Resolución angular y medición del perfil de un láser

1 Objetivos de la Práctica

- Determinar la resolución angular de un motor de paso.
- Caracterizar el perfil del cono de luz de un diodo láser utilizando un motor de paso, un ESP32 y una fotorresistencia.

Figura 1: Montaje Experimental usando el ESP32 y un motor paso a paso

2 Materiales Requeridos

Para completar la práctica, necesitarás los siguientes materiales:

- Tarjeta ESP32.
- Motor de paso.
- Amplificador para el motor de paso (como el driver A4988).
- Diodo láser.
- Fotorresistencia (LDR).
- Fuente de alimentación de 3.3V.
- Cables de conexión.
- Superficie plana para colocar el equipo.
- Herramientas para el montaje (como pinzas, destornilladores, etc.).

3 Resolución del Motor de Paso

3.1 Montaje del Motor de Paso

- Conecta el motor de paso al amplificador correspondiente (por ejemplo, A4988).
- Conecta el amplificador al ESP32. Los pines más importantes son DIR (dirección) y STEP (pasos), que permitirán controlar el movimiento del motor.
- Asegúrate de conectar la fuente de alimentación adecuada al amplificador (si el motor requiere 12V, conecta esta fuente al driver).

3.2 Montaje del Diodo Láser

• Conecta el diodo láser a la salida de 3.3V del ESP32 y a GND. Asegúrate de que el láser esté fijo sobre el motor de paso, de modo que apunte a una dirección y pueda moverse con el motor.

3.3 Montaje de la Fotorresistencia (LDR)

• Coloca la fotorresistencia frente al láser, en una posición fija. La LDR detectará la variación de la intensidad de luz a medida que el láser se mueve.

3.4 Programación del ESP32

- Desarrolla un programa que permita ingresar desde el PC el número de pasos que deseas que avance el motor.
- Usa la comunicación serial para recibir el número de pasos desde el PC y controlar el motor de paso en consecuencia.

3.5 Determinación de la Resolución Angular

- Una vez que el motor esté funcionando, realiza un movimiento de un número conocido de pasos y mide el ángulo que el motor ha recorrido.
- Usa la siguiente fórmula para calcular la resolución angular:

$$Resolucin Angular = \frac{360^{\circ}}{Pasos porvuelta}$$

 Toma varias mediciones con diferentes números de pasos y promedia los resultados para obtener una mejor precisión.

3.6 Minimización del Error

Para minimizar el error en las mediciones de la resolución angular, sigue estos consejos:

- Asegúrate de que el motor y el láser estén bien alineados.
- Realiza varias mediciones para promediar los resultados.
- Si es posible, usa un goniómetro o un transportador para medir los ángulos con más precisión.

4 Perfil del Cono de Luz del Diodo Láser

4.1 Montaje del Sistema de Medición

- El motor de paso con el diodo láser ya está montado.
- Coloca la fotorresistencia frente al láser para medir la intensidad de luz a medida que el láser se desplaza.
- Asegúrate de que la distancia entre el láser y la LDR sea constante durante las mediciones.

4.2 Programa en Arduino

- Desarrolla un programa en Arduino para controlar el motor y enviar los datos de intensidad de luz y ángulo a través de la comunicación serial.
- El programa debe permitir que el motor gire en pequeños incrementos de pasos, mientras se registra la intensidad del láser detectada por la fotorresistencia.

4.3 Script en Python para Graficar en Tiempo Real

- Crea un script en Python que utilice pySerial para recibir los datos de intensidad y ángulo desde el ESP32.
- Utiliza matplotlib o plotly para graficar los datos en tiempo real.
- El script debe permitir visualizar el perfil del cono de luz, con la intensidad de luz (en unidades arbitrarias) en el eje vertical y el ángulo (en grados) en el eje horizontal.

4.4 Toma de Datos

- Ejecuta el programa de Arduino para que el motor gire en incrementos de pasos.
- A medida que el motor se mueve, toma las lecturas de intensidad de luz y el ángulo correspondiente.
- Usa el script en Python para graficar los resultados en tiempo real.

4.5 Análisis de los Datos

- Una vez que hayas completado las mediciones, analiza cómo varía la intensidad de luz con el ángulo.
- El gráfico debería mostrar el perfil del cono de luz del láser. Asegúrate de que los datos sean consistentes y que no haya picos o caídas inesperadas que puedan indicar errores en el montaje.

5 Conclusiones

Reflexiona sobre los siguientes puntos al final de la práctica:

- ¿Cuáles son los resultados obtenidos para la resolución angular del motor de paso?
- ¿Cómo varió la intensidad del láser con el ángulo de emisión?
- ¿Hubo algún factor que pudo haber afectado los resultados (como alineación, ruido, etc.)?
- ¿Qué mejoras podrían implementarse para mejorar la precisión de los experimentos?