Report Science & Technology

PREDICTING H1N1 VACCINE UPTAKE

Phase Three Project On Predictive Modelling

Jennifer Njeri

23 October 2023

INTRODUCTION

The data for this project is sourced from the National 2009 H1N1 Flu Survey conducted in the United States following the Influenza outbreak of 2009. The datasets can be found on the Driven Data Website.

The dataset primarily consists of categorical variables with binary and numerical values. Additionally, certain columns contain coded data.

Project Objectives

- 1. Ideal Predictive Model: Develop a robust predictive model capable of estimating the likelihood of H1N1 vaccine uptake for individuals.
- 2. Feature Importance: Identify and prioritize the key features that contribute to the decision-making process regarding H1N1 vaccination.
- 3. Recommendations: Provide actionable insights to health authorities and policymakers to enhance targeted vaccination strategies.

MODEL SUCCESS CRITERIA

In the context of predicting vaccine intake, capturing as many true positive cases (individuals taking the vaccine) is crucial.

- Recall, measuring the effectiveness of classification, is wellsuited for this purpose. Identifying the characteristics of vaccine uptake informs targeted campaigns, allowing for efficient resource allocation and improved vaccination within specific demographics.
- 2. F1 Score, as a harmonic mean of precision and recall, ensures a balanced trade-off, sensitive to both false positives and false negatives. This aligns with the objectives of the prediction
- 3. Additionally, I'll use AUC-ROC to gauge the overall performance of the model.

Metrics:

- 1. AUC-ROC score of 85% and above
- 2. Balance Recall considering the target variable is heavily imbalanced. 50% and above.
- 3.80% and above accuracy.
- 4. F1 Score of 50% and above

Columns description:

For all binary variables: 0 = No; 1 = Yes.

- h1n1_concern Level of concern about the H1N1 flu. 0 = Not at all concerned; 1 = Not very concerned; 2 = Somewhat concerned; 3 = Very concerned.
- h1n1_knowledge Level of knowledge about H1N1 flu. 0 = No knowledge; 1 = A little knowledge; 2 = A lot of knowledge.
- behavioral_antiviral_meds Has taken antiviral medications.
 (binary)
- behavioral_avoidance Has avoided close contact with others with flu-like symptoms. (binary)
- behavioral_face_mask Has bought a face mask. (binary)
- behavioral_wash_hands Has frequently washed hands or used hand sanitizer. (binary)
- behavioral_large_gatherings Has reduced time at large gatherings. (binary)
- behavioral_outside_home Has reduced contact with people outside of own household. (binary)
- behavioral_touch_face Has avoided touching eyes, nose, or mouth. (binary)
- doctor_recc_h1n1 H1N1 flu vaccine was recommended by doctor. (binary)
- doctor_recc_seasonal Seasonal flu vaccine was recommended by doctor. (binary)
- chronic_med_condition Has any of the following chronic medical conditions: asthma or an other lung condition, diabetes, a heart condition, a kidney condition, sickle cell anemia or other anemia, a neurological or neuromuscular condition, a liver condition, or a weakened immune system caused by a chronic illness or by medicines
- taken for a chronic illness. (binary)
- child_under_6_months Has regular close contact with a child under the age of six months. (binary)
- health_worker Is a healthcare worker. (binary)
- health_insurance Has health insurance. (binary)
- opinion_h1n1_vacc_effective Respondent's opinion about H1N1 vaccine effectiveness. 1 = Not at all effective; 2 = Not very effective; 3 = Don't know; 4 = Somewhat effective; 5 = Very effective.

