14/06/2005

Algebra lineare – Corso di laurea in Informatica

Nome: Cognome: Matricola:

N.B.1 La risposta ad ogni singolo esercizio deve essere riportata nello spazio sottostante l'esercizio stesso.

N.B.2 Gli esercizi senza giustificazione o risposta hanno valore nullo.

Esercizio 1. (punteggio
$$\frac{2.5}{30}$$
)
$$\frac{1}{i}-\frac{1}{i+1}=-\frac{1}{2}(1+i) \qquad \mathbf{V} \qquad \mathbf{F}$$
 Giustificazione:

Esercizio 2. (punteggio
$$\frac{2.5}{30}$$
) $[\frac{1}{2}(1+i\sqrt{3})]^6 = 1$ V

Giustificazione:

Esercizio 3. (punteggio $\frac{2.5}{30}$) $\text{Re}(z^2) = (\text{Re}(z))^2$, dove Re(z) denota la parte reale del numero complesso z. $\mathbf V$ **F** Giustificazione: Esercizio 4. (punteggio $\frac{2.5}{30}$)

Siano $v_1=(1,0,1)$ e $v_2=(1,\pi,-1)$ due vettori di \mathbb{R}^3 . Trovare un vettore v di \mathbb{R}^3 ortogonale sia a v_1 che a v_2 .

Risposta:

Esercizio 5. (punteggio $\frac{2.5}{30}$)

Siano u e v due vettori di \mathbb{R}^n tali che

$$|u \cdot v|^2 = ||u||^2 ||v||^2.$$

Allora u = 0 oppure v = 0. **V F**

Giustificazione:

Esercizio 6. (punteggio $\frac{2.5}{30}$)

Siano $P_1 = (1, 1, 1), P_2 = (2, 1, 1), P_3 = (3, 1, 2)$ e $P_4 = (4, 2, 2)$ quattro punti di \mathbb{R}^3 . Trovare l'angolo tra i vettori $u = P_1 P_2$ e $v = P_3 P_4$.

Risposta:

Esercizio 7. (punteggio $\frac{2.5}{30}$)

Trovare l'inversa della matrice
$$A = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

Risposta:

Esercizio 8. (punteggio $\frac{2.5}{30}$)

Trovare i valori del parametro reale λ per i quali i tre vettori $v_1 = (1, 0, 1, 0), v_2 = (0, 1, -1, 0)$ e $v_3 = (0, -1, \lambda, 0)$ di \mathbb{R}^4 sono linearmente indipendenti.

Risposta:

Esercizio 9. (punteggio $\frac{2.5}{30}$)

Trovare la dimensione del sottospazio di \mathbb{R}^7 generato dai seguenti vettori

$$v_1 = (1, 2, -1, 1, 5, 0, 1), v_2 = (0, 2, 1, 3, \sqrt{2}, \pi, -3) e v_3 = (2, 4, -2, 2, 10, 0, 2).$$

Risposta:

Esercizio 10.	(punteggio	$\frac{2.5}{30}$
---------------	------------	------------------

Scrivere la matrice ch
 rappresenta la rotazione piana (in senso antiorario) di angolo
 $\frac{5\pi}{6}$ intorno all'origine.

Risposta:

Esercizio 11. (punteggio $\frac{2.5}{30}$)

Scrivere la matrice che rappresenta la simmetria piana rispetto alla retta r di \mathbb{R}^2 passante per l'origine e che forma un angolo $\alpha = \frac{11\pi}{12}$ con il semiasse positivo delle ordinate.

Risposta:

Esercizio 12. (punteggio $\frac{2.5}{30}$)

Trovere i valori del parametro reale λ affinchè il seguente sistema nelle incognite x,y,z abbia infinite soluzioni.

$$\left\{ \begin{array}{l} x+\lambda(y+z)=1\\ x+\lambda y+z=0\\ \lambda z-x=0 \end{array} \right.$$

Risposta: