Вопросы на понимание

Упражнение 1 (15 баллов). Ответьте на следующие вопросы:

- 1. Что такое несмещенная оценка? Что это свойство оценок означает?
- 2. Что такое состоятельная оценка? Что это свойство оценок означает?
- 3. Что такое функция правдоподобия? Что она означает?
- 4. Что позволяет оценивать метод Монте-Карло?
- 5. В каких случаях для оценки «среднего» случайной величины лучше использовать медиану вместо среднего арифметического?
- 6. Какие существуют оценки для дисперсии случайной величины? Какие из них лучше?

Задачи

Упражнение 2 (15 баллов). Пусть $X_i \sim \mathcal{N}(\theta, 3), i = 1, \dots, n$. Проверьте несмещенность и состоятельность следующих оценок неизвестного параметра $\theta \in \mathbb{R}$:

- (1) $\hat{\theta}_1(x_1,\ldots,x_n)=0;$
- (2) $\hat{\theta}_2(x_1,\ldots,x_n)=x_1;$
- (3) $\hat{\theta}_3(x_1,\ldots,x_n) = 2x_n;$
- (4) $\hat{\theta}_4(x_1,\ldots,x_n) = 2x_2 x_3;$
- (5) $\hat{\theta}_5(x_1,\ldots,x_n) = (x_1 + x_2 + \ldots + x_n)/n$.

Посчитайте значения этих оценок на следующих данных (n = 10):

$$-3.19 \quad 2.25 \quad 4.64 \quad -0.39 \quad -1.44 \quad -1.87 \quad -1.68 \quad 0.27 \quad 0.43 \quad 0.58.$$

Упражнение 3 (15 баллов). Пусть дана реализация выборки x_1, \ldots, x_n из равномерного распределения на отрезке $[0; \theta]$. Найдите оценку для неизвестного параметра θ методом моментов и методом максимального правдоподобия. Исследуйте полученные оценки на несмещенность и состоятельность. Реализуйте эту задачу в Python:

- (1) сгенерируйте θ из равномерного распределения на [25, 50];
- (2) сгенерируйте выборку из равномерного распределения на $[0;\theta]$ размера $n=10,100,1\,000,10\,000;$
- (3) найдите значения полученных оценок;
- (4) убедитесь, что значения полученных оценок сходятся к неизвестному параметру θ с ростом n.

Упражнение 4 (15 баллов). Пусть дана реализация выборки x_1, \ldots, x_n из равномерного распределения на отрезке $[\theta; \theta+1]$. Найдите оценку для неизвестного параметра θ методом моментов и методом максимального правдоподобия.

Упражнение 5 (20 баллов). Пусть дана реализация выборки x_1, \ldots, x_n их нормального распределения $\mathcal{N}(\theta_1, \theta_2^2)$. Найдите оценки для неизвестных параметров θ_1 и θ_2^2 методом моментов и методом максимального правдоподобия. Являются ли оценки θ_1 несмещенными и состоятельными? Являются ли оценки θ_2 несмещенными? Сделайте какое-то предположение о состоятельности оценок на θ_2 . Реализуйте эту задачу в Python:

- (1) сгенерируйте θ_1 из равномерного распределения на [-5,5], а θ_2^2 из равномерного распределения на [0.5,10];
- (2) сгенерируйте выборку из нормального распределения $\mathcal{N}(\theta_1, \theta_2^2)$ размера $n=10, 100, 1\,000, 10\,000;$
- (3) найдите значения полученных оценок;
- (4) убедитесь, что значения полученных оценок сходятся к неизвестным параметрам θ_1 и θ_2^2 с ростом n.

Упражнение 6 (10 баллов за реализацию + 10 баллов за значение n). В Python найдите с помощью метода Монте-Карло площадь заштрихованной желтым фигуры (см. рисунок ниже). Сколько случайных точек надо бросить в этот квадрат, чтобы получить значение площади с точностью 0.01 и с вероятностью примерно равной 0.997?

