IA : Algèbre l'

Pr. El Mahjour h.elmahjour@uae.ac.ma

Faculté Polydisciplinaire à Larache, UAE

Opérations de base sur les ensembles Introduction

L'objectif de la théorie des ensembles est de grouper des éléments afin de les traiter en tant que même "entité".

On va voir

Quelques notations

Opérations sur les ensembles : union, intersection ...

Diagrammes de Venn

. . .

Éléments et ensembles

Un ensemble peut être vu comme une collection d'objets bien définie.

Ces objets sont nommés éléments.

Éléments et ensembles

Un ensemble peut être vu comme une collection d'objets bien définie

Ces objets sont nommés éléments. Des exemples:

L'ensemble des entiers : 1;4;19 ...

L'ensemble des solutions réelles de : $x^2 - 2 = 0$.

Les voyelles de l'alphabet.

Les fleuves du Maroc.

Les nombre impairs.

Éléments et ensembles

Un ensemble peut être vu comme une collection d'objets bien définie

Ces objets sont nommés éléments. Des exemples:

L'ensemble des entiers : 1;4;19 ...

L'ensemble des solutions réelles de : $x^2 - 2 = 0$.

Les voyelles de l'alphabet.

Les fleuves du Maroc.

Les nombre impairs.

L'ensemble est bien définie à partir de "certaines règles" qui permet de décider si un élément est un membre ou non.

Éléments et ensembles Notation

On note souvent un ensemble par une lettre *majuscule* : E, F, A, B...

Les lettres minuscules représentent souvent des éléments : $x, y, a, b \dots$

Éléments et ensembles Notation

On note souvent un ensemble par une lettre majuscule: E, F, A, B...

Les lettres minuscules représentent souvent des éléments : $x,y,a,b \dots$

Il y'a deux façons pour spécifier un ensmble:

Énumérer ses éléments (lister)

Déclarer les propriétés qui caractérisent les éléments de cet ensemble.

Éléments et ensembles Notation

On note souvent un ensemble par une lettre majuscule: E, F, A, B...

Les lettres minuscules représentent souvent des éléments : $x, y, a, b \dots$

Il y'a deux façons pour spécifier un ensmble:

Énumérer ses éléments (lister)

Déclarer les propriétés qui caractérisent les éléments de cet ensemble.

Par exemple $A = \{a, e, i, o, u, y\}$ est l'ensemble nommé A et contenant les voyelles.

Ou bien, $B = \{n : n \text{ est un entier naturel pair}, n > 0\}$ qu'on lit : l'ensemble B des éléments n tels que n est un entier naturel pair strictement positif.

Deux ensembles sont égaux A = B si les deux contiennent exactement les mêmes éléments.

C'est à dire si chaque élément de A est un élément de B et chaque élément de B est un élément de A.

La négation de A = B est écrite $A \neq B$.

L'expression "x est un élément de E" ou "x appartient à E est notée : $x \in E$.

On écrit aussi " $x, y \in E$ pour exprimer que x et y sont tous les deux des éléments de E Si un élément n'est pas un membre de E on écrit : $z \notin E$.

Exemples

Soit V l'ensemble des voyelles alors : $e \in V$ or $k \notin V$ L'ensemble des nombres pairs : $A = \{0, 2, 4, 6, ...\}$, on ne peut pas lister tous les éléments de A mais on peut écrire comme ceci. Notez que : $63 \notin A$ et $124 \in A$.

Soit $E = \{x : x^2 - 3x + 2 = 0\}$ l'ensemble des solutions de l'équation spécifiée, puisque les solutions sont : 1 et 2 on peut aussi réécrire que $E = \{1, 2\}$.

Soit $E = \{x : x^2 - 3x + 2 = 0\}$ et $F = \{1, 2\}$ et $G = \{2, 1, 0 + 1, 6/3\}$ alors E = F = G car ils contiennent exactement les mêmes éléments

Soit V l'ensemble des voyelles alors : $e \in V$ or $k \notin V$ L'ensemble des nombres pairs : $A = \{0, 2, 4, 6, ...\}$, on ne peut pas lister tous les éléments de A mais on peut écrire comme ceci. Notez que : $63 \notin A$ et $124 \in A$.

Soit $E = \{x : x^2 - 3x + 2 = 0\}$ l'ensemble des solutions de l'équation spécifiée, puisque les solutions sont : 1 et 2 on peut aussi réécrire que $E = \{1, 2\}$.

Soit $E = \{x : x^2 - 3x + 2 = 0\}$ et $F = \{1; 2\}$ et $G = \{2; 1; 0 + 1; 6/3\}$ alors E = F = G car ils contiennent exactement les mêmes éléments

Remarque

Notons que la répétition d'un même élément n'est pas prise en compte et est considérée comme un seul élément. Notons aussi que l'ordre n'est pas important dans la désignation des éléments d'un ensemble.

Rappels Ensembles usuels

 $\mathbb{N} =$ l'ensemble des entiers positifs

 $\mathbb{Z} =$ l'ensemble des entiers relatifs

 $\mathbb{Q} =$ l'ensemble des nombres rationnels

 $\mathbb{R}=$ l'ensemble des nombres réels

 $\mathbb{C} = \text{l'ensemble des nombres complexes}$

Remarque

Bien qu'on puisse des fois lister tous les éléments d'un ensemble, ça n'est pas la façon la plus pratique de le représenter (les nouveaux nés à Larache en 2006). Lister les éléments est pratique suelement si l'ensemble contient un nombre réduit d'éléments.

Ensemble universel / Ensemble vide

Tout ensemble en application de la théorie des ensemble fait partie d'un ensemble plus large nommé univers et noté U ou Ω selon le contexte.

