

ALGORITMOS EM GRAFOS

Bacharelado em Sistemas da Informação Prof. Marco André Abud Kappel

Aula 5 – Introdução a Árvores

Nas últimas aulas:

- Árvores são grafos conexos sem ciclos.
- Toda árvore é um grafo, mas nem todo grafo é uma árvore.

Definições

 Uma árvore organiza um conjunto de acordo com uma estrutura hierárquica.

- Uma árvore enraizada T é um conjunto de nós (ou vértices), tais que:
 - > A árvore é dita vazia se T é um conjunto vazio.

Definições

 Uma árvore enraizada T é um conjunto de nós (ou vértices), tais que:

Existe um **nó especial** $r \in T$, denominado **raiz** de T, e os demais nós, se existirem, são divididos em **subconjuntos disjuntos e não vazios**.

Definições

 Cada subconjunto disjunto conexo e não vazio também é uma árvore enraizada, denominada subárvore de R.

Definições

Floresta é um conjunto de árvores

- Representações gráficas
 - Representação hierárquica:

- Representações gráficas
 - Diagrama de inclusão:

Representações gráficas

Representação por parênteses aninhados:

Obtida pela aplicação de um algoritmo de percurso.

- Relações de ancestralidade
 - Seja r o **nó raiz** da árvore T.
 - Dados dois nós v e w, v é ancestral de w e w é descendente de v.

 \triangleright v é ancestral próprio de w e w é descendente próprio de v se w \neq v.

Relações de ancestralidade

- Seja r o **nó raiz** da árvore T.
- \triangleright Os nós raízes das subárvores de T são chamados **filhos** de r.
- v é pai de w e w é filho de v quando v é ancestral próprio de w e não existe outro nó t, ancestral próprio de w, tal que seja ancestral próprio de t.
 Pai

Cada nó pode ser um nó pai de um nó inferior na hierarquia.

- Todo nó é ancestral e descendente de si mesmo.
- Nós que não têm descendentes próprios são chamados folhas.

- Um **nó interior** é um nó que não é folha.
- Toda árvore com n > 1 nós possui no mínimo 1 e no máximo n 1 folhas.

- O número de filhos de um nó é chamado grau de saída desse nó.
- Os nós a e c são ______.
- O nó c é ___ do nó b.

- O número de filhos de um nó é chamado grau de saída desse nó.
- Os nós a e c são irmãos.
- O nó c é ___ do nó b.

- O número de filhos de um nó é chamado grau de saída desse nó.
- Os nós a e c são irmãos.
- O nó c é <u>tio</u> do nó b.

- O número de filhos de um nó é chamado grau de saída desse nó.
- Os nós a e c são irmãos.
- O nó c é <u>tio</u> do nó b.

Definições

- Uma **sequência** de nós distintos v_1 , v_2 , ..., v_k , tal que existe sempre nós consecutivos (v_1 e v_2 , v_2 e v_3 , ..., v_{k-1} e v_k) a relação "**é filho de**" ou "**é pai de**", é denominada um **caminho da árvore**.
- O comprimento do caminho é dado pela quantidade de pares da relação (ex: (A,B,C) é um caminho de comprimento 2).

Existe um único caminho a partir de um nó até qualquer de seus descendentes.

- O nível de um nó é o número de nós do único caminho da raiz até ele.
- O nível da raiz é 1.

Definições

- A altura de um nó v é o número de nós do maior caminho de v até um de seus descendentes.
- Folhas tem altura 1.

A altura da árvore é igual ao nível máximo de seus nós.

- Definições
 - Exemplo:

- Qual é o nível do nó C?
- ➤ Qual é a altura do nó B?
- Qual é a altura da árvore?
- Qual é o grau de saída do nó F?
- Qual é a relação entre B e F?
- G é descendente próprio de A?

- Definições
 - Exemplo:

- Qual é o nível do nó C? 2
- Qual é a altura do nó B?
- Qual é a altura da árvore?
- Qual é o grau de saída do nó F?
- Qual é a relação entre B e F?
- G é descendente próprio de A?

- Definições
 - Exemplo:

- Qual é o nível do nó C? 2
- Qual é a altura do nó B? 1
- Qual é a altura da árvore?
- Qual é o grau de saída do nó F?
- Qual é a relação entre B e F?
- G é descendente próprio de A?

- Definições
 - Exemplo:

- Qual é o nível do nó C? 2
- Qual é a altura do nó B? 1
- Qual é a altura da árvore? 4
- Qual é o grau de saída do nó F?
- Qual é a relação entre B e F?
- G é descendente próprio de A?

