Rutvik Sakpal

Data Science Intern at LetsGrowMore Virtual Internship Program (APRIL-2022)
 Beginner Level Task 2 - Stock Market Prediction And Forecasting Using Stacked LSTM
 Algorithm Used - Stacked Long Short Term Memory

Import the required libraries

```
import numpy as np
import pandas as pd #for analysis and manipulation of numerical tables
import matplotlib.pyplot as plt
%matplotlib inline
```

Load the data

```
stock_data = pd.read_csv('stock.csv')
stock_data.head()
```

Out[]:		Date	Open	High	Low	Last	Close	Total Trade Quantity	Turnover (Lacs)
	0	2018-09-28	234.05	235.95	230.20	233.50	233.75	3069914	7162.35
	1	2018-09-27	234.55	236.80	231.10	233.80	233.25	5082859	11859.95
	2	2018-09-26	240.00	240.00	232.50	235.00	234.25	2240909	5248.60
	3	2018-09-25	233.30	236.75	232.00	236.25	236.10	2349368	5503.90
	4	2018-09-24	233.55	239.20	230.75	234.00	233.30	3423509	7999.55

```
In [ ]: stock_data.tail()
```

Out[]:		Date	Open	High	Low	Last	Close	Total Trade Quantity	Turnover (Lacs)
	2030	2010-07-27	117.6	119.50	112.00	118.80	118.65	586100	694.98
	2031	2010-07-26	120.1	121.00	117.10	117.10	117.60	658440	780.01
	2032	2010-07-23	121.8	121.95	120.25	120.35	120.65	281312	340.31
	2033	2010-07-22	120.3	122.00	120.25	120.75	120.90	293312	355.17
	2034	2010-07-21	122.1	123.00	121.05	121.10	121.55	658666	803.56

```
In [ ]: df=stock_data.reset_index()
    df
```

Out[]:		index	Date	Open	High	Low	Last	Close	Total Trade Quantity	Turnover (Lacs)
	0	0	2018-09- 28	234.05	235.95	230.20	233.50	233.75	3069914	7162.35
	1	1	2018-09- 27	234.55	236.80	231.10	233.80	233.25	5082859	11859.95

	index	Date	Open	High	Low	Last	Close	Total Trade Quantity	Turnover (Lacs)
2	2	2018-09- 26	240.00	240.00	232.50	235.00	234.25	2240909	5248.60
3	3	2018-09- 25	233.30	236.75	232.00	236.25	236.10	2349368	5503.90
4	4	2018-09- 24	233.55	239.20	230.75	234.00	233.30	3423509	7999.55
•••									
2030	2030	2010-07- 27	117.60	119.50	112.00	118.80	118.65	586100	694.98
2031	2031	2010-07- 26	120.10	121.00	117.10	117.10	117.60	658440	780.01
2032	2032	2010-07- 23	121.80	121.95	120.25	120.35	120.65	281312	340.31
2033	2033	2010-07- 22	120.30	122.00	120.25	120.75	120.90	293312	355.17
2034	2034	2010-07- 21	122.10	123.00	121.05	121.10	121.55	658666	803.56

2035 rows × 9 columns

```
In [ ]:
         print(stock_data.isnull().sum())
        Date
                                0
        0pen
                                0
        High
                                0
                                0
        Low
        Last
        Close
                                0
        Total Trade Quantity
                                0
        Turnover (Lacs)
        dtype: int64
```

In []:

stock_data.describe()

Out[]:

	Open	High	Low	Last	Close	Total Trade Quantity	Turnover (Lacs)
count	2035.000000	2035.000000	2035.000000	2035.000000	2035.00000	2.035000e+03	2035.000000
mean	149.713735	151.992826	147.293931	149.474251	149.45027	2.335681e+06	3899.980565
std	48.664509	49.413109	47.931958	48.732570	48.71204	2.091778e+06	4570.767877
min	81.100000	82.800000	80.000000	81.000000	80.95000	3.961000e+04	37.040000
25%	120.025000	122.100000	118.300000	120.075000	120.05000	1.146444e+06	1427.460000
50%	141.500000	143.400000	139.600000	141.100000	141.25000	1.783456e+06	2512.030000
75 %	157.175000	159.400000	155.150000	156.925000	156.90000	2.813594e+06	4539.015000
max	327.700000	328.750000	321.650000	325.950000	325.75000	2.919102e+07	55755.080000

```
In [ ]: stock_data1 = stock_data.reset_index()
In [ ]: stock_data1.shape
Out[ ]: (2035, 9)
```

Plot the dataframe

```
In [ ]: stock_data1 = df['Close']
    plt.plot(stock_data1)
```

```
Out[ ]: [<matplotlib.lines.Line2D at 0x27b650227c0>]
```


Transform the data using MinMax Scaler

```
In [ ]:  #We have to do this as LSTM is sensitive to the scale of the data
    from sklearn.preprocessing import MinMaxScaler
    scaler = MinMaxScaler(feature_range=(0,1))
    stock_data1 = scaler.fit_transform(np.array(stock_data1).reshape(-1,1))
In [ ]: stock data1 #array has been transformed into values ranging from 0 to 1
```

[0.62622549], ..., [0.1621732], [0.16319444], [0.16584967]])

Split dataset into training and testing datasets

```
train_size = int(len(stock_data1)*0.65)
test_size = len(stock_data1) - train_size
train_data, test_data = stock_data1[0:train_size,:],stock_data1[train_size:len(stock_data1)]
```

Preprocess the data

```
def create_dataset(dataset, time_step=1):
    x, y = [],[]
    for i in range(len(dataset)-time_step-1):
```

```
a=dataset[i:(i+time_step),0]
            x.append(a)
            y.append(dataset[i+time_step,0])
          return np.array(x),np.array(y)
In [ ]:
        time step = 100
        x_train, y_train = create_dataset(train_data, time_step)
        x_test, y_test = create_dataset(test_data, time_step)
In [ ]:
        #reshaping input for LSTM
        x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], 1)
        x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], 1)
In [ ]:
        x_train.shape
        (1221, 100, 1)
Out[ ]:
In [ ]:
        y_train.shape
       (1221,)
Out[ ]:
       Importing required modules for the stacked LSTM
In [ ]:
        from tensorflow.keras.models import Sequential
        from tensorflow.keras.layers import Dense
        from tensorflow.keras.layers import LSTM
        from keras.models import Sequential
In [ ]:
        model = Sequential()
        #adding Layers
        model.add(LSTM(50,return_sequences=True,input_shape=(100,1)))
        model.add(LSTM(50,return sequences=True))
        model.add(LSTM(50))
        model.add(Dense(1))
        model.compile(loss='mean squared error',optimizer='adam')
In [ ]:
        model.summary()
       Model: "sequential"
        Layer (type)
                                   Output Shape
                                                           Param #
        _____
        1stm (LSTM)
                                   (None, 100, 50)
                                                           10400
       1stm 1 (LSTM)
                                   (None, 100, 50)
                                                           20200
        lstm_2 (LSTM)
                                   (None, 50)
                                                           20200
       dense (Dense)
                                   (None, 1)
                                                           51
        ______
        Total params: 50,851
       Trainable params: 50,851
       Non-trainable params: 0
```

