Tareas de primer parcial-Topología

Alumnos:

Arturo Rodriguez Contreras - 2132880 Jonathan Raymundo Torres Cardenas - 1949731 Praxedis Jimenes Ruvalcaba Erick Román Montemayor Treviño - 1957959 Alexis Noe Mora Leyva Everardo Flores Rivera - 2127301

3 de marzo de 2025

1 ¿Es la unión de topologías una topología?

Sea $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$, $\tau_2 = \{\emptyset, X, \{b\}\}$ se tiene que τ_1 es topología ya que contiene al conjunto vacio, X, contiene las uniones arbitrarias $\{a\} \cup X = X \in \tau_1$, y tambien $\{a\} \cup \emptyset = \{a\} \in \tau_1$ y $\emptyset \cup X = X \in \tau_1$ y contiene a las intersecciones finitas de sus elementos, de igual forma se sigue que τ_2 es topología de X. La union de las dos topologías es $U = \tau_1 \cup \tau_2 = \{\emptyset, X, \{a\}, \{b\}\}$ lo cual no es topología, ya que $\{a\} \cup \{b\} = \{a, b\} \notin U$, por lo tanto, no necesariamente la unión de topologías es una topología.

2 Demostrar que $\tau_{\mathbb{N}}$ es topologia.

Se tiene por definicion que $\{\emptyset, X\} \subset \tau_{\mathbb{N}}$. Ahora, sea $\{U_a\}_{a \in J}$ una coleccion de elementos en $\tau_{\mathbb{N}}$, y $U = \bigcup_{a \in J} U_a$. Queremos ver que $U \in \tau_{\mathbb{N}}$, para esto observemos que $X - U = (\bigcup_{a \in J} U_a)^c$ por leyes de De Morgan es igual a $\bigcap_{a \in J} U_a^c$, sabemos por teorema que la intersección arbitraria de conjuntos contables es tambien contable, entonces $\bigcap_{a \in J} U_a^c \in \tau_{\mathbb{N}}$.

Luego, tomemos $\{U_a\}_{a\in J}$ una colección finita de elementos en $\tau_{\mathbb{N}}$, y sea $U=\bigcap_{a\in J}U_a$ entonces tenemos $X-U=(\bigcap_{a\in J}U_a)^c$ por leyes de DeMorgan es igual a $\bigcup_{a\in J}U_a^c$ y por teorema la union finita de conjuntos contables es tambien contable. Entonces X-U es contable, por lo cual se tiene que $U\in\tau_{\mathbb{N}}$

entonces $\tau_{\mathbb{N}}$ esta cerrado por intersección finita, como consequente es una topología.

3 Verificar si τ_{∞} es topologia.

Sea $X = \mathbb{R}$, sea $U_1 = (-\infty, 0), U_2 = (0, \infty)$, claramente $U_1, U_2 \in \tau_{\mathbb{N}}$, pero $U = U_1 \cup U_2 = (\infty, 0) \cup (0, \infty) \notin \tau_{\infty}$ ya que $\mathbb{R} - U = \{0\}$ no es infinito. Por lo tanto no cumple el axioma de uniones arbitrarias de topología.

 $\therefore \tau_{\infty}$ no es topología.

 $\begin{array}{l} \textbf{4} \quad Demostrar \ que \ (0,1) = \bigcup\limits_{n \in \mathbb{N} - \{1\}} [\frac{1}{n},1). \\ \text{Veamos que } (0,1) \subset \bigcup\limits_{n \in \mathbb{N} - \{1\}} [\frac{1}{n},1). \end{array}$

Sea $x \in (0,1)$, esto es 0 < x < 1, por propiedad arquimediana existe $N \in$ $\mathbb{N} \ t.q \ \forall n \geq N \ 0 < \frac{1}{n} \leqslant x < 1 \ \text{entonces} \ x \in \left[\frac{1}{n}, 1\right) \ \text{entonces} \ x \in \bigcup_{n \in \mathbb{N} - \{1\}} \left[\frac{1}{n}, 1\right)$

Por tanto $(0,1) \subset \bigcup_{n \in \mathbb{N} - \{1\}} \left[\frac{1}{n}, 1\right)$

Ahora veamos la otra contención.

