Планарные графы.

Определение. Граф называется *планарным*, если существует изоморфный ему плоский граф.

Определение. Граф G=(V, E) называется двудольным, если существуют множества вершин U и W, такие что:

- 1. $V = U \cup W$, $U \cap W = \emptyset$;
- 2. ребро $(u, w) \notin E$, если вершины u и w лежат в одном множестве. Обозначается G=(U, W; E).

Определение. Полный граф K_n — это граф с n вершинами, любые две из которых соединены ребром. Полный двудольный граф $K_{n,m}$ — это двудольный граф G=(U, W, E), у которого |U|=n, |W|=m и $E=\{(u,w)/u\in U,w\in W\}$.

Пример. Графы K_4 и $K_{3,2}$ — планарные графы.

Утверждение. Графы K_5 и $K_{3,3}$ — непланарные графы. Доказательство.

- I. В графе K_5 10 ребер, а для любого плоского графа количество рёбер не превосходит 3n-6=9 рёбер.
- II. Граф $K_{3,3}$ не содержит циклов длины 3. Если это планарный граф, то количество его рёбер не может превосходить 2n-4=8. Но у $K_{3,3}$ 9 рёбер.

Утверждение. Подграф планарного графа тоже планарный граф.

Следствие. Планарный граф не содержит подграфов изоморфных K_5 и $K_{3,3}$.

Определение. Будем говорить, что граф $G_1=(V_1,E_1)$ получен из графа G=(V,E) с помощью *операции разбиения ребра* e=(u,v), если $V_1=V\cup\{v_e\}$ и $E_1=(E\setminus\{e\})\cup\{(u,v_e),(v_e,v)\}$.

Пример.

Определение. Два графа называются гомеоморфными, если могут быть получены из одного и того же графа с помощью операций разбиения ребра.

Теорема. (Критерий планарности Понтрягина-Куратовского) Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных графам K_5 и $K_{3,3}$.

Двудольные графы.

Пример. (Задача о назначении) Пусть U — работники, W — работы, а множество E указывает, какие работы может выполнять каждый из работников. Какое наибольшее количество работ можно выполнить одновременно.

Граф, соответствующий этой задаче, является двудольным.

Теорема. Граф является двудольным, если и только если нет циклов нечетной длины.

Доказательство. (⇒) Очевидно.

(\Leftarrow) Можно считать, что граф G=(V, E) связный. Разобьем множество вершин графа на подмножества X_i с помощью следующей рекуррентной процедуры.

$$X_0 = \{v_0\};$$

$$X_{i} = \left\{ u \in V \setminus \bigcup_{k=0}^{i-1} X_{i} \middle| \exists v \in X_{i-1}((u,v) \in E) \right\}.$$

Положим $U = X_0 \cup X_2 \cup X_4 \cup \dots$ и $W = X_1 \cup X_3 \cup X_5 \cup \dots$

Пусть существует ребро e=(w,v) такое, что его концы принадлежат одной доле. Тогда $v \in X_k$ и $w \in X_{k'}$ для некоторых номеров k и k' таких, что k'-k — чётное число. Рассмотрим пути v_0 в вершины w и v.

Они порождают цикл v_i , v_{i+1} ,...,v,w,..., v'_{i+1} , v_i нечётной длины.

Следствие. Деревья и четные циклы являются двудольными графами, а нечетные циклы — нет.

Определение. *Парасочетанием* называется подграф, у которого степень любой вершины равна 1.

Часто парасочетанием называют только множество ребер такого подграфа.

Определение. Парасочетание называется совершенным, если оно накрывает все вершины графа.

Определение. Обозначим $\pi(G)$ обозначим мощность наибольшего паросочетания в G.

Очевидно, что любое совершенное парасочетание максимально. Обратное утверждение не верно.

Пример.

К задаче выбора максимального парасочетания в двудольном графе сводится целое семейство задач дискретной математики.

Определение. Множество V_1 вершин из V(G) называется вершинным покрытием графа G, если для любого ребра $e \in E(G)$ хотя бы один из его концов лежит в V_1 . Мощность наименьшего вершинного покрытия графа G обозначим через $\tau(G)$.

Пример.
$$\pi(K_{10}) = 5$$
, $\tau(K_{10}) = 9$; $\pi(C_5) = 2$, $\tau(C_5) = 3$.

Утверждение. $\pi(G) \le \tau(G)$ для любого графа G. Доказательство. Для покрытия ребер произвольного паросочетания M уже требуется |M| вершин.

Из приведенного выше примера следует, что данное неравенство иногда бывает строгим.

Теорема Кёнига. Для любого двудольного графа G $\pi(G) = \tau(G)$. Докажем, что $\pi(G) \ge \tau(G)$.

Назовем путь P чередующимся относительно паросочетания M, если из двух любых последовательных ребер в P одно ребро принадлежит M. Рассмотрим максимальное парасочетание M в графе G=(U, W, E) и построим множество вершин T по следующему правилу.

Для любого ребра $(u,w) \in M$, где $u \in U$, $w \in W$, включаем в T вершину w, если существует чередующийся путь u,w,...,u' такой, что вершина $u' \in U$ не покрыта паросочетанием M; в противном случае включаем в T вершину u.

