# Bandpass Dependence of X-ray Temperatures in Galaxy Clusters

Kenneth W. Cavagnolo<sup>1,2</sup>, Megan Donahue<sup>1</sup>, G. Mark Voit<sup>1</sup>, and Ming Sun<sup>1</sup>

#### ABSTRACT

We explore the band dependence of the inferred X-ray temperature of the intracluster medium (ICM) for 192 well-observed galaxy clusters selected from the Chandra Data Archive. If the hot ICM is nearly isothermal in the projected region of interest, the X-ray temperature inferred from a broad-band (0.7-7.0 keV) spectrum should be identical to the X-ray temperature inferred from a hard-band (2.0-7.0 keV) spectrum. However, if unresolved cool lumps of gas are contributing soft X-ray emission, the temperature of a best-fit single-component thermal model will be cooler for the broad-band spectrum than for the hard-band spectrum. Using this difference as a diagnostic, the ratio of best-fitting hardband and broad-band temperatures may indicate the presence of cooler gas even when the X-ray spectrum itself may not have sufficient signal-to-noise to resolve multiple temperature components. To test this possible diagnostic, we extract X-ray spectra from core-excised annular regions for each cluster in our archival sample. We compare the X-ray temperatures inferred from single-temperature fits when the energy range of the fit is 0.7-7.0 keV (broad) and when the energy range is 2.0/(1+z)-7.0 keV (hard). We find that the hard-band temperature is significantly higher, on average, than the broad-band temperature. Upon further exploration, we find this temperature ratio is enhanced preferentially for clusters which are known merging systems. In addition, cool-core clusters tend to have best-fit hard-band temperatures that are in closer agreement with their best-fit broad-band temperatures. We show, using simulated spectra, that this diagnostic is sensitive to secondary cool components ( $T_X = 0.5 - 3.0 \text{ keV}$ ) with emission measures  $\geq 10 - 30\%$  of the primary hot component.

Subject headings: catalogs – galaxies: clusters: general – X-rays: galaxies: clusters – cosmology: observations – methods: data analysis

 $<sup>^1\</sup>mathrm{Michigan}$  State University, Department of Physics and Astronomy, BPS Building, East Lansing, MI 48824

<sup>&</sup>lt;sup>2</sup>cavagnolo@pa.msu.edu

#### 1. Introduction

The normalization, shape, and evolution of the cluster mass function are useful for measuring cosmological parameters (e.g. Evrard 1989; Wang & Steinhardt 1998; Haiman et al. 2001; Wang et al. 2004). The evolution of large scale structure formation is a test of how dark matter and dark energy effect the cluster-scale evolution of dark matter halos, and therefore provides a complementary and distinct constraint on cosmological parameters to those tests which constrain them geometrically, such as supernovae (Riess et al. 1998, 2007) and baryon acoustic oscillations (Eisenstein et al. 2005).

However, clusters are a useful cosmological tool only if we can infer cluster masses from observable properties such as X-ray luminosity, X-ray temperature, lensing shear, optical luminosity, or galaxy velocity dispersion. Empirically, the correlation of mass to these observable properties is well-established (Voit 2005). But, there is non-negligible scatter in these scaling relations which must be accounted for if clusters are to serve as high-precision mass proxies necessary for using clusters to study cosmological parameters such as the dark energy equation of state. However, if we could identify a "2nd parameter" – possibly reflecting the degree of relaxation in the cluster – we could improve the utility of clusters as cosmological probes by parameterizing and reducing the scatter in mass-observable scaling relations.

Toward this end, we desire to quantify the dynamical state of a cluster beyond simply identifying which clusters appear relaxed and those which do not. Most clusters are likely to have a dynamical state which is somewhere in-between (O'Hara et al. 2006; Kravtsov et al. 2006). The degree to which a cluster is virialized must first be quantified within simulations that correctly predict the observable properties of the cluster. Then, predictions for quantifying cluster virialization may be tested, and possibly calibrated, with observations of an unbiased sample of clusters (e.g. REXCESS sample of Böhringer et al. 2007).

One study that examined how relaxation might affect the observable properties of clusters was conducted by Mathiesen & Evrard 2001 (hereafter ME01) using the ensemble of simulations by Mohr & Evrard 1997. ME01 found that most clusters which had experienced a recent merger were cooler than the cluster mass-observable scaling relations predicted. They attributed this to the presence of cool, spectroscopically unresolved accreting subclusters which introduce energy into the ICM and have a long timescale for dissipation. The consequence was an under-prediction of cluster binding masses of 15-30% (Mathiesen & Evrard 2001).

One empirical observational method of quantifying the degree of cluster relaxation involves using ICM substructure and employs the power in ratios of X-ray surface brightness

moments (Buote & Tsai 1995, 1996; Jeltema et al. 2005). Although an excellent tool, power ratios suffer from being aspect-dependent (Jeltema et al. 2007; Ventimiglia et al. 2008). The work of ME01 suggested a complementary measure of substructure which does not depend on projected perspective. In their analysis, they found hard-band (2.0-9.0 keV) temperatures were  $\sim 20\%$  hotter than broad-band (0.5-9.0 keV) temperatures. This result can be interpreted in several ways: ME01's interpretation is that the cooler broad-band temperature is the result of unresolved accreting cool subclusters which are contributing significant amounts of line emission to the soft-band (E < 2 keV). This effect has been studied and confirmed by Mazzotta et al. (2004) and Vikhlinin (2006) using simulated *Chandra* and *XMM-Newton* spectra. An alternative view is that shock heating from accretion, a process which has a long timescale for thermalization of energy, results in a hotter hard-band temperature and thus a net skewing of the ratio between the hard-band and broad-band temperatures results.

ME01 suggested that this temperature skewing, and consequently the fingerprint of mergers, could be detected utilizing the energy resolution and soft-band sensitivity of *Chandra*. They proposed selecting a large sample of clusters covering a broad dynamical range, fitting a single-component temperature to the hard-band and broad-band, and then checking for a net skew above unity in the hard-band to broad-band temperature ratio.

It is important to note that the simulations of Mohr & Evrard (1997) included only gravitational processes, and the intervening years since 1997 have proven that radiative cooling is a tremendously important process in shaping the global properties of clusters. Without radiative cooling, a cool merging subcluster will survive longer in the hot ICM and thus its long-term influence is greater. While this is an important effect for theoreticians to consider when simulating cluster formation, the observational effect of a band-dependent temperature skewing, while more transient, might still be present, albeit weaker than the 20% predicted by ME01.

In this paper we present the findings of just such a temperature-ratio test using *Chandra* archival data. We find the hard-band temperature exceeds the broad-band temperature, on average, by  $\sim 16\%$  in multiple flux-limited samples of X-ray clusters from the *Chandra* archive. This mean excess is weaker than the 20% predicted by ME01, but is significant at the  $12\sigma$  level nonetheless. Hereafter, we refer to the hard-band to broad-band temperature ratio as  $T_{HBR}$ . We also find that non-cool core systems and mergers tend to have higher values of  $T_{HBR}$ . Our findings suggest that  $T_{HBR}$  is an indicator of a cluster's temporal proximity to the most recent merger event.

This paper proceeds in the following manner: In §2 we outline sample-selection criteria and *Chandra* observations selected under these criteria. Data reduction and handling of the X-ray background is discussed in §3. Spectral extraction is discussed in §4, while fitting and

simulated spectra are discussed in §5. Results and discussion of our analysis are presented in §6. A summary of our work is presented in §7. For this work we have assumed a flat  $\Lambda$ CDM Universe with cosmology  $\Omega_M = 0.3$ ,  $\Omega_{\Lambda} = 0.7$ , and  $H_0 = 70$  km s<sup>-1</sup> Mpc<sup>-1</sup>. All quoted uncertainties are at the 1.6 $\sigma$  level (90% confidence).

### 2. Sample Selection

Our sample was selected from observations publicly available in the *Chandra* X-ray Telescope's Data Archive (CDA). Our initial selection pass came from the *ROSAT* Brightest Cluster Sample (Ebeling et al. 1998), RBC Extended Sample (Ebeling et al. 2000), and *ROSAT* Brightest 55 Sample (Edge et al. 1990; Peres et al. 1998). The portion of our sample at  $z \gtrsim 0.4$  can also be found in a combination of the *Einstein* Extended Medium Sensitivity Survey (Gioia et al. 1990), North Ecliptic Pole Survey (Henry et al. 2006), *ROSAT* Deep Cluster Survey (Rosati et al. 1995), *ROSAT* Serendipitous Survey (Vikhlinin et al. 1998), and Massive Cluster Survey (Ebeling et al. 2001). We later extended our sample to include clusters found in the REFLEX Survey (Böhringer et al. 2004). Once we had a master list of possible targets, we cross-referenced this list with the CDA and gathered observations where a minimum of  $R_{5000}$  (defined below) is fully within the CCD field of view.

 $R_{\Delta_c}$  is defined as the radius at which the average cluster density is  $\Delta_c$  times the critical density of the Universe,  $\rho_c = 3H(z)^2/8\pi G$ . For our calculations of  $R_{\Delta_c}$  we adopt the relation from Arnaud et al. (2002):

$$R_{\Delta_c} = 2.71 \text{ Mpc } \beta_T^{1/2} \Delta_z^{-1/2} (1+z)^{-3/2} \left(\frac{kT_X}{10 \text{ keV}}\right)^{1/2}$$

$$\Delta_z = \frac{\Delta_c \Omega_M}{18\pi^2 \Omega_z}$$

$$\Omega_z = \frac{\Omega_M (1+z)^3}{[\Omega_M (1+z)^3] + [(1-\Omega_M - \Omega_\Lambda)(1+z)^2] + \Omega_\Lambda}$$
(1)

where  $R_{\Delta_c}$  is in units of  $h_{70}^{-1}$ ,  $\Delta_c$  is the assumed density contrast of the cluster at  $R_{\Delta_c}$ , and  $\beta_T$  is a numerically determined, cosmology-independent ( $\lesssim \pm 20\%$ ) normalization for the virial relation  $GM/2R = \beta_T k T_{vir}$ . We use  $\beta_T = 1.05$  taken from Evrard et al. (1996).

The result of our CDA search was a total of 374 observations of which we used 244 for 202 clusters. The clusters making up our sample cover a redshift range of z = 0.045 - 1.24, a temperature range of  $T_X = 2.6 - 19.2$  keV, and bolometric luminosities of  $L_{bol} = 0.12 - 100.4 \times 10^{44}$  ergs s<sup>-1</sup>. The bolometric (E = 0.1 - 100 keV) luminosities for our sample clusters plotted as a function of redshift are shown in Figure 1. These  $L_{bol}$  values are calculated from

our best-fit spectral models and are limited to the region of the spectral extraction (from R=70 kpc to  $R=R_{2500}$ , or  $R_{5000}$  in the cases where no  $R_{2500}$  fit was possible). Basic properties of our sample are listed in Table 1.



Fig. 1.— Bolometric luminosity ( $E=0.1-100~{\rm keV}$ ) plotted as a function of redshift for the 202 clusters which make-up the initial sample.  $L_{bol}$  values are limited to the region of spectral extraction,  $R=R_{2500-{\rm CORE}}$ . For clusters without  $R_{2500-{\rm CORE}}$  fits,  $R=R_{5000-{\rm CORE}}$  fits were used and are denoted in the figure by empty stars. Dotted lines represent constant fluxes of  $3.0\times10^{-15}$ ,  $10^{-14}$ ,  $10^{-13}$ , and  $10^{-12}~{\rm ergs~sec^{-1}~cm^{-2}}$ .

For the sole purpose of defining extraction regions based on fixed overdensities as discussed in §4, fiducial temperatures (measured with ASCA) and redshifts were taken from the Ph.D. thesis of Don Horner<sup>1</sup> (all redshifts confirmed with NED<sup>2</sup>). We will show later that the ASCA temperatures are sufficiently close to the Chandra temperatures such that  $R_{\Delta_c}$  is reliably estimated to within 20%. Note that  $R_{\Delta_c}$  is proportional to  $T^{1/2}$ , so that a 20% error in the temperature leads to only a 10% error in  $R_{\Delta_c}$ , which in turn affects our final results imperceptibly. For clusters not listed in Horner's thesis, we used a literature search to find previously measured temperatures. If no published value could be located, we measured the global temperature by recursively extracting a spectrum in the region  $0.1 < r < 0.2R_{500}$  fitting a temperature and recalculating  $R_{500}$ . This process was repeated until three consecutive iterations produced  $R_{500}$  values which differed by  $\leq 1\sigma$ . This method of temperature determination has been employed in other studies, see Sanderson et al. (2006) and Henry et al. (2006) as examples.

#### 3. Chandra Data

# 3.1. Reprocessing and Reduction

All datasets were reduced utilizing the *Chandra* Interactive Analysis of Observations package (CIAO) and accompanying Calibration Database (CALDB). Using CIAO v3.3.0.1 and CALDB v3.2.2, standard data analysis was followed for each observation to apply the most up-to-date time-dependent gain correction and when appropriate, charge transfer inefficiency correction (Townsley et al. 2000).

Point sources were identified in an exposure-corrected events file using the adaptive wavelet tool WAVDETECT (Freeman et al. 2002). A  $2\sigma$  region surrounding each point source was automatically output by WAVDETECT to define an exclusion mask. All point sources were then visually confirmed and we added regions for point sources which were missed by WAVDETECT and deleted regions for spuriously detected "sources". Spurious sources are typically faint CCD features (chip gaps and chip edges) not fully removed after dividing by the exposure map. This process resulted in an events file (at "level 2") that has been cleaned of point sources.

To check for contamination from background flares or periods of excessively high background, light curve analysis was performed using Maxim Markevitch's contributed CIAO

<sup>&</sup>lt;sup>1</sup>http://asd.gsfc.nasa.gov/Donald.Horner/thesis.html

<sup>&</sup>lt;sup>2</sup>http://nedwww.ipac.caltech.edu/

script LC\_CLEAN.SL<sup>3</sup>. Periods with count rates  $\geq 3\sigma$  and/or a factor  $\geq 1.2$  of the mean background level of the observation were removed from the good time interval file. As prescribed by Markevitch's cookbook<sup>4</sup>, ACIS front-illuminated (FI) chips were analyzed in the 0.3-12.0 keV range, and the 2.5-7.0 keV energy range for the ACIS back-illuminated (BI) chips.

When a FI and BI chip were both active during an observation, we compared light curves from both chips to detect long duration, soft-flares which can go undetected on the FI chips but show up on the BI chips. While rare, this class of flare must be filtered out of the data, as it introduces a spectral component which artificially increases the best-fit temperature via a high energy tail. We find evidence for a long duration soft flare in the observations of Abell 1758 (David & Kempner 2004), CL J2302.8+0844, and IRAS 09104+4109. These flares were handled by removing the time period of the flare from the GTI file.

Defining the cluster "center" is essential for the later purpose of excluding cool cores from our spectral analysis (see §4). To determine the cluster center, we calculated the centroid of the flare cleaned, point-source free level-2 events file filtered to include only photons in the 0.7-7.0 keV range. Before centroiding, the events file was exposure-corrected and "holes" created by excluding point sources were filled using interpolated values taken from a narrow annular region just outside the hole (holes are not filled during spectral extraction discussed in §4). Prior to centroiding, we defined the emission peak by heavily binning the image, finding the peak value within a circular region extending from the peak to the chip edge (defined by the radius  $R_{max}$ ), reducing  $R_{max}$  by 5%, reducing the binning by a factor of two, and finding the peak again. This process was repeated until the image was unbinned (binning factor of one). We then returned to an unbinned image with an aperture centered on the emission peak with a radius  $R_{max}$  and found the centroid using CIAO's DMSTAT. The centroid,  $(x_c, y_c)$ , for a distribution of N good pixels with coordinates  $(x_i, y_j)$  and values  $f(x_i, y_j)$  is defined as:

$$Q = \sum_{i,j=1}^{N} f(x_i, y_i)$$

$$x_c = \frac{\sum_{i,j=1}^{N} x_i \cdot f(x_i, y_i)}{Q}$$

$$y_c = \frac{\sum_{i,j=1}^{N} y_i \cdot f(x_i, y_i)}{Q}.$$
(2)

<sup>&</sup>lt;sup>3</sup>http://cxc.harvard.edu/contrib/maxim/acisbg/

<sup>&</sup>lt;sup>4</sup>http://cxc.harvard.edu/contrib/maxim/acisbg/COOKBOOK

If the centroid was within 70 kpc of the emission peak, the emission peak was selected as the center, otherwise the centroid was used as the center. This selection was made to ensure all "peaky" cool cores coincided with the cluster center, thus maximizing their exclusion later in our analysis. All cluster centers were additionally verified by eye.

# 3.2. X-ray Background

Because we measured a global cluster temperature, specifically looking for a temperature ratio shift in energy bands which can be contaminated by the high-energy particle background or the soft local background, it was important to carefully analyze the background and subtract it from our source spectra. Below we outline three steps taken in handling the background: customization of blank-sky backgrounds, re-normalization of these backgrounds for variation of hard-particle count rates, and fitting of soft background residuals.

We used the blank-sky observations of the X-ray background from Markevitch et al. (2001) and supplied within the CXC CALDB. First, we compared the flux from the diffuse soft X-ray background of the ROSAT All-Sky Survey (RASS) combined bands R12, R45, and R67 to the 0.7-2.0 keV flux in each extraction aperture for each observation. RASS combined bands give fluxes for energy ranges of 0.12-0.28 keV, 0.47-1.21 keV, and 0.76-2.04 keV respectively corresponding to R12, R45, and R67. For the purpose of simplifying subsequent analysis, we discarded observations with an R45 flux  $\geq 10\%$  of the total cluster X-ray flux.

The appropriate blank-sky dataset for each observation was selected from the CALDB, reprocessed exactly as the observation was, and then reprojected using the aspect solutions provided with each observation. For observations on the ACIS-I array, we reprojected blank-sky backgrounds for chips I0-I3 plus chips S2 and/or S3. For ACIS-S observations, we created blank-sky backgrounds for the target chip, plus chips I2 and/or I3. The additional off-aimpoint chips were included only if they were active during the observation and had available blank-sky data sets for the observation time period. Off-aimpoint chips were cleaned for point sources and diffuse sources using the method outlined in §3.1.

The additional off-aimpoint chips were included in data reduction since they contain data which is farther from the cluster center, and are therefore more useful in analyzing the observation background. For observations which did not have a matching off-aimpoint blank-sky background, a source-free region of the active chips is located and used for background normalization. To normalize the hard particle component we measured fluxes for identical regions in the blank-sky field and target field in the 9.5-12.0 keV range. The effective area of

the ACIS arrays above 9.5 keV is approximately zero, and thus the collected photons there are exclusively from the particle background.

A histogram of the ratios of the 9.5-12.0 keV count rate from an observation's off-aimpoint chip to that of the observation specific blank-sky background are presented in Figure 2. The majority of the observations are in agreement to  $\lesssim 20\%$  of the blank-sky background rate, which is small enough to not affect our analysis. Even so, we re-normalized all blank-sky backgrounds to match the observed background.



Fig. 2.— Ratio of target field and blank-sky field count rates in the 9.5-12.0 keV band for all 244 observations in our initial sample. Vertical dashed lines represent  $\pm 20\%$  of unity. Despite the good agreement between the blank-sky background and observation count rates for most observations, all backgrounds are normalized.

Normalization brings the observation background and blank-sky background into agreement for E>2 keV, but even after normalization, typically, there may exist a soft excess/deficit associated with the spatially varying soft Galactic background. Following the technique detailed in Vikhlinin et al. (2005), we constructed and fit soft residuals for this component. For each observation we subtracted a spectrum of the blank-sky field from a spectrum of the off-aimpoint field to create a soft residual. The residual was fit with a solar abundance, zero redshift MEKAL model (Mewe et al. 1985, 1986; Kaastra 1992; Liedahl et al. 1995) where the normalization was allowed to be negative. The resulting best-fit temperatures for all of the soft residuals identified here were between 0.2-1.0 keV, which is in agreement with results of Vikhlinin et al. (2005). The model normalization of this background component was then scaled to the cluster sky area. The re-scaled component was included as a fixed background component during fitting of a cluster's spectra.

# 4. Spectral Extraction

The simulated spectra calculated by ME01 were analyzed in the energy ranges 0.5-9.0 keV and  $2.0_{\rm rest}-9.0$  keV, but to make a reliable comparison with *Chandra* data we restricted our focus to a broad energy band (0.7-7.0 keV) and a hard energy band  $(2.0_{\rm rest}-7.0 \text{ keV})$ . We excluded data below 0.7 keV to avoid the effective area and quantum efficiency variations of the ACIS detectors, and excluded energies above 7.0 keV in which diffuse source emission is dominated by the background and where *Chandra*'s effective area is small. We also accounted for cosmic redshift by shifting the lower energy boundary of the hard-band from 2.0 keV to 2.0/(1+z) keV (henceforth, assume the 2.0 keV cut is in the rest frame).

ME01 calculated the relation between  $T_{0.5-9.0}$  and  $T_{2.0-9.0}$  using apertures of  $R_{200}$  and  $R_{500}$  in size. While it is trivial to calculate a temperature out to  $R_{200}$  or  $R_{500}$  for a simulation, such a measurement at these scales is extremely difficult with *Chandra* observations (see Vikhlinin et al. (2005) for a detailed example). Thus, we chose to extract spectra from regions with radius  $R_{5000}$ , and  $R_{2500}$  when possible. Clusters analyzed only within  $R_{5000}$  are denoted in Table 1 by a (‡).

The cores of some clusters are dominated by gas at  $\lesssim T_{virial}/2$  which can greatly affect the global temperature; therefore, we excised the central 70 kpc of each aperture. These excised apertures are denoted by "-CORE" in the text. Recent work by Maughan (2007) has shown excising 0.15  $R_{500}$  rather than a static 70 kpc reduces scatter in mass-observable scaling relations. But such a reduction does not affect this work as the conclusions drawn from our spectral analysis are strongly correlated with the uncertainties of  $T_{2.0-7.0}$  and not on the best-fit value of  $T_{0.7-7.0}$  where the effect of a cool core is the strongest.

Although some clusters are not circular in projection, but rather are elliptical or asymmetric, we found that assuming spherical symmetry and extracting spectra from a circular annulus did not significantly change the best-fit values. For another such example see Bauer et al. (2005).

After defining annular apertures, we extracted source spectra from the target cluster and background spectra from the corresponding normalized blank-sky dataset. By standard CIAO means we created weighted effective area functions (WARFs) and redistribution matrices (WRMFs) for each cluster using a flux-weighted map (WMAP) across the entire extraction region. The WMAP was calculated over the energy range 0.3-2.0 keV to weight calibrations that vary as a function of position on the chip. The CCD characteristics which affect the analysis of extended sources, such as energy dependent vignetting, are contained within these files. Each spectrum was then binned to contain a minimum of 25 counts per channel.

# 5. Spectral Analysis

# 5.1. Fitting

Spectra were fit with XSPEC 11.3.2AG (Arnaud 1996) using a single-temperature MEKAL model in combination with the photoelectric absorption model WABS (Morrison & McCammon 1983) to account for Galactic absorption. Galactic absorption values,  $N_{HI}$ , are taken from Dickey & Lockman (1990). The potentially free parameters of the absorbed thermal model are  $N_{HI}$ , X-ray temperature ( $T_X$ ), metal abundance normalized to Solar (elemental ratios taken from Anders & Grevesse 1989), and a normalization proportional to the integrated emission measure of the cluster. Results from the fitting are presented in Tables 4 and 5. No systematic error is added during fitting, and thus all quoted errors are statistical only. The statistic used during fitting was  $\chi^2$  (XSPEC statistics package CHI). Every cluster analyzed was found to have greater than 1500 background-subtracted source counts in the spectrum.

For some clusters, more than one observation was available in the archive. We utilized the power of the combined exposure time by first extracting independent spectra, WARFs, WRMFs, normalized background spectra, and soft residuals for each observation. Then, these independent spectra were read into XSPEC simultaneously and fit with one spectral model which had all parameters, except normalization, tied among the spectra. The simultaneous fit is what is reported for these clusters, denoted by a (‡), in Tables 4 and 5.

Additional statistical error was introduced into the fits because of uncertainty associated

with the soft local background component discussed in §3.2. To estimate the sensitivity of our best-fit temperatures to this uncertainty, we used the differences between  $T_X$  for a model using the best-fit soft background normalization and  $T_X$  for models using  $\pm 1\sigma$  of the soft background normalization. The statistical uncertainty of the original fit and the additional uncertainty inferred from the range of normalizations to the soft X-ray background component were then added in quadrature to produce a final error. In all cases this additional background error on the temperature was less than 10% of the total statistical error, and therefore represents a minor inflation of the error budget.

When comparing fits with fixed Galactic column density with those where it was a free parameter, we found that neither the goodness of fit per free parameter nor the best-fit  $T_X$  were significantly different. Thus,  $N_{HI}$  was fixed at the Galactic value with the exception of three cases: Abell 399 (Sakelliou & Ponman 2004), Abell 520, and Hercules A. For these three clusters  $N_{HI}$  is a free parameter. In all fits, the metal abundance was a free parameter.

After fitting we rejected several datasets as their best-fit  $T_{2.0-7.0}$  had no upper bound in the 90% confidence interval and thus were insufficient for our analysis. All fits for the clusters Abell 781, Abell 1682, CL J1213+0253, CL J1641+4001, IRAS 09104+4109, Lynx E, MACS J1824.3+4309, MS 0302.7+1658, and RX J1053+5735 were rejected. We also removed Abell 2550 from our sample after finding it to be an anomalously cool ( $T_X \sim 2$  keV) "cluster". In fact, Abell 2550 is a line-of-sight set of groups, as discussed by Martini et al. (2004). After these rejections, we are left with a final sample of 166 clusters which have  $R_{2500-\text{CORE}}$  fits and 192 clusters which have  $R_{5000-\text{CORE}}$  fits.

#### 5.2. Simulated Spectra

To quantify the effect a second, cooler gas component would have on the fit of a single-component spectral model, we created an ensemble of simulated spectra for each real spectrum in our entire sample using XSPEC. With these simulated spectra we sought to answer the question: Given the count level in each observation of our sample, how bright must a second temperature component be for it to affect the observed temperature ratio? Put another way, we asked at what flux ratio a second gas phase produces a temperature ratio,  $T_{HBR}$ , of greater than unity with  $1\sigma$  significance.

We began by adding the observation-specific background to a convolved, absorbed thermal model with two temperature components for a time period equal to the observation exposure time and adding Poisson noise. For each realization of an observation's simulated spectrum, we defined the primary component to have the best-fit temperature and metal-

licity of the  $R_{2500-\text{CORE}}$  0.7-7.0 keV fit, or  $R_{5000-\text{CORE}}$  if no  $R_{2500-\text{CORE}}$  fit was performed. We then incremented the secondary component temperature over the values 0.5, 0.75, 1.0, 2.0, and 3.0 keV. The metallicity of the secondary component was fixed and set equal to the metallicity of the primary component.

We adjusted the normalization of the simulated two-component spectra to achieve equivalent count rates to those in the real spectra. The sum of normalizations can be expressed as  $K = K_1 + \xi \cdot K_2$ . We set the secondary component normalization to  $K_2 = \xi \cdot K_{bf}$  where  $K_{bf}$  is the best-fit normalization of the appropriate 0.7-7.0 keV fit and  $\xi$  is a preset factor taking the values 0.4, 0.3, 0.2, 0.15, 0.1, and 0.05. The primary component normalization,  $K_1$ , was determined through an iterative process to make real and simulated spectral count rates match.

There are many systematics at work in the full ensemble of observation specific simulated spectra, such as redshift, column density, and metal abundance. Thus as a further check of spectral sensitivity to the presence of a second gas phase, we simulated additional spectra for the case of an idealized observation. We followed a similar procedure to that outlined above, but in this instance we used a finer temperature and  $\xi$  grid of  $T_2 = 0.5 \rightarrow 3.0$  in steps of 0.25 keV, and  $\xi = 0.02 \rightarrow 0.4$  in steps of 0.02. The input spectral model was  $N_{HI} = 3.0 \times 10^{20}$  cm<sup>-2</sup>,  $T_1 = 5$  keV,  $Z/Z_{\odot} = 0.3$  and z = 0.1. We also varied the exposure times such that the total number of counts in the 0.7-7.0 keV band was 15K, 30K, 60K, or 120K. For these spectra we used the on-axis sample response files provided for Cycle 10 proposers<sup>5</sup>. Poisson noise is added, but no background is considered.

We also simulated a control sample of single-temperature models. The control sample is simply a simulated version of the best-fit model. This control provides us with a statistical test of how often the actual hard-component temperature might differ from a broad-band temperature fit if calibration effects are under control. Fits for the control sample are shown in the far right panels of Figure 3.

For each observation, we have 65 total simulated spectra: 35 single-temperature control spectra and 30 two-component simulated spectra (five second temperatures, each with six different  $\xi$ ). Our resulting ensemble of simulated spectra contains 12,765 spectra. After generating all the spectra we followed the same fitting routine detailed in §5.1.

With the ensemble of simulated spectra we then asked the question: for each  $T_2$  and  $\Delta T_X$  (defined as the difference between the primary and secondary temperature components) what is the minimum emission percent,  $\xi_{min}$ , which produces  $T_{HBR} \geq 1.1$  at 90% confidence?

<sup>&</sup>lt;sup>5</sup>http://cxc.harvard.edu/caldb/prop\_plan/imaging/index.html

From our analysis of these simulated spectra we have found these important results:

- 1. In the control sample, a single-temperature model rarely ( $\sim 2\%$  of the time) gives a significantly different  $T_{0.7-7.0}$  and  $T_{2.0-7.0}$ . The weighted average (right panels of Fig. 3) for the control sample is  $1.002 \pm 0.001$  and the standard deviation is  $\pm 0.044$ . The  $T_{HBR}$  distribution for the control sample appears to have an intrinsic width which is likely associated with statistical noise of fitting in XSPEC (Dupke, private communication). This result indicates that our remaining set of observations is statistically sound, e.g. our finding that  $T_{HBR}$  significantly differs from 1.0 cannot result from statistical fluctuations alone.
- 2. For the idealized simulated spectra, the contribution from a second cooler component must be as follows in order to produce a  $T_{HBR} \geq 1.1$  at  $1\sigma$ :  $T_2 = 0.5$  keV requires  $\xi_{min} \geq 12\% \pm 4\%$ ;  $T_2 = 0.75$  keV requires  $\xi_{min} \geq 12\% \pm 4\%$ ;  $T_2 = 1.0$  keV requires  $\xi_{min} \geq 8\% \pm 3\%$ ;  $T_2 = 1.25$  keV requires  $\xi_{min} \geq 17\% \pm 3\%$ ;  $T_2 = 1.5$  keV requires  $\xi_{min} \geq 23\% \pm 5\%$ ;  $T_2 = 1.75$  keV requires  $\xi_{min} \geq 28\% \pm 4\%$ ; no  $T_2 = 2.0 3.0$  keV produced a  $T_{HBR}$  significantly greater than 1.1. The increase in precentages at  $T_2 < 1.0$  keV is owing to the energy band we consider (0.7-7.0 keV) as gas cooler than 0.7 keV must be brighter than at 1.0 keV in order to make an equal contribution to the soft end of the spectrum at 0.7 keV.
- 3. In the full ensemble of observation specific simulated spectra, we find a great deal of scatter in  $\xi_{min}$  at any given  $\Delta T_X$ . This was expected as the full ensemble is a superposition of spectra with a broad range of total counts,  $N_{HI}$ , redshifts, abundance, and backgrounds. But using the idealized simulated spectra as a guide, we find for those spectra with  $N_{\text{counts}} \gtrsim 15000$ , to produce  $T_{HBR} \geq 1.1$  at  $1\sigma$  requires the following:  $T_2 = 0.5$  keV with  $\xi_{min} \geq 14.5\% \pm 0.1\%$ ;  $T_2 = 0.75$  keV with  $\xi_{min} \geq 11.7\% \pm 0.1\%$ ;  $T_2 = 1.0$  keV with  $\xi_{min} \geq 11.6\% \pm 0.1\%$ ;  $T_2 = 2.0$  keV with  $\xi_{min} \geq 25.5\% \pm 0.1\%$ ;  $T_2 = 3.0$  keV with  $\xi_{min} \geq 28.9\% \pm 0.1\%$ . The good agreement between the idealized and observation specific simulated spectra is indicative that while many systematics are in play for the observation specific spectra, these systematics do not degrade our ability to reliably measure a temperature skewing.
- 4. As redshift increases, gas cooler than 1.0 keV is slowly redshifted out of the observable X-ray band. As expected, we find from our simulated spectra that for  $z \geq 0.6$ ,  $T_{HBR}$  is no longer statistically distinguishable from unity. In addition, the  $T_{2.0-7.0}$  lower boundary nears convergence with the  $T_{0.7-7.0}$  lower boundary as z increases, and for z = 0.6, the hard-band lower limit is 1.25 keV, while at the highest redshift considered, z = 1.2, the hard-band lower limit is only 0.91 keV. For the 14 clusters with  $z \geq 0.6$

in our real sample we can safely conclude we are not overestimating the contribution of cool gas to the spectra and we are most likely underestimating the temperature inhomogeneity. We have tested the effect on our results of excluding these clusters, and find a negligible change of the overall skew of  $T_{HBR}$  to greater than unity.

#### 6. Results and Discussion

# 6.1. Temperature Ratios

For each cluster we have measured a ratio of the hard-band to broad-band temperature defined as  $T_{HBR} = T_{2.0-7.0}/T_{0.7-7.0}$ . We find that the mean  $T_{HBR}$  for our entire sample is greater than unity at more than  $12\sigma$  significance. The weighted mean values for our sample are shown in Table 2. Presented in Figure 3 are the binned weighted means and raw  $T_{HBR}$  values for  $R_{2500-CORE}$ ,  $R_{5000-CORE}$ , and the simulated control sample. The peculiar points with  $T_{HBR} < 1$  are all statistically consistent with unity. The presence of clusters with  $T_{HBR} = 1$  suggests that systematic calibration uncertainties are not the sole reason for deviations of  $T_{HBR}$  from 1. We also find that the temperature ratio does not depend on the best-fit broad-band temperature, and that the observed dispersion of  $T_{HBR}$  is greater than the predicted dispersion arising from systematic uncertainties.



Fig. 3.— Best-fit temperatures for the hard-band,  $T_{2.0-7.0}$ , divided by the broad-band,  $T_{0.7-7.0}$ , and plotted against the broad-band temperature. For binned data, each bin contains 25 clusters, with the exception of the highest temperature bins which contain 16 and 17 for  $R_{2500-\text{CORE}}$  and  $R_{5000-\text{CORE}}$ , respectively. The simulated data bins contain 1000 clusters with the last bin having 780 clusters. The line of equality is shown as a dashed line and the weighted mean for the full sample is shown as a dashed-dotted line. Error bars are omitted in the unbinned data for clarity. Note the net skewing of  $T_{HBR}$  to greater than unity for both apertures with no such trend existing in the simulated data. The dispersion of  $T_{HBR}$  for the real data is also much larger than the dispersion of the simulated data indicating a physical process is present.

