Kan Seminar Notes

Natalie Stewart

Fall 2021

This will be a rough collection of live-LATEXed notes covering the Kan seminar talks given in Fall 2021. I'll make no promises that the contents of this are readable, or without significant clerical error. Last update: September 20, 2021.

Contents

1	Gal	orielle Li: Serre, Cohomologie modulo 2 des complexes d'Eilenberg Mac Lane (i)	2	
	1.1	Steenrod operations	2	
	1.2	Borel's theorem		
	1.3	Performing the calculation	3	
2	Wei	Weixiao Lu: Serre, Cohomologie modulo 2 des complexes d'Eilenberg Mac Lane (ii)		
	2.1	Preliminaries	4	
	2.2	Poincaré series	5	
	2.3	Applications	6	
3	Zihong Chen: Moore, Semi-simplicial complexes and Postnikov systems		7	
	3.1	Review of simplicial sets	7	
		Postnikov systems		
		Principally twisted cartesian products		

1 Gabrielle Li: Serre, Cohomologie modulo 2 des complexes d'Eilenberg Mac Lane (i)

This talk was delivered September 15, 2021 by Gabrielle Li. Throughout, $H^*(-) := H^*(-; \mathbb{F}_2)$.

1.1 Steenrod operations

The Steenrod operations are a family of cohomology operations $Sq^n: H^*(X) \to H^{*+n}(X)$ such that:

- (1) Each Sq^n is natural in X.
- (2) Each Sq^n is stable: $\operatorname{Sq}^n(\Sigma X) = \Sigma \operatorname{Sq}^n(X)$.
- (3) When |x| = n, $\operatorname{Sq}^{n}(x) = x \cup x$.
- (4) $Sq^0 = id$.

We give a basis for these:

Definition 1.1. A sequence $I = (i_1) \subset \mathbb{Z}_{>0}$ is admissable if $i_k \geq 2i_{k+1}$ for each k. We define the degree $n(I) := \sum i_k$ and the excess $e(I) = \sum (i_k - i_{k+1}) = 2i_i - n(I)$ (padding with zeros).

1.2 Borel's theorem

Let $F \hookrightarrow E \to B$ be a Serre fibration. Recall that, in the cohomological Serre spectral sequence, we have transgression morphisms $\tau: E_r^{0,r-1} \to E_r^{r,0}$, whose domain is a subset of $H^{r-1}(F)$ and whose codomain is a quotient of $H^r(B)$. This is an additive relation between $H^{r-1}(F)$ and $H^r(B)$. We say that $x \in H^{r-1}(F)$ is transgressive if it survives to the r page.

We hold off on proving the following proposition until the next talk:

Proposition 1.2. τ commutes with Steenrod operations.

We need a bit more language to use this:

Definition 1.3. For a space X, an ordered family of elements $(x_i) \subset H^*(X)$ is a *simple system of generators* if:

- (1) Each x_i is homogeneous.
- (2) The increasing products $x_{i_1} \cdots x_{i_j}$ (for $i_k < i_{k+1}$) form a \mathbb{F}_2 -basis of $H^*(X)$.

The following examples are important:

Example 1.4:

 $\mathbb{F}_2[x_1, x_2, \dots]$ has simple system of generators $(x_j^{2^i})$. Similar systems apply to the exterior algebra E[x] and the truncated poltnomial algebra $\mathbb{F}_2[x]/(x^{2^i})$.

We're finally ready to state our theorem:

Theorem 1.5 (Borel). Given a fibration $F \hookrightarrow E \to B$ satisfying the following properties:

- (1) $E_2^{s,t} = H^s(B) \otimes H^t(F)$ (for instance, when B is 1-connected and $H^*(B), H^*(F)$ are f.g.).
- (2) $H^{i}(E) = 0$ for i > 0.
- (3) $H^*(F)$ have a simple system of transgressive generators (x_i) .

Then, $H^*(B)$ is a polynomial algebra generated (independently) by the any choice of representatives $y_i \in H^*(B)$ which map to $\tau(x_i)$ in $E_*^{*,0}$.

