Элементы теории чисел

grznych

14 декабря 2019 г.

Содержание

1	Осн	овные понятия и теоремы	3
	1.1	Деление с остатком	4
	1.2	Наибольший общий делитель	6
	1.3	Наименьшее общее кратное	11
2	Cpa	внение по модулю	13
	$2.\overline{1}$	Свойства сравнений	13
	2.2	Свойства, связанные с сокращением	15
	2.3	Классы вычетов	16
	2.4	Сравнения первой степени	18
3	Признаки делимости		
	3.1	Признак делимости на 2	22
	3.2	Признак делимости на 3	
	3.3	Признак делимости на 4	23
	3.4	Признак делимости на 5	24
	3.5	Признак делимости на 7	24
	3.6	Признак делимости на 8	25
	3.7	Признак делимости на 9	26
	3.8	Признак делимости на 10	26
	3.9	Признак делимости на 11	
			$\frac{-1}{27}$
	_	1 1	-

4 Список литературы

1 Основные понятия и теоремы

Целые числа включают в себя числа натуральные (\mathbb{N}), противоположные к натуральным (отрицательные) и ноль. Как обычно, множество целых чисел будем обозначать символом \mathbb{Z} , а принадлежность числа x множеству целых чисел будем обозначать выражением $x \in \mathbb{Z}$. Все числа здесь и далее считаются целыми, если не сказано обратное.

Основные свойства целых чисел и операций (сложение, вычитание, умножение, деление) над ними будем считать уже известными. Таким образом, если $a,b \in \mathbb{Z}$, то $a+b \in \mathbb{Z}$, $a-b \in \mathbb{Z}$, $ab \in \mathbb{Z}$, однако $\frac{a}{b}$ может быть как целым, так и не целым.

Обозначение. $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.

Обозначение. $[a .. b] = \mathbb{Z} \cap [a, b]$.

Обозначение. $[a .. b) = \mathbb{Z} \cap [a, b)$.

Обозначение. $(a .. b] = \mathbb{Z} \cap (a, b]$.

Обозначение. $(a .. b) = \mathbb{Z} \cap (a, b)$.

Замечание. Напомним, что

$$|x| = \begin{cases} x, & \text{если } x \geqslant 0; \\ -x, & \text{если } x < 0. \end{cases}$$

$$\operatorname{sgn}(x) = \begin{cases} 1, & \text{если } x > 0; \\ 0, & \text{если } x = 0; \\ -1, & \text{если } x < 0. \end{cases}$$

Проверьте, что $x = \operatorname{sgn}(x)|x|$ и $|x| = \operatorname{sgn}(x)x$. Докажите, что $|a| < x \Leftrightarrow -x < a < x$.

1.1 Деление с остатком

Определение (делимость). *а делится на b* (*b делит a*), если существует такое целое число q, что a = bq.

Обозначение. $a : b (b \mid a)$.

Пример 1. Любое целое число a является делителем 0, так как $0 = 0 \cdot a$. Из этого же следует, что на ноль делится только ноль.

Лемма 1. Если a : b и $a \neq 0$, то $|a| \geqslant |b|$.

 \square оказательство. Действительно, из a=bq и $a\neq 0$ следует, что $|q|\geqslant 1$. Значит, $|a|=|b||q|\geqslant |b|$.

Лемма 2. Если a : b и |a| < |b|, то a = 0.

Доказательство. Так как |a|=|b||q|<|b|, то, сократив неравенство на |b|, получим |q|<1, то есть q=0. Значит, a=0.

Лемма 3. a : b и b : a тогда и только тогда, когда |a| = |b|.

Доказательство. Если $a \neq 0$, то $b \neq 0$. Тогда из **леммы 1** следует, что $|a| \geqslant |b|$ и $|b| \geqslant |a|$, то есть |a| = |b|.

Если a=0, то с необходимостью b=0, то есть |a|=|b|.

Лемма 4. Если a : b и b : c, то a : c.

Доказательство. Из $a=ba_1$ и $b=cb_1$ следует, что $a=c(b_1a_1)$. \square

Лемма 5. Если a : c и b : c, то $(a \pm b) : c$.

Доказательство. Действительно, из $a=ca_1$ и $b=cb_1$ следует, что $a\pm b=c(a_1\pm b_1)$.

Замечание. Аналогично доказывается, что если a : c и b : c, то (ab) : c.

Лемма 6. a : b тогда и только тогда, когда ac : bc и $c \neq 0$.

Доказательство. Если a : b, то a = bq. Умножив это равенство на c, получим ac = bcq, а значит, ac : bc.

Замечание. Условие $c \neq 0$ не понадобилось для доказательства этой части утверждения.

Обратно. Если ac : bc, то ac = bcq. Сократив это равенство на c, получим a = bq, а значит, a : b.

Теорема 1 (о делении с остатком). Пусть $a, b \in \mathbb{Z}$ и $b \neq 0$. Тогда существует единственная пара чисел (q, r) такая, что a = bq + r, где $0 \leq r < |b|$.

Доказательство. Существование. По принципу Архимеда для |b| > 0 существует такое число p, что

$$|b|p \leqslant a < |b|(p+1).$$

Пусть $q = \operatorname{sgn}(b)p$ и r = a - bq = a - |b|p, тогда из предыдущих неравенств следует

$$0 \leqslant a - |b|p < |b|,$$

то есть $0 \le r < |b|$ и a = bq + r.

Единственность. Действительно, предположим, что существует ещё одна пара чисел (q_1, r_1) такая, что $a = bq_1 + r_1$, где $0 \le r_1 < |b|$. Отсюда получаем, что $bq + r = bq_1 + r_1$, то есть

$$r - r_1 = b(q_1 - q). (1)$$

Значит, $(r-r_1)$: b. Так как $-|b| < -r_1$ и r < |b|, получаем

$$r - |b| < r - r_1 < |b| - r_1. (2)$$

С другой стороны, так как $0 \le r$ и $-r_1 \le 0$, находим $-|b| \le r - |b|$ и $|b|-r_1 \le |b|$. И, объединив эти неравенства с неравенствами (2), получаем

$$-|b| \le r - |b| < r - r_1 < |b| - r_1 \le |b|$$

то есть $-|b| < r - r_1 < |b|$, а значит, $|r - r_1| < |b|$.

Тогда из **леммы** 2 получаем $r - r_1 = 0$, то есть $r = r_1$.

В итоге из равенства (1) получаем $0 = b(q_1 - q)$ и, так как $b \neq 0$, $q_1 - q = 0$, то есть $q = q_1$, что и требовалось.

Определение. Число q называется nenonhым частным, а число $r-ocmam\kappa om$ от деления a на b.

1.2 Наибольший общий делитель

Определение. Пусть среди чисел a_1, \ldots, a_n есть хотя бы одно не равное нулю. Тогда $d \in \mathbb{N}$ называется общим делителем чисел a_1, \ldots, a_n , если $a_i : d$ для любого $i \in [1 \ldots n]$. Наибольшее число из общих делителей этих чисел называется наибольшим общим делителем и обозначается (a_1, \ldots, a_n) .

Обозначение. Здесь и далее

$$\mathcal{D}_{a_1,\dots,a_n} = \{ d \in \mathbb{N} \mid \forall i \in [1 \dots n] \quad a_i : d \} -$$

множество, состоящее из всех общих делителей чисел a_1, \ldots, a_n . Тогда $\mathcal{D}_a = \{ d \in \mathbb{N} \mid a : d \}$ — множество, состоящее из всех делителей числа a.

Определение. Числа a_1, \ldots, a_n называются *взаимно простыми*, если $(a_1, \ldots, a_n) = 1$.

Утверждение 1. Если a : b, то $\mathcal{D}_{a,b} = \mathcal{D}_b$, в частности (a,b) = |b|.

Замечание. Чтобы доказать равенство двух множеств, сперва нужно показать, что $\mathcal{D}_{a,b} \subseteq \mathcal{D}_b$, а затем, что $\mathcal{D}_b \subseteq \mathcal{D}_{a,b}$.

 \mathcal{A} оказательство. Покажем, что $\mathcal{D}_{a,b} \subseteq \mathcal{D}_b$. Если $d \in \mathcal{D}_{a,b}$, то по определению a : d и b : d, а значит, $d \in \mathcal{D}_b$.

Покажем теперь, что $\mathcal{D}_b \subseteq \mathcal{D}_{a,b}$. Действительно, если $d \in \mathcal{D}_b$, то b : d. И, так как по условию a : b, из **леммы** 4 получаем, что a : d, то есть $d \in \mathcal{D}_{a,b}$.

Так как $\mathcal{D}_{a,b} = \mathcal{D}_b$, наибольшие элементы этих множеств равны, но из **леммы** 1 следует, что |b| и есть наибольший элемент множества \mathcal{D}_b (**проверьте!**). Значит, (a,b) = |b|.

Утверждение 2. Если a = bq + c, то $\mathcal{D}_{a,b} = \mathcal{D}_{b,c}$, в частности (a,b) = (b,c).

Доказательство. Действительно, если $d \in \mathcal{D}_{a,b}$, то a : d и b : d, а значит, по **лемме** b : d, то есть $d \in \mathcal{D}_{b,c}$. В итоге получаем $\mathcal{D}_{a,b} \subseteq \mathcal{D}_{b,c}$. Аналогично доказывается, что $\mathcal{D}_{b,c} \subseteq \mathcal{D}_{a,b}$. Значит, $\mathcal{D}_{a,b} = \mathcal{D}_{b,c}$.

Так как множества общих делителей равны, равны будут и наибольшие в них элементы, то есть (a,b)=(b,c).

Теорема 2 (алгоритм Евклида). Пусть $a, b \in \mathbb{Z}$ и $b \neq 0$. Тогда, используя **теорему о делении с остатком**, получим ряд равенств

При этом $\mathcal{D}_{a,b} = \mathcal{D}_{r_n}$ и $(a,b) = r_n$.

Доказательство. Так как $|b| > r_1 > r_2 > r_3 > \cdots \ge 0$, с необходимостью на каком-то шаге алгоритма возникнет остаток $r_{n+1} = 0$, то есть алгоритм закончится.

Используя *утверждения 1 и 2*, получаем

$$\mathcal{D}_{a,b}=\mathcal{D}_{b,r_1}=\mathcal{D}_{r_1,r_2}=\cdots=\mathcal{D}_{r_{n-2},r_{n-1}}=\mathcal{D}_{r_{n-1},r_n}=\mathcal{D}_{r_n},$$
а значит, $(a,b)=r_n.$

Следствие 2.1. $\mathcal{D}_{a,b} = \mathcal{D}_{(a,b)}$.

Замечание. Отсюда очевидно, что наибольший общий делитель делится на любой общий делитель.

Следствие 2.2 (соотношение Безу). Существуют такие числа u и v, что

$$\boxed{au + bv = (a, b).}$$

Доказательство. Действительно, из равенств (3) получаем

$$(a,b) = r_n = r_{n-2} - r_{n-1}q_{n-1};$$

$$r_{n-1} = r_{n-3} - r_{n-2}q_{n-2};$$

$$\vdots$$

$$r_3 = r_1 - r_2q_2;$$

$$r_2 = b - r_1q_1;$$

$$r_1 = a - bq.$$

Заменяя в первом равенстве сначала r_{n-1} , затем $r_{n-2}, \ldots, r_2, r_1$ соответствующими равенствами и упрощая выражение, найдём числа u и v такие, что $(a,b)=r_n=au+bv$.

