

Opgave 7.1

En robot med en frihedsgrad og en fleksibel aksel betragtes i denne opgave. En tegning af robotten er vist i Figur 1 hvoraf det ses at robotarmen bevæges horisontalt.

Figur 1: Tegning af fleksibel aksel med stivhed k_s .

Systemets indgangssignal er et motormoment τ_m og udgangssignalet (målingen) er ledets hastighed på den ene side af akslen $\dot{\theta}_l$ [rad/s]. Analyser systemets dynamik via følgende punkter.

- 1. Opstil differentialligninger, der beskriver dynamikken for systemet.
- 2. Omskriv differentialligningerne til et system af 1. ordens differentialligninger.
- 3. Simuler systemet med to forskellige input (og parametrene fra Tabel 1)
 - (a) $\tau_m(t) = 1$
 - (b) $\tau_m(t) = \sin(t)$

Name	Symbol	Value	Unit
Inertia of motor	J_m	1	$\mathrm{kgm^2}$
Inertia of link	J_l	1	$\mathrm{kgm^2}$
Shaft stiffness	k_s	1	Nm/rad
Motor damping	b_m	0.01	Nm/(rad/s)
Motor torque	$ au_m$	-	Nm
Angle (motor side)	$ heta_m$	-	rad
Angle (link side)	$ heta_l$	-	rad

Tabel 1: Parametre og variable for robot med fleksibel aksel.