

EXPERIMENT REPORT

Experiment Name	Linear Applications of Operational Amplifiers
Lab Assistant	Berat DOĞAN
Author of the Report (Name / No / Department)	Tuğrul YATAĞAN 040100117 Computer Engineering
Group Number and Experiment Date	D27 15.11.2013

Report Score	Deliver Date	Receive Date
	22.11.2013	

Aim of the Experiment

In this experiment session, we investigate basic understanding of operational amplifiers (op-amps) for performing linear applications such as inverting amplifiers, non-inverting amplifiers and some mathematical functions.

Exp #1 Inverting OP-AMP

We provide 2V peak to peak sinusoidal wave signal to input. R1 is $10k\ \Omega$ resistor and R2 is a $100k\ \Omega$ linear potentiometer. Since R2 is potentiometer, we can set various values for R2 and measure the peak to peak voltage of output signal from oscilloscope.

 $V_{in} = 2V (V_{pp})$

$\mathbf{R}_2(\Omega)$	Measured V _{out} (V _{pp})	Theoretical V _{out} (V _{pp})
100k	18.4 V	20 V
75k	14.4 V	15 V
50k	9.46 V	10 V
25k	2.54 V	5 V
10k	2 V	2 V

Theoretical V_{out} calculated from the voltage gain equation of the inverting amplifier circuit is:

$$\frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1}$$

As can be seen in simulation oscilloscope screen, input signal (yellow line) is amplified and inverted to output signal (blue line).

Exp #2 Non-Inverting OP-AMP

We provide 2V peak to peak sinusoidal wave signal to input like first experiment. R1 is $10k\ \Omega$ resistor and R2 is a $100k\ \Omega$ linear potentiometer. Since R2 is potentiometer, we can set various values for R2 and measure the peak to peak voltage of output signal from oscilloscope.

$$V_{in} = 2V (V_{pp})$$

$\mathbf{R}_2(\Omega)$	Measured V _{out} (V _{pp})	Theoretical V _{out} (V _{pp})
100k	20.2 V	22 V
75k	16.6 V	17 V
50k	11.9 V	12 V
25k	6.91 V	7 V
10k	3.95 V	4 V

Theoretical V_{out} calculated from the voltage gain equation of the non-inverting amplifier circuit is:

$$\frac{V_{out}}{V_{in}} = 1 + \frac{R_2}{R_1}$$

As can be seen in simulation oscilloscope screen, input signal (yellow line) is amplified and to output signal (blue line).

Exp #3 Summing Amplifier

We provide 5V DC signal as V_1 and 6V peak to peak sinusoidal wave signal as V_2 to input. R1 is $8.2k\Omega$ resistor, R2 is $2.7k\Omega$ resistor and R3 is $8.2k\Omega$ resistor for adjusting a=1 and b=3 in output equation;

$$V_0 = -(aV_1 + bV_2)$$
 so;

$$V_o = -(V_1 + 3V_2)$$

Which is actually; the voltage gain equation of the summing amplifier:

$$V_o = -\left(\frac{R_3}{R_1}V_1 + \frac{R_3}{R_2}V_2\right)$$

Then we measure the peak to peak voltage of output signal from oscilloscope.

As can be seen in simulation oscilloscope screen; input signal 5V DC as V_1 (yellow line), input signal 6V sinusoidal as V_2 (blue line), ground (green line) and the output signal (purple line). Output is like inverted and amplified sinusoidal wave with 5V offset bellow the ground.

Exp #4 OP-AMP Integrator

We provide 5V peak to peak square wave signal as V_{in} , R1 is $10k\Omega$ resistor, R2 is $100k\Omega$ resistor and R_{eq} is $10k\Omega$ resistor for adjusting voltage equation of the op-amp integrator.

$$V_o = -\frac{1}{RC} \int V_1 dt + V_{o(t=0)}$$

As can be seen in simulation oscilloscope screen; input signal 5V square wave as V_{in} (yellow line) and the output signal (blue line). Output is integral form of input signal, so integral form of square wave signal is rectangle wave signal.