Culegere de probleme de Analiză numerică

Radu Tiberiu Trîmbiţaş

18 octombrie 2005

Cuprins

Pr	Prefață				
1	For	mula lui Taylor și aplicații	2		
2	Elemente de Analiză funcțională și teoria aproximării				
	2.1	Spaţii metrice, spaţii Banach, spaţii Hilbert	7		
	2.2	Spaţii Hilbert	13		
		2.2.1 Funcționale liniare în spații Hilbert	13		
	2.3	Serii Fourier	15		
	2.4	Polinoame ortogonale	18		
		2.4.1 Calculul polinoamelor ortogonale	18		
		2.4.2 Exemple de polinoame ortogonale	20		
3	Teoria erorilor				
	3.1	Erori absolute şi relative. Cifre semnificative corecte	36		
	3.2	Propagarea erorilor	37		
	3.3	Erorile pentru vectori și operatori	38		
	3.4	Aritmetică în virgulă flotantă	40		
	3.5	Condiționarea unei probleme	48		
4	Rezolvarea numerică a sistemelor algebrice liniare 54				
	4.1	Descompunere LU	54		
	4.2	Descompunere LUP	56		
	4.3	Sisteme de ecuații	61		
5	Calo	culul cu diferențe	67		
6	Interpolare				
	6.1	Interpolare polinomială	78		
	6.2	Interpolare Lagrange	82		
	6.3	Interpolare Hermite	85		

iii

	6.4	Interpolare Birkhoff	91	
	6.5	Interpolare raţională		
	6.6	Interpolare spline		
7	Apro	oximări în medie pătratică	103	
8	Opei	ratori liniari și pozitivi	110	
	8.1	Operatorul lui Bernstein	110	
	8.2	B-spline		
	8.3	Alţi operatori liniari şi pozitivi		
9	Aproximarea funcționalelor liniare			
	9.1	Derivare numerică	122	
	9.2	Formule de integrare numerică de tip Newton-Cotes	127	
		9.2.1 Formule Newton-Cotes închise	127	
		9.2.2 Formule Newton-Cotes deschise	130	
	9.3	Alte formule de tip interpolator	132	
	9.4	Cuadraturi repetate. Metoda lui Romberg	141	
	9.5	Formule de cuadratură de tip Gauss	142	
10	Ecuații neliniare 151			
	10.1	Ecuații în $\mathbb R$	151	
	10.2	Sisteme neliniare	161	
11	Rezo	olvarea numerică ecuațiilor diferențiale	164	

iv CUPRINS

Prefață

Aici ar veni prefața.

Capitolul 1

Formula lui Taylor și aplicații

Fie I un interval și $f:I\to\mathbb{R}$ o funcție derivabilă de n ori în punctul $a\in I$. Polinomul

$$(T_n f)(x) = f(a) + \frac{x-a}{1!} f'(a) + \dots + \frac{(x-a)^n}{n!} f^{(n)}(a)$$

se numește polinomul lui Taylor de gradul n, atașat funcției f în punctul a.

Cantitatea

$$(R_n f)(x) = f(x) - (T_n f)(x)$$

se numește restul de ordinul n al formulei lui Taylor în punctul x.

Formula

$$f(x) = (T_n f)(x) + (R_n f)(x)$$

san

$$f(x) = f(a) + \frac{x-a}{1!}f(a) + \frac{(x-a)^2}{2!}f''(a) + \dots + \frac{(x-a)^n}{n!}f^{(n)}(a) + (R_n f)(x)$$

se numește formula lui Taylor de ordinul n pentru funcția f în vecinătatea punctului a.

Pentru rest avem

$$(R_n f)(x) = \frac{(x-a)^n}{n!} \omega(x)$$
, cu $\lim_{x \to a} \omega(x) = 0$.

Dacă $f \in C^{n+1}(I)$, atunci $\exists \theta \in (0,1)$ astfel încât

$$(R_n f)(x) = \frac{(x-a)^{n+1} f^{(n+1)} [a + \theta(x-a)]}{(n+1)!}$$

(restul în forma lui Lagrange)

$$(R_n f)(x) = \frac{(x-a)^{n+1} (1-\theta)^n f^{(n+1)} [a+\theta(x-a)]}{n!}$$

(restul în forma lui Cauchy).

Dacă în formula lui Taylor se ia a=0, se obține formula lui MacLaurin

$$f(x) = f(0) + xf'(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + (R_n f)(x),$$

unde

$$(R_n f)(x) = \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(\theta x), \qquad \theta \in (0,1).$$

Dăm formulele lui Taylor (MacLaurin) pentru câteva funcții uzuale

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + R_n(x);$$
 (1.1)

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + R_{2n+1}(x); \tag{1.2}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + R_{2n}(x); \tag{1.3}$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^n}{n+1} + R_{n+1}(x); \tag{1.4}$$

$$(1+x)^k = 1 + \binom{k}{1}x + \binom{k}{2}x^2 + \dots + \binom{k}{n}x^n + R_n(x), \tag{1.5}$$

unde

$$\binom{k}{n} = \frac{k(k-1)\dots(k-n+1)}{n!}.$$

Aplicații

I. La determinarea punctelor de extrem și inflexiune ale unor funcții.

Teorema 1.0.1 Fie $f: I \to \mathbb{R}$ și $a \in I$. Dacă f admite derivată de ordinul n pe I, continuă pe I, și dacă

$$f'(a) = f''(a) = \dots = f^{(n-1)}(a) = 0$$
 și $f^{(n)}(a) \neq 0$

atunci

- $\operatorname{dac\check{a}} n = 2k \operatorname{si} f^{(n)}(a) < 0$, atunci a este un punct de maxim relativ;
- $\operatorname{dac\breve{a}} n = 2k \ \operatorname{si} \ f^{(n)}(a) > 0$, atunci a este un punct de minim relativ;
- dacă n = 2k + 1 şi a este un punct interior, atunci a este un punct de inflexiune.
- II. Calculul aproximatival funcțiilor în unul din următoarele moduri:

(a) Fiind dat un punct $x \in I$, să se determine un număr natural n (cât mai mic posibil) astfel încât

$$|f(x) - (T_n f)(x)| < \varepsilon.$$

- (b) Să se determină n astfel încât inegalitatea $|f(x) (T_n f)(x)| < \varepsilon$ să fie satisfăcută în toate punctele unui interval.
- (c) Fiind dat un număr natural n să se determine intervalul în care are loc inegalitatea anterioară.
- III. La calculul unor limite.
- IV. La deducerea unor metode numerice.

Problema 1.0.2 Să se scrie formula lui MacLaurin pentru funcția $f:[-a,\infty)\to \mathbb{R}$, $f(x)=\sqrt{a+x}$, a>0.

Soluţie. Scriem $f(x) = \sqrt{a+x} = \sqrt{a} \left(1 + \frac{x}{a}\right)$; se obţine

$$f(x) = \sqrt{a} \left[1 + \frac{1}{2} \frac{x}{a} + (-1)^{1} \frac{1}{2^{2}} \frac{1}{2!} \left(\frac{x}{a} \right)^{2} + (-1)^{2} \frac{1}{2^{3}} \frac{1}{3!} \left(\frac{x}{a} \right)^{3} + \dots + (-1)^{n-1} \frac{1 \cdot 3 \cdot 5 \dots (2n-3)}{n! 2^{n}} \left(\frac{x}{a} \right)^{n} + (R_{n} f)(x) \right].$$

Problema 1.0.3 Să se scrie formula lui MacLaurin pentru funcția $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \arctan x$. Care este raza de convergență?

Soluție. Pornim de la

$$(\arctan x)' = \frac{1}{1+x^2} = \frac{1}{2i} \left(\frac{1}{x-i} - \frac{1}{x+i} \right).$$

Folosind apoi formula

$$\frac{d^n}{dx^n}\left(\frac{1}{x+a}\right) = \frac{(-1)^n n!}{(x+a)^{n+1}},$$

se obține pentru valoarea derivatei de ordinul n+1 în 0

$$\left(\arctan x\right)^{(n+1)}\Big|_{x=0} = \frac{1}{2i}(-1)^n n! \left[\frac{1}{(x-i)^{n+1}} - \frac{1}{(x+i)^{n+1}}\right]\Big|_{x=0} =$$

$$(-1)^{n+1}n!\left[\frac{1}{(-i)^{n+1}} - \frac{1}{(i)^{n+1}}\right] = (-1)^{n+1}n!\sin(n+1)\frac{\pi}{2}.$$

Formula MacLaurin corespunzătoare este

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n+1}}{2n+1} + (R_{n+1}f)(x).$$

Raza de convergență este

$$R = \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 1.$$

Problema 1.0.4 Să se determine punctele de maxim și de minim ale următoarelor funcții:

a)
$$f: \left[-\frac{1}{2}, \frac{1}{2}\right] \to \mathbb{R}, f(x) = 2x^6 - x^3 + 3;$$

b)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = 2\cos x + x^2$.

Soluție.

a)
$$f'(x) = 12x^5 - 3x^2 = 3x^2(4x^3 - 1)$$
 are rădăcinile reale $x_{1,2} = 0$ și $x_{3,4,5} = \frac{1}{\sqrt[3]{4}}$.
$$f''(x) = 60x^4 - 6x, f''(0) = 0,$$

$$f'''(x) = 240x^3 - 6 = 6(40x^3 - 1), f'''(0) = -6 \Rightarrow 0 \text{ punct de inflexiune.}$$
 Funcția nu are puncte de extrem pe $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

b)
$$f'(x) = -2\sin x + x = 2(x - \sin x), f'(0) = 0,$$

 $f''(x) = -2\cos x + 2 = 2(1 - \cos x), f''(0) = 0$
 $f'''(x) = 2\sin x, f'''(0) = 0,$
 $f^{IV}(x) = 2\cos x, f^{IV}(0) = 2.$
 $x = 0$ este punct de minim şi $f(0) = 2$.

Problema 1.0.5 Să se determine numărul natural n astfel ca pentru a=0 şi $f: \mathbb{R} \to \mathbb{R}$, $f(x)=e^x T_n f$ să aproximeze f în [-1,1] cu trei zecimale exacte.

Soluție. Impunem condiția

$$|(R_n f)(x)| = \left| \frac{x^{n+1} e^{\theta x}}{(n+1)!} \right| < 10^{-3}.$$

Deoarece $\theta x < 1$, $e^{\theta x} < e < 3$, avem

$$\left| \frac{x^{n+1}}{(n+1)!} e^{\theta x} \right| < \frac{3}{(n+1)!} < 10^{-3} \Rightarrow n = 6.$$

În particular, luând x = 1, obținem

$$e - \left(1 + \frac{1}{1!} + \dots + \frac{1}{6!}\right) < \frac{1}{1000}.$$

Problema 1.0.6 Să se aproximeze $\sqrt[3]{999}$ cu 12 zecimale exacte.

Soluţie. Avem

$$\sqrt[3]{999} = 10 \left(1 - \frac{1}{1000} \right)^{\frac{1}{3}}.$$

Folosim formula (1.5) pentru $k=1/3,\,x=-\frac{1}{1000}$. Într-o serie alternată modulul erorii este mai mic decât modulul primului termen neglijat.

$$|(R_n f)(x)| < \left| {1 \choose 3 \choose n} 10^{-3n} \right|.$$

Pentru n=4 avem

$$|(R_n f)(x)| < \frac{10}{243} 10^{-12} = \frac{1}{24300000000000}.$$

Capitolul 2

Elemente de Analiză funcțională și teoria aproximării

2.1 Spații metrice, spații Banach, spații Hilbert

Problema 2.1.1 *Spațiul s al şirurilor numerice în care distanța dintre* $x = (x_1, x_2, ..., x_k, ...)$ *și* $y = (y_1, y_2, ..., y_k, ...)$ *este dată de*

$$d(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}$$

este un spațiu metric complet.

Soluție. Pozitivitatea și simetria se verifică imediat. Inegalitatea triunghiului: funcția $\varphi(2)=\frac{\lambda}{\lambda+1}$ este crescătoare pentru $\lambda\geq 0$, de unde

$$\begin{aligned} \frac{|\alpha+\beta|}{1+|\alpha+\beta|} &\leq \frac{|\alpha|+|\beta|}{1+|\alpha|+|\beta|} \leq \frac{|\alpha|}{1+|\alpha|} + \frac{|\beta|}{1+|\beta|} \\ d(x,y) &= \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k - y_k|}{1+|x_k - y_k|} \\ &= \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k - z_k|}{1+|x_k - z_k|} + \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|z_k - y_k|}{1+|z_k - y_k|} \\ &= d(x,z) + d(y,z) \end{aligned}$$

Completitudinea: Convergența în s înseamnă convergența pe componente.

$$x_n = (x_1^{(n)}, x_2^{(n)}, \dots, x_k^{(n)}, \dots), \quad x_0 = (x_1^{(0)}, x_2^{(0)}, \dots, x_k^{(0)}, \dots)$$

$$x_n \to x_0 \iff \lim_{n \to \infty} x_n^{(n)} = x_k^{(0)}$$

$$\frac{1}{2^k} \frac{|x_k^{(n)} - x_k^{(0)}|}{1 + |x_k^{(n)} - x_k^{(0)}|} \le d(x_n, x_0) \to 0 \implies x_k^{(n)} \to x_k^{(0)} \, \forall \, k \in \mathbb{N}$$
(2.1)

Din (2.1) rezultă că în

$$S = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k^{(n)} - x_k^{(0)}|}{1 + |x_k^{(n)} - x_k^{(0)}|}$$

se poate trece la limită termen cu termen deoarece S este uniform convergentă (este majorată de seria numerică $\sum_{k=1}^{\infty} \frac{1}{2^k}$) fiecare termen tinzând la zero rezultă $d(x_n,x_0) \to 0$. Dacă (x_n) este şir Cauchy, atunci fiecare componentă este Cauchy. Fie $x_k^{(0)} = \lim_{n \to \infty} x_k^{(n)}$, $k \in \mathbb{N}$.

$$x_0 = (x_1^{(0)}, \dots, x_k^{(0)}, \dots), \quad x_n \to x_0.$$

Observația 2.1.2 s este un spațiu vectorial topologic.

Problema 2.1.3 Asemănător se arată că C(K) este complet.

Demonstrație. Fie (x_n) un şir Cauchy în C(K). $\forall \varepsilon > 0 \exists N_\varepsilon$ a.î. $\forall m, n \ge N_\varepsilon$

$$d(x_m, x_n) = \max_{t \in K} |x_m(t) - x_n(t)| < \varepsilon$$

$$\forall t \in K \quad |x_m(t) - x_n(t)| < \varepsilon$$
(2.2)

Fixăm $t \in K$ $(x_n(t))$ şir numeric Cauchy $\Rightarrow \exists \lim_{n \to \infty} x_n(t) = x_0(t)$ $x_0 \in C(K)$? $x_n \to x_0$. Trecând la limită când $m \to \infty$ în (2.2) obținem

$$|x_0(t) - x_n(t)| \le \varepsilon$$

 $x_n \rightrightarrows x_0 \Leftrightarrow x_n \to x_0 \text{ în } C(K) \Rightarrow x_0 \text{ continuă} \blacksquare$

Problema 2.1.4 Spaţiul $L_c(X,Y) = B(X,Y)$ al aplicaţiilor liniare şi continue definite pe X cu valori în Y, unde X şi Y sunt spaţii liniare normate, este un spaţiu liniar normat. Dacă Y este spaţiu Banach atunci şi $L_c(X,Y)$ este spaţiu Banach.

Soluţie. Fie $U \in L(X, Y)$.

Propoziția 2.1.5 U continuu în $x_0 \in X \Leftrightarrow U$ continuu pe X. (\Rightarrow) Fie (x_n) , $x_n \to x \quad (x, x_n \in \Omega)$

$$x_n=[x_0+(x_n-x)]+(x-x_0)$$

$$x_0+x_n-x\to x_0$$

$$Ux_n=U[x_0+(x_n-x)]+U(x-x_0)\to U(x_0)+U(x-x_0)$$
 (\Leftarrow) evidentă.

Definiția 2.1.6 $U \in L(X,Y)$, X,Y spații liniare normate. U mărginit dacă există $C \in \mathbb{R}$ astfel încât

$$\forall x \in X \quad ||Ux|| \le C||x|| \tag{2.3}$$

Teorema 2.1.7 U continuu $\Leftrightarrow U$ märginit.

Demonstrație. (\Rightarrow) U continuu, fie $C_0 = \sup_{\substack{\|x\|\\x\in X}} \|Ux\| < \infty$ Într-adevăr dacă

 $C_0=\infty$, atunci există (x_n) $(x_n\in X,\ \|x_n\|=1)$ astfel încât $\lambda_n=\|Ux_n\|\to\infty$. Fie (x'_n) $x'_n=\frac{x_n}{2n}$ $x'_n\to 0$ $\stackrel{(cont)}{\Longrightarrow} Ux'_n\to 0$, dar $\|Ux'_n\|=1$ contradicție. Fie $x\neq 0$; $x\in X$ și $x'=\frac{x}{\|x\|}$ \Rightarrow $\|x'\|=1$ $\|Ux'\|\leq C_0$; dar $Ux'=\frac{1}{\|x\|}Ux$ $\|Ux\|\leq C_0\|x\|$, deci (2.3) este adevărată pentru $C=C_0$. (\Leftarrow) (2.3) $\Rightarrow U$ continuă în $0\Rightarrow U$ continuu pe X.

În (2.3) luăm $C = C_0 = ||U||$.

$$||Ux|| \le ||U|||x|| \tag{2.4}$$

Dacă am stabilit o inegalitate de tipul (2.3) pentru un anumit C, atunci $\|U\| \leq C$. Să arătăm că $L_c(X,U) \leq L(X,Y)$ şi că este normat. Fie $U_1,U_2 \in L_c(X,Y)$, $U = U_1 + U_2$. Avem $\|Ux\| \leq \|U_1x\| + \|U_2x\| \leq (\|U_1\| + \|U_2\|)$ şi $\|\lambda u\| = |\lambda| \|U\|$. $\|U\| = 0 \Rightarrow \|Ux\| = 0 \ \forall \ x \in X \Rightarrow U = 0$

Completitudinea (U_n) Cauchy $\Rightarrow \forall \varepsilon > 0 \exists N_{\varepsilon} : \forall m, n \in N_{\varepsilon}$

$$||U_m - U_n|| < \varepsilon \tag{2.5}$$

$$\forall x \in X \quad ||U_m x - U_n x|| < \varepsilon ||x|| \Rightarrow (U_n x) Cauchy \tag{2.6}$$

 $\stackrel{complet.lui\ Y}{\Longrightarrow} \exists U_x = \lim_{n \to \infty} U_n x \quad (x \in X); (2.5) \Rightarrow \|Ux - U_n x\| = \lim_{m \to \infty} \|U_m x - U_n x\| l \le \varepsilon \|x\| \Rightarrow V = U - U_n \in B(X, Y) \Rightarrow U = V + U_n \in B(X, Y)$ (2.6) $\Rightarrow \|U - U_n\| \le \varepsilon \Rightarrow U_n \to U \blacksquare$

Corolar 2.1.8 Dacă X, Y s.l.n. $\Rightarrow L_c(X, Y)$ s.l.n.; X s.l.n., Y Banach $\Rightarrow L_c(X, Y)$ Banach

Observația 2.1.9 *Interpretarea geometrică* a lui ||U|| - este marginea superioară a coeficientului de dilatare al unui vector prin operatorul U.

Corolar 2.1.10 X^* *este Banach.*

$$X^* = L_c(X, \mathbb{K})$$

$$f \in X^* \quad ||f|| = \sup_{\|x\| \le 1} f(x)$$

Observația 2.1.11 *Dacă* $\mathbb{K} = \mathbb{C}$, atunci $(\lambda f)(x) = \overline{\lambda} f(x)$.

Problema 2.1.12 Fie C[a,b] și $f:C[a,b]\to\mathbb{R}$.

$$f(x) = \sum_{k=1}^{n} c_k x(t_k)$$

 $t_1,\ldots,t_n\in[a,b]$, $c_k\in\mathbb{R}$. Să se arate că f este liniară și $\|f\|=\sum_{k=1}^n|c_k|$.

Soluție. Liniaritatea este imediată.

$$|f(x)| = \left| \sum_{k=1}^{n} c_k x(t_k) \right| \le \max_{t \in [a,b]} |x(t)| \sum_{k=1}^{n} |c_k| = \sum_{k=1}^{n} |c_k| ||x||$$

f continuă și $||f|| \leq \sum_{k=1}^{n} |c_k|$

Să construim acum pe [a,b] o funcție \widetilde{x} , liniară pe porțiuni, care ia în t_1, t_2, \ldots, t_n valorile

$$\widetilde{x}(t_k) = sign \ c_k, \quad k = \overline{1, n}$$

și care să fie liniară pe intervalul $[t_k,t_{k+1}],\,k=\overline{1,n-1}$ și constantă în $[a,t_1]$ și $[t_n,b]$ (vezi figura 2.1)

Evident $|\widetilde{x}(t)| \leq 1$, adică $||\widetilde{x}|| \leq 1$ și

$$||f|| = \sup_{\|x\| \le 1} |f(x)| \ge f(\widetilde{x}) = \sum_{k=1}^{n} c_k \widetilde{x}(t_k) = \sum_{k=1}^{n} c_k n \xi_n c_k = \sum_{k=1}^{n} |c_k|$$

Figura 2.1: Funcția \tilde{x} din problema 2.1.12

Problema 2.1.13 Se consideră următoarele trei norme pe \mathbb{R}^2

$$||x||_2 = (|x_1|^2 + |x_2|^2)^{1/2}, \quad ||x||_1 = |x_1| + |x_2|, \quad ||x||_{\infty} = \max\{|x_1|, |x_2|\}$$

Să se reprezinte grafic mulțimile $B_1(0)$ în raport cu toate cele 3 norme. Să se determine geometric cele mai mici constante a,b,c,d astfel încât

$$a||x||_1 \le ||x||_2 \le b||x||_1,$$

 $c||x||_{\infty} \le ||x||_2 \le d||d||_{\infty}.$

Soluție. Avem inegalitățile:

$$\frac{\sqrt{2}}{2} \le \frac{\|x\|_2}{\|x\|_1} \le 1$$
$$1 \le \frac{\|x\|_2}{\|x\|_\infty} \le \sqrt{2}$$

Graficele apar în figura 2.2.

Problema 2.1.14 Fie $C^1[0,1]$ și normele

$$||f||_1 = \int_0^1 |f(t)|dt, \quad ||f|| = \sup_{t \in [0,1]} |f(t)|$$
$$||f||' = |f(0)| + \sup_{t \in [0,1]} |f'(t)|$$

Figura 2.2: Normele $||.||_2, ||.||_1$ şi $||.||_{\infty}$

- (a) Să se verifice că $\|\cdot\|'$ este normă pe $C^1[0,1]$.
- (b) Orice şir convergent în norma $\|\cdot\|$ este convergent şi în norma $\|\cdot\|_1$; orice şir convergent în norma $\|\cdot\|'$ este convergent şi în norma $\|\cdot\|$.
- (c) Să se studieze convergența șirurilor $f_n(t) = t^n$ și $g_n(t) = n^{-1} \sin nt$. Ce se poate afirma despre cele trei norme?

 $= |n^{-1}\sin 0| + \sup |\cos nt| = 1$

 $g_n \to 0$ în $\|\cdot\|_1$ şi $\|\cdot\|$ dar nu are limită în $\|\cdot\|'$. $\|f\|_1 \le \|f\| \le \|f\|'$, dar ele nu sunt echivalente. ■

Problema 2.1.15 Fie \mathbb{P} spațiul liniar al polinoamelor cu coeficienți reali.

- a) $P(X) = a_0 + a_1 X + \cdots + a_n X^n$, at $p(P) = |a_0| + \cdots + |a_n|$ este o normă pe \mathbb{P} și $p(P_1P_2) < p(P_1)p(P_2)$.
- b) Aplicația $\varphi: \mathbb{P} \to \mathbb{P}, \ \varphi(P) = P'$ este o aplicație liniară care nu este continuă față de norma P.
- |P(x)|. Să se arate că p_1 este o normă dar p și p_1 nu c) Fie $p_1(P) = \sup$ sunt echivalente.

Soluţie. a)

$$(PQ)(x) = a_0b_0 + (a_0b_1 + a_1b_0)X + \dots + a_nb_mX^{n+m}$$

$$p(PQ) = \sum_{k=0}^{n+m} \left| \sum_{i=0}^{k} a_i b_{k-1} \right| \le \sum_{i,j=0}^{n,m} |a_i b_j| = p(P)p(Q)$$

b)
$$P_n(x) = n^{-1}X^n$$
 $p(P_n) = n^{-1}$ $P_n \to 0$ (în p) $p(P'_n) = 1$ $P'_n \to 0$

b) $P_n(x)=n^{-1}X^n$ $p(P_n)=n^{-1}$ $P_n\to 0$ $(\ln p)$ $p(P'_n)=1$ $P'_n\to 0$ c) Se arată uşor că $p_1(P)\le p(P)$ Presupunem că există $C\ge 0$ astfel încât $p(P) \le Cp_1(P), \ \forall \ p \in P. \ \text{Fie} \ P_n(x) = (n+1)^{-1}(1-x^2+x^4-\dots+(-1)^nx^{2n})$ $p(P_n) = 1 \quad P_n(x) = (n+1)^{-1}\frac{1+(-1)^nx^{2n+2}}{1+x^2} \ p_1(P_n) = (n+1)^{-1} \ \Rightarrow \ C \ge 0$ n+1

$$P(p) = \frac{2n+1}{n+1}$$

 $(P, \|\cdot\|)$ este o algebră normată.

2.2 Spaţii Hilbert

2.2.1 Funcționale liniare în spații Hilbert

Problema 2.2.1 Expresia generală a unei funcționale liniare într-un spațiu Hilbert.

Soluție. $(H, \langle \cdot, \cdot \rangle)$ spațiu Hilbert. Pentru y fixat $\langle x, y \rangle$ este o funcțională liniară, continuă. Fie

$$f(x) = \langle x, y \rangle \tag{2.7}$$

$$|f(x)| = |\langle x, y \rangle| \le ||x|| ||y|| \implies ||f|| \le ||y||$$
 (2.8)

Să arătăm că funcționalele de forma (2.7) sunt singurele din H și că în (2.8)are loc egalitatea.

Teorema 2.2.2 (Riesz) Pentru orice funcțională liniară și continuă, definită pe spațiul Hilbert H, $\exists ! y \in H$ astfel încât $\forall x \in H$, $f(x) = \langle x, y \rangle$ și

$$||f|| = ||y||. (2.9)$$

Demonstrație. Fie $H_0 = \{x \in H : f(x) = 0\} = Kerf$, f liniară şi continuă $\Rightarrow H_0$ închis Dacă $H_0 = H \Rightarrow y = 0$. Presupunem că $H_0 \neq H$. Fie $y_0 \notin H_0$. Scriem y_0 sub forma $y_0 = y' + y'' \quad (y' \in H_0, \ y'' \perp H_0)$ Evident $y'' \neq 0$ şi $f(y'') \neq 0$. Putem lua f(y'') = 1.

Observația 2.2.3
$$f(y_0) = \underbrace{f(y')}_{0} + f(y'') = f(y'')$$

Putem lua f(y'')=1. Să luăm $x\in H$ și punem $f(x)=\alpha$. Elementul $x'=x-\alpha y''\in H_0$ căci

$$f(x') = f(x) - \alpha f(y'') = \alpha - \alpha = 0$$

Deci

$$\langle x, y'' \rangle = \langle x' + \alpha y'', y'' \rangle = \alpha \langle y'', y'' \rangle + \langle x', y'' \rangle$$

astfel încât

$$f(x) = \alpha = \left\langle x, \frac{y''}{\langle y'', y'' \rangle} \right\rangle$$

și deci putem lua $y=\frac{y''}{\langle y'',y''\rangle}$. Unicitatea $\langle x,y\rangle=\langle x,y_1\rangle \Rightarrow \langle x,y-y_1\rangle=0$ deci $y-y_1\perp H$, posibil doar dacă $y=y_1$. Pe de altă parte

$$||f|| \ge f\left(\frac{y}{||y||}\right) = \frac{\langle y, y \rangle}{||y||} = ||y||.$$

Cazuri particulare.

$$L^{2}[a,b] \quad f(x) = \langle x, y \rangle = \int_{a}^{b} x(t) \overline{y}(t) dt$$

$$l^{2} \quad f(x) = \langle x, y \rangle = \sum_{k=1}^{\infty} \xi_{k} \overline{\eta}_{k}$$

$$\mathbb{R}^{n} \quad f(x) = \langle x, y \rangle = \sum_{k=1}^{n} \xi_{k} \overline{\eta}_{k}$$

Problema 2.2.4 Să se arate că dualul unui spațiu Hilbert este tot un spațiu Hilbert.

2.3. Serii Fourier

Soluție. X^* spațiu Banach. Să arătăm că norma este indusă de un produs scalar. $f,g\in X^* \Rightarrow \exists \ x,y\in X$ astfel încât $f(u)=\langle u,x\rangle,\ g(u)=\langle u,y\rangle,\ \forall\ u\in X$ Fie $\langle f,g\rangle=\langle y,x\rangle$. Să arătăm că aplicația astfel definită verifică axiomele produsului scalar.

$$\langle f, f \rangle = ||x||^2 = ||f||^2 \ge 0$$

 $\langle f, g \rangle \stackrel{?}{=} \langle \overline{g, f} \rangle$

Fie
$$f'(u) = \langle u, x' \rangle$$

$$(f+f')(u) = f(u) + f'(u) = \langle u, x \rangle + \langle u, x' \rangle = \langle u, x + x' \rangle$$

$$\langle f+f', g \rangle = \langle y, x + x' \rangle = \langle y, x \rangle + \langle y, x' \rangle = \langle f, g \rangle + \langle f', g \rangle$$

$$(\lambda f)(u) = \lambda f(u) = \langle \lambda u, x \rangle = \langle u, \overline{\lambda} x \rangle$$

$$\langle \lambda f, g \rangle = \langle y, \overline{\lambda} x \rangle = \lambda \langle y, x \rangle = \lambda \langle f, g \rangle$$

2.3 Serii Fourier

Fie un sistem ortonormal $\{x_k\}$ într-un spațiu Hilbert $(H, \langle \cdot, \cdot \rangle)$ și $x \in H$. Numerele

$$a_k = \langle x, x_k \rangle, \quad k \in \mathbb{N}$$

se numesc **coeficienți Fourier** ai elementului x în raport cu sistemul considerat, iar seria

$$\sum_{k=1}^{\infty} a_k x_k$$

seria Fourier a elementului x.

Considerăm subspațiul $H_n = \mathcal{L}(\{x_1, \dots, x_n\})$.

Avem

Teorema 2.3.1 Suma parțială $s_n = \sum_{k=1}^n a_k x_k$ a seriei Fourier a unui element x este proiecția acelui element pe subspațiul H_n .

Demonstrație. $x = s_n + (x - s_n)$ și pentru $s_n \in H_n$ este suficient să arătăm că $x - s_n \perp H_n$. $x - s_n \perp x_k$ ($x \perp E \Rightarrow x \perp \overline{\mathcal{L}}(E)$) $x - s_n \perp H_n$.

Corolar 2.3.2 Pentru orice element

$$z = \sum_{k=1}^{n} \alpha_k x_k \in H_n$$

avem

$$||x - s_n|| = d(x, H_n) \le ||x - z||$$

Pe de altă parte

$$||x||^2 = ||s_n||^2 + ||x - s_n||^2 \ge ||s_n||^2$$
(2.10)

$$||s_n||^2 = \sum_{k=1}^n |a_k|^2$$
 (2.11)

Corolar 2.3.3 (Inegalitatea lui Bessel)

$$\sum_{k=1}^{n} |a_k|^2 \le ||x||^2.$$

Trecând la limită pentru $n \to \infty$

$$\sum_{k=1}^{\infty} |a_k|^2 \le ||x||^2 \tag{2.12}$$

Dacă în (2.12) are loc egalitate pentru $x \in X$ spunem că este verificată **egalitatea lui Parseval** sau **ecuația de închidere**.

Teorema 2.3.4 Seria Fourier a oricărui element $x \in H$ converge întotdeauna și suma sa este proiecția lui H pe $H_0 = \overline{\mathcal{L}}(\{x_k\})$. Pentru ca suma seriei Fourier să fie egală cu un element dat x, este necesar și suficient ca ecuația de închidere să fie verificată pentru acel element.

Demonstrație. (2.12) $\Rightarrow \sum_{k=1}^{n} |a_k|^2$ convergentă. Pentru sumele parțiale se obține

$$\|s_{n+p} - s_n\|^2 = \sum_{k=n+1}^{n+p} |a_k|^2 \stackrel{n \to \infty}{\longrightarrow} 0 \implies \text{convergenţa seriei Fourier}$$

Fie $s=\sum_{k=1}^\infty a_k x_k$. Deoarece $s\in H_0$ și x=s+x-s putem arăta ca în demonstrația teoremei 2.3.1 că $x-s\perp H_0$. Ținând cont de (2.11), (2.10) se rescrie

$$||x - s_n||^2 = ||x||^2 - \sum_{k=1}^n |a_k|^2 \implies \text{concluzia.}$$

Dacă $\{x_k\}$ este complet, $H_0=H$ și $\forall~x\in H$ proiecția lui x pe H_0 coincide cu X.

Corolar 2.3.5 Dacă $\{x_k\}$ este complet $\forall x \in H$ seria sa Fourier converge la x.

2.3. Serii Fourier

Spunem că sistemul ortonormal $\{x_k\}$ este închis dacă ecuația de închidere este verificată pentru orice $x \in H$.

Corolar 2.3.6 $\{x_k\}$ *închis* \Leftrightarrow $\{x_k\}$ *complet.*

Demonstrație. Teorema $2 \Rightarrow$ ecuația de închidere are loc $\forall x \in H_0$, deci închiderea este echivalentă cu $H_0 = H$, adică completitudinea.

Exemplul 2.3.7 Să se determine seria Fourier trigonometrică pentru funcția:

$$f(x) = |x|, \quad -\pi < x < \pi$$

Soluție. Funcțiile de bază sunt

$$x_0 = \frac{1}{\sqrt{2\pi}}, \dots, x_k = \frac{1}{\sqrt{\pi}} \cos kx, \ y_k = \frac{1}{\sqrt{\pi}} \sin kx, \dots,$$

iar coeficienții

$$a_{0} = \int_{-\pi}^{\pi} f(x) \frac{1}{\sqrt{2\pi}} dx = \frac{\sqrt{2}\pi^{2}}{2\sqrt{\pi}},$$

$$a_{k} = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \cos kx dx,$$

$$b_{k} = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \sin kx dx,$$

$$a_k = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} |x| \cos kx dx = \frac{2}{\sqrt{\pi}} \int_{0}^{\pi} x \cos kx = \frac{2}{\sqrt{\pi}k} [(-1)^k - 1],$$

$$b_k = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} |x| \sin kx dx = 0.$$

$$s_n(x) = \frac{\pi}{2} + \frac{2}{\pi} \sum_{k=1}^n \frac{(-1)^k - 1}{k^2} \cos kx.$$

Observația 2.3.8 *Seria Fourier trigonometrică pe* [-l, l] *are expresia:*

$$s_n = \frac{a_0}{2} + \sum \left(a_k \cos \frac{n\pi x}{l} + b_k \sin \frac{n\pi x}{l} \right),$$

iar coeficienții sunt dați de formulele

$$a_k = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx,$$
$$b_k = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx.$$

Problema 2.3.9 Fie $f(x) = x^2$. Se cere seria sa Fourier pe $[-\pi, \pi]$.

Soluție.

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 \cos nx dx$$

$$\int_{0}^{\pi} x^2 \cos nx dx = \frac{x^2 n_k nx}{n} \Big|_{0}^{\pi} - \frac{2}{n} \int_{0}^{\pi} x n_k nx dx =$$

$$= -\frac{2}{n} \left[-x \frac{\cos nx}{n} \Big|_{0}^{\pi} + \frac{1}{n} \int_{0}^{\pi} \cos nx dx \right] =$$

$$= -\frac{2}{n} \left[-\pi \frac{\cos n\pi}{n} + \frac{1}{n} \frac{\sin nx}{n} \Big|_{0}^{\pi} \right] = \frac{2\pi}{n^2} \cos n\pi = \frac{2\pi}{n^2} (-1)^n$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 dx = \frac{2}{\pi} \frac{\pi^3}{3} = \frac{2}{3} \pi^2$$

$$x^2 = \frac{\pi^3}{3} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$$

Pentru
$$x = \pi$$
 $\sum_{k=1}^{n} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Problema 2.3.10 *Dezvoltați* $f(x) = x \ pe \ [-\pi, \pi] \ si \ [0, 2\pi]$.

Soluţie.

$$b_n = \frac{2}{\pi} \int_0^{\pi} x \sin nx = \frac{2}{\pi} \left[-x \frac{\cos nx}{n} \Big|_0^{\pi} + \frac{1}{4} \int_0^{\pi} \cos nx dx \right] = \frac{2(-1)^{n+1}}{n}$$

$$\Rightarrow x = 2 \sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sin nx}{n}$$

2.4 Polinoame ortogonale

2.4.1 Calculul polinoamelor ortogonale

Se poate da o metodă generală de construire a unei familii de polinoame ortogonale în raport cu orice funcție pondere pe un interval finit [a,b] sau pe o mulțime finită de puncte (în cazul unei mulțimi finite, familia va fi de asemenea finită). Se poate aplica procedeul Gramm-Schmidt mulțimii $\{1,x,x^2,\dots\}$, dar procedeul nu

face uz de proprietățile algebrice ale polinoamelor și este sensibil la erorile de rotunjire.

Fie $\{Q_0, Q_1, \dots, Q_{n-1}\}$ o familie ortonormală de polinoame, astfel încât gradul lui Q_i să fie i și fie $\overline{Q}_n \perp Q_i$, $i = \overline{0, n-1}$.

Să considerăm polinomul

$$\overline{Q}_n(x) - \alpha x Q_{n-1}(x)$$

Pentru o alegere convenabilă a lui $\alpha \neq 0$, acest polinom are gradul $\leq n-1$, deci

$$\overline{Q}_n - \alpha x Q_{n-1} = \sum_{i=0}^{n-1} \alpha_i Q_i$$

Dacă $\langle \overline{Q}_n, Q_i \rangle > 0$ pentru orice $i = \overline{0, n-1}$ trebuie să avem

$$0 = \langle \overline{Q}_n, Q_{n-1} \rangle = \alpha \langle xQ_{n-1}, Q_{n-1} \rangle + \alpha_{n-1}$$

$$0 = \langle \overline{Q}_n, Q_{n-2} \rangle = \alpha \langle xQ_{n-1}, Q_{n-2} \rangle + \alpha_{n-2}$$
(2.13)

Putem alege $\alpha=1$, deoarece înmulțirea cu o constantă nu afectează ortogonalitatea. Deci α_{n-1} și α_{n-2} se pot obține din ecuațiile de mai sus. Aplicând raționamente similare lui Q_i pentru i< n-2 obținem $\alpha_i=0$ pentru i< n-2. Aceasta sugerează următoarea formulă de recurență pentru calculul lui \overline{Q}_n :

$$\overline{Q}_n(x) = (x + a_n)Q_{n-1}(x) + b_nQ_{n-2}(x), \quad n \ge 2$$

$$Q_n = \frac{\overline{Q}_n}{\|Q_n\|}$$
(2.14)

şi

$$a_n = -\langle xQ_{n-1}, Q_{n-1}\rangle \tag{2.15}$$

$$b_n = -\langle xQ_{n-1}, Q_{n-2}\rangle \tag{2.16}$$

Se verifică că pentru a_n şi b_n astfel determinate avem $\langle \overline{Q}_n, Q_i \rangle = 0$, $i = \overline{0, n-2}$ şi că \overline{Q}_n cu a_n şi b_n determinate de (2.15) şi (2.16) este unic determinat.

Deci (2.14) ne dă o formulă de recurență pentru calculul polinoamelor ortogonale (ortonormale) în $L^2_w[a,b]$. Vom începe punând $Q_0=b_0$, unde b_0 este o constantă astfe încât $\|Q_0\|=1$ și luăm $\overline{Q}_1=(x+a_1)Q_0$. Din

$$\langle \overline{Q}_1, Q_0 \rangle = \langle xQ_0, Q_0 \rangle + a_1 = 0$$

se determină

$$a_1 = -\langle xQ_0, Q_0 \rangle$$

și se continuă.

Exemplul 2.4.1 Pentru polinoamele Cebîşev I aplicând (2.14)-(2.16) se obține

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x).$$

2.4.2 Exemple de polinoame ortogonale

I. Polinoamele lui Cebîşev de speţa I

$$T_n(t) = \cos(n \arccos t), \quad t \in [-1, 1]$$

Ele sunt ortogonale pe [-1,1] în raport cu ponderea $w(t)=\frac{1}{\sqrt{1-t^2}}$.

$$\int_{-1}^{1} \frac{T_m(t)T_n(t)}{\sqrt{1-t^2}} dt = \begin{cases} 0, & m \neq n \\ \frac{\pi}{2}, & m = n \neq 0 \\ \pi, & m = n = 0 \end{cases}$$

Are loc relația de recurență

$$T_{n+1}(t) = 2tT_n(t) - T_{n-1}(t)$$

 $T_0(t) = 1, \quad T_1(t) = t$

II. Polinoamele lui Hermite

$$h_n(t) = (-1)^n e^{t^2} \frac{d^n}{dt^n} (e^{-t^2}), \quad t \in \mathbb{R}$$

$$a = -\infty, \quad b = \infty, \quad w(t) = e^{-t}$$

$$\int_{-\infty}^{\infty} e^{-t^2} h_m(t) h_n(t) dt = \begin{cases} 0, & m \neq n \\ 2^n n! \sqrt{\pi}, & m = n \end{cases}$$

$$h_{n+1}(t) = 2t h_n(t) - 2n h_{n-1}(t)$$

$$h_0(t) = 1, \quad h_1(t) = 2t$$

III. Polinoamele lui Laguerre

$$g_n(t) = \frac{e^t}{n!} \frac{d^n}{dt^n} (t^n e^{-t})$$

$$a = 0, \quad b = \infty, \quad w(t) = e^{-t}$$

$$\int_0^\infty e^{-t} g_m(t) g_n(t) dt = \begin{cases} 0, & m \neq n \\ 1, & m = n \end{cases}$$

$$g_{n+1}(t) = \frac{2n+1-t}{n+1} g_n(t) - n g_{n-1}(t)$$

$$g_0(t) = 1, \quad g_1(t) = 1 - t$$

IV. Polinoamele lui Hermite

$$w(t) = e^{-t^2}$$
 pe \mathbb{R} $(a = -\infty, b = \infty)$

$$\int_{-\infty}^{\infty} e^{-t^2} h_n(t) h_n(t) = \begin{cases} 0, & m \neq n \\ 2^n n! \sqrt{\pi}, & m = n \end{cases}$$
$$h_n(t) = (-1)^n e^{t^2} \frac{d^n}{dt^n} (e^{-t^2}), \quad t \in \mathbb{R}$$
$$h_{n+1}(t) = 2t h_n(t) - 2n h_{n-1}(t)$$
$$h_0(t) = 1, \quad h_1(t) = 2t$$

Proprietăți ale polinoamelor ortogonale

P1. Rădăcini reale, distincte, situate în (a, b).

P2. Relația de recurență dată de ecuațiile (2.14), (2.15) și (2.16).

P3.
$$\widetilde{p}_n \perp \mathbb{P}_{n-1}, \quad \|\widetilde{p}_n\| = \min_{p \in \mathbb{P}_n} \|p\|$$
P4. Caracterizarea cu ajutorul ecuațiilor diferențiale.

Fie $P_n = \{p_0, \dots, p_n\}$ o multime de polinoame ortogonale pe intervalul [a, b]în raport cu ponderea w.

Avem

$$\int_{a}^{b} w(t)p_{i}(t)t^{k}dt = 0, \quad i = 1, \dots, n, \quad k = 0, \dots, i - 1.$$
(2.17)

Se consideră funcția U_i astfel încât

$$w(t)p_i(t) = U_i^{(i)}(t), \quad i = \overline{1, n}$$

Din (2.17) se obţine

$$\int_{a}^{b} U_{i}^{(i)}(t)t^{k}dt = 0, \quad k = 0, \dots, i - 1$$

Se integrează de k+1 ori prin părți

$$[U_i^{(i-1)}(t)t^k - kU_i^{(i-2)}(t)t^{k-1} + \dots + (-1)^k k! U_i^{(i-k-1)}(t)]_c^b = 0$$

pentru $k = 0, 1, \dots, i - 1$ condiții satisfăcute dacă

$$\begin{cases}
U_i^{(i-1)}(a) = U_i^{(i-2)}(a) = \dots = U_i(a) = 0 \\
U_i^{(i-1)}(b) = U_i^{(i-2)}(b) = \dots = U_i(b) = 0
\end{cases}$$
(2.18)

Întrucât $\frac{1}{w}U_i^{(i)}=p_i\in\mathbb{P}_i$, funcția U_i poate fi obținută ca soluție a ecuației diferențiale

$$\frac{d^{i+1}}{dt^{i+1}} \left[\frac{1}{w(t)} U_i^{(i)}(t) \right] = 0$$

de ordinul 2i + 1 cu condițiile la limită (2.18).

Deci U_i se determină până la o constantă multiplicativă:

$$p_i(t) = \frac{A_i}{w(t)} U_i^{(i)}(t)$$

Constanta A_i se poate determina impunând condiții suplimentare, de exemplu ortonormalitate

$$\int_{a}^{b} w(t)p_{i}^{2}(t)dt = 1$$

$$p_{n}(x) = (x - 2n)p_{n-1}(x) - \mu_{n}p_{n-2}(x)$$

$$\mu_{n} = \frac{\|p_{n-1}\|^{2}}{\|p_{n-2}\|^{2}}, \quad \lambda_{n} = \frac{\langle xp_{n-1}, p_{n-1} \rangle}{\|p_{n-1}\|^{2}}$$

Problema 2.4.2 Polinoamele Cebîşev de speţa I

$$T_n(x) = \cos n \arccos x$$

Stabiliți proprietățile următoare:

$$T_{n+1}(x) - 2xT_n(x) + T_{n-1}(x) = 0 (2.19)$$

$$T_n(T_n(x)) = T_{nm}(x) = T_m(T_n(x))$$
 (2.20)

$$T_n(2x^2 - 1) = 2T_n(x)^2 - 1 (2.21)$$

$$T_n(x)T_m(x) = \frac{1}{2}(T_{n+m}(x) + T_{m-n}(x)), \quad dac\check{a} \quad m \ge n$$
 (2.22)

$$\int T_n(x)dx = \frac{1}{2} \left(\frac{T_{n+1}(x)}{n+1} - \frac{T_{n-1}(x)}{n-1} \right), \quad dac\breve{a} \quad n > 1$$
 (2.23)

$$T_n(x) = \frac{1}{2}(Q_n(x) - Q_{n-2}(x))$$
 dacă $Q_n(x) = \frac{\sin(n+1)\theta}{\sin\theta};$ (2.24)

 $cu \ x = \cos \theta$ (polinom Cebîşev de speţa a II-a)

$$2^{n-1}x^n = \sum_{0 \le k \le \frac{n}{2}} \binom{n}{k} T_{n-2k}(x), \quad n \ge 1$$
 (2.25)

$$\frac{d}{dx}T_n(x) = nU_{n-1}(x), \quad n \ge 1$$
(2.26)

$$\sum_{m=0}^{\infty} t^n T_n(x) = \frac{1 - xt}{1 - 2xt + t^2}, \quad \text{pentru} \quad |t| < 1 \quad \text{(funcția generatoare)} \quad (2.27)$$

$$\sum_{n=0}^{\infty} t^n U_n(x) = \frac{1}{1 - 2xt + t^2}, \quad \text{pentru} \quad |t| < 1, \quad |x| < 1$$
 (2.28)

Soluție. (2.19)-(2.24) și (2.26) cu ajutorul formulelor trigonometrice uzuale. (2.25) se obține dezvoltând $x^n = (\cos \theta)^n = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^n$ și făcând să apară $T_{n-2k}(x)$. Funcțiile generatoare se obțin ca pentru polinoamele Legendre (vezi problema 2.4.7).

Problema 2.4.3

1. . Zerourile polinoamelor Cebîşev de speţa I sunt

$$\xi_j := \xi_j^{(n)} = \cos\left(\frac{2j-1}{2n}\pi\right), \quad j = \overline{1, n}.$$

 $\hat{I}n$ [-1,1] există n+1 extreme

$$\eta_k := \eta_k^{(n)} := \cos \frac{k\pi}{n}, \quad k = \overline{0, n}$$

unde T_n are un minim sau un maxim local. În aceste puncte

$$T_n(\eta_k) = (-1)^k, \quad k = 1, n$$

şi $||T_n||_{\infty} = 1$ pe [-1, 1]. Zerourile şi extremele polinoamelor Cebîşev sunt foarte importante ca noduri de interpolare. În raport cu produsul scalar

$$(f,g)_T := \sum_{k=1}^{n+1} f(\xi_k)g(\xi_k)$$

unde $\{\xi_1,\ldots,\xi_{n+1}\}$ este mulțimea zerourilor lui T_{n+1} are loc următoarea proprietate

$$(T_i, T_j)_T = \begin{cases} 0, & i \neq j \\ \frac{n+1}{2}, & i = j \neq 0 \\ n+1, & i = j = 0 \end{cases}$$

2. În raport cu produsul scalar

$$(f,g)_U := \frac{1}{2} f(\eta_0) g(\eta_0) + f(\eta_1) g(\eta_1) + \dots + f(\eta_{n-1}) g(\eta_{n-1}) + \frac{1}{2} f(\eta_n) g(\eta_n)$$
$$= \sum_{k=0}^{n} f(\eta_k) g(\eta_k),$$

unde $\{\eta_0,\ldots,\eta_n\}$ este mulțimea extremelor lui $T_n,$ are loc o propritate similară

$$(T_i, T_j)_U = \begin{cases} 0, & i \neq j \\ \frac{n}{2}, & i = j \neq 0 \\ n, & i = j = 0 \end{cases}$$

Soluție. Avem $\arccos \xi_k = \frac{2k-1}{2n+2}\pi, \ k = \overline{1,n+1}.$ Să calculăm acum produsul scalar:

$$\begin{split} (T_i, T_j)_T &= (\cos i \arccos t, \cos j \arccos t)_T = \\ &= \sum_{k=1}^{n+1} \cos(i \arccos \xi_k) \cos(j \arccos \xi_k) = \\ &= \sum_{k=1}^{n+1} \cos\left(i \frac{2k-1}{2(n+1)}\pi\right) \cos\left(j \frac{2k-1}{2(n+1)}\pi\right) = \\ &= \frac{1}{2} \sum_{k=1}^{n+1} \left[\cos(i+j) \frac{2k-1}{2(n+1)}\pi + \cos(i-j) \frac{2k-1}{2(n+1)}\pi\right] = \\ &= \frac{1}{2} \sum_{k=1}^{n+1} \cos(2k-1) \frac{i+j}{2(n+1)}\pi + \frac{1}{2} \sum_{k=1}^{n+1} \cos(2k-1) \frac{i-j}{2(n+1)}\pi. \end{split}$$

Notăm $\alpha = \frac{i+j}{2(n+1)}\pi$, $\beta = \frac{i-j}{2(n+1)}\pi$ și

$$S_1 = \frac{1}{2} \sum_{k=1}^{n+1} \cos(2k-1)\alpha,$$

$$S_2 = \frac{1}{2} \sum_{k=1}^{n+1} \cos(2k-1)\beta.$$

Deoarece

$$2\sin \alpha S_1 = \sin 2(n+1)\alpha,$$

$$2\sin \beta S_2 = \sin 2(n+1)\beta,$$

se obține $S_1=0$ și $S_2=0$. Cealaltă proprietate se demonstrează analog. \blacksquare

Problema 2.4.4 *Polinoame Cebîşev de speţa a II-a.*

Definiția 2.4.5 $Q_n \in \mathbb{P}_n$ dat de

$$Q_n(t) = \frac{\sin[(n+1)\arccos t]}{\sqrt{1-t^2}}, \quad t \in [-1,1]$$

se numește polinomul lui Cebîșev de speța a II-a.

$$Q_n = \frac{1}{n+1} T'_{n+1}(t), \quad t \in [-1, 1]$$

$$\widetilde{Q}_n = \frac{1}{2^n} Q_n, \quad \widetilde{Q}_n \in \widetilde{\mathbb{P}}_n$$

$$\int_{-1}^1 \sqrt{1 - t^2} Q_m(t) Q_n(t) dt = \begin{cases} 0 & \text{pentru } m \neq n \\ \frac{\pi}{2} & \text{pentru } m = n \end{cases}$$

Polinoamele $Q_m, m=0,1,2,\ldots$ sunt ortogonale pe [-1,1] în raport cu ponderea $w(t)=\sqrt{1-t^2}$.

Are loc relația de recurență

$$Q_{n+1}(t) = 2tQ_n(t) - Q_{n-1}(t)$$

Ea rezultă imediat din relația $\sin(n+2)\theta + \sin n\theta = 2\cos\theta\sin(n+1)\theta$. Dăm primele 4 polinoame ortogonale:

$$Q_0(t) = 1$$

$$Q_1(t) = 2t$$

$$Q_2(t) = 4t^2 - 1$$

$$Q_3(t) = 8t^3 - 4t$$

$$Q_4(t) = 16t^4 - 12t^2 + 1$$

Pentru alte intervale se face schimbarea de variabilă $\tilde{x} = \frac{1}{2}[(b-a)x + a + b]$.

Polinoame Cebîşev şi economizarea seriilor de puteri

Polinoamele Cebîşev de speţa I pot fi utilizate pentru a reduce gradul unui polinom de aproximare cu o pierdere minimă de precizie. Această tehnică este utilă când se utilizează pentru aproximare polinomul Taylor. Deşi polinoamele Taylor sunt foarte precise în vecinătatea punctului în care se face dezvoltarea, dacă ne îndepărtăm de acel punct precizia se deteriorează rapid. Din acest motiv, pentru a atinge precizia dorită este nevoie de polinoame Taylor de grad mai mare. Deoarece polinoamele Cebîşev de speţa I au cea mai mică normă Cebîşev pe un interval, ele pot fi utilizate pentru a reduce gradul polinomului Taylor fără a depăşi gradul de toleranţă admis.

Exemplul 2.4.6 $f(x) = e^x$ poate fi aproximată pe [-1, 1] prin polinomul Taylor de grad 4 în jurul lui 0.

$$P_4(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$$

$$R_4(x) = \frac{|f^{(\xi)}(\xi(x))||x^5|}{5!} \le \frac{e}{120} \approx 0.023, \quad x \in [-1, 1]$$

Să presupunem că eroarea este $\varepsilon=0.05$ și că dorim să înlocuim termenul din polinomul Taylor care îl conține pe x^4 cu un polinom Cebîşev de grad ≤ 4 .

Să deducem reprezentarea lui x^k cu ajutorul polinoamelor Cebîşev.

$$T_{n+1} = 2tT_n - T_{n-1}$$

$$T_0(t) = 1$$

$$T_1(t) = t$$

$$T_2(t) = 2t^2 - 1$$

$$T_3(t) = 4t^3 - 3t^2$$

$$T_4(t) = 8t^4 - 8t^2 + 1$$

k	T_k	x^k
0	1	T_0
1	x	T_1
2	$2x^2 - 1$	$\frac{1}{2}T_0 + \frac{1}{2}T_2$
3	$4x^3 - 3x$	$\begin{array}{c} \frac{1}{2}T_0 + \frac{1}{2}T_2\\ \frac{3}{4}T_1 + \frac{1}{4}T_3 \end{array}$
4	$8x^4 - 8x^2 + 1$	$\frac{3}{8}T_0 + \frac{1}{2}T_2 + \frac{1}{8}T_4$
5	$16x^5 - 20x^3 + 5x$	$\frac{5}{8}T_1 + \frac{5}{16}T_3 + \frac{1}{16}T_5$
6	$32x^6 - 48x^4 + 18x^2 - 1$	$\frac{5}{16}T_0 + \frac{15}{32}T_2 + \frac{3}{16}T_4 + \frac{1}{32}T_6$

Deci

$$P_4(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24} \left[\frac{3}{8}T_0(x) + \frac{1}{2}T_2(x) + \frac{1}{8}T_4(x) \right]$$

$$= 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{64}T_0(x) + \frac{1}{48}T_2(x) + \frac{1}{192}T_4(x)$$

$$= \frac{191}{192} + x + \frac{13}{24}x^2 + \frac{1}{6}x^3 + \frac{1}{192}T_4(x)$$

$$\max_{x \in [-1,1]} |T_4(x)| = 1$$

$$\left| \frac{1}{192}T_4(x) \right| \le \frac{1}{192} = 0.0053$$

şi

$$|R_4(x)| + \left| \frac{1}{192} T_4(x) \right| \le 0.023 + 0.0053 = 0.0283 < 0.05$$

Deci termenul de grad 4, $\frac{1}{192}T_4(x)$, poate fi omis fără a afecta precizia dorită. Polinomul de grad 3

$$P_3(x) = \frac{191}{192} + x + \frac{13}{24}x^2 + \frac{1}{6}x^3$$

ne dă precizia dorită pe [-1, 1].

Încercăm să eliminăm termenul de grad 3 înlocuind x^3 cu $\frac{3}{4}T_1(x) + \frac{1}{4}T_3(x)$.

$$P_3(x) = \frac{191}{192} + x + \frac{13}{24}x^2 + \frac{1}{6} \left[\frac{3}{4}T_1(x) + \frac{1}{4}T_3(x) \right]$$

$$= \frac{191}{192} + \frac{9}{8}x + \frac{13}{24}x^2 + \frac{1}{24}T_3(x)$$

$$\max_{x \in [-1,1]} \left| \frac{1}{24}T_3(x) \right| = 0.0417$$

$$0.0417 + 0.0283 \approx 0.07 > 0.5$$

Deci P_3 de mai sus ne dă polinomul de grad cel mai mic pentru această aproximare.

Problema 2.4.7 Polinoamele lui Legendre

$$L_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$$
 (formula lui Rodrigues)

Arătați că

$$L_n \in \mathbb{P}_n \quad \mathfrak{s}i \quad \langle L_n, L_m \rangle_{L^2[-1,1]} = \frac{2}{2n+1} \delta_{nm} \tag{2.29}$$

$$nL_n(x) = (2n-1)xL_{n-1}(x) - (n-1)L_{n-2}(x)$$
(2.30)

$$L_n(x) = \frac{1(2n)!}{2^n (n!)^2} x^n + \dots$$
 (2.31)

$$L_n(1) = 1, \quad L_n(-1) = (-1)^n,$$
 (2.32)

 L_n este par pentru n impar și impar pentru n par

$$L'_n(x) = xL'_{n-1}(x) + nL_{n-1}(x)$$
(2.33)

$$L'_n(x) - L'_{n-2}(x) = (2n-1)L_{n-1}(x)$$

$$(x^{2}-1)L'_{n}(x) = n(xL_{n}(x) - L_{n-1}(x))$$

$$\sum_{n=0}^{\infty} t^n L_n(x) = \frac{1}{\sqrt{1 - 2xt + t^2}} \quad \text{pentru} \quad |t| < 1$$
 (2.34)

Soluție. (2.29) Presupunem că $n \ge m$,

$$\langle L_n, L_m \rangle_{L^2} = \frac{1}{2^n n!} \int_{-1}^1 L_m(x) \frac{d}{dx^n} [(x^2 - 1)^n] dx$$

Integrând succesiv prin părți de obține

$$\langle L_n, L_m \rangle = \frac{1}{2^n n!} \int_{-1}^1 \frac{d^n}{dx^n} (L_m(x)) (x^2 - 1)^n dx$$

care este nulă pentru n > m, iar pentru n = m

$$||L_n||_{L^2} = \frac{(-1)^n}{2^n n!} \int_{-1}^1 (x^2 - 1)^n dx = \frac{2}{2n+1}$$

(2.30), (2.31), (2.32) se verifică simplu. (2.33) se obține direct din

$$L'_n(x) = \frac{1}{2^n n!} \frac{d^{n+1}}{dx^{n+1}} [(x^2 - 1)^n] = \frac{1}{2^n n!} \frac{d^n}{dx^n} (n \cdot 2x(x^2 - 1)^{n-1})$$
$$= xL'_{n-1}(x) + nL_{n-1}(x)$$

Din formula de recurență se obține

$$nL'_n(x) = (2n-1)L_{n-1}(x) + (2n-1)xL'_{n-1}(x) - (n-1)L'_{n-2}(x),$$

de unde eliminând L'_n :

$$xL'_{n-1}(x) - L'_{n-2}(x) = (n-1)L_{n-1}(x)$$

și prin urmare

$$L'_n(x) - L'_{n-2}(x) = (2n-1)L_{n-1}(x)$$

Eliminând L'_{n-2} se obține

$$(x^{2}-1)L'_{n-1}(x) = (n-1)[xL_{n-1}(x) - L_{n-2}(x)]$$

(6) Fie $\mathcal C$ un contur închis în $\mathbb C$ ce nu conține în interiorul său ± 1 , dar conține pe z; după formulele lui Cauchy și Rodrigues

$$L_n(z) = \frac{1}{2\pi i} \int_{C} \frac{(t^2 - 1)^n}{2^n (t - z)^{n+1}} dt$$

punând
$$\frac{1}{Z}=\frac{t^2-1}{2(t-z)}$$
 adică $t=\frac{1}{Z}\left(1-\sqrt{1-2zZ+Z^2}\right)$ avem

$$L_n(z) = \int_{C_1} \frac{1}{2\pi i} \frac{1}{z^{n+1}} \frac{1}{\sqrt{1 - 2zZ + Z^2}} dZ$$

unde C_1 este imaginea lui C prin schimbarea $t \to Z$ de unde

$$L_n(z) = \frac{1}{n!} \frac{d^n}{dZ^n} \left(\frac{1}{\sqrt{1 - 2zZ + Z^2}} \right) \bigg|_{z=0}$$

și pentru |t| < 1

$$\sum_{n=0}^{\infty} t^n L_n(z) = \frac{1}{\sqrt{1 - zt + t^2}}$$

Problema 2.4.8 Să se arate că polinoamele ortogonale în raport cu $w(x) = \sqrt{x}$ (respectiv $1/\sqrt{x}$) pe (0,1) sunt

$$q_n(x) = L_{2n+1}\left(\sqrt{x}\right)/\sqrt{x}$$

respectiv

$$q_n(x) = L_{2n}\left(\sqrt{x}\right)$$

Soluție. Rezultatul se obține prin schimbarea de variabilă $t = \frac{1}{\sqrt{x}}$ (respectiv $t = \sqrt{x}$) utilizând proprietățile (1) și (4) din exercițiul precedent.

Problema 2.4.9 Polinoamele lui Hermite

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$$

(1) Arătați că

$$H_n\in\mathbb{P}_n\quad \mathfrak{s}i\quad \langle H_n,H_m
angle_{L^2_n(\mathbb{R})}=2^nn!\sqrt{\pi}\delta_{nm}$$
 $cu\ w(x)=e^{-x^2}$.

(2)
$$H_n(x) - 2xH_{n-1}(x) + (2n-2)H_{n-2}(x) = 0$$

(3)
$$H_0 = 1, \quad H_1(x) = 2x$$
$$H_n(x) = 2^n x^n + \dots$$

 H_n este o funcție pară sau impară după cum n este par sau impar.

$$H_{2k}(0) = (-1)^k \frac{(2k)!}{k!}$$

(4)
$$H'_{n-1}(x) = 2xH_{n-1}(x) - H_n(x), \quad H'_n(x) = 2nH_{n-1}(x)$$

(5)
$$H_n(x) = \sum_{0 \le k \le \frac{n}{2}} (-1)^k \frac{n!}{k!} \frac{(2x)^{n-2k}}{(n-2k)!}$$

(6)
$$2^{n}x^{n} = \sum_{0 \le k \le \frac{n}{2}} \frac{n!}{k!(n-2k)!} H_{n-2k}(x)$$

(7)
$$\sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(x) = e^{2tx-t^2} \qquad |t| < 1 \quad \text{(funcție generatoare)}$$

(8)
$$2^{n/2}H_n\left(\frac{x+y}{\sqrt{2}}\right) = \sum_{k=0}^n \binom{n}{k} H_k(x)H_{n-k}(y)$$

Soluție. Proprietățile (1), (2), (3), (4), (5), (7) rezultă din definiția lui H_n procedând ca la problema 2.4.2. Proprietatea (6) se obține dezvoltând $(2x)^n$ în serie Fourier.

$$(2x)^n = \sum_{k=0}^n ((2x)^n, \widetilde{H}_k) \widetilde{H}_k(x)$$

unde \widetilde{H}_k sunt polinoamele ortonormale Hermite, evaluând produsul scalar (x^n, \widetilde{H}_k) . Proprietatea (8) se obține cu ajutorul funcției generatoare

$$e^{2tx-t^2}e^{2tx-t^2} = e^{2t\sqrt{2}\frac{x+y}{\sqrt{2}}-(t\sqrt{2})^2}$$

adică pentru |t| < 1

$$\left(\sum H_n(x)\frac{t^n}{n!}\right)\left(\sum_{n=0}^{\infty}H_n(y)\frac{t^n}{n!}\right) = \sum_{n=0}^{\infty}H_n\left(\frac{x+y}{\sqrt{2}}\right)\left(t\sqrt{2}\right)^n\frac{1}{n!}$$

și identificând coeficienții lui t^n din cei doi membri. \blacksquare

Problema 2.4.10 Polinoamele asociate ale lui Laguerre

$$l_n^{\alpha}(x) = \frac{e^x x^{-\alpha}}{n!} \frac{d^n}{dx^n} (x^{n+\alpha} e^{-x})$$
 pentru $\alpha > -1$.

$$l_n^{\alpha} \in \mathbb{P}_n$$
 $\mathfrak{s}i$ $\langle l_n^{\alpha}, l_m^{\alpha} \rangle = \frac{\Gamma(n+\alpha+1)}{n!}$

(în $L^2_w(0,\infty)$ cu $w(x)=x^{\alpha}e^{-x}$) unde $\Gamma(s)$ este funcția Γ a lui Euler definită prin

$$\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt \quad (s > 0)$$

(2)
$$nl_n^{\alpha}(x) - (2n - 1 + \alpha - x)l_{n-1}^{\alpha}(x) + (n - 1 - \alpha)l_{n-2}^{\alpha}(x) = 0$$

(3)
$$l_n^{\alpha+1}(x) - l_{n-1}^{\alpha+1}(x) = l_n^{\alpha}(x)$$

(4)
$$\frac{d}{dx}l_n^{\alpha}(x) = -l_{n-1}^{\alpha+1}(x), \quad x\frac{d}{dx}l_n^{\alpha}(x) = nl_n^{\alpha}(x) - (n+\alpha)l_{n-1}^{\alpha}(x)$$

(5)
$$l_n^{\alpha}(x) = \sum_{k=0}^n (-1)^k \binom{n+\alpha}{n-k} x^k / k!$$

(6)
$$\frac{x^n}{n!} = \sum_{k=0}^n (-1)^k \binom{n+\alpha}{n-k} l_k^{\alpha}$$

(7)
$$\sum_{n=0}^{\infty} t^n l_n^{\alpha}(x) = \frac{1}{(1-t)^{\alpha+1}} e^{-\frac{xt}{1-t}} \quad |t| < 1 \quad \text{(f.gen.)}$$

(8)

$$H_{2n}(x) = (-1)^n 2^{2n} n! l_n^{-1/1}(x^2)$$

$$H_{2n+1}(x) = (-1)^n 2^{2n+1} n! x l_n^{1/2}(x^2)$$

Soluție. (1)-(7) se deduc utilizând tehnici analoage celor din exercițiile precedente. (8) se obține dezvoltând în serie $H_n(x)$ și $l_n^{\alpha}(x)$.

Problema 2.4.11 (Ecuația diferențială verificată de polinoamele ortogonale) Fie w o funcție pozitivă pe [a,b] astfel încât

$$\frac{w'(x)}{w(x)} = \frac{A_0 + A_1 x}{B_0 + B_1 x + B_2 x^2} \quad \text{si} \quad \lim_{\substack{x \to a_+ \\ (sau \ x \to b_-)}} w(x) (B_0 + B_1 x + B_2 x^2) = 0$$

$$(2.35)$$

$$(B_0 + B_1 x + B_2 x^2) p''_n + (A_0 + A_1 x + B_1 + B_2 x) p'_n - (A_1 n + B_2 n(n+1)) p_n = 0 \quad (2.36)$$

Aplicație. Stabiliți ecuațiile diferențiale corespunzătoare ponderii

 $w(x)=(1-x)^{\alpha}(1+x)\beta,\quad \alpha>-1,\quad \beta>-1,\quad [a,b]=[-1,1]$ (polinoamele Jacobi $p_n(\alpha,\beta)$)

$$(1 - x^2)p_n'' - ((\alpha - \beta) + (\alpha + \beta + 2)x)p_n' - n(\alpha + \beta + 1 + n)p_n = 0$$

în particular pentru polinoamele Cebîşev de speța I

$$(1 - x^2)T_n'' - xT_n'(x) + n^2T_n(x) = 0$$

și pentru polinoamele lui Legendre L_n

$$(1 - x^2)L_n''(x) - 2xL_n'(x) + L_n(x) = 0$$

 $w(x) = e^{-x^2}$ pe \mathbb{R} , polinoamele lui Hermite H_n

$$H_n''(x) - 2xH_n'(x) + 2nH_n(x) = 0$$

 $w(x)=x^{\alpha}e^{-x}$ pe $(0,\infty),\,\alpha>1,$ polinoamele lui Laguerre l_{n}^{α}

$$xp_n''(x) + (\alpha - 1 - x)p_n'(x) + np_n(x) = 0$$

unde $p_n(x) = l_n^{\alpha}(x)$.

Soluție. Dacă $v(x) = w(x)(B_0 + B_1x + B_2x^2)$ ecuația diferențială (2.36) înmulțită cu w(x), ținând cont de (2.35) se scrie sub forma Sturm-Liouville

$$\frac{d}{dx}\left(v(x)\frac{dp_n(x)}{dx}\right) = (A_{1n} + B_2n(n+1))p_n(x)w(x)$$

de unde

$$\frac{d}{dx}[r(x)(p'_n(x)p_m(x) - p'_m(x)p_n(x))] =$$

$$= \{A_1(n-m) + B_2[n(n+1) - m(m+1)]\}p_n(x)p_m(x)w(x)\}$$

Integrând pe [a, b] se obține

$$\int_{a}^{b} p_{n}(x)p_{m}(x)w(x)dx = 0 \quad \text{pentru} \quad n \neq m$$

și se verifică existența unei soluții polinomiale a lui (2) de grad n; prin urmare $(p_n)_{n\geq 0}$ constituie sistemul de polinoame ortogonale pe [a,b] relativ la ponderea w. 2. Verificare prin calcul. \blacksquare

Problema 2.4.12 Fie w o funcție pondere pozitivă pe [a,b], $E=L^2_w[a,b]$ și (\widetilde{p}_n) polinoamele ortonormale asociate.

(1) Arătați că $\forall f \in E$

$$\sum_{n=0}^{\infty} (f, \widetilde{p}_n)^2 \le ||f||_E^2 \tag{2.37}$$

(inegalitatea lui Bessel) cu egalitate (a lui Parseval) dacă spațiul vectorial \mathbb{P} al polinoamelor este dens în E în care caz

$$f = \sum_{n=0}^{\infty} \langle f, \widetilde{p}_n \rangle \widetilde{p}_n,$$

este serie convergentă în E.

- (2) \mathbb{P} este dens în E dacă [a,b] este mărginit.
- (3) Polinomul de cea mai bună aproximare de grad n a lui f în E este

$$q_n(x) = \sum_{k=0}^{n} (f, \widetilde{p}_k) \widetilde{p}_k(x)$$
 şi $q_n(x) = f(x)$

în cel puțin n+1 puncte din [a,b].

Soluţie.

- (1) Rezultă imediat de la curs.
- (2) \mathbb{P} este dens în $C^0[a,b]$ pentru [a,b] mărginit şi

$$||f||_E = ||f||_{\infty} \left(\int_a^b w(x) dx \right)^{1/2}$$

(3) q_n este caracterizat prin $(f-q_n,\widetilde{p}_k)=0$ pentru $k=\overline{0,n}$ în particular pentru k=0

$$\int_{a}^{b} (f(x) - q_n(x))\widetilde{p}_0(x)w(x)dx = 0$$

deci $f-s_n$ se anulează în cel puţin într-un punct din [a,b]. Dacă $f-q_n$ se anulează în mai puţin de n+1 puncte x_1,\ldots,x_l din [a,b] cu $l\leq n$ atunci dacă

$$s(x) = \prod_{i=1}^{l} (x - x_i),$$

 $s(x)(f(x)-q_n(x))$ păstrează semn constant și deci $\langle f-q_n,s\rangle \neq 0$ ceea ce contrazice faptul că $f-q_n\perp \mathbb{P}_n$ în $L^2_w[a,b]$

Teorema 2.4.13 (Cebîşev) Pentru orice $f \in C[a,b]$ există P^*d și există d+2 puncte

$$a < x_0 < \dots < xd + 1 < b$$

pentru care

$$(-1)^{i}[p^{*}d(x_{i}) - f(x_{i})] = \sigma \|P^{*}d - f\|_{\infty}, \quad i = 0, 1, \dots, d+1$$

unde $\sigma = sign(P^*d(x_0) - f(x_0)).$

Problema 2.4.14 Să se determine p.c.b.a. unif. din \mathbb{P}_1 pentru $f(x) = \sqrt{x}$ pe $[a,b] \subset \mathbb{R}_+$.

Solutie.

$$P_1^* = c_0 + c_1 x$$

Eroarea de aproximare este

$$e_1(x) = c_0 + c_1 x - \sqrt{x}$$

 $e'_1(x) = c_1 - \frac{1}{2\sqrt{x}}$
 $x_n = \frac{1}{4c_1^2}$

Conform teoremei lui Cebîşev abaterea maximă se realizează în 3 puncte din [a,b] și obținem sistemul neliniar

$$\begin{cases} c_0 + c_1 a - \sqrt{a} = E_1 \\ c_0 + \frac{1}{4c_1} - \frac{2}{c_1} = -E_1 \\ c_0 + c_1 b - \sqrt{3} = E_1 \end{cases},$$

cu soluțiile

$$c_0 = \frac{1}{2} \left[\sqrt{a} - \frac{a}{\sqrt{a} + \sqrt{b}} + \frac{\sqrt{a} + \sqrt{b}}{4} \right]$$
$$c_1 = \frac{1}{\sqrt{a} + \sqrt{b}}$$
$$E_1 = c_0 + c_1 a - \sqrt{a}$$

Capitolul 3

Teoria erorilor

Definiția 3.0.15 Aplicația $A: X \to \mathcal{P}(X)$ se numește procedeu de aproximare, iar $a \in A(\alpha)$ aproximantă pentru α .

 $F=\{mb^n|\ m,n\in\mathbb{Z},\ b\in\mathbb{N},\ b>1\}\ \text{numere practice (fracții}\ b\text{-adice limitate)}$ F densă.

Regula de rotunjire - rotunjire la cifră pară

Surse de erori

- 1) Erori ale problemei erori de formulare; apar datorită simplificării şi idealizării problemei. Erori ale metodei - apar datorită faptului că se lucrează cu aproximări.
- 2) Erori reziduale expresiile unor valori din analiza matematică rezultă din procese infinite, iar noi lucrăm cu un număr finit de pași.

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

- 3) Erori inițiale datorate parametrilor de intrare erori fizice și de măsurare
- 4) Erori de rotunjire datorate sistemelor de numerație și lucrului cu un număr finit de zecimale

$$\frac{1}{3} = 0.333 \quad \Delta \approx 3 \cdot 10^{-4}$$

5) Erori ale operațiilor - lucrând cu numere aproximative erorile se propagă - erori inerente.

3.1 Erori absolute și relative. Cifre semnificative corecte

Exemplul 3.1.1 Să se determine o limită a erorii absolute dacă se lucrează cu 3.14 în loc de π .

$$3.14 < \pi < 3.15 \quad |a - \pi| < 0.01 \quad \Delta_a = 0.01$$

Exemplul 3.1.2 Greutatea unui dm^3 de apă la $0^{\circ}C$ este $G=999.847gf\pm0.001gf$. Să se determine o limită a erorii relative.

$$\Delta a = 0.001$$
 $G > 999.846$

$$\delta_a = \frac{0.001}{999.847} \approx 10^{-4}\%$$

Cifre semnificative

 $\neq 0$

0 între cifre semnificative sau marcator de poziție

0 nesemnificativ - când fixează poziția mărcii zecimale

0 007010 2003 000 000

$$\alpha = \alpha_0 b^k + a_1 b^{n-1} + \dots + \alpha_{n-1} b^{k-n+1} + \alpha_n b^{k-n}$$

Definiția 3.1.3 Spunem că $a \approx \alpha$ cu n cifre semnificative corecte dacă

$$|\Delta a| \le \frac{1}{2} b^{k-n+1}$$

Dacă b=10 și $|\Delta a|\leq \frac{1}{2}10^{-m}$ spunem că $approx \alpha$ cu m zecimale corecte.

Teorema 3.1.4 Dacă a este obținut din α prin rotunjire la n cifre atunci a aproximează pe α cu n cifre semnificative corecte.

Exemplul 3.1.5 Rotunjind

$$\pi = 3.1415926535...$$

la 5, 4, 3 cifre semnificative corecte obținem aproximațiile

$$\frac{1}{2}10^{-4}$$
, $\frac{1}{2}10^{-3}$, $\frac{1}{2}10^{-2}$

Teorema 3.1.6 Fie $a, \alpha \in \mathbb{R}_+$. Dacă a aproximează pe α cu m cifre semnificative corecte, unde a_0 este cifra cea mai semnificativă a lui a în baza b, atunci

$$\delta_a \le \frac{1}{a_0 b^{n-1}}$$

Exemplul 3.1.7 Care este o limită a erorii relative dacă lucrăm cu 3.14 în loc de π ?

$$a_0 = 3, \quad n = 3$$

$$\delta_a = \frac{1}{3 \cdot 10^{3-1}} = \frac{1}{300} = \frac{1}{3}\%$$

Exemplul 3.1.8 Câte cifre trebuie considerate la calculul lui $\sqrt{20}$ astfel încât eroarea să nu depășească 0.1%?

$$a_0 = 4, \quad \delta = 0.001$$

$$\frac{1}{4 \cdot 10^{n-1}} \le 0.001, \quad 10^{n-1} \ge 250 \implies n = 4$$

Invers, numărul de cifre corecte

Teorema 3.1.9 $\alpha \in \mathbb{R}_+$, a aproximează pe α și

$$\delta_a \le \frac{1}{2(\alpha_0 + 1)b^{n-1}},$$

unde α_0 este cifra cea mai semnificativă a lui α atunci a aproximează pe α cu n cifre semnificative corecte.

Exemplul 3.1.10 $a \approx \alpha$, a = 24253, eroarea relativă 1%. Câte cifre semnificative corecte are $\Delta = 24253 : 0.0 \approx 243 = 2.43 \cdot 10^2 \Rightarrow 2$ cifre

3.2 Propagarea erorilor

$$u = f(x_1, \dots, x_n)$$

$$\Delta u \approx \sum_{i} \left| \frac{\partial f}{\partial x_i} \right| \Delta x_i$$

$$|\Delta u| \approx \sum_{i} \left| \frac{\partial f}{\partial x_i} \right| |\Delta x_i|$$

$$\delta_n \approx \sum_{i} \left| \frac{\partial}{\partial x_i} \ln f \right| \Delta x_i \approx \sum_{i} \left| x_i \frac{\partial}{\partial x_i} \ln f \right| \delta x_i$$

Exemplul 3.2.1 Găsiți o limită a erorii absolute și relative pentru volumul sferei $V=\frac{\pi d^3}{6}$ cu diametrul egal cu $3.7cm\pm0.04cm$ și $\pi\approx3.14$.

$$\frac{\partial V}{\partial \pi} = \frac{1}{6}d^3 = 8.44$$

$$\frac{\partial V}{\partial d} = \frac{1}{2}\pi d^2 = 21.5$$

$$\Delta V = \left|\frac{\partial V}{\partial \pi}\right| |\Delta \pi| + \left|\frac{\partial V}{\partial d}\right| |\Delta d| = 8.44 + 21.5 \cdot 0.05 \approx 1.088 \approx 1.1$$

$$\Delta_V = \frac{1.0888}{274} \approx 4\%$$

Exemplul 3.2.2 (Se aplică principiul efectelor egale) Un cilindru are raza $R \approx 2m$, înălținea $H \approx 3m$. Cu ce erori absolute trebuie determinate R și H astfel încât V să poată fi calculat cu o eroare $< 0.1m^3$.

$$V = \pi R^2 H, \quad \Delta V = 0.1 m^3$$

$$\frac{\partial V}{\partial \pi} = R^2 H = 12, \quad \frac{\partial V}{\partial R} = 2\pi R H = 37.7$$

$$\frac{\partial V}{\partial H} = \pi R^2 = 12.6, \quad n = 3$$

$$\Delta \pi \approx \frac{\Delta V}{3 \frac{\partial V}{\partial \pi}} = \frac{0.1}{3.12} < 0.003$$

$$\Delta R \approx \frac{0.1}{3 \cdot 37.7} < 0.001$$

$$\Delta H \approx \frac{0.1}{3 \cdot 12.6} < 0.003$$

3.3 Erorile pentru vectori și operatori

Problema 3.3.1 Care este eroarea pentru $\int_c^d f(u)du$ când funcția f este aproximată prin \widehat{f} .

$$Tf = \int_{c}^{d} f(u)du, \quad T : L^{2}[c, d] \to \mathbb{R}$$

$$\|T\| = \max_{\|\varepsilon(x)\|_{\infty} = 1} \left| \int_{c}^{d} \varepsilon(x)dx \right| = \max_{\{\varepsilon(x)|\max_{lead} \|\varepsilon(x)\| = 1\}} \left| \int_{c}^{d} \varepsilon(x)dx \right| = d - c$$

$$\|\widehat{f}(x) - f(x)\|_{\infty} := \|\varepsilon(x)\| = \max_{x \in [c,d]} |\varepsilon(x)| \le bf$$

$$\Delta_T \le (d - c)b_f$$

$$S_x(T) = \frac{\|T\| \|x\|}{\|Tx\|} = \max_{\varepsilon \ne 0} \rho_{x,\varepsilon}$$

Problema 3.3.2 Să se studieze senzitivitatea operatorului aditiv

$$U(u, v) = u + v, \quad T : (\mathbb{R}^2, ||\cdot||_1) \to (\mathbb{R}, ||)$$

Soluție. Fie

$$(u, v) = (2, 3)$$

 $S_{2,3}(T) = \frac{|2| + |3|}{|2 + 3|} = 1$

În general

$$S_x(T) = \frac{|u| + |v|}{|u + v|}$$

Dacă u și v au același semn

$$S_x(T) = 1$$

Dacă u și v au semne opuse |u+v| < |u| + |v| și $S_x(T) > 1$.

Senzitivitatea poate fi făcută oricât de mare pentru u și v de semne contrare și apropiate în modul

$$u = 0.5, \quad v = -0.499999$$

$$\Delta_u, \Delta_v < 10^{-6}$$

$$S_x(T) \approx \frac{0.000002}{0.999999} \approx 2 \cdot 10^{-6}$$

Concluzie. ε rel.ieşire $> 10^6$ ·eroarea rel. de intrare

Morala: evitarea scăderii cantităților apropiate

Problema 3.3.3 Indicați o modalitate de a evita anularea pentru

1)
$$e^x - 1$$
 $|x| \ll 1$
2) $\sqrt{x+1} - \sqrt{x}$ $x \gg 0$

Problema 3.3.4 Să se determine numărul de condiționare pentru operatorul $T: \mathbb{R}^2 \to \mathbb{R}^2$

$$\left[\begin{array}{c} x \\ y \end{array}\right]^T \to \left[\begin{array}{c} x+y \\ x+2y \end{array}\right]$$

Soluție.

$$T_x = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$
$$\|A\|_{\infty} = 3 \quad \|A^{-1}\|_{\infty} = 3$$
$$cond_{\infty}(T) = 9$$

3.4 Aritmetică în virgulă flotantă

Problema 3.4.1 Să se compare următoarele două metode pentru calculul lui $x^2 - y^2$:

$$x \otimes x \ominus y \otimes y,$$

 $(x \oplus y) \otimes (x \ominus y).$

Soluție. Eroarea relativă pentru $x \ominus y$ este

$$\delta_{x \ominus y} = \delta_1 = [(x \ominus y) - (x - y)]/(x - y)]$$
$$|\delta_1| \le 2\varepsilon$$

Altfel scris

$$x \ominus y = (x - y)(1 + \delta_1) \quad |\delta_1| \le 2\varepsilon$$

La fel

$$x \oplus y = (x+y)(1+\delta_2) \quad |\delta_2| \le 2\varepsilon$$

Presupunând că înmulțirea se realizează calculând produsul exact și apoi efectuând rotunjirea, eroarea relativă este cel mult 1/2 ulp, deci

$$u \otimes v = uv(1 + \delta_3) \quad |\delta_3| \le \varepsilon \quad \forall u, v \in NVF$$

Se ia $u = x \ominus y$, $v = x \oplus y$

$$(x \ominus y) \otimes (x \oplus y) = (x - y)(1 + \delta_1)(x + y)(1 + \delta_2)(1 + \delta_3)$$

Eroarea relativă este

$$\frac{(x\ominus y)\otimes(x\ominus y)-(x^2-y^2)}{(x^2-y^2)} = (1+\delta_1)(1+\delta_2)(1+\delta_3)-1 =$$
$$= \delta_1 + \delta_2 + \delta_3 + \delta_1\delta_2 + \delta_1\delta_3 + \delta_2\delta_3 + \delta_1\delta_2\delta_3 < 5\varepsilon + 8\varepsilon^2 \approx 5\varepsilon$$

Pentru cealaltă variantă

$$(x \otimes x) \ominus (y \otimes y) = [x^2(1+\delta_1) - y^2(1+\delta_2)](1+\delta_3) =$$
$$= [(x^2 - y^2)(1+\delta_1) + (\delta_1 - \delta_2)y^2](1+\delta_3)$$

Dacă $x \approx y \Rightarrow (\delta_1 - \delta_2)y^2 \approx x^2 - y^2$, atunci (x - y)(x + y) este mai precis decât $x^2 - y^2$

$$\delta = \frac{(x \otimes x) \ominus (y \otimes y) - (x^2 - y^2)}{x^2 - y^2}$$

$$= (1 + \delta_1)(1 + \delta_3) + \frac{(\delta_1 - \delta_2)(1 + \delta_3)y^2}{x^2 - y^2} - 1$$

$$= \delta_1 + \delta_3 + \delta_1 \delta_3 + \frac{y^2}{x^2 - y^2}(\delta_1 - \delta_2 + \delta_1 \delta_3 - \delta_2 \delta_3).$$

Problema 3.4.2 (Conversia binar zecimal (scriere și apoi citire))

Pentru precizie simplă avem p=24 și $2^{24}<10^8$ deci 8 cifre par suficiente pentru a recupera numărul original (totuși nu este așa!). Când un număr binar IEEE simplă precizie este convertit la cel mai apropiat număr zecimal de 8 cifre, nu este întotdeauna posibil să recuperăm unic numărul binar din cel zecimal. Dacă se utilizează nouă cifre, totuși, conversia numărul zecimal în binar va recupera numărul flotant originar.

Demonstrație. Numerele binare în simplă precizie din intervalul $[10^3, 2^{10}) = [1000, 1024)$ au zece biți în stânga mărcii zecimale și 14 la dreapta. Există deci $(2^{10}-10^3)=393216$ numere binare diferite în acest interval. Dacă numerele zecimale sunt reprezentate cu 8 cifre avem $(2^{10}-10^3)10^4=240000$ numere zecimale în acest interval. Deci nu există nici o modalitate de a reprezenta prin 240000 de numere zecimale 393216 numere binare diferite. 8 cifre sunt insuficiente!

Pentru a arăta că nouă cifre sunt suficiente trebuie să arătăm că spațiul dintre numerele binare este întotdeauna mai mare decât cel dintre numerele zecimale. Aceasta ne asigură că, pentru fiecare număr zecimal posibil, intervalul de forma $\left[N-\frac{1}{2}ulp,N+\frac{1}{2}ulp\right] \text{ conține cel puțin un număr binar. Astfel, fiecare număr binar se rotunjește la un număr zecimal unic, care ne conduce la un număr binar unic.}$

Pentru a arăta că spațiul dintre numerele zecimale este întotdeauna mai mic decât spațiul dintre numerele binare să considerăm intervalul $[10^n, 10^{n+1}]$. Pe acest interval, spațiul dintre două numere zecimale consecutive este $10^{(n+1)-9}$.

În intervalul $[10^n, 2^m]$ unde m este cel mai mic întreg astfel ca $10^n < 2^m$, spațiul dintre numerele binare este 2^{m-24} .

Inegalitatea

$$10^{(n+1)-9} < 2^{m-2n}$$

rezultă astfel:

$$10^n < 2^m$$
$$10^{(n+1)-9} = 10^n 10^{-8} < 2^m 10^{-8} < 2^m 2^{-24}$$

Observația 3.4.3 Spațiul dintre 2 numere zecimale este mai mic decât $10^{-9} \cdot 10^{n+1} = 10^{n+1-9} = 10^{n-8}$, iar spațiul dintre 2 numere binare este mai mare decât $2^m \cdot 2^{-24} = 2^{m-24}$.

Problema 3.4.4 În multe probleme, cum ar fi integrarea numerică și rezolvarea numerică a ecuațiilor diferențiale, este nevoie să se însumeze mai mulți termeni. Deoarece fiecare adunare poate introduce o eroare $\approx 1/2ulp$, o sumă cu mii de termeni poate introduce o eroare de rotunjire foarte mare. Să se arate că un mod simplu de a micșora eroarea este de a efectua sumarea în dublă precizie și celelalte calcule în simplă precizie.

Soluție. Pentru a da o estimare grosieră a modului în care reprezentarea în dublă precizie îmbunătățește acuratețea fie $s_1=x_1,\,s_2=x_1\oplus x_2,\ldots,\,s_i=s_{i-1}\oplus x_i.$ Atunci

$$s_i = (1 + \delta_i)(s_{i-1} + x_i),$$

unde $|\delta_i| \leq \varepsilon$.

$$s_{n} = (1 = \delta_{n})(s_{n-1} + x_{n}) = (1 + \delta_{n})s_{n-1} + (1 + \delta_{n})x_{n}$$

$$= (1 + \delta_{n})(1 + \delta_{n-1})(s_{n-2} + x_{n-1}) + (1 + \delta_{n})x_{n}$$

$$= (1 + \delta_{n})(1 + \delta_{n-1})s_{n-2} + (1 + \delta_{n})(1 + \delta_{n-1}x_{n-1} + (1 + \delta_{n})x_{n} = \dots$$

$$= (1 + \delta_{n})x_{n} + (1 + \delta_{n})(1 + \delta_{n-1})x_{n-1} + \dots + (1 + \delta_{n}) \dots (1 + \delta_{1})x_{1}$$

$$\approx \sum_{j=1}^{n} x_{j} \left(1 + \sum_{k=j}^{n} \delta_{k}\right) = \sum_{j=1}^{n} x_{j} + \sum_{j=1}^{n} x_{j} \left(\sum_{k=j}^{n} \delta_{k}\right)$$

$$\Delta x_{1} \approx n_{\varepsilon} \quad \Delta x_{2} \approx (n-1)\varepsilon, \dots, \Delta x_{n} \approx \varepsilon$$

$$\Delta s_{n} \leq n_{\varepsilon} \sum |x_{j}|$$

Dublarea precizie are ca efect ridicarea la pătrat a lui ε . Pentru dublă precizie $1/\varepsilon \approx 10^{16}$ deci $n_\varepsilon \ll 1$ pentru orice valoare rezonabilă a lui n.

Concluzie. Dublarea preciziei schimbă perturbația din $n\varepsilon$ în $n\varepsilon^2 \ll \varepsilon$.

Există o metodă de însumare în simplă precizie a unui număr mare de numere, introdusă de Kahan.

Ea utilizează aceeași strategie ca însumarea directă, dar la fiecare operație de adunare eroarea de rotunjire este estimată și compensată cu un termen de corecție. Principiul de estimare este explicat în figura 3.1, unde semnificanții termenilor a și b sunt reprezentați prin dreptunghiuri. El poate fi reprezentat prin formula

$$\widehat{e} = ((a \oplus b) \ominus a) \ominus b = (\widehat{s} \ominus a) \ominus b. \tag{3.1}$$

Astfel, într-o aritmetică binară cu rotunjire, pentru $a \ge b$ are loc

$$\hat{e} = \hat{s} - (a+b)$$
:

deci, eroarea de rotunjire este dată exact de (3.1).

Figura 3.1: Estimarea erorii de rotunjire $\hat{s} - s = -b_2$

Pentru însumare compensată la fiecare pas eroarea de însumare este estimată în conformitate cu principiul lui Kahan şi utilizată pentru ajustare (algoritmul 1).

```
Algoritmul 1 Însumare Kahan

s := x_1;

e := 0;

for i = 2 to n do

y := x_i - e;

t := s + y;

e := (t - s) - y;

s := t

end for
```

Problema 3.4.5 (Însumare Kahan) Eroarea de rotunjire pentru algoritmul 1 poate fi estimată prin

$$|\widehat{s}_n - s_n| \le \left(2\operatorname{eps} + O\left(n\operatorname{eps}^2\right)\right) \sum_{i=1}^n |x_i|.$$
(3.2)

Soluție. Să vedem întâi cum s-a obținut estimația pentru formula $\sum x_i$. Introducen $s_1 = x_1$, $s_i = (1 + \delta_i)(s_{i-1} + x_i)$. Atunci suma calculată este s_n , care este o sumă de termeni de forma x_i înmulțit cu o expresie în δ_j -uri. Coeficientul exact al lui x_1 este $(1 + \delta_2)(1 + \delta_3) \dots (1 + \delta_n)$. Deci prin renumerotare, coeficientul lui x_2 este $(1 + \delta_3)(1 + \delta_4) \dots (1 + \delta_n)$ ș.a.m.d. Se procedează la fel ca la problema 3.4.4, doar coeficientul lui x_1 este mai complicat. Avem $s_0 = e_0 = 0$ și

$$y_k = x_k \ominus c_{k-1} = (x_k - c_{k-1})(1 + \eta_k)$$

$$s_k = s_{k-1} \oplus y_k = (s_{k-1} + y_k)(1 + \sigma_k)$$

$$e_k = (s_k \ominus s_{k-1}) \ominus y_k = [(s_k - s_{k-1})(1 + \gamma_k) - y_k](1 + \delta_k)$$

unde toate literele greceşti sunt mărginite de eps. Este mai uşor să calculăm coeficientul lui x_1 în $s_k - e_k$ şi e_k decât în s_k . Când k = 1,

$$e_1 = (s_1(1+\gamma_1) - \gamma_1)(1+\delta_1) = y_1((1+\sigma_1)(1+\gamma_1) - 1)(1+\delta_1)$$

= $x_1(\sigma_1 + \gamma_1 + \sigma_1\gamma - 1)(1+\delta_1)(1+\eta_1)$

$$s_1 - c_1 = x_1[(1 + \sigma_1) - (\sigma_1 + \gamma_1 + \sigma_1\gamma_1)(1 + \delta_1)](1 + \eta_1)$$

= $x_1[1 - \gamma_1 - \sigma_1\delta_1 - \sigma_1\gamma_1 - \delta_1\gamma_1 - \sigma_1\gamma_1\delta_1](1 + \eta_1).$

Notând coeficienții lui x_1 în aceste expresii cu E_k și respectiv S_k , atunci

$$E_1 = 2 \operatorname{eps} + O(\operatorname{eps}^2)$$

 $S_1 = 1 + \eta_1 - \gamma_1 + 4 \operatorname{eps}^2 + O(\operatorname{eps}^3).$

Pentru a obține formula generală pentru S_k și E_k , dezvoltăm definițiile lui s_k și e_k , ignorând toți termenii în x_i cu i > 1. Aceasta ne dă

$$s_k = (s_{k-1} + y_k)(1 + \sigma_k) = [s_{k-1} + (x_k - e_{k-1})(1 + \eta_k)](1 + \sigma_k)$$
$$= [(s_{k-1} - e_{k-1}) - \eta_k e_{k-1}](1 + \sigma_k)$$

$$e_k = [(s_k - s_{k-1})(1 + \gamma_k) - y_k](1 + \delta_k)$$

$$= \{ [((s_{k-1} - e_{k-1}) - \eta_k e_{k-1})(1 + \sigma_k) - s_{k-1}](1 + \gamma_k) + e_{k-1}(1 + \eta_k) \}$$

$$(1 + \delta_k)$$

$$= \{ [(s_{k-1} - e_{k-1})\sigma_k - \eta_k e_{k-1}(1 + \sigma_k) - e_{k-1}] (1 + \gamma_k) + e_{k-1}(1 + \eta_k) \}$$

$$(1 + \delta_k)$$

$$= [(s_{k-1} - e_{k-1})\sigma_k (1 + \gamma_k) - e_{k-1} (\gamma_k + \eta_k (\sigma_k + \gamma_k + \sigma_k \gamma_k))] (1 + \delta_k)$$

$$s_{k} - e_{k} = ((s_{k-1} - e_{k-1}) - \eta_{k}e_{k-1}) (1 + \sigma_{k}) - ((s_{k-1} - e_{k-1})\sigma_{k}(1 + \gamma_{k}) - e_{k-1}(\gamma_{k} + \eta_{k}(\sigma_{k} + \gamma_{k} + \sigma_{k}\gamma_{k})))] (1 + \delta_{k})$$

$$= (s_{k-1} - e_{k-1}) ((1 + \sigma_{k}) - \sigma_{k}(1 + \gamma_{k})(1 + \delta_{k})) + (c_{k-1}(-\eta_{k}(1 + \sigma_{k}) + (\gamma_{k} + \eta_{k}(\sigma_{k} + \gamma_{k} + \sigma_{k}\gamma_{k})) (1 + \delta_{k}))$$

$$= (s_{k-1} - e_{k-1}) (1 - \sigma_{k}(\sigma_{k} + \gamma_{k} + \sigma_{k}\gamma_{k})) + (c_{k-1}(-\eta_{k} + \gamma_{k} + \eta_{k}(\gamma_{k} + \sigma_{k}\gamma_{k}) + (\gamma_{k} + \eta_{k}(\sigma_{k} + \gamma_{k} + \sigma_{k}\gamma_{k})) \delta_{k}]$$

Deoarece S_k și E_k trebuie calculate cu precizia eps^2 , ignorând termenii de grad mai mare avem

$$E_k = (\sigma_k + O(eps^2)) S_{k-1} + (-\gamma_k + O(eps^2)) E_{k-1},$$

$$S_k = (1 + 2eps^2 + O(eps^2)) S_{k-1} + (2eps + O(eps^2)) E_{k-1}.$$

Utilizând aceste formule se obține

$$C_2 = \sigma_2 + O(\text{eps}^2)$$

 $S_2 = 1 + \eta_1 - \gamma_1 + 10 \text{ eps}^2 + O(\text{eps}^3)$

și, în general, se verifică ușor prin indicție că

$$C_k = \sigma_k + O(\text{eps}^2)$$

 $S_k = 1 + \eta_1 - \gamma_1 + (4k + 2) \text{eps}^2 + O(\text{eps}^3).$

În final vom calcula coeficientul lui x_1 din s_k . Pentru a obține această valoare, fie $x_{n+1}=0$ și toate literele grecești cu indicii n+1 egale cu zero și calculăm s_{n+1} . Atunci $s_{n+1}=s_n-c_n$ și coeficientul lui x_1 în s_n este mai mic decât coeficientul lui s_{n+1} , care este

$$S_n = 1 + \eta_1 - \gamma_1 + (4n + 2) \operatorname{eps}^2 + O(n \operatorname{eps}^2).$$

Marginea (3.2) este o îmbunătățire semnificativă față de însumarea obișnuită, cu condiția ca n să nu fie suficient de mare, dar nu este la fel de bună ca însumarea în dublă precizie.

Un exemplu de expresie care poate fi rescrisă utilizând anularea benignă este $(1+x)^n$, unde $x \ll 1$.

Problema 3.4.6 Depunând 100\$ pe zi într-un cont cu o rată a dobânzii de 6% calculată zilnic la sfârșitul anului avem 100[(1+i/n)-1]/(i/n)\$.

Dacă p=2 și p=24 (ca în IEEE) obținem 37615.45\$ care comparat cu răspunsul exact, 37614.05\$ dă o discrepanță de 1.40\$. Explicați fenomenul.

Soluție. Expresia 1+i/n implică adăugarea unui 1 la 0.0001643836, deci biții de ordin mic ai lui i/n se pierd. Această eroare de rotunjire este amplificată când (1+i/n) este ridicat la puterea a n-a. Expresia $(1+i/n)^n$ se rescrie sub forma $\exp[n\ln(1+i/n)]$. Problema este acum calculul lui $\ln(1+x)$ pentru x mic. O posibilitate ar fi să utilizăm aproximarea $\ln(1+x) \simeq x$ și se obține 37617.26\$ cu o eroare de 3.21\$ deci mai mare decât în situația anterioară. Rezultatul de mai jos ne permite să calculăm precis $\ln(1+x)(37614.67\$$, eroarea 2c). Se presupune că LN(x) aproximează $\ln x$ cu o precizie $\le 1/2ulp$. Problema care o rezolvă este aceea că atunci când x este mic $LN(1\oplus x)$ nu este apropiat de $\ln(1+x)$ deoarece $1\oplus x$ nu este precis. Adică valoarea calculată pentru $\ln(1+x)$ nu este apropiată de valoarea actuală când $x \le 1$.

I. Dacă ln(1+x) se calculează utilizând formula

$$\ln(1+x) = \left\{ \begin{array}{ll} x & \mathrm{dac} & 1 \oplus x = 1 \\ \\ \frac{x \ln(1+x)}{(1+x)-1} & \mathrm{dac} & 1 \oplus x \neq 1 \end{array} \right.$$

eroarea relativă este cel mult 5ε când $0 \le x < 3/4$ cu condiția ca scăderea să se realizeze cu o cifră de gardă, $\varepsilon < 0.1$ și ln este calculat cu o precizie de 1/2ulp.

Această formulă este operațională pentru orice valoare a lui x, dar este interesantă dacă $x \ll 1$, când apare anulare catastrofală în formula naivă pentru calculul lui $\ln(1+x)$. Deși formula pare misterioasă ea are o explicație simplă.

$$\ln(1+x) = \frac{x\ln(1+x)}{x} = x\mu(x)$$
$$\mu(x) = \frac{\ln(1+x)}{x}$$

va suferi o eroare mare când se adaugă 1 la x. Totuşi μ este aproape constantă deoarece $\ln(1+x) \simeq x$. Deci dacă x se schimbă puţin eroarea va fi mică. Cu alte cuvinte, dacă $\widetilde{x} \simeq x$, $x\mu(\widetilde{x})$ va fi o aproximare bună pentru $x\mu(x) = \ln(1+x)$. Există o valoare pentru \widetilde{x} astfel încât $\widetilde{x}+1$ să poată fi calculat precis? Deci $\widetilde{x}=(1\oplus x)\ominus 1$, deoarece în acest caz $1+\widetilde{x}=1\oplus x$.

Lema 3.4.7
$$Dac \ \mu(x) = \frac{\ln(1+x)}{x}$$
, atunci pentru $0 \le x \le \frac{3}{4}$ $1/2 \le \mu(x) \le 1$ si $|\mu'(x)| \le 1/2$.

Demonstrație. $\mu(x)=1-x/2+x^2/3-\ldots$ este o serie alternată cu termeni descrescători, deci pentru $x\leq 1$,

$$\mu(x) \ge 1 - \frac{x}{2} \ge 1/2$$
 şi $\mu(x) \le 1$.

Seria Taylor a lui $\mu'(x)$ este de asemenea alternată și dacă $x \leq \frac{3}{4}$, termenii sunt descrescători deci

$$-1/2 \le \mu'(x) \le -\frac{1}{2} + \frac{2x}{3}$$
 sau $-\frac{1}{2} \le \mu'(x) \le 0$.

Demonstrația teoremei.

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
 (Taylor)

alternată și $0 < x - \ln(1+x) < \frac{x^2}{2}$, δ pentru $\ln(1+x) \approx x < \frac{x}{2}$. Dacă $1 \oplus x = 1$, atunci $|x| < \varepsilon$, deci $\delta < \frac{\varepsilon}{2}$.

Dacă $1 \oplus x \neq 1$, fie \widehat{x} definit prin $1 \oplus x = 1 + \widehat{x}$

 $0 \le x < 1 \ \Rightarrow \ (1 \oplus x) \ominus 1 = \widehat{x}$. Dacă împărțirea și logaritmul se calculează cu o precizie de 1/2ulp

$$\frac{\ln(1 \oplus x)}{(1 \oplus x) \ominus 1} (1 + \delta_1)(1 + \delta_2) = \frac{\ln(1 + \widehat{x})}{\widehat{x}} (1 + \delta_1)(1 + \delta_2) =$$

$$= \mu(\widehat{x})(1 + \delta_1)(1 + \delta_2); \quad |\delta_1| \le \varepsilon, \quad |\delta_2| \le \varepsilon$$

$$\mu(\widehat{x}) - \mu(x) = (\widehat{x} - x)\mu(\xi) \quad \xi \in (x, \widehat{x})$$

Din definiția lui \widehat{x} , $|\widehat{x} - x| \leq \varepsilon$. Aplicăm

$$|\mu(\widehat{x}) - \mu(x)| \leq \frac{\varepsilon}{2} \quad \text{sau} \quad \left|\frac{\mu(\widehat{x})}{\mu(x)} - 1\right| \leq \frac{\varepsilon}{2|\mu(x)|} \leq \varepsilon$$

adică

$$\mu(\widehat{x}) = \mu(x)(1+\delta_3), \quad |\delta_3| \le \varepsilon$$

$$\frac{x \ln(1+x)}{(1+x)-1}(1+\delta_1)(1+\delta_2)(1+\delta_3)(1+\delta_4), \quad |\delta_i| \le \varepsilon$$

Dacă $\varepsilon > 0.1$ atunci

$$(1 + \delta_1)(1 + \delta_2)(1 + \delta_3)(1 + \delta_4) = 1 + \delta$$

cu $|\delta| < 5\varepsilon$.

Problema 3.4.8 Dacă $b^2 \approx 4ac$, eroarea de rotunjire poate contamina jumătate din cifrele rădăcinii calculate cu formula $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $(\beta = 2)$.

Soluție. Dacă eroarea relativă este $n\varepsilon$ atunci numărul de cifre contaminat este $\log_{\beta} n$.

$$((b \otimes b) \ominus (3a \otimes c) = (b^2(1+\delta_1) - 4ac(1+\delta_2))(1+\delta_3) =$$
$$= (d(1+\delta_1) - 4ac(\delta_1 - \delta_2)(1+\delta_3)).$$

Pentru a estima eroarea vom ignora termenii de ordinul doi în δ_i , eroarea fiind

$$d(\delta_1 + \delta_3) - 4ac\delta_n, \quad |\delta_4| = |\delta_1 - \delta_2| \le 2\varepsilon$$

Deoarece $\delta \ll 4ac$, primul termen $d(\delta_1 + \delta_3)$ poate fi ignorat. Pentru a estima al treilea termen scriem

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}),$$

 $deci ax_1x_2 = c$

$$b^2 \approx 4ac \implies x_1 \approx x_2 \implies 4ac\delta_4 \approx 4a^2x_1^2\delta_4$$

Valoarea calculată pentru \sqrt{d} este $\sqrt{d+4a^2x_1^2\delta_4}$. Aplicăm inegalitatea

$$p-q \le \sqrt{p^2-q^2} \le \sqrt{p^2+q^2} \le p+q, \qquad p \ge q.$$

Obtinem

$$\sqrt{d+4a^2x_1\delta_4} = \sqrt{d} + E$$

unde

$$|E| \le \sqrt{4a^2x_1^2|\delta_n|}$$

deci eroarea absolută pentru $\frac{\sqrt{d}}{2a}$ este aproximativ $x_1\sqrt{\delta_n}$. Deoarece $\delta_4 \approx \beta^{-p}, \sqrt{\delta_4} \approx \beta^{-p/2}$ și deci această eroare absolută contaminează jumătate din biții rădăcinii $x_1 = x_2$.

Condiționarea unei probleme 3.5

Exemplul 3.5.1 (Recurențe) Calculăm

$$I_n = \int_0^1 \frac{t^n}{t+5} dt \ pentru \ n \in \mathbb{N}$$

$$I_0 = \int_0^1 \frac{dt}{t+5} = \ln(t+5) \Big|_0^1 = \ln\frac{6}{5}$$

$$\frac{t}{t+5} = 1 - \frac{5}{t+5}$$
(3.3)

$$I_{k} = -5I_{k-1} + \frac{1}{k}, \quad k = 1, 2, \dots, n$$

$$y_{0} = I_{0}, \quad y_{n} = I_{n}$$

$$y_{n} = f_{n}(I_{0})$$

$$y_{0} \rightarrow \boxed{f_{n}} \rightarrow y_{n}$$

$$f_{n} : \mathbb{R} \rightarrow \mathbb{R}$$

$$(3.4)$$

Ne interesează condiționarea lui f_n în $y_0=I_0$. Rezultatul final va fi o aproximare $I_n^*=f_n(I_0^*)$ și vom avea

$$\left| \frac{I_n^* - I_n}{I_n} \right| = (cond f_n)(I_0) \left| \frac{I_0^* - I_0}{I_0} \right|$$

Aplicând (3.4) obţinem

$$y_n = f_n(y_0) = (-5)^n y_0 + p_n,$$

cu p_n independent de y_0 .

$$(cond f_n)(y_0) = \left| \frac{y_0 f'(y_0)}{y_n} \right| = \left| \frac{y_0 (-5)^n}{y_n} \right|.$$

Deoarece I_n este descrescător

$$(cond f_n)(I_0) = \frac{I_0 5^n}{I_n} > \frac{I_0 \cdot 5^n}{I_0} = 5^n$$

Spunem că avem de-a face cu o problemă prost condiționată. Cum putem evita fenomenul?

În loc să înmulțim cu un număr mare, mai bine împărțim cu un număr mare. Scriem (3.4) astfel

$$y_{k-1} = \frac{1}{5} \left(\frac{1}{k} - y_k \right), \quad k = \nu, \nu - 1, \dots, n + 1$$

Problema este, desigur, cum să calculăm valoarea de pornire y_{ν} . Înainte de a începe cu aceasta să observăm că avem o nouă cutie neagră

$$(cond g_n)(y_\nu) = \left| \frac{y_\nu \left(-\frac{1}{5} \right)^{-\nu - n}}{y_n} \right|, \quad \nu > n.$$

Pentru $y_{\nu} = I_{\nu}$, avem folosind monotonia

$$(\operatorname{cond} g_n)(I_{\nu}) < \left(\frac{1}{5}\right)^{\nu-n}, \quad \nu > n$$

$$\left| \frac{I_n^* - I_n}{I_n} \right| = (cond \, g_n)(I_\nu) \left| \frac{I_\nu^* - I_\nu}{I_\nu} \right| < \left(\frac{1}{5} \right)^{\nu - n} \left| \frac{I_\nu^* - I_\nu}{I_\nu} \right|$$

Dacă luăm $I_{\nu}^{*}=0$, comiţând o eroare de 100% în valoarea de pornire obţinem eroarea relativă

$$\left| \frac{I_n^* - I_n}{I_n} \right| < \left(\frac{1}{5} \right)^{\nu - n}, \quad \nu > n$$

Dacă alegem ν suficient de mare, de exemplu

$$\nu > n + \frac{\ln\frac{1}{\varepsilon}}{\ln 5} \tag{3.5}$$

eroarea relativă este $< \varepsilon$. Avem deci următorul algoritm pentru calculul lui I_n : se dă precizia ε , se alege n, cel mai mic întreg care satisface (3.5) și se calculează

$$\begin{cases}
I_n \nu^* = 0 \\
I_{k-1}^* = \frac{1}{5} \left(\frac{1}{k} - I_k^* \right), \ k = \nu, \nu - 1, \dots, n + 1
\end{cases}$$
(3.6)

Aceasta va produce o aproximație suficient de precisă $I_n^* \approx I_n$ chiar în prezența erorilor de rotunjire din (3.6).

Idei similare se pot aplica și la problema mai importantă a calculării soluțiilor unor recurențe liniare de ordinul II, cum ar fi cele satisfăcute de funcțiile Bessel și de multe alte funcții ale fizicii matematice. Procedura recurențelor regresive (retrograde) este strâns legată de teoria fracțiilor continue.

Problema 3.5.2 (Condiționarea ecuațiilor algebrice) Fie ecuația:

$$p(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0, \quad a_{0} \neq 0$$
(3.7)

 $\xi i \xi o$ rădăcină simplă a ei:

$$p(\xi) = 0, \quad p'(\xi) \neq 0.$$

Problema este de a se determina ξ , dându-se p. Vectorul de date

$$a = [a_0, a_1, \dots, a_{n-1}]^T \in \mathbb{R}^n$$

constă din coeficienții polinomului p, iar rezultatul este ξ , un număr real sau complex. Astfel avem:

$$\xi: \mathbb{R}^n \to \mathbb{C}, \quad \xi = \xi(a_0, a_1, \dots, a_{n-1})$$

Care este condiționarea lui ξ ?

Soluție. Definim

$$\gamma_{\nu} = (cond_{\nu}\xi)(a) = \left| \frac{a_{\nu} \frac{\partial \xi}{\partial a_{\nu}}}{\xi} \right|, \quad \nu = 0, 1, \dots, n - 1$$
 (3.8)

Vom alege o normă convenabilă, de exemplu norma

$$\|\gamma\|_1 := \sum_{\nu=0}^{n-1} |\gamma_{\nu}|$$

a vectorului $\boldsymbol{\gamma} = [\gamma_0, \dots, \gamma_{n-1}]^T$, pentru a defini

$$(cond\xi)(a) = \sum_{\nu=0}^{n-1} (cond_{\nu}\xi)(a)$$
 (3.9)

Pentru a determina derivatele parțiale ale lui ξ în raport cu a_{ν} , observăm că avem identitatea:

$$[\xi(a_0, a_1, \dots, a_{n-1})]^n + a_{n-1}[\xi(a_0, a_1, \dots, a_{n-1})]^{n-1} + \dots + a_{\nu}[\xi(a_0, a_1, \dots, a_{n-1})]^{\nu} + \dots + a_0 = 0.$$

Derivând în raport cu a_{ν} obținem

$$n[\xi(a_0, a_1, \dots, a_{n-1})]^{n-1} \frac{\partial \xi}{\partial a_{\nu}} + a_{n-1}(n-1)[\xi(a_0, a_1, \dots, a_{n-1})]^{n-2} \frac{\partial \xi}{\partial a_{\nu}} + \dots +$$

$$+a_{\nu}\nu[\xi(a_0, a_1, \dots, a_{n-1})]^{\nu-1}\frac{\partial \xi}{\partial a_{\nu}} + \dots + a_1\frac{\partial \xi}{\partial a_{\nu}} + [\xi(a_0, a_1, \dots, a_{n-1})]^{\nu} \equiv 0$$

unde ultimul termen provine din derivarea produsului $a_{\nu}\xi^{\nu}$.

Ultima identitate se poate scrie

$$p'(\xi)\frac{\partial \xi}{\partial a_{\nu}} + \xi^{\nu} = 0$$

Deoarece $p'(\xi) \neq 0$, putem obține $\frac{\partial \xi}{\partial a_{\nu}}$ și să înlocuim în (3.8) și (3.9) pentru a obține

$$(cond\xi)(a) = \frac{1}{|\xi p'(\xi)|} \sum_{\nu=0}^{n-1} |a_{\nu}| |\xi|^{\nu}$$
(3.10)

Vom ilustra (3.10) considerând un polinom p de grad n cu rădăcinile $1, 2, \ldots, n$

$$p(x) = \prod_{\nu=1}^{n} (x - \nu) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{0}$$
 (3.11)

Acesta este un exemplu faimos, datorat lui Wilkinson, care a descoperit proasta condiționare a anumitor zerouri aproape printr-un accident. Dacă luăm $\xi_{\mu}=\mu$, $\mu=1,2,\ldots,n$ se poate arăta că

$$\min_{\mu} cond\xi_{\mu} = cond\xi_{1} \sim n^{2} \operatorname{când} n \to \infty$$

$$\max_{\mu} cond\xi_{\mu} \sim \frac{1}{(2-\sqrt{2})\pi n} \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)^{n} \operatorname{când} n \to \infty.$$

Cea mai prost condiționată rădăcină este $\xi\mu_0$ cu μ_0 întregul cel mai apropiat de $n/\sqrt{2}$ când n este mare. Numărul său de condiționare crește ca $(5.828\dots)^n$, deci exponențial. De exemplu pentru $n=20 \ cond\xi_{\mu_0}=0,540\times 10^{14}$.

Exemplul ne învață că rădăcinile unei ecuații algebrice scrise în forma (3.7) pot fi extrem de sensibile la schimbări mici ale coeficienților. De aceea este contraindicat să se exprime orice polinom cu ajutorul puterilor ca în (3.7) și (3.11). Aceasta este în particular adevărat pentru polinoamele caracteristice ale matricelor. Este mult mai bine să lucrăm cu matricele însele și să le reducem (prin transformări de similaritate) la o formă care să permită obținerea rapidă a valorilor proprii - rădăcini ale ecuației caracteristice.

Problema 3.5.3 Presupunem că o rutină de bibliotecă pentru funcția logaritmică ne furnizează $y = \ln x$ pentru orice număr în virgulă flotantă, x, producând un y_A ce satisface $y_A = (1 + \varepsilon) \ln x$, $|\varepsilon| \le 5eps$. Ce putem spune despre condiționarea algoritmului A?

Soluție. Avem evident

$$y_A = \ln x_A$$
 unde $x_A = x^{1+\varepsilon}$ (unic)

În consecință

$$\left| \frac{x_A - x}{x} \right| = \left| \frac{x^{1+\varepsilon} - x}{x} \right| = |x^{\varepsilon} - 1| \approx |\varepsilon \ln x| \le 5|\ln x| eps$$

și deci $(cond\ A)(x) \le 5|\ln x|$. Algoritmul A este bine condiționat exceptând vecinătatea dreaptă a lui x=0 și pentru x foarte mare. În ultimul caz, totuși, este posibil ca x să dea depășire înainte ca A să devină prost condiționat. \blacksquare

Problema 3.5.4 Considerăm problema

$$f: \mathbb{R}^n \to \mathbb{R}, \quad y = x_1 x_2 \dots x_n$$

Rezolvăm problema prin algoritmul evident

$$p_1 = x_1$$

$$p_k = fl(x_k p_{k-1}), \quad k = 2, 3, \dots, n$$

$$y_A = p_n$$

Care este condiționarea algoritmului?

Soluție. Am presupus că $x \in \mathbb{R}^n(t,s)$. Utilizând legile de bază ale aritmeticii mașinii obținem

$$p_1 = x_1$$

$$p_k = x_k p_{k-1} (1 + \varepsilon_k), \quad k = 2, 3, \dots, n, \quad |\varepsilon_k| \le eps$$

de unde

$$p_n = x_1 \dots x_n (1 + \varepsilon_2) (1 + \varepsilon_q) \dots (1 + \varepsilon_n)$$

Aici, putem lua de exemplu (nu se asigură unicitatea)

$$x_A = [x_1, x_2(1 + \varepsilon_2), \dots, x_n(1 + \varepsilon_n)]^T.$$

Aceasta ne dă, utilizând norma $\|\cdot\|_{\infty}$

$$\frac{\|x_A - x\|_{\infty}}{\|x\|_{\infty}eps} = \frac{\|[0, x_2\varepsilon_2, \dots, x_n\varepsilon_n]^T\|_{\infty}}{\|x\|_{\infty}eps} \le \frac{\|x\|_{\infty}eps}{\|x\|_{\infty}eps} = 1$$

 $\mathrm{deci}\,(cond\,A)(x) \leq 1\,\mathrm{pentru}\,\mathrm{orice}\,x \in \mathbb{R}^n(t,s)\,\mathrm{si}\,\mathrm{algoritmul}\,\mathrm{este}\,\mathrm{bine}\,\mathrm{conditionat}.$

Capitolul 4

Rezolvarea numerică a sistemelor algebrice liniare

4.1 Descompunere LU

$$A = LU$$

$$A = \begin{pmatrix} a_{11} & w^T \\ v & A' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ v/a_{11} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{11} & w^T \\ 0 & A' - vw^T/a_{11} \end{pmatrix}$$

Matricea $A' - vw^T/a_{11}$ se numeşte complement Schur al lui a_{11} .

$$A = \begin{pmatrix} 1 & 0 \\ v/a_{11} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{11} & wT \\ 0 & a' - vw^{T}/a_{11} \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 \\ v/a_{11} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{11} & w^{T} \\ 0 & L'U' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ v/a_{11} & L' \end{pmatrix} \begin{pmatrix} a_{11} & w^{T} \\ 0 & U' \end{pmatrix}$$

Problema 4.1.1 Calculați descompunerea LU a matricei

$$A = \left[\begin{array}{cccc} 2 & 3 & 1 & 5 \\ 6 & 13 & 5 & 19 \\ 2 & 19 & 10 & 23 \\ 4 & 10 & 11 & 31 \end{array} \right]$$

Soluție.

$$\begin{pmatrix} 13 & 5 & 15 \\ 15 & 10 & 23 \\ 10 & 11 & 31 \end{pmatrix} - \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} 3 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 13 & 5 & 15 \\ 15 & 20 & 23 \\ 10 & 11 & 31 \end{pmatrix} - \begin{pmatrix} 9 & 3 & 15 \\ 3 & 1 & 5 \\ 6 & 2 & 10 \end{pmatrix} =$$

$$= \begin{pmatrix} 4 & 2 & 4 \\ 16 & 9 & 18 \\ 4 & 9 & 21 \end{pmatrix}$$

$$\frac{2 \begin{vmatrix} 3 & 1 & 5 \\ 3 & 4 & 1 & 4 \\ 1 & 4 & 1 & 2 \\ 2 & 1 & 7 & 17 \end{pmatrix}$$

$$A' - vw^{T}/a_{11} = \begin{pmatrix} 9 & 18 \\ 9 & 21 \end{pmatrix} - \begin{pmatrix} 4 \\ 1 \end{pmatrix} (2, 4) = \begin{pmatrix} 9 & 18 \\ 9 & 21 \end{pmatrix} - \begin{pmatrix} 8 & 16 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 7 & 17 \end{pmatrix}$$

$$2 & 3 & 1 & 5 \\ 3 & 4 & 2 & 4 \\ 1 & 4 & 1 & 2 \\ 2 & 1 & 7 & 3 \end{pmatrix}$$

$$A' - vw^{T}/a_{11} = 17 - 7 \cdot 2 = 3$$

$$\begin{pmatrix} 2 & 3 & 1 & 5 \\ 6 & 13 & 5 & 19 \\ 2 & 19 & 10 & 23 \\ 4 & 10 & 11 & 31 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 2 & 1 & 7 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 & 5 \\ 0 & 4 & 2 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

Problema 4.1.2 (Sisteme tridiagonale) Dați algoritmul de descompunere LU pentru o matrice tridiagonală.

Timp liniar

El. Gaussiană

Factorizare Crout $v_{ii} = 1$

Factorizare Doolittle $l_{ii} = 1$

Exemplu. Crout

$$L = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & l_{nn} \end{pmatrix} \qquad U = \begin{pmatrix} 1 & u_2 & \dots & 0 \\ 0 & 1 & & \vdots \\ \vdots & \vdots & \ddots & u_{n-1,n} \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$a_{11} = l_{11} \qquad (4.1)$$

$$a_{i,i-1} = l_{i,i-1}, \quad i = 2, n$$
 (4.2)

$$a_{ii} = l_{i,i-1}u_{i-1,i} + l_{ii}, \quad i = 2, n$$
 (4.3)

$$a_{i,i+1} = l_{ii}u_{i,i+1} (4.4)$$

Ordinea de obţinere este (4.2), (4.4), (4.3) alternativ Algoritmul:

$$\begin{array}{ll} \text{P1} & l_{11} := a_{11} \\ & u_{12} := a_{12}/l_{11} \\ \text{P2} & \text{for } i = 2 \text{ to } n-1 \\ & l_{i,i-1} := a_{i,i-1} \\ & l_{ii} = a_{ii} - l_{i,i-1}u_{i-1,i} \\ & u_{i,i+1} = a_{i,i+1}/l_{ii} \\ \text{P3} & l_{n,n-1} = a_{n,n-1} \\ & l_{n,n} = a_{nn} - l_{n,n-1}u_{n-1,n} \end{array}$$

4.2 Descompunere LUP

Aici rolul lui a_{11} va fi jucat de a_{k1} .

Efectul QA, Q matrice de permutare

$$QA = \begin{pmatrix} a_{k1} & w^T \\ v & A' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ v/a_{k1} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & A' - vw^T/a_{k1} \end{pmatrix}$$

Matricea $A' - vw^T/a_{k1}$ se numește complementul Schur al lui a_{k1} și este nesingulară.

Determinăm mai departe descompunerea LUP a complementului Schur

$$P'(A' - vw^T/a_{k1}) = L'U'.$$

Definim

$$P = \left(\begin{array}{cc} 1 & 0 \\ 0 & P' \end{array}\right) Q$$

care este tot o matrice de permutare.

Avem acum

$$PA = \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} QA = \begin{pmatrix} 1 & 0 \\ 0 & P' \end{pmatrix} \begin{pmatrix} 1 & 0 \\ v/a_{k1} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & A' - vw^T/a_{k1} \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 \\ P'v/a_{k1} & P' \end{pmatrix} \begin{pmatrix} a_{k1}w^T \\ 0 & A' - vw^T/a_{k1} \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 \\ P'v/a_{k1} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & P'(A' - vw^T/a_{k1}) \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 \\ P'v/a_{k1} & I_{n-1} \end{pmatrix} \begin{pmatrix} a_{k-1} & w^T \\ 0 & L'U' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ P'v/a_{k1} & L' \end{pmatrix} \begin{pmatrix} a_{k1} & w^T \\ 0 & U' \end{pmatrix} = LU$$

De notat că în acest raționament atât vectorul coloană cât și complementul Schur se înmulțesc cu matricea de permutare P'.

Problema 4.2.1 Să se calculeze descompunerea LUP a matricei

$$\left[\begin{array}{ccccc}
2 & 0 & 2 & 0.6 \\
3 & 3 & 4 & -2 \\
5 & 5 & 4 & 2 \\
-1 & -2 & 3.4 & -1
\end{array}\right]$$

Soluţie.

Verificare.

$$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 2 & 0.6 \\ 3 & 3 & 4 & -2 \\ 5 & 5 & 4 & 2 \\ -1 & 02 & 3.4 & -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0.4 & 1 & 0 \\ -0.2 & 0.5 & 1 \\ 0.6 & 0 & 0.4 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 5 & 5 & 4 & 2 \\ -2 & 0.4 & -0.2 \\ 0 & 4 & -0.5 \\ & -3 \end{pmatrix}$$

Definiția 4.2.2 Spunem că matricea A $n \times n$ este diagonal dominantă pe linii dacă

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|, \quad i = \overline{1, n}$$

Problema 4.2.3 Să se rezolve sistemul

$$x_1 + 2x_2 + x_3 = 4$$
$$2x_1 + 5x_2 + 3x_3 = 10$$
$$x_1 + 3x_2 + 3x_3 = 7$$

folosind descompunerea Cholesky.

Soluție. Calculând radicalii pivoților și complementele Schur se obține:

$$B = \begin{bmatrix} 1 & 2 & 1 \\ & 5 & 3 \\ & & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ & 1 & 1 \\ & & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ & 1 & 1 \\ & & 1 \end{bmatrix}.$$

Sistemele echivalente sunt

$$\begin{cases} y_1 &= 4\\ 2y_1 + y_2 &= 10\\ y_1 + y_2 + y_3 &= 7 \end{cases}$$

cu soluția $y = [4, 2, 1]^T$ și respectiv

$$\begin{cases} x_1 + 2x_2 + x_3 &= 4 \\ x_2 + x_3 &= 2 \\ x_3 &= 1 \end{cases}$$

cu soluția $x = [1, 1, 1]^T$.

Problema 4.2.4 Calculați descompunerea QR a matricei

$$A = \left[\begin{array}{cc} 3 & 1 \\ 4 & 1 \end{array} \right].$$

Soluție. Reflexia pentru prima coloană este $P = I - 2uu^T$. Vectorul u se determină astfel:

$$\tilde{u} = \begin{bmatrix} x_1 + sign(x_1) \|x\|_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3+5 \\ 4 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix};$$

$$\|\tilde{u}\|_2 = \sqrt{8^2 + 4^2}$$

$$u = \frac{\tilde{u}}{\|\tilde{u}\|_2} = \begin{bmatrix} 8 \\ 4 \end{bmatrix} / 4\sqrt{5} = \begin{bmatrix} \frac{2}{5}\sqrt{5} \\ \frac{\sqrt{5}}{5} \end{bmatrix}.$$

Matricea de reflexie este

$$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 2 \begin{bmatrix} \frac{2}{5}\sqrt{5} \\ \frac{\sqrt{5}}{5} \end{bmatrix} \cdot \begin{bmatrix} \frac{2}{5}\sqrt{5} \\ \frac{\sqrt{5}}{5} \end{bmatrix}^T = \\ = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 2 \begin{bmatrix} \frac{4}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} \end{bmatrix} = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix} = Q^T,$$

Se obține

$$Q = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

$$R = P \cdot A = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix} \cdot \begin{bmatrix} 3 & 1 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} -5 & -\frac{7}{5} \\ 0 & -\frac{1}{5} \end{bmatrix}.$$

Problema 4.2.5 Rezolvați sistemul

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & 4 & 2 \end{bmatrix} x = \begin{bmatrix} 3 \\ 4 \\ 8 \end{bmatrix}$$

prin descompunere LUP.

Soluție. Avem

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 2 \\ 3 & 2 & 4 & 2 \end{bmatrix} \sim \begin{bmatrix} 3 & 2 & 4 & 2 \\ 2 & 1 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 3 & 2 & 4 & 2 \\ 2 & \frac{1}{2} & 1 & 2 \\ 1 & \frac{1}{2} & 1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 2 & 4 & 2 \\ 2 & \frac{1}{2} & -1 & 1 \\ 1 & \frac{1}{2} & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 3 & 2 & 4 & 2 \\ 2 & \frac{1}{2} & -1 & 1 \\ 1 & \frac{1}{2} & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 3 & 2 & 4 & 2 \\ 2 & \frac{1}{2} & -1 & 1 \\ 1 & \frac{1}{2} & 1 & -1 \end{bmatrix}.$$

Deci

$$L = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 1 & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 2 & 4 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Sistemele triunghiulare corespunzătoare sunt

$$\begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 1 & 1 \end{bmatrix} y = Pb = \begin{bmatrix} 8 \\ 4 \\ 3 \end{bmatrix},$$

cu soluția $y = [8, 0, -1]^T$ și

$$\begin{bmatrix} 2 & 4 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix} x = \begin{bmatrix} 8 \\ 0 \\ -1 \end{bmatrix},$$

cu soluția $x = [1, 1, 1]^T$.

Problema 4.2.6 Arătați că orice matrice diagonal dominantă este nesingulară.

Soluție. Fie sistemul Ax=0. Presupunem că are soluție nebanală. Există k astfel încât $0<|x_k|=\max_{1\leq j\leq n}|x_j|=\|x\|_1$

Deoarece

$$\sum_{j=1}^{n} a_{ij} x_j = 0, \quad \text{pentru} \quad i = k$$

obținem

$$a_{kk}x_k = -\sum_{\substack{j=1\\j\neq i}}^n a_{kj}x_j \implies |a_{kk}||x_k| \le \sum_{\substack{j=1\\j\neq k}}^n |a_{kj}||x_j|$$
$$|a_{kk}| \le \sum_{\substack{j=1\\j\neq k}}^n |a_{kj}| \frac{|x_j|}{|x_k|} \le \sum_{\substack{j=1\\j\neq k}}^n |a_{kj}|$$

Observația 4.2.7 În acest caz EG se face pără permutări.

Dacă $l_{ii} = 1$ avem factorizare Doolittle, iar dacă $v_{ii} = 1$ avem factorizare Crout.

4.3 Sisteme de ecuații

Problema 4.3.1 Arătați că m-norma

$$||A||_m = \max_i \sum_{j=1}^n |a_{ij}|$$

este naturală.

Soluție. Vom arăta că

$$||A||_m = \max_{||x||_\infty = 1} ||Ax||_\infty$$

Fie $x \in \mathbb{R}^n$ astfel încât

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i| = 1$$

$$||Ax||_{\infty} = \max_{1 \le i \le n} |(Ax)_i| = \max_{1 \le i \le n} \left| \sum_{j=1}^n a_{ij} x_j \right| \le$$

$$\le \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}| \max_{1 \le j \le n} |x_j| = \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}| ||x||_{\infty} =$$

$$= \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|$$

$$||Ax||_{\infty} \le \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|, \ \forall \ x \in \mathbb{R}^{n}, \ ||x||_{\infty}$$
$$||A||_{m} = \max_{\|x\|_{\infty} = 1} \le \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$
(4.5)

Fie $p \in \mathbb{N}$, $1 \le p \le n$ astfel încât

$$\sum_{j=1}^{n} |a_{pj}| = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Alegem x astfel încât

$$\begin{split} x_j &= \left\{ \begin{array}{cc} 1 & \operatorname{dac\check{a}} & a_{pj} \geq 0 \\ -1 & \operatorname{dac\check{a}} & a_{pj} < 0 \end{array} \right. \\ \|x\|_\infty &= 1, \quad a_{pj}x_j = |a_{pj}|, \ \forall \ j = \overline{1,n} \\ \|Ax\|_\infty &= \max_{1 \leq i \leq n} \left| \sum_{j=1}^n a_{ij}x_j \right| \geq \left| \sum_{j=1}^n a_{pj}x_j \right| = \sum_{j=1}^n |a_{pj}| = \max \sum_{j=1}^n |a_{ij}|, \end{split}$$

adică

$$||A||_{m} = \max_{\|x\|_{\infty}=1} ||Ax||_{\infty} \ge \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$
(4.6)

$$(4.5), (4.6) \Rightarrow " = ".$$

Problema 4.3.2 Să se arate că l-norma

$$||A||_l = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

este naturală.

Soluție.

$$||A||_l := \max_{||x||_1=1} ||Ax||_1 \stackrel{?}{=} \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

Fie $x \in \mathbb{R}^n$ astfel încât $\|x\|_1 = 1$

$$||Ax||_1 = \sum_{i=1}^n |(Ax)_i| = \sum_{i=1}^n \left| \sum_{j=1}^n a_{ij} x_j \right| \le \sum_{i=1}^n \sum_{j=1}^n |a_{ij}| |x_j| = \sum_{j=1}^n \sum_{i=1}^n |a_{ij}| |x_j| = \sum_{j=1}^n |a_{ij}| |x_j|$$

$$= \sum_{j=1}^{n} |x_j| \sum_{i=1}^{n} |a_{ij}| \le \sum_{j=1}^{n} |x_j| \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}| = ||x||_1 \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|,$$

adică

$$||A||_l \le \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|.$$

Fie $p \in \mathbb{N}$, $1 \le p \le n$ astfel încât

$$\max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}| = \sum_{i=1}^{n} |a_{ip}|$$

şi $x \in \mathbb{R}^n$ astfel încât $x_i = \delta_{ip}$. Avem $||x||_1 = 1$.

$$||A||_l \ge ||Ax||_1 = \sum_{i=1}^n |(Ax)_i| = \sum_{i=1}^n \left| \sum_{j=1}^n a_{ij} x_j \right| = \sum_{i=1}^n |a_{ip} x_p| = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

Problema 4.3.3 Arătați că norma euclidiană, l-norma și m-norma sunt norme matriciale.

Problema 4.3.4 Rezolvați sistemul

$$\begin{cases} 5x_1 + x_2 + x_3 = 7 \\ x_1 + 5x_2 + x_3 = 7 \\ x_1 + x_2 + 5x_3 = 7 \end{cases}$$

utilizând metoda lui Jacobi și metoda Gauss-Seidel.

De câte iterații este nevoie pentru a se putea atinge o precizie dorită ε ?

