However, readability is more than just programming style. Also, specific user environment and usage history can make it difficult to reproduce the problem. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. One approach popular for requirements analysis is Use Case analysis. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Unreadable code often leads to bugs, inefficiencies, and duplicated code. There are many approaches to the Software development process. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). They are the building blocks for all software, from the simplest applications to the most sophisticated ones. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Whatever the approach to development may be, the final program must satisfy some fundamental properties. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Programmable devices have existed for centuries. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers.