Statistical Signal Processing

袁宜桢

Febrary 28, 2023

1 Basic

1.1 Mean Square Error

$$\begin{split} MSE(\hat{\theta}) &= E[(\hat{\theta} - \theta)^2] \\ &= E[(\hat{\theta} - E[\hat{\theta}] + E[\hat{\theta}] - \theta)^2] \\ &= E[((\hat{\theta} - E[\hat{\theta}])^2 - 2(\hat{\theta} - E[\hat{\theta}])(E[\hat{\theta}] - \theta) + (E[\hat{\theta}] - \theta))^2] \end{split}$$

As you may notice, since the Expectation of sum is same as the sum of expectation, so the second term becomes $E[2(\hat{\theta}-E[\hat{\theta}])(E[\hat{\theta}]-\theta)]$, and since $(E[\hat{\theta}]-\theta)$ is constant, so we can move it out which becomes $(2E[\hat{\theta}]-\theta)E[(\hat{\theta}-E[\hat{\theta}])]$. And $E[(\hat{\theta}-E[\hat{\theta}])]=0$

$$= var(\hat{\theta}) + (bias(\theta))^2$$

1.2 Minimum Variance Unbiased

1.2.1 Unbiased

Definition:

$$E[\hat{\theta}=\theta], \theta \in (a,b)$$

This has to be true for all values This estimation $does \ not \ always$ exists

1.2.2 Minimum Variance

For whatever θ , the variance has to be minimum, which also makes this not always satisfiable.

2 Cramer Rao Lower Bound

Prerequisite for calculating the lower bound:

$$E[\hat{\theta}] = \theta$$

Prerequisite for find the MVU or when the variance achieve the lower bound:

$$\exists, I(\theta), s.t. \frac{\partial \ln p((x); \theta)}{\partial \theta} = I(\theta)(\hat{\theta} - \theta)$$

Conclusion:

For a scalar estimator, the minimum variance it could achieve is:

$$Var(\hat{\theta}) \ge \frac{1}{E[(\frac{\partial \ln p(\mathbf{x};\theta)}{\partial \theta})^2]} = \frac{1}{-E[\frac{\partial^2 \ln p(\mathbf{x};\theta)}{\partial^2 \theta}]}$$

If the lowerbound exists,

$$I(\theta) = -E\left[\frac{\partial^2 \ln p(\boldsymbol{x}; \theta)}{\partial \theta^2}\right]$$

2.1 Tips

- if an estimator has same variance as CRLB, then it is called **Fully Efficient**
- if an estimator \hat{A} is fully efficient for a parameter A, and another parameter B is linear to it(i.e. B = 3A + 1). The linear transformed estimator (i.e. $3\hat{A} + 1$) will be fully efficient for B too
- However, if $A = B^2$ and \hat{A} is fully efficient for A, \hat{B}^2 is NOT fully efficient for B. It is actually not even unbiased. It is called asymptotic unbiasedness. This is the case for both mean and variance