x ì tǒng t è diǎn 系统特点

- 1. 采样时间是事件驱动式,时间间隔不等,也就是采样周期不再是 T。
- 2. 测量传感器的模型是非线性的,需要使用非线性估计方法。
- 3. 目标的运动很复杂,不再满足恒速、恒加速等情况,所以需要使用能够描述复杂运动关系的运动模型。

8.1 RFID 跟踪系统的特点

图 8.1 RFID 阅读器网络的方格布局

图 8.2 有 RFID 阅读器的实际室内跟踪区域

8.2 机动目标运动模型

不规则采样间隔下的系统模型为:

$$x(t_i) = A(t_{i-1})x(t_{i-1}) + w(t_{i-1})$$
(8-14)

其中

- $w(t_{i-1}) = [w_x(t_{i-1}) \ w_y(t_{i-1})]^T$ 代表横纵坐标的过程噪声,并且,假设横轴、纵轴的噪声是独立的,
- $Q(t_{i-1}) = \begin{bmatrix} Q_x(t_{i-1}) & 0 \\ 0 & Q_y(t_{i-1}) \end{bmatrix}$ 。

其中

$$A_{\eta}(t_{i-1}) = \begin{bmatrix} 1 & T_0 & \frac{\alpha_{\eta}th_i - 1 + e^{-\alpha_{\eta}th_i}}{\alpha^2} \\ 0 & 1 & \frac{1 - e^{-\alpha_{\eta}th_i}}{\alpha_{\eta}} \\ 0 & 0 & e^{-\alpha_{\eta}th_i} \end{bmatrix}$$

$$Q_{\eta}(t_{i-1}) = 2\alpha_{\eta}\delta_{\alpha\eta}^2 \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{12} & q_{22} & q_{23} \\ q_{13} & q_{23} & q_{33} \end{bmatrix}$$

$$q_{11} = \frac{1}{2\alpha_{\eta}^{5}} \left[1 - e^{-2\alpha_{\eta}th_{i}} + 2\alpha_{\eta}th_{i} + \frac{2\alpha_{\eta}^{3}th_{i}^{3}}{3} - 2\alpha_{\eta}^{2}th_{i}^{2} - 4\alpha_{\eta}th_{i}e^{-\alpha_{\eta}th_{i}} \right]$$

$$q_{12} = \frac{1}{2\alpha_{\eta}^{4}} \left[e^{-2\alpha_{\eta}th_{i}} + 1 - 2e^{-\alpha_{\eta}th_{i}} + 2\alpha_{\eta}T_{0}e^{-\alpha_{\eta}th_{i}} - 2\alpha_{\eta}th_{i} + \alpha_{\eta}^{2}th_{i}^{2} \right]$$

$$q_{13} = \frac{1}{2\alpha_{\eta}^{3}} \left[1 - e^{-2\alpha_{\eta}th_{i}} - 2\alpha_{\eta}th_{i}e^{-\alpha_{\eta}th_{i}} \right]$$

$$q_{22} = \frac{1}{2\alpha_{\eta}^{3}} \left[4e^{-\alpha_{\eta}th_{i}} - 3 - e^{-2\alpha_{\eta}th_{i}} + 2\alpha_{\eta}th_{i} \right]$$

$$q_{23} = \frac{1}{2\alpha_{\eta}^{2}} \left[e^{-2\alpha_{\eta}th_{i}} + 1 - 2\alpha_{\eta}th_{i} \right]$$

$$q_{33} = \frac{1}{2\alpha_{\eta}} \left[1 - e^{-2\alpha_{\eta}th_{i}} \right]$$

$$(8-17)$$

其中 $th_i = t_i - t_{i-1}$ 表示随时间变化的采样间隔, $\eta = x, y$ 分别表示横纵坐标轴, α_{η} 表示机动频率, δ_{cm}^2 表示高斯白噪声方差。

$$r_{i}(1) = r_{i-1}(1) + \frac{1}{i}[\hat{a}(t_{i})\hat{a}(t_{i-1}) - r_{i-1}(1)]$$
 (8-18)

$$r_i(0) = r_{i-1}(0) + \frac{1}{i} [\hat{a}(t_i)\hat{a}(t_{i-1}) - r_{i-1}(0)]$$
 (8-19)

参数 β 和 δ_{av}^2 为

$$\beta = \frac{r_i(1)}{r_i(0)} \tag{8-20}$$

$$\delta_{aw}^2 = r_i(0) - \alpha r_i(1) \tag{8-21}$$

因此,可以根据公式 $\delta_{aw}^2 = \delta_a^2 (1 - \beta^2)$ 和 $\beta = e^{-\alpha t h_i}$ 的关系得到机动频率 α 和高斯白噪声方差 δ_a^2 ,进而重构系统的矩阵A和Q。

8.3 基于可变数量 RFID 阅读器的 EKF 跟踪方法

function [xe, xee, pk]=myEKFadfun(A, Q, R, xe, ym, mm, p, readerxy)

另外一个函数function

[xx1, xxe1, P33, NN]=funDataDrivenModelYWwithEKF(TT, R, ax, qqx, ay, qqy, xe, p, y, N, readerxy)是调用上述函数的,实现的EKF估计的整个过程,包括计算不规则采样数据的周期、找出第几个传感器有测量数据、利用自适应模型方法进行横、纵轴估计。

8.4 基于可变数量 RFID 阅读器的 UKF 跟踪方法

$$\mathbf{x}^{(i+N_x)} = \mathbf{x}^{(0)} - \left(\sqrt{\frac{N_x}{1 - \mathbf{W}^{(0)}}} P(t_{i-1} \mid t_{i-1}) \right) = \begin{bmatrix} \mathbf{x}_x^{(i+N_x)} & \mathbf{x}_w^{(i+N_x)} & \mathbf{x}_v^{(i+N_x)} \end{bmatrix}^T \quad \mathbf{W}^{(i+N_x)} = \frac{1 - \mathbf{W}^{(0)}}{2N_x}$$

function [xe, xee, pk, sss]=myUKFadfun(A, Q, R, xe, ym, mm, p, readerxy, sss)
function

[xx1, xxe1, P33, NN, qqxx, RR0x, RR0y]=funDataDrivenModelYWnonparell(TT, R, ax, qqx, ay, q

8.5 仿真研究

仿真实验中,我们使用第六章**6.4.2节**介绍的RFID室内跟踪系统仿真数据平台软件产生仿真数据。

初始状态估计 x_0 和协方差 P_0 假设为 $x_0 = [x(0) \ 0 \ 0 \ y(0) \ 0 \ 0]^T$ 和 $P_0 = diag(10,10,10,10,10,10)^T$ 。

机动频率 α_{η} 始值设定为 1/20, $a_{\scriptscriptstyle M}=30$, $a_{\scriptscriptstyle -M}=-30$ 。 平均点的初始权重 $W_{\scriptscriptstyle x}^{\scriptscriptstyle (0)}=\frac{\kappa}{N_{\scriptscriptstyle x}+\kappa}$,尺

度参数为 $\kappa=-3$, $N_{\kappa}=6$ 。

 $\%C8_1.m$

在仿真平台中设置 了19个RFID阅读器(坐 标点列于表 8.1)。

图 8.3 RFID 阅读器的 测量空间和参考轨迹

表 8.1 RFID 阅读器的坐标点

标号	1	2	3	4	5	6	7	8	9	10
横坐标纵坐标	22. 46	13. 94	25. 92	43. 66	48. 27	9. 56	11.41	52. 41	80. 76	68. 77
	28. 80	60. 96	83. 47	77. 63	50. 44	37. 87	9. 79	7. 74	16. 22	54. 53
标号	11	12	13	14	15	16	17	18	19	
横坐标纵坐标	65. 092	74. 77	87. 90	92. 28	91.82	61. 17	34. 678	5. 64	95. 05	
	78. 51	94. 59	83. 77	59. 50	39. 03	27. 63	60. 67	95. 17	7. 456	

表 8.2 RFID 阅读器系统的测量

7. 7.3(1,11,17,17,17,17,17,17,17,17,17,17,17,17									
采样时间 阅读器	11. 1	11. 2	11. 3	11. 4	11.5	11. 7	11.8	12. 0	12. 1
1	\	\	\	\	\	\	\	\	\
2	\	\	\	\	\	\	\	\	\
3	\	\	\	\	\	\	\	\	27.629
4	\	20. 502	\	\	\	\	18.050	20. 269	\
5	\	\	\	\	\	\	\	\	\
6	\	\	\	\	\	\	\	\	\
7	\	\	\	\	\	\	\	\	\
8	\	\	\	\	\	\	\	\	\
9	\	\	\	\	\	\	\	\	\
10	\	\	\	\	\	\	\	\	\
11	17. 524	\	\	21.693	\	\	\	\	23. 469
12	\	20. 297	25. 370	\	23. 228	\	\	\	27. 779
13	\	\	\	\	\	\	\	\	\

横轴的估计协方差 为 43.7320、纵轴的估计 协方差为 30.1378。

但是 $P(t_{i-1}|t_{i-1})$ 由于计算机的舍入误差而成为负定矩阵,进而矩阵 $\left(\sqrt{\frac{N_x}{1-W^{(0)}}}P(t_{i-1}|t_{i-1})\right)$ 的平方根会出现复数而导致发散的估计结果。这种情况是不正确的,舍弃当前步骤的计算结果,而采用前一周期得到的 $\delta_{a,n}^2$ 和 $\alpha_{i,n}$ 。

图 8.4. 参考轨迹和 UKF 估计轨迹

横、纵轴的估计协方 差 分 别 为 49.2714, 38.524。

与UKF不同的是,EKF 在低检测率区域内估计 效果不会变得明显的变 差,但整体的估计性能不 如 UKF,这和很多非线性 估计的研究结果一致。

图 8.5 参考轨迹和 EKF 估计轨迹

8.6 小结

- 当标签在 RFID 测量范围内时,标签和阅读器之间的距离可被 RSSI 提取。
- 由于室内跟踪系统测量过程的特点,通过RFID技术获得的距离是多元的、 不确定和非线性的,并且采样方式是不规则的。
- 本章分析了 RFID 测量的特点,给出了 RFID 测量模型,并提出了以 EKF 和 UKF 为基础的融合估计算法。
- 为了适应室内机动目标的运动特性,使用了目标的自适应动态模型。
- 仿真结果表明,本文开发的以 UKF 为基础的估计方法可以在较低计算成本下获得较好的估计性能,并且,即使目标进入低检出率区域,系统仍然可以正常工作。