Lösungen Testat STOC SW03

Daniel Winz

21. März 2013 11:03

Inhaltsverzeichnis

1	Auf	ga	\mathbf{be}	1																								2
	1.1	a																										2
	1.2	b																										2
2	Aufgabe 2															2												
	2.1																											2
	2.2	b																										3
	2.3	\mathbf{c}																										3
	2.4	d																										3
	2.5	e																										4
3	Aufgabe 3															4												
	3.1	a																										4
	3.2	b																										5
4	Aufgabe 4															5												
	4.1	_																										5
	4.2	b																										5
	4.3	\mathbf{c}																										5
	4.4	d																										5
	4.5	e																										5
	4.6	f																									•	5
5	Aufgabe 5																	5										
	5.1	a																										5
	5.2	b																										5
	5.3	\mathbf{c}																										6
6	Aufgabe 6															6												
	6.1																											6
	6.2	b																										6
	6.3																											6

1 Aufgabe 1

1.1 a

$$\begin{split} S_{xy} &= \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1} \\ &= \frac{\sum_{i=1}^{n} (x_i \cdot y_i - x_i \cdot \overline{y} - \overline{x} \cdot y_i + \overline{x} \cdot \overline{y})}{n-1} \\ &= \frac{\sum_{i=1}^{n} (x_i \cdot y_i) - \sum_{i=1}^{n} (x_i \cdot \overline{y}) - \sum_{i=1}^{n} (\overline{x} \cdot y_i) + \sum_{i=1}^{n} (\overline{x} \cdot \overline{y})}{n-1} \\ &= \frac{\sum_{i=1}^{n} (x_i \cdot y_i) - \overline{y} \cdot \sum_{i=1}^{n} (x_i) - \overline{x} \cdot \sum_{i=1}^{n} (y_i) + n \cdot \overline{x} \cdot \overline{y}}{n-1} \\ &= \frac{\sum_{i=1}^{n} (x_i \cdot y_i) - \overline{y} \cdot n \cdot \overline{x} - \overline{x} \cdot n \cdot \overline{y} + n \cdot \overline{x} \cdot \overline{y}}{n-1} \\ &= \frac{\sum_{i=1}^{n} (x_i \cdot y_i) - n \cdot \overline{x} \cdot \overline{y}}{n-1} \end{split}$$

Neuer Versuch

$$\hat{a} = \bar{y} - \hat{b} \cdot \bar{x}$$

$$\hat{b} = \frac{s_{xy}}{s_x^2}$$

$$s_{xy} = \hat{b} \cdot s_x^2$$

$$s_{xy} = \frac{\bar{y} - \hat{a}}{\bar{x}} \cdot s_x^2$$

1.2 b

$$r = \frac{S_{xy}}{S_x \cdot S_y}$$

2 Aufgabe 2

2.1 a

$$P(A\cap B)=P(A)\cdot P(B)=\frac{3}{4}\cdot \frac{2}{3}=\frac{1}{2}$$


```
begin{venndiagram2sets}

fillACapB

end{venndiagram2sets}
```

2.2 b

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{3}{4} + \frac{2}{3} - \frac{2}{4} = \frac{11}{12}$$

begin{venndiagram2sets}

fillA \fillB

end{venndiagram2sets}

2.3

$$P(\overline{A\cap B}) = P(\Omega) - P(A\cap B) = 1 - P(A\cap B) = 1 - \frac{1}{2} = \frac{1}{2}$$


```
begin{venndiagram2sets}

fillNotAorB \fillANotB \fillBNotA

end{venndiagram2sets}
```

2.4 d

$$P(\overline{A \cup B}) = P(\Omega) - P(A \cup B) = 1 - P(A \cup B) = 1 - \frac{11}{12} = \frac{1}{12}$$

- \begin{venndiagram2sets}
- \fillNotAorB
- \end{venndiagram2sets}

2.5 e

$$P(A \cup B) = P(A) + P(B) - 2 \cdot P(A \cap B) = \frac{3}{4} + \frac{2}{3} - 2 \cdot \frac{2}{4} = \frac{5}{12}$$

- \begin{venndiagram2sets}
 \fillANotB \fillBNotA
- \end{venndiagram2sets}

3 Aufgabe 3

3.1 a

$$P(F|A) = \frac{P(A \cap F)}{P(A)} = 0.2070$$

3.2 k

$$P(KF|KA) = \frac{P(KF \cap KA)}{P(KA)} = 0.9999$$

4 Aufgabe 4

4.1 a

 $\{11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66\}$

4.2 b

 $\frac{1}{36}$

4.3 c

$$E_1 = \{16, 25, 34, 43, 52, 61\}$$

$$P(E_1) = \frac{6}{36} = \frac{1}{6}$$

4.4 d

$$E_2 = \{11, 12, 21\}$$

 $P(E_2) = \frac{3}{36} = \frac{1}{12}$

4.5

$$E_3 = \{11, 13, 15, 31, 33, 35, 51, 53, 55\}$$

$$P(E_3) = \frac{9}{36} = \frac{1}{4}$$

4.6 f

$$E_2 \cup E_3 = \{11, 12, 13, 15, 21, 31, 33, 35, 51, 53, 55\}$$

$$P(E_3) = \frac{11}{36}$$

5 Aufgabe 5

5.1 a

P(Kopf) + P(Zahl) muss 1 ergeben.

5.2 b

Eine Wahrscheinlichkeit kann nicht negativ sein.

5.3 c

Da $\{S\cap M\}$ nicht existiert muss $P(S)+P(M)=P(S\cup M)$ sein.

Ν

6 Aufgabe 6

Е

6.1 a

w
$$P(w \cap E) = 0.210226$$
 $P(w \cap N) = 0.303774$

m
$$P(m \cap E) = 0.280908$$
 $P(m \cap N) = 0.205092$

6.2 k

$$P(w|E) = \frac{P(w \cup E)}{P(E)} = 0.428042$$

6.3

$$P(w|E) = \frac{P(w \cup E)}{P(E)} = 0.428042$$

$$P(m|E) = \frac{P(m \cup E)}{P(E)} = 0.571958$$

$$P(w|N) = \frac{P(w \cup N)}{P(N)} = 0.596963$$

$$P(m|N) = \frac{P(m \cup N)}{P(N)} = 0.403037$$