Package 'tropicalHAR'

April 10, 2023

Type Package
Title Functions for Statistical Inference in Tropical Geometry
Version 0.1.0
Author David Barnhill, Ruriko Yoshida, Keiji Miura
Maintainer David Barnhill <david.barnhill@nps.edu></david.barnhill@nps.edu>
Description This package provides functions for use in statistical inference for data existing in the tropical projective torus. The package focuses on the use of Markov chain Monte Carlo Hit-and-Run methods to sample points over sample spaces defined by tropical polytopes. Additionally, this package contains supervised and unsupervised learning methods to be applied to data over the tropical projective torus.
License What license is it under?
Encoding UTF-8
Imports Rdpack MASS ape phangorn lpSolve lpSolveAPI miscTools Matrix rcdd rgl magick gtools combinat pracma RcppAlgos Rfast
RdMacros Rdpack
RoxygenNote 7.2.3
NeedsCompilation no
R topics documented: bw.nn Check.onto.Tpoly

37

Index

draw.tpolytope.3d	4
HAR.TLineSeg	5
HAR.TLineSeg.Norm	6
HAR.TLineSeg.Norm_Poly	7
hyper3d_max	8
hyper3d_min	9
kernel.ultrametric	9
max_ins_ball	10
min_enc_ball	11
normaliz.polytope	12
normaliz.tree	12
normaliz.vector	13
normaliz.vectors	13
normalize.ultrametrices	14
plot.tree.PCA	15
plot.trop.triangle	15
plot.trop.triangle.w.points	16
plot.trop.triangle.w.top	17
Points.TLineSeg	17
polytope_iso	18
pre.draw.tpolytope.3d	18
pre.pplot.pro	19
project_pi	19
pw.trop.dist	20
rounding	21
Sum.Residuals	21
T.SVM	22
tball_volume	23
tdets	24
TLineSeg	25
TLineSeg_min	25
tree.topology.type	26
trop.dist	26
trop.dist.hyp_max	27
trop.dist.hyp_min	28
trop.Gaussian	28
tropical.geodesic.dim.2	29
tropical.KDE	30
tropical.PCA	30
tropical.PCA.Polytope	31
TropicalPolytope.extrapolation	32
TropicalPolytope.extrapolation.HAR_NORM	32
trop_bal.vert	33
Trop_ball	34
Trop_Volume	35
	55

bw.nn 3

bw.nn	Nearest neighbor bandwidth calculation used adapted from the package kdetrees.

Description

Bandwidth calculation based on nearest neighbor methods for use in non-parametric kernel density estimation over the space of phylogenetic trees.

Usage

```
bw.nn(x,prop=0.2,tol=1e-6)
```

Arguments

X	
prop	Proportion of the set of trees used to define the neighborhood around x.
tol	Tolerance: stopping condition to determine bandwidth. Default as shown.

Value

Bandwidth value used for kernel density estimation over phylogenetic trees.

Note

The package kdetrees has been archived. We therefore include it here.

References

G. Weyenberg, P. Huggins, C. Schardl, D.K. Howe, and R. Yoshida. kdetrees: Nonparametric estimation of phylogenetic tree distributions. Bioinformatics, 2014.

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

draw.tpolytope.3d

Check.onto.Tpoly

Check whether a tropical point is in a tropical polytope.

Description

Check whether a tropical point is in a tropical polytope.

Usage

```
Check.onto.Tpoly(D_s, x)
```

Arguments

D_s Matrix of points defining a tropical polytope.

D Point in tropical projective space.

Value

Logical indicating whether a point in tropical projective space is in a tropical polytope (1=yes or 0=no).

Note

Point of interest does not need to be normalized.

Author(s)

Ruriko Yoshida

Examples

```
\begin{array}{l} D\_s < -matrix(c(\emptyset,\emptyset,\emptyset,0,2,5,\emptyset,3,1),3,3,TRUE) \\ D < -c(\emptyset,6,2) \\ Check.onto.Tpoly(D\_s,D) \end{array}
```

draw.tpolytope.3d

Draw a 3D tropical polytope.

Description

Draw a 3D tropical polytope.

Usage

```
draw.tpolytope.3d(D, c)
```

Arguments

c Color of polytope.

D_s Matrix of points defining a tropical polytope.

HAR.TLineSeg 5

Value

Rendering of a 3D tropical polytope.

