Poisson

Parametrisation

The Poisson distribution is

$$Prob(y) = \frac{\lambda^y}{y!} \exp(-\lambda)$$

for responses y = 0, 1, 2, ..., where

 λ : the expected value.

Link-function

The mean and variance of y are given as

$$\mu = \lambda$$
 and $\sigma^2 = \lambda$

and the mean is linked to the linear predictor by

$$\lambda(\eta) = E \exp(\eta)$$

where E > 0 is a known constant (or $\log(E)$ is the offset of η).

Hyperparameters

None.

Specification

- family = poisson
- \bullet Required arguments: y and E

Example

In the following example we estimate the parameters in a simulated example with Poisson responses.

```
n=100
a = 1
b = 1
z = rnorm(n)
eta = a + b*z
E = sample(1:10, n, replace=TRUE)
lambda = E*exp(eta)
y = rpois(n, lambda = lambda)

data = list(y=y,z=z)
formula = y ~ 1+z
result = inla(formula, family = "poisson", data = data, E=E)
summary(result)
```

Notes

None.