BEST AVAILABLE COPY

RECEIVED CENTRAL FAX CENTER OCT 11 2006

ψ;...

IN THE CLAIMS:

1	1.	(Currently amended) A method for manufacturing a magnetic structure on a				
2		magnetic write head, comprising:				
3		constructing a photoresist layer having a trench, the trench being formed with a				
4		flared portion near the top of the trench;				
5		depositing a magnetic material into the trench;				
6		removing the photoresist layer;				
7		depositing a dielectric material;				
8		first performing a chemical mechanical polish to remove a portion of said				
9		dielectric material;				
10		then, after performing a chemical mechanical polish to remove a portion of said				
11		dielectric material, performing a reactive ion mill procedure to remove a				
12		further portion of the dielectric material the reactive ion mill being				
13		performed sufficiently to expose said magnetic material, the ion milling				
14		being performed in a chemistry to preferentially remove the dielectric				
15		material, leaving the magnetic material relatively unaffected.				
1	2.	(Original) A method as in claim 1 further comprising forming a magnetic				
2.		pole structure over the exposed magnetic material				

1	3.	(Original)	A method as in claim 1 wherein said constructing a photoresist

- 2 trench further comprises:
- 3 depositing photoresist; and
- 4 performing a deep ultraviolet photolithography on the photoresist.
- 1 4. (Original) A method as in claim 1, wherein said depositing said magnetic
- 2 material comprises electroplating.
- 1 5. (Original) A method as in claim 1, wherein said depositing said magnetic
- 2 material comprises electroplating said magnetic material, and terminating said
- 3 electroplating before said magnetic material reaches an upper opening in said
- 4 trench formed in said photoresist layer.
- 1 6. (Original) A method as in claim 1, wherein said trench includes a flared portion,
- 2 and wherein said depositing said magnetic material comprises electroplating said
- 3 magnetic material, and terminating said electroplating before said magnetic
- 4 material reaches said flared portion formed in said trench.
- 1 7 (Original) A method as in claim 1, wherein said magnetic material comprises
- NiFe.
- 1 8. (Original) A method as in claim 2, wherein said magnetic pole structure
- 2 comprises NiFe.

- 1 9. (Previously presented) A method as in claim 1, wherein said reactive ion milling
- 2 procedure forms a recession of between 0 and 0.3 microns between said magnetic
- 3 structure and an upper surface of said alumina.
- 1 10. (Original) A method as in claim 1 wherein said magnetic structure has a width
- 2 sigma of less than 10 nanometers.
- 1 11. (Cancelled)
- 1 12. (Original) A method as in claim 1 wherein said trench formed in said photoresist
- 2 layer has a width sigma of less than 10 nanometers up to a location where said
- 3 magnetic material deposition will terminate.
- 1 13. (Original) A method as in claim 1 wherein said dielectric material is alumina
- $2 \qquad (Al₂O₃).$
- 1 14. (Original) A method as in claim 1 wherein said magnetic structure is a P3
- 2 pedestal of a magnetic pole.
- 1 15. (Original) A method as in claim 1 wherein said reactive ion mill is performed in
- 2 an atmosphere comprising CHF₃.

1	16.	(Original) A method as in claim 1 wherein said reactive ion mill is performed
2		sufficiently to create a recess between an upper surface of said magnetic structure
3		and an upper surface of said dielectric material.
1	17.	(Previously presented) A method as in claim 1 wherein said reactive ion mill
2 .		creates a recess between an upper surface of said magnetic layer and an upper
3		surface of said dielectric layer wherein said recess is between .1 and .3 microns
4		inclusive.
1	18.	(Currently amended) A method as in claim 1 wherein said reactive ion mill
2		creates a recess between an upper surface of said magnetic layer and an upper
3		surface of said dielectric layer wherein said recess is about .3 microns,
		·
1	19.	(Withdrawn) A structure formed on a magnetic write head, comprising:
2		a magnetic structure having an upper surface and having first and second lateral
3		sides and having a width measured between said lateral sides and having a height
4		measured perpendicular thereto;
5		a dielectric layer contacting said first and second lateral sides of said magnetic
6		structure and extending laterally therefrom and having an upper surface; and
7		wherein
8		said upper surface of said dielectric layer is recessed from said upper surface of
9		said magnetic structure and said upper surface of said dielectric layer.

- (Withdrawn) A structure as in claim 19 wherein said recess is between .1 and .5
- 2 microns.
- (Withdrawn) A structure as in claim 19 wherein said recess is about .3 microns. 21. 1