# Thermodynamic Costs of Turing Machines (Kolchinsky and Wolpert 2020)

Daniel Briseno

February 18, 2021

# Context of the Paper

## Prior work on Thermodynamics of Information Processing

- Landauer cost of erasing a bit:  $kT \ln 2$  (1961)
- Logically reversible computations can be performed with no heat or entropy production (1973)
- Informal argument for minimum cost of  $x \mapsto y$  (1989 2019)
- Development of non-equilibrium statistical physics
  - Trajectory-based and stochastic thermodynamics (2013-2015)
- Thermodynamic costs of specific implementations of Turing Machines (TM)(2015-2019)

# Purpose of the Paper

## Thermodynamic costs of computation

- Extends results to general class of TM
- $\blacksquare$  Analyzes the thermodynamic costs of  $f:\mathbb{N} \nrightarrow \mathbb{N}$  on a physical implementation of a TM M
- lacksquare Logical properties of f and M impose constraints on thermodynamic costs.
- Result might generalize to any implementation of a TM

# Background – Computer Science

# Turing Machines



Figure: Graphical representation of a TM

# Background - Computer Science

## Additional Assumptions on TM ${\cal M}$

- $\Sigma = \{0, 1, b\}$
- 2 If and when M halts on an input, the tape will contain an output string  $s \in \{0,1\}^*$  followed by all blank symbols, and the pointer will be set to the start of the tape.

Assumptions do not affect the computational capabilities of M.

# Background - Computer Science

#### Turing Machines as Partial Functions

Any computation performed by a TM  ${\cal M}$  can be represented as

$$\phi_M: \{0,1\}^* \to \{0,1\}^*$$

and  $\phi_M(x)=y$  indicates that M started with input program x yields the output string y.

#### Universal TM

There exist Universal Turing Machines (UTM) such that given a UTM U and any TM M, there exists an interpreter program  $\sigma_{U,M}$  such that

$$\phi_U(\sigma_{U,M},x) = \phi_M(x)$$

# Background - Computer Science

## Computability

- Church Turing Thesis: A function can be calculated by a sequence of formal operations if and only if it is computable by a Turing Machine.
- Physical Church Turing Thesis: Any function implemented by a physical process can also be implemented by a Turing Machine

# Background – Algorithmic Information Theory

## Kolmogorov Complexity

The Kolmogorov complexity  $K_U$  of a bitstring x is the length of the shortest input program that when given to a UTM U can produce x as an output:

$$K_U(x) := \min_{z:\phi_U(z)=x} \ell(z)$$

Measure of amount of information in x

# Background – Algorithmic Information Theory

## Kolmogorov Complexity of Bitstring $\boldsymbol{x}$

$$K_U(x) := \min_{z:\phi_U(z)=x} \ell(z)$$

## Kolmogorov Complexity of a Computable Function f

$$K_U(f) := \min_{M:\phi_M = f} \ell(\sigma_{U,M})$$

## Conditional Kolmogorov Complexity of $\boldsymbol{x}$ Given Bitstring $\boldsymbol{y}$

$$K_U(x|y) = \min_{z:\phi_U(z,y)=x} \ell(z)$$

# Background - Algorithmic Information Theory

#### Invariance Theorem

For distinct UTM U, U':

$$K_{U'}(x) = K_U(x) + O(1)$$

Thus, U is usually omitted and we write K(x) for Kolmogorov complexity of x

# Background - Input Distributions

## Coin-Flipping Distribution

- Input string x as random variable with probability distribution  $p_X$
- lacktriangleright Important example: coin flipping distribution of TM M

$$m_X^{\mathsf{coin}}(x) := egin{cases} 2^{-\ell(x)} & \text{if } x \in \mathsf{dom} \ \phi_M \\ 0 & \text{otherwise} \end{cases}$$

• With normalizing constant  $\Omega_M := \sum_{x \in \text{dom } \phi_M} 2^{-\ell(x)}$ 

$$p_X^{\rm coin}(x) = m_X^{\rm coin}(x)/\Omega_M$$

# Background – Entropy

## Shannon Entropy of Distribution $p_X$

$$S(p_X) = -\sum_{x \in X} p_X(x) \ln[p_X(x)]$$

- $lue{}$  Measure of amount of information in  $p_X$
- $-\ln[p_X(x)]$ : "surprisal", how unexpected, and hence informative, is x?
- $p_X(x)$ : how often do we receive surprise  $\ln p_X$

# Background – Entropy

## Entropy Production (EP)

The expected EP, written  $\Sigma(p_X)$  of a physical process with initial state distribution  $p_X$  and final state distribution  $p_Y$  is:

$$\Sigma(p_X) = S(p_Y) - S(p_X) + \langle Q \rangle_{p_X} / kT$$

Thermodynamically reversible processes have  $\Sigma(p_X)=0$ . EP is always nonnegative.

# Physical Setup

## Physical System Under Consideration

- lacktriangle Countable state-space  ${\mathcal X}$
- Connected to a work reservoir
- Connected to heat bath at temperature T
  - Bath in a Boltzmann distribution
- lacksquare System evolves according to driving protocol during time interval  $[0,t_f]$

The heat function Q(x) is the expected thermal energy transferred from the system to the heat bath.

# Physical Setup



# Physical Setup

## System under consideration

The joint Hamiltonian of the system is

$$H_X^t(x) + H_B(b) + H_{\mathsf{int}}(x,b)$$

If  $p_B(b)$  is the initial distribution of the bath and  $p_{B|X}^\prime$  is the final distribution, then:

$$Q(x) = \langle H_B \rangle_{p'_{B|x}} - \langle H_B \rangle_{p_B}$$

## Realizations of a TM

## Realization Formally Defined

- Let  $p_{Y|X}$  be the conditional probability distribution of the system's final state y given initial state x
- A physical process is a **realization** of a partial function  $f: \mathcal{X} \nrightarrow \mathcal{X}$  if

$$p_{Y|X}(y|x) = \delta(f(x), y)$$

## Realization of a TM M Formally Defined

- TM M can be written as a partial function  $\phi_M:\{0,1\} \nrightarrow \{0,1\}$
- lacksquare A physical process is a realization of a TM M if it is a realization of  $\phi_M$