Lecture 18 QR Algorithm and Simultaneous Iteration

Songting Luo

Department of Mathematics lowa State University

MATH 562 Numerical Analysis II

Outline

 $\textbf{ 0} \ \mathsf{QR} \ \mathsf{Algorithm} \ \mathsf{and} \ \mathsf{Simultaneous} \ \mathsf{Iteration}$

Outline

 $\textbf{ 0} \ \mathsf{QR} \ \mathsf{Algorithm} \ \mathsf{and} \ \mathsf{Simultaneous} \ \mathsf{Iteration}$

QR Algorithm

Most basic version of QR algorithm is remarkably simple:

Algorithm: "Pure" QR Algorithm

$$\begin{aligned} \mathbf{A}^{(0)} &= \mathbf{A} \\ \text{for } k = 1, 2, \dots \\ \mathbf{Q}^{(k)} \mathbf{R}^{(k)} &= \mathbf{A}^{(k-1)} \\ \mathbf{A}^{(k)} &= \mathbf{R}^{(k)} \mathbf{Q}^{(k)} \end{aligned}$$

- With some suitable assumptions, $\mathbf{A}^{(k)}$ converge to Schur form of \mathbf{A} (diagonal if \mathbf{A} is symmetric)
- Similarity transformation of A:

$$\mathbf{A}^{(k)} = \mathbf{R}^{(k)} \mathbf{Q}^{(k)} = \left(\mathbf{Q}^{(k)}\right)^T \mathbf{A}^{(k-1)} \mathbf{Q}^{(k)}$$

But why it works?

Unnormalized Simultaneous Iteration

- To understand QR algorithm, first consider simple algorithm
- Simultaneous iteration is power iteration applied to several vectors
- Start with linearly independent $\mathbf{v}_1^{(0)},\cdots,\mathbf{v}_n^{(0)}$
- We know from power iteration that $\mathbf{A}^k\mathbf{v}_1^{(0)}$ converges to \mathbf{q}_1
- With some assumptions, the space $\langle \mathbf{A}^k \mathbf{v}_1^{(0)}, \cdots, \mathbf{A}^k \mathbf{v}_n^{(0)} \rangle$ converge to $\langle \mathbf{q}_1, \dots, \mathbf{q}_n \rangle$
- Notation: Define initial matrix $\mathbf{V}^{(0)}$ and matrix $\mathbf{V}^{(k)}$ at step k:

$$\mathbf{V}^{(0)} = [\mathbf{v}_1^{(0)}|\cdots|\mathbf{v}_n^{(0)}], \quad \mathbf{V}^{(k)} = \mathbf{A}^k \mathbf{V}^{(0)} = [\mathbf{v}_1^{(k)}|\cdots|\mathbf{v}_n^{(k)}],$$

Unnormalized Simultaneous Iteration

- Define orthogonal basis for column space of $\mathbf{V}^{(k)}$ by reduced QR factorization $\hat{\mathbf{Q}}^{(k)}\hat{\mathbf{R}}^{(k)} = \mathbf{V}^{(k)}$
- We assume that
 - ullet leading n+1 eigenvalues are distinct, and
 - all leading principal submatrices of $\hat{\mathbf{Q}}^T \mathbf{V}^{(0)}$ are nonsingular where $\hat{\mathbf{Q}} = [\mathbf{q}_1|\cdots|\mathbf{q}_n].$
- We then have columns of $\hat{\mathbf{Q}}^{(k)}$ converge to eigenvectors of \mathbf{A} :

$$\|\mathbf{q}_j^{(k)} - (\pm \mathbf{q}_j)\| = O(c^k),$$

where $c = \max_{1 \le k \le n} |\lambda_{k+1}|/|\lambda_k|$

• Proof idea: Show that subspace of any leading j columns of $\mathbf{V}^{(k)} = \mathbf{A}^k \mathbf{V}^{(0)}$ converges to subspace of first j eigenvectors of \mathbf{A} , so does the subspace of any leading j columns of $\hat{\mathbf{Q}}^{(k)}$.

Simultaneous Iteration

- Matrices $\mathbf{V}^{(k)} = \mathbf{A}^k \mathbf{V}^{(0)}$ are highly ill-conditioned
- Orthonormalize at each step rather than at the end

Algorithm: Simultaneous Iteration

$$\begin{aligned} & \text{Pick } \hat{\textbf{Q}}^{(0)} \in \mathbb{R}^{m \times n} \\ & \text{for } k = 1, 2, \dots \\ & \textbf{Z} = \textbf{A} \hat{\textbf{Q}}^{(k-1)} \\ & \hat{\textbf{Q}}^{(k)} \hat{\textbf{R}}^{(k)} = \textbf{Z} \end{aligned}$$

• Column spaces of $\hat{\mathbf{Q}}^{(k)}$ and $\mathbf{Z}^{(k)}$ are both equal to column space of $\mathbf{A}^k\hat{\mathbf{Q}}^{(0)}$, therefore same convergence as before

Simultaneous Iteration ⇔ QR Algorithm

Algorithm: Simultaneous Iteration

$$\begin{aligned} & \text{Pick } \hat{\textbf{Q}}^{(0)} \in \mathbb{R}^{m \times n} \\ & \text{for } k = 1, 2, \dots \\ & \textbf{Z} = \textbf{A} \hat{\textbf{Q}}^{(k-1)} \\ & \hat{\textbf{Q}}^{(k)} \hat{\textbf{R}}^{(k)} = \textbf{Z} \end{aligned}$$

