MA 327 A - Álgebra Linear - 1^o semestre de 2010 Segunda Prova - 20/05/2010

RA	Nome	•••••	•••••
Assinatura	•••••	•••••	

Questão 1 (valor 2.0) Considere o conjunto $M_{2\times 2}$ das matrizes reais 2×2 e o seguinte produto interno: se

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \ \mathbf{e} \ B = \left[\begin{array}{cc} e & f \\ g & h \end{array} \right],$$

então $<\!A,B\!>=ae+bf+cg+dh$. Considere também o subespaço W de $M_{2\times 2}$ das matrizes antissimétricas, ou seja, matrizes tais que $A=-A^T$. Encontre uma base para W^\perp , o complemento ortogonal de W.

Questão 2 (valor 2.0) Seja a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que T(4,0,2) = (0,1,0), T(1,3,-1) = (1,0,1) e T(3,0,0) = (1,1,0). Encontre a expressão da aplicação inversa $T^{-1}(x,y,z)$.

Questão 3 (valor 2.0)

- a) A transformação linear T(x, y, z) tal que T(1, 0, 0) = (1, 1, 1), T(0, 1, 0) = (-1, 1, 2) e T(0, 0, 1) = (0, 0, 0) não é injetora. Justifique esse fato sem explicitar a expressão de T.
- **b)** Prove que se $\dim V < \dim W$ então uma transformação $T:V \to W$ não pode ser sobrejetora.

Questão 4 (valor 2.0) Prove que se os vetores não nulos v_1, v_2, \ldots, v_n são ortogonais dois a dois então o conjunto $\{v_1, v_2, \ldots, v_n\}$ é linearmente independente.

Questão 5 (valor 2.0) Encontre uma base ortonormal para o subespaço de \mathbb{R}^4 gerado pelos vetores $v_1 = (1,0,1,0), v_2 = (0,-1,0,-1)$ e $v_3 = (1,3,3,1)$.