U

Amendments to the Claims

Claim 16 (currently amended): A computer implemented method for programmatically creating a
distributed object program in which at least one complex object is passed as a parameter, wherein
the programmatically-created program is programmatically generated from a programmer-written
program which is not specially adapted for distributed execution, the distributing one or more
objects of a program across more than one physical device, each object containing one or more
programmed member functions, said member functions having complex objects, said complex
objects including one or more programmed member functions, as parameters, said method
comprising the computer executable steps of:
identifying all of the one or more objects in the programmer-written program, wherein
each of the objects contains one or more programmed member functions and wherein at least one
of the programmed member functions is written to pass one of the objects as a parameter;
determining a first set which of the identified objects which are to reside on a first
computer and a second set which of the identified objects which are to reside on a second
computer, wherein the first set and the second set together comprise the identified objects of the
programmer-written program and the first set and the second set each include at least one of the
identified objects; such that the distributed system will consist of at least a first object on a first
computer and a second object on a second computer;
identifying all programmed methods contained in each object that may be accessed from a
remote computer;
programmatically generating, upon detecting that a first object in the first set contains
logic to call one of the programmed member functions of a second object in the second set, a first
Serial No. 09/692,990 -6- Docket CR9-97-092-US2

proxy and a second proxy for each the second object, wherein the first proxy is generated to be installed on the first computer and the second proxy is generated to be installed on the second computer;

programmatically generating logic in the first proxy that will programmatically generate a third proxy, responsive to detecting that the call to the programmed member function of the second object will pass, as a parameter, a third object that is a complex object and that is one of the objects in the first set, wherein the third proxy is generated to be installed on the first computer; and

programmatically generating logic in the second proxy that will programmatically generate a fourth proxy, responsive to a call from the first proxy that includes a reference to the third proxy, wherein the fourth proxy is generated to be installed on the second computer.

such that, at run time, the first object can transparently access the programmed member function of the second object can transparently access a programmed member function of the third object, that may be accessed from a remote computer, said first proxy residing on said first computer, and said second proxy residing on said second computer, said first proxy containing network linkage and indication to access programmed member functions on said second proxy on said second computer including logic to transfer and translate complex objects which reside on said first computer used as member function parameters and said second proxy containing, linkage and indication to access said programmed member functions on said second object, including logic to transfer and translate complex objects, said complex objects containing one or more programmed member functions and reside on said first computer, used as member function parameters, and,

Serial No. 09/692,990

-7-

Docket CR9-97-092-US2

44 accessing said remote programmed methods through said proxies:

1	Claim 17 (currently amended): A method The method as claimed in Claim 16, wherein:			
2	said the logic in said first proxy further comprises programmatically-generated logic to on			
3	said first computer to transfer and translate complex data objects comprising the steps of:			
4	creating a third proxy, for said complex object, which is to reside on said first computer			
5	with said complex object, said third proxy containing linkage and indication to access			
6	programmed member functions on said complex object;			
7	creating (1) create a reference table entry which correlates said the third proxy			
8	object to said complex the third object, which may be accessed by said the third proxy object to			
9	access said complex when invoking programmed member functions of the third object; (2)			
10	translate calls for the programmed member function of the second object that are received from			
11	the first object and that pass the third object as a parameter, whereby a reference to the third			
12	proxy replaces the third object on the received calls, and forward the translated calls to the second			
13	proxy; and (3) upon receiving, from the second proxy, responses to the translated calls, return the			
14	responses to the first object; ; and;			
15	passing as a member function parameter to said second proxy on said second			
16	machine a reference to said third proxy, in place of said complex object when said complex			
17	object is to be a parameter in a member function call to said second object on said second			
18	machine.			
19	said logic in said the second proxy further comprises programmatically-generated logic to			
20	on said second computer to transfer and translate complex data objects comprising the steps of.			
	Serial No. 09/692,990 -8- Docket CR9-97-092-US2			

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41.

42

creating a fourth proxy for said complex object on said first computer which is to reside on said second computer, said fourth proxy containing network linkage and indication necessary to access programmed member functions on said third proxy on said first machine; creating a (1) create a second reference table entry which correlates said the fourth proxy to a to the reference to said the third proxy on said third computer, which may be accessed by said the fourth proxy to access said when forwarding calls to the third proxy; (2) invoke the programmed member function of the second object, responsive to receiving one of the translated calls that is forwarded from the first proxy, wherein the second reference table entry is consulted so that an indication of the fourth proxy is substituted, on the invocation, for the reference to the third proxy; and (3) upon receiving, from the programmed member function of the second object, a response to the forwarded call, return the response to the first proxy; the fourth proxy further comprises programmatically-generated logic to (1) consult the second reference table entry, responsive to receiving a call from the programmed member function of the second object, thereby determining that the received call corresponds to the third proxy; (2) translate the call received from the programmed member function of the second object such that the translated call refers to the third proxy and forward the translated call to the third proxy; and (3) upon receiving, from the third proxy, a response to the translated call, return the response to the programmed member function of the second object; and the third proxy further comprises programmatically-generated logic to (1) consult the reference table entry, responsive to receiving the translated call from the fourth proxy, thereby determining that the received translated call corresponds to the third object; (2) translate the call received from the fourth proxy to invoke the programmed member function of the third object Serial No. 09/692,990 -9-Docket CR9-97-092-US2

3	and forward the translated call to the third object, where the programmed member function of the
4	third object will then be executed; and (3) upon receiving, from the programmed member function
5	of the third object, a result of the execution, return the result to the fourth proxy.;
6	passing as a member function parameter to said second object from said second
7	proxy on said second computer an indication of said fourth proxy, in place of said reference to
8	said third proxy on said first computer, which represents said complex object on said first
19	computer.
50	said network linkage and indication in said fourth proxy necessary to access programmed
51	member functions on said third proxy on said first computer comprising the steps of:
52	looking up said fourth proxy in said reference table on said second computer to
53	determine which object on said first machine said fourth object is a proxy for, said lookup
54	returning a reference to said third proxy on said first computer;
55	calling the appropriate programmed member functions in said third proxy on said
56	first computer.
57	- said linkage and indication in said third proxy necessary to access programmed methods
58	on said complex object comprising the steps of:
59	looking up said third proxy in said reference table on said first computer to
60	determine which object on said first machine said third object is a proxy for, said lookup returning
61	a reference to said complex object on said first computer;
62	calling the appropriate programmed member functions in said complex object.
1	Claim 18 (currently amended): A method The method as claimed in Claim 17 wherein 16.
	Serial No. 09/697 990 -10- Docket CR9-97-092-LIS2

2	wherein one of said complex objects the third object is said identical to the first object, such that	
3	the call to the programmed member function of the second object executes as a callback on the	
4	first object. on said first computer.	
1	Claim 19 (currently amended): A method The method as claimed in Claim 16, wherein 17	
2	wherein said the reference table entry and the second reference table entry are created as is a	
3	database entries.	
1	Claim 20 (currently amended): A computer program product for programmatically creating a	
2	distributed object program in which at least one complex object is passed as a parameter, wherein	
3	the programmatically-created program is programmatically generated from a programmer-written	
4	program which is not specially adapted for distributed execution, the distributing one or more	
5	objects of a program across more than one physical device, each object containing one or more	
6	programmed member functions, said member functions having complex objects, said complex	
7	objects including one or more programmed member functions, as parameters, said computer	
. 8	program product comprising:	
9	a computer-readable storage medium have computer-readable program code means	
10	embodied in said medium, said computer-readable program code means comprising:	
11	computer-readable program code means for identifying all of the one or more	
12	objects in the programmer-written program, wherein each of the objects contains one or more	
13	programmed member functions and wherein at least one of the programmed member functions is	
1,4	written to pass one of the objects as a parameter;	
	Serial No. 09/692,990 -11- Docket CR9-97-092-US2	

15	computer-readable program code means for determining a first s	computer-readable program code means for determining a first set which of the		
16	identified objects which are to reside on a first computer and which a second set of the identified			
17	objects which are to reside on a second computer, wherein the first set and the	second set		
18	together comprise the identified objects of the programmer-written program and the first set and			
19	the second set each include at least one of the identified objects; such that the distributed system			
20	will consist of at least a first object on a first computer and a second object on a second computer			
21	computer-readable program code means for identifying all programmed methods			
22	contained in each object that may be accessed from a remote computer;			
23	computer-readable program code means for programmatically ge	enerating, upon		
24	detecting that a first object in the first set contains logic to call one of the progr	ammed member		
25	functions of a second object in the second set, a first proxy and a second proxy	for each <u>the</u>		
26	second object, wherein the first proxy is generated to be installed on the first co	mputer and the		
27	second proxy is generated to be installed on the second computer;			
28	computer-readable program code means for programmatically g	enerating logic in		
29	the first proxy that will programmatically generate a third proxy, responsive to	letecting that the		
30	call to the programmed member function of the second object will pass, as a par	rameter, a third		
31	object that is a complex object and that is one of the objects in the first set, whe	rein the third		
32	proxy is generated to be installed on the first computer; and	·		
33	computer-readable program code means for programmatically g	enerating logic in		
34	the second proxy that will programmatically generate a fourth proxy, responsive	to a call from the		
35	first proxy that includes a reference to the third proxy, wherein the fourth proxy	is generated to be		
36	installed on the second computer.			
	Serial No. 09/692,990 -12- Docket CR	9-97 -092- US2		

37 such that, at run time, the first object can transparently access the programmed member 38 function of the second object and the programmed member function of the second object can transparently access a programmed member function of the third object, that may be accessed 39 from a remote computer, said first proxy residing on said first computer and said second proxy 40 residing on said second computer, said first proxy containing network linkage and indication to 41 access programmed member functions on said second proxy on said second computer including 42 logic to transfer and translate complex objects which reside on said first computer used as 43 member function parameters and said second proxy containing linkage and indication to access 44 said programmed member functions on said second object-including logic to transfer and translate 45 complex objects, said complex objects containing one or more programmed member functions 46 47 and reside on said first computer, used as member function parameters; and, 48 computer-readable program code means for accessing said remote programmed 49 methods through said proxies. Claim 21 (currently amended): A computer The computer program product as claimed in Claim 1 2 20. wherein: 3 said logic in said the first proxy on said first computer to transfer and translate complex 4 data objects comprising the steps of: 5 creating a third proxy; for said complex object, which is to reside on said first computer with said complex object, said third proxy containing linkage and indication to access 6 7 programmed member functions on said complex object; 8 creating further comprises programmatically-generated logic to (1) create a Serial No. 09/692,990 -13-Docket CR9-97-092-US2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

reference table entry which correlates said the third proxy object to said complex the third object, which may be accessed by said the third proxy object to access said complex when invoking programmed member functions of the third object; (2) translate calls for the programmed member function of the second object that are received from the first object and that pass the third object as a parameter, whereby a reference to the third proxy replaces the third object on the received calls, and forward the translated calls to the second proxy; and (3) upon receiving, from the second proxy, responses to the translated calls, return the responses to the first object; ; and; passing as a member function parameter to said second proxy on said second machine a reference to said third proxy; in place of said complex object when said complex object is to be a parameter in a member function call to said second object on said second machine. said logic in said the second proxy on said second computer to transfer and translate complex data objects comprising the steps of: creating a fourth proxy for said complex object on said first computer which is to reside on said second computer, said fourth proxy containing network linkage and indication necessary to access programmed member functions on said third proxy on said first machine; creating a further comprises programmatically-generated logic to (1) create a second reference table entry which correlates said the fourth proxy to a to the reference to said the third proxy on said third computer, which may be accessed by said the fourth proxy to access said when forwarding calls to the third proxy; (2) invoke the programmed member function of the second object, responsive to receiving one of the translated calls that is forwarded from the first proxy, wherein the second reference table entry is consulted so that an indication of the fourth Serial No. 09/692,990 -14-Docket CR9-97-092-US2

proxy is substituted, on the invocation, for the reference to the third proxy; and (3) upon 31 receiving, from the programmed member function of the second object, a response to the 32 33 forwarded call, return the response to the first proxy; the fourth proxy further comprises programmatically-generated logic to (1) consult the 34 second reference table entry, responsive to receiving a call from the programmed member 35 function of the second object, thereby determining that the received call corresponds to the third 36 proxy; (2) translate the call received from the programmed member function of the second object 37 such that the translated call refers to the third proxy and forward the translated call to the third 38 proxy; and (3) upon receiving, from the third proxy, a response to the translated call, return the 39 response to the programmed member function of the second object; and 40 the third proxy further comprises programmatically-generated logic to (1) consult the 41 reference table entry, responsive to receiving the translated call from the fourth proxy, thereby 42 determining that the received translated call corresponds to the third object; (2) translate the call 43 received from the fourth proxy to invoke the programmed member function of the third object 44 and forward the translated call to the third object, where the programmed member function of the 45 third object will then be executed; and (3) upon receiving, from the programmed member function 46 47 of the third object, a result of the execution, return the result to the fourth proxy, 48 passing as a member function parameter to said second object from said second proxy on said second computer an indication of said fourth proxy, in place of said reference to 49 said third proxy on said first computer, which represents said complex object on said first 50 51 computer. 52 said network linkage and indication in said fourth proxy necessary to access programmed Serial No. 09/692,990 -15-Docket CR9-97-092-US2

53 member functions on said third proxy on said first computer comprising the steps of 54 looking up said fourth proxy in said reference table on said second computer to determine which object on said first machine said fourth object is a proxy for, said lookup 55 56 returning a reference to said third proxy on said first computer; calling the appropriate programmed member functions in said third proxy on said 57 58 first computer. said linkage and indication in said third proxy necessary to access programmed methods 59 on said complex object comprising the steps of 60 looking up said third proxy in said reference table on said first computer to 61 62 determine which object on said first machine said third object is a proxy for, said lookup returning 63 a reference to said complex object on said first computer; calling the appropriate programmed member functions in said complex object. 64 1 Claim 22 (currently amended): A computer The computer program product as claimed in Claim 2 21 wherein one of said complex objects 20, wherein the third object is said identical to the first object, such that the call to the programmed member function of the second object executes as a 3 4 callback on the first object, on said first computer. Claim 23 (currently amended): A computer The computer program product as claimed in Claim 1 2 21 wherein said 20, wherein the reference table is a entry and the second reference table entry are 3 created as database entries. Serial No. 09/692,990 -16-Docket CR9-97-092-US2

21

22

1	Claim 24 (currently amended): A computer system for programmatically creating a distributed
2	object program in which at least one complex object is passed as a parameter, wherein the
3	programmatically-created program is programmatically generated from a programmer-written
4	program which is not specially adapted for distributed execution, the distributing one or more
5	objects of a program across more than one physical device; each object containing one or more
6	programmed member functions, said member functions having complex objects, said complex
7	objects including one or more programmed member functions, as parameters, said system
8	comprising:
9	means for identifying all of the one or more objects in the programmer-written program,
10	wherein each of the objects contains one or more programmed member functions and wherein at
11	least one of the programmed member functions is written to pass one of the objects as a
12	parameter;
13	means for determining which a first set of the identified objects which are to reside on a
14	first computer and a second set which of the identified objects which are to reside on a second
15	computer, wherein the first set and the second set together comprise the identified objects of the
16	programmer-written program and the first set and the second set each include at least one of the
17	identified objects; such that the distributed system will consist of at least a first object on a first
18	computer and a second object on a second computer;
19	means for identifying all programmed methods contained in each object that may be
20	accessed from a remote computer;
21	means for programmatically generating, upon detecting that a first object in the first set
22	contains logic to call one of the programmed member functions of a second object in the second.
	Serial No. 09/692,990 -17- Declart CRO 87 003 1150

