Properties of Relations

Let R be a binary relation on A.

R is reflexive $\triangleq \forall x \in A (x R x)$ R is symmetric $\triangleq \forall x, y \in A (x R y \implies y R x)$ R is transitive $\triangleq \forall x, z \in A (\exists y \in A (x R y \land y R z) \implies x R z)$

Let R, $S \subseteq A^2$. Prove that the following statements are true:

$$R \subseteq S \Rightarrow R^{-1} \subseteq S^{-1}$$

$$(R \cap S)^{-1} = R^{-1} \cap S^{-1}$$

$$(R \cup S)^{-1} = R^{-1} \cup S^{-1}$$

$$(\overline{R})^{-1} = \overline{R^{-1}}$$

$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}$$

If $R \subseteq A \times B$, then $Id_A \circ R = R = R \circ Id_B$.

Let R, S be binary relations on A.

- 1. R is reflexive if and only if $Id_A \subseteq R$.
- 2. R is symmetric if and only if $R = R^{-1}$.
- 3. R is transitive if and only if $R \circ R \subseteq R$.
- 4. Show that $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$
- 5. Now suppose that $R \subseteq S$ and S are symmetric. Show that $R \cup R^{-1} \subseteq S$.
- 6. Use part 4 to show that R symmetric implies $R \circ R$ is symmetric.