The uncertainty associated with each value of  $T_{HBR}$  is dominated by the larger error in  $T_{2.0-7.0}$ , and on average,  $\Delta T_{2.0-7.0} \approx 2.3\Delta T_{0.7-7.0}$ . This error interval discrepancy naturally results from excluding the bulk of a cluster's emission which occurs below 2 keV. While choosing a temperature-sensitive cut-off energy for the hard-band (other than 2.0 keV) might maintain a more consistent error budget across our sample, we do not find any systematic trend in  $T_{HBR}$  or the associated errors with cluster temperature.

# 6.2. Systematics

In this study we have found the average value of  $T_{HBR}$  is significantly greater than one and that  $\sigma_{HBR} > \sigma_{\text{control}}$ , with the latter result being robust against systematic uncertainties. As predicted by ME01, both of these results are expected to arise naturally from the hierarchical formation of clusters. But systematic uncertainty related to *Chandra* instrumentation or other sources could shift the average value of  $T_{HBR}$  one would get from "perfect" data. In this section we consider some additional sources of uncertainty.

First, the disagreement between XMM-Newton and Chandra cluster temperatures has been noted in several independent studies, i.e. Vikhlinin et al. (2005) and Snowden et al. (2007). But the source of this discrepancy is not well understood and efforts to perform cross-calibration between XMM-Newton and Chandra have thus far not been conclusive. One possible explanation is poor calibration of Chandra at soft X-ray energies which may arise from a hydrocarbon contaminant on the High Resolution Mirror Assembly (HRMA) similar in nature to the contaminant on the ACIS detectors (Marshall et al. 2004). We have assessed this possibility by looking for systematic trends in  $T_{HBR}$  with time or temperature, as such a contaminant would most likely have a temperature and/or time dependence.

As noted in §6.1 and seen in Figure 3, we find no systematic trend with temperature either for the full sample or for a sub-sample of single-observation clusters with > 75% of the observed flux attributable to the source (higher signal-to-noise observations will be more affected by calibration uncertainty). Plotted in the lower-left pane of Figures 4 and 5 is  $T_{HBR}$  versus time for single observation clusters (clusters with multiple observations are fit simultaneously and any time effect would be washed out) where the spectral flux is > 75% from the source. We find no significant systematic trend in  $T_{HBR}$  with time, which suggests that if  $T_{HBR}$  is affected by any contamination of *Chandra*'s HRMA, then the contaminant is most likely not changing with time. Our conclusion on this matter is that the soft calibration uncertainty is not playing a dominant role in our results.

Aside from instrumental and calibration effects, some other possible sources of system-

atic error are signal-to-noise (S/N), redshift selection, Galactic absorption, and metallicity. Also presented in Figures 4 and 5 are three of these parameters versus  $T_{HBR}$  for  $R_{2500-\text{CORE}}$  and  $R_{5000-\text{CORE}}$ , respectively. The trend in  $T_{HBR}$  with redshift is expected as the 2.0/(1+z) keV hard-band lower boundary nears convergence with the 0.7 keV broad-band lower boundary at  $z \approx 1.85$ . We find no systematic trends of  $T_{HBR}$  with S/N or Galactic absorption, which might occur if the skew in  $T_{HBR}$  were a consequence of poor count statistics, inaccurate Galactic absorption, or very poor calibration. In addition, the ratio of  $T_{HBR}$  for  $R_{2500-\text{CORE}}$  to  $R_{5000-\text{CORE}}$  for every cluster in our sample does not significanly deviate from unity. Our results are robust to changes in aperture size.



Fig. 4.— Plotted here are a few possible sources of systematic uncertainty versus  $T_{HBR}$ calculated for the  $R_{2500-\text{CORE}}$  apertures (166 clusters). Error bars have been omitted in several plots for clarity. The line of equality is shown as a dashed line in all panels. (Upper*left:*)  $T_{HBR}$  versus redshift for the entire sample. The trend in  $T_{HBR}$  with redshift is expected as the  $T_{2.0-7.0}$  lower boundary nears convergence with the  $T_{0.7-7.0}$  lower boundary at  $z \approx 1.85$ . Weighted values of  $T_{HBR}$  are consistent with unity starting at  $z \sim 0.6$ . (Upper-right:)  $T_{HBR}$  versus percentage of spectrum flux which is attributed to the source. We find no trend with signal-to-noise which suggests calibration uncertainty not is playing a major role in our results. (Middle-left:)  $T_{HBR}$  versus Galactic column density. We find no trend in absorption which would result if  $N_{HI}$  values are inaccurate or if we had improperly accounted for local soft contamination. (Middle-right:)  $T_{HBR}$  versus the deviation from unity in units of measurement uncertainty. Recall that we have used 90% confidence (1.6 $\sigma$ ) for our analysis. (Lower-left:)  $T_{HBR}$  plotted versus observation start date. The plotted points are culled from the full sample and represent only clusters which have a single observation and where the spectral flux is > 75% from the source. We note no systematic trend with time. (Lowerright:) Ratio of Chandra temperatures derived in this work to ASCA temperatures taken from Don Horner's thesis. We note a trend of comparatively hotter Chandra temperatures for clusters > 10 keV, otherwise our derived temperatures are in good agreement with those of ASCA.



Fig. 5.— Plotted here are a few possible sources of systematic uncertainty versus  $T_{HBR}$ calculated for the  $R_{5000-CORE}$  apertures (192 clusters). Error bars have been omitted in several plots for clarity. The line of equality is shown as a dashed line in all panels. (Upper*left:*)  $T_{HBR}$  versus redshift for the entire sample. The trend in  $T_{HBR}$  with redshift is expected as the  $T_{2.0-7.0}$  lower boundary nears convergence with the  $T_{0.7-7.0}$  lower boundary at  $z \approx 1.85$ . Weighted values of  $T_{HBR}$  are consistent with unity starting at  $z \sim 0.6$ . (Upper-right:)  $T_{HBR}$  versus percentage of spectrum flux which is attributed to the source. We find no trend with signal-to-noise which suggests calibration uncertainty is not playing a major role in our results. (Middle-left:)  $T_{HBR}$  versus Galactic column density. We find no trend in absorption which would result if  $N_{HI}$  values are inaccurate or if we had improperly accounted for local soft contamination. (Middle-right:)  $T_{HBR}$  versus the deviation from unity in units of measurement uncertainty. Recall that we have used 90% confidence (1.6 $\sigma$ ) for our analysis. (Lower-left:)  $T_{HBR}$  plotted versus observation start date. The plotted points are culled from the full sample and represent only clusters which have a single observation and where the spectral flux is > 75% from the source. We note no systematic trend with time. (Lowerright:) Ratio of Chandra temperatures derived in this work to ASCA temperatures taken from Don Horner's thesis. We note a trend of comparatively hotter Chandra temperatures for clusters > 10 keV, otherwise our derived temperatures are in good agreement with those of ASCA.

Also shown in Figures 4 and 5 are the ratio of ASCA temperatures taken from Don Horner's thesis to Chandra temperatures derived in this work. The spurious point below 0.5 with very large error bars is MS 2053.7-0449, which has a poorly constrained ASCA temperature of  $10.03^{+8.73}_{-3.52}$ . Our value of  $\sim 3.5$  keV for this cluster is in agreement with the recent work of Maughan et al. (2007). Not all our sample clusters have an ASCA temperature, but a sufficient number (53) are available to make this comparison reliable. Apertures used in the extraction of ASCA spectra had no core region removed and were substantially larger than  $R_{2500}$ . ASCA spectra were also fit over a broader energy range (0.6-10 keV) than we use here. Nonetheless, our temperatures are in good agreement with those from ASCA, but we do note a trend of comparatively hotter Chandra temperatures for  $T_{Chandra} > 10$  keV. For both apertures, the clusters with  $T_{Chandra} > 10$  keV are Abell 1758, Abell 2163, Abell 2255, and RX J1347.5-1145. Based on this trend, we test excluding the hottest clusters  $(T_{Chandra} > 10)$ keV where ASCA and Chandra disagree) from our sample. The mean temperature ratio for  $R_{2500-\text{CORE}}$  remains 1.16 and the error of the mean increases from  $\pm 0.014$  to  $\pm 0.015$ , while for  $R_{5000-\mathrm{CORE}}$   $T_{HBR}$  increases by a negligible 0.9% to 1.15  $\pm$  0.014. Our results are not being influenced by the inclusion of hot clusters.



Fig. 6.— Plotted here is  $T_{HBR}$  as a function of metal abundance for  $R_{2500-CORE}$ ,  $R_{5000-CORE}$ , and the Control sample (see discussion of control sample in §5.2). Error bars are omitted for clarity. The dashed-line represents the linear best-fit using the bivariate correlated error and intrinsic scatter (BCES) method of Akritas & Bershady (1996) which takes into consideration errors on both  $T_{HBR}$  and abundance when performing the fit. We note no trend in  $T_{HBR}$  with metallicity (the apparent trend in the top panel is not significant) and also note the low dispersion in the control sample relative to the observations. The striation of abundance arises from our use of two decimal places in recording the best-fit values from XSPEC.

The temperature range of the clusters we've analyzed  $(T_X \sim 3-20 \text{ keV})$  is broad enough that the effect of metal abundance on the inferred spectral temperature is clearly not negligible. In Figure 6 we have plotted  $T_{HBR}$  versus abundance in units Solar. Despite covering a factor of seven in temperature and metal abundances ranging from  $Z/Z_{\odot} \approx 0$  to Solar, we find no trend in  $T_{HBR}$  with metallicity. The slight trend in the  $R_{2500-\text{CORE}}$  aperture (top panel of Figure 6) is insignificant, while there is no trend at all in the control sample or  $R_{5000-\text{CORE}}$  aperture.

### 6.3. Using $T_{HBR}$ as a Test of Relaxation

#### 6.3.1. Cool Core Versus Non-Cool Core

As discussed in §1, ME01 gives us reason to believe the observed skewing of  $T_{HBR}$  to greater than unity is related to the dynamical state of a cluster. It has also been suggested that the process of cluster formation and relaxation may robustly result in the formation of a cool core (Ota et al. 2006; Burns et al. 2007). Depending upon classification criteria, completeness, and possible selection biases, studies of flux-limited surveys have placed the prevalence of cool cores at 34-60% (White et al. 1997; Peres et al. 1998; Bauer et al. 2005; Chen et al. 2007). It has thus become rather common to divide up the cluster population into two distinct classes, cool core (CC) and non-cool core (NCC), for the purpose of discussing their different in formation or merger histories. We thus sought to identify which clusters in our sample have cool cores, which do not, and if the presence or absence of a cool core is correlated with  $T_{HBR}$ . It is very important to recall that we excluded the core during spectral extraction and analysis.

To classify the core of each cluster, we extracted a spectrum for the 50 kpc region surrounding the cluster center and then defined a temperature decrement,

$$T_{\rm dec} = T_{50}/T_{\rm cluster} \tag{3}$$

where  $T_{50}$  is the temperature of the inner 50 kpc and  $T_{\text{cluster}}$  is either the  $R_{2500-\text{CORE}}$  or  $R_{5000-\text{CORE}}$  temperature. If  $T_{\text{dec}}$  was  $2\sigma$  less than unity, we defined the cluster as having a CC, otherwise the cluster was defined as NCC. We find CCs in 35% of our sample and when we lessen the significance needed for CC classification from  $2\sigma$  to  $1\sigma$ , we find 46% of our sample clusters have CCs. It is important to note that the frequency of CCs in our study is consistent with other more detailed studies of CC/NCC populations.

When fitting for  $T_{50}$ , we altered the method outlined in §5.1 to use XSPEC's modified Cash statistic (Cash 1979), CSTAT, on ungrouped spectra. This choice was made because the

distribution of counts per bin in low count spectra is not Gaussian but instead Poisson. As a result, the best-fit temperature using  $\chi^2$  is typically cooler (Nousek & Shue 1989; Balestra et al. 2007). We have explored this systematic in **all** of our fits and found it to be significant only in the lowest count spectra of the inner 50 kpc apertures discussed here. But, for consistency, we fit all inner 50 kpc spectra using the modified Cash statistic.

With each cluster core classified, we then took cuts in  $T_{HBR}$  and asked how many CC and NCC clusters were above these cuts. Figure 7 shows the normalized number of CC and NCC clusters as a function of cuts in  $T_{HBR}$ . If  $T_{HBR}$  were insensitive to the state of the cluster core, we expect, for normally distributed  $T_{HBR}$  values, to see the number of CC and NCC clusters decreasing in the same way. However, the number of CC clusters falls off more rapidly than the number of NCC clusters. This effect is dramatically reduced – as expected – if the core is included. If the presence of a CC is indicative of a cluster's advancement towards complete virialization, then the significantly steeper decline in the percent of CC clusters versus NCC as a function of increasing  $T_{HBR}$  indicates higher values of  $T_{HBR}$  are associated with a less relaxed state. This result is insensitive to our choice of significance level in the core classification, i.e. the result is the same whether using  $1\sigma$  or  $2\sigma$  significance when considering  $T_{dec}$ .



Fig. 7.— Plotted here is the normalized number of cool core (CC) and non-cool core (NCC) clusters as a function of cuts in  $T_{HBR}$ . There are 166 clusters plotted in the top panel and 192 in the bottom panel. We have defined a cluster as having a cool core (CC) when the temperature for the 50 kpc region around the cluster center divided by the temperature for  $R_{2500-\text{CORE}}$ , or  $R_{5000-\text{CORE}}$ , was less than one at the  $2\sigma$  level. We then take cuts in  $T_{HBR}$  at the  $1\sigma$  level and ask how many CC and NCC clusters are above these cuts. The number of CC clusters falls off more rapidly than NCC clusters in this classification scheme suggesting higher values of  $T_{HBR}$  prefer less relaxed systems which do not have cool cores. This result is insensitive to our choice of significance level in both the core classification and  $T_{HBR}$  cuts.

Because of the CC/NCC definition we selected, our identification of CCs and NCCs was only as robust as the errors on  $T_{50}$  allowed. One can thus ask the question, did our loose definition bias us towards finding more NCCs than CCs? To explore this question we simulated 20 spectra for each observation following the method outlined in §5.2 for the control sample but using the inner 50 kpc spectral best-fit values as input. For each simulated spectrum, we calculated a temperature decrement (Eqn. 3) and re-classified the cluster as having a CC or NCC. Using the new set of mock classifications we assigned a reliability factor,  $\psi$ , to each real classification, which is simply the fraction of mock classifications which agree with the real classification. A value of  $\psi = 1.0$  indicates complete agreement, and  $\psi = 0.0$  indicating no agreement. When we removed clusters with  $\psi < 0.9$  and repeated the analysis above, we found no significant change in the trend of a steeper decrease in the relative number of CC versus NCC clusters as a function of  $T_{HBR}$ .

Recall that the coolest ICM gas is being redshifted out of the observable band as z increases and becomes a significant effect at  $z \ge 0.6$  (§5.2). Thus, we are likely not detecting "weak" CCs in the highest redshift clusters of our sample and consequently these cores are classified as NCCs and are artificially increasing the NCC population. When we excluded the 14 clusters at  $z \ge 0.6$  from this portion of our analysis and repeated the calculations, we found no significant change in the results.

#### 6.3.2. Mergers Versus Non-Mergers

To further investigate trends in  $T_{HBR}$  we now examine a subclass of clusters which have  $T_{HBR} > 1.1$  at the  $1\sigma$  level for both  $R_{2500-\text{CORE}}$  and  $R_{5000-\text{CORE}}$  apertures. These clusters are identified in Table 3 (clusters with only  $R_{5000-\text{CORE}}$  fits are listed at the end of the table). The use of clusters with  $T_{HBR} > 1.1$  is an arbitrary threshold selected to limit the number of clusters to which we pay individual attention, but which is still representative of midto high- $T_{HBR}$  values. All 33 of these clusters have a core classification of  $\psi > 0.9$ . We define a further subclass of these culled clusters which have been identified as mergers in the literature. Cluster mergers are identified in the literature in many different ways: bimodal galaxy velocity distributions, morphologies, highly asymmetric temperature distributions, ICM substructure correlated with subclusters, or disagreement of X-ray and lensing masses. From Table 3 we can see clusters exhibiting the highest significant values of  $T_{HBR}$  tend to be ongoing or recent mergers. At the  $2\sigma$  level, we find increasing values of  $T_{HBR}$  favor merger systems with NCCs over relaxed, CC clusters. Mergers have left a spectroscopic imprint on the ICM which was predicted by ME01 and which we observe in our sample.



Fig. 8.—  $T_{HBR}$  plotted against  $T_{0.7-7.0}$  for the  $R_{2500-\text{CORE}}$  and  $R_{5000-\text{CORE}}$  apertures. Note the vertical scales for both panels are not the same. The top and bottom panes contain 166 and 192 clusters respectively. The dashed lines are the lines of equivalence. Symbols and color coding are based on two criteria: 1) presence of a cool core (CC) and 2) value of  $T_{HBR}$ . Black stars are clusters with a CC and  $T_{HBR}$  significantly greater than 1.1. Green upright-triangles are NCC clusters with  $T_{HBR}$  significantly greater than 1.1. Blue downfacing triangles are CC clusters and red squares are NCC clusters. We have found most, if not all, of the clusters with  $T_{HBR} \gtrsim 1.1$  are merger systems. Note that the cut at  $T_{HBR} > 1.1$  is arbitrary and there are more merger systems in our sample then just those highlighted in this figure. However it is rather suggestive that clusters with the highest values of  $T_{HBR}$  share a common dynamic state.

Of the 33 clusters with  $T_{HBR}$  significantly > 1.1, only seven have CCs. Three of those - MKW3S, 3C 28.0, and RX J1720.1+2638 - have their apertures centered on the bright, dense cores in confirmed mergers. Two more clusters – Abell 2384 and RX J1525+0958 – while not confirmed mergers, have morphologies which are consistent with powerful ongoing mergers. Abell 2384 has a long gas tail extending toward a gaseous clump which we assume has recently passed through the cluster. RXJ1525 has a core shaped like an arrowhead and is reminiscent of the bow shock seen in 1E0657-56. Abell 907 has no signs of being a merger system, but the highly compressed surface brightness contours to the west of the core are indicative of a prominent cold front, which is a tell-tale sign of a subcluster merger event (Markevitch & Vikhlinin 2007). Abell 2029 presents a very interesting and curious case because of its seeming pristine state of relaxation and prominent cool core. There are no complementary indications it has experienced a merger event, yet it's core hosts a wide-angle tail radio source. It has been suggested that such sources might be attributable to cluster merger activity (Sakelliou & Merrifield 2000). Moreover, the X-ray isophotes to the west of the bright, peaked core are slightly more compressed and may be an indication of past gas sloshing resulting from the merger of a small subcluster. Both of these features have been noted previously, specifically by Clarke et al. (2004, 2005). We suggest the elevated  $T_{HBR}$ value for this cluster lends more weight to the argument that A2029 has indeed experienced a merger recently, but how long ago we do not know.

The systems we could not verify as mergers – RX J0439.0+0715, MACS J2243.3-0935, MACS J0547.0-3904, Zwicky 1215, MACS J2311+0338, Abell 267, and NGC 6338 – have NCCs and X-ray morphologies consistent with an ongoing or post-merger scenario. Abell 1204 shows no signs of recent or ongoing merger activity; however, it resides at the bottom of the arbitrary  $T_{HBR}$  cut, and as evidenced by Abell 401 and Abell 1689, exceptional spherical symmetry is no guarantee of relaxation. Our analysis here is partially at the mercy of morphological assessment, and only a more stringent study of a carefully selected subsample or analysis of simulated clusters can better determine how closely correlated  $T_{HBR}$  is with the timeline of merger events.

# 7. Summary and Conclusions

We have explored the band dependence of the inferred X-ray temperature of the ICM for 192 well-observed ( $N_{counts} > 1500$ ) clusters of galaxies selected from the *Chandra* Data Archive.

We extracted spectra from the annulus between R = 70 kpc and  $R = R_{2500}$ ,  $R_{5000}$  for each cluster. We compared the X-ray temperatures inferred for single-component fits to

global spectra when the energy range of the fit was 0.7-7.0 keV (broad) and when the energy range was 2.0/(1+z)-7.0 keV (hard). We found that, on average, the hard-band temperature is significantly higher than the broad-band temperature. For the  $R_{2500-\text{CORE}}$  aperture we measured a weighted average of  $T_{HBR} = 1.16$  with  $\sigma = \pm 0.10$  and  $\sigma_{mean} = \pm 0.01$ , for the  $R_{5000-\text{CORE}}$  aperture,  $T_{HBR} = 1.14$  with  $\sigma = \pm 0.12$  and  $\sigma_{mean} = \pm 0.01$ . We also found no systematic trends in the value of  $T_{HBR}$ , or the dispersion of  $T_{HBR}$ , with signal-to-noise, redshift, Galactic absorption, metallicity, observation date, or broad-band temperature.

In addition, we simulated an ensemble of 12,765 observation-specific, idealized, and control spectra and spectra with two thermal components. From analysis of these simulations we found the observed scatter,  $\sigma_{HBR}$ , is consistent with the presence of unresolved cool  $(T_X < 2.0 \text{ keV})$  gas, and we also found the observational scatter is greater than the statistical scatter,  $\sigma_{control}$ . As discussed in ME01, both of these results are consistent with the process of hierarchical cluster formation.

Upon further exploration, we found that  $T_{HBR}$  is enhanced preferentially for clusters which are known merger systems and for clusters without cool cores. Clusters with temperature decrements in their cores (known as cool-core clusters) tend to have best-fit hard-band temperatures that are consistently closer to their best-fit broad-band temperatures. The correlation of  $T_{HBR}$  with the type of cluster core is insensitive to our choice of classification scheme and is robust against redshift effects. Our results qualitatively support the finding by ME01 that the temperature ratio,  $T_{HBR}$ , might therefore be useful for statistically quantifying the degree of cluster relaxation/virialization.

An additional robust test of the ME01 finding should be made with simulations by tracking  $T_{HBR}$  during hierarchical assembly of a cluster. If  $T_{HBR}$  is tightly correlated with a cluster's degree of relaxation, then it, along with other methods of substructure measure, may provide a powerful metric for predicting (and therefore reducing) a cluster's deviation from mean mass-scaling relations. The task of reducing scatter in scaling relations will be very important if we are to reliably and accurately measure the mass of clusters.

Kenneth Cavagnolo was supported in this work by the National Aeronautics and Space Administration through *Chandra* X-ray Observatory Archive grants AR-6016X and AR-4017A, with additional support from a start-up grant for Megan Donahue from Michigan State University. Megan Donahue and Michigan State University acknowledge support from the NASA LTSA program NNG-05GD82G. The *Chandra* X-ray Observatory Center is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. This research has made use of software provided by the *Chandra* X-ray Center (CXC) in the application packages

CIAO, CHIPS, and SHERPA. We thank Alexey Vikhlinin for helpful insight and expert advice, attendees of the "Eight Years of Science with Chandra Calibration Workshop" for stimulating discussion regarding XMM-Chandra cross-calibration, and especially Keith Arnaud for personally providing support/advice for using XSPEC. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has also made use of NASA's Astrophysics Data System. ROSAT data and software were obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center.

# REFERENCES

- Akritas, M. G. & Bershady, M. A. 1996, ApJ, 470, 706
- Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
- Andersson, K. E., & Madejski, G. M. 2004, ApJ, 607, 190
- Arnaud, K. A. 1996, in ASP Conf. Ser. 101: Astronomical Data Analysis Software and Systems V, ed. G. H. Jacoby & J. Barnes, 17—+
- Arnaud, M., Aghanim, N., & Neumann, D. M. 2002, A&A, 389, 1
- Bagchi, J., Durret, F., Neto, G. B. L., & Paul, S. 2006, Science, 314, 791
- Balestra, I., Tozzi, P., Ettori, S., Rosati, P., Borgani, S., Mainieri, V., Norman, C., & Viola, M. 2007, A&A, 462, 429
- Barrena, R., Boschin, W., Girardi, M., & Spolaor, M. 2007, A&A, 467, 37
- Bauer, F. E., Fabian, A. C., Sanders, J. S., Allen, S. W., & Johnstone, R. M. 2005, MNRAS, 359, 1481
- Bliton, M., Rizza, E., Burns, J. O., Owen, F. N., & Ledlow, M. J. 1998, MNRAS, 301, 609
- Böhringer, H., Schuecker, P., Pratt, G. W., Arnaud, M., Ponman, T. J., Croston, J. H., Borgani, S., Bower, R. G., Briel, U. G., Collins, C. A., Donahue, M., Forman, W. R., Finoguenov, A., Geller, M. J., Guzzo, L., Henry, J. P., Kneissl, R., Mohr, J. J., Matsushita, K., Mullis, C. R., Ohashi, T., Pedersen, K., Pierini, D., Quintana, H., Raychaudhury, S., Reiprich, T. H., Romer, A. K., Rosati, P., Sabirli, K., Temple,

- R. F., Viana, P. T. P., Vikhlinin, A., Voit, G. M., & Zhang, Y.-Y. 2007, A&A, 469, 363
- Böhringer, H., Schuecker, P., Guzzo, L., Collins, C. A., Voges, W., Cruddace, R. G., Ortiz-Gil, A., Chincarini, G., De Grandi, S., Edge, A. C., MacGillivray, H. T., Neumann, D. M., Schindler, S., & Shaver, P. 2004, A&A, 425, 367
- Buote, D. A., & Tsai, J. C. 1995, ApJ, 452, 522
- —. 1996, ApJ, 458, 27
- Burns, J. O., Hallman, E. J., Gantner, B., Motl, P. M., & Norman, M. L. 2007, ArXiv e-prints, 708
- Burns, J. O., Roettiger, K., Pinkney, J., Perley, R. A., Owen, F. N., & Voges, W. 1995, ApJ, 446, 583
- Cash, W. 1979, ApJ, 228, 939
- Chen, Y., Reiprich, T. H., Böhringer, H., Ikebe, Y., & Zhang, Y.-Y. 2007, A&A, 466, 805
- Clarke, T. E., Blanton, E. L., & Sarazin, C. L. 2004, ApJ, 616 178
- Clarke, T. E., Blanton, E. L., & Sarazin, C. L. 2005, X-Ray and Radio Connections, ed. 7
- Dahle, H., Kaiser, N., Irgens, R. J., Lilje, P. B., & Maddox, S. J. 2002, ApJS, 139, 313
- David, L. P., & Kempner, J. 2004, ApJ, 613, 831
- Dickey, J. M., & Lockman, F. J. 1990, ARA&A, 28, 215
- Ebeling, H., Edge, A. C., Allen, S. W., Crawford, C. S., Fabian, A. C., & Huchra, J. P. 2000, MNRAS, 318, 333
- Ebeling, H., Edge, A. C., Bohringer, H., Allen, S. W., Crawford, C. S., Fabian, A. C., Voges, W., & Huchra, J. P. 1998, MNRAS, 301, 881
- Ebeling, H., Edge, A. C., & Henry, J. P. 2001, ApJ, 553, 668
- Edge, A. C., Stewart, G. C., Fabian, A. C., & Arnaud, K. A. 1990, MNRAS, 245, 559
- Eisenstein, D. J., Zehavi, I., Hogg, D. W., Scoccimarro, R., Blanton, M. R., Nichol, R. C., Scranton, R., Seo, H.-J., Tegmark, M., Zheng, Z., Anderson, S. F., Annis, J., Bahcall, N., Brinkmann, J., Burles, S., Castander, F. J., Connolly, A., Csabai, I., Doi, M., Fukugita, M., Frieman, J. A., Glazebrook, K., Gunn, J. E., Hendry, J. S., Hennessy,

- G., Ivezić, Z., Kent, S., Knapp, G. R., Lin, H., Loh, Y.-S., Lupton, R. H., Margon, B., McKay, T. A., Meiksin, A., Munn, J. A., Pope, A., Richmond, M. W., Schlegel, D., Schneider, D. P., Shimasaku, K., Stoughton, C., Strauss, M. A., SubbaRao, M., Szalay, A. S., Szapudi, I., Tucker, D. L., Yanny, B., & York, D. G. 2005, ApJ, 633, 560
- Evrard, A. E. 1989, ApJ, 341, L71
- Evrard, A. E., Metzler, C. A., & Navarro, J. F. 1996, ApJ, 469, 494
- Feretti, L., Boehringer, H., Giovannini, G., & Neumann, D. 1997, A&A, 317, 432
- Freeman, P. E., Kashyap, V., Rosner, R., & Lamb, D. Q. 2002, ApJS, 138, 185
- Gioia, I. M., Maccacaro, T., Geller, M. J., Huchra, J. P., Stocke, J., & Steiner, J. E. 1982, ApJ, 255, L17
- Gioia, I. M., Maccacaro, T., Schild, R. E., Wolter, A., Stocke, J. T., Morris, S. L., & Henry, J. P. 1990, ApJS, 72, 567
- Gioia, I. M. & Luppino, G. A. 1994, ApJS, 94, 583
- Girardi, M., Fadda, D., Escalera, E., Giuricin, G., Mardirossian, F., & Mezzetti, M. 1997, ApJ, 490, 56
- Gómez, P. L., Hughes, J. P., & Birkinshaw, M. 2000, ApJ, 540, 726
- Govoni, F., Taylor, G. B., Dallacasa, D., Feretti, L., & Giovannini, G. 2001, A&A, 379, 807
- Gutierrez, K., & Krawczynski, H. 2005, ApJ, 619, 161
- Haiman, Z., Mohr, J. J., & Holder, G. P. 2001, ApJ, 553, 545
- Hallman, E. J., & Markevitch, M. 2004, ApJ, 610, L81
- Henry, J. P., Mullis, C. R., Voges, W., Böhringer, H., Briel, U. G., Gioia, I. M., & Huchra, J. P. 2006, ApJS, 162, 304
- Jeltema, T. E., Canizares, C. R., Bautz, M. W., & Buote, D. A. 2005, ApJ, 624, 606
- Jeltema, T. E., Hallman, E. J., Burns, J. O., & Motl, P. M. 2007, ArXiv e-prints, 708
- Juett, A. M., Sarazin, C. L., Clarke, T. E., Andernach, H., Ehle, M., Fujita, Y., Kempner, J. C., Roy, A. L., Rudnick, L., & Slee, O. B. 2008, ApJ, 672, 138

Kaastra, J. S. 1992

Kempner, J. C., Sarazin, C. L., & Markevitch, M. 2003, ApJ, 593, 291

Kravtsov, A. V., Vikhlinin, A., & Nagai, D. 2006, ApJ, 650, 128

Krempec-Krygier, J., & Krygier, B. 1999, Acta Astronomica, 49, 403

Liedahl, D. A., Osterheld, A. L., & Goldstein, W. H. 1995, ApJ, 438, L115

Markevitch, M., Forman, W. R., Sarazin, C. L., & Vikhlinin, A. 1998, ApJ, 503, 77

Markevitch, M., & Vikhlinin, A. 2007, Phys. Rep., 443, 1

Markevitch, M., Vikhlinin, A., & Mazzotta, P. 2001, ApJ, 562, L153

Markevitch, M. L., Sarazin, C. L., & Irwin, J. A. 1996, ApJ, 472, L17+

- Marshall, H. L., Tennant, A., Grant, C. E., Hitchcock, A. P., O'Dell, S. L., & Plucinsky, P. P.
  2004, in Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE)
  Conference, Vol. 5165, X-Ray and Gamma-Ray Instrumentation for Astronomy XIII.
  Edited by Flanagan, Kathryn A.; Siegmund, Oswald H. W. Proceedings of the SPIE,
  Volume 5165, pp. 497-508 (2004)., ed. K. A. Flanagan & O. H. W. Siegmund, 497-508
- Martini, P., Kelson, D. D., Mulchaey, J. S., & Athey, A. 2004, in Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution, ed. J. S. Mulchaey, A. Dressler, & A. Oemler
- Mathiesen, B. F., & Evrard, A. E. 2001, ApJ, 546, 100 (ME01)
- Maughan, B. J. 2007, ArXiv Astrophysics e-prints
- Maughan, B. J., Jones, C., Forman, W., & Van Speybroeck, L. 2007, ArXiv Astrophysics e-prints
- Mazzotta, P., Markevitch, M., Forman, W. R., Jones, C., Vikhlinin, A., & VanSpeybroeck, L. 2001a, ArXiv Astrophysics e-prints
- Mazzotta, P., Markevitch, M., Vikhlinin, A., Forman, W. R., David, L. P., & VanSpeybroeck, L. 2001b, ApJ, 555, 205
- Mazzotta, P., Rasia, E., Moscardini, L., & Tormen, G. 2004, MNRAS, 354, 10
- Mercurio, A., Massarotti, M., Merluzzi, P., Girardi, M., La Barbera, F., & Busarello, G. 2003, A&A, 408, 57

Metzger, M. R., & Ma, C.-P. 2000, AJ, 120, 2879

Mewe, R., Gronenschild, E. H. B. M., & van den Oord, G. H. J. 1985, A&AS, 62, 197

Mewe, R., Lemen, J. R., & van den Oord, G. H. J. 1986, A&AS, 65, 511

Mohr, J. J., & Evrard, A. E. 1997, ApJ, 491, 38

Molendi, S., De Grandi, S., & Fusco-Femiano, R. 2000, ApJ, 534, L43

Morrison, R., & McCammon, D. 1983, ApJ, 270, 119

Nousek, J. A., & Shue, D. R. 1989, ApJ, 342, 1207

O'Hara, T. B., Mohr, J. J., Bialek, J. J., & Evrard, A. E. 2006, ApJ, 639, 64

Ohta, Y., Kumai, Y., Watanabe, M., Furuzawa, A., Akimoto, F., Tawara, Y., Sato, S., Yamashita, K., Arai, K., Shiratori, Y., Miyoshi, S., & Mazure, A. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 251, New Century of X-ray Astronomy, ed. H. Inoue & H. Kunieda, 474—+

Ota, N., Kitayama, T., Masai, K., & Mitsuda, K. 2006, ApJ, 640, 673

Peres, C. B., Fabian, A. C., Edge, A. C., Allen, S. W., Johnstone, R. M., & White, D. A. 1998, MNRAS, 298, 416

Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M., Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs, C., Suntzeff, N. B., & Tonry, J. 1998, AJ, 116, 1009

Riess, A. G., Strolger, L.-G., Casertano, S., Ferguson, H. C., Mobasher, B., Gold, B., Challis, P. J., Filippenko, A. V., Jha, S., Li, W., Tonry, J., Foley, R., Kirshner, R. P., Dickinson, M., MacDonald, E., Eisenstein, D., Livio, M., Younger, J., Xu, C., Dahlén, T., & Stern, D. 2007, ApJ, 659, 98

Rosati, P., della Ceca, R., Burg, R., Norman, C., & Giacconi, R. 1995, ApJ, 445, L11

Sakelliou, I., & Ponman, T. J. 2004, MNRAS, 351, 1439

Sakelliou, I., & Merrifield, M. R. 2000, MNRAS, 311, 649

Sanderson, A. J. R., Ponman, T. J., & O'Sullivan, E. 2006, MNRAS, 1068

Smith, G. P., Kneib, J.-P., Smail, I., Mazzotta, P., Ebeling, H., & Czoske, O. 2005, MNRAS, 359, 417

Snowden, S. L., Mushotzky, R. M., Kuntz, K. D., & Davis, D. S. 2007, ArXiv e-prints, 710

Teague, P. F., Carter, D., & Gray, P. M. 1990, ApJS, 72, 715

Townsley, L. K., Broos, P. S., Garmire, G. P., & Nousek, J. A. 2000, ApJ, 534, L139

Tucker, W., Blanco, P., Rappoport, S., David, L., Fabricant, D., Falco, E. E., Forman, W., Dressler, A., & Ramella, M. 1998, ApJ, 496, L5+

Ventimiglia, D., Voit, G. M., Borgani, S., & Donahue, M. 2008, ApJ Submitted

Vikhlinin, A. 2006, ApJ, 640, 710

Vikhlinin, A., Markevitch, M., Murray, S. S., Jones, C., Forman, W., & Van Speybroeck, L. 2005, ApJ, 628, 655

Vikhlinin, A., McNamara, B. R., Forman, W., Jones, C., Quintana, H., & Hornstrup, A. 1998, ApJ, 502, 558

Voit, G. M. 2005, Reviews of Modern Physics, 77, 207

Wang, L., & Steinhardt, P. J. 1998, ApJ, 508, 483

Wang, S., Khoury, J., Haiman, Z., & May, M. 2004, Phys. Rev. D, 70, 123008

White, D. A., Jones, C., & Forman, W. 1997, MNRAS, 292, 419

Yang, Y., Huo, Z., Zhou, X., Xue, S., Mao, S., Ma, J., & Chen, J. 2004, ApJ, 614, 692

Yuan, Q.-R., Yan, P.-F., Yang, Y.-B., & Zhou, X. 2005, Chinese Journal of Astronomy and Astrophysics, 5, 126

This preprint was prepared with the AAS IATEX macros v5.2.

