Chapter 10.1 - Matter Answer 1 2010:1:3

(3 marks)

Particles called *quarks* are the 'building blocks' of other sub-atomic particles. Table 1 lists the names of some quarks and two of their quantum numbers; charge q and strangeness S.

Table 1: Some properties of quarks

Quark Chargo g			
	Charge, q	Strangeness, S	
up	+2/3	0	
down	-1/3	0	
charm		0	
Chaill	+2/3	0	
strange	-1/3	-1	
top	2	-1	
·	+2/3	0	
bottom	-1/	_	
	- 1/3	0	

When quarks combine their individual quantum numbers 'add'. For example, a fictitious particle, the Joton, made of two charm quarks and one top quark would have a charge of $+2f_3+2f_3+2f_3=6f_3=2$ and a strangeness of 0+0+0=0.

Use Table 1 to determine the values of the charge and strangeness quantum numbers for the particles in Table 2.

Table 2: Properties of some sub-atomic particles

		partiolog		
Particle	Quark composition	Charge, Q	Strangeness, S	
Lambda	up, down, strange	0	-1	
Xi	up, strange, strange	0	2	
Sigma minus	down , down strange	-1	-2	
			-1	

Charge and strangeness correct for each particle 1 mark for each correct row.	Marks 1
	Total 3

Answer 2

2013:1:4

(3 marks)

Table of quarks			
Name	Symbol	Electrostatic charge	
Up	u	+ 2/3 e	
Down	d	-⅓ e	
Strange	s	-⅓ e	
Charmed	С	+ 2/3 e	
Bottom	b	-⅓ e	
Тор	t	+ 2/3 e	

Exam Answers Chapter 10.1 - Matter Answer 2 continued

Table of baryons		
Particle	Composition	
p ⁺	uud	
n	u d d	
Σ ⁺	uus	
Σο	u d s	
Σ-	d d s	
· Ω-	SSS	

(a) Use the information in the above tables to explain why the electrostatic charge on the Σ^0 particle is neutral. (2 marks)

Description	Marks
$\Sigma^0 = u d s$	1
$= + \frac{2}{3} e \& -\frac{1}{3} e \& -\frac{1}{3} e = 0$	1
Total	2

(b) It is possible for another baryonic particle to exist in nature with a positive electrostatic charge equal to that of the proton. What would its quark composition be, given that this particle contains two up quarks and is **not** a proton? (1 mark)

Description	Marks
u u b or u u s	1
Total	1

Answer 3

2014:1:3

(2 marks)

An exotic hadron, initially seen over 40 years ago, has recently been confirmed at the European Organization for Nuclear Research (CERN). The Z(4430) particle consists of four quarks: a charm, an anti-charm, a down, and an anti-up.

Use the following table to show the calculation required to determine the charge of the Z (4430) particle.

Table of quarks			
Name	Symbol	Electrostatic charge	
Up	u	+ ¾ e	
Down	d	-⅓ e	
Strange	S	-⅓ e	
Charm	С	+ ⅔ e	
Bottom	b	-⅓ e	
Тор	t	+ 2/3 e	

Description		Marks
a charm, an anti-charm, a down, and an anti-up		
$+\frac{2}{9}e + -\frac{2}{9}e + -\frac{1}{9}e + -\frac{2}{9}e$		1
3 3 3		
= -1e (e optional)		1
If charges for antiparticles not reversed, zero marks		
	Total	2