RESOLUTION OF COLLISION

Linear Complementarity Programming (LCP)

- The resulting system remains nonconvex and challenging to solve with accuracy for complex scenes
- The required constraint linearization will cause intersections

Penalties

- Fails for fast-moving models or large time steps
- Manual tuning of stiffness parameters
- Interpenetration

RESOLUTION OF COLLISION

☐ The trajectory in Rigid-IPC becomes curved due to strictly rigidity motion

Rigid-IPC [Ferguson et al. 2021]

- Guaranteed intersection-free collision resolution
- Faster than LCP-based solutions for complicated contacts
- More robust than regular penalty methods

Benefit from IPC

Using smooth approximation to substitute rigidity constraints

Affine Body Dynamics

ABD KINEMATICS

For each d body b, there is a time-varying linear transform $A_b(t) \in \mathbb{R}^{3\times 3}$, and a translation $p_b(t) \in \mathbb{R}^3$.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad p = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix}$$

Then store per-body configuration in the vector form of:

Each material point k in body b has a body frame (equivalently rest) position \bar{x}_k , corresponding world frame coordinates given by the affine map:

$$x_k = A_b \bar{x}_k + p_b = J(\bar{x}_k)q,$$

$$\dot{x}_k = \dot{A}_b \bar{x}_k + \dot{p}_b = J(\bar{x}_k)\dot{q}.$$

Here note that $J(\bar{x}) = [I_3, I_3 \otimes \bar{x}]$ is constant across all configuration changes.

KINETIC ENERGY

Given a mass density distribution, ρ , over the body domain, Ω , the kinetic energy of each affine body is then

$$\frac{1}{2} \int_{\Omega} \rho \dot{x}^T \dot{x} \, d\Omega = \frac{1}{2} \int_{\Omega} \rho (\dot{A}\bar{x} + \dot{p})^T (\dot{A}\bar{x} + \dot{p}) \, d\Omega$$

$$= \frac{1}{2} \dot{q}^T \left(\int_{\Omega} \rho \, J(\bar{x})^T J(\bar{x}) \, d\Omega \right) \dot{q},$$
Mass Matrix \longleftarrow A constant
No nonlinear Coriolis-type forces tential energy the free ABD is

With V the total potential energy the free ABD is then simply the equations of motion:

where external forces $f_k \in \mathbb{R}^3$, applied at material points k, are included as $f = \sum_k J(\bar{x}_k)^T f_k$.

ORTHOGONALITY POTENTIAL

Rigidify each affine body with a stiff orthogonality potential in place of SE(3) coordinates:

$$V_{\perp}(q) = \kappa \nu \|\mathsf{A}\mathsf{A}^T - \mathsf{I}_3\|_F^2,$$

scaled by the stiffness κ and the body's volume ν .

It can be computed as a polynomial

$$V_{\perp} = \kappa \nu \left(\sum (a_i \cdot a_i - 1)^2 + \sum_{i \neq j} (a_i \cdot a_j)^2 \right),$$

Gradient and Hessian:

$$\frac{\partial V_{\perp}}{\partial a_i} = 2\kappa \nu \left(2(a_i \cdot a_i - 1)a_i + 2\sum_{i=1}^{n} (a_j \otimes a_j)a_i \right),$$

$$\frac{\partial^2 V_{\perp}}{\partial a_i^2} = 2\kappa \nu \left(4a_i \otimes a_i + 2(\|a_i\|^2 - 1)\mathsf{I}_3 + 2\sum_{i=1}^{n} a_j \otimes a_j \right).$$

AFFINE IPC

Unconstrained time step update

The incremental potential (IP), E_b , for each affine body $b \in \mathcal{B}$:

$$q_b^{t+1} = \arg\min_{q_b} E_b(q_b), \quad E_b = \frac{1}{2} ||q_b - \widetilde{q}_b||_{\mathsf{M}}^2 + \Delta t^2 V_{\perp}(q_b).$$

Here, Δt is the time step size and $\tilde{q}_b = q_b^t + \Delta t \dot{q}_b^t + \Delta t^2 M^{-1} f_b^{t+1}$

Adding Constraints

IPC potentials for contact

$$V_C(q) = \kappa \sum_{i \in \mathcal{C}} B(d_i(q)), \quad B(d, \hat{d}) = \begin{cases} -(d - \hat{d})^2 \ln\left(\frac{d}{\hat{d}}\right), & 0 < d < \hat{d} \\ 0, & d \ge \hat{d} \end{cases},$$

All possible pairings for contact

Friction potential

$$V_F(q) = \sum_{j \in \mathcal{F}} \mu \lambda_j m_j(q),$$
Active subset of contact pair

Solve for the minimizer of the global IP for the full contact coupled system:

$$E = \sum E_b + V_C + V_F$$

AFFINE CCD

At any iteration ℓ of a Newton solve, new positions of the vertices x_j in each possible contacting pair, per participating body b, is $A_b^{\ell} \bar{x}_j + p_b^{\ell}$.

