Исследование алгоритма оптимизации MHL_BinaryMonteCarloAlgorithm

Сергиенко Антон Борисович

2 марта 2014 г.

Содержание

1	Вво	дная информация	4
2	реш	следование эффективности алгоритма оптимизации «Метод Монте-Карло для нения задач на бинарных строках»на тестовой функции «Сумма всех элеменбинарного вектора» (размерность равна 20)	4
	2.1	Информация об исследовании	5
	2.2	Параметры алгоритма оптимизации	5
	2.3	Ошибка по входным параметрам E_x	5
	2.4	Ошибка по значениям целевой функции E_y	6
	2.5	Надёжность R	6
3	реш тов	следование эффективности алгоритма оптимизации «Метод Монте-Карло для нения задач на бинарных строках»на тестовой функции «Сумма всех элеменбинарного вектора» (размерность равна 30)	7
	3.1	Информация об исследовании	7
	3.2	Параметры алгоритма оптимизации	8
	3.3	Ошибка по входным параметрам E_x	8
	3.4	Ошибка по значениям целевой функции E_y	9
	3.5	Надёжность R	9
4	реш	следование эффективности алгоритма оптимизации «Метод Монте-Карло для пения задач на бинарных строках»на тестовой функции «Сумма всех элеменбинарного вектора» (размерность равна 40)	10
	4.1	Информация об исследовании	10
	4.2	Параметры алгоритма оптимизации	11

	4.3	Ошибка по входным параметрам E_x	11
	4.4	Ошибка по значениям целевой функции E_y	11
	4.5	Надёжность R	12
5	реш	ледование эффективности алгоритма оптимизации «Метод Монте-Карло для ения задач на бинарных строках»на тестовой функции «Сумма всех элеменбинарного вектора» (размерность равна 50)	
	5.1	Информация об исследовании	13
	5.2	Параметры алгоритма оптимизации	14
	5.3	Ошибка по входным параметрам E_x	14
	5.4	Ошибка по значениям целевой функции E_y	14
	5.5	Надёжность R	15
6	реш	ледование эффективности алгоритма оптимизации «Метод Монте-Карло для нения задач на бинарных строках»на тестовой функции «Сумма всех элеменбинарного вектора» (размерность равна 60)	
	6.1	Информация об исследовании	16
	6.2	Параметры алгоритма оптимизации	17
	6.3	Ошибка по входным параметрам E_x	17
	6.4	Ошибка по значениям целевой функции E_y	17
	6.5	Надёжность R	18
7	реш	ледование эффективности алгоритма оптимизации «Метод Монте-Карло для ения задач на бинарных строках»на тестовой функции «Сумма всех элеменбинарного вектора» (размерность равна 70)	
	7.1	Информация об исследовании	19
	7.2	Параметры алгоритма оптимизации	20
	7.3	Ошибка по входным параметрам E_x	20
	7.4	Ошибка по значениям целевой функции E_y	20
	7.5	Надёжность R	21
8	реш	ледование эффективности алгоритма оптимизации «Метод Монте-Карло для ения задач на бинарных строках»на тестовой функции «Сумма всех элеменбинарного вектора» (размерность равна 80)	
	8.1	Информация об исследовании	22
	8.2	Параметры алгоритма оптимизации	23
	8.3	Ошибка по входным параметрам E_x	23

	8.4	Ошибка по значениям целевой функции E_y	23
	8.5	Надёжность R	24
9	реш	ледование эффективности алгоритма оптимизации «Метод Монте-Карло для ения задач на бинарных строках»на тестовой функции «Сумма всех элеменбинарного вектора» (размерность равна 90)	25
	9.1	Информация об исследовании	25
	9.2	Параметры алгоритма оптимизации	26
	9.3	Ошибка по входным параметрам E_x	26
	9.4	Ошибка по значениям целевой функции E_y	26
	9.5	Надёжность R	27
10	реш	ледование эффективности алгоритма оптимизации «Метод Монте-Карло для ения задач на бинарных строках»на тестовой функции «Сумма всех элеменбинарного вектора» (размерность равна 100)	28
	10.1	Информация об исследовании	28
	10.2	Параметры алгоритма оптимизации	29
	10.3	Ошибка по входным параметрам E_x	29
	10.4	Ошибка по значениям целевой функции E_y	29
	10.5	Надёжность R	30
11	реш	ледование эффективности алгоритма оптимизации «Метод Монте-Карло для ения задач на бинарных строках»на тестовой функции «Сумма всех элеменбинарного вектора» (размерность равна 200)	31
	11.1	Информация об исследовании	31
	11.2	Параметры алгоритма оптимизации	32
	11.3	Ошибка по входным параметрам E_x	32
	11.4	Ошибка по значениям целевой функции E_y	32
	11.5	Надёжность R	33

1 Вводная информация

Данный файл и другие исследования располагаются по адресу:

https://github.com/Harrix/HarrixPDFDataOfOptimizationTesting.

Анализ данных исследований можно посмотреть по адресу:

https://github.com/Harrix/HarrixAnalysisPDFDataOfOptimizationTesting.

Данные исследований взяты из базы исследований алгоритмов оптимизации:

https://github.com/Harrix/HarrixDataOfOptimizationTesting.

О методологии проведения исследований можно прочитать в описании формата данных «Harrix Optimization Testing» в главе «Идея проведения исследований эффективности алгоритмов» по адресу:

https://github.com/Harrix/HarrixFileFormats.

Описание алгоритма оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms.

Описание тестовых функций можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions.

С автором можно связаться по адресу sergienkoanton@mail.ru или http://vk.com/harrix. Сайт автора, где публикуются последние новости: http://blog.harrix.org, а проекты располагаются по адресу http://harrix.org.

2 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных - строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 20)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на бинарных строках». Ниже приведена информация об этом исследовании.

2.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

17.10.2013 02:31:18. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:31:18.

Идентификатор алгоритма: MHL_BinaryMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на бинар-

ных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_SumVector.

функции:

Полное название тестовой функции: Сумма всех элементов бинарного вектора.

20 Размерность тестовой функции:

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов: 100

Максимальное допустимое число вычислений целевой функции: 225

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

225000 Общий объем максимального числа вычислений целевой функции во

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

2.2 Параметры алгоритма оптимизации

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

2.3Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизаошибка по входным параметрам E_x . В результате проделанных эксции является периментов были получены следующие данные, представленные ниже https://github.com/Harrix/HarrixTestFunctions.

Таблица 1. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 20)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.1935 0.2005 0.208 0.2015 0.2045 0.206 0.2 0.195 0.1915 0.2015	0.2002	2.93444e-05

${f 2.4}$ Ошибка по значениям целевой функции E_y

Другим критерием, по которому происходит сравнение алгоритмов оптимизации является ошибка по значениям целевой функции E_y . Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 2. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 20)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.1935 0.2005 0.208 0.2015 0.2045 0.206 0.2 0.195 0.1915 0.2015	0.2002	2.93444e-05

2.5 Надёжность R

Третьим критерием, по которому происходит сравнение алгоритмов оптимизации является надёжность R. Конкретные формулы, по которым происходило подсчитывание критерия в виде

ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 3. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 20)

N₂	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

3 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных - строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 30)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на бинарных строках». Ниже приведена информация об этом исследовании.

3.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:31:19.

Дата создания исследования: 17.10.2013 02:31:19.

Идентификатор алгоритма: MHL_BinaryMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на бинар-

ных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_SumVector.

Полное название тестовой функции: Сумма всех элементов бинарного вектора.

Размерность тестовой функции: 30

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 400

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 400000 всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

https://github.com/Harrix/HarrixOptimizationAlgorithms

3.2 Параметры алгоритма оптимизации

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

3.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 4. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 30)

1 Отсутствует 0.232 0.241 0.239 0.231667 0.239333 0.237333 0.236767 0.236767 1.00496e-05	№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
0.234667	1		0.232 0.241 0.239 0.231667 0.239333 0.237333		

3.4 Ошибка по значениям целевой функции E_y

Другим критерием, по которому происходит сравнение алгоритмов оптимизации является ошибка по значениям целевой функции E_y . Конкретные формулы, по которым происходило подсчитывание критерия в виде ошибки по значениям целевой функции вы можете найти на сайте в описании конкретной тестовой функции: https://github.com/Harrix/HarrixTestFunctions.

Таблица 5. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 30)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.232 0.241 0.239 0.231667 0.239333 0.237333 0.236 0.234667 0.239333 0.237333	0.236767	1.00496e-05

3.5 Надёжность R

Таблица 6. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 30)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

Исследование эффективности алгоритма 4 оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 40)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на бинарных строках». Ниже приведена информация об этом исследовании.

Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:31:20. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:31:20.

Идентификатор алгоритма: MHL_BinaryMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на бинар-

ных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_SumVector.

функции:

Полное название тестовой функции: Сумма всех элементов бинарного вектора.

Размерность тестовой функции: 40

Количество измерений для каждого варианта настроек алгоритма: 10

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 576

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 576000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

4.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 7. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 40)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.25725 0.25925 0.2555 0.262 0.26175 0.25675 0.26075 0.2625 0.26175 0.2585	0.2596	6.28056e-06

4.4 Ошибка по значениям целевой функции E_y

Таблица 8. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 40)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.25725 0.25925 0.2555 0.262 0.26175 0.25675 0.26075 0.2625 0.26175 0.2585	0.2596	6.28056e-06

Таблица 9. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 40)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

Исследование эффективности алгоритма 5 оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 50)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на бинарных строках». Ниже приведена информация об этом исследовании.

5.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:31:21. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:31:21.

Идентификатор алгоритма: MHL_BinaryMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на бинар-

ных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_SumVector.

функции:

Полное название тестовой функции: Сумма всех элементов бинарного вектора.

Размерность тестовой функции: 50

Количество измерений для каждого варианта настроек алгоритма: 10

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 784

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 784000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

5.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 10. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 50)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.284 0.2826 0.2782 0.2816 0.2788 0.2802 0.282 0.2796 0.279 0.2844	0.28104	4.86044e-06

5.4 Ошибка по значениям целевой функции E_y

Таблица 11. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 50)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.284 0.2826 0.2782 0.2816 0.2788 0.2802 0.282 0.2796 0.279 0.2844	0.28104	4.86044e-06

Таблица 12. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 50)

N_2	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		
		0		
		0		
		0	0	0
1	Отантатриот	0		
1	Отсутствует	0	U	U
		0		
		0		
		0		
		0		

Исследование эффективности алгоритма 6 оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 60)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на бинарных строках». Ниже приведена информация об этом исследовании.

Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:31:23. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:31:23.

Идентификатор алгоритма: MHL_BinaryMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на бинар-

ных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_SumVector.

функции:

Полное название тестовой функции: Сумма всех элементов бинарного вектора.

Размерность тестовой функции: 60

Количество измерений для каждого варианта настроек алгоритма: 10

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1024

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1024000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

6.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 13. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 60)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.293167 0.2895 0.293333 0.2935 0.291333 0.296167 0.293833 0.296 0.2905 0.2895	0.292683	5.84872e-06

6.4 Ошибка по значениям целевой функции E_y

Таблица 14. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 60)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.293167 0.2895 0.293333 0.2935 0.291333 0.296167 0.293833 0.296 0.2905 0.2895	0.292683	5.84872e-06

Таблица 15. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 60)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

7 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных - строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 70)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на бинарных строках». Ниже приведена информация об этом исследовании.

7.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:31:26.

Дата создания исследования: 17.10.2013 02:31:26.

Идентификатор алгоритма: MHL_BinaryMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на бинар-

ных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_SumVector.

Полное название тестовой функции: Сумма всех элементов бинарного вектора.

Размерность тестовой функции: 70

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1296

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1296000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

7.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 16. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 70)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.304143 0.302571 0.304286 0.305571 0.303429 0.302429 0.302714 0.305143 0.303286 0.305429	0.3039	1.4243e-06

7.4 Ошибка по значениям целевой функции E_y

Таблица 17. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 70)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.304143 0.302571 0.304286 0.305571 0.303429 0.302429 0.302714 0.305143 0.303286 0.305429	0.3039	1.4243e-06

Таблица 18. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 70)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

Исследование эффективности алгоритма 8 оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 80)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на бинарных строках». Ниже приведена информация об этом исследовании.

Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:31:30. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:31:30.

Идентификатор алгоритма: MHL_BinaryMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на бинар-

ных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_SumVector.

функции:

Полное название тестовой функции: Сумма всех элементов бинарного вектора.

Размерность тестовой функции: 80

Количество измерений для каждого варианта настроек алгоритма: 10

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1521

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1521000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

8.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 19. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 80)

№	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.316375 0.31125 0.31575 0.315875 0.3165 0.31325 0.31225 0.315875 0.3135 0.316625	0.314725	3.89514e-06

8.4 Ошибка по значениям целевой функции E_y

Таблица 20. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 80)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.316375 0.31125 0.31575 0.315875 0.3165 0.31325 0.31225 0.315875 0.3135 0.316625	0.314725	3.89514e-06

Таблица 21. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 80)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

9 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных - строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 90)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на бинарных строках». Ниже приведена информация об этом исследовании.

9.1 Информация об исследовании

Автор исследования: Сергиенко Антон Борисович.

Дата создания исследования: 17.10.2013 02:31:35.

Дата создания исследования: 17.10.2013 02:31:35.

Идентификатор алгоритма: MHL_BinaryMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на бинар-

ных строках.

Идентификатор исследуемой тестовой

функции:

MHL_TestFunction_SumVector.

Полное название тестовой функции: Сумма всех элементов бинарного вектора.

