Sampling Methods

Nipun Batra

September 6, 2023

IIT Gandhinagar

Topics

1. Monte Carlo Simulation

General Form

Applications

Bias and Variance of Monte Carlo

2. Sampling from common probability distributions

PRNG

Inverse CDF Sampling

Sampling from Normal Distribution

Rejection Sampling

The Discovery That Transformed Pi

Monte Carlo Simulation

The general form of Monte Carlo methods is: The expectation of a function f(x) with respect to a distribution p(x) is given by:

The general form of Monte Carlo methods is: The expectation of a function f(x) with respect to a distribution p(x) is given by:

$$\mathbb{E}_{x \sim p(x)}[f(x)] = \int f(x)p(x)dx \tag{1}$$

The general form of Monte Carlo methods is: The expectation of a function f(x) with respect to a distribution p(x) is given by:

$$\mathbb{E}_{x \sim p(x)}[f(x)] = \int f(x)p(x)dx \tag{1}$$

Using Monte Carlo methods, we can estimate the above expectation by sampling x_i from p(x) and computing the average of $f(x_i)$.

The general form of Monte Carlo methods is: The expectation of a function f(x) with respect to a distribution p(x) is given by:

$$\mathbb{E}_{x \sim p(x)}[f(x)] = \int f(x)p(x)dx \tag{1}$$

Using Monte Carlo methods, we can estimate the above expectation by sampling x_i from p(x) and computing the average of $f(x_i)$.

$$\mathbb{E}_{x \sim p(x)}[f(x)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$
 (2)

where $x_i \sim p(x)$.

We can estimate the value of pi using Monte Carlo methods by considering a unit square with a quarter circle inscribed within it.

We can estimate the value of pi using Monte Carlo methods by considering a unit square with a quarter circle inscribed within it.

• Let p(x) be defined over the unit square using the uniform distribution in two dimensions, i.e., p(x) = U(x) = 1 for $x \in [0,1]^2$.

4

We can estimate the value of pi using Monte Carlo methods by considering a unit square with a quarter circle inscribed within it.

- Let p(x) be defined over the unit square using the uniform distribution in two dimensions, i.e., p(x) = U(x) = 1 for x ∈ [0,1]².
- Let f(x) be the indicator function defined as follows:

$$f(x) = \begin{cases} \mathsf{Green}(1), & \text{if } x \text{ falls inside the quarter circle,} \\ \mathsf{Red}(0), & \text{otherwise.} \end{cases}$$

• Or, we can write f(x) to be the following:

$$f(x) = \begin{cases} 1, & \text{if } x_1^2 + x_2^2 \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

• Or, using the indicator function, we can write f(x) to be the following:

$$f(x) = \mathbb{I}(x_1^2 + x_2^2 \le 1)$$

 ${\tt Notebook: mc_sampling_intro.ipynb}$

Estimating a function using Monte Carlo

Let
$$x \in \mathcal{U}(-1,1)$$
 and $y = f(x) = x^2$.

Estimating prior predictive distribution

- Let $p(\theta)$ be the prior distribution of parameter $\theta \in \mathbb{R}^2$. Say, for example, $p(\theta_i) = \mathcal{N}(0,1) \forall i$.
- Let $p(y|\theta,x)$ be the likelihood function. Say, for example, $p(y|\theta,x) = \mathcal{N}(\theta_0 + \theta_1 x, 1)$.
- Then, the prior predictive distribution is given by:

$$p(y|x) = \int p(y|\theta, x)p(\theta)d\theta \tag{3}$$

$$p(y|x) \approx \frac{1}{N} \sum_{i=1}^{N} p(y|\theta_i, x)$$
 (4)

where $\theta_i \sim p(\theta)$.

Estimating posterior predictive distribution

Extending for posterior predictive distribution, we have:

$$p(y|x,D) = \int p(y|\theta,x)p(\theta|D)d\theta \tag{5}$$

$$p(y|x,D) \approx \frac{1}{N} \sum_{i=1}^{N} p(y|\theta_i, x)$$
 (6)

Unbiased Estimator?

Is Monte Carlo Sampling a biased or unbiased estimator?

