Funções Especiais

Maria Joana Torres

2022/23

Gráficos das funções trigonométricas

Funções trigonométricas

Tangente

$$\operatorname{tg}: \mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi:\ k\in\mathbb{Z}\right\}\longrightarrow\mathbb{R}\quad \ \operatorname{tal} \ \operatorname{que}\quad \operatorname{tg} x=\frac{\operatorname{sen} x}{\cos x}$$

Cotangente

$$\cot z : \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\} \longrightarrow \mathbb{R} \quad \text{tal que } \cot z = \frac{\cos x}{\sin x}$$

Secante

$$\sec\,:\mathbb{R}\setminus\left\{\tfrac{\pi}{2}+k\pi:\ k\in\mathbb{Z}\right\}\longrightarrow\mathbb{R}\quad \text{ tal que } \sec x=\frac{1}{\cos x}$$

Cossecante

$$\operatorname{cosec} : \mathbb{R} \setminus \{k\pi: \ k \in \mathbb{Z}\} \longrightarrow \mathbb{R} \quad \text{ tal que } \operatorname{cosec} x = \frac{1}{\operatorname{sen} x}$$

Gráficos das funções trigonométricas

Algumas propriedades das funções trigonométricas

- 1. $\forall a \in \mathbb{R} \quad \text{sen }^2 a + \cos^2 a = 1;$
- **2.** $\forall a \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\}$ $1 + \operatorname{tg}^2 a = \sec^2 a;$
- **3.** $\forall a \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}$ $1 + \cot^2 a = \csc^2 a$;
- **4.** $\forall a \in \mathbb{R} \quad \text{sen} (-a) = -\text{sen} a$ (a função seno é ímpar);
- **5.** $\forall a \in \mathbb{R} \quad \cos(-a) = \cos a$ (a função cosseno é par);
- **6.** $\forall a \in \mathbb{R}$ $\cos(\frac{\pi}{2} a) = \sin a$ e $\sin(\frac{\pi}{2} a) = \cos a$;
- 7. $\forall a \in \mathbb{R} \quad \text{sen} (a + 2\pi) = \text{sen} \ a \quad \text{(a função seno tem período } 2\pi\text{)};$
- **8.** $\forall a \in \mathbb{R} \quad \cos{(a+2\pi)} = \cos{a}$ (a função cosseno tem período 2π);
- **9.** $\forall a, b \in \mathbb{R}$ $\operatorname{sen}(a+b) = \operatorname{sen} a \cos b + \operatorname{sen} b \cos a;$
- **10.** $\forall a, b \in \mathbb{R}$ $\cos(a+b) = \cos a \cos b \sin b \sin a$;
- **11.** $\forall a, b \in \mathbb{R}$ $\cos a \cos b = -2 \sin \frac{a-b}{2} \sin \frac{a+b}{2}$;
- **12.** $\forall a, b \in \mathbb{R}$ $\operatorname{sen} a \operatorname{sen} b = 2 \operatorname{sen} \frac{a-b}{2} \cos \frac{a+b}{2}$.

Funções exponenciais

Funções exponenciais

Funções logaritmos

Funções logaritmos

Funções hiperbólicas

Seno hiperbólico

$$\begin{array}{ccc}
\text{sh} : & \mathbb{R} & \longrightarrow & \mathbb{R} \\
x & \longmapsto & \frac{e^x - e^{-x}}{2}
\end{array}$$

Tangente hiperbólica

$$\begin{array}{ccc}
\text{th} : & \mathbb{R} & \longrightarrow & \mathbb{R} \\
x & \longmapsto & \frac{\sinh x}{\cosh x}
\end{array}$$

Secante hiperbólica

$$\operatorname{sech}: \ \mathbb{R} \longrightarrow \ \mathbb{R}$$

$$x \longmapsto \frac{1}{\operatorname{ch} x}$$

Cosseno hiperbólico

$$\begin{array}{ccc} \text{ch} : & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \frac{e^x + e^{-x}}{2} \end{array}$$

