Vector Calculus

1 Euclidean space

We define the euclidean space in \mathbb{R}^N , $N \ge 1$ using cartesian coordinates. Any element $x \in \mathbb{R}^N$, $x = (x_1, x_2, \dots, x_N)$, $x \in \mathbb{R}$

Standard basis

$$e_1 = (1, 0, \dots, 0), \dots, e_N = (0, 0, \dots, 1)$$

Then, $x = \sum_{j=1}^{N} x_j \cdot e_j$

In particular, $B_{\mathbb{R}^3} = \{i, j, k\}$, the canonical basis.

Properties

- Addition: $(x_1, \ldots, x_N) + (y_1, \ldots, y_N) = (x_1 + y_1, \ldots, x_N + y_N)$
- Multiplication by a scalar $\lambda \in \mathbb{R}$: $\lambda x = \lambda(x_1, \dots, x_N) = (\lambda x_1, \dots, \lambda x_N)$
- Associative: $\lambda, \mu \in \mathbb{R}, (\lambda \mu)x = \lambda(\mu x)$
- Additive Identity: There exists a vector $\overline{0} = (0, \dots, 0)$ such that $x + \overline{0} = x$
- Additive Inverse: $\forall x = (x_1, \dots, x_N), \exists \overline{x} = (-x_1, \dots, -x_N) \text{ such that } x + \overline{x} = \overline{0}$
- Distributive Property (over vector addition):

$$\lambda\left((x_1,\ldots,x_N)+(y_1,\ldots,y_N)\right)=\lambda(x_1,\ldots,x_N)+\lambda(y_1,\ldots,y_N)$$

• Distributive Property (over scalar addition):

$$(\lambda + \mu)(x_1, \dots, x_N) = \lambda(x_1, \dots, x_N) + \mu(x_1, \dots, x_N)$$

- Scalar Multiplication Identity: $1 \cdot (x_1, \dots, x_N) = (x_1, \dots, x_N)$
- Zero Scalar Multiplication: $0 \cdot (x_1, \dots, x_N) = (0, \dots, 0)$

Norm

The euclidean space in \mathbb{R}^N is a normal space with an associated norm function.

$$\|\cdot\|: \mathbb{R}^N \to \mathbb{R}_+ \cup \{0\}$$

$$x = (x_1, \dots, x_N) \to \|x\| = \sqrt{x_1^2 + \dots + x_N^2}$$

Properties

The norm satisfies the following properties:

(a)
$$\forall x \in \mathbb{R}^N$$

$$- \|x\| > 0 \iff x \neq 0$$

$$-\|x\| = 0 \iff x = 0$$

(b)
$$\|\lambda x\| = |\lambda| \|x\|$$

(c)
$$||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in \mathbb{R}^N$$

- Triangular inequality.

Remark: Distance

We can define the distance between two elements in \mathbb{R}^N as

$$dist(x, y) = ||x - y|| = ||y - x||$$

$$dist(\cdot,\cdot): \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$$

•
$$dist(x,y) = ||x-y|| > 0$$
 if $x \neq y$, and $dist(x,y) = 0$ if $x = y$

•
$$dist(x,y) = ||x-y|| = ||-(y-x)|| = ||-1|| \cdot ||y-x|| = dist(y,x)$$

•
$$dist(x,y) = ||x-y|| = ||x-z+z-y|| \le ||x-z|| + ||z-y|| = dist(x,z) + dist(z,y)$$

Remark

For \mathbb{R} such a distance is the absolute value, $|\cdot|:\mathbb{R}\to\mathbb{R}$

2 Inner or scalar product

Let x, y be two vectors in \mathbb{R}^N , then

$$x \cdot y = x_1 y_1 + \dots + x_N y_N$$

$$x \cdot y = \langle x, y \rangle = (x, y)$$

2.1 Properties

The inner product satisfies the following properties:

 $\bullet \ \forall x \in \mathbb{R}^N \ \langle x, x \rangle \ge 0$

$$\langle x, x \rangle = 0$$
 if $x = 0$

• Symmetric: $\langle x, y \rangle = \langle y, x \rangle$

• Bilinear: $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$

2.2 Cauchy-Schwartz inequality

$$|x\cdot y| \leq \|x\| \|y\|$$

2

Proof If $y = \lambda x$, $|\langle x, \lambda y \rangle| = |\lambda| ||x||^2 = ||x|| |\lambda| ||x|| = ||x|| ||y||$ If $y \neq \lambda x$ (x and y are linearly independent). Assume $z = \lambda x + y$

$$0 \le \langle z, z \rangle = \langle \lambda x + y, \lambda x + y \rangle = \langle \lambda x, \lambda x \rangle + \langle \lambda x, y \rangle + \langle y, \lambda x \rangle + \langle y, y \rangle$$

Since $||x||^2 > 0$, $= \lambda^2 ||x||^2 + 2\lambda \langle x, y \rangle + ||y||^2$

If we represent it as a parabola in function of λ , it has no roots.

$$\lambda = \frac{-2\langle x, y \rangle \pm \sqrt{4(\langle x, y \rangle)^2 - 4\|x\|^2 \|y\|^2}}{2\|x\|^2}$$

