Lab 6: RC Circuits

Zachary Pouska 001103193 Natalie Tran 000698629

PHYS 236 | Fall 2022 Date performed: 11/02/2022

- 1 Purpose
- 2 Theory
- 3 Experiment Analysis

$$V_c = \varepsilon \left(1 - e^{-\frac{t}{\tau}} \right) | \div$$

- 4 Procedure
- 5 Data and Graphs
- 5.1 Part I: Calculate the value of the time constant

The measured value of capacitance of the the capacitor is $104.7\mu F$ The measured value of the resistor using the DMM is $0.987M\Omega$

Calculated Time Constants

$\tau_{measured}$ (sec)	$\tau_{nominal}$ (sec)	% Error
103.34	100	3.34

5.2 Part II: Charging the capacitor

Voltage v Time for Charging

Voltage (V) Time (sec) 0.198 5 10 0.36115 0.49420 0.62625 0.75730 0.86835 0.99340 1.087 45 1.18950 1.287 55 1.37560 1.45565 1.54970 1.617 75 1.698 80 1.772 85 1.832 90 1.9 2.033 100 110 2.1362.245 120 130 2.343140 2.43 150 2.514160 2.5942.667170 2.767 185 2.855200 220 2.956240 3.047260 3.125280 3.193305 3.265 330 3.328 355 3.375380 3.419400 3.449420 3.473435 3.4913.507 450 465 3.519480 3.535 500 3.548510 3.556540 3.575570 3.589630 3.612720 3.6343.648780

Voltage v Time Linearized

Time (sec)	$\begin{bmatrix} -\frac{1}{2} \end{bmatrix}$
5	-0.051
10	-0.094
15	0.148
20	0.191
25	0.236
30	0.276
35	0.323
40	0.359
45	0.401
50	0.442
55	0.481
60	0.518
65	0.563
70	0.596
75	0.638
80	0.678
85	0.711
90	0.750
100	0.832
110	0.900
120	0.977
130	1.052
140	1.124
150	1.198
160	1.275
170	1.350
185	1.464
200	1.575
220	1.721
240	1.873
260	2.025
280	2.180
305	2.375 2.583
330 355	2.773
380 400	2.990 3.171
400	3.345
435	3.497
450	$\frac{3.497}{3.656}$
465	3.794
480	4.014
100	4.014

5.3 Part III: Discharging the capacitor

Voltage v Time for Discharging

Time (sec)	Voltage (V)	
5	0.198	
10	0.361	
15	0.494	
20	0.626	
25	0.757	
30	0.868	
35	0.993	
40	1.087	
45	1.189	
50	1.287	
55	1.375	
60	1.455	
65	1.549	
70	1.617	
75	1.698	
80	1.772	
85	1.832	
90	1.9	
100	2.033	
110	2.136	
120	2.245	
130	2.343	
140	2.43	
150	2.514	
160	2.594	
170	2.667	
185	2.767	
200	2.855	
220	2.956	
240	3.047	
260	3.125	
280	3.193	
305	3.265	
330	3.328	
355	3.375	
380	3.419	
400	3.449	
420	3.473	
435	3.491	
450	3.507	
465	3.519	
480	3.535	

5.4 Part IV: Connecting R and C in parallel

The voltage read across the resistor with the DMM is 4.009~V The voltage read across the capacitor with the DMM is 4.009~V

6 Results

6.1 Part I:Calculate the value of the time constant

To calculate the time constant (τ) the resistor is multiplied by the capacitor value via the equation

$$\tau = RC$$

Substitute the measured values of resistance and capacitance in the equation to recieve the data values stated in Section 5.1.

To calculate the percent error between the expected time constant vs actual time constant created from differing expected resistance and capacitance values, the percent error formula is used

$$\%error = \frac{|\tau_{measured} - \tau_{nominal}|}{\tau_{nominal}} \times 100$$

6.2 Part II: Charging the capacitor

In order to linearize the voltage values measured, the following expression is examined:

$$V_c = \varepsilon \left(1 - e^{\frac{-t}{\tau}} \right)$$

6.3 Part III: Discharging the capacitor

The time constant can be determined by selecting the value of voltage in which it is 37% of the max voltage (emf). Then, at that point, the time is the time constant. $0.37 \times 4.0 \text{V} = 1.48$. The closest point to 1.48 in our graph is 1.461, in which the time is 120 seconds. This means the determined time constant from discharging is 120.

6.4 Part IV: Connecting R and C in parallel

To calculate the current through the resistor, the equation V = IR is used. Manipulating this equation, current can be found via I = V/R. Using the measured values of resistance and voltage, current can be found as $\frac{4.009V}{0.987M\Omega} = 4.062\mu A$.

The max charge can be calculated using the equation $Q_{max} = C\varepsilon$ substituting values, $104.7\mu F \times 4.009V = 419.7\mu C$ The energy stored in the capacitor can be found using the equation $U = \frac{1}{2}C\varepsilon^2$. Substituting values, $\frac{1}{2}104.7\mu F \times 4.009^2 = 841.4\mu J$

7 Questions

7.1 Part 4

- 1. Do you obtain the same values for the voltage across the resistor and capacitor? Explain.

 Yes! They are in parallel, so the potential difference across each should be the same.

 If the potential difference wasn't equal, that wouldn't make sense, as measuring the potential difference across each one is essentially connecting the multimeter to the same point in the circuit, assuming 0 resistance in the wires.
- 2. Is the current across the resistor zero? Explain.

 No. In the case of the resistor and capacitor being in series, as the capacitor fills up, it blocks the current flow through the resistor. In this configuration, as the capacitor charges more current is simply diverted through the resistor instead of through the

8 Conclusion

capacitor.