Remark and Solutions

Sheet 3

Problem 17

All occuring field are of characteristic zero.

3.

To show that $I := [\mathfrak{g}, \mathfrak{g}]^{\perp}$ is contained in $rad(\mathfrak{g})$ we show that I is a solvable ideal in \mathfrak{g} . The claimed inclusion then follows because $rad(\mathfrak{g})$ is the unique maximal solvable ideal in \mathfrak{g} .

To see that I is an ideal in \mathfrak{g} we observe that $[\mathfrak{g},\mathfrak{g}]$ is an ideal in \mathfrak{g} , and that for every ideal J in \mathfrak{g} the orthogonal J^{\perp} is again an ideal in \mathfrak{g} because the Killing form $\kappa_{\mathfrak{g}}$ is associative.

To see that I is solvable we observe that $\kappa_{\mathfrak{g}}(x,y)=0$ for all $x\in I$ and $y\in [\mathfrak{g},\mathfrak{g}]$ by definition of I and hence especially $\kappa_{\mathfrak{g}}(x,y)=0$ for all $x\in I$ and $y\in [I,I]$. We know that the restriction of $\kappa_{\mathfrak{g}}$ to I coincides with the Killing form κ_I because I is an ideal in \mathfrak{g} . We have thus found that $\kappa_I(x,y)=0$ for all $x\in I$ and $y\in [I,I]$. It follows from Cartan's criterion (part 2 of this exercise) that the ideal I is indeed solvable.

To show that $\operatorname{rad}(\mathfrak{g})$ is contained in $[\mathfrak{g},\mathfrak{g}]^{\perp}$ we need to show that $\kappa_{\mathfrak{g}}(\operatorname{rad}(\mathfrak{g}),[\mathfrak{g},\mathfrak{g}])=0$. It follows from the associativity of $\kappa_{\mathfrak{g}}$ that

$$\kappa_{\mathfrak{g}}(\mathrm{rad}(\mathfrak{g}), [\mathfrak{g}, \mathfrak{g}]) = \kappa_{\mathfrak{g}}([\mathrm{rad}(\mathfrak{g}), \mathfrak{g}], \mathfrak{g}).$$

It follows from the upcoming part 4 (that we will prove independent of this part) that the ideal $[rad(\mathfrak{g}),\mathfrak{g}]$ is nilpotent. That $\kappa_{\mathfrak{g}}([rad(\mathfrak{g}),\mathfrak{g}],\mathfrak{g})=0$ hence follows from the following observation:

Lemma 1. Let \mathfrak{g} be a finite dimensional Lie algebra and let I be a nilpotent ideal in \mathfrak{g} . Then $\kappa_{\mathfrak{g}}(I,\mathfrak{g})=0$, i.e. I is contained in the radical of κ .

Proof. Let $x \in I$ and $y \in \mathfrak{g}$. We have for all $n \geq 0$ that $\operatorname{ad}(x)(I^n) \subseteq I^{n+1}$ and $\operatorname{ad}(y)(I^n) \subseteq I^n$ because I^n is an ideal in I. (We are using the convention $I^0 = I$.) It hence follows by induction that the image of $(\operatorname{ad}(x)\operatorname{ad}(y))^{n+1}$ is contained in I^n for every $n \geq 0$.

^{*}Available online at https://github.com/cionx/representation-theory-1-tutorial-ss-19.

¹This was hopefully shown in the lecture for the proof of the equivalence of the characterizations for semisimple Lie algebras.

It therefore follows for n sufficiently large from $I^n = 0$ that also $(\operatorname{ad}(x)\operatorname{ad}(y))^n = 0$ whence $\operatorname{ad}(x)\operatorname{ad}(y)$ is nilpotent. Therefore $\kappa_{\mathfrak{g}}(x,y) = \operatorname{tr}(\operatorname{ad}(x)\operatorname{ad}(y)) = 0$.

4.

This solution is longer than necessary but hopefully sheds some light on what's going on. We are taking the technical aspects of our approach from [Bou89, I.§5.3] and [TY05, §19.5].