- Definições
 - Exemplo:

- Qual é o nível do nó C? 2
- Qual é a altura do nó B? 1
- Qual é a altura da árvore? 4
- Qual é o grau de saída do nó F? 1
- Qual é a relação entre B e F? B é tio de F
- G é descendente próprio de A?

- Definições
 - Exemplo:

- Qual é o nível do nó C? 2
- Qual é a altura do nó B? 1
- Qual é a altura da árvore? 4
- Qual é o grau de saída do nó F? 1
- Qual é a relação entre B e F? B é tio de F
- G é descendente próprio de A? Sim

Definições

 Uma árvore ordenada é aquela na qual os filhos de cada nó seguem uma ordem. Assume-se que tal ordenação se desenvolva da esquerda para direita.

Se estas árvores são consideradas ordenadas, são árvores distintas.

Definições

 Duas árvores não ordenadas são isomorfas quando puderem se tornar coincidentes através de uma permutação na ordem das subárvores de seus nós.

Se estas árvores são consideradas **não-ordenadas**, são árvores **isomorfas**.

Definições

Duas árvores ordenadas somente são isomorfas quando forem coincidentes.

- Subárvore de uma árvore é o conjunto de todos os vértices descendentes de um nó v, além do próprio nó v.
- Subárvore parcial de uma árvore é o conjunto de alguns vértices descendentes de um nó v, além de v.

Exercício 1:

- 1. Represente a árvore como diagrama de inclusão.
- 2. Qual é o nível do nó C?
- 3. Qual é a altura do nó B?
- 4. Qual é a altura da árvore?
- 5. Qual é o grau de saída do nó G?
- 6. Qual é a relação entre B e H?
- 7. G é descendente próprio de A?

Exercício 1:

- Represente a árvore como diagrama de inclusão.
- Qual é o nível do nó C?
- Qual é a altura do nó B?
- Qual é a altura da árvore?
- Qual é o grau de saída do nó G?
- Qual é a relação entre B e H?
- G é descendente próprio de A?

Exercício 1:

- Represente a árvore como diagrama de inclusão.
- Qual é o nível do nó C? 2
- Qual é a altura do nó B?
- Qual é a altura da árvore?
- Qual é o grau de saída do nó G?
- Qual é a relação entre B e H?
- G é descendente próprio de A?

Exercício 1:

- Represente a árvore como diagrama de inclusão.
- Qual é o nível do nó C? 2
- Qual é a altura do nó B? 3
- Qual é a altura da árvore?
- Qual é o grau de saída do nó G?
- Qual é a relação entre B e H?
- G é descendente próprio de A?

Exercício 1:

- Represente a árvore como diagrama de inclusão.
- Qual é o nível do nó C? 2
- Qual é a altura do nó B? 3
- Qual é a altura da árvore? 4
- Qual é o grau de saída do nó G?
- Qual é a relação entre B e H?
- G é descendente próprio de A?

Exercício 1:

- Represente a árvore como diagrama de inclusão.
- Qual é o nível do nó C? 2
- Qual é a altura do nó B? 3
- Qual é a altura da árvore? 4
- Qual é o grau de saída do nó G? 1
- Qual é a relação entre B e H?
- G é descendente próprio de A?

Árvores binárias

- Cada nó possui, no máximo, dois filhos: uma subárvore esquerda e/ou uma subárvore direita.
- Admite-se árvore binária nula ou unitária.

Árvores binárias

- Uma árvore binária é uma extensão do caso geral.
- As duas estruturas abaixo são isomorfas se consideradas árvores (mesmo ordenadas), mas são distintas se consideradas árvores binárias.

Árvores binárias

 Toda árvore binária com n>0 nós possui exatamente n+1 subárvores vazias entre suas árvores esquerdas e direitas.

- Esta árvore possui 9 nós e 10 subárvores vazias.

Árvores binárias

 Uma árvore estritamente binária é uma árvore binária em que cada nó possui 0 ou 2 filhos.

Árvores binárias

 Uma árvore estritamente binária é uma árvore binária em que cada nó possui 0 ou 2 filhos.

Árvores binárias

- Uma árvore binária completa é aquela que apresenta a seguinte propriedade:
 - > Se v é um nó tal que alguma subárvore de v é vazia, então v se localiza ou no último (maior) ou no penúltimo nível da árvore.