Пример 2. Найдём такие u и v, что (-78)u + (-66)v = (-78, -66). С помощью алгоритма Евклида получаем следующие равенства:

$$(-78) = (-66) \cdot 2 + 54,$$
 $0 < 54 < |-66| = 66;$
 $(-66) = 54 \cdot (-2) + 42,$ $0 < 42 < 54;$
 $54 = 42 + 12,$ $0 < 12 < 42;$
 $42 = 12 \cdot 3 + 6,$ $0 < 6 < 12;$
 $12 = 6 \cdot 2.$

Таким образом, (-78, -66) = 6. Теперь выразим остатки из полученных равенств:

$$6 = 42 + 12 \cdot (-3);$$

$$12 = 54 + 42 \cdot (-1);$$

$$42 = (-66) + 54 \cdot 2;$$

$$54 = (-78) + (-66) \cdot (-2).$$

Начнём последовательно в первом равенстве заменять остатки:

$$6 = 42 + \boxed{12} \cdot (-3) =$$

$$= 42 + (54 + 42 \cdot (-1)) \cdot (-3) =$$

$$= 54 \cdot (-3) + \boxed{42} \cdot 4 =$$

$$= 54 \cdot (-3) + ((-66) + 54 \cdot 2) \cdot 4 =$$

$$= (-66) \cdot 4 + \boxed{54} \cdot 5 =$$

$$= (-66) \cdot 4 + ((-78) + (-66) \cdot (-2)) \cdot 5 =$$

$$= \boxed{(-78)} \cdot 5 + \boxed{(-66)} \cdot (-6).$$

Значит, u = 5 и v = -6.

Утверждение 3. Пусть $m \in \mathbb{N}$, тогда (am, bm) = (a, b)m.

Доказательство. Действительно, умножив соотношения (3) почленно на m, получим новые соотношения, где вместо $a, b, r_1, r_2, \ldots, r_{n-1}, r_n$ будут числа

$$am, bm, r_1m, r_2m, \ldots, r_{n-1}m, r_nm,$$

а значит, (am, bm) = (a, b)m.

Утверждение 4. Пусть $d \in \mathcal{D}_{a,b}$, тогда $\left(\frac{a}{d}, \frac{b}{d}\right) = \frac{(a,b)}{d}$, в частности

$$\left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right) = 1.$$

Доказательство. Действительно, из **утверждения** 3 следует

$$(a,b) = \left(\frac{a}{d}d, \frac{b}{d}d\right) = \left(\frac{a}{d}, \frac{b}{d}\right)d,$$

что и требовалось.

Последнее утверждение получается, если в качестве d взять (a, b).

Утверждение 5. Если (a,b) = 1, то (ac,b) = (c,b).

Замечание. Докажем равенство с помощью *леммы* 3, то есть сначала докажем, что (c,b):(ac,b), а затем, что (ac,b):(c,b).

Доказательство. Действительно, так как ac : (ac, b) и b : (ac, b), получаем bc : (ac, b). Значит, используя **следствие 2.1**,

$$(ac,b) \in \mathcal{D}_{ac,bc} = \mathcal{D}_{(ac,bc)}.$$

Отсюда и из **утверждения** 3 следует |c| = (ac, bc) : (ac, b). Значит, $(ac, b) \in \mathcal{D}_{c,b} = \mathcal{D}_{(c,b)}$, то есть (c, b) : (ac, b).

Так как b:(c,b) и c:(c,b), получаем ac:(c,b). Значит,

$$(c,b) \in \mathcal{D}_{ac,b} = \mathcal{D}_{(ac,b)},$$

то есть (ac, b) : (c, b).

В конечном итоге из **леммы** 3 следует, что (ac, b) = (c, b).

Замечание. В каком месте доказательства используется (a,b) = 1?

Утверждение 6. Если (a,b) = 1 и ac : b, то c : b.

Доказательство. Действительно, из **утверждения 1** следует

$$(ac, b) = |b|.$$

С другой стороны, из *утверждения* **5** следует |b| = (ac, b) = (c, b), а значит, c : b.

Пример 3. $(5 \cdot 14) : 7$, значит, 14 : 7, так как (5,7) = 1.

Пример 4. $(8 \cdot 9) : 6$, но 9 /6, так как $(8,6) = 2 \neq 1$.

1.3 Наименьшее общее кратное

Определение. Пусть среди чисел a_1, \ldots, a_n есть хотя бы одно не равное нулю. Тогда $m \in \mathbb{N}$ называется общим кратным чисел a_1, \ldots, a_n , если $m : a_i$ для любого $i \in [1 \ldots n]$. Наименьшее число из общих кратных этих чисел называется наименьшим общим кратным и обозначается $[a_1, \ldots, a_n]$.

Обозначение. Здесь и далее

$$\mathcal{M}_{a_1,\dots,a_n} = \{ m \in \mathbb{N} \mid \forall i \in [1 \dots n] \quad m : a_i \} -$$

множество, состоящее из всех общих кратных чисел a_1, \ldots, a_n . Тогда $\mathcal{M}_a = \{ m \in \mathbb{N} \mid m : a \}$ — множество, состоящее из всех кратных числа a.

Утверждение 7. Пусть d=(a,b), тогда число m — общее кратное чисел a и b, если и только если оно представимо в виде

$$m = \frac{|ab|}{d}t,\tag{4}$$

где $t \in \mathbb{N}$.

Замечание. Выше делается два утверждения (*«если и только если»!*):

- 1. любое общее кратное представимо в виде (4);
- 2. любое число вида (4) является общим кратным. Поэтому доказать нужно оба этих утверждения.

Доказательство. Докажем сперва первый пункт **замечания**. Пусть $|a| = da_1, |b| = db_1$ и m — общее кратное a и b.

Из *утверждения* 4 следует $(a_1,b_1)=1$. Так как m : a, m=|a|k. С другой стороны, из m : b следует |a|k : |b|, а значит, $da_1k : db_1$. Из **леммы** 6 получаем $a_1k : b_1$. В конечном итоге с помощью **утверждения** 6 получаем $k : b_1$, то есть $k = b_1t$, где $t \in \mathbb{N}$ (**почему?**).

В итоге получаем

$$dm = d|a|k = d|a|b_1t = |ab|t,$$

то есть $m = \frac{|ab|}{d}t$, что и требовалось.

Докажем теперь второй пункт **замечания**. Пусть $m = \frac{|ab|}{d}t$, тогда $m = |a|b_1t$, то есть m : a. Аналогично показывается, что m : b. Значит, m — общее кратное a и b.

