

Dimensionality Reduction and (Bucket) Ranking: a Mass Transportation Approach

Mastane Achab, Anna Korba, Stephan Clémençon

Introduction

Dimensionality Reduction on \mathfrak{S}_n

Empirical Distortion Minimization

Numerical Experiments on a Real-world Dataset

Outline

Introduction

Dimensionality Reduction on \mathfrak{S}_n

Empirical Distortion Minimization

Numerical Experiments on a Real-world Dataset

Introduction (1/2)

▶ Permutations over n items $[\![n]\!] = \{1, \dots, n\}$

Introduction (1/2)

- ▶ Permutations over n items $\llbracket n \rrbracket = \{1, \dots, n\}$
- ▶ Number of permutations explodes: $\#\mathfrak{S}_n = n!$

Introduction (1/2)

- ▶ Permutations over n items $\llbracket n \rrbracket = \{1, \dots, n\}$
- ▶ Number of permutations explodes: $\#\mathfrak{S}_n = n!$
- ▶ Distribution P on \mathfrak{S}_n : n! 1 parameters

Introduction (2/2)

▶ Question: "How to summarize *P*?"

Introduction (2/2)

- ▶ Question: "How to summarize *P*?"
- Answer: dimensionality reduction

Introduction (2/2)

- ▶ Question: "How to summarize *P*?"
- ► Answer: dimensionality reduction
- ▶ Problem: no vector space structure for permutations

Outline

Introduction

Dimensionality Reduction on \mathfrak{S}_n

Empirical Distortion Minimization

Numerical Experiments on a Real-world Dataset

Bucket order $\mathcal{C} = (\mathcal{C}_1, \dots, \mathcal{C}_K)$: ordered partition of $[\![n]\!]$

Bucket order $\mathcal{C} = (\mathcal{C}_1, \dots, \mathcal{C}_K)$: ordered partition of $[\![n]\!]$

 $ightharpoonup \mathcal{C}_i$'s disjoint non empty subsets of $[\![n]\!]$

Bucket order $\mathcal{C} = (\mathcal{C}_1, \dots, \mathcal{C}_K)$: ordered partition of $\llbracket n \rrbracket$

- $ightharpoonup \mathcal{C}_i$'s disjoint non empty subsets of $[\![n]\!]$

Bucket order $\mathcal{C} = (\mathcal{C}_1, \dots, \mathcal{C}_K)$: ordered partition of $\llbracket n \rrbracket$

- $ightharpoonup \mathcal{C}_i$'s disjoint non empty subsets of $[\![n]\!]$
- ▶ K: "size" of C

Bucket order $\mathcal{C} = (\mathcal{C}_1, \dots, \mathcal{C}_K)$: ordered partition of $\llbracket n \rrbracket$

- $ightharpoonup \mathcal{C}_i$'s disjoint non empty subsets of $[\![n]\!]$
- ▶ K: "size" of C
- $(\#\mathcal{C}_1,\ldots,\#\mathcal{C}_K)$: "shape" of \mathcal{C}

Bucket order $C = (C_1, \dots, C_K)$: ordered partition of $\llbracket n \rrbracket$

- $ightharpoonup \mathcal{C}_i$'s disjoint non empty subsets of $[\![n]\!]$
- ▶ *K*: "size" of *C*
- $(\#\mathcal{C}_1,\ldots,\#\mathcal{C}_K)$: "shape" of \mathcal{C}

Partial order: "i is ranked lower than j in C" if $\exists k < l$ s.t. $(i,j) \in C_k \times C_l$.

 $\mathbf{P}_{\mathcal{C}}$: set of all bucket distributions P' associated to \mathcal{C}

 $\mathbf{P}_{\mathcal{C}}$: set of all bucket distributions P' associated to \mathcal{C}

▶ P' distribution on \mathfrak{S}_n

- $\mathbf{P}_{\mathcal{C}}$: set of all bucket distributions P' associated to \mathcal{C}
 - \triangleright P' distribution on \mathfrak{S}_n
 - ▶ if $(i,j) \in C_k \times C_l$ (k < l), then $p'_{j,i} = 0$

