EEB C119/219 B

Discussion Week 3
Markov model example

How NOT to use models

This Math Model Is Predicting the Ebola Outbreak with Incredible Accuracy

October 14, 2014 // 03:10 PM EST

- VICE http://motherboard.vice.com/read/this-math-model-is-predicting-the-ebola-outbreak-withincredible-accuracy
- PLoS One http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083622

How NOT to use models

The graph above shows how the model is faring with the current Ebola outbreak. So far, it's nearly perfect. If the IDEA model continues to predict the epidemic with the same accuracy, we can expect Ebola to start burning out in December, with a total of 14,000 cases. Currently, according to the CDC there are or have been 8,400. We have a ways to go.

VICE -

http:// motherboard.vice.com/ read/this-math-model-ispredicting-the-ebolaoutbreak-with-incredibleaccuracy

PLoS One -

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083622

How to use models right

- Mechanism
 - What processes in my system are essential/nonessential to the patterns I observe?
 - e.g. Bacterial competition and space

Mechanism example: **Spatial organization** changes the game in Rock – Paper – Scissors competition

Kerr, B., Riley, M., Feldman, M. & Bohannan, B. Nature (2002)

Based on work by:

Durrett, R. & Levin, S. Jour. thero. Biology. (1996)

In a well-mixed population

Resistant strain outcompetes all others

1. Start with C, S, R

3. R gradually outcompetes C, since R has a higher growth rate

In a well-mixed population

Resistant strain outcompetes all others

But in a spatially-structured population

(Where individuals interact only with their nearest neighbors)

All can coexist by chasing each other around the petri dish.

With spatial structure

In a well-mixed population

But in a spatially-structured population

only with their

brs)

Takeaway: Spatial structure is a pivotal mechanism in this system. Introducing spatial structure into the model qualitatively changes the predicted dynamics.

Resistant strain outcompetes all others

All can coexist by chasing each other around the petri dish.

Differences in model formulation

No spatial structure

- Assume population is wellmixed
- Model can be deterministic or stochastic
- ODE model or Markov chain model

Spatially-structured

- Assume heterogeneous mixing
- Model is stochastic
- Markov chain model

Markov model formulation

If empty	Birth probability	If full	Death probability
0 -> S	$\beta_S f_S$	S -> 0	$\mu_S + au f_C$
0 -> R	$\beta_R f_R$	R -> 0	μ_R
0 -> C	$eta_C f_C$	C -> 0	μ_C

Markov model formulation

Well-mixed:

 f_i describes the fraction of type i in the WHOLE POPULATION

If empty	Birth probability	If full	Death probability
0 -> S	$\beta_S f_S$	S -> 0	$\mu_S + au f_C$
0 -> R	$eta_R f_R$	R -> 0	μ_R
0 -> C	$eta_C f_C$	C -> 0	μ_C

Markov model formulation

Spatially structured

 f_i describes only the fraction of type i surrounding a particular cell of interest

If empty	Birth probability	If full	Death probability
0 -> S	$\beta_S f_S$	S -> 0	$\mu_S + au f_C$
0 -> R	$eta_R f_R$	R -> 0	μ_R
0 -> C	$eta_C f_C$	C -> 0	μ_C