Algorithm: "Pure" QR Algorithm

Let
$$\mathbf{A}^{(0)} = \mathbf{A}$$
 for $k = 1, 2, \dots$ $\mathbf{Q}^{(k)} \mathbf{R}^{(k)} = \mathbf{A}^{(k-1)}$ $\mathbf{A}^{(k)} = \mathbf{R}^{(k)} \mathbf{Q}^{(k)}$

- ullet QR algorithm is equivalent to simultaneous iteration with $\hat{old Q}^{(0)} = old I$
- Replace $\hat{\mathbf{R}}^{(k)}$ by $\mathbf{R}^{(k)}$ and $\hat{\mathbf{Q}}^{(k)}$ by $\underline{\mathbf{Q}}^{(k)}$, and introduce new statement $\mathbf{A}^{(k)} = \left(\underline{\mathbf{Q}}^{(k)}\right)^T \mathbf{A}\underline{\mathbf{Q}}^{(k)}$ in simultaneous iteration

Simultaneous Iteration ⇔ QR Algorithm

Simultaneous Iteration

$$\begin{split} & \frac{\mathbf{Q}^{(0)} = \mathbf{I}}{\mathbf{Z} = \mathbf{A}\mathbf{Q}^{(k-1)}} \\ & \mathbf{Q}^{(k)}\mathbf{R}^{\overline{(k)}} = \mathbf{Z} \end{split}$$

$$\mathbf{A}^{(k)} = \left(\mathbf{\underline{Q}}^{(k)}\right)^T \mathbf{A} \mathbf{\underline{Q}}^{(k)}$$

QR Algorithm

$$\begin{aligned} & \mathbf{A}^{(0)} = \mathbf{A} \\ & \mathbf{Q}^{(k)} \mathbf{R}^{(k)} = \mathbf{A}^{(k-1)} \\ & \mathbf{A}^{(k)} = \mathbf{R}^{(k)} \mathbf{Q}^{(k)} \\ & \underline{\mathbf{Q}}^{(k)} = \mathbf{Q}^{(1)} \mathbf{Q}^{(2)} \cdots \mathbf{Q}^{(k)} \end{aligned}$$

- $\mathbf{Q}^{(k)} = \mathbf{Q}^{(1)}\mathbf{Q}^{(2)}\cdots\mathbf{Q}^{(k)}$. Let $\mathbf{R}^{(k)} = \mathbf{R}^{(k)}\mathbf{R}^{(k-1)}\ldots\mathbf{R}^{(1)}$
- Both schemes generate QR factorization $\mathbf{A}^k = \underline{\mathbf{Q}}^{(k)}\underline{\mathbf{R}}^{(k)}$ and projection $\mathbf{A}^{(k)} = \left(\underline{\mathbf{Q}}^{(k)}\right)^T \mathbf{A}\underline{\mathbf{Q}}^{(k)}$

Simultaneous Iteration ⇔ QR Algorithm

Proof

Proof by induction. For k=0 it is trivial for both algorithms.

For $k \geqslant 1$ with simultaneous iteration, $\mathbf{A}^{(k)}$ is given by definition, and

$$\mathbf{A}^k = \mathbf{A}\underline{\mathbf{Q}}^{(k-1)}\underline{\mathbf{R}}^{(k-1)} = \underline{\mathbf{Q}}^{(k)}\mathbf{R}^{(k)}\underline{\mathbf{R}}^{(k-1)} = \underline{\mathbf{Q}}^{(k)}\underline{\mathbf{R}}^{(k)}$$

For $k \geqslant 1$ with QR algorithm,

$$\mathbf{A}^k = \mathbf{A}\underline{\mathbf{Q}}^{(k-1)}\underline{\mathbf{R}}^{(k-1)} = \underline{\mathbf{Q}}^{(k-1)}\mathbf{A}^{(k-1)}\underline{\mathbf{R}}^{(k-1)} = \underline{\mathbf{Q}}^{(k)}\underline{\mathbf{R}}^{(k)}$$

and

$$\mathbf{A}^{(k)} = \left(\mathbf{Q}^{(k)}\right)^T \mathbf{A}^{(k-1)} \mathbf{Q}^{(k)} = \left(\underline{\mathbf{Q}}^{(k)}\right)^T \mathbf{A} \underline{\mathbf{Q}}^{(k)}$$

Convergence of QR Algorithm

- Since $\underline{\mathbf{Q}}^{(k)} = \hat{\mathbf{Q}}^{(k)}$ in simultaneous iteration, column vectors of $\underline{\mathbf{Q}}^{(k)}$ converge linearly to eigenvectors if \mathbf{A} has distinct eigenvalues
- Fron $\mathbf{A}^{(k)} = \left(\underline{\mathbf{Q}}^{(k)}\right)^T \mathbf{A}\underline{\mathbf{Q}}^{(k)}$, diagonal entries of $\mathbf{Q}^{(k)}$ are Rayleigh quotients of column vectors of $\underline{\mathbf{Q}}^{(k)}$, so they converge linearly to eigenvalues of \mathbf{A}
- ullet Off-diagonal entries of $oldsymbol{A}^{(k)}$ converge to zeros, as they are generalized Rayleigh quotients involving approximations of distinct eigenvectors
- Overall, $\mathbf{A} = \underline{\mathbf{Q}}^{(k)} \mathbf{A}^{(k)} \left(\underline{\mathbf{Q}}^{(k)}\right)^T$. For a symmetric matrix, it converges to eigenvalue decomposition of \mathbf{A}