SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

IZVJEŠĆE

Vježba 4. Percepcijsko kodiranje audiosignala

SADRŽAJ

1.	Uvo	d	1
2.	Rad	na vježbi	2
	2.1.	Gornja granična frekvencija	2
	2.2.	Podizanje razine šuma	3
	2.3.	Ukupna harmonička izobličenja (THD)	4
3.	Zakl	ljučak	5

1. Uvod

Zadatak ovo vježbe je provjeriti kako percepcijsko kodiranje utječe na neke parametre audiosignala. Svi ispitni signali generirani su digitalno s frekvencijom uzorkovanja 44,1 kHz i s razlučivošću 16 bitova.

2. Rad na vježbi

Vježba je podijeljena na 4 testa pomoću kojih smo odredili u kojoj mjeri različite frekvencije uzorkovanja utječu na reprodukciju audio signala.

2.1. Gornja granična frekvencija

Kao izvorni zvuk smo u ovom testu koristili bijeli šum kako bi vidjeli utjecaj na širokom frekvencijskom području. Zatim smo 'overlap' funkcijom programa usporedno snimili amplitudno-frekvencijsku karakteristiku izvornog signala sa brzinama toka 8, 16, 32 i 64 kbit/s. Kao rezultat dobivamo sljedeći izgled spektra:

Slika 1. Amplitudno-frekvencijski spektar bijelog šuma za različite brzine prijenosa

Važno je primjetiti kako na 64 kbit/s dobivamo skoro identičnu karakteristiku dok su na nižim brzinama prijenosa gornje frekvencije prigušene.

2.2. Podizanje razine šuma

Kao izvorni zvuk smo u ovom testu koristili multitonski signal kako bi vidjeli utjecaj na više frekvencija odjednom. Zatim smo 'overlap' funkcijom programa usporedno snimili amplitudno-frekvencijsku karakteristiku izvornog signala sa brzinama toka 8, 16, 32 i 64 kbit/s. Kao rezultat dobivamo sljedeći izgled spektra:

Slika 2. Amplitudno-frekvencijski spektar multitonskog signala za različite brzine prijenosa

Primjećujemo kako na višim frekvencijama dolazi do gubitaka u prijenosu signala. Ovo je posljedica smanjene brzine prijenosa koja je posljedica smanjenja frekvencije uzorkovanja.

2.3. Ukupna harmonička izobličenja (THD)

Kao izvorni zvuk smo u ovom testu koristili signal frekvencije 1kHz kako bi vidjeli utjecaj na definiranoj frekvenciji. Zatim smo 'overlap' funkcijom programa usporedno snimili amplitudno-frekvencijsku karakteristiku izvornog signala sa brzinama toka 8, 16, 32 i 64 kbit/s. Kao rezultat dobivamo sljedeći izgled spektra:

Slika 1. Amplitudno-frekvencijski spektar signala frekvencije 1 kHz za različite brzine prijenosa

Kod ovog signala vrlo se lako uoči da dolazi do generiranja harmonika u signalu koji uzrokuju širenje zvučne slike jednofrekvencijskog signala. Stvaraju se novi harmonici koju povećavaju THD faktor koji nebi trebao prelaziti 0,01% za frekvencijski raspon 20Hz-20kHz kako bi pojačalo bilo kvalitetno.

3. Zaključak

Povećanjem frekvencije uzorkovanja dobivamo mogućnost kodiranja šireg spektra signala bez gubitaka. Kod nižih frekvencija uzorkovanja dobivamo manji tok podataka što je dobro za spremanje podataka, međutim dolazi i do pojave preklapanja signala (engl. aliasing) te do gubitka određenog dijela spektra što nam u konačnici stvara pogrešku u signalu koja nije poželjna. Važno je pogoditi najbolji omjer kvalitete i količine podataka koji bi korisniku koji sluša kodirani signal pružilo vjernu repliku originalne snimke dok pri tome ne zauzima veliku količinu prostora.