Размерность тестовой функции: 90

Количество измерений для каждого варианта настроек алгоритма: 10

Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 1764

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 1764000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

9.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 22. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 90)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.324778 0.32 0.323556 0.321333 0.324778 0.323444 0.321444 0.325333 0.324444 0.324111	0.323322	3.19486e-06

9.4 Ошибка по значениям целевой функции E_y

Таблица 23. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 90)

N₂	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.324778 0.32 0.323556 0.321333 0.324778 0.323444 0.321444 0.325333 0.324444 0.324111	0.323322	3.19486e-06

Таблица 24. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 90)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0

10 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 100)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на бинарных строках». Ниже приведена информация об этом исследовании.

10.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:31:41. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:31:41.

Идентификатор алгоритма: MHL_BinaryMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на бинар-

ных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_SumVector.

функции:

Полное название тестовой функции: Сумма всех элементов бинарного вектора.

Размерность тестовой функции: 100

Количество измерений для каждого варианта настроек алгоритма: 10

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 2025

Отсутствуют Количество проверяемых параметров алгоритма оптимизации:

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 2025000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

10.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 25. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 100)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.3304 0.3318 0.3305 0.3291 0.3284 0.3298 0.3248 0.3306 0.3284 0.3271	0.32909	4.12767e-06

10.4 Ошибка по значениям целевой функции E_y

Таблица 26. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 100)

№	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.3304 0.3318 0.3305 0.3291 0.3284 0.3298 0.3248 0.3306 0.3284 0.3271	0.32909	4.12767e-06

Таблица 27. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 100)

N_2	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
		0		0
		0	0	
		0		
		0		
1	Отантатриот	0	0	
1	Отсутствует	0	U	
		0		
		0		
		0		
		0		

11 Исследование эффективности алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 200)

В данной работе, автором проведено исследование алгоритма «Метод Монте-Карло для решения задач на бинарных строках». Ниже приведена информация об этом исследовании.

11.1 Информация об исследовании

Сергиенко Антон Борисович. Автор исследования:

17.10.2013 02:31:48. Дата создания исследования:

Дата создания исследования: 17.10.2013 02:31:48.

Идентификатор алгоритма: MHL_BinaryMonteCarloAlgorithm.

Полное название алгоритма: Метод Монте-Карло для решения задач на бинар-

ных строках.

Идентификатор исследуемой тестовой MHL_TestFunction_SumVector.

функции:

Полное название тестовой функции: Сумма всех элементов бинарного вектора.

Размерность тестовой функции: 200

Количество измерений для каждого варианта настроек алгоритма: 10

100 Количество запусков алгоритма в каждом из экспериментов:

Максимальное допустимое число вычислений целевой функции: 4761

Количество проверяемых параметров алгоритма оптимизации: Отсутствуют

Количество комбинаций вариантов настроек:

Общий объем максимального числа вычислений целевой функции во 4761000

всем исследовании:

Информацию о исследуемой функции можно найти по адресу:

https://github.com/Harrix/HarrixTestFunctions

Информацию о исследуемом алгоритме оптимизации можно найти по адресу:

В данном исследуемом алгоритме оптимизации нет настраеваемых параметров. Поэтому в таблице ниже приведены даные только одного эксперимента.

11.3 Ошибка по входным параметрам E_x

Одним из критериев, по которому происходит сравнение алгоритмов оптимизации является ошибка по входным параметрам E_x . В результате проделанных экспериментов были получены следующие данные, представленные ниже в таблице. https://github.com/Harrix/HarrixTestFunctions.

Таблица 28. Значения ошибки по выходным параметрам E_x алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 200)

N₂	Настройки алгоритма	Значения ошибки E_x	Среднее значение	Дисперсия
1	Отсутствует	0.37095 0.3723 0.37015 0.37185 0.3708 0.3703 0.37055 0.37305 0.37105 0.37105	0.371205	8.50806e-07

11.4 Ошибка по значениям целевой функции E_y

Таблица 29. Значения ошибки по значениям целевой функции E_y алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках»на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 200)

Nº	Настройки алгоритма	Значения ошибки E_y	Среднее значение	Дисперсия
1	Отсутствует	0.37095 0.3723 0.37015 0.37185 0.3708 0.3703 0.37055 0.37305 0.37105	0.371205	8.50806e-07

Таблица 30. Значения надёжности R алгоритма оптимизации «Метод Монте-Карло для решения задач на бинарных строках» на тестовой функции «Сумма всех элементов бинарного вектора» (размерность равна 200)

№	Настройки алгоритма	Значения ошибки R	Среднее значение	Дисперсия
1	Отсутствует	0 0 0 0 0 0 0 0	0	0