STAT 500 Homework 4

Vu Thi-Hong-Ha; NetID: 851924086

September 18, 2020

1 Question 1

 $Y \sim Poisson(\mu)$, then $E(Y) = \mu = Var(Y)$. If we write Var(Y) = g(E(Y)), then g(x) = x. The variance stabilizing transformation can be obtained in the form:

stabilizing transformation can be obtain
$$h(y) \propto \int \frac{1}{\sqrt{g(x)}} dx = \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x}$$

Hence, $X = h(y) = \sqrt{Y}$ is a variance-stabilizing transformation for Y.

2 Question 2

(a)

Denote $Y_{control}$ and $Y_{bacilli}$ as the samples under control and those that received bacilli, respectively.

 H_0 : $\mu_{bacilli} - \mu_{control} = 0$

 H_a : $\mu_{bacilli} - \mu_{control} < 0$

(i) Assume the two independent samples are from normal distributions with homogeneous variances:

			Vor	iable:	timo						
			vai	lable:	ume						
treatment	Method	N	Mea	n Sto	l Dev	Sto	td Err Min		imum	Maximum	
Bacilli		58	242.	5	117.9	15.4	4851 76		6.0000		598.0
Control		64	345.	2	222.2	27.	7747 18		3.0000	.0000	
Diff (1-2)	Pooled		-102.	7	180.4	32.6959					
Diff (1-2)	Satterthwaite		-102.	7		31.	7997				
44	Method		ean	OEW /	CL Me		Ctd	D	DEW C	1 C	td Dev
treatment	wethod	IVI	ean	95% (L Me	an	Sta	Dev	93% C	L 3	ta Dev
Bacilli		2	42.5	211.5	27	73.5	1	17.9	99.69	97	144.4
Control		3	45.2	289.7	40	0.7	2	22.2	189	9.3	269.1
Diff (1-2)	Pooled	-1	02.7	-Infty	-48.5	015	18	80.4	160	0.1	206.5
Diff (1-2)	Satterthwaite	-1	02.7	-Infty	-49.8	939					

Method	Variance		DF t Va		t Valu	ıe	Pr <	t
Pooled	oled Equal		1	20	-3.14		0.0011	
Satterthwait	e Unequa	Unequal		307 -3.2		23 0.00		8(
	Equality	of \	/aria	nce	es			
Method	Equality Num DF					P	r > F	

p-value=0.0011. At the significance level of 5%, we reject the null that the two samples have the same mean survival times. We conclude that the infection with tubercle Bacilli tends to decrease survival times.

(ii) Permutation test based on computing t-statistics for each of 20,000 new random assignments of guinea pigs to treatment groups:

The FREQ Procedure										
extreme_t	Frequency	Percent	Cumulative Frequency	Cumulative Percent						
no	19975	99.88	19975	99.88						
yes	25	0.13	20000	100.00						

* (b) Wilcoxon rank-sum test;

p-value=0.0013. At the significance level of 5%, we reject the null that the two samples have the same mean survival times. We conclude that the infection with tubercle Bacilli tends to decrease survival times. (b)

```
□ proc npar1way data=pigs_surv wilcoxon;
      class treatment;
      var time;
      exact wilcoxon / alpha=.05 maxtime=20
                         MC N=20000 Seed=7892441;
 run;
                         The NPAR1WAY Procedure
               Wilcoxon Scores (Rank Sums) for Variable time
                       Classified by Variable treatment
                         Sum of Expected
                                              Std Dev
                                                          Mean
           treatment
                      N
                         Scores Under H0
                                             Under H0
                                                          Score
           Control
                         4313.50
                                    3936.0
                                           195.052842 67.398438
           Bacilli
                        3189.50
                                    3567.0 195.052842
                                                      54.991379
                     Average scores were used for ties.
```

Wilcoxon Two-Sample Test										
				t Approximatio						
Statistic (S)	Z	Pr < Z	Pr > Z	Pr < Z Pr >						
3189.500	-1.9328	0.0266	0.0533	0.0278	0.0556					
Z inc	ludes a c	ontinuit	y correct	ion of 0.5	5.					

