Студент(ка): Иванов Иван

Группа: 0380 Вариант: 1

Дата: 26 ноября 2020 г.

Статистический анализ Индивидуальное домашнее задание №2

Bap. 4 (83832020)

- 1. В результате эксперимента получены данные, приведенные в таблице 1.
 - а) Построить вариационный ряд, эмпирическую функцию распределения и гистограмму частот.
 - Вычислить выборочные аналоги следующих числовых характеристик:
 - (i) математического ожидания, (ii) дисперсии, (iii) медианы, (iv) асимметрии, (v) эксцесса, (vi) вероятности $\mathbf{P}(X \in [a,b])$.
 - с) В предположении, что исходные наблюдения являются выборкой из распределения Пуассона, построить оценку максимального правдоподобия параметра \(\lambda \), а также оценку \(\lambda \) по методу моментов. Найти смещение оценок.
 - d) Построить асимптотический доверительный интервал уровня значимости α_1 для параметра λ на базе оценки максимального правдоподобия.
 - e) Используя гистограмму частот, построить критерий значимости χ^2 проверки простой гипотезы согласия с распределением Пуассона с параметром λ_0 . Проверить гипотезу на уровне значимости α_1 . Вычислить наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу.
 - f) Построить критерий значимости χ^2 проверки сложной гипотезы согласия с распределением Пуассона. Проверить гипотезу на уровне значимости α_1 . Вычислить наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу.
 - g) Построить наиболее мощный критерий проверки простой гипотезы пуассоновости с параметром $\lambda = \lambda_0$ при альтернативе пуассоновости с параметром $\lambda = \lambda_1$. Проверить гипотезу на уровне значимости α_1 . Что получится, если поменять местами основную и альтернативную гипотезы?
 - h) В пунктах (c)-(f) заменить семейство распределений Пуассона на семейство геометрических распределений

$$\mathbf{P}_{\lambda}(X = k) = \frac{\lambda^{k}}{(\lambda + 1)^{k+1}}, \ k = 0, 1, \dots$$

Таблица 1 $\alpha_1=0.05;\ a=3.66;\ b=5.45;\ \lambda_0=6.00;\ \lambda_1=5.00.$

- 2. В результате эксперимента получены данные, приведенные в таблице 2.
 - а) Построить вариационный ряд, эмпирическую функцию распределения, гистограмму и полигон частот с шагом h.
 - Вычислить выборочные аналоги следующих числовых характеристик;
 - (i) математического ожидания, (ii) дисперсии, (iii) медианы, (iv) асимметрии, (v) эксцесса,
 - (vi) вероятности P(X ∈ [c, d]).
 - с) В предположении, что исходные наблюдения являются выборкой из нормального распределения, построить оценку максимального правдоподобия параметров (a, σ^2) и соответствующие оценки по методу моментов. Найти смещение оценок
 - d) Построить доверительные интервалы уровня значимости α_2 для параметров (a, σ^2) .
 - е) С использованием теоремы Колмогорова построить критерий значимости проверки простой гипотезы согласия с нормальным распределением с параметрами a_0 , σ_0^2 . Проверить гипотезу на уровне значимости α_2 . Вычислить наибольшее значение уровня значимости, на котором нет оснований отвергнуть данную гипотезу.
 - f) Используя гистограмму частот, построить критерий значимости χ^2 проверки простой гипотезы согласия с нормальным распределением с параметрами (a_0, σ_0^2) . Проверить гипотезу на уровне значимости α_2 . Вычислить наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу.
 - g) Построить критерий проверки значимости χ^2 сложной гипотезы согласия с нормальным распределением. Проверить гипотезу на уровне значимости α_2 . Вычислить наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу.
 - h) Построить наиболее мощный критерий проверки простой гипотезы о нормальности с параметром $(a, \sigma^2) = (a_0, \sigma_0^2)$ при альтериативе нормальности с параметром $(a, \sigma^2) = (a_1, \sigma_1^2)$. Проверить гипотезу на уровне значимости α_2 . Что получится, если поменять местами основную и альтернативную гипотезы?
 - і) В пунктах (c)-(g) заменить семейство нормальных распределений на двухпараметрическое семейство распределений Лапласа с плотностями $f(x)=\frac{1}{\sqrt{2}\,\sigma}\mathrm{e}^{-\frac{\sqrt{2}}{\sigma}|x-a|}.$ Таблица 2 $\alpha_2=0.01;\ c=-3.40;\ d=-1.00;\ h=0.80;\ a_0=-3.00;\ \sigma_0=2.00;\ a_1=-0.00;\ \sigma_1=2.00.$

Задача 1. Построить вариационный ряд, эмпирическую функцию распределения и гистограмму частот.

Решение. Вариационный ряд

 $1\ 1\ 1\ 1\ 2\ 2\ 2\ 2\ 2\ 3\ 3\ 3\ 4\ 4\ 4\ 4\ 4\ 4\ 4\ 4\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 6\ 6\ 6\ 6\ 6\ 6\ 7\ 7\ 7\ 7\ 7\ 8\ 9\ 9\ 10\ 10\ 10\ 10$

Эмпирическая функция распределения

Гистограмма частот

Задача 2. Вычислить выборочные аналоги числовых характеристик

$$x = \frac{1}{n} * \sum_{i=1}^{n} (x_i) = 5$$

Решение. Выборочное среднее
$$\bar{x} = \frac{1}{n} * \sum_{i=1}^{n} (x_i) = 5$$
 Выборочная дисперсия $s^2 = \frac{1}{n} * \sum_{i=1}^{n} (x_i - \bar{x})^2 = 6.33$ Медиана

$$Me = 5$$

Ассиметрия
$$As = \frac{\mu_3^*}{s^3} = 0.324$$

Эксцесс

$$Ex = \frac{\mu_4^*}{s^4} = 2.38$$

Вероятность попадания в заданный промежуток

$$P(X \in [3.66; 5.45]) = F(b) - F(a) = 0.36$$

Задача 3. В предположении, что исходные наблюдения являются выборкой из распределения Пуассона, построить оценку максимального правдоподобия параметра λ , а также оценку λ по методу моментов. Найти смещение оценок.

Решение. По методу максимального правдоподобия

Решение. По методу максимального пр
$$P_{\lambda}(X=k)=\frac{\lambda^k}{k!}*exp(-\lambda)$$
 $l(\overrightarrow{x},\lambda)=\frac{\lambda^{\sum x_i}*exp(-\lambda*n)}{\prod^n x_i}$ $ll(\overrightarrow{x},\lambda)=\sum^n x_i ln\lambda-n\lambda-ln\prod^n x_i!$ $\frac{dll}{d\lambda}=\frac{1}{\lambda}*\sum^n x_i-n=0 \to \hat{\lambda}=\frac{\sum x_i}{n}=\bar{x}$ По методу моментов

$$M_1^* = \bar{x}$$

$$M_1^* = \bar{x}$$
$$M_1 = \lambda$$

$$\hat{\lambda} = \bar{x}$$

Смещение оценки
$$\mathbb{E}\hat{\lambda} = \frac{1}{n} \sum^n E x_i = \frac{n\lambda}{n} = \lambda$$
 Оценка несмещенная

Задача 4. Построить асимптотический доверительный интервал уровня значимости $lpha_1=0.05$ для параметра λ на базе оценки максимального правдоподобия.

Peшение. Из предыдущего пункта $\hat{\lambda} = \bar{x}$

$$\gamma = 1 - \alpha = 0.95$$
 $\sqrt{n}(\bar{x} - \lambda)$

$$\frac{\sqrt{n(x-\lambda)}}{\sqrt{\lambda}} \sim \mathcal{N}(0,1)$$

Решение. Из предыдущего пунк
$$\gamma = 1 - \alpha = 0.95$$

$$\frac{\sqrt{n}(\bar{x} - \lambda)}{\sqrt{\lambda}} \sim \mathcal{N}(0, 1)$$

$$\Phi(t_{\gamma}) = 1 - \frac{\alpha_1}{2}$$

$$P(-t_{\gamma} \leq \frac{\sqrt{n}(\bar{x} - \lambda)}{\sqrt{\lambda}} \leq t_{\gamma}) \rightarrow 1 - \alpha$$

$$n(\bar{x} - \lambda)^2 = t_{\gamma}^2 \lambda$$

$$n(\bar{x} - \lambda)^2 = \overset{\vee}{t_{\gamma}} \overset{\lambda}{\lambda}$$

$$\lambda^2 - 2\lambda(\bar{x} + \frac{t_\gamma^2}{2n}) + \bar{x}^2 = 0$$

$$\lambda_{1,2} = \bar{x} + \frac{t_{\gamma}^2}{2n} \pm t_{\gamma} \sqrt{\frac{1}{n}(\bar{x} + \frac{t_{\gamma}^2}{4n})}$$

Отсюда доверительный интервал [4.38; 5.62]

Задача 5. Используя гистограмму частот, построить критерий значимости χ^2 проверки простой гипотезы согласия с распределением Пуассона с параметром $\lambda_0 = 6.00$. Проверить гипотезу на уровне значимости $\alpha_1 = 0.05$. Вычислить наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу.

