MATH 7343 Applied Statistics

Prof. (Aidong) Adam Ding

Review

• Last time, we finished Module 10 the contingency tables.

• Today we cover the next Module 11 Multiple contingency tables (Chapter 16 of textbook)

Odds and Odds Ratio

- We first introduce two terms to formula the question.
- For a Bernoulli trial (binary outcome: Yes/No), the ratio of the two probabilities (Yes versus No) is called the odds.

Odds =
$$\frac{P}{1-P}$$
 where P is the probability of getting 'Yes'.

• We now see what are the odds for two populations in a 2x2 contingency table where each column reflects one population.

Odds and Odds Ratio

- In a 2x2 table where each column reflects one population:
- The conditional probability of Yes in

first population is
$$P_1 = \frac{P_{11}}{P_{11} + P_{21}}$$
; hence

The conditional probability of Yes in second population is $P_2 = \frac{P_{12}}{P_{12} + P_{22}}$;

hence the odds is
$$Odds_2 = \frac{P_2}{1 - P_2} = \frac{P_{12}}{P_{22}}$$
.

• Thus the odds-ratio is OR=
$$\frac{Odds_1}{Odds_2} = \frac{P_{11}P_{22}}{P_{21}P_{12}}$$
.

Inference of Odds Ratio

- Notice that marginal independence means H_0 : OR = 1.
- Testing this null hypothesis is in fact the independent two-samples proportions comparison testing in the last chapter, which can be done with the χ^2 -test on this contingency table.

• Next (chapter 16), we study the inference of the odds ration (OR) in multiple contingency tables.

Chapter 16 Multiple 2x2 Contingency Tables

- First, why do we need statistical methods for inference of odds-ratio (OR) in multiple contingency tables?
- Can we simply merge those tables into one contingency tables?

• <u>Simpson's Paradox</u>: We can get misleading results if we simply merge the multiple 2x2 contingency tables.

Simpson's Paradox

• Salary data in two companies.

$$OR = \frac{(10)(10)}{(100)(1)} = 1.$$

Company 2 Male Female employees employees

Pay
$$\leq$$
\$100,000 10 100
Pay \geq \$100,000 1 10

$$OR = \frac{(10)(10)}{(1)(100)} = 1$$
 also.

$$OR = \frac{(20)(20)}{(101)(101)} \approx 0.04 \text{ when}$$

two tables are combined.

Simpson's Paradox

- Salary Example: There appears to be differences in employee's pay for different genders (OR≈0.04), but no such differences in each company (OR=1).
- (No bias in paying in respect to gender, but maybe the bias is in recruiting?)
- <u>Simpson's Paradox</u>: the odds-ratio in combined contingency table can be misleading!

Inference of Odds-Ratio in Multiple 2x2 Tables

- The problem is separated in two steps:
- (A) **Test** if the <u>odds-ratios</u> across all tables are the <u>same</u>. If they are different, then the inference should be done separately for each table. Otherwise, we use the methods in the next step to infer about the common odds-ratio.
- (B) Statistical inferences for the <u>common odds-ratio</u> across multiple contingence tables.

• The methods in both steps are "Mantel-Haenszel methods".

Inference of Odds-Ratio in Multiple 2x2 Tables

• (A) Test for common odds-ratios.

k=1,2,...,K tables each with T_k subjects.

Observed			X	
		Yes	No	
Υ	Yes	a_k	b_k	N_{1k}
	No	c_k	d_k	N_{2k}
		M_{1k}	M_{2k}	T_k

	True Parameters		(
Paran			No	
Υ	Yes	p _{11,k}	p _{12,k}	$p_{1\cdot,k}$
	No	p _{21,k}	p _{22,k}	$p_{2\cdot,k}$
		p. _{1,k}	p. _{2,k}	1

• Odds-ratio for the k-th table:

Parameter
$$OR_k = \frac{p_{11,k}p_{22,k}}{p_{12,kp21,k}}$$
; Estimate $\widehat{OR}_k = \frac{a_k d_k}{b_k c_k}$.

k=1,2,...,K tables each with T_k subjects.

