Stratified Importance Sampling for Bernoulli Mixture Model of Portfolio Credit Risk

Sunggon Kim

University of Seoul

May 28th,2021

Overview

- Introduction
- Bernoulli mixture model for dependent defaults of obligors
- The proposed scheme
- Mumerical Results
- Conclusion

Introduction

Credit Portfolio

- We consider a credit portfolio consisting of m obligors whose defaults during a fixed time interval [0,T] are dependent.
- The default probability of obligor j is \bar{p}_j , $j=1,2,\ldots,m$.
- The exposure at the default of obligor j is c_j , $j=1,2,\ldots,m$.
- Let Y_j , $j=1,2,\ldots,m$, be the default indicator of obligor j in time interval [0,T], i.e.

$$Y_j = \begin{cases} 1, & \text{obligor } j \text{ defaults in } [0, T], \\ 0, & \text{obligor } j \text{ does not default in } [0, T]. \end{cases}$$

- We call $Y = (Y_1, Y_2, \dots, Y_m)$ the default vector.
- The sample space of Y is $\{0,1\}^m$, which is denoted by \mathcal{Y} .

Loss of the credit porfolio and tail loss probability

ullet The loss of the portfolio in time interval [0,T] is given by

$$L(\mathbf{Y}) = \sum_{j=1}^{m} c_j Y_j, \quad \mathbf{Y} \in \mathcal{Y}.$$
 (1)

• For a large value of x > 0, the tail loss probability over the theshold x is defined as

$$\theta = \Pr\{L(\boldsymbol{Y}) > x\} \tag{2}$$

• We propose an importance sampling scheme to estimate θ under the Bernoulli mixture of model for the dependence of Y_1, \ldots, Y_m .

Bernoulli mixture model for dependent defaults of obligors

Bernoulli mixture model

- The dependency of default events is modeled by introducing a number of d common factors $\Psi = (\Psi_1, \dots, \Psi_d) \in \mathbb{R}^d$.
- ullet When the value of $\Psi=\psi$ is given,
 - Default indicators Y_1, \ldots, Y_m are conditionally independent.
 - ullet The conditional default probability of obligor j is determined by $\psi.$
- Let $p_j(\psi)$ be the conditional default probability of obligor j. Then, the conditional joint pmf of the default vector \boldsymbol{Y} given $\boldsymbol{\Psi} = \boldsymbol{\psi}$ is as follows: for $\boldsymbol{y} = (y_1, \dots, y_m) \in \mathcal{Y}$,

$$p(\mathbf{y}|\mathbf{\psi}) = \prod_{j=1}^{m} p_j(\mathbf{\psi})^{y_j} (1 - p_j(\mathbf{\psi}))^{1 - y_j}.$$
 (3)

Nominal probability measure

- ullet Let $\mathcal{S}=\mathbb{R}^d imes\mathcal{Y}$ be the sample space of $(oldsymbol{\Psi},oldsymbol{Y}).$
- Define $\mathbb P$ as the probability measure on $\mathcal S$ induced from the pdf $f(\pmb \psi; \pmb \mu)$ of $\pmb \Psi$ and the conditional pmf $p(\pmb y|\pmb \psi)$ of $\pmb Y$ given $\pmb \Psi = \pmb \psi$.
- We call $\mathbb P$ the nominal probability measure.
- For an event A depending on (Ψ, Y) , we denote by $\mathbb{P}(A)$ the probability of the occurrence of the event A.
- Let $E_{\mathbb{P}}[h(\Psi, Y)]$ be the expectation of $h(\Psi, Y)$ for a real valued function $h(\psi, y)$ under the probability measure \mathbb{P} .
- Let L be the abbreviation of L(Y). Then,

$$\theta = \mathbb{P}(L > x).$$

The proposed scheme

Stratifying the sample space

- Without loss of generality, we assume that c_1, \ldots, c_m are in their descending order.
- ullet We stratify the sample space ${\mathcal S}$ according to the defaults of the first K obligors.
- $m{\circ}$ \mathcal{S} is stratified into the strata $\{\mathcal{S}_{m{h}}=\mathbb{R}^d imes\mathcal{Y}_{m{h}},m{h}\in\{0,1\}^K\}$, where

$$\mathcal{Y}_{h} = h \times \{0, 1\}^{m - K}, \quad h \in \{0, 1\}^{K}.$$
 (4)

- We call S_h the stratum h, $h \in \{0,1\}^K$.
- Let $\bar{p}_h = \mathbb{P}((\Psi, Y) \in \mathcal{S}_h) (= \mathbb{P}(Y \in \mathcal{Y}_h)), h \in \{0, 1\}^K$.

The norminal probability measure on \mathcal{S}_h

- ullet We denote by $f_{m{h}}(m{\psi})$ the conditional pdf of $m{\Psi}$ given $m{Y} \in \mathcal{Y}_{m{h}}$.
- ullet From the Bayes' theorem, we have that for $oldsymbol{h} \in \{0,1\}^K$,

$$f_{\mathbf{h}}(\boldsymbol{\psi};\boldsymbol{\mu}) = \frac{f(\boldsymbol{\psi};\boldsymbol{\mu}) \prod_{j=1}^{K} p_{j}(\boldsymbol{\psi})^{h_{j}} (1 - p_{j}(\boldsymbol{\psi}))^{1 - h_{j}}}{\bar{p}_{\mathbf{h}}}, \quad \boldsymbol{\psi} \in \mathbb{R}^{d}. \quad (5)$$

• Since Y_1,Y_2,\ldots,Y_m are independent given $\Psi=\psi$, the conditional pmf of Y given $\Psi=\psi$ and $Y\in\mathcal{Y}_h$ is given by

$$p_{h}(y|\psi) = \prod_{j=K+1}^{m} p_{j}(\psi)^{y_{j}} (1 - p_{j}(\psi))^{1-y_{j}}, \quad y \in \mathcal{Y}_{h}.$$
 (6)

- Let \mathbb{P}_h be the probability measure on stratum h induced by the pdf $f_h(\psi)$ of Ψ and the conditional pmf $p_h(y|\psi)$ of Y given $\Psi = \psi$.
- ullet Then, \mathbb{P}_h is the conditional probability measure of \mathbb{P} given $(\Psi,Y)\in$ stratum h.

A representation of θ in terms of \mathbb{P}_h

ullet The tail loss probability over the threshold x is represented as

$$\theta = \sum_{\boldsymbol{h} \in \{0,1\}^K} \bar{p}_{\boldsymbol{h}} \mathbb{P}_{\boldsymbol{h}}(L > x)$$

$$= \sum_{\boldsymbol{h} \in \{0,1\}^K} \bar{p}_{\boldsymbol{h}} E_{\mathbb{P}_{\boldsymbol{h}}}[I(L > x)].$$
(7)

Importance distributions on each stratum

- Let $g_{\boldsymbol{h}}(\boldsymbol{\psi})$, $\boldsymbol{h} \in \{0,1\}^K$, be an importance pdf of $\boldsymbol{\Psi}$ in stratum \boldsymbol{h} .
- Let $q_{h,j}(\psi)$, $j=K+1,\ldots,m$, be an conditional importance default probability of obligor j given $\Psi=\psi$ in stratum h.
- Then, the conditional importance pmf $q_h(y|\psi)$ of Y given $\Psi = \psi$ in stratum \mathcal{S}_h has the following form:

$$q_{\mathbf{h}}(\mathbf{y}|\mathbf{\psi}) = \prod_{j=K+1}^{m} q_{h,j}(\mathbf{\psi})^{y_j} (1 - q_{h,j}(\mathbf{\psi}))^{1-y_j}, \quad \mathbf{y} \in \mathcal{Y}_{\mathbf{h}}.$$
(8)

• We define \mathbb{Q}_h , $h \in \{0,1\}^K$, as the probability measure on stratum \mathcal{S}_h induced by the pdf $g_h(\psi)$ of Ψ and the conditional pmf $q_h(y|\psi)$ of Y given $\Psi = \psi$.

A representation of θ in terms of \mathbb{Q}_h

ullet The likelihood ratio of an event (ψ,y) on $\mathcal{S}_{m{h}}$ is

$$w_{h}(\psi, y) = \frac{f_{h}(\psi; \mu)p_{h}(y|\psi)}{g_{h}(\psi)q_{h}(y|\psi)}, \quad (\psi, y) \in \mathcal{S}_{h}.$$
 (9)

Then, it follows that

$$E_{\mathbb{P}_{\boldsymbol{h}}}[I(L>x)] = E_{\mathbb{Q}_{\boldsymbol{h}}}[w_{\boldsymbol{h}}(\boldsymbol{\Psi},\boldsymbol{Y})I(L>x)], \quad \boldsymbol{h} \in \{0,1\}^K, \quad (10)$$

