I SUITES GÉOMÉTRIQUES

1 DÉFINITION

Dire qu'une suite (u_n) est géométrique signifie qu'il existe un nombre réel q non nul tel que, pour tout entier n,

$$u_{n+1} = qu_n$$

Le réel q est appelé la raison de la suite géométrique.

ÉVOLUTION EN POURCENTAGE

- Augmenter une grandeur de t% équivaut à multiplier sa valeur par $1 + \frac{t}{100}$.
- Diminuer une grandeur de t% équivaut à multiplier sa valeur par $1 \frac{\iota}{100}$.

Chaque fois qu'on est confronté à une situation d'évolutions successives d'une grandeur de t%, on peut définir une suite géométrique de raison $1 + \frac{t}{100}$ (augmentation) ou $1 - \frac{t}{100}$ (diminution)

EXEMPLES

1. Un capital de 2 000 € est placé au taux d'intérêt composé de 1,5% par an. On note C_n le capital disponible au bout de n années alors :

$$C_{n+1} = \left(1 + \frac{1,5}{100}\right) \times C_n = 1,015 \times C_n$$

Ainsi, la suite (C_n) est une suite géométrique de premier terme $C_0 = 2000$ et de raison q = 1,015.

2. Pour lutter contre la pollution, un groupe industriel décide de réduire progressivement sa quantité de rejets de 4% par an. En 2012, la quantité de rejets était de 50 000 tonnes.

On note r_n la quantité de rejets l'année 2012 + n d'où :

$$r_{n+1} = \left(1 - \frac{4}{100}\right) \times r_n = 0.96 \times r_n$$

Ainsi, la suite (r_n) est une suite géométrique de premier terme $r_0 = 50000$ et de raison 0,96.

2 PROPRIÉTÉ 1

Soit (u_n) une suite géométrique de raison q et de premier terme u_0 alors pour tout entier n,

$$u_n = u_0 \times q^n$$

EXEMPLE

L'objectif du groupe industriel est de réduire progressivement la quantité de rejets pour atteindre une quantité inférieure ou égale à 30 000 tonnes (soit une réduction de 40%). Cet objectif sera-t-il atteint au bout de 10 ans ? Au bout de 10 ans, la quantité de rejets est de :

$$r_{10} = 50000 \times 0.96^{10} \approx 33242$$

Avec un réduction de 4 % par an, en 2022 l'objectif du groupe industriel ne sera pas atteint.

3 PROPRIÉTÉ 2

Si (u_n) une suite géométrique de raison q alors pour tout entier n et pour tout entier p,

$$u_n = u_p \times q^{n-p}$$

A. YALLOUZ (MATH@ES) Page 1 sur 13

4 MONOTONIE

Soit (u_n) une suite géométrique de raison q et de premier terme u_0 donc :

$$u_{n+1} - u_n = u_0 \times q^{n+1} - u_0 \times q^n$$

= $u_0 \times q^n \times (q-1)$

La monotonie de la suite dépend du signe de u_0 , q^n et (q-1)

- Si q < 0 alors q^n est positif pour n pair, négatif pour n impair donc la suite n'est pas monotone.
- Si q > 0 alors la suite est monotone, croissante ou décroissante selon le signe du produit $u_0 \times (q-1)$.

Nous pouvons en déduire les deux théorèmes suivants

THÉORÈME 1

Soit q un réel non nul.

- Si q < 0 alors la suite (q^n) n'est pas monotone.
- Si q > 1 alors la suite (q^n) est strictement croissante.
- Si 0 < q < 1 alors la suite (q^n) est strictement décroissante.
- Si q = 1 alors la suite (q^n) est constante.

THÉORÈME 2

Soit (u_n) une suite géométrique de raison q non nulle et de premier terme u_0 non nul

- Si q < 0 alors la suite (u_n) n'est pas monotone.
- Si q > 0 et $u_0 > 0$ alors la suite (u_n) a le même sens de variation que la suite (q^n) .
- Si q > 0 et $u_0 < 0$ alors la suite (u_n) a le sens de variation contraire de celui de la suite (q^n) .

5 SOMME DE TERMES CONSÉCUTIFS

Soit (u_n) une suite géométrique de raison $q \neq 1$ et de premier terme u_0 alors pour tout entier n,

$$u_0 + u_1 + \dots + u_n = \sum_{i=0}^n u_i = u_0 \left(\frac{1 - q^{n+1}}{1 - q} \right)$$

Cette formule peut se retenir de la façon suivante :

La somme S de termes consécutifs d'une suite géométrique de raison $q \neq 1$ est :

$$S = \text{premier terme } \times \frac{1 - q^{\text{nombre de termes}}}{1 - q}$$

A. YALLOUZ (MATH@ES)

Page 2 sur 13

II LIMITE D'UNE SUITE

On étudie le comportement d'une suite (u_n) quand n prend de grandes valeurs.

1 LIMITE INFINIE

DÉFINITION

On dit qu'une suite (u_n) admet une limite égale à $+\infty$ quand n tend vers $+\infty$ si pour tout nombre réel A strictement positif, tous les termes de la suite sont supérieurs à A à partir d'un certain rang p. On écrit :

$$\lim_{n\to+\infty}u_n=+\infty$$

Concrètement, une suite (u_n) tend vers $+\infty$ si u_n est aussi grand que l'on veut dès que n est suffisamment grand.

INTERPRÉTATION GRAPHIQUE

On a représenté ci-dessous une suite (u_n) ayant une limite égale à $+\infty$

Pour tout entier $n \ge p$, $u_n > A$. p est le seuil à partir duquel $u_n > A$

DÉFINITION

On dit qu'une suite (u_n) admet une limite égale à $-\infty$ quand n tend vers $+\infty$ si pour tout nombre réel A strictement négatif, tous les termes de la suite sont inférieurs à A à partir d'un certain rang p. On écrit :

$$\lim_{n\to+\infty}u_n=-\infty$$

2 LIMITE FINIE

DÉFINITION

Soit (u_n) une suite définie sur IN et ℓ un réel.

1. Dire que la suite (u_n) admet pour limite le réel ℓ signifie que tout intervalle ouvert de la forme $]\ell - r; \ell + r[$ contient tous les termes de la suite à partir d'un certain rang p. On écrit :

$$\lim_{n\to+\infty}u_n=\ell$$

2. Une suite qui admet pour limite un réel ℓ est dite *convergente*.

A. YALLOUZ (MATH@ES) Page 3 sur 13

Autrement dit, une suite (u_n) est convergente vers un réel ℓ si tous les termes de la suite à partir d'un certain rang p peuvent être aussi proches que voulu de ℓ .

INTERPRÉTATION GRAPHIQUE

Si on représente la suite convergente par un nuage de points dans un repère, à partir d'un certain rang p, tous les points sont dans la bande délimitée par les droites d'équation $y = \ell - r$ et $y = \ell + r$.

Le rang p est le seuil à partir duquel « u_n est à une distance de ℓ inférieure à r »

PROPRIÉTÉ

La suite (u_n) converge vers un réel ℓ si, et seulement si, la suite $(u_n) - \ell$ est convergente vers un 0.

REMARQUE

Une suite peut ne pas admettre de limite. Par exemple la suite de terme général $(-1)^n$ prend alternativement les valeurs 1 et -1. Elle n'admet pas de limite.

3 LIMITES D'UNE SUITE GÉOMÉTRIQUE

THÉORÈME (admis)

Soit q un réel strictement positif :

- Si 0 < q < 1 alors la suite géométrique de terme général q^n converge vers 0: $\lim_{n \to +\infty} q^n = 0$.
- Si q = 1 alors la suite géométrique de terme général q^n est constante et sa limite est 1.
- Si q > 1 alors la suite géométrique de terme général q^n a pour limite $+\infty$: $\lim_{n \to +\infty} q^n = +\infty$.

COROLLAIRE

Soit (u_n) une suite géométrique de premier terme u_0 non nul et de raison q strictement positive.

- Si 0 < q < 1 alors la suite (u_n) converge et $\lim_{n \to +\infty} u_n = 0$.
- Si q = 1 alors la suite (u_n) est constante et égale à u_0 .
- Si q > 1 alors la suite (u_n) admet une limite infinie avec :

$$\lim_{n \to +\infty} u_n = -\infty \text{ si } u_0 < 0 \qquad \text{ et } \qquad \lim_{n \to +\infty} u_n = +\infty \text{ si } u_0 > 0$$

A. YALLOUZ (MATH@ES)

Page 4 sur 13

RECHERCHE D'UN SEUIL À L'AIDE D'UN ALGORITHME

EXEMPLE 1

Soit (r_n) la suite géométrique de raison 0,96 et de premier terme $r_0 = 50000$

Comme 0 < 0.96 < 1 la suite (r_n) est décroissante et converge vers $0 : \lim_{n \to +\infty} 50000 \times 0.96^n = 0$.

L'algorithme suivant permet d'obtenir le seuil à partir duquel le terme général de la suite est inférieur à 30 000. C'est à dire déterminer le plus petit entier p tel que pour tout entier $n \ge p$, $50000 \times 0.96^n \le 30000$

PROGRAMME				
TEXAS	CASIO			
PROGRAM : SEUIL	===== SEUIL =====			
: 50000 → A	$50000 ightarrow A$ $_{\downarrow}$			
: 0 → I	$0 ightarrow exttt{I}$			
: While A > 30000	ل While A > 30000 إ			
: I + 1 \rightarrow I	I + 1 $ ightarrow$ I $_{\downarrow}$			
: 0.96*A → A	$0.96*A \rightarrow A$ \downarrow			
: End	WhileEnd $_{\downarrow}$			
: Disp I	I			

Initialisation:

A = 50000

I = 0

Traitement:

Tant que la condition $A > 30\,000$ est vraie, on effectue la suite d'instructions situées à l'intérieur de la boucle "TANT_QUE" et "FIN TANT_QUE"

Sortie:

La calculatrice affiche 13. Donc pour tout entier $n \ge 13$, $50000 \times 0.96^n \le 30000$.

EXEMPLE 2

Soit (u_n) la suite géométrique de raison 1,015 et de premier terme $u_0 = 2000$ 1,015 > 1 et $u_0 > 0$ donc la suite (u_n) est croissante et $\lim_{n \to +\infty} 2000 \times 1,015^n = +\infty$.

L'algorithme suivant permet d'obtenir le seuil à partir duquel le terme général de la suite est supérieur à 3 000. C'est à dire déterminer le plus petit entier p tel que pour tout entier $n \ge p$, $2000 \times 1,015^n > 3000$

La calculatrice affiche 28. Donc pour tout entier $n \ge 28$, $2000 \times 1,015^n > 3000$.

A. YALLOUZ (MATH@ES)

Page 5 sur 13

III SUITES ARITHMÉTICO-GÉOMÉTRIQUES

DÉFINITION

Soit a et b deux réels.

La suite (u_n) définie pour tout entier n, par la relation de récurrence $u_{n+1} = au_n + b$ et de terme initial u_0 est une suite *arithmético-géométrique*

REMARQUE

- Si a = 1 la suite est arithmétique.
- Si b = 0 la suite est géométrique.
- Dans les autres cas, la suite n'est ni arithmétique ni géométrique.

ÉTUDIER UNE SUITE ARITHMÉTICO-GÉOMÉTRIQUE

Soit a et b deux réels tels que $a \neq 1$ et $b \neq 0$. (u_n) la suite définie par u_0 et pour tout entier n, $u_{n+1} = au_n + b$.

On trace la courbe représentative de la fonction affine $f: x \longmapsto ax + b$ et la droite Δ d'équation y = x

Le graphique permet d'obtenir un certain nombre de conjectures à propos de la monotonie ou de la convergence de la suite.

UNE SUITE AUXILIAIRE

Si une suite arithmético-géométrique définie par une relation de récurrence du type $u_{n+1} = au_n + b$ est convergente, alors sa limite est l'unique solution de l'équation ax + b = x. Soit $x = \frac{b}{1-a}$ avec $a \ne 1$.

Soit (v_n) la suite définie pour tout entier n, par $v_n = u_n - \frac{b}{1-a}$. Montrons que la suite (v_n) est une suite géométrique. En effet, pour tout entier n,

$$v_{n+1} = u_{n+1} - \frac{b}{1-a}$$

$$= au_n + b - \frac{b}{1-a}$$

$$= au_n - \frac{ab}{1-a}$$

$$= a \times \left(u_n - \frac{b}{1-a}\right)$$

Ainsi, pour tout entier n, $v_n = a \times v_n$ donc (v_n) est une suite géométrique de raison a.

A. YALLOUZ (MATH@ES)

Page 6 sur 13

Par conséquent, pour tout entier n, $v_n = v_0 \times a^n$ avec $v_0 = u_0 - \frac{b}{1-a}$.

On en déduit que pour tout entier n, $u_n = v_0 \times a^n + \frac{b}{1-a}$

EXEMPLE

Chloé dépose $1000 \in \text{sur}$ un compte d'épargne rémunéré au taux mensuel de 0,2% et choisit d'y ajouter à la fin de chaque mois la somme de $250 \in \mathbb{C}$. On note u_n le montant, en euros, du capital acquis au bout de n mois.

- 1. Exprimer u_{n+1} en fonction de u_n .
 - Le coefficient multiplicateur associé à un taux d'intérêt de 0,2% est 1,002.

Donc pour tout entier n, $u_{n+1} = 1,002 \times u_n + 250$

2. Soit (v_n) la suite définie pour tout entier n, par $v_n = u_n + 125000$. Montrer que v_n est une suite géométrique dont on précisera la raison et le premier terme.

Pour tout entier n,

$$v_{n+1} = u_{n+1} + 125000$$

$$= 1,002 \times u_n + 125250$$

$$= 1,002 \times (u_n + 125000)$$

$$= 1,002 \times v_n$$

Ainsi, (v_n) est une suite géométrique de raison 1,002 et de premier terme $v_0 = 1000 + 125000 = 126000$.

- 3. Exprimer u_n en fonction de n.
 - (v_n) est une suite géométrique de raison 1,002 et de premier terme $v_0 = 126000$ donc pour tout entier n, $v_n = 126000 \times 1,002^n$.

Donc pour tout entier n, $u_n = 126000 \times 1,002^n - 125000$.

- 4. Étude de la suite (u_n) .
 - a) Variation

Pour tout entier n, $u_n = 126000 \times 1,002^n - 125000$.

Donc pour tout entier n,

$$u_{n+1} - u_n = (126000 \times 1,002^{n+1} - 125000) - (126000 \times 1,002^n - 125000)$$

$$= 126000 \times 1,002^{n+1} - 126000 \times 1,002^n$$

$$= 126000 \times 1,002^n \times (1,002 - 1)$$

$$= 252 \times 1,002^n$$

D'où $u_{n+1} - u_n > 0$. Par conséquent, la suite (u_n) est strictement croissante.

b) Limite

Comme
$$1,002 > 1$$
, $\lim_{n \to +\infty} 1,002^n = +\infty$ donc $\lim_{n \to +\infty} 126000 \times 1,002^n - 125000 = +\infty$.

c) Combien de mois sont nécessaires pour que le montant du capital disponible dépasse 15000 €?
On cherche à déterminer le plus petit entier n₀ tel que pour tout entier n ≥ n₀, u_n > 15000.
L'algorithme suivant permet d'obtenir le seuil à partir duquel le terme général de la suite (u_n) est supérieur à 15000.

```
A = 1000 \; ; \; I = 0 \; ;
\mathsf{TANT\_QUE} \; A \leqslant 15000 \; \; \mathsf{FAIRE}
\mid I \; \mathsf{prend} \; \mathsf{la} \; \mathsf{valeur} \; I + 1 \; ;
A \; \mathsf{prend} \; \mathsf{la} \; \mathsf{valeur} \; 1,002 \times A + 250 \; ;
\mathsf{FIN} \; \mathsf{TANT\_QUE}
\mathsf{Afficher} \; I
```

La calculatrice affiche 53. Donc le capital disponible dépassera 15000 € au bout de 53 mois.

A. YALLOUZ (MATH@ES) Page 7 sur 13

EXERCICE 1

 (u_n) est une suite arithmétique de raison a, déterminer l'entier k, s'il existe, dans chacun des cas suivants :

1.
$$u_{21} = 34$$
, $a = 1.5$ et $u_k = 1$

2.
$$u_{10} = 64$$
, $u_5 = 14$ et $u_k = 114$.

EXERCICE 2

 (u_n) est une suite géométrique de raison q strictement positive, déterminer l'entier p dans chacun des cas suivants :

1.
$$u_6 = 4$$
, $q = \frac{1}{2}$ et $u_p = \frac{1}{4}$

2.
$$u_3 = 16$$
, $u_7 = 1$ et $u_p = \frac{1}{8}$.

EXERCICE 3

Soit (u_n) la suite définie par : $u_0 = 16$ et pour tout entier naturel n, $u_{n+1} = 0.75 \times u_n$.

- 1. a) Quelle est la nature de la suite (u_n) ?
 - b) Exprimer, pour tout entier naturel n, u_n en fonction de n.
 - c) Étudier la monotonie de la suite (u_n) .
 - d) On note S_n la somme des n+1 premiers termes de la suite u_n . Calculer S_4 .
- 2. On a tracé ci-dessous dans un repère orthonormé, la courbe représentative de la fonction f définie pour tout réel x par f(x) = 0.75x et la droite \mathcal{D} d'équation y = x.

A. YALLOUZ (MATH@ES)

Page 8 sur 13

Page 9 sur 13

- a) Construire sur le graphique les termes de la suite u_2, u_3, \dots, u_{11} .
- b) Que peut-on conjecturer à propos de la limite de la suite (u_n) ?
- 3. À l'aide de la calculatrice, déterminer le plus petit entier n tel que $u_n \leq 0,1$.
- 4. Montrer que pour tout entier n, $S_n = 64 (1 0.75^{n+1})$. Vers quel réel tend S_n quand n tend vers $+\infty$?

EXERCICE 4

Soit (u_n) la suite géométrique définie par : $u_0 = \frac{1}{2}$ et pour tout entier naturel n, $u_{n+1} = \frac{8}{5} \times u_n$.

- 1. a) Exprimer, pour tout entier naturel n, u_n en fonction de n.
 - b) Étudier le sens de variation de la suite (u_n) .
- 2. a) Utiliser les droites d'équations y = x et y = 1,6x pour construire les huit premiers termes de la suite (u_n) .

- b) Que peut-on conjecturer à propos de la limite de la suite (u_n) ?
- 3. À l'aide de la calculatrice, déterminer le plus petit entier n tel que $u_n \ge 5000$.
- 4. On note S la somme des n premiers termes de la suite u_n .
 - a) Montrer que pour tout entier $n, S = \frac{5(1,6^n 1)}{6}$.
 - b) Vers quel réel tend S quand n tend vers $+\infty$?

A. YALLOUZ (MATH@ES)

EXERCICE 5

(D'après sujet bac Antilles Guyane 2013)

1. L'algorithme ci-dessous permet de calculer les termes successifs d'une suite que l'on appellera (u_n) .

Entrée: Saisir la valeur de l'entier naturel n

Traitement: Affecter 2 à la variable u

Pour i variant de 1 à n

Affecter 1,5u à u

Fin de Pour

Sortie: Afficher u

Quelles valeurs affiche cet algorithme lorsque l'on saisit n = 1, puis n = 2 et enfin n = 3?

