Correctiemodel VWO Wiskunde B – Voorbeeldexamen 1

Vakspecifieke regels voor de beoordeling

- **1.** Voor elke rekenfout, notatiefout of verschrijving wordt 1 scorepunt in mindering gebracht tot het maximum van het aantal scorepunten dat voor dat deel van die vraag kan worden gegeven.
- 2. Indien in een antwoord een gevraagde verklaring, uitleg, afleiding of berekening ontbreekt dan wel foutief is, worden 0 scorepunten toegekend tenzij in het beoordelingsmodel anders is aangegeven. Dit geldt ook bij vragen waarbij de kandidaten de grafische rekenmachine (GR) gebruiken. Bij de betreffende vragen geven de kandidaten een toelichting waaruit blijkt hoe zij de GR hebben gebruikt (die in ieder geval bestaat uit vermelding van de ingevoerde formule(s) (of lijst(en)), de gebruikte optie(s) en het resultaat).
- **3.** Een fout in de uitwerking van een vraag wordt maar één keer aangerekend, tenzij daardoor de vraag aanzienlijk vereenvoudigd wordt en/of tenzij in het beoordelingsmodel anders is vermeld.
- **4.** Een zelfde fout in de beantwoording van verschillende vragen moet steeds opnieuw worden aangerekend, tenzij in het beoordelingsmodel anders is vermeld.
- **5.** Indien slechts één voorbeeld, reden, uitwerking of andersoortig antwoord gevraagd wordt, wordt uitsluitend het eerst gegeven antwoord beoordeeld; indien meer dan één voorbeeld, reden, uitwerking of andersoortig antwoord gevraagd wordt, worden uitsluitend de eerst gegeven antwoorden beoordeeld, tot maximaal het gevraagde aantal.
- **6.** Als de kandidaat bij het eindantwoord geen eenheid heeft gegeven en deze wel bij het antwoord hoort, dan wordt 1 scorepunt in mindering gebracht, tenzij de eenheid al in de vraag vermeld is.
- **7.** Als bij een vraag doorgerekend wordt met afgeronde tussenantwoorden en dit leidt tot een ander eindantwoord dan wanneer doorgerekend is met niet-afgeronde tussenantwoorden, dan wordt bij de betreffende vraag 1 scorepunt in mindering gebracht. Tussenantwoorden mogen wel afgerond *genoteerd* worden.

Opgave 1.

a.	In zicht dat $f'(x) = [x^2]' \cdot \sqrt{x+1} + x^2 \cdot \left[\sqrt{x+1}\right]'$	1
	$f'(x) = 2x \cdot \sqrt{x+1} + x^2 \cdot \frac{1}{2\sqrt{x+1}}$	1
	$f'\left(-\frac{3}{4}\right)\left(=-\frac{3}{2}\cdot\sqrt{\frac{1}{4}}+\frac{9}{16}\cdot\frac{1}{2\sqrt{\frac{1}{4}}}\right)=-\frac{3}{4}+\frac{9}{16}=-\frac{3}{16}$	2
	N.B. Indien de kandidaat $f'\left(-\frac{3}{4}\right) = -\frac{3}{16}$ opschrijft zonder tussenstappen	
	aan dit onderdeel slechts één punt toekennen.	
	Completeren van het bewijs	1
b.	$f(x) = 0$ als $x = -1 \lor x = 0$	1
	De gevraagde inhoud wordt gegeven door:	
	$\pi \int_{-1}^{0} (f(x))^2 \mathrm{d}x$	1
	De uitdrukking $\pi \int_{-1}^{0} (x^2 \cdot \sqrt{x+1})^2 dx$ herleiden tot $\pi \int_{-1}^{0} (x^5 + x^4) dx$	2
	De integrand primitiveren geeft $\pi \int_{-1}^{0} (x^5 + x^4) dx = \pi \left[\frac{1}{6} x^6 + \frac{1}{5} x^5 \right]_{-1}^{0}$	1
	$\pi \left[\frac{1}{6} x^6 + \frac{1}{5} x^5 \right]_{-1}^0 = \pi \left(0 - \left(\frac{1}{6} - \frac{1}{5} \right) \right) = \frac{1}{30} \pi$	1

Opgave 2.

a.	Constateren dat de verticale asymptoot gelijk is aan: $x = 1$	1
	De formule voor $f(x)$ herleiden tot $f(x) = x - 1 + \frac{1}{x - 1}$	2
	Uit $f(x) = x - 1 + \frac{1}{x - 1}$ concluderen dat de scheve asymptoot gegeven wordt	1
	door: $y = x - 1$	
,	Uit de formules voor de asymptoten concluderen dat punt <i>P</i> coördinaten	1
	(1,0) heeft.	
b.	f(1+a) exact herleiden tot	2
	$f(1+a) = \frac{a^2+1}{a} \left(=a+\frac{1}{a}\right)$	
	f(1-a) exact herleiden tot	2
	$f(1-a) = \frac{a^2 + 1}{-a} \left(= -a - \frac{1}{a} \right)$	
	Hieruit concluderen dat	1
	f(1+a) = -f(1-a)	

Opgave 3.

a.	Manier 1:	
a.	$f(-\ln(2)) = \frac{e^{-2\ln(2)}}{e^{-\ln(2)} + 1} = \frac{\left(\frac{1}{4}\right)}{\left(\frac{3}{2}\right)}$ $g(-\ln(2)) = \frac{2}{3} - e^{-\ln(2)} = \frac{2}{3} - \frac{1}{2}$ Middels are proved to be relative to the relative prior of the right value of	2
	$g(-\ln(2)) = \frac{2}{3} - e^{-\ln(2)} = \frac{2}{3} - \frac{1}{2}$	1
	Middels een exacte berekening laten zien dat beide uitdrukkingen gelijk zijn aan $\frac{1}{6}$ (En dus dat $f(-\ln(2)) = g(-\ln(2))$, zodat $x_A = -\ln(2)$)	1
	Manier 2: De vergelijking $f(x) = g(x)$ opstellen en deze herleiden tot: $2e^{2x} + \frac{1}{3}e^x - \frac{2}{3} = 0$ (of een vergelijkbare uitdrukking)	2
	Deze vergelijking herleiden tot: $e^x = -\frac{8}{12} \left(= -\frac{2}{3} \right) \text{v} e^x = \frac{6}{12} \left(= \frac{1}{2} \right)$	1
	Hieruit concluderen dat $x_A = \ln\left(\frac{1}{2}\right) = -\ln(2)$	1
b.	Bepalen van de afgeleide: $F'(x) = \mathrm{e}^x - \frac{1}{\mathrm{e}^x + 1} \cdot \mathrm{e}^x$ (NB. Indien de kettingregel niet of niet correct wordt toegepast, geen punten toekennen voor dit onderdeel.)	2
	$F'(x) = \frac{e^{x}(e^{x} + 1)}{e^{x} + 1} - \frac{e^{x}}{e^{x} + 1}$	1
	$F'(x) = \frac{e^{2x} + e^x - e^x}{e^x + 1} = \frac{e^{2x}}{e^x + 1} (= f(x))$	1
C.	$g(x) = 0 \text{ als } x = \ln\left(\frac{2}{3}\right)$	1
	Inzicht dat de oppervlakte van V wordt gegeven door:	
	$\int_{-\ln(2)}^{0} f(x) \mathrm{d}x - \int_{-\ln(2)}^{\ln(\frac{2}{3})} g(x) \mathrm{d}x$	1
	Berekenen van de integraal: $\int_{-\ln(2)}^{0} f(x) dx = F(0) - F(-\ln(2)) \approx 0.2123$	1
	$g(x) \text{ primitiveren geeft } G(x) = \frac{2}{3}x - e^x$	1
	Bereken van de integraal:	'
	$\int_{-\ln(2)}^{\ln(\frac{2}{3})} g(x) dx = \left[\frac{2}{3} x - e^x \right]_{-\ln(2)}^{\ln(\frac{2}{3})} = \left(\frac{2}{3} \ln\left(\frac{2}{3}\right) - e^{\ln\left(\frac{2}{3}\right)} \right) - \left(-\frac{2}{3} \ln(2) - e^{-\ln(2)} \right)$ ≈ 0.025	1
	Voor de conclusie dat de gevraagde oppervlakte gelijk is aan 0,187 $\left(\text{of } \frac{5}{3}\ln(3) - \frac{10}{3}\ln(2) + \frac{2}{3}\right)$	1

