

Questions and Review

- RStudio GitHub It4I workflow?
- Are you using another workflow?
- IT4I experience?
- Measurement and terminology of parallel speedup
- Unix fork and its use by mclapply()
- Random Forest Classification

Resampling ... and Crossvalidation

More shared memory parallelization, and a preview of parallel linear algebra ...

Bootstrap, Bagging, Boosting, and Crossvalidation

- **Bootstrap**: a tool for assessing statistical accuracy
 - Resampling data with replacement and repeating estimation
 - Results in a sample of parameter estimates
- **Bagging** (bootstrap aggregation): a tool for reducing the variance of a prediction function
 - Simple models (low bias and high variance models) on resampled data
 - Consensus prediction (majority vote or average)
 - Generalized by random forest to sampling subsets of predictors
- Boosting: forward additive modeling, a greedy method of growing a model
 - Introduced via increasing weights on misclassified observations but shown* to fit additive model framework
 - Sequential, so parallelization within a model
- Crossvalidation: model performance assessment
 - Estimates expected prediction error
 - Uses all data (no test set)

^{*}Hastie, Tibshirani, and Friedman (2009) The Elements of Statistical Learning, Second Edition, (2009). link

Bootstrap

- ullet Data: ${f Z}=(z_1,z_2,\ldots,z_N)$, where $z_i=(y_i,x_i)$
- Model: Let $S(\mathbf{Z})$ be an estimated quantity from the data
- ullet Sample with replacement B sets of size N from data
- Fit model to each of the reseampled B sets $\{S(\mathbf{Z}^{*1}), S(\mathbf{Z}^{*2}), \dots, S(\mathbf{Z}^{*B})\}$
- Use as sample from the sampling distribution of the estimator
- For example, $\widehat{\mathrm{Var}[S(\mathbf{Z})]} = rac{1}{B-1} \sum_{b=1}^B [S(\mathbf{Z}^{*b}) ar{S^*}]^2$

Easy to parallelize over the B sets

Further opportunities may exist within the estimator $S(\cdot)$

Bagging (bootstrap aggregation)

• Let
$$\widehat{S(\mathbf{Z})} = rac{1}{B} \sum_{b=1}^B S(\mathbf{Z}^{*b})$$

- Majority vote if discrete
- Reduces variability of the estimate

Easy to parallelize over B

Further opportunities may exist within the estimator $S(\cdot)$

Random Forest for Regression or Classification

- 1. For b = 1 to B:
 - \circ Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - Grow a random-forest tree T_b on \mathbf{Z}^* :
 Recursively, for each terminal node, until n_{min} node size:
 - Select m variables at random from the p variables
 - Pick the best variable/split-point among the m
 - Split the node into two daughter nodes
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

optimize with crossvalidation

To make a prediction at x:

Regression:
$$\hat{f}_{\mathrm{rf}}^B(x) = rac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $C_b(x)$ be the class prediction of the bth random-forest tree.

Then
$$\hat{C}^B_{\mathrm{rf}}(x)$$
 = majority vote $\{\hat{C}_b(x)\}_1^B$.

^{*}Algorithm 15.1 in Hastie, Tibshirani, and Friedman (2009). The Elements of Statistical Learning, Second Edition. Link

Shared memory considerations

Cores produce separate forests:

Combine forests for prediction or combine predictions?

Boosting

Discrete AdaBoost *

- 1. Initialize weights $w_i = \frac{1}{N}$, $i = 1, 2, \ldots, N$.
- 2. For m=1 to M:
 - \circ Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - Compute

$$err_m = rac{\sum_{i=1}^N w_i I(y_i
eq G_m(x_i))}{\sum_{i=1} Nw_i}$$

- $\circ \; \text{Set} \; w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \ldots, N \not\leftarrow \text{increase weight utput} \; G(x) = sign\left[\sum_{m=1}^M \alpha_m G_m(x)\right].$
- 3. Output $G(x) = sign\left[\sum_{m=1}^{M} lpha_m G_m(x)
 ight]$.

