a unit if $a \notin \mathfrak{p}$.

Claim 2. We have $(B/\mathfrak{p}^e)_{\mathfrak{p}} = 0 \iff \mathfrak{p}^{ec} \neq \mathfrak{p}$.

Proof of Claim 2.

$$(B/\mathfrak{p}^{\mathrm{e}})_{\mathfrak{p}} = 0 \iff \frac{1}{1} = \frac{0}{1} \text{ in } (B/\mathfrak{p}^{\mathrm{e}})_{\mathfrak{p}} \iff \exists \, s \in A \setminus \mathfrak{p} \mid f(s) \in \mathfrak{p}^{\mathrm{e}} \iff \exists \, s \in \mathfrak{p}^{\mathrm{ec}} \setminus \mathfrak{p} \iff \mathfrak{p}^{\mathrm{ec}} \neq \mathfrak{p}.$$

Statement (1) follows also from Exercise 3.21iv p. 47 of the book [see Section 0.0.2 p. 2 below].

[Reminder.]

Proposition 1 (Proposition 3.11 p. 41 of the book). (i) Every ideal in $S^{-1}A$ is an extended ideal.

- (ii) If \mathfrak{a} is an ideal in A, then $\mathfrak{a}^{\mathrm{ec}} = \bigcup_{s \in S} (\mathfrak{a} : s)$. Hence $\mathfrak{a}^{\mathrm{e}} = (1)$ if and only if \mathfrak{a} meets S.
- (iii) $\mathfrak{a} \in C \iff no \ element \ of \ S \ is \ a \ zero-divisor \ in \ A/\mathfrak{a}$.
- (iv) The prime ideals of $S^{-1}A$ are in one-to-one correspondence $(\mathfrak{p} \leftrightarrow S^{-1}\mathfrak{p})$ with the prime ideals of A which don't meet S.
- (v) The operation S^{-1} commutes with formation of finite sums, products, intersections and radicals.

0.0.2 Page 46, Exercise 3.21 [Section 4.2.21]

Statement. (i) Let A be a ring, S a multiplicatively closed subset of A, and $\phi: A \to S^{-1}A$ the canonical homomorphism. Show that $\phi^*: \operatorname{Spec}(S^{-1}A) \to \operatorname{Spec}(A)$ is a homeomorphism of $\operatorname{Spec}(S^{-1}A)$ onto its image in $X = \operatorname{Spec}(A)$. Let this image be denoted by $S^{-1}X$.

In particular, if $f \in A$, the image of $\operatorname{Spec}(A_f)$ in X is the basic open set X_f (Chapter 1, Exercise 17).

- (ii) Let $f: A \to B$ be a ring homomorphism. Let $X = \operatorname{Spec}(A)$ and $Y = \operatorname{Spec}(B)$, and let $f^*: Y \to X$ be the mapping associated with f. Identifying $\operatorname{Spec}(S^{-1}A)$ with its canonical image $S^{-1}X$ in X, and $\operatorname{Spec}(S^{-1}B)(=\operatorname{Spec}(f(S)^{-1}B))$ with its canonical image $S^{-1}Y$ in Y, show that $S^{-1}f^*:\operatorname{Spec}(S^{-1}B)\to\operatorname{Spec}(S^{-1}A)$ is the restriction of f^* to $S^{-1}Y$, and that $S^{-1}Y=f^{*-1}(S^{-1}X)$.
- (iii) Let \mathfrak{a} be an ideal of A and let $\mathfrak{b} = \mathfrak{a}^{\mathrm{e}}$ be its extension in B. Let $\overline{f}: A/\mathfrak{a} \to B/\mathfrak{b}$ be the homomorphism induced by f. If $\mathrm{Spec}(A/\mathfrak{a})$ is identified with its canonical image $V(\mathfrak{a})$ in X, and $\mathrm{Spec}(B/\mathfrak{b})$ with its image $V(\mathfrak{b})$ in Y, show that \overline{f}^* is the restriction of f^* to $V(\mathfrak{b})$.
- (iv) Let \mathfrak{p} be a prime ideal of A. Take $S = A \setminus \mathfrak{p}$ in (ii) and then reduce mod $S^{-1}\mathfrak{p}$ as in (iii). Deduce that the subspace $f^{*-1}(\mathfrak{p})$ of Y is naturally homeomorphic to $\operatorname{Spec}(B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}}) = \operatorname{Spec}(k(\mathfrak{p}) \otimes_A B)$, where $k(\mathfrak{p})$ is the residue field of the local ring $A_{\mathfrak{p}}$.

