

CDELT 2.0

INF728 Projet Bigdata 2020-2021

Etudier l'évolution de la pandemie COVID19 via son impact media

Choix d'une infrastructure de stockage et analyse

Encadré par :

- M. ARION Andrei

Présenté par :

- BENALI Amal
- BINUANI Nicolas
- JAIT Fatima-Ezzahra
- JIA Delin
- TANKIPINOU Celia

PLAN:

- 1. Présentation et choix de l'architecture
- 2. Modélisation des données et requêtage
- 3.Budget
- 4. Performances, limites et amélioration
- 5.Demo

I. ARCHITECTURE

-IDÉE PRINCIPALE :

Vision métier de la DATA et leurs applications

-Développement :

Ce qui a été réalisé VS points bloquants

-Améliorations:

Ce qui pourrait être implémenté ...

DATA engineer

NSIBLE

Yml files = fichiers de configuration des clusters spark / db (via docker)

Data Lake - S3 Bucket

Local

Zip files:

- -simple
- -translations

Cluster SPARK - TRAITEMENT + IA

Master

Slave

Slave

Prétraitement

- ZipToCsv
 - o Event
 - O Gkg
 - mentions

Traitement

Dataframe (agreg / filter ...)

Cluster DB -

Stockage des tables BU

table associée à sa BU

BI DataViz

- APIs

Gateway

API

• Choix d'architecture :

Les avantages :

- Facilité d'emploi tout en réduisant le Coût Stockage des données hautement disponible et durable
- Exécution de requêtes sur place

Les avantages :

- Coûts avantageux
- Fiabilité: EMR est optimisé pour le cloud et surveille en permanence le cluster.
- Flexibilité : contrôle total sur votre cluster avec un accès racine à chaque instance.
- Simplicité d'utilisation: il s'occupe du provisionnement, de la configuration et de l'optimisation des clusters
- Facilité d'exploitation de l'infrastructure SPARK sur amazone EMR

Les avantages :

- Haute disponibilité
- Open Source
- Tolérance aux pannes (grâce aux mécanismes de réplication de données)
- Meilleure scalabilité sur données formatées
- Scalabilité linéaire (fonction nombre node)

II. Modélisation des données

Type de données: GKG, EVENTS, MENTIONS

Relation entre les données:

Data-Preprocessing:

Requête:

III. Budget

S3:

 S3 Standard: First 50 TB / Month: \$0.023 per GB

EMR:

 m5.xlarge: vCPU 4, Mémoire 16 Gio, 0,192 USD par heure

EC2:

- t2.micro: vCPU 1, Mémoire 1 Gio, 0,0116
 USD par heure
- m5.xlarge: vCPU 4, Mémoire 16 Gio, 0,192 USD par heure

Problème rencontré: nombreux problèmes de connection failed et timeOut à cause de faible capacité de t2.micro

IV.Performance, limites et améliorations:

Performance:

- ♦ Volumétrie pour un an : 500Go
- Résilience en panne :
- mise en panne d'un nœud n'a aucun effet sur le fonctionnement du cluster
- stockage durable

Limites/Améliorations:

- **♦** La perte de temps vu la configuration manuelle d'EC2
- ♦ problème de l'authentification au niveau d'EC2
- **♦** Taille de Données
- Connecter Zeppelin avec EC2 afin de visualiser les résultats
- **❖** Securité: VPC cloud amazon

V. Démonstration