Решение. Составим таблицу

x_i	m_i	p_i	np_i	$\left(\frac{m_i - np_i}{\sqrt{m_i}}\right)^2$
1	4	0.017	0.85	11.31
2	6	0.045	2.25	6.37
3	3	0.089	4.45	0.48
4	9	0.134	6.7	0.8
5	9	0.16	8	0.117
6	6	0.16	8	0.514
7	6	0.138	6.9	0.113
8	1	0.103	5.15	3.357
9	2	0.069	3.45	0.604
10	4	0.084	4.2	0.009

Полученное значение $\chi^2 = 23.67$

Число степеней свободы l=k-r-1=8

$$\chi^2_{critical} = 15.5$$

Следовательно, H_0 отвергается. Наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу: $1 - \chi^2_{r=8}(23.67) = 0.003$

Задача 6. Построить критерий значимости χ^2 проверки сложной гипотезы согласия с распределением Пуассона. Проверить гипотезу на уровне значимости $\alpha_1 = 0.05$. Вычислить наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу.

Peшение. Сложная гипотеза $H_0: X_1,...,X_n \sim Pois(\lambda)$

Известно, что в случае регулярности эксперимента статистика $\hat{\chi}^2(\lambda)=min\chi^2(\lambda)$ сходится к χ^2_{r-d-1} Критерий имеет вид

$$\phi(\overrightarrow{x}) = \begin{cases} 0 & \text{if } \hat{\chi}^2 \le x_\alpha \\ 1 & \text{if } \hat{\chi}^2 > x_\alpha \end{cases}$$

В результате вычислений на R получили, что $\hat{\chi}^2 = 25.53 > x_{\alpha} = 15.5$

Таким образом, гипотеза отвергается. Наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу, крайне мало: $1-\chi^2_{r=8}(25.53)=0.001$

Задача 7. Построить наиболее мощный критерий проверки простой гипотезы пуассоновости с параметром $\lambda=6.00$ при альтернативе пуассоновости с параметром $\lambda=5.00$. Проверить гипотезу на уровне значимости 0.05. Что получится, если поменять местами основную и альтернативную гипотезы?

Решение. Сформулируем гипотезы

 $H_0: \lambda = \lambda_0 = 6$

 $H_1: \lambda = \lambda_1 = 5$

По лемме Неймана-Пирсона:

$$\phi(\overrightarrow{x}) = \begin{cases} 0 & \text{if } l(\overrightarrow{x}, \lambda_0, \lambda_1) < C \\ p & \text{if } l(\overrightarrow{x}, \lambda_0, \lambda_1) = C \\ 1 & \text{if } l(\overrightarrow{x}, \lambda_0, \lambda_1) > C \end{cases}$$

$$l(\overrightarrow{x}, 6, 5) = \frac{L(\overrightarrow{x}, 5)}{L(\overrightarrow{x}, 6)} = (\frac{5}{6})^{\sum x_i} * exp(n(\lambda_0 - \lambda_1)) = (\frac{5}{6})^{\sum x_i} * exp(n)$$

$$ll(\overrightarrow{x}, \lambda_0, \lambda_1) = \sum x_i * ln \frac{5}{6} + n < ln(C)$$

$$\sum x_i < \frac{ln(C) - n}{ln \frac{5}{6}}$$

$$\hat{C} = \frac{ln(C) - n}{ln \frac{5}{6}}$$

Критерий принимает вид

$$\phi(\overrightarrow{x}) = \begin{cases} 0 & \text{if } \sum x_i < \hat{C} \\ p & \text{if } \sum x_i = \hat{C} \\ 1 & \text{if } \sum x_i > \hat{C} \end{cases}$$

Вычислим \hat{C} и р из уравнения:

$$P_{\lambda_0}(l(\vec{x}, \lambda_0, \lambda_1) > C) + p * P_{\lambda_0}(l(\vec{x}, \lambda_0, \lambda_1) = C) = P_{\lambda_0}(\sum_{i=1}^n x_i > \hat{C}) + p * P_{\lambda_0}(\sum_{i=1}^n x_i = \hat{C}) = \alpha_1 = 0.05$$

$$x_i \to Pois(\lambda_0)$$

$$\sum x_i \to Pois(n\lambda_0)$$

Подбором среди целых чисел можно найти такое наибольшее \hat{C} и α_0 , что

$$\alpha_0 = P_{\lambda_0}(\sum_{i=1}^{n} x_i > \hat{C}) = 1 - P_{n\lambda_0}(\hat{C}) - p_{n\lambda_0}(\hat{C}) < \alpha_1$$

$$p = \frac{\alpha_1 - \alpha_0}{P_{\lambda_0}(\sum_{i=1}^{n} x_i = A)} = \frac{\alpha_1 - \alpha_0}{p_{n\lambda_0}(A)}$$

$$p = \frac{\alpha_1 - \alpha_0}{P_{\lambda_0}(\sum_{i=1}^n x_i = A)} = \frac{\alpha_1 - \alpha_0}{p_{n\lambda_0}(A)}$$

В результате расчета получили $\alpha_0 = 0.04536796$, $\hat{C} = 328$, p = 0.747331

Таким образом, принимаем гипотезу H_0

Теперь поменяем местами основную и альтернативную гипотезы

$$H_0: \lambda = \lambda_1 = 5$$

$$H_1 \cdot \lambda = \lambda_0 = 0$$

$$H_{1}: \lambda = \lambda_{0} = 6$$

$$l(\overrightarrow{x}, 5, 6) = \frac{L(\overrightarrow{x}, 6)}{L(\overrightarrow{x}, 5)} = (\frac{6}{5})^{\sum x_{i}} * exp(n(\lambda_{1} - \lambda_{0})) = (\frac{6}{5})^{\sum x_{i}} * exp(-n)$$

$$ll(\overrightarrow{x}, \lambda_{0}, \lambda_{1}) = -\sum x_{i} * ln\frac{5}{6} - n < ln(C)$$

$$\sum x_{i} > \frac{-ln(C) - n}{ln\frac{5}{6}}$$

$$\hat{C} = \frac{-ln(C) - n}{ln\frac{5}{6}}$$
Tours of the property approach that

$$ll(\overrightarrow{x}, \lambda_0, \lambda_1) = -\sum x_i * ln\frac{5}{6} - n < ln(C)$$

$$\sum x_i > \frac{-ln(C)-r}{ln^5}$$

$$\hat{C} = \frac{-ln(C) - n}{ln^{\frac{5}{2}}}$$

Тогда критерий примет вид

$$\phi(\overrightarrow{x}) = \begin{cases} 0 & \text{if } \sum x_i > \hat{C} \\ p & \text{if } \sum x_i = \hat{C} \\ 1 & \text{if } \sum x_i < \hat{C} \end{cases}$$

Вычислим \hat{C} и р из уравнения: $P_{\lambda_1}(\sum_{i=1}^n x_i > \hat{C}) + p * P_{\lambda_1}(\sum_{i=1}^n x_i = \hat{C}) = \alpha_1 = 0.05$ $p = \frac{\alpha_1 - \alpha_0}{P_{\lambda_1}(\sum_{i=1}^n x_i = A)} = \frac{\alpha_1 - \alpha_0}{p_{n\lambda_1}(A)}$

В результате расчета получили $\alpha_0=0.0449179, \hat{C}=223, p=0.8644936$

Таким образом, принимаем гипотезу H_0

При замене основной и альтернативной гипотезы меняется также гипотеза, которая принимается. Но т. к. изменение происходит со сменой гипотез местами, решение не меняется

Задача 8. В предположении, что исходные наблюдения являются выборкой из геометрического распределения, построить оценку максимального правдоподобия параметра λ , а также оценку λ по методу моментов. Найти смещение оценок.

