

Using Machine Learning to solve a classification problem with scikit-learn - a practical walkthrough PyConUK 2016

Ian Ozsvald @lanOzsvald ModelInsight.io

Introductions

- I'm an engineering data scientist
- Al/Data Science consulting 15+ years
 - Data science team coach I observe that engineers have the data

Blog->lanOzsvald.com

We'll briefly cover...

- Why? My hypothesis about you
- Two class classification
- A process to build an ML model
- Train/Test and Cross validation
- Debugging the model
- Deployment

Fully worked process, more examples, more graphs

https://github.com/ianozsvald/pyconuk_using_sklearn_classification

Process

- Exploratory Data Analysis (EDA)
- Build a DummyClassifier model
- Build a RandomForest with several features
- Use cross-validation (Notebook+Appendix) in favour of Train/Test sets
- Find worst errors and improve
- Stop when 'good enough' for your needs

Data overview

df.head()

	Passenge	erld Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
(1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
	2 3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0 <u>or</u>	STON/O2. EILLY	
;	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0		

Knowledge • 4,928 teams

0

Titanic: Machine Learning from Disaster

3

Fri 28 Sep 2012

Sat 31 Dec 2016 (3 months to go)

male

35.0 0

Nice, fairly tidy data – usually you have to work hard here!

Allen, Mr. William Henry

Seaborn plots for EDA

sns.pointplot(data=df, x='Sex', y='Survived', ci=None)

Classifier's best guess is 'they died' unless you introduce new information e.g. 'Sex'

Seaborn plots

```
_=sns.boxplot(data=df, x="Survived", y="Age", hue="Sex")
sns.pointplot(data=df, x='Sex', y='Survived', hue='Pclass', ci=None)
```


Training and Testing

- Features (X) and Target (y)
- Training and test splits of each
- Like lessons and exams
 - Clever algs can memorize the answers!

```
X = df[['is female']]
y = df['Survived']
from sklearn.cross validation import train test split
X train, X test, y train, y test = train test split(X, y,
                                                     train size=0.7,
                                                     random state=0)
print("Training and test set sizes:", X train.shape, X test.shape)
Training and test set sizes: (623, 1) (268, 1)
```

Simplest sklearn

- Do the dumbest thing first no ML, just a majority-class guess to make a baseline
- 'Train' and predict on test set

Here we ignore is_female, it just makes an appropriately sized input matrix X 'stuff to learn' y 'target to learn'

Random Forests

- Treat as a 'black box'
- Very powerful and robust
 - Doesn't require scaling
 - Handles non-linear responses
 - Handles relationships between parameters
 - Not (too) fooled if you give many noise features

RandomForestClassifier

- Build RF using 1 feature (is_female)
- We outperform a majority guess :-)

```
from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier()

clf.fit(X_train, y_train)

print("Scoring on training data:", clf.score(X_train, y_train))
print("Scoring on testing data:", clf.score(X_test, y_test))

Scoring on training data: 0.786516853933
Scoring on testing data: 0.787313432836

140

28

Predicted label

Predicted label
```

RandomForestClassifier

- Build RF using 2 features
- No significant improvement...we'll push on (this is the usual state...)
 - General rule add more features

Dealing with NaN/Null

- Sklearn work work with NaN values
- You must replace or delete these rows
- RF works fine if you make a sentinel

value

```
df['Age'].head(10)

0 22.0
1 38.0
2 26.0
3 35.0
4 35.0
5 NaN
6 54.0
7 2.0
8 27.0
9 14.0
```

RandomForestClassifier

- Build RF using many features
- With bigger RF we may also classify better

n_estimators only param worth tuning

Debugging

- Confusion matrix does it look sensible?
- Cross validation scores analogy "many exams" (Notebook+Appendix)
- Feature importances
- Find 'worst' errors and eyeball (see Notebook)

Closing...

- Random Forest + good data gives you a great start
- Write-up: http://ianozsvald.com/
- Use github repo to try this yourself

https://github.com/ianozsvald/pyconuk_using_sklearn_classification

- https://github.com/savarin/pyconuk-introtutorial
 - Longer great tutorial from PyConUK 2014 (Ezzeri)
- Take an engineering mindset and go slow
- Book signing with Katharine!
- Questions<->beer

data_science_delivered

Observations from lan on successfully delivering data science products

248

Jupyter Notebook

Appendix: Deployment

- Pickle your models, reload them
- Ad-hoc scripts → reports or db
- Microservices
 - Flask
 - My featherweight API on github (built on Flask)
 - New Jupyter microservices
- Do please have unit tests & reproducible environments
- Use conda environments in Anaconda

Appendix: Cross validation

Sklearn does 3-fold by default (not 5-fold shown here)
3-fold is a sensible starting point
More folds give a better estimate of mean & take longer to run

Ref: http://blog.kaggle.com/2015/06/29/scikit-learn-video-7-optimizing-your-model-with-cross-validation/