Problem Set #4

Math230a: Differential Geometry

Due: October 2

- 1. Let X be a smooth manifold and $f: Y \hookrightarrow X$ an injective immersion. Suppose Z is a smooth manifold, $g: Z \to X$ is a smooth map, and assume that g factors through f: there exists a map (of sets) $h: Z \to Y$ such that $g = f \circ h$. Prove that h is smooth iff h is continuous.
- 2. Let $\mathbb{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}$ denote the division algebra of quaternions. (Recall $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i, ki = -ik = j and real numbers commute with i, j, k.) Let $G \subset \mathbb{H}$ denote the subset of quaternions g = a + bi + cj + dk such that $a^2 + b^2 + c^2 + d^2 = 1$. Topologize \mathbb{H} using the topology of real numbers and give G the induced topology.
 - (a) Prove that G is a Lie group.
 - (b) If $H \subset G$ is a finite subgroup, show that the quotient map $p: G \to G/H$ is a covering map.
 - (c) Identify the Lie algebra \mathfrak{g} with the set of imaginary quaternions $\operatorname{Im} \mathbb{H} = \{q = bi + cj + dk : b, c, d \in \mathbb{R}\}$. Identify the map

$$\varphi \colon G \longrightarrow \operatorname{Aut}(\operatorname{Im} \mathbb{H})$$

 $g \longmapsto (q \mapsto gqg^{-1})$

with the adjoint representation of G. Show that φ maps onto the group SO_3 of rotations in \mathbb{R}^3 and the kernel of φ is cyclic of order two.

- (d) Construct an isomorphism of G with the Lie group SU_2 of 2×2 unitary matrices of unit determinant.
- (e) A 3×3 real matrix always has a fixed line, and if the matrix is orthogonal there is a fixed line that is *pointwise* fixed: the eigenvalue is 1. Show that this is so. Except for the identity matrix I, this line is unique. Show that the map $f \colon SO_3 \setminus \{I\} \to \mathbb{RP}^2$ so defined is a surjective submersion. What is the inverse image of a point? Is f a fiber bundle?
- (f) Do the conjugation classes of SO₃ form a foliation? Identify the diffeomorphism types of the conjugacy classes.
- (g) If $\overline{H} \subset SO_3$ is a finite subgroup, then $H \subset \varphi^{-1}(\overline{H})$ is a finite subgroup of G of twice the order of \overline{H} . Let $P \subset \mathbb{R}^3$ be a finite set of n vectors whose "tips" lie on a regular polygon in $\mathbb{R}^2 \subset \mathbb{R}^3$. What is the finite subgroup of rotations which preserve P? What is its lift to G?
- (h) More interesting is to let I be the set of 12 vectors whose tips lie at the vertices of a regular icosahedron. In this case the quotient space G/H is called the *Poincaré sphere*. Can you compute the order of H?

- 3. Let $\omega \in \Omega^1_{\mathbb{R}}$ be a 1-form on the real line, and suppose G is a Lie group.
 - (a) Prove that locally about any $t \in \mathbb{R}$ there exists a map into G such that the pullback of the Maurer-Cartan form equals ω . Write the first order ordinary differential equation this map satisfies.
 - (b) Do global solutions always exist?
 - (c) Construct an integrable distribution on $\mathbb{R} \times G$ that is transverse to the "vertical" fibers $\{t\} \times G$ and such that leaves of the resulting foliation of $\mathbb{R} \times G$ do not project surjectively onto \mathbb{R} .
- 4. Let G be a Lie group with Maurer-Cartan form θ , and suppose P is a right G-torsor.
 - (a) Compute the pullback of θ under multiplication $m: G \times G \to G$ and under inversion $i: G \to G$.
 - (b) Use your formulas to carry out the computation (7.14) in the notes for an arbitrary Lie group G.
 - (c) Suppose $\xi \in \mathfrak{g}$ is a parallel (left-invariant) vector field. Compute $(R_a)_*\xi$. Is it parallel?
 - (d) Let θ_P be the transport of the Maurer-Cartan form to a \mathfrak{g} -valued 1-form on P. Compute $R_q^*(\theta_P)$, $g \in G$. Compute $\varphi^*(\theta_P)$ for $\varphi \in \operatorname{Aut} P$.
 - (e) An element $\xi \in \mathfrak{g}$ determines a vector field $\hat{\xi} \in \mathfrak{X}(P)$. Review the definition. Compute $(R_g)_*(\hat{\xi})$. Compute $\varphi_*(\hat{\xi})$.
- 5. Let G be a Lie group. Recall that a left G-torsor is a smooth manifold X equipped with a simply transitive left G action. Now we relax to a homogeneous manifold X, which is equipped with a transitive left G-action that is not necessarily simple. For $x \in X$ the stabilizer subgroup $H \subset G$ is a closed Lie subgroup. It is true—and you may want to prove—that G/H has a canonical smooth manifold structure such that the quotient map $G \to G/H$ is a principal H-bundle, i.e., a fiber bundle whose fibers are H-torsors. Accepting this (if you don't prove it), construct a diffeomorphisms $G/H \to X$. The diffeomorphism depends on the basepoint x. If you choose a different basepoint x' can you still construct a diffeomorphism $G/H \to X$, now one that maps the basepoint of G/H (the coset H) to x'? Is it canonical? Explore the fate of parallel vector fields and the Maurer-Cartan form, both on G/H and on X. Are there canonical vector fields? Canonical 1-forms?
- 6. The symplectic group Sp_1 consists of $n \times n$ quaternionic matrices P such that P ${}^t\overline{P}$ is the identity matrix.
 - (a) Identify Sp_1 with the group G in the previous problem.
 - (b) Prove that Sp_n is a compact Lie group.
 - (c) Describe the Lie algebra \mathfrak{sp}_n as a sub Lie algebra of $\mathfrak{gl}_n\mathbb{R}$.
 - (d) Compute $\dim \operatorname{Sp}_n$.
 - (e) Can you recognize the homogeneous manifolds Sp_1/U_1 and Sp_2/Sp_1 ?