DSA 8020 R Session 12: Time Series Analysis I

Whitney

Contents

Time Series Data	1
Lake Huron Time Series	1
CO_2 Concentration	2
U.S. monthly unemployment rates	3
Time Series Models	5
ARMA: Autocovariance Function (ACF)	5
ARMA: Partial Autocorrelation Function (PACF)	6
Lake Huron Case Study	7
Plot the time series data	7
Calculate ACF and PACF	8
Estimate the linear trend	9
Recompute ACF and PACF for the detrended time series	9
ARMA model fitting, selection, and diagnostics	10
AR(2)	13
ARMA(2, 1)	14
Model selection using AIC	16
AR(2) Fitting and Forecasting	16

Time Series Data

Lake Huron Time Series

Annual measurements of the level of Lake Huron in feet

```
par(mar = c(3.2, 3.2, 0.5, 0.5), mgp = c(2, 0.5, 0), bty = "L")
data(LakeHuron)
plot(LakeHuron, ylab = "Depth in feet", xlab = "Year", las = 1)
points(LakeHuron, pch = 16, col = "blue")
grid()
```


CO_2 Concentration

Atmospheric concentrations of CO2 are expressed in parts per million (ppm) and reported using the preliminary 1997 SIO manometric mole fraction scale.

```
data(co2)
par(mar = c(3.8, 4, 0.8, 0.6))
plot(co2, las = 1, xlab = "", ylab = "")
points(co2, pch = 16, col = "blue", cex = 0.5)
mtext("Time (year)", side = 1, line = 2)
mtext(expression(paste("CO"[2], " Concentration (ppm)")), side = 2, line = 2.5)
grid()
```



```
# Seasonal and Trend decomposition using Loess (STL)
par(mar = c(4, 3.6, 0.8, 0.6))
stl <- stl(co2, s.window = "periodic")
plot(stl, las = 1)</pre>
```


U.S. monthly unemployment rates

```
library(quantmod)
getSymbols("UNRATE", src = "FRED")
```

[1] "UNRATE"

head(UNRATE); tail(UNRATE)

##	1948-01-01	UNRATE 3.4
##	1948-02-01	3.8
##	1948-03-01	4.0
##	1948-04-01	3.9
##	1948-05-01	3.5
##	1948-06-01	3.6
##		UNRATE
## ##	2024-09-01	UNRATE 4.1
	2024-09-01 2024-10-01	
## ##		4.1
## ##	2024-10-01	4.1
## ## ## ##	2024-10-01 2024-11-01	4.1 4.1 4.2

chartSeries(UNRATE)

Time Series Models

ARMA: Autocovariance Function (ACF)

```
set.seed(123)
n = 200
WN <- rnorm(n)
par(mfrow = c(4, 2), mar = c(3.6, 3.6, 1.2, 0.6))
plot(1:n, WN, type = "l", las = 1, xlab = "", ylab = "")
mtext("WN")
acf(WN, xlab = "", ylab = "", main = "", las = 1)
mtext("ACF")
\# AR(1) phi = 0.8
set.seed(123)
AR \leftarrow arima.sim(n = n, model = list(ar = 0.8))
plot(1:n, AR, type = "l", las = 1, xlab = "", ylab = "")
mtext("AR(1)")
acf(AR, xlab = "", ylab = "", main = "", las = 1)
\# MA(1) theta = 0.5
set.seed(123)
MA \leftarrow arima.sim(n = n, model = list(ma = 0.5))
plot(1:n, MA, type = "l", las = 1, xlab = "", ylab = "")
mtext("MA(1)")
acf(MA, xlab = "", ylab = "", main = "", las = 1)
\# ARMA(1, 1) phi = 0.8, theta = 0.5
set.seed(123)
ARMA \leftarrow arima.sim(n = n, model = list(ar = 0.8, ma = 0.5))
plot(1:n, ARMA, type = "l", las = 1, xlab = "", ylab = "")
mtext("ARMA(1,1)")
mtext("Time", side = 1, line = 2)
acf(ARMA, xlab = "", ylab = "", main = "", las = 1)
mtext("Lag", side = 1, line = 2)
```


ARMA: Partial Autocorrelation Function (PACF)

```
par(mfrow = c(4, 2), mar = c(3.6, 3.6, 1.2, 0.6))
plot(1:n, WN, type = "1", las = 1, xlab = "", ylab = "")
mtext("WN")
pacf(WN, xlab = "", ylab = "", main = "", las = 1)
mtext("PACF")
\# AR(1) phi = 0.8
set.seed(123)
AR \leftarrow arima.sim(n = n, model = list(ar = 0.8))
plot(1:n, AR, type = "l", las = 1, xlab = "", ylab = "")
mtext("AR(1)")
pacf(AR, xlab = "", ylab = "", main = "", las = 1)
\# MA(1) theta = 0.5
set.seed(123)
MA <- arima.sim(n = n, model = list(ma = 0.5))
plot(1:n, MA, type = "l", las = 1, xlab = "", ylab = "")
mtext("MA(1)")
pacf(MA, xlab = "", ylab = "", main = "", las = 1)
\# ARMA(1, 1) phi = 0.8, theta = 0.5
set.seed(123)
ARMA \leftarrow arima.sim(n = n, model = list(ar = 0.8, ma = 0.5))
plot(1:n, ARMA, type = "l", las = 1, xlab = "", ylab = "")
mtext("ARMA(1,1)")
mtext("Time", side = 1, line = 2)
pacf(ARMA, xlab = "", ylab = "", main = "", las = 1)
mtext("Lag", side = 1, line = 2)
```


