

Centre for Metamaterial Research and Innovation

EPSRC Centre for Doctoral Training in Metamaterials

www.metamaterials.center

A Slow Way of Optimising

Emitter polarisation **p** Emitter location r'

Centre for Metamaterial Research and Innovation

PSRC Centre for Acctoral Training Metamaterials

www.metamaterials.center

A Slow Way of Optimising

Emitter polarisation **p**Emitter location **r**'

Centre for Metamaterial Research and Innovation

www.metamaterials.center

The Adjoint Method

$$P = -\frac{1}{2} \text{Im} \left[\boldsymbol{p}^* \cdot \boldsymbol{E}(\boldsymbol{r}') \right]$$

$$\frac{\delta P}{\delta \varepsilon} = \frac{1}{2} \text{Im} \left[\mathbf{E}_*(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) \right]$$

- Sandro Mignuzzi, Stefano Vezzoli, Simon A. R. Horsley, William L. Barnes, Stefan A. Maier, and Riccardo Sapienza "Nanoscale Design of the Local Density of Optical States", Nano Lett. 19, 3, 1613–1617 (2019)
 - Owen Miller, "Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design", PhD thesis (2012)