Решение. Плотность геометрического распределения имеет вид $P_{\lambda}(X=k) = \frac{\lambda^{k}}{(\lambda+1)^{k+1}}$

Решение. Плотность геометрического распределения им
$$l(\overrightarrow{x},\lambda) = \prod_{i=1}^n \frac{\lambda^{x_i}}{(\lambda+1)^{x_i+1}} = \frac{\lambda^{\sum_{i=1}^n x_i}}{(\lambda+1)^{\sum_{i=1}^n x_i+n}}$$

$$ll(\overrightarrow{x},\lambda) = ln\lambda * \sum_{i=1}^n x_i - ln(\lambda+1) \sum_{i=1}^n x_i - nln(\lambda+1)$$

$$\frac{dll}{d\lambda} = \frac{1}{\lambda} \sum_{i=1}^n x_i - \frac{1}{\lambda+1} \sum_{i=1}^n x_i - \frac{n}{\lambda+1}$$

$$\frac{dll}{d\lambda} = 0 \to \hat{\lambda} = \frac{1}{n} \sum_{i=1}^n x_i = \bar{x} = 5$$
 По методу моментов

$$ll(\overrightarrow{x},\lambda) = ln\lambda * \sum_{i=1}^{n} x_i - ln(\lambda+1) \sum_{i=1}^{n} x_i - nln(\lambda+1)$$

$$\frac{dll}{d\lambda} = \frac{1}{\lambda} \sum_{i=1}^{n} x_i - \frac{1}{\lambda+1} \sum_{i=1}^{n} x_i - \frac{n}{\lambda+1}$$

$$\frac{dll}{d\lambda} = 0 \rightarrow \hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x} = 5$$

$$M_1 = \mathbb{X} = \lambda$$

$$M_1^* = \bar{X}$$

$$M_1^{r} = 1$$

$$\hat{\lambda} = \bar{X}$$

Смещение оценки

$$\mathbb{E}(\hat{\lambda}) = \mathbb{E}(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}(x_i) = \frac{1}{n} * n * \lambda = \lambda$$

Оценка несмещенная

Задача 9. Построить асимптотический доверительный интервал уровня значимости $\alpha_1=0.05$ для параметра λ на базе оценки максимального правдоподобия.

Решение.
$$\frac{d^2 ll}{d\lambda^2} = \frac{1}{\lambda^2} \sum_{i=1}^n x_i + \frac{1}{(\lambda+1)^2} \sum_{i=1}^n x_i + \frac{n}{(\lambda+1)^2}$$
 $\hat{I} = -\frac{d^2 ll}{d\lambda^2} (\hat{\lambda}) = -\frac{d^2 ll}{d\lambda^2} (\bar{X}) = n(\frac{1}{\bar{X}} - \frac{1}{\bar{X}+1}) = 1.67$ $\sigma^2(\hat{\lambda}) = \hat{I}^{-1} = 0.6$ $\sigma = \sqrt{\hat{I}^{-1}} = 0.775$ Доверительный интервал будет иметь вид $[\hat{\lambda} - x_\alpha \sigma, \hat{\lambda} + x_\alpha \sigma]$ $x_\alpha = \Phi^{-1}(1 - \frac{\alpha_1}{2}) = 1.98$ Получен доверительный интервал $[3.467, 6.535]$

Задача 10. Используя гистограмму частот, построить критерий значимости χ^2 проверки простой гипотезы согласия с распределением Пуассона с параметром $\lambda_0 = 6.00$. Проверить гипотезу на уровне значимости $\alpha_1 = 0.05$. Вычислить наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу.

Решение. Составим таблицу

x_i	m_i	p_i	np_i	$\left(\frac{m_i - np_i}{\sqrt{m_i}}\right)^2$
1	4	0.12244898	6.122449	0.7357823
2	6	0.10495627	5.247813	0.1078134
3	3	0.08996252	4.498126	0.4989591
4	9	0.07711073	3.855536	6.8642864
5	9	0.06609491	3.304745	9.8149538
6	6	0.05665278	2.832639	3.5416359
7	6	0.04855953	2.427976	5.2551393
8	1	0.04162245	2.081123	0.5616324
9	2	0.03567639	1.783819	0.0261989
10	4	0.03057976	1.528988	3.9934261

Полученное значение $\chi^2=31.3998$ Число степеней свободы l=k-r-1=8

 $\chi^2_{critical} = 15.5$

Следовательно, H_0 отвергается. Наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу: $1 - \chi^2_{r=8}(31.3998) = 0.000119$

Задача 11. Построить критерий значимости χ^2 проверки сложной гипотезы согласия с геометрическим распределением. Проверить гипотезу на уровне значимости $\alpha_1 = 0.05$. Вычислить наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу.

