UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2008 question paper

9701 CHEMISTRY

9701/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		2	Mark Scheme	Syllabus	Paper	
			GCE A/AS LEVEL – May/June 2008	9701	04	
1	(a) (i)) A	is C1 ₂ /chlorine		[1]	
		В	is NaC l or HC l or C l ⁻ [or words], etc.		[1]	
		С	is salt bridge or KC1/KNO ₃ , etc.		[1]	
		D	is platinum/Pt		[1]	
		E	is Fe ²⁺ + Fe ³⁺ or mixture of Fe(II) + Fe(III) salts		[1]	
			ention of standard conditions ([C l^-] of 1 mol dm ⁻³ or C l_2 at T = 25°C/298 K)	at 1 atmos	[1]	
	(ii	i) E	$E = E_R^e - E_L^e = 0.77 - 1.36 = (-)0.59$ (V) (ignore sign)		[1]	
			ince R.H. electrode is negative) electrons flow (from riectrode <i>or</i> anticlockwise <i>or</i> from (beaker) E to (beaker) B			[8]
	(b) (i)		$H = 3 \times (-167.2) + (-48.5) - (-399.5)$ = -150.6 or 151 (kJ mol ⁻¹) orrect ans [2])		[1] [1]	
	(ii	•	$Fe^{3+} + Cu \longrightarrow 2Fe^{2+} + Cu^{2+}$ r molecular: $2FeCl_3 + Cu \longrightarrow 2FeCl_2 + CuCl_2$)		[1]	
			e = 0.77 – 0.34 = (+) 0.43 (V) o mark for –0.43V)		[1]	[4]
					[Total: 12 max	11
2	(a) (i)	•	$H = 4 \times 278 - 244 - 2 \times 496$ = -124 (kJ mol ⁻¹) orrect ans [2])		[1] [1]	
	(ii	์ dเ (a	nape is bent/V-shaped/non-linear (<i>or</i> diagram) are to (one) lone pair <i>and/or</i> (1) odd/unpaired electron (<i>or</i> ssume electrons are on chlorine unless explicitly starward no mark)		[1] [1] in which case	
	(iii	i) 3k	$KClO_3 + H_2SO_4 \longrightarrow K_2SO_4 + KClO_4 + H_2O + 2ClO_2$		[1]	[5]
	(b) (i)	fo or (N	pal-fired power stations; fuel in cars; car exhausts/gas en ssil fuel; contact process; cement manufacture; brick ma es; burning tyres IOT volcanoes etc; NOT burning of natural gas) o marks for only 1 correct source)			
	(ii	w di	nuses acid rain nich lower pH of lakes; leaches aluminium from soil ssolves/corrodes/damages buildings IOT asthma etc – since this is not environmental)	ls; kills fish/pla	[1] nts/rainforests; (any 1) [1]	[3

	Page 3		3	Mark Scheme	Syllabus	Paper	
				GCE A/AS LEVEL – May/June 2008	9701	04	
	SiO SnC		SiO ₂ SnO	: simple + molecular/covalent <i>or</i> weak intermolecular fog: giant/macro + molecular/covalent 02: ionic/electrovalent (ignore "giant") 02: orrect = [1], 1 correct = [0])		all 3 correct) [2]	
		(ii)		O_2 is stable, PbO ₂ is not or SnO ₂ is the more stable $O_2 \longrightarrow PbO + \frac{1}{2}O_2$		[1] [1]	
		(iii)		+ CO_2 ($\stackrel{>}{=}$) H^+ + HCO_3^- [H^+][HCO_3^-]/[CO_2] $Or = [H^+][HCO_3^-]$ /[CO_2]		[1] ecf [1]	
		(iv)		$O_3^- + H^+ \longrightarrow H_2CO_3 \text{ or } H_2O + CO_2 \text{ (or equation with } O_3^- + OH^- \longrightarrow CO_3^{2-} + H_2O \text{ (NB NOT } H_2CO_3 + OH^-)$	- ,	[1] [1]	
			•	rds can substitute for one of the equations but no criptions are given, in the absence of at least one cor)			[8]
						[Total: 16 max	15]
3	(a) tetrahedral diagram (either dashed+wedge, or similar representation) angles (all) 109° – 110° (award [0] for part (a) if an angle of 90° or 180° is mentioned)			[1] [1]	[2]		
	(b)	(alle	ow b. _l e to gr	decreases or boiling points increase pt. $CCl_4 > SiCl_4$ but b.pt. increases thereafter) reater van der Waals'/intermolecular forces or due to more of "ions" negates this mark)	nore electrons	[1] [1]	[2]
	(c)	(i)	a va (hen Pb ⁴⁺	f/Pb^{2+} : $E^e = +1.69V$, Sn^{4+}/Sn^{2+} : $E^e = +0.15V$, lid comment about relative redox power or stability, e.g. ace) Sn^{2+} easily oxidised or Sn^{4+} is more stable than Sn^{4+} is easily reduced or Pb^{2+} is more stable than Pb^{4+} or		[both] [1]	
			+2 0	exidation state more stable down the group		[1]	
		(ii)	Pb ⁴⁺	$S_1 + I_2 \longrightarrow S_1^{4+} + 2I^-$ $S_2 + SO_2 + 2H_2O \longrightarrow 4H^+ + SO_4^{2-} + Pb^{2+}$ $S_2 + S_3 = S_4$ $S_4 + S_4 = S_4$ $S_5 = S_4$ $S_6 = S_4$ $S_7 = S_4$		[1] [1]	[4]
	(d)	(i)	for S	Si: ∆H = 244 – 2(359) = –474 (kJ mol ^{–1}) Sn: ∆H = 244 – 2(315) = –386 (kJ mol ^{–1}) w [1] out of [2] salvage mark for 474 & 386; 962 & 874	; or –962 & –874	[1] [1] 4)	
		(ii)		the +4 state becomes decreasingly stable – the ΔH is rk is for relating ΔH s to stability: allow ecf from d(i) and		[1]	[3]
						[Total:	11]

