Incremental Newton Method for Minimizing Big Sums of Functions

Anton Rodomanov

Higher School of Economics

Bayesian methods research group (http://bayesgroup.ru)

30 September 2016

Motivation: Optimization Problems in Machine Learning

Machine learning algorithms typically involve solving optimization problems of the form

$$\frac{1}{n}\sum_{i=1}^n f_i(x) \to \min_x$$

Example 1: Linear Regression

Given: training set $(a_i, \beta_i)_{i=1}^n$, $a_i \in \mathbb{R}^d$, $\beta_i \in \mathbb{R}$. **Goal:** predict β_{new} for a new observation a_{new} .

▶ Let us use a linear family of predictors:

$$\hat{\beta}(a;x) := \langle a,x \rangle = \sum_{i=1}^d a_i x_i$$

where $x \in \mathbb{R}^d$ are the parameters of $\hat{\beta}$.

▶ Find x^* minimizing the average error of $\hat{\beta}$ on the training set:

$$\frac{1}{n}\sum_{i=1}^{n}(\langle a_{i},x\rangle-\beta_{i})^{2}\rightarrow\min_{x}$$

▶ Predict new labels: $\beta_{\text{new}} = \hat{\beta}(a_{\text{new}}; x^*) = \langle a_{\text{new}}, x^* \rangle$

Example 2: Logistic Regression

Given: training set $(a_i, \beta_i)_{i=1}^n$, $a_i \in \mathbb{R}^d$, $\beta_i \in \{-1, 1\}$. **Goal:** predict β_{new} for a new observation a_{new} .

Let us use the following family of predictors:

$$\hat{\beta}(a;x) := \operatorname{sign}(\langle a, x \rangle)$$

where $x \in \mathbb{R}^d$ are the parameters of $\hat{\beta}$.

▶ Find x^* minimizing the average error of $\hat{\beta}$ on the training set:

$$\frac{1}{n}\sum_{i=1}^{n}\ln(1+\exp(-\beta_{i}\langle a_{i},x\rangle))\to\min_{x}$$

Predict new labels: $\beta_{\text{new}} = \hat{\beta}(a_{\text{new}}; x^*) = \text{sign}(\langle a_{\text{new}}, x^* \rangle)$

Problem

So we are interested in efficient methods for solving

$$\frac{1}{n}\sum_{i=1}^n f_i(x) \to \min_{x \in \mathbb{R}^d}$$

▶ Let us first consider the general problem

$$f(x) \to \min_{x \in \mathbb{R}^d}$$

and two standard methods for solving it: Gradient Descent and Newton Method.

Preliminaries

Problem: $f(x) \to \min_{x \in \mathbb{R}^d}$.

Assumptions:

- ► Function *f* is sufficiently *smooth*, i.e. once or twice continuously differentiable.
- ► Function *f* is *strongly convex*.

Smoothness of f enables us to compute the gradient $\nabla f(x)$ and Hessian $\nabla^2 f(x)$.

Strong convexity implies existence and uniqueness of solution x^* . We consider iterative methods which produce $\{x^k\}_{k\geq 0}: x^k \to x^*$.

Gradient descent

Problem: $f(x) \to \min_{x \in \mathbb{R}^d}$.

Idea: Choose direction p^k which locally minimizes f the most:

▶ For any fixed $p \in \mathbb{R}^d$ consider directional derivative

$$Df(x)[p] = \lim_{t \to 0+} \frac{f(x+tp) - f(x)}{t} = \langle \nabla f(x), p \rangle$$

Note that, by Cauchy-Schwarz inequality, for $\|p\|=1$, $\langle \nabla f(x), p \rangle \geq -\|\nabla f(x)\| \|p\| = -\|\nabla f(x)\|$ with equality iff $p=-\frac{\nabla f(x)}{\|\nabla f(x)\|}$.

▶ Thus, $-\nabla f(x^k)$ is the direction of the steepest descent at x^k .

Gradient descent:

$$x^{k+1} = x^k - \gamma_k \nabla f(x^k)$$

Here $\gamma_k \in \mathbb{R}_{++}$ is a (properly chosen) step length.

Newton Method

Problem: $f(x) \to \min_{x \in \mathbb{R}^d}$.

