ATP 2000-2017

Seminarski rad u okviru kursa Istraživanje podataka Matematički fakultet

Marija Mijailović mi14199@alas.matf.bg.ac.rs Miroslav Mišljenović mr12260@alas.matf.bg.ac.rs

jun 2018.

Sažetak

U ovom radu analizirali smo skup podataka "ATP - rezultati turnira od 2000-2017". Obradili smo pravila pridruživanja, klasterovanje, klasifikaciju i predstavili sve navedene metode odgovarajućom vizualizacijom. Skup podataka je preuzet sa https://www.kaggle.com/gmadevs/atpmatches-dataset.

Sadržaj

1	Uvod	1
2	Analiza podataka	1
3	Pravila pridruživanja	3
4	Klasterovanje	5
5	Klasifikacija 5.1 Klasifikacija u alatu KNIME - SVM	5

1 Uvod

Skup podataka ATP mečeva podeljen je u 17 zasebnih .csv fajlova i svaki od njih prikazuje individualne statistike za svaki turnir u toku te godine.

2 Analiza podataka

U ovom poglavlju sledi kratak pregled najistaknutijih atributa ovog skupa podataka. Svaki red u skupu, označava jedan meč i sve informacije o tom meču.

U tabeli 1 prikazani su podaci o turniru.

U tabeli 2 prikazani su podaci o pobedniku meča.

U tabeli 3 prikazani su podaci o gubitniku meča.

Ime kolone	Objašnjenje		
tourney_id	id turnira		
tourney_name	ime turnira		
surface	podloga(Grass, Clay, Hard)		
$tourney_level$	nivo turnira(Grand Slam, Finals, Masters, Tour Series, Challenger)		
round	runda(Round of 16, Quarterfinal)		
minutes	trajanje meča u minutima		

Tabela 1: Podaci o turnirima

Ime kolone	Objašnjenje		
winner seed	nosilac na turniru		
winner_entry	ulaznica(WildCard, Qualified, LuckyLoser, ProtectedRanking)		
winner_name	ime pobednika		
$winner_ht$	visina pobednika		
winner_ioc	zemlja porekla pobednika		
winner_age	godine pobednika		
$winner_rank$	ATP rang pobednika		
winner_rank_points	ATP poeni pobednika		
w_ace	broj asova pobednika		
w_df	broj duplih grešaka pobednika		
w_svpt}	broj poena dobijenih na servis pobednika		
w_1stIn	broj ubačenih prvih servisa pobednika		
w_1stWon	broj poena dobijenih nakon ubačenog prvog servisa pobednika		
w_2 ndWon	broj poena dobijenih nakon ubačenog drugog servisa pobednika		
w_SvGms	broj gemova u kojima je servirao pobednik		
$w_bpSaved$	broj spašenih brejk lopti pobednika		
w_bpFaced	broj izgubljenih gemova posle brejka pobednika		

Tabela 2: Podaci o pobednicima

Ime kolone	Objašnjenje			
loser seed	nosilac na turniru			
loser entry	ulaznica(WildCard, Qualified, LuckyLoser, ProtectedRanking)			
loser name	ime gubitnika			
loser ht	visina gubitnika			
loser ioc	zemlja porekla gubitnika			
loser age	godine gubitnika			
loser_rank	ATP rang gubitnika			
loser_rank_points	ATP poeni gubitnika			
l_ace	broj asova gubitnika			
l_df	broj duplih grešaka gubitnika			
l_svpt	broj poena dobijenih na servis gubitnika			
l_1stIn	broj ubačenih prvih servisa gubitnika			
l_1stWon	broj poena dobijenih nakon ubačenog prvog servisa gubitnika			
l_2ndWon	broj poena dobijenih nakon ubačenog drugog servisa gubitnika			
l_SvGms	broj gemova u kojima je servirao gubitnik			
$l_bpSaved$	broj spašenih brejk lopti gubitnika			
l_bpFaced	broj izgubljenih gemova posle brejka gubitnika			

Tabela 3: Podaci o gubitnicima

S obzirom na veliki broj raspoloživih godina, prvo smo se detaljno upoznali sa podacima i šta nam koja godina pruža i koji su najzanimljiviji atributi za svaku godinu. U zavisnosti od toga smo, po potrebama metoda, koristili različite godine, ali svuda smo se ograničili na četiri maksimalno.

3 Pravila pridruživanja

Pravila pridruživanja smo obradili u programskom alatu KNIME (slika 1). Odlučili smo se za 2009. godinu, jer su rezultati reprezentativniji u odnosu na ostale godine.

Slika 1: KNIME implementacija

Na slikama 2 i 3 grafički su prikazani rezultati za sedam tenisera koji su imali prosečno najviše asova po meču na kome su pobedili. Izabrali smo četiri parametra za svakog igrača: broj asova pobednika, broj dobijenih poena na servis pobednika, broj ubačenih prvih servisa pobednika i broj osvojenih poena nakon ubačenog prvog servisa pobednika. Na histogramu i grafiku paralelnih koordinata mogu se videti i uporediti rezultati.