- $\mathbf{P}_{\mathcal{C}}$: set of all bucket distributions P' associated to \mathcal{C}
 - \triangleright P' distribution on \mathfrak{S}_n
 - ▶ if $(i,j) \in C_k \times C_l$ (k < l), then $p'_{i,i} = 0$
 - $p'_{i,j} = \mathbb{P}(\Sigma'(i) < \Sigma'(j))$ for $\Sigma' \sim P'$

- $\mathbf{P}_{\mathcal{C}}$: set of all bucket distributions P' associated to \mathcal{C}
 - $\triangleright P'$ distribution on \mathfrak{S}_n
 - ▶ if $(i,j) \in C_k \times C_l$ (k < l), then $p'_{i,j} = 0$
 - $p'_{i,j} = \mathbb{P}(\Sigma'(i) < \Sigma'(j))$ for $\Sigma' \sim P'$
- $P'\in \mathbf{P}_{\mathcal{C}}$ described by $d_{\mathcal{C}}=\prod_{k\leq K}\#\mathcal{C}_k!-1\leq n!-1$ parameters

Background on Consensus Ranking

Consensus ranking (or "ranking aggregation"): summarize permutations $\sigma_1, \ldots, \sigma_N$ by a consensus/median ranking $\sigma^* \in \mathfrak{S}_n$ by solving:

$$\min_{\sigma \in \mathfrak{S}_n} \sum_{s=1}^N d(\sigma, \sigma_s).$$

Background on Consensus Ranking

Consensus ranking (or "ranking aggregation"): summarize permutations $\sigma_1, \ldots, \sigma_N$ by a consensus/median ranking $\sigma^* \in \mathfrak{S}_n$ by solving:

$$\min_{\sigma \in \mathfrak{S}_n} \sum_{s=1}^N d(\sigma, \sigma_s).$$

If $\Sigma_1, \ldots, \Sigma_N$ i.i.d. sampled from P (Korba et al., 2017), solve:

$$\min_{\sigma \in \mathfrak{S}_p} \mathbb{E}_{\Sigma \sim P}[d(\Sigma, \sigma)].$$

Particular choice for metric *d*:

Particular choice for metric d:

► Kendall's τ distance $d_{\tau}(\sigma, \sigma') = \sum_{i < j} \mathbb{I}\{(\sigma(i) - \sigma(j))(\sigma'(i) - \sigma'(j)) < 0\}.$

Particular choice for metric *d*:

- ► Kendall's τ distance $d_{\tau}(\sigma, \sigma') = \sum_{i < j} \mathbb{I}\{(\sigma(i) \sigma(j))(\sigma'(i) \sigma'(j)) < 0\}.$
- ▶ Kemeny medians are solutions of: $\min_{\sigma \in \mathfrak{S}_n} \mathbb{E}_{\Sigma \sim P}[d_{\tau}(\Sigma, \sigma)]$.

Particular choice for metric *d*:

- ► Kendall's τ distance $d_{\tau}(\sigma, \sigma') = \sum_{i < j} \mathbb{I}\{(\sigma(i) \sigma(j))(\sigma'(i) \sigma'(j)) < 0\}.$
- ▶ Kemeny medians are solutions of: $\min_{\sigma \in \mathfrak{S}_n} \mathbb{E}_{\Sigma \sim P}[d_{\tau}(\Sigma, \sigma)]$.

Unique Kemeny median σ_P^* if P strictly stochastically transitive:

Particular choice for metric *d*:

- ► Kendall's τ distance $d_{\tau}(\sigma, \sigma') = \sum_{i < i} \mathbb{I}\{(\sigma(i) \sigma(j))(\sigma'(i) \sigma'(j)) < 0\}.$
- ▶ Kemeny medians are solutions of: $\min_{\sigma \in \mathfrak{S}_n} \mathbb{E}_{\Sigma \sim P}[d_{\tau}(\Sigma, \sigma)].$

Unique Kemeny median σ_P^* if P strictly stochastically transitive:

- $ightharpoonup p_{i,j} \ge 1/2 \text{ and } p_{j,k} \ge 1/2 \Rightarrow p_{i,k} \ge 1/2$
- $ightharpoonup p_{i,j} \neq 1/2$ for all i < j
- given by Copeland ranking

$$\sigma_P^*(i) = 1 + \sum_{i \neq i} \mathbb{I}\{p_{i,j} < 1/2\}.$$

Consensus ranking: extreme case of bucket order C of size n.