So the discriminant ≤ 0

$$4(\langle x, y \rangle)^2 - 4||x||^2||y||^2 \le 0$$

$$\implies |\langle x,y\rangle| \leq \|x\| \|y\|$$

2.3 Theorem

$$\langle x, y \rangle = ||x|| ||y|| \cos \varphi$$

Writing x and y in polar coordinates:

$$x_1 = ||x|| \cos \alpha, \quad x_2 = ||x|| \sin \alpha$$

 $y_1 = ||y|| \cos \beta, \quad y_2 = ||y|| \sin \beta$

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 = ||x|| \cos \alpha ||y|| \cos \beta + ||x|| \sin \alpha ||y|| \sin \beta$$
$$= ||x|| ||y|| (\cos \alpha \cos \beta + \sin \alpha \sin \beta)$$
$$= ||x|| ||y|| \cos(\alpha - \beta) = ||x|| ||y|| \cos \varphi$$

Remark

$$\cos \varphi = \frac{\langle x,y\rangle}{\|x\|\|y\|}$$
 Then $x\perp y\iff \langle x,y\rangle = 0$

Examples:

• $C((a,b)) \cong$ continuous functions in (a,b)

$$f, g \in C((a, b)), \quad then \langle f, g \rangle = \int_a^b f(t)g(t) dt$$

We can add some weights:

$$\langle f, g \rangle = \int_{a}^{b} w(t) f(t) g(t) dt$$

An example:

$$\langle f, g \rangle = \int_a^b e^{-t} f(t)g(t) dt$$

• We might have an orthogonal family (with infinite elements) of functions.

$$\{\cos nx, \sin nx\}_{n \in \mathbb{Z}} \quad \text{in } [0, 2\pi]$$

$$\|\cos nx\|^2 = \int_0^{2\pi} \cos^2 nx \, dx$$

$$\int_0^{2\pi} \cos nx \sin nx \, dx = \int_0^{2\pi} \cos nx \cos mx \, dx = 0 \quad \text{for } n \neq m$$

3 Vector Product (Only in \mathbb{R}^3)

Take $x, y \in \mathbb{R}^3$

$$x \times y = \begin{vmatrix} i & j & k \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$
$$= \begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix} i - \begin{vmatrix} x_1 & x_3 \\ y_1 & y_3 \end{vmatrix} j + \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} k$$

Recall:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

3.1 Triple product and properties

We take the triple product

$$a \cdot (b \times c) = (a_1, a_2, a_3) \cdot \begin{vmatrix} b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
$$= a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$
$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

If $u \in \text{span}\{b,c\}$ then $a \cdot (b \times c) = 0$ and a,b,c are coplanar if $a \cdot (b \times c) = 0$

3.2 Geometric Interpretation

- The magnitude of $x \times y$ represents the area of the parallelogram formed by x and y.
- The direction of $x \times y$ is perpendicular to the plane spanned by x and y, following the right-hand rule.
- The cross product satisfies: $x \times y = -(y \times x)$.

4 Topology of \mathbb{R}^n

Definition of open spaces: we define an open ball in \mathbb{R}^n centered at x_0 and of radius R.

Denoted by
$$B_R(x_0) = \{x \in \mathbb{R}^n : \operatorname{dist}(x, x_0) < R\}$$

This set includes all points in \mathbb{R}^n whose distance from x_0 is less than R. Open sets are the building blocks of topological spaces, and they help define concepts such as convergence, continuity, and compactness.

4.1 Open set

A set $A \subset \mathbb{R}^n$ is open if $\forall x \in A$, $\exists R > 0$ such that $B_R(x) \subset A$. For example:

$$(x,y) \in \mathbb{R}^2$$
, $A = \{(x,y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} < 3\}$

4.2 Closed set

A set $A \subset \mathbb{R}^n$ is closed if its complement is open.

$$A \subset \mathbb{R}^n$$
 is closed if $\mathbb{R}^n \setminus A$ is open.

4.3 Boundary of a set

The boundary of a set $A \subset \mathbb{R}^n$ denoted by ∂A :

$$\partial A = \{x \in \mathbb{R}^n : \forall R > 0, \quad B_R(x) \cap A \neq \emptyset \text{ and } B_R(x) \cap (\mathbb{R}^n \setminus A) \neq \emptyset\}$$

Following the previous example, the boundary of A is the circle of radius 3 centered at the origin:

$$\partial A = \{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} = 3\}$$

Remark

A set $A \subset \mathbb{R}^n$ is closed if and only if it contains its boundary.

Example:

$$D = \{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} < 1 \text{ and } x > 0\}$$

$$D^C = \{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} \ge 1 \text{ or } x \le 0\}$$

$$\partial D = \{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} = 1 \text{ and } x > 0\}$$

D is open, D^C is closed, and ∂D is the semicircle of radius 1 centered at the origin.

Example:

$$S = \{x = 1 \text{ and } 1 < y < 2\}$$

$$S^C = \{x \neq 1 \text{ or } y \leq 1 \text{ or } y > 2\}$$

$$\partial S = \{x = 1 \text{ and } y = 1 \text{ or } y = 2\}$$

S is neither open nor closed, as S^C , and ∂S is the line segment from (1,1) to (1,2).

4.4 Compact set

A set $A \subset \mathbb{R}^n$ is compact if and only if it is closed and bounded.

Example:

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 4\}$$

 $A = \partial A$ so A is closed. A is also bounded, as all points in A are contained within the circle of radius 2 centered at the origin.

 \implies A is compact.

