

REC'D 2 3 MAY 2003

WIPO PCT

Kongeriget Danmark

Patent application No.:

PA 2002 00532

Date of filing:

10 April 2002

Applicant:

NOVOZYMES A/S

(Name and address)

Krogshøjvej 36

2880 Bagsværd

Denmark

Title: Improved Bacillus Host Cell

IPC: -

The attached documents are exact copies of the filed application

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Patent- og Varemærkestyrelsen Økonomi- og Erhvervsministeriet

11 April 2003

Maiken Lind

BEST AVAILABLE COPY

PATENT- OG VAREMÆRKESTYRELSEN

10

15

20

25

30

35

TITLE: Improved Bacillus Host Cell

TECHNICAL FIELD

Bacillus sp. are attractive hosts for the production of heterologous proteins due their ability to secrete proteins directly into the culture medium. They have a high capacity for protein secretion, are genetically highly amenable, nonpathogenic and free of endotoxins, and consequently a large variety of proteins from different organisms have been efficiently produced and secreted in Bacillus sp. i.e. in Bacillus licheniformis.

1

In the highly competitive biotech industry, even slightly improved *Bacillus* host cells are in demand, which may provide more attractive production systems, or may even just be alternative production systems.

BACKGROUND

Many industrial products of commercial interest can be produced biologically in *Bacillus sp.* host cells e.g. heterologous polypeptides, amino acids, carbohydrates etc. Some of these products are sold as process aids, intermediates, or even end-products in the food and feed industries as well as in the pharmaceutical industry. There are increasingly strict regulations that must be complied with when producing such products in microbial production hosts for sale in these industries, for instance traces of antibiotics in the products is seen as a problem. When producing in *Bacillus licheniformis* it is thus desirable to ensure that the host cell is not capable of producing antibiotic compounds native to the cell such as lichenysin, subtilisin, and surfactin.

SUMMARY

A problem to be solved by the present invention is how to obtain a *Bacillus licheniformis* host cell incapable of producing native antibiotic compounds, or how to impair the production of these compounds in said cell. The present invention provides a solution to the problem by providing a *Bacillus licheniformis* host cell which has a reduced capacity to produce one or more polypeptide(s) involved in antibiotic synthesis.

Accordingly, in a first aspect the invention relates to a *Bacillus licheniformis* mutant host cell derived from a parent *B. licheniformis* host cell, which mutant host cell is mutated in one or more gene(s) encoding one or more polypeptide(s) involved in antibiotic synthesis which is at least 80% identical to one or more of the polypeptides shown in SEQ ID NO's: 2 to 10, preferably at least 85% identical, more preferably at least 90% identical, still more preferably at least 95% identical, and most preferably at least 97% identical to one or more of the polypeptides shown in SEQ ID NO's: 2 to 10, wherein the mutant host cell expresses at least

5% less of the one or more polypeptide(s) involved in antibiotic synthesis than the parent host cell, when they are cultivated under comparable conditions.

Preferably the mutant host cell expresses at least 10% less, more preferably at least 20% less, still more preferably at least 30% less, even more preferably at least 40% less, yet more preferably at least 50% less, or at least 60% less, or at least 70% less, or at least 80%, or most preferably at least 90% less of the one or more polypeptide(s) involved in antibiotic synthesis than the parent host cell, when they are cultivated under comparable conditions. Most preferably the mutant host cell expresses absolutely nothing of the one or more polypeptide(s) involved in antibiotic synthesis.

10

15

25

5

Comparable conditions of cultivation must be used in order to compare the expression level of the one or more polypeptide(s) involved in antibiotic synthesis in a mutant host cell of the invention with that in a parent host cell. They are cultivated separately under identical conditions in identical setups, of course allowing for the usual standard deviations of the operating parameters normally associated with growth experiments, such as temperature control etc. The quantification of the expression level of the one or more polypeptide(s) is done by standard text-book assay techniques as known in the art e.g. mRNA quantification or immuno-based assays.

In a second aspect the invention relates to a process for producing at least one product of interest in a *Bacillus licheniformis* mutant host cell, comprising cultivating a *B.licheniformis* mutant host cell as defined in the previous aspect in a suitable medium, whereby the said product is produced.

Finally, an aspect of the invention relates to a use of a *Bacillus licheniformis* mutant host cell as defined in the first aspect for producing at least one product of interest comprising cultivating the mutant host cell in a suitable medium whereby the said product is produced.

DEFINITIONS

Nucleic acid construct: When used herein, the term "nucleic acid construct" means a nucleic acid molecule, either single- or double-stranded, which is isolated from a naturally occurring gene or which has been modified to contain segments of nucleic acids in a manner that would not otherwise exist in nature. The term nucleic acid construct is synonymous with the term "expression cassette" when the nucleic acid construct contains the control sequences required for expression of a coding sequence of the present invention.

Control sequence: The term "control sequences" is defined herein to include all components, which are necessary or advantageous for the expression of a polypeptide of the present invention. Each control sequence may be native or foreign to the nucleotide sequence encoding the polypeptide. Such control sequences include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence, promoter, signal peptide sequence, and transcription terminator. At a minimum, the control sequences include a promoter, and transcriptional and translational stop signals. The control sequences may be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences with the coding region of the nucleotide sequence encoding a polypeptide.

10

5

Operably linked: The term "operably linked" is defined herein as a configuration in which a control sequence is appropriately placed at a position relative to the coding sequence of the DNA sequence such that the control sequence directs the expression of a polypeptide.

15 Coding sequence: When used herein the term "coding sequence" is intended to cover a nucleotide sequence, which directly specifies the amino acid sequence of its protein product. The boundaries of the coding sequence are generally determined by an open reading frame, which usually begins with the ATG start codon. The coding sequence typically include DNA, cDNA, and recombinant nucleotide sequences.

20

35

Expression: In the present context, the term "expression" includes any step involved in the production of the polypeptide including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.

Expression vector: In the present context, the term "expression vector" covers a DNA molecule, linear or circular, that comprises a segment encoding a polypeptide of the invention, and which is operably linked to additional segments that provide for its transcription.

30 **DETAILED DISCLOSURE**

A Bacillus licheniformis mutant host cell derived from a parent B. licheniformis host cell, which mutant host cell is mutated in one or more gene(s) encoding one or more polypeptide(s) involved in antibiotic synthesis which is at least 80% identical to one or more of the polypeptides shown in SEQ ID NO's: 2 to 10, wherein the mutant host cell expresses at least 5% less of the one or more polypeptide(s) involved in antibiotic synthesis than the parent host cell, when they are cultivated under comparable conditions.

The term "parent host cell" in the context of the present invention means a cell which is genetically identical, or isogenic, to the progeny mutant or mutant cell of the present invention, except for the mutated one or more gene(s) encoding one or more polypeptide(s) involved in antibiotic synthesis in said mutant.

5

10

15

20

25

30

35

The degree of identity, or %-identity of polypeptide sequences can suitably be investigated by aligning the sequences using a computer program known in the art, such as "GAP" provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711)(Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-453). Using GAP with the following settings for DNA sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3".

An object of the present invention is to provide a culture medium free of antibiotics so as to be able to reduce the product purification to a minimum, and to comply with regulatory requirements. This may be done according to the invention by reducing or even completely abolishing the expression of one or more gene(s) encoding a native polypeptide(s) involved in antibiotic synthesis via mutagenisation of that (those) gene(s). One of the very well-known method of ensuring that a gene is not expressed into an active polypeptide within a cell is simply to delete or partially delete the encoding gene. Many techniques have been described in the art on how to specifically delete or partially delete one or more gene(s) in the genome of a cell, and certainly from the genome of a *Bacillus licheniformis* cell (see e.g. Novozymes A/S WO 01/90393, Novozymes A/S WO 02/00907). Accordingly, a preferred embodiment of the present invention relates to a host cell of the first aspect, which is mutated by a partial or complete deletion of the one or more gene(s) encoding the one or more polypeptide(s) involved in antibiotic synthesis.

A preferred embodiment of the present invention relates to a host cell of the first aspect, which is mutated in two or more genes encoding two or more polypeptides involved in antibiotic synthesis.

The product of interest to be produced by the mutant host cell of the first aspect may be one or more polypeptide(s) encoded by one or more heterologous gene(s). Consequently, a preferred embodiment of the present invention relates to a host cell of the first aspect, which comprises one or more heterologous gene(s) encoding one or more heterologous polypeptide(s).

In the industrial production of polypeptides it is of interest to achieve a product yield as high as possible. One way to increase the yield is to increase the copy number of a gene encoding a polypeptide of interest. This can be done by placing the gene on a high copy number plasmid. However, plasmids are unstable and are often lost from the host cells if there is no selective pressure during the cultivation of the host cells. Another way to increase the copy number of the gene of interest is to integrate it into the host cell chromosome in multiple copies. Integration of two genes has been described in WO 91/09129 and WO 94/14968 (Novozymes A/S) the content of which is hereby incorporated by reference. A preferred embodiment of the present invention relates to a host cell of the first aspect, wherein the heterologous gene(s) is present in at least two copies, preferably at least 4 copies, and most preferably at least 6 copies. In another embodiment the heterologous gene(s) is present in at least ten copies. If carried on a plasmid the gene(s) may be present in several hundred copies per cell, so in a still further embodiment of the present invention the heterologous gene(s) is present in at least 100 copies.

Integration of two genes closely spaced in anti-parallel tandem to achieve better stability has been described in WO 99/41358 (Novozymes A/S) the content of which is hereby incorporated by reference, as well as the stable chromosomal multi-copy integration of genes described in WO 02/00907 (Novozymes A/S) the content of which is incorporated herein by reference. A preferred embodiment of the present invention relates to a host cell of the first aspect, wherein the heterologous gene(s) are stably integrated into the genome of the cell.

Selection of chromosomal integrant has for convenience resulted in the use of selectable markers such as antibiotic resistance markers. However it is desirable if possible to avoid the use of antibiotic marker genes. WO 01/90393 discloses a method for the integration of a gene in the chromosome of a host cell without leaving antibiotic resistance markers behind in the strain, the content of which is hereby incorporated by reference A preferred embodiment of the present invention relates to a host cell of the first aspect wherein the heterologous gene(s) is integrated into the genome of the cell without leaving any antibiotic resistance marker gene(s) at the site of integration.

The present invention also relates to nucleic acid constructs comprising a nucleotide sequence encoding a product of interest, which may be operably linked to one or more control sequences that direct the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences.

10

15

20

25

30

35

6

A nucleotide sequence encoding a polypeptide ofinterest may be manipulated in a variety of ways to provide for expression of the polypeptide. Manipulation of the nucleotide sequence prior to its insertion into a vector may be desirable or necessary depending on the expression vector. The techniques for modifying nucleotide sequences utilizing recombinant DNA methods are well known in the art.

Other ways of increasing the product yield would be to increase promoter activity of the specific promoter regulating the expression of a specific gene of interest. Also a more general increase in the activity of several promoters at the same time could lead to an improved product yield. The control sequence may be an appropriate promoter sequence, a nucleotide sequence which is recognized by a host cell for expression of the nucleotide sequence. The promoter sequence contains transcriptional control sequences, which mediate the expression of the polypeptide. The promoter may be any nucleotide sequence which shows transcriptional activity in the host cell of choice including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell.

Examples of suitable promoters for directing the transcription of the nucleic acid constructs of the present invention, especially in a bacterial host cell, are the promoters obtained from the E. coli lac operon, Streptomyces coelicolor agarase gene (dagA), Bacillus subtilis levansucrase gene (sacB), Bacillus licheniformis alpha-amylase gene (amyL), Bacillus stearothermophilus maltogenic amylase gene (amyM), Bacillus amyloliquefaciens alpha-amylase gene (amyQ), Bacillus licheniformis penicillinase gene (penP), Bacillus subtilis xylA and xylB genes, and prokaryotic beta-lactamase gene (Villa-Kamaroff et al., 1978, Proceedings of the National Academy of Sciences USA 75: 3727-3731), as well as the tac promoter (DeBoer et al., 1983, Proceedings of the National Academy of Sciences USA 80: 21-25). Further promoters are described in "Useful proteins from recombinant bacteria" in Scientific American, 1980, 242: 74-94; and in Sambrook et al., 1989, supra.

Other useful promoters are described in WO 93/10249, WO 98/07846, and WO 99/43835 (Novozymes A/S) the contents of which are incorporated fully herein by reference. A preferred embodiment of the present invention relates to a host cell of the first aspect, wherein the heterologous gene(s) are transcribed from a heterologous promoter or from an artificial promoter.

The control sequence may also be a suitable transcription terminator sequence, a sequence recognized by a host cell to terminate transcription. The terminator sequence is operably

10

15

20

25

30

linked to the 3' terminus of the nucleotide sequence encoding the polypeptide. Any terminator which is functional in the host cell of choice may be used in the present invention.

The control sequence may also be a suitable leader sequence, a nontranslated region of an mRNA which is important for translation by the host cell. The leader sequence is operably linked to the 5' terminus of the nucleotide sequence encoding the polypeptide. Any leader sequence that is functional in the host cell of choice may be used in the present invention.

The control sequence may also be a polyadenylation sequence, a sequence operably linked to the 3' terminus of the nucleotide sequence and which, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence which is functional in the host cell of choice may be used in the present invention.

The control sequence may also be a signal peptide coding region that codes for an amino acid sequence linked to the amino terminus of a polypeptide and directs the encoded polypeptide into the cell's secretory pathway. The 5' end of the coding sequence of the nucleotide sequence may inherently contain a signal peptide coding region naturally linked in translation reading frame with the segment of the coding region which encodes the secreted polypeptide. Alternatively, the 5' end of the coding sequence may contain a signal peptide coding region which is foreign to the coding sequence. The foreign signal peptide coding region may be required where the coding sequence does not naturally contain a signal peptide coding region. Alternatively, the foreign signal peptide coding region may simply replace the natural signal peptide coding region in order to enhance secretion of the polypeptide. However, any signal peptide coding region which directs the expressed polypeptide into the secretory pathway of a host cell of choice may be used in the present invention.

Effective signal peptide coding regions for bacterial host cells are the signal peptide coding regions obtained from the genes for Bacillus NCIB 11837 maltogenic amylase, Bacillus stearothermophilus alpha-amylase, Bacillus licheniformis subtilisin, Bacillus licheniformis beta-lactamase, Bacillus stearothermophilus neutral proteases (nprT, nprS, nprM), and Bacillus subtilis prsA. Further signal peptides are described by Simonen and Palva, 1993, Microbiological Reviews 57: 109-137.

The control sequence may also be a propeptide coding region that codes for an amino acid sequence positioned at the amino terminus of a polypeptide. The resultant polypeptide is

35

10

15

20

25

30

35

known as a proenzyme or propolypeptide (or a zymogen in some cases). A propolypeptide is generally inactive and can be converted to a mature active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide. The propeptide coding region may be obtained from the genes for Bacillus subtilis alkaline protease (aprE), Bacillus subtilis neutral protease (nprT), Saccharomyces cerevisiae alpha-factor, Rhizomucor miehei aspartic proteinase, and Myceliophthora thermophila laccase (WO 95/33836).

Where both signal peptide and propeptide regions are present at the amino terminus of a polypeptide, the propeptide region is positioned next to the amino terminus of a polypeptide and the signal peptide region is positioned next to the amino terminus of the propeptide region.

It may also be desirable to add regulatory sequences which allow the regulation of the expression of the polypeptide relative to the growth of the host cell. Examples of regulatory systems are those which cause the expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Regulatory systems in prokaryotic systems include the lac, tac, and trp operator systems. In yeast, the ADH2 system or GAL1 system may be used. In eukaryotic systems, these include the dihydrofolate reductase gene which is amplified in the presence of methotrexate, and the metallothionein genes which are amplified with heavy metals. In these cases, the nucleotide sequence encoding the polypeptide would be operably linked with the regulatory sequence.

