Exercices: 12 - Thermochimie

— Solutions —

A. Loi de Hess

1. Formation du chlorure d'hydrogène

Réponse : $\Delta_r H^{\circ}(298 \text{ K}) = -184,6 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta_r H^{\circ}(398 \text{ K}) = -185,1 \text{ kJ} \cdot \text{mol}^{-1}$. L'écart est très faible, l'approximation d'Ellingham est tout à fait justifiée.

2. Énergie de liaison

Réponse : $\Delta_r H^{\circ} = 620 + 436 - (345 + 830) = -119 \,\mathrm{kJ \cdot mol}^{-1}$.

3. Formation du benzène

Réponses : $\Delta_r U^{\circ} = -\frac{28,04}{0,0086} = -3264 \,\mathrm{kJ \cdot mol}^{-1}$, $\Delta_r H^{\circ} = \Delta_r U^{\circ} + \Delta_r n_{gaz} RT = -3268 \,\mathrm{kJ \cdot mol}^{-1}$, $\Delta_f H^{\circ}(\mathsf{C_6H_6}) = 50 \,\mathrm{kJ \cdot mol}^{-1}$.

4. Essence sans plomb

Réponses : $\Delta_r H^{\circ} = 463 + 620 - 415 - 360 - 345 = -37 \,\mathrm{kJ \cdot mol}^{-1}$ exothermique, $\Delta_r S^{\circ} = -54 \,\mathrm{J \cdot K}^{-1} \cdot \mathrm{mol}^{-1}$, $\Delta_r G^{\circ}_{400 \,\mathrm{K}} = -15, 4 \,\mathrm{kJ \cdot mol}^{-1}$.

5. Combustion de la glycine

Réponses : La réaction standard de formation de la glycine est 2 $C_{s=gr}$ + $\frac{5}{2}$ H_{2gaz} + O_{2gaz} + $\frac{1}{2}$ N_{2gaz} = O_{2gaz} + O_{2gaz}

6. Energie réticulaire

Réponses : Le cycle de Born-Fajans-Haber est donné à la figure 1.

FIGURE 1 – Cycle de BORN-FAJANS-HABER

On en déduit que $E_{\text{rét}} = -\Delta_f H^{\circ}(M_x O_{y_{(cr)}}) + x \Delta_{sub} H^{\circ}(M) + \frac{y}{2} D_{O=O} + x \Delta_{ion} H^{\circ}(M) + y \Delta_{att} H^{\circ}(O)$. On trouve $E_{\text{rét}}(\mathsf{Na_2O}) = 2,57\,\mathrm{MJ}\cdot\mathrm{mol}^{-1}$, $E_{\text{rét}}(\mathsf{MgO}) = 3,90\,\mathrm{MJ}\cdot\mathrm{mol}^{-1}$ et $E_{\text{rét}}(\mathsf{Al_2O_3}) = 15,5\,\mathrm{MJ}\cdot\mathrm{mol}^{-1}$. Cette dernière valeur est très élevée, elle montre la grande cohésion du cristal d'alumine.

B. Application du premier principe

7. Température de flamme

Réponses : $|\Delta_r H^{\circ}| = \int_{T_0}^{T_f} c_p dT$, $4,8 \times 10^{-3} (T_f^2 - T_0^2) + 30$, $1(T_f - T_0) - 2$, $42 \times 10^5 = 0$, $T_f = 4625$ K.

8. Dissolution et refroidissement

Réponses : $[\text{Na}_2\text{S}_2\text{O}_3, 5\text{H}_2\text{O}]_s \rightleftharpoons 2\text{Na}^+ + \text{S}_2\text{O}_3^{2-} + 5\text{H}_2\text{O}_{liq}, \ \Delta_r H^\circ = 48,8\,\text{kJ}\cdot\text{mol}^{-1}, \ \Delta_r H^\circ > 0$ processus endothermique, $\Delta H_1 = \xi_{max}\Delta_r H^\circ$ avec $\xi_{max} = \frac{m}{M} = 0,81\,\text{mol}, \ Q_p = \Delta H_1 = 39,5\,\text{kJ}, \ H$ étant une fonction d'état, on peut écrire un processus en deux étapes $\Delta H = \Delta H_1 + \Delta H_2$ avec $\Delta H = 0$ puisqu'il n'y a pas de transferts thermiques avec l'extérieur, ΔH_1 correspond à la dissolution et ΔH_2 au refroidissement de la solution, on a $\Delta H_2 = \frac{\mu V}{M_{\text{H}_2}\text{O}}c_{p,\text{H}_2\text{O}_{liq}}^\circ(\theta_f - \theta_e)$, on trouve $\theta_e = 34,5\,^\circ\text{C}$.

9. Effets thermiques lors de la fabrication du ciment

Réponses : une tonne de calcaire représente $n=10^4$ mol, le transfert thermique est $Q_1=\Delta H_1=\xi\Delta_r H_1^\circ$ où ξ est l'avancement avec $\xi=\frac{n}{3}$, on trouve $\Delta_r H_1^\circ=420\,\mathrm{kJ\cdot mol}^{-1}$, $Q_1=1,4\times 10^9\,\mathrm{J}$; pour obtenir la réaction, il faut partir de n moles de CaCO_{3s} et de n/3 moles de SiO_{2s} , la montée en température est $Q_2=\Delta H_2=C_p(T_f-T_i)$ avec $C_p=n(c_{p,\mathrm{CaCO}_3}^\circ+\frac{1}{3}c_{p,\mathrm{SiO}_2}^\circ)$, on trouve $Q_2=1,4\times 10^9\,\mathrm{J}$; il faut que la combustion du méthane dégage $Q_1+Q_2=Q_3$, la réaction de combustion est $\mathrm{CH}_{4gaz}+2\mathrm{O}_{2gaz}\rightleftarrows\mathrm{CO}_{2gaz}+2\mathrm{H}_2\mathrm{O}_{gaz}$ avec $\Delta_r H_3^\circ=-804\,\mathrm{kJ\cdot mol}^{-1}$. On a donc $Q_1+Q_2=n'|\Delta_r H_3^\circ|$, on trouve $n'=3,5\times 10^3\,\mathrm{mol}$ ce qui fait une masse de méthane de 56 kg puisque $M_{\mathrm{CH}_4}=16\,\mathrm{g\cdot mol}^{-1}$. On a supposé qu'il n'y avait aucune perte thermique, que toute l'énergie dégagée par la combustion du méthane était utilisée au profit de la fabrication du ciment, on oublie aussi la présence de $\mathrm{Al}_2\mathrm{O}_{3s}$ dans l'argile que l'on utilise et que l'on chauffe avec le reste.

10. Grillage de la galène

Réponses : $\Delta_r H_{298~\text{K}}^\circ = -413.8~\text{kJ} \cdot \text{mol}^{-1}$, écart inférieur à 2% l'approximation d'Ellingham est justifiée, en raisonnant pour une mole de PbS $\Delta_r H^\circ + (6c_{p\,\text{N}_2}^\circ + 1, 5c_{p\,\text{O}_2}^\circ + c_{p\,\text{PbS}}^\circ)(T_f - 298) = 0$, $T_f = 1868~\text{K}$, il faut refroidir, pour 1 mole de PbS il y a $\frac{1-x}{x}$ moles de gangue on a $\Delta_r H^\circ + (6c_{p\,\text{N}_2}^\circ + 1, 5c_{p\,\text{O}_2}^\circ + c_{p\,\text{PbS}}^\circ + \frac{1-x}{x}48)(1223 - 298) = 0$, x = 20%.

11. Grillage du sulfure de molybdène

Réponses : $\Delta_r H^\circ = -1103$, $6\,\mathrm{kJ\cdot mol}^{-1}$, $\Delta_r H^\circ < 0$ le processus est exothermique, on décompose en deux étapes $\Delta H = \Delta H_1 + \Delta H_2 = 0$ car le processus se fait sans pertes énergétiques avec l'extérieur, ΔH_1 correspond à la réaction de grillage envisagée à 298 K et ΔH_2 à la montée en température des produits de la réaction, $\Delta_r H^\circ + [c_{p,\mathsf{MoO}_3} + 2c_{p,\mathsf{SO}_2} + 14c_{p,\mathsf{N}_2}](T_f - 298) = 0$, on trouve $T_f \simeq 2\,330\,\mathrm{K}$.

