ECE 826: Quiz 0

Name:	Email:
Dept:	Year:

Question 1. If A is an $n \times n$ matrix with rank r < n, how can one compute its null space? **Answer**:

Question 2. Give an example of a function $f : \mathbb{R}^d \to \mathbb{R}$ that is negative everywhere and is also concave. Answer:

Question 3. Let X_1, \ldots, X_n be independent, mean 1, Gaussian random variables with variance 10, and $Z = \sum_{i=1}^n X_i$. Please compute: i) $\mathbb{E}\{Z\}$, ii) $var\{Z\}$, and iii) $\mathbb{E}\{Z|X_2, \ldots, X_n\}$.

Question 4. Let a coin with 1/4 probability of turning heads (H), and 3/4 tails (T). What is the most likely sequence of events after 5 random tosses?

Answer:

Question 5. You wish to build a classifier that works well on images of cats and dogs. You decide to use a neural network because your friend says they are cool. You are given a data set (S) that consists of 50K test examples $(S_{test} \subset S)$ and 50K training examples $(S_{train} \subset S)$. Before using on real data, you want to tune the architecture of the model, and try a few different ones with the goal of maximizing accuracy on real (unseen) data. On what part of the data set will you optimize the network's architecture, and why?

Answer:

Question 6. Let $c_i \in \mathbb{R}$. Can you solve either of the following problems in polynomial time in n? If so, how? If not, why?

$$A: \max_{x_i \in \{-1,1\}} \left| \sum_{i=1}^n c_i \cdot x_i \right| \qquad \mathcal{B}: \min_{x_i \in \{-1,1\}} \left| \sum_{i=1}^n c_i \cdot x_i \right|$$

Answer:

Question 7. Construct a neural network that performs $y = \max(x_1, x_2)$ without using max pool, using ReLU activations (e.g., $\sigma(x) = \mathbf{1}_{x>0} \cdot x$)

Answer: