Non-Linear Devices

Mario Alberto García-Ramíez, PhD

MU-JTSU JI

May 21, 2017

Introduction

Diode

i-v characteristics for the diode

Mathematical model for diode

▶ p-type side: $p_p=10^{17} \text{ holes/cm}^3$ $n_p=10^3 \text{ electrons/cm}^3$

▶ p-type side: $p_p = 10^{17} \text{ holes/cm}^3$ $n_p = 10^3 \text{ electrons/cm}^3$

▶ n-type side: $p_n=10^4$ holes/cm³ $n_n=10^{16}$ electrons/cm³

 $n_p=10^3$ electrons/cm³ $n_p=10^{16}$ electrons/cm³

► A space charge region is where the "combination" between both carriers occurs also known as depleted region o depletion layer.

► A space charge region is where the "combination" between both carriers occurs also known as depleted region o depletion layer.

▶ Space charge, from electromagnetics, is defined as ρ_c (C/cm³), added by an electric field \vec{E} (V/cm) through Gauss law

$$\nabla \cdot \vec{E} = \frac{\rho_c}{\epsilon_s}$$

▶ Space charge, from electromagnetics, is defined as ρ_c (C/cm³), added by an electric field \vec{E} (V/cm) through Gauss law

Figure 3.5 (a) Charge density (C/cm³), (b) electric f eld (V/cm), and (c) electrostatic potential (V) in the space charge region of a pn junction.

▶ Space charge, from electromagnetics, is defined as ρ_c (C/cm³), added by an electric field \vec{E} (V/cm) through Gauss law

- Figure 3.5 (a) Charge density (C/cm³), (b) electric f eld (V/cm), and (c) electrostatic potential (V) in the space charge region of a pn junction.
- ▶ Space Charge Density for a p-type is $-qN_A$ and it goes from the junction at x=0 to $-x_p$ and for n-type is $+qN_D$

▶ Space charge, from electromagnetics, is defined as ρ_c (C/cm³), added by an electric field \vec{E} (V/cm) through Gauss law

- Figure 3.5 (a) Charge density (C/cm³), (b) electric feld (V/cm), and (c) electrostatic potential (V) in the space charge region of a pn junction.
- ▶ Space Charge Density for a p-type is $-qN_A$ and it goes from the junction at x=0 to $-x_p$ and for n-type is $+qN_D$
- As usual, the diode must be neutral, ergo

$$qN_Ax_p = qN_Dx_n$$

▶ The junction potential ϕ_i is present along the pn junction

$$\phi_j = -\int E(x)dx$$

▶ The junction potential ϕ_i is present along the pn junction

$$\phi_j = -\int E(x)dx$$

 $ightharpoonup \phi_j$, is the difference between both potentials for the n & p sides of the diode according to

$$\phi_j = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$$

▶ The junction potential ϕ_i is present along the pn junction

$$\phi_j = -\int E(x)dx$$

 $ightharpoonup \phi_j$, is the difference between both potentials for the n & p sides of the diode according to

$$\phi_j = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right)$$

▶ The total width of the depletion region w_{do} , is defined as:

$$w_{do} = (x_n + x_p) = \sqrt{\frac{2\epsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) \phi_j}$$

Whole you need to know about diodes

Whole you need to know about diodes

Basic knowledge

As usual, everything has a model, even humans, of course for all the wrong things... As for the diode, we model it by using simple, well known and even sexy equations:

$$i_D = I_s \left[\exp\left(\frac{qv_D}{nkT}\right) - 1 \right] = I_s \left[\exp\left(\frac{v_D}{nV_T}\right) - 1 \right]$$

where: I_S = reverse saturation current of diode (A)

T = absolute temperature (K)

 v_D = voltage applied to diode (V)

n =nonideality factor (dimensionless)

q= electronic charge $(1.60 imes 10^{-19} \text{ C})$

 $V_T = k T / q = thermal voltage (V)$

 $k = \text{Boltzmann?s constant } (1.38 \times 10^{-23} \text{ J/K})$

▶ Total current through the diode is i_D & voltage across the terminals is v_D

- ▶ Total current through the diode is i_D & voltage across the terminals is v_D
- ▶ *I_S* is the reverse saturation current

- ▶ Total current through the diode is i_D & voltage across the terminals is v_D
- ▶ *I_S* is the reverse saturation current
- ▶ Saturation current is related to n_i^2

- ► Total current through the diode is i_D & voltage across the terminals is v_D
- ▶ *I_S* is the reverse saturation current
- ▶ Saturation current is related to n_i^2
- It is possible to handle the current that a diode will drive by modifying "n" that is defined as a nonideality factor. Normally n=1 but can be increase to 2 to drive larger currents

- ▶ Total current through the diode is i_D & voltage across the terminals is v_D
- ▶ *I_S* is the reverse saturation current
- ▶ Saturation current is related to n_i^2
- It is possible to handle the current that a diode will drive by modifying "n" that is defined as a nonideality factor. Normally n=1 but can be increase to 2 to drive larger currents
- ▶ By considering n=1, the equation diode can be writen as:

$$i_D = I_S \left[\exp \left(\frac{v_D}{V_T} \right) \right]$$

Diode characteristics: Reverse bias

While bias in reverse bias, a few interesting characteristics occurs. A very small reverse leakage current, approximately equal to I_S , flows through it

The current is quite small, we usually think of the diode as being in the nonconducting or off state when it is reverse-biased

Diode characteristics: Zero bias

It is important to remember that the i-v characteristic of the diode passes through the origin $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

For zero bias with $v_D = 0$, we find $i_D = 0$

Diode characteristics: Forward bias

▶ The diode current grows exponentially with applied voltage for a forward bias greater than approximately $4V_T$

Diode characteristics: Forward bias

▶ The diode current grows exponentially with applied voltage for a forward bias greater than approximately $4V_T$

$$i_D = I_S \left[\exp\left(\frac{v_D}{V_T}\right) - X \right] \approx I_S \exp\left(\frac{v_D}{V_T}\right)$$

Diode characteristics: Forward bias

► The diode current grows exponentially with applied voltage for a forward bias greater than approximately $4V_T$

$$i_D = I_S \left[\exp\left(\frac{v_D}{V_T}\right) - X \right] \approx I_S \exp\left(\frac{v_D}{V_T}\right)$$