Final semester project

Lu Wang

Background

In this research, we will investigate the diagnose diseases using immunosignature, a customized non-natural peptide array development in the lab I am working at. On the peptide array, there are 330,000 non-natural peptides generated using program aimed at diversifying the peptide space coverage. And the way the technology works is to get a drop of blood from an individual and put it onto the array. The antibodies in the blood will then bind onto the array based on antibody-specific binding. And certain method can be used to illuminate the binding result and turn into intensity value. By investigating the binding result, we will be able to tell if the individual is healthy, or ill, and which disease does he/she have. And since the immune system is too complicated and we have too many features (each peptide serves as a feature), peptide selection is needed before the real diagnosis. In this research, we will test if a feature selection method is appropriate to select the features needed for diagnosing diseases.

Question to be investigated

In this research we want to test if using two tale T-Test comparing healthy samples and disease samples is a good feature selection method. Because by selecting peptides that are significantly different, it can either be the result of disease specific factor, or it can be the result of general inflammation that occurs in any disease. Which means in this research, we will test if there is unique factor underlying each set of feature selected from T-Test or there is a common factor underlying all of them.

Data collection

To test this, we will use three groups of samples, healthy people, dengue patients and malaria patients. Peripheral blood will be drawn from each individual. Same amount of blood will be put onto the array. Wait certain amount of time for the antibodies in the blood to bind to specific peptides and then wash the blood away. What are left are only the binded antibodies. Using secondary antibody attached with fluorescence, we can quantify the amount of antibody binded at each location. Signal intensity is gained for each peptide and used as a feature. So at last, for each sample, we will have a list of 330,000 features each with an intensity value. Then we will do a two tale T-Test between dengue and healthy, malaria and healthy samples. And select the top three features in each comparison based on p-value. Each feature is a variable, so

we will have ten variables in total. The dataset will use will consist of the ten variables and the observations will consist of all the samples from healthy, dengue and malaria patients.

Models to be tested

In this research, we will test two models.

Two factor model

The first model will be that each set of peptides selected from the same comparison group will have unique underlying factor. And because we want the factor to be disease specific, we need to eliminate the covariance of the underlying variables. The path model is shown below.

If this model holds, then we can conclude that the selection method is applicable to select disease specific peptides. And further analysis can be done using the peptides selected in this way.

Concerning identification, according to three-indicator rule

$$\Lambda = \begin{bmatrix}
1 & 0 \\
\lambda_{21} & 0 \\
\lambda_{31} & 0 \\
0 & 1 \\
0 & \lambda_{52} \\
0 & \lambda_{62}
\end{bmatrix}$$

$$\Phi = \begin{bmatrix}
\phi_{11} & 0 \\
0 & \phi_{22}
\end{bmatrix}$$

All the conditions hold, as a result, this model is identified.

One factor model

The second model I will test here is that there is one common factor loads onto all the variables. The path model is shown below.

If this model holds, then it means that there is one common factor underlying all the peptides selected from different comparison, which indicates this T-Test selection method is not a good

way to find disease specific peptides. Others methods are needed to find disease specific signatures.

Concerning the identification, according to the three-indicator rule, this model is also identified.

Test of model fit

Two factor model

To evaluate the fit for the two factor model. I used the following model script

MODEL: F1 BY x1 x2 x3; F2 by x4 x5 x6;

F1 with F2@0;

When we look at the global fit indices below

```
Chi-Square Test of Model Fit↓
                                               117.100↓
          Value
          Degrees of Freedom
                                                     9 \downarrow
          P-Value
                                                0.00004
RMSEA (Root Mean Square Error Of Approximation)↓
4
          Estimate
                                                 0.5114
          90 Percent C.I.
                                                 0.431 0.595↓
          Probability RMSEA <= .05
                                                 0.0004
\Psi
CFI/TLI↓
          CFI
                                                 0.6824
          TLI
                                                 0.469↓
Chi-Square Test of Model Fit for the Baseline Model↓
                                               354.482↓
          Value
          Degrees of Freedom
                                                    15 \downarrow
          P-Value
                                                0.00004
\downarrow
SRMR (Standardized Root Mean Square Residual)↓
                                                 0.478↓
          Value
1
```

The chi-square value is 117, not too bad. However, when we look at the other indices, the fitting seems to be poor. RMSEA has a 90% C.I. of (0.431, 0.595), indicating bad fit. CFI value is 0.682, also means bad fit. And SRMR is 0.478, far larger than 0.05, which also means bad fit. So overall, all the global fit indices indicates the model fits poorly, which means the two factor model is not an appropriate model for the data.

When look into the local fit information to find the aspect responsible for the bad fit.

Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr X2 X5↓ Х3 0.0054 X1 X2 0.002 -0.002↓ Х3 0.003 0.002 0.0024 X4 4.222 4.245 4.414 0.0004 X5 4.215 4.452 4.342 0.000 0.0034X6 4.090 4.450 4.461 0.000 0.0034 Ψ \downarrow Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr X6↓ 0.0054 X6 4

The z-score for the covariance between x1-x3 and x4-x6 are all over 4, indicates the residual covariance are too big. That should be the part responsible for the lack of fit.

And from the modification index output below

Minim	um M.I. value	for pr	inting the	modifica	ntion index	0.000↓
4						
			M.I.	E. P. C.	Std E.P.C.	StdYX E.P.C.
4						
	atements↓					
4						
F1	BY X4		1.781	0.050	0.144	0. 099↓
F1	BY X5		0.118	0.023	0.065	0. 022↓
F1	BY X6		3.553	0.116	0.331	0.162↓
F2	BY X1		0.343	0.113	0.147	0.045↓
F2	BY X2		3.037	0.917	1.188	0.133↓
F2	ву хз		0.784	0.297	0.385	0.059↓
4						
ON/BY	Statements↓					
4						
F1	ON F2	14				
F2	BY F1		37.494	2.079	0.943	0. 943↓
F2	ON F1	14				
F1	BY F2		37.494	0.428	0.943	0.943↓
4						
WITH:	Statements↓					
4						
X4	WITH X1		0.167	0.072	0.072	0.072↓
X4	WITH X2		3.242	-0.860	-0.860	-0.317↓
X4	WITH X3		3.034	0.531	0.531	0.406↓
X5	WITH X1		0.528	0.224	0.224	0.252↓
X5	WITH X2		3.586	1.591	1.591	0.663↓
X5	WITH X3		3.844	-1.051	-1.051	-0.909↓
X6	WITH X1		1.604	-0.362	-0.362	-0.216↓
X6	WITH X2		0.132	0.282	0.282	0.062↓
X6	WITH X3		2.440	0.776	0.776	0.356↓
F2	WITH F1		37.494	3.486	0.943	0.943↓

By allowing F1 and F2 to correlate, the model will improve a lot, with a M.I. value of 37.494 and an E.P.C value of 3.486, both significantly larger than to loose other constraints.

So when taking all the above discussions into consideration, the two factor model is a bad fit. And the bad fit is caused by constraining F1 not to correlate with F2 because the goal is to find disease specific peptides. And the constraint of F1 not correlating with F2 caused the residual covariance between x1-x3 and x4-x6 to be larger than normal, caused the bad fit.

One factor model

For the one factor model, the following model script in Mplus is used

The global fit indices is followed:

```
Chi-Square Test of Model Fit↓
4
                                            22.817↓
          Value
          Degrees of Freedom
                                                 94
          P-Value
                                            0.00664
RMSEA (Root Mean Square Error Of Approximation)↓
          Estimate
                                             0.183↓
          90 Percent C.I.
                                             0.091 0.278↓
          Probability RMSEA <= .05
                                             0.015↓
4
CFI/TLI↓
          CFI
                                             0.959↓
          TLI
                                             0.932↓
Chi-Square Test of Model Fit for the Baseline Model↓
          Value
                                           354.482↓
          Degrees of Freedom
                                                15↓
          P-Value
                                            0.00004
SRMR (Standardized Root Mean Square Residual)↓
          Value
                                             0.022↓
```

The chi-square value is 22.817, significantly smaller than the two factor model, and the p-value=0.0066, larger than the former model too, providing the first set of evidence that this model is a better fit than the last one. The RMSEA has a 90% C.I. of (0.091, 0.278), still larger than 0.05 to be compared a good fit. But the improvement is significant compared with the last model. And the CFI is 0.959, indicating good fit. And SRMR value is 0.022, also indicates good fit. So all the global indices indicates the model is a good fit except the RMSEA indicates only a fair fit.

Up to this points, we can actually conclude that the one factor model is better fit and more logical than the two factors model.

And when looking at the local fit indices, we can see from the below output that all the residuals are fairly fitted

	Standardized R	esiduals (z-sc	ores) for Cova	riances/Correl	ations/Residual	Corr↓
	X1	X2	X 3	X4	X5↓	
	45 A	125 - 175 125 - 175	15000 15000 - 150			
X1	999.000↓					
X2	-2.892	999.000↓				
Х3	0.780	999.000	999.000↓			
X4	0.442	999.000	0.565	0.000↓		
X5	-0.604	0.659	999.000	1.042	0.000↓	
X6	999.000	0.928	0.793	999.000	-1.089↓	
4						
1						
	Standardized R	esiduals (z-sc	ores) for Cova	riances/Correl	ations/Residual	Corr↓
	X6↓					
	↓					
X6	0.000↓					

And then we can look at the modification indices to see how we can improve the model.

		M. I.	E. P. C.	Std E.P.C.	StdYX E.P.C.↓
4					
WITH:	Statements↓				
+					
X2	WITH X1	0.439	-0.656	-0.656	-0.121↓
Х3	WITH X1	2.046	0.982	0.982	0.274↓
Х3	WITH X2	1.531	-2.077	-2.077	-0.269↓
X4	WITH X1	0.310	0.099	0.099	0.096↓
X4	WITH X2	1.579	-0.526	-0.526	-0.237↓
X4	WITH X3	0.895	0.276	0.276	0.189↓
X5	WITH X1	0.151	-0.130	-0.130	-0.070↓
X5	WITH X2	1.432	0.963	0.963	0.240↓
X5	WITH X3	5.629	-1.344	-1.344	-0.511↓
X5	WITH X4	5.168	0.322	0.322	0.426↓
X6	WITH X1	1.181	-0.266	-0.266	-0.189↓
X6	WITH X2	3.802	1.130	1.130	0.372↓
X6	WITH X3	2.761	0.673	0.673	0.337↓
X6	WITH X4	7.292	-0.278	-0.278	-0.485↓
X6	WITH X5	0.200	-0.088	-0.088	-0.085↓

None of the M.I value is as significant as in the last model. However, if we use a common value of larger than 4 as a cutoff for needed modification, we need to lose the constraints between X3 with X5, X3 with X6 and X4 with X5. However, in factor analysis, that is usually not used, but can be considered as a factor.

