

# Annexe : Évaluation d'un système de recherche d'information

Indexation de données multimédias

A. ELHASSOUNY

GL ENSIAS

**BDMM** 





#### Mesures et évaluation

- Le but de système d'indexation est de trouver les documents pertinents à une requête, et donc utiles pour l'utilisateur
- ... et pour mesurer la performance d'un système on peut utiliser soit les mesures subjectives ou objectives
  - Mesures objectives, subjectives
  - Evaluation d'un système de recherche d'information





#### Mesures subjectives

- Pour beaucoup d'applications, le but est de maximiser l'espérance de satisfaction de l'utilisateur.
  - Seule une mesure subjective par l'utilisateur lui-même permet d'optimiser pleinement ce critère
- Difficultés :
  - L'avis d'un utilisateur peut varié et n'instancie pas un ordre total
  - Deux utilisateurs distincts ne portent pas le même jugement
  - ►!!! Le coût !!!





# Mesures objectives/subjectives

- Idée : Chercher une mesure objective qui modélisera la mesure subjective
  - Pour une application particulière (ou dans un domaine)







# Évaluation d'un système de recherche d'information

- Évaluation directe avec les utilisateurs
  - Complexe à mettre en place
  - ➤ Coûteuse
- Évaluation à partir d'une vérité-terrain : Mesures de performances
  - Courbes de précision/rappel
  - Matrices de confusion
  - Courbes ROC (Receiver Operating Characteristics)
  - Rapidité de convergence de la recherche itérative





# Pré-requis pour l'évaluation

#### Avoir à disposition

- un ensemble de test (base dans laquelle on recherche)
- un ensemble de requêtes non incluses dans la base de test
- une vérité terrain (ground truth) pour chaque couple (requête, éléments de la base) qui répond à la question : est-ce que l'élément de la base est pertinent pour la requête considérée ?

#### Remarques

- pour comparer deux méthodes, mêmes ensembles de test et requêtes doivent être utilisés
  - bases de tests partagées par les chercheurs du domaine
  - compétition avec introduction de nouvelles bases de test
- la taille de ces ensembles doit être suffisamment grande pour diminuer la variance de l'évaluation



BDMM

# Pré-requis pour l'évaluation : Pertinance

- La pertinence comme mesure pour la recherche : chaque document est classifié pertinent ou non pertinent pour une requête
  - Cette classification est effectuée manuellement par des **«experts**»
  - La réaction du système à la demande de recherche sera par rapport à cette classification
  - Comparer la réponse obtenue avec le résultat "idéal"







# Pré-requis pour l'évaluation : Pertinance

- Soit E un ensemble d'objets (l'ensemble des textes, images, vidéos) muni d'une distance r telle que
  - Soient  $x, y \in E, r(x,y) = 0$  si y est pertinent pour x r(x,y) = 1 sinon
- Soit q(,), distance instancie la vérité terrain
  - Exemple:  $\mathbf{x}$  et  $\mathbf{y}$  sont 2 images  $\mathbf{q}(\mathbf{x},\mathbf{y}) = \mathbf{0}$  si  $\mathbf{x}$  et  $\mathbf{y}$  se ressemblent,  $\mathbf{q}(\mathbf{x},\mathbf{y}) = \mathbf{1}$  sinon
- Soit un ensemble  $E' \subset E$ , et  $x : x \in E$  et  $x \notin E'$ 
  - E': ensemble dans lequel on effectue la recherche
  - ➤ x : la requête





**BDMM** 

### Précision/rappel

- Le système de recherche est **paramétré** pour retourner plus ou moins de résultats
  - ➤ la quantité d'objets retournés varie entre 1 et #E'
  - Pplus on retourne de résultats, plus on a de chance de retourner toutes les objets pertinents de la base
  - Den général, moins on en retourne, plus le taux d'objets retournés et qui sont pertinents est élevé
- Ces deux notions sont couvertes par les mesures de précision et de rappel

## Précision/rappel

- Soit R l'ensemble des résultats retournés, de cardinal #R
- Soit P l'ensemble des éléments pertinents dans E' pour x, c-a-d  $P = \{ y \in E' / q(x,y) = 0 \}$
- Soit A l'ensemble des résultats retournés et qui sont pertinents  $A = \{ y \in R / r(x,y) = 0 \text{ et } q(x,y) = 0 \}$
- la précision = #A / #R = est le taux d'éléments qui sont pertinents parmi ceux qui sont retournés par le système
- le rappel = #A / #P = est le taux d'éléments qui sont pertinents qui sont retournés par le système
- La performance du système peut être décrite par une courbe précision/rappel



