LINEAR FLASH MEMORY CARD

SERIES-I (Fx1xxx) Product Specification

Documentation History

Version	Description	Date	Written By
1.0	New Issue	Aug. 2006	Greg Liu
2.0	Update product number definition and ordering information	Sep. 2017	Ryan Lee

Contents

1.	FEATURES1
2.	GENERAL DESCRIPTION1
3.	PRODUCT NUMBER DEFINITION
4.	PRODUCT LIST3
5.	BLOCK DIAGRAM4
6.	PIN CONFIGURATION (C1FLA01M54)
7.	PIN DESCRIPTION
8.	RECOMMENDED OPERATING CONDITIONS
9.	COMMON MEMORY FUNCTION TABLE
10.	ATTRIBUTE MEMORY FUNCTION TABLE
11.	COMMAND SET TABLE9
12.	COMMAND DEFINITIONS
13.	FULL CARD ERASE FLOW
14.	WRITE ALGORITHM FOR BYTE-WIDE MODE
15.	ERASE ALGORITHM FOR BYTE-WIDE MODE
16.	WRITE ALGORITHM FOR WORD-WIDE MODE
17.	WRITE VERIFY AND MASK SUBROUTINE FOR WORD-WIDE MODE
18.	ERASE ALGORITHM FOR WORD-WIDE MODE
19.	ERASE VERIFY AND MASK SUBROUTINE FOR WORD-WIDE MODE
20.	DC ELECTRICAL CHARACTERISTICS
21.	ACELECTRICAL CHARACTERISTICS —COMMON MEMORY READ ONLY OPERATIONS22
22.	ACELECTRICAL CHARACTERISTICS —COMMON MEMORY WRITE/ERASE OPERATIONS22
23.	READ OPERATION TIMING DIAGRAM (COMMON MEMORY)
24.	WRITE OPERATION TIMING DIAGRAM (COMMON MEMORY)
25.	ERASE OPERATION TIMING DIAGRAM (COMMON MEMORY)
26.	AC ELECTRICAL CHARACTERISTICS (ATTRIBUTE MEMORY)28

C-ONE

PCMCIA/JEIDA FLASH MEMORY CARD

27. READ CYCLE TIMING DIAGRAM (ATTRIBUTE MEMORY) (REG*=VIL, WE*=VIH)29
28. WRITE CYCLE TIMING DIAGRAM (ATTRIBUTE MEMORY) (REG*=VIL)29
29. OUTLINE DIMENSIONS (UNIT: MM)

Features

- * PCMCIA/JEIDA standard
- * Series 1 Flash memory card
- * Memory Capacity:256K~2 Mega bytes
- * Byte (x8) / word (x16) data bus selectable
- * Fast access time: 250ns (maximum)
- * Optional attribute memory: 8K byte E²PROM
- * Read voltage: 5V, write/erase voltage: 12V

- *128K(or256K)bytepermemory segment structure
- *100,000 write/erase cycles
- *1 second typical per 128K-byte segment
- * 10 us typical random writes to erased byte
- * Command register architecture
- *Built-in write protect switch
- * Credit card size : 54.0 x 85.6 x 3.3 (mm)

General Description

C-ONE's high performance FLASH memory cards conform to the PCMCIA / JEIDA international standard and consist of multiple Catalyst's 28F010 or 28F020(or compatible) FLASH memory devices and decoder IC mounted on a very thin printed circuit board using surface mounting technology.

Each card is organized as an array of individual memory segments. Each segment is 128K (or 256K) bytes in size. With this segment structure, the electrical segment-erasure capability gives the designer the flexibility to selectively rewrite segments of data while saving other segments for infrequently updated look-up tables.

This series Flash memory cards offer portable , reprogrammable and nonvolatile solid-state storage media and can be used for flexible integration into various system platforms with PCMCIA/JEIDA interface. With the extra and optional 8K bytes "attribute memory" space , the Card Information Structure (CIS) can be written into it by OEM with standard format or customized requirements.

Catalyst 28F010: (31B4) the manufacturer code of 31H and the device code of B4H. Catalyst 28F020: (31BD) the manufacturer code of 31H and the device code of BDH.

INTEL 28F010: (89B4) the manufacturer code of 89H and the device code of B4H. INTEL 28F020: (89BD) the manufacturer code of 89H and the device code of BDH.

