Multivariate Analysis Chapter 1: Introduction

Shaobo Jin

Department of Mathematics

What is Multivariate Analysis?

- Multivariate analysis deals with simultaneous measurements on many variables.
- Analysis of each variable separately can miss any interesting patterns in the data.
- Multivariate analysis includes many topics:
 - test mean and covariance structure (e.g., MANOVA),
 - regression analysis,
 - principal component analysis,
 - factor analysis,
 - canonical correlation analysis,
 - discriminant analysis and classification,
 - cluster analysis.

Intended Learning Outcome

On completion of the course, you should be able to

- give an account of some methods of visualizing multivariate data sets
- ② give an account of and use multivariate normal distribution
- operform statistical tests of the mean value vector of a multivariate normal distribution
- perform statistical tests of two or several populations of a multivariate normal distribution
- give an account of methods and techniques for validation of multivariate normal distribution
- use principal component and factor analysis for typical problems
- O use canonical correlation analysis
- **o** use classification techniques
- give an account of and use methods for multivariate cluster analysis
- present mathematical statistical arguments to others.

Applications of Multivariate Analysis: MANOVA

Applications of Multivariate Analysis: Regression

Applications of Multivariate Analysis: PCA

Applications of Multivariate Analysis: Factor Analysis

		_	-/+	+	++
1 am a 'worrier'	0	0	0	0	0
2 I make friends easily	0	0	0	0	0
3. I have a vivid imagination	0	0	0	0	0
4. I trust others	\circ	0	0	0	\circ
5. I complete tasks successfully	0	0	0	0	0
6. I get angry easily	0	0	0	0	\circ
7. I really enjoy large parties and gatherings	0	0	0	0	0
8. I think art is important	\circ	\circ	\circ	\circ	\circ

Applications of Multivariate Analysis: Clustering

Applications of Multivariate Analysis: Classification

An Example: Prices of Game Consoles

Website	Nintendo Switch	Xbox	PS5
Webhallen	4290	6449	7190
${ m MediaMarkt}$	4290	6595	7590
Elgiganten	4290	7295	7190
Amazon	4099	6752	6929
${\rm Inet}$	4290	6790	7190
CDON	3597	6746	7195

Data

	variable 1		variable k		variable p
item 1	x_{11}		x_{1k}		x_{1p}
item 2	x_{21}		x_{2k}	• • •	x_{2p}
:	:		:		:
item j	x_{j1}	• • •	x_{jk}	• • •	x_{jp}
:	•		:		:
item n	x_{n1}		x_{nk}		x_{np}

the measurment of the kth variable on the jth item number of observations/items/individuals/units number of variables

Data Array/Frame/Matrix

We often collect our data as a matrix:

$$m{X}_{n imes p} \ = \ egin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \ x_{21} & x_{22} & \cdots & x_{2p} \ dots & dots & dots \ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix} = egin{bmatrix} m{x}_1^T \ m{x}_2^T \ dots \ m{x}_n^T \end{bmatrix}.$$

 x_{jk} = the measurment of the kth variable on the jth item

 $X_{n \times p}$ = data array with n rows and p columns

n = number of observations/items/individuals/units

p = number of variables

 $x_j = a p \times 1$ vector, representing the jth observation

- 4 ロ b 4回 b 4き b 4き b ・ き ・ かくぐ

Notation

A random vector random matrix is a vector whose elements are random variables.

	Random	Realization
Scalar variable	X	x
Vector (bold)	\boldsymbol{X}	$oldsymbol{x}$
Matrix (bold)	\boldsymbol{X}	\boldsymbol{X}

Data Visualization

- Box plot
- Scatter plot
- Violin plot