Purging of Strongly Deleterious Mutations Explains Long-Term Persistence and Absence of Inbreeding Depression in Island Foxes

Jacqueline A. Robinson, 1,4,6,* Caitlin Brown, 1 Bernard Y. Kim, 1 Kirk E. Lohmueller, 1,2,3,5 and Robert K. Wayne 1,5

https://doi.org/10.1016/j.cub.2018.08.066

¹Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA

²Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA

³Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA

⁴Present address: Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA

⁵These authors contributed equally

⁶Lead Contact

^{*}Correspondence: jacqueline.robinson@ucsf.edu

Island foxes!!!

Genomic Analysis

- Whole Genome Sequencing:
 - 16 foxes 13X-23X Illumina
 - Mapped to dog reference genome
 - Called variants with freebayes
- Maximum likelihood phylogeny:
 - Based on 12,249 SNPs
 - Pruned for linkage disequilibrium
- Also, PCA analysis

Genomic Analysis

- Y-axis: Ratio of zero-fold relative to four-fold degenerate sites (proxy for selection)
- X-axis: Neutral heterozygosity

 Island foxes contain a high proportion of amino-acid changing mutations and low genetic diversity

Still, not a lot of congenital defects in island foxes relative to other wild canids (dogs)!

From museum collections:

141 skulls

163 complete specimens

Checked for malformations or injuries

Island foxes are far more susceptible to death by vehicle collision. Inbreeding depression doesn't seem to be an issue.

Why?

Simulations of Neutral and Deleterious Genetic Variation

 Six different models involving the establishment of a small island population from a large mainland population

- Each model produced a 2Mb diploid genome, consisting of annotated "genes" = $^{\sim}1/10^{\text{th}}$ the dog genome.
- They then counted the deleterious (weak and strong) and neutral mutations.

Simulations produced a dearth of strongly deleterious mutations in island populations compared to mainland populations

Conclusions

- Bigger (population) is not necessarily better!
- Excessively deleterious alleles are exposed to selection in small populations and are purged from the population
- Meanwhile, weakly deleterious alleles can drift to high frequency.

- This explains why Island foxes have low genetic diversity but are not suffering from inbreeding depression.
- Instead, they are getting hit by cars 😊