Product Number Definition

Blank field: Data bus 8bit/16bit selectable

08: Data bus 8bit only 16: Data bus 16bit only

Note: A/M means attribute memory

Product List

Part Number	Capacity	Attribute Memory	Description				
F61256	256KB		256KB 8KB A/M Series I Flash Memory Card				
F61512	512KB						
F61001	1MB	8KB E2PROM	1MB 8KB A/M Series I Flash Memory Card				
F61002	2MB		2MB 8KB A/M Series I Flash Memory Card				
F91256	256KB		256KB 8KB Read only A/M Series I Flash Memory Card				
F91512	512KB	OWD FARROW	512KB 8KB Read only A/M Series I Flash Memory Card				
F91001	1MB	8KB E2PROM	1MB 8KB Read only A/M Series I Flash Memory Card				
F91002	2MB		2MB 8KB Read only A/M Series I Flash Memory Card				
FN1256	256KB		256KB NO A/M Series I Flash Memory Card				
FN1512	512KB	Ni	512KB NO A/M Series I Flash Memory Card				
FN1001	1MB	None	1MB NO A/M Series I Flash Memory Card				
FN1002	2MB		2MB NO A/M Series I Flash Memory Card				
F61256-08	256KB		256KB 8bit only 8KB A/M Series I Flash Memory Card				
F61512-08	512KB	OWD FADDOM	512KB 8bit only 8KB A/M Series I Flash Memory Card				
F61001-08	1MB	8KB E2PROM	1MB 8bit only 8KB A/M Series I Flash Memory Card				
F61002-08	2MB		2MB 8bit only 8KB A/M Series I Flash Memory Card				
F91256-08	256KB		256KB 8bit only 8KB Read only A/M Series I Flash Memory Card				
F91512-08	512KB	OWD FADDOM	512KB 8bit only 8KB Read only A/M Series I Flash Memory Card				
F91001-08	1MB	8KB E2PROM	1MB 8bit only 8KB Read only A/M Series I Flash Memory Card				
F91002-08	2MB		2MB 8bit only 8KB Read only A/M Series I Flash Memory Card				
FN1256-08	256KB		256KB 8bit only NO A/M Series I Flash Memory Card				
FN1512-08	512KB	N	512KB 8bit only NO A/M Series I Flash Memory Card				
FN1001-08	1MB	None	1MB 8bit only NO A/M Series I Flash Memory Card				
FN1002-08	2MB		2MB 8bit only NO A/M Series I Flash Memory Card				
F61256-16	256KB		256KB 16bit only 8KB A/M Series I Flash Memory Card				
F61512-16	512KB	OWD FADDOM	512KB 16bit only 8KB A/M Series I Flash Memory Card				
F61001-16	1MB	8KB E2PROM	1MB 16bit only 8KB A/M Series I Flash Memory Card				
F61002-16	2MB		2MB 16bit only 8KB A/M Series I Flash Memory Card				
F91256-16	256KB		256KB 16bit only 8KB Read only A/M Series I Flash Memory Card				
F91512-16	512KB	OWD FADDOM	512KB 16bit only 8KB Read only A/M Series I Flash Memory Card				
F91001-16	1MB	8KB E2PROM	1MB 16bit only 8KB Read only A/M Series I Flash Memory Card				
F91002-16	2MB		2MB 16bit only 8KB Read only A/M Series I Flash Memory Card				
FN1256-16	256KB		256KB 16bit only NO A/M Series I Flash Memory Card				
FN1512-16	512KB	NI a ···	512KB 16bit only NO A/M Series I Flash Memory Card				
FN1001-16	1MB	None	1MB 16bit only NO A/M Series I Flash Memory Card				
FN1002-16	2MB		2MB 16bit only NO A/M Series I Flash Memory Card				

Block Diagram

Figure 1

C-ONE

PCMCIA/JEIDA FLASH MEMORY CARD

$\textbf{Pin Configuration} \ \, (C1FLA01M54)$

17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Pin No.
V C C	B U S Y	W E *	A 1 4	A 1 3	A 8	A 9	A 1 1	O E *	A 1 0	C E 1 *	D 7	D 6	D 5	D 4	D 3	G N D	Pin Name
34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	Pin No.
G N D	W P	D 2	D 1	D 0	A 0	A 1	A 2	A 3	A 4	A 5	A 6	A 7	A 1 2	A 1 5	A 1 6	V P P 1	Pin Name
51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	Pin No.
V C C	N C	N C	A 1 9	A 1 8	A 1 7	N C	N C	N C	C E 2 *	D 1 5	D 1 4	D 1 3	D 1 2	D 1 1	C D 1	G N D	Pin Name
68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52	Pin No.
G N D	C D 2 *	D 1 0	D 9	D 8	B V D 1	B V D 2	R E G *	N C	N C	N C	N C	N C	N C	N C	N C	V P P 2	Pin Name

Table 2

 $Note: * \ mean \ low \ active$

C1FLA2565 series : A19,A18 = NC C1FLA5125 series : A19 = NC

C1FLA25654~C1FLA01M54 series : A16 = BUSY* ; A61 = REG* C1FLA25650~C1FLA01M50 series : A16 = NC ; A61 = NC

