ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA CƠ KHÍ BỘ MÔN CƠ ĐIỆN TỬ

TRANG BỊ ĐIỆN - ĐIỆN TỬ TRONG MÁY CÔNG NGHIỆP

EXERCISE 3

GVHD: TS. LÊ ĐỨC HẠNH

DANH SÁCH THÀNH VIÊN:

STT	Họ và tên	\mathbf{MSSV}
1	Võ Hữu Dư	2210604
2	Dương Quang Duy	2210497
3	Trần Quang Đạo	2210647

Mục lục

1	For	the be	elow figure	2
	1.1	Derive	e the output and minimize the output function using Karnaugh map.	2
	1.2	Draw	the wave form of output if	3
	1.3	Mô ph	ondong bằng Proteus	3
2	Dev	elop a	nd draw logic circuit with 4 inputs that will only produce logic	
	1 w	hen on	aly exactly 2 inputs are logic 1.	5
	2.1	Sử dụ	ng phương pháp bìa Karnaugh	5
	2.2	Vẽ mạ	ch bằng phần mềm Proteus	5
	2.3	Kiểm	tra lại từng trường hợp bằng mô phỏng trên phần mềm Proteus	6
		2.3.1	Trường hợp $\overline{A}.\overline{B}.C.D$	6
		2.3.2	Trường hợp $A.B.\overline{C}.\overline{D}$	6
		2.3.3	Trường hợp $\overline{A}.B.\overline{C}.D$	7
		2.3.4	Trường hợp $A.\overline{B}.C.\overline{D}$	7
		2.3.5	Trường hợp $\overline{A}.B.C.\overline{D}$	8
		2.3.6	Trường hợp $A.\overline{B}.\overline{C}.D$	8
3	Des	ign the	e control circuit using three variables: PWM, Direction, Brake	!
•		nputs	s control of our cars asing three variables. I write, Bricetten, Brane	9
	3.1	-	nối quan hệ giữa 3 biến đầu vào với S1, S2, S3 và S4	9
		3.1.1	Áp dụng bìa Karnaugh để tìm S1	9
		3.1.2	Áp dụng bìa Karnaugh để tìm S2	10
		3.1.3	Áp dụng bìa Karnaugh để tìm S3	10
		3.1.4	Áp dụng bìa Karnaugh để tìm S4	10
	3.2	Vẽ ma	ch bằng phần mềm Proteus	

1 For the below figure

Hình 1: Sơ đồ mạch bài 1

1.1 Derive the output and minimize the output function using Karnaugh map

Từ sơ đồ mạch ta có giá trị đầu ra:

$$X(A, B, C, D) = \overline{(\bar{A} \cdot B) + (\bar{A} \cdot C \cdot D) + (B \cdot D \cdot \bar{D})}$$
$$= \overline{(\bar{A} \cdot B) + (\bar{A} \cdot C \cdot D)}$$

Rút gọn biểu thức bằng bìa Karnaugh:

$$X(A, B, C, D) = \overline{(01)(01 + 10 + 01 + 00) + 0(0 + 1)(11)}$$

$$= \overline{0111 + 0110 + 0101 + 0100 + 0011 + 0111}$$

$$= \overline{\sum (7, 6, 5, 4, 3)} = \sum (0, 1, 2, 8, 9, 10, 11, 12, 13, 14, 15)$$

Vậy ta có bảng Karnaugh và biểu thức rút gọn:

AB CD	00	01	11	10
00	$\boxed{1}$	0	/1	$\sqrt{1}$
01	1	0	1	1
11	0	0	1	1
10	1	0	1	1/

Hình 2: Bảng Karnaugh bài 1

Từ bảng Karnaugh ta có biểu thức rút gọn:

$$X(A, B, C, D) = \sum (0, 1, 2, 8, 9, 10, 11, 12, 13, 14, 15) = \bar{B}\bar{C} + \bar{B}\bar{D} + A$$

1.2 Draw the wave form of output if

Hình 3: Waveform input bài 1

Từ biểu thức rút gọn và đầu vào như hình 3 ta có đầu ra như hình 4

Hình 4: Waveform output bài 1

1.3 Mô phỏng bằng Proteus

- Sử dụng phần mềm Proteus để mô phỏng mạch như hình 1.
- Sử dụng các linh kiện: AND, OR, NOT, LOGICPROBE, LOGICSTATE.
- Giả sử đầu vào là A=0, B=1, C=0, D=1 $\Rightarrow X=\bar{B}\bar{C}+\bar{B}\bar{D}+A=0\cdot 1+0\cdot 0+1=0+0+0=0.$

Hình 5: Mô phỏng bằng Proteus

 \Rightarrow Kết quả mô phỏng trên Proteus cho thấy đúng với kết quả tính toán.

- 2 Develop and draw logic circuit with 4 inputs that will only produce logic 1 when only exactly 2 inputs are logic 1.
- 2.1 Sử dụng phương pháp bìa Karnaugh.

Sử dụng phương pháp bìa Karnaugh, ta có bảng sau:

CD AB	00	01	11	10
00	0	0	1	0
01	0	1	0	1
11	1	0	0	0
10	0	1	0	1

 $\Rightarrow \text{H\`{a}m logic: } F = \overline{A}.\overline{B}.C.D + A.B.\overline{C}.\overline{D} + \overline{A}.B.\overline{C}.D + A.\overline{B}.C.\overline{D} + \overline{A}.B.C.\overline{D} + A.\overline{B}.\overline{C}.D$

2.2 Vẽ mạch bằng phần mềm Proteus.

Hình 6: Mạch logic bài 2

2.3 Kiểm tra lại từng trường hợp bằng mô phỏng trên phần mềm Proteus.

2.3.1 Trường hợp $\overline{A}.\overline{B}.C.D$

Hình 7: Trường hợp $\overline{A}.\overline{B}.C.D$

2.3.2 Trường hợp $A.B.\overline{C}.\overline{D}$

Hình 8: Trường hợp $A.B.\overline{C}.\overline{D}$

2.3.3 Trường hợp $\overline{A}.B.\overline{C}.D$

Hình 9: Trường hợp $\overline{A}.B.\overline{C}.D$

2.3.4 Trường hợp $A.\overline{B}.C.\overline{D}$

Hình 10: Trường hợp $A.\overline{B}.C.\overline{D}$

2.3.5 Trường hợp $\overline{A}.B.C.\overline{D}$

Hình 11: Trường hợp $\overline{A}.B.C.\overline{D}$

2.3.6 Trường hợp $A.\overline{B}.\overline{C}.D$

Hình 12: Trường hợp $A.\overline{B}.\overline{C}.D$

3 Design the control circuit using three variables: PWM, Direction, Brake as inputs

Hình 13: Sơ đồ mạch cầu H

	PWM1	PWM2	BRAKE	S1	S2	S3	S4	TRANG THAI MOTOR
	0	1	1	1	0	0	1	QUAY CHIEU THUAN
	0	0	1	0	1	1	0	QUAY CHIEU NGHICH
	X	X	0	1	1	0	0	THANG
ľ	1	X	1	0	0	0	0	DUNG QUAY

Bảng 1: Bảng trạng thái tín hiệu các biến

3.1 Tìm mối quan hệ giữa 3 biến đầu vào với S1, S2, S3 và S4

3.1.1 Áp dụng bìa Karnaugh để tìm S1

Z	00	01	11	10
0	1	1	1	1
1		1		

$$\Rightarrow S1 = \overline{Z} + \overline{X}.Y$$

3.1.2 Áp dụng bìa Karnaugh để tìm S2

X	00	01	11	10
0	1	1	1	1
1	1			

$$\Rightarrow S2 = \overline{Z} + \overline{X}.\overline{Y}$$

3.1.3 Áp dụng bìa Karnaugh để tìm S3

Z	00	01	11	10
0				
1	1			

$$\Rightarrow S3 = \overline{X}.\overline{Y}.Z$$

3.1.4 Áp dụng bìa Karnaugh để tìm S4

Z	00	01	11	10
0				
1		1		

$$\Rightarrow S4 = \overline{X}.Y.Z$$

3.2 Vẽ mạch bằng phần mềm Proteus.

- Mạch được mô phỏng trên phần mềm Proteus.
- \bullet Các linh kiện được sử dụng: AND, NOT, OR, LOGICPROBE, LOGICSTATE.
- \bullet Kết quả mô phỏng theo hàng thứ nhất của bảng 1:

Hình 14: Trường hợp 1: PWM1 = 0, PWM2 = 1, BRAKE = 1

• Kết quả mô phỏng theo hàng thứ hai của bảng 1:

Hình 15: Trường hợp 2: PWM1 = 0, PWM2 = 0, BRAKE = 1

• Kết quả mô phỏng theo 1 trong các trường hợp của hàng thứ ba của bảng 1:

Hình 16: Trường hợp 3: PWM1 = 1, PWM2 = 0, BRAKE = 0

• Kết quả mô phỏng theo 1 trong các trường hợp của hàng thứ tư của bảng 1:

Hình 17: Trường hợp 4: PWM1 = 1, PWM2 = 1, BRAKE = 1

⇒ Kết quả mô phỏng đúng với bảng trạng thái tín hiệu các biến.