Deep Learning MSDS 631

Multi-Task, Data Augmentation, Transfer Learning

Michael Ruddy

Questions?

- From last lecture?

Overview

- Small Datasets
- Transfer Learning
- Data Augmentation
- Multi-Task Learning

- Not enough data
 - Expensive to obtain
 - Too big to store

- Not enough data
 - Expensive to obtain
 - Too big to store
- Not enough labels
 - Expensive to obtain
 - Nonstandard task

- Not enough data
 - Expensive to obtain
 - Too big to store
- Not enough labels
 - Expensive to obtain
 - Nonstandard task
- Transfer Learning
 - Use features learned on larger datasets for your task
 - Example: Word Embeddings

- Not enough data
 - Expensive to obtain
 - Too big to store
- Not enough labels
 - Expensive to obtain
 - Nonstandard task
- Transfer Learning
 - Use features learned on larger datasets for your task
 - Example: Word Embeddings
- Data Augmentation
 - Use existing data to create synthetic data

- Not enough data
 - Expensive to obtain
 - Too big to store
- Not enough labels
 - Expensive to obtain
 - Nonstandard task
- Transfer Learning
 - Use features learned on larger datasets for your task
 - Example: Word Embeddings
- Data Augmentation
 - Use existing data to create synthetic data
- Multi-Task Learning

- Transfer features from one task/dataset to another
- Word Embeddings
 - Learn from context (lots of data)
 - Use for all sort of NLP tasks (maybe less data/labels)

- Transfer features from one task/dataset to another
- Word Embeddings
- Train a CNN on ImageNet: multi-class problem with 1000 classes

- Lots of images!

VGG-19

- Transfer features from one task/dataset to another
- Word Embeddings
- Train a CNN on ImageNet: multi-class problem with 1000 classes

- Lots of images!

VGG-19

Embedding or Representation of

an image

- Transfer features from one task/dataset to another
- Word Embeddings
- Train a CNN on ImageNet: multi-class problem with 1000 classes
- Two approaches
 - Freeze your embedding/representation

- Transfer features from one task/dataset to another
- Word Embeddings
- Train a CNN on ImageNet: multi-class problem with 1000 classes
- Two approaches
 - Freeze your embedding/representation

- Transfer features from one task/dataset to another
- Word Embeddings
- Train a CNN on ImageNet: multi-class problem with 1000 classes
- Two approaches
 - Freeze your embedding/representation
 - Use pre-trained model as a starting point (fancy weight initialization)

- Transfer features from one task/dataset to another
- Word Embeddings
- Train a CNN on ImageNet: multi-class problem with 1000 classes
- Two approaches
 - Freeze your embedding/representation
 - Use pre-trained model as a starting point (fancy weight initialization)

Low LR ← High LR

- Transfer features from one task/dataset to another
- Word Embeddings
- Train a CNN on ImageNet: multi-class problem with 1000 classes
- Two approaches
 - Freeze your embedding/representation
 - Use pre-trained model as a starting point (fancy weight initialization)

Epoch 0

- Transfer features from one task/dataset to another
- Word Embeddings
- Train a CNN on ImageNet: multi-class problem with 1000 classes
- Two approaches
 - Freeze your embedding/representation
 - Use pre-trained model as a starting point (fancy weight initialization)

Epoch 1

- Transfer features from one task/dataset to another
- Word Embeddings
- Train a CNN on ImageNet: multi-class problem with 1000 classes
- Two approaches
 - Freeze your embedding/representation
 - Use pre-trained model as a starting point (fancy weight initialization)

- Transfer features from one task/dataset to another
- Word Embeddings
- Train a CNN on ImageNet: multi-class problem with 1000 classes
- Two approaches
 - Freeze your embedding/representation
 - Use pre-trained model as a starting point (fancy weight initialization)

Epoch 3

- Idea: when you have a small dataset, just create more!
- Create synthetic data
- Transform your original data

- Idea: when you have a small dataset, just create more!
- Create synthetic data
- Transform your original data

This is a cat

- Idea: when you have a small dataset, just create more!
- Create synthetic data
- Transform your original data

This is still a cat...

- Idea: when you have a small dataset, just create more!
- Create synthetic data
- Transform your original data

This is still a cat...

- Idea: when you have a small dataset, just create more!
- Create synthetic data
- Transform your original data

- Idea: when you have a small dataset, just create more!
- Create synthetic data
- Transform your original data

- Idea: when you have a small dataset, just create more!
- Create synthetic data
- Transform your original data
 - Encode invariance/equivariance for a model
 - Idea: model learns a bit of Euclidean geometry this way

- Idea: when you have a small dataset, just create more!
- Create synthetic data
- Transform your original data
 - Encode invariance/equivariance for a model
 - Idea: model learns a bit of Euclidean geometry this way
 - Make your model less sensitive to noise

This is still a cat...

- Two tasks where computed features can be shared
 - For example: Classification + Localization

- Two tasks where computed features can be shared
 - For example: Classification + Localization
- Usually helpful when there is less data than desired somewhere
 - More labels on the same inputs potentially lets you learn "more" about the image
 - Maybe one task has a lot of data and another similar task does not

- Two tasks where computed features can be shared
 - For example: Classification + Localization
- Usually helpful when there is less data than desired somewhere
 - More labels on the same inputs potentially lets you learn "more" about the image
 - Maybe one task has a lot of data and another similar task does not
- Careful!
 - Don't want a model that is just mediocre at both
 - One task can take over

Input labels

Benign or Malignant

labels

Benign or Malignant

labels

Benign or Malignant

Unroll to Linear Layer then Classification

Summary

- Transfer Learning
 - Transfer features learned from one dataset/task to another
- Data Augmentation
 - Augment your dataset
 - Synthetic Data
 - Transformed Data
 - Encode invariance/equivariance to nuisance transformations
- Multi-Task Learning
 - Leverage other tasks to improve the target task
 - Like simultaneous transfer learning!