Sums of Squares

Some integers are the sum of two squares, for example:

$$58=3^2+7^2$$
 and $64=0^2+8^2$

Some integers are not the sum of two squares, for example:

We want to know which integers are the sum of two squares and which are not.

Theorem

If m and n are both the sum of two squares then mn is the sum of two squares.

Proof

$$m=a^2+b^2$$
 and $n^2=c^2+d^2$
 $mn=...=(ac+bd)^2+(ad-bc)^2$

This also means that if m is the sum of two squares then any positive power of m is the sum of two squares.

Theorem

2 is the sum of two squares

Proof

$$2=1^2+1^2$$

Theorem

No integer of the form 4k+3 is the sum of two squares

Proof

mod 4:

$$x=0,1,2,3$$
 so $x^2=0,1$ and $y=0,1,2,3$ so $y^2=0,1$
so $x^2+y^2=0,1,2$ so $x^2+y^2\neq 3$

end of mod 4

So an integer of the form 4k+3 cannot be the sum of two squares.

All primes (except 2) are of the form 4k+1 or 4k+3

We have just proved that no prime of the form 4k+3 is the sum of two squares.

Fermat proved that every prime of the form 4k+1 is the sum of two squares.

Theorem

Every even power of an integer is the sum of two squares

Proof

$$6^{10} = (6^5)^2 + 0^2$$
 etc

We can write any integer n in the form:

$$n=(2^a)(3^b)(5^c)(7^d)(11^e)(...)$$

2 is the sum of two squares

So $(2)^a$ is the sum of two squares.

5,13,17,... are all of the form 4k+1

So 5,13,17,... are all the sum of two squares.

So $(5)^c$, $(13)^f$, $(17)^g$,... are all the sum of two squares.

3,7,11,... are all of the form 4k+3

So 3,7,11,... are not the sum of two squares.

But $(3)^b, (7)^d, (11)^e, ...$ are all the sum of two squares if b, d, e, ... are all even.

So n is the sum of two squares if all the powers of all the 4k+3 primes are even.

So $(2^5)(3^{10})(5^{14})(7^2)(11^{24})(13^3)(17^1)$ is the sum of two squares

It turns out that:

n is the sum of two squares if and only if all the powers of all the 4k+3 primes are even.

So $(2^1)(3^4)(5^0)(7^3)(11^0)(13^0)(17^8)(19^{20})$ is not the sum of two squares

Difference of two squares

Theorem

No integer of the form 4k+2 is the difference of two squares.

Proof

mod 4:

$$x=0,1,2,3$$
 so $x^2=0,1$ and $y=0,1,2,3$ so $y^2=0,1$

so
$$x^2-y^2=0,1,-1$$
 so $x^2-y^2=0,1,3$ so $x^2-y^2\neq 2$

end of mod 4

So an integer of the form 4k+2 cannot be the difference of two squares.

We can easily verify that:

Theorem

Every integer of the form 4k is the difference of two squares

Proof

$$4k=(k+1)^2-(k-1)^2$$

Also

$$4k+1=(2k+1)^2-(2k)^2$$

And

$$4k+3=(2k+2)^2-(2k+1)^2$$

So n is the difference of two squares if and only if n is not of the form 4k+2

see Exercise

Theorem

Every odd prime can be written as the difference of two squares in just one way.

Proof

If:

$$p=n^2-m^2=(n-m)(n+m)$$

then:

p can be factorised and is therefore not a prime unless (n-m)=1 and p=(n+m)

Which means we must have:

$$n = \frac{p+1}{2}$$
 and $m = \frac{p-1}{2}$

It can be proved that:

Every integer is the sum of:

4 squares

9 cubes

19 fourth powers

37 fifth powers

EXERCISE

Show that no integer of the form 8k+7 is the sum of three squares.

SOLUTION

mod 8

$$x=0,1,2,3,4,5,6,7$$
 so $x^2=0,1,4$
 $y=0,1,2,3,4,5,6,7$ so $y^2=0,1,4$
 $z=0,1,2,3,4,5,6,7$ so $z^2=0,1,4$

So
$$x^2 + y^2 + z^2 = 0,1,2,3,4,5,6$$

end of mod 8