MATH- UA . 0148 Honord Linear Algebra Lecture 28: More en linear transformations I Some more united weeker spaces t Let P be the set of all polynomials with real coefficients of degree is and smaller: PEP (0) = anx + --+ an+a Passa rechor space:

+ PEPar QEPar Par - axx+a (P+Q)(a)= (a+b)x"+-+ (a+b)x+a+b= EPa By commutatively of addition for real number (P+Q)(a)- (0+P)(a) (P+O)a)+ Ra)= Pa)+ (Q+R)x by associatively of addition for real numbers O(x) = 0 EP & such that (P+0)(0)= (0+P)(0)= P(6) HPEP, $P(\alpha) = a_{\alpha} x^{\alpha} + \dots + a_{\alpha} x + a_{\alpha}$, $T(x) = f_{\alpha} x^{\alpha} + \dots + f_{\alpha} x + f_{\alpha}$)

15 Such short $(P + T)(\alpha) = f(T + P)(\alpha) = O(\alpha) = O$ TB the adolphie in verte of P.

· Y b E R, Y P E P, (lp) a/z lax ba, 2 + - + ba, 2+la	eP.
· Y LER, YLER, YPEP, (leh)Pa)= & Pa)+ lha)	
· Y LER, YLER, YPEP. (L+h)Pa)= lPa)+lha) by dishibuthity for real numbers	
· Likewise YJER YHER YPER (Lh)Pa)= l. (hPa)	
by associativity of multiplication for real numbers.	
· 1. P(x) = P(x) \ P \ P	
A base for Pa 15 } / a, x2,, x^?	
Indeed, it is clear that [1, x, x2, -, x2] spans	
Indeed, it is clear that [1, x, x?, -, x" } spans Professionare, the rectors in the set are direarly	
cade tendens	
If there exist (0, c,, c,) ER" such that (,2"++c,2+co: 1=0, Flow cn=0, c,=0, q=0,6=4	
Cn2++c,2+co-1=0, Fhon cn=0, cn=0, G=0,6=	
We conclude that the dimension of Pn is R^+!	
We conclude that the oun entron of in 12 m	
Another way to see this is that to any element	
P of Pa, one can unquely associate the vector	
Cao 7	
ER of to coethwen 5.	

* Let V= f: F. R = 8 K such that d for exists for all 28 R
with rector addition defined as $(f+g)(x)=f(a)+g(a)$ and multiplication by a scalar defined by (2f)(a)=kf(a)
$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = k f \alpha $
Vis also a sector space, by the proporties of real addition, real multiplication, and differentiation.
It turns out that thus vector space has infinite dimension
Consider the fraction L: P = & Ps PEP + & dP
Lis a linear transformation. Tadeed, for any PEP, QEP.
Todood, for any PEP, QEP. L(P+Q) = d[PE)+Qa)] - dP + dQ - LP+LQ dn dx YPEP YREQ 1 (QP) + QQ) 1 RdP - QR
YPEP, YEER, L(RP)- d[RPax)]- 2dP = 21P
* Let us return to V= \f: f:R-R such that of fall exists for all x ER?

2) Injectivity, surjectivity, disectivity
A function $f:S \longrightarrow T$ is injective of $\forall (x,y) \in S^2$, $x \neq y \Longrightarrow f(x) \neq f(y)$
$x \neq y \implies f(x) \neq f(y)$
Example: F: R - OR
13 injective
f: R • R
2 t 2
13 not injective (or one-to-one).
Conto
A function $f: S \longrightarrow T$ is surjective if $\forall t \in T$, there exist $s \in S$ such that $f(s) - t$
Para (G) - C
Example: f. R - o R+
Example: f. R - o R+
is surjective (or anto)
1: R R
is not surjective.
A function which is both one-to-one and onto be both injectible
A function which is both one-to-one and onto, ie both injective and surjective, is said to be bijective.
O

Example: f. R - R+ is bijective. Theorem: A function f: S - o T has an inverte function git - S (such that If og (+)-t yt ET) if and only if it is bejective gifts)= s vsES Proof: Suppose fis a jective. Then, any t & T has a unique preimage S & S Let g be the Richan which for any t & T assigns the unique preimage so F(t) For any t ET, f(g(t)) = f(s) = f(f-'(t)) = f · Conversely, suppose f has an inverse function g.

Let $x \in S$, $y \in S$ such that f(x) - f(y)Then $g(f(x)) - g(f(y)) \Leftrightarrow x - y + is one-to-one.$ Let $t \in T$ f(g(t)) = t so g(t) is a preimage of t in S. f is surjective. For which f is a linear transformation between two rector spaces. The linearity of the fraction more result than for general furtions.

	3) Kernel of a lonear transformation
	De Pritan: Let 1: V - Who a linear transform thou
	The set of all vectors 34 V such that 13-0 is
	Definition Let 1: V = W be a linear transformation. The set of all vectors PEV such that I = 0 is called the learned of L, within kert.
	Note 1: When we write 12-0, the 0 here is the zero element for vector addition in W One some three writes. Our for clarity.
	element for vector addition in W. One sometimes wites
	O. for daily.
	Note 2: We have seen in lecture 27 that if 1 is a linear franctornation, then of E ber L.
	a linear franctornation, then OE ber L.
	Theorem: A linear bransformation L is injectible if and only if her L = { or }
	only if her 1 = 10, }
Di COUPE	Proof: let be a linear transformation such that learl = }or } and let is and if such that
	Theor =) of 2, and let 2 and y such that
	127 14
	$\frac{\ker 1 = \vec{0}}{\sinh 1(\vec{x} - \vec{y}) - \vec{0}_{W}} = \frac{1}{2} \vec{0}_{W} = \frac{1}$
	Then $L(\vec{x}-\vec{y}) = \vec{0}_{W} = $
	Lis miechlie
	Conversely, if Lis one-to-one then we know that
	the only vector such that $1\vec{x} = \vec{0}_w$ is $\vec{x} = \vec{0}_v$:
	ler L = /0)
	This completes our proof
I	1

Observe that if I has a matrix representation M in some board, then finding the bornel of I is equivalent to finding the wrill space of M. In this context, the following theorem makes sense Theorem: let L: V- o W be a linear transformation
Ker L is a subspace of V. Proof: As mentioned of E Ker L. L(latho) = l(a) + hL(b) = on the R 4) Rank and nullity of a linear transformation Theorem: Let L.V. & W be a linear frankformation.
The image L(V) is a subspace of W. Proof: · Ov EV and L(Ov) = O so OEW

· Let $\vec{u} \in L(V)$, $\vec{v} \in L(V)$. There exists $\vec{x} \in V$ and $\vec{g} \in V$ such that $L(\vec{u}) = \vec{u}$ and $L(\vec{g}) = \vec{v}$ For any $l \in \mathbb{R}$ and $l \in \mathbb{R}$, $l \vec{u} + l \vec{v} - l(\vec{u}) + l l \vec{e}$) $= L(l \vec{u} + l \vec{v})$ light hij EV since V 3 a rector space, so

Deflaition: The rank of a linear transformation L is the dimension of its image 1 (V):

rank L - dim 1 (V) The nullity of a linear transformation is the dimension of the bernel of L:

null L= dim Ker(L) Theorem (Dimension Formula):

Let L: V -> W be a linear transformation, where V is a finite dimensional space. Then

dim V - dim (Ker L) + dim L(V)

- noll L + rank L Proof. Let n= din V, and n-r=dim (Kert), with r>0.

Let (u, u) - unr) be a basis of Kert, which we complete

as (u, u, u, u, v, v) for a basis of V. We want to show that rank L=r. To do so, we will show that \(\vec{V}_r)\) \(\text{S} \alpha \text{ box of L(V)}\) Let us fint prove that L(V)- spon{[m]..., L(V)} Consider $\vec{w} \in L(\vec{v})$ We can ente $\vec{v} = L(c_1\vec{u}_1 + - c_2\vec{u}_1 + d_1\vec{v}_1 + - d_2\vec{v}_2)$ - $d_1(\vec{v}_1) + - d_2(\vec{v}_2)$ which proved our pant.

The theorem has an important corollary.

Let L: V = 0 W be a linear transformation, where V

is a firste dimensional space, and dim (V)= dim(W)

Then L is injective if and only if it is surjective

In other words 1 is injective if and only if I is

dijective and has an inverse L-Proof: 1 is injective if and only if dim (Ker L)=0, is if and only if dim (L (V)) = dim N = dim N, is if and only if L is surjective From this corollary we conclude that there is no one-to-one linear frams formation from V to W if dim W < dim V There is no onto linear transformation from V to Wif dim V Kdimh IV Sum of subspaces Suppose S and So are two subspaces of a vector space V. We define: $S_1 + S_2 = \left\{ \begin{array}{l} S_1 + S_2 \\ S_3 + S_4 \end{array} \right\}$ It is a good exercise to prove that SitS is a subspace of V (proof loft for the reader), which is called the sum of Si and Se

Example: Let V= R2, S= {(2,2): x ER} CR2, $S_2 = \{(x, -x) : x \in \mathbb{R}\} \subset \mathbb{R}^2$ Then S+5 = R2, when Y (any) ER2, Theorem: If S, and So are subspaces of a vector space V, all with finite dimension, then

dim (S, + So) = dim (S,) + dim (So) - dim (Son So) Proof: Let B = (h, b, b) be a band of S. A.S.

B. can be complemented to a basis B.= (bi, becies)

of S. and to a basis B.= (bi, di, de) din (S, 152) = r, din (S,) - r+s, dun (S2)=r+d let B= (b, b, -, br, q, -, d, d,) If B 3 a basis of S, + Sz, Hen din (S, + Sz) = r+s+t = (r+s)+(r+t)-r- dm (5)+dm(5)-dm(5)5) Let as prove BB Babass of 5, + 5.

It is clear that S,+ So C span (B).
Indeed, let $\vec{w} \in S, + S_2$. There exist $\vec{w}_i - k_i \vec{b}_i + \dots + k_i \vec{b}_i + k_i \vec{c}_i + \dots + k_i \vec{b}_i + \dots + k_i \vec{$ and w = h, b, + - + h, b, + + h, d, such that

w- w + w = (2+h,)b, + - + (2+h,) T, + 2 m, c, + - + 2 m, c, +

+ h, d + - + h, d & E pan (B) Let us now show B & brearly independent Consider coefficients 1 b + 2 b + - + 2 b + 2 m c + - + b = 0 () \(\frac{1}{2} \) \(\frac $= \sum_{i \in S_1 \cap S_2} \epsilon S_1$ There exists proposed that had to the displace of the point of the poi Hence & bith ber of le bething + + ling & = 0 box 10+ 51

box 10+ 51

con 1 = 1, --, r+5

So B is linearly independent, and indeed a barro of 5, + 52	
2) direct sum of subspaces	
Definition: The sum Wit We is called direct if W. A We = {Or}.	
A vector space V is said to be the direct som of two subspaces W, and We if V= W, + Wz and W, MW2 = 103	
When V is a direct sum of W, and W2, we write V-W. A W2.	
Theorem: Suppose W. and W2 are subspaces of a vector space V such that V= W. + W2. Then V= W. + W2 if and only if every vector velocity can be written in	
a unique way as $x = W_1 + W_2$, with $\overline{W}_1 \in W_1$ and $\overline{W}_2 \in W_2$	
Proof: Suppose V= With We and assume there exist will and we and we'n We such that	
Then, $W_1 - W_2 - W_3$ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
Since V= W. A W2, this implies w W. = Ov - w2- w2, so that w= W1, w2= W2.	

