ASYMPTOTIC NOTATION

Smaller Greater

• The notations are used for representing the symbol form of a function or showing the class of a function.

• Asymptotic notations are the mathematical notations used to describe running time of an algorithm when the input tends towards a particular value or limiting value.

• Ex: When the input array is in sorted order, the time taken by the algorithm is linear.

• When the input array is in reverse order, it takes maximum time.

Big -ohb Notation Big-O notation represents the upper bound of the running time of an algorithm. Thus et gives the worst-case complexity of an algorithm. The function F(n) = O(g(n)) iff \exists +ve constant Mathematical Def? ie c and no, such that, (E(u) < (* 8(u) + U) 10 - Coefficient F(n) = 8n+3 (10n) (: The right hand ride parts should not contain multiple values) ·: F(0) = O(0).

All the above methods are correct, because we are looking for upper bound conditions.

Q). If all the statements are correct, then which one is appropriate.

Sol: Take the closest function always for analysis.

Big-conega (S2):-The function f(n) = 12 (g(n)) iff I tre constant C& No, such that (F(n) 7, C. g(n) + n 7, no) F(n) = 2000 20 + 3 3n+3 > 1×0 + 0 > 1. 2(n) € (an). 0 [3n+3 > log n F(0) = 52(0) · : Nearrest one és cuseful

Q. Find Θ notation for the function

$$F(n) = (1/3)n^3 + (1/2)n^2 + (1/6) n$$

$$O \leqslant C_1 \leqslant O \leqslant C_2 \leqslant O$$

$$O \leqslant C_1 \leqslant O \leqslant C_2 \leqslant O$$

$$O \leqslant C_1 \leqslant O \leqslant C_2 \leqslant O$$

$$O \leqslant C_1 \leqslant O \leqslant O \leqslant O \leqslant O$$

$$O \leqslant O \leqslant O \leqslant O \leqslant O$$

$$O \leqslant O \leqslant O \leqslant O$$

(2) Frend & notation for 502 + n2 + 30 + 2. AN: W F(n) = 503+ 12+30+2 for finding Θ -notation we show the given function bounded by upper and lower bound by a function g(n). Therefore our goal is to find g(n) 5n3 < 5n3 + n2+3n +a + n>no. Compare with $C_{1}.g(n) \leq F(n)$. $c_1 = 5$, $g(n) = n^3$ Again. 503+02+30+2 < 603 + 0>00=2. Compane it with $f(n) \leq C_2 \cdot q(n)$. $C_0 = 6.$ $g(0) = 0^3$ F(0) = 42 (8(0)) F(n) = 0 (n3)

O- Notalim 0 g(n) = { f(n): 3 a tre constant c and no Such that 0 < f(n) < C.g(n) & n > no F(0) = 50 + 02 + 30 + 2. Sol?: Given this: f(n) = 503 + n2 + 30 +2 503+02+30+2 < 503+m3+30+0 < 503+02+ for 507/2 For 12 240 5503 + 12+12 5 503 + 202 En Nozanz >> 503 + 202 + 5 503 + n3 & 603 + n >100 =2. There from , we find that C=6. 9(0) = 0 (8(0)) $\Rightarrow [F(\Omega) = O(C_3)]$

Q. Find O notation for the function

$$f(n) = 2^n + 6n^2 + 3n$$

Solution:

$$2^{n} + 6n^{2} + 3n \le 2^{n} + 6n^{2} + n^{2} \le 2^{n} + 7n^{2}$$

i.e we are showing the function is asymptotically tight by upper bound for $2^n \ge n^2$

Where $n \ge 4$

$$2^n + 7n^2 \le 2^n + 7n^2 * 2^n$$

Q. Is $27n^2 + 16n + 25 = O(n)$?

(3) Is
$$87n^2 + 16n + 25 = O(n)$$
?

Set?: Assume they the given statement is correct in $87n^2 + 16n + 25 = O(n)$.

Also we when $8374 = 000$.

Also we have $9374 = 000$.

Also $97n^2 + 16n + 25$.

Also $97n^2 + 16n + 25$.

By $97n^2 + 16n + 25 = 0$.

Denide both wife by 1000 .

This relation is in correct because as 1000 in creases and those will be no change on the eight ham file of the relation, because 1000 in the eight ham file of the relation, because 1000 in the eight ham file of the relation, because 1000 in the eight ham file of the relation, because 1000 in the eight ham file of the relation, because 1000 in the eight ham file of the relation, because 1000 in the eight ham file of the relation, 1000 in the eight ham file of the relation, 1000 in the eight ham file of the relation, 1000 in the eight ham file of the relation, 1000 in the eight ham file of the relation, 1000 in the eight ham file of the relation, 1000 in the eight ham 1000

Q. Find out the O notation for the function $10n^2 + 7$

G Fordard the O-notation for the function
$$10n^2 + 7$$
.

Most let us assume that $f(n) = 10n^2 + 7$.

For $n \neq 0 \leq f(n) \leq c \cdot g(n)$.

We show that $0 \leq f(n) \leq c \cdot g(n)$.

 $f(n) = 10n^2 + 7 \leq 10n^2 \leq$

Find Θ notation for the function $f(n) = 3n^3 + 4n$.

SOL!— Chiven that $f(n) = 3n^3 + 4n$ Of is clear that the order of the given polynomial is 3.

Therefore, From theorem (51 $f(n) = a_0 + a_1n + a_2n^2 - \cdots + a_mn^m is any polynomial of degree <math>m$ on less than, $f(n) = \Theta(n^m)$) $f(n) = \Theta(n^m) \Rightarrow f(n) = \Theta(n^3)$.

