

Computer Vision HW Acceleration for Driver Assistance

Markus Tremmel May 22, 2018

Driver Assistance Systems - Driving

of automation Degree

Centralized Architecture

Distributed Architecture

- Single sensor
- Sensor-data fusion
- Sensor-data fusion + map

Highway pilot

Auto pilot

ACC/lane keeping support

Highway assist base

Driver Assistance Systems - Parking

Degree of automation

- Ultrasound sensors + cameras
- Ultrasound sensors + cameras + map

Home zone park assist

Remote park pilot

Automated valet parking

Park steering control

Park maneuver control

time

Driver Assistance Functions

Driver Assistance Sensors

Autonomous Driving – Processing Chain

Autonomous Driving – Computer Vision

SENSING

Sensor Development

Signal Processing

PERCEPTION 0

Disparity / Optical Flow Structure from Motion

Cognitive System

Deep Learning Semantic Segmentation Sensor Data Fusion

3D Measurements

Complex Lane Markings

Classic Lane Markings

Missing Lane Markings

Classical control models

INTERACT, CONTROL

Deep Learning for Behavior Prediction

Reinforcement Learning for Planning **PLANNING**

Behaviour Prediction

Behaviour Planning

Autonomous Driving – Perception & Planning

Multi-Path Approach – Computer Vision

Multi-Path Approach Benefit

Gray obstacle with road texture

- Multipath obstacle detection will assure safe path and delimiter estimation
- Increasing detection probability due to additional redundancy

Autonomous Driving – CV Multi-Path Processing

Programmable

- multiple different algorithms, defined at runtime
- standard HW building blocks
- control and execution overhead
- parallelism & throughput compromise
- > High flexibility

Configurable

- fixed algorithm(s), defined at design time
- higher upfront effort for optimization & validation
- minimum overhead (e.g. ctrl registers ... typ. 100-1000)
- maximum optimization possible (no HW compromises)
- High power- & cost efficiency

Optical Flow Acceleration - Example

- 16 nm FF
- 533 MHz
- < 0,5 W at full HD 60fps

ADAS CV Pre-Processing Acceleration - Example

- OF, Disparity & Classifier HW IP modules
- HD 60/30 fps, 16 nm FF
- Enabling high performant & power efficient ADAS SoCs
- Enabling smart cameras (incl. DL) <5 W</p>
- Enabling ADAS L3 ECU without watercooling

DL Acceleration: Efficiency vs. Flexibility

Fixed Mega Instructions

Dedicated Architecture

Dedicated Instructions

Parallelism

Deep Learning goes embedded

- ► Low energy consumption is key for ADAS systems
- ► Standard GPUs need to be replaced with dedicated embedded hardware
- ► Configurable ASICs deliver best in class power efficiency

2 Orders of Magnitude Difference

Influencing Factors

Development approaches

Embedded Deep Learning - Semantic Segmentation

- > 50x smaller
- better segmentation

DL vs Classic CV Depth Analysis

Analysis Method	KPI	Classic CV (HW accel.)	Deep Learning
Disparity	Quality	Very good	Good
	Calculation Requirement	1	~70
Optical Flow	Quality	Very good	Fair (2x outlier ratio)
	Calculation Requirement	1	~70

- > Quality of DL depth analysis not yet acceptable for automotive
- Calculation requirements still substantial higher than classical CV

Summary

- Superior performance by combination of classical CV and deep learning
- HD video proceeding is pushing the calculation requirements to the limits
- Low power consumption is key enabler

HW acceleration IP is a must for affordable mass market ADAS.

Resources

Bosch Mobility Solutions:

http://www.bosch-mobility-solutions.com/en/

OF/DISP Benchmarks

http://hci-benchmark.org/

https://hci.iwr.uni-heidelberg.de/benchmarks

http://www.cvlibs.net/datasets/kitti/index.php

- Al / DL Acceleration
- https://www.nanalyze.com/2017/05/12-ai-hardware-startups-new-ai-chips/

THANK YOU

