CH 2 — Sequence and Limits

Luke Lu • 2025-09-15

Triangle Inequality

$$|x - y| \le |x - z| + |z - y|$$

for $x, y, z \in \mathbb{R}$

Idea: the straight-line distance is shortest.

Without loss of generality assume $x \leq y$; swapping x, y preserves the statement.

Number-line proof by cases:

- Case 1 $z \le x \le y$: $|x y| \le |z y| \le |x z| + |z y|$
- Case $2 x \le z \le y$: |x y| = |x z| + |z y|
- Case $3 x \le y \le z$: $|x y| \le |x z| + |z y|$

Triangle Inequality 2

For all $a, b \in \mathbb{R}$

$$|a+b| \le |a| + |b|$$

Proof:

apply the triangle inequality to x = a, y = -b, z = 0.

Quick check

Is
$$|a-b| \leq |a| - |b|$$
 for all a, b ?

No

Example:

$$a = 10, b = -9$$
 gives $|10 - (-9)| = 19$, while $|10| - |-9| = 1$

Hence this statement is false.

Interval translations

1.
$$|x-a| < \delta \Rightarrow x \in (a-\delta, a+\delta)$$

2.
$$|x-a| \le \delta \Rightarrow x \in [a-\delta, a+\delta]$$

3.
$$0 \le |x-a| \le \delta \Rightarrow x \in (a-\delta,a) \cup (a,a+\delta)$$

Practice

1) Solve
$$|2x - 5| < 3$$

$$-3 < 2x - 5 < 3 \Rightarrow 1 < x < 4$$

Answer: $x \in (1,4)$

2) Solve
$$2 < |x+7| \le 3$$

Split into
$$|x+7| > 2$$
 and $|x+7| \le 3$

Answer:
$$x \in [-10, -9) \cup (-5, -4]$$

3) Solve
$$\frac{|x+2|}{|x-2|} > 5$$

Consider regions $(-\infty, -2)$, (-2, 2), $(2, \infty)$ and track signs of x+2 and x-2

Answer: $x \in (\frac{4}{3}, 2) \cup (2, 3)$

Infinite Sequences

A sequence is an ordered list $a_1, a_2, a_3, ...$; write $(a_n)_{\{n=1\}}^{\{\infty\}}$

A subsequence chooses indices $n_1 < n_2 < ...,$ yielding $a_{\{n_1\}}, a_{\{n_2\}}, ...$

The tail with cutoff k is $a_k, a_{\{k+1\}}, a_{\{k+2\}}, \dots$

Convergence (definition)

IMPORTANT

We say $\lim_{\{n\to\infty\}} a_n = L$ if for every $\varepsilon>0$ there exists N such that $n>N \Rightarrow |a_n-L|<\varepsilon$ Equivalent formulations:

- Every interval $(L-\varepsilon, L+\varepsilon)$ contains a tail of (a_n)
- Only finitely many terms lie outside $(L-\varepsilon,L+\varepsilon)$
- More generally, any open interval (a, b) containing L contains a tail

Examples

1) Show $\lim_{\{n\to\infty\}} \frac{1}{\sqrt[3]{n}} = 0$

Choose $N = \frac{1}{\varepsilon^3}$

Then $n > N \Rightarrow |\frac{1}{\sqrt[3]{n}}| < \varepsilon$

2) Show $\lim_{\{n\to\infty\}} \frac{3n^2+2n}{4n^2+n+1} = \frac{3}{4}$

Estimate $|\frac{3n^2+2n}{4n^2+n+1} - \frac{3}{4}| \le \frac{5}{16n+4}$

Pick $N>\frac{5}{16\varepsilon}-\frac{1}{4}$

Theorem (Equivalent definitions of the limit of a sequence)

IMPORTANT

For a sequence (a_n) and a number L, the following are equivalent

- $1) \lim_{\{n \to \infty\}} a_n = L$
- 2) For every $\varepsilon>0$, the interval $(L-\varepsilon,L+\varepsilon)$ contains a tail of (a_n)
- 3) For every $\varepsilon>0,$ only finitely many n satisfy $|a_n-L|\geq \varepsilon$
- 4) Every interval (a,b) containing L contains a tail of (a_n)
- 5) Given any interval (a,b) containing L, only finitely many terms of (a_n) lie outside (a,b)

Example 1

Show $\lim_{\{n\to\infty\}} \frac{1}{\sqrt[3]{n}} = 0$

Side work:

$$\mid \frac{1}{\sqrt[3]{n}} \mid <\varepsilon \Rightarrow \frac{1}{\sqrt[3]{n}} <\varepsilon \Rightarrow \sqrt[3]{n} > \frac{1}{\varepsilon} \Rightarrow n > \frac{1}{\varepsilon^3}$$

