

Python与金融数据挖掘(15)

文欣秀

wenxinxiu@ecust.edu.cn

机器学习分类

- > 有监督学习(分类、回归)
- ▶ 无监督学习(聚类、降维)
- > 强化学习
- > 半监督学习

分类算法

- > K近邻算法(KNN)
- ▶ 朴素贝叶斯算法(NB)
- ➤ 支持向量机(SVM)
- ▶ 决策树(DT)
- ➤ 逻辑回归(LR)

案例分析

	Α	В	С	D
1	Sex	Height	Weight	Туре
2	1	180	75	normal
3	1	180	85	normal
4	1	180	90	overweight
5	1	180	100	overweight
6	1	175	90	overweight
7	1	175	80	overweight
8	1	175	65	normal
9	1	175	55	underweight
10	1	170	60	normal
11	1	170	70	normal
12	1	170	80	overweight
13	1	185	90	overweight
14	1	185	75	normal
15	1	175	60	underweight
16	1	180	65	underweight
17	1	160	75	overweight
18	1	160	60	normal
19	1	170	68	normal
20	1	165	62	normal
21	1	190	75	underweight


```
import pandas as pd
```

from sklearn.neighbors import KNeighbors Classifier

```
from warnings import simplefilter
```

```
simplefilter(action='ignore', category=FutureWarning)
```

```
data=pd.read_csv('info.csv',encoding='gb2312')
```

model= KNeighborsClassifier()

model.fit(data[['Sex','Height','Weight']].values, data['Type'].values)

height=int(input("Your Height:"))

weight=int(input("Your Weight:"))

print('Type: ',model.predict([[1,height,weight]]))


```
import pandas as pd

from sklearn.naive_bayes import GaussianNB

data=pd.read_csv('info.csv',encoding='gb2312')

model= GaussianNB()
```

model.fit(data[['Sex','Height','Weight']].values, data['Type'].values)

height=int(input("Your Height:"))

weight=int(input("Your Weight:"))

print('Type: ',model.predict([[1,height,weight]]))


```
import pandas as pd
from sklearn.svm import SVC
data=pd.read_csv('info.csv',encoding='gb2312')
model= SVC()
model.fit(data[['Sex','Height','Weight']].values, data['Type'].values)
height=int(input("Your Height:"))
weight=int(input("Your Weight:"))
print('Type: ',model.predict([[1,height,weight]]))
```



```
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
data=pd.read_csv('info.csv',encoding='gb2312')
model = DecisionTreeClassifier()
model.fit(data[['Sex','Height','Weight']].values, data['Type'].values)
height=int(input("Your Height:"))
weight=int(input("Your Weight:"))
print('Type: ',model.predict([[1,height,weight]]))
```



```
import pandas as pd
from sklearn.linear_model import LogisticRegression
data=pd.read_csv('info.csv',encoding='gb2312')
model= LogisticRegression(max_iter=10000)
model.fit(data[['Sex','Height','Weight']].values, data['Type'].values)
height=int(input("Your Height:"))
weight=int(input("Your Weight:"))
print('Type: ',model.predict([[1,height,weight]]))
```


思考题一

问题: 如何比较以上算法的准确率从而选择有效的算法?

方案:使用相同的数据,相同的方法来评估不同的算法, 以便得到一个准确的结果。

	А	В	С	D	Е
1	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Species
2	5.1	3.5	1.4	0.2	setosa
3	4.9	3	1.4	0.2	setosa
4	4.7	3.2	1.3	0.2	setosa
5	4.6	3.1	1.5	0.2	setosa
6	5	3.6	1.4	0.2	setosa
7	5.4	3.9	1.7	0.4	setosa
8	4.6	3.4	1.4	0.3	setosa
9	5	3.4	1.5	0.2	setosa
10	4.4	2.9	1.4	0.2	setosa
11	4.9	3.1	1.5	0.1	setosa

鸢尾花(iris)数据集分析

Iris 数据集: 是一个经典数据集,在统计学习和机器学习领域都经 常被用作示例。数据集内包含 3 类共 150 条记录,每类各 50 个数据, 每条记录都有 4 项特征: 花萼长度(Sepal Length)、花萼宽度(Sepal Width)、花瓣长度(Petal Length)、花瓣宽度(Petal Width),可以通过这 4个特征预测鸢尾花卉属于iris-setosa(山鸢尾), iris-versicolour(变色 鸢尾), iris-virginica(维吉尼鸢尾)中的哪一品种。

十折交叉验证

十折交叉验证(10-fold cross-validation): 用来测试算法准确性。 是常用的测试方法。将数据集分成10份,轮流将其中9份作为训练 数据,1份作为测试数据进行试验。每次试验都会得出相应的正 确率(或差错率)。10次的结果的正确率(或差错率)的平均值 作为对算法精度的估计,一般还需要进行多次10折交叉验证(例 如8次10折交叉验证),再求其均值,作为对算法准确性的估计。

算法比较(1)

import pandas as pd from sklearn.model_selection import KFold from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.model_selection import cross_val_score

算法比较 (2)

```
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
#导入数据
                       数据维度: 行 150, 列 5
dataset = pd.read_csv('iris.csv')
#显示数据维度
print('数据维度: 行%s, 列%s'% dataset.shape)
#查看数据的前10行
print(dataset.head(10))
```


算法比较(3)

print(dataset.describe()) # 统计描述数据信息

print(dataset.groupby('Species').size()) # 分类分布情况

#分离数据集

array = dataset.values

X = array[:, 0:4]

Y = array[:, 4]

seed = 7

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width
count	150.000000	150. 000000	150.000000	150. 000000
mean	5.843333	3. 057333	3.758000	1. 199333
std	0.828066	0. 435866	1. 765298	0.762238
min	4. 300000	2.000000	1. 000000	0. 100000
25%	5. 100000	2.800000	1.600000	0.300000
50%	5.800000	3. 000000	4. 350000	1. 300000
75%	6. 400000	3. 300000	5. 100000	1.800000
max	7. 900000	4. 400000	6. 900000	2. 500000

Species setosa 50 versicolor 50 virginica 50

kfold = **KFold**(n_splits=10, shuffle=True,random_state=seed)

算法比较 (4)

```
#算法审查
models = \{\}
models['LR'] = LogisticRegression(max_iter=10000)
models['DT'] = DecisionTreeClassifier()
models['KNN'] = KNeighborsClassifier()
models['NB'] = GaussianNB()
models['SVM'] = SVC()
```


算法比较 (5)

```
#评估算法
results = []
for key in models:
  #cross val score:得到K折验证中每一折的得分
  cv_results = cross_val_score(models[key], X, Y, cv=kfold)
  results.append(cv_results)
  print('%s: %f (%f)' %(key, cv_results.mean(), cv_results.std()))
```


波士顿房价问题

Python实现线性回归步骤

- > 导入对应库
- > 加载数据集并划分数据集
- > 在训练集上训练线性回归模型
- > 使用测试集实现预测
- > 绘图输出,结果可视化对比

波士顿房价

sklearn提供的波士顿房价数据集统计20世纪70年代中期 波士顿郊区房价。该数据集包含506条记录,13个特征 指标,第14列通常为目标列房价。试图能找到特征指标 与房价的关系。