And the parameter estimates for this model is listed as below

	Estimate	S.E.	Est./S.E.	Two-Tailed↓ P-Value↓
+				
F1	BY↓			
X1	1.000	0.000	999.000	999.000↓
X2	2. 938	0.313	9.396	0.000↓
Х3	2.190	0.222	9.879	0.000↓
X4	0.465	0.053	8.842	0.000↓
X5	0.986	0.105	9.360	0.000↓
Х6	0.658	0.074	8.901	0.000↓
↓				
Intercept	ts↓			
X1	4.230	0.476	8.896	0.000↓
X2	14.652	1.317	11.121	0.000↓
Х3	9.072	0.966	9.394	0.000↓
X4	2.250	0.215	10.473	0.000↓
X5	4.560	0.443	10.294	0.000↓
X6	3.095	0.302	10.247	0.000↓
1				
Variances	5 ↓			
F1	7.885	2.122	3.716	0.000↓
↓				
Residual	Variances↓			
X1	2.518	0.590	4.270	0.000↓
X2	11.781	3.121	3.774	0.000↓
Х3	5.079	1.479	3.434	0.001↓
X4	0.419	0.103	4.051	0.000↓
X5	1.362	0.364	3.741	0.000↓
X6	0.785	0.196	4.014	0.000↓

The loadings, intercepts, and residual variances for x1-x3 are all larger than x4-x6, probably because the raw data are larger. And the p-value for all parameters are significant, indicates the loading exist.

Discussion

Overall, after building the two models and analyzed the fitting result, I concluded that the one factor model is a much better fit than the two factor model. Since the two factors model implies that the T-Test can select disease specific peptides while the one factor model indicates that the T-Test can only found a general disease response that is not disease specific, we can actually conclude that this T-Test selection method is not a good way to find disease specific peptides.

The reason we want to use T-Test as a selection method is because it is widely used and our data meets all the assumption. And this method only need to take the disease of interest and normal and don't need to care of other disease group samples. However, we are worried that the most significant peptides found in the T-Test is not the disease specific ones, but instead, they are telling information that the person is ill or not. So if that is the case, there will only be one factor underlying the selected peptides across several disease-normal comparisons, which means the one factor model. And if the selected ones are really disease specific, we can find a unique factor underlying the peptides selected each comparison, which in this case I only used two disease groups to start with.

And using the peptides selected from dengue-healthy and malaria-healthy comparison to fit the models, we have found that there is actually one common factor underlying all the peptides from both groups. This is actually a disappointing result because this indicates that the most significantly different peptides are not even close to disease specific. And if we want to really find disease specific peptides for dengue and malaria, maybe further selection is needed, like performing a T-Test between dengue and malaria. If that is the case, when it will make the future analysis very difficult. Because if by comparing healthy and specific disease, we can find the specific peptides, then for any disease, we only need to reference the healthy samples. So the comparison needed to differentiate diseases increase linearly with the number of diseases. However, since the find found that this method could not find the needed peptides, and disease-disease comparison is possibly needed, then the number of comparisons needed increase quadratically with the number of diseases needed to differentiate.

And a by-product of the modelling result is the fact that the most significant peptides are not disease specific. Because from prior knowledge, most academic researchers would assume when you get ill, the dominant antibodies in your blood will be the ones against the disease directly, which would make them easily stand out from the T-Test selection. However, from my result, that seems not to be the case. The most dominate antibodies reflected through the peptides are the ones that indicates a general response to illness while not disease specific. The disease specific information seems to be deeply imbedded in the immune system than previously thought. This is actually a first tentative experiment for an ongoing research I am currently working on in the lab, which is to redefine the way that antibody immune system works.

Mplus VERSION 7 MUTHEN & MUTHEN 05/05/2014 2:18 PM

INPUT INSTRUCTIONS

TITLE: Lu Wang final project one common factor model

DATA: FILE = "F:\Dropbox\class\Spring 2014\PSY533\final\data.txt";

VARIABLE: NAMES ARE x1-x6;

USEVARIABLES ARE x1-x6;

ANALYSIS: TYPE = GENERAL; ITERATIONS=3000; ESTIMATOR=ML;

MODEL: F1 BY x1 x2 x3 x4 x5 x6;

OUTPUT: sampstat standardized residual mod(0);

INPUT READING TERMINATED NORMALLY

Lu Wang final project one common factor model

SUMMARY OF ANALYSIS

Number of groups 1
Number of observations 46

Number of dependent variables 6
Number of independent variables 0
Number of continuous latent variables 1

Observed dependent variables

Continuous

X1 X2 X3 X4 X5 X6

Continuous latent variables

F1

Estimator ML

Information matrixOBSERVEDMaximum number of iterations3000Convergence criterion0.500D-04

Maximum number of steepest descent iterations 20

Input data file(s)

F:\Dropbox\class\Spring 2014\PSY533\final\data.txt

Input data format FREE

SAMPLE STATISTICS

SAMPLE STATISTICS

3.095

	Means X1	X2	Х3	X4	X5		
1	4.230	14.6	552	9.072	2.250	4.560	
	Means						
	X6						

	Covariances					
	X1 X	2 X3	X4	X5		
X1	10.403					
X2	22.735	79.847				
Х3	17.848	49.780	42.900			
X4	3.739	10.452	8.181	2.124		
X5	7.687	23.357	16.395	3.814	9.025	
Х6	4.996	15.915	11.715	2.225	5.060	

