

# Thomas Sanchez

## Selected Publications

#### Conference papers

- Z. Sun, F. Latorre, T. Sanchez, and V. Cevher, "A plug-and-play deep image prior," in *ICASSP*, pp. 8103–8107, 2021.
- I. Sanchez, Thomas Krawczuk et al., "Uncertainty-driven adaptive sampling via GANs," in *NeurIPS 2020 Workshop on Deep Learning and Inverse Problems*, 2020.
- T. Sanchez et al., "Scalable learning-based sampling optimization for compressive dynamic mri," in *ICASSP 2020*, pp. 8584–8588, 2020.
- B. Gözcü, T. Sanchez, and V. Cevher, "Rethinking sampling in parallel MRI: A data-driven approach," in *27th European Signal Processing Conference*, 2019.

#### Pre-prints

- T. Sanchez, I. Krawczuk, and V. Cevher, "On the benefits of deep RL in accelerated MRI sampling," 2021. Under review.
- T. Sanchez, I. Krawczuk, Z. Sun, and V. Cevher, "Closed loop deep bayesian inversion: Uncertainty driven acquisition for fast MRI," 2019.

## Education

- 2018– **PhD in Computer Science**, École Polytechnique Fédérale de Lausanne, Switzerland.
  - Laboratory for information and inference systems (LIONS) Supervisor: Volkan Cevher
  - Research interests: developing acquisition trajectories for MRI using data-driven approaches; deep-learning methods and rigorous uncertainty modelling.
- 2015–2018 **Master in Computational Science and Engineering**, *École Polytechnique Fédérale de Lausanne*, Switzerland.
  - o Numerical Analysis, Machine Learning, Image processing, High-Performance Computing
  - Master Thesis on *Learning-Based Non-Cartesian Compressive Sampling for dynamic MRI* supervised by prof. Volkan Cevher. Grade obtained: 6 out of 6.
- 2012–2015 Bachelor in physics, École Polytechnique Fédérale de Lausanne, Switzerland.

# Experience

- Feb.-Aug. Laboratory for Information and Inference Systems (LIONS, EPFL).
  - 2018 Internship at LIONS, continuing the work started during my master thesis.
- February-July Intern at the Ageing in Vision and Action Lab, Paris.
  - 2017 Developed a neural model for goal-directed spatial navigation based on optic flow.

# Relevant Skills

ML Studied and worked on several of machine learning methods during my PhD

GANs for inverse problems CNNs for reconstruction and uncertainty estimation RL for MR acquisition (Q-learning, MCTS) Reconstruction for non-Cartesian MRI Robust and interpretable fundus imaging

Programming Very good knowledge of Python (including Pytorch), Matlab, Java and C++. Good knowledge of C and C#.