CAPES Exercices Corrigés Formes quadratiques

2009-2010

Exercice 1 Soit B une forme bilinéaire sur un espace vectoriel réel V et soit q sa forme quadratique associée.

1. Montrer l'identité de Cauchy

$$q(q(u)v - B(u,v)u) = q(u)[q(u)q(v) - B(u,v)B(v,u)].$$
(1)

2. En déduire, si q est définie positive, l'inégalité de Cauchy-Schwarz

$$B(u,v)B(v,u) \le q(u)q(v). \tag{2}$$

Solution -

1. La formule s'obtient par un calcul direct utilisant la bilinéarité de B. En effet pour tous $u,v\in V$, on a :

$$\begin{split} q\left(q(u)v - B(u,v)u\right) &= B(q(u)v - B(u,v)u, q(u)v - B(u,v)u) \\ &= q(u)^2 B(v,v) - q(u)B(u,v)B(v,u) \\ &- B(u,v)q(u)B(u,v) + B(u,v)^2 B(u,u) \\ &= q(u)^2 q(v) - q(u)B(u,v)B(v,u) \\ &- B(u,v)^2 q(u) + B(u,v)^2 q(u) \\ &= q(u)^2 q(v) - q(u)B(u,v)B(v,u) \\ &= q(u) \left[q(u)q(v) - B(u,v)B(v,u) \right]. \end{split}$$

2. Si q est définie positive alors le membre de gauche de l'identité de Cauchy est positif ou nul et donc, pour tout $u, v \in V$,

$$q(u)\left[q(u)q(v) - B(u,v)B(v,u)\right] \ge 0.$$

- Si u est nul, l'inégalité de Cauchy-Schwarz est trivialement vérifiée.

- Supposons u non nul. Alors q(u) > 0, et l'on déduit encore que pour tout vecteur v,

$$q(u)q(v) - B(u,v)B(v,u) \ge 0.$$

L'inégalité de Cauchy-Schwarz est donc également vérifiée.

Exercice 2 Soit $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes réels de degré inférieur ou égal à $n \ (n \ge 1)$. Pour tous $P, Q \in \mathbb{R}_n[X]$, on pose

$$B(P,Q) = \int_0^1 tP(t)Q'(t)dt \quad et \quad q(P) = B(P,P).$$

- 1. Montrer que B est une forme bilinéaire. Est-elle symétrique? antisymétrique?
- 2. Montrer que q est une forme quadratique. La forme q est-elle définie? Si ce n'est pas le cas, exhiber un vecteur isotrope non nul.
- 3. Calculer la matrice de q dans la base $\mathcal{B}_n = (1, X, \dots, X^n)$.
- 4. Pour n = 2, déterminer la signature de q. La forme q est-elle positive? négative?
- 5. Déterminer une base de $\mathbb{R}_2[X]$ qui soit q-orthogonale.

Solution -

1. Pour tous $P_1, P_2, Q \in \mathbb{R}_n[X]$ et tout $a \in \mathbb{R}$, on a

$$B(P_1 + aP_2, Q) = \int_0^1 t(P_1(t) + aP_2(t))Q'(t)dt$$

=
$$\int_0^1 tP_1(t)Q'(t)dt + a\int_0^1 tP_2(t)Q'(t)dt$$

=
$$B(P_1, Q) + aB(P_2, Q),$$

et donc B est linéaire à gauche.

D'un autre côté, pour tous $Q_1, Q_2, P \in \mathbb{R}_n[X]$ et tout $a \in \mathbb{R}$, on a

$$B(P, Q_1 + aQ_2) = \int_0^1 tP(t)(Q_1 + aQ_2)'(t)dt$$

=
$$\int_0^1 tP(t)Q_1'(t)dt + a\int_0^1 tP(t)Q_2'(t)dt$$

=
$$B(P, Q_1) + aB(P, Q_2),$$

et donc B est linéaire à droite, ce qui achève de montrer que B est une forme bilinéaire.

Remarquons que

$$B(1,X) = \int_0^1 t dt = \frac{1}{2}$$
, et $B(X,1) = \int_0^1 t^2 \times 0 dt = 0$,

et donc B n'est ni symétrique ni antisymétrique.

2. Par construction, q est une forme quadratique. D'autre part,

$$q(1) = B(1,1) = \int_0^1 t \times 0 dt = 0,$$

donc 1 est un vecteur isotrope et q n'est pas définie.