Covariances X6 4.197

Correlations X1 X2 Х3 Χ4 X5 Х1 1.000 0.789 1.000 X2 Х3 0.845 0.851 1.000 Χ4 0.795 0.803 0.857 1.000 X5 0.793 0.870 0.833 1.000 0.871 Х6 0.756 0.869 0.873 0.745 0.822

 $\begin{array}{c} \text{Correlations} \\ \text{X6} \\ \hline \text{X6} \\ \end{array}$

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters 18

Loglikelihood

H0 Value -567.775 H1 Value -556.367

Information Criteria

Akaike (AIC) 1171.550
Bayesian (BIC) 1204.466
Sample-Size Adjusted BIC 1148.027

(n* = (n + 2) / 24)

Chi-Square Test of Model Fit

Value 22.817
Degrees of Freedom 9
P-Value 0.0066

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.183

90 Percent C.I. 0.091 0.278 Probability RMSEA <= .05 0.015

CFI/TLI

CFI 0.959 TLI 0.932

Chi-Square Test of Model Fit for the Baseline Model

Value 354.482
Degrees of Freedom 15
P-Value 0.0000

SRMR (Standardized Root Mean Square Residual)

Value 0.022

MODEL RESULTS

Estimate	•	wo-Tailed st./S.E. P	
1.000	0.000	999.000	999.000
2.938	0.313	9.396	0.000
2.190	0.222	9.879	0.000
0.465	0.053	8.842	0.000
0.986	0.105	9.360	0.000

F1

Х1

X2

Х3

X4 X5

Х6

 $\mathsf{B}\mathsf{Y}$

Intercepts				
X1	4.230	0.476	8.896	0.000
X2	14.652	1.317	11.121	0.000

0.074

8.901

0.000

0.658

Х3 9.072 0.966 9.394 0.000 X4 2.250 0.215 10.473 0.000 X5 4.560 0.443 10.294 0.000 Х6 3.095 0.302 10.247 0.000

Variances F1 7.885 2.122 3.716 0.000

Residual Variances X1 2.518 0.590 4.270 0.000 X2 11.781 3.121 3.774 0.000 Х3 5.079 1.479 3.434 0.001 Χ4 4.051 0.419 0.103 0.000 X5 3.741 0.000 1.362 0.364 Х6 0.785 0.196 4.014 0.000

STANDARDIZED MODEL RESULTS

STDYX Standardization

			Т	wo-Taile	ed
		Estimate	S.E. Es	st./S.E.	P-Value
F1	BY				
X1		0.871	0.039	22.529	0.000
X2		0.923	0.025	36.388	0.000
Х3		0.939	0.022	43.358	0.000
X4		0.896	0.032	27.578	0.000
X5		0.921	0.026	35.265	0.000
Х6		0.902	0.031	29.077	0.000
Interd	epts	5			
X1		1.312	0.201	6.522	0.000
X2		1.640	0.226	7.263	0.000
Х3		1.385	0.206	6.711	0.000
X4		1.544	0.218	7.073	0.000
X5		1.518	0.216	7.018	0.000

X6	1.511	0.216	7.003	0.000
Variances F1	1.000	0.000	999.000	999.000
Residual Va	riances			
X1	0.242	0.067	3.598	0.000
X2	0.148	0.047	3.149	0.002
Х3	0.118	0.041	2.911	0.004
X4	0.197	0.058	3.385	0.001
X5	0.151	0.048	3.134	0.002
X6	0.187	0.056	3.347	0.001

STDY Standardization

			Two-Tailed			
	E	Stimate	S.E. E	st./S.E. P	-Value	
F1	ВҮ					
X1		0.871	0.039	22.529	0.000	
X2		0.923	0.025	36.388	0.000	
Х3		0.939	0.022	43.358	0.000	
X4		0.896	0.032	27.578	0.000	
X5		0.921	0.026	35.265	0.000	
Х6		0.902	0.031	29.077	0.000	
linkawa						
Interd	epts	1 212	0.201	C F22	0.000	
X1 X2		1.312	0.201 0.226	6.522 7.263	0.000	
X2 X3		1.640				
,		1.385	0.206	6.711	0.000	
X4 X5		1.544	0.218	7.073	0.000	
X5 X6		1.518 1.511	0.216 0.216	7.018 7.003	0.000	
ΧO		1.511	0.216	7.003	0.000	
Varia	nces					
F1		1.000	0.000	999.000	999.000	
Resid	ual Va	riances				
X1	aai va	0.242	0.067	3.598	0.000	
X2		0.148	0.047	3.149	0.002	
X3		0.118	0.041	2.911	0.002	
X4		0.197	0.058	3.385	0.004	
X5		0.151	0.048	3.134	0.002	
Х6		0.187	0.056	3.347	0.001	