Recall 2. As a motivation for the upcoming definition of $\operatorname{srad}(\mathfrak{g})$ we recall the equivalent characterizations of the Jacobson radical J(A) of a finite dimensional k-algebra A:

- (1) The intersection of all maximal left ideal of A.
- (2) The unique maximal nilpotent ideal of A.
- (3) The set of all $x \in A$ that annihilate every simple left A-module.

Moreover:

(4) The algebra A is semisimple if and only if J(A) = 0.

For a finite dimensional Lie algebra g one can similarly consider four kinds of "radical":

- (1) The sum of any two solvable ideals of \mathfrak{g} is again solvable whence \mathfrak{g} admits a unique maximal solvable ideal. This is the $radical \operatorname{rad}(\mathfrak{g})$ as introduced in the lecture. The Lie algebra \mathfrak{g} is semisimple if and only if $\operatorname{rad}(\mathfrak{g}) = 0$.
- (2) The radical of the Killing form of \mathfrak{g} . Note that by Cartan's criterion, $\operatorname{rad}(\kappa)$ is solvable. (The restriction of $\kappa_{\mathfrak{g}}$ to $\operatorname{rad}(\kappa_{\mathfrak{g}})$ is the Killing form of $\operatorname{rad}(\kappa_{\mathfrak{g}})$ because $\operatorname{rad}(\kappa_{\mathfrak{g}})$ is an ideal in \mathfrak{g} . But this restriction is zero by definition of $\operatorname{rad}(\kappa_{\mathfrak{g}})$ whence $\kappa_{\operatorname{rad}(\kappa_{\mathfrak{g}})} = 0$. Now apply Cartan's criterion to $\operatorname{rad}(\kappa_{\mathfrak{g}})$.) Thus $\operatorname{rad}(\kappa_{\mathfrak{g}})$ is contained in $\operatorname{rad}(\mathfrak{g})$.
- (3) The sum of any two nilpotent ideals of \mathfrak{g} is again nilpotent whence \mathfrak{g} admits a unique maximal nilpotent ideal. (This was not shown in the lecture. We will also not show this here, as we won't need this.) This is the *nilradical* nil(\mathfrak{g}). Note that nil(\mathfrak{g}) \subseteq rad(\mathfrak{g}) because every nilpotent ideal is in particular a solvable ideal. Even better, by Lemma 1 we have nil(\mathfrak{g}) \subseteq rad($\kappa_{\mathfrak{g}}$).
- (4) The set

$$\operatorname{srad}(\mathfrak{g}) \coloneqq \left\{ x \in \mathfrak{g} \,\middle|\, \begin{array}{c} x \text{ annihilates every finite dimensional} \\ \text{irreducible } \mathfrak{g}\text{-representation} \end{array} \right\}$$

is called the *nilpotent radical* of \mathfrak{g} . The author doesn't like this name because it sounds too much like the nilradical, and hence will not use it.² Note that $\operatorname{srad}(\mathfrak{g})$ is an ideal because

$$\operatorname{srad}(\mathfrak{g}) = \bigcap \left\{ \ker(\rho) \,\middle|\, (V,\rho) \text{ is a finite dimensional irreducible } \mathfrak{g}\text{-representation} \right\} \,.$$

²The term is taken from [Bou89, I.§5, Definition 3], the notation $\operatorname{srad}(\mathfrak{g})$ is taken from \mathfrak{s} used there.

We show in the following that $\operatorname{srad}(\mathfrak{g})$ is nilpotent (and hence contained in $\operatorname{nil}(\mathfrak{g})$) and that $\operatorname{srad} = \operatorname{rad}(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}]$. Then altogether

$$\operatorname{rad}(\mathfrak{g}) \supseteq \operatorname{rad}(\kappa_{\mathfrak{g}}) \supseteq \operatorname{nil}(\mathfrak{g}) \supseteq \operatorname{srad} = \operatorname{rad}(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}].$$

(We refer to [MO13] for a short comment regarding the history of these radicals.) It then follows from $[rad(\mathfrak{g}),\mathfrak{g}] \subseteq rad(\mathfrak{g}) \cap [\mathfrak{g},\mathfrak{g}] = srad(\mathfrak{g})$ that $[rad(\mathfrak{g}),\mathfrak{g}]$ is nilpotent, as needed for the exercise.

