

ANÁLISIS DE ALGORITMOS

Algoritmos y Programación Javier Miranda

Escuela de Ingeniería Informática Universidad de Las Palmas de Gran Canaria

Donald Knuth

15 de Noviembre de 2023

¿ Cómo podemos medir la eficiencia de los algoritmos que hemos visto hasta ahora ?

BFS

DFS

Dijkstra

Kruskal

Prims

MergeSort

QuickSort

Knapsack 0/1 (greedy)

Knapsack 0/1 (programación dinámica)

Se denomina **ejemplar** de un problema a cada uno de los posibles casos que se pueden dar como datos iniciales del problema.

¿ Cómo podemos medir la eficiencia de los algoritmos que hemos visto hasta ahora ?

BFS

DFS

Dijkstra

Kruskal

Prims

MergeSort

QuickSort

Knapsack 0/1 (greedy)

Knapsack 0/1 (programación dinámica)

Estrategia empírica

Se denomina **ejemplar** de un problema a cada uno de los posibles casos que se pueden dar como datos iniciales del problema.

¿ Cómo podemos medir la eficiencia de los algoritmos que hemos visto hasta ahora ?

BFS

DFS

Dijkstra

Kruskal

Prims

MergeSort

QuickSort

Knapsack 0/1 (greedy)

Knapsack 0/1 (programación dinámica)

Se denomina **ejemplar** de un problema a cada uno de los posibles casos que se pueden dar como datos iniciales del problema.

¿ Qué significa este tipo de documentación ?

List

Dict

Operación	Time Complexity
Сору	O(n)
Append	O(1)
Рор	O(1)
Insert	O(n)
Remove	O(n)
Sort	O(n log n)

Operación	Time Complexity
Сору	O(n)
Set	O(1)
Get	O(1)
Delete	O(1)

Podemos analizar

Tiempo de ejecución (Time Complexity)

Memoria consumida (Space Complexity)

- Necesitamos soporte para analizar algoritmos que tenga las siguientes características:
 - Permita razonar sobre la eficiencia de los algoritmos
 - Facilite la comparación de algoritmos, especialmente al procesar grandes ejemplares
 - Evite detalles dependientes de la arquitectura, el lenguaje o el compilador

- Necesitamos soporte para analizar algoritmos que tenga las siguientes características:
 - Permita razonar sobre la eficiencia de los algoritmos
 - Facilite la comparación de algoritmos, especialmente al procesar grandes ejemplares
 - Evite detalles dependientes de la arquitectura, el lenguaje o el compilador
 - La idea general es suprimir:
 - Constantes (demasiado dependientes del Sistema)
 - Terminos de menor grado (irrelevantes para ejemplares grandes)

Ejemplos:
$$10n^2 + 3n + 2 \rightarrow Orden (n^2)$$

 $6nlog_2n + 6 \rightarrow Orden (nlog n)$

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$
 $O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$

O(f(n)) se lee del orden de f(n)

Sea
$$f: N \to \underline{R}^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$

$$O(f(n)) = \left\{ t: N \to R^* \middle| \left\{ \exists c \in R^+ \right\} (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$$

Es el conjunto de todas las funciones t(n) no negativas, ...

Sea
$$f: N \to R^*$$
 una función cualquiera y $R^* = R^+ \cup \{0\}$

$$O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) \middle| \exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$$

 Es el conjunto de todas las funciones t(n) no negativas, acotadas superiormente por un múltiplo real positivo de f(n)

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$

$$O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$$

Es el conjunto de todas las funciones t(n) no negativas, acotadas superiormente por un múltiplo real positivo de f(n) para valores de nsuficientemente grandes (es decir, a partir de un cierto umbral no en

adelante).

https://en.wikipedia.org/wiki/Big O notation

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$
 $O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$

 Es el conjunto de todas las funciones t(n) no negativas, acotadas superiormente por un múltiplo real positivo de f(n) para valores de n suficientemente grandes (es decir, a partir de un cierto umbral n₀ en adelante).

$$t(n) \in O(f(n))$$

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$
 $O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$

Ejemplo:
$$t(n) = 3n + 12$$

¿ Cual es la cota superior más cercana?

