Example 10

(AMC) In the accompanying figure, segments AB and CD are parallel, the measure of angle D is twice that of angle B, and the measures of segments ADand CD are a and b respectively. Then the measure of AB is equal to

- (A) $\frac{1}{2}a + 2b$ (B) $\frac{3}{2}b + \frac{3}{4}a$ (C) 2a b(D) $4b \frac{1}{2}a$ (E) a + b.

Solution: (E). Method 1:

Let the bisector of $\angle D$ intersect AB at E (see figure). Then the alternate interior angles AED and EDC as well as $\angle ADE$ are equal to angle B, so $\triangle AED$ is isosceles with equal angles at P and D. This means that

$$AE = AD = a.$$

Since EBCD is a parallelogram, we have EB=DC=b; so AB

=AE+EB=a+b. Method 2:

Extend DC to E and connect BE. This results in ABED being a parallelogram, and so AB = DE, BE = a, and $\angle ADC = \angle ABE.$

Since $\angle ABC = \alpha$, then $\angle CBE = \alpha$. Since AB//DE, $\angle ECB = \angle EBC$. Thus, BE = EC = a, and so AB = a + b. Method 3:

Draw EC//AD to meet AB at E. This gives us parallelogram AECD where

 $AD=EC=a \text{ and } \angle ADC=\angle AEC.$ Since $\angle AEC=2\alpha=\angle EBC+\angle ECB,$ so $\angle ECB=\alpha.$ Thus,

BE = EC = a, and so AB = a + b.