NOTES 10/2

LUCAS CHEN

1. Continuity

Definition: We say a function f is continuous at $x \in [a, b]$ if $\forall \epsilon > 0 \exists \delta > 0$ s.t. if $y \in [a, b]$ with $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$.

Theorem. For $f:[a,b]\to\mathbb{R}$ continous, f is bounded and it achieves its maximum value

Proof. Bounded: $S = \{x \in [a, b] : f \text{ is bounded in } [a, x]\}$. Let $x_0 \in \sup S$. For $\epsilon = 1$, $\exists \delta$ s.t. $|f(y) - f(x_0)| < 1$ if $|x_0 - y| < \delta$.

Achieves its maximum: Redefine $S = \{x \in [a,b] : \sup\{f(y) : a \le y \le x\} < \sup\{f(y) : a \le y \le b\}\}$. Let $x_0 \in \sup S$. Claim $f(x_0) = \sup f$. If $f(x_0) < \sup f$, $\exists \delta > 0$ s.t. $f(x) < \sup f$, $x \in [x_0 - \delta, x_0 + \delta]$. However, then $x_0 + \delta/2 > x_0$ and is in the set S: contradiction. $f(x_0) \not> \sup f$ for obvious reasons.

Theorem. If f(a) < y < f(b), $\exists x_0 \in (a, b) \text{ s.t. } f(x_0) = y$.

Proof. Define set $S = \{x \in [a, b] : \text{ l.u.b. } f([a, x]) \leq y\}$. Take c = l.u.b S.

Cauchy-Schwarz Inequality. $\langle x, y \rangle < |x||y| \ \forall \ x, y \in \mathbb{R}^n$.

Proof: Consider $\langle w, w \rangle$ for w = x + ty for some vectors x, y and $t \in \mathbb{R}$. $\langle w, w \rangle = \langle x, x \rangle + 2t \langle x, y \rangle + t^2 \langle y, y \rangle$. Since $\langle w, w \rangle$ is positive we have $4\langle x, y \rangle < 4\langle x, x \rangle \langle y, y \rangle$ by the property of the discriminant.

 $Date \hbox{: October 2, 2024.}$