Perceptron

- Single layer network
 - Contains only input and output nodes
- □ Activation function: $f = sign(w \cdot x)$
- Applying model is straightforward

$$Y = sign(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4)$$
where $sign(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$

$$-X_1 = 1, X_2 = 0, X_3 = 1 \Rightarrow y = sign(0.2) = 1$$

Perceptron Learning Rule

- □ Initialize the weights $(w_0, w_1, ..., w_d)$
- Repeat
 - For each training example (x_i, y_i)
 - ◆ Compute f(w, x_i)
 - Update the weights:

$$w^{(k+1)} = w^{(k)} + \lambda [y_i - f(w^{(k)}, x_i)] x_i$$

Until stopping condition is met

Perceptron Learning Rule

Weight update formula:

$$w^{(k+1)} = w^{(k)} + \lambda [y_i - f(w^{(k)}, x_i)] x_i$$
; λ : learning rate

Intuition:

- Update weight based on error: $e = [y_i f(w^{(k)}, x_i)]$
- If y=f(x,w), e=0: no update needed
- If y>f(x,w), e=2: weight must be increased so that f(x,w) will increase
- If y<f(x,w), e=-2: weight must be decreased so that f(x,w) will decrease

Example of Perceptron Learning

$$w^{(k+1)} = w^{(k)} + \lambda [y_i - f(w^{(k)}, x_i)] x_i$$

$$Y = sign(\sum_{i=0}^{d} w_i X_i)$$

$$\lambda = 0.1$$

X_1	X_2	X_3	Υ
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

	\mathbf{W}_0	W ₁	W ₂	W_3
0	0	0	0	0
1	-0.2	-0.2	0	0
2	0	0	0	0.2
3	0	0	0	0.2
4	0	0	0	0.2
5	-0.2	0	0	0
6	-0.2	0	0	0
7	0	0	0.2	0.2
8	-0.2	0	0.2	0.2

Epoch	W_0	W ₁	W_2	W_3
0	0	0	0	0
1	-0.2	0	0.2	0.2
2	-0.2	0	0.4	0.2
3	-0.4	0	0.4	0.2
4	-0.4	0.2	0.4	0.4
5	-0.6	0.2	0.4	0.2
6	-0.6	0.4	0.4	0.2

Perceptron Learning Rule

 Since f(w,x) is a linear combination of input variables, decision boundary is linear

For nonlinearly separable problems, perceptron learning algorithm will fail because no linear hyperplane can separate the data perfectly