

Python Tsunami

Part 1: Intro to Python by HeaDS

Who are we?

Who are we

Center for Health Data Science (HeaDS)

- The Data Lab
 - Provides data science support for all research groups at SUND
 - Organizes workshops/seminars

- Research Units
 - work on different areas and topics within the field of health data science

Who are we

Center for Health Data Science (HeaDS)

- Upcoming events:
 - RNAseq workshop: 18/19 August 2022
 - GDPR course: 20/21 September 2022
 - Excel to R: 11/12 October 2022

Originally developed at the Center for Protein Research (CPR) by:

- Alberto Santos Delgardo (University of Oxford)
- Henry Webel (NNF CPR)
- Annelaura Bach Nielsen (NNF CPR)
- Rita Colaço (PRI)

We say thank you for the course material (which we have adapted).

Your teachers:

Jose Alejandro Herrera Romero -Alex (HeaDS)

Rita Colaço (PRI)

Inigo Prada Luengo (HeaDS)

Tugce Karaderi (HeaDS)

Viktoria Schuster (HeaDS)

Henrike Zschach (HeaDS)

	PROGRAM - Python Tsuna	mi Part I
DAY 1 - Mon 20th of June		DAY 2 - Tue 21st of June
08:30 - 08:45	Morning coffee (optional)	
08:45 - 09:05	Introduction and Motivation	Libraries, Objects, References
09:05 - 09:45	Variables and data types	Questions from yesterday
09:45 - 10:00	Coffee break	
10:00 - 10:45	Iterables I: Lists	Pandas
10:45 - 11:00	Coffee break	
11:00 - 12:00	Iterables II: sets, dicts, tuples	Pandas
12:00 - 13:00	Lunch	
13:00 - 14:00	Booleans, operators and conditions	Pandas
14:00 - 15:15	Loops	Visualization
15:15 - 15:30	Coffee break	
15:30 - 17:00	Functions	Dataset Exercise

What is programming?

What is programming?

Programming is a set of **machine-readable** instructions that transform your input into your desired output.

Why is programming nice?

- Learning by doing:
 - Difficult to 'break' a computer with wrong programming
- Reproducibility:
 - The same thing should happen every time you run (*though some tasks involve some randomness)
- Transferable:
 - Easily share your work with colleagues
- Many useful online resources
- Automate complex analysis workflows
- Important tool for working since we live in a data driven world

Why Python?

Python is a great programming language for both beginners and advanced programmers:

- Easy to grasp, close to natural language
- Many learning resources available
- Large community (i.e. stackoverflow for questions)
- Libraries
- Can do very advanced things like neural networks

Python environments

Jupyter notebook

The Jupyter Notebook is an **open-source application** to create and share documents that contain code, equations, visualizations and text (markdown).

 Browser-based development environment for creating, running and sharing Python code

UCPH HeaDS

- Combine code with text and output
- Runs from your local installation. I.e., you need Python and the libraries you want to use installed on your computer

Google Colab

Google Colab is a Jupyter Notebook hosted on Google's servers, not your own machine. It still runs in your browser.

- tool to write, execute and share Python code through the browser
- requires no setup to use and provides free access to computing resources on Google's servers including GPUs
- is connected to a Google account and data and notebooks can be accessed through Google Drive.

We'll use Colab during the course.

Course material

You can find the course material here:

https://github.com/Center-for -Health-Data-Science/Python Tsunami

Course material

Course material

UCPH HeaDS

Remember to **save** a **copy** to your own google drive so you can save your notes and exercises!

Questions

You are always welcome to ask question during the course.

We also have a **padlet** board you can post your questions to. If you see a question posted that you also have, press the 'like' button.

At the start of day 2 we will tell a bit more about the inner workings of Python and take up the most popular questions from the board.

Short Introduction

Take the next 5-7 mins to introduce yourself at your table:

- Name
- Position
- Unit
- Research topic (very briefly!)

Using libraries/packages

Libraries

Python has many libraries, also called packages, that other programmers have developed. Find and **use** them!

Well-maintained libraries generally are:

- Tested
- Optimized
- Documented

There is no need to reinvent the wheel. During this course we will use:

- Pandas (all the data analysis!)
- Math (basic math)
- Plotly express (visualization)

Libraries

If you are running Python from a local installation, you need to have libraries **installed** before you can use them.

On Google Colab you can generally just import, they are already installed.

Import the math library:

```
import math
```

• Now I can use functions from that library, i.e. calculating the logarithm or square root:

```
math.log(3)
math.sqrt(4)
```


Objects, variables, references

The language of python

Python is an **object-oriented** programming language. Therefore it helps if you primarily think of two different things:

Objects and functions*

- Objects are **pieces of information** (i.e. a number, a string of letters, a data table).
- We perform functions on objects. They are what we do to the information pieces.
- Which functions we can perform depends on the type of the object.

^{*}technically functions are objects too, but let's not get too technical

An example

An object:

$$my_int = 3$$

A function:

```
math.log(my_int)
```

This does not work because the object is the wrong type:

```
math.log('hello')
```

Variables and Objects

Every piece of data you use in Python is stored somewhere in physical memory as an **object.**

Variables are **references** to the stored object.