<u>Trabajo Práctico Nº 1:</u> Modelo de Regresión Lineal.

Ejercicio 1.

Utilizar la base de datos provista "cornwell.dta".

(a) A partir de los datos de los siete años, y utilizando los logaritmos de todas las variables, estimar un modelo por POLS que relacione la tasa de crimen con prbarr, prbconv, prbpris, avgsen y polpc y que incluya un conjunto de dummies de año.

POLS:

Source	SS	df	MS		per of obs	=	630
Model Residual	117.644669 88.735673	11 618	10.6949699 .143585231	Prob R-so	1, 618) > > F quared	=	74.49 0.0000 0.5700
Total	206.380342	629	.328108652	_	R-squared MSE	=	0.5624
lcrmrte	Coefficient	Std. err.	t	P> t	[95% cd	onf.	interval]
lprbarr lprbconv lprbpris lavgsen lpolpc d82 d83 d84 d85	7195033 5456589 .2475521 0867575 .3659886 .0051371 043503 1087542 0780454 0420791	.0367657 .0263683 .0672268 .0579205 .0300252 .057931 .0576243 .057923 .0583244	-19.57 -20.69 3.68 -1.50 12.19 0.09 -0.75 -1.88 -1.34 -0.73	0.000 0.000 0.000 0.135 0.000 0.929 0.451 0.061 0.181 0.467	791704 597441 .115531 200502 .307024 108628 156666 22250 192583 1556	13 14 23 18 34 52 04 35	6473024 4938765 .3795728 .0269872 .4249525 .1189026 .0696601 .0049957 .0364928
d87 _cons	0270426 -2.082293	.056899	-0.48 -8.28	0.635	138781 -2.57643		.0846963

(b) Computar los errores estándar robustos a heteroscedasticidad arbitraria y a autocorrelación serial arbitraria.

POLS (con errores estándar robustos):

Linear regression	Number of obs	=	630
	F(11, 89)	=	37.19
	Prob > F	=	0.0000
	R-squared	=	0.5700
	Root MSE	=	.37893

(Std. err. adjusted for 90 clusters in county)

lcrmrte	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
lprbarr lprbconv lprbpris lavgsen lpolpc d82 d83 d84 d85 d86	7195033 5456589 .2475521 0867575 .3659886 .0051371 043503 1087542 0780454 0420791 0270426	.1095979 .0704368 .1088453 .1130321 .121078 .0367296 .033643 .0391758 .0385625 .0428788	-6.56 -7.75 2.27 -0.77 3.02 0.14 -1.29 -2.78 -2.02 -0.98 -0.71	0.000 0.000 0.025 0.445 0.003 0.889 0.199 0.007 0.046 0.329	93727196856152 .03127873113499 .1254092067843911035091865956154668312727831028353	
_cons	-2.082293	.8647054	-2.41	0.480	-3.800445	3641423

(c) Implementar un contraste de Correlación Serial.

Stata.

Se rechaza la hipótesis nula de no correlación serial.

(d) Implementar un contraste de Heterocedasticidad.

Stata.

Se rechaza la hipótesis nula de homocedasticidad.

(e) Asumir que se cumple el supuesto de exogeneidad estricta y que u_{it} sigue un proceso AR(1). Computar el estimador de FGLS siguiendo el enfoque de Prais-Winsten. Una descripción del procedimiento se puede encontrar en Wooldridge (2010), sección 7.8.6. Observación: GLS necesita exogeneidad estricta para conseguir estimadores consistentes.

FGLS:

Source	SS	df	MS	Number of obs	s = =	630 2050.54
Model Residual	885.585523 22.2417551		73.7987936 .035989895	Prob > F R-squared Adj R-squarec	= =	0.0000 0.9755 0.9750
Total	907.827278	630	1.44099568	Root MSE	=	.18971
tilde_lcrmrte	Coefficient	Std. err	. t	P> t [95	conf.	interval]
tilde_lprbarr	481208	.0333124	-14.45	0.00054	56271	4157888
tilde lprbconv	3353095	.0209135	-16.03	0.00037	53796	2942395
tilde lprbpris	1624321	.0339271	-4.79	0.000229	90585	0958058
tilde lavgsen	0203981	.0289633	-0.70	0.48207	72766	.0364804
tilde lpolpc	.3806954	.0298461	12.76	0.000 .322	20834	.4393074
tilde d82	.0120433	.0222954	0.54	0.589033	17405	.0558272
tilde d83	0721363	.0288915	-2.50	0.013128	38737	0153989
tilde d84	1092092	.0333946	-3.27	0.00117	17898	0436286
tilde d85	1018016	.0364716	-2.79	0.005173	34249	0301784
tilde d86	0775719	.0381852	-2.03	0.043152	25605	0025834
tilde d87	0395482	.0394024	-1.00	0.31611	59271	.0378307
tilde_ones	-2.027131	.2099692	-9.65	0.000 -2.43	39471	-1.614792

