方法一: 使用apyori套件

In [1]:

```
## Import package
from apyori import apriori
## Data 自行定義數據
market_data = [['T-Shirt', 'Pants', 'Jeans', 'Jersy', 'Socks', 'Basketball', 'Bottl
e','Shorts'],

['T-Shirt','Jeans'],

['Jersy','Basketball','Socks','Bottle'],

['Jeans','Pants','Bottle'],

['Shorts','Basketball'],

['Shorts','Jersy'],
   'T-Shirt'
    Basketball','Jersy'],
association rules = apriori(market data, min support=0.2, min confidence=0.2,
min_lift=2, max_length=2)
association_results = list(association_rules)
##print(association results )
for product in association results:
#print(product) # ex. RelationRecord(items=frozenset({'Basketball', 'Sock
s'}), support=0.25, ordered_statistics=[OrderedStatistic(items_base=frozenset
({'Basketball'}), items_add=frozenset({'Socks'}), confidence=0.5, lift=2.0),
OrderedStatistic(items_base=frozenset({'Socks'}), items_add=frozenset({'Basketball'})
etball'}), confidence=1.0, lift=2.0)])
  pair = product[0]
  ##print(pair) ## ex. frozenset({'Basketball', 'Socks'})
 print(products) # ex. ['Basketball', 'Socks']
print("Rule: " + products[0] + " →" + products[1])
print("Support: " + str(product[1]))
print("Lift: " + str(product[2][0][3]))
print("======"""""")
  products = [x for x in pair]
['Basketball', 'Socks']
Rule: Basketball →Socks
Support: 0.25
Lift: 2.0
['Pants', 'Bottle']
Rule: Pants →Bottle
Support: 0.25
Lift: 2.66666666666665
['Bottle', 'Socks']
Rule: Bottle →Socks
Support: 0.25
Lift: 2.66666666666665
['Pants', 'Jeans']
Rule: Pants →Jeans
Support: 0.25
Lift: 2.66666666666665
['Jersy', 'Socks']
Rule: Jersy →Socks
```

Support: 0.25 Lift: 2.0

方法二: 使用mlxtend套件,將數據轉換成one-hot編碼

In [1]:

```
## Import Package
import pandas as pd
from mlxtend.frequent patterns import apriori
from mlxtend.frequent_patterns import association_rules
## Data 自行定義數據
market data = {
  Transaction ID': [1,2,3,4,5,6,7,8],
Items':[['T-Shirt', 'Pants', 'Jeans', 'Jersy', 'Socks', 'Basketball', 'Bottle', 'S
 orts ],
['T-Shirt', 'Jeans'],
['Jersy', 'Basketball', 'Socks', 'Bottle'],
['Jeans', 'Pants', 'Bottle'],
['Shorts', 'Basketball'],
['Shorts', 'Jersy'],
['T-Shirt'],
   'Basketball','Jersy'],
## 轉成DataFrame
data = pd.DataFrame(market_data)
## 讓DataFrame 能呈現的寬度大一點
pd.options.display.max colwidth = 100
## 轉成數值編碼,目前都是字串的組合
data_id = data.drop('Items', 1)
data_items = data.Items.str.join(',')
## 轉成數值
data_items = data_items.str.get_dummies(',')
## 接上Transaction ID
data = data_id.join(data_items)
## 計算支持度 Support
Support_items = apriori(data[['T-Shirt', 'Pants', 'Jeans', 'Jersy', 'Socks', 'Bask
etball','Bottle','Shorts']], min_support=0.20, úse_colnames = True)
## 計算關聯規則 Association Rule
Association Rules = association rules(Support items, metric = 'lift', min thr
eshold=1)
Association Rules
```