The present invention also relates to recombinant expression vectors comprising the nucleic acid construct of the invention. The various nucleotide and control sequences described above may be joined together to produce a recombinant expression vector which may include one or more convenient restriction sites to allow for insertion or substitution of the nucleotide sequence encoding the polypeptide at such sites. Alternatively, the nucleotide sequence of the present invention may be expressed by inserting the nucleotide sequence or a nucleic acid construct comprising the sequence into an appropriate vector for expression. In creating the expression vector, the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression.

The recombinant expression vector may be any vector (e.g., a plasmid or virus) which can be conveniently subjected to recombinant DNA procedures and can bring about the expression of the nucleotide sequence. The choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced. The vectors may be linear or closed circular plasmids.

10

15

The vector may be an autonomously replicating vector, i.e., a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome.

The vector may contain any means for assuring self-replication. Alternatively, the vector may be one which, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. Furthermore, a single vector or plasmid or two or more vectors or plasmids which together contain the total DNA to be introduced into the genome of the host cell, or a transposon may be used.

The vectors of the present invention preferably contain one or more selectable markers which permit easy selection of transformed cells. A selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like.

Examples of bacterial selectable markers are the dal genes from Bacillus subtilis or Bacillus licheniformis, or markers which confer antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracycline resistance.

The vectors of the present invention preferably contain an element(s) that permits stable integration of the vector into the host cell's genome or autonomous replication of the vector in the cell independent of the genome.

25

30

35

20

For integration into the host cell genome, the vector may rely on the nucleotide sequence encoding the polypeptide or any other element of the vector for stable integration of the vector into the genome by homologous or nonhomologous recombination. Alternatively, the vector may contain additional nucleotide sequences for directing integration by homologous recombination into the genome of the host cell. The additional nucleotide sequences enable the vector to be integrated into the host cell genome at a precise location(s) in the chromosome(s). To increase the likelihood of integration at a precise location, the integrational elements should preferably contain a sufficient number of nucleotides, such as 100 to 1,500 base pairs, preferably 400 to 1,500 base pairs, and most preferably 800 to 1,500 base pairs, which are highly homologous with the corresponding target sequence to enhance the probability of homologous recombination. The integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell.

10

15

20

25

30

35

Furthermore, the integrational elements may be non-encoding or encoding nucleotide sequences. On the other hand, the vector may be integrated into the genome of the host cell by non-homologous recombination.

For autonomous replication, the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question. Examples of bacterial origins of replication are the origins of replication of plasmids pBR322, pUC19, pACYC177, and pACYC184 permitting replication in E. coli, and pUB110, pE194, pTA1060, and pAMß1 permitting replication in Bacillus. The origin of replication may be one having a mutation which makes its functioning temperature-sensitive in the host cell (see, e.g., Ehrlich, 1978, Proceedings of the National Academy of Sciences USA 75: 1433).

More than one copy of a nucleotide sequence of the present invention may be inserted into the host cell to increase production of the gene product. An increase in the copy number of the nucleotide sequence can be obtained by integrating at least one additional copy of the sequence into the host cell genome or by including an amplifiable selectable marker gene with the nucleotide sequence where cells containing amplified copies of the selectable marker gene, and thereby additional copies of the nucleotide sequence, can be selected for by cultivating the cells in the presence of the appropriate selectable agent.

The procedures used to ligate the elements described above to construct the recombinant expression vectors of the present invention are well known to one skilled in the art (see, e.g., Sambrook et al., 1989, supra).

The introduction of a vector into a bacterial host cell may, for instance, be effected by protoplast transformation (see, e.g., Chang and Cohen, 1979, Molecular General Genetics 168: 111–115), using competent cells (see, e.g., Young and Spizizin, 1961, Journal of Bacteriology 81: 823-829, or Dubnau and Davidoff-Abelson, 1971, Journal of Molecular Biology 56: 209-221), electroporation (see, e.g., Shigekawa and Dower, 1988, Biotechniques 6: 742-751), or conjugation (see, e.g., Koehler and Thorne, 1987, Journal of Bacteriology 169: 5771-5278).

A preferred embodiment of the present invention relates to a host cell of the first aspect, wherein the heterologous gene(s) are comprised in an operon, preferably a polycistronic operon. The term "operon" in the context of the present invention means a polynucleotide comprising several genes that are clustered and perhaps even transcribed together into a polycistronic mRNA, e.g. genes coding for the enzymes of a metabolic pathway. The

transcription of an operon may be initiated at a promoter region and controlled by a neighboring regulatory gene, which encodes a regulatory protein, which in turn binds to the operator sequence in the operon to respectively inhibit or enhance the transcription. The gene or the operon can be carried on a suitable plasmid that can be stably maintained, e.g. capable of stable autonomous replication in the host cell (the choice of plasmid will typically depend on the compatibility of the plasmid with the host cell into which the plasmid is to be introduced) or it can be carried on the chromosome of the host. The said gene may be endogenous to the host cell in which case the product of interest is a protein naturally produced by the host cell and in most cases the gene will be in it normal position on the chromosome. If the gene encoding the product of interest is an exogenous gene, the gene could either be carried on a suitable plasmid or it could be integrated on the host chromosome. In one embodiment of the invention the eubacterium is a recombinant eubacterium. Also the product of interest may in another embodiment be a recombinant protein.

15

20

25

30

35

10

The product of interest is any gene product or product of a metabolic pathway which is industrially useful and which can be produced in a bacterial cell such as a *B. licheniformis*.

In one preferred embodiment, the heterologous polypeptide(s) is an antimicrobial peptide, or a fusion peptide comprising a peptide part which in its native form has antimicrobial activity.

In another preferred embodiment, the heterologous polypeptide(s) has biosynthetic activity and produces a compound or an intermediate of interest.

Yet another embodiment relates to a host cell of the first aspect, wherein the compound or intermediate of interest comprises vitamins, amino acids, antibiotics, carbohydrates, or surfactants, and preferably the carbohydrates comprise hyaluronic acid.

In one embodiment the heterologous polypeptide(s) is an enzyme, particularly the enzyme is an enzyme of a class selected from the group of enzyme classes consisting of oxidoreductases (EC 1), transferases (EC 2), hydrolases (EC 3), lyases (EC 4), isomerases (EC 5), and ligases (EC 6). Preferably the enzyme is an enzyme with an activity selected from the group consisting of aminopeptidase, amylase, amyloglucosidase, mannanase, carbohydrase, carboxypeptidase, catalase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase, deoxyribonuclease, esterase, galactosidase, beta-galactosidase, glucoamylase, glucose oxidase, glucosidase, haloperoxidase, hernicellulase, invertase, isomerase, laccase, ligase, lipase, lyase, mannosidase, oxidase, pectinase, peroxidase,

10

15

20

25

30

35

phytase, phenoloxidase, polyphenoloxidase, protease, ribonuclease, transferase, transglutaminase, or xylanase. Preferably the enzyme is an amylase or a mannanase.

A second aspect of the invention relates to a process for producing at least one product of interest in a *Bacillus licheniformis* mutant host cell, comprising cultivating a *B.licheniformis* mutant host cell as defined in the first aspect of the invention in a suitable medium, whereby the said product is produced. One embodiment relates to a process of the second aspect, further comprising isolating or purifying the product of interest. Suitable media for the cultivation is described below as well as methods for the purification or isolation of the produced product which is an optional additional step to the process of the present invention.

In the production methods of the present invention, the cells are cultivated in a nutrient medium suitable for production of the polypeptide using methods known in the art. For example, the cell may be cultivated by shake flask cultivation, small-scale or large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial fermentors performed in a suitable medium and under conditions allowing the polypeptide to be expressed and/or isolated. The cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available from commercial suppliers or may be prepared according to published compositions (e.g., in catalogues of the American Type Culture Collection). If the polypeptide is secreted into the nutrient medium, the polypeptide can be recovered directly from the medium. If the polypeptide is not secreted, it can be recovered from cell lysates.

The medium used to culture the cells may be any conventional medium suitable for growing the host cells, such as minimal or complex media containing appropriate supplements. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. in catalogues of the American Type Culture Collection). The media are prepared using procedures known in the art (see, e.g., references for bacteria and yeast; Bennett, J.W. and LaSure, L., editors, *More Gene Manipulations in Fungi*, Academic Press, CA, 1991).

The polypeptides may be detected using methods known in the art that are specific for the polypeptides. These detection methods may include use of specific antibodies, formation of an enzyme product, or disappearance of an enzyme substrate. For example, an enzyme assay may be used to determine the activity of the polypeptide as described herein.

The resulting polypeptide may be recovered by methods known in the art. For example, the polypeptide may be recovered from the nutrient medium by conventional procedures including, but not limited to, centrifugation, filtration, extraction, spray-drying, evaporation, or precipitation.

5

10

15

The polypeptides of the present invention may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g., preparative isoelectric focusing), differential solubility (e.g., ammonium sulfate precipitation), SDS-PAGE, or extraction (see, e.g., Protein Purification, J.-C. Janson and Lars Ryden, editors, VCH Publishers, New York, 1989).

A third aspect of the present invention relates to the use of a *Bacillus licheniformis* mutant host cell as defined in the first aspect for producing at least one product of interest comprising cultivating the mutant host cell in a suitable medium whereby the said product is produced, and optionally isolating or purifying the produced product.

15

CLAIMS

- 1. A Bacillus licheniformis mutant host cell derived from a parent B. licheniformis host cell, which mutant host cell is mutated in one or more gene(s) encoding one or more polypeptide(s) involved in antibiotic synthesis which is at least 80% identical to one or more of the polypeptides shown in SEQ ID NO's: 2 to 10, wherein the mutant host cell expresses at least 5% less of the one or more polypeptide(s) involved in antibiotic synthesis than the parent host cell, when they are cultivated under comparable conditions.
- 2. The host cell according to claim 1, which is mutated by a partial or complete deletion of the one or more gene(s) encoding the one or more polypeptide(s) involved in antibiotic synthesis.
 - 3. The host cell according to any of claims 1-2, which is mutated in two or more genes encoding two or more polypeptides involved in antibiotic synthesis.
 - 5. The host cell according to any of claims 1 4, which comprises one or more heterologous gene(s) encoding one or more heterologous polypeptide(s).
- 6. The host cell according to claim 5, wherein the heterologous gene(s) is present in at least two copies.
 - 7. The host cell according to claim 5 or 6, wherein the heterologous gene(s) are stably integrated into the genome of the cell.
- 8. The host cell according to any of claims 5 7, wherein the heterologous gene(s) is integrated into the genome of the cell without leaving any antibiotic resistance marker genes at the site of integration.
- 9. The host cell according to any of claims 5 8, wherein the heterologous gene(s) are transcribed from a heterologous promoter or from an artificial promoter.
 - 10. The host cell according to any of claim 5 9, wherein the heterologous gene(s) are comprised in an operon, preferably a polycistronic operon.
- 11. The host cell according to any of claims 5 10, wherein the heterologous polypeptide(s) is an antimicrobial peptide, or a fusion peptide comprising a peptide part which in its native form has antimicrobial activity.

20

25

- 12. The host cell according to any of claims 5 10, wherein the heterologous polypeptide(s) has biosynthetic activity and produces a compound or an intermediate of interest.
- 13. The host cell according to claim 12, wherein the compound or intermediate of interest comprises vitamins, amino acids, antibiotics, carbohydrates, or surfactants.
 - 14. The host cell according to claim 13, wherein the carbohydrates comprise hyaluronic acid.
- 15. The host cell according to any of claims 5 10, wherein the heterologous polypeptide(s) is an enzyme, preferably a secreted enzyme.
 - 16. The host cell according to claim 15, wherein the enzyme is an enzyme of a class selected from the group of enzyme classes consisting of oxidoreductases (EC 1), transferases (EC 2), hydrolases (EC 3), lyases (EC 4), isomerases (EC 5), and ligases (EC 6).
 - 17. The host cell according to claim 16, wherein the enzyme is an enzyme with an activity selected from the group of enzyme activities consisting of aminopeptidase, amylase, amyloglucosidase, mannanase, carbohydrase, carboxypeptidase, catalase, cellulase, deoxyribonuclease, esterase, cyclodextrin glycosyltransferase, chitinase. cutinase, oxidase, glucosidase, glucoamylase, glucose beta-galactosidase, galactosidase, haloperoxidase, hemicellulase, invertase, isomerase, laccase, ligase, lipase, lyase, mannosidase, oxidase, pectinase, peroxidase, phytase, phenoloxidase, polyphenoloxidase, protease, ribonuclease, transferase, transglutaminase, and xylanase.
 - 18. The host cell according to claim 17, wherein the enzyme is an amylase or a mannanase.
- 19. A process for producing at least one product of interest in a *Bacillus licheniformis* mutant host cell, comprising cultivating a *B.licheniformis* mutant host cell as defined in any of the claims 1 18 in a suitable medium, whereby the said product is produced.
 - 20. The process according to claim 19, further comprising isolating or purifying the product of interest.

- 21. A use of a *Bacillus licheniformis* mutant host cell as definde in any of the claims 1 18 for producing at least one product of interest comprising cultivating the mutant host cell in a suitable medium whereby the said product is produced.
- 5 22. The use according to claim 21 further comprising isolating or purifying the product of interest.

17

ABSTRACT

TITLE: Improved Bacillus Host Cell.

A Bacillus licheniformis mutant host cell derived from a parent B. licheniformis host cell, which mutant host cell is mutated in one or more gene(s) encoding one or more polypeptide(s) involved in antibiotic synthesis which is at least 80% identical to one or more of the polypeptides shown in SEQ ID NO's: 2 to 10, wherein the mutant host cell expresses at least 5% less of the one or more polypeptide(s) involved in antibiotic synthesis than the parent host cell, when they are cultivated under comparable conditions.

10297.ST25.txt SEQUENCE LISTING

Modtaget

<110>	Novozymes A/S
	Jørgensen, Steen Troels
	Rasmussen, Michael Dolberg
	Andersen, Jens Tønne
	Olesen, Peter Bjarke
	Clausen, Ib Groth
<120>	Improved Bacillus Host Cell
<130>	10297.000
<160>	10
<170>	PatentIn version 3.1

<210> 1

<211> 1602

<212> DNA

<213> Bacillus licheniformis

<220>

<221> CDS

<222> (501)..(1421)

<223>

400- 1	
<pre><400> 1 aacagccaga aaggagacga agaacgtctc tatttaacag agcttgatat gttctgcgtc</pre>	60
catttcgggt caaggatata ttcactatta tgaaaccaat ttttccgatt tccgtataaa	120
caaagcgtgg aacctgttaa aggacaagaa aaatcgacag ggatataaaa atcggcaagc	180
tttccaaagg gaaccggggc aggctgaagc tagcgctcac attggcgagc gatgcagcgg	240
tcgtgctgtt tgatgaacca tccggtctcc gatggtgagg gagtcgacag tcaaaagcct	300
tcttacatat ttggagcttg acaagcagac aatcgccatc gccacctatg aaattgaaca	360
aatattggat gtcgtcttaa atggccgaat tgaagcaaaa aaggatgtcg aacagctgcg	420

cgaggaatcc ggaatgtcgc ttttggaatg gctgaaacgg tttattaaag aaaaaaattg	480
aaaaagcggg aggagaaaca ttg gaa aca ctt ttg gaa tta aaa aat gta tca Leu Glu Thr Leu Leu Glu Leu Lys Asn Val Ser 1 5 10	533
aaa acg atc agg ggg aaa aag atc atc gag ggc ttg agt ttt gac gtg Lys Thr Ile Arg Gly Lys Lys Ile Ile Glu Gly Leu Ser Phe Asp Val 15 20 25	581
cgg gca ggc gag ata ttc ggc ttc ctg ggg ccg aac ggc gcc gga aaa Arg Ala Gly Glu Ile Phe Gly Phe Leu Gly Pro Asn Gly Ala Gly Lys 30 35 40	629
acg acg acg atc cgg atg att gtc gga cat atg agc att acc gcc ggt Thr Thr Thr Ile Arg Met Ile Val Gly His Met Ser Ile Thr Ala Gly 45 50	677
gaa atc gcc gtg tgc ggc gtc agc gta aaa gaa aac ttt gaa aag gct Glu Ile Ala Val Cys Gly Val Ser Val Lys Glu Asn Phe Glu Lys Ala 60 65 70 75	725
gca cgg cat atc gga gcg atc gtt gaa aac ccg gag ctt tat aaa ttt Ala Arg His Ile Gly Ala Ile Val Glu Asn Pro Glu Leu Tyr Lys Phe 80 85 90	773
tta acg ggc tac caa aac ctt cag caa tac gcg cgc atg acg aaa ggc Leu Thr Gly Tyr Gln Asn Leu Gln Gln Tyr Ala Arg Met Thr Lys Gly 95 100 105	821
gtg acg aaa aag aaa att gac gaa atc gtc gag ctc gtc gga ttg aaa Val Thr Lys Lys Lys Ile Asp Glu Ile Val Glu Leu Val Gly Leu Lys 110 115 120	869
aac agg atc aac gac aag gtc aaa acg tat tcg tta gga atg aga caa Asn Arg Ile Asn Asp Lys Val Lys Thr Tyr Ser Leu Gly Met Arg Gln 125 130 135	917
agg ctt ggc ctt gcc caa agc ctt ttg cac gat cca aag ctg ttg att Arg Leu Gly Leu Ala Gln Ser Leu Leu His Asp Pro Lys Leu Leu Ile 140 145 150 155	965
ctc gat gag ccg acg aac ggg ctt gat ccg gca ggt atc cgg gaa atc Leu Asp Glu Pro Thr Asn Gly Leu Asp Pro Ala Gly Ile Arg Glu Ile 160 165 170	1013
cgt gac tat tta aga aag ctg acg aga gaa aag gga atg gcg gtc atc Arg Asp Tyr Leu Arg Lys Leu Thr Arg Glu Lys Gly Met Ala Val Ile 175 180 185	1061
gtt tca agc cac ctg ctt tca gaa atg gag ctg atg tgc gac agg atc Val Ser Ser His Leu Leu Ser Glu Met Glu Leu Met Cys Asp Arg Ile 190 195 200	1109
gcc att att caa aac gga aag ctc cgg gat att cag cat gtg cac gga Ala Ile Ile Gln Asn Gly Lys Leu Arg Asp Ile Gln His Val His Gly 205 210 215	1157
ccc gct cgg gat gag aag aag cgc tat tat att caa gcg gac gac acc Pro Ala Arg Asp Glu Lys Lys Arg Tyr Tyr Ile Gln Ala Asp Asp Thr 220 235	1205
cag gct ctc aca cgg gaa gcg gct gct ttc aga aag gtg aag gtt gac Gln Ala Leu Thr Arg Glu Ala Ala Ala Phe Arg Lys Val Lys Val Asp 240 245 250	1253
gaa gcg gaa ggc ggg ata gag ctc agc att caa aag gat gaa gtg cct Page 2	1301

Glu Ala Glu Gly Gly Ile Glu Leu Ser Ile Gln Lys Asp Glu Val Pro 255 260 265	
gat ttg att aaa cac ttg aca gac agc ggt gtt cgc tta tat gaa gtg Asp Leu Ile Lys His Leu Thr Asp Ser Gly Val Arg Leu Tyr Glu Val 270 275	1349
aag gct gtg aac aaa tcg ctg gaa gac cga ttc ctg gaa atc acc gca Lys Ala Val Asn Lys Ser Leu Glu Asp Arg Phe Leu Glu Ile Thr Ala 285 290 295	1397
gat aag gag gaa gct cag cat gtt taatctcatc gtaaatgaat ggatcaaaat Asp Lys Glu Glu Ala Gln His Val 300 305	1451
ttttaatcga aaaggcacat acgtcatgat cggaattttg ctgttagctg tcatcgggct	1511
gggcgttctc acaaagacga tcggagagac agaccaaaac acggactgga aaaaggaatt	1571
ggcgcaggaa ataaggacaa gggggcttag t	1602
<210> 2	
<211> 307	
<212> PRT	
<213> Bacillus licheniformis	
<400> 2	
Leu Glu Thr Leu Leu Glu Leu Lys Asn Val Ser Lys Thr Ile Arg Gly 1 10 15	
Lys Lys Ile Ile Glu Gly Leu Ser Phe Asp Val Arg Ala Gly Glu Ile 20 25 30	
Phe Gly Phe Leu Gly Pro Asn Gly Ala Gly Lys Thr Thr Thr Ile Arg	
Met Ile Val Gly His Met Ser Ile Thr Ala Gly Glu Ile Ala Val Cys 50 55 60	
Gly Val Ser Val Lys Glu Asn Phe Glu Lys Ala Ala Arg His Ile Gly 65 70 75 80	
Ala Ile Val Glu Asn Pro Glu Leu Tyr Lys Phe Leu Thr Gly Tyr Gln 85 90 95	
Asn Leu Gln Gln Tyr Ala Arg Met Thr Lys Gly Val Thr Lys Lys	
100 105 110	
Ile Asp Glu Ile Val Glu Leu Val Gly Leu Lys Asn Arg Ile Asn Asp 115 120 125	
Lys Val Lys Thr Tyr Ser Leu Gly Met Arg Gln Arg Leu Gly Leu Ala 130 140 Page 3	

Gln Ser Leu Leu His Asp Pro Lys Leu Leu Ile Leu Asp Glu Pro Thr 145 150 155 160 Asn Gly Leu Asp Pro Ala Gly Ile Arg Glu Ile Arg Asp Tyr Leu Arg 165 170 175 Lys Leu Thr Arg Glu Lys Gly Met Ala Val Ile Val Ser Ser His Leu 180 185 Leu Ser Glu Met Glu Leu Met Cys Asp Arg Ile Ala Ile Ile Gln Asn 195 200 205 Gly Lys Leu Arg Asp Ile Gln His Val His Gly Pro Ala Arg Asp Glu 210 215 220 Lys Lys Arg Tyr Tyr Ile Gln Ala Asp Asp Thr Gln Ala Leu Thr Arg 225 230 235 240 Glu Ala Ala Ala Phe Arg Lys Val Lys Val Asp Glu Ala Glu Gly Gly 245 250 Ile Glu Leu Ser Ile Gln Lys Asp Glu Val Pro Asp Leu Ile Lys His 260 270 Leu Thr Asp Ser Gly Val Arg Leu Tyr Glu Val Lys Ala Val Asn Lys 275 280 285 Ser Leu Glu Asp Arg Phe Leu Glu Ile Thr Ala Asp Lys Glu Glu Ala 290 295 300 Gln His Val 305 <210> 3 <211> 1938 <212> DNA <213> Bacillus licheniformis <220>

<221>

<222>

<223>

CDS

(501)..(1457)

acct	ttca	.aa a	attg	aagg	a aa	ccga	tttg	aat	ttca	tcg	gcaa	tgtg	ga a	gccc	gcgat	120
atgo	tgga	cg g	agto	gctg	a tg	tcat	cgtc	aca	gacg	gct	ttac	cggt	aa c	gttg	ccttg	180
aaaa	cggt	cg a	gggc	gcgg	c gc	tgtc	catt	ttt	aaaa	tgc	tgag	aacg	ac g	ctga	cttcg	240
agct	tcac	gg c	gaag	ctcg	c cg	cttc	tgca	ctg	aagc	cga	agct	gaaa	ga a	atga	aaacg	300
aaaa	tgga	itt a	ctct	gaat	a cg	gcgg	agco	gga	ttgt	tcg	gctt	aaag	gc g	cccg	tcatc	360
aaag	ıcgca	ıcg g	atca	itctg	a cg	gacg	cgcc	gtt	tato	acg	cgat	ccgc	ca g	gcca	ıgagag	420
															jatgaa	480
tagt	ctgg	jag g	tttt	aaca	ic at Me 1	g gg	y Ly	g at 's Il	t go e Al 5	t tt a Ph	t ct e Le	a tt u Ph	e Pr	g gc o G	c caa y Gln	533
ggt Gly	tcg Ser	cag Gln	cat His 15	atc Ile	ggc Gly	atg Met	gga Gly	cac His 20	gaa Glu	ttg Leu	tat Tyr	gaa Glu	aaa Lys 25	gaa Glu	ccg Pro	581
aat Asn	gcg Ala	aag Lys 30	aag Lys	att Ile	ttt Phe	gaa Glu	gaa Glu 35	gcg Ala	gat Asp	caa Gln	acg Thr	ctt Leu 40	gaa Glu	aca Thr	aaa Lys	629
ctg Leu	agc Ser 45	acc Thr	ctc Leu	atg Met	ttt Phe	gaa Glu 50	ggg Gly	gat Asp	gca Ala	aag Lys	gaa Glu 55	ctg Leu	acg Thr	ctt Leu	aca Thr	677
tac Tyr 60	aac Asn	gcg Ala	cag Gln	cca Pro	agc ser 65	ctt Leu	tta Leu	acg Thr	gcg Ala	agc ser 70	atc Ile	gca Ala	gcg Ala	ctt Leu	gaa G1u 75	725
aaa Lys	ctg Leu	aag Lys	gaa Glu	tac Tyr 80	ggc Gly	att Ile	aaa Lys	gcc Ala	gac Asp 85	tat Tyr	gcg Ala	gca Ala	ggt Gly	cac His 90	agc Ser	773
ctc Leu	ggc Gly	gaa Glu	tac Tyr 95	agc Ser	gca Ala	ttg Leu	gtc Val	gct Ala 100	gcc Ala	ggc Gly	gcc Ala	ttg Leu	tcg Ser 105	ttt Phe	aaa Lys	821
gat Asp	gcg Ala	gtt Val 110	tat Tyr	gcc Ala	gtc Val	aga Arg	aag Lys 115	cgc Arg	ggc Gly	gaa Glu	ttc Phe	atg Met 120	aat Asn	gaa Glu	gcc Ala	869
gtg Val	ccg Pro 125	gcg Ala	gga Gly	gaa Glu	ggc Gly	gcg Ala 130	atg Met	gcg Ala	gcc Ala	att Ile	ctc Leu 135	ggc Gly	atg Met	gac Asp	agc Ser	917
cag Gln 140	gcg Ala	ctg Leu	aaa Lys	gaa Glu	gtg Val 145	acg Thr	gac Asp	aaa Lys	att Ile	tcc ser 150	gaa Glu	gaa Glu	gga Gly	aac Asn	ctt Leu 155	965
gtt Val	cag Gln	ctc Leu	gcc Ala	aat Asn 160	ttg Leu	aac Asn	tgc Cys	cct Pro	ggg Gly 165	caa Gln	atc Ile	gtc Val	atc Ile	tcg Ser 170	gga Gly	1013
aca Thr	gct Ala	aaa Lys	ggc Gly 175	gtg Val	gag Glu	ctc Leu	gct Ala	tca Ser 180	gag Glu	ctt Leu	gcg Ala	aaa Lys	gaa Glu 185	aag Lys	ggc Gly	1061
gca Ala	aaa Lys	cgc Arg 190	gcg Ala	att Ile	cct Pro	ctc Leu	gaa Glu 195	gtc Val	agc Ser	ggg Gly	ccg Pro	ttc Phe 200	cat His	tct Ser	gag Glu	1109
ctg	atg	aag	ccg	gca	gct	gat	aag	ctt	_	gaa ge 5	gtt	ctt	gat	gcg	tgc	1157

10297.ST25.txt Leu Met Lys Pro Ala Ala Asp Lys Leu Arg Glu Val Leu Asp Ala Cys 205 210 215	
acg atc aac gac gca gcc att ccg gtc gtc tcc aac gta acg gcc gac Thr ile Asn Asp Ala Ala ile Pro Val Val Ser Asn Val Thr Ala Asp 220 225 230 235	1205
ttt gta acg gat aaa gac gac att aag aat aaa ctg att gaa cag ctg Phe Val Thr Asp Lys Asp Asp Ile Lys Asn Lys Leu Ile Glu Gln Leu 240 245 250	1253
tat tcc cct gta cgc ttt gaa gaa aca atc agc cgc ctg att gac gaa Tyr Ser Pro Val Arg Phe Glu Glu Thr Ile Ser Arg Leu Ile Asp Glu 265 260 265	1301
ggc gtc acg acc ttc att gaa atc ggt ccc gga aag gtt ttg tca ggg Gly Val Thr Thr Phe Ile Glu Ile Gly Pro Gly Lys Val Leu Ser Gly 270 275 280	1349
ctt gtg aag aaa gtg aac cgc aga gtc aaa acg att gct gta tca gac Leu Val Lys Lys Val Asn Arg Arg Val Lys Thr Ile Ala Val Ser Asp 285 290 295	1397
ccg aac aca att gaa ctt gcc gtt caa acg ttg aag gag gaa aac gaa Pro Asn Thr Ile Glu Leu Ala Val Gln Thr Leu Lys Glu Glu Asn Glu 300 305 310 315	1445
aat gct gga aaa taaaacagcc gttgtgacag gagcctcaag aggaatcggc Asn Ala Gly Lys	1497
cgcgcgatcg ccctggacct ggcgaaaaac ggagcaaatg tcgtcgtcaa ctacgcggga	1557
aatgaagcga aagcgaacga agtcgtagac gaaatcaaag cgctcggccg cgatgcgttt	1617
gcttttaaag cggacgtttc caatgcggat gaggttcagg cgatgatgaa ggaagcggtc	1677
ggacgcttcg gcacgcttga catccttgtc aacaatgcgg gcattactaa agacaatctg	1737
ttcatgagaa tgaaagaaga tgaatgggac gacgtcatta acataaactt aaaaggtgtg	1797
ttcaattgtt caaaagctgt gacaagacag atgatgaaac aaagaagcgg ccggatcatc	1857
aatatcacct cggttgtagg cgtcgtcggt aacgccgggc aggccaacta tgtcgcggct	1917
aaatcaggcg tattccagta g	1938
-210- 4	

<210> 4

<211> 319

<212> PRT

<213> Bacillus licheniformis

<400> 4

Met Gly Lys Ile Ala Phe Leu Phe Pro Gly Gln Gly Ser Gln His Ile 1 10 15

Phe Glu Glu Ala Asp Gln Thr Leu Glu Thr Lys Leu Ser Thr Leu Met 35 Phe Glu Gly Asp Ala Lys Glu Leu Thr Leu Thr Tyr Asn Ala Gln Pro 50 60 Ser Leu Leu Thr Ala Ser Ile Ala Ala Leu Glu Lys Leu Lys Glu Tyr 65 70 75 80 Gly Ile Lys Ala Asp Tyr Ala Ala Gly His Ser Leu Gly Glu Tyr Ser 85 90 95 Ala Leu Val Ala Ala Gly Ala Leu Ser Phe Lys Asp Ala Val Tyr Ala 100 105 110 Val Arg Lys Arg Gly Glu Phe Met Asn Glu Ala Val Pro Ala Gly Glu
115 120 125 Gly Ala Met Ala Ala Ile Leu Gly Met Asp Ser Gln Ala Leu Lys Glu 130 135 Val Thr Asp Lys Ile Ser Glu Glu Gly Asn Leu Val Gln Leu Ala Asn 145 150 155 160 Leu Asn Cys Pro Gly Gln Ile Val Ile Ser Gly Thr Ala Lys Gly Val Glu Leu Ala Ser Glu Leu Ala Lys Glu Lys Gly Ala Lys Arg Ala Ile 180 185 Pro Leu Glu Val Ser Gly Pro Phe His Ser Glu Leu Met Lys Pro Ala 195 200 205 Ala Asp Lys Leu Arg Glu Val Leu Asp Ala Cys Thr Ile Asn Asp Ala 210 215 220 Ala Ile Pro Val Val Ser Asn Val Thr Ala Asp Phe Val Thr Asp Lys 235 240 Asp Asp Ile Lys Asn Lys Leu Ile Glu Gln Leu Tyr Ser Pro Val Arg 245 250 255 Phe Glu Glu Thr Ile Ser Arg Leu Ile Asp Glu Gly Val Thr Thr Phe Ile Glu Ile Gly Pro Gly Lys Val Leu Ser Gly Leu Val Lys Lys Val 275 280 285 Asn Arg Arg Val Lys Thr Ile Ala Val Ser Asp Pro Asn Thr Ile Glu 290 295 300