STD Standardization

Two-Tailed Estimate S.E. Est./S.E. P-Value

F1 BY

X1	2.808	0.378	7.432	0.000
X2	8.250	1.005	8.211	0.000
Х3	6.150	0.727	8.459	0.000
X4	1.306	0.168	7.792	0.000
X5	2.768	0.339	8.177	0.000
Х6	1.847	0.235	7.876	0.000
Intercepts				
X1	4.230	0.476	8.896	0.000
X2	14.652	1.317	11.121	0.000
Х3	9.072	0.966	9.394	0.000
X4	2.250	0.215	10.473	0.000
X5	4.560	0.443	10.294	0.000
X6	3.095	0.302	10.247	0.000
Variances				
F1	1.000	0.000	999.000	999.000
D = -1-1=1.V=				
Residual Va		0.500	4 270	0.000
X1	2.518	0.590	4.270	0.000
X2	11.781	3.121	3.774	0.000
X3	5.079	1.479	3.434	0.001
X4	0.419	0.103	4.051	0.000
X5	1.362	0.364	3.741	0.000
Х6	0.785	0.196	4.014	0.000

R-SQUARE

Observed			Two-Ta	ailed
Variable	Estima	te S.E	. Est./S.E.	P-Value
X1	0.758	0.067	11.264	0.000
X2	0.852	0.047	18.194	0.000
Х3	0.882	0.041	21.679	0.000
X4	0.803	0.058	13.789	0.000
X5	0.849	0.048	17.632	0.000
X6	0.813	0.056	14.539	0.000

QUALITY OF NUMERICAL RESULTS

Condition Number for the Information Matrix (ratio of smallest to largest eigenvalue)

0.338E-02

RESIDUAL OUTPUT

ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)

Model Estimated Means/Intercepts/Thresholds

	X1	X2	Х3	X4	X5		
1	4.230	14.	652	9.072	2.250	4.560	
	Model Est	timated	l Means	s/Intercep	ts/Thresho	olds	
1	3.095						
	Residuals X1	for Me X2	ans/Int X3	ercepts/T X4	hresholds X5		
1	0.000	0.0	000	0.000	0.000	0.000	
	Residuals X6	for Me	ans/Int	ercepts/T	hresholds		
1	0.000	_					
	Standardi X1	zed Res X2	siduals X3	(z-scores) X4	for Means X5	s/Intercept	s/Threshol
1	0.000	0.0	000	0.000	0.000	0.000	
			iduals	(z-scores)	for Means	:/Intercept	s/Threshol
1	X6 0.000	zed Res —		,,		,	
1	X6 0.000					/Threshold	s
1	X6 0.000 Normalize	 ed Resid	duals fo X3	or Means/l	ntercepts,		S
	Normalize X1 0.000	 ed Resid X2 0.0	duals fo X3 000	or Means/l X4 0.000	ntercepts, X5 0.000	/Threshold	
	Normalize X1 0.000 Normalize	 ed Resid X2 0.0	duals fo X3 000	or Means/l X4 0.000	ntercepts, X5 0.000	/Threshold 0.000	
1	Normalize X1 0.000 Normalize X6 0.000	ed Resid X2 0.0 ed Resid	duals fo X3 000 duals fo	or Means/l X4 0.000 or Means/l	ntercepts, X5 0.000	/Threshold 0.000	S

X4					
	3.667	10.774	8.031	2.124	
X5	7.773	22.838	17.024	3.615	9.025
κ6	5.187	15.239	11.359	2.412	5.113
	Model Estin X6	nated Covai	riances/Corr	elations/R	esidual Correlations
X6	4.197				
	Residuals fo	ur Covariano	es/Correlat	ions/Pasidi	ual Correlations
		(2 X3	X4	X5	uai Correlations
V4					
X1	0.000	0.000			
X2 X3	-0.431 0.579	0.000 -0.959	0.000		
лэ Х4	0.379	-0.939 -0.322	0.000	0.000	
X5	-0.086	0.519	-0.630	0.199	0.000
х5 Х6	-0.191	0.676	0.356	-0.187	-0.053
X6		d Residuals			
					nces/Correlations/Residual Co
	X1 X	(2 X3	(z-scores) f X4	or Covariar X5	nces/Correlations/Residual Co
X1	X1 X ———————————————————————————————————				nces/Correlations/Residual Co
X2					nces/Correlations/Residual Co
X2 X3	999.000 -2.892 0.780	999.000 999.000			nces/Correlations/Residual Co
X2	999.000 -2.892 0.780 0.442	999.000 999.000 999.000	X4		nces/Correlations/Residual Co
X2 X3 X4 X5	999.000 -2.892 0.780 0.442 -0.604	999.000 999.000 999.000 0.659	999.000 0.565 999.000	0.000 1.042	0.000
X2 X3 X4	999.000 -2.892 0.780 0.442	999.000 999.000 999.000	999.000 0.565	0.000	
X2 X3 X4 X5	999.000 -2.892 0.780 0.442 -0.604 999.000	999.000 999.000 999.000 0.659 0.928	999.000 0.565 999.000 0.793	0.000 1.042 999.000	0.000 -1.089
X2 X3 X4 X5	999.000 -2.892 0.780 0.442 -0.604 999.000	999.000 999.000 999.000 0.659 0.928	999.000 0.565 999.000 0.793	0.000 1.042 999.000	0.000
X2 X3 X4 X5	999.000 -2.892 0.780 0.442 -0.604 999.000 Standardize	999.000 999.000 999.000 0.659 0.928	999.000 0.565 999.000 0.793	0.000 1.042 999.000	0.000 -1.089
X2 X3 X4 X5 X6	999.000 -2.892 0.780 0.442 -0.604 999.000 Standardize X6	999.000 999.000 999.000 0.659 0.928	999.000 0.565 999.000 0.793 (z-scores) f	0.000 1.042 999.000 or Covarian	0.000 -1.089 nces/Correlations/Residual Co
X2 X3 X4 X5 X6	999.000 -2.892 0.780 0.442 -0.604 999.000 Standardize X6 0.000	999.000 999.000 999.000 0.659 0.928 d Residuals	999.000 0.565 999.000 0.793 (z-scores) f	0.000 1.042 999.000 or Covarian	0.000 -1.089
X2 X3 X4 X5 X6	999.000 -2.892 0.780 0.442 -0.604 999.000 Standardize X6 0.000	999.000 999.000 999.000 0.659 0.928	999.000 0.565 999.000 0.793 (z-scores) f	0.000 1.042 999.000 or Covarian	0.000 -1.089 nces/Correlations/Residual Co
X2 X3 X4 X5 X6	999.000 -2.892 0.780 0.442 -0.604 999.000 Standardize X6 0.000 Normalized X1	999.000 999.000 999.000 0.659 0.928 d Residuals	999.000 0.565 999.000 0.793 (z-scores) f	0.000 1.042 999.000 or Covarian	0.000 -1.089 nces/Correlations/Residual Co
X2 X3 X4 X5 X6	999.000 -2.892 0.780 0.442 -0.604 999.000 Standardize X6 0.000	999.000 999.000 999.000 0.659 0.928 d Residuals	999.000 0.565 999.000 0.793 (z-scores) f	0.000 1.042 999.000 or Covarian	0.000 -1.089 nces/Correlations/Residual Co