Out[1]:

	antecedents	consequents	antecedent support	consequent support	support
0	(Jeans)	(T-Shirt)	0.375	0.375	0.25
1	(T-Shirt)	(Jeans)	0.375	0.375	0.25
2	(Pants)	(Jeans)	0.250	0.375	0.25
3	(Jeans)	(Pants)	0.375	0.250	0.25
4	(Pants)	(Bottle)	0.250	0.375	0.25
•••	•••	•••	•••	•••	••
63	(Basketball, Bottle)	(Jersy, Socks)	0.250	0.250	0.25
64	(Jersy)	(Socks, Basketball, Bottle)	0.500	0.250	0.25
65	(Socks)	(Jersy, Basketball, Bottle)	0.250	0.250	0.25
66	(Basketball)	(Jersy, Socks, Bottle)	0.500	0.250	0.25
67	(Bottle)	(Jersy, Socks, Basketball)	0.375	0.250	0.25

 $68 \text{ rows} \times 9 \text{ columns}$

In [13]:

```
## Import Package
import pandas as pd
from mlxtend.frequent patterns import apriori
from mlxtend.frequent_patterns import association_rules
## Data 自行定義數據
market data = {
  'Transaction ÌD': [1,2,3,4,5,6,7,8],
'Iteṃs':[['T-Shirt','Pants','Jeans','Jersy','Socks','Basketball','Bottle','S
 orts ],
['T-Shirt', 'Jeans'],
['Jersy', 'Basketball', 'Socks', 'Bottle'],
['Jeans', 'Pants', 'Bottle'],
['Shorts', 'Basketball'],
['Shorts', 'Jersy'],
['T-Shirt'],
   'Basketball','Jersy'],
## 轉成DataFrame
data = pd.DataFrame(market_data)
## 讓DataFrame 能呈現的寬度大一點
pd.options.display.max_colwidth = 100
## 轉成數值編碼,目前都是字串的組合
data_id = data.drop('Items', 1)
data_items = data.Items.str.join(',')
data_items = data_items.str.get_dummies(',')
data id.join(data items).head()
```

Out[13]:

	Transaction ID	Basketball	Bottle	Jeans	Jersy	Pants	Shorts S
0	1	1	1	1	1	1	1
1	2	0	0	1	0	0	0
2	3	1	1	0	1	0	0
3	4	0	1	1	0	1	0
4	5	1	0	0	0	0	1
4							>

In []:

In [2]:

```
## Import Package
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules
## Data 自行定義數據
market_data = {
    'Transaction ID': [1,2,3,4,5,6,7,8],
    'Items':[['T-Shirt', 'Pants', 'Jeans', 'Jersy', 'Socks', 'Basketball', 'Bottle', 'S
horts'],
    ['T-Shirt', 'Jeans'],
    ['Jersy', 'Basketball', 'Socks', 'Bottle'],
    ['Jeans', 'Pants', 'Bottle'],
    ['Shorts', 'Basketball'],
    ['Shorts', 'Jersy'],
    ['T-Shirt'],
    ['Basketball', 'Jersy'],
    ]
}
```

In [4]:

```
df = pd.DataFrame(market_data)
df.head()
```

Out[4]:

	Transaction ID	Items
0	1	[T-Shirt, Pants, Jeans, Jersy, Socks, Basketball, Bottle, Shorts]
1	2	[T-Shirt, Jeans]
2	3	[Jersy, Basketball, Socks, Bottle]
3	4	[Jeans, Pants, Bottle]
4	5	[Shorts, Basketball]

In []:

In []:


```
In [ ]:
## 轉成DataFrame
方法三: 基本分析方法
In [14]:
import pandas as pd
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent patterns import association rules
In [15]:
In [16]:
df = pd.DataFrame(data)
In [17]:
df = df[['ID', 'Onion', 'Potato', 'Burger', 'Milk', 'Beer']]
```

In [19]:

df.head(3)

Out[19]:

	ID	Onion	Potato	Burger	Milk	Beer
0	1	1	1	1	0	0
1	2	0	1	1	1	0
2	3	0	0	0	1	1

In [20]:

df = df.drop('ID',axis=1)