12. Pression d'explosion

Réponses : $\Delta_r H^{\circ} = -1255 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}, \ \Delta_r U = \Delta_r H^{\circ} - \Delta_r n_{gaz} RT = -1248 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}, \ l'avancement sera <math>\xi = 0, 1 \,\mathrm{mol}$, à la fin de la réaction il y a $0, 15 \,\mathrm{mol}$ de $\mathsf{O}_2, 0, 1 \,\mathrm{mol}$ de $\mathsf{V}_2\mathsf{O}_5$ et $1, 6 \,\mathrm{mol}$ de N_2 , le bilan énergétique est $0, 1\Delta_r U + [C + 0, 15c^{\circ}_{v\mathsf{O}_2} + 0, 1c^{\circ}_{v\mathsf{V}_2\mathsf{O}_5} + 1, 6c^{\circ}_{v\mathsf{N}_2}](T_f - 300) = 0, c^{\circ}_{v\mathsf{O}_2} = c^{\circ}_{p\mathsf{O}_2} - R, c^{\circ}_{v\mathsf{N}_2} = c^{\circ}_{p\mathsf{N}_2} - R, c^{\circ}_{v\mathsf{V}_2\mathsf{O}_5} \simeq c^{\circ}_{p\mathsf{V}_2\mathsf{O}_5}, T_f = 441 \,\mathrm{K}, \ p_f = p_i \frac{n_f \, gaz}{n_i \, gaz} \frac{T_f}{n_i \, gaz} = 2, 6 \,\mathrm{bar}.$

13. Mode de production de l'éthyne

Réponses : $\Delta_r H_{298\,\mathrm{K}}^\circ = 376,6\,\mathrm{kJ\cdot mol}^{-1}, \Delta_r H_{1773\,\mathrm{K}}^\circ = 497,1\,\mathrm{kJ\cdot mol}^{-1},$ endothermique ; x moles de CH₄, y moles de O₂, la combustion est exothermique $\Delta_r H_{298\,\mathrm{K}}^\circ(\mathrm{comb}) = -802,5\,\mathrm{kJ\cdot mol}^{-1},$ on imagine un chemin pour lequel on a $\Delta H = 0$ puisque la réaction est monobare et adiabatique, on effectue la combustion à 298 K, puis on monte à $1\,773\,\mathrm{K}$ ($\Delta T = 1\,475\,^\circ\mathrm{C}$) l'ensemble des produits pour ensuite effectuer avec le reste du méthane la réaction de production de $\mathrm{C_2H_2}, \frac{y}{2}|\Delta_r H_{298\,\mathrm{K}}^\circ(\mathrm{comb})| = [(x-\frac{y}{2})c_p^\circ(\mathrm{CH_4}) + yc_p^\circ(\mathrm{H_2O}) + \frac{y}{2}c_p^\circ(\mathrm{CO_2})]\Delta T + \frac{1}{2}(x-\frac{y}{2})\Delta_r H_{1773\,\mathrm{K}}^\circ$, On arrive à $\frac{y}{x} = \frac{2c_p^\circ(\mathrm{CH_4})\Delta T + \Delta_r H_{1\,773\,\mathrm{K}}^\circ}{-\Delta_r H_{298\,\mathrm{K}}^\circ(\mathrm{comb}) - (2c_p^\circ(\mathrm{H_2O}) + c_p^\circ(\mathrm{CO_2}) - c_p^\circ(\mathrm{CH_4}))\Delta T + \frac{1}{2}\Delta_r H_{1\,773\,\mathrm{K}}^\circ},$ y = 0, 6x, pour 1 mole de CH₄, il faut 0,6 mole de O₂ et donc une fraction molaire $x_{\mathrm{O_2}} = \frac{0,6}{1,6} = 37,5\%$.

14. Dosage calorimétrique

Réponses : Pour un système fermé (ici le vase Dewar et son contenu), sans variation d'énergie cinétique macroscopique, en évolution monobare avec pour travail reçu considéré comme seul présent celui des forces pressantes, le premier principe se ramène à $\Delta H = Q_p$. L'échange thermique reçu Q_p est nul si l'on procède assez vite (le vase Dewar est assez bien calorifugé et on ne laisse pas trop de temps aux échanges thermiques de se faire à travers sa paroi). Du coup, $\Delta H = 0$. Si l'on néglige la valeur en eau du vase Dewar (c'est-à -dire sa capacité calorifique), on en déduit que le système réactif acide+base versée évolue à enthalpie constante (cela est raisonnable pour un volume correspondant important et une réaction suffisamment exothermique). Il est utile d'établir un tableau d'avancement partiel (E.I. : état initial; E.P. : état partiel) :

$$H^{+}_{aq}$$
 + OH^{-}_{aq} = $H_{2}O_{liq}$
E.I. $c_{a}v_{a}$ $c_{b}v_{b}$ solvant
E.P. $c_{a}v_{a} - \xi$ $c_{b}v_{b} - \xi$ solvant