Page 4	Page 4 Mark Scheme		Paper
	GCE A/AS LEVEL – May/June 2008	9701	04

4 (a) ester [1] **[1]**

(b) reaction I: acid/H⁺/HC1/H₂SO₄ or alkali/OH⁻/NaOH (followed by H⁺) [1] heat/reflux and aqueous (allow H₃O⁺ to equal H⁺ + ag, also assume "conc" or "dil" means aq (but NOT H₂SO₄) also allow aqueous ethanol) [1]

(for heat: allow T ≥ 80°C; **not** "warm")

reaction II: methanol/CH3OH [1] [1] **[4]**

heat with **conc**. H_2SO_4/H_3PO_4 or HCl(g) [**NOT** conc HCl]

(c) (i) BrCH₂-CHBr-CH₂Br [1]

(ii) HO₂C-CO-CO₂H [1] **[2]**

(d) 890g of triglyceride produces 3 × 298 = 894g of biodiesel [1] ∴ 500kg produces 500 × 894/890 = **502**kg biodiesel ecf [1] (correct ans [2]) (1004/1005kg *or* 167kg is worth [1]: 333kg is worth [0])

(e) (i) $C_{17}H_{35}CO_2CH_3 + 27.5 O_2 \longrightarrow 19CO_2 + 19H_2O$ [1] $(or C_{19}H_{38}O_2)$

(ii) $10 \times 44 \times 19/298 = 28.(05)/28.1$ kg ecf from equ [2]

(-1 for each error) some ecf values: $n = 18 \Rightarrow 26.6$ kg

 $n = 17 \Rightarrow 25.1$ kg (allow [2] for each) $n = 16 \Rightarrow 23.6$ kg [3]

- **(f)** any one of the following.
 - (saving) diminishing resources
 - economic argument (NOT just "cheaper") e.g. oil will become increasingly more expensive as it runs out
 - ref to CO₂ cycle (e.g. no net increase in CO₂, i.e. "carbon neutral") or less global warming (due to a smaller carbon "footprint")
 - · renewable/sustainable
 - the effect of biofuel cultivation on world food prices

[1] **[1]**

[2]

[Total: 13]

Page 5	Mark Scheme	Syllabus	Paper	
	GCE A/AS LEVEL – Mav/June 2008	9701	04	

5 (a) reaction I electrophilic addition

[1]

reaction II electrophilic substitution (salvage: award [1] out of [2] for "addition" + "substitution", even if nucleophilic)

[1] **[2]**

(b) reaction I: intermediate

[1]

second step, attack of Br on bromocation.

[1]

OI

reaction II: intermediate

[1]

or

(or with ⊕ in 2-position)

(make sure \oplus is not at sp³ C-atom)

second step, loss of H⁺ from bromocation.

[1]

c

[4]

- (c) Delocalised ring of electrons (in benzene) is **stable**, (so is re-formed in second step in benzene.)
 - *or* electrons in the ethene π bond are localised/more available for reaction with electrophiles

[1] **[1]**

[Total: 7]

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2008	9701	04

6

5 x [1]

[deduct [1] mark if ring circle omitted more than once] [allow ecf for **E** from structure of **D**] [allow ecf for **B** from structure of **A**] [allow -CO₂⁻ for **E**]

[5]

[Total: 5]

7

polymer	addition/condensation?	formulae of monomers
1	condensation	HO ₂ C-CO ₂ H <i>or</i> C <i>l</i> CO-COC <i>l</i> NH ₂ -CH ₂ -CH ₂ -NH ₂
2	condensation	HO-CH ₂ -CH(C ₂ H ₅)-CO ₂ H HO-CH ₂ -CH(CH ₃)-CO ₂ H
3 addition		CH_2 = CH - CH_3 CH_2 = CH - $CONH_2$ CH_2 = CH - C_6H_5
↑ [2] (2 correct: [1])		↑ [6] (6 correct: [5]) etc

(2 correct: [1])

(C=C bonds not needed, but penalise –[1] if C-C drawn instead of C=C) (if more than 7 formulae drawn, then penalise –[1] for each formula in excess of 7)

[8]

[Total: 8]

