Autocorrelation

Example, AR (1):

$$W = \frac{1}{1 - g^2} \cdot \begin{bmatrix} g^2 & g^4 & \dots & g^{T-1} \\ g^1 & g^2 & \dots & g^{T-2} \\ g^2 & g^4 & \dots & g^{T-3} \\ \vdots & \vdots & \ddots & \vdots \\ g^{T-1} & g^{T-2} & \dots & g^2 \end{bmatrix}$$

g-coefficient of first-order autocorrelation

Slide 45:

$$Var - Cov(b) = (X^TX)^{-1}X^T\delta^2 I X (X^TX)^{-1} = \delta^2 \cdot (X^TX)^{-1} X^TX (X^TX)^{-1} = \delta^2 \cdot (X^TX)^{-1} X^TX (X^TX)^{-1}$$

Slides 45-46:
Least squares estimator:
1) Estimator of the regression coefficients Bj.
$b = (X^T X)^{-1} X^T Y$
2) Estimator of the variance of stoch. var. u:
$S_{e}^{z} = \frac{RSS}{n-k}$
(3.) Estimator of the variance-covariance matrix of regression coefficient estimates.
$Var-cov(b) = Se^{2} \cdot (XTX)^{-1} X$

Slide 52:
Our assumption: un independence identical distribution
independence identical distribution
HAC: hetero scedasticity and autocorrelation consistent (estimator of variance).
Slides 53-55:
Example, variables:
· hm1: harmonized money aggrégate M1; · ppr: income of households;
· hm1: harmonized money aggregate M1; · ppr: income of households; · rvp: interest rate on demand deposits; · rvv: interest rate on short term deposits; · czp: consumer price index.

Regression models with dummy
Regression models with dummy explanatory variables
Dummy trap:
gender D ₁ D ₂ M 1 0 F 0 1 Slide 2.
F 0 1 Slide 2.
$\mathcal{D}_{1i} + \mathcal{D}_{2i} = 1 + \forall i$
One can write: Di=1-Dzi or Dzi=1-Dii, resulting in perfect multicollinearity.
Types of regression models with dumny explanatory variables
A · y - gross wage · gender (male, female): D = { 0; female 1; male
B · y - gross wage · education (dementary school, college, university):
$D_1 = \{0, \text{ other } D_2 = \{0, \text{ other } 1, \text{ college } 1, \text{ university } \}$

()	• V - Saninas
	· y-savings · gender (male, female):
	D= { 0; female 1; male
	· labour force participation (employed, unemployed):
	Dz= { 0; unemployed
	· y-gross wage · gender (male, female): D = { 0; female 1; male
	· X3 - years of employment
E	· y - gross wage · education (elementary school, college, university):
	$D_1 = \{0, \text{ other } D_2 = \{0, \text{ other } 1, \text{ college } 1, \text{ university } 1\}$
	· Xy-years of employment

(F) · y - savings
· gender (male, female):
D= { 0; female
(1; male
· marital status (single, married):
Dz= { 0; single 1; married
· X4 - years of employment