Towards efficient quantum computing for quantum chemistry: reducing circuit complexity with transcorrelated and adaptive ansatz techniques

Erika Magnusson,
 a Aaron Fitzpatrick,
 b Stefan Knecht,
 b Martin Rahm,
 a Werner Dobrautz
 a

 $^a{\rm Chalmers}$ University of Technology, $^b{\rm Algorithmiq}$ Ltd.

Faraday Discussions on Correlated Electronic Structure

Hybrid Quantum-Classical Approach

Hybrid Quantum-Classical Approach

Variational Quantum Eigensolver

$$E(\boldsymbol{\theta}) = \langle \Phi(\boldsymbol{\theta}) | \hat{H} | \Phi(\boldsymbol{\theta}) \rangle$$

Quantum Imaginary Time Evolution for non-Hermitian problems

$$|\Psi_0\rangle = \lim_{\tau \to \infty} e^{-\hat{H}\tau} |\Phi(0)\rangle$$

Hybrid Quantum-Classical Approach

Variational Quantum Eigensolver

$$E(\boldsymbol{\theta}) = \langle \Phi(\boldsymbol{\theta}) | \hat{H} | \Phi(\boldsymbol{\theta}) \rangle$$

Quantum Imaginary Time Evolution for non-Hermitian problems

$$|\Psi_0\rangle = \lim_{\tau \to \infty} e^{-\hat{H}\tau} |\Phi(0)\rangle$$

Reduce circuit surface

Reduce circuit surface

Reduce circuit surface

What is the best/shortest Ansatz $\hat{U}(\boldsymbol{\theta})$ to represent $|\Psi_0\rangle$?

ADAPT-ive UCCSD, Grimsley et al., Nat Commun 10, 3007 (2019)

${\bf Explicit\ correlation-Transcorrelation}$

Explicit correlation – Transcorrelation

Explicit correlation – Transcorrelation

 $|\Phi\rangle$ easier to represent with less basis functions and shallower quantum circuits

${\bf Explicit\ correlation-Transcorrelation}$

 $|\Phi\rangle$ easier to represent with less basis functions and shallower quantum circuits

Move complexity from wf. to \hat{H}_{TC} : non-Hermitian* and 3-body terms[†]

*TC-VarQITE, McArdle and Tew, arXiv:2006.11181; ADAPT-VarQITE, Gomes et al., Adv.

Quantum Technol., 4, 2100114; †**xTC**, Christlmaier *et al.*, JCP **159**, 014113

Smaller basis \rightarrow fewer qubits

Smaller basis \rightarrow fewer qubits

Improved Convergence

