

FIG. 1A

FIG. 1B

FIG. 1C

FIG. 2A

FIG. 2B

FIG. 2C

FIG. 3A

FIG. 3B

GATED DIODE CAPACITANCE vs GATE-TO-SOURCE VOLTAGE (V_{gs})
EACH CURVE REPRESENTS A DIFFERENT GATED DIODE GATE SIZE.
THRESHOLD VOLTAGE = 0.2 V

FIG. 4A

FIG. 4B

FIG. 5A

FIG. 5B

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

LINEAR CAPACITOR
GAIN = $dV_{out}/dV_{in} = 1$

FIG. 11A

FIG. 11B

GATED DIODE AMPLIFIER REPRESENTATIVE CIRCUIT

FIG. 11C

GATED DIODE AMPLIFIER REPRESENTATIVE CIRCUIT

FIG. 12A

GATED DIODE

$$\text{GAIN} = dV_{\text{out}}/dV_{\text{in}} > 1$$

FIG. 12B

GATED DIODE (gd)

FIG. 12C

		COMPLETE CHARGE TRANSFER (FOR SMALL R_C)					CONSTRAINED CHARGE TRANSFER (LARGE R_C)					
		0.01	0.1	1	2	5	10	0.01	0.1	2.91	3.47	$V_S/V_g = 2.5$
$R_C = C_{g_gd}/C_L$	$GAIN = V_{g_f}/V_{g_i}$	1.01	1.1	2	3	6	11	1.01	1.1	0.91	0.99	$V_S/V_g = 2.5$
$GAIN = 1 + R_C - (V_{t_gd}/V_{g_i}) R_C \sim 1 + R_C$	$GAIN = (1 + V_s/V_{g_i}) R_C / (1 + R_C)$	0.01	0.09	0.5	0.67	0.83	0.91	0.01	0.09	0.91	0.99	$V_S/V_g = 2.5$
$V_{g_i} = 0.4 V$, $V_{t_gd} = 0$		0.035	0.32	1.75	2.35	2.91	3.19	0.04	0.36	2.00	3.32	$V_S/V_g = 3$
C_{g_gd}/C_{g_rg}		0.04	0.36	2.00	2.68	3.32	3.64	1.01	1.1	2.68	3.32	$V_S/V_g = 3$
$R_C/(1 + R_C)$		1.01	1.1	2	3	6	11	1.01	1.1	0.91	0.99	$V_S/V_g = 3$
$(1+V_s/V_{g_i})R_C / ((1+R_C)$		0.01	0.09	0.5	0.67	0.83	0.91	0.01	0.09	0.91	0.99	$V_S/V_g = 3$
$(1+V_s/V_{g_i})R_C / ((1+R_C)$		0.01	0.09	0.5	0.67	0.83	0.91	0.01	0.09	0.91	0.99	$V_S/V_g = 3$
$GAIN$		0.01	0.1	2	5	10	100	0.01	0.1	2.91	3.47	$V_S/V_g = 2.5$
CHARGE TRANSFER		COMPLETE					CONSTRAINED					

FIG. 12D

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19A

FIG. 19B

FIG. 20A

FIG. 20B