Author(s)

Ruriko Yoshida

Examples

```
\label{eq:D_s<-matrix} $$D_s<-matrix(c(0,0,0,0,0,1,2,5,0,1,3,1,0,2,5,10),4,4,TRUE)$$ c<-'red' $$draw.tpolytope.3d(D_s,c)
```

HAR.TLineSeg

Hit-and-Run sampler over a tropical line segment.

Description

Hit-and-Run sampler over a tropical line segment.

Usage

```
HAR.TLineSeg(D1, D2)
```

Arguments

D1 First tropical point.

D2 Second tropical point.

Value

Single unnormalized sample point on line segment between D1 and D2.

Author(s)

Ruriko Yoshida

References

Yoshida, R., Miura, K., & Barnhill, D. (2022). Hit and Run Sampling from Tropically Convex Sets.

```
D1<-c(0,0,0)
D2<-c(0,3,5)
x<-HAR.TLineSeg(D1,D2)
```

HAR.TLineSeg.Norm

Gaussian Sampling Over Tropical Line Segment

Description

This function samples a point on a line segment normally about a center of mass point mu.

Usage

```
HAR.TLineSeg.Norm(D1, D2,mu,stdev)
```

Arguments

D1	End point of a tropical line segment.
D2	End point of a tropical line segment.
mu	Center of mass point on the line segment
stdev	Standard deviation to sample points around mu.

Value

Point sampled normally about the center of mass point on the line segment.

Author(s)

David Barnhill

```
D1<-c(0,0,0)
D2<-c(0,3,7)
mu<-c(0,1,4)
s<-.5
har_line<-matrix(0,500,3,TRUE)
for (i in 1:500){
    x<-HAR.TLineSeg.Norm(D1, D2,mu,s)
    har_line[i,]<-x
}
plot(c(0,3),c(0,7),asp=1)
points(har_line[,2],har_line[,3],col='blue')
hist(apply(har_line,1,function(x) trop.dist(x,c(0,0,4))))</pre>
```

```
HAR.TLineSeg.Norm_Poly
```

Gaussian Sampling About a Projection of a Center of Mass Point onto a Tropical Line Segment.

Description

This Hit-and-Run sampler samples a point according to a Gaussian distribution about a center of mass point on a tropical line segment. The center of mass point on the line segment is selected uniformly on the interval of projections of the centers of mass of a tropical polytope. The resulting sampled point is selected according to a Gaussian distribution about this point. This is a helper function for the normal extrapolation sampler.

Usage

```
HAR.TLineSeg.Norm_Poly(D1,D2,mu,stdev)
```

Arguments

D1	End point of a tropical line segment.
D2	End point of a tropical line segment.
mu	Center of mass point of the tropical polytope.
stdev	Standard deviation to sample points around mu.

Value

Point sampled according to a Gaussian distribution according to the tropical metric.

Author(s)

David Barnhill

See Also

TropicalPolytope.extrapolation.HAR_NORM

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

8 hyper3d_max

hyper3d_	max
TIYPET JU_	_IIIIax

Max-plus Tropical Hyperplane

Description

2D/3D rendering of max-plus hyperplanes for a given set of tropical points.

Usage

```
hyper3d_max(D,di,mi,ma,plt=FALSE)
```

Arguments

D	Matrix of points defining the polytope P. Points are row vectors.
di	Length of sheet emanating from hyperplane apex.
mi	Minmium axis value for plotting.
ma	Maximum axis value for plotting.
plt	Logical used to plot hyperplane(s) on coordinate system.

Value

Rendering of a 2-dimensional or 3-dimensional collection of tropical hyperplanes.

Author(s)

David Barnhill

```
2D Example
D<-matrix(c(0,0,0,0,3,1,0,2,5),3,3,TRUE)
di<-1
mi<--0.5
ma<-5.5
hyper3d_max(D,di,mi,ma,plt=TRUE)

3D Example
D<-matrix(c(0,0,0,0,0,1,3,1,0,1,2,5,0,2,5,10),4,4,TRUE)
di<-3
mi<--0.5
ma<-10.5
hyper3d_max(D,di,mi,ma,plt=TRUE)</pre>
```

hyper3d_min 9

hyper3d_min	2D/3D rendering of min-plus hyperplanes for a given set of tropical points.
	points.

Description

2D/3D rendering of min-plus hyperplanes for a given set of tropical points.

Usage

```
hyper3d_min(D, di, mi, ma, plt = FALSE)
```

Arguments

D	Matrix of points defining the polytope P. Points are row vectors.
di	Length of sheet emanating from hyperplane apex.
mi	Minmium axis value for plotting.
ma	Maximum axis value for plotting.
plt	Logical used to plot hyperplane(s) on coordinate system.

