

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková
	organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20
	vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC IIIb
Popis sady vzdělávacích materiálů:	Mechanika III – hydrodynamika a termomechanika, 3. ročník.
Sada číslo:	G-21
Pořadové číslo vzdělávacího materiálu:	08
Označení vzdělávacího materiálu:	VY_32_INOVACE_G-21-08
(pro záznam v třídní knize)	
Název vzdělávacího materiálu:	Termomechanika
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Iva Procházková

Termomechanika

V termomechanice se často používá pojmů *systém, soustava, těleso*. Tímto termínem rozumíme určité množství látky (tuhého, kapalného nebo plynného skupenství), jehož termomechanické vlastnosti vyšetřujeme. Systémem v termomechanice může být např. plyn v ocelové lahvi, vodní pára expandující v turbíně. Systém může nebo nemusí být stálý. Jestliže se systém mění (např. vzduch se v kompresoru stlačuje, nebo součást ohříváme v peci apod.), používáme pro tyto procesy pojmy termodynamický děj nebo změna stavu systému.

Teplota je jednou ze základních fyzikálních veličin. Teplotu měříme pomocí teploměrů, které pracují na celé řadě principů (dilatační, odporové, ...).

Máme:

- a) **Celsiova teplotní stupnice** $t [{}^{\circ}C] 0 = \text{trojný bod vody (skupenství pevné, kapalné a plynné).}$
- b) Termodynamická teplotní stupnice (Kelvinova) T[K] 0 = absolutní nula

$$T = t + 273,16$$

$$[K^{\circ}]=[^{\circ}C + 273,16]$$

Pokud se při výpočtech dosazuje rozdíl teplot, je jedno, která stupnice se používá.

$$t_1 - t_2 = T_1 - T_2$$

Pokud se při řešení dostaneme k podílu teplot, musíme dosazovat v [K].

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

$$\frac{T_1}{T_2} \neq \frac{t_1}{t_2}$$

Teplo a tepelný výkon

Teplo je forma energie, která přechází z tělesa teplejšího na těleso chladnější. Množství tepla dodaného nebo odebraného tělesu:

$$Q = m \cdot c \cdot (t_2 - t_1) \quad [J]$$

m − hmotnost tělesa;

c – měrná tepelná kapacita – vyjadřuje množství tepla potřebného k ohřátí 1 kg látky o 1 stupeň;

 t_1 – počáteční teplota;

 t_2 – výsledná teplota.

Pokud tělesu teplo dodáváme, Q > 0

odebíráme, Q < 0

Jednotkou tepla je 1 J. Starší jednotka 1 kcal = 4186,8 J

Tepelná kapacita systému je podíl tepla a teplotního rozdílu:

$$K = \frac{Q}{t_2 - t_1} \left\lceil \frac{J}{K} \right\rceil$$

$$c = \frac{K}{m} \left[\frac{J}{kg \cdot K} \right]$$

c – je v rovnici pro sdílení tepla **tepelnou kapacitou 1 kg látky** a je označováno jako **měrné teplo** nebo **měrná tepelná kapacita**.

Množství tepla dodaného nebo odebraného za jednotku času nazýváme **tepelným výkonem** a udáváme ve [W].

$$Q_{\tau} = \frac{Q}{\tau} \left[\frac{J}{s} = W \right]$$

U tuhých a kapalných látek máme určitou hodnotu měrného tepla jednoznačně danou.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

U plynů rozlišujeme 2 měrná tepla:

 c_v —měrné teplo za stálého objemu (pro vzduch: $c_v = 714 \frac{J}{kg \cdot K}$);

 c_p – měrné teplo za stálého tlaku ($c_p = 1005 \frac{J}{kg \cdot K}$);

 $c_p > c_v$

 \rightarrow 1,66 pro 1 atomové plyny;

$$\frac{c_p}{c_v} = \kappa \rightarrow \qquad \rightarrow 1,4 \text{ pro 2 atomové plyny;}$$

 \rightarrow 1,3 pro 3 atomové plyny;

K − Poissonova konstanta nebo–li adiabatický exponent.

Př.: Jaké množství energie odevzdá za 1s 1kg vody lopatkám rovnotlaké turbíny, jestliže absolutní vstupní rychlost je $58.9 \,\mathrm{m/s}$, absolutní výstupní rychlost $24.6 \,\mathrm{m/s}$?

$$Y = \frac{c_1^2 - c_2^2}{2} = \frac{58.9^2 - 24.6^2}{2} = 1432 \frac{J}{kg}$$

Seznam použité literatury:

- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA II Kinematika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA III Dynamika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., *MECHANIKA IV Mechanika tekutin a termomechanika pro střední průmyslové školy strojnické*, Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: MECHANIKA Sbírka úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.