3. Notons que la forme polaire S de q n'est pas B mais sa symétrisée définie pour tous $P, Q \in \mathbb{R}_n[X]$,

$$S(P,Q) = \frac{1}{2} (B(P,Q) + B(Q,P)).$$

Donc la matrice de q dans la base \mathcal{B}_n est la matrice $M_n = (m_{ij})_{1 \leq i,j \leq n+1}$, où

$$m_{ij} = \frac{1}{2} \left(B(X^{i-1}, X^{j-1}) + B(X^{j-1}, X^{i-1}) \right).$$

Donc

$$m_{ij} = \frac{1}{2} \left((j-1) \int_0^1 t^{i+j-2} dt + (i-1) \int_0^1 t^{i+j-2} dt \right)$$
$$= \frac{1}{2} \left(\frac{j-1}{i+j-1} + \frac{i-1}{i+j-1} \right) = \frac{i+j-2}{2(i+j-1)}.$$

Finalement

$$M_n = \left(\frac{i+j-2}{2(i+j-1)}\right)_{1 \le i, j \le n+1}.$$
 (3)

4. La matrice de q dans \mathcal{B}_2 est $M_2 = \begin{pmatrix} 0 & \frac{1}{4} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & \frac{3}{8} \\ \frac{1}{3} & \frac{3}{8} & \frac{2}{5} \end{pmatrix}$ et donc,

$$q(a+bX+cX^{2}) = \frac{1}{3}b^{2} + \frac{2}{5}c^{2} + \frac{1}{2}ab + \frac{2}{3}ac + \frac{3}{4}bc.$$

Nous allons effectuer une réduction de Gauss de q. On a

$$\begin{split} q(a+bX+cX^2) &= \frac{1}{3} \left(b^2 + \frac{3}{2} b(a + \frac{3}{2} c) \right) + \frac{2}{3} ac + \frac{2}{5} c^2 \\ &= \frac{1}{3} (b + \frac{3}{4} a + \frac{9}{8} c)^2 - \frac{1}{3} (\frac{3}{4} a + \frac{9}{8} c)^2 + \frac{2}{3} ac + \frac{2}{5} c^2 \\ &= \frac{1}{3} (b + \frac{3}{4} a + \frac{9}{8} c)^2 - \frac{3}{16} a^2 - \frac{27}{64} c^2 - \frac{9}{16} ac \\ &+ \frac{2}{3} ac + \frac{2}{5} c^2 \\ &= \frac{1}{3} (b + \frac{3}{4} a + \frac{9}{8} c)^2 - \frac{7}{320} c^2 + \frac{5}{48} ac - \frac{3}{16} a^2 \\ &= \frac{1}{3} (b + \frac{3}{4} a + \frac{9}{8} c)^2 - \frac{3}{16} (a^2 - \frac{5}{9} ac) - \frac{7}{320} c^2 \\ &= \frac{1}{3} (b + \frac{3}{4} a + \frac{9}{8} c)^2 - \frac{3}{16} (a - \frac{5}{18} c)^2 \\ &+ \frac{25}{1728} c^2 - \frac{7}{320} c^2 \\ &= \frac{1}{3} (b + \frac{3}{4} a + \frac{9}{8} c)^2 - \frac{3}{16} (a - \frac{5}{18} c)^2 - \frac{1}{135} c^2. \end{split}$$

De cette expression, q est de signature (1,2) et q est non-dégénérée. De plus, q n'est ni positive ni négative.

5. On considère les formes linéaires ℓ_1,ℓ_2,ℓ_3 figurant dans la réduction de Gauss de q obtenue ci-dessus : si $P = a + bX + cX^2$,

$$\ell_1(P) = b + \frac{3}{4}a + \frac{9}{8}c, \quad \ell_2(P) = a - \frac{5}{18}c \quad \text{et} \quad \ell_3(P) = c.$$

La famille (ℓ_1, ℓ_2, ℓ_3) est une base de $(\mathbb{R}_2[X])^*$ et la base (P_1, P_2, P_3) dont la base duale est (ℓ_1, ℓ_2, ℓ_3) est une base q-orthogonale.

dont la base duale est
$$(\ell_1, \ell_2, \ell_3)$$
 est une base q -orthogonale.
Soit $Q = \begin{pmatrix} \frac{3}{4} & 1 & 0 \\ 1 & 0 & 0 \\ \frac{9}{8} & -\frac{5}{18} & 1 \end{pmatrix}$ la matrice de passage de \mathcal{B}_2^* à (ℓ_1, ℓ_2, ℓ_3) .