Showing that $srad(\mathfrak{g})$ is nilpotent

The nilpotency of $\operatorname{srad}(\mathfrak{g})$ follows from an equivalent characterization of $\operatorname{srad}(\mathfrak{g})$:

Proposition 3. For an ideal I in a Lie algebra \mathfrak{g} the following conditions are equivalent:

- (1) I annihilates every finite dimensional irreducible \mathfrak{g} -representation V.
- (2) I acts nilpotent on every finite dimensional \mathfrak{g} -representation (V, ρ) in the sense that $\rho(x)$ is nilpotent for every $x \in I$.
- (3) I acts nilpotent on every finite dimensional \mathfrak{g} -representation (V, ρ) in the sense that for some $n \geq 1$, $\rho(x)^n = 0$ for every $x \in I$.

Hence $\operatorname{srad}(\mathfrak{g})$ is the unique maximal ideal in \mathfrak{g} that acts nilpotent on every finite dimensional \mathfrak{g} -representation.

Lemma 4. Let V be a finite dimensional vector space and let \mathfrak{g} be a Lie subalgebra of $\mathfrak{gl}(V)$ such that V is irreducible as a \mathfrak{g} -representation. If I is an ideal in \mathfrak{g} that consists of nilpotent endomorphisms then I=0.

Proof. It follows from Engel's theorem that I annihilates some nonzero linear subspace U of V. The subspace U is a \mathfrak{g} -subrepresentation: For all $x \in I$, $y \in \mathfrak{g}$ and $u \in U$,

$$x.y.u = y.x.u + [x, y].u = 0$$

because $x, [x, y] \in I$. It follows that U = V because V is irreducible.

Proof of Proposition 3.

- $(3) \implies (2)$ Okay.
- (2) \Longrightarrow (1) We may apply Lemma 4 to the ideal $\rho(I)$ of $\rho(\mathfrak{g})$ to find $\rho(I) = 0$.
- $(1) \implies (3)$ There exists by the finite dimensionality of V a filtration

$$0 = V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_n = V$$

by \mathfrak{g} -subrepresentations of maximal length, i.e. such that the quotients V_i/V_{i-1} are irreducible. Then $I.(V_i/V_{i-1})=0$ and thus $I.V_i\subseteq V_{i-1}$ for every $i=1,\ldots,n$. Whence $\rho(x)^n=0$ for every $x\in I$.

Corollary 5. For every finite dimensional Lie algebra \mathfrak{g} the ideal srad(\mathfrak{g}) is nilpotent.

Proof. By applying Proposition 3 to the adjoint action of $\operatorname{srad}(\mathfrak{g})$ on \mathfrak{g} we see that every $x \in \operatorname{srad}(\mathfrak{g})$ is $\operatorname{ad}_{\mathfrak{g}}$ -nilpotent nilpotent and hence $\operatorname{ad}_{\operatorname{srad}(\mathfrak{g})}$ -nilpotent. It follows from Engel's theorem that $\operatorname{srad}(\mathfrak{g})$ is nilpotent.

Showing that $\operatorname{srad}(\mathfrak{g}) \subseteq \operatorname{rad}(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}]$

Lemma 6. If \mathfrak{g} is an abelian Lie algebra then elements of \mathfrak{g} can be separated by one-dimensional representations, in the sense that there exists for all $x, y \in \mathfrak{g}$ some one-dimensional representation (V, ρ) of \mathfrak{g} with $\rho(x) \neq \rho(y)$.

Proof. A one dimensional representation of \mathfrak{g} is (up to isomorphism) the same as a Lie algebra homomorphism $\mathfrak{g} \to \mathfrak{gl}(k) = k$. Both \mathfrak{g} and k are abelian, so every linear map $\mathfrak{g} \to k$ is already a homomorphism of Lie algebras. The assertian is therefore equivalent to \mathfrak{g}^* separating the elements of \mathfrak{g} , which is known from linear algebra. \square

Corollary 7. If \mathfrak{g} is an abelian Lie algebra then $\operatorname{srad}(\mathfrak{g}) = 0$.

