18.701: Problem Set 10

Dmitry Kaysin

August 2020

Problem 1

- a) Let SL₂ be the special linear group of real matrices with determinant
- 1. Determine the possible eigenvalues λ (real or complex) of the elements of SL_2 , and make a drawing showing the points λ in the complex plane.

We start with 2×2 matrix of the form

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

with $\det A = ad - bc = 1$.

Characteristic polynomial of A is t^2-tr+1 where $r=\operatorname{trace} A=a+d$. Eigenvalues of A are thus

$$\lambda = \frac{r \pm \sqrt{r^2 - 4}}{2}.$$

As $r \to \infty$: $\lambda \to \pm \infty$ and as $r \to -\infty$: $\lambda \to \pm 0$. For r in the interval $(-\infty, -2] \cup [2, \infty)$ eigenvalues of A are real. For r in the interval (-2, 2) eigenvalues of A are complex, occur in conjugate pairs and their locus is upper and lower half of the unit circle of the complex plane.

b) For each λ , decompose the set of matrices $P \in SL_2$ with eigenvalue λ into SL_2 -conjugacy classes.

Proof. Conjugate matrices have the same characteristic polynomial and the same eigenvalues. \Box

c) Determine the matrices $P \in SL_2$ that can be obtained as $P = e^A$ for some real matrix A.

Proof.

Figure 1: Possible eigenvalues of $A \in \mathrm{SL}_2$ in the complex plane.

Problem 2

Proof. \Box