Understanding discrepancies in tracking efficiencies

Martin Tat

Heidelberg University

16th July 2025

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Introduction

I have had a look at the work on tracking efficiencies by Rowina and Maurice

- Some discrepancy between different tag-and-probe methods:
 - Combined: VeloMuon × Downstream
 - VeloMuon: Determine SciFi efficiency
 - Downstream: Determine Velo efficiency
 - MuonUT: Determine long track efficiency
- Presentation today:
 - I have looked at this with fresh eyes, and I have some ideas about what to study in more detail
 - Thanks to Rowina for a well written thesis, which simplifies this detective work
 - 2 Today I will show work produced by TrackCalib2
 - Thanks for Maurice for all the assistance
 - 3 Specifically, today I will show some studies on fit biases

Tag-and-probe method

Figure from Rowina's thesis

- Fully reconstruct one muon from $J/\psi \to \mu^+\mu^-$
- Partially reconstruct the other muon
- Match hits in specific sub-detector with partially reconstructed track

$$\epsilon_{
m track} = rac{ extsf{N}_{
m matched}}{ extsf{N}_{
m matched} + extsf{N}_{
m failed}}$$

VeloMuon (p, η) bin (0, 0)

- I tried running the default fits with TrackCalib2 on MC...
- ... and things are working more or less out-of-the-box!
- ullet The fit outputs $\epsilon_{\mathrm{track}}$ directly as a fit parameter

Downstream (p, η) bin (0, 0)

- I tried running the default fits with TrackCalib2 on MC...
- ... and things are working more or less out-of-the-box!
- ullet The fit outputs $\epsilon_{
 m track}$ directly as a fit parameter

MuonUT (p, η) bin (0, 0)

- I tried running the default fits with TrackCalib2 on MC...
- ... and things are working more or less out-of-the-box!
- ullet The fit outputs $\epsilon_{
 m track}$ directly as a fit parameter

Track efficiencies with Combined method produced by TrackCalib2

Track efficiencies with MuonUT method produced by TrackCalib2

Track efficiencies

Some discrepancies found...:

p bin	η bin	Difference (10^{-2})
0	0	0.4 ± 1.1
1	0	-0.5 ± 0.2
2	0	-0.8 ± 0.5
3	0	-1.5 ± 0.1
4	0	-1.0 ± 0.2
0	1	3.2 ± 1.9
1	1	1.0 ± 0.5
2	1	-0.9 ± 0.2
3	1	0.0 ± 0.6
4	1	-0.7 ± 0.4

Discrepancies in track efficiencies

Do we care about these discrepancies?

- Yes: Some are statistically significantly different from zero
- No: Method is not perfect, expect $\mathcal{O}(1\%)$ differences
- Yes: We want to keep systematics under control (roughly 2%)
- No: Most of the differences are around 1%, except for one bin with a large uncertainty

Fitting the track efficiency

$$\epsilon_{
m track} = rac{ extsf{N}_{
m matched}}{ extsf{N}_{
m matched} + extsf{N}_{
m failed}}$$

- ullet Fit total yield $N_{
 m tot} = N_{
 m matched} + N_{
 m failed}$ and $\epsilon_{
 m track}$ directly
- $N_{\rm tot}$ and $\epsilon_{\rm track}$ can be related to the yields:

$$egin{aligned} N_{
m matched} &= N_{
m tot} imes \epsilon_{
m track} \ N_{
m failed} &= N_{
m tot} imes (1 - \epsilon_{
m track}) \end{aligned}$$

- An analogous set of parameters exist for the background yields
- My suspicion: $\epsilon_{\mathrm{track}} \in [0,1]$, but $\epsilon_{\mathrm{track}}$ is close to 1
 - Maximum-likelihood fit might be biased
 - Particularly important then $N_{
 m failed} pprox 0$
- Generate toys to assess this effect
- For now, only check MuonUT method as the yields are lower

Fit biases

MuonUT (p, η) bin (0, 0) MC fit

MuonUT (p, η) bin (0, 0) toy fit

Well-behaved fits

- In these bins we see reasonable behaviour (pulls are Gaussian shaped)
- Small negative bias, about 20-25% of the statistical uncertainty

Well-behaved fits

MuonUT (p, η) bin (3, 0)

MuonUT (p, η) bin (2, 1)

Biased fits

- Non-ideal statistical behaviour (pulls not Gaussian)
- Large tails and biases, actual uncertainties may be a lot larger

Biased fits

MuonUT (p, η) bin (2, 0)

MuonUT (p, η) bin (4, 1)

Fit biases

- My thoughts: Biases can occur when $\epsilon_{\mathrm{track}}$ is close to 1...
- ... but this can happen for both signal and background
- In fact I see a 90% correlation between $\epsilon_{\rm track}$ in signal and background in some toys!

p bin	η bin	Difference (10^{-2})	Gaussian?
0	0	0.4 ± 1.1	Small tail
1	0	-0.5 ± 0.2	Yes
2	0	-0.8 ± 0.5	No, large tails
3	0	-1.5 ± 0.1	Yes
4	0	-1.0 ± 0.2	Yes
0	1	3.2 ± 1.9	No, small tail
1	1	1.0 ± 0.5	No, small tail
2	1	-0.9 ± 0.2	Yes
3	1	0.0 ± 0.6	No, large tails
4	1	-0.7 ± 0.4	No, large tails

Alternative background parameterisation

- In fits with highly correlated variables, alternative parameterisations usually help
- First attempt:
 - For signal, float $N_{
 m tot}$ and $\epsilon_{
 m track}$
 - For background, float $N_{\rm matched}$ and $N_{\rm failed}$ separately
- Run same toy studies and check pull distributions

Alternative background parameterisation

- Try floating the matched and failed yields directly
- Well behaved fits remain well behaved

Alternative background parameterisation

- Try floating the matched and failed yields directly
- Statistical behaviour seems to improve in some fits!

Summary and next steps

- I checked the impact of fit biases in the MuonUT method
 - 1 In some bins, fit biases could be significant
 - For a meaningful comparison, the MuonUT methods needs to:
 - Have small fit biases
 - Converge with correct uncertainties without need to rerun fit
 - Only MC studied so far, but I suspect similar effects are present in data
- Next steps: Do the same checks in data

Thanks for listening!