Fit the model

```
In [ ]:
       model.fit(x_train,y_train,validation_data=(x_test,y_test),epochs=100,batch_size=64,v
       Epoch 1/100
       20/20 [=======
                       ========== ] - 13s 249ms/step - loss: 0.0233 - val_loss:
       0.0052
       Epoch 2/100
       20/20 [=============== ] - 3s 170ms/step - loss: 0.0037 - val_loss: 0.
       0018
       Epoch 3/100
       1128e-04
       Epoch 4/100
       20/20 [=============== ] - 3s 163ms/step - loss: 0.0015 - val_loss: 0.
       0013
       Epoch 5/100
       20/20 [============== ] - 3s 163ms/step - loss: 0.0014 - val_loss: 8.
       7720e-04
       Epoch 6/100
       20/20 [============ ] - 3s 163ms/step - loss: 0.0014 - val_loss: 0.
       0013
       Epoch 7/100
       20/20 [=============== ] - 3s 174ms/step - loss: 0.0015 - val_loss: 0.
       0011
       Epoch 8/100
       20/20 [=============== ] - 3s 162ms/step - loss: 0.0014 - val_loss: 8.
       2050e-04
       Epoch 9/100
       20/20 [============ ] - 3s 167ms/step - loss: 0.0013 - val_loss: 8.
       9583e-04
       Epoch 10/100
       20/20 [=============== ] - 3s 165ms/step - loss: 0.0011 - val_loss: 9.
       1812e-04
       Epoch 11/100
       20/20 [============] - 3s 165ms/step - loss: 0.0011 - val_loss: 9.
       6776e-04
       Epoch 12/100
       20/20 [============ ] - 3s 175ms/step - loss: 0.0011 - val_loss: 7.
       9833e-04
       Epoch 13/100
       20/20 [============== ] - 3s 168ms/step - loss: 0.0010 - val loss: 7.
       8790e-04
       Epoch 14/100
       20/20 [============== ] - 3s 165ms/step - loss: 9.8242e-04 - val los
       s: 6.6422e-04
       Epoch 15/100
       20/20 [============== ] - 3s 165ms/step - loss: 0.0010 - val loss: 0.
       0011
       Epoch 16/100
       20/20 [======================== ] - 3s 170ms/step - loss: 0.0010 - val_loss: 8.
       6585e-04
       Epoch 17/100
       20/20 [============== ] - 3s 172ms/step - loss: 9.0517e-04 - val los
       s: 9.2880e-04
       Epoch 18/100
       20/20 [=============== ] - 3s 169ms/step - loss: 8.8656e-04 - val los
       s: 8.2907e-04
       Epoch 19/100
       20/20 [=======================] - 3s 173ms/step - loss: 9.7480e-04 - val_los
       s: 7.5903e-04
       Epoch 20/100
       20/20 [=============== ] - 4s 176ms/step - loss: 8.0918e-04 - val los
```

```
s: 7.7011e-04
Epoch 21/100
20/20 [================ ] - 3s 172ms/step - loss: 8.6447e-04 - val_los
s: 0.0012
Epoch 22/100
20/20 [=============== ] - 3s 167ms/step - loss: 8.9272e-04 - val los
s: 7.8855e-04
Epoch 23/100
20/20 [================ ] - 3s 164ms/step - loss: 8.4555e-04 - val_los
s: 6.3154e-04
Epoch 24/100
s: 6.7072e-04
Epoch 25/100
s: 7.8403e-04
Epoch 26/100
20/20 [================ ] - 3s 173ms/step - loss: 6.9947e-04 - val_los
s: 7.0898e-04
Epoch 27/100
s: 6.0763e-04
Epoch 28/100
s: 8.2945e-04
Epoch 29/100
20/20 [================ ] - 3s 165ms/step - loss: 6.6907e-04 - val_los
s: 7.4631e-04
Epoch 30/100
20/20 [============] - 3s 165ms/step - loss: 6.3771e-04 - val los
s: 6.6901e-04
Epoch 31/100
s: 7.6600e-04
Epoch 32/100
20/20 [================== ] - 3s 172ms/step - loss: 0.0010 - val_loss: 0.
0016
Epoch 33/100
s: 0.0011
Epoch 34/100
20/20 [=============== ] - 3s 166ms/step - loss: 6.9998e-04 - val los
s: 7.3008e-04
Epoch 35/100
20/20 [================== ] - 3s 167ms/step - loss: 6.7242e-04 - val_los
s: 7.2951e-04
Epoch 36/100
20/20 [=============== ] - 4s 188ms/step - loss: 6.3194e-04 - val los
s: 5.9907e-04
Epoch 37/100
20/20 [=============== ] - 4s 175ms/step - loss: 6.4872e-04 - val los
s: 5.9682e-04
Epoch 38/100
20/20 [========================] - 4s 183ms/step - loss: 6.0927e-04 - val_los
s: 6.6631e-04
Epoch 39/100
s: 7.8617e-04
Epoch 40/100
20/20 [=============== ] - 4s 183ms/step - loss: 5.7698e-04 - val los
s: 7.2591e-04
Epoch 41/100
s: 5.9690e-04
```

```
Epoch 42/100
20/20 [=============== ] - 4s 176ms/step - loss: 5.6480e-04 - val los
s: 4.8741e-04
Epoch 43/100
20/20 [============== ] - 3s 164ms/step - loss: 5.3126e-04 - val los
s: 8.1375e-04
Epoch 44/100
20/20 [=============== ] - 3s 165ms/step - loss: 5.4875e-04 - val los
s: 5.4844e-04
Epoch 45/100
s: 5.4089e-04
Epoch 46/100
s: 5.0333e-04
Epoch 47/100
s: 4.7832e-04
Epoch 48/100
20/20 [================ ] - 3s 167ms/step - loss: 5.1560e-04 - val_los
s: 5.7012e-04
Epoch 49/100
s: 4.5364e-04
Epoch 50/100
s: 8.4209e-04
Epoch 51/100
20/20 [================ ] - 4s 184ms/step - loss: 5.1508e-04 - val_los
s: 6.6725e-04
Epoch 52/100
20/20 [================= ] - 4s 177ms/step - loss: 4.8060e-04 - val_los
s: 5.1132e-04
Epoch 53/100
s: 5.7225e-04
Epoch 54/100
s: 4.9720e-04
Epoch 55/100
s: 5.4683e-04
Epoch 56/100
s: 4.3820e-04
Epoch 57/100
20/20 [================= ] - 3s 174ms/step - loss: 4.8611e-04 - val_los
s: 4.1725e-04
Epoch 58/100
s: 4.8302e-04
Epoch 59/100
20/20 [================== ] - 4s 187ms/step - loss: 4.0671e-04 - val_los
s: 4.6276e-04
Epoch 60/100
s: 4.1287e-04
Epoch 61/100
20/20 [============== ] - 3s 176ms/step - loss: 3.8037e-04 - val los
s: 4.7584e-04
Epoch 62/100
20/20 [================== ] - 4s 177ms/step - loss: 3.8797e-04 - val_los
s: 4.0123e-04
Epoch 63/100
```

```
s: 3.7829e-04
Epoch 64/100
20/20 [================ ] - 4s 192ms/step - loss: 3.8903e-04 - val_los
s: 4.5783e-04
Epoch 65/100
20/20 [==============] - 4s 179ms/step - loss: 3.7898e-04 - val los
s: 3.2352e-04
Epoch 66/100
s: 3.3442e-04
Epoch 67/100
s: 4.5071e-04
Epoch 68/100
s: 3.0057e-04
Epoch 69/100
20/20 [========================= ] - 4s 182ms/step - loss: 3.6232e-04 - val_los
s: 3.1151e-04
Epoch 70/100
20/20 [============== ] - 4s 182ms/step - loss: 3.4366e-04 - val los
s: 3.5233e-04
Epoch 71/100
20/20 [=============] - 4s 214ms/step - loss: 3.0676e-04 - val_los
s: 3.1944e-04
Epoch 72/100
20/20 [================== ] - 4s 200ms/step - loss: 3.1161e-04 - val_los
s: 2.5779e-04
Epoch 73/100
s: 2.9093e-04
Epoch 74/100
20/20 [================== ] - 4s 180ms/step - loss: 4.2349e-04 - val_los
s: 4.0706e-04
Epoch 75/100
20/20 [========================= ] - 4s 188ms/step - loss: 4.5081e-04 - val_los
s: 2.8182e-04
Epoch 76/100
20/20 [============== ] - 4s 197ms/step - loss: 2.9339e-04 - val los
s: 3.3172e-04
Epoch 77/100
20/20 [=============== ] - 4s 188ms/step - loss: 2.7816e-04 - val los
s: 3.4982e-04
Epoch 78/100
20/20 [================ ] - 4s 183ms/step - loss: 3.2154e-04 - val_los
s: 3.3361e-04
Epoch 79/100
s: 3.1588e-04
Epoch 80/100
20/20 [========================= ] - 4s 199ms/step - loss: 3.5242e-04 - val_los
s: 2.4429e-04
Epoch 81/100
20/20 [================ ] - 4s 193ms/step - loss: 2.6887e-04 - val_los
s: 3.4610e-04
Epoch 82/100
s: 3.3554e-04
Epoch 83/100
20/20 [========================= ] - 4s 186ms/step - loss: 2.5670e-04 - val_los
s: 2.6100e-04
Epoch 84/100
20/20 [================ ] - 4s 209ms/step - loss: 2.4947e-04 - val_los
```

```
s: 2.8683e-04
   Epoch 85/100
   20/20 [================ ] - 4s 195ms/step - loss: 2.7175e-04 - val_los
   s: 2.3413e-04
   Epoch 86/100
   s: 2.5334e-04
   Epoch 87/100
   s: 2.3733e-04
   Epoch 88/100
   s: 2.2536e-04
   Epoch 89/100
   s: 2.3224e-04
   Epoch 90/100
   s: 2.4536e-04
   Epoch 91/100
   s: 3.0164e-04
   Epoch 92/100
   s: 2.1586e-04
   Epoch 93/100
   20/20 [================= ] - 4s 195ms/step - loss: 2.8791e-04 - val_los
   s: 2.7444e-04
   Epoch 94/100
   s: 2.2899e-04
   Epoch 95/100
   s: 3.6481e-04
   Epoch 96/100
   s: 2.0312e-04
   Epoch 97/100
   s: 2.1053e-04
   Epoch 98/100
   20/20 [=============== ] - 4s 192ms/step - loss: 3.3458e-04 - val los
   s: 3.2585e-04
   Epoch 99/100
   20/20 [=============] - 4s 184ms/step - loss: 2.3626e-04 - val_los
   s: 2.1488e-04
   Epoch 100/100
   s: 4.2395e-04
   <tensorflow.python.keras.callbacks.History at 0x27b70841730>
Out[ ]:
```

