

Introduction

Numerical
Methods and
Applications in
Total Variation
Image
Bestoration

L-PDE

LVOC

New Insight LVOC

> -Constraine Aethod

Other Variation of Functional

Astivo Contou

Experimental Results

Pre-analysis

Learning Variation via Optimal Control

CVBIOUC

Contents

Learning Variation via Optimal Control

Introductio

Numerical Methods and Applications ir Total Variation Image Restoration

LVOC

LVOC ϵ -Constrained Method

Other Variation o Functional Method

Active Contou

Experiment Results

1 Introduction

- Numerical Methods and Applications in Total Variation Image Restoration
- L-PDE

2 LVOC

- New Insight
- LVOC
- \bullet ϵ -Constrained Method
- 3 Other Variation or Functional Method
 - Active Contour
 - **.**.

4 Experimental Results

- Pre-analysis
- Results

Introduction

Numerical
Methods and
Applications in
Total Variation
Image
Restoration

LVOC

LVOC ε-Constrained

Other Variation of Functional

Active Conton

Experiment Results Pre-analysis

The total variation of an image $u:\Omega\to\mathbb{R}$ is defined as:

$$\int_{\Omega} |\nabla u| \, dx \tag{1}$$

Deblurring

Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60:259-268

Introduction

Numerical
Methods and
Applications in
Total Variation
Image
Restoration

LVOC

New Insight

LVOC ϵ -Constrained

Other Variation of Functional

Active Conton

Experimen Results

Pre-analysis

Results

The total variation of an image $u:\Omega\to\mathbb{R}$ is defined as:

$$\int_{\Omega} |\nabla u| \, d\boldsymbol{x}$$

Inpainting

Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60:259–268

Introduction

Numerical
Methods and
Applications ir
Total Variation
Image
Restoration

LVOC

LVOC

Other Variation of

Active Center

Results
Pre-analysis

The total variation of an image $u:\Omega\to\mathbb{R}$ is defined as:

$$\int_{\Omega} |\nabla u| d\boldsymbol{x}$$

Decomposition

Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60:259-268

Introductio

Numerical Methods and Applications in Total Variation Image Restoration

LVO

New Insight

LVOC ϵ -Constrained

Other Variation o Functional

Active Contou

Experimenta Results ^{Pre-analysis}

The unconstrained total variation based image restoration model reads:

$$\min_{u} \int_{\Omega} \frac{1}{2} (u - f)^2 d\mathbf{x} + \beta \int_{\Omega} |\nabla u| d\mathbf{x}$$
 (2)

Acar A, Vogel C (1994) Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl 10(6):1217–1229

Introduction

Numerical
Methods and
Applications in
Total Variation
Image
Restoration

LVO

LVOC

6-Constrained

Other Variation of Functional

Experiment Results
Pre-analysis
Results

The corresponding Euler-Lagrange equation of (2):

$$K^{T}Ku - K^{T}f - \beta \operatorname{div}(\frac{\nabla u}{|\nabla u|}) = 0$$
(3)

With the help of an auxiliary variable $p = \frac{\nabla u}{\sqrt{|\nabla u|^2 + \epsilon}}$, the singularity will vanish.

$$\nabla u - \mathbf{p}\sqrt{|\nabla u|^2 + \epsilon} = 0
K^T K u - K^T f - \beta \operatorname{div} \mathbf{p} = 0$$
(4)

Chan T, Golub G, Mulet P (1999) A nonlinear primal-dual method for total variation-based image restoration. SIAM J Sci Comp 20:1964-1977

Introductio

Numerical
Methods and
Applications i:
Total Variatio
Image
Restoration

LVOC

LVOC

Other Variation o Functional

Autim Conton

Experiment Results Pre-analysis Results

A pur dual method which is equivalent to the ROF model avoids the singularity of $|\nabla u| = 0$.

$$\sup_{|\boldsymbol{p}| \leq 1} \left\{ -\frac{\lambda^2}{2} \int_{\Omega} |K^{-T} div \boldsymbol{p} - \frac{f}{\lambda}|^2 d\boldsymbol{x} \right\}$$
 (5)

Semi-implicit scheme:

$$\mathbf{p}^{n+1} = \frac{\mathbf{p}^n + \tau H(\mathbf{p}^n)}{\mathbf{p}^n + \tau |H(\mathbf{p}^n)|}$$
(6)

where
$$H(\boldsymbol{p}) := \nabla[(K^T K)^{-1} \operatorname{div} \boldsymbol{p} - \frac{1}{\lambda} K^{-1} f]$$

Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20:89-97

Introductio

Numerical
Methods and
Applications in
Total Variation
Image
Restoration

L-PDE

LVO

 $\begin{array}{c} {\rm LVOC} \\ {\epsilon\text{-Constrained}} \end{array}$

Other Variation o Functional

Results

Pre-analysis

Results

Consider the general quadratic problem:

$$\min_{y,y \le \phi} \langle y, Ay \rangle - \langle f, y \rangle \tag{7}$$

KKT conditions:

$$Ay + \lambda = f$$

$$\lambda \odot (\phi - y) = 0$$

$$\lambda \geqslant 0$$

$$\phi - y \geqslant 0$$
(8)

Hintermüller M, Stadler G (2006) A primal-dual algorithm for TV-based inf-convolution-type image restoration. SIAM J Sci Comput 28:1-23

Variation Control

Methods and Restoration

Learning via Optimal

The non-negative constrained TV model:

$$\min_{u,u\geqslant 0} \int_{\Omega} \frac{1}{2} (Ku - f)^2 d\mathbf{x} + \beta \int_{\Omega} |\nabla u| d\mathbf{x}$$
 (9)

The equivalent system:

$$\nabla u - \mathbf{p}\sqrt{|\nabla u|^2 + \epsilon} = 0$$

$$(K^T K + \alpha I)u - K^T f - \beta \operatorname{divp} - \lambda = 0$$

$$\lambda - \max\{0, \lambda - cu\} = 0$$
(10)

Krishnan D, Lin P, Yip A (2007) A primal-dual active-set method for non-negativity constrained total variation deblurring problems. IEEE Trans Image Process 16(11):2766-2777

Introductio

Numerical
Methods and
Applications in
Total Variation
Image
Restoration

LVO

LVOC ϵ -Constrained

Other Variation of Functional

Active Center

Results
Pre-analysis

Associated with the Fisher-Burmeister function ϕ , the KKT system is shown as follows.

$$\mu \mathbf{p} - H(\mathbf{p}) = 0$$

$$\phi(\mu, 1 - |\mathbf{p}|^2) = 0$$
(11)

Ng M, Qi L, Tang Y, Huang Y (2007) On semismooth Newton's methods for total variation minimization. J Math Imaging Vis 27(3):265-276

Introduction

Numerical
Methods and
Applications ir
Total Variation
Image
Restoration

L-PDE

LVO

LVOC ϵ -Constraine

Other Variation of Functional

Active Center

Results
Pre-analysis
Results

The primal-dual formulation:

$$F(u, \mathbf{p}) := \frac{1}{2} \int_{\Omega} (Ku - f)^2 d\mathbf{x} + \beta \int_{\Omega} u div \mathbf{p} d\mathbf{x}$$
 (12)

Two subproblems:

$$\sup_{|\boldsymbol{p}| \leqslant 1} F(u, \boldsymbol{p}) \quad \inf_{u} F(u, \boldsymbol{p}) \tag{13}$$

Zhu M, Chan T (2008) An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report, 08–34

Introductio

Numerical
Methods and
Applications in
Total Variation
Image
Restoration

LVO

LVOC ϵ -Constrained

ε-Constrained Method

Other Variation of Functional Method

Active Contor

Experiment Results
Pre-analysis

Numerical Methods:

- Dual and Primal-Dual Methods
- Bregman Iteration
- Graph Cut Methods
- Splitting Methods
- Quadratic Programming
- Second-Order Cone Programming
- Majorization-Minimization

Introductio

Numerical
Methods and
Applications in
Total Variation
Image
Restoration

L-PDE

LVO

LVOC ϵ -Constrained

Other Variation o Functional

Active Center

Experimen Results Pre-analysis Results

Optimal Control Governed by Evolutionary PDEs:

minimize J(f, u), where $u \in \mathcal{U}$ controls f via the following PDE:

$$\begin{cases}
f_t = L(u, \boldsymbol{\beta}), & (x, t) \in \Omega \\
f = 0, & (x, t) \in \Gamma \\
f|_{t=0} = f_0 & x \in \Omega
\end{cases}$$
(14)

where $L(u, \boldsymbol{\beta}) = \kappa(u) + F(u, \boldsymbol{\beta})$.

