

Field Evaluation of Hopper Dredge Overflow for the Delaware River

Jerry L. Miller, Michael R. Palermo, and Thomas W. Groff

July 2002

20020916 099

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Field Evaluation of Hopper Dredge Overflow for the Delaware River

by Jerry L. Miller, Michael R. Palermo

Environmental Laboratory
U.S. Army Engineer Research
and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Thomas W. Groff
Operations Division
U.S. Army Engineer District, Philadelphia
100 Penn Square East
Philadelphia, PA 19107-3390

Final report

Approved for public release; distribution is unlimited

Contents

Preface	vi
1—Introduction	. 1
Background	. 1
Study Location	. 2
Purpose and Scope	. 4
2—Field Monitoring	. 5
Dredging Equipment and Sampling Operations	. 5
Dredge Operation Variables	. 5
Collection of In Situ Sediment and Site Water	. 5
Hopper Inflow Monitoring	. 6
Hopper Contents Monitoring	. 6
Hopper Overflow Monitoring	. 6
Plume Monitoring	. 7
Sedimentation Assessment	. 8
Bioassay	. 8
3—Data Analysis	. 9
Hopper Loading Characteristics	. 9
Coarse-grained site	
Fine-grained site	10
Economics	10
In Situ Sediment and Background Water Samples	11
Coarse-grained site	11
Fine-grained site	11
Hopper Inflow	17
Coarse-grained site	
Fine-grained site	
Hopper Contents	
Coarse-grained site	
Fine-grained site	
Hopper Overflow	
Coarse-grained site	

Fine-	grained site	22
	onitoring	
Coar	se-grained site	27
	grained site	
	tation Results	
	se-grained site	
	grained site	
	Elutriate Tests	
	se-grained site	
	grained site	
	Il Findings of a 96-hr Water Column Bioassay	
	grained site	
4—Summary	and Conclusions	40
Appendix A:	Delaware River Sediment and Water Quality Analysis (Coarse- and Fine-Grained Sites)	\ 1
Appendix B:	Plume Study Field Activities and Data Results	31
Appendix C:	Detection of Short-Term Sedimentation During Hopper Dredging Operations in Delaware Bay and the Delaware River	C1
Appendix D:	Summary of Technical Findings: 96-hr Bioassay with Mysidopsis bahia and Menidia beryllina)1
SF 298		
List of F	igures	
Figure 1.	Dredge McFarland	1
Figure 2.	Locations of the lower and upper hopper dredge overflow test study sites	3
Figure 3.	Hopper loading at coarse-grained site	9
Figure 4.	Hopper loading at fine-grained site	11
Figure 5.	Range of gradation curves from in situ sediment collected at the coarse-grained site	12
Figure 6.	Range of gradation curves from in situ sediment collected at the fine-grained site	18
Figure 7.	Range of gradation curves from hopper inflow at the coarse-grained site	19

Figure 8.	Range of gradation curves from hopper inflow at the fine-grained site
Figure 9.	Hopper contents—solids concentrations of coarse-grained material
Figure 10.	Hopper contents—solids concentrations of fine-grained material
Figure 11.	Range of gradation curves from hopper overflow at the coarse-grained site
Figure 12.	Range of gradation curves from hopper overflow composites at the coarse-grained site
Figure 13.	Range of gradation curves from hopper overflow at the fine-grained site
Figure 14.	Range of gradation curves from hopper overflow composites at the fine-grained site
Figure 15.	Plume solids concentrations at surface 28
Figure 16.	Plume solids concentrations at middepth 28
Figure 17.	Plume solids concentrations at bottom 29
Figure 18.	Plume solids concentrations at coarse-grained site 29
Figure 19.	Plume solids concentrations at surface
Figure 20.	Plume solids concentrations at middepth
Figure 21.	Plume solids concentrations at bottom
Figure 22.	Plume solids concentrations at fine-grained material 32
List of	Tables
Table 1	Delaware River Coarse- and Fine-Grained Loading Data . 10
Table 2	Delaware River Coarse-Grained Site, Summary of Sediment and Water Quality Data
Table 3	Delaware River Fine-Grained Site, Summary of Sediment and Water Quality Data

Preface

This report describes the potential economic benefits and potential environmental effects from overflow dredging in the lower Delaware River. This work was conducted by the Environmental Laboratory (EL), U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, MS. Funding for the study was provided by the U.S. Army Engineer District, Philadelphia.

This report was written by Mr. Jerry L. Miller, Ecological Resources Branch, Ecosystem Evaluation and Engineering Division (EEED), EL, Dr. Michael R. Palermo, Environmental Processes and Engineering Division (EPED), EL, and Mr. Thomas W. Groff, Operations Division, U.S. Army Engineer District, Philadelphia. Technical review of this report was provided by Messrs. Thomas R. Patin and Jerry J. Pasquale.

This study was conducted under the direct supervision of Dr. Michael F. Passmore, Chief, Ecological Resources Branch, Dr. Dave J. Tazik, Chief, EEED, and under the general supervision of Dr. Edwin A. Theriot, Director, EL.

At the time of publication of this report, Dr. James R. Houston was Director of ERDC, and COL John W. Morris III, EN, was Commander and Executive Director.

This report should be cited as follows:

Miller, J. L., Palermo, M. R., and Groff, T. W. (2002). "Field evaluation of hopper dredge overflow for the Delaware River," ERDC/EL TR-02-17, U.S. Army Engineer Research and Development Center, Vicksburg, MS.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

1 Introduction

Background

The U.S. Army Engineer District (USAED), Philadelphia, has an extensive navigation responsibility throughout the Delaware River Basin. Maintenance dredging averages about 3,000,000 m³ (4,000,000 yd³) of material annually of which about 191,000 m³ (250,000 yd³) is removed by the Hopper Dredge *McFarland* (Figure 1). The dredging provides a safe navigation channel, which supports the shipping of nearly 136,000,000 metric tons (150,000,000 short tons) of cargo per year.

Figure 1. Dredge McFarland

Hopper dredges, like the *McFarland*, are self-propelled ships equipped with propulsion machinery, hoppers for dredged material storage, and dredge pumps. Dredged material is hydraulically raised through trailing dragarms in contact with the channel bottom and is discharged into the hoppers. The material is then held in the hoppers until placed at the disposal site.

Hopper dredges are often loaded past the point of overflow for economic reasons. As the hopper is filled, dredged material is stored in the hopper bins until overflow begins. The density of the hopper contents is increased by allowing the low-density supernatant to overflow back into the waterway. As the low-density supernatant overflows, the average density of the hopper contents increase. Thus, more material can be transported per trip to the disposal site or facility. This practice of overflowing hoppers to achieve a high-density load is referred to as economic loading.

In considering overflow, there is normally a tradeoff between the potential economic benefits and potential environmental effects. Overflow results in increased water column turbidity, and supernatant solids may be redeposited near the dredge site. Also, if sediments are contaminated, the overflow may result in some release of contaminants to the water column. Therefore, the relationship between dredge production, density of the hopper load, and the rate of material overflow are important variables in maximizing the efficiency of the dredging operation while minimizing contaminant release.

State environmental resource agencies have expressed concerns regarding the turbidity, sedimentation of suspended solids, and potential contaminant release from overflow resulting from the presence of oyster seedbeds in some areas near the navigation channel. Currently, overflow is not permitted at any location within the Delaware River Basin.

There is a significant potential for economic benefits to overflow in certain reaches of the project if the impact resulting from overflow is environmentally acceptable. The USAED, Philadelphia, therefore, initiated an evaluation of the practice of overflow for select portions of the Delaware River and Delaware Bay to determine if overflow for those reaches can meet applicable water quality standards. The District requested assistance from the Environmental Laboratory (EL), U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, MS, in conducting a study of overflow in the Delaware River/ Delaware Bay system.

This study helped to quantify the degree of turbidity, suspended solids, and contaminant release generated by overflow and the dispersion of the overflow plume in reaches near the oyster seedbeds. Reaches in the Delaware River Basin where overflow would be acceptable were determined.

Study Location

Two test areas were selected in the Delaware River in conjunction with recommendations from the New Jersey Department of Environmental Protection (NJDEP) and Delaware's Department of Natural Resources and Environmental Control (DNREC) (Figure 2). These areas were selected on the basis of historical knowledge of the Delaware Basin and known locations of material types (sand, silt, and clay) within the river. The first site

Figure 2. Locations of the lower and upper hopper dredge overflow test study sites

was located at the Brandywine range (Lower Study Site) in the lower Delaware Bay (mile marker 17.7) and was selected to represent a predominantly coarse-grained material. The second site was located at the Deepwater Point range (Upper Study Site) just below the Delaware Memorial Bridge (mile marker 67.9) and was selected to represent a typical fine-grained material. All the proposed activities for the study were reviewed with members of the Delaware River Fish Cooperative Technical Committee prior to submitting applications to the respective regulatory offices for Water Quality Certification (WQC) approvals.

Purpose and Scope

The purpose of this study was to evaluate the efficiency of economic loading of a hopper dredge and the physical and chemical characteristics of hopper overflow for the Delaware River dredging project. The study was designed to evaluate the effectiveness of increasing the hopper load during overflow and to determine the physical and chemical characteristics of the overflow into the Delaware River.

The study involved the following activities:

- a. Loading data collection measurements of the load in the hopper at and following overflow.
- b. Characterization of in situ sediment physical and chemical analysis including elutriate testing.
- c. Hopper inflow monitoring physical and chemical analysis.
- d. Hopper contents monitoring physical and chemical analysis.
- e. Hopper overflow monitoring physical and chemical analysis.
- f. Plume monitoring physical and chemical analysis; and in situ turbidity measurements.
- g. Sedimentation assessment photo imagery of recent sediment deposits.
- h. Elutriate and Bioassay Testing elutriate tests and acute toxicity testing on a fish and a crustacean species were performed for purposes of prediction and potential effects of overflow for the entire project.

These activities provided information to characterize the in situ sediment, hopper inflow as pumped from the draghead, and hopper overflow. Measurement of the material density in the hopper, solids concentration, particle size, and rate of overflow provided information for the development of hopper filling relationships. Elutriate tests were performed to predict the contaminant release back into the water column. These test results were also compared with the data results of the hopper overflow for consistency in sample analysis. Samples taken from the water column defined the relative difference between sediment resuspended by the draghead and that caused by overflow. One overflow and one nonoverflow dredge pass or overflow event was monitored in each of the two reaches of the river.

2 Field Monitoring

Dredging Equipment and Sampling Operations

The Dredge McFarland was used on September 15 and 16, 1998, to dredge in the two test reaches. The field sampling and monitoring was conducted during representative hopper operations with and without overflow in both reaches.

The tasks described in this technical report were the responsibility of the ERDC, Vicksburg, MS, with support provided by the USAED, Philadelphia. The USAED, Philadelphia, provided the necessary boats and personnel to assist the ERDC in all field monitoring, in situ data collection, and sample collection. ERDC staff members were present at the dredging site during the monitoring effort to direct the field efforts and assist in data and sample collection. ERDC performed all subsequent laboratory testing of samples, data analysis, and report preparation.

Dredge Operation Variables

At a minimum, it was necessary to have a complete record of the dredge operating variables during the monitoring and sampling periods. In addition to these standard dredge data, the time and duration of overflow during sampling events were recorded along with loading charts using the automated charts of the *McFarland*.

Collection of In Situ Sediment and Site Water

On September 14, in situ sediment and site water were collected at the two study sites prior to dredging to provide samples for sediment and water characterization and elutriate testing. Fifteen (15) sediment samples were taken at even intervals in a transect along which the dredge was expected to pass during overflow and nonoverflow conditions. Samples were collected with a grab-type apparatus. A 200-ml portion of the sample was

retained from each of the 15 samples for water content and density analysis (15 individual analyses). The remaining material of the 15 samples, were composited for sediment and water characterization and elutriate tests.

Composited samples were also obtained for elutriate testing from three sampling locations. Thus, five buckets and fifteen 250-ml bottles of sediment were obtained and shipped to the ERDC to characterize the in situ sediment. The five buckets of sediment were further composited to produce a single uniform composite. From this composite, standard elutriate testing was performed using the site water to prepare the samples. Density (or water content) estimates were made on all 15 samples, and the other physical and chemical tests were performed on the composite sediment sample.

Hopper Inflow Monitoring

The sediment slurry that was picked up by the draghead and transported through the hydraulic suction line was sampled as it entered the hopper (in 3-min intervals during filling and overflow). Grab samples at the inflow port(s) were collected and analyzed for solids concentration and appropriately composited and analyzed for grain size distribution, particle size distribution of fines, and chemical concentrations. The composited samples represented sediment from five equal time intervals during hopper loading.

Hopper Contents Monitoring

As material is pumped into the hoppers, a layer of high-density settled material is formed in the lower portion of the hopper with a layer of water with suspended material in the upper portion of the hopper. The vertical distribution of suspended material density or concentration in the upper portion of the hopper was measured. These data, in conjunction with overflow concentration data, can be used to determine when an economic load is achieved and when material density in the hopper is at a maximum. A second use for hopper vertical density measurements is to examine the potential for equipment modification, such as introducing settling tubes to enhance settling rates of solids in hopper bins. Hopper sampling at three depths was taken at the beginning of overflow and at the end of overflow. Three locations in the hopper were sampled.

Hopper Overflow Monitoring

Because of the variability in solids concentration at the hopper overflow, 40 samples were taken to determine suspended solids for each overflow

period. Samples were composited for chemical contaminant determination of chemical concentrations, grain size, particle size distribution of fines, and toxicity testing.

Plume Monitoring

Plume monitoring provided an evaluation of the amount of sediment in the water column resuspended by the operating draghead vs. the amount of sediment contributed by overflow. Data on plume concentrations as a function of distance and time provided information to determine an appropriate buffer distance from the oyster beds in which overflow should be restricted. Differentiation between the magnitude of sediment plumes caused by the draghead and plumes from overflow materials required monitoring both overflow and nonoverflow periods. Monitoring one dredge pass without overflow and one dredge pass with overflow was the minimal plume monitoring effort. To reduce the variability of results between tests, the dredge was required to be moving in the same direction relative to the current flow for every overflow and nonoverflow test monitored. Plume monitoring also provided information on contaminant dispersion in the water column.

Plume monitoring required two boats. One boat was positioned behind the hopper dredge in its path immediately after it passed and began sampling the water column to evaluate the rate of settling of the plume. The other boat towed a turbidimeter (in situ-type probe) across the plume to give information on lateral plume dispersion. Thus, the duration and geometry of the plume could be estimated. Both boats in the monitoring area carried out background sampling immediately before the dredging began.

Lateral plume dispersion measurements were made at middepth by locating the turbidimeter probe at the midpoint of the water column. Background turbidity was extensively measured. The boat towing the turbidimeter monitored distance from the dredge, using a range finder and hand bearing compass, and distance from the anchored sample boat. The whole plume was traversed, going outside of the plume at each extreme of the turbidity plume.

While the mobile boat was measuring lateral plume dispersion, the anchored boat measured decay of the plume as it settled through the water column. Water samples were taken at the surface (less than 1 m deep), middepth, and near bottom (within 1 to 2 m of the bottom). Fifteen samples at three depths for a 50-min period were taken to characterize background total suspended solids (TSS) conditions, and about 30 samples at three depths in a 30-min time frame were taken to characterize the overflow plume after the dredging pass. The latter sampling protocol was also used for the nonoverflow sediment plume measurements.

TSS was measured for all plume samples and a compositing scheme was used to reduce the number of samples for chemical analysis. Three compos-

ite samples for the plume monitoring were obtained (one at each of the three depths) by mixing portions of the samples taken at all three depths over one-third of the plume monitoring effort. Chemical analysis included heavy metals, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) and provided data on potential contamination of the water column by the dredging operation.

Sedimentation Assessment

One difficulty in assessing potential impacts of sedimentation resulting from hopper overflow is detection of thin overburdens in habitats in the vicinity of the dredging operation. Although thin (<5 cm) overburdens could have detrimental impacts, for example on the settlement and attachment of oyster larvae, this exceeds the detection limits of most conventional techniques. One method effective in measuring sedimentation events of less than 1 cm is sediment-profiling imagery using a sediment profile camera. This technique involves insertion of a prism into the substrate through which images of the sediment-water interface are obtained. The images provide rapid, accurate measures of recent sedimentation, particularly if the overburden sediments are dissimilar from the ambient substrate. The images also provide indications of impacts to benthic communities (e.g., distribution and position of annelid worms and bivalve mollusks relative to the relict and overburden surface) and changes in physical/chemical conditions of the sediment (e.g., altered redox potential discontinuity, evidence of hypoxia). This camera system is unaffected by ambient turbidity. An attached plan-view underwater camera also provided photographs at the sediment profile stations.

The sediment profiling camera system was deployed at the Delaware River overflow operation site. Because the area is tidally influenced, stations were occupied both up and down current from the dredging project. Stations were allocated to gather information for transects across several cross sections of the river reach potentially influenced by overflow, including any charted oyster bars.

Bioassay

Samples were taken at the hopper overflow for use in a 96-hr water column bioassay. This portion of the study will help in determining the possible biological effects of water column exposure to Delaware River sediment.

3 Data Analysis

Hopper Loading Characteristics

Coarse-grained site

The loading data provided by the USAED, Philadelphia, for the coarse-grained site are shown in Figure 3, and the summary data for the load increase can be found in Table 1. Loading volumes are based on calculations using historical density data in the area being dredged.

Figure 3. Hopper loading at coarse-grained site

It took 9 min of dredging to reach overflow status. During the first 9 min, material increased at a rate of 112.4 m³/min (147 yd³/min). Once overflow began, the increase in material loading was determined to be 22.9 m³/min (30 yd³/min). Overflow continued for 57 min with a gain of 130 percent realized. At the end of the overflow period, the hopper was full of sediment.

Table 1 Delaware	River Coa	rse- and Fin	e-Grained L	oading Da	ta		
	Coarse-G	rained Material			Fine-Gra	ained Material	
Time, min	Loading, m ³		Loading, yd ³	Time, min	Loading, m ³		Loading, yd ³
0 9 66	0 1,009 Begin 2,324 Overfl	overflow (9 min) ow (57 min)	1,320 3,039	0 13 34 0 13 18	1,031 Overfl 0	overflow (13 min)	1,139 1,348 1,139 1,257
Time, min	Loading m³/min	Losing to Overflow m ³ /mln	% Gain	Time, min	Loading m³/min	Losing to Overflow m³/mln	% Gain
9 57	112.4 22.9	89.5	130.3	13 21 5	67.0 7.6 18.0	59.4 49.0	18.4 10.3

Fine-grained site

The loading diagram for the fine-grained site is shown in Figure 4 and the summary data for the load increase can be found in Table 1. For this site, the dredge operated 13 min before overflow began. During this first 13 min of dredging, material increased at a rate of 67.0 m³/min (87 yd³/min). Once overflow began, the increase in material loading was determined to be 7.6 m³/min (10 yd³/min). Overflow continued for 21 min with a gain of 18 percent realized. The percent gain realized for the coarse reach was interpolated for 21 min and was 50 percent, so that a comparison could be made during the same time frame between the two sites.

Economics

These results are consistent with the material composition at the two sites. The coarse-grained site would be expected to settle at a more rapid rate, therefore, showing a significant gain in material. Whereas, the finegrained material would tend to stay in suspension, resulting in most of the sediment being discharged out the overflow. Because of the large amount of gain realized at the coarse-grained site, a rate of return of about 50 to 60 percent may be realized based on the amount of material retained in the hopper and the round-trip travel time required to the dump site. Basically, for every 3 days of nonoverflow dredging, approximately the same amount of material can be removed by allowing overflow dredging in a 2-day period. This percent return also assumes that the material being discharged in the overflow settles in the navigation channel and will require redredging the area. At the fine-grained site, the rate of return is negligible because of the small gain in load achieved. This is also based on round-trip travel time required to the pump-out site, material being discharged in the overflow settling in the navigation channel and requiring redredging of the area. If

Figure 4. Hopper loading at fine-grained site

redredging the area at either site is not required, then the percent return estimated at those sites may increase.

In Situ Sediment and Background Water Samples

Coarse-grained site

The composited sediment samples at the coarse-grained site show the proposed dredged area to average 97 percent sand (Figure 5). The range was less than 1 percent \pm of the average value (96.5 to 97.7 percent). Background water chemical concentrations were compared with the contaminants of concern as listed in the acute marine objectives for toxic pollutants for the protection of aquatic life in the Delaware River estuary. This information can be found in the Delaware River Basin Commission West Trenton, New Jersey, Administrative Manual-Part III, Water Quality Regulations, October 23, 1996. The only parameter above the standard was background dissolved copper (Table 2). The standard for copper is 5.3 μ g/l, and the background value was 13 μ g/l. The water quality and sediment data for the coarse-grained site can be found in Appendix A.

Fine-grained site

The composited sediment samples at the fine-grained site show the proposed dredged area to average 33 percent sand (Figure 6). The range for sand was from 18 to 50 percent. Background water concentrations for the contaminants of concern were all below the more stringent of the freshwater or marine stream quality objectives for acute toxicity standards as

Range of gradation curves from in situ sediment collected at the coarse-grained site Figure 5.

Table 2 Delaware River Coarse-Grained Site, Summary of Sediment and Water Quality Data

	OVERFLOW CONC µg/1	80 80 80 80 80 80 80 80 80 80 80 80 80 8
	ELUTRIATE CONC µg/l	8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8
	BACKGROUND CONC µg/l	8D 8D 8D 8D 8D 8D 44.0000 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D
mg/1	WATER QUALITY STANDARDS ¹ µg/1	NL NL 20 20 NL NL NL NL NL NL NL NL NL NL NL NL NL
- 1395.000 mg/1	DETECTION LIMIT #9/1	0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Concentration	SEDIMENT CONC mg/kg	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Effluent Suspended Solids Concentration	Parameter	2-METHYLNAPHTHALENE A-BHC A-ENDOSULFAN ACENAPHTHENE ACENAPHTHENE ALUMINUM (A1) ALUMINUM (A1) ANTHRACENE ANTHRONY ARSENIC (As) B-BHC B-BHC B-BHC B-BHC B-BHC B-BHC B-BHC B-BHC C-B-COBLFAN BARIUM (Ba) BENZO(G, H, I) PERYLENE BENZO(G, H, I) Cr) COPPER (Cu) D-BHC DIBENZO(A, H) ANTHRACENE DIELDRIN ENDOSULFATE ENDORULFATE FLUORRANTHENE FLUORRANTHENE FLUORRANTHENE FLUORRANTHENE

(Page 1 of 4)

PARAMYSTER CONC. PAGE 1277251104 STATESTORY PACKGROUND ELICYSTATE CONCESSORY PAGE CONC. PAGE 1277251105 STATESTORY PAGE CONC. PAGE 1								
THE THE PROOF TH	PARAMETER	SEDIMENT	DETECTION	WATER QUALITY STANDARDS ^T	BACKGROUND	ELUTRIATE CONC	OVERFLOW	
CHILDRY CHILDR		mg/kg	hg/1	1/51	µg/l	µg/1	µ9/1	
Color Colo	HEPTACHLOR	0.001	0.0250	0.027	DE DE	BD	80	
(17.1) Fig. 1. (17.1)		0.002	0,0250	NI,	<u> </u>	BD	80	
12, 30, 30, 30, 30, 22, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, 40, 4	INDENO(1,2,3-C,D) PYRENE	0.021	0.3000	IN	3D	BD	BD	
(Fig.) 12.300 1.0000 22.0 HD D DD BD	IRON (Fe)	5903,000	20,0000	IN	BD	3D	BD	
WESS (Hz) (4.73) (4.7	LEAD (PD)	12.300	1.0000	220	GE	BD	BD	
0.093 0.2500 NL	NESE	94.800	1,000	N	6,0000	1,6667	BD	
0.000 0.0500 NL BD	MERCURY (Ha)	0,093	0.2000	2.7	CER	BD	BD	
1.302 1.0300 NL	SOUTH CANCELLAND	0.000	0.2500	N. I.	c a	2	. C	
1.302 1.0000 75 5.0000 5.0000 5.0000 9.0000 0.0000 NL BD	NEUTROPHERMA	0.000	0.3000	I I		80	. E	
5.0 0.000 0.0010 0.	(IN) LENCTN	3,300	1.9000	25	0000	5.0000	σ	
0.000 0.0010 NI, SD 0.0010 ND 0.0010 NI, SD 0.0010	TOTAL POB's			0.0				
110	PCB 101	0.000	0.0010	Z	3D	0.0010	BD	
110	PCB 105	000.0	0.0010	N	30	BD	B	
114 0.000 0.0010 M. BD BD BD BD BD BD BD B		0.000	0.0010	N	an	30	80	
118		0.000	0.00.0	NU	BD	BD	BD	
119		0.000	0.00.0		BI)	BD	80	
12.0		0.000	0.0010	. 1 Z	BD	BD	B D	
121 0.000 0.0010 NI, BD		0.000	0.0010	Į,	30	BD	BD	
123 0.000 NL BD BD BD BD BD 124		0.000	0.0010	N.	BD	BD	BD	
127 0.000 0.0010 NL BD		0.000	0.0010	N.	മ	BD	08	
127 0.000 0.0010 NL BD BD BD BD BD 135 0.000 0.0010 NL BD BD BD BD BD 135 0.000 0.0010 NL BD		000.0	0.0010	NI.	BD	BD	BD	
128 0.000 0.0010 NL BD		0.000	0.0010	ž:	G2 (90 10 10 10 10 10 10 10 10 10 10 10 10 10	00	
135 136 137 138 139 139 139 139 139 139 139 139 139 139		0.000	0.00.0	,	2 G	<u> </u>	<u>a</u>	
136 0.000 0.0010 NL BD	٠, ,	000.0	0.00.0	3.2	o t	2 6	2 1	
136 0.000 0.0010 NL BD		000.0	0.0010	2 :) i	2 1	33 E	
138 0.000 0.0010 NL BD		0.000	0.0010		i i i	BU 55	OR 4	
141 0.000 0.0010 NL BD		000.0	0.000	J.	BC 23	ם נו	ם מ	
144		000.0	0.00.0	J.	02 E	an d	On t	
149 0.000 0.0010 NL BD		000.0	0.00.0		<u>ا</u> م	: a	<u> </u>	
151 0.000 0.0010 NL BD		000.0	0.00.0	7 :		000	200	
153 0.000 0.0010 NL BD		000.0	0.0010	1 .) (1)	200	200	
153 0.000 0.0010 NL BD BD BD BD 155 0.000 0.0010 NL BD BD BD BD BD 157 0.000 0.0010 NL BD 167 0.000 0.0010 NL BD BD BD BD BD 168 0.000 0.0010 NL BD BD BD BD 168 DD BD		0.000	0.0010	3 :	ה ה	ן מב		
156 0.000 0.0010 NL BD BD BD BD 157 0.000 0.0010 NL BD BD BD BD BD 168 D BD B		0.000	0.0010	7 :	C C	8D 22	30	
157 0.000 0.0010 NL BD BD BD 158 0.000 0.0010 NL BD BD BD BD BD 158 0.000 0.0010 NL BD BD BD BD BD 167 0.000 0.0010 NL BD BD BD BD 168 0.000 0.0010 NL BD BD BD BD 168 0.000 0.0010 NL BD BD BD		0.000	0.0010	.l Z	<u> </u>	BD	BD	
152 0.000 0.0010 NL BD BD BD 166 0.000 0.0010 NL BD BD BD 167 0.000 0.0010 NL BD BD BD 168 BD 168 BD BD 168 BD		000.0	0.0010	N.	30	BD	BD	
166 0.000 0.0010 NL BD BD BD BD 167 0.000 0.0010 NL BD BD BD 168 0.000 0.0010 NL BD BD BD		0.000	0.0010	ji Z	36	BD	BD	
167 0.000 0.0010 NL BD BD BD 168 0.000 0.0010 NL BD BD BD		0.000	0.0010	NL	C)	BD	BD	
168 0.000 0.0010 NL BD BD		0.000	0.0010	I'N	BD	BD	BD	
	*****		o.	NI	00	ED CB	ВО	

ବ୍ୟ ଅନ୍ତ ଅନ୍ତ	SEDIMENT	DETECTION	WATER QUALITY	BACKGROUND	ELUTRIATE	OVERFLOW	
	CONC mg/kg	LIMIT Hg/l	STANDARDS · µg/l	CONC hg/l	LG/I	conc hg/l	
	000	0,000	Į.	CI &	BD	Cr	
000	000.0	0.0010	N.	BD	 	1 2	
	000.0	0.0010	i i	B 0	BD	BD	
	000.0	0.0010		BD	BD	BD	
	000.0	0.0010	2 2	BD	BD	CB	
	000.0	0.0010	l k	08 08	an On	BD	
20 1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000	0.0010	T IN	BD	DO CO	BD CE	
	000.0	0.0010	1 1 2	BD	BD	Om	
	000.0	0.0010	2 2	G G	BD	i G	
	0.000	0.0010	l z	90	BD	30	
	000.0	0.0010	NT	BD	BD	BD	
	000.0	0.0010	IN	BD	BD	BD	
	00000	0.0010	N	30	BD	ae	
	0.000	0.0010	NL	BD	BD	BD	
	00000	0.0010	NL	30	90	BD	
	00000	0.0010	NI	BD	80	BD	
	0.000	0.0010	NI	BD	BD	BD	
PCB 195	0.000	0.0010	NL	3D	BD	ВВ	
	00000	0.0010	NF	90	BD	BD	
	00000	0.0010	NL	BD	BD	BD	
	0.000	0.0010	NT	BD	an	CB	
	0.000	0.0010	NL	BD	OB :	On	
	0.000	0.0010	NE	BD 1	80	G :	
	0.000	0.0010	TN.	BD	HD See 1	30 C	
	000.0	0.0010	NT.	0.0020	0.0024	7700.0	
	0.000	0.0010	JE :	2 6	BC CCC	Og t	
PCB 208	0.000	0.0010	J.) C	2.00.0 00.00	2 6	
	0.00	0.00.0	Z Z	ם מ	ממ	ם מ	
	0000	0,0010	N.	200	0000	ט ע ני	
FCB 31	000.0	0.0010	T IN	2 2	BD CC	. C	
F(5)	0000	0.0010		i di	B	BD	
r(s 3/	000.0	0.0010	T IN	BD	BD	OB OB	
	000.0	0.0010	: Z	90	BD	0,0014	
	0.000	0.0010	i N	0.0014	BD	BD	
	0.000	0.0010	Z	GR.	BD	BD	
	000.0	0.0010	N	BD	BD	BD	
	000-0	0.0010	IZ	BD	0.0010	BD	
	000.0	0.0010	NL	BD	BD	BD	
	•						

Parameter	SEDIMENT CONC mg/kg	DETECTION LIMIT Mg/l	WATER QUALITY STANDARDS ¹ µg/1	BACKGROUND CONC µg/1	ELUTRIATE CONC µg/l	OVERFLOW CONC µg/1
PC3 64	0.000	0.0010	NL	30	BD	aD B
PCB 66	0.000	0.0010	NL	BD	BD	ВО
PCB 70	00000	0.0010	NL	ВД	BD	80
PCB 74	000.0	0.0010	Ę	BD	BD	80
PCB 77	0.000	0.0010	NI,	30	ВО	BD
	0.000	0.0010	NL	30	80	BD
PCB 80	000.0	0.0010	N	BD	BD	80
PCB 31	000.0	0.0010	NI	BO	3 3 3	BD
	000.0	0.0010	NL	BD	3D	BD
	0.000	0,0010	킬	GB	BD	ВО
PCB 86	000.0	0.0010	Ž	80	BD	BD
PCB 87	0.000	0.0010	NI	CB	BD	BD
	0.000	0.0010	īN	BD	30	BD
PCB 92	0.000	0.0010	-17 22	60	30	GB
PCB 95	0.000	0.0010	ML	BD	30	BD
Lo add	0.000	0.0010	NL	BD	30	BD
PCB 83	0.000	0.0010	N.	BD	BD	30
PHENANTHRENE	0.001	0.3000	NL	80	BD	90
PPDDD	0.000	0.0500	M	BD	30	ВВ
<u> ೯</u> ೯೦ ಕ	0.000	0.0500	NE	80	ВD	80
PPDDT	0.000	0.0500	NL	BO.	BD	BD
PYRENE	0.013	0.3000	NL	BD	80	Вр
SELENIUM (Se)	0.866	2.0000	300	152.0000	167.6667	160
SILVER (Ag)	0.333	1.0000	2.3	BD	1.0000	BD
THALLITUM (T1)	0.000	2.0000	NL	ВС	BD	9
TOC-TOTAL ORGANIC CARBON	166,700	3000.0000	NL	Ca	ВD	13160
TOXAPHENE	000.0	0.2500	0.21	80	മ	E C C C
VANABETUK (V)	4.130	1.0000	NL	2,0000	1.6667	₹
21NC (Zn)	29.200	10.0000	95	80	28.0000	2.7
STEEL CHICADANE	0.000	0.0250		80	BD	30
b-CHLORDANE	0.002	0.0250	NE	ВО	85	BD
Marine Objectivos Acuto						
3D = below dotection						
NA = not applicable						
31						

found in the Delaware River Basin Commission West Trenton, New Jersey, Administrative Manual-Part III, Water Quality Regulations, October 23, 1996. Only two exceedances were found in the dissolved overflow water. Endrin was measured at a concentration of 0.0754 μ g/l as compared to the standard of 0.019 μ g/l. Zinc was measured at a concentration of 131 μ g/l as compared to the standard of 95 μ g/l. See Appendix A for the Delaware River water quality and sediment analysis for the fine-grained site.

Hopper Inflow

Coarse-grained site

Samples collected for grain-size distribution at the hopper inflow at the coarse-grained site averaged 84 percent sand (Figure 7). The range was from 52 to 98 percent. Eliminating the 52-percent sample resulted in a sandy composition of 92 percent with a range from 86 to 98 percent. This is more representative of that collected from the in situ sampling. Suspended solids concentrations in the hopper inflow could not be accurately determined because the coarse-grained material rapidly settled to the bottom of the sampling buckets, and the total bucket sample was not retained for analysis.

Fine-grained site

Samples collected for grain-size distribution at the hopper inflow at the fine-grained site averaged 12 percent sand (Figure 8). The range was from 9 to 15 percent. This is much less than the 33 percent represented by the in situ sampling.

Hopper Contents

Coarse-grained site

Suspended solids concentrations in the hopper at the coarse-grained site were <15 g/l (Figure 9). This indicates that settling was occurring very rapidly. Although the samples should be representative of the water column, it should be realized that the agitation occurring inside the hopper will keep the material in suspension for an extended period of time. Therefore, when the sample was collected, the material being agitated quickly settled and was not collected in the 250-ml sample bottle.

Range of gradation curves from in situ sediment collected at the fine-grained site Figure 6.

Figure 7. Range of gradation curves from hopper inflow at the coarse-grained site

Range of gradation curves from hopper inflow at the fine-grained site Figure 8.

Figure 9. Hopper contents—solids concentrations of coarse-grained material

Fine-grained site

Suspended solids concentrations in the hopper at the fine-grained site were upward of 150 g/l at the bottom and approximately 80 g/l at the surface (Figure 10). It is expected that high concentrations of suspended solids would be found in the water column as the hopper agitates the fine-grained material and keeps it in suspension. The high concentrations of suspended solids at the surface indicate that a large amount of the material was lost to overflow in the fine-grained site.

Figure 10. Hopper contents—solids concentrations of fine-grained material

Hopper Overflow

Coarse-grained site

Samples collected for grain-size distribution at the hopper overflow at the coarse-grained site averaged 81.1 percent sand with a range from 24.4 to 96.1 percent (Figure 11). Composites of five samples were obtained and the average grain-size distribution was 78.1 percent with a range from 66.7 to 87.7 percent (Figure 12). This shows that a large amount of the sandy material was being agitated in the hopper and being washed out during overflow. This is consistent with the loading data that show a loading of about 112.4 m³/min (147 yd³/min) before overflow and an average loading of about 22.9 m³/min (30 yd³/min) over the 57-min period during overflow. However, the rate of loading in the initial stages of overflow was likely much higher with the material in the overflow increasing as the hopper filled and retention time was decreased. None of the chemistry parameters analyzed in the overflow samples collected at the coarse-grained site exceeded marine acute objectives as listed in the Delaware River Basin Water Quality Regulations for dissolved criteria limits. Although the background value for copper (13 μg/l) exceeded the criteria (5.3 μg/l), the dissolved value for copper in the overflow was 5 µg/l, indicating a scavenging of metals by the suspended material during the dredging and overflow process.

Fine-grained site

Samples collected for grain-size distribution at the hopper overflow at the fine-grained site averaged 12.2 percent sand with a range from 6.2 to 31.2 percent (Figure 13). Composites of five samples were obtained and the average grain-size distribution was 10.6 percent with a range from 9.3 to 11.6 percent (Figure 14). The suspended solids concentrations in the overflow averaged 110 g/l over the total overflow period of 21 min. The solids concentrations were essentially consistent throughout the overflow period, indicating little retention of the fine material in the hopper once overflow began. A large amount of material, about 59.4 m³/min (78 yd³/min) or about 89 percent of the inflow is being lost to overflow. Zinc (131 µg/l) and endrin (0.0754 µg/l) were the only two chemical parameters measured in the overflow that exceeded the more stringent acute objectives of the freshwater and marine stream quality standards (95 µg/l for zinc and 0.019 µg/l for endrin) as listed in the Delaware River Basin Water Quality Regulations for dissolved criteria limits. The value for endrin exceeded standards by a factor of 4, indicating that both water quality objectives could be met a short distance from the point of overflow. None of the other chemistry parameters analyzed in the overflow samples collected at the fine-grained site exceeded the acute objectives.

Figure 11. Range of gradation curves from hopper overflow at the coarse-grained site

Range of gradation curves from hopper overflow composites at the coarse-grained site Figure 12.

Range of gradation curves from hopper overflow at the fine-grained site Figure 13.

Figure 14. Range of gradation curves from hopper overflow composites at the fine-grained site

Plume Monitoring

Monitoring of the sediment plumes was accomplished using a boatmounted 1,200-kHz Broad-Band Acoustic Doppler Current Profiler (ADCP). The instrument collects velocity vectors in the water column together with backscatter levels to determine the position and relative intensity of the sediment plume. Along with the ADCP, a MicroLite recording instrument with an Optical Backscatterance (OBS) Sensor was towed by the vessel at a depth of 15 ft. The MicroLite recorded data at 0.5-sec intervals. Navigation data for monitoring were obtained by a Starlink differential Global Positioning System (GPS). The GPS monitors the boat position from the starting and ending points along each transect.

Coarse-grained site

Transects were monitored in each test area to obtain the background levels of suspended materials prior to dredging activities. A period of 8 min following the dredge passing during nonoverflow dredging shows the level of suspended material to be returning to background levels. No lateral dispersion of the plume out of the channel was observed during the nonoverflow dredging operation.

During overflow dredging, a wider transect was performed to determine the lateral extent of the plume. No significant change above background levels could be detected. At 1-hr elapsed time following the end of the overflow dredging operation, the levels of suspended material returned to background conditions. Again, no lateral dispersion of the plume out of the channel area was observed. A complete analysis of the plume study can be found in Appendix B.

Figure 15 is a surface profile of the solids concentrations measured during nonoverflow and overflow conditions. Both sets of data fall within the minimum and maximum range of the background solids concentrations measured prior to dredging. Figure 16 is a middepth profile of the solids concentrations. Because of the narrow range between the measured values of the minimum and maximum range, both the nonoverflow and the overflow measured solids concentrations were above the maximum range. Figure 17 is a bottom profile of the solids concentrations and can be described much like that of the surface profile in that both sets of data fall within the minimum and maximum range of the background solids concentrations. In all three instances, there is not a significant difference in the solids concentrations measured during nonoverflow and the solids concentrations measured during overflow. Figure 18 shows that all solids concentrations measured during nonoverflow and overflow fell within the total minimum and maximum range measured in the background prior to dredging.

Figure 15. Plume solids concentrations at surface (coarse-grained material)

Figure 16. Plume solids concentrations at middepth (coarse-grained material)

Figure 17. Plume solids concentrations at bottom (coarse-grained material)

Figure 18. Plume solids concentrations at coarse-grained site

Fine-grained site

During the nonoverflow dredging operation, the tidal flow in the dredging area reversed from flood flow to ebb flow conditions. This accounts for the relative change in observed background levels taken before the non-overflow and overflow test dredging. At 19 min following the end of nonoverflow dredging, the levels of suspended material had returned to background conditions. Despite the change in direction of flow in the dredging area, no lateral movement of the plume beyond the channel limits was observed.

Immediately prior to overflow conditions, an increase in the background suspended material was observed. This increase is assumed to be the result of the increase in the ebb flow velocities and the resulting disturbance of bottom materials from near-bottom velocities and not dredge plume dispersion. When hopper overflow conditions began, the width of the transect was increased to observe the lateral extent of the dispersion of the dredge plume. After an elapsed time of 1 hr following the completion of the overflow dredging operation, levels of suspended materials had returned to background conditions. As in the previous dredge operations, no lateral dispersion of the dredge plume beyond the channel limits was observed. A complete analysis of the plume study can be found in Appendix B.

Figure 19 shows the solids concentrations as measured at the surface during nonoverflow and overflow conditions. The overflow solids concentrations oscillate outside the maximum background solids concentration. Toward the end of overflow, the concentrations fall back within the background range. Figure 20 shows the solids concentration as measured at middepth. The same pattern as the surface profile is exhibited. Figure 21 shows the solids concentration as measured at the bottom. The nonoverflow solids concentrations remain within the measured range of the background; however, the overflow solids concentrations remain above the maximum background range throughout the duration of overflow. Figure 22 shows the maximum background range of solids concentration measured. The nonoverflow solids measured are well within the total range while the overflow solids concentrations oscillate outside the maximum range. This is consistent since 70 percent or more of the material is fine-grained and would settle slowly.

Sedimentation Results

Coarse-grained site

Sediment profile images from a total of 14 stations were analyzed from the coarse-grained site as shown in Figure 2 of Appendix C. There was evidence that recent sedimentation had occurred at several of the stations

Figure 19. Plume solids concentrations at surface (fine-grained material)

Figure 20. Plume solids concentrations at middepth (fine-grained material)

Figure 21. Plume solids concentrations at bottom (fine-grained material)

Figure 22. Plume solids concentrations of fine-grained material

within the channel, possibly a result of the dredging operations. Gray colored suspended material, indicative of hopper overflow material, was observed at two of the stations. Four of the stations had layering from grain-size changes but are assumed to have occurred because of normal sediment transport processes rather than hopper overflow operations.

Fine-grained site

Sediment profile images from a total of 41 stations were analyzed from the fine-grained site as shown in Figure 3 of Appendix C. No evidence of recent physical disturbance was detected at any of the stations, but material that could have come from the hopper overflow was observed at one station. Five of the stations on the edge of the channel had grain-size layering with sands on the surface overlaying clayey sediments. Since the sediments in the channel were finer silts and clays, it was unlikely that the layers at the channel edge stations were the result of the dredging operations. Three of the stations on the edge of the channel had sediment layering with amphipod and worm tubes which could not have reestablished living position in the short interval between dredging and sampling. Flocculent sediment layers, thin layers of unconsolidated surface sediments, occurred at six shoal stations and one channel edge station. Based on their color tones, all flock layers appeared to be composed of background sediments and not hopper overflow or dredged material.

No indication of newly deposited dredged material was observed at stations outside the edge of the navigation channel at either study site. Although the sampling station coverage was not extensive, given the relatively short duration of the tests, the risk of significant sedimentation as a consequence of the hopper dredging operations appears largely restricted to the bottom and side slopes of the channel. The full report on the sedimentation analysis is attached as Appendix C.

Standard Elutriate Tests

The standard elutriate analysis was performed using the composited insitu sediment and site water. The purpose of the standard elutriate testing was to gain data on possible application of the test for prediction of overflow contaminant concentrations. The mean predicted dissolved values from the elutriates were calculated using the EFQUAL computer program, a module of the ADDAMS software package. The elutriate test was conducted using standard procedures. 2

Palermo, M. R., and Schroder, P. R. (1991). "Documentation of the EFQUAL module for ADDAMS: Comparison of predicted effluent water quality with standards," Technical Note EEDP-06-13, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS

U.S. Environmental Protection Agency and U.S. Army Corps of Engineers. (1998). "Evaluation of dredged material proposed for discharge in inland and near-coastal waters - Testing manual," EPA-823-B-98-004, U.S. Environmental Protection Agency, Washington, DC.

Coarse-grained site

At the coarse-grained site, background dissolved copper was the only contaminant of concern that was predicted to be above the standard (Table 2). The program predicted that copper would be discharged at 7 μ g/l which is above the marine objective acute criteria but well below the background value of 13 μ g/l. Therefore, a dilution of the background with respect to copper would naturally occur as a result of the dredging operation, and a mixing zone would not be required. The actual value recorded at the hopper overflow (effluent) for copper was 5 μ g/l, which was below both the background and the standard of 5.3 μ g/l.

Fine-grained site

At the fine-grained site, the predicted dissolved value of selenium was 24.3 μ g/l (Table 3). The more stringent acute value of the freshwater or marine stream quality standard for selenium is 20 μ g/l and the background was 19 μ g/l. The actual value recorded at the hopper overflow for selenium was 14.2 μ g/l, which is below the criteria and the background value, which would indicate a natural dilution of the contaminant of concern during dredging operations. Again, because of this natural dilution, a mixing zone would not be required.

At both reaches, the predicted elutriate values appear somewhat conservative when compared with the overflow values. The close agreement of the elutriate values with the actual overflow values (Tables 2 and 3) indicate that the elutriate test can be used as a valid predictor of overflow quality for the Delaware River. Summaries of the standard elutriate and predicted effluent quality results for the two sites can be found in Tables 2 and 3. A complete listing of the water quality, sediment, and elutriate analysis for both sites can be found in Appendix A.

Technical Findings of a 96-hr Water Column Bioassay

This test was performed to determine the possible biological effects of water column exposure to Delaware River overflow. Two species were used in performing the bioassays, the mysid shrimp, a crustacean species, Mysidopsis bahia, and the inland silverside, a fish species, Menidia beryllina. These species were selected based on conversations with personnel from the Delaware Department of Natural Resources and Environmental Control. The filtered elutriate was diluted with standard laboratory control seawater (6-ppt salinity for the fine-grained site and 30-ppt salinity for the coarse-grained site) to yield the following concentrations: 0-, 6.25-, 12.5-, 25-, 50-, and 100-percent elutriate. Each treatment was replicated five

Table 3 Delaware River Fine-Grained Site, Summary of Sediment and Water Quality Data

	OVERFLOW CONC µg/l	BD BD BD BD BD BD BD BD BD BD BD BD BD B
	CONC Hg/1	BD BD BD 136.0000 BD 10.0000 BD 10.0000 BD BD BD BD BD BD BD BD BD BD BD BD BD
	BACKGROUND CONC µg/l	BD BD BD BD BD BD BD BD BD BD BD BD BD B
mg/l	WATER QUALITY STANDARDS ¹ µg/l	NL N
- 77385.000 mg/l	DETECTION LIMIT µg/l	0.3000 0.0500 0.0500 0.3000 0.3000 0.3000 0.1000 0.3000 0.3000 0.3000 0.1000 0.3000 0.3000 0.1000 0.3000 0.1000 0.3000 0.1000 0.3000 0.3000 0.3000 0.3000
Concentration	SEDIMENT CONC mg/kg	0.034 0.003 0.000 0.000 0.000 0.000 0.410 0.410 0.000
Effluent Suspended Solids Concentration	Parameter	2-METHYLNAPHTHALENE A-BHC A-ENDOSULFAN ACENAPHTHENE ACENAPHTHENE ACENAPHTHENE ACENAPHTHENE ALDRIN ALUMINUM (A1) ANTIMONY ARSENIC (AS) B-BHC B-ENDOSULFAN BARTUM (BA) BENZO (G, H, I) PERYLENE BENZO (G, PYRENE BENZO (G) PYRENE BENZO (G) PYRENE BENZO (G) PYRENE BENZO (G) PYRENE BENZO (C) PUCRANTHENE BENZO (C) PUCRANTHENE BENZO (C) PUCRANTHENE BENZO (C) PUCRANTHENE COBALT (CC) COPPER (CU) D-BHC DIELDRIN ENDOSULFATE ENDRIN ENDOSULFATE ENDRIN ENDORNHHENE FLUORANTHENE FLUORANTHENE FLUORANTHENE FLUORENE

(Page 1 of 4)

FARAMETER	SEDIMENT	DETECTION	WATER QUALITY	BACKGROUND) ELUTRIATE	OVERFLOW	
	CONC mg/kg	LIMIT µg/l	STANDARDS! µg/l	conc µq/1	CONC µq/1	conc µg/l	
HEPTACHLOR	0.001	0.0250	0.027	c e	0.0263	L L	
HEPTACHLOR EPOXIDE	0.000	0.0500	N.	BD	BD CE	, E	
	0.078	0.3000	N. I		3 88 C) C)	an Circ	
IRON (Fe)	25567,000	20.000	N	1 GE	6667	53 PG	
(4e) (4e)	32,900	1.0000	8 7	4 500		0.	
(EX) MIL SENDER	000 0805	2000 000	Q. T. N		0.00	77	
MANUSANE CHARLES	000.000	200.002	111		Ξ.	142300	
MANGEMENT (MI)	000.701)	1.0000		2.000	000.	7932	
MERCURY (Hg)	0.15/	0.2000	2.1	BD	90	BD	
METHOXYCHLOR	0.000	0.0500	NL	90	18	BD	
NAPHTHALENE	0.060	0.3000	NL	BD	BD	GB	
NICKEL (N1)	21.800	1.0000	ις.	1.0000	2,3333	ស	
TOTAL PCB'S							
	0.001	0.00.0	NL	0.0011	0.0011	0.0010	
PCB 105	0.000	0.0010	NL	30	080	30	
PCB 110	0.001	0.0010	NL	28	BD	0.0010	
	00000	0.0010	I'N	- GE	80	o con	
	0.001	0.0010	NI	OB OB	1 80 1 80	RD	
	0.000	0.0010	NL	30	BD		
	000.0	0.0010	I I	3 6	2 2	ממ	
	000.0	0.0010	l N	3 =	S E	2 6	
PCB 123	0.000	0.0010		c n	3 2	2 6	
	0.000	0.00.0	Z N	an a	2 2	2 5	
	000.0	0100.0		a a			
	000	0:00		i c	2 2	000	
	0.00	0.00.0	7. N	8	C E	20	
	600.0	0:00	1	ם ב		5 to to	
	000.0	0.00.0	7. 1	G 6	O C) 1 2	
	000.0	0.00.0	J. P.	n a	2 6	, C	
	000.0	0.00.0	2 :	2 2	7 F	80	
→ ;	0.000	0.0010	고 :	30	Ω (1)	BD	
- 1 1	0.000	0.0010	J.	BD	BD	BJ	
	0.000	0.00.0	J.	BD	BD	വജ	
	0.001	0.0010	N.	30	30	CS	
	0.000	0.0010	NL	BD	BD	30	
PCB 153	0.001	0.0010	NL	BD	HD.	BD	
PCB 156	000.0	0.0010	NI	BD	aD	BD	
PCB 157	000.0	0.0010	NL	80	30	BD	
PCB 158	00000	0.0010	ML	BD	BD	BD	
PCB 166	00000	0.0010	NL	30	BD	Ca	
	0.000	0.0010	NL	50	Ω m	BD	
PCB 168	0.000	0.0010	IN	BD	0 0011	BU	

lable 5 (continued)							
PARAMETER	SEDIMENT	DETECTION	WATER QUALITY STANDARDS	BACKGROUND	ELUTRIATE CONC	OVERFLOW	
	mg/kg	E/6 n	T/5 n	1/6/1	113/1	1/61	
# # # # #	0.000	0.0010	N	GB	BD	Ca	
ŧ +(0.000	0.0010	NL	000	8	BD	
	0.000	0,0010	N.	an	ap	QS	
	0.000	0,0010	NE	CR CR	80	BD	
	0.000	0.0010	ML	90	8D	CR CR	
	0.000	0.00.0	NE	80	E CH	Œ	
	0.000	0.0010	MI,	a	BD	G _D	
	0.000	0.00.0	NE	90	an	8	
	0.002	0.0010	NI	BD	30	B 0	
	000,0	0.0010	NT	90	20	8	
	0.000	0.0010	N	BD	BD	BD	
	0.000	0.0010	TN	BD	00	200	
	0.000	0.0010	N.	BD	BD	09 :	
	000.0	0.0010	72	30	A	20	
	0.000	0.0010	NE	BC	BD	BD	
	0.000	0.0010	M	BO	BC BC	BO	
	0.000	0.0010	NI	CM CM	BO	BD	
	0.000	0.0010	N	8	80	Ga	
	0.000	0.0010	N N	2	BD	68	
PCB 198	0.000	0.0010	NI	<u>a</u>	an i	8	
	0.000	0.0010		<u></u>	2		
	0,000	0.0010	IN .	a :	<u> </u>		
PCB 203	0.001	0.0010	Z.	O €	a (00 f	
	000.0	0.0010	Z.	80 8 9927	0 m	ann ann	
208 206	0.003	0.0010	2:	0.0023	0.0020	700.0	
	0.000	0.00.0		2000	n t) () () ()	
	0.002		\$ \$P			2 6	
		0.00.0	7 5	î	3 8	2 6	
	0,000	0.0010	N	0.0017	Ca	0.0027	
	0.000	0.00.0	Z	Ca	80	BD	
	0.000	0.0010	NI	CB	CB	30	
	0.000	0.0010	N.L	୍ଦିଲ	80	an	
	0.000	0.0010	ML	80	GH GH	0.60	•
	0.000	0.0010	NT	80	OR O	80	
	0.000	0.0010	NI	BD	80	<u>a</u>	
	0,001	0.0010	N	CH	90	೧	
		0.0010	TN	80	0.0010	0.0011	
	0.001	0.0010	M	C a	a a	a	
193940		The state of the s		- CATTLE CONTRACTOR OF THE CON			
							(Page 3 of 4)

_
ס
Ō
T
_
ਹ
č
ō
Õ
_
3
a
¥
유
.00

OVERFLOW CONC µg/1	32 2 3 2 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3
ELUTRIATE CONC µg/l	BD 0.0014 BD BD BD BD BD BD BD BD BD BD
BACKGROUND CONC µg/l	·
WATER QUALITY STANDARDS ¹ µg/1	NL BD
DETECTION LIMIT Hg/l	0.0010 NI 0.0010 NI
SEDIMENT CONC mg/kg	0.000 0.
PARAMETER	PCB 64 PCB 66 PCB 70 PCB 77 PCB 81 PCB 82 PCB 84 PCB 82 PCB 84 PCB 82 PCB 84 PCB 92 PCB 92 PCB 95 PCB 95 PCB 95 PCB 95 PCB 99 PCB 90 PC

times. The trimmed Spearman-Karber method was used to calculate LC_{50} values. The bioassay report is attached as Appendix D.

Coarse-grained site

Survival in test concentrations from the coarse-grained site ranged from 100 to 88 percent for *Mysidopsis bahia* and from 88 to 68 percent for *Menidia beryllina*. Exposures in elutriate test concentrations from the coarse-grained site did not adversely affect survival of either test species. Since neither test species had mortality values greater than 50 percent, an LC₅₀ value could not be calculated.

Fine-grained site

Survival in test concentrations from the fine-grained site ranged from 90 to 0 percent with 0-percent survival in the 50- and 100-percent exposures for *Mysidopsis bahia*. Survival for *Menidia beryllina* ranged from 98 to 0 percent with 4- to 0-percent survival in the 50- and 100-percent elutriate treatments. An LC₅₀ value of 30.04 percent was calculated for *Mysidopsis bahia* and an LC₅₀ value of 31.66 percent was calculated for *Menidia beryllina*. Mortality observed from exposures in elutriate test concentrations was attributed to the high level of NH₃. In the short term, high levels of NH₃ are common in predominately fine-grained sites during dredging operations.

4 Summary and Conclusions

Based on the results of the study, the following conclusions can be made:

- a. Loading data at the coarse-grained site shows a gain of 130 percent over a period of 57 min after overflow began. Based on the round-trip travel time required to the disposal site and the amount of material retained in the hopper, rates of return greater than 50 percent may be realized for the coarse-grained material. Loading data at the fine-grained site show a gain of 18 percent over a period of 21 min after overflow began. Based on the round-trip travel time required to the pump-out site and the amount of material retained in the hopper, there was no economic benefit to overflow for the fine-grained material. In both instances, rates of return are also based on the assumption that all material in the overflow will return to the channel and will require redredging.
- b. Using the same economic assumptions as discussed above, about a 20-percent return may be realized from a material containing about 60 percent sand and about a 40-percent return may be realized from a material containing about 80 percent sand.
- c. Based on the water chemistry analysis at the two sites, no contaminants of concern caused a problem because of the dredging operation. None of the contaminants of concern exceeded water quality objectives in the overflow at the coarse-grained site. At the coarse-grained site, only dissolved copper was above the standard in the background. Samples taken for dissolved copper at the hopper overflow, however, were within standards. This indicates a scavenging of the metal by the suspended material occurred during the dredging and overflow process. At the fine-grained site, only zinc and endrin were measured at the overflow to be above the standard. However, the predicted elutriate for both zinc and endrin were measured at below detection levels.
- d. The plume study results showed that the coarse-grained material settled quite rapidly and that no lateral dispersion of the plume out of the channel was observed. No significant change above background levels could be detected. At 1 hr elapsed time following

the end of the overflow dredging operation, the levels of suspended material had returned to background conditions. At the fine-grained site, an increase in the suspended material was observed. However, after an elapsed time of 1 hr following the completion of the overflow dredging operation, levels of suspended materials had returned to background conditions. Again, no lateral dispersion of the dredge plume beyond the channel limits was observed.

- e. The sedimentation portion of the study confirmed what was observed during the plume study. At the coarse-grained site, there was evidence that recent sedimentation had occurred at several of the stations, possibly a result of dredging operations. But no indication of newly deposited dredged material was observed at stations outside the edge of the navigation channel. At the fine-grained site, some sediment layering was found even though no evidence of recent physical disturbance was detected at any of the stations. Again, no indication of newly deposited dredged material was observed at stations outside the edge of the navigation channel.
- f. Although the sampling station coverage was not extensive, the risk of significant sedimentation as a consequence of the hopper dredging operations appears to be restricted to the bottom and side slopes of the channel.
- g. The elutriate test results were consistent with and slightly conservative as compared to the overflow samples, indicating that the elutriate test is a valid prediction of overflow quality for the Delaware system.
- h. The bioassay analysis showed no adverse effects to exposures of fish and crustaceans species being exposed to the elutriate samples from the coarse-grained site. Some species mortality were observed using elutriates from the fine-grained site, but was determined to be caused from high levels of NH₃, which is a common short-term by-product of dredging in fine-grained material.
- i. The overall results of the study indicate that overflow meets the applicable water quality objectives and has no measurable physical impact outside the navigation channels. The loading data indicate that overflow in coarse-grained reaches results in significant load gains, while load gains in fine-grained reaches are small. Based on these results, overflow in coarse-grained reaches should be considered for future operations.

Appendix A Delaware River Sediment and Water Quality Analysis

Delaware River Sediment and Water Quality Analysis (Coarse- and Fine-Grained Sites)

Metscoar - Metals (Coarse-Grained Site)

PAHscoar - PAH's (Coarse-Grained Site)

Pestcoar - Pesticides (Coarse-Grained Site)

PCBscoar - PCB's (Coarse-Grained Site)

Tsscoar - Total Suspended Solids (Coarse-Grained Site)

Nutcoar - Nutrients (Coarse-Grained Site)

Spgrcoar - Specific Gravity and %Moisture (Coarse-Grained Site)

Metsfine - Metals (Fine-Grained Site)
PAHsfine - PAH's (Fine-Grained Site)
Pestfine - Pesticides (Fine-Grained Site)
PCBsfine - PCB's (Fine-Grained Site)

Tssfine - Total Suspended Solids (Fine-Grained Site)

Nutfine - Nutrients (Fine-Grained Site)

Spgrfine - Specific Gravity and % Moisture (Fine-Grained Site)

				Metsco	e1					
		Delaware River Water Analysis (Coar	se-Grained Site)							
SAMPLE YPE	SAMPLE	DESCRIPTION	SB	AS	BE	CD	CR	CU	PB	HG
-	,-	Detection Limit (mg/l)	0 003	0.002	0 002	0 0002	0 002	0 001	0.001	0.00020
		Plume Monitoring								
Nater Nater	80827 80735	Background, dissolved Background, total	0,003 0.003	0 044 0 044	0.002 0.001	0.0002 0.0002	0.002 0.002	0 013 0 012	0.001 0.003	0.00020 0.00020
Nater	80828	0-10 min, overflow, dissolved	0.003	0.044	0.002	0.0002	0.002	0.011	0.001	0.00020
Nater	80829	10-20 min, overflow, dissolved	0.003	0.044	0.002	0.0002	0.002	0.010	0.001	0.00020
Nater	80830	20-30 min, overflow, dissolved	0.003	0.046	0.002	0.0002	0.002	0 013	0.001	0.00020
Nater	80736	0-10 min, overflow, total	0.006	0 045	0.001	0.0002	0.002	0 011	0.001	0.00020
Nater Nater	80737 80738	10-20 min, overflow, total 20-30 min, overflow, total	0.003 0.003	0 046 0.045	0.001 0.001	0.0002	0.002 0.002	0 012 0 011	0.001 0.001	0.00020
Nater Nater	80831 80832	0-10 min, non-overflow, dissolved	0.003	0.047 0.048	0.002 0.002	0 0002 0 0064	0.002 0.002	0.012 0.011	0.001 0,001	0.00020 0.00020
Naler Nater	80832	10-20 min, non-overflow, dissolved 20-30 min, non-overflow, dissolved	0.003 0.003	0.048	0.002	0.0002	0.002	0.011	0.001	0.00020
Water	80739	0-10 min, non-overflow, total	0.003	0.044	0.001	0.0002	0.002	0 011	0.002	0.00020
Nater	80740	10-20 min, non-overflow, total	0.003	0 046	0.001	0.0002	0.002	0011	0.001	0.00020
Vater	80741	20-30 min, non-overflow, total	0.003	0.044	0.001	0.0002	0.002	0.010	0.001	0.00020
		Happer Inflow Monitoring								
Vater	80780	3& 6 min, dissolved	0.003	0.051	0.001	0.0002	0.002	0.007	0.001	0.00020
Nater	80781	9&12 min, dissolved	0.003	0.045	0,001	0.0002	0.002	0 005	0.001	0.00020
Nater	80782	158.18 min, dissolved	0.003	0.046	0.001	0.0002	0.002	0.006	0.001	0.00020
Nater Nater	80783 80784	21824 min, dissolved 27830 min, dissolved	0.003 0.003	0.048 0.050	0.001 0.001	0,0002 0,0002	0.002 0.002	0 007 0 006	0.001 0.001	0.00020 0.00020
Nater	80668	3& 6 min, total	0.003	0.076	0.002	0.0029	0.002	0 090	0.168	0.00083
Vater	80669	98-12 min, total	0.003	0 070	0 002	0 0010	0.088	0 062	0.140	0 00064
Valer	80670	15&18 min, total	0.003	0.009	0.002	0.0005	0.140	0 094	0 132	0 00129
Vater Vater	80671 80672	21&24 min. total 27&30 min. total	0.003 0.003	0 105 0.115	0.007 0.008	0.0008 0.0009	0 332 0.392	0 127 0 158	0.292 0.208	0 00369 0 00126
Water	80785	Happer Overflow Menitoring 28, 4 min, dissolved	0,003	0 045	0,001	0.0002	0.002	0.005	0.001	0.00020
(Vater	80786	6& 8 min, dissolved	0.003	0.048	0.001	0.0002	0.002	0 005	0.001	0.00020
Vater	80787	10812 min, dissolved	0.003	0.047	0.001	0.0002	0.002	0 005	0.001	0.00020
Nater	80788	14&16 min. dissolved	0.003	0 046	0.001	0.0002	8.002	0.005	0.001	0.00020
Vater	80789	18220 min, dissolved	0.003	0.045	0.001	0.0002	0.002	0.005	0.001	0.00020
Vater Vater	80674 80675	2& 4 min, total 6& 8 min, total	0.006 0.003	0.047 0.052	0.001	0 0027 0 0017	0.059 0.074	0.031 0.030	0.080 0.104	0.00053 0.00113
Nater	80676	10&12 mm, total	0.003	0.066	D 002	0.0013	0.074	0.035	0 114	0.00086
Nater	80677	14&16 min, total	0 007	0.052	0.001	0.0034	0.040	0.028	0.049	0.00056
Vater	80678	18820 min, total	0.003	0.046	0.001	0.0002	0.048	0.018	0.040	0.00048
		Site Water								
Vater	81648	Sample 1 Total	0.003	0.034	0.001	0.0002	0.005	0.027	0.003	0.00020
Vater	81649	Sample 2 Total	0.003	0 037	0.001	0.0002	0.002	0 021	0.002	0.00020
Vater	81650	Sample 3 Total	0.003	0.037	0.001	0.0002	0.002	0.016	0.001	0.00020
		Elutriate								
Vater	81654	Sample 1 Dissolved	0.003	0.050	0.001	0.0002	0.002	0 005	0.001	0.00020
Vater	81655	Sample 2 Dissolved	0.003	0.052	8.001	0.0002	0.002	0.006	0.001	0.00020
Vater Vater	81656 81651	Sample 3 Dissolved Sample 1 Total	0.003 0.003	0.047 0.040	0.001 0.001	0.0002	0 002 0 002	0 010 0 006	0.001 0.002	0,00020 0,00020
Vater	81652	Sample 2 Total	0.003	0.042	0.001	0.0002	0.002	0 005	0.001	0.00020
Vater	81653	Sample 3 Total	0.003	0.043	0.001	0.0002	0.002	0.005	0 001	0.00020
SAMPLE YPE	SAMPLE ID	DESCRIPTION	SB	AS	BE	CD	CR	cu	PB	HG
	-	Detection Limit (mg/kg)	0.30	0 20	0 1	0.020	0.2	0.10	10	0 020
		Insitu Sediment	****	. =-						
Sediment	81726	Sample #1	0.30	3 50	0.1	0.020	5.6	3 00	12.9	0.084
Sediment	81727	Sample #2	0.30	2 90	0.2	0.020	6.3	1.30	12 1	0.110
Sediment	81728	Sample #3	0.30	3 10	02	0.020	7.0	2 70	12.0	0.084

Set Alternative As - Alsertic BE - Betylliotin Co - Calumian Co - Calumian Values below less than values are estimated results. Results are less than the reporting firmt

	oa	

AMPLE YPE	SAMPLE	DESCRIPTION	NI	se	AG	TL	ZN	At.	BA	
		Detection Limit (mg/l)	0.001	0.002	0.001	0.002	0.010	0.025	0.002	0.3
		Plume Monitoring								
Vater	80827	Background, dissolved	0.009	0.152	0.001	0.002 0.002	0.010 0.017	0.025 0.644	0.039 0.016	
Vater	80735	Background, total	0.009	0.138	0.003	0.002	0.017	*		
Valer	80828	0-10 min, overflow, dissolved	0.008	0.150	0.001	0.002 0.002	0.010 0.010	0.025	0.042 0.061	
Vater	80829 80830	10-20 min, overflow; dissolved 20-30 min, overflow, dissolved	0.008 0.012	0.146 0.158	0.001	0.002	0.011	0.026	0.077	:
Vater Vater	80736	0-10 min, overflow, total	0.010	0.157	0.004	0.002	0.015	0.864	0.016	
Vater	80737	10-20 min, overflow, total	0,010	0.153	0.004	0.002	0.017	0.984	0.016	
Vater	80738	20-30 min, overflow; total	0,008	0.157	0,003	0.002	0.013	0.676	0.016	
Vater	80831	0-10 min, non-overflow, dissolved	0.009	0.158	0.001	0.002	0.010	0.025	0.038	
Vater	80832	10-20 min, non-overflow, dissolved	0.009	0.160	0.001	0.002	0.010	0.025 0.025	0.062 0.043	
Vater	80833	20-30 min, non-overflow, dissolved 0-10 min, non-overflow, total	0.008 0.007	0.153 0.149	0.001	0.002 0.002	0,010 0,010	0.025	0.016	
Vater Vater	80739 80740	10-20 min, non-overflow, total	0.009	0.163	0.003	0.002	0.017	1.100	0.016	
Vater	80741	20-30 min, non-overflow, total	0.008	0.154	0.003	0.002	0.012	0.564	0.016	
		Hopper Inflow Monitoring								
Vater	80780	3& 6 min, dissolved	0.010	0.175	0.001	0.002	0.038	0.025	0,209	
Vater	80781	9812 min, dissolved	0.008	0.149	0.001	0.002	0.025	0.025	0.100	
Vater	80782	15&18 min, dissolved	0,009 0,009	0.161 0.163	0.001 0.001	0.002 0.002	0.034 0.043	0.025 0.026	0.152 0.139	
Vater Vater	80783 80784	21&24 min, dissolved 27&30 min, dissolved	0.009	0.167	0.001	0.002	0.048	0.107	0.207	
vater Nater	80668	3& 6 min, total	0.076	0.069	0.006	0.002	1.120	32.6	0.157	- 1
Nater	80669	98.12 min, total	0.060	0.062	0.012	0.002	0.728	29.9	0.090	
Nater	80670	15&18 min, total	0.072	0,103 0.113	0.014 0.015	0.002 0.002	0.366 1.100	52.4 120.0	0.147 0.223	1
Nater Nater	80671 80672	21&24 min, total 27&30 min, total	0,152 0,184	0.129	0.019	0.002	0.719	147.0	0.316	1
•										
4 /_ba	80785	Hopper Overflow Monitoring 2& 4 min, dissolved	0.008	0.155	6.001	0.002	0.038	0.025	0,148	
Nater Nater	80786	6& 8 min, dissolved	0.009	0.165	0.001	0.002	0.028	0.025	0.108	
Vater	80787	10812 min, dissolved	0.009	0.166	0.001	0.002	0.042	0.025	0.166	
Nater	80788	14816 min, dissolved	0.009	0.162	0.001	0.002	0.015	0.025 0.025	0.080 0.084	
Nater	80789 -80674	18&20 min, dissolved 2& 4 min, total	0.008 0.044	0.153 0.053	0.003 0.007	9.002 9.002	0.012 0.330	20.9	0.088	
Water Water	80875	6& 8 min, total	0.048	0.064	0.006	0.002	0,399	25 2	0,090	
Water	80676	10&12 min, total	0.050	0.089	0.006	0.002	0,609	25.8	0.077	
Water	80677	14&16 min, total	0.035	0.113	0.054	0 002	0.155	18.6 18.2	0,066 0,060	
Nater	80678	18&20 min, total	0.026	0.118	0.011	0.002	0.118	10.2	000,0	
		Site Water						4 505	n n4F	
Water	81648	Sample 1 Total	0.005 0.008	0.115 0.124	0.003 0.005	0.002 0.002	0.012 0.010	1.260 0.056	0.015 0.012	
Nater Nater	81649 81650	Sample 2 Total Sample 3 Total	0.004	0.134	0.004	0.002	0.010	0.064	0.012	
Water	81654	Elutriate Sample 1 Dissolved	0.005	0.172	0.001	0.002	0.022	0.025	0.073	
Vater Vater	81655	Sample 2 Dissolved	0.005	0.170	0.001	0.002	0.031	0.025	0.097	
Water	81656	Sample 3 Dissolved	0.005	0 161	0.001	0.002	0.031	0.025	0.105 0.018	
Water	81651	Sample 1 Total	0,006 0,005	0.135 0.140	0:094 0:003	0.002 0.002	0.010 0.010	1,140 1:140	0.018	
Water Water	81652 81653	Sample 2 Total Sample 3 Total	0.005	0.141	0.003	0.002	0.010	1.590	0.026	
		m=====================================	hii	ec	AG	TL	ZN	AL	BA	
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	NI	SE	AG.	* ***	2.4	,		
		Detection Limit (mg/kg)	0.5	0 200	0(100	0.200	1.0	1	0 1	
		Insitu Sediment	~ ~	0.000	0.400	0.200	29.9	1580	5.7	1
Sediment		Sample #1 Sample #2	3.2 3.3	0,800 0,900	0.100 0.400	9.200	29.9	1720	4.8	1
Sediment Sediment		Sample #3	3,5	0.899	0.499	0.200	28.7	1720	4.3	

Page:

М			

SAMPLE TYPE	SAMPLE	DESCRIPTION	co	FE	MG	MN	к	NA	V	
		Detection Limit (mg/li)	0 002	0 020	0.200	0 001	0.200	0.200	0 001	
		Plume Monitonno								
Valer	80827	Background, dissolved	0.001	0.020	961	0 006	284	9,540	0.002	
Vater	80735	Background, total	0.001	0.204	968	0.012	291	7,970	0.004	
Vater	80828	0-10 min, overflow, dissolved	0.001	0.020	994	0.002	294	8,280	0.002	
Vater	80829	10-20 min, overflow, dissolved	0.001	0.020	98 5	0 002	290	9,230	0.002	
Vater	80830	20-30 mln, overflow, dissolved	0.001	0.020	1030	0.004	302	8,890	0.002	
Nater	80736	0-10 min, overflow, total	0.001	0.312	940	0.012	300	9,560	0.004	
Vater Vater	80737 80738	10-20 min, overflow, total 20-30 min, overflow, total	0.001 0.001	0.364 0.184	1030 944	0 015 0 009	368 324	8,580 7,880	0.004 0.004	
									V,100-4	
Vater	80831	0-10 min, non-overflow, dissolved	0,001	0.020	992	0 005	292	8,930	0.002	
Vater	80832	10-20 min, non-overflow, dissolved	0.001	0.020 0.020	986	0 006 0 005	268	8,510	0.002	
Vater	80833	20-30 min, non-overflow, dissolved	0.001		957		262	9,040	0.002	
Nater Nater	80739 80740	0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.001 0.001	0.256 0.572	908 912	0.014 0.015	318 272	7,480 8,480	0 005 0 004	
Vater	80741	20-30 min, non-overflow, total	0.001	0 192	916	0.008	334	8,120	0.003	
		Hopper Inflow Monitoring								
Nater	80780	3& 6 min, dissolved	0.002	0.020	1003	0 011	309	10,900	0 003	
Nater	80781	9&12 min, dissolved	0.002	0.020	1007	0.002	306	8,950	0 004	
Nater Mater	80782	15&10 min, dissolved 21&24 min, dissolved	0.002	0.029	1023	0.002	310	9.110	0.004	
Nater	80783 80784	27830 min_dissolved	0.002 0.002	0.020 0.074	1052 1035	0 002 0 099	317 315	10,200 9,150	0.004 0.006	
Nater Nater	80668	3& 6 min, total	0.060	98.0	1050	3.770	315	8,400	0.128	
Vater Vater	80669	9&12 min, total	0.042	31.3	1040	2 170	319	8,570	0.120	
Nater	80670	15&18 mm, total	0.020	71 7	968	1.500	311	8,020	0 172	
∕Vater	80671	21824 min, total	0.062	288 0	1090	4 440	338	8,530	0.328	
Vater	80672	27&30 min, total	0.026	218 0	1020	3.200	349	8,550	0 408	
•••	ere ann	Hopper Overflow Manitoring			202		000	0.750	0.004	
Nater Mater	80785 80786	2& 4 min, dissolved 6& 8 min, dissolved	9.002 0.002	0.020 0.020	993 962	0.001 0.001	299 290	8,750 9,240	0 004 0 004	
Nater Nater	80787	10&12 min, dissolved	0.002	0.020	999	0.001	302	8,750	0 004	
Vater	80788	14&16 mm, dissolved	0 002	0.020	1,000	0.001	303	6,960	0.004	
Nater	80789	18&20 min, dissolved	0.002	0.020	990	0.001	294	8,870	0.004	
Vater	80674	2& 4 mm total	0.023	66.4	1,060	1,130	333	8.800	0.084	
Nater	80675	6& 8 min, total	0.026	70 4	1 050	1 470	335	9,170	0 104	
Nater	80676	10&12 min, total	0.034	92 0	968	1.420	30 8	7,980	0.105	
Nater	80677	14816 min, total	0.015	29 8	1 000	0.608	309	8,640	0.064	
Nater	80678	18&20 min, total	0.009	28.2	984	0.544	310	9,170	0 060	
		City Make								
Vater	81648	Site Water Sample 1 Total	0.002	0.837	993	0.028	306	8,370	0.003	
Vater	81649	Sample 2 Total	0.002	0 048	974	0 004	289	8,760	0.001	
Vater	81650	Sample 3 Total	0.002	0.039	968	0.005	269	8,980	0.001	
Vater	81654	Elutrate Sample 1 Dissolved	0.002	0.020	1.020	0 002	303	8,620	0.002	
vater Vater	81655	Sample 2 Dissolved	0.002	0.020	1.020	0.001	304	9,250	0.002	
vater Nater	B1656	Sample 3 Dissolved	0.002	0.020	1.030	0.002	304	9,040	0 002	
Vater	81651	Sample 1 Total	0.002	0.742	982	6.024	292	8,620	0.004	
Vater	81652	Sample 2 Total	0.002	0.632	991	0.019	294	8,760	0 003	
Valer	81653	Sample 3 Total	0.002	0.799	1,400	0.024	423	12 300	0.004	
AMOI E	SAMPLE	DESCRIPTION	co	FE	MG	MN	ĸ	NA	V	% Moisture
YPE	ID SAMPLE	DECORPERION	00	r to	MO	BUA	N.	14w	•	24 HIVIDIUII
		Detection Limit (mg/kg)	0.1	2	20	0.1	20	20	0 10	
		Insitu Sediment								
Sediment	81726	Sample #1	2.2	5,810	1.269	\$1.7	443	2180	4 10	13
Sediment	81727	Sample #2	2.4	6,040	1,330	95.2	47.4	1920	4 30	13.4
Sediment		Sample #3	2.4	5,860	1.320	97.4	482	1900	4 00	13

PAHscoar

Makaana	Bine Minter	Anabeie	Margaret C	trained Sife

SAMPLE TYPE	SAMPLE ID	DESCRIPTION	NAPHTH	ACENAY	ACENAP	FLUORE	PHENAN	ANTRAC	FLANTHE
		Detection Limit (mg/l)	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
		Plume Monitoring							
Water	80848	Background, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	60763	Background, total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80849	0-10 min, overflow, dissolved	0.0003	0,0003	0.0003	0,0003	0.00030	0.00030	0.00030
Water	80850	10-20 min, overflow, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80851	20-30 min, overflow, dissolved	0,0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80764	0-10 min. overflow, total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80765	10-20 min, overflow, total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80766	20-30 min, overflow, total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80852	0-10 min, non-overflow, dissolved	0.0003	0.0003	0.0003	0.6003	0.00030	0,00030	0.00030
Water	80853	10-20 min, non-overflow, dissolved	0.0003	0,0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80854	20-30 min, non-overflow, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80767	0-10 min, non-overflow, total	0.0003	0.0003	0.0003	0,0003	0.00030	0.00030	0.00030
Water	80768	10-20 min, non-overflow, total	0,0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
	80769	20-30 min, non-overflow, total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	00/09	20-30 fills, non-oversow, total	0.000	4,0000	0.000	41,500	2.0000	*******	0.0000
		Hopper Inflow Monitoring							
Water	80810	38, 6 min, dissolved	6.0003	0.0003	0.0003	0,0003	0.00030	0.00030	0.00030
Water	80811	9&12 min, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80812	15&18 min, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80813	21&24 min, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80814	27830 min, dissolved	0.0003	0.0003	0.0003	0,0003	0.00030	0.00030	0.00030
Water	80716	3& 6 min, total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80717	9&12 min, total	0,0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80718	15&18 min, total	0.0003	0.0003	0.0003	0,0003	0.00030	0.00030	0.00015
Water	80719	21&24 min, total	0.0003	0.0003	0.0003	0.0003	0.00016	0.00030	0.00024
Water	80720	27&30 min. total	0.0003	0,0003	0.0003	0.0003	0.00012	0,00030	0.00019

		Hopper Overflow Manitoring							
Water	80815	2& 4 min, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80816	6& 8 min, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80817	10&12 min, dissolved	0.0003	6,0003	0.0003	E000.0	0.00030	0.00030	0.00030
Water	80818	14&16 min, dissolved	0.0003	0,0003	6.0003	6,0003	0.00030	0.00030	0.00030
Water	80819	18&20 min, dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80722	28. 4 min, total	0 0006	0.0003	0.0003	0.0003	0.00030	0.00030	0.00014
Water	80723	6& 8 min total	0.0006	0.0003	0.0003	0,0003	0.00030	0.00030	0.00030
Water	80724	10&12 min. total	0.0006	0.0003	0.0003	0,0003	0.00073	0.00018	0.00075
Water	80725	14&16 min, total	0.0006	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	80726	18&20 min. total	0,0006	0,0003	0.0003	0.0003	0.00030	0.00030	0.00030
		** **********************************							
		Site Water		9.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	81630	Sample 1 Total	0,0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	81631	Sample 2 Total		0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	81632	Sample 3 Total	0.0003	0.0003	0.0003	0.0000	0.0000	0,00000	0.00000
		Elutriate							
Water	81636	Sample 1 Dissolved	0.0003	0.0003	0.0003	0,0003	0,00030	0.00030	0.00030
Water	81637	Sample 2 Dissolved	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	81638	Sample 3 Dissolved	0,0003	0.0003	0.0003	0.0003	9.00030	0.00030	0.00030
Water	81633	Sample 1 Total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	81634	Sample 2 Total	0.0003	0.0003	0.0003	0.0003	0.00030	0.00030	0.00030
Water	81635	Sample 3 Total	0.0003	0,0003	0.0003	0.0003	0.00038	0.00030	0.00030
						سرمد سرار رسو	mi imi ini	# 4 lance # ye	int when the
SAMPLE TYPE	SAMPLE	DESCRIPTION	NAPHTH	ACENAY	ACENAP	FLUORE	PHENAN	ANTRAC	FLANTHE
-		Detection Limit (mg/kg)	0.011	0,011	0.011	0.011	0.0110	0.011	0.0110
			J.0 ()	V.V	3,671	3.0.7		2.0.1	
		Insitu Sediment		0.045	0.044	0.044	0.0110	0.011	0.0110
Sediment		Sample #1	0.011	0.011	0.011	0.011	0.0110 0.0038	0.011	0.0110
Sediment		Sample #2	0.011	0.011 0.011	0.011 0.011	0.011 0.011	0.0038	0.011	0.0267
Sediment	81704	Sample #3	0.011	0.011	0.011	4.013	V.V11V	0.011	0 0042

FLUORE - Fluorerie PHENAN - Phenanthrene

PAHscoor

- Onlaware Piver Water Analysis (Charge Grainert S	
	fnl

SAMPLE	SAMPLE	DESCRIPTION	PYRENE	CHRYSE	BAANTHR	BBFLANT	BKFLANT	BAPYRE	I123PYR
TYPF	ID.								
		Detection Limit (mg/l)	0.00030	0 00030	0.0003	0.00030	0.00030	0.00030	0.00030
		Plume Monitoring							
Water	80848	Background, dissolved	0.00030	0.00030	0,0003	0.00030	0.00030	0.00030	0.00030
Water	80763	Background, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80849	0-10 min, overflow, dissolved	0.00030	0.00030	0.0003	0,00030	0.00030	0.00030	0.00030
Water	80850	10-20 min, overflow, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80851	20-30 min, overflow, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80764	0-10 min, overflow, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80765	10-20 min, overflow, total	0.00030	0.00030	0.0003	0.00030	0.00030	0,00030	0.00030
Water	80766	20-30 min, overflow, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
	00000	5 45	0.00000	0.00030	0.0003	0.00030			
Water	80852	0-10 min, non-overflow, dissolved	0.00030				0.00030	0.00030	0.00030
Water	80853	10-20 min, non-overflow, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80854	20-30 min, non-overflow, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80767	0-10 min_non-overflow_total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80768	10-20 min, non-overflow, total	0,00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80 769	20-30 min, non-overflow, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
		14							
10/	00040	Hopper Inflow Manitoring	0.00000	0.00030	0.0003	0.00030	0.00000	0.00000	0.00030
Water	80810	38 6 min, dissolved	0.00030 0.00030	0.00030	0.0003 0.0003	0.00030	0.00030	0.00030	0.00030
Water	80811	98.12 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water Water	80812 80813	15&18 min, dissolved 21&24 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80814	27830 min, dissolved	0.00030	0,00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80716	3& 6 min, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80717	9&12 min, total	0.00030	0.00030	9.0003	0.00030	0.00030	0.00030	0.00030
Water	80718	158.18 min, total	0.00013	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80719	21824 min, total	0.00019	0.00016	0.0003	0.00010	0.00012	0.00030	0.00030
Water	80720	27830 min, total	0 00017	0 00012	0.0003	0 00010	0.00010	0.00030	0.00030
***************************************	CALL C	2.14			******				********
		Happer Overflow Monitoring							
Water	80815	28. 4 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0,00030	0.00030
Water	80816	6& 6 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80817	10812 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80818	148.16 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80819	18820 min, dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80722	2& 4 min, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80723	68, 8 min, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	80724	10&12 min, total	0 00062	0.00041	0 0030	0 00019	0 00028	0 00025	0 00019
Water	80725	14&16 min, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0,00030
Water	80726	18820 min, total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
		City Minter							
141-1	04630	Site Water	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	81630	Sample 1 Total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	81631	Sample 2 Total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	81632	Sample 3 Total	0.00030	0.00030	0.0003	0.00030	0.00030	0.0000	4.00000
		Elutriate							
Water	81636	Sample 1 Dissolved	0.00030	0.00030	0.0003	0.00030	0,00030	0.00030	0.00030
Water	81637	Sample 2 Dissolved	0.00030	0.00030	0.0003	0.00030	0,00030	0.00030	0.00030
Water	81638	Sample 3 Dissolved	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	81633	Sample 1 Total	0.00030	0.00030	0,0003	0.00030	0.00030	0.00030	0.00030
Water	81634	Sample 2 Total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
Water	81635	Sample 3 Total	0.00030	0.00030	0.0003	0.00030	0.00030	0.00030	0.00030
		- p							
SAMPLE	SAMPLE	DESCRIPTION	PYRENE	CHRYSE	BAANTHR	BBFLANT	BKFLANT	BAPYRE	H23PYR
TYPE	ID.								
		Detection Limit (mg/kg)	0.0110	0.0110	0.0110	0 0110	0.0110	0 0110	0 0110
		Insitu Sediment							
Sediment		Sample #1	0.0110	0.0110	0.0110	0.0110	0.0110	0.0110	0.0110
Sediment		Sample #2	0 0332	0.0593	0.0514	0.0617	0.0671	0.0644	0.0621
Sediment	81704	Sample #3	0 0042	0.0110	0.0110	0.0110	0.0110	0.0110	0.0110

PYRENF - Pyrenc CHRYSE Chrysene BAANTHR - Berox(a)Anthracene BBFLANT - Benzc(b)Fluoranthene BKFLANT - Benzc(b)Fluoranthene BAPYRF - Benzc(a)Pyrene 1123PYR - Indenc(1,2,3,3,0)Pyrene BOLD - less than values values are estimated results Results are less than the reporting limit

PAHscoar

Delaware River Water Analysis (Coarse-Grained Site)

SAMPLE	SAMPLE	DESCRIPTION	DBAHANT	B-GHI-PY	2MeNAPH	2FIBP-S	PTERP-S
TYPE	ID.						
		Detection Limit (mg/l)	0.0003	0.00030	0.0003		
	80848	Plume Monitoring	0.0003	0.00030	0.0003	89.8%	71.9%
Water	80763	Background, dissolved Background, total	0.0003	0,00030	0.0003	95.4%	73.8%
Water	00700	Background, tolds	0.000	474440	0.000	00. 170	10.072
Water	80849	0-10 min, overflow, dissolved	0.0003	0.00030	0.0003	88.8%	68 8%
Water	80850	10-20 min, overflow, dissolved	0.0003	0.00030	0.0003	91.2%	76.0%
Water	80851	20-30 min, overflow, dissolved	0,0003	0.00030	0.0003	89.0%	65 8%
Water	80764	0-10 min, overflow, total	0.0003	0.00030	0.0003	59.1%	76.3%
Water	80765	10-20 min, overflow, total	0.0003	0.00030	0.0003	36.6%	31.1%
Water	80766	20-30 min, overflow, total	0.0003	0.00030	0.0003	92.1%	71.0%
						04.50/	74.7%
Water	80852	0-10 min, non-overflow, dissolved	0.0003	0.00030	0,0003	94.3%	65.0%
Water	80853	10-20 min, non-overflow, dissolved	0.0003	0.00030 0.00030	0.0003 0.0003	83.1% 90,4%	69.1%
Water	80854	20-30 min, non-overflow, dissolved	0.0003	0.00030	0.0003	36.5%	27:1%
Water Water	80767 80768	0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.0003	0.00030	0.0003	77.5%	69.9%
Water	80769	20-30 min, non-overflow total	0,0003	0.00030	0.0003	73.2%	72.0%
AASIGI	QU/ 95	20-20 1181, 11013-09411041, 10-61	0.0000	0.00000	0.0000	76.27	(2.030
		Hopper Inflow Monitoring					
Water	80810	3& 6 min, dissolved	0.0003	0.00030	0.0003	76 0%	67.4%
Water	80811	9&12 min, dissolved	0,0003	0,00030	0.0003	77.5%	69.2%
Water	80812	15&18 min, dissolved	0.0003	0,00030	0.0003	94.5%	76.8%
Water	80813	21&24 min, dissolved	0.0003	0.00030	0,0003	83.0%	63.8%
Water	80814	27&30 min, dissolved	0,0003	0.00030	0.0003	61.7% 48.0%	54.8% 60.3%
Water	80716	3& 6 min, total	0.0003	0.00030	0.0003	60.0%	58.4%
Water	80717	98.12 min, total	0.0003	0.00030	0.0003	72.2%	66.1%
Water	80718	15&18 min, total	0.0003	0.00030	0.0003	67.0%	62.9%
Water Water	80719 80720	21&24 min, total 27&30 min, total	0.0003	0.00030	0.0003	58.0%	66.6%
water	OUI ZU	27 ocasi rinis, totai	0.0000	4.0000	0.000	40.010	00.072
		Hopper Overflow Monitoring					
Water	80815	2& 4 min, dissolved	0,0003	0.00030	0.0003	63.0%	60.7%
Water	80816	6& 8 min, dissolved	0.0003	0.00030	0.0003	63.8%	84.8%
Water	80817	10&12 min, dissolved	0.0003	0.00030	0.0003	64.4%	67.7%
Water	80818	14&16 min, dissolved	0.0003	0.00030	0.0003	75 4%	81.3%
Water	80819	18&20 min, dissolved	0.0003 0.0003	0.00030	0.0003 2000.0	48.3% 56,5%	65.8% 69.7%
Water Water	80722 80723	2& 4 min, total 6& 8 min, total	0,0003	0.00030	0.0003	66.9%	70,5%
water Water	80723	108.12 min, total	0.0003	0.00014	0,0003	60.8%	67,6%
Water	80725	14&16 min, total	0.0003	0.00030	0.0003	74.2%	65.0%
Water	80726	18820 min, total	0.0003	0.00030	0.0003	57 7%	68.1%
********	00120	, out of the first					
		Site Water					
Water	81630	Sample 1 Total	0.0003	0.00030	0.0003	39.7%	61.9%
Water	81631	Sample 2 Total	0,0003 E000.0	0.00030	0.0003 0.0003	61.3% 68.0%	62.4% 66.8%
Water	81632	Sample 3 Total	0.0003	0,00030	0.0003	GO, U 70	CG. D 70
		Elutriate					
Water	81636	Sample 1 Dissolved	0.0003	0.00030	0.0003	55.8%	678.0%
Water	81637	Sample 2 Dissolved	0,0003	0.00030	0.0003	79.2%	56.1%
Water	81638	Sample 3 Dissolved	0.0003	0.00030	0.0003	63.3%	58.3%
Water	81633	Sample 1 Total	0.0003	0,00030	0,0003	65.9%	64.0%
Water	81634	Sample 2 Total	0.0003	0.00030	0.0003	37 7%	71.0%
Water	81635	Sample 3 Total	8,0003	0.00030	0.0003	53.8%	71.2%
SAMPLE	SAMPLE	DESCRIPTION	DBAHANT	B-GHI-PY	2MeNAPH	2FIBP-S	PTERP-S
TYPE	ID						
	•						
	*	Detection Limit (mg/kg)	0 0110	0.0110	0.011		
		A - No Bookson					
A	04700	Insitu Sediment	0.0110	0.0110	0.011	62.7%	46.1%
Sediment		Sample #1 Sample #2	0,0046	0.0514	0.011	76.0%	49.7%
Sediment Sediment		Sample #3	0.0110	0.0110	0.011	68.8%	52.0%
Comment	01104		J				

DBAHANT - Dibenzo(A,H)Anthracene B-GHI-PY - Benzo(G,H.I)Perylene 2MeNAPH - 2-Methylnaphthalene 2FIBP-S - 2-Fikiorobiphenyl(Surrogate (43-116 W)) PTERP-S - p-Terphenyl-D14(Surrogate (33-141 W)) PTERP-S - p-Terphenyl-D14(Sur

Pestcoar

SAMPLE TYPE	SAMPLE	DESCRIPTION	ALDRIN	A-BHC	B-BHC	G-BHC	D-BHC	PPD
TYPE	ID	Detection Limit (mg/l)	0 000035	0.000035	0 000035	0 000035	0.000035	0.0000
		Plume Monitoring						
Nater Nater	80841 80756	Background, dissolved Background, total	0.000025 0.000025	0.000025 0.000025	0.000025 0.000025	0.000025 0.000025	0.000025 0.000025	0.0000
Water	80842	0-10 mm, overflow, dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0,000
Nater	80843	10-20 min_overflow, dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0,0000
Nater Mater	80944	20-30 min. overflow, dissolved	0.000024 0.000025	9,000024 0,000025	0.000024 0.000026	0.000024 0.000025	0.000024 0.000025	0,0000
Vater Vater	80757 80758	0-10 min, overflow, total 10-20 min, overflow, total	0.000025	0.000025	0.000025	0.000025	0.000025	D.0000
Vater	80759	20-30 min, overflow, total	0.000025	0.000025	0.000026	0.000025	0.000025	0.0000
Vater	80845	0-10 min, non-overflow, dissolved	0.000025	0.000025	9.000025	0.000025	0.000025	0.0000
Vater	80846	10-20 min, non-overflow, dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0.000
Vater	80847	20-30 min, non-overflow, dissolved	0.000035 0.000025	0.000035 0.000025	0.000035 0.000025	0.000035 0.000025	0.000035 0.000025	0,000
Vater Vater	80760 80761	0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.000025	0.000025	0.000025	0.000025	0.000025	0.0000
Vater	70762	20-30 min, non-overflow, total	0.000028	0.000028	0.000028	0.000028	0.000028	0.000
		Happer Inflow Monitoring						
Vater	00808	3& 6 min, dissolved	0.000026	0.000025	0.000026	0.000025	0.000025	0.000
Vater	80801	9&12 min, dissolved	0.000025	0 000020	0.000025	0.000025	0.000025	0.000
Vater	80802	15&18 min, dissolved	0.000025 0.000025	0,000025 0.000011	0 000046 0 000036	0,000025 0.000025	0,000025 0,000025	0.000
Vater Vater	80803 80804	21824 min, dissolved 27830 min, dissolved	0.000025	0.000025	0 000043	0.000025	0.000025	0.000
Vater	80704	38. 6 min, total	0,000025	0.000031	0.000075	0.000021	0.000039	0.000
Vater	80705	9&12 min, total	0.000025	0 000018	0.000025	0.000025	0 000022	0 000
Vater	80700	15&18 mm, total	0.000027	0 000046	0.000027	0.000027	0 000023	0.000
Valer	80707	21&24 min, total	0.000027 0.000025	0,000027 0,000025	0.000027 0.000025	0.000027 0.000025	0.000027 0.000025	0 000
Valer	80708	27830 min, total	0.000023	0.000023	G DDBOZ1	0.000023	0.000025	0 (70)
	00005	Hopper Overflow Monitoring 2& 4 min, dissalved	0.000026	0.000025	0.000025	0.000025	0.000025	0.000
Vater Vater	80805 80806	68. B min, dissolved	0.000025	0.000025	0.000025	0.000025	0,000025	0.000
Nater	80807	10&12 min, dissolved	0.000025	0 000013	0.000025	0.000025	0.000025	0.000
Nater	80808	14&16 min, dissolved	0.000025	0.000025	0.000025	0,000025	0.000025	0.000
Vater	80809	18&20 min, dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0.000
Vater Vater	80710 80711	28. 4 min, total 68. 8 min, total	0.000025 0.000025	0.000025 0.000025	0.000025 0.000025	0.000025 0.000025	0.000025 0.000025	0.000
Vater Vater	80712	10&12 min, total	0.000027	0.000027	0.000027	0.000027	0.000027	0.000
Vater	80713	14&16 min, total	0.000027	0.000027	0.000027	0.000027	0.000027	0.000
Vater	80714	18&20 min, total	0.000025	0.000025	0.000025	0.000025	0.000025	0.000
		Site Water						
Vater	81612	Sample 1 Total	0.000025 0.000025	0.000025 0.000025	0.000025 0.000025	0.000025 0.000025	0.000025 0.000025	0.000
Vater Vater	81613 81614	Sample 3 Total Sample 3 Total	0.000025	0.000025	0.000025	0.000026	0.000025	0.000
		Elutriate						
Valer	81618	Sample 1 Dissolved	0.000025	0,000025	0.000025	0.000025	0.000025	0.000
Vater	81619	Sample 2 Dissolved	0.000025	0.000026	0.000025	0.000011	0.000025	0,000
Vater	81620	Sample 3 Dissolved	0.000025 0.000025	0.000025	0.000025	0.000025 0.000025	0.000025 0.000025	0.000
Vater Vater	81615 81616	Sample 1 Total Sample 2 Total	0.000025	0.000025 0.000025	0.000025 0.000025	0.000025	0.000025	0.000
Vater	81617	Sample 3 Total	0.000025	0.000025	0.000025	0.000025	0.000025	0.000
AMPLE YPE	SAMPLE ID	DESCRIPTION	ALDRIN	A-BHC	B-BHC	G-8HC	D-BHC	PPC
		Detection Limit (mg/kg)	0.00096	0 00096	0 00096	0.0018	0 00096	0.0
		Insitu Sediment						
ediment	81708	Sample #1	0.00096	0.00096	0 0012	0.0021	0.00096	0.0
lediment	81709	Sample #2	0.00096 0.00096	0.00096 0.00096	0 0013 0 001 2	0.0034	0.00096 0.00096	0.0 0.0
ediment	81710	Sample #3	9.70036	V.UUJ4	0.0012	Q Q021	0,00030	0.0

coar

AMPLE YPE		DESCRIPTION	PPDDE	PPDDT	HPTCL	DIELDRIN	ENDOI	EN
17 5		Detection Limit (mg/l)	0.000070	0.000070	0.0000350	0.000070	0.000035	0.000
		Plume Monitoring						
	80841 80756	Background, dissolved Background, total	0.000050 0.000050	0.000050 0.000050	0.0000250 0.0000250	0.000050	0.000025 0.000025	0.00 00.0
	80842	0-10 min, overflow, dissolved	0,000050	0.000050	0.0000250	0.000050	0.000025	5.00
	80843	10-20 min, overflow, dissolved	0.000050	0,000050	0.0000250	0.000050	0.000025	0.00
	80844	20-30 min, overflow: dissolved	0.000050	0.000049	0.0000240	0,000049	0.000024	0.00
	80757	0-10 min, overflow, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.00
	80758	10-20 min, overflow, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.00
Vater	80759	20-30 min, overflow, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.00
Vater	80845	0-10 min, non-overflow, dissolved	0.000050	0.000050	0.0000250	0.000050 0.000050	0.000025 0.000025	0.00
Vater	80846	10-20 min, non-overflow, dissolved	0.000000	0.000050	0.0000250	0,000030	0.000025	0.00
Vater	80847	20-30 min, non-averflow, dissolved	0.000070 0.000050	0.000070	0.0000350	0.000050	0,000025	0.00
Vater	80760	0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.00
Vater Vater	80761 70762	20-30 min, non-overflow, total	0.000055	0.000055	0.0000280	0,000055	0.000028	'0.00
Madeso	80800	Hopper Inflow Monitoring 38, 6 min, dissolved	0.000050	0.000050	0.0000100	0.000050	0.000025	0.00
Vater Vater	80800	9&12 min, dissolved	0.000050	0.000050	0.0000140	0,000080	0.000025	9.00
Vater	80802	15&18 min_dissolved	0,000050	0,000050	0.0000270	0.000050	8.000025	90.0
Vater	80803	21&24 min. dissolved	0.000050	0.000050	0.0000100	0.000050	0.000025	0.00
Vater	80804	27&30 min, dissolved	0.000050	0.000050	6.0000130	0.000050	0.000010	9.00 10.0
Vater	80704	3& 6 min. total	0.000050	0.000042	0.0000270 0.0000160	0,000050 0.000050	0.000025 0.000025	0.00
Vater	80705	9812 min, total	0.000024	0.000660 0.000053	0.0000190	0.000053	0.000027	0.00
Vater	80706	15&18 min, total	0.000023	0.000053	0.0000070	0.000053	0,000027	0.0
Vater Vater	80707 80708	218/24 min, total 278/30 min, total	0.000029	0.000036	0.0000130	0.000027	0.000025	.0,0
Ainhac	80805	Hopper Overflow Monitoring 2& 4 min. dissolved	0.000050	0,000050	0.0000250	0.000050	0,000025	0,0
Nater Nater	80806	68 8 min dissolved	0.000060	0.000050	0.0000250	0.000050	0.000025	0,0
Nater	80807	10&12 min, dissolved	0.000050	0.000050	0,0000250	0.000050	0.000025	0.0
Vater	80808	14&16 min. dissolved	0.000050	0.000050	0.0000250	0.000050	0.000025	0.0
Nater	80809	18828 min, dissolved	0,000050	0.000050	0.0000250	0.000050 0.000050	0.000025	0.0
Nater	80710	2& 4 min, total	0:000010 0:000005	0.000024 0.000060	0.0000040 0.0000250	0.000050	0.000025	0.0
Nater	80711	68 8 min, total	0.000053	0.000053	0.0000270	0.000053	0.000027	0,0
Nater Mater	80712 80713	10&12 min, total 14&16 min, total	0.001100	0.000063	0.0000270	0.000053	0.000027	0.0
Nater Nater	80714	18&20 min, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.0
Water	81612	Site Water Sample 1 Total	0.000050	0.000050	0.0000250	0.000050	0.000025	0,0
Vater	81613	Sample 2 Total	0.000050	0.000050	0.0000250	0.000050	0,000025 0,000025	0.0
Water	81614	Sample 3 Total	0.000050	0.000050	0.0000250	0,000000	U.DOOUZ U	0.0
		Elutriate						
Water	81618	Sample 1 Dissolved	0.000050	0,000050	0.0000250	0.000050	0.000025	0.0
Water	81619	Sample 2 Dissolved	0.000050	0.000050	0.0000039	0.000050	0.000025	0.0
Water	81620	Sample 3 Dissolved	0.000050	0.000050 0.000050	0.0000050 0.0000250	0.000050 0.000060	0.000025 0.000025	0.0
Water	81615	Sample 1 Total	0.000050 0.000050	0.000050	0.0000250	0.000050	0.000025	0.0
vvater Water	81616 81617	Sample 2 Total Sample 3 Total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.0
				anna.	1 arrangest	risms mmikš	ENDOI	ξ
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PPDDE	PPDDT	HPTCL	DIELDRIN	ENDO	
		Detection Limit (mg/kg)	0.0019	0.0019	0.00096	0.0036	0.00096	i
		Insitu Sediment						
Sediment	81708	Sample #1	0.0019	0.0019	0 00059	0.00046	0.00096	
Sediment	81709	Sample #2	0.0019	0.0019	0.00052	0.00067	0.00096 0.000 96	:
Sediment	81710	Sample #3	0.0019	0.0019	0.00049	0.00058	eeuub,u	
PPODE -		PPDDT - PPDDT HPTCL - Hepta		IN - Dieldrin	ENDOI - A-Endosui	ton ChiffOli	- B-Endosulfan	

Pestopa	11

			_					
YPE	SAMPLE ID	DESCRIPTION	ENDOSU	ENDRIN	ENDALD	HPTCLE	METOXYCL	CLORD
		Detection Limit (mg/l)	0.000070	0 000070	0.000079	0 000035	0.00035	0.000
		Plume Monitoring						
Vater	80841	Background, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	0.000
Vater	80756	Background, total	0.000050	0.000050	0,000060	0.000025	0.00025	0.000
/ater	80842	0-10 min, overflow, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	0.000
/ater	80843	10-20 min, overflow, discolved	0,000050	0.000060	0.000050	0.000026	0.00028	0.000
ater	80844	20-30 min, overflow, dissolved	0.000049	0.000049	0.000049	0.000024	0.00024	0.000
/aler /ater	80757 80758	0-10 min, overflow, total 10-20 min, overflow, total	0.000050 0.000050	0,000050 0,000050	0.000050 0.000050	0,000025 0,000026	0.00025 0.00025	0.000
iater	80759	20-30 min, overflow, total	0.000050	0.000050	0.000050	0.000025	0.00025	0.000
ater ater	80845 80846	0-10 min, non-averflow, dissolve 10-20 min, non-overflow, dissolve		0,000050 0,000050	0.000050 0.000050	0.000025	0.00025	0.000
ater	80847	20-30 min, non-overflow, dissolve		0.000000	0.000070	0.000025 0.000035	0,00026 0,00035	0.00
ater	80760	0.10 min, non-overflow, total	0.000050	0.000050	0.000050	0.000025	0.00035	0.000
ater	80761	10-20 min, non-overflow, total	0.000050	0.000050	0.000060	0.000026	0.00025	0.000
aler	70762	20-30 min, non-overflow, total	0,000055	0.000056	0.000055	0.00002B	0.00028	0.000
		Hopper Inflow Monitoring						
ater ater	80800	3& 5 min, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	
ater ater	80801 80802	9812 min, dissolved 15818 min, dissolved	0.000050 0,060050	0.000050 0.000050	0.000060 0.000050	0.000025 0.000025	0.00025 0.00025	
ater	80803	218.24 min, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	
ater	80804	27&30 min, dissolved	0.000050	0.000060	0.000050	0.000025	0.00025	
ater	80704	3& 6 min, total	0.000050	0.000018	0,000050	0.000020	0.00025	
ater	80705	9&12 min, total	0.000750	0 000012	0 000560	0 000011	0.00025	
ster	80706	15&18 min, total	0.000260	0 000020	0.000053	0.000023	0.00027	
ater oter	80707 80708	21824 min, total 27830 min, total	0.000320 0.000050	0.000053	0.000053 0.000050	0.000027 0.000025	0.00027 0.00025	
		Hopper Overflow Monitoring						
ater	80805	28. 4 min, dissolved	0.000050	0.000060	0.000060	0.000025	0.00025	
ater	80806	68 8 min, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	
ater ater	80807 80808	108.12 min, dissolved 148.16 min, dissolved	0,000050 0,000050	0,000050 0.000050	0.000050 0.000060	0.000025 0.000025	0.00025 0.00026	
ater	80809	18&20 min, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	
ater	80710	28. 4 min, total	0.000050	0.000050	0,000050	0 000009	0.00025	
ater	80711	68 8 min, total	0.000050	0.000050	0.000060	0.000590	0.00025	
ater oter	80712 80713	10&12 min, total 14&16 min, total	0,000053 0,000053	0.000053 0.000053	0.000053 0.000053	0.000027 0.000027	0.00027 0.00027	
ater	80714	18&20 min, total	0.000050	0.000050	0.000050	0.000025	0.00026	
		Site Water						
ater	81612	Sample 1 Total	0.000050	0.000050	0.000050	0.000025	0.00025	
iter	81613	Sample 2 Total Sample 3 Total	0,000050 0,000050	0.000050	0.000050	0.000025	0.00025	
iter	81614	Sample 3 total	0.000050	D.000050	0.000050	0.000025	0.00025	
iter	81618	Elutriate Sample 1 Dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	
iter	81619	Sample 2 Dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	
iter	81620	Sample 3 Dissolved	0.000050	0.000050	0,000050	0.000025	0.00025	
nter	81015	Sample 1 Total	0.000050	0.000050	0.000050	0.000025	0.00025	
iter Iter	81616 81617	Sample 2 Total Sample 3 Total	0.000050 0.000050	0.000050 0.000050	0.000050 0.000060	0.000025 0.000025	0.00025 0.00025	
MPLE PE	SAMPLE ID	DESCRIPTION	ENDOSU	ENDRIN	ENDALD	HPTCLE	METOXYCL	
•	-	Detection Limit (mg/kg)	0.0036	0.0036	0.0036	0 0018	0.018	
		Insitu Sediment						
diment		Sample #1	0.00083	0.0019	0.0019	0.0014	0.0083	
diment diment		Sample #2 Sample #3	0.00083 0.00083	0.0019 0.0019	0.0019 0.0019	0.0020 0.0020	0.0083 0.0083	
		and the second	3,4444		2.0010		2.0004	
DOSU -		sulfate ENDRIN - Endnn	ENDALD - Endan Ald		TCLE - Heptachlor E		TOXYC: - Methox	

P45	

	(Coarse-Graine)	

SAMPLE	SAMPLE	DESCRIPTION	TOXAPHEN	TcLXYL-S	DCLBP	a-CHLORD	g-CHLORD
	10	- Date of M. Frank					_
		Detection Limit (mg/l)	0.000350				
		Plume Monitoring					
Water	80841	. Background, dissolved	0.000250	81.60%	88.70%		
Water	80756	Background, total	0.000250	90.10%	93.00%		
		and the second of the second		87.70%	91.60%		
,	80842	0-10 min, overflow, dissolved	0.000250 0.000250	93.90%	102.00%		
	80843	10-20 min, overflow, dissolved	9,000240	92.30%	97.90%		
	80844	20-30 min, overflow, dissolved 0-10 min, overflow, total	0.000250	88.00%	95.70%		
	80757 80758	10-20 min, overflow, total	0.000250	82.40%	82.60%		
	80759	20-30 min, overflow, total	0.000250	89.20%	92.20%		
**arer	00.00	Es de l'im, estate i l'imperiore					
Water	80845	0-10 min, non-overflow, dissolved	0.000250	91.60%	101.00%		
	60846	10-20 min, non-overflow, dissolved	9.000250	74.70%	86 30%		
	80847	20-30 min, non-overflow, dissolved	0.000350	96.00%	103.00%		
Water	80760	0-10 min, non-overflow, total	0.000250	90.60%	95.30%		
Water	80761	10-20 min, non-overflow, total	0.000250	53.40%	72.90%		
Water	70762	20-30 min, non-overflow, total	0,000280	99,10%	101.00%		
		•					
		Hopper Inflow Manitoring	0.000025	79.14%	90.86%	0.000025	0,800025
Water	80800	3& 6 min, dissolved	0.000025	77.94%	88.38%	0.000025	0,000025
Water	80801	9812 min, dissolved 15818 min, dissolved	0.000025	65.90%	73.68%	0,000013	0.000025
Water	80802 80803	21&24 min, dissolved	0.000025	75.24%	69.59%	0.000025	0.000025
Water Water	80804	27830 min, dissolved	0.000026	78.33%	70.11%	0.000011	0.000016
Water	80704	3& 6 min, total	0,000250	68.26%	81.31%	0.000018	0.000048
Water	60705	98.12 min, total	0.000250	62.04%	99.69%	0.000014	0.000051
Water	80706	15&18 min, total	0.000270	68.15%	89,41%	0.000021	0.000052
Water	80707	21824 min, total	0.000270	56.44%	69.56%	0.000025	0.000009
Water	80708	27&30 min, total	0,000250	52.93%	64.41%	0.000008	0.000018
		Hopper Overflow Monitoring		00 50*/	00.404	0.000025	0.000025
Water	80805	2& 4 min, dissolved	0.000025	93.58%	98.19%	0.000025	0.000025
Water	80806	6& 8 min, dissolved	0.000025	87.07%	92.15% 97.36%	0.000025	0.000011
Water	80807	10&12 min. dissolved	0.000025	90.84%	95.06%	0.000016	0.000012
Water	80808	14&16 min, dissolved	0.000025	87.46% 91.71%	94.46%	0.000025	0.000025
Water	80809	18&20 min, dissolved	0.000250	69.36%	69.00%	0.000025	0.000007
Water	80710	28. 4 min; total	0,000250	81.76%	75.25%	0.000025	0.000025
Water Water	80711 60712	6& 8 min, total 10&12 min, total	0.000270	73.21%	68.25%	0.000027	0.000071
Water	80713	14&16 min, total	0.000270	73.06%	66.74%	0.000027	0.000027
Water	80714	16&20 min, total	0.000250	82.29%	68.42%	0.000025	0.000025
***	GOT 14	SCHIEGO CHAN, EDGE					
		Site Water					
Water	81612	Sample 1 Total	0.000250	79.55%	79.71%	0,000025	0.000025
Water	81613	Sample 2 Total	0,000250	83.18%	75.81%	0.000025	0.000025
Water	81614	Sample 3 Total	0.000250	80.62%	73 95%	0.000026	0.000025
		Elutriate	0.000250	82.64%	76.37%	0.000025	0,000025
Water	81618	Sample 1 Dissolved	0.000250	82.61%	74.72%	0.000025	0.000025
Water	81619	Sample 2 Dissolved	0.000250	82,47%	74.18%	0.000025	0.000025
Water Water	81620 81615	Sample 3 Dissolved Sample 1 Total	0.000250	81.55%	75.14%	0.000025	0.000025
Water	81616	Sample 2 Total	0.000250	79.75%	70.89%	0.000025	0.000025
Water	81617	Sample 3 Total	0.000250	80.50%	74.91%	0.000025	0.000025
340161	21011	Campia o Talli					
SAMPLE	SAMPLE	DESCRIPTION	TOXAPHEN	TcLXYL-S	DCLBP	a-CHLORD	g-CHLORD
TYPE	ID						
						0.00000	0.0040
		Detection Limit (mg/kg)	0.018			0.00096	0.0019
		Insitu Sediment		00 +00	90.52%	0.00096	0,0011
Sediment		Sample #1	9200.0 3200.0	90.16% 85.63%	90.52%	0.00096	0.0013
Sediment		Sample #2	0.0098	84.81%	90.58%	0.00000	0.0022
Sediment	טר/וט	Sample #3	e.vasa	Q-1.07 1V	40.00.0000 69		

TOXAPHEN - Toxaphene a CHLORD - a-CHLORDANE G-CHLORDANE G-CHLORD - g-CHLORD - g-CHLORDANE G-CHLORDANE Strand values are estimated results. Results are less than the reporting limit.

PCBscoar

Water Water 80 Water Water 80 Water Water 80 Wat	80834 80749 80835 80835 80835 80750 80751 80752 80839 80839 80840 80753 80754 80755	DESCRIPTION Detection Limit (mg/l) Plume Monitoring Background, dissolved Background, total 0-10 min, overflow, dissolved 10-20 min, overflow, dissolved 0-10 min, overflow, total 10-20 min, overflow, total 10-20 min, overflow, total 10-20 min, overflow, total 0-10 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve 10-20 min, non-overflow, total 10-20 min, non-overflow, total 10-20 min, non-overflow, total	PCB 22 0 0000011 0.0000010 0.000010 0.000010 0.000011 0.0000011 0.0000010 0.0000011 0.0000011 0.0000011 0.0000011	PCB 33 0.0000011 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000011	PCB 37 0.0000011 0.0000010 0.0000010 0.0000010 0.0000011 0.0000011 0.0000010 0.0000010	PCB 42 0.0000011 0.0000010 0.0000010 0.0000010 0.0000011 0.0000011	PC8 47 0.0000011 0.0000010 0.0000010 0.0000010 0.0000011	PCB 64 0.0000011 0.0000010 0.000010 0.000010 0.000010 0.000011	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Water 81 Water 84 Water 84 Water 84 Water 86	80749 80835 80835 80837 80750 80751 80752 80838 80838 80849 80753 80754 80755	Plume Monitoring Background, dissolved Background, total 0-10 min, overflow, dissolved 10-20 min, overflow, dissolved 20-30 min, overflow, dissolved 0-10 min, overflow, total 10-20 min, overflow, total 20-30 min, overflow, total 0-10 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve 20-30 min, non-overflow, dissolve 0-10 min, non-overflow, dissolve 0-10 min, non-overflow, dissolve	0.0000011 0.0000010 0.0000010 0.0000010 0.0000010 0.0000011 0.0000010 0.0000010 0.0000011 0.0000011	0.8900011 0.0000010 0.0000010 0.0000010 0.0000011 0.0000011 0.0000010 0.0000010 0.0000010	0.0000011 0.0000010 0.0000010 0.0000010 0.0000011 0.0000011	0.0000011 0.0000010 0.0000010 0.0000010 0.0000011 0.0000011	0.0000011 0.0000010 0.0000010 0.0000010 0.0000010	0.0000011 0.0000010 0.0000010 0.0000010 0.0000010	0.00000 0.00000 0.00000 0.00000
Water	80749 80835 80835 80837 80750 80751 80752 80838 80838 80849 80753 80754 80755	Background, dissolved Background, total 0-10 min, overflow, dissolved 10-20 min, overflow, dissolved 20-30 min, overflow, total 10-20 min, overflow, total 10-20 min, overflow, total 20-30 min, overflow, total 0-10 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve 20-30 min, non-overflow, dissolve 0-10 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve 10-20 min, non-overflow, total 10-20 min, non-overflow, total	0.000010 0.000010 0.000010 0.000011 0.000001 0.000001 0.000010 0.000011 0.000011 0.000011	0.0000010 0.0000010 0.0000010 0.0000010 0.0000011 0.0000010 0.0000010 0.0000010	0.0000010 0.0000010 0.0000010 0.0000010 0.0000011	0.0000010 0.0000010 0.0000010 0.0000010 0.0000011	0.0000010 0.0000010 0.0000010 0.0000010 0.0000011	0.0000010 0.0000010 0.0000010 0.0000010 0.0000011	0.00000 0.00000 0.00000
Vater 8/1 Vater 9/1 Vater 9/1 Vater 9/1 Vater 9/1 Vater 9/1 Vater 8/1 Vater	80749 80835 80835 80837 80750 80751 80752 80838 80838 80849 80753 80754 80755	Background, total 0-10 min, overflow, dissolved 10-20 min, overflow, dissolved 20-30 min, overflow, dissolved 20-30 min, overflow, total 10-20 min, overflow, total 20-30 min, overflow, total 20-30 min, overflow, total 0-10 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve 20-30 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve 10-20 min, non-overflow, total	0.000010 0.000010 0.000010 0.000011 0.000001 0.000001 0.000010 0.000011 0.000011 0.000011	0.0000010 0.0000010 0.0000010 0.0000010 0.0000011 0.0000010 0.0000010 0.0000010	0.0000010 0.0000010 0.0000010 0.0000010 0.0000011	0.0000010 0.0000010 0.0000010 0.0000010 0.0000011	0.0000010 0.0000010 0.0000010 0.0000010 0.0000011	0.0000010 0.0000010 0.0000010 0.0000010 0.0000011	0.00000 0.00000 0.00000
Vater 80 Vat	80835 80837 80750 80751 80752 80838 80839 80840 80753 80754 80755	10-20 min, overflow, dissolved 20-30 min, overflow, dissolved 0-10 min, overflow, total 10-20 min, overflow, total 20-30 min, overflow, total 20-30 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve 20-30 min, non-overflow, dissolve 0-10 min, non-overflow, dissolve 10-20 min, non-overflow, total 10-20 min, non-overflow, total	0.000010 0.000010 0.000011 0.000004 0.000010 0.000010 0.000011 0.000011 0.000011	0.0000010 0.0000010 0.0000011 0.0000010 0.0000010 0.0000010 0.0000011	0.0000010 0.0000010 0.0000011 0.0000010	8.0000010 0.0000010 0.0000011 0.0000010	0.0000010 0.0000010 0.0000011	0.0000010 0.0000010 0.0000011	0.00000
Vater 81 Vater 86 Vater 86 Vater 86 Vater 86 Vater 80 Vat	80837 80750 80751 80752 80838 80839 80840 80753 80754 80755	20-30 min, overflow, dissolved 0-10 min, overflow, total 10-20 min, overflow, total 20-30 min, overflow, total 20-30 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve 0-30 min, non-overflow, dissolve 10-20 min, non-overflow, total 10-20 min, non-overflow, total	0.0000010 0.0000011 0.0000004 0.0000010 0.0000010 0.0000011 0.0000011	0.0000010 0.0000011 0.0000010 0.000010 0.0000010 0.0000011	0.0000010 0.0000011 0.0000010	0.0000010 0.0000011 0.0000010	0.0000010 0.0000011	0.0000010 0.0000011	0.00000
Vater	80750 80751 80752 80838 80839 80840 80753 80754 80755	0-10 min, overflow, total 10-20 min, overflow, total 20-30 min, overflow, total 0-10 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve 0-30 min, non-overflow, dissolve 0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.0000011 0.0000004 0.0000010 0.0000010 0.0000011 0.0000011	0.0000011 0.0000010 0.0000010 0.0000010 0.0000011	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011	0.0000011	
Vater 80	80751 80752 80838 80839 80840 80753 80754 80755	10-20 min, overflow, total 20-30 min, overflow, total 0-10 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve 0-30 min, non-overflow, dissolve 0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.0000004 0.0000010 0.0000010 0.0000011 0.0000011	0.0000010 0.0000010 0.0000010 0.0000011	0.0000010	0.0000010			6 0000
Vater 80	80752 80838 80839 80840 80753 80754 80755	20-30 min, overflow, total 0-10 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve 20-30 min, non-overflow, dissolve 0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.0000010 0.0000010 0.0000011 0.0000011 0.0000010	0.0000010 0.0000010 0.0000011			0.0000010		
Vater 80	80839 80840 80753 80754 80755	10-20 min, non-overflow, dissolve 20-30 min, non-overflow, dissolve 0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.0000011 0.0000011 0.0000010	0.0000011		0.0000010	0.0000010	0.0000010 0.0000010	0,0000
/ater 80	80840 80753 80754 80755	20-30 min, non-overflow, dissolve 0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.0000011 0.0000010		0.0000010	0,0000010	0.0000010	0.0000010	0.0000
Vater 80	80753 80754 80755	0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.0000010	0.0000011	0.0000011	0,0000011	0.0000011	0.0000011	0.0000
Vater 80 Vater 80 Vater 80 Vater 80 Vater 80 Vater 80 Vater 80	80754 80755	10-20 min, non-overflow, total			0.0000011	0.0000011	0.0000011	0.0000011	0.00000
Vater 80 Vater 80 Vater 80 Vater 80 Vater 80	80755		0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater 80 Vater 80 Vater 80 Vater 80		20-30 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater 80 Vater 80 Vater 80	407 00		0.0000011	0.0000011	8.0000011	0.0000011	0.0000011	0.0000011	0.00000
Vater 80 Vater 80 Vater 80	## 7 00	Hopper Inflow Monitoring							
Vater 80 Vater 80 Vater 80	80790	3& 6 min, dissolved	0.0000010	0.0000010	0.0000010	. 0 0000022	0.0000010	0.0000010	0.00000
Vater 80 Vater 80	80791	98.12 min, dissolved	0.0000010	0.0000010	0.0000010	0 0000020	0.0000010	0.0000010	0.00000
Vater 80	80792	15&18 min, dissolved	0,0000010	0.0000010	0.0000010	0.0000020	0.0000005	0.0000010	0.00000
Vater 80	80793	21824 min, dissolved	0.0000010	0.0000010	0.0000010	0 0000012	0 0000015	0.0000010	0.00000
	80794	27&30 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000009	0 0000005	0.0000010	0.00000
Vater 80	80692	3& 6 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater 80	80693	9&12 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater 80	80694	15&18 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Valer BC	BO 695	21824 min, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0 0000027	0.00000
Vater 80	80696	27830 min, total	0.0000010	0.0000010	0.000010	0.0000010	0.0000010	0.0000020	0.00000
		Hopper Overflow Monitoring							
vater 80	80795	2& 4 min, dissolved	0.0000010	0.0000010	0.8000010	0.0000017	0.0000010	0.0000010	
	80796	68. 8 min, dissolved	0.0000010	0.0000010	0.0000010	0 0000017	0.0000010	0.0000010	0.00000
	80797	10&12 min. dissolved	0.0000010	0.0000010	9.0000010	0.0000011	0.0000010	0.0000010	
	80798	14&16 min, dissolved	0.0000010	0.0000010	8.0000010	0.0000011	0.0000010		0.00000
	80799	18820 min, dissolved	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
	80698	28. 4 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
	80699	6& 8 min. total	0.0000010	0.0000010	0.0000010	0,0000010	0.000010	0.0000010	0.00000
	80700	10&12 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
	80701	14&16 min, total	0.0000011	0.0000011	0,0000011	0.0000011	0.0000011	0.0000011	0.00000
	80702	18&20 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
		Site Water							
later 81	31594	Sample 1 Total	0.0000010	0.0000010	8.0000010	0.0000010	0,0000010	0.0000010	0.00000
	31595	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
		Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
		Fluidate							
ater 81		Sample 1 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.0000010	0.00000
		Sample 2 Dissolved	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.00000
		Sample 3 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
		Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater 81		Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater 81	1599	Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.00000
MPLE SA		DESCRIPTION	PCB 22	PCB 33	PCB 37	PCB 42	PCB 47	PCB 64	PCB
к.		Detection Limit (mg/kg)	0.00033	0 00033	0.00033	0 00033	0 00033	0.00033	0.000
			Q 0003 3	D 95033	0 00033	9 00033	0 00033	0.00033	0.000
ediment 81		Insitu Sediment Sample #1	0.00033	0.00033	0.00033	0.0000	A 00000		
diment 81		Sample #2	0.00033	0.00033	0.00033	0.00033 0.00033	0.00033	0,00033 0,00033	0.000
diment 81		Sample #3	0.00033	0.00033	0.00033	v.uuu33			

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

PCBscoar	
----------	--

			500.00	PCB 81	PCB 84	PCB 91	PCB 92	PCB 95	PCB 9
	SAMPLE ID	DESCRIPTION	PCB 80	PCB 81	PCB 84	PCB91	PCB 92	PC6 85	PCDS
		Detection Limit (mg/l)	0.0000011	0.0000011	0.00000110	0.0000011	0.0000011	0.00000110	0.0000011
		Plume Monitoring	0.0000011	0.0000011	0.00000110	0.0000011	0.0000011	0.000000000	0.0000011
	60834 80749	Background, dissolved Background, total	0.0000011	0.0000010	0.00000110	0.0000010	0.0000010	0.00000060	0.0000010
ater	80835	0-10 min, overflow, dissolved	0.0000010	0.0000010	0.00000000	0.0000010	0.0000010	0.00000090	0.0000010
ater	80836	10-20 min, overflow, dissolved	0.0000010	0.0000010	0.00000060	0.0000010	0.0000010	0.00000080	0.0000004
	80837	20-30 min, overflow, dissolved	0.0000010	0.0000010	0.00000050	0.0000010	0,0000010	0.00000090 0.00000110	0.0000007
	80750	0-10 min, overflow, total	0.0000011	0.0000011	9.00000110 9.00000040	0.0000011	0.0000011	0.00000000	0.000001
	80751 80752	10-20 min, overflow, total 20-30 min, overflow, total	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000050	0,000001
	80838	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.00000080	0.0000010	0.0000010	0.00000080	0.000000
	80839	10-20 min, non-overflow, dissolve	0.0000011	0.0000011	0.00000050	0.0000011	0.0000011	0.00000090 0.00000110	0.000000
	80840	20-30 min, non-overflow, dissolve	0.0000011	0.0000011 0.0000010	-0.00000050 0.00000100	0.0000011	0,0000011	0.00000110	0.0000001
	80753	0-10 min, non-overflow, total	0.0000010 0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000070	0.0000011
	80754 80755	10-20 min, non-overflow, total 20-30 min, non-overflow, total	0.0000011	0,0000011	0.00000110	0.0000011	0,0000011	0.00000110	0.0000005
		Hopper Inflow Monitoring							
/ater	80790	3& 6 min, dissolved	0.0000010	0.0000010	0.00000140	0.0000010	0.0000010	0.00000120	0.0000000
	80791	9&12 min, dissolved	0.0000010	0.0000010	0.00000110	0.0000010	0.0000010	0.00000110	0.000000
	80792	15&18 min, dissolved	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000100	0.000001
	80793	21&24 min, dissolved	0.0000010	0.0000010	0.00000110	0.0000010	0.0000010	0.00000160	0.000000
/ater	80794	27&30 min, dissolved	0,0000010	0.0000010	0.00000170	0.0000010	0.0000010	0.00000160	0.000001
	80592	3& 6 min, total	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000120	0.000001
	80693	9&12 min, total	0,0000010	0.0000010	0.00000100 0.00000280	0.0000010	0.0000010	0.00000140	0.000001
	80694	158.18 min, total	0.0000010	0,0000011	0.00000280	0.0000010	0.0000011	0.00000290	0.000000
	80695 80696	21&24 min, total 27&30 min, total	0.0000010	0.0000011	0.00000240	9.0000010	0.0000010	0.00000200	0.000001
		11							
datas	80795	Hopper Overflow Monitoring 2& 4 min, dissolved	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000100	0.000001
Vater Vater	80796	68 6 min, dissolved	0,0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000050	0.000001
Vater	80797	10&12 min, dissolved	0.0000010	0.0000010	0.00000100	0.0000010	6.0000010	0.00000050	0.000001
Vater	80798	14816 min, dissolved	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000060	0.000001
Vater	80799	18&20 min, dissolved	0.0000010	0,0000010	0.00000100	0.0000010	0.0000010	0,00000060	0.000001
Vater	80698	2& 4 min, total	0.0000010	0.0000010	0.00000120	0.0000010	0.0000010	0.00000130	0.000001
Vater	80699	6& 8 min, total	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0,00000090	0.000001
Vater	80700	108.12 min, total	0.0000010	0.0000010	0.00000100 0.00000110	0.0000010	0.0000011	0,00000110	0.000001
Vater Vater	80701 60702	14&16 min, total 18&20 min, total	0.0000011 0.0000010	0.0000011	0.00000110	0.0000011	0.0000010	0.00000180	0.000001
Vater	81594	Site Water Sample 1 Total	0.0000010	0,0000010	0.00000100	0.0000010	0.0000010	0.00000100	0,000001
vater Vater	81595	Sample 2 Total	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000090	0.000000
Vater	81596	Sample 3 Total	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000100	0.000001
		Elutriate							
Vater	81600	Sample 1 Dissolved	0.0000010	0.0000010	0.00000043	0.0000010	0.0000010	0.00000086	0.000001
Vater	81601	Sample 2 Dissolved	0,0000010	0.0000010	0.00000034	0.0000010	0.0000010	0.00000065	0.000001
Vater	81602	Sample 3 Dissolved	0,0000010	0,0000010	0.00000035	0.0000010	0.0000010 0.0000010	0.00000069 0.00000048	0.000000
Vater	81597	Sample 1 Total	0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0,00000150	0.000000
Vater	81598	Sample 2 Total	0.0000010 0.0000010	0.0000010	0.00000100	0.0000010	0.0000010	0.00000100	0.000001
Vater	81599	Sample 3 Total	0.0000010	D.4000010	2,00000130	********	***********	***************************************	
AMPLE	SAMPLE ID	DESCRIPTION	PCB 80	PCB 81	PC8 84	PCB 91	PCB 92	PCB 95	PCB
		Detection Limit (mg/kg)	0.00033	0,00033	0.00033	0.00033	0.00033	0.00033	0.000
		Insitu Sediment							
Sediment		Sample #1	0.00033	0.00033	0.00033	0,00033	0.00033	0,00033	0.000
Sediment	81715	Sample #2	0.00033	0,00033	0.00033	0,00033 8,00033	0.00033	0.00033	0.000
	81716	Sample #3	0,00033	£00033	ひしいいしょう	ນ.ບບນລວ	น.นนนลัง	4,0000	4,000

BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit.

PCBscnar

SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 110	PCB 119	PCB 120	PCB 123	PCB 126	PCB 127	PCB 1
		Detection Limit (mg/l)	0 00000110	0 0000011	0.0000011	0 0000011	0 0000011	0.0000011	0 00000
		Plume Monitoring							
Water Water	80834 807 4 9	Background, dissolved Background, total	0.00000100 0.0000050	0.0000011 0.0006010	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011 0.0000010	0.00000
Water	80835	0-10 min, overflow, dissolved	0.00000090	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Nater	80836	10-20 min, overflow, dissolved	0 00000110	0.0000010	8.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80637	20-30 min, overflow, dissolved	0 00000080	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Nater	80750	0-10 min, overflow, total	0.00000050	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
Vater Vater	80751 80752	10-20 min, overflow, total 20-30 min, overflow, total	0.00000070 0.00000050	0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.00000
Vater	80836	0-10 min, non-overflow, dissolve	0.00000110	0.0000010	0.0000010	0.0000010	0.0000010		
Vater	80839	10-20 min, non-overflow, dissolve	0.00000070	0.0000011	0.0000011	0.0000011		0.0000010	0.00000
Vater Vater	80840	20-30 min, non-overflow, dissolve	0.00000110	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
Nater Nater	80753	0-10 min, non-overflow, dissolve	0.00000050	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011 0.0000010	0.00000
Nater Nater	80754	10-20 min, non-overflow, total	0.00000000	0.0000010	9,8000010	0.0000010	0.0000010	0.0000010	0.00000
Vater Nater	80755	20-30 min, non-overflow, total	0.00000000	0.0000011	0.0000011	0.0000011			0.0000
Vales	60700	20-30 fills, hor-overlow, total	0.00000080	0.000011	0.000011	0.0000011	0.0000011	0.0000011	0.00000
		Hopper Inflow Monitoring							
Vater	80790	3& 6 min, dissolved	0.00000210	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80791	9&12 min, dissolved	0.00000160	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80792	15&18 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Vater	80793	21824 min, dissolved	0 00000160	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Vater	80794	27&30 min, dissolved	0.00000160	0.0000010	0.0000007	0.0000010	0.0000010	0.0000010	0.00000
Vater	80692	3& 6 min, total	0 00000160	0.0000010	0 0000026	0.0000010	0.0000010	0.0000010	0.00000
vater	80693	9&12 min, total	0.00000200	0.0000010	0 00000 19	0.0000010	0.0000010	0.0000010	0.00000
Vater	80694	15&18 min, total	0 00000260	0.0000010	0 0000054	0.0000010	0.0000010	0.0000010	8,0000
Vater	80695	21824 min, total	0 00000260	0.0000011	0 0000061	0.0000011	0.000011	0.0000011	0.00000
Vater	80696	27&30 min, total	0 00000230	0.0000010	0 0000071	0.0000010	0.000010	0.0000010	0.00000
		Hopper Overflow Monitoring							
Vater	80795	28, 4 min, dissolved	0 00000070	6.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80796	6& 8 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
later	80797	10&12 min, dissolved	0 00000050	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	80798	14&16 min, dissolved	0.00000060	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	80799	18820 min, dissolved	0.00000050	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	80698	2& 4 min, total	0.00000150	0.0000010	8000000	0.0000010	0.0000010	0.0000010	0.0000
/ater	80699	6& 8 min, total	0.00000120	0.0000010	0.0000005	0.0000010	0.0000010	0.0000010	0.00000
/ater	80700	10&12 min, total	0.00000150	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	80701	14&16 min, total	0.00000110	0.0000011	0.0000006	0.0000011	0.0000011	0.0000011	0.00000
/ater	80702	18&20 min, total	0 00000160	0.000010	0 0000005	0.0000010	0.0000010	0.0000010	0.0000
		Sile Water							
vater	81594	Sample 1 Total	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.00000
Vater	81595	Sample 2 Total	0.00000097	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/aler	81596	Sample 3 Total	0 00000077	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.00000
		Elutnate							
<i>i</i> ater	81600	Sample 1 Dissolved	0 00000091	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	81601	Sample 2 Dissolved	0.00000083	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	81602	Sample 3 Dissolved	0.00000064	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	81597	Sample 1 Total	0.00000001	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,00000
/ater	81598	Sample 2 Total	0.00000110	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	81599	Sample 3 Total	0.00000059	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
	SAMPLE ID	DESCRIPTION	PCB 110	PCB 119	PCB 120	PCR 123	POB 126	PCB 127	PCB 1
		Detection Limit (mg/kg)	0 00033	0 00033	0.00033	0.00033	0.00033	0 00033	0 000
		Insitu Sediment							
	81714	Sample #1	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.000
ediment ediment		Sample #2	0,00033	0.00033	0.00033	0.00033	0.00033	0.00033	0,000

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

PCBscoar

	SAMPLE	DESCRIPTION	PCB 135	PCB 146	PCB 149	PCB 157	PCB 158	PCB 166	PCB 16
		Detection Limit (mg/l)	0.0000011	0.00000110	0.00000110	0.0000011	0.0000011	0.0000011	0.0000011
		Plume Manitoring							
	80834 80749	Background, dissolved Background, total	0.0000011 0.0000010	0.00000110 0.00000100	0.00000110 0.00000100	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011
ater	80835	0-10 min, overflow, dissolved	0.0000010	0.00000100	0 00000040	0.0000010	0.0000010	0.0000010	0,0000010
	80836	10-20 mln, overflow, dissolved	0.0000010	0.00000050	0.00000040	0.0000010 0.0000010	0.0000010	0.0000010	0.0000010
	80837 80750	20-30 min, overflow, dissolved 0-10 min, overflow, total	0.0000011	0.00000110	0.00000110	0.0000011	0.0000011	0.0000011	0,0000011
	80751	10-20 min, overflow, total	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
	80752	20-30 min, overflow, total	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0,0000010
ater	80838	0-10 min, non-overflow, dissolve	0.0000010	0.00000100	0.0000100	0.0000010	0.0000010	0.0000010	0.0000010
ater	80839	10-20 min, non-overflow, dissolve	0.0000011	0.00000110	0.00000110	0.0000011 0.0000011	0,0000011 0,0000011	0.0000011	0,0000011
ater	80840	20-30 min, non-overflow, dissolve	0.0000011	0.00000110	0.00000110	0.0000011	0.0000011	0.0000010	0.0000010
/ater /ater	80753 80754	0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
/ater	80755	20-30 min, non-overflow, total	0,0000011	0.00000110	0.00000110	0.0000011	0.0000011	8.0000011	0.0000011
		Hopper Inflow Monitoring							
vater	80790	3& 6 min, dissolved	0.0000010	0.00000100	0.00000040	0.0000010	0.0000010	0.0000010	0.0000010
Vater	80791	9&12 min, dissolved	0.0000010	0.00000100	0.00000040	9.0000010 0.0000010	0.0000010	0.0000010	0.000001
vater	80792	15&18 min, dissolved	0.0000010	0.00000100 0.00000100	0.000000040	0.0000010	0,0000010	0.0000010	0,000001
vater vater	80793 80794	21&24 min, dissolved 27&30 min, dissolved	0.0000010	0.00000100	0.000000130	0.0000010	0.0000010	0.0000010	0.000001
vater Valer	80692	3& 6 min, total	0.0000010	0,00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.000000
vater	80693	9&12 min, total	0.0000010	0,00000100	0.00000130	0.0000010	0.0000010	0.0000010	0.0000001
Vater	80694	15&16 min, total	0.0000010	0.00000100	0.00000290	0.0000010 0.0000011	0,0000010	0.0000010	0.0000014
Vater Vater	80695 80696	218.24 min, total 278.30 min, total	0.0000011 0.0000010	0.00000100 0.00000097	0.00000300	0.0000010	0.0000010	0.0000010	0.0000010
			:						
		Hopper Overflow Monitoring	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000011
Vater	80795	28. 4 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
Vater Vater	80796 80797	6& 8 min, dissolved 10&12 min, dissolved	0,0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0,000001
Vater	60798	14&16 min, dissolved	0.0000010	0.00000100	0.00000180	0.0000010	0.0000010	0.0000010	0.000001
Valer	80799	18820 min, dissolved	0.0000010	0,00000100	0.00000100	0.0000010 0.0000010	0.0000010	0.0000010 0.0000010	0.000001
Vater	80698	2& 4 min, total	0.0000010	0,00000070	0.00000160 0.0000088	0.0000010	0.0000010	0.0000010	0.0000001
Vater	80699 80700	6& 8 min, total 10&12 min, total	0.0000010	0.00000100	0.00000120	0.0000010	8.0000010	0.0000010	0.000001
Vater Vater	80701	14&16 min, total	0.0000011	0.00000067	0.00000240	0.0000011	0.0000011	0.0000011	0.000001
Vater	80702	18820 min, total	0.0000010	Ο ΩΩΩΩΩΟ84	0.00000110	0.0000010	0.0000010	0.0000010	0.000001
		Site Water							
Vater	81594	Sample 1 Total	0.0000010	0,00000100	0.00000100	0.0000010	0.0000010	0.0000010	0,000001
Vater	81595	Sample 2 Total	0,9000010 0,0000010	0.00000100	0.00000050	0.0000010	0.0000010	0.0000010	0.000001
Vater	81596	Sample 3 Total	U.000001U	O-indepolition	0.00000 juu	0.0000010	4,44466		
		Elutriate	2000000	0.00000100	0.00000038	0.0000010	0.0000010	0.0000010	0.000001
Valer	81600 81601	Sample 1 Dissolved Sample 2 Dissolved	0,0000010	0.0000100	0.00000037	0.0000010	0.0000010	0.0000010	0.000001
Vater Vater	81602	Sample 3 Dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0,0000010	0.0000010	0.000001
Vater	81597	Sample 1 Total	0.0000010	0.00000100	0,00000100	0.0000010	0,0000010	0.0000010	0.000001
Vater Vater	81598 81599	Sample 2 Total Sample 3 Total	0.0000010 0.0000010	0.00000100 0.00000100	0.00000066 0.00000100	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.000001
		,							
SAMPLE YPE	SAMPLE ID	DESCRIPTION	PCB 135	PGB 146	PCB 149	PCB 157	PCB 158	PCB 166	PCB 1
		Detection Limit (mg/kg)	0.00033	0.00033	0 00033	0.00033	0.00033	0.00033	0.000
a		Insitu Sediment	0.00033	0.00033	0,00033	0.00033	0.00033	0,00033	0.000
Sediment Sediment		Sample #1 Sample #2	0,00033	0.00033	0.00033	0,00033	0.00033	0.00033	0.000
seaiment Sediment		Sample #3	0.00033	0,00033	0.00033	0.00033	0.00033	0.00033	0.000

BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit.

PCBscoar.	
-----------	--

SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 169	PCB 174	PCB 177	PCB 178	PCB 179	PCB 8	PCB
		Detection Limit (mg/l)	0 0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
		Plume Monitoring							
Vater Vater	80834 80749	Background, dissolved Background, total	0.0000011	8.0000011 8.0000010	0.0000011	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011	0.000001
Vater	80635	O 10 min manthau discalant	0.0000010	0.0000010	0.0000010	2 2222242	0.000000		
valer Vater	80836	0-10 min, overflow, dissolved 10-20 min, overflow, dissolved	0.0000010	0.0000010	0.0000010 0.0000010	0.0000010	0.0000010 0.0000010	0.0000010	0.000001
Vater	80837	20-30 min, overflow, dissolved	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.000001
Valer	80750	0-10 min, overflow, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Vater	80751	10-20 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80752	20-30 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80838	0-10 min, non-overflow, dissolve	0.0000010	9.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80839	10-20 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Vater	80840	20-30 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0,0000011	0.000001
Vater	80753	0.10 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80754	10-20 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80755	20-30 min. non-overflow, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
		Hopper Inflow Monitoring							
Vater	80790	3& 6 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000004
Vater	80791	9812 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,000001
Vater	80792	15&18 min_dissolved	0.0000010	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.000001
Vater	80793	21&24 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80794	278/30 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80692 80693	3& 6 min, total	0.0000010	0.0000010 0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater Vater	80694	9&12 min, total 15&18 min, total	0.0000010	0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010	0.000001
vater Vater	80695	21&24 min, total	0.0000010	0 0000058	0.0000011	0.0000010	0.0000010	0.0000010 0.0000011	0.000001
vate: Vater	80696	27&30 min_total	0.0000010	0 0000038	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
1/4100	80795	Happer Overflow Monitoring	0.0000010	0.000040	0.000040	0.000040	0.0000040	0.000040	0.000001
Vater Vater	80796	2& 4 min, dissolved 6& 8 min, dissolved	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010	0.0000010
vater Vater	80797	10&12 min dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.000001
vater Vater	80798	148.16 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Valei	80799	18&20 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
vater Vater	80698	2& 4 min. total	0.0000010	8.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80699	6& 8 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000011
Vater	80700	10&12 mm. total	0.0000010	8.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010
Veter	80701	14&16 min, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Vater	80702	18820 min, total	0.0000010	0.0000010	0.0000010	0.000010	0.0000010	0.0000010	0.000001
Vater	81594	Site Water Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.0000010	0.0000007
vater Vater	81595	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0 0000000
/ater	81596	Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0 0000000
later	81600	Ejutriate Sample & Disselved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater Vater	81600	Sample 1 Dissolved	0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0,0000010	0.000001
	81602	Sample 2 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
vater Vater	81597	Sample 3 Dissolved Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
vater Vater	81598	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000000
ater	81599	Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
AMELS	SAMOLE	DESCRIPTION	PGB 160	PCB 174	PCB 177	PCB 178	PCB 179	PCB 8	PCB 1
YPE	ID SAMPLE	PACKSKARAL FICHA	FGB 160	FGB 174	FUB 1/1	FUD 1/6	FC8 1/9	7000	PLB.
		Detection Limit (mg/kg)	0 00033	0 00033	0.00033	0 00033	0.00033	0 00033	0.000
		Insitu Sediment							
ediment		Sample #1	0.00033	0,00033	0.00033	0.00033	0.00033	0.00033	0.000
advant	81715	Sample #2	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0,000
ediment		Sample #3	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.0003

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

PCBscoar

				man a -	non an	D00 44	PCB 49	PCB 52	PCB 6
	SAMPLE ID	DESCRIPTION	PCB 28	PCB 31	PCB 40	PCB 44	PC8 49	PCB 52	PUBE
		Detection Limit (mg/l)	0,0000011	0.0000011	0.0000011	0.00000110	0.0000011	0.00000110	0.000001
		Plume Monitoring			0.0000011	0.00000140	0.0000011	0.00000090	0.000001
	80834 80749	Background, dissolved Background, total	0.0000011 0.0000010	0,0000011 0.0000010	0.0000011	0.00000140	0.0000011	8 00000090	0.00000
/ater	80835	0-10 min, overflow, dissolved	0.0000010	0.0000010	0,0000010	0.00000100	0.0000010	0.00000090	0,000001
	80836	10-20 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000110	0,00000
	80837	20-30 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	08000000.0	0.0000010	0.00000100	0.00000
	80750	0-10 min, overflow, total	0.0000011	0.0000011	0.0000011	0.00000110	0.0000011	0.00000060	0.00000
	80751	10-20 min, overflow, total	0.0000010	0.0000051	0.0000010	0.00000100	0.0000010	0.00000090	0.00000
ater	80752	20-30 min, overflow, total	0.0000010	0,0000010	0.0000010	0.00000100	0.0000010	0.00000050	0,00000
	80838	8-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.000010	0.00000130	0.0000010	0.00000090	0,00000
	80839	10-20 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.00000110	0.0000011 0.0000011	0.00000099	0,00000
	80840	20-30 min, non-overflow, dissolve	0.0000011	0.0000011 0.000010	0.0000011 0.0000010	0.00000070	0.0000011	0.000000100	0.00000
	80753	0-10 min, non-eveniow, total	0.0000010	0.0000010	9,0000010	0.00000100	0.0000010	0.00000000	0.00000
Vater Vater	80754 80755	10-20 min, non-overflow, total 20-30 min, non-overflow, total	0.0000011	0.0000011	0.0000010	0.00000110	0.0000011	0.00000110	0.00000
Vater	80790	Hopper Inflow Monitoring 3& 6 min, dissolved	0.0000010	0.0000010	0.8000010	- 0.00000100	0.0000010	0.00000050	0.00000
vater Vater	80791	9&12 min, dissolved	0.0000010	0,0000010	0.0000010	0.00000100	0.0000010	0.000000080	0.00000
vater Vater	80792	15&18 min, dissolved	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000445	0.00000
vater Vater	80793	21824 min, dissolved	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000000	0.00000
Vater	80794	27&30 min, dissolved	0.0000010	0.0000010	9.0000010	0.00000100	0.0000010	.0.00000100	0.00000
Vater	80692	3& 6 min, total	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000100	0.00000
Vater	80693	9812 min, total	0.0000010	0.0000010	0.0000010	0.00000110	0.0000041	0.00000100	0.00000
Vater	80694	15&18 min, total	0.0000010	0.0000010	0.0000010	0.00000170	0.0000010	0.00000200	0.00000
Vater	80695	21&24 min. total	0.0000011	0.0000011	0.0000011	0.00000210	0.0000011	0.00000280	0.00000
Vater	80696	27830 min, total	0.0000010	0,0000010	0,0000010	0 00000470	0,0000010	0,00000390	0.00000
		Hopper Overflow Monitoring							
Vater	80795	28. 4 min, dissolved	0.0000010	0.0000010	0.6000010	0.00000100	0.0000010	0.00000100	0.00000
Vater	80796	6& 8 min, dissolved	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000000	0.00000
Vater	80797	10&12 min, dissolved	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000050	0.00000
Vater	80798	14&16 min, dissolved	0.0000010	0.0000010	0,0000010	0.00000100	0.0000010	03000000.0	0.00000
Vater	80799	18&20 min, dissolved	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000060	0.00000
Vater	80698	2& 4 min, total	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000100	0.00000
Vater	80699	6& 8 min, total	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010 0.0000010	0.00000094	0.00000
Vater	80700	10&12 min, total	0.0000010	0.0000010	0.0000010 0.0000011	0.00000063 0.00000110	0.0000011	0.00000089	0.00000
Vater Valer	80701 80702	14816 min, total 18820 min, total	0.0000011	0.0000011 0.0000010	0.0000010	0.00000000	0.0000010	0.000000140	0,00000
			+						
1 Intar	81594	Site Water Sample 1 Total	0.0000010	0.0000022	0.0000010	0.00000100	0,0000019	0.00000082	0.00000
Nater Nater	81595	Sample 2 Total	0.0000010	0.0000033	0.0000010	0.00000064	0.0000010	0.00000096	0.00000
Valer	81596	Sample 3 Total	0.0000010	0,0000036	0.0000010	0.00000073	0.0000010	0.00000078	0.00000
		P. C. Adamatus							
Admin-	84600	Elutriate Samula 1 Discolund	0.0000010	0.0000032	0.0000010	0.00000100	0.0000010	0.00000100	0,0000
Vater Vater	81600 81601	Sample 1 Dissolved Sample 2 Dissolved	0.0000010	0.0000022	0,0000010	0.00000100	0.0000010	0.00000084	0.00000
Valer Valer	81602	Sample 3 Dissolved	0.0000010	0.0000032	0.0000010	0.00000100	0.0000010	0.00000095	0.00000
Vater	81597	Sample 3 Dissolved	0.0000010	0.0000021	0,0000010	0.00000100	0.0000010	0.000000654	0.00000
Vater	81598	Sample 2 Total	0.0000010	0.0000040	0.0000010	0.00000130	0.0000010	0.00000170	0,00000
Vater	81599	Sample 3 Total	0.0000010	0.0000025	0.0000010	0.00000100	0.0000010	0,00000058	0.00000
SAMPLE YPE	SAMPLE	DESCRIPTION	PCB 26	PCB 31	PCB 40	PCB 44	PCB 49	PCB 52	PCB
	,,,	Detection Limit (mg/kg)	0 00033	0.00033	0.00033	0 00033	0.00033	0.00033	0,000
		Insitu Sediment							
			0.00022		0.00033	0.00033	0.00033	0.00033	0.00
Zarlimani	R1714	Sample #1		0.00033	ຍ.ບບບວວ	V.UUU 00	0.00000		
Sediment Sediment		Sample #1 Sample #2	0,00033 0,00033	0.00033	0.00033	0.00033	0.00033	0,00033	0.000

BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit.

F۲	Bacoar	

SAMPLE	SAMPLE	DESCRIPTION	PCB 70	PCB 77	PCB 82	PCB 86	PCB 87	PCB 97	PCB 1
YPE	ID								
		Detection Limit (mg/l)	0.00000110	0.0000011	0 0000011	0 00000110	0 00000110	0.00000110	0.000001
Vater	80834	Plume Monitoring Background, dissolved	0.00000110	0.0000011	0.0000011	0.00000090	0.00000000	0.00000000	
Vater	80749	Background, total	0.00000100	0.0000011	0.0000011	0.0000000	0.00000000	0 00000090 0 00000080	0 000000
Vater	80835	0-10 min, overflow, dissolved	0 00000040	0.0000010	0.0000010	0.00000070	08000000	0.00000070	0.000000
Vater	80830	10-20 min, overflow, dissolved	0.00000040	0.0000010	0.0000010	0.00000070	0.00000050	0 00000070	0.00000
Vater	80837	20-30 min, overflow, dissolved	0.00000040	0.0000010	0.0000010	0 00000060	0.00000040	0.00000060	0.00000
Vater	80750	0-10 min, overflow, total	0.00000050	0.0000011	0.0000011	0.00000110	0 00000040	0.00000110	0 000000
Vater	80751	10-20 min, overflow, total	0.00000050	0.0000010	0.0000010	0.00000040	0.00000080	0.00000040	0 000000
Valer	80752	20-30 min, overflow, total	0.60000040	0.0000010	0.0000010	0 00000050	0.00000100	0 00000050	0.000000
Vater	80838	0-10 min, non-overflow, dissolve	0.00000050	0.0000010	0.000010	0.00000080	0 00000070	0.00000080	0.000000
Vater	80839	10-20 min, non-overflow, dissolve	0.00000050	0.0000011	0.0000011	0.00000060	0 00000070	0 00000060	0 00000
Vater	80840	20-30 min, non-overflow, dissolve	0.0000000	0.0000011	0.0000011	0 00000100	0.00000080	0.00000100	0.000000
Vater	80753	0-10 min, non-overflow, total	0.00000100	0.0000010	0.0000010	0.00000040	0.00000050	0.00000040	0.000000
Vater	80754	10-20 min, non-overflow, total	0.00000100	0.0000010	0.0000010	0 00000040	0.00000050	0.00000040	0 000000
/ater	80755	20-30 min, non-overflow, total	0.00000050	0.0000010	0.0000011	0.00000100	0 00000070	0.00000110	0 00000
		Hopper Inflow Monitoring							
Vater	80790	38. 6 min, dissolved	0.00000048	0.0000010	9.0000010	0.00000080	0.00000110	0.80000000	D 00000
Valer	80791	9&12 min, dissalved	0.00000100	0.0000010	0.0000010	0 00000000	0 00000090	0.00000060	0.00000
Vater	80792	15&18 min, dissolved	0.00000040	0.0000010	0.0000010	0.00000100	0 00000130	0.00000100	0,00000
Vater	80793	21824 min, dissolved	0.00000000	0.0000010	0.0000010	0.00000130	0.00000150	0.00000130	0.000000
Vater	80794	27830 min, dissolved	0.00000090	0.0000010	0.0000010	0.00000180	0.00000110	0 00000180	0.00000
Vater	80692	3& 6 min, total	0 00000289	0.0000010	0.0000010	0.00000190	0.00000100	0.00000190	0.00000
/ater	80693	9812 min, total	0 00000180	0.0000010	0.0000010	98000000	0.00000100	88000000 0	0.00000
Valer	80694	15&18 min, total	0 00000250	0.0000010	0.0000010	0 00000290	0.00000100	0.00000290	0.00000
Vater	80695	21&24 min, total	0.00000150	0,0000011	0.0000011	0.00000049	0.00000110	0 00000049	0,000003
/ater	80696	27&30 min, total	0 00000140	0.0000010	0.0000010	0.00000220	0.00000100	0 00000220	0 00000
		Hopper Overflow Monitoring							
Vater	80795	28 4 min, dissolved	0.00000100	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
/ater	80796	6& 8 min, dissolved	0.00000100	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.00000
	80797	10&12 min, dissolved	0.00000030	0.0000010	0.0000010	0.00000100	0.00000050	0.00000100	0.00000
/aler	80798	14&16 min, dissolved	0.00000050	0.0000010	0,0000010	0.00000040	9.00000100	0 00000040	0,00000
/ater	80799	18&20 min, dissolved	0.00000040	0.0000010	0.0000010	0.00000100	0,00000100	0.00000100	0.00000
Valer	80698	2& 4 min, total	0.00000100	0.0000010	0.0000010	0 00000061	0.00000100	0.00000061	0.000002
Vater	80699	6& 8 min, total	0.00000073	0.0000010	0.0000010	0 00000044	0,00000100	0.00000044	0.000001
/aler	80700	10&12 min, total	0.00000100	0.0000010	0.0000010	0.00000051	0.00000053	0.00000051	0.000000
	80701 80702	14&16 min, total 18&20 min, total	0.00000110	0.0000011	0.0000011 0.0000010	0.00000052 0.00000063	0.00000110	0 00000052 0 00000063	0 000002
19161	80702	36620 mm, total	0.00000100	0.0000010	0.0000010	6.00000000	0.00000100	0 00000003	0 000002
		Site Water							
/ater	61594	Sample 1 Total	0.00000058	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
	81595	Sample 2 Total	0.00000078	0.0000010	0.0000010	0,00000100	0,00000100	0.00000100	0.000001
/aler	81596	Sample 3 Total	0.00000076	0.0000010	0.0000010	0.0000100	0.00000100	0.00000100	0.000001
		Elutnate							
	81600	Sample 1 Dissolved	0.00000100	0.0000010	0.0000010	0.00000100	0.00000036	0.00000100	0.000004
	81601	Sample 2 Dissolved	0.00000100	0.0000010	0.0000010	0.00000100	0.00000062	0.00000100	0.000000
	81602	Sample 3 Dissolved	0.00000049	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.00000
	81597	Sample 1 Total	0.00000053	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
	81598	Sample 2 Total	0.00000120	0.0000010	0.0000010	0.00000057	0.00000068	0 00000057	0.000001
later	81599	Sample 3 Total	0.00000052	9.0000010	0.0000010	0.00000100	0.00000100	0.00000100	D 000000
AMPLE	SAMPLE	DESCRIPTION	PCB 70	PCB 77	PCB 82	PCB 86	PGB 87	PCB 97	PCB :
/PE	ID								
		Detection Limit (mg/kg)	0.00033	0 00033	0.00033	0 00033	0.00033	0.00033	Đ 000
n	A4714.1	Insitu Sediment				A *****		0.0000	
	81714	Sample #1	0,00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.000
ediment ediment		Sample #2	0,00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.000

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

YPE .	ID SAMPLE	DESCRIPTION	PCB 105	PCB 114	PCB 118	PCB 121	PCB 128	PCB 136	PCB 13
10.50	a	Detection Limit (mg/l)	0.00000110	0.0000011	0.00000110	0.0000011	0.0000011	0,0000011	0.000001
		Plume Monitoring							
	80834 80749	Background, dissolved Background, total	0.00000110 0.00000100	0.0000011 0.0000010	0.00000110 0.0000100	0.0000011 0.0000010	0.0000011	8.0000011 0.0000010	0,000001
ater	80835	0-10 min, overflow, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
ater	80836	10-20 min, overflow, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0,000001
	80837	20-30 min, overflow, dissolved	0.00000100	0.0000010	0.00000100 0.00000110	0.0000010	0.0000010	0.0000010	0.000001
	80750	0-10 min, overflow, total 10-20 min, overflow, total	0.00000110	0.0000011	0,00000110	0.0000010	0.0000010	0.0000010	0.00000
ater ater	80751 80752	20-30 min, overflow, total	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
	80838	0-10 min, non-overflow, dissolve	0,00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
ater ater	80839	10-20 min, non-overflow, dissolve	0,00000110	0.0000011	0.00000110	0.0000011	0.0000011	0.0000011	0.00000
ater	80840	20-30 min, non-overflow, dissolve	0.00000110	0.0000011	0.00000110	0.0000011	0.0000011	0.0000011	0.00000
ater	80753	0-10 min, non-overflow, total	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0,0000010	0.00000
/ater	80754	10-20 min, non-overflow, total	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
late:	80755	20-30 min, non-overflow, total	0.00000110	0.0000011	0.00000110	0.0000011	0.0000011	0.0000011	0.000001
		Linnar bellant Marchadae							
later	80790	Hopper Inflow Monitoring 3& 6 min, dissolved	0.00000100	0.0000010	0,00000100	0.0000010	0.0000010	0.0000010	0,00000
later	80791	9&12 min, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000007	0.00000
later	80792	15&18 min, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
ater	80793	21&24 min, dissolved	0.00000100	0.0000010	0,00000100	0.0000010	0.0000010	0.0000010	0.00000
later	80794	27830 min, dissolved	0.00000100	0.0000010	0.00000100	0,0000010 0,0000010	0.0000010	0.0000010	0.00000
/ater	80692	38. 6 min, total	0,00000100	0.0000010	0,00000100	0,0000010	0.0000010	0.0000010	0.00000
/ater	80693	9&12 min, total	0.00000250	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
/ater /ater	80694 80695	15&18 min, total 21&24 min, total	0.00000230	0.0000011	0.00000110	0.0000011	0.0000011	0.0000011	000000
rater rater	80696	27830 min, total	0.00000250	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0,00000
	80795	Hopper Overflow Monitoring 2& 4 min, dissolved	0.00000100	0.0000010	0,00000100	0.0000010	0.0000010	0.0000010	0.00000
/ater /ater	80796	6& 8 min, dissolved	0,00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
rater /ater	80797	10&12 min, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
/ater	80798	14&16 min, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
Vater	80799	18&20 min, dissolved	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
Vater	80698	28. 4 min, total	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010 0.0000010	0.00000
Vater	80599	6& 8 min, total	0.00000100	0,0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
Vater Vater	80700	108.12 min, total	0.00000110	0,0000011	0.00000110	0.0000011	0.0000011	0,0000011	0.00000
vater vater	80701 80702	14&16 min, total 16&20 min, total	0.00000100	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.00000
Vater	81594	Site Water Sample 1 Total	0.00000100	0.0000010	0.00000054	0.0000018	0.0000010	0.0000010	0.00000
Vater	81595	Sample 2 Total	0.00000047	0.0000010	0.00000097	0.0000010	0.0000010	0.0000010	0.00000
Vater	81595	Sample 3 Total	0.00000100	0.0000010	0.00000057	0.000010	0.0000010	0.9000010	0.00000
		Electrinolo							
Vater	81600	Elutriate Sample 1 Dissolved	0.00000036	0.0000010	0.00000062	0.0000010	0.0000010	0.0000010	0.00000
Vater	81601	Sample 2 Dissolved	0.00000032	0.0000010	0.00000046	0.0000010	0.0000010	0,0000010	0.0000
Vater	81602	Sample 3 Dissolved	0.00000042	0.0000010	0.00000065	0.0000010	0.0000010	0.0000010	0.0000
Vater	81597	Sample 1 Total	0.00000100	0.0000010	0.00000049	0.0000010	0.0000010	0,0000010	0.00000
Valer	81598	Sample 2 Total	0.00000100	0.0000010	0.00000086	0.0000010	0.0000010	0.0000010	0.00000
Vater	81599	Sample 3 Total	0.00000100	0.0000010	Q.00000049	010000010	0.0000110	0,0000010	4.0000
AMPLE YPE	SAMPLE ID	DESCRIPTION	PCB 105	PCB 114	PCB 118	PCB 121	PCB 128	PCB 136	PCB 1
		Detection Limit (mg/kg)	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.000
		Insitu Sediment							
	# B171#	Sample #1	0,00033	0.00033	0,00010	0.00033	0.00033	0.00033 0.00033	100,0 100,0
Sediment				0.00033	0.00016	0,00033	0.00033		

BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit.

PC	Bscoar
----	--------

		Delaware River Water Analysis (Coa	rse-Grained Site)						
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 135	PCB 141	PCB 151	PCB 153	PCB 156	PCB 167	PCB 1
		Detection Limit (mg/l)	0.0000011	0.0000011	0.0000011	0.0000011	0 0000011	0 0000011	0.000001
Vater	80834	Piume Monitoring Background, dissolved	0,0000011	0.0000011	0.0000011	0.0000007			
Vater	80749	Background, total	0.0000011	0.0000011	9.0000 010	0.0000007 0.0000010	0.0000011 0.0000010	0.0000011 0.0000010	0.000001 0.000001
Vater	80835	0-10 min, overflow, dissolved	0.0000004	0.0000010	0.0000010	0 0000009	0.0000010	0.0000010	0.000001
Vater	80836	10-20 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80837	20-30 min, overflow, dissolved	0,0000010	0.0000010	0.0000010	0 0000005	0.0000010	0.0000010	0.000001
Vater	80750	0-10 min, overflow, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Vater	80751	10-20 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80752	20-30 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80838	0-10 min, non-overflow, dissolve	0.0000010	0.000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80839	10-20 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Vater	80840	20-30 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Vater	80753	0-10 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Vater	80754	10-20 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	60755	20-30 min, non-overflow, total	0.0000011	0.0000011	0.0000011	0.0000010	0.0000011	0.0000011	0,000001
		Hopper Inflow Monitoring							
/ater	80790	3& 6 min, dissolved	9000000	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.000001
/ater	80791	98.12 min, dissolved	0.0000005	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
/ater	80792	15&18 min, dissolved	0.0000000	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	80793	21&24 min, dissolved	0.0000007	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	80794	27&30 min, dissolved	0.0000014	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
aler	80692	3& 6 min, total	0.0000019	0.0000010	0.0000010	0.0000030	0.0000010	0.0000010	0 000000
ater	80693	9&12 min, total	0 0000019	0.0000010	0.0000010	0.0000028	0.0000010	0.0000010	0.000001
ater	80694	15&18 min, total	0 0000043	0.0000010	0.0000010	0 0000048	0.0000010	0.0000010	0 000001
aler	80695	21&24 min, total	0 0000034	0.0000011	0.0000011	0.0000055	0.0000011	0.0000011	0.000001
/ater	80696	27&30 min, total	0 0000029	0.0000010	0.0000010	0.0000036	0.000010	0.0000010	0.000001
		Hopper Overflow Monitoring							
/ater	80795	2& 4 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
ater	80796	68 8 min dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	80797	10&12 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	80798	14&16 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	80799	18&20 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	80698	2& 4 min, total	0.0000018	0.0000010	0,0000010	0.0000025	0.0000010	0.0000010	0.000001
ater	80699	6& 8 min, total	0.0000013	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	80700	10&12 min. total	0.0000011	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	80701	14&16 min, total	0.0000020	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
ater	80702	18&20 min. total	0 0000015	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
		Site Water							
ater	81594	Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	81595	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	81596	Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
		Flutriate							
ater	81600	Sample 1 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	81601	Sample 2 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	81602	Sample 3 Dissolved	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	81597	Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	81598	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
nter	81599	Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
MPLE PE	SAMPLE ID	DESCRIPTION	PCB 138	PCB 141	PCB 151	PCB 153	PCB 156	PCB 167	PCB 17
		Detection Limit (mg/kg)	0 00033	0 00033	0.00033	0 00033	0.00033	0 00033	0.000
		Insitu Sediment							
diment		Sample #1	0.00033	0.00033	0,00033	0.00033	0.00033	0.00033	0.000
diment		Sample #2	0,00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.0003
diment		Sample #3	0.00033	0.00033	0.00033		0.00033		

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

PCBscoar	
-----------------	--

	SAMPLE	DESCRIPTION	PCB 171	PCB 160	PCB 182	PCB 183	PCB 185	PCB 187	PCB 18
ŧrc	10	Detection Limit (mg/l)	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
		Plume Monitoring							
	80834 80749	Background, dissolved Background, total	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011 0.0000010	0.00000
/ater	80835	0-10 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
	80836	10-20 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
	80837	20-30 min, overflow, dissolved	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,00000
/ater	80750	0-10 min, overflow, total	0.0000011	0.0000011	0.0000011	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011	0.00000
	80751	10-20 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,00000
√ater	80752	20-38 min, overflow, total	0.0000010	0.0000010	0.0000010	0.000000			
vater .	80838	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	80839	10-20 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0,0000011	0.00000
/ater	80840	20-30 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0,00000
/ater	80753	0-10 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80754	10-20 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010 0.0000010	0.0000010 0.0000011	0.0000010	0.00000
Vater	80755	20-30 min, non-overflow, total	0.0000011	0.0000011	0.0000011	U) 00000.U	4.90000 i i	2.4000011	D.00000
		Hopper Inflow Monitoring	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80790	3& 6 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.00000
Vater	80791	9&12 min, dissolved 15&18 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	9.00000
Vater Vater	80792 80793	21&24 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80794	27&30 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,00000
Vater	80692	3& 6 min, total	0.0000010	9.0000010	0.0000010	0.0000010	0.0000010	0.0000021	0.00000
Vater	80693	9812 min, total	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000017	0.00000
Vater	80694	15&18 min, total	0.0000010	0.0000010	0.0000010	0.0000010 0.0000011	0.0000010 0.0000011	0.0000033	0.00000
Vater Vater	80695 80696	21&24 min. total 27&30 min, total	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011	0.0000011	0.0000011	0.0000017	0.00000
	00705	Hopper Overflow Monitoring	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80795	2& 4 min, dissolved 6& 8 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Mater Mater	80796 80797	10&12 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000
Nater	80798	14&16 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Nater	80799	18820 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Nater	80698	2& 4 min, total	0,0000010	0.0000015	0,0000010	0.0000010	0.0000010	0.0000010 0.0000010	0.0000
Vater	80699	6& 8 min, total	0.0000010	0.0000010	0.0000010	0.0000010 0.0000010	0.0000010	0.0000010	0.0000
Nater	80700	10&12 min, total	0.0000010	0.0000010	0.0000010 0.0000011	0.0000010	0.0000011	0.0000011	0.0000
Vater	80701	14&16 min, total	0.0000011 0.0000010	0.0000024	0.0000011	0.0000010	0.0000010	0.0000010	0.0000
Vater	80702	18820 min, total	0.000010	0.0000010	0,55555	0.00000	*********		
		Site Water						0.0000010	0.0000
Nater	81594	Sample 1 Total	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010 0.0000010	0.0000010	0.0000
Vater	81595	Sample 2 Total	0.0000010	0100000.0	0.0000010	0.0000010	0.0000010	0.0000010	0,0000
Vater	81596	Sample 3 Total	0,000010	0.000010	0.00000	0.0000			
		Elutriate							
Vater	81600	Sample 1 Dissolved	0.0000010	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.000.0
Nater	81601	Sample 2 Dissolved	0,0000010	0.0000010	0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010	0.0000
Nater	81602	Sample 3 Dissolved	0.0000010	0.0000010	0.0000010 0.0000010	0.0000010	0.0000010	9,0000010	0.0000
Water	81597	Sample 1 Total	0.0000010 0.000010	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.0000
Nater Nater	81598 81599	Sample 2 Total Sample 3 Total	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.0000
,,,,,,	•								
SAMPLE TYPE	SAMPLE	DESCRIPTION	PCB 171	PCB 180	PCB 182	PCB 183	PCB 185	PCB 187	PCB
		Detection Limit (mg/kg)	0.00033	0 00033	0.00033	0.00033	0.00033	0,00033	0.00
		Insitu Sediment							
Sedimeni	81714	Sample #1	0.00033	0,00033	0.00033	0.00033	0.00033	0,00033	0.00
Sedimen		Sample #2	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033 0.00033	9.00 00.0
		Sample #3	0.00033	0.00033	0.00033	0,00033	0.00033	0.0003	U,U(

BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit

PCBscoar

		Delaware River Water Analysis (Coa	rse-Grained Site)						
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 191	PCB 194	PCB 195	PCB 196	PCB 201	PCB 203	PCB 205
		Detection Limit (mg/l)	0.0000011	0 0000011	0 0000011	0.0000011	0.0000011	0.0000011	0.0000011
		Plume Monitoring							
Water Water	80834 80749	Background, dissolved Background, total	0.0000011 0.0000010						
Water	80835	0-10 min, overflow, dissolved	8.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010
Water	80836	10 20 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80837	28-30 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.0000010
Water	80750	0-10 min, overflow, total	0,0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Water Water	80751 80752	10-20 min, overflow, total 20-30 min, overflow, total	9.0000010 8.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010 0.0000010
Water	80838	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0,0000010
Water	80839	10-20 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Water	80840	20-30 min, non-overflow, dissolve	0.0000011	0.0000011	0.0000011	0,0000011	D.0000011	0.0000011	0.0000011
Water Water	80753 80754	0-10 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.000010	0.0000010	0.0000010	0.0000010
Water	80755	10-20 min, non-overflow, total 20-30 min, non-overflow, total	0.0000010 0.0000011	0.0000010 0.0000011	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
*****	60730	20-30 thirt, tros-overnow, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Water	80790	Hopper Inflow Monitoring							
Water	80790	3& 6 min, dissolved 9&12 min, dissolved	0.0000010	0.0000010	0.0000010 0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80792	15&18 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80793	21&24 min_dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010
Water	80794	27830 mln, dissolved	0.0000010	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010
Water	80692	3& 6 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80693	9&12 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80694	15&18 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000010	0.0000010
Water Water	80695 80696	21824 min, total 27830 min, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
***	60080	27 GSD HIM, LOIGI	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80795	Hopper Overflow Monitoring							
Water	80796	2& 4 min, dissolved 6& 8 min, dissolved	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010	0.0000010 0.0000010	0.0000010	0.0000010	0.0000010
Water	80797	10&12 min. dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010 0.0000010	0.0000010 0.000010	0.0000010
Water	80798	14816 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010 0.0000010
Water	80799	18&20 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80698	28. 4 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80699	6& 8 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	80700	108-12 min, total	0.0000010	0.000010	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010
Water	80701	14&16 min, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Water	80702	18820 min_total	0.0000010	0.000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
		Site Water							
Water	81594	Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Vater Vater	81595 81596	Sample 2 Total Sample 3 Total	0.0000010	0.0000010	0.0000010 0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
rvate:	01350	Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
A/mtm-	BACCO	Elutriate							
Nater Nater	81600 81601	Sample 1 Dissolved Sample 2 Dissolved	0.0000010	0.0000010 0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
rvater Noter	81602	Sample 3 Dissolved	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Vater	91597	Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	81598	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Nater	81500	Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 191	PCB 194	PCB 195	PCB 196	PCB 201	PCB 203	PCB 205
		Detection Limit (mg/kg)	0 00033	0 00033	0 00033	0.00033	0.00033	0,00033	0 00033
		Insitu Sediment							
Sediment		Sample #1	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033	0.00033
Sediment Sediment Sediment	81715		0,00033 0,00033 0,00033	0.00033 0.00033 0.00033	0.00033 0.00033 0.00033	0.00033 0.00033 0.00033	0.00033 0.00033 0.00033	0.00033 0.00033 0.00033	0.00033 0.00033 0.00033

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

Bscoar	

		Delaware River Water Analysis (Coan	se-Grained Site)						
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 206	PCB 207	PCB 208	PCB 209	PCB 66	PCB 190	PCB 198
		Detection Limit (mg/l)	0.0000011	0.00000110	.0.00000110		0.0000011	0.0000011	0.0000011
		Plume Monitoring							
Water	80834	Background, dissolved	0.0000020	0.00000040	0.00000080	110.02%	0.0000011	0.0000011	0.0000011
Water	80749	Background, total	0.0000015	0.00000100	0.00000000	95.61%	0.0000010	0.0000010	0.0000010
Water	80835	0-10 min, overflow, dissolved	0.0000017	0.00000100	0.00000050	100.35%	0,0000010	0.0000010	0.0000010
Water	80836	10-20 min, overflow, dissolved	0.0000018	0.00000100	0.00000080	110.93%	0.0000010	0.0000010	0.0000010
Water	80837	20-30 min, overflow, dissolved	0.0000020	0.00000100	-0.00000000	109.27%	0.0000010	0.0000010	0.0000010
Water	80750	0-10 min, overflow, total	0.0000017	8.00000110	0.00000070	96.69%	0.0000011	0.0000011	0.0000011
Water	80751	10-20 min, overflow, total	0.0000017	0.00000100	0 00000050	89.46%	0.0000010	0.0000010	0.0000010
Water	80752	20-30 min, overflow, total	0 0000017	0.00000100	0.00000000	99.52%	0.0000010	0,0000010	0.0000010
Water	80838	0-10 min, non-overflow, dissolve	0.0000020	0.00000100	0.00000070	111,00%	0.0000010	0.0000010	0.0000010
Water	80839	10-20 min, non-overflow, dissolve	0.0000019	0.00000110	0.00000080	109.59%	0,0000011	0.0000011	0.0000011
Water	80840	20-30 min, non-overflow, dissolve	0.0000022	0.00000110	0.00000070	105.27%	0.0000011	0.0000011	0,0000011
Water	80753	0-10 min, non-overflow, total	0.0000017	0.00000100	0.00000060	94.00%	0.0000010	0.0000010	0.0000010
Water	80754	10-20 min, non-overflow, total	0 0000016	0.00000110	.0.00000050 .0.00000060	92.43% 103.87%	0.0000010	0.0000010	0.0000010
Water	80755	20-30 min, non-overflow, total	0.0000017	0.00000170	0,00000000	103.67%	0.0000013	0,0000011	. 0.0000711
		Hopper Inflow Monitoring	0.0000016	0.00000100	0.00900060	102.69%	0.0000010	0.0000010	.0.0000010
Water	80790	3& 6 min, dissolved	0.0000016	0.00000100	0.00000000	93.31%	0.0000010	0.0000010	0.0000010
Water Water	80791 80792	9812 mln, dissolved 15818 mln, dissolved	0.0000014	0.00000100	0.00000050	83.49%	0.0000010	0.0000010	0.0000010
Water	80793	21&24 min, dissolved	0.0000013	0.00000100	0.00000100	83.82%	0.0000010	0,0000010	0.0000010
Water	80794	27&30 min, dissolved	0 0000013	0.00000100	0.00000040	74.65%	0.0000011	0.0000010	0.0000010
Water	80692	38. 6 min, total	0.0000013	0.00000100	0.00000100	75.42%	0.0000010	0,0000010	0,0000010
Water	80693	9&12 min, total	0.0000015	0.00000100	0.00000040	83,26%	0.0000010	0.0000010	0.0000010
Water	80694	15&18 min, total	0.0000019	0.00000100	0.00000100	74.76%	0.0000010 0.0000011	0.0000010	0.0000010 0.0000011
Water	80695	21&24 min, total	0.0000022	0.00000130 0.00000150	0,00000048 0,00000064	77.49% 61.74%	0.0000011	0.0000011	0,0000010
Water	80696	27&30 min, total	0.0000018	0,00000100	0.0000000	U1.1-7.8	0.00000.0	0.0000	**********
/-	00705	Hopper Overflow Monitoring	0.0000016	0.00000100	0.00000050	97.89%	0.0000010	0.0000010	0.0000010
Water	80795 80796	2& 4 min, dissolved 5& 8 min, dissolved	0.0000017	0.00000100	0.00000050	99.86%	0.0000010	0.0000010	0.0000010
Water Water	80797	10&12 min, dissolved	0.0000017	0.00000100	0.00000050	100,24%	0.0000010	0,0000010	0,0000010
Water	80798	14&16 min, dissolved	0.0000017	0.00000100	0.00000050	105.68%	0.0000010	0.0000010	0.0000010
Water	80799	18&20 min, dissolved	0.0000017	0.00000100	0.00000050	105.68%	0.0000010	0.0000010	0.0000010
Water	80698	2& 4 min, total	0.0000016	0,00000100	0.00000055	60.08%	0.0000010	0.0000010	0.0000010
Water	80699	6& 8 min, total	0.0000015	0.80000100	0.00000100	51.08%	0.0000010	0.0000010	0.0000010
Water	80700	10&12 min, total	0.0000031	0.00000100	0.00000100 0.00000110	145.37% 98,00%	0.0000010 0.0000011	0,0000011	0.0000011
Water Water	80701 80702	14&16 min, total 18&20 min, total	0.0000020 0.0000016	B.B0000100	0,00000110	88.00%	0.0000010	0.0000010	0.0000010
		Site Water							
Water	81594	Sample 1 Total	0.0000026	0.00000110	0.00000130	95.54%	0.0000010	0,0000010	0,0000010
Water	81595	Sample 2 Total	0.0000027	0.00000100	0.00000140	100.33%	0,0000010	0,0000010	0.0000010
Water	81596	Sample 3 Total	0 0000024	0.00000085	0.00000120	98.44%	0.0000010	0.0000010	0.0000010
		Elutriate					A 0000000	0.0000010	0.0000010
Water	81600	Sample 1 Dissolved	0.0000025	88000000 0	0.00000140	110.94% 92.51%	0.0000010 0.0000010	9,0000010 0,0000010	0.0000010
Water	81601	Sample 2 Dissolved	0.0000022	0.00000083	0.00000120	92.51% 98.83%	0.0000010	0.0000010	0.0000010
Water	81602	Sample 3 Dissolved	0.0000024	0,00000064	0.00000110	97.19%	0.0000010	0.0000010	0.0000010
Water Water	81597 81598	Sample 1 Total Sample 2 Total	0.0000021	0.00000051	0.00000097	100.67%	0,0000010	0.0000010	0.0000010
Water	81599	Sample 3 Total	0.0000022	0.00000100	0.00000110	103.83%	0.0000010	0.0000010	0.0000010
SAMPLE TYPE	SAMPLE	DESCRIPTION	PCB 206	PCB 207	PCB 208	PCB 209	PCB 66	PCB 190	PCB 198
,,,,,		Detection Limit (mg/kg)	0.00033	0.00033	0.00033		0.00033	0,00033	0:00035
		Insitu Sediment							
		HIBITO OCCINIBILI						0.00022	0,00033
Sedimen	# 8171A	Sample #1	0.00019	0.00033	0.00015	109 80%	0.00033	0.00033	
	81714 t 81715	Sample #1 Sample #2	0.00019 0.00044 0.00020	0.00033 0.00033 0.00033	0.00015 0.00033 0.00015	109.80% 109.30% 106.21%	0,00033 0,00033 0,00033	0.00033 0.00033	0.00033 0.00033

BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit.

				PCBsccar		
				, coscour		
		Delaware River Water Analysis (Coar	se-Grained Site)			
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 200			
	~	Detection Limit (mg/l)	0.0000011			
		Plume Monitoring				
Water Water	80834 80749	Background, dissolved Background, folni	0.0000011 0.0000010			
Water	80835	0-10 min, overflow dissolved	0.0000010			
Water	80836	10-20 min, overflow, dissolved	0.0000010			
Water Water	80837 80750	20-30 min, overflow dissolved 0-10 min, overflow, total	0.0000010 0.0000011			
Water	80751	10-20 min, overflow total	0.0000010			
Water	80752	20-30 min overflow, total	0.0000010			
Water	80838	0-10 min, non-overflow dissolve	0.0000010			
Water	80839	10-20 min, non-overflow, dissolve	0.0000011			
Water	80840	20-30 min, non-overflow dissolve	0.0000011			
Water	80753	0-10 min, non-overflow, total	0.0000010			
	80754 80755	10-20 min, non-overflow, total 20-30 min, non-overflow, total	0.0000010 0.0000011			
		Hopper Inflow Monitoring				
Water	80790	3& 6 min, dissolved	0.0000010			
Water	80791	9&12 min, dissolved	0.0000010			
Water Water	80792 80793	15&18 min, dissolved 21&24 min, dissolved	0.0000010 0.0000010			
	80794	27&30 min, dissolved	0.0000010			
Water	80692	38 6 min, total	0.0000010			
	80693	98.12 min, total	0.0000010			
	80694 80695	15&18 min, total 21&24 min, total	0,0000010 0.000011			
	80696	27830 min total	0.0000010			
Water	80795	Hopper Overflow Monitoring 28: 4 min. dissolved	0.0000010			
	80796	6& 8 min, dissolved	0.0000010			
	80797	10812 min, dissolved	0.0000010			
	80798 80799	14&16 min, disselved 18&20 min, disselved	0.0000010 0.0000010			
	80698	2& 4 min, total	0.0000010			
	80699	68, 8 min, total	0.0000010			
	80700 80701	10&12 min, total 14&16 min, total	0,9000010 B,0000011			
	80702	18&20 mm. total	0.000010			
		Sile Water				
	81594	Sample 1 Total	0.0000010			
	81595 81596	Sample 2 Total Sample 3 Total	0.0000018 0.0000010			
	- 1000	service of the servic				
		Elutriate				
	81600	Sample 1 Dissolved	0.000010			
		Sample 2 Dissolved	0.0000010			
		Sample 3 Dissolved Sample 1 Total	0.0000010 0.0000010			
Water	81598	Sample 2 Total	0.0000010			
Waler	81599	Sample 3 Total	0,000010			
	SAMPLE ID	DESCRIPTION	PCB 200			
		Detection Limit (mg/kg)	0.00033			
		+	**			
Sediment		Insitu Sediment Sample #1	0.00033			
Sediment	81715	Sample #2	0.00033			
Sediment		Sample #3	0.00033			
anin n. los	s than valu	es n values are estimated results Results	are less than the reporting	limit		
	AM 1622 (UB)					
	w icss tils:		, -			

		TS mg/l	4	4 00	INOF 33544 31596 32556	10F 40788 40478 32490	95080 34753 34880 37873 40853				42853 34600 35127			TS 31216 30896 30652	30900 30870 30824 30720 30862 31016
			DetLimit	Plume Monkoring Background	Plume Monitoring NOF Sample 1 33544 Sample 2 31586 Sample 3 32556	Plume Monitoring OF Sample 1 407 Sample 2 404 Sample 3 324	Hopper Inflow Sample 1 Sample 2 Sample 3 Sample 4 Sample 5			Happer Overflow Sample 1	Sample 3			Ste Water Sample 1 T Sample 2 T	Elutriate Sample 1 D Sample 2 D Sample 3 D Sample 1 T Sample 2 T Sample 3 T
					30 min 12.0 8.5 13.0	30 min 14.5 16.0 14.5	30 min 26150			5.0 min 1048	10.0 min 1184	15.0 min 688	20.0 min 9590		
					28.0 28.0 11.5	25 min 24.0 13.5 14.0	27 min 2040			4.5 min 1416	9.5 min 730	14.5 min 788	12.5 min 8084		
					20 min 8.0 21.0 28.5	28 min 14.0 18.5 15.0	24 min 1045			4 0 min 800	9,0 min 820	14,0 min 842	19.0 min 2468		
					15 min 12.0 17.5 16.5	15 min 15.5 20.0 19.0	21 min 1320			3.5 min 800	8.5 min 790	13.5 min 568	18.5 min 2350		
					12 min 12.0 21.0 29.0	12 min 9.0 12.5 18.0	18 min 1300			3.0 min 862	8.0 min 1046	13.0 min 732	18.0 min 1112		
bscoat				50 min 8.0 9.0 13.0	9 min 11.0 27.0	9 min 9 0 10 0 12 5	15 min 843			2.5 min 836	7.5 min 800	12.5 min 954	17.5 min 914		
				40 min 25.0 9.5 31.5	7 min 11.0 12.0	7 min 10.5 10.0 12.0	12 min 1220			2 0 min 2808	7.0 min 690	12.0 min 772	17.0 min 1076		
				30 mín 7.5 10.0 11.0	5.55 15.5 15.5	5 min 245 105 125	9 min 1310	Location 3 1827 1395 1600	Location 3 1290 303 657	1.5 min 982	6.5 min 728	11.5 min 634	16.5 min 1424		
				20 min 28.0 10.0 12.5	3 min 12.0 15.0 17.5	3 min 6.0 32.0 26.0	6 min 1890	Location 2 L 870 1290 1330	Location 2 L 857 14610 857	1.0 min 920	6.0 min 970	11.0 min 638	16.0 min 894		
	sined Site)	TSS	4.0	10 min 8,5 10,5	1 min 11.5 12.5 10.5	4. 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.	3 min 1840	Location 1 2 14000 8470 2880	Location 1 L 590 867 833	0.5 min 928	5.5 m.n 986	10,5 min 932	15.5 min 722	TSS 38 22 22 22 22 22 22 22 22 22 22 22 22 22	## 85 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Delaware River Water Analysis (Coarse-Grained Site)	DESCRIPTION	Detection Limit (mg/l)	Piume Monitoring Background TSS Top Depth TSS Mid-Depth TSS Bottom Depth	Plume Monitoring Non-Overflow TSS Top Depth TSS Mid-Depth TSS Bottom Depth	Plune Monitoring Overflow 1SS Top Depti: TSS Mid-Depti TSS Bottom Depti:	Hopper Inflow TSS (mg/l)	Hopper Contents Beginning of Overflow TSS Top Depth TSS Mid-Depth TSS Bottom Depth	Hopper Contests End of Overflow TSS Top Depth TSS Mid-Cepth TSS Bottom Depth	Hopper Overflow TSS (mg/l)	Happer Overflow TSS (mg/l)	Hopper Overflow TSS {mg/l}	Happer Overflaw TSS (mg/l)	Site Water Sample 1 Toal Sample 2 Toal Sample 3 Toal	Elutrinte Sample 1 Dissolved Sample 2 Dissolved Sample 7 Dissolved Sample 1 Total Sample 2 Total
		SAMPLE		81134 81135	81179 81180	81149 81150 81151	81314	81334 81335 81336	81343 81344 81345	31004	81014	31024	81034	51666 51667 51668	81672 81673 81674 81670 81670
		SAMPLE		Water Water Water	Water Water Water	Water Water Water	Water	Water Water Water	Water Water Water	Water	Water	Water	Water	Water Water Water	Water Water Water Water Water

nutroonr

Delaware River Water Analysis (Coarse-Grained Site)

SAMPLE TYPE	SAMPLE ID	DESCRIPTION	TOC
		Detection Limit (mg/l)	3,00
		Plume Monitoring	
Water	80820	Background dissolved	5.67
Water	80728	Background, total	8 00
Water	80821	0-10 min, overflow, dissolved	8.98
Water	80822	10-20 min, overflow, dissolved	11.30
Water	80823	20-30 min, overflow, dissolved	9.35
Water Water	80729 80730	0-10 min, overflow, total 10-20 min, overflow, total	7.92 7.59
Water	80731	20-30 min, overflow, total	8 86

Water Water	80824 80825	0-10 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved	10 20 10 30
Water	80826	20-30 min, non-overflow, dissolved	10 10
Water	80732	0-10 min, non-overflow, total	6 80
Water	80733	10-20 min, non-overflow, total	10 30
Water	80734	20-30 min, non-overflow, total	8 52
		Hopper Inflow Monitoring	
Water Water	80770 80771	3& 6 min, dissolved 9&12 min, dissolved	14 80 3 45
Water	80772	15&18 min, dissolved	13 50
Water	80773	21&24 min, dissolved	14 50
Water	80774	27&30 min, dissolved	16 20
Water	80656	3& 6 min, total	216 00
Water Water	80657	98.12 min, total	45 80
Water	80658 80659	15&18 min, total 21&24 mm, total	16 50 28.60
Water	80660	27&30 min, total	54 20
		• • • • • • • • • • • • • • • • • • • •	
		Hopper Overflow Manitoring	
Water	80775	28 4 min, dissolved	12 40
Water	80776	68 8 min, dissolved	11.20
Water Water	80777 80778	10&12 min, dissolved 14&16 min, dissolved	13.80 11.80
Water	80779	18&20 min, dissolved	15 60
Water	80662	28 4 min, total	41.90
Water	80663	6& 8 min, total	4 56
Water	80664	10&12 min, total	12 10
Water Water	80665 80666	14&16 min, total 18&20 min, total	70.00 59.40
AAGG	auano	tod 20 mir, todi	39.40
		Site Water	
Water	81684	Sample 1 Total	5 12
Water	81685	Sample 2 Total	1 21
Water	81686	Sample 3 Total	3.00
		Mil. Adda.	
Water	81690	Elutriate Sample 1 Dissolved	1 07
Water	81691	Sample 2 Dissolved	3,00
Water	81692	Sample 3 Dissolved	3.00
Water	81687	Sample 1 Total	1.32
Water	81688	Sample 2 Total	3.00
Water	81689	Sample 3 Total	3,00
SAMPLE	SAMPLE	DESCRIPTION	TOC
TYPE	D		
		Detection Limit (mg/kg)	30
		Insitu Sediment	
Sediment		Sample #1	1740
Sediment	81/21	Sample #2	155.0
Sediment	81722	Sample #3	170 0

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

spgrcoar

Delaware River Water Analysis (Coarse-Grained Site)

SAMPLE TYPE	SAMPLE ID	DESCRIPTION		Sp. Gr.	%Moisture
		Insitu Sediment			
Sediment	81209	Sample #1		2.71	22.57%
Sediment	81210	Sample #2		2.70	25.39%
Sediment	81211	Sample #3		2.71	22.00%
Sediment	81212	Sample #4		2.71	23,83%
Sediment	81213	Sample #5		2.71	21.04%
Sediment	81214	Sample #6		2.72	20.33%
Sediment	81215	Sample #7		2.71	20.06%
Sediment	81216	Sample #8		2.72	21.82%
Sediment	81217	Sample #9		2.72	21.30%
Sediment	81218	Sample #10		2.72	19.87%
Sediment	81219	Sample #11		2.74	23.49%
Sediment	81220	Sample #12		2.74	20.47%
Sediment	81221	Sample #13		2.73	23.70%
Sediment	81222	Sample #14		2.74	20.90%
Sediment	81223	Sample #15		2.73	21.95%
		A	Average	2.72	21.91%

Page 1

etsi	

Vater Vater	60976 80934	Detection Limit (mg/l)								
Vater Vater Vater Vater Vater Vater			0.0030	0 002	0 002	0 0002	0 002	0.001	0.0010	0.00
/ater /ater /ater /ater /ater /ater		Plume Monitoring								
/ater /ater /ater /ater /ater	00934	Background, dissolved	0.0030	0.007	0.001	0.0002	0.002	0 004	0.0045	0.00
Vater Vater Vater Vater		Background, total	0.0030	0.011	0,001	0.0002	0.006	0.004	0.0060	0 00
/ater /ater /ater	80977 80978	9-10 min, overflow, disselved 10-20 min, overflow, disselved	0.0030	0 006	0.001	0.0002	0.002	0.001	0.0010	0.00
vater Vater	90979	20-30 min, overflow, dissolved	0.0030 0.0030	0.006 0.006	9.001 0.001	0.0002	0.002 0.002	0,001 0,003	0.0010 0.0010	0.00
	80935	0-10 min, overflow, total	0.0030	0 011	0.001	0.0002	0.019	0 009	0.0010	0.00
	80936	10-20 min, overflow, total	0.0030	0.013	0.001	0.0002	0.018	0.008	0.0160	0.00
/ater	80937	20-30 min, overflow, total	0.0030	0.011	0.001	0.0002	0.012	0.004	0 0100	0.00
	80980	0-10 min, non-overflow, dissolved	0.0030	0 008	0.001	0.0002	0.002	0.003	0.0010	0,00
	80981	10-20 min, non-overflow, dissolved	0.0030	0 008	0.061	0.0002	0.002	0 003	0 0017	0.00
	80982	20 30 min, non-overflow, dissolved	0.0030	0.008	0.001	0.0002	0,002	0,001	0.0010	0.00
	80938 90939	0-10 min, non-overflow, total	0.0030 0.0030	0.011	0.001	0.0002	0 004	0.001	0.0020	0.00
	80940	10-20 min, non-overflow, total 20-30 mln, non-overflow, total	0.0030	0.010 0.011	0.001 0.001	0.0002 0.0002	0.004 0.003	0.008 0.005	0.0030	0.00
		Hopper Inflow Monitoring								
	81094	3& 6 min, dissolved	0.0030	0 009	0.001	0.0002	0.002	0.001	0.0015	0.00
	81095 81096	9&12 min, dissolved	0.0030	0.019	0.001	0.0002	0.002	0.001	0.0017	0.00
	81097	15&18 min, dissolved 21&24 min, dissolved	0.0030 0.0030	0.023 0.009	0.001 0.001	0.0002 0.0002	0 002 9.002	0.001 0.001	0 0011 0 0011	0.00
	81098	27&30 min, dissolved	0.0030	0.003	0.001	0.0002	0.002	0.001	0.0010	0.00
	80867	3& 6 min, total	0.0156	0.392	0.040	0 0206	1 810	1 080	1 7800	0.00
	80868	9&12 min, total	0.0504	0 844	880 0	0.0527	3 980	2 520	4 4000	0.01
	80869	15&18 min, total	0.0870	1.470	0 140	0 0974	6.550	4 120	7 7500	0.04
	80870 80871	21&24 min, total 27&30 min, total	0 0288 0 1090	0 528 1 990	0 056 0 210	0.0376	2 510	1.560	2 6800	0.01
(ate:	00071	27030 min, total	V 10.00	1 220	0210	0 1750	9 600	6 900	12 0000	0.00
		Hopper Overflow Monitoring								
/ate:	81099	28, 4 min, dissolved	Ð.0030	0.009	0,001	0.0002	0.002	0.001	0.0012	0,00
	81100	6& 8 min, dissolved	0,0030	0 009	0.001	0.0002	0.002	0.001	0 0010	0.00
	81101 81102	108.12 min, dissolved 148.16 min, dissolved	0.0030 0.0030	0 008 0 010	0,001 9,001	0.0002 0.0002	0.002	0.001	0 0011	0.00
	81103	18&20 min, dissolved	0.0030	0 010	0.001	0.0002	0.002 0.002	0.001 0.001	0 0016 0 0010	0.00
	80873	2& 4 min, total	0.0895	1 460	0 145	0 0061	6 700	4 410	7 9500	0.03
	80874	6& 8 min, total	0 0950	1 440	0 140	0.0055	6 640	4 300	7.9000	0.02
	80875	10&12 min, total	0 0840	1.290	0.130	0.0899	5.000	4 000	6.0500	0 02
	80876	14816 min, total	0 0005 0 0815	1 640	0.160	0 1260	7 550	5 100	7,6000	0.03
/ater	80377	18&20 min, total	0 0013	1 600	0 160	0 1170	7.450	4 980	7.9500	0.03
		Site Water								
	81657	Sample 1 Total	0 0030	0 010	0.001	0.0002	0 000	0 005	0.0040	0.00
	81658	Sample 2 Total	0.0030	0.009	0.001	0.0002	0 004	0.004	0 0060	0.00
ater	81659	Sample 3 Total	0.0030	0.002	0,001	0.0002	0 004	0.001	0.0010	0.00
		Elutriate								
ater	81663	Sample 1 Dissolved	0.0030	0.011	0.001	0.0002	0.002	0 002	0.0010	0.00
Inter 1	81664	Sample 2 Dissolved	0.0030	0 010	0.001	0.0002	0.002	0 002	0.0010	0.00
	81665	Sample 3 Dissolved	0.0030	0.009	0.001	0.0002	0.002	0.003	0.0010	0.00
	81660	Sample 1 Total	0.0030	0 015	0.001	0.0002	0.024	0 007	0.0140	0.00
	81661 81662	Sample 2 Total Sample 3 Total	0.0030 0.0030	0 014 0 014	0.001 0.001	0,0002 0,0002	0 025 0 024	0.007 0.009	0 0140 0 0130	0.00 0.00
	SAMPLE	DESCRIPTION	88	AS	DE	CD	CR	CU	PB	۲
TPE I	ID									
		Detection Limit (mg/kg)	0 30	02	0.1	0.050	0.2	0.1	1.0	0 0
,	****	Insdu Sediment	a = :				- 4			
diment I		Sample #1	0.36	10.3	0.9	0.300	41.4	16.2	32 1	0.1
diment (Sample #2 Sample #3	0.49 0.37	10.7 10.1	09 08	0 310 0 280	42.2 41.0	16.8 16.2	34.2 32.4	0.1
		yes es			**		***		'	• 1

				Metsfine	•					
		Delaware River Water Analysis (Fine-G	rained Site)							
	SAMPLE ID	DESCRIPTION	M	SE	AG	TL	ZN	AL	BA	C
		Detection Limit (mg/l)	0.001	0.002	0.001	0.0020	0.010	0.025	0.002	0.2
		Plume Monitoring								
	80976 80934	Background, dissolved Background, total	0.001 0.004	0.019 0.025	0.001 0.001	0.0020 0.0020	0.053 0.071	0,025 2,900	0.223 0.050	70 67
Alatar	80977	0-10 min, overflow, dissolved	0.001	0.013	0.001	0.0020	0.014	0.025	0.094	57
	80978	10-20 min, overflow, dissolved	0.001	0.013	0.001	0.0020	0.013	0.025	0.086	5
	90979	20-30 min, overflow, dissolved	0.001	0.014	0.001	0.0020	0,013	0.025	0.089	53
	80935	0-10 min, overflow, total	0.007	0.019	0.001	0.0020	0.059	7 920	0.061	56
	80936	10-20 min, overflow, total	0.008	0.023	0.001	0.0020	0.060	7.640	0.065	57
Water	80937	20-30 min, overflow, total	0.004	0.021	0.001	9.0020	0.036	5.140	0.048	5
. *	**	n 40 min man avantour distribund	0.001	0.021	0,001	0.0020	0.058	0.025	0.245	70
	60980 80981	8-10 min, non-overflow, dissolved 10-20 min, non-overflow, dissolved	0.001	0.023	0.001	0.0021	0.046	0,025	0.193	69
	80982	20-30 min, non-overilow, dissolved	0.001	0.021	0.001	0.0020	0.048	0.025	0.207	71
	80938	0-10 min, non-everflow, total	0.001	0.027	0.001	0.0020	0.013	1.800	0.170	7
	90939	10-20 min, non-overflow, total	0.003	0.027	0.001	0.0020	0.017	2 160	0.040	6
	80940	20-30 min, non-overflow, total	£00.0	0,028	0.001	0.0020	0.010	1.790	0.038	6
		Hopper Inflow Monitoring	0.003	0.015	0.001	0.0020	0.074	0.025	0.435	8
	81094	3& 6 min, dissolved	0.003	0.015	0.002	0.0020	0.084	0.092	0.549	9
	81095	9812 min, dissolved 15818 min, dissolved	0.005	0.014	0.001	0.0020	0.076	0.033	0.529	11
	81096 81097	21&24 min, dissolved	0.003	0.014	0,001	0.0020	0.057	0.028	0.380	7
	81098	27&30 min, dissolved	0.005	0.015	0.001	0.0020	0.089	0.025	0.636	10
	80867	3& 6 min, total	0.912	0.068	0.004	0.0110	5.880	744.0	3.000	17
	80868	9&12 min, total	1.950	0.116	0.076	0.0160	13.300	1856.0	6.440	39
Water	80869	15&18 min, total	3.240	0.180	0.098	0.0310	21.400	3320.0	10.200	64
	80870	21&24 min, total	1.270	0.084	0.044	0,0110 0,0540	8,760 34,80 0	1110.0 5440.0	4,200 16,800	100
Water	80871	27&30 min, total	4.750	0.255	0.150	0.0040	34.000	0440.0	10,500	,,,,
		Hopper Overflow Monitoring								
Water	81099	2& 4 min, dissolved	0.005	0.015	0.001	0.0020	0.145	0.025	0.607	11
Water	81100	6& 8 min, dissolved	0.005	0.015	0.001	0,0020	0.157	0.025	0.713 0.748	12 11
	81101	10&12 min, dissolved	0.005	0.015	0.001	0.0020	0.130	0,025 0.025	0.748	11
	81102	14816 min, dissolved	0.005	0,013	0.001	0.0020 0.0020	0.138 0.085	0.025	0,551	11
	81103	18820 min, dissolved	0.004	0.013 0.010	0.002 0.007	0,0020	23.400	3450.0	11.000	59
	80873	28. 4 min, total	3.350 3.310	0.010	0.005	0.0020	22 900	3080.0	10.700	61
Water	80874 80875	68. 8 min, total 108.12 min, total	3.030	0,141	0.053	0.0230	21.200	2860.0	10.000	56
Water Water	80876	14&16 min, total	3,820	0.195	0.114	0.0340	27.100	3930.0	12.600	74
Water	80877	18820 min, total	3.760	0 191	0.078	0.0360	26.800	3740.0	12.500	7€
XX4C-	04664	Site Water	0.002	0,026	0.003	0.0020	0.019	2.330	0.043	5
Water	81657 81658	Sample 1 Total Sample 2 Total	0.002	0.024	0.003	0.0020	0.019	2.060	0.042	6
Water Water	81659	Sample 3 Total	0.001	0,002	0.002	0.0020	0.018	2.340	0.042	e
		Elutriate	A 1101	0.000	* ***	0.0000	0.073	9.185	0.280	
Water	81663	Sample 1 Dissolved	0.003	.0.028 0.024	9,001 0,001	0.0020 0.0020	0.073	0.163	0.209	ì
Water	81664	Sample 2 Dissolved	0.002	0.024	0.002	0.0020	0.076	0.105	0.214	è
Water	81665	Sample 3 Dissolved Sample 1 Total	0.002 0.011	0.030	0.002	0.0020	0.075	12 900	0.104	•
Water Water	81660 81661	Sample 2 Total	0.011	0.028	0.002	0.0020	0.074	13.200	0.107	E
Water Water	81662	Sample 3 Total	0.012	0.030	0.002	0.0020	0 072	13.000	0 113	(
		DESCRIPTION	NI	·se	AG	T∟	ZN	AL	ВА	
TYPE	ID		n.ė	0.00	0.100	0.200	1	1	0.1	
		Detection Limit (mg/kg)	0.5	0.20	0.100	10.200	•	•	ψ. τ	
m e	out them.	Insitu Sediment	21.7	4.60	0.700	0.200	131	13300	51.4	2
Sediment Sediment		Sample #1 Sample #2	21.7 22.2	1.60 1.60	0,700 0,700	0,200 0,200	131 133	13300 13800	51,4 53.5	2 2 2

NI - Nickel SE - Selenium AG - Silver TL - Thallium ZN - Zinc AL - Aluminum BA - Barium CA - Calcium BOLD - less than values
Values below less than values are estimated results are less than the reporting limit

М	\sim	•	n	n	^

SAMPLE	SAMPLE	DESCRIPTION	co	FE	MG	MN	ĸ	NΛ	V	
TYPE	ID .	and of the state o	•		****	141.4	,	1971	V	
		Detection Limit (mg/l)	0.002	0 020	0.200	0.001	0.20	0.20	0.002	
Water	80976	Plume Monitoring	0,001		460	0.300				
vvater Water	80934	Background, dissolved Background, total	9.001	0.020 2.420	180 162	0.002 0.118	56 4 49 6	1540 1350	0.008 0.008	
Water	80977	0-10 min. overflow, dissolved	0.001	0.020	121	0.062	41 8	1030	0.003	
Water	80978	10-20 min, overflow, dissolved	0.001	0.020	116	0 027	41 1	973	0 003	
Water	90979	20-30 min, overflow, dissolved	0.001	0.020	112	0 010	36 4	942	0 003	
Water	80935	0-10 min, overflow, total	0.002	9.710	120	0.465	37 6	916	0 020	
∕Vater Valer	80936 80937	10-20 min, overflow, total 20-30 min, overflow, total	0 002 0.001	9 260 5.730	121 109	0 450 0 278	38 5 34 0	920 857	0 020 0 013	
Water	80980	0-10 min, non-overflow, dissolved	0,001	0.027	179	0.011	57 8	1570	0.003	
Nater	80981	10-20 min, non-overflow, dissolved	0.001	0.020	171	0 011	55.6	1520	0.003	
Water	80982	20-30 mm, non-overflow, dissolved	0.001	0.020	160	0 005	55 7	1380	0.002	
Water	80938	0-10 min, non-overflow, total	0.001	1 420	180	0 073	54.9	1470	0.006	
Water	90939	10-20 min, non-overflow, total	0.001	1.820	175	0 098	53.8	1370	0.007	
Water	80940	20 30 min, non-overflow, total	0.001	1 140	159	0 061	48 8	1280	0 006	
		Hopper Inflow Monitoring								
Water	81094	3& 6 min, dissolved	0.002	0.926	150	7 500	45.1	1240	0.001	
Water	81095	9812 min, dissolved	0.004	G 850	144	9.200	38.9	1030	0.001	
Nater	81096	15&18 min, dissolved	0,006	10,200	148	11 200	36 1	1030	0 001	
Mater Mater	81097 81098	21824 min, dissolved	0.004	0.467	123	3 840	40.0	1050	0.001	
vater Vater	80867	27&30 min, dissolved 3& 6 min, total	0.00G 0.480	11.600 1.180 0	127 370	6 920 58 0	33.6 160.0	940 1070	0 002 1 800	
Vater	80868	9&12 min, total	1 030	2,860.0	725	132 0	289.0	1104	3.950	
Valer	80869	15&18 min, total	1,700	5.130 0	1180	2440	451.B	1060	6.550	
Vater	80870	21&24 min, total	0 684	1.630 0	476	748	188.0	1020	3 130	
Vater	80871	27830 min, total	2.510	9,200 0	1830	412 0	700 0	970	9.650	
		Hopper Overflow Monitoring								
Water	81099	28. 4 min, dissolved	D.004	2 930	151	9 580	32 9	1000	0.001	
Nater	81100	6& 8 min, dissolved	0 004	3 600	153	9 500	33,4	1030	0.001	
Vater	81101	10812 min, dissolved	0.005	5 980	133	7 310	32 3	955	0.001	
Nater Nater	81102 81103	148.16 min, dissolved	0.006 0.006	10.906 6.410	140	6.460	30 0	932	0.001	
Nater	80873	18&20 min, dissolved 2& 4 min, total	1 760	47500	133 1,040	6 810 225 0	32.5 474.0	895 885	0.001 6 650	
Valer	80874	6& 8 min, total	1.740	2,700 0	1,060	2240	389.0	970	6.600	
Nater	80875	10&12 min, total	1.620	4,160.0	965	197 0	415.0	960	5,900	
Valer	80876	14&16 min, total	2 030	5 ,600 0	1,205	265 0	520 D	930	7.400	
Vater	80877	18&20 min, total	1 980	6,150 0	1,320	2 87.0	510 0	960	7.350	
		Site Water								
Vater	81657	Sample 1 Total	0.002	2,420	135	0.120	39 80	1130	0.007	
Vater	81658	Sample 2 Total	0.002	2 370	134	0 121	36 90	1140	0 007	
Vater	81659	Sample 3 Total	0 002	2 470	133	0.119	38 30	1130	0.008	
		Elutriate								
Valer	81663	Sample 1 Dissolved	0.003	0.043	140	8 280	40 40	1140	0.006	
Vater	81664	Sample 2 Dissolved	0 002	0 042	153	8 100	40 40	1180	0.007	
Vater Vater	81665 81660	Sample 3 Dissolved Sample 1 Total	0.002 0.008	0.037 12.900	144 61	8 310 8 160	36.40 30,70	1160 1060	0.007 0.032	
vater Vater	B1661	Sample 1 Total	0.008	13.200	140	8 360	37,70	1060	0.032	
Vater	81662	Sample 3 Total	0 008	13 000	136	8 430	33 00	1020	0 034	
			co	FE	MG	MN	к	NA	٧	% Moist
YPE	SAMPLE ID	DESCRIPTION								
		Detection Limit (mg/kg)	0.1	2	20	0 1	20	20	0 1	
		Insitu Sediment								
lediment		Sample #1	11.1	25,300	5 050	1,070 0	2,290	2110	33 8	6
ediment		Sample #2	11.2	26,200	5,120	1,150.0	2,380	2160	42.6	6
ediment	81731	Sample #3	11.0	25,200	5 070	1 120 0	2,350	2140	37 1	6

CO - Cobalt FE - Iron MG - Magnesium MN - Manganese K - Potassium BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit. MG - Magnesium MN - Manganese K - Potassium NA - Sodium V - Vanadium

PAHsfine	
----------	--

	SAMPLE ID	DESCRIPTION	NAPHTH	ACENAY	ACENAP	FLUORE	PHENAN	ANTRAC	FLANTI
		Detection Limit (mg/l)	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.000
		Plume Manitoring						0.30000	0.000
ater :	80997 80962	Background, dissolved Background, total	0.00030 0.00030	0.00030 0.00030	0.00030 0.00030	0.00030 0.00030	0.00030 0.00030	0.00030 0.00030	0.000
ater	80998	0-10 min, overflow, dissolved	0.00030	0,00030	0.00030	0.00030	0£000,0 0£000,0	0.00030	0.000
ater	80999	10-20 min, overflow, dissolved	0.00030	0.00030 0.00030	0.00030	0.00030	0.00030	0.00030	0.000
ater	81000	20-30 min, overflow, dissolved 0-10 min, overflow, total	6.00030 0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.000
ater	80963 80964	10-20 min, overflow, total	0.00030	0.00030	0.00030	8.00030	0.00030	0.00030	0.000
later later	80965	20-30 min, overflow, total	0,00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.000
later	81001	0-10 min, non-overflow, dissolved	0.00030	9.00030	0.00030	0.00030	0.00030	0.00030	0.000
later	81002	10-20 min, non-overflow, dissolved	0.00030	0,00030	0,00030	0.00030		0.00030	0.00
/ater	81003	20-30 min, non-overflow, dissolved	0,00030	0.00030 0.00030	0,00030 0,00030	0,00030 0,00030	0.00030	0.00030	9.00
later	80966	0-10 min, non-overflow, total	0.00030 0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
iater Iater	80967 80968	10-20 min, non-overflow, total 20-30 min, non-overflow, total	0.00030	0.00030	0.00030	0,00030	0.00030	0.00030	0.000
/ater	81124	Hopper Inflow Monitoring 3& 6 min, dissolved	0,00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
/ater	81125	9&12 mm, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
/ater	81126	15&18 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
/ater	81127	21&24 min, dissolved	0.00030	0.00030	0.00030	0.00030 0.00030	0.00030	0.00030 0.00030	0.00
/ater	81128	27830 min, dissolved	0,00030 0,00043	0.00030	0.00030	0.00014	0,00054	0.00031	0.00
later later	80915 80916	3& 6 min, total 9&12 min, total	0.00110	0.00030	0.00029	0.00057	0.00349	0.00103	0.00
later	80917	15&18 min, total	0,00057	0.00030	0.00017	0.00036	0.00217	0.00061	0.00
/ater	80918	21&24 min, total	0.00053	0.00030	0.00012	0.00023	0.00158	0.00048	0.00
later	80919	27&30 min, total	0.00183	0.00015	0.00047	0.00085	0.00582	0.00183	0 01
		Hopper Overflow Monitoring							
Vater	81129	2& 4 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Vater	81130	6& 8 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
Vater	81131	10&12 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0,00 0.00
/ater	81132	14816 min, dissolved	0,00030 0,00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00
yater	81133 80921	18820 min, dissolved 2& 4 min, total	0.00120	0.00011	0.00031	0.00051	0,00377	0.00104	0.00
Vater Vater	80922	68. 8 min, total	0.00121	0.00012	0.00042	0.00068	0.00529	0.00311	0.01
Vater	80923	10&12 min, total	0.00062	0.00030	0.00020	0.00054	0.00325	0.00083	0.00
Vater	80924	14&16 min, total	0.00052	0.00030	0.00015	0.00047	0.00267	0.00074	0.00
Vater	80925	18820 min, total	0.00257	0,00023	0.00073	0.00124	0:00923	0.00259	0.0
		Site Water							
Vater	81639	Sample 1 Total	0.00030	0.00030	0.00030	0.00030	0.00030 0.00030	0.00030	9.00 9.00
Vater	81640	Sample 2 Total	0.00030	0.00030 0.00030	0.00030 0.00030	0.00030	0.00030	0.00030	0.0
Vater	81641	Sample 3 Total	0.0000	0.0000	0.0000	0.000			
		Elutriate			0.00030	0.00030	0.00030	0.00030	0.0
Vater	81645	Sample 1 Dissolved	0,00030 0,00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.0
Vater Vater	81646 81647	Sample 2 Dissolved Sample 3 Dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.0
Vater	81642	Sample 1 Total	0.00030	0.00030	0.00030	0.00030	0.00030	6,00030	0.0
Vater	81643	Sample 2 Total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.0
Vater	81644	Sample 3 Total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.0
SAMPLE TYPE	SAMPLE	DESCRIPTION	NAPHTH	ACENAY	ACENAP	FLUORE	PHENAN	ANTRAC	FLAN
		Detection Limit (mg/kg)	0.0220	0.022	0.022	0.022	0.0220	0.0220	(
		Insitu Sediment						0.0007	
Sediment		Sample #1	0.0640	0.022	0.022 0.022	0.015 0.014	0.0921 0.0800	0,0367 0,0303	(
Sediment Sediment		Sample #2 Sample #3	0.0591 0.0581	0.022 0.022	0.022	0.015	0,0828	0.0327	(
עדעמאוי	- Naphthale	ene ACENAY - Acenaphthylene	ACENAP •	Acenaphthene	FLUORE	- Fluorene	PHENAN - Ph	enanthrene	
NAPHTH ANTRAC			UMCHAUL.	· manuaburemen					

PAHsfine

Delaware	River	Water	Anahere	(Fine-Grained Site)

SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PYRENE	CHRYSE	BAANTHR	BBFLANT	BKFLANT	BAPYRE	I123PYR
		Detection Limit (mg/l)	0 00030	0.00030	0.00030	0.00030	0.00030	0 00030	0 00030
		Plume Monitoring							
Water Water	80997 80962	Background, dissolved Background, total	0.00030	0.00030 0,00030	0.00030 0.00030	0.00030 0.00030	0.00030 0.00030	0.00030 0.00030	0,00030 0,00030
Water	80998	0-10 min, overflow, dissolved	0.00030	0,00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80999	10-20 min, overflow, dissolved	0.00030	0,00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81000	20-30 min, overflow, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80963	0-10 min, overflow, total	0.00030	0,00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80964	10-20 min, overflow, total	0.00030	0.00030	0.00030	0,00030	0.00030	0.00030	0.00030
Water	80965	20-30 min, overflow, total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81001	0.10 min, non-overflow, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030		
Water	81002	10-20 min, non-overflow, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81003	20-30 min, non-overflow, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80966	0-10 min, non-overflow, total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80967	10-20 min, non-overflow, total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80968	20-30 min, non-overflow, total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
		Hopper Inflow Manitoring							
Water	81124	3& 6 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81125	9&12 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81126	158.18 min, dissolved	0,00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81127	21824 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81128	27830 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	80915	3& 6 min, total	0.00227	0.00159	0.00118	0.00177	0.00120	0.00088	D 00309
Water	80916	9&12 min, total	0.00782	0.00547	0.00451	0 00492	0.00385	0.00519	0.00549
Water	80917	15818 min, total	0.00465	0.00341	0 00276	0 00371	0 00227	0.00360	0.00436
Water	80918	21824 min, total	0.00364	0 00256	0.00204	0.00236	0.00183	0 00246	0.00255
Water	80919	27&30 min, total	0.01400	0.00948	0 00841	0.00785	0 00629	0.00838	0.00701
		Hopper Overflow Manitoring							
Water	81129	2& 4 min_dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	9.00030
Water	81130	68, 8 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81131	10&12 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81132	14&16 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81133	18820 min, dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water Water	80921 80922	2& 4 min, total 6& 8 min, total	0.00903 0.01270	0 00642	0 00576 0 00868	0.00548	0.00433	0 00614	0.00542
Water	80923	10&12 min, total	0.00711	D.00907 0.00643	0 00543	0 00823 0 00553	0 00614 0 00438	0 00838 0 00596	0.00741
Water	80924	148.16 min, total	0.00611	0.00566	0.00472	0 00555	0.06437	0 00019	0 00547
Water	80925	18&20 min, total	0.02000	0.01380	0.004/2	0 01160	0.00953	0 01220	0 01050
		•							
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Minter	84630	Site Water	P 00000		0.00070	* ****	0.00000		
Water Water	81639 81640	Sample 1 Total Sample 2 Total	0.00030 0.00030	0.00030	0.00030 0.00030	0,00030 0,00030	0.00030 0.00030	0.00030 0.00030	0.00030
Water	81641	Sample 3 Total	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
*******			2.0000	0.0000	5.55555	0.0000	0.00000	0.00000	0.00000
		Elutriate							
Water	81645	Sample 1 Dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81646	Sample 2 Dissolved	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water Water	81647 81642	Sample 3 Dissolved Sample 1 Total	0.00030 0.00010	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
Water	81643	Sample 2 Total	0.00010	0,00030	0.00030	0.00030	0.00030	0.00030 0.00030	0,00030
Water	81644	Sample 3 Total	0.00010	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
**MC:	01044	dampie o Total	0 00003	0.00030	0.00030	0.00030	0.00030	0.00030	0.00030
SAMPLE	SAMPLE	DESCRIPTION	PYRENE	CHRYSE	BAANTHR	BBFLANT	BKFLANT	BAPYRE	1123PYR
TYPE	ID								
		Detection Limit (mg/kg)	0 022	0 022	0 0220	0.0220	0 0220	0 0220	0.0220
		manage (mgmg)	0 022	0 042	0 0220	00000	00220	0 0220	0.0220
		Insitu Sediment							
Sediment		Sample #1	0 196	0 145	0 1290	0.0871	0 1090	0.1120	0.0899
Sediment		Sample #2	0 146	0 107	0 0865	0 0742	0.0850	0.0793	0.0699
Sediment	81707	Sample #3	0.150	ø 108	0.0858	0.0770	0.0727	0.0826	0.0749

PYRENE - Pyrene CHRYSE - Chrysene BAANTHR - Benxo(a)Anthracene BRFI ANT - Bonzo(b)Fisionanthono BKFLANT Bonzo(k)Fluoranthono BAPYRE - Benzo(a)Pyrene I123PYR - Indeno(1,2,3-C,D)Fyrene BOLD - less than values are estimated results. Results are less than the reporting limit.

PAHefine

Delaware	River	Water	Analysis	(Plume	Monitoring)
----------	-------	-------	----------	--------	-------------

SAMPLE TYPE	SAMPLE ID	DESCRIPTION	DBAHANT	B-GHI-PY	2MeNAPH	2FIBP-S	PTERP-S
		Detection Limit (mg/l)	0.00030	0.00030	0.00030		
		Plume Monitoring					
Water	80997	Background, dissolved	0,00030	0.00030	0.00030	56.0%	84.1%
Water	80952	Background, total	0.00030	0.00030	0.00030	73.2%	85 1%
	50000	0-10 min, overflow, dissolved	0.00030	0.00030	0.00030	647%	87.3%
Water	80998 80999	10-20 min, overflow, dissolved	0.00030	0.00030	0.00030	83.0%	87.8%
Water Water	81000	20-30 min, overflow, dissolved	0.00030	0.00030	0.00030	65 1%	81.5%
Water	80963	0-10 min, overflow, total	0.00030	0.00030	0.00030	63.2%	79.3%
Water	80964	10-20 min, overflow, total	0.00030	0.00030	0.00030	63.4%	85.5%
Water	80965	20-30 min, overflow, total	0.00030	0.00030	0.00030	58.7%	88.4%
						nn 142	84.7%
Water	81001	0-10 min, non-overflow, dissolved	0.00030	0.00030	0,00030	69.4% 63.4%	87.5%
Water	81002	10-20 min, non-overflow, dissolved	0.00030	0.00030	0.00030 0.00030	61.6%	86.0%
Water	81003	20-30 min, non-overflow, dissolved	0.00030	0.00030	0.00030	66.5%	91.6%
Water	80966	0-10 min, non-overflow, total	0.00030	0.00030	0.00030	68.1%	88.6%
Water	80967 80968	10-20 min, non-overflow, total 20-30 min, non-overflow, total	0.00030	0,00030	0.00030	87.1%	90.5%
Water	QUADO	20-50 High Hori-Overnow, total	0.0000	•		******	
		Hopper Inflow Monitoring	0.00030	0.00030	0.00030	70 4%	85.9%
Water	81124	3& 6 min, dissolved 9&12 min, dissolved	0.00030	0.00030	0.00030	43.8%	80.7%
Water Water	81125 81126	15&18 min, dissolved	0.00030	0,00030	0.00030	51.7%	80.2%
Water	R1127	21&24 min, dissolved	0.00030	0.00030	0.00030	62.9%	88,0%
Water	81128	27830 min. dissolved	0.00030	0.00030	0.00030	62.0%	83 8%
Water	80915	38. 6 min, total	0.00019	0.00167	0,00029	58.2%	46,6%
Water	80916	9&12 min, total	0.00231	0.00424	0.00068	69.6%	60.4%
Water	80917	15&18 min, total	0.00217	0.00312	0 00038	64.5%	60.7%
Water	80918	218/24 min, total	0.00111	0.00197	0.00035	57.9%	51.3%
Water	80919	27&30 min, lotal	0.00169	0.00629	0.00116	67.5%	53.6%
		Hopper Overflow Morritoring					
Water	81129	2& 4 min, dissolved	0.00030	0.00030	0.00030	62.8% 76.4%	83.2% 82.0%
Water	81130	6& 8 min, dissolved	0.00030	0.00030	0.00030	47.2%	65.7%
Water	81131	10&12 min, dissolved	0.00030	0.00030	0.00030 0.00030	70.7%	71.0%
Water	81132	14816 min, dissolved	0.00030 0.00030	0.00030	0.00030	46.2%	66.7%
Water	81133	18&20 min, dissolved	0.00153	0.00460	D.00073	69.1%	58.1%
Water Water	80921 80922	2& 4 min, total 6& 8 min, total	0.00204	0.00607	0.00076	67.1%	62.3%
Water	80923	10&12 min, total	0.00175	0.00473	0.00037	41.5%	59.6%
Water	80923 80924	14&16 min, total	0.00165	0.00431	0.00030	36.4%	61.5%
Water	60925	18820 min, total	0.00240	0,00883	0.00163	66,5%	61.5%
**acc	00020	, , , , , , , , , , , , , , , , , , , ,					
		Site Water					
Water	81639	Sample 1 Total	0.00030	0.00030	0.00030	50.6%	61.9%
Water	81640	Sample 2 Total	0.00030	0.00030	0.00030	60.2%	62.4%
Water	81641	Sample 3 Total	0.00030	0.00030	0.00030	46.3%	66.8%
		Elutriate			0.00030	43 3%	67.8%
Water	81645	Sample 1 Dissolved	0.00030	0.00030 0.00030	0.00030	83.7%	56 1%
Water	81646	Sample 2 Dissolved	0.00030	0.00030	0.00030	28.2%	58.3%
Water	81647	Sample 3 Dissolved	0.00030	0.00030	0,00030	62.7%	64.0%
Water Water	81642 81643	Sample 1 Total Sample 2 Total	0.00030	0.00030	0.00030	56.7%	71.0%
Water	81644	Sample 3 Total	0.00030	0.00030	0,00030	65,9%	71 2%
yvales	01044	Gample 6 Total		*******			
SAMPLE	SAMPLE	DESCRIPTION	DBAHANT	B-GHI-PY	2MeNAPH	2FIBP-S	PTERP-S
TYPE	ID	PAPACAL SECS.	APRIL 27 17 11 T 1				
		Detection Limit (mg/kg)	0.0220	0.0220	0.0220		
			0.0220				
		Insitu Sediment				20.00	AD 7797
Sediment		Sample #1	0.0086	0.0748	0,0353	60.3% 63.0%	48.5% 49.1%
Sediment		Sample #2	0.0072	0.0605 0.0647	0.0324 0.0342	61.2%	51.1%
Sediment	81707	Sample #3	0,0087	0.0047	0.0042	c/ 1. 6. 7G	51,170

DBAHANT - Dibenzo(A,H)Anthracene B-GHi-PY - Benzo(G,H.I)Perylene 2MeNAPH - 2-Methylnaphthalene 2FIBP-S - 2-Filorobiphenyl(Surrogate (43-116 W)) PTERP-S - p-Terphenyl-D14(Surrogate (33-141 W)) BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit

SAMPLE TYPE	SAMPLE	DESCRIPTION	ALDRIN	A-BHC	B BHC	G BHC	D-BHC	PPDI
		Detection Limit (mg/l)	0.000028	0.000026	0.000028	0.000028	0.000028	0.0000
		Plume Monitoring						
Water	80990	Background, dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0.0000
Water	80955	Background, total	0.000028	0.000028	0.000028	0.000028	0.000028	0.0000
Water	80991	0-10 min, overflow, dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0.0000
Water	80992	10-20 min, overflow, dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0.0000
Water Water	80993 80956	20-30 min, overflow dissolved 0-10 min, overflow, total	0.000025	0.000025 0.000025	0.000025	0.000025	0,000025	0.0000
Water	80957	10-20 min, overflow, total	0.000025	0.000025	0.000025 0.000025	0.000025 0.000025	0.000028	0.0000
Water	80958	20-30 min, overflow, total	0.000025	0.000025	0.000026	0.000025	0.000025	0.0000
Water	80994	0-10 min, non-overflow, dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0,0000
Water	80995	10-20 min, non-overflow, dissolved	0.000026	0.000025	0.000025	0.000025	0.000025	0.0000
Water	80996	20-30 min, non-overflow, dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0.0000
Water	80959	0-10 min_non-overflow, total	0.000026	0.000025	0.000026	9.000025	0.000025	0.0000
Water Water	80960 80961	10-20 min, non-overflow, total 20-30 min, non-overflow, total	0.000025 0.000025	0.000025 0.000026	0.000025 0.000025	0.000025 0.000025	0.000025 0.000025	0.0000
yvace	8080 ;	20-50 Hills, Holly-Oversions, total	0.000025	0.000025	0.000025	0.000025	0.000020	0.0000
		Hopper Inflow Monitoring						
Water	81114	38 6 min, dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0.0000
Water	81115	9812 min, dissolved	0.000026	0.000026	0.000026	0.000026	0.000026	0.0000
Water Water	81116 81117	15818 min, dissolved 21824 min, dissolved	0.000027 0.000025	0.000027 0.000025	0.000027 0.000025	0.000027	0.000027	0.0000
Water	81118	27&30 min, dissolved	0.000025	0.000025	0.000025	0.000025 0.000025	0.000025 0.000025	0.0000
Water	80903	3& 6 min. total	0.000025	0.000025	0.000025	0.000025	0.000025	0.0001
Vater	80904	9812 min, total	0.000024	0.000025	0.000025	0 000009	0.000025	0.0001
Vater	80905	15&18 min, total	0.000024	0.000027	0,000027	0.000027	0.000027	0.0002
Nater	80906	21824 min, total	0 000022	0.000027	0.000027	0 000014	0.000027	0,0001
∕Vater	80907	278/30 min, total	0 000026	0.000025	0.000025	0.000025	0.000025	0 0001
		Hopper Overflow Monitoring						
Vater	81119	2& 4 min, dissolved	0.000026	0.000026	0.000026	0,000026	0.000026	0,0000
Water	81120	6& 8 min, dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0.0000
Water	81121	10&12 min, dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0.0000
Water Water	81122	14&16 min, dissolved	0.000025	0.000025	0.000025	0.000025	0.000025	0.0000
vvater Water	81123 80909	18&20 min, dissolved 2& 4 min, total	0.000024 0.000030	0.000024 0.000027	0.000024	0.000024 0.000010	0.000024 0.000027	0.0000
Nater	80910	6& 8 min, total	0 000045	0.000027	0.000027	0.000027	0.000027	0 0003
Vater	80911	10&12 mm, total	Broken	Broken	Broken	Broken	Broken	Brok
<i>N</i> ater	80912	148/16 min, total	0 000062	0.000025	0.000025	0 000015	0.000025	0.0005
Waler	80913	18&20 min, total	0.000043	0.000027	0.000027	0.000027	0.000027	0 00033
		Site Water						
⊘ ater	81621	Sample 1 Total	0.000025	0.000026	0.000025	0 000017	0.000026	0.0000
Nater	81622	Sample 2 Total	0.000025	0.000025	0.000025	0.000025	0.000025	0.0000
Nater	81623	Sample 3 Total	0.000025	0.000025	0.000025	0.000025	0.000025	0.0000
		Elutriate						
Vater	81627	Sample 1 Dissolved	0.000050	0.000050	0.000050	0.000050	0.000050	0.0001
Vater	81628	Sample 2 Dissolved	0.000050	0.000050	0.000050	0.000050	0.000050	0.0001
Vater	81629	Sample 3 Dissolved	0,000050	0,000050	0.000050	0.000050	0.000050	0.0001
Vater Vater	81624 81625	Sample 1 Total	0.000025 0.000026	0.000025 0.000025	0.000025 0.000025	0.000025 0.000025	0.000025	0.0000 0.0000
vater Vater	81625	Sample 3 Total Sample 3 Total	0.000025	0.000025	0.000025	0.000025	0.000025	0 0000
AMPLE	SAMPLE	DESCRIPTION	ALDRIN	A-BHC	B-BHC	G-BHC	D-BHC	PPDI
		Detection Limit (mg/kg)	0 0018	0 0018	0 00096	0.0018	0.0018	0 00
·	04744	Insitu Sediment	0.000	0.0440	0.00007	0.5040	0.0040	A #*
	81711 81712	Sample #1 Sample #2	0.0018 0.0018	0.0018 0.0018	0 00067 0 00062	0.0018	0.0018 0.0018	0.00 0.00
	81713	Sample #3	0.0018	0.0018	0 00092	0.0018	0.0018	0 02

SAMPLE TYPE		DESCRIPTION	PPDDE	PPDDT	HPTCL.	DIELDRIN.	ENDOI	ENDOI
		Detection Limit (mg/l)	0.000055	0.000055	0.0000280	0.000055	0.000028	0.000055
		Plume Monitoring		A AAAAPA	A A00005EA	0.000050	0.000025	0.000050
Water Water	80990 80955	Background, dissolved Background, total	0.000050 0.000055	0.000050 0.000055	0.0000250 0.0000280	0.000065	0.000028	0.000055
Vater	80991	0-10 min, overflow, dissolved	0.000050	0.000050	0.0000250	0.000050	0.000025	0.000060
Water	80992	10-20 min, overflow, dissolved	0.000060	0.000050	0.0000250 0.0000260	0,000050 0,000050	0.000025 0.000025	0.000050
Water	80993 80956	20-30 min, overflow, dissolved 0-10 min, overflow, total	0,000050 0,000050	0.000050 0.000050	0.0000250	0.000050	0.000025	0.000050
Water Water	80957	10-20 min, overflow, total	0.000050	0.000050	0.0000260	0.000050	0.000025	0.000050
Water	80958	20-30 min, overflow, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.000050
Water	80994	0-10 min, non-averflow, dissolved	0.000050 0.000050	0.000050 0.000050	0.0000250 0.0000250	0.000050 0.000050	0.000025 0.000025	0.000050
Water Water	80995 80996	10-20 min, non-overflow, dissolved 20-30 min, non-overflow, dissolved	0.000050	0.000050	0.0000250	0.000050	0.000025	0.000050
Water	80959	0-10 min, non-overflow, total	0.000050	0.000050	0.0000260	0.000050	0.000025	0.000050
Water	80960	10-20 min, non-overflow, total	0.000050	0.000050	0.0000250	0.000050	0,000025	0.000050
Water	80961	20-30 min, non-overflow, total	0.000050	0.000050	0.0000250	0.000050	0.000025	0.000050
		Hopper Inflow Monitoring					-	
Water	81114	3& 6 min, dissolved	0.000050	0.000050	0.0000260	0.000050 0.000052	0.000026 0.000026	0.000050
Water	81115	9&12 min, dissolved 15&18 min, dissolved	0,000052 0,000054	0.000052 0.000054	0.0000270	0.000054	0.000027	0.000054
Water Water	81116 81117	21824 min, dissolved	0.000050	0.000050	0.0000250	0.000050	0.000025	0.000050
Water	81118	27830 min, dissolved	0.000050	0.000050	0.0000250	0.000050	0.000025	0,000050
Water	80903	3& 6 min, total	0.000079 0.000110	0.000050 0.000082	0.0000250 0.0000130	0.000050 0.000050	0.000025 0.000029	0.000050
Water Water	80904 80905	9&12 min, total 15&18 min, total	0.000110	0.000050	0,0000130	0.000053	0.000033	0.000053
Water	80906	21&24 min, total	0.000120	0.000075	0.0000207	0.000053	0.000032	0.000053
Water	80907	27830 min, total	0.000110	-0.000068	0.0000290	0.000050	0.000032	0.000060
		Hopper Overflow Maniforing						
Water	81119	28, 4 min, dissolved	0.000052	0.000052	0.0000260	0.000052	0.000026	0.000052
Water	81120	6& 8 min, dissolved	0.000050 0.000050	0.000066 0.000069	0.0000250	0.000050	0.000025	0.000050
Water Water	81121 81122	10&12 min, dissolved 14&16 min, dissolved	0.000050	0.000065	0.0000250	0.000050	0.000025	0,000050
Water	81123	18820 min, dissolved	0.000049	0.000049	0.0000240	0.000049	0.000024	0.000049
Water	80909	28. 4 min, total	0.000190 0.000180	0.000110 0.000360	0.0000170 0.000027 0	0.000053	0.000017	0,000053
Water Water	80910 80911	6& 8 min, total 10&12 min, total	Broken	Broken	Broken	Broken	Broken	Broken
Water	80912	14&16 min, total	0.000470	0.000340	0.0000280	0.000050	0.000033	0,000050
Water	80913	18&20 min, total	0.000300	0.000140	0.0000270	0.000053	0,000020	0,000053
		Site Water						
Water	81621	Sample 1 Total	0.000050	0.000050	0.0000037	0.000050	0.000025	0.000050
Water	81622	Sample 2 Total	0.000050 0.000050	0.000050 0.000050	0.0000340 0.0000370	0.000050 0.000050	0.000025 0.000025	0.000050
Water	81623	Sample 3 Total	0.000035	0,00000	0,50550470	*********	*********	
		Elutriate	0.000100	0.000100	0.0000170	0.000100	0,000050	0.000100
Water	81627 81628	Sample 1 Dissolved Sample 2 Dissolved	0.000100	0.000100	0.0000170	0.000100	0.000050	0.000100
Water Water	81629	Sample 3 Dissolved	0.000100	0,000100	0.0000290	0.000100	0.000050	0.000100
Water	81624	Sample 1 Total	0.000050	0.000050	0.0000130	0.000050 0.000050	0.000025 0.000025	0,000050
Water Water	81625 81626	Sample 2 Total Sample 3 Total	0.000050	0.000050 0.000050	0.0000350 0.0000330	0.000050	0.000025	0.000050
	7 - 7 - 7 - 7							
SAMPLE	SAMPLE	DESCRIPTION	PPDDE	PPDDT	HPTCL.	DIELDRIN	ENDO	ENDO
		Detection Limit (mg/kg)	0.0019	0.0019	0.00096	0.0036	0.00096	0,0036
		Insitu Sediment	0.0061	0.0120	0,00058	0.0036	0.0030	0,005
Sediment Sediment		Sample #1 Sample #2	0.0110	0.0059	0.00038	0.0036	0.0030	0.003
Sediment		Sample #3	0 0075	0.0120	0.00051	0.0036	0.0030	0,0031
PPDDE -	nninh#	PPDDT - PPDDT HPTCL - Hep	fachior DIEL	DRIN - Dieldrin	ENDOI - A-End	iosulfan END	Oil - B-Endosulfan	
		www.iii.www.sii MMILLMRD	ACCUSED LACE					

Pe	

SAMPLE TYPE		DESCRIPTION	ENDOSU	ENDRIN	ENDALD	HPTCI F	METOXYCL	CLORDANE
		Detection Limit (mg/l)	0.000055	0 000050	0 000055	0 000028	0 00028	0 000028
Water	80990	Plume Monitoring						
Water	8 0955	Background, dissolved Background, total	0.000060 0.000055	0.000050 0.000110	0.000050 0.000055	0.000025 0.000028	0.00025 0,00028	0.000025 0.000028
Water	80991	0-10 min, overflow, dissolved	0.000050	0.000050	0.000050	0.000026	0.00025	0.000025
Water Water	80992 80993	10-20 min, overflow, dissolved 20-30 min, overflow, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	0.000025
Water	60956	0-10 min, overflow, dissolved	0.000050	0.000050 0.000110	0.000050 0.000050	0.000025	0.00025 0.00025	0.000025
Water	80957	10-20 min, overflow, total	0.000050	0 000110	0.000050	0.000025	0.00025	0.000025 0.000025
Water	80958	20-30 min, overflow, total	0.000050	0 000100	0.000050	0.000025	0,00025	0.000025
Water	80994	0-10 min, non-overflow, dissolved	0.000050	0.000050	0.000050	0.000025	0.00025	0.000025
Water	80995	10-20 min, non-overflow, dissolved	0.000050	0 000110	0.000050	0.000025	0.00025	0.000025
Water	80996	20:30 min, non-overflow, dissolved	0.000050	0.000110	0.000060	0.000025	0.00026	0.000025
Water Water	80959 80960	0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.000050 0.000050	0.000100 0.000120	0.000050 0.000050	0.000025 0.000025	0.00025 0.00025	0.000025 0.000025
Water	80961	20-30 min, non-overflow, total	0.000080	0 000 130	0.000060	0.000025	0.00025	0.000025
		Hopper Inflow Monitoring						
Water	81114	3& 6 min, dissolved	0.000050	0.000081	0.000050	0.000025	0.00025	0.000025
Water	81115	9&12 min, dissolved	0.000052	0 000061	0.000052	0.000026	0.00026	0.000026
Water Water	81116 81117	15&18 min, dissolved	0.000084	0.000060	0.000084	0.000027	0.00027	0.000027
Water	81118	21&24 min, dissolved 27&30 min, dissolved	0.000050	0.000081 0.000069	0.000050 0.000050	0.000025 0.000025	0.00025 0.00025	0.000025 0.000025
Water	80903	3& 6 min, total	0.000022	0.000060	0.000050	0.000013	0.00025	0.000025
Water	80904	9812 min, total	0.000050	0,000050	0.000050	0.000025	0.00025	
Water Water	80905 80906	15&18 min, total	0 000047	0.000053	0.000053	0.000027	0.00027	
Water	80907	21&24 min, total 27&30 min, total	0.000041 0.000050	0.000083 0.000050	0.000053 0.000050	0.000027 0.000025	0.00027 0.00025	
		Marian Orania de Calendaria						
Water	81119	Hopper Overflow Monitoring 28. 4 min. dissolved	0.000052	0.000095	0.00062	0.000026	0.00026	0.000026
Water	81120	6& 8 min, dissolved	0.000050	0 000079	0.000050	0.000025	0.00026	0.000026
Water	81121	10812 min. dissolved	0.000050	0.000085	0.000050	0.000025	0.00025	0.000025
Water	81122	14816 min, dissolved	0.000050	0.000063	0.000050	0.000025	0.00025	0.000025
Water Water	81123 80909	18820 min, dissolved 28, 4 min, total	0.000049 0.000053	0.000055 0.000063	0.000049	0.000024 0.000014	0.00024 0.00027	0.000024
Water	80910	68. 8 min. total	0.000053	0.000053	0.000053	8.000027	0.00027	
Water	80911	10&12 min_total	Broken	Broken	Broken	Broken	Broken	
Water	80912	14816 min, total	0.000140	0.000050	0.000050	0.000020	0.00025	
Water	80913	16&20 min, total	0.000053	0.000053	0.000053	0.000027	0.00027	
		Site Water						
Water	81621	Sample 1 Total	0.000050	0.000050	0.000060	0.000025	0.00025	
Water Water	81622 81623	Sample 2 Total Sample 3 Total	0.000050 0.000050	0.000050 0.000050	0.000050 0.000050	0.000025 0.000025	0.00025 0.00025	
, , , , , ,					1.00000	5.5000	0.00013	
Water	81627	Elutriate Sample 1 Dissolved	0.000100	0.000400	0.000400	0.000000	A *****	
Water	81628	Sample 1 Dissolved Sample 2 Dissolved	0.000100	0,000100 0,000100	0.000100 0.000100	0.000080	0,00050 0.00050	
Water	81629	Sample 3 Dissolved	0.000100	0.000100	0.000100	0.000050	0,00050	
Water	81624	Sample 1 Total	0.000050	0.000050	0.000050	0.000025	0.00025	
Water Water	81625 81626	Sample 2 Total Sample 3 Total	0.000050 0.000060	0.000050 0.000050	0.000050 0.000050	0.000025 0.000025	0.00025 0.00025	
SAMPLE	SAMPLE	DESCRIPTION	ENDOSU	ENDRIN	ENDALD	HPTCLE	METOXYCL	
TYPE	ID SVIII-FE	DESCRIPTION	L.10000	FIADIZIIA	ENUMED	nr (GLE	METONTOL	
		Detection Limit (mg/kg)	0.0036	0 0036	0.0036	0.0018	0.018	
		Insitu Sediment						
Sediment		Sample #1	0.0036	0.0036	0.0036	0.0018	0.018	
Sediment Sediment		Sample #3	0.0019 0.0036	0.0036	0.0036 0.0036	0.0018 0.0018	0,018 0,018	
	~ 11 10	manufacture of C	4,4440	0,0000	4.0000	w.ww.10	U.U.O	

ENDOSU - Endosultan sultate ENDRIN - Endrin FNDALD - Endrin Aldehydr HPTCLE - Heptachlor Epoxide METOXYGL - Methoxychlor CLORDANE - Chlordane BOLD - less than values Values below less than values are estimated results. Results are less than the reporting limit.

Delaware	River Water	Analysis	(Fine-Grained Site)
----------	-------------	----------	---------------------

SAMPLE TYPE	SAMPLE ID	DESCRIPTION	TOXAPHEN	TcLXYL-S	DCLBP	a-CHLORD	g-CHLORD
		Detection Limit (mg/l)	0.00028			0.000025	0.000025
		Plume Monitoring					
Water	80990	Background, dissolved	0.00026	83.00%	92.60%		
Water	80955	Background, total	0.00028	87.40%	72.90%		
.,							
Water	80991	8-10 min. overflow, dissolved	0.00025	75.70%	92.20%		
Water	60992	10-20 min, overflow, dissolved	0.00025	75.10%	81.70%		
Water	80993	20-30 min, overflow, dissolved	0.00025	73.20%	83.20% 70.90%		
Water	80956	0-10 min, overflow, total	0.00025	83.50% 92.40%	70.90% 72.10%		
Water	80957	10-20 min, overflow, total	0.00025 0.00025	74.40%	63.90%		
Water	80958	20-30 min, overflow, total	0.00028	7 4.4O 7B	00.20 0		
Water	80994	0:10 min, non-overflow, dissolved	0,00025	73.30%	84.10%		
Water	80995	10-20 min, non-overflow, dissolved	0.00025	79.50%	87,40%		
Water	80996	20-30 min, non-overflow, dissolved	0.00025	73.40%	84.10%		
Water	80959	0-10 min, non-overflow total	0.00025	82.40%	75.20%		
Water	80960	10-20 min, non-overflow, total	0.00026	86.80%	79.50%		
Water	80961	20-30 min, non-overflow, total	0.00025	62.30%	80,60%		
***		Hopper Inflow Monitoring	0.00025	80.80%	78.00%		
Water Water	81114 81115	3& 6 min, dissolved 9&12 min, dissolved	0.00026	82.20%	75.20%		
Water	81115	15&18 min, dissolved	0.00027	82.10%	73.50%		
Water	81117	21&24 min, dissolved	0.00025	95.30%	85,80%		
Water	81118	27830 min, dissolved	9.00025	91.60%	80.70%		
Water	80903	3& 6 min, total	0.00025	35.50%	45,20%	0.000034	0.000026
Water	80904	9&12 min, total	0.00025	31.64%	43.66%	0.000043	0.000032
Water	80905	15&18 min, total	0.00027	39.39%	59.50%	0.000052	0.000032
Water	80906	21&24 min, total	0.00027	44.21%	59.72%	0.000046	0.000029
Water	80907	27&30 min, total	0.00025	44.04%	41.07%	0.000043	0.000025
		Character of the second street and the single					
Water	81119	Hopper Overflow Monitoring 2& 4 min, dissolved	0,00026	88 10%	80.40%		
Water	81120	68, 8 min, dissolved	0.00025	92.10%	76.20%		
Water	81121	10&12 min, dissolved	0.00025	91,70%	81.80%		
Water	81122	14&16 min, dissolved	0.90025	72.30%	56 10%		
Water	81123	18&20 min, dissolved	0,00024	73,50%	61.10%		
Water	80909	2& 4 min, total	0.00027	40.11%	58.27%	0.000068	0.000050
Water	80910	6& 8 min, total	0.00027	47.04%	64.93%	0.000069	0 000048
Water	80911	108.12 min, total	Broken	Broken	Broken	Broken	Broken
Water	80912	148.16 min. total	0.00025	48.41%	78.19%	0.000130	0.000093
Water	80913	18&20 min, total	0.00027	44.62%	83.94%	880000.0	0.000059
		Site Water					
Water	81621	Sample 1 Total	0.00025	76.80%	68.76%	0.000025	0.000025
Water	81622	Sample 2 Total	0.00025	60.17%	69.83%	0.000025	0.000025
Water	81623	Sample 3 Total	0.00025	71.76%	68 80%	0.000025	0.000025
		Elutriate					
Water	81627	Sample 1 Dissolved	0.00050	75.82%	87.54%	0.000050	0.000050
Water	81628	Sample 2 Dissolved	0,00050	85.13%	88.79%	0,000050	0.000050
Water	81629	Sample 3 Dissolved	0.00050	76.31%	87.53%	0.000050	0.000050
Water	81624	Sample 1 Total	0.00025	81.58%	64.33%	0.000025	0.000025
Water	81625	Sample 2 Total	0.00025	60.65%	55.24%	0.000025	0.000025
Water	81626	Sample 3 Total	0.00025	67:50%	61.90%	0.000025	0.000025
		·					
SAMPLE	SAMPLE	DESCRIPTION	TOXAPHEN	TcLXYL-S	DCLBP	a-CHLORD	g-CHLORD
		White the stands of the stands	# n4n			0,00096	0.0019
		Detection Limit (mg/kg)	0.018			5,00035	2,4043
		Insitu Sediment					
Sediment	81711	Sample #1	810,0	86,90%	92.01%	0.0011	0.0035
Sediment		Sample #2	0.018	91.01%	92.77%	0.0016	0.0035
Sediment	81713	Sample #3	0.018	84,77%	102 76%	0.0011	0.0038

TOXAPHEN - Toxaphene ToLXYL-S - 2,46,6-Tetrachitoro-m-wylene(Surrogate(60-150 WS))

a-CHLORD - a-CHLORDANE G-CHLORDANE
BOLD - less than values
Values below less than values are estimated results. Results are less than the reporting limit.