Soluţie.

$$x_i^{(k)} = \frac{1}{a_{ii}} \left(b_i - \sum_{\substack{j=1\\j \neq i}}^n a_{ij} x_j^{(k-1)} \right)$$
(4.7)

$$x_i^{(k)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right)$$

$$x^{(0)} = (0, 0, 0)^T$$

$$x^{(1)} = \left(\frac{7}{5}, \frac{7}{5}, \frac{7}{5} \right)$$

$$(4.8)$$

$$x_1^{(k)} = \frac{1}{5}(7 - x_2^{(k-1)} - x_3^{(k-1)})$$

$$x_2^{(k)} = \frac{1}{5}(7 - x_1^{(k-1)} - x_3^{(k-1)})$$

$$x_3^{(k)} = \frac{1}{5}(7 - x_1^{(k-1)} - x_2^{(k-1)})$$

$$x_1^{(2)} = \frac{1}{5}\left(7 - \frac{7}{5} - \frac{7}{5}\right) = \frac{21}{25}$$

$$x_2^{(2)} = \frac{1}{5}\left(7 - \frac{7}{5} - \frac{7}{5}\right) = \frac{21}{25}$$

$$x_3^{(2)} = \frac{21}{25}$$

$$x_1^{(k)} = \frac{1}{5}(7 - x_2^{(k-1)} - x_3^{(k-1)})$$

$$x_2^{(k)} = \frac{1}{5}(7 - x_1^{(k)} - x_3^{(k-1)})$$

$$x_3^{(k)} = \frac{1}{5}(7 - x_1^{(k)} - x_2^{(k)})$$

$$x_1^{(1)} = \frac{7}{5}, \quad x_2^{(1)} = \frac{7}{5} - \frac{7}{5} = 0$$

$$x_3^{(1)} = \frac{7}{5} - \frac{7}{25} = \frac{21}{25}$$

$$x_1^{(2)} = \frac{7}{5} - \frac{21}{125} = \frac{175 - 21}{125} = \frac{154}{125}$$

$$x_2^{(2)} = \frac{7}{5} - \frac{154}{625} - \frac{21}{125}, \quad x_3^{(3)} = \frac{7}{5} - \frac{154}{125} - x_2^{(2)}$$

Pentru a rezolva a doua parte a problemei vom scrie sistemul sub forma

$$x = Tx + c \implies ||x - x^{(k)}|| \le \frac{||T||^k}{1 - ||T||} ||x^{(1)} - x^{(0)}||$$

Pentru Jacobi

$$\begin{cases} x_1 = \frac{1}{5}(7 - x_2 - x_3) \\ x_2 = \frac{1}{5}(7 - x_1 - x_3) \\ x_3 = \frac{1}{5}(7 - x_1 - x_2) \end{cases}$$
$$x = \begin{bmatrix} 0 & -\frac{1}{5} & -\frac{1}{5} \\ -\frac{1}{5} & 0 & -\frac{1}{5} \\ -\frac{1}{5} & -\frac{1}{5} & 0 \end{bmatrix} x + \begin{bmatrix} \frac{7}{5} \\ \frac{7}{5} \\ \frac{7}{5} \\ \frac{7}{5} \end{bmatrix}$$

$$||T_J||_m = \frac{2}{5} = ||T_J||_l$$

$$\frac{||T_J||^k}{1 - ||T_J||} ||x^{(1)} - x^{(0)}|| < \varepsilon$$

$$x^{(0)} = 0, \quad x^{(1)} = \left(\frac{7}{5}, \frac{7}{5}, \frac{7}{5}\right)^T, \quad ||x_1|| = \frac{7}{5}$$

$$\frac{\left(\frac{2}{5}\right)^k}{\frac{3}{5}} \cdot \frac{7}{5} = \frac{2^k}{5^{k-1}} \cdot 3 \cdot \frac{7}{5} < \varepsilon$$

$$\left(\frac{2}{5}\right)^k \cdot 21 < \varepsilon, \quad k(\ln 2 - \ln 5) + \ln 21 > \ln \varepsilon$$

Pentru Gauss-Seidel $x^{(0)} = 0$

$$x_{1}^{(1)} = \frac{1}{5}(7) = \frac{7}{5}$$

$$x_{2}^{(1)} = \frac{1}{5}(7 - a_{21}x_{1}^{(1)} - a_{23}x_{2}^{(0)}) = \frac{7}{5} - \frac{1}{5} \cdot \frac{7}{5} = 7\left(\frac{1}{5} - \frac{1}{25}\right) = \frac{28}{25}$$

$$x_{3}^{(1)} = \frac{1}{5}(7 - a_{31}x_{1}^{(1)} - a_{32}x_{2}^{(1)}) = \frac{7}{5} - \frac{1}{5} \cdot \frac{7}{5} - \frac{28}{25} = \frac{35 - 7 - 28}{25} = 0$$

$$\|x^{(1)} - x^{(0)}\|_{\infty} = \left\|\frac{7}{5}, \frac{28}{25}, 0\right\| = \frac{7}{5}$$

$$x^{(k)} = (D - L)^{-1}Ux^{(k-1)} + (D - L)^{-1}b$$

$$\begin{cases} a_{11}x_{1}^{(k)} = -a_{12}x_{2}^{(k-1)} - \dots - a_{1n}x_{n}^{(k-1)} + b_{1}\\ a_{21}x_{1}^{(k)} + a_{22}x_{2}^{(k)} = -a_{23}x_{3}^{(k)} - \dots + b_{2}\\ \dots \\ a_{n1}x_{1}^{(k)} + a_{n2}x_{2}^{(k)} + \dots + a_{nn}x_{n}^{(k)} = b_{n} \end{cases}$$

$$D = \begin{pmatrix} 5 & 0 & 0\\ 0 & 5 & 0\\ 0 & 0 & 5 \end{pmatrix}, \quad L = \begin{pmatrix} 0 & 0 & 0\\ -1 & 0 & 0\\ -1 & -1 & 0 \end{pmatrix}$$

$$U = \begin{pmatrix} 0 & -1 & -1\\ 0 & 0 & -1\\ 0 & 0 & 0 \end{pmatrix}, \quad E = D - L = \begin{pmatrix} 5 & 0 & 0\\ 1 & 5 & 0\\ 1 & 1 & 5 \end{pmatrix}$$

$$\det E = 125, \quad E^{T} = \begin{pmatrix} 5 & 1 & 1\\ 0 & 5 & 1\\ 0 & 0 & 5 \end{pmatrix}$$

Problema 4.3.5 Arătați că pentru $A \in \mathcal{M}_{n,n}(\mathbb{R})$

$$||A||_2 = [\rho(A^t A)]^{1/2}$$

Capitolul 5

Calculul cu diferențe

Să considerăm mulțimea

$$M = \{a_k | a_k = a + kh, k = \overline{0, m}, a, h \in \mathbb{R}\}\$$

Definiția 5.0.6 *Pentru* $f: M \to \mathbb{R}$, cantitatea

$$\Delta_h f(a_i) = f(a_i + h) - f(a_i), \quad i < m$$

se numește diferența finită de ordinul I cu pasul h a funcției f în punctul a_i . Diferența finită de ordinul k se definește recursiv prin

$$\Delta_h^k f(a_i) = \Delta_n(\Delta_h^{k-1} f(a_i))$$

Au loc relațiile

$$\Delta_h^m f(a) = \sum_{i=0}^m (-1)^i \binom{m}{i} f[a + (m-i)h]$$

$$\Delta_h^m f(a) = \sum_{i=0}^m (-1)^{m-i} \binom{n}{i} f(a+ih)$$

$$f(a_k) = \sum_{i=0}^k \binom{k}{i} \Delta_h^i f(a)$$

$$\Delta_h^m (fg) a = \sum_{i=0}^m \binom{m}{i} \Delta_h^i f(a) \Delta_h^{m-i} g(a+ih)$$

Valorile $[\Delta_1^m x^r]_{x=0} = \Delta^m 0^r$ se numesc diferențele lui 0.

$$\Delta^{m} 0^{r} = \sum_{i=0}^{m} (-1)^{m-i} \binom{m}{i} i^{r}$$

Problema 5.0.7 Aplicație. Vom stabili o formulă explicită pentru calculul sumei

$$S_{m,r} = 1^r + 2^r + 3^r + \dots + m^r$$

cu ajutorul diferențelor lui 0.

$$S_{m,r} = \sum_{i=1}^{r} \binom{m+1}{i+1} \Delta^{i}0^{r}$$

$$f(a_{p}) = \sum_{j=0}^{p} \binom{p}{k} \Delta_{h}^{k} f(a)$$

$$\Delta_{h}^{m} f(a) = \sum_{i=0}^{m} (-1)^{m-i} \binom{m}{i} f(a+ih)$$

$$f(x) = x^{r}$$

$$p^{r} = f(p) = \sum_{k=0}^{p} \binom{p}{k} \Delta^{k}0^{r}, \quad p = 1, 2, \dots, m$$

$$1^{r} = \binom{1}{0} \Delta^{0}0^{r} + \binom{1}{1} \Delta^{1}0^{r}$$

$$2^{r} = \binom{2}{0} \Delta^{0}0^{r} + \binom{2}{1} \Delta^{1}0^{r} + \binom{2}{2} \Delta^{2}0^{r}$$

$$\dots$$

$$m^{r} = \binom{m}{0} \Delta^{0}0^{r} + \binom{m}{1} \Delta^{1}0^{r} + \dots + \binom{m}{m} \Delta^{m}0^{r}$$

$$S_{m,r} = \sum_{j=1}^{m} \left[\binom{j}{j} + \binom{j+1}{j} + \dots + \binom{m}{j} \right] \Delta^{j}0^{r} = \sum_{j=1}^{r} \binom{m+1}{j+1} \Delta^{j}0^{r}$$
Deoarece dacă $m > r$, $\Delta^{o}0^{r} = 0$ pentru $j = \overline{r+1}, \overline{m}$ iar pentru $m < 1$

Deoarece dacă m>r, $\Delta^o0^r=0$ pentru $j=\overline{r+1,m}$ iar pentru m< r, $\binom{m+1}{j+1}=0$, pentru $j=m+1,m+2,\ldots,r$.

Cazuri particulare

$$S_{m,1} = {m+1 \choose 2} \Delta 0 = {m+1 \choose 2} = \frac{m(m+1)}{2}, \quad \Delta 0 = 1$$

$$S_{m,2} = {m+1 \choose 2} \frac{\Delta 0^2}{1} + {m+1 \choose 3} \frac{\Delta^2 0^2}{2} = \frac{m(m+1)(2m+1)}{6}$$

$$S_{m,3} = {m+1 \choose 2} \frac{\Delta 0^3}{1} + {m+1 \choose 3} \frac{\Delta^2 0^3}{6} + {m+1 \choose 4} \frac{\Delta^3 0^3}{6} = \left[\frac{m(m+1)}{2}\right]^2$$

Problema 5.0.8 Să se demonstreze formula

$$\Delta_h^m \frac{1}{x} = \frac{(-1)^m m! h^m}{x(x+h)\dots(x+mh)}$$

(prin inducție).

Definiția 5.0.9 Prederivata de ordinul m cu pasul h a funcției f în a este

$$D_h^m f(a) = \frac{\Delta_h^m f(a)}{h^m}$$
$$D_n^0 f(a) = f(a)$$

Problema 5.0.10 Dacă f are derivată de ordinul m continuă pe (a, a + mh) are loc

$$D_h^m f(a) = f^{(m)}(a + \theta_m h), \quad \theta \in (0, 1)$$

Demonstrație. Prin inducție.

$$D_h f(a) = \frac{f(a+h) - f(a)}{h} = f'(\xi_1), \quad \xi_1 \in (a, a+h)$$

$$D_h^{m-1} f(a) = f^{(m-1)}(\xi_{m-1}) | D_h, \quad \xi_{m-1} \in (a, a - (m-1)h)$$

$$D_h^m f(a) = \frac{1}{h} [f^{(m-1)}(\xi_{m-1} + h) - f^{(m-1)}(\xi_{m-1})] = f^{(m)}(\xi_m)$$

$$\xi_m \in (a, a+mh) \implies \xi_m = a + \theta_m h, \quad \theta \in (0, 1)$$

Corolar 5.0.11 $f^{(m)}$ continuă în $a \Rightarrow \lim_{h\to 0} D_h^m(a) = f^{(m)}(a)$.

Problema 5.0.12 Să se demonstreze formulele

$$\Delta_h^m \cos(ax+b) = \left(2\sin\frac{ah}{2}\right)^m \cos\left(ax+b+m\frac{ah+\pi}{2}\right)$$
$$\Delta_h^m \sin(ax+b) = \left(2\sin\frac{ah}{2}\right)^m \sin\left(ax+b+m\frac{ah+\pi}{2}\right)$$

Să se deducă de aici expresiile prederivatelor de ordinul m ale funcțiilor $\cos x$, $\sin x$ și să se calculeze limitele lor când $h \to 0$.

Soluție.

$$\Delta_h \cos(ax+b) = \cos[a(x+h)+b] - \cos(ax+h) =$$

$$= 02\sin\frac{ah}{2}\sin\left(ax+b+\frac{ah}{2}\right) =$$

$$= 2\sin\frac{ah}{2}\cos\left(ax+b+\frac{\pi+ah}{2}\right) \left|\Delta_h \operatorname{de} n - 1\operatorname{ori}\right|$$

$$\Delta_h^m \sin(ax+b) = \Delta_h^m \cos\left(ax+b-\frac{\pi}{2}\right) =$$

$$= \left(2\sin\frac{ah}{2}\right)^m \cos\left(ax+b+m\frac{ah+\pi}{2}-\frac{\pi}{2}\right) =$$

$$= \left(2\sin\frac{ah}{2}\right)^m \sin\left(ax+b+m\frac{ah+\pi}{2}\right)$$

Făcând $a=1,\ b=0$ și împărțind cu h^m se obține

$$D_h^m \cos x = \left(\frac{\sin\frac{h}{2}}{\frac{h}{2}}\right)^m \cos\left(x + m\frac{h + \pi}{2}\right)$$
$$D_h^m \sin x = \left(\frac{\sin\frac{h}{2}}{\frac{h}{2}}\right)^m \sin\left(x + m\frac{h + \pi}{2}\right)$$

Problema 5.0.13 Să se calculeze $\Delta_h^m \frac{1}{x^2}$.

Soluție.

$$\Delta_h^m \frac{1}{x^2} = \left(\frac{1}{x} + \frac{1}{x+h} + \dots + \frac{1}{x+mh}\right) \Delta_h^2 \frac{1}{x} =$$

$$= (-1)^m m! \frac{U'_m(x)}{U_m^2(x)} h^m$$

$$u_m(x) = \prod_{k=0}^m (x+kh)$$

$$\Delta_h^m(fg)(a) = \sum_{i=0}^m \binom{m}{i} \Delta_h^i f(a) \Delta_h^{m-i} g(a+ih)$$

Problema 5.0.14 Să se demonstreze formula

$$\delta_h^m f(x) = \sum_{k=0}^m (-1)^k \binom{m}{k} f\left[x + \left(\frac{m}{2} - k\right)h\right]$$

Soluție.

$$\delta^m = (E^{\frac{1}{2}} - E^{-\frac{1}{2}}) = \sum_{k=0}^m (-1)^k \binom{m}{k} E^{\frac{n}{2} - k}$$

Problema 5.0.15 Să se stabilească generalizarea formulei lui Leibniz prin calcul simbolic.

Soluție. \overline{E}_h operator de translație ce are efect numai asupra lui u $\overline{\overline{E}}_h$ operator de translație ce are efect numai asupra lui v

$$\Delta_h u(x)v(x) = u(x+h)v(x+h) - u(x)v(x) =$$

$$= (\overline{E}_h \overline{\overline{E}}_h - I)u(x)v(x)$$

$$\Delta_h = \overline{E}\overline{\overline{E}} - I$$

 $\overline{\underline{\Delta}}_h$ operator de diferență ce are efect asupra lui u $\overline{\underline{\Delta}}_h$ operator de diferență ce are efect asupra lui v

$$E_{n} = I + \overline{\Delta}_{h} \quad \overline{\overline{\Delta}}_{h} = \overline{\overline{E}}_{h} - I$$

$$\Delta_{h} = \overline{\Delta}_{h} \overline{\overline{E}}_{h} + \overline{\overline{\Delta}}_{h}$$

$$\Delta_{h}^{m} = (\overline{\Delta}_{h} \overline{\overline{E}}_{h} + \overline{\overline{\Delta}}_{h})^{m} = \sum_{j=0}^{m} \overline{\Delta}_{h}^{j} \overline{\overline{\Delta}}_{h}^{m-j} \overline{\overline{E}}_{h}^{j}$$

$$\Delta_{h}^{m} u(x) v(x) = \sum_{j=0}^{m} {m \choose j} \Delta_{h}^{j} u(x) \Delta_{h}^{m-j} v(x+jh)$$

$$(a+b)^{[m,j]} = \sum_{j=0}^{m} {m \choose j} a^{[m-j,h]} b^{[j,h]}$$

$$[a, a+h, \dots, a+nh; f] = \frac{1}{n!h^{n}} \Delta_{h}^{m} f(a)$$

$$\Delta_{h}^{m} (fg)(a) = \sum_{i=0}^{m} {m \choose i} \Delta_{h}^{i} f(a) \Delta_{h}^{m-i} g(a+ih)$$

Problema 5.0.16 Să se demonstreze formula de sumare prin părți.

$$\sum_{x=a(h)}^{a+mh} u(x)\Delta_h v(x) = u(x)v(x)\Big|_a^{a+(m+1)h} - \sum_{x=a}^{a+mh} v(x+h)\Delta_h u(x)$$

Să se calculeze

$$\sum_{x=0}^{m} x b^{x} \quad (b > 0, \ b \neq 1), \quad \sum_{x=0}^{m} v(x+h) \Delta_{h} h(x)$$

Soluție. Dacă F este o soluție a ecuației cu diferențe

$$\Delta_h F(x) = f(x)$$

are loc formula de sumare

$$\sum_{j=0}^{m} f(a+jh) = F[a+(m+1)h] - F(a)$$

$$\Delta_h F(x) = F(x+h) - F(x) = x, \quad x = a, a+h, \dots, a+mh$$

$$\Delta_h F(x) = f(x), \quad F(x) = u(x)v(x)$$

$$\Delta_h u(x)v(x) = u(x)\Delta_h v(x) + \Delta_h u(x)v(x+h)$$

$$\sum_{x=a(h)}^{a+mh} u(x)\Delta_h v(x) + \sum_{x=a(h)}^{a+mh} v(x+h)\Delta_h u(x) = u(x)v(x)\Big|_a^{a+(m+1)h}$$

$$u(x) = x, \quad \Delta v(x) = b^x \Rightarrow v(x) = \frac{b^x}{b-1}$$

$$\sum_{x=0}^{m} xb^x = x\frac{b^x}{b-1}\Big|_0^{m+1} - \sum_{x=0}^{m} \frac{b^x}{b-1} =$$

$$= (m+1)\frac{b^{m+1}}{b-1} - \frac{1}{b-1}(b+b^2+\dots+b^{m+1}) = (m+1)\frac{b^{m+1}}{b-1} - \frac{b^{m+2}-b}{(b-1)^2}$$

$$u(x) = x, \quad \Delta v(x) = \sin x \Rightarrow v(x) = \frac{-\cos\left(x-\frac{h}{2}\right)}{2\sin\frac{h}{2}}$$

$$\sum_{x=a}^{a+mh} x\sin x = -x\frac{\cos\left(x-\frac{h}{2}\right)}{2\sin\frac{h}{2}}\Big|_a^{a+(m+1)h} + \sum_{x=a}^{a+mh} \frac{\cos\left(x+\frac{h}{2}\right)}{2\sin\frac{h}{2}}$$
Deoarece $\Delta_h F(x) = \cos\left(x+\frac{h}{2}\right)$ este satisfăcută pentru $F(x) = \frac{\sin x}{2\sin\frac{h}{2}}$

rezultă că avem

$$\sum_{x=a}^{a+mh} \cos\left(x+\frac{h}{2}\right) = \frac{\sin x}{2\sin\frac{h}{2}} \Big|_a^{a+(m+1)h}$$

Problema 5.0.17 Să se calculeze $\Delta_h^m \frac{1}{x^2}$.

Soluţie.

$$\Delta_h^m \frac{1}{x^2} = \left(\frac{1}{x} + \frac{1}{x+h} + \dots + \frac{1}{x+mh}\right) \Delta_h^m \frac{1}{x} =$$
$$= (-1)^m m! \frac{u'_m(x)}{u_m^2(x)} h^m$$

unde

$$u_m(x) = \prod_{k=0}^{m} (x + kh).$$

Problema 5.0.18 Să se demonstreze

$$\left[a_0, a_1, \dots, a_m; \frac{1}{t}\right] = \frac{(-1)^m}{a_0 a_1 \dots a_m}$$

Soluție. (prin inducție sau ca și cât de doi determinanți).

Problema 5.0.19 Se consideră p+1 puncte distincte a_0, a_1, \ldots, a_p . Să se demonstreze formula

$$[a_0, a_1, \dots, a_p; t^p] = \sum_{r_0 + r_1 + \dots + r_p = n - p} a_0^{r_0} a_1^{r_1} \dots a_p^{r_p}.$$

Problema 5.0.20 Să se demonstreze formula

$$[a_0, a_1, \dots, a_{k-1}, a_{k+1}, \dots, a_m; f] = \frac{a_k - a_0}{a_m - a_0} [a_0, a_1, \dots, a_{m-1}; f] + \frac{a_m - a_n}{a_m - a_0} [a_1, a_2, \dots, a_m; f]$$

Soluție.

$$a_k, a_0, \ldots, a_{k-1}, a_{k+1}, \ldots, a_{m-1}, a_m$$

$$[a_0, a_1, \dots, a_m; f] = \frac{[a_0, \dots, a_{k-1}, a_{k+1}, \dots, a_m; f] - [a_0, \dots, a_{n-1}; f]}{a_m - a_k}, \quad (5.1)$$
$$[a_0, a_1, \dots, a_m; f] = \frac{[a_0, \dots, a_{k-1}, a_{k+1}, \dots, a_m; f] - [a_1, \dots, a_m; f]}{a_0 - a_k} \quad (5.2)$$

$$[a_0, a_1, \dots, a_m; f] = \frac{[a_0, \dots, a_{k-1}, a_{k+1}, \dots, a_m; f] - [a_1, \dots, a_m; f]}{a_0 - a_k}$$
 (5.2)

Egalând cele două relații rezultă relația dorită.

Problema 5.0.21 Dacă $f, g: X \to \mathbb{R}$, atunci

$$[x_0, \dots, x_m; fg] = \sum_{k=0}^m [x_0, \dots, x_k][x_k, \dots, x_m; g]$$

Demonstrație. Prin inducție după m

m = 1

$$[x_0, x_1; fg] = f(x_0)[x_0, x_1; g] + [x_0, x_1; f]g(x_1) =$$

$$= f(x_0)\frac{g(x_1) - g(x_0)}{x_1 - x_0} + \frac{f(x_1) - f(x_0)}{x_1 - x_0}g(x_1) =$$

$$= \frac{f(x_1)g(x_1) - f(x_0)g(x_0)}{x_1 - x_0}$$

Presupunem relația adevărată pentru m-1, adică

$$[x_0, \dots, x_{m-1}; fg] = \sum_{k=0}^{m-1} [x_0, \dots, x_k; f][x_k, \dots, x_{m-1}; g]$$

$$[x_0, \dots, x_n; fg] \stackrel{def}{=} \frac{1}{x_m - x_0} ([x_1, \dots, x_m; fg] - [x_0, \dots, x_{m-1}; fg]) =$$

$$= \frac{1}{x_m - x_0} \sum_{k=0}^{m-1} ([x_1, \dots, x_{k+1}; f][x_{k+1}, \dots, x_n; g] - [x_0, \dots, x_k; f][x_k, \dots, x_{n-1}; g])$$

Adunând şi scăzând sub simbolul de însumare $[x_0,\ldots,x_k;f][x_{k+1},\ldots,x_m;g]$ şi grupând convenabil se obține

$$[x_0, \dots, x_m; fg] = \frac{1}{x_m - x_0} \left\{ \sum_{k=0}^{m-1} [x_0, \dots, x_k; f]([x_{k+1}, \dots, x_m; g] - [x_k, \dots, x_{m-1}; g]) + \sum_{k=0}^{m-1} [x_{k+1}, \dots, x_n; g]([x_1, \dots, x_{k+1}; f] - [x_0, \dots, x_k f]) \right\} =$$

$$= \frac{1}{x_n - x_0} \left\{ \sum_{k=0}^{m-1} (x_m - x_k)[x_0, \dots, x_k; f][x_k, \dots, x_m; g] + \sum_{k=1}^{m} (x_k - x_0)[x_0, \dots, x_n; f][x_k, \dots, x_n; g] \right\} =$$

$$= \frac{1}{x_n - x_0} \left\{ (x_m - x_0)[x_0; f][x_0, \dots, x_n; g] + \sum_{k=1}^{m} (x_k - x_0)[x_0; f][x_0, \dots, x_n; g][x_0, \dots, x_n; g][x_0, \dots, x_n; g]$$

$$+ \sum_{k=1}^{m-1} (x_m - x_0)[x_0, \dots, x_k; f][x_k, \dots, x_m; g] +$$

$$+ (x_m - x_0)[x_0, \dots, x_m; f][x_m; g]$$

$$= \sum_{k=0}^{m} [x_0, \dots, x_k; f][x_k, \dots, x_m; g]$$

Observația 5.0.22 *Diferența divizată se poate introduce ca și coeficient dominant în PIL.*

Problema 5.0.23 (Aplicație) O modalitate rapidă de a calcula valorile unui polinom de grad 3 în puncte echidistante folosind diferențe divizate.

$$P(x) = ax^{3} + bx^{2} + cx + d$$

$$\Delta P(x) = P(x+h) - P(x) \Rightarrow P(x+h) = P(x) + \Delta P(x)$$

$$\Delta^{2}P(x) = \Delta P(x+h) - \Delta P(x)$$

$$\Delta P(x+h) = \Delta P(x) + \Delta^{2}P(x)$$

$$\Delta^{3}P(x) = \Delta^{2}P(x+h) - \Delta^{2}P(x)$$

$$\Delta^{2}P(x+h) = \Delta^{2}P(x) + \Delta^{3}P(x)$$

$$\Delta^{3}P(x) = 6ah^{3}$$

$$\Delta P(0) = ah^{3} + bh^{2} + ch = h(h(ah+b) + c)$$

$$\Delta^{2}P(0) = P(2h) - 2P(h) + P(0) =$$

$$= 8ah^{3} + 4bh^{2} + 2ch + d - 2ah^{3} - 2bh^{2} - 2ch - 2d + d =$$

$$= 6ah^{3} + 2bh^{2} = 2h^{2}(3ah+b)$$

$$\Delta^{3}P(0)$$

$$\Delta_{k,i+1} = \Delta_{k-1,i} + \Delta_{k-1,i+1}$$

Problema 5.0.24 Dacă $f, g: M \to \mathbb{R}$ are loc

$$(\Delta_h^m f g)(a) = \sum_{i=0}^m \binom{m}{i} (\Delta_h^i f)(a) (\Delta_h^{m-i} g)(a+ih)$$

Demonstrație. Inducție după m

$$m = 1$$

$$(\Delta_h f g)(a) = f(a)(\Delta_h g)(a) + g(a+h)(\Delta_h f)a \tag{5.3}$$

căci

$$(\Delta_h fg)(a) = f(a+h)g(a+h) - f(a)g(a)| \pm f(a)g(c+h)$$
$$(\Delta_h fg)(a) = f(a)[g(a+h) - g(a)] + g(a+h)[f(a+h) - f(a)]$$

Presupunem relația adevărată pentru m-1

$$(\Delta_{h}^{m-1}fg)(a) = \sum_{i=0}^{m-1} \binom{m-1}{i} (\Delta_{h}^{o}f)(a) (\Delta_{h}^{m-i-1}g)(a+ih)$$

$$(5.3) \Rightarrow (\Delta_{h}^{m}fg)(a) = \sum_{i=0}^{m} \binom{m-1}{i} [(\Delta_{h}^{i}f)(a) (\Delta_{h}^{m-i}g(a+ih) + (\Delta_{h}^{i+1}f)(a) (\Delta_{h}^{m-i-1}g(a+(i+1)h)]$$

$$(\Delta_{h}^{m}fg)(a) = \sum_{i=0}^{m-1} \binom{m-1}{i} (\Delta_{h}^{i}f)(a) (\Delta_{h}^{m-i}g)(a+ih) + \sum_{k=1}^{m} \binom{m-1}{k-1} (\Delta_{h}^{k}f)(a) (\Delta_{h}^{m-k}g)(a+kh) =$$

$$= f(a) (\Delta_{h}^{m}g)(a) + \sum_{k=1}^{m} \binom{m-1}{i} + \binom{m-1}{i-1} [(\Delta_{h}^{m-i}g)(a+ih) + (\Delta_{h}^{m}f)(a)g(a+mh).$$

Problema 5.0.25 (Formula lui Vandermonde)

$$(a+b)^{[m,h]} = \sum_{j=0}^{m} {m \choose j} a^{[m-j,h]} b^{[j,h]}.$$

Demonstrație. Inducție după m

$$m=1$$

$$(a+b)^{[1,h]} = a+b$$

$$\binom{1}{0}a^{[1,h]}b^{[0,h]} + \binom{1}{1}a^{[0,h]}b^{[1,h]} = a+b$$

Presupunem că

$$(a+b)^{[m-1,h]} = \sum {m-1 \choose j} a^{[m-1-j,h]} b^{[j,h]} / (a+b-(m-1)h)$$

$$\begin{split} a^{[m-1-j,h]}b^{[j,h]}[a+b-(m-1)h] &= a^{[m-1-j,h]}[a-(m-1-h]b^{[j,h]} + a^{[m-1-j,h]}b^{[j,h]}(b-jh) \\ &= a^{[m-j,h]}b^{[j,h]} + a^{[m-1-j]}b^{[j+1,h]}. \end{split}$$

$$(a+b)^{[mh]} = \sum_{j=0}^{m-1} {m-1 \choose j} a^{[m-j,h]} b^{[j,h]} + \sum_{j=0}^{m-1} {m-1 \choose j} a^{[m-1-j,h]} b^{[j+1,h]}$$

$$= {m-1 \choose 0} a^{[m,h]} b^{[0,h]} + \sum_{j=1}^{n} \left[{m-1 \choose j} + {m-1 \choose j-1} \right] a^{[m-j,h]} b^{[j,h]}$$

$$+ {m-1 \choose m-1} a^{[0,h]} b^{[m,h]}$$

$$= \sum_{j=0}^{m} {m \choose j} a^{[m-j,h]} b^{[j,h]}.$$

Capitolul 6

Interpolare

6.1 Interpolare polinomială

Fie nodurile $x_i \in [a, b]$, $i = \overline{0, m}$, $i \neq j \implies x_i \neq x_j$. Are loc formula de interpolare Lagrange

$$f = L_m f + R_m f$$

unde

$$(L_m f)(x) = \sum_{k=0}^{m} l_k(x) f(x_k)$$

Şi

$$l_k(x) = \frac{(x - x_0) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_m)}{(x_k - x_0) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_m)} = \frac{\prod_{\substack{j=0 \ j \neq k}}^m (x - x_j)}{\prod_{\substack{j=0 \ i \neq k}}^m (x_k - x_j)} = \frac{u(x)}{(x - x_k)u'(x_k)}$$

unde $u(x) = (x - x_0) \dots (x - x_m)$.

Dacă $\alpha = \min\{x, x_0, \dots, x_m\}, \beta = \max\{x, x_0, \dots, x_m\}, f \in C^m[\alpha, \beta], f^{(m)}$ derivabilă pe $(\alpha, \beta) \exists \xi \in (\alpha, \beta)$ astfel încât

$$(R_m f)(x) = \frac{u(x)}{(m+1)!} f^{(m+1)}(\xi)$$

Dacă $f \in C^{m+1}[a,b]$ atunci

$$(R_m f)(x) = \int_a^b \varphi_m(x, s) f^{(m+1)}(s) ds$$

cu

$$\varphi_m(x;s) = \frac{1}{m!} \left[(x-s)_+^m - \sum_{k=0}^m l_k(x)(x_k-s)_+^m \right]$$

Dacă $l_m(x,\cdot)$ păstrează semn constant pe [a,b] atunci

$$(R_m f)(x) = \frac{1}{(m+1)!} \left[x^{m+1} - \sum_{k=0}^m l_k(x) x_k^{m+1} \right] f^{(m+1)}(\xi)$$

$$\xi \in [a, b]$$

$$(N_m f)(x) = f(x_0) + \sum_{i=0}^m (x - x_0) \dots (x - x_{i-1}) [x_0, \dots, x_i; f]$$

$$f = N_m f + R_m f \quad \text{formula de int.Newton}$$

$$(R_m f)(x) = u(x) [x, x_0, \dots, x_m; f] \quad x \in [a, b]$$

Pentru noduri echidistante

$$x_{i} = x_{0} + ih, \ i = \overline{0, m}$$

$$(L_{m}f)(x_{0} + th) = \frac{t^{[m+1]}}{m!} \sum_{i=0}^{m} (-1)^{m-i} {m \choose i} \frac{1}{t-i} f(x_{i})$$

$$(R_{m}f)(x_{0} + th) = \frac{h^{m+1}t^{[m+1]}}{(m+1)!} f^{(m+1)}(\xi)$$

$$(N_{m}f)(x_{0} + th) = (N_{m}f)(t) = \sum_{k=0}^{m} {t \choose k} \Delta_{h}^{k} f(x_{0})$$

(Formula Gregory-Newton, formula lui Newton cu diferențe progresive)

$$(N_m f)(x) = (N_m f)(x_0 + th) = f(x_n) + \sum_{k=1}^m {t+k-1 \choose k} \nabla_h^k f(x_m) =$$
$$= \sum_{k=0}^m (-1)^k {-t \choose k} \nabla_h^k (x_m)$$

(Formula lui Newton cu diferențe regresive)

$$S_{2n+1}(x_0 + th) = f(x_0) + \sum_{k=1}^{n} {t+k-1 \choose 2k-1} \frac{\Delta^{2k-1} f_{1-k} + \Delta^{2k-1} f_{-k}}{2} + \sum_{k=1}^{n} \frac{t}{2k} {t+k-1 \choose 2k-1} \Delta^{2k} f_{-k}$$
$$S_{2n+2}(x_0 + th) = S_{2n+1}(x_0 + th) + {t+n \choose 2n+1} \frac{\Delta^{2n+1} f_{-n} + \Delta^{2n+1}}{2}$$

(Formula lui Stirling)

$$x_{k} \in [a, b], \ k = \overline{0, m}, \ x_{i} \neq x_{j} \ (i \neq j)$$

$$f : [a, b] \to \mathbb{R} \ \exists \ f^{(j)}(x_{k}), \ k = \overline{0, m}, \ j = \overline{0, r_{k}}$$

$$n + 1 = m + r_{0} + \dots + r_{m} = (r_{0} + 1) + \dots + (r_{m} + 1)$$

$$(H_{n}f)(x) = \sum_{k=0}^{m} \sum_{j=0}^{r_{k}} h_{kj} f^{(j)}(x_{k})$$

$$h_{kj}(x) = \frac{(x - x_{k})^{j}}{j!} u_{k}(x) \sum_{\nu=0}^{r_{k} - j} \frac{(x - x_{k})^{\nu}}{\nu!} \left[\frac{1}{n_{k}(x)} \right]_{x = x_{k}}^{(\nu)}$$

 $f = H_n f + R_n f$ (formula de interpolare a lui Hermite)

$$u(x) = \prod_{k=0}^{m} (x - x_k)^{r_k + 1}$$
$$u(x)$$

$$u_k(x) = \frac{u(x)}{(x - x_k)^{r_k + 1}}$$

Dacă $f \in C^n[\alpha,\beta]$ \exists $f^{(n+1)}$ pe $[\alpha,\beta]$ atunci

$$(R_n f)(x) = \frac{u(x)}{(n+1)!} f^{(n+1)}(\xi) \quad \xi \in [a, b]$$

Dacă $f \in C^{n+1}[\alpha, \beta]$ atunci

$$(R_m f)(x) = \int_a^b \varphi_n(x; s) f^{(n+1)}(s) ds$$

unde

$$\varphi_n(x;s) = \frac{1}{n!} \left\{ (x-s)_+^n - \sum_{k=0}^m \sum_{j=0}^{r_k} h_{kj}(x) [(x_k - s)_+^n]^{(j)} \right\}$$

Cazuri particulare

1)
$$r_k = 0$$
, $k = \overline{0, n}$ Lagrange

2)
$$n = 0, r_0 = n$$
 Taylor

3) $r_0 = \cdots = r_n = 1$ formula lui Hermite cu noduri duble

$$f = H_{2m+1}f + R_{2m+1}f$$

$$(H_{2m+1}f)(x) = \sum_{k=0}^{m} h_{k_0}(x)f(x_k) + \sum_{k=0}^{m} h_{k_1}(x)f'(x_k)$$

$$h_{x_0}(x) = \frac{u_k(x)}{u_k(x_k)} \left[1 - (x - x_k)\frac{u'_k(x_k)}{u_k(x_k)} \right]$$

$$h_{k_1}(x) = (x - x_k)\frac{u_k(x)}{u_k(x_k)}$$

4) Dacă $m = 1, x_0 = a, x_1 = b$

$$r_0 = m, \quad r_1 = n$$

$$(H_{m+n+1}f)(x) = \left(\frac{x-b}{a-b}\right)^{n+1} \sum_{i=0}^{m} \frac{(x-a)^i}{i!} \left[\sum_{\nu=0}^{m-i} \binom{n+\nu}{\nu} \left(\frac{x-a}{b-a}\right)^{\nu} \right] f^{(i)}(a) + \left(\frac{x-a}{b-a}\right)^{m+1} \sum_{j=0}^{n} \frac{(x-b)^j}{j!} \left[\sum_{\mu=0}^{n-j} \binom{m+\mu}{\mu} \left(\frac{x-b}{a-b}\right)^{\mu} \right] f^{(j)}(b)$$

 $x_k \in [a, b], \ k = \overline{0, m}, \ x_i \neq x_k \ (i \neq j)$ $r_k \in \mathbb{N}, \ I_k \subseteq \{0, 1, \dots, r_k\}, \ k = \overline{0, m}$ $f: [a, b] \to \mathbb{R} \ \exists \ f^{(j)}(x_k) \ k = \overline{0, m}, \ j \in I_n$ $n = |I_0| + \dots + |I_m| - 1$

$$(B_n f)(x) = \sum_{k=0}^{m} \sum_{j \in I_k} b_{kj}(x) f^{(j)}(x_k)$$

 $f = B_n f + R_n f$ (formula de interpolare a lui Birkhoff)

Dacă $f \in C^{n+1}[a,b]$ atunci

$$(R_n f) = \int_a^b \varphi_n(x, s) f^{(n+1)}(s) ds$$

unde

$$\varphi_n(x;s) = \frac{1}{n!} \left\{ (x-s)_+^n - \sum_{k=0}^m \sum_{j \in I_k} b_{kj}(x) [(x_k - s)_+^n]^{(j)} \right\}$$

Dacă $f \in C^{n+1}[a,b]$ și φ_n are semn constant pe [a,b]

$$(R_n f)(x) = E(x) f^{(n+1)}(\xi) \quad \xi \in [a, b]$$

$$E(x) = \frac{x^{n+1}}{(n+1)!} - \sum_{k=0}^{m} \sum_{j \in I_k} \frac{1}{(n-j+1)!} x_k^{n-j+1} b_{kj}(x)$$

6.2 Interpolare Lagrange

Problema 6.2.1 Să se scrie formula de interpolare a lui Lagrange în cazurile speciale m = 1 și m = 2. Interpretare geometrică.

Soluție. Polinomul de interpolare Lagrange corespunzător unei funcții f și nodurilor x_0 și x_1 este

$$(L_1 f)(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1),$$

adică dreapta care trece prin punctele $(x_0, f(x_0))$ şi $(x_1, f(x_1))$. Analog, polinomul de interpolare Lagrange corespunzător unei funcții f și nodurilor x_0, x_1 și x_2 este

$$(L_2f)(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}f(x_0) + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}f(x_1) + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}f(x_2),$$

adică parabola care trece prin punctele $(x_0, f(x_0)), (x_1, f(x_1))$ şi $(x_2, f(x_2))$. Interpretarea lor geometrică apare în figura 6.1.

Problema 6.2.2 Construiți polinomul de interpolare Lagrange pentru funcția $y = \sin \pi x$ alegând $x_0 = 0$, $x_1 = \frac{1}{6}$, $x_2 = \frac{1}{2}$.

Soluție.

$$(L_2 y)(x) = \frac{7}{2} x - 3x^2,$$

$$(R_2 y)(x) = \frac{x \left(x - \frac{1}{6}\right) \left(x - \frac{1}{2}\right)}{3!} \pi \cos \pi \xi, \xi \in \left(0, \frac{1}{2}\right).$$

Figura 6.1: Interpretarea geometrică a lui $L_1 f$ (stânga) și $L_2 f$

Problema 6.2.3 Cu ce eroare se poate calcula $\sqrt{115}$ cu ajutorul formulei de interpolare a lui Lagrange, considerând funcția $f(x) = \sqrt{x}$ și nodurile $x_0 = 100, x_1 = 121, x_2 = 144$?

$$(R_2 f)(x) = \frac{(x - 100)(x - 121)(x - 144)}{6} f'''(\xi)$$

$$f'''(x) = \frac{3}{8} x^{-\frac{5}{2}}$$

$$|(R_1 f)(115)| \le \frac{3}{8} \cdot \frac{1}{\sqrt{100^5}} \cdot \frac{1}{6} |(115 - 100)(115 - 121)(115 - 144)| =$$

$$= \frac{1}{16} \cdot 10^{-5} \cdot 15 \cdot 6 \cdot 29 \approx 1 \cdot 6 \cdot 10^{-3}$$

Problema 6.2.4 În tabelele cu 5 zecimale corecte se dau logaritmii zecimali ai numerelor de la x=1000 la x=10000 cu eroarea absolută maximă egală cu $\frac{1}{2} \cdot 10^{-5}$. Este posibil ca interpolarea liniară să conducă la o aceeași precizie?

Solutie.

$$f(x) = \lg x \quad f'(x) = \frac{M}{x} \quad f''(x) = -\frac{M}{x^2}$$

$$M = \lg e \approx 0.4343$$

$$|(R_1 f)(x)| \le \frac{(x - a)(x - b)}{2} M_2 f$$

$$M_2(f) = \max |f''(x)| < \frac{1}{2} \cdot 10^{-6}$$

$$a < x < a + 1$$

$$b = a + 1$$

$$x - a = q$$

$$|(R_1 f)(x)| < \frac{1}{2} |\underbrace{q(q - 1)}_{\leq \frac{1}{4}} |M_2(f)|$$

$$|R_1 f| \leq \frac{1}{16} \cdot 10^{-6} < 10^{-7}$$

deci precizia nu este alterată.

Problema 6.2.5 Relativ la funcția sin se alcătuiește următoarea tabelă cu diferențe

		<i>J</i> 3		3	
x	$\Delta^0 = y$	Δf	$\Delta^2 f$	$\Delta^3 f$	$\Delta^4 f$
39°	0.6293204	267386	-7992	-318	13
41°	0.6560590	259354	-8310	-305	10
43°	0.6819984	251084	-8615	-295	10
45°	0.7071068	242469	-8910	-285	
47°	0.7313597	233559	-9195		
49°	0.7547096	224364			
51°	0.7771460				

Să se aproximeze $\sin 40^\circ$, $\sin 50^\circ$, $\sin 44^\circ$ cu formula Gregory-Newton pentru m=4.

$$(N_m f)(t) = \sum_{i=0}^m {t \choose k} \Delta_h^k f(x_0)$$

$$(R_m f)(x_0 + th) = \frac{h^{m+1} t^{[m+1]}}{(m+1)!} f^{(m+1)}(\xi)$$

$$f(x) \approx f_0 + t \Delta f_0 + \frac{t(t-1)}{2} \Delta^2 f_0 + \frac{t(t-1)(t-2)}{6} \Delta^3 f_0 + \frac{t(t-1)(t-2)(t-3)}{24} \Delta^4 f_0 + R_4$$

$$\sin 40^\circ \approx 0.6293204 + \frac{1}{2} \cdot 0.0267386 - \frac{1}{8}(-0.0007992) + \frac{1}{16}(-0.0000318) - \frac{5}{64} \cdot 0.0000013 = 0.6427876$$

$$|(R_4 f)(t)| \leq h^5 t(t-1)(t-2)(t-3)(t-4) f^{(5)}(\xi) < 0.00000000028$$

 $\sin 50^{\circ}$ se poate aproxima cu formula lui Newton cu diferențe regresive. $\sin 44^{\circ}$ se poate aproxima cu formula lui Stirling.

Problema 6.2.6 Să se determine un polinom de interpolare de grad 3 pe intervalul [-1, 1] astfel încât restul să fie minim.

Soluție. Restul este minim dacă nodurile de interpolare sunt rădăcinile polinomului Cebâșev de speța I.

$$T_m(t) = \cos(\arccos t)$$

$$||R_m f||_{\infty} \le \frac{(b-a)^{m+1}}{(m+1)! 2^{2m+1}} ||f^{(m+1)}||_{\infty}$$

$$T_4(t) = 8t^4 - 8t^2 + 1$$

$$T_{n+1}(t) = 2tT_n(t) - T_{n-1}(t)$$

$$T_0 = 1, \quad T_1 = t$$

$$t_k = \cos \frac{2k-1}{2n} \pi \quad k = \overline{1, n}$$

6.3 Interpolare Hermite

Problema 6.3.1 Să se determine polinomul de interpolare Hermite cu nodurile $x_0 = -1$ multiplu de ordinul 3, $x_1 = 0$ simplu și $x_2 = 1$ multiplu de ordinul 3.

Solutie.

$$m = 2, \quad r = 0 = 2, \quad r_1 = 0, \quad r_2 = 2$$

$$H_n f)(x) = \sum_{k=0}^m \sum_{j=0}^{r_k} h_{kj}(x) f^{(j)}(x_k)$$

$$u_k(x) = \frac{u(x)}{(x - x_k)^{r_k + 1}}$$

$$h_{kj}(x) = \frac{(x - x_k)^j}{j!} u_k(x) \sum_{\nu=0}^{r_k - j} \frac{(x - x_k)^{\nu}}{\nu!} \left[\frac{1}{u_k(x)} \right]_{x = x_k}^{(\nu)}$$

$$n + 1 = 3 + 1 + 3 = 7 \implies n = 6$$

$$h_{00}(x) = x(x - 1)^3 \left[\frac{1}{8} + \frac{5(x + 1)}{16} + \frac{(x + 1)^2}{2} \right]$$

$$h_{01}(x) = x(x - 1)^3 (x + 1) \left[\frac{1}{8} + \frac{5(x + 1)}{16} \right]$$

$$h_{02}(x) = \frac{x(x-1)^3(x+1)^2}{16}$$

$$h_{10}(x) = (1-x^2)^3$$

$$h_{20}(x) = x(x+1)^3 \left[\frac{1}{8} - \frac{5(x-1)}{16} + \frac{(x+1)^2}{2} \right]$$

$$h_{21}(x) = x(x+1)^3(x-1) \left[\frac{1}{8} - \frac{3(x-1)}{16} \right]$$

$$h_{22}(x) = \frac{x(x+1)^3(x-1)^2}{16}$$

Problema 6.3.2 Aceeași problemă, pentru aceleași noduri ca mai sus, dar duble.

