Phys 121, Section 2 Quiz #4 — Fall 2000

- 1. A small 0.260 kg mass is attached to the end of a 1.50 m—long string. The string is pulled back by 45.0° from where the mass is at the lowest posistion.
- a) What is the height of the mass above its lowest position?

 The difference in heights of the two positions is:

$$h = l - l \approx 45^{\circ} = l (1 - \cos 45^{\circ})$$

= $(1.50 \text{ m})(1 - \cos 45^{\circ}) = 0.439 \text{ m}$

b) The mass is released; what is the speed of the mass as it

Energy is conserved!

Using "zero height" for the lowest position, adding up potential & kinetic energies for the initial and final positions gires:

$$E_e = E_f$$
 \longrightarrow $mgh = \frac{1}{2}mV^2$
 PE_e KE_f
 $(ne ke)$ $(ne pe)$

passes through the lowest position?

50:

$$gh = \frac{1}{2}v^2$$
 $v^2 = 2gh$ $v = \sqrt{2gh}$ Plug in numbers:
 $V = \sqrt{2(9.80\%)(0.439m)} = 2.93\%$

2. On a frictionless track, a 0.850 kg mass is moving to the right with a speed of 1.20 $\frac{m}{s}$. A 0.540 kg mass is moving to the left with speed 3.10 $\frac{m}{s}$

The masses collide and stick together. What is the velocity of the united mass just after the collision?

3. A bug sits on the edge of a disk of radius 12.0 cm. If the disk turns through an angle of 50° , through what distance does the bug move?

Pistance buy moves is the arclength for radis
$$r = 0.120 \text{ m}$$
 and angle $\theta = 50^{\circ} \left(\frac{\pi \text{ rad}}{180 \text{ dy}} \right) = 0.873 \text{ m}^{\circ}$.

$$5 = r0 = (0.120 \, \text{m})(0.873 \, \text{rad})$$

= 0.105 m
= 10.5 cm

Pasitive x direction

850 €

0.540

r= 12.0 cm

You must show all your work!

$$g = 9.80 \frac{\text{m}}{\text{s}^2} \qquad \pi \text{ rad} = 180 \text{ deg} \qquad C = 2\pi r \qquad A = \pi r^2$$

$$\text{KE} = \frac{1}{2} m v^2 \quad \text{PE}_{\text{grav}} = mgh \quad \mathbf{p} = m\mathbf{v} \qquad \mathbf{F} = m\mathbf{a} \qquad \Delta E = \Delta \text{KE} + \Delta \text{PE} = W_{\text{non-con}}$$

$$\text{When} \quad \sum \mathbf{F}_{\text{external}} = 0, \quad \mathbf{P}_0 = \mathbf{P}_f$$

$$\mathbf{s} = r\theta \qquad \boldsymbol{\omega} = \boldsymbol{\omega}_0 + \alpha t \qquad \theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

So it 15