1 过程控制仪表及控制系统 课后答案(林德杰 著) 机械工业出版社 - 职业资格 - 道客巴巴 http://www.doc88.com/p-135711045895.html

- 首先在结构上来看,串级控制由两个反馈控制回路组成,而前馈-反馈控制器由一个反馈和一个开环补偿回路叠加而成。
- 在变量上,串级控制的副参数与前馈-反馈控制的输入量是两截然不同的变量,

前者是串级控制系统中反映主被控变量的中间变量,控制作用对他产生明显的调节效果。

后者是对主被告控变量有显著影响的干扰量,是完全不受 控制作用约束的独立变量,引入前馈的目的是为了补偿原料 干扰对输出的影响。

- 在功能上,前馈控制器与串级控制的副控制器担负不同的功能。
- 图5-73中(a) 为串级控制, (b)为前馈-反馈控制。

习题5-7

• (1) A、B阀均选气开阀时,为正作用, 控制器为反作用,

$$T(s) \uparrow e \downarrow u \uparrow f \uparrow T'(s) \downarrow$$

• (2) A、B阀均选气关阀时,为反作用, 控制器为正作用。

二 对象建模 (10)

如图所示,液位过程的输入量为 q_1 ,流出量为 q_3 ,相应的液位高度 h 为被控参数,c 为相应的容量系数,设 R 为相应的线性液阻。要求

- (1) 列出相应过程的微分方程组
- (2) 求出液位过程的传递函数

$$\Delta q_2 = \frac{\Delta h_1}{R_1}$$

$$\Delta q_2 - \Delta q_3 = C_2 \frac{d\Delta h_2}{dt}$$

$$\Delta q_3 = \frac{\Delta h_2}{R_3}$$

传递函数:
$$\frac{H_2(s)}{Q_1(s)} = \frac{K}{(T_1s+1)(T_2s+1)}, T_1 = R_1C_1, T_2 = R_2C_2, K = R_2$$

两只水箱串联工作,输入量为 q₁,流出量为 q₂, q₃ 相应的液位高度为 h1, h2.

h2 为被控参数变量, c1, c2 为相应的容量系数,设 R1,R2,R3 为相应的线性液阻。要求(1)列出相应过程的微分方程组

(2) 求出液位过程的传递函数

$$\Delta Q_i - \Delta Q_1 = C_1 \frac{d\Delta h_1}{dt} \qquad \frac{\Delta h_1 - \Delta h_2}{R_1} = \Delta Q_1 \quad \Delta Q_2 = \frac{\Delta h_2}{R_2} \qquad \Delta Q_1 - \Delta Q_0 = C_2 \frac{d\Delta h_2}{dt}$$

$$\frac{\Delta H_2(s)}{\Delta Q_i(s)} = \frac{R_2}{R_1 C_1 R_2 C_2 s^2 + (R_1 C_1 + R_2 C_2 + R_2 C_1) s + 1}$$

四 计算题 (5*10)

1 假设不确定广义对象的标称模型 P 为:

$$\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{pmatrix} w \\ u \end{pmatrix}$$
其中 z 为系统输出,y 为测量输出,w 为扰动输入,u 为控制输入。

2 冷凝器-凝-核前馈-反馈复合控制系统炼理图如图所示,已知扰动通道特性 $W_f(s)=\frac{1.05e^{-6s}}{(1+41s)}$;控制通道特性 $W_0(s)=\frac{0.94e^{-8s}}{(1+55s)^5}$;温度调节器采用 PI 调节规律。

求该复合控制系统中前馈控制器的数学模型 $W_m(s)$;

$$W_M(S) = -\frac{W_F(s)}{W_a(s)} = -\frac{105(1+55s)^5}{94(1+41s)}$$

3 设模糊矩阵 R, S, T 分别为:

$$R = \begin{bmatrix} 0.7 & 0.5 \\ 0.9 & 0.2 \end{bmatrix}, S = \begin{bmatrix} 0.4 & 0.3 \\ 0.6 & 0.8 \end{bmatrix}, T = \begin{bmatrix} 0.7 & 0.6 \\ 0.5 & 0.7 \end{bmatrix}$$

求 $R \cup S \cup T$, $R \cap S \cap T$, $R \cup (S \cap T)$

$$R \cup S \cup T = \begin{bmatrix} 0.7 & 0.6 \\ 0.9 & 0.8 \end{bmatrix}$$

$$R \cap S \cap T = \begin{bmatrix} 0.4 & 0.3 \\ 0.5 & 0.2 \end{bmatrix}$$

$$R \cup (S \cap T) = \begin{bmatrix} 0.7 & 0.5 \\ 0.9 & 0.7 \end{bmatrix}$$

4 两模糊矩阵

$$Q = \begin{bmatrix} 0.2 & 0.5 & 1 \\ 0.7 & 0.1 & 0.8 \end{bmatrix}$$
, $R = \begin{bmatrix} 0.6 & 0.5 \\ 0.4 & 1 \\ 0.1 & 0.9 \end{bmatrix}$, 求合成矩阵 $Q*R$

$$Q * R = \begin{bmatrix} 0.4 & 0.9 \\ 0.6 & 0.8 \end{bmatrix}$$

4 如图有两种液料 Q_1 和 Q_2 在管道中均匀混合,产生一种所需成分 X 的混合物,混合物的总流量 Q 也要进行控制。现在要求混合物的成分 X 控制在 Q_1 的质量百分数为 0.2。求出操纵变量和被控变量之间的恰当配对。

5 设被控耦合对象的传递函数矩阵为
$$G_P(s) = \begin{bmatrix} \frac{2.582}{2.7s+1} & \frac{-1.582}{2.7s+1} \\ \frac{1}{4.5s+1} & \frac{1}{4.5s+1} \end{bmatrix}$$
,要求目标矩阵为

$$G_P(s) = \begin{bmatrix} \frac{2.582}{2.7s+1} & 0 \\ 0 & \frac{1}{4.5s+1} \end{bmatrix}$$
,试进行静态解耦设计。

$$N = \begin{bmatrix} 0.620 & 0.380 \\ -0.620 & 0.620 \end{bmatrix}$$

6 有一水槽,其横截面积 F 为 0.5m²。流出侧阀门阻力实验结果为: 当水位 H 变化 20cm 时,流出量的变化为 1000cm³/s. 试求流出侧阀门阻力 R,并计算该水槽的时间常数 T.

1/R=Q/H, R=200, T=RF=100

8 某水槽的阶跃响应实验数据如下:

t/s	0	10	20	40	60	80	100	150	200	300	400	500
h/mm	0	9.5	18	33	45	55	63	78	86	95	98	99

其中阶跃扰动量 $\Delta u = 20\%$ 。若该水位对象用一阶惯性环节近似

- (1) 画出水位阶跃响应曲线;用切线法求出时间常数 T.
- (2) 用计算法计算出增益 K 和时间常数 T.
- (3) 若系统的滞后时间为 0.5 秒,请用动态特性参数法整定 PI 控制器参数大小

$$K = \frac{\Delta Y}{\Delta U} = \frac{100}{20\%} = 500, \text{ Y1} = 100*0.39 = 39 \quad \text{t1} = 50, \text{ Y2} = 100*0.63 = 63, \quad \text{t2} = 100$$

$$T = 2*(\text{t2} - \text{t1}) = 100$$

$$K_p = 1.1K(\frac{\tau}{T}) = 1.1*500*0.5/100 = 2.75$$

$$K_I = 3.3\tau = 3.3*0.5 = 1.65$$

7.若比值 $k=Q_A/Q_B=4,Q_{Amax}=6x10^3kg/h$, $Q_{Bmax}=3x10^3kg/h$ 当流量测量不加开放器,试求出比值系数 K。

解: K=
$$(1/k)^2 \times (Q_{Amax}^2/Q_{Bmax}^2) = 1/4$$

8 在某生产过程中,需使参与反应的甲乙两种物料流量保持一定比值,若已知正常操作时,甲流量 $q_1=7m^3/h$,采用孔板测量 并配用差压变送器,其测量范围为 $0\sim10m^3/h$,乙流量 $q_2=250$ L/h,相应的测量范围为 $0\sim300L/h$,根据要求设计保持 q_2/q_1 比值的控制系统。试求在流量和测量信号分别成线性和非线性关系时,采用 DDZ- III型仪表组成系统时的比例系数 K。

