Road to Junior Data Scientist Module 5: Unsupervised learning

Module Outline

- Introduction
- Similarity, dissimilarity and evaluation metrics
- Dimensionality reduction
- Distance-based learning
- Hierarchical clustering

- Density-based clustering
- Association rules
- Topic model
- Try them all
- Semi-supervised learning
- Summary

What is unsupervised learning?

Supervised learning

$$y = \hat{f}(x)$$

Labeled data

Unsupervised learning

$$y = ?$$

- Grouping
- Finding repeating patterns

Unlabeled data

Introduction

Outlier detection

Ex 1:

Ex 3:

Timestamp	Productivity
2021-06-01	100
2021-06-02	120
2021-06-03	110
2021-06-04	110
2021-06-05	300
2021-06-06	100
2021-06-07	120
2021-06-08	110

Fraud detection

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	***	V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787		-0.018307	0.277838	-0.110474	0.066928	0.128539	-0.189115	0.133558	-0.021053	149.62	0
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425		-0.225775	-0.638672	0.101288	-0.339846	0.167170	0.125895	-0.008983	0.014724	2.69	0
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654		0.247998	0.771679	0.909412	-0.689281	-0.327642	-0.139097	-0.055353	-0.059752	378.66	0
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024		-0.108300	0.005274	-0.190321	-1.175575	0.647376	-0.221929	0.062723	0.061458	123.50	0
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	***	-0.009431	0.798278	-0.137458	0.141267	-0.206010	0.502292	0.219422	0.215153	69.99	0
***	_		_	-	_	-	-	_	-		***	_	-	-		_	-	_		-	
284802	172786.0	-11,881118	10.071785	-9,834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428	***	0.213454	0.111864	1.014480	-0.509348	1.436807	0.250034	0.943651	0.823731	0.77	0
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800	***	0.214205	0.924384	0.012463	-1.016226	-0.606624	-0.395255	0.068472	-0.053527	24.79	0
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454	***	0.232045	0.578229	-0.037501	0.640134	0.265745	-0.087371	0.004455	-0.026561	67.88	0
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087		0.265245	0.800049	-0.163298	0.123205	-0.569159	0.546668	0.108821	0.104533	10.00	0
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180	***	0.261057	0.643078	0.376777	0.008797	-0.473649	-0.818267	-0.002415	0.013649	217.00	0

284315 rows × 31 columns

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	***	V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
541	406.0	-2.312227	1.951992	-1.609851	3.997906	-0.522188	-1.426545	-2.537387	1.391657	-2.770089		0.517232	-0.035049	-0.465211	0.320198	0.044519	0.177840	0.261145	-0.143276	0.00	1
623	472.0	-3.043541	-3.157307	1.088463	2.288644	1.359805	-1.064823	0.325574	-0.067794	-0.270953		0.661696	0.435477	1.375966	-0.293803	0.279798	-0.145362	-0.252773	0.035764	529.00	1
4920	4462.0	-2.303350	1.759247	-0.359745	2.330243	-0.821628	-0.075788	0.562320	-0.399147	-0.238253		-0.294166	-0.932391	0.172726	-0.087330	-0.156114	-0.542628	0.039566	-0.153029	239.93	1
6108	6986.0	-4.397974	1.358367	-2.592844	2.679787	-1.128131	-1.706536	-3.496197	-0.248778	-0.247768		0.573574	0.176968	-0.436207	-0.053502	0.252405	-0.657488	-0.827136	0.849573	59.00	1
6329	7519.0	1.234235	3.019740	-4.304597	4.732795	3.624201	-1.357746	1.713445	-0.496358	-1.282858		-0.379068	-0.704181	-0.656805	-1.632653	1.488901	0.566797	-0.010016	0.146793	1.00	1
		-	-	-	_		-	***	-		***	-	-		-	-		-	-		
279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.882850	0.697211	-2.064945	100	0.778584	-0.319189	0.639419	-0.294885	0.537503	0.788395	0.292680	0.147968	390.00	1
280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413170	0.248525	-1.127396		0.370612	0.028234	-0.145640	-0.081049	0.521875	0.739467	0.389152	0.186637	0.76	1
280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234739	1.210158	-0.652250	111	0.751826	0.834108	0.190944	0.032070	-0.739695	0.471111	0.385107	0.194361	77.89	1
281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.208002	1.058733	-1.632333		0.583276	-0.269209	-0.456108	-0.183659	-0.328168	0.606116	0.884876	-0.253700	245.00	1
281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.223050	-0.068384	0.577829		-0.164350	-0.295135	-0.072173	-0.450261	0.313267	-0.289617	0.002988	-0.015309	42.53	1

492 rows × 31 columns

Customer segmentation

	Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Country
Customer ID							
13085.0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	United Kingdom
13085.0	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	United Kingdom
13085.0	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	United Kingdom
13085.0	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	United Kingdom
13085.0	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	United Kingdom
12680.0	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	2011-12-09 12:50:00	2.10	France
12680.0	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	2011-12-09 12:50:00	4.15	France
12680.0	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	2011-12-09 12:50:00	4.15	France
12680.0	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	2011-12-09 12:50:00	4.95	France
12680.0	581587	POST	POSTAGE	1	2011-12-09 12:50:00	18.00	France

1067371 rows × 7 columns

General concepts

- Similarity and dissimilarity: group similar things together
- Inter-cluster / intra-cluster : separate dissimilar things from each other

Objective function

$$\sum_{k} max_{x^{(i)},x^{(j)} \in c_k} sim(x^{(i)},x^{(j)})$$

$$\sum_{m} \sum_{k} \min_{x^{(i)} \in c_n, x^{(j)} \in c_m} sim(x^{(i)}, x^{(j)}), n \neq m$$

Introduction

Bad cluster

1 item per cluster

1 cluster

Maximum intra-cluster similarity

Minimum inter-cluster similarity

We need some constraints

e.g. minimum number of items in a cluster maximum number of clusters

Module Outline

- Introduction
- Similarity, dissimilarity and evaluation metrics
- Dimensionality reduction
- Distance-based learning
- Hierarchical clustering

- Density-based clustering
- Association rules
- Topic model
- Try them all
- Semi-supervised learning
- Summary

Data types

- Numerical values: sales amount, number of transaction, balance, debt, age
- Categorical values: sex, educational background, province code

Age	Sex	Educational	Province code	Number of monthly	Balance
		background		transaction	
[0, ∞)	{0, 1}	{1, 2, 3, 4, 5, 6}	{1, 2, 3,, 77}	[0, ∞)	$(-\infty, \infty)$

$$\boldsymbol{\chi}^{(1)} = (24, 0, 4, 8, 3, 20000)$$

$$\boldsymbol{\chi}^{(2)} = (38, 1, 6, \frac{10}{10}, 20, \frac{100000}{100000})$$

$$\boldsymbol{x}^{(3)} = (35, 1, 6, 10, 10, 60000)$$

$$\boldsymbol{\chi}^{(4)} = (30, 0, 5, 50, 10, 50000)$$

20000 is closer to 50000 than 100000

Province 8 is NOT closer to province 10 than province 50

Distance metrics

- Minimum = 0 (Similar)
- Maximum = ∞ (Dissimilar)
- D(X,Y) = 0 if and only if X = Y
- D(X,Y) = D(Y,X)
- $D(X,Z) \leq D(X,Y) + D(Y,Z)$

Euclidean distance

• 1-d

• 2-d

$$D(X,Y) = \sqrt{(X_0 - Y_0)^2 + (X_1 - Y_1)^2}$$

• 3-

$$D(X,Y) = \sqrt{(X_0 - Y_0)^2 + (X_1 - Y_1)^2 + (X_2 - Y_2)^2}$$

$$D(X,Y) = \sqrt{\sum_{i=0}^{2} (X_i - Y_i)^2}$$

D-dimensional vector
$$D(X,Y) = \sqrt{\sum_{i=0}^{d} (X_i - Y_i)^2}$$

Minkowski distance

•
$$D(X,Y) = (\sum_{i=1}^{n} |X_i - Y_i|^p)^{1/p}$$

- Euclidean distance: p = 2
- Manhattan distance: p = 1

Manhattan

Euclidean

Waldir, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

Variance

- Minimum = 0 (similar)
- Maximum = ∞ (dissimilar)
- Cluster property

Hamming distance

Count dissimilar positions; suitable for categorical values

$$x : 0 1 0 0$$

 $y : 1 0 0 1$

$$D(x,y)=3$$

$$x^{(2)} = (38, 1, 6, 10, 20, 100000)$$

 $x^{(3)} = (35, 1, 6, 10, 10, 60000)$

$$D(x^{(2)}, x^{(3)}) = 3$$

Similarity function

- Loosely speaking, it's the inverse of a distance metric
- High similarity -> large value <
- Low similarity -> small value (negative or zero)

