Métodos Computacionais da Física A

Aluno:Cristiane de Paula Oliveira - Matrícula: 261424 IF-UFRGS

22 de Junho de 2016

1 Questão 1

Figura 1: Gráfico da função $I(y)=(\frac{sen(y)}{y})^2$.

As raízes para tan(y)=y no intervalo [-10,10], usando o método de Newton-Raphson com derivada numérica, estão listadas na tabela 1. O número de chutes utilizados para este intervalo foi 100 e procuramos as 5 raízes.

Raiz	Valor da raiz
1	-7.7252518369377077
2	-4.4934094579444412
3	0.000000000000000000
4	4.4934094579103991
5	7.7252518369543992

Tabela 1: Tabelas com os zeros de tan(y)=y. Que são os máximos da função $I(y)=(\frac{sen(y)}{y})^2$.

2 Questão 2

A solução de mínimos quadrados tem a forma y = a + bx, e neste caso é da forma $v(t) = v_0 + at$, onde v_0 é a velocidade inicial e a é a aceleração.

Os dados e ajuste estão na figura 2.

Os resultados do ajuste são:

Velocidade inicial v_0 : $a = 39.5415039 \pm 4.019341622 \times 10^2$.

Aceleração a: $b = 4.83086252 \pm 5.87138289 \times 10^4$.

Figura 2: Dados da velocidade em função do tempo.