Piecewise-linear optimization

piecewise-linear minimization $\ell_{\infty}\text{- and }\ell_1\text{-norm approximation}$ examples

modeling software

Linear and affine functions

linear function: a function $f:\mathbb{R}^n \to \mathbb{R}$ is linear if

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$
 $\forall x, y \in \mathbb{R}^n, \alpha, \beta \in \mathbb{R}$

property: f is linear if and only if $f(x) = a^T x$ for some a

affine function: a function $f: \mathbb{R}^n \to \mathbb{R}$ is affine if

$$f(\alpha x + (1 - \alpha)y) = \alpha f(x) + (1 - \alpha)f(y) \qquad \forall x, y \in \mathbb{R}^n, \alpha \in \mathbb{R}$$

property: f is affine if and only if $f(x) = a^T x + b$ for some a, b

Piecewise-linear function

 $f: \mathbb{R}^n \to \mathbb{R}$ is (convex) **piecewise-linear** if it can be expressed as

$$f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$$

f is parameterized by m n-vectors a_i and m scalars b_i

(the term piecewise-affine is more accurate but less common)

Piecewise-linear minimization

$$\min f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$$

• equivalent LO (with variables x and auxiliary scalar variable t)

min
$$t$$

s.t. $a_i^T x + b_i < t$, $i = 1, ..., m$

to see equivalence, note that for fixed x the optimal t is t=f(x)

▶ LO in matrix notation: minimize $\tilde{c}^T \tilde{x}$ subject to $\tilde{A}\tilde{x} < \tilde{b}$ with

$$\tilde{x} = \begin{bmatrix} x \\ t \end{bmatrix}, \quad \tilde{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \tilde{A} = \begin{bmatrix} a_1^T & -1 \\ \vdots & \vdots \\ a_m^T & -1 \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} -b_1 \\ \vdots \\ -b_m \end{bmatrix}$$

Minimizing a sum of piecewise-linear functions

$$f(x) + g(x) = \max_{i=1,\dots,m} (a_i^T x + b_i) + \max_{i=1,\dots,p} (c_i^T x + d_i)$$

cost function is piecewise-linear: maximum of mp affine functions

$$f(x) + g(x) = \max_{\substack{i=1,\dots,m\\j=1,\dots,p}} ((a_i + c_j)^T x + (b_i + d_j))$$

equivalent LO with m+p inequalities

min
$$t_1 + t_2$$

s.t. $a_i^T x + b_i \le t_1, \quad i = 1, ..., m$
 $c_i^T x + d_i \le t_2, \quad i = 1, ..., p$

note that for fixed x, optimal t_1 , t_2 are $t_1=f(x)$, $t_2=g(x)$

equivalent LO in matrix notation

$$\begin{aligned} & \min & \quad \tilde{\boldsymbol{c}}^T \tilde{\boldsymbol{x}} \\ & \text{s.t.} & \quad \tilde{\boldsymbol{A}} \tilde{\boldsymbol{x}} < \tilde{\boldsymbol{b}} \end{aligned}$$

with

$$\tilde{x} = \begin{bmatrix} x \\ t_1 \\ t_2 \end{bmatrix}, \quad \tilde{c} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad \tilde{A} = \begin{bmatrix} a_1^T & -1 & 0 \\ \vdots & \vdots & \vdots \\ a_m^T & -1 & 0 \\ c_1^T & 0 & -1 \\ \vdots & \vdots & \vdots \\ c_m^T & 0 & -1 \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} -b_1 \\ \vdots \\ -b_m \\ -d_1 \\ \vdots \\ -d_n \end{bmatrix}$$

 ℓ_{∞} -Norm (Cheybshev) approximation

$$\min \|Ax - b\|_{\infty}$$

with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

 ℓ_{∞} -norm (Chebyshev norm) of m-vector y is

$$||y||_{\infty} = \max_{i=1,\dots,m} |y_i| = \max_{i=1,\dots,m} \max\{y_i, -y_i\}$$

equivalent LO (with variables x and auxiliary scalar variable t)

$$\begin{aligned} & \min & t \\ & \text{s.t.} & -t1 \leq Ax - b \leq t1 \end{aligned}$$

(for fixed x, optimal t is $t = ||Ax - b||_{\infty}$)

equivalent LO in matrix notation

$$\begin{aligned} & \min & \begin{bmatrix} 0 \\ 1 \end{bmatrix}^T \begin{bmatrix} x \\ t \end{bmatrix} \\ & \text{s.t.} & \begin{bmatrix} A & -1 \\ -A & -1 \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \leq \begin{bmatrix} b \\ -b \end{bmatrix} \end{aligned}$$