Generate Predictions

```
import tensorflow as tf #importing the tensorflow library to predict
train_prediction = model.predict(x_train)
test_prediction = model.predict(x_test)
```

Transform back to original form using reverse scaling

```
In [ ]:
    train_prediction = scaler.inverse_transform(train_prediction)
    test_prediction = scaler.inverse_transform(test_prediction)
```

Calculate RMSE (Root Mean Square Error)

```
In [ ]:
         import math
         from sklearn.metrics import mean squared error
         math.sqrt(mean_squared_error(y_train,train_prediction)) #for training data
         170.18087131965842
Out[ ]:
        Test Data RMSE
         math.sqrt(mean_squared_error(y_test,test_prediction)) #for testing data
        118.54432351586856
Out[ ]:
        Shifting train predictions for plotting
In [ ]:
         look back=100
         trainPredictionPlot = np.empty_like(stock_data1)
         trainPredictionPlot[:, :] = np.nan
         trainPredictionPlot[look_back:len(train_prediction)+look_back, :] = train_prediction
        Shifting test predictions for plotting
In [ ]:
         testPredictionPlot = np.empty_like(stock_data1)
         testPredictionPlot[:, :] = np.nan
         testPredictionPlot[len(train_prediction)+(look_back*2)+1:len(stock_data1)-1, :] = te
        Plotting
In [ ]:
         plt.plot(scaler.inverse_transform(stock_data1))
         plt.plot(trainPredictionPlot)
         plt.plot(testPredictionPlot)
         plt.show()
         300
         250
         200
         150
         100
                   250
                         500
                                   1000
                                        1250
                                             1500
In [ ]:
         len(test data)
Out[ ]:
In [ ]:
         len(test_data), x_test.shape
```