Sequential over M, parallelize within $G_m(\cdot)$

* Algorithm 10.1 in Hastie, Tibshirani, and Friedman (2009)

K-fold Crossvalidation

- ullet Randomly divide data into k roughly equal folds
- ullet Let $\hat{f^{-k}}$ be the estimator when fold k is removed
- let k_i be the assigned fold of observation i
- Let f(x, lpha) be an estimator with a tuning parameter lpha
- Then $\mathrm{CV}(f,\alpha)=\frac{1}{N}\sum_{i=1}^N L(y_i,f^{-k_i}(x_i,\alpha))$ is the crossvalidation estimate of the prediction error Loss function (e.g. Lz norm)

KPMS-IT4I-EX/code/rf_serial.r

```
library(randomForest)
  data(LetterRecognition, package = "mlbench")
set.seed(seed = 123)
   n = nrow(LetterRecognition)
  n_{\text{test}} = floor(0.2 * n)
  i_test = sample.int(n, n_test)
train = LetterRecognition[-i_test, ]
test = LetterRecognition[i_test, ]
f.all = randomForest(lettr ~ ., train, ntree = 500, norm.votes = FAL
pred = predict(rf.all, test)
    correct = sum(pred == test$lettr)
    cat("Proportion Correct:", correct/(n test), "\n")
    plot(rf.all)
```

KPMS-IT4I-EX/code/rf_cv_serial.r

```
independent for parallelization
set.seed(seed = 123)
ntree = 300
nfolds = 10
mtrv val = 1:(ncol(train) - 1)
folds = sample( rep_len(1:nfolds, nrow(train)), nrow(train) )
cv df = data.frame(mtry = mtry_val, incorrect = rep(0, length(mtry_val)
cv_pars = expand.grid(mtry = mtry_val, f = 1:nfolds)
fold_err = function(i, cv_pars, folds, train) {
 mtry = cv_pars[i, "mtry"]
 fold = (folds == cv_pars[i, "f"])
  rf.all = randomForest(lettr ~ ., train[!fold, ], ntree = ntree,
                        mtry = mtry, norm.votes = FALSE)
  pred = predict(rf.all, train[fold, ])
  sum(pred != train$lettr[fold])
cat("Running serial\n")
system.time({
cv_err = lapply(1:nrow(cv_pars), fold_err, cv_pars, folds = folds, tr
cv_err = tapply(unlist(cv_err), cv_pars[, "mtry"], sum)
})
png(paste0("rf_cv_mc0.prg")); plot(mtry_val, cv_err/(n - n_test)); de
```

KPMS-IT4I-EX/code/rf_cv_mc.r

```
set.seed(seed = 123, "L'Ecuyer-CMRG")
ntree = 200
 nfolds = 10
mtrv val = 1:(ncol(train) - 1)
 folds = sample( rep_len(1:nfolds, nrow(train)), nrow(train) )
 cv df = data.frame(mtry = mtry_val, incorrect = rep(0, length(mtry_val))
 cv_pars = expand.grid(mtry = mtry_val, f = 1:nfolds)
 fold_err = function(i, cv_pars, folds, train) {
  mtry = cv_pars[i, "mtry"]
  fold = (folds == cv_pars[i, "f"])
   rf.all = randomForest(lettr ~ ., train[!fold, ], ntree = ntree,
                        mtry = mtry, norm.votes = FALSE)
  pred = predict(rf.all, train[fold, ])
  sum(pred != train$lettr[fold])
nc = as.numeric(commandArgs(TRUE)[1])
 cat("Running with", nc, "cores\n")
 svstem.time({
cv_err = parallel::mclapply(1:nrow(cv_pars), fold_err, cv_pars, folds
                        train = train, mc.cores = nc)
err = tapply(unlist(cv_err), cv_pars[, "mtry"], sum)
})
```

Demo ...

Matrix Libraries ...

R-LAPACK-BLAS

- BLAS: Basic Linear Algebra Subroutines A matrix multiplication library
 - vector-vector (Level-1), matrix-vector (Level-2), matrix-matrix (Level-3)
- LAPACK: dense and banded matrix decompositions and more

$$\circ$$
 LU LL^T QR UDV^T VD^2V^T $\|\cdot\|_p$

• Implementations: OpenBLAS, Intel MKL, Nvidia nvBLAS, Apple vecLib, AMD BLIS, Arm Performance Libraries

FlexiBLAS: A BLAS and LAPACK wrapper library with runtime exchangable backends

FlexiBLAS

```
idx = plexibles-load-backend ("OPENBLAS")

plexibles-switch (idx)
library(flexiblas)
# check whether FlexiBLAS is available
flexiblas_avail()
#> [1] TRUE
# get the current backend
flexiblas current backend()
#> [1] "OPENBLAS-OPENMP"
# list all available backends
flexiblas list()
#> [1] "NETLIB"
                          " FALLBACK " "BLIS-THREADS"
                                                                   "OPFI
#> [5] "BLIS-SERIAL"
                           "ATLAS"
                                               "OPFNBLAS-SFRTAL" "OPFL
#> [9] "BLIS-OPENMP"
# get/set the number of threads
flexiblas_set_num_threads(12)
flexiblas_get_num_threads()
#> \[ 17 \] 12
```

https://github.com/Enchufa2/r-flexiblas https://cran.r-project.org/package=flexiblas