Tecnológico de Monterrey	
Departamento:	Mecánica, Ingeniería
Materia:	Métodos Numéricos en Ingeniería
Modalidad:	Presencial
Clave:	M2025
Grupo:	
CRN:	
Profesores cotitulares:	Dr. Adolfo Centeno Téllez
Correos electrónicos:	a.centeno@itesm.mx
Horario del curso:	Miercoles de 13:00 a 16:00
Salón Campus puebla	
Salón Campus Central de Veracruz	
Horario del profesor y lugar de asesoría:	

Intenciones educativas del curso en el contexto general del plan de estudios:

Curso de nivel intermedio que le permite al estudiante resolver problemas de ciencia e ingeniería a través de la aplicación de métodos de aproximación numérica. Requiere de conocimientos previos de programación. Como resultado del aprendizaje el alumno podrá aplicar un método de aproximación numérica en el diseño de la solución de un problema ingenieril.

Objetivo general de la materia:

Es un curso en el área de ingeniería, en donde el alumno tendrá la capacidad de plantear la solución, manual o computacional, de un problema ingenieril a través de la aplicación de métodos numéricos.

Competencias que desarrolla el curso:

- La habilidad para entender y aplicar las matemáticas para solución de problemas complejos de ingeniería a través del empleo de métodos numéricos y su implementación computacional.
- La habilidad de comunicación efectiva en el ámbito de trabajo en grupo y en equipo.
- Una actitud proactiva y de agrado hacia los métodos numéricos, que te conduzcan hacia el auto-aprendizaje de los mismos.
- El valor de liderazgo en todas y cada una de las actividades que realices.
- El valor de la honestidad, alentando la responsabilidad en tu desempeño.

Temas y subtemas del curso:

1- APROXIMACIONES, ERRORES Y MÉTODOS NUMÉRICOS

- 1.1 Exactitud y precisión
- 1.2 Definiciones de error
- 1.3 Tipos de errores
- 1.4 Definición de Método numérico
- 1.5 Estabilidad y convergencia de un Método Numérico

2- SOLUCIÓN NUMÉRICA DE ECUACIONES NO LINEALES Y POLINOMIOS

- 2.1 Método de Bisección
- 2.2 Método de la Secante
- 2.3 Método de Newton-Raphson
- 2.4 Métodos convencionales para raíces de Polinomios (Fórmulas generales, División sintética)
- 2.5 Método de Bairstow para raíces de Polinomios
- 2.6 Análisis de la estabilidad y convergencia de los métodos
- 2.7 Programación de los métodos

3- ÁLGEBRA MATRICIAL Y SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES

- 3.1 Matrices y operaciones básicas
- 3.2 Inversa de una matriz cuadrada
- 3.3 Determinantes de matrices cuadradas: sus propiedades, usos y métodos de cálculo.
- 3.4 Solución analítica de sistemas de ecuaciones lineales (Eliminación Gaussiana e Inversa)
- 3.5 Solución numérica de sistemas de ecuaciones lineales (Gauss-Seidel y descomposición LU)

- 3.6 Planteamiento de problemas que involucren sistemas de ecuaciones no lineales
- 3.7 Solución analítica de sistemas de ecuaciones no lineales (Gráfica y sustitución)
- 3.8 Solución numérica de sistemas de ecuaciones no lineales (Aproximaciones sucesivas y Newton-Raphson)
- 3.9 Análisis de la estabilidad y convergencia de los métodos
- 3.10 Programación de los métodos

4- AJUSTE DE CURVAS POR MÍNIMOS CUADRADOS

- 4.1 Regresión lineal
- 4.2 Linealización de relaciones no lineales (modelo exponencial, modelo de potencias)
- 4.3 Regresión polinomial.
- 4.4 Programación de los métodos

5- INTERPOLACIÓN

- 5.1 Interpolación lineal
- 5.2 Polinomio de interpolación de Newton.
- 5.3 Polinomio de Lagrange.
- 5.4 Interpolación inversa.
- 5.5 Programación de los métodos

6- INTEGRACIÓN NUMÉRICA

- 6.1 Definición de integración definida.
- 6.2 Reglas rectangular y trapezoidal
- 6.3 Reglas de Simpson (1/3 y 3/8)
- 6.4 Método de Romberg
- 6.5 Programación de los métodos

7- SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES

- 7.1 Problemas que involucran ecuaciones diferenciales ordinarias
- 7.2 Condiciones iniciales y de frontera
- 7.3 Método de Euler para ecuaciones diferenciales ordinarias con valores iniciales
- 7.4 Métodos de Runge-Kutta para ecuaciones diferenciales ordinarias con valores iniciales
- 7.5 Ecuaciones Diferenciales Ordinarias de Orden Superior y su representación como sistemas de primer orden
- 7.6 Solución de ecuaciones Diferenciales Ordinarias de Orden Superior
- 7.7 Solución de ecuaciones diferenciales con condiciones frontera por el método del Disparo.

- 7.8 Solución de ecuaciones diferenciales con condiciones frontera por el método de Diferencias Finitas.
- 7.9 Programación de los métodos

Objetivos específicos de aprendizaje por subtema.

- Tema 1. Comprender los conceptos fundamentales de punto flotante, exactitud, precisión y pérdida de significancia. Determinar los distintos tipos de errores numéricos, definir método numérico y examinar la convergencia y estabilidad de un método numérico.
- Tema 2. Aplicar métodos no analíticos para encontrar raíces de ecuaciones.
- Tema 3. Conocer el concepto de matriz y calcular las distintas operaciones matriciales. Aplicar algoritmos de solución de sistemas de ecuaciones lineales y no lineales. Determinar la descomposición LU de una matriz.
- Tema 4. Modelar sistemas a partir de datos experimentales utilizando regresión por mínimos cuadrados en los casos lineal y polinomial. Determinar el coeficiente de correlación de un modelo.
- Tema 5. Aplicar el concepto de interpolación.
- Tema 6. Aplicar los principales algoritmos de integración numérica en el contexto de problemas de ingeniería.
- Tema 7. Resolver ecuaciones diferenciales numéricamente, que modelen sistemas relevantes a aplicaciones en ingeniería.

Metodología de enseñanza y actividades de aprendizaje:

- El alumno realizará lecturas previas definidas en el libro de texto, el profesor explicará el tema haciendo preguntas a los alumnos sobre las lecturas, indicando las aplicaciones de los métodos, deduciendo las fórmulas y desarrollando el algoritmo con la participación del grupo, para después revisar la programación de estos en el lenguaje de programación y en el paquete de análisis numérico definido.
- El auto-estudio individual, previo a la clase, como medio para el trabajo colaborativo.
- La exposición por parte del profesor.
- La exposición colaborativa de temas por parte de los alumnos.
- El auto-aprendizaje de los alumnos.

Técnica didáctica sugerida:

POL, Colaborativa, PBL

PORCENTAJES DE EVALUACIÓN DEL CURSO

CALIFICACIONES PARCIALES:

70 % Examen parcial
30 % Tareas colaborativas e individuales
100 % Total

CALIFICACIÓN FINAL:

50 % Promedio de parciales

10 % Programas

15 % Proyecto final

Venezuela, c2000, spa, [9803730258]

25 % Examen Final

100 % Total

Bibliografía:

LIBROS DE TEXTO:

* Chapra, Steven C., Métodos numéricos para ingenieros / Steven C. Chapra, Raymond P. Canale; [traducción, Javier Enríquez Brito, Ma. del Carmen Roa Hano], <u>5a ed o 6ª ed.</u>, México: McGraw-Hill Interamericana, 2007., , , , [97010611449789701061145]

LIBROS DE CONSULTA: * Nieves Hurtado, Antonio., Métodos numéricos aplicados a la ingeniería / Antonio Nieves Hurtado, Federico C. Domínguez Sánchez., , México : CECSA, 1995., Mexico, 1995., spa, [9682612608]

- * Grossman, Stanley I., Álgebra lineal / Stanley I. Grossman; traducción de Carlos Manuel Sánchez Trujillo., 3a ed., México: McGraw-Hall, 1992., Mexico, 1992., spa, [9684229844]
- * Mathews, John H., 1943-, Métodos numéricos con MATLAB / John H. Mathews, Kurtis D. Fink; traducción Pedro José Paúl Escolano., 1a ed. en espan~ol., Madrid; México: Pearson Educación, c2000., , , spaeng, [84832218109788483221815]
- * Nakamura, Shoichiro, 1935-, Métodos numéricos aplicados con software / Shoichiro Nakamura ; traducción de Oscar Alfredo Palmas Velasco., 1a ed., México : Prentice Hall, c1992, Mexico, c1992, spa, [9688802638] * , Métodos numéricos aplicados en ingeniería / Jean- Marie ledanois ...[et al.], 1a ed, Caracas, Venezuela : McGraw-Hill Interamericana, c2000,

