C++ Study Notes	
	C++ Study Notes

C++ Study Notes ii

COLLABORATORS						
TITLE : C++ Study Notes						
ACTION	NAME	DATE	SIGNATURE			
WRITTEN BY	Frederick Ollinger	May 24, 2017				

REVISION HISTORY						
NUMBER	DATE	DESCRIPTION	NAME			
0.0.1	2017-05-21	Initial Version	fko			

C++ Study Notes

Contents

Point	ters 1	L
1.1	Address of Operator	l
1.2	Value At Address Operator	
1.3	Sending Pointers To Functions	2
1.4	Treating A Pointer As An Array	3
1.5	Stack vs. Heap	ŀ
1.6	Dynamically Allocating Memory: Malloc, Free, New Delete	ļ
1.7	Memory leak	ļ
1.8	Segmentation Fault	ŀ
1.9	Member variables of structs and classes	ŀ
1 10	NITI I ve mullotr	ı

C++ Study Notes 1/4

Chapter 1

Pointers

I got this from: *Pointers in C with examples*.

A pointer is a variable that points to a section of memory. Below is a program that points to a block of memory to show how we can access memory in C.

1.1 Address of Operator

Before we look at pointers, we'll define what we mean by computer memory in address.c.

```
#include <stdio.h>
int var = 1;
int main()
{
   int num = 10;
   printf("Value of var is: %d \n ", num);
   printf("Address of var is: %p \n", &num);
   return 0;
}
```

```
Value of var is: 10
Address of var is: 0x7ffd5d20b56c
```

Thus, in this context the amperstand is the "Address Of" operator.

1.2 Value At Address Operator

Use the asterisk to create a pointer to a variable. The following example shows how pointers work, but it's for demonstration purposes only as we either have an address to a variable or a variable, but usually not both. Here's pointer.c:

```
#include <stdio.h>
int main()
{
   int var =10;
   int *p;
   p= &var;

   printf ( "\n Address of var is: %p \n", &var);
   printf ( "\n Address of var is: %p \n", p);
```

C++ Study Notes 2/4

```
printf ( "\n Address of pointer p is: %p \n", &p);

/* Note I have used %p for p's value as it should be an address*/
printf( "\n Value of pointer p is: %p \n", p);

printf ( "\n Value of var is: %d \n", var);
printf ( "\n Value of var is: %d \n", *p);
printf ( "\n Value of var is: %d \n", * ( &var));
}
```

Here's the output:

```
Address of var is: 0x7ffda322535c

Address of var is: 0x7ffda322535c

Address of pointer p is: 0x7ffda3225350

Value of pointer p is: 0x7ffda322535c

Value of var is: 10

Value of var is: 10
```

1.3 Sending Pointers To Functions

Here's a classic example which shows how pointers differ from regular variables. Sending a regular variable to a function will yield the same variables when you are done because we pass by value. But if we pass by reference to memory, we can actually allow a function to change a variable.

```
#include <stdio.h>

void swap (int *pa, int *pb) {
    int tmp;
    tmp = *pa;
    *pa = *pb;
    *pb = tmp;
}

int main() {
    int a = 10;
    int b = 20;
    printf("before swap a: [%i] b: [%i] \n", a, b);
    swap(&a, &b);
    printf("after swap a: [%i] b: [%i] \n", a, b);
    return 0;
}
```

Running the program:

```
before swap a: [10] b: [20]
after swap a: [20] b: [10]
```

C++ Study Notes 3 / 4

Often, you don't want to have your variales modified when they are sent to a function. To show this in an api, use the keyword const which allows you to promise that you won't make this change.

```
#include <stdio.h>

void swap (const int *pa, const int *pb) {
    int tmp;
    tmp = *pa;
    *pa = *pb;
    *pb = tmp;
}

int main()
{
    int a = 10;
    int b = 20;
    printf("before swap a: [%i] b: [%i] \n", a, b);
    swap(&a, &b);
    printf("after swap a: [%i] b: [%i] \n", a, b);
    return 0;
}
```

Compiling this gives the following error:

This is a good thing as it can stop us from doing something which we promise not to do.

1.4 Treating A Pointer As An Array

I got this from: *Pointers in C with examples*.

First we'll start by covering arrays. An array is a variable that holds multiple values of the same type. Let's make an array of ints.

```
#include <stdio.h>
int main()
{
   int arr[3] ={ 1, 2, 3 };
   printf("arr: [%i] \n", arr[1]);
   return 0;
}
```

Output:

```
arr: [2]
```

C++ Study Notes 4/4

Let's make a character array, which is a C string. Note that C will automatically allocate the size of the array for us if we leave the number of elements blank.

```
#include <stdio.h>
int main()
{
    char label[] = "Single";
    printf("label: [%s] \n", label);
    printf("label: [%c] \n", label[2]);

    return 0;
}
```

Output:

```
label: [Single]
printf("label: [%c] \n", label[2]);
```

We also learn that we can access a C string just like a normal array.

NEXT SHOW HOW WE CAN USE A POINTER TO AN ARRAY TO ACCESS CHARACTERS.

1.5 Stack vs. Heap

TBD

1.6 Dynamically Allocating Memory: Malloc, Free, New Delete

TBD

1.7 Memory leak

TBD

1.8 Segmentation Fault

TBD

1.9 Member variables of structs and classes.

TBD

1.10 NULL vs. nullptr

TBD