- 2. On considère la suite (u_n) définie par $u_0 = 2$ et, pour tout entier naturel n, $u_{n+1} = 1.5u_n$.
 - a) Quelle est la nature de la suite (u_n) ? Préciser ses éléments caractéristiques.
 - b) Pour tout entier naturel n, donner l'expression du terme u_n en fonction de n.
- 3. On considère la suite (S_n) définie pour tout entier naturel n par :

$$S_n = \sum_{k=0}^n u_k = u_0 + u_1 + u_2 + \dots + u_n.$$

- a) Calculer les valeurs des termes S_0 , S_1 et S_2 .
- b) Quelles modifications doit-on faire à l'algorithme précédent pour qu'il affiche la valeur du terme S_n pour un n donné?

Écrire ce nouvel algorithme sur sa copie.

- c) Calculer le terme S_n en fonction de l'entier naturel n.
- d) En déduire la limite de la suite (S_n) .

EXERCICE 6

(D'après sujet bac Polynésie 2013)

On considère la suite numérique (u_n) définie par :

$$u_0 = 8$$
 et, pour tout entier naturel n , $u_{n+1} = 0.4u_n + 3$.

1. Calculer u_1 et u_2 .

On utilise un tableur pour calculer les premiers termes de cette suite.

Une copie d'écran sur laquelle les termes u_1 et u_2 ont été effacés est donnée ci-dessous.

	Α	В	
1	n	u(n)	
2	0	8	
3	1		
4	2		
5	3	5,192	
6	4	5,07681	
7	5	5,030 72	
8	6	5,012 288	
9	7	5,004 915 2	
10	8	5,001 966 08	
11	9	5,000 786 43	
12	10	5,000 314 57	

2. Quelle formule a-t-on pu saisir dans la cellule B3 de la feuille de calcul afin d'obtenir les premiers termes de cette suite par recopie vers le bas ?

A. YALLOUZ (MATH@ES)

Page 10 sur 13

- 3. En utilisant cette copie d'écran, que peut-on conjecturer sur la limite de la suite (u_n) ?
- 4. On considère l'algorithme suivant :

Les variables sont l'entier naturel N et le réel U.

Initialisation: Affecter à N la valeur 0

Affecter à U la valeur 8

Traitement: TANT QUE U - 5 > 0.01

Affecter à N la valeur N + 1

Affecter à U la valeur 0.4U + 3

Fin TANT QUE

Sortie: Afficher N

Par rapport à la suite (u_n) , quelle est la signification de l'entier N affiché?

- 5. On considère la suite (v_n) définie pour tout entier naturel n, par $v_n = u_n 5$.
 - a) Démontrer que la suite (v_n) est une suite géométrique dont on précisera le premier terme et la raison.
 - b) Exprimer v_n en fonction de n.
 - c) Déterminer la limite de la suite (v_n) .
 - d) Le résultat précédent permet-il de valider la conjecture faite à la question 3 ? Pourquoi ?

EXERCICE 7

Soit (u_n) la suite définie par : $u_0 = 5500$ et pour tout entier naturel n, $u_{n+1} = 0.68 \times u_n + 3560$.

1. a) Utiliser les droites d'équations y = x et y = 0.68x + 3560 pour construire les quatre premiers termes de la suite (u_n) .

A. YALLOUZ (MATH@ES)

Page 11 sur 13

Conjecturer le sens de variation de la suite (u_n) ainsi que la limite de la suite (u_n) .

b) Quel est le rôle de l'algorithme suivant?

```
A = 5500 ;
k = 0;
\mathsf{TANT\_QUE} \, A < 11000 \; \mathsf{FAIRE}
\mid k \; \mathsf{prend} \; \mathsf{la} \; \mathsf{valeur} \; k + 1 ;
\mid A \; \mathsf{prend} \; \mathsf{la} \; \mathsf{valeur} \; 0,68 \times A + 3560 ;
\mathsf{FIN} \; \mathsf{TANT\_QUE}
\mathsf{SORTIE} : \; \mathsf{Afficher} \; k;
```

- 2. Soit (v_n) la suite définie pour tout entier naturel n, par $v_n = u_n 11125$.
 - a) Démontrer que (v_n) est une suite géométrique dont on précisera le premier terme et la raison.
 - b) Exprimer, pour tout entier naturel n, v_n en fonction de n. En déduire que, pour tout entier naturel n, $u_n = 11125 - 5625 \times 0.68^n$.
 - c) La suite (u_n) est-elle convergente?