(f) Computar los errores estándar robustos a heteroscedasticidad arbitraria y a autocorrelación serial arbitraria para el modelo con las variables transformadas del inciso previo. Sugerencia de Wooldridge: "... If we have any doubts about the homoskedasticity assumption, or whether the AR(1) assumption sufficiently captures the serial dependence, we can just apply the usual fully robust variance matrix and associated statistics to pooled OLS on the transformed variables. This allows us to probably obtain an estimator more efficient than POLS (on the original data) but also guards against the rather simple structure we imposed on Ω . Of course, failure of strict exogeneity generally causes the Prais-Winsten estimator of β to be inconsistent."

FGLS (con errores estándar robustos):

Linear regression	on			Number of F(12, 89) Prob > F R-squared Root MSE	obs = = = = = = = = = = = = = = = = = = =	630 837.00 0.0000 0.9755 .18971
		(Std.	err. ac	ljusted for	90 clusters	in county)
tilde_lcrmrte	Coefficient	Robust std. err.	t	P> t	[95% conf	. interval
tilde_d83 tilde_d84	3353095 1624321 0203981 .3806954 .0120433 0721363 1092092	.0718373 .0440331 .0500207 .0258077 .106039 .015186 .01852	-7.61 -3.25 -0.79 3.59 0.79 -3.90	0.000 0.002 0.431 0.001 0.430 0.000 0.000	4228023 2618222 0716774 .1699982 0181309 1089352 1521229	338468 2478168 0630422 .0308811 .5913925 .0422176 0353374
tilde_d85 tilde_d86 tilde_d87 tilde_ones	0775719	.0244324 .0236838 .0252489 .7465981	-4.17 -3.28 -1.57 -2.72	0.002 0.121	1503483 1246312 0897173 -3.510606	053255 0305126 .0106209 5436569

Ejercicio 2.

En este ejercicio, se examinará un modelo para el costo total de producción en la industria aeronáutica a modo de ilustrar una aplicación de un modelo heterocedástico por grupos. Considerar la siguiente función de costos:

$$ln cost_{jt} = \beta_1 + \beta_2 ln output_{jt} + \beta_3 load factor_{jt} + \beta_4 ln fuel price_{jt} + \delta_2 Firm_2 + \delta_3 Firm_3 + \delta_4 Firm_4 + \delta_5 Firm_5 + \delta_6 Firm_6 + \varepsilon_{jt}$$
.

(a) Utilizar la base de datos provista "greene97.dta", la cual contiene datos para seis compañías áreas observadas, anualmente, durante 15 años. Estimar la ecuación por POLS.

Source	SS	df	MS		ber of obs = , 81) =	90
Residual	113.74827	81	.003612628	Pro R-s	b > F = quared =	0.0000 0.9974 0.9972
	114.040893			_	-	.06011
lc			t 		[95% conf.	interval]
	.9192845				.8598126	.9787565
lf	-1.070396	.20169	-5.31	0.000	-1.471696	6690961
lpf	.4174918 	.0151991	27.47	0.000	.3872503	.4477333
id						
2	0412359	.025184	-1.64	0.105	0913441	.0088722
3	2089211	.0427986	-4.88	0.000	294077	1237653
4	.1845557	.0607527	3.04	0.003	.0636769	.3054345
5	.0240547	.0799041	0.30	0.764	1349293	.1830387
6	.0870617 	.0841995	1.03	0.304	080469	.2545924
_cons	9.705942	.193124	50.26	0.000	9.321686	10.0902

(b) Ahora, asumir que, dentro de cada compañía área, se tiene que:

$$Var\left[\varepsilon_{jt} \mid x_{jt}\right] = \sigma_j^2, \ t=1, \dots, T.$$

Por lo tanto, si las varianzas fueran conocidas, el estimador GLS sería:

$$\hat{\beta} = \left[\sum_{j=1}^{N} \frac{1}{\sigma_{i}^{2}} X_{j}^{'} X_{j}\right]^{-1} \sum_{j=1}^{N} \frac{1}{\sigma_{i}^{2}} X_{j}^{'} y_{j},$$

donde X_j es una matriz TxK. Sin embargo, en este caso práctico, las varianzas son desconocidas. Luego, se solicita computar el estimador de FGLS a través de los siguientes métodos:

(i) Estimar el modelo calculando el estimador necesario para la varianza específica de la compañía áreas a partir de los residuos de OLS, es decir, $\hat{\sigma}_j^2 = \frac{e_j^{'}e_j}{n_i}$.