Sea $x \in \bigcup_{n \in \mathbb{N} - \{1\}} \left[\frac{1}{n}, 1\right)$, entonces $0 < \frac{1}{n_0} \le x < 1$ para algun $n_0 \in \mathbb{N} - \{1\}$

 $x \in (0,1)$

Por tanto $(0,1) \supset \bigcup_{n \in \mathbb{N} - \{1\}} \left[\frac{1}{n}, 1\right)$

Esto demuestra la igualdad de los conjuntos.

Verificar que β_K satisface el teorema de creación de topologías.

Demostraremos que para todo par B_1 y B_2 de basicos, existe un basico B_3 con $B_3 \in B_1 \cap B_2$, esto lo dividiremos en tres casos.

Caso 1: $B_1 = (a, b)$ y $B_2 = (c, d)$.

Los básicos son iguales a los de la topología euclidiana, para la cual sabemos que cumple el teorema de creación de topologías.

Caso 2: $B_1 = (a, b)$ y $B_2 = (c, d) - k$.

Notemos que $B_2 = B_e - K$ con $B_e = (c, d)$, es decir un básico de la topología euclidiana. Vemos que $B_1 \cap (B_e - k) = (B_1 \cap B_e) - k$ y sabemos que si $x \in B_1 \cap B_2$, entonces $x \in B_1 \cap B_e$ y $x \notin K$. Pero como B_1 y B_e son básicos

de la topología euclidiana, existe un $x \in B_{\alpha} \subset (B_1 \cap B_e)$ tal que B_{α} es basico de la topología euclidiana. Luego $x \in B_{\alpha} - K \subset B_1 \cap B_2$.

Caso 3: $B_1 = (a, b) - k$ y $B_2 = (c, d) - k$.

Notemos que $((a,b)-k)\cap ((c,d)-k)=((a,b)\cap (c,d))-k$, por lo que obtendríamos un caso análogo al anterior.

Como se cumple con el teorema de creación de topologías para todo caso, β_K es una topología.

- **6** Verificar que $B_S = \{(a, b] : a < b\}$ es base de algunas topologias
- 7 Verificar las comparaciones entre τ_S , τ_L y entre τ_S , τ_K Consideraremos $B_S = \{(a, b] : a < b\}$ como la base la de la topología del límite superior (τ_S) , $B_L = \{[a, b) : a < b\}$ como la base de la topología del límite inferior (τ_L) , $B_k = \{(a, b) : a < b\} \bigcup \{(a, b) - k : a < b, k = \frac{1}{n}, n \in \mathbb{N}\}$
- 1. Verificamos las comparaciones entre τ_S y τ_L

Tomemos $(0,1] \in B_S$ y x=1 tal que $x \in (0,1]$. Considere $[a,b) \in B_L$ tal que $x \in [a,b)$. Entonces $a \le x < b$ pero como x=1 < b entonces $b \notin (0,1]$, $[a,b) \not\subset (0,1]$

...Por teorema de comparación $\tau_S \not\subset \tau_L$

Tomemos $[0,1) \in B_L$ y x=0 tal que $x \in [0,1)$. Considere $(a,b] \in B_S$ tal que $x \in (a,b]$. Entonces $a < x \le b$ pero como a < x = 0 entonces $a \notin [0,1)$, $(a,b] \not\subset [0,1)$

 \therefore Por teorema de comparación $\tau_L \not\subset \tau_S$

 $\therefore \tau_S \ y \ \tau_L \ \text{no son comparables}.$

2. Verificamos ahora la comparación entre τ_S y τ_K

Sea $(0,1] \in B_S$ y x = 1 tal que $x \in (0,1]$. Considere $(a,b) \in B_K$ tal que $x \in (a,b) \iff a < 1 < b$, entonces $b \notin (0,1]$, $(a,b) \not\subset (0,1]$

...Por teorema de comparación $\tau_S \not\subset \tau_K$

Caso 1: básicos de la forma (a,b) Sea $(a,b) \in B_k$ y $x \in (a,b)$. Considere $x \in (a,x] \in B_S$. Sean $y \in (a,x] \iff a < y \le x$ y como $x \in (a,b) \iff a < x < b, a < y < b$, es decir $y \in (a,b), y \in (a,x] \subset (a,b)$