Value

Rendering of 2D/3D min-plus hyperplanes for the given set of points in tropical projective space.

Examples

```
2D Example
D<-matrix(c(0,0,0,0,3,1,0,2,5),3,3,TRUE)
di<-1
mi<--0.5
ma<-5.5
hypers3d_min(D,di,mi,ma,plt=TRUE)

3D Example
D<-matrix(c(0,0,0,0,0,1,3,1,0,1,2,5,0,2,5,10),4,4,TRUE)
di<-3
mi<--0.5
ma<-10.5
hyper3d_min(D,di,mi,ma,plt=TRUE)</pre>
```

kernel.ultrametric

Kernel density estimation function for ultrametrics.

Description

A non-parametric density estimator with the tropical metric over the space of ultrametrics that mimics a classical kernel density estimator (KDE) formulated using a normal density kernel.

10 max_ins_ball

Usage

```
kernel.ultrametric(x, mu, s)
```

Arguments

x A sample ultrametric.

mu Center point about which the sample is obtained.

s Bandwidth associated with KDE

Value

The ultrametric kernel result.

References

Yoshida, R., Barnhill, D., Miura, K., & Howe, D. (2022). Tropical Density Estimation of Phylogenetic Trees

Ruriko Yoshida

max_ins_ball

Defining the maximum inscribed ball of a tropical polytope.

Description

Defining the maximum inscribed ball of a tropical polytope.

Usage

```
max_ins_ball(A)
```

Arguments

A matrix of points defining the polytope, P.

Details

This matters because.

Value

A list consisting of the following components

rad The radius of the maximum inscribed ball inside of P.
cent The center of the maximum inscribed ball inside of P.

References

Yoshida, R., Miura, K., & Barnhill, D. (2023). *Maximum Inscribed and Minimum Enclosing Tropical Balls of Tropical Polytopes and Applications to Volume Estimation and Uniform Sampling*.

min_enc_ball 11

Examples

```
P<-matrix(c(0,0,0,0,2,5,0,3,1),3,3,TRUE)
L<-max_ins_ball(P)
```

min_enc_ball

Defining the minimum encompassing ball of a tropical polytope.

Description

Defining the minimum encompassing ball of a tropical polytope.

Usage

```
min_enc_ball(A)
```

Arguments

Α

A matrix of points defining the polytope, P.

Details

This matters because.

Value

A list consisting of the following components

cent The center of the minimum encompassing ball surrounding P.
rad The radius of the minimum encompassing ball surrounding P.

References

Yoshida, R., Miura, K., & Barnhill, D. (2023). *Maximum Inscribed and Minimum Enclosing Tropical Balls of Tropical Polytopes and Applications to Volume Estimation and Uniform Sampling*.

```
 \begin{array}{l} P < -matrix(c(0,0,0,0,2,5,0,3,1),3,3, TRUE) \\ L < -min_enc\_ball(P) \end{array}
```

12 normaliz.tree

normaliz.polytope

Normalize points defining a tropical polytope.

Description

Normalize points defining a tropical polytope.

Usage

```
normaliz.polytope(DD)
```

Arguments

DD

Matrix of tropical points defining a tropical polytope.

Value

Matrix of normalized (first coordinate equals zero) tropical points.

Author(s)

Ruriko Yoshida

Examples

```
DD<-matrix(c(1,1,1,2,4,7,3,6,4),3,3,TRUE)
DD<-normaliz.polytope(DD)
```

normaliz.tree

Normalize a phylogenetic tree.

Usage

```
normaliz.tree(D, h = 1)
```

Arguments

D First tropical point.

h Height of equidistant tree

Author(s)

Ruriko Yoshida

normaliz.vector 13

normaliz.vector

Normalize a tropical vector.

Description

Normalize a tropical vector.

Usage

```
normaliz.vector(D1)
```

Arguments

D1

Tropical point.

Value

Normalized tropical point.

Author(s)

Ruriko Yoshida

Examples

```
D1<-c(3,4,2)
D<-normaliz.vector(D1)
```

normaliz.vectors

Normalize a matrix of tropical vector.

Description

Normalize a matrix of tropical vector.

Usage

```
normaliz.vectors(DD)
```

Arguments

DD

Matrix of tropical points with points being row vectors.

Value

Matrix of normalized (first coordinate equals zero) tropical points.