Cosine similarity

$$Minimum = -1$$

$$Maximum = 1$$

$$\cos\theta = \frac{X \cdot Y}{||X|| \cdot ||Y||}$$

$$= \frac{\sum_{i=1}^{d} X_i \cdot Y_i}{\left| |X| \right| \cdot \left| |Y| \right|}$$

Advantage

Consider only non-zero values

Disadvantage

Small range

$$x^{(2)} = (38, 1, 6, 10, 20, 100000)$$

 $x^{(3)} = (35, 1, 6, 10, 10, 60000)$

$$(38 * 35 + 1 * 1 + 6 * 6 + 10 * 10 + 20 * 10 + 100000 * 60000)$$

$$\frac{(38*35+1*1+6*6+10*10+20*10+100000*60000)}{\sqrt{38^2+1^2+6^2+10^2+20^2+100000^2}\cdot\sqrt{35^2+1^2+6^2+10^2+60000^2}}$$

Pearson's correlation

From
$$\rho(x,y) = \frac{E[(x-E[x])(y-E[y])]}{\sqrt{E[(x-E[x])^2]}\sqrt{E[(y-E[y])^2]}},$$

We want to find the correlation coefficient between feature j and feature k

- ullet The dataset contains d training samples
- $x_j^{(i)}$ is feature j of input $x^{(i)}$
- x_j is the d dimensional vector containing all the values of j^{th} feature for all training samples $\left|\sum_{i=1}^d \left(x_j^{(i)} \overline{x_j}\right) \left(x_k^{(i)} \overline{x_k}\right)\right|$

$$C_{j,k} = \frac{\left| \sum_{i=1}^{d} \left(x_j^{(i)} - \overline{x_j} \right) \left(x_k^{(i)} - \overline{x_k} \right) \right|}{\sqrt{\sum_{i=1}^{d} \left(x_j^{(i)} - \overline{x_j} \right)^2} \sqrt{\sum_{i=1}^{d} \left(x_k^{(i)} - \overline{x_k} \right)^2}}$$

Jaccard index

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Intersection Over Union (IOU)

Minimum = 0

Maximum = 1

Note: If $A = B = \emptyset$ then J(A, B) = 1

Jaccard distance

$$d_{J(A,B)} = 1 - J(A,B)$$

Minimum = 0

Maximum = 1

$$x^{(2)} = (38, 1, 6, 10, 20, 100000)$$

 $x^{(3)} = (35, 1, 6, 10, 10, 60000)$

$$J(x^{(2)}, x^{(3)}) = \frac{3}{3+3}$$

Comparison

Choosing similarity/dissimilarity metrics

 $X^{(2)}$ $X^{(3)}$ $X^{(1)}$

Numerical/Categorical

Sparsity

Similarity distribution

Ordering

Range boundary

Hamming: $X^{(1)} \neq X^{(2)}$ and $X^{(1)} \neq X^{(3)}$

Euclidean,

Manhattan, $|X^{(1)} - X^{(2)}| < |X^{(1)} - X^{(3)}|$

Minkowski

Clustering evaluation

- Internal evaluation
 - Variance
 - Similarity/distance
 - DB index
 - Dunn index
 - Silhouette Coefficient

- External evaluation
 - Require class labels
 - Purity
 - Rand index
 - Mutual information
 - F- measure

Code samples

Online Retail II UCI | Kaggle (https://www.kaggle.com/mashlyn/online-retail-ii-uci)

- InvoiceNo: nominal
- StockCode: nominal
- Description: nominal
- Quantity: numeric

- InvoiceDate: numeric
- UnitPrice: numeric
- CustomerID: nominal
- Country: nominal

Module Outline

- Introduction
- Similarity, dissimilarity and evaluation metrics
- Dimensionality reduction
- Distance-based learning
- Hierarchical clustering

