

Exame - Parte 2 (com consulta, 10 valores, 90 minutos)

Nome:

1. Duas estações comunicam usando uma ligação de dados baseada em mecanismos ARQ. A capacidade do canal (em cada sentido) é de 1 Mbit/s, o atraso de propagação (num sentido) é de 18 ms e as tramas de Informação têm um tamanho fixo de 750 Bytes. Considere que são usados 3 bits para numerar as tramas de Informação e que as tramas de controlo têm um tamanho desprezável.

a) (1,5 valor) Calcule a eficiência máxima do protocolo para as variantes Stop and Wait, Go Back N e Selective

Repeat. Calcule também os débitos máximos correspondentes.

	Stop and Wait	Go Back N	Selective Repeat
Eficiência máxima (%)	14	100	57
Débito máximo (kbit/s)	140	1000	570

b) (1,5 valor) Suponha que o emissor tem um bloco de 75 kBytes de dados para transmitir a pedido da camada de rede. Desprezando os *overheads* introduzidos pelo protocolo de ligação lógica, calcule para cada variante ARQ o tempo necessário para o envio do bloco de dados (até ser recebida a última confirmação) e o débito observado pela camada superior. Se necessário recorra a diagramas temporais.

Stop and WaitGo Back NSelective RepeatTempo de envio do bloco (s)4,20,6361,05Débito observado (kbit/s)143943571

c) (*1 valor*) Considere que era utilizado o mecanismo ARQ *Selective Repeat* numa situação de erro caracterizada por um BER=10⁻⁴. Admita também que poderia escolher um tamanho de trama entre 100 Bytes e 1000 Bytes. Nesta situação, que valores para o número de bits de numeração (k) e tamanho de trama (L) escolheria for forma a obter a eficiência máxima (*S_{Max}*)? Qual o valor da eficiência máxima nessa situação?

k bits	L	S_{max} (%)
7	100 Bytes	92,3

2. Admita que um sistema de transmissão é modelizado por uma fila de espera M/M/1 de capacidade infinita. Verificase que em média chegam ao sistema 400 pacote/s, de comprimento médio 1000 Bytes, e que a linha de transmissão está vazia em 20% do tempo.

a) (1 valor) Calcule a capacidade da linha de transmissão, a ocupação média da fila de espera e o tempo médio de atraso dos pacotes.

Capacidade da linha (Mbit/s)	4
Ocupação média da fila de espera, N _w	3,2
Tempo médio de atraso dos pacotes, T, (ms)	10

b) (1 valor) Calcule a probabilidade de estarem mais de 1 pacote no sistema em duas situações diferentes: i) a fila tem capacidade infinita; ii) a fila tem uma capacidade de 3 buffers.

	Prob(NumPacotes > 1)
Fila de capacidade infinita	0,64
Fila com 3 buffers	0,39

c) (1 valor) Admita que, nas condições da alínea a), os pacotes passavam a ter um **comprimento constante** de 1000 Bytes. Calcule a capacidade da linha de transmissão, a ocupação média da fila de espera e o tempo médio de atraso dos pacotes. Discuta e compare estes resultados com os resultados obtidos na alínea a).

Capacidade da linha (Mbit/s)	4
Ocupação média da fila de espera, N _w	1,6
Tempo médio de atraso dos pacotes, T, (ms)	6

3. Considere que a uma empresa foi atribuído o bloco de endereços IP **44.44.128/26**. A empresa tem um rede de comunicações com a arquitetura descrita na figura, composta por 4 *routers* (R1, R2, R3, R4) e 2 *switches* Ethernet. Um dos *switches* serve 12 computadores e outro serve 18 computadores. Os *routers* estão interligados por ligações ponto-a-ponto e a algumas destas ligações estão já atribuídos os endereços indicados na figura.

a) (1 valor) Calcule os endereços associados às redes indicadas.

	Endereço da subrede (endereço/máscara)	Endereço de <i>broadcast</i> da subrede	Nº de endereços de interfaces
Rede dos 12 computadores	44.44.476/28	44.44.44.191	14
Rede dos 18 computadores	44.44.128/27	44.44.44.159	30
Rede da ligação R3-R4	44.44.472/30	44.44.44.175	2

b) (1 valor) Atribua endereços IP às interfaces de rede indicadas na tabela. Use os endereços mais baixos de cada subrede. Numa sub-rede atribua os endereços mais baixos aos routers de índice Ri mais baixo. Por exemplo, o endereço de R1.eth0 deverá ser inferior ao endereço R2.eth0.

Router.interface	Endereço(s) IP
R1.eth1	44.44.169
R4.eth1	44.44.470
R4.eth2	44.44.177
R4.eth0	44.44.174
R3.eth0	44.44.473

c) (1 valor). Escreva a tabela de encaminhamento do **router R4.** Este router deverá ser capaz enviar pacotes para todos os endereços IP unicast e os pacotes deverão ser encaminhados pelos caminhos de custo mais baixo. Assuma que o custo de uma ligação é o inverso (1/x) da sua capacidade; por exemplo, uma ligação de capacidade de 1 Mbit/s tem um custo de 10⁻⁶. Use o **menor número possível de entradas** na tabela.

Destino (endereço/máscara)	Gateway	Interface
44.44.44.168/30		eth1
44.44.44.172/30		eth0
44.44.44.176/28		eth2
0/0	44.44.169	eth1