	Page 7	Mark Scheme	Syllabus	Paper
		GCE A/AS LEVEL – May/June 2008	9701	04
8	(a) primary:	covalent (ignore amide, peptide etc) diagram showing peptide bond: (-CHR-)CONH(-	CHR-)	[1] [1]

diagram showing N-H···O = C

secondary: hydrogen bonds (NOT "..between side chains")

[1]

[1]

tertiary: two of the following:

• hydrogen bonds (diag. must show H-bonds *other* than those in α -helix *or* β -pleated sheet – e.g. ser-ser)

- electrostatic/ionic attraction,
- van der Waals'/hydrophobic forces/bonds,
- (covalent) disulphide (links/bridges) [1] + [1]

suitable diagram of **one** of the above (for disulphide: S-S **not** S=S or SH-SH)

[1] **[7]**

(b) met-ala-gly-ala-gly-arg-val-lys

[2]

any **possible** sequence with more than 8 residues, that "uses" all 6 tripeptides (overlapping or not), and that starts with *met* and ends with *lys* is worth [1] mark any sequence that does **not** start with *met* or end with *lys* gets zero.

[2]

(c) CARE – this is not about DNA!

candidates should describe **TWO** potential effects on tertiary or quaternary structures caused by amino acid sidechains...

these include: disruption of H-bonding

disruption of disulphide bridges

disruption of electrostatic/ionic attraction disruption of van der Waals' forces

(only allow effects on the secondary structure if proline is specifically mentioned)

2 x [1]

then award [1] mark each for **two** of the following bullet points:

- a description of the amino acids involved in the above, (*or* a labelled diagram) (award [1] mark for each example) a description of an *effect* of interchanging amino acids, such as the..
- unfolding of tertiary structure/different folding/different shape (NOT denatured)
- inactivity of an enzyme *or* changing the active site
- causing of a protein to become less soluble/coagulate (e.g. sickle cells)

2 x [1]

[4]

[Total: 13 max 12]

Page 8		3	N	/lark Scheme		Syllabus	Paper
			GCE A/AS L	_EVEL – May/J	une 2008	9701	04
(a)	 (a) (i)+(ii) any two of: molecular mass/size/M_r/shape (overall electrical) charge (on the species) voltage/size/P.D. (of applied electric field) (salvage: if just "mass & charge" is mentioned, with no reference to specie award [1]) 				[1] + [1] es or molecule,		
(b)	(i)	a single pe		since all the Hs to CH₃CO group		ne chemical enviror	nment [1]
		environme or there w or a peak	ents	at δ = 9.5 – 10. to CH ₃	, .	e there are 3 d	ifferent proton [1]
						e not given, but ca then award [1] mar	
	(ii)	different fr	agments:				
		• CH₃CC	CH ₃ would forr	n fewer fragme	nts (must be st	ated in words)	
		• CH ₃ CC	CH ₃ would forr	n a fragment of	CH₃CO⁺ <i>or</i> at (m/e) 43	
		• CH₃CH	₂ CHO would fo	orm a fragment o	of CH ₃ CH ₂ ⁺ or C	CHO⁺ at (m/e) 29	
		• CH ₃ CH	₂ CHO would fo	orm a fragment o	of CH ₃ CH ₂ CO ⁺	or at (m/e) 57	

(c) (i) peaks at (m/e) 79 and 81 or at (m/e) 94 and 96 [1]

(ii) in chlorine the M and M+2 peaks are the ratio 3:1 [1] whereas in bromine they are approx. 1:1 [1] [3]

[Total: 10 max 9]

[5]

Page 9	ge 9 Mark Scheme		Paper
	GCE A/AS LEVEL – May/June 2008	9701	04

10 (a) any two of the following:

- · to speed delivery (of drug to target organ), i.e. faster response
- to avoid the drug being hydrolysed/reacted/decomposed (NOT digested) in the stomach
- to allow a smaller dose to be used or greater accuracy of dosage
- patient does not have to be conscious

2 × [1] [2]

[4]

- (b) (i) spheres with a diameter of the order of nanometres/in the nanometre range/between 10 & 500 nm
 - (ii) it is (highly) acidic or low pH or contains HCl (NOT contains enzymes) [1]
 - (iii) use hydrogels: of different (wall) thickness/strength (to release drug over time) of different chemical composition (for different breakdown times) incorporating pores/holes (in their walls) (any two) [1] + [1]

(c) for the homopolymer, either using the amino acid the minimum is:

-CO-CHR-NH-CO-CHR-NH-

or using the hydroxyacid the minimum is:

(-[1] for each error) [2]

for the heteropolymer, either using the glycol compound and the di-acid the minimum is:

or using the amino acid and the di-acid, the minimum is:

(A heteropolymer incorporating all three monomers can also be drawn. This should include an ester linkage between the glycol and one of the CO₂H groups, and an amide linkage between the aminoacid and another CO₂H group. Deduct [1] mark from the whole of section (c) if complete compounds are shown rather than sections of chains. Allow 4-monomer sections instead of 3. Allow [2] marks for a polymer section even if **one** end is incomplete (e.g. is lacking an oxygen atom), but if **both** ends are incomplete deduct [1]) (-[1] for each error) [2]

[Total: 10 max 9]