# Algoritmos de segementação para classificação de aneurismas usando IRM

Nayse da Silva Fagundes

# Contextualização (business problem)

O tempo para detecção de um aneurisma nato é crucial para um tratamento com obtenção de bons resultados para a vida do paciente, detecções tradicionais cumprem esse papel, porém se beneficiaram de melhor rapidez do diagnóstico se integrassem as ferramentas de análise por aprendizado profundo. O intuito então é saber através de experimentos, quais tipos de algoritmos de AP aplicados a um grupo de dados de ressonância são eficazes.

# Definição do problema de pesquisa

Um aneurisma intracraniano, também conhecido como aneurisma cerebral, é um distúrbio cerebrovascular no qual ocorre uma fraqueza na parede de uma artéria ou veia cerebral causando uma dilatação localizada em um vaso sanguíneo. A detecção e quantificação precisas de aneurismas intracranianos não rotos são importantes para a avaliação do risco de ruptura e para permitir que uma decisão de tratamento informada seja tomada.

## **Objetivo Geral**

O objetivo da pesquisa é comparar o resultado das aplicações de um algoritmos de aprendizado profundo quando aplicados a segmentação de imagens de Ressonância Magnética, a fim de ajudar na detecção de aneurismas. A qualidade dos resultados serão baseados nas análises de métricas de segmentação e sua a acurácia.

# Questões de pesquisa e hipóteses

Como escolher entre os métodos de Aprendizado Profundo os algoritmos que são mais propensos a realizar classificações eficazes de RM?

Aplicação de uma Rede Totalmente Convolucional (FCN) que aprende através de um mapeamento de pixels para pixels é possível cpturar características de um aneurisma para diagnóstico?

# Variáveis de resposta (métricas)

Desempenho de detecção dos métodos através das métricas de segmentação, como a acurácia do resultado e a segmentação de instância, a fim detectar e delinear objetos peculiares que aparecem em uma imagem de RM;

# **Fatores e níveis**

| Algoritmos                           | Rede Neural (Rede Totalmente<br>Convolucional)                                 |
|--------------------------------------|--------------------------------------------------------------------------------|
| Quantidade de imagens                | 12                                                                             |
| Dimensões da imagem                  | 10 bits pixel, 1024 níveis de cinza<br>12 bits por pixel, 4096 níveis de cinza |
| Tamanho do dataset de treino da rede | <24                                                                            |

## Que estatísticas/testes você vai usar?

Algoritmos:

Rede neural de código aberto, desenvolvida para segmentação de estruturas anatômicas em imagens médicas.

## Como você vai mostrar os resultados?

Sensibilidade geral do sistema de detecção - em porcentagem(%)

Comparação entre os modelos propostos;

Visualização de alteração de pixels nas imagens utilizadas. (Segmentação de instâncias)

# Realização dos Experimentos.

Dataset -Aneurismas não rompidos









Dataset -Aneurismas rompidos



## Método:

→ Upload do Dataset: aneurismas rompidos e não rompidos

→ Upload dos parâmetros de Teste: imagens 28x28 e 48x48

## Método:

→ Treinamento da Rede Neural

→ Criação de Camadas

## **Testes:**



rompido





[[0.56983066]]
aneurisma rompido

https://radiopaedia.org/cases/cerebral-aneurysm-rupture

# **Testes:**



não rompido

Resultado



[0.49576128]]
aneurisma não rompido

## **Testes:**



não rompido

Resultado



[[0.6240051]]
aneurisma rompido

## **Considerações:**

Apesar dos acertos nos três testes serem > 99%, os níveis de acurácia não estão proporcionais.

Para ser considerado aneurisma rompido == 1.0, porém valor do chute da Rede Neural foram 0.56 e 0.62.

O que possa está ligado ao pouco número de imagens para treino da Rede, 12 fotos tamanhos reais, 6 imagens 28x28 e 6 imagens 48x48.

#### Referências

https://radiopaedia.org/cases/ruptured-intracranial-aneurysm?lang=gb

https://radiopaedia.org/cases/cerebral-aneurysm-rupture?lang=gb

http://neuroradiologyteachingfiles.com/eka.html

https://www.tensorflow.org/tutorials/keras/classification?hl=pt-br

https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tut orials/images/cnn.ipynb#scrollTo=iAve6DCL4JH4

https://www.youtube.com/watch?v=jIMwOBWL-nA