- Density-based clustering
- Association rules
- Topic model
- Try them all
- Semi-supervised learning
- Summary

Curse of dimensionality

- Processing time/memory
- Visualization
- Redundancy

number of reviews

Dimensionality reduction

Feature selection

price and value_price are positively correlate

number_of_review and love are positively correlate

- drop one of them

Visualization

Map K-dimensional vector to

We may see some insight from low dimensional space

Pearson's correlation

From
$$\rho(x,y) = \frac{E[(x-E[x])(y-E[y])]}{\sqrt{E[(x-E[x])^2]}\sqrt{E[(y-E[y])^2]}},$$

We want to find the correlation coefficient between feature j and feature k

- The dataset contains d training samples
- $x_j^{(i)}$ is feature j of input $x^{(i)}$
- x_j is the d dimensional vector containing all the values of j^{th} feature for all training samples $\left|\sum_{i=1}^d \left(x_j^{(i)} \overline{x_j}\right) \left(x_k^{(i)} \overline{x_k}\right)\right|$

$$C_{j,k} = \frac{\left| \sum_{i=1}^{d} \left(x_j^{(i)} - \overline{x_j} \right) \left(x_k^{(i)} - \overline{x_k} \right) \right|}{\sqrt{\sum_{i=1}^{d} \left(x_j^{(i)} - \overline{x_j} \right)^2} \sqrt{\sum_{i=1}^{d} \left(x_k^{(i)} - \overline{x_k} \right)^2}}$$

Principal component analysis (PCA)

Keep different points away from each other

→ high variance

Finding the best projection

$$x \xrightarrow{\text{project}} x' \xrightarrow{\text{project}} x$$
(encode) (decode)

Choose linear transformation

Eigen decomposition to eigen axes

= principal components

The projection on d'axis has the largest variance.

Singular value decomposition (SVD)

→ We can approximate d-dimensional vectors with 2-dimensional vectors

t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE)

- Construct a probability distribution over pairs of high-dimensional objects in such a way that
 - Similar objects have a high probability of being picked
 - Dissimilar points have an extremely small probability of being picked
- 2. Define a similar probability distribution over the points.
 - The location of the point in the low-dimensional space is the where it minimizes the KL divergence between its distribution in the low-dimensional and the high-dimensional space.
 - with respect to the locations of the points in the map

Sample codes

```
tsne = manifold.TSNE(n_components=2,
init='pca')
X_tsne = tsne.fit_transform(X)

plot_embedding(X_tsne)
```


Common mistakes

- Independence
- Linearly independent
- Correlation

3-d example

3-d projection

Chessboard pattern

 $\rightarrow x_1$

Examples

t-SNE embedding of the digits

Outlier problem

PCA tries to minimize the reconstruction error $(x'-x)^2$ therefore, it is sensitive to outliers

Code samples

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	***	V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787		-0.018307	0.277838	-0.110474	0.066928	0.128539	-0.189115	0.133558	-0.021053	149.62	0
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425		-0.225775	-0.638672	0.101288	-0.339846	0.167170	0.125895	-0.008983	0.014724	2.69	0
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654		0.247998	0.771679	0.909412	-0.689281	-0.327642	-0.139097	-0.055353	-0.059752	378.66	0
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024		-0.108300	0.005274	-0.190321	-1.175575	0.647376	-0.221929	0.062723	0.061458	123.50	0
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739		-0.009431	0.798278	-0.137458	0.141267	-0.206010	0.502292	0.219422	0.215153	69.99	0
	_		_		-		-	_			***	_	_	-		-		-			
284802	172786.0	-11,881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428		0.213454	0.111864	1.014480	-0.509348	1.436807	0.250034	0.943651	0.823731	0.77	0
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800		0.214205	0.924384	0.012463	-1.016226	-0.606624	-0.395255	0.068472	-0.053527	24.79	0
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454		0.232045	0.578229	-0.037501	0.640134	0.265745	-0.087371	0.004455	-0.026561	67.88	0
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087		0.265245	0.800049	-0.163298	0.123205	-0.569159	0.546668	0.108821	0.104533	10.00	0
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180		0.261057	0.643078	0.376777	0.008797	-0.473649	-0.818267	-0.002415	0.013649	217.00	0

284315 rows × 31 columns

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	***	V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
541	406.0	-2.312227	1.951992	-1.609851	3.997906	-0.522188	-1.426545	-2.537387	1.391657	-2.770089		0.517232	-0.035049	-0.465211	0.320198	0.044519	0.177840	0.261145	-0.143276	0.00	1
623	472.0	-3.043541	-3.157307	1.088463	2.288644	1.359805	-1.064823	0.325574	-0.067794	-0.270953		0.661696	0.435477	1.375966	-0.293803	0.279798	-0.145362	-0.252773	0.035764	529.00	1
4920	4462.0	-2.303350	1.759247	-0.359745	2.330243	-0.821628	-0.075788	0.562320	-0.399147	-0.238253		-0.294166	-0.932391	0.172726	-0.087330	-0.156114	-0.542628	0.039566	-0.153029	239.93	1
6108	6986.0	-4.397974	1.358367	-2.592844	2.679787	-1.128131	-1.706536	-3.496197	-0.248778	-0.247768	***	0.573574	0.176968	-0.436207	-0.053502	0.252405	-0.657488	-0.827136	0.849573	59.00	1
6329	7519.0	1.234235	3.019740	-4.304597	4.732795	3.624201	-1.357746	1.713445	-0.496358	-1.282858	140	-0.379068	-0.704181	-0.656805	-1.632653	1.488901	0.566797	-0.010016	0.146793	1.00	1
***		-		-	-	-	-	-	-			-	-	-	-	-		-	-		
279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.882850	0.697211	-2.064945	111	0.778584	-0.319189	0.639419	-0.294885	0.537503	0.788395	0.292680	0.147968	390.00	1
280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413170	0.248525	-1.127396		0.370612	0.028234	-0.145640	-0.081049	0.521875	0.739467	0.389152	0.186637	0.76	1
280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234739	1.210158	-0.652250	111	0.751826	0.834108	0.190944	0.032070	-0.739695	0.471111	0.385107	0.194361	77.89	1
281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.208002	1.058733	-1.632333		0.583276	-0.269209	-0.456108	-0.183659	-0.328168	0.606116	0.884876	-0.253700	245.00	1
281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.223050	-0.068384	0.577829		-0.164350	-0.295135	-0.072173	-0.450261	0.313267	-0.289617	0.002988	-0.015309	42.53	1

492 rows × 31 columns

Module Outline

- Introduction
- Similarity, dissimilarity and evaluation metrics
- Dimensionality reduction
- Distance-based learning
- Hierarchical clustering

- Density-based clustering
- Association rules
- Topic model
- Try them all
- Semi-supervised learning
- Summary

K-means

 c_1, c_2, c_3 are centroids

Find centroids (center of clusters) that minimize the distances between cluster members and cluster centroids

S is a cluster assignment e.g. assign $oldsymbol{x^{(i)}}$ to cluster $oldsymbol{j}$

K-means

Algorithm

- 1. Initialize cluster centroids
- 2. Assign instances to their closest centroids

- 3. Find new centroids
- 4. Re-assign instances to their closest centroids

K-means

5. Repeat from 2. until the assignment becomes stable

K-modes

Sometimes, the mean is not a good representation especially for a categorical value

→ Choose the closest data point to the completed centroid

→ Choose the mode as the cluster representation and measure dissimilarities using Manhattan distance especially for categorical values

K-modes

K-modes

Finding a good k

- Known number of clusters
 - Doesn't guarantee to produce desired clusters
- Try them all!!!
 - And choose the best k : requires evaluation metrics

Grid search: find k that has the highest cluster scores

```
for each k in range(...)
    s = find k clusters
    s_score = evaluate(s)
```


Overlapping cluster

One instance belongs to only one cluster

- Not suitable for overlapping structures Solution
- Map instances to higher dimensional space —→tends to be more sparse → not overlap
- Fuzzy solution: partial membership

Non-spherical distribution

Project

Module Outline

- Introduction
- Similarity, dissimilarity and evaluation metrics
- Dimensionality reduction
- Distance-based learning
- Hierarchical clustering

- Density-based clustering
- Association rules
- Topic model
- Try them all
- Semi-supervised learning
- Summary

Dendrogram

Hierarchical structure

If we use k-mean to find clusters,

- 1. k = ?
 - Number of the leaf clusters?
 - Number of the top leaf clusters?
 - Number of all possible clusters?
- 2. Hierarchical structure
 - Splitting a big cluster into small clusters
 - → Top-down construction
 - Merging small clusters into a bigger cluster
 - Bottom-up construction

How many clusters in each level?