Table 1. Summary of Sample

| Cluster              | ${\rm Obs.ID}$ | R.A.         | Dec.         | ExpT | Mode         | ACIS             | z     | $L_{bol}$ .                   |
|----------------------|----------------|--------------|--------------|------|--------------|------------------|-------|-------------------------------|
| (4)                  | (2)            | hr:min:sec   | °:':"        | ksec | (0)          | ( <del>-</del> ) | (0)   | $10^{44} \text{ ergs s}^{-1}$ |
| (1)                  | (2)            | (3)          | (4)          | (5)  | (6)          | (7)              | (8)   | (9)                           |
| 1E0657 56            | 3184           | 06:58:29.622 | -55:56:39.79 | 87.5 | VF           | I3               | 0.296 | 52.48                         |
| 1E0657 56            | 5356           | 06:58:29.619 | -55:56:39.78 | 97.2 | VF           | I2               | 0.296 | 52.48                         |
| 1E0657 56            | 5361           | 06:58:29.620 | -55:56:39.80 | 82.6 | VF           | I3               | 0.296 | 52.48                         |
| 1RXS J2129.4-0741    | 3199           | 21:29:26.274 | -07:41:29.38 | 19.9 | VF           | I3               | 0.570 | 20.58                         |
| 1RXS J2129.4-0741    | 3595           | 21:29:26.281 | -07:41:29.36 | 19.9 | VF           | I3               | 0.570 | 20.58                         |
| 2PIGG J0011.5-2850   | 5797           | 00:11:21.623 | -28:51:14.44 | 19.9 | VF           | I3               | 0.075 | 2.15                          |
| 2PIGG J0311.8-2655 ‡ | 5799           | 03:11:33.904 | -26:54:16.48 | 39.6 | VF           | I3               | 0.062 | 0.25                          |
| 2PIGG J2227.0-3041   | 5798           | 22:27:54.560 | -30:34:34.84 | 22.3 | VF           | I2               | 0.073 | 0.81                          |
| 3C 220.1             | 839            | 09:32:40.218 | +79:06:29.46 | 18.9 | $\mathbf{F}$ | S3               | 0.610 | 3.25                          |
| 3C 28.0              | 3233           | 00:55:50.401 | +26:24:36.47 | 49.7 | VF           | I3               | 0.195 | 4.78                          |
| 3C 295               | 2254           | 14:11:20.280 | +52:12:10.55 | 90.9 | VF           | I3               | 0.464 | 6.92                          |
| 3C 388               | 5295           | 18:44:02.365 | +45:33:29.31 | 30.7 | VF           | I3               | 0.092 | 0.52                          |
| 4C 55.16             | 4940           | 08:34:54.923 | +55:34:21.15 | 96.0 | VF           | S3               | 0.242 | 5.90                          |
| ABELL 0013 ‡         | 4945           | 00:13:37.883 | -19:30:09.10 | 55.3 | VF           | S3               | 0.094 | 1.41                          |
| ABELL 0068           | 3250           | 00:37:06.309 | +09:09:32.28 | 10.0 | VF           | I3               | 0.255 | 12.70                         |
| ABELL 0119 ‡         | 4180           | 00:56:15.150 | -01:14:59.70 | 11.9 | VF           | I3               | 0.044 | 1.39                          |
| ABELL 0168           | 3203           | 01:14:57.909 | +00:24:42.55 | 40.6 | VF           | I3               | 0.045 | 0.23                          |
| ABELL 0168           | 3204           | 01:14:57.925 | +00:24:42.73 | 37.6 | VF           | I3               | 0.045 | 0.23                          |
| ABELL 0209           | 3579           | 01:31:52.585 | -13:36:39.29 | 10.0 | VF           | I3               | 0.206 | 10.96                         |
| ABELL 0209           | 522            | 01:31:52.595 | -13:36:39.25 | 10.0 | VF           | I3               | 0.206 | 10.96                         |
| ABELL 0267           | 1448           | 01:52:29.181 | +00:57:34.43 | 7.9  | $\mathbf{F}$ | I3               | 0.230 | 8.62                          |
| ABELL 0267           | 3580           | 01:52:29.180 | +00:57:34.23 | 19.9 | VF           | I3               | 0.230 | 8.62                          |
| ABELL 0370           | 515            | 02:39:53.169 | -01:34:36.96 | 88.0 | $\mathbf{F}$ | S3               | 0.375 | 11.95                         |
| ABELL 0383           | 2321           | 02:48:03.364 | -03:31:44.69 | 19.5 | $\mathbf{F}$ | S3               | 0.187 | 5.32                          |
| ABELL 0399           | 3230           | 02:57:54.931 | +13:01:58.41 | 48.6 | VF           | 10               | 0.072 | 4.37                          |
| ABELL 0401           | 518            | 02:58:56.896 | +13:34:14.48 | 18.0 | $\mathbf{F}$ | I3               | 0.074 | 8.39                          |
| ABELL 0478           | 6102           | 04:13:25.347 | +10:27:55.62 | 10.0 | VF           | I3               | 0.088 | 16.39                         |
| ABELL 0514           | 3578           | 04:48:19.229 | -20:30:28.79 | 44.5 | VF           | I3               | 0.072 | 0.66                          |
| ABELL 0520           | 4215           | 04:54:09.711 | +02:55:23.69 | 66.3 | VF           | I3               | 0.202 | 12.97                         |
| ABELL 0521           | 430            | 04:54:07.004 | -10:13:26.72 | 39.1 | VF           | S3               | 0.253 | 9.77                          |
| ABELL 0586           | 530            | 07:32:20.339 | +31:37:58.59 | 10.0 | VF           | I3               | 0.171 | 8.54                          |
| ABELL 0611           | 3194           | 08:00:56.832 | +36:03:24.09 | 36.1 | VF           | S3               | 0.288 | 10.78                         |
| ABELL 0644 ‡         | 2211           | 08:17:25.225 | -07:30:40.03 | 29.7 | VF           | I3               | 0.070 | 6.95                          |
| ABELL 0665           | 3586           | 08:30:59.231 | +65:50:37.78 | 29.7 | VF           | I3               | 0.181 | 13.37                         |
| ABELL 0697           | 4217           | 08:42:57.549 | +36:21:57.65 | 19.5 | VF           | I3               | 0.282 | 26.10                         |
| ABELL 0773           | 5006           | 09:17:52.566 | +51:43:38.18 | 19.8 | VF           | I3               | 0.217 | 12.87                         |
| ABELL 0781           | 534            | 09:20:25.431 | +30:30:07.56 | 9.9  | VF           | I3               | 0.298 | 8.24                          |
| ABELL 0907           | 3185           | 09:58:21.880 | -11:03:52.20 | 48.0 | VF           | I3               | 0.153 | 6.19                          |
| ABELL 0963           | 903            | 10:17:03.744 | +39:02:49.17 | 36.3 | $\mathbf{F}$ | S3               | 0.206 | 10.65                         |
| ABELL 1063S          | 4966           | 22:48:44.294 | -44:31:48.37 | 26.7 | VF           | I3               | 0.354 | 71.09                         |
| ABELL 1068 ‡         | 1652           | 10:40:44.520 | +39:57:10.28 | 26.8 | $\mathbf{F}$ | S3               | 0.138 | 4.19                          |
| ABELL 1201 ‡         | 4216           | 11:12:54.489 | +13:26:08.76 | 39.7 | VF           | S3               | 0.169 | 3.52                          |
| ABELL 1204           | 2205           | 11:13:20.419 | +17:35:38.45 | 23.6 | VF           | I3               | 0.171 | 3.92                          |
| ABELL 1361 ‡         | 2200           | 11:43:39.827 | +46:21:21.40 | 16.7 | $\mathbf{F}$ | S3               | 0.117 | 2.16                          |
|                      |                |              |              |      |              |                  |       |                               |

Table 1—Continued

| Cluster               | Obs.ID | R.A.         | Dec.         | ExpT | Mode         | ACIS | $\overline{z}$ | $L_{bol.}$                    |
|-----------------------|--------|--------------|--------------|------|--------------|------|----------------|-------------------------------|
|                       |        | hr:min:sec   | °:':"        | ksec |              |      |                | $10^{44} {\rm ergs \ s^{-1}}$ |
| (1)                   | (2)    | (3)          | (4)          | (5)  | (6)          | (7)  | (8)            | (9)                           |
| ABELL 1423            | 538    | 11:57:17.026 | +33:36:37.44 | 9.8  | VF           | I3   | 0.213          | 7.01                          |
| ABELL 1651            | 4185   | 12:59:22.830 | -04:11:45.86 | 9.6  | VF           | I3   | 0.084          | 6.66                          |
| ABELL 1664 ‡          | 1648   | 13:03:42.478 | -24:14:44.55 | 9.8  | VF           | S3   | 0.128          | 2.59                          |
| $ABELL\ 1682$         | 3244   | 13:06:50.764 | +46:33:19.86 | 9.8  | VF           | I3   | 0.226          | 7.92                          |
| ABELL 1689            | 1663   | 13:11:29.612 | -01:20:28.69 | 10.7 | $\mathbf{F}$ | I3   | 0.184          | 24.71                         |
| ABELL 1689            | 5004   | 13:11:29.606 | -01:20:28.61 | 19.9 | VF           | I3   | 0.184          | 24.71                         |
| ABELL 1689            | 540    | 13:11:29.595 | -01:20:28.47 | 10.3 | $\mathbf{F}$ | I3   | 0.184          | 24.71                         |
| ABELL 1758            | 2213   | 13:32:42.978 | +50:32:44.83 | 58.3 | VF           | S3   | 0.279          | 21.01                         |
| ABELL 1763            | 3591   | 13:35:17.957 | +40:59:55.80 | 19.6 | VF           | I3   | 0.187          | 9.26                          |
| ABELL 1795 ‡          | 5289   | 13:48:52.829 | +26:35:24.01 | 15.0 | VF           | I3   | 0.062          | 7.59                          |
| ABELL 1835            | 495    | 14:01:01.951 | +02:52:43.18 | 19.5 | $\mathbf{F}$ | S3   | 0.253          | 39.38                         |
| ABELL 1914            | 3593   | 14:26:01.399 | +37:49:27.83 | 18.9 | VF           | I3   | 0.171          | 26.25                         |
| ABELL 1942            | 3290   | 14:38:21.878 | +03:40:12.97 | 57.6 | VF           | I2   | 0.224          | 2.27                          |
| ABELL 1995            | 906    | 14:52:57.758 | +58:02:51.34 | 0.0  | $\mathbf{F}$ | S3   | 0.319          | 10.19                         |
| ABELL 2029 ‡          | 6101   | 15:10:56.163 | +05:44:40.89 | 9.9  | VF           | I3   | 0.076          | 13.90                         |
| ABELL 2034            | 2204   | 15:10:11.003 | +33:30:46.46 | 53.9 | VF           | I3   | 0.113          | 6.45                          |
| ABELL 2065 ‡          | 31821  | 15:22:29.220 | +27:42:46.54 | 0.0  | VF           | Ι3   | 0.073          | 2.92                          |
| ABELL 2069            | 4965   | 15:24:09.181 | +29:53:18.05 | 55.4 | VF           | I2   | 0.116          | 3.82                          |
| ABELL 2111            | 544    | 15:39:41.432 | +34:25:12.26 | 10.3 | F            | Ι3   | 0.230          | 7.45                          |
| ABELL $2125$          | 2207   | 15:41:14.154 | +66:15:57.20 | 81.5 | VF           | Ι3   | 0.246          | 0.77                          |
| ABELL 2163            | 1653   | 16:15:45.705 | -06:09:00.62 | 71.1 | VF           | I1   | 0.170          | 49.11                         |
| ABELL 2204 ‡          | 499    | 16:32:45.437 | +05:34:21.05 | 10.1 | F            | S3   | 0.152          | 20.77                         |
| ABELL 2204            | 6104   | 16:32:45.428 | +05:34:20.89 | 9.6  | VF           | I3   | 0.152          | 22.03                         |
| ABELL 2218            | 1666   | 16:35:50.831 | +66:12:42.31 | 48.6 | VF           | 10   | 0.171          | 8.39                          |
| ABELL 2219 ‡          | 896    | 16:40:21.069 | +46:42:29.07 | 42.3 | $\mathbf{F}$ | S3   | 0.226          | 33.15                         |
| ABELL $2255$          | 894    | 17:12:40.385 | +64:03:50.63 | 39.4 | F            | Ι3   | 0.081          | 3.67                          |
| ABELL 2256 ‡          | 1386   | 17:03:44.567 | +78:38:11.51 | 12.4 | F            | Ι3   | 0.058          | 4.65                          |
| ABELL $2259$          | 3245   | 17:20:08.299 | +27:40:11.53 | 10.0 | VF           | I3   | 0.164          | 5.37                          |
| ABELL 2261            | 5007   | 17:22:27.254 | +32:07:58.60 | 24.3 | VF           | I3   | 0.224          | 17.49                         |
| ABELL 2294            | 3246   | 17:24:10.149 | +85:53:09.77 | 10.0 | VF           | Ι3   | 0.178          | 10.35                         |
| ABELL 2384            | 4202   | 21:52:21.178 | -19:32:51.90 | 31.5 | VF           | Ι3   | 0.095          | 1.95                          |
| ABELL 2390 ‡          | 4193   | 21:53:36.825 | +17:41:44.38 | 95.1 | VF           | S3   | 0.230          | 31.02                         |
| ABELL 2409            | 3247   | 22:00:52.567 | +20.58:34.11 | 10.2 | VF           | Ι3   | 0.148          | 7.01                          |
| ABELL $2537$          | 4962   | 23:08:22.313 | -02:11:29.88 | 36.2 | VF           | S3   | 0.295          | 10.16                         |
| $ABELL\ 2550$         | 2225   | 23:11:35.806 | -21:44:46.70 | 59.0 | VF           | S3   | 0.154          | 0.58                          |
| ABELL 2554 ‡          | 1696   | 23:12:19.939 | -21:30:09.84 | 19.9 | VF           | S3   | 0.110          | 1.57                          |
| ABELL 2556 $\ddagger$ | 2226   | 23:13:01.413 | -21:38:04.47 | 19.9 | VF           | S3   | 0.086          | 1.43                          |
| ABELL 2631            | 3248   | 23:37:38.560 | +00:16:28.64 | 9.2  | VF           | Ι3   | 0.278          | 12.59                         |
| ABELL 2667            | 2214   | 23:51:39.395 | -26:05:02.75 | 9.6  | VF           | S3   | 0.230          | 19.91                         |
| ABELL 2670            | 4959   | 23:54:13.687 | -10:25:08.85 | 39.6 | VF           | I3   | 0.076          | 1.39                          |
| ABELL 2717            | 6974   | 00:03:11.996 | -35:56:08.01 | 19.8 | VF           | I3   | 0.048          | 0.26                          |
| ABELL 2744            | 2212   | 00:14:14.396 | -30:22:40.04 | 24.8 | VF           | S3   | 0.308          | 29.00                         |
| ABELL 3128 ‡          | 893    | 03:29:50.918 | -52:34:51.04 | 19.6 | F            | I3   | 0.062          | 0.35                          |
| ABELL 3158 ‡          | 3201   | 03:42:54.675 | -53:37:24.36 | 24.8 | VF           | I3   | 0.059          | 3.01                          |

Table 1—Continued

| Cluster           | Obs.ID | R.A.           | Dec.         | ExpT     | Mode         | ACIS | z     | $L_{bol.}$ $10^{44} {\rm ergs \ s^{-1}}$ |
|-------------------|--------|----------------|--------------|----------|--------------|------|-------|------------------------------------------|
| (1)               | (2)    | hr:min:sec (3) | (4)          | ksec (5) | (6)          | (7)  | (8)   | (9)                                      |
| ABELL 3158 ‡      | 3712   | 03:42:54.683   | -53:37:24.37 | 30.9     | VF           | I3   | 0.059 | 3.01                                     |
| ABELL 3164        | 6955   | 03:46:16.839   | -57:02:11.38 | 13.5     | VF           | I3   | 0.057 | 0.19                                     |
| ABELL 3376        | 3202   | 06:02:05.122   | -39:57:42.82 | 44.3     | VF           | I3   | 0.046 | 0.75                                     |
| ABELL 3376        | 3450   | 06:02:05.162   | -39:57:42.87 | 19.8     | VF           | I3   | 0.046 | 0.75                                     |
| ABELL 3391 ‡      | 4943   | 06:26:21.511   | -53:41:44.81 | 18.4     | VF           | I3   | 0.056 | 1.44                                     |
| ABELL 3921        | 4973   | 22:49:57.829   | -64:25:42.17 | 29.4     | VF           | I3   | 0.093 | 3.37                                     |
| AC 114            | 1562   | 22:58:48.196   | -34:47:56.89 | 72.5     | F            | S3   | 0.312 | 10.90                                    |
| CL 0024+17        | 929    | 00:26:35.996   | +17:09:45.37 | 39.8     | $\mathbf{F}$ | S3   | 0.394 | 2.88                                     |
| CL 1221+4918      | 1662   | 12:21:26.709   | +49:18:21.60 | 79.1     | VF           | I3   | 0.700 | 8.65                                     |
| CL J0030+2618     | 5762   | 00:30:34.339   | +26:18:01.58 | 17.9     | VF           | I3   | 0.500 | 3.41                                     |
| CL J0152-1357     | 913    | 01:52:42.141   | -13:57:59.71 | 36.5     | $\mathbf{F}$ | I3   | 0.831 | 13.30                                    |
| CL J0542.8-4100   | 914    | 05:42:49.994   | -40:59:58.50 | 50.4     | $\mathbf{F}$ | I3   | 0.630 | 6.18                                     |
| CL J0848+4456     | 1708   | 08:48:48.255   | +44:56:17.11 | 61.4     | VF           | I1   | 0.574 | 3.02                                     |
| CL J0848+4456     | 927    | 08:48:48.252   | +44:56:17.13 | 125.1    | VF           | I1   | 0.574 | 3.02                                     |
| CL J1113.1-2615   | 915    | 11:13:05.167   | -26:15:40.43 | 104.6    | F            | I3   | 0.730 | 2.22                                     |
| CL J1213+0253     | 4934   | 12:13:34.948   | +02:53:45.45 | 18.9     | VF           | I3   | 0.409 | 1.29                                     |
| CL J1226.9+3332   | 3180   | 12:26:58.373   | +33:32:47.36 | 31.7     | VF           | I3   | 0.890 | 30.76                                    |
| CL J1226.9+3332   | 5014   | 12:26:58.372   | +33:32:47.38 | 32.7     | VF           | I3   | 0.890 | 30.76                                    |
| CL J1641+4001     | 3575   | 16:41:53.704   | +40:01:44.40 | 46.5     | VF           | I3   | 0.464 | 1.19                                     |
| CL J2302.8+0844   | 918    | 23:02:48.156   | +08:43:52.74 | 108.6    | F            | I3   | 0.730 | 2.93                                     |
| DLS J0514-4904    | 4980   | 05:14:40.037   | -49:03:15.07 | 19.9     | VF           | I3   | 0.091 | 0.68                                     |
| EXO 0422-086 ‡    | 4183   | 04:25:51.271   | -08:33:36.42 | 10.0     | VF           | I3   | 0.040 | 0.65                                     |
| HERCULES A ‡      | 1625   | 16:51:08.161   | +04:59:32.44 | 14.8     | VF           | S3   | 0.154 | 3.27                                     |
| IRAS 09104+4109   | 509    | 09:13:45.481   | +40:56:27.49 | 9.1      | F            | S3   | 0.442 | 20.15                                    |
| LYNX E            | 17081  | 08:48:58.851   | +44:51:51.44 | 61.4     | VF           | I2   | 1.260 | 2.10                                     |
| LYNX E            | 9271   | 08:48:58.858   | +44:51:51.46 | 125.1    | VF           | I2   | 1.260 | 2.10                                     |
| MACS J0011.7-1523 | 3261   | 00:11:42.965   | -15:23:20.79 | 21.6     | VF           | I3   | 0.360 | 10.75                                    |
| MACS J0011.7-1523 | 6105   | 00:11:42.957   | -15:23:20.76 | 37.3     | VF           | I3   | 0.360 | 10.75                                    |
| MACS J0025.4-1222 | 3251   | 00:25:29.398   | -12:22:38.15 | 19.3     | VF           | I3   | 0.584 | 13.00                                    |
| MACS J0025.4-1222 | 5010   | 00:25:29.399   | -12:22:38.10 | 24.8     | VF           | I3   | 0.584 | 13.00                                    |
| MACS J0035.4-2015 | 3262   | 00:35:26.573   | -20:15:46.06 | 21.4     | VF           | I3   | 0.364 | 19.79                                    |
| MACS J0111.5+0855 | 3256   | 01:11:31.515   | +08:55:39.21 | 19.4     | VF           | I3   | 0.263 | 0.64                                     |
| MACS J0152.5-2852 | 3264   | 01:52:34.479   | -28:53:38.01 | 17.5     | VF           | I3   | 0.341 | 6.33                                     |
| MACS J0159.0-3412 | 5818   | 01:59:00.366   | -34:13:00.23 | 9.4      | VF           | I3   | 0.458 | 18.92                                    |
| MACS J0159.8-0849 | 3265   | 01:59:49.453   | -08:50:00.90 | 17.9     | VF           | I3   | 0.405 | 26.31                                    |
| MACS J0159.8-0849 | 6106   | 01:59:49.452   | -08:50:00.92 | 35.3     | VF           | I3   | 0.405 | 26.31                                    |
| MACS J0242.5-2132 | 3266   | 02:42:35.906   | -21:32:26.30 | 11.9     | VF           | I3   | 0.314 | 12.74                                    |
| MACS J0257.1-2325 | 1654   | 02:57:09.150   | -23:26:06.25 | 19.8     | F            | I3   | 0.505 | 21.72                                    |
| MACS J0257.1-2325 | 3581   | 02:57:09.152   | -23:26:06.21 | 18.5     | VF           | I3   | 0.505 | 21.72                                    |
| MACS J0257.6-2209 | 3267   | 02:57:41.024   | -22:09:11.12 | 20.5     | VF           | I3   | 0.322 | 10.77                                    |
| MACS J0308.9+2645 | 3268   | 03:08:55.927   | +26:45:38.34 | 24.4     | VF           | I3   | 0.324 | 20.42                                    |
| MACS J0329.6-0211 | 3257   | 03:29:41.681   | -02:11:47.67 | 9.9      | VF           | I3   | 0.450 | 12.82                                    |
| MACS J0329.6-0211 | 3582   | 03:29:41.688   | -02:11:47.81 | 19.9     | VF           | I3   | 0.450 | 12.82                                    |
| MACS J0329.6-0211 | 6108   | 03:29:41.681   | -02:11:47.57 | 39.6     | VF           | I3   | 0.450 | 12.82                                    |

Table 1—Continued

| Cluster              | Obs.ID | R.A.         | Dec.         | ExpT | Mode         | ACIS | z     | $L_{bol}$ .                   |
|----------------------|--------|--------------|--------------|------|--------------|------|-------|-------------------------------|
| (1)                  | (0)    | hr:min:sec   |              | ksec | (a)          | (=)  | (0)   | $10^{44} \text{ ergs s}^{-1}$ |
| (1)                  | (2)    | (3)          | (4)          | (5)  | (6)          | (7)  | (8)   | (9)                           |
| MACS J0404.6+1109    | 3269   | 04:04:32.491 | +11:08:02.10 | 21.8 | VF           | I3   | 0.355 | 3.90                          |
| MACS J0417.5-1154    | 3270   | 04:17:34.686 | -11:54:32.71 | 12.0 | VF           | I3   | 0.440 | 37.99                         |
| MACS $J0429.6-0253$  | 3271   | 04:29:36.088 | -02:53:09.02 | 23.2 | VF           | I3   | 0.399 | 11.58                         |
| MACS J0451.9+0006    | 5815   | 04:51:54.291 | +00:06:20.20 | 10.2 | VF           | I3   | 0.430 | 8.20                          |
| MACS J0455.2+0657    | 5812   | 04:55:17.426 | +06:57:47.15 | 9.9  | VF           | I3   | 0.425 | 9.77                          |
| MACS J0520.7-1328    | 3272   | 05:20:42.052 | -13:28:49.38 | 19.2 | VF           | I3   | 0.340 | 9.63                          |
| MACS $J0547.0-3904$  | 3273   | 05:47:01.582 | -39:04:28.24 | 21.7 | VF           | I3   | 0.210 | 1.59                          |
| MACS J0553.4-3342    | 5813   | 05:53:27.200 | -33:42:53.02 | 9.9  | VF           | I3   | 0.407 | 32.68                         |
| MACS J0717.5 $+3745$ | 1655   | 07:17:31.654 | +37:45:18.52 | 19.9 | $\mathbf{F}$ | I3   | 0.548 | 46.58                         |
| MACS J0717.5+3745    | 4200   | 07:17:31.651 | +37:45:18.46 | 59.2 | VF           | I3   | 0.548 | 46.58                         |
| MACS J0744.8 $+3927$ | 3197   | 07:44:52.802 | +39:27:24.43 | 20.2 | VF           | I3   | 0.686 | 24.67                         |
| MACS J0744.8 $+3927$ | 3585   | 07:44:52.809 | +39:27:24.41 | 19.9 | VF           | I3   | 0.686 | 24.67                         |
| MACS $J0744.8+3927$  | 6111   | 07:44:52.800 | +39:27:24.42 | 49.5 | VF           | I3   | 0.686 | 24.67                         |
| MACS J0911.2+1746    | 3587   | 09:11:11.325 | +17:46:31.02 | 17.9 | VF           | I3   | 0.541 | 10.52                         |
| MACS J0911.2+1746    | 5012   | 09:11:11.329 | +17:46:30.99 | 23.8 | VF           | Ι3   | 0.541 | 10.52                         |
| MACS J0949+1708      | 3274   | 09:49:51.824 | +17:07:05.62 | 14.3 | VF           | I3   | 0.382 | 19.19                         |
| MACS J1006.9+3200    | 5819   | 10:06:54.668 | +32:01:34.61 | 10.9 | VF           | I3   | 0.359 | 6.06                          |
| MACS J1105.7-1014    | 5817   | 11:05:46.462 | -10:14:37.20 | 10.3 | VF           | Ι3   | 0.466 | 11.29                         |
| MACS J1108.8+0906    | 3252   | 11:08:55.393 | +09:05:51.16 | 9.9  | VF           | I3   | 0.449 | 8.96                          |
| MACS J1108.8 $+0906$ | 5009   | 11:08:55.402 | +09:05:51.14 | 24.5 | VF           | Ι3   | 0.449 | 8.96                          |
| MACS J1115.2+5320    | 3253   | 11:15:15.632 | +53:20:03.71 | 8.8  | VF           | I3   | 0.439 | 14.29                         |
| MACS J1115.2+5320    | 5008   | 11:15:15.636 | +53:20:03.74 | 18.0 | VF           | Ι3   | 0.439 | 14.29                         |
| MACS J1115.2+5320    | 5350   | 11:15:15.632 | +53:20:03.77 | 6.9  | VF           | I3   | 0.439 | 14.29                         |
| MACS J1115.8+0129    | 3275   | 11:15:52.048 | +01:29:56.56 | 15.9 | VF           | Ι3   | 0.120 | 1.47                          |
| MACS J1131.8-1955    | 3276   | 11:31:56.011 | -19:55:55.85 | 13.9 | VF           | Ι3   | 0.307 | 17.45                         |
| MACS J1149.5+2223    | 1656   | 11:49:35.856 | +22:23:55.02 | 18.5 | VF           | I3   | 0.544 | 21.60                         |
| MACS J1149.5 $+2223$ | 3589   | 11:49:35.858 | +22:23:55.05 | 20.0 | VF           | I3   | 0.544 | 21.60                         |
| MACS J1206.2-0847    | 3277   | 12:06:12.276 | -08:48:02.40 | 23.5 | VF           | I3   | 0.440 | 37.02                         |
| MACS J1226.8+2153    | 3590   | 12:26:51.207 | +21:49:55.22 | 19.0 | VF           | I3   | 0.370 | 2.63                          |
| MACS J1311.0-0310    | 3258   | 13:11:01.685 | -03:10:39.70 | 14.9 | VF           | I3   | 0.494 | 10.03                         |
| MACS J1311.0-0310    | 6110   | 13:11:01.680 | -03:10:39.75 | 63.2 | VF           | I3   | 0.494 | 10.03                         |
| MACS J1319+7003      | 3278   | 13:20:08.370 | +70:04:33.81 | 21.6 | VF           | I3   | 0.328 | 7.03                          |
| MACS J1427.2+4407    | 6112   | 14:27:16.175 | +44:07:30.33 | 9.4  | VF           | I3   | 0.477 | 14.18                         |
| MACS J1427.6-2521    | 3279   | 14:27:39.389 | -25:21:04.66 | 16.9 | VF           | I3   | 0.220 | 1.55                          |
| MACS J1621.3+3810    | 3254   | 16:21:25.552 | +38:09:43.56 | 9.8  | VF           | I3   | 0.461 | 11.49                         |
| MACS J1621.3+3810    | 3594   | 16:21:25.558 | +38:09:43.54 | 19.7 | VF           | I3   | 0.461 | 11.49                         |
| MACS J1621.3+3810    | 6109   | 16:21:25.555 | +38:09:43.54 | 37.5 | VF           | I3   | 0.461 | 11.49                         |
| MACS J1621.3+3810    | 6172   | 16:21:25.559 | +38:09:43.53 | 29.8 | VF           | I3   | 0.461 | 11.49                         |
| MACS J1731.6+2252    | 3281   | 17:31:39.902 | +22:52:00.55 | 20.5 | VF           | I3   | 0.366 | 9.32                          |
| MACS J1824.3+4309    | 3255   | 18:24:18.444 | +43:09:43.39 | 14.9 | VF           | I3   | 0.487 | 2.48                          |
| MACS J1931.8-2634    | 3282   | 19:31:49.656 | -26:34:33.99 | 13.6 | VF           | I3   | 0.352 | 23.14                         |
| MACS J2046.0-3430    | 5816   | 20:46:00.522 | -34:30:15.50 | 10.0 | VF           | I3   | 0.413 | 5.79                          |
| MACS J2049.9-3217    | 3283   | 20:49:56.245 | -32:16:52.30 | 23.8 | VF           | I3   | 0.325 | 8.71                          |
| MACS J2211.7-0349    | 3284   | 22:11:45.856 | -03:49:37.24 | 17.7 | VF           | I3   | 0.270 | 22.11                         |