EXERCICE 8

Une revue spécialisée est diffusée uniquement par abonnement.

En 2010, il y avait 40 mille abonnés à cette revue. Depuis cette date, on a remarqué que chaque année 85 % des abonnés renouvellent leur abonnement et 12 mille nouvelles personnes souscrivent un abonnement. On note a_n le nombre de milliers d'adhérents pour l'année 2010 + n; on a donc $a_0 = 40$.

- 1. Pour tout entier naturel n, exprimer a_{n+1} en fonction de a_n .
- 2. On considère l'algorithme suivant :

L'utilisateur saisit en entrée le nombre S = 65.

Recopier et compléter le tableau suivant autant que nécessaire en arrondissant les résultats au millième près. Quel nombre obtient-on en sortie ? Interpréter ce résultat.

n	0	1	
A	40		
Test $A \leqslant S$	Vrai		

- 3. Soit la suite (u_n) définie par $u_n = a_n 80$ pour tout $n \ge 0$.
 - a) Montrer que la suite (u_n) est une suite géométrique dont on précisera la raison et le premier terme.
 - b) Démontrer que, pour tout entier naturel n, $a_n = 80 40 \times 0.85^n$.
 - c) Selon ce modèle, le directeur de cette revue peut-il envisager de la diffuser à 90 mille exemplaires ?

A. YALLOUZ (MATH@ES) Page 12 sur 13

EXERCICE 9

(D'après sujet bac Amérique du Nord 2013)

La bibliothèque municipale étant devenue trop petite, une commune a décidé d'ouvrir une médiathèque qui pourra contenir 100 000 ouvrages au total.

Pour l'ouverture prévue le 1^{er} janvier 2013, la médiathèque dispose du stock de 35 000 ouvrages de l'ancienne bibliothèque augmenté de 7 000 ouvrages supplémentaires neufs offerts par la commune.

PARTIE A

Chaque année, la bibliothécaire est chargée de supprimer 5 % des ouvrages, trop vieux ou abîmés, et d'acheter 6 000 ouvrages neufs.

On appelle u_n le nombre, en milliers, d'ouvrages disponibles le 1^{er} janvier de l'année (2013 + n). On donne $u_0 = 42$.

- 1. Justifier que, pour tout entier naturel n, on a $u_{n+1} = u_n \times 0.95 + 6$.
- 2. On propose, ci-dessous, un algorithme, en langage naturel. Expliquer ce que permet de calculer cet algorithme.

VARIABLES U, NINITIALISATION
Mettre 42 dans UMettre 0 dans NTRAITEMENT

Tant que U < 100 U prend la valeur $U \times 0.95 + 6$ N prend la valeur N + 1Fin du Tant que
SORTIE
Afficher N

3. À l'aide de votre calculatrice, déterminer le résultat obtenu grâce à cet algorithme.

PARTIE B

La commune doit finalement revoir ses dépenses à la baisse, elle ne pourra financer que 4 000 nouveaux ouvrages par an au lieu des 6 000 prévus.

On appelle v_n le nombre, en milliers, d'ouvrages disponibles le 1^{er} janvier de l'année (2013 + n).

- 1. Identifier et écrire la ligne qu'il faut modifier dans l'algorithme pour prendre en compte ce changement.
- 2. On considère la suite (w_n) définie, pour tout entier n, par $w_n = v_n 80$. Montrer que (w_n) est une suite géométrique de raison q = 0.95 et préciser son premier terme w_0 .
- 3. a) Exprimer, pour tout entier naturel n, w_n en fonction de n.
 - b) Déterminer la limite de (w_n) .
 - c) En déduire la limite de (v_n) . Interpréter ce résultat.

A. YALLOUZ (MATH@ES)

Page 13 sur 13