2.1

Problem: Recall that an ordered pair (a, b) can be defined as the set $\{\{a\}, \{a, b\}\}$. Show that (a, b) = (c, d) if and only if a = c and b = d

Solution. Let (a,b) = (c,d). Then, $\{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\}\}$. Since $\{\{a\}, \{a,b\}\} \subseteq \{\{c\}, \{c,d\}\}\}$, it is the case that $\{a\} \in \{\{c\}, \{c,d\}\}\}$, meaning $\{a\} = \{c\}$ or $\{a\} = \{c,d\}$. Since it cannot be the case that $\{a\} = \{c,d\}$, as the latter contains two elements, it is the case that $\{a\} = \{c\}$. Since singleton sets are equal if and only if their respective elements are equal, this means a = c. Similarly, since by elimination, $\{a,b\} = \{c,d\}$, and since a=c, we have $\{c,b\} = \{c,d\}$; thus, $b\in\{c,d\}$ and $c\in\{c,b\}$ and $c\in\{c,b\}$; thus, b=d.

Let a = b and c = d. Then, by the replacement schema, we have $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}\}$ (under the map $a \mapsto c$ and $b \mapsto d$), implying (a, b) = (c, d).