Prediction for next 30 days

```
In [ ]:
         from numpy import array
         final output=[]
         n_steps=100
         i=1
         while(i<=30):
             if(len(temp input)>100):
                 x_input=np.array(temp_input[1:])
                 print("{} day input {}".format(i,x_input))
                 x_input=x_input.reshape(1,-1)
                 x_input = x_input.reshape((1, n_steps, 1))
                 ypred = model.predict(x_input, verbose=0)
                 print("{} day output {}".format(i,ypred))
                 temp_input.extend(ypred[0].tolist())
                 temp_input=temp_input[1:]
                 final_output.extend(ypred.tolist())
                 i=i+1
             else.
                 x_input = x_input.reshape((1, n_steps,1))
                 ypred = model.predict(x_input, verbose=0)
                 print(ypred[0])
                 temp_input.extend(ypred[0].tolist())
                 print(len(temp input))
                 final_output.extend(ypred.tolist())
                 i=i+1
         print(final output)
```

```
[0.17623281]
101
2 day input [0.13848039 0.14011438 0.13888889 0.13541667 0.14011438 0.1380719
0.13071895 0.13071895 0.12867647 0.11846405 0.14644608 0.14808007
0.15910948 0.15992647 0.15788399 0.16441993 0.17892157 0.17933007
0.19260621 0.20812908 0.18974673 0.18055556 0.18239379 0.17708333
0.17810458 0.18055556 0.17810458 0.17851307 0.19607843 0.18913399
0.18954248 0.19403595 0.19444444 0.20200163 0.19771242 0.19934641
0.19873366 0.1997549 0.2128268 0.21568627 0.20445261 0.21772876
0.21098856 0.21425654 0.19750817 0.18811275 0.17851307 0.17381536
0.16033497 0.16564542 0.17116013 0.17422386 0.18035131 0.17401961
0.16278595 0.16973039 0.17810458 0.17034314 0.16830065 0.17279412
0.17544935 0.18382353 0.19138072 0.18913399 0.19097222 0.17238562
0.16830065 0.1693219 0.17177288 0.16156046 0.14971405 0.1503268
0.15196078 0.14726307 0.14501634 0.14603758 0.12479575 0.13112745
0.11397059 0.1190768 0.12377451 0.13562092 0.12908497 0.13459967
0.12806373 0.13031046 0.12724673 0.13521242 0.14522059 0.15257353
0.14848856 0.14338235 0.14562908 0.15236928 0.15400327 0.14971405
```

```
0.1621732 0.16319444 0.16584967 0.17623281]
2 day output [[0.18178326]]
3 day input [0.14011438 0.13888889 0.13541667 0.14011438 0.1380719 0.13071895
0.13071895 0.12867647 0.11846405 0.14644608 0.14808007 0.15910948
0.15992647 0.15788399 0.16441993 0.17892157 0.17933007 0.19260621
0.20812908 0.18974673 0.18055556 0.18239379 0.17708333 0.17810458
0.18055556 0.17810458 0.17851307 0.19607843 0.18913399 0.18954248
0.19403595 0.19444444 0.20200163 0.19771242 0.19934641 0.19873366
0.21425654 0.19750817 0.18811275 0.17851307 0.17381536 0.16033497
0.16564542 0.17116013 0.17422386 0.18035131 0.17401961 0.16278595
0.16973039 0.17810458 0.17034314 0.16830065 0.17279412 0.17544935
0.18382353 0.19138072 0.18913399 0.19097222 0.17238562 0.16830065
0.1693219 0.17177288 0.16156046 0.14971405 0.1503268 0.15196078
0.14726307 0.14501634 0.14603758 0.12479575 0.13112745 0.11397059
0.13031046 0.12724673 0.13521242 0.14522059 0.15257353 0.14848856
0.14338235 0.14562908 0.15236928 0.15400327 0.14971405 0.1621732
0.16319444 0.16584967 0.17623281 0.18178326]
3 day output [[0.18825135]]
4 day input [0.13888889 0.13541667 0.14011438 0.1380719 0.13071895 0.13071895
0.12867647 0.11846405 0.14644608 0.14808007 0.15910948 0.15992647
0.15788399 0.16441993 0.17892157 0.17933007 0.19260621 0.20812908
0.18974673 0.18055556 0.18239379 0.17708333 0.17810458 0.18055556
0.17810458 0.17851307 0.19607843 0.18913399 0.18954248 0.19403595
0.19444444 0.20200163 0.19771242 0.19934641 0.19873366 0.1997549
0.19750817 0.18811275 0.17851307 0.17381536 0.16033497 0.16564542
0.17116013 0.17422386 0.18035131 0.17401961 0.16278595 0.16973039
0.17810458 0.17034314 0.16830065 0.17279412 0.17544935 0.18382353
0.19138072 0.18913399 0.19097222 0.17238562 0.16830065 0.1693219
0.17177288 0.16156046 0.14971405 0.1503268 0.15196078 0.14726307
0.14501634 0.14603758 0.12479575 0.13112745 0.11397059 0.1190768
0.12377451 0.13562092 0.12908497 0.13459967 0.12806373 0.13031046
0.12724673 0.13521242 0.14522059 0.15257353 0.14848856 0.14338235
0.14562908 0.15236928 0.15400327 0.14971405 0.1621732 0.16319444
0.16584967 0.17623281 0.18178326 0.18825135]
4 day output [[0.19497173]]
5 day input [0.13541667 0.14011438 0.1380719 0.13071895 0.13071895 0.12867647
0.11846405 0.14644608 0.14808007 0.15910948 0.15992647 0.15788399
0.16441993 0.17892157 0.17933007 0.19260621 0.20812908 0.18974673
0.18055556 0.18239379 0.17708333 0.17810458 0.18055556 0.17810458
0.17851307 0.19607843 0.18913399 0.18954248 0.19403595 0.19444444
0.20200163 0.19771242 0.19934641 0.19873366 0.1997549 0.2128268
0.21568627 0.20445261 0.21772876 0.21098856 0.21425654 0.19750817
0.18811275 0.17851307 0.17381536 0.16033497 0.16564542 0.17116013
0.17422386 0.18035131 0.17401961 0.16278595 0.16973039 0.17810458
0.17034314 0.16830065 0.17279412 0.17544935 0.18382353 0.19138072
0.18913399 0.19097222 0.17238562 0.16830065 0.1693219 0.17177288
0.16156046 0.14971405 0.1503268 0.15196078 0.14726307 0.14501634
0.14603758 0.12479575 0.13112745 0.11397059 0.1190768 0.12377451
0.13562092 0.12908497 0.13459967 0.12806373 0.13031046 0.12724673
0.13521242 0.14522059 0.15257353 0.14848856 0.14338235 0.14562908
0.15236928 0.15400327 0.14971405 0.1621732 0.16319444 0.16584967
0.17623281 0.18178326 0.18825135 0.19497173]
5 day output [[0.2016801]]
6 day input [0.14011438 0.1380719 0.13071895 0.13071895 0.12867647 0.11846405
0.14644608 0.14808007 0.15910948 0.15992647 0.15788399 0.16441993
0.17892157 0.17933007 0.19260621 0.20812908 0.18974673 0.18055556
0.18239379 0.17708333 0.17810458 0.18055556 0.17810458 0.17851307
0.19607843 0.18913399 0.18954248 0.19403595 0.19444444 0.20200163
0.19771242 0.19934641 0.19873366 0.1997549 0.2128268 0.21568627
0.20445261 0.21772876 0.21098856 0.21425654 0.19750817 0.18811275
0.17851307 0.17381536 0.16033497 0.16564542 0.17116013 0.17422386
```

```
0.18035131 0.17401961 0.16278595 0.16973039 0.17810458 0.17034314
0.16830065 0.17279412 0.17544935 0.18382353 0.19138072 0.18913399
0.19097222 0.17238562 0.16830065 0.1693219 0.17177288 0.16156046
0.14971405 0.1503268 0.15196078 0.14726307 0.14501634 0.14603758
0.12479575 0.13112745 0.11397059 0.1190768 0.12377451 0.13562092
0.12908497 0.13459967 0.12806373 0.13031046 0.12724673 0.13521242
0.14522059 0.15257353 0.14848856 0.14338235 0.14562908 0.15236928
0.15400327 0.14971405 0.1621732 0.16319444 0.16584967 0.17623281
0.18178326 0.18825135 0.19497173 0.20168009]
6 day output [[0.20830329]]
7 day input [0.1380719 0.13071895 0.13071895 0.12867647 0.11846405 0.14644608