.:.Por teorema de comparación se cumple para el primer caso

Caso 2: Básicos de la forma (a, b) - k

Sea $(a,b) - l \in B_K$ y $x \in (a,b) - k$. Considere $a,x] \in B_S$, si $a < \frac{1}{n}$ para algún $n \in \mathbb{N}$ entonces existe $q_i \in k$, tal que $a < q_i < x, i \in \{0,1,2,...\}$, en-

tonces tomamos $q = max\{q_0, q_1, q_2, ...\}$, así describiendo $(q, x] \in B_S$, y como a < q < x < b, entonces, $(q, x] \subset (a, b) - k$

- ...Por teorema de comparación se cumple para este segundo caso también, por lo que $\tau_K \subset \tau_S$
- ∴La topología del límite superior es más fina que la k-topología.

8 Demostrar si $\tau_{\mathbb{R}^2} = \tau_{\mathbb{R} \times \mathbb{R}}$

Primero vemos que $\tau_{\mathbb{R}\times\mathbb{R}}$ es más fina que $\tau_{\mathbb{R}^2}$. Sea $y\in(x,\epsilon)$ donde x denota el centro y el espilón el radio de la bola. Este es un básico en la topología $\tau_{\mathbb{R}^2}$ y al ser topología, podemos hallar un básico $(y,\delta)\subset(x,\epsilon)$ con claramente $\delta<\epsilon$.

Si quisieramos inscribir un rectángulo, consideraríamos a δ como la diagonal mayor, entonces, $\delta = \frac{\sqrt{a^2 + a^2}}{2}$, siendo a los lados de nuestro cuadrado. Despejando obtendríamos la expresión $\sqrt{2}\delta = a$. Considerando a $a < \sqrt{2}\delta$, obtendríamos el cuadrado $(y - a, y + a)x(y - a, y + a) \subset (y, \delta) \subset (x, \epsilon)$. por transtitivadad de contenciones obtendríamos:

$$y \in (y - a, y + a) \mathbf{x} (y - a, y + a) \subset (x, \epsilon)$$

$$\therefore \tau_{\mathbb{R}^2} \subset \tau_{\mathbb{R} \times \mathbb{R}}$$

Ahora verificamos la otra contención.

Sea $x \in (a, b) \mathbf{x}(c, d) : a < byc < d$,

tomamos $\delta = min\{(x,(a,b)),(x,(c,d)),(x,(a,c)),(x,(b,d))\}$, entonces, La bola $(x,\frac{\delta}{2})\subset (a,b)\mathbf{x}(c,d)$, donde $x\in(x,\frac{\delta}{2})$

- $\therefore \tau_{\mathbb{R} \times \mathbb{R}} \subset \tau_{\mathbb{R}^2}$
- \therefore como se cumplen ambas contenciones; $\tau_{\mathbb{R}\times\mathbb{R}} = \tau_{\mathbb{R}^2}$
- 9 Terminar paso inductivo del teorema de las proyecciones
- **10** Demuestra que $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$. Veamos que $(A \times B) \cap (C \times D) \subset (A \cap C) \times (B \cap D)$.

Sea $(x,y) \in (A \times B) \cap (C \times D)$. Por definición de intersección $(x,y) \in A \times B$ y $(x,y) \in C \times D$. Además, por definición de producto cruz $x \in A$ y $y \in B$, $x \in C$ y $y \in D$. Reescribiendo obtenemos $x \in A$ y $x \in C$, $y \in B$ y $y \in D$ i.e. $(x,y) \in (A \cap C) \times (B \cap D)$.

Ahora veamos la otra contención.

De forma análoga, sea $(x,y) \in (A \cap C) \times (B \times D)$ luego $x \in A$ y $y \in B$, $x \in C$ y $y \in D$ y $(x,y) \in (A \times B) \cap (C \times D)$.

Esto demuestra la igualdad de los conjuntos.

- 11 Verificar que la topologia del orden $\tau(\beta_O)$ es topología.
- 12 Verificar si en \mathbb{N} , $\tau_O = \tau_d$.

Veamos que las topologías coinciden.

Sea $U \in \tau_O$, observe que $U = \bigcup_{x \in U} \{x\}$ es una unión de básicos de τ_d *i.e.* $\tau_O \subset \tau_d$.