Note that this is an <u>unsupervised</u>

learning

Cluster dissimilarity metrics

- Euclidean distance: $\sum_{i} ||x_i y_i||_2$
- Manhattan distance: $\sum_{i} ||x_i y_i||_1$ Covariance matrix eigen values

– Mahalanobis distance: $\sqrt{(x-y)^T\Sigma^{-1}(x-y)}$

Eigen axes/cluster mean

Linkage criteria

- Single linkage clustering: $\min\{d(a,b): a \in A, b \in B\}$ Closest point between two clusters
- Complete linkage clustering: $\max\{d(a,b): a \in A, b \in B\}$ Farthest points between two clusters
- Unweighted average linkage clustering: $\frac{1}{|A|\cdot|B|}\sum_{a\in A}\sum_{b\in B}d(a,b)$
- Weighted average linkage clustering: $d(i,j,k) = \frac{d(i,k) + d(j,k)}{2}$
- Sum of intra-cluster variance cluster is the weighted average distance of its member clusters
- The increase in variance for the cluster being merged (Ward)

Bottom-up construction: Agglomerative clustering

- Merge smaller clusters into a larger clusters
- Based on the dissimilarity metric and linkage criterion

 $O(n^3)$ quite slow

Have better algorithms

in some special cases

Top-down construction: Divisive clustering

- Find the split
- Based on the dissimilarity matric and linkage criteria

 $O(2^n)$ very slow Need good heuristics

Module Outline

- Introduction
- Similarity, dissimilarity and evaluation metrics
- Dimensionality reduction
- Distance-based learning
- Hierarchical clustering

- Density-based clustering
- Association rules
- Topic model
- Try them all
- Semi-supervised learning
- Summary

DBSCAN

Density Based Spatial Clustering of Application with Noise

- Given a point, find all neighboring points in the small radius
- If the neighboring area is dense enough, connect nodes together and form a cluster

No pre-defined number of clusters. Allow non-spherical cluster.

Use cases

- Non-spherical structures
- An instance is closed to some of its neighbors in the same clusters —→high density

DBSCAN

- **A**, B, C
 - 3 points in the distance \mathcal{E} from the core point A
 - Add B, C to the cluster
- (2) 3 points in the distance \mathcal{E} from the core point B
 - Add D to the cluster
 - Repeat the process

- E
- Min points

Project

Module Outline

- Introduction
- Similarity, dissimilarity and evaluation metrics
- Dimensionality reduction
- Distance-based learning
- Hierarchical clustering

- Density-based clustering
- Association rules
- Topic model
- Try them all
- Semi-supervised learning
- Summary

Usecases

Market basket analysis

Transaction list

- Shampoo, conditioner, cola, chips
- Shampoo, conditioner, toothpaste, chips
- Shampoo, toothbrush, toothpaste, water
- Shampoo, conditioner toothbrush, cola
- Conditioner, toothpaste, cola, chips

Frequent patterns --- promotional campaign

Medical diagnosis

Symptoms → diagnosis
 e.g. glucose level, insulin level,
 blood pressure → diabetes

Interestingness

Itemset: set of co-occurrence items

Transaction list: T

- Shampoo, conditioner, cola, chips

transaction

antecedent e.g. Shampoo
consequence e.g. Conditioner

(Association) Rule: $X \to Y$ If a customer buy X, they also buy Y

If there are symptom X, the diagnosis is Y

We want to find interesting rules

Support: How often we see itemset X in the transaction list T

$$Supp(X) = \frac{|X \cap T|}{|T|}$$
 High support \longrightarrow interesting pattern