 Em outras palavras, a distância entre quaisquer nós com um filho nulo é de, no máximo, 1 nível.

Árvores binárias

- Uma árvore binária completa é aquela que apresenta a seguinte propriedade:
 - Se v é um nó tal que alguma subárvore de v é vazia, então v se localiza ou no último (maior) ou no penúltimo nível da árvore.

 Em outras palavras, a distância entre quaisquer nós com um filho nulo é de, no máximo, 1 nível.

Árvores binárias

- Uma árvore binária completa é aquela que apresenta a seguinte propriedade:
 - Se v é um nó tal que alguma subárvore de v é vazia, então v se localiza ou no último (maior) ou no penúltimo nível da árvore.

Em outras palavras, a distância entre quaisquer nós com um filho nulo é de, no máximo, 1 nível.
 Nível 2
 Nível 3

Nível 4

Nível 4

Árvores binárias

– Outros exemplos:

Árvores binárias

– Outros exemplos:

Árvores binárias

– Outros exemplos:

Árvores binárias

- Uma árvore binária cheia é aquela em que, se v é um nó com alguma de suas subárvores vazias, então v se localiza no último nível.
- Toda árvore binária cheia é completa e estritamente binária.

Árvores binárias

- Uma árvore ziguezague é aquela cujos nós interiores possuem exatamente uma subárvore vazia.
- A altura de uma árvore ziguezague é igual ao número de nós.

Algoritmos de Percurso

Algoritmos de Percurso

- Realizar um percurso em uma árvore binária corresponde a fazer uma visita sistemática a cada um de seus nós.
- Esta é uma das operações básicas relativas à manipulação de árvores.
- Visitar um nó significa operar, de alguma forma, com a informação a ele relativa (imprimir, atualizar, etc).
- Existem 3 algoritmos principais de percurso:
 - Pré-ordem
 - > Em ordem simétrica
 - Pós-ordem

Algoritmos de Percurso

- > Pré-ordem:
 - Visitar a raiz
 - Percorrer sua subárvore da esquerda, em pré-ordem
 - Percorrer usa subárvore da direita, em pré-ordem

Algoritmos de Percurso

> Pré-ordem:

- Visitar a raiz
- Percorrer sua subárvore da esquerda, em pré-ordem
- Percorrer usa subárvore da direita, em pré-ordem

> Em ordem simétrica:

- Percorrer sua subárvore da esquerda, em ordem simétrica
- Visitar a raiz
- Percorrer usa subárvore da direita, em ordem simétrica

Algoritmos de Percurso

Pré-ordem:

- Visitar a raiz
- Percorrer sua subárvore da esquerda, em pré-ordem
- Percorrer usa subárvore da direita, em pré-ordem

> Em ordem simétrica:

- Percorrer sua subárvore da esquerda, em ordem simétrica
- Visitar a raiz
- Percorrer usa subárvore da direita, em ordem simétrica

Pós-ordem:

- Percorrer sua subárvore da esquerda, em pós-ordem
- Percorrer usa subárvore da direita, em pós-ordem
- Visitar a raiz

- Algoritmos de Percurso
 - > Pré-ordem:
- Visitar a raiz
- Percorrer sua subárvore da esquerda, em pré-ordem
- Percorrer usa subárvore da direita, em pré-ordem

- Algoritmos de Percurso
 - > Pré-ordem:
- Visitar a raiz
- Percorrer sua subárvore da esquerda, em pré-ordem
- Percorrer usa subárvore da direita, em pré-ordem

- Algoritmos de Percurso
 - > Pré-ordem:
- Visitar a raiz
- Percorrer sua subárvore da esquerda, em pré-ordem
- Percorrer usa subárvore da direita, em pré-ordem

- Algoritmos de Percurso
 - > Pré-ordem:
- Visitar a raiz
- Percorrer sua subárvore da esquerda, em pré-ordem
- Percorrer usa subárvore da direita, em pré-ordem

8 - 3 - 1

- Algoritmos de Percurso
 - > Pré-ordem:
- Visitar a raiz
- Percorrer sua subárvore da esquerda, em p
- Percorrer usa subárvore da direita, em pré-

8 - 3 - 1 - 6

- Algoritmos de Percurso
 - > Pré-ordem:
- Visitar a raiz
- Percorrer sua subárvore da esquerda, em pré-ordem
- Percorrer usa subárvore da direita, em pré-ordem

