

Current Pivision

Exercises 03

Series and parallel equivalences Voltage and current division

- Which elements are connected in series? R4
- Which elements are connected in parallel? R. R.

Exercise 2 - Voltage division

$$V_{i} = \frac{R_{i}}{R_{i} + R_{2}} V$$

$$V_{2} = \frac{R_{2}}{R_{1} + R_{2}} V$$

- Determine v_1 and v_2 as a function of v and the resistances.
- The voltage divided over the resistors. Which resistor exhibits the highest voltage knowing that $R_1 > R_2$?

Circuits

Current Division

unknown vi 12

$$\frac{1}{2} \sum_{i=1}^{N} \frac{1}{2} \frac{1}{2}$$

$$=\frac{\tilde{V}\frac{R_1R_2}{R_1+R_2}}{R_1}=\frac{\tilde{V}\frac{R_2}{R_1+R_2}}{R_1+R_2}$$

V RI+K2 (when there's only town parallel resistors).

M-Rarallel Resistors

$$\frac{1}{2^{k}} = \frac{1}{2^{k}} =$$

$$\frac{1}{2} \frac{1}{2} \frac{1}{2} + \dots + \frac{1}{2} \frac{1}{2$$

Sometime
Current Di vision
Simplify the
analysis.

2402 6052

 $\frac{260}{300} = \hat{\gamma}_3 = 40 \text{ mA}$

3= 12 × 3W

72 = 71 · BV = 2 = 50 m/t

VI= 120 m A. 1360 = 100 mA

not 25 s but 150s

H's current Division.

Exercise 3 -Current division

- Determine i_1 and i_2 as a function of i and the resistances.
- The current divided over the resistors. Which resistor exhibits the highest current knowing that

VI. KI = V2 R2 R17/2 => V16/12 71472

Current and voltage division - Resistor equivalence Exercise 4 -

• Determine values for
$$i_1$$
, i_2 and i_3 . Give the equivalent circuit farzeach case.

So $i_3 = \frac{4}{12}$ $i_2 = \frac{7}{3}$
 $4 + f$
 $4 \times f$
 $= \frac{3}{5}$ Ω
 $4 + f$
 $= \frac{3}{5}$ Ω
 $5 + f$
 $6 \times f$
 $7 \times f$

Circuits

Page 2 of 2