- opinion_h1n1_risk Respondent's opinion about risk of getting sick with H1N1 flu without vaccine. 1 = Very Low; 2 = Somewhat low; 3 = Don't know; 4 = Somewhat high; 5 = Very high.
- opinion_h1n1_sick_from_vacc Respondent's worry of getting sick from taking H1N1 vaccine. 1 = Not at all worried; 2 = Not very worried; 3 = Don't know; 4 = Somewhat worried; 5 = Very worried.
- opinion_seas_vacc_effective Respondent's opinion about seasonal flu vaccine effectiveness. 1 = Not at all effective; 2 = Not very effective; 3 = Don't know; 4 = Somewhat effective; 5 = Very effective.
- opinion_seas_risk Respondent's opinion about risk of getting sick with seasonal flu without vaccine. 1 = Very Low; 2 = Somewhat low; 3 = Don't know; 4 = Somewhat high; 5 = Very high.
- opinion_seas_sick_from_vacc Respondent's worry of getting sick from taking seasonal flu vaccine. 1 = Not at all worried; 2
 = Not very worried; 3 = Don't know; 4 = Somewhat worried; 5
 = Very worried.
- age_group Age group of respondent.
- education Self-reported education level.
- race Race of respondent.
- sex Sex of respondent.
- income_poverty Household annual income of respondent with respect to 2008 Census poverty thresholds.
- marital_status Marital status of respondent.
- rent_or_own Housing situation of respondent.
- employment_status Employment status of respondent.
- hhs_geo_region Respondent's residence using a 10-region geographic classification defined by the U.S. Dept. of Health and Human Services. Values are represented as short random character strings.
- census_msa Respondent's residence within metropolitan statistical areas (MSA) as defined by the U.S. Census.
- household_adults Number of other adults in household, topcoded to 3.
- household_children Number of children in household, topcoded to 3.

- employment_industry Type of industry respondent is employed in. Values are represented as short random character strings.
- employment_occupation Type of occupation of respondent. Values are represented as short random character strings.

DATAFRAME DESCRIPTION

Int64Index: 26707 entries, 0 to 26706

Data columns (total 38 columns):

Data columns (total 38 columns):				
# Column	Non-Null Count Dtype			
0 respondent_id	26707 non-null int64			
1 h1n1_vaccine	26707 non-null int64			
2 seasonal_vaccine	26707 non-null int64			
3 h1n1_concern	26615 non-null float64			
4 h1n1_knowledge	26591 non-null float64			
5 behavioral_antivira	al_meds 26636 non-null float64			
6 behavioral_avoida	nce 26499 non-null float64			
7 behavioral_face_m	nask 26688 non-null float64			
8 behavioral_wash_ł	nands 26665 non-null float64			
9 behavioral_large_ç	gatherings 26620 non-null float64			
10 behavioral_outsid	le_home 26625 non-null float64			
11 behavioral_touch	_face 26579 non-null float64			
12 doctor_recc_h1n1	24547 non-null float64			
13 doctor_recc_seas	onal 24547 non-null float64			
14 chronic_med_con	dition 25736 non-null float64			
15 child_under_6_m	onths 25887 non-null float64			
16 health_worker	25903 non-null float64			
17 health_insurance	14433 non-null float64			
18 opinion_h1n1_va	cc_effective 26316 non-null float64			
19 opinion_h1n1_ris	k 26319 non-null float64			
20 opinion_h1n1_sic	k_from_vacc 26312 non-null float64			
21 opinion_seas_vac	c_effective 26245 non-null float64			
22 opinion_seas_risk	26193 non-null float64			
23 opinion_seas_sick	c_from_vacc 26170 non-null float64			
24 age_group	26707 non-null object			
25 education	25300 non-null object			
26 race	26707 non-null object			

13237 non-null object

27 sex 26707 non-null object 28 income_poverty 22284 non-null object 29 marital_status 25299 non-null object 30 rent_or_own 24665 non-null object 31 employment_status 25244 non-null object 32 hhs_geo_region 26707 non-null object 33 census_msa 26707 non-null object 26458 non-null float64 34 household_adults 26458 non-null float64 35 household_children 36 employment_industry 13377 non-null object

dtypes: float64(23), int64(3), object(12)

memory usage: 7.9+ MB

37 employment_occupation

DISTRIBUTION OF H1N1 VACCINE COMPARED TO SEASONAL VACCINE

More individuals are opting for Seasonal Flue Vaccine over the H1N1 Vaccine.

