Cấu trúc rời rạc

September 21, 2025

1 Cơ sở Logic

- 1.1 Phép toán
- 1.1.1 Phủ định

$\neg P$
1
0

1.1.2 Hội (và)

\overline{P}	Q	$P \wedge Q$
0	0	0
0	1	0
1	0	0
1	1	1

1.1.3 Tuyển (hoặc)

$$\begin{array}{c|cccc} \hline P & Q & P \lor Q \\ \hline {\bf 0} & {\bf 0} & {\bf 0} \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

1.1.4 Kéo theo

Q	$P \to Q$
0	1
1	1
0	0
1	1
	0 1 0

1.1.5 Tương đương (Nếu và chỉ nếu)

\overline{P}	Q	$P \leftrightarrow Q$
0	0	1
0	1	0
1	0	0
1	1	1

1.2 Dạng mệnh đề

- Sơ cấp
- Hằng đúng
- Hằng sai

1.3 Tương đương logic & Hệ quả logic

1.3.1 Tương đương logic

- $P, Q \rightarrow \text{công thức} \dots$
- $P \Leftrightarrow Q(P \equiv Q, P = Q)$ đ
gl tương đương logic.
- $P \leftrightarrow Q$ đ
gl hằng đúng.

1.3.2 Hệ quả logic

- $P\Rightarrow Q$ đ
gl hệ quả logic. $P\to Q$ đ
gl hằng đúng.

Note

• C/m $P \Rightarrow Q \rightarrow$ c/m $P \rightarrow Q$ chân trị 1.

1.4 Quy luật logic

Luật	Công thức
Phủ định của phủ định	$\neg \neg P \equiv P$
De Morgan	$\neg(P \land Q) \equiv \neg P \lor \neg Q \ \neg(P \lor Q) \equiv \neg P \land \neg Q$
Giao hoán	$P \lor Q \equiv Q \lor P \ P \land Q \equiv Q \land P$
Kết hợp	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$
	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
Phân phối	$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$
	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
Luỹ đẳng	$P \wedge P \equiv P \ P \vee P \equiv P$
Trung hoà	$P \wedge 1 \equiv P \ P \vee 0 \equiv P$
Phần tử bù	$P \land \neg P \equiv 0 \ P \lor \neg P \equiv 1$
Thống trị	$P \land 0 \equiv 0 \ P \lor 1 \equiv 1$
Hấp thụ	$P \wedge (P \vee Q) \equiv P \ P \vee (P \wedge Q) \equiv P$

Luật	Công thức
Phản chứng	$P \to Q \equiv \neg P \lor Q \equiv \neg Q \to \neg P$
	$\neg(P \to Q) \equiv P \land \neg Q$

1.5 Quy tắc suy diễn

• Khẳng định

$$\frac{P \to Q, \; P}{::Q}$$

• Phủ định

$$\frac{P \to Q, \ \neg Q}{\therefore \neg P}$$

• Tam đoạn luận

$$\frac{P \to Q, \; Q \to R}{:: P \to R}$$

• Tam đoạn luận rời

$$\frac{P \vee Q, \ \neg Q}{::P}$$

or

$$\frac{P \vee Q, \ \neg P}{::Q}$$

• Mâu thuẫn

$$P \to Q \equiv (P \land \neg Q) \to 0$$

trong đó $P=P_1 \wedge P_2 \wedge \ldots \wedge P_N$

1.6 Vị từ - lượng từ

1.6.1 Vị từ

 $P(x,y,\ldots) \to P(a,b,\ldots)$ có chân trị 0 hoặc 1.

1.6.2 Lượng từ

Với mọi

- \forall trong đó \land
 - Đúng với tất cả.

- Sai với một.
- $\neg(\forall x \in A, P(x)) \equiv \exists x \in A, \neg P(x)$

Tồn tại

- \exists trong đó \lor
 - Đúng với một.
 - Sai với tất cả.
- $\neg(\exists x \in A, P(x)) \equiv \forall x \in A, \neg P(x)$

Đặc biệt hoá phổ dụng

Tổng quát hoá phổ dụng

1.6.3 Quy tắc suy diễn

C/m Phản chứng

$$P \Rightarrow Q \equiv (P \land \neg Q) \Rightarrow 0$$

C/m trực tiếp

C/m theo trường hợp (vét cạn)

C/m gián tiếp (PC) $P \Rightarrow Q$ và $\neg Q \Rightarrow \neg P$

\$ ¬Q ¬P P Q \$

C/m quy nạp

$$\frac{P(n_0), \quad \forall n > n_0, \; P(n) \rightarrow P(n+1)}{ :: \forall n \geq n_0, \; P(n)}$$

B1. C/m $P(n_0)$ đúng

B2. G/s $n\in\mathbb{N}$ và $n\geq n_0,\,P(n)$ đúng. C/m P(n+1) đúng.

 \Rightarrow P(n) đúng $\forall n \geq n_0$

2 Tập hợp - Ánh xạ

2.1 Tập hợp

- Cách diễn tả
 - $-\,$ Bằng lời
 - $-\,$ Liệt kê
 - Tính chất đặc trưng

- Lực lượng k/h |A|
- Tích Descarte
 - 2 tập hợp
 - Nhiều tập hợp
- Tập con
 - $k/h B \subset A \Leftrightarrow \{ \forall x | x \in B \Rightarrow x \in A \}$
 - Tập hợp tập con của A k/h P(A)

2.1.1 Phép toán

- Hop $A \cup B = \{x | x \in A \lor x \in B\}$
- Giao $A \cap B = \{x | x \in A \land x \in B\}$
- Hiệu $A \backslash B = \{x | x \in A \land x \notin B\}$
- Phần bù $B\subset A,$ k/h $\overline{B_A}$ or \overline{B}

Tính chất

Luật	Công thức
Giao hoán	$A \cap B = B \cap A \ A \cup B = B \cup A$
Kết hợp	$(A \cap B) \cap C = A \cap (B \cap C)$
	$(A \cup B) \cup C = A \cup (B \cup C)$
Phân phối	$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
De Morgan	$\overline{A \cap B} = \overline{A} \cup \overline{B} \ \overline{A \cup B} = \overline{A} \cap \overline{B}$
Luỹ đẳng	$A \cap A = A \ A \cup A = A$

2.2 Ánh xạ

Ánh xạ bằng nhau

Ånh

Ånh ngược

Tính chất

2.2.1 Loại

Đơn ánh

• Có tối đa 1 nghiệm

$$\forall x, x' \in X, x \neq x' \Rightarrow f(x) \neq f(x')$$

hay

$$\forall x, x' \in X, f(x) \neq f(x') \Rightarrow x \neq x'$$

• Không là đơn ánh (có nhiều hơn 1 nghiệm)

$$\exists x, x' \in X, x \neq x' \land f(x) = f(x')$$

Toàn ánh

• Luôn có ít nhất 1 nghiệm

$$\forall y \in Y, \exists x \in X, y = f(x)$$

hay

$$\forall y \in Y, f^{-1}(y) \neq \emptyset$$

• Không là toàn ánh (Tồn tại vô nghiệm)

$$\exists y \in Y, f^{-1}(y) = \emptyset$$

hay

$$\exists y \in Y, \forall x \in X, y \neq f(x)$$

Song ánh

• Vừa đơn ánh vừa toàn ánh.

$$\forall y \in Y, \exists ! x \in X, y = f(x)$$

hay

$$\forall y \in Y, f^{-1}(y)$$
 có đúng 1 phần tử

2.2.2 Ngược

$$f^{-1}:Y\to Xy\mapsto f^{-1}(y)=x,\quad f(x)=y$$

2.2.3 Hợp

$$h = g \circ f : X \to Y \to Zx \mapsto f(x) \mapsto g(f(x))$$

• Định lý

 $f:X\to Y$ song ánh

$$f\circ f^{-1}=Id_Yf^{-1}\circ f=Id_X$$

Trong đó

- $\bullet \quad Id_X(x): X \to X, \quad Id_X(x) = x$
- $\bullet \ Id_Y(y): Y \to Y, \quad Id_Y(y) = y$