· Adunarea matriceloz - exemple.

The $A = \begin{pmatrix} 2 & -1 \\ 0 & 2 \\ 3 & 1 \end{pmatrix}$; $B = \begin{pmatrix} -3 & 3 \\ 2 & 0 \end{pmatrix}$; $A, B \in \mathcal{M}_{3,2}(\mathbb{R})$

. Throughte matricelor ou boalore - exemple $\angle \mathbb{R} + \left(\begin{array}{c} 2 - 1 \\ 0 & 2 \\ 3 & 1 \end{array} \right)$ $\angle \mathbb{R} + \left(\begin{array}{c} 2 - 1 \\ 0 & 2 \\ 3 & 1 \end{array} \right)$ $\angle \mathbb{R} + \left(\begin{array}{c} 2 - 1 \\ 0 & 2 \\ 0 & 3 \end{array} \right)$

. Innulfitea a douà matrice $A \in \mathcal{M}_{w,n}(\mathbb{R})$; $B \in \mathcal{M}_{v,p}(\mathbb{R})$; $A \cdot B \in \mathcal{M}_{w,p}(\mathbb{R})$

 $(AB)_{i,j} = L_{i}(A) \cdot C_{j}(B) \text{ unde } L_{i}(A) \text{ este line is a modified } A$ $si C_{j}(B) \text{ este coloons } a \text{ modified } B.$ $1 \le j \le p$ $L_{i}(A) \in \mathcal{M}_{i,n}(R); C_{j}(B) \in \mathcal{M}_{n,n}(R).$

 $L(A) \cdot C(B) = \sum_{k=1}^{\nu \nu} a_{ik} b_{kj}$

Exemplu: Fie $A = \begin{pmatrix} 2 & -1 \\ 0 & 12 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 7 \\ -3 \end{pmatrix}$ $AB \in \mathcal{M}_{3,1}(\mathbb{R})$.

 $A \cdot B = \begin{pmatrix} 2 & -1 \\ 0 & 2 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \cdot 7 + (-1) \cdot (-3) \\ 0 \cdot 7 + 2 \cdot (-3) \\ 3 \cdot 7 + 1 \cdot (-3) \end{pmatrix} = \begin{pmatrix} 17 \\ -6 \\ 18 \end{pmatrix}$

• \mathcal{P} + Γ . $A = \begin{pmatrix} 2 & -1 \\ 0 & 2 \\ 3 & 1 \end{pmatrix}$; $B = \begin{pmatrix} 1 & 2 & -2 \\ 2 & -1 & 0 \end{pmatrix}$ $A \cdot B \in \mathcal{M}_{3,3}(\mathbb{R})$; $B \cdot A \in \mathcal{M}_{2,2}(\mathbb{R})$

 $A \cdot B = \begin{pmatrix} 2 - 1 \\ 0 & 2 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & -2 \\ 2 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 5 & -4 \\ 4 & -2 & 0 \\ 5 & 5 & -6 \end{pmatrix}$ Cele douid produse

ma care

accepani forma

 $B \cdot A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 0 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 1 \\ 4 & -4 \end{pmatrix}$ deci mu part fie Trappietatile determinantiloz (voi demonstra numoi a parde dutre proprietatile enuntage. 2) de $1/(A) = (000.0) = \in M_{1,n}(R)$ atunci det(A) = 0 $= (\alpha_{11} \alpha_{12} \alpha_{13} ... \alpha_{1n})$ Let (A) = Sgm (J) angen azque --- aiqui --- angen (h) fiecare produs din expression det (A) aren un element de pe limia i, arrune air (i) = 0. Deci fiecate produs et squ(T) arrunazaren --:0...am(n)=0 Deci det (A) = 2,0 = 0. (3) $L_i(B) = (\lambda \alpha_{i1} \lambda \alpha_{i2} - \lambda \alpha_{in}) = \lambda L_i(A)$, $L_i(B) = L_i(A)$ phr. (2) $j \neq i$. (took calable limit sund identice in matricele A ji B). $det(B) = \sum_{A \in S_N} sq_N(A) L_{A(A)} L_{A(B)} - L_{A(B)} - L_{A(B)} = \sum_{A \in S_N} sq_N(A) L_{A(B)} - L_{A(B)} - L_{A(B)} = \sum_{A \in S_N} sq_N(A) L_{A(B)} - L_{A(B)}$ $= \sum_{n=1}^{\infty} \operatorname{Som}(\Delta) \operatorname{dia}(n) \operatorname{dia}(n) \cdot (\operatorname{yd}(n)) \cdot (\operatorname{yd}(n)) \cdot (\operatorname{yd}(n)) = 0$ = \(\sigma_1 \sigma_{\text{Sqm}} \left(\pi \) \and (\pi) \alpha_{\text{Sqm}} \left(\pi \) \and (\pi) \(\pi_{\text{Sqm}} \left(\pi \) \\ \alpha_{\text{NA(N)}} = \(\pi_{\text{NA(N)}} \left(\pi \) \\ \alpha_{\text{NA(N)}} \) = > = San (2) a12(x) = Qia(ci) = a2(n) (4) Aven Li(A) = (aix aiz ... ain) = (bin+cin biz+cin) det (A) = \(\frac{1}{2} \sign(\pi) \alpha_{\pi\left(\pi)} \alpha_{\pi\left(\pi)} \) = \(\frac{1}{2} \sign(\pi) \sign(\pi) \alpha_{\pi\left(\pi)} \) \(\alpha_{\pi\left(\pi)} \) = \(\frac{1}{2} \sign(\pi) \sign(\pi) \alpha_{\pi\left(\pi)} \) \(\ $= \sum_{i=1}^{N} \operatorname{Solv}(\Delta) \propto^{V\Delta(V)} \cdots \left(p^{i\Delta(C)} + G^{i\Delta(C)} \right) \cdot Q^{N\Delta(V)} = \sum_{i=1}^{\Delta C} \operatorname{Solv}(\Delta) \operatorname{Col}(V) \cdot Q^{N\Delta(V)}$ + \(\sigma_{\text{N}} \text{Squ}(4) \alpha_{\text{N}(1)} \cdot \(\mathref{C}(1) \cdot \alpha_{\text{N}(1)} \cdot \(\mathref{C}(2) \cdot \alpha_{\text{N}(1)} \cdot \\ \mathref{C}(2) \cdot \\ \mathref{C}(2)

$$B = \begin{pmatrix} \alpha_{AA} & \cdots & \alpha_{AA} \\ \delta_{AA} & \cdots & \delta_{AA} \\ \delta_{AA} & \cdots & \delta_{AA} \end{pmatrix}$$

$$C = \begin{pmatrix} \alpha_{AA} & \cdots & \alpha_{AA} \\ \alpha_{AA} & \cdots & \alpha_{AA} \\ \alpha_{AA} & \cdots & \alpha_{AA} \end{pmatrix}$$

$$C = \begin{pmatrix} \alpha_{AA} & \cdots & \alpha_{AA} \\ \alpha_{AA} & \cdots & \alpha_{AA}$$