8bit data bus: D8~D15=NC

Pin Description

Description		
Symbol	Function	I/O
A0-A19	Addresses	I
D0-D15	Data Inputs/Outputs	I/O
CE1*/CE2*	Card Enable	I
OE*	Output Enable	I
WE*	Write Enable	Ι
REG*	Attribute Memory Enable	I
WP	Write-protect status Detect	0
BVD1*/BVD2*	Battery Voltage Detect	0
BUSY*	Ready/Busy status	0
CD1*/CD2*	Card Detect (tied to GND internally)	0
VCC	+5 Volt Power Supply	-
VPP1/VPP2	Write (programming) Power Supply	-
GND	Ground	-
NC	No Connection	-

Pin Location

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit
V _{CC} Supply Voltage	V_{CC}	4.5	5.5	V
V _{PP} Supply Voltage (read)	V_{PPL}	0	6.5	V
V _{PP} Supply Voltage (erase/write)	V_{PPH}	11.4	12.6	V
Input High Voltage	V_{IH}	2.4	VCC + 0.3	V
Input Low Voltage	V _{IL}	-0.3	0.8	V
Operating Temperature	T_{OPR}	0	70	° C

Table 4

Absolute Maximum Ratings *

Parameter	Symbol	Value	Unit
V _{CC} Supply Voltage	V_{CC}	-0.5 to + 6.0	V
V _{PP} Supply Voltage (read)	V_{PPL}	- 2.0 to + 7.0	V
V _{PP} Supply Voltage (erase/write)	V_{PPH}	- 2.0 to + 14.0	V
Input Voltage	$V_{\rm IN}$	- 0.5 to V _{CC} +0.3(6V max.)	V
Output Voltage	V _{OUT}	- 0.5 to + 6.0	V
Operating Temperature	T_{OPR}	0 to + 70	° C
Storage Temperature	T_{STR}	- 30 to + 70	° C
Relative Humidity (non-condensing)	H_{UM}	95(maximum)	%

Table 5

*Comments

Stress above those listed under " Absolute Maximum Ratings " may cause permanent damage to the products. These are stress rating only. Functional operation of these products at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Common Memory Function Table

Fun	ction	REG*	CE2*	CE1*	A0	OE*	WE*	V_{PP2}	V_{PP1}	D15 - D8	D7 - D0
	Byte Read	Н	Н	L	L	L	Н	$V_{ ext{PPL}}$	V_{PPL}	High-Z	Even Byte
											Data Out
		Н	Н	L	Н	L	Н	$V_{ ext{PPL}}$	$V_{\mathtt{PPL}}$	High-Z	Odd Byte
											Data Out
	Odd Byte	Н	L	Н	X	L	Н	$V_{ ext{PPL}}$	$V_{\mathtt{PPL}}$	Odd Byte	High-Z
	Only Read									Data Out	
Read-Only	Word Read	Н	L	L	X	L	Н	$V_{ ext{PPL}}$	$V_{\mathtt{PPL}}$	Odd Byte	Even Byte
										Data Out	Data Out
	Output	X	X	X	X	Н	Н	$V_{ ext{PPL}}$	$V_{\mathtt{PPL}}$	High-Z	High-Z
	Disable										
	Standby	X	Н	Н	X	X	X	$V_{\mathtt{PPL}}$	$V_{\mathtt{PPL}}$	High-Z	High-Z
	Byte Read	Н	Н	L	L	L	Н	V_{PPX}	V_{PPH}	High-Z	Even Byte
											Data Out
		Н	Н	L	Н	L	Н	V_{PPH}	V_{PPX}	High-Z	Odd Byte
											Data Out
	Odd Byte	Н	L	Н	X	L	Н	V_{PPH}	V_{PPX}	Odd Byte	High-Z
	Only Read									Data Out	
	Word Read	Н	L	L	X	L	Н	V_{PPH}	$V_{\mathtt{PPH}}$	Odd Byte	Even Byte
										Data Out	Data Out
Read/Write	Byte Write	Н	Н	L	L	Н	L	V_{PPX}	V_{PPH}	X	Even Byte
											Data In
		Н	Н	L	H	Н	L	V_{PPH}	V_{PPX}	X	Odd Byte
											Data In
	Odd Byte	Н	L	Н	X	Н	L	V_{PPH}	V_{PPX}	Odd Byte	X
	Only Write									Data In	
	Word	Н	L	L	X	Н	L	V_{PPH}	V_{PPH}	Odd Byte	Even Byte
	Write									Data In	Data In
	Standby	X	Н	Н	X	X	X	V_{PPH}	V_{PPH}	High-Z	High-Z
	Output	X	X	X	X	Н	L	V_{PPH}	V_{PPH}	High-Z	High-Z
	Disable										

