Computer Organization & Architecture Chapter 9 – Integer Division

Zhang Yang cszyang@scut.edu.cn Autumn 2021

Content of this lecture

- 9.6 Integer Division
 - Manual Division
 - □ Restoring Division
 - Non-Restoring Division
 - □ Summary

Manual Division (1)

Example

Manual Division (2)

Process Description

- The bits of the dividend are examined from left to right, until the set of bits examined represents a number greater than or equal to the divisor. Until this event occurs, 0s are placed in the quotient from left to right.
- If the event occurs, a 1 is placed in the quotient and the divisor is subtracted from the partial dividend.
- From this point on, the division follows a cyclic pattern. At each cycle, additional bits from the dividend are appended to the partial remainder until the result is greater than or equal to the divisor. The divisor is subtracted from this number to produce a new partial remainder.
- Continue until all the bits of the dividend are exhausted.

Content of this lecture

- 9.6 Integer Division
 - Manual Division
 - □ Restoring Division
 - Non-Restoring Division
 - □ Summary

Restoring Division (1)

Hardware

We assume that both the dividend and divisor are positive and hence the quotient and the remainder are positive or zero.

Figure 9.23 Circuit arrangement for binary division.

Restoring Division (2)

Example

	\mathbf{M}	
Initially	00011	
	$0\ 0\ 0\ 0\ 0$	1 0 0 0
	A	Q
Shift	00001	$0 0 \overline{0}$
Subtract	11101	
Set q_0	11110	First Cycle
Restore	00011	
	00001	0 0 0 0
	Shift Subtract Set q ₀	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Restoring Division (3)

Example (ctd.)

Shift	00010	000
Subtract	11101	
Set q_0	11111	Second Cycle
Restore	00011	
	00010	0000
Shift	00100	000
Subtract	11101	
Set q_0	00001	0 0 0 1 Third Cycle

Restoring Division (4)

Example (ctd.)

Content of this lecture

- 9.6 Integer Division
 - Manual Division
 - □ Restoring Division
 - Non-Restoring Division
 - □ Summary

Non-Restoring Division (1)

- Disadvantage of Restoring Division
 - Restoring the partial remainder increases the execution time of the division operation, since on average the restoring is executed in 50% of the cases.
- Non-Restoring Division
 - Avoid the need for restoring the partial remainder after an unsuccessful subtraction.

Non-Restoring Division (2)

- In restoring division
 - \Box (*i* 1) step, R_{i –1} (A= R_{i –1})
 - \square i step, $A = 2R_{i-1} M$
 - A > 0, $Q_0 = 1$, $R_i = A$
 - A < 0, $Q_0 = 0$, $R_i = A + M$
 - \Box (i + 1) step, A = 2R_i M
 - $R_i = A, A = 2Ri-M = 2A M$
 - $R_i = A + M$, A = 2Ri-M = 2(A + M) M = 2A + M

Non-Restoring Division (3)

Example

Non-Restoring Division (4)

Example (ctd.)

Non-Restoring Division (5)

Example (ctd.)

Add 11111 00011 00010 Remainder

Restoring Remainder

Non-Restoring Division (6)

Note

- There are no simple algorithms for directly performing division on signed operands that are comparable to the algorithms for signed multiplication.
- In division, the operands can be processed to transform them into positive values.
- After using one of the algorithms (restoring division or nonrestoring division), the results are transformed to the correct signed values, as necessary.

м

Summary

- 知识点 Integer Division
 - Restoring division
 - Nonrestoring division
- 掌握程度
 - □ 给定被除数和除数,使用不恢复余数除法计 算出商和余数。

Homework

- P377 9.1,
- P380 9.20
- P379 9.9 (a) (b)