Example: (Exercise 11a)

$$A = xy - \text{plane in } \mathbb{R}^3 = \{(x, y, 0) \in \mathbb{R}^3\}$$

This set is closed, and $B_R(x,R) \cap A = \emptyset$ and $B_R(x,R) \cap (\mathbb{R}^3 \setminus A) = \emptyset$. Therefore, A is will not be compact.

Example: (Exercise 11b)

$$A = \{(x, y) \in \mathbb{R}^2 : xy \neq 0\}$$

For any point $(x, y) \in A$, we can find an open ball $B_R(x, R) \subset B$ that does not intersect the x or y axes.

$$R = \min\{x, y\}$$

4.5 Ball in \mathbb{R}^n

For a ball at any part of radius r in \mathbb{R}^n :

$$(x_1 - a_1)^2 + \dots + (x_n - a_n)^2 < r^2$$

 $\operatorname{dist}(x - a) = ||x - a|| = r$

Example: (Exercise 1a)

Sphere centered at (0,1,-1) with r=4

$$(x-0)^2 + (y-1)^2 + (z+1)^2 = 16$$

Intersection with the x, y, z-planes:

If
$$z = -1$$
, $x^2 + (y - 1)^2 = 16$
If $y = 1$, $x^2 + (z + 1)^2 = 16$
If $x = 0$, $(y - 1)^2 + (z + 1)^2 = 16$

Example: (Exercise 1b)

Sphere going through the origin and centered at (1, 2, 3):

$$(x-1)^2 + (y-2)^2 + (z-3)^2 = r^2$$
$$dist(0, (1, 2, 3)) = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$

So the sphere is $(x-1)^2 + (y-2)^2 + (z-3)^2 = 14$

Example: (Exercise 1c)

Find center and radius of the sphere:

$$x^2 + y^2 + z^2 + 2x + 8y - 4z = 28$$

$$(x+1)^2 + (y+4)^2 + (z-2)^2 = 49$$

So the center is (-1, -4, 2) and the radius is 7.

Example: (Exercise 3)

Check if the vectors are orthogonal:

$$a = (-5, 3, 7), \quad b = (6, -8, 2)$$

$$a \cdot b = -30 - 24 + 14 = -40! = 0$$

So a and b are not orthogonal.

Example: (Exercise 4a)

Let P be a point not on the line L that passes through the points Q and R. Show that the distance d from the point P to the line L is:

$$d = \frac{\|a \times b\|}{\|a\|}$$

Let
$$a = R - Q$$
, $b = P - Q$

Then
$$d = \frac{\|a \times b\|}{\|a\|}$$

Area of parallelogram = $||a \times b|| = ||a|| \cdot d$

Example: (Exercise 4b)

Use the formula in part (a) to find the distance from the point P(1,1,1) to the line through Q(0,6,8) and R(-1,4,7).

$$\mathbf{a} = \overrightarrow{QR} = R - Q = (-1 - 0, 4 - 6, 7 - 8) = (-1, -2, -1)$$

$$\mathbf{b} = \overrightarrow{QP} = P - Q = (1 - 0, 1 - 6, 1 - 8) = (1, -5, -7)$$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & -2 & -1 \\ 1 & -5 & -7 \end{vmatrix} = \mathbf{i} \begin{vmatrix} -2 & -1 \\ -5 & -7 \end{vmatrix} - \mathbf{j} \begin{vmatrix} -1 & -1 \\ 1 & -7 \end{vmatrix} + \mathbf{k} \begin{vmatrix} -1 & -2 \\ 1 & -5 \end{vmatrix}$$

$$\mathbf{a} \times \mathbf{b} = (9, -8, 7)$$

$$\|\mathbf{a} \times \mathbf{b}\| = \sqrt{9^2 + (-8)^2 + 7^2} = \sqrt{81 + 64 + 49} = \sqrt{194}$$

$$\|\mathbf{a}\| = \sqrt{(-1)^2 + (-2)^2 + (-1)^2} = \sqrt{1+4+1} = \sqrt{6}$$

$$d = \frac{\|\mathbf{a} \times \mathbf{b}\|}{\|\mathbf{a}\|} = \frac{\sqrt{194}}{\sqrt{6}} = \sqrt{\frac{194}{6}} = \sqrt{\frac{97}{3}}$$

Example: (Exercise 5)

Calculate the volume of the parallelepiped with edges adjacent to \overrightarrow{PQ} , \overrightarrow{PR} , and \overrightarrow{PS} , where

$$P(1,1,1), \quad Q(2,0,3), \quad R(4,1,7), \quad S(3,-1,-2).$$

The volume of the parallelepiped can be calculated using the scalar triple product of the vectors \overrightarrow{PQ} , \overrightarrow{PR} , and \overrightarrow{PS} .