La matrice de passage de \mathcal{B}_2 à (P_1, P_2, P_3) est donnée par

$$P = {}^t Q^{-1}.$$

Pour calculer Q^{-1} , nous allons résoudre le système linéaire

$$Q\left(\begin{array}{c} a \\ b \\ c \end{array}\right) = \left(\begin{array}{c} A \\ B \\ C \end{array}\right).$$

Ce système s'écrit

$$\begin{cases} \frac{3}{4}a + b &= A \\ a &= B \\ \frac{9}{8}a - \frac{5}{18}b + c &= C. \end{cases}$$

Un calcul aisé donne $a=B,\,b=A-\frac{3}{4}B$ et $c=\frac{5}{18}B+C,$ soit

$$Q^{-1} = \left(\begin{array}{ccc} 0 & 1 & 0\\ 1 & -\frac{3}{4} & 0\\ \frac{5}{18} & -\frac{4}{3} & 1 \end{array}\right).$$

De la relation $P = {}^tQ^{-1}$, on déduit que

$$(X, 1 - \frac{3}{4}X, \frac{5}{18} - \frac{4}{3}X + X^2)$$

est une base q-orthogonale de $\mathbb{R}_2[X]$.

Exercice 3 Soit

$$V = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}); a - d = 0 \right\} \ et \ J = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

On définit l'application

$$B: V \times V \longrightarrow \mathbb{R}$$

en posant, pour tous $M, N \in \mathcal{M}_2(\mathbb{R})$,

$$B(M,N) = \mathrm{T}r(MJN).^{1}$$

- $1.\ Montrer\ que\ B\ est\ une\ forme\ bilinéaire.\ Est-elle\ symétrique,\ antisymétrique\ ?$
- 2. Montrer que $\mathcal{B} = \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right)$ est une base de V.
- 3. Déterminer la matrice dans la base \mathcal{B} de la forme quadratique q définie en posant, pour tout $M \in \mathcal{M}_2(\mathbb{R})$, q(M) = B(M, M).
- 4. Déterminer la signature de q, son rang et son noyau. La forme q est-elle définie? positive? négative?
- 5. Déterminer F^{\perp} (c'est-à-dire le q-orthogonal de F) où

$$F = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & d \end{array} \right) \in \mathcal{M}_2(\mathbb{R}); a - d = 0 \right\}.$$

Solution -

1. Tr désigne l'opérateur trace.

1. Pour tous $M_1, M_2, N \in V$ et tout $a \in \mathbb{R}$, on a

$$B(M_1 + aM_2, N) = Tr((M_1 + aM_2)JN)$$

= $Tr(M_1JN + aM_2JN) = Tr(M_1JN) + aTr(M_2JN)$
= $B(M_1, N) + aB(M_2, N)$,

et donc B est linéaire à gauche.

D'un autre côté, pour tous $N_1, N_2, M \in V$ et tout $a \in \mathbb{R}$, on a

$$B(M, N_1 + aN_2) = Tr(MJ(N_1 + aN_2))$$

$$= Tr(MJN_1 + aMJN_2) = Tr(MJN_1) + aTr(MJN_2)$$

$$= B(M, N_1) + aB(M, N_2),$$

et donc B est linéaire à droite. Ceci achève de montrer que B est une forme bilinéaire.

Nous allons montrer que B n'est ni symétrique ni antisymétrique. Pour cela, considérons les matrices $M_0 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ et $N_0 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$. On a

$$M_{0}JN_{0} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ -1 & -1 \end{pmatrix},$$

$$N_{0}JM_{0} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Il en résulte que $B(M_0, N_0) = -1$ et $B(N_0, M_0) = 0$ et donc

$$B(M_0, N_0) \neq \pm B(N_0, M_0),$$

ce qui montre B n'est ni symétrique ni antisymétrique.

2. Pour tout $\begin{pmatrix} a & b \\ c & a \end{pmatrix} \in V$, on a

$$\left(\begin{array}{cc} a & b \\ c & a \end{array}\right) = a \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + b \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) + c \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right),$$

et donc \mathcal{B} engendre V. D'un autre côté,

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) = a \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + b \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) + c \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)$$

équivaut à a = b = c = 0 et donc \mathcal{B} est libre. Ainsi \mathcal{B} est une base de V.

