Course: CSC707, Automata, Computability and Computational Theory

Reduction Homework: NP-complete problems

Submission: Use Wolfware File Format: LaTeX and PDF

Students: Ling Chen lchen10@ncsu.edu, Xusheng Xiao xxiao2@ncsu.edu,

Xi Ge

Due Date: 2:00 A.M. (EST), Tuesday, February 9, 2010

- 1. Provide any feedback/questions you may have on this homework (optional).
- 2. Using LaTeX is required.

1. Given a NP-complete problem, Vertex Cover, show that the Independent Set is NP-complete.

Independent Set is defined as follows:

INSTANCE: A graph G = (V, E) and a positive integer $k \leq |V|$.

QUESTION: Is there a subset S of k vertices in G such that no pair of vertices in S is connected by an edge in G?

Solution:

(a) (Verification):Show that Independent Set is in NP. The verification algorithm guesses $C \subseteq V$ and check that whether C is an independent set of G=(V,E). If the test succeeds then the algorithm accepts, otherwise it rejects. To check whether C is an independent set of G=(V,E) only needs one travesal on G which takes O(V+E), so the verification algorithm takes $O(n \cdot (V+E))$.

(b) (Reduction):Show that Independent Set is NP-hard. Given a G has a VC of size k, we should construct a graph G' has Independent Set of size k'.

Construction Process: Given VertexCover(G,k) where V_1 is the vertex cover and $k = V_1$, we set G'=G and k'=|V| - k, then we could return the answer to IndependentSet(G',k') where $V - V_1$ is the independent set. This takes constant time.

(c) (Correctness):Show that Independent Set is NP-hard. We need to show that G has a vertex cover of size k if and only if it has an Independent Set of size k' = |V| - k.

Assume G has a vertex cover C of size k. Consider two vertices $u \in V - C$ and $v \in V - C$, we find that $e=(u,v) \notin E$ since C is vertex cover. Therefore, no two vertices in V-C are connected by an edge.

So V-C is an independent set with size k'=|V| $-\,k.$

Assume G has an Independent Set S of size k'=|V|-k. Consider an arbitrary edge e=(u,v), S is independent $set\Rightarrow u\notin S$ or $v\notin S\Rightarrow u\in V-S$ or $v\in V-S\Rightarrow V-Scoverse=(u,v)$.