In [21]:

frequent itemsets = apriori(df, min support =0.50, use colnames=**True**)

In [10]:

frequent itemsets

Out[10]:

	support	itemsets
0	0.666667	(Onion)
1	0.833333	(Potato)
2	0.666667	(Burger)
3	0.666667	(Milk)
4	0.666667	(Onion, Potato)
5	0.500000	(Burger, Onion)
6	0.666667	(Burger, Potato)
7	0.500000	(Potato, Milk)
8	0.500000	(Burger, Onion, Potato)

In [11]:

min_threshlod = 1 最小的lift值須等於1 不然沒有意義
rules = association_rules(frequent_itemsets, metric = 'lift', min_threshold=1
)

In [12]:

rules

Out[12]:

	antecedents	consequents	antecedent support	consequent support	suppor
0	(Onion)	(Potato)	0.666667	0.833333	0.66666
1	(Potato)	(Onion)	0.833333	0.666667	0.66666
2	(Burger)	(Onion)	0.666667	0.666667	0.50000
3	(Onion)	(Burger)	0.666667	0.666667	0.50000
4	(Burger)	(Potato)	0.666667	0.833333	0.66666
5	(Potato)	(Burger)	0.833333	0.666667	0.66666
6	(Burger, Onion)	(Potato)	0.500000	0.833333	0.50000
7	(Burger, Potato)	(Onion)	0.666667	0.666667	0.50000
8	(Onion, Potato)	(Burger)	0.666667	0.666667	0.500000
9	(Burger)	(Onion, Potato)	0.666667	0.666667	0.500000
10	(Onion)	(Burger, Potato)	0.666667	0.666667	0.500000
11	(Potato)	(Burger, Onion)	0.833333	0.500000	0.500000
4					•

In [13]:

```
rules [( rules['lift']>1.125) & (rules['confidence']>0.8)]
```

Out[13]:

	antecedents	consequents	antecedent support	consequent support	support
0	(Onion)	(Potato)	0.666667	0.833333	0.666667
4	(Burger)	(Potato)	0.666667	0.833333	0.666667
6	(Burger, Onion)	(Potato)	0.500000	0.833333	0.500000

ONE HOT ENCODER

方法二: 如何把項目集資料轉化為可以分析的格式(ONE HOT ENCODER)

In [11]:

In [12]: retail Out[12]: ID **Basket** 1 0 [Beer, Diaper, Pretzels, Chips, Aspirin] [Diaper, Beer, Chips, Lotion, Juice, Babyfood,... 1 3 2 [Soda, Chips, Milk] 3 4 [Soup, Beer, Diaper, Milk, IceCream] 5 [Soda, Coffee, Milk, Bread] 4 6 5 [Beer, Chips] In [13]: retail = retail[['ID', 'Basket']] In [14]: pd.options.display.max colwidth = 100 In [15]: retail Out[15]: ID **Basket** 0 1 [Beer, Diaper, Pretzels, Chips, Aspirin] [Diaper, Beer, Chips, Lotion, Juice, Babyfood, Milk] 1 3 2 [Soda, Chips, Milk] [Soup, Beer, Diaper, Milk, IceCream] 3 4 4 5 [Soda, Coffee, Milk, Bread] 6 [Beer, Chips] 5

```
In [16]:
retail_id = retail.drop('Basket', axis =1)
Out[16]:
   ID
0
    1
 1
    2
2
    3
 3
    4
4
    5
 5
    6
In [17]:
retail_Basket = retail.Basket.str.join(',')
retail Basket
Out[17]:
                Beer, Diaper, Pretzels, Chips, Aspirin
0
     Diaper, Beer, Chips, Lotion, Juice, Babyfood, Milk
```

```
1
2
3
4
                         Soda, Chips, Milk
Soup, Beer, Diaper, Milk, IceCream
                                   Sóda,Coffee,Milk,Bread
                                                    Beer, Chips
Name: Basket, dtype: object
```

