CSE 412A Introduction to Spring 2022 Artificial Intelligence

Exercise 3

- You have approximately as many minutes as there are points.
- Mark your answers ON THE EXERCISE ITSELF. If you are not sure of your answer you may wish to provide a *brief* explanation. All short answer sections can be successfully answered in a few sentences AT MOST.
- For True/False questions, please *circle* your answer.

First name	
Last name	
WUSTL ID	

For staff use only:

Q1.	Search	/17
	Total	/17

Q1. [17 pts] Search

The questions on this page refer to the graph above, where the start state is A and the goal state is G. The number on an edge corresponds to the cost of traversing that edge. Additionally, assume that we have the following heuristic values:

	\mathcal{L}	`										
State	/A	7	В	С	D	Е	F	G	Η	I	J	
Heuristic value	5	· / I	3	2	3	2	0	0	5	4	0	
		_										

Assume that each algorithm re-generates states that are not yet expanded, does not re-expand states, breaks ties in lexicographical ordering, and terminates after expanding the goal state.

Note: These assumptions may differ with the operations of some of the algorithms in the textbook.

(a) [5 pts] What is the order of state expansions if you used used Uniform-Cost Search? (If state A is expanded before state B, which is expanded before state C, then write "A, B, C".)

What path would the algorithm return?

(If the path is from state A to state B to state C, then write " $A \to B \to C$ ".)

(b) [5 pts] What is the order of state expansions if you used Greedy Best-First Search? What path would the

- (c) Each question is worth 1 point. Leaving a question blank is worth 0 points. Answering a question incorrectly is worth -1 point. This gives you an expected value of 0 for random guessing.
 - (i) [1 pt] (true) or false] Uniform-cost search is guaranteed to find a shortest path in finite graphs with uniform edge costs.
 - (ii) [1 pt] [true or false] Greedy best-first search, using a perfect heuristic $h(n) = h^*(n)$ that always returns the true cost to the goal, is optimal.

gredy: ABG 1 tre opt = ACG

(d) [5 pts] How would UCS operate in tree-structured graphs with uniform negative edge costs (e.g., all edges have cost -1), where the root is the start state and a different arbitrary node of the graph is the goal state? Is its behavior more similar to DFS or BFS? Explain.

 $\begin{array}{c}
(B) & C \\
(C) & C$