De forma análoga, sea $U \in \tau_d$, y $I_x = (x-1,x+1)$ si $x \neq 1$, $I_1 = [1,2)$. Note que $U = \bigcup_{x \in U} I_x$ es una unión de basicos de τ_O y por tanto $\tau_d \subset \tau_O$. Esto demuestra que, en \mathbb{N} , $\tau_O = \tau_d$.

- 13 Verificar que el orden lexicografico genera un orden en \mathbb{R} .
- 14 Verificar las comparaciones entre τ_O y $\tau_{d\times d}$ en \mathbb{R}
- **15** Demuestre que $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.

Sabemos que $A \subset \overline{A}$ y $B \subset \overline{B}$. Luego $A \cap B \subset \overline{A} \cap \overline{B}$. La cerradura de un conjunto es siempre cerrado y la intersección de cerrados es cerrada, por lo que $A \cap B$ está contenido en un cerrado y la cerradura es el cerrado más pequeño que contiene al conjunto. Por lo tanto $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.

16 Verificar si $\overline{\bigcup_{\alpha \in J} A_{\alpha}} = \bigcup_{\alpha \in J} \overline{A_{\alpha}}$

El resultado es en general falso. Sea $X=\mathbb{R}$ y $A_n=[1/n,1)$. Luego $[0,1]=\bigcup_{\alpha\in J}A_\alpha\neq\bigcup_{\alpha\in J}\overline{A_\alpha}=(0,1]$.

17 Verificar si $X - \overline{A} = \overline{X - A}$

El resultado es en general, falso. Se
a $X=\mathbb{R}$ y $A=\{0\}$ bajo la topología usual. Luego
 $\mathbb{R}-\{0\}=X-\overline{A}\neq\overline{X-A}=\mathbb{R}$

18 Considere $([0,1])^2$ bajo $\tau_{\mathbb{R}_L \times \mathbb{R}_S}$ hallar $Int([0,1]^2)$

Podemos deducir que los básicos de $\tau_{\mathbb{R}_L \times \mathbb{R}_S}$ son de la forma $[a, b) \times (c, d]$, por lo cual el abierto más grande que está en $Int([0, 1]^2)$ es $[0, 1) \times (0, 1]$

19 Verificar si $Int(A \cap B) = Int(A) \cap Int(B)$

Es un hecho conocido que $\operatorname{Int}(A) = \overline{A^c}^c$ y que $\overline{A \cup B} = \overline{AB}$. Aplicando estas propiedades tenemos que

$$\operatorname{Int}(A \cap B) = \overline{(A \cap B)^c}^c$$

$$= (\overline{A^c \cup B^c})^c$$

$$= (\overline{A^c} \cup \overline{B^c})^c$$

$$= \overline{A^c}^c \cap \overline{B^c}^c$$

$$= \operatorname{Int}(A) \cap \operatorname{Int}(B).$$

20 Verificar que si D_1, D_2 son densos y abiertos en X, entonces $D_1 \cap D_2$ es denso en X

Sea U un abierto arbitrario de X, tenemos que por asociatividad de la intersección $U \cap (D_1 \cap D_2) = (U \cap D_1) \cap D_2$, y $(U \cap D_1)$ es abierto por la segunda axioma de topología. Ahora bien, tenemos que la intersección de cualquier abierto con D_2 es no vacio ya que D_2 es denso, entonces $(U \cap D_1) \cap D_2 \neq \emptyset$. Juntando todo lo que tenemos, $U \cap (D_1 \cap D_2) = (U \cap D_1) \cap D_2 \neq \emptyset$, por teorema se tiene que $D_1 \cap D_2$ es denso.

21 Verificar la convergencia de $\left\{\frac{1}{n}\right\}$ donde $n \in N$, bajo la topología del límite superior

Sea la sucesión $\left\{\frac{1}{n}\right\}$, donde n pertenece a los naturales. Bajo la topología del límite superior, la convergencia se verifica observando que la sucesión tiende a 0 cuando $n \to \infty$. Para cualquier $\epsilon > 0$, existe un N tal que para todo n > N, $\frac{1}{n} < \epsilon$, lo cual demuestra que la sucesión converge a 0 bajo esta topología.

