1 Infinite Boundaries

We start with

$$d^2 = \sum_{\langle i,j \rangle} (\vec{r}_{ij} - \vec{s}_{ij})^2$$

Where \vec{r}_{ij} is the distance between particles i and j in packing 1, and \vec{s}_{ij} is the particle distance between particles i and j in packing 2.

Then

$$d^{2} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (\vec{r}_{ij} - \vec{s}_{ij})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (\vec{r}_{i} - \vec{r}_{j} - \vec{s}_{i} + \vec{s}_{j})^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} ((\vec{r}_{i} - \vec{s}_{i}) - (\vec{r}_{j} - \vec{s}_{j}))^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (\vec{\delta}_{i} - \vec{\delta}_{j})^{2}$$

$$= \frac{N}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (\vec{\delta}_{i} - \vec{\delta}_{j})^{2}$$

$$= N \sum_{i=1}^{N} \vec{\delta}_{i}^{2} + (\sum_{i=1}^{N} \vec{r}_{i} - \sum_{i=1}^{N} \vec{\delta}_{i} \cdot \sum_{j=1}^{N} \vec{\delta}_{j})$$

$$= N \sum_{i=1}^{N} \vec{\delta}_{i}^{2} + (\sum_{i=1}^{N} \vec{r}_{i} - \sum_{i=1}^{N} \vec{s}_{i}) \cdot (\sum_{j=1}^{N} \vec{r}_{j} - \sum_{j=1}^{N} \vec{s}_{j})$$

Where $\vec{\delta}_i$ and $\vec{\delta}_j$ are defined as $(\vec{r}_i - \vec{s}_i)$, $(\vec{r}_j - \vec{s}_j)$ to make that work. Now let's imagine that I've chosen the origin of \vec{r}_i so that $\sum \vec{r}_i = 0$, and I have chosen the origin $\vec{\Delta}_s$ of \vec{s}_i so that they minimize $\sum_i (\vec{r}_i - \vec{s}_i)^2$. The derivative of $\sum_{i}\left(\vec{r_{i}}-\vec{s_{i}}\right)^{2}$ with respect to that origin is therefore 0, so

$$\vec{\nabla}_{\vec{\Delta}_s} \sum_i (\vec{r}_i - \vec{s}_i)^2 = 0$$

$$\vec{\nabla}_{\vec{\Delta}_s} \sum_i \left(\vec{r}_i - \left(\vec{s}_i' - \vec{\Delta}_s \right) \right)^2 = 0$$

$$\vec{\nabla}_{\vec{\Delta}_s} \sum_i \left[(\vec{r}_i - \vec{s}_i')^2 + 2 \left(\vec{r}_i - \vec{s}_i' \right) \cdot \vec{\Delta}_s + \vec{\Delta}_s^2 \right] = 0$$

$$\sum_i \left[2 \left(\vec{r}_i - \vec{s}_i' \right) + 2 \vec{\Delta}_s \right] = 0$$

$$\vec{\Delta}_s = -\frac{1}{N} \sum_i \left(\vec{r}_i - \vec{s}_i' \right)$$

$$= \frac{1}{N} \sum_i \vec{s}_i'$$

So therefore if $\vec{s_i}$ are the coordinates with the new origin $\vec{\Delta}_s$, then $\vec{s_i} = \vec{s_i'} - \vec{\Delta}_s$, and $\sum_i \vec{s_i} = (\sum_i \vec{s_i'}) - N\vec{\Delta}_s = 0$. This choice yields $\sum_i \vec{s_i} = 0$, which then means

$$d^{2} = N \sum_{i=1}^{N} \vec{\delta}_{i}^{2}$$

$$\frac{d^{2}}{N} = \sum_{i=1}^{N} (\vec{r}_{i} - \vec{s}_{i})^{2}$$

Periodic Boundaries

Problem. I expanded $\vec{r}_{ij} = \vec{r}_i - \vec{r}_j$, and I can't choose an origin so that \vec{r}_{ij} is always the minimal periodic distance vector.