3. Soit
$$M = \begin{pmatrix} a & b \\ c & a \end{pmatrix} \in V$$
. On a

$$\begin{split} q(M) &= \operatorname{Tr} \left(\left(\begin{array}{cc} a & b \\ c & a \end{array} \right) \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \left(\begin{array}{cc} a & b \\ c & a \end{array} \right) \right) \\ &= \operatorname{Tr} \left(\left(\begin{array}{cc} a+b & a-b \\ c+a & c-a \end{array} \right) \left(\begin{array}{cc} a & b \\ c & a \end{array} \right) \right) \\ &= \operatorname{Tr} \left(\left(\begin{array}{cc} a(a+b)+c(a-b) & b(a+b)+a(a-b) \\ a(c+a)+c(c-a) & b(c+a)+a(c-a) \end{array} \right) \right) \\ &= a(a+b)+c(a-b)+b(c+a)+a(c-a)=2(ab+ca) \end{split}$$

Soit

$$q(M) = 2(ab + ca). (4)$$

La matrice de q dans \mathcal{B} est $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

4. Effectuons une réduction de Gauss de q. Soit $M=\begin{pmatrix} a & b \\ c & a \end{pmatrix} \in V$. On a $q(M)=2a(b+c)=\frac{1}{2}(a+b+c)^2-\frac{1}{2}(a-b-c)^2.$

D'après cette expression, q est de signature (1,1), elle est dégénérée et rg q=2. De plus, elle n'est ni positive ni négative et donc non définie.

De cette expression, on déduit aussi que $\begin{pmatrix} a & b \\ c & a \end{pmatrix} \in \ker q$ si et seulement si a+b+c=a-b-c=0, soit a=0 et b=-c. Ainsi $\ker q=\left\{\begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix},\ a\in\mathbb{R}\right\}$.

5. La partie F est la droite vectorielle engendrée par la matrice identité I_2 . Ainsi $M=\begin{pmatrix} a & b \\ c & a \end{pmatrix} \in F^{\perp}$ si et seulement si $S(M,I_2)=0$ où S est la forme polaire de q. La forme polaire S de q est la symétrisée de B, c'est-à-dire que S vérifie pour tous $M,N\in\mathcal{M}_2(\mathbb{R})$,

$$S(M,N) = \frac{1}{2} \left(\operatorname{Tr}(MJN) + \operatorname{Tr}(NJM) \right).$$

Donc

$$S(M, I_2) = \frac{1}{2} \operatorname{Tr} \left(\begin{pmatrix} a & b \\ c & a \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \right) + \frac{1}{2} \operatorname{Tr} \left(\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} a & b \\ c & a \end{pmatrix} \right)$$
$$= \operatorname{Tr} \left(\begin{pmatrix} a & b \\ c & a \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \right) = \operatorname{Tr} \left(\begin{pmatrix} a+b & a-b \\ c+a & c-a \end{pmatrix} \right)$$
$$= b+c.$$

Ainsi, on déduit que

$$F^{\perp} = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right), \ a, b \in \mathbb{R} \right\}.$$

Exercice 4 Effectuer une réduction de Gauss et déterminer le noyau, le rang et la signature des formes quadratiques suivantes :

1.
$$q: \mathbb{R}^3 \longrightarrow \mathbb{R}, \ q(x, y, z) = 2x^2 + y^2 - z^2 + 3xy - 4xz$$
.

2.
$$q: \mathbb{R}^3 \longrightarrow \mathbb{R}, \ q(x, y, z) = x^2 + y^2 - az^2 + 3xy - bxz + yz$$
.

On discutera suivant les valeurs de $a, b \in \mathbb{R}$.

3.
$$q: \mathbb{R}^4 \longrightarrow \mathbb{R}$$
,

$$q(x, y, z, t) = x^{2} + (1 + 2\lambda - \mu)y^{2} + (1 + \lambda)z^{2} + (1 + 2\lambda + \mu)t^{2} + 2xy + 2xz - 2xt + 2(1 - \lambda)yz - 2(1 + \lambda)yt + 2(\lambda - 1)zt.$$

On discutera suivant les valeurs de $\lambda, \mu \in \mathbb{R}$.