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

set, a first proxy and a second proxy for each the second object, wherein the first proxy is generated to be installed on the first computer and the second proxy is generated to be installed on the second computer;

means for programmatically generating logic in the first proxy that will programmatically generate a third proxy, responsive to detecting that the call to the programmed member function of the second object will pass, as a parameter, a third object that is a complex object and that is one of the objects in the first set, wherein the third proxy is generated to be installed on the first computer; and

means for programmatically generating logic in the second proxy that will programmatically generate a fourth proxy, responsive to a call from the first proxy that includes a reference to the third proxy, wherein the fourth proxy is generated to be installed on the second computer,

such that, at run time, the first object can transparently access the programmed member function of the second object and the programmed member function of the second object can transparently access a programmed member function of the third object. that may be accessed from a remote computer, said first proxy residing on said first computer and said second proxy residing on said second computer, said first proxy containing network linkage and indication to access programmed member functions on said second proxy on said second computer including logic to transfer and translate complex objects which reside on said first computer used as member function parameters and said second proxy containing linkage and indication to access said programmed member functions on said second object including logic to transfer and translate complex objects, said complex objects containing one or more programmed member functions

Serial No. 09/692,990

-18-

Docket CR9-97-092-US2

FAX

45 and reside on said first computer, used as member function parameters; and 46 means for accessing said remote programmed methods through said proxies. Claim 25 (currently amended): A system The system as claimed in Claim 24, wherein: 1 2 said logic in said the first proxy on said first computer to transfer and translate complex 3 data objects comprising the steps of. 4 creating a third proxy, for said complex object, which is to reside on said first 5 computer with said complex object; said third proxy containing linkage and indication to access 6 programmed member functions on said complex object; 7 creating further comprises programmatically-generated logic to (1) create a 8 reference table entry which correlates said the third proxy object to said complex the third object, which may be accessed by said the third proxy object to access said complex when invoking 9 programmed member functions of the third object; (2) translate calls for the programmed member 10 11 function of the second object that are received from the first object and that pass the third object 12 as a parameter, whereby a reference to the third proxy replaces the third object on the received 13 calls, and forward the translated calls to the second proxy; and (3) upon receiving, from the second proxy, responses to the translated calls, return the responses to the first object; and, 14 15 passing as a member function parameter to said second proxy on said second 16 machine a reference to said third proxy, in place of said complex object when said complex 17 object is to be a parameter in a member function call to said second object on said second 18 machine. 19 said logic in said the second proxy on said second computer to transfer and translate Serial No. 09/692,990 -19-Docket CR9-97-092-US2

20 complex data objects comprising the steps of: 21 creating a fourth proxy for said complex object on said first computer which is to reside on said second computer, said fourth proxy containing network linkage and indication 22 necessary to access programmed member functions on said third proxy on said first machine; 23 creating a further comprises programmatically-generated logic to (1) create a 24 second reference table entry which correlates said the fourth proxy to a to the reference to said 25 the third proxy on said third computer, which may be accessed by said the fourth proxy to access 26 27 said when forwarding calls to the third proxy; (2) invoke the programmed member function of the second object, responsive to receiving one of the translated calls that is forwarded from the first 28 proxy, wherein the second reference table entry is consulted so that an indication of the fourth 29 proxy is substituted, on the invocation, for the reference to the third proxy; and (3) upon 30 receiving, from the programmed member function of the second object, a response to the 31 forwarded call, return the response to the first proxy; 32 the fourth proxy further comprises programmatically-generated logic to (1) consult the 33 second reference table entry, responsive to receiving a call from the programmed member 34 function of the second object, thereby determining that the received call corresponds to the third 35 36 proxy; (2) translate the call received from the programmed member function of the second object such that the translated call refers to the third proxy and forward the translated call to the third .37 proxy; and (3) upon receiving, from the third proxy, a response to the translated call, return the 38 response to the programmed member function of the second object; and 39 40 the third proxy further comprises programmatically-generated logic to (1) consult the reference table entry, responsive to receiving the translated call from the fourth proxy, thereby 41 Scrial No. 09/692,990 -20-Docket CR9-97-092-US2

FAX

4073437587

- Claim 26 (currently amended): A system The system as claimed in Claim 25 wherein one of said 1
- 2 complex objects 24, wherein the third object is identical to the said first object, such that the call
- to the programmed member function of the second object executes as a callback on the first 3
- 4 object. on said first computer.
- Claim 27 (currently amended): A system The system as claimed in Claim 25 wherein said 24. 1
- wherein the reference table entry and the second reference table entry are created as is a database 2
- 3 entries.