## **Computer Organization and Architecture**

# Internal Organization of Memory Chips 2-d Address Decoding

Veena Thenkanidiyoor National Institute of Technology Goa



1

### Recap

- Internal organization of memory chips
- · 1-d Address decoding
- · Motivation for 2-d address decoding

# 2-dimensional Address Decoding

- k-address line is divided into k/2 row address and k/2 column address
- Now, memory chip is considered as  $2^{k/2} \times 2^{k/2}$  memory cell array
- Example: Design of 16 x 4 bit memory chip
  - Number of address lines: 4
  - Number of row address lines: 2
  - Number of column address line: 2



3

# **2-dimensional Address Decoding**

- k-address line is divided into k/2 row address and k/2 column address
- Now, memory chip is considered as  $2^{k/2} \times 2^{k/2}$  memory cell array
- Example: Design of 16 x 4 bit memory chip
  - Number of address lines: 4
  - Number of row address lines: 2
  - Number of column address line: 2









′



## **Byte Addressable Memory**



Word Byte Address Address 0 1 2 3 5 6 7 1 2 9 10 11 2<sup>k/4</sup>-1 **2**<sup>k</sup>**-3** 

**Little Endian** 

**Big Endian** 

**Example: Intel Processors** 

**Motorola Processors** 

9

5

#### **Static RAM Module**

- Byte Addressable Memory
- Illustration:
  - Task: Design SRAM with capacity 8MB (2<sup>23</sup> B)
  - Requirements:
    - Memory organization depends on the word size and word size decides the width of the data bus
      - Let word size be 32 bit (4B)
      - Now, memory organization: 2M x 32 bit
    - Memory should be byte addressable
      - Let the organization of cell array to incorporate byte addressability be  $1M \times 8$  bit
  - Organization include:
    - 2 rows of chips, each of size 1M x 8 bit
    - Each row contain 4 chips
  - Number of address lines: 23 (2<sup>23</sup> B)

















#### **Static RAM Module**

4MB SRAM Module



19

19

#### **Static RAM Module**

- N: Capacity of SRAM
- n bits: Width of SRAM
- M: Capacity of one SRAM chip
- m bits: Width of SRAM chip
- Number of rows of memory chips: N/M
- Number of chips in a row: n/m
- According to the number of rows of memory chips and number of chips in a row, Chip Select (CS) logic is designed
- Higher order bits in address select a row of memory chips
- Lower order bits in address select a byte in a word
- Size line in CS logic indicates how many bytes in a word need to be selected

## Reference

 Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", 5<sup>th</sup> Edition, Tata McGraw Hill, 2002

21

21

# **Thank You**

22