Model Fitting and Inference for Infectious Disease Dynamics

Introduction to Stochastic Modelling

centre for the mathematical modelling of infectious diseases

Objectives

- Introduce basic mathematical and statistical concepts of infectious disease modelling.
- Define the structure and formalism of models.
- Present the relationship between deterministic and stochastic models. Why using stochastic modelling?
- Show how these models can be fitted rigorously to data.

Infection dynamics

Infection dynamics

The SEIR model

- λ: rate at which two individuals come into contact.
- λI: per capita force of infection.
- ε: inverse of the latent period.
- ν: inverse of the infectious period.

The deterministic SIR model

$$\begin{cases} \frac{dS(t)}{dt} = -\lambda S(t)I(t) \\ \frac{dI(t)}{dt} = \lambda S(t)I(t) - \nu I(t) \\ \frac{dR(t)}{dt} = \nu I(t) \end{cases}$$
 (1)

With $(S(0), I(0), R(0)) = (S_0, I_0, 0)$ and constant population size $S(t) + I(t) + R(t) = \Omega$.

The deterministic SIR model

Two important results

- An epidemic can occur only if S₀ > ν/λ, when the population initially susceptible is above a critical size.
- At the end of the epidemic, it remains S_{∞} susceptible individuals, with S_{∞} solution of the equation:

$$S_{\infty} = \Omega + \frac{\nu}{\lambda} \ln(\frac{S_{\infty}}{S_0}).$$
 (2)

Not all susceptibles will get infected during the epidemic.

Why using stochastic models?

- 1. It is the natural way to describe how an epidemic disease spreads.
- Some phenomena are stochastic by nature and cannot be described in a deterministic setting.
- 3. Take into account the variability of the epidemic process when estimating and forecasting.

Why using stochastic models?

- 1. It is the natural way to describe how an epidemic disease spreads.
- 2. Some phenomena are stochastic by nature and cannot be described in a deterministic setting.
- Take into account the variability of the epidemic process when estimating and forecasting.

Why using stochastic models?

- 1. It is the natural way to describe how an epidemic disease spreads.
- 2. Some phenomena are stochastic by nature and cannot be described in a deterministic setting.
- 3. Take into account the variability of the epidemic process when estimating and forecasting.

Three sources of stochasticity

- 1. Demographic (internal). Depends on the epidemiogical process.
- Environmental (external). Acts on the epidemiogical process.
- Observation. Does not change the epidemiological dynamics.

Observation stochasticity

- Diagnostic errors: false positive and false negative.
- Incomplete reporting of cases: 60% for measles.
- Fluctuations of the reporting rate: change in the number of GPs in the surveillance system.

- Conditioning on X_t , Y_t follows a negative-binomial

$$E[Y_t|X_t] = \rho X_t$$
 and $Var[Y_t|X_t] = \rho X_t + \phi \rho^2 X_t^2$.

This corresponds to an overdispersed observation process.

Observation stochasticity

- Diagnostic errors: false positive and false negative.
- Incomplete reporting of cases: 60% for measles.
- Fluctuations of the reporting rate: change in the number of GPs in the surveillance system.
- The reporting rate at time t is $\rho_t \sim \text{Gamma}(1/\phi, \rho\phi)$.
- Conditioning on ρ_t and the incidence in the model (X_t) , the observed incidence $Y_t|\rho_t, X_t \sim \text{Poisson}(\rho_t X_t)$.
- Conditioning on X_t, Y_t follows a negative-binomial distribution with:

$$E[Y_t|X_t] = \rho X_t$$
 and $Var[Y_t|X_t] = \rho X_t + \phi \rho^2 X_t^2$.

This corresponds to an overdispersed observation process.

Observation stochasticity

- Diagnostic errors: false positive and false negative.
- Incomplete reporting of cases: 60% for measles.
- Fluctuations of the reporting rate: change in the number of GPs in the surveillance system.
- The reporting rate at time t is $\rho_t \sim \text{Gamma}(1/\phi, \rho\phi)$.
- Conditioning on ρ_t and the incidence in the model (X_t) , the observed incidence $Y_t | \rho_t, X_t \sim \text{Poisson}(\rho_t X_t)$.
- Conditioning on X_t , Y_t follows a negative-binomial distribution with:

$$\mathsf{E}[Y_t|X_t] = \rho X_t$$
 and $\mathsf{Var}[Y_t|X_t] = \rho X_t + \phi \rho^2 X_t^2$.

This corresponds to an overdispersed observation process.

Environmental stochasticity

 Stochastic fluctuations of environmental factors (e.g. temperature, humidity) lead to stochastic fluctuations of transmission parameters.

$$\begin{cases} \frac{dS(t)}{dt} = -\lambda(1+F\xi)S(t)I(t) \\ \frac{dI(t)}{dt} = \lambda(1+F\xi)S(t)I(t) - \nu I(t) \\ \frac{dR(t)}{dt} = \nu I(t) \end{cases}$$
 (3)

where ξ is a random variable and F is a forcing constant.

Demographic stochasticity

- Results from the discrete nature of individuals in the population: $(S(t), I(t), R(t)) \in \mathbb{N}^3$.
- Mechanistic modelling of random events at the individual level:
 - Infectious period with mean ν^{-1} and variance σ^2 .
 - Number of contacts \sim Poisson process with intensity β .
- One can compute the distribution of the final size of the epidemic $(S_0 S_{\infty})$.
- To go further, let's assume an exponentially distributed infectious period: $\nu^{-2} = \sigma^2$.
- Memory-less property of the exponential distribution: $\{(S(t), I(t), R(t)) : t \ge 0\}$ becomes a discrete state, continuous time Markov process.

Demographic stochasticity

- Results from the discrete nature of individuals in the population: $(S(t), I(t), R(t)) \in \mathbb{N}^3$.
- Mechanistic modelling of random events at the individual level:
 - Infectious period with mean ν^{-1} and variance σ^2 .
 - Number of contacts ~ Poisson process with intensity β.
- One can compute the distribution of the final size of the epidemic $(S_0 S_{\infty})$.
- To go further, let's assume an exponentially distributed infectious period: $\nu^{-2} = \sigma^2$.
- Memory-less property of the exponential distribution: {(S(t), I(t), R(t)) : t ≥ 0} becomes a discrete state, continuous time Markov process.

SIR with demographic stochasticity

Event	Transition	Transition probability within $[t, t + dt]$
Infection	$(s,i,r) \rightarrow (s-1,i+1,r)$	$rac{eta}{\Omega}si\ dt + o(dt)$
Recovery	$(s,i,r) \rightarrow (s,i-1,r+1)$	u i d t + o (d t)

Doob-Gillespie algorithm

- Proposed by Joseph L. Doob in 1940s and popularized by Daniel T. Gillespie in 1970s.
- Given a state **x** and a time t, simulate the following event: No transition occurs during the time interval $[t, t + \tau[$ and the transition T_{μ} occurs at the time $t + \tau$.
- One can show that τ and μ are two random variables with probability density:

$$p(\tau) = a_0(\mathbf{x}) \exp(-a_0(\mathbf{x})\tau), \ \tau > 0, \tag{5}$$

$$p(\mu) = \frac{a_{\mu}(\mathbf{x})}{a_0(\mathbf{x})}, \ \mu = 1, \dots, M, \tag{6}$$

where
$$a_0(\mathbf{x}) = \sum_{m=1}^{M} a_m(\mathbf{x})$$
.

• Slow for large populations because $E[\tau] = 1/a_0(\mathbf{x}) \propto 1/\Omega$.

Doob-Gillespie vs deterministic approximation

Large initial condition I₀

Herd immunity threshold

- In the deterministic SIR model, an epidemic can occur if $S_0 > \Omega \nu / \beta$.
- If $I_0 = O(1)$, we have $S_0 \simeq \Omega$ and the condition above becomes $\beta/\nu > 1$.
- We note $R_0 = \beta/\nu$ the basic reproduction number: Average number of secondary cases generated by a primary case in a fully susceptible population.
- If $R_0 > 1$, a proportion $V_c = 1 1/R_0$ of the population needs to be vaccinated to prevent an epidemic.
- The R₀ of influenza is between 1.5 and 2, so between 30% and 50% of the population needs to be vaccinated.
- For childhood diseases (e.g. measles), R_0 is above 10, so more than 90% of the population needs to be vaccinated.

Herd immunity threshold

- In the deterministic SIR model, an epidemic can occur if $S_0 > \Omega \nu / \beta$.
- If $I_0 = O(1)$, we have $S_0 \simeq \Omega$ and the condition above becomes $\beta/\nu > 1$.
- We note $R_0 = \beta/\nu$ the basic reproduction number: Average number of secondary cases generated by a primary case in a fully susceptible population.
- If $R_0 > 1$, a proportion $V_c = 1 1/R_0$ of the population needs to be vaccinated to prevent an epidemic.
- The R₀ of influenza is between 1.5 and 2, so between 30% and 50% of the population needs to be vaccinated.
- For childhood diseases (e.g. measles), R_0 is above 10, so more than 90% of the population needs to be vaccinated.

Herd immunity threshold

- In the deterministic SIR model, an epidemic can occur if $S_0 > \Omega \nu / \beta$.
- If $I_0 = O(1)$, we have $S_0 \simeq \Omega$ and the condition above becomes $\beta/\nu > 1$.
- We note $R_0 = \beta/\nu$ the basic reproduction number: Average number of secondary cases generated by a primary case in a fully susceptible population.
- If $R_0 > 1$, a proportion $V_c = 1 1/R_0$ of the population needs to be vaccinated to prevent an epidemic.
- The R₀ of influenza is between 1.5 and 2, so between 30% and 50% of the population needs to be vaccinated.
- For childhood diseases (e.g. measles), R_0 is above 10, so more than 90% of the population needs to be vaccinated.

- In the stochastic SIR model, a major epidemic can still be avoided even if R₀ > 1.
- The initial phase of the epidemic can be described by a birth-death process: individuals live for a random duration (infectious period) during which they give birth (infect) according to a Poisson process with intensity β.
- The probability P_{ext} that the birth-death process stops after a *finite* number of generations is q^{l_0} , where q is the unique root in [0,1[of s=f(s), with

$$f(s) = \int_0^\infty e^{-\beta t(1-s)} g_l(t) dt, \quad |s| \le 1,$$
 (10)

where g_l is the pdf of the infectious period.

- In the stochastic SIR model, a major epidemic can still be avoided even if R₀ > 1.
- The initial phase of the epidemic can be described by a birth-death process: individuals live for a random duration (infectious period) during which they give birth (infect) according to a Poisson process with intensity β.
- The probability P_{ext} that the birth-death process stops after a *finite* number of generations is q^{l_0} , where q is the unique root in [0,1[of s=f(s), with

$$f(s) = \int_0^\infty e^{-\beta t(1-s)} g_l(t) dt, \quad |s| \le 1,$$
 (10)

where g_l is the pdf of the infectious period.

- In the stochastic SIR model, a major epidemic can still be avoided even if R₀ > 1.
- The initial phase of the epidemic can be described by a birth-death process: individuals live for a random duration (infectious period) during which they give birth (infect) according to a Poisson process with intensity β.
- The probability P_{ext} that the birth-death process stops after a *finite* number of generations is q^{l_0} , where q is the unique root in [0,1[of s=f(s), with

$$f(s) = \int_0^\infty e^{-\beta t(1-s)} g_l(t) dt, \quad |s| \le 1,$$
 (10)

where g_l is the pdf of the infectious period.

- In the stochastic SIR model, a major epidemic can still be avoided even if R₀ > 1.
- The initial phase of the epidemic can be described by a birth-death process: individuals live for a random duration (infectious period) during which they give birth (infect) according to a Poisson process with intensity β.
- The probability P_{ext} that the birth-death process stops after a *finite* number of generations is q^{l_0} , where q is the unique root in [0,1[of s=f(s), with

$$f(s) = \int_0^\infty e^{-\beta t(1-s)} g_l(t) dt, \quad |s| \le 1,$$
 (10)

where g_l is the pdf of the infectious period.

Erlang distribution

Pathogens with more variable infectious periods have a higher risk of initial extinction.

Inference for small population outbreaks

284 ind - 32% reinfected

One possible model...

One possible model...

Already implemented as a fitmodel!