NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 6, Lecture 4

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Data structures

- * Algorithms + Data Structures = Programs
 Niklaus Wirth
- * Arrays/lists sequences of values
- * Dictionaries key-value pairs
- * Python also has sets as a built in datatype

Sets in Python

* List with braces, duplicates automatically removed

```
colours = {'red', 'black', 'red', 'green'}
>>> print(colours)
{'black', 'red', 'green'}
```

* Create an empty set

```
colours = set()
```

* Note, not colours = {} — empty dictionary!

Sets in Python

* Set membership

```
>>> 'black' in colours
True
```

* Convert a list into a set

```
>>> numbers = set([0,1,3,2,1,4])
>>> print(numbers)
{0, 1, 2, 3, 4}

>>> letters = set('banana')
>>> print(letters)
{'a', 'n', 'b'}
```

Set operations

```
odd = set([1,3,5,7,9,11])
prime = set([2,3,5,7,11])
```

- * Union odd I prime \rightarrow {1, 2, 3, 5, 7, 9, 11}
- * Intersection odd & prime \rightarrow {3, 11, 5, 7}
- * Set difference odd prime → {1, 9}
- * Exclusive or
 odd ^ prime → {1, 2, 9}

Stacks

- * Stack is a last-in, first-out list
 - * push(s,x) add x to stack s
 - * pop(s) return most recently added element
- * Maintain stack as list, push and pop from the right
 - * push(s,x) is s.append(x)
 - * s.pop() Python built-in, returns last element

Stacks

- * Stacks are natural to keep track of recursive function calls
- * In 8 queens, use a stack to keep track of queens added
 - * Push the latest queen onto the stack
 - * To backtrack, pop the last queen added

Queues

- * First-in, first-out sequences
 - * addq(q,x) adds x to rear of queue q
 - * removeq(q) removes element at head of q
- * Using Python lists, left is rear, right is front
 - * addq(q,x) is q.insert(0,x)
 - * l.insert(j,x), insert x before position j
 - * removeq(q) is q.pop()

- * Rectangular m x n grid
- * Chess knight starts at (sx,sy)
 - * Usual knight moves
- * Can it reach a target square (tx,ty)?

- * Rectangular m x n grid
- * Chess knight starts at (sx,sy)
 - * Usual knight moves
- * Can it reach a target square (tx,ty)?

- * Rectangular m x n grid
- * Chess knight starts at (sx,sy)
 - * Usual knight moves
- * Can it reach a target square (tx,ty)?

- * Rectangular m x n grid
- * Chess knight starts at (sx,sy)
 - * Usual knight moves
- * Can it reach a target square (tx,ty)?

- * X1 all squares reachable in one move from (sx,sy)
- * X2 all squares reachable from X1 in one move
- *
- * Don't explore an already marked square
- * When do we stop?
 - * If we reach target square
 - * What if target is not reachable?

- * Maintain a queue Q of cells to be explored
- * Initially Q contains only start node (sx,sy)
 - * Remove (ax,ay) from head of queue
 - * Mark all squares reachable in one step from (ax,ay)
 - * Add all newly marked squares to the queue
- * When the queue is empty, we have finished

```
def explore((sx,sy),(tx,ty)):
 marked = [[0 for i in range(n)]
                      for j in range(m)]
 marked[sx][sy] = 1
  queue = [(sx, sy)]
  while queue != []:
    (ax,ay) = queue.pop()
    for (nx,ny) in neighbours((ax,ay)):
      if !marked[nx][ny]:
        marked[nx][ny] = 1
        queue.insert(0,(nx,ny))
  return(marked[tx][ty])
```

Example

* This is an example of breadth first search

Summary

- * Data structures are ways of organising information that allow efficient processing in certain contexts
- * Python has a built-in implementation of sets
- * Stacks are useful to keep track of recursive computations
- * Queues are useful for breadth-first exploration