在鲲鹏 920 上的 OpenMP 基准测试

刘森宏

摘要

近年来,国产芯片的发展受到国际竞争的影响而受到阻碍。为支持国产芯片的发展,我们需要对国产芯片投入更多的力量。本文利用 EPCC Microbenchmarks 和 NAS Parallel Benchmarks 测试鲲鹏 920 的性能,并与同样测得相关数据的龙芯 3A 进行数据对比。通过直观的数据对比,对国产芯片的性能,优缺点会有一个较为直观的认识,对推动国产芯片的发展具有一定的作用。

关键词: 鲲鹏; 基准测试; openMP

1 引言

本文目标芯片是鲲鹏 920 处理器,它是华为在 2019 年 1 月发布的数据中心高性能处理器,由华为自主研发和设计,旨在满足数据中心多样性计算、绿色计算的需求。鲲鹏 920 处理器兼容 ARM 架构,采用 7nm 工艺制造,可以支持 32/48/64 个内核,主频可达 2.6GHz,支持 8 通道 DDR4、PCIe 4.0 和 100G RoCE 网络。采用 ARM 架构,同样功能性占用的芯片面积小,功耗低,集成度更高,更多的硬件 CPU 核具备更好的并发技能。支持 64 位指令集,能更好的的兼容 IOT,终端到云端的各类应用场景。大量使用寄存器,大多数数据操作都在寄存器中完成,指令执行速度更快。采用 RISC 指令集,指令长度固定,寻址方式灵活简单,执行效率高。

近年来,我国计算机芯片技术发展受到国际竞争的影响而受到阻碍,在这样的环境中,华为鲲鹏处理器的诞生极大的促进国内芯片的发展。鲲鹏计算生态以鲲鹏处理器为基础,在相关行业建立起较为完善的应用体系。从而可以看出国产处理器的重要性。对国产处理器性能测评同样是促进发展的一种方式。本文对国产处理器鲲鹏的性能进行了测试,并与本文参考文章中测试的国产处理其Loongson-3A的性能进行了必要的对比。从而对性能数据有一个直观的了解。通过这些数据,我们可以看出我国处理器的优势以及不足,这对于我国处理器的发展是比较有意义的。对指导未来工作,突破技术难点提供了一些依据。

2 相关工作

关于 OpenMP 在不同平台的性能分析以及利用不同基准测试的研究已经有很多。[1] 中通过应用 EPCC Microbenchmarks 对 Loongson-3A 四核 SMP 上基本 OpenMP 结构的性能进行测试。然后通过应用 NAS 并行基准测试 NAS Parallel Benchmarks 来获得 NAS 内核代码的性能。并将测出的 Loongson-3A 的性能与 i5 进行了对比。利用基准对目标机器进行测试是必要的。测试可以用在不同的目的当中。如 [2] 中为实时系统中 OpenMP 工作负载进行了测试。这种测试相较于随机生成的任务系统进行评估会更加全面。[3] 中对 OpenMP 的开销进行了较为全面的分析,以此能够指导 OpenMP 程序的编写。

3 本文方法

本文采用了两种基准来测试鲲鹏 920 在 OpenMP 程序上的性能表现: EPCC Microbenchmarks,NAS Parallel Benchmarks. 用这两种基准可以较为全面的分析鲲鹏处理器的性能。

3.1 EPCC Microbenchmarks

EPCC Microbenchmarks 是一组微基准测试。其中包含对 OpenMP 中调度指令,任务调度等基准测试。我们使用 EPCC Microbenchmarks 当中对于同步指令的基准测试,在鲲鹏处理器上采用不同的线程数量(为与参考文章中所给出龙芯 3A 的数据进行对比,本文同样只选择了"1,2,4"这三种不同的线程数量)进行测试,将所得数据与参考文章中龙芯 3A 的数据进行对比分析,并且以柱状图的形式给出。

3.2 NAS Parallel Benchmarks benchmarks

NAS 并行基准测试 (NAS Parallel Benchmarks) 是一套针对高并行超级计算机性能评估的基准测试。它们由 NASA 高级超级计算 (NAS) 部门 (前身是 NASA 数值空气动力学模拟程序) 开发和维护,该部门位于 NASA 艾姆斯研究中心。基准来自计算流体动力学 (CFD) 应用程序,由原始"铅笔和纸"规范 (NAS Parallel Benchmarks 1) 中的五个内核和三个伪应用程序组成。该基准套件已扩展为包括针对非结构化自适应网格,并行 I/O,多区域应用程序和计算网格的新基准。NAS Parallel Benchmarks 中的问题大小是预定义的,并表示为不同的类别。NAS Parallel Benchmarks 的参考实现在 MPI 和 OpenMP (NAS Parallel Benchmarks 2 和 NAS Parallel Benchmarks 3) 等常用编程模型中可用。

本文测试了 NAS Parallel Benchmarks 的五个核心程序:EP,MG,FT,IS,CG,以及另外 3 个流体力学当中的模拟程序:LU,SP,BT 在鲲鹏 920 处理器上的表现。数据以两个方面进行展示。(1)以线程数量为唯一的变量(线程数量采用 1, 2, 4 这三种数量),测试相同程序的所用的开销。(2)线程数量不变,相同的测试程序在不同的硬件平台上测试所得数据的对比。

4 复现细节

4.1 实验环境搭建

实验所需环境包括硬件环境和软件环境。硬件环境是本文测试目标鲲鹏 920。它是 ARM 架构,采用 7nm 工艺制造,可以支持 32/48/64 个内核,主频可达 2.6GHz,支持 8 通道 DDR4、PCIe 4.0 和 100G RoCE 网络。软件层面包括操作系统,编译器,NAS Parallel Benchmarks benchmarks,EPCC Microbenchmarks。环境清单如下:

硬件平台: 鲲鹏 920 处理器

软件平台: GCC version 9.2.0

操作系统: centos

NAS Parallel Benchmarks benchmarks: NAS Parallel Benchmarks 3.0

EPCC Microbechmarks: 版本不明

GNU Fortran:4.8.5

4.2 EPCC Microbenchmarks

EPCC Micribenchmarks 对于同步互斥的基准测试采用相同的框架,即测试任务函数名字形如 test...,在函数体里面包含多层 for 循环,对于不同的同步互斥指令,在对应的位置加入 OpenMP 指令。将编写好的测试程序打包给测试程序 benchmark,该函数主要负责对 test... 程序执行时间的测定。对于PARALLEL,FOR,PARALLEL FOR,BARRIER,SINGLE 这些同步指令的测试程序,呈现出的代码结构

基准测试交给 benchmark:

```
void benchmark(char *name , void (*test)(void))
{
    //计算innerreps的值
    ...
    //主要逻辑如下:
    start = getclock();//获取当前时间
    test();
    times[k] = (getclock() - start)//记录时间
}
```

为了测试程序拥有不同线程的情况下运行的结果,我们可以采用以下几种方式设置线程的数量:

```
//在程序当中:
#pragma omp parallel num_threads(number_of_threads)
omp_set_num_threads(number_of_threads);
//或者设定OpenMP宏:
export OMP_NUM_THREADS = [线程数量]
```

4.3 NAS Parallel Benchmarks benchmarks

我们采用 NAS Parallel Benchmarks3.0-OMP 来测试鲲鹏 920 的表现, NAS Parallel Benchmarks-omp 是一个基于 NAS Parallel Benchmarks3.0-SER 的 OpenMP 实现示例,这个串行版本以前被称为 NAS Parallel Benchmarks 的编程基线。这个实现包含所有八个基准: 七个在 Fortran: BT, SP, LU, FT, CG, MG和 EP; 一个在 C: IS。

CG,EP,FT,MG,LU,SP,UA 测试程序所使用的语言是 Fortran。基准测试 IS,DC 采用语言是 c 语言。在参考文章中对龙芯 3A 的测试缺少了 IS 的基准测试,本文在鲲鹏 920 上进行了测试,通过 Ratio 的值大概可以反推出在龙芯 3A 在 IS 基准程序中的表现。

我们以 IS 基准程序为例:

- 1. 初始化准备: 时钟初始化; 必要信息的输出
- 2. 在所有的线程当中产生随机序列
- 3. IS 程序主任务
- 4. 数据整理与输出

我们需要得到测试程序在线程数量为1,2,4情况下程序的表现情况。所以分别在 export OMP_NUM_THF; export OMP_NUM_THREADS=2; export OMP_NUM_THREADS=4 这三种情况下执行程序。所得结果如 1中所示。

5 实验结果分析

EPCC Microbenchmarks 5.1

图 1体现了在鲲鹏 920 处理器中,不同线程数量下同步指令的开销。

图 1: 不同线程数量下同步指令的开销

EPCC Microbenchmarks 的同步基准衡量最常见的 OpenMP 指令的性能。如图 1中所示,当线程数 量增多的时候,这些基准测试程序的开销是在增加的,这似乎不合乎情理。原因是串行任务并行化之 后,增加了任务调度的开销。任务调度开销在原本任务开销小的时候体现的更加充分,就如同此例子 当中一样。这个例子同样说明不是所有的程序应用上并行化(比如加入 OpenMP 当中的同步指令)就 一定能降低执行时间。有时候错误的做法反而会提高程序运行开销。

图 2给出了龙芯 3A 与鲲鹏 920 在同步指令上的开销对比

图 2: 龙芯 3A 与鲲鹏的同步指令开销对比

如图 2所示,表明鲲鹏 920 在 OpenMP 同步指令测试程序上的表现更为出色。

图 3展示了在鲲鹏 920 处理器中 OpenMP 互斥指令的开销。其中还展示了分别采用不同线程数量 (1, 2, 4) 时所使用的性能开销。如图可以看出,这些指令的开销相对较低,在鲲鹏 920 处理器上的开 销基本都低于 0.5ms。从这个数据分析中可以从侧面指导在鲲鹏 920 中 OpenMP 程序的编写, 当没有 使用 ORDERED 互斥指令的时候,采用线程数量的多少对程序的开销不会增加或者减少太多的负担。相反,当使用 ORDERED 互斥指令的时候,线程数量可能会成为一个值得研究的对象。

图 3: 不同线程数量下互斥指令的开销

如图 4展示了鲲鹏 920 与龙芯 3A 在 OpenMP 互斥指令上的开销对比,其中线程数量为 4。从数据对比可知,在鲲鹏 920 处理器中,各种互斥指令的开销都小于在龙芯 3A 中的开销。

图 4: 龙芯 3A 与鲲鹏的互斥指令开销对比

5.2 NAS Parallel Benchmarks benchmarks

如表 1所示是 NAS Parallel Benchmarks 基准程序在鲲鹏 920 上的开销,

	Threads		
Benchmark	1	2	4
CG	1.46	0.87	0.50
MG	2.96	1.59	0.96
FT	3.71	1.94	1.16
IS	0.36	0.22	0.16
EP	13.05	6.67	3.66
BT	60.97	30.81	16.54
SP	41.57	20.75	12.13
LU	44.93	24.04	13.58

表 1: 鲲鹏 920 中 NAS Parallel Benchmarks 基准测试结果

上表是鲲鹏在 NAS Parallel Benchmarks Benchmark 上的表现。为了与 Loongson 3A 的数据进行对比,此处只采用 3 个线程数量,分别是 1, 2, 4。可以看出随着线程数量的增加,测试程序所花费的时间都随着减小。

表 2展示了 Loongson3A 平台与鲲鹏处理器在 NAS Parallel Benchmarks Benchmark 上的性能对比。 其中 Ratio 的定义如 (1),Norm.ratio 定义如 (2)。在公式中鲲鹏 920 简写为 920,以方便公式的编写。

$$Ratio = E_{3A}/E_{920}$$
 (1)

$$Norm.Rario = (F_{920}/F_{3A}) * (E_{3A}/E_{920})$$
 (2)

公式 2中的 F 表示处理器的时钟频率。龙芯 3A 平台有一个龙芯 3A 四核 CPU,运行频率为800MHz。(加上对鲲鹏处理器的硬件指标描述);鲲鹏 920 处理器的频率为 2.6GHz/3.0GHz

	Platform			
Benchmark	鲲鹏	3A	Ratio	Norm.ratio
CG	0.50	11.57	23.14	6.61
MG	0.96	15.81	16.46	4.7
FT	1.16	22.40	19.31	5.51
IS	0.16	_	_	-
EP	3.66	50.44	13.78	3.93
BT	16.54	644.43	38.98	11.13
SP	12.13	481.77	39.16	11.18
LU	13.58	226.01	16.64	4.75

表 2: 执行时间比率

依靠公式 2的 Norm.ratio 这个值有助于帮助我们在部署系统规模大小,比如在想要部署达到鲲鹏处理器集群的效果时,可以参考这个值适当的选择对于的龙芯 3A 的数量。

6 总结与展望

本文在鲲鹏 920 上进行了 OpenMP 的性能测试,利用的工具主要是 EPCC Microbenchmarks 与 NAS Parallel Benchmarks benchmarks。利用所得数据与在龙芯 3A 所得的数据进行了必要的对比。将结果以柱状图以及表格对比形式展现出来,可以直观的观测处理器性能。当然,这些数据同时也受到软件环境因素的影响、比如操作系统版本、编译器版本、基准版本等,但整体趋势是不会大为改变的,所以这些数据具有一定的参考价值。本文的测试的不足之处在于没有选取多种编译器进行测试,在未

来,希望加入编译器这个变量,使得测试数据更加全面。

参考文献

- [1] LUO Q. Performance Evaluation of OpenMP Constructs and Kernel Benchmarks on a Loongson-3A Quad-Core SMP System[J]. PDCAT, 2011: 191-196.
- [2] Yang Wang; Nan Guan; Jinghao Sun; Mingsong Lv; Qingqiang He; Tianzhang He; Wang Yi.Benchmarking OpenMP programs for real-time scheduling[J]. RTCSA,2017: 1-10
- [3] 殷顺昌. OpenMP 并行程序性能分析 [D]. 国防科学技术大学,2006.