解: 线性: k=q₂/q₁=0.25/7=1/28

 $K=k\times(Q_{1max}/Q_{2max})=25/21$

非线性: k=q₂²/q₁²=0.25²/7²=1/784

 $K=k^2 \times (Q_{1max}^2/Q_{2max}^2) = 625/44$

9.有一双闭环比值控制系统如图 7-5 所示。若采用 DDZ-III型仪表和相乘方案来实现。已 知 Q_{1max}=7000kg/h,Q_{2max}=4000kg/h。要求:

- (1) 画出系统方块图;
- (2) 若已知 $I_0=18$ mA,求该比值系统的比值 k=? 比值系数 K=?
- (3) 待该比值系统稳定时,测得 $I_1=10$ mA,试计算此时 $I_2=?$ 。

解: (2) $K\times16+4=I_0$ 得: K=7/8又因为 $K=k*(Q_{1max}/Q_{2max})$

得: k=1/2

(3) $K = (I_2-4)/(I_1-4)$

得: I₂=9.25mA

10 有一均匀控制系统(缓冲罐直径 2m,控制器为纯比例读 100%)输入流量为正弦变化, 幅度从 240~480m3/h, 周期为 2min, 由此引起的液位变化幅度为 0.3m。

- (1) 求相应的输出流量变化幅度
- 若将该储罐直径增加到2.8米,求液位变化幅度和输出流量变化幅度。 (2)

(1) 因为
$$\Delta q_1 - \Delta q_2 = C_1 \frac{d\Delta h_1}{dt}$$
 $\Delta q_1 = 480 - 240$ $\Delta h = 0.3$ $C = \pi, \Delta t = 60$

$$\Delta q_2 = 239.0580$$

所以
$$R_2 = \frac{\Delta h_1}{\Delta q_2} = 0.0013$$

(2),同上写出
$$\Delta q_1 - \Delta q_2 = C_2 \frac{d\Delta h_1}{dt}$$
 $C_2 = \pi \times 1.4^2$ 以及 $R_2 = \frac{\Delta h_1}{\Delta q_2} = 0.0013$ 得

$$\Delta q_2 = 239.9760$$
 $\Delta h_1 = 0.3120$

传递函数:
$$\frac{H_2(s)}{Q_1(s)} = \frac{K}{(T_1s+1)(T_2s+1)}, T_1 = R_1C_1, T_2 = R_2C_2, K = R_2$$

- 11. 题图 3-1 所示液位过程的输入量为 Q_1 ,流出量为 Q_2 , Q_3 ,液位h为被控参数,A为截面积,并设 R_1 , R_2 , R_3 均为线性液阻。要求:
 - ① 列写过程的微分方程组;
 - ② 画出过程的方框图;
 - ③ 求过程的传递函数 $Wo(s) = \frac{H(S)}{Q_1(s)}$ 。

- 12. 已知两只水箱串联工作(如题图 3-2 所示),其输入量为 Q_1 ,流出量为 Q_2 , Q_3 , h_1 , h_2 分别为两只水箱的水位, h_2 为被控量, C_1 , C_2 为其容量系数,假设 R_1 , R_2 , R_{12} , R_3 为线性液阻。要求:
 - ① 列写过程的微分方程组;
 - ② 画出过程的方框图;

③ 求液位过程的传递函数 $Wo(s) = \frac{H_2(s)}{O_1(s)}$

- 13. 在一个串级控制系统中,原来选用口径为 20mm 的气开阀,后来改为口径为 32mm 的 气关阀。问
 - ① 主、副控制器正反作用要否改变? 为什么?
 - ② 副控制器的比例度和积分时间要否改变? 是变大还是变小? 为什么?
 - ③ 主控制器的比例度和积分时间要否改变? 是变大还是变小? 为什么?
- 14. 在一个串级控制系统中,主变量是温度,温度变送器量程原为 0~200℃,后改为 80~120℃。问
 - ① 副控制器比例度和积分时间要否改变? 是变大还是变小? 为什么?
 - ② 主控制器比例度和积分时间要否改变? 是变大还是变小? 为什么?
- 15. 在所有回路均为开环时,某一过程的开环增益矩阵为

$$K = \begin{bmatrix} 0.58 & -0.36 & -0.36 \\ 0.73 & -0.61 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

