

Attention Please!

Patrick Michl <patrick.michl@gmail.com>

Attention Mechanisms in Neural Networks

Attention Please!

Patrick Michl <patrick.michl@gmail.com>

Attention Mechanisms in Neural Networks

"Any sufficiently advanced technology is indistinguishable from magic."

Arthur C. Clarke in *Profiles of the Future* (1962)

```
1 def max_sum_slice(xs):
2  max_ending = max_so_far = 0
3
4
5
```


Attention Please!

Patrick Michl <patrick.michl@gmail.com>

Attention Mechanisms in Neural Networks

"Any sufficiently advanced technology is indistinguishable from magic."

1 def max_sum_slice(xs):
2 max_ending = max_so_far = 0
3 for x in xs:
4 max_ending = max(0, max_ending + x)
5 max_so_far = max(max_so_far, max_ending)
6 return max_so_far

Copilot from OpenAI / GitHub (2022)

Arthur C. Clarke in *Profiles of the Future* (1962)

Attention Please!

Patrick Michl <patrick.michl@gmail.com>

Attention Mechanisms in Neural Networks

Milestones in Attention Research

Visual Attention in **Human Perception**

Visual attention in human perception is based on **selection** and recognition

Image source: John Henderson and Taylor Hayes, UC Davis

Spatial

Raw Data

Convolutional Features

Encoder: RNN

Decoder: RNN

Encoder: RNN

Sequence of hidden states encodes the context building stack

Decoder: RNN

Encoder

Encoder: RNN

Sequence of hidden states encodes the context building stack

Decoder: RNN

Global Attention

allows to recover the context

of current outputs

Decoder

Encoder: RNN

Sequence of hidden states encodes the context building stack

Decoder: RNN

Global Attention

allows to recover the context

of current outputs

Multi-Step Attention in Natural Language Processing

Encoder: CNN

Decoder: CNN

Multi-Step Attention in Natural Language Processing

Encoder: CNN

Sequence of convolutional features encodes the context building stack

Decoder: CNN

Multi-Step Attention in Natural Language Processing

Encoder: CNN

Sequence of convolutional features encodes the context building stack

Decoder: CNN

Multi-Step Attention allows to recover the current context of current deconvolutional steps

Encoder: Stacked ANN

Decoder: Stacked ANN

Encoder: Stacked ANN

Sequence of hidden features captures the encoder context building stack

Decoder: Stacked ANN

Encoder: Stacked ANN

Sequence of hidden features captures the encoder context building stack

Decoder: Stacked ANN

Multi-Step Attention unrolls

the context stack to the

decoder

Encoder: Stacked ANN

Sequence of hidden features captures the encoder context building stack

Decoder: Stacked ANN

Multi-Step Attention unrolls the context stack to the decoder

Self-attention aggregates context dependencies within the inputs

#1

Human Perception is based on the dynamics between *selection* and *recognition*

#2

Attention machanisms immitate this behaviour by using intermediate states, that entangle *context* with *semantic* information

#3

The incorporation of context provides dynamic features that are context specific and therefore improve the model perfomance

#4

After all - attention mechanisms can also help to understand the decisions of deep networks

#1

Human Perception is based on the dynamics between *selection* and *recognition*

#2

Attention machanisms immitate this behaviour by using intermediate states, that entangle *context* with *semantic* information

#3

The incorporation of context provides dynamic features that are context specific and therefore improve the model perfomance

#4

After all - attention mechanisms can also help to understand the decisions of deep networks

#1

Human Perception is based on the dynamics between *selection* and *recognition*

#2

Attention machanisms immitate this behaviour by using intermediate states, that entangle *context* with *semantic* information

#3

The incorporation of context provides **dynamic features** that are context specific and therefore improve the model perfomance

#4

After all - attention mechanisms can also help to understand the decisions of deep networks

#1

Human Perception is based on the dynamics between *selection* and *recognition*

#2

Attention machanisms immitate this behaviour by using intermediate states, that entangle *context* with *semantic* information

#3

The incorporation of context provides **dynamic features** that are context specific and therefore improve the model perfomance

#4

After all - attention mechanisms can also help to **understand the decisions** of deep networks

Thank you for your attention!

