On Sample Complexity Upper and Lower Bounds for Exact Ranking from Noisy Comparisons

Wenbo Ren, The Ohio State University, Dept. CSE, ren. 453@osu.edu Jia Liu, Iowa State University, Dept. CS, jialiu@iastate.edu

Ness B. Shroff, The Ohio State University, Dept. ECE and CSE, shroff.11@osu.edu

Introduction

Problem

- Items. n items indexed by 1, 2, 3, ..., n.
- Preferences. Users have preferences over items.
- Noisy Comparisons. Comparisons are noisy. Each comparison over some items returns a noisy result about the most preferred item.
- Active ranking. Adaptively select items to compare according to past observations.
- Goal. i) To fully rank n items and ii) use as few comparisons as possible.

Motivations

- Active ranking v.s. passive ranking. Passive ranking: first have comparison results, then deduce the ranking, higher sample complexity. Active ranking: Adaptively choose items to compare, needs less samples.
- Applications. For instance, a server of an app can adaptively choose items to present to the users and collect the feedback, and learn the users' preferences in shorter time.
- Exact ranking vs PAC ranking. i) For applications such that a tiny error can cause a huge loss; ii) To obtain instance-wise upper and lower bounds but not worst-case ones. For some instances, bounds are better than the PAC ones.

Notations

- **Preferred**. $i \succ j$ if i is more preferred than j.
- Winning probability. If we compare i and j, then i wins with probability $p_{i,j}$.
- Confidence $\delta \in (0, 1/2)$. The error probability should be no more than
- Gaps. $\Delta_{i,j} := |p_{i,j} 1/2|; \quad \Delta_i = \min_{j \neq i} \Delta_{i,j}; \quad \tilde{\Delta}_i := \min\{\Delta_{i,j}, \text{ where there is no item } k \text{ has } i \succ k \succ j \text{ or } j \succ k \succ i\}.$

Assumptions

- Independence. The comparisons are independent across time and items.
- Unique true ranking. There is a unique true ranking $r_1 \succ r_2 \succ \cdots \succ$ r_n , and this ranking is unknown.
- Weak stochastic transitivity. Item i > j if and only if $p_{i,j} > 1/2$.

Lower bound

Definition 1 (δ -correct algorithms). *An algorithm is said to be* δ -correct for a problem if for any input instance of this problem, it, with probability at least $1 - \delta$, returns a correct result in finite time.

Generic lower bound

Theorem 2 (Lower bound for pairwise ranking). Given $\delta \in (0, 1/12)$ and an instance \mathcal{I} with n items, then the number of comparisons used by a δ -correct algorithm \mathcal{A} with no prior knowledge about the gaps of \mathcal{I} is lower bounded by

$$\Omega\left(\sum_{i\in[n]} [\tilde{\Delta}_i^{-2}(\log\log\tilde{\Delta}_i^{-1} + \log(1/\delta))] + \min\left\{\sum_{i\in[n]} \tilde{\Delta}_i^{-2}\log(1/x_i) : \sum_{i\in[n]} x_i \le 1\right\}\right).$$
(1)

If $\delta \leq 1/poly(n)$, or $\max_{i,j\in[n]}\{\tilde{\Delta}_i/\tilde{\Delta}_j\} \leq n^{1/2-p}$ for some constant p > 0, then lower bound is

$$\Omega\left(\sum_{i\in[n]}\tilde{\Delta}_i^{-2}(\log\log\tilde{\Delta}_i^{-1} + \log(n/\delta))\right). \tag{2}$$

Remark. If the model satisfies strong stochastic transitivity (SST, which means $i \succ j \succ k$ implies $p_{i,k} \ge \max\{p_{i,j}, p_{j,k}\}\)$, then Eq. (2) is tight (up to a constant factor).

Multinomial logit model

- Preference score. Each item i holds a number $\theta_i > 0$. Larger θ_i implies more preferred.
- Comparison marginal.

$$p_{i,j} = \theta_i/(\theta_i + \theta_j).$$

• Listwise comparison. The comparison over m items $S = \{i_1, i_2, ..., i_m\}$ returns item i with probability

$$p_{i,S} = \theta_i / (\theta_{i_1} + \theta_{i_2} + \dots + \theta_{i_m}).$$

• Gaps. For pairwise ranking, the gap is the same as the generic model. For listwise ranking, define $\Delta_{i,j} := |\theta_i/(\theta_i + \theta_j) - 1/2|$. Also, we have $\Delta_i = \Delta_i$ for all items i under the MNL model, i.e., it satisfies SST.

Theorem 3. Under the MNL model, Given an algorithm knows that the instance satisfies the MNL model and can perform m-wise comparisons for all $m \in \{2, 3, ..., n\}$, the sample complexity lower bound is the same as Theorem 1.

Algorithm

Basic idea

- **Previous works**. If Δ_i is priorly known, then we can insert item i to a sorted list with probability $1 - \delta_i$ by $O(\Delta_i^{-2} \log(1/\delta_i))$ comparisons.
- But Δ_i 's are unknown. Method: take a guess ϵ of Δ_i , and attempts to insert item i.
- If guess is not good, then the algorithm does not get wrong result with a large probability.
- If guess if good, then the algorithm can get the correct result with a large probability.
- Our method. Gradually decrease the guess value and choose a proper confidence for each guess.

