Transistores de Efecto de Campo (FET) Dispositivos Electrónicos

Ing. Luis A. Guanuco

Universidad Tecnológica Nacional Facultad Regional Córdoba

26 de agosto de 2024

Tabla de contenidos

- Introducción
 - Clasificación de transistores

- 2 JFET
 - Funcionamiento
 - Polarización
 - Polarizción con divisor de voltaje

Sección 1

Introducción

Introducción

Los transistores BJT son dispositivos controlados por corriente, es decir, la corriente de base controla la cantidad de corriente en el colector. Un *FET* es diferente:

Definición

es un dispositivo controlado por voltaje, donde el voltaje entre dos de las terminales (compuerta y fuente) controla la corriente que circula a través del dispositivo

Luis (UTN FRC)

Tabla de contenidos

- Introducción
 - Clasificación de transistores

- 2 JFET
 - Funcionamiento
 - Polarización
 - Polarizción con divisor de voltaje

Sección 2

JFET

JFET

El JFET (transistor de efecto de campo de unión) es un tipo de FET que opera con una unión PN polarizada en inversa para controlar corriente de un canal. Cada extremo del canal n tiene una terminal; el drenaje se encuentra en el extremo superior y la fuente en el inferior. Se difunden dos regiones tipo p en el material tipo n para formar un canal y ambos tipos de regiones p se conectan a la terminal de la compuerta.

El JFET siempre opera con la unión pn de compuerta-fuente polarizada en inversa. La polarización en inversa de la unión de compuerta-fuente con voltaje negativo en la compuerta produce una región de empobrecimiento a lo largo de la unión pn, la cual se extiende hacia el canal n, y por lo tango, incrementa la resistencia al restringir el ancho del canal.

El ancho del canal y, consecuentemente, su resistencia pueden controlarse variando el voltaje en la compuerta, controlando de esa manera la cantidad de corriente en el drenaje, I_D .

(a) JFET polarizado para conducción

El ancho del canal y, consecuentemente, su resistencia pueden controlarse variando el voltaje en la compuerta, controlando de esa manera la cantidad de corriente en el drenaje, I_D .

(b) Con $V_{\rm GG}$ grande el canal se estrecha (entre las áreas blancas) lo cual incrementa la resistencia

El ancho del canal y, consecuentemente, su resistencia pueden controlarse variando el voltaje en la compuerta, controlando de esa manera la cantidad de corriente en el drenaje, I_D .

(c) Con V_{GG} pequeño el canal se ensancha (entre las áreas blancas) lo cual reduce la resistencia del canal e incrementa la I_D.

JFET: Características

Considere el caso en que el voltaje entre la compuerta y la fuente es cero $(V_{GS}=0\,V)$. A medida que V_{DD} (y por lo tanto V_{DS}) se incrementa a partir de 0V, I_D lo hará proporcionalmente. El comportamiento entre el punto A y B se llama óhmica.

(b) Característica de drenaje

JFET: Características

En el punto B la curva se nivela y entra en la región activa donde I_D se torna esencialmente constante. A medida que V_{DS} se incrementa desde el punto B hasta el punto C, el voltaje de polarización inversa de la compuerta al drenaje (V_{GD}) produce una región de empobrecimiento suficientemente grande para compensar el incremento de V_{DS} , por lo que I_D se mantiene relativamente constante.

JFET: Características

La *ruptura* ocurre en el punto C cuando I_D comienza a incrementarse muy rápido con cualquier incremento adicional de V_{DS} . La ruptura puede dañar irreversiblemente el dispositivo, así que el JFET siempre se opera por debajo de la ruptura y dentro de la región activa.

(b) Característica de drenaje

JEET

JFET: V_{GS} controla a I_D

Sí consideramos un voltaje de polarización para la compuerta-fuente V_{GG} se produce una familia de curvas características del drenaje. Observe que I_D se reduce a medida que se incrementa la magnitud de V_{GS} a valores negativos más grandes debido al estrechamiento del canal.

Pregunta

Considerando la analogía con los BJT, ¿Qué condición llevaría al corte del transistor?

JFET: Voltaje de corte

El JFET debe operar entre $V_{GS}=0V$ y $V_{GS(corte)}$. Con este intervalo de voltaje de compuerta-fuente, I_D varía desde un máximo de I_{DSS} hasta un mínimo de casi cero.

JFET: transferencia universal

Un intervalo de valores de V_{GS} desde cero hasta $V_{GS(corte)}$ controla la cantidad de corriente en el drenaje. Puede relacionarse las tensiones y corrientes a través de la siguiente curva:

JFET: transferencia universal

Una curva de transferencia para un JFET se expresa aproximadamente como:

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_{GS(corte)}} \right)^2 \tag{1}$$

De esta forma I_D puede determinarse para cualquier V_{GS} sí $V_{GS(corte)}$ e I_{DSS} se conocen. Por lo general, estas cantidades se encuentran en las hojas de datos de un JFET dado.

Ejecicio

Sí se especifica una $I_{DSS}=9mA$ y $V_{GS(corte)}=-8V$. Con estos valores, determine la corriente en el drenaje con $V_{GS}=0V$, $V_{GS}=-1V$ y $V_{GS}=-4V$.