CORRELATION BETWEEN VARIABLES

The correlations observed against the H1N1 Vaccine are within moderate levels, suggesting potential compatibility for regression modeling without encountering multicollinearity issues. Lasso and Ridge Regularization shall solve for any multicollinearity.

CLASS IMBALANCE

Distribution of H1N1 Vaccine

There is class imbalance in our target variable

Solve for class imbalance

```
# Apply SMOTE to balance the classes in the
training set
smote = SMOTE(random_state=42)
X_train_smote, y_train_smote =
smote.fit_resample(X_train, y_train)
```


SCALE THE DATA

Plain text

```
# Use Standard Scalar to Scale the data
scaler = StandardScaler()

# Fit the scaler on the SMOTE data
X_train_scaled =
scaler.fit_transform(X_train_smote)
X_test_scaled = scaler.transform(X_test)
```

BASELINE MODEL

AUC-ROC SCORES

LogisticRegression - AUC-ROC: 0.8769 DecisionTreeClassifier - AUC-ROC: 0.6887 RandomForestClassifier - AUC-ROC: 0.8765 KNeighborsClassifier - AUC-ROC: 0.7682

Classification scores

LogisticRegression - Accuracy: 0.8535, Recall: 0.5672, F1 Score:

0.6276, AUC-ROC: 0.8769

DecisionTreeClassifier - Accuracy: 0.7830, Recall: 0.5217, F1

Score: 0.5114, AUC-ROC: 0.6887

RandomForestClassifier - Accuracy: 0.8478, Recall: 0.4825, F1

Score: 0.5798, AUC-ROC: 0.8765

KNeighborsClassifier - Accuracy: 0.8111, Recall: 0.4095, F1

Score: 0.4856, AUC-ROC: 0.7682

Visualize the auc-roc curves of the baseline models.

Considering our objectives, the models which prioritize Recall, F1 Score, and AUC-ROC are:

- 1. Logistic Regression has the highest Recall, F1 Score, and AUC-ROC among all models, making it a strong candidate.
- 2. Random Forest Classifier has a good balance of Accuracy, Recall, and F1 Score. The AUC-ROC is also high.

Modelling with balanced (SMOTE) and Scaled (StandardScaler) data

We will use Logistic Regression and Random Forest Classifiers.

Classification Report

Plain text

Logistic Regression Classification Report:					
precision recall f1-sc	ore				
support					
0 0.87 0.95 0 3397	.91				
1 0.72 0.51 0	.60				
945					
accuracy 0	. 85				
macro avg 0.80 0.73 0	. 75				
weighted avg 0.84 0.85 0 4342	.84				

Logistic Regression AUC-ROC: 0.8747618891863814

Random Forest Classification Report:			
	precision	recall	f1-score
support			
(0.88	0.93	0.90
3397			
1	0.68	0.55	0.61
945			
accuracy	/		0.85
4342			
macro avo	0.78	0.74	0.76
4342			
weighted ava	0.84	0.85	0.84
4342			

Random Forest AUC-ROC: 0.8723036043318646

Overall Performance

Logistic Regression Metrics:

Accuracy: 0.8505

Recall: 0.5079

F1 Score: 0.5966

Random Forest Metrics:

Accuracy: 0.8452

Recall: 0.5524

F1 Score: 0.6084

The Logistic Regression performs slightly lower than the Random Forest model in terms of recall. Let us boost the recall scores in the Logistic regression model.

While the default recall threshold is typically set at 0.5 for binary classification to achieve a balance, the goal here is to optimize TPR performance. Thus, we will fine-tune the threshold, taking into consideration the importance of precision as well.

```
# Logistic Regression
# Explore different thresholds
thresholds = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.87
for threshold in thresholds:
    y_pred_adjusted = (y_pred_proba_logreg
> threshold).astype(int)
    print(f"Threshold: {threshold}")
    print(classification_report(y_test,
y_pred_adjusted))
# Optimal threshold based on the objectives
optimal_threshold = 0.2
# Apply the optimal threshold to get final
predictions
y_pred_final = (y_pred_proba_logreg >
optimal_threshold).astype(int)
# Evaluate the model performance with the
optimal threshold
print("Final Classification Report:")
print(classification_report(y_test,
y_pred_final))
# Visualize precision-recall curve
precision, recall, thresholds =
precision_recall_curve(y_test,
y_pred_proba_logreg)
area_under_curve = auc(recall, precision)
plt.plot(recall, precision,
label=f'Precision-Recall curve (AUC =
{area_under_curve:.2f})')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Precision-Recall Curve')
plt.legend(loc="lower right")
plt.show()
```