Motivation:

Approximate f with a quadratic:

$$f(x) \approx f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{1}{2} \langle \nabla^2 f(x^k)(x - x^k), x - x^k \rangle$$

▶ Choose x^{k+1} as the minimizer of the quadratic approximation:

$$x^{k+1} = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \langle \nabla f(x^k), x - x^k \rangle + \frac{1}{2} \langle \nabla^2 f(x^k)(x - x^k), x - x^k \rangle \right\}$$

▶ This minimizer can be calculated in closed form, giving us

Newton method:

$$x^{k+1} = x^k - [\nabla^2 f(x^k)]^{-1} \nabla f(x^k).$$

Comparison of Gradient Descent and Newton Method

Convergence rates: $r_k := f(x^k) - f^*$

- ▶ Linear: $r_{k+1} \le cr_k, c \in (0,1)$
- ▶ Sublinear: $r_{k+1} \le c_k r_k$, $c_k \uparrow 1$
- ▶ Superlinear: $r_{k+1} \le c_k r_k$, $c_k \downarrow 0$.

Gradient Descent:

- + Cheap iterations: only vector operations are involved
- + Low memory requirements: stores only vectors x^k , $\nabla f(x^k)$
- + Convergence for any x^0
- Linear convergence rate

Newton Method:

- Expensive iterations: requires matrix inversion
- High memory requirements: stores matrix $\nabla^2 f(x^k)$
- Convergence guaranteed only for x^0 close enough to x^*
- + Very fast superlinear convergence rate (in fact, quadratic)

Nevertheless, for small d, Newton method is very effective.

Getting Back to Original Problem

Problem:
$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \to \min_{x \in \mathbb{R}^d}$$

Gradient descent:

$$x^{k+1} = x^k - \gamma_k \nabla f(x^k)$$
$$\nabla f(x^k) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^k)$$

Note:

- ▶ Computation of $\nabla f(x^k)$ usually requires O(nd) operations.
- ▶ When *n* is very large, this may take a lot of time. Example: $n = 10^8$, $d = 1000 \Rightarrow$ evaluating $\nabla f(x^k)$ takes ≈ 2 minutes.
- The situation is the same for Newton method.
- ▶ We need methods that do not evaluate all the *n* components at every iteration.

Stochastic Gradient Method

Problem:
$$f(x) \to \min_{x \in \mathbb{R}^d}$$
, $f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x)$.

Stochastic Gradient Method (SGD):

Choose $i_k \in \{1, \ldots, n\}$ uniformly at random

$$x^{k+1} = x^k - \gamma_k \nabla f_{i_k}(x^k).$$

Here $\gamma_k \in \mathbb{R}_{++}$ is a (properly chosen) step length.

Motivation: $\mathbb{E}_{i_k}[\nabla f_{i_k}(x^k)] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x^k) = \nabla f(x^k)$, i.e., on average, SGD makes a step in the right direction.

Note:

- ▶ Now we only need to compute one gradient instead of *n*.
- ▶ Iteration complexity: O(d). Independent of n!

Comparison of Gradient Descent and SGD

Problem:
$$f(x) \to \min_{x \in \mathbb{R}^d}, \quad f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x).$$

Iteration cost:

- Gradient descent: O(nd).
- ▶ SGD: O(d).

Convergence rate:

- Gradient descent: linear.
- SGD: sublinear.

Natural question: Can we get the best from each of them? Is there a method with O(d) iteration cost and linear rate?

Stochastic Average Gradient [Le Roux et al., 2012]

Problem:
$$f(x) \to \min_{x \in \mathbb{R}^d}$$
, $f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x)$.

Stochastic Average Gradient (SAG):

Choose $i_k \in \{1,\ldots,n\}$ uniformly at random

Update
$$y_i^k = \begin{cases} \nabla f_i(x^k) & \text{if } i = i_k \\ y_i^{k-1} & \text{otherwise} \end{cases}$$

$$x^{k+1} = x^k - \gamma_k g^k$$
, where $g^k = \frac{1}{n} \sum_{i=1}^n y_i^k$.

Here $\gamma_k \in \mathbb{R}_{++}$ is a (properly chosen) step length. Note that $g^k = g^{k-1} + \frac{1}{n}(y_i^k - y_i^{k-1})$ where $i = i_k$.

Discussion:

- ▶ Iteration cost: O(d) if y_i^k and g_k are stored in memory.
- Convergence rate: linear.

A quick survey of stochastic optimization methods

Problem:
$$f(x) \to \min_{x \in \mathbb{R}^d}$$
, $f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x)$.

Consider: methods whose iteration cost is independent of n.

Two groups of stochastic methods:

- ▶ SGD alike: $x^{k+1} = x^k \gamma_k B^k \nabla f_{i_k}(x^k)$.
 - SGD, oLBFGS [Schraudolph et al., 2007], AdaGrad [Duchi et al., 2011],
 SQN [Byrd et al., 2014], Adam [Kingma, 2014] etc.
 - Convergence rate: sublinear.
- Variance reducing.
 - ► IAG [Blatt et al., 2007], SAG [Schmidt et al., 2013], SVRG [Johnson & Zhang, 2013], FINITO [Defazio et al., 2014b], SAGA [Defazio et al., 2014a], MISO [Mairal, 2015] etc.
 - Convergence rate: linear.

Note: no stochastic methods with superlinear convergence.

Incremental Newton Method – 1 [Rodomanov & Kropotov, 2016]

Problem:
$$f(x) \to \min_{x \in \mathbb{R}^d}, \quad f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x).$$

Idea:

▶ Build the second-order Taylor approximation of each f_i : $m_i^k(x) := f_i(v_i^k) + \langle \nabla f_i(v_i^k), x - v_i^k \rangle + \frac{1}{2} \langle \nabla^2 f_i(v_i^k)(x - v_i^k), x - v_i^k \rangle.$

- ▶ Then f can be approximated with $m^k(x) := \frac{1}{n} \sum_{i=1}^n m_i^k(x)$.
- ► Choose the next iterate x^{k+1} as the minimum of m^k :

$$x^{k+1} = \underset{x \in \mathbb{D}^d}{\operatorname{argmin}} m^k(x).$$

▶ Update only one v_i^k at every iteration to keep the iteration cost independent of n: choose $i_k \in \{1, ..., n\}$ and set

$$v_i^k = \begin{cases} x^k & \text{if } i = i_k, \\ v_i^{k-1} & \text{otherwise.} \end{cases}$$

Model of the objective:

$$m^{k}(x) = \frac{1}{n} \sum_{i=1}^{n} [f_{i}(v_{i}^{k}) + \langle \nabla f_{i}(v_{i}^{k}), x - v_{i}^{k} \rangle + \frac{1}{2} \langle \nabla^{2} f_{i}(v_{i}^{k})(x - v_{i}^{k}), x - v_{i}^{k} \rangle]$$

Note: m^k is a quadratic,

$$m^{k}(x) = \frac{1}{2}\langle H^{k}x, x \rangle + \langle g^{k} - u^{k}, x \rangle + \text{const},$$

and determined only by the following three quantities:

$$H^{k} := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v_{i}^{k}), \quad g^{k} := \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(v_{i}^{k}), \quad u^{k} := \frac{1}{n} \sum_{i=1}^{n} \nabla^{2} f_{i}(v_{i}^{k}) v_{i}^{k}.$$

Since only one component is updated at every iteration,

$$H^{k} = H^{k-1} + \frac{1}{n} \left[\nabla^{2} f_{i}(v_{i}^{k}) - \nabla^{2} f_{i}(v_{i}^{k-1}) \right],$$

$$g^{k} = g^{k-1} + \frac{1}{n} \left[\nabla f_{i}(v_{i}^{k}) - \nabla f_{i}(v_{i}^{k-1}) \right],$$

$$u^{k} = u^{k-1} + \frac{1}{n} \left[\nabla^{2} f_{i}(v_{i}^{k}) v_{i}^{k} - \nabla^{2} f_{i}(v_{i}^{k-1}) v_{i}^{k-1} \right].$$

Incremental Newton Method – 3 [Rodomanov & Kropotov, 2016]

Problem:
$$f(x) \to \min_{x \in \mathbb{R}^d}, \quad f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x).$$

Incremental Newton Method (NIM):

Take
$$i_k = k \mod n + 1$$

Update $v_i^k = \begin{cases} x^k & \text{if } i = i_k \\ v_i^{k-1} & \text{otherwise} \end{cases}$

$$H^k = H^{k-1} + \frac{1}{n} \left[\nabla^2 f_i(v_i^k) - \nabla^2 f_i(v_i^{k-1}) \right],$$

$$g^k = g^{k-1} + \frac{1}{n} \left[\nabla f_i(v_i^k) - \nabla f_i(v_i^{k-1}) \right],$$

$$u^k = u^{k-1} + \frac{1}{n} \left[\nabla^2 f_i(v_i^k) v_i^k - \nabla^2 f_i(v_i^{k-1}) v_i^{k-1} \right]$$
Compute $x^{k+1} = (H^k)^{-1} (u_k - g_k).$

Note: Iteration cost is independent of n if v_i^k are kept in memory.

Superlinear convergence rate of NIM

Problem:
$$f(x) \to \min_{x \in \mathbb{R}^d}$$
, $f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x)$.

Theorem: Suppose the Hessians $\nabla^2 f_i$ are Lipschitz-continuous:

$$\|\nabla^2 f_i(x) - \nabla^2 f_i(y)\| \le M \|x - y\|, \quad \forall x, y \in \mathbb{R}^d.$$

Assume x^* is a minimizer of f with positive definite Hessian:

$$abla^2 f(x^*) = \frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(x^*) \succeq \mu I, \qquad \mu > 0,$$

and all the initial points x^0, \dots, x^{n-1} are close enough to x^* :

$$\left\|x^i-x^*\right\|\leq \frac{\mu}{2M}.$$

Then the sequence of iterates $\{x^k\}_{k\geq n}$ of NIM converges to x^* at an R-superlinear rate, i.e. there exists $\{z_k\}_{k\geq 0}$ such that

$$\left\|x^k - x^*\right\| \leq z_k, \qquad z_{k+1} \leq \left(1 - \frac{3}{4n}\right)^{2^{\lceil k/n \rceil - 1}} z_k.$$

More precisely, the convergence rate is *n*-step quadratic:

$$z_{k+n} \leq \frac{M}{\mu} z_k^2.$$

Evaluation results – 1

L2-regularized logistic regression:

$$f(x) := \frac{1}{n} \sum_{i=1}^{n} \ln(1 + \exp(-\beta_i \langle a_i, x \rangle)) + \frac{\mu}{2} \|x\|^2.$$

Evaluations results – 2

	a9a (n=32561, d=123)					covtype (n=581012, d=54)				
Res	NIM	SAG	Newton	LBFGS	SFO	NIM	SAG	Newton	LBFGS	SFO
10^{-1}	.01s	.01s	.31s	.05s	.03s	.19s	.33s	.84s	.54s	.04s
10^{-2}	.02s	.05s	.56s .73s	.10s	.08s	.51s	.96s	1.78s	1.77s	.25s
10^{-3}	.12s	.11s	.73s	.18s	.57s	.72s	1.58s	2.39s	5.67s	1.02s
10^{-4}	.15s	.19s	.81s	.43s	.98s	.86s	2.45s	3.09s	10.73s	3.80s
10^{-5}	.21s	.36s	.90s	.76s	1.34s	1.20s	3.37s	3.99s	19.07s	5.23s
10^{-6}	.24s	.66s	.93s	1.11s				4.57s		
10^{-7}	.28s	1.04s	1.00s	1.45s	1.93s	1.69s	4.69s	5.13s	-	8.23s
10^{-8}	.31s	1.46s	1.04s		2.18s	1.92s	5.90s	6.52s	-	9.86s
10^{-9}	.32s	1.90s	1.04s 1.04s	2.26s	2.46s	2.10s	7.34s	7.64s	-	11.30s
10^{-10}	.34s	2.38s	1.04s	2.61s	2.81s	2.12s	9.97s	8.84s	-	12.44s

Evaluations results - 3

	alpha	a (n=50	0000, d=	=500)	mnist8m (n=8100000, d=784)				
Res	NIM	SAG	Newton	LBFGS	NIM	SAG	Newton	LBFGS	
10^{-1}	1.91s	1.36s	1.6m	4.01s	57.68s	34.91s	47.8m	1.1m	
10^{-2}	13.37s	6.72s	2.6m	17.68s	1.6m	2.1m	1.4h	5.2m	
10^{-3}	28.56s	17.73s	3.0m	37.70s	3.2m	3.9m	-	22.9m	
10^{-4}	36.65s	36.04s	3.4m	58.35s	16.7m	7.1m	-	1.6h	
10^{-5}	46.66s	1.0m	3.6m	1.4m	26.7m	1.0h	-	-	
10^{-6}	53.92s	1.5m	4.0m	1.9m	33.5m	-	-	-	
10^{-7}	57.63s	2.0m	4.0m	2.4m	40.1m	-	-	-	
10^{-8}	1.0m	2.7m	4.1m	2.8m	46.0m	-	-	-	
10^{-9}	1.1m	3.5m	4.3m	3.2m	49.6m	-	-	-	
10^{-10}	1.2m	4.3m	4.7m	3.4m	53.3m	-	-	-	

Conclusions

- ▶ The presented incremental Newton method is the first stochastic method with a superlinear convergence rate.
- ► The method can be thought of as a generalization of the classic Newton method to the special case of big sums.
- It has the same advantages and disadvantages as the classic Newton method:
 - + Fast superlinear convergence rate.
 - Only local convergence is guaranteed.
 - Not applicable to high-dimensional problems.
- For details, see paper
 - A. Rodomanov, D. Kropotov. A Superlinearly-Convergent Proximal Newton-type Method for the Optimization of Finite Sums, ICML 2016.

Thank you!