Lake Huron Case Study

Plot the time series data

```
## Let us create a 'years' variable.
years <- time(LakeHuron)
## Plot time series
plot(LakeHuron, ylab = "Depth (ft)", xlab = "Year", las = 1)
points(LakeHuron, col = "blue", pch = 16, cex = 0.8)
grid()</pre>
```


Calculate ACF and PACF

```
par(mfrow = c(2, 1), mar = c(4, 4, 1, 1), las = 1)
acf(LakeHuron, xlab = "Lag in years", ylab = "sample ACF", main = "")
pacf(LakeHuron, xlab = "Lag in years", ylab = "sample PACF", main = "")
```


Estimate the linear trend

```
lm <- lm(LakeHuron ~ years)
par(mfrow = c(2, 1), mar = c(3.5, 3.5, 1, 0.6))
plot(LakeHuron, ylab = "", xlab = "", las = 1); grid()
abline(lm, col = "blue", lty = 2)
mtext("Depth (ft)", 2, line = 2.4)
deTrend <- resid(lm)
plot(1875:1972, deTrend, type = "l", ylab = "", xlab = "", las = 1); grid()
abline(h = 0, col = "blue", lty = 2)
mtext("Year", 1, line = 2)
mtext("Depth (ft)", 2, line = 2.4)</pre>
```


Recompute ACF and PACF for the detrended time series

```
par(mfrow = c(1, 2), mar = c(4, 4, 1, 1), las = 1)
acf(deTrend, xlab = "Lag in years", ylab = "sample ACF", main = "")
pacf(deTrend, xlab = "Lag in years", ylab = "sample PACF", main = "")
```


ARMA model fitting, selection, and diagnostics

```
(ar1.model <- arima(deTrend, order = c(1, 0, 0), method = "ML"))</pre>
AR(1)
##
## Call:
## arima(x = deTrend, order = c(1, 0, 0), method = "ML")
##
## Coefficients:
##
                 intercept
            ar1
##
         0.7829
                    0.0799
## s.e. 0.0634
                    0.3179
## sigma^2 estimated as 0.4972: log likelihood = -105.29, aic = 216.58
ar1.resids <- resid(ar1.model)</pre>
plot(1875:1972, ar1.resids, type = "l", xlab = "year", ylab = "AR1 residuals")
```



```
## Sample ACF and PACF of the residuals
par(mfrow = c(1, 2))
acf(ar1.resids, ylab = "sample ACF", xlab = "lag (year)")
pacf(ar1.resids, ylab = "sample PACF", xlab = "lag (year)")
```

Series ar1.resids

Series ar1.resids


```
## Normal Q-Q plot for the residuals
qqnorm(ar1.resids, main = ""); qqline(ar1.resids, col = "blue")
## Test for time dependence for the residuals
Box.test(ar1.resids, lag = 5, fitdf = 1, type = "Ljung-Box")
```

```
##
## Box-Ljung test
##
## data: ar1.resids
## X-squared = 7.9867, df = 4, p-value = 0.09207
```


Theoretical Quantiles

```
(ar2.model <- arima(deTrend, order = c(2, 0, 0), method = "ML"))
AR(2)
##
## Call:
## arima(x = deTrend, order = c(2, 0, 0), method = "ML")
##
## Coefficients:
##
            ar1
                     ar2
                          intercept
##
         1.0047
                 -0.2919
                             0.0197
        0.0977
                  0.1004
                             0.2350
## s.e.
##
## sigma^2 estimated as 0.4571: log likelihood = -101.25, aic = 210.5
## calculate the residuals
ar2.resids <- resid(ar2.model)</pre>
## Sample ACF and PACF of the residuals
par(mfrow = c(1, 2))
acf(ar2.resids, ylab = "sample ACF", xlab = "lag (year)")
pacf(ar2.resids, ylab = "sample PACF", xlab = "lag (year)")
```

Series ar2.resids

Series ar2.resids


```
## Test for time dependence for the residuals
Box.test(ar2.resids, lag = 5, fitdf = 2, type = "Ljung-Box")
```

```
##
## Box-Ljung test
##
## data: ar2.resids
## X-squared = 0.55962, df = 3, p-value = 0.9056
```

```
## Normal Q-Q plot for the residuals
qqnorm(ar2.resids, main = ""); qqline(ar2.resids, col = "blue")
```