Peшение. Оценим неизвестный параметр λ как $\mathbb{E}(X_1)=\bar{X}=5$ Построим таблицу

x_i	m_i	p_i	np_i	$\left(\frac{m_i - np_i}{\sqrt{m_i}}\right)^2$
1	4	0.13888889	6.944444	1.248444444
2	6	0.11574074	5.787037	0.007837037
3	3	0.09645062	4.822531	0.688770864
4	9	0.08037551	4.018776	6.174167720
5	9	0.06697960	3.348980	9.535450167
6	6	0.05581633	2.790816	3.690267352
7	6	0.04651361	2.325680	5.805021450
8	1	0.03876134	1.938067	0.454045030
9	2	0.03230112	1.615056	0.091750398
10	4	0.02691760	1.345880	5.234013788

Полученное значение $\chi^2 = 32.92977$

Число степеней свободы l=k-r-1=8

 $\chi^2_{critical} = 15.5$

Следовательно, H_0 отвергается. Наибольшее значение уровня значимости, на котором еще нет оснований отвергнуть данную гипотезу: $1-\chi^2_{r=8}(32.92977)=0.00006$

Задача 12. Построить вариационный ряд, эмпирическую функцию распределения и гистограмму частот.

Решение. Вариационный ряд

 $-12.294\ -10.888\ -6.009\ -5.980\ -5.660\ -5.583\ -5.245\ -4.847\ -4.815\ -4.743\ -4.708\ -4.575\ -4.470\ -4.180\ -4.178\ -3.894$

 $-3.665 \,\, -3.602 \,\, -3.538 \,\, -3.529 \,\, -3.267 \,\, -3.240 \,\, -3.116 \,\, -2.680 \,\, -2.648 \,\, -2.612 \,\, -2.608 \,\, -2.589 \,\, -2.470 \,\, -2.464 \,\, -2.259 \,\, -1.989 \,\, -2.470 \,\, -2.464 \,\, -2.259 \,\, -2.470 \,\, -2.400 \,\, -2.400 \,\, -2.400 \,\, -2.400 \,\, -2.4$

Эмпирическая функция распределения

Эмпирическая функция

Гистограмма частот

Гистограмма частот

Задача 13. Вычислить выборочные аналоги числовых характеристик

Решение. Выборочное среднее

$$\bar{x} = \frac{1}{2} * \sum_{i=1}^{n} (x_i) = -3.2136$$

$$ar{x} = rac{1}{n} * \sum_{i=1}^{n} (x_i) = -3.2136$$
 Выборочная дисперсия $s^2 = rac{1}{n} * \sum_{i=1}^{n} (x_i - ar{x})^2 = 6.2164$

Медиана

$$Me = -2.68$$

Ассиметрия

$$As = \frac{\mu_3^*}{s^3} = -1.4257$$

Эксцесс

$$Ex = \frac{\mu_4^*}{s^4} = 6.2177$$

Вероятность попадания в заданный промежуток

$$P(X \in [3.66; 5.45]) = F(b) - F(a) = 0.4043$$

Задача 14. В предположении, что исходные наблюдения являются выборкой из нормального распределения, построить оценку максимального правдоподобия параметров (a, σ^2) , и соответствующие оценки по методу моментов.

Решение.
$$l(\overrightarrow{x}, a, \sigma^2) = \prod_{i=1}^n \left(\frac{1}{\sigma\sqrt{2\pi}} exp\left(\frac{-(x_i - a)^2}{2\sigma^2}\right)\right) = \sigma^{-n}(2\pi)^{-\frac{n}{2}} exp\left(-\sum_{i=1}^n \frac{-(x_i - a)^2}{2\sigma^2}\right)$$

$$ll(\overrightarrow{x}, a, \sigma^2) = -nln(\sigma) - \frac{n}{2}ln(2\pi) - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - a)^2$$

$$\begin{cases} \frac{dll(\overrightarrow{x}, a, \sigma^2)}{da} = \frac{1}{\sigma^2}\sum_{i=1}^n (x_i - a) = 0\\ \frac{dll(\overrightarrow{x}, a, \sigma^2)}{d\sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3}\sum_{i=1}^n (x_i - a)^2 = 0 \end{cases}$$