8sf	

		DESCRIPTION	PCB 22	PCB 33	PCB 37	PCB 42	PCB 47	PCB 64	PCB
YPE	ID	Detection Limit (mg/l)	0 0000011	0 0000011	0.0000011	0.0000011	0.00000440	0.0000044	
			0 0000011	0 0000011	0.0000011	0.0000011	0 00000110	D 0000011	0 00000
Vater	80983	Plume Monitoring Background, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
Vater	80948	Background, total	0.0000011	0.0000011	0.0000011	0.0000011	0.00000110	0.0000011	0.00000
Vater	80984	0-10 min overflow, dissolved	0.0000010	0.0000010	0.0000010	0.000010	0.00000100	0.0000010	0.00000
Vater	80985	10-20 min, overflow, dissolved	0.0000011	0.0000011	0.0000011	0.0000011	0.00000110	0.0000011	0.00000
Vater Vater	80986 80949	20-30 min, overflow, dissolved 0-10 min, overflow, total	0.0000010 0.0000010	0.0000010	0.0000010	0.0000010 0.0000010	0.00000100	0.0000010	0.00000
Vater	80950	10-20 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100 0.00000100	0.0000010 0.0000010	0.00000
/ater	80951	20-30 min. overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
/ater	80987	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0,0000010	0.0000010	0.00000100	0.0000010	0.00000
Vater	80988	10-20 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
Vater	80989	20-30 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
/ater	80952	0-10 min, non-overflow total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
Vater	80953	10-20 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
/ater	80954	20:30 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
		Hopper Inflow Monitoring							
Vater	81104	38 6 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
v ater	81105	9&12 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
Vater	81106	15&18 min, dissolved	0.0000010	0.000010	0.0000010	0.0000010	0.00000050	0.0000010	0.00000
/ater	81107 81108	21824 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
/ater /ater	80891	27&30 min, dissolved 3& 6 min, total	0.0000010	0.0000010 0.0000011	0.0000010	0.0000010 0.0000016	0.00000100 0.00000095	0.0000010	0.00000
rater	80892	9&12 min, total	0.0000011	0.0000013	0.0000011	0.0000016	0.00000095	0.0000011 0.0000092	0.00000
later	80893	15&18 min, total	0.0000010	0,0000010	0,0000010	0.0000021	0.00000055	0.0000010	0.00000
/ater	80894	21&24 min, total	0.0000011	0.0000011	0.0000011	0.0000021	0.00000250	0.0000084	0.00000
/ater	80895	27830 min, total	0.0000011	0.0000011	0.9000011	G 0000038	0.00000110	0.0000011	0.00000
		Hopper Overflow Monitoring							
/ater	81109	2& 4 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
/ater	81110	6& 8 min, dissolved	0.0000010	0.0000010	0.0000010	0,0000010	0.00000100	0.0000010	0.00000
/ater	81111	10&12 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
/ater	81112	14&16 min, dissolved	0.0000010	0.0000010	0.0000010	0,0000010	0,00000100	0.0000010	0.00000
/ater	81113	18&20 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
later later	80897 80898	2& 4 min, total 6& 8 min, total	0.0000011	0.0000011 0.0000011	0.0000011 0.0000011	0 0000046 0.0000011	0.00000830 0.00000110	0.000011 0.0000150	0.00000
rater /ater	80899	10&12 min, total	0.0000011	0.0000011	Ø.0000011	0.0000011	0.00000110	0 0000160	0 000000
later	80900	148/16 min, total	0.0000011	0.0000011	0.0000011	0.0000011	0.00000110	0 0000100	0 00000
aler	80901	18&20 min. total	0.0000010	0.0000010	0.0000010	0 0000058	0.00000100	0 0000190	0.00000
		m// 444 -							
ater	81603	Site Water Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
/ater	81604	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
ater	81605	Sample 3 Total	0.0000010	0,0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
		Elutnate							
ater	81609	Sample 1 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0,0000010	0.00000
ater	81610	Sample 2 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
ater	81611	Sample 3 Dissolved	0,0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
ater	81806	Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
ater ater	81607 81608	Sample 2 Total	0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010	0.00000057	0.0000010	0.00000
ater	01000	Sample 3 Total	0.0000010	0.0000010	0,0000010	0.0000010	CONNUNCT	0.0000016	0.0000
MPLE	SAMPLE ID	DESCRIPTION	PC8 22	PCB 33	PCB 37	PCB 42	PCB 47	PCB 64	PCB.
		Detection Limit (mg/kg)	0 00077	0 00077	0.00077	0 00677	0 00077	0 00077	۵ 000
		Insitu Sediment							
diment		Sample #1	0,00077	0.00077	0.00077	0,00077	0.00077	0.00077	0.000
diment	81718	Sample #2	6.00077	0.00077	0.00077	8.00077	0.00077	0.00077	0.000
diment		Sample #3	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.000

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

PCBsfine

Delaware Re	ver Water i	Analysis	(Fine-Grained Site	1
-------------	-------------	----------	--------------------	---

	SAMPLE ID	DESCRIPTION	PCB 80	PCB 81	PCB 84	PCB 91	PCB 92	PCB 95	PCB 99
		Detection Limit (mg/l)	0.0000011	0.0000011	0.00000110	0.00000110	0.0000011	0.00000110	0.00000110
		Plume Monitoring						0.00000000	
Water Water	80983 80948	Background, dissolved Background, total	0.0000010 0,0000011	0.0000010 0.0000011	0.00000100 0.00000110	0.00000100 0.00000110	0.0000010 0.0000011	0.00000058 0.00000110	0.00000100 0.00000110
Water	80984	0-10 min, overflow, dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000058	0.00000100
Water	80985	10-20 min, overflow, dissolved	0.0000011	0.0000011	0.00000110	0.00000110	0.0000011	0.00000085 0.00000049	0,00000110
Nater	80986	20-30 min, overflow, dissolved	0.0000010	9.0000010 9.0000010	0.00000100	0.00000100	0.0000010	0.00000100	0.00000100
Water	80949 80950	0-10 min, overflow, total 10-20 min, overflow, total	0,0000010	0,0000010	0.00000100	0.00000100	0.0000010	0.00000100	0.00000100
Water Water	80951	20-30 min, overflow, total	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000100	0.00000100
Nater	80987	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000049	0.00000100
Nater	80988	10-20 min, non-overflow, dissolve	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000120	0.00000100
Water	80989	20-30 min, non-overflow; dissolve	0.0000010	0.0000010	0.00000100	0.00000100	0.0000018	0.00000056 0.00000100	0.00000100
Water	80952	0-10 min, non-overflow, total	0.0000010	0.0000010	0,00000100 0,00000100	0.00000100	0.0000010	0.00000100	0.00000100
Water	80953	10-20 min, non-overflow, total	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000100	0,00000100
Water	80954	20-30 min, non-overflow, total	0,0000010	0,000010	0,00000100	0,00000,00		0,000,000	*********
		Hopper Inflow Monitoring							
Water	81104	3& 6 min, dissofved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000084	0.00000060
Vater	81105	9&12 min, dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010 0.0000010	0.00000110	0.00000100
Water	81105	15&18 min, dissolved	0,0000010	0,0000010	0.00000100 0.00000100	0.00000100	0.0000010	0.00000095	0.00000043
Water	81107	21&24 min, dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.000000072	0.00000100
Nater	81108	27&30 min, dissolved	0.0000010	0,0000010 0,0000011	0,00000110	0.00000110	0,0000011	0.00000110	0.00000116
Nater	80891	38. 6 min, total	0.0000011	0.0000010	0,00000110	0.00000100	0.0000010	0.00000100	0.00000100
Water	80892	9&12 min, total	0.0000010	0.0000010	0.00000100	0.00000100	0.0000084	0.00000100	0.0000010
Vater Vater	80893 80894	15&18 min, total 21&24 min, total	0.0000011	0.0000011	0.00000110	0.00000320	0.0000068	0.00001200	0.0000073
Nater	80895	27&30 min, total	0.0000011	0.0000011	0.00000110	0.00000830	0.0000150	0.00002400	0.00001300
		Hopper Overflow Monitoring		0.0000040	0,00000100	0.00000100	0.0000010	0.00000250	0.00000046
Water	81109	2& 4 min, dissolved	0.0000010 0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000230	0.00000051
Water	81110	68. 8 min, dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000300	0.0000005
Water	81111	10&12 min, dissolved	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000097	0.0000003
Water	81112 81113	14&16 min, dissolved	0.0000010	0.0000010	0,00000100	0.00000100	0.0000010	0.00000170	0.00000006
Water Water	80897	18820 min, dissolved 28, 4 min, total	0.0000011	0.0000011	0.00000110	0.00001100	0.0000150	0.00002700	0.0000150
water Water	80898	6& 8 min, total	0.0000011	0.0000011	0.00000110	0.00000980	0.0000180	0.00002700	0.0000140
Water	80899	108/12 min. total	0.0000011	0.0600011	0.00000110	0.00001100	0.0000160	0.00003100	0.0000190
Water	80900	148.16 min, total	0.0000011	0,0000011	0.00000110	0.00001400	0.0000250	0.00003700	0.0000210
Water	80901	18820 min, fotal	0.0000010	0.0000010	0.00000100	0.00001200	0.0000170	0,00003300	0.00001700
		Site Water							
Water	81603	Sample 1 Total	0,0000010	0.0000010	0.00000100	0.00000046	0.0000010	0.00000093	0.0000010
Water	81604	Sample 2 Total	0.0000010	0.0000010	0,00000100	0.00000100	0.0000010	0.00000100	0.0000010
Vater	81605	Sample 3 Total	0.0000010	0.0000010	0.00000100	0,00800046	0.0000010	0.00000095	0.0000010
		Provided a							
42-4	04000	Fluriate	0.0000010	0.0000010	0.00000100	0.00000054	0.0000010	0.00000110	0.0000003
Water	81609 81610	Sample 1 Dissolved Sample 2 Dissolved	0.0000010	0.0000010	0,00000100	83000000.0	0.0000010	0.00000094	0.00000004
Water Water	81610	Sample 3 Dissolved	0.0000010	0.0000010	0.00000091	0,00000003	0.0000010	0.00000057	0.0000002
water Water	81606	Sample 1 Total	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000110	0.0000010
Water	81607	Sample 2 Total	0.0000010	0,0000010	0.00000100	0.00000100	0.0000010	0.00000140	0,0000010
Water	81608	Sample 3 Total	0.0000010	0.0000010	0.00000100	0.00000100	0.0000010	0.00000110	0.0000010
SAMPLE	SAMPLE ID	DESCRIPTION	PCB 80	PCB 81	PCB 84	PCB 91	PCB 92	PCB 95	PCB 9
		Detection Limit (mg/kg)	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.0007
		Insitu Sediment							
			A A4477	A 444TT	A 646T7	0,00077	0.00077	0.00077	0.0004
Sediment	81717	Sample #1	0.00077	0.00077	0.00077				
Sediment Sediment		Sample #1 Sample #2 Sample #3	0,00077 0,00077 0,00077	0.00077 0.00077 0.00077	0.00077 0.00077 0.00077	0.00011 0.00040 0.00052	0:00049 0:00052	0.00077 0.00077	0.0007

Bafi	

SAMPLE YPE	SAMPLE ID	DESCRIPTION	PCB 110	PCB 119	PCB 120	PCB 123	PCB 126	PCB 127	PCB 1
		Detection Limit (mg/l)	0 00000110	0 0000011	0 0000011	0 0000011	0.0000011	0.0000011	0.00000
		Plume Mondoring							
Vater	80983	Background, dissolved	0 00000062	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80948	Background, total	0 00000078	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
Vater	80984	0-10 min, overflow, dissolved	0.00000050	0.0000010	0.0000010	0.000010	0.0000010	0.0000010	0.00000
Vater	80985	10-20 min, overflow, dissolved	0.00000087	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
Vater Vater	80986 80949	20-30 min, overflow, dissolved 0-10 min, overflow, total	0.00000065 0.00000100	0.0000010 0.0000010	0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010	0.00000
Vater	80950	10-20 min, overflow, total	9.00000110	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	8.00000
Vater	80951	20-30 min. overflow, total	0.00000110	0.000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80987	0-10 min, non-overflow dissolve	0.00000074	0.000010	0.0000010	0.0000010	0.0000010	0.0000010	0,00000
Vater	80988	10-20 min, non-overflow, dissolve	0 00000068	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80989	20-30 min, non-overflow, dissolve	0.00000065	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80952	0-10 min, non-overflow, total	0.00000095	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80953	10-20 min, non-overflow, total	0.00000120	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.00000
Vater	80954	20-30 min, non-overflow, total	0.00000073	0.0000010	0.0000010	0.0000010	0.000010	0.0000010	0.00000
		Hopper Inflow Monitoring							
Vater	81104	3& 6 min. dissolved	0.00000095	0.0000010	0.0000010	0.0000010	0.0000010	0.0000018	0.00000
Valer	81105	9&12 min, dissolved	0.000000GS	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	81106	15&18 min, dissolved	0.00000076	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	81107	21&24 min, dissolved	0 00000000	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	81108	27830 min, dissolved	0 00000076	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater /ater	80891 80892	3& 6 min, total 9&12 min, total	0.00000990 0.00000250	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011 0.0000010	0.0000011 0.0000010	0.0000
/ater /ater	80893	15&18 min, total	0.00000250	0.0000010	0.0000010	6.0000010	0.0000010	0.0000010	0.0000
/ater	80894	21824 min, total	0.00001400	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000
/ater	80895	278-30 min, total	0 00002900	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000
		Manner Charley Manitoring							
Vater	81109	Hepper Overflow Maniforing 28, 4 min, dissolved	0.00000095	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Vater	81110	68. 8 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	81111	10&12 min, dissolved	0.00000120	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
Vater	81112	14&16 min, dissolved	0.00000095	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	81113	18&20 min, dissolved	0.00000110	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.0000
Vater	60897	2& 4 min, total	0 00003500	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0 0000
Vater	80898	68. 8 min, total	0.00003500	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00002
Vater Vater	80899 80900	10&12 min, total 14&16 min, total	0 00004100 0 00004900	0.0000011	0.0000011	0,0000011 0,0000011	0.0000011	0.0000011 0.0000011	0 00003
/ater	80901	18&20 mm, total	0.00004100	0.0000011	0.0000011	0.0000010	0.0000010	0.0000010	0.0000
later	81603	Site Water Sample 1 Total	0.00000077	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	81604	Sample 2 Total	0.00000099	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
later	81605	Sample 3 Total	0 00000110	0.0000018	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
		Elutriate							
ater	81609	Sample 1 Dissolved	0.00000091	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
/ater	81610	Sample 2 Dissolved	0.00000088	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
ater	81611	Sample 3 Dissolved	0.00000057	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
ater	81606	Sample 1 Total	0.00000120	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000
ater	81607	Sample 2 Total	0.00000136 0.00000110	0.0000010	0,0000010 0,0000010	0.0000010 0.0000010	0.0000010	0.0000010	0.00000
ater	81608	Sample 3 Total	0.00000110	0.0000010	U,DD0001 0	U.0000010	0.0000010	0,0000010	U.00000
AMPLE (PE	SAMPLE	DESCRIPTION	FCB 110	PCB 119	PC8 120	PCB 123	PCB 126	PG8 127	PCB 1
		Detection Limit (mg/kg)	0.00077	0.00077	0.00077	0.00077	0 00077	0 00077	0.000
		Insitu Sediment							
diment		Sample #1	0.00100	0.00077	0.00077	0.00077	0.00077	0.00077	0.000
ediment	81718	Sample #2	0 00 087	0.00077	0.00077	0.00077	0.00077	0.00077	0.000
diment		Sample #3	0 00100	0.00077	0.00077	0.00077	0.00077	0.00077	0,00

PCBsfine

Colours Diver Water Analysis (Fine-Crained Site)	

	SAMPLE ID	DESCRIPTION	PCB 135	PCB 146	PCB 149	PCB 157	PCB 158	PCB 166	PCB 16
YPE	ın	Detection Limit (mg/l)	0.0000011	0.00000110	0.00000110	0.0000011	0.0000011	0.0000011	0,0000011
		, - ,							
Vater :	80983	Plume Monitoring Background, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
	80948	Background, total	0.0000011	0.00000110	0,00000110	0.0000011	0.0000011	0.0000011	0.0000011
Vater :	80984	0-10 min, overflow, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
	80985	10-20 min, overflow, dissolved	0.0000011	0.00000110	0.00000110	0.0000011	0.0000011	0.0000011	0.0000011
	80986	20-30 min, overflow, dissolved	0,0000010	0.00000100	0.00000100	0,0000010	0.0000010	0.0000010 0.0000010	0.0000010
	80949	0-10 min, overflow, total	0,0000010	0.00000100	0.00000100	0.0000010 0.0000010	0.0000010	0,0000010	0.0000010
	80950 80951	10-20 min, overflow, total 20-30 min, overflow, total	0.0000010 0.0000010	0.00000064 0.00000057	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
			0.0000010	0,00000100	0,00000100	0.0000010	0.0000010	0,0000010	0.0000010
	80987 80988	0-10 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000016
	80989	20-30 min, non-overflow, dissolve	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
	80952	0-10 min, non-overflow, total	0.0000010	0.00000140	0.00000100	0,0000010	0,0000010	0,0000010	0.000001
	80953	10-20 min, non-overflow, total	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000016
	80954	20-30 min, non-overflow, total	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000016
Vater	81104	Hopper Inflow Monitoring 3& 6 min, dissolved	0,0000010	0.00000100	0,00000100	0.0000010	0.0000010	0,0000010	0.000001
	81105	9&12 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.000001
	81106	15&18 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0,000001
	81107	21824 min, dissolved	0,0000010	0.00000100	0.00000100	0.0000010	0.0000010	0,0000010	0.000001
	81108	27&30 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0,000001
Vater	80891	3& 6 min, total	0.0000011	0.00000260	0.00001100	0.0000011	0.0000011	0.0000011	0.000001
	60892	9&12 min, total	0,0000010	0.00000660	0.00002500	0.0000010	0.0000010	0.0000010	0.000001
	80893	15&18 min, total	0.0000010	0.00000460	0,00001800	0.0000010	0.0000010 0.0000011	0.0000011	0.000001
	80894	21&24 min, total	0.0000011	0.00000110	0.00001800	0.0000011	0.0000011	0.0000011	0.000001
Vater	80895	27&30 min, total	0.0000076	0.00000110	0.00003200	0.000011	1100000,0	0.0000011	0.000001
		Hopper Overflow Monitoring							
Nater	81109	28. 4 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0,000001
	81110	6& 8 min, dissolved	0.0000010	0.00000100	0.00000043	0.0000010	0.0000010	0.0000010	0.000001
	81111	10812 min, dissolved	0,0000010	0.00000100	0.00000054	0.0000010	0.0000010	0.0000010	0.000001
Vater	81112	14&16 min, dissolved	0.0000010	0.00000100	0,00000056	0.0000010	0.0000010	0.0000010	0,000001
Vater	81113	18820 min, dissolved	0.0000010	0.00000100	0.00000100	0.0000010	0.0000010	0,0000010	0.000001
Vater	80897	2& 4 min, total	0.0000088	0.00000110	0.00003800	0.0000011	0.0000011 0.0000011	0.0000011 0.0000011	0.000001
Vater	80898	6& 8 min, total	0.0000083	0.00000110	0.00000110	0.0000011 0.0000011	0.0000011	0.0000011	0,000001
Vater	80899	10&12 min, total	0.0000100	0.00000110	0.00000110	0.0000011	0.0000011	0.0000011	0,000001
Vater Vater	80900 80901	14&16 min, total 18&20 min, total	0.0000140	0.00000110 0.00000100	0.00000110 0.00000100	0.0000010	0.0000010	0.0000010	0.000001
		,							
		Site Water			0 00000051	0.0000010	0.0000010	0.0000010	0.000001
Vater	81603	Sample 1 Total	0.0000010 0.0000010	0.00000100	0.00000053	0.0000010	0.0000010	0.0000010	0.000000
Valer Vater	81604 81605	Sample 2 Total Sample 3 Total	0.0000010	0.00000100	0.00000055	0.0000010	0.0000010	0.0000010	0.000000
		•							
	04000	Elulriate	0.0000010	0,00000100	0.00000047	0.0000010	0.0000010	0.0000010	0.00000
Nater	81609	Sample 1 Dissolved	0.0000010	0.00000100	0.00000047	0.0000010	0.0000010	0.0000010	0.00000
Mater Mater	81610 81611	Sample 2 Dissolved Sample 3 Dissolved	0.0000010	0.00000100	0.00000044	0.0000010	0,0000010	0.0000010	0.00000
Nater Nater	81606	Sample 1 Total	0.0000010	9.00000100	0.00000091	0.0000010	0.0000010	0.0000010	0.00000
rvater Vater	81007	Sample 2 Total	0.0000010	0.00000100	0.00000090	0.0000010	0.0000010	0.0000010	0.00000
Valer	81608	Sample 3 Total	0.0000010	0.00000100	0.00000076	0.0000018	0,0000010	0.0000010	0.00000
	014m C	mmecanination;	PCB 135	PCB 146	PCB 149	PC8 157	PCB 158	PCB 166	PCB ·
TYPE	ID SAMPLE	DESCRIPTION	F CG 155	, OW 140					
		Detection Limit (mg/kg)	0.00077	0.00077	0:00077	0.00077	0.00077	0 00077	0.00
		Insitu Sediment					4		معيدة
	81717	Sample #1	0.00077	0.00077	0.00120	0.00077	0.00077	0.00077	0.00
Sediment Sediment Sediment	81718	Sample #2 Sample #3	0.00077 0.00077	0.00077 0.00077	0,00120 0,00100	0.00077 0.00077	0.00077 0.00077	0.00077 0.00077	0.00

	sfine

		DESCRIPTION	PCB 169	PCB 174	PCB 177	PCB 178	PCB 179	PCB 8	PCB
TYPE	ID	Data-dian (inch (marth)	0.0000011						
		Detection Limit (mg/l)	0 0000011	0.00000110	0.0000011	0 0000011	0 0000011	0.0000011	0 00060
Vater	80983	Plume Monitoning Background, dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80948	Background, total	0.0000011	0.00000110	0.0000011	0.0000011	8.0000011	0.0000011	0.00000
Vater	80984	0-10 min, overflow dissolved	0.0000010	0.00000100	0.000010	0.0000010	9.0000010	0.0000010	0.00000
/ater	80985	10-20 min, overflow, dissolved	0.0000011	0.00000110	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
/ater /ater	80986 80949	20-30 min, overflow, dissolved 0-10 min, overflow, total	0.0000010	0.00000100	0.0000010 0.0000010	0.0000010	0.0000010	0.0000010	0.00000
vater Vater	80950	10-20 min, overflow, total	0.0000010	0.00000100 0.80000100	0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0,00000
/aler	80951	20-30 min, overflow, total	0.0000010	0.00000100	0.0000010	0.0000010	0,0000010	0.0000010	0.00000
/ater	80987	0-10 min, non-overflow, dissolve	0,0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0,00000
/ater	80988	10-20 min, non-overflow, dissolve	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	80989	20-30 min, non overflow, dissolve	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80952	0-10 min, non-overflow, total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Valer	80953	10-20 min, non-overflow, total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0,00000
Vater	80954	20-30 min, non-overflow, total	0.0000010	0.00000100	9.0000010	0.0000010	0.0000010	0.0000010	0.00000
		Hopper Inflow Monitoring							
iater	81104	3& 6 min, dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0,0000010	0.00000
/ater	81105	9&12 min, dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	81106	15&18 min, dissolved	0.0000010	0,00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	81107	21824 min, dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater /ater	81108 80891	27&30 min, dissolved 3& 6 min, total	0.0000010	0.00000100 0.0000390	0.0000010 0.0000024	0.0000018 0.0000011	0.0000010 0.0000011	0.0000010 0.0000011	0.00000
/ater	80892	9&12 min, total	0.0000010	0 000000970	0 0000067	0.0000010	0.0000010	0.0000011	0.00000
/ater	80893	15&18 min, total	0.0000010	0 00000620	0.0000042	0.0000010	0.0000010	0.0000010	0,000001
/ater	80894	21&24 min, total	0.0000011	0.00000820	0.0000023	0.0000011	0 0000017	0.0000011	0.00000
/ater	80895	27&3U min, total	0.0000011	0.00000110	0.0000011	0.0000011	0.0000069	0.0000063	0.000001
		Hopper Overflow Monitoring							
vate:	81109	2& 4 min, dissolved	0.0000010	0 00000049	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	81110	6& 8 min dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0,00000
ater	81111	10&12 min, dissolved	0.0000010	0.00000100	0.0000010	0.0000018	0.0000010	0.0000010	0.00000
/ater	81112	14&16 min, dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0,00000
/ater	B1113	18&20 min, dissolved	0.0000010	0.00000100 0.0000110	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
/ater /ater	80897 80898	28. 4 min, total 68. 8 min, total	0.0000011 0.0000011	0.00003110	0,0000011 0.0000011	0.0000011 0.0000011	0.0000011 0.0000011	0.0000011 0.0000011	0.000001
ater	80899	10&12 min, total	0.0000011	0 00001700	0.0000011	0.0000011	0.0000011	0.0000140	0.00000
later	80900	14&16 min, total	0,0000011	0.00000110	0.0000011	0.0000011	0.0000011	0,0000011	0.00000
/aler	80901	18&20 min, total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
		Site Water							
ater	81603	Sample 1 Total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	81604	Sample 2 Total	0.0000010	0.00000100	0,0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	81605	Sample 3 Total	0.0000010	0.00000100	0.0000010	0,0000010	0.0000010	0.0000010	0 000001
		Elutriate							
ater	81609	Sample 1 Dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0,0000010	0.000001
ater	81610	Sample 2 Dissolved	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010 0.0000010	0.0000010	0,00000
later later	81611 81606	Sample 3 Dissolved Sample 1 Total	0,0000010 0,0000010	0.00000100 0.00000100	0,0000010 0,0000010	0,0000010 0,0000010	0.0000010	0.0000010 0.0000010	0.000001
fater	81607	Sample 2 Total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
ater	81608	Sample 3 Total	0.0000010	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
		DESCRIPTION	PCB 169	PCB 174	PCB 177	PCB 178	PCB 179	PCB 8	PCB 1
YPE.	I D	The second second second	B 600.77	o nonzy	0.000000	6.00077	0.00077	0.00077	0.000
		Detection Limit (mg/kg)	0.00077	0 00077	9 00077	0 00077	0 00077	0 00077	0 0007
ediment	81717	Insitu Sediment Sample #1	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.000
ediment		Sample #2	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.000
ediment		Sample #3	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.0007

PCBsfine

		Delaware River Water Analysis (Fine-	Grained Site)						
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 28	PCB 31	PCB 40	PCB 44	PCB 49	PCB 52	PCB 60
		Detection Limit (mg/l)	0.0000011	0.0000011	0.0000011	0.0000011	0.00000110	0.00000110	0.00000110
		Plume Monitoring							
<i>Nater</i>	80983	Background, dissolved	0.0000010	0.0000017	0.0008810	0.6000010	0.00000100	0.00000046	0.00000100
Vater	80949	Background, total	0.0000011	0.0000011	0.0000011	0.0000011	8.00000110	0.00000110	11.00000110
Water	80984	0-10 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000160	0.00000100	0.00000100
Vale:	80985	10-20 min, overflow, dissolved	0.0000011	0.0000011	0,0000011	0.0000011	0.00000110	0,00000110	0.00000110
Water	80986	20-30 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000100	0,00000100
Water	80949	0-10 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000120	0.00000100
Water	80950	10-20 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000095	0.00000100
Nater	80951	20-30 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.00030100	0.00000077	0.0000010
Water	80987	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.00000085	0.00000100	0.00000100
Nater	80988	10-20 min, non-overflow, dissolve	0.0000010	0,0000010	0.0000010	0.0000010	0.00000044	0.00000100	0.0000010
Water	80989	20-30 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100
Water	80952	0-10 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100 0.00000100	0.00000097	0.0000010
Water	80953	10-20 min, non-overflow, total	0.0000010 0.0000010	0.0000010 0.0000010	0.0000010	0.0000010	0.00000100	0.00000074	0.00000100
Water	.80954	20-30 min, non-overflow, total	0.0000010	0.0000010	4.0000010	0.000010	0.0000700	0.000000, 4	0.00000
		Hopper Inflow Monitoring							
Water	81104	38 6 min, dissolved	0,0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000083	0.0000010
Nater	81105	9812 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000093	0.0000010
Nater	81106	15&18 min, dissolved	0.0000010	0.0000029	0.0000010	0.0000014 0.0000010	0.00000072	0,00000094	0.0000010
Nater	81107	21824 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.000000180	0.00000070	0.0000010
Vater	81108	27830 min, dissolved	0.0000010 0.0000067	0.0000010 0.0000011	9,0000011	0.0000057	0.00000410	0.00001100	0.0000004
Vater	80891	3& 6 min, total	0.0000080	8.0000011	0.0000011	0.0000150	0.00000960	0.00002500	0.0000013
Vater Vater	80892 80893	9&12 min, total 15&18 min, total	0.0000000	8.0000010	0.0000010	0.0000092	0.00000630	0.00001600	0.0000007
Nater Nater	80894	21&24 min, total	0.0000067	0.0000011	0,0000041	0.0000680	0.00000600	0.00001500	0,0000007
Water	80895	27830 min, total	0.0000130	0.0000011	0.0000079	0.0000170	0.00001200	0 00002600	0.0000015
		Hopper Overflow Monitoring							
Water	81109	28. 4 min, dissolved	0.0000010	0.0000031	0,0000010	0.0000010	0.00000110	0.00000086	0.0000010
Nater	81110	68 8 min dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.00000047	0.00000082	0.0000010
Vater	81111	10812 min, dissolved	0.0000010	0.0000038	0.0000010	0.0000010	0.00000077	0.00000120	0.000001
Vater	81112	14816 min, dissolved	0,0000010	0.0000029	0.0000010	0.0000010	0.00000065	0.00000110	0.0000010
Nater	81113	18&20 min, dissolved	0.0000010	0,0000037	0.0000010	0.0000010	0.00000060	0.00000140	0.0000010
Nater	80897	2& 4 min, total	0.0001200	9.0000011	0.0000011	0.0000160	0.00001400	0,00003600 0,00003400	0.0000200
Nater	80898	6& 6 min, total	0.0000011	0.0000011	0.0000088	0.0000200	0,00001400 0,00001600	0.00003700	0.0000022
Nater	80899	10&12 min, total	0.0000130	0.0000011 0.0000011	0.0000120 0.0000140	0.0000260	0.00002000	0.00004300	0.000002
Nater Nater	80900 80901	14&16 min, total 18&20 min, total	0.0000180 0.0000180	0.0000011	0.0000140	0.0000300	0.00002000	0.00003900	0.000002
		Site Water	0.0000010	0.0000024	0.0000010	6.0000014	0.00000065	0,00000092	8.0000016
Water Water	81603 81604	Sample 1 Total Sample 2 Total	0.0000010	0.0000024	0.0000010	0.0000015	0.00000100	0,00000100	0,0000010
ivater Nater	81605	Sample 3 Total	0.0000010	0.0000025	0.0000010	0.0000014	0.00000047	0.00000110	0.000001
	****	Elutriate	0.0000010	0.0000010	n.0000010	0.0000010	0.00000100	0.00000100	0.000001
Water	81609	Sample 1 Dissolved	0.0000010	8,0000010	9.6000010	0.0000010	0.00000100	0,00000077	0.000001
Water Water	81610 81611	Sample 2 Dissolved Sample 3 Dissolved	0,0000010	0.0000010	0.0000010	0.0000010	0.00000100	0.00000054	0,000001
vvater Water	81606	Sample 1 Total	0.0000010	0.0000039	0.0000010	0,0000010	0.00000300	0.00000150	0.000001
Water	81607	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.00000330	0.00000180	0.000001
Water	81608	Sample 3 Total	0.0000010	0.0000010	8.0000010	0.0000010	0.00000290	0.00000160	0.000001
SAMPLE TYPE	SAMPLE	DESCRIPTION	PCB 28	PGB 31	PCB 40	PCB 44	PCB 49	PCB 52	PCB
,,,		Detection Limit (mg/kg)	0.00077	0.00077	0.00077	0.00077	0 00077	0.00077	0.000
		Insitu Sediment							
			0.00077	0.00077	0,00077	0.00077	0.00061	0.00250	0.000
Sedimen	t 81717	Sample #1						A AA#**	~ ~~~
Sedimen Sedimen	t 81717 t 81718	Sample #2	0.00077 0.00077	0.00077 0.00077	0,00077	0.00077 0.00077	0.00081 0.00069	0.00250 0.00240	0.000

PCB	shne
-----	------

SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 70	PCB 77	PCB 82	PCB 86	PCB 87	PCB 97	PCB 1
		Detection Limit (mg/l)	0 00000110	0 0000011	0.0000011	0 00000110	0 00000110	0 00000110	0.000001
		Plume Monitoring							
Vøter Vater	80983 80948	Beckground, dissolved Background, total	0.0000040 0.00000110	0.0000010 0.0000011	0.0000010 0.0000011	0.00000100 0.00000057	0.00000100 0.00000110	0.00000100 0.00000057	0.000001 0.000001
Vater	80984	0-10 min, overflow, dissolved	0.00000100	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
Vater	80985	10-20 min, overflow, dissolved	0.00000051	0.0000011	0.0000011	0.00000110	0.00000110	0.00000110	0.000000
Vater	80986	20:30 min, overflow, dissolved	0.00000044	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.00000
Vater	80949	0-10 min, overflow, total	0.00000100	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.00000
Vater Vater	80950 80951	10-20 min, overflow, total 20-30 min, overflow, total	0.00000048	0.0000010	0.0000010	0.00000063	0.00000100 0.00000100	0.00000063	0.00000
					.,				
/ater	80997	0-10 min, non-overflow, dissolve	0 00000037	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.00000
Vater	80988	10-20 min, non-overflow, dissolve	0.00000050	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.00000
Vater	80989	20-30 min, non-overflow, dissolve	0 00000056	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0 00000
Vater	80952	0-10 min, non-overflow, total	0 00000041	0.0000010	0.0000010	0.00000041	0.00000100	0,00000041	0.000001
Vater	80953	10-20 min, non-overflow, total	0.00000035	0.0000010	0.0000010	0 00000047	0.00000100	0 00000047	0.000002
/ater	80954	20-30 min, non-overflow, total	0 00000038	0.000010	0.0000010	0 00000043	0 00000054	0.00000043	0.00000
		Hopper Inflow Monitoring							
/ater	81104	3& 5 min, dissolved	0.00000062	0.0000010	0.0000010	0.00000100	0.00000038	0.00000100	0.00000
Vater	81105	9&12 min, dissolved	0 00000042	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0 000000
Vater	81106	15&18 min, dissolved	0.00000053	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0 000000
Vater	81107	21824 miri, dissolved	0.00000059	0.0000010	0.0000010	0.00000100	0.00000042	0.00000100	0.00000
/ater	81108	27&30 min, dissolved	0.00000041	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
/ater	80891	3& 6 min total	0 00000420	0.0000011	0.0000014	0 00000300	0.00000310	0.00000300	0 000008
va ter	80892	9812 min, total	0.00000890	0.0000010	0.0000010	0.0000600	0.00000420	0 00000600	0.000019
Vater	80893	15&18 min, total	0 00000660	0.0000010	0.0000010	0 00000420	0.00000290	0.00000420	0 000011
/ater	80894	21824 min, total	0.00000640	0.0000011	0,0000011	0 00000730	0.00000290	0.00000730	0.000012
/ater	80895	27&30 min, total	0 00001100	0.0000011	B.0000011	0 00000730	0.00000110	0.0000730	0 000025
		Hopper Overflow Monitoring							
/ater	81109	2& 4 min, dissolved	0.00000086	0.0000010	0.0000010	0.00000100	0.00000064	0.00000100	0.00000
/ater	81110	6& 8 min, dissolved	0 00000120	0.0000010	0.0000010	0.00000100	0 00000058	0.00000100	0.00000
/ater	81111	10&12 min, dissolved	0.00000084	0.0000010	0.0000010	0.00000100	0,00000065	0.00000100	0.00000
/ater	81112	14&16 min, dissolved	0.00000059	0.0000010	0.0000010	0.00000100	0.00000036	0.00000100	0.000000
/ater	81113	18&20 min, dissolved	0.00000074	0.000010	0.0000010	0.00000100	0.00000050	0.00000100	0,000001
/ater	80897	2& 4 min, total	0 00001200	0.0000011	0.0000011	0.00000870	0.00000110	0.00000870	0.000029
/ater	80898	6& 8 min, total	0.00001300	0.000011	0.0000011	0.00000950	0.00000110	0 00000950	0 000029
	80899	10&12 min, total	0 00001500	0.0000011	0.0000011	0 00000960	0.00000110	0 00000960	0 000034
	80900	14816 mm, total	0.00001600	0.0000011	0.0000011	0.00001100	0.00000980	0.00001100	0 000040
later .	80901	18820 min, total	0 00001600	0.0000010	0.0000010	0 00000980	0.00000100	0 00000980	0.000034
		Site Water							
/ater	81603	Sample 1 Total	0.00000100	0.0000010	0.0000010	0.00000100	0.00000054	0.00000100	0.000001
/ater	81604	Sample 2 Total	0 00000140	0.0000010	0.0000010	0.00000100	0.00000049	0.00000100	0.000001
later	81605	Sample 3 Total	0 00000130	0.0000010	0.0000010	0.00000100	0 00000038	0.00000100	0 000001
		Elutriate							
/ater	81609	Sample 1 Dissolved	0.00000110	0.0000010	0.0000010	0.00000100	0 00000052	0.00000100	0.000001
	81610	Sample 1 Dissolved	0.00000110	0.0000010	0.0000010	0.00000100	0 00000032	0.00000100	0.000000
	81611	Sample 3 Dissolved	0 00000150	0.0000010	0.0000010	8,00000100	0.00000000	0.00000100	0.00000
	81606	Sample 1 Total	0.00000100	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0 000000
	B1607	Sample 2 Total	0.00000100	0.0000010	0.0000010	0.00000100	0.00000100	0.00000100	0.000000
fater	81608	Sample 3 Total	0.00000100	0.000010	B.0000010	0.00000100	0.00000100	0.00000100	0.000000
AMDI E	SAMPIE	DESCRIPTION	PCB 70	PCB ?7	PCB 82	PCB 86	PCB 87	PCB 97	PCB 1
	ID Symple	wastin itsit	. 5076		. 55 02	,	, 00 61	((4) 51	1.6363.1
		Detection Limit (mg/kg)	0 00077	a 00077	0 00077	0.00077	0.00077	0 00077	0 000
		Insitu Sediment							
ediment	81717	Sample #1	0.00210	0.00077	0.00077	0.00077	0.00077	0.00077	0.001
ediment		Sample #2	0.00200	0.00077	0.00077	0.00077	0.00077	0.00077	0.001
ediment	44740	Sample #3	0.00180	0.00077	0.00077	0.00077	0.00077	0.00077	0.001

D.	CB	din	£

		Delaware River Water Analysis (Fine-	Grained Site)						
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 105	PCB 114	PCB 118	PCB 121	PCB 128	PCB 136	PCB 137
		Detection Limit (mg/l)	0.00000110	0.00000110	0.00000110	0.0000011	0.0000011	0 0000011	0.0000011
		Plume Manitoring							
Water Water	80983 80948	Background, dissolved Background, total	0.00000041	0.00000100	0.00000077 0.00000110	0.0000010 0.0000011	0.0000010 0.0000011	0.0000010	0.0000010 0.000011
		•						******	0.0000010
Water	80984	0-10 min, overflow, dissolved	0.00000037	0.00000066	0,00000051	0.0000010	0.0000010	0.0000010 0.0000011	0.0000010
Water	80985	10-20 mln, overflow, dissolved	0.00000110	0.00000110	0.00000064 0.00000045	0.0000011	0.0000011	0.0000010	0.0000018
Water	80986	20-30 min, overflow, dissolved	0.00000041 0.00000100	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
Water	80949	0-10 min, overflow, total	0.00000100	0.00000100	0,00000100	0.0000010	0.0000010	0.0000010	0.0000010
.Water Water	80950 80951	10-20 min, overflow, total 20-30 min, overflow, total	0.00000100	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
Water	80987	0-10 min, non-overflow, dissolve	0.00000100	0.00000074	0.00000050	0.0000010	0.0000010	0.0000010	0.0000010
Water	80988	10-28 min, non-overflow, dissolve	0.00000040	0.00000100	0.00000046	0.0000010	0.0000010	0.0000010	0.0000010
Water	80989	20-30 min, non-overflow, dissolve	0.00000039	0,00000100	0.00000045	0.0000010	0.0000010	0.0000010	0.0000010
Water	80952	0-10 min, non-overflow, total	0.00000100	0,00000100	0,00000100	0.0000010	0,0000010	0.0000010	0.0000010
Water	80953	10-20 min, non-overflow, total	0.00000100	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
Water	80954	20-30 min, non-overflow, total	0.00000100	0,00000100	00100000	0,0000000	0,00000,0	0,0000010	p.0000010
		Hopper Inflow Monitoring							
Water	81104	3& 6 min, dissolved	0.00000041	0.00000100	0.00000054	0.0000010	0.0000010	0.0000010	0.0000010
Water	81105	9&12 min, dissolved	0,00000056	0.00000100	0.00000045	0.0000010	0.0000010	0.0000010	0.0000010
Water	81106	15&18 min, dissolved	0.00000035	0.00000100	0,00000100	0.0000010 0.0000010	0,0000010	0.0000010	0.0000010
Water	81107	218.24 min, dissolved	0.00000043	0.00000100	0.00000000	0.0000010	0.0000010	0.0000010	0.0000010
Water	81108	27&30 min, dissolved	0.00000037	0.00000100	0,00000100 0.00000750	0.0000011	0.0000011	0.0000011	0.0000011
Water	60891 80892	38. 6 min, total 98.12 min, total	0,00000110	0.00000110	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
Water Water	80893	15&18 min, total	0.00000100	0.00000100	0,00000100	0.0000010	0.0000010	0.0000010	0.0000010
Water	80894	21&24 min, total	0,00000110	0,00000110	0.00000110	0.0000011	0.0000011	0.0000011	0.0000011
Water	80895	27830 min, total	0.00000110	0.00000110	0.00001900	0.0000011	0.0000011	0.0000011	0,0000011
		Hopper Overflow Monitoring							
Water	81109	.2& 4 min, dissolved	0.00000047	0.00000100	0.00000065	0.0000010	0.0000010	0,0000010	0.0000010
Water	B1110	68. 8 min, dissolved	0.00000090	0.00000100	0,00000065	0,0000010	0.0000010	0.0000010	0.0000010
Water	81111	10&12 min, dissolved	0.00000097	0.00000100	0.00000100	0.0000010	0.0000010	0.0000010	0.0000010
Water	81112	14816 min, dissolved	0.00000036	0.00000100	0.00000068	0.0000010	0,0000010	0.0000010 0.0000010	0.0000010
Water	81113	18&20 min, dissolved	0.00000055	0,00000100	0.00000094	0.0000010	0.0000010 0.000011	0.0000010	0.0000010
Water	60897	28, 4 min, total	0.00000110	0,00000110	0.00002400	0.0000011 0.0000011	0.0000011	0.0000011	0.0000011
Water	80898	6& 8 min, total	0.00000110	0.00000110	0.00002300	0.0000011	0.0000011	0.0000011	0.0000011
Water	80899	10812 min, total	0.00000110	0.00000110 0.00000110	0.00003800	0.0000011	0.0000011	0.0000011	0.0000011
Water Water	80900 .80901	148.16 min, total 188.20 min, total	0.00000110	0.00000110	0.00003200	0.0000010	0.0000010	0.0000190	0.0000010
74442		,							
******	81603	Site Water Sample 1 Total	0.00000043	0.00000140	0.00000096	0.0000010	0.0000010	0.0000010	8.0000010
Water Water	81604	Sample 2 Total	0.00000054	0.00000140	0.00000093	0.0000010	0.0000010	0.0000010	0.0000010
Water	81605	Sample 3 Total	0.00000050	0.00000120	0.00000100	0.0000010	0.0000010	0.0000010	9,0000010
		projection and a							
	ಜಕ್ಕರ್ಗ	Elutriate Sample 1 Dissolved	0.00000067	0.00000100	0.00000058	0.0000010	0.0000010	0,0000010	0.0000010
Water Water	81609 81610	Sample 2 Dissolved	0.00000054	0.00000100	0.00000048	0.0000010	0.0000010	0.0000010	0.0000010
Water	81611	Sample 3 Dissolved	0.00000042	0.00000100	0,00000052	0.0000010	0.0000010	0.0000010	0.0000010
Water	81606	Sample 1 Total	0.00000068	0.00000100	0.00000120	0.0000010	0.0000010	0.0000010	0.0000010
Water	81607	Sample 2 Total	0.00000071	0.00000100	-0.00000130	0.0000010	0.0000010	0.0000010 0.0000010	0.0000010 0.0000010
Water	81608	Sample 3 Total	0.00000064	0.00008180	0.00000100	0.0000010	0.0000010	UTVVVVV.U	0.0000010
SAMPLE TYPE	SAMPLE	DESCRIPTION	PCB 105	PCB 114	PCB 118	PCB 121	PCB 126	PCB 136	PCB 137
		Detection Limit (mg/kg)	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077
		Insitu Sediment					5 000°°	0.00077	0.00077
Endimon	t 81717	Sample #1	0.00077	0.00077	0,00098	0.00077	0,00077		0.00077
Sedimen	it 81718	Sample #2 Sample #3	0.00077 0.00077	0.00077 0.00077	0,00110 0,00100	0,00077 0.00077	0,00077 0.00077	0.00077 0.00077	0,00077

~.				
~(_ =	ISN	ne	

		Delaware River Water Analysis (Fin	e-Grained Site)						
SAMPLE TYPE	SAMPLE ID	DESCRIPTION	PCB 138	PC8 141	PCB 151	PCB 153	PCB 156	PCB 167	PCB 17
		Detection Limit (mg/l)	0 00000110	0.0000011	0.0000011	0.0000011	0 00000110	0.0000011	0.000001
		Plume Monitoring							
Water Water	80983 80948	Background, dissolved Background, total	0,00000100 0.00000045	0.0000010 0.0000011	0.0000010 0.0000011	0.0000010 0.0000011	0.00000100 0.00000110	0.0000010 0.0000011	0.000001 0.000001
Water	80984	0-10 min, overflow, dissolved	0.00000100	0.0000010	0.0000010	0.000010	0.00000030	0.0000010	0.000001
Water Water	80985 80980	10-20 min, overflow, dissolved 20-30 min, overflow, dissolved	0.00000110 0.00000100	0.0000011 0.0000010	0.0000011	0.0000011	0 00000038	0.0000011	0.000001
Water	80949	0-10 min, overflow, total	0.0000077	0.0000010	0.0000010 0.0000010	0.0000010 0,0000010	0.00000100 0.00000100	0.0000010	0.000001
Water	80950	10-20 min, overflow, total	0 00000066	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010 0.0000010	0.000001
Water	80951	20-30 min, overflow, total	0.00000066	0.000010	0.0000010	0.0000010	0.00000100	0.0000010	0.000001
Water	80987	0-10 min, non-overflow, dissolve	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.000001
Water	80988	10-20 min, non-averflow, dissolve	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.000001
Water	80989	20-30 min. non-overflow, dissolve	0.00000100	0.0000010	0,0000010	0.0000010	0.00000100	0.0000010	0.000001
Water	80952	0-10 min, non-overflow, total	0.00000061	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.000001
Water	80953	10-20 min, non-overflow, total	0.00000057	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.000001
Water	80954	20-30 min, non-overflow, total	0 00000045	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0,000001
		Hopper Inflow Monitoring							
Water	81104	3& 6 min, dissolved	0,00000100	0.0000010	0,0000010	0.0000010	0.00000100	0.0000010	0.000001
Water	81105	9&12 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
Water	81106	15&18 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0,00000100	0.0000010	0.000001
Water	81107	21&24 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
Water	81198	27830 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
Water	80891	3& 6 min, total	0.00001400	0.0000011	0.0000027	0.0000011	0.00000110	0.0000011	0.00000
Water	60892	9&12 min, total	0 00003400	0.0000010	0 0000058	0.0000010	0.00000100	0.0000010	0.00000
Water Water	80893 80894	15818 min, total 21824 min, total	0 00002300	0.0000010 0.0000011	0 0000062	0.0000010	0.00000100	0.0000010	0.00000
Water	80895	27&30 min, total	0.00002400 0.00000110	0.0000011	0.0000045 0.0000089	0.0000011 0.0000011	0.00000350 0.00000110	0.0000021 0.0000011	0.00000
Water	81109	Hopper Overflow Monitoring	0.00000100	0.0000010					
Water	81110	2& 4 min, dissolved 6& 6 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010 0.0000010	0.00000100	0.0000010 0.0000010	0,00000
Water	81111	10&12 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
Valer	81112	148.16 min, dissolved	0.00000100	0.0000010	0.0000010	8.0000010	0.00000100	0.0000010	0.00000
Water	81113	18820 min, dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
Valer	80897	28, 4 min, total	0.00000110	0,0000010	0.0000098	0.0000011	0.00000110	0.0000011	0.00000
Wate:	80898	6& 8 min, total	0.00000110	0.0000010	0 0000094	0.0000011	0 00000760	0.0000011	0.000001
Water	80899	10&12 min, total	0.00000110	0.0000010	0 0000120	0.0000011	0.00000790	0.0000011	0.000001
Nater Nater	80900 80901	14&16 min, total 18&20 min, total	0.00000110	0.0000010 0.0000010	0.0000190 0.0000110	0,0000011 0,0000010	0,00001200 0.00000790	0.0000011 0.0000010	0.000001
					0.0000	**********	5.0000.00	0.00000	0.0000
		Site Water							
Water Water	81603 81604	Sample 1 Total	0.00000100	0.0000010 0.000010	0.0000010	0.0000010	0.00000100	0.0000010	0.000001
vater Vater	81605	Sample 2 Total Sample 3 Total	0.00000100	0.0000010	0.0000010	0.0000010 0.0000010	0,00000100 0,00000100	0.0000010	0.000001
¥6(C)	61003	Sample o Total	0.00000100	0.0000010	0.0000010	0.0000010	0.00001100	0,00000,0	0.00000
		Elutriate							
Water	81609	Sample 1 Dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
Vater	81610	Sample 2 Dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
Valer	81611	Sample 3 Dissolved	0.00000100	0.0000010	0.0000010	0.0000010	0.00000100	0.0000010	0.00000
Vater	81606	Sample 1 Total	0.00000100	0.0000010	0.0000010	0.0000012	0.00000100	0.0000010	0,00000
Vater	81607	Sample 2 Total	0.00000100	0.0000010	0.0000010	0.0000012	D.00000100	0.0000010	0.00000
Vater	81608	Sample 3 Total	0.00000100	0.0000010	0.0000010	0.0000013	0.00000100	0.0000010	0.00000
AMPLE YPE	SAMPLE ID	DESCRIPTION	PCB 138	PCB 141	PCB 151	PCB 153	PCB 156	PCB 167	PCB 17
		Detection Limit (mg/kg)	0 00077	0.00077	0 00077	0 00077	0 00077	0 00077	0.000 7
		Insitu Sediment							
		Sample #1	0.00077	0.00077	0.00077	0.00150	0.00077	0.00077	0.000
Sediment	81717	oampie # i	0.00077	0.00077	0,00077	0.00130	0.00077	0.00077	0.0007
Sediment Sediment Sediment	81718	Sample #2 Sample #3	8.00077 9.00077	0.00077 0.00077 0.00077	0.00077	0.00077 0.00077	0.00077 0.00077	0.00077 0.00077 0.00077	0.0007 0.0007

