Contents

1	Physikalische Größen und Einheiten	3
	1.1 Messunsicherheit Typ A	3
	1.2 Messunsicherheit Typ B	4
	1.2.1 Ermittlung des kombinierten Unsicherheit	4
2	Verschiebung, Geschwindigkeit und	
	Geschwindigkeitsbetrag	5
3	Gleichförmig beschleunigte Bewegung	6
4	Gleichmäßig beschleunigte Bewegung	7
5	Bewegung in zwei und drei Dimensionen	7
	5.1 Der schräge Wurf	9
6	Die Newtonschen Axiome	10
	6.1 Das erste Newtonsche Axiom: Das Trägheitsgesetz	10
	6.2 Das zweite Newtonsche Axiom	10
	6.3 Das dritte Newtonsche Axiom	11
7	Kontaktkräfte und weitere Arten von Kräften	12
	7.1 Trägheits- und Scheinkräfte	14
8	Der Massenmittelpunkt	15
9	Arbeit und kinetische Energie	17
10	Verrichtete Arbeit bei geradliniger Bewegung mit ortsal)-
	hängiger Kraft	19
11	Leistung	20
12	Energieerhaltung	21
12	Impuls and Impulsorbaltung	22

14	Stoßprozesse	23
	14.0.1 Gerader, zentraler, elastischer Stoß, zweite Kugel in Ruhe	24
		24
15	Drehbewegungen	25
	15.1 Die Kinetische Energie der Drehbewegung	27
16	Massenträgheitsmomente	2 8
17	Das zweite Newtonsche Axiom für Drehbewegungen	31
	17.1 Statisches Gleichgewicht	32
	17.2 Die kinetische Energie rollender Körper	33
18	Drehimpuls und Drehimpulserhaltung	34
19	Schwingungen	35
	19.1 Ungedämpfte, freie und harmonische Schwingungen	35
	19.2 Gedämpfte Schwingungen	38
	19.3 Energie des gedämpften Oszillators	39
	19.4 Güte	39
20	Wellen	40

1 Physikalische Größen und Einheiten

1.1 Messunsicherheit Typ A

Arithmetischer Mittelwert

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

 \bar{x} : Mittelwert der Messwerte [Einheit wie x_i], x_i : Einzelne Messwerte, N: Anzahl der Messungen

Standartabweichung eines Messwertes

$$\Delta x = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

 Δx : Standardabweichung [Einheit wie x_i], x_i : Einzelne Messwerte, \bar{x} : Mittelwert, N: Anzahl der Messwerte

Standartabweichung des Mittelwertes

$$\Delta \bar{x} = \frac{\Delta x}{\sqrt{N}}$$

 $\Delta \bar{x}$: Standardabweichung des Mittelwertes, Δx : Standardabweichung [Einheit wie x_i], N: Anzahl der Messwerte

Darstellung der Messgröße x

$$x_p = \bar{x} \pm t_p \cdot \Delta x$$

$$x_p = \bar{x} \pm U_a(x)$$

 x_p : Messgröße, \bar{x} : Mittelwert, t_p : Vertrauensfaktor, Δx : Standardabweichung, $U_a(x)$: erweiterte Unsicherheit

1.2 Messunsicherheit Typ B

Unsicherheiten, welche nicht durch Wiederholungsmessungen ermittelt werden.

Die Messunsicherheit ist angegeben

1.2.1 Ermittlung des kombinierten Unsicherheit

Wenn Typ A und Typ B vorliegen

$$U_{\text{mess}} = \sqrt{U_A^2(x) + U_{B_1}^2(x) + U_{B_2}^2(x) + \dots}$$

 U_{mess} : Gesamte kombinierte Unsicherheit, $U_A(x)$: Unsicherheit Typ A, $U_{B_i}(x)$: Unsicherheit Typ B

2 Verschiebung, Geschwindigkeit und Geschwindigkeitsbetrag

Verschiebung

$$\Delta x = x_E - x_A$$

 Δx : Verschiebung [m], x_E : Endposition [m], x_A : Anfangsposition [m]

Mittlere Geschwindigkeit

$$\bar{v}_x = \frac{\Delta x}{\Delta t}$$

 $\bar{v_x}$: Mittlere Geschwindigkeit [m/s], Δx : Weg [m], Δt : Zeitintervall [s]

Momentangeschwindigkeit

$$v_x = \frac{x}{t} = \dot{x}(t)$$

 v_x : Momentangeschwindigkeit [m/s], x: Position [m], t: Zeit [s], $\dot{x}(t)$: Ableitung von x(t) nach der Zeit

3 Gleichförmig beschleunigte Bewegung

Der mittlere Geschwindigkeitsbetrag (speed) \bar{v}_x ist definiert als zurückgelegte Strecke s geteilt durch die benötigte Zeit Δt :

$$\bar{v}_x = \frac{s}{\Delta t}$$

 \bar{v}_x : Mittlere Geschwindigkeit [m/s], s: Strecke [m], Δt : Zeitintervall [s]

Die mittlere Beschleunigung \bar{a}_x ist definiert als Änderung der Geschwindigkeit v_x pro Zeiteinheit Δt :

$$\bar{a}_x = \frac{v_{xE} - v_{xA}}{\Delta t}$$

 \bar{a}_x : Mittlere Beschleunigung [m/s²], v_{xE} : Endgeschwindigkeit [m/s], v_{xA} : An-fangsgeschwindigkeit [m/s], Δt : Zeit [s]

4 Gleichmäßig beschleunigte Bewegung

$$x(t) = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$$
$$v_x(t) = v_{x0} + a_xt$$
$$a_x(t) = a_x$$

x(t): Position zur Zeit t [m], x_0 : Anfangsposition [m], v_{x0} : Anfangsgeschwindigkeit [m/s], a_x : konstante Beschleunigung [m/s^2], t: Zeit [s]

5 Bewegung in zwei und drei Dimensionen

$$r(t) = x(t)\vec{e_x} + y(t)\vec{e_y}$$
$$= \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

r(t): Ortsvektor [m], x(t), y(t): Komponenten der Position [m], $\vec{e_x}, \vec{e_y}$: Einheitsvektoren

$$\Delta \vec{r}(t) = \vec{r_E}(t) - \vec{r_A}(t)$$
$$= \begin{pmatrix} x_E(t) - x_A(t) \\ y_E(t) - y_A(t) \end{pmatrix}$$

 $\Delta \vec{r}(t)$: Verschiebungsvektor [m], $\vec{r_E}(t)$: Endposition, $\vec{r_A}(t)$: Anfangsposition

Mittlere Geschwindigkeit

$$\vec{v} = \frac{\Delta \vec{r}}{\Delta t}$$

 \vec{v} : Mittlere Geschwindigkeit [m/s], $\Delta \vec{r}$: Verschiebung [m], Δt : Zeitintervall [s]

$$\vec{r}(t) = x(t)\vec{e_x} + y(t)\vec{e_y} + z(t)\vec{e_z}$$
$$= \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$

z.B.

$$\vec{r}(t) = \begin{pmatrix} x_0 + v_{x0}t + \frac{1}{2}a_xt^2 \\ y_0 + v_{y0}t + \frac{1}{2}a_yt^2 \\ z_0 + v_{z0}t + \frac{1}{2}a_zt^2 \end{pmatrix}$$

 $\vec{r}(t)$: Ortsvektor [m], x_0, y_0, z_0 : Anfangskoordinaten [m], v_{x0}, v_{y0}, v_{z0} : Anfangsgeschwindigkeiten [m/s], a_x, a_y, a_z : Beschleunigungen $[m/s^2]$, t: Zeit [s]

5.1 Der schräge Wurf

$$\vec{r}(t) = \begin{pmatrix} v_0 \cdot \cos \alpha \cdot t \\ y_0 + v_0 \sin \alpha \cdot t - \frac{1}{2} \cdot g \cdot t^2 \end{pmatrix} = \begin{pmatrix} v_{x0}t \\ y_0 + v_{y0}t - \frac{1}{2}gt^2 \end{pmatrix}$$

 $\vec{r}(t)$: Ortsvektor [m], v_0 : Anfangsgeschwindigkeit [m/s], α : Abwurfwinkel, g: Erdbeschleunigung [m/s²], t: Zeit [s], y_0 : Anfangshöhe [m]

$$y(t) = y_0 + v_0 \sin \alpha \cdot t - \frac{1}{2}gt^2$$

y(t): Höhe zur Zeit t [m], y_0 : Anfangshöhe [m], v_0 : Anfangsgeschwindigkeit [m/s], α : Winkel, g: Erdbeschleunigung [m/s^2], t: Zeit [s]

$$y(x) = y_0 + v_0 \sin \alpha \cdot \frac{x}{v_0 \cos \alpha} - \frac{1}{2} g \left(\frac{x}{v_0 \cos \alpha} \right)^2$$

y(x): Höhe in Abhängigkeit vom horizontalen Ort x [m], y_0 : Anfangshöhe [m], v_0 : Anfangsgeschwindigkeit [m/s], α : Winkel, g: Erdbeschleunigung [m/s²], x: horizontale Entfernung [m]

6 Die Newtonschen Axiome

$$F = m \cdot a$$

 $F: Kraft [N], m: Masse [kg], a: Beschleunigung [m/s^2]$

6.1 Das erste Newtonsche Axiom: Das Trägheitsgesetz

$$\vec{a} = 0$$
 falls $\vec{F} = 0$

 \vec{a} : Beschleunigung [m/s²], \vec{F} : resultierende Kraft [N]

6.2 Das zweite Newtonsche Axiom

(lex secunda oder Aktionsprinzip). Die zeitliche Änderung des Impulses ist gleich der resultierenden Kraft, die auf einen Körper wirkt.

Impuls

$$\vec{p} = m \cdot \vec{v}$$

 \vec{p} : Impuls [kg·m/s], m: Masse [kg], \vec{v} : Geschwindigkeit [m/s]

$$\sum_{i} \vec{F}_{i} = m \cdot \vec{a}$$

 $\sum_i \vec{F}_i$: Summe der Kräfte auf einen Körper [N], m
: Masse [kg], \vec{a} : Beschleunigung [m/s²]

$$m = \frac{m_{\text{Ruhe}}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

m: relativistische Masse [kg], m_{Ruhe} : Ruhemasse [kg], v: Geschwindigkeit [m/s], c: Lichtgeschwindigkeit [m/s]

Gravitationskraft

$$F_G = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

 F_G : Gravitationskraft [N], G: Gravitationskonstante [$m^3/kg \cdot s^2$], m_1, m_2 : Massen der Körper [kg], r: Abstand [m]

6.3 Das dritte Newtonsche Axiom

$$\vec{F}_{12}=-\vec{F}_{21}$$

 \vec{F}_{12} : Kraft von Körper 1 auf 2 [N], \vec{F}_{21} : Gegenkraft von 2 auf 1 [N]

7 Kontaktkräfte und weitere Arten von Kräften

Gewichtskraft F_G

$$F_G = m \cdot g$$

 F_G : Gewichtskraft [N], m: Masse [kg], g: Erdbeschleunigung [m/s²]

Normalkraft F_N (Immer senkrecht zum Untergrund)

$$F_N = F_G$$

 F_N : Normalkraft [N], F_G : Gewichtskraft [N]

Reibungskraft F_R

$$F_R = \mu \cdot F_N$$

 F_R : Reibungskraft [N], μ : Reibungskoeffizient, F_N : Normalkraft [N]

Hangabtriebskraft F_H

$$F_H = m \cdot g \cdot \sin \alpha$$

 F_N wird kleiner

$$F_N = m \cdot g \cdot \cos \alpha$$

 F_H : Hangabtriebskraft [N], F_N : Normalkraft [N], m: Masse [kg], g: Erdbeschleunigung $\lceil m/s^2 \rceil$, α : Neigungswinkel

Federkraft

$$F_{\text{Zug}} = K_F \cdot x$$
$$F_{\text{Feder}} = -K_F \cdot x$$

 F_{Zug} : Zugkraft an der Feder [N], F_{Feder} : Rückstellkraft der Feder [N], K_F : Federkonstante [N/m], x: Auslenkung [m]

Zentripetalkraft \vec{F}_{ZP}

$$\vec{F}_{ZP} = -m \cdot \omega^2 \cdot \vec{r} = \frac{m \cdot v^2}{r}$$

 \vec{F}_{ZP} : Zentripetalkraft [N], m: Masse [kg], ω : Winkelgeschwindigkeit [rad/s], \vec{r} : Radiusvektor [m], v: Bahngeschwindigkeit [m/s]

Luftwiderstandskraft

$$F_W = \frac{1}{2}c_W \cdot \rho \cdot A \cdot v^2$$

Vereinfacht

$$F_W = b \cdot v^2$$

 F_W : Luftwiderstand [N], c_W : Widerstandsbeiwert, ρ : Dichte der Luft [kg/m³], A: Querschnittsfläche [m²], v: Geschwindigkeit [m/s], b: Reibungskoeffizient [kg/m]

7.1 Trägheits- und Scheinkräfte

Trägheitskraft

$$\vec{F}_T = -m \cdot \vec{a}_B$$

 \vec{F}_T : Trägheitskraft [N], m: Masse [kg], \vec{a}_B : Beschleunigung des Bezugssystems $[m/s^2]$

Zentrifugalkraft

$$\vec{F}_{ZF} = m \cdot \omega^2 \cdot \vec{r} = -\vec{F}_{ZP}$$

 \vec{F}_{ZF} : Zentrifugalkraft [N], m: Masse [kg], ω : Winkelgeschwindigkeit [rad/s], \vec{r} : Radiusvektor [m]

Corioliskraft

$$\vec{F}_{\text{Cor}} = 2m \, \vec{v} \times \vec{\omega} = 2m \, ||\vec{v}|| \, ||\vec{\omega}|| \sin(\vec{v}; \vec{\omega})$$
$$\vec{a}_{\text{Cor}} = 2 \cdot \vec{v}_0 \times \vec{\omega}$$

 \vec{F}_{Cor} : Corioliskraft [N], m: Masse [kg], \vec{v} : Geschwindigkeit [m/s], $\vec{\omega}$: Winkelgeschwindigkeit [rad/s]

8 Der Massenmittelpunkt

Drehmoment \vec{M}

$$\vec{M} = r \cdot \vec{F}$$

 \vec{M} : Drehmoment [Nm], r: Hebelarm [m], \vec{F} : angreifende Kraft [N]

Statisches Problem

$$\sum F_i = 0$$

$$\sum M_i = 0$$

 $\sum F_i$: Summe aller Kräfte [N], $\sum M_i$: Summe aller Momente [Nm]

Massenmittelpunkt X_s bei 2 Teilchen

$$X_s = \frac{X_1 \cdot m_1 + X_2 \cdot m_2}{m_1 + m_2}$$

 X_s : Schwerpunkt [m], X_1, X_2 : Positionen der Massen [m], m_1, m_2 : Massen [kg]

Für n Teilchen gilt

$$X_S = \frac{1}{m_{\rm ges}} \sum m_i \cdot \vec{r_i}$$

 X_S : Massenmittelpunkt [m], m_i : Masse des Teilchens [kg], $\vec{r_i}$: Ort des Teilchens [m], m_{ges} : Gesamtmasse [kg]

Für ∞ Teilchen gilt

$$X_S = \frac{1}{m_{\rm ges}} \int \vec{r} \, dm$$

 X_S : Massenmittelpunkt [m], \vec{r} : Ortselement [m], m_{ges} : Gesamtmasse [kg]

9 Arbeit und kinetische Energie

$$W = \vec{F} \cdot \vec{s} = |\vec{F}| \cdot |\vec{s}| \cdot \cos(\vec{F}; \vec{s})$$

W: Arbeit [J], \vec{F} : Kraft [N], \vec{s} : Weg [m], $\cos(\vec{F}; \vec{s})$: Winkel zwischen Kraft und Weg

Reibungsarbeit W_r

$$W_r = F_r \cdot \Delta x = \mu F_N \cdot \Delta x$$

 W_r : Reibungsarbeit [J], F_r : Reibungskraft [N], μ : Reibungskoeffizient, F_N : Normalkraft [N], Δx : Weg [m]

Hubarbeit W_H

$$W_H = m \cdot g \cdot h$$
$$E_{\text{Pot}} = W_{\text{Pot}} = mgh$$

 W_H : Hubarbeit [J], E_{Pot} : Potentielle Energie [J], m: Masse [kg], g: Erdbeschleunigung [m/s^2], h: Höhe [m]

Beschleunigungsarbeit W_B

$$W_B = F_B \cdot \Delta x = m \cdot a \cdot \Delta x = \frac{1}{2}mv^2$$

 W_B : Beschleunigungsarbeit [J], F_B : Beschleunigende Kraft [N], Δx : Weg [m], m: Masse [kg], a: Beschleunigung [m/s²], v: Geschwindigkeit [m/s]

Gesamtenergie bei geschlossenen Wegen (konservative Kräfte)

$$W_{\rm ges} = 0 = \oint \vec{F} \cdot d\vec{s}$$

 $W_{ges}\colon$ Gesamtarbeit über geschlossene Bahn [J], $\vec{F}\colon$ Kraft [N], d $\vec{s}\colon$ Wegdifferenzial [m]

10 Verrichtete Arbeit bei geradliniger Bewegung mit ortsabhängiger Kraft

Einzelne Teilmengen

$$dW_i = F_i \cdot ds_i$$

 dW_i : Infinitesimale Arbeit [J], F_i : Kraft entlang des Wegs [N], ds_i : Wegdifferenzial [m]

Gesamte Arbeit zwischen S_1 und S_2

$$W = \int_{S_1}^{S_2} F(s) \, ds$$

W: Arbeit [J], F(s): ortsabhängige Kraft [N], s: Weg [m]

11 Leistung

Die Energie
änderung eines Körpers pro Zeiteinheit heißt Leistung
 ${\cal P}$

$$\begin{split} P &= \frac{\text{Verrichtete Arbeit}}{\text{Zeit}} = \vec{F} \cdot \vec{v} \\ dW &= \vec{F} \cdot d\vec{s} = \vec{F} \cdot \vec{v} \cdot dt \\ \frac{dW}{dt} &= \vec{F} \cdot \vec{v} = P \end{split}$$

P: Leistung [W], $\vec{F}:$ Kraft [N], $\vec{v}:$ Geschwindigkeit [m/s], t: Zeit [s]

12 Energieerhaltung

Allgemeiner Energieerhaltungssatz:

$$E_{\text{ges}} = E_{\text{mech}} + E_{\text{wärme}} + E_{\text{chem}} + E_{\text{andere}} = \text{konstant}$$

Mechanischer Energieerhaltungssatz:

$$E_{\text{ges}} = \sum_{i=1}^{n} E_{\text{Pot},i} + \sum_{i=1}^{n} E_{\text{Kin},i} = \text{konstant}, \text{ wenn } \vec{F}_{\text{ext}} = 0$$

$$E_{\text{Pot}} = m \cdot g \cdot h$$

$$E_{\text{Kin}} = \frac{1}{2} \cdot m \cdot v^{2}$$

 E_{ges} : Gesamte mechanische Energie [J], E_{Pot} : Potentielle Energie [J], E_{Kin} : Kinetische Energie [J], m: Masse [kg], g: Erdbeschleunigung [m/s^2], h: Höhe [m], v: Geschwindigkeit [m/s]

13 Impuls und Impulserhaltung

Der Impuls \vec{p} einer Masse ist definiert als das Produkt aus der Masse m und ihrer Geschwindigkeit \vec{v} :

$$\vec{p} = m \cdot \vec{v}$$

 \vec{p} : Impuls [kg·m/s], m: Masse [kg], \vec{v} : Geschwindigkeit [m/s]

Impulserhaltungssatz:

$$\vec{p}_{\text{ges}} = \sum_{i} m_i \cdot \vec{v}_i = \text{konstant}, \text{ wenn } \vec{F}_{\text{ext}} = 0$$

 \vec{p}_{ges} : Gesamtimpuls [kg·m/s], m_i : Massen [kg], \vec{v}_i : Geschwindigkeiten [m/s], \vec{F}_{ext} : äußere Kraft [N]

14 Stoßprozesse

Elastischer Stoß:

$$\sum_{i} \frac{1}{2} m_{i} v_{i,\text{vor}}^{2} = \sum_{i} \frac{1}{2} m_{i} v_{i,\text{nach}}^{2}$$

 m_i : Masse [kg], $v_{i,vor}$: Geschwindigkeit vor dem Stoß [m/s], $v_{i,nach}$: Geschwindigkeit nach dem Stoß [m/s]

Inelastischer Stoß:

$$\sum_{i} \frac{1}{2} m_i v_{i,\text{vor}}^2 = \sum_{i} \frac{1}{2} m_i v_{i,\text{nach}}^2 + \Delta W$$

 ΔW : Energieverlust [J], Rest wie oben

Vollständig inelastischer Stoß:

$$\sum_{i} \frac{1}{2} m_i v_{i,\text{vor}}^2 = \Delta W$$

Alle kinetische Energie geht in andere Energieformen über (z. B. Wärme, Verformung)

14.0.1 Gerader, zentraler, elastischer Stoß, zweite Kugel in Ruhe

Impulserhaltung:

$$m_1 \vec{v}_1 + m_2 \vec{v}_2 = m_1 \vec{v}_1' + m_2 \vec{v}_2'$$

 m_1, m_2 : Massen [kg], \vec{v}_1, \vec{v}_2 : Geschwindigkeiten vor dem Stoß [m/s], \vec{v}_1', \vec{v}_2' : Geschwindigkeiten danach [m/s]

Energieerhaltung:

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1{v_1'}^2 + \frac{1}{2}m_2{v_2'}^2$$

Kinetische Energie vor und nach dem Stoß ist gleich (elastischer Stoß)

Geschwindigkeiten nach dem Stoß:

$$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$$

$$v_2' = \frac{(m_2 - m_1)v_2 + 2m_1v_1}{m_1 + m_2}$$

 v_1', v_2' : Endgeschwindigkeiten nach dem Stoß [m/s], m_1, m_2 : Massen [kg], v_1, v_2 : Anfangsgeschwindigkeiten [m/s]

15 Drehbewegungen

Die Länge eines Kreisbogens s ergibt sich aus dem Zusammenhang:

$$s = r \cdot \varphi$$

s: Kreisbogenlänge [m], r: Radius [m], φ : Winkel im Bogenmaß [rad]

Winkelgeschwindigkeit (Änderung des Drehwinkels pro Zeit)

$$\omega = \frac{d\varphi(t)}{dt}$$
 mit $[\omega] = \text{rad/s}$

 ω : Winkelgeschwindigkeit [rad/s], $\varphi(t)$: Winkel [rad], t: Zeit [s]

Winkelbeschleunigung (Änderung der Winkelgeschwindigkeit pro Zeit)

$$\alpha = \frac{d^2 \varphi(t)}{dt^2} = \frac{d\omega(t)}{dt}$$
 mit $[\alpha] = \text{rad/s}^2$

 α : Winkelbeschleunigung [rad/s²], $\omega(t)$: Winkelgeschwindigkeit [rad/s], $\varphi(t)$: Winkel [rad]

Bahngeschwindigkeit

$$v_t = r \cdot \omega$$

 $v_t \colon \textit{Bahngeschwindigkeit [m/s], r: Radius [m], } \omega \colon \textit{Winkelgeschwindigkeit [rad/s]}$

Tangentialbeschleunigung

$$a_t = r \cdot \alpha$$

 a_t : Tangentialbeschleunigung [m/s²], r: Radius [m], α : Winkelbeschleunigung [rad/s²]

Zentripetalbeschleunigung

$$a_n = -r \cdot \omega^2 = -\frac{v_t^2}{r}$$

 a_n : Zentripetalbeschleunigung $[m/s^2]$, r: Radius [m], ω : Winkelgeschwindigkeit [rad/s], v_t : Bahngeschwindigkeit [m/s]

Grundformeln

$$\varphi(t) = \varphi_0 + \omega t + \frac{1}{2}\alpha t^2$$
$$\omega(t) = \omega_0 + \alpha t$$
$$\alpha(t) = \alpha$$

 $\varphi(t)$: Winkel [rad], φ_0 : Anfangswinkel [rad], ω : Anfangswinkelgeschwindigkeit [rad/s], α : konstante Winkelbeschleunigung [rad/s²], t: Zeit [s]

$$\omega^2 = \omega_0^2 + 2\alpha\Delta\varphi$$

$$\omega = 2\pi f = \frac{2\pi}{T}$$

$$P = M \cdot \omega$$

 ω : Winkelgeschwindigkeit [rad/s], ω_0 : Anfangswinkelgeschwindigkeit [rad/s], α : Winkelbeschleunigung [rad/s²], $\Delta\varphi$: Winkeländerung [rad], f: Frequenz [Hz], T: Periodendauer [s], P: Leistung [W], M: Drehmoment [Nm]

15.1 Die Kinetische Energie der Drehbewegung

$$E_{\rm kin} = \sum_{i} \frac{1}{2} m_i r_i^2 \cdot \omega^2 = \frac{1}{2} I \omega^2$$

 E_{kin} : Rotationsenergie [J], m_i : Masse [kg], r_i : Abstand zur Drehachse [m], ω : Winkelgeschwindigkeit [rad/s], I: Trägheitsmoment [kg·m²]

16 Massenträgheitsmomente

Massenträgheitsmoment

$$I = \sum \frac{1}{2} m_i r_i^2$$

$$I_{\text{ges}} = \sum_{i} I_{i}$$

I: Trägheitsmoment eines Körpers $[kg \cdot m^2]$, m_i : Masse [kg], r_i : Abstand zur Drehachse [m]

Kontinuierliche Masseverteilungen

$$I = \int r^2 \, dm$$

 $I: Tr\"{a}gheitsmoment [kg \cdot m^2], r: Abstand zur Drehachse [m], dm: infinitesimale Masse [kg]$

Massiver, homogener Zylinder (Masse m; Radius r_a)

$$I = \frac{1}{2}m \cdot r_a^2$$

I: Trägheitsmoment [$kg \cdot m^2$], m: Masse [kg], r_a : Außenradius [m]

Hohlzylinder (Masse m; Innenradius r_i ; Außenradius r_a)

$$I = \frac{1}{2}m \cdot (r_a^2 + r_i^2)$$

I: Trägheitsmoment [$kg \cdot m^2$], m: Masse [kg], r_a : Außenradius [m], r_i : Innenradius [m]

Dünnwandiger, hohler Zylinder (Radius r_a)

$$I = m \cdot r_a^2$$

I: Trägheitsmoment [$kg \cdot m^2$], m: Masse [kg], r_a : Radius [m]

Dünner Stab (Länge l; durch die Mitte gedreht)

$$I = \frac{1}{12}m \cdot l^2$$

I: Trägheitsmoment [kg·m²], m: Masse [kg], l: Länge [m]

Dünner Stab (Drehachse durch das Ende)

$$I = \frac{1}{3}m \cdot l^2$$

I: Trägheitsmoment $\lceil kg \cdot m^2 \rceil$, m: Masse $\lceil kg \rceil$, l: Länge $\lceil m \rceil$

Bei versetzter Drehachse

$$E_{\text{kin}} = \frac{1}{2}I_s\omega^2 + \frac{1}{2}mr^2\omega^2 = \frac{1}{2}(I_s + mr^2)\omega^2$$

Steiner

$$I_p = I_s + mr^2$$

 E_{kin} : Kinetische Energie der Rotation [J], I_s : Trägheitsmoment um Schwerpunktachse [kg·m²], I_p : Trägheitsmoment um Parallelachse [kg·m²], m: Masse [kg], r: Abstand der Achsen [m], ω : Winkelgeschwindigkeit [rad/s]

17 Das zweite Newtonsche Axiom für Drehbewegungen

$$\vec{M} = I \cdot \vec{\alpha}$$

 \vec{M} : Drehmoment [Nm], I: Trägheitsmoment [kg·m²], $\vec{\alpha}$: Winkelbeschleunigung [rad/s²]

Drehmoment über Kreuzprodukt

$$\vec{M} = \vec{r} \times \vec{F}$$

 \vec{M} : Drehmoment [Nm], \vec{r} : Hebelarm [m], \vec{F} : Kraft [N]

Tangentialbeschleunigung

$$a_t = \vec{\alpha} \cdot \vec{r} \quad \Rightarrow \quad \vec{F} = m \cdot \vec{\alpha} \times \vec{r}$$

 a_t : Tangentialbeschleunigung $[m/s^2]$, $\vec{\alpha}$: Winkelbeschleunigung $[rad/s^2]$, \vec{r} : Radiusvektor [m], \vec{F} : Kraft [N], m: Masse [kg]

17.1 Statisches Gleichgewicht

$$\vec{F} = m \cdot \vec{a} = 0$$

$$\vec{M} = I \cdot \vec{\alpha} = 0$$

 $Statische \ Bedingungen: \ keine \ Beschleunigung, \ keine \ Winkelbeschleunigung.$ Kräfte- und Momentengleichgewicht.

 \vec{F} : resultierende Kraft [N], \vec{a} : Beschleunigung [m/s²], \vec{M} : Drehmoment [Nm],

 $\vec{\alpha}$: Winkelbeschleunigung [rad/s²]

17.2 Die kinetische Energie rollender Körper

$$E_{\rm kin} = \frac{1}{2}I_S\omega^2 + \frac{1}{2}mv_S^2$$

 E_{kin} : Gesamtenergie [J], I_S : Trägheitsmoment um Schwerpunkt [$kg \cdot m^2$], ω : Winkelgeschwindigkeit [rad/s], m: Masse [kg], v_S : Schwerpunktsgeschwindigkeit [m/s]

Vollzylinder auf schiefer Ebene (Neigung β):

$$E_{\rm pot} = E_{\rm kin}$$

Geschwindigkeit nach Strecke x:

$$v_x^2 = \frac{4}{3}g \cdot x \cdot \sin \beta$$

Beschleunigung:

$$a = \frac{2}{3}g \cdot \sin \beta$$

 E_{pot} : Potentielle Energie [J], v_x : Geschwindigkeit [m/s], g: Erdbeschleunigung [m/s²], x: zurückgelegte Strecke [m], β : Neigungswinkel [rad], a: Beschleunigung [m/s²]

18 Drehimpuls und Drehimpulserhaltung

Drehimpuls

$$\begin{split} L &= I \cdot \omega = \vec{r} \times \vec{p} \\ \vec{L}_{\rm ges} &= \vec{L}_{\rm Bahn} + \vec{L}_{\rm Spin} = m \cdot \vec{r}_S \times \vec{v}_S + \vec{L}_{\rm Spin} \end{split}$$

L: Drehimpuls $[kg \cdot m^2/s]$, I: Trägheitsmoment $[kg \cdot m^2]$, ω : Winkelgeschwindigkeit [rad/s], \vec{r} : Ort [m], \vec{p} : Impuls $[kg \cdot m/s]$, \vec{v}_S : Geschwindigkeit Schwerpunkt [m/s]

Drehimpulserhaltung

$$\vec{L}_{\mathrm{ges}} = \sum_{i} I_{i} \cdot \omega_{i} = \mathrm{konstant}, \quad \mathrm{wenn} \ \vec{M}_{\mathrm{ges}} = 0$$

 \vec{L}_{ges} : Gesamtdrehimpuls [kg·m²/s], \vec{M}_{ges} : Summe der äußeren Drehmomente [Nm]

19 Schwingungen

19.1 Ungedämpfte, freie und harmonische Schwingungen

Auslenkung, Geschwindigkeit, Beschleunigung

$$y(t) = A \cdot \cos(\omega_0 t + \delta)$$

$$v(t) = -\omega_0 A \cdot \sin(\omega_0 t + \delta)$$

$$a(t) = -\omega_0^2 A \cdot \cos(\omega_0 t + \delta)$$

y(t): Auslenkung [m], v(t): Geschwindigkeit [m/s], a(t): Beschleunigung [m/s²], A: Amplitude [m], ω_0 : Kreisfrequenz [rad/s], δ : Phasenverschiebung [rad], t: Zeit [s]

Kreisfrequenz

$$\omega_0 = 2\pi f_0 = \frac{2\pi}{T_0} = \sqrt{\frac{k_F}{m}}$$

 ω_0 : Kreisfrequenz [rad/s], f_0 : Frequenz [Hz], T_0 : Periodendauer [s], k_F : Federkonstante [N/m], m: Masse [kg]

Energie des harmonischen Oszillators

$$E_{\rm mech} = \frac{1}{2}k_F \cdot A^2$$

 E_{mech} : Mechanische Energie [J], k_F : Federkonstante [N/m], A: Amplitude [m]

Vertikaler Federschwinger

$$\omega_0 = \sqrt{\frac{k_F}{m}}$$

 ω_0 : Kreisfrequenz [rad/s], k_F : Federkonstante [N/m], m: Masse [kg]

Mathematisches Pendel

$$\ddot{\theta}(t) + \frac{g}{l}\sin\theta(t) = 0$$

Linearisiert:

$$\ddot{\theta}(t) + \frac{g}{l}\theta(t) = 0$$

$$\omega_0 = \sqrt{\frac{g}{l}}$$

 $\theta(t)$: Winkel [rad], g: Erdbeschleunigung [m/s²], l: Pendellänge [m], ω_0 : Kreisfrequenz [rad/s]

Drehpendel / Torsionspendel

$$\ddot{\theta}(t) + \frac{\kappa}{I}\theta(t) = 0 \quad \Rightarrow \quad \omega_0 = \sqrt{\frac{\kappa}{I}}$$

 $\theta(t)$: Auslenkwinkel [rad], κ : Drehfederkonstante [Nm], I: Trägheitsmoment [kg·m²]

Physikalisches Pendel

$$\ddot{\theta}(t) + \frac{smg}{I_p}\sin\theta(t) = 0 \quad \Rightarrow \quad \omega_0 = \sqrt{\frac{smg}{I_p}}$$

 $\theta(t)$: Winkel [rad], s: Abstand zur Drehachse [m], m: Masse [kg], g: Erdbeschleunigung [m/s²], I_p : Trägheitsmoment bezogen auf Drehachse [kg·m²]

Elastischer Schwingkreis

$$\ddot{Q}(t) + \frac{1}{LC}Q(t) = 0 \quad \Rightarrow \quad \omega_0 = \sqrt{\frac{1}{LC}}$$

Q(t): Ladung [C], L: Induktivität [H], C: Kapazität [F], ω_0 : Kreisfrequenz [rad/s]

19.2 Gedämpfte Schwingungen

DGL für Feder-Masse-Dämpfungssystem:

$$\ddot{y}(t) + 2\delta \dot{y}(t) + \omega_0^2 y(t) = 0 \quad \text{mit } 2\delta = \frac{b}{m}$$

y(t): Auslenkung [m], δ : Abklingkonstante [1/s], b: Dämpfungskonstante [kg/s], m: Masse [kg], ω_0 : ungedämpfte Kreisfrequenz [rad/s]

Dämpfungsgrad

$$D = \frac{\delta}{\omega_0}$$

D: Dämpfungsgrad, δ : Abklingkonstante [1/s], ω_0 : Kreisfrequenz [rad/s]

Lösung der charakteristischen Gleichung

$$\lambda_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega_0^2}$$

 λ : Eigenwerte, δ : Abklingkonstante [1/s], ω_0 : Kreisfrequenz [rad/s]

19.3 Energie des gedämpften Oszillators

Schwach gedämpft (Näherung $\omega_d \approx \omega_0$):

$$E_{\rm mech} = \frac{1}{2}m \cdot \omega_0^2 \cdot A^2$$

 E_{mech} : Energie [J], m: Masse [kg], ω_0 : Kreisfrequenz [rad/s], A: Amplitude [m]

Stärker gedämpft:

$$E_{\rm mech} = \frac{1}{2}m \cdot \omega_d^2 \cdot A^2$$

 ω_d : gedämpfte Eigenfrequenz [rad/s]

19.4 Güte

Gütefaktor

$$Q = \frac{1}{2D} = \omega_0 \cdot \frac{m}{b}$$

Q: Gütefaktor, D: Dämpfungsgrad, ω_0 : Kreisfrequenz [rad/s], m: Masse [kg], b: Dämpfungskonstante [kg/s]

20 Wellen

Eindimensionale Wellengleichung

$$\frac{\partial^2 y(z,t)}{\partial t^2} = \frac{F_s}{A\rho} \cdot \frac{\partial^2 y(z,t)}{\partial z^2}$$

y(z,t): Auslenkung [m], F_s : Zugkraft [N], A: Querschnittsfläche [m^2], ρ : Dichte [kg/m^3]

Harmonische Wellenfunktion

$$y(z,t) = A \cdot \cos(\omega t - kz + \delta)$$

$$k = \frac{2\pi}{\lambda}, \quad c = \frac{\lambda}{T} = \frac{\omega}{k} = \nu \cdot \lambda$$

y(z,t): Auslenkung [m], A: Amplitude [m], ω : Kreisfrequenz [rad/s], k: Wellenzahl [rad/m], δ : Phase [rad], λ : Wellenlänge [m], T: Periodendauer [s], ν : Frequenz [Hz], c: Ausbreitungsgeschwindigkeit [m/s]