• By applying Eq. (10) to Eq. (7), we have that

$$\theta = \sum_{\boldsymbol{h} \in \{0,1\}^K} \bar{p}_{\boldsymbol{h}} E_{\mathbb{P}_{\boldsymbol{h}}} [I(L > x)]$$

$$= \sum_{\boldsymbol{h} \in \{0,1\}^K} \bar{p}_{\boldsymbol{h}} E_{\mathbb{Q}_{\boldsymbol{h}}} [w_{\boldsymbol{h}}(\boldsymbol{\Psi}, \boldsymbol{Y}) I(L > x)].$$
(11)

Stratifed importance sampling estimation of the tail loss probability

- Suppose that we have a number of n_h random samples $\Psi^{(h,1)}, \dots, \Psi^{(h,n_h)}$ from the pdf $g_h(\psi)$ for each $h \in \{0,1\}^K$.
- For each $\Psi^{(h,i)}$, we also have a sample $Y^{(h,i)} \in \mathcal{Y}_h$ from the conditional pmf $q_h(y|\Psi^{(h,i)})$.
- ullet An unbiased estimator of heta is given by

$$\hat{\theta} = \sum_{h \in \{0,1\}^K} \frac{\bar{p}_h}{n_h} \sum_{i=1}^{n_h} w_h(\mathbf{\Psi}^{(h,i)}, \mathbf{Y}^{(h,i)}) I(L^{(h,i)} > x), \quad (12)$$

where $L^{(\boldsymbol{h},i)} = L(\boldsymbol{Y}^{(\boldsymbol{h},i)})$.

Neymann allocation

• Let $\sigma_{\pmb{h}}^2 = V_{\mathbb{Q}_{\pmb{h}}}[w_{\pmb{h}}(\pmb{\Psi}, \pmb{Y})I(L>x)]$, $\pmb{h} \in \{0,1\}^K$. Then, the variance of the estimator $\hat{\theta}$ is given by

$$V[\hat{\theta}] = \sum_{\boldsymbol{h} \in \{0,1\}^K} \frac{\bar{p}_{\boldsymbol{h}}^2 \sigma_{\boldsymbol{h}}^2}{n_{\boldsymbol{h}}}.$$
 (13)

• The Neymann allocation minimizes $V[\hat{\theta}]$, i.e. when the sum of n_h 's are given to be n, the optimal value of n_h is

$$n_{\mathbf{h}} = n \frac{p_{\mathbf{h}} \sigma_{\mathbf{h}}}{\sum_{\mathbf{h} \in \{0,1\}^K} \bar{p}_{\mathbf{h}} \sigma_{\mathbf{h}}}, \quad \in \{0,1\}^K.$$
 (14)

• In order to allocate the number of samples to each of the stata according to the Neymann allocation, we need to compute the value of σ_h , which is not an easy task. Instead, we estimate it by a pilot simulation.

Exponential twisting to choose the optimal conditional pmf of $oldsymbol{Y}$ given $oldsymbol{\Psi}$

• For j>K and $\psi\in\mathbb{R}^d$, we let $q_j(t,\psi)$ be the exponentially twisted default probability of $p_j(\boldsymbol{y}|\psi)$, i.e.

$$q_j(t, \boldsymbol{\psi}) = \frac{p_j(\boldsymbol{\psi}) \exp(c_j t)}{1 - p_j(\boldsymbol{\psi}) + p_j(\boldsymbol{\psi}) \exp(c_j t)}, \quad t \ge 0,$$
 (15)

where t is the parameter of the twisting.

• An asymptotically optimal value of t is as follows (Glassermann and Li (2005)): if $x>E_{\mathbb{P}_h}[L|\psi]$,

$$t_{\boldsymbol{h}}(\boldsymbol{\psi}) = \text{the solution of } \boldsymbol{h} \cdot (c_1, \dots, c_K) + \sum_{j=K+1}^m c_j q_j(t, \boldsymbol{\psi}) = x,$$

otherwise, $t_h(\psi) = 0$.

