An Introduction to Parallel Computing

Edgar Gabriel
Department of Computer Science
University of Houston
gabriel@cs.uh.edu

Why Parallel Computing?

- To solve larger problems
 - many applications need significantly more memory than a regular PC can provide/handle
- To solve problems faster
 - despite of many advances in computer hardware technology, many applications are running slower and slower
 - e.g. databases having to handle more and more data
 - e.g. large simulations working on even more accurate solutions

Parallel Programming

- Exploit concurrency
 - Internet: Client and server are independent, interacting applications
 - Searching an element: distribute the search database onto multiple processors
 - Adding two arrays of integers:

Parallel Programming (II)

Scalar product:

$$s = \sum_{i=0}^{N-1} a[i] * b[i]$$

Parallel algorithm

$$s = \sum_{i=0}^{N/2-1} (a[i] * b[i]) + \sum_{i=N/2}^{N-1} (a[i] * b[i])$$

$$= \sum_{i=0}^{N/2-1} (a_{local}[i] * b_{local}[i]) + \sum_{i=0}^{N/2-1} (a_{local}[i] * b_{local}[i])$$

$$rank=0$$

- requires communication between the processes

Flow around a re-entry vehicle

HPC in movies

- Special effects are highly compute intensive
- Example: Lord of the Rings
 - company: Weta Digitals
 - 3200 processor cluster
 - a single scene contains:
 - per second 24 frames
 - per frame: 4996 x 3112 points with 32- or 64 bit color encoding
 - each object means a separate compute cycle
- Number of computer-added special effects in movies:
 - Jurassic Park (I): 75
 - Lord of the Rings (I): 540
 - each of the following episodes of Lord of the Rings doubled the number of special effects
 - last episode of Star-Wars: 2000-2500

What is a Parallel Computer?

What is a Parallel Computer?

PC cluster in 2000

- 4U height per node
- Nodes:
 - 1-4 processors
 - 1-4 GB memory
- Network interconnects:
 - Myrinet (~ 200MB/s, 7µs)
 - Fast Ethernet (~ 12MB/s, 1ms)

$$(1U = 1.75" = 4.45 cm)$$

What is a Parallel Computer?

PC Cluster in 2005

- 1U height
- Nodes:
 - 1-8 Processors
 - 1-32 GB main memory
- Network interconnects
 - Infiniband (~ 1 GB/s, 5 μs)
 - Gigabit Ethernet (~80 MB/s, 50 µs)

Earth Simulator

- Target: Achievement of high-speed numerical simulations with processing speed of 1000 times higher than that of the most frequently used supercomputers in 1996. (www.es.jamstec.go.jp)
 - 640 nodes
 - 8 processors/node
 - 40 TFLOPS peak
 - 10 TByte memory

Top 500 List (www.top500.org)

Rank	Site Coun try /Year	Computer / Processors Manufacturer	Computer Family Model	Inst. type Installation Area	R _{max} R _{peak}	Nmax nhalf
1	DOE/NNSA/LLNL United States/2005	BlueGene/L eServer Blue Gene Solution / 65536 IBM	IBM BlueGene/L eServer Blue Gene Solution	Research	136800 183500	1277951
2	IBM Thomas J. Watson Research Center United States/2005	BGW <u>eServer Blue Gene Solution</u> / 40960 IBM	IBM BlueGene/L eServer Blue Gene Solution	Research Information Processing Service	91290 114688	983039
3	NASA/Ames Research Center/NAS United States/2004	Columbia SGI Altix 1.5 GHz, Voltaire Infiniband / 10160 SGI	SGI Altix SGI Altix 3700	Research	51870 60960	1290240
4	The Earth Simulator Center Japan/2002	Earth-Simulator / 5120 NEC	NEC Vector SX6	Research	35860 40960	1075200 266240
5	Barcelona Supercomputer Center Spain/2005	MareWostrum JS20 Cluster, PPC 970, 2.2 GHz, Myrinet / 4800 IBM	IBM Cluster JS20 CLuster	Academic	27910 42144	977816
6	ASTRON/University Groningen Netherlands/2005	eServer Blue Gene Solution / 12288 IBM	IBM BlueGene/L eServer Blue Gene Solution	Academic	27450 34406.4	516095
7	Lawrence Livermore National Laboratory United States/2004	Thunder Intel Itanium2 Tiger4 1.4GHz - Quadrics / 4096 California Digital Corporation	NOW - Intel Itanium Itanium2 Tiger4 Cluster	Research	19940 22938	975000 110000
8	Computational Biology Research Center, AIST Japan/2005	Blue Protein <u>eServer Blue Gene Solution</u> / 8192 IBM	IBM BlueGene/L eServer Blue Gene Solution	Research	18200 22937.6	442367
9	Ecole Polytechnique Federale de Lausanne Switzerland/2005	<u>eServer Blue Gene Solution</u> / 8192 IBM	IBM BlueGene/L eServer Blue Gene Solution	Academic	18200 22937.6	442367
10	Sandia National Laboratories United States/2005	Red Storm, Cray XT3, 2.0 GHz / 5000 Cray Inc.	Cray XT3 Cray XT3	Research	15250 20000	
11	Oak Ridge National Laboratory United States/2005	<u>Cray XT3, 2.4 GHz</u> / 3748 Cray Inc.	Cray XT3 Cray XT3	Research	14170 17990	

Top 500 List

Recommended Literature

- Timothy G. Mattson, Beverly A. Sanders, Berna L. Massingill "Patterns for Parallel Programming" Software Pattern Series, Addison Wessley, 2005.
- Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar: "Introduction to Parallel Computing", Pearson Education, 2003.
- Jack Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon, Andy White "Sourcebook of Parallel Computing", Morgan Kaufmann Publishers, 2003.
- Michael J. Quinn: "Parallel Programming in C with MPI and OpenMP", McGrawHill, 2004.
- L. Ridgeway Scott, Terry Clark, Babak Bagheri: "Scientific Parallel Computing", Princeton University Press, 2005.

Classification of Parallel Architectures

Flynn's Taxonomy

- SISD: Single instruction single data
 - Classical von Neumann architecture
- SIMD: Single instruction multiple data
- MISD: Multiple instructions single data
 - Non existent, just listed for completeness
- MIMD: Multiple instructions multiple data
 - Most common and general parallel machine

Single Instruction Multiple Data

- Also known as Array-processors
- A single instruction stream is broadcasted to multiple processors, each having its own data stream
 - Still used in graphics cards today

Multiple Instructions Multiple Data (I)

- Each processor has its own instruction stream and input data
- Very general case
 - every other scenario can be mapped to MIMD
- Further breakdown of MIMD usually based on the memory organization
 - Shared memory systems
 - Distributed memory systems

Shared memory systems (I)

- All processes have access to the same address space
 - E.g. PC with more than one processor
- Data exchange between processes by writing/reading shared variables
 - Shared memory systems are easy to program
 - Current standard in scientific programming: OpenMP
- Two versions of shared memory systems available today
 - Symmetric multiprocessors (SMP)
 - Non-uniform memory access (NUMA) architectures

Symmetric multi-processors (SMPs)

All processors share the same physical main memory

- Memory bandwidth per processor is limiting factor for this type of architecture
- Typical size: 2-32 processors

NUMA architectures (I)

- Some memory is closer to a certain processor than other memory
 - The whole memory is still addressable from all processors
 - Depending on what data item a processor retrieves, the access time might vary strongly

NUMA architectures (II)

- Reduces the memory bottleneck compared to SMPs
- More difficult to program efficiently
 - E.g. first touch policy: data item will be located in the memory of the processor which uses a data item first
- To reduce effects of non-uniform memory access, caches are often used
 - ccNUMA: cache-coherent non-uniform memory access architectures
- Largest example as of today: SGI Origin with 512 processors

Distributed memory machines (I)

- Each processor has its own address space
- Communication between processes by explicit data exchange
 - Sockets
 - Message passing
 - Remote procedure call / remote method invocation

Distributed memory machines (II)

- Performance of a distributed memory machine strongly depends on the quality of the network interconnect and the topology of the network interconnect
 - Of-the-shelf technology: e.g. fast-Ethernet, gigabit-Ethernet
 - Specialized interconnects: Myrinet, Infiniband,
 Quadrics, 10G Ethernet ...

Distributed memory machines (III)

- Two classes of distributed memory machines:
 - Massively parallel processing systems (MPPs)
 - Tightly coupled environment
 - Single system image (specialized OS)
 - Clusters
 - Of-the-shelf hardware and software components such as
 - Intel P4, AMD Opteron etc.
 - Standard operating systems such as LINUX, Windows, BSD UNIX

Hybrid systems

• E.g. clusters of multi-processor nodes

Grids

- 'Evaluation' of distributed memory machines and distributed computing
- Several (parallel) machines connected by wide-area links (typically the internet)
 - Machines are in different administrative domains

Network topologies (I)

- Important metrics:
 - Latency:
 - minimal time to send a very short message from one processor to another
 - Unit: ms, µs
 - Bandwidth:
 - amount of data which can be transferred from one processor to another in a certain time frame
 - Units: Bytes/sec, KB/s, MB/s, GB/s
 Bits/sec, Kb/s, Mb/s, Gb/s,
 baud

Network topologies (II)

Metric	Description	Optimal parameter	
Link	A direct connection between two processors		
Path	A route between two processors	As many as possible	
Distance	Minimum length of a path between two processors	Small	
Diameter	Maximum distance in a network	Small	
Degree	Number of links that connect to a processor	Small (costs) / Large (redundancy)	
Connectivity	Minimum number of links that have to be cut to separate the network	Large (reliability)	
Increment	Number of procs to be added to keep the properties of a topology	Small (costs)	
Complexity	Number of links required to create a network topology	Small (costs)	

Bus-Based Network

- All nodes are connected to the same (shared) communication medium
- Only one communication at a time possible
 - Does not scale

- Examples: Ethernet, SCSI, Token Ring, Memory bus
- Main advantages:
 - Cheap
 - Simple broadcast

Crossbar Networks (I)

A grid of switches connecting nxm ports

- a connection from one process to another does not prevent communication between other process pairs
- Aggregated Bandwidth of a crossbar: sum of the bandwidth of all possible simultaneous connections

Directly connected networks

- A direct connection between two processors exists
- Relevant topologies
 - Ring
 - Star
 - Fully connected
 - Meshes
 - Toruses
 - Tree based networks
 - Hypercubes

fully connected network

- Every node is connected directly with every other node
 - Distance:
 - Diameter:
 - Degree: N-1
 - Connectivity: N-1
 - Increment: 1
 - Complexity: N*(N-1)/2
- Positive:
 - Fast: one hop to each node
 - Fault-tolerant
- Negative:
 - Does not scale / expensive
 - Technically difficult!

Ring network

• N: Number of processor connected by the network

Distance: 1: N/2

– Diameter: N/2

Degree: 2

Connectivity: 2

– Increment: 1

– Complexity: N-1

Meshes (I)

• E.g. 2-D mesh

- Distance: $1:\sim 2\sqrt{N}$

– Diameter: $\sim 2\sqrt{N}$

– Degree: 2-4

Connectivity: 2

- Increment: $\sim \sqrt{N}$

Complexity: ~2N

Meshes (II)

• E.g. 3-D mesh

- Distance: $1:\sim 3\sqrt[3]{N}$

− Diameter: $\sim 3\sqrt[3]{N}$

– Degree: 3-6

Connectivity: 3

– Increment: ~

- Complexity: $\sim \sqrt[3]{N}$

Toruses (I)

• E.g. 2-D Torus

– Distance: $1:\sim \sqrt{N}$

– Diameter: $\sim \sqrt{N}$

Degree: 4

- Connectivity: 4

– Increment: $\sim \sqrt{N}$

– Complexity: ~2N

Tree-based networks

- Leafs are computational nodes, Intermediate nodes in the tree are switches
- Fat tree: binary tree which increases the number of communication links between higher level switching elements to avoid contention

Distance: 1:2log₂(N)

- Diameter: $2\log_2(N)$

Degree:

Connectivity: 1

– Increment: N

Complexity: ~2N

