Teacher:			
-	 	 ·	

SYDNEY TECHNICAL HIGH SCHOOL

MATHEMATICS - YEAR 9 - MAY COMMON TEST, 2016

Time allowed: 70 minutes

Instructions: *Calculators may be used.

*Necessary working must be shown in the provided spaces.

*Full marks may not be awarded for careless, illegible or messy working.

*Marks are shown next to questions.

*Use blue or black pen only.

·		
Question	Topic	Marks
1	Number	/12
2	Algebra	/12
3	Geometry	/12
4	Indices	/12
5	Surds	/12
6 a,b,c,d	Number	/4
e,f	Algebra	/4
g,h,i	Surds	/4
j,k,l,m	Indices	/4
n,o	Geometry	/4

QUESTION 1 – NUMBER (12 marks)					
a) Each number shown has the same value: 7.5	$\times 10^3$, 7	75×10^{2}	7.5 × 1000		
<u>Circle</u> the one that is written in scientific notati	ion.	,			
b) Rewrite each number in scientific notation:					
i) 3290					
ii) 0.00065					
c) Round off 937.426 correct to:					
i) 2 decimal places.					
ii) 2 significant figures.		•			
d) How many significant figures does 6095 have?			 		
e) Write 7.5×10^{-2} as a basic numeral.					
f) Calculate $(3.3 \times 10^4) \div (4 \times 10^{-2})$. Answer in	n scientific ı	notation.	·		
g) Write $\frac{11}{36}$ as a decimal correct to 4 decimal place	es.				
h) What are the lower <u>and</u> upper limits of accurac	cy for a me	asuremen	t of 37 cm, measured t		
the nearest cm?			and		
i) A very accurate measurement of 17.250 mm is	recorded.	How many	significant figures are		
used?			 		
j) A Gigabyte is one thousand Megabytes. How m	any Kiloby	tes are in a	a Gigabyte?		
OHECTION 2 ALCERDA /42 manula)	-				
QUESTION 2 – ALGEBRA (12 marks)	•				
a) If $a = -5$, $b = 2$, what is the value of $(a - b)(a + b)$?	b) Simplify $ab + 3a + ba$				
	 				

e) Simplify: 3	f) Expand and simplify where possible:	4 (
i) $\frac{2m}{3} + \frac{m}{4}$	i) 7(x + 3)	`
	ii) $2(5a+3)-2(1-a)$	
ii) $\frac{8b}{3} \div \frac{4b^2}{5}$		-
3 5	iii) $(x+4)^2$	
iii) $3 + \frac{1}{2a}$	iv) $(4x-1)(x+5)$	(
	nort side of $(a-b)$ cm and long side of $(b+c)$ cm?	_1
		_
QUESTION 3 – GEOMETRY (12 marks)		
a) Complete:		
i) When a trans cuts across two	parallel lines, the	1
angles are supplementary.		
ii) Many points that lie or	one line are called points.	1
b) i) Find the size of each · ii) The interior	angle sum iii) Each exterior angle of a regular	3
interior angle of a regular of a polygon i	s 1440°. polygon is 20°. How many sides	
hexagon. How many sid	des does does the polygon have?	
the polygon h	nave?	

c) Find x and y, giving reasons:

1

2

d) Which congruence test is used to prove that $\triangle ABC \equiv \triangle DCB$?

e) i) Prove that the two triangles are congruent.

ii) Why do we now know that PQ = SQ?

1

QUESTION 4 - INDICES (12 marks)

ii)
$$(5m^0)^2$$

6

iii)
$$(x^8)^3 \div x^4$$

$$iv) \frac{a^4b}{(ab^2)^3} - \dots$$

v)
$$\sqrt{x^{18}}$$

vi)
$$x^{15} + x^{15}$$

b) Evaluate $8^{-2/3}$

c) MULTIPLE CHOICE - Write A, B, C or D only:

i)
$$13^{-1} = ?$$
 A. $\frac{1}{13}$ B. -13 C. $\frac{-1}{13}$ D. $\frac{13}{1}$

A.
$$\frac{1}{12}$$

B.
$$-13$$

C.
$$\frac{-1}{12}$$

D.
$$\frac{13}{4}$$

ii)
$$\frac{1}{4x^2} = ?$$
 A. $4x^{-2}$ B. $\frac{1}{4}x^2$ C. $\frac{1}{4}x^{-2}$ D. $(4x)^{-2}$

A.
$$4x^{-2}$$

B.
$$\frac{1}{4}x^2$$

$$C.\frac{1}{4}x^{-2}$$

D.
$$(4x)^{-1}$$

$$iii) \frac{1}{\sqrt{x}} = 3$$

A.
$$x^{-1}$$

B.
$$x^{-1/2}$$

C.
$$x^{1/2}$$

D.
$$\frac{x}{2}$$

iii)
$$\frac{1}{\sqrt{x}} = ?$$
 A. x^{-1} B. $x^{-1/2}$ C. $x^{1/2}$ D. $\frac{x}{2}$

iv)
$$5x^{-4} = ?$$
 A. $\frac{5}{x^4}$ B. $\frac{1}{5x^4}$ C. $(\frac{5}{x})^4$ D. $-5x^4$

A.
$$\frac{5}{x^4}$$

$$B.\frac{1}{5x^4}$$

C.
$$(\frac{5}{x})^4$$

D.
$$-5x^4$$

v)
$$2x^{1/2} = ?$$
 A. $\sqrt{2x}$ B. $2\sqrt{x}$ C. $\sqrt{x^2}$ D. $\frac{x^2}{2}$

A.
$$\sqrt{2x}$$

$$B.2\sqrt{x}$$

C.
$$\sqrt{x^2}$$

D.
$$\frac{x^2}{2}$$

QUESTION 5 - SURDS (12 marks)

a) Simplify: i) $\sqrt{27}$ ii) $2\sqrt{6} + \sqrt{6}$

iii)
$$\sqrt{8} + \sqrt{2}$$

iii)
$$\sqrt{8} + \sqrt{2}$$
 _____ iv) $\frac{\sqrt{500}}{\sqrt{5}} + 2\sqrt{6} \times \sqrt{6}$ _____

b) Simplify:

$$i)\frac{4\sqrt{10}\times3\sqrt{2}}{2\sqrt{5}}$$

1 ii)
$$2\sqrt{18} + \sqrt{12} - \sqrt{32}$$

2

c)	Write	$10\sqrt{2}$	as ai	n entire	surd.
----	-------	--------------	-------	----------	-------

I.	d)	Expand	and	simplify	(√5	7	2) ²
L	uj	Lypania	anu	annpmy	(VJ		ر ـ

1

e) Which surd is half of
$$\sqrt{60}$$
?

I f) Simplify
$$(3\sqrt{2} \times 2\sqrt{6})^2$$

1

g) Which surd is represented by the arrow

on the number line below?

er 1

QUESTION 6 - MIXED/HARDER (20 marks)

a) Express " half of 10^{20} " in scientific notation.

1

b) If x = -3, y = 2, evaluate $(x^2y)^{-2} \times (xy)^{-1}$ in fraction form.

c) A googol is 10^{100} . What is a millionth 1

of a hundredth of a googol?

d) If $0.1a \times 32.6b = c$, what is $10a \times 3.26b$?

e) Simplify $\frac{x}{5} - \frac{x-3}{10x}$

2 f) Subtract the product of 3x and x + 1

2

from the product of 5x and x-2.

g)	Simplify: i) $\frac{10-5\sqrt{20}}{10}$	1	$ii) \frac{\sqrt{27} \times \sqrt{12}}{3 \times 2\sqrt{6}}$	1
-				
-				
h)	Expand and simplify $(5\sqrt{m} + 2\sqrt{n})^2$	1	i) Express $\frac{1}{x\sqrt{x}}$ in purely index form.	1
-				
-				
j)	Express $3^m + 3^m + 3^m$ in	1	k) Simplify $\frac{m^{xy+y}}{m^{-y}}$	1
-	simplest index form			
I)	Find the value of x if $x^{3/2} = 125$	1	m) Find a quarter of 2^n in simplified	1

index form.

SYDNEY TECHNICAL HIGH SCHOOL

MATHEMATICS - YEAR 9 - MAY COMMON TEST, 2016 ·

Time allowed: 70 minutes

Instructions: *Calculators may be used.

*Necessary working must be shown

in the provided spaces.

*Full marks may not be awarded for careless, illegible or messy working

*Marks are shown next to questions.

*Use blue or black pen only.

	e,f	6 a,b,c,d	5	4	3	2	·	Question
,	Algebra	Number	Surds .	Indices	Geometry	Algebra	Number	Topic
	/4	/4	/12	/12	/12	/12	/12	Marks

u
=
m
[A
=
\simeq
2
\mathbf{r}
t
•
-
۷,
_
=
<u> </u>
=
w
777
翌
(12
_
N
-
3
வ
=
ᅏ
ĺń

	<u>n</u>
Circle the one that is written in scientific notation.	a) Each number shown has the same value: $(7.5 \times 10^3, 75 \times 10^2, 7.5 \times 1000)$
	75 × 10°,
	7.5×1000

- b) Rewrite each number in scientific notation:
- ii) 0.00065

i) 3290

<u></u>	ام
937.1	8
3	0

- c) Round off 937.426 correct to:
- ii) 2 significant figures. i) 2 decimal places.
- d) How many significant figures does 6095 have?
- e) Write 7.5×10^{-2} as a basic numeral.
- f) Calculate $(3.3 \times 10^4) \div (4 \times 10^{-2})$. Answer in scientific notation.

8-25 × 105 0-3056

0.075

240

- g) Write $\frac{23}{36}$ as a decimal correct to 4 decimal places.
- h) What are the lower and upper limits of accuracy for a measurement of 37 cm, measured to the nearest cm? and 37.44) 1 (in tar
- i) A very accurate measurement of 17.250 mm is recorded. How many significant figures are
- j) A Gigabyte is one thousand Megabytes. How many Kilobytes are in a Gigabyte?

(or 1000000)

QUESTION 2 - ALGEBRA (12 marks)

a) If a=-5, b=2, what is the value of (a-b)(a+b)?

i'u'' j,k,l,m

Surds

Geometry indices

- b) Simplify ab + 3a + ba

- c) Simplify $12x \times 3x + 9$

	(20°	hexagon.	interior angle of a regular	b) i) Find the size of each \cdot	ii) Many	angles are supplementary.	i) When a transversed	QUESTION 3 ~ GEOMETRY (12 marks) a) Complete:			g) What is the perimeter of a Simplify your answer.		11.2	III) 3+1 6a+		$11) \frac{8b}{3} \div \frac{4b^2}{5}$	
(or n = 10)	the polygon have?	How many sides does	of a polygon is 1440°.	ii) The interior angle sum	Many points that lie on one line are called $\frac{\it Co/linear}$	ary.	i) When a transバモスの人 cuts across two parallel lines, the	12 marks) noed	The second of th		a rectangle with short side of (and the second section of the sectio	22			3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
	P	does the polygon have?	polygon is 20°. How many sides	iii) Each exterior angle of a regular	called <u>Co/(In.ear</u> points.	(or expacent)	, the cointerior	1 Fork		2a +2c	g) What is the perimeter of a rectangle with short side of $(a-b)$ cm and long side of $(b+c)$ cm: Simplify your answer,	The state of the s	4x2 + 19x-5	iv) $(4x-1)(x+5)$	And the second s	2 + 8× +6	

e) Simplify:

f) Expand and simplify where possible:

i) $\frac{2m}{3} + \frac{m}{4}$

- 2

ii) 2(5a+3)-2(1-a)

i) 7(x+3) ___

e) i) Prove that the two triangles are congruent.

ii) Why do we now know that PQ = SQ?

Corresponding sides in congruent triangles.

		a) Simplify: i) $10y^4 \times 5y^3 = \frac{50}{9}$	QUESTION 4 - INDICES (12 marks)
W) (ab2)3 A	a4b	ii) $(5m^0)^2$ 25	

I) Find the value of x if $x^3/z = 125$ $x = 2.5$	j) Express $3^m + 3^m + 3^m$ in simplest index form	h) Expand and simplify (5√m+2√n) ²
4	Н	H
m) Find a quarter of 2^n in simplified index form.	k) Simplify $\frac{m^{2y+y}}{m^{-y}}$ p_{χ} p_{χ} p_{χ}	i) Express $\frac{1}{x\sqrt{x}}$ in purely index form.
4	ţ.à	H

. •

르

In the diagram above, $\angle BDE = x$.

Find, in terms of x:

i) LDBA (reasons not required) ii) ∠CEF (reasons not required) 180°-2/2×

In $\triangle ABC$, D is on side AC and is equidistant from A, B, C.

Prove that $\angle ABC$ is a right angle.

triangles ABD and BDC Mark in aqual trase angles in isoscolar 244 = LABC = 90° angle Sum DABC as shown