4.
$$q: \mathbb{R}^5 \longrightarrow \mathbb{R}, \ q(x, y, z, t, s) = xy - xt + yz - yt + ys + zt - zs + 2st.$$

Solution -

1. On a

$$\begin{split} q(x,y,z) &= 2x^2 + y^2 - z^2 + 3xy - 4xz \\ &= 2(x^2 + \frac{1}{2}x(3y - 4z)) + y^2 - z^2 \\ &= 2(x + \frac{3}{4}y - z)^2 - 2(\frac{3}{4}y - z)^2 + y^2 - z^2 \\ &= 2(x + \frac{3}{4}y - z)^2 - \frac{1}{8}y^2 + 3yz - 3z^2 \\ &= 2(x + \frac{3}{4}y - z)^2 - \frac{1}{8}(y^2 - 24yz) - 3z^2 \\ &= 2(x + \frac{3}{4}y - z)^2 - \frac{1}{8}(y - 12z)^2 + 15z^2. \end{split}$$

La signature de q est (2,1), rg q=3 et donc $\ker q=\{0\}$.

2. On a

$$\begin{array}{rcl} q(x,y,z) & = & x^2 + y^2 - az^2 + 3xy - bxz + yz \\ & = & x^2 + x(3y - bz) + y^2 - az^2 + yz \\ & = & (x + \frac{3}{2}y - \frac{b}{2}z)^2 - \frac{9}{4}y^2 - \frac{b^2}{4}z^2 + \frac{3b}{2}yz + y^2 - az^2 + yz \\ & = & \\ & = & (x + \frac{3}{2}y - \frac{b}{2}z)^2 - \frac{5}{4}(y^2 - \frac{2(2+3b)}{5}yz) - (a + \frac{b^2}{4})z^2 \\ & = & (x + \frac{3}{2}y - \frac{b}{2}z)^2 - \frac{5}{4}(y - \frac{2+3b}{5}z)^2 - (a + \frac{b^2}{4} - \frac{(2+3b)^2}{20})z^2 \\ & = & (x + \frac{3}{2}y - \frac{b}{2}z)^2 - \frac{5}{4}(y - \frac{2+3b}{5}z)^2 + \frac{1}{5}(b^2 + 3b - 5a + 1)z^2. \end{array}$$

q dégénère si et seulement si

$$(b^2 + 3b - 5a + 1) = 0.$$

Si c'est le cas $(x, y, z) \in \ker q$ si et seulement si

$$x + \frac{3}{2}y - \frac{b}{2}z = y - \frac{2+3b}{5}z = 0.$$

En conclusion, si q dégénère alors $\ker q = \mathbb{R}(-\frac{3+2b}{5}, \frac{2+3b}{5}, 1)$.

D'un autre côté, la signature de q dépend du signe de $b^2+3b-5a+1$. Considérons cette quantité comme un polynôme en b de degré 2. Son discriminant est $\Delta=9-4(-5a+1)=20a+5=5(4a+1)$ et ses racines, quand $\Delta\geq 0$, sont $-\frac{3+\sqrt{20a+5}}{2}$ et $-\frac{3-\sqrt{20a+5}}{2}$.

En résumé :

- (a) si $a < -\frac{1}{4}$ et $b \in \mathbb{R}$, la signature est égale à (2,1), le rang est égal à 3 et $\ker q = \{0\}$;
- (b) si $a > -\frac{1}{4}$, $b \notin]-\frac{3+\sqrt{20a+5}}{2}$, $-\frac{3-\sqrt{20a+5}}{2}$ [, la signature est égale à (2,1), le rang est égal à 3 et $\ker q = \{0\}$;
- (c) si $a > -\frac{1}{4}$, $bin] \frac{3+\sqrt{20a+5}}{2}$, $-\frac{3-\sqrt{20a+5}}{2}$ [, la signature est égale à (1,2), le rang est égal à 3 et $\ker q = \{0\}$;
- (d) si $a > -\frac{1}{4}$ et $b = -\frac{3+\sqrt{20a+5}}{2}$ ou $b = -\frac{3-\sqrt{20a+5}}{2}$, la signature est égale à (1,1), le rang est égal à 2 et $\ker q = \mathbb{R}(-\frac{3+2b}{5},\frac{2+3b}{5},1)$;
- (e) si $a=-\frac{1}{4}$ et $b\neq -\frac{3}{2}$, la signature est égale à (2,1), le rang est égal à 3 et $\ker q=\{0\}$;
- (f) si $a=-\frac{1}{4}$ et $b=-\frac{3}{2}$, la signature est égale à (1,1), le rang est égal à 2 et $\ker q=\mathbb{R}(-\frac{3+2b}{5},\frac{2+3b}{5},1)$.