Note that, whenever $H^*(F)$ is a polynomial algebra generated by z_i , we know that $H^*(F)$ has a simple system of generators $z_i^{2^r}$. In order to use this, we introduce a bit of notation:

Notation. $L(a,r) := \{2^{r-1}a, 2^{r-2}a, \cdots, 2a, a\}.$

Note that $z_i^{2^r} = \operatorname{Sq}^{L(n_i,r)}(z_i)$. Hence

$$\tau\left(z_i^{2^r}\right) = \operatorname{Sq}^{L(n_i,r)} t_i$$

where $t_i := \tau(z_i)$. Hence $H^*(B)$ is a polynomial algebra generated by $\operatorname{Sq}^{L(n_i,r)}(z_i)$.

1.3 Performing the calculation

We will use Borel's theorem soon, but first, a lemma:

Lemma 1.6. An admissible sequence $J = \{j_1, \ldots, j_k\}$ with e(J) < q-1. Then, we may define a sequence

$$J' := \left\{ 2^{r-1} s_J, 2^{r-2} s_J, \dots, s_J, j_1, j_2, \dots, j_k \right\},\,$$

where $s_J = q - 1 + n(J)$. Then, J' is admissible, with e(J') < q; furthermore, all admissible sequences of excess < q arise this way.

The reversal is surprisingly easy; simply take the longest prefix satisfying $j_1 = 2j_2 = \cdots = 2^i j_i$. We will need a few more constructions to prepare for the calculation:

- (1) There is a fibration $K(\mathbb{F}_2, q-1) \hookrightarrow E \to K(\mathbb{F}_2, q)$ where E is contractible.
- (2) By Hurewicz, $H^q(K(\mathbb{F}_2,q)) = \mathbb{F}_2$, with a generator that we call u_q .

Theorem 1.7. $H^*(K(\mathbb{Z}/2,q),\mathbb{Z}/2)$ is a polynomial algebra (independently) generated by $\operatorname{Sq}^I(u_q)$ where I runs over the admissible sequences of excess e(I) < q.

Proof. We prove this via induction. The q = 1 case is easy, as we have $K(\mathbb{F}_2, 1) = \mathbb{RP}^{\infty}$, and $H^*(\mathbb{RP}^{\infty}) = \mathbb{F}_2[u_q]$ via the usual computation.

For the inductive step, assume we've proven the theorem for q-1. We use the fibration from (1). For an admissible sequence J, let

$$S_J := |\operatorname{Sq}^J(u_{q-1})| = q - 1 + n(J).$$

We have transgression additive relation $H^{q-1}(K(\mathbb{F}_2, q-1)) \rightsquigarrow H^q(K(\mathbb{F}_2, q))$. Note that the transgression sends $\tau(u_{q-1}) = u_q$ (this will be justified later). Using our trick,

$$\tau(\operatorname{Sq}^{J}(u_{q-1})) = \operatorname{Sq}^{J} u_{q}.$$

By Borel, the $H^*(K(\mathbb{F}_2,q))$ is generated by $\operatorname{Sq}^{L(s_J,r)}\operatorname{Sq}^Ju_q=\operatorname{Sq}^{L(s_J,r)J}u_q=\operatorname{Sq}^Iu_q$, where I is an admissible sequence with e(I)< q, and all such I are generated this way.

The other computations are routine and similar.

2 Weixiao Lu: Serre, Cohomologie modulo 2 des complexes d'Eilenberg Mac Lane (ii)

This talk was delivered September 17, 2021 by Weixiao Lu. We'll first cover some preliminaries.