$$\overrightarrow{PQ} = Q - P = (2 - 1, 0 - 1, 3 - 1) = (1, -1, 2)$$

$$\overrightarrow{PR} = R - P = (4 - 1, 1 - 1, 7 - 1) = (3, 0, 6)$$

$$\overrightarrow{PS} = S - P = (3 - 1, -1 - 1, -2 - 1) = (2, -2, -3)$$

$$\overrightarrow{PR} \times \overrightarrow{PS} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 0 & 6 \\ 2 & -2 & -3 \end{vmatrix} = \mathbf{i}(0 \cdot (-3) - 6 \cdot (-2)) - \mathbf{j}(3 \cdot (-3) - 6 \cdot 2) + \mathbf{k}(3 \cdot (-2) - 0 \cdot 2)$$

$$= \mathbf{i}(0 + 12) - \mathbf{j}(-9 - 12) + \mathbf{k}(-6 - 0)$$

$$= 12\mathbf{i} + 21\mathbf{j} - 6\mathbf{k}$$

$$= (12, 21, -6)$$

$$\overrightarrow{PQ} \cdot (\overrightarrow{PR} \times \overrightarrow{PS}) = (1, -1, 2) \cdot (12, 21, -6)$$

$$= 1 \cdot 12 + (-1) \cdot 21 + 2 \cdot (-6)$$

$$= 12 - 21 - 12$$

The volume of the parallelepiped is the absolute value of this scalar triple product:

$$Volume = |-21| = 21$$

= -21

Example: (Exercise 6)

Use the scalar product to check if the following vectors are coplanar: a = 2i + 3j + k, b = i - j and c = 7i + 3j + 2k.

The vectors are coplanar if the scalar triple product of the vectors is zero.

$$\mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 0 \\ 7 & 3 & 2 \end{vmatrix} = (-2, -2, 10)$$
$$\mathbf{a} \cdot (-2, -2, 10) = (2 \times -2) + (3 \times -2) + (1 \times 10)$$
$$= -4 - 6 + 10 = 0$$

Since the scalar triple product is zero, the vectors are coplanar.

5 Functions of several variables

A function $f: A \to B$ is a correspondence between two sets A and B such that each element in A is associated with exactly one element in B.

Example:

$$f(x,y)=x^2+y^2$$
 , where
$$f:\mathbb{R}^2\to\mathbb{R}$$

$$(x,y)\to f(x,y)=x^2+y^2$$

The formula for that function:

$$z = x^2 + y^2$$

The graph results in a paraboloid (surface).

5.1 Domain for a function f

The domain is the set of points where the function is well defined.

5.2 Image of a function f

The image is the set of points in B that are associated with points in A.

Example: (Exercise 8)

• The function

$$x^2 + 2z^2 = 1$$

is a cylinder with an elipse section.

• The function

$$x^2 - y^2 + z^2 = 1$$

- If y = k, then $x^2 + z^2 = 1 + k^2$ is a circle.
- If z = 0, then $x^2 y^2 = 1$ is a hyperbola.
- If x = 0, then $z^2 y^2 = 1$ is a hyperbola.

5.3 Types of functions

- Scalar functions: $f: \mathbb{R}^n \to \mathbb{R}$, $f(x_1, \dots, x_n) \in \mathbb{R}$.
- Vector functions: $f: \mathbb{R}^n \to \mathbb{R}^m$, $f(x_1, \dots, x_n) \in \mathbb{R}^m$. If $f: \mathbb{R}^n \to \mathbb{R}^n$, then f is a vector field.

Example:

Paramatric equations for a line in \mathbb{R}^3 :

$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$$

5.4 Level curves

The level curves of a function $f: \mathbb{R}^N \to \mathbb{R}$ are the curves in the domain of f where f(x,y) = k for some constant k.

$$(x_1, \dots, x_N) \to f(x_1, \dots, x_N) \in \mathbb{R}$$

 $f(x, y) = c, \quad c \in \mathbb{R}$

The graph of a scalar function $f: \mathbb{R}^2 \to \mathbb{R}$ is a surface in \mathbb{R}^3 .

Example:

$$f(x,y) = x^2 + y^2$$
$$x^2 + y^2 = c, \quad c \in \mathbb{R}$$

The level curves are circles centered at the origin. They can be seen as the projection of the surface onto the xy-plane (from above).

5.5 Remark

In \mathbb{R}^3 , the level curves of a function $f: \mathbb{R}^3 \to \mathbb{R}$ are the curves in the domain of f where f(x,y,z) = c for some constant $c \in \mathbb{R}$.

They allow us to visualize a 3D graph of a function in 2D.

If the level curves are very close to each other, then the function is steep.

Two level curves never touch.

Example:

Find the level curves of the function f(x, y) = xy.

$$xy = c, \quad c = 1, -1, 2.$$

The level curves are a family of hyperbolas.

Example:

Find the level curves of the function f(x,y) = log(x-y).

$$log(x - y) = c, \quad c = 1, -1, 0.$$

The level curves are a family of straight lines.

Example:

Find the level curves of the functions

$$f(x, y, z) = x^2 + y^2 + z^2$$
 and $g(x, y, z) = \frac{x^2}{25} + \frac{y^2}{16} + \frac{z^2}{9}$

The level curves for f are spheres centered at the origin.

The level curves for g are ellipsoids centered at the origin.

5.6 Graph of a function

$$\{(x, f(x)), x \in Dom(f)\}, \text{ where } f = 9y^2 + 4z^2 = x^2 + 36$$

Intersection with the x, y, z-planes:

If
$$z=0$$
, $9y^2-x^2=36 \to \text{Hyperbola}$
If $y=0$, $4z^2-x^2=36 \to \text{Hyperbola}$
If $x=0$, $9y^2+4z^2=36 \to \text{Ellipse}$

Example:

Plot the function $f = x^2 + 4y^2 = z^2$.