Теорема 3 (формула для наименьшего общего кратного).

$$[a,b] = \frac{|ab|}{(a,b)}.$$
 (5)

Доказательство. Так как $m=\frac{|ab|}{d}t$ — общее кратное a и b, наименьшее общее кратное [a,b] получается при t=1. В итоге получаем формулу $[a,b]=\frac{|ab|}{(a,b)}$.

Следствие 3.1. Пусть m — общее кратное чисел a и b, тогда

$$m = [a, b]t,$$

где $t \in \mathbb{N}$.

Замечание. Отсюда очевидно, что любое общее кратное делится на наименьшее общее кратное.

Доказательство. Следует из формул 4
$$u$$
 5.

Утверждение 8. $\mathcal{M}_{a,b} = \mathcal{M}_{[a,b]}$.

 \mathcal{A} оказательство. Действительно, если $m \in \mathcal{M}_{a,b}$, то из **следствия 3.1** получаем m : [a,b], то есть $m \in \mathcal{M}_{[a,b]}$.

Обратно, если $m \in \mathcal{M}_{[a,b]}$, то m : [a,b]. И, так как [a,b] : a, из **леммы 4** получаем m : a. Аналогично показывается, что m : b. В итоге $m \in \mathcal{M}_{a,b}$.

2 Сравнение по модулю

Определение. Пусть $m \in \mathbb{N}$, тогда числа a и b называются cpaehu-мыми по модулю m, если их остатки от деления на m равны, при этом число m называется модулем. Сравнимость чисел a и b по модулю m записывается так:

$$a \equiv b \pmod{m}$$
.

Замечание. Очевидно, что если $a \equiv b \pmod{m}$ и $b \equiv c \pmod{m}$, то $a \equiv c \pmod{m}$.

Утверждение 9. $a \equiv b \pmod{m}$ в том и только в том случае, когда (a-b): m.

Доказательство. Действительно, из $a \equiv b \pmod{m}$ следует, что a = mq + r и b = mp + r, где $0 \leqslant r < m$. Тогда

$$a - b = mq + r - (mp + r) = m(q - p),$$

то есть (a-b): m.

Обратно, пусть (a-b): m и b=mp+r, где $0 \leqslant r < m$. Покажем, что остатки от деления a и b на m равны. Действительно, из (a-b): m следует a-b=mt, то есть

$$a = mt + mp + r = m(t+p) + r,$$

а это и означает, что $a \equiv b \pmod{m}$.

Замечание. Покажите, что $a \equiv b \pmod{m}$ тогда и только тогда, когда a = b + mt, где $t \in \mathbb{Z}$.

2.1 Свойства сравнений

Утверждение 10. Если $a_1 \equiv b_1 \pmod{m}$ и $a_2 \equiv b_2 \pmod{m}$, то $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.

 \mathcal{A} оказательство. Действительно, из (a_1-b_1) і m и (a_2-b_2) і m следует

$$((a_1+a_2)-(b_1+b_2))=((a_1-b_1)+(a_2-b_2)) \vdots m,$$
а значит, $a_1+a_2\equiv b_1+b_2\pmod m$.

Утверждение 11. Если $a_1 \equiv b_1 \pmod{m}$ и $a_2 \equiv b_2 \pmod{m}$, то $a_1 a_2 \equiv b_1 b_2 \pmod{m}$.

Доказательство. Действительно,

$$a_1a_2 - b_1b_2 = (a_1a_2 - a_1b_2) + (a_1b_2 - b_1b_2) = a_1(a_2 - b_2) + b_2(a_1 - b_1)$$

и, так как $(a_1 - b_1)$ і m, $(a_2 - b_2)$ і m,

$$(a_1a_2 - b_1b_2) = (a_1(a_2 - b_2) + b_2(a_1 - b_1)) \vdots m,$$

а значит, $a_1a_2 \equiv b_1b_2 \pmod{m}$.

Замечание. Покажите, что если $a \equiv b \pmod{m}$, то $a^k \equiv b^k \pmod{m}$ для любого $k \in \mathbb{N}$.

Утверждение 12. $a \equiv b \pmod{m_1}$ и $a \equiv b \pmod{m_2}$ тогда и только тогда, когда

$$a \equiv b \pmod{[m_1, m_2]}$$
.

Доказательство. Действительно, из **утверждения 8** следует (**про-верьте!**), что (a-b): m_1 и (a-b): m_2 тогда и только тогда, когда (a-b): $[m_1, m_2]$.

Пример 5. Вычислим остаток $13^{16} - 2^{55} \cdot 5^{15}$ от деления на 3.

$$13^{16} - 2^{55} \cdot 5^{15} \equiv 1^{16} - (-1)^{55} \cdot (-1)^{15} = 1 - 1 = 0 \pmod{3}.$$

Пример 6. Вычислим остаток $(116 + 17^{17})^{21} \cdot 7^{49}$ от деления на 8.

$$(116 + 17^{17})^{21} \cdot 7^{49} \equiv (4 + 1^{17})^{21} \cdot (-1)^{49} =$$
$$= -5^{21} = -5 \cdot 25^{10} \equiv 3 \cdot 1^{10} = 3 \pmod{8}$$

2.2 Свойства, связанные с сокращением

Утверждение 13. Если (d, m) = 1, то $ad \equiv bd \pmod{m}$ тогда и только тогда, когда $a \equiv b \pmod{m}$.

Замечание. Утверждение состоит в том, что обе части сравнения можно разделить на их общий делитель, если последний взаимно прост с модулем.

Доказательство. Из (ad-bd): m следует d(a-b): m, а, так как (d,m)=1, из \pmb{ymsep} жерения $\pmb{6}$ следует (a-b): m, что и требовалось.

Обратно. Так как $a \equiv b \pmod{m}$ и $d \equiv d \pmod{m}$, из ymsepжедения 11 следует $ad \equiv bd \pmod{m}$.

Замечание. Условие (d, m) = 1 не понадобилось для доказательства этой части утверждения.

Пример 7. $9 \equiv 15 \pmod{6}$, но $3 \not\equiv 5 \pmod{6}$ (общий делитель не взаимно прост с модулем: $(3,6) \not\equiv 1$, поэтому *сокращать нельзя!*).

