	1	2	3	4	5	6	Σ	
			<u> </u>	1	l		I	
JMBAG	IME I PREZIME							

Teorija brojeva

2. kolokvij, 01.7.2022.

NAPOMENE: Vrijeme rješavanja je 120 minuta. Ima ukupno šest zadataka. Zadaci se rješavaju na ovim papirima. Dozvoljeno je korištenje kalkulatora i dva papira A4 s formulama.

1. Odredite reduciranu kvadratnu formu ekvivalentnu s $204x^2+164xy+33y^2.$

2. Odredite h(-131) i sve reducirane kvadratne forme s diskriminantom d=-131.

3. Neka je \boldsymbol{n} prirodan broj. Dokažite nejednakost

$$\sigma(n) < n\sqrt{2\tau(n)}.$$

4. Odredite razvoj u jednostavni verižni razlomak brojeva $\frac{455}{87}$ i $\sqrt{854}.$

5. Nađite sve Pitagorine trokute u kojima je jedna stranica jednaka 105.									

Teorija brojeva - rješenja zadataka iz 2. kolokvija

05.07.2022

- 1. Kvadratna forma je ekvivalentna reduciranoj formi $x^2 + 8y^2$.
- 2. h(-131) = 5, $x^2 + xy + 33y^2$, $3x^2 \pm xy + 11y^2$, $5x^2 \pm 3xy + 7y^2$.

3

$$\frac{\sigma(n)}{n} = \sum_{i=1}^{\tau(n)} \frac{1}{d_i} \le \sqrt{(\sum_{i=1}^{\tau(n)} \frac{1}{d_i^2})(\underbrace{1+1+\ldots+1}_{\tau(n)\ puta})} < \sqrt{(\sum_{i=1}^{\infty} \frac{1}{i^2})\tau(n)} < \sqrt{2\tau(n)},$$

gdje smo u prvoj nejednakosti koristili CSB nejednakost.

- 4. $\frac{455}{87} = [5, 4, 2, 1, 6], \sqrt{854} = [29, \overline{4, 2, 11, 4, 11, 2, 4, 58}].$
- 5. Sve Pitagorine trojke čija je jedna stranica jednaka 105 su: $(105, 5512, 5513), (105, 608, 617), (105, 208, 233), (105, 88, 137), \\ (105, 1836, 1839), (105, 36, 111), (105, 1100, 1105), (105, 100, 145), \\ (105, 784, 791), (105, 56, 119), (105, 360, 375), (105, 252, 273), (63, 84, 105), (105, 140, 175).$
- 6. $\sqrt{93} = [9, \overline{1, 1, 1, 4, 6, 4, 1, 1, 1, 18}], r = 10$ je paran pa $x^2 93y^2 = -1$ nema rješenja. Najmanje rješenje jednadžbe $x^2 93y^2 = 1$ je $(p_9, q_9) = (12151, 1260)$.