In [18]:

```
retail_Basket = retail_Basket.str.get_dummies(',')
retail_Basket
```

Out[18]:

Aspirin	Babyfood	Beer	Bread	Chips	Coffee	Diaper	IceCre a
---------	----------	------	-------	-------	--------	--------	-----------------

0	1	0	1	0	1	0	1	
1	0	1	1	0	1	0	1	
2	0	0	0	0	1	0	0	
3	0	0	1	0	0	0	1	
4	0	0	0	1	0	1	0	
5	0	0	1	0	1	0	0	
4								•

In [19]:

```
retail = retail_id.join(retail_Basket)
retail
```

Out[19]:

ID Aspirin Babyfood Beer Bread Chips Coffee Diaper Ice

0	1	1	0	1	0	1	0	1
1	2	0	1	1	0	1	0	1
2	3	0	0	0	0	1	0	0
3	4	0	0	1	0	0	0	1
4	5	0	0	0	1	0	1	0
5	6	0	0	1	0	1	0	0
4								

In [20]:

```
frequent itemsets 2 = apriori(retail.drop('ID',1), use colnames=True)
```

In [21]:

frequent itemsets 2

Out[21]:

	support	itemsets
0	0.666667	(Beer)
1	0.666667	(Chips)
2	0.500000	(Diaper)
3	0.666667	(Milk)
4	0.500000	(Beer, Chips)
5	0.500000	(Beer, Diaper)

In [22]:

association rules(frequent itemsets 2, metric='lift')

Out[22]:

	antecedents	consequents	antecedent support	consequent support	support
0	(Beer)	(Chips)	0.666667	0.666667	0.5
1	(Chips)	(Beer)	0.666667	0.666667	0.5
2	(Beer)	(Diaper)	0.666667	0.500000	0.5
3	(Diaper)	(Beer)	0.500000	0.666667	0.5
4					>

方法三: 電影題材關聯 導入數據庫CSV檔案進行分析

In [15]:

movies = pd.read csv('movies.csv')

In [16]:

movies.head(10)

Out[16]:

	movield	title	ger
0	1	Toy Story (1995)	Adventure Animation Children Comedy Fan
1	2	Jumanji (1995)	Adventure Children Fan
2	3	Grumpier Old Men (1995)	Comedy Roma
3	4	Waiting to Exhale (1995)	Comedy Drama Roma
4	5	Father of the Bride Part II (1995)	Com
5	6	Heat (1995)	Action Crime Thr
6	7	Sabrina (1995)	Comedy Roma
7	8	Tom and Huck (1995)	Adventure Chilc
8	9	Sudden Death (1995)	Ac ⁻
9	10	GoldenEye (1995)	Action Adventure Thr

In [17]:

movies ohe = movies.drop('genres', 1).join(movies.genres.str.get dummies())

In [18]:

pd.options.display.max columns=100

In [19]:

movies ohe.head()

Out[19]:

	movield	title	(no genres listed)	Action	Adventure	Animation	Ch
0	1	Toy Story (1995)	0	0	1	1	
1	2	Jumanji (1995)	0	0	1	0	
2	3	Grumpier Old Men (1995)	0	0	0	0	
3	4	Waiting to Exhale (1995)	0	0	0	0	
4	5	Father of the Bride Part II (1995)	0	0	0	0	
4							•

In [23]:

movies ohe.shape

Out[23]:

(9742, 20)

In [36]:

```
movies_ohe.columns
movies_ohe.set_index(['movieId','title'],inplace=True)
## inplace = True : 不創建新的對象,直接對原本的對象進行修改
## inplace = False : 對數據進行修改,創建並返回新的對象承載它的修改結果
```

Out[36]:

In [26]:

movies ohe.head()

Out[26]:

(no genres Action Adventure Animation Child listed)

movield	title				
1	Toy Story (1995)	0	0	1	1
2	Jumanji (1995)	0	0	1	0
3	Grumpier Old Men (1995)	0	0	0	0
4	Waiting to Exhale (1995)	0	0	0	0
5	Father of the Bride Part II (1995)	0	0	0	0
4					•

In [27]:

In [28]:

frequent itemsets movies

Out[28]:

	support	itemsets
0	0.187641	(Action)
1	0.129645	(Adventure)
2	0.062718	(Animation)
3	0.068158	(Children)
4	0.385547	(Comedy)
5	0.123075	(Crime)
6	0.045165	(Documentary)
7	0.447649	(Drama)
8	0.079963	(Fantasy)
9	0.100390	(Horror)
10	0.034285	(Musical)
11	0.058817	(Mystery)
12	0.163827	(Romance)
13	0.100595	(Sci-Fi)
14	0.194416	(Thriller)
15	0.039212	(War)
16	0.062615	(Action, Adventure)
17	0.044036	(Action, Comedy)
18	0.042907	(Action, Crime)
19	0.054301	(Drama, Action)
20	0.046294	(Sci-Fi, Action)
21	0.067235	(Thriller, Action)
22	0.025354	(Adventure, Animation)
23	0.032026	(Adventure, Children)
24	0.040957	(Adventure, Comedy)
25	0.031924	(Drama, Adventure)

	support	itemsets
26	0.034285	(Fantasy, Adventure)
27	0.031410	(Sci-Fi, Adventure)
28	0.031000	(Animation, Children)
29	0.027612	(Animation, Comedy)
30	0.037159	(Comedy, Children)
31	0.035414	(Crime, Comedy)
32	0.103983	(Drama, Comedy)
33	0.030076	(Fantasy, Comedy)
34	0.090741	(Romance, Comedy)
35	0.065387	(Drama, Crime)
36	0.058407	(Thriller, Crime)
37	0.029563	(Drama, Mystery)
38	0.095874	(Drama, Romance)
39	0.085403	(Drama, Thriller)
40	0.030589	(Drama, War)
41	0.047116	(Thriller, Horror)
42	0.036338	(Thriller, Mystery)
43	0.031000	(Sci-Fi, Thriller)
44	0.035106	(Drama, Romance, Comedy)
45	0.031718	(Drama, Thriller, Crime)

In [29]:

rules_movies = association_rules(frequent_itemsets_movies, metric='lift', min _____
threshold=1.25)

In [30]:

rules movies \$

Out[30]:

	antecedents	consequents	antecedent support	consequent support	suppor
0	(Action)	(Adventure)	0.187641	0.129645	0.06261
1	(Adventure)	(Action)	0.129645	0.187641	0.06261
2	(Action)	(Crime)	0.187641	0.123075	0.04290
3	(Crime)	(Action)	0.123075	0.187641	0.04290
4	(Sci-Fi)	(Action)	0.100595	0.187641	0.04629
5	(Action)	(Sci-Fi)	0.187641	0.100595	0.04629
6	(Thriller)	(Action)	0.194416	0.187641	0.06723
7	(Action)	(Thriller)	0.187641	0.194416	0.06723
8	(Adventure)	(Animation)	0.129645	0.062718	0.02535
9	(Animation)	(Adventure)	0.062718	0.129645	0.02535
10	(Adventure)	(Children)	0.129645	0.068158	0.03202
11	(Children)	(Adventure)	0.068158	0.129645	0.03202
12	(Fantasy)	(Adventure)	0.079963	0.129645	0.03428
13	(Adventure)	(Fantasy)	0.129645	0.079963	0.03428
14	(Sci-Fi)	(Adventure)	0.100595	0.129645	0.031410
15	(Adventure)	(Sci-Fi)	0.129645	0.100595	0.031410
16	(Animation)	(Children)	0.062718	0.068158	0.03100
17	(Children)	(Animation)	0.068158	0.062718	0.03100
18	(Comedy)	(Children)	0.385547	0.068158	0.03715!
19	(Children)	(Comedy)	0.068158	0.385547	0.03715!
20	(Romance)	(Comedy)	0.163827	0.385547	0.09074
21	(Comedy)	(Romance)	0.385547	0.163827	0.09074
22	(Thriller)	(Crime)	0.194416	0.123075	0.05840
23	(Crime)	(Thriller)	0.123075	0.194416	0.05840
24	(Drama)	(Romance)	0.447649	0.163827	0.09587