Table 6

C-ONE

PCMCIA/JEIDA FLASH MEMORY CARD

Attribute Memory Function Table

Function	REG*	CE2*	CE1*	A0	OE*	WE*	V_{PP2}	V_{PP1}	D15 - D8	D7 - D0
Standby	X	Н	Н	X	X	X	$V_{\mathtt{PPL}}$	$V_{\mathtt{PPL}}$	High-Z	High-Z
Byte Read	L	Н	L	L	L	Н	$V_{\mathtt{PPL}}$	$V_{\mathtt{PPL}}$	High-Z	Even Byte Data Out
	L	Н	L	Н	L	Н	$V_{\mathtt{PPL}}$	$V_{\mathtt{PPL}}$	High-Z	Invalid Data Out
Word Read	L	L	L	X	L	Н	$V_{\mathtt{PPL}}$	$V_{\mathtt{PPL}}$	Invalid Data Out	Even Byte Data Out
Odd Byte	L	L	Н	X	L	Н	$V_{\mathtt{PPL}}$	$V_{\mathtt{PPL}}$	Invalid Data Out	High-Z
Only Read										
Byte Write	L	Н	L	L	Н	L	$V_{\mathtt{PPL}}$	$V_{\mathtt{PPL}}$	X	Even Byte Data In
	L	Н	L	Н	Н	L	$V_{\mathtt{PPL}}$	$V_{\mathtt{PPL}}$	X	X
Word Write	L	L	L	X	Н	L	$V_{\mathtt{PPL}}$	$V_{\mathtt{PPL}}$	X	Even Byte Data In
Odd Byte	L	L	Н	X	Н	L	$V_{\mathtt{PPL}}$	$V_{\mathtt{PPL}}$	X	X
Only Write										

Table 7

Notes:

- 1. Refer to DC Characteristics. When $V_{PP1/2} = V_{PPL}$ memory contents can be read but not written or erased.
- 2. $L=V_{IL}$; $H=V_{IH}$; $X=don\mbox{'t}$ care , can be either V_{IH} or $\mbox{ }V_{IL}.$
- 3. $V_{PPX} = V_{PPH}$ or V_{PPL} .
- 4. With $V_{PPL1/2}\, at \; high \; voltage$, the standby current equals $I_{CC}\, + I_{PP} \;\;$ (Standby).

Command Set Table

Command	Bus	First Bus Cycle				Second				
	Cycle	Opera	Add	Data		Opera	Add	DAta		Notes
	s Req	-tion	-ress			-tion	-ress			
				Byte	Word			Byte	Word	
				Mode	Mode			Mode	Mode	
Read Memory	1	Write	X	00H	0000H					
Read Intelligent ID Codes	3	Write	IA	90H	9090H	Read				4
Set-up Erase/Erase	2	Write	ZA	20H	2020H	Write	ZA	20H	2020H	5
Erase Verify	2	Write	EA	A0H	A0A0	Read	EA	EVD	EVD	5
					Н					
Set-up Write/Write	2	Write	WA	40H	4040H	Write	WA	WD	WD	6
Write Verify	2	Write	WA	C0H	C0C0H	Read	WA	WVD	WVD	6
Reset	2	Write	X	FFH	FFFFH	Write	X	FFH	FFFFH	7

Table 8

Notes:

- 1. Bus operations are defined in Table 6.
- 2. IA = Identifier address: 00H for manufacture code, 01H for device code.
 - EA = Address of memory location to be read during erase verify.
 - WA = Address of memory location to be written.
 - ZA = Address of 128K-Byte segments involved in erase operation.

Address are latched on the falling edge of the Write Enable pulse.

3. ID = Data read from location IA during device identification.

Flash Memory	Manufacturer Code	Device Code
INTEL 28F010	89H	В4Н
AMD 28F010	01H	A7H
MITSUBISHI 28F101	1CH	D0H
T1 TMS28F010B	89H	B4H
T1 TMS28F020	89H	BDH

EVD = Data read from location EA during erase verify.

WD = Data to be written at location WA. Data is latched on the rising edge of Write Enable.

WVD = Data read from location WA during write verify. WA is latched on the Write command.

- 4. Following the Read Inteligent ID command, two read operations access manufacturer and device codes.
- 5. Figure 5,8,9 illustrate the Erase Algorithm.
- 6. Figure 4,6,7 illustrate the Write Algorithm.
- 7. The second bus cycle must be followed by the desired command register write.

Command Definitions

When V_{PPL} is applied to the V_{PP} pin(s), the contents of the segment Command Register(s) default to 00H, enabling read-only operations.

Placing V_{PPH} on the V_{PP} pin(s) enable(s) read / write operations. Segment operations are selected by writing specific data into the Command Register.

Read Command

While $V_{PP1/2}$ is high , for erasure and writing , segment memory contents can be accessed via the read command. The read operation is initiated by writing 00H (0000H for the word-wide configuration) into the segment Command Register(s). Microprocessor read cycles retrieve segment data. The accessed segment remains enabled for reads until the Command Register(s) contents are altered.

