Student Information

Full Name: Deniz Karakoyun

Id Number: 2580678

Answer 1

1.a) To determine if the statement is a tautology or contradiction, we'll create a truth table for $(p \to q) \oplus (p \land \neg q)$:

р	q	$\neg q$	$p \land \neg q$	$p \rightarrow q$	$(p \to q) \oplus (p \land \neg q)$
T	Т	F	F	Т	T
T	F	Γ	Т	F	T
F	Т	F	F	Τ	T
F	F	Т	F	Т	Т

The truth table shows that $(p \to q) \oplus (p \land \neg q)$ is always true (T); so it's a **tautology**.

1.b) To prove the propositional equivalence, we can use the given tables and laws:

$$\begin{array}{lll} p \to ((q \vee \neg p) \to r) & \equiv & p \to (\neg (q \vee \neg p) \vee r) \\ & \equiv & p \to ((\neg q \wedge p) \vee r) \\ & \equiv & \neg p \vee ((\neg q \wedge p) \vee r) \\ & \equiv & (\neg p \vee (\neg q \wedge p)) \vee r \\ & \equiv & ((\neg p \vee \neg q) \wedge (\neg p \vee p)) \vee r \\ & \equiv & ((\neg p \vee \neg q) \wedge T) \vee r \\ & \equiv & ((\neg p \vee \neg q) \vee r) \\ & \equiv & (\neg p \vee \neg q) \to r \\ & \equiv & (p \wedge q) \to r \\ & \equiv & (p \wedge q) \to r \\ & \equiv & (p \wedge q) \to r \\ & \equiv & (p \wedge q) \to r \\ & \equiv & (p \wedge q) \to r \\ & \equiv & (p \wedge q) \to r \\ & \equiv & (p \wedge q) \to r \\ & \Rightarrow & (p \wedge q) \to r \\ &$$

1

Thus, $p \to ((q \lor \neg p) \to r)$ and $(p \land q) \to r$ are logically equivalent.

- 1.c) Logical Equivalences:
- $(p \land q) \rightarrow r \equiv (\neg p \land \neg q) \lor r$: False
- $(p \wedge q) \vee (\neg p \wedge \neg q) \equiv p \oplus q$: False
- $(p \lor q) \land (p \land \neg q) \equiv p$: False
- $(p \lor q) \land (p \lor \neg q) \equiv p$: True
- $p \oplus q \equiv \neg(p \leftrightarrow q)$: True

Answer 2

- a) Player Can plays in a team that plays in league L. $\exists x (P(\operatorname{Can}, x) \land T(x, L))$
- b) Every team in league S has at least one Turkish player. $\forall x (T(x,S) \rightarrow \exists y (P(y,x) \land N(y,Turkish)))$
- c) Every team in league S has exactly one rival, which is also in league S. $\forall x (T(x,S) \to \exists y (R(x,y) \land T(y,S) \land \forall z ((R(x,z) \land T(z,S)) \to (z=y))))$
- d) Team M has never won against a team with at least one English player. $\forall x(W(M,x) \rightarrow \neg \exists y(N(y, \text{English}) \land P(y,x)))$
- e) Exactly two Turkish players play on team G. $\exists x \exists y ((P(x,\mathbf{G}) \land N(x,\mathrm{T\"{u}rk})) \land (P(y,\mathbf{G}) \land N(y,\mathrm{Turkish})) \land x \neq y) \land \forall z ((N(z,\mathrm{Turkish}) \rightarrow \neg P(z,\mathbf{G})) \land (z \neq x \land z \neq y))$
- f) There are some teams that play in more than one league. $\exists x \exists y \exists z (T(x,y) \land T(x,z) \land (z \neq y))$

Answer 3

Table 1: Proof of $p \to q, (r \land s) \to p, (r \land \neg q) \vdash \neg s$ 1. premise2. $(r \wedge s) \rightarrow p$ premise $(r \wedge \neg q)$ 3. premise4. assumption5. ∧e 3 r6. $\neg q$ $\wedge e 3$ 7. $(r \wedge s)$ $\wedge i 4, 5$ $(r \wedge s) \rightarrow p$ 8. copy 2 9. \rightarrow e 7,8 p10. copy 1 $p \rightarrow q$ \rightarrow e 9, 10 11. q12. $\neg e 6, 11$ $\neg i \ 4 - 12$ 13.

Answer 4

a) Converting sentences to logic:

Some students need to study for the exam in order to pass. $\equiv \exists x (P(x) \to S(x))$ Every student passed the exam. $\equiv \forall x P(x)$

b)

Table 2: Proof of $\forall x P(x), \exists x (P(x) \to S(x)) \vdash \exists x S(x)$

		(**) (**)) *	
1.	$\forall x P(x)$	premise	_
2.	$\exists x (P(x) \to S(x))$	premise	
3.	$P(c) \to S(c)$	assumption	
4.	P(c)	∀e 1	
5.	S(c)	\rightarrow e 3,4	
6.	$\exists x S(x)$	∃i 5	
7.	$\exists x S(x)$	$\exists e \ 2, 3-6$	