Proof. An element $x \in \operatorname{srad}(\mathfrak{g})$ annihilates every finite dimensional irreducible representation of \mathfrak{g} and thus in particular every one-dimensional representation of \mathfrak{g} . This means that x cannot be separated from 0 by one-dimensional representations of \mathfrak{g} . Therefore x = 0 by Lemma 6.

Lemma 8. If $\phi \colon \mathfrak{g} \to \mathfrak{h}$ is a surjective homomorphism of Lie algebras then

$$\phi(\operatorname{srad}(\mathfrak{g})) \subseteq \operatorname{srad}(\mathfrak{h})$$
.

Proof. Every finite dimensional irreducible representation (V, ρ) of \mathfrak{h} can be pulled back to a representation $(V, \rho \circ \phi)$ of \mathfrak{g} . It follows from the surjectivity of \mathfrak{g} that $(V, \rho \circ \phi)$ is again irreducible. We find that $(V, \rho \circ \phi)$ is annihilated by $\operatorname{srad}(\mathfrak{g})$, which means that $\phi(\operatorname{srad}(\mathfrak{g}))$ annihilates (V, ρ) . This shows that $\phi(\operatorname{srad}(\mathfrak{g}))$ annihilates every finite dimensional irreducible representation of \mathfrak{h} , so $\phi(\operatorname{srad}(\mathfrak{g})) \subseteq \operatorname{srad}(\mathfrak{h})$.

Corollary 9. If \mathfrak{g} is a finite dimensional Lie algebra then $\operatorname{srad}(\mathfrak{g}) \subseteq \operatorname{rad}(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}]$.

Proof. That $\operatorname{srad}(\mathfrak{g})$ is contained in $\operatorname{rad}(\mathfrak{g})$ follows from $\operatorname{srad}(\mathfrak{g})$ being nilpotent and hence solvable. If $\pi: \mathfrak{g} \to \mathfrak{g}/[\mathfrak{g}, \mathfrak{g}]$ is the canonical projection then

$$\pi(\operatorname{srad}(\mathfrak{g})) \subseteq \operatorname{srad}(\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]) = 0$$

by Lemma 8 and Corollary 7, and hence $\operatorname{srad}(\mathfrak{g}) \subseteq \ker \pi = [\mathfrak{g}, \mathfrak{g}].$

Showing $rad(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}] \subseteq srad(\mathfrak{g})$

For this inclusion we will need some preparation. We start with a classical observation from linear algebra:

Lemma 10. Let $\operatorname{char}(k) = 0$. If $A \in \operatorname{M}(n, k)$ is a matrix with $\operatorname{tr}(A^m) = 0$ for all $m \ge 1$ then A is nilpotent.

Proof. We may assume that k is algebraically closed. Let $\lambda_1, \ldots, \lambda_r$ be the pairwise different nonzero (!) eigenvalues of A with corresponding multiplicities n_1, \ldots, n_r . The matrix A is triangularizable with diagonal entries $\lambda_1, \ldots, \lambda_r, 0$ so we need to show that $n_1 = \cdots = n_r = 0$.

We have for all $m \geq 0$ that

$$0 = \operatorname{tr}(A^m) = n_1 \lambda_1^m + \dots + n_r \lambda_r.$$

For m = 1, ..., r we can rearrange these equalities in the matrix form

$$\begin{pmatrix}
\lambda_1 & \lambda_2 & \cdots & \lambda_r \\
\lambda_1^2 & \lambda_2^2 & \cdots & \lambda_r^2 \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_1^r & \lambda_2^r & \cdots & \lambda_r^r
\end{pmatrix} \cdot \begin{pmatrix}
n_1 \\
n_2 \\
\vdots \\
n_r
\end{pmatrix} = 0.$$
(1)

If we denote the matrix on the left hand side by V then the determinant

$$\det(V) = \lambda_1 \cdots \lambda_r \prod_{j>i} (\lambda_j - \lambda_i)$$

does not vanish. The matrix V is hence invertible. It follows that the column vector in (1) is the zero vector, so that $n_1 = \cdots = n_r = 0$ (here we use that $\operatorname{char}(k) = 0$). \square

Lemma 11. Let V be a finite dimensional vector space and let \mathfrak{g} be a Lie subalgebra of $\mathfrak{gl}(V)$ such that V is irreducible as a \mathfrak{g} -representation. If I is any commutative ideal in \mathfrak{g} then $I \cap [\mathfrak{g}, \mathfrak{g}] = 0$.

