

Electrónica Analógica II

Producto Integrador de Aprendizaje: Bocina Estereofónica con Amplificador TDA7297

PROFESOR: M.A. Alejandro Pérez González

SEMESTRE: enero – junio 2023

OP.	MATRICULA	NOMBRE	HORA	GRUPO	CARRERA
3	2077415	Andrés San Martin Morín	V1-3	002	IEA

Fecha: 22/04/2023

Contenido

Contenido	2
Reporte	3
Diagrama esquemático fuente de poder 12v de base	3
Diagrama esquemático amplificador TDA7297 de base	4
Diagrama esquemático fuente de poder 17vdc	5
Diagrama esquemático amplificador TDA7297	6
Lista de Materiales	7
Datasheet	8
TD7297	8
KBU1010	13
RHS5050D	15
Dimensiones	16
Cálculo de disipador	17
TDA7297	17
KBU1010	20
Pieza completa	21
PCB	22
Conclusión	23
Bibliografía	24

Reporte

Para este proyecto final se usó el Amplificador operacional TDA7297 debido a su facilidad de instalación debido a que para hacerlo funcionar se necesitan de muy pocos componentes, Además consume muy poco amperaje lo que abarata la creación de una bocina estereofónica.

Este componente viene con 2 amplificadores lo que significa que con un solo integrado podemos crear una bocina estereofónica.

Además de las ventajas ya mencionadas, este amplificador viene con protección de corto circuito al igual que una protección térmica. Estas protecciones cortan el paso de la corriente hasta que las condiciones vuelvan a su estado normal.

Diagrama esquemático fuente de poder 12v de base

Diagrama esquemático amplificador TDA7297 de base

Diagrama esquemático fuente de poder 17vdc

Diagrama esquemático amplificador TDA7297

Lista de Materiales

ITEM	Matrícula/Valor	Descripción
BR1	KBU1010, 10A	Puente de diodos
C1	3300uF, 25V	Cap. Electrolítico
C2	3300uF, 25V	Cap. Electrolítico
<i>C3</i>	3300uF, 25V	Cap. Electrolítico
C4	3300uF, 25V	Cap. Electrolítico
C5	10uF, 50V	Cap. Electrolítico
<i>C6</i>	3.3uF, 50V	Cap. Electrolítico
<i>C</i> 7	3.3uF, 50V	Cap. Electrolítico
C8	100nF, 50V	Cap. Cerámico
<i>C9</i>	220nF, 35V	Cap. Tantalio
C10	220nF, 35V	Cap. Tantalio
DP1	10kΩ, 1/4w	Doble potenciómetro
FU1	1A, 250V	Fusible para amplificador
FU2	2A, 250V	Fusible para transformador
J1	Terminal Block, 3 Pin, 3.5mm, 8A	Bornera para bocina
J2	Terminal Block, 3 Pin, 3.5mm, 8A	Bornera para bocina
J3	Terminal Block, 3 Pin, 3.5mm, 5A	Bornera para señal
LS1	065-251, 8Ω, 110W	Medio rango
LS2	065-251, 8Ω, 110W	Medio rango
LS3	066-595, 8Ω, 100W	Tweeter
LS4	066-595, 8Ω, 100W	Tweeter
PJACK1	CON-SOCJ-2155, 2.5A, 2.1mmx5.5mm	Jack de alimentación
PJACK2	CON-SOCJ-2155, 2.5A, 2.1mmx5.5mm	Jack de alimentación
R1	47kΩ, 1/4w	Res. carbón
R2	47kΩ, 1/4w	Res. carbón
R3	5.1kΩ, 1/4w	Res. carbón
R4	5.1kΩ, 1/4w	Res. carbón
SW1	KOD1, 10A, 125VAC	Switch
TR1	10A, 120V:10V	Transformador con derivación central
U1	TDA7297, 15w+15w, 8Ω, 2Amax, 20Vmax	Amplficador estereofónico clase AB

TDA7297

15+15W DUAL BRIDGE AMPLIFIER

- WIDE SUPPLY VOLTAGE RANGE (6V -18V)
- MINIMUM EXTERNAL COMPONENTS
 - NO SVR CAPACITOR
 - NO BOOTSTRAP
 - NO BOUCHEROT CELLS
 - INTERNALLY FIXED GAIN
- STAND-BY & MUTE FUNCTIONS
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION

Multiwatt 15 ORDERING NUMBER: TDA7297

DESCRIPTION

The TDA7297 is a dual bridge amplifier specially designed for TV and Portable Radio applications.