- Algoritmos de Percurso
 - Pré-ordem:
- Visitar a raiz
- Percorrer sua subárvore da esquerda, em pré-ordem
- Percorrer usa subárvore da direita, em pré-ordem

- Algoritmos de Percurso
 - > Pré-ordem:
- Visitar a raiz
- Percorrer sua subárvore da esquerda, em pré-ordem
- Percorrer usa subárvore da direita, em pré-ordem

- Algoritmos de Percurso
 - Pré-ordem:
- Visitar a raiz
- Percorrer sua subárvore da esquerda, em pré-ordem
- Percorrer usa subárvore da direita, em pré-ordem

- Algoritmos de Percurso
 - Pré-ordem:
- Visitar a raiz
- Percorrer sua subárvore da esquerda, em pré-ordem
- Percorrer usa subárvore da direita, em pré-ordem

- Algoritmos de Percurso
 - > Em ordem simétrica:
 - Percorrer sua subárvore da esquerda, em ordem simétrica
 - Visitar a raiz
 - Percorrer usa subárvore da direita, em ordem simétrica

- Algoritmos de Percurso
 - > Em ordem simétrica:
 - Percorrer sua subárvore da esquerda, em ordem simétrica
 - Visitar a raiz
 - Percorrer usa subárvore da direita, em ordem simétrica

1

- Algoritmos de Percurso
 - > Em ordem simétrica:
 - Percorrer sua subárvore da esquerda, em ordem simétrica
 - Visitar a raiz
 - Percorrer usa subárvore da direita, em ordem simétrica

1 - 3

- Algoritmos de Percurso
 - > Em ordem simétrica:
 - Percorrer sua subárvore da esquerda, em ordem simétrica
 - Visitar a raiz
 - Percorrer usa subárvore da direita, em ordem simétrica

- Algoritmos de Percurso
 - > Em ordem simétrica:
 - Percorrer sua subárvore da esquerda, em ordem simétrica
 - Visitar a raiz
 - Percorrer usa subárvore da direita, em ordem simétrica

- Algoritmos de Percurso
 - > Em ordem simétrica:
 - Percorrer sua subárvore da esquerda, em ordem simétrica
 - Visitar a raiz
 - Percorrer usa subárvore da direita, em ordem simétrica

- Algoritmos de Percurso
 - > Em ordem simétrica:
 - Percorrer sua subárvore da esquerda, em ordem simétrica
 - Visitar a raiz
 - Percorrer usa subárvore da direita, em ordem simétrica

- Algoritmos de Percurso
 - > Em ordem simétrica:
 - Percorrer sua subárvore da esquerda, em ordem simétrica
 - Visitar a raiz
 - Percorrer usa subárvore da direita, em ordem simétrica

- Algoritmos de Percurso
 - > Em ordem simétrica:
 - Percorrer sua subárvore da esquerda, em ordem simétrica
 - Visitar a raiz
 - Percorrer usa subárvore da direita, em ordem simétrica

- Algoritmos de Percurso
 - > Em ordem simétrica:
 - Percorrer sua subárvore da esquerda, em ordem simétrica
 - Visitar a raiz
 - Percorrer usa subárvore da direita, em ordem simétrica

- Algoritmos de Percurso
 - Pós-ordem

- Percorrer sua subárvore da esquerda, em pós-ordem
- Percorrer usa subárvore da direita, em pós-ordem
- Visitar a raiz

- Algoritmos de Percurso
 - Pós-ordem

- Percorrer sua subárvore da esquerda, em pós-ordem
- Percorrer usa subárvore da direita, em pós-ordem
- Visitar a raiz

1

- Algoritmos de Percurso
 - Pós-ordem

- Percorrer sua subárvore da esquerda, em pós-ordem
- Percorrer usa subárvore da direita, em pós-ordem
- Visitar a raiz

1 - 4

- Algoritmos de Percurso
 - Pós-ordem

- Percorrer sua subárvore da esquerda, em pós-ordem
- Percorrer usa subárvore da direita, em pós-ordem
- Visitar a raiz

1 - 4 - 7

- Algoritmos de Percurso
 - Pós-ordem

- Percorrer sua subárvore da esquerda, em pós-ordem
- Percorrer usa subárvore da direita, em pós-ordem
- Visitar a raiz

1 - 4 - 7 - 6

- Algoritmos de Percurso
 - Pós-ordem

- Percorrer sua subárvore da esquerda, em pós-ordem
- Percorrer usa subárvore da direita, em pós-ordem
- Visitar a raiz