• Odds-ratio for the k-th table:

Parameter
$$OR_k = \frac{p_{11,k}p_{22,k}}{p_{12,kp21,k}}$$
; Estimate $\widehat{OR}_k = \frac{a_k d_k}{b_k c_k}$.

- Test $H_0: OR_1 = OR_2 = ... = OR_K$ versus H_A : Not all equal.
- Use χ^2 -test on the logarithm of \widehat{OR}_k :

$$y_k = \ln(\widehat{OR}_k) = \ln(\frac{\mathsf{a}_k \mathsf{d}_k}{\mathsf{b}_k \mathsf{c}_k})$$

- χ^2 -test for $\mathbf{H_0}$: $OR_1 = OR_2 = ... = OR_K$ using $\ln(\widehat{OR}_k)$.
- Observed: $y_k = \ln(\widehat{OR}_k) = \ln(\frac{a_k d_k}{b_k c_k})$.
- Expected under $\mathbf{H_0}$: Naïve estimate $\overline{Y} = \frac{1}{\kappa} \sum_{k=1}^K y_k$

(Issue: bigger table (T_k) has more accurate estimate.)

Use
$$Y = \frac{\sum_{k=1}^{K} w_k y_k}{\sum_{k=1}^{K} w_k}$$
 instead with $w_k = \frac{1}{\frac{1}{a_k} + \frac{1}{b_k} + \frac{1}{c_k} + \frac{1}{d_k}} = \frac{1}{\widehat{Var}(y_k)}$

- Mantel-Haenszel test for $H_0: OR_1 = OR_2 = ... = OR_K$
- Observed: $y_k = \ln(\widehat{OR}_k) = \ln(\frac{a_k d_k}{b_k c_k})$.
- Expected under $\mathbf{H_0}$: $Y = \frac{\sum_{k=1}^{K} w_k y_k}{\sum_{k=1}^{K} w_k}$ and $w_k = \frac{1}{\frac{1}{a_k} + \frac{1}{b_k} + \frac{1}{c_k} + \frac{1}{d_k}}$
- $\chi_{obs}^2 = \sum_{k=1}^K w_k (y_k Y)^2 \approx \chi_{df=K-1}^2$
- Reject H_0 if $\chi_{Obs}^2 > \chi_{\alpha,df=K-1}^2$

- Mantel-Haenszel test for $H_0: OR_1 = OR_2 = ... = OR_K$
- Expected under $\mathbf{H_0}$: $Y = \frac{\sum_{k=1}^{K} w_k y_k}{\sum_{k=1}^{K} w_k}$ and $w_k = \frac{1}{\frac{1}{a_k} + \frac{1}{b_k} + \frac{1}{c_k} + \frac{1}{d_k}}$
- Adjustment for empty cell: if one entry is zero then $w_k = \frac{1}{\infty} = 0$ and the whole k-th table is discarded. If there are empty cells use instead

$$W_k = \frac{1}{\frac{1}{a_k + 0.5} + \frac{1}{b_k + 0.5} + \frac{1}{c_k + 0.5} + \frac{1}{d_k + 0.5}}$$

• Example (Page 376 of textbook)

Smokers		Coffee	drinker		Non-Sr	Non-Smokers		Coffee drinker	
		Yes	No				Yes	No	
MI	Yes	1011	81	1092	MI	Yes	383	66	449
	No	390	77	476		No	365	123	488
		1401	158	1559			748	189	937

• Smokers
$$\widehat{OR}_S = \frac{(1011)77}{(390)81} = 2.46$$
; Non-Smokers $\widehat{OR}_{NS} = \frac{(383)123}{(365)66} = 1.96$

- Are the odds-ratios the same?
- We test $H_0: OR_S = OR_{NS}$ versus $H_A: OR_S \neq OR_{NS}$

• MI/Coffee Example test $H_0: OR_S = OR_{NS}$

•
$$y_1 = \ln(\widehat{OR}_S) = \ln(2.46) = 0.9$$
, $y_2 = \ln(\widehat{OR}_{NS}) = 0.673$.