Theoretical Quantiles

```
(arma21.model \leftarrow arima(deTrend, order = c(2, 0, 1)))
ARMA(2, 1)
##
## Call:
## arima(x = deTrend, order = c(2, 0, 1))
## Coefficients:
##
            ar1
                     ar2
                             ma1
                                  intercept
##
         0.8374 -0.1622 0.1846
                                      0.0245
## s.e. 0.3180
                  0.2621 0.3180
                                      0.2452
##
## sigma^2 estimated as 0.4556: log likelihood = -101.09, aic = 212.18
## calculate the residuals
arma21.resids <- resid(arma21.model)</pre>
## Sample ACF and PACF of the residuals
par(mfrow=c(1,2))
acf(arma21.resids, ylab = "sample ACF", xlab = "lag (year)")
pacf(arma21.resids, ylab = "sample PACF", xlab = "lag (year)")
```

Series arma21.resids

Series arma21.resids


```
## Normal Q-Q plot for the residuals
qqnorm(arma21.resids, main = ""); qqline(arma21.resids, col = "blue")
## Test
Box.test(arma21.resids, lag = 5, fitdf = 3, type = "Ljung-Box")
```

```
##
## Box-Ljung test
##
## data: arma21.resids
## X-squared = 0.2297, df = 2, p-value = 0.8915
```


Theoretical Quantiles

```
AIC(ar1.model); AIC(ar2.model); AIC(arma21.model)
Model selection using AIC
## [1] 216.5835
## [1] 210.5032
## [1] 212.1784
library(forecast)
auto.arima(deTrend, trace = T)
##
##
   ARIMA(2,0,2) with non-zero mean : 215.0455
  ARIMA(0,0,0) with non-zero mean: 304.222
## ARIMA(1,0,0) with non-zero mean : 216.8388
## ARIMA(0,0,1) with non-zero mean : 235.4585
                                  : 302.1373
## ARIMA(0,0,0) with zero mean
## ARIMA(1,0,2) with non-zero mean : 212.7747
## ARIMA(0,0,2) with non-zero mean : 218.2478
## ARIMA(1,0,1) with non-zero mean : 210.9477
## ARIMA(2,0,1) with non-zero mean : 212.8306
## ARIMA(2,0,0) with non-zero mean : 210.9333
## ARIMA(3,0,0) with non-zero mean : 212.7787
## ARIMA(3,0,1) with non-zero mean : Inf
## ARIMA(2,0,0) with zero mean
                                 : 208.7655
## ARIMA(1,0,0) with zero mean
                                  : 214.7735
                                   : 210.569
## ARIMA(3,0,0) with zero mean
## ARIMA(2,0,1) with zero mean
                                   : 210.6186
## ARIMA(1,0,1) with zero mean
                                   : 208.7891
## ARIMA(3,0,1) with zero mean
##
   Best model: ARIMA(2,0,0) with zero mean
## Series: deTrend
## ARIMA(2,0,0) with zero mean
##
## Coefficients:
##
           ar1
                    ar2
##
        1.0050 -0.2925
## s.e. 0.0976
                 0.1002
## sigma^2 = 0.4667: log likelihood = -101.26
## AIC=208.51
              AICc=208.77
                             BIC=216.27
```

AR(2) Fitting and Forecasting

```
(fit <- Arima(LakeHuron, order = c(2, 0, 0), include.drift = T))
## Series: LakeHuron
## ARIMA(2,0,0) with drift
##
## Coefficients:
##
              ar1
                        ar2
                             intercept
                                            drift
##
          1.0048
                   -0.2913
                               580.0915
                                          -0.0216
                                 0.4636
                                           0.0081
          0.0976
                    0.1004
##
## sigma^2 = 0.476: log likelihood = -101.2
## AIC=212.4
                 AICc=213.05
                                 BIC=225.32
par(mfrow = c(2, 2), mar = c(4.1, 4, 1, 0.8), las = 1)
res <- fit$residuals</pre>
plot(res, type = "l", xlab = "year", ylab = "AR(2) residuals", las = 1)
abline(h = 0, col = "blue")
qqnorm(res, main = ""); qqline(res, col = "blue")
acf(res, ylab = "sample ACF", xlab = "lag (year)")
pacf(res, ylab = "sample PACF", xlab = "lag (year)")
AR(2) residuals
0.0 -0.0
0.1 -0.0
0.1 -0.0
    1.5
                                               Sample Quantiles
                                                   1.5
                                                   1.0
                                                   0.5
                                                   0.0
                                                  -0.5
                                                  -1.0
   -1.5
                                                  -1.5
                                                                          0
                                                                                1
                                                                                      2
           1880
                        1920
                                     1960
                                                            -2
                                                                Theoretical Quantiles
                         year
                                                   0.2
    1.0
    8.0
                                              sample PACF
sample ACF
                                                   0.1
    0.6
    0.4
                                                   0.0
    0.2
                                                  -0.1
    0.0
   -0.2
                                                  -0.2
                   5
                           10
                                   15
                                                                 5
                                                                         10
                                                                                  15
           0
                       lag (year)
                                                                     lag (year)
# 10-year-ahead forecasts
autoplot(forecast(fit, h = 10, level = c(50, 95)))
```

Forecasts from ARIMA(2,0,0) with drift