Leu Ala Val Gln Thr Leu Lys Glu Glu Asn Glu Asn Ala Gly Lys 305 310 315

305				310					312						
<210>	5														
<211>	2119														
<212>	DNA														
<213>	васі	llus	lich	neni 1	Form	is									
<220>															
<221>	CDS														
<222>	(381))(1616))											
<223>															
	_														
<400> tagtgg	•	taca	atcai	tg aa	atgg	caga	g aag	gtgti	tcaa	gtti	tgccg	gtc (gcca	aaatgg	60
gtgaat	ccag	tgta	aatgi	tt a	ttgaa	aaaa	g cgg	gati	tatc	caaa	ıgagç	gat 🤉	gtcga	actttt	120
tggtgc	cgca	ccaa	gccaa	ac a	tccg	gatca	a tg	gaago	cggc	gcg	gaad	gt 1	ttgga	agcttc	180
cggtcg	aaaa	aatg	tcgaa	aa a	cggt1	tcata	a aat	tacgg	gaaa	caca	itcag	gct (gctte	ctattc	240
cgattt	ctct	tgtg	gaaga	ag c	ttgaa	agct	g gta	aaaa	taaa	aga	ggt	gac (gtcat	ttgtga	300
tggtcg	gctt	cggc	ggag	gt t	tgaca	atgg	g gag	gccat	tcgc	cate	gcgc1	tgg (gccg	gctaaa	360
agaaag	gtga	ggtg	caact	tt a	tg aa et As	at ag	gt aa er Lv	aa ag	ga gi rq Va	ta gi al Va	c at	tt ad le Ti	cc gg	ga tta Iy Leu	413
				1			,	5	9				10		
gga go Gly Al	t tta a Leu	Ser	cct Pro	ctt Leu	ggt Gly	aat Asn	Asp	gtc Val	aaa Lys	aca Thr	agc Ser	Trp	aac Asn	aac Asn	461
		15					20					25			
gcg at	e Asn	ggg Gly	gtt Val	tcc Ser	gga Gly	٧a٦	ggc Gly	ccg Pro	ata Ile	aca Thr	Arg	gtg Val	aac Asn	gcg Ala	509
ana an	30	+				35					40	***		-4-	557
gac ga Asp Gl	u Tyr	Pro	Ala	aaa Lys	Va1	Ala	Ala	gaa Glu	Leu	Lys	Asp	Phe	Lys	ata Ile	22/
gaa ga		ato	nat	222	50 aaa	naa	מכמ	ana	222	55 ato	nac	רמר	t +c	aca	605
Glu As	p Tyr	Met	Asp	Lys 65	Lys	Ğlu	Ālā	Arg	Lys 70	Met	Asp	Arg	Phe	Thr 75	003
caa ta	t acc	att	ata	_	aca	aaa	ato	מככ		gaa	aac	aca	aac	ctc	653
GIn Ty	r Ala	val	Va1 80	Ser	ĀĨā	Lys	Met	Ala 85	val	Ğlü	Asp	ĀĨā	61y 90	Leu	0
gac at	t aac	gaa		aac	gca	gac	caa		ggc	atc	taa	atc		tcc	701
Ăsp Il	e Asn	Ğ]u 95	Sér	Asn	Āla	Āsp	Arg 100	Ile	ĞΊy	٧a٦	Třp	Val 105	ĞΊy	Ser	
gga at	c ggc	ggc	ctt	gaa	acg	ctt	gaa	cag	cag	tţc	gaa	aça	tţt	tta	749
Gly Il	e Gly 110	Gly	Leu	Glu	Thr	Leu 115	Glu	GÎÑ	Gln	Phe	Glu 120	Thr	Phe	Leu	
									0						

Page 8

aca Thr	aaa Lys 125	gga Gly	ccg Pro	cgg Arg	cgc Arg	gtc Val 130	agc Ser	ccg Pro	ttc Phe	ttt Phe	gta Val 135	ccg Pro	atg Met	atg Met	att Ile	797
cct Pro 140	gat Asp	atg Met	gcg Ala	acc Thr	ggc Gly 145	cag Gln	att Ile	tcg Ser	atc Ile	tct Ser 150	ctc Leu	ggt Gly	gca Ala	aaa Lys	ggg Gly 155	845
gtc Val	aac Asn	tct Ser	tgt Cys	acg Thr 160	gtg Val	acg Thr	gct Ala	tgc Cys	gcg Ala 165	acg Thr	ggt Gly	aca Thr	aac Asn	tca Ser 170	atc Ile	893
ggc Gly	gac Asp	gct Ala	ttc Phe 175	aag Lys	gtc val	att Ile	cag Gln	cgc Arg 180	ggc Gly	gat Asp	gcc Ala	gat Asp	gtc Val 185	atg Met	atc Ile	941
tcc Ser	gga Gly	gga Gly 190	acg Thr	gaa Glu	gcc Ala	ccg Pro	ctt Leu 195	aca Thr	aga Arg	atg Met	tca Ser	ttt Phe 200	gcc Ala	ggc Gly	ttt Phe	989
tca Ser	gcc Ala 205	aat Asn	aaa Lys	gcg Ala	cta Leu	tcc Ser 210	act Thr	aat Asn	ccg Pro	gat Asp	ccg Pro 215	aaa Lys	acg Thr	gca Ala	agc Ser	1037
cgt Arg 220	ccg Pro	ttt Phe	gac Asp	aaa Lys	aac Asn 225	cgc Arg	gac Asp	ggc Gly	ttc Phe	gtc Val 230	atg Met	gga Gly	gaa Glu	gga Gly	gct Ala 235	1085
gga Gly	atc Ile	gtc Val	gtt Val	ctt Leu 240	gag Glu	gag Glu	ctt Leu	gag Glu	cac His 245	gcc Ala	tta Leu	aac Asn	cgc Arg	gga Gly 250	gcg Ala	1133
aca Thr	atc Ile	tac Tyr	gcg Ala 255	gaa Glu	gtg Val	gtc val	ggc Gly	tac Tyr 260	gga Gly	tca Ser	acg Thr	gga Gly	gac Asp 265	gcc Ala	tat Tyr	1181
cat His	att Ile	acg Thr 270	gca Ala	cct Pro	gcg Ala	cca Pro	aat Asn 275	gga Gly	gaa Glu	ggc Gly	ggc Gly	gtc Val 280	aga Arg	gcc Ala	atg Met	1229
aaa Lys	gaa Glu 285	gcg Ala	atc Ile	aaa Lys	gat Asp	gcg A1a 290	ggt Gly	ctg Leu	tcc Ser	cct Pro	gtg Val 295	gac Asp	att Ile	gat Asp	tat Tyr	1277
atc Ile 300	aat Asn	gct Ala	cat His	gga Gly	aca Thr 305	agc ser	acg Thr	ccg Pro	tac Tyr	aat Asn 310	Asp	aaa Lys	ttt Phe	gaa Glu	acg Thr 315	1325
atc Ile	gcc Ala	att Ile	aaa Lys	gaa Glu 320	gtg Val	ttc Phe	gga Gly	gag Glu	cat His 325	Ala	tac Tyr	aag Lys	ctt Leu	gcc Ala 330	Val	1373
agc Ser	tcg Ser	aca Thr	aaa Lys 335	tcg Ser	atg Met	aca Thr	ggg Gly	cac His 340	ttg Leu	ctc Leu	ggg Gly	gct Ala	gcc Ala 345	Gly	ggc Gly	1421
															cct Pro	1469
ccg Pro	aca Thr 365	atc Ile	aat Asn	atc Ile	gaa Glu	acg Thr 370	cct Pro	gat Asp	gaa Glu	gat Asp	tgc Cys 375	gat Asp	ctg Leu	gac Asp	tat Tyr	1517
gta Val 380	ccg Pro	gat Asp	caa Gln	gcc Ala	cgc Arg 385	cgc Arg	cag Gln	gac Asp	٧a٦	aat Asn 390 ge 9	۷a٦	gtg Val	ctc Leu	agc Ser	aac Asn 395	1565

tcg ctt ggt ttc ggc gga cac aac gca acg ctg atc ttc aaa aaa tat Ser Leu Gly Phe Gly Gly His Asn Ala Thr Leu Ile Phe Lys Lys Tyr 400 405 410	1613
gaa taacccgcaa tataaacggc tgccatttta aatggtggcc gttttttta Glu	1666
gcgtgcatac catacagatg aaaaaggagt gtgatctaaa atgagtatag caagcacgta	1726
tgaatggctt gaacaggctt catccgtgcg ggaattgcca agctttctcc tgccgtattt	1786
taaaggcgct tcaaaagcgg atgcggcggc gattgtcagc cacctgcaga tccacggctt	1846
gttccgttcg tggacggacg gcgaacgtac gatgaagcag cttaaggaaa acggcgtatt	1906
tcagcatgtc agacgggaag aacagctgct ctgcaaaaga tggaacgggc cggatgttcc	1966
gattttcatc ctgccggtcg atgaaagaaa ccgcaaaatc cgcgtcgaat tcggctcgaa	2026
atcaggcctc gcgttcagcg acaaattatt tttgttttta tcggccgatc ttccccggtc	2086
ttcaatttct gcgatcatga cacacgaata taa	2119
210 6	
<210> 6 <211> 412	
<211> 412 <212> PRT	
<213> Bacillus licheniformis	
V2137 Bactifius Tichemitormis	
<400> 6	
Met Asn Ser Lys Arg Val Val Ile Thr Gly Leu Gly Ala Leu Ser Pro 1 10 15	
Leu Gly Asn Asp Val Lys Thr Ser Trp Asn Asn Ala Ile Asn Gly Val 20 25 30	
Ser Gly Val Gly Pro Ile Thr Arg Val Asn Ala Asp Glu Tyr Pro Ala 35 40 45	
Lys Val Ala Ala Glu Leu Lys Asp Phe Lys Ile Glu Asp Tyr Met Asp 50 60	
Lys Lys Glu Ala Arg Lys Met Asp Arg Phe Thr Gln Tyr Ala Val Val	
Ser Ala Lys Met Ala Val Glu Asp Ala Gly Leu Asp Ile Asn Glu Ser 85 90 95	
Asn Ala Asp Arg Ile Gly Val Trp Val Gly Ser Gly Ile Gly Gly Leu 100 110	
Glu Thr Leu Glu Gln Gln Phe Glu Thr Phe Leu Thr Lys Gly Pro Arg 115 120 125 Page 10	

Arg Val Ser Pro Phe Phe Val Pro Met Met Ile Pro Asp Met Ala Thr 130 140 Gly Gln Ile Ser Ile Ser Leu Gly Ala Lys Gly Val Asn Ser Cys Thr 145 150 155 160 Val Thr Ala Cys Ala Thr Gly Thr Asn Ser Ile Gly Asp Ala Phe Lys 165 170 175 Val Ile Gln Arg Gly Asp Ala Asp Val Met Ile Ser Gly Gly Thr Glu 180 185 190 Ala Pro Leu Thr Arg Met Ser Phe Ala Gly Phe Ser Ala Asn Lys Ala 195 200 Leu Ser Thr Asn Pro Asp Pro Lys Thr Ala Ser Arg Pro Phe Asp Lys 210 220 Asn Arg Asp Gly Phe Val Met Gly Glu Gly Ala Gly Ile Val Val Leu 225 230 235 240 Glu Glu Leu Glu His Ala Leu Asn Arg Gly Ala Thr Ile Tyr Ala Glu 245 250 255 Val Val Gly Tyr Gly Ser Thr Gly Asp Ala Tyr His Ile Thr Ala Pro 260 265 270 Ala Pro Asn Gly Glu Gly Gly Val Arg Ala Met Lys Glu Ala Ile Lys 285 Asp Ala Gly Leu Ser Pro Val Asp Ile Asp Tyr Ile Asn Ala His Gly 290 295 300 Thr Ser Thr Pro Tyr Asn Asp Lys Phe Glu Thr Ile Ala Ile Lys Glu 305 310 320 Val Phe Gly Glu His Ala Tyr Lys Leu Ala Val Ser Ser Thr Lys Ser 325 330 335 Met Thr Gly His Leu Leu Gly Ala Ala Gly Gly Ile Glu Ala Ile Phe 340 350 Ser Val Leu Ala Ile Lys Glu Gly Ile Ile Pro Pro Thr Ile Asn Ile 355 360 365 Glu Thr Pro Asp Glu Asp Cys Asp Leu Asp Tyr Val Pro Asp Gln Ala 370 380 Arg Arg Gln Asp Val Asn Val Val Leu Ser Asn Ser Leu Gly Phe Gly 385 395 400 Page 11

Gly His Asn Ala Thr Leu Ile Phe Lys Lys Tyr Glu 405 410

<210> <211> 8158 <212> DNA <213> Bacillus licheniformis <220> <221> CDS <222> (501)..(7655) <223>

<400> 60 atcaccqqaa tctatqccca tatcqqctqc ctqatqacgq catqtqatqc ttttatqcaa 120 gatattgaaa catttttcgt cggagatgcg gtggcggatt tctcattaaa gcatcatgaa atggccatca catacgcagc tgaccgttgc agtgtcacaa ttactgcgga acagcttctg 180 agccgactga aagatggcga aagccatgaa cacgcaaaag aaagctctca tgcactgaca 240 300 aaacagatta ttcgcgaaca ggtggcatcg cttcttcttg aatcgccgga aaagataagc gacagcgaaa atttgatcta ccggggaatt gattccgtga gaatcatgag tctcgcagag 360 420 cgctggcgcc gagcggggcg ggaggtgtcg tttgtagagc ttgcggagga cccttcgatt gaaaactggt ggagactgtt gtcctcctct aaagaagcac ctttgccaaa tgcagactat 480 caatgaagga ggtcacctaa atg cct gaa tgt caa cat aac cga aag cca tta Met Pro Glu Cys Gln His Asn Arg Lys Pro Leu 1 5 10 533 tca gga gcg caa gcc ggg att tgg ttt gct cag cag ctt gat ccg gaa Ser Gly Ala Gln Ala Gly Ile Trp Phe Ala Gln Gln Leu Asp Pro Glu 15 20 25 581 aat ccg atc tac aat aca gct gaa tac gtt gaa att aaa ggc ccg ctt Asn Pro Ile Tyr Asn Thr Ala Glu Tyr Val Glu Ile Lys Gly Pro Leu 30 35 40 629 gat cag gag ctt ttc gaa aaa gcg ctg cgc cat gtc att aaa gaa gct Asp Gln Glu Leu Phe Glu Lys Ala Leu Arg His Val Ile Lys Glu Ala 45 50 55 677 gaa tca ttt cat gcc aga ttt gga gaa gat caa gac gga cca tgg caa Glu Ser Phe His Ala Arg Phe Gly Glu Asp Gln Asp Gly Pro Trp Gln 60 65 70 75 725 gag atc gtt ccg tca aca gat ttt ccg cta cat tac att gat gtc agc Glu Ile Val Pro Ser Thr Asp Phe Pro Leu His Tyr Ile Asp Val Ser 80 85 90 773 821

tca gaa acc gat ccg gaa cag gcg gct aaa agc tgg atg atg gat gac

Page 12

Ser	Glu	Thr	Asp 95	Pro	Glu	Gln	ΑΊa		297.9 Lys		txt Trp	Met	Met 105	Asp	Asp	
ctt Leu	gcc Ala	cgt Arg 110	ccg Pro	gtt val	gat Asp	ctg Leu	act Thr 115	cgc Arg	ggc Gly	ccg Pro	ctt Leu	ttt Phe 120	aca Thr	gaa Glu	gcg Ala	869
ctt Leu	ttt Phe 125	aaa Lys	gcg Ala	gcg Ala	caa Gln	gat Asp 130	cat His	tac Tyr	ttc Phe	tgg Trp	tat Tyr 135	cag Gln	cga Arg	act Thr	cac His	917
cat His 140	atc Ile	gca Ala	aca Thr	gac Asp	ggg Gly 145	ttc Phe	agc Ser	ttt Phe	aca Thr	ttg Leu 150	atc Ile	gcc Ala	gag Glu	cgg Arg	ctg Leu 155	965
tca Ser	aaa Lys	ata Ile	tat Tyr	acc Thr 160	gca Ala	ttg Leu	atg Met	cag Gln	aac Asn 165	aaa Lys	tcg ser	atc Ile	gac Asp	cag Gln 170	agc Ser	1013
gga Gly	gcc Ala	ttt Phe	ggc Gly 175	tcc Ser	ctc Leu	gat Asp	ttg Leu	att Ile 180	ctc Leu	gcg Ala	gag Glu	gaa Glu	acg Thr 185	gct Ala	tac Tyr	1061
cgt Arg	gca Ala	tca Ser 190	gaa Glu	cag Gln	tat Tyr	cag Gln	gaa Glu 195	gat Asp	cgg Arg	cga Arg	ttt Phe	tgg Trp 200	ctt Leu	ggg Gly	cgt Arg	1109
ttc Phe	agc Ser 205	gat Asp	gaa Glu	ccg Pro	gag Glu	gtg Val 210	gtc Val	agc Ser	ctt Leu	gcc Ala	gaa Glu 215	agg Arg	gcg Ala	ccg Pro	cgt Arg	1157
acc Thr 220	tct Ser	tca Ser	agt Ser	ttt Phe	ctt Leu 225	cgc Arg	agg Arg	tct Ser	gaa Glu	cac His 230	ctg Leu	cca Pro	agt Ser	gag Glu	gat Asp 235	1205
gct Ala	gat Asp	cgt Arg	ctt Leu	ctg Leu 240	tct Ser	gcc Ala	gcg Ala	agc Ser	aga Arg 245	atg Met	ggg GTy	gca Ala	act Thr	tgg Trp 250	cac His	1253
gaa Glu	acc Thr	gtg Val	atg Met 255	gca Ala	gca Ala	gca Ala	gca Ala	ata Ile 260	tat Tyr	gtt Val	cac His	cgt Arg	ctg Leu 265	aca Thr	ggg Gly	1301
gca Ala	aat Asn	gac Asp 270	gtc Val	gtt Val	ctc Leu	ggg Gly	atg Met 275	ccg Pro	atg Met	atg Met	tgc Cys	cgc Arg 280	ctc Leu	ggg Gly	tca Ser	1349
											ctc Leu 295					1397
att Ile 300	ggc Gly	atg Met	cag Gln	ccg Pro	caa Gln 305	atg Met	agc Ser	ata Ile	gga Gly	gag Glu 310	cta Leu	gtc Val	aag Lys	caa Gln	atc Ile 315	1445
											cat His					1493
											aac Asn					1541
ggt Gly	ccg Pro	cag G1n 350	ctt Leu	aat Asn	ttg Leu	atg Met	cct Pro 355	ttt Phe	gag Glu	aac Asn	cgc Arg	ttg Leu 360	aat Asn	ttt Phe	gcc Ala	1589
ggc	tgt	caa	ggc	atc	gtg	cat	aat	ctt	_	acg je 13	gga	cct	gtg	gac	gat	1637

_7		-7	~3	_7 -	7	•				T25		 .	T		•	
Gly	365	GIN	GIY	Ile	val	H15 370	Asn	Leu	Ala	Thr	375	Pro	vai	Asp	Asp	
ttg Leu 380	tca Ser	atc Ile	aac Asn	att Ile	tac Tyr 385	ggc Gly	cgt Arg	ccg Pro	gac Asp	ggt Gly 390	ggc Gly	ggg Gly	cta Leu	aaa Lys	gta Val 395	1685
aac Asn	atg Met	gat Asp	gca Ala	aac Asn 400	cct Pro	gct Ala	gtt Val	tat Tyr	cat His 405	gcg Ala	gat Asp	gaa Glu	ctt Leu	gaa Glu 410	gat Asp	1733
cac His	ggc Gly	aat Asn	cgt Arg 415	ttt Phe	ctt Leu	act Thr	ctt Leu	ctg Leu 420	aaa Lys	acg Thr	att Ile	gcc Ala	gtt Val 425	tgc Cys	gaa Glu	1781
caa Gln	act Thr	cag Gln 430	ccg Pro	gtg Val	ggg Gly	acg Thr	ttg Leu 435	gac Asp	att Ile	ctt Leu	ctc Leu	cct Pro 440	gaa Glu	gaa Glu	cgc Arg	1829
gct Ala	caa Gln 445	ata Ile	ttg Leu	att Ile	gaa Glu	tgg Trp 450	aat Asn	caa Gln	aca Thr	gaa Glu	cac His 455	ggg Gly	ctt Leu	ccc Pro	aaa Lys	1877
gag Glu 460	agt Ser	ctt Leu	ccg Pro	cag Gln	cga Arg 465	ttt Phe	gaa Glu	agg Arg	atg Met	gca Ala 470	aag Lys	gag Glu	tgt Cys	cct Pro	gaa Glu 475	1925
tct Ser	ccg Pro	gca Ala	gtc val	gtt Val 480	tgc Cys	aat Asn	gat Asp	aag Lys	gtt Val 485	ctc Leu	act Thr	tat Tyr	tcc Ser	gaa Glu 490	tta Leu	1973
					caa Gln											2021
aaa Lys	ccc Pro	gag Glu 510	aca Thr	ttt Phe	att Ile	gcc Ala	ttg Leu 515	gcg Ala	ttg Leu	ccg Pro	cgg Arg	tca Ser 520	gcg Ala	gaa Glu	atg Met	2069
gtt Val	gtc Val 525	agc Ser	atg Met	ctc Leu	gcc Ala	gtt Val 530	ctc Leu	aaa Lys	gct Ala	gga Gly	gcg Ala 535	gct Ala	tat Tyr	tta Leu	cct Pro	2117
ata Ile 540	gat Asp	ccc Pro	gat Asp	tat Tyr	ccg Pro 545	gct Ala	gac Asp	agg Arg	atc Ile	gag G1u 550	tat Tyr	atg Met	ctc Leu	aac Asn	gat Asp 555	2165
					gtt Val											2213
ggt Gly	tcg Ser	caa Gln	atg Met 575	ccg Pro	aag Lys	tta Leu	atc Ile	ctc Leu 580	gat Asp	gaa Glu	caa G]n	act Thr	gtt Val 585	atg Met	gag Glu	2261
aaa Lys	atg Met	tcc Ser 590	ggc Gly	tgt Cys	tct Ser	gaa Glu	gaa Glu 595	aat Asn	ccc Pro	ggc Gly	gaa Glu	cag Gln 600	cat His	tcc Ser	ggc Gly	2309
aac Asn	cag G1n 605	ccg Pro	gça Ala	tat Tyr	atg Met	att Ile 610	tat Tyr	acg Thr	tcg ser	gga Gly	tca Ser 615	acc Thr	ggc Gly	aga Arg	cct Pro	2357
aaa Lys 620	ggc Gly	gtg Val	gtc Val	gta Val	caa Gln 625	gct Ala	gaa Glu	agc Ser	tta Leu	ttc Phe 630	aat Asn	ttt Phe	ttg Leu	ctg Leu	tca Ser 635	2405
atg	cag	gac	atg	ttc	gcg	ctt	aat	caa	-	gac je 14		ctg	ctg	gcc	gtc	2453

.

Met	GТп	Asp	Met	Phe 640	Ala	Leu	Asn			T25. Asp		Leu	Leu	Ala 650	۷a٦		
act Thr	aca Thr	att Ile	gca Ala 655	ttc Phe	gac Asp	atc Ile	tca Ser	gca Ala 660	ctc Leu	gaa Glu	att Ile	tat Tyr	ttg Leu 665	ccg Pro	ctg Leu	2501	
atc Ile	agc ser	gga Gly 670	tca Ser	gca Ala	gtc Val	gtt Val	ctt Leu 675	gcc Ala	gag Glu	aag Lys	gaa Glu	acg Thr 680	gta Val	caa Gln	gat Asp	2549	
ccg Pro	tcc ser 685	gaa Glu	ttg Leu	gcc Ala	aaa Lys	atg Met 690	att Ile	gaa Glu	aca Thr	tac Tyr	gaa Glu 695	att Ile	aca Thr	ata Ile	atg Met	2597	
cag Gln 700	gct Ala	aca Thr	ccg Pro	acc Thr	ctc Leu 705	tgg Trp	cat His	gca Ala	ttg Leu	gcc Ala 710	tcg Ser	agc Ser	gcc Ala	ccg Pro	gaa Glu 715	2645	
aag Lys	ctc Leu	aaa Lys	ggt Gly	ctt Leu 720	cgt Arg	gcg Ala	ctt Leu	gtc Val	ggc Gly 725	ggc Gly	gaa Glu	gct Ala	ttg L e u	caa Gln 730	tcc Ser	2693	
agc Ser	ctg Leu	gcc Ala	cgg Arg 735	caa Gln	ttg Leu	cag Gln	cag Gln	ctc Leu 740	gcg Ala	tgt Cys	tct Ser	tta Leu	acg Thr 745	aac Asn	ctt Leu	2741	
tat Tyr	gga Gly	ccg Pro 750	acg Thr	gaa Glu	aca Thr	aca Thr	att Ile 755	tgg Trp	tct Ser	aca Thr	gcc Ala	gct Ala 760	gcg Ala	ctg Leu	gaa Glu	2789	
ggc Gly	aac Asn 765	tgt Cys	acg Thr	gaa Glu	cct Pro	ccg Pro 770	gga Gly	atc Ile	ggc Gly	tgt Cys	gcg Ala 775	att Ile	tgg Trp	aat Asn	acg Thr	2837	
cag Gln 780	ctt Leu	tat Tyr	gtc Val	ctg Leu	gac Asp 785	gcc Ala	gga Gly	tta Leu	cag Gln	cca Pro 790	gtg Val	cct Pro	ccg Pro	gga Gly	acg Thr 795	2885	
gct Ala	gga Gly	gaa Glu	ctt Leu	tat Tyr 800	gtg Val	gca Ala	gga Gly	aca Thr	ggg G1y 805	gta Val	gcg Ala	cgc Arg	ggc Gly	tac Tyr 810	ttg Leu	2933	
aac Asn	cga Arg	cat His	gct Ala 815	ctc Leu	acg Thr	gct Ala	gag Glu	cgc Arg 820	ttt Phe	att Ile	gcg Ala	aat Asn	cca Pro 825	tac Tyr	ggg Gly	2981	
ccg Pro	cct Pro	gga Gly 830	seř	cgg Arg	atg Met	tac Tyr	cgg Arg 835	aca Thr	ggc Gly	gac Asp	atc Ile	gtg Val 840	cgc Arg	tgg Trp	cgc Arg	3029	
gaa Glu	gac Asp 845	ggg Gly	tcg Ser	ctt Leu	gat Asp	tat Tyr 850	Ile	ggc Gly	cgt Arg	gca Ala	gac Asp 855	cat His	caa Gln	gtc Val	aaa Lys	3077	
att Ile 860	cgg Arg	ggg Gly	ttc Phe	cga Arg	att 11e 865	gaa Glu	atg Met	gga Gly	gaa Glu	ata 11e 870	gaa Glu	gcg Ala	gtg Val	ctt Leu	gca Ala 875	3125	
aat Asn	cat His	ccg Pro	gtt Val	gtt Val 880	Ly5	caa Gln	gct Ala	gct Ala	gct Ala 885	atc Ile	gtt Val	cgt Arg	gaa Glu	gac Asp 890	Gin	3173	
	ggt Gly								ĂΊa							3221	
agc	ctt	gat	cct	gcc	gag	ctt	cgc	cgc		gtt ge 1		gag	aca	ctg	ccc	3269	

10297.ST25.txt Ser Leu Asp Pro Ala Glu Leu Arg Arg Phe Val Gly Glu Thr Leu Pro 910 915 gac tat atg att ccg tct gca ttt gtc ata ctt gat gaa ctg ccg ctt Asp Tyr Met Ile Pro Ser Ala Phe Val Ile Leu Asp Glu Leu Pro Leu 925 930 935 3317 acg ccg aac gga aag ctt gac cgc aaa tcc ctg ccg gct ccg gcg gtg Thr Pro Asn Gly Lys Leu Asp Arg Lys Ser Leu Pro Ala Pro Ala Val 940 945 950 3365 agt atg cat aca ggc gga cgc gag ccg agg act ccg caa gag gaa att Ser Met His Thr Gly Gly Arg Glu Pro Arg Thr Pro Gln Glu Glu Ile 960 970 3413 ttg tgt gat tta ttt gct gag gtg ctg ggg gtg ccg cga gtc agt att Leu Cys Asp Leu Phe Ala Glu Val Leu Gly Val Pro Arg Val Ser Ile 975 980 985 3461 gat gac agc ttt ttt gac ctc ggc gga cat tcc ctt ctg gca ggC agg Asp Asp Ser Phe Phe Asp Leu Gly Gly His Ser Leu Leu Ala Gly Arg 990 995 3509 ctc gtc ggc cgc att cgg gaa atg ctc ggc gtc gaa ctc gga atc Leu Val Gly Arg Ile Arg Glu Met Leu Gly Val Glu Leu Gly Ile 1005 1010 3554 ggc cgt tta ttc gat gag ccc aca gcc ggc gga ctt gcc aaa Cag Gly Arg Leu Phe Asp Glu Pro Thr Ala Ala Gly Leu Ala Lys Gln 1020 1025 3599 ctt gat cag gcg cag agc gcc cgt ccg gca ttg cgc aaa aga gag Leu Asp Gln Ala Gln Ser Ala Arg Pro Ala Leu Arg Lys Arg Glu 1035 1040 1045 3644 cgc cgc aag gag att ccg ctg tcc ttc gca cag cgg cgc cta tgg Arg Arg Lys Glu Ile Pro Leu Ser Phe Ala Gln Arg Arg Leu Trp 1050 1060 3689 ttt ttg cac tgt ttg gaa gga ccg agc ccg acc tat aat att ccg Phe Leu His Cys Leu Glu Gly Pro Ser Pro Thr Tyr Asn Ile Pro 1065 1070 1075 3734 gtt gtc gtt cat tta act gga gat ttg gac caa aag gcg ctg gca Val Val His Leu Thr Gly Asp Leu Asp Gln Lys Ala Leu Ala 1080 1085 3779 gct gct ctg ggt gat gtg gca aca aga cat gag ccg ctt cga aca Ala Ala Leu Gly Asp Val Ala Thr Arg His Glu Pro Leu Arg Thr 1095 1100 1105 3824 att ttc ccg gat cag caa ggg aca aca cac cag ctg ata ttg gaa Ile Phe Pro Asp Gln Gln Gly Thr Thr His Gln Leu Ile Leu Glu 1110 1115 3869 gag gat caa tcg cgt ccc gaa ctc act gta tcc cat gtc agc gaa Glu Asp Gln Ser Arg Pro Glu Leu Thr Val Ser His Val Ser Glu 1125 1130 1135 3914 cat gag ttg gaa aaa gtc ctg gct gag gcc gtc cgg cac cgt tac His Glu Leu Glu Lys Val Leu Ala Glu Ala Val Arg His Arg Tyr 1140 1145 1150 3959 cat tta gaa aag gag cct ccg ttt cgc gcc cag cta ttc gta ctc His Leu Glu Lys Glu Pro Pro Phe Arg Ala Gln Leu Phe Val Leu 1155 1160 1165 4004 4049 gga ccg gac aaa ttt gtg ctt ctt ctg ctt ttg cac cat atg atc

