Bacheliers en Sciences Mathématiques et Physiques, bloc 1 MATHF102: Séance 24

- 1. Soit V un espace vectoriel réel. Toute homotétie $H:V\to V$, où $H(v):=\lambda v$ pour tout $v\in V$, avec $\lambda\in\mathbb{R}$ est-elle un élément du groupe linéaire général GL(V)?
- 2. Dans un espace vectoriel réel V, soit A un opérateur linéaire tel que $A^2 = Id_V$. A est-il inversible? Prouver que $V_1 := \{v \in V \mid A(v) = v\} \subseteq V$ et $V_2 := \{v \in V \mid A(v) = -v\} \subseteq V$ sont des sous-espaces complémentaires de V, c'est-à-dire que $V_1 + V_2 = V$ et $V_1 \cap V_2 = \{0\}$.

Trouver un opérateur linéaire A de \mathbb{R}^2 tel que $A^2 = Id_{\mathbb{R}^2}$ et $A \neq Id_{\mathbb{R}^2}$.

3. On considère l'application linéaire $A: \mathbb{R}^3 \to \mathbb{R}^4$ définie par

$$A((x, y, z)) := (x - y + 2z, 3x + 2y - z, 4x + y + z, 7x + 3y)$$
 pour tout $(x, y, z) \in \mathbb{R}^3$.

Quelle est la matrice de cette application linéaire dans les bases $\{e_1, e_2, e_3\}$ et $\{f_1, f_2, f_3, f_4\}$ de \mathbb{R}^3 et \mathbb{R}^4 , si

$$\begin{array}{lll} \text{(a)} & e_1 = (1,0,0) & f_1 = (1,0,0,0) \\ & e_2 = (0,1,0) & f_2 = (0,1,0,0) \\ & e_3 = (0,0,1) & f_3 = (0,0,1,0) \\ & (b) & e_1 = (1,1,0) & f_1 = (0,1,1,2) \\ & e_2 = (2,-3,0) & f_2 = (1,0,1,1) \\ & e_3 = (1,2,3) & f_3 = (0,0,1,1) \\ & f_3 = (0,0,0,1). \end{array}$$

- 4. Toute matrice triangulaire et symétrique est diagonale. Vrai ou faux?
- 5. Écrire dans la base canonique $\{e_1, e_2\}$ de \mathbb{R}^2 la matrice des opérateurs linéaires suivants: les projections P_x et P_y sur la première bissectrice parallèlement aux axes x et y, les symétries S_x et S_y par rapport aux axes x et y, les symétries S_1 et S_2 par rapport aux première et seconde bissectrices, la symétrie centrée S_c et la rotation R_θ d'angle θ autour de l'origine.
- 6. Calculer les produits matriciels a^2 , $a \cdot b$ et $b \cdot a$ où a et b sont respectivement les matrices des transformations (1) S_1 et S_2 , (2) S_x et S_1 , (3) R_θ et S_y . Vérifier géométriquement le résultat.