Lecture 10: Machine Learning Classification

Table of Contents

- **❖** Part 1.
 - Big Data Classification
- **❖** Part 2.
 - Evaluation of Big DataClassification

- **❖** Part 3.
 - Evaluation metrics

- **❖** Part 4.
 - Accuracy Improvement

Part 1

BIG DATA CLASSIFICATION

❖ What is KNN?

- K-Nearest Neighbors
 - Classifies unlabeled data points by assigning them the class of similar labeled data points

- KNN applications
 - They have been used successfully for
 - Computer vision applications
 - Character recognition and facial recognition in both still images and video
 - Identifying patterns in hospital data
 - Detection of diseases
 - Predicting whether a person will enjoy a movie or music recommendation

- ❖ How KNN works?
 - Suppose that we want to predict T-shirt size of a new customer given height and weight information

Height	Weight	Size
158	58	М
158	59	М
158	63	М
160	59	М
160	60	М
163	60	М
163	61	М
160	64	L
163	64	L
165	61	L
165	62	L
165	65	L
168	62	L
168	63	L
168	66	L
170	63	L
170	64	L
170	68	Լ
162	62	711

- How KNN works?
 - Step 1: Determine parameter k(k > 0)
 - Step 2: Determine similarity by calculating the distance between a test point and all other points in the dataset
 - Step 3: Sort the dataset according to the distance values
 - Step 4: Determine the category of the k-th nearest neighbors
 - Step 5: Use simple majority of the category of the k nearest neighbors as the category of a test point

- How KNN works?
 - Step 1: Determine parameter k(k > 0)
 - Suppose k = 3
 - Step 2: Determine similarity by calculating the distance between a test point and all other points in the dataset
 - Euclidean distance

$$dist(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2}$$

Where p and q are the data points to be compared

- ❖ How KNN works?
 - Step 2: Calculate the distance between a test point and all other points in the dataset

Height	Weight	Size	Distance
158	58	М	5.656854
158	59	М	5
158	63	М	4.123106
160	59	М	3.605551
160	60	М	2.828427
163	60	М	2.236068
163	61	М	1.414214
160	64	L	2.828427
163	64	L	2.236068
165	61	L	3.162278
165	62	L	3
165	65	L	4.242641
168	62	L	6
168	63	L	6.082763
168	66	L	7.211103
170	63	L	8.062258
170	64	L	8.246211
170	68	L	10
162	62	???	

- ❖ How KNN works?
 - Step 3: Sort the dataset according to the distance values

Height	Weight	Size	Distance
163	61	M	1.414214
163	60	М	2.236068
163	64	L	2.236068
160	60	М	2.828427
160	64	L	2.828427
165	62	L	3
165	61	L	3.162278
160	59	M	3.605551
158	63	M	4.123106
165	65	L	4.242641
158	59	M	5
158	58	M	5.656854
168	62	L	6
168	63	L	6.082763
168	66	L	7.211103
170	63	L	8.062258
170	64	L	8.246211
170	68	L	10
162	62	???	

- ❖ How KNN works?
 - Step 4: Determine the category of the *k*-th nearest neighbors

	Height	Weight	Size	Distance
	163	61	М	1.414214
/	163	60	М	2.236068
	163	64	L	2.236068
	160	60	М	2.828427
	160	64	L	2.828427
	165	62	L	3
k=3	165	61	L	3.162278
	160	59	М	3.605551
	158	63	М	4.123106
	165	65	L	4.242641
	158	59	М	5
	158	58	М	5.656854
	168	62	L	6
	168	63	L	6.082763
	168	66	L	7.211103
	170	63	L	8.062258
	170	64	L	8.246211
	170	68	L	10
	162	62	???	

- ❖ How KNN works?
 - Step 5: Use simple majority of the category of the k nearest neighbors as the category of a test point

	Height	Weight	Size	Distance
	163	61	М	1.414214
	163	60	М	2.236068
	163	64	L	2.236068
	160	60	М	2.828427
	160	64	L	2.828427
	165	62	L	3
k=3	165	61	L	3.162278
	160	59	М	3.605551
	158	63	М	4.123106
	165	65	L	4.242641
	158	59	М	5
	158	58	М	5.656854
	168	62	L	6
	168	63	L	6.082763
	168	66	L	7.211103
	170	63	L	8.062258
	170	64	L	8.246211
	170	68	L	10
	162	62	М	

- ❖ How KNN works?
 - Step 5: Use simple majority of the category of the k nearest neighbors as the category of a test point

Part 2

EVALUATION OF BIG DATA ANALYTICS

In the last lecture

❖ Big data process

Why evaluate?