As Recall threshold increases, the precision decreases. We will use a threshold of 0.2 to strick a balance between precision and recall.

Hyperparameter Tuning on Logistic Regression and XGBOOST

We will use GridSearchCV to find the best hyperparameters for our Logistic Regression model, Random Forest and XGBoost model and assess their performance on the test set.

Classification Report

Classif Regress		Report - Lo	gistic	
J		precision	recall	f1-
score	suppor-	t		
	0	0.98	0.14	0.24
3397	1	0.24	0.00	0.20
945	1	0.24	0.99	0.39
acc 4342	uracy			0.32
	o avg	0.61	0.56	0.31
weighte	d avg	0.82	0.32	0.27
4342				
Classif	ication	Report - Rai	ndom Fore	st:
		precision	recall	f1-
score	suppor	t		
	0	0.00	0.00	0.00
3397	1	0.22	1.00	0.36
945	_	0.22	1.00	0.50
200	LING CV			0.22
4342	uracy			0.22
	o avg	0.11	0.50	0.18
4342 weighte	d ava	0.05	0.22	0.08
4342	9			
Classif	ication	Report - XG	Boost:	
		precision	recall	f1-
score	suppor			
222-	0	0.88	0.94	0.91
3397	1	0.70	0.53	0.61
945				

accuracy			0.85
4342			
macro avg	0.79	0.74	0.76
4342			
weighted avg	0.84	0.85	0.84
4342			

Overall Performance

Best Logistic Regression Model Metrics:

Accuracy: 0.3217

Recall: 0.9894

F1 Score: 0.3884 AUC-ROC: 0.8488

Best XGBoost Model Metrics:

Accuracy: 0.8489

Recall: 0.5344

F1 Score: 0.6062 AUC-ROC: 0.8796

Best Random Forest Model Metrics:

Accuracy: 0.2176

Recall: 1.0000

F1 Score: 0.3575

AUC-ROC: 0.4570

Observation

Logistic Regression:

High recall for class 1 (0.99), indicating it correctly identifies positive instances. Low precision for class 1 (0.24), suggesting a high number of false positives. Overall low accuracy (0.32).

Random Forest:

Perfect recall for class 1 (1.00), meaning it correctly identifies all positive instances. Low precision for class 1 (0.22), indicating a high number of false positives. Extremely low accuracy (0.22).

XGBoost:

Balanced recall (0.53) and precision (0.70) for class 1. Higher overall accuracy (0.85) compared to the other models.

Reasoning:

While Random Forest has perfect recall for class 1, its precision is very low, leading to a high number of false positives and low accuracy.

XGBoost strikes a balance between recall, precision, and accuracy. It performs well across all metrics.

Objective Two: Identify and prioritize the key features that contribute to the decision-making process regarding H1N1 vaccination.

```
# Extract feature importance scores
feature_importance =
best_xgb_model.feature_importances_
# Associate feature names with importance
scores
feature_names = X_train.columns
feature_importance_dict =
dict(zip(feature_names,
feature_importance))
# Sort features by importance
sorted features =
sorted(feature_importance_dict.items(),
key=lambda x: x[1], reverse=True)
# Display the top 20 features
top_features = sorted_features[:20]
top_features_df =
pd.DataFrame(top_features, columns=
['Feature', 'Importance'])
top_features_df
```

```
Top 20 important features:
[{"index":0,"Feature":"seasonal_vaccine","Importance":0.427140
0272846222},
{"index":1,"Feature":"doctor_recc_h1n1","Importance":0.183498
36766719818},
{"index":2,"Feature":"doctor recc seasonal","Importance":0.042
20624268054962},
{"index":3,"Feature":"opinion_h1n1_risk","Importance":0.025015
056133270264},
{"index":4,"Feature":"health_worker","Importance":0.017598524
689674377}.
{"index":5,"Feature":"opinion_h1n1_vacc_effective","Importance"
:0.015226571820676327},
{"index":6, "Feature": "employment_status_Not in Labor
Force", "Importance": 0.01331236306577921},
```

