#### **Re view**

- 1. Buck, Boost, Buck Boost & Cuk' Inverter  $\rightarrow$  No isolation
- $\Rightarrow |V_{DC}| \& |V_0|$  can not be greatly different
- ⇒ Use a transformer & do not allow it to saturate

#### Close 'S' for 'DT' duration:

 $'i_1$  enters the dot in the primary.

$$i_2$$
 = 0, because of  $D_2$ 



- 1 linearly with time.
- $'\phi'$  in the core also  $\uparrow$  linearly with time.



#### Open 'S'

- $\Rightarrow$  ' $\phi$ ' in the core must be continuous
- .. 'φ' due to i₂ should be in the same direction as that due to i₁ (they are not produced at the same time).



- $\Rightarrow$ :. i<sub>2</sub> also enters the '•'
- $i_1$ &  $i_2'$  will flow simultaneously when 'S' is opened.
- $\Rightarrow$ No path for  $i_m$
- ⇒'V' spike across 'S'
- ⇒Instead of feeding power to another

  'V' source, connect a parallel

  combination of C & R
- ⇒ Fly back converter





#### **FLYBACK CONVERTER:**

Freewheeling diode also known as flywheel diode. Very popular upto 200 W.



#### Close S:

Current enters the dotted terminal.

l<sub>2</sub> should leave the dot in the secondary.

⇒ Not possible due to D

$$\therefore I_2 = 0$$
  $\therefore I_1 = I_s = I_m \rightarrow \text{only the magnetizing 'I'}$ .

 $i_1 \& : \phi \uparrow linearly.$ 

'C' supplies power to the load.

'V' across 
$$N_1 = V_{DC}(\bullet ' is + ve)$$



∴'V' induced in secondary = 
$$V_{DC} \frac{N_2}{N_1}$$
 ('•' is + ve)

#### Open S:

- 'φ' in the core must be continuous.
- $\Rightarrow$  i<sub>2</sub> will flow in the sec. in such a way that direction of ' $\phi$ ' due to i<sub>1</sub> is same
- $\Rightarrow$  i<sub>2</sub> enters the dot in secondary
- ⇒ Stored energy is transferred to the load
- $\Rightarrow$  i<sub>2</sub> may or may not become zero
- $\Rightarrow$  i<sub>2</sub>  $\neq$  0 just prior to turn ON of 'S'
- $\Rightarrow$  ' $\phi$ ' is continuous (unidirectional ' $\phi$ ')







- ⇒ Generally operated in discontinuous mode because if accidentally D↑, core may saturate⇒'S' may fail
- ⇒ Airgap is provided in the airgap
- ⇒ Not tightly coupled⇒Leakage flux





# ⇒ Flux will follow the above path only if there is Volt.Sec./Turn balance

$$\uparrow$$
 in  $d\phi = \downarrow$  in  $d\phi$ 

$$\uparrow \text{ in } d\phi = \frac{V_{DC}}{N_1} DT$$

$$\downarrow \text{ in } d\phi = \frac{V_0}{N_2} (1 - D)T$$

$$\therefore \frac{\mathbf{V}_0}{\mathbf{N}_2} (1 - \mathbf{D}) \mathbf{T} = \frac{\mathbf{V}_{DC}}{\mathbf{N}_1} \mathbf{D} \mathbf{T}$$

$$\therefore \mathbf{V}_0 = \mathbf{V}_{DC} \left( \frac{\mathbf{N}_2}{\mathbf{N}_1} \right) \left( \frac{\mathbf{D}}{1 - \mathbf{D}} \right)$$





- $\Rightarrow |V_0| \& |V_{DC}|$  can be significantly different
- $\Rightarrow D_{\text{MAX}} = 0.5$
- $\Rightarrow$  Choose  $\frac{N_2}{N_1}$  suitably
- ⇒ Primary 'L' is a very important parameter

$$I_{P} = \frac{V_{DC}}{L_{1}}DT$$

$$\therefore \mathbf{P}_{\mathsf{in}} = \mathbf{V}_{\mathsf{DC}} \left[ \frac{1}{2} \mathbf{I}_{\mathsf{P}} \frac{\mathsf{DT}}{\mathsf{T}} \right] \approx \mathbf{P}_{\!0}$$

$$\therefore I_{P} = \frac{2P_{in}}{DV_{DC}} \approx \frac{2P_{0}}{DV_{DC}}$$



## Advantage:

- 1) o/p can be significantly different.
- 2) Multiple o/p's are possible.
- 3) Isolation.

⇒Closed loop is a must



# Various configuration:

