COMUNE DI POGLIANO (MI)
RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

RELAZIONE TECNICA

DI CUI ALL'ARTICOLO 28 DELLA LEGGE 9 GENNAIO 1991, N. 10, ATTESTANTE LA RISPONDENZA ALLE PRESCRIZIONI IN MATERIA DI CONTENIMENTO DEL CONSUMO ENERGETICO DEGLI EDIFICI. APPLICAZIONE DELLA PROCEDURA DI REGIONE LOMBARDIA

definita nell'Allegato E della D.G.R. n.8-5018 del 26 Giugno 2007 e successive modifiche ed integrazioni

Schema di Relazione conforme Allegato B della D.G.R. n.8-8745 del 15 Gennaio 2009.

Opere relative ad edifici di nuova costruzione o a ristrutturazione di edifici nei casi previsti dal p.to 7 "Requisiti di prestazione energetica del sistema edificio-impianto" paragrafo 7.1

Procedura di calcolo documentata nel Decreto n. 5796 del 11 Giugno 2009 Atto n.163 della Direzione Generale Reti e Servizi di Pubblica Utilità e Sviluppo Sostenibile

Calcolo delle prestazioni energetiche del sistema edificio/impianto e del carico termico di progetto con riferimento alle Norme UNI nazionali e UNI EN comunitarie richiamate in E.5 Decreto n.5796:

Per un applicazione parziale e/o limitata al rispetto di specifici parametri, livelli prestazionali e prescrizioni, le informazioni, lo schema di relazione e i documenti relativi ai paragrafi 5,6,7,8 e 9 sono predisposti in modo congruente al livello di applicazione.

Opere relative a: Ristrutturazione
Località: Pogliano Milanese

Via Don Milani - Via Dante

Tipo di edificio : PALESTRA

Categoria: E.6(2)

Committente : COMUNE DI POGLIANO

Progettisti: vedi pag. 2

La presente Relazione Tecnica ai sensi dell'Art. 28 Legge 10, 9-1-1991, viene consegnata in duplice copia prima o insieme, alla denuncia dell'inizio lavori relativi alle opere in oggetto.

La seconda copia viene restituita con l'attestazione dell'avvenuto deposito.

Progetto:
COMUNE DI POGLIANO (MI) RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)
1) INFORMAZIONI GENERALI
1.1 - Comune di <u>Pogliano Milanese (MILANO)</u>
1.2 - Progetto per la realizzazione di <u>Ristrutturazione palestra e zona spogliatoi e servizi adiacente</u>
1.3 - sito in <u>Pogliano Milanese Via Don Milani - Via Dante</u>
1.4 - Concessione edilizia n del _
1.5 - Classificazione dell'edificio: <u>E.6(2) palestra</u>
1.6 - Numero delle unita' abitative: <u>1</u>
1.7 - Committente: <u>COMUNE DI POGLIANO</u>
1.8 - Progettista degli impianti termici:
- 1.9 - Progettista dell'isolamento termico dell'edificio: -
1.10 - Direttore dei lavori degli impianti termici:
1.11 - Direttore dei lavori dell'isolamento termico dell'edificio:
1.12 - L'edificio rientra tra quelli di proprietà pubblica o adibiti a uso pubblico ai fini dell'utilizzo delle fonti rinnovabili di energia previste dall'art.5 comma 15 del decreto del Presidente della Repubblica del 26 agosto 1993, n° 412:
uei 20 agosto 1993, ii 412. □Sì ⊠ No

2) FATTORI TIPOLOGICI DELL'EDIFICIO

segue	nti elementi tipologici (contrassegnati) sono forniti in allegato:	
×	2.1 - piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali	
	2.2 - prospetti e sezioni degli edifici con evidenziazione dei sistemi di protezione solare	
	2.3 - elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari	
3) PAF	RAMETRI CLIMATICI DELLA LOCALITA'	
3.1 - G	radi-giorno [GG] :	<u>2545</u>
3.2 - To	emperatura minima invernale di progetto dell'aria esterna (UNI5364) [°C] :	
3.3 - To	emperatura massima estiva di progetto dell'aria esterna (UNI10349) [°C] :	32.0
3.4 - A	mpiezza massima estiva di progetto delle temp. aria esterna (UNI10349) [°C] :	12_
3.5 - U	midità relativa dell'aria di progetto per la climatizzazione estiva (UNI10339) [%]]: <u>48</u>
3.6 - Ir	radianza solare massima estiva su superficie orizzontale (UNI10349) [W/m²] :	278_
4) DA	TI TECNICO-COSTRUTTIVI DELL'EDIFICIO E DELLE RELATIVE ST	RUTTURE
4.1 - V	olume degli ambienti al lordo delle strutture che li delimitano (V) [m³] :	<u>4591</u>
4.2 - Sı	aperficie esterna che delimita il volume (S) [m²]:	<u>1989</u>
4.3 - R	apporto S/V [m-1]:	0.433
4.4 - Sı	perficie utile dell'edificio [m²]:	<u>757.00</u>
4.5 - V	alori di progetto della temperatura interna per il riscaldamento [°C]:	20_
4.6 - V	alori di progetto umidita' relativa interna per la climatizzazione invernale [%]:	65
4.7 - V	alori di progetto temperatura interna per il raffrescamento [°C]:	_
4.8 - V	alori di progetto umidita' relativa interna per la climatizzazione estiva [%]:	_

5) DATI RELATIVI AGLI IMPIANTI

5.1 Impianti termici

5.1.a) Descrizione generale dell'impianto termico contenente i seguenti elementi:

5.1.a.1 - Tipologia:

Impianto termico centralizzato esistente per riscaldamento ambienti e produzione di acqua calda ad uso sanitario.

5.1.a.2 - Sistemi di generazione:

<u>Caldaia pressurizzata in acciaio a basamento esistente con bruciatore di gas ad aria soffiata a funzionamento bistadio.</u>

5.1.a.3 - Sistemi di termoregolazione:

Gruppo di termoregolazione esistente in centrale termica, pilotato dalla temperatura esterna ed operante sulla temperatura dell'acqua in uscita del generatore di calore; il gruppo è dotato di programmatore che consente la regolazione della temperatura ambiente su due livelli nell'arco delle 24 h.

5.1.a.4 - Sistemi di contabilizzazione dell'energia termica: *Non previsti.*

5.1.a.5 - Sistemi di distribuzione del vettore termico:

Collegamento centrale termica collettori a servizio zona in ampliamento con tubazioni in acciaio posate sottotraccia a parete/pavimento. Installazione di collettori complanari per impianto a pannelli con tubazioni di andata e ritorno per ogni singolo circuito.

<u>Tutte le tubazioni installate sono isolate termicamente con materiale rispondente alla L.10/91 e al suo decreto applicativo DPR 412/93.</u>

5.1.a.6 - Sistemi di ventilazione forzata (tipologie):

Ventilazione forzata non prevista.

5.1.a.7 - Sistemi di accumulo termico (tipologie):

Non previsti.

5.1.a.8 - Sistemi di produzione e di distribuzione dell'acqua calda sanitaria:

Produzione di acqua calda sanitaria esistente realizzata con bollitore termo ad accumulo in centrale termica alimentato dalla caldaia; rete di distribuzione completa di ricircolo.

Realizzazione dell'impianto idrosanitario conforme alla UNI 9182

5.1.a.9 - Durezza dell'acqua di alimentazione dei generatori di calore (per potenza installata uguale o maggiore a 350 kW): <u>Dato non richiesto.</u>

5.1.b) Specifiche dei generatori di energia

5.1.b.1 - Generatore numero 1

Tipologia secondo DPR 660 15 novembre 96; CALDAIA STANDARD

5.1.b.2 - Fluido termovettore:

<u>Acqua</u>

5.1.b.4a - Rendimento termico utile (o di combustione per generatori ad aria calda) al 100% di Pn:

5.1.b.4b - Rendimento termico utile al 100% Pn del generatore di calore a condensazione alle seguenti condizioni:

- Temperatura acqua di mandata all'utenza [°C] :80
- Temperatura acqua di ritorno dall'utenza [°C] : <u>60</u>

5.1.b.4.1 - valore di progetto (rendimento, COP o GUE) 90.0

5.1.b.4.2 - valore minimo prescritto $\underline{84 + 2 \cdot log \ 400 = 89.2}$

5.1.b.4.3 - verifica a norma di legge

5.1.b.5a - Rendimento termico utile (o di combustione per generatori ad aria calda) al 30% di Pn:

5.1.b.5b - Rendimento termico utile al 30% Pn del generatore di calore a condensazione alle seguenti condizioni:

- Temperatura acqua di mandata all'utenza [°C] : <u>80</u>

- Temperatura acqua di ritorno dall'utenza [°C] : <u>60</u>

5.1.b.5.1 - valore di progetto rendimento [%] 91.0

5.1.b.5.2 - valore minimo prescritto [%] $80 + 3 \cdot log \ 400 = 87.8$

5.1.b.5.3 - verifica <u>a norma di legge</u>

5.1.b.6 - Combustibile utilizzato: <u>Gas naturale</u>

5.1.b.7 - Per gli impianti termici con o senza produzione di acqua calda sanitaria, che utilizzano, in tutto o in parte, macchine diverse dai generatori di calore convenzionali, quali ad esempio: macchine frigorifere, pompe di calore, gruppi di cogenerazione di energia termica ed elettrica, collettori solari, le prestazioni delle macchine diverse dai generatori di calore sono fornite indicando le caratteristiche normalmente utilizzate per le specifiche apparecchiature, applicando, ove possibile, le vigenti norme tecniche.

_

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA VIA Don Milani - Via Dante POGLIANO (MI)
5.1.c) Specifiche relative ai sistemi di regolazione dell'impianto termico
5.1.c.1 - Tipo di conduzione previsto in sede di progetto: continuo con attenuazione notturna:
5.1.c.2 - Sistema di telegestione dell'impianto termico: <u>Non previsto.</u>
 5.1.c.3 - Sistema di regolazione climatica per generatore di calore: 5.1.c.3.1 - centralina di termoregolazione: <u>Centralina climatica in centrale termica esistente con compensazione esterna</u>
5.1.c.3.2 - numero dei livelli di programmazione temperatura nelle 24 ore: <u>Due</u>
5.1.c.3.3 - organi di attuazione: <u>Valvola di termoregolazione, sonde esterna e di temperatura</u>
5.1.c.3.4 - potenza elettrica complessivamente assorbita [kW]: _
 5.1.c.4 - Regolatori climatici delle singole zone o unita' immobiliari: <u>Centralina di termoregolazione a servizio del nuovo circuito, con almeno due livelli di temperatura, orologio programmatore in grado di attivare/disattivare la zona in base alla temperatura richiesta nel locale pilota.</u> 5.1.c.4.1 - numero di apparecchi:
5.1.c.4.2 - numero dei livelli di programmazione temperatura nelle 24 ore: <u>due</u>
5.1.c.4.3 - potenza elettrica complessivamente assorbita [kW]:
5.1.c.5 - Dispositivi per la regolazione automatica della temperatura ambiente nei singoli locali (o nelle singole zone, ciascuna avente caratteristiche di uso ed esposizione uniformi) (descrizione sintetica dei dispositivi): <u>Valvole termostatiche con elemento sensibile ad olio, poste sui singoli circuiti, la cui installazione è obbligatoria ai sensi del comma 7 Art. 7.</u>
5.1.c.5.1 - numero di apparecchi: <u>Un attuatore per corpo scaldante ed un cronotermostato per appartamento.</u>
5.1.c.5.2 - potenza elettrica complessivamente assorbita [kW]: _
5.1.d) - Dispositivi per la contabilizzazione del calore nelle singole unita' immobiliari servite da impianto termico centralizzato: <u>Non previsti.</u>
5.1.d.1 - numero di apparecchi:
5.1.d.2 - potenza elettrica complessivamente assorbita [kW]: _

Progetto:

COMUNE DI POGLIANO (MI)

6) PRINCIPALI RISULTATI DEI CALCOLI

Note in ottemperanza alla D.g.r. n. 8/8745 e al D.Lgs. 192 - regime transitorio

- 6.a) Involucro edilizio e ricambi d'aria
- 6.a.1 Identificazione, calcolo e attribuzione dei ponti termici ai componenti opachi dell'involucro edilizio

(vedere tabelle allegate).

- 6.a.2 Caratteristiche termiche (trasmittanza termica e trasmittanza termica periodica), igrometriche e di massa superficiale dei componenti opachi dell'involucro edilizio. Confronto con i valori limite. (vedere tabelle allegate e paragrafo 6.a.6).
- 6.a.3 Caratteristiche termiche dei componenti finestrati dell'involucro edilizio. Classe di permeabilità all'aria dei serramenti esterni. Confronto con i valori limite.

(vedere tabelle allegate e paragrafo 6.a.6).

- 6.a.4 Valutazione dell'efficacia dei sistemi schermanti delle superfici vetrate :
- 6.a.5 Attenuazione dei ponti termici (provvedimenti e calcoli): In corrispondenza dei punti ove si può verificare un innesto di elementi strutturali diversi (pilastri, solai e pareti), non c'è discontinuità di isolamento termico; lo spessore di isolante è adeguato per rendere la trasmittanza termica della parete fittizia non superiore del 15% alla trasmittanza termica della parete corrente. Nei punti dove sono previste aree limitate oggetto di riduzione di spessore (sottofinestre o altri componenti) si è provveduto a calcolare che la trasmittanza termica media ponderata sia inferiore ai limite di cui all'Allegato C.

6.a.6 - Confronto trasmittanza termica con i valori limite (allegato A - D.g.r. 15/01/09, n. 8/8745)

Per i componenti opachi, la trasmittanza termica è mediata con i ponti termici ad essi attribuiti; i valori limite sono comprensivi della maggiorazione 30%

valori minte sono comprensivi dena maggiorazione 50 /0									
Codice	Tipo	Esposizione	Ms(kg/m²)	U(W/m²K)	Verifica	Limite			
112 P.E	verticale	Esterno	360.0	0.641	NR	U<0.34			
	opaca								
113 P.E	verticale	Esterno	198.1	1.083	NR	U<0.34			
	opaca								
227 S.E	serramento	Esterno	20.0	2.064	NR	U<2.86			
227 S.E	vetro	Esterno	20.0	1.900	NR	U<2.21			
565 PAV	65 PAV orizzontale T opaca		892.2	0.187	NR	U<0.33			
587 PAV	divisorio	TF	412.6	0.401	SI	U<0.80			
593 PAV	orizzontale	T2	914.2	0.187	NR	U<0.33			
	opaca								
688 SOF	divisorio	TF	293.8	0.338	SI	U<0.80			
693 SOF	693 SOF orizzontale Esterno opaca		308.8	1.145	NR	U<0.30			
699 SOF	orizzontale	Esterno	1003.7	0.689	NR	U<0.30			
opaca									

6.a.7 - Trasmittanza termica (U) degli elementi divisori tra alloggi o unità immobiliari confinanti (confronto con il valore limite):

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA VIA Don Milani - Via Dante POGLIANO (MI)
vedere tabella paragrafo 6.a.6 e dettaglio CALCOLO DISPERSIONI DI CALORE PER SINGOLO AMBIENTE alla riga con esposizione TF
6.a.8 - Verifica termigrometrica (vedere tabelle allegate)
6.a.9 - Numero di volumi d'aria ricambiati in un'ora (valore medio nelle 24 ore [h-¹]) : 6.a.9.1 - zona: <u>unica</u> 6.a.9.2 - valore di progetto: <u>0.5</u> 6.a.9.3 - valore minimo da norme: <u>0.5</u>
6.a.10 - Portata aria ricambio (solo nei casi di ventilazione meccanica controllata) [m³/h]: <i>Non prevista</i> .
6.a.11 - Portata aria attraverso apparecchiature di recupero [m³/h] : <i>Non prevista</i> .
6.a.12 - Rendimento termico delle apparecchiature di recupero (se previste): <i>Non richiesto</i> .
6.b) Valore dei rendimenti medi stagionali di progetto e limite [%] :
6.b.1 - Rendimento di produzione di progetto : 86.6 6.b.2 - Rendimento di regolazione di progetto : 95.0 6.b.3 - Rendimento di distribuzione di progetto : 98.1 6.b.4 - Rendimento di emissione di progetto : 99.0 6.b.5 - Efficienza globale media stagionale di progetto : 80.9
6.b.6 - Rendimento globale limite [%]: 83.6
6.c) Indice di prestazione energetica per la climatizzazione invernale
6.c.1 - Metodo di calcolo : 5796 6.c.2 - Valore di progetto (ЕРн):
6.c.8 - Fabbisogno di energia elettrica da produzione locale [kWhe] :
6.d) Indice di prestazione energetica normalizzato per la climatizzazione invernale
6.d.1 - Valore di progetto [kJ/m³GG]: 4.4
6.e) Indice di prestazione energetica per la produzione di acqua calda sanitaria
6.e.1 - Fabbisogno di combustibile: <u>1533 Nm³/anno</u> 6.e.2 - Fabbisogno di energia elettrica da rete [kWhe]: <u>0</u> 6.e.3 - Fabbisogno di energia elettrica da produzione locale [kWhe]:

Progetto:

COMUNE DI POGLIANO (MI)

COMUNE DI POGLIANO (MI) RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)
6.f) Impianti solari termici per la produzione di acqua calda sanitaria
6.f.1 - Percentuale di copertura del fabbisogno annuo:
6.g) Impianti fotovoltaici
6.g.1 - Percentuale di copertura del fabbisogno annuo:
6.h) - Indice di prestazione termica per la climatizzazione estiva o il raffrescamento:
Valore di progetto (ETc): 15.4 kWh/m³anno
Valore limite (ETc,L): 10.0 kWh/m³anno
6.i) - Limitazione fabbisogno energetico per la climatizzazione estiva
La prescrizione del pto 5.4.b (D.g.r. 8/8745) : <u>a norma di legge in quanto l'Irradianza</u> sul piano orizzontale mese max. insolazione 278 è inferiore a 290 W/m²
sur prime de l'agentiere messe messe messe este en en en en este de este en es

Progetto:

7) ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

Nei casi in cui la normativa vigente consente di derogare ad obblighi generalmente validi,in questa sezione vanno adeguatamente illustrati i motivi che giustificano la deroganel caso specifico:

-

8) VALUTAZIONI SPECIFICHE PER L'UTILIZZO DELLE FONTI RINNOVABILI DI ENERGIA

Indicare le tecnologie che, in sede di progetto, sono state valutate ai fini del soddisfacimentodel fabbisogno energetico mediante ricorso a fonti rinnovabili di energia o assimilate

_

9) DOCUMENTAZIONE ALLEGATA (per quanto applicabile)

N. <u>1</u>	piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali;
N. <u>0</u>	prospetti e sezioni degli edifici con evidenziazione di eventuali sistemi di protezione solare;
N. <u>0</u>	elaborati grafici relativi a eventuali sistemi solari passivi specificamente progettati per favorire lo sfruttamento degli apporti solari;
N. <u>0</u>	schemi funzionali dell'impianto termico contenenti gli elementi di cui all'analoga voce del punto e);
N. <u>6</u>	tabelle con indicazione caratteristiche termiche e igrometriche dei componenti opachi dell'involucro edilizio;
N. <u>1</u>	tabelle con indicazione delle caratteristiche termiche dei componenti finestrati dell'involucro edilizio;

Altri eventuali allegati:

APPENDICE A: relazione contenente il calcolo dettagliato delle dispersioni di picco, del calcolo convenzionale del FEN e del rendimento globale

Progetto:
COMUNE DI POGLIANO (MI) RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)
10) DICHIARAZIONE DI RISPONDENZA
Il sottoscritto "Marco Brajkovic" iscritto all'Ordine degli Ingegneri di MILANO Nr. 11542 e all'Ordine degli Architetti di MILANO Nr.8105_
essendo a conoscenza delle sanzioni previste dalla normativa nazionale e regionale
dichiara
dichiara sotto la propria personale responsabilità che:
sotto la propria personale responsabilità che: a) il progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenutenel D.G.R
sotto la propria personale responsabilità che: a) il progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenutenel D.G.R Lombardia n.8-8745 del 15 Gennaio 2009 b) i dati e le informazioni contenuti nella relazione tecnica sono conformi a quanto contenuto o

timbro e firma)

_							
μ	ro	n	0	tt	n	•	

COMUNE DI POGLIANO (MI) RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

RELAZIONE TECNICA SUL RISPETTO DELLE PRESCRIZIONI PER IL CONTENIMENTO DI CONSUMO DI ENERGIA NEGLI EDIFICI

APPENDICE A

Dati generali di progetto Riepilogo calcoli Fabbisogno energetico normalizzato Riepilogo potenze di picco in regime stazionario Calcolo trasmittanza delle strutture Verifiche igrometriche

Altitudine [m] 164 Latitudine 45°32' Longitudine 8°59' Temperatura esterna Te [°C] -5 Località di riferimento per temperatura esterna MILANO Gradi giorno [°C•24h] 2545 Località di riferimento per gradi giorno MILANO Zona climatica E Velocità del vento media giornaliera [media annuale] [m/s] 1.1 Direzione prevalente del vento SW								
Altitudine	[m]	164						
Latitudine		45°32'						
Longitudine		8 °59'						
Temperatura esterna	Te [°C]	-5						
Località di riferimento per temperatura esterna		MILANO						
Gradi giorno	[°C•24h]	2545						
Località di riferimento per gradi giorno	-	MILANO						
Zona climatica		E						
Velocità del vento media giornaliera [media annuale]	[m/s]	1.1						
		SW						
Località di riferimento del vento		MILANO						
Zona vento		1						
Località rif. irradiazione		MILANO ; NOVARA						

Irradiazione glo	rradiazione globale su superficie verticale (MJ/m²)										
mese	N	NNE	NE	ENE	E	ESE	SE	SSE	S	oriz	Te
		NNW	NW	WNW	W	WSW	SW	SSW			
ottobre	2.8	2.9	3.6	4.9	6.4	7.8	8.9	9.8	10.3	8.4	13.8
novembre	1.7	1.7	1.9	2.5	3.4	4.4	5.4	6.4	6.8	4.4	7.7
dicembre	1.3	1.3	1.4	1.8	2.6	3.5	4.5	5.4	5.7	3.3	2.9
gennaio	1.5	1.5	1.6	2.1	2.9	3.9	4.8	5.7	6.0	3.8	1.5
febbraio	2.4	2.4	2.9	3.9	5.1	6.3	7.4	8.2	8.7	6.7	4.0
marzo	3.7	4.1	5.3	6.9	8.5	9.8	10.6	11.0	11.2	11.6	9.0
aprile	5.4	6.4	8.2	10.0	11.4	12.1	12.1	11.5	10.9	16.5	13.8

Inizio riscaldamento			15-10
Fine riscaldamento			15-04
Durata periodo di riscaldamento	р	[giorno]	183
Ore giornaliere di riscaldamento		[ore]	14
Situazione esterna :			in zona reesidenziale
Temperatura aria ambiente	Та	[°C]	20.0
Umidità interna	Ui	[%]	65.0

Classe di permeabilità all'aria dei serramenti esterni:

(si veda singola struttura finestrata)

COMUNE DI POGLIANO (MI) RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

	RIEPILOGO	DISPERSIO	ONI								
GLOBALE EDIFICIO	1989.4	4591.0	0.433	0.367	0.403	65694					
Appart/zona/ambiente	Α	volume	S/V	Cdr	Cdl	dispers					
Piano/Scala: 01 PIANO TERRA 568											
0101 PALESTRA	1367.7	3088.8	0.443	0.371	0.660	42180					
01 PALESTRA	1367.74	3088.82	0.443	0.371	0.660	42180					
0102 SPOGLIATOI SERVIZI	459.2	578.3	0.794	0.586	1.183	14639					
01 INGRESSO ATLETI DISIMPE	G 48.33	98.30	0.492	0.329	0.733	1238					
02 DEPOSITO PALESTRA	35.63	60.24	0.591	0.430	0.881	911					
03 WC 1	19.57	25.43	0.769	0.681	1.146	878					
04 WC 2	8.83	25.70	0.344	0.110	0.596	520					
05 INGRESSO STUDENTI	77.07	97.02	0.794	0.483	1.184	1596					
06 SPOGLIATOI MASCHI	42.20	47.37	0.891	0.610	1.327	1551					
07 WC SPOGLIATOI M.	39.00	26.10	1.494	1.570	1.490	1481					
08 WC DISABILI	33.18	37.53	0.884	0.627	1.317	1245					
09 SPOGLIATOIO FEMMINE	43.04	48.63	0.885	0.616	1.319	1600					
10 WC SPOGLIATOIO F.	46.04	36.66	1.256	1.211	1.490	1752					
11 SPOGLIATOIO PROFESSOR	26.42	30.18	0.875	0.593	1.304	975					
12 INFERMERIA	39.85	45.15	0.883	0.615	1.315	891					

Piano/Scala: 02 PIANO PRIMO 887									
0201	SPOGLIATOI SERVIZI	162.5	243.0	0.669	0.812	0.997	8875		
01	DISIMPEGNO	15.43	23.79	0.649	0.748	0.966	549		
02	SPOGLIATOIO ATLETI 1	24.85	52.23	0.476	0.528	0.709	1604		
03	WC SPOGLIATOIO	41.13	46.53	0.884	1.095	1.317	2088		
04	SPOGLIATOIO ATLETI 2	39.99	73.89	0.541	0.670	0.806	2530		
05	WC SPOGLIATOIO	41.13	46.53	0.884	1.109	1.317	2104		
		11110	10.00	3.001	00				

CALCOLO DISPERSIONI DI CALORE PER SINGOLO AMBIENTE

AMBIEN [®]	TF·	010101	PALE	STRA
		010101		σ

Te	=	- 5
Ta	=	20

q	ric	largh	largh lungh altez		volume	dispvol	
1	0.5	25.66	18.75	6.42	3088.8	13514	

nr	Co-str	q	es	U	dt	lungh	а	ıl/la	Α	A•U•dt	a.es	disptra
01	112 P.E	1	S	0.64	25	18.75		6.42	108.38	1736.71	1.00	1737
02	227 S.E	4	S	1.96	25	2.00		1.50	12.00	588.30	1.00	588
03	113 P.E	1	E	1.08	25	25.66		6.42	108.78	2945.14	1.15	3387
04	227 S.E	2	Е	1.96	25	3.00		2.20	13.20	647.13	1.15	744
05	227 S.E	4	Е	1.96	25	4.00		2.20	35.20	1725.68	1.15	1985
06	227 S.E	2	Е	1.96	25	1.80		2.10	7.56	370.63	1.15	426
07	112 P.E	1	W	0.64	25	18.75		6.42	73.22	1173.27	1.10	1291
08	227 S.E	2	W	1.96	25	3.00		1.80	10.80	529.47	1.10	582
09	227 S.E	4	W	1.96	25	4.00		1.80	28.80	1411.92	1.10	1553
10	227 S.E	2	W	1.96	25	1.80		2.10	7.56	370.63	1.10	408
11	565 PAV	1	T2	0.23	20	18.75		25.66	481.13	2193.93	1.00	2194
12	693 SOF	1		1.15	25	18.75		25.66	481.13	13772.20	1.00	13772
TO	TALI: dispvol		+	(disptra	a•au%) =		Α	volume	S/V	Cd	Cdl
	13514			2866	7 0	% 42	180	1367.7	4 3088.8	0.44	0.371	0.660

AMBIENTE: 010201 INGRESSO ATLETI DISIMPEGNO

Te = -5 Ta = 20

q	ric	largh	lungh	altez	volume	dispvol
1	0.5	33.78	1.00	2.91	98.3	430

nr	Co-str	q	es	U	dt	lungh	al/la		Α	A•U•dt	a.es	disptra
01	113 P.E	1	Е	1.08	25	2.50	2	91	3.50	94.63	1.15	109
02	227 S.E	1	E	1.96	25	1.80	2	10	3.78	185.31	1.15	213
03	113 P.E	1	W	1.08	25	2.50	2	91	7.28	196.97	1.10	217
04	593 PAV	1	T2	0.23	20	1.00	33	78	33.78	155.39	1.00	155
05	688 SOF	1	TF	0.34	10	1.00	33.	78	33.78	114.18	1.00	114
TO	TALI: dispve	ol	+	(disptra	a•au%) =		Α	volume	S/V	Cd	Cdl
	430			808	8 0°	% 1:	238	48.33	98.3	0.49	0.329	0.733

AMBIENTE: 010202 DEPOSITO PALESTRA

q	ric	largh	lungh	altez	volume	dispvol
1	0.5	1.00	20.70	2.91	60.2	264

nr	Co-str	q	es	U	dt	lungh	al/	la	Α	A•U•dt	a.es	disptra
01	113 P.E	1	W	1.08	25	5.13		2.91	13.38	362.22	1.10	398
02	227 S.E	1	W	1.96	25	1.55		1.00	1.55	75.99	1.10	84
03	593 PAV	1	T2	0.23	20	20.70		1.00	20.70	95.22	1.00	95
04	688 SOF	1	TF	0.34	10	20.70		1.00	20.70	69.97	1.00	70
TO	TALI: dispvol		+	(disptra	a•au%)	=		Α	volume	S/V	Cd	Cdl
	264			64	7 0°	% 9	911	35.63	60.2	0.59	0.430	0.881

	DISPERSIONI DI C			AMDIENTE
CALCOLO	リカラピー しゅうしんりょう しょうしん しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしゅう しゅうしゅう しゅうしゃ しゅうしゅう しゅう	AIURFFR	SINGULU	AIVIDICIVIC

AMBIENTE: 010203 WC 1

Te = -5 Ta = 20

q	ric	largh	lungh	altez	volume	dispvol
1	2.0	8.74	1.00	2.91	25.4	445

nr	Co-str	q	es	U	dt	lungh	al/la		Α	A•U•dt	a.es	disptra
01	113 P.E	1	Е	1.08	25	3.72	2.91		9.78	264.66	1.15	304
02	227 S.E	1	Е	1.96	25	1.05	1.00)	1.05	51.48	1.15	59
03	593 PAV	1	T2	0.23	20	1.00	8.74	Ļ	8.74	40.20	1.00	40
04	688 SOF	1	TF	0.34	10	1.00	8.74	L	8.74	29.54	1.00	30
TO	TALI: dispvol		+	(disptra	a•au%) =	Α		volume	S/V	Cd	Cdl
	445			433	3 0	% 8	378 19	.57	25.4	0.77	0.681	1.146

AMBIENTE: 010204 WC 2

Te = -5 Ta = 20

q ric largh lungh altez	volume dispvol
1 2.0 8.83 1.00 2.91	25.7 450

nr	Co-str	q	es	U	dt	lungh	al/la		Α	A•U•dt	a.es	disptra
01	593 PAV	1	T2	0.23	20	1.00	8.8	3	8.83	40.62	1.00	41
02	688 SOF	1	TF	0.34	10	1.00	8.8	3	8.83	29.85	1.00	30
TO	TALI: dispvol		+	(disptra	a•au%) =		4	volume	S/V	Cd	Cdl
	450			70	09	% 5	520	3.83	25.7	0.34	0.110	0.596

AMBIENTE: 010205 INGRESSO STUDENTI

Te = -5 Ta = 20

q	ric	largh	lungh	altez	volume	dispvol
1	0.5	32.34	1.00	3.00	97.0	424

nr	Co-str	q	es	U	dt	lungh	al/	la	Α	A•U•dt	a.es	disptra
01	113 P.E	1	W	1.08	25	4.13		3.00	8.40	227.43	1.10	250
02	227 S.E	1	W	1.96	25	1.90		2.10	3.99	195.61	1.10	215
03	593 PAV	1	T2	0.23	20	1.00	3	2.34	32.34	148.76	1.00	149
04	699 SOF	1		0.69	25	1.00	3	2.34	32.34	557.06	1.00	557
TO	TALI: dispvol		+	(disptra	a•au%) =	:	Α	volume	S/V	Cd	Cdl
	424			117	1 0	% 1	596	77.07	97.0	0.79	0.483	1.184

AMBIENTE: 010206 SPOGLIATOI MASCHI

q	ric	largh	lungh	altez	volume	dispvol
1	2.0	15.79	1.00	3.00	47.4	829

nr	Co-str	q	es	U	dt	lungh	al/la	Α	A•U•dt	a.es	disptra
01	113 P.E	1	W	1.08	25	3.54	3.00	8.07	218.50	1.10	240
02	227 S.E	1	W	1.96	25	1.55	1.00	1.55	75.99	1.10	84
03	227 S.E	1	W	1.96	25	1.00	1.00	1.00	49.02	1.10	54
04	593 PAV	1	T2	0.23	20	1.00	15.79	15.79	72.63	1.00	73

	DICEPPOINT DI CA		CINICALA	AMDICATE
CALCULU	DISPERSIONI DI CA	LUKE PEK	SINGULU	AMBIENIE

AM	AMBIENTE: 010206 SPOGLIATOI MASCHI											
nr	Co-str	q	es	U	dt	lungh	al/la		Α	A•U•dt	a.es	disptra
05	699 SOF	1		0.69	25	1.00	15.	79	15.79	271.98	1.00	272
TO	ΓALI: dispvol		+	(disptra	a•au%) =		Α	volume	S/V	Cd	Cdl
	829			72:	2 0	% 15	551 4	2.20	47.4	0.89	0.610	1.327

AMBIENTE: 010207 WC SPOGLIATOI M.

Те	=	- 5
Ta	=	20

q	ric	largh	lungh	altez	volume	dispvol
1	2.0	8.70	1.00	3.00	26.1	457

nr	Co-str	q	es	U	dt	lungh	al/la	Α	A•U•dt	a.es	disptra
01	113 P.E	1	N	1.08	25	4.46	3.00	9.78	264.79	1.20	318
02	227 S.E	3	N	1.96	25	1.20	1.00	3.60	176.49	1.20	212
03	113 P.E	1	W	1.08	25	2.74	3.00	5.72	154.87	1.10	170
04	227 S.E	2	W	1.96	25	1.25	1.00	2.50	122.56	1.10	135
05	593 PAV	1	T2	0.23	20	1.00	8.70	8.70	40.02	1.00	40
06	699 SOF	1		0.69	25	1.00	8.70	8.70	149.86	1.00	150
TO	TALI: dispvol		+	(disptra	a•au%	<u> </u>	Α	volume	S/V	Cd	Cdl
	457		<u> </u>	102	5 0)% 1 ₄	481 39.	00 26.1	1.49	1.570	1.490

AMBIENTE: 010208 WC DISABILI

Te	=	- 5
Ta	=	20

q	ric	largh	lungh	altez	volume	dispvol
1	2.0	12.51	1.00	3.00	37.5	657

nr	Co-str	q	es	U	dt	lungh	al/la		Α	A•U•dt	a.es	disptra
01	113 P.E	1	N	1.08	25	2.72	3.0	0	6.26	169.49	1.20	203
02	227 S.E	1	N	1.96	25	1.90	1.0	0	1.90	93.15	1.20	112
03	593 PAV	1	T2	0.23	20	1.00	12.5	1	12.51	57.55	1.00	58
04	699 SOF	1		0.69	25	1.00	12.5	1	12.51	215.48	1.00	215
TO	TALI: dispvol		+	(disptra	a•au%	<u> </u>	, A	١	volume	S/V	Cd	Cdl
	657			588	3 0	% 12	245 33	3.18	37.5	0.88	0.627	1.317

AMBIENTE: 010209 SPOGLIATOIO FEMMINE

q	ric	largh	lungh	altez	volume	dispvol
1	2.0	16.21	1.00	3.00	48.6	851

nr	Co-str	q	es	U	dt	lungh	al/la	Α	A•U•dt	a.es	disptra
01	113 P.E	1	Е	1.08	25	3.54	3.00	8.07	218.50	1.15	251
02	227 S.E	1	Е	1.96	25	1.55	1.00	1.5	75.99	1.15	87
03	227 S.E	1	Е	1.96	25	1.00	1.00	1.00	49.02	1.15	56
04	593 PAV	1	T2	0.23	20	1.00	16.21	16.2	74.57	1.00	75
05	699 SOF	1		0.69	25	1.00	16.21	16.2	1 279.22	1.00	279
TO	TALI: dispvol		+	(disptra	a•au%) =	Α	volum	e S/V	Cd	Cdl
	851			740	9 0	% 10	600 43	04 48	6 0.89	0.616	1 319

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

CALCOLO DISPERSIONI DI CALORE PER SINGOLO AMBIENTE

AMBIENTE: 010210 WC SPOGLIATOIO F.

Te = -5 Ta = 20

q	ric	largh	lungh	altez	volume	dispvol
1	2.0	12.22	1.00	3.00	36.7	642

nr	Co-str	q	es	U	dt	lungh	al	/la	Α	A•U•dt	a.es	disptra
01	113 P.E	1	N	1.08	25	4.46		3.00	9.98	270.21	1.20	324
02	227 S.E	2	N	1.96	25	1.20		1.00	2.40	117.66	1.20	141
03	227 S.E	1	N	1.96	25	1.00		1.00	1.00	49.02	1.20	59
04	113 P.E	1	E	1.08	25	2.74		3.00	5.72	154.87	1.15	178
05	227 S.E	2	E	1.96	25	1.25		1.00	2.50	122.56	1.15	141
06	593 PAV	1	T2	0.23	20	1.00		12.22	12.22	56.21	1.00	56
07	699 SOF	1		0.69	25	1.00		12.22	12.22	210.49	1.00	210
TO	ΓALI: dispvol		+	(disptra	a•au%) =		Α	volume	S/V	Cd	Cdl
	642			111	0 0	% 1	752	46.04	36.7	1.26	1.211	1.490

AMBIENTE: 010211 SPOGLIATOIO PROFESSORI

Te = -5 Ta = 20

q ric largh lungh altez v	volume dispvol
1 2.0 10.06 1.00 3.00	30.2 528

nr	Co-str	q	es	U	dt	lungh	al/la	Α	A•U•dt	a.es	disptra
01	113 P.E	1	E	1.08	25	2.10	3.00	5.05	136.73	1.15	157
02	227 S.E	1	Е	1.96	25	1.25	1.00	1.25	61.28	1.15	70
03	593 PAV	1	T2	0.23	20	1.00	10.06	10.06	46.28	1.00	46
04	699 SOF	1		0.69	25	1.00	10.06	10.06	173.28	1.00	173
TO	TALI: dispvol		+	(disptra	a•au%	s) =	Α	volume	S/V	Cd	Cdl
	528			44	7 0	% 9	975 26.4	42 30.2	0.88	0.593	1.304

AMBIENTE: 010212 INFERMERIA

q	ric	largh	lungh	altez	volume	dispvol
1	0.5	15.05	1.00	3.00	45.2	198

nr	Co-str	q	es	U	dt	lungh	а	ıl/la	Α	A•U•dt	a.es	disptra
01	113 P.E	1	Е	1.08	25	3.25		3.00	7.30	197.65	1.15	227
02	227 S.E	1	Е	1.96	25	1.05		1.00	1.05	51.48	1.15	59
03	227 S.E	1	Е	1.96	25	1.40		1.00	1.40	68.64	1.15	79
04	593 PAV	1	T2	0.23	20	1.00		15.05	15.05	69.23	1.00	69
05	699 SOF	1		0.69	25	1.00		15.05	15.05	259.24	1.00	259
TO	TALI: dispvol		+	(disptra	a•au%) =		Α	volume	S/V	Cd	Cdl
	198			694	4 0	% 8	391	39.85	45.2	0.88	0.615	1.315

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

	DISPERSIONI DI C			AMDIENTE
CALCOLO	リカラピー しゅうしんりょう しょうしん しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしゅう しゅうしゅう しゅうしゃ しゅうしゅう しゅう	AIURFFR	SINGULU	AIVIDICIVIC

AMBIEN	NTE :	020101	DISIMPEGNO

Te	=	- 5
Ta	=	20

q	ric	largh	lungh	altez	volume	dispvol
1	0.5	7.93	1.00	3.00	23.8	104

nr	Co-str	q	es	U	dt	lungh	al	/la	Α	A•U•dt	a.es	disptra
01	113 P.E	1	W	1.08	25	2.50		3.00	5.30	143.50	1.10	158
02	227 S.E	1	W	1.96	25	1.00		2.20	2.20	107.86	1.10	119
03	587 PAV	1	TF	0.40	10	1.00		7.93	7.93	31.80	1.00	32
04	699 SOF	1		0.69	25	1.00		7.93	7.93	136.59	1.00	137
TO	TALI: dispvol		+	(disptra	a•au%) =		Α	volume	S/V	Cd	Cdl
	104			44	5 0	% !	549	15.43	23.8	0.65	0.748	0.966

AMBIENTE: 020102 SPOGLIATOIO ATLETI 1

Te = -5 Ta = 20

q	ric	largh	lungh	altez	volume	dispvol
1	2.0	17.41	1.00	3.00	52.2	914

l											
nr	Co-str	q	es	U	dt	lungh	al/la	Α	A•U•dt	a.es	disptra
01	113 P.E	1	W	1.08	25	2.48	3.00	3.37	91.24	1.10	100
02	227 S.E	1	W	1.96	25	1.00	2.20	2.20	107.86	1.10	119
03	227 S.E	1	W	1.96	25	0.85	2.20	1.87	91.68	1.10	101
04	587 PAV	1	TF	0.40	10	1.00	17.41	17.41	69.81	1.00	70
05	699 SOF	1		0.69	25	1.00	17.41	17.41	299.89	1.00	300
TO	TALI: dispvol		+	(disptra	a•au%	s) =	Α	volume	S/V	Cd	Cdl
	914			690	0 0	% 10	604 24.8	35 52.2	0.48	0.528	0.709

AMBIENTE: 020103 WC SPOGLIATOIO

q	ric	largh	lungh	altez	volume	dispvol
1	2.0	15.51	1.00	3.00	46.5	814

nr	Co-str	q	es	U	dt	lungh	al/la		Α	A•U•dt	a.es	disptra
01	113 P.E	1	N	1.08	25	5.92	3.00)	17.76	480.85	1.20	577
02	113 P.E	1	W	1.08	25	2.62	3.00)	2.36	63.90	1.10	70
03	227 S.E	1	W	1.96	25	1.50	2.20)	3.30	161.78	1.10	178
04	227 S.E	1	W	1.96	25	1.00	2.20)	2.20	107.86	1.10	119
05	587 PAV	1	TF	0.40	10	1.00	15.5°	1	15.51	62.20	1.00	62
06	699 SOF	1		0.69	25	1.00	15.5°	1	15.51	267.16	1.00	267
TO	TALI: dispvo	l	+	(disptra	a•au%	s) =	: A		volume	S/V	Cd	Cdl
	814			127	3 0)% 2	088 41	.13	46.5	0.88	1.095	1.317

CALCOLO DISPERSIONI DI CALORE PER SINGOLO AMBIENTE

AMBIENTE: 020104 SPOGLIATOIO ATLETI 2

Te = -5 Ta = **20**

q	ric	largh	lungh	lungh altez		dispvol
1	2.0	24.63	1.00	3.00	73.9	1293

l .											
nr	Co-str	q	es	U	dt	lungh	al/la	Α	A•U•dt	a.es	disptra
01	113 P.E	1	Е	1.08	25	5.12	3.00	6.01	162.72	1.15	187
02	227 S.E	1	Е	1.96	25	3.40	2.20	7.48	366.71	1.15	422
03	227 S.E	1	Е	1.96	25	0.85	2.20	1.87	91.68	1.15	105
04	587 PAV	1	TF	0.40	10	1.00	24.63	24.63	98.77	1.00	99
05	699 SOF	1		0.69	25	1.00	24.63	24.63	424.25	1.00	424
TO	TALI: dispvol		+	(disptra	a•au%) =	Α	volume	S/V	Cd	Cdl
	1293			123	7 0	% 2	530 39.	99 73.9	0.54	0.670	0.806

AMBIENTE: 020105 WC SPOGLIATOIO

q	ric	largh	lungh	altez	volume	dispvol
1	2.0	15.51	1.00	3.00	46.5	814

nr	Co-str	q	es	U	dt	lungh	al/la	Α	A•U•dt	a.es	disptra
01	113 P.E	1	N	1.08	25	5.92	3.00	17.76	480.85	1.20	577
02	113 P.E	1	E	1.08	25	2.62	3.00	2.36	63.90	1.15	73
03	227 S.E	1	Е	1.96	25	1.50	2.20	3.30	161.78	1.15	186
04	227 S.E	1	Е	1.96	25	1.00	2.20	2.20	107.86	1.15	124
05	587 PAV	1	TF	0.40	10	1.00	15.51	15.51	62.20	1.00	62
06	699 SOF	1		0.69	25	1.00	15.51	15.51	267.16	1.00	267
TO	TALI: dispvol		+	(disptra	a•au%) =	Α	volume	S/V	Cd	Cdl
	814			129	0 0	% 2 ⁻	104 41.	13 46.5	0.88	1.109	1.317

RIEPILOGO STRUTTURE UTILIZZATE

nr	CODICE	TRASMITTANZA W/m²K	RESISTENZA m²K/W	RES.VAPORE sm²Pa/kg	S m	PERMEANZA kg/sm²Pa	MASSA kg/m²	CAPACITA' kJ/m²K	TTCI ore	TTCE ore
001	112 P.E	0,641	1,559	20,151	0,425	0,050	405,00	340,20	74,4	72,9
Mur	atura in c.a									
002	113 P.E	1,083	0,923	10,756	0,350	0,093	252,13	211,81	24,3	30,0
Mur	atura ventila	ata								
003	227 S.E	1,961	0,510	1,06E11	· ·		20,00	16,80	1,0	1,4
Ser	ramento vet	rato in vetro c	amera, adim	ensionale, co	n vetri	basso emiss	Sivi			
004	565 PAV	0,228	4,391	2343,996	0,495	4,27E-04	892,20	771,65	224,6	716,5
Pav	imento vers	so vespaio								
005	587 PAV	0,401	2,493	78,006	0,460	0,013	439,55	369,65	104,4	151,6
Pav	imento inte	rmedio								
006	593 PAV	0,230	4,339	143,096	0,495	0,007	914,20	769,49	221,8	705,7
Pav	imento vers	so vespaio spo	ogliatoi serviz							
007	688 SOF	0,338	2,960	43,260	0,415	0,023	320,75	269,74	174,6	47,1
Soft	fitto interme	dio								
800	693 SOF	1,145	0,873	1777,100	0,399	5,63E-04	335,80	287,58	40,5	29,3
Cop	ertura pale:	stra								
009	699 SOF	0,689	1,452	443,026	0,734	0,002	1003,69	849,15	148,1	194,4
Cop	ertura spog	liatoi								

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

Nelle pagine successive sono riportate le tabelle relative alle:

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI CARATTERISTICHE TERMICHE DEI COMPONENTI TRASPARENTI

LEGENDA

s	[m]	Spessore dello strato
λ	[W/mK]	Conduttività termica del materiale
С	[W/m²K]	Conduttanza unitaria
ρ	[kg/m³]	Massa volumica
δa 10 ¹²	[kg/msPa]	Permeabilità di vapore nell'intervallo di umidità relativa 0-50 %
δu 10 ¹²	[kg/msPa]	Permeabilità di vapore nell'intervallo di umidità relativa 50-95 %
R	[m ² K/W]	Resistenza termica dei singoli strati
Ag	[m²]	Area del vetro
Af	[m²]	Area del telaio
Lg	[m]	Lunghezza perimetrale della superficie vetrata
Ug	[W/m²K]	Trasmittanza termica dell'elemento vetrato
Uf	[W/m²K]	Trasmittanza termica del telaio
ΨΙ	[W/mK]	Trasmittanza lineica (nulla in caso di singolo vetro)
Uw	[W/m²K]	Trasmittanza termica totale del serramento
С	[J/(kg·K)]	Capacità termica specifica
δ	[m]	Profondità di penetrazione periodica di un'onda termica
ξ	[-]	Rapporto tra lo spessore dello strato e la profondità di penetrazione
χ	[J/(m ² K)]	Capacità termica areica
Ymn	[W/(m ² K)]	Ammettenza termica dinamica
Z _{mn}	[44/(111 14)]	Elemento della matrice di trasmissione del calore
Z ₁₁	[-]	Elemente della matrice di tradmissione dei salore
Z ₁₂	[m²·K/W]	
Z_{21}	[W/(m ² K)]	
Z_{22}	[-]	
T T	[s]	Periodo delle variazioni
Δt	[s]	Variazione di tempo: anticipo (se positiva) o ritardo (se negativa)
^{Δι}	[o]	variazione di tempo, ambipo (se positiva) o mardo (se negativa)

COMUNE DI POGLIANO (MI) RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

CARATTERISTICHE TERMICHE/IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO

TIPO DI STRUTTURA Muratura in c.a.

cod 112 P.E

	Massa [kg/m²] 405.0 Capacità [kJ/m²K]		340.2	2		Type Ash	rae	30			
N	N Descrizione strato			s	λ	l	С	ρ	δa 10 ¹²	δu 10 ¹²	R
	(dal	l'interno verso	l'esterno)	(m)	(W/r	nK)	(W/m²K)	(kg/m³)	(kg/msPa)	(kg/msPa)	(m²K/W)
1	Intonaco di cement	0		0,0150	0,9	00	60,00	1800	9,3800	9,3800	0,017
2	Blocchi forati in laterizio			0,1000	0,4	00	4,00	900	31,2500	31,2500	0,250
3	Blocchi di grande formato tipo POROTON in laterizio			0,3000	0,2	70	0,90	900	21,0000	21,0000	1,111
	alleggerito per murature isolanti e portanti.										
4	4 Intonaco di cemento			0,0100	0,9	00	90,00	1800	9,3800	9,3800	0,011
SP	SPESSORE TOTALE [m]			0,4250							

Conduttanza unitaria	8	Resistenza unitaria	0,130
superficie interna		superficie interna	
Conduttanza unitaria	25	Resistenza unitaria	0,040
superficie esterna		superficie esterna	
TRASMITTANZA	0,641	RESISTENZA TERMICA	1,559
TOTALE[W/m²K]		TOTALE[m²K/W]	

<u>VERIFICA IGROMETRICA — CONDIZIONI AL CONTORNO</u> **ESEGUITA A NORMA EN ISO 13788 (UNI10350)**

(Pa) 82 985
185
/00
84
56

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

<u>UNI 13786 - CARATTERISTICHE DINAMICHE DELLE STRUTTURE</u>

TIPO DI STRUTTURA Muratura in c.a.

cod 112 P.E

N	Descrizione strato	S	λ	С	ρ	δ_{24}	ξ ₂₄	R
	(dall'interno verso l'esterno)	(m)	(W/mK)	(J/kg⋅K)	(kg/m³)	(m)	(-)	(m²K/W)
1	Strato liminare della superficie verticale interna UNI							0.130
	6946							
2	Intonaco di cemento	0.0150	0.900	840	1800	0.128	0.117	0.017
3	Blocchi forati in laterizio	0.1000	0.400	840	900	0.121	0.829	0.250
4	Blocchi di grande formato tipo POROTON in laterizio	0.3000	0.270	840	900	0.099	3.027	1.111
	alleggerito per murature isolanti e portanti.							
5	Intonaco di cemento	0.0100	0.900	840	1800	0.128	0.078	0.011
6	Strato liminare della superficie verticale esterna							0.040
	(vento < 4 m/s) UNI 6946							
SP	ESSORE TOTALE [m]	0,4250						

ELEMENTI DELLA MATRICE DI TRASMISSIONE

		T = 24 h	T = 3 h					
	Re()	lm()	Modulo	∆t [h]	Re()	lm()	Modulo	∆t [h]
Z ₁₁	-17.69	-34.54	38.81	0.00	71152.56	-55404.92	90179.77	-0.32
Z ₁₂	9.03	5.46	10.55	2.08	-8790.91	11463.06	14445.82	0.00
Z ₂₁	-49.49	150.09	158.04	0.00	-1037866.91	28326.91	1038253.41	0.00
Z ₂₂	-10.00	-41.77	42.95	0.00	159735.74	-46322.99	166316.95	-0.13

CARATTERISTICHE DELLA MATRICE TERMICA DINAMICA

	T = :	24 h	T = 3 h		
	Modulo Δt [h]		Modulo	∆t [h]	
Y11 (ammettenza lato interno	3.68	2.11	6.24	0.12	
Y22 (ammettenza lato interno) 4.07	3.02	11.51	0.30	
Y12 (trasmittanza periodica)	0.09	-14.08	0.00	-20.50	

Capacità termiche areiche	T = 24 h	T = 3 h	
C1 (lato interno)	51	11	[kJ/(m²K]
C2 (lato esterno)	56	20	[kJ/(m²K]

	Modulo	∆t [h]	Modulo	∆t [h]
f: fattore decremento	0.15	-14.08	0.00	-20.50

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

CARATTERISTICHE TERMICHE/IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO

TIPO DI STRUTTURA Muratura ventilata

cod 113 P.E

	Massa [kg/m²] 252.1 Capacità [kJ/m²K	Capacità [kJ/m²K] 211.8 Type Ashrae		4				
N	N Descrizione strato		λ	С	ρ	δa 10 ¹²	δu 10 ¹²	R
	(dall'interno verso l'esterno)		(W/mK	(W/m²K)	(kg/m³)	(kg/msPa)	(kg/msPa)	(m²K/W)
1	1 Intonaco di cemento		0,900	60,00	1800	9,3800	9,3800	0,017
2	Blocchi forati in laterizio		0,400	4,00	900	31,2500	31,2500	0,250
3	Intercapedine d'aria debolmente ventilata sp. 100 mm			6,250	1,30	193,0000	193,0000	0,160
4	Blocchi forati in laterizio		0,387	3,23	900	31,2500	31,2500	0,310
5	Intonaco di cemento sabbia e calce	0,0150	0,900	60,00	1800	9,3800	9,3800	0,017
SP	ESSORE TOTALE [m]	0,3500						

Conduttanza unitaria	8	Resistenza unitaria	0,130
superficie interna		superficie interna	
Conduttanza unitaria	25	Resistenza unitaria	0,040
superficie esterna		superficie esterna	
		•	
TRASMITTANZA	1,083	RESISTENZA TERMICA	0,923
TOTALE[W/m²K]		TOTALE[m²K/W]	

<u>VERIFICA IGROMETRICA — CONDIZIONI AL CONTORNO</u> ESEGUITA A NORMA EN ISO 13788 (UNI10350)

	LOCUSTA A NORMA EN 100 19700 (ON 10300)							
	CONDIZIONE	Ti(ºC)	Pi(Pa)	Te(°C)	Pe(Pa)			
١N	IVERNALE: gennaio	20.0	1331	1.5	582			
	ESTIVA: agosto	23.9	1985	23.9	1985			
	La struttura non è sog	getta a fer	nomeni di d	condensa				
×	interstiziale; la differer	nza minima	a di pressio	ne	40			
	tra quella di saturazion	ne e quella	a reale è pa	ari a [Pa]				
	La struttura è soggetta	a a fenome	eni di cond	ensa;				
	la quantità stagionale	di conden	sato è pari	a [kg/m²]				
	(ammissibile ed evapo	orabile nell	a stagione	estiva)				
	La struttura non è sog	getta a fer	nomeni di d	condensa				
×	superficiale; la differer	nza minima	a di pressio	one tra	818			
	quella di saturazione e	e quella re	ale è pari a	a [Pa]				

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

<u>UNI 13786 - CARATTERISTICHE DINAMICHE DELLE STRUTTURE</u>

TIPO DI STRUTTURA Muratura ventilata

cod 113 P.E

N	Descrizione strato	S	λ	С	ρ	δ_{24}	ξ ₂₄	R
	(dall'interno verso l'esterno)	(m)	(W/mK)	(J/kg⋅K)	(kg/m³)	(m)	(-)	(m²K/W)
1	Strato liminare della superficie verticale interna UNI							0.130
	6946							
2	Intonaco di cemento	0.0150	0.900	840	1800	0.128	0.117	0.017
3	Blocchi forati in laterizio	0.1000	0.400	840	900	0.121	0.829	0.250
4	Intercapedine d'aria debolmente ventilata sp. 100 mm	0.1000		1000	1.30	0.035	8.562	0.160
5	Blocchi forati in laterizio	0.1200	0.387	840	900	0.119	1.011	0.310
6	Intonaco di cemento sabbia e calce	0.0150	0.900	840	1800	0.128	0.117	0.017
7	Strato liminare della superficie verticale esterna							0.040
	(vento < 4 m/s) UNI 6946							
SP	ESSORE TOTALE [m]	0,3500						

ELEMENTI DELLA MATRICE DI TRASMISSIONE

	T = 24 h					T = 3 h		
	Re()	lm()	Modulo	∆t [h]	Re()	lm()	Modulo	∆t [h]
Z ₁₁	-5.03	3.83	6.32	0.00	545.92	285.02	615.85	0.23
Z ₁₂	0.54	-1.63	1.72	-4.78	-96.22	-22.21	98.75	0.00
Z ₂₁	30.70	4.92	31.09	0.61	-4050.15	-6929.96	8026.71	0.00
Z ₂₂	-7.75	3.52	8.51	0.00	908.09	912.04	1287.03	0.38

CARATTERISTICHE DELLA MATRICE TERMICA DINAMICA

	T = :	24 h	T = 3 h		
	Modulo Δt [h]		Modulo	∆t [h]	
Y11 (ammettenza lato interno) 3.69	2.30	6.24	0.12	
Y22 (ammettenza lato interno) 4.96	3.16	13.03	0.27	
Y12 (trasmittanza periodica)	0.58	-7.22	0.01	-0.87	

Capacità termiche areiche	T = 24 h	T = 3 h	
C1 (lato interno)	57	11	[kJ/(m²K]
C2 (lato esterno)	76	22	[kJ/(m²K]

	Modulo	∆t [h]	Modulo	∆t [h]
f: fattore decremento	0.54	-7.22	0.01	-0.87

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

CARATTERISTICHE TERMICHE DEI COMPONENTI TRASPARENTI DELL'INVOLUCRO EDILIZIO

TIPO DI STRUTTURA Serramento vetrato in vetro camera, adimensionale, con vetri basso emissivi cod 227 S.E

	Massa [kg/m²] 20.0 Capacità [kJ/m²K]	16.8	3					
N	N Descrizione strato		λ	C	ρ	δa 10 ¹²	δu 10 ¹²	R
	(dall'interno verso l'esterno)		(W/mK)	(W/m²K)	(kg/m³)	(kg/msPa)	(kg/msPa)	(m²K/W)
1	Superfici vetrate con vetro camera con vetri b.e.	0,0200		3,030	1000	0,0000	0,0000	0,330
SP	ESSORE TOTALE [m]	0,0200						

Conduttanza unitaria	7	Resistenza unitaria	0,140
superficie interna		superficie interna	
Conduttanza unitaria	25	Resistenza unitaria	0,040
superficie esterna		superficie esterna	
TRASMITTANZA	1,961	RESISTENZA TERMICA	0,510
TOTALE[W/m²K]		TOTALE[m²K/W]	
TOTALE[W/m²K]		TOTALE[m²K/W]	

Descrizione	Ag (m²)	Af (m²)	Lg (m)	Ug (W/m²K)	Uf (W/m²K)	Ψ Ι (W/mK)	Uw (W/m²K)
Serramento singolo	1.96	0.29	7.50	1.900	2.400	0.030	2.064
Doppio serramento e/o combinato							

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

CARATTERISTICHE TERMICHE/IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO

TIPO DI STRUTTURA Pavimento verso vespaio

cod 565 PAV

	Massa [kg/m²] 892.2 Capacità [kJ/m²K] 771.7 Type Ashrae		rae	14						
N	D	escrizione	strato	S	λ	С	ρ	δa 10 ¹²	δu 10 ¹²	R
	(dall'interno verso l'esterno)			(m)	(W/mK)	(W/m²K)	(kg/m³)	(kg/msPa)	(kg/msPa)	(m²K/W)
1	1 Pavimentazione in gomma			0,0200	0,280	14,00	1200	0,0090	0,0090	0,071
2	Sottofondo additivato per impianto a pannelli				0,900	13,85	1900	7,5000	7,5000	0,072
3	lastra di polistirene	e (pacchetto p	avimento radiante)	0,0300	0,038	1,27	30	2,3400	2,3400	0,789
4	Massetto alleggerit	to per rasatu	ra impianti	0,0600	0,085	1,42	350	8,0000	8,0000	0,706
5	Pannello isoalnte in polistirene espanso			0,0800	0,035	0,44	35	0,9400	0,9400	2,286
6	Vespaio areato su igloo			0,2400	2,500	10,42	3000	31,2500	31,2500	0,096
SP	ESSORE TOTALE [[m]		0,4950						

Conduttanza unitaria	6	Resistenza unitaria	0,170
superficie interna		superficie interna	
Conduttanza unitaria	5	Resistenza unitaria	0,200
superficie esterna		superficie esterna	
		•	
TRASMITTANZA	0,228	RESISTENZA TERMICA	4,391
TOTALE[W/m²K]		TOTALE[m²K/W]	

<u>VERIFICA IGROMETRICA — CONDIZIONI AL CONTORNO</u> ESEGUITA A NORMA EN ISO 13788 (UNI10350)

EGEGGITA A NORMA EN 100 13700 (CINTO330)									
CONDIZIONE	Ti(ºC)	Pi(Pa)	Te(°C)	Pe(Pa)					
INVERNALE: gennaio 20.0 1331 6.6									
ESTIVA: agosto	18.0	1985	18.0	1032					
La struttura non è sog	condensa								
interstiziale; la differenza minima di pressione									
tra quella di saturazione e quella reale è pari a [Pa]									
La struttura è soggetta	a a fenome	eni di cond	ensa;						
la quantità stagionale	di condens	sato è pari	a [kg/m²]						
(ammissibile ed evapo	rabile nell	a stagione	estiva)						
La struttura non è sog	getta a fer	nomeni di d	condensa						
superficiale; la differer	nza minima	a di pressio	one tra	1096					
quella di saturazione e	e quella re	ale è pari a	a [Pa]						
	VERNALE: gennaio ESTIVA: agosto La struttura non è sog interstiziale; la differer tra quella di saturazior La struttura è soggetta la quantità stagionale (ammissibile ed evapo La struttura non è sog superficiale; la differer	VERNALE: gennaio 20.0 ESTIVA: agosto 18.0 La struttura non è soggetta a fer interstiziale; la differenza minima tra quella di saturazione e quella La struttura è soggetta a fenome la quantità stagionale di condens (ammissibile ed evaporabile nell La struttura non è soggetta a fer superficiale; la differenza minima	VERNALE: gennaio 20.0 1331 ESTIVA: agosto 18.0 1985 La struttura non è soggetta a fenomeni di cinterstiziale; la differenza minima di pressio tra quella di saturazione e quella reale è para La struttura è soggetta a fenomeni di conde la quantità stagionale di condensato è pari (ammissibile ed evaporabile nella stagione La struttura non è soggetta a fenomeni di condensato; la differenza minima di pressionale; la differenza minima di pressionale.	VERNALE: gennaio 20.0 1331 6.6 ESTIVA: agosto 18.0 1985 18.0 La struttura non è soggetta a fenomeni di condensa interstiziale; la differenza minima di pressione					

COMUNE DI POGLIANO (MI) RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

CARATTERISTICHE TERMICHE/IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO

TIPO DI STRUTTURA Pavimento intermedio

cod 587 PAV

	Massa [kg/m²]	439.6	9.6 Capacità [kJ/m²K] 369.7 Type Ashrae		14						
N	D	Descrizione strato		s	7	ĺ	С	ρ	δa 10 ¹²	δu 10 ¹²	R
	(dall'interno verso l'esterno)		(m)	(W/i	mK)	(W/m²K)	(kg/m³)	(kg/msPa)	(kg/msPa)	(m²K/W)	
1	Piastrelle di ceramica				1,0	000	66,67	2300	0,9380	0,9380	0,015
2	Sottofondo additivato per impianto a pannelli				1,4	100	23,33	1900	7,5000	7,5000	0,043
3	Pannello in polistirene espanso (pacchetto pannelli			0,0300	0,0	35	1,17	35	0,9400	0,9400	0,857
	pavimento)										
4	Massetto in cemen	nto cellulare		0,1000	0,1	04	1,04	350	8,0000	8,0000	0,962
5	Soletta interna in laterocemento			0,2400	0,8	300	3,33	950	30,0000	30,0000	0,300
6	Intonaco di sabbia e calce		0,0150	0,9	900	60,00	1800	9,3800	9,3800	0,017	
SP	ESSORE TOTALE [[m]		0,4600							_

Conduttanza unitaria	6	Resistenza unitaria	0,170
superficie interna		superficie interna	,
Conduttanza unitaria	8	Resistenza unitaria	0,130
superficie esterna		superficie esterna	
		•	
TRASMITTANZA	0,401	RESISTENZA TERMICA	2,493
TOTALE[W/m ² K]		TOTALE[m²K/W]	

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

CARATTERISTICHE TERMICHE/IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO

TIPO DI STRUTTURA Pavimento verso vespaio spogliatoi servizi

cod 593 PAV

	Massa [kg/m²]	g/m²] 914.2 Capacità [kJ/m²K] 769.5 Type Ashrae		rae	14					
N	D	escrizione	strato	s	λ	С	ρ	δa 10 ¹²	δu 10 ¹²	R
	(dall'interno verso l'esterno)			(m)	(W/mK) (W/m²K)	(kg/m³)	(kg/msPa)	(kg/msPa)	(m²K/W)
1	1 Piastrelle di ceramica			0,0200	1,000	50,00	2300	0,9380	0,9380	0,020
2	Sottofondo additivato per impianto a pannelli			0,0650	0,900	13,85	1900	7,5000	7,5000	0,072
3	lastra di polistirene (pacchetto pavimento radiante)			0,0300	0,038	1,27	30	2,3400	2,3400	0,789
4	Massetto alleggerit	to per rasatu	ra impianti	0,0600	0,085	1,42	350	8,0000	8,0000	0,706
5	Pannello isoalnte in polistirene espanso			0,0800	0,035	0,44	35	0,9400	0,9400	2,286
6	Vespaio areato su igloo			0,2400	2,500	10,42	3000	31,2500	31,2500	0,096
SP	ESSORE TOTALE	[m]		0,4950						

Conduttanza unitaria	6	Resistenza unitaria	0,170
superficie interna		superficie interna	
Conduttanza unitaria	5	Resistenza unitaria	0,200
superficie esterna		superficie esterna	
TRASMITTANZA	0,230	RESISTENZA TERMICA	4,339
TOTALE[W/m²K]		TOTALE[m ² K/W]	

<u>VERIFICA IGROMETRICA — CONDIZIONI AL CONTORNO</u> ESEGUITA A NORMA EN ISO 13788 (UNI10350)

Pe(Pa)
973
1032
sa
26
a]
1 ²]
ı
sa
1095

COMUNE DI POGLIANO (MI) RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

CARATTERISTICHE TERMICHE/IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO

TIPO DI STRUTTURA Soffitto intermedio

cod 688 SOF

	Massa [kg/m²]	320.8	Capacità [kJ/m²K]	269.	7 Type Ashrae		rae	12			
N	D	Descrizione strato			7	λ	С	ρ	δa 10 ¹²	δu 10 ¹²	R
	(dall'interno verso l'esterno)			(m)	(W/	mK)	(W/m²K)	(kg/m³)	(kg/msPa)	(kg/msPa)	(m²K/W)
1	1 Intonaco di cemento sabbia e calce				0,9	900	60,00	1800	9,3800	9,3800	0,017
2	2 Soletta in laterocemento				0,8	300	3,33	950	30,0000	30,0000	0,300
3	Sottofondo cemento cellulare			0,0600	0,0)70	1,17	350	8,0000	8,0000	0,857
4	Pannello in polistire	ene espanso	(pacchetto pavimento	0,0300	0,0)33	1,10	25	3,7500	3,7500	0,909
	radiante)										
5	Caldana aditivata per impianto pannelli		0,0600	0,0	90	1,50	350	8,0000	8,0000	0,667	
6	Piastrelle di ceramica			0,0100	1,0	000	100,00	2300	0,9380	0,9380	0,010
SP	ESSORE TOTALE [[m]		0,4150							

Conduttanza unitaria	10	Resistenza unitaria	0,100
superficie interna		superficie interna	
Conduttanza unitaria	10	Resistenza unitaria	0,100
superficie esterna		superficie esterna	
		•	
TRASMITTANZA	0,338	RESISTENZA TERMICA	2,960
TOTALE[W/m²K]		TOTALE[m²K/W]	

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

CARATTERISTICHE TERMICHE/IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO

TIPO DI STRUTTURA Copertura palestra

cod 693 SOF

	Massa [kg/m²] 335.8 Capacità [kJ/m²K]		287.0	6	Type Ashrae		12				
N	Descrizione strato		s	λ	С	ρ	δa 10 ¹²	δu 1012	R		
	(dall'interno verso l'esterno)				(W/mK)	(W/m²K)	(kg/m³)	(kg/msPa)	(kg/msPa)	(m²K/W)	
1	Intonaco di cemento				0,900	60,00	1800	25,0000	9,3800	0,017	
2	Soletta in laterocemento sp.30 (24+6)				0,811	2,70	800	2,1053	30,0000	0,370	
3	CLS di argilla espansa per sottofondi			0,0800	0,240	3,00	800	2,3529	62,5100	0,333	
4	Bitume in polimero su PPL				0,300	75,00	1200	0,0025	0,0094	0,013	
SP	ESSORE TOTALE [m]		0,3990							

Conduttanza unitaria	10	Resistenza unitaria	0,100
superficie interna		superficie interna	,
Conduttanza unitaria	25	Resistenza unitaria	0,040
superficie esterna		superficie esterna	
TRASMITTANZA	1,145	RESISTENZA TERMICA	0,873
TOTALE[W/m²K]		TOTALE[m²K/W]	

<u>VERIFICA IGROMETRICA — CONDIZIONI AL CONTORNO</u> ESEGUITA A NORMA EN ISO 13788 (UNI10350)

	CONDIZIONE	Ti(°C)	Pi(Pa)	Te(°C)	Pe(Pa)		
IN	INVERNALE: gennaio 20.0 1331 1.5						
	ESTIVA: agosto	23.9	1985	23.9	1985		
□	La struttura non è sog interstiziale; la differer tra quella di saturazion La struttura è soggetta la quantità stagionale	nza minima ne e quella a a fenome	a di pression reale è pa eni di cond	one ari a [Pa] ensa;	0.084		
×	La struttura non è soggetta a fenomeni di condensa superficiale; la differenza minima di pressione tra quella di saturazione e quella reale è pari a [Pa]						

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

<u>UNI 13786 - CARATTERISTICHE DINAMICHE DELLE STRUTTURE</u>

TIPO DI STRUTTURA Copertura palestra

cod 693 SOF

N	Descrizione strato	s	λ	С	ρ	δ_{24}	ξ ₂₄	R
	(dall'interno verso l'esterno)	(m)	(W/mK)	(J/kg·K)	(kg/m³)	(m)	(-)	(m²K/W)
1	Strato liminare della superficie orizzontale interna,							0.100
	calore ascendente UNI 6946							
2	Intonaco di cemento	0.0150	0.900	840	1800	0.128	0.117	0.017
3	Soletta in laterocemento sp.30 (24+6)	0.3000	0.811	840	800	0.182	1.647	0.370
4	CLS di argilla espansa per sottofondi	0.0800	0.240	920	800	0.095	0.845	0.333
5	Bitume in polimero su PPL	0.0040	0.300	920	1200	0.086	0.046	0.013
6	Strato liminare della superficie orizzontale							0.040
	esterna,calore ascendente (velocità < 4 m/s) UNI							
	6946							
SP	ESSORE TOTALE [m]	0,3990						

ELEMENTI DELLA MATRICE DI TRASMISSIONE

T = 24 h					T = 3 h			
	Re()	lm()	Modulo	∆t [h]	Re()	lm()	Modulo	∆t [h]
Z ₁₁	-11.14	3.66	11.72	0.00	84.53	1899.98	1901.86	0.73
Z ₁₂	1.73	-1.88	2.56	-3.17	-75.51	-235.61	247.41	0.00
Z ₂₁	36.08	11.71	37.93	1.20	8295.10	-13357.65	15723.72	-0.48
Z ₂₂	-8.19	1.60	8.34	0.00	-585.03	1960.07	2045.51	0.00

CARATTERISTICHE DELLA MATRICE TERMICA DINAMICA

	T = :	24 h	T = 3 h		
	Modulo	Modulo Δt [h]		∆t [h]	
Y11 (ammettenza lato interno) 4.59	1.95	7.69	0.13	
Y22 (ammettenza lato interno) 3.26	2.43	8.27	0.29	
Y12 (trasmittanza periodica)	0.39	-8.83	0.00	-4.82	

Capacità termiche areiche	T = 24 h	T = 3 h	
C1 (lato interno)	68	13	[kJ/(m²K]
C2 (lato esterno)	50	14	[kJ/(m²K]

	Modulo	∆t [h]	Modulo	∆t [h]
f: fattore decremento	0.34	-8.83	0.00	-4.82

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

CARATTERISTICHE TERMICHE/IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO

TIPO DI STRUTTURA Copertura spogliatoi

cod 699 SOF

I	Massa [kg/m²]	1003.7	Capacità [kJ/m²K]	849.	1	Type Ashrae		12			
N	D	escrizione	strato	s	7	ĺ	С	ρ	δa 10 ¹²	δu 10 ¹²	R
	(da	Il'interno verso	l'esterno)	(m)	(W/	mK)	(W/m²K)	(kg/m³)	(kg/msPa)	(kg/msPa)	(m²K/W)
1	Pannelli rigidi in fib	re minerali d	i rocce	0,0150	0,0	37	2,47	100	150,0000	150,0000	0,405
2	Intercapedine d'aria	a debolmente	e ventilata sp. 300 mm	0,3000	3,3	333	11,11	1,30	193,0000	193,0000	0,090
3	Malta di calce e ce	mentoo		0,0150	0,9	900	60,00	1800	9,3800	9,3800	0,017
4	Soletta in laterocer	mento sp.30	(24+6)	0,3000	0,8	311	2,70	3000	31,2500	31,2500	0,370
5	CLS di argilla espa	nsa 700 per	sottofondi non areati	0,1000	0,2	240	2,40	700	26,7900	26,7900	0,417
6	6 Bitume polimero su PPL			0,0040	0,3	300	75,00	1200	0,0094	0,0094	0,013
SP	ESSORE TOTALE [[m]		0,7340							

Conduttanza unitaria	10	Resistenza unitaria	0,100
superficie interna		superficie interna	
Conduttanza unitaria	25	Resistenza unitaria	0,040
superficie esterna		superficie esterna	
		•	
TRASMITTANZA	0,689	RESISTENZA TERMICA	1,452
TOTALE[W/m²K]		TOTALE[m ² K/W]	

<u>VERIFICA IGROMETRICA — CONDIZIONI AL CONTORNO</u> ESEGUITA A NORMA EN ISO 13788 (UNI10350)

	CONDIZIONE	Ti(ºC)	Pi(Pa)	Te(°C)	Pe(Pa)		
١N	INVERNALE: gennaio 20.0 1331 1.5						
	ESTIVA: agosto	23.9	1985	23.9	1985		
□	La struttura non è sog interstiziale; la differer tra quella di saturazion La struttura è soggetta la quantità stagionale	nza minima ne e quella a a fenome	a di pression reale è pa eni di cond	one ari a [Pa] ensa;	0.896		
×	La struttura non è soggetta a fenomeni di condensa						

<u>UNI 13786 - CARATTERISTICHE DINAMICHE DELLE STRUTTURE</u>

TIPO DI STRUTTURA Copertura spogliatoi

cod 699 SOF

N	Descrizione strato	S	λ	С	ρ	δ_{24}	ξ ₂₄	R
	(dall'interno verso l'esterno)	(m)	(W/mK)	(J/kg⋅K)	(kg/m³)	(m)	(-)	(m ² K/W)
1	Strato liminare della superficie orizzontale interna,							0.100
	calore ascendente UNI 6946							
2	Pannelli rigidi in fibre minerali di rocce	0.0150	0.037	840	100	0.110	0.136	0.405
3	Intercapedine d'aria debolmente ventilata sp. 300 mm	0.3000	3.333	1000	1.30	0.064	4.658	0.090
4	Malta di calce e cementoo	0.0150	0.900	840	1800	0.128	0.117	0.017
5	Soletta in laterocemento sp.30 (24+6)	0.3000	0.811	840	3000	0.094	3.189	0.370
6	CLS di argilla espansa 700 per sottofondi non areati	0.1000	0.240	920	700	0.101	0.988	0.417
7	Bitume polimero su PPL	0.0040	0.300	920	1200	0.086	0.046	0.013
8	Strato liminare della superficie orizzontale							0.040
	esterna,calore ascendente (velocità < 4 m/s) UNI							
	6946							
SP	ESSORE TOTALE [m]	0.7340					•	

ELEMENTI DELLA MATRICE DI TRASMISSIONE

	T = 24 h										
	Re() Im() Modulo Δt [
Z ₁₁	-22.58	-95.82	98.45	0.00							
Z ₁₂	21.58	61.10	64.80	4.70							
Z ₂₁	-109.16	268.19	289.56	0.00							
Z ₂₂	52.40	-183.24	190.59	-4.94							

T = 3 h			
Re()	lm()	Modulo	∆t [h]
303814.25	35968.98	305936.05	0.06
-184457.00	8723.25	184663.15	0.00
-1816300.29	-1642645.74	2448924.62	0.00
1244365.47	797839.16	1478172.10	0.27

CARATTERISTICHE DELLA MATRICE TERMICA DINAMICA

	T = 24 h		T = 3 h	
	Modulo	∆t [h]	Modulo	∆t [h]
Y11 (ammettenza lato interno	1.52	0.41	1.66	0.08
Y22 (ammettenza lato interno	2.94	2.36	8.00	0.29
Y12 (trasmittanza periodica)	0.02	-16.70	0.00	-23.82

Capacità termiche areiche	T = 24 h	T = 3 h
C1 (lato interno)	21	3
C2 (lato esterno)	40	14

Modulo	∆t [h]
0.00	-23.82

 $[kJ/(m^2K]$ $[kJ/(m^2K]$

	Modulo	Δt [h]	
f: fattore decremento	0.02	-16.70	

Classe prestazionale	Ottima (I)

Progetto:

COMUNE DI POGLIANO (MI) RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

DPR 59 - Par. 18.b								
LIMITAZIONE FABBISOGNO ENERGETICO PER LA CLIMATIZZAZIONE ESTIVA								
Irradianza sul piano orizzontale solare	I _{m,s}	278	W/m²					
Massa superficiale	Ms		kg/m²					
Modulo trasmittanza termica periodica	Y _{IE}		W/m²K					

Parete	Ms	Y _{IE}	Verifica
P.E 112 verticale	360	0.09	SI
P.E 113 verticale	198	0.58	ОИ
SOF 693 orizzontale	309	0.39	NO
SOF 699 orizzontale	***	0.02	SI

EN ISO-13788 (UNI-10350): PRESTAZIONI IGROTERMICHE - UMIDITA' SUPERFICIALE

CALCOLO DEL FATTORE DI TEMPERATURA IN CORRISPONDENZA ALLA SUPERFICIE INTERNA PER EVITARE VALORI CRITICI DI UMIDITA' SUPERFICIALE

C.1 Calcolo di f Rsi con le classi di concentrazione del vapore all'interno.

$\theta_{\sf e}$	[°C]	temperatura media mensile esterna
ϕ_{e}	[%]	umidità relativa media mensile esterna
p _e	[Pa]	pressione di vapore esterna
∆р	[Pa]	incremento di pressione di vapore ($\Delta p = 810 \text{ Pa}$; $\Delta v = 0.0060 \text{ kg/m}^3 \text{ per } \theta_e <=0$) [H.4]
p_i	[Pa]	pressione di vapore interna
$p_s(\theta_{si})$	[Pa]	pressione di saturazione minima accettabile
$ heta$ min	[°C]	temperatura superficiale minima accettabile
Θ_{i}	[°C]	temperatura interna
f_{Rsi}		fattore di temperatura in corrispondenza alla superficie interna
R_t	[m²·K/W]	Resistenza termica totale
R_{si}	[m²·K/W]	Resistenza superficiale interna
Φs	[%]	umidità relativa superficiale

Mese	θ_{e}	φе	рe	Δр	pi	$p_s(\theta_{si})$	θ gin	θ_{i}	f _{Rsi}	f_{Rsi}	f_Rsi
	°C	%	Pa	Pa	Pa	Pa	°C	°C	(A)	(B)	(C)
Ottobre	13.8	88.2	1393	251	1669	2086	18.2	20.0	0.704	0.138	1.457
Novembre	7.7	89.8	945	498	1493	1866	16.4	20.0	0.707	0.426	1.081
Dicembre	2.9	87.9	662	692	1423	1779	15.7	20.0	0.746	0.545	1.013
Gennaio	1.5	85.4	582	749	1406	1757	15.5	20.0	0.755	0.569	1.002
Febbraio	4.0	78.1	636	648	1348	1685	14.8	20.0	0.676	0.462	0.960
Marzo	9.0	81.0	930	445	1420	1775	15.6	20.0	0.601	0.289	1.017
Aprile	13.8	72.6	1147	251	1423	1779	15.7	20.0	0.298	-0.257	1.036

Nel prospetto seguente sono elencati tre criteri per la determinazione della $\theta_{\,\,\mathrm{sin}}^{\,\,\mathrm{min}}$ minima accettabile

- A) ϕ_s <=80% in base al rischio di crescita di muffe
- B) ⊕s <=100% per evitare la condensazione in corrispondenza dei telai dei serramenti
- C) ϕ_s <=60% per evitare fenomeni di corrosione
- D) come (A) ma con condizioni al contorno riparametrate

	A) φs <=80%	B) φs <=100%	C) φ _s <=60%
Mese critico =	Gennaio	Gennaio	
f max =	0.755	0.569	> 1
$\theta_{si}^{min} =$	15.47	12.03	> 20.0

Segue verifica delle strutture utilizzate, con indicazione del criterio scelto.

NOTA: le strutture per cui la resistenza totale $R_t > R_{si}/(1-f \Re x)$ risultano idonee, in quanto

hanno una temperatura superficiale interna tale da evitare umidità critica superficiale (5.3.f)

Co-Stru	Descrizione struttura	Criterio	R _{si}	R _{si} /(1-f max Rsi)	Rt	$ heta_{si}$	Verifica
112 P.E esterno	Parete piana	Α	0.25	1.019	1.68	17.25	Ok
112 P.E esterno	Ponte termico	Α	0.35	1.427	1.78	16.36	Ok
112 P.E esterno	Parete con schermature	Α	0.45	1.835	1.88	15.57	Ok
113 P.E esterno	Parete piana	Α	0.25	1.019	1.04	15.57	Ok
113 P.E esterno	Ponte termico	Α	0.35	1.427	1.14	14.34	
113 P.E esterno	Parete con schermature	Α	0.45	1.835	1.24	13.31	
227 S.E esterno	Telaio	В	0.13	0.302	0.42	14.23	Ok
565 PAV T2	Parete piana	Α	0.25		5.44	19.38	Ok
565 PAV T2	Ponte termico	Α	0.35		5.54	19.15	Ok
587 PAV TF	Parete piana	D	0.25		2.57	19.51	Ok
587 PAV TF	Ponte termico	D	0.35		2.67	19.35	Ok
593 PAV T2	Parete piana	Α	0.25		5.23	19.36	Ok
593 PAV T2	Ponte termico	Α	0.35		5.33	19.12	Ok
688 SOF TF	Parete piana	D	0.25		3.11	19.60	Ok
688 SOF TF	Ponte termico	D	0.35		3.21	19.45	Ok

Progetto:

COMUNE DI POGLIANO (MI) RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

Co-Stru	Descrizione struttura	Criterio	R _{si}	R _{si} /(1-f max Rsi)	R _t	$\theta_{\sf si}$	Verifica
693 SOF esterno	Parete piana	Α	0.25	1.019	1.02	15.48	Ok
693 SOF esterno	Ponte termico	Α	0.35	1.427	1.12	14.24	
699 SOF esterno	Parete piana	Α	0.25	1.019	1.60	17.11	Ok
699 SOF esterno	Ponte termico	Α	0.35	1.427	1.70	16.20	Ok

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

EN ISO-13788 (UNI-10350): PRESTAZIONI IGROTERMICHE - CONDENSA INTERSTIZIALE

STRUTTURA 112 P.E verso esterno

D.2 Condizioni termoigrometriche interne ed esterne utilizzate nel calcolo

Mese	$\theta_{\sf e}$	p _e	φе	Δр	pi	φi	θ_{i}
	°C	Pa	%	Pa	Pa	%	°C
Gennaio	1.5	582	85.4	749	1331	56.9	20.0
Febbraio	4.0	636	78.1	648	1284	54.9	20.0
Marzo	9.0	930	81.0	445	1375	58.8	20.0
Aprile	13.8	1147	72.6	251	1398	59.8	20.0
Aprile	13.8	1147	72.6	251	1398	67.7	18.0
Maggio	17.7	1308	64.5	93	1401	67.9	18.0
Giugno	22.3	1815	67.3	0	1815	67.3	22.3
Luglio	24.9	1713	54.3	0	1713	54.3	24.9
Agosto	23.9	1985	66.9	0	1985	66.9	23.9
Settembre	20.2	1895	80.0	0	1895	80.0	20.2
Ottobre	13.8	1393	88.2	251	1644	79.6	18.0
Ottobre	13.8	1393	88.2	251	1644	70.3	20.0
Novembre	7.7	945	89.8	498	1443	61.7	20.0
Dicembre	2.9	662	87.9	692	1354	57.9	20.0

 θ_{e} $\,$: temperatura media mensile esterna

pe : pressione di vapore esterna

 $\phi_{\text{e}}~$: umidità relativa media mensile esterna $_{\Delta p}~$: incremento di pressione di vapore

p_i : pressione di vapore interna

 $\begin{array}{ll} \phi_{i} & : \text{umidità relativa interna} \\ \theta_{i} & : \text{temperatura interna} \end{array}$

D.3 Flusso di vapore condensato mensilmente (g_c) e quantità di condensa accumulata (M_a)

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

EN ISO-13788 (UNI-10350): PRESTAZIONI IGROTERMICHE - CONDENSA INTERSTIZIALE

STRUTTURA 113 P.E verso esterno

D.2 Condizioni termoigrometriche interne ed esterne utilizzate nel calcolo

Mese	$\theta_{\sf e}$	p _e	φе	Δр	pi	φi	θ_{i}
	°C	Pa	%	Pa	Pa	%	°C
Gennaio	1.5	582	85.4	749	1331	56.9	20.0
Febbraio	4.0	636	78.1	648	1284	54.9	20.0
Marzo	9.0	930	81.0	445	1375	58.8	20.0
Aprile	13.8	1147	72.6	251	1398	59.8	20.0
Aprile	13.8	1147	72.6	251	1398	67.7	18.0
Maggio	17.7	1308	64.5	93	1401	67.9	18.0
Giugno	22.3	1815	67.3	0	1815	67.3	22.3
Luglio	24.9	1713	54.3	0	1713	54.3	24.9
Agosto	23.9	1985	66.9	0	1985	66.9	23.9
Settembre	20.2	1895	80.0	0	1895	80.0	20.2
Ottobre	13.8	1393	88.2	251	1644	79.6	18.0
Ottobre	13.8	1393	88.2	251	1644	70.3	20.0
Novembre	7.7	945	89.8	498	1443	61.7	20.0
Dicembre	2.9	662	87.9	692	1354	57.9	20.0

 $\theta_{\rm e}~$: temperatura media mensile esterna $p_{\rm e}~$: pressione di vapore esterna

 $\begin{array}{ll} \phi_e & \text{: umidità relativa media mensile esterna} \\ \Delta p & \text{: incremento di pressione di vapore} \end{array}$

 $\begin{array}{ll} p_i & : \text{ pressione di vapore interna} \\ \phi_i & : \text{ umidità relativa interna} \\ \theta_i & : \text{ temperatura interna} \end{array}$

D.3 Flusso di vapore condensato mensilmente (g_c) e quantità di condensa accumulata (M_a)

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

EN ISO-13788 (UNI-10350): PRESTAZIONI IGROTERMICHE - CONDENSA INTERSTIZIALE

STRUTTURA 565 PAV verso T2

D.2 Condizioni termoigrometriche interne ed esterne utilizzate nel calcolo

Mese	θ_{e}	pe	φе	Δр	pi	φi	θ_{i}
	°C	Pa	%	Pa	Pa	%	°C
Gennaio	6.6	973	100.0	749	1331	56.9	20.0
Febbraio	6.6	973	100.0	648	1284	54.9	20.0
Marzo	6.6	973	100.0	445	1375	58.8	20.0
Aprile	6.6	973	100.0	251	1398	59.8	20.0
Aprile	18.0	1032	50.0	251	1398	67.7	18.0
Maggio	18.0	1032	50.0	93	1401	67.9	18.0
Giugno	18.0	1032	50.0	0	1815	87.9	18.0
Luglio	18.0	1032	50.0	0	1713	83.0	18.0
Agosto	18.0	1032	50.0	0	1985	96.2	18.0
Settembre	18.0	1032	50.0	0	1895	91.8	18.0
Ottobre	18.0	1032	50.0	251	1644	79.6	18.0
Ottobre	6.6	973	100.0	251	1644	70.3	20.0
Novembre	6.6	973	100.0	498	1443	61.7	20.0
Dicembre	6.6	973	100.0	692	1354	57.9	20.0

 θ_{e} $\,$: temperatura media mensile esterna

pe : pressione di vapore esterna

 $\phi_{\text{e}}~$: umidità relativa media mensile esterna $_{\Delta p}~$: incremento di pressione di vapore

 $\begin{array}{ll} p_i & : \text{pressione di vapore interna} \\ \phi_i & : \text{umidità relativa interna} \\ \theta_i & : \text{temperatura interna} \end{array}$

D.3 Flusso di vapore condensato mensilmente (g_c) e quantità di condensa accumulata (M_a)

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

EN ISO-13788 (UNI-10350): PRESTAZIONI IGROTERMICHE - CONDENSA INTERSTIZIALE

STRUTTURA 593 PAV verso T2

D.2 Condizioni termoigrometriche interne ed esterne utilizzate nel calcolo

Mese	θ_{e}	pe	φе	Δр	pi	φi	θ_{i}
	°C	Pa	%	Pa	Pa	%	°C
Gennaio	6.6	973	100.0	749	1331	56.9	20.0
Febbraio	6.6	973	100.0	648	1284	54.9	20.0
Marzo	6.6	973	100.0	445	1375	58.8	20.0
Aprile	6.6	973	100.0	251	1398	59.8	20.0
Aprile	18.0	1032	50.0	251	1398	67.7	18.0
Maggio	18.0	1032	50.0	93	1401	67.9	18.0
Giugno	18.0	1032	50.0	0	1815	87.9	18.0
Luglio	18.0	1032	50.0	0	1713	83.0	18.0
Agosto	18.0	1032	50.0	0	1985	96.2	18.0
Settembre	18.0	1032	50.0	0	1895	91.8	18.0
Ottobre	18.0	1032	50.0	251	1644	79.6	18.0
Ottobre	6.6	973	100.0	251	1644	70.3	20.0
Novembre	6.6	973	100.0	498	1443	61.7	20.0
Dicembre	6.6	973	100.0	692	1354	57.9	20.0

 $\theta_{\rm e}~$: temperatura media mensile esterna $p_{\rm e}~$: pressione di vapore esterna

 ϕ_e : umidità relativa media mensile esterna

φ_e : umidita relativa media mensile esterna
 Δp : incremento di pressione di vapore
 p_i : pressione di vapore interna

 $\begin{array}{ll} \phi_i & : \text{umidità relativa interna} \\ \theta_i & : \text{temperatura interna} \end{array}$

D.3 Flusso di vapore condensato mensilmente (g_c) e quantità di condensa accumulata (M_a)

EN ISO-13788 (UNI-10350): PRESTAZIONI IGROTERMICHE - CONDENSA INTERSTIZIALE

STRUTTURA 693 SOF verso esterno

D.2 Condizioni termoigrometriche interne ed esterne utilizzate nel calcolo

Mese	θ_{e}	p _e	φе	Δр	p _i	φi	θ_{i}
	°C	Pa	%	Pa	Pa	%	°C
Gennaio	1.5	582	85.4	749	1331	56.9	20.0
Febbraio	4.0	636	78.1	648	1284	54.9	20.0
Marzo	9.0	930	81.0	445	1375	58.8	20.0
Aprile	13.8	1147	72.6	251	1398	59.8	20.0
Aprile	13.8	1147	72.6	251	1398	67.7	18.0
Maggio	17.7	1308	64.5	93	1401	67.9	18.0
Giugno	22.3	1815	67.3	0	1815	67.3	22.3
Luglio	24.9	1713	54.3	0	1713	54.3	24.9
Agosto	23.9	1985	66.9	0	1985	66.9	23.9
Settembre	20.2	1895	80.0	0	1895	80.0	20.2
Ottobre	13.8	1393	88.2	251	1644	79.6	18.0
Ottobre	13.8	1393	88.2	251	1644	70.3	20.0
Novembre	7.7	945	89.8	498	1443	61.7	20.0
Dicembre	2.9	662	87.9	692	1354	57.9	20.0

 $\theta_{\rm e}$: temperatura media mensile esterna

pe : pressione di vapore esterna

 $\phi_{\text{e}}~$: umidità relativa media mensile esterna $_{\Delta p}~$: incremento di pressione di vapore

 $\begin{array}{ll} p_i & : \text{ pressione di vapore interna} \\ \phi_i & : \text{ umidità relativa interna} \\ \theta_i & : \text{ temperatura interna} \end{array}$

D.3 Flusso di vapore condensato mensilmente (g_c) e quantità di condensa accumulata (M_a)

Mese	Periodi	Interfaccia	4 - 3
	[giorni]	gc [kg/m²]	M _a [kg/m ²]
Ott	16.0	0.00001	0.00001
Nov	30.0	0.00466	0.00468
Dic	31.0	0.03575	0.04042
Gen	31.0	0.03632	0.07675
Feb	28.0	0.00528	0.08203
Mar	31.0	0.00218	0.08421
Apr	15.0	- 0.00199	0.08222
Apr	15.0	- 0.00188	0.08033
Mag	31.0	- 0.01069	0.06965
Giu	30.0	- 0.01427	0.05538
Lug	31.0	- 0.02412	0.03127
Ago	31.0	- 0.01648	0.01479
Set	30.0	- 0.00768	0.00711
Ott	15.0	0.00012	0.00723

NOTA: La struttura NON E' IDONEA in quanto:

- la condensa accumulata in ogni interfaccia NON evapora completamente durante i mesi estivi

EN ISO-13788 (UNI-10350): PRESTAZIONI IGROTERMICHE - CONDENSA INTERSTIZIALE

STRUTTURA 699 SOF verso esterno

D.2 Condizioni termoigrometriche interne ed esterne utilizzate nel calcolo

Mese	θ_{e}	p _e	φе	Δр	pi	φi	θ_{i}
	°C	Pa	%	Pa	Pa	%	°C
Gennaio	1.5	582	85.4	749	1331	56.9	20.0
Febbraio	4.0	636	78.1	648	1284	54.9	20.0
Marzo	9.0	930	81.0	445	1375	58.8	20.0
Aprile	13.8	1147	72.6	251	1398	59.8	20.0
Aprile	13.8	1147	72.6	251	1398	67.7	18.0
Maggio	17.7	1308	64.5	93	1401	67.9	18.0
Giugno	22.3	1815	67.3	0	1815	67.3	22.3
Luglio	24.9	1713	54.3	0	1713	54.3	24.9
Agosto	23.9	1985	66.9	0	1985	66.9	23.9
Settembre	20.2	1895	80.0	0	1895	80.0	20.2
Ottobre	13.8	1393	88.2	251	1644	79.6	18.0
Ottobre	13.8	1393	88.2	251	1644	70.3	20.0
Novembre	7.7	945	89.8	498	1443	61.7	20.0
Dicembre	2.9	662	87.9	692	1354	57.9	20.0

 $\theta_{\rm e}$: temperatura media mensile esterna

pe : pressione di vapore esterna

 $\phi_{\text{e}}~$: umidità relativa media mensile esterna $_{\Delta p}~$: incremento di pressione di vapore

 $\begin{array}{ll} p_i & : \text{pressione di vapore interna} \\ \phi_i & : \text{umidità relativa interna} \\ \theta_i & : \text{temperatura interna} \end{array}$

D.3 Flusso di vapore condensato mensilmente (g_c) e quantità di condensa accumulata (M_a)

Mese	Periodi	Interfaccia	6 - 5
	[giorni]	g _c [kg/m²]	M _a [kg/m²]
Ott	16.0	0.00319	0.00319
Nov	30.0	0.19998	0.20317
Dic	31.0	0.22749	0.43066
Gen	31.0	0.22950	0.66016
Feb	28.0	0.20249	0.86264
Mar	31.0	0.03311	0.89576
Apr	15.0	- 0.01889	0.87687
Apr	15.0	- 0.01821	0.85865
Mag	31.0	- 0.11568	0.74297
Giu	30.0	- 0.15616	0.58681
Lug	31.0	- 0.26400	0.32281
Ago	31.0	- 0.18036	0.14245
Set	30.0	- 0.08405	0.05840
Ott	15.0	0.00367	0.06207

NOTA: La struttura NON E' IDONEA in quanto:

- la condensa accumulata in ogni interfaccia NON evapora completamente durante i mesi estivi
- la quantità di condensa alla fine del periodo di condensazione NON rispetta i limiti del prospetto H.1

Dettaglio analitico e grafico del fabbisogno di energia netta convenzionale (in regime di RISCALDAMENTO)

ENERGIA IN [kWh]	Gennaio	Febbraio	Marzo	Aprile	Ottobre	Novembre	Dicembre	Totali
QT strutture opache	13524	10364	7374	3326	3437	8168	12376	58569
QT finestre	4354	3337	2374	1071	1107	2629	3984	18856
QT non riscaldati	0	0	0	0	0	0	0	0
QT ambienti adiacenti TF	-85	-76	-85	-82	-85	-82	-85	-578
QT terreno	1517	1162	827	373	385	916	1388	6569
QT totale	19311	14786	10490	4688	4845	11631	17664	83415
QV ventilazione	8156	6250	4446	2006	2073	4925	7463	35319
QL	27466	21036	14936	6694	6917	16556	25127	118734
QI apporti interni	2816	2544	2816	2725	2816	2725	2816	19258
Qs apporti solari (opachi + trasp.)	3037	5088	9585	12608	6959	3487	2553	43317
Qse apporti serra	0	0	0	0	0	0	0	0
Rapporto apporti/dispersioni	0.151	0.247	0.716	-5.754	2.101	0.278	0.156	
nu Fattore utilizzazione apporti	0.977	0.947	0.759	1.000	0.408	0.936	0.976	
Qn,h Fabbisogno riscaldamento	21702	13637	4070	0	369	10599	19848	70226

RISCALDAMENTO	Totale	Unità
Dispersione per trasmissione	18.2	kWh/m³
Dispersione per ventilazione	7.7	kWh/m³
Apporti serra	0.0	kWh/m³
Costante di tempo	13.7	h
Apporti interni	4.2	kWh/m³
Apporti solari	9.4	kWh/m³
Fabbisogno netto	15.3	kWh/m³
Volume lordo	4591.0	m³

Dettaglio analitico e grafico del fabbisogno di energia netta convenzionale (in regime di RAFFRESCAMENTO)

ENERGIA IN [kWh]	Aprile	Maggio	Giugno	Luglio	Agosto	Settembre	Ottobre	Totali
QT strutture opache	8088	5159	1342	-745	75	3009	8358	101059
QT finestre	2604	1661	432	-240	24	969	2691	32536
QT non riscaldati	0	0	0	-0	0	0	0	0
QT ambienti adiacenti TF	-0	-0	-0	-0	-0	-0	-0	0
QT terreno	907	579	151	-84	8	337	937	11334
QT totale	11599	7399	1925	-1069	107	4315	11986	144929
QV ventilazione	4877	3111	809	-450	45	1814	5040	60942
QL	16477	10510	2734	-1519	152	6129	17026	205870
QI apporti interni	2725	2816	2725	2816	2816	2725	2816	33157
Qs apporti solari (opachi + trasp.)	12608	9688	10219	11282	9257	6615	6959	15840
Qse apporti serra	0	0	0	-0	0	0	0	0
Rapporto apporti/dispersioni	0.866	10.026	-1.159	-0.741	-0.931	-13.655	0.429	
nu Fattore utilizzazione dispersioni	0.608	0.989	1.000	1.000	1.000	1.000	0.376	
Qn,c Fabbisogno raffrescamento	0	7434	16158	22282	17584	7124	0	70582

I		
RAFFRESCAMENTO	Totale	Unità
Dispersione per trasmissione	31.6	kWh/m³
Dispersione per ventilazione	13.3	kWh/m³
Costante di tempo	13.6	h
Apporti interni	7.2	kWh/m³
Apporti solari	3.5	kWh/m³
Apporti solari opaco	16.2	kWh/m³
Fabbisogno netto	15.4	kWh/m³
Volume lordo	4591.0	m³

SCHEMA DI CALCOLO ENERGIA PRIMARIA RISCALDAMENTO

Rendimento globale medio stagionale =	0.81	
Fabbisogno di energia primaria specifica per riscaldamento =	18.9	kWh/m³

RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

ENERGIA PRIMARIA RISCALDAMENTO

Legenda:

 Q_{NH} [kWh] fabbisogno termico per il riscaldamento dell'involucro fabbisogno energetico per l'acqua calda sanitaria Q_{NW} [kWh] W_{RCV} [kWh] fabbisogno di energia elettrica del sistema di ventilazione efficienza del recuperatore di calore η_{RCV} [-] [kWh] contributo di un eventuale recuperatore di calore R_{RCV} [kWh] fab. termico riscaldamento involucro corretto dal contributo eventuale recuperatore $Q_{NH,r}$ [kWh] perdite recuperate dal sistema di produzione acqua calda sanitaria $Q_{W lrh}$ $Q_{h'}$ [kWh] Qh' = QNH,r - QW,Irh W_{eH} fabbisogno di energia elettrica degli ausiliari del sistema di emissione [kWh] frazione recuperata energia elettrica assorbita dagli aux del sistema emissione k_{eH} [-] rendimento del sistema di emissione [-] η_{eH} [kWh] perdita termica del sistema di emissione $Q_{L,eH}$ [kWh] energia termica richiesta al sistema di distribuzione $Q_{dH,out}$ W_{dH} [kWh] fabbisogno di energia elettrica degli ausiliari del sistema di distribuzione [-] frazione recuperata energia elettrica assorbita dagli aux del sistema distribuzione \mathbf{k}_{dH} rendimento del sistema di distribuzione [-] η_{dH} [kWh] $Q_{L,dH}$ perdita termica del sistema di distribuzione W_{iH} [kWh] fabbisogno di energia elettrica degli ausiliari del sistema di integrazione (Fonti rinnovabili) frazione recuperata energia elettrica assorbita aux del sistema di integrazione k_{iH} [-] [kWh] perdita termica del sistema di integrazione $Q_{L,iH}$ [kWh] energia termica richiesta al sistema di integrazione $Q_{iH,out}$ $Q_{\text{sH},\text{out}}$ [kWh] energia termica richiesta al sistema di accumulo W_{sH} [kWh] fabbisogno di energia elettrica degli ausiliari del sistema di accumulo frazione recuperata energia elettrica assorbita aux del sistema di accumulo \mathbf{k}_{sH} [-] rendimento del sistema di accumulo [-] η_{sH} [kWh] perdita termica del sistema di accumulo $Q_{L,sH}$ [kWh] $Q_{qH,out}$ energia termica richiesta al sistema di generazione per riscaldamento [kWh] Q'gH,out = QgH,out - QiH,outQ'_{qH,out} Q"gH,out [kWh] Q''gH,out = Q'gH,out + QgW,outenergia termica richiesta al sistema di generazione per ACS [kWh] $Q_{gW,out}$ W_{gH} [kWh] fabbisogno di energia elettrica degli ausiliari del sistema di generazione [-] frazione recuperata energia elettrica assorbita dagli aux del sistema generazione k_{gH} rendimento del sistema di generazione [-] η_{gH} [kWh] perdita termica del sistema di generazione $Q_{L,gH}$ [kWh] energia primaria in ingresso al sistema di generazione $Q_{gH,in}$ Q_{FV} [kWh] contributo energetico dovuto agli impianti solari fotovoltaici efficienza media del pannello dell'impianto fotovoltaico η_{FV} [-] [kWh] contributo energetico dovuto agli impianti solari fotovoltaici riscaldamento

 Q_{FVh} Q_{FVw} [kWh] contributo energetico dovuto agli impianti solari fotovoltaici ACS

[kWh] surplus energia degli impianti solari fotovoltaici Q_{FVplus}

 $Q_{EH,in}$ [kWh] energia primaria in ingresso al sistema di elettrico

 Q_{EPH} [kWh] fabbisogno di energia primaria per il riscaldamento dell'involucro edilizio

SCHEMA DI CALCOLO ENERGIA PRIMARIA ACS **FABBISOGNO** $Q_{NW} = 11069$ $Q'_{w} = 98$ **EROGAZIONE** $W_{eW} = 0$ $Q_{LeW} = 583$ $k_{eW} = 1.00$ $\eta_{\text{eW}} = 0.95$ $Q_{DW,out} = Q_{NW} + (Q_{L,eW} - k_{eW} \cdot W_{eW}) = 11651$ Metodo: Prospetti $W_{dW} \neq 0$ DISTRIBUZIONE $Q_{LdW} = 1013$ $k_{dW} = 0.00$ $\eta_{\text{dW}} = 0.92$ $Q_{SW,out} = Q_{DW,out} + (Q_{L,dW} - k_{dW} \cdot W_{dW}) = 12664$ $Q_{FVplus} =$ **ACCUMULO** $W_{sW} = 0$ $Q_{LsW} = 660$ $k_{sw} = 1.00$ $\eta_{\text{sW}} = 0.95$ FOTOVOLTAICO $Q_{GW,out} = Q_{SW,out} + (Q_{L,sW} - k_{sW} \cdot W_{sW}) = 13324$ $Q_{STw} = 0$ SOLARE $k_{stW} = 0.5$ 0.0% $Q_{FVh} = 0$ $Q_{STh} = 0$ $Q^*GW,out = QGW,out - QSTW = 13324$ $Q_{FVw} = 0$ $Q'_{gW,out} = 4895$ $Q''_{gW,out} = 8429$ $Q''_{L,gW} = 1384$ GEN. INVERNO GEN. ESTATE $W_{gW} \neq 0$ $k_{gW} = 0.80$ $\eta_{\text{gW}} = 0.86$ $\eta_{gW} = 1.00$ $Q'_{L,gW} = 0$ 4895 $Q'_{gW,in} =$ $Q''_{gW,in} = 9813$ $Q_{gW,in} = Q'_{gW,in} + Q''_{gW,in} = 14708$ $Q_{EW,in} = (\Sigma W_{xW} - Q_{FVw})/0.46 = 0$ $Q_{EPW} = Q_{EW,in} + Q_{gW,in} = 14708$

COMUNE DI POGLIANO (MI) RISTRUTTURAZIONE PALESTRA SCOLASTICA SCUOLA PRIMARIA Via Don Milani - Via Dante POGLIANO (MI)

ENERGIA PRIMARIA ACS

Legenda:

Q'w	[Wh/g]	fabbisogno energetico specifico giornaliero per la produzione ACS (al m² o per persona)
Q _{NW}	[kWh]	fabbisogno energetico per l'acqua calda sanitaria
W_{eW}	[kWh]	fabbisogno di energia elettrica degli ausiliari del sistema di erogazione
k _{eW}	[-]	frazione recuperata energia elettrica assorbita dagli aux del sistema erogazione
η_{eW}	[-]	rendimento del sistema di erogazione
$Q_{L,eW}$	[kWh]	perdita termica del sistema di erogazione
Q _{dW,out}	[kWh]	energia termica richiesta al sistema di distribuzione
W_{dW}	[kWh]	fabbisogno di energia elettrica degli ausiliari del sistema di distribuzione
k _{dW}	[-]	frazione recuperata energia elettrica assorbita aux del sistema di distribuzione
η_{dW}	[-]	rendimento del sistema di distribuzione
$Q_{L,dW}$	[kWh]	perdita termica del sistema di distribuzione
Q _{sW,out}	[kWh]	energia termica richiesta al sistema di accumulo
W _{sW}	[kWh]	fabbisogno di energia elettrica degli ausiliari del sistema di accumulo
k _{sW}	[-]	frazione recuperata energia elettrica assorbita aux del sistema di accumulo
η_{sW}	[-]	rendimento del sistema di accumulo
$Q_{L,sW}$	[kWh]	perdita termica del sistema di accumulo
$Q_{gW,out}$	[kWh]	energia termica richiesta al sistema di generazione
Q' _{gW,out}	[kWh]	energia termica richiesta al sistema di generazione in estate
Q" _{gW,out}	[kWh]	energia termica richiesta al sistema di generazione in inverno
W_{gW}	[kWh]	fabbisogno di energia elettrica degli ausiliari del sistema di generazione
k gW	[-]	frazione recuperata energia elettrica assorbita dagli aux del sistema generazione
η_{gW}	[-]	rendimento del sistema di generazione (estate, inverno)
Q' _{L,gW}	[kWh]	perdita termica del sistema di generazione in estate
Q'' _{L,gW}	[kWh]	perdita termica del sistema di generazione in inverno
Q' _{L,gW}	[kWh]	energia primaria in ingresso al sistema di generazione Estate
Q" _{gW,in}	[kWh]	energia primaria in ingresso al sistema di generazione Inverno
$Q_{gW,in}$	[kWh]	energia primaria in ingresso al sistema di generazione
Q _{FV}	[kWh]	contributo energetico dovuto agli impianti solari fotovoltaici
η_{FV}	[-]	efficienza media del pannello dell'impianto fotovoltaico
Q_{FVh}	[kWh]	contributo energetico dovuto agli impianti solari fotovoltaici riscaldamento
Q_{FVw}	[kWh]	contributo energetico dovuto agli impianti solari fotovoltaici ACS
Q _{FVplus}	[kWh]	surplus energia degli impianti solari fotovoltaici
Q _{ST}	[kWh]	radiazione solare incidente sul collettore in base ad azimut ed inclinazione pannello
η	[-]	efficienza media del pannello del solare termico
$Q_{EW,in}$	[kWh]	energia primaria in ingresso al sistema elettrico
Q _{EPw}	[kWh]	fabbisogno di energia primaria per la produzione di acqua calda sanitaria