10. Case Studies: Students can analyze case studies of privacy breaches or successful privacy protection strategies, and identify key lessons and takeaways.

DSC14/DSC-A5/GE7c: MACHINE LEARNING

Credit distribution, Eligibility and Prerequisites of the Course

Course title &	Credits	Credit di	stribution	of the course	Eligibility criteria	Pre-requisite of the course
Code		Lecture	Tutorial	Practical/ Practice		
Machine Learning	4	3	0	1	Pass in Class XII	Programming using Python/bject Oriented Programming using Python

Course Objectives

The course aims at introducing the basic concepts and techniques of machine learning so that a student can apply machine learning techniques to a problem at hand.

Learning outcomes

On successful completion of the course, students will be able to:

- Differentiate between supervised and unsupervised learning tasks.
- State the need of preprocessing, feature scaling and feature selection.
- Formulate classification, regression and clustering problems as optimization problems
- Implement various machine learning algorithms learnt in the course.

SYLLABUS

Unit 1 (5 Hours)

Introduction:

Basic definitions and concepts, key elements, supervised and unsupervised learning, applications of ML.

Unit 2 (8 Hours)

Preprocessing:

Feature scaling, feature selection methods. dimensionality reduction (Principal Component Analysis), class balancing, outlier detection and removal.

Unit 3 (12 Hours)

Regression:

Linear regression with one variable, linear regression with multiple variables, gradient descent, over-fitting, regularization. Regression evaluation metrics.

Unit 4 (12 Hours)

Classification: Decision trees, Naive Bayes classifier, logistic regression, k-nearest neighbor classifier, perceptron, multilayer perceptron, neural networks, back-propagation algorithm, Support Vector Machine (SVM). Classification evaluation metrics

Unit 5 (8 Hours)

Clustering: Approaches for clustering, distance metrics, K-means clustering, hierarchical clustering.

Essential/recommended readings

- 1. Mitchell, T.M. Machine Learning, McGraw Hill Education, 2017.
- 2. James, G., Witten. D., Hastie. T., Tibshirani., R. An Introduction to Statistical Learning with Applications in R, Springer, 2014.
- 3. Alpaydin, E. Introduction to Machine Learning, MIT press, 2009.

Additional References

- 1. Flach, P., Machine Learning: The Art and Science of Algorithms that Make Sense of Data, Cambridge University Press, 2015.
- 2. Christopher & Bishop, M., Pattern Recognition and Machine Learning, New York: Springer-Verlag, 2016.
- 3. Sebastian Raschka, Python Machine Learning, Packt Publishing Ltd, 2019

Suggested Practical List:

Practical exercises such as

Use Python for practical labs for Machine Learning. Utilize publicly available datasets from repositories like https://data.gov.in/ and https://archive.ics.uci.edu/ml/datasets.php

For evaluation of the regression/classification models, perform experiments as follows:

• Scale/Normalize the data • Reduce dimension of the data with different feature selection techniques • Split datasets into training and test sets and evaluate the decision models • Perform k-cross-validation on datasets for evaluation

Report the efficacy of the machine learning models as follows: • MSE and R2 score for regression models • Accuracy, TP, TN, FP, TN, error, Recall, Specificity, F1-score, AUC for classification models

For relevant datasets make prediction models for the following

- 1. Naïve Bayes Classifier
- 2. Simple Linear Regression multiple linear regression
- 3. Polynomial Regression
- 4. Lasso and Ridge Regression
- 5. Logistic regression
- 6. Artificial Neural Network
- 7. k-NN classifier
- 8. Decision tree classification

- 9. SVM classification
- 10. K-Means Clustering
- 11. Hierarchical Clustering

DSC16/GE6e/DSE: ARTIFICIAL INTELLIGENCE

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credit s	Credit d	listributio	n of the course	Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/ Practice		
Artificial Intelligence	4	3	0	1	Pass in Class XII	Programming using C++/Program ming using Python/Object Oriented Programming using Python

Course Objectives

The objectives of this course are to:

- To introduce basic concepts and techniques of Artificial Intelligence (AI).
- To apply informed search techniques for different applications.
- To learn various knowledge representation techniques and writing Prolog programs.
- To learn about the latest techniques for developing AI systems.

Learning outcomes

On successful completion of this course, students will be able to: