0.1 Binary Operations

Definition: Identity

A binary structure (S,*) has an **identity** $e \in S$ if

$$e * x = x = x * e \quad \forall x \in S.$$

Definition: Inverse

If e is the identity for (S, *), then y is the **inverse** for x if

$$x * y = e = y * x.$$

Theorem

An identity is unique if it exists.

Proof

Suppose not, e and e' are both identities for (S, *).

$$e * e' = e'$$

$$e * e' = e$$

Hence e = e'

Theorem

Inverses if it exists it is unique if (S, *) is associative.

Proof

Suppose not, y and y' are both inverses for x.

$$(y*x)*y' = y*(x*y')$$
$$e*y' = y*e$$
$$y' = y$$

Example. $\{1, 2, 3, 4, 5, 6\}$ under \times_7 , inverse of 3? 5.

Definition: Binary operation

A binary operation of a set S is a function $*: S \times S \to S$

Example. $S = \mathbb{Z}, * = \text{subtraction}.$

Three things that could go wrong with binary operations (due to definition of function):

- \bullet not in S
- no ambiguity
- no gaps

How many binary operations are there on the $S = \{a, b, c\}$? 3^9 . In general, for an n-element set it is n^{n^2} .

Definition: Binary structure

A binary structure (S, *) is a set with a binary operations, *, on S.

Theorem

Composition of functions is associative.

Consider (\mathbb{C}, \emptyset) . Let's reduce this operation to \mathbb{Q} . If a * b is still in \mathbb{Q} , then * induces an operation on \mathbb{Q} .

Example. $(\mathbb{Z},+)$ integers under addition. It's closed for even numbers but not

for odd numbers.