- Algoritmos de Percurso
 - Pós-ordem

- Percorrer sua subárvore da esquerda, em pós-ordem
- Percorrer usa subárvore da direita, em pós-ordem
- Visitar a raiz

- Algoritmos de Percurso
 - Pós-ordem

- Percorrer sua subárvore da esquerda, em pós-ordem
- Percorrer usa subárvore da direita, em pós-ordem
- Visitar a raiz

1 - 4 - 7 - 6 - 3 - 13 - 14

- Algoritmos de Percurso
 - Pós-ordem

- Percorrer sua subárvore da esquerda, em pós-ordem
- Percorrer usa subárvore da direita, em pós-ordem
- Visitar a raiz

- Algoritmos de Percurso
 - Pós-ordem

- Percorrer sua subárvore da esquerda, em pós-ordem
- Percorrer usa subárvore da direita, em pós-ordem
- Visitar a raiz

1 - 4 - 7 - 6 - 3 - 13 - 14 - 10 - 8

Árvores m-árias

- Uma árvore m-ária T, m ≥ 2, é um conjunto finito de elementos, denominados nós ou vértices, tais que:
 - T = Ø e a árvore é dita vazia, ou
 - Contém um **nó especial** r, chamado **raiz** de T, e os restantes podem ser sempre divididos em m subconjuntos disjuntos, as i-ésimas subárvores de r, $1 \le i \le m$, as quais também árvores m-árias.
- Generalização da árvore binária.
- Cada nó possui m subárvores.

Árvores m-árias

 Analogamente ao caso binário, podemos definir árvore estritamente m-ária, árvore m-ária completa e cheia.

– Exemplo:

Árvores m-árias

 Analogamente ao caso binário, podemos definir árvore estritamente m-ária, árvore m-ária completa e cheia.

- Conversão de uma árvore em árvore binária
 - No caso de uma árvore binária com n nós, seriam necessárias 2n posições de memória para as possíveis raízes das subárvores esquerda e direita.

 Numa árvore qualquer, cada nó pode possuir um número arbitrário de subárvores.

Conversão de uma árvore em árvore binária

 Seja m o maior número de filhos dentre os nós da árvore. Cada nó da árvore pode ser representado com m campos de ponteiros para as raízes de suas subárvores.

Demanda mn posições de memória para os ponteiros. Grande desperdício de memória!

Conversão de uma árvore em árvore binária

- Solução: converter a árvore dada em uma árvore binária.
- Obtém-se uma árvore binária com o mesmo número de nós que a árvore original.
- A conversão é única, a qual pode, em qualquer ocasião, ser reconvertida na árvore original.

Conversão de uma árvore em árvore binária

- Seja T a árvore genérica original.
- T' é a árvore binária equivalente a T.
- T' possui um nó v' para cada nó v de T.
- As raízes de T e T' coincidem.
- Regras para construção:
 - ➢ O filho esquerdo de um nó v' em T' corresponde ao primeiro filho de v em T, caso exista. Se não existir, a subárvore esquerda de v' é vazia.
 - ➤ O filho direito de um nó v' em T' corresponde ao irmão de v em T, localizado imediatamente à sua direita, caso exista. Se não existir, a subárvore direita de v' é vazia.

- Conversão de uma árvore em árvore binária
 - Exemplo:

- Conversão de uma árvore em árvore binária
 - Exemplo:

T'

- Conversão de uma árvore em árvore binária
 - Exemplo:

T′

- Conversão de uma árvore em árvore binária
 - Exemplo:

T'

- Conversão de uma árvore em árvore binária
 - Exemplo:

T'

- Conversão de uma árvore em árvore binária
 - Exemplo:

- Conversão de uma árvore em árvore binária
 - Exemplo:

- Conversão de uma floresta em árvore binária
 - Para converter uma floresta em árvore binária, basta considerar as raízes das árvores da floresta como nós irmãos e aplicar a conversão anterior.
 - Exemplo:

- Conversão de uma floresta em árvore binária
 - Exemplo:

Conversão de uma floresta em árvore binária

Conversão de uma floresta em árvore binária

Conversão de uma floresta em árvore binária

• Exercício 2:

- Converta a árvore em árvore binária.
- Execute os três percursos na árvore binária resultante do item anterior.

• Exercício 2:

- Converta a árvore em árvore binária.
- Execute os três percursos na árvore binária resultante do item anterior.

• Exercício 2:

- Converta a árvore em árvore binária.
- Execute os três percursos na árvore binária resultante do item anterior.

FIM