Memory Management 1

Minsoo Ryu

Operating Systems and Distributed Computing Lab.

Hanyang University

msryu@hanyang.ac.kr

Topics Covered

- □ Introduction
- Memory Allocation and Fragmentation
- ☐ Address Translation

Introduction

- ☐ CPU scheduling allows processes to share CPU
 - Improving both the CPU utilization and the response speed
- ☐ To realize this,
 - We must keep several processes in memory
 - This entails many complex problems for memory management
- ☐ Memory management is one of the most complex parts of the OS
 - Serves many different purposes

Introduction

- ☐ General goals of memory management
 - Provide a single contiguous, protected memory space to each process, make memory sharing easy for different processes, and allow for flexible memory management
 - Provide a larger separate memory space to every process than the physically available memory space
 - Every process can be allowed to use a 4GB memory space even though the physical memory is 1GB
- □ Tricks used by OS 물기적으로 제한된 메모리를 ঋ대한 많이 사용할수있도록 하는 방법
 - Noncontiguous physical memory allocation via address translation
 - Paging or segmentation
 - Differentiate addresses seen by each process from the real addresses
 - Allocate memory on demand (demand paging)

Memory Allocation and Address Binding

- □ Address binding ← 메모기를 베정당
 - Assign memory addresses to all instructions and data
 메일기상의 위시는 정함
- □ Three phases of address binding
 - Compile time (embedded system)
 - If memory location can be known a priori,
 - Absolute code can be generated; must recompile code if starting location changes
 - Load time (general)
 - A compiler may generate relocatable code if memory location is not known at compile time
 - Execution time
 - Binding is delayed until run time if the process can be moved during its execution from one memory segment to another

Contiguous Memory Allocation

- ☐ CPU requires contiguous memory
- BM 1) 한국성 보장 大 2) Fragmentation 문제
- When a process arrives, it is allocated memory from a hole large enough to accommodate it
 - Hole block of available memory; holes of various size are scattered throughout memory
- Operating system maintains information about:
 a) allocated partitions
 b) free partitions (hole)

Fragmentation Problem

낭비되는 메모리공간

□ Two types of fragmentation

即加加

External Fragmentation 바건된 에밀리 공간 사이에 갈채하는 hole 이 너무 작아서 프로세스가 배정되지 왔다. 낭비되는 공간

Contiguous • Total memory space exists to satisfy a request, but it is not memory allocation? contiguous

External Fraguent Attitum al Fragmentation आयश्च जाउरायर पांच्या प्रदेश द्वार ५ । यह दूर

- Allocated memory may be slightly larger than requested memory
- This size difference is memory internal to a partition, but not being used
- → 프로세스 메부의 금제이므로 운영체제의 메모리 management 를 여기할때 Internal Fragmentation은 논민조 乾

Illustration

Contiguous Memory Allocation Algorithms

- ☐ How to satisfy a request of size n from a list of free holes?
- ☐ Three algorithms
 - First-fit: allocate the first hole that is big enough ধ্রে জাই
 - Best-fit: allocate the smallest hole that is big enough 也贵
 - Must search entire list, unless ordered by size
 - Produces the smallest leftover hole

- 시간이 같수록 external fragmentation 상태가 약화될수 있다
- Worst-fit: allocate the largest hole 失义 发头
 - Must also search entire list
 - Produces the largest leftover hole

```
long term 으로 보면 Worst-fito) external fragment
변상을 만당시키는 것을 기대해보수도 있다
```

☐ First-fit and best-fit are better than worst-fit in terms of speed and storage utilization

Solutions to Fragmentation

- □ Reduce external fragmentation by compaction
 - Shuffle memory contents to place all free memory together in one large block
 - Compaction is possible only if relocation is dynamic, and is done at execution time
- Another solution

os L

Noncontiguous memory allocation with address translation

Key Idea for Noncontiguous Allocation: Address Translation

- □ Benefits of address translation
 - - Great flexibility for memory allocation
 - Further enables efficient implementations for memory protection and sharing

Logical vs. Physical Address Space

- □ The concept of a logical address space that is bound to a separate physical address space is central to proper memory management
- ☐ Logical (virtual) address
 - Generated by the CPU
 - Also referred to as virtual address
- ☐ Physical address
 - Seen by the memory unit 실제 에밀 하드웨어의 건

Memory-Management Unit (MMU)

Hardware device that maps virtual to physical address

☐ The user program

- Deals with logical addresses
- It never sees the physical addresses

Dynamic Relocation Using a Relocation Register

(MMU 당단막 폐제)

Hardware Support for Relocation and Limit Registers

Noncontiguous Memory Allocation with Address Translation

- 어디로지의 비면속적 배정이 가능내실
- □ Segmentation 서그먼트 단위로 메일리는 배생님 방다
 - Allocate memory on a segment basis
 - Process memory = code segment + data segment + stack segment + . | Leap segment +
 - Different segments have different sizes
- □ Paging 동일한 크기의 메인리 병역 단위로 비비정을
 - Allocate memory on a page basis
 - Process memory = page + page + page ...
 - · Pages have the same fixed size

Segmentation

Paging

