湛江一中 2023 届高三卓越班 NLXF2023-17 高三数学限时训练 48——数列不等式

学号:	姓名:	

		•	<u></u> ,,			
—、 .	单选题(本大题共	共10小题,共50分)				
1. 已知等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,且满足 $a_5 \le 4$, $S_5 \ge 40$,则该数列的公差 d 可取的值是()						
A. 3	1	B. 1	C1	D3		
2. 已知点 $(n,a_n)(n \in N^*)$ 在函数 $y = \ln x$ 图象上,若满足 $S_n = e^{a_1} + e^{a_2} + \dots + e^{a_n} \ge m$ 的 n 的最小值为 5 ,则 m 的取值范						
围是	()					
A. ([10,15]	B. $(-\infty, 15]$	C. (15,21]	D. $(-\infty, 21]$		
3. ⊟	\mathbb{E} 知数列 $\{a_n\}$ 满足	$3a_{n+1} + a_n = 4 \ (n \ge 1),$	且 $a_1 = 9$,其前 n 项之	和为 S_n ,则满足不等式 $\left S_n-n-6\right < \frac{1}{125}$ 的最小整		
数n	是()					
A. 9)	B. 8	C. 6	D. 7		
4. ⊟	已知数列 $\{a_n\}$ 的前	n 项和为 S_n ,对任意 n	$\in N^*$,有 $S_n = (-1)^n a_n$ +	$+\frac{1}{2^n}+n-3$,且 $(a_{n+1}-p)(a_n-p)<0$ 恒成立,则		
实数 p 的取值范围是()						
Α. ($\left(-\frac{1}{4},\frac{11}{4}\right)$		$B. \left(-\frac{3}{2}, \frac{11}{4}\right)$			
с. ($\left(-1,\frac{11}{4}\right)$		$D. \left(-\frac{3}{4}, \frac{11}{4}\right)$			
5. 已知数列 $\{a_n\}$ 的前 n 项和为 S_n ,且 $\lambda nS_n + a_n < 3\lambda n$ 对任意 $n \in \mathbb{N}^*$ 恒成立,若 $a_n = \frac{2n-1}{2^n}$,则实数 λ 的取值范围为						
(
A. ($\left(\frac{1}{5}, +\infty\right)$	B. $\left(-\infty, \frac{3}{14}\right)$	C. $\left(\frac{3}{14}, +\infty\right)$	D. $\left(-\infty, \frac{2}{9}\right)$		
6. 已知数列 $\{a_n\}$ 的前 n 项和为 S_n ,且 $(\sqrt{2}-1)S_n+a_n=\sqrt{2}$ $(n\in \mathbb{N}^*)$.记 $b_n=a_na_{n+1}$, T_n 为数列 $\{b_n\}$ 的前 n 项和,则使						
$T_n > \frac{1}{2}$	<u>63√2</u> 成立的最小	正整数为()				
A. 5		B. 6	C. 7	D. 8		
7. 已知等比数列 $\{a_n\}$ 满足 $a_5=16$, $a_4-a_3=4$,若 $b_n=na_n$, S_n 是数列 $\{b_n\}$ 的前 n 项和,对任意 $n\in \mathbb{N}^*$,不等式						
$S_n - mb_n \le 1$ 恒成立,则实数 m 的取值范围为()						
A. [4,+∞)	B. $[3,+\infty)$	C. $[2,+\infty)$	D. $[1,+\infty)$		

8. 若 x=1是函数 $f(x)=a_{n+1}x^4-a_nx^3-a_{n+2}x+1$ $(n\in N^*)$ 的极值点,数列 $\{a_n\}$ 满足 $a_1=1$, $a_2=3$,设 $b_n=\log_3 a_{n+1}$, 记[x]表示不超过x的最大整数. 设 $S_n = \left\lceil \frac{2020}{b_1b_2} + \frac{2020}{b_2b_3} + \dots + \frac{2020}{b_1b_n} \right\rceil$,若不等式 $S_n \geq t$,对 $\forall n \in N^*$ 恒成立,则实数t的 最大值为(C. 1010 A. 2020 B. 2019 9. 已知数列 $\{a_n\}$ 满足: $\frac{\left(a_{n+1}+1\right)^2}{a_{n+1}} = \frac{\left(a_n+2\right)^2}{a_n} \left(n \in N^*\right)$, 则下列选项正确的是(A. $0 < a_n < 1$ 时, $a_{n+1} > a_n$ B. $a_n > 1$ | $a_{n+1} < a_n$ C. $a_1 = \frac{1}{4}$ By, $a_{n+1} + \frac{1}{a_{n+1}} > 3n + 18$ D. $a_1 = 4$ By, $a_{n+1} + \frac{1}{a_{n+1}} > 2n + 2$ 10. 已知正项数列 $\left\{a_{n}\right\}$ 中, $a_{1}=1$, $a_{n}=\frac{1-a_{n+1}^{2}}{2a_{\dots 1}}$,若存在实数t,使得 $t\in\left(a_{2n},a_{2n-1}\right)$ 对任意的 $n\in\mathbb{N}^{*}$ 恒成立,则 $t=(a_{2n},a_{2n-1})$ B. $\frac{\sqrt{2}}{2}$ C. $\frac{\sqrt{2}}{2}$ D. $\frac{\sqrt{3}}{2}$ A. $\frac{\sqrt{3}}{2}$ 二、填空题(本大题共6小题,共30分) 11. 在数列 $\{a_n\}$ 中, $a_1=1$, $a_2=2$, $a_{n+2}=a_{n+1}+2a_n\left(n\in\mathbf{N}^*\right)$,记 $c_n=3^n-2 imes\left(-1\right)^n\lambda a_n$,若对任意的 $n\in\mathbf{N}^*$, $c_{n+1}>c_n$ 恒成立,则实数λ的取值范围为_____ 12. 我们把 $F_n = 2^{2^n} + 1 (n = 0, 1, 2L$) 叫"费马数" (费马是十七世纪法国数学家),设 $a_n = \log_2(F_n - 1)$, S_n 表示数列 $\left\{a_n\right\}$ 的前 n 项之和,则使不等式 $\frac{2^2}{S_0S_0} + \frac{2^3}{S_0S_0} + \cdots + \frac{2^{n+1}}{S_0S_n} < \frac{63}{127}$ 成立的最大正整数 n 的值是______ 13. 设 S_n 为正数列 $\{a_n\}$ 的前n项和, $S_{n+1}=qS_n+S_1$,q>1,对任意的 $n\geq 1$, $n\in N$ 均有 $S_{n+1}\leqslant 4a_n$,则q的取值为 14. 若数列 $\{a_n\}$ 满足 $\frac{1}{a_n} + \frac{1}{2a_n} + \frac{1}{3a_n} + \dots + \frac{1}{na} = \frac{3n}{2n+1}$,若 $\frac{\lambda}{a} \le 2$ 恒成立,则 λ 的最大值是_____

15. 已知 S_n 为数列 $\{a_n\}$ 的前 n 项和, $a_1=1, S_{n+1}-S_n=n+1, n\in N^*$. 设 $b_n=a_n\cdot 3^{n-1}$,且数列 $\{b_n\}$ 的前 n 项和为 T_n ,

17. 已知数列 $\{a_n\}$ 满足 $a_1+2a_2+2^2a_3+\ldots+2^{n-1}a_n=n\cdot 2^n(n\in N^*)$.数列 $\{a_n\}$ 的前项n和为 S_n ,若 $S_n\geq \lambda a_n-51$ 恒成立,

 $\frac{1}{4} + \lambda b_n \ge T_n$ 恒成立,则实数 λ 的取值范围是______

16. 已知等差数列 $\{a_n\}$ 和等比数列 $\{b_n\}$,且满足 $a_1=1$, $a_1b_n+a_2b_{n-1}+\cdots+a_nb_1=2^{n+2}-2n-4$.

(2) 设 $c_n = \frac{b_n - 1}{(b_n - a_n)(b_{n+1} - a_{n+1})}$, $S_n = c_1 + c_2 + \dots + c_n$, 则 $S_n = \underline{\hspace{1cm}}$