Wicked Windows and Abominable Anti-reflection Coats for Hellish High Frequencies

Or: the Cursed Development Cycle of the BA220/270 Thin Window

Presented by Miranda Eiben

Happy Halloween!

We made three BA220/270 windows

Coded for clarity*:

1st window:

• 2nd window:

• 3rd window:

* We'll be skipping around in the timeline a bit

AGENDA*

Hellish High Frequencies
Wicked Windows
Abominable Anti-reflection Coats

* We'll be skipping around in the timeline a bit

Background

HELLISH HIGH FREQUENCIES

Physics from the CMB

Current Constraints

Other Sources of Spectral Power

Observe at multiple frequencies

(for component separation)

Limit noise

(to reduce survey time)

But there are some problems...

- 1) Absorption/Emission
- Power emitted scales with absorption like:

$$p(\nu, \alpha, T, t) = \frac{h\nu (1 - \exp[-\alpha t])}{\exp(\frac{h\nu}{kT}) - 1}$$

1) Absorption/Emission

Power emitted scales with absorption like:

•
$$p(\nu, \alpha, T, t) = \frac{h\nu (1 - \exp[-\alpha t])}{\exp(\frac{h\nu}{kT}) - 1}$$

Component	Power to Det (pW) [220/270 GHz]
СМВ	0.04/0.02
Atmosphere	2.87/4.40
Forebaffle	0.62/0.70
Window	1.43/2.25
Cold Optics	0.37/0.42

1) Absorption/Emission

Power emitted scales with absorption like:

•
$$p(\nu, \alpha, T, t) = \frac{h\nu (1 - \exp[-\alpha t])}{\exp(\frac{h\nu}{kT}) - 1}$$

• For the vacuum window, there is only one parameter that is controllable: *t*

1) Absorption/Emission

Power emitted scales with absorption like:

•
$$p(\nu, \alpha, T, t) = \frac{h\nu (1 - \exp[-\alpha t])}{\exp(\frac{h\nu}{kT}) - 1}$$

- For the vacuum window, there is only one parameter that is controllable: t(thickness)
- This also sharply reduces the expected noise on a detector

- 2) Anti-reflection Coats
- Change in impedance into a material will reflect power

- 2) Anti-reflection Coats
- Change in impedance into a material will reflect power
 - Requires a coating that causes destructive interference (1/4 λ)

2) Anti-reflection Coats

- Change in impedance into a material will reflect power
 - Requires a coating that causes destructive interference (1/4 λ)
- $1/4 \lambda$ at 250 GHz = 0.24 mm
 - Needs to be a consistent thickness over ~70 cm diameter

2) Anti-reflection Coats

- Change in impedance into a material will reflect power
 - Requires a coating that causes destructive interference (1/4 λ)
- $1/4 \lambda$ at 250 GHz = 0.24 mm
 - Needs to be a consistent thickness over ~70 cm diameter
 - Also: broad bandwidths reduce efficacy of AR
 - 220/270 fractional bandwidth ~ 0.4

Problem #1

WICKED WINDOWS

Window Material

Typical window materials compared

Window Material	Ultimate Tensile Strength (MPa)	Elastic Modulus (GPa)	Thickness for Safety Factor of 3 (mm)
HDPE	20-25	0.9	12.7-17.7
UHMWPE	22-40	0.7	5.5-13.6
HMPE Laminate	120-135	1.1-1.3	1.2-1.4

Window Material

Typical window materials compared

sile	Elastic Modulus (GPa)	Thickness for Safety Factor of 3 (mm)
	0.9	12.7-17.7
	0.7	5.5-13.6
	1.1-1.3	1.2-1.4

What is HMPE?

High Modulus Polyethylene (HMPE, commercial name Dyneema)

- Long aligned strands
- Very high density
- Very high strength

Window Compression

Windows need to be compressed to reduce permeation rate

When Lamination Goes Wrong

1st window

Layer Misalignment And Slipping

One edge was thinner than the others

 This allowed the window to slip in the clamping mechanism

Layer Misalignment And Slipping

One edge was thinner than the others

- This allowed the window to slip in the clamping mechanism
- This caused a pinched o-ring, and caused the window to fail its initial permeation checks

Layer Misalignment And Slipping

One edge was thinner than the others

- This allowed the window to slip in the clamping mechanism
- This caused a pinched o-ring, and caused the window to fail its initial permeation checks
- Fixed by bulking up thickness of edge with tape

Mechanical Difficulties Led to Improved Testing

Previous quality assurance testing:

- Pre-deflection in-band S11 measurement
- Deflection
- Gas accumulation rate

New quality assurance testing:

- Pre-deflection in-band S11 measurement
- Deflection
- Initial/final pump out pressure
- Gas accumulation rate
- Post-deflection in-band S11 measurement
- Edge helium leak check
- Helium diffusion rate

Problem #2

ABOMINABLE ANTI-REFLECTION COATS

Previous AR Coats

Sintered PTFE (sPTFE)

- Commercial names Porex/Zitex
 - Manufacturing:
 - A cylinder (billet)
 - Skive (cut) a thin membrane

Previous AR Coats

Sintered PTFE (sPTFE)

- Commercial names Porex/Zitex
 - Manufacturing:
 - A cylinder (billet)
 - Skive (cut) a thin membrane
 - Large scale difficulties
 - 1. Ideal density is difficult to manufacture
 - 2. Ideal thickness difficult to skive

C

Previous AR Coats

Expanded PTFE (ePTFE)

- Previously used Teadit (30/40, 95, 150 GHz)
 - Manufacturing:
 - Resin extruded then stretched

C

Previous AR Coats

Expanded PTFE (ePTFE)

- Previously used Teadit (30/40, 95, 150 GHz)
 - Manufacturing:
 - Resin extruded then stretched
 - Large scale difficulties
 - 1. Ideal thicknesses difficult to make
 - 2. Consistency of parameters
 - Thickness and density tends to vary across a sheet

Multi-layer AR Coats

Chebyshev Antireflection Coats

Uses Chebyshev polynomials to calculate ideal multilayer anti-reflection coats over a broad bandwidth

DeWAL

Extremely thin ePTFE – t ~ 70 µm

Extremely low density – n~1.05-1.2

Extremely... stackable?

First window anti-reflection coat

Don't use bulk PTFE on the windows

Thickness variation across roll

DeWAL Thickness Distribution: BA4 Cold Optics Witness Samples

Thickness variation across roll

DeWAL Thickness Distribution: New Roll Witness Samples

Redesigned DeWAL Only AR

Second window anti-reflection coat

Can't add layers to a compressed stack

Difficulty controlling final parameters

CONCLUSIONS

CONCLUSIONS

- We have successfully made a thin window for a large aperture high frequency BICEP Array receiver!
- Updated quality assurance testing for final thin windows
- For more information:
 - About Chebyshev or DeWAL AR coats
 - arXiv:2407.17604
 - About Thin HMPE windows
 - Full paper coming soon!

This work was made possible by many people, including Keara Carter (above), Mike Echter, Brodi Elwood, Robert Kimberk, John Kovac, Paul Grimes, Matthew Miller, Matthew Petroff, Annie Polish, and Clara Vergès