Does General Relativity hold in galactic scales? A test at a z~0.3 elliptical lens galaxy

Carlos R. Melo-Carneiro, Cristina Furlanetto, Ana L. Chies-Santos IF/UFRGS - Porto Alegre, Brazil carlos.melo@ufrgs.br

Test GR predictions on galactic scales

Measuring the galaxy mass through strong gravitational lensing and galactic dynamics.
At the same time!

GR still holds!

Some of the GR tests so far

- Deflection of light by the Sun (e.g. Dyson; Eddington; Davidson 1920)
- Time delay using Cassini spacecraft (Bertotti; Iess; Tortora 2003)
- The Cosmic Microwave Background (e.g. Planck Collaboration et al. 2014)
- Event Horizon Telescope (Event Horizon Telescope Collaboration et al. 2019)
- ... (e.g. Baker; Psaltis; Skordis, 2015)
- Lensing + Kinematics (e.g. Schwab et al. 2010; Cao et al. 2017; Yang et al. 2020)
- Lensing + Spatially resolved kinematics (Collett et al. 2018)
- Lensing + Galaxy cluster kinematics (Pizzuti et al. 2016)

Linearly perturbed cosmological *metric*

$$dS^{2} = -\left(1 + 2\frac{\Phi}{c^{2}}\right)c^{2}dt^{2} + \left(1 - 2\frac{\Psi}{c^{2}}\right)h_{ij}dx^{i}dx^{j}$$

$$\eta = \frac{\Psi}{\Phi}$$

$$\eta = 1$$

Assumptions

$$\eta = \frac{\Psi}{\Phi}$$

- 1. The space-time metric is given by the linearly perturbed line element, which is in the Newtonian gauge and considers only scalar perturbations;
- 2. There is a well-defined
 Newtonian limit, where the
 potentials Φ and Ψ still follow
 the Poisson equation;
- The gravitational slip parameter is constant on the relevant scales being studied;

How we measure the slip parameter?

Constrained by gravitational lensing and sensitive to Newtonian and Curvature potentials.

Constrained by the stellar motion, and only sensible to the Newtonian potential.

$$M_{\mathrm{dyn}} = \frac{1+\eta}{2} M_{\mathrm{lens}}^{\mathrm{GR}}$$

Ingredients

Jeans Equations

- Collisionless system
 - Steady-state
 - Axisymmetric configuration

$$\overline{v_z^2} = \frac{1}{\nu(R,z)} \int_{-z}^{\infty} dz' \, \nu(R,z') \frac{\partial \Phi(R,z')}{dz'}$$

$$\overline{v_{\phi}^2} = \overline{v_R^2} + \frac{R}{\nu} \frac{\partial (\nu(R, z) \overline{v_R^2})}{\partial R} + R \frac{\partial \Phi(R, z)}{\partial R}$$

Lens Equation

- Thin lens approximation

$$\beta = \theta - \alpha(\theta)$$

$$\alpha(\theta) \equiv \frac{D_{LS}}{D_S} \tilde{\alpha}(D_L \theta)$$

$$\tilde{\alpha}(\xi) = (1 + \eta) \frac{2GM \hat{\xi}}{c^2 \xi}$$

(Emsellem, Monnet & Bacon 1994; Cappellari 2002)

 Surface brightness profile

$$I(x',y') = \sum_{j=1}^{N} \frac{L_j}{2\pi\sigma_j^2 q_j'} \exp\left[-\frac{1}{2\pi\sigma_j^2} \left(x_j'^2 + \frac{y_j'^2}{q_j'^2}\right)\right]$$

- Mass density profile
 - Stellar
 - Dark Matter

$$\Sigma(x',y') = \sum_{j=1}^{N} \frac{M_j}{2\pi\sigma_j^2 q_j'} \exp\left[-\frac{1}{2\pi\sigma_j^2} \left(x_j'^2 + \frac{y_j'^2}{q_j'^2}\right)\right]$$

$$\rho(R,z) = \sum_{j=1}^{N+M} \frac{M_j}{(2\pi)^{3/2}\sigma_j^3 q_j} \exp\left[-\frac{1}{2\pi\sigma_j^2} \left(R^2 + \frac{z^2}{q_j^2}\right)\right]$$
Deprojection

$$\rho(R,z) = \sum_{j=1}^{N+M} \frac{M_j}{(2\pi)^{3/2} \sigma_j^3 q_j} \exp\left[-\frac{1}{2\pi \sigma_j^2} \left(R^2 + \frac{z^2}{q_j^2}\right)\right]$$

