Quantum Algorithms for Equation Solving and Optimization over Finite Fields and Applications in Cryptanalysis

Yu-Ao Chen

Academy of Mathematics and Systems Science Chinese Academy of Sciences

May 19, 2019

Joint work with Xiao-Shan Gao and Chun-Ming Yuan

• (Main contribution) We present a quantum algorithm to find a Boolean solution of $\mathcal{F}=\mathbf{0}$ for $\mathcal{F}\subset\mathbb{C}[\mathbb{X}]$ if existing,

• (Main contribution) We present a quantum algorithm to find a Boolean solution of $\mathcal{F} = \mathbf{0}$ for $\mathcal{F} \subset \mathbb{C}[\mathbb{X}]$ if existing, (Boolean: each x_i is 0 or 1);

- (Main contribution) We present a quantum algorithm to find a Boolean solution of $\mathcal{F} = \mathbf{0}$ for $\mathcal{F} \subset \mathbb{C}[\mathbb{X}]$ if existing, (Boolean: each x_i is 0 or 1);
- 'finding a solution of $\mathcal{F}=\mathbf{0}$ for $\mathcal{F}\subset \mathbb{F}_q[\mathbb{X}]'\Longrightarrow_{\mathsf{poly}}$ 'finding a Boolean solution of $\mathcal{F}'=\mathbf{0}$ where $\mathcal{F}'\subset \mathbb{C}[\mathbb{X}]';$

- (Main contribution) We present a quantum algorithm to find a Boolean solution of $\mathcal{F} = \mathbf{0}$ for $\mathcal{F} \subset \mathbb{C}[\mathbb{X}]$ if existing, (Boolean: each x_i is 0 or 1);
- 'finding a solution of $\mathcal{F} = \mathbf{0}$ for $\mathcal{F} \subset \mathbb{F}_q[\mathbb{X}]$ ' $\Longrightarrow_{\mathsf{poly}}$ 'finding a Boolean solution of $\mathcal{F}' = \mathbf{0}$ where $\mathcal{F}' \subset \mathbb{C}[\mathbb{X}]$ ';
- 'solving many NP problems' \Longrightarrow_{poly} 'equation solving over \mathbb{F}_2 ';
- 'optimization over \mathbb{F}_p ' $\Longrightarrow_{\mathsf{poly}}$ 'equation solving over \mathbb{F}_p ';

- (Main contribution) We present a quantum algorithm to find a Boolean solution of $\mathcal{F} = \mathbf{0}$ for $\mathcal{F} \subset \mathbb{C}[\mathbb{X}]$ if existing, (Boolean: each x_i is 0 or 1);
- 'finding a solution of $\mathcal{F}=\mathbf{0}$ for $\mathcal{F}\subset \mathbb{F}_q[\mathbb{X}]'\Longrightarrow_{\mathsf{poly}}$ 'finding a Boolean solution of $\mathcal{F}'=\mathbf{0}$ where $\mathcal{F}'\subset \mathbb{C}[\mathbb{X}]';$
- $\bullet \ \ \text{`solving many NP problems'} \Longrightarrow_{\text{poly}} \text{`equation solving over } \mathbb{F}_2\text{'};$
- ullet 'optimization over \mathbb{F}_{p} ' $\Longrightarrow_{\mathsf{poly}}$ 'equation solving over \mathbb{F}_{p} ';
- 'algebraic attack on many cryptosystems' \iff 'equation solving over \mathbb{F}_2 '.

Inspiration

 Quantum algorithm for linear equation solving, HHL algorithm (Harrow, Hassidim and Lloyd, 2009);

Inspiration

- Quantum algorithm for linear equation solving, HHL algorithm (Harrow, Hassidim and Lloyd, 2009);
- Gröbner basis, F4 algorithm (Faugère, 1999) or the XL algorithm (Courtois et al, 2000): 'Gröbner basis computing' ⇒ 'linear equation solving'

Inspiration

- Quantum algorithm for linear equation solving, HHL algorithm (Harrow, Hassidim and Lloyd, 2009);
- Gröbner basis, F4 algorithm (Faugère, 1999) or the XL algorithm (Courtois et al, 2000): 'Gröbner basis computing' => 'linear equation solving'
- Gröbner basis computing' ←⇒ 'polynomial equation symbolic (algebraic) solving '

HHL algorithm:

Quantum algorithm for linear equation solving

Quantum Algorithms for Linear Equation Solving

 $A \in \mathbb{C}^{N \times N}$, s-sparse matrix, condition number κ (the quotient of the maximal and minimal nonzero singular value).

Let $\epsilon \in (0,1)$ be an error bound.

Theorem (HHL Algorithm, 2009)

For linear system $A|x\rangle = |b\rangle$, there exist quantum algorithms computing a solution state $|\widehat{x}\rangle$ with error bounded by ϵ and in time $O(\log(N)s\kappa^2/\epsilon)$ using the best known Hamiltonian simulation.

$$|x\rangle = \sum x_i |i\rangle \in \mathbb{C}^N$$
.

Quantum Algorithms for Linear Equation Solving

 $A \in \mathbb{C}^{N \times N}$, s-sparse matrix, condition number κ (the quotient of the maximal and minimal nonzero singular value).

Let $\epsilon \in (0,1)$ be an error bound.

Theorem (HHL Algorithm, 2009)

For linear system $A|x\rangle = |b\rangle$, there exist quantum algorithms computing a solution state $|\widehat{x}\rangle$ with error bounded by ϵ and in time $O(\log(N)s\kappa^2/\epsilon)$ using the best known Hamiltonian simulation.

$$|x\rangle = \sum x_i |i\rangle \in \mathbb{C}^N$$
.

If κ and s are small, HHL algorithm achieves exponential speedup comparing to traditional methods,

for instance, comparing to the conjugate gradient method which has complexity $\widetilde{O}(N\sqrt{\kappa}/\epsilon)$.

F4 algorithm:

Gröbner basis, Macaulay matrix, Macaulay linear system and solving degree

Macaulay Linear System and Macaulay Matrix

Polynomial System: $\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[\mathbb{X}]$ with $d_i = \deg f_i$, where $\mathbb{X} = \{x_1, \dots, x_n\}$.

Macaulay Linear System and Macaulay Matrix

Polynomial System: $\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[\mathbb{X}]$ with $d_i = \deg f_i$, where $\mathbb{X} = \{x_1, \dots, x_n\}$.

Let $D \in \mathbb{N}$ such that $D \ge \max_{i=1}^r d_i$.

For each monomial m in \mathbb{X} with $deg(m) \leq D - d_i$,

$$mf_i = c_* m_0 + c_* m_1 + \cdots + c_* m_{Q_D-1}$$

is a linear combination of monomials in \mathbb{X} of degree up to D

Macaulay Linear System and Macaulay Matrix

Polynomial System: $\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[\mathbb{X}]$ with $d_i = \deg f_i$, where $\mathbb{X} = \{x_1, \dots, x_n\}$.

Let $D \in \mathbb{N}$ such that $D \ge \max_{i=1}^r d_i$.

For each monomial m in \mathbb{X} with $deg(m) \leq D - d_i$,

$$mf_i = c_* m_0 + c_* m_1 + \cdots + c_* m_{Q_D-1}$$

is a linear combination of monomials in $\mathbb X$ of degree up to D

Written as matrix form: $\mathcal{M}_{\mathcal{F},D}\mathbf{m}_D = \mathbf{b}_{\mathcal{F},D}$

$$m_{0}f_{1} \qquad m_{1} < m_{2} < \cdots < m_{Q_{D}-1}$$

$$\vdots \qquad \dots \qquad \vdots$$

$$\vdots \qquad \dots \qquad \vdots$$

$$m_{Q_{D-d_{r}}-1}f_{r} \qquad \dots \qquad \vdots$$

$$m_{Q_{D-d_{r}}-1}f_{r} \qquad \dots \qquad \vdots$$

$$\vdots \qquad \dots \qquad \vdots$$

Example

Let
$$f_1 = x_1^2 - x_2$$
, $f_2 = x_1 - 2$, $D = 2$. Then we have

Sparseness of Macaulay Matrix

A matrix M is called s-sparse if each row and column of M have at most s nonzero entries.

Sparseness of Macaulay Matrix

A matrix M is called s-sparse if each row and column of M have at most s nonzero entries.

Polynomial System: $\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[\mathbb{X}]$ with $t_i = \#f_i$ the number of terms of f_i and $\mathbb{X} = \{x_1, \dots, x_n\}$

Lemma

 $\mathcal{M}_{\mathcal{F},D}$ has $(\sum_{i=1}^r t_i)$ -sparseness and can be computed effectively.

Sparseness of Macaulay Matrix

A matrix M is called s-sparse if each row and column of M have at most s nonzero entries.

Polynomial System: $\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[\mathbb{X}]$ with $t_i = \#f_i$ the number of terms of f_i and $\mathbb{X} = \{x_1, \dots, x_n\}$

Lemma

 $\mathcal{M}_{\mathcal{F},D}$ has $(\sum_{i=1}^r t_i)$ -sparseness and can be computed effectively.

Two often used cases

- Classic Macaulay Matrix: Let r = n + 1 and $D = \sum_{i=1}^{n+1} d_i n$, $\mathcal{M}_{\mathcal{F},D}$ has dimension $\widetilde{O}(D^n)$ and $(\sum_{i=1}^r t_i)$ -sparseness.
- Multivariate Quadratic Polynomial System (MQ): $\mathcal{M}_{\mathcal{F},D}$ has dimension $O(4^n)$ and $O(rn^2)$ -sparseness.

Gröbner Basis

For a polynomial system $\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[\mathbb{X}]$, denote (\mathcal{F}) the ideal generated by \mathcal{F} .

For a given monomial order \leq , we can define the leading (maximal) monomial of f (denoted by Im(f)) for any polynomial $f \in \mathbb{C}[X]$.

A subset $\mathbb{G}\subset (\mathcal{F})$ is called the Gröbner basis of (\mathcal{F}) under the monomial order \preceq , if

$$\forall f \in (\mathcal{F}), \ \exists g \in \mathbb{G}, \ \mathsf{Im}(g) \ | \ \mathsf{Im}(f).$$

Solving degree:

the relationship between Macaulay linear system and Gröbner basis

Solving Degree for Polynomial System

Polynomial System: $\mathcal{F} = \{f_1, \dots, f_r\}, d_i = \deg f_i, d = \max_i d_i$

Solving Degree (minimal) D of \mathcal{F} : if the Gröbner basis of (\mathcal{F}) can be obtained by Gaussian elimination over $\mathbb C$ for linear system

$$\mathscr{M}_{\mathcal{F},D}\mathbf{m}_D=\mathbf{b}_{\mathcal{F},D},$$

i.e.
$$\forall g \in \mathbb{G}, \exists h_i$$
, s.t. $g = \sum_{i=1}^r h_i f_i$ and $\deg(h_i f_i) \leq D$.

Solving Degree for Polynomial System

Polynomial System:
$$\mathcal{F} = \{f_1, \dots, f_r\}, d_i = \deg f_i, d = \max_i d_i$$

Solving Degree (minimal) D of \mathcal{F} : if the Gröbner basis of (\mathcal{F}) can be obtained by Gaussian elimination over $\mathbb C$ for linear system

$$\mathcal{M}_{\mathcal{F},D}\mathbf{m}_D = \mathbf{b}_{\mathcal{F},D},$$

i.e. $\forall g \in \mathbb{G}, \exists h_i, \text{ s.t. } g = \sum_{i=1}^r h_i f_i \text{ and } \deg(h_i f_i) \leq D.$

Results about solving degree:

- Hermann26: $SDeg(\mathcal{F}) \leq (2d)^{2^n}$.
- Brownawell87: $SDeg(\mathcal{F}) \leq d^n$, if $1 \in (\mathcal{F})$.
- Lazard83, Caminata-Gorla17: For DRL monomial ordering, if (\mathcal{F}) is projective zero-dimension, then the solving degree:

SDeg
$$(\mathcal{F}) \leq D = d_1 + \dots + d_{n+1} - n + 1 \leq nd + d - n + 1$$
.

• **MQ**: under Lazard's condition, $SDeg(\mathcal{F}) \leq D = n + 3$

Complete solving degree instead of solving degree:

the bridge between solution and solution

Complete Solving Degree (minimal) D of $\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[\mathbb{X}]$: \mathbb{G} is the reduced Gröbner basis of (\mathcal{F}) . $\forall g \in \mathbb{G}$ and $\forall m$ a monomial satisfying $\deg(mg) \leq D$, $\exists h_i$ s.t. $mg = \sum_{i=1}^r h_i f_i$, and $\deg(h_i f_i) \leq D$.

Complete Solving Degree (minimal) D of $\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[\mathbb{X}]$: \mathbb{G} is the reduced Gröbner basis of (\mathcal{F}) .

 $\forall g \in \mathbb{G} \text{ and } \forall m \text{ a monomial satisfying deg}(mg) \leq D, \exists h_i \text{ s.t.}$

$$mg = \sum_{i=1}^{r} h_i f_i$$
, and $deg(h_i f_i) \leq D$.

Solving Degree (minimal) D of \mathcal{F} : if the Gröbner basis of (\mathcal{F}) can be obtained by Gaussian elimination over \mathbb{C} for linear system

$$\mathscr{M}_{\mathcal{F},D}\mathbf{m}_D=\mathbf{b}_{\mathcal{F},D},$$

i.e.
$$\forall g \in \mathbb{G}, \exists h_i$$
, s.t. $g = \sum_{i=1}^r h_i f_i$ and $\deg(h_i f_i) \leq D$.

Complete Solving Degree (minimal) D of $\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[\mathbb{X}]$: \mathbb{G} is the reduced Gröbner basis of (\mathcal{F}) . $\forall g \in \mathbb{G}$ and $\forall m$ a monomial satisfying $\deg(mg) \leq D$, $\exists h_i$ s.t. $mg = \sum_{i=1}^r h_i f_i$, and $\deg(h_i f_i) \leq D$.

Lemma (Monomials are solvable in Macaulay linear system)

Let
$$\mathbb{V}_{\mathbb{C}}(\mathcal{F}) = \{\mathbf{a}_1, \dots, \mathbf{a}_w\}$$
 and (\mathcal{F}) radical. For $D \geq \mathrm{CSdeg}(\mathcal{F})$, any solution of $\mathcal{M}_{\mathcal{F},D}\mathbf{m}_D = \mathbf{b}_{\mathcal{F},D}$ is of form $\widehat{\mathbf{m}}_D = \sum_{i=1}^w \eta_i \mathbf{m}_D(\mathbf{a}_i)$, where $\sum_{i=1}^w \eta_i = 1$.

Complete Solving Degree (minimal) D of $\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[\mathbb{X}]$: \mathbb{G} is the reduced Gröbner basis of (\mathcal{F}) . $\forall g \in \mathbb{G}$ and $\forall m$ a monomial satisfying $\deg(mg) \leq D$, $\exists h_i$ s.t. $mg = \sum_{i=1}^r h_i f_i$, and $\deg(h_i f_i) \leq D$.

Lemma (Monomials are solvable in Macaulay linear system)

Let
$$\mathbb{V}_{\mathbb{C}}(\mathcal{F}) = \{\mathbf{a}_1, \dots, \mathbf{a}_w\}$$
 and (\mathcal{F}) radical. For $D \geq \mathrm{CSdeg}(\mathcal{F})$, any solution of $\mathcal{M}_{\mathcal{F},D}\mathbf{m}_D = \mathbf{b}_{\mathcal{F},D}$ is of form $\widehat{\mathbf{m}}_D = \sum_{i=1}^w \eta_i \mathbf{m}_D(\mathbf{a}_i)$, where $\sum_{i=1}^w \eta_i = 1$.

Lemma (Bound for CSdeg)

Let $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2 \subset \mathbb{C}[\mathbb{X}]$, where $\mathcal{F}_1 = \{g_1, \dots, g_r\}$, $\mathcal{F}_2 = \{f_1, \dots, f_n\}$ satisfying $\operatorname{Im}(f_i) = x_i^{d_i}$. We have $\operatorname{CSdeg}(\mathcal{F}) \leq d - 2n + 2\sum_{i=1}^n d_i$, where $d = \max \deg(g_i)$.

Use HHL on Macaulay Linear System

Polynomial System: $\mathcal{F} = \{f_1, \dots, f_r\}$, $d = \max_i \deg f_i$, $t_i = \# f_i$ Let the ideal (\mathcal{F}) is radical and projective dimension zero, also $\mathbb{V}(\mathcal{F}) = \{\mathbf{a}_1, \dots, \mathbf{a}_W\}$,

Use HHL on Macaulay Linear System

Polynomial System: $\mathcal{F} = \{f_1, \dots, f_r\}, d = \max_i \deg f_i, t_i = \#f_i$

Let the ideal (\mathcal{F}) is radical and projective dimension zero,

also
$$\mathbb{V}(\mathcal{F}) = \{\mathbf{a}_1, \dots, \mathbf{a}_w\},\$$

Theorem (Quantum Pseudo Solving for Polynomial System)

For $D \ge CSdeg(\mathcal{F})$ using the HHL algorithms to $\mathcal{M}_{\mathcal{F},D}\mathbf{m}_D = \mathbf{b}_{\mathcal{F},D}$, the solution is

$$|\widehat{\mathbf{m}}_D\rangle = \sum_{i=1}^w \eta_i |\mathbf{m}_D(\mathbf{a}_i)\rangle,$$

for certain $\eta_i \in \mathbb{C}$.