0.14808007 0.15910948 0.15992647 0.15788399 0.16441993 0.17892157
0.17933007 0.19260621 0.20812908 0.18974673 0.18055556 0.18239379
0.17708333 0.17810458 0.18055556 0.17810458 0.17851307 0.19607843
0.18913399 0.18954248 0.19403595 0.19444444 0.20200163 0.19771242
0.19934641 0.19873366 0.1997549 0.2128268 0.21568627 0.20445261
0.21772876 0.21098856 0.21425654 0.19750817 0.18811275 0.17851307
0.17381536 0.16033497 0.16564542 0.17116013 0.17422386 0.18035131
0.17401961 0.16278595 0.16973039 0.17810458 0.17034314 0.16830065
0.17279412 0.17544935 0.18382353 0.19138072 0.18913399 0.19097222
0.17238562 0.16830065 0.1693219 0.17177288 0.16156046 0.14971405
0.13112745 0.11397059 0.1190768 0.12377451 0.13562092 0.12908497
0.13459967 0.12806373 0.13031046 0.12724673 0.13521242 0.14522059
0.15257353 0.14848856 0.14338235 0.14562908 0.15236928 0.15400327
0.14971405 0.1621732 0.16319444 0.16584967 0.17623281 0.18178326
0.18825135 0.19497173 0.20168009 0.20830329]
7 day output [[0.21482913]]
8 day input [0.13071895 0.13071895 0.12867647 0.11846405 0.14644608 0.14808007
0.15910948 0.15992647 0.15788399 0.16441993 0.17892157 0.17933007
0.19260621 0.20812908 0.18974673 0.18055556 0.18239379 0.17708333
0.17810458 0.18055556 0.17810458 0.17851307 0.19607843 0.18913399
0.18954248 0.19403595 0.19444444 0.20200163 0.19771242 0.19934641
0.19873366 0.1997549 0.2128268 0.21568627 0.20445261 0.21772876
0.21098856 0.21425654 0.19750817 0.18811275 0.17851307 0.17381536
0.16033497 0.16564542 0.17116013 0.17422386 0.18035131 0.17401961
0.16278595 0.16973039 0.17810458 0.17034314 0.16830065 0.17279412
0.17544935 0.18382353 0.19138072 0.18913399 0.19097222 0.17238562
0.16830065 0.1693219 0.17177288 0.16156046 0.14971405 0.1503268
0.15196078 0.14726307 0.14501634 0.14603758 0.12479575 0.13112745
0.11397059 0.1190768 0.12377451 0.13562092 0.12908497 0.13459967
0.12806373 0.13031046 0.12724673 0.13521242 0.14522059 0.15257353
0.14848856 0.14338235 0.14562908 0.15236928 0.15400327 0.14971405
0.19497173 0.20168009 0.20830329 0.21482913]
8 day output [[0.22126299]]
9 day input [0.13071895 0.12867647 0.11846405 0.14644608 0.14808007 0.15910948
0.15992647 0.15788399 0.16441993 0.17892157 0.17933007 0.19260621
0.20812908 0.18974673 0.18055556 0.18239379 0.17708333 0.17810458
0.18055556 0.17810458 0.17851307 0.19607843 0.18913399 0.18954248
0.19403595 0.19444444 0.20200163 0.19771242 0.19934641 0.19873366
0.21425654 0.19750817 0.18811275 0.17851307 0.17381536 0.16033497
0.16564542 0.17116013 0.17422386 0.18035131 0.17401961 0.16278595
0.16973039 0.17810458 0.17034314 0.16830065 0.17279412 0.17544935
0.18382353 0.19138072 0.18913399 0.19097222 0.17238562 0.16830065
0.14726307 0.14501634 0.14603758 0.12479575 0.13112745 0.11397059
0.13031046 0.12724673 0.13521242 0.14522059 0.15257353 0.14848856
0.14338235 0.14562908 0.15236928 0.15400327 0.14971405 0.1621732
0.16319444 0.16584967 0.17623281 0.18178326 0.18825135 0.19497173
0.20168009 0.20830329 0.21482913 0.22126299]
9 day output [[0.22761774]]
```

```
10 day input [0.12867647 0.11846405 0.14644608 0.14808007 0.15910948 0.15992647
0.15788399 0.16441993 0.17892157 0.17933007 0.19260621 0.20812908
0.18974673 0.18055556 0.18239379 0.17708333 0.17810458 0.18055556
0.17810458 0.17851307 0.19607843 0.18913399 0.18954248 0.19403595
0.19444444 0.20200163 0.19771242 0.19934641 0.19873366 0.1997549
0.19750817 0.18811275 0.17851307 0.17381536 0.16033497 0.16564542
0.17116013 0.17422386 0.18035131 0.17401961 0.16278595 0.16973039
0.17810458 0.17034314 0.16830065 0.17279412 0.17544935 0.18382353
0.19138072 0.18913399 0.19097222 0.17238562 0.16830065 0.1693219
0.17177288 0.16156046 0.14971405 0.1503268 0.15196078 0.14726307
0.14501634 0.14603758 0.12479575 0.13112745 0.11397059 0.1190768
0.12377451 0.13562092 0.12908497 0.13459967 0.12806373 0.13031046
0.12724673 0.13521242 0.14522059 0.15257353 0.14848856 0.14338235
0.14562908 0.15236928 0.15400327 0.14971405 0.1621732 0.16319444
0.16584967 0.17623281 0.18178326 0.18825135 0.19497173 0.20168009
0.20830329 0.21482913 0.22126299 0.22761774]
10 day output [[0.23391055]]
11 day input [0.11846405 0.14644608 0.14808007 0.15910948 0.15992647 0.15788399
0.16441993 0.17892157 0.17933007 0.19260621 0.20812908 0.18974673
0.18055556 0.18239379 0.17708333 0.17810458 0.18055556 0.17810458
0.17851307 0.19607843 0.18913399 0.18954248 0.19403595 0.19444444
0.20200163 0.19771242 0.19934641 0.19873366 0.1997549 0.2128268
0.21568627 0.20445261 0.21772876 0.21098856 0.21425654 0.19750817
0.18811275 0.17851307 0.17381536 0.16033497 0.16564542 0.17116013
0.17422386 0.18035131 0.17401961 0.16278595 0.16973039 0.17810458
0.17034314 0.16830065 0.17279412 0.17544935 0.18382353 0.19138072
0.18913399 0.19097222 0.17238562 0.16830065 0.1693219 0.17177288
0.16156046 0.14971405 0.1503268 0.15196078 0.14726307 0.14501634
0.14603758 0.12479575 0.13112745 0.11397059 0.1190768 0.12377451
0.13562092 0.12908497 0.13459967 0.12806373 0.13031046 0.12724673
0.13521242 0.14522059 0.15257353 0.14848856 0.14338235 0.14562908
0.15236928 0.15400327 0.14971405 0.1621732 0.16319444 0.16584967
0.17623281 0.18178326 0.18825135 0.19497173 0.20168009 0.20830329
0.21482913 0.22126299 0.22761774 0.23391055]
11 day output [[0.24015996]]
12 day input [0.14644608 0.14808007 0.15910948 0.15992647 0.15788399 0.16441993
0.17892157 0.17933007 0.19260621 0.20812908 0.18974673 0.18055556
0.18239379 0.17708333 0.17810458 0.18055556 0.17810458 0.17851307
0.19607843 0.18913399 0.18954248 0.19403595 0.19444444 0.20200163
0.19771242 0.19934641 0.19873366 0.1997549 0.2128268 0.21568627
0.20445261 0.21772876 0.21098856 0.21425654 0.19750817 0.18811275
0.17851307 0.17381536 0.16033497 0.16564542 0.17116013 0.17422386
0.18035131 0.17401961 0.16278595 0.16973039 0.17810458 0.17034314
0.16830065 0.17279412 0.17544935 0.18382353 0.19138072 0.18913399
0.19097222 0.17238562 0.16830065 0.1693219 0.17177288 0.16156046
0.14971405 0.1503268 0.15196078 0.14726307 0.14501634 0.14603758
0.12479575 0.13112745 0.11397059 0.1190768 0.12377451 0.13562092
0.12908497 0.13459967 0.12806373 0.13031046 0.12724673 0.13521242
0.14522059 0.15257353 0.14848856 0.14338235 0.14562908 0.15236928
0.15400327 0.14971405 0.1621732 0.16319444 0.16584967 0.17623281
0.18178326 0.18825135 0.19497173 0.20168009 0.20830329 0.21482913
0.22126299 0.22761774 0.23391055 0.24015996]
12 day output [[0.24638352]]
13 day input [0.14808007 0.15910948 0.15992647 0.15788399 0.16441993 0.17892157
0.17933007 0.19260621 0.20812908 0.18974673 0.18055556 0.18239379
0.17708333 0.17810458 0.18055556 0.17810458 0.17851307 0.19607843
0.18913399 0.18954248 0.19403595 0.19444444 0.20200163 0.19771242