- Building Big Data Analytics is based on the principle of continuous feedback
- The Big Data Analytics are built and model performance is evaluated further continuously and continue until you achieve a desirable accuracy
- Big Data Analytics evaluation metrics are used to explain the performance of metrics
- It is important to check performance metrics before carrying out predictions

- Train and test split
 - Train dataset
 - The actual dataset that we use to train the model
 - The model sees and learns from this data
 - Test dataset
 - Dataset used for evaluating the model
 - We usually split the data around 20%-80% between testing and training stages

- Train and test split
 - sklearn library

```
from sklearn.model_selection import train_test_split
```

```
X_train, X_test, y_train, y_test = 
Train_test_split(training_points, training_labels, test_size=0.2, random_state=4)
```

- test_size=0.2
 - Test dataset is 20% and training dataset is 80%
- random_state=4
 - data is randomly assigned unless you use random_state hyperparameter

Part 3

EVALUATION METRICS

- Classification accuracy
 - Confusion matrix
 - Accuracy
 - Error rate
 - Precision
 - Recall
 - F measure

- Regression accuracy
 - Mean squared error

到是为

- Classification accuracy
 - sklearn libraries

```
from sklearn.metrics import confusion_matrix
from sklearn import metrics
print(confusion_matrix(y_test, guesses))
print(metrics.accuracy_score(y_test, guesses))
print(metrics.precision_score(y_test, guesses, average='binary'))
print(metrics.recall_score(y_test, guesses, average='binary'))
print(metrics.f1_score(y_test, guesses, average='binary'))
```

Confusion matrix

 Confusion matrix is a table that categorizes predictions according to whether they match the actual value

Confusion matrix

- The most common performance measures consider the model's ability to discern one class versus all others
 - The class of interest is known as the positive
 - All others are known as negative
- The relationship between the positive class and negative class predictions can be depicted as a 2 x 2 confusion matrix
 - It tabulates whether predictions fall into one of the four categories
 - **True Positive (TP):** Correctly classified as the class of interest
 - True Negative (TN): Correctly classified as not the class of interest
 - False Positive (FP): Incorrectly classified as the class of interest
 - False Negative (FN): Incorrectly classified as not the class of interest

Accuracy

• With the 2 x 2 confusion matrix, we can formalize our definition of prediction accuracy (sometimes called the success rate) as:

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
 (1)

Error rate

 The error rate or the proportion of the incorrectly classified examples is specified as:

error rate =
$$\frac{\text{FP} + \text{FN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}} = 1 - \text{accuracy}$$
(2)

- ❖ Task 1
 - Calculate accuracy and error rate for cancer dataset
 - Accuracy
 - (29 + 71) / (29 + 71 + 9 + 5)
 - Result: 0.877
 - Error rate
 - (9+5)/(29+71+9+5)
 - Result: 0.122

Precision

- The precision is defined as the proportion of positive examples that are truly positive
- In other words, when a model predicts the positive class, how often is it correct

$$precision = \frac{TP}{TP + FP}$$

Recall

On the other hand, recall is a measure of how complete the results are

$$recall = \frac{TP}{TP + FN}$$
 (4)

(3)

- ❖ Task 2
 - Calculate accuracy and error rate for cancer dataset
 - Precision
 - 71/ (71 + 6)
 - Result: 0.934
 - Recall
 - 71/(71+9)
 - Result: 0.887

❖ F-measure

- A measure that combines precision and recall into a single number is known as the F-measure
 - Sometimes called the F1 score or F-score

$$F-measure = \frac{2 \times precision \times recall}{recall + precision} = \frac{2 \times TP}{2 \times TP + FP + FN}$$
 (5)

❖ Task 3

- F-measure
 - (2 * 0.934 * 0.887)/(0.934 + 0.887) = 1.656/1.821
 - Result: 0.91

Part 4

ACCURACY IMPROVEMENT

- Big data design process contains of two main steps
 - Data management, data training and continuous improving accuracy
- Steps for big data design
 - 1. Loading libraries
 - 2. Loading dataset
 - 3. Data observation
 - 4. Exploratory Data Analysis
 - 5. Splitting into training and testing datasets
 - 6. Training model and checking out accuracy
 - 7. Improving accuracy by tuning hyperparameters (number of k)
 - 8. Changing ratios of training and test datasets
 - 9. Rescaling

❖ Step 1

- Loading several libraries that will be used to do the analysis in this tutorial
 - I assume that you have already installed the library

import pandas as pd import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import confusion_matrix from sklearn import metrics

❖ Step 2

 Load the dataset to be used, dataset contains historical data from patients who have been examined for heart disease

 $df = pd.read_csv('D: WMy Datasets Wheart.csv')$

❖ Step 3

 Let's see some general information from the data to be more familiar with our data

```
#print(df.head())
#print(df.shape)
#print(df.info())
```

- ❖ Step 3
 - Result of print(df.head())
 - Shows the top five records of the dataset

- Task 1
 - Check out print(df.shape) and print(df.info()) by yourself

❖ Step 4

 Conducting Exploratory Data Analysis (EDA) to understand our data better

1. Target class distribution

 Looks like the target feature is balanced because the number of values 0 and 1 does not differ much

print(df['target'].value_counts())

```
1 165
0 138
Name: target, dtype: int64
Process finished with exit code 0
```

- ❖ Step 4
 - 2. Histogram of trestbps attribute

```
plt.hist(df['trestbps'])
plt.xlabel('Resting Blood Pressure')
plt.ylabel('Value')
plt.show()
```


❖ Step 4

3. Outlier of all attributes

- ❖ Step 4
 - 4. Missing values

print(df.isnull().sum())

❖ Step 5

Splitting into training and test datasets to check out the accuracy

```
training_points = df.drop(columns=['target'])
training_labels = df['target']
X_train, X_test, y_train, y_test = train_test_split(
         training_points,
         training_labels,
         test_size=0.3,
         random_state=4)
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
```

- ❖ Step 6
 - Training the model (k=5) and check the accuracy

```
classifier = KNeighborsClassifier(n_neighbors = 5)
classifier.fit(X_train, y_train)
guesses = classifier.predict(X_test)

print(guesses)
print(confusion_matrix(y_test, guesses))
print(metrics.accuracy_score(y_test, guesses))
```

Initial classification accuracy is 0.5934065934065934

❖ Step 7

Improving accuracy by tuning hyperparameters (number of k)

```
k_range = range(1, 50)
accuracy_scores = []
for k in k range:
   classifier = KNeighborsClassifier(n_neighbors = k)
   classifier.fit(X_train, y_train)
   quesses = classifier.predict(X_test)
   accuracy_scores.append(metrics.accuracy_score(y_test, guesses))
print(accuracy scores)
#Visualize the result of KNN accuracy with matplotlib
plt.plot(k_range, accuracy_scores)
plt.xlabel('Value of K for KNN')
plt.ylabel('Testing Accuracy')
plt.show()
```

- ❖ Step 7
 - Result of tuning hyperparameters
 - Highest accuracy: 0.7032967032967034

- ❖ Step 8
 - Changing ratios of training and test datasets
 - Training dataset -> 80% and test dataset -> 20%
 - Highest accuracy: 0.7377049180327869

Rescaling

- KNN is a Distance-Based algorithm where KNN classifies data based on proximity to K-Neighbors
- Then, often we find that the features of the data we used are not at the same scale/units
 - An example is when we have features age and height
 - Obviously these two features have different units, the feature age is in year and the height is in centimeter
- This unit difference causes Distance-Based algorithms such as KNN to not perform optimally

Rescaling

- It is necessary to rescaling features that have different units to have same scale/units
- Rescaling methods
 - Min-Max Scaling
 - Min-Max Scaling uses the minimum and maximum values of a feature to rescale values within a range
 - Standard Scaling
 - Rescale features to be approximately standard normally distributed
 - Robust Scaling
 - Rescale the feature using the median and quartile range

- ❖ Step 9
 - Standard Scaling

```
from sklearn.preprocessing import StandardScaler
#Create copy of dataset.
df_model = df.copy()
#Rescaling features age, trestbps, chol, thalach, oldpeak.
scaler = StandardScaler()
features = [['age', 'trestbps', 'chol', 'thalach', 'oldpeak']]
for feature in features:
   df_model[feature] = scaler.fit_transform(df_model[feature])
training_points = df_model.drop(columns=['target'])
training_labels = df_model['target']
```

- ❖ Step 9
 - Standard Scaling
 - Highest accuracy: 0.8852459016393442

❖ Step 9

Min-Max Scaling

```
from sklearn.preprocessing import MinMaxScaler
#Create copy of dataset.
df_model = df.copy()
#Rescaling features age, trestbps, chol, thalach, oldpeak.
scaler = MinMaxScaler()
features = [['age', 'trestbps', 'chol', 'thalach', 'oldpeak']]
for feature in features:
   df_model[feature] = scaler.fit_transform(df_model[feature])
training_points = df_model.drop(columns=['target'])
training_labels = df_model['target']
```

- ❖ Step 9
 - Min-Max Scaling
 - Highest accuracy: 0.9016393442622951

- ❖ Step 9
 - Robust Scaling

```
from sklearn.preprocessing import RobustScaler
#Create copy of dataset.
df_model = df.copy()
#Rescaling features age, trestbps, chol, thalach, oldpeak.
scaler = RobustScaler()
features = [['age', 'trestbps', 'chol', 'thalach', 'oldpeak']]
for feature in features:
   df_model[feature] = scaler.fit_transform(df_model[feature])
training_points = df_model.drop(columns=['target'])
training_labels = df_model['target']
```

- ❖ Step 9
 - Robust Scaling
 - Highest accuracy: 0.9016393442622951

Homework for Lecture 10

- Submit your source code for the following task:
 - 1. Try all source code in the lecture
- ❖ Submission: source code and result screenshots