Пример 8. $5 \equiv 35 \pmod{6}$ (а здесь взаимно прост: (5,6) = 1, поэтому **можем сократить!**), а значит, $1 \equiv 7 \pmod{6}$.

Утверждение 14. $a \equiv b \pmod{m}$ тогда и только тогда, когда

$$ak \equiv bk \pmod{mk}$$

для любого $k \neq 0$.

Доказательство. Из **леммы 6** следует, что (a-b): m тогда и только тогда, когда (ak-bk): mk, что и требовалось.

Замечание. Отсюда получаем, что обе части сравнения и модуль можно разделить на любой их общий делитель.

Пример 9. $9 \equiv 15 \pmod{6}$, поэтому $3 \equiv 5 \pmod{2}$.

Пример 10. Упростим $50 \equiv 110 \pmod{12}$. Для этого сперва найдём (50, 110, 12) = 2 и сократим всё сравнение на 2, получим

$$25 \equiv 55 \pmod{6}$$
.

Затем, так как (25,55)=5 и (5,6)=1, получим

$$5 \equiv 11 \pmod{6}$$
.

Здесь мы последовательно воспользовались двумя предыдущими утверждениями.

Утверждение 15. Если $a \equiv b \pmod m$ и $d \in \mathcal{D}_m$, то $a \equiv b \pmod d$.

Доказательство. Действительно, так как (a-b): m и m: d, из **лем**-**мы** 4 получаем (a-b): d, что и требовалось.

Утверждение 16. Если $a \equiv b \pmod{m}$, то $\mathcal{D}_{a,m} = \mathcal{D}_{b,m}$, в частности (a,m) = (b,m).

Доказательство. Действительно, это следует из $yтверждения\ 2$ и a=b+mt.

Замечание. Как очевидное следствие этого утверждения получаем, что если одна часть сравнения и модуль делятся на какое-либо число, то и другая часть сравнения должна делиться на то же число.

2.3 Классы вычетов

Определение. Множество

$$[a]_m = \{ x \in \mathbb{Z} \mid x \equiv a \pmod m \} = \{ x \in \mathbb{Z} \mid x = a + mt,$$
где $t \in \mathbb{Z} \}$

всех чисел, сравнимых с a по модулю m, называется классом вычетов a по модулю m.

Замечание. Докажите, что $[a]_m = [b]_m$ тогда и только тогда, когда $a \equiv b \pmod{m}$.

Замечание. Так как каждому остатку по модулю m соответствует свой класс вычетов и на остаток r имеется ограничение $0 \leqslant r < m$, количество классов вычетов по модулю m равно количеству различных остатков, то есть m.

Обозначение. $\mathcal{R}_m = [0..m)$ — множество остатков по модулю m, то есть множество, содержащее по одному элементу из каждого класса вычетов по модулю m.

Утверждение 17. Множества $[0]_m, [1]_m, \ldots, [m-1]_m$ образуют **раз-** биение множества \mathbb{Z} , то есть

- 1. $[0]_m \cup [1]_m \cup \cdots \cup [m-1]_m = \mathbb{Z};$
- 2. $[p]_m \cap [q]_m = \emptyset$ для любых $p,q \in \mathcal{R}_m$ таких, что $p \neq q$.

Замечание. Утверждение состоит в том, что любое целое число лежит в одном из m классов вычетов и что эти классы попарно не пересекаются.

Доказательство. Докажем сперва первый пункт. Пусть $x \in \mathbb{Z}$, тогда по **теореме о делении с остатком** x = mq + r, где $0 \le r < m$, то есть $x \equiv r \pmod{m}$, а значит, $x \in [r]_m$, где $r \in \mathcal{R}_m$, что и требовалось.

Докажем теперь второй пункт. Пусть $x \in [p]_m \cap [q]_m$, тогда

$$x \equiv p \pmod{m}$$
 u $x \equiv q \pmod{m}$,

поэтому $p \equiv q \pmod{m}$. Значит, $p = q \pmod{m}$, так как $p, q \in \mathcal{R}_m$.

Пример 11. Все классы вычетов по модулю 5:

$$[0]_5 = \{ x \in \mathbb{Z} \mid x \equiv 0 \pmod{5} \} = \{ \dots, -10, -5, 0, 5, 10, \dots \};$$

$$[1]_5 = \{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{5} \} = \{ \dots, -9, -4, 1, 6, 11, \dots \};$$

$$[2]_5 = \{ x \in \mathbb{Z} \mid x \equiv 2 \pmod{5} \} = \{ \dots, -8, -3, 2, 7, 12, \dots \};$$

$$[3]_5 = \{ x \in \mathbb{Z} \mid x \equiv 3 \pmod{5} \} = \{ \dots, -7, -2, 3, 8, 13, \dots \};$$

$$[4]_5 = \{ x \in \mathbb{Z} \mid x \equiv 4 \pmod{5} \} = \{ \dots, -6, -1, 4, 9, 14, \dots \}.$$

2.4 Сравнения первой степени

Здесь и далее мы будем решать сравнения вида

$$ax \equiv b \pmod{m},$$
 (6)

где a, b, m — известные числа и $a \not\equiv 0 \pmod{m}$, то есть $a \not\in [0]_m$.

Замечание. Если $ax_1 \equiv b \pmod{m}$ и $x_2 \in [x_1]_m$, то (*проверьте!*) $ax_2 \equiv b \pmod{m}$. Это означает, что если x_1 удовлетворяет сравнению (6), то любое число, сравнимое с x_1 по модулю m, также будет удовлетворять этому сравнению.

Определение. Класс вычетов $[x_1]_m$ называется решением сравнения (6), если $ax_1 \equiv b \pmod{m}$. При таком соглашении сравнение (6) будет иметь столько решений, сколько элементов \mathcal{R}_m ему удовлетворяет.

Утверждение 18. Если (a, m) = 1, то сравнение $ax \equiv b \pmod{m}$ имеет единственное решение. Более того, если числа u и v такие, что au + mv = 1, то решением является класс вычетов $[bu]_m$.

