

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE INGENIERÍA LABORATORIO DE HIDRÁULICA

PRÁCTICA 8. AFORO CON CARGA VARIABLE

Grupo:	
Equipo:	
Fecha:	
Maestro:	
Calificación:	

Integrantes	Matricula		

Aforo con carga constante	1	2	3	
Volumen (Vol):				Lt
Tiempo medido (T_m):				seg
Gasto volumétrico (Q _v):				Lt/s
Diámetro del chorro (D 2):				cm
Área del chorro (A_2):				cm ²
Área del orificio de descarga ($m{A}_{m{0}}$):				cm ²
Velocidad real (V_a):				cm/s
Carga hidráulica (h):				cm
Velocidad teórica ($oldsymbol{V}_{ au}$):				cm/s
Coeficiente de contracción (Cc):				-
Coeficiente de velocidad (Cv):				-
Coeficiente calculado (Cd ₁):				-
Numero de Reynolds (Re):				-
Coeficiente de descarga tabla (Cd_2):				-
Gasto descarga orificio ($oldsymbol{Q}_1$):				Lt/s
Gasto descarga orificio ($oldsymbol{Q}_2$):				Lt/s
Error relativo (e):				%

Aforo con carga constante					
	$Q_{vol} = \frac{Vol}{t}$				
	$Va = \frac{Q_{vol}}{A_0}$				
	$V_T = \sqrt{2gh}$				
h	$Cc = \frac{A_2}{A_0} Cv = \frac{V_a}{V_T}$				
	Cd = CcCv				
Ao	$Re = \frac{D_o V_T}{v}$				
	$e = \frac{ Q_v - Q }{Q_v}$				
Diámetro orificio: 5.12 mm					

Aforo con carga variable	1	2	3	
Tiempo medido (T _m) :				seg
Área del cilindro ($m{A}_1$):				cm ²
Coeficiente calculado promedio (Cd):				-
Carga hidráulica inicial (h ₁):				cm
Carga hidráulica final (h ₂) :				cm
Tiempo calculado (T):				seg