2.1 Preliminaries

Theorem 2.1 (Serre spectral sequence). Let $F \hookrightarrow E \xrightarrow{p} B$ be a Serre fibration. Then, there is a spectral sequence

$$E_2^{s,t} = H^s(B; H^t(p^{-1}(-); G)) \implies H^{s+t}(E; G).$$

If $\pi_1(B)$ acts trivially on $H^n(p^{-1}(-))$, then

$$E_2^{2,t} = H^s(B; H^t(F; G)).$$

Proof sketch. If F^*C^* is a filtered cochain complex, we have an SS,

$$E_0^{s,t} = \operatorname{gr}^s(C^{s+t}) \implies H^{s+t}(C^*).$$

Assume B is a CW complex with n-skeleton B^n . Then, $E_n := p^{-1}(B^n)$. We have $F^sS^*(E) = S^*(E, E_{s-1}) = \ker(S^*(E) \to S^*(E_{s-1}))$, which gives the right E_0 page.

In any upper-right quadrant SS, we have a transgression morphism $d^n: E^{0,n-1} \to E^{n,0}_n$. Note that $E^{0,n-1}_n \subset E^{0,n-1}_{n-1} \subset \cdots \subset H^{n-1}(F)$. The transgressive elements of $H^{n-1}(F)$ map to some quotient of $H^n(B)$. We can create a diagram

Theorem 2.2 (Transgression theorem). The transgression relation coincides with this diagram.

This comes down to how the Serre SS was constructed.

Proposition 2.3. The Steenrod square Sq_i "commutes" with transgression in the sense that any $x \in H^{n-1}(F; \mathbb{Z}/2)$ transgressive has $\operatorname{Sq}^i x$ transgressive, and $\tau(\operatorname{Sq}^i x) = \operatorname{Sq}^i(\tau x)$.

Proof. Recall that a functor is stable iff it commutes with coboundary operators, so Sq_1 commutes with coboundary operators. Further, recall that it's natural. Hence the following diagram commutes, so Sq^i "commutes with the transgression relation" (is a morphism of cospans):

Reclal that for G a f.g. Abelian group,

- 1. $H^*(K(G \times H; q)) = H^*(K(G; q)) \otimes H^*(K(H; q))$.
- 2. $H^*(K(\mathbb{F}_2;q)) = \mathbb{F}_2[\operatorname{Sq}^I u_q \mid I \text{ admissible, s.t. } e(I) < q].$
- 3. $H^*(K(\mathbb{F}_2;q)) = \mathbb{F}_2[\operatorname{Sq}^I u_q \mid I \text{ admissible, s.t. } e(I) < q, 1 \text{ does not appear in } i].$
- 4. $H^*(K(\mathbb{F}_2^h;q)) = \mathbb{F}_2[\operatorname{Sq}^I u_q, \operatorname{Sq}^J k_{q+1}]$ where $k_{q+1} \in H^{q+1}(K(\mathbb{F}_{2^h},q))$ for admissibles e(I) < q, $e(J) \le q$ where no Sq^1 term appears in both Sq^I and Sq^J . This comes from a fibration fill in from notes later.
- 5. $H^*(K(\mathbb{F}_{p^h};q)) = \mathbb{Z}/2$ for p odd with q > 0.

Remark. We have a different choice of generators related to universal classes, but as graded \mathbb{F}_2 -algebras,

$$H^*(K(\mathbb{F}_{2^h};q)) \simeq H^*(K(\mathbb{F}_2;q)).$$

We will aim towards the following theorem:

Theorem 2.4. For all n > 1, there are infinitely many indices i at which $\pi_i(S^n)$ has nonzero 2-torsion.

Our tool will be Poincaré series. The accents in Poincaré's name are to be understood from here on out.

2.2 Poincaré series

For L_* a finite type graded k-vector space, define the series

$$L(t) = \sum_{n \in \mathbb{N}} \dim L^n t^n \in \mathbb{Z}[[t]].$$

This is called the *Poincare series*, called $\theta(G;q;t)$ in the case of $H^*(K(G;q))$.

Example 2.5:

For $L^* = \mathbb{Z}/2[u]$, we have

$$L(t) = \frac{1}{1 - tm}.$$

Note that $(N^* \otimes M^*)(t) = L(t)M(t)$. Hence $L^{'*} = k[u_1, \dots]$ with finite type has

$$L(t) = \prod_{n \ge 1} \frac{1}{1 - t^{\deg u_i}}$$

which converges t-adically.