Soluţie.

$$r_0 = r_1 = r_2 = 1, \quad m = 2, \quad n = 5, \quad x_0 = -1, \quad x_1 = 0, \quad x_2 = 1$$

$$(H_{2m+1}f)(x) = \sum_{k=0}^{m} h_{k_0}(x)f(x_k) + \sum_{k=0}^{m} h_{k_1}(x)f'(x_k)$$

$$h_{k_0}(x) = \frac{u_k(x)}{u_k(x_k)} \left[1 - (x - x_k) \frac{u'_k(x_k)}{u_k(x_k)} \right]$$

$$h_{n_1}(x) = (x - x_n) \frac{u_k(x)}{u_k(x_k)} \quad u_0(x) = x^2(x - 1)^2$$

$$u_0(-1) = 4 \quad u'_0(x) = 2x(x - 1)(x - 1 + x) = 2x(x - 1)(2x - 1)$$

$$h_{00}(x) = \frac{x^2(x - 1)^2}{4} \left[1 - \frac{12}{4}(x + 1) \right] = \frac{x^2(x - 1)^2}{4} (-3x - 2)$$

$$h_{01}(x) = \frac{(x + 1)x^2(x - 1)^2}{4}$$

$$u_1(x) = (x + 1)^2(x - 1)^2$$

$$u'_1(x) = 2(x + 1)(x - 1)^2 + 2(x + 1)^2(x - 1) =$$

$$= 2(x + 1)(x - 1)(x - 1 + x + 1) = 4x(x - 1)(x + 1)$$

$$h_{10}(x) = \frac{(x + 1)^2(x - 1)^2}{1} [1 - x \cdot 0] = (x + 1)^2(x - 1)^2$$

$$h_{11}(x) = (x + 1)^2(x - 1)^2x$$

$$u_2(x) = (x + 1)^2x^2 \quad u_2(1) = 4$$

$$u_2'(x) = 2(x+1)x^2 + 2(x+1)^2x = 2(x+1)x(2x+1)$$

$$u_2'(1) = 2 \cdot 2 \cdot 1 \cdot 3 = 12$$

$$h_{20}(x) = \frac{(x+1)^2x^2}{4} \left[1 - (x-1)\frac{12}{4} \right] = \frac{(x+1)^2x^2}{4} [-3x+4]$$

$$h_{21}(x) = \frac{(x-1)(x+1)^2x^2}{4}$$

Problema 6.3.3 Să se arate că pentru PIH cu noduri duble avem

$$h_{k0}(x) = [1 - 2(x - x_k)l'_k(x_k)] l_k^2(x)$$
$$h_{k1}(x) = (x - x_k)l_k^2(x)$$

unde l_k sunt polinoamele fundamentale Lagrange.

Problema 6.3.4 Să se determine PIH pentru $x_0 = a$, $x_1 = b$, m = 1, $r_0 = r_1 = 1$.

Soluție. Se poate aplica formula cu noduri duble sau generalizarea formulei lui Taylor.

$$u_0 = (x - b)^2$$
 $u_1 = (x - a)^2$

$$h_{00}(x) = \frac{(x-b)^2}{(a-b)^2} \left[1 - (x-a) \frac{2(a-b)}{(a-b)^2} \right]$$
$$= \frac{(x-b)^2}{(a-b)^2} \left[\frac{a-b-2x+2a}{a-b} \right] = \frac{(x-b)^2}{(a-b)^3} [3a-b-2x]$$

$$h_{01}(x) = (x-a)\frac{(x-b)^2}{(a-b)^2}$$

$$h_{10}(x) = \frac{(x-a)^2}{(b-a)^3} [3b-a-2x]$$

$$h_{11}(x) = (x-b)\left(\frac{x-a}{b-a}\right)^2$$

$$(H_3f)(x) = h_{00}(x)f(a) + h_{01}(x)f'(a) + h_{10}(x)f(b) + h_{11}(x)f'(b)$$

Problema 6.3.5 Se consideră $f: [-1,1] \to \mathbb{R}$. Se notează cu $F_{2n+1}f$ polinomul Hermite cu noduri duble determinat de condițiile

$$(F_{2m+1}f)(x_k) = f(x_k), \quad k = \overline{0, m}$$

 $(F_{2m+1}f)'(x_k) = 0.$

Să se arate că dacă x_0, x_1, \ldots, x_m sunt rădăcinile polinomului lui Cebâşev de speța I avem:

$$(F_{2m+1}f)(x) = \frac{1}{(m+1)^2} \sum_{k=0}^{m} (1 - x_k x) \left(\frac{T_{m+1}(x)}{x - x_k}\right)^2 f(x_k).$$

Soluție.

$$h_{k_0}(x) = \frac{u_k(x)}{u_k(x_k)} \left[1 - (x - x_k) \frac{u'(x_k)}{u_k(x_k)} \right]$$

$$w(x) = (x - x_0)(x - x_1) \dots (x - x_m)$$

$$u_k(x) = \frac{w^2(x)}{(x - x_k)^2} = \left(\frac{1}{2^m} \frac{T_{m+1}(x)}{x - x_k} \right)^2$$

$$1 - (x - x_k) \frac{u'_k(x_k)}{u_k(x_k)} = (x - x_k) \left[\frac{1}{x - x_k} + \frac{1}{x_0 - x_k} + \dots + \frac{1}{x_n - x_k} \right]$$

$$u_k(x_k) = w'^2(x_k)$$

$$u'_k(x_k) = w'(x_k)w''(x_k)$$

$$w'(x_k) = \frac{m+1}{2^m} \frac{(-1)^k}{\sqrt{1 - x_k^2}}$$

$$w''(x) = \frac{m+1}{2^m} \left(x \sin[(m+1)\arccos x] - \frac{1}{x_k} \right)$$

$$w''(x_k) = \frac{m+1}{2^m} \frac{(-1)^k x_k}{(\sqrt{1 - x_k^2})^3}$$

$$w''(x_k) = \frac{m+1}{2^m} \frac{(-1)^k x_k}{(\sqrt{1 - x_k^2})^3}$$

$$h_{k_0}(x) = \left(\frac{1}{2^m} \frac{T_{m+1}(x)}{x - x_k} \right)^2 \frac{1}{w'^2(x_k)}$$

$$\left[1 - (x - x_k) \frac{w'(x_k)w''(x_k)}{w'^2(x_k)} \right] =$$

$$= \left(\frac{T_{m+1}(x)}{x - x_k}\right)^2 \cdot \frac{1}{2^m} \frac{2^{2m} (1 - x_k)^2}{(m+1)^2} \left(\frac{1 - (x - x_k) \frac{x_k (m+1)^2}{2^{2m} (1 - x_k)^2}}{\frac{(m+1)^2}{2^{2m}} - \frac{1}{x - x_k}}\right) =$$

$$= \frac{1}{(m+1)^2} \left(\frac{T_{m+1}(x)}{x - x_k}\right)^2 (1 - x_k x)$$

Problema 6.3.6 (Relația lui Cauchy) Arătați că $\forall x \in \mathbb{R}$

$$\sum_{i=0}^{n} l_i(x)(x_i - x)^j = \begin{cases} 1 & dac \breve{a} \quad j = 0 \\ 0 & dac \breve{a} \quad j = 1, \dots, n \end{cases}$$

Soluție. Pentru $t \in \mathbb{R}$ și $j \in \{0,1,\ldots,n\}$ fixat, funcția $x \to (x-t)^j \in \mathbb{P}_n$ și coincide cu polinomul său de interpolare în x_0,\ldots,x_n ; formula cerută nu este altceva decât polinomul de interpolare Lagrange pentru t=x.

Problema 6.3.7 (Nucleul lui Peano pentru operatorul de interpolare Lagrange) a) Arătați că pentru $f \in C_b^{n+1}[a,b]$ avem $\forall x \in [a,b]$

$$(R_n f)(x) = f(x) - p_n(x) = \int_a^b K_n(x, t) f^{(n+1)}(t) dt$$

cu

$$K_n(x,t) = \frac{1}{n!} \sum_{i=0}^{n} [(x-t)_+^n - (x_i - t)_+^n] l_i(x)$$

Deduceți că

$$(R_n f)(x) = \sum_{i=0}^n \frac{1}{n!} \left[\int_{x_i}^x (x_i - t)^n f^{(n+1)}(t) dt \right] l_i(x)$$

b) Ce devine $K_1(x,t)$ dacă $x \in (x_0,x_1)$? Deduceți existența unui $\xi_x \in (x_0,x_1)$ astfel încât

$$E_1(x) = f''(\xi_x)(x - x_0)(x - x_1)/2.$$

c) Arătați că soluția unică a problemei la limită: "fiind dat $g \in C[x_0, x_1]$ găsiți $u \in C^2[x_0, x_1]$ astfel încât u''(x) = g(x) pentru $x \in]x_0, x_1[, \ u(x_0) = u(x_1) = 0$ " este dată de

$$u(x) = \int_{x_0}^{x_1} K_1(x, t)g(t)dt.$$

Soluţie. a)

$$E_n = (R - nf)(x) = \int_a^b K_n(x, t) f^{(n+1)}(t) dt$$

unde

$$K_n(x,t) = \frac{1}{n!} \left[(x-t)_+^n - \sum_{i=0}^n l_i(x)(x_i - t)_+^n \right] = \frac{1}{n!} \sum_{i=0}^n [(x-t)_+^n - (x_i - t)_+^n l_i(x)]$$

Pe de altă parte

$$\int_{a}^{b} [(x-t)_{+}^{n} - (x_{i}-t)_{+}^{n}] f^{(n+1)}(t) dt =$$

$$= \int_{c}^{x} [(x-t)^{n} - (x_{i}-t)^{n}] f^{(n+1)}(t) dt + \int_{x_{i}}^{x} (x_{i}-t)^{n} f^{(n+1)}(t) dt$$

dar

$$\sum_{i=0}^{n} [(x-t)^{n} - (x_{i}-t)^{n}]l_{i}(x) = 0$$

conform relației lui Cauchy.

b)

$$K_1(x,t) = 0$$
 dacă $t \notin (x_0, x_1)$

căci

$$K_{1}(t) = (x - t)_{+} - (x_{0} - t)_{+}l_{0}(x) + (x_{1} - t)_{+}l_{1}(x)$$

$$l_{0}(x) = \frac{x - x_{1}}{x_{0} - x_{1}} = \frac{x_{1} - x}{x_{1} - x_{0}} \quad l_{1}(x) = \frac{x - x_{0}}{x_{1} - x_{0}}$$

$$K_{1}(x, t) = \begin{cases} \frac{(x - x_{1})(t - x_{0})}{x_{1} - x_{0}} & t \in [x_{0}, x] \\ \frac{(t - x_{1})(x - x_{0})}{x_{1} - x_{0}} & t \in [x, x_{1}] \end{cases}$$

$$K_{1}(x, t) \leq 0 \stackrel{t.medie}{\Rightarrow} E_{1}(x) = \frac{(x - x_{0})(x - x_{1})}{2} f''(x)$$

c) Scriind că $p_1=0$ este polinomul de interpolare al lui u cu nodurile x_0 și x_1 obținem

$$u(x) - p_1(x) = \int_{x_0}^{x_1} k_1(x, t)u''(t)dt = \int_{x_0}^{x_1} k_1(x, t)g(t)dt$$
$$p_1(x_0) = u(x_0) = 0 = p_1(x_1) = u(x_1)$$

Se verifică uşor că problema la limită admite efectiv o soluție. K_1 se numește funcția lui Green a problemei la limită. \blacksquare

6.4 Interpolare Birkhoff

Problema 6.4.1 Dându-se $f \in C^2[0,h], h > 0$ să se determine un polinom de grad minim B astfel încât

$$\begin{cases}
B(0) = f(0) \\
B'(h) = f'(h).
\end{cases}$$
(6.1)

Să se dea expresia restului.

Soluție. $m=1,\ r_0=0,\ r_1=1,\ I_0=\{0\},\ I_1=\{1\},\ n=1$ Soluția există și este unică.

$$(6.1) \Rightarrow \Delta = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = 1 \neq 0$$

$$(B_1 f)(x) = b_{00}(x) f(0) + b_{11}(x) f'(h)$$

$$(B_1 f)(x) = f(0) + x f'(h)$$

$$b_{00}(x) = Ax + b \quad b_{11}(x) = Cx + D$$

$$b_{00}(x) = 1 \qquad b_{11}(x) = x$$

Pentru rest se aplică teorema lui Peano.

$$(R_1 f)(x) = \int_0^h \varphi_1(x; s) f''(s) ds$$

$$\varphi_1(x; s) = (x - s)_+ - x = \begin{cases} -x & x \le s \\ -s & x > s \end{cases}$$

$$\varphi_1(x; s) \le 0, \ \forall \ x, s \in [0, h]$$

$$(R_1 f)(x) = E(x) f''(\xi), \quad \xi \in [0, h]$$

$$E(x) = \frac{x^2}{2} - hx \quad ||R_1 f||_{\infty} \le \frac{h}{2} ||f''||_{\infty}$$

Problema 6.4.2 Pentru $f \in C^3[0,h]$, $h \in \mathbb{R}_+$, m=2, $r_0=1$, $r_1=0$, $r_2=1$, $I_0=I=\{1\}$, $I_1=\{0\}$ să se construiască formula de interpolare Birkhoff corespunzătoare.

Soluţie.

$$P(x) = a_0 x^2 + a_1 x + a_2$$

$$\begin{cases}
P'(0) = a_1 = f'(0) \\
P\left(\frac{h}{2}\right) = \frac{h^2}{4} a_0 + \frac{h}{2} a_1 + a_2 = f\left(\frac{h}{2}\right) \\
P'(h) = 2ha_0 + a_1 = f'(h)
\end{cases}$$

Rezolvând sistemul se obține

$$(B_2f)(x) = \frac{(2x-h)(3h-2x)}{8h}f'(0) + f\left(\frac{h}{2}\right) + \frac{4x^2-h^2}{8h}f'(h)$$

$$(B_2f)(x) = b_{01}(x)f'(0) + b_{10}(x)f\left(\frac{h}{2}\right) + b_{21}(x)f'(h)$$

$$b_{01}(x) = \frac{(2x-h)(3h-2x)}{8h^2}, \quad b_{10}(x) = 1, \quad b_{21}(x) = \frac{4x^2-h^2}{8h}$$

$$(R_2f)(x) = \int_0^h \varphi_2(x;s)f'''(s)ds$$

$$\begin{split} \varphi_2(x;s) &= \frac{1}{2} \{ (x-s)^2 - b_{01}(x) [(0-s)_+^2] + b_{10}(x) \left(\frac{h}{2} - s\right)_+^2 - S_{21}[(h-s)_+^2]' \\ &= \frac{1}{2} \left[(x-s)_+^2 - \left(\frac{h}{2} - s\right)_+^2 - \frac{4x^2 - h^2}{4h} (h-s) \right]. \\ \varphi_2(x;s) &\geq 0 \quad \text{dacă} \quad x \in \left[0,\frac{h}{2}\right], \quad s \in [0,h] \\ \varphi_2(x;s) &\leq 0 \quad \text{pentru} \quad x \in \left[\frac{h}{2},h\right], \quad s \in [0,h] \end{split}$$

Pentru $x \in [0, h], \ \varphi_2(x, \cdot)$ are semn constant pe [0, h]

$$(R_2 f)(x) = f'''(\xi) \int_a^b (x; s) ds = \frac{(2x - h)(2x^2 - 2hx - h^2)}{24} f'''(\xi), \quad 0 \le \xi \le h$$

Problema 6.4.3 Să se determine un polinom de grad minim care verifică

$$P(0) = f(0), \quad P'(h) = f'(h), \quad P''(2h) = f''(2h),$$

unde $f \in C^3[0,2h]$ (Problema Abel-Goncearov cu două noduri). Dați expresia restului.

Soluție. Din condițiile de interpolare se obține

$$P(x) = \frac{f''(2h)}{2}x^2 + [f'(h) - hf''(2h)]x + f(0)$$

Tratând problema ca pe o PIB cu $m=2,\ I_0=\{0\},\ I_1=\{1\},\ I_2=\{2\}$ obținem

$$b_{00}(x) = 1$$
 $b_{11}(x) = x$ $b_{22}(x) = \frac{x^2}{2} - hx$
$$(R_3 f)(x) = \int_0^{2h} \varphi_2(x; s) f'''(s) ds$$

$$\varphi_{2}(x;s) = \frac{1}{2!} \{ (x-s)^{2} - b_{00}(x)(0-s)_{+}^{2} - b_{11}(x)[(h-s)_{+}^{2}]' - b_{22}(x)[(2h-s)_{+}^{2}]'' \}$$

$$= \frac{1}{2} [(x-s)_{+}^{2} - 2x(h-s)_{+} - (x^{2} - 2hx)(2h-s)_{+}^{0}]$$

$$= \frac{1}{2} \begin{cases} s^{2} & x \geq s \ s < h \\ s^{2} + 2x(h-x) & x \geq s \ s > h \\ x(2s-x) & x < s \ s < h \\ -x(x-2h) & x < s \ s > h \end{cases}$$

$$\varphi_{2}(x;s) \geq 0$$

Putem aplica corolarul la teorema lui Peano

$$\exists \xi \in [0, 2h] \text{ a.i. } (R_3 f)(x) = E(x) f'''(\xi),$$

unde

$$E(x) = \frac{x^3}{6} - \frac{1}{2}h^2b_{11}(x) - 24b_{22}(x) = \frac{x^3}{6} - \frac{h^2x}{2} - 2h\left(\frac{x^2}{2} - hx\right)$$
$$= \frac{x^3}{6} - \frac{h^2x}{2} - hx^2 + 2h^2x = \frac{x^3}{6} - hx^2 + \frac{3h^2}{2}x$$

6.5 Interpolare rațională

Problema 6.5.1 Să se determine o aproximare Padé de grad 5 cu n=2, n=3 pentru $f(x)=e^x$.

Soluție.

$$r(x) = \frac{p_n(x)}{q_m(x)}, \quad p \in \mathbb{P}_n, \quad q \in \mathbb{P}_m$$

$$f^{(k)}(0) - r^{(k)}(0) = 0, \quad k = \overline{0, N}, \quad N = n + m = 5$$

$$f(x) - r(x) = f(x) - \frac{p(x)}{q(x)} = \frac{f(x)q(x) - p(x)}{q(x)} = 6$$

$$= \frac{\sum_{i=0}^{\infty} a_i x^i \sum_{i=0}^{m} q_i x^i - \sum_{i=0}^{n} p_i x^i}{q(x)}$$

f-r are o rădăcină multiplă de ordin N. Pentru coeficientul lui x^k de la numărător avem

avem
$$\sum_{i=0}^k a_i q_{k-1} - p_k = 0, \quad k = \overline{0,N}$$
 Luăm $q_0 = 1$ şi $p_{n+1} = p_{n+2} = \cdots = p_N = 0$ şi $q_{m+1} = q_{m+2} = \cdots = q_N = 0$
$$x^5 : \frac{1}{2}q_3 + \frac{1}{6}q_2 + \frac{1}{24}q_1 = -\frac{1}{120}$$

$$x^4 : q_3 + \frac{1}{2}q_2 + \frac{1}{6}q_1 + \frac{1}{24} = 0$$

$$x^3 : q_3 + q_2 + \frac{1}{2}q_1 + \frac{1}{6} = 0$$

$$x^2 : q_2 + q_1 - p_2 + \frac{1}{2} = 0$$

$$x^1 : q_1 - p_1 + 1 = 0$$

$$x^0 : p + 0 = 1$$

$$p_0 = 1, \ p_1 = \frac{3}{5}, \ p_2 = \frac{2}{20}, \ q_1 = -\frac{2}{5}q_2 = \frac{3}{20}, \ q_3 = -\frac{1}{60}$$

$$r(x) = \frac{1 + \frac{3}{5}x + \frac{1}{20}x^2}{1 - \frac{2}{5}x + \frac{3}{20}x^2 - \frac{1}{25}x^3}$$

Problema 6.5.2 Determinați aproximarea Padé de grad 6 pentru $f(x) = \sin x$ și n = m = 3.

Soluţie.

$$\sum_{i=0}^{k} a_k q_{k-i} - p_k = 0, \quad k = \overline{0,6}$$

$$p_4 = p_5 = p_6 = 0 \quad q_0 = 1$$

$$q_n = q_5 = q_6 = 0 \quad a_0 = 0, \quad a_1 = 1, \quad a_2 = 0$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$a_3 = -\frac{1}{6}$$
 $a_4 = 0$ $a_5 = \frac{1}{120}$ $a_6 = 0$

Se obțin următorii coeficienți:

$$x^{7}: a_{0}q_{6} + a_{1}q_{5} + a_{2}q_{4} + a_{3}q_{3} + a_{4}a_{2} + a_{5}q_{1} + a_{6}q_{0} - p_{6} = 0$$

$$x^{6}: q_{5} - \frac{1}{6}q_{3} + \frac{1}{120}q_{1} = 0$$

$$x^{5}: a_{1}q_{4} + a_{3}q_{2} + a_{5}q_{0} - p_{5} = q_{4} - \frac{1}{6}q_{2} + \frac{1}{120} = 0$$

$$x^{4}: a_{1}q_{3} + a_{3}q_{1} - p_{4} = q_{3} - \frac{1}{6}q_{1} = 0$$

$$x^{3}: a_{1}q_{2} + a_{3}q_{0} - p_{3} = q_{2} - \frac{1}{6} - p_{3} = 0$$

$$x^{2}: a_{1}q_{1} - p_{2} = q_{1} - p_{2} = 0$$

$$x^{1}: a_{0}q_{1} + a_{1}q_{0} - p_{1} = 1 - p_{1} = 0$$

$$x^{0}: a_{0}q_{0} - p_{0} = 0$$

$$p_{0} = 0 \quad p_{1} = 1 \quad q_{1} = p_{2} = 0$$

$$q_{3} = 0 \quad q_{2} = \frac{1}{20} \quad p_{3} = q_{2} - \frac{1}{6} = \frac{1}{20} - \frac{1}{6} = -\frac{7}{60}$$

$$r(x) = \frac{x - \frac{7}{60}x^{3}}{1 + \frac{1}{12}x^{2}}$$

Problema 6.5.3 Dându-se f(0) = 1, $f(\frac{1}{2}) = \frac{2}{3}$, $f(1) = \frac{1}{2}$, determinați o funcție F de interpolare rațională pentru f.

Soluție.

$$F = \frac{P_r}{P_s} \quad m = r + s$$

$$f(x_i) = f(x_i) \quad i = \overline{0, m}$$

$$\frac{x - x_0}{v_1(x_1) + \frac{x - x_1}{v_2(x_2) + \frac{x - v_2}{v_3(x_3) + \cdots}}}$$

$$\vdots$$

$$+ \frac{x - x_{m-1}}{v_m(x_m)}$$

 $v_i(x_i)$ - diferențele divizate inverse $M = \{x_i | \ x_i \in \mathbb{R}, \ i = \overline{0,m}\}, \ x_i \neq x_j \ (i \neq j)$ $f: M \to \mathbb{R}$

$$[x_0, x_1, \dots, x_{k-1}, x_k; f]^- = \frac{x_k x_{k-1}}{[x_0, \dots, x_{k-2}, x_k; f]^- - [x_0, \dots, x_{k-1}; f]^-}$$
$$[x_0, x_1; f]^- = [x_0, x_1; f]^{-1}$$

$$G_0 = 1 G_1(x) = f(x_0)$$

$$H_0 = 0 H_1(x) = 1$$

$$G_{k+1}(x) = r_k(x_k)G_k(x) + (x - x_{k-1})G_{k-1}(x)$$

Pentru calculul diferențelor divizate inverse se construiește tabelul

În cazul nostru

$$v_{1,1} = \frac{x_1 - x_0}{v_{1,0} - v_{0,0}} = \frac{\frac{1}{2} - 0}{\frac{2}{3} - 1} = -\frac{3}{2}$$

$$v_{2,1} = \frac{x_2 - x_1}{v_{2,1} - v_{1,1}} = -2, \quad v_{2,2} = \frac{x_2 - x_1}{v_{2,1} - v_{1,1}} = -1$$

$$F_2(x) = f(x_0) + \frac{x - x_0}{v_{11} + \frac{x - x_1}{v_{22}}} = 1 + \frac{x}{-\frac{3}{2} + \frac{x - \frac{1}{2}}{2}} = \frac{1}{x + 1}$$

Restul are expresia

$$(R_m f)(x) = \frac{(-1)^m u(x)}{H_{m+1}(x)[v_{m+1}(x)H_{m+1}(x) + (x-x_m)H_m(x)]}.$$

6.6 Interpolare spline

Problema 6.6.1 Arătați că orice funcție $f \in C^m[a,b]$ poate fi aproximată uniform, împreună cu derivatele ei până la ordinul m printr-o funcție spline de gradul m, derivatele ei respectiv prin derivatele funcției spline până la ordinul m.

Demonstrație. $f \in C^m[a,b] \Rightarrow f^{(m)} \in [a,b] \Rightarrow f^{(m)}$ poate fi aproximată uniform pe [a,b] printr-o funcție în scară, continuă la dreapta și discontinuă în $x_1,x_2,\ldots,x_n\in [a,b]$, notată cu h_m .

Fie problema diferențială

$$s^{(m)}(x) = h_m(x), \quad x \in [a, b]$$

 $s^{(r)}(a) = f^{(r)}(a), \quad r = \overline{0, m - 1}$

Soluția acestei probleme pe [a, b] este

$$s(x) = f(a) + (x-a)f'(a) + \dots + \frac{(x-a)^{m-1}}{(m-1)!}f^{(m-1)}(a) + \int_{a}^{x} \frac{(x-t)^{m-1}}{(m-1)!}h_{m}(t)dt$$
(6.2)

s este o funcție spline de grad m căci

$$s|_{(x_{i},x_{i+1})} \in P_{m-1}, \quad s \in C^{m-1}[a,b]$$

$$f \in C^{m}[a,b] \Rightarrow$$

$$f(x) = f(a) + (x-a)f'(a) + \dots + \frac{(x-a)^{m-1}}{(m-1)!} f^{(m-1)}(a) + \int_{a}^{x} \frac{(x-t)^{m-1}}{(m-1)!} f^{(m)}(t) dt$$

$$(6.2), (6.3) \Rightarrow f^{(r)}(x) - s^{(r)}(x) = \int_{a}^{x} \frac{(x-t)^{m-r-1}}{(m-r-1)!} [f^{(m)}(t) - h_{m}(t)] dt, \quad r =$$

$$\|f^{(r)} - s^{(r)}\|_{\infty} \leq \frac{(b-a)^{m-r}}{(m-r)!} \|\underbrace{f^{(m)} - h_{m}}_{\infty}\|_{\infty}, \quad r = \overline{0, m-1}$$

Problema 6.6.2 Fie $a, b \in \mathbb{R}$, a < 0, b > 1, $f : [a, b] \to \mathbb{R}$ stiind că $f \in C^1[a, b]$ și cunoscând f(0), $f\left(\frac{1}{2}\right)$, f(1) să se scrie expresia funcției spline cubice de interpolare cu nodurile $x_1 = 0$, $x_2 = \frac{1}{2}$, $x_3 = 1$ și a restului.

Soluție.

$$s(x) = s_1(x)f(x_1) + s_2(x)f(x_2) + s_3(x)f(x_3)$$

unde

$$s_i(x_j) = \delta_{ij}, \quad i, j = \overline{1, 3}$$
$$s_i(x) = a_0 + a_1 x + b_1 x^3 + b_2 \left(x - \frac{1}{2}\right)^3 + b_3 (x - 1)_+^3$$

$$\sum_{i=1}^{3} b_{i}x_{i}^{r} = 0, \quad r = \overline{0, m-1}, \quad m = 2$$

$$s_{i}''(x) = 6b_{1}x_{+} + 6b_{2}\left(x - \frac{1}{2}\right)_{+} + 6b_{3}(x - 1)_{+}$$

$$s_{i}''(0) = s_{i}''(1) = 0$$

$$s_{i}'''(x) = 6(b_{1} + b_{2} + b_{3}) = 0 \Rightarrow b_{1} + b_{2} + b_{3} = 0 \quad (x \ge 1)$$

$$s_{i}''(0) = 0$$

$$s_{i}''(1) = 6b_{1} + 3b_{2} = 0$$

$$b_{2} = -2b_{1}$$

$$b_{1} + b_{2} + b_{3} = 0 \Rightarrow b_{3} = b_{1}$$

$$s_{i}(x) = a_{0} + a_{1}x + b\left[x_{+}^{3} - 2\left(x - \frac{1}{2}\right)^{3} + (x - 1)_{+}^{3}\right]$$

$$s_{1}(0) = a_{0} = 1$$

$$s_{1}\left(\frac{1}{2}\right) = 1 + \frac{a_{1}}{2} + b \cdot \frac{1}{8} = 0$$

$$s_{1}(1) = 1 + a_{1} + b\left[1 - \frac{1}{4}\right] = 0$$

$$s_{2}\left(\frac{1}{2}\right) = \frac{a_{1}}{2} + \frac{b}{8} = 1$$

$$s_{2}(0) = a_{0} = 0$$

$$s_{2}\left(\frac{1}{2}\right) = \frac{a_{1}}{2} + \frac{b}{8} = 1$$

$$s_{2}(1) = a_{1} + b\left[1 - \frac{1}{4}\right] = 0$$

$$s_{3}(0) = a_{0} = 0$$

$$s_{3}\left(\frac{1}{2}\right) = \frac{a_{1}}{2} + \frac{b}{8} = 0$$

$$s_{3}(1) = a_{1} + \frac{3b}{4} = 1$$

$$s_3(x) = -\frac{1}{2}x + 2\left[x_+^3 - 2\left(x - \frac{1}{2}\right)^3 + (x - 1)_+^3\right]$$

Pentru rest folosim teorema lui Peano

$$(Rf)(x) = \int_{a}^{b} \varphi(x;t) f^{(m)}(t) dt$$

$$\varphi(x,t) = \frac{1}{(m-1)!} \left\{ (x-t)_{+}^{m-1} - \sum_{i=1}^{3} s_{i}(x) (x_{i}-t)_{+} \right\} =$$

$$= (x-t)_{+} - \sum_{i=1}^{3} s_{i}(x) (x_{i}-t)_{+} =$$

$$= (x-t)_{+} - s_{1}(x) (-t)_{+} - s_{2}(x) \left(\frac{1}{2} - t\right)_{+} - s_{3}(1-t)_{+}$$

Problema 6.6.3 Fie funcția $f(x) = \sin \pi x$ și nodurile $x_0 = 0$, $x_1 = \frac{1}{6}$, $x_2 = \frac{1}{2}$, $x_3 = 1$.

Să se determine o funcție spline naturală și o funcție spline limitată (racordată) care aproximează pe f.

Soluție. Vom rezolva un sistem liniar de forma Ax = b. Pentru funcția spline naturală avem:

$$A = \begin{bmatrix} 1 & 0 & 0 & \dots & \dots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & \dots & \dots & 0 \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & h_{n-2} & 2(h_{n-1} + h_{n+1}) & h_{n-1} \\ 0 & \dots & \dots & 0 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} \frac{3}{h_1}(a_n - a_1) - \frac{3}{h_0}(a_1 - a_0) \\ \vdots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\ 0 \end{bmatrix}.$$

Pentru funcția spline limitată:

$$A = \begin{bmatrix} 2h_0 & h_0 & 0 & \cdots & \cdots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & \cdots & \cdots & \cdots \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & \cdots & \cdots & 0 & h_{n-1} & 2h_{n-1} \end{bmatrix}$$

$$b = \begin{bmatrix} \frac{\frac{3}{h_0}(a_1 - a_0) - 3f'(a)}{\frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0)} \\ \vdots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_0}(a_{n-1} - a_{n-2}) \\ 3f'(b) - \frac{3}{3h_{n-1}}(a_n - a_{n-1}) \end{bmatrix}$$

$$h_j = x_{j+1} - x_j$$

$$b_j = \frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1})$$

$$d_j = \frac{c_{j+1} - c_j}{3h_j}, \quad n = 3$$

$$a_0 = 0, \quad a_1 = \frac{1}{2}, \quad a_2 = 1, \quad a_3 = 0$$

$$h_0 = \frac{1}{6}, \quad h_1 = \frac{1}{2} - \frac{1}{6} = \frac{1}{3}, \quad h_2 = \frac{1}{2}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} \frac{3}{3} \cdot \frac{1}{2} - \frac{7}{6} \cdot \frac{1}{2} \\ \frac{3}{2}(-1) - \frac{7}{3} \cdot \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} \frac{1}{3} & \frac{1}{6} & 0 & 0 \\ \frac{1}{6} & \frac{1}{1} & \frac{3}{3} & 0 \\ 0 & \frac{3}{3} & \frac{5}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $f'(x) = \pi \cos \pi x$ $f'(0) = \pi$ $f'(1) = -\pi$

$$b = \begin{bmatrix} 3(3-3\pi) \\ -\frac{9}{2} \\ 3(2-\pi) \end{bmatrix}$$
$$\frac{3}{40}(a_1 - a_0) - 3f'(0) = \frac{3}{\frac{1}{6}} \cdot \frac{1}{2} - 3\pi = 3(3-3\pi)$$
$$-3\pi - \frac{3}{\frac{1}{2}}(-1) = 6 - 3\pi = 3(2-\pi)$$

Problema 6.6.4 Fie $f:[a,b] \to \mathbb{R}$, $f \in C^1[a,b]$, a < 0, b > 1. Să se scrie o funcție spline naturală de interpolare care verifică s(0) = f(0), s'(0) = f'(0), s(1) = f(1), s'(1) = f'(1).

Soluție. Funcția căutată este de forma

$$s(x) = p_{m-1}(x) + \sum_{i=1}^{n} \sum_{j=0}^{r_i} c_{ij}(x - x_i)_+^{2m-1-j}$$

$$s(x) = a_0 + a_1 x + c_{10} x^3 + c_{11} x^2 + c_{20} (x - 1)^3 + c_{21} (x - 1)^2_+$$

Avem 6 necunoscute și 4 condiții

$$s'(x) = a_1 + 3c_{10}x_+^2 + 2c_{11}x_+ + 3c_{20}(x - 1)_+^2 + 2c_{21}(x - 1)_+$$

$$s(0) = a_0 = f(0)$$

$$s'(0) = a_1 = f'(0)$$

$$s(1) = f(0) + f'(0) + c_{10} + c_{11} = f(1)$$

$$s'(1) = f'(0) + 3c_{10} + 2c_{11} = f'(1)$$

$$s''(1) = 0$$

$$s''(x) = 6c_{10}x_+ + 2c_{11}x_+^0 + 6c_{20}(x - 1)_+ + 2c_{21}(x - 1)_+^0$$

$$3c_{10} + c_{11} + c_{21} = 0$$

$$s'''(x) = 6c_{10}x_+^0 + 6c_{20}(x - 1)_+^0$$

$$s'''(1) = c_{10} + c_{20} = 0 \quad c_{20} = -c_{10}$$

$$\begin{cases} c_{10} + c_{11} = f(1) - f(0) - f'(0) \\ 3c_{10} + 2c_{11} = f'(1) - f'(0) \end{cases}$$

$$c_{10} = 2f(0) + f'(0) - 2f(1) + f'(1)$$

$$c_{11} = f(1) - f(0) - f'(0) - 2f(0) - 2f'(0) + 2f(1) - f'(1) =$$

$$= 3f(1) - 3f(0) - 3f'(0) - f'(1)$$

$$c_{21} = -3c_{10} - c_{11} = -6f(0) - 3f'(0) + 6f(1) - 3f'(1) - 3f(1) + 3f(0) + 3f'(0) + f'(1) =$$

$$= -3f(0) + 3f(1) - 2f'(1)$$

Altfel. Pe [0,1], s(x) coincide cu polinomul de interpolare Hermite cu nodurile duble 0 și 1, H_3f , iar pe $[a,0)\cup(1,b]$ este un polinom de grad 1 tangent la H_3f

$$s(x) = \begin{cases} f'(0)x + f(0) & x \in [a, 0) \\ (H_3 f)(x) & x \in [0, 1] \\ f'(1)x + f(1) - f'(1) & x \in (1, b] \end{cases}$$

Capitolul 7

Aproximări în medie pătratică

Se pune problema să se aproximeze o mulțime de date (x_i, y_i) , $i = \overline{1, m}$, $y_i = f(x_i)$ printr-o funcție F care se exprimă ca o combinație liniară a unor funcții g_1, \ldots, g_n liniar independente astfel încât

$$\left(\int_a^b w(x)[f(x) - F(x)]^2 dx\right)^{1/2} \to \min,$$

în cazul continuu sau

$$\left(\sum_{i=0}^{m} w(x) [f(x_i) - F(x_i)]^2\right)^{1/2} \to \min$$

în cazul discret (principiul celor mai mici pătrate).

Dacă $f(x_i) - F(x_i) = 0$, $i = \overline{0, m}$ ajungem la interpolarea clasică.

P.c.m.m.p. constă în determinarea unui e.c.m.b.a în $L^2w[a,b]$ adică $g^*\in A\subset L^2w[a,b]$ astfel încât

$$||f - g^*|| = \min_{g \in A} ||f - g||$$

Dacă A este spațiu liniar

$$\langle f - g^*, g \rangle = 0, \ \forall \ g \in A.$$
 (7.1)

Punând
$$g = \sum_{i=1}^{n} \lambda_i g_i, \ g^* = \sum_{i=1}^{n} \lambda_i^* g_i$$

$$(7.1) \Leftrightarrow \langle f - g^*, g_k \rangle = 0, \ k = \overline{1, n} \Leftrightarrow$$

$$\sum_{i=1}^{n} \lambda_i \langle g_i, g_k \rangle = \langle f, g_k \rangle, \quad k = \overline{1, n}.$$
 (7.2)

Ecuațiile lui (7.2) se numesc ecuații normale. Determinantul lui (7.2) este determinantul Gram al vectorilor $g_1, \ldots, g_n, \ G(g_1, \ldots, g_n) \neq 0$, căci g_1, \ldots, g_n sunt liniar independente.

Deci g^* există și este unic.

În cazul discret putem lucra analog cu

$$\langle f, g \rangle = \sum_{i=0}^{m} w(x_i) f(x_i) g(x_i).$$

Problema poate fi tratată și astfel:

Fie

$$G(a_1, \dots, a_n) = \sum_{i=0}^{m} w(x_i) \left[f(x_i) - \sum_{k=1}^{n} a_k g_k(x) \right]$$

Pentru a determina minimul lui G vom rezolva sistemul

$$\frac{\partial G}{\partial a_j}(a_1,\dots,a_n) = 0, \quad i = \overline{1,n}.$$

Observația 7.0.5 Dacă funcțiile g_k , $k = \overline{1,n}$ formează un sistem ortogonal coeficienții λ_k^* sau a_k^* se pot obține astfel

$$a_k^* = \frac{\langle f, g_k \rangle}{\langle g_k, g_k \rangle}.$$

Problema 7.0.6 Dându-se punctele

$$(0, -4), (1, 0), (2, 4), (3, -2),$$

determinați polinomul de gradul I corespunzător acestor date prin metoda celor mai mici pătrate.

$$g_{j}(x_{i}) = g_{j}^{i}$$

$$G(a_{1}, a_{2}, \dots, a_{n}) = \sum_{i=0}^{m} \left[y_{i} - \sum_{j=1}^{n} a_{j} g_{j}(x_{i}) \right]^{2}$$

$$\frac{\partial G}{\partial a_{k}} = 2 \sum_{i=0}^{m} \left[y_{i} - \sum_{j=1}^{n} a_{j} g_{j}(x_{i}) \right] g_{k}(x_{i}) = 0$$

$$\sum_{i=0}^{m} \sum_{j=1}^{n} a_{j} g_{j}(x_{i}) g_{k}(x_{i}) = \sum_{i=0}^{m} y_{i} g_{k}(x_{i}), \quad k = \overline{1, n}$$

matricial

$$G\widehat{a} = d$$

$$G_{jk} = \sum_{i=0}^{m} g_j(x_i)g_k(x_i)$$

$$d_k = \sum_{i=0}^{m} y_i g_k(x_i)$$

$$n = 1, \ g_1(x) = 1, \ g_2(x) = x, \ m = 3$$

$$G_{11} = \sum_{i=0}^{3} g_1(x_i)g_1(x_i) = 1^2 + 1^2 + 1^2 + 1^2 = 4$$

$$G_{12} = \sum_{i=0}^{3} g_1(x_i)g_2(x_i) = 1 \cdot 0 + 1 \cdot 1 + 1 \cdot 2 + 1 \cdot 3 = 6$$

$$G_{22} = 0^2 + 1^2 + 2^2 + 3^2 = 14$$

$$d_1 = -4 \cdot 1 + 0 \cdot 1 + 4 \cdot 1 + (-2) \cdot 1 = -2$$

$$d_2 = -4 \cdot 0 + 0 \cdot 1 + 4 \cdot 2 + (-2) \cdot 3 = 2$$

$$\begin{bmatrix} 4 & 6 \\ 6 & 14 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} \Rightarrow a_1 = -2, \ a_2 = 1$$

$$F(x) = x - 2$$

Problema 7.0.7 Să se găsească aproximarea continuă de gradul 2 prin metoda celor mai mici pătrate pentru $f(x) = \sin \pi x$ pe intervalul [0,1].

$$P_{2}(x) = a_{0} + a_{1}x + a_{1}x^{2}$$

$$G(a_{0}, a_{1}, a_{2}) = \int_{a}^{b} [f(x) - a_{0} - a_{1}x - a_{2}x^{2}]^{2} dx$$

$$G(a_{0}, \dots, a_{n}) = \int_{a}^{b} \left(f(x) - \sum_{k=0}^{n} a_{k}x^{k} \right)^{2} dx$$

$$\frac{\partial G}{\partial a_{j}} = \frac{\partial}{\partial a_{j}} \left[\int_{a}^{b} [f(x)]^{2} dx - 2 \sum_{k=0}^{n} a_{k} \int_{a}^{b} x^{k} f(x) dx + \int_{a}^{b} \left(\sum_{k=0}^{n} a_{k}x^{k} \right) \right)^{2} dx \right] =$$

$$= -2 \int_{a}^{b} x^{j} f(x) dx + 2 \sum_{k=0}^{n} a_{k} \int_{a}^{b} x^{j+k} dx = 0$$

$$\sum_{k=0}^{n} a_k \int_a^b x^{j+k} dx = \int_a^b x^j f(x) dx, \quad j = \overline{0, n}$$

$$a_0 \int_0^1 dx + a_1 \int_0^1 x dx + a_2 \int_0^1 x^2 dx = \int_0^1 \sin \pi x dx$$

$$a_0 \int_0^1 x dx + a_1 \int_0^1 x^2 dx + a_2 \int_0^1 x^3 dx = \int_0^1 x \sin \pi x dx$$

$$a_0 \int_0^1 x^2 dx + a_1 \int_0^1 x^3 dx + a_2 \int_0^1 x^4 dx = \int_0^1 x^2 \sin \pi x dx$$

Calculând integralele se obține

$$\begin{cases} a_0 + \frac{1}{2}a_1 + \frac{1}{3}a_2 = \frac{2}{\pi} \\ \frac{1}{2}a_0 + \frac{1}{3}a_1 + \frac{1}{4}a_2 = \frac{1}{\pi} \\ \frac{1}{3}a_0 + \frac{1}{4}a_1 + \frac{1}{5}a_2 = \frac{\pi^2 - 4}{\pi^3} \end{cases}$$
$$a_0 = \frac{12\pi^2 - 120}{\pi^3} \quad a_1 = -a_2 = \frac{720 - 60\pi^2}{\pi^3}$$

Problema 7.0.8 Să se calculeze aproximarea Fourier discretă pentru $m=2^p=2$ direct și aplicând algoritmul FFT.

$$\{(x_j, y_j)\}_{j=0}^{2m-1}, \quad m = 2^p = 2, \quad x_j = -\pi + \frac{j\pi}{m} = \pi \left(\frac{j}{m} - 1\right)$$

$$x_0 = -\pi, \quad x_1 = -\pi + \frac{\pi}{2} = -\frac{\pi}{2}$$

$$x_2 = -\pi + \pi = 0 \quad x_3 = -\pi + \frac{3\pi}{2} = \frac{\pi}{2}$$

$$\omega = i = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$$

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 \\ 1 & \omega^2 & \omega^4 & \omega^6 \\ 1 & \omega^3 & \omega^6 & \omega^9 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix} =$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} y+0+y_1+y_2+y_3 \\ y_0+iy_1-y_2-iy_3 \\ y_0-y_1+y_2-y_3 \\ y_0-iy_1-y_2+iy_3 \end{bmatrix}$$

$$F(x) = \frac{1}{m} \sum_{k=0}^{2m-1} c_k e^{ikx} = \frac{1}{m} \sum_{k=0}^{\infty} c_k (\cos kx + i \sin kx) =$$

$$= \frac{1}{2}[c_0 + c_1(\cos x + i\sin x) + c_2(\cos 2x + i\sin 2x) + c_3(\cos 3x + i\sin 3x)]$$

$$\frac{1}{m}c_k e^{-\pi ik} = a_k + ib_k$$

Algoritmul FFT simplificat

Intrare: $a = [a_0, a_1, \dots, a_{n-1}^T, n = 2^k, k \text{ dat}]$

Ieşire: $F(a) = [b_0, b_1, \dots, b_{n-1}]^T$

$$b_i = \sum_{j=0}^{n-1} a_j \omega^{ij}, \quad i = \overline{0, n-1}$$

Metoda

P1. Pentru $i=0,\ldots,2^k-1$ execută $R[i]:=a_i$

P2. Pentru $l=0,\ldots,k-1$ execută P3-P4

P3. Pentru $i=0,\dots,2^{k-1}$ execută S[i]:=R[i]

Fie $[d_0d_1\dots d_{k-1}]$ reprezentarea binară a lui i

$$R[[d_0, \dots d_{k-1}]] \leftarrow S[[d_0 \dots d_{l-1} 0 d_{l+1} \dots d_{n-1}]] + \omega^{[dldl_1 \dots d_0 0 \dots 0]} S[[d_0 \dots d_{l-1} 1 d_{l+1} \dots d_{k-1}]]$$

P5. Pentru $i = 0, \dots, 2^k - 1$ execută

$$b[[d_0, \dots, d_{k-1}]] \leftarrow R[[d_{k-1}, \dots, d_0]]$$

Avem $n = 4, k = 2, a_i = y_i$

Et.1. $R[d_0, d_1] = S[0, d_1] + \omega^{[d_00]} S[1d_1]$

Et.2.
$$R[d_0, d_1] = S[d_0, 0] + \omega^{[d_0 d_1]} S[d_0 1]$$

1. $R = [y_0, y_1, y_2, y_3]$

2. l = 0

3. $S = [y_0, y_1, y_2, y_3]$

$$R[d_0, d_1] = S[0, d_1] + \omega^{[d_0, 0]} S[1, d_1]$$

$$i = 0$$

$$i = [d_0 d_1] = [0, 0]$$

$$\begin{split} R[0,0] &= S[0,d_1] + \omega^{[do,0]}S[1,d_1] = S[0,0] + \omega^{[0,0]}S[1,0] = y_0 + y_2 \\ i &= 1 \\ & i = [d_0,d_1] = [0,1] \\ R[0,1] &= S[0,1] + \omega^{[0,0]}S[1,1] = y_1 + y_3 \\ i &= 2 \\ & i = [d_0,d_1] = [1,0] \\ R[1,0] &= S[0,0] + \omega^{[1,0]}S[1,0] = S[0,0] + \omega^2S[1,0] = y_0 + \omega^2y_2 = y_0 - y_2 \\ i &= 3 \\ & i = [d_0,d_1] = [1,1] \\ R[1,1] &= S[0,1] + \omega^{[1,0]}S[1,1] = S[0,1] + \omega^2S[1,1] = y_1 + \omega^2y_3 = y_1 - y_3 \\ l &= 1 \\ & S &= [y_0 + y_2, y_1 + y_3, y_0 + \omega^2y_2, y_1 + \omega^2y_3] \\ & R[d_0d_1] &= S[d_0,0] + \omega^{[d_0d_1]}S[d_0,1] \\ i &= 0 \\ & i &= [d_0,d_1] = [0,0] \\ R[0,0] &= S[0,0] + \omega^{[0,0]}S[0,1] = S[0,0] + S[0,1] = y_0 + y_1 + y_2 + y_3 \\ i &= 1 &= [d_0,d_1] = [0,1] \\ r[0,1] &= S[0,0] + \omega^{[0,1]}S[0,1] = S[0,0] + \omega S[0,1] = y_0 + y_2 + i(y_1 + y_3) \\ i &= 2 \\ & [d_0d_1] &= [1,0] \\ R[1,0] &= S[1,0] + \omega^2S[1,1] = y_0 + \omega^2y_2 + \omega^2(y + 1 + \omega^2y_3) \\ i &= 3 \\ & [d_0d_1] &= [1,1] \\ R[1,1] &= S[1,0] + \omega^{[1,1]}S[1,1] = y_0 + \omega^2y_2 + \omega^3(y + 1 + \omega^2y_3) \\ 5. \\ & c[0,0] &= R[0,0] = y_0 + y_1 + y_2 + y_3 \\ c[0,1] &= R[1,0] = y_0 - y_2 + i(y_1 - y_3) \\ c[1,0] &= R[0,1] = y_0 + y_2 - \omega^2(y_1 + \omega^2y_3) = y_0 + y_2 - y_1 - y_3 \\ c[1,1] &= R[1,1] = y_0 - y_2 - i(y_1 - y_3) \\ a_0 &= \frac{c_0}{c_0} = \frac{y_0 + y_1 + y_2 + y_3}{2} \\ \end{split}$$

$$a_m = a_2 = Re(e^{2-\pi i}c_2/2) = \frac{y_0 - y_2 + y_1 - y_3}{2}$$

$$a_1 = Re(e^{-\pi i}c_1/m) = \frac{1}{2}Re\{(-1)(y_0 - y_i + i(y_1 - y_2))\} = y_2 - y_0$$

$$b_1 = Im(e^{-\pi i}c_1/m) = \frac{y_3 - y_1}{2}$$

Capitolul 8

Operatori liniari și pozitivi

8.1 Operatorul lui Bernstein

Problema 8.1.1 Să se afle expresia polinomului Bernstein $(B_m f)(x; a, b)$ corespunzător unui interval compact [a, b] și unei funcții f definite pe acest interval.

