# Recommended Metrics to Better Quantify the Effects of Aircraft Noise on Populations Around Airports

Nicholas P. Miller

Harris Miller Miller & Hanson Inc.

## **Quantification of Noise Effects**

www.hmmh.com

- Non-Auditory Health Effects
- Annoyance
- Sleep Disturbance
- Effects on Learning

- Larry Finegold
- Nick Miller
- Nick Miller
- Ken Plotkin

# Identified Effect on Populations

**Quantification of Effect** 

**Non-Auditory Health Effects** 

Number of people with elevated risk of medically defined "clinical hypertension"

**Annoyance** 

Number of people highly annoyed

**Sleep Disturbance** 

Number of people awakened at least once during the night by aircraft noise events

**Effects on Learning** 

Number of children in schools with aircraft noise exposure exceeding ANSI guidelines

# **Quantification - Non-Auditory Health Effects**

www.hmmh.com

- Many studies of health effects primarily cardiovascular
- Best approach would be meta-analysis
- Many difficulties comparing / combining studies
  - Different measures of blood pressure
  - Different means of determining noise exposure
- However, strong suggestions of correlation of aircraft noise w/ higher blood pressure

# **Quantification - Non-Auditory Health Effects**

### www.hmmh.com

# Results of recent meta-analysis



from Babisch, W and van Kamp, I., Draft WHO Workshop Report: "AIRCRAFT NOISE AND HEALTH; Cardiovascular effects of aircraft noise," 2nd draft, December 2007. (Unpublished report)

# **Quantification - Non-Auditory Health Effects**

www.hmmh.com

### Recommendation

- Indication of association of hyper-tension with aircraft noise
- Insufficient consistency of results to make any recommendation for quantification at this time

- The "Schultz Curve" is traditional (1978)
- Included all transportation sources
- We want annoyance from aircraft
- Many more annoyance surveys now available













- --- Schultz -JASA 64(2) 1978
- Data 1963 2002
- --- Fidell NCEJ 52(2) Mar-Apr 2004
- Miedema -TNO report PG/VGZ/00.052, July 2000



# **Quantification - Annoyance**

### www.hmmh.com

# Recommended using Miedema:

$$%HA = -1.395 \times 10-4 (Ldn - 42)3 + 4.081 \times 10-2 (Ldn - 42)2 + 0.342 (Ldn - 42)$$

$$%HA = -9.199 \times 10-5 \text{ (Lden-42)}3 + 3.932 \times 10-2 \text{ (Lden-42)}2 + 0.2939 \text{ (Lden-42)}$$

- Awakening research available:
  - Behavioral Awakenings
  - Motility
  - Change of sleep structure
- Recommended Behavioral Awakenings (supported by FICAN)
  - Easiest to communicate to public
  - No ambiguity about determining awakening

# **Quantification - Sleep**

### www.hmmh.com



From: Marks A, Griefahn B, Basner M (2008). Event-related awakenings caused by nocturnal transportation noise. Noise Control Eng. J. 56 (1), Jan-Feb

# Chance of Awakening from Many Aircraft:

- One aircraft (Indoor) SEL ~ 90 dB:
  - 10% (or 0.10) chance of awakening
  - 90% (or 0.90) chance of not awakening
- Two aircraft, both SEL ~ 90 dB:
  - Not awakening or "Sleeping through" means:
    - not awakening from the first, AND
    - not awakening from the second
  - Chance of sleeping through:

$$= (0.9)(0.9) = 0.81 = 81\%$$

– Therefore chance of not sleeping through:

$$= 1 - 0.81 = 0.19 = 19\%$$

Not sleeping though means you awoke at least once.

### www.hmmh.com



Resulting probabilities of awakening:

$$p_{awake,single} = \frac{1}{1 + e^{-Z}}$$

### Where:

$$Z = \beta_0 + \beta_L L_{AE} + \beta_T T_{retire} + \sum_{s=1}^{s=n-1} \beta_S s$$

| Awakening<br>Dose-<br>Relationship | $eta_0$ | $eta_L$ | $eta_T$ | $eta_S$  |
|------------------------------------|---------|---------|---------|----------|
| ANSI (1)                           | -6.8884 | 0.04444 | 0       | 0        |
| <b>ANSI (2)</b>                    | -7.594  | 0.04444 | 0.00336 | 0        |
| W/SENS                             | -10.723 | 0.08617 | 0.00402 | Multiple |

But people awaken more easily as the night passes



# And people vary in their sensitivity to awakening









- Application is point by point
  - Block of population / neighborhood
  - Same sound levels across the block
  - Known number of people
- Use INM to compute (detailed grid):
  - All SEL values by time of night (3 periods ok)
  - Number of aircraft for each SEL value
- The rest is multiplication for each sensitivity level
  - Chance of sleeping through all SELs
  - Then 1-chance of sleeping though = chance of awakening
  - Multiply chance of awakening times population
- Add all sensitivities for number of people awakened at least once



- One of the effects of aircraft noise is speech interference
  - Produces annoyance addressed with DNL
  - Can affect learning
- Acoustical Society of America and the Institute of Noise Control engineers addressed learning
- Lead to American National Standards Institute Standard:
  - ANSI S12.60-2002, "Acoustical Performance Criteria, Design Requirements, and Guidelines for Schools," June 2002

# ANSI S12.60-2002 for core spaces < 20,000 cubic feet</li>

- Steady noise: Leq not to exceed 35 dB
- Transportation noise: L<sub>eq</sub> and L<sub>10</sub> not to exceed 40 dB
- > 20,000 cubic feet, 5 dB higher
- Based on signal to noise ratio of at least 15 dB

### Recommendation

- Assume outdoor-to-indoor reduction is 25 dB to 30 dB
- Use outdoor school day hourly  $L_{eq} > 65$  dB to indicate impact on learning (accounts for situations where  $L_{10} > L_{eq}$ )
- Use actual outdoor-to-indoor reduction if known
- Compute number of students in schools with impact