IOWA STATE UNIVERSITY THE OHIO STATE UNIVERSITY

Subroutine: Attempting-Comparison

```
Algorithm 1 Attempting-Comparison(i, j, \epsilon, \delta) (ATC)
Initialize: \forall t, let b^t = \sqrt{\frac{1}{2t} \log \frac{\pi^2 t^2}{3\delta}}; b^{max} \leftarrow \lceil \frac{1}{2\epsilon^2} \log \frac{2}{\delta} \rceil; w_i \leftarrow 0;
Goal: Attempts to order i and j with \epsilon, a guess of \Delta_{i,j}.
     for t \leftarrow 1 to b^{max} do
            Compare i and j once; Update w_i \leftarrow w_i + 1 if i wins;
            Update \hat{p}_i^t \leftarrow w_i/t;
           if \hat{p}_i^t > 1/2 + b^t then return i;
          if \hat{p}_i^t < 1/2 - b^t then return j;
  6: end for
     return i if \hat{p}_i^t > 1/2; return j if \hat{p}_i^t < 1/2; and return a random item
```

Lemma 4 (Theoretical Performance of ATC). Sample complexity of ATC is $O(\epsilon^{-2}\log(1/\delta))$. It returns the more preferred item with probability $\geq 1/2$. Further, if $\epsilon \leq \Delta_{i,j}$, then ATC returns the more preferred item with probability $\geq 1 - \delta$.

Random walk on a tree

if $\hat{p}_{i}^{t} = 1/2$;

- Preference Interval Tree (Feige et al, 1994) is an interval tree constructed from a sort list of items.
- Algorithm performs a random walk on the tree.
- Each node holds Ichild, rchild, parent, left, right, mid. Item i is in (left, right) iff right $\succ i \succ$ left. We also have u.left = u.lchild.left, u.right = u.rchild.right and u.mid = u.lchild.right = u.rchild.left.
- If $\epsilon \leq \Delta_i$, then for each iteration, X goes to the "right" direction with probability at least q = 15/16, which guarantees the correctness.
- If $\epsilon > \Delta_i$, then for each iteration, X goes to the "wrong" direction with probability at most 1/2, which ensures i will not be inserted to a wrong place with probability at least $1 - \delta$.

Algorithm 2 Basic idea of Attempting-Insertion (i, S, ϵ, δ) (ATI). Let T be a PIT of S, $h \leftarrow \lceil 1 + \log_2(1 + |S|) \rceil$, the depth of T; For all leaf nodes u of T, set $c_u \leftarrow 0$; Set $t^{\max} \leftarrow \lceil \max\{4h, \frac{512}{25} \log \frac{2}{\delta}\} \rceil$; $q \leftarrow 15/16$;

```
1: X \leftarrow the root node of the PIT of S:
   : for t \leftarrow 1 to t^{max} do
        Use ATC to check X \in (X.\text{left}, X.\text{right}) with confidence q^{2/3};
         if The answer is yes then
             if X is a leaf node then
                  c_X \leftarrow c_X + 1;
                  if c_X > \frac{1}{2}t + \sqrt{\frac{t}{2}\log\frac{\pi^2t^2}{3\delta}} + 1 then
                       Insert i to X and return inserted;
             else if ATC returns i > X.mid with confidence q^{1/3} then
                  X \leftarrow X.rchild;
             else X \leftarrow X.lchild;
             if X is a leaf node and c_X > 0 then
                  c_X \leftarrow c_X - 1;
             else X \leftarrow X.parent;
16: end for
```

17: if there is a leaf node u with $c_u \ge 1 + \frac{5}{16}t^{\max}$ then

Insert i into the corresponding interval of u and **return** inserted;

19: **else return** *unsure*;

Upper bound

```
Algorithm 3 Iterative-Attempting- Algorithm 4 Iterative-Insertion-
Insertion (IAI).
                                               Ranking (IIR).
Input parameters: (i, S, \delta);
                                               Input: S = [n], and confidence
Initialize: For all \tau \in \mathbb{Z}^+, set \epsilon_{\tau} = \delta > 0;
2^{-(\tau+1)} and \delta_{\tau} = \frac{6\delta}{\pi^2\tau^2}; t \leftarrow 0;
                                                1: Ans \leftarrow \text{the list } [S[1]];
Flaq \leftarrow unsure;
                                                 2: for t \leftarrow 2 to |S| do
                                                       IAI(S[t], Ans, \delta/(n-1));
   1: repeat t \leftarrow t + 1;
  2: Flag \leftarrow ATI(i, S, \epsilon_t, \delta_t);
                                                  4: end for
   3: until Flag = inserted
                                                 5: return Ans;
```

Theorem 5 (Theoretical Performance of IIR). With probability at least $1-\delta$, IIR returns the exact ranking of [n] and conducts at most $O(\sum_{i \in [n]} \Delta_i^{-2}(\log \log \Delta_i^{-1} + \log(n/\delta)))$ comparisons.

Numerical Results

- $\Delta = 0.1$ and $\delta = 0.01$. Repeat 100 times and take average.
- Type-Homo. For all $i \succ j$, $p_{i,j} = 1/2 + \Delta$.
- Type-MNL. MNL model, and preference score of item i is θ_i , drawn from Uniform($[]0.9 * 1.5^{n-i}, 1.1 * 1.5^{n-i}).$
- **Type-Random**. For all $i \succ j$, probability $p_{i,j}$ is drawn from Uniform($[0.5 + 0.8\Delta, 0.5 + 1.5\Delta]$).
- **Type-Easy**. For all $i \succ j$, if there is an item k such that $i \succ k \succ j$, then $p_{i,j} = 1$. Otherwise, $p_{i,j} = 1/2 + \Delta$.

Figure 1: Comparisons between IIR and existing methods.

(d) Type-Easy.

Acknowledgments. This work has been supported in part by NSF grants ECCS-1818791, CCF-1758736, CNS-1758757, CNS-1446582, CNS-1901057; ONR grant N00014-17-1-2417; AFRL grant FA8750-18-1-0107, and by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT), (2017-0-00692, Transport-aware Streaming Technique Enabling Ultra Low-Latency AR/VR Services).

(c) Type-Random.