

Chap. 10 Other Models of Turing Machines

Agenda of Chapter 10

- Minor variations on the Turing machine theme
 - Turing machines with a Stay-option

 - Turing machines with multiple tracks
 Turing machines with semi-infinite tape
 The off-line Turing machine
- Turing machines with more complex storage

 - Multitape Turing machinesMultidimensional Turing machines
- Nondeterministic Turing machines
- □ A Universal Turing machine

F: Oxt -> Oxtxyr'be

Turing Machine with minor variations (1/3)

- Turing Machine with a stay-option
 - $-\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$
 - simulation with standard TM

$$\delta(q_i,a) = (q_j, b, S) \Leftrightarrow \underline{\delta(q_i,a) = (q_{js}, b, R)}, \, \underline{\delta(q_{js},c) = (q_j, c, L)} \text{ for all } c$$

Turing Machine with multiple tracks

String on three tracks can be considered as a symbol

Turing Machine with minor variations (2/3)

- Turing machine with semi-infinite tape
 - Tape is unbounded only in one direction
 - Semi-infinite tape with 2-tracks can simulate Standard TM.

Simulation of STM using semi-STM

Turing Machine with minor variations (3/3)

- Off-line Turing machine
 - Turing machine with input file

8(Q1, C, f.) = (Q1, Z, L)

Standard TM with 4 tracks can simulate off-line TM.

Operations:

一种是 新子 产地的

- Find 1 on track 2
- Read input symbol, save state, change symbols on track 2 - input & the input 34
- Find 1 on track 4 tope had \$
- Read tape symbol, change state, and change symbols on track 3 & 4.

Multitape Turing Machine

- n-tape Turing machine
 - δ : Q x Γⁿ → Q x Γⁿ x {L, R}ⁿ

Standard TM with 2n tracks can simulate n-tape TM.

	950VE JUSTE					
						2
track1	a	b	ç	d		tape
track2	0	\mathbf{H}	0	0		POC
track3	е	f	(g)	h		10M2
track4	0	0	1	0		head.

Operations:

- Find 1 on track 2
- Read tape 1 symbol, save the state, and
 - change symbol on track 1 & 2
- Find 1 on track 4
- Read tape 2 symbol, change state, and change symbols on track 3 & 4.

Multidimensional Turing Machine

2-dimensional Turing machine

Standard TM with 2 tracks can simulate 2-dimensional TM.

Operations:

- Read symbol on track 1.
- Change tape symbol on track 1 and internal state.
- Move head to next position using information on track 2.

Nondeterministic Turing Machines TAJSTRO TRO

- Nondeterministic Turing machine () MAN 4 SEPTING TO THE PROPERTY OF THE PROPE
 - $-\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times \{L, R\}}$
 - Ex) $\delta(q_0,a) = \{(q_1,b,R), (q_2,c,R)\}$
 - Simulation using standard TM
 - Trace the movement using instantaneous descriptions
 - Use symbol X to delimit the area of interest
 - Use symbol + to separate individual instantaneous descriptions

My

Universal Turing Machine (1/2)

- Turing machine vs. Digital computer
 - Special purpose vs. general purpose.

- A universal Turing machine M.
 - input: a description of any Turing Machine M and a string w
 - Simulate the computation of M on w 1010 11010
- Description of Turing machines.
 - Assumption

Q=
$$\{q_1,q_2,...,q_n\}$$
, q_1 =initial state, F= $\{q_2\}$, Γ = $\{a_1,a_2,...,a_m\}$, a_1 = \square

Encoding

Universal Turing Machine (2/2)

- A universal Turing Machine M_u simulating an M with input w
 - Consider M_u with three tapes.
 - Operations of M_u
 - 1. Look at tapes 2 & 3.
 - 2. Consults tape 1)to see what M would do.

