Classifier-Free Diffusion Guidance

Ho et al., 2021

Why Classifier-'free' Guidance? (vs. Classifier Guidance)

• How the guidance works?

- A pure generative model (vs. a pre-trained classifier needed)
- Training conditional and unconditional models jointly (vs. 無)
- Sampling using a linear combination of the conditional and unconditional models (vs. adding the gradient of the pre-trained classifier to the diffusion model)

Pros and Cons

- Simplified data pipeline (vs. complicated)
- Extremely simple implementation
- Detour the 'adversarial attack'
- X Slower sampling speed

Motivation: Truncation

Truncation Trick

- Taking a model trained with $z \sim N(0, 1)$
- Truncating a z vector by resampling the values with magnitude above a chosen threshold
- Leading to improvement in individual sample quality at the cost of reduction in overall sample variety

Figure 2: (a) The effects of increasing truncation. From left to right, the threshold is set to 2, 1, 0.5, 0.04. (b) Saturation artifacts from applying truncation to a poorly conditioned model.

Motivation: Classifier Guidance

An adversarial attack

Recall...

 $\circ \quad \hat{\epsilon}(x_t) \coloneqq \epsilon_{\theta}(x_t) - \sqrt{1 - \bar{\alpha}_t} \, \nabla_{x_t} \log p_{\phi}(y|x_t)$

57.7% confidence

- $p_{\phi}(y|x_t)$: The classifier is pre-trained with noise-added images.
- Classifier-based evaluations metrics: IS (Inception Score), FID (Frechet Inception Score)

Nomenclature

Ho et al., 2021

$$q(\mathbf{z}_{\lambda}|\mathbf{x}) = \mathcal{N}(\alpha_{\lambda}\mathbf{x}, \sigma_{\lambda}^{2}\mathbf{I}), \text{ where } \alpha_{\lambda}^{2} = 1/(1 + e^{-\lambda}), \ \sigma_{\lambda}^{2} = 1 - \alpha_{\lambda}^{2}$$

 $\mathbf{z}_{\lambda} = \alpha_{\lambda}\mathbf{x} + \sigma_{\lambda}\boldsymbol{\epsilon}$

Ho et al., 2020

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$$

$$\mathbf{x}_t(\mathbf{x}_0, \boldsymbol{\epsilon}) = \sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}$$

DDPM	Classifier-free Guidance	
$\mathbf{x_0}$	X	
\mathbf{x}_{t}	z_{λ}	
$\sqrt{\overline{lpha_t}}$	$lpha_\lambda$	
$1-\overline{\alpha_t}$	σ_{λ}^2	

Classifier Guidance

Recall...

$$\epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) \approx -\sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} \log p(\mathbf{z}_{\lambda} | \mathbf{c})$$

Classifier Guidance

$$\tilde{\boldsymbol{\epsilon}}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) = \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - w\sigma_{\lambda}\nabla_{\mathbf{z}_{\lambda}}\log p_{\theta}(\mathbf{c}|\mathbf{z}_{\lambda})$$

$$\approx -\sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} [\log p(\mathbf{z}_{\lambda} | \mathbf{c}) + w \log p_{\theta}(\mathbf{c} | \mathbf{z}_{\lambda})]$$

Song et al., 2020
$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \frac{1}{\sqrt{1-\beta_t}}(x_t + \beta_t \ s_{\theta}(x_t,t)), \beta_t I)$$
 Ho et al., 2020
$$x_{t-1} \sim p_{\theta}(x_{t-1}|x_t) \text{ where } \mu_{\theta} = \frac{1}{\sqrt{\alpha}}(x_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha_t}}}\epsilon_{\theta}(x_t,t))$$

$$\nabla_{x_t} \log p_{\theta}(x_t) = -\frac{1}{\sqrt{1-\bar{\alpha_t}}}\epsilon_{\theta}(x_t)$$
 Dhariwal et al., 2021
$$\nabla_{x_t} \log(p_{\theta}(x_t)p_{\phi}(y|x_t)) = \nabla_{x_t} \log p_{\theta}(x_t) + \nabla_{x_t} \log p_{\phi}(y|x_t)$$

$$= -\frac{1}{\sqrt{1-\bar{\alpha_t}}}\epsilon_{\theta}(x_t) + \nabla_{x_t} \log p_{\phi}(y|x_t)$$

$$\hat{\epsilon}(x_t) \coloneqq \epsilon_{\theta}(x_t) - \sqrt{1-\bar{\alpha_t}} \nabla_{x_t} \log p_{\phi}(y|x_t)$$

Classifier-free Guidance

Recall...

