SUPSI

ESAME MODULO M-B3010 PARTE 1 - ANALISI 2

1. febbraio 2022

Nome	:	
Cognome	:	
Classe	:	
N. fogli all.	•	

Osservazioni:

- 1. È permesso utilizzare:
 - 2 fogli A4 (fronte/retro) di riassunto **personale**
 - foglio "Integrali e volumi, aree, lunghezze curve e baricentri"
 - foglio Ansatz
 - formulario (es. "Formulari e tavole" Edition G d'Encre)
 - calcolatrice non grafica e non programmabile (NON CAS).
- 2. Il procedimento di soluzione deve sempre essere comprensibile: risultati non giustificati da un procedimento non verranno accettati.
- 3. Se non specificato altrimenti dal testo dell'esercizio, tutti i risultati devono essere scritti in forma esatta e semplificata.
- 4. Comportamenti illeciti durante l'esame quali copiature, comunicazione tra studenti, utilizzo di sussidi non ammessi (...) verranno sanzionati con l'assegnazione della valutazione F.
- 5. Durata esame: 120 minuti

Es.	1	2	3	4	5	6	7	TOT	VOTO
Punti									

- 1. Sia R la regione compresa tra i grafici delle funzioni $y=x^2$ e $x=3\sqrt{3x}$.
 - (a) Determinare i punti d'intersezione tra i due grafici.
 - (b) Calcolare l'area di R.
 - (c) Calcolare il volume del solido di rotazione ottenuto ruotando la regione R attorno all'asse x.
 - (d) Calcolare il volume del solido di rotazione ottenuto ruotando la regione R attorno all'asse y.
 - (e) Calcolare le coordinate del baricentro di R.

Soluzione versione 1:

(a)
$$x^{2} = 3\sqrt{3}x^{7}$$
 => $x_{4} = 0$ $x_{2} = \sqrt[3]{27} = 3$
 $x^{4} = 5 \cdot 3x$ $y_{4} = x_{4}^{2} = 0$ $y_{2} = x_{2}^{2} = 3$
 $x(x^{3} - 27) = 0$ $I_{1}(0,0)$ $I_{2}(3,5)$

(b)
$$A = \int_{0}^{3} \sqrt{3x^{2}} dx - \int_{0}^{3} x^{2} dx = \left[A\sqrt{3} \cdot \frac{2}{A} x^{3/2} \right]_{0}^{3} - \left[\frac{x^{3}}{3} \right]_{0}^{3} = 18 - 9 = 9$$

(c)
$$V_{x} = \int_{0}^{3} (3\sqrt{3}x^{2})^{2} \widehat{11} dx - \int_{0}^{3} (x^{2})^{2} \widehat{11} dx = 27 \widehat{11} \int_{0}^{3} x dx - \widehat{11} \int_{0}^{3} x^{4} dx$$
$$= 27 \widehat{11} \cdot \left[\frac{x^{2}}{2} \right]_{0}^{3} - \widehat{11} \cdot \left[\frac{x^{5}}{5} \right]_{0}^{3}$$
$$= \frac{2473}{2} \widehat{11} - \frac{243}{5} \widehat{11} = \frac{729}{10} \widehat{11}$$

(d)
$$y = x^2$$
 (x20) $y = 3\sqrt{3x^2}$ (x20)
 $\Rightarrow x = \sqrt{y^2}$ $x = \frac{1}{27}y^2$

(e) Pappo:
$$V_{x} = 2 \widehat{11} y_{6} A$$
 $V_{y} = 2 \widehat{11} x_{6} A$ $\Rightarrow 6 \left(\frac{27}{20}; \frac{81}{20}\right)$

$$\frac{729}{10} \widehat{11} = 18 \widehat{11} y_{6} \qquad \frac{243}{10} = 18 \widehat{11} x_{6}$$

$$y_{6} = \frac{81}{20} \qquad x_{6} = \frac{27}{10}$$

Soluzione versione 2:

(a)
$$x^{1} = 3\sqrt{3}x^{7}$$
 => $x_{1} = 0$ $x_{2} = 3\sqrt{27} = 3$
 $x^{4} = 3 \cdot 3x$ $y_{4} = x_{1}^{2} = 0$ $y_{2} = x_{2}^{2} = 3$
 $x(x^{3} - 27) = 0$ $I_{1}(0,0)$ $I_{2}(3,5)$

(b)
$$A = \int_{0}^{3} 3\sqrt{3x^{2}} dx - \int_{0}^{3} x^{2} dx = \left[\sqrt{3} \cdot \frac{2}{7} x^{3/2} \right]_{0}^{3} - \left[\frac{x^{3}}{3} \right]_{0}^{3} = 18 - 9 = 9$$

e)
$$x_{8} = \frac{4}{3} x (e^{-x}(1 - 3e^{-x})) dx$$

$$= \frac{4}{9} \int_{0}^{3} x (3 \cdot 3x - x^{2}) dx$$

$$= \frac{4}{9} \int_{0}^{3} (3 \cdot 6x^{3/2} - x^{3}) dx = \frac{4}{9} \int_{0}^{3} (3 \cdot 6x^{3/2} - x^{3}) dx = \frac{4}{9} \int_{0}^{3} (3 \cdot 6x^{3/2} - x^{3}) dx = \frac{4}{9} \int_{0}^{3} (3 \cdot 6x^{3/2} - x^{3/2}) dx = \frac{4}{18} \int_{0}^{3} (27x - x^{4}) dx = \frac{4}{18} \int_{0}$$