Lin Z, Zhang W, Tang X (2008) Learning partial differential equations for computer vision. Technical report, Microsoft Research, MSR-TR-2008-189

Introductio

Numerical Methods and Applications in Total Variation Image

L-PDE

LVOC

New Insight

LVOC ϵ -Constrained

Other Variation o Functional

Active Conton

Experimen Results

Pre-analysis

Adaptive partial differential equation learning for visual saliency detection

Saliency diffusion is formulated as an evolutionary PDE:

$$\frac{\partial f(\mathbf{p}, t)}{\partial t} = div(K_{\mathbf{p}}\nabla f(\mathbf{p})) + \lambda(f(\mathbf{p}) - g(\mathbf{p})), \mathbf{p} \in \mathcal{S}$$
 (15)

Liu R, Cao J, Lin Z, Shan S (2014) Adaptive partial differential equation learning for visual saliency detection. In Proceedings of IEEE conference on computer vision and pattern recognition

Introductio

Numerical
Methods and
Applications in
Total Variation
Image
Restoration

LVO

 ${\color{red} {\rm LVOC}} \\ {\color{blue} {\epsilon\text{-Constrained}}}$

Other Variation o Functional

Active Contou

Experimenta Results The non-negative constrained TV model:

$$\min_{u,u\geqslant 0} \int_{\Omega} \frac{1}{2} (Ku - f)^2 d\boldsymbol{x} + \beta \int_{\Omega} |\nabla u| d\boldsymbol{x}$$

The equivalent system:

$$\begin{split} \nabla u - p \sqrt{|\nabla u|^2 + \epsilon} &= 0 \\ K^T K u - K^T f - \beta \operatorname{div} p - \lambda &= 0 \\ \lambda - \max\{0, \lambda - cu\} &= 0 \end{split}$$

What if beta is adaptive?

The non-negative constrained TV model:

$$\min_{u,u\geqslant 0} \int_{\Omega} \frac{1}{2} (Ku - f)^2 d\boldsymbol{x} + \beta \int_{\Omega} |\nabla u| d\boldsymbol{x}$$

The equivalent system:

$$\begin{split} \nabla u - p \sqrt{|\nabla u|^2 + \epsilon} &= 0 \\ K^T K u - K^T f - \beta \operatorname{div} p - \lambda &= 0 \\ \lambda - \max\{0, \lambda - cu\} &= 0 \end{split}$$

How?

Introductio

Numerical
Methods and
Applications is
Total Variatio
Image
Restoration
L-PDE

LVO

LVOC

6-Constrained

Other Variation of Functional

Active Contou

Results
Pre-analysis

The non-negative constrained TV model:

$$\min_{u,u\geqslant 0} \int_{\Omega} \frac{1}{2} (Ku - f)^2 d\boldsymbol{x} + \boldsymbol{\beta} \int_{\Omega} |\nabla u| d\boldsymbol{x}$$

The semi-smooth Newton's update:

$$\begin{bmatrix} |\nabla u^k|_{\epsilon} & -(I - \frac{p^k(\nabla u^k)^T}{|\nabla u^k|_{\epsilon}})\nabla & 0\\ -\frac{\beta^k}{\delta}div & K^TK & -I\\ 0 & \frac{\partial F_3}{\partial u} & \frac{\partial F_3}{\partial \lambda} \end{bmatrix} \begin{bmatrix} \delta p\\ \delta u\\ \delta \lambda \end{bmatrix} = -\begin{bmatrix} F_1^k\\ F_2^k\\ F_3^k \end{bmatrix}$$

 β^k reflects the difference between u^k and the groudtruth.

Train it!

Introductio

Numerical
Methods and
Applications
Total Variation
Image
Restoration
L-PDE

LVO

LVOC

6-Constrained

Other Variation of Functional Method

Active Contou

Experimen Results Pre-analysis The non-negative constrained TV model:

$$\min_{u,u\geqslant 0} \int_{\Omega} \frac{1}{2} (Ku - f)^2 d\boldsymbol{x} + \boldsymbol{\beta} \int_{\Omega} |\nabla u| d\boldsymbol{x}$$

The semi-smooth Newton's update:

$$\begin{bmatrix} |\nabla u^k|_{\epsilon} & -(I - \frac{p^k(\nabla u^k)^T}{|\nabla u^k|_{\epsilon}})\nabla & 0 \\ -\boldsymbol{\beta^k}div & K^TK & -I \\ 0 & \frac{\partial F_3}{\partial u} & \frac{\partial F_3}{\partial \lambda} \end{bmatrix} \begin{bmatrix} \delta p \\ \delta u \\ \delta \lambda \end{bmatrix} = -\begin{bmatrix} F_1^k \\ F_2^k \\ F_3^k \end{bmatrix}$$

 β^k reflects the difference between u^k and the groudtruth.

