Sample size and power supplementary materials and R exercise

Drew Cameron

Intervention Trial Design PH226C 27 September 2019

Slides 34 - 53 (from Jack's full presentation)

Example #1: Mobile app RCT (individual)

JMIR MHEALTH AND UHEALTH

Goyal et al

Original Paper

A Mobile App for the Self-Management of Type 1 Diabetes Among Adolescents: A Randomized Controlled Trial

Shivani Goyal^{1,2*}, BEng, MSc, PhD; Caitlin A Nunn^{3*}, MSc; Michael Rotondi⁴, PhD; Amy B Couperthwaite⁴, MSc; Sally Reiser⁵, RD; Angelo Simone⁵, MD; Debra K Katzman^{6,7}, MD, FRCP(C); Joseph A Cafazzo^{1,2,8}, PhD, PEng; Mark R Palmert^{3,6,9}, MD, PhD

¹Centre for Global eHealth Innovation, Techna Institute, University Health Network, Toronto, ON, Canada

²Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada

³Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada

⁴School of Kinesiology & Health Science, York University, Toronto, ON, Canada

Given parameters

"Sample size was determined based on a nominal 2-sided type 1 error rate of 5% and 80% power. Estimates of standard deviation in HbA1c ranging from 0.50 to 0.75 were used to determine the minimum number of participants required to detect a clinically relevant (>=0.5) change in HbA1c levels." (Goyal et al, 2017)

Parameter	Value
Type 1 error rate (alpha)	
Power (1-beta)	
MDE ("clinically relevant" change in HbA1c levels)	
Standard deviation	
Baseline HbA1c (from eligibility criteria)	

Given parameters

"Sample size was determined based on a nominal 2-sided type 1 error rate of 5% and 80% power. Estimates of standard deviation in HbA1c ranging from 0.50 to 0.75 were used to determine the minimum number of participants required to detect a clinically relevant (>=0.5) change in HbA1c levels." (Goyal et al, 2017)

Parameter	Value
Type 1 error rate (alpha)	0.05
Power (1-beta)	0.80
MDE ("clinically relevant" change in HbA1c levels)	>=0.5
Standard deviation	0.50-0.75
Baseline HbA1c (from eligibility criteria)	8.0-10.5

http://www.sample-size.net/sample-size-means/

Sample size - Means

Compare the mean of a continuous measurement in two samples

The sample sizes are calculated in two different ways: first using the T statistic (with a non-centrality parameter), then using the Z statistic. The Z statistic approximates the T statistic, but provides sample sizes that are slightly too small. (We provide the Z statistic calculation to allow comparison with other calculators which use the Z approximation.)

Instructions: Enter parameters in the red cells. Answers will appear in blue below.

Let's make the most conservative assumption here

Calculate

http://www.sample-size.net/sample-size-means/

Sample size - Means

Compare the mean of a continuous measurement in two samples

The sample sizes are calculated in two different ways: first using the T statistic (with a non-centrality parameter), then using the Z statistic. The Z statistic approximates the T statistic, but provides sample sizes that are slightly too small. (We provide the Z statistic calculation to allow comparison with other calculators which use the Z approximation.)

Instructions: Enter parameters in the red cells. Answers will appear in blue below.

Calculate

1. Calculation using the T statistic and non-centrality parameter:

N₁: 37 N₀: 37 Total: 74

2. Normal approximation using the Z statistic instead of the T statistic:

A = $(1/q_1 + 1/q_0)$ = 4.00000 B = $(Z_{\alpha}+Z_{\beta})^2$ = 7.84887 Total group size = N = AB/(E/S)² = 70.640

N₁: 36 N₀: 35 Total: 71

This formula uses the Z statistic to approximate the T statistic. As a result it slightly underestimates the sample size. We provide this approximation to allow comparison to other calculators that use the Z statistic.

But their final sample size was 46 per arm, 92 total

Slide created by participants.... Why?

http://www.sample-size.net/sample-size-means/

Sample size - Means

Compare the mean of a continuous measurement in two samples

The sample sizes are calculated in two different ways: first using the T statistic (with a non-centrality parameter), then using the Z statistic. The Z statistic approximates the T statistic, but provides sample sizes that are slightly too small. (We provide the Z statistic calculation to allow comparison with other calculators which use the Z approximation.)

Instructions: Enter parameters in the red cells. Answers will appear in blue below.

Calculate

1. Calculation using the T statistic and non-centrality parameter:

N₁: 37 N₀: 37 Total: 74

2. Normal approximation using the Z statistic instead of the T statistic:

A = $(1/q_1 + 1/q_0)$ = 4.00000 B = $(Z_{\alpha}+Z_{\beta})^2$ = 7.84887 Total group size = N = AB/(E/S)² = 70.640

N₁: 36 N₀: 35 Total: 71

This formula uses the Z statistic to approximate the T statistic. As a result it slightly underestimates the sample size. We provide this approximation to allow comparison to other calculators that use the Z statistic.

Why?

Buffered for up to 25% loss to follow up (37*1,25=46)

Let's try this in Stata...

(We get more flexibility to test out different assumptions.)