Table 1—Continued

| Cluster              | Obs.ID | R.A.<br>hr:min:sec | Dec.         | ExpT<br>ksec | Mode         | ACIS | z     | $L_{bol.}$ $10^{44} \text{ ergs s}^{-1}$ |
|----------------------|--------|--------------------|--------------|--------------|--------------|------|-------|------------------------------------------|
| (1)                  | (2)    | (3)                | (4)          | (5)          | (6)          | (7)  | (8)   | (9)                                      |
| MACS J2214.9-1359    | 3259   | 22:14:57.487       | -14:00:09.35 | 19.5         | VF           | 13   | 0.503 | 24.05                                    |
| MACS J2214.9-1359    | 5011   | 22:14:57.481       | -14:00:09.39 | 18.5         | VF           | I3   | 0.503 | 24.05                                    |
| MACS J2228+2036      | 3285   | 22:28:33.241       | +20:37:11.42 | 19.9         | VF           | I3   | 0.412 | 17.92                                    |
| MACS J2229.7-2755    | 3286   | 22:29:45.358       | -27:55:38.41 | 16.4         | VF           | I3   | 0.324 | 9.49                                     |
| MACS J2243.3-0935    | 3260   | 22:43:21.537       | -09:35:44.30 | 20.5         | VF           | I3   | 0.101 | 0.78                                     |
| MACS J2245.0 $+2637$ | 3287   | 22:45:04.547       | +26:38:07.88 | 16.9         | VF           | I3   | 0.304 | 9.36                                     |
| MACS J2311 $+0338$   | 3288   | 23:11:33.213       | +03:38:06.51 | 13.6         | VF           | I3   | 0.300 | 10.98                                    |
| MKW3S                | 900    | 15:21:51.930       | +07:42:31.97 | 57.3         | VF           | I3   | 0.045 | 1.14                                     |
| MS 0016.9+1609       | 520    | 00:18:33.503       | +16:26:12.99 | 67.4         | VF           | I3   | 0.541 | 32.94                                    |
| MS~0302.7+1658       | 525    | 03:05:31.614       | +17:10:02.06 | 10.0         | VF           | I3   | 0.424 | 2.41                                     |
| MS 0440.5+0204 ‡     | 4196   | 04:43:09.952       | +02:10:18.70 | 59.4         | VF           | S3   | 0.190 | 2.17                                     |
| MS 0451.6-0305       | 902    | 04:54:11.004       | -03:00:52.19 | 44.2         | $\mathbf{F}$ | S3   | 0.539 | 33.32                                    |
| MS 0735.6 + 7421     | 4197   | 07:41:44.245       | +74:14:38.23 | 45.5         | VF           | S3   | 0.216 | 7.57                                     |
| MS 0839.8+2938       | 2224   | 08:42:55.969       | +29:27:26.97 | 29.8         | $\mathbf{F}$ | S3   | 0.194 | 3.10                                     |
| MS 0906.5+1110       | 924    | 09:09:12.753       | +10.58:32.00 | 29.7         | VF           | I3   | 0.163 | 4.64                                     |
| $MS\ 1006.0+1202$    | 925    | 10:08:47.194       | +11:47:55.99 | 29.4         | VF           | I3   | 0.221 | 4.75                                     |
| MS 1008.1-1224       | 926    | 10:10:32.312       | -12:39:56.80 | 44.2         | VF           | I3   | 0.301 | 6.44                                     |
| MS 1054.5-0321       | 512    | 10:56:58.499       | -03:37:32.76 | 89.1         | $\mathbf{F}$ | S3   | 0.830 | 27.22                                    |
| MS 1455.0+2232       | 4192   | 14:57:15.088       | +22:20:32.49 | 91.9         | VF           | I3   | 0.259 | 10.25                                    |
| $MS\ 1621.5+2640$    | 546    | 16:23:35.522       | +26:34:25.67 | 30.1         | $\mathbf{F}$ | I3   | 0.426 | 6.49                                     |
| MS 2053.7-0449       | 1667   | 20:56:21.295       | -04:37:46.81 | 44.5         | VF           | I3   | 0.583 | 2.96                                     |
| MS 2053.7-0449       | 551    | 20:56:21.297       | -04:37:46.80 | 44.3         | $\mathbf{F}$ | I3   | 0.583 | 2.96                                     |
| MS 2137.3-2353       | 4974   | 21:40:15.178       | -23:39:40.71 | 57.4         | VF           | S3   | 0.313 | 11.28                                    |
| MS J1157.3 $+5531$ ‡ | 4964   | 11:59:52.295       | +55:32:05.61 | 75.1         | VF           | S3   | 0.081 | 0.12                                     |
| NGC 6338 ‡           | 4194   | 17:15:23.036       | +57:24:40.29 | 47.3         | VF           | I3   | 0.028 | 0.13                                     |
| PKS 0745-191         | 6103   | 07:47:31.469       | -19:17:40.01 | 10.3         | VF           | I3   | 0.103 | 18.41                                    |
| RBS 0797             | 2202   | 09:47:12.971       | +76:23:13.90 | 11.7         | VF           | I3   | 0.354 | 26.07                                    |
| RDCS 1252-29         | 4198   | 12:52:54.221       | -29:27:21.01 | 163.4        | VF           | I3   | 1.237 | 2.28                                     |
| RX J0232.2-4420      | 4993   | 02:32:18.771       | -44:20:46.68 | 23.4         | VF           | I3   | 0.284 | 18.17                                    |
| RX J0340-4542        | 6954   | 03:40:44.765       | -45:41:18.41 | 17.9         | VF           | I3   | 0.082 | 0.33                                     |
| RX J0439+0520        | 527    | 04:39:02.218       | +05:20:43.11 | 9.6          | VF           | I3   | 0.208 | 3.57                                     |
| RX J0439.0+0715      | 1449   | 04:39:00.710       | +07:16:07.65 | 6.3          | $\mathbf{F}$ | I3   | 0.230 | 9.44                                     |
| RX J0439.0+0715      | 3583   | 04:39:00.710       | +07:16:07.63 | 19.2         | VF           | I3   | 0.230 | 9.44                                     |
| RX J0528.9-3927      | 4994   | 05:28:53.039       | -39:28:15.53 | 22.5         | VF           | I3   | 0.263 | 12.99                                    |
| RX J0647.7+7015      | 3196   | 06:47:50.029       | +70:14:49.66 | 19.3         | VF           | I3   | 0.584 | 26.48                                    |
| RX J0647.7+7015      | 3584   | 06:47:50.024       | +70:14:49.69 | 20.0         | VF           | I3   | 0.584 | 26.48                                    |
| RX J0819.6+6336 ‡    | 2199   | 08:19:26.007       | +63:37:26.53 | 14.9         | F            | S3   | 0.119 | 0.98                                     |
| RX J0910+5422        | 2452   | 09:10:44.478       | +54:22:03.77 | 65.3         | VF           | I3   | 1.100 | 1.33                                     |
| $RX\ J1053+5735$     | 4936   | 10:53:39.844       | +57:35:18.42 | 92.2         | $\mathbf{F}$ | S3   | 1.140 | 1.59                                     |
| RX J1347.5-1145      | 3592   | 13:47:30.593       | -11:45:10.25 | 57.7         | VF           | I3   | 0.451 | 100.36                                   |
| RX J1347.5-1145      | 507    | 13:47:30.598       | -11:45:10.27 | 10.0         | F            | S3   | 0.451 | 100.36                                   |
| RX J1350+6007        | 2229   | 13:50:48.038       | +60:07:08.39 | 58.3         | VF           | I3   | 0.804 | 2.19                                     |
| RX J1423.8+2404      | 1657   | 14:23:47.759       | +24:04:40.65 | 18.5         | VF           | I3   | 0.545 | 15.84                                    |
| RX J1423.8+2404      | 4195   | 14:23:47.763       | +24:04:40.63 | 115.6        | VF           | S3   | 0.545 | 15.84                                    |

Table 1—Continued

| Cluster (1)      | Obs.ID (2) | R.A.<br>hr:min:sec | Dec.  o : ' : "  (4) | ExpT<br>ksec<br>(5) | Mode (6)     | ACIS (7) | z<br>(8) | $L_{bol.}$ $10^{44} \text{ ergs s}^{-1}$ (9) |
|------------------|------------|--------------------|----------------------|---------------------|--------------|----------|----------|----------------------------------------------|
| (1)              | (2)        | (0)                | (1)                  | (0)                 | (0)          | (')      | (0)      | (0)                                          |
| RX J1504.1-0248  | 5793       | 15:04:07.415       | -02:48:15.70         | 39.2                | VF           | I3       | 0.215    | 34.64                                        |
| RX J1525+0958    | 1664       | 15:24:39.729       | +09:57:44.42         | 50.9                | VF           | I3       | 0.516    | 3.29                                         |
| RX J1532.9+3021  | 1649       | 15:32:55.642       | +30:18:57.69         | 9.4                 | VF           | S3       | 0.345    | 20.77                                        |
| RX J1532.9+3021  | 1665       | 15:32:55.641       | +30:18:57.61         | 10.0                | VF           | I3       | 0.345    | 20.77                                        |
| RX J1716.9+6708  | 548        | 17:16:49.015       | +67:08:25.80         | 51.7                | $\mathbf{F}$ | I3       | 0.810    | 8.04                                         |
| RX J1720.1+2638  | 4361       | 17:20:09.941       | +26:37:29.11         | 25.7                | VF           | I3       | 0.164    | 11.39                                        |
| RX J1720.2+3536  | 3280       | 17:20:16.953       | +35:36:23.63         | 20.8                | VF           | I3       | 0.391    | 13.02                                        |
| RX J1720.2+3536  | 6107       | 17:20:16.949       | +35:36:23.68         | 33.9                | VF           | I3       | 0.391    | 13.02                                        |
| RX J1720.2+3536  | 7225       | 17:20:16.947       | +35:36:23.69         | 2.0                 | VF           | I3       | 0.391    | 13.02                                        |
| RX J2011.3-5725  | 4995       | 20:11:26.889       | -57:25:09.08         | 24.0                | VF           | I3       | 0.279    | 2.77                                         |
| RX J2129.6+0005  | 552        | 21:29:39.944       | +00:05:18.83         | 10.0                | VF           | I3       | 0.235    | 12.56                                        |
| S0463            | 6956       | 04:29:07.040       | -53:49:38.02         | 29.3                | VF           | I3       | 0.099    | 22.19                                        |
| S0463            | 7250       | 04:29:07.063       | -53:49:38.11         | 29.1                | VF           | I3       | 0.099    | 22.19                                        |
| TRIANG AUSTR ‡   | 1281       | 16:38:22.712       | -64:21:19.70         | 11.4                | $\mathbf{F}$ | I3       | 0.051    | 9.41                                         |
| V 1121.0+2327    | 1660       | 11:20:57.195       | +23:26:27.60         | 71.3                | VF           | I3       | 0.560    | 3.28                                         |
| ZWCL 1215        | 4184       | 12:17:40.787       | +03:39:39.42         | 12.1                | VF           | I3       | 0.075    | 3.49                                         |
| ZWCL 1358+6245   | 516        | 13:59:50.526       | +62:31:04.57         | 54.1                | $\mathbf{F}$ | S3       | 0.328    | 12.42                                        |
| ZWCL 1953        | 1659       | 08:50:06.677       | +36:04:16.16         | 24.9                | $\mathbf{F}$ | I3       | 0.380    | 17.11                                        |
| ZWCL 3146        | 909        | 10:23:39.735       | +04:11:08.05         | 46.0                | F            | I3       | 0.290    | 29.59                                        |
| ZWCL 5247        | 539        | 12:34:21.928       | +09:47:02.83         | 9.3                 | VF           | I3       | 0.229    | 4.87                                         |
| ZWCL 7160        | 543        | 14:57:15.158       | +22:20:33.85         | 9.9                 | $\mathbf{F}$ | I3       | 0.258    | 10.14                                        |
| ZWICKY 2701      | 3195       | 09:52:49.183       | +51:53:05.27         | 26.9                | VF           | S3       | 0.210    | 5.19                                         |
| ZwCL 1332.8+5043 | 5772       | 13:34:20.698       | +50:31:04.64         | 19.5                | VF           | I3       | 0.620    | 4.46                                         |
| ZwCl 0848.5+3341 | 4205       | 08:51:38.873       | +33:31:08.00         | 11.4                | VF           | S3       | 0.371    | 4.58                                         |

Note. — (1) Cluster name, (2) CDA observation identification number, (3) R.A. of cluster center, (4) Dec. of cluster center, (5) nominal exposure time, (6) observing mode, (7) CCD location of centroid, (8) redshift, (9) bolometric luminosity. A ( $\ddagger$ ) indicates a cluster analyzed within R<sub>5000</sub> only. Italicised cluster names indicate a cluster which was excluded from our analysis (discussed in §5.1). For clusters with multiple observations, the X-ray centers differ by < 0.5 kpc.

Table 2. Weighted averages for various apertures

|                   | [0.7-7.0]<br>keV  | [2.0-7.0]<br>keV    | $T_{HBR}$         | [0.7-7.0]<br>keV | [2.0-7.0]<br>keV  | $T_{HBR}$       |
|-------------------|-------------------|---------------------|-------------------|------------------|-------------------|-----------------|
| Aperture          |                   | . Without Core      |                   |                  | . With Core .     |                 |
| R <sub>2500</sub> | 4.93±0.03         | $6.24 \pm 0.07$     | $1.16 \pm 0.01$   | 4.47±0.02        | 5.45±0.05         | 1.13±0.01       |
| $R_{5000}$        | $4.75 {\pm} 0.02$ | $5.97 \pm 0.07$     | $1.14 \pm 0.01$   | $4.27 \pm 0.02$  | $5.29 {\pm} 0.05$ | $1.14 \pm 0.01$ |
| Simulated         | $3.853 \pm 0.004$ | $4.457 {\pm} 0.009$ | $1.131 \pm 0.002$ |                  |                   |                 |
| Control           | $4.208 \pm 0.003$ | $4.468 \pm 0.006$   | $1.002 \pm 0.001$ |                  |                   |                 |

Note. — Quoted errors are standard deviation of the mean calculated using an unbiased estimator for weighted samples. Simulated sample has been culled to include only  $T_2$ =0.75 keV.

Table 3. Clusters with  $T_{HBR} > 1.1$  with  $1\sigma$  significance.

| Name              | $T_{HBR}$                                        | Merger? | Core Class  | $T_{dec}$                                                                                                                                                                                                                                    | X-ray Morphology                                | Ref.      |
|-------------------|--------------------------------------------------|---------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------|
| RX J1525+0958     | $1.86^{+0.83}_{-0.51}$                           | Y       | CC          | $0.42^{+0.14}_{-0.08}$                                                                                                                                                                                                                       | Arrowhead shape & no discernible core           | [29]      |
| MS 1008.1-1224    | $1.59^{+0.37}$                                   | Y       | NCC         | $0.42_{-0.08}$ $0.93_{-0.14}^{+0.19}$                                                                                                                                                                                                        | Wide gas tail extending ≈550 kpc north          | [1]       |
| ABELL 2034        | $1.40^{+0.14}$                                   | Y       | NCC         | $1.07^{+0.11}$                                                                                                                                                                                                                               | Prominent cold front & gas tail extending south | [2]       |
| ABELL 401         | $1.37^{+0.12}$                                   | Y       | NCC         | $\begin{array}{c} 1.13 ^{+0.12}_{-0.09} \\ 1.13 ^{+0.12}_{-0.10} \\ 0.95 ^{+0.09}_{-0.07} \\ 0.98 ^{+0.11}_{-0.07} \\ 0.97 ^{+0.07}_{-0.07} \end{array}$                                                                                     | Highly spherical & possible cold front to north | [3]       |
| ABELL 1689        | $1.36^{+0.14}$                                   | Y       | NCC         | $0.95^{+0.09}_{-0.07}$                                                                                                                                                                                                                       | Exceptionally spherical & bright central core   | [6],[7]   |
| RX J0439.0+0715   | $1.42^{+0.24}_{-0.18}$                           | Unknown | NCC         | $0.98^{+0.11}_{-0.09}$                                                                                                                                                                                                                       | Bright core & possible cold front to north      | [29]      |
| ABELL 3376        | $1.33^{+0.11}_{-0.10}$                           | Y       | NCC         | $0.97^{+0.07}_{-0.07}$                                                                                                                                                                                                                       | Highly disturbed & broad gas tail to west       | [4],[5]   |
| ABELL 2255        | $1.32^{+0.12}$                                   | Y       | NCC         | $1.48^{+0.32}$                                                                                                                                                                                                                               | Spherical & compressed isophotes west of core   | [8],[9]   |
| ABELL 2218        | 10 10                                            | Y       | NCC         | $1.39^{+0.23}_{-0.19}$                                                                                                                                                                                                                       | Spherical, core of cluster elongated NW-SE      | [10]      |
| ABELL 1763        | $1.36^{+0.15}_{-0.15}$<br>$1.48^{+0.39}_{-0.26}$ | Y       | NCC         | $\begin{array}{c} 1.30 \begin{array}{c} -0.23 \\ 1.39 \begin{array}{c} +0.23 \\ -0.19 \\ 0.83 \begin{array}{c} -0.13 \\ -0.13 \\ 1.73 \begin{array}{c} +0.44 \\ -0.14 \\ \end{array} \\ 1.00 \begin{array}{c} +0.18 \\ -0.14 \\ \end{array}$ | Elongated ENE-SSW & cold front to west of core  | [11],[12] |
| MACS J2243.3-0935 | 10.91                                            | Unknown | NCC         | $1.73^{+0.44}_{-0.32}$                                                                                                                                                                                                                       | No core & highly flattened along WNW-ESE axis   | [29]      |
| ABELL 2069        | $1.76_{-0.55}^{+0.81}$ $1.32_{-0.14}^{+0.17}$    | Y       | NCC         | $1.00^{+0.18}_{-0.14}$                                                                                                                                                                                                                       | No core & highly elongated NNW-SSE              | [13]      |
| ABELL 2384        | $1.31^{+0.16}_{-0.14}$                           | Unknown | $^{\rm CC}$ | $0.59^{+0.03}_{-0.03}$                                                                                                                                                                                                                       | Gas tail extending 1.1 Mpc from core            | [29]      |
| ABELL 168         | a = -a + 0.16                                    | Y       | NCC         | $1.16^{+0.14}_{-0.10}$ $1.08^{+0.22}_{-0.17}$                                                                                                                                                                                                | Highly disrupted & irregular                    | [14],[15] |
| ABELL 209         | $1.31_{-0.14}^{+0.16}$ $1.38_{-0.22}^{+0.28}$    | Y       | NCC         | $1.08^{+0.22}_{-0.17}$                                                                                                                                                                                                                       | Asymmetric core structure & possible cold front | [16]      |
| ABELL 665         |                                                  | Y       | NCC         | $1.08_{-0.17}^{+0.12}$<br>$1.14_{-0.15}^{+0.19}$                                                                                                                                                                                             | Wide, broad gas tail to north & cold front      | [17]      |
| 1E0657-56         | $1.29_{-0.13}^{+0.13}$ $1.21_{-0.05}^{+0.06}$    | Y       | NCC         | $1.04^{+0.10}_{-0.08}$                                                                                                                                                                                                                       | The famous "Bullet Cluster"                     | [18]      |
| MACS J0547.0-3904 | $1.51^{+0.50}_{-0.36}$ $1.31^{+0.21}_{-0.18}$    | Unknown | NCC         | $0.77^{+0.14}$                                                                                                                                                                                                                               | Bright core & gas spur extending NW             | [29]      |
| ZWCL 1215         | $1.31^{+0.21}_{-0.18}$                           | Unknown | NCC         | $\begin{array}{c} -0.18 \\ 0.95 ^{+0.15}_{-0.12} \\ 0.96 ^{+0.05}_{-0.05} \\ 0.87 ^{+0.02}_{-0.02} \\ 0.69 ^{+0.20}_{-0.15} \end{array}$                                                                                                     | No core, flattened along NE-SW axis             | [29]      |
| ABELL 1204        | $1.31_{-0.18}^{+0.21}$ $1.26_{-0.14}^{+0.17}$    | Unknown | NCC         | $0.96^{+0.05}_{-0.05}$                                                                                                                                                                                                                       | Highly spherical & bright centralized core      | [29]      |
| MKW3S             | 1 1 <del>7</del> +0.05                           | Y       | $^{\rm CC}$ | $0.87^{+0.02}_{-0.02}$                                                                                                                                                                                                                       | High mass group, egg shaped & bright core       | [19]      |
| MACS J2311+0338   | $1.17_{-0.05}$ $1.53_{-0.42}^{+0.69}$            | Unknown | NCC         | $0.69^{+0.20}_{-0.15}$                                                                                                                                                                                                                       | Elongated N-S & disc-like core                  | [29]      |
| ABELL 267         | $1.33^{+0.27}_{-0.21}$                           | Unknown | NCC         | $1.09^{+0.20}_{-0.16}$                                                                                                                                                                                                                       | Elongated NNE-SSW & cold front to north         | [29]      |
| RX J1720.1+2638   | 4 oo±0.12                                        | Y       | $^{\rm CC}$ | $0.73^{+0.04}_{-0.04}$                                                                                                                                                                                                                       | Very spherical, bright peaky core, & cold front | [20]      |
| ABELL 907         | $1.22_{-0.11}^{+0.12}$ $1.21_{-0.08}^{+0.10}$    | Unknown | $^{\rm CC}$ | $0.73_{-0.04}^{+0.04} \\ 0.76_{-0.03}^{+0.03} \\ 1.56_{-0.40}^{+1.07} \\ 1.07_{-0.08}^{+0.10}$                                                                                                                                               | NW-SW elongation & western cold front           | [29]      |
| ABELL 514         | $1.26^{+0.19}_{-0.15}$                           | Y       | NCC         | $1.56^{+1.07}_{-0.40}$                                                                                                                                                                                                                       | Very diffuse & disrupted                        | [21]      |
| ABELL 1651        | $1.24^{+0.16}_{-0.13}$                           | Y       | NCC         | $1.07^{+0.10}_{-0.08}$                                                                                                                                                                                                                       | Spherical & compressed isophotes to SW          | [22]      |
| 3C 28.0           | $1.23^{+0.14}_{-0.12}$                           | Y       | $^{\rm CC}$ | $0.54^{+0.03}_{-0.03}$                                                                                                                                                                                                                       | Obvious merger & $\sim 1$ Mpc gas tail          | [23]      |
|                   | -                                                |         | $R_5$       | <sub>000-CORE</sub> O                                                                                                                                                                                                                        | nly                                             |           |
| TRIANG AUSTR      | $1.42^{+0.14}_{-0.14}$                           | Y       | NCC         | $0.90^{+0.06}_{-0.09}$                                                                                                                                                                                                                       | Highly diffuse & no bright core                 | [24]      |
| ABELL 3158        | $1.42_{-0.14}^{+0.14}$ $1.23_{-0.05}^{+0.05}$    | Y       | NCC         | $1.15^{+0.05}_{-0.05}$                                                                                                                                                                                                                       | Large centroid variation                        | [25]      |
| ABELL 2256        | ±0.13                                            | Y       | NCC         | $1.40^{+0.15}_{-0.12}$                                                                                                                                                                                                                       | Spiral shaped & distinct NW edge                | [26]      |
| NGC 6338          |                                                  | Unknown | NCC         | $0.90^{+0.09}_{-0.09}$ $1.15^{+0.05}_{-0.05}$ $1.40^{+0.15}_{-0.12}$ $0.96^{+0.04}_{-0.03}$                                                                                                                                                  | Disrupted group companion to north              | [29]      |
| ABELL 2029        | $1.22_{-0.10}^{+0.12} \\ 1.21_{-0.10}^{+0.12}$   | Y       | CC          | $0.86^{+0.04}_{-0.04}$                                                                                                                                                                                                                       | Possible cold front to W $\&$ WAT radio source  | [27],[28] |

Note. — Clusters ordered by lower limit of  $T_{HBR}$ . Listed  $T_{HBR}$  values are for the  $R_{2500-\mathrm{CORE}}$  aperture, with the exception of the " $R_{5000-\mathrm{CORE}}$  Only" clusters listed at the end of the table. Excluding the " $R_{5000-\mathrm{CORE}}$  Only" clusters, all clusters listed here had  $T_{HBR}$  significantly greater than 1.1 and the same core classification for both the  $R_{2500-\mathrm{CORE}}$  and  $R_{5000-\mathrm{CORE}}$  apertures. [1] Gioia & Luppino (1994), [2] Kempner et al. (2003), [3] Yuan et al. (2005), [4] Markevitch et al. (1998), [5] Bagchi et al. (2006), [6] Teague et al. (1990), [7] Andersson & Madejski (2004), [8] Burns et al. (1995), [9] Feretti et al. (1997), [10] Girardi et al. (1997), [11] Dahle et al. (2002), [12] Smith et al. (2005), [13] Gioia et al. (1982), [14] Hallman & Markevitch (2004), [15] Yang et al. (2004), [16] Mercurio et al. (2003), [17] Gómez et al. (2000), [18] Tucker et al. (1998), [19] Krempec-Krygier & Krygier (1999), [20] Mazzotta et al. (2001b), [21] Govoni et al. (2001), [22] Bliton et al. (1998), [23] Gutierrez & Krawczynski (2005), [24] Markevitch et al. (1996), [25] Ohta et al. (2001), [26] Molendi et al. (2000), [27] Clarke et al. (2004), [28] Clarke et al. (2005), [29] this work.

Table 4. Summary of Excised  $R_{2500}$  Spectral Fits

| Cluster             | $R_{\rm CORE}$ | $R_{2500}$ | $N_{HI}$                  | $T_{77}$                                                                                                                                                  | $T_{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T_{HBR}$                                                                                                                                                                                            | $\mathrm{Z}_{77}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\chi^2_{red,77}$ | $\chi^2_{red,27}$ | % Sour |
|---------------------|----------------|------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|--------|
|                     | kpc            | kpc        | $10^{20} \text{ cm}^{-2}$ | keV                                                                                                                                                       | keV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      | ${ m Z}_{\odot}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                 | ,                 |        |
| (1)                 | (2)            | (3)        | (4)                       | (5)                                                                                                                                                       | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (7)                                                                                                                                                                                                  | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (9)               | (10)              | (11)   |
| 1E0657 56 ‡         | 69             | 688        | 6.53                      | $11.99  {}^{+0.27}_{-0.26}$                                                                                                                               | $14.54 \begin{array}{l} +0.67 \\ -0.53 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.21^{+0.06}_{-0.05}$                                                                                                                                                                               | $0.29^{+0.03}_{-0.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.24              | 1.11              | 92     |
| 1RXS J2129.4-0741 ‡ | 71             | 526        | 4.36                      | $8.22  {}^{+1.18}_{-0.95}$                                                                                                                                | $8.10^{+1.47}_{-1.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.99  {}^{+0.23}_{-0.18}$                                                                                                                                                                           | $0.43^{+0.18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.07              | 1.05              | 80     |
| 2PIGG J0011.5-2850  | 69             | 547        | 2.18                      | $5.15 \begin{array}{l} +0.25 \\ -0.24 \end{array}$                                                                                                        | $6.20  {}^{+0.79}_{-0.65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.20  {}^{+0.16}_{-0.14}$                                                                                                                                                                           | $0.26^{+0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.09              | 1.00              | 70     |
| 2PIGG J2227.0-3041  | 69             | 378        | 1.11                      | $2.80  ^{+0.15}_{-0.14}$                                                                                                                                  | $2.97  {}^{+0.34}_{-0.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.06 \begin{array}{l} +0.13 \\ -0.11 \end{array}$                                                                                                                                                   | $0.35^{+0.09}_{-0.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.16              | 1.15              | 69     |
| 3C 220.1            | 71             | 456        | 1.91                      | $9.26 \begin{array}{l} -0.171 \\ -3.98 \end{array}$                                                                                                       | $8.00  {}^{+17.66}_{-4.03}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0c + 2.35                                                                                                                                                                                          | $0.00^{+0.59}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.20              | 1.40              | 30     |
| 3C 28.0             | 70             | 420        | 5.71                      | $_{\rm F}$ $_{\rm F}$ $_{\rm 2}$ $_{\rm 10.29}$                                                                                                           | $6.81 \begin{array}{l} +0.71 \\ -0.60 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.80 & -0.57 \\ 1.23 & +0.14 \\ -0.12 \end{array}$                                                                                                                                 | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.98              | 0.88              | 87     |
| 3C 295              | 69             | 465        | 1.35                      | $5.03 \begin{array}{c} -0.27 \\ 5.16 \begin{array}{c} +0.42 \\ -0.38 \end{array}$                                                                         | $5.93  ^{+0.84}_{-0.69}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.15 \begin{array}{l} +0.19 \\ -0.16 \end{array}$                                                                                                                                                   | $0.38^{+0.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.91              | 0.93              | 79     |
| 3C 388              | 69             | 420        | 6.11                      | $3.23  {}^{+0.23}_{-0.21}$                                                                                                                                | $3.26  {}^{+0.49}_{-0.37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.01  {}^{+0.17}_{-0.13}$                                                                                                                                                                           | $0.51^{+0.16}_{-0.14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.95              | 0.95              | 68     |
| 4C 55.16            | 69             | 426        | 4.00                      | $4.98 \begin{array}{l} +0.17 \\ -0.17 \end{array}$                                                                                                        | $5.54 \begin{array}{l} +0.40 \\ -0.36 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.11 ^{+0.09}_{-0.08}$                                                                                                                                                                              | $0.49^{+0.07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.89              | 0.80              | 58     |
| ABELL 0068          | 70             | 680        | 4.60                      | $9.01  {}^{+1.53}_{-1.14}$                                                                                                                                | $9.13 \begin{array}{l} -0.30 \\ +2.60 \\ -1.71 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.01  ^{+0.34}_{-0.23}$                                                                                                                                                                             | $0.46^{+0.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.15              | 1.13              | 79     |
| ABELL 0168 ‡        | 70             | 398        | 3.27                      | 9.56 + 0.11                                                                                                                                               | $3.36  {}^{-0.37}_{-0.35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.31  {}^{+0.16}_{-0.14}$                                                                                                                                                                           | $0.29^{+0.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.07              | 1.03              | 40     |
| ABELL 0209 ‡        | 70             | 609        | 1.68                      | $7.30^{-0.08}_{0.51}$                                                                                                                                     | $10.07  {}^{-0.33}_{-1.41}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.20 + 0.28                                                                                                                                                                                          | $0.23^{+0.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.12              | 1.11              | 82     |
| ABELL 0267 ‡        | 70             | 545        | 2.74                      | $\begin{array}{c} 7.50 & -0.51 \\ 6.70 & +0.56 \\ -0.47 \end{array}$                                                                                      | $8.88  {}^{+1.68}_{-1.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 1.38 & -0.22 \\ 1.33 & +0.27 \\ -0.21 \end{array}$                                                                                                                                 | $0.32^{+0.11}_{-0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.18              | 1.15              | 82     |
| ABELL 0370          | 69             | 516        | 3.37                      | $7.35 \begin{array}{l} -0.47 \\ +0.72 \\ -0.84 \end{array}$                                                                                               | $10.35  {}^{+1.89}_{-2.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.41  {}^{+0.29}_{-0.25}$                                                                                                                                                                           | $0.45^{+0.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.08              | 1.04              | 39     |
| ABELL 0383          | 69             | 423        | 4.07                      | $4.01 \pm 0.29$                                                                                                                                           | $5.42  \substack{+0.74 \\ -0.59}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.10  ^{-0.35}_{-0.13}$                                                                                                                                                                             | $0.44^{+0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.97              | 0.90              | 64     |
| ABELL 0399          | 69             | 546        | $7.57^{+0.71}_{-0.71}$    | $\begin{array}{c} 4.91 & -0.27 \\ 7.95 & +0.35 \\ -0.31 \end{array}$                                                                                      | $0.07 \pm 0.55$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.19 + 0.08                                                                                                                                                                                          | $0.30^{+0.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.12              | 0.99              | 82     |
| ABELL 0401          | 69             | 643        | 12.48                     | $6.37 \pm 0.19$                                                                                                                                           | 8.71 + 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $^{-0.08}_{1.37}$                                                                                                                                                                                    | $0.26^{+0.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.44              | 1.05              | 78     |
| ABELL 0478          | 69             | 598        | 30.90                     | $7.30  ^{+0.19}_{-0.24}$                                                                                                                                  | $8.62^{+0.58}_{-0.54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.18 \begin{array}{c} -0.10 \\ +0.09 \\ -0.08 \end{array}$                                                                                                                                          | $0.45^{+0.06}_{-0.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.05              | 0.95              | 91     |
| ABELL 0514          | 71             | 516        | 3.14                      | 333 + 0.16                                                                                                                                                | 4.02 + 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.21 \pm 0.17$                                                                                                                                                                                      | $0.25^{+0.08}_{-0.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.07              | 0.97              | 53     |
| ABELL 0520          | 70             | 576        | $1.06^{+1.06}_{-1.05}$    | 9.29 + 0.67                                                                                                                                               | $0.99 \pm 0.85$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.06 + 0.12                                                                                                                                                                                          | 10.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.11              | 1.04              | 87     |
| ABELL 0521          | 70             | 558        | 6.17                      | $\frac{-0.00}{7.02} + 0.59$                                                                                                                               | $0.20 \pm 1.62$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $^{-0.10}_{1.10}$                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.10              | 1.15              | 49     |
| ABELL 0586          | 70             | 635        | 4.71                      | $6.47 \pm 0.55$                                                                                                                                           | $8.39 - 1.22 \\ 8.06 + 1.46$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.25 + 0.25                                                                                                                                                                                          | $0.56^{+0.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.91              | 0.81              | 82     |
| ABELL 0611          | 70             | 523        | 4.99                      | $7.06  {}^{+0.55}$                                                                                                                                        | 7.07 + 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 13 +0:18                                                                                                                                                                                           | $0.35^{+0.11}_{-0.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.97              | 0.98              | 54     |
| ABELL 0665          | 69             | 617        | 4.24                      | 7 45 +0.38                                                                                                                                                | 0.61 + 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.29 + 0.15                                                                                                                                                                                          | $0.31^{+0.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.02              | 0.93              | 87     |
| ABELL 0697          | 69             | 612        | 3.34                      | $0.50 \pm 0.87$                                                                                                                                           | 12.24 + 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.29 \begin{array}{l} -0.13 \\ +0.25 \\ -0.20 \end{array}$                                                                                                                                          | $0.37^{+0.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.08              | 1.02              | 89     |
| ABELL 0773          | 69             | 615        | 1.46                      | 7.83 + 0.66                                                                                                                                               | 0.75 + 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.25 + 0.24                                                                                                                                                                                          | $0.44^{+0.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.06              | 1.09              | 84     |
| ABELL 0907          | 69             | 488        | 5.69                      | 5.62 +0.18                                                                                                                                                | $6.78   ^{+0.49}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1.20 \begin{array}{c} -0.19 \\ +0.10 \\ -0.08 \end{array}$                                                                                                                                          | $0.42^{+0.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.13              | 1.00              | 88     |
| ABELL 0963          | 69             | 543        | 1.39                      | $6.73^{+0.32}_{+0.32}$                                                                                                                                    | $6.98  ^{+0.66}_{-0.57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.04 +0.11                                                                                                                                                                                           | $0.29^{+0.07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.06              | 1.02              | 64     |
| ABELL 1063S         | 69             | 648        | 1.77                      | $11.96  ^{+0.88}_{-0.79}$                                                                                                                                 | $13.70  {}^{+1.68}_{-1.38}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.15 + 0.16                                                                                                                                                                                          | $0.38^{+0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.02              | 0.98              | 90     |
| ABELL 1204          | 70             | 419        | 1.44                      | $^{-0.79}_{3.63}$                                                                                                                                         | 4 = 0 +0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.16 \begin{array}{l} -0.14 \\ 1.26 \begin{array}{l} +0.17 \\ -0.14 \end{array}$                                                                                                                    | $0.31^{+0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.06              | 0.90              | 88     |
| ABELL 1423          | 70             | 614        | 1.60                      | 6.01 + 0.75                                                                                                                                               | $_{753}^{-0.43}_{+2.35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1.25  {}^{-0.14}_{-0.29}$                                                                                                                                                                           | $0.30^{+0.18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.87              | 0.65              | 78     |
| ABELL 1651          | 70             | 596        | 2.02                      | $c = 0.04 \pm 0.30$                                                                                                                                       | $_{7.78}^{-1.93}_{+0.90}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.24 + 0.16                                                                                                                                                                                          | $0.42^{+0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.19              | 1.20              | 86     |
| ABELL 1689 ‡        | 70             | 679        | 1.87                      | $0.48   ^{+0.38}$                                                                                                                                         | $12.89  {}^{+1.23}_{-1.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 36 +0.14                                                                                                                                                                                           | $0.36^{+0.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.13              | 1.02              | 91     |
| ABELL 1758          | 69             | 574        | 1.09                      | $12.14 \begin{array}{l} -0.35 \\ -0.92 \end{array}$                                                                                                       | $11.16 \begin{array}{l} -1.01 \\ +3.08 \\ -2.14 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.92^{+0.27}_{-0.19}$                                                                                                                                                                               | $0.56^{+0.13}_{-0.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.21              | 1.09              | 58     |
| ABELL 1763          | 69             | 561        | 0.82                      | 7.78 + 0.67                                                                                                                                               | $11.49 \begin{array}{l} -2.14 \\ +2.89 \\ -1.84 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 48 +0.39                                                                                                                                                                                           | $0.25^{+0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.12              | 0.92              | 84     |
| ABELL 1835          | 70             | 570        | 2.36                      | $9.77^{+0.57}_{-0.52}$                                                                                                                                    | $11.00  {}^{-1.34}_{-1.03}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.13 \begin{array}{c} -0.26 \\ +0.14 \\ -0.12 \end{array}$                                                                                                                                          | $0.31^{+0.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.98              | 1.02              | 86     |
| ABELL 1914          | 70             | 698        | 0.97                      |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      | $0.30^{+0.07}_{-0.07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.07              | 1.03              | 92     |
| ABELL 1942          | 69             | 473        | 2.75                      | $9.62  \substack{+0.55 \\ -0.49 \\ 4.77  \substack{+0.38 \\ -0.35 \\ 0.70  and a}$                                                                        | $11.42 \stackrel{-1.26}{-1.06} \\ 5.49 \stackrel{+0.98}{-0.74} \\ 0.22 \stackrel{+1.44}{-1.44}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.19 \stackrel{+0.15}{-0.13} \\ 1.15 \stackrel{+0.22}{-0.18} \\ 1.15 \stackrel{+0.22}{-0.20}$                                                                                                       | $0.33^{+0.12}_{-0.14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.06              | 1.04              | 70     |
| ABELL 1995          | 71             | 381        | 1.44                      | 8.37 +0.70                                                                                                                                                | $9.23  {}^{+1.44}_{-1.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 10 ±0.20                                                                                                                                                                                           | $0.39^{+0.12}_{-0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.02              | 0.96              | 74     |
| ABELL 2034          | 69             | 594        | 1.58                      | $\begin{array}{c} -0.61 \\ 7.15 & +0.23 \\ -0.22 \\ 6.50 & +0.33 \\ -0.29 \\ 7.13 & +1.29 \\ -0.95 \\ 2.88 & +0.30 \\ -0.27 \\ 16.20 & +0.87 \end{array}$ | $\begin{array}{c} -0.74 \\ 9.23 + 1.44 \\ -1.13 \\ 10.02 + 0.92 \\ -0.75 \\ 8.61 + 1.02 \\ -0.84 \\ 11.10 + 4.67 \\ -3.05 \\ 3.76 + 0.98 \\ 3.76 + 0.98 \\ -0.65 \\ 0.4 + 0.98 \\ -0.65 \\ 0.4 + 0.98 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\ -0.65 \\$ | $1.40   \overset{-0.16}{+0.14}$                                                                                                                                                                      | $0.32^{+0.05}_{-0.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.22              | 1.00              | 84     |
| ABELL 2069          | 70             | 623        | 1.97                      | $6.50 \begin{array}{l} -0.33 \\ -0.33 \\ 0.20 \end{array}$                                                                                                | $8.61   ^{+1.02}_{-0.04}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.32                                                                                                                                                                                                 | $0.26^{+0.08}_{-0.07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.04              | 0.96              | 71     |
| ABELL 2111          | 70             | 592        | 2.20                      | $7.13   \overset{-0.29}{+1.29}$                                                                                                                           | $11.10^{-0.84}_{-4.67}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.56                                                                                                                                                                                                 | $0.13^{+0.19}_{-0.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.06              | 0.88              | 76     |
| ABELL 2125          | 70             | 371        | 2.75                      | $2.88   \overset{-0.95}{+0.30}$                                                                                                                           | $3.76^{-3.05}_{0.65}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.31  {}^{-0.48}_{-0.37}$                                                                                                                                                                           | $0.31^{\substack{-0.13 \ +0.18}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.26              | 1.30              | 61     |
| ABELL 2163          | 69             | 751        | 12.04                     | $19.20  {}^{+0.87}_{-0.80}$                                                                                                                               | $21.30  {}^{+1.77}_{-1.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} -0.16 \\ 1.40 \stackrel{+0.14}{-0.11} \\ 1.32 \stackrel{+0.17}{-0.17} \\ 1.56 \stackrel{+0.71}{-0.48} \\ 1.31 \stackrel{+0.37}{-0.26} \\ 1.11 \stackrel{+0.11}{-0.09} \end{array}$ | $\begin{array}{c} 0.30 + 0.07 \\ 0.30 + 0.08 \\ 0.07 \\ 0.33 + 0.12 \\ 0.39 + 0.11 \\ 0.32 + 0.05 \\ 0.26 + 0.05 \\ 0.26 + 0.07 \\ 0.13 + 0.13 \\ 0.31 + 0.18 \\ 0.31 + 0.16 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.10 + 0.06 \\ 0.$ | 1.37              | 1.26              | 90     |