The complexity is $\widetilde{O}(\log(D)nT_{\mathcal{F}} \kappa^2)$

where $T_{\mathcal{F}} = \sum_{i=1}^{r} t_i$, κ condition number of $\mathcal{M}_{\mathcal{F},D}$.

We can measure $|\widehat{\mathbf{m}}_D\rangle$ to obtain a state $|k\rangle$ also the information:

$$\exists \mathbf{a}_i \text{ s.t. } \mathbf{m}_D(\mathbf{a}_i)_k = m_k(\mathbf{a}_i) \neq \mathbf{0}.$$

We can measure $|\widehat{\mathbf{m}}_D\rangle$ to obtain a state $|k\rangle$ also the information:

$$\exists \mathbf{a}_i \text{ s.t. } \mathbf{m}_D(\mathbf{a}_i)_k = m_k(\mathbf{a}_i) \neq \mathbf{0}.$$

If all a_i are assumed Boolean, we have $m_k(a_i) = 1$ furtherly.

We can measure $|\widehat{\mathbf{m}}_D\rangle$ to obtain a state $|k\rangle$ also the information:

$$\exists \mathbf{a}_i \text{ s.t. } \mathbf{m}_D(\mathbf{a}_i)_k = m_k(\mathbf{a}_i) \neq \mathbf{0}.$$

If all a_i are assumed Boolean, we have $m_k(a_i) = 1$ furtherly.

Thus we can reduce the equation system to another one with less variables by substituting $x_i = 1$ for those x_i appearing in m_k .

Quantum Algorithm to Find Boolean Solutions

Polynomial System:
$$\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[x_1, \dots, x_n],$$

 $T_{\mathcal{F}} = \sum_i \# f_i, \ \epsilon \in (0, 1), \ \mathbb{V}_{\mathcal{B}}(\mathcal{F}) = \mathbb{V}_{\mathbb{C}}(\mathcal{F}, x_1^2 - x_1, \dots, x_n^2 - x_n),$

Quantum Algorithm to Find Boolean Solutions

Polynomial System:
$$\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[x_1, \dots, x_n],$$

 $\mathcal{T}_{\mathcal{F}} = \sum_i \# f_i, \ \epsilon \in (0, 1), \ \mathbb{V}_{\mathcal{B}}(\mathcal{F}) = \mathbb{V}_{\mathbb{C}}(\mathcal{F}, x_1^2 - x_1, \dots, x_n^2 - x_n),$
CSdeg $(\mathcal{F}, x_1^2 - x_1, \dots, x_n^2 - x_n) \leq 3n$

Lemma (Bound for CSdeg)

Let $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2 \subset \mathbb{C}[\mathbb{X}]$, where $\mathcal{F}_1 = \{g_1, \dots, g_r\}$, $\mathcal{F}_2 = \{f_1, \dots, f_n\}$ satisfying $\operatorname{lm}(f_i) = x_i^{d_i}$. We have $\operatorname{CSdeg}(\mathcal{F}) \leq d - 2n + 2\sum_{i=1}^n d_i$, where $d = \max \deg(g_i)$.

Quantum Algorithm to Find Boolean Solutions

Polynomial System:
$$\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[x_1, \dots, x_n],$$

 $\mathcal{T}_{\mathcal{F}} = \sum_i \# f_i, \ \epsilon \in (0, 1), \ \mathbb{V}_{\mathcal{B}}(\mathcal{F}) = \mathbb{V}_{\mathbb{C}}(\mathcal{F}, x_1^2 - x_1, \dots, x_n^2 - x_n),$
CSdeg $(\mathcal{F}, x_1^2 - x_1, \dots, x_n^2 - x_n) \leq 3n$

Theorem

• If the algorithm returns a Boolean solution, then it is a solution of $\mathcal{F}=\mathbf{0}$.

Equivalently, if $\mathbb{V}_B(\mathcal{F}) = \emptyset$, the algorithm finds no solution.

Quantum Algorithm to Find Boolean Solutions

Polynomial System:
$$\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[x_1, \dots, x_n],$$

 $\mathcal{T}_{\mathcal{F}} = \sum_i \# f_i, \epsilon \in (0, 1), \mathbb{V}_{\mathcal{B}}(\mathcal{F}) = \mathbb{V}_{\mathbb{C}}(\mathcal{F}, x_1^2 - x_1, \dots, x_n^2 - x_n),$
CSdeg $(\mathcal{F}, x_1^2 - x_1, \dots, x_n^2 - x_n) \leq 3n$

Theorem

- If the algorithm returns a Boolean solution, then it is a solution of $\mathcal{F}=0$.
 - Equivalently, if $\mathbb{V}_B(\mathcal{F}) = \emptyset$, the algorithm finds no solution.
- If $\mathbb{V}_B(\mathcal{F}) \neq \emptyset$, the algorithm computes a Boolean solution of $\mathcal{F} = 0$ with probability $\geq 1 \epsilon$.

Quantum Algorithm to Find Boolean Solutions

Polynomial System:
$$\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{C}[x_1, \dots, x_n],$$

 $\mathcal{T}_{\mathcal{F}} = \sum_i \# f_i, \ \epsilon \in (0, 1), \ \mathbb{V}_{\mathcal{B}}(\mathcal{F}) = \mathbb{V}_{\mathbb{C}}(\mathcal{F}, x_1^2 - x_1, \dots, x_n^2 - x_n),$
CSdeg $(\mathcal{F}, x_1^2 - x_1, \dots, x_n^2 - x_n) \leq 3n$

Theorem

- If the algorithm returns a Boolean solution, then it is a solution of $\mathcal{F}=0$.
 - Equivalently, if $\mathbb{V}_B(\mathcal{F}) = \emptyset$, the algorithm finds no solution.
- If $V_B(\mathcal{F}) \neq \emptyset$, the algorithm computes a Boolean solution of $\mathcal{F} = 0$ with probability $\geq 1 \epsilon$.
- The complexity is $\widetilde{O}(n^{2.5}(n+T_{\mathcal{F}})\kappa^2\log 1/\epsilon)$

 κ is the maximal condition number of the Macaulay matrices.

