Mahdi Tavakol, BSc, MSc, PhD.

Mahditavakol90@gmail.com • Oxford, UK, OX145HB

OUALIFICATIONS SUMMARY

- Result-oriented individual with superb collaborative and technical communication skills offering a deep understanding of molecular simulation of various systems obtained through 12 years of experience.
- Demonstrated high standard of research output through publishing peer reviewed papers in internationally acclaimed journals including "Nature Scientific Reports" and "ACS Nano" with total citation of 254 and h-index of 7.
- Experience in molecular simulation of proteins (All-Atom and Coarse-Grained MD).
- Experience in the use of High Performance Computing systems (HPC) of: Summit, ICHEC, BEDE, Hamilton, Archer2, ARC, Bluebear.
- Successful in securing two highly competitive travel grants.
- Extensive hands-on experience with LAMMPS, NAMD, GROMACS, VMD and OVITO molecular simulation/visualization packages.
- Understanding of the LAMMPS source code and experience in adding new commands to the software package.
- Good experience in programming in C++ and Python and familiarity with CUDA C, bash, MATLAB and tcl scripting languages.
- Familiarity with Gaussian.
- Proficient in Linux OS.
- Time management skills.
- B.Sc, M.Sc. and Ph.D. degrees from 1st ranked Iranian university.

RESEARCH AND TECHNICAL SKILLS

- Molecular Dynamics simulations: Conventional MD algorithms, Free energy methods of Jarzynski, Umbrella Sampling, Metadynamics. All-Atom simulations forcefields of CHARMM, Embedded Atom Method and Interface forcefields. Coarse grained molecular simulation forcefield of Martini. MD packages of LAMMPS, Gromacs, NAMD, VMD. Molecular Docking: HADDOCK.
- Programming: C++ (Dynamic memory allocation, pointers, operator overloading, class inheritance, understanding of object-oriented programming in C++), MATLAB, CUDA C, Bash scripting, Tcl scripting, MPI in C.
 Python: Matplotlib, Pandas, Sklearn, Numpy, XGBoost.
- **Experience in writing pipelines for automation and analysis of simulation results in:** C++ and bash shell.
- Debugging: GDB
- Machine Learning: Random Forests, K-Nearest Neighbors, Neural Networks.
- Tools: MS Excel, MS Word, MS PowerPoint, MS Visual Studio 2022, Endnote X20, Libreoffice Calc, Origin. Slurm HPC.
- Research: Formal training in quantitative and qualitative research methods during M.Sc. and Ph.D. educations.

PROFESSIONAL EXPERIENCE

Postdoctoral Researcher, University of Oxford, Oxford, England, UK

2024 – Present

Department of Engineering Science

- Studying the tooth mineralization through molecular dynamics and link the results with experimental observations.
- Calculation of the hydroxyapatite dissociation through application of the Jarzynski equation to the SMD simulations
- Applying thermodynamics integration (FEP) to quantify the chemical stability.
- Writing a metadynamics command for the LAMMPS software (Object oriented programming and class inheritance concepts).

Postdoctoral Researcher, University of Durham, Durham, England, UK

2022 - 2024

Department of Physics

- Studied the electric double layer near silica and lipid bilayer surfaces through molecular dynamics.
- Linked experimental results with molecular dynamics simulation outcomes.
- Implemented the AC field in the LAMMPS molecular dynamics software package.
- Developed several bash and python codes to automate the analysis of the simulation trajectories.
- Prepared and presented written and verbal communications.

Visiting Scholar, University of Colorado at boulder, Boulder, CO, USA

2017 - 2018

Department of Chemical and Biological Engineering

2022 - 2023

- Pioneered the first MD protocol to study the role of proteins in bone remodeling.
- Discovered the role of osteocalcin (protein) in bone mineralization for the first time.
- Developed in-house C++ software to analyze the Jarzynski free energy calculation outcome.

Postdoctoral Researcher, National University of Ireland, Galway, Galway, Ireland

2019 - 2022

Biomedical Engineering and Biomechanics Research Center

- Co-supervising PhD students.
- Discovered the role of non-collagenous proteins in bone strength and the effect of protein glycation on this role.
- Discovered the effect of extrafibrillar mineralisation on the bone behavior.
- Achieved 50% higher efficiency in processing MD output data through bash scripting.
- Developed in-house python codes to build the coarse-grained model of collagen.
- Prepared and presented written and verbal communications.
- Delivered lectures on the effect of protein glycation on the bone behavior during diabetes in well recognized national and international conferences.

HONORS

- In National University Entrance Exams for B.Sc. M.Sc. and Ph.D in years 2008, 2012, 2014 ranked 402nd, 2nd and 1st among more than 319000, 25000 and 1000 candidates, respectively.
- In National Student Olympiad in 2012 ranked 17th, Iranian National Elite Foundation prizes in 2016 and 2017, Iranian National Elite Sabbatical Scholarship in 2018.