If
$$z = 0$$
, $x^2 + 4y^2 = 0 \rightarrow x = 0$, $y = 0$
If $y = 0$, $x^2 = z^2 \rightarrow x = z$, $x = -z$
If $x = 0$, $4y^2 = z^2 \rightarrow y = z/2$, $y = -z/2$
If $z = k$, $x^2 + 4y^2 = k^2 \rightarrow \text{Ellipses}$

The graph is a cone.

Problem 8

$$x^2+y^2+9z^2=1 \to \text{Ellipsoid}$$

$$x^2-y^2+z^2=1 \to \text{Hyperboloid of one sheet}$$

$$y=2x^2+z^2 \to \text{Paraboloid}$$

Example:

$$-x^2+y^2-z^2=1 \rightarrow \text{Hyperboloid}$$
 If $z=0, \quad -x^2+y^2=1 \rightarrow \text{Hyperbola}$ If $y=0, \quad -x^2-z^2=1 \rightarrow \text{No solution}$ If $x=0, \quad y^2-z^2=1 \rightarrow \text{Hyperbola}$

Example:

$$z = x^2 - y^2 \to \text{Paraboloid}$$

If
$$z=0, \quad x^2-y^2=0 \to {\rm Hyperbola}$$

If $z=k, \quad x^2=y^2+k \to {\rm Hyperbola}$

If
$$y=0, \quad z=x^2 \to \text{Parabola}$$

If $x=0, \quad z=-y^2 \to \text{Parabola}$

Example:

Plot the function $x^2 + y^2 = 1$.

6 Cartesian coordinates in \mathbb{R}^N

In \mathbb{R}^2 , the Cartesian coordinates are (x, y). In \mathbb{R}^3 , the Cartesian coordinates are (x, y, z).

6.1 Polar coordinates in \mathbb{R}^2

$$x = r\cos(\theta), \quad y = r\sin(\theta), \quad r \ge 0, \quad 0 \le \theta < 2\pi$$

Inverse transformation:

$$r = \sqrt{x^2 + y^2}, \quad \theta = \arctan\left(\frac{y}{x}\right)$$

Lemma Let $A = (0, \inf) \times (0, 2\pi)$.

The function $g: A \to \mathbb{R}^2$ defined by $g(r, \theta) = (r\cos(\theta), r\sin(\theta))$ is a bijection,

continuous in a ball $B(0,\alpha)$ such that $\{g(r,\theta), 0 < r < \alpha, 0 - leq\theta < 2\pi\}$ is a subset of $B(0,\alpha)$. To see if the function is one-to-one, assume that $g(r_1,\theta_1) = f(r_2,\theta_2)$ for $r_1,r_2 \geq 0$ and $0 \leq \theta_1, \theta_2 < 2\pi$.

Then $r_1 \cos(\theta_1) = r_2 \cos(\theta_2)$ and $r_1 \sin(\theta_1) = r_2 \sin(\theta_2)$. This implies that $r_1 = r_2$, since $r_1 \ge 0$ and $0 \le \theta_1, \theta_2 < 2\pi$.

As a consequence $\theta_1 = \theta_2$ so that g is one-to-one.

Now taking $(x,y) \in B(0,\alpha)$, and $r = \sqrt{x^2 + y^2} > 0$.

Then, the part $(\frac{x}{2}, \frac{y}{2})$ is in B(0, 1).

Therefore, there exists $\theta \in [0, 2\pi)$ such that $\cos(\theta) = \frac{x}{r}$ and $\sin(\theta) = \frac{y}{r}$.

Which implies that $x = r\cos(\theta)$ and $y = r\sin(\theta)$. So g is onto.

6.2 Cylindrical coordinates in \mathbb{R}^3

$$x = r\cos(\theta), \quad y = r\sin(\theta), \quad z = z$$

Example:

Transform into cartesian coordinates:

$$(3, \frac{\pi}{2}, 1) = (3\cos(\frac{\pi}{2}), 3\sin(\frac{\pi}{2}), 1) = (0, 3, 1)$$

Example:

Transform into cartesian coordinates:

$$(4, -\frac{\pi}{3}, 5) = (4\cos(-\frac{\pi}{3}), 4\sin(-\frac{\pi}{3}), 5) = (2, -2\sqrt{3}, 5)$$

6.3 Spherical coordinates in \mathbb{R}^3

 $x = \rho \sin(\phi) \cos(\theta), \quad y = \rho \sin(\phi) \sin(\theta), \quad z = \rho \cos(\phi), \quad \rho \ge 0, \quad 0 \le \phi \le \pi, \quad 0 \le \theta < 2\pi$

 ρ is the distance from the origin, ϕ is the angle from the z-axis, and θ is the angle from the x-axis.

Example: (Problem 6)

Transform into spherical coordinates:

$$(1,0,0) = (1\sin(\phi)\cos(\theta), 1\sin(\phi)\sin(\theta), 1\cos(\phi)) = (0,0,1)$$

$$(2, \frac{\pi}{3}, \frac{\pi}{4}) = (2\sin(\frac{\pi}{4})\cos(\frac{\pi}{3}), 2\sin(\frac{\pi}{4})\sin(\frac{\pi}{3}), 2\cos(\frac{\pi}{4})) = (\sqrt{3}, 1, \sqrt{2})$$

6.4 Parametric equation of a line in \mathbb{R}^3

Having two points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$, the parametric equation of the line passing through P_1 and P_2 is:

$$\begin{cases} x = x_1 + t(x_2 - x_1) \\ y = y_1 + t(y_2 - y_1) \\ z = z_1 + t(z_2 - z_1) \end{cases}$$

Example: (Problem 14)

Find the parametric equation of the line passing through P(1,0,1) and Q(2,3,1).

$$\begin{cases} x = 1 + t(2 - 1) = 1 + t \\ y = 0 + t(3 - 0) = 3t \\ z = 1 + t(1 - 1) = 1 \end{cases}$$

6.5 Parametric equation of a plane in \mathbb{R}^3

For a plane in parametric form:

$$\begin{cases} x = x_0 + a_1 t + a_2 s \\ y = y_0 + b_1 t + b_2 s \\ z = z_0 + c_1 t + c_2 s \end{cases}$$

Remark A line in \mathbb{R}^3 is a manifold of dimension 1. A plane in \mathbb{R}^3 is a manifold of dimension 2.

Example: (Problem 9)

Write $x^2 + y^2 + z^2 = 4$ (Sphere) in parametric form.

$$\begin{cases} x = \lambda \\ y = \mu \\ z = \sqrt{4 - \lambda^2 - \mu^2} \end{cases}$$
 where $\lambda^2 + \mu^2 \le 4$

Using spherical coordinates:

$$\begin{cases} x = \rho \sin(\phi) \cos(\theta) \\ y = \rho \sin(\phi) \sin(\theta) & \text{where } 0 \le \phi \le \pi, \quad 0 \le \theta < 2\pi, \quad \rho = 2 \\ z = \rho \cos(\phi) \end{cases}$$

$$\rho^2 \cos^2(\theta) \sin^2(\phi) + \rho^2 \sin^2(\theta) \sin^2(\phi) + \rho^2 \cos^2(\phi) = 4$$

$$\rho^2 \sin^2(\phi) (\cos^2(\theta) + \sin^2(\theta)) + \rho^2 \cos^2(\phi) = 4$$

$$\rho^2 \sin^2(\phi) + \rho^2 \cos^2(\phi) = 4$$

$$\rho^2 = 4 \to \rho = 2$$

Example: (Problem 11)

A solid above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$.

Becase the solid is inside the cone, we have $z \ge \sqrt{x^2 + y^2}$ Because the solid is below the sphere, we have $x^2 + y^2 + z^2 \le z$

$$\begin{cases} x = \rho \sin(\phi) \cos(\theta) \\ y = \rho \sin(\phi) \sin(\theta) & \text{where } 0 \le \phi \le \pi, \quad 0 \le \theta < 2\pi \\ z = \rho \cos(\phi) & \end{cases}$$

$$\sqrt{\rho^2 \cos^2(\theta) \sin^2(\phi) + \rho^2 \sin^2(\theta) \sin^2(\phi)} \le \rho \cos(\phi)$$
$$\rho \sin(\phi) \le \rho \cos(\phi) \to \tan(\phi) \le 1 \to \phi \le \frac{\pi}{4}$$

$$\rho^2 \sin^2(\phi)(\cos^2(\theta) + \sin^2(\theta)) + \rho^2 \cos^2(\phi) \le \rho \cos(\phi)$$
$$\rho^2 \sin^2(\phi) + \rho^2 \cos^2(\phi) \le \rho \cos(\phi)$$
$$\rho^2 \le \rho \cos(\phi) \to \rho \le \cos(\phi)$$

Solid in cartesian coordinates:

$$\begin{cases} z \ge \sqrt{x^2 + y^2} \\ x^2 + y^2 + z^2 \le z \end{cases}$$

In spherical coordinates:

$$\begin{cases} \rho \le \cos(\phi) \\ \phi \le \frac{\pi}{4} \\ \theta \in [0, 2\pi) \end{cases}$$

6.6 Intersection of two bodies

The intersection of two bodies gives (in general) a curve.

Example: (Problem 12)

Parametrize the intersection (a curve $\gamma(t)=(\gamma_1(t),\gamma_2(t),\gamma_3(t)))$ of the two bodies:

$$\begin{cases} \text{Cylinder: } x^2 + y^2 = 4 \\ \text{Surface: } z = xy \end{cases}$$

$$\begin{cases} x = 2\cos(t) = \gamma_1(t) \\ y = 2\sin(t) = \gamma_2(t) \\ z = 2\cos(t)\sin(t) = \gamma_3(t) \end{cases}$$
 where $t \in [0, 2\pi)$

$$\begin{cases} \text{Paraboloid: } z = 4x^2 + y \\ \text{Cylinder: } y = x^2 \end{cases} \implies \begin{cases} x = t \\ y = t^2 \\ z = 4t^2 + t^4 \end{cases}$$

7 Limit of functions

Assume a scalar $f: \mathbb{R}^N \to \mathbb{R}$. We say that the limit of f(x) as x approaches x_0 is L and we denote it by:

$$\lim_{x \to x_0} f(x) = L \quad \in \mathbb{R}, \quad x, x_0 \in \mathbb{R}^N$$

7.1 Definition of the limit

We say that $\lim_{x\to x_0} f(x) = L$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that:

$$\forall x \in \mathbb{R}^N, \quad 0 < ||x - x_0|| < \delta \implies |f(x) - L| < \epsilon$$

Theorem If the limit of f(x) as x approaches x_0 exists, then the limit is unique.