Gly	Pro	Asp	Lys	Phe	٧a٦	Leu 1175				25.tx Leu		His	Met	Ile		
ggc Gly	1170 gac Asp 1185	ggc Gly	tgg Trp	tct Ser	tta Leu	atq	ccg Pro	ctg Leu	acc Thr	cgt Arg	gat	ttg Leu	gaa Glu	acc Thr	4094	
gcc Ala	tat Tyr 1200	aat Asn	gcg Ala	cgt Arg	ctg Leu	caa Gln 1205	ggt Gly	gag Glu	gca Ala	cct Pro	gtt Val 1210	tgg Trp	gag Glu	ccg Pro	4139	
ctt Leu	tct Ser 1215	ata Ile	caa Gln	tat Tyr	gcc Ala	gac Asp 1220	tat Tyr	gcc Ala	gta Val	tgg Trp	cag Gln 1225	gaa Glu	tat Tyr	ctg Leu	4184	
ctt Leu	ggc Gly 1230	agt Ser	gag Glu	aac Asn	aat Asn	ccg Pro 1235	gac Asp	agt Ser	ctg Leu	att Ile	gcc Ala 1240	aaa Lys	cag Gln	ctc Leu	4229	
gaa Glu	tat Tyr 1245	tgg Trp	tcg Ser	aag Lys	gca Ala	ttg Leu 1250	gaa Glu	cat His	ctg Leu	cct Pro	gat Asp 1255	cag Gln	ctg Leu	gag Glu	4274	
ctt Leu	ccg Pro 1260	act Thr	gat Asp	cac His	ccg Pro	cgt Arg 1265	ccg Pro	tcg Ser	gaa Glu	tct Ser	agc ser 1270	Tyr	aga Arg	agc Ser	4319	
ggt Gly	acg Thr 1275	att Ile	gat Asp	ctc Leu	agc Ser	att Ile 1280	gac Asp	gaa Glu	cag Gln	ctg Leu	cac His 1285	ggc Gly	cgc Arg	ctg Leu	4364	
ttc Phe	gat Asp 1290	ttg Leu	tcc Ser	cgc Arg	agc Ser	acc Thr 1295	gga Gly	gtc Val	agc Ser	atg Met	ttt Phe 1300	Met	att Ile	ttg Leu	4409	
cag Gln	tcg Ser 1305	gct Ala	ctt Leu	gcc Ala	gca Ala	cta Leu 1310	Leu	aca Thr	cgg Arg	ctc Leu	gga Gly 1315	gca Ala	ggc Gly	cat His	4454	
gat Asp	att Ile 1320	ccg Pro	ctc Leu	ggc Gly	agc Ser	ccg Pro 1325	ata Ile	gcg Ala	gga Gly	aga Arg	aac Asn 1330	Asp	gat Asp	gct Ala	4499	
tta Leu	ggc Gly 1335	gaa Glu	att Ile	gtc Val	gga Gly	ttg Leu 1340	Phe	gtt Val	aat Asn	acg Thr	ctt Leu 1345	Val	ctt Leu	cga Arg	4544	
aca Thr	gat Asp 1350	aca Thr	tcg Ser	ggt Gly	aat Asn	ccg Pro 1355	agt Ser	ttt Phe	cgg Arg	gag Glu	ctt Leu 1360	ctg Leu	aac Asn	aga Arg	4589	
	aga Arg 1365	Lys	gta Val	aac Asn	ctt Leu	gca Ala 1370	Ala	tat Tyr	gag Glu	cat His	cag Gln 1375		ctt Leu		4634	
ttc Phe	gag Glu 1380	cgt Arg	ctt Leu	gtt Val	gaa Glu	gtg Val 1385	ctt Leu	aat Asn	ccg Pro	cgc Arg	agg Arg 1390	tca Ser	aga Arg	7,7	4679	
aga Arg	cat His 1395	ccg Pro	ctg Leu	ttc Phe	caa Gln	att Ile 1400	Met	ctt Leu	gcc Ala	ttt Phe	caa Gln 1405	Asn	acg Thr	CCT Pro	4724	
gaa Glu	cct Pro 1410	gag Glu	ctt Leu	gac Asp	ctt Leu	tcc Ser 1415	ggc Gly	ctc Leu	aag Lys	tca Ser	gac Asp 1420	Ile	gaa Glu		4769	
cgc	agc	gtc	gga	gca	gcc	aag	ttt		ttg Page	_	att	gag	ctt	cgc	4814	

10297.5T25.txt															
Arg	Ser 1425	٧a٦	Gly	Ala	Αla	Lys 1430					Ile 1435	Glu	Leu	Arg	
gaa Glu	cat His 1440	cga Arg	aaa Lys	gcg Ala	gac Asp	gga Gly 1445	aca Thr	ccc Pro	gca Ala	ggt Gly	atc Ile 1450	ggc Gly	gga Gly	ttt Phe	4859
ctt Leu	gaa Glu 1455	tac Tyr	agc Ser	aca Thr	gat Asp	tta Leu 1460	ttt Phe	gag Glu	cga Arg	aat Asn	acg Thr 1465	gtt Val	caa Gln	aca Thr	4904
ttg Leu	gca Ala 1470	gaa Glu	cgg Arg	ctt Leu	gtc Val	agg Arg 1475	ctg Leu	ctg Leu	gat Asp	tca Ser	gca Ala 1480	gca Ala	gac Asp	gac Asp	4949
cct Pro	gat Asp 1485	ca g Gln	ccg Pro	atc Ile	gaa Glu	aaa Lys 1490	ctc Leu	gat Asp	att Ile	ctc Leu	ctt Leu 1495	ccg Pro	gcc Ala	gaa Glu	4994
cgg Arg	gaa Glu 1500	aac Asn	atg Met	ctg Leu	gct Ala	gat Asp 1505	tgg Trp	agc Ser	aaa Lys	tcg Ser	tcc Ser 1510	aac Asn	agc Ser	ata Ile	5039
cct Pro	tgt Cys 1515	tca ser	tct Ser	ttg Leu	CCC Pro	gtt Val 1520	ttg Leu	ttt Phe	gaa Glu	aag Lys	cag Gln 1525	gcg Ala	gca Ala	aag Lys	5084
gat Asp	ccg Pro 1530	gaa Glu	gct Ala	gtt Val	gcg Ala	gtt Val 1535	ata Ile	tgt Cys	gaa Glu	aat Asn	aat Asn 1540	gcg Ala	ctc Leu	aca Thr	5129
tac Tyr	ggc Gly 1545	ga g Glu	ctt Leu	aat Asn	aaa Lys	cgc Arg 1550	gct Ala	aac Asn	cgg Arg	ctt Leu	gct Ala 1555	cat His	ctc Leu	ctg Leu	5174
atc Ile	gcc Ala 1560	aa a Lys	ggg Gly	gtc Val	ggc Gly	ccc Pro 1565	gaa Glu	caa Gln	ttt Phe	gct Ala	gcc Ala 1570	ctg Leu	gcg Ala	ctg Leu	5219
cca Pro	aga Arg 1575	tct Ser	ttg Leu	gat Asp	atg Met	gtt Val 1580	gtc Val	gga Gly	ttg Leu	ctt Leu	gca Ala 1585	gtg Val	ctg Leu	aag Lys	5264
gct Ala	ggc Gly 1590	gcg	gca Ala	tat Tyr	gtg Val	ccc Pro 1595	cta Leu	gat Asp	ccg Pro	gac Asp	tac Tyr 1600	Pro	gcg Ala	gaa Glu	5309
agg Arg	ata Ile 1605	gcg Ala	ttt Phe	atg Met	ttg Leu	aat Asn 1610	gat Asp	gcc Ala	cat His	cct Pro	gtc Val 1615		atc Ile		5354
acg Thr	agt Ser 1620	tca Ser	gcg Ala	gta Val	gaa Glu	tca Ser 1625	aat Asn	ctt Leu	tct Ser	gtt Val	ccc Pro 1630	gga Gly	tct Ser	gtt Val	5399
	agg Arg 1635					gat Asp 1640						gaa Glu		aaa Lys	5444
		ĀΊa				ccg Pro 1655						Thr		cct Pro	5489
	ctg Leu 1665					gcg Ala 1670					aca Thr 1675		= 4	tcg Ser	5534
acc	ggc	aag	ccg	aaa	gga	gtc	gtt	_	ccg age		caa	aat	gtc	gtg	5579

.

.

							4	יחכתו	, c=3						
Thr	Gly 1680	Lys	Pro	Lys	Gly	Val 1685	۷al	val	Pro	85.tx His	G]n 1690	Asn	val	Val	
cgg Arg	ctg Leu 1695	ttc Phe	gga Gly	gcg Ala	act Thr	gac Asp 1700	caa Gln	tgg Trp	ttc Phe	cat His	ttc Phe 1705	ggc Gly	gct Ala	gac Asp	5624
gat Asp	gtt Val 1710	tgg Trp	acg Thr	atg Met	ttt Phe	саt ніs 1715	tct Ser	tac Tyr	gca Ala	ttt Phe	gac Asp 1720	ttt Phe	tcg Ser	gta Val	5669
	gaa Glu 1725	att Ile	tgg Trp	gga Gly	gca Ala	ctt Leu 1730	ctc Leu	aat Asn	ggg Gly	ggc	cgg Arg 1735	ctt Leu	atc Ile	gtg Val	5714
gtg Val	cct Pro 1740	cat His	aca Thr	atc Ile	agc Ser	cgc Arg 1745	tcg Ser	ccg Pro	gcc Ala	gaa Glu	ttt Phe 1750	ctc Leu	aat Asn	ctt Leu	5759
ctc Leu	gtt Val 1755	cgc Arg	gag Glu	gga Gly	gtg Val	act Thr 1760	gtg Val	ctc Leu	aat Asn	cag Gln	act Thr 1765	cct Pro	tca Ser	gca Ala	5804
ttt Phe	tat Tyr 1770	caa Gln	ttg Leu	atg Met	cag G1n	gct Ala 1775	gac Asp	cgg Arg	gac Asp	aat Asn	gct Ala 1780	gag Glu	aca Thr	gga Gly	5849
aag Lys	ctc Leu 1785	ctt Leu	tcc Ser	ttg Leu	cgc Arg	ttt Phe 1790	atc Ile	att Ile	ttt Phe	gga Gly	ggg Gly 1795	gaa Glu	gcg Ala	ctc Leu	5894
	ctg Leu 1800	aag Lys	agg Arg	ctt Leu	gaa Glu	gat Asp 1805	tgg Trp	tat Tyr	gaa Glu	cgc Arg	cat His 1810	ccg Pro	gat Asp	cat His	5939
ttc Phe	ccg Pro 1815	cgg Arg	ctg Leu	att Ile	aat Asn	atg Met 1820	tat Tyr	gga Gly	att Ile	aca Thr	gaa Glu 1825	acg Thr	acg Thr	gtg Val	5984
	gtc Val 1830	agc Ser	tat Tyr	att Ile	tct Ser	ctc Leu 1835	gat Asp	cag Gln	cag Gln	act Thr	gcg Ala 1840	gca Ala	ctt Leu	caa Gln	6029
	aac Asn 1845	agc Ser	ctg Leu	atc Ile	ggc Gly	cag Gln 1850	ggg Gly	att Ile	ccc Pro	gat Asp	tta Leu 1855	ggt Gly	gta Val	tat Tyr	6074
	ctt Leu 1860					gaa Glu 1865	ccg Pro	gtg Val	ccc Pro	ccg Pro	ggc Gly 1870	gtc Val	acc Thr	gga Gly	6119
	atg Met 1875	tat Tyr	gtg Val	tcc ser	ggg Gly	ggc Gly 1880	ggt Gly	ctc Leu	gca Ala	cgg Arg	ggt Gly 1885		ttg Leu		6164
	ccc Pro 1890		ttg Leu			gac Asp 1895	cgc Arg	ttt Phe	gtc Val	gct Ala	gat Asp 1900	ccg Pro	ttt Phe	ggt Gly	6209
	ccg Pro 1905		acc Thr			tac Tyr 1910		acc Thr			ctt Leu 1915				6254
_	cag Gln 1920		ggc Gly			gat Asp 1925	tat Tyr	atg Met	ggg Gly	cgg Arg	gcc Ala 1930	gac Asp	cag Gln	cag Gln	6299
atc	aag	atc	cgc	ggc	ttc	aga	atc	_	ctc age		gag	ata	gaa	gcg	6344

w1 -	• • • •	-7 .	•	-7.	m l	•				25. tx		-7.	c1	47-	
Tie	Lys 1935	IIe	Arg	GIY	Pne	Arg 1940	IIE	GIU	Leu	GIY	1945	116	Glu	Ala	
gtg Val	ctt Leu 1950	gtc Val	cgc Arg	cat His	cat His	aga Arg 1955	gtg Val	aat Asn	caa Gln	gcc Ala	gct Ala 1960	gtg Val	gtc Val	gta Val	6389
agg Arg	gaa Glu 1965	ggc Gly	cag Gln	ccc Pro	ggg Gly	gac Asp 1970	aag Lys	cgt Arg	ctg Leu	atc Ile	gcc Ala 1975	tac Tyr	gtt Val	gtc Val	6434
ccg Pro	gcg Ala 1980	tct Ser	gaa Glu	gaa Glu	gaa Glu	acc Thr 1985	gat Asp	ccg Pro	gct Ala	gag Glu	ctg Leu 1990	cga Arg	cgg Arg	ttt Phe	6479
gcc Ala	gca Ala 1995	ggc Gly	act Thr	ctg Leu	ccg Pro	gag G1u 2000	tac Tyr	atg Met	gtg Val	cct Pro	tcc Ser 2005	gca Ala	ttt Phe	gta Val	6524
aaa Lys	att Ile 2010	tca Ser	gag Glu	ctg Leu	cca Pro	ttg Leu 2015	act Thr	cca Pro	aat Asn	ggc Gly	aaa Lys 2020	ctt Leu	gac Asp	cga Arg	6569
aaa Lys	gcg A1a 2025	ctg Leu	cct Pro	gag Glu	cct Pro	gac Asp 2030	ttt Phe	gcc Ala	gcg Ala	gct Ala	gtt val 2035	aaa Lys	ggg Gly		6614
	cca Pro 2040	aga Arg	aca Thr	ccg Pro	cag Gln	gaa Glu 2045	gaa Glu	atc Ile	ctg Leu	tgc Cys	gat Asp 2050	ctt Leu	ttt Phe	tca Ser	6659
gaa Glu	atc Ile 2055	ctc Leu	aat Asn	gcg Ala	ccg Pro	aga Arg 2060	gtc Val	ggt Gly	att Ile	gat Asp	gac Asp 2065	gga Gly	ttc Phe	ttc Phe	6704
	ctt Leu 2070	ggc Gly	ggg Gly	cat His	tct Ser	ctt Leu 2075	ctc Leu	gcc Ala	gta Val	cag Gln	ctg Leu 2080	atg Met	agc Ser	cgc Arg	6749
att Ile	cgt Arg 2085	gaa Glu	gcg Ala	ctc Leu	gga Gly	gtc Val 2090	gaa Glu	ctc Leu	ggc Gly	atc Ile	ggc Gly 2095	gac Asp	ctg Leu	ctt Leu	6794
	gcg Ala 2100	cct Pro	aca Thr	gtc Val	agc Ser	gga Gly 2105	ctt Leu	gct Ala	gaa Glu	cgg Arg	ctt Leu 2110	gaa Glu	tcc ser	ggc Gly	6839
	agg Arg 2115					gat Asp 2120									6884
ggc Gly	agt Ser 2130	caa Gln	gat Asp	ccc Pro	ctg Leu	ttc Phe 2135	tgt Cys	gtg Val	cac His	ccg Pro	gcc Ala 2140	gga Gly	ggc Gly	ctc Leu	6929
	tgg Trp 2145	tgt Cys	tat Tyr	gcc Ala	ggt Gly	tta Leu 2150	atg Met	acg Thr	gca Ala	ctc Leu	ggc Gly 2155	aag Lys	gaa Glu	tac Tyr	6974
	ata Ile 2160	tac Tyr	ggc Gly	ctt Leu	caa Gln	gcc Ala 2165	cgc Arg	ggg Gly	atc Ile	gca Ala	agg Arg 2170	cag Gln	gaa Glu	gag Glu	701 9
_	cct Pro 2175					gac Asp 2180	atg Met	gct Ala	gct Ala	gat Asp	tat Tyr 2185	att Ile	cgg Arg		7064
att	cgt	acg	att	cag	cca	aca	ggc		tat age		ctg	ctc	ggc	tgg	7109