Soluție. Se face schimbarea de variabilă

$$x = \frac{y - a}{b - a}$$

$$(B_m f)(y; a, b) = \frac{1}{(b-a)^m} \sum_{k=0}^m {m \choose k} (y-a)^k (b-y)^{m-k} f\left[a + (b-a)\frac{k}{m}\right]$$

Problema 8.1.2 Determinați $(B_m f)(x; a, b)$ în cazul când $f(x) = e^{Ax}$.

Soluție.

$$(B_m f)(x; a, b) = \frac{1}{(b-a)^m} \sum_{k=0}^m {m \choose k} (x-a)^k (b-x)^{m-k}$$

$$e^{A[a+(b-a)\frac{k}{m}]} = \sum_{k=0}^m {m \choose k} \left(\frac{x-a}{b-a}\right)^k \left(\frac{b-x}{b-a}\right)^{m-k} e^{Ab\frac{k}{m}} e^{\frac{Aa(m-k)}{m}} =$$

$$= \left(\frac{b-x}{b-a} e^{\frac{Aa}{m}} + \frac{x-a}{b-a} e^{\frac{Ab}{m}}\right)^m$$

Problema 8.1.3 Să se arate că pentru $f(t) = \cos t$ avem

$$(B_m f)\left(x, -\frac{\pi}{2}, \frac{\pi}{2}\right) = \frac{1}{2}\left(\cos\frac{\pi}{2m} + i\frac{2x}{\pi}\sin\frac{\pi}{2m}\right)^m + \frac{1}{2}\left(\cos\frac{\pi}{2m} - i\frac{2x}{\pi}\sin\frac{\pi}{2m}\right)^m$$

Soluție. Se folosește identitatea

$$\cos x = \frac{1}{2}(e^{ix} + e^{-ix})\sin x = \frac{1}{2i}(e^{ix} - e^{-ix})$$

Problema 8.1.4 Să se arate că dacă f este convexă pe [0,1] atunci are loc inegalitatea

$$f(x) \leq (B_m f)(x)$$
 pe $[0,1]$

Soluţie.

$$f \text{ convexă} \overset{Jensen}{\Rightarrow} f\left(\sum_{k=0}^{m} \alpha_k x_k\right) \leq \sum_{k=0}^{m} \alpha_k f(x_k)$$

$$\alpha_k \in [0,1], \quad \sum_{k=0}^{m} \alpha_k = 1$$

$$f\left(\sum_{k=0}^{m} p_{mk}(x) \frac{k}{m}\right) \leq \sum_{k=0}^{m} p_{m,k}(x) f\left(\frac{k}{m}\right)$$

Problema 8.1.5 $Dac \breve{a} f \in C^r[0,1]$ atunci

$$\lim_{m \to \infty} (B_m f)^{(r)} = f^{(r)} \quad \text{uniform pe} \quad [0, 1]$$

Soluție. Se arată întâi că

$$(B_m f)^{(r)}(x) = m^{[r]} \sum_{n=0}^{m-r} p_{m-r,k}(x) \Delta_{\frac{1}{m}}^r f\left(\frac{k}{m}\right), \tag{8.1}$$

de exemplu prin inducție.

$$(B_m f)^{(r)}(x) = \frac{m^{[r]}}{m^r} \sum_{n=0}^{m-r} p_{m-r,k}(x) f^{(r)}(x_k)$$
$$x_k = \frac{k + \theta_k r}{m} \quad 0 < \theta_k < 1$$
$$x_k \in \left(\frac{k}{m}, \frac{k+r}{m}\right)$$

(am aplicat formula de medie)

Notăm

$$C(m,r) = \frac{m^{[r]}}{m^r} = \left(1 - \frac{1}{m}\right) \left(1 - \frac{2}{m}\right) \dots \left(1 - \frac{r-1}{m}\right)$$

$$f^{(r)}(x) - (B_m f)^{(r)}(x) = \sum_{k=0}^{m-r} p_{m-r,k}(x) (f^{(r)}(x) - f^{(r)}(x_k)) + \left[1 - c(m,r)\right] \sum_{k=0}^{m-r} p_{m-r,k}(x) f^{(r)}(x_k)$$

$$\sum_{k=0}^{m-r} p_{m-r,k}(x) |f^{(r)}(x_k)| \le M_r(f) = \sup_{x \in [0,1]} |f^{(r)}(x)|$$

$$(1 - a_1) \dots (1 - a_{r-1}) \ge 1 - (a_1 + \dots + a_{r-1})$$

dacă $a_1, \ldots, a_{r-1} \le 1$ de același semn

$$C(m,r) \ge 1 - \frac{1+2+\dots+(r-1)}{m} = 1 - \frac{r(r-1)}{m}$$

Putem scrie

$$|f^{(r)}(x) - (B_m f)^{(r)}(x)| \le \underbrace{\sum_{k=0}^{m-r} p_{m-r,k}(x) |f^{(r)}(x) - f^{(r)}(x_k)|}_{S} + \frac{r(r-1)}{2m} M_r(f)$$

Fie

$$F_m = \{k | |x - x_k| \le \delta\}$$
$$J_m = \{k | |x - x_k| > \delta\}$$

$$S \leq \frac{\varepsilon}{2} \sum_{k \in I_m} p_{m-r,k}(x) + 2M_r(f) \sum_{n \in J_m} p_{m-r,k}(x) \leq \frac{1}{\delta^n} \sum_{s=0}^{m-r} (x - x_k)^2 p_{m-r,k}(x)$$

$$|x - x_k| < \left| x - \frac{k}{m-r} \right| + \frac{r}{m}$$

$$S_2 \leq \left(1 + \frac{2r}{m} \right) \frac{1}{4(m-r)} + \frac{r^2}{m^2}$$

$$|f^{(r)}(x) - (B_m f)^{(r)}(x)| < \frac{\varepsilon}{2} + \left(1 + \frac{2r}{m} \right) \frac{M_r(f)}{2(m-r)\delta^2} + \frac{2r^2 M_r(f)}{m^2 \delta^2} + \frac{r(r-1)}{2m} M_r(f)$$

r fix, $m \to \infty$

$$|f^{(r)}(x) - (B_m f)^{(r)}(x)| < \varepsilon$$

 $m>N_{\varepsilon},\;\forall\;x\in[0,1]$

Să demonstrăm acum (8.1)

$$p'_{m,k}(x) = k \binom{m}{k} x^{k-1} (1-x)^{m-k} - (m-k) \binom{m}{k} x^k (1-x)^{m-k-1} =$$

$$= m \binom{m-1}{k-1} x^{k-1} (1-x)^{m-k} - m \binom{m-1}{k} x^k (1-x)^{m-k-1} =$$

$$= m [p_{m-1,k-1}(x) - p_{m-1,k}(x)]$$

Presupunem relația adevărată pentru r.

Pentru r+1 avem

$$(B_m f)^{(r+1)} = m^{[r]} \sum_{k=0}^{m-r} p'_{m-k,k}(x) \Delta_{\frac{1}{m}}^r f\left(\frac{k}{m}\right)$$

$$= m^{[r]} (m-r) \left(\sum_{k=0}^{m-r} p_{m-r-1,k}(x) \left[\Delta_{\frac{1}{m}}^r f\left(\frac{k+1}{m}\right) - \Delta_{\frac{1}{m}}^r f\left(\frac{k}{m}\right)\right]\right)$$

$$= m^{[r+1]} \sum_{k=0}^{m-r} p_{m-r-1,k}(x) \Delta_{\frac{1}{m}}^r f\left(\frac{k}{m}\right).$$

8.2 B-spline

$$\Delta:\ t_0\leq t_1\leq \cdots \leq t_k\leq a\leq \cdots \leq b\leq t_n\leq \cdots \leq t_{n+k}$$
 multiplicitatea $r_i+1\leq k+1$

Foarte frecvent avem

$$t_0 = t_1 = \dots = t_k = a < t_{k+1} \le \dots \le t_{n-1} < b = t_m = \dots = t_{n+k}$$

$$B_{i,0}(x) = \begin{cases} 1 & \text{dacă } x \in [t_i, t_{i+1}] \\ 0 & \text{in caz contrar} \end{cases}$$
(8.2)

$$\omega_{i,k}(x) = \begin{cases} \frac{x - t_i}{t_{i+k} - t_i} & \text{dacă } t_i < t_{i+k} \\ 0 & \text{în caz contrar} \end{cases}$$

$$B_{i,k}(x) = \omega_{i,k}(x)B_{i,k-1}(x) + (1 - \omega_{i+1,k}(x))B_{i+1,k-1}(x)$$

$$B_{i,k}(x) = (t_{i+k+1} - t_i)[t_i, \dots, t_{i+k+1}, (\cdot - x)_+^k]$$
(8.3)

Problema 8.2.1 Să se scrie expresia funcțiilor B-spline de grad 3 cu nodurile $\{t_i = i | i \in \mathbb{Z}\}$

Soluţie. Avem

$$B_{i,k}(x) = B_{i+l,k}(x+l),$$

și deci este suficient să determinăm un singur spline.

$$B_{j,k}(x) = \omega_{i,k}(x)B_{i,k-1}(x) + (1 - \omega_{i+1,k}(x))B_{i+1,k-1}(x) =$$

$$= \frac{x - i}{i + k - i}B_{i,k-1}(x) + \left(1 - \frac{x - i - 1}{i + 1 + k - i - 1}\right)B_{i+1,k-1}(x) =$$

$$= \frac{x - i}{k}B_{i,k-1}(x) + \frac{k + i + 1 - x}{k}B_{i+1,k-1}(x)$$

$$B_{j+l,k}(x+l) = \frac{x+l-j-l}{i+l+k-i-l} B_{i+l,k-1}(x+l) + \left(1 - \frac{x+l-i-l-1}{i+l+1+k-i-l-1}\right) B_{i+l+1,k-1} = \frac{x-i}{k} B_{i+l,k-1}(x+l) - \frac{k-i-1-x}{k} B_{i+l+1,k-1}(x+l)$$

$$B_{0,3}(x) = \omega_{0,3}(x)B_{0,2}(x) + (1 - \omega_{1,3}(x))B_{1,2}(x) = \frac{1}{3}[xB_{0,2}(x) + (4 - x)B_{1,2}(x)]$$

$$B_{0,2}(x) = \omega_{0,2}(x)B_{0,1}(x) + (1 - \omega_{1,2}(x))B_{1,1}(x) = \frac{1}{2}[xB_{0,1}(x) + (3 - x)B_{1,1}(x)]$$

8.2. B-spline 115

$$\begin{split} B_{1,2}(x) &= \omega_{1,2}(x) B_{1,1}(x) + (1 - \omega_{2,2}(x)) B_{2,1}(x) = \frac{1}{2} [(x-1)B_{1,1}(x) + (4-x)B_{2,1}(x)] \\ B_{0,1}(x) &= x B_{0,0}(x) + (2-x)B_{0,1}(x) \\ B_{1,1}(x) &= (x-1)B_{1,0}(x) + (3-x)B_{2,0}(x) \\ B_{2,1}(x) &= (x-2)B_{2,0}(x) + (4-x)B_{3,0}(x) \\ \end{split}$$

$$B_{i,0}(x) &= \begin{cases} 1 & x \in [t_i, t_{i+1}) \\ 0 & \text{in rest} \end{cases}$$

$$B_{0,0}(x) &= \begin{cases} 1 & x \in [t_0, t_1) = [0, 1) \\ 0 & \text{in rest} \end{cases}$$

$$B_{0,1}(x) &= \begin{cases} 1 & x \in [1, 2] \\ 0 & \text{in rest} \end{cases}$$

$$B_{0,1}(x) &= \begin{cases} \frac{t^3}{6} & x \in [0, 1) \\ \frac{1}{6}(3t^3 - 24t^2 + 60t - 44) & 2 \le t < 3 \\ \frac{1}{6}(4-t)^3 & 3 \le t < 4 \end{cases}$$

Problema 8.2.2 Fie acum nodurile

Să se determine B-splinele $B_{i,k}$ pentru k=2 şi $S_{\Delta}f$ şi pentru $f\in C^2[0,3]$, $R_{\Delta}f$.

Soluție.
$$n+k=7, \quad n=5$$

$$(S_{\Delta}f)(x) = \sum_{i=0}^{n-1} B_{i,k}(x) f(\xi_i)$$

$$\xi_i = \frac{t_{i+1} + \dots + t_{i+k}}{k}$$

$$B_{i,2} \quad i = \overline{0,n-1} \quad i=0,4$$

$$\omega_{i,k}(x) = \left\{ \begin{array}{ll} \frac{x-t_i}{t_{i+k}-t_i} & \mathrm{dacă}\ t_i < t_{i+k}\\ 0 & \mathrm{\hat{n}n}\ \mathrm{rest} \end{array} \right.$$

$$\begin{split} B_{i,k}(x) &= \omega_{i,k}(x)B_{i,k-1}(x) + [1-\omega_{i+1,k}(x)]B_{i+1,k-1}(x) \\ \omega_{0,2}(x) &= \frac{x-t_0}{t_2-t_0} = 0, \quad \omega_{0,1}(x) = 0, \quad \omega_{1,2}(x) = x, \quad \omega_{1,1}(x) = 0 \\ \omega_{2,2}(x) &= \frac{x}{2}, \quad \omega_{2,1}(x) = x, \quad \omega_{3,2}(x) = \frac{x-1}{2}, \quad \omega_{3,1}(x) = x-1 \\ \omega_{4,2}(x) &= x-2, \quad \omega_{4,1}(x) = x-2, \quad \omega_{5,2}(x) = 0, \quad \omega_{5,1}(x) = 0, \quad \omega_{6,1}(x) = 0 \\ B_{0,2}(x) &= (1-x)B_{1,1}, \quad B_{1,1}(x) = (1-x)B_{2,0} \\ B_{0,2}(x) &= (1-x)^2B_{2,0}(x) = \begin{cases} (1-x)^2 & x \in [0,1) \\ 0 & \text{in rest} \end{cases} \\ B_{1,2}(x) &= \omega_{1,2}B_{1,1} + (1-\omega_{2,2})B_{2,1} = xB_{1,1} + \frac{2-x}{2}B_{2,1} \\ B_{2,1}(x) &= \omega_{2,1}B_{0,2} + (1-\omega_{3,1})B_{0,3} = xB_{2,0} + (2-x)B_{3,0} \\ B_{1,2}(x) &= x(1-x)B_{2,0} + \frac{2-x}{2}xB_{2,0} + \frac{(2-x)^2}{2}B_{3,0} \\ &= \begin{cases} x\left(2-\frac{3}{2}x\right) & x \in [0,1) \\ \frac{(x-2)^2}{2} & x \in [1,2) \\ 0 & \text{in rest} \end{cases} \\ B_{2,2}(x) &= \omega_{2,2}B_{2,1} + (1-\omega_{3,2})B_{3,1} = \frac{x}{2}B_{2,1} + \frac{3-x}{2}B_{3,1} \\ B_{3,1}(x) &= \omega_{3,1}B_{3,0} + (1-\omega_{4,1})B_{4,0} = (x-1)B_{3,0} + (3-x)B_{4,0} \end{cases} \\ B_{2,2} &= \frac{x}{2}xB_{2,0} + \frac{x(2-x)}{2}B_{3,0} + \frac{3-x}{2}(x-1)B_{3,0} + \frac{(3-x)^2}{2}B_{4,0} = \\ &= \begin{cases} \frac{x^2}{2} & x \in [0,1) \\ \frac{(3-x)^2}{2} & x \in [1,2) \\ \frac{(3-x)^2}{2} & x \in [1,2) \end{cases} \\ x \in [2,3) \end{cases}$$

$$B_{3,2}(x) = \frac{x-1}{2}(x-1)B_{3,0} + \frac{x-1}{2}(3-x)B_{4,0} + (3-x)(x-2)B_{4,0} = \begin{cases} \frac{(x-1)^2}{2} & x \in [1,2) \\ (3-x)\left(\frac{x-1+2x-4}{2}\right) & x \in [2,3) \end{cases}$$

 $B_{4,1}(x) = \omega_{4,1}B_{4,0} + (1 - \omega_{5,1}); B_{5,0} = (x - 2)B_{4,0}$

8.2. B-spline 117

Problema 8.2.3 Pentru orice $k \geq 0$ și orice $x \in \mathbb{R}$, $B_{i,k}$ este derivabilă la dreapta și avem

 $B'_{i,k}(x) = k \left[\frac{B_{i,k-1}(x)}{t_{i+k} - t_i} - \frac{B_{i+1,k-1}(x)}{t_{i+k-1} - t_{i+1}} \right]$

cu convenția că o expresie cu numitorul nul se înlocuiește cu 0.

Demonstrație. Prin recurență după k, cazul k=0

$$B_{i,k}(x) = \frac{x - t_i}{t_{i+k} - t_i} B_{i,k-1}(x) + \frac{t_{i+k+1} - x}{t_{i+k+1} - t_{i+1}} B_{i+1,k-1}(x)$$

în care derivând și aplicând ipoteza inducției

$$\begin{split} B'_{i,k} &= \frac{B_{i,k-1}}{t_{i+k}-t_i} - \frac{B_{i+1,k-1}}{t_{i+k+1}-t_i} + (k-1) \bigg\{ \frac{x-t_i}{t_{i_k}-t_i} \left[\frac{B_{i,k-2}}{t_{i+k-1}-t_i} - \frac{B_{i+1,k-2}}{t_{i+k}-t_{i+1}} \right] + \\ &\quad + \frac{t_{i+k+1}-x}{t_{i+k+1}-t_{i+1}} \left[\frac{B_{i+1,k-2}}{t_{i+k}-t_{i+1}} - \frac{B_{i+2,k-1}}{t_{i+k+1}-t_{i+2}} \right] \bigg\} = \\ &= \frac{B_{i,k-1}}{t_{i+k}-t_i} - \frac{B_{i+1,k-1}}{t_{i+k+1}-t_{i+1}} + \frac{k-1}{t_{i+k}-t_i} \left[\frac{x-t_i}{t_{i+k-1}-t_i} B_{i,k-2} + \frac{t_{i_k}-x}{t_{i+k}-t_{i+1}} B_{i+1,k-2} \right] - \\ &\quad - \frac{k-1}{t_{i+k+1}-t_{i+1}} \left[\frac{x-t_{i+1}}{t_{i+k}-t_{i+1}} B_{i+1,k-2} + \frac{t_{i+k+1}-x}{t_{i+k+1}-t_{i+2}} B_{i+2,k-2} \right] \end{split}$$

din care aplicând definiția lui $B_{i,k-1}$ și $B_{i+1,k-1}$ se obține rezultatul dorit.

Problema 8.2.4

$$\int_{-\infty}^{\infty} B_{i,k}(x)dx = \frac{1}{k+1}(t_{i+k+1} - t_i)$$

Demonstrație. Presupunem că $supp B_{i,k} \in [a, b]$

 $B_{i,k} > 0$ pentru $x \in [t_i, t_{i+k+1})$

Fie diviziunea Δ' obținută din diviziunea inițială adăugând nodurile $t_{-1}=t_0$ și $t_{n+k+1}=t_{n+k}$

Considerăm primitiva lui $B_{i,k}$

$$B(x) = \int_{-\infty}^{x} B_{i,k}(t)dt$$

Pe porțiuni este polinomială, deci ea va fi combinație liniară de B-spline.

$$\int_{-\infty}^{x} B_{i,k}(t)dt = \sum_{j=-1}^{n-1} c_j B_{j,k+1}(x)$$

pentru $x \in [a, b]$. Derivăm

$$B_{i,k}(x) = \sum_{j=-1}^{n-1} c_j k \left[\frac{B_{j,k}(x)}{t_{j+k+1} - t_j} - \frac{B_{j+1,k}(x)}{t_{j+k+1} - t_{j+1}} \right]$$

Deoarece $B_{i,k}$ formează o bază avem sistemul

$$\begin{cases} (k+1)(c_2 - c_1) = 0 \\ (k+1)(c_3 - c_2) = 0 \\ \dots \\ k(c_i - c_{i-1}) = 0 \\ \dots \\ k(c_{i+1} - c_i) \frac{1}{t_{i+k+1} - t_i} = 1 \end{cases} \Leftrightarrow \begin{cases} c_0 = \dots = c_{i-1} = 0 \\ c_i = \dots = c_{n-1} = \frac{t_{i+k+1} - t_i}{k+1} \end{cases}$$

Deci

$$\int_{-\infty}^{x} B_{i,k}(x) dx = \frac{t_{i+k+1} - t_i}{k+1} \left(\sum_{j \ge i} B_{j,k+1}(x) \right)$$

pentru $x \in [a, b]$ și deci pentru $t_{i+k+1} \le x \le b$

$$\int_{-\infty}^{x} B_{i,k}(x) dx = \frac{t_{i+k+1} - t_i}{k+1}.$$

Problema 8.2.5 Op spline cu variație diminuată????

Soluție.

$$\xi_2 = \frac{x_0 + x_1}{2} = \frac{1}{2}$$

$$\xi_3 = \frac{x_1 + x_2}{2} = \frac{1+2}{2} = \frac{3}{2}$$

$$\xi_4 = \frac{x_2 + x_3}{2} = \frac{2+3}{2} = \frac{5}{2}$$

$$\xi_5 = \frac{x_3 + x_4}{2} = 3$$

$$(S_{\Delta}f)(x) = B_{1,3}(x)f(0) + B_{2,3}(x)f\left(\frac{1}{2}\right) + B_{3,3}(x)f\left(\frac{3}{2}\right) + B_{4,3}(x)f\left(\frac{5}{2}\right) + B_{5,3}(x)f(3) =$$

$$= \begin{cases} B_{1,3}(x)f(0) + B_{2,3}(x)f\left(\frac{1}{2}\right) + B_{3,3}(x)f\left(\frac{3}{2}\right) & x \in [0,1) \\ B_{2,3}(x)f\left(\frac{1}{2}\right) + B_{3,3}(x)f\left(\frac{3}{2}\right) + B_{4,3}(x)f\left(\frac{5}{2}\right) & x \in [1,2) = \\ B_{3,3}(x)f\left(\frac{3}{2}\right) + B_{4,3}(x)f\left(\frac{5}{2}\right) + B_{5,3}(x)f(3) & x \in [2,3] \end{cases}$$

$$= \begin{cases} \frac{(1-x)^2}{2}f(0) + \frac{1+2x-x^2}{2}f\left(\frac{1}{2}\right) + \frac{x^2}{2}f\left(\frac{3}{2}\right) & x \in [0,1) \\ \frac{1+2x-x^2}{2}f\left(\frac{1}{2}\right) + \frac{x^2}{2}f\left(\frac{3}{2}\right) + \frac{(x-1)^2}{2}f\left(\frac{5}{2}\right) & x \in [1,2) \\ \frac{(3-x)^2}{2}f\left(\frac{3}{2}\right) + \frac{10x-2x^2-11}{2}f\left(\frac{5}{2}\right) + \frac{(x-2)^2}{2}f(3) & x \in [2,3] \end{cases}$$

8.3 Alţi operatori liniari şi pozitivi

Problema 8.3.1 (operatorul lui Fejer) Se obține din polinomul de interpolare Hermite cu noduri duble rădăcini ale polinomului Cebâșev de speța I, T_{m+1} .

$$x_k = \cos\frac{2k+1}{2(m+1)}\pi \quad k = \overline{0, m}$$

$$(H_{2m+1})(x) = \sum_{k=0}^{m} h_{k0}(x)f(x) + \sum_{k=0}^{m} h_{k1}(x)f'(x)$$

omiţând a doua sumă sau considerând echivalent $f'(x_k) = 0$, $k = \overline{0, n}$

$$(F_{2m+1})(x) = \sum_{k=0}^{m} h_k(x) f(x_k)$$

$$h_k(x) = h_{k0}(x) = (1 - x_k x) \left[\frac{T_{m+1}(x)}{(m+1)(x - x_k)} \right]^2$$

$$F_{2m+1}f \Rightarrow f \quad pe \quad [-1, 1]$$

$$F_{2m+1}(1; x) = 1 \quad x \in [-1, 1]$$

Soluţie.

$$\begin{split} F_{2m+1}((t-x)^2;x) &= \sum_{n=0}^m (1-x_k x) \left[\frac{T_{m+1}(x)}{(m+1)(x-x_k)}\right]^2 (x_k-x)^2 = \\ &= \frac{1}{(m+1)^2} T_{m+1}^2(x) \sum_{k=0}^m (1-x_k x) = \frac{1}{m+1} T_{m+1}^2(x) \leq \frac{1}{m+1} \\ \text{căci} \sum_{k=0}^m x_k = 0. \\ \text{Deci,} \\ &\lim_{m \to \infty} F_{2m+1}((t-x)^2;x) = 0 \quad \text{uniform pe} \quad [-1,1] \end{split}$$

Problema 8.3.2 (Operatorul lui Meyer-König și Zeller) Fie B[0,1) spațiul liniar al funcțiilor reale definite și mărginite pe [0,1).

Se defineşte operatorul lui Meyer-König şi Zeller $M_m: B[0,1) \to C[0,1)$ pentru orice $x \in [0,1]$ prin egalitatea

$$(M_m f)(x) = \sum_{k=0}^{m} {m+k \choose k} x^k (1-x)^{m+1} f\left(\frac{k}{m+k}\right)$$

 $cu(M_m f)(1) = f(1).$

Să se arate că pentru orice $f \in [0, 1]$ avem

 $\lim_{m\to\infty} M_m f = f$ uniform pe orice interval de forma [0,a), 0 < a < 1.

Soluție. M_m liniar și pozitiv

$$(1-v)^{-\alpha} = \sum_{k=0}^{\infty} {\alpha+k-1 \choose k} v^k \quad (|v|<1)$$

Punând $\alpha = m + 1$ și v = x găsim

$$\sum_{k=0}^{\infty} {m+k \choose k} x^k (1-x)^{m+1} = M_m(1;x) = 1$$

Apoi

$$M_m(t;x) = \sum_{k=1}^{\infty} {m+k \choose k} \frac{k}{m+k} x^k (1-x)^{m+1} =$$

$$= \sum_{k=1}^{\infty} {m+k-1 \choose k-1} x^k (1-x)^{m+1} = x \sum_{k=0}^{\infty} {m+j \choose j} x^j (1-x)^{m+1} = x$$

$$x^2 \le M_m(t^2;x) \le x^2 + \frac{x(1-x)}{m+1}$$

T.B.P.K. ⇒ conv. uniformă ■

Problema 8.3.3 (Operatorul lui Baskakov) Fie $f: \mathbb{R} \to \mathbb{R}$ mărginită și operatorul

$$(L_m f)(x) = \sum_{k=0}^{\infty} {m+k-1 \choose k} \frac{x^k}{(1+x)^{m+k}} f\left(\frac{k}{m}\right)$$

Să se arate că dacă $f \in C[0,1]$ avem $\lim_{m\to\infty} L_m f = f$ uniform pe [0,a], $0 < a < \infty$.

Soluție. Lucrând cu seria binomială în care se ia $\alpha=n,\,v=\frac{x}{1+x}$ se obține

$$L_m(1;x) = 1$$
 $L_m(t;x) = x$

$$L_m(t^2; x) = x^2 + \frac{x(x+1)}{m}$$

T.B.P.K. ⇒ conv. uniformă. ■

Problema 8.3.4 (Operatorul Favard-Szasz) Fie $f:[0,\infty)\to\mathbb{R}$ astfel încât $\lim_{x\to\infty}f(x)=0$ și a>0 fixat. Să se arate că dacă $f\in C[0,a]$ operatorii Favard-Szasz definiți prin

$$(L_m f)(x) = \sum_{k=0}^{\infty} \frac{(mx)^k}{k!} e^{-mx} f\left(\frac{k}{m}\right)$$

are proprietatea

$$\lim_{m \to \infty} L_m f = f$$

uniform pe [0, a].

Soluție. Pentru funcțiile de probă $1, t, t^2$ avem

$$L_m(1;x) = 1$$

$$L_m(t;x) = x$$

$$L_m(t^2;x) = x^2 + \frac{x(x+1)}{m}$$

T.B.P.K. \Rightarrow concluzia.

Capitolul 9

Aproximarea funcționalelor liniare

X spaţiu liniar, $F_1,\ldots,F_m\in X^\#,\,F\in X^\#$

 F, F_1, \ldots, F_m liniar independenți

Formula

$$F(f) = \sum_{i=1}^{m} A_i F_i(f) + R(f) \quad f \in X$$
 (9.1)

se numeşte formulă de aproximare a funcționalei F în raport cu funcționalele F_1, \ldots, F_m .

R(f) - termen rest

Dacă $\mathbb{P}_r \subset X$, $\max\{r|KerR = \mathbb{P}_r\}$ se numește grad de exactitate al formulei (9.1).

9.1 Derivare numerică

Formula de forma

$$f^{(k)}(\alpha) = \sum_{j=0}^{m} A_j F_j(f) + R(f)$$

se numește formulă de derivare numerică.

Problema 9.1.1 *Stabiliți formule de derivare numerică de tip interpolator cu 3,4 și 5 puncte în cazul nodurilor echidistante.*

Soluție.

$$\frac{x - x_0}{h} = q$$

$$(L_m f)(x) = \sum_{i=0}^m \frac{(-1)^{m-2}}{i!(m-i)!} \frac{q^{[m+1]}}{q-i} f(x_i)$$

$$\begin{split} (R_m f)(x) &= \frac{h^{m+1}q^{[m+1]}}{(m+1)!} f^{(m+1)}(\xi) \quad \xi \in (a,b) \\ f'(x) &\approx (L_m f)'(x) = \frac{1}{h} \sum_{i=0}^m \frac{(-1)^{m-i}}{i!(m-i)!} f(x_i) \frac{d}{dq} \left[\frac{q^{[m+1]}}{q-i} \right] \\ (R_m f)'(x) &= \frac{h^{m+1}}{(m+1)!} f^{(m+1)}(\xi) \frac{d}{dq} q^{m+1} + \frac{h^{m+1}}{(m+1)!} q^{[m+1]} \frac{d}{dq} f^{(m+1)}(\xi) \\ (R_m f)'(x_i) &= (-1)^{m-i} h^m \frac{i!(m-i)!}{(m+1)!} f^{(m+1)}(\xi_i) \\ m &= 2 \quad (3 \text{ puncte}) \\ (L_2 f)(x) &= \frac{1}{2} f(x_0)(q-1)(q-2) - f(x_1)q(q-2) + \frac{1}{2} f(x_2)q(q-1) \\ (L_2 f)'(x) &= \frac{1}{h} \left[\frac{1}{2} f(x_0)(2q-3) - (2q-1)f(x_1) + \frac{1}{2} f(x_2)(2q-1) \right] \\ f'(x_0) &= \frac{1}{2h} [-3f(x_0) + 4f(x_1) - f(x_2)] + \frac{1}{3} h^2 f'''(\xi_0) \\ f'(x_1) &= \frac{1}{2h} [-f(x_0) + f(x_2)] - \frac{1}{6} h^2 f'''(\xi_1) \\ f'(x_2) &= \frac{1}{2h} [f(x_0) - 4f(x_1) + 3f(x_2)] + \frac{1}{3} h^2 f'''(\xi_2) \\ m &= 3 \quad 4 \text{ puncte} \\ (L_3 f)'(x) &= \frac{1}{h} \left\{ -\frac{1}{6} f(x_0) [(q-1)(q-2)(q-3)]' + \right. \\ &+ \frac{1}{2} f(x_1) [q(q-2)(q-3)]' - \frac{1}{2} f(x_2) [q(q-1)(q-3)]' + \\ &+ \frac{1}{6} f(x_2) [q(q-1)(q-2)'] \right\} \\ f'(x_0) &= \frac{1}{64} [-11 f(x_0) + 18 f(x_1) - 9 f(x_2) + 2 f(x_3)] - \frac{h^3}{4} f^{(4)}(\xi_0) \\ f''(x_1) &= \frac{1}{6h} [-2 f(x_0) - 3 f(x_1) + 6 f(x_2) - f(x_3)] + \frac{h^3}{12} f^{(4)}(\xi_1) \\ f''(x_2) &= \frac{1}{6h} [f(x_0) - 6 f(x_1) + 3 f(x_2) + 2 f(x_3)] - \frac{h^3}{12} f^{(4)}(\xi_2) \\ f''(x_3) &= \frac{1}{6h} [-2 f(x_0) + 9 f(x_1) - 18 f(x_2) + 11 f(x_3)] + \frac{h^3}{4} f^{(4)}(\xi_3) \\ m &= 4 \quad (5 \text{ puncte}) \\ f''(x_0) &= \frac{1}{12h} [-25 f(x_0) + 48 f(x_1) - 36 f(x_2) + 16 f(x_3) - 3 f(x_4)] + \frac{h^4}{5} f^{(5)}(\xi_0) \\ f''(x_1) &= \frac{1}{12h} [-3 f(x_0) - 10 f(x_1) + 18 f(x_2) - 6 f(x_3) + f(x_4)] - \frac{h^4}{20} f^{(5)}(\xi_1) \\ f''(x_2) &= \frac{1}{12h} [f(x_0) - 8 f(x_1) + 8 f(x_3) - f(x_4)] + \frac{h^4}{20} f^{(5)}(\xi_2) \\ \end{cases}$$

$$f(x_3) = \frac{1}{12h} \left[-f(x_0) + 6f(x_1) - 18f(x_2) + 10f(x_3) + 3f(x_4) \right] - \frac{h^4}{20} f^{(5)}(\xi_3)$$

$$f(x_4) = \frac{1}{124} \left[3f(x_0) - 16f(x_1) + 36f(x_2) - 48f(x_3) + 25f(x_4) \right] + \frac{h^4}{4} f^{(5)}(\xi_4)$$

Problema 9.1.2 Să se construiască o formulă de forma

$$f'(\alpha) = A_0 f(x_0) + A_1 f(x_1) + (Rf)(\alpha)$$

cu gradul de exactitate r=2.

Soluție.

$$\begin{cases} A_0 + A_1 = 0 \\ A_0 x_0 + A_1 x_1 = 1 \\ A_0 x_0^2 + A_1 x_1^2 = 2\alpha \end{cases}$$

$$\Rightarrow A_1 = -A_0 = \frac{1}{2(\alpha - x_0)}$$

$$x_1 = 2\alpha - x_0$$

Restul cu Peano $x_0 < x_1$

$$(Rf)(\alpha) = \int_{x_0}^{x_1} K_2(s) f'''(s) ds$$

$$K_1(s) = (\alpha - s)_+ - \frac{(x_1 - s)^2}{4(\alpha - x_0)} =$$

$$= -\frac{1}{4(\alpha - x_0)} \left\{ \begin{array}{l} (s - x_0)^2 & s \le \alpha \\ (x_1 - s)^2 & s > \alpha \end{array} \le 0 \right.$$

$$K_2(s) \le 0, \quad s \in [x_0, x_1], \quad \alpha > x_0, \ f \in C^3(x_0, x_1)$$

$$(Rf)(\alpha) = f'''(\xi) \int_{x_0}^{x_1} K_2(s) ds = -\frac{(\alpha - x_0)^2}{6} f'''(\xi')$$

$$f'(\alpha) = -\frac{1}{2(\alpha - 2)} [2f(2\alpha - 2) - f(2)] - \frac{(\alpha - 2)^2}{6} f'''(\xi)$$

$$\lambda \in \mathbb{R}, \quad \lambda \ne \alpha, \quad \alpha = \frac{x_0 + x_1}{2}$$

S-a obținut o familie de formule de derivare numerică.

Problema 9.1.3 Arătați că

$$f''(x_0) = \frac{1}{h^2} [f(x_0 - h) - 2f(x_0) + f(x_0 + h)] - \frac{h^2}{12} f^{(4)}(\xi)$$
 unde $f \in C^4[x_0 - h, x_0 + h], \xi \in (x_0 - h, x_0 + h)$

Soluție. Se aplică formula lui Taylor

$$f(x_0 + h) = f(x_0) + 4f'(x_0) + \frac{1}{2}h^2f''(x_0) + \frac{1}{6}f'''(x_0) + \frac{1}{24}h^4f^{(4)}(\xi_1)$$

$$f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{1}{2}h^2f''(x_0) - \frac{1}{6}f'''(x_0) + \frac{1}{24}h^4f^{(4)}(\xi_2)$$

$$f(x_0 + h) - f(x_0 - h) = 2f(x_0) + h^2f''(x_0) + \frac{1}{24}[f^{(4)}(\xi_1) + f^{(4)}(\xi_2)]$$

$$f''(x_0) = \frac{1}{h^2}[f(x_0 + h) - 2f(x_0) + f(x_0 - h)] - \frac{h^2}{12}f^{(4)}(\xi_2)$$

Problema 9.1.4 Stabiliți formula

$$f'(x_0) = \frac{1}{24} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f^{(3)}(\xi), \quad \xi \in (x_0 - h, x_0 + h)$$

Soluție. Cu Taylor ■

Problema 9.1.5 (Aplicarea extrapolării Richardson) Pornind de la formula

$$f'(x_0) = \frac{1}{24} [f(x_0 + h) - f(x_0 - 2h)] - \frac{h^2}{6} f'''(x_0) - \frac{h^4}{120} f^{(5)}(\xi)$$

obțineți o formulă $O(h^4)$ folosind extrapolarea Richardson.

Soluție. Să stabilim întâi formula de pornire

$$f(x) = f(x_0) - f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \frac{1}{6}f'''(x_0)(x - x_0)^3 + \frac{1}{24}f^{(4)}(x_0)(x - x_0)^4 + \frac{1}{120}f^{(5)}(\xi)(x - x_0)^5$$

Scăzând dezvoltările lui $f(x_0 + h)$ și $f(x_0 - h)$ obținem

$$f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f'''(x_0) - \frac{h^4}{120} f(5)(\widetilde{\xi}_1), \qquad (9.2)$$

$$\widetilde{\xi} \in (x_0 - h, x_0 + h)$$

Făcând în (9.2) h = 2h avem

$$f'(x_0) = \frac{1}{4h} [f(x_0 + 2h) - f(x_0 - 2h)] - \frac{4h^2}{6} f'''(x_0) - \frac{16h^4}{120} f^{(5)}(\widehat{\xi})$$
 (9.3)

$$\widehat{\xi} \in (x_0 - 2h, x_0 + 2h)$$

$$4 \cdot (9.2) - (9.3) \Rightarrow$$

$$3f'(x_0) = \frac{2}{h} [f(x_0 + h) - f(x_0 - h)] -$$

$$-\frac{1}{4h} [f(x_0 + 2h) - f(x_0 - 2h)] - \frac{h^4}{30} f^{(5)}(\widetilde{\xi}) + \frac{2h^4}{15} f^{(5)}(\widehat{\xi})$$

$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + h)] + \frac{h^4}{30} f^{(5)}(\xi)$$
(am obtinut o formulă cu 5 puncte). \blacksquare

Problema 9.1.6 Pornind de la formula

$$f'(x_0) = \frac{1}{h} [f(x_0 + h) - f(x_0)] - \frac{h}{2} f''(x_0) - \frac{h^2}{6} f'''(x_0) + O(h^3)$$

deduceți o formulă $O(h^3)$ folosind extrapolarea.

Soluție.

$$f'(x_0) = \frac{1}{12h} [f(x_0 + 4h) - 18f(x_0 + 2h) + 32f(x_0 + h) - 21f(x_0)] + O(h^3)$$

Problema 9.1.7 Să presupunem că avem tabela de extrapolare

$$\begin{array}{ll} N_1(h) \\ N_1\left(\frac{h}{2}\right) & N_2(h) \\ N_1\left(\frac{h}{4}\right) & N_2\left(\frac{h}{2}\right) & N_3(h) \end{array}$$

construită pentru a aproxima M cu formula

$$M = N_1(h) + K_1 h^2 + K_2 h^4 + K_3 h^6$$

- a) Arătați că polinomul liniar de interpolare $P_{0,1}(h)$ ce trece prin punctele $(h^2, N_1(h))$ și $(h^2/4, N_1(h/2))$ satisface $P_{0,1}(0) = N_2(h)$. La fel $P_{1,2}(0) = N_2\left(\frac{h}{2}\right)$,
- b) Arătați că polinomul $P_{0,2}(h)$ ce trece prin $(h^4,N_2(h))$ și $\left(\frac{h^4}{16},N_2\left(\frac{h}{2}\right)\right)$ satisface $P_{0,2}(0)=N_3(h)$.

Generalizare.

Formule de integrare numerică de tip Newton-9.2 Cotes

9.2.1 **Formule Newton-Cotes închise**

Sunt formule care se obțin integrând termen cu termen formula de interpolare a lui Lagrange. Nodurile au forma

$$x_k = a + kh$$
, $k = \overline{0, m}$, $h = \frac{b - a}{m}$.

Coeficienții au expresia

$$A_k = (-1)^{m-k} \frac{h}{k!(m-k)!} \int_0^m \frac{t^{[m+1]}}{t-k} dt$$

Problema 9.2.1 Arătați că o formulă de cuadratură cu m+1 noduri este de tip interpolator dacă și numai dacă are gradul de exactitate cel puțin m.

Demonstrație. (\Rightarrow) imediată din expresia restului $(\Leftarrow) x_i, j = \overline{0, m}, r \ge m$

$$\begin{cases}
\sum_{j=0}^{m} A_j = b - a \\
\sum_{j=0}^{m} A_j x_j = \frac{1}{2} (b^2 - a^2) \\
\dots \\
\sum_{j=0}^{m} A_j x_j^m = \frac{1}{m+1} (b^{m+1} - a^{m+1})
\end{cases}$$
(9.4)

 $\Delta \neq 0$ (Vandermonde) dacă $x_i \neq x_j$ deci (9.4) are soluție unică. Dar (9.4) este satisfăcută pentru $A_j = \int_a^b l_j(x) dx$ și exactă pentru $1, x, \dots, x^m$. Unicitatea $\Rightarrow A_j = \int_a^b l_j(x) dx$.

Problema 9.2.2 Să se aproximeze volumul butoiului cu diametrele D și d și înălțimea h.