Х3

Χ4

X5

0.142

0.081

-0.047

-0.085

-0.131

0.099

0.000

0.081

-0.167

0.000

0.232

0.000

X6 -0.156 0.189 0.136 -0.341 -0.045

Normalized Residuals for Covariances/Correlations/Residual Correlations X6

X6 0.000

MODEL MODIFICATION INDICES

NOTE: Modification indices for direct effects of observed dependent variables regressed on covariates may not be included. To include these, request MODINDICES (ALL).

Minimum M.I. value for printing the modification index 0.000

M.I. E.P.C. Std E.P.C. StdYX E.P.C.

WITH Statements

X2	WITH X1	0.439	-0.656	-0.656	-0.121
Х3	WITH X1	2.046	0.982	0.982	0.274
Х3	WITH X2	1.531	-2.077	-2.077	-0.269
X4	WITH X1	0.310	0.099	0.099	0.096
X4	WITH X2	1.579	-0.526	-0.526	-0.237
X4	WITH X3	0.895	0.276	0.276	0.189
X5	WITH X1	0.151	-0.130	-0.130	-0.070
X5	WITH X2	1.432	0.963	0.963	0.240
X5	WITH X3	5.629	-1.344	-1.344	-0.511
X5	WITH X4	5.168	0.322	0.322	0.426
Х6	WITH X1	1.181	-0.266	-0.266	-0.189
Х6	WITH X2	3.802	1.130	1.130	0.372
Х6	WITH X3	2.761	0.673	0.673	0.337
Х6	WITH X4	7.292	-0.278	-0.278	-0.485
X6	WITH X5	0.200	-0.088	-0.088	-0.085

Mplus VERSION 7 MUTHEN & MUTHEN 05/05/2014 11:40 AM

INPUT INSTRUCTIONS

TITLE: Lu Wang final project two factor model

DATA: FILE = "F:\Dropbox\class\Spring 2014\PSY533\final\data.txt";

VARIABLE: NAMES ARE x1-x6;

USEVARIABLES ARE x1-x6;

ANALYSIS: TYPE = GENERAL;

ITERATIONS=3000;

ESTIMATOR=ML;

MODEL: F1 BY x1 x2 x3;

F2 by x4 x5 x6;

F1 with F2@0;

OUTPUT: sampstat standardized residual mod(0);

INPUT READING TERMINATED NORMALLY

Lu Wang final project two factor model

SUMMARY OF ANALYSIS

Number of groups 1
Number of observations 46

Number of dependent variables6Number of independent variables0Number of continuous latent variables2

Observed dependent variables

Continuous

X1 X2 X3 X4 X5 X6

Continuous latent variables

F1 F2

Estimator ML

Information matrixOBSERVEDMaximum number of iterations3000Convergence criterion0.500D-04

Maximum number of steepest descent iterations 20

Input data file(s)

F:\Dropbox\class\Spring 2014\PSY533\final\data.txt

Input data format FREE

SAMPLE STATISTICS

SAMPLE STATISTICS

	Means X1	X2	Х3	X4	X5	
1	4.230	1	4.652	9.072	2.250	4.560
	Means X6					
1	3.095					
	Covarian	ces				
	X1	X2	Х3	X4	X5	
	10.40	3				
	22.73		79.847			
	17.84		49.780	42.900	2.424	
	3.739 7.687		10.452 23.357	8.181 16.395	2.124 3.814	9.025
	4.996		15.915	11.715	2.225	5.060
	Covariano X6	ces				
	4.197	 7				
	Correlation	ons				
	X1	X2	Х3	X4	X5	

Correlations X6

1.000

0.789

0.845

0.795

0.793

0.756

1.000

0.851

0.803

0.870

0.869

1.000

0.857

0.833

0.873

1.000

0.871

0.745

1.000

0.822

Х1

X2

Х3

Χ4

X5

Х6

X6 1.000

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters 18

Loglikelihood

H0 Value -614.917 H1 Value -556.367

Information Criteria

Akaike (AIC) 1265.834
Bayesian (BIC) 1298.749
Sample-Size Adjusted BIC 1242.310

(n* = (n + 2) / 24)