Opgave 4.

	Manier 1:	
a.	Opstellen van de vectoren:	
	· ·	2
	$\overrightarrow{AP} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ en $\overrightarrow{PB} = \begin{pmatrix} 9 \\ -3 \end{pmatrix}$	
	Berekenen van het inproduct van \overrightarrow{AP} en \overrightarrow{PB} :	
	$\overrightarrow{AP} \cdot \overrightarrow{PB} = 9 - 9 = 0$	1
	Dus AP staat loodrecht op BP (want het inproduct is 0)	1
	Manier 2:	
	$rc_{AP} = \frac{3}{1} = 3$ $rc_{PB} = \frac{-3}{9} = -\frac{1}{3}$ $rc_{AP} \cdot rc_{PB} = -1$	1
	-3 1	
	$rc_{PB} = \frac{1}{9} = -\frac{1}{3}$	1
	$rc_{AP} \cdot rc_{PB} = -1$	1
	Dus AP staat loodrecht op BP (want het product van de richtings-	1
	coëfficiënten is -1)	
	Manier 3:	1
	$AP = \sqrt{1^2 + 3^2} = \sqrt{10}$	1
	$BP = \sqrt{9^2 + 3^2} = \sqrt{90}$	1
	$AB = 10$ dus geldt: $AP^2 + BP^2 = AB^2$	1
	Dus AP staat loodrecht op BP (Pythagoras)	1
b.	De helling van de lijn door de punten B en C is -2	1
	De lijn door de punten B en C wordt gegeven door: $y = -2x + 20$	1
	Voor het op exacte wijze herleiden van het stelsel	2
C.	$7y - x = 20 \land y = -2x + 20 \text{ tot } x = 8 \land y = 4 \text{ (dus } Q(8,4))$	
0.	De lijn door de punten A en Q wordt gegeven door: $y = \frac{1}{2}x$	1
	(of de lijn door de punten B en P gegeven wordt door: $y = -\frac{1}{3}x + \frac{10}{3}$)	
	$x_H (= x_C) = 4 \text{ geeft } y_H = 2$	1
	Inzicht dat de straal van de ingeschreven cirkel gelijk is aan de afstand van	1
	punt <i>H</i> tot lijn ℓ	1
	$d(H,\theta) = 7 \cdot 2 - 4 - 20 = 10$	1
	$d(H,\ell) = \frac{ 7 \cdot 2 - 4 - 20 }{\sqrt{7^2 + 1^2}} = \frac{10}{\sqrt{50}} (=\sqrt{2})$	1
	De ingeschreven cirkel van ΔPQR wordt gegeven door:	
	$(x-4)^2 + (y-2)^2 = \left(\frac{10}{\sqrt{50}}\right)^2 (=2)$	1
	Op exacte wijze herleiden tot:	
	$x^2 - 8x + y^2 - 4y + 18 = 0$	1

Opgave 5.

a.	Manier 1:	
	De vergelijking $f(x) = g(x)$ herleiden tot $\cos(x) = 2\cos(x)\sin(x) + 2\cos(x)$	1
	$\cos(x) = 2\cos(x)\sin(x) + 2\cos(x) \text{ herleiden tot } \cos(x)(2\sin(x) + 1) = 0$	1
	Hieruit volgt: $cos(x) = 0 \lor sin(x) = -\frac{1}{2}$	1
	$\cos(x) = 0 \text{ als } x = \frac{1}{2}\pi \ (\forall \ x = \frac{3}{2}\pi)$	1
	$\cos(x) = 0 \text{ als } x = \frac{1}{2}\pi \text{ (} \lor x = \frac{3}{2}\pi\text{)}$ $\sin(x) = -\frac{1}{2} \text{ als } x = \frac{7}{6}\pi \lor x = \frac{11}{6}\pi$ $\text{Dus } x_B = \frac{7}{6}\pi \text{ en } x_C = \frac{11}{6}\pi$	1
	Dus $x_B = \frac{7}{6}\pi$ en $x_C = \frac{11}{6}\pi$	1
	Manier 2: De vergelijking $f(x) = g(x)$ herleiden tot $cos(x) = 2 cos(x) sin(x) + 2 cos(x)$	1
	cos(x) = 2 cos(x) sin(x) + 2 cos(x) herleiden tot $-cos(x) = sin(2x)$	1
	$-\cos(x) = \sin(2x)$ herleiden tot de vorm $\cos(A) = \cos(B)$ of $\sin(A) = \sin(B)$ bijvoorbeeld:	
	$\cos(x - \pi) = \cos\left(\frac{1}{2}\pi - 2x\right)$	
	$\cos(x) = \cos\left(1\frac{1}{2}\pi - 2x\right)$	2
	$\sin\left(1\frac{1}{2}\pi - x\right) = \sin(2x)$	
	$\sin\left(\frac{1}{2}\pi - x\right) = \sin(2x - \pi)$	
	De oplossingen van deze vergelijking zijn:	1
	$x = \frac{1}{2}\pi \ \lor \ x = \frac{7}{6}\pi \ (\lor \ x = \frac{3}{2}\pi) \ \lor \ x = \frac{11}{6}\pi$ $Dus \ x_B = \frac{7}{6}\pi \ en \ x_C = \frac{11}{6}\pi$	'
	Dus $x_B = \frac{7}{6}\pi$ en $x_C = \frac{11}{6}\pi$	1
b.	Inzicht dat:	_
	$f'(x) = \frac{[\cos(x)]'(\sin(x) + 1) - [\sin(x) + 1]'\cos(x)}{(\sin(x) + 1)^2}$	1
	$\frac{(\sin(x)+1)^2}{-\sin(x)(\sin(x)+1)-\cos(x)\cos(x)}$	
	$f'(x) = \frac{\sin(x) (\sin(x) + 1)^2}{(\sin(x) + 1)^2}$	1
	$f'(x) = -\sin^2(x) - \sin(x) - \cos^2(x)$	1
	$f(x) = \frac{1}{(\sin(x) + 1)^2}$	<u> </u>
	Interit dat. $f'(x) = \frac{[\cos(x)]'(\sin(x) + 1) - [\sin(x) + 1]'\cos(x)}{(\sin(x) + 1)^2}$ $f'(x) = \frac{-\sin(x)(\sin(x) + 1) - \cos(x)\cos(x)}{(\sin(x) + 1)^2}$ $f'(x) = \frac{-\sin^2(x) - \sin(x) - \cos^2(x)}{(\sin(x) + 1)^2}$ $f'(x) = \frac{-\sin(x) - 1}{(\sin(x) + 1)^2}$	1
	$f'(x) = \frac{-(\sin(x) + 1)}{(\sin(x) + 1)^2} = \frac{-1}{(\sin(x) + 1)}$	1
	$f(x) = \frac{1}{(\sin(x) + 1)^2} = \frac{1}{(\sin(x) + 1)}$	1
C.	Middels een exacte berekening laten zien dat $f'\left(\frac{1}{2}\pi\right) = -\frac{1}{2}$	1
	De raaklijn aan de grafiek van f in A snijdt de y -as bij $y = \frac{\pi}{4}$ (dus $P\left(0, \frac{\pi}{4}\right)$)	1
	$AP = \sqrt{\left(\frac{\pi}{4}\right)^2 + \left(\frac{\pi}{2}\right)^2}$	1
	$\sqrt{\left(\frac{\pi}{4}\right)^2 + \left(\frac{\pi}{2}\right)^2} \text{ herleiden tot } \sqrt{\frac{5\pi^2}{16}} = \frac{\pi}{4}\sqrt{5}$	1