Table 4—Continued

| Cluster             | R <sub>CORE</sub> | R <sub>2500</sub> | N <sub>HI</sub>           | $\mathrm{T}_{77}$                                                                             | $T_{27}$                                                                                                                                                           | $T_{HBR}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Z_{77}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\chi^2_{red,77}$ | $\chi^2_{red,27}$ | % S |
|---------------------|-------------------|-------------------|---------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-----|
| (1)                 | kpc               | kpc               | $10^{20} \text{ cm}^{-2}$ | keV                                                                                           | keV                                                                                                                                                                | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Z_{\odot}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0)               | (10)              | /1  |
| (1)                 | (2)               | (3)               | (4)                       | (5)                                                                                           | (6)                                                                                                                                                                | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (9)               | (10)              | (1  |
| ABELL 2204          | 70                | 575               | 5.84                      | $\begin{array}{c} 8.65 \begin{array}{c} +0.58 \\ -0.52 \\ 7.35 \end{array} +0.39 \end{array}$ | $10.57  {}^{+1.48}_{-1.23}$ $10.03  {}^{+1.26}_{-1.26}$                                                                                                            | $1.22_{-0.16}^{+0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.37^{+0.10}_{-0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.95              | 1.00              | 9   |
| ABELL 2218          | 70                | 558               | 3.12                      | $7.35 \begin{array}{l} +0.3\overline{9} \\ -0.35 \end{array}$                                 | $10.03 \stackrel{+1.26}{-0.98}$                                                                                                                                    | $1.22 \begin{array}{c} -0.16 \\ 1.36 \begin{array}{c} +0.19 \\ -0.15 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.22^{+0.07}_{-0.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.01              | 0.90              | 8   |
| ABELL 2255          | 71                | 596               | 2.53                      | $\begin{array}{c} 7.35 & -0.35 \\ 6.12 & +0.20 \\ -0.19 \end{array}$                          | $8.10^{\ +0.66}_{\ -0.58}$                                                                                                                                         | $1.32  ^{+0.12}_{-0.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.30^{+0.06}_{-0.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.13              | 0.95              | 7   |
| ABELL 2259          | 69                | 480               | 3.70                      | $5.18^{+0.46}$                                                                                | $6.40^{+1.33}_{-0.95}$                                                                                                                                             | $1.24^{+0.28}_{-0.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.41^{+0.14}_{-0.14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.05              | 1.01              | 8   |
| ABELL 2261          | 69                | 576               | 3.31                      | $7.63^{+0.47}_{-0.43}$                                                                        | $9.30^{+1.21}_{-0.91}$                                                                                                                                             | $1.22 \begin{array}{c} +0.18 \\ -0.14 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.36^{+0.08}_{-0.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.99              | 0.95              | 9   |
| ABELL 2294          | 69                | 572               | 6.10                      | $9.98  {}^{+1.43}_{-1.12}$                                                                    | $11.07 \begin{array}{l} +3.19 \\ -2.11 \end{array}$                                                                                                                | $1.11 \begin{array}{c} +0.36 \\ -0.25 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.53^{+0.21}_{-0.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.07              | 0.95              | 8   |
| ABELL 2384          | 70                | 436               | 2.99                      | $\begin{array}{c} 9.98 & -1.12 \\ 4.75 & +0.22 \\ -0.20 \end{array}$                          | $6.22 \begin{array}{l} +0.72 \\ -0.60 \end{array}$                                                                                                                 | $1.31  ^{+0.16}_{-0.14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.23^{+0.07}_{-0.07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.06              | 0.92              | 8   |
| ABELL 2409          | 70                | 511               | 6.72                      | $\begin{array}{c} 4.75 & -0.20 \\ 5.94 & +0.43 \\ -0.38 \end{array}$                          | $6.77 \begin{array}{l} +0.99 \\ -0.82 \end{array}$                                                                                                                 | $1.14 \begin{array}{l} +0.19 \\ -0.16 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.37^{+0.13}_{-0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.13              | 0.96              | 8   |
| ABELL 2537          | 69                | 497               | 4.26                      | $\begin{array}{c} 3.94 & -0.38 \\ 8.40 & +0.76 \\ -0.68 \end{array}$                          | $7.81 \begin{array}{c} +1.15 \\ -0.03 \end{array}$                                                                                                                 | 0.03 + 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.40^{+0.13}_{-0.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.91              | 0.84              | 4   |
| ABELL 2631          | 70                | 631               | 3.74                      | $7.06   ^{-0.06}_{-0.84}$                                                                     | $7.83  {}^{+2.18}_{-1.45}$                                                                                                                                         | $0.93 \begin{array}{c} -0.13 \\ +0.35 \\ 1.11 \begin{array}{c} +0.35 \\ -0.24 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.34^{+0.19}_{-0.18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.97              | 0.88              | 8   |
| ABELL 2667          | 70                | 525               | 1.64                      | $6.75 \begin{array}{l} -0.34 \\ +0.48 \\ -0.43 \end{array}$                                   | 7.45                                                                                                                                                               | $1.10 \begin{array}{l} -0.24 \\ +0.18 \\ -0.15 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.36^{+0.11}_{-0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.17              | 1.08              | 7   |
| ABELL 2670          | 69                | 451               | 2.88                      | $3.95 \begin{array}{l} -0.43 \\ +0.14 \\ -0.12 \end{array}$                                   | $4.65  {}^{+0.42}_{-0.36}$                                                                                                                                         | $1.18  ^{-0.15}_{-0.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.42^{+0.08}_{-0.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.13              | 1.07              | 7   |
| ABELL 2717          | 70                | 298               | 1.12                      | $2.63  \substack{+0.17 \\ -0.16}$                                                             | $3.17  {}^{+0.58}_{-0.43}$                                                                                                                                         | $1.21  ^{+0.13}_{-0.18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.48^{+0.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.88              | 0.87              | 5   |
| ABELL 2744          | 71                | 647               | 1.82                      | 0.18 + 0.68                                                                                   | $10.20  {}^{+1.38}_{-1.10}$                                                                                                                                        | $1.11 \stackrel{-0.18}{\stackrel{+0.17}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{\stackrel{-0.14}{-0.$ | 0.24 + 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.99              | 0.90              | 6   |
| ABELL 3164          | 70                | 451               | 2.55                      | $2.83  {}^{+0.53}_{-0.26}$                                                                    | $3.81 \begin{array}{c} -1.10 \\ +3.56 \\ -1.42 \end{array}$                                                                                                        | $1.35 \begin{array}{l} -0.14 \\ +1.28 \\ -0.52 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.24_{-0.09}^{+0.09}$ $0.39_{-0.21}^{+0.33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.88              | 0.94              | 2   |
| ABELL 3376 ‡        | 70                | 463               | 5.21                      | $4.48  {}^{+0.11}_{-0.12}$                                                                    | $5.95 \stackrel{-1.42}{+0.47}$                                                                                                                                     | $1.33 \begin{array}{l} -0.32 \\ +0.11 \\ -0.10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.39^{+0.05}_{-0.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.16              | 1.09              | 6   |
| ABELL 3921          | 69                | 535               | 3.07                      | -0.12                                                                                         | $6.65 \begin{array}{c} -0.42 \\ +0.65 \\ -0.54 \end{array}$                                                                                                        | $1.17  {}^{+0.12}_{-0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.31^{+0.08}_{-0.07}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.02              | 0.96              | 7   |
| AC 114              | 70                | 550               | 1.44                      | 753 + 0.49                                                                                    | 8.30 + 1.03                                                                                                                                                        | 1.10 + 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.26^{+0.08}_{-0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.07              | 1.06              | 5   |
| CL 0024+17          | 71                | 435               | 4.36                      | $6.03  {}^{+1.66}_{-1.10}$                                                                    | $7.18  {}^{+7.91}_{-3.16}$                                                                                                                                         | 1.10 + 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.60^{+0.37}_{-0.33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00              | 1.44              | 3   |
| CL 1221+4918        | 71                | 445               | 1.44                      | $6.62  {}^{+1.24}_{-0.00}$                                                                    | $7.11  {}^{-3.10}_{-1.31}$                                                                                                                                         | $1.07  {}^{+0.57}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.34^{+0.20}_{-0.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.94              | 0.93              | 6   |
| CL J0030+2618       | 70                | 786               | 4.10                      | $^{-0.99}_{4.62}$                                                                             | $5.18  {}^{+8.29}_{-1.06}$                                                                                                                                         | 1.10 + 1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.26^{+0.75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00              | 1.23              | 3   |
| CL J0152-1357       | 70                | 391               | 1.45                      | $_{7.99}^{-1.32}_{+2.78}$                                                                     | $^{-1.90}_{7.21}$ $^{+3.43}_{+3.43}$                                                                                                                               | $_{1.00} + 0.60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.00^{+0.20}_{-0.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.89              | 1.00              | 3   |
| CL J0542.8-4100     | 71                | 446               | 3.59                      | $6.07^{+1.47}_{-1.05}$                                                                        | 6.29 + 2.14                                                                                                                                                        | $^{-0.37}_{1.04}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.00_{-0.00}^{+0.00}$<br>$0.16_{-0.16}^{+0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.04              | 0.91              | 6   |
| CL J0848+4456 ‡     | 71                | 319               | 2.53                      | $^{-1.05}_{4.53}$                                                                             | $5.52  {}^{+3.28}_{-1.41}$                                                                                                                                         | $^{-0.29}_{1.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.00^{+0.45}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.92              | 0.93              | 5   |
| CL J1113.1-2615     | 70                | 435               | 5.51                      | $4.19  {}^{+1.61}_{-1.13}$                                                                    | $4.10^{-1.74}_{-1.44}$                                                                                                                                             | $0.98^{+0.70}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.46^{+0.63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.01              | 1.08              | 2   |
| CL J1226.9+3332 ‡   | 69                | 450               | 1.37                      | 11.81 + 2.25                                                                                  | $11.29^{+2.45}_{-1.77}$                                                                                                                                            | $0.96  {}^{+0.42}_{+0.28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.21^{+0.21}_{-0.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.81              | 0.86              | 5   |
| CL J2302.8+0844     | 70                | 514               | 5.05                      | $^{-1.17}_{4.25}$                                                                             | 4.67 + 2.00                                                                                                                                                        | 1.10 + 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.13^{+0.33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.89              | 0.97              | 5   |
| DLS J0514-4904      | 70                | 507               | 2.52                      | $4.62  {}^{+0.53}$                                                                            | 6.14 + 2.08                                                                                                                                                        | $^{-0.34}_{1.22} + 0.48$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.37^{+0.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.04              | 1.12              | 5   |
| MACS J0011.7-1523 ‡ | 69                | 451               | 2.08                      | $6.40^{+0.47}$                                                                                | $6.76^{+0.81}_{-0.66}$                                                                                                                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.30^{+0.10}_{-0.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.86              | 0.90              | 8   |
| MACS J0025.4-1222 ‡ | 70                | 473               | 2.72                      | $6.33^{+0.85}_{-0.70}$                                                                        | $6.01  {}^{+1.05}_{-0.85}$                                                                                                                                         | $0.95  {}^{+0.21}_{-0.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.37^{+0.16}_{-0.15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.90              | 0.92              | 8   |
| MACS J0035.4-2015   | 70                | 527               | 1.55                      | $7.46^{+0.79}_{-0.66}$                                                                        | $9.31  {}^{+1.75}_{-1.20}$                                                                                                                                         | +0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.33^{+0.12}_{-0.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.94              | 0.93              | g   |
| MACS J0111.5+0855   | 70                | 435               | 4.18                      | 4 11 +1.61                                                                                    | $_{270}^{-1.29}_{+3.08}$                                                                                                                                           | 0.01 + 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.11^{+0.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.68              | 0.65              | 4   |
| MACS J0152.5-2852   | 70                | 459               | 1.46                      | 5.64 +0.89                                                                                    | 7.24 + 2.57                                                                                                                                                        | 1.00 + 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.22^{+0.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.10              | 1.02              | 8   |
| MACS J0159.0-3412   | 70                | 572               | 1.54                      | $ \begin{array}{c} 0.04 & -0.70 \\ 10.90 & +4.77 \\ 2.52 \end{array} $                        | $14.65  {}^{+12.31}_{-2.2}$                                                                                                                                        | $\begin{array}{c} 1.26 & -0.32 \\ 1.34 & +1.27 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.22_{-0.17}^{+0.17}$<br>$0.26_{-0.26}^{+0.35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.87              | 0.92              | 8   |
| MACS J0159.8-0849 ‡ | 69                | 585               | 2.01                      | $9.16^{+0.71}$                                                                                | $9.83  {}^{+1.13}_{-0.06}$                                                                                                                                         | $1.07  {}^{+0.15}_{-0.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.30^{+0.09}_{-0.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.08              | 1.09              | g   |
| MACS J0242.5-2132   | 70                | 498               | 2.71                      | $5.58  {}^{+0.63}_{-0.63}$                                                                    | $6.26  {}^{+1.38}$                                                                                                                                                 | $^{-0.13}_{1.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.34^{+0.16}_{-0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.03              | 0.83              | 8   |
| MACS J0257.1-2325 ‡ | 70                | 579               | 2.09                      | $9.25  {}^{+1.28}_{-1.01}$                                                                    | $10.16  {}^{+1.95}_{-1.95}$                                                                                                                                        | $1.12 \begin{array}{c} -0.21 \\ +0.26 \\ 1.10 \begin{array}{c} +0.26 \\ -0.21 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.14^{+0.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99              | 1.08              | 8   |
| MACS J0257.6-2209   | 69                | 540               | 2.02                      | $8.02  {}^{+1.12}_{+1.12}$                                                                    | $8.17  {}^{+1.92}$                                                                                                                                                 | $1.02^{+0.28}_{-0.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.14 - 0.12 \\ 0.30 + 0.16 \\ -0.17 \\ 0.28 + 0.13 \\ 0.41 + 0.10 \\ 0.24 - 0.20 \\ 0.33 + 0.19 \\ 0.24 - 0.20 \\ 0.33 + 0.19 \\ 0.24 - 0.20 \\ 0.33 + 0.19 \\ 0.24 - 0.20 \\ 0.33 + 0.19 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0.24 + 0.12 \\ 0$ | 1.12              | 1.26              | 8   |
| MACS J0308.9+2645   | 69                | 539               | 11.88                     | $8.02 \stackrel{+1.12}{-0.88} \\ 10.54 \stackrel{+1.28}{-1.07}$                               | $\begin{array}{c} 1.134 & -1.54 \\ 8.17 & +1.92 \\ -1.30 & 11.38 & +2.16 \\ 7.50 & +0.83 \\ -0.69 & -1.50 \\ -1.30 & -1.30 \end{array}$                            | $1.02 \begin{array}{l} -0.21 \\ +0.28 \\ -0.20 \\ 1.08 \begin{array}{l} +0.24 \\ -0.19 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.28^{+0.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.97              | 1.01              | 8   |
| MACS J0329.6-0211 ‡ | 70                | 420               | 6.21                      | $10.54 \begin{array}{l} +1.26 \\ -1.07 \\ 6.30 \begin{array}{l} +0.47 \\ -0.41 \end{array}$   | $7.50^{+0.83}_{-0.83}$                                                                                                                                             | $1.08 \begin{array}{c} -0.19 \\ -0.19 \\ 1.19 \begin{array}{c} +0.16 \\ -0.13 \\ 1.07 \begin{array}{c} +0.41 \\ -0.28 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.41^{+0.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.10              | 1.17              | 8   |
| MACS J0404.6+1109   | 70                | 494               | 14.96                     | 5 77 +1.14                                                                                    | $6.15  {}^{+2.00}$                                                                                                                                                 | $1.07 \stackrel{-0.13}{+0.41}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.24^{+0.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.85              | 0.78              | 7   |
| MACS J0407.5-1154   | 70                | 429               | 4.00                      | $11.07  {}^{-0.88}_{-1.49}$                                                                   | $0.13 \begin{array}{c} -1.30 \\ 14.90 \begin{array}{c} +5.03 \\ -3.24 \\ 6.71 \begin{array}{c} +1.26 \\ -0.98 \\ 7.02 \begin{array}{c} +3.29 \\ -1.80 \end{array}$ | $1.07 \begin{array}{l} +0.41 \\ -0.28 \\ 1.35 \begin{array}{l} +0.51 \\ -0.34 \\ 1.19 \begin{array}{l} +0.26 \\ -0.21 \\ 1.21 \begin{array}{l} +0.64 \\ -0.38 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.33^{+0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.07              | 0.97              | g   |
| MACS J0429.6-0253   | 69                | 495               | 5.70                      | $5.66^{+0.64}_{-0.54}$                                                                        | 6.71 + 1.26                                                                                                                                                        | 1 19 +0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.35_{-0.13}^{+0.14} \\ 0.35_{-0.13}^{+0.13} \\ 0.51_{-0.29}^{+0.33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.21              | 1.12              | 8   |
| MACO JU429.0-U200   |                   |                   |                           |                                                                                               |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                   |     |

Table 4—Continued

| Cluster                      | R <sub>CORE</sub> | R <sub>2500</sub> | $N_{HI}$                  | $\mathrm{T}_{77}$                                                                                           | $T_{27}$                                                                                                                                                                | $T_{HBR}$                                                                                                                                                                              | $\mathrm{Z}_{77}$                                                                                                                         | $\chi^2_{red,77}$  | $\chi^2_{red,27}$  | % So  |
|------------------------------|-------------------|-------------------|---------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-------|
| Claster                      | kpc               | kpc               | $10^{20} \text{ cm}^{-2}$ | keV                                                                                                         | keV                                                                                                                                                                     | THBR                                                                                                                                                                                   | $\mathrm{Z}_{\odot}$                                                                                                                      | $\lambda_{red,77}$ | $\lambda_{red,27}$ | 70 50 |
| (1)                          | (2)               | (3)               | (4)                       | (5)                                                                                                         | (6)                                                                                                                                                                     | (7)                                                                                                                                                                                    | (8)                                                                                                                                       | (9)                | (10)               | (11   |
| MACS J0455.2+0657            | 71                | 481               | 10.45                     | $7.25 \begin{array}{l} +2.04 \\ -1.33 \end{array}$                                                          | $8.25 \begin{array}{l} +3.98 \\ -2.10 \end{array}$                                                                                                                      | $1.14^{+0.64}_{-0.36}$                                                                                                                                                                 | $0.56^{+0.37}_{-0.33}$                                                                                                                    | 0.83               | 0.94               | 8:    |
| MACS J0520.7-1328            | 69                | 492               | 8.88                      | $6.35  {}^{+0.81}_{-0.67}$                                                                                  | $8.22  {}^{+2.18}_{-1.45}$                                                                                                                                              | $1.29  {}^{+0.38}_{-0.27}$                                                                                                                                                             | $0.56_{-0.33}^{+0.17}$<br>$0.43_{-0.16}^{+0.17}$                                                                                          | 1.23               | 1.38               | 80    |
| MACS $J0547.0-3904$          | 69                | 364               | 4.08                      | $3.58  ^{+0.44}_{-0.37}$                                                                                    | $5.41  {}^{+1.67}_{-1.18}$                                                                                                                                              | $1.51  {}^{+0.50}_{-0.36}$                                                                                                                                                             | $0.09^{+0.15}_{-0.09}$                                                                                                                    | 1.16               | 1.42               | 7!    |
| MACS $J0553.4-3342$          | 70                | 692               | 2.88                      | $13.14  {}^{+3.82}_{-2.50}$                                                                                 | $13.86 ^{+6.45}_{-3.44}$                                                                                                                                                | $1.05  ^{+0.58}_{-0.33}$                                                                                                                                                               | $0.57^{+0.35}_{-0.33}$                                                                                                                    | 0.80               | 0.76               | 8'    |
| MACS J0717.5+3745 ‡          | 70                | 563               | 6.75                      | $12.77  {}^{+1.16}_{-1.00}$                                                                                 | $13.21  {}^{+1.58}_{-1.29}$                                                                                                                                             | $1.03  ^{+0.16}_{-0.13}$                                                                                                                                                               | $0.30^{+0.10}_{-0.11}$                                                                                                                    | 0.93               | 0.90               | 88    |
| MACS J0744.8 $+3927$ ‡       | 70                | 537               | 4.66                      | $8.09^{\ +0.77}_{\ -0.66}$                                                                                  | $8.77^{-1.29}_{-0.87}$                                                                                                                                                  | $1.08^{+0.16}_{-0.14}$                                                                                                                                                                 | $0.32^{+0.10}_{-0.10}$                                                                                                                    | 1.14               | 1.18               | 81    |
| MACS J0911.2+1746 $\ddagger$ | 70                | 541               | 3.55                      | $7.51  {}^{+1.27}_{-0.99}$                                                                                  | $7.17  {}^{+1.60}_{-1.20}$                                                                                                                                              | $0.95  {}^{+0.27}_{-0.20}$                                                                                                                                                             | $0.21^{+0.17}_{-0.16}$                                                                                                                    | 0.93               | 0.84               | 78    |
| MACS J0949+1708              | 70                | 580               | 3.17                      | $9.16^{\ +1.53}_{\ -1.18}$                                                                                  | $9.11  {}^{+2.27}_{-1.55}$                                                                                                                                              | $0.99^{\ +0.30}_{\ -0.21}$                                                                                                                                                             | $0.37^{+0.20}_{-0.20}$                                                                                                                    | 0.89               | 0.84               | 89    |
| MACS J1006.9+3200            | 70                | 512               | 1.83                      | $7.89  {}^{+2.78}_{-1.74}$                                                                                  | $8.05  {}^{+5.70}_{-2.45}$                                                                                                                                              | $1.02  ^{+0.81}_{-0.38}$                                                                                                                                                               | $0.15^{+0.35}_{-0.15}$                                                                                                                    | 1.84               | 1.15               | 70    |
| MACS J1105.7-1014            | 71                | 502               | 4.58                      | $7.54  {}^{+2.29}_{-1.51}$                                                                                  | $7.78  {}^{+3.93}_{-1.97}$                                                                                                                                              | $1.03^{\ +0.61}_{\ -0.33}$                                                                                                                                                             | $0.15_{-0.15}^{+0.05}$<br>$0.22_{-0.22}^{+0.29}$                                                                                          | 1.17               | 1.27               | 8     |
| MACS J1108.8+0906 ‡          | 70                | 491               | 2.52                      | $6.52  {}^{+0.94}_{-0.82}$                                                                                  | $^{1.51}$ $-1.29$                                                                                                                                                       | $1.12^{\ +0.33}_{\ -0.24}$                                                                                                                                                             | $0.29^{+0.18}_{-0.17}$                                                                                                                    | 0.95               | 0.80               | 80    |
| MACS J1115.2+5320 $\ddagger$ | 70                | 527               | 0.98                      | $8.91  {}^{+1.42}_{-1.12}$                                                                                  | $9.58  {}^{+2.36}_{-1.62}$                                                                                                                                              | $1.08  ^{+0.32}_{-0.23}$                                                                                                                                                               | $0.37^{+0.20}_{-0.18}$                                                                                                                    | 0.93               | 0.88               | 7!    |
| MACS J1115.8+0129            | 70                | 448               | 4.36                      | $6.78  {}^{+1.17}_{-0.91}$                                                                                  | $8.27  {}^{+3.27}_{-2.16}$                                                                                                                                              | $1.22^{\ +0.53}_{\ -0.36}$                                                                                                                                                             | $0.07^{+0.21}_{-0.07}$                                                                                                                    | 1.00               | 0.97               | 6     |
| MACS J1131.8-1955            | 69                | 576               | 4.49                      | $8.64  {}^{+1.23}_{-0.97}$                                                                                  | $11.01 \stackrel{+3.61}{_{-2.10}}$                                                                                                                                      | $1.27  {}^{+0.46}_{-0.28}$                                                                                                                                                             | $0.42^{+0.17}_{-0.17}$                                                                                                                    | 1.00               | 1.00               | 8'    |
| MACS J1149.5+2223 ‡          | 69                | 504               | 2.32                      | $7.65 \begin{array}{l} +0.89 \\ -0.75 \end{array}$                                                          | $8.13^{\ +1.36}_{\ -1.04}$                                                                                                                                              | $1.06^{+0.22}_{-0.17}$                                                                                                                                                                 | $0.20^{+0.12}_{-0.11}$                                                                                                                    | 1.00               | 1.09               | 8'    |
| MACS J1206.2-0847            | 70                | 522               | 4.15                      | $10.21  {}^{+1.19}_{-0.97}$                                                                                 | $12.51  {}^{+2.44}_{-1.87}$                                                                                                                                             | $1.23^{\ +0.28}_{\ -0.22}$                                                                                                                                                             | $0.33^{+0.13}_{-0.13}$                                                                                                                    | 0.96               | 1.05               | 9:    |
| MACS J1226.8+2153            | 71                | 489               | 1.82                      | $4.21  {}^{+1.07}_{-0.80}$                                                                                  | $5.02  {}^{+3.29}_{-1.52}$                                                                                                                                              | $1.19  ^{+0.84}_{-0.43}$                                                                                                                                                               | $0.23^{+0.38}_{-0.23}$                                                                                                                    | 1.02               | 0.81               | 6'    |
| MACS J1311.0-0310 ‡          | 69                | 425               | 2.18                      | $5.76^{+0.48}_{-0.42}$                                                                                      | $5.91  {}^{+0.73}_{-0.62}$                                                                                                                                              | $1.03  ^{+0.15}_{-0.13}$                                                                                                                                                               | $0.39^{+0.13}_{-0.11}$                                                                                                                    | 0.96               | 0.98               | 7:    |
| MACS J1319+7003              | 70                | 496               | 1.53                      | $7.99  {}^{+2.08}_{-1.43}$                                                                                  | $10.62  {}^{+7.35}_{-3.22}$                                                                                                                                             | $1.33  ^{+0.98}_{-0.47}$                                                                                                                                                               | $0.30^{+0.29}_{-0.28}$                                                                                                                    | 1.25               | 1.24               | 7     |
| MACS J1427.2+4407            | 71                | 488               | 1.41                      | $9.80  {}^{+3.87}_{-2.53}$                                                                                  | $10.35 \begin{array}{l} +6.\overline{30} \\ -3.26 \end{array}$                                                                                                          | $1.06^{+0.77}_{-0.43}$                                                                                                                                                                 | $0.00^{+0.34}_{-0.00}$                                                                                                                    | 0.67               | 0.50               | 84    |
| MACS J1427.6-2521            | 71                | 426               | 6.11                      | $4.65^{+0.92}_{-0.72}$                                                                                      | $8.11  {}^{+5.04}_{-2.77}$                                                                                                                                              | $1.74^{+1.14}_{-0.65}$                                                                                                                                                                 | $0.18^{+0.26}_{-0.18}$                                                                                                                    | 1.19               | 1.40               | 68    |
| MACS J1621.3+3810 ‡          | 69                | 504               | 1.07                      | $7.12  ^{+0.66}_{-0.55}$                                                                                    | $7.09  ^{+0.92}_{-0.75}$                                                                                                                                                | $1.00^{+0.16}_{-0.13}$                                                                                                                                                                 | $0.34^{+0.11}_{-0.11}$                                                                                                                    | 0.93               | 0.86               | 7:    |
| MACS J1731.6+2252            | 71                | 521               | 6.48                      | $7.45  {}^{+1.32}_{-0.99}$                                                                                  | $10.99  {}^{+4.67}_{-2.46}$                                                                                                                                             | $1.48  ^{+0.68}_{-0.38}$                                                                                                                                                               | $0.35^{+0.19}_{-0.17}$                                                                                                                    | 1.20               | 1.07               | 84    |
| MACS J1931.8-2634            | 70                | 535               | 9.13                      | $6.97  {}^{+0.72}_{-0.61}$                                                                                  | $7.72  {}^{+1.31}_{-0.99}$                                                                                                                                              | $1.11^{\ +0.22}_{\ -0.17}$                                                                                                                                                             | $0.27^{+0.11}_{-0.12}$                                                                                                                    | 0.95               | 0.86               | 90    |
| MACS J2046.0-3430            | 71                | 386               | 4.98                      | $4.64^{+1.18}_{-0.82}$                                                                                      | $5.49  {}^{+2.29}_{-1.47}$                                                                                                                                              | $1.18  ^{+0.58}_{-0.38}$                                                                                                                                                               | $0.20^{+0.32}_{-0.20}$                                                                                                                    | 0.89               | 1.11               | 81    |
| MACS J2049.9-3217            | 69                | 524               | 5.99                      | $6.83^{\ +0.84}_{\ -0.69}$                                                                                  | 0.94 -1.48                                                                                                                                                              | $1.31^{+0.34}_{-0.25}$                                                                                                                                                                 | $0.43^{+0.17}_{-0.15}$                                                                                                                    | 0.99               | 0.92               | 8     |
| MACS J2211.7-0349            | 69                | 663               | 5.86                      | $11.30  {}^{+1.46}_{-1.17}$                                                                                 | $13.82  {}^{+3.54}_{-2.41}$                                                                                                                                             | $1.22^{\ +0.35}_{\ -0.25}$                                                                                                                                                             | $0.15^{+0.13}_{-0.14}$                                                                                                                    | 1.24               | 1.26               | 88    |
| MACS J2214.9-1359 ‡          | 70                | 529               | 3.32                      | $9.78  {}^{+1.38}_{-1.09}$                                                                                  | $10.45  {}^{+2.19}_{-1.56}$                                                                                                                                             | $1.07  {}^{+0.27}_{-0.20}$                                                                                                                                                             | $0.23^{+0.14}_{-0.14}$                                                                                                                    | 0.99               | 1.06               | 8'    |
| MACS J2228+2036              | 70                | 545               | 4.52                      | $7.86  {}^{+1.08}_{-0.85}$                                                                                  | $9.17  {}^{+2.05}_{-1.46}$                                                                                                                                              | $1.17  {}^{+0.31}_{-0.22}$                                                                                                                                                             | $0.39_{-0.15}^{+0.16}$                                                                                                                    | 0.99               | 1.00               | 88    |
| MACS J2229.7-2755            | 69                | 465               | 1.34                      | $5.01^{\ +0.50}_{\ -0.43}$                                                                                  | $5.79  {}^{+1.11}_{-0.86}$                                                                                                                                              | $1.16^{+0.25}_{-0.20}$                                                                                                                                                                 | $0.55_{-0.18}$                                                                                                                            | 1.05               | 1.08               | 8     |
| MACS J2243.3-0935            | 71                | 574               | 4.31                      | -0.45                                                                                                       | $7.20^{+3.17}_{-2.12}$                                                                                                                                                  | $1.76^{+0.81}_{-0.55}$                                                                                                                                                                 | $0.03^{+0.15}_{-0.03}$                                                                                                                    | 1.17               | 0.92               | 51    |
| MACS J2245.0+2637            | 69                | 454               | 5.50                      | $6.06 \begin{array}{l} +0.63 \\ -0.54 \end{array}$                                                          | $6.76 \begin{array}{c} +1.24 \\ -0.93 \end{array}$                                                                                                                      | $1.12^{+0.24}_{-0.18}$                                                                                                                                                                 | $0.60^{+0.20}_{-0.18}$                                                                                                                    | 0.94               | 1.09               | 88    |
| MACS J2311+0338              | 70                | 363               | 5.23                      | $8.12  {}^{+1.44}_{-1.16}$                                                                                  | $12.40 \begin{array}{l} +5.12 \\ -2.88 \\ \end{array}$                                                                                                                  | $1.53^{+0.09}_{-0.42}$                                                                                                                                                                 | $0.46^{+0.22}_{-0.20}$                                                                                                                    | 1.07               | 1.15               | 88    |
| MKW3S                        | 70                | 339               | 3.05                      | $3.91  {}^{+0.06}_{-0.06}$                                                                                  | $4.58  ^{+0.18}_{-0.18}$                                                                                                                                                | $1.17  {}^{+0.05}_{-0.05}$                                                                                                                                                             | $0.34^{+0.03}_{-0.04}$                                                                                                                    | 1.38               | 0.97               | 80    |
| MS 0016.9+1609               | 69                | 550               | 4.06                      | 8.94 +0.71                                                                                                  | $9.78_{-0.90}$                                                                                                                                                          | $1.09^{+0.13}_{-0.13}$                                                                                                                                                                 | $0.29^{+0.09}_{-0.08}$                                                                                                                    | 0.91               | 0.88               | 8     |
| MS 0451.6-0305               | 70                | 536               | 5.68                      | $8.90^{\ +0.85}_{\ -0.72}$                                                                                  | $10.43  {}^{+1.59}_{-1.26}$                                                                                                                                             | $1.17^{+0.21}_{-0.17}$                                                                                                                                                                 | $0.37^{+0.11}_{-0.11}$                                                                                                                    | 1.00               | 0.93               | 60    |
| MS 0735.6+7421               | 69                | 491               | 3.40                      | $0.00_{-0.22}$                                                                                              | $6.34 \begin{array}{l} +0.57 \\ -0.50 \end{array}$                                                                                                                      | 1.14 0.40                                                                                                                                                                              |                                                                                                                                           | 1.05               | 1.05               | 6:    |
| MS 0839.8+2938               | 70                | 415               | 3.92                      | $4.68 \begin{array}{l} +0.32 \\ -0.29 \\ -0.33 \end{array}$                                                 | $5.05 \begin{array}{c} +0.82 \\ -0.65 \\ +0.92 \end{array}$                                                                                                             | $1.08 \begin{array}{c} -0.10 \\ +0.19 \\ -0.15 \\ \end{array}$                                                                                                                         | $0.36_{-0.06}^{-0.06}$ $0.46_{-0.12}^{+0.13}$ $0.27_{-0.09}^{+0.09}$ $0.24_{-0.12}^{+0.11}$ $0.26_{-0.10}^{+0.11}$ $0.13_{-0.13}^{+0.17}$ | 0.90               | 0.87               | 60    |
| MS 0906.5+1110               | 70                | 616               | 3.60                      | $5.38^{+0.33}_{-0.29}$                                                                                      | $6.76^{+0.92}_{-0.77}$                                                                                                                                                  | $1.26^{+0.19}_{-0.16}$                                                                                                                                                                 | $0.27^{+0.09}_{-0.09}$                                                                                                                    | 1.21               | 1.08               | 7.    |
| MS 1006.0+1202               | 70                | 556               | 3.63                      | 5.38 + 0.33 $5.38 + 0.29$ $5.61 + 0.51$ $-0.43$ $5.65 + 0.49$ $-0.43$ $9.38 + 1.72$ $-0.43$ $-0.43$ $-0.43$ | $\begin{array}{c} -0.65 & -0.65 \\ -0.76 & +0.92 \\ -0.77 & +1.66 \\ -1.22 & -1.22 \\ 9.01 & +1.95 \\ -1.38 & 9.91 & +2.66 \\ 9.91 & -1.77 \\ -2.7 & +0.36 \end{array}$ | $\begin{array}{c} 1.06 & -0.15 \\ 1.26 & +0.19 \\ -0.16 \\ 1.33 & +0.32 \\ 1.59 & +0.37 \\ 1.06 & +0.34 \\ -0.24 \\ 1.13 & +0.08 \\ 1.02 & +0.30 \\ 1.02 & +0.30 \\ -0.22 \end{array}$ | $0.24^{+0.11}_{-0.12}$                                                                                                                    | 1.30               | 1.34               | 7     |
| MS 1008.1-1224               | 70                | 548               | 6.71                      | $5.65 \begin{array}{c} +0.49 \\ -0.43 \\ +1.79 \end{array}$                                                 | $9.01^{+1.93}_{-1.38}$                                                                                                                                                  | $1.59^{+0.37}_{-0.27}$                                                                                                                                                                 | $0.26^{+0.11}_{-0.10}$                                                                                                                    | 1.21               | 0.98               | 78    |
| MS 1054.5-0321               | 70                | 558               | 3.69                      | $9.38^{\pm 1.12}_{\pm 0.13}$                                                                                | $9.91^{+2.00}_{-1.77}$                                                                                                                                                  | $1.06^{+0.34}_{-0.24}$                                                                                                                                                                 | $0.13^{+0.17}_{-0.13}$                                                                                                                    | 1.02               | 1.03               | 4     |
| MS 1455.0+2232               | 69                | 436               | 3.35                      | $4.77^{+0.13}_{-0.13}$                                                                                      | $5.37^{+0.00}_{-0.22}$                                                                                                                                                  | 1.13 +0.08                                                                                                                                                                             | $0.44^{+0.05}_{-0.05}$                                                                                                                    | 1.29               | 1.10               | 90    |
| MS 1621.5+2640               | 70                | 537               | 3.59                      | $6.11  ^{+0.95}_{-0.76}$                                                                                    | $6.22  {}^{+1.56}_{-1.10}$                                                                                                                                              | $1.02^{+0.30}_{-0.22}$                                                                                                                                                                 | $0.40^{+0.23}_{-0.21}$                                                                                                                    | 1.02               | 1.21               | 68    |