Search direction

$$\Delta \mathsf{A}_b^\ell = \mathsf{A}_b^\ell - \mathsf{A}_b^{\ell-1}$$

$$\Delta p_b^\ell = p_b^\ell - p_b^{\ell-1}$$

$$(\mathsf{A}_b^{\ell-1} + \alpha \Delta \mathsf{A}_b^\ell) \bar{x}_j + p_b^\ell + \alpha \Delta p_b^{\ell-1}, \quad \alpha \in [0,1]$$

ABD PSEUDO-CODE

$$\hat{C} \leftarrow \text{ComputeConstraintSet}(x,\hat{d}), E_{prev} \leftarrow B_{t}(x,\hat{d},\hat{C})$$
 Newton loop (IPC): $B_{t}(x,\hat{d},\hat{C}) = E(x) + \kappa \sum_{k \in \hat{C}} b(D_{k}(x),\hat{d})$ Do
$$H \leftarrow \text{SPDProject}(\nabla_{x}^{2}B_{t}(x,\hat{d},\hat{C}))$$
 Replace with Affine IPC
$$p \leftarrow -H^{-1}\nabla_{x}B_{t}(x,\hat{d},\hat{C})$$

$$\alpha \leftarrow \min(1, CCD(x,x+p))$$
 Do
$$x \leftarrow x_{prev} + \alpha p$$

$$\hat{C} \leftarrow \text{ComputeConstraintSet}(x,\hat{d})$$

$$\alpha \leftarrow \alpha/2$$
 Affine CCD While $B_{t}(x,\hat{d},\hat{C}) > E_{prev}$
$$E_{prev} \leftarrow B_{t}(x,\hat{d},\hat{C}), x_{prev} \leftarrow x$$
 Update κ , boundary conditions, etc While $\|p\|_{\infty}/h > \epsilon_{d}$

SPEED UP AND PARALLELISM

Contact Culling via i-AABB

Contact-Aware Hessian Construction

- Nonzero diagonal blocks are given by a constant mass term and the orthogonality potentials' Hessian
- Two-pass strategy to compute and assemble barrier and friction terms for the global Hessian

JOINT CONSTRAINTS

It is known that a non-degenerate tetrahedron uniquely defines an affine transform.

Let ϕ denote the map between q and this virtual tetrahedron such that $q = \phi(P)$.

$$P = \begin{bmatrix} p_{1x} & p_{2x} & p_{3x} & p_{4x} \\ p_{1y} & p_{2y} & p_{3y} & p_{4y} \\ p_{1z} & p_{2z} & p_{3z} & p_{4z} \end{bmatrix}^{T} \phi(P) = \begin{bmatrix} \frac{1}{4} \sum_{i} (p_i - \bar{p}_i)^T, \text{vec}^T \left(P \bar{P}^T (\bar{P} \bar{P}^T)^{-1} \right) \end{bmatrix}^{T}$$

Clearly ϕ is a linear function of P. Therefore, the Jacobi of the system remains constant:

$$J_i = \frac{\partial x_i}{\partial q} \cdot \frac{\partial \phi}{\partial \text{vec}(P)} \in \mathbb{R}^{3 \times 12}.$$

From this perspective, an affine body simulation can be viewed as a single-element FEM of which geometry can be setup flexibly

HYBRID SIMULATION

The collision between rigid and soft bodies can be handled uniformly using barrier-based penalties

COMPARE WITH BULLET

Test	# Bdy	# Tri./Edg.	$\Delta t \text{ (sec)}$	# Iter.	Time (ms)
Light	16	1.2K/796	1/100	1.9	3 2
			1/240	1.5	2.2 1.5
			1/1000	1.1	2 3
Medium	142	3.5K/2.3K	1/100	7.6	92 68
			1/240	2.9	41 58
			1/1000	1.3	19 82
Full			1/100	11.0	657 629
	562	11K/7.3K	1/240	4.4	328 809
			1/1000	1.8	102 804

COMPARE WITH BULLET