Par exemple, en géométrie plane, l'univers est l'ensemble de tous les points sur le plan.

En se donnant un univers U, il se peut qu'il n'existe aucun ensemble vérifiant une propriété (descriptif) "p", par exemple

$$S = \{x : x \text{ est un entier positif où } x^2 = 3\}$$

L'ensemble S ne contient aucun élément. L'ensemble ne contenant aucun élément est dit l'ensemble vide et noté \emptyset .

Sous-ensembles Propres, disjoints , diagrammes de Venn

Si chaque élément de A est un élément de B alors on dit que A est inclus dans B et on note $A \subset B$. On peut aussi dire A est contenu dans B ou B contient A. Par exemple

- 1 Considérer $A = \{1; 3; 5; 8; 9\}$, $B = \{1; 2; 3; 5; 7\}$ et $C = \{1; 5\}$. On a bien $C \subset A$ et $C \subset B$. Mais $B \not\subset A$ car $2 \not\in A$ et aussi $7 \not\in A$. Noter que dans cet exemple, l'univers U doit au moins contenir $\{1; 2; 3; 5; 7; 8; 9\}$ comme éléments
- 2 On a $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.
- 3 Si $E = \{1, 2, 3\}$ et $F = \{3, 2, 1\}$ alors $E \subset F$ et $F \subset E$, en réalité E = F.

Propriétés des sous-ensembles

- i) Chaque ensemble A est un sous-ensemble de l'univers U. Aussi, $\emptyset \subset A$.
- ii) Chaque ensemble est un sous-ensemble de lui même (trivial)
- iii) Si $A \subset B$ et $B \subset C$ alors $A \subset C$.
- iv) Si $A \subset B$ et $B \subset A$ alors A = B.

Sous-ensembles propres/disjoints

Définition

Si $A \subset B$ et $A \neq B$ on dit que A est un sous-ensemble propre de B.

Si A et B n'ont aucun élément en commun on dit qu'ils sont disjoints

Sous-ensembles propres/disjoints

Définition

Si $A \subset B$ et $A \neq B$ on dit que A est un sous-ensemble propre de B.

Si A et B n'ont aucun élément en commun on dit qu'ils sont disjoints

Voici un exemple:

1 Soit $A = \{1; 2\}$, $B = \{2; 5; 3\}$ et $C = \{1; 7; 6\}$. A et B ne sont pas disjoints, A et C non plus. Or B et C sont disjoints car ils n'ont aucun élément en commun.

Diagramme de Venn

Un diagramme de Venn est un dessin représentatif des ensembles où l'on représente dces derniers par des zones fermés (cercles ou ellipses).

L'univers de travail est souvent représentés par un rectangle contenant les ensembles en question.

Diagramme de Venn

Un diagramme de Venn est un dessin représentatif des ensembles où l'on représente dces derniers par des zones fermés (cercles ou ellipses).

L'univers de travail est souvent représentés par un rectangle contenant les ensembles en question.

Figure: Diagrammes de Venn selon les cas.

Diagramme de Venn

Un diagramme de Venn est un dessin représentatif des ensembles où l'on représente dces derniers par des zones fermés (cercles ou ellipses).

L'univers de travail est souvent représentés par un rectangle contenant les ensembles en question.

Figure: Diagrammes de Venn selon les cas.

De gauche à droite, les dessins représentenet $A \subset B$, A et B sont disjoints. A et B ont des éléments en commun.

Opérations sur les ensembles Unions et intersections

L'union de deux ensembles A et B est aussi un ensemble contenant les éléments appartenant à A ou B (notée $A \cup B$).

L'intersection de deux ensembles A et B est aussi un ensemble contenant les éléments appartenant à A et B (notée $A \cap B$). De façon plus formelle, on a

$$A \cup B = \{x : x \in A \text{ ou } x \in B\}.$$

et

$$A \cap B = \{x : x \in A \text{ et } x \in B\}.$$

Figure: La partie grise représente les ensembles $A \cup B$ et $A \cap B$ consécutivement.

Exemples

Théorème

Soit A et B deux ensembles alors :

$$A \cap B \subset A \subset A \cup B$$
 et $A \cap B \subset B \subset A \cup B$

L'opération "inclusion" est liée étroitement aux notions d'union et d'intersection. Voici un théorème qui le montre

Théorème

Soit A et B deux ensembles alors :

$$A \cap B \subset A \subset A \cup B$$
 et $A \cap B \subset B \subset A \cup B$

L'opération "inclusion" est liée étroitement aux notions d'union et d'intersection. Voici un théorème qui le montre

Théorème

Les propositions suivantes sont équivalentes :

$$A \subset B$$
; $A \cap B = A$; $A \cup B = B$

Opérations sur les ensembles Complémentaire, différence, différence symétrique

On rappelle que chaque ensemble fait partie, selon le contexte, d'un univers U.

On appelle complémentaire de A qu'on note A^C ou \bar{A} ou bien C_U^A l'ensemble des éléments appartenant à U mais pas à A, c-à-d

$$\bar{A} = \{x : x \in U, x \notin A\}$$

Exemples

Différence et Différence Symétrique

Soit A et B deux ensembles.

1 On note $A \setminus B$ l'ensemble des éléments qui appartiennent à A mais pas à B (différence de A et B)

$$A \setminus B = \{x : x \in A, x \notin B\}.$$

2 La différence symétrique entre A et B notée $A\Delta B$ est l'ensemble des éléments appartenant soit à A ou soit à B mais pas les deux

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

Figure: Les diagrammes représentent respectivement, de gauche à droite, A^C , $A \setminus B$ et $A \triangle B$.