What are we telling Stata?

power twomeans 8.5, sd(0.75)

power defaults: alpha = 0.05, power = 0.80, two-tailed

Parameter	Value
Type 1 error rate (alpha)	0.05
Power (1-beta)	0.80
MDE ("clinically relevant" change in HbA1c levels)	>=0.5
Standard deviation	0.50-0.75
Baseline HbA1c (from eligibility criteria)	8.0-10.5

Real time in Stata...

```
SET BASED ON BASELINE'S LOW-END MEAN: power twomeans ?? ?? , sd(??)

OR

SET BASED ON BASELINE'S HIGH-END MEAN: power twomeans ?? ?? , sd(??)
```

What's the difference?

```
. power twomeans 8 8.5, sd(0.75)
Performing iteration ...
Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1
Study parameters:
                  0.0500
       alpha =
       power = 0.8000
       delta = 0.5000
          m1 = 8.0000
          m2 = 8.5000
          sd = 0.7500
Estimated sample sizes:
           N =
                      74
 N per group =
                      37
```

```
. power twomeans 10 10.5, sd(0.75)
Performing iteration ...
Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1
Study parameters:
       alpha = 0.0500
       power = 0.8000
       delta = 0.5000
          m1 = 10.0000
          m2 = 10.5000
          sd = 0.7500
Estimated sample sizes:
           N =
                     74
 N per group =
                     37
```

Alternate code: power slitwomeanshil 10 ider sd(0.75) diff(0.5)

Mhat's the difference?

power twomeans 8 8.5, sd(0.75)

```
Performing iteration ...
Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1
Study parameters:
                  0.0500
       alpha =
       power = 0.8000
       delta = 0.5000
          m1 = 8.0000
          m2 = 8.5000
          sd = 0.7500
Estimated sample sizes:
           N =
                      74
 N per group =
                      37
```

```
. power twomeans (10 10.5,) sd(0.75)
Performing iteration ...
Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1
Study parameters:
       alpha =
                  0.0500
       power = 0.8000
       delta = 0.5000
          m1 = 10.0000
                 10.5000
          m2 =
          sd = 0.7500
Estimated sample sizes:
                      74
 N per group =
                      37
```

Alternate code: power slitwomeanshil 10 ider sd(0.75) diff(0.5)

What if we assume a smaller sd?

Real time in Stata...

```
SET USING BASELINE'S HIGH-END WITH LESS-CONSERVATIVE SD:

power twomeans 10 10.5 , sd(??)
```

What if we assume a smaller sd?

```
power twomeans 10 10.5, sd(0.5)
Performing iteration ...
Estimated sample sizes for a two-sample means test
t test assuming sd1 = sd2 = sd
Ho: m2 = m1 versus Ha: m2 != m1
Study parameters:
       alpha =
                  0.0500
       power =
                  0.8000
       delta = 0.5000
          m1 = 10.0000
          m2 = 10.5000
          sd =
                  0.5000
Estimated sample sizes:
                      34
 N per group =
```

```
power twomeans 8 (?? ?? ??), n(40 60 80 100 200) sd(.75) graph
```

```
power twomeans 8 (8.1 8.3 8.5 9), n(40 60 80 100 200) sd(.75) graph
```

power twomeans 8 (8.1 8.3 8.5 9), n(40 60 80 100 200) sd(.75) graph

power twomeans 8 (8.1 8.3 8.5 9), n(40 60 80 100 200) sd(??) graph

power twomeans 8 (8.1 8.3 8.5 9), n(40 60 80 100 200) sd(.5) graph

Real time in Stata... MDE & sample size tradeoffs in Table form

power twomeans 8 (8.1 8.3 8.5 9), n(40 60 80 100 200) sd(.75) table

alpha	power	N	N1	N2	delta	m1	m2	sd
.05	.06957	40	20	20	.1	8	8.1	.75
.05	.08004	60	30	30	.1	8	8.1	.75
.05	.09059	80	40	40	.1	8	8.1	.75
.05	.1012	100	50	50	.1	8	8.1	.75
.05	.1553	200	100	100	.1	8	8.1	.75
.05	.2343	40	20	20	.3	8	8.3	. 75
.05	.3315	60	30	30	.3	8	8.3	.75
.05	.4235	80	40	40	.3	8	8.3	. 75
.05	.5082	100	50	50	.3	8	8.3	. 75
.05	.8036	200	100	100	.3	8	8.3	. 75
.05	.5378	40	20	20	. 5	8	8.5	. 75
.05	.7187	60	30	30	. 5	8	8.5	.75
.05	.8376	80	40	40	.5	8	8.5	.75
.05	.91	100	50	50	. 5	8	8.5	.75
.05	.9968	200	100	100	.5	8	8.5	.75
.05	.9841	40	20	20	1	8	9	.75
.05	.9991	60	30	30	1	8	9	.75
.05	1	80	40	40	1	8	9	.75
.05	1	100	50	50	1	8	9	.75
.05	1	200	100	100	1	8	9	.75

Be sure to check out: Slides 80-94

(from Jack's expanded lecture slides – these were not included in the class lecture)