Por lo tanto $\left\{\frac{1}{n}\right\}$ converge a 0 bajo la topología del límite superior

22 Verificar si τ_{∞} es Hausdorff.

Sean $x,y\in X$ dos puntos distintos, consideremos los conjuntos abiertos $U=X-\{y\}$ y $V=X-\{x\}$, abiertos en τ_{∞} vemos $U\cap V=X-\{x,y\}$, que no es vacío

Se obiene que $x \in U$ y $x \in U$, esto implica que la intersección U y V no es vacía, lo que significa que no podemos separar los puntos x y y por conjuntos abiertos disjuntos, por lo tanto τ_{∞} no es Hausdorff.

23 Demostrar que $\overline{A \times B} = \overline{A} \times \overline{B}$.

Demostramos que $\overline{A \times B} \subseteq \overline{A} \times \overline{B}$. Sea $(x,y) \in \overline{A \times B}$. Esto significa que para toda vecindad $U \times V$ de (x,y), se tiene que:

$$(U \times V) \cap (A \times B) \neq \emptyset.$$

Dado que la intersección del producto es el producto de las intersecciones:

$$(U \times V) \cap (A \times B) = (U \cap A) \times (V \cap B) \neq \emptyset,$$

se sigue que $U \cap A \neq \emptyset$ y $V \cap B \neq \emptyset$. Por lo tanto, $x \in \overline{A}$ y $y \in \overline{B}$, lo que implica que $(x,y) \in \overline{A} \times \overline{B}$. Así, obtenemos la inclusión deseada.

Demostramos que $\overline{A} \times \overline{B} \subseteq \overline{A \times B}$

Sea $(x,y) \in \overline{A} \times \overline{B}$, es decir, $x \in \overline{A}$ y $y \in \overline{B}$. Esto significa que:

$$\forall$$
 vecindad U de x , $U \cap A \neq \emptyset$,

$$\forall$$
 vecindad V de y , $V \cap B \neq \emptyset$.

Tomando cualquier vecindad $U \times V$ de (x, y), se tiene que:

$$(U \cap A) \times (V \cap B) \neq \emptyset.$$

Es decir,

$$(U \times V) \cap (A \times B) \neq \emptyset.$$

Dado que esto es cierto para toda vecindad $(U \times V)$ de (x, y), se concluye que $(x, y) \in \overline{A \times B}$. Así, obtenemos la segunda inclusión.

Como hemos demostrado ambas inclusiones, concluimos que:

$$\overline{A \times B} = \overline{A} \times \overline{B}.$$

- **24** Demostrar que τ_Y es la topología del subespacio de X.
- 1. \emptyset y Y están en τ_Y se sabe que $\emptyset \in \tau_X$ y $X \in \tau_X$ entonces $\emptyset \cap Y = \emptyset$ y $X \cap Y = Y$ están en τ_Y , por lo tanto $\emptyset, Y \in \tau_Y$.
- 2. Cerradura de uniones: Sea $\{U_i\}_{i\in I}$ una colección de conjuntos de τ_Y se quiere demostrar que la unión de la colección $\bigcup_{i\in I} U_i$, está en τ_Y , se tiene que

$$\bigcup_{i \in I} U_i = \bigcup_{i \in I} (V_i \cap Y) = \left(\bigcup_{i \in I} V_i\right) \cap Y.$$

entonces la unión de cualquier colección de conjuntos de τ_Y pertenece a τ_Y . 3. Cerradura bajo intersecciones: sea $\{U_1, U_2, \dots, U_n\}$, es decir, $U_i = V_i \cap Y$ para algún $V_i \in \tau_X$ y para cada i. Por conjuntos se tiene que

$$\bigcap_{i=1}^{n} U_i = \bigcap_{i=1}^{n} (V_i \cap Y) = \left(\bigcap_{i=1}^{n} V_i\right) \cap Y.$$

por lo tanto, la intersección de cualquier colección finita de conjuntos de τ_Y pertenece a τ_Y , concluimos que τ_Y es una topología sobre Y.

25 Demostrar que U es abierto en X si y solo si

$$\overline{U \cap \overline{A}} = \overline{U \cap A}.$$

para toda $A \subseteq X$.