OPAMP DESIGN PROJECT EE3002

Dhruvjyoti Bagadthey EE17B156

AIM:

The aim of this project is to design an op amp using MOSFETS for gain 2 Amplifier operation having:

- 1. Closed Loop 3db Bandwidth of 5MHz
- 2. Phase margin>60 degrees
- 3. Capacitive load =10pf
- 4. Resistive load=2.5kΩ

Circuit Diagram:

Above is the circuit diagram at closed loop operation.


```
14 stage gain obtained = 30 dB.
  It is seen that this gain cannot be changed.
 by merely adjusting whis I. or both because
 in for Ven input; current Prough RI = 024 2Ven = 200 pp. 194 p.A.
  Drume R = 00.
  for Ms;
                                              Vielgueso = cav
     V5 = 0.54 V
    V<sub>D</sub> = 0.36 V

∴ V<sub>D</sub> > V<sub>5</sub> - V<sub>Th</sub> = what 0.17 V ⇒ saturation?
  awnest - mough H5 depends on (W/L) 5.
Miller zero of Open loop Transfer Jundion lies @ \frac{gmz}{C} = \frac{gms}{C}.
      While dominant policy Open loop TF lies @ $ 5m1 = 8m1
  5m2 >> 5m, the 5m2 = 10 fm, => (w) 5 = 10 (w) 4
(AB) Degain = Om, Roix 9ms (Roz 11 RL) x 1/2
    WX = 1
9ms Roz C Ros
           9ms
                           In A; In Ap; wo = 8m1
  Let C= 1pt& (4) = (200p: 12p) (1)
  But in this case open loop gain is $ 32dB, $ is smaller now the specification. ... we increase (w) 5 = 100 (w) 4
  man the specification . . . we increase (WZ) = 100 [= 100] = 100 [= 213.44
```

4...(1) +5 " 00" × 1 + 545-6 Now HE 600 = "IN SER CO

To match the current through Mb k currents through MS & Rc @ Vocape 0.36 V; a parametric sweep was performed for W6 > heeping L6 = 1.0 pm , his value twented out to be W6 = 662 pm , Id6 = 538 mA & Id4 = 393 pA.

The DC gain invessed to \$ 44dB. (2) The first of the f

(1) before;

Ons = mcox w (Vos - V7) = 472 ms

5m1 = 47.2 ms

Just 1/7ds = 38.61m } Roz = 1/7ds = 38.61m }

Just 1/7ds = 66000000 }

Just 1/7ds = 2.71 m }

gasz=1/ rasz = 0-44 m

:. gain DC = 47.2 × 472 × 1 × 2-71+044 = 41 => 20 kg (41) 162.61 = 32 dB

expected now

30 HS = 24 KS

Jan = 2.715 Jan 2 = 0.44 M

.. DC gain = 47.2×4720 × 1 3.15 = 170= 20 69 (170) = 44dB

It remains to determine C to satisfy bandwidth & P.M constraint.

5HHZ = (2 x 47-2x =) 6 = 1.54 = Cmox

: 5MHz = wo = 1 x 472 h =) c = 0.75 pt = (max

Pomeming that polar are for apart; ic (>> (= 0.75p) P.M2 QH = 180°+ LAB = 180°- ton' (Wu) - ton' (Wu) - ton' (Wu) = 180° - 90° - mor tan' (10) - tan' (20) = 86.85°. But we want PM to be within 60° 1280°. i. we must decrease and C for C = 0.05 pf; . Wr2 ≈ 20 MHz × 27 (Simulation) WF, REMODER = 83.2 KHZ x 2# = 2x (47.2 x 416) roly :. LAS = 104.3" , PM = 75.70

MOSFE T	gm calculat ed	Vgs-Vt calculat ed	ld calculat ed	gm simulate d	Vgs-Vt	ld	gds
МО	150.6µA	0.15V	8μΑ	205 <u>µS</u>	0.1431V	10.2μΑ	74.65µS
M1	47.22μS	0.257V	4μΑ	48.7 <u>µS</u>	0.426V	5.063µA	2.74µS
M2	47.22μS	0.257V	4µA	48.7μS	0.425V	5.06µA	2.74µS
M3	47.22μS	0.17V	4μΑ	50.9μS	0.1708V	5.063µA	0.391µS
M4	47.22μS	0.17V	4μΑ	50.9μS	0.1706V	5.06µA	0.391µS
M5	4722.μS	0.17V	401µA	4.49mS	0.1706	393μΑ	0.386mS
M6	9.3mS	0.15V	545μΑ	7.57mS	0.1432V	538µA	0.038mS

- b)The Two resistors for K=2, R=500k >> rds5||rds6|
- c) DC gain = 45 db
- d)Power consumption=986.2 μW

Loop Gain: Green curve opamp gain . Blue curve loop gain = $A\beta$

Phase margin=71.8 degrees

Closed Loop gain:

DC gain=5.921db Bandwidth=6.09MHz

Peaking =0.837dB

Transient Response:

Blue curve: input step

Green curve: output response

trise=196.2 ns %Overshoot=4.85% ts=314 ns

FINAL DESIGN:

Designed C = 0.05pfVCM = 180mV $i0=1.11\mu A$

MOSFET	W	L	W/L
M00	1.8u	1.8u	1
MO	18u	1.8u	10
M1	9u	1.8u	5
M2	9u	1.8u	5
M3	3.91u	1.8u	2.174
M4	3.91u	1.8u	2.174
M5	217.4u	1.8u	120.78
M6	662u	1.0u	662