Table 4—Continued

| Cluster                  | $ m R_{CORE} \ kpc$ | $R_{2500}$ kpc | $N_{HI}$ $10^{20} \text{ cm}^{-2}$ | $T_{77}$ keV                                               | $T_{27}$ keV                                                         | $T_{HBR}$                                                                                  | ${ m Z_{77}} \ { m Z_{\odot}}$ | $\chi^2_{red,77}$ | $\chi^2_{red,27}$ | % Sour |
|--------------------------|---------------------|----------------|------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------|-------------------|-------------------|--------|
| (1)                      | (2)                 | (3)            | (4)                                | (5)                                                        | (6)                                                                  | (7)                                                                                        | (8)                            | (9)               | (10)              | (11)   |
| MS 2053.7-0449 ‡         | 70                  | 561            | 5.16                               | $3.66^{+0.81}_{-0.60}$                                     | $4.07  {}^{+1.23}_{-0.83}$                                           | $1.11 ^{\ +0.42}_{\ -0.29}$                                                                | $0.39^{+0.38}_{-0.33}$         | 0.97              | 1.07              | 58     |
| MS 2137.3-2353           | 70                  | 502            | 3.40                               | $6.01  {}^{+0.52}_{-0.46}$                                 | $7.48^{\ +1.68}_{\ -1.09}$                                           | $1.24^{+0.30}$                                                                             | $0.45^{+0.13}_{-0.14}$         | 1.12              | 1.25              | 55     |
| PKS 0745-191             | 69                  | 651            | 40.80                              | $8.13 \begin{array}{l} +0.37 \\ -0.34 \end{array}$         | $9.68 \begin{array}{l} +0.83 \\ -0.72 \end{array}$                   | $1.19  {}^{-0.20}_{-0.10}$                                                                 | $0.38^{+0.06}_{-0.06}$         | 1.02              | 0.98              | 89     |
| RBS 0797                 | 69                  | 493            | 2.22                               | $7.68 \begin{array}{l} +0.92 \\ -0.77 \end{array}$         | $9.05 \begin{array}{l} +1.80 \\ -1.33 \end{array}$                   | $1.18 \begin{array}{l} +0.27 \\ -0.21 \end{array}$                                         | $0.32^{+0.14}_{-0.13}$         | 1.07              | 1.06              | 89     |
| RDCS 1252-29             | 71                  | 276            | 6.06                               | $4.25  {}^{+1.82}_{-1.14}$                                 | $4.47 \begin{array}{l} +2.16 \\ -1.29 \end{array}$                   | $1.05  {}^{+0.68}_{-0.41}$                                                                 | $0.79^{+1.01}_{-0.62}$         | 1.07              | 1.17              | 50     |
| RX J0232.2-4420          | 69                  | 568            | 2.53                               | $7.83 \begin{array}{l} +0.77 \\ -0.68 \end{array}$         | $9.92  {}^{+2.11}_{-1.44}$                                           | $1.27  {}^{+0.30}_{-0.21}$                                                                 | $0.36^{+0.12}_{-0.13}$         | 1.13              | 1.09              | 85     |
| RX J0340-4542            | 70                  | 412            | 1.63                               | $3.16^{+0.38}_{-0.35}$                                     | $2.80^{+0.94}_{-0.57}$                                               | $0.89  {}^{+0.32}_{-0.21}$                                                                 | $0.62^{+0.31}_{-0.25}$         | 1.27              | 1.22              | 43     |
| RX J0439+0520            | 70                  | 474            | 10.02                              | $4.60 \begin{array}{l} +0.64 \\ -0.59 \end{array}$         | $4.95  {}^{+1.28}_{-0.88}$                                           | $\pm 0.32$                                                                                 | $0.44^{+0.29}_{-0.24}$         | 1.03              | 1.14              | 77     |
| RX J0439.0+0715 ‡        | 70                  | 532            | 11.16                              | $5.63 \begin{array}{l} +0.36 \\ -0.32 \\ 7.90 \end{array}$ | $0.00 \pm 1.25$                                                      | $1.08_{-0.24}^{+0.24}$ $1.42_{-0.18}^{+0.24}$                                              | $0.32^{+0.10}_{-0.08}$         | 1.28              | 1.16              | 82     |
| $RX\ J0528.9-3927$       | 70                  | 640            | 2.36                               | $1.89_{-0.76}$                                             | $8.02_{\ -0.93}^{\ -0.93}$ $8.91_{\ -1.42}^{\ +2.30}$                | $1.42 \begin{array}{c} -0.18 \\ -0.32 \\ 1.13 \begin{array}{c} +0.32 \\ -0.21 \end{array}$ | $0.27^{+0.14}_{-0.14}$         | 0.92              | 0.93              | 83     |
| RX J0647.7+7015 ‡        | 69                  | 512            | 5.18                               | $11.28  {}^{+1.85}_{-1.45}$                                | $11.01  {}^{+2.17}_{-1.63}$                                          | $0.98  {}^{+0.25}_{-0.19}$                                                                 | $0.20^{+0.17}_{-0.17}$         | 1.02              | 1.00              | 80     |
| RX J0910+5422 $\ddagger$ | 71                  | 246            | 2.07                               | $4.53 \begin{array}{l} +3.02 \\ -1.70 \end{array}$         | $5.98  {}^{+5.30}_{-2.49}$                                           | $1.32  {}^{+1.46}_{-0.74}$                                                                 | $0.00^{+0.73}_{-0.00}$         | 0.90              | 0.71              | 31     |
| RX J1347.5-1145 ‡        | 70                  | 607            | 4.89                               | $14.62  {}^{+0.97}_{-0.79}$                                | $16.62 \begin{array}{l} +1.54 \\ -1.24 \end{array}$                  | $1.14 \begin{array}{l} +0.13 \\ -0.10 \end{array}$                                         | $0.32^{+0.08}_{-0.07}$         | 1.12              | 1.12              | 93     |
| RX J1350+6007            | 71                  | 334            | 1.77                               | $4.48  {}^{+2.32}_{-1.49}$                                 | 5.21 + 3.02                                                          | $1.19  {}^{+0.91}_{-0.61}$                                                                 | $0.13^{+1.23}_{-0.13}$         | 0.82              | 0.72              | 57     |
| RX J1423.8+2404 ‡        | 71                  | 441            | 2.65                               | $6.64 \begin{array}{l} +0.38 \\ -0.34 \end{array}$         | $7.01_{-0.51}^{+0.59}$                                               | $1.06^{+0.11}_{-0.09}$                                                                     | $0.37^{+0.07}_{-0.07}$         | 1.02              | 0.98              | 86     |
| RX J1504.1-0248          | 70                  | 628            | 6.27                               | $8.00 \begin{array}{l} +0.27 \\ -0.24 \end{array}$         | $8.92  {}^{+0.52}_{-0.46}$                                           | $1.11  ^{+0.08}_{-0.07}$                                                                   | $0.40^{+0.04}_{-0.05}$         | 1.29              | 1.25              | 91     |
| RX J1525+0958            | 70                  | 416            | 2.96                               | $3.74_{-0.45}^{+0.63}$                                     | $6.96  {}^{+2.88}_{-1.73}$                                           | $1.86^{+0.83}$                                                                             | $0.67^{+0.36}_{-0.29}$         | 1.29              | 0.93              | 79     |
| RX J1532.9+3021 ‡        | 70                  | 458            | 2.21                               | $6.03  ^{+0.42}_{-0.38}$                                   | $6.95 \begin{array}{l} +0.88 \\ -0.72 \end{array}$                   | $1.15^{+0.17}$                                                                             | $0.42^{+0.11}_{-0.10}$         | 0.94              | 1.05              | 73     |
| RX J1716.9+6708          | 71                  | 486            | 3.71                               | = 71 + 1.47                                                | r 77 +1.88                                                           | +0.42                                                                                      | $0.68^{+0.42}_{-0.35}$         | 0.79              | 0.74              | 55     |
| $RX\ J1720.1+2638$       | 69                  | 510            | 4.02                               | $6.37^{+0.28}_{-0.26}$                                     | $7.78^{+0.69}_{-0.61}$                                               | $1.22^{\ +0.12}_{\ -0.11}$                                                                 | $0.35^{+0.07}_{-0.06}$         | 1.10              | 1.02              | 90     |
| RX J1720.2+3536 ‡        | 71                  | 455            | 3.35                               | -0.46                                                      | $\begin{array}{c} 7.78 & -0.61 \\ 6.97 & +0.76 \\ -0.59 \end{array}$ | $0.97^{+0.13}$                                                                             | $0.41^{+0.10}_{-0.10}$         | 1.12              | 1.09              | 85     |
| RX J2011.3-5725          | 71                  | 416            | 4.76                               | $3.94  {}^{+0.45}_{-0.37}$                                 | $4.40  {}^{+1.20}_{-0.81}$                                           | $1.12^{\ +0.33}_{\ -0.23}$                                                                 | $0.34^{+0.21}_{-0.18}$         | 0.94              | 1.09              | 76     |
| RX J2129.6+0005          | 70                  | 690            | 4.30                               | $5.91  {}^{+0.54}_{-0.47}$                                 | $7.02  {}^{+1.30}_{-0.99}$                                           | $1.19  {}^{+0.25}_{-0.10}$                                                                 | $0.45^{+0.15}_{-0.15}$         | 1.21              | 1.07              | 80     |
| S0463 ‡                  | 70                  | 433            | 1.06                               | $3.10^{\ +0.29}_{\ -0.25}$                                 | $3.10  ^{+0.66}_{-0.53}$                                             | $1.00  ^{+0.19}_{-0.19}$                                                                   | $0.24^{+0.14}_{-0.11}$         | 1.10              | 1.07              | 47     |
| V 1121.0+2327            | 70                  | 444            | 1.30                               | $3.60  {}^{+0.62}_{-0.46}$                                 | $4.08  ^{+1.09}_{-0.80}$                                             | $1.19 \pm 0.36$                                                                            | $0.36^{+0.29}_{-0.24}$         | 1.21              | 1.19              | 66     |
| ZWCL 1215                | 70                  | 392            | 1.76                               | $6.64  ^{+0.40}_{-0.35}$                                   | $8.72  {}^{+1.30}_{-1.07}$                                           | $1.13 \begin{array}{c} -0.27 \\ 1.31 \begin{array}{c} +0.21 \\ -0.18 \end{array}$          | $0.29^{+0.09}_{-0.09}$         | 1.17              | 1.04              | 88     |
| ZWCL $1358+6245$         | 70                  | 553            | 1.94                               | $10.66^{+1.48}_{-1.13}$                                    | $10.19  {}^{+4.83}_{-2.24}$                                          | $0.96^{+0.47}$                                                                             | $0.47^{+0.19}_{-0.19}$         | 1.08              | 1.04              | 55     |
| ZWCL 1953                | 69                  | 730            | 3.10                               | $7.37  {}^{+1.00}_{-0.78}$                                 | $10.44^{+3.25}_{-2.20}$                                              | $1.42  {}^{+0.48}_{-0.33}$                                                                 | $0.19^{+0.13}_{-0.13}$         | 0.84              | 0.78              | 74     |
| ZWCL 3146                | 70                  | 723            | 2.70                               | 7.40 + 0.32                                                | $0.61 \pm 0.66$                                                      | $_{1}$ $_{1}$ $_{2}$ $+0.10$                                                               | $0.31^{+0.05}_{-0.06}$         | 1.03              | 0.98              | 86     |
| ZWCL $5247$              | 70                  | 635            | 1.70                               | $5.06  ^{+0.85}_{-0.64}$                                   | $5.01_{\ -0.58}^{\ -0.58}$ $5.91_{\ -1.30}^{\ +2.09}$                | $1.13 \begin{array}{c} -0.09 \\ -0.30 \end{array}$                                         | $0.22^{+0.21}_{-0.19}$         | 0.83              | 0.72              | 74     |
| ZWCL 7160                | 69                  | 637            | 3.10                               | 459 + 0.40                                                 | = 1c + 1.01                                                          | $1.14^{+0.24}$                                                                             | $0.40^{+0.15}_{-0.14}$         | 0.94              | 0.92              | 80     |
| ZWICKY 2701              | 69                  | 445            | 0.83                               | $5.21^{+0.34}_{-0.30}$                                     | $5.10_{-0.77}^{-0.77}$ $5.68_{-0.66}^{+0.85}$                        | 1.00 + 0.18                                                                                | $0.43^{+0.13}_{-0.11}$         | 0.89              | 0.94              | 57     |
| $ZwCL\ 1332.8+5043$      | 70                  | 642            | 1.10                               | $3.62  {}^{+3.46}_{-1.20}$                                 | $3.84 \begin{array}{l} -5.93 \\ +5.93 \\ -1.48 \end{array}$          | 1.0c + 1.93                                                                                | $0.76^{+12.45}_{-0.76}$        | 0.24              | 0.29              | 48     |
| ZwCl $0848.5 + 3341$     | 71                  | 518            | 1.12                               | $6.83 \begin{array}{l} +2.18 \\ -1.33 \end{array}$         | $7.24 \begin{array}{l} +5.11 \\ -2.26 \end{array}$                   | $1.06^{ -0.54}_{ -0.39}$ $1.06^{ +0.82}_{ -0.39}$                                          | $0.56^{+0.54}_{-0.45}$         | 0.82              | 0.93              | 37     |
|                          |                     |                |                                    |                                                            |                                                                      |                                                                                            |                                |                   |                   |        |

Note. — Note: "77" refers to 0.7-7.0 keV band and "27" refers to 2.0-7.0 keV band. (1) Cluster name, (2) size of excluded core region in kpc,  $R_{2500}$  in kpc, (4) absorbing Galactic neutral hydrogen column density, (5,6) best-fit MEKAL temperatures, (7)  $T_{0.7-7.0}/T_{2.0-7.0}$  also called  $T_H$  (8) best-fit 77 MEKAL abundance, (9,10) respective reduced  $\chi^2$  statistics, and (11) percent of emission attributable to source. A (‡) indicates a clu which has multiple observations. Each observation has an independent spectrum extracted along with an associated WARF, WRMF, normal background spectrum, and soft residual. Each independent spectrum is then fit simultaneously with the same spectral model to produce the final

Table 5. Summary of Excised  $R_{5000}$  Spectral Fits

| Cluster             | R ac       | D          | N                                  | Т                                                                                                                                        | Т                                                                                                                                                                                       | Т                                                                                                                                                                                                                                  | 7                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · · | · 2               | % Soui |
|---------------------|------------|------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|--------|
| Cluster             | RCORE      | $R_{5000}$ | $N_{HI}$ $10^{20} \text{ cm}^{-2}$ | $ m T_{77}$ $ m keV$                                                                                                                     | ${ m T_{27}}$ keV                                                                                                                                                                       | $T_{HBR}$                                                                                                                                                                                                                          | $\mathrm{Z}_{77}$                                                                                                                                                   | $\chi^2_{red,77}$                     | $\chi^2_{red,27}$ | % Sour |
| (1)                 | kpc<br>(2) | kpc<br>(3) | (4)                                | (5)                                                                                                                                      | (6)                                                                                                                                                                                     | (7)                                                                                                                                                                                                                                | $Z_{\odot}$ (8)                                                                                                                                                     | (9)                                   | (10)              | (11)   |
| (1)                 | (2)        | (5)        | (4)                                | . ,                                                                                                                                      | . ,                                                                                                                                                                                     | . ,                                                                                                                                                                                                                                | , ,                                                                                                                                                                 | (3)                                   | (10)              | (11)   |
| 1E0657 56 ‡         | 69         | 487        | 6.53                               | $11.81 \begin{array}{l} +0.29 \\ -0.27 \end{array}$                                                                                      | $14.13 \begin{array}{l} +0.58 \\ -0.53 \end{array}$                                                                                                                                     | $1.20^{\ +0.06}_{\ -0.05}$                                                                                                                                                                                                         | $0.29^{+0.03}_{-0.03}$                                                                                                                                              | 1.22                                  | 1.10              | 95     |
| 1RXS J2129.4-0741 ‡ | 71         | 373        | 4.36                               | $\begin{array}{c} 11.81 & -0.27 \\ 8.47 & +1.31 \\ -1.04 \end{array}$                                                                    | $8.57^{\ +1.73}_{\ -1.27}$                                                                                                                                                              | -0.19                                                                                                                                                                                                                              | $0.29_{-0.03}^{+0.03}$ $0.51_{-0.19}^{+0.20}$                                                                                                                       | 1.16                                  | 1.27              | 87     |
| 2PIGG J0011.5-2850  | 69         | 387        | 2.18                               | $5.25 \begin{array}{l} +0.29 \\ -0.27 \end{array}$                                                                                       | $6.21  {}^{+0.83}_{-0.68}$                                                                                                                                                              | $1.18^{\ +0.17}_{\ -0.14}$                                                                                                                                                                                                         | $0.23^{+0.09}_{-0.08}$                                                                                                                                              | 1.08                                  | 1.01              | 78     |
| 2PIGG J0311.8-2655  | 69         | 321        | 1.46                               | $3.35 \begin{array}{l} +0.25 \\ -0.22 \end{array}$                                                                                       | $3.67 ^{\ +0.71}_{\ -0.54}$                                                                                                                                                             | $1.10^{+0.23}_{-0.18}$                                                                                                                                                                                                             | $0.33^{+0.13}$                                                                                                                                                      | 1.03                                  | 1.10              | 51     |
| 2PIGG J2227.0-3041  | 69         | 267        | 1.11                               | $2.81  {}^{+0.16}_{-0.15}$                                                                                                               | $2.99  ^{+0.36}_{-0.28}$                                                                                                                                                                | $1.06  ^{+0.14}_{-0.11}$                                                                                                                                                                                                           | $0.35^{+0.11}$                                                                                                                                                      | 1.14                                  | 1.10              | 77     |
| 3C 220.1            | 71         | 322        | 1.91                               | $7.81^{+7.50}_{-2.99}$                                                                                                                   | $7.49^{\ +11.53}_{\ -3.51}$                                                                                                                                                             | $0.96^{+1.74}_{-0.58}$                                                                                                                                                                                                             | $0.00^{+0.55}$                                                                                                                                                      | 0.60                                  | 0.78              | 36     |
| 3C 28.0             | 70         | 297        | 5.71                               | $5.18  {}^{+0.28}_{-0.27}$                                                                                                               | $7.11^{\ +1.15}_{\ -0.90}$                                                                                                                                                              | $1.37^{\ +0.23}_{\ -0.19}$                                                                                                                                                                                                         | $0.30^{+0.09}_{-0.07}$                                                                                                                                              | 0.96                                  | 0.77              | 90     |
| 3C 295              | 69         | 329        | 1.35                               | $5.47^{\ +0.49}_{\ -0.42}$                                                                                                               | $6.51  {}^{+0.92}_{-0.78}$                                                                                                                                                              | $1.19  {}^{+0.20}_{-0.17}$                                                                                                                                                                                                         | $0.29^{+0.11}_{-0.11}$                                                                                                                                              | 1.02                                  | 1.04              | 87     |
| 3C 388              | 69         | 297        | 6.11                               | $3.27  {}^{+0.24}_{-0.21}$                                                                                                               | $3.44^{+0.73}_{-0.51}$                                                                                                                                                                  | $1.05  {}^{+0.24}_{-0.17}$                                                                                                                                                                                                         | $0.43^{+0.16}_{-0.12}$                                                                                                                                              | 1.09                                  | 1.04              | 76     |
| 4C 55.16            | 69         | 302        | 4.00                               | $4.88  ^{+0.16}_{-0.16}$                                                                                                                 | $5.11  {}^{+0.44}_{-0.39}$                                                                                                                                                              | $1.05  ^{+0.10}_{-0.09}$                                                                                                                                                                                                           | $0.52^{+0.07}$                                                                                                                                                      | 0.93                                  | 0.85              | 71     |
| ABELL 0013          | 69         | 404        | 2.03                               | = 20 + 0.28                                                                                                                              | $c_{-41} + 0.84$                                                                                                                                                                        | $1.19^{\ +0.17}_{\ -0.14}$                                                                                                                                                                                                         | $0.37^{+0.09}_{-0.09}$                                                                                                                                              | 0.96                                  | 0.95              | 44     |
| ABELL 0068          | 70         | 480        | 4.60                               | $9.72^{ -0.25}_{ -1.36}$                                                                                                                 | $0.41 \begin{array}{c} -0.72 \\ 10.89 \begin{array}{c} +5.21 \\ -2.85 \end{array}$                                                                                                      | $1.12  {}^{+0.58}_{-0.33}$                                                                                                                                                                                                         | $0.37_{-0.09}^{-0.09}$ $0.41_{-0.23}^{+0.24}$                                                                                                                       | 1.08                                  | 1.03              | 87     |
| ABELL 0119          | 69         | 399        | 3.30                               | $5.86  ^{+0.28}_{-0.27}$                                                                                                                 | $6.20 \begin{array}{l} +0.74 \\ -0.59 \end{array}$                                                                                                                                      | $1.06  ^{+0.14}_{-0.11}$                                                                                                                                                                                                           | $0.44^{+0.10}_{-0.10}$                                                                                                                                              | 0.98                                  | 0.89              | 75     |
| ABELL 0168 ‡        | 70         | 281        | 3.27                               | $2.56 \begin{array}{l} +0.13 \\ -0.10 \end{array}$                                                                                       | $3.37  {}^{+0.48}_{-0.41}$                                                                                                                                                              | $1.32  {}^{+0.20}_{-0.17}$                                                                                                                                                                                                         | $0.32^{+0.07}$                                                                                                                                                      | 1.03                                  | 0.97              | 44     |
| ABELL 0209 ‡        | 70         | 430        | 1.68                               | $7.29 \pm 0.65$                                                                                                                          | $10.05 \stackrel{+2.33}{_{-1.58}}$                                                                                                                                                      | $1.37^{\ +0.34}_{\ -0.24}$                                                                                                                                                                                                         | $0.21^{+0.11}_{-0.10}$                                                                                                                                              | 1.07                                  | 1.15              | 88     |
| ABELL 0267 ‡        | 70         | 385        | 2.74                               | $\begin{array}{c} 7.32 & -0.56 \\ 6.46 & +0.51 \\ -0.45 \end{array}$                                                                     | $8.46^{+0.52}_{-0.91}$                                                                                                                                                                  | $_{1.21}$ +0.13                                                                                                                                                                                                                    | $0.37^{+0.12}_{-0.11}$                                                                                                                                              | 1.18                                  | 1.29              | 88     |
| ABELL 0370          | 69         | 365        | 3.37                               | $8.74^{+0.98}_{-0.83}$                                                                                                                   | $10.15 \begin{array}{l} +2.17 \\ -1.52 \end{array}$                                                                                                                                     | $1.31_{\ -0.17}^{\ -0.17}$ $1.16_{\ -0.21}^{\ +0.28}$                                                                                                                                                                              | $0.37^{+0.14}_{-0.13}$                                                                                                                                              | 1.05                                  | 1.02              | 50     |
| ABELL 0383          | 69         | 300        | 4.07                               | $4.95  {}^{+0.30}_{-0.28}$                                                                                                               | $5.92  {}^{+1.05}_{-0.85}$                                                                                                                                                              | $1.10 \begin{array}{c} -0.21 \\ 1.20 \begin{array}{c} +0.22 \\ -0.18 \end{array}$                                                                                                                                                  | $0.37_{-0.13}^{+0.14}$ $0.43_{-0.11}^{+0.12}$                                                                                                                       | 1.12                                  | 1.10              | 75     |
| ABELL 0399          | 69         | 386        | $8.33^{+0.82}_{-0.80}$             | $7.93 \begin{array}{l} +0.38 \\ -0.35 \end{array}$                                                                                       | $8.86^{+0.67}_{-0.59}$                                                                                                                                                                  | $1.12 \begin{array}{l} +0.10 \\ -0.09 \end{array}$                                                                                                                                                                                 | $0.32^{+0.06}$                                                                                                                                                      | 1.06                                  | 0.96              | 87     |
| ABELL 0401          | 69         | 454        | 12.48                              | e = 4 + 0.22                                                                                                                             | $9.37 \begin{array}{l} +0.91 \\ -0.74 \end{array}$                                                                                                                                      | $1.43 \begin{array}{l} +0.15 \\ -0.12 \end{array}$                                                                                                                                                                                 | $0.29^{+0.05}_{-0.06}$                                                                                                                                              | 1.53                                  | 1.10              | 85     |
| ABELL 0478          | 69         | 423        | 30.90                              | $7.27^{+0.26}_{-0.25}$                                                                                                                   | $8.19  {}^{+0.56}_{-0.50}$                                                                                                                                                              | 1 19 +0.09                                                                                                                                                                                                                         | $0.47^{+0.06}_{-0.06}$                                                                                                                                              | 1.02                                  | 0.93              | 95     |
| ABELL 0514          | 71         | 365        | 3.14                               | $3.57^{+0.25}_{-0.23}$                                                                                                                   | $4.30  ^{+0.84}_{-0.66}$                                                                                                                                                                | $1.13 \begin{array}{c} -0.08 \\ -0.25 \\ 1.20 \begin{array}{c} +0.25 \\ -0.20 \end{array}$                                                                                                                                         | $0.25^{+0.11}$                                                                                                                                                      | 0.99                                  | 1.01              | 55     |
| ABELL 0520          | 70         | 407        | $1.14^{+1.14}_{-1.16}$             | $\begin{array}{c} 3.57 & -0.23 \\ 9.15 & +0.73 \\ -0.63 \end{array}$                                                                     | $10.43 \stackrel{+1.41}{_{-1.06}}$                                                                                                                                                      | $1.14 \begin{array}{l} +0.18 \\ -0.14 \end{array}$                                                                                                                                                                                 | $0.36^{+0.07}$                                                                                                                                                      | 1.12                                  | 1.01              | 91     |
| ABELL 0521          | 70         | 394        | 6.17                               | $7.31 \begin{array}{l} +0.79 \\ -0.64 \end{array}$                                                                                       | $9.01  {}^{+3.73}_{-1.87}$                                                                                                                                                              | $1.23 \begin{array}{l} +0.53 \\ -0.28 \end{array}$                                                                                                                                                                                 | $0.48^{+0.17}_{-0.16}$                                                                                                                                              | 1.11                                  | 0.95              | 55     |
| ABELL 0586          | 70         | 450        | 4.71                               | $6.43 \begin{array}{l} +0.55 \\ -0.49 \end{array}$                                                                                       | $8.06 \begin{array}{c} +1.51 \\ -1.14 \end{array}$                                                                                                                                      | $1.25 \begin{array}{l} +0.26 \\ -0.20 \end{array}$                                                                                                                                                                                 | $0.50^{+0.15}$                                                                                                                                                      | 0.88                                  | 0.81              | 87     |
| ABELL 0611          | 70         | 370        | 4.99                               | $6.70^{+0.51}$                                                                                                                           | $6.88 \begin{array}{l} +1.2\overline{3} \\ -0.95 \end{array}$                                                                                                                           | $1.01  ^{+0.20}_{-0.16}$                                                                                                                                                                                                           | $0.32^{+0.10}$                                                                                                                                                      | 1.04                                  | 1.07              | 67     |
| ABELL 0644          | 70         | 412        | 6.31                               | $7.81^{+0.20}_{-0.19}$                                                                                                                   | $8.08 \begin{array}{l} +0.44 \\[-4pt] -0.39 \end{array}$                                                                                                                                | $1.03  ^{+0.06}_{-0.06}$                                                                                                                                                                                                           | $0.42^{+0.05}$                                                                                                                                                      | 1.15                                  | 1.05              | 92     |
| ABELL 0665          | 69         | 436        | 4.24                               | $7.35  {}^{+0.46}_{-0.37}$                                                                                                               | $10.43 \stackrel{+1.76}{_{-1.31}}$                                                                                                                                                      | $1.42  {}^{+0.25}_{-0.19}$                                                                                                                                                                                                         | $0.29^{+0.07}$                                                                                                                                                      | 1.07                                  | 0.94              | 91     |
| ABELL 0697          | 69         | 432        | 3.34                               | $9.80 \begin{array}{l} +0.99 \\ -0.86 \end{array}$                                                                                       | $13.50 \begin{array}{l} +2.90 \\ -2.04 \end{array}$                                                                                                                                     | $1.38 \begin{array}{l} +0.33 \\ -0.24 \end{array}$                                                                                                                                                                                 | $0.48^{+0.13}$                                                                                                                                                      | 1.06                                  | 0.96              | 93     |
| ABELL 0773          | 69         | 434        | 1.46                               | $0.00 \pm 0.75$                                                                                                                          | $10.52 \begin{array}{l} +1.92 \\ -1.53 \end{array}$                                                                                                                                     | $1.30 \begin{array}{l} +0.27 \\ -0.22 \end{array}$                                                                                                                                                                                 | $0.37^{+0.12}$                                                                                                                                                      | 1.03                                  | 1.04              | 89     |
| ABELL 0907          | 69         | 345        | 5.69                               | $5.62_{-0.18}^{+0.19}$                                                                                                                   | $e^{-0.27}$                                                                                                                                                                             | $1.21  ^{+0.06}_{-0.06}$                                                                                                                                                                                                           | $0.46^{+0.06}$                                                                                                                                                      | 1.18                                  | 1.05              | 92     |
| ABELL 0963          | 69         | 384        | 1.39                               | $6.97 \begin{array}{l} +0.35 \\ -0.32 \end{array}$                                                                                       | $7.65  {}^{-0.22}_{-0.82}$                                                                                                                                                              | $1.10^{\ +0.15}_{\ -0.13}$                                                                                                                                                                                                         | $0.29^{+0.08}$                                                                                                                                                      | 1.13                                  | 1.12              | 74     |
| ABELL 1063S         | 69         | 458        | 1.77                               | $11.94 \begin{array}{l} -0.32 \\ +0.91 \\ -0.80 \end{array}$                                                                             | $14.04  {}^{+1.83}_{-1.47}$                                                                                                                                                             | $1.18  {}^{+0.18}_{-0.15}$                                                                                                                                                                                                         | $0.38^{+0.10}_{-0.00}$                                                                                                                                              | 1.01                                  | 0.98              | 94     |
| ABELL 1068          | 69         | 305        | 0.71                               | $4.67  {}^{+0.18}_{-0.18}$                                                                                                               | $5.49  \substack{+0.71 \\ -0.58}$                                                                                                                                                       | $1.18 \begin{array}{l} +0.16 \\ -0.13 \end{array}$                                                                                                                                                                                 | $0.37^{+0.06}_{-0.07}$                                                                                                                                              | 0.92                                  | 0.91              | 77     |
| ABELL 1201          | 69         | 401        | 1.85                               | $5.74 \begin{array}{l} -0.13 \\ +0.44 \\ -0.40 \end{array}$                                                                              | $5.99  {}^{-0.36}_{-0.95}$                                                                                                                                                              | $1.04  ^{+0.13}_{-0.18}$                                                                                                                                                                                                           | $0.35^{+0.13}_{-0.11}$                                                                                                                                              | 1.06                                  | 1.10              | 50     |
| ABELL 1204          | 70         | 297        | 1.44                               | $3.67  {}^{+0.18}_{-0.16}$                                                                                                               | $4.79 \pm 0.75$                                                                                                                                                                         | $_{1.20} + 0.21$                                                                                                                                                                                                                   | $0.32^{+0.09}_{-0.09}$                                                                                                                                              | 1.11                                  | 0.92              | 92     |
| ABELL 1361          | 71         | 330        | 2.18                               | $5.14 \begin{array}{l} -1.00 \\ +1.00 \\ 0.74 \end{array}$                                                                               | $\begin{array}{c} 4.72 & -0.57 \\ 7.24 & +8.23 \\ 2.79 \end{array}$                                                                                                                     | $\begin{array}{c} 1.29 & -0.17 \\ 1.41 & +1.62 \\ 0.59 \end{array}$                                                                                                                                                                |                                                                                                                                                                     | 1.10                                  | 0.82              | 61     |
| ABELL 1423          | 70         | 435        | 1.60                               | $5.14  {}^{+1.00}_{-0.74}$ $6.04  {}^{+0.82}_{-0.68}$ $6.30  {}^{+0.32}_{-0.28}$                                                         | $7.24 \begin{array}{l} +8.23 \\ -2.78 \\ 7.93 \begin{array}{l} +4.09 \\ -2.20 \\ 7.72 \begin{array}{l} +0.71 \\ -0.65 \end{array}$                                                      | $1.41 \stackrel{+1.62}{-0.58} \\ 1.31 \stackrel{+0.70}{-0.39} \\ 1.32 \stackrel{+0.13}{+0.13}$                                                                                                                                     | $\begin{array}{c} 0.29 \substack{+0.31 \\ -0.27} \\ 0.33 \substack{+0.20 \\ -0.17} \\ 0.44 \substack{+0.09 \\ -0.09} \end{array}$                                   | 0.95                                  | 0.91              | 84     |
| ABELL 1651          | 70         | 421        | 2.02                               | $6.30 \begin{array}{l} -0.32 \\ -0.32 \end{array}$                                                                                       | $7.72  {}^{-2.20}_{-0.65}$                                                                                                                                                              | 1.23                                                                                                                                                                                                                               | $0.44^{+0.09}_{-0.00}$                                                                                                                                              | 1.13                                  | 1.19              | 91     |
| ABELL 1664          | 69         | 291        | 8.47                               | $\begin{array}{c} -0.28 \\ 4.26 & +0.30 \\ -0.26 \\ 9.76 & +0.40 \\ -0.38 \\ 9.66 & +0.75 \\ -0.64 \\ 7.74 & +0.73 \\ -0.64 \end{array}$ | $\begin{array}{c} -0.65 \\ 4.91  {}^{+1.05} \\ -0.80 \\ 12.97  {}^{+1.25} \\ -1.05 \\ 9.90  {}^{+1.22} \\ -1.89 \\ 12.56  {}^{+6.70} \\ -3.12 \\ 6.85  {}^{+0.42} \\ -0.38 \end{array}$ | $\begin{array}{c} -0.12 \\ -0.12 \\ 1.15 \begin{array}{c} +0.26 \\ -0.20 \\ 1.33 \begin{array}{c} +0.14 \\ -0.12 \\ 1.02 \begin{array}{c} +0.15 \\ -0.21 \\ 1.62 \begin{array}{c} +0.88 \\ -0.42 \\ -0.42 \end{array} \end{array}$ | $\begin{array}{c} 0.11_{-0.09} \\ 0.31_{-0.11}^{+0.12} \\ 0.35_{-0.05}^{+0.06} \\ 0.48_{-0.11}^{+0.11} \\ 0.22_{-0.12}^{+0.11} \\ 0.33_{-0.05}^{+0.04} \end{array}$ | 1.07                                  | 1.08              | 70     |
| ABELL 1689 ‡        | 70         | 481        | 1.87                               | $9.76^{-0.20}_{0.20}$                                                                                                                    | $12.97  {}^{+1.25}_{-1.05}$                                                                                                                                                             | $1.33 \begin{array}{l} -0.20 \\ +0.14 \\ 0.12 \end{array}$                                                                                                                                                                         | $0.35^{+0.06}_{-0.05}$                                                                                                                                              | 1.14                                  | 1.04              | 94     |
| ABELL 1758          | 69         | 404        | 1.09                               | $9.66^{-0.36}_{-0.64}$                                                                                                                   | $9.90  {}^{+1.22}_{-1.90}$                                                                                                                                                              | $1.02 \begin{array}{l} -0.12 \\ +0.15 \\ 0.21 \end{array}$                                                                                                                                                                         | $0.48^{+0.11}_{-0.11}$                                                                                                                                              | 1.03                                  | 0.96              | 68     |
| ABELL 1763          | 69         | 396        | 0.82                               | $7.74  ^{+0.73}_{-0.64}$                                                                                                                 | 12.56                                                                                                                                                                                   | $1.62 \begin{array}{l} -0.21 \\ +0.88 \\ 0.42 \end{array}$                                                                                                                                                                         | $0.22^{+0.11}_{-0.12}$                                                                                                                                              | 1.16                                  | 1.02              | 89     |
| ABELL 1795          | 69         | 449        | 1.22                               | $6.05  {}^{-0.04}_{-0.15}$                                                                                                               | $6.85 \begin{array}{c} -3.12 \\ +0.42 \\ -0.29 \end{array}$                                                                                                                             | $1.13  {}^{-0.42}_{-0.07}$                                                                                                                                                                                                         | $0.33^{+0.04}_{-0.05}$                                                                                                                                              | 1.19                                  | 1.03              | 93     |
|                     |            |            |                                    | -0.13                                                                                                                                    | -0.38                                                                                                                                                                                   | -0.07                                                                                                                                                                                                                              | -0.05                                                                                                                                                               |                                       |                   |        |