We know:

$$\mathbb{E}_{x \sim p(x)}[f(x)] = \int f(x)p(x)dx = \phi \tag{7}$$

Let $x_i \in 1, ..., N$ be i.i.d samples:

$$\hat{\phi} = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

$$\mathbb{E}(\hat{\phi}) = \int \frac{1}{N} \sum_{i=1}^{N} f(x_i) p(x_i) dx = \frac{1}{N} \sum_{i=1}^{N} \int f(x_i) p(x_i) dx$$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}(f(x_i)) = \phi$$

Thus, it is an unbiased estimator!

Sampling converges slowly

The expected square error of the Monte Carlo estimate is given by:

$$\mathbb{E}\left(\hat{\phi} - \mathbb{E}(\hat{\phi})\right)^{2} = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}(f(x_{i}) - \phi)\right]^{2}$$

$$= \frac{1}{N^{2}}\sum_{i=1}^{N}\sum_{j=1}^{N}\mathbb{E}(f(x_{i})f(x_{j})) - \phi\mathbb{E}(f(x_{i})) - \mathbb{E}(f(x_{j}))\phi + \phi^{2}$$

$$= \frac{1}{N^{2}}\sum_{i=1}^{N}\left(\left(\sum_{i\neq j}\phi^{2} - 2\phi^{2} + \phi^{2}\right) + \mathbb{E}(f^{2}) - \phi^{2}\right) = \frac{1}{N}\mathbb{V}(f)$$

$$\therefore \mathbb{E}\left(\hat{\phi} - \mathbb{E}(\hat{\phi})\right)^{2} = \mathcal{O}(N^{-1})$$

Thus, the expected error drops as $\mathcal{O}(N^{-\frac{1}{2}})$.

Pop Quiz

How many samples (N) do we need to reach single-precision (i.e., $\sim 10^{-7})?$

Is sampling easy?

Many reasons contribute to sampling not always being easy in higher dimensions. For example,

- need a global description of the entire function
- need to know probability densities everywhere
- need to know regions of high density

Sampling from common probability distributions

 Question: How can you generate samples from the uniform distribution in [0,1]?

- Question: How can you generate samples from the uniform distribution in [0, 1]?
- Hint: Linear Congruential Generator (LCG) among other PRNGs.

- Question: How can you generate samples from the uniform distribution in [0, 1]?
- Hint: Linear Congruential Generator (LCG) among other PRNGs.

•

$$x_{n+1} = (ax_n + c) \mod m \tag{8}$$

- where, a, c, m are constants and x_0 is the seed
- x_{n+1} is the next random number between 0 and m-1

- Question: How can you generate samples from the uniform distribution in [0, 1]?
- Hint: Linear Congruential Generator (LCG) among other PRNGs.

•

$$x_{n+1} = (ax_n + c) \mod m \tag{8}$$

- where, a, c, m are constants and x_0 is the seed
- x_{n+1} is the next random number between 0 and m-1
- $\frac{x_{n+1}}{m}$ is the next random number between 0 and 1

From Wikipedia page on LCG

 $Notebook:\ random-uniform.ipynb$

ullet Assume we have $X \sim \textit{U}(0,1)$

- Assume we have $X \sim U(0,1)$
- Then, $Y = a + (b a)X \sim U(a, b)$

Inverse CDF sampling

[Inspired by content from Ben Lambert and Phillip Hennig]

• Let us try to generate samples from the exponential distribution.

Inverse CDF sampling

[Inspired by content from Ben Lambert and Phillip Hennig]

- Let us try to generate samples from the exponential distribution.
- The PDF of the exponential distribution is given by:

Inverse CDF sampling

[Inspired by content from Ben Lambert and Phillip Hennig]

- Let us try to generate samples from the exponential distribution.
- The PDF of the exponential distribution is given by:

•

$$p(x) = \lambda e^{-\lambda x}$$
(9)

PDF

Exponential Distribution CDF

$$\frac{\lambda = 0.5}{\lambda = 1.0}$$

$$\frac{\lambda = 1.5}{0.6}$$

$$\frac{0.6}{0.4}$$

$$\frac{0.6}{0.4}$$

Χ

0.2

0.0

 $\lambda = 0.5$

 $\lambda = 1.0$ $\lambda = 1.5$

 $Notebook:\ inverse-cdf.ipynb$

Inverse CDF Sampling for Number of samples = 1

- Let us consider the CDF (F(x)) of the exponential distribution $(\lambda = 1)$ and try to generate samples from it.
- We generate a random number $u \sim U(0,1)$.
- We then find the value of x such that F(x) = u.