Opgave 6.

a.	Manier 1:	
	De snelheidsvector $\vec{v}(t)$ wordt gegeven door:	
	$\vec{v}(t) = \begin{pmatrix} 3t^2 - 3 \\ 4t \end{pmatrix}$	1
	\ /	4
	Punt P passeert punt $S(0,6)$ op tijdstippen $t = -\sqrt{3}$ en $t = \sqrt{3}$	1
	Punt P passeert punt $S(0,6)$ op tijdstippen $t=-\sqrt{3}$ en $t=\sqrt{3}$ $\vec{v}_1 \Big(-\sqrt{3}\Big) = \binom{6}{-4\sqrt{3}}$	1
	$\vec{v}_2(\sqrt{3}) = \binom{6}{4\sqrt{3}}$	'
	$\cos(\alpha) = \frac{\vec{v}_1 \cdot \vec{v}_2}{ \vec{v}_1 \cdot \vec{v}_2 } = \frac{-12}{84} \left(= -\frac{1}{7} \right)$	2
	De gevraagde hoek is gelijk aan $\cos^{-1}\left(-\frac{12}{84}\right) \approx 98,21^{\circ}$	1
	Manier 2:	
	$x'(t) = 3t^2 - 3$	1
	y'(t) = 4t	4
	Punt <i>P</i> passeert punt $S(0,6)$ op tijdstippen $t=-\sqrt{3}$ en $t=\sqrt{3}$	1
	$\frac{dy}{dx} = \frac{y'(\sqrt{3})}{x'(\sqrt{3})} = \frac{4\sqrt{3}}{6} \text{ (of 1,1547)}$	
	. (, -)	1
	$\frac{dy}{dx} = \frac{y'(-\sqrt{3})}{x'(-\sqrt{3})} = \frac{-4\sqrt{3}}{6} \text{ (of } -1,1547)$	
	$\tan^{-1}(\frac{4\sqrt{3}}{6}) = 49.1 \dots^{\circ}$	
) <u> </u>	2
	$\tan^{-1}(\frac{-4\sqrt{3}}{6}) = -49.1 \dots^{\circ}$	
	De gevraagde hoek is gelijk aan $49,1 (-49,1) \approx 98,21^\circ$	1
b.	De versnellingsvector $\vec{a}(t)$ wordt gegeven door:	
	$\vec{a}(t) = \binom{6t}{4}$	1
	Inzicht dat de vergelijking $\vec{v}(t) \cdot \vec{a}(t) = 0$ moet worden opgelost	1
	$\vec{v}(t) \cdot \vec{a}(t) = 18t^3 - 18t + 16t = 18t^3 - 2t$	1
	De vergelijking $\vec{v}(t) \cdot \vec{a}(t) = 0$ herleiden tot $t = 0 \lor t = -\frac{1}{3} \lor t = \frac{1}{3}$	2
	De gevraagde punten gelijk zijn aan $(0,0)$, $\left(\frac{26}{27},\frac{2}{9}\right)$ en $\left(-\frac{26}{27},\frac{2}{9}\right)$	2
C.	$x'(t) = 0$ geeft $t = -1 \lor t = 1$	1
	Inzicht dat de gevraagde afstand gegeven wordt door het verschil tussen de <i>x</i> -coördinaten van de raakpunten	1
	x(1) = -2 en x(-1) = 2	1
	De afstand tussen de twee verticale raaklijnen is gelijk aan 4	1