Hence

$$\theta(\mathbb{F}_2, q, t) = \prod_{e(I) < q} \frac{1}{1 - t^{\deg(\operatorname{Sq}^I u_q)}} = \prod_{e(I) < q} \frac{1}{1 + t^{q + n(I)}}.$$

We can give this another combinatorial description:

Proposition 2.6.

$$\theta(\mathbb{F}_2, q, t) = \prod_{n_1 \ge n_2 \ge \dots \ge n_{q-1} \ge 0} \frac{1}{1 - t^{2^{n_1} + \dots + 2^{n_{q-1}} + 1}}.$$

The radius of convergence of this is 1 considered as a complex power series. We can continue to analyze this series along these lines:

Theorem 2.7.

$$\lim_{x \to \infty} \frac{\log_2 \theta \left(\mathbb{F}_2, q, 1 - 2^{-x} \right)}{x^q / q!} = 1.$$

In general there is an essential singularity at 1. Serre used this replacement to reign it in, but we won't work with it very explicitly.

2.3 Applications

Theorem 2.8. Suppose X is a 1-connected space satisfying the following conditions:

- 1. $H_*(X;\mathbb{Z})$ is of finite type.
- 2. $H_i(X; \mathbb{F}_2) = 0 \text{ for } i \gg 0.$

Then, for infinitely many indices i, $\pi_i(X)$ has a subspace isomorphic to \mathbb{Z} or $\mathbb{Z}/2$.

This directly implies Theorem 2.4 once you know that only finitely many homotopy groups of spheres are infinite.

We see this using a whitehead tower

where X_n is n-connected, and a π_i iso to X and X_{n-1} for i > n. We'll use another piece of machinery, seen by the Serre SS directly.

Lemma 2.9. For $F \hookrightarrow E \to B$ a Serre fibration with B simply connected, $B(t)F(t) \geq E(t)$.

Proof of Theorem 2.8. Otherwise, there is some largest q with $\pi_q(X) \otimes \mathbb{Z}/2 \neq 0$. Then, there is some j smallest such that $H_j(X; \mathbb{Z}/2) \neq 0$. Then, $\pi_j(X) \otimes \mathbb{Z}/2 \neq 0$.

In the whitehead tower, $X_q \to X_{q-1}$ is trivial on $\pi_*(-) \otimes \mathbb{Z}/2$, so $H^*(X_q, \mathbb{Z}/2)$ is trivial. Using the fibration $X_q \hookrightarrow X_{q-1} \to K(\pi_q(X), q)$ from the whitehead tower, we must have $H^*(X_{q-1}) = H^*(K(\pi_q(X), q))$. Then,

$$X_{q-1}(t) = \theta(\pi_q(x), q, t).$$

Further, the fibbrations in the whitehead series imply that

$$X_{i+1}(t) \le X_i(t)\theta(\pi_{i+1}(X), i, t)$$

for each i, Chaining these together forever, what we get is

$$\theta(\pi_q(X), q, t) \leq X_1(t)\theta(\pi_2(X), 1, t) \cdots \theta(\pi_{q-1}(x), q-2, t).$$

Note that $X_1(t)$ is a polynomial, so bounded on [0,1]. Applying our asymptotic bound on θ yields a contradiction.

3 Zihong Chen: Moore, Semi-simplicial complexes and Postnikov systems

This talk was delivered September 20, 2021 by Zihong (Peter) Chen.

3.1 Review of simplicial sets

The talk began with a very brief review of simplicial sets: let Δ be the category of finite ordered sets and order preserving maps. Recall that such maps are generated by distinguished maps $\delta_i : [n] \to [n+1]$ and $s_i : [n+1] \to [n]$, called the face and degeneracy maps.

Definition 3.1. A simplicial set is a functor $X : \Delta^n \to \mathbf{Set}$.

The morphism set is completely characterised by their images on face and degeneracy maps, which must satisfy a collection of combinatorial relations, which I won't write down here.

Example 3.2:

The standard n-simplex is given by the representable functor $\Delta[n] := \text{Hom}(-, [n])$.

By Yoneda's lemma, $X_n = \text{Hom}(\Delta[n], X)$, where $X_n = X([n])$.

Example 3.3:

If $X \in \mathbf{Top}$, the singular simplicial set $\mathrm{Sing}(X)$ is familiar. It participates in an adjunction, with left adjoint $|\cdot|$ the Geometric realization.

Example 3.4:

Define the ith face $\delta_i : \Delta[n-1] \to \Delta[n]$. The ith horm is $\bigvee_i^n := \bigcup_{k \neq i} \delta_i$. The boundary is $\partial \Delta[n] = \bigcup_i \delta_i$.

This allows us to define the combinatorial equivalent of a topological space:

Definition 3.5. A simplicial set X is a Kan complex if every morphism $\bigvee_{k}^{n} \to X$ factors through $\Delta[n] \to X$; you can fill any horn (not necessarily uniquely).

A morphism $p: E \to B$ is a Kan fibration if it has the right lifting property against horn inclusions:

$$\bigvee_{k}^{n} \longrightarrow E$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Delta[n] \longrightarrow B$$

Examples of this include Sing(X), and any simplicial group (which we won't prove).

Definition 3.6. For X a Kan complex, define the path components $\pi_0(X) = X_0 / \sim$ where $x \sim y$ if there exists some p with $d_1p = x$ and $d_0p = y$.

This is in fact an equivalence relation: you can do this via horn filling, which was drawn on the board, but which I will not spell out. We can define higher homotopy groups after defining the internal hom:

Definition 3.7. For $A \subset X$ and $B \subset Y$, define the mapping object

$$Map((X, A), (Y, B)) = Hom(\Delta[n] \times (X, A), (Y, B))$$

i.e. the maps $\Delta[n] \times X \to Y$ restricting to a map $\Delta[n] \times A \to B$. The maps $\Delta[i] \to \mathbf{Set}$ form a covariant functor, so this is a contravariant functor, i.e. a simplicial set.

We use the following Theorem of Kan:

Theorem 3.8 (Kan). If Y, B are Kan complexes, then so is Map((X, A), (Y, B)).

We finally define homotopy groups.

Definition 3.9. If X is a Kan complex, define $\pi_n(X,x) := \pi_0(\operatorname{Map}((\Delta[n],\partial\Delta[n]),(X,x)))$. A Kan complex is $K(\Pi,n)$ if $\pi_q(X,x) = \Pi$ when q = n and 0 otherwise.

We will use these to decompose Kan complexes.

3.2 Postnikov systems

Let $\Delta[q]_n$ be the *n*-skeleton of $\Delta[q]$. For X a Kan complex, define the complex $X^{(n)}$ via

$$X_q^{(n)} = X_q / \sim$$
 $x \sim y \iff x|_{\Delta[q]_n} = y|_{\Delta[q]_n}.$

The maps are induced by X. We have the following properties:

- 1. $X^{(n)}$ is a Kan complex.
- 2. There is a quotient Kan fibration $X^{(n)} \xrightarrow{p} X^{(k)}$ if n > k.
- 3. $\pi_q(X^{(n)}, x) = 0$ if q > n.
- 4. $p_*: \pi_q(X^{(n)}, x) \xrightarrow{\sim} \pi_q(X^{(k)}, x)$ is an iso if $n \geq k \geq q$.

As in topology, Kan fibrations induce LES of homotopy groups; hence the fiber $F^{(n+1)} \hookrightarrow X^{(n+1)} \xrightarrow{p} X^{(n)}$ is a $K(\pi_{n+1}(X), x+1)$. We finally give this a name:

Definition 3.10. $(X^0, X^{(1)}, \dots)$ is called the *natural Postnikov system* of X.

This motivates a question: How far is X from $\prod_n K(\pi_n, n)$? It's always a colimit, but we'll measure how complex it is in the following section.

