ISA SOFTWARE V.1.3

1. Caso di studio : Grafo $P_3^{(2)}\times CZ_7^{(2)}$

Definition 1.1. Un grafo (non orientato e finito) è una coppia ordinata (V, E) dove V è un insieme finito ed E è un multiinsieme di coppie non ordinate di elementi di V. L'insieme V contiene i vertici del grafo ed E i suoi lati. Per un generico grafo G, l'insieme dei suoi vertici è indicato con V(G) e quello dei suoi lati con E(G).

La struttura dati con la quale si è scelto di memorizzare il grafo è la matrice di adicenza.

Definition 1.2. La matrice di adiacenza di un grafo G i cui vertici siano v_1, v_2, \ldots, v_n è una matrice A(G) = [a(i, j)] simmetrica di ordine $n \times n$ in cui si pone:

$$a(i,j) = \begin{cases} 1 & \text{se } (v_i, v_j) \in E(G) \\ 0 & \text{altrimenti} \end{cases}$$

Di seguito viene mostrata invece la lista di adiacenza che permette una più facile lettura delle adiacenze:

Date: January 20, 2016.

Key words and phrases. sample.tex.

```
(1;1) \longrightarrow (2;1), (3;1), (1;2), (2;2), (1;3), (1;6), (1;7),
(2;1) \longrightarrow (1;1), (3;1), (1;2), (2;2), (3;2), (2;3), (2;6),
(3;1) \longrightarrow (1;1), (2;1), (2;2), (3;2), (3;3), (3;6), (3;7),
(1;2) \longrightarrow (1;1), (2;1), (2;2), (3;2), (1;3), (2;3), (1;4), (1;7),
(2;2) \longrightarrow (1;1), (2;1), (3;1), (1;2), (3;2), (1;3), (2;3), (3;3), (2;4), (2;7),
(3;2) \longrightarrow (2;1), (3;1), (1;2), (2;2), (2;3), (3;3), (3;4), (3;7),
(1;3) \longrightarrow (1;1), (1;2), (2;2), (2;3), (3;3), (1;4), (2;4), (1;5),
(2;3) \longrightarrow (2;1), (1;2), (2;2), (3;2), (1;3), (3;3), (1;4), (2;4), (3;4), (2;5),
(3;3) \longrightarrow (3;1), (2;2), (3;2), (1;3), (2;3), (2;4), (3;4), (3;5),
(1;4) \longrightarrow (1;2), (1;3), (2;3), (2;4), (3;4), (1;5), (2;5), (1;6),
(2;4) \longrightarrow (2;2), (1;3), (2;3), (3;3), (1;4), (3;4), (1;5), (2;5), (3;5), (2;6),
(3;4) \longrightarrow (3;2), (2;3), (3;3), (1;4), (2;4), (2;5), (3;5), (3;6),
(1;5) \longrightarrow (1;3), (1;4), (2;4), (2;5), (3;5), (1;6), (2;6), (1;7),
(2;5) \longrightarrow (2;3), (1;4), (2;4), (3;4), (1;5), (3;5), (1;6), (2;6), (3;6), (2;7),
(3;5) \longrightarrow (3;3), (2;4), (3;4), (1;5), (2;5), (2;6), (3;6), (3;7),
(1;6) \longrightarrow (1;1), (1;4), (1;5), (2;5), (2;6), (3;6), (1;7), (2;7),
(2;6) \longrightarrow (2;1), (2;4), (1;5), (2;5), (3;5), (1;6), (3;6), (1;7), (2;7), (3;7),
(3;6) \longrightarrow (3;1), (3;4), (2;5), (3;5), (1;6), (2;6), (2;7), (3;7),
(1;7) \longrightarrow (1;1), (1;2), (1;5), (1;6), (2;6), (2;7), (3;7),
```


1.1. Calcolo insiemi indipendenti con metodo forza bruta.

Definition 1.3. Un insieme indipendente di un grafo è un insieme di vertici non adiacenti del grafo.

Definiamo T(n,k) il numero di k-sottoinsiemi indipendenti di Grafo $P_3^{(2)} \times CZ_7^{(2)}$

Ecco alcuni valori

T(n,k)	k = 0	1	2	3	4	5
0	1					
1	1	3				
2	1	6	2			
3	1	9	10			
4	1	12	25	4		
5	1	15	45	20		
6	1	18	80	84	16	
7	1	21	124	221	102	4

Seguono le successioni delle antidiagonali, della somma delle righe e dei valori massimali di k per cui esistono insiemi indipendenti:

n	0	1	2	3	4	5	6	7
AD_n	1	1	4	7	12	23	41	68
RS_n	1	4	9	20	42	81	199	473
K_n	0	1	2	2	3	3	4	5

Ricerca delle bijezioni disabilitata per questa stampa.

Wilf: Non possiamo usare il metodo di Wilf per trovare la Fgo delle somme delle righe in quanto il grafo è un circuito.

Calcolo automatico sistema lineare e automa per circuiti:

