EECS 151/251A Discussion 8

Daniel Grubb 10/19, 10/20, 10/25

Administrivia

- Lab 6 due Friday 10/22
 - Cutoff for checkoffs and submissions is the end of next week's lab sessions
- Project starts this week
 - Do your best to finish up labs and don't procrastinate!
- Homework 6 due Friday 10/22
- Midterm 1 grades release
 - Regrades due Friday 10/22
- Midterm 2 on the horizon (tentatively November 4th)
- What are you having trouble with? Feedback?

Agenda

- Topics
 - Inverter delay and sizing
 - Logical effort
 - Path effort
 - Elmore delay
- How familiar/comfortable are you with:
 - transistor switch model?
 - inverter delay?
 - inverter delay optimization?
 - o logical effort?
 - parasitic delay?
 - o path effort/optimization?

A Note on Notation and Values

- PMOS / NMOS ratios
 - Old technologies/textbooks give 2:1, this class generally uses 1:1
- Ratio of Cd to Cg = γ (gamma) = 1
 - Set by process technology
 - ~1.2 in recent processes, but still keep it 1
- Logical effort
 - LE or g both used
- Fanout or electrical effort
 - F for total fanout
 - f for stage fanout
 - h also used

Inverter RC Delay Model

Inverter Delay

NMOS with size W

PMOS with same R as NMOS

$$t_p = 0.69 \left(\frac{R_N}{W}\right) (3W\gamma C_G) = 0.69(3\gamma) R_N C_G$$

Intrinsic inverter delay What if we make the inverter bigger?

Inverter Delay

- Add a load capacitance now
- Two components
 - Intrinsic delay
 - Fanout, f = C₁/C_{in}
- FO4 delay: how many unit delays?
 - O Why is this a useful quantity?

$$t_p = 0.69 \left(\frac{R_N}{W}\right) (C_{\text{int}} + C_L)$$

$$= 0.69 \left(\frac{R_N}{W}\right) (3W\gamma C_G + C_L)$$

$$= 0.69 (3C_G R_N) (\gamma + \frac{C_L}{C_{in}})$$

$$= t_{inv} (\gamma + \frac{C_L}{C_{in}}) = t_0 (\gamma + f)$$

Inverter Delay Scratch Area

Inverter Sizing Thought Experiment

- Say we just have 1 inverter driving a load capacitance
 - We want to minimize delay
 - We can size it anyway we want
 - O How should we size it?
- Be careful with this solution!

Inverter Chain Sizing

$$\frac{C_{in,j}}{C_{in,j-1}} = \frac{C_{in,j+1}}{C_{in,j}}$$

- Goal: minimize the delay of the path
 - Constrain the size of the first inverter + load capacitance in each case
 - What's a first pass solution?
- (1) Size a chain given N inverters
 - Key result: size stages to have identical fanout (minimize the total chain delay expression)
 - What does this say about each stage's delay?
 - \circ Find f: f^N=F=C_L/C_{in.1}
 - o Start from beginning or end of chain
- (2) Determine optimal N and size the chain
 - Assume fanout, f=4 (from graph)
 - Find number of stages, N (integer): ?
 - Same steps as (1)

$$t_{p} = Nt_{inv} \left(\gamma + \sqrt[N]{F} \right), \ F = C_{L}/C_{in}$$

Inverter Chain Sizing Examples

- Chain of 3 with load cap of 64:
 - What if we add a capacitance in the middle?

- Load cap. of 1024, give N and sizings:
 - What if non-integer?

Logical Effort and Parasitic Delay

- How much worse is a gate at driving a load capacitance than an inverter with the same input capacitance? (other ways to look at it)
 - Looks like an inverter, but the fanout seems larger
 - o Easy way: size gate to deliver same as inverter current, take cap. Ratio
- LE = $(R_{eq,gate}C_{in,gate})/(R_{eq,inv}C_{in,inv})$
- Parasitic delay: delay of gate driving no load (set by internal cap.)
 - Find gate RC delay, then extract t_{inv} term; ratio of internal cap to inverter

Logical Effort/Parasitic Delay Examples

Also, consider if the PMOS/NMOS resistances are different than nominal?

Path Delay

- How do we minimize delay more generally?
 - $\circ \quad \mathsf{Delay} = \mathsf{t}_{\mathsf{inv}} \Sigma(\mathsf{p}_{\mathsf{i}} + \mathsf{LE}_{\mathsf{i}} \cdot \mathsf{f}_{\mathsf{i}})$
- Path fanout: F=C₁/C_{in}
- Path LE: $G=g_1g_2...g_N^{\square}$ $b = \frac{C_{\text{onpath}} + C_{\text{offpath}}}{C_{\text{onpath}}}$
- Branching effort
- Use similar result to inverter chain
 - Best EF is still around 4
- Design process:
 - Calculate Path Effort: PE=GFB
 - Estimate best number of stages: N=log₄F
 - Calculate Effective Fanout per stage: EF=PE^(1/N)
 - Size the gates from beginning or end of chain
- Can always add inverters to the end of the chain

$$G = \prod g_i$$
 $F = \prod f_i = \prod g_i h_i$
 $B = \prod b_i$

Path Delay Scratch Area

Path Delay Example

• Remember, $EF_i = LE_i \cdot f_i = LE_i \cdot C_{L,i}/C_{in,i}$

Elmore Delay

- Approximate RC time constant of a tree network
- R's and C's include both transistors/parasistics and wires
 - \circ Wire π model (where does the R and C come from?)
- Can think of it as:
 - $\sum [C_i x \text{ (sum or R's charging } C_i)]$
 - $\circ \sum [R_i \times (\text{sum of C's that } R_i \text{ charges})]$

$$\begin{split} t_{pd} &\approx \sum_{\text{nodes } i} R_{i-to-source} C_i \\ &= R_1 C_1 + \left(R_1 + R_2\right) C_2 + \ldots + \left(R_1 + R_2 + \ldots + R_N\right) C_N \end{split}$$

Elmore Delay Examples

- What information do we need?
- Draw the equivalent model
- Calculate delay to outputs