Cross entropy method to choose the optimal pdf of Ψ

• The zero variance pdf of Ψ on \mathcal{S}_h is proportional to

$$E_{\mathbb{P}_{h}}[I(L>y)|\boldsymbol{\psi}]f_{h}(\boldsymbol{\psi};\boldsymbol{\mu}).$$

ullet We confine the parametric family of the importance pdf of Ψ to

$$\mathcal{F} = \{ f(\boldsymbol{\psi}; \boldsymbol{\nu}) \}.$$

• The optimal value of ν in stratum h can be found by solving the following maximization problem (Chan and Kroese (2010)):

$$\nu_{h}^{*} = \underset{\nu}{\operatorname{argmax}} \int E_{\mathbb{P}_{h}}[I(L>y)|\psi] \log f(\psi;\nu) f_{h}(\psi;\mu) d\psi, \quad (16)$$

or equivalently,

$$\nu_{h}^{*} = \underset{\nu}{\operatorname{argmax}} \int E_{\mathbb{Q}_{h}} \left[\frac{p_{h}(Y|\psi)}{q_{h}(Y|\psi)} I(L > y) |\psi \right] \log f(\psi; \nu) f_{h}(\psi; \mu) d\psi,$$
(17)

• Suppose that we have samples $(\Psi^{(1)}, Y^{(1)}), \ldots, (\Psi^{(M)}, Y^{(M)})$ in stratum h from the distribution $f_h(\psi; \mu)q_h(y|\psi)$. Then, the stochastic optimization problem corresponding to Eq. (17) is that

$$\nu_{h}^{*} = \underset{\nu}{\operatorname{argmax}} \frac{1}{M} \sum_{i=1}^{M} \frac{p_{h}(\mathbf{Y}^{(i)}|\mathbf{\Psi}^{(i)})}{q_{h}(\mathbf{Y}^{(i)}|\mathbf{\Psi}^{(i)})} I(L^{(i)} > x) \log f(\mathbf{\Psi}^{(i)}; \nu). \quad (18)$$

Numerical Results

Simlulation setting

- The number of obligors, m, are set to be 10^3 .
- The marginal default probabilies $\bar{p}_1, \dots, \bar{p}_m$ are generated m independently from the uniform distribution on [0, 0.02].
- Two sets of exposures with different tail behavior are used.
 - Case 1 exposures was generated from the Pareto distribution with shape parameter 0.8.
 - Case 2 exposures was generated from the Pareto distribution with shape parameter 1.2.
- \bullet For simplicity, the factor variable Ψ follows the standard normal distribution N(0,1).
- For the mixing distribution, we consider the probit-normal distribution, i.e. given $\Psi=\psi$, the conditional default probability $p_j(\psi)$ of obligor j has the following form:

$$p_j(\psi) = \Phi(a_j\psi + b_j) \quad j = 1, \dots, m, \tag{19}$$

where Φ is the c.d.f. of the standard normal.

For the simulations with the case 1 exposures, we set

$$(a_1, a_2, \dots, a_{m-1}, a_m) = (0.5, -3, 0.5, -3, \dots, 0.5, -3),$$
 (20)

and for the simulations with the case 2 exposures, we set

$$(a_1, a_2, \dots, a_{m-1}, a_m) = (1, -1.2, 1, -1.2, \dots, 1, -1.2).$$
 (21)

- By setting $b_j=\sqrt{1+a_j^2\Phi^{-1}(\bar{p}_j)},\ j=1,\ldots,m,$ the default probability of the obligor j is equal to is \bar{p}_j
- We estimate the tail loss propoability using the following simulation scheme:
 - Crude Monte Carlo simulation (CMC)
 - Two-step importance sampling (CE-ET): the same simulation scheme as the proposed scheme, but in this scheme the sample space is not stratified.
 - The proposed scheme (SCE-ET)

Estimated tail loss probability over various thresholds

Table: Estimated tail loss probabilties for various values of thresholds

	$\alpha =$	= 0.8	$\alpha = 1.2$		
k	threshold	$\hat{ heta}$	threshold	$\hat{ heta}$	
1	11137.59	$1.16 \cdot 10^{-2}$	587.68	$1.31 \cdot 10^{-2}$	
2	12681.42	$4.53 \cdot 10^{-3}$	881.52	$4.54 \cdot 10^{-3}$	
3	14114.97	$1.43 \cdot 10^{-3}$	1175.37	$1.58 \cdot 10^{-3}$	
4	14886.88	$5.66 \cdot 10^{-4}$	1469.21	$4.73 \cdot 10^{-4}$	
5	15658.80	$1.61 \cdot 10^{-4}$	1763.05	$1.03 \cdot 10^{-4}$	

- For each estimation of θ , we generated $n=10^6$ number of $(\Psi, Y)'s$.
- $\hat{\theta}$ is the one estimated by SCE-ET.