Inverse CDF Sampling for Number of samples = 2

- Let us consider the CDF (F(x)) of the exponential distribution $(\lambda = 1)$ and try to generate samples from it.
- We generate a random number $u \sim U(0,1)$.
- We then find the value of x such that F(x) = u.

Inverse CDF Sampling for Number of samples = 3

- Let us consider the CDF (F(x)) of the exponential distribution $(\lambda = 1)$ and try to generate samples from it.
- We generate a random number $u \sim U(0,1)$.
- We then find the value of x such that F(x) = u.

- Let us consider the CDF (F(x)) of the exponential distribution $(\lambda = 1)$ and try to generate samples from it.
- We generate a random number $u \sim U(0,1)$.
- We then find the value of x such that F(x) = u.

- Let us consider the CDF (F(x)) of the exponential distribution $(\lambda = 1)$ and try to generate samples from it.
- We generate a random number $u \sim U(0,1)$.
- We then find the value of x such that F(x) = u.

- Let us consider the CDF (F(x)) of the exponential distribution $(\lambda = 1)$ and try to generate samples from it.
- We generate a random number $u \sim U(0,1)$.
- We then find the value of x such that F(x) = u.

- Let us consider the CDF (F(x)) of the exponential distribution $(\lambda = 1)$ and try to generate samples from it.
- We generate a random number $u \sim U(0,1)$.
- We then find the value of x such that F(x) = u.

- Let us consider the CDF (F(x)) of the exponential distribution $(\lambda = 1)$ and try to generate samples from it.
- We generate a random number $u \sim U(0,1)$.
- We then find the value of x such that F(x) = u.

- Let us consider the CDF (F(x)) of the exponential distribution $(\lambda = 1)$ and try to generate samples from it.
- We generate a random number $u \sim U(0,1)$.
- We then find the value of x such that F(x) = u.

• We generate a random number $u \sim U(0,1)$.

- We generate a random number $u \sim U(0,1)$.
- We then find the value of x such that F(x) = u.

- We generate a random number $u \sim U(0,1)$.
- We then find the value of x such that F(x) = u.
- This is equivalent to finding the inverse of the CDF, i.e., $F^{-1}(u)$.

- We generate a random number $u \sim U(0,1)$.
- We then find the value of x such that F(x) = u.
- This is equivalent to finding the inverse of the CDF, i.e., $F^{-1}(u)$.
- For the exponential distribution, let us try to find $F^{-1}(u)$.

- We generate a random number $u \sim U(0,1)$.
- We then find the value of x such that F(x) = u.
- This is equivalent to finding the inverse of the CDF, i.e., $F^{-1}(u)$.
- For the exponential distribution, let us try to find $F^{-1}(u)$.

•

$$u = 1 - e^{-x} (10)$$

- We generate a random number $u \sim U(0,1)$.
- We then find the value of x such that F(x) = u.
- This is equivalent to finding the inverse of the CDF, i.e.,
 F⁻¹(u).
- For the exponential distribution, let us try to find $F^{-1}(u)$.

•

$$u = 1 - e^{-x} (10)$$

•

$$x = -\log(1 - u) \tag{11}$$

[From Wikipedia page on Inverse Transform Sampling] From $U \sim \text{Unif}[0,1]$, we want to generate X with CDF $F_X(x)$. We assume $F_X(x)$ to be a continuous, strictly increasing function, which provides good intuition.

We want to see if we can find some strictly monotone transformation $T:[0,1]\mapsto \mathbb{R}$, such that $T(U)\stackrel{d}{=} X$. We will have

$$F_X(x) = \Pr(X \le x) = \Pr(T(U) \le x) = \Pr(U \le T^{-1}(x)) = T^{-1}(x), \text{ for } x \in T$$

where the last step used that $\Pr(U \leq y) = y$ when U is uniform on [0,1]. So we got F_X to be the inverse function of T, or, equivalently $T(u) = F_X^{-1}(u), u \in [0,1]$. Therefore, we can generate X from $F_X^{-1}(U)$.