Polarización

Al igual que con el BJT, el propósito de la polarización es seleccionar el voltaje en continua para la compuerta-fuente apropiado para establecer un valor deseado de corriente en el drenaje y, por lo consiguiente, un punto Q de trabajo.

La autopolarización es la más común. Recuerde que un JFET debe ser operado de tal forma que la unión compuerta-fuente siempre esté polarizada en inversa. Esta condición requiere un V_{GS} negativo para un JFET de canal n y un V_{GS} positivo para un JFET de canal p.

Para el JFET de canal n de la figura anterior, I_S produce una caída de voltaje a través de R_S que hace a la fuente positiva con respecto a tierra. Puesto que $I_S = I_D$ y $V_G = 0V$, entonces $V_S = I_DR_S$. El voltaje de compuerta-fuente es:

$$V_{GS} = V_G - V_S = 0V - I_D R_S = -I_D R_S V_{GS} = -I_D R_S$$
 (2)

Veamos un ejercicio . . .

Determine V_{DS} y V_{GS} para el siguiente circuito autopolarizado. Considere $I_D=5mA$

Determine V_{DS} y V_{GS} para el siguiente circuito autopolarizado.

Considere
$$I_D = 5mA$$

$$V_S = I_D R_S = 5mA \times 220\Omega = 1.1V \qquad (3)$$

$$V_D = V_{DD} - I_D R_D$$

$$V_D = 15V - (5mA \times 1K\Omega)$$

$$V_D = 15V - 5V = 10V$$
(4)

Por lo tanto,

$$V_{DS} = V_D - V_S = 8.9V$$
 (5)

Y por último,

$$V_{GS} = V_G - V_S = -1.1V$$
 (6)

Autopolarización: Estableciendo el punto Q

El método básico para establecer el punto de polarización de un JFET es determinar I_D para un valor deseado de V_{GS} o viceversa. Luego se calcula el valor requerido de R_S considerando:

$$R_{S} = \left| \frac{V_{GS}}{I_{D}} \right| \tag{7}$$

Para un valor deseado de V_{GS} y I_D se determina en una de dos maneras: con la curva de transferencia para el JFET particular o, de la forma más práctica usando la ecuación vista anteriormente.

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_{GS(corte)}} \right)^2 \tag{8}$$

Autopolarización: Estableciendo el punto Q

Ejemplo

Determine el valor de R_S requerido para autopolarizar un JFET de canal p con valores tomados de la hoja de datos de $I_{DSS}=25mA$ y $V_{GS(corte)}=15V.$ V_{GS} tiene que ser de 5V.

Autopolarización: Estableciendo el punto Q

Ejemplo

Determine el valor de R_S requerido para autopolarizar un JFET de canal pcon valores tomados de la hoja de datos de $I_{DSS} = 25 mA$ y $V_{GS(corte)} = 15V$. V_{GS} tiene que ser de 5V.

Utilizando la ecuación que relaciona los parámetros del JFET y el punto de trabajo de la V_{GS} ,

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_{GS(corte)}} \right)^2$$

$$I_D = 25mA \left(1 - \frac{5V}{15V} \right)^2 = 11,1mA$$
(9)

Ahora, determinamos R_{S} ,

$$R_S = \left| \frac{V_{GS}}{I_D} \right| = \frac{5V}{11,1mA} = 450\Omega \tag{10}$$

La siguiente figura muestra un JFET de canal n con polarización mediante divisor de voltaje. Aquí la condición de polarización debe tener una tensión en la fuente más positiva que el voltaje de la compuerta.

El voltaje de la fuente es,

$$V_S = I_D R_S \tag{11}$$

Los resistores R_1 y R_2 establecen el voltaje de la compuerta como,

$$V_G = \left(\frac{R_2}{R_1 + R_2}\right) V_{DD} \tag{12}$$

La corriente en el drenaje se expresa como,

$$I_{D} = \frac{V_{S}}{R_{S}} = \frac{V_{G} - V_{GS}}{R_{S}}$$
 (13)

Ejemplo

Determine I_D y V_{GS} para el siguiente circuito donde los valores de parámetro son tales que $V_D = 7V$.

Ejemplo

Determine I_D y V_{GS} para el siguiente circuito donde los valores de parámetro son tales que $V_D = 7V$.

$$I_D = \frac{V_{DD} - V_D}{R_D} = \frac{5V}{3,3K\Omega} = 1,52mA$$
 (14)

El voltaje de compuerta-fuente:

$$V_S = I_D R_S = 1,52 \text{mA} \times 2,2 \text{K}\Omega = 3,34 \text{V}$$
 (15)

Ejemplo

Determine I_D y V_{GS} para el siguiente circuito donde los valores de parámetro son tales que $V_D = 7V$.

$$V_G = \left(\frac{R_2}{R_1 + R_2}\right) V_{DD}$$

$$V_G = \left(\frac{1M\Omega}{7.8M\Omega}\right) \times 12V = 1.54V$$
(14)

Entonces,

$$V_{GS} = V_G - V_S = 1,54V - 3,34V = -1,8V$$
 (15)

化口片 化氢化 化氢化 化氢

Ejemplo

Determine I_D y V_{GS} para el siguiente circuito donde los valores de parámetro son tales que $V_D = 7V$.

Si no se hubiera dado V_D en este ejemplo, los valores del punto Q no se hubieran podido determinar sin la curva de transferencia.