2. Calcolare la lunghezza della spirale definita dalla funzione in forma polare $f(\theta) = e^{-2\theta}$ con $\theta \in [0; \infty[$.

$$e = \int_{-\infty}^{R} \sqrt{(f(q))^{2} + (f'(q))^{2}} dq$$

$$f(q) = e^{-2q}$$

$$f'(q) = -2e^{-2q}$$

$$= \int_{-\infty}^{R} \sqrt{(e^{-2q})^{2} + (-2e^{-2q})^{2}} dq$$

$$= \lim_{R \to +\infty} \int_{0}^{R} (e^{-2q})^{2} + (-2e^{-2q})^{2} dq$$

$$= \lim_{R \to +\infty} \int_{0}^{R} (e^{-4q} + 4e^{-4q})^{1/2} dq$$

$$= \lim_{R \to +\infty} \int_{0}^{R} (se^{-4q})^{1/2} dq$$

$$= \lim_{R \to +\infty} \int_{0}^{R} e^{-2q} dq = \sqrt{s} \lim_{R \to +\infty} \left(-\frac{1}{2}e^{-2q} \right)^{R}$$

$$= \sqrt{s} \lim_{R \to +\infty} \left(-\frac{1}{2}e^{-2R} + \frac{1}{2}e^{-2(0)} \right) = \sqrt{s} \cdot \frac{1}{2} = \sqrt{s}$$

3. Risolvere il seguente problema a valori iniziali:

$$xy' = y - 3x^4$$
, $y(1) = 0$

N.B: indicare in modo chiaro l'insieme di definizione della soluzione del problema.

Soluzione VERSIONE 1:

$$xy' = y - 3x^{4}, y(1) = 0$$

$$x\neq 0 \quad y' - \frac{1}{4}y = -3x^{3}$$

$$M(x) = \int -\frac{1}{4} dx = -\ln|x| + \frac{1}{x}.$$

$$= y(x) = e^{\ln|x|}, \int e^{-\ln|x|}, (-3x^{3}) dx$$

$$= x \cdot \int \frac{1}{x} \cdot (-3x^{3}) dx = x \cdot \int -3x^{2} dx$$

$$= x \cdot \left(-x^{3} + C\right)$$

$$= y(x) = -x^{4} + Cx$$

$$y(1) = -1 + C \stackrel{!}{=} 0 \implies c = 1$$

$$y(x) = -x^{4} + x \quad \text{per } x > 0$$

Soluzione VERSIONE 2:

Riscriviamo: $y' = \frac{y}{x} - 3x^3$.

Questa equazione differenziale è definita per $x \neq 0$. Siccome il valore iniziale è positivo, cerchiamo una soluzione definita su $D :=]0, \infty[$.

Problema omogeneo: $y' = y/x \ (x \neq 0)$ ha soluzione generale $y(x) = Ce^{\ln|x|}$ che, su D, possiamo riscrivere come

$$y_h(x) = Cx, \qquad C \in \mathbb{R}.$$

Se $C \neq 0$ la $y_h(x)$ non si annulla mai sul dominio d'interesse.

Problema inomogeneo: per ottenere una soluzione omogenea che non si annulla su D, scegliamo C=1. Scegliamo ora una primitiva di $\frac{-3x^3}{x}=-3x^2$, ad esempio $-x^3$.

Con questo la soluzione generale del problema inomogeneo è

$$y(x) = (-x^3 + C)x$$

Il valore iniziale ci dice y(1) = (-1 + C) = 0 e quindi C = 1.

La soluzione cercata è

$$y(x) = x(1-x^3)$$
, definita su $x > 0$

4. Determinare la soluzione generale della seguente equazione differenziale:

$$x'' - 2x' = 2t + 1$$

P.O.
$$x'' - 2x' = 0 \Rightarrow p(x) = x^2 - 2x = 0$$

$$S = \{0; 2\}$$

$$=) \times_0(t) = C_1 + C_2 e^{2t}$$
P.P. $f_2(t) = 2t + 1 \Rightarrow 0 \in S$? S ?

Austr: $Xp(t) = t \cdot (b_1 t + b_0) = b_1 t^2 + b_0 t$

$$X_p^*(t) = 2b_1$$

$$=) 2b_1 - 2(2b_1 t + b_0) = 2t + 1$$

$$=) \left(-4b_1 = 2 - 2t + 1 + 2t + 1\right)$$
Solutione Generale: $x(t) = C_1 + C_2 e^{2t} - 4t^2 - 4t^$

5. È data la seguente equazione differenziale:

$$3y''' - y'' + 6y' - 2y = 0$$

- (a) Verifica che $y(t) = \cos(\sqrt{2}t)$ è una soluzione dell'equazione differenziale.
- (b) Trovare la soluzione generale dell'equazione differenziale omogenea.