Chi-Square Test of Model Fit

Value 117.100
Degrees of Freedom 9
P-Value 0.0000

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.511

90 Percent C.I. 0.431 0.595 Probability RMSEA <= .05 0.000

CFI/TLI

CFI 0.682 TLI 0.469

Chi-Square Test of Model Fit for the Baseline Model

Value 354.482
Degrees of Freedom 15
P-Value 0.0000

SRMR (Standardized Root Mean Square Residual)

Value 0.478

MODEL RESULTS

	Es	stimate		wo-Tailed st./S.E. P	
F1 X1 X2 X3	ВҮ	1.000 2.789 2.190	0.000 0.315 0.222	999.000 8.847 9.884	999.000 0.000 0.000
F2 X4 X5 X6	ВҮ	1.000 2.275 1.327	0.000 0.222 0.166	999.000 10.264 8.013	999.000 0.000 0.000
F1 F2	WITH	0.000	0.000	999.000	999.000
X1 X2 X3 X4 X5 X6	cepts	4.230 14.652 9.072 2.250 4.560 3.095	0.476 1.317 0.966 0.215 0.443 0.302	8.896 11.121 9.394 10.473 10.294 10.247	0.000 0.000 0.000 0.000 0.000 0.000
Varia F1 F2	nces	8.152 1.677	2.160 0.443	3.775 3.787	0.000 0.000
X1 X2 X3 X4 X5 X6	ual Var	2.251 16.437 3.821 0.447 0.350 1.246	0.632 4.752 2.179 0.131 0.485 0.307	3.562 3.459 1.753 3.403 0.722 4.062	0.000 0.001 0.080 0.001 0.470 0.000

STANDARDIZED MODEL RESULTS

STDYX Standardization

	Estimate			
ВҮ				
	0.885	0.039	22.513	0.000
	0.891	0.038	23.353	0.000
	0.954	0.028	34.042	0.000
RY				
		0.885 0.891 0.954	Estimate S.E. Est BY 0.885 0.039 0.891 0.038 0.954 0.028	BY 0.885 0.039 22.513 0.891 0.038 23.353 0.954 0.028 34.042

X4 X5		0.889 0.980	0.040 0.028	22.454 35.426	0.000 0.000			
Х6		0.839	0.050	16.939	0.000			
F1 F2	WITH	0.000	0.000	999.000	999.000			
Inter	cepts							
X1		1.312	0.201	6.522	0.000			
X2		1.640	0.226	7.263	0.000			
Х3		1.385	0.206	6.711	0.000			
X4		1.544	0.218	7.073	0.000			
X5		1.518	0.216	7.018	0.000			
Х6		1.511	0.216	7.003	0.000			
Varia	nces							
F1		1.000	0.000	999.000	999.000			
F2		1.000	0.000	999.000	999.000			
Resid	Residual Variances							
X1		0.216	0.070	3.109	0.002			
X2		0.206	0.068	3.027	0.002			
Х3		0.089	0.054	1.664	0.096			
X4		0.211	0.070	2.994	0.003			
X5		0.039	0.054	0.715	0.475			
Х6		0.297	0.083	3.574	0.000			

STDY Standardization

		Two-Tailed				
	Es	stimate	S.E. E	st./S.E. F	P-Value	
F1	BY					
X1		0.885	0.039	22.513	0.000	
X2		0.891	0.038	23.353	0.000	
Х3		0.954	0.028	34.042	0.000	
F2	BY					
X4	D1	0.889	0.040	22.454	0.000	
X5		0.980	0.028	35.426	0.000	
Х6		0.839	0.050	16.939	0.000	
F1	WITH					
F2	VVIIII	0.000	0.000	999.000	999.000	
Inter	cepts					
X1	•	1.312	0.201	6.522	0.000	
X2		1.640	0.226	7.263	0.000	
Х3		1.385	0.206	6.711	0.000	
X4		1.544	0.218	7.073	0.000	
X5		1.518	0.216	7.018	0.000	
Х6		1.511	0.216	7.003	0.000	

Variances	;			
F1	1.000	0.000	999.000	999.000
F2	1.000	0.000	999.000	999.000
Residual \	/ariances			
X1	0.216	0.070	3.109	0.002
X2	0.206	0.068	3.027	0.002
Х3	0.089	0.054	1.664	0.096
X4	0.211	0.070	2.994	0.003
X5	0.039	0.054	0.715	0.475
Х6	0.297	0.083	3.574	0.000

STD Standardization

	E:	stimate		wo-Tailed st./S.E. P	
F1 X1 X2 X3	ВҮ	2.855 7.963 6.251	0.378 1.044 0.731	7.549 7.630 8.553	0.000 0.000 0.000
F2 X4 X5 X6	ВҮ	1.295 2.945 1.718	0.171 0.329 0.248	7.574 8.941 6.933	0.000 0.000 0.000
F1 F2	WITH	0.000	0.000	999.000	999.000
X1 X2 X3 X4 X5 X6	cepts	4.230 14.652 9.072 2.250 4.560 3.095	0.476 1.317 0.966 0.215 0.443 0.302	8.896 11.121 9.394 10.473 10.294 10.247	0.000 0.000 0.000 0.000 0.000 0.000
Varia F1 F2	nces	1.000 1.000	0.000	999.000 999.000	999.000 999.000
X1 X2 X3 X4 X5	ual Var	2.251 16.437 3.821 0.447 0.350	0.632 4.752 2.179 0.131 0.485	3.403 0.722	0.000 0.001 0.080 0.001 0.470
Х6		1.246	0.307	4.062	0.000