波士顿房价

本例首先将506组数据的数据集划分为训练集和测试集, 其中404组数据是训练样本,剩下的102组数据作为验证 样本。然后构建回归模型并训练模型,查看模型的13个 特征的系数以及截距,获取模型的预测结果,最后绘制 折线图对比预测值和真实。


```
# (1) 导入库
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
from matplotlib import rcParams
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
```



```
train前3行数据为: 「[2,24236e+00_0,00000e+00_1,95800e+01_0,00000e+00_6,05000e
#(2)加载数据集
                                                       9, 18000e+01 2, 42200e+00 5, 00000e+00 4, 03000e+02 1, 47000e+01 3, 95110e+02
boston=load boston()
                                                       ^{2}2, 61690e-01 0, 00000e+00 9, 90000e+00 0, 00000e+00 5, 44000e-01 6, 02300e+00
                                                       9.04000e+01.2.83400e+00.4.00000e+00.3.04000e+02.1.84000e+01.3.96300e+02
                                                             -02\ 0.00000e+00\ 2.56500e+01\ 0.00000e+00\ 5.81000e-01\ 5.87000e+00
x=boston['data']
                                                       6.97000e+01 2.25770e+00 2.00000e+00 1.88000e+02 1.91000e+01 3.89150e+02
                                                       train前3行数据为: 「22.7 19.4 22. ]
y=boston['target']
names=boston['feature_names']
#分割数据为训练集和测试集
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=22)
print('x_train前3行数据为: ', x_train[0:3])
print('y_train前3行数据为: ',y_train[0:3])
```


(3) 创建线性回归模型对象

lr=LinearRegression()

#使用训练集训练模型

LinearRegression()

lr.fit(x_train,y_train)

#显示模型

print(lr)

print("13个系数:",lr.coef_) 预测结果:

13个系数: [-1.01199845e-01 4.67962110e-02 -2.06902678e-02 3.58072311e+00

-1. 71288922e+01 3. 92207267e+00 -5. 67997339e-03 -1. 54862273e+00

2. 97156958e-01 -1. 00709587e-02 -7. 78761318e-01 9. 87125185e-03

-5. 25319199e-01

模型截距: 32.42825286699119

预测结果: [27.99617259 31.37458822 21.16274236 32.97684211 19.85350998]

print("模型截距:",lr.intercept_)

(4) 使用测试集获取预测结果

print("预测结果:",lr.predict(x_test[:5]))


```
# (5) 绘图对比预测值和真实值
rcParams['font.sans-serif']='SimHei'
fig=plt.figure(figsize=(10,6))
y_pred=lr.predict(x_test)
plt.plot(range(y_test.shape[0]),y_test,color="blue",linestyle="-")
plt.plot(range(y_test.shape[0]),y_pred,color="red",linestyle="-.")
plt.legend(['真实值','预测值'])
plt.show()
```


机器学习分类

- > 有监督学习(分类、回归)
- > 无监督学习(聚类、降维)
- > 强化学习
- > 半监督学习

聚类

聚类(Clustering Approach): 是按一定的距离或相似性

系数将数据分成一系列相互区分的组,常用的经典聚类

方法有K-means, K-medoids, isodata等。

聚类算法的应用场景:市场分析、商业经营、图像处理、

决策支持、模式识别。

- ➤ K-Means算法属于聚类分析中划分方法里较为经典的一种,由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。
- K-Means算法通过将样本划分k个簇类来实现数据聚类,该算法需要指定划分类的个数。

鸢尾花聚类问题

	А	В	С	D
1	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width
3	5.1	3.5	1.4	0.2
3	4.9	3	1.4	0.2
4	4.7	3.2	1.3	0.2
5	4.6	3.1	1.5	0.2
6	5	3.6	1.4	0.2
7	5.4	3.9	1.7	0.4
8	4.6	3.4	1.4	0.3
g	5	3.4	1.5	0.2
1)	4.4	2.9	1.4	0.2
1.	4.9	3.1	1.5	0.1
12	5.4	3.7	1.5	0.2
13	4.8	3.4	1.6	0.2

Scikit-learn的Cluster类提供聚类分析的方法:

> 模型初始化

kmeans=Kmeans(n_clusters) #参数为簇的个数

> 模型学习

kmeans. fit(X)

#参数为样本二维数组

鸢尾花问题K-Means模型(1)

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
import pandas as pd #导入模块
iris = pd.read_csv("iris.csv")

