An Introduction to the Bootstrap

Bradley Efron

Department of Statistics Stanford University

Robert J. Tibshirani

Department of Preventative Medicine and Biostatistics and Department of Statistics, University of Toronto

CHAPMAN & HALL/CRC

Boca Raton London New York Washington, D.C.

Contents

P	Preface		xiv
1	Int	troduction]
	1.1	An overview of this book	•
	1.2	Information for instructors	€ 8
	1.3	Some of the notation used in the book	9
2	The	accuracy of a sample mean	10
	2.1	Problems	15
3	·Rai	ndom samples and probabilities	17
	3.1	· · · · · · · · · · · · · · · · · · ·	17
	3.2	Random samples	17
		Probability theory	20
	3.4	Problems	2 8
4	The	e empirical distribution function and the plug-	in
		nciple	31
	4.1	Introduction	31
	4.2	The empirical distribution function	31
	4.3	The plug-in principle	35
	4.4	Problems	37
5	Star	ndard errors and estimated standard errors	39
	5.1	Introduction	39
	5.2	The standard error of a mean	39
	5.3	Estimating the standard error of the mean	42
	5.4	Problems	43

viii	CONT	ENTS

6	The	bootstrap estimate of standard error	45
	6.1	Introduction	45
	6.2	The bootstrap estimate of standard error	45
	6.3		49
	6.4	The number of bootstrap replications B	50
	6.5	The parametric bootstrap	53
	6.6	Bibliographic notes	56
	6.7	Problems	57
7	Вос	otstrap standard errors: some examples	60
	7.1	Introduction	60
	7.2	.T	61
	7.3	*	70
	7.4	I was a second of	81
	7.5	O 1	81
	7.6	Problems	82
8		re complicated data structures	86
	8.1	Introduction	86
	8.2	* *	86
	8.3	* - * - · · · · · · · · · · · · · · · ·	88
	8.4	• • • • • • • • • • • • • • • • • • • •	90
	8.5	2	92
	8.6	O	99
	8.7	Bibliographic notes	102
	8.8	Problems	103
9	Reg	ression models	105
	9.1		105
	9.2		105
	9.3	•	107
	9.4	Application of the bootstrap	111
	9.5	Bootstrapping pairs vs bootstrapping residuals	113
	9.6	Example: the cell survival data	115
	9.7	Least median of squares	117
	9.8	Bibliographic notes	121
	9.9	Problems	121
10		imates of bias	124
	10.1	Introduction	194

NTS ix
NTS

	-A	
	10.2 The bootstrap estimate of bias	124
	10.3 Example: the patch data	126
	10.4 An improved estimate of bias	130
	10.5 The jackknife estimate of bias	133
	10.6 Bias correction	138
	10.7 Bibliographic notes	139
	10.8 Problems	139
11	The jackknife	141
	11.1 Introduction	141
	11.2 Definition of the jackknife	141
	11.3 Example: test score data	141
	11.4 Pseudo-values	145
	11.5 Relationship between the jackknife and bootstrap	145
	11.6 Failure of the jackknife	148
	11.7 The delete-d jackknife	149
	11.8 Bibliographic notes	149
	11.9 Problems	150
	11.0 1 Tobicins	100
12	Confidence intervals based on bootstrap "tables"	153
	12.1 Introduction	153
	12.2 Some background on confidence intervals	155
	12.3 Relation between confidence intervals and hypothe-	
	sis tests	156
	12.4 Student's t interval	158
	12.5 The bootstrap-t interval	160
	12.6 Transformations and the bootstrap-t	162
	12.7 Bibliographic notes	166
	12.8 Problems	166
13	Confidence intervals based on bootstrap	1.00
	percentiles 13.1 Introduction	168 168
	13.2 Standard normal intervals	
		168
	13.3 The percentile interval	170
	13.4 Is the percentile interval backwards?	174
	13.5 Coverage performance	174 175
	13.6 The transformation-respecting property	
	13.7 The range-preserving property 13.8 Discussion	176
	To.o Discussion	176

v	CONTENTS
^	

	13.9 Bibliographic notes	176
	13.10 Problems	177
		150
14	Better bootstrap confidence intervals	178
	14.1 Introduction	178
	14.2 Example: the spatial test data	179
	14.3 The BC_a method	184
	14.4 The ABC method	188
	14.5 Example: the tooth data	190
	14.6 Bibliographic notes	199
	14.7 Problems	199
15	Permutation tests	202
	15.1 Introduction	202
	15.2 The two-sample problem	202
	15.3 Other test statistics	210
	15.4 Relationship of hypothesis tests to confidence	
	intervals and the bootstrap	214
	15.5 Bibliographic notes	218
	15.6 Problems	218
16	3 Hypothesis testing with the bootstrap	220
	16.1 Introduction	220
	16.2 The two-sample problem	220
	16.3 Relationship between the permutation test and the	
	bootstrap	223
	16.4 The one-sample problem	224
	16.5 Testing multimodality of a population	227
	16.6 Discussion	232
	16.7 Bibliographic notes	233
	16.8 Problems	234
" , "	7 Cross-validation and other estimates of predicti	on
_	error	237
	17.1 Introduction	237
	17.2 Example: hormone data	238
	17.3 Cross-validation	239
	17.4 C_p and other estimates of prediction error	242
	17.5 Example: classification trees	243
	17.6 Bootstrap estimates of prediction error	$\frac{243}{247}$
	*114 Secretary committees of broatcators of far	441

CONTENTS	xi
	A.

	17.6.1 Overview	247
	17.6.2 Some details	249
	17.7 The .632 bootstrap estimator	252
	17.8 Discussion	254
	17.9 Bibliographic notes	255
	17.10 Problems	255
18	Adaptive estimation and calibration	258
	18.1 Introduction	258
	18.2 Example: smoothing parameter selection for curve	
	fitting	258
	18.3 Example: calibration of a confidence point	263
	18.4 Some general considerations	266
	18.5 Bibliographic notes	268
	18.6 Problems	269
19	Assessing the error in bootstrap estimates	271
	19.1 Introduction	271
	19.2 Standard error estimation	272
	19.3 Percentile estimation	273
	19.4 The jackknife-after-bootstrap	275
	19.5 Derivations	280
	19.6 Bibliographic notes	281
	19.7 Problems	281
20	A geometrical representation for the bootstrap and	i
	jackknife	283
	20.1 Introduction	283
	20.2 Bootstrap sampling	285
	20.3 The jackknife as an approximation to the bootstrap	287
	20.4 Other jackknife approximations	289
	20.5 Estimates of bias	290
	20.6 An example	293
	20.7 Bibliographic notes	295
	20.8 Problems	295
21	An overview of nonparametric and parametric	
_	inference	296
	21.1 Introduction	296
	21.2 Distributions, densities and likelihood functions	296

xii CONTENTS

	21.3	Functional statistics and influence functions	298
	21.4	Parametric maximum likelihood inference	302
	21.5	The parametric bootstrap	306
	21.6	Relation of parametric maximum likelihood, boot-	
		strap and jackknife approaches	307
		21.6.1 Example: influence components for the mean	309
	21.7	The empirical cdf as a maximum likelihood estimate	310
	21.8	The sandwich estimator	310
		21.8.1 Example: Mouse data	311
	21.9	The delta method	313
		21.9.1 Example: delta method for the mean	315
		21.9.2 Example: delta method for the correlation	
		coefficient	315
	21.10	Relationship between the delta method and in-	
		finitesimal jackknife	315
		1 Exponential families	316
		2 Bibliographic notes	319
	21.13	3 Problems	320
22	Fur	ther topics in bootstrap confidence intervals	321
	22.1	Introduction	321
	22.2	Correctness and accuracy	321
		Confidence points based on approximate pivots	322
		The BC_a interval	325
		The underlying basis for the BC_a interval	326
		The ABC approximation	328
		Least favorable families	331
		The ABC _q method and transformations	333
		Discussion	334
		0 Bibliographic notes	335
	22.1	1 Problems	335
23	Effi	cient bootstrap computations	338
	23.1	Introduction	338
	23.2	Post-sampling adjustments	340
		Application to bootstrap bias estimation	342
		Application to bootstrap variance estimation	346
	23.5	Pre- and post-sampling adjustments	348
		Importance sampling for tail probabilities	349
	23,7	Application to bootstrap tail probabilities	352

CONTENTS	
23.8 Bibliographic notes	356
23.9 Problems	357
24 Approximate likelihoods	358
24.1 Introduction	358
24.2 Empirical likelihood	360
24.3 Approximate pivot methods	362
24.4 Bootstrap partial likelihood	364
24.5 Implied likelihood	367
24.6 Discussion	370
24.7 Bibliographic notes	371
24.8 Problems	371
25 Bootstrap bioequivalence	372
25.1 Introduction	372
25.2 A bioequivalence problem	372
25.3 Bootstrap confidence intervals	374
25.4 Bootstrap power calculations	379
25.5 A more careful power calculation	381
25.6 Fieller's intervals	384
25.7 Bibliographic notes	389
25.8 Problems	389
26 Discussion and further topics	392
26.1 Discussion	392
26.2 Some questions about the bootstrap	394
26.3 References on further topics	396
Appendix: software for bootstrap computations	398
Introduction	398
Some available software	399
S language functions	399
References	413
Author index	
Subject index	