Consensus ranking: extreme case of bucket order C of size n.

$$\mathcal{C} = (\{\sigma^{*-1}(1)\}, \dots, \{\sigma^{*-1}(n)\})$$

Consensus ranking: extreme case of bucket order C of size n.

- $\mathcal{C} = (\{\sigma^{*-1}(1)\}, \dots, \{\sigma^{*-1}(n)\})$
- $ightharpoonup \mathbf{P}_{\mathcal{C}} = \{\delta_{\sigma^*}\}$, hence dimension $d_{\mathcal{C}} = 0$

Consensus ranking: extreme case of bucket order C of size n.

$$ightharpoonup C = (\{\sigma^{*-1}(1)\}, \dots, \{\sigma^{*-1}(n)\})$$

▶
$$\mathbf{P}_{\mathcal{C}} = \{\delta_{\sigma^*}\}$$
, hence dimension $d_{\mathcal{C}} = 0$

Problem: generalization for any bucket order.

▶ Question: "How to quantify approximation error between orginal distrib. P and bucket distrib. $P' \in \mathbf{P}_{\mathcal{C}}$?".

- ▶ Question: "How to quantify approximation error between orginal distrib. P and bucket distrib. $P' \in \mathbf{P}_{\mathcal{C}}$?".
- Our answer: Wasserstein distance $W_{d,q}(P, P')$.

Definition

$$W_{d,q}\left(P,P'\right) = \inf_{\Sigma \sim P, \; \Sigma' \sim P'} \mathbb{E}\left[d^q(\Sigma,\Sigma')\right]$$

- ▶ Question: "How to quantify approximation error between orginal distrib. P and bucket distrib. $P' \in \mathbf{P}_{\mathcal{C}}$?".
- ▶ Our answer: Wasserstein distance $W_{d,q}(P, P')$.

Definition

$$W_{d,q}\left(P,P'\right) = \inf_{\Sigma \sim P,\ \Sigma' \sim P'} \mathbb{E}\left[d^q(\Sigma,\Sigma')\right]$$

▶ Why: because it generalizes consensus ranking. Indeed:

$$W_{d,1}(P, \delta_{\sigma}) = \mathbb{E}_{\Sigma \sim P}[d(\Sigma, \sigma)].$$

- ▶ Question: "How to quantify approximation error between orginal distrib. P and bucket distrib. $P' \in \mathbf{P}_{\mathcal{C}}$?".
- ▶ Our answer: Wasserstein distance $W_{d,q}(P, P')$.

Definition

$$W_{d,q}\left(P,P'\right) = \inf_{\Sigma \sim P,\; \Sigma' \sim P'} \mathbb{E}\left[d^q(\Sigma,\Sigma')\right]$$

▶ Why: because it generalizes consensus ranking. Indeed:

$$W_{d,1}(P, \delta_{\sigma}) = \mathbb{E}_{\Sigma \sim P}[d(\Sigma, \sigma)].$$

▶ Focus on $d = d_{\tau}$ and q = 1.

Distortion measure

A bucket order \mathcal{C} represents well P if small distortion $\Lambda_P(\mathcal{C})$.

Definition

$$\Lambda_P(\mathcal{C}) = \min_{P' \in \mathbf{P}_{\mathcal{C}}} W_{d_{\tau},1}(P,P')$$

Distortion measure

A bucket order C represents well P if small distortion $\Lambda_P(C)$.

Definition

$$\Lambda_P(\mathcal{C}) = \min_{P' \in \mathbf{P}_{\mathcal{C}}} W_{d_{\tau},1}(P,P')$$

Explicit expression for $\Lambda_P(\mathcal{C})$:

Proposition

$$\Lambda_{P}(C) = \sum_{1 \leq k < l \leq K} \sum_{(i,j) \in C_k \times C_l} p_{j,i}$$

.

Outline

Introduction

Dimensionality Reduction on \mathfrak{S}_n

Empirical Distortion Minimization

Numerical Experiments on a Real-world Dataset

Empirical setting

Training sample: $\Sigma_1, \ldots, \Sigma_N$ i.i.d. from P.

Empirical setting

Training sample: $\Sigma_1, \ldots, \Sigma_N$ i.i.d. from P.