试推导出相对增益矩阵,并选出最好的控制回路,分析此过程是否需要解耦。

16. 设有一个三种液体混合的系统,其中一种是水,混合液流量为Q,系统被控变量是混合液的密度 ρ 和粘度v。已知它们之间有下列关系,即

$$\rho = \frac{Au_1 + Bu_2}{Q}, \quad \upsilon = \frac{Cu_1 + Du_2}{Q}$$

式中,A,B,C,D为物理常数; u_1 和 u_2 为两个可控流量。

- ① 请求出该系统的相对增益矩阵。
- ② 若设A=B=C=0.5,D=1.0,则系统相对增益矩阵是什么?并对计算结果进行分析。

17. 已知一个
$$2 \times 2$$
 相关系统的传递函数矩阵为 $\begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix} = \begin{bmatrix} 0.3 & -0.4 \\ 0.5 & 0.2 \end{bmatrix}$,试计算该系

统相对增益矩阵,说明其变量配对的合理性。然后按静态解耦方法进行解耦,求取静态解耦 装置的数学模型。

$$\Lambda = \begin{bmatrix} 0.23 & 0.77 \\ 0.77 & 0.23 \end{bmatrix} G_n = \begin{bmatrix} 0.23 & 0.3 \\ -0.58 & 0.23 \end{bmatrix}$$

18. 设对象的传递函数矩阵为
$$Gp(s) = \begin{bmatrix} \frac{1}{(s+1)^2} & \frac{-1}{2s+1} \\ \frac{1}{3s+1} & \frac{1}{s+1} \end{bmatrix}$$
,给定的闭环传递函数矩阵为

$$\phi(s) = egin{bmatrix} rac{1}{s+1} & 0 \\ 0 & rac{1}{s+1} \end{bmatrix}$$
, 试用给定要求设计法,设计解耦器和控制器结合的 G_{cn} 。

19. 题图中有一加热炉出口温度系统,测取温度对象的过程为: 在系统稳定时,在阀上风压作 3%变化,输出温度记录如下

t/min	0	2	4	6	8	10	12	14	16
$ heta/\mathbb{C}$	270.0	270.0	267.0	264.7	262.7	261.0	259.5	258.4	257.8
t/min	18	20	22	24	26	28	30	32	34
θ /°C	257.0	256.5	256.0	255.7	255.4	255.2	255.1	255.0	255.0

要求整定 PI 参数 (假定变送器量程为 200~300℃)。

20 某前馈-串级控制系统原理图如图所示, 已知扰动通道特性

$$G_{pD}(s) = \frac{0.5}{(1+2s)} \ G_{c1}(s) = G_{c2}(s) = 9 \ ; \quad G_{h1}(s) = G_{h2}(s) = 1 \ , \quad G_{p1}(s) = \frac{3}{(1+2s)} \ , \ ;$$

$$G_{p2}(s) = \frac{2}{(1+2s)}$$
。 求该复合控制系统中前馈控制器的数学模型。

6 设过程输入输出关系如下:

$$Y_1(s) = \frac{u_1(s)}{s+1} + \frac{u_2(s)}{0.1s+1}$$

$$Y_2(s) = \frac{-0.2u_1(s)}{0.5s+1} + \frac{0.8u_2(s)}{s+1}$$
 求相对增益

5 设被控耦合对象的传递函数矩阵为
$$G_P(s)=\begin{bmatrix} \dfrac{1}{10s+1} & \dfrac{0.42}{10s+1} \\ -28.4 & \dfrac{27.7}{(20s+1)(5s+1)} \end{bmatrix}$$
,解耦

器接在控制器和对象之间。试按理想解耦方法设计解耦矩阵 N。