Introductio

Numerical
Methods and
Applications in
Total Variation
Image
Restoration

LVOC

New Insight

 ϵ -Constrained Method

Other Variation of Functional

Experimenta Results ^{Pre-analysis} The non-negative constrained variation:

$$\min_{u,u\geqslant 0} \int_{\Omega} \left[\frac{1}{2}(Ku - f)^2 + V(\boldsymbol{\beta}, u)\right] d\boldsymbol{x}$$
 (16)

where $V(\boldsymbol{\beta}, u) = \sum_{i=1}^{3} \beta_i v_i(u)$.

$$-v_2(u) = |u|_{TV}$$

$$-v_1(u) = |u|^2$$

$$-v_3(u) = |\nabla u|^2$$

Introductio

Numerical
Methods and
Applications is
Total Variatio
Image
Restoration
L-PDE

LVO

LVOC

€-Constrained Method

Other Variation of Functional

Active Contou

Experimenta Results _{Pre-analysis}

Optimal control:

$$\min\{\frac{1}{2}\int_{\Omega}(u-\hat{f})^2dx + \frac{1}{2}\sum_{i=1}^3 a_i\beta_i^2\}$$
 (17)

min
$$\{\frac{1}{2}\int_{\Omega}(u-\hat{f})^2 d\mathbf{x} + \frac{1}{2}\sum_{i=1}^3 a_i\beta_i^2\}$$

min $\{\int_{\Omega}[\frac{1}{2}(Ku-f)^2 + V(\boldsymbol{\beta}, u)]d\mathbf{x}\}$ (18)

Introductio:

Numerical Methods and Applications i Total Variatio Image Restoration L-PDE

LVO

LVOC ϵ -Constrained Method

Other Variation of Functional Method Active Contour

Experiment Results Pre-analysis Results

Problem A:

$$\min_{u,\alpha} \quad [f(x, u, \alpha), G(\alpha)]$$

$$s.t. \quad q(x, u, \alpha) \leq 0$$
(19)

Problem B:

$$\min_{u,\alpha} \qquad f(x, u, \alpha)
s.t. \qquad G(\alpha) \leq \epsilon
\qquad g(x, u, \alpha) \leq 0$$
(20)

Equivalence Theorem

Let $\epsilon \geqslant \min G(\alpha)$, let V^* solve Problem $B(\epsilon)$, and asume that, if V^* is not unique, then V^* is an optimal solution of Problem $B(\epsilon)$ with minimal $G(\alpha)$ value. Then V^* solves Problem A.

Haimes Y, Lasdon L, Wismer D (1971) On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization. IEEE Transactions on Systems, Man, and Cybernetics 1(3) 296–297

Introduction

Numerical
Methods and
Applications in
Total Variation
Image
Restoration

L-PDE

LVO

New Insight LVOC

 ϵ -Constrain Method

Other Variation of Functional

Active Center

Experimenta Results

Pre-analys

$$\begin{split} & \min \quad \{ \tfrac{1}{2} \int_{\Omega} (u - \hat{f})^2 \, d\boldsymbol{x} + \tfrac{1}{2} \sum_{i=1}^3 \, a_i \beta_i^2 \} \\ & \min \quad \{ \int_{\Omega} [\tfrac{1}{2} (Ku - f)^2 + \, V(\boldsymbol{\beta}, u)] \, d\boldsymbol{x} \} \quad \textit{s.t.} \quad u \geqslant 0 \end{split}$$

Introduction

Numerical Methods and Applications in Total Variation Image Restoration

TVOC

New Insight

LVOC

6-Constrained

Method

Other Variation or Functional

Active Center

Experimenta Results

$$\begin{aligned} & \min & \quad \{ \frac{1}{2} \int_{\Omega} (u - \hat{f})^2 \, dx + \frac{1}{2} \sum_{i=1}^3 \, a_i \beta_i^2 \} \\ & \min & \quad \{ \int_{\Omega} [\frac{1}{2} (Ku - f)^2 + V(\boldsymbol{\beta}, u)] \, dx \} \quad s.t. \quad u \geqslant 0 \\ & \qquad \\ & \min & \quad \{ \frac{1}{2} \int_{\Omega} (u - \hat{f})^2 \, dx + \frac{1}{2} \sum_{i=1}^3 \, a_i \beta_i^2 \} \\ & s.t. \quad \int_{\Omega} [\frac{1}{2} (Ku - f)^2 + V(\boldsymbol{\beta}, u)] \, dx \leqslant \epsilon, u \geqslant 0 \end{aligned}$$

Introduction

Numerical Methods and Applications in Total Variation Image Restoration

LVOC

New Insight

LVOC ϵ -Constrained

Method

Other Variation or Functional Method

Astivo Contour

Experimental Results Pre-analysis

$$\min \begin{cases} \frac{1}{2} \int_{\Omega} (u - \hat{f})^{2} dx + \frac{1}{2} \sum_{i=1}^{3} a_{i} \beta_{i}^{2} \} \\
\min \begin{cases} \int_{\Omega} \left[\frac{1}{2} (Ku - f)^{2} + V(\boldsymbol{\beta}, u) \right] dx \right\} \quad s.t. \quad u \geq 0
\end{cases}$$

$$\min \begin{cases} \frac{1}{2} \int_{\Omega} (u - \hat{f})^{2} dx + \frac{1}{2} \sum_{i=1}^{3} a_{i} \beta_{i}^{2} \} \\
s.t. \quad \int_{\Omega} \left[\frac{1}{2} (Ku - f)^{2} + V(\boldsymbol{\beta}, u) \right] dx \leq \epsilon, u \geq 0
\end{cases}$$

$$\min \begin{cases} \frac{1}{2} \int_{\Omega} (u - \hat{f})^{2} dx + \frac{1}{2} \sum_{i=1}^{3} a_{i} \beta_{i}^{2} \} \\
s.t. \quad K^{T} Ku + Lag(V(\boldsymbol{\beta}, u, p)) = 0$$

$$|\nabla u|_{\epsilon} p - |\nabla u| = 0$$

$$u, |p|^{2} - 1 \geq 0$$

Introductio

Numerical
Methods and
Applications ir
Total Variation
Image
Restoration
L-PDE

LVO

LVOC ϵ -Constrained Method

Other Variation of Functional Method

Active Contour

Experimenta Results ^{Pre-analysis} The corresponding minimization:

min
$$\{\frac{1}{2}\int_{\Omega}(u-\hat{f})^{2}dx + \frac{1}{2}\sum_{i=1}^{3}a_{i}\beta_{i}^{2} + \int_{\Omega}\phi_{1}(K^{T}Ku + Lag(V(\boldsymbol{\beta}, u, p)))dx + \int_{\Omega}\phi_{2}(|\nabla u|_{\epsilon}p - \nabla u)dx + \langle u, \lambda_{1} \rangle + \langle |p|^{2} - 1, \lambda \rangle$$
 (22)

The KKT conditions for the problem (21):

$$(u - \hat{f}) + Lag(Lag(V)) + \nabla(\phi_2 p^2) - \nabla\phi_2 - \lambda + \lambda_2 \odot p = 0$$

$$K^T K u + Lag(V(\beta, u, p)) = 0$$

$$|\nabla u|_{\epsilon} p - \nabla u = 0$$

$$(|p|^2 - 1) \odot \lambda_2 = 0$$

$$u \odot \lambda_1 = 0$$

$$\lambda_1, \lambda_2 \ge 0$$

$$(23)$$

Introductio:

Methods and Applications i: Total Variatio Image Restoration L-PDE

LVO

LVOC

←-Constrained

Other Variation o Functional

Active Contour

Experimen Results Pre-analysis Besults The equivalent minimization:

min
$$\{\frac{1}{2}\int_{\Omega}(u-\hat{f})^2 d\mathbf{x} + \frac{1}{2}\sum_{i=1}^3 a_i \beta_i^2 + \int_{\Omega} \phi_1(K^T K u + Lag(\tilde{V}(\boldsymbol{\beta}, u, p))) d\mathbf{x} \}$$
 (24)

The corresponding system:

$$(u - \hat{f}) + Lag(Lag(\tilde{V})) = 0$$
(25)

$$\boldsymbol{K}^{T}\boldsymbol{K}\boldsymbol{u} + Lag(\tilde{\boldsymbol{V}}(\boldsymbol{\beta},\boldsymbol{u},\boldsymbol{p})) = 0 \tag{26}$$

$$|\nabla u|_{\epsilon} p - \nabla u = 0 \tag{27}$$

$$\lambda - \max\{0, \lambda - cu\} = 0 \tag{28}$$

where $\tilde{V} = \beta_1 u - \beta_3 \Delta u - \beta_2 divp - \lambda - K^T f$. The left hand sides are denoted by F_1, F_2, F_3, F_4 respectively.

Introduction

Numerical Methods and Applications in Total Variation Image Restoration

LVO

New Insight LVOC

 ϵ -Constrained Method

Other Variation of Functional Method

A -+:--- C---+----

Experimenta Results

Pre-analys

Introductio

Numerical Methods and Applications ir Total Variation Image Restoration

Image Restoration L-PDE

LVO

LVOC ϵ -Constrained

Other Variation of Functional

Active Conton

Experimen Results Pre-analysis Results

Active contours model

$$E_{snake} = \int_{1}^{2} \frac{1}{2} [\alpha(s) \left| \frac{\partial v}{\partial s} \right|^{2} + \beta(s) \left| \frac{\partial^{2} v}{\partial s^{2}} \right|^{2}] ds + \int_{1}^{2} E_{ext}(v(s)) ds$$
(29)

Kass M, Witkin A, Terzopoulos D (1988) Snake: Active contours models. Int. J. comput. Vis., vol. 1, pp. 321-331

Introduction

Numerical
Methods and
Applications is
Total Variatio
Image
Restoration

LVO

LVOC ϵ -Constrained

Other Variation of Functional

A - + :--- C - - + - - -

Experimen Results Pre-analysis Results

Active contours model

$$E_{snake} = \int_{1}^{2} \frac{1}{2} [\alpha(s) \left| \frac{\partial v}{\partial s} \right|^{2} + \beta(s) \left| \frac{\partial^{2} v}{\partial s^{2}} \right|^{2}] ds + \int_{1}^{2} E_{ext}(v(s)) ds$$

Kass M, Witkin A, Terzopoulos D (1988) Snake: Active contours models. Int. J. comput. Vis., vol. 1, pp. 321-331

Introductio

Numerical
Methods and
Applications in
Total Variation
Image
Restoration
L-PDE

LVO

LVOC &-Constrained

Other Variation of Functional Method

Active Contou

Experimen Results

Pre-analysis

Besults

Active contours model

Why not associate optimal control with Snake model?

$$E_{snake} = \int_{1}^{2} \frac{1}{2} [\alpha(s) |\frac{\partial v}{\partial s}|^{2} + \beta(s) |\frac{\partial^{2} v}{\partial s^{2}}|^{2}] ds + \int_{1}^{2} E_{ext}(v(s)) ds$$

Kass M, Witkin A, Terzopoulos D (1988) Snake: Active contours models. Int. J. comput. Vis., vol. 1, pp. 321-331

Introductio

Numerical
Methods and
Applications is
Total Variatio
Image
Restoration

LVO

LVOC ϵ -Constrained

Other Variation of Functional

Active Conton

Experimen Results

Pre-analysis

Results

Active contours model

Future Work!

$$E_{snake} = \int_{1}^{2} \frac{1}{2} [\alpha(s) |\frac{\partial v}{\partial s}|^{2} + \beta(s) |\frac{\partial^{2} v}{\partial s^{2}}|^{2}] ds + \int_{1}^{2} E_{ext}(v(s)) ds$$

Kass M, Witkin A, Terzopoulos D (1988) Snake: Active contours models. Int. J. comput. Vis., vol. 1, pp. 321-331

Introduction

Numerical
Methods and
Applications in
Total Variation

Image Restoration

L-PDE

LVOC

New Insight LVOC

-Constrained

Other Variation or Functional

Active Center

Experimenta

Pre-analys

Populto

Thanks!

Introduction

Numerical
Methods and
Applications in
Total Variation

r ppp

L-PDE

LVO

New Insight

-Constraine

Other Variation of Functional

Astivo Contos

...

Experimenta Results

Pre-analy

此处将列举其他能量泛函方法, 敬请期待!

Introduction

Numerical Methods and Applications

Total Variatio

L-PDE

LVO

New Insight

 ϵ -Constraine

Other Variation or Functional

Experimenta Results

Pre-analysis

此处将列举 $V(u, \beta)$ 的处理效果, 敬请期待!

Introduction

Numerical Methods and Applications in Total Variation Image Restoration

LVOC

LVOC ϵ -Constrained

Other Variation of Functional

Experimental Results 此处将列举 LVOC 的处理效果 (加大训练集), 并进一步分析, 包括线性拟合最优参数和评价指标的内容, 敬请期待!