

Triplet-Based Hashing Network for Cross-Modal Retrieval

From 2018 TIP

Cheng Deng[®], *Student Member, IEEE*, Zhaojia Chen, Xianglong Liu[®], Xinbo Gao[®], *Senior Member, IEEE*, and Dacheng Tao[®], *Fellow, IEEE*

背景介绍

1.为什么使用hash

跨模态分类用于将同一分类下的不同模态进行分类,同时为了方便分类的查询,将不同分类的对象映射到hash code中。Hash code具有低存储耗费和快速查询的优势,所以利用hashing对跨模态数据进行检索。

2.为什么使用深度学习

随着硬件的条件提升,传统方法逐渐被机器学习的方法替代,虽然机器学习的数学基础难以证明,但机器学习的在一些特定的方向,如图像、音频、自然语言处理等,相较于传统方面在精度上有明显提升。而深度学习是机器学习中效果显著的方法。

3.跨模态都包含什么模态 在论文中多数以图像和文本两个模态为例,实际中还包括了视频、图画、素 描、空间文本、文字描述等

1. CNN

Convolution neural network (卷积神经网络)通过卷积核对输入中指定大小的矩阵进行相应位置的乘法,并将结果加和输出。按照一般理解,卷积其实就是一种滤波,通过卷积滤波后的图像中对应于该卷积核的特征会突出显示,配合卷积之后的一般是pooling (池化)操作,用来将通过卷积后获得的突出特征进行筛选,剔除非强调特征。随着卷积与池化的结合,将一个图像的浅层语义到深层语义依次筛选出。同时卷积包括其不同类型,如转置卷积(反卷积)、微步卷积。如下图分别为卷积操作、反卷积操作、微步卷积操作

2. BOW

Bag of words 用于文本分类中,将文本表示成矢量。即对于一个文本,忽略次序、语法、句法仅看作为一个单词的集合(中文也是词组).利用多层感知机来对文本矢量进行特征提取。感知机模型如右图所示。

Output Layer

HiddenLayers

Input Layer

3. Triplet loss

三元组loss最初在人脸识别中起到了很好的表现,即2015年CVPR的FaceNet, triplet loss定义如下:

对于每一对正样本(P)和负样本(N), 我们选择一个接近于正样本的询问对象 (A),使得询问对象离正样本的距离小于负样本的距离。

Figure 3. The **Triplet Loss** minimizes the distance between an *an-chor* and a *positive*, both of which have the same identity, and maximizes the distance between the *anchor* and a *negative* of a different identity.

4. 相关数学定义

Frobenius 范数:

$$||A||F=\sqrt{\sum i=1^m\sum_{j=1}^n|a_{i,j}|^2}=\sqrt{tr(A^HA)}$$
 其中 A^H 为 A 的共轭矩阵

拉普拉斯矩阵: L = D - S (图的度矩阵 - 邻接矩阵)

度矩阵D

邻接矩阵S

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

拉普拉斯矩阵L

$$\begin{pmatrix}
2 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

$$-
\begin{pmatrix}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1
\end{pmatrix}$$

$$=
\begin{pmatrix}
2 & -1 & 0 & 0 & -1 & 0 \\
-1 & 3 & -1 & 0 & -1 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & -1 & 3 & -1 & -1 \\
-1 & -1 & 0 & -1 & 3 & 0 \\
0 & 0 & 0 & -1 & 0 & 1
\end{pmatrix}$$

Network structure

Table 2. Configuration of the deep neural network for text modality.

Layer	Configuration
full1	Length of BOW vector
full2	4096
full3	Hash code length c

Table 1. Configuration of the CNN for image modality.

Layer	Configuration
conv1	f. $64 \times 11 \times 11$; st. 4×4 , pad 0, LRN,×2 pool
conv2	f. $265 \times 5 \times 5$; st. 1×1 , pad 2, LRN,×2 pool
conv3	f. $265 \times 3 \times 3$; st. 1×1 , pad 1
conv4	f. $265 \times 3 \times 3$; st. 1×1 , pad 1
conv5	f. $265 \times 3 \times 3$; st. 1×1 , pad $1, \times 2$ pool
full6	4096
full7	4096
full8	Hash code length c