BLOCK AND APPLICATION DIAGRAM

September 2003 1/9

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	20	V
lo	Output Peak Current (internally limited)	2	Α
P _{tot}	Total Power Dissipation (T _{case} = 70°C)	33	W
T _{op}	Operating Temperature	0 to 70	°C
T_{stg}, T_{j}	Storage and Junction Temperature	-40 to +150	°C

THERMAL DATA

Symbol	Symbol Description		Value		
R _{th i-case}	Thermal Resistance Junction to case	Typ. 1.4	Max. 2	°C/W	

PIN CONNECTION (Top view)

ELECTRICAL CHARACTERISTICS ($V_{CC} = 16.5V$, $R_L = 8\Omega$, f = 1kHz, $T_{amb} = 25^{\circ}C$ unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vcc	Supply Range		6.5		18	V
Ιq	Total Quiescent Current	R _L = ∞		50	65	mA
Vos	Output Offset Voltage				120	mV
Po	Output Power	THD = 10%	13	15		W
THD	Total Harmonic Distortion	P _O = 1W		0.1	0.3	%
		$P_O = 0.1W \text{ to } 5W$ f = 100Hz to 15kHz			1	%
SVR	Supply Voltage Rejection	$f = 100Hz V_R = 0.5V$	40	56		dB
CT	Crosstalk		46	60		dB
A _{MUTE}	Mute Attenuation		60	80		dB
Tw	Thermal Threshold			150		°C
G _V	Closed Loop Voltage Gain		31	32	33	dB
ΔGv	Voltage Gain Matching				0.5	dB
Ri	Input Resistance		25	30		ΚΩ

2/9

ELECTRICAL CHARACTERISTICS (Continued)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
VT _{MUTE}	Mute Threshold	$V_O = -30dB$	2.3	2.9	4.1	٧
VT _{ST-BY}	St-by Threshold		0.8	1.3	1.8	V
I _{ST-BY}	ST-BY current V6 = GND				100	μΑ
e _N	Total Output Noise Voltage	A curve f = 20Hz to 20kHz		150 220	500	μV μV

TDA7297

Figure 3: Stand-alone Low-cost Application.

Figure 4: Distortion vs Output Power

Figure 5: Distortion vs Output Power

Figure 6: Distortion vs Frequency

Figure 7: Frequency Respone

Figure 8: Output Power vs Supply Voltage

Figure 9: Total Power Dissipation & Efficiency vs Output Power

Figure 10: Mute Attenuation vs. V pin.6

Figure 11: Stand-By Attenuation vs Vpin.7

Figure 12: Quiscent Current vs. Supply Voltage

77

KBU1010

Maximum Ratings and Electrical Characteristics @TA=25°C unless otherwise specified

Single Phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

*									
Characteristic	Symbol	KBU 1000	KBU 1001	KBU 1002	KBU 1004	KBU 1006	KBU 1008	KBU 1010	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	v
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	560	700	V
Average Rectified Output Current @T _C = 100°C (Note 1)	lo	10						Α	
Non-Repetitive Peak Forward Surge Current 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method)	IFSM	220					Α		
Forward Voltage per leg @I _F = 5.0A	VFM		1.0					V	
Peak Reverse Current $@T_A = 25^{\circ}C$ At Rated DC Blocking Voltage $@T_A = 125^{\circ}C$	IRM		10 1.0				μA mA		
I ² t Rating for Fusing (t < 8.3ms)	l²t	200						A ² s	
Typical Junction Capacitance (Note 2)	Cı	211 94						pF	
Thermal Resistance Junction to Ambient (Note 3) Thermal Resistance Junction to Case (Note 1)	Reja Rejc	16 2.8							°C/W
RMS Isolation Voltage Terminals to Case, t = 1min	Viso	1500						V	
Operating and Storage Temperature Range	TJ, TSTG	-55 to +150					°C		

