Методическое пособие по вычислению пределов для первого курса механико-математического факультета МГУ

Ю. Н. Сударев

Хорошо известны следующие правила работы с пределами:

если
$$\lim_{x \to x_0} f(x) = a, \quad \lim_{x \to x_0} g(x) = b, \quad \text{то}$$

$$\lim_{x \to x_0} (f(x) \pm g(x)) = a \pm b,$$

$$\lim_{x \to x_0} f(x)g(x) = ab,$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b} \quad (b \neq 0).$$
(1)

Однако, в подавляющем большинстве задач (например, из задачника Б. П. Демидовича) непосредственно применить формулы (1) не удаётся. Поэтому существуют приёмы различного уровня сложности, позволяющие справиться с такими задачами.

На первом, самом простейшем, уровне мы преобразуем данное выражение так, чтобы можно было применить формулы (1).

Пример 1.

$$\lim_{x \to \infty} \frac{2x^3 - 10x^2 + 8x + 1}{x^3 + 20x^2 + 1000}$$

Здесь числитель и знаменатель стремятся к бесконечности, т. е. не имеют настоящего предела и, следовательно, формулы (1) не применимы. Поступим следующим образом:

$$\lim_{x \to \infty} \frac{2x^3 - 10x^2 + 8x + 1}{x^3 + 20x^2 + 1000} = \lim_{x \to \infty} \frac{2 - \frac{10}{x} + \frac{8}{x^2} + \frac{1}{x^3}}{1 + \frac{20}{x} + \frac{1000}{x^3}} = \frac{2}{1} = 2 .$$

Пример 2.

$$\lim_{x \to 0} \frac{\sqrt{1+2x} - \sqrt{1-3x}}{x} \quad .$$

Здесь числитель и знаменатель стремятся к нулю и, следовательно, формулы (1) снова не применимы. Имеем:

$$\lim_{x \to 0} \frac{\sqrt{1+2x} - \sqrt{1-3x}}{x} =$$

$$= \lim_{x \to 0} \frac{\left(\sqrt{1+2x} - \sqrt{1-3x}\right)\left(\sqrt{1+2x} + \sqrt{1-3x}\right)}{x\left(\sqrt{1+2x} + \sqrt{1-3x}\right)} =$$

$$= \lim_{x \to 0} \frac{\left(\sqrt{1+2x}\right)^2 - \left(\sqrt{1-3x}\right)^2}{x\left(\sqrt{1+2x} + \sqrt{1-3x}\right)} = \lim_{x \to 0} \frac{\left(1+2x\right) - \left(1-3x\right)}{x\left(\sqrt{1+2x} + \sqrt{1-3x}\right)} =$$

$$= \lim_{x \to 0} \frac{5x}{x\left(\sqrt{1+2x} + \sqrt{1-3x}\right)} = \frac{5}{2} .$$

Подобные приёмы, однако, можно применять лишь в простейших случаях.

На следующем, более высоком, техническом уровне мы используем понятие эквивалентных величин.

Рассмотрим семейство функций, определённых в проколотой окрестности точки x_0 и отличных от нуля в этой окрестности.

Будем говорить, что функция $\alpha(x)$ эквивалентна $\beta(x)$ $(\alpha \sim \beta)$ при $x \to x_0$, если

$$\alpha(x) = \beta(x)q(x)$$
, где $\lim_{x \to x_0} q(x) = 1$. (2)

Очевидно, что (2) равносильно следующему условию:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1 . (3)$$

Перечислим свойства эквивалентных величин, которые немедленно вы-

текают из их определения.

1.
$$\alpha \sim \alpha$$
 (рефлексивность).

2. Если
$$\alpha \sim \beta$$
, то и $\beta \sim \alpha$ (симметрия).

3. Если
$$\alpha \sim \beta$$
, а $\beta \sim \gamma$, то $\alpha \sim \gamma$ (транзитивность).

4. Если
$$\alpha \sim \beta$$
 и $\lim_{x \to x_0} \beta(x) = a$, то и $\lim_{x \to x_0} \alpha(x) = a$.

5. Если
$$\lim_{x \to x_0} f(x) = c \ (c \neq 0)$$
, то $f(x) \sim c$.

6. Если
$$f(x) \sim \alpha(x), \ g(x) \sim \beta(x), \$$
то
$$f(x)g(x) \sim \alpha(x)\beta(x),$$

$$\frac{f(x)}{g(x)} \sim \frac{\alpha(x)}{\beta(x)},$$

$$f^p(x) \sim \alpha^p(x) \quad (f(x) > 0) \ .$$

Покажем, например, что при $x \to \infty$

$$a_0 x^n + a_1 x^{n-1} + \dots + a_n \sim a_0 x^n \qquad (a_0 \neq 0).$$
 (4)

Действительно,

$$a_0x^n + a_1x^{n-1} + \dots + a_n = a_0x^n \left(1 + \frac{a_1}{a_0x} + \dots + \frac{a_n}{a_0x^n}\right)$$
.

Выражение, стоящее в скобках, стремится к единице и, следовательно, (4) верно по определению эквивалентных.

В курсе математического анализа устанавливается, что справедлива следующая таблица эквивалентных при $x \to 0$:

1.
$$\sin x \sim x$$
 5. $1 - \cos x \sim \frac{x^2}{2}$
2. $\tan x \sim x$ 6. $\ln(1+x) \sim x$ (5)
3. $\arcsin x \sim x$ 7. $a^x - 1 \sim x \ln a \quad (a > 0, \ a \neq 1)$
4. $\arctan x \sim x$ 8. $(1+x)^p - 1 \sim px \quad (p \neq 0)$

Основная идея применения эквивалентных для вычисления пределов состоит в том, что, заменяя некоторые выражения на более простые эквивалентные, мы приходим в конце концов к такому выражению, предел которого очевиден.

Пример 3.

$$\lim_{x \to 0} \frac{\arcsin 3x^2}{\left(\sqrt[3]{1+3x}-1\right) \operatorname{tg} x} = \lim_{x \to 0} \frac{3x^2}{\left[(1+3x)^{\frac{1}{3}}-1\right] x} = \lim_{x \to 0} \frac{3x}{\frac{1}{3}(3x)} = 3$$

Здесь мы использовали таблицу (5) и свойства эквивалентных.

Пример 4.

$$\lim_{x \to 0} \frac{e^{x^2} - \cos x}{\sin^2 x} = \lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2} = \lim_{x \to 0} \frac{(e^{x^2} - 1) + (1 - \cos x)}{x^2} =$$

$$= \lim_{x \to 0} \frac{e^{x^2} - 1}{x^2} + \lim_{x \to 0} \frac{1 - \cos x}{x^2} =$$

$$= \lim_{x \to 0} \frac{x^2}{x^2} + \lim_{x \to 0} \frac{\frac{x^2}{2}}{x^2} = 1 + \frac{1}{2} = \frac{3}{2}.$$

Мы разбили предел в сумму двух пределов, а не заменили сразу каждую скобку в числителе на эквивалентные, поскольку замена на эквивалентные слагаемых в сумме незаконна.

Пример 5.

$$\lim_{x \to 0} (\cos 2x)^{\frac{1}{x^2}} = \lim_{x \to 0} e^{\ln(\cos 2x)^{\frac{1}{x^2}}} = \lim_{x \to 0} e^{\frac{1}{x^2} \ln \cos 2x} =
= e^{\lim_{x \to 0} \frac{\ln \cos 2x}{x^2}} = e^{\lim_{x \to 0} \frac{\ln[1 + (\cos 2x - 1)]}{x^2}} =
= e^{\lim_{x \to 0} \frac{\cos 2x - 1}{x^2}} = e^{\lim_{x \to 0} \frac{-\frac{(2x)^2}{x^2}}{x^2}} = e^{-2}.$$

Здесь, перенеся предел в показатель степени, мы воспользовались теоремой о предельном переходе под знаком непрерывной функции.

Применение эквивалентных значительно расширяет наши возможности при вычислении пределов, однако, в сложных задачах и этой техники оказывается недостаточно.

Третий, самый сложный, уровень приёмов вычисления пределов связан с асимптотическими разложениями функций. Но, прежде всего, нам нужно освоить так называемую «о-символику», которую ввёл в математику в 30-х годах прошлого века немецкий математик Эдмунд Ландау.

Мы снова рассматриваем функции, определённые в проколотой окрестности точки x_0 . Скажем, что функция $\alpha(x)$ есть «о-малое от $\beta(x)$ » $(\alpha = o(\beta))$, если справедливо соотношение

$$\alpha(x) = \beta(x) \cdot \omega(x),$$
 где $\lim_{x \to x_0} \omega(x) = 0.$ (6)

Если, например, речь идёт о бесконечно малых, то равенство $\alpha = o(\beta)$ означает, что $\alpha(x)$ стремится к нулю быстрее, чем $\beta(x)$, т. е. является бесконечно малой более высокого порядка по сравнению с $\beta(x)$.

Если же речь идёт о бесконечно больших, то это равенство означает, что $\alpha(x)$ растёт медленней, чем $\beta(x)$.

Отметим, между прочим, важную вещь. Если p > q, то

$$x^p = o(x^q)$$
 при $x \to 0$ и $x^q = o(x^p)$ при $x \to \infty$. (7)

Заметим ещё, что равенство $\alpha = o(\beta)$ означает, на самом деле, принадлежность $\alpha(x)$ к некоторому классу функций. Поэтому каждый раз, когда появляется символ $o(\beta)$, он означает, вообще говоря, свою функцию из данного класса. Отсюда возникает «странная арифметика».

Например,

$$o(\beta) - o(\beta) = o(\beta),$$

а не ноль, как можно было бы подумать.

Перечислим некоторые правила действий с символом $o(\beta)$, которые легко выводятся из определения (6).

- 1. $\alpha \sim \beta$ тогда и только тогда, когда $\alpha = \beta + o(\beta)$.
- 2. $o(\beta) \pm o(\beta) = o(\beta)$.

3.
$$Ao(\beta) = o(\beta)$$
. (8)

4.
$$o(k\beta) = o(\beta)$$
.

- 5. Если $\alpha \sim \beta$, то $o(\alpha) = o(\beta)$.
- 6. $o(o(\beta)) = o(\beta)$.

Кроме символа о-малое, вводится ещё и символ О-большое.

По определению $\alpha(x)$ есть О-большое от $\beta(x)$ ($\alpha = O(\beta)$), если в проколотой окрестности x_0 справедливо соотношение

$$|\alpha(x)| \leqslant C |\beta(x)| \tag{9}$$

В случае бесконечно малых (9) означает, что $\alpha(x)$ убывает не медленней, чем $\beta(x)$, а в случае бесконечно больших это означает, что $\alpha(x)$ растёт не быстрее, чем $\beta(x)$.

Для символа $O(\beta)$ справедливы также все соотношения, аналогичные (8). Отметим ещё, что $o(O(\beta)) = o(\beta)$ и $O(o(\beta)) = o(\beta)$.

Следует довести работу с символами «о-малое» и «О-большое» до автоматизма, на что потребуется определённое время.

Отметим ещё, что

$$\lim_{x \to x_0} \frac{o(\beta)}{\beta} = 0.$$

Действительно,

$$\lim_{x \to x_0} \frac{o(\beta)}{\beta} = \lim_{x \to x_0} \frac{\beta(x)\omega(x)}{\beta(x)} = \lim_{x \to x_0} \omega(x) = 0.$$
 (10)

Мы скажем, что функция f(x) раскладывается при $x \to 0$ в асимптотический степенной ряд и запишем

$$f(x) \approx a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 (11)

если для любого *n* справедливо соотношение

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n).$$
 (12)

Из (12) легко вывести и другое соотношение

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + O(x^{n+1}).$$
 (13)

С помощью формулы Тейлора из дифференциального исчисления выводится следующая таблица асимптотических разложений:

1.
$$e^x \approx 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

2.
$$\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^k \frac{x^{2k+1}}{(2k+1)!} + \dots$$

3.
$$\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^k \frac{x^{2k}}{(2k)!} + \dots$$

4.
$$\ln(1+x) \approx x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n+1} \frac{x^n}{n} + \dots$$

5.
$$(1+x)^p \approx 1 + px + \frac{p(p-1)}{2!}x^2 + \dots + \frac{p(p-1)\cdots(p-n+1)}{n!}x^n + \dots$$

6.
$$\frac{1}{1+x} \approx 1 - x + x^2 - \dots + (-1)^n \frac{x^n}{n} + \dots$$
 (14)

Разложения (14) активно применяются при вычислении сложных пределов, когда не помогают ни элементарные преобразования, ни эквивалентные.

Пример 6.

$$\lim_{x \to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4} = \lim_{x \to 0} \frac{\left(1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)\right) - \left(1 - \frac{x^2}{2} + \frac{1}{2}\frac{x^4}{4} + o(x^4)\right)}{x^4} = \lim_{x \to 0} \frac{-\frac{1}{12}x^4 + o(x^4)}{x^4} = -\frac{1}{12}.$$

Пример 7.

$$\lim_{x \to 0} \frac{e^x \sin x - x(1+x)}{x^3} = \lim_{x \to 0} \frac{\left(1 + x + \frac{x^2}{2} + o(x^2)\right) \left(x - \frac{x^3}{6} + o(x^3)\right) - x - x^2}{x^3} = \lim_{x \to 0} \frac{\frac{1}{3}x^3 + o(x^3)}{x^3} = \frac{1}{3}.$$

Здесь мы использовали очевидные соотношения типа

$$\frac{x^2}{2}\cdot\left(-\frac{x^3}{6}\right)=-\frac{1}{12}x^5=-\frac{1}{12}o(x^3)=o(x^3)\,;$$

$$o(x^2)\cdot o(x^3)=o(x^5)=o(x^3)$$
 и т. п.

Пример 8.

$$\begin{split} &\lim_{x \to +\infty} x^{\frac{3}{2}} \left(\sqrt{x+1} + \sqrt{x-1} - 2\sqrt{x} \right) = \\ &= \lim_{x \to +\infty} x^2 \left(\sqrt{1 + \frac{1}{x}} + \sqrt{1 - \frac{1}{x}} - 2 \right) = \lim_{x \to +\infty} x^2 \left(\left(1 + \frac{1}{x} \right)^{\frac{1}{2}} + \left(1 - \frac{1}{x} \right)^{\frac{1}{2}} - 2 \right) = \\ &= x^2 \lim_{x \to +\infty} \left(1 + \frac{1}{2} \cdot \frac{1}{x} + \frac{\frac{1}{2} \left(\frac{1}{2} - 1 \right)}{2!} \cdot \frac{1}{x^2} + o \left(\frac{1}{x^2} \right) + \right. \\ &\quad + 1 - \frac{1}{2} \cdot \frac{1}{x} + \frac{\frac{1}{2} \left(\frac{1}{2} - 1 \right)}{2!} \cdot \frac{1}{x^2} + o \left(\frac{1}{x^2} \right) - 2 \right) = \\ &= \lim_{x \to +\infty} x^2 \left(-\frac{1}{4} \cdot \frac{1}{x^2} + o \left(\frac{1}{x^2} \right) \right) = -\frac{1}{4} + \lim_{x \to +\infty} x^2 \cdot o \left(\frac{1}{x^2} \right) = -\frac{1}{4} \,. \end{split}$$

Здесь

$$\lim_{x \to +\infty} x^2 \cdot o\left(\frac{1}{x^2}\right) = \lim_{x \to +\infty} \frac{o\left(\frac{1}{x^2}\right)}{\frac{1}{x^2}} = 0.$$

Пример 9.

$$\lim_{x \to 0} \frac{(\sin 3x)^3 + \cos x - 1 + \frac{x^2}{2}}{x^3} = \lim_{x \to 0} \frac{(\sin 3x)^3}{x^3} + \lim_{x \to 0} \frac{\cos x - 1 + \frac{x^2}{2}}{x^3} =$$

$$= \lim_{x \to 0} \frac{27x^3}{x^3} + \lim_{x \to 0} \frac{1 - \frac{x^2}{2} + O(x^4) - 1 + \frac{x^2}{2}}{x^3} =$$

$$= 27 + \lim_{x \to 0} \frac{O(o(x^3))}{x^3} = 27 + \lim_{x \to 0} \frac{o(x^3)}{x^3} = 27$$

Здесь при разложении косинуса мы, в отличие от предыдущих примеров, воспользовались формулой (13), а не (12), поскольку в противном случае нам пришлось бы выписывать три члена разложения вместо двух, которых вполне достаточно. А вот при вычислении предела первого слагаемого мы вообще обошлись без разложений, применив нужную эквивалентность.

Пример 10.

$$\lim_{x \to 0} \frac{\sin\left(\sin x\right) - x\sqrt{1 - x^2}}{x^5}$$

Так как в знаменателе стоит x^5 , то числитель следует раскладывать до $o(x^5)$.

Имеем:

$$\sin(\sin x) = \sin x - \frac{\sin^3 x}{6} + \frac{\sin^5 x}{120} + o(\sin^5 x) = \sin x - \frac{\sin^3 x}{6} + \frac{\sin^5 x}{120} + o(x^5).$$

Далее:

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5) \,;$$

$$\sin^3 x = \left(x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)\right)^3 = (x + \alpha(x))^3 \,, \quad \text{где} \quad \alpha(x) = -\frac{x^3}{6} + \frac{x^5}{120} + o(x^5) \,;$$

$$(x + \alpha(x))^3 = x^3 + 3x^2\alpha(x) + 3x\alpha^2(x) + \alpha^3(x) \,.$$
 Ho
$$\alpha(x) = -\frac{x^3}{6} + o(x^3) \,. \quad \text{Значит}, \quad 3x^2\alpha(x) = -\frac{x^5}{2} + o(x^5) \,.$$
 Тогда
$$x\alpha^2(x) \sim x \cdot \frac{x^6}{36} = o(x^5) \,, \quad \alpha^3(x) \sim -\frac{x^9}{216} = o(x^5) \,.$$

Следовательно,

$$\sin^3 x = x^3 - \frac{1}{2}x^5 + o(x^5),$$

$$\sin^5 x = x^5 + o(x^5).$$

Итак,

$$\sin{(\sin{x})} = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5) - \frac{1}{6} \left(x^3 - \frac{x^5}{2} \right) + o(x^5) + \frac{x^5}{120} + o(x^5) = x - \frac{x^3}{3} + \frac{x^5}{10} + o(x^5) .$$

Аналогично

$$x\sqrt[3]{1-x^2} = x\left(1-x^2\right)^{\frac{1}{3}} = x\left(1-\frac{x^2}{3}-\frac{1}{9}x^4+o(x^4)\right) = x-\frac{x^3}{3}-\frac{1}{9}x^5+o(x^5).$$

Таким образом,

$$\sin(\sin x) - x\sqrt[3]{1 - x^2} = x - \frac{x^3}{3} + \frac{x^5}{10} + o(x^5) - x + \frac{x^3}{3} + \frac{1}{9}x^5 + o(x^5) = \frac{19}{90}x^5 + o(x^5).$$

Следовательно,

$$\lim_{x \to 0} \frac{\sin\left(\sin x\right) - x\sqrt[3]{1 - x^2}}{x^5} = \frac{19}{90} + \lim_{x \to 0} \frac{o(x^5)}{x^5} = \frac{19}{90} \,.$$

При вычислении пределов не стоит сразу хвататься за асимптотические разложения. Возможно, это будет «стрельба из пушки по воробьям». Надо посмотреть, а нельзя ли решить данную задачу с помощью эквивалентных или хотя бы упростить её? И только, когда мы увидим, что далее мы не можем продвинуться с помощью элементарных методов, прибегать к разложениям.

Список литературы

- [1] Б. П. Демидович. Сборник задач и упражнений по математическому анализу. Москва, 2003 г.
- [2] И. А. Виноградова, С. Н. Олехник, В. А. Садовничий. Математический анализ в задачах и упражнениях, том 1. Москва, 2017 г.