Probability	Estimate	95% Confide	ence Limits	Samples	Seed	
Pr <= S	0.0284	0.0261	0.0307	20000	7892441	
Pr >= S - Mean	0.0552	0.0520	0.0583			

Kruskal-Wallis Test

Chi-Square DF Pr > ChiSq

3.7457 1 0.0529

(i)

Sum of ranks for control group: 4313.50

Sum of ranks for bacilli group: 3189.50

p-value = 0.0266

(iii)

At the significance level of 5%, we reject the null that the two samples have the same mean survival times. We conclude that the infection with tubercle Bacilli tends to decrease survival times.

(iv) The result from Wilcoxin rank-sum test agrees with the results from a(i) and a(ii).

From the box plots, we can see that the mean of the bacilli group is clearly lower than that of the control group. The result from the Wilcoxin test in part (b) agrees with the box plots.

(d) Assume the samples are independent and from normal distributions.

(i) The ratio of standard deviations:

$$S_{control} = 222.2; S_{bacilli} = 117.9$$
Ratio = $\frac{max\{S_{control}, S_{bacilli}\}}{min\{S_{control}, S_{bacilli}\}} = \frac{222.2}{117.9} = 1.884648$

With this ratio, the assumption of homogeneous variance does not make much impact on the test.

(ii) The folded F- test:

$$F_{max} = \frac{max\{S_{control}^2, S_{bacilli}^2\}}{min\{S_{control}^2, S_{bacilli}^2\}} = \frac{222.2^2}{117.9^2} = 3.551898$$

$$a = n_{control} - 1 = 63, b = n_{bacilli} - 1 = 57, \text{ so } F_{(a,b),1-\alpha/2} = F_{(63,57),0.975} \approx 1.5343$$
Then $F_{control} = F_{control} = F_{contro$

Then $F_{max} > F_{(63.57),0.975}$. Therefore, we reject the null that the two samples have equal variances.

This result agrees with the F test carried out with t-test procedure in part (a)

Method	Variances		DF t Val		t Valu	ie	Pr < 1	
Pooled Equal			120		-3.1	-3.14		
Satterthwait	e Unequa	al	97.8	07	-3.2	23	0.0008	
	Equality	y of \	Varia	nce	es			
Method	Num DF	Der	n DF	F١	Value	P	r > F	
	63		57		3.55		0001	

(iii) The Brown-Forsythe test:

The GLM Procedure Dependent Variable: time										
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F					
Model	1	320913.593	320913.593	9.87	0.0021					
Error	120	3903153.915	32526.283							
Corrected Total	121	4224067.508								

p-value=0.0021. Therefore, we reject the null that the two samples have equal variances.

(e) Q-Q plots for the two samples:

The control group plot suggests that the sample has a light tail distribution. The bacilli group is not symmetric, and is skewed to the right.

(f)

Tests for Normality										
Test	Statistic p Value									
Shapiro-Wilk	W	0.910062	Pr < W	0.0002						
Kolmogorov-Smirnov	D	0.157089	Pr > D	<0.0100						
Cramer-von Mises	W-Sq	0.323041	Pr > W-Sq	<0.0050						
Anderson-Darling	A-Sq	2.042673	Pr > A-Sq	<0.0050						

p-value=0.0002. Hence, we reject the null that the samples are following normal distribution.

(g) I would choose to carry out the Brown-Forsythe test because it is less sensitive to normality assumption like folded F-test, and we will not have to based on thresholds from previous study like ratio of sample standard deviations.

3 Question 3

(a) This is an experiment study as in this study treatments are assigned to experimental units and then the effect of the treatments on the experimental units are observed.

Treatment: build with extra insulation.

Experimental units: houses.

Observation units: annual gas assumption in MWh.

Replications: yes, each treatment has 10 replicates.

Randomization: yes.

(b) Assume the samples follow normal distributions with homogeneous variances. It is clear that the samples are independent. Let Y_{std} and Y_{extra} be the samples under standard insulation treatment and extra insulation treatment, respectively.