 $A \in \mathbb{C}^{M \times N}$, s-sparse matrix, condition number κ . Let $\epsilon \in (0,1)$ be an error bound.

Theorem (HHL Algorithm)

For linear system $A|x\rangle = |b\rangle$, there exist quantum algorithms computing a solution state $|\widehat{x}\rangle$ with error bounded by ϵ and in time $\widetilde{O}(\log(N+M)s\kappa^2/\epsilon)$

 $A \in \mathbb{C}^{M \times N}$, s-sparse matrix, condition number κ . Let $\epsilon \in (0,1)$ be an error bound.

Theorem (HHL Algorithm)

For linear system $A|x\rangle = |b\rangle$, there exist quantum algorithms computing a solution state $|\widehat{x}\rangle$ with error bounded by ϵ and in time $\widetilde{O}(\log(N+M)s\kappa^2/\epsilon)$

Several Subtle Properties:

• The algorithm does not give a solution of Ax = b, but a state $|\widehat{x}\rangle$. Measure of $|\widehat{x}\rangle$ gives $|x_1|:|x_2|:\cdots:|x_n|$.

 $A \in \mathbb{C}^{M \times N}$, s-sparse matrix, condition number κ . Let $\epsilon \in (0,1)$ be an error bound.

Theorem (HHL Algorithm)

For linear system $A|x\rangle = |b\rangle$, there exist quantum algorithms computing a solution state $|\widehat{x}\rangle$ with error bounded by ϵ and in time $\widetilde{O}(\log(N+M)s\kappa^2/\epsilon)$

Several Subtle Properties:

- The algorithm does not give a solution of Ax = b, but a state $|\widehat{x}\rangle$. Measure of $|\widehat{x}\rangle$ gives $|x_1|:|x_2|:\cdots:|x_n|$.
- The algorithm gives a state even if Ax = b has no solution.

 $A \in \mathbb{C}^{M \times N}$, s-sparse matrix, condition number κ . Let $\epsilon \in (0,1)$ be an error bound.

Theorem (HHL Algorithm)

For linear system $A|x\rangle = |b\rangle$, there exist quantum algorithms computing a solution state $|\widehat{x}\rangle$ with error bounded by ϵ and in time $\widetilde{O}(\log(N+M)s\kappa^2/\epsilon)$

Several Subtle Properties:

- The algorithm does not give a solution of Ax = b, but a state $|\widehat{x}\rangle$. Measure of $|\widehat{x}\rangle$ gives $|x_1|:|x_2|:\cdots:|x_n|$.
- The algorithm gives a state even if Ax = b has no solution.
- The algorithm works over \mathbb{C} not \mathbb{F}_2 .

 $A \in \mathbb{C}^{M \times N}$, s-sparse matrix, condition number κ . Let $\epsilon \in (0,1)$ be an error bound.

Theorem (HHL Algorithm)

For linear system $A|x\rangle = |b\rangle$, there exist quantum algorithms computing a solution state $|\widehat{x}\rangle$ with error bounded by ϵ and in time $\widetilde{O}(\log(N+M)s\kappa^2/\epsilon)$

Several Subtle Properties:

- The algorithm does not give a solution of Ax = b, but a state $|\hat{x}\rangle$. Measure of $|\hat{x}\rangle$ gives $|x_1|:|x_2|:\cdots:|x_n|$.
- The algorithm gives a state even if Ax = b has no solution.
- The algorithm works over \mathbb{C} not \mathbb{F}_2 .

The nice property of our algorithm mainly due to the Boolean solutions.

Equation Solving and Optimization over Finite Fields

Main Result

An optimization problem over $\mathbb{F}_p = \{0, \dots, p-1\}$

$$\begin{aligned} & \min_{\mathbb{X} \in \mathbb{F}_p^n, \mathbb{Y} \in \mathbb{Z}^m} o(\mathbb{X}, \mathbb{Y}), \text{ subject to} \\ & f_j(\mathbb{X}) = 0, j = 1, \dots, r; \text{ over } \mathbb{F}_p \\ & 0 \leq g_i(\mathbb{X}, \mathbb{Y}) \leq b_i, i = 1, \dots, s; 0 \leq y_l \leq u_l, l = 1, \dots, m \\ & \text{where } f_i \in \mathbb{F}_p[\mathbb{X}], o, g_i \in \mathbb{Z}[\mathbb{X}, \mathbb{Y}], \text{ and } u, b_i, u_i \in \mathbb{N}. \end{aligned}$$

Main Result

An optimization problem over $\mathbb{F}_p = \{0, \dots, p-1\}$

$$\begin{aligned} & \min_{\mathbb{X} \in \mathbb{F}_p^n, \mathbb{Y} \in \mathbb{Z}^m} o(\mathbb{X}, \mathbb{Y}), \text{ subject to} \\ & f_j(\mathbb{X}) = 0, j = 1, \ldots, r; \text{ over } \mathbb{F}_p \\ & 0 \leq g_i(\mathbb{X}, \mathbb{Y}) \leq b_i, i = 1, \ldots, s; 0 \leq y_l \leq u_l, l = 1, \ldots, m \\ & \text{where } f_i \in \mathbb{F}_p[\mathbb{X}], o, g_i \in \mathbb{Z}[\mathbb{X}, \mathbb{Y}], \text{ and } u, b_i, u_i \in \mathbb{N}. \end{aligned}$$

• We give a quantum algorithm with **complexity polynomial in the input size and** κ (the condition number of certain matrix) Achieved exponential speedup if κ is small.

Main Result

An optimization problem over $\mathbb{F}_{\rho} = \{0, \dots, \rho-1\}$

$$\begin{aligned} & \min_{\mathbb{X} \in \mathbb{F}_p^n, \mathbb{Y} \in \mathbb{Z}^m} o(\mathbb{X}, \mathbb{Y}), \text{ subject to} \\ & f_j(\mathbb{X}) = 0, j = 1, \dots, r; \text{ over } \mathbb{F}_p \\ & 0 \leq g_i(\mathbb{X}, \mathbb{Y}) \leq b_i, i = 1, \dots, s; 0 \leq y_i \leq u_i, l = 1, \dots, m \\ & \text{where } f_i \in \mathbb{F}_p[\mathbb{X}], o, g_i \in \mathbb{Z}[\mathbb{X}, \mathbb{Y}], \text{ and } u, b_i, u_i \in \mathbb{N}. \end{aligned}$$

- We give a quantum algorithm with **complexity polynomial in the input size and** κ (the condition number of certain matrix) Achieved exponential speedup if κ is small.
- Include many NP hard problems as special cases:
 Equation Solving over finite field, Boolean equation solving, SAT,
 Polynomial systems with noise, Short integer solution problem (0, 1)-programming, knapsack problem

Solving Boolean Equations

Example (A Boolean equation may have no complex solution)

Let
$$f = x_1 + x_2 + 1$$
. Then $\mathbb{V}_{\mathbb{F}_2}(f) = \{(0,1), (1,0)\}.$

But Boolean solution $\mathbb{V}_B(f) = \emptyset$.

So we cannot use our QA over $\mathbb C$ to solve Boolean equations directly.

Solving Boolean Equations

Example (A Boolean equation may have no complex solution)

Let $f = x_1 + x_2 + 1$. Then $\mathbb{V}_{\mathbb{F}_2}(f) = \{(0,1), (1,0)\}.$

But Boolean solution $\mathbb{V}_B(f) = \emptyset$.

So we cannot use our QA over $\mathbb C$ to solve Boolean equations directly.

Reduce f to an equivalent polynomial $C(f) = f - 2 = x_1 + x_2 - 1$.

Then, Boolean solution $V_B(C(f)) = \{(0,1), (1,0)\}.$

Reduction 1: Integer interval $\{0, 1, \dots, b\}$

- $b \in \mathbb{N}_+$, $s = \lfloor \log_2(b) \rfloor$
- $\mathbb{B}_{bit} = \{B_0, \dots, B_s\}$ Boolean variables
- Inspired by $b = (2^s 1) + (b + 1 2^s)$, we introduce

$$\theta_b(\mathbb{B}_{\text{bit}}) = \sum_{i=0}^{s-1} 2^i B_i + (b+1-2^s) B_s.$$

• $\theta_b: \{0,1\}^{s+1} \Rightarrow \{0,1,\ldots,b\}.$

Reduction 2: Solving Equations over Finite Fields

Let
$$\mathcal{F} \subset \mathbb{F}_p[\mathbb{X}]$$
 and $\mathbb{X} = \{x_1, \dots, x_n\}$

Reduce to poly in Boolean variables over \mathbb{C} : $C(\mathcal{F}) \subset \mathbb{C}[\mathbb{X}_{bit}]$:

Reduction 2: Solving Equations over Finite Fields

Let
$$\mathcal{F} \subset \mathbb{F}_p[\mathbb{X}]$$
 and $\mathbb{X} = \{x_1, \dots, x_n\}$

Reduce to poly in Boolean variables over \mathbb{C} : $C(\mathcal{F}) \subset \mathbb{C}[\mathbb{X}_{bit}]$:

- \bullet Reduce ${\cal F}$ to Multivariate Quadratic Polynomials (MQ) over \mathbb{F}_p
- Reduce MQ over \mathbb{F}_p to MQ in Boolean variables over \mathbb{F}_p

Since
$$x_i \in \mathbb{F}_p$$
, $x_i = \theta_{p-1}(x_{ij}) = \sum_{j=0}^{\lfloor \log_2 p \rfloor - 1} x_{ij} 2^j + (p - 2^{\lfloor \log_2 p \rfloor}) x_{i \lfloor \log_2 p \rfloor}$, x_{ij} Boolean variables

• Reduce MQ over $F_p \Rightarrow$ Equations over $\mathbb C$

$$f\Rightarrow f-p heta_{\#f}(u_{fj}) ext{ over } \mathbb{C}$$

Reduction 2: Solving Equations over Finite Fields

Let
$$\mathcal{F} \subset \mathbb{F}_p[\mathbb{X}]$$
 and $\mathbb{X} = \{x_1, \dots, x_n\}$

Reduce to poly in Boolean variables over \mathbb{C} : $C(\mathcal{F}) \subset \mathbb{C}[\mathbb{X}_{bit}]$:

- Reduce \mathcal{F} to Multivariate Quadratic Polynomials (MQ) over \mathbb{F}_p
- Reduce MQ over \mathbb{F}_p to MQ in Boolean variables over \mathbb{F}_p

Since
$$x_i \in \mathbb{F}_p$$
,
 $x_i = \theta_{p-1}(x_{ij}) = \sum_{j=0}^{\lfloor \log_2 p \rfloor - 1} x_{ij} 2^j + (p - 2^{\lfloor \log_2 p \rfloor}) x_{i \lfloor \log_2 p \rfloor}$,
 x_{ij} Boolean variables

• Reduce MQ over $F_p \Rightarrow$ Equations over $\mathbb C$

$$f\Rightarrow f-p heta_{\#f}(u_{fj}) ext{ over } \mathbb{C}$$

Then, we have

$$\mathbb{V}_{\mathbb{F}_p}(\mathcal{F}) = \mathbb{V}_{\mathcal{B}}(\mathcal{C}(\mathcal{F}))$$

The size of $C(\mathcal{F})$ is nicely controlled.

We can solve $\mathcal{F}=0$ in $\widetilde{O}(n^{3.5}T_{\mathcal{F}}^{3.5}\log^8p\kappa_{\mathcal{F}}^2)$

Example

Example

For
$$f = x_1 + x_2 + 1$$
, we consider $C(f) = f - 2\theta_3(u_{fj}) = (x_1 + x_2 + 1) - 2(u_{f1} + 2u_{f2})$. $C(f) = 0$ has only two Boolean solution $x_1 = u_{f1} = 0$, $x_2 = u_{f1} = 1$ and $x_2 = u_{f1} = 0$, $x_1 = u_{f1} = 1$, which is coincident to $\mathbb{V}_{\mathbb{F}_2}(f) = \{(0,1), (1,0)\}$.

Reduction 3: Inequality over Finite Fields

Inequality: $\mathcal{I}: 0 \leq g \leq u, g \in \mathbb{Z}[y_1, \dots, y_n]$, and $0 \leq y_i \leq b_i$

Reduce to poly in Boolean variables: $I(\mathcal{I}) \subset \mathbb{C}[Y_{bit}]$:

Reduction 3: Inequality over Finite Fields

Inequality: $\mathcal{I}: 0 \leq g \leq u, g \in \mathbb{Z}[y_1, \dots, y_n]$, and $0 \leq y_i \leq b_i$ Reduce to poly in Boolean variables: $I(\mathcal{I}) \subset \mathbb{C}[Y_{\text{bit}}]$:

• The inequality \mathcal{I} is equivalent to an equation in Boolean variables: $g(\theta_{b_1}(y_{1j}), \dots, \theta_{b_n}(y_{nj})) - \theta_u(u_j) = 0$

Reduction 4: The Objective Function

The objective function: $\min_{\mathbb{X}} o(\mathbb{X})$ under assumption $0 \le o(\mathbb{X}) \le h$

Reduce $o(X) \in [\alpha, \alpha + 2^{\beta})$ to find Boolean solutions over $\mathbb C$

• Check $\exists \mathbb{X}$ s.t. $o(\mathbb{X}) \in [\alpha, \alpha + 2^{\beta})$ by solving the equation

$$E_{\alpha,\beta} = o(X) - (\alpha + \sum_{i=0}^{\beta-1} E_i 2_i)$$
, where E_i are Boolean variables

Reduction 4: The Objective Function

The objective function: $\min_{\mathbb{X}} o(\mathbb{X})$ under assumption $0 \le o(\mathbb{X}) \le h$

Reduce $o(X) \in [\alpha, \alpha + 2^{\beta})$ to find Boolean solutions over $\mathbb C$

• Check $\exists \mathbb{X}$ s.t. $o(\mathbb{X}) \in [\alpha, \alpha + 2^{\beta})$ by solving the equation $E_{\alpha,\beta} = o(\mathbb{X}) - (\alpha + \sum_{i=0}^{\beta-1} E_i 2_i)$, where E_i are Boolean variables

Find $min_{\mathbb{X}} o(\mathbb{X})$ for $0 \le o(\mathbb{X}) \le h$

- Set $\alpha = 0$, $\beta = \lfloor \log(h) \rfloor 1$. Solve $E_{\alpha,\beta} = 0$ to find a value of $o(\mathbb{X})$ in $[\alpha, \alpha + 2^{\beta})$.
- Obtain minimal value of $o(\mathbb{X})$ in [0, h] by dividing [0, h] into intervals of the form $[\alpha, \alpha + 2^{\beta})$ for at most log h times and by solving equations $E_{\alpha,\beta}$.

Summary

An optimization problem over \mathbb{F}_p

$$egin{aligned} \min_{\mathbb{X} \in \mathbb{F}_p^n, \mathbb{Y} \in \mathbb{Z}^m} o(\mathbb{X}, \mathbb{Y}), & ext{ subject to } 0 \leq o(\mathbb{X}) \leq h \ f_j(\mathbb{X}) = 0, j = 1, \ldots, r; & ext{ over } \mathbb{F}_p \ 0 \leq g_i(\mathbb{X}, \mathbb{Y}) \leq b_i, i = 1, \ldots, s; & 0 \leq y_k \leq u_l, l = 1, \ldots, m \end{aligned}$$

Solution procedure to the optimization problem

- Reduce equality constraints $f_j(\mathbb{X}) = 0$ over \mathbb{F}_q to a polynomial system \mathcal{F}_1 over \mathbb{C} .
- Reduce inequalities $0 \le g_i(\mathbb{X}, \mathbb{Y}) \le b_i$ to a polynomial system \mathcal{F}_2 over \mathbb{C} .
- Divide [0, h] into intervals of form $[\alpha, \alpha + 2^{\beta})$ and compute the Boolean solutions of $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \{\mathcal{E}_{\alpha,\beta}\}$ for at most $\log h$ times to find the minimal value for $o(\mathbb{X}, \mathbb{Y})$

Applications

Solving Boolean MQ and Cryptanalysis

Analysis of many cryptosystems \Rightarrow solving Boolean MQ.

Stream cipher Trivum (ISO/IEC standard) Block cipher AES (NIST standard) Hash function SHA-3/Keccak (NIST standard)

Solving Boolean MQ and Cryptanalysis

Analysis of many cryptosystems \Rightarrow solving Boolean MQ.

Stream cipher Trivum (ISO/IEC standard)

Block cipher AES (NIST standard)

Hash function SHA-3/Keccak (NIST standard)

Ciphers	#Vars(<i>n</i>)	#Eqs	$\mid \hspace{0.4cm} \mathcal{T}_{\mathcal{F}}$	Bezout B.	QComplexity
AES-128	4288	10616	252288	2 ⁿ	$2^{73.80}c\kappa^2$
AES-192	7488	18096	421248	2 ⁿ	$2^{76.44}c\kappa^2$
AES-256	11904	29520	696384	2 ⁿ	$2^{79.04}c\kappa^2$
Trivium	3543	4407	24339	2 ⁿ	$2^{57.08}c\kappa^2$
Trivium	6999	9015	49683	2 ⁿ	$2^{60.74}c\kappa^2$
Keccak	76800	77160	611023	2 ⁿ	$2^{78.04}c\kappa^2$
Keccak	76800	77288	611540	2 ⁿ	$2^{78.04}c\kappa^2$

These cryptosystems are secure under QA only if the condition numbers of their corresponding equation systems are large.