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$
 $O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$

 $n_0 \rightarrow$

Ejemplo:
$$t(n) = 3n + 12$$

... eligiendo $f(n) = n$
 $c = 4$

Por tanto $t(n) \in O(n)$

		+ 1(11)
N	3n+12	4n
1	15	4
2	18	8
3	21	12
10	42	40
11	45	44
12	48	48
13	51	52

t(n)

4*f(n)

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$
 $O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$

Ejemplo:
$$t(n) = 3n + 12$$

... eligiendo $f(n) = n$
 $c = 4$

Por tanto $t(n) \in O(n)$

En general, dado un polinomio con coeficiente de mayor grado positivo, en análisis asintótico nos quedamos con el <u>término de mayor exponente</u>:

$$t(n) = a_m n^m + ... + a_1 n + a_0$$
 $t(n) \in O(n^m)$ si $a_m > 0$

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$
 $O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$

$$t(n) \in O(f(n))$$

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$
 $O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$

Principio de invariancia

• Dadas dos implementaciones del mismo algoritmo con tiempos $t_1(n)$ y $t_2(n)$, para valores de n suficientemente grandes se cumple que: $t_1(n) \le c * t_2(n)$

$$t_1(n) \in O(t_2(n))$$

Sea
$$f: N \to R^*$$
 una función cualquiera $y R^* = R^+ \cup \{0\}$

$$O(f(n)) = \left\{ t: N \to R^* \middle| (\exists c \in R^+) (\exists n_0 \in N) (\forall n \ge n_0) (t(n) \le cf(n)) \right\}$$

Comparison of different time complexity functions

Exponencial Cúbico Cuadrático Lineal Logarítmico

Análisis Asintótico de un algoritmo

- → 1. Definir N
 - 2. Casos de estudio
 - 3. Aplicar las reglas generales de análisis asintótico

1) ¿ Cómo definimos N?

- 1. → Definir N
- 2. Casos de estudio
- 3. Reglas de análisis

```
def Fib(n) {
    if (n < 2)
        return n
    else
        return Fib(n-2) + Fib(n-1)
}</pre>
```

a) Algoritmos numéricos

```
# Traverse through all array elements
for i in range(len(A)):

    # Find the minimum element in remaining
    # unsorted array
    min_idx = i
    for j in range(i+1, len(A)):
        if A[min_idx] > A[j]:
            min_idx = j

# Swap the found minimum element with
    # the first element
    A[i], A[min_idx] = A[min_idx], A[i]
```

b) Algoritmos que recorren estructuras de datos

1) ¿ Cómo definimos N?

- 1. → Definir N
- 2. Casos de estudio
- 3. Reglas de análisis

Definición formal: Número de bits necesarios para

codificar el ejemplar

```
def Fib(n) {
    if (n < 2)
        return n
    else
        return Fib(n-2) + Fib(n-1)
}</pre>
```

```
# Traverse through all array elements
for i in range(len(A)):

    # Find the minimum element in remaining
    # unsorted array
    min_idx = i
    for j in range(i+1, len(A)):
        if A[min_idx] > A[j]:
            min_idx = j

# Swap the found minimum element with
    # the first element
    A[i], A[min_idx] = A[min_idx], A[i]
```

a) Algoritmos numéricos

Valor máximo

b) Algoritmos que recorren estructuras de datos

Número de elementos

2) Casos de estudio

- Definir N
- 2. → Casos de estudio
- 3. Reglas de análisis
- Se denomina ejemplar de un problema a cada uno de los posibles casos que se pueden dar como datos iniciales del problema (por ejemplo, diferentes tamaños)
- ... pero si el algoritmo tiene distinto comportamiento con ejemplares del mismo tamaño analizamos también:
 - El mejor caso
 - El peor caso
 - El caso promedio

Por ejemplo, para analizar QuickSort

... y también puede interesarnos analizar un determinado tipo de operación.

Ejemplo: En algoritmos de ordenación:

- Comparaciones
- Intercambios

3) Reglas Generales para el Análisis Asintótico

- El Orden de una operación elemental es 1 (por definición).
- El Orden de una <u>secuencia</u> de operaciones se calcula aplicando la <u>regla de la suma</u>.

Para cualesquiera dos funciones $f y g : N \to R^*$ $O(f(n) + g(n)) = O(\max\{f(n), g(n)\})$

Ejemplo: Intercambio

```
def swap (my_list, pos1, pos2):
O(1) → tmp = my_list[pos1]

O(1) → my_list[pos1] = my_list[pos2]
O(1) → my_list[pos2] = tmp
O(1) → return
```


Python List

Operación	Time Complexity
Сору	O(n)
Append	O(1)
Get Item	O(1)
Set Item	O(1)
***	***

3) Reglas Generales para el Análisis Asintótico

- El Orden de una operación elemental es 1 (por definición)
- El Orden de una <u>secuencia</u> de operaciones se calcula aplicando la <u>regla de la suma</u>

```
Para cualesquiera dos funciones f y g : N \to R^*

O(f(n) + g(n)) = O(\max\{f(n), g(n)\})
```

- El Orden de una sentencia <u>condicional</u> es igual al máximo del Orden de cada alternativa
- El Orden de un <u>bucle</u> es igual al Orden de la suma de sus iteraciones
- El Orden de una <u>llamada</u> a un subprograma es igual al Orden del subprograma llamado