Feng-Doolittle Unit Tests

Hint: Many test values are taken from project Algorithms for Bioninformatics of Alexander Mattheis or the lectures.

Test 1 (Hint: Notation from original paper used!)

Input

Sequence a: ACGT Sequence b: AT Sequence c: GCC

Gap opening: 0 (easifies later visual proofment)

Enlargement: -2

Match: 1 (and 0 for placeholder #)

Mismatch: -1

Output (Pairwise Alignment)

Carle at (1 an insc) in grinner (1						
	Alignment- Length	Gaps	Gap- starts	Score		
(a,b)	4	2	1	-2		
(a,c)	4	1	1	-3		
(b,c)	3	1	1	-4		

Seq1 ACGT

* *

Sea2 A T

Seq1 ACGT

|* |

Seq2 GC C

Seq1 _AT

Seq2 GCC

Hint: More alignments exists, but only one is computed!

Output (Distances)

 ς rand

$$= \frac{1}{4} \left(\begin{array}{c} s(A_a, A_b) \cdot N_A(a) \cdot N_A(b) + s(A_a, A_a) \cdot N_A(a) \cdot N_T(b) \\ + s(T_a, T_b) \cdot N_T(a) \cdot N_A(b) + s(T_a, T_a) \cdot N_T(a) \cdot N_T(b) \end{array} \right) + 2 \cdot enlarge$$

$$= \frac{1}{4} (1 + 1 + 1 + 1) + 2 \cdot (-2) = 1 - 4 = -3$$

1

$$S_{a,b}^{max} = \frac{4+2}{2} = 3$$

$$S_{a,b}^{eff} = \frac{S(a,b) - S_{a,b}^{rand}}{S_{a,b}^{max} - S_{a,b}^{rand}} = \frac{-2 - (-3)}{3 - (-3)} = \frac{1}{6}$$

$$D(a,b) = -\ln S_{a,b}^{eff} \approx 1.792 \approx 2$$

$$\begin{split} S_{a,c}^{rand} &= \frac{1}{4} \binom{s(C_a,C_b) \cdot N_C(a) \cdot N_C(b) + s(C_a,C_b) \cdot N_C(a) \cdot N_G(b)}{+s(G_a,G_b) \cdot N_G(a) \cdot N_G(b) + s(G_a,G_b) \cdot N_G(a) \cdot N_C(b)} + 1 \cdot enlarge \\ &= \frac{1}{4} (2+1+1+2) + 1 \cdot (-2) = 1.5 - 2 = -0.5 \end{split}$$

$$S_{a,c}^{max} = \frac{4+3}{2} = 3.5$$

$$S_{a,c}^{eff} = \frac{S(a,c) - S_{a,c}^{rand}}{S_{a,c}^{max} - S_{a,c}^{rand}} = \frac{-3 - (-0.5)}{3.5 - (-0.5)} = \frac{-2.5}{4} < 0 \rightarrow S_{a,c}^{eff} = \frac{0.001}{4} = \frac{1}{4000}$$

$$D(a,c) = -\ln(S_{a,c}^{eff}) \approx 8.394 \approx 8$$

$$S_{b,c}^{rand} = \frac{1}{3} \cdot 0 + 1 \cdot enlarge$$
$$= -2$$

$$S_{b,c}^{max} = \frac{2+3}{2} = 2.5$$

$$S_{b,c}^{eff} = \frac{S(b,c) - S_{b,c}^{rand}}{S_{b,c}^{max} - S_{b,c}^{rand}} = \frac{-4 - (-2)}{2.5 - (-2)} = \frac{-2}{4.5} < 0 \rightarrow S_{a,c}^{eff} = \frac{0.001}{4.5} = \frac{1}{4500}$$

$$D(b,c) = -\ln(S_{b,c}^{eff}) \approx 8.412 \approx 8$$

Output (Phylogenetic Tree)

1.

2.
$$C = ((C - \{a\}) - \{b\}) \cup \{d\}$$

)	l)	С	d	
				0		L
а	 ′	1	-	O		Г
l.				3		
U		'	′	O		Г
С				0	8	
d					0	

$$dist(d, a) = dist(d, b) = \frac{2}{2} = 1$$

4.

$$dist(c, d = \{a, b\}) = \frac{|a| \cdot dist(c, a) + |b| \cdot dist(c, b)}{|a| + |b|} = \frac{1 \cdot 8 + 1 \cdot 8}{1 + 1} = 8$$

1)
$$d_{min} = 8$$

2)
$$C = ((C - \{c\}) - \{d\}) \cup \{e\}$$

1)
$$d_{min} = 8$$

2) $C = ((C - \{c\}) - \{d\}) \cup \{e\}$
3) $dist(e, c) = dist(e, d) = \frac{d_{min}}{2} = 4$

Output (Joinment)

ACGT

A##T

2.

ACGT GCC

A##T and

Seq1	ACGT	Seq1	ACGT
	*		*
Seq2	GC_C	Seq2	GCC_
Score	-3	Score	-3

Seq1	A##T	Seq1	A##T
Seq2	GCC_	Seq2	_GCC
Score	-3	Score	-3

		Α	#	#	Т
	0	-2	-2	-2	-4
G	-2	-1	-2	-2	-3
С	-4	-3	-1	-2	-3
С	-6	-6	-5	-3	-3

Output (Final)

ACGT

A__T GCC_