Замечание. Существование таких чисел u и v гарантируется meo- pemoŭ o coomhowehuu Besy.

Доказательство. Докажем сперва, что $[bu]_m$ является решением. Пусть $(b,m)=d,\,b=b_1d$ и $m=m_1d$. Значит, по **утверждению 14**

$$abu \equiv b \pmod{m} \Leftrightarrow ab_1u \equiv b_1 \pmod{m_1}$$
.

Из \pmb{ymsep} жс $\pmb{\partial}$ ения $\pmb{\mathcal{J}}$ следует $(b_1, m_1) = 1$, поэтому с помощью \pmb{ymsep} жс $\pmb{\partial}$ ения $\pmb{\mathcal{J}}$ получаем

$$ab_1u \equiv b_1 \pmod{m_1} \Leftrightarrow au \equiv 1 \pmod{m_1}.$$

Так как $au = 1 - mv = 1 - m_1 dv$, получаем, что

$$au \equiv 1 \pmod{m_1} \Leftrightarrow 1 - m_1 dv \equiv 1 \pmod{m_1},$$

а это выполняется тогда и только тогда, когда $1 \equiv 1 \pmod{m_1}$. Таким образом, мы получили следующее утверждение:

$$abu \equiv b \pmod{m} \Leftrightarrow 1 \equiv 1 \pmod{m_1}.$$

И, так как $1 \equiv 1 \pmod{m_1}$ — верное утверждение, верным будет и $abu \equiv b \pmod{m}$, что и требовалось.

Теперь докажем единственность решения. Пусть $[x_1]_m, [x_2]_m$ — два решения сравнения. Тогда из $ax_1 \equiv b \pmod m$ и $ax_2 \equiv b \pmod m$ следует $ax_1 \equiv ax_2 \pmod m$. Так как (a,m) = 1, из ymsep>cde- ния 13 следует $x_1 \equiv x_2 \pmod m$, то есть $[x_1]_m = [x_2]_m$, что и требовалось.

Пример 12. Решим сравнение $7x \equiv 3 \pmod{45}$, воспользовавшись предыдущим утверждением, так как (7,45) = 1. Для этого найдём такие u и v, что 7u + 45v = 1. Сперва применим алгоритм Евклида:

$$45 = 7 \cdot 6 + 3,$$
 $0 \le 3 < 7;$ $7 = 3 \cdot 2 + 1,$ $0 \le 1 < 3;$ $3 = 3 \cdot 1.$

Теперь проделаем процедуру замены остатков:

$$\boxed{1 = 7 - 3 \cdot 2 = 7 - (45 - 7 \cdot 6) \cdot 2 = \boxed{7 \cdot 13 + 45 \cdot (-2)}}.$$

Значит, u = 13, а решением будет $[13 \cdot 3]_{45} = [39]_{45}$.

Утверждение 19. Сравнение $ax \equiv b \pmod{m}$, где $(a, m) = d \neq 1$,

- 1. не имеет решений, если $b \not | d;$
- 2. имеет ровно d решений, если b : d; более того, если числа u и v такие, что au + mv = d, то решениями будут классы вычетов

$$\left[\frac{bu}{d}\right]_m$$
, $\left[\frac{bu+m}{d}\right]_m$, $\left[\frac{bu+2m}{d}\right]_m$, ..., $\left[\frac{bu+(d-1)m}{d}\right]_m$.

Доказательство. Первый пункт напрямую следует из **утверждения 16**. Займёмся вторым пунктом. Пусть $a=a_1d,\,b=b_1d$ и $m=m_1d$. Из ymsep>cdehus 14 следует

$$ax \equiv b \pmod{m} \Leftrightarrow a_1x \equiv b_1 \pmod{m_1}$$
.

Чтобы $x=x_1+m_1t$ принадлежал множеству \mathcal{R}_m , необходимо

$$0 \leqslant x_1 + m_1 t < m$$
.

Если $t \leqslant -1$, то

$$x_1 + m_1 t \leqslant x_1 - m_1 < 0,$$

что не подходит. Если $d \leq t$, то

$$m \leqslant x_1 + m = x_1 + m_1 d \leqslant x_1 + m_1 t$$
,

что также не подходит. Если $0 \leqslant t \leqslant d-1$, то

$$0 \le x_1 \le x_1 + m_1 t \le x_1 + m_1 (d-1) \le m_1 + m_1 (d-1) = m_1 d = m_1.$$

Таким образом, на t возникает ограничение $0 \le t \le d-1$. Каждому значению t из этого промежутка соответствует свой элемент \mathcal{R}_m , равный $x_1 + m_1 t$. И, так как каждому элементу \mathcal{R}_m отвечает своё решение, получаем d решений исходного сравнения:

$$[x_1]_m$$
, $[x_1+m_1]_m$, $[x_1+2m_1]_m$, ..., $[x_1+(d-1)m_1]_m$.

Заметим, что au + mv = d, если и только если $a_1u + m_1v = 1$. Воспользовавшись формулой из **утверждения 18**, получим все решения исходного сравнения:

$$[b_1u]_m$$
, $[b_1u+m_1]_m$, $[b_1u+2m_1]_m$, ..., $[b_1u+(d-1)m_1]_m$.

Домножив и поделив на d, окончательно получим:

$$\left[\frac{bu}{d}\right]_m, \left[\frac{bu+m}{d}\right]_m, \left[\frac{bu+2m}{d}\right]_m, \dots, \left[\frac{bu+(d-1)m}{d}\right]_m.$$

Пример 13. Решим сравнение $6x \equiv 15 \pmod{45}$. Это сравнение имеет 3 решения, так как d=(6,45)=3 и $15 \stackrel{.}{:} 3$. Найдём такие, числа u и v, что 6u+45v=3.

$$45 = 6 \cdot 7 + 3,$$
 $0 \le 3 < 6;$ $6 = 3 \cdot 2.$

Значит, $3=6\cdot (-7)+45$, то есть u=-7. Получим следующие решения:

$$[10]_{45} = \left[\frac{15 \cdot (-7)}{3}\right]_{45},$$

$$[25]_{45} = \left[\frac{15 \cdot (-7) + 45}{3}\right]_{45},$$

$$[40]_{45} = \left[\frac{15 \cdot (-7) + 2 \cdot 45}{3}\right]_{45}.$$

Замечание. Можно было решить это сравнение, не используя готовые формулы. Сократив всё сравнение на 3, получаем

$$2x \equiv 5 \pmod{15}.$$

Найдя его решение, равное $[10]_{15}$, все решения исходного сравнения получаем, прибавляя с каждым разом 15, то есть

$$[10]_{45}$$
, $[10+15]_{45} = [25]_{45}$, $[10+15\cdot 2]_{45} = [40]_{45}$.