3y" - y" + 6 y' - 2y = 0 (x)

b)
$$\cos(2t)$$
 = solution = $30\pm 12i$ = Spetho di (x)

=> $p(r) - 3r^3 - r^2 + 6r - 2$ = divisibile per:

 $(r - \sqrt{2}i)(r + \sqrt{2}i) = r^2 - 2i^2 = r^2 + 2$

=> $3r^3 - r^2 + 6r - 2$ $r^2 + 2$

3 $r^3 + 6r$ $3r - 1$
 $-r^2 - 2$
 $-r^2$

6. Determinare e classificare i punti critici della funzione:

$$f(x;y) = x^4 + y^4 + 4xy$$

$$f(x;y) = x^{4} + y^{4} + 4xy$$

$$\forall f(x;y) = \binom{4x^{3} + 4y}{4y^{3} + 4x}$$

$$\det (H_{f}(x;y)) = \binom{0}{0} = \binom{12x^{2}}{4} + \binom{4x^{2}}{4y^{3} + 4x} = 0$$

$$-4x^{3} + 4x = 0 = 3 + \binom{4(-x)^{3}}{4y^{3} + 4x} = 0$$

$$-4x \binom{8}{0} + 4x = 0$$

$$-4x \binom{9}{0} + 4x = 0$$

$$-4x \binom$$

- 7. È data la funzione $f(x;y) = 2x^4 + y^3 x^2y$.
 - (a) Determinare l'equazione del piano tangente alla superficie di equazione z = f(x; y) nel punto (1; -2; f(1; -2)).
 - (b) Calcolare la derivata direzionale di f(x;y) in P=(1;-2) in direzione del punto Q=(2;2).
 - (c) Disegnare la regione D limitata dal grafico delle rette di equazione $y=0,\ x=2$ e y=x. Determinare il massimo e il minimo assoluti assunti dalla funzione nella regione D.

Soluzione:

a)
$$f(x, y) = 2x^{h} + y^{3} - x^{2}y$$
 $A = (1; -2; -h)$

$$f(x, y) = 8x^{3} - 2xy \qquad f(x; -2) = 12$$

$$f(x, y) = 3y^{2} - x^{2} \qquad f(x; -2) = 11$$
Piano tangente:

$$2 - (-4) = 12 \cdot (\times -1) + 11 \cdot (\times +2)$$

 $12 \times + 11 \times -2 + 6 = 0$

b)
$$\vec{\nabla} \beta (1,-2) = \begin{pmatrix} 12 \\ 11 \end{pmatrix}$$
 $\vec{P} \vec{Q} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\vec{N} = \frac{\vec{P} \vec{Q}}{||\vec{P} \vec{Q}||} = \frac{\sqrt{17}}{17} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\frac{\partial \beta}{\partial \vec{N}} |_{(1;-2)} = \vec{\nabla} \beta (1;-2) \cdot \vec{N} = \frac{\sqrt{17}}{17} \cdot \begin{pmatrix} 12 \\ 11 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{56}{17} \sqrt{17}$$

c) Punti interni a D:

studio sul bordo di D:

■ STUDIO JULA COMPONENTE DI BORDO Y = O :

$$\Psi_1(x) = \mathcal{L}(x,0) = 2x^6$$
 $0 < x < 2$

4, (x) NON HA ESTRENI RELATIVI PER OCXC2

S=X N CIAUTZ

$$\Psi_{2}(Y) = \beta(2, Y) = 32 + Y^{3} - 4Y$$
 0< Y < 2

$$\Psi_{2}^{1}(y) = 3y^{2} - 4$$

$$\gamma_2^1(\gamma) = 0 \iff \gamma = \pm \frac{2}{3}\sqrt{3}$$

LOBBIANO CONSIDERARE ISOLO $A = \left(2, \frac{2}{3}\sqrt{3}\right)$

$$A = \left(2; \frac{2}{3}\sqrt{3}\right)$$

X=X OIDUTE

43 LX) NON HA ESTRENI RELATIVI PER OCXC2

Candidati:

$$I_3 = \left(\frac{\sqrt{3}}{12}; \frac{1}{12}\right)$$
 $\mathcal{R}\left(\frac{\sqrt{3}}{12}; \frac{1}{12}\right) = -\frac{1}{3456} \simeq -2.89 \cdot 10^{-4}$

A =
$$\left(2; \frac{2}{3}\sqrt{3}\right)$$
 $\left(2; \frac{2}{3}\sqrt{3}\right) = 32 - \frac{16}{9}\sqrt{3} \approx 28.9$

$$B = (0;0) = \begin{cases} f(0,0) = 0 \\ c = (2;0) \end{cases}$$

$$f(2,0) = 32$$

$$A = (2;2) \qquad f(2,2) = 32$$

MASSINI ASSOLUTI: C=(2,0) MININO ASSOLUTO: $I_3=\left(\frac{\sqrt{3}}{12},\frac{1}{12}\right)$ D= (2,2)