Theorem: of f(n) and g(n) be two function such that $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ expires, them $f \in \Theta$ g(n), if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = C$.

(0) Find @ notation for the following for, f(0) = 100° +7. sico: F(0) = 1002 + 7. Assume that g(h) = 12. then, $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ $\lim_{n\to\infty} \frac{10n^2+7}{n^2} = \lim_{n\to\infty} \left(\frac{10n^2}{n^2} + \frac{7}{n^2}\right)$ $\Rightarrow \lim_{n \to \infty} \left(10 + \frac{7}{n^2} \right) \Rightarrow \left(10 + \frac{7}{\infty} \right)$ = 10 (constant) $\Rightarrow f(n) = \Theta(g(n))$ $\Rightarrow f(n) = \Theta(n^2)$

(a) Is
$$27n^2 + 16n + 2s = 9 cn^2$$
.

Sol? Let $f(n) = 27n^2 + 16n + 2s$.

Assume then $g(n) = n^2$.

None, we show that

 $constant$
 con

> 2n < C.n for some C >0. But . It is true for $2n = o(n^2)$ an $\langle c.n^2 \rangle$ $\forall c + c + n > 1/10$. カカく C.n しい C=1 → 1 カラ3 000 タ 2 C · n + n ア 3 000

Ex: Dovide both sale and
$$C \cdot \Omega^2$$
 $\forall C \cdot \Omega^2$ $\forall C \cdot \Omega^2$

Let $C = 0.1$, $\forall C \cdot \Omega^2$ $\forall C \cdot \Omega^2$

Let $C = 0.1$, $\forall C \cdot \Omega^2$ $\forall C \cdot \Omega^2$, $\forall C \cdot \Omega^2$

Alternative definition: $(C \cdot \Omega^2 + C \cdot \Omega^2)$

Ex: $\partial \Omega = O(\Omega^2)$

Lim $\partial \Omega = \Omega^2$

Lim ∂

Comparing functions

Many of the relational properties of real numbers apply to asymptotic comparisons as well. For the following, assume that f(n) and g(n) are asymptotically positive.

Transitivity:

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$, $f(n) = O(g(n))$ and $g(n) = O(h(n))$ imply $f(n) = O(h(n))$, $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$, $f(n) = o(g(n))$ and $g(n) = o(h(n))$ imply $f(n) = o(h(n))$, $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$.

Reflexivity:

$$f(n) = \Theta(f(n)),$$

 $f(n) = O(f(n)),$
 $f(n) = \Omega(f(n)).$

Symmetry:

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry:

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$, $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

Because these properties hold for asymptotic notations, we can draw an analogy between the asymptotic comparison of two functions f and g and the comparison of two real numbers a and b:

$$f(n) = O(g(n))$$
 is like $a \le b$,
 $f(n) = \Omega(g(n))$ is like $a \ge b$,
 $f(n) = \Theta(g(n))$ is like $a = b$,
 $f(n) = o(g(n))$ is like $a < b$,
 $f(n) = \omega(g(n))$ is like $a > b$.

We say that f(n) is asymptotically smaller than g(n) if f(n) = o(g(n)), and f(n) is asymptotically larger than g(n) if $f(n) = \omega(g(n))$.

One property of real numbers, however, does not carry over to asymptotic notation:

• Reflexivity Example:

If
$$f(n) = n^3 \Rightarrow O(n^3)$$

Symmetry:

If
$$f(n) = n^2$$
 and $g(n) = n^2$ then $f(n) = \Theta(n^2)$ and $g(n) = \Theta(n^2)$

• Necessary part:

$$f(n) = \Theta(g(n)) \Rightarrow g(n) = \Theta(f(n))$$

By the definition of Θ , there exists positive constants c1, c2, no such that c1.g(n) \leq f(n) \leq c2.g(n) for all n \geq no

$$\Rightarrow$$
 g(n) \leq (1/c1).f(n) and g(n) \geq (1/c2).f(n)

$$\Rightarrow$$
 (1/c2).f(n) \leq g(n) \leq (1/c1).f(n)

Since c1 and c2 are positive constants, 1/c1 and 1/c2 are well defined.

Therefore, by the definition of Θ , $g(n) = \Theta(f(n))$

• Sufficiency part:

$$g(n) = \Theta(f(n)) \Rightarrow f(n) = \Theta(g(n))$$

By the definition of Θ , there exists positive constants c1, c2, no such that

$$c1.f(n) \le g(n) \le c2.f(n)$$
 for all $n \ge no$

$$\Rightarrow$$
 f(n) \leq (1/c1).g(n) and f(n) \geq (1/c2).g(n)

$$\Rightarrow$$
 (1/c2).g(n) \leq f(n) \leq (1/c1).g(n)

By the definition of Theta(Θ), $f(n) = \Theta(g(n))$

Transitivity Example

Example: If f(n) = n, $g(n) = n^2$ and $h(n) = n^3$ \Rightarrow n is $O(n^2)$ and n^2 is $O(n^3)$ then n is $O(n^3)$ Proof: f(n) = O(g(n)) and $g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$ By the definition of Big-Oh(O), there exists positive constants c, no such that $f(n) \le c.g(n)$ for all $n \ge no$ \Rightarrow f(n) \leq c1.g(n) \Rightarrow g(n) \leq c2.h(n) \Rightarrow f(n) \leq c1.c2h(n)

 \Rightarrow f(n) \leq c.h(n), where, c = c1.c2 By the definition, f(n) = O(h(n))