3 Признаки делимости

Теория сравнений по модулю позволяет легко выводить признаки делимости для позиционной системы счисления с целочисленным основанием. Покажем вывод некоторых признаков делимости для десятичной системы счисления.

Обозначение. Пусть $A \in \mathbb{N}$, тогда a_i — цифры числа A, то есть

$$A = \overline{a_n a_{n-1} \dots a_2 a_1 a_0} = \sum_{i=0}^{n} a_i 10^i.$$

Определение. Признаком делимости называется алгоритм, позволяющий определить делится ли некоторое число $A \in \mathbb{N}$ на другое число $m \in \mathbb{N}$ с помощью некоторой функции $f: [m..+\infty) \to \mathbb{N}_0$ через построение последовательности чисел $(A_i)_{i=0}^n$. При этом должны выполняться следующие условия:

- 1. $A_0 = A$;
- 2. $A_{i+1} = f(A_i);$
- 3. $A_n \in [0..m);$
- 4. f(x) < x;
- 5. $x : m \Leftrightarrow f(x) : m$.

Если $A_n : m$, то есть $A_n = 0$, то A : m.

3.1 Признак делимости на 2

Пусть $A = 10a + a_0$, тогда

$$A = 10a + a_0 \equiv a_0 \pmod{2}.$$

Найдём такое A_{min} , что $a_0 < A$ для любого $A \geqslant A_{min}$.

$$a_0 < 10a + a_0 \Rightarrow 10a > 0 \Rightarrow a > 0 \Rightarrow a \geqslant 1 \Rightarrow A \geqslant 10.$$

Значит, $A_{min} = 10$.

Опишем функцию, задающую признак делимости на 2:

$$f(A) = \begin{cases} a_0, & A \ge 10, \\ A - 2, & 2 \le A < 10. \end{cases}$$

3.2 Признак делимости на 3

Для начала заметим, что $10^i \equiv 1^i = 1 \pmod 3$ для любого $i \in \mathbb{N}_0$. Тогда

$$A = \sum_{i=0}^{n} a_i 10^i \equiv \sum_{i=0}^{n} a_i \pmod{3}.$$

Найдём такое A_{min} , что $\sum_{i=0}^{n} a_i < A$ для любого $A \geqslant A_{min}$.

$$\sum_{i=0}^{n} a_i < \sum_{i=0}^{n} a_i 10^i \Rightarrow \sum_{i=1}^{n} a_i (10^i - 1) > 0.$$

Последнее неравенство верно, если существует $i \in [1..n]$ такое, что $a_i \neq 0$. Минимальное же значение достигается, если $a_1 = 1$ и $a_i = 0$ для любого $i \in [2..n]$. Значит, $A_{min} = 10$.

Опишем функцию, задающую признак делимости на 3:

$$f(A) = \begin{cases} \sum_{i=0}^{n} a_i, & A \geqslant 10, \\ A - 3, & 3 \leqslant A < 10. \end{cases}$$

3.3 Признак делимости на 4

Пусть $A = 100a + 10a_1 + a_0$, тогда

$$A = 100a + 10a_1 + a_0 \equiv 2a_1 + a_0 \pmod{4}$$
.

Найдём такое A_{min} , что $2a_1 + a_0 < A$ для любого $A \geqslant A_{min}$.

$$2a_1 + a_0 < 100a + 10a_1 + a_0 \Rightarrow 100a + 8a_1 > 0.$$

Последнее неравенство верно, если $a \neq 0$ или $a_1 \neq 0$. Минимальное же значение достигается, если $a_1 = 1$ и a = 0. Значит, $A_{min} = 10$.

Опишем функцию, задающую признак делимости на 4:

$$f(A) = \begin{cases} 2a_1 + a_0, & A \geqslant 10, \\ A - 4, & 4 \leqslant A < 10. \end{cases}$$

3.4 Признак делимости на 5

Пусть $A = 10a + a_0$, тогда

$$A = 10a + a_0 \equiv a_0 \pmod{5}.$$

Найдём такое A_{min} , что $a_0 < A$ для любого $A \geqslant A_{min}$.

$$a_0 < 10a + a_0 \Rightarrow 10a > 0 \Rightarrow a > 0 \Rightarrow a \geqslant 1 \Rightarrow A \geqslant 10.$$

Значит, $A_{min} = 10$.

Опишем функцию, задающую признак делимости на 5:

$$f(A) = \begin{cases} a_0, & A \ge 10, \\ A - 5, & 5 \le A < 10. \end{cases}$$

3.5 Признак делимости на 7

Пусть $A = 10a + a_0$. Для начала заметим, что

$$A = 10a + a_0 \equiv 3a - 6a_0 = 3(a - 2a_0) \pmod{7}.$$

Так как (3,7) = 1, получаем:

$$3(a - 2a_0) \equiv 0 \pmod{7} \Leftrightarrow |a - 2a_0| \equiv 0 \pmod{7}.$$

Найдём такое A_{min} , что $|a-2a_0| < A$ для любого $A \geqslant A_{min}$. Сперва предположим, что $a-2a_0>0$, то есть $a>2a_0$.

$$a - 2a_0 < 10a + a_0 \Rightarrow 9a + 3a_0 > 0.$$

Последнее неравенство верно, если $a \neq 0$ или $a_0 \neq 0$. Минимальное же значение достигается, если $a_0 = 1$ и a = 0. Значит, для таких

чисел, что $a>2a_0$, неравенство $|a-2a_0|< A$ будет выполняться всегда.