DDPM
$$\epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) \approx -\sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} \log p(\mathbf{z}_{\lambda} | \mathbf{c})$$

Classifier Guidance
$$\tilde{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) = \epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - w\sigma_{\lambda}\nabla_{\mathbf{z}_{\lambda}}\log p_{\theta}(\mathbf{c}|\mathbf{z}_{\lambda})$$

$$\approx -\sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} [\log p(\mathbf{z}_{\lambda} | \mathbf{c}) + w \log p_{\theta}(\mathbf{c} | \mathbf{z}_{\lambda})]$$

Training
$$oldsymbol{\epsilon}_{ heta}(\mathbf{z}_{\lambda},\mathbf{c})$$

$$\epsilon_{\theta}(\mathbf{z}_{\lambda}) = \epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c} = \mathbf{0})$$

Sampling (Inference)
$$\tilde{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) = (1 + w)\epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - w\epsilon_{\theta}(\mathbf{z}_{\lambda})$$

Classifier-free Guidance: an Intuition

Recall...

DDPM
$$\epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) \approx -\sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} \log p(\mathbf{z}_{\lambda} | \mathbf{c})$$

Classifier Guidance
$$\tilde{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) = \epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - w\sigma_{\lambda}\nabla_{\mathbf{z}_{\lambda}}\log p_{\theta}(\mathbf{c}|\mathbf{z}_{\lambda})$$

$$\approx -\sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} [\log p(\mathbf{z}_{\lambda} | \mathbf{c}) + w \log p_{\theta}(\mathbf{c} | \mathbf{z}_{\lambda})]$$

Training
$$oldsymbol{\epsilon}_{ heta}(\mathbf{z}_{\lambda},\mathbf{c})$$

$$\epsilon_{\theta}(\mathbf{z}_{\lambda}) = \epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c} = \mathbf{0})$$

Sampling (Inference)
$$\tilde{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) = (1 + w)\epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - w\epsilon_{\theta}(\mathbf{z}_{\lambda})$$

Classifier-free Guidance: an Implicit Classifier

Recall...

DDPM $\epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) \approx -\sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} \log p(\mathbf{z}_{\lambda} | \mathbf{c})$

Classifier Guidance $\tilde{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) = \epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - w\sigma_{\lambda}\nabla_{\mathbf{z}_{\lambda}}\log p_{\theta}(\mathbf{c}|\mathbf{z}_{\lambda})$

$$\approx -\sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} [\log p(\mathbf{z}_{\lambda} | \mathbf{c}) + w \log p_{\theta}(\mathbf{c} | \mathbf{z}_{\lambda})]$$

Training $oldsymbol{\epsilon}_{ heta}(\mathbf{z}_{\lambda},\mathbf{c})$

$$\epsilon_{\theta}(\mathbf{z}_{\lambda}) = \epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c} = \mathbf{0})$$

Sampling (Inference) $\tilde{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) = (1 + w)\epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - w\epsilon_{\theta}(\mathbf{z}_{\lambda})$

Implicit classifier $p^i(\mathbf{c}|\mathbf{z}_{\lambda}) \propto p(\mathbf{z}_{\lambda}|\mathbf{c})/p(\mathbf{z}_{\lambda})$

$$\nabla_{\mathbf{z}_{\lambda}} \log p^{i}(\mathbf{c}|\mathbf{z}_{\lambda}) = -\frac{1}{\sigma_{\lambda}} [\boldsymbol{\epsilon}^{*}(\mathbf{z}_{\lambda}, \mathbf{c}) - \boldsymbol{\epsilon}^{*}(\mathbf{z}_{\lambda})]$$

Classifier-free Guidance: an Implicit Classifier (cont.)

