eGaN® FET DATASHEET EPC2308

EPC2308 – Enhancement Mode Power Transistor

 V_{DS} , 150 V $R_{DS(on)}$, 6 m Ω max

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Application Notes:

- Easy-to-use and reliable gate, Gate Drive ON = 5 V typical, OFF = 0 V (negative voltage not needed)
- Top of FET is electrically connected to source

Questions:	
ACV	

Maximum Ratings				
	PARAMETER	VALUE	UNIT	
V	Drain-to-Source Voltage (Continuous)	150	V	
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	180	V	
	Continuous (T _A = 25°C)	48	Α	
I _D	Pulsed (25°C, T _{PULSE} = 300 μs)	157	A	
V	Gate-to-Source Voltage	6	V	
V_{GS}	Gate-to-Source Voltage	-4	V	
TJ	Operating Temperature	-40 to 150	°C	
T _{STG}	Storage Temperature	-40 to 150		

Thermal Characteristics					
PARAMETER TYP UNIT					
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Case TOP)	0.5			
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board (Case BOTTOM)	2.8	°C ////		
R _{0JA_JEDEC}	Thermal Resistance, Junction-to-Ambient (using JEDEC 51-2 PCB)	54	°C/W		
R _{θJA_EVB}	Thermal Resistance, Junction-to-Ambient (EPC90143 EVB)	23			

	Static Characteristics (T _J = 25°C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V}, I_D = [TBD]$	150			V
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 120 \text{ V}$		0.003		
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.015		^
I _{GSS}	Gate-to-Source Forward Leakage#	$V_{GS} = 5 \text{ V}, T_J = 125^{\circ}\text{C}$		0.2		mA
	Gate-to-Source Reverse Leakage	V _{GS} = -4 V		0.015		
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 5 \text{ mA}$	0.7	1.2	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 15 \text{ A}$		4.6	6	mΩ
V _{SD}	Source-Drain Forward Voltage#	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.5		V

[#] Defined by design. Not subject to production test.

EPC2308

Package size: 3 x 5 mm

Applications

- High density DC-DC from 80-100 V
- AC/DC
- Synchronous rectification from 28–54 V for chargers, adaptors, and power supplies
- · Solar optimizers and microinverters
- Motor drive and DC-DC for batteryoperated power tools and robots
- · USB fast chargers

Benefits

- Higher Efficiency Lower conduction and switching losses, zero reverse recovery
- Ultra Small Footprint Higher power density
- · Thermally enhanced QFN package with exposed top and ultra-low thermal resistances for cooler operations
- · Wettable flanks and 0.6 mm between high voltage and low voltage pads to simplify assembly and inspection

Scan OR code or click link below for more information including reliability reports, device models, demo boards!

https://bit.ly/EPC2308

eGaN® FET DATASHEET EPC2308

	Dynamic Characteristics# (T _J = 25°C unless otherwise stated)					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C_{ISS}	Input Capacitance			1454	2103	
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 75 \text{ V}, V_{GS} = 0 \text{ V}$		2.6		
Coss	Output Capacitance			405	592	pF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 1)	V -0+075VV -0V		498		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 2)	$V_{DS} = 0 \text{ to } 75 \text{ V}, V_{GS} = 0 \text{ V}$ 664				
R_G	Gate Resistance			0.4		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 75 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 15 \text{ A}$		10.6	13.8	
Q_{GS}	Gate-to-Source Charge			3.8		
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 75 \text{ V}, I_D = 15 \text{ A}$		1.3		
$Q_{G(TH)}$	Gate Charge at Threshold			2.4		nC
Q _{OSS}	Output Charge	$V_{DS} = 75 \text{ V}, V_{GS} = 0 \text{ V}$		50	61	
Q_{RR}	Source-Drain Recovery Charge			0		

All measurements were done with substrate connected to source.

Figure 1: Typical Output Characteristics at 25°C

Figure 3: Typical $R_{DS(on)}\, vs.\, V_{GS}$ for Various Drain Currents

Figure 2: Typical Transfer Characteristics

Figure 4: Typical $R_{DS(on)}\, vs.\, V_{GS}$ for Various Temperatures

 $[\]ensuremath{\text{\#}}$ Defined by design. Not subject to production test.

Note 1: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Note 2: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

eGaN® FET DATASHEET EPC2308

Figure 5a: Typical Capacitance (Linear Scale)

Figure 5b: Typical Capacitance (Log Scale)

Figure 6: Typical Output Charge and Coss Stored Energy

Figure 7: Typical Gate Charge

Figure 8: Typical Reverse Drain-Source Characteristics

Figure 9: Typical Normalized On-State Resistance vs. Temp.

Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

eGan® FET DATASHEET EPC2308

Figure 10: Typical Normalized Threshold Voltage vs. Temp.

Figure 12: Transient Thermal Response Curves

5

Туре	A	N	C	D	w1	w2	T
8MM	Ø330±2	Ø100±2	Ø13.1±0.2	5.6±0.5	8.4+1.5	14.4	2.1±0.5
12MM	Ø330±2	Ø100±2	Ø13.1±0.2	5.6±0.5	12.4+1.5	18.4	2.1±0.5
16MM	Ø330±2	Ø100±2	Ø13.1±0.2	5.6±0.5	16.4+1.5	22.4	2.1±0.5
24MM	Ø330±2	Ø100±2	Ø13.1±0.2	5.6±0.5	24.4+1.5	30.4	2.1±0.5

Bottom View Detail

eGaN® FET DATASHEET **EPC2308**

SYMBOL		Dimension (mm)					
STRIBUL	MIN	Nominal	MAX	Note			
A	0.60	0.65	0.70				
A1	0.00	0.02	0.05				
A3		0.20 Ref					
b	0.20	0.25	0.30	4			
b1	0.30	0.35	0.40	4			
b2	0.20	0.25	0.30	4			
D		3.00 BSC					
E		5.00 BSC					
e		0.85 BSC					
e1		0.90 BSC					
L1	0.625	0.725	0.825				
L2	1.775	1.875	1.975				

SYMBOL		nension (mm)				
SYMBUL	MIN	Nominal	MAX	Note		
K	0.35	0.40	0.45			
K1	0.10	0.15	0.20			
K2	0.55	0.60	0.65			
К3	0.35	0.40	0.45			
K4	0.25	0.30	0.35			
aaa		0.05				
bbb		0.10				
ССС		0.10				
ddd		0.05				
eee		0.08				
N		15		3		
NE		6				

Notes:

- 1. Dimensioning and tolerancing conform to ASME Y14.5-2009
- 2. All dimensions are in millimeters
- 3. **N** is the total number of terminals
- A. Dimension **b** applies to the metallized terminal. If the terminal has a radius on the other end of it, dimension **b** should not be measured in that radius area.
- 5. Coplanarity applies to the terminals and all the other bottom surface metallization.

eGaN® FET DATASHEET **EPC2308**

TRANSPARENT VIEW

PIN	DESCRIPTION		
1	Gate		
2	Source		
3	Drain		
4	Source		
5	Drain		
6	Source		
7	Drain		

Transparent Top View

RECOMMENDED LAND PATTERN (units in mm)

Land pattern is solder mask defined. It is recommended to have on-Cu trace PCB vias.

DIM	Nominal
A	5.4
В	3.4
c1	2.11
2	0.90
3	0.55
c4	1.20
5	0.975
d1	0.45
d2	0.35
e	0.85
f	0.30
g	0.2
h	0.05

Additional resources available:

- Assembly resources https://epc-co.com/epc/Portals/0/epc/documents/product-training/Appnote_GaNassembly.pdf
- Library of Altium footprints for production FETs and ICs https://epc-co.com/epc/documents/altium-files/EPC%20Altium%20Library.zip (for preliminary device Altium footprints, contact EPC)

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

 $eGaN^{\circ} \ is \ a \ registered \ trademark \ of \ Efficient \ Power \ Conversion \ Corporation. \ EPC \ Patent \ Listing: epc-co.com/epc/AboutEPC/Patents.aspx$

Information subject to change without notice. Revised March, 2023