Proof. Let A be the (associative and unital) k-subalgebra of $\operatorname{End}_k(V)$ generated by I. Note that A is commutative because I is abelian.

Claim. If *J* is a Lie ideal in \mathfrak{g} with $J \subseteq I$ and $\operatorname{tr}(xa) = 0$ for all $x \in J$, $a \in A$ then J = 0.

Proof of the Claim. It follows from $x \in J \subseteq I \subseteq A$ that $x^n \in A$ for all $n \ge 0$ and thus by assumption $\operatorname{tr}(x^n) = \operatorname{tr}(x \cdot x^{n-1}) = 0$ for all $n \ge 1$. It follows from Lemma 10 that x is nilpotent and it therefore further follows from Lemma 4 that J = 0.

We find that \mathfrak{g} and I commute: Letting $x \in \mathfrak{g}$ and $y \in I$ we find for all $a \in A$ that ay = ya because A is commutative. As a consequence,

$$tr([x, y]a) = tr(xya - yxa)$$

$$= tr(xya) - tr(yxa)$$

$$= tr(xya) - tr(xay)$$

$$= tr(xya) - tr(xya)$$

$$= 0.$$

It follows with the claim that $[\mathfrak{g}, I] = 0$.

It follows that \mathfrak{g} and A commute: The centralizer of \mathfrak{g} in $\operatorname{End}_k(V)$ is an (associative and unital) subalgebra of $\operatorname{End}_k(V)$ that contains I, and hence also contains A.

We see that $\operatorname{tr}(za)=0$ for all $z\in [\mathfrak{g},\mathfrak{g}]$ and $a\in A$: We have for all $x,y\in \mathfrak{g}$ that ay=ya because \mathfrak{g} and A commute, and hence $\operatorname{tr}([x,y]a)=0$ by the same calculation as above.

It follows for $J = [\mathfrak{g}, \mathfrak{g}] \cap I$, which is a Lie ideal in \mathfrak{g} that is contained in I, that $\operatorname{tr}(za) = 0$ for all $z \in J$ and $a \in A$ and thus J = 0 by the claim. This is what we want to prove.

Corollary 12. If \mathfrak{g} is a Lie algebra then $rad(\mathfrak{g}) \cap [\mathfrak{g},\mathfrak{g}] \subseteq srad(\mathfrak{g})$.

Proof. Let (V, ρ) be a finite dimensional irreducible representation of \mathfrak{g} . Then $\rho(\operatorname{rad}(\mathfrak{g}))$ is solvable and hence there exists some minimal $n \geq 0$ with $\rho(\operatorname{rad}(\mathfrak{g}))^{(n+1)} = 0$; here we use for every ideal I the convention $I^{(0)} = I$, so that $I^{(m+1)} = [I^{(m)}, I^{(m)}]$ for all $m \geq 0$. Let $\mathfrak{g}' := \rho(\mathfrak{g})$ and $I' := \rho(\operatorname{rad}(\mathfrak{g}))^{(n)}$. Then I' is an ideal in \mathfrak{g}' that is abelian because

$$[I', I'] = [\rho(\operatorname{rad}(\mathfrak{g}))^{(n)}, \rho(\operatorname{rad}(\mathfrak{g}))^{(n)}] = \rho(\operatorname{rad}(\mathfrak{g}))^{(n+1)} = 0.$$

That V is irreducible as a representation of \mathfrak{g} means that it is irreducible as a representation of \mathfrak{g}' . We can therefore apply Lemma 11 to find that $I' \cap [\mathfrak{g}', \mathfrak{g}'] = 0$. Hence

$$0 = I' \cap [\mathfrak{g}', \mathfrak{g}'] = \rho(\operatorname{rad}(\mathfrak{g}))^{(n)} \cap [\rho(\mathfrak{g}), \rho(\mathfrak{g})] = \rho(\operatorname{rad}(\mathfrak{g})^{(n)} \cap [\mathfrak{g}, \mathfrak{g}]). \tag{2}$$