The idea is that $K(\pi_{n+1}, n+1) \hookrightarrow X^{(n+1)} \to X^{(n+1)}$ will be seen as something like a "principal $K(\pi_{n+1}, n+1)$ -bundle." We will construct something like a "classifying space" $\overline{W}(K(\pi_{n+1}, n+1)) = K(\pi_{n+1}, n+2)$, and derive algebraic invariants from this. Let's actually do this now:

3.3 Principally twisted cartesian products

Definition 3.11. A principally twisted Cartesian product (PTCP) with simplicial group G and base G is written

$$E(T) = G \times_T B$$

where $E(T)_n = G_n \times B_n$ with degeneracy maps all the same, except that

$$\partial_0(g,b) = (T(b) \cdot d_0 g, d_0 b)$$

and T is a twisting function $B_q \to G_{q-1}$ for $q \ge 1$.

This is a combinatorial version of *holonomy*, as per a comment from Prof. Miller.

Definition 3.12. A PTCP is of type (W) if $B_0 = \{b_0\}$ and

$$\partial_0|_{\{e_q\}\times B_q}: [e_q]\times B_q \xrightarrow{\sim} E(T)_{q-1}$$

is an iso. Let \int be its inverse.

Theorem 3.13. If $G \times_T B$, $G' \times_{T'} B'$, and $\gamma : G \to G'$ is a morphism of simplicial group, then there exists a unique γ -equivariant map $\theta : G \times_T B \to G' \times_{T'} B'$ and Some condition holds of θ -fill in later.

I couldn't follow this part; use \int to construct this "upwards" from b_0 , or something like that.

Corollary 3.14. A PTCP of type (W) with group G is unique, if it exists.

¹This actually has a requirement of minimality, but we handwave this away.

Theorem 3.15. If E(T) is PTCP of type (W), it is contractible.

They do exist! We can construct them by $B := \overline{W}(G)$, $W(G) = G \times_{T(G)} \overline{W(G)}$, where $\overline{W}_n(G) = G_{n-1} \times \cdots \times G_0$ for $n \geq 1$, and terminal for n = 0. put face and degen maps here. It has twisting function

$$T(G)[g_n,\ldots,g_0]=g_n.$$

It can be checked explicitly that this is type (W).²

Corollary 3.16. Every PTCP with group G is by

$$B \xrightarrow{\pi} \overline{W}(G)$$

with
$$\pi(b) = [T(b), T(\partial_0 b), \dots, T(\partial_0^{n-1} b)].$$

This is a simplicial version of the bar construction??

This allows us to explicitly construct $K(\pi, n)$! Define $K(\pi, 0)$ to be π in each degree and $\partial_i s_i$ all identity. Define $K(\pi, n) = \overline{W}(K(\pi, n-1))$ inductively. We can see this is in fact a $K(\pi_1)$ via a fibration

$$K(\pi, n) \to W(K(\pi, n)) \to \overline{W}(K(\pi, n)),$$

where we know W(*) to be contractible.

The main technical result follows:

Lemma 3.17. Suppose there is no nontrivial morphism $\pi_1 \to \operatorname{Aut}(\pi_n)$. Then, $X^{(n)}$ is a PTCP with group $K(\pi_{n+1}, n+1)$.³

To handwave, the idea for this is that minimal Kan fibrations are fiber bundles. Given the π_1 assumption, the structure group is $K(\pi_{n+1}, n+1)$. Then, a "principal G-bundle" is the same thing as a PTCP, in some intuitive way.

We can define the k-invariants via the fibrations $K(\pi_{n+1}, n+1) \hookrightarrow X^{(n+1)} \to X^{(n)}$: there is a universal class

$$u \in H^{n+2}(K(\pi_{n+1}, n+2))$$

and via the map $X^{(n+1)} \xrightarrow{f^{n+2}} \overline{W}(K(\pi_{n+1}, n+1)) = K(\pi_{n+1, n+2})$, we can define k-invariants as $(f^{n+2})^* u = k^{n+2}$.

²This was written down in class.

³Per a comment of Prof. Miller, we only need simplicity, not total nontriviality of morphisms $\pi_1 \to \operatorname{Aut}(\pi_n)$.