3. Si u = (x, y, z, t), on a:

$$q(u) = x^{2} + (1 + 2\lambda - \mu)y^{2} + (1 + \lambda)z^{2} + (1 + 2\lambda + \mu)t^{2}$$

$$+ 2xy + 2xz - 2xt + 2(1 - \lambda)yz - 2(1 + \lambda)yt + 2(\lambda - 1)zt$$

$$= x^{2} + 2x(y + z - t) + (1 + 2\lambda - \mu)y^{2} + (1 + \lambda)z^{2}$$

$$+ (1 + 2\lambda + \mu)t^{2} + 2(1 - \lambda)yz - 2(1 + \lambda)yt + 2(\lambda - 1)zt.$$

Continuons:

$$\begin{split} q(u) &= (x+y+z-t)^2 - (y+z-t)^2 + (1+2\lambda-\mu)y^2 + (1+\lambda)z^2 \\ &\quad + (1+2\lambda+\mu)t^2 + 2(1-\lambda)yz - 2(1+\lambda)yt + 2(\lambda-1)zt \\ &= (x+y+z-t)^2 + (2\lambda-\mu)y^2 + \lambda z^2 + (2\lambda+\mu)t^2 \\ &\quad - 2\lambda yz - 2\lambda yt + 2\lambda zt \\ &= (x+y+z-t)^2 + \lambda(z^2+2z(t-y)) + (2\lambda-\mu)y^2 \\ &\quad + (2\lambda+\mu)t^2 - 2\lambda yt \\ &= (x+y+z-t)^2 + \lambda(z+t-y)^2 - \lambda(y-t)^2 + (2\lambda-\mu)y^2 \\ &\quad + (2\lambda+\mu)t^2 - 2\lambda yt. \end{split}$$

Finalement,

$$q(u) = (x + y + z - t)^{2} + \lambda(z + t - y)^{2} + (\lambda - \mu)y^{2} + (\lambda + \mu)t^{2}.$$

La signature de q, son noyau et son rang sont déterminés de la façon suivante :

- (a) si $\lambda = \mu = 0$, la signature de q est égale à (1,0), le rang est égal à 1 et $\ker q = \{(x,y,z,t) \in \mathbb{R}^4, x+y+z-t=0\}$;
- (b) si $\lambda = 0$ et $\mu \neq 0$, la signature de q est égale à (2,1), le rang est égal à 3 et $\ker q = \mathbb{R}(1,0,-1,0)$;
- (c) si $\lambda > 0$ et $\mu = 0$, la signature de q est égale à (4,0), le rang est égal à 4 et ker $q = \{0\}$;
- (d) si $\lambda < 0$ et $\mu = 0$, la signature de q est égale à (0,4), le rang est égal à 4 et $\ker q = \{0\}$;
- (e) si $\lambda \neq 0$ et $\mu \neq 0$, la signature de q est égale à $(1+p^+, p^-)$, le rang est égal à 4 et ker $q = \{0\}$, où $p^{\pm} = \sigma^{\pm}(\lambda) + \sigma^{\pm}(\lambda \mu) + \sigma^{\pm}(\lambda + \mu)$ avec $\sigma^{\pm} : \mathbb{R}^* \longrightarrow \{0,1\}$ qui vaut 1 sur $\mathbb{R}^{*\pm}$ et 0 sur $\mathbb{R}^{*\mp}$.

4. Si u = (x, y, z, t, s), on a:

$$\begin{split} q(u) &= xy - xt + y(z - t + s) + zt - zs + 2st \\ &= (x + z - t + s)(y - t) + t(z - t + s) + zt - zs + 2st \\ &= (x + z - t + s)(y - t) - t^2 + 2zt + 3st - zs \\ &= (x + z - t + s)(y - t) - (t^2 - 2t(z + \frac{3}{2}s)) - zs \\ &= (x + z - t + s)(y - t) - (t - z - \frac{3}{2}s)^2 + (z + \frac{3}{2}s)^2 - zs \\ &= (x + z - t + s)(y - t) - (t - z - \frac{3}{2}s)^2 + z^2 + 2zs + \frac{9}{4}s^2 \\ &= \frac{1}{4}(x + y + z - 2t + s)^2 - \frac{1}{4}(x - y + z + s)^2 - (t - z - \frac{3}{2}s)^2 \\ &+ (z + s)^2 + \frac{5}{4}s^2. \end{split}$$

La signature de q est (3,2), rg q=5 et donc q est non dégénérée.