Soluție. Vom aproxima conturul butoiului prin arce de parabolă.

$$y(x) = -2\frac{D-d}{h^2}\left(x - \frac{h}{2}\right)\left(x + \frac{h}{2}\right) + \frac{d}{2}, \qquad x \in \left[-\frac{h}{2}, \frac{h}{2}\right].$$

Volumul obținut prin rotația arcului y în jurul axei Ox este

$$V = \pi \int_{-h/2}^{h/2} y^2(x) dx.$$

Valoarea exactă a integralei de mai sus este

$$V = \frac{\pi h}{60} (8D^2 + 4Dd + 3d^2).$$

În practică V se aproximează cu formula lui Simpson și se obține:

$$V \approx \frac{\pi h}{12} \left(d^2 + 2D^2 \right).$$

Problema 9.2.3 Deduceți restul formulei lui Simpson

$$R_2(f) = -\frac{(b-a)^5}{2880} f^{IV}(\xi)$$

Soluție. Gradul de exactitate fiind r = 3 avem

$$R_2(f) = \int_a^b K_2(t) f^{IV}(t) dt$$

unde

$$K_{2}(t) = \frac{1}{3!} \left\{ \frac{(b-t)^{4}}{4} - \frac{b-a}{6} \left[(a-t)_{+}^{3} + 4\left(\frac{a+b}{2} - t\right)_{+}^{3} + (b-t)_{+}^{3} \right] \right\}$$

$$K_{2}(t) = \frac{1}{6} \left\{ \begin{array}{l} \frac{(b-t)^{4}}{4} - \frac{b-a}{6} \left[4\left(\frac{a+b}{2} - t\right)^{3} + (b-t)^{3} \right] & t \in \left[a, \frac{a+b}{2} \right] \\ \frac{9b-t)^{4}}{4} - \frac{b-a}{6} (b-t)^{3} & t \in \left(\frac{a+b}{2}, b\right] \end{array} \right.$$

Se verifică că pentru $t \in [a,b], K_2(t) \leq 0$

$$R_{2}(f) = \frac{1}{4!} f^{IV}(\xi) R(e_{4}) = \frac{1}{24} f^{IV}(\xi) \left\{ \frac{b^{5} - a^{5}}{5} - \frac{b - a}{6} \left[a^{4} + 4 \left(\frac{a + b}{2} \right)^{4} + b^{4} \right] \right\} =$$

$$= \frac{1}{24} f^{IV}(\xi) (b - a) \left[\frac{b^{4} + b^{3}a + b^{2}a^{2} + ba^{3} + b^{4}}{5} - \frac{b^{2}a^{4} + a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4} + 4b^{4}}{5} \right] =$$

$$= \frac{f^{IV}(\xi)}{24} (b - a) \frac{-a^{4} + 4a^{3}b - 6a^{2}b^{2} + 4ab^{3} - b^{4}}{120} = -\frac{(b - a)^{5}}{2880} f^{IV}(\xi) \blacksquare$$

Problema 9.2.4 Deduceți formula lui Newton și restul ei

$$\int_{a}^{b} f(x)dx = \frac{b-a}{8} \left[f(a) + 3f\left(\frac{2a+b}{3}\right) + 3f\left(\frac{a+2b}{3}\right) + f(b) \right] + R_3(f)$$

$$R_3(f) = -\frac{(b-a)^5}{648} f^{(4)}(\xi)$$

Soluție. Este o formulă Newton-Cotes închisă pentru m=3.

$$A_{k} = (-1)^{m-k} \frac{h}{k!(m-k)!} \int_{0}^{m} \frac{t^{[m+1]}}{t-k} dt$$

$$A_{0} = A_{3} = (-1)^{3} \frac{b-a}{3} \frac{1!}{0!3!} \int_{0}^{3} (t-1)(t-2)(t-3) dt = \frac{b-a}{8}$$

$$A_{1} = A_{2} = (-1)^{2} \frac{b-a}{3} \frac{1!}{1!2!} \int_{0}^{3} t(t-2)(t-3) dt = \frac{3(b-a)}{8}$$

$$R_{3}(f) = \int_{a}^{b} K_{3}(t) f^{(4)}(t) dt$$

$$K_{3}(t) = \frac{1}{3!} \left\{ \frac{(b-t)^{4}}{4} - \frac{b-a}{8} \left[\frac{(a-t)^{3}}{0} + 3 \left(\frac{2a+b}{3} - t \right)^{3} + 4 + 3 \left(\frac{a+2b}{3} - t \right)^{3} + (b-t)^{3} \right\} \right\} =$$

$$= \frac{1}{3!} \left\{ \frac{\frac{(b-t)^{4}}{4} - \frac{b-a}{8} (b-t)^{3}}{(b-t)^{4}} + \frac{(a+2b)^{3}}{8} \left[(b-t)^{3} + 3 \left(\frac{2a+b}{3} - t \right)^{3} \right] + 3 \left(\frac{a+2b}{3} - t \right)^{3} \right] \right\}$$

$$+ 3 \left(\frac{a+2b}{3} - t \right)^{3} \right\} \qquad t \in \left(\frac{a+b}{3}, b \right]$$

$$K_{3}(t) \leq 0$$

$$R_{3}(f) = \frac{1}{4!} f^{(4)}(\xi) R(e_{4}) = \frac{1}{24} f^{(4)}(\xi) R(e_{4})$$

$$R(e_{4}) = \int_{a}^{b} x^{4} dx - \frac{b-a}{8} \left[a^{4} + 3 \left(\frac{2a+b}{3} \right)^{4} + 3 \left(\frac{a+2b}{3} \right)^{4} + b^{4} \right] =$$

$$= \frac{b^{5} - a^{5}}{5} - \frac{b-a}{8} \left[a^{4} + \frac{(2a+b)^{4}}{27} + \frac{(a+2b)^{4}}{27} + b^{4} \right] =$$

$$= (b-a) \left[\frac{b^{4} + ab^{3} + a^{2}b^{2} + ab^{3} + a^{4}}{5} - \frac{1}{8} a^{4} - \frac{1}{8} b^{4} - \frac{(2a+b)^{4}}{8 \cdot 27} - \frac{(a+2b)^{4}}{8 \cdot 27} \right] = \frac{b-a}{8 \cdot 27 \cdot 5} \cdot 40(b-a)^{4}$$

9.2.2 Formule Newton-Cotes deschise

La aceste formule nodurile sunt echidistante

$$x_i = x_0 + ih, i = \overline{0, m}, h = \frac{b-a}{m+2}$$

 $x_0 = a_h, x_m = b - h$
 $x_{-1} = a, x_{m+1} = b$

Coeficienții au expresia

$$A_{i} = \int_{a}^{b} l_{i}(x)dx = (-1)^{m-i} \frac{h}{i!(m-i)!} \int_{-1}^{m+1} \frac{t^{[m+1]}}{t-i}dt$$

Problema 9.2.5 Deduceți formula Newton-Cotes deschisă pentru m=1.

Soluţie.

$$\int_{a}^{b} f(x)dx = A_{0}f(x_{0}) + A_{1}f(x_{1}) + R_{1}(f)$$

$$A_{0} = A_{1} = -h \int_{-1}^{2} \frac{t(t-1)}{t}dt = \frac{3h}{2} = \frac{b-a}{2}$$

$$R_{1}(f) = \int_{a}^{b} K_{1}(t)f''(t)dt$$

$$K_{1}(t) = \begin{cases} \frac{(a-t)^{2}}{2} \\ \frac{(a-t)^{2}}{2} + \frac{b-a}{2} \left(\frac{2a+b}{3} - t\right) \end{cases}$$

căci

$$\frac{b-a}{2}\left[\left(\frac{2a+b}{3}-t\right)+\left(\frac{a+2b}{3}-t\right)\right] = \int_a^b (x-t)dx$$

Se verifică că pentru orice $t \in [a, b], K_1(t) \ge 0$. Aplicând corolarul la teorema lui Peano obținem

$$R_1(f) = \frac{1}{2!}f''(\xi)R(e_2) =$$

$$= \frac{1}{2}f''(\xi)\left\{ \int_a^b x^3 dx - \frac{b-a}{2} \left[\left(\frac{2a+b}{3} \right)^2 + \left(\frac{a+2b}{3} \right)^2 \right] \right\} =$$

$$= \frac{1}{2}f''(\xi)\frac{b-a}{3} \left[b^2 + ab + a^2 - \frac{5a^2 + 8ab + 5b^2}{6} \right] =$$

$$= \frac{(b-a)^3}{36}f''(\xi) = \frac{3h^3}{4}f''(\xi).$$

Problema 9.2.6 Aceeaşi problemă pentru m=2.

Soluție.
$$\int_{a}^{b} f(x)dx = A_{0}f(x_{0}) + A_{1}f(x_{1}) + A_{2}f(x_{2}) + R_{2}(f)$$

$$A_{0} = A_{2} = \frac{h}{2} \int_{-1}^{3} \frac{t(t-1)(t-2)}{t} dt = \frac{8h}{3} = \frac{8}{3} \cdot \frac{b-a}{4} = \frac{2(b-a)}{3}$$

$$A_{1} = -h \int_{-1}^{3} \frac{t(t-1)(t-2)}{t-1} dt = -\frac{4h}{3} = -\frac{b-a}{3}$$

$$R_{2}(f) = \int_{a}^{b} K_{2}(t)f^{(4)}(t)dt$$

$$K_{2}(t) = \frac{1}{3!} \left\{ \frac{(b-t)^{4}}{4} - \frac{b-a}{3} \left[2\left(\frac{3a+b}{4} - t\right)_{+}^{3} - -\left(\frac{2a+2b}{4} - t\right)_{+}^{3} + 2\left(\frac{a+3b}{4} - t\right)_{+}^{3} \right] \right\}$$

$$K_{2}(t) = \frac{1}{6} \left\{ \frac{\frac{(a-t)^{4}}{4}}{\frac{(a-t)^{4}}{4}} - \frac{2(b-a)}{3}\left(\frac{3a+b}{4} - t\right)_{+}^{3} \quad t \in \left(\frac{3a+b}{4}, \frac{a+b}{2}\right) \right]$$

$$\frac{(b-t)^{4}}{4} \quad t \in \left(\frac{a+3b}{4}, b\right]$$

Se verifică că $K_2(t) \ge 0, \ t \in [a,b]$ și aplicând corolarul la teorema lui Peano se obține

$$R_2(f) = \frac{1}{4!} f^{(4)}(\xi) R(e_4)$$

$$R(e_4) = \int_a^b x^4 dx - \frac{b-a}{3} \left[2\left(\frac{3a+b}{4}\right)^4 - \left(\frac{2a+2b}{4}\right)^4 + 2\left(\frac{a+3b}{4}\right)^4 \right] =$$

$$= (b-a) \left[\frac{b^4 + ab^3 + a^2b^2 + a^3b + a^4}{5} - \frac{148a^4 + 176a^3b + 120a^2b^2 + 176ab^3 + 148b^4}{768} \right] =$$

$$= \frac{b-a}{5 \cdot 768} \cdot 28(b-a)^4 = \frac{7 \cdot 4}{15 \cdot 4 \cdot 64} (b-a)^5$$

$$R_2(f) = \frac{14h^5}{45} f^{(4)}(\xi) = \frac{14}{45} \left(\frac{b-a}{4}\right)^5 f^{(4)}(\xi)$$

9.3 Alte formule de tip interpolator

Problema 9.3.1 Obțineți o formulă de cuadratură de forma

$$\int_{a}^{b} f(x)dx = A_{00}f(a) + A_{10}f(b) + A_{01}f'(a) + A_{11}f'(b) + R(f)$$
Soluție. $A_{00} = \int_{a}^{b} h_{00}(x)dx = \int_{a}^{b} \frac{(x-b)^{2}}{(a-b)^{3}}[3a-b-2x]dx$

$$A_{10} = \int_{a}^{b} h_{10}(x)dx = \int_{a}^{b} \frac{(x-a)^{2}}{(b-a)^{3}}[3b-a-2x]dx$$

$$A_{00} = A_{10} = \frac{b-a}{2}$$

$$A_{01} = -A_{10} = \int_{a}^{b} (x-a)\frac{(x-b)^{2}}{(a-b)^{2}}dx = \frac{(b-a)^{2}}{12}$$

$$R(f) = \int_{a}^{b} K_{3}(t)f^{(4)}(t)dt$$

$$K_{3}(t) = \frac{1}{3!} \left\{ \frac{(b-t)^{4}}{4} - \frac{b-a}{2}(a-t)^{3}_{+} - \frac{b-a}{2}(b-t)^{3}_{+} - \frac{(b-a)^{2}}{12} \cdot \frac{3(a-t)^{2}_{+}}{4} + \frac{(b-a)^{2}}{122} \cdot 3(b-t)^{2}_{+} \right\} =$$

$$= \frac{1}{3!} \left[\frac{(b-t)^{4}}{4} - \frac{b-a}{2}(b-t)^{3} + \frac{(b-a)^{2}}{4}(b-t)^{2} \right] =$$

$$= \frac{(b-t)^{2}}{4!} [b^{2} - 2bt + t^{2} - 2(b-a)(b-t) + (b-a)^{2}] =$$

$$= \frac{(b-t)^{2}}{4!} [b^{2} - 2bt + t^{2} - 2b^{2} + 2bt + 2ab - 2at + b^{2} - 2ab + a^{2}] =$$

$$\frac{(b-t)^{2}(a-t)^{2}}{4!} \left[\frac{(b-a)^{5}}{5} f^{(4)}(\xi), \quad \xi \in [a, b] \blacksquare$$

Problema 9.3.2 Generalizare pentru m = 1 și $r_0 = r_1 = s - 1$.

Soluție.

$$\int_{a}^{b} f(x)dx = \sum_{j=0}^{s-1} [A_{0j}f^{(j)}(a) + A_{1j}f^{(j)}(b)] + R_{2s-1}(f)$$

$$A_{0j} = \int_{a}^{b} h_{0j}(x)dx = \int_{a}^{b} \left(\frac{x-b}{a-b}\right)^{s} \frac{(x-a)^{j}}{j!} \sum_{\nu=0}^{n-j} \binom{n+\nu}{\nu} \left(\frac{x-a}{b-a}\right) dx =$$

$$= \frac{s(s-1)\dots(s-j)}{2s(2s-1)\dots(2s-j)} \cdot \frac{(b-a)^{j+1}}{(j+1)!}$$

$$A_{1j} = \int_{a}^{b} h_{1j}(x)dx = \int_{a}^{b} \left(\frac{x-a}{b-a}\right)^{s} \frac{(x-b)^{j}}{j!} \sum_{\nu=0}^{n-j} \binom{n+\nu}{\nu} \left(\frac{x-b}{a-b}\right) dx = (-1)^{j} A_{0j}$$

$$f \in C^{2s}[a,b] \implies R_{2s-1}(f) = \left(\frac{s!}{(2s)!}\right)^{2} \frac{(b-a)^{2s+1}}{2s+1} f^{(2s)}(\xi)$$

$$K_{2s-1} = \frac{(b-t)^{2s}}{(2s)!} - \sum_{j=0}^{s-1} A_{1j} \frac{(b-t)^{2s-j-1}}{(2s-j-1)!} =$$

$$= \frac{1}{(2s)!} (b-t)^{s} (s-t)^{s}$$

 $K_{2s-1}(t)$ are semn constant pe [a,b], iar $f^{(2s)}$ este continuă şi se poate aplica formula de medie sau corolarul la teorema lui Peano.

Problema 9.3.3 Stabiliți o formulă de cuadratură de forma

$$\int_{a}^{b} f(x)dx = Af'(a) + Bf(b) + R_{1}(f)$$

Solutie. Pornim de la formula de interpolare de tip Birkhoff

$$f(x) = (x - b)f'(a) + f(b) + (R_1 f)(x)$$

Integrând se obține

$$int_a^b f(x)dx = (b-a)\left[\frac{a-b}{2}f'(a) + f(b)\right] + R_1(f)$$

Pentru rest se aplică teorema lui Peano și se ajunge în final la

$$R_1(f) = -\frac{(b-a)^3}{3}f''(\xi), \quad \xi \in [a,b].$$

Problema 9.3.4 Deduceți o formulă de cuadratură integrând formula de aproximare a lui Bernstein.

Soluție.

$$f(x) = \sum_{k=0}^{m} p_{m,k}(x) f\left(\frac{k}{m}\right) + R_n(f)$$

$$\int_0^1 f(x) dx = \sum_{k=0}^{m} \int_0^1 p_{m,k}(x) dx f\left(\frac{k}{m}\right) - \int_0^1 \frac{x(1-x)}{2m} f''(\xi) dx$$

$$\int_0^1 p_{m,k}(x) dx = \binom{m}{k} \int_0^1 x^k (1-x)^{m-k} dx =$$

$$= \binom{m}{k} B(k+1, m-k+1) = \frac{k!(m-k)!}{(m+1)!} \cdot \frac{m!}{k!(m-k)!} = \frac{1}{m+1}$$

$$R(f) = -\frac{f''(\xi)}{2m} \int_0^1 x(1-x) dx = -\frac{f''(\xi)}{2m} \left(\frac{x^2}{2} - \frac{x^3}{3}\right) \Big|_0^1 = -\frac{1}{12m} f''(\xi)$$

$$\int_0^1 f(x) dx = \frac{1}{m+1} \sum_{k=0}^{m} f\left(\frac{k}{m}\right) - \frac{1}{12m} f''(\xi)$$

Observația 9.3.5 *Se pot folosi funcțiile lui Euler* B *și* Γ :

$$B_{\rho,\nu} = \int_0^1 x^{\rho-1} (1-x)^{\nu-1} dx$$
$$B(\rho,\nu) = \frac{\Gamma(\rho)\Gamma(\nu)}{\Gamma(\rho+\nu)}$$

Observația 9.3.6 Formule repetate

Problema 9.3.7 Calculați
$$I = \int_0^1 \frac{dx}{1+x}$$
 cu precizia $\varepsilon = 10^{-3}$.

Soluție. Folosim formula Simpson repetată

$$\max_{x \in [0,1]} |f^{(4)}(x)| = 24$$

$$|R_n(f)| \le \frac{24}{2880n^4} = \frac{1}{120n^4} \le 10^{-3}$$

$$n = \left[\sqrt[3]{\frac{10^3}{120}}\right] + 1 = 2$$

$$I \approx \ln 2 = \frac{1}{12} \left\{ f(0) + f(1) + 2f\left(\frac{1}{2}\right) + 4\left[f\left(\frac{1}{4}\right) + f\left(\frac{3}{4}\right)\right] \right\} = 1$$

$$= \frac{1}{12} \left[1 + \frac{1}{2} + \frac{4}{3} + 4 \left(\frac{4}{5} + \frac{4}{7} \right) \right].$$

Problema 9.3.8 Deduceți formula repetată a lui Newton.

$$\int_{a}^{b} f(x)dx = \frac{b-a}{8n} \left[f(a) + f(b) + 2 \sum_{i=1}^{n-1} f(x_{i}) + 3 \sum_{i=0}^{n-1} f\left(\frac{2x_{i} + x_{i+1}}{3}\right) + 3 \sum_{i=0}^{n-1} f\left(\frac{x_{i} + 2x_{i+1}}{3}\right) \right] - \frac{(b-a)^{5}}{648n^{4}} f^{(4)}(\xi)$$

Problema 9.3.9 (Semnul nucleului lui Peano în FNC închise)

Fie $f \in C^{n+2}[-1,1]$ şi $\tau_j = -1 + \frac{2j}{n}$, $j = \overline{0,n}$ n+1 puncte echidistante pe [-1,1] cu pasul $h = \frac{2}{n}$.

1° Arătați că

a) pentru
$$j = \overline{0, n}$$
, $\lim_{\substack{x \to \tau_j \\ x \neq \tau_j}} [\tau_0, \dots, \tau_n, x; f]$ există

b) pentru orice $x \in [-1,1]$, $\frac{d}{dx}[\tau_0,\ldots,\tau_n,x;f]$ are sens şi că există $\xi_x \in [-1,1]$ astfel încât

$$\frac{d}{dx}[\tau_0, \dots, \tau_n, x; f] = \frac{f^{(n+2)}(\xi_x)}{(n+2)!}$$

 2° Arătați că eroarea de integrare numerică a funcției f prin FNCî în punctele $\tau_0, \tau_1, \ldots, \tau_n$ este dată de

$$R_n(f) = \int_{-1}^{1} \prod_{j=0}^{n} (x - \tau_j) [\tau_0, \tau_1, \dots, \tau_n, x; f] dx$$

$$3^{\circ}$$
 Punem $w(x)=\int_{-1}^x \prod_{j=0}^n (t-t_j)dt$ și $I_k=w(\tau_{k+1})-w(\tau_k)$ pentru $k=\overline{0,n-1}$

a) Presupunem n par (n=2m); arătați că I_k este un șir alternant, descrescător în valoare absolută; deduceți că w(x) păstrează un semn constant pe [-1,1] cu w(1)=w(-1)=0. Arătați că există $\eta\in[-1,1]$ astfel încât

$$R_n(f) = \frac{h^{n+3}}{(n+2)!} f^{(n+2)}(\eta) \int_{-m}^m s^2(s^2 - 1) \dots (s^2 - m^2) ds$$

b) Presupunem n impar (n=2m+1). Reluând demonstrația precedentă și descompunând [-1,1] în două subintervale $[-1,\tau_{n-1}]$ și $[\tau_{n-1},\tau_n]$ deduceți că

$$R_n(f) = \frac{h^{n+2}}{(n+1)!} f^{(n+1)}(\eta) \int_{-m}^{m+1} s(s^2 - 1^2)(s^2 - 2^2) \dots (s^2 - m^2)(s - m - 1) ds$$

$$cu \ \eta \in [-1, 1].$$

Soluție. 1° este imediată din definiția diferenței divizate cu noduri multiple şi formula de medie pentru diferențe divizate.

 2°

$$R_n(f) = \int_{-1}^{1} [f(x) - L_n(x)] dx = \int_{-1}^{1} \prod_{i=0}^{n} (x - \tau_i) [\tau_0, \dots, \tau_n, x; f] dx$$

 3° a) n = 2m. Prin simetrie w(-1) = w(1). Avem

$$I_k = \int_{\tau_k}^{\tau_{k+1}} u_n(t) dt$$

și deci $(-1)^k I_k > 0$.

 $\begin{array}{l} \operatorname{Cum}\,|u_n(t+h)| = |u_n(t)| \left|\frac{t+1+h}{t-1}\right| < u_n(t) \,\operatorname{dacă}\,t \in [\tau_0,\tau_0-1) \,\operatorname{avem}\\ |I_k| > |I_{k+1}| \,\operatorname{pentru}\,k \leq m-1 \,\operatorname{deci}\,w(\tau_k) = I_0 + I_1 + \dots + I_{k-1} \,\operatorname{are}\,\operatorname{semnul}\\ \operatorname{lui}\,I_0 \,\operatorname{pentru}\,k = 0,\dots,m \,\operatorname{şi}\,\operatorname{prin}\,\operatorname{simetrie}\,\operatorname{şi}\,\operatorname{pentru}\,\operatorname{alte}\,\operatorname{valori}\,k \leq 2m;\,\operatorname{dacă}\,x \in [\tau_k,\tau_{k+1}] \end{array}$

$$w(\tau_k) < w(x) < w(\tau_{k+1})$$

căci $w'(x)=u_n(x)$ păstrează semn constant, deci pentru orice $x\in [-1,1]$, $w(x)\geq 0$ (semnul lui I_0).

Integrând prin părți

$$R_n(f) = \int_{-1}^1 u_n[\tau_0, \dots, \tau_n, x; f] dx =$$

$$= -\int_{-1}^1 w(x)[\tau_0, \dots, \tau_n, x; f] dx$$

după formula de medie

$$R_n(f) = -[\tau_0, \tau_1, \dots, \tau_n, \eta, \eta] \int_{-1}^1 w(x) dx$$

cum

$$\int_{-1}^{1} w(x)dx = \int_{-1}^{1} (1-t)u_n(t)dt = -\int_{-1}^{1} tu_n(t)dt =$$

$$=-h^{n+3}\int_{-m}^{m}t^2(t^2-1)\dots(t^2-m^2),$$

deci nucleul are semn constant.

b)
$$n = 2m + 1$$

$$w(x) = \int_{-1}^{x} u_{2m}(t)dt$$

analog ca la a).

$$w(-1) = w(\tau_{2m}) = 0$$
 şi $w(x) \ge 0$ pe $[-1, \tau_{2m}]$
Avem

$$[\tau_0, \tau_1, \dots, \tau_n, x; f] = [\tau_0, \tau_1, \dots, \tau_n, x; f](x - 1)u_{2m}(x) =$$

$$= ([\tau_0, \dots, \tau_{n-1}, x] - [\tau_0, \dots, \tau_{n-1}, \tau_n; f])u_{2m}(x)$$

se deduce

$$\int_{-1}^{\tau_{2m}} (f(x) - p_n(x)) dx = \int_{-1}^{\tau_{2m}} [\tau_0, \dots, \tau_{n-1}, x; f] dx =$$

$$= -f[\tau_0, \dots, \tau_{n-1}, \eta, \eta] \int_{-1}^{\tau_{2m}} w(x) dx$$

La fel u_n fiind negativ pe $[\tau_{2m}, 1]$,

$$\int_{\tau_{2m}}^{1} (f(x) - o_n(x)) = -[\tau_0, \dots, \tau_n, \eta'; f] \left| \int_{\tau_{2m}}^{1} w(x) dx \right|$$

Utilizând teorema de medie pentru integrale și formula de medie pentru diferențe divizate se obține că

$$R_n(f) = c_n f^{(n+1)}(\xi)$$

Luând $f = u_n$ se obține

$$\int_{-1}^{1} u_n(x)dx = R_n(u_n) = c_n(n+1)!$$

Problema 9.3.10 Arătați că pentru $f \in C^{m+2}[a,b]$ restul în formula de cuadratură Newton-Cotes închisă este dat de

$$R_m(f) = \frac{h^{m+3} f^{(m+2)}(\xi)}{(m+2)!} \int_0^m t t^{[m+1]} dt, \quad \xi \in (a,b)$$

pentru m par şi

$$R_m(f) = \frac{h^{m+2} f^{(m+1)}(\xi)}{(m+1)!} \int_0^m t^{[m+1]} dt, \quad \xi \in (a,b)$$

pentru m impar.

Soluție.
$$a = x_0, x_i = x_0 + ih, i = \overline{0, m}, x_m = b$$

$$\varphi_{m+1}(x) = \prod_{i=0}^{m} (x - x_i)$$

$$x = x_0 + th$$

$$\varphi_{m+1}(x) = h^{m+1} \prod_{i=0}^{m} (t-i) = h^{m+1} \psi_{m+1}(t) = h^{m+1} t^{[m+1]}$$

Lema 9.3.11 a) $\varphi_{m+1}(x_{m/2}+\sigma)=(-1)^{m+1}\varphi_{m+1}(x_{m/2}-\sigma)$ unde $x_{\frac{m}{2}}=x_0+\frac{m}{2}h$.

b) De asemenea pentru $a < \sigma + h < x_{\frac{m}{2}}$ și $\sigma \neq x_i$

$$|\varphi_{m+1}(\sigma+h)| < |\varphi_{m+1}(\sigma)|$$

şi pentru $x_{\frac{m}{2}} < \sigma < b$, $\sigma \neq x_i$,

$$|\varphi_{m+1}(\sigma)| < |\varphi_{m+1}(\sigma+h)|$$

Demonstrație.

$$\psi_{m+1}(t)=t^{[m+1]}$$

$$\psi_{m+1}\left(\frac{m}{2}-s\right)=\psi_{m+1}\left(\frac{m}{2}+s\right) \text{ pentru } m \text{ impar}$$

$$\psi_{m+1}\left(\frac{m}{2}-s\right)=-\psi_{m+1}\left(\frac{m}{2}+s\right) \text{ pentru } m \text{ par}$$

$$\psi_{m+1}\left(\frac{m}{2}-s\right) = \left(\frac{m}{2}-s\right)\left(\frac{m}{2}-s-1\right)\dots\left(\frac{m}{2}-s-m\right)$$

$$\psi_{m+1}\left(\frac{m}{2}+s\right) = \left(\frac{m}{2}+s\right)\left(\frac{m}{2}+s-1\right)\dots\left(\frac{m}{2}+s-m\right) =$$

$$= \frac{(2s+m)(2s+m-2)\dots(2s-m)}{2^m}$$

$$(9.5)$$

$$(9.5) \Rightarrow \frac{(2s-m)(2s-m+2)\dots(2s+m)}{2^m} (-1)^{m+1}$$
$$\varphi_{m+1}(x_{\frac{m}{2}} + \sigma) = h^{m+1}\psi\left(\frac{m}{2} + \sigma\right) = (-1)^{m+1}h^{m+1}\psi\left(\frac{m}{2} - \sigma\right)$$

b)
$$0 < t + 1 < \frac{m}{2}, \quad t + 1 \in \mathbb{Z}$$

$$\frac{\psi_{m+1}(t+1)}{\psi(t)} = \left| \frac{(t+1)t(t-1)\dots(t-m+1)}{t(t-1)\dots(t-m+1)(t-m)} \right| =$$

$$= \frac{|t+1|}{|t-m|} = \frac{t+1}{(m+1)-(t+1)} \le \frac{\frac{m}{2}}{(m+1)-\frac{m}{2}} < 1$$
$$\frac{m}{2} < t+1 < m \quad \frac{\psi_{m+1}(t)}{\psi(t)} > 1$$

Definim

$$\phi_{m+1}(x) = \int_a^x \varphi_{m+1}(\sigma) d\sigma = \int_a^x h^{m+1} \sigma^{[m+1]} d\sigma$$

Lema 9.3.12 *Dacă* m *este par* $\phi_{m+1}(a) = \phi_{m+1}(b) = 0$ *şi* $\phi_{m+1}(x) > 0$ *pentru* a < x < b.

Demonstrație. Pentru m par ϕ_{m+1} este o funcție impară în raport cu $x_{\frac{m}{2}}$ conform părții L1 $\Rightarrow \phi_{m+1}(b)=0$

 $\varphi_{m+1}(x) < 0$ pentru x < a căci m+1 este par,

 $\varphi_{m+1}(x) > 0$ pentru $a < x < x_1 \implies \phi_{m+1}(x) > 0$ pentru $a < x \le x_1$.

În $[x_1,x_2]$, $|\varphi_{m+1}(x)|<|\varphi_{m+1}(x-h)|$ în $[x_0,x_1]$. Schimbând variabila de integrare se observă că

$$\left| \int_{x_1}^{x_2} \varphi_{m+1}(x) dx \right| < \left| \int_{x_0}^{x_1} \varphi_{m+1}(x) dx \right|$$

Astfel $\phi_{m+1}(x) > 0$ pentru $a < x < x_2$ și prin același raționament $\phi_{m+1}(x) > 0$ pentru $a < x < x_{\frac{m}{2}}$. Se utilizează apoi antisimetria lui φ_{n+1} în raport cu $x_{\frac{m}{2}}$.

$$R_m(f) = \int_a^b [f(x) - (L_m f)(x)] = \int_a^b \varphi_{m+1}(x)[x_0, \dots, x_m, x; f] dx$$

Integrăm prin părți

$$R_{m}(f) = \int_{a}^{b} \frac{d}{dx} \phi_{m+1}(x)[x_{0}, \dots, x_{m}, x; f] dx =$$

$$= \phi_{m+1}(x)[x_{0}, \dots, x_{m}, x; f] \Big|_{a}^{b}$$

$$- \int_{c}^{b} \phi_{m+1}(x) \frac{d}{dx}[x_{0}, \dots, x_{m}, x; f] dx =$$

$$= - \int_{c}^{b} \phi_{m+1}(x) \frac{d}{dx}[x_{0}, \dots, x_{m}, x; f] dx =$$

$$= -\int_{a}^{b} \phi_{m+1}(x) \frac{f^{(m+2)}(\xi_{x})}{(m+2)!} dx =$$

$$= \frac{-f^{(m+2)}(\alpha)}{(m+2)!} \int_{a}^{b} \phi_{m+1}(x) dx \quad a < \alpha < b$$

Integrând din nou prin părți se obține

$$\int_{a}^{b} \phi_{m+1}(x)dx = -\int_{a}^{b} x\varphi_{n+1}(x)dx > 0$$

Luând $x = x_0 + sh$ și utilizând lema 2

$$R_m(f) = \frac{f^{(m+2)}(\xi)}{(m+2)!} h^{m+3} \int_0^m s\psi_{m+1}(s) ds < 0$$

Deoarece $f^{(m+2)}(\xi)=0$ când $f\in P_{m+1} \ \Rightarrow \ r=m+1$ pentru m par. Cazul m impar

$$R_m(f) = \int_a^{b-h} \varphi_{m+1}(x)[x_0, \dots, x_m, x; f] dx +$$

$$+ \int_{b-h}^b \varphi_{m+1}(x)[x_0, \dots, x_m, x; f] dx$$

$$\varphi_{m+1}(x) = \varphi_m(x)(x - x_m)$$

Deci

$$\int_{a}^{b-h} \varphi_{m+1}(x)[x_0, \dots, x_m, x; f] dx =$$

$$= \int_{a}^{b-h} \frac{d\phi_m}{dx}([x_0, \dots, x_{m-1}, x; f] - [x_0, \dots, x_m; f]) dx$$

 $m ext{ impar} \Rightarrow \phi_m(b-h) = 0$. Integrând prin părți se obține

$$\int_{a}^{b-h} \phi_{m+1}(x)[x_0, \dots, x_m, x; f] dx =$$

$$= -\frac{f^{(m+1)}(\xi')}{(m+1)!} \int_{a}^{b-h} \phi_m(x) dx = Kf^{(m+1)}(\xi')$$

$$a < \xi' < b - h$$

Aplicăm Teorema 1 de medie

$$-\frac{f^{(m+1)}(\xi'')}{(m+1)!} \int_{b-h}^{b} \varphi_{m+1}(x) dx = Lf^{(m+1)}(\xi'')$$

Astfel

$$Rf = Kf^{(m+1)}(\xi') + Lf^{(m+1)}(\xi'')$$

Deoarece K<0 și L<0, $Rf=(K+L)f^{(n+1)}(\xi)$ pentru $\xi\in (\xi',\xi'').$ Deoarece

$$\varphi_{n+1}(x) = \frac{d}{dx}\phi_n(x)(x-b)$$

integrarea prin părți ne dă

$$K + L = I_n.$$

_

9.4 Cuadraturi repetate. Metoda lui Romberg

Se vor utiliza formulele

$$R_{k,1} = \frac{1}{2} \left[R_{k-1,1} + h_{k-1} \sum_{i=1}^{2^{k-2}} f\left(a + \left(i - \frac{1}{2}\right) h_{k-1}\right) \right], \quad k = \overline{2, n}$$

$$R_{k,j} = \frac{4^{j-1} R_{k,j-1} - R_{k-1,j-1}}{4^{j-1} - 1}, \quad k = \overline{2, n}$$

$$R_{1,1} = \frac{h_1}{2} [f(a) + f(b)] = \frac{b-a}{2} [f(a) + f(b)]$$

$$h_k = \frac{h_{k-1}}{2} = \frac{b-a}{2^{k-1}}$$

Problema 9.4.1 Aproximați $\int_0^\pi \sin x dx$ prin metoda lui Romberg, $\varepsilon = 10^{-2}$.

Soluţie.

$$I = \int_0^{\pi} \sin x dx = 2$$

$$R_{1,1} = \frac{\pi}{2} (0+0) = 0$$

$$R_{2,1} = \frac{1}{2} \left(R_{1,1} + \pi \sin \frac{\pi}{2} \right) = 1.571$$

$$R_{2,2} = 1.571 + (1,571 - 0)/3 = 2.094$$

$$(R_{2,2} - R_{1,1}) > 0.01$$

$$R_{3,1} = \frac{1}{2} \left[R_{2,1} + \frac{\pi}{2} \left(\sin \frac{\pi}{4} + \sin \frac{3\pi}{4} \right) \right] = 1.895$$

$$R_{3,2} = 1,895 + \frac{1.895 - 1.571}{3} = 2.004$$

 $R_{3,3} = 2.004 + (2.004 - 2.094)/15 = 1.999$
 $|R_{3,3} - R_{2,2}| < 0.1$

Pentru trapez cu același număr de argumente $I\approx 1,895$ Pentru Simpson cu 4 noduri $I\approx 2.005$

9.5 Formule de cuadratură de tip Gauss

Vom considera formule de cuadratură de forma

$$\int_{a}^{b} w(x)f(x)dx = \sum_{k=1}^{m} A_{k}f(x_{k}) + R_{m}(f)$$

Coeficienții A_k și nodurile x_k se determină din sistemul neliniar

$$\begin{cases} A_1 + A_2 + \dots + A_m &= \mu_0 \\ A_1 x_1 + A_2 x_2 + \dots + A_m x_m &= \mu_1 \\ \dots & \\ A_1 x_1^{m-1} + A_2 x_2^{m-1} + \dots + A_m x_m^{m-1} &= \mu_{m-1} \\ \dots & \\ A_1 x_1^{2m-1} + A_2 x_2^{2m-1} + \dots + A_m x_m^{2m-1} &= \mu_{2m-1} \end{cases}$$

unde $\mu_k = \int_a^b w(x) x^k dx$ sunt momentele funcției pondere w.

Nodurile x_k , $k = \overline{1, m}$ vor fi rădăcinile polinomului u de grad m, ortogonal pe \mathbb{P}_{m-1} relativ la ponderea w și intervalul [a, b].

Pentru coeficienți avem expresia

$$A_k = \frac{1}{[k'(x_k)]^2} \int_a^b w(x) v_k^2(x) dx, \quad k = \overline{1, m}$$

unde $v_k(x) = \frac{u(x)}{x - x_k}$, iar pentru rest

$$R_m(f) = \frac{f^{(2m)}(\xi)}{(2m)!} \int_a^b w(x)u^2(x)dx, \quad \xi \in [a, b]$$

Dacă $w(x) \equiv 1$, atunci u este polinomul Legendre de grad m

$$u(x) = \frac{m!}{(2m)!} \frac{d^m}{dx^m} [(x-a)^m (x-b)^m]$$

iar coeficienții și restul au expresiile

$$A_k = \frac{(m!)^4 (b-a)^{2m+1}}{[(2m)!]^2 (x_k - a)(b - x_k)[k'(x_k)]^2}, \quad k = \overline{1, m}$$

și respectiv

$$R_m(f) = \frac{(m!)^4}{[(2m)!]^3} \frac{(b-a)^{2m+1}}{2m+1} f^{(2m)}(\xi), \quad \xi \in [a,b]$$

Problema 9.5.1 Stabiliți o formulă de cuadratură de tip Gauss în cazul $w(x) \equiv 1$ și m = 3.

Soluție. Polinomul Legendre de grad 3 corespunzând intervalului [-1, 1] este

$$P_3(t) = \frac{1}{2}(5t^3 - 3t)$$

cu rădăcinile

$$t_1 = -\sqrt{\frac{3}{5}}, \quad t_2 = 0, \quad t_3 = \sqrt{\frac{3}{5}}$$

Coeficienții sunt soluțiile sistemului

$$\begin{cases} A_1 + A_2 + A_3 = 2 \\ -\sqrt{\frac{3}{5}}A_1 + \sqrt{\frac{3}{5}}A_3 = 0 \\ \frac{3}{5}A_1 + \frac{3}{5}A_2 = \frac{2}{3} \end{cases}$$

$$A_1 = A_3 = \frac{5}{9} \quad A_2 = \frac{8}{9}$$

Pentru rest se obține

$$R_3(f) = \frac{(3!)^4}{(6!)^3} \frac{(b-a)^7}{7} f^{(6)}(\xi)$$

Trecerea de la [-1,1] la [a,b] se poate face prin schimbarea de variabilă

$$x = \frac{b+a}{2} + \frac{b-a}{2}t$$

$$\int_a^b f(x)dx = \frac{b-a}{2} \int_{-1}^1 f\left(\frac{b+a}{2} + \frac{b-a}{2}t\right) dt$$

$$\int_a^b f(x)dx \approx \frac{b-a}{2} \sum_{i=1}^m A_i f(x_i)$$

unde $x_i = \frac{b+a}{2} + \frac{b-a}{2}t_2$, t_i fiind rădăcinile polinomului Legendre corespunzător intervalului [-1,1].

Problema 9.5.2 Aproximați $\ln 2$ cu două zecimale exacte folosind o formulă gaussiană repetată.

Soluție.

$$\ln 2 = \int_{1}^{2} \frac{dx}{x}$$

Vom folosi formula repetată a dreptunghiului

$$\int_{a}^{b} f(x)dx = \frac{b-a}{n} \sum_{i=1}^{n} f(x_{i}) + \frac{(b-a)^{3}}{3} f''(\xi)$$

$$M_{2}f = 2 \quad \xi \in (a,b)$$

$$|R_{n}(f)| \le \frac{1}{24n^{2}} M_{2}f = \frac{1}{12n^{2}} < \frac{1}{2} \cdot 10^{-2} \implies 6n^{2} \ge 100$$

n = 5

$$\int_{1}^{2} \frac{dx}{x} \approx \frac{1}{5} \left[\frac{1}{1 + \frac{1}{10}} + \frac{1}{1 + \frac{3}{10}} + \frac{1}{1 + \frac{5}{10}} + \frac{1}{1 + \frac{7}{10}} + \frac{1}{1 + \frac{9}{10}} \right] =$$

$$= \frac{1}{5} \left[\frac{10}{11} + \frac{10}{13} + \frac{10}{15} + \frac{10}{17} + \frac{10}{19} \right] =$$

$$= 2 \left[\frac{1}{11} + \frac{1}{13} + \frac{1}{15} + \frac{1}{17} + \frac{1}{19} \right]$$

Problema 9.5.3 Determinați o formulă cu grad de exactitate cel puțin doi pentru a aproxima

$$\int_0^\infty e^{-x} f(x) dx$$

în ipoteza că integrala improprie există.

Soluție. Polinoamele ortogonale pe $[0,\infty)$ relativ la ponderea $w(t)=e^{-t}$ sunt polinoamele lui Laguerre

$$g_n(t) = \frac{e^t}{n!} \frac{d^n}{dt^n} (t^n e^{-t})$$

$$g_2(t) = t^2 - 4t + 2$$

cu rădăcinile $t_1=2-\sqrt{2},\,t_2=2+\sqrt{2}.$

Momentele funcției pondere sunt

$$\mu_0 = \int_0^\infty e^{-x} dx = 1 \quad \mu_1 = 1 \quad \mu_2 = 2$$

$$\begin{cases} A_1 + A_2 = 1 \\ A_1 x_1 + A_2 x_2 = 1 \end{cases} \Rightarrow A_1 = \frac{2 + \sqrt{2}}{4}, \quad A_2 = \frac{2 - \sqrt{2}}{4}$$

$$R_2(f) = \frac{f^{(4)}(\xi)}{4!} \int_a^b w(x) u^2(x) dx$$

$$\int_a^b w(x) u^2(x) = \int_0^\infty (x^2 - 4x + 2)^2 e^{-x} dx =$$

$$= \int_0^\infty (x^4 + 16x^2 + 4 - 8x^3 + 4x^2 - 16x) e^{-x} dx = 4 + 32 + 4 - 24 + 8 - 16 = 8$$

Problema 9.5.4 Aceeaşi problemă pentru gradul de exactitate r = 3 și

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx$$

Soluție. Nodurile formulei gaussiene căutate vor fi rădăcinile polinoamelor

Hermite ortogonale pe
$$(-\infty, \infty)$$
 relativ la ponderea $w(t) = e^{-t^2}$.
$$h_n(t) = (-1)^n e^{t^2} \frac{d^n}{dt^n} (e^{-t^2}) \quad t \in \mathbb{R}$$

$$h_0(t) = 1, \quad h_1(t) = 2t$$

$$h_{n+1}(t) = 2th_n(t) - 2nh_{n-1}(t)$$

$$h_2(t) = 2(2t^2 - 1) = 2th_1(t) - 2 = 4t^2 - 2$$

$$h_3(t) = 2th_2(t) - 2h_1(t) = 2t(4t^2 - 2) - 8t = 4t(2t^2 - 3)$$

$$t_1 = -\sqrt{\frac{3}{2}}, \quad t_2 = 0, \quad t_3 = \sqrt{\frac{3}{2}}$$

$$\mu_0 = \int_{-\infty}^{\infty} e^{-t^2} dt = \sqrt{\pi}$$

$$\mu_1 = \int_{-\infty}^{\infty} t e^{-t^2} dt = 0$$

$$\mu_2 = \int_{-\infty}^{\infty} t^2 e^{-t^2} dt = \frac{1}{4} \int_{-\infty}^{\infty} (2t)(2t)e^{-t^2} dt = \frac{1}{4}2^2 \cdot 2!\sqrt{\pi} = 2\sqrt{\pi}$$

$$\begin{cases} A_1 + A_2 + A_3 = \sqrt{\pi} \\ -A_1 + A_3 = 0 \\ A_1 + A_3 = \frac{2}{3} \cdot 2\sqrt{\pi} = \frac{4}{3}\sqrt{\pi} \end{cases}$$

$$A_1 = A_3 = \frac{2}{3}\sqrt{\pi}$$

$$A_2 = \frac{1}{3}\sqrt{\pi}$$

$$R_3(f) = \frac{f^{(6)}(\xi)}{6!} \int_{-\infty}^{\infty} e^{-x^2} \frac{h_3^2(t)}{8^2} dt =$$

$$= 8 \cdot 3! \sqrt{\pi} \cdot \frac{1}{8^2} \cdot \frac{f^{(6)}(\xi)}{6!} = \frac{\sqrt{\pi}}{4 \cdot 5 \cdot 6 \cdot 8} f^{(6)}(\xi)$$

Problema 9.5.5 Fie formula de cuadratură de forma

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx = \sum_{i=1}^{n} A_i f(x_i) + R_n(f), \qquad f \in C^{2n}[-1, 1].$$

 1° Arătați că coeficienții A_i și nodurile x_i sunt date de

$$A_{i} = \int_{-1}^{1} \frac{T_{n}(x)}{\sqrt{1 - x^{2}}(x - x_{i})T'_{n}(x_{i})} dx,$$

$$x_{i} = \cos \theta_{i}, \quad \theta_{i} = \frac{(2i - 1)\pi}{2n} \frac{\pi}{2}, \quad i = \overline{1, n},$$

unde T_n este polinomul Cebîşev de speţa I de grad n.

 2° Punând pentru $1 \leq i \leq n$,

$$\delta_j = \int_0^\pi \frac{\cos j\theta - \cos j\theta_i}{\cos \theta - \cos \theta_i} d\theta, \quad j = 1, 2, \dots$$

arătați că $\delta_{j+1}-2\cos\theta_i\delta_j+\delta_{j-1}=0$, pentru $j=2,3,\ldots$ și calculați δ_{k+1} . Deduceți că $A_i=\frac{\pi}{n},\ i=\overline{1,n}$.