RESEARCH EXPERIENCE

- Molecular Dynamics Simulation of proteins, polymers and nanoparticles (Extensive Experience, been using MD from 2012).
- Amyloid aggregation in Type-2 diabetes.
- Stress wave consolidation of nano-composites.
- The practice of personalized medicine for drug delivery applications.
- Hydroxyapatite protein interactions.
- Molecular Dynamics of solid-liquid interfaces.

CERTIFICATES And COURSES

C++ (Intermediate): Certificate from Hackerrank, Problem Solving (Intermediate): Certificate from Hackerrank, Python: Certificate from Kaggle, Intro to machine learning: Certificate from Kaggle, Intermediate machine learning: Certificate from Kaggle, Feature Engineering: Certificate from Kaggle, Data Cleaning: Certificate from Kaggle, Intro to Deep Learning: Certificate from Kaggle. Attended "Debugging, Testing and Correctness Workshop" held by Department of Computer Science of Durham University. Attended "Message-passing programming with MPI", "Advanced Message-Passing Programming" and "Shared Memory Programming with OpenMP" held by Edinburgh Parallel Computing Center (EPCC). Attended "ONETEP Masterclass" held at Rutherford Appleton National Laboratory.

INTERNATIONAL COLLABORATIONS

- Collaboration with researchers from University of Western Australia, Sorbonne Universite and University of Sydney on the "Amorphous Solid formation at the Solid/Liquid Interfaces".
- Collaboration with researchers from Sloan Kettering Institute for Cancer Research of New York, Sapienza University of Rome and Harvard school of medicine on the "Personalized Medicine Concept".
- Collaboration with researchers from Aarhus University, Freie University, Karolinska Institutet, Tehran University of Medical sciences and Harvard school of medicine on the "Nanoparticle therapy for the Parkinson's disease".

PUBLICATIONS

- M. Tavakol*, T.J. Vaughan. <u>'Elucidating the role of diverse mineralisation paradigms on bone biomechanics a coarse-grained molecular dynamics investigation</u>, Nanoscale 2024.
- M. Tavakol, S.E Hoff, J. Liu and H. Heinz, 'Osteocalcin: Promoter or Inhibitor of the HAp Growth?', Langmuir 2024.
- J. Wang, H. Li, M. Tavakol, A. Serva, B. Nener, G. Parish, M. Salanne, G. Warr, K. Voïtchovsky, R. Atkin. <u>'Ion Adsorbed at Amorphous Solid/Solution Interfaces in Wigner Crystal-Like Structures'</u>, ACS Nano, 2024.
- W. Trewby, M. Tavakol, K. Voïtchovsky. '<u>Towards local tracking of dissolved ions at solid-liquid interfaces</u>'. Invited review in Materials Today Physics 2024.
- M. Tavakol*, T.J. Vaughan. <u>'The effect of mineral arrangement on the mechanical properties of mineralised collagen fibrils'</u>, Journal of Royal Society Interface, 2023.
- F. Beyranvand, A. Khosravi, F. Zabihi, M. Nemati, M.F. Gholami, **M. Tavakol**, S. Beyranvand, S. Satari, J. Rabe, A. Salimi, C. Cheng, M. Adeli. 'Synthesis of Chiral Triazine Frameworks for Enantiodiscrimination', ACS Applied Material Interfaces, 2023.
- M. Tavakol, M.J. Hajipour, M. Ferdousi, S. Zanganeh, L. Maurizi. 'Competition of opsonins and dysopsonins on the nanoparticle surface', Nanoscale, 2023.
- M. Tavakol, T.J. Vaughan. 'Energy dissipation of osteopontin at a HAp mineral interface: Implications for bone biomechanics', Biophysical Journal, 2022.
- M. Tavakol, T.J. Vaughan. 'The role of the osteocalcin-osteopontin protein complex in bone biomechanics: a key contributor to energy dissipation at mineral-mineral interfaces', Biophysical Journal 2022.
- M. Tavakol, T.J. Vaughan. 'The structural role of osteocalcin in bone biomechanics and its alteration in Type-2 Diabetes', Scientific Reports, 2020.
- M. Tavakol, A. Montazeri, S.H Aboutalebi, R. Asgari, 'Mechanical Properties of Graphene Oxide: The Impact of Functional Groups',
 Applied Surface Science, 2020.
- H. Mohammad-Beigi, N. Hosseini, M. Adeli, M.R. Ejtehadi, G. Christiansen, C. Sahin, Z. Tu, M. Tavakol, A. Dilmaghani-Marand, I. Nabipour, F. Farzadfar, D. Otzen, M. Hajipour and M. Mahmoudi, 'Mechanistic Understanding of the Interactions of Nanoparticles and α-synuclein', ACS Nano, 2019.
- M. Tavakol, A. Montazeri, R. Naghdabadi, M.J. Hajipour, S. Zanganeh, G. Caracciolo and M. Mahmoudi, '<u>Disease-related metabolites affect protein—nanoparticle interactions</u>', Nanoscale, 2018.