$$w_1 = \frac{1}{\frac{1}{1011} + \frac{1}{390} + \frac{1}{81} + \frac{1}{77}} = 34.62, w_2 = \frac{1}{\frac{1}{383} + \frac{1}{365} + \frac{1}{66} + \frac{1}{123}} = 34.93.$$

$$Y = \frac{(34.62)0.9 + (34.93)0.673}{34.62 + 34.93} = 0.786;$$

$$\chi_{Obs}^2$$
=34.62(0.9-0.786)²+34.93(0.673-0.786)² =0.896

1-pchisq(0.896, df=2-1) to get p-value=0.344

• Fail to reject $H_0: OR_S = OR_{NS}$.

• MI/Coffee Example Fail to reject $H_0: OR_S = OR_{NS}$.

There is no strong evidence that the odds ratios are different in these two tables.

Can make inference of the common odds-ratio.

• The usage of χ^2 -test in this stage is similar to the usage of F-test for equal variances in ANOVA: we hope to accept the null hypothesis and then proceed to next stage analysis (for ANOVA, the F-test for equal means).

Inference of Odds-Ratio in Multiple 2x2 Tables

• **(B) Mantel-Haenszel** methods for inference on the common odds-ratio of multiple 2x2 tables. Notice that there is only one parameter $OR = OR_1 = ... = OR_K$ now.

• (1) Point estimator
$$\widehat{OR} = \frac{\sum_{k=1}^{K} \frac{a_k d_k}{T_k}}{\sum_{k=1}^{K} \frac{b_k c_k}{T_k}}$$
.

MI/Coffee Example

$$\widehat{OR} = \frac{(1011)77/1559 + (383)123/937}{(390)81/1559 + (365)66/937} = 2.18.$$

MI/Coffee Example

Smo	kers	Coffee		
		Yes	No	
MI	Yes	1011	81	1092
	No	390	77	476
		1401	158	1559

Non-Smokers		Coffee drinker		
	Yes	No		
Yes	383	66	449	
No	365	123	488	
	748	189	937	
	kers Yes No	Yes Yes 383 No 365	Yes No Yes 383 66 No 365 123	

- Point estimator $\widehat{OR} = \frac{(1011)77/1559 + (383)123/937}{(390)81/1559 + (365)66/937} = 2.18.$
- This differs from the averaged log-odds-ratio Y in (A)

$$Y=0.786 \neq \ln(\widehat{OR})=0.779; e^{Y}=2.19 \neq \widehat{OR}=2.18.$$

- (2) Confidence Interval for OR.
- The range of OR is $(0, \infty)$, and the distribution of \widehat{OR} is skewed.

- $\widehat{OR} \pm L$ is NOT a good C.I.
- Trick: do the symmetric C.I. on log-scale and then translate back. However, notice that the point estimator of ln(OR) is

$$Y = \frac{\sum_{k=1}^{K} w_k \ln(\widehat{OR}_k)}{\sum_{k=1}^{K} w_k} \text{ as in (A)}.$$

The log-scale C.I. centers around Y, not $\ln(\widehat{OR})$!

• (2) Confidence Interval for OR.

• On log-scale
$$Y = \frac{\sum_{k=1}^{K} w_k \ln(\widehat{OR}_k)}{\sum_{k=1}^{K} w_k}$$
, and $w_k = \frac{1}{\widehat{Var}[\ln(\widehat{OR}_k)]}$.

• How to estimate Var(Y)? If $w_k = \frac{1}{Var[ln(\widehat{OR}_k)]}$, then

$$Var(Y) = \sum_{k=1}^{K} \{w_k^2 \ Var[ln(\widehat{OR}_k)]\} \left(\frac{1}{\sum_{k=1}^{K} w_k}\right)^2 = \sum_{k=1}^{K} w_k \left(\frac{1}{\sum_{k=1}^{K} w_k}\right)^2 = \frac{1}{\sum_{k=1}^{K} w_k}.$$

So
$$\widehat{Var}(Y) = \frac{1}{\sum_{k=1}^{K} w_k}$$
.