Maestría en Econometría UTDT - Econometría de Datos de Panel | 5 Juan Menduiña

Source	l ss	df	MS		ber of obs , 81)		90 5526.83
Model Residual	118.222298 .216579991			3 Pro 7 R-s	, oi) b > F quared R-squared	=	0.0000
Total	118.438878	89	1.3307739	_	t MSE		.05171
lc	Coefficient	Std. err.	t t	P> t	[95% c	onf.	interval]
lf	.925765 -1.216307 .4056077	.1855858	-6.55	0.000	-1.5855	65	.9790506 8470495 .4305758
id 2 3 4 5	046026 2020985 .1905462 .0371723 .094588		-1.94 -5.59 3.45 0.53 1.27	0.056 0.000 0.001 0.599 0.207	09330 27402 .08079 10298 05337	46 46 87	.0012511 1301725 .3002977 .1773334 .2425488
_cons	9.942316	.1622899	61.26	0.000	9.619	41	10.26522

(ii) Estimar el modelo tratándolo como una forma del modelo de heteroscedasticidad multiplicativa de Harvey (1976). Utilizar el procedimiento en dos etapas.

Heteroskedastic linear regression Two-step GLS estimation				Number	of obs =	90
iwo-steb GTS 6	escimación				i2(8) = chi2 =	
lc	Coefficient	Std. err.	Z	P> z	[95% conf	. interval]
lc	+ 					
lq	.932333	.0295289	31.57	0.000	.8744574	.9902086
lf	-1.115165	.1991174	-5.60		-1.505428	7249023
lpf	.4086271	.0141468	28.88	0.000	.3808999	.4363543
id						
2	•	.0242462	-1.60	0.110	0862271	.0088163
-	11929047		-4.74	0.000	2726892	1131203
	.2082512		3.53	0.000	.0927583	.3237442
	•		0.73			.2101733
	1 .1207862		1.46	0.143	0409335	.2825059
Ŭ		.0020110	1.10	0.110	•0103000	.2020003
_cons	9.841375	.1768449	55.65	0.000	9.494765	10.18798
lnsigma2	+ 					
id	I					
2	.9333314	.8111556	1.15	0.250	6565043	2.523167
3	.575379	.8111556	0.71	0.478	-1.014457	2.165215
4	.639489	.8111556	0.79	0.430	9503466	2.229325
5		.8111556	0.74	0.456	9856255	2.194046
6	.7988952	.8111556	0.98	0.325	7909405	2.388731
_cons	 -6.213752	.5735736	-10.83	0.000	-7.337935	-5.089568
Wald test of	lnsigma2=0: ch	i2(5) = 1.5	56		Prob > ch	12 = 0.9063

Juan Menduiña

(c) Comparar los resultados obtenidos en el inciso (b).

Los resultados obtenidos en el inciso (b) son semejantes en cuanto a valores estimados de los parámetros y a significatividad estadística.

Ejercicio 3.

Considerar la siguiente ecuación de salarios:

$$y_{jt} = \beta_0 + \beta_1 x_{jt} + u_{jt}, j = 1, 2, \dots, N; t = 1, 2$$
 (1)

$$donde\ \beta_0 = \beta_1 = 1,\ u_j \sim \mathcal{N}\ (0,\ \Omega),\ \Omega = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} y\ x_{jt} \sim U\ [1,\ 20].$$

Generar 1000 muestras de N=5 observaciones de corte transversal a partir del modelo (1). Para cada muestra, estimar por FGLS los parámetros del modelo y realizar un test de hipótesis para contrastar que H_0 : $\beta_1=1$. Reportar tamaño del test al 1% y el poder del test cuando $\beta_1=0.8$. Luego, repetir el procedimiento con N=500. ¿Se aprecia algún cambio en el tamaño y/o en el poder del test ante el incremento de N?

$$\begin{array}{cccc} & & \text{N_5} & \text{N_500} \\ & \text{tam_test_1} & 2.7 & 1 \\ \text{poder tes\sim08} & 33.2 & 100 \end{array}$$

Por lo tanto, se puede observar que, ante el incremento de N, el tamaño del test tiende al nivel de significación del 1% y el poder del test tiende al 100%.