

## **Department of Electrical & Computer Engineering**

Second Semester - 2023/2024

**ENCS5337 Chip Design Verification** 

## **Course Project**

**Design Verification of a Hardware Compression and Decompression Chip** 

#### **Chip Specifications**

The chip can do both data compression and decompression. It implements a dictionary based compression algorithm.

#### **Compression Algorithm**

The compression algorithm works as follows:

- 1. The chip receives the input data to be compressed on the **data\_in** port
- 2. It compares this input data with the stored data in the chip's internal memory (dictionary memory)
- If the input data is found, the index of the stored similar data is written on the compressed\_out port. This index value is the compressed version of this input data.
- 4. If the input data is not found, the input data is written at the last empty slot of the dictionary memory, then the index is written on the **compressed\_out** port, and the index is incremented
- 5. The physical index register width is 32-bit. However, the number of bits used out of these 32 bits depends on the size of the dictionary memory. In this project, the default size of the dictionary memory is 256 locations (each

location is 80-bit). Thus, we need the least significant eight bits of these 32 bits, and therefore the compressed data size is 8 bits.

6. If the internal memory is full, the output response signal indicates that there is an error.

#### **Decompression Algorithm**

The decompression algorithm is the reverse of the compression algorithm, and it works as follows:

- 1. The chip receives the compressed data on the **compressed\_in** port
- 2. If the value of the received compressed data is less than or equal the current value of the index register, then the corresponding decompressed data exists in the dictionary memory at an index equals the value of the received compressed data. Then, the content of the dictionary memory at that index is written on the decompressed\_out port.
- 3. If the value of the received compressed data is greater than the current value of the index register, then the corresponding decompressed data does not exist in the dictionary memory. Therefore, and error is reported.

# Table 1 lists the different input/out ports of this compression/decompression chip

Table 1: Compression/Decompression Chip Input/output Ports

| _                | Default Width |           |                                                                                                                          |  |
|------------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------|--|
| Port             | (#bits)       | Direction | Description                                                                                                              |  |
| clk              | 1             | Input     |                                                                                                                          |  |
| reset            | 1             | Input     | Clears the dictionary memory and the index register                                                                      |  |
| command          | 2             | input     | Specifies the chip operation  00: No operation  01: Compression  10: Decompression  11: Invalid command, report an error |  |
| data_in          | 80            | input     | Data to be compressed                                                                                                    |  |
| compressed_in    | 8             | input     | Data to be decompressed                                                                                                  |  |
| compressed_out   | 8             | Output    | Output compressed data                                                                                                   |  |
| decompressed_out | 80            | Output    | Output decompressed data                                                                                                 |  |
| response         | 2             | Output    | Shows the status of the output  00: no valid output  01: valid compressed_out  10: valid deccompressed_out  11: Error    |  |

## Figure 1 shows a high-level block diagram of the compression/decompression chip



Figure 1: Compression/Decompression Chip Block Diagram

# **Project Phases**

|                                   | Weight | Deadline  | Deliverables                 |
|-----------------------------------|--------|-----------|------------------------------|
|                                   |        |           | - Report                     |
| Phase1: Reference Model           | 8%     | 20/4/2024 | - Reference model code       |
|                                   |        |           | - Demo and Discussion        |
| Phase2: Verification Plan         | 7%     | 5/5/2024  | - Complete verification plan |
| Thasez. Vermeation Flam           |        |           | document                     |
|                                   | 20%    | 1/6/2024  | - Detailed report            |
|                                   |        |           | - Fully documented           |
|                                   |        |           | verification code            |
| Phase3: Complete UVM Verification |        |           | - Fully working verification |
| Environment with Coverage         |        |           | environment                  |
|                                   |        |           | - Simulation results         |
|                                   |        |           | - Detailed demonstration     |
|                                   |        |           | and discussion               |