

Étudiants ingénieurs en aérospatial

Mémoire de 3^e année

Optimisation des méthodes itératives pour la résolution de systèmes linéaires

Auteurs:

M. AUDET Yoann

M. CHANDON Clément

M. DE CLAVERIE Chris

M. HUYNH Julien

Encadrant:

Pr. Bletzacker Laurent

Version 0.0 du 18 mars 2019

Remerciements

Table des matières

1	Intr	oducti	ion	1
2	Pré	sentati	ion des méthodes itératives classiques	2
	2.1		ntation générale des méthodes	2
	2.2		odes classiques	2
		2.2.1	Méthode de Jacobi	2
		2.2.2	Méthode de Gauss-Seidel	2
	2.3	Une n	ouvelle méthode : Richardson	2
		2.3.1	Présentation de la méthode	2
		2.3.2	Étude de convergence sur un exemple	3
		2.3.3	Un peu plus de théorie	5
3	Opt	imisat	ion du choix de la matrice d'itération	7
	3.1		ode SOR	7
		3.1.1	Présentation de la méthode SOR	7
		3.1.2	Intérêt de la méthode	8
		3.1.3	Implémentation numérique	10
	3.2	Les es	paces de Krylov	10
		3.2.1	Présentation théorique	10
		3.2.2	L'algorithme GMRES	12
4	Des	algori	thmes complexes	14
	4.1	Optim	nisation des méthodes	14
		4.1.1	Optimisation mathématique	14
		4.1.2	Optimisation numérique	14
	4.2	Étude	de la complexité	14
5	Con	clusio	n & ouverture	15

Introduction

Présentation des méthodes itératives classiques

- 2.1 Présentation générale des méthodes
- 2.2 Méthodes classiques
- 2.2.1 Méthode de Jacobi
- 2.2.2 Méthode de Gauss-Seidel
- 2.3 Une nouvelle méthode : Richardson

2.3.1 Présentation de la méthode

Ci-dessus, nous avons exposé les deux principales méthodes que l'on a utilisé lors des cours et TP. Cependant, il est aussi possible pour nous de trouver d'autres méthodes de résolution. Pour cela, il nous faut juste réécrire le problème sous une autre forme que celles précédemment définies. Ainsi, nous pouvons utiliser la décomposition de la forme :

$$Ax = b (2.1)$$

$$Px = (P - A)x + b (2.2)$$

On remarque que peut importe la valeur de la matrice P dans l'équation ci-dessus, les deux équations sont équivalentes. Ainsi, résoudre le premier système revient donc à résoudre le second. La méthode Richardson se base sur cette décomposition. L'idée est de poser :

$$P = \beta I$$
 avec I la matrice identité et $\beta \in \mathbb{R}^*$ (2.3)

Ainsi, nous avons notre système qui s'écrit de la manière suivante :

$$\beta Ix = (\beta I - A)x + b \tag{2.4}$$

$$x = \left(I - \frac{1}{\beta}A\right)x + \frac{1}{\beta}b\tag{2.5}$$

Pour un soucis d'écriture, nous allons écrire la formule précédente sous la forme :

$$x = (I - \gamma A)x + \gamma b \text{ avec } \gamma = \frac{1}{\beta}$$
 (2.6)

Ainsi l'idée est de construire une suite $x^{(k)}$ qui va converger vers la solution exacte du système que l'on notre ici x^* . Cette suite est définie de la manière suivante :

$$x^{(k+1)} = (I - \gamma A)x^k + \gamma b \tag{2.7}$$

Par définition de la suite, la matrice d'itération, notée ici R est :

$$R = I - \gamma A \tag{2.8}$$

Nous réécrivons la suite sous la forme :

$$x^{(k+1)} = Rx^k + K \text{ avec } K = \gamma b \tag{2.9}$$

Si cette suite converge, alors nous sommes en mesure de trouver une solution x^* approchant la vraie solution du système. Ainsi, l'étude se porte donc sur la convergence de cette suite. Comme pour les autres méthodes itératives, la condition de convergence est la même que précédemment : le rayon spectrale de la matrice d'itération doit être strictement inférieur à 1. L'avantage de cette méthode est que la matrice d'itération dépends de γ . Ainsi, en jouant sur cette valeur de γ , il est possible de faire converger la suite en prenant une valeur qui fait que le rayon spectral est inférieur à 1. On peut même produire une étude qui fait que l'on va minimiser cette valeur du rayon spectral pour obtenir une meilleur convergence. Cette démarche sera expliqué dans la suite de l'exposé.

2.3.2 Étude de convergence sur un exemple

Pour illustrer cette exemple, nous allons prendre un système linéaire quelconque. Dans un premier temps, nous allons trouver sa solution théorique puis appliquer la méthode de Richardson. Cela nous permettra d'étudier la convergence de la suite et la condition d'arrêt de notre algorithme. Pour cela, nous allons prendre le système 2×2 suivant :

$$\begin{cases}
-3x + 2y = 1 \\
x + -4y = -7
\end{cases}$$
(2.10)

Ce système de base est peut être résolu assez trivialement et on obtient le couple de solution suivant :

$$(x,y) = (1,2) (2.11)$$

Notre but est maintenant de retrouver ces résultats grâce à la méthode de Richardson. Pour cela nous écrivons le système (2.10) sous sa forme matricielle :

$$\underbrace{\begin{pmatrix} -3 & 2\\ 1 & -4 \end{pmatrix}}_{A} \times \underbrace{\begin{pmatrix} x\\ y \end{pmatrix}}_{x} = \underbrace{\begin{pmatrix} 1\\ -7 \end{pmatrix}}_{b} \tag{2.12}$$

On pose, d'après la définition de la méthode, la matrice P:

$$P = \gamma I = \begin{pmatrix} \gamma & 0 \\ 0 & \gamma \end{pmatrix} \tag{2.13}$$

et on rappelle que l'on a :

$$x^{(k+1)} = (I - \gamma A)x^k + \gamma b \text{ avec } R = (I - \gamma A)$$
(2.14)

Dans notre cas, la matrice d'itération est la suivante :

$$R = \begin{pmatrix} 1 + 3\gamma & -2\gamma \\ -\gamma & 1 + 4\gamma \end{pmatrix} \tag{2.15}$$

On cherche les valeurs propres de celle-ci grâce son polynôme caractéristique :

$$det(R - \lambda I) = \begin{bmatrix} 1 + 3\gamma - \lambda & -2\gamma \\ -\gamma & 1 + 4\gamma - \lambda \end{bmatrix}$$
 (2.16)

$$= ((1+3\gamma) - \lambda)((1+4\gamma) - \lambda) - 2\gamma^2$$
 (2.17)

$$= \lambda^2 - (2+7\gamma)\lambda + 1 + 7\gamma + 10\gamma^2$$
 (2.18)

$$= \lambda^2 - (2+7\gamma)\lambda + (1+2\gamma)(1+5\gamma) \tag{2.19}$$

$$= (\lambda - (1+2\gamma))(\lambda - (1+5\gamma))$$
 (2.20)

Ainsi, les deux valeurs propres sont :

$$\lambda_1 = 1 + 2\gamma \text{ ou } \lambda_2 = 1 + 5\gamma \tag{2.21}$$

Il nous faut donc maintenant étudier le rayon spectral :

$$\rho(R) = \max(|1 + 2\gamma|, |1 + 5\gamma|) < 1 \tag{2.22}$$

Pour trouver le maximum, on cherche quand les quantités sont égales :

$$\begin{cases} 1 + 2\gamma = 1 + 5\gamma \Leftrightarrow \gamma = 0\\ 1 + 2\gamma = -1 - 5\gamma \Leftrightarrow \gamma = -\frac{2}{7} \end{cases}$$
 (2.23)

Il vient de cette étude :

$$\begin{cases} \gamma \in \left[-\frac{2}{7}, 0 \right] \Rightarrow \rho(R) = |1 + 2\gamma| \\ \text{Sinon } \rho(R) = |1 + 5\gamma| \end{cases}$$
 (2.24)

Nous cherchons ensuite les valeurs pour les quelles le rayon spectral est égal à 1. Comme les deux fonctions sont croissantes, il suffit de trouver les valeurs pour les quels nous avons $\rho(R) = 1$ ou -1.

$$\left\{ \gamma = 0 \Leftrightarrow \rho(R) = 1\gamma = -0.4 \Leftrightarrow \rho(R) = -1 \right. \tag{2.25}$$

Ainsi, pour que la méthode converge sur cet exemple, il faut que :

$$\gamma \in]-0.4,0[$$
 (2.26)

Ensuite, il est possible d'optimiser ce résultat. Pour cela, il nus faut trouver la valeur de γ telle que le rayon spectral soit minimal. Pour cela, on cherche sur chacun des intervalles le minimum du rayon spectral. Cette valeur est la valeur à la jonction des deux intervalles donc pour $\gamma = \frac{-2}{7}$. Cela se voit simplement en regardant le graph de rho sur l'intervalle ci-dessus. Pour cette valeur de γ particulière la méthode possède la meilleur convergence. Si on revient au problème de base, nous avons alors un méthode qui converge de la meilleur façon possible pour :

$$\beta = \frac{1}{\gamma} = -\frac{7}{2} \tag{2.27}$$

2.3.3 Un peu plus de théorie ...

Maintenant que nous avons montrer la démarche sur un exemple, nous allons essayer de généraliser aux matrices quelconques que l'on veut étudier grâce à cette méthode. Dans un premier temps, nous allons étudier les valeurs propres de la matrice d'itération R (cf. équation 2.8). En notant λ_i les valeurs propres de la matrices A et μ_i les valeurs propres de la matrice R, nous avons :

$$\mu_i = 1 - \gamma \lambda_i \tag{2.28}$$

En appliquant la condition de convergence de la suite, nous obtenons les égalités sui-

vantes:

$$-1 \leq 1 - \gamma \lambda_i \leq 1 \tag{2.29}$$

$$0 \le \gamma \lambda_i \le 2 \tag{2.30}$$

$$0 \le \gamma \le \frac{2}{\lambda_i} \tag{2.31}$$

On remarque que sur notre exemple cela est vrai. En effet, les valeurs propres de la matrice A choisie sont -5 et -2. Or $\frac{2}{-5} = -0.4$, cela confirme l'intervalle trouvé. La deuxième remarque porte sur le fait qu'il ne faut pas prendre une matrice A avec 0 en valeur propre.

Toujours dans le même esprit, nous allons chercher le meilleur γ théorique pour avoir la meilleur convergence. Ce problème est équivalent à minimiser le rayon spectral de la matrice d'itération qui dépends de γ . Or d'après les valeurs propres de cette matrice R, nous avons :

$$\rho(R) = \max_{i}(|1 - \gamma \lambda_i|) = \max(|1 - \gamma \lambda_1|, |1 - \gamma \lambda_n|)$$
(2.32)

où λ_1,λ_n sont respectivement la plus grande et la plus petite valeur propre. Maintenant, il nous reste à résoudre :

$$|1 - \gamma \lambda_1| = |1 - \gamma \lambda_n| \Rightarrow \begin{cases} 1 - \gamma \lambda_1 = 1 - \gamma \lambda_n \Leftrightarrow \gamma = 0 \\ ou \\ 1 - \gamma \lambda_1 = -1 + \gamma \lambda_n \Leftrightarrow \gamma = \frac{2}{\lambda_1 + \lambda_n} \end{cases}$$
 (2.33)

Une fois que nous avons les valeurs de l'égalité, une simple étude des deux valeurs propres extrêmes nous donne que le meilleur choix de γ est :

$$\gamma = \frac{2}{\lambda_1 + \lambda_n} \tag{2.34}$$

Optimisation du choix de la matrice d'itération

Nous avons vu dans la partie précédente qu'il existe différentes méthodes pour permettre de résoudre un système linéaire grâce à des méthodes itératives. Ainsi, toujours dans cette idée d'optimisation que nous avons exposé, nous nous sommes posé la question suivante : « Quelle est la matrice d'itération la plus optimisé pour résoudre un problème ». Une méthode est ressortie dans plusieurs ouvrage : Successive Over Relaxation.

3.1 Méthode SOR

C'est dans cette optique que nous nous sommes penchés sur la méthode dite "SOR".

3.1.1 Présentation de la méthode SOR

La méthode SOR (Successive Over Relaxation) est une méthode itérative dérivée de Gauss-Siedel. En effet, le processus de décoposition de la matrice A en deux matrices M et N telles que A = M - N est similaire à l'algorithme de Gauss-Seidel dans la forme des matrices M et N.

Si la méthode de Gauss-Seidel, vue précédemment, définie la matrice M par M=D-E avec D une matrice diagonale et E une matrice triangulaire inférieure à diagonale nulle et $N=F,\ F$ étant une matrice triangulaire supérieure à diagonale nulle, la méthode SOR définit ses matrices de la manière suivante, en introduisant un paramètre $\omega \in \mathbb{R}^*$ dit de relaxation.

$$M = \frac{1}{\omega}D - E \tag{3.1}$$

$$N = \left(\frac{1}{\omega} - 1\right)D + F \tag{3.2}$$

3.1. Méthode SOR 8

Par la suite, le procédé est le identique à celui de Gauss-Seidel ou Jacobi et on introduit donc sa matrice d'itération notée B.

$$B = M^{-1}N = \left[\frac{1}{\omega}D - E\right]^{-1} \left[\left(\frac{1}{\omega} - 1\right)D + F\right]$$
(3.3)

On remarquera que si $\omega = 1$, on retrouve la méthode de Gauss-Seidel. De plus, si $\omega < 1$, on parle de sous-relaxation et de sur-relaxation dans le cas où $\omega > 1$.

3.1.2 Intérêt de la méthode

Cette méthode a été développée peu après la Seconde Guerre mondiale afin de proposer une manière de résoudre des systèmes d'équations linéaires, spécifique aux ordinateurs. Si à l'époque, d'autres méthodes avaient été proposées, elles étaient principalement destinées aux êtres humains qui, par des processus non applicables par des ordinateurs, pouvaient assurer la convergence des méthodes. La méthode SOR est donc une méthode qui a fait progresser ce problème en ayant une meilleure vitesse de convergence que les méthodes numériques itératives alors utilisées.

L'avantage de la méthode SOR au niveau de la convergence est mathématiquement facilitée par les deux théorèmes suivant :

1. Théorème de Kahan (1958) : Le rayon spectral de la matrice de relaxation, donnée par :

$$T_{\omega} = T(\omega) = (I - \omega L)^{-1} \omega U + (1 - \omega)I$$

vérifie que $\forall \omega \neq 0$,

$$\rho(T_{\omega}) \ge |\omega - 1|$$

2. Théorème d'Ostrowski-Reich (1949-1954) : Si la matrice A est définie positive et que $\omega \in]0; 2[$, la méthode SOR converge pour tout choix de vecteur $x^{(0)}$ initial.

Afin qu'une méthode itérative converge, il est nécessaire que le rayon spectral de la matrice d'itération soit strictement inférieur à 1. Donc, pour que la méthode ne converge pas, il faut que le rayon spectral soit supérieur ou égal à 1. Avec le théorème de Kahan, on a :

$$|\omega - 1| \ge 1 \Leftrightarrow \omega \ge 2$$
 ou $\omega \le 0$

Ainsi, nous pouvons déduire du premier théorème, une condition nécessaire non suffisante de la convergence de la méthode SOR qui est :

$$0 < \omega < 2 \tag{3.4}$$

Le deuxième théorème (Ostrowski-Reich), permet quant à lui de conclure par rapport à la convergence de la méthode pour ω dans l'intervalle]0;2[. La combinaison de ces deux

3.1. Méthode SOR 9

théorèmes nous montre que la condition donnée à l'équation (3.4) est nécessaire et, est suffisante dans le cas où A est définie positive.

De plus, dans le cas où la matrice A est tridiagonale (les coefficients qui ne sont ni sur la diagonale principale, ni celle au dessus, ni celle au dessous, sont nuls), le théorème suivant nous donne la forme du coefficient de relaxation optimal :

Si A est définie positive et est tridiagonale, alors $\rho(T_g) = [\rho(T_j)]^2 < 1$ et, le choix optimal pour le coefficient de relaxation ω est donné par :

$$\omega_{optimal} = \frac{2}{1 + \sqrt{1 - [\rho(T_i)]^2}}$$

Avec ce choix de coefficient de relaxation, on a : $\rho(T_{\omega}) = \omega - 1$

La preuve de ce théorème est dans : Ortega, J. M., Numerical Analysis ; A Second Course, Academic Press, New York, 1972, 201 pp.