Table 5—Continued

| Cluster                               | $R_{CORE}$ | $R_{5000}$ | $N_{HI}$                  | $T_{77}$                                                                                                                            | $T_{27}$                                                                                                                                                                               | $T_{HBR}$                                                                                                                               | $\mathrm{Z}_{77}$                                                                                                                                                                                                                         | $\chi^2_{red,77}$ | $\chi^2_{red,27}$ | % Source |
|---------------------------------------|------------|------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----------|
|                                       | kpc        | kpc        | $10^{20} \ {\rm cm}^{-2}$ | keV                                                                                                                                 | keV                                                                                                                                                                                    |                                                                                                                                         | $ m Z_{\odot}$                                                                                                                                                                                                                            | ,                 | , .               |          |
| (1)                                   | (2)        | (3)        | (4)                       | (5)                                                                                                                                 | (6)                                                                                                                                                                                    | (7)                                                                                                                                     | (8)                                                                                                                                                                                                                                       | (9)               | (10)              | (11)     |
| ABELL 1835                            | 70         | 404        | 2.36                      | $9.55 \begin{array}{l} +0.55 \\ -0.51 \end{array}$                                                                                  | $11.99  {}^{+1.96}_{-1.44}$                                                                                                                                                            | $1.26^{+0.22}_{-0.17}$                                                                                                                  | $0.35^{+0.07}_{-0.08}$                                                                                                                                                                                                                    | 0.91              | 0.88              | 91       |
| ABELL 1914                            | 70         | 493        | 0.97                      | $9.55 \begin{array}{l} -0.51 \\ 9.73 \begin{array}{l} +0.58 \\ -0.51 \end{array}$                                                   | $11.99 \begin{array}{c} -1.44 \\ 11.97 \begin{array}{c} +1.90 \\ -1.40 \end{array}$                                                                                                    | $1.26_{-0.17}^{-0.17}$ $1.23_{-0.16}^{+0.21}$                                                                                           | $0.35_{-0.08}^{+0.07}$ $0.32_{-0.07}^{+0.08}$                                                                                                                                                                                             | 1.11              | 1.03              | 95       |
| ABELL 1942                            | 69         | 334        | 2.75                      | $4.96  {}^{+0.45}_{-0.39}$                                                                                                          | $5.94 \begin{array}{l} -1.40 \\ +2.24 \\ -0.99 \end{array}$                                                                                                                            | $1.20 \pm 0.46$                                                                                                                         | $0.37^{+0.15}_{-0.14}$                                                                                                                                                                                                                    | 1.04              | 0.87              | 77       |
| ABELL 1995                            | 71         | 271        | 1.44                      | $8.50^{+0.83}$                                                                                                                      | $9.41  {}^{+1.87}_{-1.32}$                                                                                                                                                             | $\begin{array}{cccc} 1.20 & -0.22 \\ 1.11 & +0.25 \\ -0.18 \end{array}$                                                                 | $0.33^{+0.12}_{-0.12}$                                                                                                                                                                                                                    | 1.05              | 1.02              | 81       |
| ABELL 2029                            | 70         | 434        | 3.26                      | $8.22  {}^{+0.31}_{-0.30}$                                                                                                          | $9.92 \begin{array}{l} +0.91 \\ -0.73 \end{array}$                                                                                                                                     | $1.11 -0.18 \\ 1.21 +0.12 \\ -0.10$                                                                                                     | $0.40^{+0.06}_{-0.06}$                                                                                                                                                                                                                    | 1.08              | 1.04              | 94       |
| ABELL 2034                            | 69         | 420        | 1.58                      | $7.35 \begin{array}{l} +0.26 \\ -0.24 \end{array}$                                                                                  | $9.96  {}^{+1.09}_{-0.84}$                                                                                                                                                             | $1.36  ^{+0.16}_{-0.12}$                                                                                                                | $0.34^{+0.05}_{-0.05}$                                                                                                                                                                                                                    | 1.17              | 1.02              | 90       |
| $ABELL\ 2065$                         | 69         | 370        | 2.96                      | $5.75^{-0.24}_{-0.17}$                                                                                                              | $6.39  ^{+0.46}_{-0.41}$                                                                                                                                                               | 1 11 +0.09                                                                                                                              | $0.28^{+0.05}_{-0.05}$                                                                                                                                                                                                                    | 1.11              | 1.01              | 89       |
| ABELL 2069                            | 70         | 440        | 1.97                      | $6.33 \begin{array}{l} +0.36 \\ -0.32 \end{array}$                                                                                  | $8.29  {}^{+1.36}_{-1.02}$                                                                                                                                                             | $1.11 \begin{array}{c} -0.08 \\ 1.31 \begin{array}{c} +0.23 \\ -0.17 \end{array}$                                                       | $0.24^{+0.08}_{-0.08}$                                                                                                                                                                                                                    | 1.14              | 1.15              | 78       |
| ABELL 2111                            | 70         | 417        | 2.20                      | 5.74 + 1.43                                                                                                                         | $7.18  {}^{+6.73}_{-2.52}$                                                                                                                                                             | 1.25 + 1.21                                                                                                                             | $0.16^{+0.30}_{-0.16}$                                                                                                                                                                                                                    | 1.06              | 0.97              | 74       |
| ABELL 2125                            | 70         | 262        | 2.75                      | $3.09^{+0.37}_{-0.31}$                                                                                                              | $3.69  {}^{+1.99}_{-0.81}$                                                                                                                                                             | $1.29 \begin{array}{c} -0.49 \\ +0.66 \\ 1.19 \begin{array}{c} +0.29 \\ -0.29 \end{array}$                                              | $0.36^{+0.25}_{-0.20}$                                                                                                                                                                                                                    | 1.25              | 1.22              | 68       |
| ABELL 2163                            | 69         | 531        | 12.04                     | $18.78  ^{+0.89}_{-0.83}$                                                                                                           | $19.49 \begin{array}{l} +2.03 \\ -1.86 \end{array}$                                                                                                                                    | $1.19 \begin{array}{c} -0.29 \\ 1.04 \begin{array}{c} +0.12 \\ -0.11 \end{array}$                                                       | $0.09^{+0.06}_{-0.05}$                                                                                                                                                                                                                    | 1.33              | 1.25              | 93       |
| ABELL 2204 ‡                          | 70         | 406        | 5.84                      | $9.35 \begin{array}{l} +0.43 \\ -0.41 \end{array}$                                                                                  | $10.18 \begin{array}{l} +0.95 \\ -0.77 \end{array}$                                                                                                                                    | $_{1.00} + 0.11$                                                                                                                        | $0.37^{+0.07}_{-0.07}$                                                                                                                                                                                                                    | 0.95              | 0.97              | 86       |
| ABELL 2218                            | 70         | 394        | 3.12                      | _ ~_ ±0.40                                                                                                                          | $9.36^{+1.42}$                                                                                                                                                                         | $1.09_{-0.10}^{-0.10}$ $1.27_{-0.16}^{+0.20}$                                                                                           | $0.22^{+0.07}_{-0.06}$                                                                                                                                                                                                                    | 1.00              | 0.91              | 91       |
| ABELL 2219                            | 69         | 463        | 1.76                      | $7.37_{-0.37}^{+0.40}$ $12.60_{-0.61}^{+0.65}$                                                                                      | $12.54  {}^{+1.52}_{-1.21}$                                                                                                                                                            | $1.00 \stackrel{+0.13}{-0.11}$                                                                                                          | $0.31^{+0.07}_{-0.07}$                                                                                                                                                                                                                    | 1.02              | 0.98              | 81       |
| $ABELL\ 2255$                         | 71         | 422        | 2.53                      | $c_{27} + 0.24$                                                                                                                     | 7.70                                                                                                                                                                                   | $1.21  {}^{+0.13}_{-0.09}$                                                                                                              | $0.34^{+0.06}_{-0.07}$                                                                                                                                                                                                                    | 0.93              | 0.84              | 81       |
| ABELL 2256                            | 70         | 441        | 4.05                      | $5.66^{+0.19}_{-0.17}$                                                                                                              | $7.30  ^{+0.69}_{-0.63}$                                                                                                                                                               | $1.29  {}^{+0.13}_{-0.12}$                                                                                                              | $0.31^{+0.07}_{-0.07}$                                                                                                                                                                                                                    | 1.61              | 1.44              | 79       |
| ABELL 2259                            | 69         | 340        | 3.70                      | $5.07  {}^{+0.46}_{-0.40}$                                                                                                          | $5.49  {}^{+1.29}_{-0.91}$                                                                                                                                                             | $1.29 \begin{array}{c} -0.12 \\ +0.27 \\ 1.08 \begin{array}{c} +0.27 \\ -0.20 \end{array}$                                              | $0.40^{+0.16}_{-0.14}$                                                                                                                                                                                                                    | 0.92              | 0.92              | 90       |
| ABELL 2261                            | 69         | 407        | 3.31                      | 7.86 + 0.51                                                                                                                         | $9.84 \begin{array}{l} +1.94 \\ -1.30 \end{array}$                                                                                                                                     | $1.08_{-0.20}^{+0.20}$ $1.25_{-0.18}^{+0.26}$                                                                                           | $0.40^{+0.09}_{-0.09}$                                                                                                                                                                                                                    | 0.98              | 0.95              | 94       |
| $ABELL\ 2294$                         | 69         | 405        | 6.10                      | $10.49  {}^{+1.75}_{-1.30}$                                                                                                         | $12.33 \begin{array}{l} +5.72 \\ -3.05 \end{array}$                                                                                                                                    | 1.10 + 0.58                                                                                                                             | $0.57^{+0.25}_{-0.24}$                                                                                                                                                                                                                    | 1.16              | 1.08              | 88       |
| ABELL 2384                            | 70         | 308        | 2.99                      | $\begin{array}{c} 10.49 & -1.30 \\ 4.53 & +0.22 \\ -0.21 \end{array}$                                                               | $6.78^{+1.13}_{-0.80}$                                                                                                                                                                 | 1.10 -0.33 $1.50 +0.26$ $-0.31$                                                                                                         | $0.15^{+0.07}_{-0.06}$                                                                                                                                                                                                                    | 0.99              | 0.88              | 86       |
| ABELL 2390                            | 70         | 447        | 6.71                      | $\begin{array}{c} 4.55 & -0.21 \\ 10.85 & +0.34 \\ -0.31 \end{array}$                                                               | $10.53 \begin{array}{l} -0.53 \\ +0.62 \\ -0.53 \end{array}$                                                                                                                           | $0.97  {}^{+0.06}_{-0.06}$                                                                                                              | $0.35^{+0.05}_{-0.04}$                                                                                                                                                                                                                    | 1.15              | 1.03              | 81       |
| ABELL 2409                            | 70         | 362        | 6.72                      | $5.93^{\ +0.45}_{\ -0.39}$                                                                                                          | $5.87  {}^{+0.95}_{-0.76}$                                                                                                                                                             | $0.00 \pm 0.18$                                                                                                                         | $0.35^{+0.13}_{-0.11}$                                                                                                                                                                                                                    | 1.05              | 0.76              | 92       |
| ABELL 2537                            | 69         | 351        | 4.26                      | $8.83 \begin{array}{l} +0.87 \\ -0.74 \end{array}$                                                                                  | $7.83 \begin{array}{l} +1.54 \\ -1.16 \end{array}$                                                                                                                                     | $0.99_{-0.14}^{-0.14}$ $0.89_{-0.15}^{+0.20}$                                                                                           | $0.39^{+0.14}_{-0.14}$                                                                                                                                                                                                                    | 0.93              | 0.83              | 59       |
| ABELL 2554                            | 71         | 415        | 2.04                      | $5.35 \begin{array}{l} +0.45 \\ -0.40 \end{array}$                                                                                  | $6.46 \begin{array}{l} +1.93 \\ -1.24 \end{array}$                                                                                                                                     | 1.91 + 0.37                                                                                                                             | $0.35^{+0.15}_{-0.13}$                                                                                                                                                                                                                    | 0.93              | 0.79              | 40       |
| ABELL 2556                            | 70         | 323        | 2.02                      | $3.57  ^{+0.16}_{-0.15}$                                                                                                            | $4.07 \begin{array}{l} +0.56 \\ -0.46 \end{array}$                                                                                                                                     | $\begin{array}{c} 1.21 & -0.25 \\ 1.14 & +0.16 \\ -0.14 \end{array}$                                                                    | $0.36^{+0.07}_{-0.07}$                                                                                                                                                                                                                    | 0.99              | 0.95              | 58       |
| ABELL 2631                            | 70         | 445        | 3.74                      | $7.18  {}^{+1.18}_{-0.94}$                                                                                                          | $9.18 \begin{array}{l} +3.17 \\ -1.96 \end{array}$                                                                                                                                     | $\begin{array}{c} 1.14 & -0.14 \\ 1.28 & +0.49 \\ -0.32 \end{array}$                                                                    | $0.34^{+0.20}_{-0.19}$                                                                                                                                                                                                                    | 1.03              | 0.99              | 89       |
| ABELL 2667                            | 70         | 370        | 1.64                      | $6.68  ^{+0.48}_{-0.43}$                                                                                                            | $7.35 \begin{array}{l} +1.27 \\ -1.05 \end{array}$                                                                                                                                     | $1.28 \begin{array}{c} -0.32 \\ 1.10 \begin{array}{c} +0.21 \\ -0.17 \end{array}$                                                       | $0.41^{+0.12}_{-0.12}$                                                                                                                                                                                                                    | 1.05              | 0.95              | 84       |
| ABELL 2670                            | 69         | 319        | 2.88                      | $0.00 \pm 0.13$                                                                                                                     | $4.75^{+0.50}_{-0.41}$                                                                                                                                                                 | $1.10 \begin{array}{l} -0.17 \\ 1.20 \begin{array}{l} +0.13 \\ -0.11 \end{array}$                                                       | $0.45^{+0.08}_{-0.07}$                                                                                                                                                                                                                    | 1.16              | 1.09              | 80       |
| ABELL 2717                            | 70         | 211        | 1.12                      | $3.96 \begin{array}{c} +0.13 \\ -0.13 \\ 2.59 \begin{array}{c} +0.17 \\ -0.16 \end{array}$                                          | $3.18  {}^{-0.41}_{-0.44}$                                                                                                                                                             | 1.99 + 0.24                                                                                                                             | $0.53^{+0.14}_{-0.12}$                                                                                                                                                                                                                    | 0.90              | 0.95              | 67       |
| ABELL 2744                            | 71         | 458        | 1.82                      | $9.82  {}^{+0.89}_{-0.77}$                                                                                                          | $11.21 \begin{array}{l} +2.76 \\ -1.81 \end{array}$                                                                                                                                    | $\begin{array}{c} 1.23 & -0.19 \\ 1.14 & +0.30 \\ -0.20 \end{array}$                                                                    | $0.30^{+0.12}_{-0.12}$                                                                                                                                                                                                                    | 0.88              | 0.73              | 74       |
| ABELL 3128                            | 70         | 318        | 1.59                      | $3.04  {}^{+0.23}_{-0.21}$                                                                                                          | $3.48^{+0.73}_{-0.54}$                                                                                                                                                                 | $1.14 \begin{array}{c} -0.20 \\ 1.14 \begin{array}{c} +0.26 \\ -0.19 \end{array}$                                                       | $0.33^{+0.13}_{-0.10}$                                                                                                                                                                                                                    | 1.05              | 1.13              | 64       |
| ABELL 3158 ‡                          | 70         | 382        | 1.60                      | $5.08  ^{+0.08}_{-0.08}$                                                                                                            | $6.26  {}^{+0.26}_{-0.24}$                                                                                                                                                             | $_{1.00} \pm 0.05$                                                                                                                      | $0.40^{+0.03}_{-0.03}$                                                                                                                                                                                                                    | 1.15              | 0.97              | 89       |
| ABELL 3164                            | 70         | 319        | 2.55                      | $2.40  {}^{+0.65}_{-0.48}$                                                                                                          | $3.19  {}^{+5.68}_{-1.41}$                                                                                                                                                             | $1.23_{\ -0.05}^{\ -0.05}$ $1.33_{\ -0.64}^{\ +2.39}$                                                                                   | $0.23^{+0.32}_{-0.19}$                                                                                                                                                                                                                    | 1.29              | 1.59              | 30       |
| ABELL 3376 ‡                          | 70         | 327        | 5.21                      | $4.44^{+0.14}_{-0.13}$                                                                                                              | $5.94 \begin{array}{l} +0.55 \\ -0.47 \end{array}$                                                                                                                                     | $1.34 \begin{array}{l} +0.13 \\ -0.11 \end{array}$                                                                                      | $0.36^{+0.06}_{-0.06}$                                                                                                                                                                                                                    | 1.18              | 1.13              | 65       |
| ABELL 3391                            | 70         | 397        | 5.46                      | $5.72^{+0.31}_{-0.28}$                                                                                                              | $6.44 \begin{array}{l} +0.80 \\ -0.66 \end{array}$                                                                                                                                     | $1.13 \begin{array}{c} +0.15 \\ -0.13 \end{array}$                                                                                      | $0.11^{+0.08}_{-0.07}$                                                                                                                                                                                                                    | 1.00              | 0.97              | 67       |
| ABELL 3921                            | 69         | 378        | 3.07                      | $5.69  {}^{+0.25}_{-0.24}$                                                                                                          | $6.74 \begin{array}{l} +0.71 \\ -0.58 \end{array}$                                                                                                                                     | $1.18 \begin{array}{l} +0.14 \\ -0.11 \end{array}$                                                                                      | $0.34^{+0.08}_{-0.07}$                                                                                                                                                                                                                    | 0.93              | 0.85              | 84       |
| AC 114                                | 70         | 389        | 1.44                      | $7.75 \begin{array}{l} +0.56 \\ -0.50 \end{array}$                                                                                  | $9.76^{\ +2.28}_{\ -1.55}$                                                                                                                                                             | $1.26  {}^{+0.31}_{-0.22}$                                                                                                              | $0.36^{+0.11}_{-0.10}$                                                                                                                                                                                                                    | 1.01              | 0.95              | 63       |
| CL 0024+17                            | 71         | 309        | 4.36                      | $4.75^{+1.07}$                                                                                                                      | $7.14 \begin{array}{l} +5.42 \\ -2.83 \end{array}$                                                                                                                                     | $1.50^{+1.19}_{-0.64}$                                                                                                                  | $0.58^{+0.35}_{-0.30}$                                                                                                                                                                                                                    | 1.07              | 0.97              | 44       |
| CL 1221+4918                          | 71         | 313        | 1.44                      | $\begin{array}{c} -0.76 \\ 6.73 \\ -1.29 \\ 4.48 \\ +2.43 \\ -1.40 \\ 7.20 \\ -7.14 \\ -2.48 \\ 5.65 \\ -0.90 \\ -1.47 \end{array}$ | $\begin{array}{c} 3.70 & -1.55 \\ 7.14 & +5.42 \\ -2.83 \\ 7.60 & +4.33 \\ 3.77 & +9.73 \\ -1.96 \\ 6.07 & +6.16 \\ -2.51 \\ 5.93 & -1.76 \\ 4.96 & -1.81 \\ 4.70 & +1.15 \end{array}$ | $ \begin{array}{c}                                     $                                                                                | $0.32^{+0.20}_{-0.19}$                                                                                                                                                                                                                    | 0.92              | 0.69              | 73       |
| CL J0030+2618                         | 70         | 555        | 4.10                      | $4.48 \begin{array}{l} +2.43 \\ -1.40 \end{array}$                                                                                  | $3.77  {}^{+9.73}_{-1.96}$                                                                                                                                                             | $0.84 \begin{array}{l} +2.22 \\ -0.51 \end{array}$                                                                                      | $0.00^{+0.37}_{-0.00}$                                                                                                                                                                                                                    | 1.01              | 0.85              | 51       |
| CL J0152-1357                         | 70         | 277        | 1.45                      | $7.20 \begin{array}{l} +7.14 \\ -2.48 \end{array}$                                                                                  | $6.07 \begin{array}{l} +6.16 \\ -2.51 \end{array}$                                                                                                                                     | 11.00                                                                                                                                   | $0.00^{+0.63}_{-0.00}$                                                                                                                                                                                                                    | 2.97              | 3.26              | 49       |
| ${\rm CL~J0542.8\text{-}4100}$        | 71         | 313        | 3.59                      | $5.65 \begin{array}{l} +1.21 \\ -0.90 \end{array}$                                                                                  | $5.93  {}^{+3.52}_{-1.76}$                                                                                                                                                             | $1.05  ^{+0.66}_{-0.35}$                                                                                                                | $0.25^{+0.24}_{-0.22}$                                                                                                                                                                                                                    | 0.67              | 0.58              | 72       |
| CL J0848+4456 $\ddagger$              | 71         | 224        | 2.53                      | $3.73  {}^{+1.47}_{-0.85}$                                                                                                          | $4.96^{+2.82}_{-1.81}$                                                                                                                                                                 | $1.33 \begin{array}{l} +0.92 \\ -0.57 \end{array}$                                                                                      | $0.17^{+0.98}_{-0.17}$                                                                                                                                                                                                                    | 0.87              | 0.82              | 64       |
| ${\rm CL}\ {\rm J}1113.1\text{-}2615$ | 70         | 308        | 5.51                      | $3.73  ^{+1.47}_{-0.85} $ $4.74  ^{+1.52}_{-0.98}$                                                                                  | $4.79  {}^{+1.15}_{-1.26}$                                                                                                                                                             | $\begin{array}{c} 0.84   ^{+1.20}_{-0.45} \\ 1.05   ^{+0.66}_{-0.35} \\ 1.33   ^{+0.92}_{-0.57} \\ 1.01   ^{+0.40}_{-0.34} \end{array}$ | $\begin{array}{c} 0.30 - 0.10 \\ 0.58 + 0.35 \\ -0.30 \\ 0.32 + 0.20 \\ 0.019 \\ 0.00 + 0.37 \\ 0.00 + 0.63 \\ 0.00 + 0.63 \\ 0.25 + 0.24 \\ 0.25 + 0.24 \\ 0.17 + 0.98 \\ 0.17 + 0.98 \\ 0.53 + 0.52 \\ 0.53 + 0.52 \\ 0.37 \end{array}$ | 1.02              | 1.01              | 32       |
|                                       |            |            |                           |                                                                                                                                     |                                                                                                                                                                                        |                                                                                                                                         |                                                                                                                                                                                                                                           |                   |                   |          |