"LRN"表示是否使用了

Local Response Normalization 即是否使用正则化处理输出结果, pool 为MaxPooling

Triplet loss

每次进行实例选取时,会选取3个对象: positive, negative, query, 其中query于 positive相对于negative更加接近。这样就有了在Face net中于triplet loss相似的本文triplet label likelihood公式:

$$p(T|\mathbf{F}, \mathbf{G}, \mathbf{G}) = \prod_{m=1}^{M} p((q_m, p_m, n_m)|\mathbf{F}, \mathbf{G}, \mathbf{G}).$$
 (1)

with

$$p((q_m, p_m, n_m)|\mathbf{F}, \mathbf{G}, \mathbf{G}) = \sigma(\theta_{q_m^y p_m^x} - \theta_{q_m^y n_m^x} - \alpha), \quad (2)$$

其中F表示图像提取出的feature map,G表示文本提取出的feature map. where $\theta_{q_m^y p_m^x} = \frac{1}{2} \mathbf{F}_{*q_m}^{\top} \mathbf{G}_{*p_m}$, $\theta_{q_m^y n_m^x} = \frac{1}{2} \mathbf{F}_{*q_m}^{\top} \mathbf{G}_{*n_m}$, $\sigma(x)$ is the sigmoid function $\sigma(x) = \frac{1}{1+e^{-x}}$, and the threshold α is a margin that is enforced between positive and negative pairs, a hyper-parameter. $\mathbf{F}_{*i}^{\top} = f^y(\mathbf{y}_i; w_y)$, and $\mathbf{G}_{*i}^{\top} = f^x(\mathbf{x}_i; w_x)$, where w_x , w_y are the network parameters of textual modality and image modality, respectively.

Inter-modal Triplet loss (Jinter)

用来区分同一类的不同模态之间的feature map的距离,即用来区分同一类内图像和文本之间的距离。 其中,Image to Text 的 inter-modal triplet loss J1和Text to Image 的 inter-modal triplet loss表示为:

$$J_{1} = -log \ p(T|\mathbf{F}, \mathbf{G}, \mathbf{G})$$

$$J_{2} = -log \ p(T|\mathbf{G}, \mathbf{F}, \mathbf{F})$$

$$= -\sum_{m=1}^{M} log \ p((q_{m}, p_{m}, n_{m})|\mathbf{F}, \mathbf{G}, \mathbf{G})$$

$$= -\sum_{m=1}^{M} log \ p((q_{m}, p_{m}, n_{m})|\mathbf{G}, \mathbf{F}, \mathbf{F})$$

$$= -\sum_{m=1}^{M} (\theta_{q_{m}^{y} p_{m}^{x}} - \theta_{q_{m}^{y} n_{m}^{x}} - \alpha - log(1 + e^{\theta_{q_{m}^{y} p_{m}^{x}} - \theta_{q_{m}^{y} n_{m}^{x}} - \alpha})), \quad (3)$$

$$= -\sum_{m=1}^{M} (\theta_{q_{m}^{x} p_{m}^{y}} - \theta_{q_{m}^{x} n_{m}^{y}} - \alpha - log(1 + e^{\theta_{q_{m}^{x} p_{m}^{y}} - \theta_{q_{m}^{x} n_{m}^{y}} - \alpha})), \quad (4)$$

这里通过将query对象选取与positive对象同类但不同形态的对象,通过loss的减少来缩短同类型下不同模态对象之间的hash code的hamming distance,同时增加不同类型之间不同模态对象的距离 最后 得到的inter-modal triplet loss = J1 + J2

Intra-modal Triplet loss (Jintra)

用来区分同一模态下对象之间的分类距离。 其中对于图像类型的对象区分 lossJ3及对于文本类型的对象区分lossJ4采用如下计算方式

$$J_{3} = -log \ p(T|\mathbf{F})$$

$$= -\sum_{m=1}^{M} log \ p((q_{m}, p_{m}, n_{m})|\mathbf{F})$$

$$= -\sum_{m=1}^{M} (\theta_{q_{m}^{y} p_{m}^{y}} - \theta_{q_{m}^{y} n_{m}^{y}} - \alpha - log(1 + e^{\theta_{q_{m}^{y} p_{m}^{y}} - \theta_{q_{m}^{y} n_{m}^{y}} - \alpha})), \ (6)$$

$$J_{4} = -log \ p(T|\mathbf{G})$$

$$= -\sum_{m=1}^{M} log \ p((q_{m}, p_{m}, n_{m})|\mathbf{G})$$

$$= -\sum_{m=1}^{M} (\theta_{q_{m}^{x} p_{m}^{x}} - \theta_{q_{m}^{x} n_{m}^{x}} - \alpha - log(1 + e^{\theta_{q_{m}^{x} p_{m}^{x}} - \theta_{q_{m}^{x} n_{m}^{x}} - \alpha})), \ (7)$$

graph regularization loss (Jre)

通过图谱的之间的距离分类,对得到的hash code进行无监督分类

$$J_{re} = \gamma (\|\mathbf{B}^{y} - \mathbf{F}\|_{F}^{2} + \|\mathbf{B}^{x} - \mathbf{G}\|_{F}^{2}) + \eta (\|\mathbf{F} \cdot \mathbf{1}\|_{F}^{2} + \|\mathbf{G} \cdot \mathbf{1}\|_{F}^{2}) + \beta tr(\mathbf{B} \mathbf{L} \mathbf{B}^{\top}) s.t. \quad \mathbf{B} = \mathbf{B}^{x} = \mathbf{B}^{y} \in \{-1, 1\}^{k \times N},$$
(9)

where \mathbf{B}^x is the hash codes of textual modality and \mathbf{B}^y is the hash codes of image modality. The first and second terms represent the quantization error to solve the relaxed problem. Simultaneously, the third and fourth terms are used to make the balanced bit such that the number of 1 and -1 for each bit on the hash codes should be nearly the same. γ , η and β are parameters employed to balance the weight of each part.

这里Bx By 分别是从文本模态和 图像模态得出的hash code, L为B 的拉普拉斯矩阵, γ、η、β为用 的拉普拉斯矩阵, γ、η、β为用 来平衡的参数, 文中并没给出训 is 练时的取值, 但给出在验证集上 ms 的的取值依次为100, 50, 1 对于 em. 图谱的学习过程, 定义如下:

$$\frac{1}{2} \sum_{i,j=1}^{N} \|\mathbf{b}_i - \mathbf{b}_j\|^2 \mathbf{S}_{ij} = tr(\mathbf{B} \mathbf{L} \mathbf{B}^\top),$$

$$S_{i,j}$$
 $\begin{cases} 1 & b_i \ \text{相似于} b_j \\ 0 & otherwise \end{cases}$

Objective function

结合上述三种loss:不同模态之间的距离,同模态之间的距离,得出hash code的聚类距离于是得到我们的目标函数

$$\min_{\mathbf{B}, w_x, w_y} J = \min_{\mathbf{B}, w_x, w_y} J_{inter} + J_{intra} + J_{re}. \tag{10}$$

对于三个目标的优化,本文 采用固定两个,优化一个的 方式。训练方式如右图所示

这里标出了query对象的选取方式, 对于每个batch, 先对CNN-F进行训 练, 然后训练MPL模型

Input:

Text set X, image set Y, and the set of triplet labels T.

Output:

Parameters w_x and w_y of the deep neural networks, and binary code matrix ${\bf B}$.

Initialization

Initialize neural parameters w_X and w_y , mini-batch size $N_x = N_y = 128$, and iteration number $t_x = N/N_x$, $t_y = N/N_y$.

repeat

Update B according to (12).

for iter= $1, 2, \dots, t_x$ do

Randomly sample N_x instances from \mathbf{X} to construct a mini-batch \mathbf{X}_{N_x} and make up a triplet set where the query instances come from \mathbf{X}_{N_x} .

For each sampled instances \mathbf{x}_i in the mini-batch, calculate $\mathbf{G}_{*i} = f(\mathbf{x}_i; w_x)$ by forward propagation.

Calculate the derivative according to (13).

Update parameter w_x using back propagation.

end for

for iter= $1, 2, \cdots, t_y$ do

Randomly sample N_y instances from \mathbf{Y} to construct a mini-batch \mathbf{Y}_{N_y} and make up a triplet set where the query instances come from \mathbf{Y}_{N_y} .

For each sampled instances \mathbf{y}_i in the mini-batch, calculate $\mathbf{F}_{*i} = f(\mathbf{y}_i; w_y)$ by forward propagation. Calculate the derivative according to (14).

Update parameter w_y using back propagation.

end for

until a fixed number of iterations;

updating B

当CNN-F和MPL的参数确定后,就可以用来更新B的输出,此时loss只有graph regularization loss在起作用,这里sign(x) = 1 if x >= 0 else 0 identity matrix 为单位矩阵

When w_x and w_y are fixed, the objective function in (10) can be expanded as follows:

We compute the derivation of (11) with respect to **B** and infer that **B** should be defined as follows:

$$\mathbf{B} = sign((\mathbf{F} + \mathbf{G})(2\mathbf{I} + \frac{\beta}{\gamma}\mathbf{L})^{-1}), \tag{12}$$

where I denotes the identity matrix.

知乎 @Godder

updating Wx

当B确定的时候,我们按照训练过程, 我们首先更新Wx的值,通过SGD优 化器进行BP优化参数。

$$\frac{\partial J}{\partial \mathbf{G}_{*i}} = \frac{\partial J_{inter}}{\partial \mathbf{G}_{*i}} + \frac{\partial J_{intra}}{\partial \mathbf{G}_{*i}} + \frac{\partial J_{re}}{\partial \mathbf{G}_{*i}} \\
= \frac{1}{2} \sum_{m:(i,p_m,n_m)}^{M} (1 - \sigma (\theta_{ip_m^y} - \theta_{in_m^y} - \alpha)) (\mathbf{F}_{*p_m} - \mathbf{F}_{*n_m}) \\
- \frac{1}{2} \sum_{m:(i,p_m,n_m)}^{M} (1 - \sigma (\theta_{ip_m^x} - \theta_{in_m^x} - \alpha)) (\mathbf{G}_{*p_m} - \mathbf{G}_{*n_m}) \\
+ 2\gamma (\mathbf{G} - \mathbf{B}) + 2\eta \mathbf{G} \mathbf{1}.$$

$$\frac{\partial J_{re}}{\partial \mathbf{G}_{*i}} = \frac{\partial J_{inter}}{\partial \mathbf{G}_{*i}} + \frac{\partial J_{re}}{\partial \mathbf{G}_{*i}} \\
+ \frac{\partial J_{re}}{\partial \mathbf{G}_{*i}} = \frac{\partial J_{inter}}{\partial \mathbf{G}_{*i}} + \frac{\partial J_{re}}{\partial \mathbf{G}_{*i}}$$

updating Wy

这里和上述类似,公式如下

$$\frac{\partial J}{\partial \mathbf{F}_{*i}} = \frac{\partial J_{inter}}{\partial \mathbf{F}_{*i}} + \frac{\partial J_{intra}}{\partial \mathbf{F}_{*i}} + \frac{\partial J_{re}}{\partial \mathbf{F}_{*i}} \\
= -\frac{1}{2} \sum_{m:(i,p_m,n_m)}^{M} (1 - \sigma(\theta_{ip_m^x} - \theta_{in_m^x} - \alpha))(\mathbf{G}_{*p_m} - \mathbf{G}_{*n_m}) \\
-\frac{1}{2} \sum_{m:(i,p_m,n_m)}^{M} (1 - \sigma(\theta_{ip_m^y} - \theta_{in_m^y} - \alpha))(\mathbf{F}_{*p_m} - \mathbf{F}_{*n_m}) \\
+ 2\gamma (\mathbf{F} - \mathbf{B}) + 2\eta \mathbf{F} \mathbf{1}.$$

Triplet sample

对于每次迭代如何选取query对象,这里给出了明确说明。 在每次随机选取P个anchor, 然后随机选取M1个正样本和M2个负样本, 保证anchor到正样本的距离比到负样本距离短。这样就获得了P * M1 * M2个triplet sample

Experiments

- Datasets:
 - (1) MIRFlickr25k
 - (2) NUS-WIDE
- Evaluation Criteria:
 - (1) mAP
 - (2) Precision-Recall curve
 - (3) TopN-precision curve
- ◆ control experiment (对照试验)

- Baselines:
 - (1) CMFH
 - (2) SCM
 - (3) LSSH
 - (4) STMH
 - (5) CVH
 - (6) SePH
 - (7) DCMH
 - (8) PRDH

Deep learning

control experiment

本文利用对照试验,测试了三组loss的作用效果,测试结果以mAP为准

TABLE VII

COMPARISON OF DIFFERENT LOSS FUNCTIONS IN TERMS OF MAP. BEST ACCURACY IS SHOWN IN BOLDFACE. THE CODE LENGTH IS 16

Dataset/L	oss	$J_{intra} + J_{inter}$	$J_{inter} + J_{re}$	$J_{intra} + J_{re}$	$J_{intra} + J_{inter} + J_{re}$
MIRFlickr25k	$I \to T$	0.7104	0.6670	0.5800	0.7110
WIRT HERIZOR	$T \rightarrow I$	0.7414	0.6830	0.5938	0.7422
NUSWIDE	$I \to T$	0.6245	0.5787	0.3750	0.6393
NOSWIDE	$T \rightarrow I$	0.6597	0.6050	0.4058	0.6647

证明了三个loss之间的关系密不可分,缺一不可

Performance of MAP

MIRFLICKR25K

TABLE III

COMPARISON TO BASELINES WITH HAND-CRAFTED FEATURES ON MIRFLICKR-25K IN TERMS OF MAP. BEST ACCURACY IS SHOWN IN BOLDFACE

Task/MIRFlickr25k	Methods	Code Length			
THE HOLEST	Methods	16 bits	32 bits	64 bits	
	CMFH [20]	0.5804	0.5790	0.5797	
	SCM [33]	0.6153	0.6279	0.6288	
	LSSH [21]	0.5784	0.5804	0.5797	
Imaga Ouarr	STMH [39]	0.5876	0.5951	0.5942	
Image Query	CVH [32]	0.6067	0.6177	0.6157	
v.s. Text Database	SePH [23]	0.6441	0.6492	0.6508	
Text Database	DCMH [24]	0.7056	0.7035	0.7140	
	PRDH [25]	0.6819	0.6917	0.6913	
	TDH	0.7110	0.7228	0.7289	
	CMEH (201				
	CMFH [20]	0.5728	0.5778	0.5779	
	SCM [33]	0.5728 0.6102	0.5778 0.6184	0.5779 0.6192	
			0.0		
Tout Quarry	SCM [33]	0.6102	0.6184	0.6192	
Text Query	SCM [33] LSSH [21]	0.6102 0.5898	0.6184 0.5927	0.6192 0.5932	
v.s.	SCM [33] LSSH [21] STMH [39]	0.6102 0.5898 0.5763	0.6184 0.5927 0.5877	0.6192 0.5932 0.5826	
- ,	SCM [33] LSSH [21] STMH [39] CVH [32]	0.6102 0.5898 0.5763 0.6026	0.6184 0.5927 0.5877 0.6041	0.6192 0.5932 0.5826 0.6017	
v.s.	SCM [33] LSSH [21] STMH [39] CVH [32] SePH [23]	0.6102 0.5898 0.5763 0.6026 0.6455	0.6184 0.5927 0.5877 0.6041 0.6474	0.6192 0.5932 0.5826 0.6017 0.6506	

TABLE V

COMPARISON TO BASELINES WITH CNN-F FEATURES ON MIRFLICKR-25K IN TERMS OF MAP. BEST ACCURACY IS SHOWN IN BOLDFACE

Task/MIRFlickr25k	Methods	Code Length			
THE THE TOTAL PROPERTY.	Wiethous	16 bits	32 bits	64 bits	
	CMFH [20]	0.5451	0.5455	0.5451	
	SCM [33]	0.6095	0.6139	0.6143	
	LSSH [21]	0.5712	0.5822	0.5880	
Imaga Ouagu	STMH [39]	0.5944	0.5948	0.6047	
Image Query	CVH [32]	0.5378	0.5378	0.5378	
v.s. Text Database	SePH [23]	0.6984	0.7048	0.7086	
Text Database	DCMH [24]	0.7056	0.7035	0.7140	
	PRDH [25]	0.6819	0.6917	0.6913	
	TDH	0.7110	0.7228	0.7289	
	CMFH [20]	0.5354	0.5353	0.5352	
	SCM [33]	0.6316	0.6349	0.6360	
	LSSH [21]	0.5687	0.5707	0.5689	
Taxt Quarr	STMH [39]	0.5915	0.5931	0.6084	
Text Query	CVH [32]	0.5399	0.5352	0.5412	
V.S.	SePH [23]	0.6438	0.6460	0.6518	
Image Database	DCMH [24]	0.7311	0.7487	0.7499	
	PRDH [25]	0.7340	0.7397	0.7418	
	TDH	0.7422	0.7500	0.7548	

Performance of MAP

NUSWIDE

TABLE IV

COMPARISON TO BASELINES WITH HAND-CRAFTED FEATURES ON NUS-WIDE IN TERMS OF MAP. BEST ACCURACY IS SHOWN IN BOLDFACE

Task/NUS-WIDE	Methods	Code Length			
10001105-11101	Methods	16bits	32bits	64bits	
	CMFH [20]	0.3825	0.3858	0.3890	
	SCM [33]	0.4904	0.4945	0.4992	
	LSSH [21]	0.3900	0.3924	0.3962	
Image Over	STMH [39]	0.4344	0.4461	0.4534	
Image Query	CVH [32]	0.3687	0.4182	0.4602	
v.s. Text Database	SePH [23]	0.5314	0.5340	0.5429	
Text Database	DCMH [24]	0.6141	0.6167	0.6427	
	PRDH [25]	0.5874	0.6154	0.6232	
	TDH	0.6393	0.6626	0.6754	
	CMFH [20]	0.3915	0.3944	0.3990	
	SCM [33]	0.4595	0.4650	0.4691	
Text Query	LSSH [21]	0.4286	0.4248	0.4248	
	STMH [39]	0.3845	0.4089	0.4181	
	CVH [32]	0.3646	0.4024	0.4339	
V.S.	SePH [23]	0.5086	0.5055	0.5710	
Image Database	DCMH [24]	0.6591	0.6487	0.6847	
	PRDH [25]	0.6303	0.6432	0.6568	

TABLE VI

COMPARISON TO BASELINES WITH CNN-F FEATURES ON NUS-WIDE IN TERMS OF MAP. BEST ACCURACY IS SHOWN IN BOLDFACE

Task/NUS-WIDE	Methods	Code Length			
THE STATE OF THE S	Wicthous	16bits	32bits	64bits	
	CMFH [20]	0.3552	0.3549	0.3545	
	SCM [33]	0.4561	0.4664	0.4697	
	LSSH [21]	0.4425	0.4457	0.4539	
Imaga Ouami	STMH [39]	0.5269	0.5210	0.5461	
Image Query	CVH [32]	0.3671	0.3671	0.3672	
v.s. Text Database	SePH [23]	0.6224	0.6469	0.6609	
Text Database	DCMH [24]	0.6141	0.6167	0.6427	
	PRDH [25]	0.5874	0.6154	0.6232	
	TDH	0.6393	0.6626	0.6754	
	CMFH [20]	0.3724	0.3723	0.3722	
	SCM [33]	0.4561	0.4707	0.4799	
	LSSH [21]	0.4153	0.4295	0.4415	
Text Query	STMH [39]	0.5089	0.5160	0.5420	
	CVH [32]	0.3642	0.3596	0.3568	
V.S.	SePH [23]	0.5658	0.5596	0.6016	
Image Database	DCMH [24]	0.6591	0.6487	0.6847	
	PRDH [25]	0.6303	0.6432	0.6568	
	TDH	0.6647	0.6758	0.6803	

Performance of Precision-Recall Curve

Fig. 2. Precision-recall curves. The baselines are based on hand-crafted features. The code length is 32.

Fig. 4. Precision-recall curves. The baselines are based on CNN-F features. The code length is 32.

OLITHWEST UNIVERSE

Performance of TopN-Precision Curve

Fig. 3. TopN-precision curves. The baselines are based on hand-crafted features. The code length is 32.

Fig. 5. TopN-precision curves. The baselines are based on CNN-F features. The code length is 32.

conclusion

本文采用了triplet base作为训练输入,利用三元组的距离强化了不同类型之间 距离的比较效果。

同时通过本文的实验结果,发现通过文本查询图像的精度更高,于是本文作者认为文本中存在更多的信息。

improve

本文对于图像的特征提取网络模型过于简单,导致认为图像中的语义包含较少。

由于CNN的特性,导致特征提取的空间关系较弱,建议采用更深的网络结构,同时融合不同感受野下的特征,增强特征空间关系,同时对于深层特征能够跟好的提取。另外应该抛弃全连接层,转而用1×1的卷积来代替,这样能够减少训练耗

