Stability properties of Relaxed Recentered log-barrier function based Nonlinear MPC

Tudor Oancea

March 2022

1 Introduction

Given a controlled nonlinear dynamical system of the form $x^+ = f(x, u)$ with state and control constraints $x \in \mathcal{X} \subseteq \mathbb{R}^{n_x}$, $u \in \mathcal{U} \subseteq \mathbb{R}^{n_u}$ and a fixed point x^* for these dynamics, i.e. a point such that $f(x^*, 0) = x^*$, the problem of *stabilization* is to find a a feedback control law $\mu : \mathcal{X} \to \mathcal{U}$ such that x^* is asymptoticall stable for the dynamical system $x^+ = f(x, \mu(x))$. Such a problem is usually tackled using *optimal control*, and precisely *model predictive control* (MPC), an algorithm that defines this feedback control as the solution to an optimization problem of the following form:

$$V_{N}(x) = \min_{\mathbf{x}, \mathbf{u}} \quad J_{N}(\mathbf{x}, \mathbf{u})$$
s.t. $x_{0} = x$ and $x_{k+1} = f(x_{k}, u_{k}), k = 0, \dots, N - 1$

$$x_{k} \in \mathcal{X}, k = 0, \dots, N$$

$$u_{k} \in \mathcal{U}, k = 0, \dots, N - 1$$

$$(1)$$

Here N is called the horizon size, J_N is the cost function that is usually described with stage costs $l: \mathcal{X} \times \mathcal{U} \to \mathbb{R}$ and final cost $F: \mathcal{X} \to \mathbb{R}$ by

$$J_N(\mathbf{x}, \mathbf{u}) = \sum_{k=0}^{N-1} l(x_k, u_k) + F(x_N)$$

The system is then controlled by applying the first value of the optimal control sequence to the system.

In our work the following assumptions will be made:

Assumption 1.1.

- The function f describing the dynamics is a general C^2 function, not necessarily linear.
- Without loss of generality, $x^* = 0$. We can always come back to this case by defining new translated states $\tilde{x} := x x^*$ and new dynamics and new constraints accordingly by translation.
- $x^* = 0 \in \operatorname{int} \mathcal{X}$ and $0 \in \operatorname{int} \mathcal{U}$
- The stage costs and the final costs are quadratic: $l(x, u) = x^T Q x + u^T Q u$, $F(x) = x^T P x$ with Q, R and P positive definite matrices. This is very usual in MPC.

• The state and constraints sets are polytopic:

$$X = \left\{ x \in \mathbb{R}^{n_x} \mid C_x x \le d_x \text{ with } C_x \in \mathbb{R}^{q_x \times n_x} \text{ and } d_x \in \mathbb{R}^{q_x} \right\}$$
$$U = \left\{ u \in \mathbb{R}^{n_u} \mid C_u u \le d_u \text{ with } C_u \in \mathbb{R}^{q_u \times n_u} \text{ and } d_u \in \mathbb{R}^{q_u} \right\}$$

Up to defining additional states and/or controls and modifying the dynamics accordingly, this can always be achieved.

The goal is usually to define the terminal cost F(x) in such a way that the optimal value function V_N is a Lyapunov function, which would prove that $x^* = 0$ is asymptotically stable for the system controlled by the MPC. In some cases the authors also include terminal constraints on the last state x_N to ensure this stability, but here we are solely focusing on MPC with terminal costs and without terminal constraints.

Our work presents a new formulation that is based on this classical MPC framework and replaces the inequality constraints in the optimization problem (given by the state and control constraints) by some modified log-barrier functions added to the objective function. To properly introduce this new formulation let's introduce the central notion of relaxed recentered log-barrier function.