Classifier Guidance
$$\begin{split} \tilde{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) &= \epsilon_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - w \sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} \log p_{\theta}(\mathbf{c} | \mathbf{z}_{\lambda}) \\ &\approx -\sigma_{\lambda} \nabla_{\mathbf{z}_{\lambda}} [\log p(\mathbf{z}_{\lambda} | \mathbf{c}) + w \log p_{\theta}(\mathbf{c} | \mathbf{z}_{\lambda})] \end{split}$$

Sampling (Inference)
$$\begin{split} \tilde{\pmb{\epsilon}}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) &= (1+w) \pmb{\epsilon}_{\theta}(\mathbf{z}_{\lambda}, \mathbf{c}) - w \pmb{\epsilon}_{\theta}(\mathbf{z}_{\lambda}) \\ \text{Implicit classifier} & p^i(\mathbf{c}|\mathbf{z}_{\lambda}) \propto p(\mathbf{z}_{\lambda}|\mathbf{c})/p(\mathbf{z}_{\lambda}) \\ \nabla_{\mathbf{z}_{\lambda}} \log p^i(\mathbf{c}|\mathbf{z}_{\lambda}) &= -\frac{1}{\sigma_{\lambda}} [\pmb{\epsilon}^*(\mathbf{z}_{\lambda}, \mathbf{c}) - \pmb{\epsilon}^*(\mathbf{z}_{\lambda})] \end{split}$$

$$\tilde{\epsilon}_{\theta}(z_{\lambda}, c) = \epsilon_{\theta}(z_{\lambda}, c) - w\sigma_{\lambda} \left(-\frac{1}{\sigma_{\lambda}} [\epsilon^{*}(z_{\lambda}, c) - \epsilon^{*}(z_{\lambda})] \right)$$

$$= \epsilon_{\theta}(z_{\lambda}, c) + w(\epsilon^{*}(z_{\lambda}, c) - \epsilon^{*}(z_{\lambda}))$$

$$= (1 + w)\epsilon_{\theta}(z_{\lambda}, c) - w\epsilon_{\theta}(z_{\lambda}) \ (\because \epsilon_{\theta} \text{ estimates } \epsilon^{*})$$

Experiments

- Dataset: 64x64 area-downsampled ImageNet
- The model on unconditional generation jointly trained with probability 0.1
- FID and Inception Scores calculated with 50000 samples for each value using T = 256 sampling steps.

Method	FID (↓)	IS (†)
ADM [3]	2.07	-
CDM 6	1.48	67.95
Ours, no guidance	1.80	53.71
Ours, with guidance		
w = 0.1	1.55	66.11
w = 0.2	2.04	78.91
w = 0.3	3.03	92.8
w = 0.4	4.30	106.2
w = 0.5	5.74	119.3
w = 0.6	7.19	131.1
w = 0.7	8.62	141.8
w = 0.8	10.08	151.6
w = 0.9	11.41	161
w = 1.0	12.6	170.1
w = 2.0	21.03	225.5
w = 3.0	24.83	250.4
w = 4.0	26.22	260.2

Figure 1: ImageNet 64x64 results

Figure 2: ImageNet 64x64 FID vs. IS

^[3] Diffusion models beat GANs on image synthesis (Dhariwal et al., 2021) 11

^[6] Cascaded diffusion models for high fidelity image generation (Ho et al., 2021)

Experiments (cont.)

Figure 4: Classifier-free guidance on 128x128 ImageNet. Left: non-guided samples, right: guided samples with w=3.0. Interestingly, strongly guided samples such as these display saturated colors.

(c) Classifier-free guidance with w = 3.0: FID=24.83, IS=250.4

Figure 3: Classifier-free guidance on ImageNet 64x64. Left: random classes. Right: single class (malamute). Same random seeds used for sampling in each subfigure.

Why Classifier-'free' Guidance? (vs. Classifier Guidance)

• How the guidance works?

- A pure generative model (vs. a pre-trained classifier needed)
- Training conditional and unconditional models jointly (vs. 無)
- Sampling using a linear combination of the conditional and unconditional models (vs. adding the gradient of the pre-trained classifier to the diffusion model)

Pros and Cons

- Simplified data pipeline (vs. complicated)
- Detour the 'adversarial attack'
- Extremely simple implementation
- X Slower sampling speed

Reference

- Classifier-Free Diffusion Guidance (Ho et al., 2021)
- Denoising Diffusion Probabilistic Models (Ho et al., 2020)
- Score-Based Generative Modeling through Stochastic Differential Equations (Song et al., 2021)
- Diffusion Models Beat GANs on Image Synthesis (Dhariwal et al., 2021)
- Large Scale GAN Training for High Fidelity Natural Image Synthesis (Brock et al., 2018)
- Explaining and Harnessing Adversarial Examples (Goodfellow et al., 2014)

Thanks ©