## Précision/rappel

- Remarques :
  - P est indépendant de la requête.
  - $\triangleright$ R varie en fonction de la paramétrisation (qui retourne + ou de





## Courbe précision/rappel

• La courbe précision/rappel n'instancie par un ordre total



1/4-144 4-----

#### Courbes ROC (Receiver operating characteristic)

- Courbes ROC: sensitivité, spécificité
  - ➤ Soit une vérité terrain q(.,.)
  - Réponse du système à une requête x, r(x,y)=0 si y est retourné (objet considéré pertinent), r(x,y)=1 sinon

|         |                    | Verite terrain                         |                                        |
|---------|--------------------|----------------------------------------|----------------------------------------|
|         |                    | Pertinent (p)                          | non pertinent (n)                      |
| Système | Pertinent (p')     | Vrai positif (vp)<br>q(x,y)=0 r(x,y)=0 | Faux positif (fp)<br>q(x,y)=1 r(x,y)=0 |
|         | Non pertinent (n') | Faux négatif (fn)<br>q(x,y)=0 r(x,y)=1 | Vrai négatif (vn)<br>q(x,y)=1 r(x,y)=1 |

- ➤ Sensitivité =rappel= vp / (vp + fn)
- ➤ Spécificité: taux de faux positifs = fp / (fp + vn) = 1 spécificité
- Courbe ROC: rappel en fonction du taux de faux positifs





くロ とくぼ とくき とくき とく

#### Courbes ROC (Receiver operating characteristic)

- Faux positifs (False Positives): Fausses alarmes (False alarmas): fa
  - Documents non pertinents, classés comme pertinente par le système
- Faux Négatifs (False Negatives): False dismissals: fd
  - Documents pertinents classés par le système comme non pertinents
- Vrai positifs (correct alarms): ca
  - Tous les documents correctement classés pertinente par le Système
- Vrai négatifs (correct dismissals): cd
  - Tous les documents cor<u>rectement classés</u> non pertinents par le système





### Courbes ROC : Area under Curve (AUC)

- AUC : Mesure de performance calculée à partir de la courbe ROC
  - Exemple pour mesure la pertinence d'un test médical (voir http://gimm.unmc.edu/dxtests/roc3.html)

0.90-1.00 Excellent

0.80-0.90 Bon

0.80-0.70 Passable

0.60-0.70 Pauvre

0.50-0.60 Mauvais



 Courbe ROC (Receiver Operating Characteristics) : sensibilité vs. 1-spécificité pour différents seuils de décision



**BDMM** 

#### Et la pertinence?

- La pertinence d'un système (pour une paramétrisation donnée) est le taux d'objets qui sont correctement jugée, c-à-d
  - > pertinence = (vrais positifs + vrais négatifs) / taille de la base
- Intérêt d'avoir des courbes (précision/rappel et ROC) pour l'évaluation
  - dépend de l'utilisation : certains utilisateurs cherchent la précision (ex: requête sur Google), d'autres un grand rappel possible (recherche de contenu piraté)
- En effet, il est facile d'avoir 100% de rappel, il suffirait de donner toute la base comme la réponse à chaque requête. Cependant, la précision dans ce cas-ci serait très basse. De même, on peut augmenter la précision en donnant très peu de documents en réponse, mais le rappel souffrira. Il faut donc utiliser les deux métriques ensemble

### Exercice : système de recherche d'objets

• Pour la requête et les résultats triés suivants : tracer les courbes précision/rappel et ROC.







# Exercice : système de recherche d'objets

#### Courbe de précision rappel







### Mesures et protocole d'évaluation : conclusion

- Difficulté de trouver une bonne mesure
  - Pelle doit être adaptée à ce que l'on compare
  - Pelle doit répondre à l'objectif recherché
- Évaluation d'un système de recherche multimédia
  - méthodes identiques à celles utilisées en texte
  - Le utilisation de courbes plutôt que de scalaires (peuvent être interprétées en fonction du besoin).





#### Conclusion

- Indexation des images et vidéos : problème non résolu
- Experts issus de domaines variés (informatique, traitement de l'image, psycho visuel, apprentissage automatique, ...)
- Deux axes à étudier simultanément :
  - Techniques d'analyse d'image donc d'extraction et de comparaison de l'information
  - Pertinence de l'information pour un utilisateur
- Produits commerciaux encore basiques ...





#### Pour plus d'info.

- Introduction to Information Retrieval, C. D. Manning, P. Raghavan and H. Schütze, Cambridge University Press, 2008
  - Chapitre 8
- http://www-csli.stanford.edu/~hinrich/information-retrieval-book.html