 $H_0: \mu_{std} = \mu_{extra}$

 $H_a: \mu_{std} \neq \mu_{extra}$

$$\begin{split} &H_a: \ \mu_{std} \neq \mu_{extra} \\ &Y_{extra} = 14.84, \ Y_{std} = 17.04; \ S_{extra}^2 = 2.1204^2 = 4.496096; \ S_{std}^2 = 5.9367^2 = 35.24441; \ n_1 = n_2 = 10. \\ &S_p = \sqrt{\frac{9 \times 4.496096 + 9 \times 35.24441}{18}} = \sqrt{19.87026} = 4.4576 \end{split}$$

$$S_p = \sqrt{\frac{9 \times 4.496096 + 9 \times 35.24441}{18}} = \sqrt{19.87026} = 4.4576$$

A 95% confidence interval is
$$((\bar{Y}_{std} - \bar{Y}_{extra}) \pm t_{n_1 + n_2 - 2, 1 - \alpha/2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}) \approx (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9} + \frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times \sqrt{\frac{1}{9}}) = (2.2 \pm 2.10092 \times 4.4576 \times$$

(-2.2147; 6.6147). If we construct such confidence interval for multiple times, 95% of the times those confidence intervals will contain the true mean difference.

(c) The 95% confidence interval does contain 0, so at 5% significance level, we fail to reject the null that the two group has equal means.

(d) $\alpha = 0.05$, then $z_{0.975} = 1.96$. Width of a 95% CI for the mean difference ≤ 1 .

Consider width = 1. Then $1 = 2t_{2(n-1),0.975}S_p\sqrt{2/n}$.

Choose
$$n_0 = 8(\frac{1.96 \times 4.4576}{1})^2 = 610.67$$
. Choose $n_0 = 611$.

Choose
$$n_0 = 8(\frac{1.96 \times 4.4576}{1})^2 = 610.67$$
. Choose $n_0 = 611$.
Iteration 1: $n_1 = 8(\frac{t_{611,0.975} \times 4.4576}{1})^2 = (\frac{1.96 \times 4.4576}{1})^2 = 610.67$.

Then the sample size for each group is 611.

Two-	The POWER Sample t Test for			ence
	Fixed Scenar	io Ele	ments	
	Distribution		Normal	
	Method		Exact	
	Alpha	0.05		
	Mean Differen	1		
	Standard Devi	ation	4.4576	
	Nominal Powe	r	0.975	
	Number of Sid	es	2	
	Null Difference	•	0	
	Compute Gro	ег		
	Actual Power	N pe	r Group	
	0.975		612	

proc power; twosamplemeans alpha = 0.05 meandiff = 1 stddev= 4.4576 npergroup = . power = 0.975; run;

- (f)
- (i) The samples are clearly independent.
- (ii) Check for homogeneous variance assumption:

	The GLM Procedure										
Dependent Variable: consumption											
Source DF Sum of Squares Mean Square F Value											
Model	1	24.2000000	24.2000000	1.22	0.2843						
Error	18	357.6680000	19.8704444								
Corrected Total	19	381.8680000									

As p-value=0.2843, we fail to reject the null that the variances of the two samples are equal. (iii) Check for normality assumption:

Tests for Normality										
Test	St	atistic	p Value							
Shapiro-Wilk	W	0.967632	Pr < W	0.8681						
Kolmogorov-Smirnov	D	0.152376	Pr > D	>0.1500						
Cramer-von Mises	W-Sq	0.042017	Pr > W-Sq	>0.2500						
Anderson-Darling	A-Sq	0.259332	Pr > A-Sq	>0.2500						

Based on q-q plots and Shapiro-Wilk test which has p-value = 0.8681, we fail to reject the null that the samples follow normal distributions.

(g)

$$H_0: \mu_{std} - \mu_{extra} = 0$$

$$H_a: \mu_{std} - \mu_{extra} \neq 0$$

Test statistic:
$$T = \frac{(Y_{std} - Y_{extra}) - 0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} = \frac{2.2}{\sqrt{\frac{4.496096 + 35.24441}{10}}} = 1.1036$$

$$H_0: \mu_{std} - \mu_{extra} = 0$$

$$H_a: \mu_{std} - \mu_{extra} \neq 0$$
Test statistic:
$$T = \frac{(Y_{std} - Y_{extra}) - 0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} = \frac{2.2}{\sqrt{\frac{4.496096 + 35.24441}{10}}} = 1.1036$$

$$d.f = \frac{(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2})^2}{\frac{1}{n_1 - 1}(\frac{S_1^2}{n_1})^2 + \frac{1}{n_2 - 1}(\frac{S_2^2}{n_2})^2} = \frac{(\frac{4.496096}{10} + \frac{35.24441}{10})^2}{\frac{1}{9}(\frac{4.496096}{10})^2 + \frac{1}{9}(\frac{35.24441}{10})^2} = 11.2595$$

$$t_{11.2595, 0.975} \approx 2.195$$

$$p - value = 2 \times P(t_{d.f.0.975} > |T|) = 2 \times 0.1464 > 0.05. \text{ At the significant equation}$$

 $p-value=2\times P(t_{d.f,0.975}>|T|)=2\times0.1464>0.05.$ At the significance level of 5%, we fail to reject the null that the two samples have equal means.

quai means.													
The TTEST Procedure													
Variable: consumption													
trt	Method	N	Me	ean	Std	Dev	Std	Err	Mini	mum	M	aximum	
Extra		10	14.8400		2.1	204	0.6	705	11.	3000		18.8000	
Standard		10	17.0	400	5.9	367	1.8	774	6.	6.6000		28.6000	
Diff (1-2)	Pooled		-2.2	000	4.4	576	1.9935						
Diff (1-2)	Satterthwaite		-2.2	000			1.9	935					
trt	Method	N	lean	9	5% CI	_ Me	an	Std Dev		95% CL Std Dev			
Extra		14.	8400	13.	3232	16.3	3568	2.	1204	1.458	35	3.8710	
Standard		17.	0400	12.	7931	21.2	2869	5.	9367	4.083	35	10.8382	
Diff (1-2)	Pooled	-2.	2000	-6.	3882	1.9	882	4.	4576	3.368	32	6.5920	

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	18	-1.10	0.2843
Satterthwaite	Unequal	11.259	-1.10	0.2928

Diff (1-2) Satterthwaite -2.2000 -6.5754 2.1754

	Equality	y of Varia	iances					
Method	Num DF	Den DF	F Value	Pr > F				
Folded F	9	9	7.84	0.0052				

(h)

	Wild	coxon	Sco		ınk Sı sified					ons	umptio	n
	trt	N							Std D Under			
	1	10		124.0	1		05.0 13.2287		57	12.4	0	
	2	10		86.0	105.0		5.0	1	13.228757		8.6	0
				Wilcox	con T	wo-	Sam	ple '	Test			
									t Approxi		mation	
	Sta	Statistic (S) 124.0000		Z	Pr > Z		Pr > Z		Pr > Z		Pr > Z	
				0 1.3985 0.		0.0810 0.		620 0.089		0	0.1781	
		Z	incl	udes a	conti	nuit	у со	rrect	tion of	0.5	•	
		N	lonte	e Carlo	Estim	ate	s for	the	Exact	Tes	t	
oroba	bility		Est	imate	95% Confide			dence Limits		Sa	mples	Seed
Pr >= S 0		0.0820	0.07		81 0.085		0.0858		20000	789244		
Pr >= S - Mean		(0.1650	0.15		98 0.1701						
				Kı	uskal	-Wa	ıllis	Test				
				Chi-Sq	quare DF		Pr > ChiSq		hiSq			
				2.0629 1			0	1509				

 ${\cal H}_0$: two populations have the same distributions ${\cal H}_a$: two populations do not have the same distributions

Sum of ranks of standard group: 124.0 Sum of ranks of treatment group: 86.0

p-value=0.1781>0.05. At the significance level of 5%, we fail to reject the null that the two samples have the same distribution.