(0, 1)-Programming

$$\min_{x_i \in \{0,1\}} o(\mathbb{X}) = c_1 x_1 + \dots + c_n x_n,$$
 subject to $a_{i1} x_1 + \dots + a_{in} x_n \leq b_i, i = 1, \dots, s$

(0, 1)-Programming

$$\min_{x_i \in \{0,1\}} o(\mathbb{X}) = c_1 x_1 + \dots + c_n x_n,$$

subject to
$$a_{i1} x_1 + \dots + a_{in} x_n \leq b_i, i = 1, \dots, s$$

Quantum Complexity: $\widetilde{O}(n^{4.5}s^{3.5}\log^8 h\kappa^2)$, where $u = \max\{b_i, \sum_j c_j\}$

(0, 1)-Programming

$$\min_{x_i \in \{0,1\}} o(\mathbb{X}) = c_1 x_1 + \dots + c_n x_n,$$

 subject to
 $a_{i1}x_1 + \dots + a_{in}x_n \leq b_i, i = 1, \dots, s$

Quantum Complexity: $\widetilde{O}(n^{4.5}s^{3.5}\log^8 h\kappa^2)$, where $u = \max\{b_i, \sum_j c_j\}$

Include many famous NP-hard optimization problems

- Subset sum problem: (0,1) solution of one linear equation $\sum_i a_i x_i = b$. Complexity: $\widetilde{O}(n^{3.5} \kappa^2)$.
- Knapsack problem (s = 1)

Polynomial System Solving with Noise (PSWN)

For an over-determined polynomial system $\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{F}_p[\mathbb{X}]$ $(r \gg n)$, the PSWN problem is to find an $\mathbb{X} \in \mathbb{F}_p^n$ satisfies the maximal number of equations in \mathcal{F} .

Polynomial System Solving with Noise (PSWN)

For an over-determined polynomial system $\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{F}_p[\mathbb{X}]$ $(r \gg n)$, the PSWN problem is to find an $\mathbb{X} \in \mathbb{F}_p^n$ satisfies the maximal number of equations in \mathcal{F} .

• PSWN can be solved with $\widetilde{O}(r^{3.5}T_{\mathcal{F}}^{3.5}(\log p)^8\kappa^2)$

Polynomial System Solving with Noise (PSWN)

For an over-determined polynomial system $\mathcal{F} = \{f_1, \dots, f_r\} \subset \mathbb{F}_p[\mathbb{X}]$ $(r \gg n)$, the PSWN problem is to find an $\mathbb{X} \in \mathbb{F}_p^n$ satisfies the maximal number of equations in \mathcal{F} .

- PSWN can be solved with $\widetilde{O}(r^{3.5}T_{\mathcal{F}}^{3.5}(\log p)^8\kappa^2)$
- Linear System with Noise (LWN) $A\mathbb{X} = \mathbf{b}$ is NP-hard can be solved in time $\widetilde{O}((n+r\log p)^{2.5}(T_A+r\log^2 p)\log^{3.5}p\kappa^2)$, $A \in \mathbb{C}^{r \times n}$, T_A is the number of nonzero entries in A

Conclusion

- We give a quantum algorithm to solve polynomial systems and optimization over finite fields, whose complexity is polynomial in the input size and the condition numbers of certain Macaulay matrices.
- The quantum algorithm achieves exponential speedup if the condition number is small.
- The quantum algorithm applies to cryptanalysis of important cryptosystems and show that these cryptosystems are safe only if their condition numbers are large.

Thanks!

- Chen, Y.A. and Gao, X.S., Quantum Algorithms for Boolean Equation Solving and Quantum Algebraic Attack on Cryptosystems, ArXiv1712.06239v3, 2017.
- Chen, Y.A., Gao, X.S., Yuan, C.M., Quantum Algorithms for Optimization and Polynomial Systems Solving over Finite Fields, ArXiv1802.03856v2, 2018.

How about the condition number κ ?

$$\kappa(n, D)$$

For the field equations $H_{\mathbb{X}} = \{x_1^2 - x_1, \dots, x_n^2 - x_n\}$, denote the condition number of $\mathcal{M}_{H_{\mathbb{X}},D}$ by $\kappa(n,D)$, and we have

$$\kappa(n, D)$$

For the field equations $H_{\mathbb{X}} = \{x_1^2 - x_1, \dots, x_n^2 - x_n\}$, denote the condition number of $\mathcal{M}_{H_{\mathbb{X}},D}$ by $\kappa(n,D)$, and we have

Theorem

$$\kappa(1, D) = \cot \frac{\pi}{2D} = O(D), \ \kappa(2, D) \le 8D - 20 = O(D).$$

$\kappa(n, D)$

For the field equations $H_{\mathbb{X}} = \{x_1^2 - x_1, \dots, x_n^2 - x_n\}$, denote the condition number of $\mathcal{M}_{H_{\mathbb{X}},D}$ by $\kappa(n,D)$, and we have

Theorem

$$\kappa(1,D)=\cot\frac{\pi}{2D}=O(D),\,\kappa(2,D)\leq 8D-20=O(D).$$

Theorem

For
$$n$$
 ≥ D − 1, $\kappa(n, D) = \kappa(D - 1, D)$.

$\kappa(n, D)$

For the field equations $H_{\mathbb{X}} = \{x_1^2 - x_1, \dots, x_n^2 - x_n\}$, denote the condition number of $\mathcal{M}_{H_{\mathbb{X}},D}$ by $\kappa(n,D)$, and we have

Theorem

$$\kappa(1,D)=\cot\frac{\pi}{2D}=O(D),\,\kappa(2,D)\leq 8D-20=O(D).$$

Theorem

For
$$n \ge D - 1$$
, $\kappa(n, D) = \kappa(D - 1, D)$.

Conjecture

For fixed
$$n \ge 3$$
, $\kappa(n, D) = O(D^{1.5})$.

Pascal's simplex

 $\kappa(n,D)$ is related to the algebraic connectivity of the graph Pascal's simplex.

To compute the algebraic connectivity for a random graph is NP-hard.

Thanks!

One more time!