Теперь предположим, что $a - 2a_0 < 0$, то есть $a < 2a_0$.

$$2a_0 - a < 10a + a_0 \Rightarrow 11a > a_0.$$

Из предположения получаем $11a < 22a_0$ и, объединив это неравенство с последним, находим $a_0 < 22a_0$, то есть $a_0 \in [1..9]$. Чтобы выполнялось условие $11a > a_0$ для любого $a_0 \in [1..9]$, требуется $a \ge 1$. Значит, для таких чисел, что $a < 2a_0$, неравенство $|a - 2a_0| < A$ будет выполняться, если $a \ge 1$.

Значит, $A_{min} = 10$.

Опишем функцию, задающую признак делимости на 7:

$$f(A) = \begin{cases} |a - 2a_0|, & A \ge 10, \\ A - 7, & 7 \le A < 10. \end{cases}$$

3.6 Признак делимости на 8

Пусть $A = 1000a + 100a_2 + 10a_1 + a_0$, тогда

$$A = 1000a + 100a_2 + 10a_1 + a_0 \equiv 4a_2 + 2a_1 + a_0 \pmod{8}.$$

Найдём такое A_{min} , что $4a_2 + 2a_1 + a_0 < A$ для любого $A \geqslant A_{min}$.

$$4a_2 + 2a_1 + a_0 < 1000a + 100a_2 + 10a_1 + a_0 \Rightarrow 1000a + 96a_2 + 8a_1 > 0.$$

Последнее неравенство верно, если $a \neq 0$, $a_2 \neq 0$ или $a_1 \neq 0$. Минимальное же значение достигается, если $a_1 = 1$, $a_2 = 0$ и a = 0. Значит, $A_{min} = 10$.

Опишем функцию, задающую признак делимости на 8:

$$f(A) = \begin{cases} 4a_2 + 2a_1 + a_0, & A \geqslant 10, \\ A - 8, & 8 \leqslant A < 10. \end{cases}$$

3.7 Признак делимости на 9

Для начала заметим, что $10^i \equiv 1^i = 1 \pmod 9$ для любого $i \in \mathbb{N}_0$. Тогда

$$A = \sum_{i=0}^{n} a_i 10^i \equiv \sum_{i=0}^{n} a_i \pmod{9}.$$

Найдём такое A_{min} , что $\sum_{i=0}^{n} a_i < A$ для любого $A \geqslant A_{min}$.

$$\sum_{i=0}^{n} a_i < \sum_{i=0}^{n} a_i 10^i \Rightarrow \sum_{i=1}^{n} a_i (10^i - 1) > 0.$$

Последнее неравенство верно, если существует $i \in [1..n]$ такое, что $a_i \neq 0$. Минимальное же значение достигается, если $a_1 = 1$ и $a_i = 0$ для любого $i \in [2..n]$. Значит, $A_{min} = 10$.

Опишем функцию, задающую признак делимости на 9:

$$f(A) = \begin{cases} \sum_{i=0}^{n} a_i, & A \geqslant 10, \\ 0, & A = 9. \end{cases}$$

3.8 Признак делимости на 10

Пусть $A = 10a + a_0$, тогда

$$A = 10a + a_0 \equiv a_0 \pmod{10}.$$

Найдём такое A_{min} , что $a_0 < A$ для любого $A \geqslant A_{min}$.

$$a_0 < 10a + a_0 \Rightarrow 10a > 0 \Rightarrow a > 0 \Rightarrow a \geqslant 1 \Rightarrow A \geqslant 10$$
.

Значит, $A_{min} = 10$.

Опишем функцию, задающую признак делимости на 10:

$$f(A) = a_0.$$

3.9 Признак делимости на 11

Для начала заметим, что $10^i \equiv (-1)^i \pmod{11}$ для любого $i \in \mathbb{N}_0$. Пусть $s = \sum_{i=0}^n (-1)^i a_i$, тогда

$$A = \sum_{i=0}^{n} a_i 10^i \equiv \left| \sum_{i=0}^{n} (-1)^i a_i \right| = |s| \pmod{11}.$$

Найдём такое A_{min} , что |s| < A для любого $A \geqslant A_{min}$.

$$\operatorname{sgn}(s) \sum_{i=0}^{n} (-1)^{i} a_{i} < \sum_{i=0}^{n} a_{i} 10^{i} \Rightarrow \sum_{i=1}^{n} a_{i} (10^{i} - \operatorname{sgn}(s)(-1)^{i}) > 0.$$

Последнее неравенство верно, если существует $i \in [1..n]$ такое, что $a_i \neq 0$. Минимальное же значение достигается, если $a_1 = 1$ и $a_i = 0$ для любого $i \in [2..n]$. Значит, $A_{min} = 10$.

Опишем функцию, задающую признак делимости на 11:

$$f(A) = \left| \sum_{i=0}^{n} (-1)^{i} a_{i} \right|.$$

3.10 Признак делимости на 13

Пусть $A = 10a + a_0$. Для начала заметим, что

$$A = 10a + a_0 \equiv -3a - 12a_0 = -3(a + 4a_0) \pmod{13}.$$

Так как (-3, 13) = 1, получаем:

$$\boxed{-3(a+4a_0) \equiv 0 \pmod{13} \Leftrightarrow a+4a_0 \equiv 0 \pmod{13}}.$$

Найдём такое A_{min} , что $a + 4a_0 < A$ для любого $A \geqslant A_{min}$.

$$a + 4a_0 < 10a + a_0 \Rightarrow 9a > 3a_0 \Rightarrow 3a > a_0$$
.

Так как число A произвольное, $a_0 \in [0..9]$. Таким образом, чтобы выполнялось последнее неравенство, требуется a > 3, то есть $a \ge 4$.

Минимальное же значение достигается, если a=4 и $a_0=0$. Значит, $A_{min}=40$.

Опишем функцию, задающую признак делимости на 13:

$$f(A) = \begin{cases} a + 4a_0, & A \geqslant 40, \\ A - 13, & 13 \leqslant A < 40. \end{cases}$$

4 Список литературы