If now $n \geq 1$ then $\operatorname{rad}(\mathfrak{g})^{(n)} \subseteq [\mathfrak{g}, \mathfrak{g}]$ and then (2) simplifies to $\rho(\operatorname{rad}(\mathfrak{g})^{(n)}) = 0$. But this would contradict the minimality of n, hence n = 0. We hence find

$$0 = \rho(\mathrm{rad}(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}]).$$

This shows that $\operatorname{rad}(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}]$ annihilates every finite dimensional irreducible representation of \mathfrak{g} , which means that $\operatorname{rad}(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}] \subseteq \operatorname{srad}(\mathfrak{g})$.

With this we finally arrive at the desired equality:

Theorem 13. If \mathfrak{g} is a finite dimensional Lie algebra then $\operatorname{srad}(\mathfrak{g}) = \operatorname{rad}(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}]$.

Proof. We combine Corollary 9 and Corollary 12.

A Generalization

The nilpotence of $[\mathfrak{g}, \operatorname{rad}(\mathfrak{g})]$ can also be generalized by using Problem 20 from sheet 4, as explained in [Bou89, I.§5.5] and [TY05, §19.6]:

Theorem 14. If D is a derivation of a finite dimensional Lie algeba \mathfrak{g} then

$$D(\operatorname{rad}(\mathfrak{g})) \subseteq \operatorname{nil}(\mathfrak{g})$$
.

We are now gonna prove this theorem. We have split up the proof in multiple small steps each of which is interesting on its own.

Definition 15. An ideal I is a Lie algebra \mathfrak{g} is *characteristic* if $D(I) \subseteq I$ for every ideal I.

Example 16. The derived ideal $[\mathfrak{g},\mathfrak{g}]$ is characteristic because

$$D([\mathfrak{g},\mathfrak{g}]) \subseteq [D(\mathfrak{g}),\mathfrak{g}] + [\mathfrak{g},D(\mathfrak{g})] \subseteq [\mathfrak{g},\mathfrak{g}].$$

Lemma 17. If I is a characteristic ideal in a Lie algebra \mathfrak{g} and J is an ideal in I then J is also an ideal in \mathfrak{g} .

Proof. For every $x \in \mathfrak{g}$ the adjoint action ad(x) restricts to a derivation of I, which then leaves J invariant.

Lemma 18. If \mathfrak{g} is a finite dimensional Lie algebra with Killing form κ then every derivation D of \mathfrak{g} is skew-selfadjoint with respect to κ , i.e. for all $x, y \in \mathfrak{g}$,

$$\kappa(D(x), y) = -\kappa(x, D(y))$$
.

Proof. We find with $[D, ad(x)] = ad(D(x))^3$ that

$$\begin{split} \kappa(D(x),y) &= \operatorname{tr}(\operatorname{ad}(D(x))\operatorname{ad}(y)) \\ &= \operatorname{tr}([D,\operatorname{ad}(x)],\operatorname{ad}(y)) \\ &= \operatorname{tr}(D\operatorname{ad}(x)\operatorname{ad}(y) - \operatorname{ad}(x)D\operatorname{ad}(y)) \\ &= \operatorname{tr}(D\operatorname{ad}(x)\operatorname{ad}(y)) - \operatorname{tr}(\operatorname{ad}(x)D\operatorname{ad}(y)) \\ &= \operatorname{tr}(\operatorname{ad}(x)\operatorname{ad}(y)D) - \operatorname{tr}(\operatorname{ad}(x)D\operatorname{ad}(y)) \\ &= \operatorname{tr}(\operatorname{ad}(x)[\operatorname{ad}(y),D]) \\ &= -\operatorname{tr}(\operatorname{ad}(x)[D,\operatorname{ad}(y)]) \\ &= -\operatorname{tr}(\operatorname{ad}(x)\operatorname{ad}(D(y))) \\ &= -\kappa(x,D(y)) \end{split}$$

as claimed.

Corollary 19. If I is a characteristic ideal in a finite dimensional Lie algebra \mathfrak{g} then its orthogonal I^{\perp} with respect to the Killing form κ of \mathfrak{g} is again a characteristic ideal.

Proof. The orthogonal of I is again an ideal by the associativity of κ . If D is any derivation of \mathfrak{g} and $x \in I^{\perp}$ then for every $y \in I$ again $D(y) \in I$ and hence

$$\kappa(D(x), y) = -\kappa(x, D(y)) = 0.$$

Thus $D(I^{\perp}) \subseteq I^{\perp}$.

Example 20. If \mathfrak{g} is a finite dimensional Lie algebra then the radical rad(\mathfrak{g}) is the orthogonal of the derived ideal [\mathfrak{g} , \mathfrak{g}] (by part 3) and hence again a characteristic ideal.

Corollary 21. If I is an ideal in a finite dimensional Lie algebra $\mathfrak g$ then

$$rad(I) = rad(\mathfrak{g}) \cap I$$
.

Proof. The intersection $\operatorname{rad}(\mathfrak{g}) \cap I$ is a solvable ideal in I and hence contained in $\operatorname{rad}(I)$. The radical $\operatorname{rad}(I)$ is a characteristic ideal in I by Example 20 and hence an ideal in \mathfrak{g} by Lemma 17. It is solvable and hence contained in $\operatorname{rad}(\mathfrak{g})$, and thus contained in $\operatorname{rad}(\mathfrak{g}) \cap I$.

 $^{^3}$ This is the formula that show that the inner derivations form an ideal in $\mathrm{Der}(\mathfrak{g})$.

Proof of Theorem 14. We apply the construction of Problem 20 from sheet 4: We regard the element $D \in \operatorname{Der}(\mathfrak{g})$ as a Lie algebra homomorphism $\theta \colon k \to \operatorname{Der}(\mathfrak{g})$ and form the semidirect product $\mathfrak{g}' := \mathfrak{g} \rtimes_{\theta} k$. Then the derivation D of \mathfrak{g} extends to the inner derivation $\operatorname{ad}_{(0,1)}$ of \mathfrak{g}' .

It follows from Corollary 21 that $\operatorname{rad}(\mathfrak{g}) = \operatorname{rad}(\mathfrak{g}') \cap \mathfrak{g}$ is contained in $\operatorname{rad}(\mathfrak{g}')$ because \mathfrak{g} is an ideal in \mathfrak{g}' . Now $[\mathfrak{g}', \operatorname{rad}(\mathfrak{g}')]$ is contained in the nilradical $\operatorname{nil}(\mathfrak{g}')$ as seen in Corollary 5. Hence

$$D(\operatorname{rad}(\mathfrak{g})) = \operatorname{ad}_{(0,1)}(\operatorname{rad}(\mathfrak{g})) = [(0,1),\operatorname{rad}(\mathfrak{g})]$$

is contained in $\operatorname{nil}(\mathfrak{g}')$, and thus also in $\mathfrak{g} \cap \operatorname{nil}(\mathfrak{g}')$. This intersection is a nilpotent ideal in \mathfrak{g} and hence contained in $\operatorname{nil}(\mathfrak{g})$. Thus $D(\operatorname{rad}(\mathfrak{g})) \subseteq \mathfrak{g} \cap \operatorname{nil}(\mathfrak{g}') \subseteq \operatorname{nil}(\mathfrak{g})$.

References

- [Bou89] Nicolas Bourbaki. *Lie Groups and Lie Algebras. Chapters 1–3.* Elements of Mathematics. Springer-Verlag Berlin Heidelberg New York, 1989. ISBN: 3-540-50218-1.
- [MO13] Jim Humphreys. On radicals of a lie algebra. November 20, 2013. URL: https://mathoverflow.net/q/149435 (visited on May 9, 2019).
- [TY05] Patrice Tauvel and Rupert W. T. Yu. *Lie Algebras and Algebraic Groups*. Springer Monographs in Mathematics. Springer-Verlag Berlin Heidelberg, 2005, pp. xvi+656. ISBN: 978-3-540-24170-6. DOI: 10.1007/b139060.