Cotangente hiperbólica

$$\begin{array}{ccc}
\coth: & \mathbb{R} \setminus \{0\} & \longrightarrow & \mathbb{R} \\
x & \longmapsto & \frac{1}{\operatorname{th} x}
\end{array}$$

Cossecante hiperbólica

cosech:
$$\mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{1}{\sh x}$$

Gráficos das funções hiperbólicas

Gráficos das funções hiperbólicas

Gráficos das funções hiperbólicas

Funções hiperbólicas - propriedades

1.
$$\forall a \in \mathbb{R}$$
 $\operatorname{ch}^2 a - \operatorname{sh}^2 a = 1;$

2.
$$\forall a \in \mathbb{R}$$
 $\operatorname{th}^2 a + \operatorname{sech}^2 a = 1$;

3.
$$\forall a \in \mathbb{R} \setminus \{0\}$$
 $\coth^2 a - \operatorname{cosech}^2 a = 1;$

4.
$$\forall a \in \mathbb{R}$$
 $\operatorname{sh}(-a) = -\operatorname{sh} a$ (a função seno hiperbólico é ímpar);

5.
$$\forall a \in \mathbb{R}$$
 $\operatorname{ch}(-a) = \operatorname{ch} a$ (a função cosseno hiperbólico é par);

6.
$$\forall a, b \in \mathbb{R}$$
 $\operatorname{sh}(a+b) = \operatorname{sh} a \operatorname{ch} b + \operatorname{sh} b \operatorname{ch} a;$

7.
$$\forall a, b \in \mathbb{R}$$
 $\operatorname{ch}(a+b) = \operatorname{ch} a \operatorname{ch} b + \operatorname{sh} b \operatorname{sh} a;$

8.
$$\forall n \in \mathbb{N} \quad \forall a \in \mathbb{R} \quad (\operatorname{ch} a + \operatorname{sh} a)^n = \operatorname{ch} (na) + \operatorname{sh} (na).$$

Funções trigonométricas inversas

Arco-seno

$$\operatorname{arcsen}: \quad [-1,1] \quad \longrightarrow \quad \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ x \qquad \longmapsto \quad \left(\operatorname{sen}_{\left|\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right.}\right) (x)$$

Arco-cosseno

Funções trigonométricas inversas

Arco-tangente

Arco-cotangente

Funções trigonométricas inversas

Arco-secante

Arco-cossecante

Funções hiperbólicas inversas

Argumento do seno hiperbólico

$$argsh: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto (sh)^{-1}(x)$$

Argumento do cosseno hiperbólico

$$\operatorname{argch}: \begin{array}{ccc} [1,+\infty[& \longrightarrow & \mathbb{R}_0^+ \\ & x & \longmapsto & \left(\operatorname{ch}_{\mathbb{R}_0^+}\right)^{-1}(x) \end{array}$$

Funções hiperbólicas inversas

Argumento da tangente hiperbólica

$$\begin{array}{ccc} \operatorname{argth} : &]-1,1[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \operatorname{th}^{-1}(x) \end{array}$$

Argumento da cotangente hiperbólica

$$\begin{array}{cccc} \operatorname{argcoth}: & \mathbb{R} \setminus [-1,1] & \longrightarrow & \mathbb{R} \setminus \{0\} \\ & x & \longmapsto & \coth^{-1}(x) \end{array}$$

Argumento da tangente hiperbólica

Argumento da cotangente hiperbólica

Funções hiperbólicas inversas

Argumento da secante hiperbólica

$$\begin{array}{cccc} \operatorname{argsech} : &]0,1] & \longrightarrow & \mathbb{R}_0^+ \\ & x & \longmapsto & \left(\operatorname{sec}_{\mid_{\mathbb{R}_0^+}} \right)^{-1} (x) \end{array}$$

Argumento da cossecante hiperbólica

$$\begin{array}{cccc} \operatorname{argcosech} : & \mathbb{R} \setminus \{0\} & \longrightarrow & \mathbb{R} \setminus \{0\} \\ & x & \longmapsto & \operatorname{cosech}^{-1}(x) \end{array}$$

Argumento da secante hiperbólica

Argumento da cossecante hiperbólica