KBU1000 - KBU1010

0

1.6

120

140

100

V_R, DC REVERSE VOLTAGE (V) Fig. 6 Typical Junction Capacitance

2.0

10

10

 $I_{\text{F(AV)}}$, AVERAGE FORWARD CURRENT (A) Fig. 5 Forward Power Dissipation

12

RHS5050D, RHS5050RFD

Accessories: Heatsinks

Main features

- · 3.5°C/W thermal resistance
- · Suitable for mounting of 1-phase SSRs
- Panel mounting
- Dimensions W x H x D: 80 x 50 x 51 mm
- RoHS compliant

Description

Heatsink assembly suitable for mounting of 1x 1-phase solid state relay (SSR). Suffix H60 added to SSR part no. refers to factory mounted heatsink. Conditions apply. Please ask your sales representative for further details.

Thermal resistance curve

Dimensiones Disipador del amplificador

Disipador del puente de diodos

Cálculo de disipador

Para elegir el disipador adecuado para cada componente electrónico de potencia se debe resolver la siguiente ecuación:

$$R_{\theta SA} \le \frac{T_J - T_a}{P_{tot}} - R_{\theta JC} - R_{\theta CS}$$

Donde:

 $R_{\theta SA} = Resistencia térmica de la superficie del disipador hasta el ambiente (°C/W)$

 $R_{\theta CS} = Resistencia térmica de la superficie metálica del chip hasta el disipador (°C/W)$

 $R_{\theta JC} = Resistencia térmica de la juntura hasta la superficie del chip (°C/W)$

 $T_I = Temperatura \, máxima \, de \, funcionamiento \, del \, integrado \, (°C)$

 $T_a = Temperatura \ ambiente \ (°C)$

 $P_{tot} = Potencia total disipada por el componente (W)$

El disipador que se elegirá para el componente deberá tener una $R_{\theta SA}$ igual o menor que el calculado con la ecuación anterior.

TDA7297

El TDA7297 tiene un $T_J = -40 \,^{\circ} C \, to + 150 \,^{\circ} C$ por lo que se elige $T_J = +150 \,^{\circ} C$.

Su
$$R_{\theta JC}$$
 es de $typ. 1.4 °C/_W$; $m\acute{a}x. 2 °C/_W$, se elige $R_{\theta JC} = 2 °C/_W$.

El voltaje de alimentación es de 17v por lo que según la figura 8 de la hoja de datos del TDA7297 la potencia de salida es de 13w.

Figure 8: Output Power vs Supply Voltage

Nos vamos a la gráfica de la figura 9 para encontrar la potencia de disipación total del amplificador con el valor de potencia de salida:

Figure 9: Total Power Dissipation & Efficiency vs Output Power

La P_{tot} es de 14.4W.

Como el encapsulado estará en contacto directo con el disipador sin ningún tipo de adhesivo o pasta conductora se tomará una resistencia térmica capsula-disipador de 1.

Estos es:
$$R_{\theta CS} = 1 \,^{\circ} C/_{W}$$
.

La temperatura ambiente (T_a) la tomaremos la que es convencional y usada para las pruebas de laboratorio descritas en la hoja de datos de este amplificador: $T_a=25^{\circ}C$.

Se resuelve la ecuación inicial:

$$R_{\theta SA} \le \frac{150^{\circ}C - 25^{\circ}C}{14.4W} - 2^{\circ}C/_{W} - 1^{\circ}C/_{W} \le 5.68^{\circ}C/_{W}$$

Se elige un disipador que tenga una resistencia térmica menor a $5.68\,^{\circ}C/_{W}$.