• (2) Confidence Interval for *OR*.

• On log-scale
$$Y = \frac{\sum_{k=1}^{K} w_k \ln(\widehat{OR}_k)}{\sum_{k=1}^{K} w_k}$$
, and $\widehat{Var}(Y) = \frac{1}{\sum_{k=1}^{K} w_k}$.

- $Y \approx$ normal when sample size is big
- (1- α) C.I. for ln(OR) is $Y \pm z_{\alpha/2} \sqrt{\widehat{Var}(Y)} = Y \pm z_{\alpha/2} \frac{1}{\sqrt{\sum_{k=1}^{K} w_k}}$.
- (1- α) C.I. for OR is $\exp(Y \pm z_{\alpha/2} \frac{1}{\sqrt{\sum_{k=1}^{K} w_k}})$.

• (2) (1- α) Confidence Interval for OR is

$$\exp(Y \pm \mathbf{z}_{\alpha/2} \frac{1}{\sqrt{\sum_{k=1}^{K} w_k}}), \quad \text{Observed} \quad X$$

$$\text{Yes} \quad \text{No}$$

$$\text{No} \quad \text{C}_k \quad \text{M}_{1k} \quad \text{No}$$

$$\text{Ves} \quad \text{No}$$

$$\text{No} \quad \text{C}_k \quad \text{M}_{2k} \quad \text{No}$$

$$\text{No} \quad \text{C}_k \quad \text{M}_{2k} \quad \text{No}$$

$$\text{No} \quad$$

• This use that $Y \approx$ normal when <u>sample size is big</u>

Rule of thumb:
$$\sum_{k=1}^{K} \frac{M_{ik}N_{jk}}{T_k} \ge 5$$
 for $i=1,2$ and $j=1,2$.

MI/Coffee Example

Smo	kers	Coffee		
		Yes	No	
MI	Yes	1011	81	1092
	No	390	77	476
		1401	158	1559

Non-Smokers		Coffee		
		Yes	No	
MI	Yes	383	66	449
	No	365	123	488
		748	189	937

•95% C.I. for ln(OR) is 0.786
$$\pm 1.96 \frac{1}{\sqrt{34.62+34.93}}$$
 = (0.551,1.021).

• 95% **C.I. for OR** is $(e^{0.551}, e^{1.021}) = (1.73, 2.78)$.

- (3) Hypothesis test for $H_0: OR = C_0$ versus $H_A: OR \neq C_0$.
- We focus on $H_0: OR = 1$ versus $H_A: OR \neq 1$.
- (a) We can always use the confidence interval.

For the MI/coffee example, $1 \notin (1.73, 2.78)$.

So reject H_0 .

• (b) But we want a formal test also, which will be done using a χ^2 -test.

- (3) Hypothesis test for $H_0: OR = 1$ versus $H_{\Delta}: OR \neq 1$.
- (b) A Mantel-Haenszel χ^2 -test.

$$\begin{array}{c|cccc} \textbf{Observed} & \textbf{X} & & & \\ & \textbf{Yes} & \textbf{No} & & \\ \textbf{Y} & \textbf{Yes} & \textbf{a}_k & \textbf{b}_k & \textbf{N}_{1k} \\ & \textbf{No} & \textbf{c}_k & \textbf{d}_k & \textbf{N}_{2k} \\ & & \textbf{M}_{1k} & \textbf{M}_{2k} & \textbf{T}_k \\ \end{array}$$

•
$$\chi_{obs}^2 = \frac{(\sum_{k=1}^K a_k - \sum_{k=1}^K \frac{M_{1k}N_{1k}}{T_k})^2}{\sum_{k=1}^K \frac{M_{1k}M_{2k}N_{1k}N_{2k}}{T_k^2}} \approx \chi_{df=1}^2$$

• Reject H_0 if $\chi^2_{0bs} > \chi^2_{\alpha,df=1}$

(B3b) Ideas of Mantel-Haenszel test for $H_0: OR = 1$.