Author(s)

Ruriko Yoshida

14 normalize.ultrametrices

Examples

```
DD<-matrix(c(1,1,1,2,4,7,3,6,4),3,3,TRUE)
DD<-normaliz.vectors(DD)
```

normalize.ultrametrices

Normalize a matrix of ultrametrics

Description

This function normalizes a set of ultrametrics by subtracting the first coordinate of each row vector from every coordinate in the associated row vector.

Usage

```
normalize.ultrametrices(D)
```

Arguments

D

Matrix of ultrametrics (row vectors).

Value

Matrix of normalized ultrametrics.

Author(s)

Ruriko Yoshida

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

plot.tree.PCA 15

plot.tree.PCA

Plot of PCA tree.

Usage

```
plot.tree.PCA(tree.list, freq, file="Tree_Topology.pdf")
```

Arguments

file

```
tree.list
freq
```

String; Output file for the plot. Defaults to PDF.

Value

Rendering of PCA tree saved directly to file.

Author(s)

Ruriko Yoshida

Examples

```
##--- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

plot.trop.triangle

Plot a tropical triangle.

Description

Plots a tropical triangle and saves to pdf.

Usage

```
plot.trop.triangle(D)
```

Arguments

D

Matrix of points (row vectors) representing the points defining a tropical triangle.

Value

Rendering of a tropical triangle saved to file.

Author(s)

Ruriko Yoshida

Examples

```
##--- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

```
plot.trop.triangle.w.points
```

Plot points of a tropical triangle.

Description

Plot the points of a tropical triangle.

Usage

```
plot.trop.triangle.w.points(S, D, file="Tropical_Triangle.pdf")
```

Arguments

S

D

file

Value

Rendering of a the points of a tropical triangle.

Author(s)

Ruriko Yoshida

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

plot.trop.triangle.w.top 17

```
plot.trop.triangle.w.top
```

Plot a Tropical Triangle with the Top.

Usage

```
plot.trop.triangle.w.top(S, D, tree.type, file="Tropical_Triangle_Trees.pdf")
```

Author(s)

Ruriko Yoshida

Points.TLineSeg

Extract k equally distanced points on a tropical line segment.

Description

Extract k equally distanced points on a tropical line segment.

Usage

```
Points.TLineSeg(D1, D2, k = 20)
```

Arguments

D1 First tropical point.D2 Second tropical point.k Number of points.

Value

Matrix of k tropical points with points being row vectors.

Author(s)

Ruriko Yoshida

```
D1<-c(0,0,0)
D2<-c(0,3,5)
N<-Points.TLineSeg(D1,D2,k=20)
```

```
polytope_iso
```

Usage

```
polytope_iso(D, P)
```

Arguments

D

Р

Author(s)

Ruriko Yoshida

Examples

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

pre.draw.tpolytope.3d Pre-draw function to display a 3D tropical polytope.

Description

Pre-draw function to display a 3D tropical polytope.

Usage

```
pre.draw.tpolytope.3d(D, v, c)
```

Arguments

D Tropical point.

v Scalar indicating number of tropical points to evaluate.

c Color for displayed polytope.

Note

This function is used in conjunction with draw.tpolytope.3d.

Author(s)

Ruriko Yoshida

pre.pplot.pro 19

pre.pplot.pro

Helper function for PCA plotting.

Description

Helper function for tropical triangle plotting.

Usage

```
pre.pplot.pro(S, D)
```

Arguments

S

D

Author(s)

Ruriko Yoshida

Examples

```
##--- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

project_pi

Project a point onto a tropical polytope.

Description

Project a point onto a tropical polytope.

Usage

```
project_pi(D_s, D)
```

Arguments

D_s Matrix of points defining a tropical polytope.

D Tropical point.

Value

Tropical point representing the projection of D onto D_s.

20 pw.trop.dist

Author(s)

Ruriko Yoshida

Examples

```
\begin{array}{l} D\_s < -matrix(c(\emptyset,\emptyset,\emptyset,0,2,5,\emptyset,3,1),3,3,TRUE) \\ D < -c(\emptyset,5,9) \\ pi < -project\_pi(D\_s,D) \end{array}
```

```
pw.trop.dist
```

Usage

```
pw.trop.dist(D1, D2)
```

Arguments

D1

D2

Author(s)

Ruriko Yoshida

References

Yoshida, R., Barnhill, D., Miura, K., & Howe, D. (2022). *Tropical Density Estimation of Phylogenetic Trees*.

```
##--- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

rounding 21

rounding

Rounding a tropical polytope.

