Geometria dello scambiatore

Lunghezza (L)	0,7 m
Diametro cilindro (d _{cil})	0,05 m
Numero tubi (N _t)	5
Diametro est (d _e)	0,01 m
Diametro int (d _i)	0,008 m
Passo tra i tubi (P _t)	0,015 m
Numero diaframmi (N _d)	13
Distanza tra i diaframmi (D _d)	0,05 m
λ _{acc} (AISI-316)	16,30 W/m·K

Description	Equation	
Basic equations	$q = \dot{m}_1 c_{\rm p1} \left(T_{1\rm i} - T_{1\rm o} \right)$	(5.140)
	$q = \dot{m}_2 c_{\rm p2} \left(T_{\rm 2o} - T_{\rm 2i} \right)$	(5.141)
Heat transfer areas of	$A_{\rm i} = \pi d_{\rm i} N_{\rm t} L$	(5.142a)
inner and outer surfaces of an inner pipe	$A_{\rm o} = \pi d_{\rm o} N_{\rm t} L$	(5.142b)
Overall heat transfer coefficient	$U_o = \frac{1/A_o}{\frac{1}{h_i A_i} + \frac{\ln\left(\frac{d_o}{d_i}\right)}{2\pi k L} + \frac{1}{h_o A_o}}$	(5.143)
Tube side Reynolds number	$Re_D = \frac{\rho u_m d_i}{\mu} = \frac{\dot{m} d_i}{A_c \mu}$	(5.144)
	$A_c = \frac{\pi d_i^2}{4} \frac{N_t}{N_p}$	(5.144a)
Laminar flow $(Re < 2,300)$	$Nu_D = \frac{hd_i}{k_f} = 1.86 \left(\frac{d_i RePr}{L}\right)^{\frac{1}{3}} \left(\frac{\mu}{\mu_s}\right)^{0.14}$	(5.145)
	0.48 < Pr < 16,700	
	$0.0044 < (\mu/\mu_s) < 9.75$ Use $Nu_D = 3.66$ if $Nu_D < 3.66$	
Turbulent flow $(Re > 2,300)$	$Nu_D = \frac{hd_i}{k_f} = \frac{(f/2) (Re_D - 1000) \text{ Pr}}{1 + 12.7 (f/2)^{1/2} (\text{Pr}^{2/3} - 1)}$	(5.146)
	$300 < Re_D < 5 \times 10^6 $ [4]	
Friction factor	$0.5 \le Pr \le 2000$ $f = (1.58 \ln (Re_D) - 3.28)^{-2}$	(5.147)

Shell side

Nusselt number
$$Nu = \frac{h_o D_e}{k_f} = 0.36 Re^{0.55} P r^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$$

$$2,000 < Re < 1 \times 10^6$$