Optimization Problem from Lagrange Multipliers

▶ Example 2 Use the method of Lagrange multipliers to find the dimensions of a rectangle with perimeter p and maximum area.

Solution. Let

 $x = \text{length of the rectangle}, \quad y = \text{width of the rectangle}, \quad A = \text{area of the rectangle}$

We want to maximize A = xy on the line segment

$$2x + 2y = p, \quad 0 \le x, y \tag{7}$$

that corresponds to the perimeter constraint. This segment is a closed and bounded set, and since f(x, y) = xy is a continuous function, it follows from the Extreme-Value Theorem (Theorem 13.8.3) that f has an absolute maximum on this segment. This absolute maximum must also be a constrained relative maximum since f is 0 at the endpoints of the segment and positive elsewhere on the segment. If g(x, y) = 2x + 2y, then we have

$$\nabla f = y\mathbf{i} + x\mathbf{j}$$
 and $\nabla g = 2\mathbf{i} + 2\mathbf{j}$

Noting that $\nabla g \neq 0$, it follows from (4) that

$$y\mathbf{i} + x\mathbf{j} = \lambda(2\mathbf{i} + 2\mathbf{j})$$

at a constrained relative maximum. This is equivalent to the two equations

$$y = 2\lambda$$
 and $x = 2\lambda$

Eliminating λ from these equations we obtain x = y, which shows that the rectangle is actually a square. Using this condition and constraint (7), we obtain x = p/4, y = p/4.

Example 3 Find the points on the sphere $x^2 + y^2 + z^2 = 36$ that are closest to and farthest from the point (1, 2, 2).

Solution. To avoid radicals, we will find points on the sphere that minimize and maximize the *square* of the distance to (1, 2, 2). Thus, we want to find the relative extrema of

$$f(x, y, z) = (x - 1)^2 + (y - 2)^2 + (z - 2)^2$$

subject to the constraint

$$x^2 + y^2 + z^2 = 36 ag{8}$$

If we let $g(x, y, z) = x^2 + y^2 + z^2$, then $\nabla g = 2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}$. Thus, $\nabla g = \mathbf{0}$ if and only if x = y = z = 0. It follows that $\nabla g \neq \mathbf{0}$ at any point of the sphere (8), and hence the constrained relative extrema must occur at points where

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$

That is,

$$2(x-1)\mathbf{i} + 2(y-2)\mathbf{j} + 2(z-2)\mathbf{k} = \lambda(2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k})$$

which leads to the equations

$$2(x-1) = 2x\lambda$$
, $2(y-2) = 2y\lambda$, $2(z-2) = 2z\lambda$ (9)

We may assume that x, y, and z are nonzero since x = 0 does not satisfy the first equation, y = 0 does not satisfy the second, and z = 0 does not satisfy the third. Thus, we can rewrite (9) as

$$\frac{x-1}{x} = \lambda, \quad \frac{y-2}{y} = \lambda, \quad \frac{z-2}{z} = \lambda$$

The first two equations imply that

$$\frac{x-1}{x} = \frac{y-2}{y}$$

from which it follows that

$$y = 2x \tag{10}$$

Similarly, the first and third equations imply that

$$z = 2x \tag{11}$$

Substituting (10) and (11) in the constraint equation (8), we obtain

$$9x^2 = 36$$
 or $x = \pm 2$

Substituting these values in (10) and (11) yields two points:

$$(2,4,4)$$
 and $(-2,-4,-4)$

Since f(2, 4, 4) = 9 and f(-2, -4, -4) = 81, it follows that (2, 4, 4) is the point on the sphere closest to (1, 2, 2), and (-2, -4, -4) is the point that is farthest (Figure 13.9.5).

▶ Example 4 Use Lagrange multipliers to determine the dimensions of a rectangular box, open at the top, having a volume of 32 ft³, and requiring the least amount of material for its construction.

Solution. With the notation introduced in Example 6 of the last section, the problem is to minimize the surface area S = xy + 2xz + 2yz

subject to the volume constraint

$$xyz = 32 \tag{12}$$

If we let f(x, y, z) = xy + 2xz + 2yz and g(x, y, z) = xyz, then

$$\nabla f = (y+2z)\mathbf{i} + (x+2z)\mathbf{j} + (2x+2y)\mathbf{k}$$
 and $\nabla g = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$

It follows that $\nabla g \neq 0$ at any point on the surface xyz = 32, since x, y, and z are all nonzero on this surface. Thus, at a constrained relative extremum we must have $\nabla f = \lambda \nabla g$, that is,

$$(y+2z)\mathbf{i} + (x+2z)\mathbf{j} + (2x+2y)\mathbf{k} = \lambda(yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k})$$

This condition yields the three equations

$$y + 2z = \lambda yz$$
, $x + 2z = \lambda xz$, $2x + 2y = \lambda xy$

Because x, y, and z are nonzero, these equations can be rewritten as

$$\frac{1}{z} + \frac{2}{y} = \lambda, \quad \frac{1}{z} + \frac{2}{x} = \lambda, \quad \frac{2}{y} + \frac{2}{x} = \lambda$$

From the first two equations,

$$y = x \tag{13}$$

and from the first and third equations,

$$z = \frac{1}{2}x\tag{14}$$

Substituting (13) and (14) in the volume constraint (12) yields

$$\frac{1}{2}x^3 = 32$$

This equation, together with (13) and (14), yields

$$x = 4$$
, $y = 4$, $z = 2$

which agrees with the result that was obtained in Example 6 of the last section.

EXAMPLE 2 A rectangular box without a lid is to be made from 12 m² of cardboard. Find the maximum volume of such a box.

SOLUTION As in Example 14.7.6, we let x, y, and z be the length, width, and height, respectively, of the box in meters. Then we wish to maximize

$$V = xyz$$

subject to the constraint

$$g(x, y, z) = 2xz + 2yz + xy = 12$$

Using the method of Lagrange multipliers, we look for values of x, y, z, and λ such that $\nabla V = \lambda \nabla g$ and g(x, y, z) = 12. This gives the equations

$$V_x = \lambda g_x$$

$$V_y = \lambda g_y$$

$$V_z = \lambda g_z$$

$$2xz + 2yz + xy = 12$$

which become

$$yz = \lambda(2z + y)$$

$$xz = \lambda(2z + x)$$

$$xy = \lambda(2x + 2y)$$

$$2xz + 2yz + xy = 12$$

There are no general rules for solving systems of equations. Sometimes some ingenuity is required. In the present example you might notice that if we multiply (5) by x, (6) by y, and (7) by z, then the left sides of these equations will be identical. Doing this, we have

$$yz = \lambda(2xz + xy)$$

$$xyz = \lambda(2yz + xy)$$

$$xyz = \lambda(2xz + 2yz)$$

In general λ can be 0, but here we observe that $\lambda \neq 0$ because $\lambda = 0$ would imply yz = xz = xy = 0 from (5), (6), and (7) and this would contradict (8). Therefore, from (9) and (10), we have

$$2xz + xy = 2yz + xy$$

which gives xz = yz. But $z \neq 0$ (since z = 0 would give V = 0), so x = y. From (10) and (11) we have

$$2yz + xy = 2xz + 2yz$$

which gives 2xz = xy and so (since $x \ne 0$) y = 2z. If we now put x = y = 2z in (8), we get

$$4z^2 + 4z^2 + 4z^2 = 12$$

Since x, y, and z are all positive, we therefore have z = 1 and so x = 2 and y = 2. Thus we have only one point where f may have an extreme value; how do we know if this point corresponds to a maximum or minimum? As in Example 14.7.6, we argue that there must be a maximum volume, which must occur at the point we found.

EXAMPLE 3 Find the points on the sphere $x^2 + y^2 + z^2 = 4$ that are closest to and farthest from the point (3, 1, -1).

SOLUTION The distance from a point (x, y, z) to the point (3, 1, -1) is

$$d = \sqrt{(x-3)^2 + (y-1)^2 + (z+1)^2}$$

but the algebra is simpler if we instead maximize and minimize the square of the distance:

$$d^2 = f(x, y, z) = (x - 3)^2 + (y - 1)^2 + (z + 1)^2$$

The constraint is that the point (x, y, z) lies on the sphere, that is,

$$g(x, y, z) = x^2 + y^2 + z^2 = 4$$

According to the method of Lagrange multipliers, we solve $\nabla f = \lambda \nabla g$, g = 4. This gives

$$2(x-3)=2x\lambda$$

$$2(y-1) = 2y\lambda$$

$$2(z+1)=2z\lambda$$

$$x^2 + y^2 + z^2 = 4$$

The simplest way to solve these equations is to solve for x, y, and z in terms of λ from (12), (13), and (14), and then substitute these values into (15). From (12) we have

$$x-3=x\lambda \implies x(1-\lambda)=3 \implies x=\frac{3}{1-\lambda}$$

[Note that $1 - \lambda \neq 0$ because $\lambda = 1$ is impossible from (12).] Similarly, (13) and (14) give

$$y = \frac{1}{1 - \lambda} \qquad z = -\frac{1}{1 - \lambda}$$

Therefore, from (15), we have

$$\frac{3^2}{(1-\lambda)^2} + \frac{1^2}{(1-\lambda)^2} + \frac{(-1)^2}{(1-\lambda)^2} = 4$$

which gives $(1 - \lambda)^2 = \frac{11}{4}, 1 - \lambda = \pm \sqrt{11/2}$, so

$$\lambda = 1 \pm \frac{\sqrt{11}}{2}$$

These values of λ then give the corresponding points (x, y, z):

$$\left(\frac{6}{\sqrt{11}}, \frac{2}{\sqrt{11}}, -\frac{2}{\sqrt{11}}\right)$$
 and $\left(-\frac{6}{\sqrt{11}}, -\frac{2}{\sqrt{11}}, \frac{2}{\sqrt{11}}\right)$

It's easy to see that f has a smaller value at the first of these points, so the closest point is $(6/\sqrt{11}, 2/\sqrt{11}, -2/\sqrt{11})$ and the farthest is $(-6/\sqrt{11}, -2/\sqrt{11}, 2/\sqrt{11})$.