2 Statement of the new formulation

Definition 2.1. Given a constraint of the form $c^T x \leq d$, the associated log-barrier function is defined as $-\log(d-c^T x)$. Such a function is defined on the interior of feasible set of the constraint and becomes infinity near its boundary. For a set of polytopic constraints similar to the ones describes above, we can define the log-barrier for the state constraints as the sum of the log-barriers for each constraint:

$$B_x(x) = \sum_{i=1}^{q_x} -\log(d_{x,i} - \text{row}_i(C_x)x)$$

Definition 2.2. A weight recentered log-barrier function for a set of polytopic constraints similar to the ones described above is of the form:

$$B_x(x) = \sum_{i=1}^{q_x} (1 + w_{x,i}) \left[\log(d_{x,i}) - \log(d_{x,i} - \text{row}_i(C_x)x) \right]$$

where the weights $w_{x,i}$ are defined as chosen such that $B_x(0) = 0$ and $\nabla B_x(0) = 0$.

Definition 2.3. A relaxed recentered log-barrier function (RRLB function) is defined by :

$$B_{x}(x) = \sum_{i=1}^{q_{x}} (1 + w_{x,i}) B_{x,i}(x)$$
with $B_{x,i}(x) = \begin{cases} \log(d_{x,1}) - \log(d_{x,1} - \text{row}_{i}(C_{x})x) & \text{if } d_{x,i} - \text{row}_{i}(C_{x})x > \delta \\ \beta(d_{x,1} - \text{row}_{i}(C_{x})x; \delta) & \text{otherwise} \end{cases}$

where $0 < \delta$ is a relaxation parameter and β is a function that twice continuously extends the log-barrier function on $(-\infty, \delta]$. The simplest example of such a function is

$$\beta(z; \delta) = \frac{1}{2} \left[\left(\frac{z - 2\delta}{\delta} \right)^2 - 1 \right] - \log(\delta)$$

Lemma 2.4. The RRLB functions are upper bounded by quadratic functions.

Proof. The proof is similar to the one of the Lemma 3 of

Now we can finally define our new MPC formulation as follows:

$$\tilde{V}_N(x) = \min_{\mathbf{x}, \mathbf{u}} \quad \tilde{J}_N(\mathbf{x}, \mathbf{u})
\text{s.t.} \quad x_0 = x \text{ and } x_{k+1} = f(x_k, u_k), \ k = 0, \dots, N-1$$
(2)

where the new objective function $\tilde{J}_N(\mathbf{x}, \mathbf{u}) = \sum_{k=0}^{N-1} \tilde{l}(x_k, u_k) + \tilde{F}(x_N)$ is defined using the new stage costs $\tilde{l}(x, u) = l(x, u) + \epsilon B_x(x) + \epsilon B_u(u)$ and the new terminal cost $\tilde{F}(x) = x^T P x$ for a certain matrix P that will be determined later. The barrier parameter ϵ has in theory the following interpretation: when it goes to zero, the solution of problem 2 converges to the one of 1.

3 Theoretical properties of RRLB Nonlinear MPC

3.1 Nominal asymptotic stability

Lemma 3.1. Consider the problem 2 and re-write it in a simpler way as

$$\tilde{V}_N(x) = \min_{\mathbf{u}} \quad J(x, \mathbf{u})$$

where $J(x, \mathbf{u}) = \tilde{l}(x_0, u_0) + \tilde{l}(f(x_0, u_0), u_1) + \cdots + \tilde{F}(f(f(\dots), u_{N-1}))$. If for a certain value for the initial state x we denote by $\tilde{\mathbf{u}}(x) = (\tilde{u}_0(x), \dots, \tilde{u}_{N-1}(x))$ the optimal sequence of controls and we suppose that $D_{\mathbf{u}}J(x, \tilde{\mathbf{u}}) = 0$ and $\nabla^2_{\mathbf{u}\mathbf{u}}J(x, \tilde{\mathbf{u}}) \succ 0$ (the matrix is positive definite) then:

•
$$\forall k = 0, \dots, N - 1, \quad ||\tilde{u}_k(x)|| = O(||x||)$$

•
$$\forall k = 1, ..., N$$
, $\|\tilde{x}_k(x)\| = f(f(..., u_{k-2}), u_{k-1}) = O(\|x\|)$

Proof. See appendix
$$\Box$$

Now the main piece:

Theorem 3.2. Let's consider the problem 2 and assume the following:

- 1. When linearizing the system dynamics around the equilibrium and letting $A = D_x f(0,0)$, $B = D_u f(0,0)$, we suppose that the pair (A,B) is stabilizable. This implies in particular that there exists a stabilizing cost K, i.e. a matrix such that $A_K := A + BK$ only has eigenvalues in the unit disk.
- 2. The matrix P defining the terminal costs is the unique positive definite solution to the following Lyapunov equation:

$$P = A_K^T P A_K + \mu Q_K \tag{3}$$

where $\mu > 1$ and $Q_K = Q + \epsilon M_x + K^T (R + \epsilon M_u) K$.

then if we use the same notations for the optimal controls and states as in the previous lemma, the origin is asymptotically stable for the dynamical system $x^+ = f(x, \tilde{u}_0(x))$ for all initial state in a certain neighborhood of the origin.

Remark. The proof of the existence and unicity of such a matrix P is based on results on the Continuous Algebraic Riccati equation and the proof can be found in the appendix.

Proof. Let's define the matrices $\hat{Q} = \nabla^2_{xx}\tilde{l}(0,0) = Q + \epsilon M_x$, $\hat{R} = \nabla^2_{uu}\tilde{l}(0,0) = R + \epsilon M_u$ and $\hat{l}(x,u) = x^T\hat{Q}x + u^T + \hat{R}u = \tilde{l}(x,u) + O(\|x\|^3 + \|u\|^3)$. By the second assumption, we have

$$\tilde{F}(A_K x) + \mu x^T Q_K x - \tilde{F}(x) = 0, \ \forall x \in \mathbb{R}^{n_x}$$

We can use the same reasoning as in the book to show that \tilde{F} is a local Lyapunov function, i.e. there exists a neighborhood V of the origin such that :

$$\tilde{F}(f(x,Kx)) + \mu x^T Q_K x - \tilde{F}(x) = 0, \ \forall x \in V$$

Then if the initial state in problem 2 is in V (and this set is forward invariant), every state $\tilde{x}_k(x)$ will be in V too.

Now using the optimal sequence of states and controls of the problem 2 starting at x, we can construct a new feasible sequence for the problem starting at $\tilde{x}_1(x)$ as $\mathbf{x}' = (\tilde{x}_1, \dots, \tilde{x}_N, f(\tilde{x}_N, \mu(\tilde{x}_N)))$ and $\mathbf{u}' = (\tilde{u}_1, \dots, \tilde{u}_{N-1}, \mu(\tilde{x}_N))$. Then we have:

$$\tilde{V}_{N}(\tilde{x}_{1}) \leq \tilde{J}_{N}(\mathbf{x}', \mathbf{u}') = \underbrace{\tilde{J}_{N}(\tilde{\mathbf{x}}, \tilde{\mathbf{u}})}_{=\tilde{V}_{N}(x)} \underbrace{\underbrace{-\tilde{l}(x, \tilde{u}_{0})}_{=O(\|x\|^{2})} + \underbrace{\tilde{F}(f(\tilde{x}_{N}, \mu(\tilde{x}_{N}))) - \tilde{F}(\tilde{x}_{N}) + \tilde{l}(\tilde{x}_{N}, \mu(\tilde{x}_{N}))}_{=O(\|x\|^{3}) = O(\|x\|^{3})} \checkmark$$

It is easy to show that \tilde{V}_N is lower and upper bounded by coercive quadratic functions (see appendix), so that \tilde{V}_N is a Lyapunov function in W. \checkmark

3.2 Constraints violation guarantees

4 Numerical extensions

- 4.1 Real Time Iteration methods
- 4.1.1 Asymptotic stability of RTI scheme
- 4.1.2 Numerical experiments
- 4.2 Parallelization
- 4.2.1 Numerical experiments

5 Appendix

Proof of lemma 3.1. \Box

Lemma 5.1 (Existence an Unicity of solution to the Lyapunov equation).

Proof. \Box

Lemma 5.2 (Coercive quadratic lower and upper bounds for objective value function).