Randomized Complete Block Design (RCBD)

 $y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij}$, Where i = # of treatments, j = # of blocks. (μ Grand Mean), (τ Treatment effect), (β Block effect). Constraint: $\sum \tau_i = 0$, $\sum \beta_j = 0$.

Estimates: Grand Mean: $\hat{\mu} = \bar{y}_{..}$, Treatment Effect: $\hat{\tau}_i = \bar{y}_{i.} - \bar{y}_{..}$, Block Effect: $\hat{\beta}_i = \bar{y}_{.j} - \bar{y}_{..}$

Grand Smaple Average: $\bar{y}_{..} = \frac{1}{ab} \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij}$

Sample Mean for i^{th} Treatment (averaged over all blocks): $\bar{y}_{i.} = \frac{1}{b} \sum_{j=1}^{b} y_{ij}$ Sample Mean for j^{th} Block (averaged over all treatments): $\bar{y}_{.j} = \frac{1}{a} \sum_{i=1}^{a} y_{ij}$

Fitted y_{ij} Values: $\hat{y}_{ij} = \bar{y}_{i.} + \bar{y}_{.j} - \bar{y}_{..}$

RCBD - ANOVA

Source	df	SS	MS	F
Treatments	a-1	SSTr	$MSTr = \frac{SSTr}{a-1}$	$F = \frac{MSTr}{MSE}$
Blocks	b-1	SSB	$MSB = \frac{\widetilde{SSB}}{b-1}$	$F = \frac{\widetilde{M}\widetilde{S}\widetilde{B}}{MSE}$
Error	(a-1)(b-1)	SSE	$MSE = \frac{\mathring{S}S\mathring{E}}{(a-1)(b-1)}$	
Total	ab-1	SST		

Pooled sample variance(est. σ^2): $s^2 = MSE$. Test of Homogeneity of Treatment Effects:

> H_0 : $\tau_1 = \tau_2 = \dots = \tau_a = 0$. H_a : not all $\tau_i = 0$.

Reject H_0 if $F > F_{\alpha,a-1,(a-1)(b-1)}$, or p-value $< \alpha$.

C.I for μ_i : \bar{y}_{i} . $\pm t_{\alpha/2,df_{error}} \frac{s}{\sqrt{h}}$

Fisher's LSD Multiple Comparison Test: Treatment i and j are significantly different if $|\bar{y}_{i\cdot} - \bar{y}_{j\cdot}| > t_{\alpha/2, df_{error}} s_{\sqrt{\frac{2}{h}}}$

(Reject $H_0: \tau_i = \tau_j$). **Fishers C.I.:**For all possible treatment differences, $\bar{y}_i - \bar{y}_k \pm t_{\alpha/2, df_{error}} s \sqrt{\frac{2}{b}}$.

Tukey's Multiple Comparison Test: Treatment i and j are significantly different if $|\bar{y}_i - \bar{y}_j| > q_{\alpha,a,df_{error}} \frac{s}{\sqrt{\lambda}}$.

Tukey's C.I.: For all possible treatment differences, $\bar{y}_i - \bar{y}_k \pm q_{\alpha,a,df_{error}} \frac{s}{\sqrt{h}}$.

Two Factor Design

 $y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \epsilon_{ijk}$. Constraint: $\sum \tau_i = 0$, $\sum \beta_j = 0$, and $\sum (\tau \beta)_{ij} = 0$ (for each fixed i,j). **Interaction:** if $(\tau \beta)_{ij} = 0$ for every i,j then there is no interaction between factors A and B.

Estimates: $\bar{y}_{...} = \frac{1}{abn} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} y_{ijk}$. $\bar{y}_{i...} = \frac{1}{bn} \sum_{j=1}^{b} \sum_{k=1}^{n} y_{ijk}$. $\bar{y}_{.j.} = \frac{1}{an} \sum_{i=1}^{a} \sum_{k=1}^{n} y_{ijk}$.

Fitted Values: $\hat{y}_{ijk} = \hat{\mu} + \hat{\tau}_i + \hat{\beta}_j + (\hat{\tau\beta})_{ij} = \bar{y}_{ij}$.

2 Factor - ANOVA

	Source	df	SS	MS	F
	Factor A	a-1	SSA	$MSA = \frac{SSA}{a-1}$	$F = \frac{MSA}{MSE}$
	Factor B	b-1	SSB	$MSB = \frac{SSB}{b-1}$	$F = \frac{MSB}{MSE}$
	AB Interaction	(a-1)(b-1)	SSAB	$MSAB = \frac{\mathring{S}S\mathring{A}B}{(a-1)(b-1)}$	$F = \frac{MSAB}{MSE}$
	Error	N-ab	SSE	$MSE = \frac{SSE}{N-ab}$	
_	Total	N-1	SST		

Note: N = abnIf n = 1 assume no interaction. Test of significance of AB Interaction should be done first. If there is interaction it is not usesful

to test for significance of A and B.

Test of Significance of AB Interaction: H_0 : $(\tau\beta)_{11} = (\tau\beta)_{12} = \cdots = (\tau\beta)_{ab} = 0$. H_a : not all $(\tau\beta)_{ij}$ are the same. Reject H_0 if $F > F_{\alpha,(a-1)(b-1),N-ab}$, or p-value $< \alpha$.

If H_0 is rejected, conclude that there exists interaction between Factors A and B at significance level α .

Case 1: Interaction between A and B

It is meaningful to test for the significance of the main effect of A and the main effect of B.

May combine the interaction sum of squares with the error sum of squares.

Anova: df: $df_{error} = abn - a - b + 1$, SSE: SSE' = SSAB + SSE, MSE: $MSE' = \frac{SSE'}{abn - a - b + 1}$.

Note that F values must be updated with the new MSE' before testing.

Case 2: No interaction between A and B