Chapter 4 Calculs algébriques

Exercice 1 (4.1)

Comparer les cinq sommes suivantes

$$S_1 = \sum_{k=1}^{4} k^3$$

$$S_4 = \sum_{k=2}^{5} (k-1)^3$$

$$S_2 = \sum_{n=1}^4 n^3$$

$$S_3 = \sum_{k=0}^{4} k^3$$

$$S_5 = \sum_{k=1}^{4} (5 - k)^3$$

Exercice 2 (4.1)

Compléter les égalités suivantes.

1.
$$\sum_{k=1}^{10} k^2 = \sum_{k=1}^{9} k^2 + \cdots$$

2.
$$\sum_{k=0}^{10} 2^k = \sum_{k=1}^{10} 2^k + \cdots$$

3.
$$\sum_{k=1}^{3} \frac{1}{k} = \sum_{l=3}^{\dots} \frac{1}{l-2}.$$

4.
$$\sum_{k=1}^{3} \frac{1}{k} = \sum_{k=5}^{7} \frac{1}{\dots}.$$

5.
$$\sum_{k=1}^{7} \frac{k+1}{2^k} = \sum_{k=\cdots}^{\cdots} \frac{k+3}{2^{k+2}}.$$

6.
$$\sum_{k=1}^{5} (-1)^k \frac{k}{(k-1)!} = \sum_{k=\cdots}^{\cdots} (-1)^{k+1} \frac{k+1}{k!}.$$

7.
$$\sum_{k=1}^{3} (-1)^{k-1} \frac{k^2}{(2k)!} = \sum_{k=0}^{2} \cdots$$

8.
$$\sum_{k=\cdots}^{\infty} (-1)^k \frac{2k}{k+1} = \sum_{k=2}^{5} (-1)^{\cdots} \frac{\cdots}{k}$$
.

Exercice 3 (4.1)

1. Montrer par récurrence

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

2. Calculer le nombre de carrés que l'on peut dessiner sur un échiquier 8 × 8 (les côtés sont parallèles aux bords de l'échiquier et les sommets sont des sommets des cases de l'échiquier). Généraliser avec un échiquier *n* × *n*.

Exercice 4 (4.1)

En remarquant que l'on peut écrire

$$\frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1},$$

où a, b sont des constantes à déterminer, simplifier la somme

$$\sum_{k=1}^{n} \frac{1}{k(k+1)}.$$

25

Exercice 5 (4.1)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombre complexes et $4 \le p \le q$ deux entiers naturels. Simplifier la somme

$$\sum_{k=p-3}^{q-1}(u_{k+1}-u_{k-1})$$

Exercice 6 (4.1)

Calculer

$$\sum_{k=2}^{n} \ln \left(1 - \frac{1}{k^2} \right).$$

Exercice 7 (4.1)

1. Montrer

$$\forall n \in \mathbb{N}^*, \sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}} < \sqrt{n} - \sqrt{n-1}.$$

2. En déduire la partie entière de

$$\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}+\dots+\frac{1}{\sqrt{10000}}\right).$$

Exercice 8 (4.2)

Calculer

1.
$$\sum_{k=1}^{n} k$$
.

2.
$$\sum_{i=1}^{n} k$$
.

3.
$$\sum_{k=1}^{n} i$$
.

4.
$$\sum_{k=1}^{n} n$$
.

4.
$$\sum_{k=1}^{n} n$$
.
5. $\prod_{k=1}^{n} k$.

$$6. \prod_{i=1}^{n} k$$

7.
$$\prod_{k=1}^{n} i$$
.

$$8. \prod_{k=1}^{n} n.$$

Exercice 9 (4.2)

Développer.

1.
$$(a+b)^7$$
.

2.
$$(1-3x)^5$$
.

Exercice 10 (4.2)

Calculer le coefficient de x^3 dans le développement de

$$\left(2x-\frac{1}{4x^2}\right)^{12}.$$

26

Exercice 11 (4.2)

Calculer.

- 1. Le terme en x^5 du développement de $(x-2)^8$.
- **2.** Le terme en x^{20} du développement de $(x^2 y^2)^{14}$.
- 3. Le terme en x^6 du développement de $(3 4x^2)^5$.
- **4.** Le terme en x^4 et le terme en x^6 du développement de $\left(x^2 + \frac{1}{x}\right)^{14}$.

Exercice 12 (4.2)

Déterminer a afin que le coefficient du terme en x^4 , dans le développement de

$$\left(x + \frac{a}{x^2}\right)^7$$

soit égal à 14.

Exercice 13 (4.2)

En utilisant la formule du binôme de Newton, calculer 1 000 003⁵.

Exercice 14 (4.2)

Soit $n \in \mathbb{N}$. Simplifier les sommes suivantes.