ℓ_1 -Norm approximation

$$\min \|Ax - b\|_1$$

 ℓ_1 -norm of m-vector y is

$$||y||_1 = \sum_{i=1}^m |y_i| = \sum_{i=1}^m \max\{y_i, -y_i\}$$

equivalent LO (with variables \boldsymbol{x} and auxiliary vector variable \boldsymbol{u})

$$\min \quad \sum_{i=1}^{m} u_i$$
s.t $-u \le Ax - b \le u$

(for fixed x, optimal u is $u_i = |(Ax - b)_i|, i = 1, ..., m$)

equivalent LO in matrix notation

$$\begin{aligned} & \min & \begin{bmatrix} 0 \\ 1 \end{bmatrix}^T \begin{bmatrix} x \\ u \end{bmatrix} \\ & \text{s.t.} & \begin{bmatrix} A & -I \\ -A & -I \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \leq \begin{bmatrix} b \\ -b \end{bmatrix} \end{aligned}$$

least-squares v.s. ℓ_1 norm

histograms of residuals Ax-b, with randomly generated $A\in\mathbb{R}^{200\times 80}$, $b\in\mathbb{R}^{200}$, for

 ℓ_1 -norm distribution is wider with a high peak at zero

Robust curve fitting

- fit affine function $f(t) = \alpha + \beta t$ to m points (t_i, y_i)
- an approximation problem $Ax \approx b$ with

$$A = \begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix},$$

$$A = \begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t \end{bmatrix}, \qquad x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \qquad b = \begin{bmatrix} y_1 \\ \vdots \\ y \end{bmatrix}$$

- ▶ dashed: $\min \|Ax b\|_2$
- ightharpoonup solid: $\min \|Ax b\|_1$

 ℓ_1 -norm approximation is more robust against outliers

Sparse signal recovery via ℓ_1 -norm minimization

- $lackbox{}\hat{x} \in \mathbb{R}^n$ is unknown signal, known to be very sparse
- we make linear measurements $y = A\hat{x}$ with $A \in \mathbb{R}^{m \times n}$, m < n

estimation by ℓ_1 -norm minimization: compute estimate by solving

$$\min \quad \|x\|_1$$

$$\text{s.t.} \quad Ax = y$$

estimate is signal with smallest ℓ_1 -norm, consistent with measurements

equivalent LO (variables $x, u \in \mathbb{R}^n$)

$$\min 1^T u$$

$$\text{s.t.} \quad -u \leq x \leq u$$

$$Ax = y$$

Example

- lacktriangle exact signal $\hat{x} \in \mathbb{R}^{1000}$
- ► 10 nonzero components

least-norm solutions (randomly generated $A \in \mathbb{R}^{100 \times 1000}$)

 ℓ_1 -norm estimate is exact

Exact recovery

when are the following problems equivalent?

$$\begin{aligned} & \min & \operatorname{card}(x) & & \min & \|x\|_1 \\ & \text{s.t.} & & Ax = y & & \text{s.t.} & Ax = y \end{aligned}$$

- ightharpoonup card(x) is cardinality (number of nonzero components) of x
- lacktriangle depends on A and cardinality of sparsest solution of Ax=y

we say A allows **exact recovery** of k-sparse vectors if

$$\hat{x} = \underset{Ax=y}{\operatorname{argmin}} \|x\|_1$$
 when $y = A\hat{x}$ and $\operatorname{card}(\hat{x}) \le k$

- $\operatorname{argmin} \|x\|_1$ denotes the unique minimizer
- lacktriangle a property of (the nullspace) of the 'measurement matrix' A

'Nullspace condition' for exact recovery

necessary and sufficient condition for exact recovery of k-sparse vectors¹

$$|z^{(1)}|+\cdots+|z^{(k)}|<\frac{1}{2}\|z\|_1 \qquad \forall z \in \mathsf{nullspace}(A) \setminus \{0\}$$

here, $z^{(i)}$ denotes component z_i in order of decreasing magnitude

$$|z^{(1)}| \ge |z^{(2)}| \ge \dots \ge |z^{(n)}|$$

- lacktriangle a bound on how 'concentrated' nonzero vectors in nullspace(A) can be
- ▶ implies k < n/2
- ightharpoonup difficult to verify for general A
- lacktriangle holds with high probability for certain distributions of random A

¹Feuer and Nemirovski (IEEE Trans. IT, 2003) and, Candes and Tao (IEEE Trans. IT, 2005) restricted isometry property

Proof of nullspace condition

notation

- ▶ x has support $I \subseteq \{1, 2, ..., n\}$ if $x_i = 0$ for $i \notin I$
- ightharpoonup |I| is the number of elements in I
- $ightharpoonup P_I$ is projection matrix on n-vectors with support I: P_I is diagonal with

$$(P_I)_{jj} = \begin{cases} 1 & j \in I \\ 0 & \text{otherwise} \end{cases}$$

ightharpoonup A satisfies the nullspace condition if

$$||P_I z||_1 < \frac{1}{2} ||z||_1$$

for all nonzero z in nullspace(A) and for all support sets I with $|I| \leq k$

sufficiency: suppose A satisfies the nullspace condition

- ▶ let \hat{x} be k-sparse with support I (i.e., with $P_I\hat{x} = \hat{x}$); define $y = A\hat{x}$
- lacktriangle consider any feasible x (i.e., satisfying Ax=y), different from \hat{x}
- $z = x \hat{x}$; this is a nonzero vector in nullspace(A)

$$||x||_1 = ||\hat{x} + z||_1$$

$$\geq ||\hat{x} + z - P_I z||_1 - ||P_I z||_1$$

$$= \sum_{k \in I} |\hat{x}_k| + \sum_{k \notin I} |z_k| - ||P_I z||_1$$

$$= ||\hat{x}||_1 + ||z||_1 - 2||P_I z||_1$$

$$\geq ||\hat{x}||_1$$

(line 2 is the triangle inequality; the last line is the nullspace condition)

therefore $\hat{x} = \operatorname{argmin}_{Ax=y} \|x\|_1$

${\it necessity:}$ suppose A does not satisfy the nullspace condition

▶ for some nonzero $z \in \text{nullspace}(A)$ and support set I with $|I| \leq k$,

$$||P_I z||_1 \ge \frac{1}{2} ||z||_1$$

- ▶ define a k-sparse vector $\hat{x} = -P_I z$ and $y = A\hat{x}$
- ▶ the vector $x = \hat{x} + z$ satisfies Ax = y and has ℓ_1 -norm

$$||x||_1 = || - P_I z + z||_1$$

$$= ||z||_1 - ||P_I z||_1$$

$$\leq 2||P_I z||_1 - ||P_I z||_1$$

$$= ||\hat{x}||_1$$

therefore \hat{x} is not the unique ℓ_1 -minimizer

Linear classification

- lacktriangledown given a set of points $\{v_1,\ldots,v_N\}$ with binary labels $s_i\in\{1,-1\}$
- ▶ find hyperplane that strictly separates the two classes

homogeneous in a, b, hence equivalent to the linear inequalities in (a, b)

$$s_i(a^T v_i + b) \ge 1, \quad i = 1, \dots, N$$

Approximate linear separation of non-separable sets

$$\min \sum_{i=1}^{N} \max \{0, 1 - s_i(a^T v_i + b)\}$$

- ▶ penalty $1 s_i(a^Tv_i + b)$ for misclassifying point v_i
- ► can be interpreted as a heuristic for minimizing #misclassifid points
- lacktriangle a piecewise-linear minimization problem with variable $a,\ b$

equivalent LO (variables $a \in \mathbb{R}^n$, $b \in \mathbb{R}$, $u \in \mathbb{R}^N$)

min
$$\sum_{i=1}^{N} u_i$$
s.t.
$$1 - s_i(v_i^T a + b) \le u_i, \quad i = 1, \dots, N$$

$$u_i \ge 0, \quad i = 1, \dots, N$$

in matrix notation:

$$\min \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}^T \begin{bmatrix} a \\ b \\ u \end{bmatrix} \\ \text{s.t.} \begin{bmatrix} -s_1 v_1^T & -s_1 & -1 & 0 & \cdots & 0 \\ -s_2 v_2^T & -s_2 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -s_N v_N^T & -s_N & 0 & 0 & \cdots & -1 \\ 0 & 0 & -1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ u_1 \\ u_2 \\ \vdots \\ u_N \end{bmatrix} \le \begin{bmatrix} -1 \\ -1 \\ \vdots \\ -1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Modeling software

modeling tools simplify the formulation of LOs (and other problems)

- ightharpoonup accept optimization problem in standard notation (max, $\|\cdot\|_1, \ldots$)
- recognize problems that can be converted to LOs
- express the problem in the input format required by a specific LO solver

examples of modeling packages

- ► AMPL, GAMS
- ► CVX, YALMIP (MATLAB)
- ► CVXPY, Pyomo, CVXOPT (Python)

CVX example

min
$$||Ax - b||_1$$

s.t. $0 \le x_k \le 1, \quad k = 1, ..., n$

MATLAB code

```
 \begin{array}{l} \text{cvx\_begin} \\ \text{variable } \text{x(n);} \\ \text{minimize(norm(A*x-b, 1))} \\ \text{subject to} \\ \text{x} >= 0 \\ \text{x} <= 1 \\ \text{cvx end} \\ \end{array}
```

- ▶ between cvx_begin and cvx_end, x is a CVX variable
- ▶ after execution, x is MATLAB variable with optimal solution