Rúbrica para evaluar actividades

GUIA DE EXPOSICIÓN ORALES							
Tema / Problema:			Gru	Grupo:			
Escala de evaluación Expositor:							
A: Siempre		criterios	Α	В	С	Ъ	E
B: Casi siempre							
C: Normalmente D: casi nunca		Puntaje	5	4	3	2	1
E: Nunca	(Ptos)						
Explica claramente							
Explica pensamientos, no sólo p	asos						
Pregunta por otras soluciones a	la clase)					
Presenta más de una solución							
utiliza mapas conceptuales y m	entales						
Utiliza ejemplos para asegurar l	la compi	rensión					
Realiza buenas preguntas a la c		es como:					
¿será esta la única manera de h							
Responde las preguntas realiza							
Muestra transparencias u otro r adecuado	nedio de	e exposición					
Se expresa en forma audible y o	lara						
Si recibe una respuesta incorrec crear una discusión	cta, la u	sa para					
Logra la atención del público y : sobre ellos	mantien	e dominio					
El grupo apoya la exposición							
Tiene dominio del contenido							
El material de apoyo tiene relación con el contenido expuesto							
Escucha las ideas de otras personas					1		
Se ajusto al tiempo de la exposición							
Puntaje máximo:	Total X						
Observaciones:	Puntaje	obtenido					
	Califica	ción final					
Evaluado por:	Firma:		Fec	ha:			

Rúbrica para evaluar proyecto

CRITERIO A EVALUAR				
	4 – Más Alto – 100%	3 – 85%	2 – 70%	1 – Más Bajo – 50%
Introducción 10%	Presenta objetivos, está estructurada de manera lógica y concisa y da una excelente idea del contenido del reporte	Presenta objetivos, da demasiada información del contenido del reporte semejando un resumen bien estructurado	Presenta objetivos, información mal estructurada sobre el contenido del reporte	Presenta muy poca información sobre el contenido del reporte. Mal estructurada
2) Metodología 10%	Los pasos están claramente especificados y muy bien explicados. Sigue los 7 pasos de la metodología POL	Los pasos no están especificados pero el procedimiento sigue un orden lógico y entendible	Los pasos están especificados pero el proceso no es claro	Los pasos no tienen un orden lógico y la explicación no es clara
3) Datos 10%	Los datos, tablas o gráficas son claros, se explican con detalle y tienen las referencias necesarias	Los datos, tablas o gráficas son claros y relacionadas al texto cercano pero no existen las referencias necesarias	Los datos, tablas o gráficas tienen las referencias necesarias pero no son claras	Los datos, tablas o gráficas contienen errores y no tienen las referencias necesarias. Se carece de datos tablas o gráficas
4) Solución 50%	Es clara, concisa y es la secuencia lógica del procedimiento seguido. Se apoya en la comparación de varios modelos matemáticos. Se justifica claramente la solución del problema desde el punto de vista ético	Es la secuencia lógica de la evidencia pero se presenta en forma confusa. Se justifica la solución desde el punto de vista ético, pero no es tan clara la relación	Se relaciona con la evidencia pero no está apoyada claramente. La justificación ética que se da a la solución del problema no es congruente con tal solución propuesta	Es confusa y no está relacionada con la evidencia presentada. No se hace ningún análisis desde el punto de vista ético
5) Gramática y ortografía 5%	Toda la gramática y la ortografía son correctas	Sólo tiene uno o dos errores	Tienen entre tres a cinco errores	Contiene más de cinco errores de gramática y/o de ortografía
6) Presentación del proyecto	Está engargolado y contiene portada, introducción, índice, metodología PBL, desarrollo del problema, datos, solución, resultados, conclusiones y referencias tanto generales como de la biblioteca digital del ITESM	La presentación deja que desear aunque contiene introducción, metodología, datos, solución, conclusiones y referencias	La presentación deja que desear y es un desorden el contenido del reporte aunque presente al menos introducción y conclusiones	Es una simple impresión de la presentación Power Point y el contenido del reporte es un total desorden o no hay conclusiones

Planeación de actividades del primer parcial

Semana	Fecha	Tema del plan de	Objetivo de	Actividades	Tareas y actividades
		estudios	aprendizaje	en clase	fuera de clase
1	44/04/2046	Bienvenida y lineamientos	Conocer los alcances del	Presentación de	Tarea- Investigar la diferencia entre
	11/01/2016	del curso.	curso en la formación	políticas en el aula.	métodos Numéricos y métodos
			profesional del alumno	Presentación de	analíticos
			así como dar a conocer	Syllabus de la materia.	
			las políticas y		
			lineamientos para su		
	11/01/2016		estudio y acreditación.	NA .: ./	
	14/01/2016	Aproximaciones, errores y	Comprender el concepto	Motivación del uso de	Leer capitulo № 1 del libro de texto
		métodos numéricos	de método numérico.	Métodos Numéricos.	
			Analizar ejemplos en	Definición de método	
			donde se hace	numérico.	
			indispensable la	Definir la diferencia	
			aplicación de los	entre solución analítica	
			métodos numéricos.	y solución numérica.	
			Conocer los conceptos	Explicar los diferentes	
			de estabilidad y	tipos de errores	
			convergencia.		
			Analizar la convergencia		
			y estabilidad de un		
			método en el contexto		
			de los problemas de		
	40/04/2046		aplicación.	5	
2	18/01/2016	Método de bisección	Conocer y aplicar el	Presentación oral del	Leer capitulo № 2 del libro de texto
			algoritmo de bisección.	tema por parte del	
			Elaborar el diagrama de	profesor.	
			flujo del método de	Solución de un ejemplo	
			bisección.	aplicando el método	
	21/01/2016	Método de la secante	Canagar la interpreta si é a	de bisección. Presentación oral del	Obtener raíces de una ecuación
	21/01/2016	ivietodo de la secante	Conocer la interpretación		
			geométrica del método	tema por parte del	cuadrática de manera analítica y
			de la secante.	profesor.	comparar el resultado con lo obtenido
			Conocer y aplicar la	Solución de un ejemplo	con el método de Secante

			fórmula recursiva del	aplicando el método	
			método de la secante.	de la secante.	
3	25/01/2016	Método de Newton-	Conocer y aplicar la	Presentación oral del	Obtener raíces de una ecuación
		Raphson	fórmula recursiva del	tema por parte del	cuadrática de manera analítica y
			método de Newton-	profesor.	comparar el resultado con lo obtenido
			Raphson.	Solución de un ejemplo	con el método de Newton-Raphson
			Conocer las ventajas y	aplicando el método	
			desventajas de dicho	de Newton-Raphson.	
			método respecto		
			respecto a los de		
			bisección y de la secante.		
	28/01/2016	Métodos convencionales	Entender los métodos	Solución de problemas	Tarea- Investigar la funcionalidad de
		para raíces de polinomios	convencionales para	aplicando métodos	Math Parser
		(fórmulas generales,	raíces de polinomios.	convencionales.	
		División sintética	Aplicar los métodos		
			convencionales para		
			raíces de polinomios.		
4	01/02/2016	Método de Bairstow para	Entender el método de	Solución de un	Ver video explicativo del método en
		raíces de Polinomios.	Bairstow.	problema aplicando el	Youtube
			Aplicar el método de	Método de Bairstow.	
			Bairstow a problemas de		
			ingeniería.		
	04/01/2016	Análisis de estabilidad y	Determinar si los	Mostrar las ventajas y	Tarea- Resumen de que método es más
		convergencia de los	métodos estudiados son	desventajas de cada	estable y por qué.
		métodos.	estables y convergen en	método numérico	
			diversos problemas de		
			aplicación.		
5	08/02/2016	Programación de los	Programar los métodos	Programar los métodos	
		métodos estudiados.	estudiados en el curso	con Excel apoyados	
			usando scilab.	con scilab	
	11/02/2016	Primer Parcial		Examen escrito	

Contenido temático del primer examen parcial:	Ponderación de actividades del primer parcial
Método de Bisección	70% Examen parcial

	•	Método de la secante	30% Tareas y/o actividades individuales y colaborativas
١	•	Método de Newton-Raphson.	