► Empirical pairwise probabilities:

$$\widehat{p}_{i,j} = \frac{1}{N} \sum_{s=1}^{N} \mathbb{I}\{\Sigma_s(i) < \Sigma_s(j)\}.$$

Empirical setting

Training sample: $\Sigma_1, \ldots, \Sigma_N$ i.i.d. from P.

► Empirical pairwise probabilities:

$$\widehat{p}_{i,j} = \frac{1}{N} \sum_{s=1}^{N} \mathbb{I}\{\Sigma_s(i) < \Sigma_s(j)\}.$$

Empirical distortion of any bucket order C:

$$\widehat{\Lambda}_{N}(\mathcal{C}) = \Lambda_{\widehat{P}_{N}}(\mathcal{C}) = \sum_{1 \leq k \leq l \leq K} \sum_{(i,j) \in \mathcal{C}_{k} \times \mathcal{C}_{l}} \widehat{p}_{j,i}. \tag{1}$$

Rate bound

Empirical distortion minimizer $\widehat{C}_{K,\lambda}$ is solution of:

$$\min_{\mathcal{C}\in C_{\mathcal{K},\lambda}}\widehat{\Lambda}_{\mathcal{N}}(\mathcal{C}),$$

where $\mathbf{C}_{K,\lambda}$ set of bucket orders \mathcal{C} of size K and shape λ (i.e. $\#\mathcal{C}_k = \lambda_k$ for all $1 \leq k \leq K$).

Rate bound

Empirical distortion minimizer $\widehat{C}_{K,\lambda}$ is solution of:

$$\min_{\mathcal{C}\in \textbf{C}_{\mathcal{K},\lambda}}\widehat{\Lambda}_{\mathcal{N}}(\mathcal{C}),$$

where $\mathbf{C}_{K,\lambda}$ set of bucket orders \mathcal{C} of size K and shape λ (i.e. $\#\mathcal{C}_k = \lambda_k$ for all 1 < k < K).

Theorem

For all $\delta \in (0,1)$, we have with probability at least $1-\delta$:

$$\Lambda_P(\widehat{C}_{K,\lambda}) - \inf_{\mathcal{C} \in \mathbf{C}_{K,\lambda}} \Lambda_P(\mathcal{C}) \leq \beta(n,\lambda) \times \sqrt{\frac{\log(\frac{1}{\delta})}{N}}.$$

The Strong Stochastic Transitive Case

Assume that P is strongly (and strictly) stochastically transitive i.e.:

$$p_{i,j} \ge 1/2 \text{ and } p_{j,k} \ge 1/2 \implies p_{i,k} \ge \max(p_{i,j}, p_{j,k}).$$

The Strong Stochastic Transitive Case

Assume that P is strongly (and strictly) stochastically transitive i.e.:

$$p_{i,j} \ge 1/2 \text{ and } p_{j,k} \ge 1/2 \implies p_{i,k} \ge \max(p_{i,j}, p_{j,k}).$$

$\mathsf{Theorem}$

- (i) $\Lambda_P(\cdot)$ has a unique minimizer $C^{*(K,\lambda)}$ over $\mathbf{C}_{K,\lambda}$.
- (ii) $C^{*(K,\lambda)}$ is the unique bucket order in $\mathbf{C}_{K,\lambda}$ agreeing with the Kemeny median.

The Strong Stochastic Transitive Case

Assume that P is strongly (and strictly) stochastically transitive i.e.:

$$p_{i,j} \ge 1/2 \text{ and } p_{j,k} \ge 1/2 \implies p_{i,k} \ge \max(p_{i,j}, p_{j,k}).$$

$\mathsf{Theorem}$

- (i) $\Lambda_P(\cdot)$ has a unique minimizer $\mathcal{C}^{*(K,\lambda)}$ over $\mathbf{C}_{K,\lambda}$.
- (ii) $C^{*(K,\lambda)}$ is the unique bucket order in $\mathbf{C}_{K,\lambda}$ agreeing with the Kemeny median.

Consequence: agglomerative algorithm.

Outline

Introduction

Dimensionality Reduction on \mathfrak{S}_n

Empirical Distortion Minimization

Numerical Experiments on a Real-world Dataset

Experiments

Sushi dataset (Kamishima, 2003):

- ightharpoonup n = 10 sushi dishes
- ightharpoonup N = 5000 full rankings.