• Confidence: How often we see rule $X \to Y$ in the transaction list T

$$Conf(X \to Y) = \frac{Supp(X \cap Y)}{Supp(X)}$$
 or $P(Y|X)$

Lift: Independence of X and Y

$$P(X|Y)P(Y)$$
 or $P(Y|X)P(X)$

$$lift(X \to Y) = \frac{Supp(X \cap Y)}{Supp(X) \cdot Supp(Y)}$$
 or $\frac{P(X \cap Y)}{P(X) \cdot P(Y)}$

lift = 1 X and Y are independent

lift > 1 X and Y are dependent, possible consequent

lift < 1 X and Y are substitution to each other

All-confidence

$$allconf(X \to Y) = \frac{Supp(X \cap Y)}{\max(Supp(X), Supp(Y))}$$

Cosine

$$cos(X \to Y) = \frac{Supp(X \cap Y)}{\sqrt{Supp(X) \cdot Supp(Y)}}$$

Conviction: dependency of X and Y

$$conv(X \to Y) = \frac{1 - Supp(Y)}{1 - conf(X \to Y)} = \frac{P(X) \cdot P(Y)}{P(X \cap \overline{Y})}$$

Apriori algorithm

Frequency counting algorithm

- Constructing small to large itemsets e.g. |x| in $1 \dots n$
- Filter cut patterns with low support
- Extend the pattern length

Example		For each itemset		Frequency cou		unt		
Itemsets		Count for the patt $ x = 1$		x =2		x = 3		
-	1 , 2, 3, 4}	X	support	X S	upport	X	support	
-	1 , 2, 4}	{1 }	3	{1, 2 }	3	$\{1, 2, 3\}$	low support	
-	1 , 2}	{2 }	6	{1, 3}	1	$-\{1, 2, 4\}$	low support	
-	{2, 3, 4}	{3 }	4	{1,4}	2	{1,3,4}	low support	
-	{2,3}	{4 }	5	{2,3}	3	{2, 3, 4}	2	
-	{3,4}			{2,4}	4	V Filter out pa	atterns with low si	upport
-	{2,4} For 6	each pat	tern /	{3,4}	3	e.g. support		30001
	Extend the previous pattern							

Market-basket analysis (Affinity analysis)

Understand the purchase behavior of a buyer

e.g. beers are often bought with diapers

Then

- Cross-selling
- Customer segmentation

Project

Module Outline

- Introduction
- Similarity, dissimilarity and evaluation metrics
- Dimensionality reduction
- Distance-based learning
- Hierarchical clustering

- Density-based clustering
- Association rules
- Topic model
- Try them all
- Semi-supervised learning
- Summary

Bag-of-word

document

Frequency count vector word importance vector

Vector dimension = size of vocabulary → very large

Topic model

E.g. sports → score, win, lose, soccer, tennis, referee, foul, etc. topic

Topic model

How?

1. Matrix factorization

Number of topics

Topic model

CC-BY-SA 4.0 <u>Topic model scheme.webm</u> Author: <u>Christoph Carl Kling</u>

Date: 29 March 2017

Topic model

Project

Module Outline

- Introduction
- Similarity, dissimilarity and evaluation metrics
- Dimensionality reduction
- Distance-based learning
- Hierarchical clustering

- Density-based clustering
- Association rules
- Topic model
- Try them all
- Semi-supervised learning
- Summary

Finding data insight

Customer segmentation/ads target

Module Outline

- Introduction
- Similarity, dissimilarity and evaluation metrics
- Dimensionality reduction
- Distance-based learning
- Hierarchical clustering

- Density-based clustering
- Association rules
- Topic model
- Try them all
- Semi-supervised learning
- Summary

Supervised vs unsupervised learning

Supervised learning

$$y = \hat{f}(x)$$

Labeled data

Unsupervised learning

$$y = ?$$

$$\chi^{(4)}$$

Unlabeled data

Semi-supervised learning

Unsupervised

data

- Labeled data is expensive
- Unlabeled data is cheap

However, it is hard to build a good model without supervision.

Mix them together

Data augmentation

- Add noise(random, Gaussian)
- Image translation, transformation
- Web crawling/scraping

Getting more pseudo-labeled data

Module Outline

- Introduction
- Similarity, dissimilarity and evaluation metrics
- Dimensionality reduction
- Distance-based learning
- Hierarchical clustering

- Density-based clustering
- Association rules
- Topic model
- Try them all
- Semi-supervised learning
- Summary

What, when, why do we need unsupervised learning

- We don't have labeled data
- We want to find insights in the data (we have some assumptions)