[From Wikipedia page on Box-Muller Transform]

• Let $U_1, U_2 \sim U(0,1)$ be two independent random variables.

- Let $U_1, U_2 \sim U(0,1)$ be two independent random variables.
- Let $Z_0, Z_1 \sim \mathcal{N}(0,1)$ be two independent random variables.

- Let $U_1, U_2 \sim U(0,1)$ be two independent random variables.
- Let $Z_0, Z_1 \sim \mathcal{N}(0,1)$ be two independent random variables.
- Then, $R = \sqrt{-2 \log U_1}$ and $\Theta = 2\pi U_2$ are independent random variables.

- Let $U_1, U_2 \sim U(0,1)$ be two independent random variables.
- Let $Z_0, Z_1 \sim \mathcal{N}(0,1)$ be two independent random variables.
- Then, $R = \sqrt{-2 \log U_1}$ and $\Theta = 2\pi U_2$ are independent random variables.
- Then, $Z_0 = R \cos \Theta$ and $Z_1 = R \sin \Theta$ are independent random variables.

- Let $U_1, U_2 \sim U(0,1)$ be two independent random variables.
- Let $Z_0, Z_1 \sim \mathcal{N}(0,1)$ be two independent random variables.
- Then, $R = \sqrt{-2 \log U_1}$ and $\Theta = 2\pi U_2$ are independent random variables.
- Then, $Z_0 = R \cos \Theta$ and $Z_1 = R \sin \Theta$ are independent random variables.
- Z_0 and Z_1 are independent and identically distributed (i.i.d) $\mathcal{N}(0,1)$ random variables.

 $Notebook: \ sampling-normal.ipynb$

Generating samples from $\mathcal{N}(\mu, \sigma)$

• Let $Z_0 \sim \mathcal{N}(0,1)$ be independent random variables.

Generating samples from $\mathcal{N}(\mu, \sigma)$

- Let $Z_0 \sim \mathcal{N}(0,1)$ be independent random variables.
- Then, $X = \mu + \sigma Z_0$ is a random variable with $\mathcal{N}(\mu, \sigma)$ distribution.

- Let p(x) be the target distribution from which we want to sample.
- Let q(x) be a proposal distribution from which we can sample.
- Let M be a constant such that $M \ge \frac{p(x)}{q(x)} \forall x$.
- Then, we can sample from p(x) by sampling from q(x) and accepting the sample with probability $\frac{p(x)}{Mq(x)}$.

Proof of Rejection Sampling

Acceptance Probability $\alpha(x)$

$$\alpha(x) = \frac{p(x)}{Mq(x)} \tag{12}$$

Bayes Rule for Acceptance

$$P(Sample|Accept) = \frac{P(Accept|Sample)P(Sample)}{P(Accept)}$$
 (13)

P(Sample)

We draw samples from q(x), so P(Sample) = q(x).

Proof of Rejection Sampling

Further,
$$P(Accept|Sample) = \alpha(x) = \frac{p(x)}{Mq(x)}$$
.

Finally, $P(Accept) = \int P(Accept|Sample)P(Sample)dSample = \int \alpha(x)q(x)dx = \frac{1}{M}\int p(x)dx = \frac{1}{M}$.

P(Accept)

$$P(Accept) = \frac{1}{M} \tag{14}$$

Thus,
$$P(Sample|Accept) = \frac{p(x)}{Mq(x)} \times \frac{q(x)}{1/M} = p(x)$$
.

Thus, we have shown that the samples we accept are distributed according to p(x).

Rejection Sampling Completed Example

Note: Figures not on github.

Challenges with Rejection Sampling

- Rejection sampling is inefficient when the target distribution is very different from the proposal distribution.
- In this case, we will reject a lot of samples.
- This is a problem when sampling from high-dimensional distributions.
- Acceptance probability $\alpha(x)$ is very low.