Observed)	X	
		Yes	No	
Υ	Yes	a_k	b_k	N_{1k}
	No	c_k	d_{k}	N _{2k}
		M_{1k}	M_{2k}	T_k

$$\begin{array}{c|cccc} True & X \\ Parameters & Yes & No \\ Y & Yes & p_{11,k} & p_{12,k} & p_{1\cdot,k} \\ & No & p_{21,k} & p_{22,k} & p_{2\cdot,k} \\ & & p_{\cdot 1,k} & p_{\cdot 2,k} & 1 \end{array}$$

• Notice $E(a_k | H_0) = T_k p_{11,k} = T_k p_{1:,kp\cdot 1,k}$ is estimated by

$$T_{k} \frac{M_{1k}}{T_{k}} \frac{N_{1k}}{T_{k}} = \frac{M_{1k}N_{1k}}{T_{k}}. \quad \chi_{Obs}^{2} = \frac{(\sum_{k=1}^{K} a_{k} - \sum_{k=1}^{K} \frac{M_{1k}N_{1k}}{T_{k}})^{2}}{\sum_{k=1}^{K} \frac{M_{1k}M_{2k}N_{1k}N_{2k}}{T_{k}^{2}}} \text{ comes}$$

from
$$\frac{\left[\sum_{k=1}^{K} a_k - \mathsf{E}\left(\sum_{k=1}^{K} a_k \mid \mathsf{H_0}\right)\right]^2}{\widehat{Var}\left(\sum_{k=1}^{K} a_k \mid \mathsf{H_0}\right)}.$$

(B3b) Ideas of Mantel-Haenszel test for $H_0: OR = 1$.

This test statistic is based on

$$\begin{split} \left[\sum_{k=1}^K a_k - \mathsf{E}\!\left(\sum_{k=1}^K a_k \,|\, \mathbf{H_0}\right)\right]^2 \text{ rather than the standard} \\ \chi^2\text{-test } \sum_{k=1}^K [a_k - \mathsf{E}(a_k \,|\, \mathbf{H_0})]^2 \;. \end{split}$$

- The standard χ^2 -test statistic combines entries in different cells of one table.
- Here we are combining entries in same cells (a_k) across different tables.

(B3b) Test $H_0: OR = 1$ in MI/Coffee Example

Smokers	Coffee	drinker		Non-Smokers Coffee drinker		drinker			
	Yes	No					Yes	No	
MI Yes	1011	81	1092		MI	Yes	383	66	449
No	390	77	476			No	365	123	488
-	1401	158	1559				748	189	937

$$a_1 = 1011, \frac{M_{11}N_{11}}{T_1} = \frac{(1401)1092}{1559} = 981.3, \ a_2 = 383, \frac{M_{12}N_{12}}{T_2} = \frac{(748)449}{937} = 358.4.$$

$$\chi_{obs}^2 = \frac{[(1011+383)-(981.3+358.4)]^2}{\frac{(1401)1092(158)476}{(1559)^2(1559-1)} + \frac{(748)449(189)488}{(937)^2(937-1)}} = 43.68.$$

1-pchisq(43.68, df=2-1) to get p-value=3.87x10⁻¹¹. Reject H_0 : OR=1

• Drinking coffee is associated with myocardial infarction.

Chapter 16 Inference on Multiple 2x2 Tables

- Notice that there are two χ^2 -test in this chapter
- (1) Mantel-Haenszel test for $H_0: OR_1 = OR_2 = ... = OR_K$

This is a goodness-of-fit test. We want large p-value so that we can proceed to inference on common odds-ratio.

- (2) Mantel-Haenszel test for H_0 : OR = 1. Small p-value \Rightarrow the marginals are not independent.
- The test in (2) is based on point estimator \widehat{OR} . But confidence interval is built on $Y = \ln(OR)$, not $\ln(OR)$.

Summary

Today, we finished Module 11 Multiple contingency tables (Chapter 16 of textbook)

- <u>Simpson's Paradox</u>: the odds-ratio in combined contingency table can be misleading!
- (A) Test for common odds-ratios.
- (B) Inference on the common odds-ratio.
- Homework 8 includes topics in this module and the next module.