Where We Are

Logistics

- Exam date:
 - Final Exam date (tentative): Friday, March 22, 8 11 am, PT
 - Decision: In-person Exam
- Next week:
 - TA will hold multiple hours of Exam review
 - Pay attention to Piazza announcement about scheduling
 - Make sure you attend and get important secret sauces ©
 - TAs and I will all be available for OH by appointment to help you on exam and wrapping the course!

ML System history

 ML Systems evolve as more and more ML components (models/optimization algorithms) are unified

Ad-hoc: diverse model family, optimization algos, and data

Opt algo: iterative-convergent

Model family: neural nets

Model: CNNs/transformers/GNNs

LLMs: transformer decoders

Today: NN, data flow graph, and data parallelism

Static Models vs. Dynamic Models

Static vs. Dynamic Dataflow Graphs

- Static Dataflow graphs
 - Define once, execute many times
 - Execution: Once defined, all following computation will **follow** the defined computation
 - Advantages
 - No extra effort for batching optimization, because it can be by nature batched
 - It is always easy to handle a static computational dataflow graphs in all aspects, because of its fixed structure
 - Node placement, distributed runtime, memory management, etc.
 - Benefit the developers

Static vs. Dynamic Dataflow Graphs

- Can we handle dynamic dataflow graphs?
 - Difficulty in expressing complex flow-control logic
 - Complexity of the computation graph implementation
 - Difficulty in debugging

How to Handle Dynamic Dataflow Graph?

- In general two ways:
 - Imperative: do not requiring contracting the entire graph before execution
 - Other symbolic representation on top of dataflow graph
 - vertex-centric representation

Questions

- Is CNN training static or dynamic graph?
- Is CNN inference static or dynamic graph?
- Is GPT-3 (transformers decoder) training static graph or dynamic?
- Is GPT-3 inference with batch size = 1 static or dynamic graph
- Is GPT-3 serving static or dynamic graph

Advanced Topic: DL Dataflow Graph Optimization

(a) Associativity of matrix multiplication.

(b) Fusing two matrix multiplications using concatenation and split.

Advanced Topic: DL Graph Compilation

High-level IR Optimizations and Transformations

Tensor Operator Level Optimization

Direct code generation

Where We Are

- Deep Learning as Dataflow Graphs
- Auto-differentiation Libraries
 - Symbolic vs. Imperative
 - Static vs. Dynamic
- DL Parallelism

DL Parallelization: 3 Core Problems

Computing

Communication

Memory

$$f(\cdot)$$
 GPU GPU GPU

GPU GPU GPU

 $egin{aligned} heta^{(t+1)} &= f(heta^{(t)}, \,
abla_L(heta^{(t)}, \, D^{(t)})) \end{aligned}$

parameter

weight update (sgd, adam, etc.)

model (CNN, GPT, etc.)

data

Two Views of ML Parallelisms

Classic view

Data parallelism

Model parallelism

New view

Inter-op parallelism

Intra-op parallelism

Data and Model Parallelism

Data parallelism

Model parallelism

$$heta^{(t+1)} = f(heta^{(t)}, \,
abla_L(heta^{(t)}, \, D^{(t)}))$$
 weight update model (sgd, adam, etc.) (CNN, GPT, etc.)

14

PS Implements Data Parallelism

Representee Systems: Poseidon, GeePS, BytePS, etc.

AllReduce Can Also Handle Data Parallelism Comm

Representee Systems: Horovod, Torch.DDP

Big Model: The Core Computational Challenge

How to train and serve big models?

Model Parallelism

Two Views of ML Parallelisms

Data and model parallelism

- . Two pillars: data and model.
- . Utility "Data parallelism" is general and precise.
- . ? "Model parallelism" is vague.
- The view creates ambiguity for methods that neither partitions data nor the model computation.

New: Inter-op and Intra-op parallelism.

- Two pillars: computational graph and device cluster
- This view is based on their computing characteristics.
- This view facilitates the development of new parallelism methods.

Device Cluster

Nvidia DGX with V100

Figure from NMDIA

A typical GPU cluster topology

Fast connections

Slow connections

Partitioning Computation Graph on Device Cluster

How to partition the computational graph on the device cluster?

Partitioning Computation Graph

Strategy 1

Strategy 2

Partitioning Computation Graph

Strategy 1: Inter-operator Parallelism

Strategy 2: Intra-operator Parallelism

More Parallelisms...

Multiple intra-op strategies for a single node

More strategies

MSE

Summary: Inter-op and Intra-op Parallelisms

Inter-op parallelism: Assign different operators to different devices.

Intra-op parallelism: Assign different regions of a single operator to different devices.