Description

Rounding a tropical polytope.

Usage

rounding(P)

Arguments

Ρ

A square matrix of points defining the polytope, P.

Details

This matters because.

Value

Matrix of points where points are rows that define the pseudo-vertices of a full-dimensional polytope.

References

Yoshida, R., Miura, K., & Barnhill, D. (2023). *Maximum Inscribed and Minimum Enclosing Tropical Balls of Tropical Polytopes and Applications to Volume Estimation and Uniform Sampling*.

Cousins, B.R., & Vempala, S.S. (2016). *A practical volume algorithm*. Mathematical Programming Computation, 8, 133-160.

Examples

```
P<-matrix(c(0,0,0,0,1,0,0,0,1),3,3,TRUE)
P0<-rounding(P)
```

Sum.Residuals

Description

Calculates the sum of the residuals for tropical PCA.

Usage

```
Sum.Residuals(S, D)
```

Arguments

- S Set of vertices of a tropical polytope.
- D Data in matrix form.

Z2 T.SVM

Value

Value of the sum of the residuals where each residual is the tropical distance between a data point in D and the projection of that point on the tropical polytope S.

Author(s)

Ruriko Yoshida

Examples

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

T.SVM

Tropical Support Vector Machine

Description

This sampler uses the tropical HAR extrapolation sampler to find a tropical hyperplane to find the best fit tropical hyperplane that separates data based on classification labels.

Usage

```
T.SVM(V,clses,L=1000,tst=.8,st=100)
```

Arguments

V	Matrix of data without the dependent variable.
clses	Vector of the original data representing the dependent variable (classes) in the data.
L	Number of points to sample.
tst	Train set division. Expressed in proportions.

Value

Point representing the tropical hyperplane that minimizes the cost function.

Author(s)

David Barnhill

tball_volume 23

Examples

```
set.seed(135)
e <- 100
n <- 10
N <- 100
s <- 10
x <- rbind(</pre>
  rmvnorm(n, mu = c(5, -5, rep(0, e - 2)), sigma = diag(s, e)),
  rmvnorm(n, mu = c(-5, 5, rep(0, e - 2)), sigma = diag(s, e))
yy \leftarrow as.factor(c(rep(1, n), rep(2, n)))
newx <- rbind(</pre>
  rmvnorm(N, mu = c(5, -5, rep(0, e - 2)), sigma = diag(s, e)),
  rmvnorm(N, mu = c(-5, 5, rep(0, e - 2)), sigma = diag(s, e))
newy <- as.factor(rep(c(1, 2), each = N))
Hyp<-T.SVM(iris3,iris3[,ncol(iris3)])</pre>
data(iris)
specs<-as.vector(unique(iris$Species))</pre>
iris2<-iris
iris2$Species<-as.numeric(iris$Species)</pre>
iris3<-cbind(replicate(kk,rep(0,nrow(wine1))),iris2)</pre>
Hyp<-T.SVM(iris3,iris3[,ncol(iris3)])</pre>
```

tball_volume

Calculating the volume of a tropical ball.

Description

Calculate the volume of a ball in the tropical projective torus.

Usage

```
tball_volume(r, d)
```

Arguments

r Radius of a tropical ball.

d Dimension of tropical ball.

Details

This matters because.

Value

Volume of a tropical ball with radius r, and dimension, d.

24 tdets

References

Yoshida, R., Miura, K., & Barnhill, D. (2023). *Maximum Inscribed and Minimum Enclosing Tropical Balls of Tropical Polytopes and Applications to Volume Estimation and Uniform Sampling*.

Examples

```
r<-1.5
d<-3
V<-tball_volume(r,d)</pre>
```

tdets

Calculating the tropical determinant of a set of points in tropical projective space.

Description

Calculating the tropical determinant of a set of points in tropical projective space.

Usage

tdets(P)

Arguments

Ρ

Matrix of points defining the polytope, P. Points are row vectors.

Details

This matters because.

Value

List with the following components

tdet Value of tropical determinant.

P Matrix of permuted points (by row) from the original matrix P such that each

point's contribution to the tropical determinant is on the diagonal.

References

Joswig, M. (2010). Essentials of Tropical Combinatorics.

```
P<-matrix(c(0,0,0,0,2,5,0,3,1),3,3,TRUE)
L<-tdets(P)
```

TLineSeg 25

TLineSeg

Construct a max-plus line segment between two tropical points.

Description

Construct a max-plus line segment between two tropical points.