- M. Tavakol, M. Mahnama, and R. Naghdabadi, 'Shock Wave Sintering of Al/SiC Metal Matrix Nanocomposites: A Molecular Dynamics Study', Computational materials science, 2016.
- M. Tavakol, M. Mahnama, and R. Naghdabadi, 'Mechanisms governing microstructural evolution during consolidation of nanoparticles', Materials and manufacturing processes, 2015.
- M. Tavakol*, K. Voïtchovsky. 'Water and ions in electrified silica nano-gaps: a molecular dynamics study', Under review by Physical Chemistry Chemical Physics.
- M. Tavakol*, T.J. Vaughan. 'Radial distribution of minerals in the mineralised collagen fibrils: A coarse grained molecular dynamics study', Manuscript prepared.
- M. Tavakol*, T.J. Vaughan. 'The interplay of length and mineral content on the load response of mineralised collagen fibrils', Manuscript prepared.
- W. Trewby, M. Tavakol, K. Voïtchovsky. 'Direct local measurements of lipid membrane diffusion through AFM nano-rheology'. In preparation.

PRESENTATIONS AT CONFERENCES

- M. Tavakol, K. Voïtchovsky. 'Electrified Nano-Gaps Under AC Field: A Molecular Dynamics Study', 245th Electrochemical Society Meeting, San Fransisco, California, 2024.
- M. Tavakol, T.J. Vaughan. 'A Steered Molecular Dynamics Investigation on the Role of Glycation on the Energy Dissipation Capacity of Osteopontin at Mineral Interfaces in Bone', 67th Biophysical Society Annual Meeting, San Diego, California, 2023.
- M. Tavakol, T.J. Vaughan. 'The Effect of Mineral Distribution on the Deformation Mechanisms of Mineralised Collagen Fibrils', 11th European Solid Mechanics Conference, Galway, Ireland, 2022.
- M. Tavakol, T.J. Vaughan. 'A Coarse Grained Model of Mineralised Collagen Fibril Biomechanics: Understanding the Role of Extrafibrillar Mineralization', 27th Congress of European Society of Biomechanics, Porto, Portugal, 2022.
- M. Tavakol, T.J. Vaughan. 'A Molecular Dynamics Investigation of the Mechanical Properties of Mineralized Collagen Fibrils: the Role of Mineral Distribution', 9th World Congress of Biomechanics, Taipei, Taiwan, 2022.
- M. Tavakol, T.J. Vaughan. 'Energy Dissipation Mechanisms of Non-Collagenous Proteins at Mineral Interfaces in Bone'. XVI
 International Conference on Computational Plasticity. Fundamentals and Applications (COMPLAS 2021), Barcelona, Spain, 2021.
- M. Tavakol, T.J. Vaughan. 'A Molecular dynamics investigation into the structural role of non-collagenous proteins in bone biomechanics', 26th Congress of European Society of Biomechanics, Milan, Italy, 2021.
- M. Tavakol, T.J. Vaughan. 'Osteocalcin: A Small Protein, A Big Role In Bone Biomechanics', 26th Bioengineering in Ireland Conference, Carlow, Ireland, 2020.
- M. Tavakol, S.E. Hoff, J. Liu and H. Heinz, 'Mechanism of osteocalcin interactions with hydroxyapatite surfaces and hydrogen phosphate
 precursors for bone mineralization'. 256th ACS National Meeting & Exposition, Boston, Massachusetts, USA. 2018.
- M. Tavakol, M. Dehghany Dahaj, R. Naghdabadi, 'Visco-elastic behavior of microtubules: A coarse grained molecular dynamics study'. 6th International Conference on Nanostructures, Kish Island, Iran. 2016.
- M. Tavakol. M. Mahnama, and R. Naghdabadi, 'Shock Wave Sintering of Metal Matrix Nano-composites'. 24th International Conference on Mechanical Engineering, Yazd, Iran. 2016.
- M. Tavakol, and R. Naghdabadi, 'Activation Energy for Sintering of Nickel Nanoparticles: A Molecular Dynamics Study', 5th International Conference on Nanostructures, Kish Island, Iran. 2014.
- M. Tavakol, M. Mahnama, and R. Naghdabadi, 'Temperature effect on the sintering of nickel nanoparticles: A molecular dynamics study', 5th International Congress on Nanoscience & Nanotechnology, Tehran, Iran. 22-24 October 2014.

RELATED PROFESSIONAL EXPERIENCE

- Delivering an invited presentation in the 11th European Solid Mechanics Conference. Galway, Ireland, 2022.
- Chairing a session in the 11th European Solid Mechanics Conference. Galway, Ireland, 2022.
- Research assistant in the Sharif University.
- Reviewing papers in Science Progress, Computer Methods in Biomechanics and Biomedical Engineering journals.
- Teaching in Durham University.

TEACHING AND MENTORING EXPERIENCES

- Managing a team of three Master students in Sharif University.
- Teaching assistant for four courses in Sharif University.
- Teaching assistant for two courses in Durham University.

EDUCATION

PhD in mechanical engineering, Sharif University of Technology, Iran	2018
MSc in mechanical engineering, Sharif University of Technology, Iran	2014
BSc in mechanical engineering, Isfahan University of Technology, Iran	2012