Lab sheet 13 - Pointer (Part 1)

1. จงเขียนโปรแกรมต่อไปนี้ แล้วตอบคำถามข้อ 1.1-1.2

```
1.1 เขียนผลการทำงานของโปรแกรมข้างต้น
    #include<stdio.h>
    int main()
3
                                1.2 ผลการทำงานของโปรแกรมข้างต้น ถูกต้องหรือไม่ เพราะเหตุใด ถ้าผลการทำงาน
4
     float *fpt;
5
     int a;
                                ไม่ถูกต้อง จะต้องแก้ไขโปรแกรมที่บรรทัดใด พร้อมทั้งเขียนคำสั่งแก้ไข
     fpt = &a;
     *fpt = 10.89;
7
8
9
    printf("%d\n",a);
10
```

2. จงเขียนโปรแกรมต่อไปนี้ แล้วตอบคำถามข้อ 2.1-2.3

```
#include <stdio.h>
2
    int main(){
3
      int var = 5;
4
      int *pvar=&var;
5
      printf("Value: %d\n", var);
6
      printf("Address: %u\n", &var);
7
8
9
      printf("Content of pointer pvar:%d\n",*pvar);
10
      printf("Address of pointer pvar (using %%u): %u\n", pvar);
      printf("Address of pointer pvar (using %%p): %p\n", pvar);
11
12
      return 0;
13
14
```

```
    2.1 จงเขียนผลลัพธ์ทางจอภาพของโปรแกรมนี้
    2.2 อธิบายความแตกต่างของโปรแกรมบรรทัดที่ 9 และ 10
    2.3 อธิบายความแตกต่างของโปรแกรมบรรทัดที่ 10 และ 11
```

3. จงเขียนโปรแกรมต่อไปนี้ แล้วตอบคำถามข้อ 3.1-3.4

```
#include<stdio.h>
int main(){
   int number[3]={100,200,300};

int *pt;
   int i;

pt = number;

for(i = 0;i<=2;i++)

printf("Number[%d] = %d\n",i,*(pt+i));

}</pre>
```

3.1 เขียนผลการทำงานของโปรแกรมข้างต้น	3.2 เขียนผลการทำงานของโปรแกรมข้างต้น เมื่อแก้ไขโปรแกรม ในบรรทัดที่ 8 เป็น printf("Number[%d] = %d\n",i, *pt+i);
3.3 เขียนผลการทำงานของโปรแกรมข้างต้น เมื่อแก้ไขโปรแกรม	3.4 ให้นิสิตอธิบายความแตกต่างของการทำงานของโปรแกรม
ในบรรทัดที่ 8 เป็น printf("Number[%d] = %d\n",i, *pt++);	ข้อ 3.1 - 3.3

4. แก้ไขโปรแกรมในข้อ 3 ให้สามารถแสดงผลค่าในอาเรย์จากหลังมาหน้า

5. จงเขียนโปรแกรมสำหรับหาค่า x ในสมการพหุนามกำลังสอง $ax^2 + bx + c$ เมื่อรับค่า a, b และ c จากคีย์บอรด์ โดยกำหนดให้สร้างฟังก์ชันชื่อ calX() เพื่อคำนวณหาค่า x (เมื่อ b^2 -4ac ≥ 0 และ $a\ne 0$) ตามสมการต่อไปนี้

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

ถ้า $b^2-4ac>0$ สมการมี 2 คำตอบ

ถ้า $b^2-4ac=0$ สมการมี 1 คำตอบ

ถ้า $b^2-4ac < 0$ สมการไม่มีคำตอบในระบบจำนวนจริง

กำหนดเพิ่มเติมดังนี้ 1) ให้ฟังก์ชัน calX() ทำหน้าที่คำนวณหาค่า x เท่านั้น 2) main ทำหน้าที่รับค่า a, b และ c จากผู้ใช้ และ แสดงผลการทำงาน 3) ห้ามใช้ตัวแปรภายนอก(Global variable)

Enter coefficients a, b and c: 1 6 9	Enter coefficients a, b and c: 5 6 1			
x1 = -3.00 and $x2 = -3.00$	x1 = -0.20 and $x2 = -1.00$			
Enter coefficients a, b and c: 1 -3 0	Enter coefficients a, b and c: 0 6.2 1			
x1 = 3.00 and $x2 = 0.00$	Oops! This is not a quadratic equation			
Enter coefficients a, b and c: 2.3 4 5.6				
The roots are complex				

6. บริษัทผลิตเลขที่บ้านพลาสติก เป็นบริษัทที่ผลิตตัวเลขพลาสติกสำหรับติดไว้ประตูหน้าบ้าน เพื่อแสดงเลขที่บ้าน นั้นๆ บริษัทจะต้องผลิตตัวเลขให้ได้จำนวนพอดีตามที่ลูกค้าสั่ง จงเขียนโปรแกรมเพื่อช่วยบริษัทตัดสินใจว่าจะต้อง ผลิตตัวเลขพลาสติกแต่ละตัวเป็นจำนวนเท่าใด ในการสั่งซื้อแต่ละครั้ง โดยเลขที่บ้านจะเป็นจำนวนเต็มบวกเรียง ติดกันตั้งแต่ n ไปยัง m (ซึ่งเป็นค่าที่รับจากคีย์บอรด์ และ n มีค่าน้อยกว่า m เสมอ)

กำหนดให้สร้างฟังก์ชันชื่อ **Digit()** สำหรับการแยกเลขโดดของตัวเลขจำนวนเต็มบวก k และนับค่าตัวเลข 0-9 เท่านั้น ให้ main ทำหน้าที่รับค่า n และ m จากผู้ใช้ และ แสดงผลการทำงาน (หมายเหตุ: ห้ามใช้ตัวแปรภายนอก)

สำหรับผลการทำงานของโปรแกรมให้แสดงรูปแบบดังต่อไปนี้ และแสดงดังตัวอย่างด้านล่าง

0 <จำนวนที่ต้องผลิต>	n= 1	n= 5	n= 1	n= 100	n= 300
 1 <จำนวนที่ต้องผลิต>	m= 13	m= 20	m= 99	m= 499	m= 2560
	0 1	0 2	0 9	0 80	0 657
2 <จำนวนที่ต้องผลิต>	1 6	1 11	1 20	1 180	1 1656
	2 2	2 2	2 20	2 180	2 1217
9 <จำนวนที่ต้องผลิต>	3 2	3 1	3 20	3 180	3 756
7 (01000011100111011)	4 1	4 1	4 20	4 180	4 756
	5 1	5 2	5 20	5 80	5 717
	6 1	6 2	6 20	6 80	6 647
	7 1	7 2	7 20	7 80	7 646
	8 1	8 2	8 20	8 80	8 646
	9 1	9 2	9 20	9 80	9 646