Fix. We include an L_{ij} , M_{ij} , and N_{ij} term, where \vec{L}_{ij} , \vec{M}_{ij} , \vec{N}_{ij} are vectors like (n_1L, n_2L) . If we work backwards, starting with no assumptions about which translation or periodic image we are taking:

$$d^{2} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\vec{r}_{ij} - \vec{s}_{ij} - \vec{N}_{ij} \right)^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\vec{r}_{i} - \vec{r}_{j} - \vec{L}_{ij} + \vec{s}_{i} - \vec{s}_{j} - \vec{M}_{ij} - \vec{N}_{ij} \right)^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left((\vec{r}_{i} - \vec{s}_{i}) - (\vec{r}_{j} - \vec{s}_{j}) - \left(\vec{L}_{ij} - \vec{M}_{ij} - \vec{N}_{ij} \right) \right)^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\vec{\delta}_{i} - \vec{\delta}_{j} - \vec{\Delta}_{ij} \right)^{2}$$

$$= \frac{N}{2} \sum_{i=1}^{N} \vec{\delta}_{i}^{2} + \frac{N}{2} \sum_{j=1}^{N} \vec{\delta}_{j}^{2} + \sum_{i=1}^{N} \vec{\delta}_{i} \cdot \sum_{j=1}^{N} \vec{\delta}_{j} - \sum_{i=1}^{N} \vec{\delta}_{i} \cdot \sum_{j=1}^{N} \vec{\Delta}_{ij} - \sum_{j=1}^{N} \vec{\delta}_{j} \cdot \sum_{i=1}^{N} \vec{\Delta}_{ij} + \sum_{i=1}^{N} \sum_{j=1}^{N} \vec{\Delta}_{ij}^{2}$$

$$= N \sum_{i=1}^{N} \vec{\delta}_{i}^{2} + \left(\sum_{i=1}^{N} (\vec{r}_{i} - \vec{s}_{i}) \right) \cdot \left(\sum_{j=1}^{N} (\vec{r}_{j} - \vec{s}_{j}) \right) - 2 \left(\sum_{i=1}^{N} (\vec{r}_{i} - \vec{s}_{i}) \right) \cdot \sum_{j=1}^{N} \vec{\Delta}_{ij} + \sum_{i=1}^{N} \sum_{j=1}^{N} \vec{\Delta}_{ij}^{2}$$

Now if we make the same choice of origins as above, we get

$$d^{2} = N \sum_{i=1}^{N} (\vec{r}_{i} - \vec{s}_{i})^{2} + \sum_{i=1}^{N} \sum_{j=1}^{N} \vec{\Delta}_{ij}^{2}$$
 (2)

Where $\vec{\Delta}_{ij} = \vec{L}_{ij} - \vec{M}_{ij} - \vec{N}_{ij}$, and \vec{L}_{ij} are vectors of box-lengths that minimize $(\vec{r}_i - \vec{r}_j - \vec{L}_{ij})^2$, \vec{M}_{ij} minimizes $(\vec{s}_i - \vec{s}_j - \vec{M}_{ij})^2$, and \vec{N}_{ij} minimizes $(\vec{r}_{ij} - \vec{s}_{ij} - \vec{N}_{ij})^2$.

Now we can choose which mirror image of $\vec{r_i}$ and $\vec{s_i}$ we want, which translation of $\vec{r_i}$ and/or $\vec{s_i}$ we want, and also choose each \vec{N}_{ij} as we wish, as long as the \vec{N}_{ij} coordinates are box-length.

If we make these choices so as to minimize d^2 , then clearly for equation 2 we get the minimal distance squared between the two sets. For equation 1, then clearly the choice that minimizes d^2 is one in which $\left(\vec{r}_{ij} - \vec{s}_{ij} - \vec{\Delta}_{ij}\right)$ is as short as possible, e.g., the box-wrapped shortest distance vector from \vec{r}_{ij} to \vec{s}_{ij} . These two equations are equivalent, so the choice to minimize Eq. 1 is the same as the choice to minimize Eq. 2. Therefore, if we simply calculate $d^2 = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} (\vec{r}_{ij} \ominus \vec{s}_{ij})^2$ (where $\vec{r} \ominus \vec{s}$ is the box-wrapped distance vector between them), we have the minimal value of d^2 :

$$d^2 = rac{1}{N} \sum_{\langle i,j
angle} \left(ec{r}_{ij} \ominus ec{s}_{ij}
ight)^2 = \min_{ec{\delta}} \sum_{i=1}^N \left(ec{r}_i \ominus \left(ec{s}_i - ec{\delta}
ight)
ight)^2$$

Note that we still need to try all 8 rotoflips, as \vec{r}_{ij} depends on those.