```
In [ ]: # Update sklearn to prevent version mismatches
          !pip install sklearn --upgrade
In [ ]: # install joblib. This will be used to save your model.
          # Restart your kernel after installing
         !pip install joblib
In [1]: # Dependencies
         import numpy as np
         import pandas as pd
In [ ]: # import sys
          # print(sys.version)
In [ ]: # import tensorflow
          # tensorflow.keras.__version_
In [2]: import warnings
         warnings.simplefilter('ignore')
         Read the CSV and Perform Basic Data Cleaning
In [3]: | df = pd.read_csv("exoplanet_data.csv")
         # Drop the null columns where all values are null
         df = df.dropna(axis='columns', how='all')
          # Drop the null rows
         df = df.dropna()
         df.head()
Out[3]:
             koi_disposition koi_fpflag_nt koi_fpflag_ss koi_fpflag_co koi_fpflag_ec koi_period_koi_period_err1 koi_period_err2 koi_time0bk koi_time0bk
               CONFIRMED
                                    0
                                                0
                                                             0
                                                                         0 54.418383
                                                                                        2.479000e-04
                                                                                                     -2.479000e-04
                                                                                                                   162.513840
          0
                                                                                                                                    0.0
                    FALSE
                                    0
                                                             0
                                                                         0 19.899140
                                                                                                     -1.490000e-05
                                                                                                                  175.850252
          1
                                                1
                                                                                        1.490000e-05
                                                                                                                                    0.0
                  POSITIVE
                    FALSE
          2
                                    0
                                                1
                                                             0
                                                                         0
                                                                            1.736952
                                                                                        2.630000e-07
                                                                                                     -2.630000e-07
                                                                                                                  170.307565
                                                                                                                                    0.0
                  POSITIVE
               CONFIRMED
          3
                                    n
                                                O
                                                             O
                                                                         n
                                                                            2 525592
                                                                                        3 760000e-06
                                                                                                     -3 760000e-06
                                                                                                                  171 595550
                                                                                                                                    0.0
               CONFIRMED
                                    0
                                                0
                                                             0
                                                                             4.134435
                                                                                        1.050000e-05
                                                                                                     -1.050000e-05
                                                                                                                   172.979370
                                                                                                                                    0.0
         5 rows × 41 columns
In [4]: # https://exoplanetarchive.ipac.caltech.edu/docs/API_kepcandidate_columns.html#stellar_param
         df.columns
Out[4]: Index(['koi_disposition', 'koi_fpflag_nt', 'koi_fpflag_ss', 'koi_fpflag_co',
                  'koi_fpflag_ec', 'koi_period', 'koi_period_err1', 'koi_period_err2',
                  'koi_time0bk', 'koi_time0bk_err1', 'koi_time0bk_err2', 'koi_impact',
                  'koi_impact_err1', 'koi_impact_err2', 'koi_duration', 'koi_duration_err1', 'koi_duration_err2', 'koi_depth', 'koi_depth_err1',
                  'koi_depth_err2', 'koi_prad', 'koi_prad_err1', 'koi_prad_err2',
                  'koi_teq', 'koi_insol', 'koi_insol_err1', 'koi_insol_err2',
                  'koi_model_snr', 'koi_tce_plnt_num', 'koi_steff', 'koi_steff_err1', 'koi_steff_err2', 'koi_slogg', 'koi_slogg_err1', 'koi_slogg_err2', 'koi_srad', 'koi_srad_err1', 'koi_srad_err2', 'ra', 'dec',
                  'koi_kepmag'],
                 dtype='object')
```

```
In [5]: Xtemp = df[['koi_fpflag_nt', 'koi_fpflag_ss', 'koi_fpflag_co', 'koi_fpflag_ec', 'koi_period','koi_time0bk',
Xtemp
```

Out[5]:

	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	koi_fpflag_ec	koi_period	koi_time0bk	koi_slogg	koi_srad	koi_impact	koi_duration	 koi_pra
0	0	0	0	0	54.418383	162.513840	4.467	0.927	0.586	4.50700	 2.
1	0	1	0	0	19.899140	175.850252	4.544	0.868	0.969	1.78220	 14.
2	0	1	0	0	1.736952	170.307565	4.564	0.791	1.276	2.40641	 33.
3	0	0	0	0	2.525592	171.595550	4.438	1.046	0.701	1.65450	 2.
4	0	0	0	0	4.134435	172.979370	4.486	0.972	0.762	3.14020	 2.
6986	0	0	0	1	8.589871	132.016100	4.296	1.088	0.765	4.80600	 1.
6987	0	1	1	0	0.527699	131.705093	4.529	0.903	1.252	3.22210	 29.
6988	0	0	0	0	1.739849	133.001270	4.444	1.031	0.043	3.11400	 0.
6989	0	0	1	0	0.681402	132.181750	4.447	1.041	0.147	0.86500	 1.
6990	0	0	1	1	4.856035	135.993300	4.385	1.193	0.134	3.07800	 1.0

6991 rows × 21 columns

```
In [6]: y = df[['koi_disposition']]
In []: # data_binary_encoded = pd.get_dummies(y, columns=["koi_disposition"])
# data_binary_encoded.columns = [["candidate", "confirmed", "false_positive"]]
```

```
In [ ]: # from sklearn.ensemble import RandomForestClassifier
# rf = RandomForestClassifier(n_estimators=200)
# rf = rf.fit(Xtemp, data_binary_encoded)
```

```
In [ ]: # # Random Forests in sklearn will automatically calculate feature importance
# importances = rf.feature_importances_
# importances
```

```
In [ ]: # # We can sort the features by their importance
# sorted(zip(rf.feature_importances_, Xtemp), reverse=True)
```

based on past history directly removing insignificant features based on feature_importance

```
In [7]: X = Xtemp.drop(columns=['ra','dec','koi_kepmag','koi_srad','koi_slogg'])
X
```

Out[7]:

		koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	koi_fpflag_ec	koi_period	koi_time0bk	koi_impact	koi_duration	koi_depth	koi_prad	koi_teq	ŀ
	0	0	0	0	0	54.418383	162.513840	0.586	4.50700	874.8	2.83	443	_
	1	0	1	0	0	19.899140	175.850252	0.969	1.78220	10829.0	14.60	638	
	2	0	1	0	0	1.736952	170.307565	1.276	2.40641	8079.2	33.46	1395	
	3	0	0	0	0	2.525592	171.595550	0.701	1.65450	603.3	2.75	1406	
	4	0	0	0	0	4.134435	172.979370	0.762	3.14020	686.0	2.77	1160	
		•••			•••	•••	•••						
(6986	0	0	0	1	8.589871	132.016100	0.765	4.80600	87.7	1.11	929	
(6987	0	1	1	0	0.527699	131.705093	1.252	3.22210	1579.2	29.35	2088	
(6988	0	0	0	0	1.739849	133.001270	0.043	3.11400	48.5	0.72	1608	
(6989	0	0	1	0	0.681402	132.181750	0.147	0.86500	103.6	1.07	2218	
6	6990	0	0	1	1	4.856035	135.993300	0.134	3.07800	76.7	1.05	1266	

6991 rows \times 14 columns

Select your features (columns)

Create a Train Test Split

Use koi_disposition for the y values

	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	koi_fpflag_ec	koi_period	koi_time0bk	koi_impact	koi_duration	koi_depth	koi_prad	koi_teq	ŀ
6122	0	0	0	0	6.768901	133.077240	0.150	3.61600	123.1	1.24	1017	_
6370	0	1	0	1	0.733726	132.020050	0.291	2.30900	114.6	0.86	1867	
2879	1	0	0	0	7.652707	134.460380	0.970	79.89690	641.1	3.21	989	
107	0	0	0	0	7.953547	174.662240	0.300	2.63120	875.4	2.25	696	
29	0	0	0	0	4.959319	172.258529	0.831	2.22739	9802.0	12.21	1103	

Pre-processing

In []:

Scale the data using the MinMaxScaler and perform some feature selection

```
In [12]: # Scale your data
         from sklearn.preprocessing import LabelEncoder, MinMaxScaler
         from tensorflow.keras.utils import to_categorical
In [13]: X scaler = MinMaxScaler().fit(X train)
         X_train_scaled = X_scaler.transform(X_train)
         X_test_scaled = X_scaler.transform(X_test)
In [14]: # Step 1: Label-encode data set
         label_encoder = LabelEncoder()
         label encoder.fit(y train)
         encoded_y_train = label_encoder.transform(y_train)
         encoded_y_test = label_encoder.transform(y_test)
In [15]: # Step 2: Convert encoded labels to one-hot-encoding
         y train categorical = to categorical(encoded y train)
         y_test_categorical = to_categorical(encoded_y_test)
In [16]: print(X_train_scaled.shape, y_train_categorical.shape)
         (5243, 14) (5243, 3)
```