 $\operatorname{Spec}(k(\mathfrak{p}) \otimes_A B)$ is called the fiber of f^* over \mathfrak{p} .

Solution. (i) Set $S^{-1}X := \{ \mathfrak{p} \in X \mid \mathfrak{p} \cap S = \emptyset \}$. By Proposition 3.11iv p. 41 of the book [Proposition 1 p. 1] the maps

$$\operatorname{Spec}(S^{-1}A) \xrightarrow{\phi^*} S^{-1}X$$

are inverse bijections. Let us equip $S^{-1}X \subset X$ with the induced topology. Then the closed subsets of $S^{-1}X$ are precisely the subsets of the form $V(\mathfrak{a}) \cap S^{-1}X$ where \mathfrak{a} is an ideal of A. By Proposition 3.11i p. 41 of the book [Proposition 1 p. 1], the closed subsets of $S^{-1}A$ are precisely the subsets of the form $V(S^{-1}\mathfrak{a})$ where \mathfrak{a} is an ideal of A. Thus it suffices to show that, given an ideal \mathfrak{a} of A and a prime ideal \mathfrak{p} of A, we have $S^{-1}\mathfrak{a} \subset S^{-1}\mathfrak{p} \iff \mathfrak{a} \subset \mathfrak{p}$. Implication \Leftarrow is clear. Conversely $S^{-1}\mathfrak{a} \subset S^{-1}\mathfrak{p}$ implies

$$\mathfrak{a} \subset \phi^* S^{-1} \mathfrak{a} \subset \phi^* S^{-1} \mathfrak{p} = \mathfrak{p}.$$

(ii) Since the diagram

$$A \xrightarrow{f} B$$

$$\downarrow \qquad \qquad \downarrow$$

$$S^{-1}A \xrightarrow{S^{-1}f} S^{-1}B$$

commutes, so does

$$X \xleftarrow{f^*} Y$$

$$\uparrow \qquad \uparrow$$

$$S^{-1}X \xleftarrow{(S^{-1}f)^*} S^{-1}Y.$$

This proves the first claim. To show $S^{-1}Y = f^{*-1}(S^{-1}X)$, note that, for $\mathfrak{q} \in Y$, we have

$$\mathfrak{q} \in S^{-1}Y \iff f(S) \cap \mathfrak{q} = \varnothing \iff S \cap f^*(\mathfrak{q}) = \varnothing \iff f^*(\mathfrak{q}) \in S^{-1}X \iff \mathfrak{q} \in f^{*-1}(S^{-1}X).$$

(iii) Since the diagram

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} B \\ \downarrow & & \downarrow \\ A/\mathfrak{a} & \stackrel{\overline{f}}{\longrightarrow} B/\mathfrak{b} \end{array}$$

commutes, so does

$$\begin{array}{ccc} X & \stackrel{f^*}{\longleftarrow} & Y \\ \uparrow & & \uparrow \\ V(\mathfrak{a}) & \stackrel{\overline{f}^*}{\longleftarrow} & V(\mathfrak{b}). \end{array}$$

(iv) We have the commuting diagrams

$$A \xrightarrow{f} B \\ \downarrow \qquad \downarrow \\ A/\mathfrak{p} \xrightarrow{} B/\mathfrak{p}B \\ \downarrow \qquad \downarrow \\ k(\mathfrak{p}) = (A/\mathfrak{p})_{\mathfrak{p}} \xrightarrow{} (B/\mathfrak{p}B)_{\mathfrak{p}} = B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}}$$

and

$$X \xleftarrow{f^*} Y$$

$$\uparrow \qquad \uparrow$$

$$V(\mathfrak{p}) \xleftarrow{\overline{f}^*} V(\mathfrak{p}B)$$

$$\uparrow \qquad \uparrow$$

$$\{\mathfrak{p}\} \xleftarrow{\overline{f}^*_{\mathfrak{p}}} Z$$

with $Z := \operatorname{Spec}(B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}})$. The second claim of (ii) implies $Z = \overline{f}^{*-1}(\mathfrak{p})$. Finally note that we have

$$\overline{f}^{*-1}(\mathfrak{p})=\{\mathfrak{q}\in Y\mid \mathfrak{q}\supset f(\mathfrak{p}),\ f^*(\mathfrak{q})=\mathfrak{p}\}=\{\mathfrak{q}\in Y\mid f^*(\mathfrak{q})=\mathfrak{p}\}=f^{*-1}(\mathfrak{p}),$$

that is, $\operatorname{Spec}(B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}})=f^{*-1}(\mathfrak{p}),$ as required.