R-SQUARE

		Two-T	ailed
Estima	te S.E	E. Est./S.E.	P-Value
0.784	0.070	11.257	0.000
0.794	0.068	11.676	0.000
0.911	0.054	17.021	0.000
0.789	0.070	11.227	0.000
0.961	0.054	17.713	0.000
0.703	0.083	8.469	0.000
	0.784 0.794 0.911 0.789 0.961	0.784 0.070 0.794 0.068 0.911 0.054 0.789 0.070 0.961 0.054	0.784 0.070 11.257 0.794 0.068 11.676 0.911 0.054 17.021 0.789 0.070 11.227 0.961 0.054 17.713

QUALITY OF NUMERICAL RESULTS

Condition Number for the Information Matrix (ratio of smallest to largest eigenvalue)

0.298E-02

RESIDUAL OUTPUT

ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)

	Model Estimated Means/Intercepts/Inresholds								
	X1	X2	Х3	X4	X5				
1	4.230	14.	652	9.072	2.250	4.560			

Model Estimated Means/Intercepts/Thresholds X6

1 3.095

Residuals for Means/Intercepts/Thresholds X1 X2 X3 X4 X5

1 0.000 0.000 0.000 0.000 0.000

Residuals for Means/Intercepts/Thresholds

Х6

1 0.000

Standardized Residuals (z-scores) for Means/Intercepts/Thresholds

X1 X2 X3 X4 X5 1 0.000 0.000 0.000 0.000 0.000 Standardized Residuals (z-scores) for Means/Intercepts/Thresholds

Х6

1 0.000

Normalized Residuals for Means/Intercepts/Thresholds

	X1 >	K2 X3	X4	X5		
1	0.000	0.000	0.000	0.000	0.000	

Normalized Residuals for Means/Intercepts/Thresholds

Х6

1 0.000

Model Estimated Covariances/Correlations/Residual Correlations

	X1	X2	Х3	X4	X5		
X1	10.4	03					
X2	22.7	35	79.847				
Х3	17.8	48	49.780	42.900			
X4	0.00	00	0.000	0.000	2.124		
X5	0.00	00	0.000	0.000	3.814	9.025	
Х6	0.00	00	0.000	0.000	2.225	5.060	

 $Model\ Estimated\ Covariances/Correlations/Residual\ Correlations$

Х6

Х6

4.197

Residuals for Covariances/Correlations/Residual Correlations

	X1 X	2 X3	X4	X5		
			_			
X1	0.000					
X2	0.000	0.000				
Х3	0.000	0.000	0.000			
X4	3.739	10.452	8.181	0.000		
X5	7.687	23.357	16.395	0.000	0.000	
X6	4.996	15.915	11.715	0.000	0.000	

Residuals for Covariances/Correlations/Residual Correlations

Х6

X6 0.000

Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr

	X1 X	(2 X3	X4	X5		
X1	0.005					
X2	0.002	-0.002				
Х3	0.003	0.002	0.002			
X4	4.222	4.245	4.414	0.000		
X5	4.215	4.452	4.342	0.000	0.003	
X6	4.090	4.450	4.461	0.000	0.003	

Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr X6

X6 0.005

Normalized Residuals for Covariances/Correlations/Residual Correlations

	X1	X2 X3	X4	X5		
X1	0.000					
X2	0.000	0.000				
Х3	0.000	0.000	0.000			
X4	4.222	4.245	4.414	0.000		
X5	4.215	4.452	4.342	0.000	0.000	
Х6	4.090	4.450	4.461	0.000	0.000	

Normalized Residuals for Covariances/Correlations/Residual Correlations X6

X6 0.000

MODEL MODIFICATION INDICES

NOTE: Modification indices for direct effects of observed dependent variables regressed on covariates may not be included. To include these, request MODINDICES (ALL).

Minimum M.I. value for printing the modification index 0.000

M.I. E.P.C. Std E.P.C. StdYX E.P.C.

BY Statements

F1	BY X4	1.781	0.050	0.144	0.099
F1	BY X5	0.118	0.023	0.065	0.022
F1	BY X6	3.553	0.116	0.331	0.162
F2	BY X1	0.343	0.113	0.147	0.045
F2	BY X2	3.037	0.917	1.188	0.133
F2	BY X3	0.784	0.297	0.385	0.059

ON/BY Statements

F1 F2 F2 F1	ON F2 BY F1 ON F1 BY F2	/	37.494 37.494	2.079 0.428	0.943 0.943	0.943 0.943
WITH	l Statemer	nts				
X4	WITH X1		0.167	0.072	0.072	0.072
X4	WITH X2		3.242	-0.860	-0.860	-0.317
X4	WITH X3		3.034	0.531	0.531	0.406
X5	WITH X1		0.528	0.224	0.224	0.252
X5	WITH X2		3.586	1.591	1.591	0.663
X5	WITH X3		3.844	-1.051	-1.051	-0.909
Х6	WITH X1		1.604	-0.362	-0.362	-0.216
Х6	WITH X2		0.132	0.282	0.282	0.062
Х6	WITH X3		2.440	0.776	0.776	0.356

F2 WITH F1 37.494 3.486 0.943 0.943