0.19934641 0.19873366 0.1997549 0.2128268 0.21568627 0.20445261
0.21772876 0.21098856 0.21425654 0.19750817 0.18811275 0.17851307
0.17381536 0.16033497 0.16564542 0.17116013 0.17422386 0.18035131
0.17401961 0.16278595 0.16973039 0.17810458 0.17034314 0.16830065
0.17279412 0.17544935 0.18382353 0.19138072 0.18913399 0.19097222
0.17238562 0.16830065 0.1693219 0.17177288 0.16156046 0.14971405
```

```
0.13112745 0.11397059 0.1190768 0.12377451 0.13562092 0.12908497
0.13459967 0.12806373 0.13031046 0.12724673 0.13521242 0.14522059
0.15257353 0.14848856 0.14338235 0.14562908 0.15236928 0.15400327
0.14971405 0.1621732 0.16319444 0.16584967 0.17623281 0.18178326
0.18825135 0.19497173 0.20168009 0.20830329 0.21482913 0.22126299
0.22761774 0.23391055 0.24015996 0.24638352]
13 day output [[0.2525962]]
14 day input [0.15910948 0.15992647 0.15788399 0.16441993 0.17892157 0.17933007
0.19260621 0.20812908 0.18974673 0.18055556 0.18239379 0.17708333
0.17810458 0.18055556 0.17810458 0.17851307 0.19607843 0.18913399
0.18954248 0.19403595 0.19444444 0.20200163 0.19771242 0.19934641
0.19873366 0.1997549 0.2128268 0.21568627 0.20445261 0.21772876
0.21098856 0.21425654 0.19750817 0.18811275 0.17851307 0.17381536
0.16033497 0.16564542 0.17116013 0.17422386 0.18035131 0.17401961
0.16278595 0.16973039 0.17810458 0.17034314 0.16830065 0.17279412
0.17544935 0.18382353 0.19138072 0.18913399 0.19097222 0.17238562
0.16830065 0.1693219 0.17177288 0.16156046 0.14971405 0.1503268
0.15196078 0.14726307 0.14501634 0.14603758 0.12479575 0.13112745
0.11397059 0.1190768 0.12377451 0.13562092 0.12908497 0.13459967
0.12806373 0.13031046 0.12724673 0.13521242 0.14522059 0.15257353
0.14848856 0.14338235 0.14562908 0.15236928 0.15400327 0.14971405
0.19497173 0.20168009 0.20830329 0.21482913 0.22126299 0.22761774
0.23391055 0.24015996 0.24638352 0.2525962 ]
14 day output [[0.25881013]]
15 day input [0.15992647 0.15788399 0.16441993 0.17892157 0.17933007 0.19260621
0.20812908 0.18974673 0.18055556 0.18239379 0.17708333 0.17810458
0.18055556 0.17810458 0.17851307 0.19607843 0.18913399 0.18954248
0.19403595 0.19444444 0.20200163 0.19771242 0.19934641 0.19873366
0.21425654 0.19750817 0.18811275 0.17851307 0.17381536 0.16033497
0.16564542 0.17116013 0.17422386 0.18035131 0.17401961 0.16278595
0.16973039 0.17810458 0.17034314 0.16830065 0.17279412 0.17544935
0.18382353 0.19138072 0.18913399 0.19097222 0.17238562 0.16830065
0.14726307 0.14501634 0.14603758 0.12479575 0.13112745 0.11397059
0.13031046 0.12724673 0.13521242 0.14522059 0.15257353 0.14848856
0.14338235 0.14562908 0.15236928 0.15400327 0.14971405 0.1621732
0.16319444 0.16584967 0.17623281 0.18178326 0.18825135 0.19497173
0.20168009 0.20830329 0.21482913 0.22126299 0.22761774 0.23391055
0.24015996 0.24638352 0.2525962 0.25881013]
15 day output [[0.26503468]]
16 day input [0.15788399 0.16441993 0.17892157 0.17933007 0.19260621 0.20812908
0.18974673 0.18055556 0.18239379 0.17708333 0.17810458 0.18055556
0.17810458 0.17851307 0.19607843 0.18913399 0.18954248 0.19403595
0.19444444 0.20200163 0.19771242 0.19934641 0.19873366 0.1997549
0.19750817 0.18811275 0.17851307 0.17381536 0.16033497 0.16564542
0.17116013 0.17422386 0.18035131 0.17401961 0.16278595 0.16973039
0.17810458 0.17034314 0.16830065 0.17279412 0.17544935 0.18382353
0.19138072 0.18913399 0.19097222 0.17238562 0.16830065 0.1693219
0.17177288 0.16156046 0.14971405 0.1503268 0.15196078 0.14726307
0.14501634 0.14603758 0.12479575 0.13112745 0.11397059 0.1190768
0.12377451 0.13562092 0.12908497 0.13459967 0.12806373 0.13031046
0.12724673 0.13521242 0.14522059 0.15257353 0.14848856 0.14338235
0.14562908 0.15236928 0.15400327 0.14971405 0.1621732 0.16319444
0.16584967 0.17623281 0.18178326 0.18825135 0.19497173 0.20168009
0.20830329 0.21482913 0.22126299 0.22761774 0.23391055 0.24015996
0.24638352 0.2525962 0.25881013 0.26503468]
16 day output [[0.27127758]]
17 day input [0.16441993 0.17892157 0.17933007 0.19260621 0.20812908 0.18974673
0.18055556 0.18239379 0.17708333 0.17810458 0.18055556 0.17810458
```

```
0.17851307 0.19607843 0.18913399 0.18954248 0.19403595 0.19444444
0.20200163 0.19771242 0.19934641 0.19873366 0.1997549 0.2128268
0.21568627 0.20445261 0.21772876 0.21098856 0.21425654 0.19750817
0.18811275 0.17851307 0.17381536 0.16033497 0.16564542 0.17116013
0.17422386 0.18035131 0.17401961 0.16278595 0.16973039 0.17810458
0.17034314 0.16830065 0.17279412 0.17544935 0.18382353 0.19138072
0.18913399 0.19097222 0.17238562 0.16830065 0.1693219 0.17177288
0.16156046 0.14971405 0.1503268 0.15196078 0.14726307 0.14501634
0.14603758 0.12479575 0.13112745 0.11397059 0.1190768 0.12377451
0.13562092 0.12908497 0.13459967 0.12806373 0.13031046 0.12724673
0.13521242 0.14522059 0.15257353 0.14848856 0.14338235 0.14562908
0.15236928 0.15400327 0.14971405 0.1621732 0.16319444 0.16584967
0.17623281 0.18178326 0.18825135 0.19497173 0.20168009 0.20830329
0.21482913 0.22126299 0.22761774 0.23391055 0.24015996 0.24638352
0.2525962 0.25881013 0.26503468 0.27127758]
17 day output [[0.27754554]]
18 day input [0.17892157 0.17933007 0.19260621 0.20812908 0.18974673 0.18055556
0.18239379 0.17708333 0.17810458 0.18055556 0.17810458 0.17851307
0.19607843 0.18913399 0.18954248 0.19403595 0.19444444 0.20200163
0.19771242 0.19934641 0.19873366 0.1997549 0.2128268 0.21568627
0.20445261 0.21772876 0.21098856 0.21425654 0.19750817 0.18811275
0.17851307 0.17381536 0.16033497 0.16564542 0.17116013 0.17422386
0.18035131 0.17401961 0.16278595 0.16973039 0.17810458 0.17034314
0.16830065 0.17279412 0.17544935 0.18382353 0.19138072 0.18913399
0.19097222 0.17238562 0.16830065 0.1693219 0.17177288 0.16156046
0.14971405 0.1503268 0.15196078 0.14726307 0.14501634 0.14603758
0.12479575 0.13112745 0.11397059 0.1190768 0.12377451 0.13562092
0.12908497 0.13459967 0.12806373 0.13031046 0.12724673 0.13521242
0.14522059 0.15257353 0.14848856 0.14338235 0.14562908 0.15236928
0.15400327 0.14971405 0.1621732 0.16319444 0.16584967 0.17623281
0.18178326 0.18825135 0.19497173 0.20168009 0.20830329 0.21482913
0.22126299 0.22761774 0.23391055 0.24015996 0.24638352 0.2525962
0.25881013 0.26503468 0.27127758 0.27754554]
18 day output [[0.2838452]]
19 day input [0.17933007 0.19260621 0.20812908 0.18974673 0.18055556 0.18239379
0.17708333 0.17810458 0.18055556 0.17810458 0.17851307 0.19607843
0.18913399 0.18954248 0.19403595 0.19444444 0.20200163 0.19771242
0.19934641 0.19873366 0.1997549 0.2128268 0.21568627 0.20445261
0.21772876 0.21098856 0.21425654 0.19750817 0.18811275 0.17851307
0.17381536 0.16033497 0.16564542 0.17116013 0.17422386 0.18035131
0.17401961 0.16278595 0.16973039 0.17810458 0.17034314 0.16830065
0.17279412 0.17544935 0.18382353 0.19138072 0.18913399 0.19097222
0.17238562 0.16830065 0.1693219 0.17177288 0.16156046 0.14971405
0.13112745 0.11397059 0.1190768 0.12377451 0.13562092 0.12908497
0.13459967 0.12806373 0.13031046 0.12724673 0.13521242 0.14522059
0.15257353 0.14848856 0.14338235 0.14562908 0.15236928 0.15400327
0.14971405 0.1621732 0.16319444 0.16584967 0.17623281 0.18178326
0.18825135 0.19497173 0.20168009 0.20830329 0.21482913 0.22126299
0.22761774 0.23391055 0.24015996 0.24638352 0.2525962 0.25881013
0.26503468 0.27127758 0.27754554 0.28384519]
19 day output [[0.29018393]]
20 day input [0.19260621 0.20812908 0.18974673 0.18055556 0.18239379 0.17708333
0.17810458 0.18055556 0.17810458 0.17851307 0.19607843 0.18913399
0.18954248 0.19403595 0.19444444 0.20200163 0.19771242 0.19934641
0.19873366 0.1997549 0.2128268 0.21568627 0.20445261 0.21772876
0.21098856 0.21425654 0.19750817 0.18811275 0.17851307 0.17381536
0.16033497 0.16564542 0.17116013 0.17422386 0.18035131 0.17401961
0.16278595 0.16973039 0.17810458 0.17034314 0.16830065 0.17279412
0.17544935 0.18382353 0.19138072 0.18913399 0.19097222 0.17238562
0.16830065 0.1693219 0.17177288 0.16156046 0.14971405 0.1503268
0.15196078 0.14726307 0.14501634 0.14603758 0.12479575 0.13112745
0.11397059 0.1190768 0.12377451 0.13562092 0.12908497 0.13459967
0.12806373 0.13031046 0.12724673 0.13521242 0.14522059 0.15257353
```

```
0.14848856 0.14338235 0.14562908 0.15236928 0.15400327 0.14971405
0.19497173 0.20168009 0.20830329 0.21482913 0.22126299 0.22761774
0.23391055 0.24015996 0.24638352 0.2525962 0.25881013 0.26503468
0.27127758 0.27754554 0.28384519 0.29018393]
20 day output [[0.29656994]]
21 day input [0.20812908 0.18974673 0.18055556 0.18239379 0.17708333 0.17810458
0.18055556 0.17810458 0.17851307 0.19607843 0.18913399 0.18954248
0.19403595 0.19444444 0.20200163 0.19771242 0.19934641 0.19873366
0.21425654 0.19750817 0.18811275 0.17851307 0.17381536 0.16033497
0.16564542 0.17116013 0.17422386 0.18035131 0.17401961 0.16278595
0.16973039 0.17810458 0.17034314 0.16830065 0.17279412 0.17544935
0.18382353 0.19138072 0.18913399 0.19097222 0.17238562 0.16830065
0.14726307 0.14501634 0.14603758 0.12479575 0.13112745 0.11397059
0.13031046 0.12724673 0.13521242 0.14522059 0.15257353 0.14848856
0.14338235 0.14562908 0.15236928 0.15400327 0.14971405 0.1621732
0.16319444 0.16584967 0.17623281 0.18178326 0.18825135 0.19497173
0.20168009 0.20830329 0.21482913 0.22126299 0.22761774 0.23391055
0.24015996 0.24638352 0.2525962 0.25881013 0.26503468 0.27127758
0.27754554 0.28384519 0.29018393 0.296569941
21 day output [[0.30301294]]
22 day input [0.18974673 0.18055556 0.18239379 0.17708333 0.17810458 0.18055556
0.17810458 0.17851307 0.19607843 0.18913399 0.18954248 0.19403595
0.19444444 0.20200163 0.19771242 0.19934641 0.19873366 0.1997549
0.19750817 0.18811275 0.17851307 0.17381536 0.16033497 0.16564542
0.17116013 0.17422386 0.18035131 0.17401961 0.16278595 0.16973039
0.17810458 0.17034314 0.16830065 0.17279412 0.17544935 0.18382353
0.19138072 0.18913399 0.19097222 0.17238562 0.16830065 0.1693219
0.17177288 0.16156046 0.14971405 0.1503268 0.15196078 0.14726307
0.14501634 0.14603758 0.12479575 0.13112745 0.11397059 0.1190768
0.12377451 0.13562092 0.12908497 0.13459967 0.12806373 0.13031046
0.12724673 0.13521242 0.14522059 0.15257353 0.14848856 0.14338235
0.14562908 0.15236928 0.15400327 0.14971405 0.1621732 0.16319444
0.16584967 0.17623281 0.18178326 0.18825135 0.19497173 0.20168009
0.20830329 0.21482913 0.22126299 0.22761774 0.23391055 0.24015996
0.24638352 0.2525962 0.25881013 0.26503468 0.27127758 0.27754554
0.28384519 0.29018393 0.29656994 0.30301294]
22 day output [[0.30952334]]
23 day input [0.18055556 0.18239379 0.17708333 0.17810458 0.18055556 0.17810458
0.17851307 0.19607843 0.18913399 0.18954248 0.19403595 0.19444444
0.20200163 0.19771242 0.19934641 0.19873366 0.1997549 0.2128268
0.21568627 0.20445261 0.21772876 0.21098856 0.21425654 0.19750817
0.18811275 0.17851307 0.17381536 0.16033497 0.16564542 0.17116013
0.17422386 0.18035131 0.17401961 0.16278595 0.16973039 0.17810458
0.17034314 0.16830065 0.17279412 0.17544935 0.18382353 0.19138072
0.18913399 0.19097222 0.17238562 0.16830065 0.1693219 0.17177288
0.16156046 0.14971405 0.1503268 0.15196078 0.14726307 0.14501634
0.14603758 0.12479575 0.13112745 0.11397059 0.1190768 0.12377451
0.13562092 0.12908497 0.13459967 0.12806373 0.13031046 0.12724673
0.13521242 0.14522059 0.15257353 0.14848856 0.14338235 0.14562908
0.15236928 0.15400327 0.14971405 0.1621732 0.16319444 0.16584967
0.17623281 0.18178326 0.18825135 0.19497173 0.20168009 0.20830329
0.21482913 0.22126299 0.22761774 0.23391055 0.24015996 0.24638352
0.2525962   0.25881013   0.26503468   0.27127758   0.27754554   0.28384519
0.29018393 0.29656994 0.30301294 0.30952334]
23 day output [[0.31611302]]
24 day input [0.18239379 0.17708333 0.17810458 0.18055556 0.17810458 0.17851307
0.19607843 0.18913399 0.18954248 0.19403595 0.19444444 0.20200163
0.19771242 0.19934641 0.19873366 0.1997549 0.2128268 0.21568627
0.20445261 0.21772876 0.21098856 0.21425654 0.19750817 0.18811275
```

```
0.17851307 0.17381536 0.16033497 0.16564542 0.17116013 0.17422386
0.18035131 0.17401961 0.16278595 0.16973039 0.17810458 0.17034314
0.16830065 0.17279412 0.17544935 0.18382353 0.19138072 0.18913399
0.19097222 0.17238562 0.16830065 0.1693219 0.17177288 0.16156046
0.14971405 0.1503268 0.15196078 0.14726307 0.14501634 0.14603758
0.12479575 0.13112745 0.11397059 0.1190768 0.12377451 0.13562092
0.12908497 0.13459967 0.12806373 0.13031046 0.12724673 0.13521242
0.14522059 0.15257353 0.14848856 0.14338235 0.14562908 0.15236928
0.15400327 0.14971405 0.1621732 0.16319444 0.16584967 0.17623281
0.18178326 0.18825135 0.19497173 0.20168009 0.20830329 0.21482913
0.22126299 0.22761774 0.23391055 0.24015996 0.24638352 0.2525962
0.25881013 0.26503468 0.27127758 0.27754554 0.28384519 0.29018393
0.29656994 0.30301294 0.30952334 0.31611302]
24 day output [[0.32279426]]
25 day input [0.17708333 0.17810458 0.18055556 0.17810458 0.17851307 0.19607843
0.18913399 0.18954248 0.19403595 0.19444444 0.20200163 0.19771242
0.19934641 0.19873366 0.1997549 0.2128268 0.21568627 0.20445261
0.21772876 0.21098856 0.21425654 0.19750817 0.18811275 0.17851307
0.17381536 0.16033497 0.16564542 0.17116013 0.17422386 0.18035131
0.17401961 0.16278595 0.16973039 0.17810458 0.17034314 0.16830065
0.17279412 0.17544935 0.18382353 0.19138072 0.18913399 0.19097222
0.17238562 0.16830065 0.1693219 0.17177288 0.16156046 0.14971405
0.13112745 0.11397059 0.1190768 0.12377451 0.13562092 0.12908497
0.13459967 0.12806373 0.13031046 0.12724673 0.13521242 0.14522059
0.15257353 0.14848856 0.14338235 0.14562908 0.15236928 0.15400327
