Всероссийская олимпиада школьников по физике

11 класс, региональный этап, 2010/11 год

Задача 1. Тонкий стержень постоянного сечения состоит из двух частей. Первая из них имеет длину $l_1=10$ см и плотность $\rho_1=1,5$ г/см³, вторая — плотность $\rho_2=0,5$ г/см³ (см. рисунок). При какой длине l_2 второй части стержня он будет плавать в воде (плотность $\rho_0=1$ г/см³) в вертикальном положении?

10 см $< l_2 < 30$ см

Задача 2. На гладкой горизонтальной поверхности покоится уголок массы M, который с помощью лёгкой нити и двух блоков соединён со стенкой и бруском массы m (см. рисунок). Брусок касается внутренней поверхности уголка. Нити, перекинутые через блок, прикреплённый к стене, натянуты горизонтально.

Блоки лёгкие. Трение в системе отсутствует.

 $\frac{\sigma m_{\mathcal{G}}}{\sigma m_{\mathcal{G}}} = \sigma$

ЗАДАЧА 3. Говорят, что в архиве лорда Кельвина нашли рукопись, на которой был изображён процесс $1 \to 2 \to 3$, совершённый над одним молем азота (см. рисунок). От времени чернила выцвели, и стало невозможно разглядеть, где находятся оси p (давления) и V (объёма). Однако из текста следовало, что состояния 1 и 3 лежат на одной изохоре, а также то, что в процессах $1 \to 2$ и $2 \to 3$ объём газа изменяется на ΔV . Кроме того, было сказано, что количество теплоты, подведённой в процессе $1 \to 2 \to 3$ к N_2 , равно нулю.

Определите, на каком расстоянии (в единицах объёма) от оси p (давлений) находится изохора, проходящая через точки 1 и 3.

 $V_{\Delta} = \frac{1}{8} \Delta V$

ЗАДАЧА 4. В электрической цепи, схема которой изображена на рисунке, ЭДС батареек равны $3\mathscr{E}$ и $2\mathscr{E}$, сопротивления резисторов составляют $R_1 = R$ и $R_2 = 2R$, а $R_x = 3R$.

На сколько процентов изменится сила тока, проходящего через амперметр, если сопротивление переменного резистора R_x увеличить на 5%?

 $A = \begin{bmatrix} 3\mathscr{E} & R \\ & &$

кэтинэмеи эН

ЗАДАЧА 5. Электрическая цепь состоит из идеального источника тока с ЭДС $\mathscr E$, двух конденсаторов ёмкостью C и 2C, катушки индуктивности L, сопротивлений R и r, идеального диода D и двух ключей K_1 , K_2 (см. рисунок). В начальный момент времени конденсаторы не заряжены, а ключи разомкнуты. Сначала замыкают ключ K_1 . Найдите:

- 1) напряжение U_{2C} , установившееся на конденсаторе 2C;
 - 2) работу A, совершённую источником тока.

После того как конденсаторы зарядятся, ключ K_1 размыкают, а ключ K_2 замыкают. Затухание в получившемся RLC-контуре мало, то есть теплота, которая выделяется на резисторе R за полпериода колебаний, намного меньше начальной энергии, запасённой в конденсаторе ёмкостью 2C.

- 3) Найдите зависимость силы тока I = I(t) от времени.
- 4) Постройте соответствующий график.
- 5) Определите количество теплоты Q_R , которое выделится на резисторе.
- 6) Вычислите установившееся напряжение U_D на диоде.

$$U_{2C} = \frac{2}{3}; A = \frac{2}{3}C\mathbb{S}^2; I = \begin{cases} \frac{2}{3}C\mathbb{S}^\omega \sin \omega t, & \text{ecin } t < \pi/\omega, \\ 0, & \text{ecin } t \geqslant \pi/\omega; \end{cases} Q_R = \frac{2}{9}\pi C^2\mathbb{S}^2\omega R; U_D = -\mathbb{S}/3, \text{ fig. } \omega = \frac{1}{\sqrt{2CL}}$$