4000 25	
10297.ST25.txt Ile Arg Thr Ile Gln Pro Thr Gly Pro Tyr Arg Leu Leu Gly Trp 2190 2195 2200	
tcc ctc gga ggc aat gtt gtt cat gcg atc gca act cag ctg cag Ser Leu Gly Gly Asn Val Val His Ala Ile Ala Thr Gln Leu Gln 2205 2210 2215	7154
gaa caa ggg gaa gac ata tcg ctt ctt gtc atg ctt gat gct tac Glu Gln Gly Glu Asp Ile Ser Leu Leu Val Met Leu Asp Ala Tyr 2220 2225 2230	7199
ccg aat cac ttc ctt cca att aaa gat gcg cct gat gag cag gaa Pro Asn His Phe Leu Pro Ile Lys Asp Ala Pro Asp Glu Gln Glu 2235 2240 2245	7244
gca ttg att gcc ctc ttg gca ttg gga gga tac gac ccg gac agc Ala Leu Ile Ala Leu Leu Ala Leu Gly Gly Tyr Asp Pro Asp Ser 2250 2255 2260	7289
ctt gac ggg gca ccg ctg aac ctt tcc agt gcg atc gat att ctg Leu Asp Gly Ala Pro Leu Asn Leu Ser Ser Ala Ile Asp Ile Leu 2265 2270 2275	7334
cgc cgc gac ggc agt gcg ctt gcc agc ctg gac gag gct gcg atc Arg Arg Asp Gly Ser Ala Leu Ala Ser Leu Asp Glu Ala Ala Ile 2280 2285 2290	7379
ttg aac tta aag gag acg tat gtg aat tcc gtc cgg att tta agc Leu Asn Leu Lys Glu Thr Tyr Val Asn Ser Val Arg Ile Leu Ser 2295 2300 2305	7424
gaa tat aag ccc cgc gtc ttt cat ggc gat att ctg ttt ttc aaa Glu Tyr Lys Pro Arg Val Phe His Gly Asp Ile Leu Phe Phe Lys 2310 2315 2320	7469
tca acc gtg ata ccg gaa tgg ttt gat ccg atc gat ccg gag tca Ser Thr Val Ile Pro Glu Trp Phe Asp Pro Ile Asp Pro Glu Ser 2325 2330 2335	7514
tgg cta cct tat ttg aac gga aac att gat att cat gat atg gat Trp Leu Pro Tyr Leu Asn Gly Asn Ile Asp Ile His Asp Met Asp 2340 2345 2350	7559
tgc cgg cat aaa gat ttg tgc cag ccg gag ccg ctg gcc gaa atc Cys Arg His Lys Asp Leu Cys Gln Pro Glu Pro Leu Ala Glu Ile 2355 2360 2365	7604
gga cgt cgg gtt tcg gaa aag ctg gac gac ttg aaa aaa gat acg Gly Arg Arg Val Ser Glu Lys Leu Asp Asp Leu Lys Lys Asp Thr 2370 2380	7649
gat aag tagggagaga tagcgatgac aaatcctttt gaaaatgaac acggcacata Asp Lys 2385	7705
tgtcgtttta atgaatcagg atggccagta ttcactctgg ccggccttca ttcatattcc	7765
ggcagggtgg gaggtcgtct gcggggaagc gagccgcagc gcctgtatcg actatatcag	7825
ctcgaattgg accgatctct cgccgaacag catcaagctg gttgcagaag tacacggcgg	7885
tcagcaatga atagaaggcc gttcaatcaa aggacggttg tcagcattgt atatgtaaca	7945
gccatgttta tggctgcgat ggatgcgagt gtcatcaaca tggcattgcc tgccatcatg	8005
accgaatttc aaacattgcc gtctgctgca ggcacagtta acatcggata cttagtcagc	8065
ttggcggtct gtcttcccgc agccggctgg cttggggacc gctttgggac aaagcgtgtt Page 21	8125

10297.ST25.txt

ttcctagccg cgctttcgat atttacagct gca

8158

<210> 8

<211> 2385

<212> PRT

<213> Bacillus licheniformis

<400> 8

Met Pro Glu Cys Gln His Asn Arg Lys Pro Leu Ser Gly Ala Gln Ala 1 10 15

Gly Ile Trp Phe Ala Gln Gln Leu Asp Pro Glu Asn Pro Ile Tyr Asn 20 25 30

Thr Ala Glu Tyr Val Glu Ile Lys Gly Pro Leu Asp Gln Glu Leu Phe 35 40 45

Glu Lys Ala Leu Arg His Val Ile Lys Glu Ala Glu Ser Phe His Ala 50 60

Arg Phe Gly Glu Asp Gln Asp Gly Pro Trp Gln Glu Ile Val Pro Ser 65 70 75 80

Thr Asp Phe Pro Leu His Tyr Ile Asp Val Ser Ser Glu Thr Asp Pro 85 90 95

Glu Gln Ala Ala Lys Ser Trp Met Met Asp Asp Leu Ala Arg Pro Val

Asp Leu Thr Arg Gly Pro Leu Phe Thr Glu Ala Leu Phe Lys Ala Ala 115 120 125

Gln Asp His Tyr Phe Trp Tyr Gln Arg Thr His His Ile Ala Thr Asp 130 135 140

Gly Phe Ser Phe Thr Leu Ile Ala Glu Arg Leu Ser Lys Ile Tyr Thr 145 150 155 160

Ala Leu Met Gln Asn Lys Ser Ile Asp Gln Ser Gly Ala Phe Gly Ser 165 170 175

Leu Asp Leu Ile Leu Ala Glu Glu Thr Ala Tyr Arg Ala Ser Glu Gln 180 185 190

Tyr Gln Glu Asp Arg Arg Phe Trp Leu Gly Arg Phe Ser Asp Glu Pro 200 205

Glu Val Val Ser Leu Ala Glu Arg Ala Pro Arg Thr Ser Ser Phe 210 225 Leu Arg Arg Ser Glu His Leu Pro Ser Glu Asp Ala Asp Arg Leu Leu 225 230 235 Ser Ala Ala Ser Arg Met Gly Ala Thr Trp His Glu Thr Val Met Ala 245 250 255 Ala Ala Ile Tyr Val His Arg Leu Thr Gly Ala Asn Asp Val Val 260 265 270 Leu Gly Met Pro Met Met Cys Arg Leu Gly Ser Ala Ala Leu His Ile 275 280 285 Pro Gly Met Val Met Asn Leu Leu Pro Leu Arg Ile Gly Met Gln Pro 290 300 Gln Met Ser Ile Gly Glu Leu Val Lys Gln Ile Ser Gly Glu Met Met 305 310 320 Lys Leu Arg Arg His Gln His Tyr Arg His Glu Glu Leu Arg Arg Asp 325 330 335 Leu Lys Leu Gly Glu Asn Gln Arg Leu Phe Gly Pro Gln Leu Asn 340 345 Leu Met Pro Phe Glu Asn Arg Leu Asn Phe Ala Gly Cys Gln Gly Ile 355 360 365 Val His Asn Leu Ala Thr Gly Pro Val Asp Asp Leu Ser Ile Asn Ile 370 380 Tyr Gly Arg Pro Asp Gly Gly Gly Leu Lys Val Asn Met Asp Ala Asn 385 395 400 Pro Ala Val Tyr His Ala Asp Glu Leu Glu Asp His Gly Asn Arg Phe 405 410 415 Leu Thr Leu Leu Lys Thr Ile Ala Val Cys Glu Gln Thr Gln Pro Val 420 425 430 Gly Thr Leu Asp Ile Leu Leu Pro Glu Glu Arg Ala Gln Ile Leu Ile 435 440 445 Glu Trp Asn Gln Thr Glu His Gly Leu Pro Lys Glu Ser Leu Pro Gln 450 460 Arg Phe Glu Arg Met Ala Lys Glu Cys Pro Glu Ser Pro Ala Val 480

10297.ST25.txt Cys Asn Asp Lys Val Leu Thr Tyr Ser Glu Leu Asn Gln Lys Ala Asn 485 490 495 Gln Leu Ala His Leu Leu Ile Asp Gln Gly Ala Lys Pro Glu Thr Phe 500 510 Ile Ala Leu Ala Leu Pro Arg Ser Ala Glu Met Val Val Ser Met Leu 515 525 Ala Val Leu Lys Ala Gly Ala Ala Tyr Leu Pro Ile Asp Pro Asp Tyr 530 535 Pro Ala Asp Arg Ile Glu Tyr Met Leu Asn Asp Ala Gln Pro Leu Leu 545 555 560 Val Met Thr Ser Lys Glu Ala Gln Asp Thr Ile Gly Ser Gln Met Pro 565 570 575 Lys Leu Ile Leu Asp Glu Gln Thr Val Met Glu Lys Met Ser Gly Cys 580 585 Ser Glu Glu Asn Pro Gly Glu Gln His Ser Gly Asn Gln Pro Ala Tyr 595 605 lle Tyr Thr Ser Gly Ser Thr Gly Arg Pro Lys Gly Val Val 610 620 Gln Ala Glu Ser Leu Phe Asn Phe Leu Leu Ser Met Gln Asp Met Phe 625 630 640 Ala Leu Asn Gln Asp Asp Arg Leu Leu Ala Val Thr Thr Ile Ala Phe 645 650 Asp Ile Ser Ala Leu Glu Ile Tyr Leu Pro Leu Ile Ser Gly Ser Ala 660 670 Val Val Leu Ala Glu Lys Glu Thr Val Gln Asp Pro Ser Glu Leu Ala 675 680 Lys Met Ile Glu Thr Tyr Glu Ile Thr Ile Met Gln Ala Thr Pro Thr 690 695 700 Leu Trp His Ala Leu Ala Ser Ser Ala Pro Glu Lys Leu Lys Gly Leu 705 710 720 Arg Ala Leu Val Gly Gly Glu Ala Leu Gln Ser Ser Leu Ala Arg Gln 725 730 735 Leu Gln Gln Leu Ala Cys Ser Leu Thr Asn Leu Tyr Gly Pro Thr Glu 740 745 750 10297.ST25.txt
Thr Thr Ile Trp Ser Thr Ala Ala Ala Leu Glu Gly Asn Cys Thr Glu
755 760 765 Pro Pro Gly Ile Gly Cys Ala Ile Trp Asn Thr Gln Leu Tyr Val Leu 770 780 Asp Ala Gly Leu Gln Pro Val Pro Pro Gly Thr Ala Gly Glu Leu Tyr 785 790 795 800 Val Ala Gly Thr Gly Val Ala Arg Gly Tyr Leu Asn Arg His Ala Leu 805 810 815 Thr Ala Glu Arg Phe Ile Ala Asn Pro Tyr Gly Pro Pro Gly Ser Arg 820 825 Met Tyr Arg Thr Gly Asp Ile Val Arg Trp Arg Glu Asp Gly Ser Leu 835 Asp Tyr Ile Gly Arg Ala Asp His Gln Val Lys Ile Arg Gly Phe Arg 850 855 Ile Glu Met Gly Glu Ile Glu Ala Val Leu Ala Asn His Pro Val Val 865 870 875 880 Lys Gln Ala Ala Ile Val Arg Glu Asp Gln Pro Gly Asp Pro Arg 885 890 895 Leu Phe Ala Tyr Ala Val Pro Ala Ser Gly Glu Ser Leu Asp Pro Ala 900 910 Glu Leu Arg Arg Phe Val Gly Glu Thr Leu Pro Asp Tyr Met Ile Pro 915 920 925 Ser Ala Phe Val Ile Leu Asp Glu Leu Pro Leu Thr Pro Asm Gly Lys 930 940 Leu Asp Arg Lys Ser Leu Pro Ala Pro Ala Val Ser Met His Thr Gly 945 950 960 Gly Arg Glu Pro Arg Thr Pro Gln Glu Glu Ile Leu Cys Asp Leu Phe 970 975 Ala Glu Val Leu Gly Val Pro Arg Val Ser Ile Asp Asp Ser Phe Phe 980 985 Asp Leu Gly Gly His Ser Leu Leu Ala Gly Arg Leu Val Gly Arg Ile 995 1000 1005 Arg Glu Met Leu Gly Val Glu Leu Gly Ile Gly Arg Leu Phe Asp 1010 1020