X = iris.loc[:,['Petal_Length', 'Petal_Width']] #读出数据

plt.scatter(X['Petal_Length'], X['Petal_Width'], c = "red", marker='o', label='scatter')

plt.xlabel('Petal length')

plt.ylabel('Petal width')

plt.legend(loc=2)

plt.show()

鸢尾花问题K-Means模型(2)

```
estimator = KMeans(n_clusters=3)#模型初始化
estimator.fit(X) #模型学习
label_pred = estimator.labels_ #获取聚类标签
x0 = X[label\_pred == 0]
x1 = X[label\_pred == 1]
x2 = X[label\_pred == 2]
print(x0)
print(x1)
print(x2)
```


鸢尾花问题K-Means模型(3)

```
plt.scatter(x0['Petal_Length'], x0['Petal_Width'], c = "red", marker='o', label='label0')
plt.scatter(x1['Petal_Length'], x1['Petal_Width'], c = "green", marker='*', label='label1')
plt.scatter(x2['Petal_Length'], x2['Petal_Width'], c = "blue", marker='+', label='label2')
plt.xlabel('Petal length')
plt.ylabel('Petal width')
plt.legend(loc=2)
plt.show()
```


鸢尾花数据集获取

>>> from sklearn import datasets # \frac{\mathbb{E}}{2}

#导入数据集包

>>> dir (datasets)

#查看数据集

>>> iris = datasets.load_iris()

>>> X = iris.data[:,:4]

>>> print(X)

导入数据的函数名称	对应的数据集
load_boston()	波士顿房价数据集
load_breast_cancer()	乳腺癌数据集
load_iris()	鸢尾花数据集
load_diabetes()	糖尿病数据集
load_digits()	手写数字数据集
load_linnerud()	体能训练数据集
load_wine()	红酒品类数据集

鸢尾花问题K-Means模型(1修改)


```
import matplotlib.pyplot as plt
                                                     scatter
import numpy as np
from sklearn.cluster import KMeans
from sklearn import datasets #导入数据集包
import pandas as pd #导入模块
iris = datasets.load_iris() # 加载数据据集
X = iris['data'] #读出数据
plt.scatter(X[:,2], X[:,3], c = "red", marker='o', label='scatter')
plt.xlabel('Petal length')
plt.ylabel('Petal width')
plt.legend(loc=2)
plt.show()
```


鸢尾花问题K-Means模型(2)

estimator = KMeans(n_clusters=3)#模型初始化 estimator.fit(X) #模型学习

label_pred = estimator.labels_ #获取聚类标签

 $x0 = X[label_pred == 0]$

 $x1 = X[label_pred == 1]$

 $x2 = X[label_pred == 2]$

鸢尾花问题K-Means模型(3修改)

```
plt.scatter(x0[:,2], x0[:,3], c = "red", marker='o', label='label0')
plt.scatter(x1[:,2], x1[:,3], c = "green", marker='*', label='label1')
plt.scatter(x2[:,2], x2[:,3], c = "blue", marker='+', label='label2')
plt.xlabel('Petal length')
                                              2.0
plt.ylabel('Petal width')
plt.legend(loc=2)
plt.show()
```