PCBsfine

	Delaware River Water Analysis (Fine-Grain	ined Site)				
MPIF	DESCRIPTION	PCB 171	PCB 180	PCB 182	PCB 183	F

SAMPLE CYPE	SAMPLE ID	DESCRIPTION	PCB 171	PCB 180	PCB 182	PCB 183	PCB 185	PCB 187	PCB 189
		Detection Limit (mg/l)	0,0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
		Plume Monitoring							
Nater	80983	Background, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Nater	80948	Background, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Alulaa	80984	0-10 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010
Nater Nater	80985	10-20 min, overflow, dissolved	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Nater Nater	80986	20-30 min, overflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Vate:	80949	0-10 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010
Vater	80950	10-20 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	8.0000010
Nater	80951	20-30 min, overflow, total	0.0000010	0.0000010	0,0000010	0.0000010	0,0000010	0,0000010	0.0000010
Nater	80987	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Nater	80988	10-20 min, non-overflow, dissolve	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0,0000010	0.0000010
Vater	80989	20-30 min, non-overflow, dissolve	0.0000010	0.0000018	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010
N ater	80952	0-10 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Nater	80953	10-20 min, non-overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000011
Vater	80954	20-30 min, non-overflow, total	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010
		Hopper Inflow Monitoring		0.0000010	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010
Water	81104	3& 6 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	81105	9812 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water	81106	15&18 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010
Water Water	81107 81108	21&24 min, dissolved 27&30 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010
www.er Water	80891	3& 6 min, total	0.0000012	0.0000011	0.0000011	0.0000029	0.0000046	0.0000092	0.0000011
Water	80892	9&12 min. total	0.0000034	0.0000010	0.0000010	0.0000068	0.0000010	0.0000210	0,0000010
Water	80893	15&18 min, total	0.0000022	0.0000010	0.0000010	0.0000038	0.0000010	0.0000140	0.000001
Water	80894	21824 min. total	0.0000011	0.0000280	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011
Water	80895	27&30 min, total	0.0000011	0.0000490	0.0000011	0.0000022	0.0000011	0.0000011	0.000001
		Hopper Overflow Monitoring					0.0000010	0.0000010	0.000001
Water	81109	2& 4 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000910 0.0000910	0.0000010	0.0000010	0.000001
Water	81110	6& 8 min, dissolved	0.0000010 0.0000010	0,0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.000001
Water	81111	10&12 min. dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0.0000010	0.000001
Water	81112	14816 min, dissolved 18820 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0,0000010	0,0000010	0.000001
Water Water	81113 80897	2& 4 min, total	0.0000011	0.0000590	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Water	80898	6& 8 min, total	0.0000011	0,0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Water	80899	108.12 min, total	0.0000069	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Water	80900	14&16 min, total	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.000001
Water	80901	18820 min, total	0.0000010	0.0000010	0.0000010	0.0000010	0.9000010	0.0000010	0.000001
		Site Water	0.0000040	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.000001
Water	81603	Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water Water	81604 81605	Sample 2 Total Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
******	0.000	and provide the second							
		Elutriate							
Water	81609	Sample 1 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water	81610	Sample 2 Dissolved	0.0000010	0.0000010	0.0000010	0,0000010	0,0000010 0,0000010	0.0000010 0.0000010	0.000001
Water	81611	Sample 3 Dissolved	0.0000010	0.0000010 0.0000016	0,0000010	0,0000010	0.0000010 0.0000010	0.0000010	0.000001
Water	81606	Sample 1 Total	0.0000010	0.0000016	0.0000010	0.0000010	0.0000010	0,0000010	0.000001
Water	81607	Sample 2 Total	0.0000010	0.0000016	0.0000010	0.0000010	0.0000010	0.0000010	0.000001
Water	81608	Sample 3 Total	9.000010	0.0000010	4,00000	***************************************	*********		
SAMPLE	SAMPLE	DESCRIPTION	PCB 171	PCB 180	PCB 182	PCB 183	PCB 185	PCB 187	PCB 18
TYPE	ID								
		Detection Limit (mg/kg)	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.0007
		Insitu Sediment							
Sediment	81717	Sample #1	0,00077	0.00150	0.00077	0.00077	0.00077	0.00077	0,0007
	81718	Sample #2	0.00077	0.00140	0.00077	0.00077	0.00077	0.00077 0.00100	0,0007
			0.00077	0.00160	0.00077	0.00077	0,00077		

	ĸ		

AMPLE YPE	SAMPLE ID	DESCRIPTION	PCB 191	PCB 194	PCB 195	PCB 196	PCB 201	PCB 203	PCB 20
		Detection Limit (mg/t)	0.0000011	0 0000011	0 0000011	0.0000011	0.0000011	0.0000011	0.00000
		Plume Monitoring							
Vater Vater	80983 80948	Background, dissofved Background, total	0.0000010 0.0000011	0.0000010 0.0000011	0.0000010 0.0000011	0.0000010 8.0000011	0.0000010 0.0000011	0.0000010 0.0000011	0,000001 0,000001
Vater	80984	0-10 min, averflow, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	5,000001
Vater	80985	10-20 min, overflow, dissolved	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.0000011	0.00000
Vater Vater	80986 80949	20-30 min, overflow, dissolved 0-10 min, overflow, total	0.0000010 0.0000010	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.00000
Vater	80950	10-20 min, overflow, total	0.0000010	0.0000010	0.0000010	0,0000010	0.0000010	9.0000010 9.0000010	0.00000
Vater	B0951	20-30 min, overflow, total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80987	0-10 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Vater	80988	10-20 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
Valer	80989	20-30 min, non-overflow, dissolve	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,00000
Vater Vater	80952 80953	0-10 min, non-overflow, total 10-20 min, non-overflow, total	0.0000010 0.0000010	0.0000010	0.0000010 0.0000010	0.0000010	0.0000010 0.0000010	0.0000010 0.0000010	0.00000
Vater	80954	20-30 min, non-overflow, total	0,0000010	0.0000010	0.0000010	0,0000010	0.0000010	0.0000010	0.00000

Vater	81104	Hopper Inflow Monitoring 3& 6 min_dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
later Vater	81105	9&12 min dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	81106	15&16 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
later	81107	21824 min, dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	81108	27830 min_dissolved	0.0000010	0.0000010	0.0000010	0.0000010	9.0000010	0.0000010	0.00000
later	80891 80892	3& 6 min, total 9&12 min, total	0.0000011	0.0000011	0 0000090 0 0000026	0 0000065 0 0000065	0.0000011 0.0000010	0.0000011 0.0000010	0.00000
later later	80893	15&16 min total	0.0000010	0.0000010	0 0000016	0 00000039	0.0000010	0.0000010	0.00000
/ater	80894	21824 min, total	0.0000011	0.0000011	0.0000011	0 0000036	0.0000011	0.0000011	0.00000
Vater	80895	27&30 min, total	0.0000011	0.0000011	0.0000011	0 0000080	0.0000011	0.0000011	0,00000
		Hopper Overflow Monitoring							
/ater	81109	28, 4 min, dissolved	0.0000010	0.000010	8.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater	81110	6& 8 min, dissolved	0.0000010	8.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
/ater /ater	81111 81112	10&12 min_dissolved 14&16 min, dissolved	0.0000010 0.0000010	0.0000010 0.0000010	9.0000010 9.0000010	0.0000010	0,0000010 0,0000010	0.0000010 0.0000010	0.00000
iater	81113	18&20 min, dissolved	0.0000010	0.0000010 0.0000010	0,0000010	0.0000010	9.0000010	0.0000010	0.00000
/ater	80897	28 4 min, total	0.0000011	0.0000011	0.0000041	0 0000110	0.0000011	0.0000011	0.00000
/ater	80898	6& 8 min, total	0.0000011	0.0000011	0.0000081	0 0000067	0.0000011	0.0000011	0.00000
later	80899	10812 min. total	0.0000011	0.0000011	0.0000644	0.0000100	0.0000011	0.0000011	0.00000
ater ater	80900 80901	14&16 min, total 18&20 min, total	0.0000011 0.0000010	8.0000011 8.0000010	0.0000110 0.0000150	0.0000190 0.0000097	0.0000011 0.0000010	0.0000011 0.0000010	0.00000
iater	B1603	Site Water Sample 1 Total	0.0000010	8,0000 010	0,0000010	0.0000010	0.0000010	0.0000010	0.00000
fater	81604	Sample 2 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	81605	Sample 3 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,00000
		Elutriate							
ater	81609	Sample 1 Dissolved	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
later later	81610 61611	Sample 2 Dissolved Sample 3 Dissolved	0.0000010	0.0000010 0.0000010	0.0000018 0.0000010	0.0000010	0.0000010	0.0000010 0.0000010	0.0000
ater	81606	Sample 1 Total	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.0000010	0,00000
ater	81607	Sample 2 Total	0.0000010	0,0000010	0.0000010	0.0000010	0.0000010	0.0000010	0.00000
ater	81608	Sample 3 Total	0.000010	0.0000010	0.000010	0.0000010	0.0000010	0.0000010	0.00000
MPLE PE	SAMPLE ID	DESCRIPTION	PCB 191	PCB 194	PCB 195	PCB 196	PCB 201	PCB 203	₽CB 2
		Detection Limit (mg/kg)	0 00077	0 00077	0.00077	0 00077	0 00077	0.00077	0.000
		Insitu Sediment							
diment	81717	Sample #1	0.00077	0.00077	0.00077	0.00077	0.00077	0.00077	0.000
diment	81718	Sample #2	0.00077	0.00077	0.00077	0 00033	0.00077	0.00082	0,000
diment	81719	Sample #3	0.00077	0.00077	0.00077	0.00026	0.00077	0.00084	0.000

PC		

Delaware !	River	Water	Analysis	(Fine-Grained	Site}
------------	-------	-------	----------	---------------	-------

	SAMPLE ID	DESCRIPTION	PCB 206	PCB 207	PCB 208	PCB 209	PCB 66	PCB 190	PCB 19
		Detection Limit (mg/l)	0.0000011	0.00000110	0.00000110		0.0000011	0.0000011	0.000001
		Plume Monitoring							
	80983	Background, dissolved	0.0000025	0.00000095	0.00000130	106.45%	0.0000010	0.0000010	0.000001
Vater	80948	Background, total	0.0000017	0.00000110	0.00000081	74.06%	0.0000011	0.0000011	0.000001
	*äaa •	A da min an affirm disablesed	0.0000024	0.00000090	0.00000150	92.43%	0.0000010	0.0000010	0.000001
	80984 80985	0-10 min, overflow, dissolved 10-20 min, overflow, dissolved	0.0000027	0.000000110	0.00000170	100.50%	0.0000011	0.0000011	0.000001
	80986	20-30 min, overflow, dissolved	0.0000026	0.00000110	0.00000140	99.77%	0.0000010	0.0000010	0.000001
	80949	0-10 min, overflow, total	0.0000020	0.00000100	0.00000092	64.53%	0.0000010	0.0000010	0.00000
/ater	80950	10-20 min, overflow, total	0.0000020	0.00000100	0 00000085	75.26%	0.0000010	0.0000010	0.00000
/ater	80951	20-30 min, overflow, total	0.0000020	0.00000100	0.00000089	81.36%	0.0000010	0.0000010	0,00000
	anno.	'a ca min man mandau dianaha	0.0000026	0.00000095	0.00000140	101.88%	0.0000010	0,0000010	0.00000
	80987 80988	0-10 min, non-overflow, dissolve 10-20 min, non-overflow, dissolve	0.0000025	0.00000074	0.00000130	104.87%	0,0000010	0.0000010	0.00000
	80989	20-30 min, non-overflow, dissolve	0.0000024	0.00000071	0.00000120	112.74%	0.0000010	0.0000010	0.00000
	80952	0.10 min, non-overflow, total	0.0000016	0.00000100	0.00000074	80.06%	0.0000010	0.0000010	0.00000
	60953	10-20 min, non-overflow, total	0.0000017	0.00000100	0.00000075	88.73%	0.0000010	0.0000010	0.00000
Vater	80954	20-30 min, non-overflow, total	0.0000017	0.00000100	0.00000063	87,12%	0.0000010	0.0000010	0.00000
		Hopper Inflow Monitoring							
Vater	81104	3& 6 min, dissolved	0.0000016	0.00000049	0.00000077	90.09%	0.0000010	0.0000010	0.00000
	81105	9&12 min, dissolved	0,0000019	0.00000056	0.00000087	86.49%	0,0000010	0.0000010	0.00000
Vater	81106	15&16 min, dissolved	0.0000019	.0,00000040	0.00000150	87.34%	0.0000010	0.0000010	0.00000
	81107	21&24 min, dissolved	0 0000021	0.00000065	0.00000100	94.48%	0.0000010	0,0000010	00000.0 00000.0
	81108	27830 min, dissolved	0.0000017	0.00000054	0.00000094 0.00001700	72.89% 97.66%	0.0000010	0.0000010 0.0000011	0.00000
Vater	80891	3& 6 min, total	0.0000410 0.0000900	0.00000280	0.00001700	58.62%	0,0000011	0.0000017	0.0000
Vater	80892 80893	9&12 min, total 15&18 min, total	0.0000580	0.00000650	0.00002500	108.63%	0.0000010	0.0000010	0.00000
Vater Vater	80894	21&24 min, total	0.0000460	0.00000190	0.00001900	108.06%	0.0000011	0.0000011	0.00000
Vater	80895	27&30 min, total	0.0000920	0.00000620	0.00004000	124.79%	0.0000011	0.0000011	0.00000
		Hopper Overflow Moratoring							
Vater	81109	28 4 min, dissolved	0.0000019	0.00000037	0.00000051	81.94%	0.0000010	0.0000010	0.00000
Vater	81110	6& 8 min, dissolved	0.0000016	0.00000100	0.00000061	78.71%	0,0000010	0.0000010	0,00000
Vater	81111	10&12 min, dissolved	0.0000017	0.00000100	0,00000084	88.72%	0.0000010	0,0000010	0,00000
Vater	81112	14&16 min, dissolved	0.0000018	0.00000043	0.00000086	83.24%	0.0000010	0.0000010	0.00000
Vater	81113	18820 min, dissolved	0.0000016	0.00000043	0.00000077	80.18%	0,0000010 0,0000011	0.0000010	0.00000
Vater	80897	28, 4 min, total	0.0001700	0.00000960	0.00007400 0.00005100	220.34% 213.26%	0,0000011	0.0000011	0.00000
Vater	80898	6& 8 min, total 10&12 min, total	0.0001200	0.00000720 0.00000860	0.00005200	175:12%	0.0000011	0.0000011	0.00000
Vater Vater	80899 80900	14816 min. total	0.0001200	0.00001000	0.00005800	216.74%	0.0000011	0.0000011	0.00000
Vater	60901	16820 min, total	0.0001200	0.00000840	0.00005900	186.63%	0.0000010	0.0000010	0.00000
		City Minter							
Vater	81603	Site Water Sample 1 Total	0.0000028	0.00000062	0.00000110	101.92%	0,0000010	0.0000010	0,00000
vater Vater	81604	Sample 2 Total	0.0000024	0.00000100	0.00000100	90,51%	0.0000010	0.0000010	0.00000
Vater	81605	Sample 3 Total	0.0000022	0.00000100	0.00000092	90.22%	0.0000010	0.0000010	0.00000
		Elutriate							
Vater	81609	Sample 1 Dissolved	8100000,0	0.00000027	0.00000058	86.71%	0.0000010	0.0000010	0.00000
Vater	81610	Sample 2 Dissolved	0.0000021	0.00000029	0.00000085	96.44%	0.0000010	0.0000010	0.00000
Vater	81611	Sample 3 Dissolved	0.0000021	0.00000054	0.00000078	101.29%	0.0000010	0.0000010	0.0000
Vater	81606	Sample 1 Total	0.0000052	0 00000059 . 0.0000100	0.00000270	91 62% 90.36%	0.0000010	0.0000010	0.00000
Vater Vater	81607 81608	Sample 2 Total Sample 3 Total	0.0000051 0.0000052	88000000.0	0.00000280	88.68%	0.0000010	0.0000010	0.00000
AMDI C	SAMOIE	DESCRIPTION	PCB 206	PCB 207	PCB 208	PCB 209	PCB 66	PCB 190	PCB 1
TYPE	ID	Automorae et 7 - 7 Short 9	. 22 234		•				
		Detection Limit (mg/kg)	0.00077	0.00077	0.00077		0.00077	0.00077	0.000
		Insitu Sediment							
Sediment	81717	Sample #1	0.00390	0.00048	0.00220	106.21%	0.00077	0,00077	0.000
	81718	Sample #2	0.00120 0.00370	0.00077 0.00077	0.00210 0.00180	105.19% 98.01%	0.00077 0.00077	0.00077 0.00077	900,0 100.0
Sediment		Sample #3							

PCRofine Delaware River Water Analysis (Fine-Grained Site) SAMPLE SAMPLE DESCRIPTION TYPE ID PCB 200 Detection Limit (mg/l) 0.0000011 Plume Monitoring 80983 Water Background, dissolved 0.0000010 Water 80948 Background, total 0.0000011 0.0000010 80984 Water 0-10 min, overflow, dissolved 10-20 min, overflow, dissolved 20-30 min, overflow, dissolved 0.0000011 0.0000010 80985 80986 Water 0.0000010 0.0000010 0.0000010 80949 80950 0-10 min, overflow, total 10-20 min, overflow, total Water Water 80951 20-30 min, overflow, total 80987 0.0000010 Water 0-10 min, non-overflow, dissolve 0.0000010 80988 Water 80989 20:30 min, non-overflow dissolve 80952 80953 0.0000010 10-20 min, non-overflow, total Water 0.0000010 Hopper Inflow Monitoring 81104 0.0000010 Water 3& 6 min dissolved Water 81105 81106 9&12 min, dissolved 15&18 min, dissolved 0.0000010 21&24 min, dissolved 27&30 min, dissolved 3& 6 min, total Water 81107 0.0000010 0.0000010 0.0000015 Water 80891 Water 80892 9&12 min total 0.0000034 80893 80894 15816 min, total 21824 msn, total 0.0000029 0.0000019 Water Water 80895 27&30 min, total 0.0000011 Happer Overflow Monitoring 0.0000010 Water 81109 28. 4 min, dissolved 0.0000010 0.0000010 0.0000010 Water 81110 81111 68 6 min, dissolved 10812 min, dissolved Water 81112 14&16 min dissolved 18&20 min, dissolved 2& 4 min, total 6& 8 min, total Water 81113 80697 0.0000010 Water 80898 0.0000033 0.0000064 0.0000011 0.0000010 Water Water 80899 80900 10&12 mm, total 14&16 min, total Water 80901 18820 min total Site Water Sample 1 Total Sample 2 Total 0.0000010 Water 81603 Water 01604 81605 Sample 3 Total 0.0000010 Elutriate Sample 1 Dissolved 0.0000010 81609 Water Water Water 81610 81611 Sample 2 Dissolved Sample 3 Dissolved 0.0000010 Water Water 81606 81607 Sample 1 Total Sample 2 Total 0.0000010 0.0000010 Sample 3 Total Water 81508 SAMPLE SAMPLE DESCRIPTION PCB 200 Detection Limit (mg/kg) 0.00077 Insitu Sediment Sediment 81717 Sample #1 Sample #2 0.00077 0.00077 Sediment 81718 Sediment 81710 Sample #3 BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

		ħ	4	5710	ing NOF 5960 5740 5480	ing OF 4310 4200 3862	30767 84490 127780 37940 151910				126670 167600			TS 4744 4328 4386	4228 4370 4472 4734 4698	
			Det Limit	Plune Monitoring Background	Plume Monitoring NOF Sample 1 5560 Sample 2 5740 Sample 3 5490	Piume Monitoring OF Sample 1 43 Sample 2 42 Sample 3 36	Hopper Inflow Sample 1 Sample 2 Sample 3 Sample 4			Hopper Overfit Sample 1	Sample 3 Sample 4			Ste Water Sample 1 T Sample 2 T Sample 3 T	Elutriate Sample 1D Sample 2D Sample 3D Sample 1T Sample 1T Sample 3T	
					30 28 29 51	30 min 61 86 326	30 min 47967			5,0 min 92800	10.0 min 29233	15.0 min 145333	20.0 min 79167			
					25 min 21 30 53	25 min 52 58 58	27 min 82933			4.5 min 72400	9 5 min 50867	14.5 min 41987	19 5 min 128633			
					20 min 27 37 82	20 mls 83 162 247	24 min 28667			4.0 min 102800	9.0 min 29233	14.0 min 89033	19.0 min 123700			
					15 min 26 31 57	15 min 147 118 186	21 min 7290			3.5 min 110300	8 5 min 44200	13.5 min 27767	18.5 min 159133			
					12 min 23 13 14 1	12 min 280 138 275	18 m in 27900			3.0 min 105900	8.0 min 97187	13.0 min 62400	18.0 min 108630			
tassfine				50 min 47 50 80	6 8 5 8 5 8	9 28 28 28 28	15 min 43953			2.5 min 57557	7.5 min 56739	12.5 min 78100	17.5 min 79833			
				40 min 30 45	58 88 14 74	7 min 204 288 388	12 min 27767			2.0 min 75333	7.0 min 40233	12.0 min 63700	17.0 min 136467			
				8 8 8 8 8	5 5 5 5 5 5 5 6	5 min 55 155 335	9 min 3140	Location 3 69733 102433 119000	Location 3 29067 83267 138033	1,5 min 95367	6.5 min 66533	11.5 min 15700	18.5 min 137167			
				20 min 152 91 35	3 min 35 89 105	3 min 314 376 177	8 min 12860	Location 2 85267 55900 145200	Location 2 81233 52033 121533	1.9 min 41733	6.0 min 95833	11.0 min 58000	16.0 min 48267			
	ed Site)	188	भर	10 min 39 48 110	1 min 41 54 116	1 102 116 208	3 min 1760	Location 1 93367 32233 127167	Location 1 71067 108533 60467	0.5 min 64280	5.5 min 117967	10.5 min 48200	15,5 min 52100	TSS 58	8 11 11 304 282 282	
	Delayare River Water Analysis (Fine Grained Site)	DESCRIPTION	Detection Limit (mg/l)	Plune Monitoring Background 15S Top Depth 1SS Mid-Depth 1SS Bottom Depth	Flume Monitoring Non-Overflow 75S Top Depth 7SS Mid-Depth 7SS Battom Depth	Plyme Monitoring Overflow TSS Top Depth TSS Mid-Depth TSS Entorn Depth	Hopper inflow TSS (mg/l)	Hopper Contents Beginning of Overflow TSS Top Depth TSS Mid-Depth TSS Battom Depth	Hopper Contains End of Overflow TSS Top Depth TSS Mid-Depth TSS Battom Depth	Hopper Overflow TSS (mg/f)	Happer Overflaw TSS (mg/l)	Hopper Overhow TSS (mg/l)	Hopper Overlow TSS (mg/l)	Site Water Sample 1 Total Sample 2 Total Sample 3 Total	Elutiate Sample C Dissolved Sample 2 Dissolved Sample 3 Dissolved Sample 3 Total Sample 2 Total	
		SAMPLE		81224 81225 81226	81269 81270 81271	81239 81240 81241	81324	81352 81353 81354	81361 81362 81363	81044	81054	81064	81074	81675 81676 81677	81682 81683 81678 81678 81678	
		SAMPLE STYPE		Water (Water (Water Water Water	Water	Water Water Water	Water Water Water	Water	Water	Water	Water	Water Water Water	Water Water Water Water Water	

nutrfine

SAMPLE TYPE	SAMPLE	DESCRIPTION	тос
		Detection Limit (mg/l)	3 00
	22222	Plume Monitoring	
Water Water	80969 80927	Background, dissolved Background, total	6 12 7 30
**cites	00321	Dausground, toler	1 30
Water	80970	0-10 min, overflow, dissolved	3 07
Water	80971	10-20 min, overflow, dissolved	2.91
Water	80972	20-30 mln, overflow, dissolved	2.74
Water Water	80928 80923	0-10 min, overflow, total	10 70 11.30
Water	80 930	10-20 min, overflow, total 20-30 min, overflow, total	8.09
, , , , , , , , , , , , , , , , , , , ,	••••	20 00 (1111), 010,110,11, 10101	0.03
Water	80973	0-10 min, non-overflow, dissolved	4 68
Water	80974	10-20 min, non-overflow, dissolved	6.35
Water	80975	20-30 min, non-overflow, dissolved	5 19
Water Water	80931 80932	0-10 min, non-overflow, total 10-20 min, non-overflow, total	6.92 7.44
Water	80933	20-30 min, non-overflow, total	8.69
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••••	go-ob man, no-november, total	0.0.
Water	81084	Hopper Inflow Monitoring	24.00
Water	81085	3& 6 min, dissolved 9&12 min, dissolved	24 80 47 30
Water	81086	15&18 min, dissolved	64 60
Water	81087	21824 min, dissolved	19 00
Water	81088	27&30 min, dissolved	63 00
Water	80855	3& 6 min, total	1010.00
Water Water	80856 80857	9&12 min, total 15&18 min, total	3300 00 6030 00
Water	80858	21824 min, total	1170 00
Water	80859	27&30 mm, total	6460 00
		2.000	
		Hopper Overflow Monitoring	
Water	81089	28. 4 min, dissolved	14 10
Water	81090	68 8 min, dissolved	11 90
Water	81091	10812 min, dissolved	72 30
Water	81092	14816 min, dissolved	79 20
Water Water	81093 80861	18820 min, dissolved 28, 4 min, total	21 40 6860.00
Water	80862	68 8 min, total	5930 00
Water	80863	10&12 mm, total	5280 00
Water	80864	14816 min, total	6800 00
Water	6 0865	18&20 min, total	7150 00
	04000	Site Water	
Water Water	81693 81694	Sample 1 Total Sample 2 Total	3.00 3.00
Water	81695	Sample 3 Total	3.00
		Elutrate	
Water	81699	Sample 1 Dissolved	3.00
Water	81700	Sample 2 Dissolved	3.00
Water	81701	Sample 3 Dissolved	3.00
Water	81696	Sample 1 Total	1.48
Water	81697	Sample 2 Total	1.43
Water	81698	Sample 3 Total	1 92
SAMPLE	SAMPLE	DESCRIPTION	TOC
TYPE	ID		,
		Detection Limit (mg/kg)	30
		Insitu Sediment	
Sediment	81723	Sample #1	8090 0
Sediment		Sample #2	7200 0
Sediment	81725	Sample #3	7520.0

BOLD - less than values. Values below less than values are estimated results. Results are less than the reporting limit.

spgrfine

Delaware River Water Analysis (Fine-Grained Site)

SAMPLE	SAMPLE	DESCRIPTION		Sp. Gr.	%Moisture
TYPE	ID				
		Insitu Sediment			
Sediment	81299	Sample #1		2.73	191.58%
Sediment	81300	Sample #2		2.75	254.93%
Sediment	81301	Sample #3		2.76	203.04%
Sediment	81302	Sample #4		2.74	181.93%
Sediment	81303	Sample #5		2.75	166.58%
Sediment	81304	Sample #6		2.72	117.93%
Sediment	81305	Sample #7		2.71	164.93%
Sediment	81306	Sample #8		2.72	108.57%
Sediment	81307	Sample #9		2.71	94.57%
Sediment	81308	Sample #10		2.73	103.87%
	81309	•		2.73	102.13%
Sediment		Sample #11		2.73	130,69%
Sediment	81310	Sample #12		2.71	172.19%
Sediment	81311	Sample #13			
Sediment	81312	Sample #14		2.72	156.47%
Sediment	81313	Sample #15		2.73	79.16%
			Average	2.73	148.57%

Page 1

Appendix B Plume Study Field Activities and Data Results

Preface

This section of the report describes field activities and data results from the relative acoustic backscatter channel cross sections with the OBS overlay. The investigators who participated in this part of the project were Messrs. Timothy L. Fagerburg, Howard A. Benson, and Terry N. Waller, U.S. Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Vicksburg, MS, and William H. Dulaney, ERDC, Geotechnical and Structures Laboratory (GSL).

This section of the report was written by Messrs. Benson and Fagerburg, with assistance in data processing from Messrs. Waller, Martin T. Hebler, Mses. Clara J. Coleman and Jane M. Vaughan, CHL, and Mr. Daryl P. Cook, DIMCO, Inc., Vicksburg, MS.

Field Procedure

Two test areas were selected for monitoring. Reach 1, was a coarse-grained material site located near the Brandywine Range, in lower Delaware Bay. Reach 2, was a fine-grained material site located at the Deepwater Point Range near New Castle, DE (Figure B1). Channel cross-sectional transects were conducted with the 1,200-kHz Broad-Band Acoustic Doppler Current Profiler (ADCP) and Optical Backscatterance (OBS) sensor at several predetermined transect lines in the test areas for nonoverflow and overflow dredge operations. Several transects were monitored prior to the dredge passing to establish background conditions. The dredge would then begin dredging operations and the transect boat would run continuous transects behind it to determine the extent and dispersion of the plume. The first set of transects at each test area was made during the hopper dredge's being filled with no overflow. The dredge would then proceed to the dumping area, empty the load, and return to the site for the second test.

Figure B1. Delaware plume monitoring location map

Prior to the second test, data would be collected at several transect lines again to reestablish background conditions. The second dredging operation would include several minutes of hopper overflow while dredging. Again, the transect boat would run continuous transects behind it to determine the extent and dispersion of the plume.

Monitoring the sediment plume was accomplished using a boat-mounted RD Instruments 1200-kHz Broad-Band ADCP. The instrument collects velocity vectors in the water column together with backscatter levels to determine the position and relative intensity of the sediment plume. A detailed description of the ADCP is presented in the Equipment Description section.

Along with the ADCP, a MicroLite recording instrument with an OBS Sensor was towed by the vessel at a depth of 4.6 m (15 ft). The MicroLite recorded data at 0.5-sec intervals. A detailed description of the MicroLite is also presented in the Equipment Description section.

Navigation data for monitoring was obtained by a Starlink differential Global Positioning System (GPS). The GPS monitors the boat position from the starting and ending points along each transect. The manufacturer stated accuracy of the navigation system is ± 1 m. The navigation data were recorded at 1-sec intervals for merging with the ADCP and OBS data.

In situ sediment samples were collected prior to the dredging tests at both sites. Bottom samples were collected using a grab-type sampling bucket detailed in the Equipment Description section. Water samples for pore-water and toxicity tests were obtained using a portable pump sampler also described in the Equipment Description section. Types of samples, and the tests and analyses of the samples, are reported elsewhere in the report.

Dredge Plume Monitoring

The data presented in Figures B2 through B15 represent a time-history of the changes in suspended material levels in the water column resulting from dredge operations within each test area. The relative backscatter intensity of the ADCP acoustic signal is described as the strength of the return acoustic signal as it is affected by material suspended in the water column. Changes in levels of suspended material affect the acoustic reflectivity properties of the water column and, in turn, have an effect on the strength of the return signal intensity (decibels). High levels of suspended material in the water column result in high levels of acoustic intensity. The ADCP acoustic intensity data were utilized to identify levels of suspended material in the water column before, during, and following dredging operations.

As stated previously, transects were monitored in each test area to obtain the background levels of suspended materials prior to any dredging activities. The background levels shown in Figures B2 and B5 and in B9 and B12 are for the two test areas, Brandywine Range (Reach 1) and Deepwater Point Range (Reach 2), respectively.

Figures B2 through B4 illustrate the residence time of the sediment plume resulting from nonoverflow dredging operation in the Reach 1. The background levels are shown in Figure B2. Figure B3 shows the vertical

Figure B2. Relative acoustic intensity and OBS readings, Line 3, 1509 EST, Brandywine Range - Reach 1, 09/15/98

Figure B3. Relative acoustic intensity and OBS readings, Line 305, 1633 EST, Brandywine Range - Reach 1, 09/15/98

Figure B4. Relative acoustic intensity and OBS readings, Line 303, 1641 EST, Brandywine Range - Reach 1, 09/15/98

Figure B5. Relative acoustic intensity and OBS readings, Line 113, 1938 EST, Brandywine Range - Reach 1, 09/15/98

Figure B6. Relative acoustic intensity and OBS readings, Line 217, 1953 EST, Brandywine Range - Reach 1, 09/15/98

Figure B7. Relative acoustic intensity and OBS readings, Line 119, 1957 EST, Brandywine Range - Reach 1, 09/15/98

Figure B8. Relative acoustic intensity and OBS readings, Line 115, 2050 EST, Brandywine Range - Reach 1, 09/15/98

Figure B9. Relative acoustic intensity and OBS readings, Line 18, 1404 EST, Deepwater Point Range - Reach 2, 09/16/98

Figure B10. Relative acoustic intensity and OBS readings, Line 118, 1459 EST, Deepwater Point Range - Reach 2, 09/16/98

Figure B11. Relative acoustic intensity and OBS readings, Line 224, 1518 EST, Deepwater Point Range - Reach 2, 09/16/98

Figure B12. Relative acoustic intensity and OBS readings, Line 14, 1730 EST, Deepwater Point Range - Reach 2, 09/16/98

Figure B13. Relative acoustic intensity and OBS readings, Line 9, 1818 EST, Deepwater Point Range - Reach 2, 09/16/98

Figure B14. Relative acoustic intensity and OBS readings, Line 15, 1832 EST, Deepwater Point Range - Reach 2, 09/16/98

Figure B15. Relative acoustic intensity and OBS readings, Line 324, 2020 EST, Deepwater Point Range - Reach 2, 09/16/98

and horizontal dimensions of the sediment plume immediately behind the dredge. Figure B4 shows the level of suspended material in the water column 8 min following the dredge's passing, indicating that background levels of suspended material are returning to the site. No lateral dispersion of the plume out of channel was observed during the nonoverflow dredging operation.

Figures B5 through B8 illustrate the residence time of the sediment plume created with hopper-overflow conditions during dredging operations in Reach 1. Background levels of suspended materials prior to the dredging operations are shown in Figure B5. The vertical and horizontal dimensions of the sediment plume immediately behind the dredge while hopper over-flow conditions are occurring are shown in Figure B6. Plume dimensions 4 min after the dredge passed are shown in Figure B7. A wider transect was performed, as seen in the horizontal distance scale, to determine the lateral extent of the plume. No significant change above background levels could be detected. At 1 hr elapsed time following the end of the overflow dredging operation, the levels of suspended material had returned to background conditions as shown in Figure B8. Again, no lateral dispersion of the plume out of the channel area was observed.

Figures B9 through B11 illustrate the residence time of the sediment plume created from nonoverflow conditions during dredging operations in the Reach 2 area. At the beginning of the dredging operations, background suspended material levels are shown in Figure B9. The plume dimensions in the lateral and vertical directions immediately behind the dredge at the start of dredging operations are shown in Figure B10. After an elapsed time of 19 min (Figure B11), following the end of dredging operations, the levels of suspended material had returned to background conditions. During this dredging operation, the tidal flow in the dredging area had reversed from flood flow to ebb flow conditions. This accounts for the relative change in background levels seen between Figure B9 and Figure B11. Despite the changes in background levels resulting from the change in direction of flow in the dredging area, no lateral movement of the plume beyond the channel limits was observed.

Figures B12 through B15 illustrate the residence time of the dredge plume resulting from hopper overflow dredging conditions in the Reach 2 area. Background levels prior to dredging operations are shown in Figure B12. The sediment plume dimensions immediately behind the dredge prior to overflow conditions can be seen in Figure B13. Note the increase in the suspended material levels within the first 400 ft of the transect. The increase in these levels can be attributed to the increase in the ebb flow velocities and the resulting disturbance of bottom materials from near bottom velocities and not dredge plume dispersion. When hopper-overflow conditions began, another transect was performed located immediately behind the dredge as shown in Figure B14. The width of the transect was also increased, as indicated in the length of the horizontal distance scale, to observe the lateral extent of the dispersion of the dredge plume. After an elapsed time of 1 hr following the completion of the overflow dredging

operation, Figure B15 indicates that the levels of suspended materials had returned to background conditions. Note the increase in sediment disturbance near the bottom in the shallow portions of the transect which are due to the increase in the velocities during the ebb cycle of the tide. As in the previous dredge operations, no lateral dispersion of the dredge plume beyond the channel limits was observed.

The OBS data shown in Figures B2 through B15 were used to see if there is a correlation between the relative acoustic backscatter from the ADCP with different levels of turbidity for the OBS sensor. The figures indicate a fairly good correlation as increases in the ADCP relative acoustic intensities correspond to similar increases in the turbidity levels from the OBS sensor. Since the OBS sensor was deployed at a fixed depth, relative changes in turbidity throughout the water column were not measured.

Equipment Description

Figure B16. Acoustic Doppler Current Profiler

Figure B17. Vessel-mounted ADCP

Acoustic Doppler Current Profiler (ADCP)

Acoustic techniques are used to obtain current velocity and direction measurements for fast and accurate profiling in the field. The equipment used was a boat-mounted RD Instruments BroadBand Acoustic Doppler Current Profiler (ADCP) as shown in Figure B16. The RD instruments operating frequency was 1,200 kHz. The equipment can be mounted over the side of boat with the acoustic transducers submerged and data is collected while the vessel is underarey as shown in Figure B17.

The ADCP transmits sound bursts into the water column which are scattered back to the instrument by particulate matter suspended in the flowing water. The ADCP sensors listen for the returning signal and assigns depths and velocity to the received signal based on the change in the frequency caused by the moving particles. This change in frequency is referred to as a Doppler shift.

The ADCP is also capable of measuring vessel direction, current direction, water temperature, and bottom depth. Communication with the instrument for setup and data recording are performed with a portable computer using manufacturer supplied software, hardware, and communication cables. The manufacturer stated accuracies for current speed measurement ± 0.2 cm/sec; for vessel direction, ± 2 deg; and for temperature, ± 5 °F.

OBS Sensors

The OBS sensor, a product of D&A Instruments and Engineering, is a type of nephelometer for measuring turbidity and solids concentrations by detecting scattered infrared light from suspended matter. It consists of a high-intensity infrared emitting diode (IRED), a series of silicon photodiodes as detector and linear solid state temperature transducer. The IRED emits a beam at angles 50 deg in the axial plane and 30 deg in the radial plane to detect suspended particles by sensing the radiation they scatter, as shown in Figure B18. Scattering by particles is a strong function of the angle between the path of radiation from the sensor through the water and the signal return to the detector. OBS sensors detect only radiation scattered at angles greater than 140 deg. As with other optical turbidity sensors, the response of the OBS sensor depends on the size distribution, composition, and shape of particles suspended in the medium being monitored. For this reason, sensors must be calibrated with suspended solids from the waters being monitored. The OBS sensor is interfaced with Coastal Leasing, Inc., MicroLite solid-state microprocessor that controls samples, averaging, and data storage. The MicroLite uses Wizard portable PC software to provide user-friendly control of the instrument.

Figure B18. OBS sensor beam pattern

Tethered-drag sampler

The Tethered-drag sampler is basically a 76-mm- (3-in.-) diam pipe cut on a 45-deg angle with a shackle mounted on one side. The sampler is

thrown over the side and dragged along the bottom. The sample accumulates inside the pipe. Samples are removed, inspected, and packaged in plastic bags or jars for further analysis once returned to ERDC. The Tethered-drag sampler is displayed in Figure B19.

Figure B19. Tethered-drag sampler

Pumped water samples

Water samples are obtained by pumping the sample from the desired depth to the surface collection point via a portable sampling pump. The pumping system consists of a 6-mm- (1/4-in.-) ID plastic tubing attached to a weighted "fish" for support. The weight is lowered by cable from a winch with a depth indicator. The opening of the sampling tubing is attached to a solid suspension bar above the weight and is pointed into the flow. A 12-V DC pump is used to move the water through the tubing to the deck of the boat where each sample is then collected in appropriate glass or plastic containers. The pump and tubing are flushed for approximately 1 min at each depth before collecting the sample.

Appendix C Detection of Short-Term Sedimentation During Hopper Dredging Operations in Delaware Bay and the Delaware River¹

US Army Corps of Engineers

Waterways Experiment Station Vicksburg, MS 39180

February 1999

Detection of Short-Term Sedimentation During Hopper Dredging Operations in Delaware Bay and the Delaware River

by Robert J. Diaz R. J. Diaz and Daughters P. O. Box 114 Ware Neck, Virginia 23178

and

Douglas G. Clarke Coastel Ecology Branch U.S. Army Engineer Waterways Experiment Station

Adapted from unpublished draft report, Robert J. Diaz and Douglas G. Clarke, February 1999, R. J. Diaz and Daughters, Ware Neck, VA, and Coastal Ecology Branch, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS

Introduction

Navigation channel maintenance dredging projects employing hopper dredges can produce substantial water-column turbidity when in situ sediments contain a high proportion of fines and overflow practices are used. Most of the sediment resuspended during overflow operations has been shown to settle within several hundred meters of the channel (Nichols, Diaz, and Schaffner 1990; Clarke et al. 1990). It has been hypothesized that even short-term pulses in sedimentation rates induced by overflow operations could negatively impact sensitive living resources, such as oyster beds, in the vicinity of dredged channels.

Detection and measurement of recently deposited thin layers of dredged material can be a severe technical challenge. Sediment overburdens with thicknesses on the scale of several millimeters can potentially raise concern for biological impacts. Precision bathymetry methods using acoustic technologies lack the sensitivity to detect low-density thin overburdens less than 5 to 10 cm thick, at best. However, direct in situ observations of very thin layers have effectively been done with sediment profile imaging (SPI). Nichols, Diaz, and Schaffner (1990) demonstrated that SPI techniques could detect thin layers of sediment deposited from hopper dredge overflow operations in the Chesapeake Bay. SPI has also proven to be very effective in mapping the distribution of thin layers resulting from open-water dredged material disposal operations in Mobile Bay (Diaz, Schafffner, and Kiley 1987a; Diaz and Schaffner 1988; Clarke and Miller-Way 1992), Mississippi Sound (Diaz, Schafffner, and Kiley 1987b), and Long Island Sound (Morton, Parker, and Richmond 1985).

The primary focus of this study was to determine if short-term sedimentation of dredged material occurred as a consequence of resuspension by the dragheads or during overflow from the hopper dredge. A secondary objective, should sedimentation be detected in sediment profile images, was to determine the distances from the navigation channel at which measurable sedimentation occurred. Two areas were selected by the U.S. Army Engineer District, Philadelphia (CENAP), for conduct of the hopper dredging operations tests (Figure C1). These locations represent a relatively open-water site in the Delaware bay, designated the Lower Study site (LS), and a more riverine site in the Delaware River, designated the Upper Study site (US).

Materials and Methods

Field methods

On 15 and 16 September 1998, sediment profile images were collected at a series of stations at the two predetermined locations in Delaware Bay and the Delaware River (LS and US, respectively). SPI data were successfully collected at stations in the LS site (Figure C2) and stations in the US site (Figure C3). At each station a Hulcher Model Wrenn sediment profile camera was deployed. During each deployment the profile camera obtained two images (Fujichrome 100P 35-mm slides) at 5 and 15 securior bottom contact. The two-image sequence helps to ensure that when deployment occurs in soft, unconsolidated sediments the sediment-water interface is captured in the image before the camera prism optical window descends too deeply into the substrate.

Stations were located based on considerations of prevailing wind, river discharge, and/or tidal flow conditions at the time of each hopper dredge test. At both study locations data were collected first while the dredge was operating without overflow, followed by a second test with overflow. Sampling proceeded for up to 2 hr after dredging ceased.

Image analysis

The sediment profile images were first analyzed visually by projecting the images and recording all features seen into a preformatted, standardized spread sheet file. The images were then digitized using a Polaroid Sprint Scan 35 Plus scanner and analyzed using Adobe Photoshop and NTIS Image programs. Steps in the computer analysis of each image were standardized consistent with procedures described in Viles and Diaz (1991). Data from each image were sequentially saved to a spread sheet file for later analysis. Details of how these data were obtained can be found in Diaz and Schaffner (1988) and Rhoads and Germano (1986), and in the standardized image analysis procedures of Viles and Diaz (1991).

Results and Discussion

SPI images from a total of 14 stations were analyzed from the LS site (Figure C2) and 41 stations from the US site (Figure C3). The approximate location of the hopper dredge in proximity to the sampling stations is shown in Figures C2 and C3. The LS site was sampled on 15 September from 1958 to 2208 hr. Tidal flows were flooding during the sampling period and winds were approximately 24 to 32 kph (15 to 20 mph) out of the east. Sea conditions were marginal for successful deployment of the camera system, with approximate wave heights of 0.6 to 0.9 m (2 to 3 ft). The US site was sampled on 16 September 1998 from 1507 to 2102 hr. This reach of the Delaware River is influenced by tidal currents, which were ebbing during the sampling period. Sea conditions were mild with wave heights less than 0.6 m (2 ft) throughout the sampling period.

Presented below are explanations of each of the parameters produced from analysis of SPI images and an overview of observations of physical and biological features at the two study sites. Complete listings of visual and computer analysis data for each study site are given in Tables C1 and C2.

Prism penetration

This parameter provided a geotechnical estimate of sediment compaction, with the profile camera prism acting as a dead weight penetrometer. The depth of prism penetration is therefore related to the "softness" or degree of sediment compaction or water content. Penetration was simply measured as the distance the sediment interface moved up the 23-cm length of the prism optical window as captured by the 15-sec image. The weight of the camera frame was kept constant at 43 kg (95 lb) in order to allow comparisons of relative sediment compaction between stations.

Sand bottoms typical of the LS site had comparatively shallow penetration depths, ranging from 0.0 to 10.9 cm (Table C1). When sandy sediments are poorly sorted, as was the case at channel station LS-09 (Figure C4), prism penetration was deeper. Silty-clay sediments prominent at the US site had comparatively deep penetration (loosely compacted) values, ranging from 9.8 to 25.0 cm (Table C2). Compacted clay sediments, as indicated by very shallow penetration, can be seen in the image from station US-14 (Figure C5).

Surface relief

Surface relief or boundary roughness was measured as the difference between the maximum and minimum distance (relative to the sediment-water interface) the prism penetrated and provided qualitative and quantitative data on habitat characteristics useful for evaluating existing conditions. Small-scale bed roughness on the order of the width (15 cm) of the prism optical window can be estimated from the images. Factors contributing to observed roughness can often be inferred from visual analysis of the images.

In the open-water setting of the sandy LS site, physical factors (e.g., water current and wave generated turbulence) obviously dominated local sediment processes. Surface relief was typically present as small bed forms (e.g., LS-13, Figure C6) that ranged from 0.6 to 2.0 cm (Table C1). In contrast, the muddy habitats of the US site were primarily influenced by biological features, including mounds, pits, and tubes formed from the biogenic activity of benthic organisms (e.g., US-35, Figure C7). Here surface relief values ranged from 0.4 to 3.5 cm (Table C2).

Apparent color redox potential discontinuity layer

This parameter has been determined to be an important estimator of benthic habitat quality (Rhoads and Germano 1986, Diaz and Schaffner 1988), providing an estimate of the depth to which sediments are oxidized. The term "apparent" is used in describing this parameter because no direct chemical measurement is made of the redox potential. Rather an assumption is made that, given the complexities of iron and sulfate reduction-oxidation chemistry, reddish/greenish-brown sediment color tones (Diaz and Schaffner 1988) are indicative of oxic sediments, whereas reduced sediments have gray to black color tones. This is in accordance with the classical concept of redox potential discontinuity (RPD) depth, which associates RPD with sediment color (Fenchel 1969, Vismann 1991).

The depth of the apparent color RPD was defined as the area of all the pixels in the image discerned as being oxidized divided by the width of the digitized image. The area of the image with oxic sediment was obtained by digitally manipulating the image to enhance characteristics associated with oxic sediment (reddish/greenish-brown color tones). The enhanced area was then measured from a density slice of the image.