Planeación de actividades del segundo parcial

Semana	Fecha	Tema del plan de estudios	Objetivo de aprendizaje	Actividades en clase	Tareas y actividades fuera de clase
6	15/02/2016	Inversa de una matriz cuadrada. Determinantes de matrices cuadradas: sus propiedades, usos y métodos de cálculo	Definir matriz. Definir las operaciones básicas de suma, resta, multiplicación por escalar y división entre matrices. Definir la inversa de una	Exposición oral por parte del profesor.	ruera de clase
	18/02/2016	Solución analítica de sistemas de ecuaciones lineales	matriz cuadrada. Aplicar la regla de Cramer a la solución de un sistema de ecuaciones. Definir la matriz aumentada y la forma matricial de un sistema de ecuaciones. Aplicar el método de eliminación Gaussiana para solución	Explicar los diferentes tipos de soluciones analíticas de sistemas de ecuaciones lineales.	Entender Programa de Eliminación de Gauss mediante los conocimientos ya adquiridos a lo largo del semestre
			de ecuaciones. Calcular la inversa de una matriz.		
7	22/02/2016 25/02/2016	Solución numérica de sistemas de ecuaciones lineales (Gauss-Seidel y descomposición LU).	Conocer los distintos tipos de matrices especiales. Aplicar el método de Gauss-Seidel.	Comparar los métodos de Jacobi y Gauss-Seidel.	
8	29/02/2016	Planteamiento de problemas que involucren sistemas de ecuaciones no lineales. Solución analítica de ecuaciones no lineales (Gráfica y sustitución).	Analizar y plantear problemas que involucren sistemas de ecuaciones no lineales. Resolver sistemas de ecuaciones no lineales por métodos analíticos	Motivación de la solución de sistemas de ecuaciones lineales	
	03/03/2016	Solución numérica de sistemas de ecuaciones no lineales (Newton- Raphson	Conocer y aplicar los métodos de aproximaciones sucesivas y Newton- Raphson de varias	Presentación oral del tema por parte del profesor	

			variables		
9	07/03/2016	Análisis de estabilidad y convergencia de los métodos. Programación de los métodos.	Determinar las propiedades de estabilidad y convergencia de los métodos estudiados en aplicaciones concretas. Programar los métodos estudiados		Tarea. Analizar los métodos vistos es el más estable y explicar por qué.
	10/03/2016				
10	14/03/2016	Regresión lineal. Linealización de relaciones no lineales (modelo exponencial, modelo de potencias.	Conocer el concepto de regresión. Cuantificar el error de una regresión. Deducir las ecuaciones que definen los parámetros de una regresión lineal. Determinar el coeficiente de correlación de una regresión. Aplicar la linealización a modelos de regresión de sistemas exponenciales y de potencias. Calcular el coeficiente de correlación de dichos modelos.	Presentar las aplicaciones de las técnicas de regresión	Leer tema del libro de texto previamente
	17/03/2016	Interpolación lineal. Polinomio de interpolación de Newton. Polinomio de Lagrange.	Conocer el concepto de interpolación. Deducir y aplicar la fórmula de interpolación lineal. Definir el polinomio de interpolación de Newton. Determinar el polinomio de interpolación de Newton para un conjunto dado de datos. Conocer y aplicar la fórmula de Lagrange.		Tarea- Investigar la diferencia entre Polinomio de Newton y Polinomio de Lagrange

Contenido temático del segundo examen parcial:

- Solución analítica de sistemas de ecuaciones lineales
- Solución numérica de sistemas de ecuaciones no lineales
- Regresión
- Interpolación

Ponderación de actividades del segundo parcial 70% Examen parcial

30% Tareas y/o actividades individuales y colaborativas

Planeación de actividades del tercer parcial (final)