Если T — вершинное покрытие то, $\pi(G) = |M| = |T| \ge \tau(G)$.

Покажем, что T накрывает все ребра графа. Пусть это не так и ребро $e=(u,w)\in E\backslash M$ не инцидентно вершинам из T. Из максимальности M следует, что по меньшей мере одна из вершин u и w инцидентна ребру из M. Если u не инцидентна ребру из M, то существует ребро $(w,u_1)\in M$. Но тогда из его концов в T выбрана вершина w, ввиду наличия тривиального чередующегося пути u_1, w, u .

Будем считать, что существует ребро $e_1=(u, w_1)\in M$ и из него выбрана вершина w_1 . Но это возможно, если существует чередующийся путь $P=w_1,...,u_2$, причем вершина u_2 не инцидентна рёбрам из M. Если вершина w также не инцидентна ребрам из M, то парасочетание M можно увеличить.

И, наконец, если существует ребро $(u_3, w) \in M$, то $w \in T$, так как существует чередующийся путь $P = u_3, w, u, w_1, \dots, u_2$

Определение. Для двудольного графа G=(U,W,E) и любого $U'\subseteq U$ через N(U') обозначим множество вершин из W, смежных с вершинами из U'.

Теорема (теорема Кёнига-Холла). В двудольном графе G=(U,W;E) существует паросочетание, покрывающее U, тогда и только тогда когда для любого $U' \subseteq U$ выполнено неравенство $|N(U')| \ge |U'|$.

Доказательство. (⇒) Очевидно.

(\Leftarrow) Пусть M — наибольшее паросочетание, а T — наименьшее вершинное покрытие в G=(U,W,E). Поскольку все рёбра, инцидентные $U \setminus T$ накрываются вершинами из множества T, то $N(U \setminus T) \subseteq T \cap W$ и $|N(U \setminus T)| \le |T \cap W|$.

По условию $|U \setminus T| \le |N(U \setminus T)|$ и, следовательно, $|T \cap W| \ge |U \setminus T| = |U \setminus (T \cap U)| = |U| - |T \cap U|$.

Поскольку по теореме Кёнига |T|=|M|, то из этого неравенства получаем $|U| \le |T \cap U| + |T \cap W| = |T| = |M|$.

Но с другой стороны в двудольном графе $|M| \le \min\{U|, |W|\}$ и, следовательно, |U| = |M| и все вершины из U накрываются парасочетанием M.

Определение. Системой различных представителей для набора множеств $\{A_1, A_2, ..., A_k\}$ называется такой набор $\{a_1, a_2, ..., a_k\}$ элементов множества $\bigcup_{i=1}^k A_i$, что $a_i \in A_i$ для любого i и все a_i различны.

Теорема Холла. Пусть $\{A_1, A_2, ..., A_k\}$ система подмножеств множества Ω . Система различных представителей для набора $\{A_1, A_2, ..., A_k\}$ существует тогда и только тогда, когда для любого $I \subseteq \{1, 2, ..., k\}$

$$\left| \bigcup_{i \in I}^{k} A_i \right| \ge \left| I \right|.$$

Доказательство. Построим двудольный граф G=(U,W;E), в котором W= Ω , $U=\{A_1, A_2, ..., A_k\}$ и $E=\{(A_i, \sigma) | \sigma \in A_i\}$. Системе представителей множества $\{A_1, A_2, ..., A_k\}$ соответствует парасочетание графа G, накрывающее долю U. Применив теорему Кёнига-Холла к построенному графу, получим необходимое неравенство.

Определение. Граф называется однородным, если степени всех вершин равны.

Следствие теоремы Кёнига-Холла. Любой однородный двудольный граф имеет совершенное парасочетание.

Доказательство. Пусть граф G=(U,W;E) однородный степени k. Тогда из любого $U'\subseteq U$ выходит k|U'| ребер, но в каждую вершину из N(U') входит не более чем k из этих ребер. Поэтому $k|U'| \le \sum_{v \in N(U')} d(v) = k|N(U')|$, и по теореме

Кёнига-Холла существует парасочетание, накрывающее U. Поскольку |U|=|W|, то это же парасочетание накрывает и множество W.

Теорема. Любой двудольный граф имеет парасочетание накрывающее все вершины максимальной степени.

Доказательство. Пусть это не так и существует граф с максимальной степенью вершины равной k, для которого нет парасочетания, накрывающего все вершины максимальной степени. Пусть граф G=(U,W;E) контрпример, для которого минимальная степень вершины t(G) максимальна. По предыдущему следствию t(G) < k.

Возьмем две непересекающиеся копии $G^{(1)}$ и $G^{(2)}$ графа G и построим граф

 G_1 =(U_1 , W_1 ; E_1) следующим образом.

 $U_1 = U^{(1)} \cup W^{(2)}$, $W_1 = U^{(2)} \cup W^{(1)}$. Множество E состоит из всех ребер графов $G^{(1)}$ и $G^{(2)}$ и ребер парасочетания, соединяющего одноименные ребра немаксимальной степени из различных графов.

Очевидно что $t(G) < t(G_1)$ и ,следовательно, в нем существует искомое парасочетание P. Но степень максимальных вершин гра-

фа G не изменилась. Сужение P на $G^{(1)}$ дает искомое парасочетание графа G. Противоречие.