Usage

```
TLineSeg(D1, D2)
```

Arguments

D1 First tropical point.D2 Second tropical point.

Value

List of unnormalized line segment bendpoints.

Author(s)

Ruriko Yoshida

Examples

```
D1<-c(0,0,0)
D2<-c(0,3,5)
L<-TLineSeg(D1,D2)
```

TLineSeg_min

Construct a min-plus line segment between two tropical points.

Description

Construct a min-plus line segment between two tropical points.

Usage

```
TLineSeg_min(D1, D2)
```

Arguments

D1 First tropical point.D2 Second tropical point.

Value

List of unnormalized line segment bendpoints.

26 trop.dist

Author(s)

David Barnhill

Examples

```
D1<-c(0,0,0)
D2<-c(0,3,5)
L<-TLineSeg_min(D1,D2)
```

```
tree.topology.type
```

Usage

```
tree.topology.type(D, n, label)
```

Arguments

D Matrix where rows are observations.

n Number of leaves.

label Set of labels for leaves.

Examples

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

trop.dist

Calculate distance between two tropical points.

Description

Calculate distance between two tropical points.

Usage

```
trop.dist(D1, D2)
```

Arguments

D1 First tropical point.

D2 Second tropical point.

trop.dist.hyp_max 27

Value

Tropical distance between two points.

Author(s)

Ruriko Yoshida

Examples

```
D1<-c(0,1,1)
D2<-c(0,2,2)
trop.dist(D1, D2)
```

trop.dist.hyp_max

Calculate distance from a point to a max-plus tropical hyperplane.

Description

Calculate distance from a point to a max-plus tropical hyperplane.

Usage

```
trop.dist.hyp_max(D, v)
```

Arguments

D Tropical point representing apex of max-plus hyperplane.

v Point in tropical projective space.

Value

Distance from point to max-plus hyperplane.

Author(s)

David Barnhill

```
D<-c(0,0,0)
v<-c(0,2,1)
d<-trop.dist.hyp_max(D, v)</pre>
```

28 trop.Gaussian

trop.dist.hyp_min	Calculate distance from	n a point to a min-i	olus tropical hyperplane.
ci op. aloc.iijp_iiiii	Caretitate distance from	it di potiti to di ittili p	rus iropicui rijperpiune.

Description

Calculate distance from a point to a min-plus tropical hyperplane.

Usage

```
trop.dist.hyp_min(D, v)
```

Arguments

D Tropical point representing apex of min-plus hyperplane.

v Point in tropical projective space.

Value

Distance from point to min-plus hyperplane.

Author(s)

David Barnhill

Examples

```
D<-c(0,0,0)
v<-c(0,2,1)
d<-trop.dist.hyp_min(D, v)</pre>
```

trop.Gaussian

Hit-and-Run sampling around a center of mass.

Description

Hit-and-Run sampling around a center of mass.

Usage

```
trop.Gaussian(D_s, x0, mu, s, n, I, k)
```

Arguments

D_s	Matrix of points defining a tropical polytope.
x0	Starting point for the hit-and-run algorithm.
mu	Tropical point representing center of mass.
S	Distance parameter used in kernel function.
n	Sample size of points to be collected.
I	Number of iterations used for hit-and-run algorithm.
k	Cardinality of subset used in TropicalPolytope.extrapolation.HAR v4 algorithm.

Value

Matrix of n points. Points are row vectors.

Note

Point of interest does not need to be normalized.

Author(s)

Ruriko Yoshida and David Barnhill

Examples

```
D_s<-matrix(c(0,0,0,0,2,5,0,3,1),3,3,TRUE)
x0<-c(0,1,0)
mu<-c(0,1.5,1.5)
s<-.5
n<-1000
I<-50
k<-2
N<-trop.Gaussian(D_s, x0, mu, s, n, I, k)</pre>
```

```
tropical.geodesic.dim.2
```

Usage

```
tropical.geodesic.dim.2(D1, D2, flag = 0)
```

Arguments

D1

D2

flag Logical

Author(s)

Ruriko Yoshida

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

30 tropical.PCA

tropical.KDE

Kernel density estimation over a space of phylogenetic trees.

Description

Kernel density estimation function over the space of phylogenetic trees for a given data set.

Usage

```
tropical.KDE(D, n, sigma, h = 2)
```

Arguments

Data set with each row as an observation.

n The number of leaves.

h The height of the tree.

Value

Density estimate for a given data set.