Ingred	ients	

Fiducial Mass Model

- Self-consistent model (Lens + Kinematics) - MGE
 - Stellar component converting the surface brightness profile
 - Dark Matter Component represented by an elliptical NFW

	Control of the Contro	No. 1 (1) (1) (1) (1) (1) (1)	
Υ_0	U[1.0, 15.0]	Central M/L	M_{\odot}/L_{\odot}
v_0	$\mathcal{U}[0.0, 1.0]$	Lower value of M/L	-
δ	$\mathcal{U}[0.1, 2.0]$	Smoothness of the M/L profile	arcsec ⁻¹
β_z	$\mathcal{U}[-1.0, 0.5]$	Anisotropy	
i	<i>U</i> [68.18, 90.0] ^a	Galaxy inclination	degree
K_S	$\mathcal{U}[0.0, 2.0]$	Scale factor of dark matter halo	<u>u</u>
r_s	Fixed in $10 R_{eff}$	Scale radius of dark matter halo	arcsec
$q_{ m DM}$	$\mathcal{U}[0.4, 1.0]$	Axial ratio of dark matter halo	9
shear _{mag}	$\mathcal{U}[0.0, 0.1]$	Shear magnitude	-
$\operatorname{shear}_\phi$	$\mathcal{U}[0.0, 180.0]$	Shear angle counterclockwise from x' -axis	degree
η	N[1, 0.09]	Slip parameter	=

Description

Physical Unit

Parameter

Prior

Bayesian inference

$$\mathcal{P}(\mathbf{\Theta}_{\mathbf{M}}) = \frac{\mathcal{L}(\mathbf{\Theta}_{\mathbf{M}})\pi(\mathbf{\Theta}_{\mathbf{M}})}{\mathcal{Z}_{\mathbf{M}}}$$

$$\mathcal{L}_{\mathrm{Model}} \equiv \mathcal{L}_{\mathrm{Lens}} imes \mathcal{L}_{\mathrm{Dyn}}$$

$$z_l = 0.299$$

$$z_s = 3.042$$

Credit: BBC Science Focus Magazine

$$z_l = 0.299$$

 $z_s = 3.042$

$$z_s = 3.042$$

Credit: eso.org

$$z_l = 0.299$$

$$z_s = 3.042$$

$$z_l = 0.299$$

$$z_s = 3.042$$

esults	Parameter	MP_5	Physical Units
Einstein ring ~ 1.61"	Υ_0	$4.62^{+0.06}_{-0.09}$	M_{\odot}/L_{\odot}
 Consistent with previous works - (e.g., Dye et al. 2014; Vlahakis et al. 2015; 	δ	$1.48^{+0.1}_{-0.09}$	arcsec ⁻¹
Wong et al. 2015)	v_0	$0.88^{+0.07}_{-0.05}$	-
Mass-to-light ratio ~ 4.51	i	83^{+3}_{-4}	degree
MO/LO On average inside the Einstein ring	β_z	$-0.52^{+0.03}_{-0.04}$	_
 Relatively higher than expected - (e.g Wong et al. 2015; Tamura et al. 2015) 	K_S	$0.086^{+0.003}_{-0.003}$	-
Possible gradient in the M/L	$q_{ m DM}$	$0.49^{+0.02}_{-0.01}$	-
Dark matter fraction ~ 35% Inside the Einstein ring	η	$1.13^{+0.04}_{-0.03}$	
 Baryonic dominated in the inner regions 	shear _{mag}	$0.023^{+0.001}_{-0.001}$	-
 Consistent with galaxies at similar redshift - (e.g. Auger et al. 2010; 	$\operatorname{shear}_\phi$	54+2	degree

Commonfold at al 2015)