{"index":7,"Feature":"opinion_seas_vacc_effective","Importance": 0.012076348066329956},

{"index":8,"Feature":"employment_industry_haxffmxo","Importance":0.010334702208638191},

{"index":9,"Feature":"race_White","Importance":0.009661594405 770302},

{"index":10,"Feature":"behavioral_large_gatherings","Importance ":0.00906443502753973},

{"index":11,"Feature":"child_under_6_months","Importance":0.0 07604219019412994},

{"index":12,"Feature":"race_Black","Importance":0.00722808903 0832052},

{"index":13,"Feature":"opinion_seas_sick_from_vacc","Importanc e":0.007216059602797031},

{"index":14,"Feature":"employment_occupation_oijqvulv","Importance":0.006612635217607021},

{"index":15,"Feature":"behavioral_touch_face","Importance":0.00 657787686213851},

{"index":16,"Feature":"opinion_h1n1_sick_from_vacc","Importance":0.006314568687230349},

{"index":17,"Feature":"income_poverty","Importance":0.0061980 17857968807},

{"index":18,"Feature":"h1n1_concern","Importance":0.00559941 95863604546},

{"index":19,"Feature":"employment_industry_mfikgejo","Importa nce":0.005573801696300507}]

Objective three: Recommendations: Provide actionable insights to health authorities and policymakers to enhance targeted vaccination strategies.

- 1. Encourage Seasonal Vaccine Uptake: Given that seasonal_vaccine is the most important feature, public health campaigns should emphasize and promote the importance of receiving the seasonal flu vaccine.
- 2. Promote Doctor Recommendations: As doctor_recc_h1n1 and doctor_recc_seasonal are significant, efforts should be made to enhance communication between healthcare professionals and the public. Encourage doctors to recommend both H1N1 and seasonal flu vaccines during patient visits.

- 3. Address Perceived Risks: Since opinion_h1n1_risk and opinion_seas_sick_from_vacc are influential, public health messaging should address and clarify any misconceptions or concerns regarding the perceived risks associated with H1N1 and seasonal flu vaccinations.
- 4. Target Health Workers: The importance of health_worker as a feature suggests that targeting healthcare workers for vaccination campaigns and ensuring their high vaccination rates could positively influence the general public.
- 5. Effective Communication Strategies: Recognizing the impact of opinions on vaccine effectiveness (opinion_h1n1_vacc_effective and opinion_seas_vacc_effective), public health campaigns should employ clear and compelling communication strategies to convey the effectiveness of both H1N1 and seasonal flu vaccines.
- 6. Employment Status Considerations: The feature employment_status_Not in Labor Force is significant. Tailoring vaccination campaigns to different employment statuses and addressing barriers specific to those not in the labor force could improve overall vaccine uptake.
- 7. Diversity and Racial Considerations: The features race_White and race_Black suggest considering diversity and tailoring campaigns to specific racial or ethnic groups to ensure inclusivity and effectiveness.
- 8. Behavioral Interventions: Focusing on behavioral aspects, such as behavioral_large_gatherings and behavioral_touch_face, indicates the importance of interventions promoting preventive behaviors in high-risk situations.
- 9. Child Vaccination Considerations: Given that child_under_6_months is a significant feature, campaigns should address concerns and provide information about the safety and importance of vaccinating children under six months.
- 10. Income and Economic Considerations: Acknowledging the importance of income_poverty, addressing economic barriers and offering accessibility to free or low-cost vaccination services can contribute to increased vaccine uptake.

About the author

