О числовых множествах

- **1.** Докажите, что для любого n множество натуральных чисел от 1 до n можно разбить на несколько групп так, чтобы сумма чисел в каждой группе была степенью двойки.
- **2.** Множество целых чисел разбито в объединение непересекающихся бесконечных в обе стороны арифметических прогрессий с разностями d_i . Пусть $S = \sum \frac{1}{d_i}$.
 - (a) Докажите, что если множество прогрессий конечно, то S=1.
 - (б) Докажите, что если множество прогрессий бесконечно, то $S \leq 1$.
 - (в) Докажите, что существует такое разбиение на бесконечное число прогрессий, что S < 1.
- **3.** Можно ли раскрасить натуральные числа в 2025 цвет так, чтобы каждый цвет встречался бесконечное число раз, и не нашлось тройки чисел, покрашенных в три различных цвета, таких, что произведение двух из них равно третьему?
- **4.** Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества A_1, A_2, \ldots так, чтобы при любом натуральном i сумма всех чисел, входящих в подмножество A_i , равнялась i+2025?
- **5.** Существуют ли 2025 непересекающихся возрастающих арифметических прогрессий натуральных чисел таких, что каждая из них содержит простое число, превосходящее 2025, и лишь конечное количество натуральных чисел в них не лежит?
- **6.** Пусть a_1, a_2, \ldots возрастающая последовательность натуральных чисел с таким свойством, что существует $\epsilon > 0$, что в любом отрезке $1, 2, \ldots, N$ содержится не меньше $N\epsilon$ членов последовательности. Докажите, что можно выделить из неё бесконечную подпоследовательность чисел, ни одно из которых не делит другое.