DSP RESEARCH PRESENTATION

THE PROBLEM

Snippet of the actual route from Lohit to Library

REPRESENTATION

Representative Route

SENSORS

Sensor Locations

MEASUREMENT

Measurement are noisy!

BRIEF ON BAYES FILTER

WHY PARTICLE FILTERS?

APPLICATIONS

- 1. Localisations of Robots
- 2. Stock Trading
- 3. Tracking aircrafts and other locomotives (SDVs)

1. Multimodal - Multi Objects

- 1. Multimodal Multi Objects
- 2. Non Linear Behaviour No Linear Model Required!

- 1. Multimodal Multi Objects
- 2. Non Linear Behaviour No Linear Model Required!
- 3. Unknown Process Model Knowing process model is good but not necessary

- 1. Multimodal Multi Objects
- 2. Non Linear Behaviour No Linear Model Required!
- 3. Unknown Process Model Knowing process model is good but not necessary
- 4. Non Gaussian Noise Noise can be abrupt as well

- 1. Multimodal Multi Objects
- 2. Non Linear Behaviour No Linear Model Required!
- 3. Unknown Process Model Knowing process model is good but not necessary
- 4. Non Gaussian Noise Noise can be abrupt as well
- 5. Continous Measurement Can be continous

- 1. Multimodal Multi Objects
- 2. Non Linear Behaviour No Linear Model Required!
- 3. Unknown Process Model Knowing process model is good but not necessary
- 4. Non Gaussian Noise Noise can be abrupt as well
- 5. Continous Measurement Can be continous
- 6. Multivariate Many Properties can be tracked

- 1. Multimodal Multi Objects
- 2. Non Linear Behaviour No Linear Model Required!
- 3. Unknown Process Model Knowing process model is good but not necessary
- 4. Non Gaussian Noise Noise can be abrupt as well
- 5. Continous Measurement Can be continous
- 6. Multivariate Many Properties can be tracked
- 7. Occlusions Collisions can be accounted for

Steps Involved:

1. Generate Particles

- 1. Generate Particles
- 2. Predict Next State of the Particles

- 1. Generate Particles
- 2. Predict Next State of the Particles
- 3. Update Particles according to measurements

- 1. Generate Particles
- 2. Predict Next State of the Particles
- 3. Update Particles according to measurements
- 4. Resample Particles

- 1. Generate Particles
- 2. Predict Next State of the Particles
- 3. Update Particles according to measurements
- 4. Resample Particles
- 5. Compute Estimate

SIMULATIONS, BOTTLENECKS AND IMPROVEMENTS

SIMULATION RESULTS

Filter Degeneracy

- Filter Degeneracy
- Filter Divergence Noise of the sensor

- Filter Degeneracy
- Filter Divergence Noise of the sensor
- Computation Costs

Thanks!