Proof Argue by contradiction. Assume that there are two limits L_1 and L_2 such that $L_1 \neq L_2$.

Actually, we can say that:

$$B(L_1, r_1) \cap B(L_2, r_2) = \emptyset$$

Where $B(L_1, r_1)$ is the ball of radius r_1 centered at L_1 and $B(L_2, r_2)$ is the ball of radius r_2 centered at L_2 .

$$\lim_{x \to x_0} f(x) = L_1, \quad \text{for any } \epsilon_1 > 0, \quad \exists \delta_1 > 0 \text{ such that } |f(x) - L_1| < \epsilon_1 \text{ for } 0 < ||x - x_0|| < \delta_1$$

$$\lim_{x \to x_0} f(x) = L_2, \quad \text{for any } \epsilon_2 > 0, \quad \exists \delta_2 > 0 \text{ such that } |f(x) - L_2| < \epsilon_2 \text{ for } 0 < ||x - x_0|| < \delta_2$$
 Indeed,

$$\begin{cases} |f(x) - L_1| < r_1 = \epsilon_1 \\ |f(x) - L_2| < r_2 = \epsilon_2 \end{cases} \implies \text{However, taking } \delta = \min(\delta_1, \delta_2) \text{ so that } ||x - x_0|| < \delta$$

such that
$$\begin{cases} |f(x) - L_1| < \min(r_1, r_2) \\ |f(x) - L_2| < \min(r_1, r_2) \end{cases} \implies L_1 = L_2, \text{ which is a contradiction}$$

7.2 Computing limits

Using the definition of the limit, we can compute the limit of a function f(x) as x approaches x_0 . To do so we must choose the value of L towards the function is going. The process is as follows:

For example in
$$\mathbb{R}^2$$
,
$$\begin{cases} f: \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \to f(x,y) \end{cases}$$

Then:

$$0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta \implies |f(x, y) - L| < \epsilon$$

Hence, we must find $\delta \cong \delta(\epsilon)$.

Example:

Prove that

$$\lim_{(x,y)\to(0,0)} \sqrt{x^2 + y^2} \sin\left(\frac{1}{x^2 + y^2}\right) = 0$$

Let
$$\epsilon > 0$$
, we must find $\delta > 0$ such that $\left| \sqrt{x^2 + y^2} \sin \left(\frac{1}{x^2 + y^2} \right) \right| < \epsilon$

Since
$$\left| \sin \left(\frac{1}{x^2 + y^2} \right) \right| \le 1$$
 and $\sqrt{x^2 + y^2} \ge 0$

We have
$$\left| \sqrt{x^2 + y^2} \sin \left(\frac{1}{x^2 + y^2} \right) \right| \le \sqrt{x^2 + y^2} < \epsilon$$

Therefore, we can choose $\delta = \epsilon$

Example:

Prove that

$$\lim_{(x,y)\to(a,b)} y = b$$

Let
$$\epsilon > 0$$
, we must find $\delta > 0$ such that $||f(x) - b|| = |y - b| < \epsilon$ when $||(x,y) - (a,b)|| = \sqrt{(x-a)^2 + (y-b)^2} < \delta$

We start from
$$|y-b| \le \sqrt{(x-a)^2 + (y-b)^2} < \delta$$

Therefore, we can choose $\delta = \epsilon$

7.3 Iterative limits

In 2D,

$$\lim_{x \to a} \left(\lim_{y \to b} f(x, y) \right) = \lim_{y \to b} \left(\lim_{x \to a} f(x, y) \right)$$

However, this technique only gives us negative answers (non-existence of the limit). Since we are just following one direction.

7.4 Approach following families of functions

They might be straight lines, parabolas, etc. around the point of approach.

Example:

Compute the limit:

$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}$$

Let $y = \lambda x$, $\lambda \in \mathbb{R}$. Then

$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}} = \lim_{x\to 0} \frac{x}{\sqrt{x^2+\lambda^2x^2}} = \lim_{x\to 0} \frac{x}{|x|\sqrt{1+\lambda^2}} = \frac{1}{\sqrt{1+\lambda^2}}$$

This limit depends on λ . Therefore, the limit does not exist.

Example:

Compute the limit:

$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2 + y^2}$$

Let $y = \lambda x$, $\lambda \in \mathbb{R}$. Then

$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2} = \lim_{x\to 0} \frac{x^3}{x^2+\lambda^2 x^2} = \lim_{x\to 0} \frac{x}{1+\lambda^2} = 0$$

Following the family of functions $y = \lambda x$, the limit is 0. However, we cannot confirm that the value of the limit is 0 or that the limit exists using this method.

This method is necessary but not sufficient. It is a good way to check if the limit does not exist.

Problem 1a

Taking $y = \lambda x$ and knowing that $\sin x \approx x$ for $x \approx 0$:

$$\lim_{(x,y)\to(0,0)} \frac{x^2 + \sin^2 y}{2x^2 + y^2} = \lim_{x\to 0} \frac{x^2 + \sin^2(\lambda x)}{2x^2 + \lambda^2 x^2} = \lim_{x\to 0} \frac{x^2 + \lambda^2 x^2}{2x^2 + \lambda^2 x^2} = \frac{1 + \lambda^2}{2 + \lambda^2}$$

This limit depends on λ . Therefore, the limit does not exist.

