Introduction to Finetuning + RAG with LLMs for Healthcare Applications

The Need for Specialized Al in Healthcare

- 1. Complexity of Medical Knowledge
 - Vast and rapidly evolving field
 - Specialized terminology and concepts
 - Interdisciplinary nature of modern medicine
- 2. Critical Importance of Accuracy
 - Direct impact on patient care and safety
 - Need for up-to-date, evidence-based information
 - Reducing risks of misinformation
- 3. Personalization in Healthcare
 - Tailoring responses to individual patient needs
 - Incorporating latest research and treatment options
 - Supporting precision medicine initiatives

- 4. Enhancing Healthcare Professional Efficiency
 - Quick access to relevant medical literature
 - Assistance in diagnosis and treatment planning
 - Time-saving in research and information retrieval
- 5. Bridging Knowledge Gaps
 - Connecting disparate areas of medical research
 - Facilitating interdisciplinary insights
 - Supporting continuous medical education
- 6. Ethical and Reliable Al
 - Ensuring transparency and explainability in Al decisions
 - Maintaining privacy and security of medical data
 - Building trust in Al-assisted healthcare

Introduction

- Llama 3.1: Meta's latest Large Language Model
 - 8 billion parameters
 - Improved performance over previous versions
 - Open-weights model allowing for fine-tuning
- Fine-tuning: Process of adapting pre-trained models
 - Enhances performance on specific tasks or domains
 - Requires less data than training from scratch
- PubMedQA Dataset:
 - Collection of 1,000 medical research questions
 - Expert-written answers based on PubMed abstracts
 - Ideal for training medical Al assistants
- Goal: Create a specialized medical AI capable of answering complex healthcare queries

Setup and Requirements

- Hardware:
 - A100 GPU with 40GB VRAM (recommended)
 - Allows for efficient training of 8B parameter model
- Key libraries and their roles:
 - transformers: Provides pre-trained models and fine-tuning utilities
 - datasets: Efficient data loading and preprocessing
 - peft: Parameter-Efficient Fine-Tuning techniques (e.g., LoRA)
 - trl: Transformer Reinforcement Learning, includes SFTTrainer
 - unsloth: Optimizations for faster and more efficient finetuning
- GPU acceleration:
 - Crucial for handling large models and datasets
 - Enables 4-bit quantization and mixed-precision training
- Python environment:
 - Python 3.10+
 - CUDA 11.7+ for GPU support

Model Preparation

- Loading Llama 3.1 8B model:
 - Source: "unsloth/Meta-Llama-3.1-8B-bnb-4bit"
 - Pre-quantized for efficient loading
- 4-bit quantization:
 - Reduces memory footprint by 75% compared to FP16
 - Enables fine-tuning of larger models on limited hardware
- LoRA (Low-Rank Adaptation) setup:
 - r=16: Rank of LoRA update matrices
 - lora_alpha=16: Scaling factor for LoRA updates
 - Target modules: q_proj, k_proj, v_proj, up_proj, down_proj, o_proj, gate_proj
 - Covers both attention mechanisms and feed-forward networks
- RSLoRA (Rank-Stabilized LoRA):
 - Improves training stability, especially for higher ranks
- Gradient checkpointing:
 - Trades computation for memory efficiency
 - Allows for larger batch sizes or model sizes

Dataset Preparation

- PubMedQA dataset structure:
 - Context: Relevant medical literature excerpt
 - Question: Research or clinical query
 - Answer: Expert-written response
- Data formatting process:
 - Load raw dataset using Hugging Face datasets
 - Format each entry into conversation structure
 - Apply chat template for consistency
- Chat template application:
 - Ensures uniform input format for model
 - Prepares data for instruction-following tasks
 - Uses ChatML format: human ... assistant ...
- Dataset statistics:
 - Total entries: 1,000
 - Average context length: [X] tokens
 - Average question length: [Y] tokens
 - Average answer length: [Z] tokens

Training Configuration

- SFTTrainer setup:
 - Part of TRL (Transformer Reinforcement Learning) library
 - Streamlines supervised fine-tuning process
- Key training arguments:
 - Learning rate: 3e-4 (0.0003)
 - LR scheduler: Linear decay
 - Per device batch size: 1 (limited by GPU memory)
 - Gradient accumulation steps: 8 (effective batch size of 8)
 - Number of epochs: 1 (single pass through the dataset)
 - Mixed precision: FP16 or BF16 (auto-detected)
- Optimization techniques:
 - Paged AdamW 8-bit optimizer: Memory-efficient variant of AdamW
 - Weight decay: 0.01 for regularization
 - Warmup steps: 10 for gradually increasing learning rate
- Additional settings:
 - Max sequence length: 2048 tokens
 - Packing: True (combines shorter sequences for efficiency)
 - Seed: 0 (for reproducibility)

Fine-tuning Process

- Training loop explanation:
 - Load and preprocess batch of data
 - Forward pass through the model
 - Calculate loss
 - Accumulate gradients over 8 steps
 - Update model parameters
 - Repeat for entire dataset
- Resource management:
 - 4-bit quantization reduces memory usage by 75%
 - Gradient accumulation allows for larger effective batch sizes
 - Packing optimizes GPU utilization for varying sequence lengths
- Monitoring training progress:
 - Loss curves: Should show decreasing trend
 - Learning rate schedule: Linear decay from 3e-4
 - GPU utilization: Aim for >90% consistently
 - Memory usage: Monitor for any OOM (Out of Memory) issues