Inside Intra- and Inter-op Parallelism

$$Y = X \cdot W_1 \cdot W_2 = X \cdot egin{bmatrix} W_1^{d1} & W_1^{d2} \end{bmatrix} \cdot egin{bmatrix} W_2^{d1} \ W_2^{d2} \end{bmatrix}$$

Inter-op and Intra-op Parallelism: Characteristics

Inter-op parallelism:

Requires point-to-point communication but results in device idle

Intra-op parallelism:

Devices are busy but requires collective communication

Inter-op and Intra-op Parallelism: Characteristics

Inter-op parallelism

Trade-off

	Inter-operator Parallelism	Intra-operator Parallelism
Communication	Less	More
Device Idle Time	More	Less

Intra-op parallelism

ML Parallelization under New View

Where We Are

- Deep Learning as Dataflow Graphs
- Auto-differentiation Libraries
 - Symbolic vs. Imperative
 - Static vs. Dynamic
- DL Parallelism
 - Inter-op parallelism
 - Intra-op parallelism

Computational Graph (Neural Networks) → Stages

Computational Graph

Devices (e.g., GPUs)

Device 1 Device 2 Device 3 Device 4

Computational Graph (Neural Networks) → Stages

Execution & Data Movement

Note: The time spent on data transfer is typically **small**, since we only communicates stage outputs at stage boundaries between two stages.

Timeline: Visualization of Inter-Operator Parallelism

- Gray area () indicates devices being idle (a.k.a. Pipeline bubbles).
- Only 1 device activated at a time.
- Pipeline bubble percentage = bubble_area / total_area
 = (D 1) / D, assuming D devices.

Reduce Pipeline Bubbles via Pipelining Inputs

Training: Forward & Backward Dependency

How to Reduce Pipeline Bubbles for Training?

- Synchronous Pipeline Parallel Algorithms
 - _o GPipe
 - 。 1F1B
 - Interleaved 1F1B
 - TeraPipe
 - 。 Chimera
- Asynchronous Pipeline Parallel Algorithms
 - AMPNet
 - Pipedream/Pipedream-2BW

How to Reduce Pipeline Bubbles for Training?

- Synchronous Pipeline Parallel Algorithms
 - GPipe
 - 。 1F1B
 - Interleaved 1F1B
 - TeraPipe
 - 。 Chimera
- Asynchronous Pipeline Parallel Algorithms
 - . AMPNet
 - Pipedream/Pipedream-2BW

GPipe

Idea: Partition the input batch into multiple "micro-batches". Pipeline the micro-batches.

Accumulate the gradients of the micro-batches:

$$\nabla L_{\theta}(x) = \frac{1}{N} \sum_{i=1}^{N} \nabla L_{\theta}(x_i)$$

Example: Slice each input batch into 6 micro-batches:

Time

Pipeline bubbles percentage = (D - 1) / (D - 1 + N) with D devices and N micro-batches.

GPipe: Memory Usage

GPipe Schedule:

Perform backward as early as possible

1F1B Memory Usage

Time

Where We Are

- Deep Learning as Dataflow Graphs
- Auto-differentiation Libraries
 - Symbolic vs. Imperative
 - Static vs. Dynamic
- DL Parallelism
 - Inter-op parallelism
 - Intra-op parallelism

Recap: Intra-op and Inter-op

Strategy 1: Inter-operator Parallelism

Strategy 2: Intra-operator Parallelism

This section:

How to parallelize an **operator**? How to parallelize a **graph**?

Element-wise operators

No dependency on the two for-loops. Can arbitrarily split the for-loops on different devices.

a lot of other variants

$$\begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \end{bmatrix} = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} \times B$$

Device 1 and 2 hold a replicated tile

Device 3 and 4 hold a replicated tile

C: got by all-reduce

2D Convolution

Simple case: Parallelize loop n, co, ci, then the parallelization strategies are almost the same as matmul's.

Complicated case: Parallelize loop h and w

Data Parallelism as A Case of Intra-op Parallelism

Matmul Parallelization Type 1

communication cost = 0

Matmul Parallelization Type 2

communication cost = all-reduce(c)

Re-partition Communication Cost

Different operators' parallelization strategies require different partition format of the same tensor

Re-partition Communication Cost

Different operators' parallelization strategies require different partition format of the same tensor

Parallelize All Operators in a Graph

Problem

Minimize Node costs (computation + communication) + Edge costs (re-partition communication)

Solution

Manual design
Randomized search
Dynamic programming
Integer linear programming

Important Projects

- Model-specific Intra-op Parallel Strategies
 - **AlexNet**
 - **Megatron-LM**
 - GShard MoE

- Systems for Intra-op Parallelism
 - _ ZeRO
 - Mesh-Tensorflow
 - GSPMD
 - Tofu
 - FlexFlow

AlexNet

Result: increase top-1 accuracy by 1.7%

Assign a group convolution layer to 2 GPUs

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 'Imagenet classification with deep convolutional

Megaton-LM

Result: a large language model with 8.3B parameters that outperforms SOTA results

Figure 3 from the paper:

How to partition the MLP in the transformer.

Illustrated with the notations in this tutorial

all-reduce during forward

Combine Intra-op Parallelism and Inter-op Parallelism

Intra-operator Parallelism Summary

- We can parallelize a single operator by exploiting its internal parallelism
- To do this for a whole computational graph, we need to choose strategies for all nodes in the graph to minimize the communication cost
- . Intra-op and inter-op can be combined