Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US05/008081

International filing date: 11 March 2005 (11.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/552,652

Filing date: 12 March 2004 (12.03.2004)

Date of receipt at the International Bureau: 25 April 2005 (25.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

'4'(d) Anil (100) Vancoda (na 12812; preus ben'ins; salandi, codias:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

April 18, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/552,652

FILING DATE: March 12, 2004

RELATED PCT APPLICATION NUMBER: PCT/US05/08081

Certified by

Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office

)64 U.S. P

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

_	Г

Thi	s is a request for	filing a PR	OVISIONAL AP	PLICATION under	37 CFR 1.53(c).	0
Docket Number:	18388-08963	3		PT 52		
INVENTOR(s)						2.8
Given Name (first and	l middle [if any])	Family Name or Surname		Residence (City And Either State Or Foreign Co		
Steven Porter		Hotelling		San Jose, California		22154 60/
Lex		Bayer		Menlo Park, California		
Brian R.		Land Redwood City, California				
Additional inver	ntors are being nan			I sheets attached hereto		
	· TITL	E OF THE	EINVENTION (500 characters max	.)	
DUAL AXIS VIBRATORY RATE GYROSCOPE						
		CC	DRRESPONDE	NCE ADDRESS		
Direct all correspon	dence to:					i
Customer Nu	mber	00758	·]			
			<u> </u>			
<u>.</u>	ENCLOS	ED APPL		rs (check all that a	pply)	
Specification	Specification No. of 7 Return Postcard					
☐ Drawing(s)	No.of Sheets:	10 CD(s), Number				
Application Data Sheet See 37 CFR 1.76 Other (specify)						
	ME	THOD OF	PAYMENT (cl	eck all that apply)		
	ims small entity st	atus. See 37	CFR 1.27			
Fee Transmittal Form Enclosed (in duplicate) Check Enclosed						
The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.						States
⊠ No.						
Yes, the name of the U.S. Government Agency and the Government contract number are:						
SIGNATURE OF ATTQRNEY OR AGENT						
Signature: Q Ce Smuth						
Attorney/Reg. No.:	Albert C. Smith, Reg. No. 20,355 Dated: 31204				<u> </u>	
CERTIFICATE OF MAILING I hereby certify that this correspondence is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service pursuant to 37 CFR 1.10 in an envelope addressed to: Mail Stop Provisional Patent Application, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date shown below.					37	
Signature:						
Typed or Printed Name: Albert C. Smith Dated: Stale4					1	
Express Mail Mailing	Express Mail Mailing Number: EV 442673967 US					

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

FEE TRANSMITTAL for FY 2004

Patent fees are subject to annual revision.

Applicant claims small entity status. See 37 CFR 1.27

TOTAL AMOUNT OF PAYMENT (\$) 160

Complete if Known				
Application Number	Not Yet Known			
Filing Date	March 12, 2004			
First Named Inventor	Steven Porter Hotelling			
Examiner Name	Not Yet Known			
Art Unit	Not Yet Known			
Attorney Docket No.	18388-08963			

METHOD OF PAYMENT (check all that apply)	FEE CALCULATION (continued)					
☐ Check ☐ Credit Card ☐ Money Order ☐ Other ☐ None ☐ Deposit Account:	3. ADD	DITIONA	L FEE	s		
Deposit Account Number 19-2555	<u>Large Er</u>	ntity	Small I	Entity	Fee Description	Fee Paid
Deposit Account Name Fenwick & West LLP	Fee Code	Fee (\$)	Fee Code	Fee (\$)		
The Commissioner is authorized to: (check all that apply)	1051	130	2051	65	Surcharge - late filing fee or oath	
☐ Charge fee(s) indicated below ☐ Credit any overpayments	1052	50	2052	25	Surcharge - late provisional filing fee or cover sheet	
Charge all required fee(s) or any underpayment of fee(s) due	1053	130	1053	130	Non-English specification	
under 37 CFR §1.16 or §1.17 during the pendency of this application	1812	2,520	1812	2,520	For filing a request for ex parte reexamination	
Charge fee(s) indicated below, except for the filing fee	1804	920*	1804	920*	Requesting publication of SIR prior to Examiner action	
Charge rector management and arm green	1805 1	,840*	1805	1,840*	Requesting publication of SIR after Examiner action	
to the above-identified deposit account.						
FEE CALCULATION	1251	110	2251	55	Extension for reply within first month	
1. BASIC FILING FEE	1252	420	2252	210	Extension for reply within second month	
Large Entity Small Entity	1253	950	2253	475	Extension for reply within third month	
Fee Fee Fee Fee Description Fee Paid	1254	1,480	2254	740	Extension for reply within fourth month	
Code (\$) Code (\$)	1255	2,010	2255	1,005	Extension for reply within fifth month	
1001 770 2001 385 Utility filing fee	1401	330	2401	165	Notice of Appeal	
1002 340 2002 170 Design filing fee	1402	330	2402	165	Filing a brief in support of an appeal	
1003 530 2003 265 Plant filing fee	1403	290	2403	145	Request for oral hearing	
1004 770 2004 385 Reissue filing fee	1451	1,510	1451	1,510	Petition to institute a public use proceeding	
1005 160 2005 80 Provisional filing fee 160	1452	110	2452	55	Petition to revive - unavoidable	
SUBTOTAL (1) (\$) 160	1453	1,330	2453	665	Petition to revive - unintentional	
2. EXTRA CLAIM FEES FOR UTILITY AND REISSUE	1501	1,330	2501	665	Utility issue fee (or reissue)	
Extra Claims Fee from Fee Paid	1502	480	2502	240	Design issue fee	
Total Claims -20** X = 00	1503	640	2503	320	Plant issue fee	
Independent	1460	130	1460	130	Petitions to the Commissioner	
Multiple Dependent = 00	1807	50	1807	50	Processing fee under 37 CFR 1.17(g)	
Large Entity Small Entity	1806	180	1806	180	Submission of Information Disclosure Stmt	
Fee Fee Fee Fee Description Code (\$)	8021	40	8021	40	Recording each patent assignment per property (times number of properties)	
1202 18 2202 9 Claims in excess of 20	1809	770	2809	385	Filing a submission after final rejection (37 CFR 1.129(a))	
1201 86 2201 43 Independent claims in excess of 3	1810	770	2810	385	For each additional invention to be examined (37 CFR 1.129(b))	
1203 290 2203 145 Multiple dependent claim, if not paid	1801	770	2801	385	Request for Continued Examination (RCE)	
1204 86 2204 43 **Reissue independent claims over original patent	1802	900	1802	900	Request for expedited examination of a design application	
1205 18 2205 9 **Reissue claims in excess of 20 and over original patent	Other fee (specify)					
SUBTOTAL (2) (\$) .00 SUBTOTAL (3) (\$) .00						
or number previously paid, if greater; For Reissues, see above	•Reduced	d by Basic	Filing F	ee Paid		

SUBMITTED BY				Complete (if applicable)
Name (Print/Type)	Albert C. Smith	Registration No. (Attorney/Agent) 20,355		Telephone (650) 335-7296
Signature	Q.	C. Smith	Date	3/12/04

DUAL AXIS VIBRATORY RATE GYRASCOPE

Parameter			
Vibrating Structure			
InPhase Signal Error			
Correction			
Signal Transmition to			
Vibrating Structure			
Output			
Vibration Isolation			
Signal-to-Noise and			
Bandwidth			
Full Scale Rate			

MG3	Improvement
1 x Etched 6 fold	Cheaper,
symmetric Beam	Smaller
Digital subtraction	Easier to manufacture
Helical Coil Springs	Easier to manufacture
X 4	
Digital (serial	Fully Integrated, no
interface)	need for additional
	ADCs
Helical Coil Springs	Easier to manufacture
X 4	
Configurable	Wider range of
through serial	applications
interface	
1000 deg/sec	Wider range of
	applications

List of Drawings:

- Figure 1: Shows an isometric assembled and exploded view of the Vibratory Structure.
- Figure 2: Shows isometric and plan views of several modes shapes of the Vibratory Structure.
- Figure 3: Shows an isometric view of the Beam Assembly
- Figure 4: Shows an isometric assembled and exploded view of the Signal PCB
- Figure 5: Shows an isometric assembled and exploded view of the Drive Side Assembly
- Figure 6: Shows an isometric assembled and exploded view of the Sense Side Assembly
- Figure 7: Shows an isometric assembled and exploded view of the Suspended Assembly
- Figure 8: Shows an isometric assembled and exploded view of the Base Assembly
- Figure 9: Shows an isometric assembled and exploded view of the Complete Assembly
- Figure 10: Shows a block diagram representation of the top level ASIC architecture

Features and Advantages

1) Vibratory element: Geometry, symmetry and structure of beam allows 1 beam structure (and a single frequency) to be used for sensing rate about two axes. Structure also allows for flat coil assemblies to detect motion. Structure can be manufactured by economical production process (chemical etching).

State of the Art: Many dual axis gyroscopes employ two vibratory structures – one for each axis. Some dual axis gyroscopes do use a single beam structure, but these structures are of different geometry and require expensive manufacturing procedures.

2) Integrated A/D converters. Integrating A/D converts with the sensor allows sensor to output data in a convenient digital format.

State of the Art: Most gyroscopes are fully analog and usually require large off chip capacitors required for analog filtering, as well as conformal coating of these capacitors.

3) Digital Trimming of Error Sources: Various registers on chip allow each sensor to have its error signals minimized during a factory calibration procedure.

State of the Art: These errors are mechanically trimmed by grinding the beam or realigning the transducers.

4) Programmable Bandwidth: Sampling and digital filtering processes are user configurable and allow for the user to essentially program the bandwidth of the sensor by simply writing to a control register.

State of the Art: Some gyroscopes do allow the user to set the bandwidth by adjusting external components such as resistors and capacitors.

5) Dual purpose Suspension System: Springs are used both as an isolating structure and to pass electrical signals to the components of the sensor.

State of the Art: Thin, fragile leads are used to convey electrical signals, some type of beam/damper assembly is used for vibration isolation.

6) Timing Synchronization: All data conversions, phase references, and electrical processes are timed according to the natural resonant frequency of the vibratory element. This allows for various benefits in signal noise, and error matching (tracking) over wide operation conditions. Sate of the Art: Timing performed in analog domain

Description of the Preferred Embodiment:

Introduction:

The sensor operates in a similar manner to a Tuning Fork Gyroscope. The fundamental principle entails vibrating two proof masses with equal amplitude but in opposite directions. When rotated about an axis orthogonal to direction of forced vibration, the Coriolis force produces an orthogonal vibration which is detected by transducers, and is proportional to angular rate $[F_{\text{Coriolis}} = -2 \text{ m } (\omega \times v)]$.

First the mechanical parts and assembly will be described, and then the signal processing, control and system level interactions.

Mechanical parts and Assembly:

The key element of the sensor is the Vibratory Structure. Referring to Figure 1, the Vibratory Structure is made up of a Beam Element, 2 Magnet Holders and 2 Magnets. The Beam Element is of a hexagon shape and composed of several winding serpentine beam lengths. The beam is designed to be 6 (or more) fold axially symmetric. The beam is manufactured by chemical etching, fine blanking, stamping or electro-discharge machining a sheet of such metal as elinvar, stainless steel, beryllium copper, spring steel or other suitable alloy. Alternatively, quartz or silicon may be used to form the beam shape through conventional photolithographic etching processes. Physical vapor deposition processes, such as sputtering, may also be used to produce the desired beam shape. It is desirable that the material of the Beam Element maintain a constant modulus of elasticity over temperature so that the vibration frequency remains suitably constant over the operating temperature of the sensor. The material should be homogenous and the tolerances of the part should be such as to maximize the symmetry between serpentine beam lengths in order create symmetric elastic spring properties in the various serpentine beam lengths, which is required to minimize vibration trajectory misalignment errors. Three serpentines beam lengths are connected two one of the magnet holders, while three other serpentines are connected to the other magnet holder. This allows the magnet holders to move freely with respect to each other. The Magnet Holders are formed by conventional means such as are screw machining, metal injection molding, or casting a non magnetic material, such as certain stainless steels. The Magnet Holders are attached to the Beam Element by welding, brazing, mechanical fastening, adhesive bonding, or soldering. Two cylindrical permanent magnets are fixed inside the magnet holders with adhesive, mechanical fastening, or magnetic self attraction. The remaining 6 serpentines are connected to a fixed reference (the Mount plate).

Referring to Figure 2, the design of the beam is such that it allows the two Magnets (and Magnet Holders) to vibrate along the X-axis in a counter phase mode, which we will call Drive Mode. The vibratory structure has a further resonant mode, the Sense Mode, which is close in frequency to Drive Mode (to attain a magnification effect), and allows the 2 Magnets to vibrate in any direction in the ZY plane. The 6 fold symmetry of the beam is necessary to allow motion

of the Magnets in any direction in the ZY plane so that two axes of motion can be detected – specifically motion along the Y axis, and motion along the Z axis. The 6 fold symmetry is also necessary to ensure that the error in the Drive Mode trajectory (motion not along the X-axis) is minimized. The vibratory structure is further designed such that other modes are distant in frequency from the Sense and Drive Modes in order to minimize cross coupling effects. An example is the In Phase motion, which is significantly lower in frequency than Drive Mode because of lengths of the 6 mounting serpentine beams.

Figure 3 shows the Beam Assembly. The Beam Assembly is comprised of the Vibratory Structure which is attached to the Mount Plate by welding, brazing, soldering, adhesive bonding, or mechanically fastening the ends of the 6 serpentine beam lengths to protrusions of the Mount Plate. The Mount Plate is designed such that it allows the Vibratory Structure enough physical space to allow the Beam Element to vibrate unobstructed. The metallic Mount Plate is made by stamping, casting, or metal injection molding.

Figure 4 shows the Signal PCB (perforated circuit board). Attached to the Signal PCB are various electronic components. A capacitive Shield Plate is attached to the Signal PCB by soldering, welding, or brazing. The Shield Plate is used to prevent capacitive coupling between the Sense Coils and the various traces and pins on the Signal PCB. The capacitive Shield Plate is a made from an electrically conducting, but also non-magnetic material, such as phosphor bronze, and can be formed through conventional means such as stamping, metal injection molding, or casting. The AGC Coil is attached to the back side of the Signal PCB with adhesive or mechanical fastening. The AGC Coil (and all subsequently mentioned coils) is manufactured by winding insulated electrically conductive wire, such as copper, around a spindle which is later removed. Coils can also be formed by spiraling traces on several PCB layers to generate a coil structure or by depositing metal films onto a substrate and then etching coil turns with photolithographic methods. Two curved Pins (extruded conductive metal, such as phosphor bronze) are also attached to the PCB.

Figure 5 shows the Drive Side Assembly. The Drive Side Assembly is designed to locate the Drive Coil relative to the Vibratory Structure. The Drive Side Assembly consists of a plastic injection molded part, the Drive Mold, which incorporates a location feature for the Drive Coil. The Drive Coil is attached with adhesive, mechanical fastening, heat staking or ultrasonic welding. A magnetically permeable (such as Iron) plate is attached to the rear of the mold. This plate is used to help align the magnetic field (flux lines) generated by the two Magnets of the Beam Assembly so as to maximize the ability of the various coil transducers to detect motion of the Magnets. Several pins are attached to the Drive Mold and are used to carry electrical signals from Drive Side Assembly to the SignalPCB.

A similar arrangement makes up the Sense Side Assembly, as shown in Figure 6. However, unlike the Drive Side Assembly, instead of a Drive Coil, the Sense Mold holds 2 pairs of Sense Coils. The two sets of Sense Coils are positioned at 90 degrees to each other, and will be later assembled in close proximity to one of the Magnet of the Vibratory Structure. These coils are used to detect rotation about the Y, and Z axes. Each set of coils are connected with opposite polarity (wound in opposite directions), such that the majority of motion along the X axis (Drive

Mode vibrations) will not be detected by these coils, whereas motion about the Y, or Z axis respectively, will be detected (sense Mode vibration).

Figure 7 shows the Suspended Assembly. The Drive Side Assembly is attached to the Beam Assembly (Mount Plate tangs) by soldering, welding, brazing or mechanical fastening. The Beam Assembly is further attached to the Sense Side Assembly, in a similar manner to form a compact integrated assembly, which positions the Drive Coil in close proximity to one of the Magnets of the vibratory structure, and the AGC and Sense Coils in close proximity to the other Magnet. The various cross connecting pins are connected (soldered) into the Signal PCB to establish electrical routes through the Suspended Assembly.

Figure 8 shows the Base Assembly. The Base assembly consists of a plastic injection molded part, the Base Mold, which has 4 Pins attached to it. The Belly Plate which is a conducting metallic part made by conventional means such as stamping, casting or Metal injection molding, is attached to the Base Mold by adhesively bonding, heat staking, ultra-sonically welding, or mechanically fastening. A Gasket, molded out of rubber, such as Silicon, is inserted between the Base Mold and Belly Plate as shown. Helical Springs are connected to the pins by soldering, welding, brazing, or mechanical fastening. The Helical Springs are made from electrically conducting material that is wound into a helical spiral shape.

Figure 9 shows the Complete Assembly. The Suspended Assembly is positioned onto the 4 Helical Springs, and attached by soldered, welding, brazing or mechanical fastening. The purposes of the helical springs are two fold: firstly, the springs allow electrical signals to be passed from the Pins in the Base Mold to the Signal PCB; secondly, the springs provide vibratory isolation between the suspended assembly and the base of the unit. This isolation is necessary in order to prevent unwanted vibrations (linear acceleration, mass mismatch effects) from being detected.

Lastly, a Can is then attached to the Belly Plate of the Base Assembly to form a closed container that is used to shield the sensor from undesired interference sources, such as Radio Frequencies (RF) and external magnetic fields. The Gasket of the Base Assembly forms a seal against the can so as to prevent moisture from entering the assembly.

Signal Processing, Control and System Level Interactions:

The Signal PCB contains an ASIC (Application Specific Integrated Circuit), and EEPROM (Erasable Programmable Memory) and other discrete components such as capacitors and resistors. The ASIC performs all the necessary signal processing and control required for the sensor to perform.

Please refer to Figure 10 for an architectural view of the ASIC.

The various coils in the assembly are used as transducers which are able detect or induce motion of the Magnets. The Vibratory Structure is excited at its natural resonant frequency by the sending current through the Drive Coil, which is situated close to one of the Magnets attached to the vibratory structure. This produces a corresponding sine wave signals generated on the AGC

Coil, which is located close to the other Magnet. The amplitude of this sine wave represents the physical amplitude of vibration of the magnets. This signal on the AGC coil is amplified and is used to establish a self correcting feedback loop (automatic gain control loop) which adjusts the level of current supplied to the Drive coil so as to maintain a given level of vibratory amplitude.

When the sensor is rotated, low level voltage signals are generated on the Sense Coils by the Coriolis Effect. The sense signals have a 90 degree phase reference (cosine signal) relative to the AGC signal, since Sense Vibrations occur at the Drive Mode Frequency and are therefore off resonance. The ASIC uses a digital phase lock loop (PLL) in order to phase lock to the AGC signal and generate a fixed 90 degree phase shift. This is accomplished by using a high frequency oscillator which is divided down to a frequency that matches the natural vibration frequency of the Vibratory Structure and locked to a phase reference (such as the zero crossing point) of the AGC signal.

Various error signals on the sense channels are compensated for by means of programmable digital to analog converters (DACs) that add or subtracted scaled signals to the sense channels in order to correct for these errors. Error sources include a large In Phase (Drive Mode) signal, a DC offset signal from the pre-amplifiers, and a Cross Axis signal (some amount of motion about the Y axis will be detected along the Z axis).

Once these error signals are electronically removed, the sense signals are demodulated (the desired sense signal has a 90 degrees phase relationship to the AGC signal) which allows the sense signal to be fully extracted while parasitic vibrations are cancelled. Since the desired signal is of a cosine nature, in order to detect the signal amplitude, the signals are also rectified. The demodulated and rectified signals are then converted to digital levels through the use of conventional analog-digital converts, such as a Sigma Delta Converter type. Digital filtering is further performed in order to remove the unwanted high-frequency components present on the signals. The timing of the ADC is synchronous with the vibration frequency of the Vibratory Structure. This improves signal to noise of the signal by further removing certain error sources, such as In Phase (Drive Mode) signals still present on the signal and harmonics created by demodulation. The sense signals are then scaled in order to account for unit to unit variations, so that the rate output will be consistent across all units.

The results of each ADC conversion are accumulated in a register on the ASIC. The number of accumulated conversions is set by a user configurable control register. By accumulating several samples, the sense signals are averaged which improves the ratio of signal to noise on the signal. Furthermore, by allowing the user to set the number of samples that are averaged, the user is capable of controlling the effective bandwidth of the sensor.

The ASIC further has conventional temperature sensor and voltage level detectors which are fed through ADCs so that the temperature of the sensor, as well as the supply voltage can be reported. These values are need for higher order error correction for temperature and voltage dependant phenomena.

The ASIC communicates with an external microcontroller or microprocessor using a serial 2 wire interface, such as Philips' I2C interface. Both the ASIC and the EEPROM act as slave devices. During factory calibration, many of the error signals are measured and the appropriate scaling factors stored in the EEPROM. During normal operation, an external microprocessor or microcontroller reads in the stored calibration values from the EEPROM and then writes them to RAM on the ASIC. The ASIC uses these stored values in RAM to set the appropriate DAC levels used for performing the error corrections discussed above. The 2 wire interface is used to conserve on the number of connections required between the external package and the suspended assembly.

Lastly, the ASIC includes on chip voltage regulators which are used to maintain a constant voltage supply reference to the various block of the ASIC.

Express Mail Label No. EV 442673967US
Title: Dual Axis Vibratory Rate Gyroscope
Inventor(s): Steven P. Hotelling, et al.
Atty. Docket No.: 18388-08963

This beam serpentine
is fixed at this location (6x) by
its attachment to the Mount
Plate

Vibratory Structure

Express Mail Label No. EV 442673967US Title: Dual Axis Vibratory Rate Gyroscope Inventor(s): Steven P. Hotelling, et al. Atty. Docket No.: 18388-08963

Drive Mode: Counter Phase motion - both magnets move along X - direction, but magnets move in opposite directions

Sense Mode: Magnets move in YZ plane, in opposire directions

In Phse Mode : In Phase Motion (both magnets move along X direction) in same direction

Figure 2

ASSEMBLED VIEWS

Figure 4

Express Mail Label No. EV 442673967US Title: Dual Axis Vibratory Rate Gyroscope Inventor(s): Steven P. Hotelling, et al. Atty. Docket No.: 18388-08963

Drive Side Assembly

Assembled View

Exploded View

Express Mail Label No. EV 442673967US Title: Dual Axis Vibratory Rate Gyroscope Inventor(s): Steven P. Hotelling, et al. Atty. Docket No.: 18388-08963

Exploded View

Express Mail Label No. EV 442673967US Title: Dual Axis Vibratory Rate Gyroscope Inventor(s): Steven P. Hotelling, et al.

Atty. Docket No.: 18388-08963

Suspended Assembly

Assembled View

Express Mail Label No. EV 442673967US Title: Dual Axis Vibratory Rate Gyroscope

EXPLODED VIEW