Proof

Let $\varepsilon > 0$ and choose $N = \frac{1}{\varepsilon^3}$

If
$$n>N$$
 then $\mid \frac{1}{\sqrt[3]{n}}\mid <\frac{1}{\sqrt[3]{N}}=\frac{1}{\sqrt[3]{\frac{1}{\varepsilon^3}}}=\varepsilon$

Example 2)

Prove
$$\lim_{\{n\rightarrow\infty\}}\frac{3n^2+2n}{4n^2+n+1}=\frac{3}{4}$$

Rough work

$$\mid \frac{3n^2 + 2n}{4n^2 + n + 1} - \frac{3}{4} \mid = \frac{|5n - 3|}{16n^2 + 4n + 4} \le \frac{5n}{16n^2 + 4n} = \frac{5}{16n + 4}$$

Proof

Given $\varepsilon > 0$, pick $N > \frac{5}{16\varepsilon} - \frac{1}{4}$

Then for n > N

$$\mid \frac{3n^2 + 2n}{4n^2 + n + 1} - \frac{3}{4} \mid < \frac{5}{16n + 4} \le \frac{5}{16N + 4} < \varepsilon$$

Limits

Thinking quesiton: can a sequence converge to two different limits $L \neq M$?

No, we are saying then $\varepsilon < \frac{|L-M|}{2}$ If $a \to L$ a tail of the sequence lies in $(L - \frac{L}{2})$

If $a_n \to L$ a tail of the sequence lies in $(L-\varepsilon, L+\varepsilon)$ so only finite many terms can lie in the interval $(M-\varepsilon, M+\varepsilon)$, that is $a_n \nrightarrow M$

IMPORTANT

Theorem (Uniqueness of Limits):

Let $\{a_n\}$ be a sequence. If $\{a_n\}$ has limit L , then the value L is unique.

We say that a sequence **diverges to \infty** if for every m > 0, there exists $N \in \mathbb{N}$ such that for all n > N, $a_n > m$.

We say that a sequence **diverges to** ∞ if any interval of the form (m, ε) for some m > 0 contains a tail of $\{a_n\}$. We write that $\lim_{n\to\infty} a_n = \infty$

We say that a sequence **diverges to** $-\infty$ if for every m<0, there exists $N\in\mathbb{N}$ such that for all $n>N, a_n< m$

We say that a sequence **diverges to** $-\infty$ if any interval of the form (m, ε) for some m < 0 contains a tail of $\{a_n\}$. We write that $\lim_{n\to\infty} a_n = -\infty$

Thinking questions:

1. If a seuquce consists of non-negative terms, is the limit non-negative? ANS: YES Suppose not, then $a_n \to L, a_n > 0, \forall n$. Consider $\varepsilon < \frac{|L|}{2}$. Then $(L - \varepsilon, L + \varepsilon)$ only contains negative numbers, so it can't include a tail of a_n , contradiction.

- 2. If a sequence consists of positive terms, is the limit positive? ANS: NO, consider the sequence $\left\{\frac{1}{n}\right\}$, $\lim_{n\to\infty}\frac{1}{n}=0$
- 3. $\lim_{n\to\infty} a_n + b_n = a + b$
- 4. $\lim_{n\to\infty} a_n b_n = ab$
- 5. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}, b \neq 0$
- 6. If $a_n \geq 0 \forall n, \alpha > 0$, then $\lim_{\{n \to \infty\}} a_n^{\alpha} = a^{\alpha}$
- 7. For any $k \in \mathbb{N}$, $\lim_{n \to \infty} = a_n$

Examples: Prove that $\lim_{n\to\infty} \text{Let } m>0$ and consider the interval m,∞ . If $n>\sqrt[3]{m}$ then $n^3>m$ and ao $n^3\in(m,\infty)$. So choose $k=\lceil\sqrt[3]{m}\rceil+1$, then the tails lies in (m,∞)

Limit Laws

IMPORTANT

Let $\{a_n\},\{b_n\}$ be sequences with $\lim_{n\to\infty}a_n=a$, $\lim_{n\to\infty}b_n=b$ for some $a,b\in\mathbb{R}$ then:

- 1. For any $c \in \mathbb{R}$, if $a_n = c$ for all n then c = a
- 2. For any $c \in \mathbb{R}$, if $\lim_{n \to \infty} ca_n = ca$

Prove the SUm of Sequences Rule

Proof

$$\begin{split} &a_n \to a, b_n \to b \\ &\forall \varepsilon > 0, \exists M, N \in \mathbb{R}, \forall n > M, n > N, |a_n - a| < \varepsilon, |b_n - b| < \varepsilon \\ &|(a_n + b_n) - (a + b)| = |(a_n - a) + (b_n - b)| \leq |a_n - a| + |b_n + b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

IMPORTANT

Tandem Convergence Theorem:

If $\lim_{n \to \infty} \frac{a_n}{b_n}$ exists and $\lim_{n \to \infty} b_n = 0$, then $\lim_{n \to \infty} a_n = 0$