IWT-TETRA-PROJECT 120135

GEBRUIKERSGROEPVERGADERING 3 5 SEPTEMBER 2013

AGENDA

10u00 - 10u15 : Verwelkoming + agenda

10u15 - 11u00 : Resultaten & technische ontwikkelingen

11u00 - 11u15 : Live objectclassificatiedemo

11u15 - 11u30 : Pauze met koffie

11u30 - 12u15 : Overlopen testcases + planning

12u15 - 12u25 : Toelichting relevante publicaties

12u25 - 12u30 : Administratieve puntjes

12u30 - ... : Broodjeslunch

HET IDEE ACHTER HET IWT-TETRA TOBCAT PROJECT

HET IDEE ACHTER HET IWT-**TETRA TOBCAT PROJECT**

HET IDEE ACHTER HET IWT-TETRA TOBCAT PROJECT

STATUS

WP1: voorstudie

WP1.1: aanbodzijde: literatuurstudie algoritmes

WP1.2: vraagzijde: bevraging gebruikersgroep

WP2: operationeel maken

WP2.1: Implementatie algoritmecode

WP2.2: Ontwikkeling trainingsomgeving

WP2.2: Ontwikkeling evaluatietool

WP4.1: wetenschappelijk WP4.2: wetenschappelijke symposium publicaties WP4.4A:publ. domein-WP4.3A: infonamiddag specifiek tijdschift per domein A: Remote sensing A: Remote sensing B: automatisatie B: automatisatie C: landbouw/bio C: landbouw/bio D: ouderenmonitoring D: ouderenmonitoring E: verkeersmonitoring E: verkeersmonitoring WP4.7: interactieve hands-on WP4.5: evaluatierapporten en workshop keuzewijzer WP4.6: verspreiding WP4.8:handleidingen en softwarecode + interfaces lesmateriaal WP4.9: slothappening

WP4: valorisatie

AGENDA

10u00 - 10u15 : Verwelkoming + agenda

10u15 - 11u00 : Resultaten & technische ontwikkelingen

11u00 - 11u15 : Live objectclassificatiedemo

11u15 - 11u30 : Pauze met koffie

11u30 - 12u15 : Overlopen testcases + planning

12u15 - 12u25 : Toelichting relevante publicaties

12u25 - 12u30 : Administratieve puntjes

12u30 - ... : Broodjeslunch

ONTWIKKELDE TECHNIEK

- Viola & Jones framework OpenCV
- Cascade van weak classifiers
- Features: LBP/ Haar / HOG

TECHNIEK - ANNOTATIESTAP

- Annotatietool installer Windows 7 x64
- Komt ook cmd line tool universeler

Heel wat extra opties: universele aanpak cases

TECHNIEK - TRAINING MODEL

- Software voor formateren van data
- Software voor training op basis van data
- Cmd line interfacing universeel
 - Eenvoud <-> volledige functionaliteit
- Handleiding met uitleg parameters wordt ter beschikking gesteld

```
C:\test>create_sample_vector.exe
Usage of vector creation after manual labeling has been provided:
  -info <collection_file_name with relative location - place in folder of create
  -vec <output_vector name with complete location>
 -show <add if you want to inspect each vector element>
-w <sample_width for output samples> C:\tes
                                                           C:\test>train_cascade_model.exe
  -h <sample_height for output samples>
                                                          Usage of the cascade training algorithm:
  -num <number of samples to train - amount detect
                                                             -data <location of where the classifier needs to be stored>
                                                             -vec (vector file positive samples)
                                                             -bg (file negative samples)
                                                             -numPos <number of positive samples>
                                                             -numNeg -numNeg f negative samples>
-numStages fnumber_of_stages - default 20>
I-baseFormatSave conly add if HAAR-like old format is required>]
                                                             -featureType <HAAR - LBP - HOG>
                                                             -w (same width value as during sample creation)
                                                             -h (same height value as during sample creation)
```

TECHNIEK - DETECTIE MODEL

- Uit de voorgaande stap komt een XML model
- Universeel formaat voor data uitwisseling

```
<?xml version="1.0"?>
    <copencv storage>
    -<cascade>
       <stageType>BOOST</stageType>
       <featureType>LBP</featureType>
        <height>27</height>
       <width>67</width>
       <stageParams>
         <boostType>GAB
         <minHitRate>9.9500000476837158e-001</minHitRate>
          <maxFalseAlarm>5.000000000000000e-001</maxFalseAlarm>
12
         <weightTrimRate>9.49999999999996e-001</weightTrimRate>
13
         <maxDepth>1</maxDepth>
14
          <maxWeakCount>100</maxWeakCount></stageParams>
15
       <featureParams>
16
          <maxCatCount>256</maxCatCount>
17
          <featSize>1</featSize></featureParams>
18
       <stageNum>13</stageNum>
19
       <stages>
20
         <!-- stage 0 -->
21
            <maxWeakCount>2</maxWeakCount>
23
            <stageThreshold>-1.0421641916036606e-001</stageThreshold>
24
            <weakClassifiers>
25
                <internalNodes>
```


TECHNIEK - DETECTIE MODEL

- Opnieuw cmd line interface universeel
- Kan echter vlot geïntegreerd worden in interface
- Real time → enkele eisen
 - Gebruik van minSize & maxSize
 - Keuze van stap in scalePyramid
- Resultaat = detectie

LIVE DEMO

& ROBOTICS

mechatronics

- Opstelling Vision & Robotics 2013 beurs
- Werd tevens ook een presentatie over het TOBCAT project gegeven
- Opmerkingen
 - Variabele achtergrond
 - Beperkte trainingsbeelden (300p 500n)
 - Robuuste detectie van snoepgoed
- Demo opstelling

AGENDA

10u00 - 10u15 : Verwelkoming + agenda

10u15 - 11u00 : Resultaten & technische ontwikkelingen

11u00 - 11u15 : Live objectclassificatiedemo

11u15 - 11u30 : Pauze met koffie

11u30 - 12u15 : Overlopen testcases + planning

12u15 - 12u25 : Toelichting relevante publicaties

12u25 - 12u30 : Administratieve puntjes

12u30 - ... : Broodjeslunch

TESTCASES - OVERZICHT

Remote sensing Mobile mapping EAVISE Landbouw Biologie

Automatisatie Productieprocessen

Detectie in luchtbeelden

Detectie in 360° beelden

Robuuste persoonsdetectie + telling (IR) ENKEL

Detectie van mijten

Detectie van graanonzuiverheden

Detectie van aardbeien

Detectie van truffels/paprika's

Kwaliteitsmeting orchideeën

Detectie van snoepgoed en koekjes

Ouderenmonitoring

Wandelhulpdetectie

Verkeersmonitoring

Kruispuntanalyse

Verkeersanalyse camera & radar

CASES: DE OPBOUW

Voor elke case is er een vaste opbouw:

CASES REMOTE SENSING + MOBILE MAPPING

CASE A1: Detectie van objecten in luchtdata

- Begeleidend bedrijf: Eurosense
- Evolutie van deze case :

CASES REMOTE SENSING + MOBILE MAPPING

CASE A1: Detectie van objecten in luchtdata

Eerste testen uitgeprobeerd op wagens

CASES REMOTE SENSING + MOBILE MAPPING

CASE A1: Detectie van objecten in luchtdata

 Ideale case voor toepassen dominante oriëntatietechniek die reeds gepresenteerd werd in vorige gebruikersgroepbijeenkomst

CASE B1: Detectie van mijten

- Begeleidend bedrijf : Biobest
- Evolutie van deze case :

CASE B1: Detectie van mijten

- Standaard objectdetectie workflow
- Specifiek zoeken naar 1 soort mijt, de roofmijt
- Uitgewerkt door Nils De Schepper op basis van reeds ontwikkelde techniek.
- Resultaten vervat in masterthesis.

CASE B1: Detectie van mijten

- Enkele conclusies
 - In heel wat gevallen werkt deze aanpak voor het detecteren van de mijt
 - Er zijn echter ook mijten die de detectie ontlopen
 - Inzetten op meer trainingsvoorbeelden
 - Opvolgen en diepgaandere studie van de detectieparameters om beter resultaat te bekomen

CASE B2: Detectie van graanonzuiverheden

Begeleidend bedrijf: Case New Holland

Evolutie van deze case :

CASE B2: Detectie van graanonzuiverheden

 Bijsturen proces om graan te maaien aan de hand van de hoeveelheid onzuiverheden

CASE B2: Detectie van graanonzuiverheden

- Gekende techniek van BB om object is geen ideale oplossing
 - veel achtergrondinformatie
 - meer features in achtergrond
- Voorstel om gesegmenteerd te detecteren
- Kleine regio's uiteindelijk combineren tot een enkele detectie

CASE B3: Detectie van rijpe/onrijpe aardbeien

- Begeleidend bedrijf: Induct
- Evolutie van deze case :

CASE B3: Detectie van rijpe/onrijpe aardbeien

- REEDS GEBEURD
 - Basisanalyse van eigenschappen aardbei
 - Nodig om een pre- of postprocessing van de zoekruimte te doen zodanig dat vals positieven weggewerkt worden.

TODO

- Beelden verzamelen
- Model intrainen via data
- Detectieresultaten testen

CASE B3: Detectie rijpe/onrijpe aardbeien

Interessante insteek is gebruik maken van structuur

CASE C1: Detectie van truffels of paprika's of ??

- Begeleidend bedrijf: VHA / Creative Computing / Vistalink
- Evolutie van deze case :

CASE C1: Detectie van truffels of paprika's of ??

- Nog geen definitieve keuze
- Op een first-come, first-serve basis

TODO

- Verzamelen van inputbeelden en annoteren
- Slimme keuze achtergrondvoorbeelden
- Model opbouwen
- Detectie uittesten

CASE C2: Kwaliteitsmeting orchideeën

- Begeleidend bedrijf : Aris
- Evolutie van deze case :

CASE C2: Kwaliteitsmeting orchideeën

- TODO
 - Verzamelen van inputbeelden en annoteren
 - Model opbouwen
 - Detectie uittesten
- AANPAK
 - Dubbel model, 1 voor bloemknoppen, 1 voor bloemen
 - Per inputbeeld = plant een totaal bijhouden
 - Op basis van gegevens prijs bepalen

CASE C3: Detectie snoepgoed & koekjes

- Begeleidend bedrijf : EAVISE
- Evolutie van deze case :

CASE OUDERENMONITORING

CASE D1: Camera based automated fall risk assessment

- Begeleidend bedrijf: MOBILAB
- Evolutie van deze case :

CASE D1: Camera based automated fall risk assessment

- Begeleidend bedrijf: MOBILAB
- Gait speed used as primary predictor for:
 - hospitalization
 - decline in health
 - Falls
- Measuring the time needed to perform the exact same transfer several times a day.

CASE D1: Camera based automated fall risk assessment

- Experimental setup:
 - Predefined walking zone
 - Automatic selection and measurement of the transfers

CASE D1: Camera based automated fall risk assessment

Detecting trends in measured times

CASE D1: Camera based automated fall risk assessment

 Short term trend detection difficult when different walking aids are used:

CASE E1: Inschatten en detectie van gevaarlijke verkeerssituaties

- Begeleidend bedrijf: IMOB
- Evolutie van deze case :

CASE E1: Inschatten en detectie van gevaarlijke verkeerssituaties

- Bepalen snelheden
- Bepalen afstanden
- Bepalen gevaar
- Detectiealgoritme
 - Voetgangers
 - Auto's
 - Vanuit 'eagle-eye' camera standpunt

CASE E1: Inschatten en detectie van

gevaarlijke verkeerssituaties

CASE E1: Inschatten en detectie van gevaarlijke verkeerssituaties

- Aanpak via bestaande modellen
- Testen detectienauwkeurigheid
- Toepassingsgericht, coördinaten van objecten
- Kijken hoe dit geïntegreerd kan worden in open-source verkeersanalyse software

https://bitbucket.org/Nicolas/ trafficintelligence/wiki/Home

CASE A1: Detectie van objecten in luchtdata

- Positieve resultaten → verder uitwerken
- TODO
 - Nieuwe klassen annoteren & intrainen model
 - Nieuwe detecties uitvoeren en resultaten evalueren
- Enkele objectklassen die we nog bekijken
 - Wegmarkering
 - Treinverbindingen
 - Wegen

CASE A2: Detectie in panoramische beelden

- Begeleidend bedrijf 1 : Vansteelandt/GeoVisat
- Begeleidend bedrijf 2 : Grontmij
- VANSTEELANDT

geoVISAT

- Full 360° vs. single images
- Evolutie van deze case :

CASE A2: Detectie in panoramische beelden

Basis persoonsdetector levert goeie resultaten

CASE A2: Detectie in panoramische beelden

Basis persoonsdetector doet echter ook vreemde

detecties

- Detecties in de lucht
- Detecties op gebouwen

Oplossen via scale-space mapping

CASE A2: Detectie in panoramische beelden

 Nadien nog enkele hardnekkige objecten, zoals verkeerspaaltjes, die detecties bleven geven

 Oplossing = naive bayes classifier, die naar beeldinhoud gaat kijken in HSV kleurenruimte

CASE A2: Detectie in panoramische beelden

- Verschil tussen twee cases lijkt miniem
- Grootste verschil in trainings- en detectiedata
 - Full view = gerectificeerd
 - Single images = geen recitificatie
- We willen vooral nagaan welke aanpak het snelst werkt en de meest robuuste resultaten oplevert.