1.
$$\sum_{k=0}^{n} \frac{1}{3^k} \binom{n}{k}$$
.

2.
$$\sum_{k=0}^{n} {n \choose k} \frac{(-1)^{k+1}}{2^k}$$
.

3.
$$\sum_{k=0}^{n} \binom{n}{k} 3^{2k+1}$$
.

Exercice 15 (4.2)

Soit *p* un nombre premier.

- **1.** Montrer que pour tout $k \in [1, p-1]$, p divise $\binom{p}{k}$.
- **2.** En déduire que pour tout $(a, b) \in \mathbb{N}^2$, $(a + b)^p \equiv a^p + b^p \pmod{p}$.
- **3.** Montrer par récurrence que : $\forall a \in \mathbb{N}$, on a $a^p \equiv a \pmod{p}$.

Exercice 16 (4.2)

Soit une suite arithmétique (u_n) , on note $s_n = u_0 + u_1 + ... + u_n$. Déterminer les éléments caractéristiques (premier terme u_0 et raison r) de la suite (u_n) à partir des données suivantes.

1.
$$u_0 = 6$$
 et $u_5 = 0$;

2.
$$u_0 = 3$$
 et $s_3 = 36$;

3.
$$r = 6$$
 et $s_5 = 36$;

4.
$$u_0 = 96$$
 et $s_0 = 780$:

4.
$$u_9 = 96$$
 et $s_9 = 780$;
5. $u_5 = 90$ et $u_8 = 80$;
6. $s_3 = 40$ et $s_5 = 72$.

6.
$$s_3 = 40$$
 et $s_5 = 72$.

Exercice 17 (4.2)

Simplifier, pour $n \in \mathbb{N}^*$, les sommes suivantes.

1.
$$\sum_{k=1}^{n+1} k - \sum_{l=0}^{n} l;$$

2.
$$\sum_{k=0}^{n} (2k+1);$$

3.
$$\sum_{k=1}^{n} k(k-1);$$

4.
$$\sum_{k=1}^{n} k(k+1)(k+2)$$
.

Exercice 18 (4.2)

Pour $p \in \mathbb{N}^*$ et $n \in \mathbb{N}^*$, on pose

$$S_p(n) = 1^p + 2^p + \dots + n^p.$$

- 1. Rappeler sans démonstration les expressions de $S_1(n)$, $S_2(n)$ et $S_3(n)$.
- 2. Soit $(p,n) \in \mathbb{N}^2$. En calculant de deux manières la somme télescopique $\sum_{k=0}^{n} ((k+1)^{p+1} k^{p+1})$, montrer

$$\sum_{i=1}^{p} {p+1 \choose i} S_i(n) = (n+1)^{p+1} - (n+1).$$
 (1)

3. En déduire que, pour tout $n \in \mathbb{N}^*$,

$$1^4 + 2^4 + \dots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}.$$
 (2)

Exercice 19 (4.3)

Simplifier les sommes suivantes.

1.
$$\sum_{i=1}^{n+1} \frac{2^i}{3^{2i-1}}.$$

2.
$$\sum_{i=0}^{n} i(i-1)$$
.

3.
$$\sum_{j=1}^{n} (2j-1)$$
.

$$4. \sum_{1 \le i < j \le n} (i+j).$$

$$5. \sum_{0 \le i,j \le n} x^{i+j}.$$

$$6. \sum_{1 \le i \le j \le n} \frac{i}{j+1}.$$

7.
$$\sum_{1 \le i \le j \le n} (j-i).$$

8.
$$\sum_{1 \le i, j \le n} (i+j)^2$$
.

 $\max(i,j) = \begin{cases} j & \text{si } i \le j \\ i & \text{si } i > j \end{cases}.$

$$9. \sum_{1 \leq i \leq j \leq n} \frac{i^2}{j}.$$

Exercice 20 (4.3)

Soit $n \in \mathbb{N}^*$.

- 1. Calculer la somme $S_1 = \sum_{1 \le i,j \le n} i + j$.
- 2. Calculer la somme

$$S_2 = \sum_{1 \le i, j \le n} \min(i, j).$$

On pourra scinder cette somme en deux.

3. En déduire l'expression de la somme $S_3 = \sum_{1 \le i,j \le n} \max(i,j)$.

Remarque. Pour $i, j \in \mathbb{N}$, on note

$$\min(i, j) = \begin{cases} i & \text{si } i \le j \\ j & \text{si } i > j \end{cases}$$
 et

Exercice 21 (4.4)

Soit $n \in \mathbb{N}^*$. Exprimer à l'aide de factorielles

- 1. $2 \times 4 \times \cdots \times (2n)$;
- **2.** $1 \times 3 \times \cdots \times (2n-1)$;
- 3. le terme général de la suite (u_n) donnée par la relation de récurrence

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{2n+1}{n+1}u_n.$$