1.5.4

Taraka Abhinav - EE25BTECH11016

September 18, 2025

Question

A circle has its center at (4,4). If one end of a diameter is (4,0), then find the coordinates of the other end.

Theoretical Solution

Let the position vectors for the center, the known end, and the unknown end of the diameter be \mathbf{C} , \mathbf{B} , and \mathbf{A} respectively. Let the coordinates of the unknown end \mathbf{A} be (a,b).

The given vectors are:

$$\mathbf{A} = \begin{pmatrix} a \\ b \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
 (1)

The center of the circle is the midpoint of the diameter. Therefore, the center vector is the average of the endpoint vectors.

$$\mathbf{C} = \frac{\mathbf{A} + \mathbf{B}}{2} \tag{2}$$

To find the unknown vector **A**, we rearrange the equation:

$$2\mathbf{C} = \mathbf{A} + \mathbf{B} \tag{3}$$

$$\mathbf{A} = 2\mathbf{C} - \mathbf{B} \tag{4}$$

Theoretical Solution

Substituting the given vector values:

$$\begin{pmatrix} a \\ b \end{pmatrix} = 2 \begin{pmatrix} 4 \\ 4 \end{pmatrix} - \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 8 \\ 8 \end{pmatrix} - \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
(5)

$$=\begin{pmatrix} 4\\8 \end{pmatrix} \tag{6}$$

 \therefore The other end of the diameter is (4,8).

C Code - Finding the other endpoint

Python + C Code

```
import ctypes
import numpy as np
import matplotlib.pyplot as plt
# Load shared library
lib = ctypes.CDLL("./libotherend.so")
# Define function prototype
lib.other_end.argtypes = [ctypes.c_double, ctypes.c_double,
                       ctvpes.c_double, ctypes.c_double,
                       ctypes.POINTER(ctypes.c_double),
                       ctypes.POINTER(ctypes.c_double)]
# Inputs
cx, cy = 4.0, 4.0 \# centre
x1, y1 = 4.0, 0.0 \# one endpoint
```

Python + C Code

```
# Prepare outputs
 x2_ptr = ctypes.c_double()
 y2_ptr = ctypes.c_double()
 # Call C function
 lib.other_end(cx, cy, x1, y1, ctypes.byref(x2_ptr), ctypes.byref(
     y2_ptr))
 # Extract other endpoint
 x2, y2 = x2_ptr.value, y2_ptr.value
 print("Other end of diameter:", (x2, y2))
 # Radius = distance from centre to endpoint
 r = np.sqrt((x1 - cx)**2 + (y1 - cy)**2)
 # Generate circle points
 theta = np.linspace(0, 2*np.pi, 500)
 x_{circle} = cx + r * np.cos(theta)
y_circle = cy + r * np.sin(theta)
```

Python + C Code

```
# Plot
plt.figure(figsize=(6,6))
 plt.plot(x_circle, y_circle, label="Circle")
 plt.scatter([x1, x2], [y1, y2], color="red", s=80, label="
     Endpoints")
plt.text(x1 + 0.2, y1 - 0.5, f''A({x1:.0f}, {y1:.0f})'')
 |plt.text(x2 + 0.2, y2 + 0.2, f"B({x2:.0f}, {y2:.0f})")
 plt.scatter(cx, cy, color="blue", marker="x", s=200, label="
     Centre")
plt.text(cx - 1.2, cy - 0.5, f"C((cx:.0f), (cy:.0f))")
plt.plot([x1, x2], [y1, y2], 'g--', label="Diameter")
 plt.axis("equal")
plt.legend()
 plt.title("Circle with Given Centre and Diameter")
plt.savefig("figs/Figure_1.png")
plt.show()
```

Python Code

```
import numpy as np
import matplotlib.pyplot as plt
# Inputs
cx, cy = 4.0, 4.0 \# centre
x1, y1 = 4.0, 0.0 \# one endpoint
# Other endpoint using symmetry
x2 = 2*cx - x1
y2 = 2*cy - y1
print("Other end of diameter:", (x2, y2))
# Radius = distance from centre to endpoint
r = np.sqrt((x1 - cx)**2 + (y1 - cy)**2)
```

Python Code

```
# Generate circle points
 theta = np.linspace(0, 2*np.pi, 500)
 x_{circle} = cx + r * np.cos(theta)
 y_{circle} = cy + r * np.sin(theta)
 # Plot
 plt.figure(figsize=(6,6))
 |plt.plot(x_circle, y_circle, label="Circle")
 plt.scatter([x1, x2], [y1, y2], color="red", s=80, label="
     Endpoints")
 plt.text(x1 + 0.2, y1 - 0.5, f''A(\{x1:.0f\}, \{y1:.0f\})'')
 |plt.text(x2 + 0.2, y2 + 0.2, f"B({x2:.0f}, {y2:.0f})")|
 plt.scatter(cx, cy, color="blue", marker="x", s=200, label="
     Centre")
plt.text(cx - 1.2, cy - 0.5, f"C({cx:.0f}, {cy:.0f})")
```

Python Code

```
plt.plot([x1, x2], [y1, y2], 'g--', label="Diameter")
plt.axis("equal")
plt.legend()
plt.title("Circle with Given Centre and Diameter")
plt.savefig("figs/Figure_1.png")
plt.show()
```

