DYNAMIC MODELING AND CARACTERIZATION OF A HEXAPOD CRAWLING ROBOT

M. Mazzanti, J. R. Reynal, P. De Cristóforis, F. Pessacg.

November 4, 2018

ICC-Conicet Universidad de Buenos Aires Laboratorio de Robótica y Sistemas Embebidos - DC

INTRODUCTION - HEXAPOD ROBOT

- · Multi-legged robots vs wheeled platforms.
- · Cost: large number of degrees of freedom (DoF).

Phantom AX

- Foot-strike detection without using additional sensors → minimalistic approach.
- How can we achieve that using only the position feedback from the servomotors?

- Foot-strike detection without using additional sensors → minimalistic approach.
- How can we achieve that using only the position feedback from the servomotors?

- Foot-strike detection without using additional sensors → minimalistic approach.
- How can we achieve that using only the position feedback from the servomotors?

- Foot-strike detection without using additional sensors → minimalistic approach.
- How can we achieve that using only the position feedback from the servomotors?

We need a dynamic model to:

- · Estimate the error between the goal and the measured position.
- Compensate external forces→ the locomotion can be adapted to the traversing terrain.

DYNAMIXEL AX-12 SERVOMOTOR

- · P control in position.
- · Limited communication.
- · No torque measurements.

DYNAMIXEL AX-12 SERVOMOTOR

- · P control in position.
- · Limited communication.
- · No torque measurements.

Electromechanical model:

$$J^{M}\ddot{\theta}^{M} + B\dot{\theta}^{M} + F^{M}(\dot{\theta}^{M}) + R\tau = K^{M}V$$

Euler-Lagrange formalism:

$$au = rac{\mathrm{d}}{\mathrm{d}t} \left(rac{\partial \mathcal{L}}{\partial \dot{m{ heta}}}
ight) - rac{\partial \mathcal{L}}{\partial m{ heta}}$$

Euler-Lagrange formalism:

$$\boldsymbol{\tau} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{\theta}}} \right) - \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}}$$

which can be written in matrix form:

$$D(heta)\ddot{ heta} + C(heta,\dot{ heta})\dot{ heta} + G(heta) = au$$

where the inertia matrix D:

$$D(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left[m_i J_{v_i}^{\mathsf{T}} J_{v_i} + J_{w_i}^{\mathsf{T}} {}^{\mathsf{O}} R_i I_i {}^{\mathsf{O}} R_i^{\mathsf{T}} J_{w_i} \right]$$

Euler-Lagrange formalism:

$$au = rac{d}{dt} \left(rac{\partial \mathcal{L}}{\partial \dot{m{ heta}}}
ight) - rac{\partial \mathcal{L}}{\partial m{ heta}}$$

which can be written in matrix form:

$$D(\theta)\ddot{ heta} + C(heta,\dot{ heta})\dot{ heta} + G(heta) = au$$

where the $inertia\ matrix\ D$:

$$D(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left[m_i J_{v_i}^{\mathsf{T}} J_{v_i} + \left[J_{w_i}^{\mathsf{T}} {}^{\mathsf{Q}} R_i I_i^{\mathsf{Q}} R_i^{\mathsf{T}} J_{w_i} \right] \right]$$

$$:= D_{\mathbf{w}}$$

where D_w in the RR case is:

$$\begin{bmatrix} I_{2_{33}} + I_{3_{33}} & I_{3_{33}} \\ I_{3_{33}} & I_{3_{33}} \end{bmatrix}$$

Euler-Lagrange formalism:

$$\boldsymbol{\tau} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{\theta}}} \right) - \frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}}$$

which can be written in matrix form:

$$D(heta)\ddot{ heta} + C(heta,\dot{ heta})\dot{ heta} + G(heta) = au$$

where the inertia matrix D:

$$D(\boldsymbol{\theta}) = \sum_{i=1}^{n} [m_i J_{v_i}^T J_{v_i} + \boxed{J_{w_i}^T {}^0 R_i I_i^0 R_i^T J_{w_i}}_{:=D_{\mathbf{w}}}]$$

With coxa joint, D_w is:

$$\begin{bmatrix} I_{1_{33}} + I_{2_{33}}\cos^2(\theta_2) + I_{3_{33}}\cos^2(\theta_2 + \theta_3) \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ I_{2_{33}} + I_{3_{33}} & I_{3_{33}} \\ I_{3_{33}} & I_{3_{33}} \end{bmatrix}$$

COMBINING ACTUATOR AND LEG DYNAMICS

Leg Dynamical model:

$$D(heta)\ddot{ heta} + C(heta,\dot{ heta})\dot{ heta} + G(heta) = au$$

COMBINING ACTUATOR AND LEG DYNAMICS

Leg Dynamical model:

$$D(heta)\ddot{ heta} + C(heta,\dot{ heta})\dot{ heta} + G(heta) = au$$

Electromechanical model:

$$J^{M}\ddot{\boldsymbol{\theta}}^{M}+B\dot{\boldsymbol{\theta}}^{M}+F^{M}(\dot{\boldsymbol{\theta}}^{M})+R\boldsymbol{ au}=K^{M}V$$

COMBINING ACTUATOR AND LEG DYNAMICS

Leg Dynamical model:

$$D(heta)\ddot{ heta} + C(heta,\dot{ heta})\dot{ heta} + G(heta) = au$$

Electromechanical model:

$$J^{M}\ddot{\theta}^{M}+B\dot{\theta}^{M}+F^{M}(\dot{\theta}^{M})+R\tau=K^{M}V$$

Complete dynamic model of a leg:

$$D'(\theta)\ddot{\theta} + C'(\theta)\dot{\theta} + F_{fric}(\dot{\theta}) + G'(\theta) = K'V$$

CHARACTERIZATION OF SERVOMOTOR AND DYNAMIC MODEL

Servomotors characterization

 Linear relationship between applied voltage and meassured velocity.

CHARACTERIZATION OF SERVOMOTOR AND DYNAMIC MODEL

Servomotors characterization

 Linear relationship between applied voltage and meassured velocity.

Complete behaviour simulation:

- · Full dynamic model
- · Interpolation
- · P control

TRESHOLD

Threshold offset established with mean value of simulation.

TRESHOLD

Threshold offset established with mean value of simulation.

Different Thresholds for different velocities.

Adaptive gait from the Dynamic model.

EXAMPLES OF THRESHOLD

Overestimated threshold

Precise threshold

]pdfmark=/AN

∄ødfmark=/ÅN

ERROR ANALYSIS IN COXA MEASUREMENTS

- · Vibrations in the leg, not considered in our simulation.
- · Bigger Treshold error.

- · Less inertia moment implies less vibration.
- Future improvement: trapezoidal acceleration and a PID controler.

CONCLUTIONS AND FUTURE WORK

Challenge

- · Improve comunication with servo motor \rightarrow reducing reading delay.
- · Trapezoidal aceleration profile.
- · Add PID control.

Conclutions

- · Characterization of servo motor.
- · Implementation and simulation of leg dynamics.
- \cdot Tresholds were determined using the dynamic model \to capability of traversing irregular terrains.

Thank you!

Questions?