Slika 2: Histogram

Parallel Coordinates Plot

Slika 3: Paralelne koordinate

Iznenađenje je pojavljivanje Amera Delića u prvih sedam, jer je to autorima nepoznat igrač. Uvidom u podatke, utvrđeno je da je on te godine odigrao samo osam mečeva, a pobedio je samo tri puta (što je kriterijum po kome je birano najboljih sedam).

U tri kategorije smo podelili sledeća četiri atributa: broj asova pobednika, broj duplih servis grešaka pobednika, broj osvojenih poena nakon ubačenog prvog servisa pobednika, broj spašenih brejk lopti pobednika. Na slici 4 se mogu videti pravila pridruživanja dobijena na osnovu te kategorizacije, sortirani po Lift meri. Za pouzdanost smo uzeli vrednost 0.4, a za minimalnu podršku vrednost 0.15. Analizirali smo podatke za sve godine i rezultati su prilično uniformni. Za 2009. godinu je dobijena druga najveća Lift mera (1.36) i odnosi se na pravilo [ACE 2, WON 2, DF 1] -> [BPS 1]. U 2004. godini smo dobili najveću vrednost Lift mere (1.441) za pravilo [BPS 1, ACE 1, DF 1] -> [WON 1].

Slika 4: Pravila pridruživanja

4 Klasterovanje

5 Klasifikacija

5.1 Klasifikacija u alatu KNIME - SVM

Klasifikaciju smo vršili na četiri normalizovana atributa: broj asova gubitnika, broj duplih servis grešaka gubitnika, broj ubačenih prvih servisa gubitnika, broj brejk šansi na servis gubitnika. Ispitivana je zavisnost ovih atributa u odnosu na podlogu na kojoj se igra meč.

Vršili smo klasifikaciju tehnikom SVM. Normalizovane podatke smo podelili na trening i test skup u odnosu 70-30. Primenili smo sva tri raspoloživa kernela (polinomijalni trećeg stepena, sigmoid, Gausov(RBF)). Na slici 5 se mogu videti preciznosti za sva tri kernela, i za trening i za test skup.

Slika 5: Preciznost za različite kernele

Koristeći polinomijalni kernel trećeg stepena, dobili smo izuzetno loše rezultate. Naime, skoro 50% redova (1501 od 3257) odgovaraju mečevima koji su odigrani na tvrdoj podlozi. Na slikama 6 i 7 vidimo da su podaci pogrešno klasifikovani u mečeve koji su odigrani na šljaci.

Row ID	Hard	Clay	Carpet	Grass
Hard	11	1039	0	0
Clay	1	799	0	0
Carpet	1	195	0	0
Grass	6	227	0	0

Slika 6: Trening podaci za polinomijalni kernel

Row ID	Hard	Clay	Carpet	Grass
Hard	2	449	0	0
Clay	1	342	0	0
Carpet	0	84	0	0
Grass	3	97	0	0

Slika 7: Test podaci za polinomijalni kernel

Koristeći sigmoid kernel, situacija se promenila utoliko što su podaci vezani za tvrdu podlogu vrlo dobro klasifikovani, što se može videti na slikama 8 i 9. Primetimo da su podaci uglavnom raspoređeni u klase koje se odnose na beton i šljaku.

Row ID	Hard	Carpet	Clay	Grass
Hard	974	2	74	0
Carpet	183	0	13	0
Clay	647	5	148	0
Grass	217	1	15	0

Slika 8: Trening podaci za sigmoid kernel

Row ID	↓ Hard	Carpet	Clay	Grass
Hard	425	0	26	0
Carpet	81	0	3	0
Clay	276	3	64	0
Grass	93	0	7	0

Slika 9: Test podaci za sigmoid kernel

Koristeći Gausov kernel, dobili smo lošiju klasifikaciju za tvrdu podlogu, dosta bolju klasifikaciju za šljaku i malo bolju klasifikaciju za travu (slike 10 i 11).

Row ID	Hard	Clay	Grass	Carpet
Hard	743	210	97	0
Clay	376	335	89	0
Grass	182	30	21	0
Carpet	133	39	24	0

Slika 10: Trening podaci za Gausov kernel

Row ID	- Hard	Clay	Grass	Carpet
Hard	304	96	51	0
Clay	157	139	47	0
Grass	74	19	7	0
Carpet	59	16	9	0

Slika 11: Test podaci za Gausov kernel

U svim slučajevima, klasifikacija koja se odnosi na tepih je davala nulu. Moguće objašnjenje je činjenica da 10% podataka za igranje na tepihu sadrži mnogo kolona sa nedostajućim vrednostima. Potrebna je detaljnija analiza za objašnjenje ovog rezultata klasifikacije, koja prevazilazi potrebe ovog rada.