	antecedents	consequents	antecedent support	consequent support	suppor
25	(Romance)	(Drama)	0.163827	0.447649	0.09587
26	(Drama)	(War)	0.447649	0.039212	0.030589
27	(War)	(Drama)	0.039212	0.447649	0.030589
28	(Thriller)	(Horror)	0.194416	0.100390	0.04711
29	(Horror)	(Thriller)	0.100390	0.194416	0.04711
30	(Thriller)	(Mystery)	0.194416	0.058817	0.03633
31	(Mystery)	(Thriller)	0.058817	0.194416	0.03633
32	(Sci-Fi)	(Thriller)	0.100595	0.194416	0.03100
33	(Thriller)	(Sci-Fi)	0.194416	0.100595	0.03100
34	(Drama, Comedy)	(Romance)	0.103983	0.163827	0.03510
35	(Romance)	(Drama, Comedy)	0.163827	0.103983	0.03510
36	(Drama, Thriller)	(Crime)	0.085403	0.123075	0.03171
37	(Drama, Crime)	(Thriller)	0.065387	0.194416	0.03171
38	(Thriller)	(Drama, Crime)	0.194416	0.065387	0.03171
39	(Crime)	(Drama, Thriller)	0.123075	0.085403	0.03171

In [31]:

rules movies[(rules movies.lift>4)].sort values(by=['lift'], ascending=**False**)

	antecedents	consequents	antecedent support	consequent support	support
16	(Animation)	(Children)	0.062718	0.068158	0.031
17	(Children)	(Animation)	0.068158	0.062718	0.031

In [32]:

movies[(movies.genres.str.contains('Children')) & (movies.genres.str.contains
('Animation'))]

Out[32]:

	movield	title	
0	1	Toy Story (1995)	Adventure Animation Children Comedy
12	13	Balto (1995)	Adventure Animation
44	48	Pocahontas (1995)	Animation Children Drama Musical F
205	239	Goofy Movie, A (1995)	Animation Children Comedy F
272	313	Swan Princess, The (1994)	Animation
•••	•••	•••	
9629	178827	Paddington 2 (2017)	Adventure Animation Children
9657	180987	Ferdinand (2017)	Animation Children
9664	182293	Hare-um Scare-um (1939)	Animation Children
9666	182299	Porky's Hare Hunt (1938)	Animation Children
9708	187541	Incredibles 2 (2018)	Action Adventure Animation
302 ro	ws × 3 col	umns	

In [68]:

movies[(movies.genres.str.contains('Children')) & (~movies.genres.str.contain
s('Animation'))]

Out[68]:

genres	title	movield	
Adventure Children Fantasy	Jumanji (1995)	2	1
Adventure Childrer	Tom and Huck (1995)	8	7
Children Drama	Now and Then (1995)	27	26
Children Drama	Babe (1995)	34	32
Children Comedy	It Takes Two (1995)	38	34
	•••	•••	•••
Action Adventure Childrer	Jumanji: Welcome to the Jungle (2017)	179401	9636
Children Comedy Sci-F	Pixel Perfect (2004)	182731	9670
Childrer	The Tale of the Bunny Picnic (1986)	183301	9679
Adventure Children Fantasy Sci- F	A Wrinkle in Time (2018)	184987	9697
Action Adventure Children Sci- F	Solo: A Star Wars Story (2018)	187595	9710

 $362 \text{ rows} \times 3 \text{ columns}$