El modelo RHS5050D nos presenta la siguiente gráfica:

Donde podemos ver que al disipar 14.4W tendremos un $R_{\theta SA}=4.0\,^{\circ}C/_{W}$. Se cumple que $4.0\,^{\circ}C/_{W}\leq 5.68\,^{\circ}C/_{W}$ Por lo tanto este disipador es idóneo.

KBU1010

Este puente de diodos tiene $T_J=+150^{\circ}C$, $R_{\theta JC}=2.8^{\circ}C/_W$ la redondeamos: $R_{\theta JC}=3.0^{\circ}C/_W$

Para $R_{\theta CS}$ como la cápsula es completamente plástica sin una pared metálica para la mejora de conducción térmica se tomará $R_{\theta CS} = 4.0\,^{\circ}C/_{W}$.

La corriente máxima que circulará por el puente de diodos será de 2A. con este dato podemos calcular la potencia total disipada por el puente de diodos con la siguiente gráfica de la figura 5 que viene en su hoja de datos técnicos:

Podemos ver que a 2 amperes tendremos una potencia total de disipación de 3.13W, esto es $P_{tot}=3.13W.$

Se procede a resolver la ecuación:

$$R_{\theta SA} \le \frac{150^{\circ}C - 25^{\circ}C}{3.13W} - 3.0^{\circ}C/_{W} - 4.0^{\circ}C/_{W} \le 32.9^{\circ}C/_{W}$$

Desafortunadamente no encontré el modelo del disipador que estoy utilizando, pero fischerelektronik ofrece documentación para calcular la Resistencia térmica de disipadores en función de su dimensión.

Para este caso elegí el disipador No. SK551 que es de dimensiones ligeramente menores a las del disipador utilizado:

Nuestro disipador tiene una longitud de 35mm lo que nos da una $R_{\theta SA}=11.25\,^{\circ}C/_{W}$. Lo que implica: $11.25\,^{\circ}C/_{W}\leq 32.9\,^{\circ}C/_{W}$.

Por lo tanto, se concluye que el disipador empleado es idóneo para esta tarea.

Pieza completa

Conclusión

Este amplificador ofrece una gran calidad de audio y por su precio y facilidad de diseño es uno que es muy bueno. Pero cuando se requiere mayor calidad, debido a su extrema simpleza no logra a reproducir todo el espectro de audio correctamente.

Desafortunadamente no pude probarlo a su máxima capacidad debido a que la zona en donde vivo me restringe a no superar ciertos decibeles de sonido.

El diseño de las borneras puede mejorar. Se podría poner un plug de audio para la señal en vez de los terminales.

Construir este amplificador me ayudó bastante en entender los diferentes conceptos a la hora de evaluar un amplificador como lo es la potencia de salida, THD, ganancia, sensibilidad, eficiencia, entre otros conceptos.

También puse a prueba mis habilidades en el diseño y creación de circuitos electrónicos.

Definitivamente todo un reto crear este amplificador de audio, pero me llevo mucho aprendizaje que sé que lo usaré para la posteridad.

Bibliografía

- Electrónica Básica. (2013, enero). *Disipadores térmicos*. Retrieved from Electrónica Básica: https://electronica-basicaa.blogspot.com/2013/01/disipadores-termicos.html
- Kellner, T. (2022, Diciembre). flucticulus frigus from the series flucticulus. Retrieved from Fischer Elektronik GmbH & Co. KG:
 https://www.fischerelektronik.de/fileadmin/fischertemplates/download/Katalog/heatsinks.pdf
- LTD, C. G. (2016, septiembre 24). *RHS5050D, RHS5050RFD.* Retrieved from Mouser Electronics: https://www.mouser.mx/datasheet/2/1032/SSR_RHS5050-1806136.pdf
- STMicroelectronics. (2003, Septiembre). *TDA7297*. Retrieved from STMicroelectronics.com: https://www.st.com/resource/en/datasheet/tda7297.pdf
- WONTOP ELECTRONICS. (2012). *KBU1000 KBU1010*. Retrieved from wontop: https://www.wontop.com/uploadfiles/56/sort_excel/pdf/kbu1000.pdf