Preuve du théorème de Kahan : On a,

$$\prod_{i} \lambda_{i}(T(\omega)) = \det(T(\omega)) = \frac{\det(\omega U + (1 - \omega)I)}{\det(I - \omega L)} = (1 - \omega)^{n}$$

Or,

$$|\prod_{i} \lambda_{i}(T(\omega))| \leq \rho(T(\omega))^{n} \to |\omega - 1|^{n} \leq \rho(T(\omega))^{n}$$

Ainsi,

$$\rho(T(\omega)) > |\omega - 1|$$

<u>Preuve du théorème d'Ostrowski-Reich</u> : En utilisant le théorème de Kahan,on sait qu'il est nécessaire que $0 < \omega < 2$ est un critère nécessaire et non suffisant de convergence. De plus, pour une méthode SOR, on a

$$M_{SOR}(\omega) + M_{SOR}^*(\omega) - A = \left(\frac{2}{\omega - 1}\right)D$$
 puisque $L = U^*$

qui est symétrique définie positive si on est dans l'intervalle donné par le théorème de Kahan. Le théorème de Householder-John nous dit que pour une matrice A hermitienne définie positive, avec A=M-N avec M inversible, la méthode itérative converge pour toute donnée initiale si $M+N^*$ est définie positive. (N^* étant la matrice adjointe ou transconjugée à N soit $N^*=^t\overline{N}=\overline{tN}$).

Afin d'optimiser l'algorithme, on utilise souvent la méthode SSOR (Symetric Successive Over-Relaxation) afin de préconditionner la matrice avant de la traîter, cette méthode sera traîtée ultérieurement dans la partie optimisation.

3.1.3 Implémentation numérique

Les espaces de Krylov 3.2

3.2.1 Présentation théorique

De Jacobi à Krylov

On rappelle le résultat de la partie précédente sur la méthode de jacobi qui s'écrit :

$$x^{k+1} = -D^{-1}(L+U)x^k + D^{-1}b = (I-D^{-1}A)x^k + D^{-1}b$$
(3.5)

avec la matrice A du système qui se décompose comme : A = D + L + U, L une matrice triangulaire inférieur, U un matrice triangulaire supérieur et D diagonale. La matrice Aest inversible. On définit ensuite le résidu du système qui est par définition :

$$r^{k} \triangleq b - Ax^{k} = -A(-A^{-1}b + x^{k}) = -A(-x^{*} + x^{k})$$
(3.6)

Où x^* est la solution réel du système. En normalisant le système ci-dessus de tel sorte que D = I. Alors, nous pouvons écrire la solution au rang k+1, comme celle au rang k plus le résidu:

$$x^{k+1} = x^k + r^k (3.7)$$

$$\Leftrightarrow x^{k+1} - x^* = x^k - x^* + r^k \tag{3.8}$$

$$\Leftrightarrow -A(x^{k+1} - x^*) = -A(x^k - x^*) - Ar^k$$

$$\Leftrightarrow r^{k+1} = r^k - Ar^k$$
(3.9)

$$\Leftrightarrow r^{k+1} = r^k - Ar^k \tag{3.10}$$

Dans cette dernière équation récursive, nous pouvons voir que r^{k+1} est une combinaison linéaire des vecteurs précédents. Ainsi :

$$r^{k} \in Vect\{r^{0}, Ar^{0}, ..., A^{k}r^{0}\}$$
(3.11)

Cela implique directement:

$$x^k - x^0 = \sum_{i=0}^{k-1} r^i \tag{3.12}$$

Donc il vient que :

$$x^k \in x^0 + Vect\{r^0, Ar^0, ..., A^k r^0\}$$
 (3.13)

Où $Vect\{r^0,Ar^0,...,A^kr^0\}$ est le k-ème espace de Krylov généré par A à partir de r^0 noté $\mathcal{K}_k(A, r^0)$

De nouvelles propriétés

Maintenant que nous avons une définition de ces espaces, nous allons montrer plusieurs propriétés pour ensuite construire l'algorithme afin de l'implémenter. Le premier fait remarquable des espaces de krylov est que par construction, nous avons :

$$\mathscr{K}_{k-1}(A, r^0) \in \mathscr{K}_k(A, r^0) \tag{3.14}$$

Ensuite, il est important de montrer que la solution que l'on cherche appartient à cet espace. Nous reprenons donc notre système linéaire possédant une unique solution :

$$Ax = b (3.15)$$

D'après la définition du problème, la matrice A est inversible. Nous supposons que l'on a le polynôme caractéristique de A :

$$P(\lambda) = \sum_{j=0}^{n} \alpha_j t^j \Rightarrow P(0) = \alpha_0 = \det(A) \neq 0$$
(3.16)

Par le théorème de Cayley-Hamilton, nous pouvons obtenir la valeur de A^{-1} :

$$P(A) = \alpha_0 I + \alpha_1 A + \dots + \alpha_n A^n = 0 \tag{3.17}$$

$$\alpha_0 A^{-1} A + \alpha_1 A + \dots + \alpha_n A^n = 0 (3.18)$$

$$(\alpha_0 A^{-1} + \alpha_1 + \dots + \alpha_n A^{n-1})A = 0 (3.19)$$

$$\alpha_0 A^{-1} + \alpha_1 + \dots + \alpha_n A^{n-1} = 0 (3.20)$$

Ce qui donne finalement :

$$A^{-1} = -\frac{1}{\alpha_0} \times \sum_{j=0}^{n-1} \alpha_{j+1} A^j$$
 (3.21)

Or la solution du problème 3.15 est : $x^* = A^{-1}b$. Ce qui peut s'écrire de la façon suivante :

$$x^* = -\frac{1}{\alpha_0} \sum_{j=0}^{n-1} \alpha_{j+1} A^j b$$
 (3.22)

Ce vecteur appartient clairement à l'espace de Krylov défini par :

$$x^* \in \mathcal{K}(A, b) \tag{3.23}$$

Ainsi, la solution de notre problème appartient à l'espace de krylov défini par les deux données du problème que sont A et b.

Generalized Minimum Residual Method (GMRES)

```
x_0 = \text{initial guess}

r = b - Ax_0

q_1 = r/||r||_2

for k = 1, 2, ..., m

y = Aq_k

for j = 1, 2, ..., k

h_{jk} = q_j^T y

y = y - h_{jk}q_j

end

h_{k+1,k} = ||y||_2 \text{ (If } h_{k+1,k} = 0, \text{ skip next line and terminate at bottom.)}

q_{k+1} = y/h_{k+1,k}

Minimize ||Hc_k - [||r||_2 0 0 ... 0]^T ||_2 \text{ for } c_k

x_k = Q_k c_k + x_0

end
```

FIGURE 3.1 – Algorithme GMRES

3.2.2 L'algorithme GMRES

Un des algorithmes utilisant les espaces de Krylov est l'algorithme GMRES qui se trouve ci-dessous en pseudo-code (cf. figure 3.1) avec l'implémentation de celui-ci en python.

```
def GMRES(A, b, espilon):
          max_iter = A.shape[0] #Number of maxiter
          mat_q = np.zeros((max_iter, max_iter + 1))
3
          mat_h = np.zeros((max_iter + 1, max_iter))
          norm_b = np.linalg.norm(b)
          be1 = np.zeros(max_iter + 1)
          be1[0] = norm_b
          mat_q[:, 0] = 1 / np.linalg.norm(b) * b.T # On définit ici que
           \rightarrow l'on a forcément x0 = 0
          for j in range(max_iter):
9
                  mat_q[:, j+1] = A @ mat_q[:, j]
10
                  for i in range(j+1):
11
                          12
                          mat_q[:, j+1] -= mat_h[i, j] * mat_q[:, i]
13
                  mat_h[j + 1, j] = np.linalg.norm(mat_q[:, j + 1])
14
```

Cette méthode repose sur les espaces de krylov. En effet, dans cet algorithme nous choisissons $x_k \in \mathcal{K}_k(A, b)$ tel que l'on a $||b - Ax_k||_2$. Nous nous reposons sur une méthode de projection. L'algorithme repose aussi sur le procédé d'Arnoldi qui nous permet de créer une base orthonormal sur le sous-espace de krylov. Dans la suite de ce chapitre, nous allons étudier ces composantes permettant d'arriver à l'écriture de notre algorithme.

Généralité

Procédé d'Arnoldi

Explication GMRES

Des algorithmes complexes...

4.1 Optimisation des méthodes

4.1.1 Optimisation mathématique

Bah, préconditionne, fdp Il va falloir inclure les préconditionnements https://mathlinux.com/mathematiques/resolution-de-systemes-lineaires/article/la-methode-du-gradient-conjugue-preconditionne

4.1.2 Optimisation numérique

Bah, fais pas de la merde, fdp

4.2 Étude de la complexité

Conclusion & ouverture

Liste des sigles et acronymes

Table des figures

3.1	Algorithme GMRES																																-	12)
-----	------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	----	---

Liste des tableaux