Train the Model

```
In [17]: # create deep learning model
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import Dense
In [18]: model = Sequential()
         # give no. of columns in y_train_categorical as input_dim
         model.add(Dense(units=100, activation='relu', input_dim=14))
         model.add(Dense(units=100, activation='relu'))
         # give of columns in y_train_categorical as units
         model.add(Dense(units=3, activation='softmax'))
In [19]: # Compile and fit the model
         model.compile(optimizer='adam',
                       loss='categorical_crossentropy',
                       metrics=['accuracy'])
In [20]: model.summary()
         Model: "sequential"
         Layer (type)
                                      Output Shape
                                                                 Param #
         dense (Dense)
                                       (None, 100)
                                                                 1500
         dense_1 (Dense)
                                       (None, 100)
                                                                 10100
         dense_2 (Dense)
                                                                 303
                                       (None, 3)
         Total params: 11,903
         Trainable params: 11,903
         Non-trainable params: 0
```

```
In [21]: model.fit(
             X_train_scaled,
            y_train_categorical,
             epochs=15,
             shuffle=True,
             verbose=2
         Train on 5243 samples
         Epoch 1/15
         5243/5243 - 1s - loss: 0.5409 - accuracy: 0.7044
         Epoch 2/15
         5243/5243 - 0s - loss: 0.3787 - accuracy: 0.7833
         Epoch 3/15
         5243/5243 - 0s - loss: 0.3708 - accuracy: 0.7910
         Epoch 4/15
         5243/5243 - 0s - loss: 0.3657 - accuracy: 0.7978
         Epoch 5/15
         5243/5243 - 0s - loss: 0.3618 - accuracy: 0.7940
         Epoch 6/15
         5243/5243 - 0s - loss: 0.3589 - accuracy: 0.8039
         Epoch 7/15
         5243/5243 - 0s - loss: 0.3557 - accuracy: 0.8051
         Epoch 8/15
         5243/5243 - 0s - loss: 0.3530 - accuracy: 0.8070
         Epoch 9/15
         5243/5243 - 0s - loss: 0.3503 - accuracy: 0.8135
         Epoch 10/15
         5243/5243 - 0s - loss: 0.3494 - accuracy: 0.8114
         Epoch 11/15
         5243/5243 - 0s - loss: 0.3467 - accuracy: 0.8148
         Epoch 12/15
         5243/5243 - 0s - loss: 0.3440 - accuracy: 0.8177
         Epoch 13/15
         5243/5243 - 0s - loss: 0.3415 - accuracy: 0.8150
         Epoch 14/15
         5243/5243 - 0s - loss: 0.3388 - accuracy: 0.8230
         Epoch 15/15
         5243/5243 - 0s - loss: 0.3365 - accuracy: 0.8230
Out[21]: <tensorflow.python.keras.callbacks.History at 0x7f8813038390>
In [22]: model loss, model accuracy = model.evaluate(
             X_test_scaled, y_test_categorical, verbose=2)
         print(
            f"Deep Neural Network - Loss: {model_loss}, Accuracy: {model_accuracy}")
         1748/1 - 0s - loss: 0.3523 - accuracy: 0.8026
         Deep Neural Network - Loss: 0.3657203559471759, Accuracy: 0.8026315569877625
In [ ]: |# model.fit(
              X_train_scaled,
         #
               y_train_categorical,
              epochs=80,
         #
              shuffle=True,
         #
               verbose=2
         # )
In [ ]: # model_loss, model_accuracy = model.evaluate(
         #
               X_test_scaled, y_test_categorical, verbose=2)
         # print(
               f"Deep Neural Network - Loss: {model_loss}, Accuracy: {model_accuracy}")
```

```
In [23]: model.fit(
             X_train_scaled,
             y_train_categorical,
             epochs=100,
             shuffle=True,
             verbose=2
         Train on 5243 samples
         Epoch 1/100
         5243/5243 - 0s - loss: 0.3362 - accuracy: 0.8230
         Epoch 2/100
         5243/5243 - 0s - loss: 0.3304 - accuracy: 0.8270
         Epoch 3/100
         5243/5243 - 0s - loss: 0.3293 - accuracy: 0.8282
         Epoch 4/100
         5243/5243 - 0s - loss: 0.3250 - accuracy: 0.8325
         Epoch 5/100
         5243/5243 - 0s - loss: 0.3202 - accuracy: 0.8390
         Epoch 6/100
         5243/5243 - 0s - loss: 0.3201 - accuracy: 0.8369
         Epoch 7/100
         5243/5243 - 0s - loss: 0.3187 - accuracy: 0.8371
         Epoch 8/100
         5243/5243 - 0s - loss: 0.3163 - accuracy: 0.8411
         Epoch 9/100
         5243/5243 - 0s - loss: 0.3118 - accuracy: 0.8436
In [24]: model_loss, model_accuracy = model.evaluate(
            X_test_scaled, y_test_categorical, verbose=2)
         print(
             f"Deep Neural Network - Loss: {model_loss}, Accuracy: {model_accuracy}")
         1748/1 - 0s - loss: 0.3060 - accuracy: 0.8993
         Deep Neural Network - Loss: 0.2669288119134968, Accuracy: 0.8993135094642639
In [25]: # make predictions and print the results
         encoded_predictions = model.predict_classes(X_test_scaled[:5])
         prediction_labels = label_encoder.inverse_transform(encoded_predictions)
         print(f"Predicted classes: {prediction_labels}")
         print(f"Actual Labels: {y_test.values[:5].tolist()}")
         Predicted classes: ['FALSE POSITIVE' 'CANDIDATE' 'FALSE POSITIVE' 'FALSE POSITIVE'
          'FALSE POSITIVE'
         Actual Labels: [['FALSE POSITIVE'], ['CANDIDATE'], ['FALSE POSITIVE'], ['FALSE POSITIVE'], ['FALSE POSITIVE'],
         E']]
In [ ]:
```

Deep Learning model with random state 42 (V6) accuracy slightly better than random state 1 (V5). The best accuracy is 89.93% and loss rate is 26.69%