0.14971405 0.1621732 0.16319444 0.16584967 0.17623281 0.18178326
0.18825135 0.19497173 0.20168009 0.20830329 0.21482913 0.22126299
0.22761774 0.23391055 0.24015996 0.24638352 0.2525962 0.25881013
0.26503468 0.27127758 0.27754554 0.28384519 0.29018393 0.29656994
0.30301294 0.30952334 0.31611302 0.322794261
25 day output [[0.32958013]]
26 day input [0.17810458 0.18055556 0.17810458 0.17851307 0.19607843 0.18913399
0.18954248 0.19403595 0.19444444 0.20200163 0.19771242 0.19934641
0.19873366 0.1997549 0.2128268 0.21568627 0.20445261 0.21772876
0.21098856 0.21425654 0.19750817 0.18811275 0.17851307 0.17381536
0.16033497 0.16564542 0.17116013 0.17422386 0.18035131 0.17401961
0.16278595 0.16973039 0.17810458 0.17034314 0.16830065 0.17279412
0.17544935 0.18382353 0.19138072 0.18913399 0.19097222 0.17238562
0.16830065 0.1693219 0.17177288 0.16156046 0.14971405 0.1503268
0.15196078 0.14726307 0.14501634 0.14603758 0.12479575 0.13112745
0.11397059 0.1190768 0.12377451 0.13562092 0.12908497 0.13459967
0.12806373 0.13031046 0.12724673 0.13521242 0.14522059 0.15257353
0.14848856 0.14338235 0.14562908 0.15236928 0.15400327 0.14971405
0.19497173 0.20168009 0.20830329 0.21482913 0.22126299 0.22761774
0.23391055 0.24015996 0.24638352 0.2525962 0.25881013 0.26503468
0.27127758 0.27754554 0.28384519 0.29018393 0.29656994 0.30301294
0.30952334 0.31611302 0.32279426 0.32958013]
26 day output [[0.33648375]]
27 day input [0.18055556 0.17810458 0.17851307 0.19607843 0.18913399 0.18954248
0.19403595 0.19444444 0.20200163 0.19771242 0.19934641 0.19873366
0.21425654 0.19750817 0.18811275 0.17851307 0.17381536 0.16033497
0.16564542 0.17116013 0.17422386 0.18035131 0.17401961 0.16278595
0.16973039 0.17810458 0.17034314 0.16830065 0.17279412 0.17544935
0.18382353 0.19138072 0.18913399 0.19097222 0.17238562 0.16830065
0.1693219 0.17177288 0.16156046 0.14971405 0.1503268 0.15196078
0.14726307 0.14501634 0.14603758 0.12479575 0.13112745 0.11397059
0.13031046 0.12724673 0.13521242 0.14522059 0.15257353 0.14848856
0.14338235 0.14562908 0.15236928 0.15400327 0.14971405 0.1621732
0.16319444 0.16584967 0.17623281 0.18178326 0.18825135 0.19497173
0.20168009 0.20830329 0.21482913 0.22126299 0.22761774 0.23391055
```

```
0.24015996 0.24638352 0.2525962 0.25881013 0.26503468 0.27127758
0.27754554 0.28384519 0.29018393 0.29656994 0.30301294 0.30952334
0.31611302 0.32279426 0.32958013 0.33648375]
27 day output [[0.34351847]]
28 day input [0.17810458 0.17851307 0.19607843 0.18913399 0.18954248 0.19403595
0.19444444 0.20200163 0.19771242 0.19934641 0.19873366 0.1997549
0.19750817 0.18811275 0.17851307 0.17381536 0.16033497 0.16564542
0.17116013 0.17422386 0.18035131 0.17401961 0.16278595 0.16973039
0.17810458 0.17034314 0.16830065 0.17279412 0.17544935 0.18382353
0.19138072 0.18913399 0.19097222 0.17238562 0.16830065 0.1693219
0.17177288 0.16156046 0.14971405 0.1503268 0.15196078 0.14726307
0.14501634 0.14603758 0.12479575 0.13112745 0.11397059 0.1190768
0.12377451 0.13562092 0.12908497 0.13459967 0.12806373 0.13031046
0.12724673 0.13521242 0.14522059 0.15257353 0.14848856 0.14338235
0.14562908 0.15236928 0.15400327 0.14971405 0.1621732 0.16319444
0.16584967 0.17623281 0.18178326 0.18825135 0.19497173 0.20168009
0.20830329 0.21482913 0.22126299 0.22761774 0.23391055 0.24015996
0.24638352 0.2525962 0.25881013 0.26503468 0.27127758 0.27754554
0.28384519 0.29018393 0.29656994 0.30301294 0.30952334 0.31611302
0.32279426 0.32958013 0.33648375 0.34351847]
28 day output [[0.3506978]]
29 day input [0.17851307 0.19607843 0.18913399 0.18954248 0.19403595 0.19444444
0.20200163 0.19771242 0.19934641 0.19873366 0.1997549 0.2128268
0.21568627 0.20445261 0.21772876 0.21098856 0.21425654 0.19750817
0.18811275 0.17851307 0.17381536 0.16033497 0.16564542 0.17116013
0.17422386 0.18035131 0.17401961 0.16278595 0.16973039 0.17810458
0.17034314 0.16830065 0.17279412 0.17544935 0.18382353 0.19138072
0.18913399 0.19097222 0.17238562 0.16830065 0.1693219 0.17177288
0.16156046 0.14971405 0.1503268 0.15196078 0.14726307 0.14501634
0.14603758 0.12479575 0.13112745 0.11397059 0.1190768 0.12377451
0.13562092 0.12908497 0.13459967 0.12806373 0.13031046 0.12724673
0.13521242 0.14522059 0.15257353 0.14848856 0.14338235 0.14562908
0.15236928 0.15400327 0.14971405 0.1621732 0.16319444 0.16584967
0.17623281 0.18178326 0.18825135 0.19497173 0.20168009 0.20830329
0.21482913 0.22126299 0.22761774 0.23391055 0.24015996 0.24638352
0.2525962   0.25881013   0.26503468   0.27127758   0.27754554   0.28384519
0.29018393 0.29656994 0.30301294 0.30952334 0.31611302 0.32279426
0.32958013 0.33648375 0.34351847 0.35069779]
29 day output [[0.35803515]]
30 day input [0.19607843 0.18913399 0.18954248 0.19403595 0.19444444 0.20200163
0.19771242 0.19934641 0.19873366 0.1997549 0.2128268 0.21568627
0.20445261 0.21772876 0.21098856 0.21425654 0.19750817 0.18811275
0.17851307 0.17381536 0.16033497 0.16564542 0.17116013 0.17422386
0.18035131 0.17401961 0.16278595 0.16973039 0.17810458 0.17034314
0.16830065 0.17279412 0.17544935 0.18382353 0.19138072 0.18913399
0.19097222 0.17238562 0.16830065 0.1693219 0.17177288 0.16156046
0.14971405 0.1503268 0.15196078 0.14726307 0.14501634 0.14603758
0.12479575 0.13112745 0.11397059 0.1190768 0.12377451 0.13562092
0.12908497 0.13459967 0.12806373 0.13031046 0.12724673 0.13521242
0.14522059 0.15257353 0.14848856 0.14338235 0.14562908 0.15236928
0.15400327 0.14971405 0.1621732 0.16319444 0.16584967 0.17623281
0.18178326 0.18825135 0.19497173 0.20168009 0.20830329 0.21482913
0.22126299 0.22761774 0.23391055 0.24015996 0.24638352 0.2525962
0.25881013 0.26503468 0.27127758 0.27754554 0.28384519 0.29018393
0.29656994 0.30301294 0.30952334 0.31611302 0.32279426 0.32958013
0.33648375 0.34351847 0.35069779 0.35803515]
30 day output [[0.36554426]]
 [[0.17623281478881836], [0.1817832589149475], [0.1882513463497162], [0.1949717253446] ] 
579], [0.20168009400367737], [0.2083032876253128], [0.21482913196086884], [0.2212629
9142837524], [0.22761774063110352], [0.23391054570674896], [0.24015995860099792],
[0.24638351798057556], [0.2525961995124817], [0.2588101327419281], [0.26503467559814
453], [0.2712775766849518], [0.2775455415248871], [0.2838451862335205], [0.290183931
5891266], [0.29656994342803955], [0.3030129373073578], [0.309523344039917], [0.31611
```

302495002747], [0.32279425859451294], [0.3295801281929016], [0.33648374676704407], [0.34351846575737], [0.350697785615921], [0.358035147190094], [0.36554425954818726]]

```
stock_data = stock_data1.tolist()
stock_data.extend(final_output)
stock_data = scaler.inverse_transform(stock_data).tolist()
plt.plot(stock_data)
```

Out[]: [<matplotlib.lines.Line2D at 0x27b7f991160>]