葡萄酒(wine)数据集分析

wine数据集: 该数据集为意大利同一地区生产的三个不同种类的葡萄酒成分数据,每行代表一种酒的样本, 共有178个样本,每个样本有13个特征,分为3个类别。

		wine_	data.csv -	Excel		ρź	雙索			ı			登录		ı x
文件	开始	插入	绘图	页面布局	公式	数据 审阅	视图	开发工具	加载项	帮助	百度网盘			₽	
H	9 ~ (4)	% ▽													
07	-	: ×	· /)	fx											~
4	А	В	С	D	Е	F	G	Н	1	J	K	L	М	N	<u> </u>
1	178	13	class_0	class_1	class_2										
2	14.23	1.71	2.43	15.6	12	7 2.8	3.06	0.28	2.29	5.64	1.04	3.92	1065	0	
3	13.2	1.78	2.14	11.2	10	0 2.65	2.76	0.26	1.28	4.38	1.05	3.4	1050	0	
4	13.16	2.36	2.67	18.6	10	1 2.8	3.24	0.3	2.81	5.68	1.03	3.17	1185	0	
5	14.37	1.95	2.5	16.8	11	3.85	3.49	0.24	2.18	7.8	0.86	3.45	1480	0	
6	13.24	2.59	2.87	21	11	8 2.8	2.69	0.39	1.82	4.32	1.04	2.93	735	0	
7	14.2	1.76	2.45	15.2	11	2 3.27	3.39	0.34	1.97	6.75	1.05	2.85	1450	0	
8	14.39	1.87	2.45	14.6	9	6 2.5	2.52	0.3	1.98	5.25	1.02	3.58	1290	0	
9	14.06	2.15	2.61	17.6	12	1 2.6	2.51	0.31	1.25	5.05	1.06	3.58	1295	0	
10	14.83	1.64	2.17	14	9	7 2.8	2.98	0.29	1.98	5.2	1.08	2.85	1045	0	
11	13.86	1.35	2.27	16	9	8 2.98	3.15	0.22	1.85	7.22	1.01	3.55	1045	0	
12	14.1	2.16	2.3	18	10	5 2.95	3.32	0.22	2.38	5.75	1.25	3.17	1510	0	-
4	>	wine_da	ata	•					: 4						Þ
就绪	.										=	Ш –	-	+ 1	00%

葡萄酒(wine)数据集特征

13个特征:酒精、苹果酸、灰、灰分的碱度、镁、总酚、黄酮类化合物、非黄烷类酚类、原花色素、颜色强度、色调、稀释葡萄酒的OD280/OD315、脯氨酸。其中第1类有59个样本,第2类有71个样本,第3类有48个样本。

PCA主成分分析技术

PCA主成分分析技术:旨在利用降维的思想,把 多指标转化为少数几个综合指标。

思考:特征降维能够有效降低数据量,wine数据集的 13个特征是否都对分类提供帮助?能否进行降维处理?

wine数据集主成分分析PCA(1)

from sklearn.cluster import Kmeans #K-Means聚类模型 from sklearn.datasets import load_wine #wine数据集 from sklearn.decomposition import PCA #pca降维 from sklearn.preprocessing import scale #数据标准化 from sklearn.preprocessing import StandardScaler #标准化 from sklearn import metrics import numpy as np import matplotlib.pyplot as plt#数据可视化 from mpl_toolkits.mplot3d import Axes3D #三D绘图

wine数据集主成分分析PCA (2)


```
#导入数据集
 wine = load_wine()<sub>data:</sub>
                                                                                                                                                [[1.423e+01\ 1.710e+00\ 2.430e+00\ ...\ 1.040e+00\ 3.920e+00\ 1.065e+03]
X = wine['data']
                                                                                                                                                 [1.320e+01 1.780e+00 2.140e+00 ... 1.050e+00 3.400e+00 1.050e+03]
                                                                                                                                                  [1.316e+01 2.360e+00 2.670e+00 ... 1.030e+00 3.170e+00 1.185e+03]
 y = wine['target']
                                                                                                                                                   [1.327e+01 4.280e+00 2.260e+00 ... 5.900e-01 1.560e+00 8.350e+02]
 print("data:")
                                                                                                                                                  [1.317e+01 2.590e+00 2.370e+00 ... 6.000e-01 1.620e+00 8.400e+02]
                                                                                                                                                  [1.413e+01 4.100e+00 2.740e+00 ... 6.100e-01 1.600e+00 5.600e+02]]
 print(X)
                                                                                                                                                |target
                                                                                                                                                 oxed{\mathsf{I}} oxed{\mathsf{0}} \, ox{\mathsf{0}} \, ox{\mathsf{0}} \, ox{\mathsf{0}} \, oxed{\mathsf{0}} \, oxed{\mathsf{
 print("target")
                                                                                                                                                  print(y)
```

wine数据集主成分分析PCA(3)


```
#pca降维
```

```
pca = PCA(n\_components=3)
```

X_scale=StandardScaler().fit_transform(X) #标准化矩阵

X_reduce=pca.fit_transform(scale(X_scale))