Additional sample size resources

- www.power-calculator.org
 - RCT, cluster RCT calculations for continuous and binary outcomes (can be super buggy and slow though!)
- https://jadebc.shinyapps.io/samplesize/
 - Individually randomized trial calculations for continuous and binary outcomes
 - Shows curves to visualize trade-offs in parameters
- http://www.sample-size.net/
 - Individual and clustered design options
 - No visualization, just table output
- https://ssc.researchmethodsresources.nih.gov/ssc/
 - Group trial calculations
 - Lots of parameters that can get a little complicated
- STATA take note of the defaults (e.g. power = 0.90 for sampsi, 0.80 for power)
 - Can use *sampsi* or *power*
 - https://www.stata.com/features/power-and-sample-size/
- Djimeu and Hondoulo (2014; 2016)
 - Draft article: https://www.3ieimpact.org/file/8081/download?token=CoEfkFc4
 - Spreadsheet tool: https://www.3ieimpact.org/sites/default/files/2017-11/3ie-sample-size-minimum-detectable-effect-calculator.xlsx
 - Landing page: https://www.3ieimpact.org/evidence-hub/publications/working-papers/power-calculation-causal-inference-social-science-sample
 - Note there is a published version we put in bCourses, but it is gated online so you'll need library access to find it online!

Power calculations

(Drew's dissertation as an example)

Research question

 What is the impact of subsidies for daily potable water delivery on future demand?

- H₀ There is no difference in demand between the two groups after two months
- H₁ The treatment group has greater demand after two months
- H₂ The treatment group has less demand after two months
- But how did I decide the MDE?

Study design

Proposed analysis

Power calculations (two proportions test)

$$n = \left\{ \frac{P}{T\delta^2} + \frac{-P+1}{-T+1} (-t_1 - t_2)^2 \right\}$$

Two arms

- Two-tailed test
- $\alpha = 0.05$; $\beta = 0.80$, thus $t_1 = 2.04$; $t_2 = 0.85$
- Population proportion w/out intervention, P = 0.20

(Deliare et al. 2017)

• Proportion of sample randomly assigned treatment, T=0.5

(Hasselblad 2016)

• MDE 10 percentage-point difference in uptake, $\delta=0.1$

(Dupas 2014; Fischer 2018)

- 538 households
- 5% attrition, 1.05(805) = 830

(Dupas 2014; Wright 2016; Fischer 2018; Burt 2017)

- 564 total households → 269 per arm
- With covariates, where: $R^2 = 0.1$; 0.3; $0.5 \rightarrow \text{MDE} = 0.09$; 0.08; 0.07, respectively

Power sensitivity cont'd

Required sample size for effect size scenarios

47

Power sensitivity

$$n = \left\{ \frac{P}{T\delta^2} + \frac{-P+1}{-T+1}(-t_1 - t_2)^2(-R^2 + 1) \right\}$$

MDE given proportion of outcome variance explained by level-1 covariates

n	R^2	MDE
values specific to 507 households in 2 arms before adjusting for 5% attrition	0.00	0.097
	0.05	0.094
	0.10	0.092
	0.15	0.089
	0.20	0.087
	0.25	0.084
	0.30	0.081
	0.35	0.078
	0.40	0.075
	0.45	0.072
	0.50	0.069

Power (ex-post or after the study was done)

We selected an individually randomized RCT. After a the study was over, we had recruited 526 households at baseline, dropping to 503 at endline (4.3% attrition over two-months), had randomized 52.9% into the treatment group, and had 13% purchase in the control group at follow up...

Power sensitivity cont'd (what if I could afford a cluster RCT?)

$$J = 1 + \frac{(z_1 + z_2)^2 \left[\frac{\mu_0 (1 - \mu_0)}{n} + \frac{\mu_0 (1 - \mu_1)}{n} + k^2 (\mu_0^2 + \mu_1^2) \right]}{(\mu_0 - \mu_1)^2}$$

Two Arms

- 2 tailed test
- $\alpha = 0.05$; $\beta = 0.80$, thus $z_1 = 1.96$; $z_2 = 0.84$
- n = 4 number of households per cluster
- $\mu_0 = 0.2$; $\mu_1 = 0.3$ 10pp difference in uptake between groups
- k = 0 Intra-cluster correlation
- J = 74 number of clusters per arm
- 296 households per arm = 592 households
- Attrition = 1.05(592) = 622 households

Power sensitivity cont'd (cluster RCT)

Sensitivity by number of households per cluster

Households per cluster	Number of clusters per arm	Clusters (2 arms)**	Total households needed (2 arms)**	Total clusters needed (3 arms)**	Total households needed (3 arms)**
Citisiei	ciusiers per arm	(2 411113)	needed (2 dims)	necucu (5 anns)	(3 drinis)
1	291	612	612	917	917
2	146	307	614	460	920
3	98	206	618	309	927
4	74	156	624	234	936
5	59	124	620	186	930
6	49	103	618	155	930

Notes: **Total households needed (2 and 3 arms) includes 5% attrition rate; Estimates assume a .10 MDE between any two arms

Power sensitivity cont'd