3° Arătați că

$$R_n(f) = \frac{\pi}{2^{2n-1}} \frac{f^{(2n)}(\xi)}{(2n)!}, \qquad \xi \in (-1,1).$$

Soluție.

1° Ținând cont că nodurile formulei vor fi rădăcinile polinomului lui Cebâşev de speţa I, iar coeficienţii se obţin integrând polinoamele fundamentale, formulele de la punctul 1° sunt imediate.

 2° Punând $x = \cos \theta$ avem

$$A_i = \int_0^{\pi} \frac{\cos n\theta}{\cos \theta - \cos \theta_i} \frac{1}{T'_n(x_i)} = \frac{\delta_n}{T'_n(x_i)},$$

căci $\cos n\theta_i=0,\,i=\overline{1,n}.$ Din relația

$$cos(j+1)\theta + cos(j-1)\theta = 2cos\theta cosj\theta$$

rezultă pentru $j \ge 2$ că

$$\delta_{j+1} + \delta_{j-1} = 2 \int_0^{\pi} \frac{\cos \theta \cos j\theta - \cos \theta_i \cos j\theta_i}{\cos \theta - \cos \theta_i} d\theta$$
$$= 2 \int_0^{\pi} \cos j\theta d\theta + 2 \cos \theta_i \delta_j$$

şi $\delta_0=0$ şi $\delta_1=\pi$. Relaţia de recurenţă $\delta_{j+1}-2\cos\theta_i\delta_j+\delta_{j-1}=0$ are soluţia generală $\delta_j=A\cos j\theta_i+B\sin j\theta_i$; se obţine

$$\delta_n = \frac{\pi \sin n\theta_i}{\sin \theta_i}$$

și cum

$$T_n'(x_i) = \frac{n\sin n\theta_i}{\sin \theta_i}$$

se deduce că $A_i = \frac{\pi}{n}$, $i = \overline{1, n}$.

3° Din expresia restului se obține

$$R_n(f) = \frac{f^{(2n)}(\xi)}{(2n)!} \int_{-1}^1 \frac{T_n^2(x)}{2^{2n-2}\sqrt{1-x^2}} dx = \frac{\pi}{2^{2n-1}} \frac{f^{(2n)}(\xi)}{(2n)!}.$$

Problema 9.5.6 Deduceți o formulă de cuadratură de forma

$$\int_{-1}^{1} \sqrt{1 - x^2} f(x) dx = A_1 f(x_1) + A_2 f(x_2) + A_3 f(x_3) + R_3(f)$$

Soluție. Formula va fi de tip Gauss; polinoamele ortogonale care dau nodurile vor fi polinoamele Cebâșev de speța a II-a.

$$Q_n(t) = \frac{\sin[(n+1)\arccos t]}{\sqrt{1-t^2}}, \quad t \in [-1,1]$$

Ele au rădăcinile $t_k = \cos\frac{k\pi}{n+1}, k = \overline{1,n}$

În cazul nostru avem

$$Q_3(t) = 8t^3 - 4t$$
 $\widetilde{Q}_3(t) = \frac{1}{8}(8t^3 - 4t)$

Rădăcinile vor fi

$$t_1 = -\frac{\sqrt{2}}{2}, \quad t_0 = 0, \quad t_2 = \frac{\sqrt{2}}{2}$$

Pentru coeficienți, ținând cont că formula are gradul de exactitate 2m-1=5 obținem sistemul

$$\begin{cases} A_1 + A_2 + A = 3 = \mu_0 \\ A_1 t_1 + A_2 t_2 + A_3 t_3 = \mu_1 \\ A_1 t_1^2 + A_2 t_2^2 + A_3 t_3^2 = \mu_2 \end{cases}$$

unde

$$\mu_k = \int_{-1}^1 t^k \sqrt{1 - t^2} dt$$

$$\mu_0 = \frac{\pi}{2}, \quad \mu_1 = \int_{-1}^1 t \sqrt{1 - t^2} dt = 0$$

$$\mu_2 = \int_{-1}^1 t^2 \sqrt{1 - t^2} dt = \frac{1}{4} \int_{-1}^1 (2t)(2t) \sqrt{1 - t^2} dt = \frac{\pi}{8}$$

Se observă că $\mu_{2k+1}=\int_{-1}^1 t^{2k+1}\sqrt{1-t^2}dt=0$, deoarece funcția de integrat este impară.

Sistemul are soluțiile

$$A_1 = A_3 = \frac{\pi}{8}, \quad A_2 = \frac{\pi}{4}$$

Restul va fi

$$R_m(f) = \frac{f^{(2m)}(\xi)}{(2m)!} \int_{-1}^1 w(x)u^2(x)dx =$$

$$= \frac{f^{(2m)}(\xi)}{(2m)!} \cdot \frac{1}{2^m} \cdot \frac{\pi}{2} = \frac{\pi}{2^{m+1}(2m)!} f^{(2m)}(\xi)$$

Am obținut formula

$$\int_{-1}^{1} f(x)dx = \frac{\pi}{8} \left[f\left(-\frac{\sqrt{2}}{2}\right) + 2f(0) + f\left(\frac{\sqrt{2}}{2}\right) \right] + \frac{\pi}{2^4 6!} f^{(6)}(\xi)$$

Problema 9.5.7 Deduceți o formulă de tip Cebâșev pe [-1,1] cu w(x) = 1 și cu 3 noduri.

Soluție.

$$A = \frac{2}{3}$$

$$\begin{cases}
t_1 + t_2 + t_3 = 0 \\
t_1^2 + t_2^2 + t_3^2 = 1 \\
t_1^3 + t_2^3 + t_3^3 = 0
\end{cases}$$

$$C_1 = t_1 + t_2 + t_3$$

$$C_2 = t_1 t_2 + t_1 t_3 + t_2 t_3$$

$$C_3 = t_1 t_2 t_3$$

$$C_1 = 0$$

$$C_2 = \frac{1}{2}[(t_1 + t_2 + t_3)^2 - (t_1^2 + t_2^2 + t_3^2)] = -\frac{1}{2}$$

$$C_3 = \frac{1}{6}[(t_1 + t_2 + t_3)^3 - 3(t_1 + t_2 + t_3)(t_1^2 + t_2^2 + t_3^2) + 2(t_1^3 + t_2^3 + t_3^3)] = \frac{1}{6}(0 - 0 + 0) = 0$$

$$t^3 - C_1 t^2 + C_2 t - C_3 = 0$$

$$t^3 - \frac{1}{2}t = 0, \quad t_1 = -\frac{\sqrt{2}}{2}, \quad t_2 = 0, \quad t_3 = \frac{\sqrt{2}}{2}$$

$$\int_{-1}^1 f(t)dt = \frac{2}{3} \left[f\left(-\frac{\sqrt{2}}{2}\right) + f(0) + f\left(\frac{\sqrt{2}}{2}\right) \right] + R_3(f)$$

$$R_3(f) = \int_{-1}^1 K_3(f) f^{(4)}(t) dt$$

$$K_3(t) = \frac{1}{6} \left[\frac{(1 - t)^4}{4} - \frac{2}{3} \sum_{i=1}^3 (t_i - t)_+^3 \right]$$

$$K_3(t) = \frac{1}{6}$$

Deoarece

$$\frac{2}{3} \sum_{i=1}^{3} (t_i - t)^3 = \int_{-1}^{1} (x - t)^3 dx = \frac{(1 - t)^4}{4} - \frac{(1 + t)^4}{4}$$

obținem

$$K_3(t) = \frac{1}{6} \begin{cases} \frac{(1+t)^4}{4} & t \in \left[-1, -\frac{\sqrt{2}}{2}\right] \\ \frac{(1+t)^4}{4} - \frac{2}{3} \left(\frac{\sqrt{2}}{2} + t\right)^3 & t \in \left(-\frac{\sqrt{2}}{2}, 0\right] \\ \frac{(1-t)^4}{4} - \frac{2}{3} \left(\frac{\sqrt{2}}{2} - t\right)^3 & t \in \left(0, \frac{\sqrt{2}}{2}\right] \\ \frac{(1-t)^4}{4} & t \in \left(\frac{\sqrt{2}}{2}, 1\right] \end{cases}$$

 K_3 рагă, $K_3 \ge 0$. Pentru rest avem

$$R_3(f) = f^{(4)}(\xi) \int_{-1}^1 K_3(t)dt = \frac{1}{360} f^{(4)}(\xi),$$

sau cu corolarul teoremei lui Peano

$$R_3(f) = \frac{1}{4!} f^{(4)}(\xi) R(e_4) = \frac{1}{24} f^{(4)}(\xi) \left\{ \int_{-1}^1 x^4 dx - \frac{2}{3} \left[\left(-\frac{\sqrt{2}}{2} \right)^4 + \left(\frac{\sqrt{2}}{2} \right)^4 \right] \right\} =$$

$$= \frac{1}{24} \left[\frac{2}{5} - \frac{2}{3} \cdot \frac{1}{2} \right] f^{(4)}(\xi) = \frac{1}{360} f^{(4)}(\xi).$$

Capitolul 10

Ecuații neliniare

10.1 Ecuații în \mathbb{R}

Metoda coardei (a falsei poziții sau a părților proporționale)

Fie ecuația f(x) = 0 și intervalul [a, b] astfel încât f(a)f(b) < 0. Presupunem că f(a) < 0 și f(b) > 0.

În loc să înjumătățim intervalul ca la metoda intervalului îl împărțim în raportul $-\frac{f(a)}{f(b)}$. Se obține pentru rădăcină aproximanta

$$x_1 = a + h_1 (10.1)$$

unde

$$h_1 = \frac{-f(a)}{-f(a) + f(b)}(b - a) = -\frac{f(a)}{f(b) - f(a)}(b - a).$$
 (10.2)

Procedând analog pentru intervalul $[a, x_1]$ sau $[x_1, b]$, la capătul căruia funcția f are semne opuse, obținem o a doua aproximare x_2 , ş.a.m.d.

Interpretare geometrică. Metoda părților proporționale este echivalentă cu înlocuirea lui y = f(x) cu coarda ce trece prin punctele A[a, f(a)] și B[b, f(b)] (vezi figura 10.1).

$$\frac{y - f(a)}{f(b) - f(a)} = \frac{x - a}{b - a}$$

Făcând y = 0 se obține

$$x_1 = a - \frac{f(a)}{f(b) - f(a)}(b - a). \tag{10.3}$$

$$(10.3) \Leftrightarrow (10.1) \land (10.2)$$

Figura 10.1: Metoda falsei poziții

Convergența metodei. Presupunem că rădăcina este izolată și că f'' are semn constant pe [a,b].

Presupunem că f''(x) > 0 pe [a,b] (cazul f''(x) < 0 se reduce la precedentul scriind -f(x) = 0. Curba y = f(x) este convexă și putem avea două situații: f(a) > 0 și f(b) > 0 (figura 10.2).

În primul caz capătul este fix iar aproximațiile succesive se obțin astfel

$$x_0 = b$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n) - f(a)}(x_n - a), \quad n = 0, 1, 2, \dots$$
 (10.4)

șirul obținut fiind monoton descrescător și mărginit.

$$a < \xi < \dots < x_{n+1} < x_n < \dots < x_1 < x_0$$

Pentru celălalt caz b este fix și $x_0 = a$

$$x_{n+1} = x_n - \frac{f(x_1)}{f(b) - f(x_1)}(b - x_n)$$

Şirul obţinut este crescător şi mărginit

$$x_0 < x_1 < x_2 < \dots < x_n < x_{n+1} < \dots < \xi < b$$

Figura 10.2: Convergența metodei falsei poziții

Pentru a arăta că limita este rădăcină a ecuației inițiale se trece la limită în relația de recurență. Pentru delimitarea erorii folosim formula

$$|x_n - \xi| \le \frac{|f(x_n)|}{m_1}$$

unde $|f'(x)| \leq m_1$ pentru $x \in [a, b]$

$$f(x_n) - f(\xi) = (x_n - \xi)f'(c), \quad c \in (x_n, \xi)$$

 $|f(x_n) - f(\xi)| = |f(x_n)| \ge m_1|x_n - \xi|$

Vom da o delimitare mai bună dacă f este continuă pe [a,b], [a,b] conține toate aproximantele și f' își păstrează semnul.

$$0 < m_1 \le |f'(x)| \le M_1 < \infty$$

Pentru primul caz avem

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f(x_{n-1}) - f(a)} (x_{n-1} - a)$$

$$f(\xi) - f(x_{n-1}) = \frac{f(x_{n-1}) - f(a)}{x_{n-1} - a} (x_n - x_{n-1})$$

Utilizând teorema lui Lagrange avem

$$(\xi - x_{n-1})f'(\xi_{n-1}) = (x - x_{n-1})f'(\overline{x}_{n-1})$$

 $x_{n-1} \in (x_{n-1}, \xi), \overline{x}_{n-1} \in (a, x_{n-1}).$ Deci

$$|\xi - x_n| = \frac{|f'(x_{n-1}) - f'(\xi_{n-1})|}{f'(\xi_{n-1})|} |x_n - x_{n-1}|$$

Deoarece f' are semn constant pe [a,b] și $\overline{x}_{n-1},\xi_{n-1}\in [a,b]$ obținem

$$|f'(\overline{x}_{n-1}) - f'(\xi_{n-1})| \le M_1 - m_1$$

Deci

$$|\xi - x_n| \le \frac{M_1 - m_1}{m_1} |x_n - x_{n-1}|$$

Dacă $M_1 \leq 2m_1$ (lucru care se poate întâmpla dacă [a,b] este mic)

$$|\xi - x_n| \le |x_n - x_{n-1}|$$

Deci dacă programăm această metodă, putem folosi drept criteriu de oprire

$$\frac{M_1 - m_1}{m_1} |x_n - x_{n-1}| < \varepsilon$$

sau

$$|x_n - x_{n-1}| < \varepsilon$$

Problema 10.1.1 Determinați o rădăcină pozitivă a ecuației

$$f(x) = x^3 - 0.2x^2 - 0.2x - 1.2$$

cu precizia 0.002.

Soluție.

$$f(1) = -0.6 < 0, \quad f(2) = 5.6 > 0$$

$$\xi \in (1, 2), \quad f(1.5) = 1.425, \quad \xi \in (1, 1.5)$$

$$x_1 = 1 + \frac{0.6}{1.425 + 0.6}(1.5 - 1) = 1 + 0.15 = 1.15$$

$$f(x_1) = -0.173$$

$$x_2 = 1.15 + \frac{0.173}{1.425 + 0.173}(1.5 - 1.15) = 1.15 + 0.040 = 1.150$$

$$f(x_2) = -0.036$$

$$x_3 = 1.150 + \frac{0.036}{1.425 + 0.036}(1.5 - 1.15) = 1.190$$

$$f(x_3) = -0.0072$$

$$f'(x) = 2x^{2} - 0.4x - 0.2, \quad x_{3} < x < 1.5$$

$$f'(x) \ge 3.1198^{2} - 0.4 \cdot 1.5 - 0.2 = 3 \cdot 1.43 - 0.8 = 3.49$$

$$0 < \xi - x_{3} < \frac{0.0072}{3.49} \approx 0.002$$

$$\xi = 1.198 + 0.002\theta, \quad \theta \in (0, 1]$$

Problema 10.1.2 Utilizând metoda lui Newton, calculați o rădăcină negativă a ecuației

$$f(x) \equiv x^4 - 3x^2 + 75x - 10000 = 0$$

cu 5 zecimale exacte.

Soluţie.

$$f(0) = -10000, \quad f(-10) = -1050$$

$$f(-100) = 1 - 8$$

$$f(-11) = 3453, \quad f'(x) < 0, \quad f''(x) > 0$$

$$f(-11) > 0, \quad f''(-11) > 0$$

Luăm
$$x_0 = -11$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$x_1 = -11 - \frac{3453}{-5183} = -10.3$$

$$x_2 = -10.3 - \frac{134.3}{-4234} = -10.3 + 0.03 = -10.27$$

$$x_3 = -10.27 - \frac{37.8}{-4196} = -10.27 + 0.009 = -10.261$$

$$|x_2 - x_3| = |0.09|, \quad \text{ş.a.m.d.}$$

Problema 10.1.3 Fie ecuația

$$f(x) = 0 ag{10.5}$$

- și f'' este continuă și își păstrează semnul pe $(-\infty,\infty)$. Arătați că:
 - a) Ecuația are cel mult două rădăcini.
 - b) Să presupunem că

$$f(x_0)f'(x_0) < 0, \quad f(x_0)f''(x) < 0$$

atunci (1) are o rădăcină unică în (x_0, x_1) . Cum poate fi calculată cu Newton pornind cu x_0 .

c) Dacă $f'(x_0) = 0$, $f(x_0)f''(x) < 0$, ecuația are două rădăcini care pot fi calculate cu Newton și cu aproximantele inițiale

$$x_1 = x_0 - \sqrt{-\frac{2f(x_0)}{f''(x_0)}}$$

$$x_1' = x_0 + \sqrt{-\frac{2f(x_0)}{f''(x_0)}}$$

- a) Rezultă din teorema lui Rolle.
- b) ξ are o soluție unică în (x_0, x_1) (vezi figura 10.3)

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Figura 10.3: Cazul b) al problemei 10.1.3

c)
$$f'(x_0) = 0$$
, $f(x_0)f''(x) < 0$

Ecuația (10.5) are două rădăcini ξ și ξ' în $(-\infty, \infty)$ (figura 10.4, stânga). Aproximăm f cu Taylor

$$f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 = 0.$$

Figura 10.4: Cazul c) al problemei 10.1.3

Ecuația

$$f(x_0) = \frac{1}{2}f''(x_0)(x - x_0)^2$$

are două rădăcini

$$x_1 = x_0 - \sqrt{-\frac{2f(x_0)}{f''(x_0)}}$$

$$x_1' = x_0 + \sqrt{-\frac{2f(x_0)}{f''(x_0)}}$$

care sunt abscisele punctelor de intersecție cu axa Ox ale parabolei (figura 10.4, dreapta)

$$Y = f(x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2.$$

Observația 10.1.4 Avem de fapt două cazuri de interes date de I și II.

Problema 10.1.5 Determinați o rădăcină a ecuației

$$x^3 - x - 1 = 0$$

folosind metoda aproximațiilor succesive.

Soluție.

$$f(1) = -1 < 0, \quad f(2) = 5 > 0$$

$$x - x^3 - 1$$

$$f(x) = x^3 - 1, \quad \varphi'(x) = 3x^2$$

$$\varphi''(x) \ge 3 \text{ pentru } x \in [1, 2]$$

dar nu se poate aplica m.a.s.

$$x = \sqrt[3]{x+1}$$

$$\varphi(x) = \sqrt[3]{x+1}, \quad \varphi'(x) = \frac{1}{3\sqrt[3]{(x+1)^2}}$$

$$0 < \varphi'(x) < \frac{1}{3\sqrt[3]{4}} < \frac{1}{4} = 2 \text{ pentru } a \le x \le 2$$

metoda aproximațiilor succesive are o convergență rapidă

$$|x_n - x^*| \le \frac{q^n}{1 - q} |x_1 - x_0|$$

$$x_0 = 1, \quad x_1 = \sqrt[3]{2}$$

$$x_2 = \sqrt[3]{1 + \sqrt[3]{2}}, \quad x_3 = \sqrt[3]{1 + \sqrt[3]{1 + \sqrt[3]{2}}}$$

Problema 10.1.6 Concepeți o metodă cu un pas și una cu doi pași pentru a aproxima \sqrt{a} , a > 0.

Soluție. Folosim metoda lui Newton

$$x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

(Metoda lui Heron)

$$f(x) = x^2 - a$$

$$f'(x) = 2x > 0 \text{ pentru } x > 0$$

$$f''(x) = 2 > 0$$

$$f'(x) \neq 0 \text{ pe } [a, b] \subset (0, \infty)$$

$$f''(x) > 0 \text{ pe } [a, b]$$

Orice valoare pozitivă poate fi utilizată ca valoare de pornire.

Observația 10.1.7 *Numărul de zecimale corecte se dublează la fiecare pas, comparativ cu numărul original de zecimale corecte.*

$$x_0 = \sqrt{a}(1+\delta)$$

$$x_1 = \frac{1}{2}\left(x_0 + \frac{a}{x_0}\right) = \frac{1}{2}\left[\sqrt{a}(1+\delta) + \sqrt{a}(1+\delta)^{-1}\right] =$$

$$= \frac{1}{2}\sqrt{a}(1+\delta+1-\delta+\delta^2) = \sqrt{x}\left(1+\frac{\delta^2}{2}\right)$$

b) Folosim metoda secantei

$$x_{n+1} = x_n - \frac{(x_n - x_{n-1})f(x_n)}{f(x_n) - f(x_{n-1})} =$$

$$= x_n - \frac{(x_n - x_{n-1})(x_n^2 - a)}{x_n^2 - x_{n-1}^2} =$$

$$= x_n - \frac{x_n^2 - a}{x_n + x_{n-1}} = \frac{x_n^2 + x_n x_{n-1} - x_n^2 + a}{x_n + x_{n-1}}$$

$$x_0 > 0$$

Problema 10.1.8 *La fel pentru rădăcina cubică* $\sqrt[3]{x}$.

$$y_{n+1} = \frac{1}{3} \left(2y_n + \frac{x}{y_n^2} \right)$$
$$y_0 > 0$$

Problema 10.1.9 *Strict aplicabilitatea metodei lui Newton pentru rădăcini multiple.*

Soluție. Fie x^* o rădăcină multiplă de ordinul m. Dorim convergență de ordinul 2.

$$g(x)=x-m(f'(x))^{-1}f(x)$$

$$g(x^*)=x^*$$
 Presupunem că $f(x^*)=f'(x^*)=\cdots=f^{(m-1)}(x^*)=0$
$$f^{(m)}(x^*)\neq 0$$

$$f(x^* + h) = \frac{f^{(n)}(x^*)h^m}{m!}(1 + O(h))$$
$$f'(x^* + h) = \frac{f^m(x^*)h^{m-1}}{(m-1)!}(1 + O(h))$$
$$\frac{f(x^* + h)}{f'(x^* + h)} = \frac{h}{m}(1 + O(h)) = \frac{h}{m} + O(h^2)$$

și pentru $f'(x^* + h) \neq 0$,

$$g(x^*+h)=x^*+h-m\left(\frac{h}{m}+O(h^2)\right)$$

$$g'(x^*)=\lim_{h\to 0}\frac{g(x^*+h)-g(x^*)}{h}=$$

$$=\lim_{h\to 0}\frac{h-h+mO(h^2)}{h}<1 \text{ convergent `a}$$

Problema 10.1.10 Deduceți formula

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} - \frac{1}{2} \left[\frac{f(x_i)}{f'(x_i)} \right]^2 \frac{f''(x_i)}{f(x_i)}$$

Soluție. Folosim interpolarea Taylor inversă:

$$F_m^T(x_i) = x_i + \sum_{k=1}^{m-1} \frac{(-1)^l}{k!} [f(x_i)]^k g^{(k)}(f(x_i))$$

Problema 10.1.11 Stabiliți următoarea metodă de aproximare a unei rădăcini reale a ecuației f(x) = 0

$$x_{k+1} = x_k - \frac{f(x_k)}{[x_{k-1}, x_k; f]} - \frac{[x_{k-2}, x_{k-1}, x_k; f]f(x_{k-1})f(x_k)}{[x_{k-2}, x_{k-1}; f][x_{k-2}, x_k; f][x_{k-1}, x_k; f]}$$

$$k = 3, 4, \dots$$

Soluție. Folosim polinomul de interpolare inversă a lui Newton.

$$g(y) \approx g(y_0) + (y - y_0)[y_0, y_1; g] + (y - y_0)(y - y_1)[y_0, y_1, y_i; f]$$
$$g(0) \approx g(y_0) - y_0[y_0, y_1; g] + y_0y_1[y_0, y_1, y_2; g] =$$

10.2. Sisteme neliniare

$$= x_0 - f(x_0) \frac{x_1 - x_0}{f(x_1) - f(x_0)} + f(x_0) f(x_1) \frac{[y_1, y_2; g] - [y_0, y_1; g]}{y_2 - y_0} =$$

$$= x_0 - \frac{f(x_0)}{[x_0, x_1; f]} + f(x_0) f(x_1) \frac{\frac{x_2 - x_1}{f(x_2) - f(x_1)} - \frac{x_1 - x_0}{f(x_1) - f(x_0)}}{f(x_2) - f(x_0)} =$$

$$= x_0 - \frac{f(x_0)}{[x_0, x_1; f]} - f(x_0) f(x_1) \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0} \cdot \frac{x_2 - x_0}{f(x_2) - f(x_0)} \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)} \cdot \frac{x_2 - x_1}{f(x_2) - f(x_1)} =$$

$$= x_0 - \frac{f(x_0)}{[x_0, x_1; f]} - \frac{[x_0, x_1, x_2; f] f(x_1) f(x_2)}{[x_1, x_2; f] [x_0, x_2; f] [x_0, x_1; f]}$$

10.2 Sisteme neliniare

Problema 10.2.1 Utilizați metoda aproximațiilor succesive pentru a aproxima soluția sistemului

$$\begin{cases} x_1^2 + x_2^2 = 1\\ x_1^3 - x_2 = 0 \end{cases}$$
 (10.6)

Soluție. Interpretarea geometrică apare în figura 10.5.

Figura 10.5: Interpretarea geometrică a sistemului (10.6)

$$x^{(0)} = \begin{bmatrix} 0.9 \\ 0.5 \end{bmatrix} \quad f(x) = \begin{bmatrix} x_1^2 + x_2^2 - 1 \\ x_1^3 - x_2 \end{bmatrix}$$

$$f'(x) = \begin{bmatrix} 2x_1 & 2x_2 \\ 3x_1^2 & -1 \end{bmatrix} \quad f'(x^0) = \begin{bmatrix} 1.8 & 1 \\ 2.43 & -1 \end{bmatrix}$$

$$\det f'(x^0) \neq 0 = -4.23$$

$$[f'(x^0)]^{-1} = -\frac{1}{4.23} \begin{bmatrix} -1 & -1 \\ -2.43 & 1.8 \end{bmatrix}$$

$$\Lambda = -[f'(x^0)]^{-1} = \frac{1}{4.23} \begin{bmatrix} -1 & -1 \\ -2.43 & 1.8 \end{bmatrix}$$

$$\begin{split} \varphi(x) &= x + \Lambda f(x) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \frac{1}{4.23} \begin{bmatrix} 1 & 1 \\ 2.43 & -1.8 \end{bmatrix} \begin{bmatrix} x_1^2 + x_2^2 - 1 \\ x_1^3 - x_2 \end{bmatrix} \\ x^{(1)} &= \begin{bmatrix} x_1^{(0)} \\ x_2^{(0)} \end{bmatrix} - \frac{1}{4.23} \begin{bmatrix} 1 & 1 \\ 2.43 & -1.8 \end{bmatrix} \begin{bmatrix} 0.9^2 + 0.5^2 - 1 \\ 0.9^3 - 0.5 \end{bmatrix} = \begin{bmatrix} 0.8317 \\ 0.5630 \end{bmatrix} \\ x^{(2)} &= \begin{bmatrix} 0.8317 \\ 0.5630 \end{bmatrix} - \frac{1}{4.23} \begin{bmatrix} 1 & 1 \\ 2.43 & -1.8 \end{bmatrix} \begin{bmatrix} 0.8317^2 + 0.5630^2 - 1 \\ 0.8317^2 - 0.5630 \end{bmatrix} = \begin{bmatrix} 0.8265 \\ 0.5633 \end{bmatrix} \\ x^{(3)} &= \begin{bmatrix} 0.8261 \\ 0.5361 \end{bmatrix}, \qquad x^{(4)} &= \begin{bmatrix} 0.8261 \\ 0.5636 \end{bmatrix} \end{split}$$

$$||x^{(4)} - x^{(3)}|| < 10^{-4}$$

Observația 10.2.2 În locul procesului Picard-Banach pentru sisteme neliniare este uneori convenabil să se utilizeze un proces Seidel.

$$\begin{cases} x_{n+1} = \varphi_1(x_n, y_n) \\ x_{n+2} = \varphi_2(x_{n+1}, y_n) \end{cases}.$$

Problema 10.2.3 Aproximați soluția sistemului

$$\begin{cases} F(x,y) = 2x^3 - y^2 - 1 = 0 \\ G(x,y) = xy^3 - y - 4 = 0 \end{cases}$$

folosind metoda lui Newton.

Soluție.

$$\begin{cases} F(x,y) = 0 \\ G(x,y) = 0 \end{cases} F, g \in C^1$$
$$x = x_n + h_n$$
$$y = y_n + k_n$$
$$\begin{cases} F(x_n + h_n, y_n + k_n) = 0 \\ G(x_n + h_n, y_n + k_n) = 0 \end{cases}$$

Utilizând formula lui Taylor se obține

$$\begin{cases} F(x_n, y_n) + h_n F'_x(x_n, y_n) + k_n F'(x_n, y_n) = 0 \\ G(x_n, y_n) + h_n G'_x(x_n, y_n) + k_n G'(x_n, y_n) = 0 \end{cases}$$

Dacă jacobianul

$$J(x_n, y_n) = \begin{vmatrix} F'_x(x_n, y_n) & F'_y(x_n, y_n) \\ G'_x(x_n, y_n) & G'_y(x_n, y_n) \end{vmatrix} \neq 0$$

obţinem

$$h_{n} = -\frac{1}{J(x_{n}, y_{n})} \begin{vmatrix} F(x_{n}, y_{n}) & F'_{y}(x_{n}, y_{n}) \\ G(x_{n}, y_{n}) & G'_{y}(x_{n}, y_{n}) \end{vmatrix}$$

$$k_{n} = -\frac{1}{J(x_{n}, y_{n})} \begin{vmatrix} F'_{x}(x_{n}, y_{n}) & F(x_{n}, y_{n}) \\ G'_{x}(x_{n}, y_{n}) & G(x_{n}, y_{n}) \end{vmatrix}$$

$$x_{0} = 1.2, \quad y_{0} = 1.7$$

$$F(x_{0}, y_{0}) = -0.434$$

$$G(x_{0}, y_{0}) = 0.1956$$

$$J(x, y) = \begin{vmatrix} 6x^{2} & -2y \\ y^{3} & 3xy^{2} - 1 \end{vmatrix} = \begin{vmatrix} 8.64 & -3.40 \\ 4.91 & 5.40 \end{vmatrix} = 57.91$$

$$h_{0} = 0.6349$$

$$k_{0} = -0.0390$$

Capitolul 11

Rezolvarea numerică ecuațiilor diferențiale

Problema 11.0.4 Aproximați soluția problemei Cauchy

$$y' = -y + x - 1$$
, $x \in [0, 1]$, $y(0) = 1$

pentru N = 10, h = 0.1, $x_i = 0.1i$ folosind metoda lui Euler.

Soluţie.

$$y' = -y + x + 1, \quad x \in [0, 1], \quad y(0) = 1$$

 $y_0 = \alpha$
 $y_{i+1} = y_i + hf(x_i, y_i)$
 $\tau = \frac{h^2}{2}y''(\xi_i)$

Soluția exactă este

$$y(x) = x + e^{-x}$$

$$y_0 = 1$$

$$y_i = y_{i-1} + h(-y_{i-1} + x_{i-1} + 1) =$$

$$= y_{i-1} + 0 \cdot 1(-y_{i-1} + 0.1(i-1) + 1) =$$

$$= 0.9y_{i-1} + 0.01(i-1) + 0.1 = 0.9y_{i-1} + 0.01i + 0.09$$

Calculele sunt date în următorul tabel

x_i	y_i	$y(x_i)$	$ y_i - y(x_i) $
0.0	1.000000	1.000000	0
0.1	1.000000	1.004837	0.004837
0.2	1.01	1.018731	0.008731
0.3	1.029	1.040818	0.011818
0.4	1.0561	1.070320	0.014220

Să aplicăm acum pentru aceeași problemă metoda Runge-Kutta de ordinul IV.

$$y_0 = \alpha = y(a)$$

$$k_1 = hf(x_i, y_i)$$

$$k_2 = kf\left(x_i + \frac{h}{2}, y_i + \frac{1}{2}k_1\right)$$

$$k_3 = hf\left(x_i + \frac{h}{2}, y_i + \frac{1}{2}k_2\right)$$

$$k_4 = hf(x_i + h, y_i + k_3), \quad \tau \in O(h^4)$$

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

•					
c_i	val.exactă	y_i	eu		
0	1.0	1.0	0		
.1	1.0048374180	1.0048375000	$8.1 \cdot 15^{-8}$		
.2	1.0187307531	1.0187309014	$1.483 \cdot 10^{-7}$		
.3	1.0408				
	0 .1 .2	0 1.0 .1 1.0048374180 .2 1.0187307531	1.0 1.0 1.0 1.0048374180 1.0048375000 1.0187307531 1.0187309014		

Problema 11.0.5 Aproximați soluția ecuației

$$y' = -y + 1$$
$$y(0) = 0$$

folosind:

- a) metoda Euler cu h = 0.025;
- b) metoda Euler modificată cu h = 0.05;
- c) metoda Runge-Kutta cu h = 0.1.

Comparați rezultatele celor 3 metode în punctele 0.1, 0.2, 0.3, 0.4, 0.5 între ele și cu valoarea exactă.

Soluţie.
$$y_0 = \alpha$$

 $y_{i+1} = y_i + \frac{h}{2}[f(x_i, y_i) + f(x_{i+1}, y_i + hf(x_i, y_i))]$

x	Euler	Euler mod.	RK4	val.exactă
0.1	0.096312	0.095123	0.0951620	0.095162582
0.2	0.183348	0.181198	0.18126910	0.181269247
0.3	0.262001	0.259085	0.25918158	0.259181779
0.4	0.333079	0.329563	0.32967971	0.329679954
0.5	0.397312	0.393337	0.39346906	0.393469340

Problema 11.0.6 Deduceți metode predictor corector de tip Adams de ordinul 2,3,4.

Soluție. Predictorul cu m pași se generează astfel:

$$y(x_{i+1}) = y(x_i) + \int_{x_i}^{x_{i+1}} f(x, y(x)) dx$$

$$\int_{x_i}^{x_{i+1}} f(x, y(x)) dx = \sum_{k=0}^{m-1} \nabla^k f(x_i, y(x_i)) h(-1)^k \int_0^1 {\binom{-s}{k}} ds + \frac{h^{m+1}}{m!} \int_0^1 s(s+1) \dots (s+m-1) f^{(m)}(\xi_i, y(\xi_i)) ds$$

$$\boxed{\frac{k}{(-1)^k} \int_0^1 {\binom{s}{k}} ds \quad 1 \quad \frac{1}{2} \quad \frac{5}{12} \quad \frac{3}{8} \quad \frac{251}{720} \quad \frac{95}{288}}$$

$$y(x_{i+1}) = y(x_i) + h \left[f(x_i, y(x_i)) + \frac{1}{2} \nabla f(x_i, y(x_i)) + \dots \right] + \frac{5}{12} \nabla^2 f(x_i, y(x_i)) + \frac{3}{8} \nabla^3 f(x_i, y(x_i)) + \dots \right] + h^{m+1} f^{(m)}(\mu_i, y(\mu_i)) (-1)^m \int_0^1 {\binom{-s}{m}} ds$$

Pentru m=2 obţinem

$$y(x_{i+1}) \approx y(x_i) + h \left[f(x_i, y(x_i)) + \frac{1}{2} \nabla f(x_i, y(x_i)) \right] =$$

$$= y(x_i) + h \left[f(x_i, y(x_i)) + \frac{1}{2} (f(x_i, y(x_i)) - f(x_{i-1}, y(x_{i-1}))) \right] =$$

$$= y(x_i) + \frac{h}{2} [3f(x_i, y(x_i)) - f(x_{i-1}, y(x_{i-1}))]$$

$$y_0 = \alpha, \quad y_1 = \alpha_1$$

$$y_{i+1} = y_i + \frac{h}{2} [3f(x_i, y_i) - f(x_{i-1}, y_{i-1})]$$

$$h^3 f''(\mu_i, y(\mu_i)) (-1)^2 \int_0^1 {\binom{-s}{2}} ds = \frac{5}{12} h^3 f''(\mu_i, y(\mu_i))$$

$$f''(\mu_i, y(\mu_i)) = y^{(3)}(\mu_i)$$

$$\tau_{i+1} = \frac{y(x_{i+1}) - y(x_i)}{h} - \frac{1}{2} [3f(x_i, y_i) - f(x_{i-1}, y_{i-1})] =$$

$$=\frac{1}{h}\left[\frac{5}{12}h^3f''(\mu_i,y(\mu_i))\right]=\frac{5}{12}h^2y'''(\mu_i,y(\mu_i))$$

Pentru m=3 avem

$$\begin{split} y(x_{i+1}) &\approx y(x_i) + h \left[f(x_i, y(x_i)) + \frac{1}{2} \nabla f(x_i, y(x_i)) + \frac{5}{12} \nabla^2 f(x_i, y(x_i)) \right] = \\ &= y(x_i) + h \{ f(x_i, y_i) + \frac{1}{2} [f(x_i, y(x_i)) - f(x_{i-1}, y(x_{i-1}))] + \\ &+ \frac{5}{12} [f(x_i, y(x_i)) - 2 f(x_{i-1}, y(x_{i-1})) + f(x_{i-2}, y(x_{i-2}))] \} = \\ &= y(x_i) + \frac{4}{12} [23 f(x_i, y_i) - 16 f(x_{i-1}, y(x_{i-1})) + 5 f(x_{i-2}, y_{i-2})] \\ y_0 &= \alpha, \quad y_1 = \alpha_1, \quad y_2 = \alpha_2 \\ y_{i+1} &= y_i + \frac{h}{12} [23 f(x_i, y_i) - 16 f(x_{i-1}, y_{i-1}) + 5 f(x_{i-2}, y_{i-2})] \\ h^4 f^{(3)}(\mu_i, y(\mu_i)) (-1)^3 \int_0^1 \binom{-s}{3} ds = \frac{3h^4}{8} f^{(3)}(\mu_i, y(\mu_i)) \\ f^{(3)}(\mu_i, y(\mu_i)) &= y^{(4)}(\mu_i) \end{split}$$

$$\tau_{i+1} = \frac{y(x_{i+1}) - y(x_i)}{4} - \frac{1}{12} [23f(x_i, y(x_i)) - hf(x_{i-1}, y(x_{i-1})) + 5f(x_{i-2}, y(x_{i-2}))] = \frac{1}{4} \left[\frac{3h^4}{8} f^{(3)}(\mu_i, y(\mu_i)) \right] = \frac{3h^3}{8} y^{(4)}(\mu_i)$$

Pentru m=4 obţinem

$$y(x_{i+1}) = y(x_i) + h \left[f(x_i, y_i) + \frac{1}{2} \nabla f(x_i, y(x_i)) + \frac{5}{12} \nabla^2 f(x_i, y(x_i)) + \frac{3}{8} \nabla^3 f(x_i, y(x_i)) \right] + \frac{1}{12} \left[f(x_i, y_i) + \frac{1}{2} \left[f(x_i, y_i) - f(x_{i-1}, y_{i-1}) \right] + \frac{5}{12} \left[f(x_i, y_i) - 2f(x_{i-1}, y_{i-1}) + f(x_{i-2}, y_{i-2}) \right] + \frac{3}{8} \left[f(x_i, y_i) - 3f(x_{i-1}, y_{i-1}) + 3f(x_{i-2}, y_{i-2}) - f(x_{i-3}, y_{i-3}) \right] = 0$$

$$= y_i + \frac{h}{24} \left[55f(x_i, y_i) - 55f(x_{i-1}, y_{i-1}) + 37f(x_{i-2}, y_{i-2}) - 9f(x_{i-3}, y_{i-3}) \right]$$

$$h^5 f^{(4)}(\mu_i, y(\mu_i)) (-1)^4 \int_0^1 {\binom{-s}{4}} ds = \frac{251}{720} f^{(4)}(\mu_i, y(\mu_i))$$

$$\tau_{i+1} = \frac{251}{720} f^{(4)} y^{(5)}(\mu_i)$$

Observația 11.0.7 Am integrat polinomul lui Newton cu diferențe regresive cu nodurile

$$(x_i, y(x_i)), (x_{i-1}, y(x_{i-1})), \dots, (x_{i+1-n}, y(x_{i+1-m}))$$

pentru m paşi.

 $Pentru\ corectorul\ cu\ m\ pași\ vom\ folosi\ formula\ lui\ Newton\ cu\ diferențe\ regresive$

$$(x_{i+1}, f(x_{i+1})), (x_i, f(x_i)), \dots, (x_{i-m+1}, f(x_{i-m+1}))$$

$$P_m(x) = \sum_{k=0}^m \binom{s+k-2}{k} \nabla^k f(x_{i+1}, y(x_{i+1}))$$

$$y_{i+1} = y_i + h \sum_{k=0}^m d_k \nabla^k f(x_{i+1}, y(x_{i+1}))$$

$$d_k = \int_0^1 \binom{s+k-2}{k} ds = (-1)^k \int_0^1 \binom{-s+1}{k} ds$$

$$d_0 = 1, \quad d_1 = -\frac{1}{2}, \quad d_2 = -\frac{1}{12}$$

$$d_3 = -\frac{1}{24}, \quad d_4 = -\frac{19}{720}$$

$$s = \frac{x-x_i}{4}$$

$$x = x_i + sh - m \le s \le 0$$

$$x_{i+1} = x_i + h - m + 1 \le s \le 1$$

$$m = 2$$

$$y_{i+1} = y_i + h \left[f(x_{i+1}, y_{i+1}) - \frac{1}{2} \nabla f(x_{i+1}, y_{i+1}) - \frac{1}{12} \nabla^2 f(x_{i+1}, y_{i+1}) \right] = 0$$

$$= y_i + 4 \left\{ f(x_{i+1}, y_{i+1}) - \frac{1}{2} [f(x_{i+1}, y_{i+1}) - f(x_i, y_i)] - \frac{1}{2} [f(x_{i+1}, y_{i+1}) - f(x_i, y_i)]$$

$$\begin{split} -\frac{1}{12}[f(x_{i+1},y_{i+1})-2f(x_i,y_i)+f(x_{i-1},y_{i-1})] \bigg\} = \\ &= y_i + \frac{4}{12}[5f(x_{i+1},y_{i+1})+8f(x_i,y_i)-f(x_{i-1},y_{i-1})] \\ \tau_{i+1} = \frac{y(x_{i+1})-y(x_i)}{h} - \frac{1}{12}[5f(x_{i+1},y_{i+1})+8f(x_i,y_i)-f(x_{i-1},y_{i-1})] = \\ &= \frac{h^4}{3!}\frac{f^{(3)}(\mu_i,y(\mu_i))}{3!}(-1)^3\int_0^1(-s+1)(-s)(-s-1)ds = -\frac{1}{24}h^4y^{(IV)}(\mu_i) \\ & m = 4 \\ y_{i+1} = y_i + h \left[f(x_{i+1},y_{i+1}) - \frac{1}{2}\nabla f(x_{i+1},y_{i+1}) - \frac{1}{2}\nabla f(x_{i+1},y_{i+1}) - \frac{1}{2}\nabla^2 f(x_{i+1},y_{i+1}) - \frac{1}{2}[f(x_{i+1},y_{i+1})-f(x_i,y_i)] - \frac{1}{12}[f(x_{i+1},y_{i+1})-2f(x_i,y_i)+f(x_{i-1},y_{i-1})] - \\ &-\frac{1}{24}[f(x_{i+1},y_{i+1})-3f(x_i,y_i)+3f(x_{i-1},y_{i-1})-f(x_{i-2},y_{i-2})] \bigg\} = \\ &= y_i + \frac{h}{24}[9f(x_{i+1},y_{i+1})+19f(x_i,y_i)-5f(x_{i-1},y_{i-1})+f(x_{i-2},y_{i-2})] \\ &\tau_{i+1} = -\frac{19}{790}y^{(5)}(\mu_i)h^4 \end{split}$$

Problema 11.0.8 Deduceți următoarea formulă predictor-corector

$$y_{i+1}^{(0)} = y_{i-3} + \frac{4h}{3} [2f(x_i, y_i) - f(x_{i-1}, y_{i-1}) + 2f(x_{i-2}, y_{i-2})]$$

$$\tau_{i+1} = \frac{14}{45} h^4 y^{(5)}(\xi_i), \quad \xi_i \in (t_{i-1}, t_{i+1}) \quad (\textit{Milne})$$

$$y_{i+1}^{(c)} = y_{i-1} + \frac{h}{3} [f(x_{i+1}, y_{i+1}^{(p)}) + 4f(x_i, y_i) + f(x_{i-1}, y_{i-1})]$$

$$\tau_{i+1} = -\frac{h^4}{90} y^{(5)}(\xi_i), \quad \xi_i \in (t_{i-1}, t_{i+1}) \quad (\textit{Simpson})$$

Soluție. Corectorul

$$y(x_{i+1}) - y(x_{i-1}) = \int_{x_{i-1}}^{x_{i+1}} f(t, y(t)) dt \simeq$$

$$\simeq \frac{h}{3} [f(x_{i+1}, y_{i+1}) + 4f(x_i, y_i) + f(x_{i-1}, y_{i-1})]$$

$$\tau_{i+1} = -\frac{(b-a)^5}{2880} f^{(IV)}(\xi_i, y(\xi_i)) = -\frac{32h^5}{2880} y^5(\xi_i) = -\frac{h^5}{90} y^{(5)}(\xi_i)$$

Predictorul

$$y(x_{i+1}) - y(x_{i-3}) = \int_{x_{i-3}}^{x_{i+1}} f(t, y(t)) dt =$$

$$= \frac{h}{3} \frac{x_{i+1} - x_{i-3}}{4} [2f(x_{i-2}, y_{i-2}) - f(x_{i-1}, y_{i-1}) + 2f(x_{i-2}, y_{i-2})] =$$

$$= \frac{4h}{3} [2f(x_{i-2}, y_{i-2}) - 4f(x_{i-1}, y_{i-1}) + 2f(x_{i-2}, y_{i-2})]$$

$$\tau_{i+1} = \frac{14h^5}{45} y^{(5)}(\xi_i)$$

Observația 11.0.9 Pentru predictor s-a folosit formula Newton-Cotes deschisă de ordinul II, iar pentru corector formula Newton-Cotes închisă de ordinul II (Simpson).