#聚类模型

model = **KMeans**(n_clusters=3)

model.fit(X_reduce)

labels=model.labels_

print(labels)

wine数据集主成分分析PCA (4)

#输出模型的准确度

0.879 0.873 0.876 0.897 0.875 0.454

```
(metrics.homogeneity_score(y, labels),
metrics.completeness_score(y, labels),
metrics.v_measure_score(y, labels),
metrics.adjusted_rand_score(y, labels),
metrics.adjusted_mutual_info_score(y, labels),
metrics.silhouette_score(X_reduce, labels)))
```

wine数据集主成分分析PCA (5)

#绘制模型的分布图

fig=plt.figure()

ax=Axes3D(fig, auto_add_to_figure=False)

fig.add_axes(ax)

ax.scatter(X_reduce[:, 0], X_reduce[:, 1], X_reduce[:, 2], \

c=labels.astype(np.float64))

plt.show()

数字图像处理(Digital Image Processing): 是通过

计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。

数字图像处理目的:

- > 提高图像的视感质量
- > 提取图像中所包含的某些特征或特殊信息
- > 图像数据的变换、编码和压缩,便于存储和传输

from PIL import Image from numpy import array import matplotlib. pylab as plt a=Image. open("money.jpg") #返回一个PIL图像对象 result=array(a) #把图像对象转换为数组 1080, 3print(result. shape) #返回图像的行数,列数,色彩通道数 [[[159 157 160] $[159 \ 157 \ 160]$ [158 158 160] print(result) $[166 \ 177 \ 173]$ 166 177 173 [167 178 174] plt. imshow(a)#对图像进行处理,并显示其格式 [159 157 160] plt. show() 159 157 160 [158 | 158 | 160]

二值图像:一幅二值图像的二维矩阵仅由0、1两个值构成, "0"代表黑色, "1"代白色, 数据类型通常为1个二进制位。二值图像通常用于文字、线条图的扫描识别(OCR)。

灰度图像: 灰度图像矩阵元素的取值范围通常为[0,255],数据类型一般为8位无符号整数的(int8), "0"表示纯黑色, "255"表示纯白色,如医学图像、遥感图像。

from PIL import Image from numpy import array import matplotlib. pylab as plt

a=Image. open("money.jpg") #返回一个PIL图像对象

b=a. convert("L") #转换为灰度图像对象

plt. rc('font',family="SimHei")

plt. subplot(121); plt. imshow(a); plt. title("原图")

plt. subplot(122); plt. imshow(b); plt. title("灰度图")

plt.show()

图像类型

索引图像:除了存放图像的二维矩阵外,还包括一个称之为颜色索引矩阵MAP的二维数组,数据类型一般为8位无符号整形(int8),MAP的大小由存放图像的矩阵元素值域决定。索引图像一般用于存放色彩要求比较简单的图像,如Windows中色彩构成比较简单的壁纸。

RGB图像:与索引图像一样,它分别用红(R)、绿(G)、 蓝(B)三原色的组合来表示每个像素的颜色。与索引图像 不同的是, RGB 图像每一个像素的颜色值直接存放在图像 矩阵中, M、N分别表示图像的行列数。RGB图像的数据类 型一般为8位无符号整型,通常用于表示和存放真彩色图像, 当然也可以存放灰度图像。

from PIL import Image from matplotlib.pyplot import * a=Image. open('money.jpg') #读入图像

ra,ga,ba=a. split() #图像分割成R、G、B三个通道

c=Image. merge('RGB',(ra,ga,ba)) #三个通道合成一张彩色图像 subplot(221); imshow(ra); subplot(222); imshow(ga) subplot(223); imshow(ba); subplot(224); imshow(c); show()

53

53

谢谢