Author(s)

Ruriko Yoshida

References

Yoshida, R., Barnhill, D., Miura, K., & Howe, D. (2022). *Tropical Density Estimation of Phylogenetic Trees*.

tropical.PCA

Tropical Principal Component Analysis

Usage

```
tropical.PCA(S, D, n, h, I = 1)
```

Arguments

S

D

n

h

Ι

Examples

```
##--- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

tropical.PCA.Polytope

Usage

```
tropical.PCA.Polytope(S, D, V, I = 1)
```

Arguments

S

D Set of vertices defining a tropical triangle.

V Matrix of vertices of a tropical polytope larger than the tropical polytope defined

by D.

I Iterations.

Value

```
Returns a list
```

Author(s)

Ruriko Yoshida

```
##--- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

TropicalPolytope.extrapolation

Uniform Hit-and-run sampler for a tropical polytope.

Description

Hit-and-run sampler for a tropical polytope.

Usage

```
TropicalPolytope.extrapolation.HAR_v4(D_s, x0, I = 1, k = dim(D_s)[2])
```

Arguments

D_s	Matrix of vertices representing the tropical convex hull of of a polytope, P.
x0	Starting point in tropical projective space.
I	Number of iterations for the hit-and-run algorithm
k	Size of subset. Defaults to # of columns of D_s.

Value

A point sampled from a the polytope P.

References

Yoshida, R., Miura, K., & Barnhill, D. (2022). Hit and Run Sampling from Tropically Convex Sets.

Examples

```
\label{eq:D_s<-matrix} $$D_s<-matrix(c(0,0,0,0,2,5,0,3,1),3,3,TRUE)$$$x_0<-c(0,2,1)$$$I=50$$$x=TropicalPolytope.extrapolation.HAR_v4(D_s,x0,I=I)$$
```

```
\label{thm:continuous} Tropical Polytope.extrapolation. HAR\_NORM \\ Gaussian \ HAR \ Sampler \ from \ a \ Tropical \ Polytope
```

Description

This function is a Hit-and-Run sampler that samples points from a tropical polytope in the tropical projective torus according to a Gaussian distribution based on the tropical metric. The original tropical polytope is defined by e points. Line segments are generated where end points are determined by the projection of a point onto the tropical polytope defined by e-1 vertices and the projection of the same point onto the remaining vertex. If the line segment intersects the boundary of the tropical polytope at more than two points, the line segment is truncated to only the portion of the line segment intersects the boundary at two points or, if the line segment follows the boundary of the tropical polytope, the line segment is truncated to the first bend point.

trop_bal.vert 33

Usage

```
\label{eq:topicalPolytope.extrapolation.HAR_NORM(D_s, x0, I = 1, k = (ncol(D_s) - 1), M, S) \\
```

Arguments

D_s	Matrix of vertices representing the tropical convex hull of of a polytope, P.
x0	Starting point in tropical projective space.
I	Number of iterations for the hit-and-run algorithm
k	Size of subset. Defaults to one less than the # of columns of D_s.
М	Center of mass point in the tropical polytope.
S	Standard deviation to be used to sample from a tropical line segment.

Value

Point sampled from a tropical polytope according to a Gaussian distribution .

Author(s)

David Barnhill

Examples

```
library(rgl)
P1<-matrix(c(0,0,0,0,0,10,0,0,0,10,0,0,0,0,10),4,4,TRUE)
x0<-c(0,0,0,0)
mu<-c(0,5,5,5)
s<-1
har_norms<-matrix(0,15000,4,TRUE)
for (i in 1:1000){
   print(i)
   x<-TropicalPolytope.extrapolation.HAR_v4_NORM(P1,x0,I=50,k=3,mu,s)
   har_norms[i,]<-x
   x0<-x
}</pre>
```

trop_bal.vert

Calculate the tropical convex hull of a tropical ball.

Description

Calculate the tropical convex hull of a tropical ball.

Usage

```
trop_bal.vert(x, d, dm)
```

Arguments

x Center point for a tropical ball.

d Radius of tropical ball.

dm Dimension of tropical projective space.

Trop_ball

Value

Square matrix of vertices defining convex hull of a tropical ball of radius d and center x.

References

Yoshida, R., Miura, K., & Barnhill, D. (2022). Hit and Run Sampling from Tropically Convex Sets.

Examples

```
x<-c(0,0,0)
d<-3
dm<-length(x)
V=trop_bal.vert(x,d,dm)</pre>
```

Trop_ball

Render a tropical ball in 2D or 3D.

Description

Render a tropical ball in 2D or 3D.