Standard errors of the estimations and their time-variance measure for the set of $\alpha=0.8$

	s.e			time*variance		
k	CMC	CE-ET	SCE-ET	CMC	CE-ET	SCE-ET
1	$1.06 \cdot 10^{-4}$	$2.30 \cdot 10^{-5}$	$1.57 \cdot 10^{-5}$	$1.21 \cdot 10^{-6}$	$2.73 \cdot 10^{-7}$	$4.81 \cdot 10^{-8}$
2	$6.73 \cdot 10^{-5}$	$1.10 \cdot 10^{-5}$	$6.59 \cdot 10^{-6}$	$4.65 \cdot 10^{-7}$	$5.20 \cdot 10^{-8}$	$2.06 \cdot 10^{-8}$
3	$3.81 \cdot 10^{-5}$	$3.59 \cdot 10^{-6}$	$1.62 \cdot 10^{-6}$	$1.46 \cdot 10^{-7}$	$6.58 \cdot 10^{-9}$	$1.44 \cdot 10^{-9}$
4	$2.25 \cdot 10^{-5}$	$9.55 \cdot 10^{-7}$	$1.08 \cdot 10^{-6}$	$5.08 \cdot 10^{-8}$	$5.78 \cdot 10^{-10}$	$9.02 \cdot 10^{-10}$
5	$1.33 \cdot 10^{-5}$	$3.79 \cdot 10^{-7}$	$2.24 \cdot 10^{-7}$	$1.77 \cdot 10^{-8}$	$9.04 \cdot 10^{-11}$	$3.91 \cdot 10^{-11}$

- The time*variances of CE-ET and SCE-ET are about $10\ {\rm to}\ 10^3$ times less than those of CMC.
- \bullet CE-ET and SCE-ET are about 10 to 10^3 times faster than CMC in terms of simulation time to obtain the same estimation error.
- SCE-ET is about 2 to 5 times faster than CE-ET except the case of threshold being equal to x_4 .

Standard errors of the estimations and their time-variance measure for the set of $\alpha=1.2$

k	s.e			time*variance		
	CMC	CE-ET	SCE-ET	CMC	CE-ET	SCE-ET
	$1.12 \cdot 10^{-4}$				$3.58 \cdot 10^{-7}$	$2.13 \cdot 10^{-7}$
2	$6.72 \cdot 10^{-5}$	$1.26 \cdot 10^{-5}$	$6.68 \cdot 10^{-6}$	$4.52 \cdot 10^{-7}$	$5.95 \cdot 10^{-8}$	$2.18 \cdot 10^{-8}$
3	$4.00 \cdot 10^{-5}$	$4.94 \cdot 10^{-6}$	$2.33 \cdot 10^{-6}$	$1.60 \cdot 10^{-7}$	$9.36 \cdot 10^{-9}$	$2.60 \cdot 10^{-9}$
4	$2.19 \cdot 10^{-5}$	$1.75 \cdot 10^{-6}$	$5.31 \cdot 10^{-7}$	$4.83 \cdot 10^{-8}$	$1.14 \cdot 10^{-9}$	$1.20 \cdot 10^{-10}$
5	$1.05 \cdot 10^{-5}$	$4.15 \cdot 10^{-7}$	$1.12 \cdot 10^{-7}$	$1.11 \cdot 10^{-8}$	$6.14 \cdot 10^{-11}$	$5.49 \cdot 10^{-12}$

- The simulation with exposures of $\alpha=1.2$ shows the similar behavior of the time*variance to the simulation with exposures of $\alpha=0.8$
- \bullet CE-ET and SCE-ET have about 10 to 10^4 times less time*variances compared to CMC.
- SCE-ET method shows the better performance than CE-EC for all thresholds.

Conclusion

Conclusion

- We proposed an importance sampling scheme to estimate the tail loss probability over a threshold.
- In the proposed scheme, the sample space of the factor variables and the default vectors is stratified according to the defaults of some obligors with heavy exposures.
- We proposed to find the optimal importance distribution of the factor variables and the conditional default probabilities of obligors on each stratum of the sample space.
- Numerical study shows that the proposed scheme is efficient compared to the existing methods.