The apparent color RPD has been a very useful parameter in assessing the quality of a benthic habitat for infauna and epifauna from both physical and biological perspectives. Rhoads and Germano (1986); Revelas, Rhoads, and Germano (1987); Day, Schaffner, and Diaz (1988); Diaz and Schaffner (1988); Valente et al. (1992); and Bonsdorff et al. (1996) all found the depth of the RPD from profile images to be directly correlated to the quality of the benthic habitat in polyhaline and mesohaline estuarine zones. Controlling for differences in sediment type, habitats with relatively thin (<5 mm) RPD layers tend to be associated with some type of environmental stress. In contrast, habitats with relatively deep RPD values (>2 cm) usually have flourishing infaunal and epifaunal communities.

Porous sandy sediments (e.g., LS-09, Figure C4) and silty-clay sediments with evidence of high levels of biological activity (e.g., US-11, Figure C8) had the deepest RPD measurements in this study. Shallowest RPD measurements were associated with images that had signs of physical disturbance, possibly dredging related (e.g., LS-06, Figure C9), or were compact clays (e.g., US-33, Figure C10). In the LS site, average RPD depth ranged from 0.7 to 5.3 cm, and from 0.1 to 6.6 cm in the US site (Tables C1 and C2).

Sediment grain size

Grain size is an important parameter for determining the nature of the physical forces acting on a sedimentary habitat. Grain size is also a major factor in determining benthic community structure (Rhoads 1974). The sediment type descriptors used for image analysis follow the Wentworth classification as described in Folk (1974) and represent the major modal class for each image. Grain size was determined by comparison of collected images with a set of standard images for which mean grain size had been determined in the laboratory.

Grain size ranged from medium-sand gravel (e.g., US-21, Figure C11) to clay (e.g., US-35, Figure C7). Traces of sand were also seen at a few fine-grained stations (e.g., US-29, Figure C12) and traces of fines at coarse-grained stations (e.g., US-32, Figure C13). Within study site variation in sediment type for the LS site was low, with the modal grain size being fine-medium-sand (e.g., LS-03, Figure C14). Shell hash was a major component of sediments in the LS site, particularly in the navigation channel (e.g., LS-06, Figure C9) (Table C1). In the US site sediments were more variable with the modal grain size being clay (e.g., US-09, Figure C4), which was closely followed by silty-clay (e.g., US-09, Figure C15). In addition to having finer sediments than the LS site, there was little evidence of shell hash in US site sediments (Table C2).

Near-bottom turbidity

The sediment profiling camera is also able to image water column turbidity immediately above the sediment-water interface. Light from the camera prism's internal strobe illuminates suspended sediment particles and allows qualitative estimation of turbidity. Turbidity was categorized as low (if the water column was clear with little or no suspended sediment, e.g., LS-02, Figure C16), moderate (e.g., US-09, Figure C15), and high (e.g., US-14, Figure C5). If plumes of resuspended sediment derived from either of the dragheads of overflow were present at the sampling station, the camera would capture the near-bottom turbidity. Such turbidity can be distinguished from other sources, such as that frequently caused by camera frame contact with the substrate, by color tones. Dredge-induced turbidity has a gray color because the bulk of the sediments dredged are from the anoxic zone and in a reduced redox chemical state. Reduced iron and manganese sulfide compounds are dark gray to black in color which contrasts well with the reddish to brown color tones of their oxidized compounds. Background turbidity or that caused by the camera frame landing on the bottom would be brown in color because the suspended sediments were disturbed from the uppermost few millimeters of surficial sediments, which are typically in an oxic redox state.

Two stations in the LS site (LS-07 and LS-12, Figures C17 and C18) had grayish colored suspended material. Station LS-07 was located on the edge of the navigation channel and could have been affected by passage of the dragheads. This station was occupied prior to initiation of overflow. LS-12 was located in the channel and appeared to have been recently disturbed. All other LS images had brownish suspended materials (Table C2).

The relative amount of suspended material showed no pattern relative to the dredging operation at either LS or US site. In the US site, high levels of turbidity seemed associated with shoal areas (<5.5 m (<18 ft) deep) to the northwest of the channel (Figure C3). The four channel stations in the US site had low turbidity levels (Table C2). Only one of the four channel stations in the LS site had moderate turbidity, while the remaining three had low turbidities (Table C1).

Current scour

While sitting on the bottom, the prism and camera housing assembly present an obstruction to bottom currents. Deflection of currents can erode the sediment-water interface at the edges of the prism. This erosion can be seen in SPI images as small dips in the sediment-water interface at the edges of the image. When these dips occur, it is reasonable to assume that bottom currents at the time the image was taken were >10 cm/sec.

Evidence of scour was seen at three of the four channel stations in the LS site (e.g., LS-12, Figure C18) and one shoal station (LS-03, Figure C14) (Table C1). In the US site only one of the 41 stations (US-31, on the channel edge, Figure C19) showed evidence of scour (Table C2). Scour patterns indicated that bottom currents are likely stronger in the LS site relative to the US site.

Dredged material

When recently deposited, dredged sediments from hopper overflow or open-water disposal are distinct in color from background sediments (Diaz and Schaffner 1988; Nichols, Diaz, and Schaffner 1990), being grayer than background sediments. This is the result of in general, the more advanced diagenic state of deep sediments being dredged (Rhoads, SAIC, personal communication, as discussed in section on Near-Bottom Turbidity).

SPI images from three of the four channel stations in the LS site appear to be recently disturbed and likely dredged material (e.g., LS-06, Figure C9) (Table C1). The channel sediments are sands with shell hash that contain little fine sediment. It is not likely that the surface sediments are from hopper overflow, but more likely associated with disturbance from the dragheads. In addition, the test dredging and overflow were not of sufficient quantity or duration to produce extensive layering from sands.

No station from the US site appeared to have recently deposited dredged material. Sediments at all US site stations appeared to be undisturbed and representative of background conditions.

Sediment layering

Sediment layering as indicated by color or grain-size changes are readily seen in SPI images. The presence of layers is indicative of physical disturbances or episodic events. Sediment layering is characteristic of hopper overflow and open-water disposal operations and can be readily seen in SPI images (Diaz and Schaffner 1988; Nichols, Diaz, and Schaffner 1990).

In the LS site four stations had evidence of layering from grain-size changes (Table C1). Station LS-06 (Figure C9), in the channel, had a shell hash layer at 1.6 cm from the sediment surface. The other three stations,

LS-11 (Figure C20) and LS-13 (Figure C6) on the edge of the channel and LS-10 (Figure C21) on the shoal near the channel, all had thin layers of sandy sediments overlaying silty sediments. Each case seemed indicative of recently deposited sediments, possibly from the dragheads or current induced transport of surface sands. The sediments were not likely from hopper overflow operations since little sand-size sediment would have been discharged from the hopper during a single loading process.

In the US site about half of the stations had sediment layers (Table C2). However, none of the four stations in the channel had sediment layering. About half of the stations (8 of 17) on the edge of the channel had layers, three with color layering and five with grain-size layering. All five of the grain-size layered channel edge stations had sands on the surface overlying clayey sediments. Since the sediments in the channel were fine silts and clays, it is unlikely that layers observed in these images were attributable to the dredging operations or overflow, which contained little or no sand. In addition, grain-size layered channel edge stations US-22 (Figure C22), US-23 (Figure C23), and US-33 (Figure C10) had amphipod and/or worm tubes which could not have reestablished living positions in the approximately 1-hr interval between dredging operations and sampling. Color layering was represented by varying hues of grays and was found deeper in the sediments, ranging from 2.5 to 9.0 cm from the surface (Table C2). These deeper color layers are not likely a result of recent dredging operations and may represent episodic events such as seasonal high river discharges or storm deposits. Detritus appeared to be mixed into the uppermost sediment layer at shoal stations US-09 (Figure C15), US-10 (Figure C24), and US-11 (Figure C8).

Surface features

Surface features include a variety of physical and biological parameters, each providing different information on the type of habitat and its quality for supporting benthic species. The presence of certain features is indicative of the overall nature of a habitat. For example, bed forms are always associated with physically dominated habitats, whereas the presence of worm tubes or feeding pits would be indicative of a more biologically accommodated habitat (Rhoads and Germano 1986, Diaz and Schaffner 1988). Surface features were visually evaluated from each image and compiled by type and frequency of occurrence.

The sediment surface at stations in the LS site was dominated by bed forms and shell hash (Table C1). In the US site, biogenic pits and mounds were the dominant surface features (Table C2). No epifauna were seen in either area. Flock layers, thin layers of unconsolidated sediments, occurred at six shoal stations (e.g., US-09, Figure C15) and one channel edge station (US-34, Figure C25) in the US site (Table C2). All flock layers appeared to be composed of background sediments and not dredged material, as evidenced by their respective color tones.

Tubes were seen at only one of the LS site stations (LS-11, Figure C20). At the US site stations, worm or amphipod tubes occurred at 12 of 41 stations (Table C2). Amphipod tube mats occurred at US-05 (Figure C26), US-06 (Figure C27), and US-22 (Figure C22), which were channel and channel edge stations.

Subsurface features

These parameters include a wide variety of features and provide insights into physical and biological processes influencing the bottom. For example, the presence of methane gas voids has been an indication of anaerobic metabolism (Rhoads and Germano 1986) and associated with high rates of bacterial activity. Muddy habitats with large amounts of methane gas are generally associated with areas of oxygen stress or high organic loading. On the other hand, habitats with burrows, infaunal feeding voids, and/or actual infauna visible in SPI images are generally more biologically accommodated and considered "healthy" (Rhoads and Germano 1986, Diaz and Schaffner 1988, Valente et al. 1992). Subsurface features were visually evaluated from each image and compiled by type and frequency of occurrence.

No infauna, burrows, or voids were seen at the LS site stations (Table C1). This was the result, in part, of the prevalence of coarse sediments, which are not generally associated with fauna that form burrows or voids, and by shallow camera prism penetration.

In the US site, 4 stations had infaunal organisms, 12 had active burrows, 2 had active feeding voids, and 3 had anaerobic voids (Table C2). Gas filled voids occurred at nine stations and were abundant at most of these stations (e.g., US-26, Figure C28), indicating relatively high concentrations of organic matter in the sediments. Evidence of hydrocarbon contamination was seen at station US-03 (Figure C29) in the form of "oil spots." Diaz et al. (1993) found that sediments containing high concentrations of hydrocarbons had a unique signature in the SPI images and that this signature was significantly related to the occurrence of hydrocarbons.

Summary and Conclusions

The LS site was more physically accommodated than the US site which was more biologically accommodated (Table C3). Sediments in the LS site were coarser and had more shell hash than the US site which was characterized by finer sediments and more biologically reworked.

There was evidence that recent physical disturbance had occurred at several of the LS stations (LS-06, LS-09, LS-12), possibly a result of the dredging operations. Gray colored suspended material, indicative of hopper overflow material, was also observed at two stations (LS-07, LS-12).

However, since this gray suspended material was also associated with recently disturbed sediments at LS-12, it could also have resulted from draghead activity. This leaves LS-07 as the station with the clearest signature of hopper overflow, but this was in the form of turbidity and not accumulation of overflow material on the sediment surface. Four LS stations had layering from grain-size changes. Station LS-06, in the channel, had a shell hash layer at 1.6 cm from the sediment surface. The other stations, LS-11 and LS-13 on the edge of the channel and LS-10 on the shoal near the channel, all had thin layers of sandy sediments overlying silty sediments. Although such layers are indicative of recently deposited sediments, those seen in the SPI images are likely the result of normal sediment transport processes rather than hopper overflow operations. Little sand would be discharged from overflow in a single pass of the hopper dredge.

In the US site, no evidence of recent physical disturbance was detected at any of the stations, but material that could have come from the hopper overflow was observed at one station (US-33). About half of the US stations had sediment layers, but none of the stations in the channel had sediment layers. About half of the stations on the edge of the channel had layers, three with color layering and five with grain-size layering. All five of the sediment layered channel edge stations had sands on the surface overlaying clayey sediments. Since the sediments in the channel were finer silts and clays, it was unlikely that the layers at the channel edge stations were the result of the dredging operations. In addition, sediment layered channel edge stations US-22, US-23, and US-33 had amphipod and/or worm tubes which could not have reestablished living position in the short interval between dredging and sampling. Flocculent sediment layers, thin layers of unconsolidated surface sediments, occurred at six shoal stations and one channel edge station in the US site. Based on their color tones, all flock layers appeared to be composed of background sediments and not hopper overflow or dredged material. Evidence of hydrocarbon contamination was seen at station US-03 in the form of "oil spots."

No indication of newly deposited dredged material was observed at stations outside the edge of the navigation channel at either study site. Although the sampling station coverage was not extensive, given the relatively short duration of the tests, the risk of significant sedimentation as a consequence of the hopper dredging operations appears largely restricted to the bottom and slide slopes of the channel.

Literature Cited

Bonsdorff, E., Diaz, R. J., Rosenberg, R. Norkko, A., and Cutter, G. R. (1996). "Characterization of soft-bottom benthic habitats of the Aland Islands, northern Baltic Sea," *Marine Ecology Progress Series* 142, 235-245.

- Clarke, D. G., Homziak, J., Lazor, R. L., Palermo, M. R., Banks, G. E., Benson, H. A., Johnson, B. H, Smith-Dozier, T., Revelas, G., and Dardeau, M. R. (1990). "Engineering design and environmental assessment of dredged material from hydraulically filled hopper barges in Mobile Bay, Alabama," Dredging Operations Technical Support Program Miscellaneous Paper D-90-4, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Clarke, D. G., and Miller-Way, T. (1992). "An environmental assessment of the effects of open-water disposal of maintenance dredged material on benthic resources in Mobile Bay, Alabama," Dredging Operations Technical Support Program Miscellaneous Paper D-92-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Day, M. E., Schaffner, L. C., and Diaz, R. J. (1988). "Long Island Sound sediment quality survey and analyses," Tetra Tec, Report to NOAA, NOS, OMA, Rockville, MD.
- Diaz, R. J., Schaffner, L. C., and Kiley, K. (1987a). "Sediment profile camera survey of the Fowl River open-water dredged material disposal area, Mobile Bay, Alabama," Virginia Institute of Marine Science Contract Report to Taxonomic Associates, Mobile, AL.
- . (1987b). "Sediment profile camera survey of the Gulfport,
 Mississippi, open-water dredged material disposal site," Science Applications International Inc. Report No. SAIC-88/5703-176 to Taxonomic Associates, Mobile, AL.
- Diaz, R. J., and Schaffner, L. C. (1988). "Comparison of sediment land-scapes in the Chesapeake Bay as seen by surface and profile imaging." Understanding the estuary; Advances in Chesapeake Bay research. M. P. Lynch and E. C. Krome, ed., Chesapeake Research Consortium Publication 129, CBP/TRS 24/88, 222-240.
- Diaz, R. J., Hannsson, L. J., Rosenberg, R., Gapcynski, P., and Unger, M. (1993). "Rapid assessment of sedimentological and biological characteristics of a hydrocarbon pollution gradient," Water, Air and Soil Pollution 66, 251-266.
- Fenchel, T. (1969). "The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and microfauna communities with special reference to the ciliated Protozoa," Ophelia 6, 1-182.
- Folk, R. L. (1974). Petrology of Sedimentary Rocks. Hemphill's, Austin, TX.

- Morton, R. W., Parker, J. H., and Richmond, W. H. (1985). "DAMOS. Summary of program results, 1981-1984," Science Applications International Inc. Report No. SAIC-84/7521-C46 to the U.S. Army Engineer Division, New England, Waltham, MA.
- Nichols, M. M., Diaz, R. J., and Schaffner, L. C. (1990). "Effects of hopper dredging and sediment dispersion, Chesapeake Bay," *Environmental Geology and Water Science* 15,31-43.
- Revelas, E. C., Rhoads, D. C., and Germano, J. D. (1987). "San Francisco Bay sediment quality survey and analysis," NOAA Technical Memorandum NOS OMA 35, Rockville, MD.
- Rhoads, D. C. (1974). "Organism B sediment relations on the muddy sea floor," Oceanography and Marine Biology Annual Review 12, 263-300.
- Rhoads, D. C., and Germano, J. D. (1982). "Characterization of organism-sediment relations using sediment profile imaging: An efficient method of remote ecological monitoring of the sea floor (REMOTS system)," Marine Ecology Progress Series 8, 115-128.
- nity structure: A new protocol," *Hydrobiologia* 142, 291-308.
- Valente, R. M., Rhoads, D. C., Germano, J. D., and Cabelli, V. J. (1992).
 "Mapping of benthic enrichment patterns in Narragansett Bay, Rhode Island," *Estuaries* 15, 1-17.
- Viles, C., and Diaz, R. J. (1991). "Bencore, an image analysis system for measuring sediment profile camera slides," School of Marine Science, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA.
- Vismann, B. (1991). "Sulfide tolerance: Physiological mechanisms and ecological implications," *Ophelia* 34, 1-27.

Figure C1. Locations of the lower and upper hopper dredge overflow test study sties

Figure C2. Sediment profiling imagery stations occupied during hopper dredge loading and overflow tests at the LS site. The figure has been modified from a NOAA navigaition chart with depths indicated in feet. Approximate start and end of test locations of the dredge are indicated by the red arrow

The figure has been modified from a NOAA navigation chart with depths indicated in feet. Approximate start and end of test locations of the dredge are indicated by the red arrow Sediment profiling imagery stations occupied during hopper dredge loading and overflow tests at the dredging without overflow stations, and yellow stations (32-43) are during and postoverflow stations. upper study site. Green stations (1-15) are predredging stations, red stations (16-31) are during-Figure C3.

Figure C4. SPI image of Lower Study Site Station LS-09

Figure C5. SPI image of Upper Study Site Station US-14

Figure C6. SPI image of Lower Study Site Station LS-13

Figure C7. SPI image of Upper Study Site Station US-35

Figure C8. SPI image of Upper Study Site Station US-11

Figure C9. SPI image of Lower Study Site Station LS-06

Figure C10. SPI image of Upper Study Site Station US-33

Figure C11. SPI image of Upper Study Site Station US-21

Figure C12. SPI image of Upper Study Site Station US-29

Figure C13. SPI image of Upper Study Site Station US-32

Figure C14. SPI image of Lower Study Site Station LS-03

Figure C15. SPI image of Upper Study Site Station US-09

Figure C16. SPI image of Lower Study Site Station LS-02

Figure C17. SPI image of Lower Study Site Station LS-07

Figure C18. SPI image of Lower Study Site Station LS-12

Figure C19. SPI image of Upper Study Site Station US-31

Figure C20. SPI image of Lower Study Site Station LS-11

Figure C21. SPI image of Lower Study Site Station LS-10

Figure C22. SPI image of Upper Study Site Station US-22

Figure C23. SPI image of Upper Study Site Station US-23

Figure C24. SPI image of Upper Study Site Station US-10

Figure C25. SPI image of Upper Study Site Station US-34

Figure C26. SPI image of Upper Study Site Station US-05

Figure C27. SPI image of Upper Study Site Station US-06

Figure C28. SPI image of Upper Study Site Station US-26

Figure C29. SPI image of Upper Study Site Station US-03

Tab SPI	Table C1 SPI Data from	the	-ower	Stud	y (LS) Si	te in D	elaware E	3ay, Sep	Table C1 SPI Data from the Lower Study (LS) Site in Delaware Bay, September 1998	86							
		Pe	Penetration (cm)	1 (cm)	Surface	Ave			300								
Sta	Descriptor	Min	Max	Ave	Relief	Depth cm	Sediment Type	Turbidity	Sediment Color	Current Scour	Dredged Material	Sediment Layers	Surface Features	Tubes	Worms	Burrows	Volds
-	Shoal	8.0	<i>[</i>]	1.3	6'0	>1.3	FSMS	Little	Brown	Νο	No	0	BED,SH	None	0	0	0
C1	Shoal	3.3	4.1	3.7	8.0	>3.6	FSMS	Little	Brown	No	No	0	BED,SH	None	C	0	0
3	Shoal	6.1	8.0	7.0	1.8	2.9	FSMS	Moderate	Brown	Yes	No	0	вер,ѕн	None	0	0	0
4	Shoal	5.5	-, -,	3.3	9.1	9.1	1.8	Moderate	Brown	No	No	0	нгр,ѕн	None	۵	0	0
ç	Shoal	0.0	0.0	0.0	0.0		FS	Little	Brown	No	No	•	вер,ѕн	None	•	•	•
9	Channel	5.7	6.3	6.0	9.0	0.7	FSMSSII	Moderate	Brown	Yes	Yes	_	SH,DIST	None	0	0	0
t.	Edge	0.0	1.3	0.7	1.3	>0.7	FSSH	Low	Gray	SO Z	No	t	вер,ян	None		•	
×	Edge	9.1	2.5	2.0	8.0	>2.0	FSMSSII	Low	Brown	No	No	0	BED,SH	Ѕоте	0	0	0
6	Channel	9.8	11.9	10.9	2.0	5.3	FSMSSH	Low	Brown	Yes	Yes	0	SCOUR	None	0	0	0
=	Shoal	2.6	3.2	2.9	9.0	8.0	FS/SI	1.ow	Brown	No	οN		BED,MD,SH	None	0	0	Ú
=	Edge	2.5	4.4	3,4	2.0	7.7	FSMS/SI	Low	Brown	νo	No.		BED,MD,SH	Few	0	0	0
12	Chambel	3.3	4.1	3.7	8.0	2.9	FSMSSII	Low	Gray	Yes	Yes	0	SH	None	0	0	0
13	Edge	9.1	2.5	2.0	8'0	>2.0	FSMS/SI	Moderate	Brown	No	Νο	_	BED,SH	None	0	0	0
7	Channel	:	2.0	9.1	0.1	971<	FSMS	Low	Brown	No	Νο	0	вер,ѕн	None	0	0	Û

Sta = Station, Descriptor = Location of station relative to navigation channel, CL = Clay, FS = Fine sand, FSMS = Fine to medium sand, CR = Gravel. SH = Shell hash, SI = Sit, SICL = Fine sand-sit-clay, SIFS = Sity fine sand, MSGR = Medium sand and gravel. Findicates sediments are layered. BED = Bedform, DIST = Disturbed, EVEN = Uniform flat surface, FLOC = Loose flocculent layer at surface. MD = Biogenie mound, PIT = Biogenie pit, FEW = 1 to 6, SOME = 7 to 24, MANY = >24, MAT = Tube mat

r is	Table C2 SPI Data fi	rom t	he Upt	ser St	SU) (US) Site i	Table C2 SPI Data from the Upper Study (US) Site in the Delaware River, September 1998	laware R	liver, Se	ptembe	1998						
			Penetration (cm)	on (cm)		Ave			Sus-								Feeding/
Sta	a Descriptor	for Min	n Max	Ave	Surrace Relief cm	Depth Cm cm	Sediment Type	Turbidity	Sediment Color	Current Scour	Dredged Material	Sediment Layers	Surface Features	Tubes	Worms	Burrows	Gas Voids
<u> </u>	Shoal	12.3	3 12.6	12.5	0.3	0.7	SI	Low	Brown	No	No		EVEN	None	0	73	8/1
C1	Shoal	7.4	7.6	7.5	0.2	4:	SI	Low	Brown	No	No	0	MD	None	С	5	0
_ m	Shoal	9.9	7.3	6.9	6.7	1.0	S	Low	Brown	No	No		MD	Мопе	~	3	0
4	Shoal	12.2	2 12.5	12.4	0.3	2.5	<u></u>	High	Brown	No	No	2	MID	None	0	۲3	0
\ v	Edge	976	10.8	10.2	1.2	0.2	j.	Low	Brown	No	No	0	MID	Mat	0	c	0
¢	Channel	12.3	3 13.4	12.9		0.4	Cľ	Low	Brown	No	No	0	MD	Mat	0	0	0
~	Channel	16.0	.0 17.2	16.6	1.2	0.2	SICL	Low	Brown	No	No	0	PIT	Nane	0	c	0/4
_ ∞	Edge	20.2	2 21.6	20.9	1.5		SICI	High	Brown	νo	No	0	PIT	None	0	0	1/0
0	Sheal	16.1	16.4	16.2	0.3	4.9	SICI.	Moderate	Вгоwп	No	Ν̈́ο	1	FLOC	None	0	0	0/15
_ ≘	Shoat	9.2	10.3	8.6		2,3	SICL	Low	Brown	No	No	-	FLOC	None	0	0	0
<u>L</u> =	Shoal	13.1	.1 13.5	13.3	6.4	9.9	SICL	Moderate	Brown	No	No	-	FLOC	None	0	0	0/1
22	Sheat	0.6	9.3	9.2	6.3	6.7	ฮ	Low	Brown	No	No		QQ.	None	0	0	0
	Shoal	2.5	9.9	2,4	-4.	ı.	T T	High	Brown	No	No	0	DIST	None	0	0	0
7 =	Shoal	5.	3.0	2.2	1.5	0.3	CL.	High	Вгомп	No	No	0	PB	None	0	1	0
5	Shoal	24.8	.8 25.2	25.0	6.4	1.2	SICL	Moderate	Brown	No	No		PIT	None	-	0	0
9	Shoal	6.3	9.9	6.5	0.3	2.2	SI	High	Brown	No	No	,	PIT	None	٥	0	0
=	Shoal	7.8	8,4	~	970	3.1	SI	Moderate	Brown	No	No	_	MD	None	0	2	0
	Shoal	4.9	0.9	5.5		0.3	SIFS	High	Brown	No	Ν̈́ο	,	PIT	None	-	s	0
<u>e</u>	Sheal	11.5	.5 11.7	11.6	0.2	2.6	IS	Moderate	Brown	No	No		FLOC	None	0	7	9/1
8	Shoal	1	17.2 18.0	17.6	8:0	4.5	SI	High	Brown	No	No	2	н.ос	None	0	-	0
77	Sheal	=	14.8 18.3	16.5	3.5	2.5	MSGR/CL	Low	Brown	ş.	ŝ		SK GK	Ѕоте	0	0	2/0
	1																(Continued)

Sta = Station, Descriptor = Location of station relative to navigation channel, CL = Clay, FS = Fine sand, FSMS = Fine to medium sand, GR = Gravel, SH = Shell hash, SI = Silt, SICL = Fine sand-silt-clay, SIFS = Silty indicates sediments are layered, BED = Bedforn, DIST = Disturbed, EVEN = Uniform flat surface, FLOC = Loose flocculent layer at surface. MD = Biogenic mound, PIT = Biogenic pit, FEW = 1 to 6, SOME = 7 to 24, MANY = >24, MAT = Tube mat

C43

	י מבוכ סב (ספוופומפת		•														
		Pe	Penetration (cm)) (cm)	Surface	Ave			Sus-								Continue
Sta	Descriptor	Min	Мах	Ave	Relief	Depth cm	Sediment Type	Turbidity	Sediment Color	Current Scour	Dredged Material	Sediment Layers	Surface Features	Tubes	Worms	Burrows	reeding/ Gas Voids
22	Edge	6.2	8.0	7.1	1.8	9.0	FS/CL	Low	Brown	No	No	_	EVEN	Mat	0	0	0
23	Edge	9.5	11.1	10.3	9.1	6.7	FS/CL	Moderate	Brown	Nο	No	1	CIM	Some	0	0	0
24	Channel	15.0	17.4	16.2	2.4	0.2	CL	Low	Brown	No	No	0	PIT	None	0	0	0
25	Channel	11.8	12.7	12.3	6.0	0.2	CL	Low	Brown	No	No	0	MD	FEW	0	0	0/25
26	Edge	14.5	15.0	14.8	0.5	0.2	SI	High	Brown	No	No		CIM	None	-	3	07:40
27	Sheal																
28	Sheat																
53	Sheal	5.0	5.7	5.4	6.7	0.2	cr	High	Brown	No	No	0	PIT	None	0	0	0
98	Sheal	12.0	13,0	12.5	6.9	ı	SI	High	Brown	No	No	2	DIST	None	0	0	0
15.	Shoal	11.3	13.1	12.2	<u>8.</u>	Çİ	SICL	High	Brown	Yes	No	2	FI.OC	None	0	0	1/10
32	Edge	2.3	3.9	3.1	1.6	<u>X</u>	MS	Moderate	Brown	Νο	No .	0	DED,GR	None	0	0	0
9	Edge	3.3	6.2	8,7	3.0	0,1	FS/CL	Moderate	Gray	No	No No	_	MD	Many	0	0	0
34	Edge	6.4	8.2	7.3	8.	6.4	SI	High	Brown	Νο	No	_	FLOC	None	0	0	0
35	Edge	3.8	4.8	4.3		0.2	CI.	Low	Brown	Ne	No.	0	MD	Many	0	0	0
36	Edge	8.2	12.5	10.4	4.3	6.7	CL	Low	Brown	No	νο	o	DIST	Many	0	0	0
37	Edge	20.5	21.0	20.7	0.5	,	Ct.	Low	Brown	Νο	°Z	0	IND	None	0	0	0
38	Edge	5.7	19.3	8.0	4.6	0.2	כו	Low	Brown	No	No	0	DIST	Seme	0	0	0
30	Edge	50.9	21.3	21.1	£.0		SICL	High	Brown	Νο	2°	0	EVEN	None	0	0	0/1
64	Edge	12.7	13.1	12.9	0,4	6.2	SI	High	Brown	No	Ν̈́ο	2	EVEN	None	0	2	0/17
=	Edge	0.7	1.1	0.0	0.4	0.2	FS/CL	Moderate	Вгомп	No.	Νο	_	BED,DIST	None	0	0	0
5	Edge	12.3	13.2	12.7	6.9	8.0	MS/CL	Moderate	Brown	No	Ν̈́o	_	BED	None	0	1	0
\$	Ldge	8.11	17.1	12.0	0.3	6.0	SI	High	Brown	No	No	0	EVEN	None	0	0	0

Table C3
General Comparison of Sediment Profile Image Data from the Lower Study Site (LS, Delaware Bay) and Upper Study Site (US, Delaware River) Sampled During Hopper Dredge Loading and Overflow Tests

		Location
Feature	Lower Study Site	Upper Study Site
Sediments	Homogeneous, Sands	Heterogeneous, Mainly Clays and Silt-Clays
Sediment Layering	Sediment Grain Size Changes	Color and Sediment Grain Size Changes
Prism Penetration	Shallow	Deep
Surface Relief	Physical Bed Forms	Biogenic Pits and Mounds
Suspended Material	Mostly Background Sediments	Mostly Background Sediments
Dredged Material	Detected at 3 Stations	Not Detected
Hopper Overflow	Detected at 1 Station	Detected at 1 Station
Hydrocarbon Contamination	Not Detected	Detected at 1 Station
Epifauna	Not Detected	Not Detected
Amphipod or Worm Tubes	Scarce	Common
Infauna	Not Detected	Common

Appendix D Summary of Technical Findings: 96-hr Bioassay with *Mysidopsis* bahia and *Menidia beryllina*

MEMORANDUM FOR: Mr. Jerry Miller, (CEWES-EE-A)

Thru:

Dr. Todd Bridges, (CEWES-ES-F)

SUBJECT: Narrative Summary of Technical Findings of a 96-hr Bioassay with Delaware River Sediment and Water.

- 1. Please find enclosed a letter report summarizing the results of bioassays conducted with *Mysidopsis bahia* and *Menidia beryllina* exposed to concentrations of filtered elutriate.
- 2. If you have any questions please call me at (601) 634-4027 or Dr. Todd Bridges at (601) 634-3626.

ALFREDA GIBSON Research Biologist CEWES-ES-F

Summary of Technical Findings: 96-hr bloassay with *Mysidopsis bahla* and *Menidia beryllina*

- 1. <u>Background</u>: As part of an effort to determine the possible biological effects of water column exposure to Delaware River sediment, Mr. Jerry Miller (EED) requested that the Aquatic Biological Effects Team (ABET) conduct acute 96-hr elutriate bioassays on the material with survival being the observed endpoint. The two species used were *Mysidopsis bahia* and *Menidia beryllina*. This report summarizes the results of that study.
- 2. Technical Approach: 96-hr elutriate bioassays using the mysid shrimp Mysidopsis bahia and the inland silverside Menidia beryllina were conducted according to methods described in the CE/EPA Inland Testing Manual (1998) (Tables D1 and D2). Four treatments were evaluated: 1) Mysidopsis bahia exposed in R1-HO-TOX (coarse-grained material at 30 o/oo) (Table D3); Mysidopsis bahia exposed to R2-HO-TOX (finegrained material at 6 o/oo) (Table D4); Menidia beryllina exposed to R2-HO-TOX (fine-grained material at 6 o/oo) (Table D5); and Menidia beryllina exposed to R1-HO-TOX (coarse-grained material at 30 o/oo) (Table D6). The filtered elutriate was diluted with our standard laboratory control water 40 fathoms (6 o/oo and 30 o/oo) to yield the following concentrations: 0; 6.25; 12.5; 25; 50; and 100% elutriate. Each treatment was replicated five times. The test was conducted using Mysidopsis bahia that were 5 days old and Menidia beryllina that were 9 days old. Mysidopsis bahia were fed newly hatched brine shrimp daily (0.2 mg) and Menidia beryllina were fed newly hatched brine shrimp on day 2 of the test (0.2 mg). Each beaker was provided trickle-flow aeration and covered with a watch glass to minimize evaporation.
- 3. Results: 96-hr survival of Mysidopsis bahia in the R1-HO-TOX (30 o/oo, coarse-grained material) exposures survival ranged from 100 to 88% (Table D1). Survival in R2-HO-TOX (6 o/oo fine-grained material) ranged from 90 to 0% with 0% survival in the 50 and 100% elutriate treatments (Table D1). 96-hr survival of Menidia beryllina in R1-HO-TOX (30 o/oo coarse-grained material) survival ranged from 88% -68%. Survival in R2-HO-TOX (6 o/oo fine-grained material) with ranged from 98 to 0% with 4% 0% survival in the 50 and 100% exposures (Table D2). The trimmed spearman-karber method was used to calculate LC₅₀ values (Hamilton et al. 1978). Mysidopsis bahia in R2-HO-TOX (6 o/oo) had an LC₅₀ value of 30.04% (23.44 38.50 lower upper confidence limit). Menidia beryllina in R2-HO-TOX (6 o/oo) had an LC₅₀ value of 31.66% (27.54 36.40 lower -upper confidence limits). An LC₅₀ value could not be calculated for Mysidopsis bahia or Menidia beryllina in R1-HO-TOX treatments because neither had mortality values greater than 50%.

Survival met or exceeded the test acceptability criterion of 90% in the 6 o/oo and 30 o/oo Mysidopsis bahia controls, and also in the 6 o/oo Menidia beryllina control. Survival in the 30 o/oo Menidia beryllina control

was slightly below the criterion at 88% but is not considered to render the test invalid.

Water quality data are presented in Tables D7 through D10. The pH, dissolved oxygen, and temperature levels were within an acceptable range for conducting toxicity studies with the two test species. Ammonia levels (NH3) were exceedingly higher than the LC_{50} of 1.00 mg/L for 5-day old Mysidopsis bahia or the LC_{50} of 1.24 mg/L for 9-days old Menidia beryllina (USEPA 1989).

In conclusion, R1-HO-TOX exposures did not adversely affect survival of either test species, whereas the mortality observed in R2-HO-TOX at 6 o/oo with both species can be attributed to the high level of NH₃.

4. References:

Hamilton, M.A., Russo, R.C., and Thurston, R.V. (1978). "Trimmed Spearman-Karber Method for estimating median lethal concentration in toxicity bioassays," *Environ. Sci. Tech.* 12(4): 417.

USEPA. (1989). "Ambient water quality criteria for ammonia (Saltwater)-1989," Office of Water Regulations and Standards, Criteria and Standards Division, EPA 440/5-88-004, Washington, DC.

USEPA and USACE. (1998). "Evaluation of dredged material proposed for discharge in waters of the U.S. -Testing manual," EPA-823-B-98-004, Washington, DC.

Table D1 Summary Survival Data for *Mysidopsis bahia* Exposed to Delaware River Elutriates

Treatment	Elutriate Concentration	Mean Percent Survival, standard deviation
R1-HO-TOX (30 o/oo)	0	100 (0.00)
	6	88 (0.84)
	12	96 (0.55)
	25	92 (0.84)
	50	90 (1.22)
	100	92 (0.45)
R2-HO-TOX (6 o/oo)	0	90 (0.00)
	6	7 6 (1.67)
	12	66 (2.30)
	25	82 (1.30)
	50	0 (0.00)
	100	0 (0.00)

Table D2 Summary Survival Data for *Menidia beryllina* Exposed to Delaware River Elutriates

Treatment	Elutriate Concentration	Mean Percent Survival, standard deviation
R1-HO-TOX (30 o/oo)	0	88 (0.84)
	6	70 (1.58)
	12	68 (1.64)
	25	78 (1.79)
	50	80 (1.22)
	100	74 (1.82)
R2-HO-TOX (6 o/oo)	0	90 (0.71)
	6	68 (0.45)
	12	98 (0.45)
	25	78 (1.64)
	50	4 (0.89)
	100	0 (0.00)

Table D3
96-hr Survival Data for *Mysidopsis bahia* Exposed to R1-HO-TOX (coarsegrained material) Elutriates at 30 o/oo

Treatment, %	Replicate	Total Number Alive
Control	1	10
Control	2	10
Control	3	10
Control	4	10
Control	5	10
6	1	8
6	2	10
6	3	9
6	4	9
6	5	8
12	1	10
12	2	9
12	3	9
12	4	10
12	5	10
25	1	9
25	2	9
25	3	8
25	4	10
25	5	10
50	1	9
50	2	9
50	3	10
50	4	7
50	5	10
100	1	9
100	2	10
100	3	9
100	4	9
100	5	9

Table D4
96-hr Survival Data for *Mysidopsis bahia* Exposed to R2-HO-TOX (fine-grained material) Elutriates at 6 o/oo

Treatment, %	Replicate	Total Number Alive
Control	1	9
Control	2	9
Control	3	9
Control	4	9
Control	5	9
6	1	8
6	2	9
6	3	7
6	4	9
6	5	5
12	1	8
12	2	6
12	3	9
12	4	7
12	5	3
25	1	7
25	2	7
25	3	9
25	4	8
25	5	10
50	1	0
50	2	0
50	3	0
50	4	0
50	5	0
100	1	0
100	2	0
100	3	0
100	4	0
100	5	0

Table D5
96-hr Survival Data for *Menidia beryllina* Exposed to R2-HO-TOX (fine-grained material) Elutriates at 6 o/oo

Treatment, %	Replicate	Total Number Alive
Control	1	9
Control	2	9
Control	3	9
Control	4	8
Control	5	10
6	1	7
6	2	7
6	3	7
6	4	6
6	5	7
12	1	10
12	2	10
12	3	9
12	4	10
12	5	10
25	1	10
25	2	7
25	3	9
25	4	7
25	5	6
50	1	0
50	2	0
50	3	0
50	4	0
50	5	2
100	1	O
100	2	O
100	3	0
100	4	0
100	5	0

tment, %	-TOX (coarse-grained Replicate	Total Number Alive
Control	1	9
Control	2	8
Control	3	10
Control	4	8
Control	5	9
6 .	1	6
6	2	9
6	3	8
6	4	5
6	5	7
12	1	8
12	2	7
12	3	8
12	4	4
12	5	7
25	1	9
25	2	10
25	3	8
25	4	6
25	5	6
50	1	8
50	2	10
50	3	7
50	4	7
50	5	8
100	1	7
100	2	7
100	3	10
100	4	8
100	5	5

Table D7 Water Quality Parameters for Mysidopsis bahia Exposed to R1-HO-TOX Elutriates at 30 o/oo

Treatment	Replicate	D.O. mg/L	pН	Salinity, ppt	Temp.	NH₃, mg/L composite
Control (initial)	1	5.50	7.85	30	21.7	
(final)		5.84	7.83	30	22.8	1.00
(initial)	3	5.98	7.85	30	21.7	
(final)		6.10	7.80	30	22.8	
(initial)	5	6.11	7.85	30	22.1	
(final)		6.20	7.80	30	22.8	
6 % (initial)	1	5.87	7.89	30	22.1	
(final)		6.08	7.88	30	22.8	1.38
(initial)	3	5.86	7.87	30	21.7	
(final)		6.10	7.87	30	22.7	
(initial)	5	5.85	7.86	30	21.5	
(final)		6.10	7.87	30	22.8	
12 % (initial)	1	6.00	7.85	30	23.1	
(final)		6.92	7.86	30	22.8	1.81
(initial)	3	6.15	7.89	30	22.0	
(final)		6.83	7.88	30	22.9	
(initial)	5	6.00	7.87	30	22.0	
(final)		6.22	7.86	30	23.0	
25 % (initial)	1	6.10	7.85	30	21.8	
(final)		6.19	7.85	30	22.7	1.32
(initial)	3	6.00	7.83	30	21.8	
(final)		6.30	7.84	30	22.7	
(initial)	5	5.98	7.80	30	21.8	
(final)		6.10	7.83	30	22.7	

Treatment	Replicate	D.O. mg/L	рН	Salinity, ppt	Temp. °C	NH ₃ , mg/L composite
50 % (initial)	1	6.10	7.80	30	21.7	
(final)		6.20	7.80	30	22.7	0.67
(initial)	3	5.95	7.82	30	21.7	
(final)		5.99	7.81	30	22.0	
(initial)	5	5.97	7.70	30	21.7	
(final)		6.10	7.79	30	22.0	
100 % (initial)	1	5.97	7.65	28	21.7	
(final)		6.10	7.70	28	22.0	1.53
(initial)	3	5.96	7.69	28	22.7	
(final)		6.10	7.70	28	22.8	
(initial)	5	5.94	7.64	28	22.7	
(final)		6.05	7.69	28	22.8	

Table D8
Water Quality Parameters for *Mysidopsis bahia* Exposed to R2-HO-TOX Elutriates at 6 o/oo

Treatment		Replicate	D.O. mg/L	pН	Salinity, ppt	Temp.	NH ₃ , mg/L composite
Control (in	itial)	1	6.10	7.34	6	22.0	
(fir	nal)		5.98	7.80	6	23.0	1.20
(in	itial)	3	6.08	7.29	6	22.0	
(fir	ıal)		6.00	7.70	6	23.1	
(in	itial)	5	6.06	7.30	6	22.0	
(fir	nal)		6.00	7.77	6	23.0	
6% (init	ial)	1	6.13	7.50	6	21.7	
(fir	nal)		5.35	7.83	6	23.0	3.63
(in	itial)	3	6.13	7.55	6	21.7	
(fir	nal)		5.29	7.84	6	23.0	
(in	itial)	5	6.19	7.55	6	21.7	
(fir	nal)		5.30	7.82	6	23.0	
12 % (initia	al)	1	6.21	7.53	6	21.6	
(fin:	al)		5.20	7.96	6	23.1	5.04
(init	tial)	3	6.20	7.55	6	21.6	
(fin	al)		5.30	7.97	6	23.0	
(init	tial)	5	6.21	7.57	6	21.6	
(fina	al)		5.75	7.97	6	23.0	
25 % (initi	ial)	1	6.11	7.62	6	21.6	
(fin	nal)		5.30	8.10	6	23.0	7.33
(init	tial)	3	6.10	7.60	6	21.6	
(fina	al)		5.29	8.09	6	23.0	
(init	tial)	5	6.10	7.64	6	21.6	
(fina	al)		5.30	8.13	6	23.1	

(Continued)

Table D8 (Concluded)							
Treatment	Replicate	D.O. mg/L	рН	Salinity ppt	Temp. °C	NH ₃ , mg/L composite	
50 % (initial)	1	6.00	7.65	5	21.7		
(final)		5.20	8.13	5	23.1	12.4	
(initial)	3	6.05	7.66	5	21.7		
(final)		5.40	8.15	5	23.0		
(initial)	5	6.00	7.60	5	21.7		
(final)		5.30	8.16	5	23.0		
100 % (initial)	1	5.35	7.60	6	22.0		
(final)		5.50	8.20	6	23.0	21.2	
(initial)	3	5.45	7.67	6	22.0		
(final)		5.39	8.17	6	23.0		
(initial)	5	5.39	7.67	6	21.9		
(final)		5.40	8.17	6	23.1		

Table D9 Water Quality Parameters for Menidia beryllina Exposed to R1-HO-TOX Elutriates at 30 o/oo

Treatment	Replicate	D.O. mg/L	рН	Salinity ppt	Temp. °C	NH ₃ , mg/L composite
Control (initial)	1	5.45	7.83	30	21.7	
(final)		7.10	7.73	30	23.1	1.05
(initial)	3	5.98	7.84	30	21.7	
(final)		7.06	7.67	30	23.1	
(initial)	5	6.17	7.85	30	21.7	
(final)		7.08	7.74	30	23.0	
6 % (initial)	1	5.85	7.85	30	21.7	1.22
(final)		7.23	7.86	30	23.1	
(initial)	3	5.88	7.85	30	21.5	
(final)		7.20	7.84	30	23.1	
(initial)	5	5.93	7.86	30	21.6	
(final)		7.23	7.86	30	23.1	
12 % (initial)	1	5.98	7.85	30	22.0	
(final)		7.32	7.87	30	23.1	1.36
(initial)	3	6.13	7.85	30	21.9	
(final)		6.95	7.88	30	23.1	
(initial)	5	5.89	7.85	30	21.9	
(final)		6.65	7.87	30	23.1	
25 % (initial)	1	6.03	7.85	30	21.8	
(final)		6.07	7.91	30	23.1	1.27
(initial)	3	5.95	7.83	30	21.8	
(final)		6.25	7.91	30	23.0	
(initial)	5	6.02	7.80	30	21.8	
(final)		6.03	7.88	30	23.1	

Table D9 (Concluded)							
Treatment	Replicate	D.O. mg/L	рН	Salinity ppt	Temp.	NH ₃ , mg/L composite	
50 % (initial)	1	5.59	7.70	30	21.8		
(final)		5.88	7.93	30	23.1	1.22	
(initial)	3	5.95	7.80	30	21.8		
(final)		6.11	7.92	30	23.1		
(initial)	5	5.85	7.80	30	21.7		
(final)		5.64	7.97	30	23.1		
100 % (initial)	1	5.95	7.64	30	21.7		
(final)		5.58	7.97	30	23.1	1.45	
(initial)	3	5.96	7.64	30	21.7		
(final)		5.54	7.96	30	23.1		
(initial)	5	5.93	7.63	30	21.7		
(final)		5.69	7.95	30	23.1		

Treatment	Replicate	D.O. mg/L	pН	Salinity ppt	Temp. °C	NH ₃ , mg/L composite
Control (initial)	1	6.10	7.24	6	22.2	
(final)		5.08	7.65	6	23.1	1.81
(initial)	3	6.10	7.26	6	22.2	
(final)		5.38	7.57	6	23.1	
(initial)	5	6.06	7.30	6	22.2	
(final)		5.33	7.66	6	23.1	
6 % (initial)	1	6.13	7.47	6	21.7	
(final)		5.21	7.86	6	23.0	4.62
(initial)	3	6.14	7.54	6	21.7	
(final)		5.30	7.84	6	23.1	
(initial)	5	6.21	7.55	6	21.7	
(final)		5.25	7.86	6	23.1	
12 % (initial)	1	6.20	7.50	6	21.4	
(final)		5.00	7.97	6	23.0	6.20
(initial)	3	6.25	7.55	6	21.4	
(final)		5.00	8.00	6	23.0	
(initial)	5	6.20	7.55	6	21.4	
(final)		5.25	7.95	6	23.0	
25 % (initial)	1	6.10	7.63	6	21.7	
(final)		5.23	8.21	6	23.0	5.95
(initial)	3	6.00	7.63	6	21.7	
(final)		5.00	8.20	6	23.1	
(initial)	5	6.10	7.64	6	21.7	
(final)		5.25	8.16	6	23.1	

	ncluded)	D.O. mg/L	рН	Salinity ppt	Temp. °C	NH ₃ , mg/L composite
Treatment	Replicate					
50 % (initial)	1	6.00	7.65	6	21.4	
(final)		5.10	8.43	6	23.0	12.4
(initial)	3	6.00	7.66	6	21.4	
(final)		5.01	8.44	6	23.0	
(initial)	5	6.00	7.66	6	21.5	
(final)		5.00	8.46	6	23.0	
100 % (initial)	1	5.30	7.66	6	21.5	
(final)		5.00	8.75	6	23.1	22.3
(initial)	3	5.31	7.67	6	21.5	
(final)		5.08	8.75	6	23.0	
(initial)	5	5.23	7.67	6	21.7	
(final)		5.01	8.71	6	23.0	

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwitstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 3. DATES COVERED (From - To) 2. REPORT TYPE REPORT July 2002 Final report 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Field Evaluation of Hopper Dredge Overflow for the Delaware River 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Jerry L. Miller, Michael R. Palermo, Thomas W. Groff 5e. TASK NUMBER **5f. WORK UNIT NUMBER** 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER U.S. Army Engineer Research and Development Center ERDC/EL TR-02-17 **Environmental Laboratory** 3909 Halls Ferry Road, Vicksburg, MS 39180-6199; U.S. Army Engineer District, Philadelphia Operations Division Wanamaker Building 100 Penn Square East, Philadelphia, PA 19107-3390 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) U.S. Army Engineer District, Philadelphia Philadelphia, PA 19107-3390 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Hopper dredges are often loaded past the point of overflow for economic reasons. As the hopper is filled, dredged material is stored in the hopper until overflow begins. The density of the hopper contents is increased by allowing the low-density supernatant to overflow back into the waterway. As the low-density supernatant overflows, the average density of the hopper contents increases. Thus, more material can be transported per trip to the disposal site or facility resulting in an economical loading. There is normally a tradeoff between the potential economic benefits and potential environmental effects. Overflow results in increased water column turbidity, and supernatant solids may be redeposited near the dredge site. Also, if sediments are contaminated, the overflow may result in some release of contaminants to the water column. Therefore, the relationship between dredge production, density of the hopper load, and the rate of material overflow are important variables in maximizing the efficiency of the dredging operation while minimizing harmful contaminant release. (Continued) 15. SUBJECT TERMS Overflow Dredge production Dredged material **Dredging** Hopper dredges

17. LIMITATION

OF ABSTRACT

18. NUMBER

code)

OF PAGES

184

16. SECURITY CLASSIFICATION OF:

b. ABSTRACT

UNCLASSIFIED

c. THIS PAGE

UNCLASSIFIED

a. REPORT

UNCLASSIFIED

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area