Formelsammlung OT 2015

Christoph Hansen

chris@university-material.de

Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht.

Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls ihr Fehler findet oder etwas fehlt, dann meldet euch bitte über den Emailkontakt.

Inhaltsverzeichnis

Linsen	2
Polarsation	3
Reflexionen / Transmission	3
Beugung	4

Linsen

Allgemein

$$\frac{1}{f} = \frac{1}{b} + \frac{1}{g}$$
$$m = -\frac{b}{g}$$

Linsenschleiferfromel für dünne Linsen:

$$\frac{1}{f} = (n-1) \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Linsenschleiferfromel für dicke Linsen:

$$\frac{1}{f} = (n-1) \cdot \left(\frac{1}{r_1} - \frac{1}{r_2} + \frac{(n-1) \cdot d}{r_1 \cdot r_2 \cdot n}\right)$$

Lupe

$$V_L = \frac{\epsilon}{\epsilon_0} = \frac{S_0}{f}$$

Dabei ist ϵ_0 der Sehwinkel ohne Lupe, ϵ der mit Lupe und S_0 der Abstand vom Nahpunkt zum Auge.

Microskop

Abbildungsmaßstab

$$V_{Ob} = \frac{B}{G} = \frac{-t}{f_{Ob}}$$

Winkelvergrößerung

$$v_{Ok} = \frac{S_0}{f_{Ok}}$$

Gesamtvergrößerung

$$v_M = V_{Ob} \cdot v_{Ok} = -\frac{t}{f_{Ob}} \cdot \frac{S_0}{f_{Ok}}$$

Teleskop

$$\tan (\epsilon_{Ob}) = -\frac{B}{f_{Ob}} \approx \epsilon_{Ob}$$
$$\tan (\epsilon_{Ok}) = -\frac{B}{f_{Ok}} \approx \epsilon_{Ok}$$

Vergrößerung

$$v_T = \frac{\epsilon_{Ok}}{\epsilon_{Ob}} = -\frac{f_{Ob}}{f_{Ok}}$$

Polarsation

Allgemeine Transmission:

$$T_{\perp} = e^{-\mu_{\perp} \cdot d}$$
$$T_{\parallel} = e^{-\mu_{\parallel} \cdot d}$$

Dicke eine Lambdaviertelplatte:

$$d = \frac{\lambda}{4 \cdot |n_o - n_e|}$$

Falls mit den Stokes Matrizen gerechnet werden soll bekommen wir die Tabelle dazu. Wichtig ist, das die Matrizen in umgekehrter Reihenfolge des Lichtwegs miteinander multipliziert werden.

Reflexionen / Transmission

Die Dicke einer Antireflexschicht ist:

$$d = \frac{\lambda_0}{4 \cdot n_{AR}}$$

Das erzeugt einen Gangunterschied von:

$$\phi = \frac{2\pi}{\lambda} \cdot \frac{\lambda'}{2}$$

Dabei ist λ' die Wellenlänge gegen die die Antireflexschicht wirkt und λ die eingestrahlte Wellenlänge.

Für die innere Transmission gilt:

$$T = \frac{(1-R)^2 \cdot \tau}{1 - (R\tau)^2} \quad \text{mit} \quad \tau = e^{-Kd}$$

Für die Oberflächenreflexion gilt:

$$R = \left(\frac{n-1}{n+1}\right)^2$$

Für den Brechungsindex einer Antireflexschicht auf einem Medium gilt:

$$n_{AR} = \sqrt{n_{Medium}}$$

Beugung

Intensität am Spalt:

$$I(\theta) = \frac{\sin^2\left(\frac{\pi b \sin(\theta)}{\lambda}\right)}{\left(\frac{\pi b \sin(\theta)}{\lambda}\right)^2}$$

Im ersten Minimum gilt:

$$\pi = \frac{\pi b \sin(\theta)}{\lambda}$$

Für kleine Winkel gilt:

$$\tan(\theta) = \theta = \sin(\theta) = \frac{\lambda}{b}$$

Wir definieren Δx als den Abstand vom zentralen Maximum zum ersten Minumum:

$$\Delta x = L \cdot \frac{\lambda}{b}$$

Für eine Lochblende gilt:

$$I(\theta) \sim \left[\frac{2j_1 \cdot \left(\pi d \cdot \frac{\sin(\theta)}{\lambda} \right)}{\pi d \frac{\sin(\theta)}{\lambda}} \right]^2$$

Der erste dunkle Ring entspricht nun der ersten Nullstelle von j_1 . Aus der Vorlesund wissen wir das dies bei $x = 1,22\pi$ der Fall ist:

$$1,22\pi = \pi d \cdot \frac{\sin(\theta)}{\lambda}$$
$$\Leftrightarrow \sin(\theta) = 1,22 \cdot \frac{\lambda}{d} \approx \theta$$

Dabei ist d der Durchmesser des Lochs.