Results

Lens modelling

* all data rotated by the position angle

Dynamical modelling

Results	Parameter	MP_5	Physical Units
■ Einstein ring ~ 1.61"	Υ_0	$4.62^{+0.06}_{-0.09}$	M_{\odot}/L_{\odot}
 Consistent with previous works - (e.g., Dye et al. 2014; Vlahakis et al. 2015; 	δ	$1.48^{+0.1}_{-0.09}$	arcsec ⁻¹
Wong et al. 2015)	v_0	$0.88^{+0.07}_{-0.05}$	-
■ Mass-to-light ratio ~ 4.51	i	83^{+3}_{-4}	degree
M⊙/L⊙	7727	~ ~~ 10.03	
□ On av		04	-
• Relat		03	
Wong η 1.13 $_{-0.03}$	-	03	
 Possi 		2	
 Dark matter fraction ~ 35% 	9DM	-0.01	
 Inside the Einstein ring 	η	$1.13^{+0.04}_{-0.03}$	-
 Baryonic dominated in the inner regions 	shear _{mag}	$0.023^{+0.001}_{-0.001}$	120
 Consistent with galaxies at similar redshift - (e.g. Auger et al. 2010; 	$\operatorname{shear}_{\phi}$	54 ⁺² ₋₄	degree

Commonfold at al 2015)

Alternative 1

- No dark matter contribution.
- □ Total mass represented only by a stellar component.

$$\eta=1.52^{+0.01}_{-0.01}$$

Alternative 2

- □ Similar to Wong et al. (2015) configuration for SDP.81.
- Spherical dark matter halo.
- Inclusion of a supermassive black hole at galaxy center.
- Constant mass-to-light ratio.

Alternative 3

- Similar to fiducial model.
- Dark matter scale radius as a free parameter.

$$\eta=1.14^{+0.02}_{-0.03}$$

$$\eta=1.15^{+0.02}_{-0.01}$$

Impact of the choice of the mass profile

Alternative 1

- No dark matter contribution.
- □ Total mass represented only by a stellar component.

$$\eta=1.52^{+0.01}_{-0.01}$$

- □ Sim
 □ Sph
- $\eta=1.13^{+0.03}_{-0.03}$

 $4^{+0.02}_{-0.03}$

Constant mass-to-light ratio.

Alternative 3

- Similar to fiducial model.
- Dark matter scale radius as a free parameter.

$$\eta=1.15^{+0.02}_{-0.01}$$

Impact of the choice of the stellar library

- Medium resolution INT Library of Empirical Spectra (MILES)
 - □ Vazdekis et al. (2010)
 - Systematically smaller by 2.9%.
- X-Shooter Spectral Library (XSL)
 - □ Gonneau et al. (2020)
 - □ Systematically higher by 3.9%.

Impact of the choice of the stellar library

Medium resolution INT Library of Empirical

Spectr
$$\eta=1.13^{+0.04}_{-0.03}~\pm~0.19\,\mathrm{(sys)^{kin}}$$

- X-Shooter Spectral Library (XSL)
 - □ Gonneau et al. (2020)
 - □ Systematically higher by 3.9%.

Final Inference

- **■** Statistical uncertainty
 - □ ~0.04 due to the sampling
- Systematic uncertainties
 - 0.18 due to different mass profiles
 - □ 0.19 due to different stellar libraries
 - 0.26 (in quadrature)

$$\eta = 1.13^{+0.04}_{-0.03}~\pm 0.26 {
m (sys)}$$

Final remarks

- We test GR on galactic scales using gravitational lensing and galactic dynamics
- We extend this class of tests to an intermediate redshift (z ~ 0.3)
- The fiducial model considers the contribution of a stellar mass component and a dark matter mass component
- We infer a slip gravitational parameter in accordance with GR within 1σ confidence level

Future work

- Get better spectroscopic data (maybe JWST?)
- Extend this test class to other systems (different redshifts and different scales)
- Relax some of the assumptions (e.g. slip parameter no longer constant)

Thanks!

Any questions?

You can find me at:

carlos.melo@ufrgs.br

EXTRAS

Credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

The pipeline

Parametric Source, Lens + Dynamical modelling

Broad priors

Avoids under/over-magnified (non-physical) solutions

Phase2

Adaptive Pixelization and Hyperparameters

Fixed Phasel mass model

Adaptive grid

Constant regularization

Phase3

Model Refinement

Fixed Phase2 hyperparameters

Update the priors: MP₁ ±20% or MP₁±1σ, whichever defines a larger interval

Phase4

Adaptive Brightness-based Pixelization and Hyperparameters

Fixed Phase3 mass model

Brightness-based grid

Constant regularization

Phase5

Model Refinement

Fixed Phase4 hyperparameters

Update the piors: MP₃ ±10% or MP₃ ±1 σ , whichever defines a larger interval

But... what if we change the prior?

Parameter	Prior	Description	Physical Uni
Υ_0	U[1.0, 15.0]	Central M/L	M_{\odot}/L_{\odot}
v_0	$u_{[0.0, 1.0]}$	Lower value of M/L	•
δ	U[0.1, 2.0]	Smoothness of the M/L profile	arcsec-1
β_z	$u_{[-1.0, 0.5]}$	Anisotropy	1.77
i	<i>U</i> [68.18, 90.0] ^a	Galaxy inclination	degree
κ_{s}	$u_{[0.0, 2.0]}$	Scale factor of dark matter halo	
r_s	Fixed in 10 R _{eff}	Scale radius of dark matter halo	arcsec
$q_{ m DM}$	U[0.4, 1.0]	Axial ratio of dark matter halo	
shear _{mag}	$\mathcal{U}[0.0, 0.1]$	Shear magnitude	-
$shear_{\phi}$	$\mathcal{U}[0.0, 180.0]$	Shear angle counterclockwise from x'-axis	degree
η	$u_{[-10, 10]}$	Slip parameter	

Parameter	MP_5	Physical Units
Υ_0	$4.59^{+0.07}_{-0.07}$	M_{\odot}/L_{\odot}
δ	$0.89^{+0.12}_{-0.08}$	arcsec ⁻¹
v_0	$0.90^{+0.06}_{-0.07}$	-
i	80^{+5}_{-5}	degree
β_z	$-0.16^{+0.02}_{-0.01}$	-
K_S	$0.056^{+0.003}_{-0.004}$	<u>s</u>
$q_{ m DM}$	$0.39^{+0.05}_{-0.05}$	2
η	$1.42^{+0.05}_{-0.05}$	-
shear _{mag}	$0.034^{+0.003}_{-0.002}$	-
$shear_{\phi}$	69^{+2}_{-3}	degree

But... what if we change the prior?

But... what if we change the prior?

Parameter	MP_5	Physical Units	
Υ_0	$4.59^{+0.07}_{-0.07}$	M_{\odot}/L_{\odot}	
δ	$0.89^{+0.12}_{-0.08}$	arcsec ⁻¹	
v_0	$0.90^{+0.06}_{-0.07}$	-	
i	80^{+5}_{-5}	degree	
β_z	$-0.16^{+0.02}_{-0.01}$	£	
K_S	$0.056^{+0.003}_{-0.004}$	2	
$q_{ m DM}$	$0.39^{+0.05}_{-0.05}$	-	
η	$1.42^{+0.05}_{-0.05}$	5.	
shear _{mag}	$0.034^{+0.003}_{-0.002}$	5	
$\operatorname{shear}_{\phi}$	69^{+2}_{-3}	degree	

Parameter	MP_5	Physi	
Υ_0	$4.62^{+0.06}_{-0.09}$	0, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	
δ	$1.48^{+0.1}_{-0.09}$	Physical Phy	
v_0	$0.88^{+0.07}_{-0.05}$	- /	
i	83^{+3}_{-4}	degree	
β_z	$-0.52^{+0.03}_{-0.04}$	102	
K_S	$0.086^{+0.003}_{-0.003}$	-	
q_{DM}	$0.49^{+0.02}_{-0.01}$	-	
η	$1.13^{+0.04}_{-0.03}$	1875	
shear _{mag}	$0.023^{+0.001}_{-0.001}$	-	
$\operatorname{shear}_{\phi}$	54 ⁺²	degree	

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**. **Please keep this slide for attribution.**