Convertely suppose there is a unique way to ask in we.

with ite V, with W, and with W2

Let us assume there exists in $\neq \vec{O}_V$ such that in \notin W, \cap W2

Then in \notin V and in = in \neq \vec{O}_V = \vec{O}_V and \vec{O}_V which countrates \notin W, \notin W2 \notin W, \notin W2 thus, the only vector in W. NW2 is of, and V= W. OW2. Examples: * Let M be an mxa anothic
We saw in Lecture 14 that C(MT) DN(M) = R"
and that C(M) DN(MT) = R" tel V be the rector space of all nxn matrices with real coefficients let W, be the subspace of all nxn symmetric matrices, and We the subspace of antityumetric matrices. You showed in Problem Set 3 that V= W. D Wz real coefficients. Let W, be the subspace of report bringular matrices, and We the subspace of lower trangular matrices. Can are unte V= W, D W,? tet M be an exe diagonalisable matrix with real coefficient, and let 2, 2, 2, be the eigenvalues

of M, with r < n.

We define the subspaces spanned by the eigenvectors for each distinct eigenvalue hi:

Ex: = {\vec{x} \in \text{TK}' : \text{H\vec{x}} = \vec{x} \vec{z}} Since Mis dragonalizable, we can unite R" = E D E D - O Ex. Direct some and dimension At the beginning of this section, we showed that

if V= W, + W2, then

din V- dim (W,) + dim(We) - dim (W, NW2) & dim(W)+ dim(We) We easily conclude that when V= W, D W2, dun V- din W, + dun W2 I Direct sums and projecthans Proposition 1: If V is a rector space and P: V = V is a projection, then

V= Im P B Ker P Proof: Let us first show that V= Im P + Kerp Clearly, Kerp C V and Im P C V, so ImP+ Kerp V Since V B a vector space

Now, let $\vec{x} \in V$, $\vec{y} = P(\vec{x}) \in Im P$, $\vec{z} = \vec{x} - \vec{y}$ is such that $P(\vec{z}) = P(\vec{x}) - P(\vec{y}) = \vec{y} \cdot \vec{y} = \vec{o}$, so $\vec{z} \in Ker P$, and we constructed $\vec{x} = \vec{y} + \vec{z}$ $EIm P \in Ker P$ $V \subseteq Ker P = Im P$ so V = Ker P + Im PFinally let $\vec{x} \in \text{Im } P$. There exists $\vec{w} \in V$ such that $\vec{x} = P(\vec{w})$ flence, $P(\vec{x}) = P^2(\vec{w}) = P(\vec{w}) = \vec{x}^2$ $\vec{x} \in \text{Im } P \cap \text{Ker } P \in \mathcal{P} = \mathcal{P}(\vec{w}) = \mathcal{P}(\vec{w}) = \mathcal{P}(\vec{w}) = \mathcal{P}(\vec{w})$ The state of the s We conclude that KerPDInP=V as desired Proof: Y JEV, there is a singue de composition vi with the EW. EW. Let us then consider the transformation

P. V - B W.

T-W. W. L B P. W. Let (v, v) E V2 (2, h) E R2 v = w + w v = w + w v = w + w v = w + w v = w + w v = w + w v = w + w v = w + w v = w + h v = 2 P(w,) + h P(w,) = 2 P(w,) +

and in particular P(Or) = Or We conclude that P is a linear framsformation Let VE Vy X WAT WA $P^2(V) = P(W) - P(W+O) - W - P(V)$ $P^2 = P = P(W+O) - W - P(V)$ By the definition of P Im P E W,

Now, let $\vec{w} \in W$. Then $\vec{w} \neq \vec{o} \in V$ and $P(\vec{w}, + \vec{o}) = \vec{w}_i \implies \vec{w}_i \in Im P$ and $W \subseteq Im P$ Hence In A Like nie by definition of P W2 C Ker P

Now, let $\vec{v} \in \text{Ker P} \quad \vec{v} = \vec{W}_1 + \vec{W}_2$ $\in W_1 \in W_2$ P(D)=0=P(W+Wb)=W Hence W== Nes P C W2 Wz - Ker P Example: For V-W. D. Wo where V is the rector space of all new matrices with real coefficients. We the subspace of all symmetric matrices and Wa the subspace of all antisymmetric matrices, you showed on Problem Set 3 that PM)= M+ MT 3 the projection.