ALGEMENE TOEKOMSTPLANNEN

Momenteel 2 technieken bestudeerd

- Viola & Jones framework
- Felzenszwalb persoonsdetectie algoritme

Eerste techniek hoofdzakelijk gebruik MAAR we doen nog een vergelijkende studie met basis van tweede techniek:

HOG features + SVM tactiek

AGENDA

10u00 - 10u15 : Verwelkoming + agenda

10u15 - 11u00 : Resultaten & technische ontwikkelingen

11u00 - 11u15 : Live objectclassificatiedemo

11u15 - 11u30 : Pauze met koffie

11u30 - 12u15 : Overlopen testcases + planning

12u15 - 12u25 : Toelichting relevante publicaties

12u25 - 12u30 : Administratieve puntjes

12u30 - ... : Broodjeslunch

RELEVANTE PRESENTATIES & PUBLICATIES

Demo setup objectdetectietechnieken GPU symposium De Nayer

RELEVANTE PRESENTATIES & PUBLICATIES

Presentaties

- Intl. Conf. On Vision applications, VISAPP 2013, Barcelona (21/02/2013-24/02/2013)
- Onderzoekssymposium Thomas More, Sint-Katelijne-Waver (21/03/2013)
- Vision & Robotics 2013, Eindhoven (22/06/2013-23/06/2013)

Publicaties

- VISAPP 2013: "How to exploit scene constraints to improve object categorization algorithms for industrial applications?"
- Artikel in DSP Valley Newsletter: "Tobcat: industrial applications of object categorization techniques"
- (In voorbereiding) Rollator detectie MOBILAB & EAVISE

Masterthesis

Objectclassificatietechnieken voor het tellen van mijten, Nils De Schepper

AGENDA

10u00 - 10u15 : Verwelkoming + agenda

10u15 - 11u00 : Resultaten & technische ontwikkelingen

11u00 - 11u15 : Live objectclassificatiedemo

11u15 - 11u30 : Pauze met koffie

11u30 - 12u15 : Overlopen testcases + planning

12u15 - 12u25 : Toelichting relevante publicaties

12u25 - 12u30 : Administratieve puntjes

12u30 - ... : Broodjeslunch

DOCTORAATSAANVRAAG

Vanuit doctoraat ook aanvraag bij IWT strategisch basisonderzoek.

Indien toegekend is er meteen ook mogelijkheid om cases tijdens mijn doctoraat te 'hertesten' met nieuw ontwikkelde technieken.

Onderwerp: Optimale objectcategorisatie onder variatie van de scène.

RAPIDO

'Vision Guided Random Picking for InDustrial RobOts'

IWT-TETRA project

helaas niet goedgekeurd

Random Bin Picking

(de) Palletizing

ADMINISTRATIE

- Regelement van Orde
- IWT e-tool "gebruikerspoll"
- Cofinanciering uitsturen facturen
- Afgeschermd download gedeelte bedrijven
 - Paswoord = tobcat_2013
- Feedback & vragen altijd welkom via mail/tel/...
- Projectwebsite: www.eavise.be/tobcat

VOLGENDE GEBRUIKERSGROEP BIJEENKOMST

- Planning eind november begin december
- Gedaan met theorie, op naar de praktijk
 → HANDS ON WORKSHOP
- Ontdek zelf hoe de interfacing werkt
- Stap voor stap 'doe het zelf' opleiding
- Wij voorzien alle hardware
- Kennis programmeertaal C/C++ gewenst

CONTACTGEGEVENS

Zit u nog met vragen, aarzel dan niet om ons te contacteren:

- Toon Goedemé projectleider
 - toon.goedeme@lessius.eu
 - 015/31 69 44
- Steven Puttemans projectonderzoeker
 - <u>steven.puttemans@lessius.eu</u>
 - 015/31 69 44