Avant l'équivalence, le réactif limitant est l'ion hydroxyde donc $\xi = c_b v_b$. La variation d'enthalpie à température constante est alors $\Delta H_1 = \xi \Delta_r H^{\circ} = c_b v_b \Delta_r H^{\circ}$. On raisonne sur le système réactif fermé acide+base dans le vase Dewar pour un volume v_a d'acide et un volume v_b de base versée. Son enthalpie ne varie pas et, s'agissant d'une fonction d'état, on peut décomposer librement l'évolution du système sur le chemin suivant (sans changer les états limites) : on effectue d'abord la réaction physico-chimique à T_1 avec l'avancement ξ (variation d'enthalpie ΔH_1), puis on enchaîne par l'échauffement des espèces présentes dans le système (variation d'enthalpie ΔH_2). Puisque $\Delta H_2 = (v_a + v_b) \, C_{p,v}^{\circ} \, (T - T_i)$ et que $\Delta H = \Delta H_1 + \Delta H_2 = 0$, il vient $c_b \, v_b \, \Delta_r H^{\circ} + (v_a + v_b) \, C_{p,v}^{\circ} \, (T - T_i)$ $(v_b) C_{p,v}^{\circ} (T - T_i) = 0$ puis $T \simeq T_i - \frac{\Delta_r H^{\circ} c_b}{C_{p,v}^{\circ} v_a} v_b$ en négligeant l'effet de dilution puisque $v_b \ll v_a$ dans le protocole utilisé. On obtient une évolution affine de pente positive $-\frac{\Delta_r H^{\circ} c_b}{C_{p,v}^{\circ} v_a} = 0,269 \,\mathrm{K} \cdot \mathrm{mL}^{-1}$. Le tracé expérimental donne une pente voisine de $0,26\,\mathrm{K}\cdot\mathrm{mL}^{-1}$ (on pouvait donc aussi estimer $\Delta_r H^\circ$ par le protocole expérimental proposé. Après l'équivalence, tous les ions $\mathsf{H}^+{}_{aq}$ ont réagi (il ne reste que des résidus de l'autoprotolyse de l'eau). L'avancement maximal de la réaction de dosage est $\xi_{max} = c_a v_a$ et le bilan enthalpique du système devient à présent $\Delta H_{1,\max} + \Delta H_2 = c_a v_a \Delta_r H^\circ + (v_a + v_b) C_{p,v}^\circ (T - T_i) = 0$ d'où, toujours en négligeant l'effet de dilution, $T \simeq T_i - \frac{\Delta_r H^\circ}{C_{p,v}^\circ} v_a$. La température est théoriquement constante, ce qui est à peu prés observé sur la courbe expérimentale (il y a une légère décroissance essentiellement en raison des pertes thermiques!). Pour obtenir le plus précisément la concentration c_a , on traduit la relation de l'équivalence pour la réaction de dosage considérée : $c_a v_a = c_b v_{b,eq}$. Le volume équivalent $v_{b,eq} = 7,5\,\mathrm{mL}$ correspond à la rupture de pente et on en déduit $c_a = c_b \frac{v_{b,eq}}{v_a} = 1,5.10^{-1}\,\mathrm{mol\cdot L^{-1}}$. Notons que l'expression précédente de la température T après équivalence donne en conséquence une augmentation de température d'environ 2 °C pour atteindre l'équivalence, ce qui est cohérent avec la courbe expérimentale fournie. L'hypothèse de valeur en eau négligeable du vase Dewar ne semble donc pas à remettre en cause.

15. Modélisation du fonctionnement d'un moteur

Réponses : $C_7H_{16} + 11O_2 \rightleftharpoons 7CO_2 + 8H_2O(+44N_2)$ de $n_{tot} = 56 \,\mathrm{mol}$ à $n_{tot} = 59 \,\mathrm{mol}$, $W + Q_{CD} + Q_{EB} = 0$ $W = C_V(T_C - T_D + T_E - T_B)$, $\eta = 1 - \frac{T_E - T_B}{T_D - T_C}$, $\eta = 61\%$, $T_C = T_B\alpha_v^{\gamma-1} = 768 \,\mathrm{K}$, $\Delta_r U^\circ(T_C) = -4706 \,\mathrm{kJ \cdot mol}^{-1}$, $C_V = 2255 \,\mathrm{J \cdot K}^{-1} \cdot \mathrm{mol}^{-1}$, $T_D = 2855 \,\mathrm{K}$, modèle trop parfait et transferts thermiques au moteur, $T_E = T_D\alpha_v^{1-\gamma} = 625 \,\mathrm{K}$, $W = -1143 \,\mathrm{kJ \cdot mol}^{-1}$, $n_{cyl} = 0$, $118 \,\mathrm{mol}$, $n_{comb} = \frac{0,118}{56}$, $|W_{1 \,\mathrm{tour}}| = 2409 \,\mathrm{J}$, $P = 221 \,\mathrm{kW}$ supérieure à 210×0 , $736 = 155 \,\mathrm{kW}$ logique.