Model Saving and Loading

- Merging LoRA weights:
 - Combines fine-tuned adapters with base model
 - Results in a single, updated model
- Saving the fine-tuned model locally:
 - Model architecture: Saved in config.json
 - Weights: Stored in PyTorch format (.bin files)
 - Tokenizer: Vocabulary and special tokens saved separately

- Loading the model for inference:
 - Use FastLanguageModel for efficient loading
 - Set up for float16 inference to balance speed and accuracy
 - Max sequence length increased to 4096 for inference
- Applying chat template for consistent input formatting:
 - Ensures queries are formatted identically to training data
 - Helps model understand role (human/assistant) and turn structure

Inference and Usage

- Setting up the model for inference:
 - Max sequence length: 4096 tokens (allows for longer conversations)
 - Device mapping: "auto" for optimal resource usage across available GPUs
 - Data type: torch.float16 for efficient inference
- Generating responses:
 - Temperature: 0.7 (balances creativity and coherence)
 - Top-p (nucleus) sampling: 0.9
 - Max new tokens: 200 (adjustable based on desired response length)
 - Number of return sequences: 1 (can be increased for diverse outputs)

- Response generation function:
 - Format input using chat template
 - Tokenize and move to GPU
 - Generate output using model.generate()
 - Decode output and extract response
- Handling of chat history:
 - Maintain conversation context for multiturn interactions
 - Truncate history if exceeding max sequence length

Live Demo Time!

Challenges and Considerations

- GPU memory constraints:
 - 8B parameter model requires significant VRAM
 - 4-bit quantization and gradient checkpointing as mitigation strategies
- Quantization trade-offs:
 - 4-bit: Maximum memory efficiency, potential accuracy loss
 - 8-bit: Balance between efficiency and performance
 - Full precision: Highest accuracy, highest resource requirement
- Balancing performance and resource usage:
 - Batch size adjustments impact training speed and memory usage
 - Gradient accumulation as a workaround for larger effective batch sizes
- Potential overfitting on small datasets:
 - PubMedQA's 1,000 samples may not cover all medical topics
 - Strategies: Early stopping, increased regularization, data augmentation

Future Improvements

- Extended fine-tuning strategies:
 - Increase training epochs for potentially better performance
 - Experiment with larger medical datasets or dataset combinations
 - Investigate continual learning approaches
- Potential healthcare applications:
 - Medical question answering systems for professionals
 - Assisting in literature reviews and research
 - Patient education tools with simplified explanations
 - Clinical decision support systems (with appropriate validations)
- Integration with other medical datasets:
 - Combine with Electronic Health Records (EHRs) for personalized medicine
 - Incorporate medical imaging datasets for multimodal learning
 - Integrate with latest medical guidelines and research papers
- Ethical considerations and bias mitigation:
 - Ensure diverse representation in training data
 - Implement fact-checking mechanisms for critical information
 - Clear disclosure of Al-generated content to end-users
 - Regular audits for biases and inaccuracies

Let's Rove onto RAG...

Introduction to Retrieval-Augmented Generation (RAG)

- Combines information retrieval with language generation
- Key components:
 - Retriever: Finds relevant documents from a knowledge base
 - Generator: Produces responses based on retrieved information
- Benefits:
 - Up-to-date information without full model retraining
 - Improved accuracy and factual grounding
 - Transparency through source attribution

RAG in Medical Context

- Knowledge base options:
 - PubMed abstracts
 - Medical textbooks
 - Clinical guidelines
 - EHR data (with proper anonymization)
- Advantages in healthcare:
 - Access to latest medical research
 - Ability to cite specific studies or guidelines
 - Reduced hallucination on critical medical information
- Challenges:
 - Ensuring retrieval of high-quality, peerreviewed information
 - Handling complex medical terminology
 - Balancing between general knowledge and specific studies

Implementing RAG with Fine-tuned Llama 3.2

- Retriever options:
 - Dense retrieval (e.g., using FAISS)
 - Sparse retrieval (e.g., BM25)
 - Hybrid approaches
- Process flow:
 - Receive medical query
 - Retrieve relevant documents from medical knowledge base
 - Concatenate query with retrieved information
 - Generate response using fine-tuned Llama 3.2
- Implementation considerations:
 - Efficient indexing of large medical corpora
 - Balancing retrieval speed and accuracy
 - Handling of long contexts within model's maximum sequence length

RAG Performance and Evaluation

- Metrics to consider:
 - Accuracy of medical information
 - Relevance of retrieved documents
 - Response coherence and fluency
- Evaluation methods:
 - Expert review by healthcare professionals
 - Automated metrics (e.g., BLEU, ROUGE for text similarity)
 - Comparison with non-RAG baseline
- Expected improvements:
 - Higher factual accuracy
 - More comprehensive answers
 - Better handling of rare or recent medical topics

Future Directions with RAG

- Personalized medicine:
 - Incorporating patient-specific data in retrieval process
 - Tailoring responses based on individual medical histories
- Multimodal RAG:
 - Integrating text-based retrieval with medical imaging
 - Enhancing diagnoses with visual information
- Continuous learning:
 - Regularly updating the knowledge base with new research
 - Fine-tuning the retriever and generator on user interactions
- Ethical considerations:
 - Ensuring privacy in medical data retrieval
 - Providing clear citations for retrieved information
 - Maintaining transparency about AI-generated content