Problem 1d

Taking $y = \lambda x$:

$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = \lim_{x\to 0} \frac{x\lambda x}{\sqrt{x^2+\lambda^2 x^2}} = \lim_{x\to 0} \frac{\lambda x^2}{\sqrt{x^2(1+\lambda^2)}} = \lim_{x\to 0} \frac{\lambda x}{\sqrt{1+\lambda^2}} = 0$$

This limit does not depend on λ . Therefore, the limit exists and is 0. Using polar coordinates:

$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = \lim_{r\to 0} \frac{r^2\cos(\theta)\sin(\theta)}{r} = \lim_{r\to 0} r\cos(\theta)\sin(\theta) = 0$$

7.5 Polar coordinates

In \mathbb{R}^2 , the polar coordinates are (r, θ) .

$$x = r\cos(\theta), \quad y = r\sin(\theta), \quad r > 0, \quad 0 < \theta < 2\pi$$

Theorem Let us consider two functions f and g such that

$$\lim_{x \to x_0} f(x) = 0, \text{ and } g \text{ is bounded for } ||x - x_0|| < \delta$$

Then

$$\lim_{x \to x_0} f(x)g(x) = 0$$

Problem 1e

Taking $y = \lambda x$:

$$\lim_{(x,y)\to(0,0)} \frac{x^2 y e^y}{x^4 + 4y^2} = \lim_{x\to 0} \frac{x^2 \lambda x e^{\lambda x}}{x^4 + 4\lambda^2 x^2} = \lim_{x\to 0} \frac{\lambda x^3 e^{\lambda x}}{x^2 (x^2 + 4\lambda^2)} = \lim_{x\to 0} \frac{\lambda x e^{\lambda x}}{x^2 + 4\lambda^2} = 0$$

Now taking $y = x^2$:

$$\lim_{(x,y)\to(0,0)}\frac{x^2ye^y}{x^4+4y^2}=\lim_{x\to0}\frac{x^2x^2e^{x^2}}{x^4+4x^4}=\lim_{x\to0}\frac{x^4e^{x^2}}{5x^4}=\lim_{x\to0}\frac{e^{x^2}}{5}=\frac{1}{5}$$

This limit depends on the direction of approach. Therefore, the limit does not exist.

Problem 1f

Applying generalized spherical coordinates:

$$\begin{cases} x = r \sin(\phi) \cos(\theta) \\ y = \frac{1}{2} r \sin(\phi) \sin(\theta) \\ z = \frac{1}{3} r \cos(\phi) \end{cases}$$

$$\lim_{(x,y,z)\to(0,0,0)}\frac{yz}{x^2+4y^2+9z^2}=\lim_{r\to 0}\frac{\frac{1}{2}r\sin(\phi)\sin(\theta)\frac{1}{3}r\cos(\phi)}{r^2}=\lim_{r\to 0}\frac{1}{6}\sin(\phi)\cos(\phi)\sin(\theta)$$

This limit depends on ϕ and θ . Therefore, the limit does not exist.

8 Continuity of functions

A function $f: \mathbb{R}^N \to \mathbb{R}$ is continuous at $x_0 \in \mathbb{R}^N$ if:

- 1. $f(x_0)$ is defined.
- 2. $\lim_{x\to x_0} f(x)$ exists.
- 3. $\lim_{x \to x_0} f(x) = f(x_0)$

Theorem Consider A a subset in \mathbb{R}^N and $f: A \to \mathbb{R}^M$ a vector function.

$$F(x) = (f_1(x), f_2(x), \dots, f_M(x))$$

If f_1, f_2, \ldots, f_M are continuous at $x_0 \in A$, then F is continuous at x_0 .

Theorem Assume that f and g are continuous at $x_0 \in \mathbb{R}^N$ and $f(x_0)$ respectively. Then, the composition $g \circ f$ is continuous at x_0 .

For example:
$$f(x) = x^2 y \sin(x+y)$$
, $f: \mathbb{R}^2 \to \mathbb{R}$

Since f is a composite function and $x^2, y, \sin(x+y)$ are continuous, then f is continuous.

Problem 2a

Prove the continuity:

$$f(x,y) = \begin{cases} \frac{x^2y^3}{2x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 1 & \text{if } (x,y) = (0,0) \end{cases}$$

If $(x,y) \neq (0,0)$, then f(x,y) is a composition of continuous functions. So that

for any
$$(x_0, y_0) \neq (0, 0)$$
, $\lim_{(x,y)\to(0,0)} f(x,y) = f(x_0, y_0) = \frac{x_0^2 y_0^3}{2x_0^2 + y_0^2}$

At (0,0), the function is well defined: f(0,0) = 1, so we must check that the limit exists.

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^2y^3}{2x^2 + y^2} =$$

Using polar coordinates:

$$\begin{cases} x = \frac{1}{\sqrt{2}}r\cos(\theta) \\ y = r\sin(\theta) \end{cases}$$

$$= \lim_{r \to 0} \frac{\frac{1}{2}r^3 \cos^2(\theta) \sin^3(\theta)}{r^2} = \lim_{r \to 0} \frac{1}{2}r \cos^2(\theta) \sin^3(\theta) = 0$$

The limit exists and is equal to 0. However, $f(0,0)=1\neq 0$. Therefore, the function is not continuous at (0,0).