Table 5—Continued

| Cluster                                  | R <sub>CORE</sub> | R <sub>5000</sub> | $N_{HI}$                  | $T_{77}$                                                                                            | $T_{27}$                                                                                                        | $T_{HBR}$                                                                                                                      | $\mathrm{Z}_{77}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\chi^2_{red,77}$ | $\chi^2_{red,27}$ | % S        |
|------------------------------------------|-------------------|-------------------|---------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|------------|
|                                          | kpc               | kpc               | $10^{20} \text{ cm}^{-2}$ | keV                                                                                                 | keV                                                                                                             |                                                                                                                                | ${ m Z}_{\odot}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                   |            |
| (1)                                      | (2)               | (3)               | (4)                       | (5)                                                                                                 | (6)                                                                                                             | (7)                                                                                                                            | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (9)               | (10)              | (1         |
| CL J1226.9+3332 ‡                        | 69                | 318               | 1.37                      | $13.02  {}^{+2.69}_{-2.00}$                                                                         | $12.33 \begin{array}{l} +2.78 \\ -2.13 \end{array}$                                                             | $0.95  {}^{+0.29}_{-0.22}$                                                                                                     | $0.18^{+0.23}_{-0.18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.75              | 0.80              | ç          |
| CL J2302.8+0844                          | 70                | 362               | 5.05                      | $5.94  {}^{+1.73}_{-1.86}$                                                                          | $6.58  {}^{+8.08}_{-2.67}$                                                                                      | $1.11  {}^{+1.40}_{-0.57}$                                                                                                     | $0.10^{+0.29}_{-0.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.94              | 1.01              | Į.         |
| DLS J0514-4904                           | 70                | 359               | 2.52                      | $4.94 \begin{array}{l} +0.61 \\ -0.55 \end{array}$                                                  | $6.26 \begin{array}{l} +2.33 \\ -1.30 \end{array}$                                                              | $1.27  {}^{+0.50}_{-0.30}$                                                                                                     | $0.35^{+0.27}_{-0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.86              | 1.03              | $\epsilon$ |
| EXO 0422-086                             | 70                | 294               | 6.22                      | $_{2.41}$ +0.14                                                                                     | 9.44 + 0.37                                                                                                     | 1.01 + 0.12                                                                                                                    | $0.37^{+0.08}_{-0.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96              | 0.93              | 8          |
| HERCULES A                               | 69                | 312               | $1.49^{+2.01}_{-1.49}$    | $5.41^{\circ}_{-0.13}^{\circ}_{+0.60}^{\circ}_{-0.50}$                                              | $\begin{array}{c} 3.44 & -0.31 \\ 4.50 & +0.88 \\ -0.65 \end{array}$                                            | $0.85  {}^{+0.19}_{-0.15}$                                                                                                     | $0.42^{+0.15}_{-0.14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.98              | 0.98              | 7          |
| MACS J0011.7-1523 ‡                      | 69                | 319               | 2.08                      | $6.73^{\ +0.55}_{\ -0.47}$                                                                          | $\begin{array}{c} 4.50 & -0.65 \\ 7.27 & +0.99 \\ -0.74 \end{array}$                                            | $1.08 \begin{array}{l} +0.17 \\ -0.13 \end{array}$                                                                             | $0.27^{+0.10}_{-0.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.90              | 0.95              | ç          |
| MACS J0025.4-1222 ‡                      | 70                | 335               | 2.72                      | $6.65 \begin{array}{l} -0.67 \\ -0.85 \end{array}$                                                  | $6.31  {}^{-0.138}_{-1.02}$                                                                                     | $0.95 \begin{array}{l} -0.136 \\ +0.26 \\ -0.20 \end{array}$                                                                   | $0.39^{+0.22}_{-0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.66              | 0.75              | 8          |
| MACS J0035.4-2015                        | 70                | 372               | 1.55                      | 7.72                                                                                                | $9.39  {}^{-1.021}_{-1.35}$                                                                                     | $1.22  {}^{+0.28}_{-0.21}$                                                                                                     | $0.39_{-0.13}^{+0.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.02              | 1.05              | g          |
| MACS J0111.5+0855                        | 70                | 306               | 4.18                      | $4.12  {}^{+1.60}_{-1.04}$                                                                          | 4.1c + 2.96                                                                                                     | 1.01 + 0.82                                                                                                                    | $0.00^{+0.13}_{-0.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.79              | 1.23              | 6          |
| MACS J0152.5-2852                        | 70                | 324               | 1.46                      | $5.75 \begin{array}{l} -1.04 \\ -0.78 \end{array}$                                                  | $7.70  {}^{-1.44}_{-1.89}$                                                                                      | 1.34 + 0.61                                                                                                                    | $0.28^{+0.22}_{-0.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.84              | 0.58              | ç          |
| MACS J0159.0-3412                        | 70                | 404               | 1.54                      | $10.99  {}^{+5.87}_{-2.05}$                                                                         | $\frac{-1.09}{12.45}$                                                                                           | $1.16  {}^{+0.38}_{-0.53}$                                                                                                     | $0.50^{-0.21}_{-0.50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.35              | 1.34              | 8          |
| MACS J0159.8-0849 ‡                      | 69                | 413               | 2.01                      | 0.36 + 0.77                                                                                         | $12.74_{-4.72}$ $10.37_{-1.04}^{+1.29}$                                                                         | $_{1.11}$ $+0.17$                                                                                                              | $0.20^{+0.09}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.05              | 1.01              | g          |
| MACS J0242.5-2132                        | 70                | 352               | 2.71                      | 5 48 +0.62                                                                                          | 5.00 + 2.04                                                                                                     | $1.09  {}^{+0.39}_{-0.39}$                                                                                                     | $0.23_{-0.09}^{+0.16}$<br>$0.32_{-0.15}^{+0.16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.08              | 1.06              | ç          |
| MACS J0257.1-2325 ‡                      | 70                | 409               | 2.09                      | $9.42^{+1.37}_{-0.51}$                                                                              | 10.7e + 2.05                                                                                                    | $1.14 \pm 0.27$                                                                                                                | $0.14^{+0.13}_{-0.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.03              | 1.13              | 9          |
| MACS J0257.6-2209                        | 69                | 382               | 2.02                      | $8.09 \begin{array}{l} -1.05 \\ +1.10 \\ -0.88 \end{array}$                                         | $\frac{-1.09}{7.00} + 1.64$                                                                                     | 0.08 + 0.24                                                                                                                    | $0.41^{+0.19}_{-0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.13              | 1.24              | ġ          |
| MACS J0308.9+2645                        | 69                | 381               | 11.88                     | $10.64^{+1.38}_{-1.14}$                                                                             | 11.19 + 2.23                                                                                                    | $1.05 \begin{array}{c} -0.18 \\ +0.25 \\ -0.10 \end{array}$                                                                    | $0.37^{+0.15}_{-0.15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96              | 0.97              | ò          |
| MACS J0329.6-0211 ‡                      | 70                | 297               | 6.21                      | 6.44 + 0.50                                                                                         | 7 55 +0.88                                                                                                      | 1 17 +0:16                                                                                                                     | $0.40^{+0.15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.12              | 1.16              | ò          |
| MACS J0404.6+1109                        | 70                | 348               | 14.96                     | 6.00 + 2.01                                                                                         | 7 40 +3.63                                                                                                      | 1.07 + 0.61                                                                                                                    | $0.10_{-0.09}^{+0.09}$<br>$0.22_{-0.22}^{+0.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.96              | 0.92              | ,          |
| MACS J0417.5-1154                        | 70                | 304               | 4.00                      | 10.44 + 2.08                                                                                        | 14 46 +5.92                                                                                                     | $^{-0.34}_{1.20} + 0.63$                                                                                                       | $0.22_{-0.22}^{-0.22}$<br>$0.41_{-0.21}^{+0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.10              | 1.17              | Ì          |
| MACS J0429.6-0253                        | 69                | 348               | 5.70                      | $5.96  {}^{+0.72}_{-0.60}$                                                                          | $\frac{-3.41}{7.40}$                                                                                            | 1.26 + 0.47                                                                                                                    | $0.11_{-0.21}^{+0.15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.02              | 0.78              | ,          |
| MACS J0451.9+0006                        | 70                | 325               | 7.65                      | $5.76  {}^{+1.77}_{-1.11}$                                                                          | 6.68 + 4.50                                                                                                     | $^{-0.30}_{1.16}$                                                                                                              | $0.47^{+0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.03              | 1.33              | 9          |
| MACS J0455.2+0657                        | 70<br>71          | 340               | 10.45                     | $6.00^{+2.17}$                                                                                      | 2 25 +5.66                                                                                                      | 1 10 +0.90                                                                                                                     | $0.41_{-0.38}^{+0.35}$<br>$0.48_{-0.31}^{+0.35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.03              | 1.24              | 9          |
| MACS J0520.7-1328                        | 69                | 348               | 8.88                      | 6.77 + 1.01                                                                                         | 0.41 + 3.38                                                                                                     | $^{-0.43}_{1\ 30} + 0.54$                                                                                                      | $0.40_{-0.31}$ $0.33_{-0.16}^{+0.16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.22              | 1.33              |            |
| MACS J0520.7-1928<br>MACS J0547.0-3904   | 69                | 257               | 4.08                      | $^{-0.79}_{3.70}$                                                                                   | $\frac{-1.91}{5.82}$                                                                                            | 1.57 + 0.82                                                                                                                    | 0.24 + 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.14              | 1.33              | Š          |
| MACS J0547.0-3304<br>MACS J0553.4-3342   | 70                | 490               | 2.88                      | $13.90^{+5.89}_{-2.8}$                                                                              | $\frac{-1.30}{14.50} + 11.16$                                                                                   | $1.07 \begin{array}{c} -0.40 \\ -0.92 \\ 1.05 \begin{array}{c} +0.92 \\ -0.42 \end{array}$                                     | $0.24_{-0.17} \\ 0.38_{-0.38}^{+0.39}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.14              | 1.10              |            |
| MACS J0555.4-5542<br>MACS J0717.5+3745 ‡ | 70<br>70          | 398               | 6.75                      | $13.30 \begin{array}{c} -3.28 \\ +1.44 \\ 13.30 \end{array}$                                        | $12.82  {}^{+1.70}_{-1.20}$                                                                                     | $0.96^{-0.42}_{0.14}$                                                                                                          | $0.38_{-0.38}^{+0.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.91              | 0.87              |            |
| •                                        | 70<br>70          | 381               |                           | _1.41                                                                                               | $\begin{array}{c} 12.62 & -1.39 \\ 9.32 & +1.20 \\ -0.96 \end{array}$                                           | -8.14                                                                                                                          | $0.32_{-0.13}$ $0.30^{+0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.14              | 1.19              | •          |
| MACS J0011 2 + 1746 †                    | 70<br>70          | 382               | 4.66 $3.55$               | $8.58^{+0.85}_{-0.73}$ $7.71^{+1.55}_{-1.16}$                                                       | $\begin{array}{c} 9.32 & -0.96 \\ 7.88 & ^{+2.11} \\ \end{array}$                                               | $1.09  ^{+0.18}_{-0.15}$ $1.02  ^{+0.34}_{-0.24}$                                                                              | $0.30_{-0.11}^{+0.20}$<br>$0.22_{-0.20}^{+0.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.77              | 0.77              | (          |
| MACS J0911.2+1746 ‡                      |                   |                   | 3.55<br>3.17              | -1.16                                                                                               | $10.29  {}^{+5.60}_{-2.41}$                                                                                     | $\begin{array}{c} 1.02 & -0.24 \\ 1.15 & +0.66 \\ 0.21 \end{array}$                                                            | $0.22_{-0.20}$ $0.48_{-0.22}^{+0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.77 $0.74$       | 0.77              |            |
| MACS J0949+1708                          | 70<br>70          | 411               |                           | $8.94^{+1.57}_{-1.20}$ $7.03^{+2.66}_{-1.64}$                                                       | $\begin{array}{c} 10.29 \\ -2.41 \\ 6.53 \\ -2.11 \end{array}$                                                  | $\begin{array}{c} 1.13 & -0.31 \\ 0.93 & +0.74 \\ -0.37 \end{array}$                                                           | 1 8.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                   | ,          |
| MACS J1006.9+3200                        | 70                | 363               | 1.83                      | $^{1.03}$ $-1.64$                                                                                   | 1 2.00                                                                                                          | -0.37                                                                                                                          | $0.18_{-0.18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.64              | 1.53              |            |
| MACS J1105.7-1014                        | 71                | 356               | 4.58                      | 1.13 - 1.73                                                                                         | 0.01 - 1.79                                                                                                     | $0.80^{\circ} - 0.30^{\circ}$                                                                                                  | $0.20^{+0.32}_{-0.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.27              | 1.08              |            |
| MACS J1108.8+0906 ‡                      | 70<br>70          | 345               | 2.52                      | 0.00 - 0.93                                                                                         | $1.52_{-1.53}$                                                                                                  | $1.11  ^{+0.40}_{-0.27} \ 1.02  ^{+0.35}_{-0.24}$                                                                              | $0.24^{+0.20}_{-0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.08              | 1.01              | 5          |
| MACS J1115.2+5320 ‡                      | 70<br>70          | 372               | 0.98                      | $^{3.06}$ $-1.37$                                                                                   | -1.81                                                                                                           |                                                                                                                                | $0.37^{+0.22}_{-0.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.94              | 0.91              |            |
| MACS J1115.8+0129                        | 70                | 316               | 4.36                      | -0.88                                                                                               | -2.84                                                                                                           | -0.45                                                                                                                          | 0.07 - 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.94              | 0.85              |            |
| MACS J1131.8-1955                        | 69                | 407               | 4.49                      | $8.64  {}^{+1.32}_{-1.03}$                                                                          | $9.45^{+2.52}_{-1.68}$                                                                                          | -0.23                                                                                                                          | $0.49^{+0.19}_{-0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.07              | 1.02              | ,          |
| MACS J1149.5+2223 ‡                      | 69<br><b>-</b> 2  | 358               | 2.32                      | 1.12 - 0.79                                                                                         | $8.36^{+1.51}_{-1.14}$                                                                                          | $1.08^{+0.24}_{-0.18}$                                                                                                         | $0.25^{+0.12}_{-0.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.87              | 0.94              |            |
| MACS J1206.2-0847                        | 70                | 367               | 4.15                      | $9.98^{+1.27}_{-1.01}$                                                                              | $11.93_{-1.88}$                                                                                                 | $1.20_{-0.22}$                                                                                                                 | $0.32^{+0.13}_{-0.14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.02              | 1.15              | 9          |
| MACS J1226.8+2153                        | 71                | 347               | 1.82                      | $4.86  {}^{+1.58}_{-1.08}$                                                                          | $5.84 \begin{array}{c} +3.45 \\ -2.14 \\ \hline 5.82 \end{array}$                                               | $1.20 \begin{array}{c} +0.81 \\ -0.51 \\ 1.02 \end{array}$                                                                     | $0.00^{+0.28}_{-0.00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.32              | 1.36              | 3          |
| MACS J1311.0-0310 ‡                      | 69                | 301               | 2.18                      | $5.73 \begin{array}{l} -0.46 \\ +0.46 \\ -0.40 \\ 8.08 \begin{array}{l} +2.14 \\ -1.56 \end{array}$ | 5.92 + 0.70 $5.92 + 0.70$ $10.12 + 5.50$ $10.12 + 5.50$ $2.78$ $8.83 + 5.55$ $2.81$ $6.17 + 3.18$ $6.17 + 1.71$ | $1.03 \stackrel{-0.51}{+0.15} \\ 1.03 \stackrel{+0.15}{-0.13} \\ 1.25 \stackrel{+0.76}{-0.42} \\ 1.03 \stackrel{+0.80}{-0.42}$ | $\begin{array}{c} 0.00 \\ 0.44 + 0.12 \\ 0.10 - 0.12 \\ 0.10 + 0.25 \\ 0.14 + 0.36 \\ 0.21 + 0.26 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.21 + 0.21 \\ 0.$ | 0.93              | 1.00              | 8          |
| MACS J1319+7003                          | 70                | 351               | 1.53                      |                                                                                                     | $10.12^{+3.30}_{-2.78}$                                                                                         | 1.25 +0.76                                                                                                                     | $0.10^{+0.23}_{-0.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00              | 1.07              | 8          |
| MACS J1427.2+4407                        | 71                | 346               | 1.41                      | -2.23                                                                                               | $8.83^{+3.33}_{-2.81}$                                                                                          | $1.03^{+0.30}_{-0.42}$                                                                                                         | $0.14^{+0.36}_{-0.14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.68              | 0.58              | ć          |
| MACS J1427.6-2521                        | 71                | 302               | 6.11                      | $4.44 \begin{array}{c} +0.86 \\ -0.64 \\ -0.73 \end{array}$                                         | $6.17 \begin{array}{c} +3.18 \\ -1.71 \\ -1.13 \end{array}$                                                     | $1.03 \begin{array}{c} -0.42 \\ -0.42 \\ 1.39 \begin{array}{c} +0.77 \\ -0.43 \\ 0.18 \end{array}$                             | $0.21^{+0.20}_{-0.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.07              | 1.39              | 7          |
| MACS J1621.3+3810 ‡                      | 69                | 358               | 1.07                      | $4.44 \begin{array}{r} -0.64 \\ -0.64 \\ 7.49 \begin{array}{r} +0.73 \\ -0.63 \end{array}$          |                                                                                                                 | $1.03 \begin{array}{l} -0.43 \\ +0.18 \\ -0.15 \\ 1.28 \begin{array}{l} +0.65 \\ -0.36 \end{array}$                            | $0.35_{-0.12}^{+0.13} \\ 0.49_{-0.25}^{+0.27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.98              | 0.92              | 8          |
| MACS J1731.6+2252                        | 71                | 368               | 6.48                      | $8.19  {}^{+1.88}_{-1.31}$                                                                          | $10.50 \begin{array}{l} -0.89 \\ +4.76 \\ -2.46 \end{array}$                                                    | $1.28_{-0.36}^{\pm0.03}$                                                                                                       | $0.49^{+0.27}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.16              | 0.98              | 8          |

Table 5—Continued

| - Cl                 | D.                  |                   | ).<br>)                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                           | 2                 | 2                 | 07 G |
|----------------------|---------------------|-------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|------|
| Cluster              | $ m R_{CORE} \ kpc$ | $ m R_{5000}$ kpc | $^{ m N}_{HI}$ $_{ m 10^{20}~cm^{-2}}$ | ${ m T}_{77}$ keV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ m T_{27}$ keV                                                                                                                                                                     | $T_{HBR}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ${ m Z_{77}} \ { m Z_{\odot}}$                                                                                                            | $\chi^2_{red,77}$ | $\chi^2_{red,27}$ | % So |
| (1)                  | (2)                 | (3)               | (4)                                    | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (6)                                                                                                                                                                                 | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (8)                                                                                                                                       | (9)               | (10)              | (11  |
| MACS J1931.8-2634    | 70                  | 378               | 9.13                                   | $6.85 \begin{array}{l} +0.73 \\ -0.61 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $6.86  {}^{+1.58}_{-1.15}$                                                                                                                                                          | $1.00^{+0.25}_{-0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.23^{+0.12}_{-0.11}$                                                                                                                    | 1.02              | 1.07              | 94   |
| MACS J2046.0-3430    | 71                  | 274               | 4.98                                   | $5.02  {}^{+1.95}_{-1.04}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $6.23 ^{\ +2.57}_{\ -2.30}$                                                                                                                                                         | $1.24 \begin{array}{l} +0.70 \\ -0.53 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.23^{-0.11}_{-0.23}$                                                                                                                    | 1.10              | 1.14              | 89   |
| MACS J2049.9-3217    | 69                  | 370               | 5.99                                   | $7.88 ^{\ +1.22}_{\ -0.98}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $11.48 \begin{array}{l} +4.02 \\ -2.42 \end{array}$                                                                                                                                 | $1.46^{+0.56}_{-0.36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.37^{+0.18}_{-0.16}$                                                                                                                    | 0.94              | 0.90              | 89   |
| MACS J2211.7-0349    | 69                  | 468               | 5.86                                   | $11.13 \begin{array}{l} +1.45 \\ -1.15 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $13.77  {}^{+3.49}_{-2.40}$                                                                                                                                                         | $1.24^{+0.35}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.18^{+0.14}_{-0.14}$                                                                                                                    | 1.33              | 1.34              | 9:   |
| MACS J2214.9-1359 ‡  | 70                  | 374               | 3.32                                   | $9.87  {}^{+1.54}_{-1.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $9.97^{\ +2.17}_{\ -1.50}$                                                                                                                                                          | $1.01  {}^{+0.27}_{-0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.31_{-0.17}^{-0.14}$                                                                                                                    | 1.03              | 1.01              | 9:   |
| MACS J2228 $+2036$   | 70                  | 385               | 4.52                                   | $7.79^{\ +1.14}_{\ -0.90}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $10.04 \begin{array}{l} +3.96 \\ -2.25 \end{array}$                                                                                                                                 | $1.29  {}^{+0.54}_{-0.32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.41^{+0.18}_{-0.17}$                                                                                                                    | 0.84              | 0.96              | 91   |
| MACS J2229.7-2755    | 69                  | 327               | 1.34                                   | $5.25  {}^{+0.54}_{-0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $6.07  {}^{+1.76}_{-1.18}$                                                                                                                                                          | $1.16^{+0.36}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.59^{+0.20}_{-0.19}$                                                                                                                    | 0.98              | 1.02              | 91   |
| MACS J2243.3-0935    | 71                  | 406               | 4.31                                   | $5.15  {}^{+0.65}_{-0.54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $8.81  {}^{+4.31}_{-2.67}$                                                                                                                                                          | $1.71  {}^{+0.86}_{-0.55}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.05^{+0.17}_{-0.05}$                                                                                                                    | 1.38              | 1.27              | 66   |
| MACS J2245.0 $+2637$ | 69                  | 320               | 5.50                                   | $6.05  ^{+0.66}_{-0.56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $7.05  {}^{+1.31}_{-1.08}$                                                                                                                                                          | $1.17^{\ +0.25}_{\ -0.21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.64^{+0.21}_{-0.20}$                                                                                                                    | 0.78              | 0.95              | 91   |
| MACS J2311+0338      | 70                  | 257               | 5.23                                   | $7.66^{+1.63}_{-1.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $12.19  {}^{+6.04}_{-3.14}$                                                                                                                                                         | $1.59  {}^{+0.86}_{-0.48}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.44^{+0.24}_{-0.23}$                                                                                                                    | 1.22              | 1.10              | 91   |
| MKW3S                | 70                  | 239               | 3.05                                   | $3.93  ^{+0.06}_{-0.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.17                                                                                                                                                                               | $1.17^{\ +0.05}_{\ -0.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.35^{+0.02}_{-0.03}$                                                                                                                    | 1.28              | 0.93              | 88   |
| MS 0016.9+1609       | 69                  | 389               | 4.06                                   | $9.11^{\ +0.79}_{\ -0.68}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $11.73 \begin{array}{l} +2.98 \\ -1.84 \end{array}$                                                                                                                                 | $1.29  {}^{+0.35}_{-0.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.32^{+0.10}_{-0.09}$                                                                                                                    | 0.91              | 0.92              | 88   |
| MS 0440.5+0204       | 71                  | 497               | 9.10                                   | $5.99  {}^{+0.91}_{-0.73}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.45  {}^{+1.61}_{-1.37}$                                                                                                                                                          | $0.74^{+0.29}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.66^{+0.32}_{-0.29}$                                                                                                                    | 0.89              | 0.74              | 28   |
| MS 0451.6-0305       | 70                  | 378               | 5.68                                   | $9.25  {}^{+0.89}_{-0.77}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $11.55 \begin{array}{c} +2.88 \\ -1.91 \end{array}$                                                                                                                                 | $1.25  {}^{+0.33}_{-0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.42^{+0.12}_{-0.11}$                                                                                                                    | 0.95              | 0.94              | 7:   |
| MS 0735.6 + 7421     | 69                  | 348               | 3.40                                   | $5.54^{+0.24}_{-0.23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $6.47^{\ +0.75}_{\ -0.65}_{\ 4.64}$                                                                                                                                                 | $1.17^{+0.14}_{-0.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.35^{+0.07}_{-0.07}$                                                                                                                    | 1.09              | 1.08              | 74   |
| MS 0839.8+2938       | 70                  | 294               | 3.92                                   | $4.63  ^{+0.30}_{-0.28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.04 - 0.71                                                                                                                                                                         | $1.00^{+0.21}_{-0.16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.33_{-0.07}^{+0.13}$<br>$0.49_{-0.13}^{+0.13}$                                                                                          | 0.97              | 0.91              | 69   |
| MS 0906.5+1110       | 70                  | 435               | 3.60                                   | $5.56^{+0.34}_{-0.31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $6.94  {}^{+1.23}_{-0.92}$                                                                                                                                                          | $1.25  {}^{+0.23}_{-0.18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.34^{+0.10}_{-0.10}$                                                                                                                    | 1.20              | 0.97              | 82   |
| MS 1006.0+1202       | 70                  | 393               | 3.63                                   | $5.79  {}^{+0.54}_{-0.46}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $7.76^{+2.25}_{-1.56}$                                                                                                                                                              | $1.34  {}^{+0.41}_{-0.29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.28^{+0.12}_{-0.12}$                                                                                                                    | 1.22              | 1.24              | 8:   |
| MS 1008.1-1224       | 70                  | 389               | 6.71                                   | $5.76^{+0.56}_{-0.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $9.88  {}^{+2.54}_{-1.70}$                                                                                                                                                          | $1.72^{\ +0.47}_{\ -0.33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.24^{+0.11}_{-0.11}$                                                                                                                    | 1.29              | 1.08              | 8    |
| MS 1054.5-0321       | 70                  | 395               | 3.69                                   | $9.75  {}^{+1.69}_{-1.28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $14.17  {}^{+12.06}_{-4.93}$                                                                                                                                                        | $1.45^{+1.26}_{-0.54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.16^{+0.16}_{-0.16}$                                                                                                                    | 1.05              | 0.85              | 51   |
| MS 1455.0+2232       | 69                  | 309               | 3.35                                   | $\frac{4.02}{-0.13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.47 - 0.27                                                                                                                                                                         | $1.13^{\ +0.07}_{\ -0.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.40_{-0.05}$                                                                                                                            | 1.34              | 1.17              | 94   |
| MS 1621.5 + 2640     | 70                  | 379               | 3.59                                   | $5.72^{\ +0.90}_{\ -0.72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $5.10^{+2.04}_{-1.27}$                                                                                                                                                              | $0.89  {}^{+0.38}_{-0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.37^{+0.23}_{-0.21}$                                                                                                                    | 1.00              | 0.98              | 74   |
| MS 2053.7-0449 ‡     | 70                  | 397               | 5.16                                   | $4.68  {}^{+1.04}_{-0.75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $5.37  {}^{+1.73}_{-1.19}$                                                                                                                                                          | $1.15  {}^{+0.45}_{-0.31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.26^{+0.26}_{-0.24}$                                                                                                                    | 0.99              | 0.94              | 6    |
| MS 2137.3-2353       | 70                  | 354               | 3.40                                   | $6.00 \begin{array}{l} +0.55 \\ -0.47 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $7.56^{+2.79}_{-1.46}$                                                                                                                                                              | $1.26^{+0.48}_{-0.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.35^{+0.13}_{-0.12}$                                                                                                                    | 1.08              | 1.28              | 69   |
| MS J1157.3+5531      | 69                  | 272               | 1.22                                   | $3.28  {}^{+0.36}_{-0.32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.07 -3.33                                                                                                                                                                          | $2.00^{+1.97}_{-1.03}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.76^{+0.30}_{-0.19}$                                                                                                                    | 1.22              | 1.15              | 3'   |
| NGC 6338             | 71                  | 265               | 2.60                                   | $2.20^{+0.07}_{-0.06}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2.68^{\ +0.24}_{\ -0.20}$                                                                                                                                                          | $1.22^{+0.12}_{-0.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.22^{+0.03}_{-0.04}$                                                                                                                    | 1.04              | 1.01              | 51   |
| PKS 0745-191         | 69                  | 460               | 40.80                                  | $8.30^{\ +0.39}_{\ -0.36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $9.69  {}^{+0.84}_{-0.73}$                                                                                                                                                          | $1.17^{+0.12}_{-0.10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.42^{+0.06}_{-0.07}$                                                                                                                    | 1.01              | 0.97              | 9:   |
| RBS 0797             | 69                  | 350               | 2.22                                   | $7.63 \begin{array}{l} +0.94 \\[-4pt] -0.77 \\[-4pt] -3.20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $8.62 \begin{array}{l} +2.60 \\ -1.69 \end{array}$                                                                                                                                  | $1.13^{\ +0.37}_{\ -0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.25^{+0.13}_{-0.13}$                                                                                                                    | 1.06              | 0.83              | 9:   |
| RDCS 1252-29         | 71                  | 196               | 6.06                                   | $4.63  {}^{+2.39}_{-1.41}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.94  {}^{+9.84}_{-2.82}$                                                                                                                                                          | -0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.14^{+2.11}_{-0.83}$                                                                                                                    | 1.36              | 0.28              | 60   |
| RX J0232.2-4420      | 69                  | 402               | 2.53                                   | $7.92^{\ +0.85}_{\ -0.74}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $10.54 \begin{array}{l} +2.53 \\ -1.74 \end{array}$                                                                                                                                 | $1.33^{\ +0.35}_{\ -0.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.38^{+0.13}_{-0.13}$                                                                                                                    | 1.05              | 0.98              | 91   |
| RX J0340-4542        | 70                  | 291               | 1.63                                   | 3.10 - 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2.75 \begin{array}{l} +1.15 \\ -0.67 \end{array}$                                                                                                                                  | -0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.03_{-0.28}$                                                                                                                            | 1.22              | 1.30              | 48   |
| RX J0439+0520        | 70                  | 336               | 10.02                                  | $4.67^{\ +0.58}_{\ -0.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $5.37^{\ +2.03}_{\ -1.24}$                                                                                                                                                          | $1.10_{-0.29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.36^{+0.22}_{-0.20}$                                                                                                                    | 0.91              | 0.81              | 8    |
| RX J0439.0+0715 ‡    | 70                  | 376               | 11.16                                  | 0.00 - 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.21 - 0.96                                                                                                                                                                         | $^{1.40}$ $^{-0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $0.34^{+0.09}_{-0.09}$                                                                                                                    | 1.32              | 1.14              | 8'   |
| RX J0528.9-3927      | 70                  | 454               | 2.36                                   | $7.96^{+1.01}_{-0.81}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $9.84  {}^{+2.92}_{-1.81}$                                                                                                                                                          | $1.24  {}^{+0.40}_{-0.26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.26^{+0.14}_{-0.15}$                                                                                                                    | 0.96              | 1.04              | 88   |
| RX J0647.7+7015 ‡    | 69                  | 361               | 5.18                                   | $^{11.46}_{-1.58}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.10 -1.77                                                                                                                                                                         | $0.98^{+0.28}_{-0.20}_{-0.34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.24_{-0.20}$                                                                                                                            | 1.00              | 0.92              | 88   |
| RX J0819.6+6336      | 71                  | 322               | 4.11                                   | $3.92_{-0.40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.24 - 0.66                                                                                                                                                                         | $0.83^{\ +0.34}_{\ -0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.16^{+0.17}_{-0.14}$                                                                                                                    | 1.00              | 1.00              | 50   |
| RX J0910+5422 ‡      | 71                  | 172               | 2.07                                   | $4.08  {}^{+3.11}_{-1.34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $5.00  {}^{+5.09}_{-2.03}$                                                                                                                                                          | 1.23 - 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.43^{+1.89}_{-0.43}$                                                                                                                    | 0.64              | 0.56              | 4:   |
| RX J1347.5-1145 ‡    | 70                  | 429               | 4.89                                   | $15.12 \begin{array}{c} +1.03 \\ -0.86 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $17.32^{+1.73}_{-1.40}$                                                                                                                                                             | $1.15 \begin{array}{c} +0.14 \\ -0.11 \\ -0.256 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.33^{+0.07}_{-0.08}$                                                                                                                    | 1.12              | 1.11              | 96   |
| RX J1350+6007        | 71                  | 236               | 1.77                                   | $4.22^{+3.13}_{-1.53}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $3.29^{+10.32}_{-1.93}$                                                                                                                                                             | $0.78  \substack{+2.36 \\ -0.54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.63^{+0.73}_{-0.63}$                                                                                                                    | 1.00              | 0.14              | 60   |
| RX J1423.8+2404 ‡    | 71                  | 314               | 2.65                                   | $6.90^{+0.33}_{-0.37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $7.19 \begin{array}{l} +0.53 \\ -0.52 \\ +0.58 \end{array}$                                                                                                                         | 1.04 +0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.38^{+0.07}_{-0.08}$                                                                                                                    | 0.94              | 0.90              | 90   |
| RX J1504.1-0248      | 70<br><b>-</b> 0    | 445               | 6.27                                   | $\begin{array}{c} -1.34 \\ 15.12 + 1.03 \\ -0.86 \\ 4.22 + 3.13 \\ 6.90 + 0.39 \\ -0.37 \\ 8.02 + 0.26 \\ -0.25 \\ 3.83 + 0.84 \\ 3.83 + 0.53 \\ 0.94 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95 + 0.43 \\ 0.95$ | $\begin{array}{c} -2.03 \\ 17.32 & +1.73 \\ -1.40 \\ 3.29 & +10.52 \\ -1.93 \\ 7.19 & +0.59 \\ -0.52 \\ 8.52 & +0.58 \\ -0.52 \\ 9.10 & +7.62 \\ -3.25 \\ 7.09 & +0.94 \end{array}$ | $\begin{array}{c} -0.11 \\ 0.78 + 2.56 \\ -0.54 \\ 1.04 + 0.10 \\ -0.09 \\ 1.06 + 0.08 \\ -0.07 \\ 2.38 + 2.06 \\ -0.91 \\ 1.06 + 0.18 \\ -0.91 \\ 1.06 + 0.18 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.$ | $0.63^{+0.08}_{-0.08}$ $0.63^{+5.75}_{-0.63}$ $0.38^{+0.07}_{-0.08}$ $0.39^{+0.04}_{-0.47}$ $0.69^{+0.47}_{-0.36}$ $0.46^{+0.10}_{-0.11}$ | 1.25              | 1.17              | 98   |
| RX J1525+0958        | 70<br>70            | 296               | 2.96                                   | $3.83^{+0.54}_{-0.53}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $9.10^{+1.02}_{-3.25}$                                                                                                                                                              | $2.38^{+2.00}_{-0.91}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.69^{+0.47}_{-0.36}$                                                                                                                    | 1.96              | 0.08              | 8    |
| RX J1532.9+3021 ‡    | 70<br>71            | 322               | 2.21                                   | $\begin{array}{c} -0.33 \\ 6.06 \begin{array}{c} +0.43 \\ -0.39 \\ 6.51 \begin{array}{c} +1.79 \\ -1.24 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $7.20 \begin{array}{l} -3.23 \\ +0.94 \\ -0.77 \\ 6.21 \begin{array}{l} +4.03 \\ -2.26 \end{array}$                                                                                 | $1.19 \begin{array}{l} -0.31 \\ +0.18 \\ -0.15 \\ 0.95 \begin{array}{l} +0.67 \\ -0.39 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.46^{+0.10}_{-0.11}$                                                                                                                    | 0.92              | 1.02              | 8    |
| RX J1716.9+6708      | 71                  | 342               | 3.71                                   | $6.51^{+1.73}_{-1.24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $6.21^{+4.03}_{-2.26}$                                                                                                                                                              | $0.95^{+0.07}_{-0.39}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.56^{+0.39}_{-0.32}$                                                                                                                    | 0.84              | 0.92              | 6:   |

Table 5—Continued

| Cluster (1)                                                                                                                            | R <sub>CORE</sub> kpc (2)                    | R <sub>5000</sub> kpc (3)                                   | $N_{HI}$ $10^{20} \text{ cm}^{-2}$ $(4)$                             | T <sub>77</sub> keV (5)                                                                                                                                                                                                                                                                 | T <sub>27</sub> keV (6)                                                                                                                      | $T_{HBR}$ (7)                                                                    | Z <sub>77</sub> Z <sub>☉</sub> (8)                                   | $\chi^2_{red,77}$ (9)                                | $\chi^2_{red,27}$ (10)                                               | % Source                                           |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|
| RX J1720.1+2638<br>RX J1720.2+3536 ‡<br>RX J2011.3-5725<br>RX J2129.6+0005<br>S0463 ‡<br>TRIANG AUSTR<br>V 1121.0+2327                 | 69<br>71<br>71<br>70<br>70<br>71             | 359<br>320<br>295<br>489<br>307<br>539<br>315               | 4.02<br>3.35<br>4.76<br>4.30<br>1.06<br>13.27<br>1.30                | $\begin{array}{c} 6.33   \substack{+0.29 \\ -0.25} \\ 7.34   \substack{+0.59 \\ -0.59} \\ 4.10   \substack{+0.47 \\ -0.39} \\ 6.01   \substack{+0.47 \\ -0.38} \\ 3.26   \substack{+0.33 \\ -0.38} \\ 8.50   \substack{+0.29 \\ -0.25} \\ 4.17   \substack{+0.78 \\ -0.29} \end{array}$ | $7.19 \begin{array}{l} +1.68 \\ -1.21 \\ 3.92 \begin{array}{l} +1.16 \\ -0.94 \\ 12.08 \begin{array}{l} +1.13 \\ -1.13 \\ -1.13 \end{array}$ | $1.20^{\ +0.30}_{\ -0.22} \ 1.20^{\ +0.38}_{\ -0.32} \ 1.42^{\ +0.14}_{\ -0.14}$ | $0.51^{+0.16}_{-0.15}$ $0.23^{+0.18}_{-0.15}$ $0.03^{+0.04}_{-0.03}$ | 1.04<br>1.03<br>0.95<br>1.29<br>1.08<br>0.01<br>1.09 | 0.96<br>0.94<br>1.08<br>1.34<br>1.08<br>1.93<br>0.87                 | 94<br>91<br>84<br>87<br>54<br>83<br>74             |
| ZWCL 1215<br>ZWCL 1358+6245<br>ZWCL 1953<br>ZWCL 3146<br>ZWCL 5247<br>ZWCL 7160<br>ZWICKY 2701<br>ZwCL 1332.8+5043<br>ZwCl 0848.5+3341 | 70<br>70<br>69<br>70<br>70<br>69<br>69<br>70 | 277<br>391<br>516<br>512<br>449<br>451<br>315<br>453<br>365 | 1.76<br>1.94<br>3.10<br>2.70<br>1.70<br>3.10<br>0.83<br>1.10<br>1.12 | $\begin{array}{c} 4.17 & -0.60 \\ 6.64 & +0.46 \\ -0.38 \\ 9.70 & +1.16 \\ -0.94 \\ 8.28 & +1.22 \\ -0.96 \\ 7.46 & +0.32 \\ -0.30 \\ 4.89 & +0.86 \\ 4.63 & +0.42 \\ 4.63 & +0.45 \\ 4.63 & +0.32 \\ -0.30 \\ 3.82 & +3.34 \\ 6.54 & +2.04 \\ 6.54 & +2.04 \\ \end{array}$             | $8.69^{+0.74}_{-0.80}$ $9.04^{+2.09}_{-1.46}$ $11.83^{+4.01}_{-2.55}$                                                                        | $1.31^{\ +0.14}_{\ -0.14}$ $0.93^{\ +0.24}_{\ -0.18}$ $1.43^{\ +0.53}_{\ -0.35}$ | $0.37^{+0.11}_{-0.11}$ $0.57^{+0.19}_{-0.19}$ $0.21^{+0.14}_{-0.15}$ | 1.10<br>1.03<br>0.87                                 | 1.03<br>0.90<br>0.77<br>0.97<br>0.93<br>0.95<br>0.76<br>0.95<br>1.01 | 91<br>65<br>82<br>91<br>78<br>87<br>70<br>60<br>47 |

Note. — Note: "77" refers to 0.7-7.0 keV band and "27" refers to 2.0-7.0 keV band. (1) Cluster name, (2) size of excluded core region in kp (3)  $R_{5000}$  in kpc, (4) absorbing Galactic neutral hydrogen column density, (5,6) best-fit MEKAL temperatures, (7)  $T_{0.7-7.0}/T_{2.0-7.0}$  also called  $T_{HBR}$ , (8) best-fit 77 MEKAL abundance, (9,10) respective reduced  $\chi^2$  statistics, and (11) percent of emission attributable to source. A (‡) indicate a cluster which has multiple observations. Each observation has an independent spectrum extracted along with an associated WARF, WRMI normalized background spectrum, and soft residual. Each independent spectrum is then fit simultaneously with the same spectral model to product the final fit.