Glu Pro Thr Ala Ala Gly Leu Ala Lys Gln Leu Asp Gln Ala Gln 1025 1030 1035 Ser Ala Arg Pro Ala Leu Arg Lys Arg Glu Arg Arg Lys Glu Ile 1040 1045 1050 Pro Leu Ser Phe Ala Gln Arg Arg Leu Trp Phe Leu His Cys Leu 1055 1060 1065 Glu Gly Pro Ser Pro Thr Tyr Asn Ile Pro Val Val His Leu 1070 1080 Thr Gly Asp Leu Asp Gln Lys Ala Leu Ala Ala Leu Gly Asp 1085 1090 Val Ala Thr Arg His Glu Pro Leu Arg Thr Ile Phe Pro Asp Gln 1100 1110 Gln Gly Thr Thr His Gln Leu Ile Leu Glu Glu Asp Gln Ser Arg 1115 1120 1125 Pro Glu Leu Thr Val Ser His Val Ser Glu His Glu Leu Glu Lys 1130 1140 Val Leu Ala Glu Ala Val Arg His Arg Tyr His Leu Glu Lys Glu 1145 1150 1155 Pro Pro Phe Arg Ala Gln Leu Phe Val Leu Gly Pro Asp Lys Phe 1160 1170 Val Leu Leu Leu Leu His His Met Ile Gly Asp Gly Trp Ser 1175 1180 1185 Leu Met Pro Leu Thr Arg Asp Leu Glu Thr Ala Tyr Asn Ala Arg 1190 1200 Leu Gln Gly Glu Ala Pro Val Trp Glu Pro Leu Ser Ile Gln Tyr 1205 1210 1215 Ala Asp Tyr Ala Val Trp Gln Glu Tyr Leu Leu Gly Ser Glu Asn 1220 1230 Asn Pro Asp Ser Leu Ile Ala Lys Gln Leu Glu Tyr Trp Ser Lys 1235 1240 1245 Ala Leu Glu His Leu Pro Asp Gln Leu Glu Leu Pro Thr Asp His 1250 1260 Pro Arg Pro Ser Glu Ser Ser Tyr Arg Ser Gly Thr Ile Asp Leu 1265 1270 1275 10297.ST25.txt
Ser Ile Asp Glu Gln Leu His Gly Arg Leu Phe Asp Leu Ser Arg
1280 1285 1290 Ser Thr Gly Val Ser Met Phe Met Ile Leu Gln Ser Ala Leu Ala 1295 1300 1305 Ala Leu Leu Thr Arg Leu Gly Ala Gly His Asp Ile Pro Leu Gly 1310 1320 Ser Pro Ile Ala Gly Arg Asn Asp Asp Ala Leu Gly Glu Ile Val 1325 1330 Gly Leu Phe Val Asn Thr Leu Val Leu Arg Thr Asp Thr Ser Gly 1340 1350 Asn Pro Ser Phe Arg Glu Leu Leu Asn Arg Val Arg Lys Val Asn 1355 1360 Leu Ala Ala Tyr Glu His Gln Asp Leu Pro Phe Glu Arg Leu Val 1370 1380 Glu Val Leu Asn Pro Arg Arg Ser Arg Ala Arg His Pro Leu Phe 1385 1390 1395 Gln Ile Met Leu Ala Phe Gln Asn Thr Pro Glu Pro Glu Leu Asp 1400 1410 Leu Ser Gly Leu Lys Ser Asp Ile Glu Ile Arg Ser Val Gly Ala 1415 1420 1425 Ala Lys Phe Asp Leu Thr Ile Glu Leu Arg Glu His Arg Lys Ala 1430 1440 Asp Gly Thr Pro Ala Gly Ile Gly Gly Phe Leu Glu Tyr Ser Thr 1445 1450 1455 Asp Leu Phe Glu Arg Asn Thr Val Gln Thr Leu Ala Glu Arg Leu 1460 1470 Val Arg Leu Leu Asp Ser Ala Ala Asp Asp Pro Asp Gln Pro Ile 1475 1480 1485 Glu Lys Leu Asp Ile Leu Leu Pro Ala Glu Arg Glu Asn Met Leu 1490 1500 Ala Asp Trp Ser Lys Ser Ser Asn Ser Ile Pro Cys Ser Ser Leu 1505 1510 Pro Val Leu Phe Glu Lys Gln Ala Ala Lys Asp Pro Glu Ala Val 1520 1530

10297.ST25.txt Ala Val Ile Cys Glu Asn Asn Ala Leu Thr Tyr Gly Glu Leu Asn 1535 1540 1545 Lys Arg Ala Asn Arg Leu Ala His Leu Leu Ile Ala Lys Gly Val 1550 1560 Gly Pro Glu Gln Phe Ala Ala Leu Ala Leu Pro Arg Ser Leu Asp 1565 1575 Met Val Val Gly Leu Leu Ala Val Leu Lys Ala Gly Ala Ala Tyr 1580 1585 1590 Val Pro Leu Asp Pro Asp Tyr Pro Ala Glu Arg Ile Ala Phe Met 1595 1600 Leu Asn Asp Ala His Pro Val Cys Ile Val Thr Ser Ser Ala Val 1610 1620 Glu Ser Asn Leu Ser Val Pro Gly Ser Val Glu Arg Ile Val Leu 1625 1630 1635 Asp Asp Pro Cys Ile Gln Glu Glu Leu Lys Gly Cys Ala Ala Ala 1640 1650 Asn Pro Cys Asp Ala Asp Arg Thr Ala Pro Leu Leu Pro Leu His 1655 1660 Pro Ala Tyr Val Ile Tyr Thr Ser Gly Ser Thr Gly Lys Pro Lys 1670 1680 Gly Val Val Pro His Gln Asn Val Val Arg Leu Phe Gly Ala 1685 1690 1695 Thr Asp Gln Trp Phe His Phe Gly Ala Asp Asp Val Trp Thr Met 1700 1710 Phe His Ser Tyr Ala Phe Asp Phe Ser Val Trp Glu Ile Trp Gly 1715 1720 Ala Leu Leu Asn Gly Gly Arg Leu Ile Val Val Pro His Thr Ile 1730 1740 Ser Arg Ser Pro Ala Glu Phe Leu Asn Leu Leu Val Arg Glu Gly 1745 1750 Val Thr Val Leu Asn Gln Thr Pro Ser Ala Phe Tyr Gln Leu Met 1760 1765 1770 Gln Ala Asp Arg Asp Asn Ala Glu Thr Gly Lys Leu Leu Ser Leu 1775 1780 Arg Phe Ile Ile Phe Gly Gly Glu Ala Leu Glu Leu Lys Arg Leu 1790 1795 1800 Glu Asp Trp Tyr Glu Arg His Pro Asp His Phe Pro Arg Leu Ile 1805 1810 1815 Asn Met Tyr Gly Ile Thr Glu Thr Thr Val His Val Ser Tyr Ile 1820 1825 1830 Ser Leu Asp Gln Gln Thr Ala Ala Leu Gln Ala Asn Ser Leu Ile 1835 1840 1845 Gly Gln Gly Ile Pro Asp Leu Gly Val Tyr Val Leu Asp Glu Tyr 1850 1860 Leu Glu Pro Val Pro Pro Gly Val Thr Gly Glu Met Tyr Val Ser 1865 1870 1875 Gly Gly Leu Ala Arg Gly Tyr Leu Gly Arg Pro Asp Leu Thr 1880 1890 Ala Asp Arg Phe Val Ala Asp Pro Phe Gly Pro Pro Gly Thr Arg 1895 1900 Met Tyr Arg Thr Gly Asp Leu Ala Arg Arg Arg Gln Asp Gly Ser 1910 1920 Leu Asp Tyr Met Gly Arg Ala Asp Gln Gln Ile Lys Ile Arg Gly Phe Arg Ile Glu Leu Gly Glu Ile Glu Ala Val Leu Val Arg His 1940 1945 1950 His Arg Val Asn Gln Ala Ala Val Val Arg Glu Gly Gln Pro 1955 1960 Gly Asp Lys Arg Leu Ile Ala Tyr Val Val Pro Ala Ser Glu Glu 1970 1980 Glu Thr Asp Pro Ala Glu Leu Arg Arg Phe Ala Ala Gly Thr Leu 1985 1990 Pro Glu Tyr Met Val Pro Ser Ala Phe Val Lys Ile Ser Glu Leu 2000 2010 Pro Leu Thr Pro Asn Gly Lys Leu Asp Arg Lys Ala Leu Pro Glu 2015 2020 2025 Pro Asp Phe Ala Ala Ala Val Lys Gly Arg Gly Pro Arg Thr Pro 2030 2040

Gln Glu Glu Ile Leu Cys Asp Leu Phe Ser Glu Ile Leu Asn Ala 2045 2050 2055 Pro Arg Val Gly Ile Asp Asp Gly Phe Phe Glu Leu Gly Gly His 2060 2070 Ser Leu Leu Ala Val Gln Leu Met Ser Arg Ile Arg Glu Ala Leu 2075 2085 Gly Val Glu Leu Gly Ile Gly Asp Leu Glu Ala Pro Thr Val 2090 2100 Ser Gly Leu Ala Glu Arg Leu Glu Ser Gly Gly Arg Gln Ser Ala 2105 2115 Leu Asp Val Met Leu Pro Leu Arg Thr Gly Gly Ser Gln Asp Pro 2120 2130 Leu Phe Cys Val His Pro Ala Gly Gly Leu Ser Trp Cys Tyr Ala 2135 2140 2145 Gly Leu Met Thr Ala Leu Gly Lys Glu Tyr Pro Ile Tyr Gly Leu 2150 2160 Gln Ala Arg Gly Ile Ala Arg Gln Glu Glu Leu Pro Asp Thr Leu 2165 2170 2175 Asp Asp Met Ala Ala Asp Tyr Ile Arg His Ile Arg Thr Ile Gln 2180 2190 Pro Thr Gly Pro Tyr Arg Leu Leu Gly Trp Ser Leu Gly Gly Asn 2195 2200 Val Val His Ala Ile Ala Thr Gln Leu Gln Glu Gln Gly Glu Asp 2210 2215 2220 The Ser Leu Leu Val Met Leu Asp Ala Tyr Pro Asn His Phe Leu 2225 2235 Pro Ile Lys Asp Ala Pro Asp Glu Gln Glu Ala Leu Ile Ala Leu 2240 2245 Leu Ala Leu Gly Gly Tyr Asp Pro Asp Ser Leu Asp Gly Ala Pro 2255 2260 Leu Asn Leu Ser Ser Ala Ile Asp Ile Leu Arg Arg Asp Gly Ser 2270 2280 Ala Leu Ala Ser Leu Asp Glu Ala Ala Ile Leu Asn Leu Lys Glu 2285 2290 2295

10297.ST25.txt Thr Tyr Val Asn Ser Val Arg Ile Leu Ser Glu Tyr Lys Pro Arg	
2300 2305 2310	
Val Phe His Gly Asp Ile Leu Phe Phe Lys Ser Thr Val Ile Pro 2315 2320 2325	
Glu Trp Phe Asp Pro Ile Asp Pro Glu Ser Trp Leu Pro Tyr Leu 2330 2340	
Asn Gly Asn Ile Asp Ile His Asp Met Asp Cys Arg His Lys Asp 2355	
Leu Cys Gln Pro Glu Pro Leu Ala Glu Ile Gly Arg Arg Val Ser 2360 2365 2370	
Glu Lys Leu Asp Asp Leu Lys Lys Asp Thr Asp Lys 2375 2380 2385	
<210> 9	
<211> 1000	
<212> DNA	
<213> Bacillus licheniformis	
<220÷	
<221> CDS	
<222> (321)(998)	
<223>	
<400> 9 ttccgatcca tatcatgaaa gtgaagggtg ggataaatgt atactctact tcgaacacgc	60
ttcggaagct aaagcagagc ggaaacgaag tccgatcttt aaaggcgtac gaacgcagtc	120
gatcttaagc gtcatacgca aactccgtcg cgactaggtt cggaccgcag caatgagccc	180
tggaaggtag ctgatgcttc aatttggccg gttgtccgca gctgatgggg tatgcatgag	240
tcagcggggg ttcaaaagtc tgaggatgcc tttatttaaa tgtgtacgca cccgaagagg	300
cggacggggga tctgcctgtt atg gtg tgg att cat ggg ggc gct ttt tat cgc Met Val Trp Ile His Gly Gly Ala Phe Tyr Arg 1 5 10	353
ggc gcc gga agt gaa ccg ctc tat gac ggg act cag ctt gca aag cag Gly Ala Gly Ser Glu Pro Leu Tyr Asp Gly Thr Gln Leu Ala Lys Gln 15 20 25	401
gga aag gtg atc gtg gtc acc atc aat tat cgc ctc ggt ccg ttc ggt Gly Lys Val Ile Val Val Thr Ile Asn Tyr Arg Leu Gly Pro Phe Gly 30 35 40	449
ttt ttg cat cta tcc tca att gat gat tcc tac agc agc aat ctt ggc Page 31	497

Phe Leu His L	Leu Ser Ser 1		97.ST25.txt Ser Tyr Ser S 55	er Asn Leu	Gly
cto cto gat o	caa atc gcg o Gln Ile Ala A 65	ct ctc gag t	gg gtg aaa g rp Val Lys A 70	ac aat atc sp Asn Ile	gct 545 Ala 75
ttc ttt ggc g Phe Phe Gly G	gga gac cgt (Gly Asp Arg H 80	His His Ile <u>T</u>	icg gtt ttt g hr Val Phe G 35	ga gag tcg ily Glu ser 90	gcg 593 Ala
Gly Ser Met 9	agc atc gct 1 Ser Ile Ala 5 95	tcg ctt ttg g Ser Leu Leu A 100	gcg atg ccg a lla Met Pro L	aa gca aag ys Ala Lys 105	ggg 641 Gly
ctt ttt caa (Leu Phe Gln (110	cag gcc att a Gln Ala Ile M	atg gaa agc g Met Glu Ser G 115	aly Ala Ser A	ca act atg la Thr Met 20	tcc 689 Ser
gat aag ctt (Asp Lys Leu / 125	gcg aaa gct (Ala Lys Ala /	gca gca gaa a Ala Ala Glu A 130	aga ttc tta a Arg Phe Leu A 135	igg att ctc irg Ile Leu	gat 737 Asp
att gat cat o Ile Asp His I 140	Cat cat ctg (His His Leu (145	gag cgc ctt o Glu Arg Leu H	cat gat gta t His Asp Val S 150	ct gat caa Ser Asp Gln	gaa 785 Glu 155
	gcc gcc gat (Ala Ala Asp (160	Glñ Leŭ Arg]			
Phe Glu Leu :	att ttt ctg (Ile Phe Leu (175				
aag ccg gag Lys Pro Glu 190	gtc gcc gtc (Val Ala Val	gca aaa ggc g Ala Lys Gly A 195	ālā Āla Lys 🤄	gag atc aat Glu Ile Asn 200	cta 929 Leu
tta atc gga Leu Ile Gly 205	acc aaa ccc Thr Lys Pro	gtg atg aag (Val Met Lys / 210	gcg tct gtt 1 Ala Ser Val F 215	ttt tcc tct he Ser Ser	gat 977 Asp
	gct gag agc a Ala Glu Ser a 225				1000
<210> 10					
<211> 226					
<212> PRT					
<213> Bacil	Tus lichenif	ormis			a
<400> 10					
Met Val Trp :	Ile His Gly (Gly Ala Phe	Tyr Arg Gly A 10	Ala Gly Ser 15	Glu
Pro Leu Tyr	Asp Gly Thr (Gln Leu Ala 1 25	∟yș Gln Gly I	ys Val Ile 30	val

10297.ST25.txt

Val Thr Ile Asn Tyr Arg Leu Gly Pro Phe Gly Phe Leu His Leu Ser

35 40 45 Ser Ile Asp Asp Ser Tyr Ser Ser Asn Leu Gly Leu Leu Asp Gln Ile 50 60 Ala Ala Leu Glu Trp Val Lys Asp Asn Ile Ala Phe Phe Gly Gly Asp 65 70 75 80 Arg His His Ile Thr Val Phe Gly Glu Ser Ala Gly Ser Met Ser Ile 85 90 95 Ala Ser Leu Leu Ala Met Pro Lys Ala Lys Gly Leu Phe Gln Gln Ala 100 105 110 Ile Met Glu Ser Gly Ala Ser Ala Thr Met Ser Asp Lys Leu Ala Lys Ala Ala Ala Glu Arg Phe Leu Arg Ile Leu Asp Ile Asp His His 130 135 140 Leu Glu Arg Leu His Asp Val Ser Asp Gln Glu Leu Leu Glu Ala Ala 145 150 155 160 Asp Gln Leu Arg Thr Leu Met Gly Glu Asn Ile Phe Glu Leu Ile Phe 165 170 175 Leu Pro Ala Leu Asp Glu Lys Thr Leu Pro Leu Lys Pro Glu Val Ala 180 185 190 Val Ala Lys Gly Ala Ala Lys Glu Ile Asn Leu Leu Ile Gly Thr Lys Pro Val Met Lys Ala Ser Val Phe Ser Ser Asp Ser Lys Leu Ala Glu 210 215 220