Semana	Fecha	Tema del plan de estudios	Objetivo de aprendizaje	Actividades en clase	Tareas y actividades fuera de clase
	21/03/2016				
11	al	asueto			
	25/03/2016				
12	28/03/2016	Interpolación inversa.	Conocer y aplicar el		Entender los ejercicios del libro de texto
		Programación de los	concepto de interpolación		del tema.
		métodos.	inversa. Programar la		
			interpolación de datos		
			según los métodos		
			anteriores.		
	31/03/2016	Segundo parcial			
12	27/10/2015	Definición de integración	Interpretación de la	Definir el concepto de	Ver video explicativo del método en
		definida.	integral y definición por	integración y las	Youtube
		Reglas rectangular y	sumas de Riemann.	diferentes maneras de	
		trapezoidal.	Aproximación de la	aproximar a una	
			integral por rectangulo.	integral.	
			Aproximación de la		
			integral por trapecios.		
	29/10/2015	Reglas de Simpson (1/3 y	Determinar el valor de	Motivación de la regla	Ver video explicativo del método en
		3/8). Método de Romberg	una integral aplicando las	de Simpson a partir de	Youtube
			reglas de Simpson	la interpolación	
			mencionadas. Motivación	cuadrática y cúbica de	
			y definición del método.	valores de las	
			Aplicar los métodos a un	funciones.	
			problema real.	Motivación y definir el	
			Programar los métodos	método de Romberg.	

13	04/04/2016	Problemas que involucran ecuaciones diferenciales. Condiciones iniciales y de frontera. Método de Euler para ecuaciones diferenciales ordinarias con valores iniciales. Segundo Parcial	Plantear problemas y ejemplos de aplicación en el contexto de la ingeniería. Condiciones iniciales y de frontera en el contexto de los métodos numéricos para ecuaciones diferenciales. Definir el método de Euler y derivar su fórmula recursiva.	Motivación del uso de métodos numéricos para resolver ecuaciones diferenciales.	Leer tema del libro de texto previamente
	07/04/2016	Método de Heun Método del polígono Método de Ralston	Definir el método de Heun y su fórmula recursiva. Definir el método del Polígono y derivar su fórmula recursiva. Definir el método de Ralston y derivar su fórmula recursiva.	Explicar el concepto de ecuación diferencial y las aplicaciones de las ecuaciones diferenciales	Tarea- Determinar diferencias entre los métodos vistos en clase
14	11/04/2016	Método de Runge-Kutta de cuarto orden	Definir el método de Runge-Kutta de cuarto orden y derivar su fórmula recursiva.		
	14/04/2016	Ecuaciones Diferenciales Ordinarias de Orden Superior y su representación como sistemas de primer orden	Determinar el sistema equivalente a problemas de orden superior		
15	18/04/2016	Solución de ecuaciones Diferenciales de Ordinarias de Orden Superior	Encontrar la solución de un sistema de ecuaciones		
	21/04/2016				
16	25/04/2016				

Contenido temático del tercer examen parcial:	Ponderación de actividades del tercer parcial
Método de Bisección	25% Examen parcial

- Método de la secante
- Método de Newton-Raphson
- Solución analítica de sistemas de ecuaciones lineales
- Solución numérica de sistemas de ecuaciones no lineales
- Regresión
- Interpolación
- Integración Numérica
 Solución numérica de ecuaciones diferenciales

Calendario de exámenes:

De acuerdo a las políticas de escolar

POLÍTICAS GENERALES Y CÓDIGO DE ÉTICA

Faltas: Lo señalado por el reglamento, equivalen a 3 semanas. Ninguna falta es justificable.

Inicio y fin de clase: Las clases iniciarán 5 minutos después de la hora señalada y finalizarán 5 minutos antes de la hora señalada.

<u>Tareas y actividades individuales:</u> Las formas de entrega y evaluación se especifican en cada una de ellas. Todas las tareas y actividades deberán ser entregadas en formato y tiempo de entrega señalados.

Reportes de lecturas y artículos: Se entregará en forma individual, manuscritos en el formato establecido.

<u>Tareas y actividades colaborativas:</u> Se realizarán actividades durante los periodos parciales así como un proyecto final. En cada caso se proporcionarán especificaciones y serán publicadas en la blackboard. Las fechas de entrega se definirán en cada caso y NO podrán ser modificadas.

<u>Formación de equipos para el proyecto</u>: Se formarán equipos de trabajo (base) los cuales deberán ser multidisciplinarios (diferentes carreras), con un mínimo de 2 integrantes y un máximo de 4 integrantes. Además se formarán equipos especiales para la realización de algunas actividades, ya sean de investigación o exposición de algunos temas, estos estarán formados por un miembro de cada equipo base.

Examen final: de contenido teórico-práctico, se presentará en la fecha y hora establecidas por servicios escolares.