Usage

```
Trop_ball(v, d, a = 1, cls = "black", fil = TRUE, plt = TRUE, bord = "black")
```

Arguments

V	Tropical point representing center of tropical ball.
d	Radius of tropical ball.
а	Opacity of 3D tropical ball. Unused for 2D rendering.
cls	Color of tropical ball.
fil	Logical indicating whether to fill the interior of 3D tropical ball or not.
plt	Logical indicating whether to plot the rendering with coordinates or not.
bord	Border color of tropical ball.

Value

Rendering of 2D or 3D tropical ball.

Note

Point of interest does not need to be normalized.

Author(s)

David Barnhill

Trop_Volume 35

Examples

```
2D example
v<-c(0,1,0)
d<-1.5
cls<-'white'
Trop_ball(v, d=d, cls=cls)
3D example
v<-c(0,1,3,1)
a<-.1
d<-1.5
cls<-'blue'
Trop_ball(v, a=a,d=d,cls=cls)</pre>
```

Trop_Volume

Estimate the volume of a tropical polytope.

Description

Estimate the volume of a tropical polytope.

Usage

```
Trop_Volume(B, P, x0, S, i, d = ncol(P), R)
```

Arguments

В	Matrix of points defining the encompassing ball for a polytope, P. Points are row vectors.
Р	Matrix of points defining the polytope P. Points are row vectors.
x0	Starting point for use in HAR sampler.
S	Sample size to be taken.
i	Iterations used for HAR sampler.
d	Dimension of polytope for use to define subset size in HAR sampler.
R	Radius of tropical ball, B.

Details

This matters.

Value

Returns a list with components

Ratio of points falling in P to all sampled points in B.

VolB Volume of minimum encompassing ball.
VolP Volume estimate of tropical polytope, P.

har_points Points sampled from B.

har_points1 Sampled points that fall inside P.

Trop_Volume

References

Yoshida, R., Miura, K., & Barnhill, D. (2023). *Maximum Inscribed and Minimum Enclosing Tropical Balls of Tropical Polytopes and Applications to Volume Estimation and Uniform Sampling*.

```
P<-matrix(c(0,0,0,0,3,1,0,2,5),3,3,TRUE)
cr<-max_enc_ball(P)
r<-cr[[2]]
cent<-cr[[1]]
B<-trop_ball.vert(cent,r,length(cent))
S<-1000
i<-50
V=Trop_Volume(B,P,x0,S,i,R=r)</pre>
```

Index

```
bw.nn, 3
                                                T.SVM, 22
                                                tball_volume, 23
Check.onto.Tpoly, 4
                                                tdets, 24
                                                TLineSeg, 25
draw.tpolytope.3d,4
                                                TLineSeg_min, 25
                                                tree.topology.type, 26
HAR Extrapolation with Gaussian
                                                trop.dist, 26
        Sampling Over a Tropical
                                                trop.dist.hyp_max, 27
        Polytope
        (\textit{TropicalPolytope.extrapolation.HAR\_NDRMP}, \textit{dist.hyp\_min}, 28
                                                trop.Gaussian, 28
                                                trop_bal.vert, 33
HAR. TLineSeg, 5
                                                Trop_ball, 34
HAR.TLineSeg.Norm, 6
                                                Trop_Volume, 35
HAR.TLineSeg.Norm_Poly, 7
                                                tropical.geodesic.dim.2,29
hyper3d_max, 8
                                                tropical.KDE, 30
hyper3d_min, 9
                                                tropical.PCA, 30
                                                tropical.PCA.Polytope, 31
kernel.ultrametric, 9
                                                TropicalPolytope.extrapolation, 32
max_ins_ball, 10
                                                TropicalPolytope.extrapolation.HAR_NORM,
min_enc_ball, 11
normaliz.polytope, 12
normaliz.tree, 12
normaliz.vector, 13
normaliz.vectors, 13
normalize.ultrametrices, 14
Plot of Max-plus Hyperplane in 2D and
         3D. (hyper3d_max), 8
Plot of Min-plus Hyperplane in 2D and
        3D. (hyper3d_min), 9
plot.tree.PCA, 15
plot.trop.triangle, 15
plot.trop.triangle.w.points, 16
plot.trop.triangle.w.top, 17
Points.TLineSeg, 17
polytope_iso, 18
pre.draw.tpolytope.3d, 18
pre.pplot.pro, 19
project_pi, 19
pw.trop.dist, 20
rounding, 21
Sum. Residuals, 21
```