The default contents of each segment's register(s) upon $V_{PP1/2}$ power-up is 00H (0000H for word-wide). This default value ensures that no spurious alteration of memory card contents occurs during the $V_{PP1/2}$ power transition. Where the $V_{PP1/2}$ supply is left at V_{PPH} , the memory card powers-up and remains enabled for reads until the command Register contents of targeted segments are changed. Refer to the AC Read Characteristics and Waveforms for specific timing parameters.

Intelligent Identifier Command

Each segment of this series cards contains an intelligent Identifier to identify memory card device characteristics. The operation is initiated by writing 90H (9090H for word-wide) into the Command Register(s). Following the command write, a read cycle from address 0000H retrieves the manufacturer code 89H (8989H for word-wide). A read cycle from address 0002H returns the device code B4H (B4B4H for word-wide). To terminate the operation, it is necessary to write another valid command into the register(s). The above data are for INTEL 28F010 chips, for other chips, please refer to the table page 9.

Set-up Erase/Erase Commands

Set-up Erase is a command-only operation that stages the targeted segment(s) for electrical erasure of all bytes in the segment. The set-up erase operation is performed by writing 20H to the Command Register (2020H for word-wide).

To commence segment-erasure, the erase command (20H or 2020H) must again be written to the register(s). The erase operation begins with the rising edge of the Write-Enable pulse and terminates with the rising edge of the next Write-Enable pulse (i.e., Erase-Verify Command).

This two-step sequence of set-up followed by execution ensures that segment memory contents are not accidentally erased. Also , segment-erasure can only occur when high voltage is applied to the $V_{PP1/2}$ pins. In the absence of this high voltage , segment memory contents are protected against erasure. Refer to AC Erase Characteristics and Waveforms for specific timing parameterts.

C1FLADS2 10/30 9801V2P

Erase-Verify Command

The erase command erases all of the bytes of the segment in parallel. After each erase operation , all bytes in the segment must be individually verified. In byte-mode operations, segments are segregated by A0 in odd and even banks; erase and erase verify operations must be done in complete passes of even-bytes-only then odd-bytes-only. See the Erase Algorithm for byte-wide mode. The erase verify operation is initiated by writing A0H (A0A0H for wordide) into the Command Register(s). The address for the byte(s) to be verified must be supplied as it is latched on the falling edge of the Write Enable pulse. The register write terminates the erase operation with the rising edge of its. Write Enable pulse.

The enabled segment applies an internally-generated margin voltage to the addressed byte. Reading FFH from the addressed byte indicates that all bits in the byte are erased. Similarly, reading FFFH from the addressed word indicates that all bits in the word are erased.

The erase-verify command must be written to the Command Register prior to each byte (word) verification to latch its address. The process continues for each byte (word) in the segment(s) until a byte (word) does not return FFH (FFFFH) data, or the last address is accessed.

In the case where the data read is not FFH (FFFFH), another erase operation is performed. (Refer to Set-up Erase/Erase.) Verification then resumes from the address of the last-verified byte (word). Once all bytes (words) in the segment(s) have been verified, the erase step is complete. The accessed segment can now be written. At this point, the verify operation is terminated by writing a valid command (e.g., Write Set-up) to the Command Register. The Erase algorithms for byte-wide and word-wide configurations illustrate how commands and bus operations are combined to perform electrical erasure of this series cards. Refer to AC Erase Characteristics and Waveforms for specific timing parameters.

Set-up Write/Write Commands

Set-up write is a command-only operation that stages the targeted segment for byte writing. Writing 40H (4040H) into the Command Register(s) performs the set-up operation.

Once the write set-up operation is performed, the next Write Enable pulse causes a transition to an active write operation. Addresses are internally latched on the falling edge of the Write Enable pulse. Data is internally latched on the rising edge of the Write Enable pulse. The rising edge of Write Enable also begins the write operation. The write operation terminates with the next rising edge of Write Enable, which is used to write the verify command. Refer to AC Write Characteristics and Waveforms for specific timing parameters.

C1FLADS2 11/30 9801V2P

Write Verify Command

This series cards are written on a byte-by-byte or word-by-word basis. Byte or word writing may occur sequentially or at random. Following each write operation, the byte or word just written must be verified.

The write-verify operation is initiated by writing C0H (C0C0H for word-wide) into the Command Register(s). The register write(s) terminate(s) the write operation with the rising edge of its Write Enable pulse. The write-verify operation stages the accessed segment(s) for verification of the byte or word last written. No new address information is latched. The segment(s) apply(ies) an internally-generated margin voltage to the byte or word. A microprocessor read cycle outputs the data. A successful comparison between the written byte or word and true data means that the byte or word is successfully written. The write operation then proceeds to the next desired byte or word location. The Write algorithms for byte-wide and word-wide configurations illustrate how commands are combined with bus operations to perform byte and word writes. Refer to AC Write Characteristics and Waveforms for specific timing parameters.

Reset Command

A reset command is provided as a means to safely abort the erase- or write-command sequences. Following either setup command (erase or write) with two consecutive writes of FFH (FFFFH for word-wide) will safely abort the operation. Segment memory contents will not be altered. A valid command must then be written to place the accessed segment in the desired state.

C1FLADS2 12/30 9801V2P

Full Card Erase Flow

Figure 3

Notes: E = Even, O = Odd

Write Algorithm for Byte-wide Mode

Notes:

- 1. See DC Characteristics for the value of V_{PPH} and V_{PPL}.
- 2. Write Verify is only performed after a byte write operation. A final read/compare may be performed (optional) after the register is written with the Read command.

C1FLADS2 14/30 9801V2P

Erase Algorithm for Byte-Wide Mode

Figure 5

Notes:

- 1. See DC Characteristics for the value of V_{PPH} and V_{PPL}.
- 2. Erase Verify is only performed after chip erasure. A final read/compare may be performed (optional) after the register is written with the Read command.

Write Algorithm for Word-wide Mode

Figure 6

Comments

Wait for V_{PP} ramp to V_{PPH}

ADRS = address to write

W_DAT = data word to write

Initialize Data Word Variables:

V DAT = valid data

W_COM = Write Command

V_COM = Write Verify Command PLSCNT HI = HI Byte Pulse Counter PLSCNT LO = LO Byte Pulse Counter

FLAG = Write Error Flag

Write Set-up Command xx = Address don't care write

See Write Verify and Mask Subroutine. Write Verify Command

F_DAT = flash memory data
Compare flash memory data to valid
data (word compare).
If not equal, check for Write Error
flag. If Flag not set, compare High and
Low Bytes in the Subroutine.
Check buffer of I/O port for more data
to write.

Reset device for read operation.

Turn off V_{PP}.

Write Verify and Mask Subroutine for Word-wide Mode

Comments

To look at the LO Byte, Mask* the HI Byte with 00.

If the LO Byte verifies, mask the LO Byte commands with the reset

command (FFH)

If the LO Byte does not verify, then increment its pulse counter and check for max count.

FLAG = 1 denotes a LO Byte error.

Repeat the sequence for the HI Byte.

FLAG = 2 denotes a HI Byte error.

FLAG = 3 denotes both a HI and LO Byte errors. Flag = 0 denotes no max count errors; continue with algorithm.

Figure 7

*Masking can easily and efficiently be done in assembly languages. Simply load word registers with the incoming data (F_DAT), the program commands and the verify commands. Then manipulate the HI or LO register contents.

Erase Algorithm for Word-wide Mode

Comments

Wait for V_{PP} to stabilize

Use Write operation algorithm in x8 or x16 configuration

Initialize Variables:

PLSCNT_HI = HI Byte Pulse Counter PLSCNT LO = LO Byte Pulse Counter

FLAG = Erasure error flag

ADRS = Address

E_COM = Erase Command

V_COM = Verify Command

Erase Set-up Command

Start Erasing

Duration of Erase Operation.

Erase Verify Command stops erasure.

See Block Erase Verify & Mask Subroutine

When both devices at ADRS are erased, F DATA = FFFFH.

If not equal, increment the pulse counter and check for last pulse. Reset commands default to

(E COM = 2020H)

 $(V_COM = A0A0H)$

before verifying next ADRS.

Reset device for read operation.

Turn off VPP.

Figure 8

Notes:

x16 Addressing uses A_1 - A_{19} only. $A_0 = 0$ throughout word-wide operation.

Erase Verify and Mask Subroutine for Word-wide Mode

Comments

This subroutine reads the data word (F_DATA). It then masks the HI or LO Byte of the Erase and Verify commands from executing during the next operation.

If both HI and LO Bytes verify, then return.

Mask* the HI Byte with 00H.

If the LO Byte verifies erasure, then mask* the next erase and verify commands with FFH (RESET).

If the LO Byte does not verify, then increment its pulse counter and check for max count. FLAG = 1 denotes a LO

Byte error.

Repeat the sequence for the HI Byte.

FLAG = 2 denotes a HI Byte error. FLAG = 3 denotes both a HI and LO Byte errors. Flag = 0 denotes no max count errors; continue with algorithm.

Figure 9

^{*}Masking can easily and efficiently be done in assembly languages. Simply load word registers with the incoming data (F_DAT), the program commands and the verify commands. Then manipulate the HI or LO register contents.

DC Electrical Characteristics

(recommended operating conditions unless otherwise noted)

Symbol	Parameter	Byte	e Mode	Wo	rd Mode	Unit	Test Condition
		min	max	min	max		
I_{LI}	Input Leakage Current	-10	10	-10	10	uA	$V_{IN} = 0V$ to V_{CC} (Note 1)
		-70	10	-70	10	uA	$V_{IN} = 0V$ to V_{CC} (Note 2)
I_{LO}	Output Leakage Current	-10	10	-10	10	uA	$CE1* = CE2* = V_{IH} or$
							$OE* = V_{IH}$, $V_{OUT} = 0V$
							to V _{CC} (Note 3)
V_{IH}	Input High Voltage	2.4	$V_{CC} + 0.3$	2.4	$V_{CC} + 0.3$	V	
V_{IL}	Input Low Voltage	-0.3	0.8	-0.3	0.8	V	
V _{OH}	Output High Voltage	3.8		3.8		V	$I_{OH} = -2.0 \text{mA} \text{ (Note 4)}$
V _{OL}	Output Low Voltage		0.4		0.4	V	$I_{OL} = 3.2 \text{mA} \text{ (Note 4)}$
I _{CCS}	V _{CC} Standby Current		0.8		0.8	mA	$CE1* = CE2* = V_{IH} \text{ or}$
							\square V _{CC} -0.2V
I _{CC1}	V _{CC} Active Read Current		50		80	mA	CE1* or/and CE2* = $V_{\mathbb{L}}$,
							Min. cycle, Iout = 0mA
I_{CC2}	V _{CC} Write Current		30		60	mA	Writing in progress
I_{CC3}	V _{CC} Erase Current		30		60	mA	Erasure in progress
I_{CC4}	V _{CC} Write Verify Current		30		60	mA	$V_{PP} = V_{PPH}$, Write Verify
							in progress
I _{CC5}	V _{CC} Erase Verify Current		30		60	mA	V _{PP} = V _{PPH} , WriteVerify
	V. D. 16		0.0		4.5		in progress
I_{PP1}	V _{PP} Read Current		0.8		1.6	mA	V _{PP} U _{CC}
	or Standby Current		0.04		0.08	mA	V _{PP} V _{CC}
I_{PP2}	V _{PP} Write Current		30		60	mA	$V_{PP} = V_{PPH}$ Write in
T	V. Engag Cumant		20		60	A	Progress V _{PP} = V _{PPH} Erasure in
I_{PP3}	V _{PP} Erase Current		30		60	mA	Progress
I_{PP4}	V _{PP} Write Verify Current		5.0		12	mA	V _{PP} = V _{PPH} Write Verify in
*PP4	VPP White Vehily Cultent		3.0		12	11111	progress
I _{PP5}	V _{PP} Erase Verify Current		5.0		12	mA	V _{PP} = V _{PPH} Erase Verify in
							progress
$V_{\mathtt{PPL}}$	V _{PP} During Read-Only	0	6.5	0	6.5	V	
	Operation						
V_{PPH}	V _{PP} During Erase / Write	11.4	12.6	11.4	12.6	V	
	Operation						
V_{LKO}	Vcc Erase / Write lock	3.2		3.2		V	
	Voltage						

Table 9

Notes: 1.) Except CE1*, CE2*, WE*, REG* pins.

- 2.) For CE1*, CE2*, WE*, REG* pins.
- 3.) Except BVD1*, BVD2*, CD1*, CD2* pins.
- 4.) Except CD1*, CD2* pins.

C1FLADS2 20/30 9801V2P

Input / Output Capacitance

 $(T = 25^{\circ}C, f = 1MHZ)$ (These parameters are sampled, not 100% tested)

Symbol	Parameter	Min	Max	Unit	Conditions
C _{IN1}	Address Capacitance		8	pF	$V_{\text{IN}} = 0V$
C_{IN2}	Control Capacitance		16	pF	$V_{\text{IN}} = 0V$
Соит	Output Capacitance		21	pF	$V_{\text{OUT}} = 0V$
C _{I/O}	I/O Capacitance		16	pF	$V_{I/O} = 0V$

Table 10

AC Test Conditions

Input Rise and Fall Times (10% to 90%)	10ns
Input Pulse Levels	V_{OH}
Input Timing Reference Level V_{IL} and	V _{IH}
Output Timing Reference LevelV _{IL} and	V_{IH}

AC Electrical Characteristics —Common Memory Read Only Operations

Symbol		Parameter	Min	Max	Unit	Notes
t _{AVAV}	t _{RC}	Read Cycle Time	250		ns	2
t_{AVQV}	t _{ACC}	Address Access Time		250	ns	2
$t_{\rm ELQV}$	t_{CE}	Card Enable Access Time		250	ns	2
$t_{\rm GLQV}$	t _{OE}	Output Enable Access Time		125	ns	2
$t_{\rm ELQX}$	t_{LZ}	Card Enable to Output in Low Z	5		ns	2
$t_{\rm EHQZ}$		Card Disable to Output in High Z		60	ns	2
t_{GLQX}	tolz	Output Enable to Output in Low Z	5		ns	2
$t_{ m GHQZ}$	t _{DF}	Output Disable to Output in High Z		60	ns	2
	tон	Output Hold from Address, CE*, or OE* Change	5		ns	1,2
twhgl		Write Recovery Time Before Read	6		us	2

Table 11

Notes:

- 1. Whichever occurs first.
- 2. Rise / Fall time ≤ 10 ns

AC Electrical Characteristics —Common Memory Write/Erase Operations

(recommended operating conditions unless otherwise noted)

S	ymbol	Parameter	Min	Max	Unit	Notes
tavav	t _{wc}	Write Cycle Time	250		ns	1,2
tavwl	tas	Address Set-up Time	0		ns	1,2
twlax	t _{AH}	Address Hold Time	100		ns	1,2
t _{DVWH}	tds	Data Set-up Time	80		ns	1,2
twhdx	t _{DH}	Data Hold Time	30		ns	1,2
twhgl		Write Recovery Time Before Read	6		us	1,2
t _{GHWL}		Read Recovery Time Before Write	0		us	1,2
twloz		Output High-Z from Write Enable	5		ns	1,2
twhox		Output Low-Z from Write Enable		60	ns	1,2
telwl	tcs	Card Enable Set-up Time Before write	40		ns	1,2
twheh	tсн	Card Enable Hold Time	0		ns	1,2
twlwh	twp	Write Pulse Width	100		ns	1,2
$t_{ m whwl}$	twph	Write Pulse Width High	50		ns	1,2
twhwh1		Duration of Write Operation	10		us	1,2,3
twhwh2		Duration of Erase Operation	9.5		ms	1,2,3
tvpel		V _{PP} Set-up Time to Card Enable Low	100		ns	1,2

Table 12

Notes:

- Read timing parameters during read/write operations are the same as during read-only operations.
 Refer to AC Characteristics for Read-Only Operations.
- 2. Rise/Fall time \$10ns.
- 3. The integrated stop timer terminates the write/erase operations, thereby eliminating the need for a maximum specification.

0V

Read Operation Timing Diagram (Common Memory)

Figure 10

Write Operation Timing Diagram (Common Memory)

Figure 11

Erase Operation Timing Diagram (Common Memory) ERASE VCC POWER-UP & SET-UP ERASE VERIFY STANDBY/ ERASE ERASECOMMAND ERASING STANDBY COMMAND COMMAND VERIFICATION POWER-DOWN Address $t_{AVAV}(t_{WC})$ $t_{\rm AVAV}^{}(t_{\rm RC}^{})$ $t_{AVAV}(t_{WC})$ $t_{AVWL}(t_{AS})$ $t_{WLAX}(t_{AH})$ $t_{AVWL}(t_{AS}) t_{WLAX}(t_{AH})$ $t_{AVWL}(t_{AS}) t_{WLAX}(t_{AH})$ и CE1* or/and CE2* $t_{\underline{ELWL}}$ twheh $t_{ELWL} (t_{CS})$ (t_{CH}) (t_{CS}) t'wheh t'_{WHEH} t_{ELWL} (t_{CH}) (t_{CS}) (t_{CH}) u OE* $t_{WHWL}(t_{WPH})$ t_{EHQZ} t_{WHWH2} t_{WHGL} (t_{DF}) ш WE* $t_{GLQV}(t_{OE})$ t_{WHDX} t_{OH} t_{WHDX} t_{WHDX} € GLQX HIGH Z WALID (t_{OLZ}) ĎATA IÑ DATA Data = 20H=20H= A0HOUT t (t ELQX LZ (A0A0H for word-wide mode) t_{ELQV} (t_{CE}) 5.0V \boldsymbol{V}_{CC} 0V $\boldsymbol{t}_{\text{VPEL}}$ 12.0V V_{PPL} Figure 12

Alternative CE* Controlled Write Operations (Common Memory)

Symbol	Parameter	Min	Max	Unit	Notes
tavav	Write Cycle Time	250		ns	
tavel	Address Set-up Time	0		ns	
telax	Address Hold Time	100		ns	
toveh	Data Set-up Time	80		ns	
tehdx	Data Hold Time	30		ns	
tehgl	Write Recovery Time Before Read	6		us	
t _{GHEL}	Read Recovery Time Before Write	0		us	
twlel	Write Enable Set-up Time before Card-Enable	0		ns	
t _{EHWH}	Write Enable Hold Time	0		ns	
teleh	Write Pulse Width	100		ns	1
tehel	Write Pulse Width High	20		ns	
t _{PEL}	V _{PP} Set-up Time to Card-Enable Low	100		ns	

Table 13

Notes:

Card Enable Controlled Writes: Write operations are driven by the valid combination of Card Enable and Write Enable. In systems where Card Enable defines the write pulse width (with a longer Write Enable timing waveform) all set-up, hold and inactive Write Enable times should be measured relative to the Card Enable waveform.

Alternative CE* Controlled Write Timing Diagram (Common Memory) PROGRAM PROGRAM VERIFICATION STANDBY/ POWER-DOWN V_{CC} POWER-UP & SET-UPPROGRAM PROGRAM COMMAND VERIFY ATANDBY COMMAND LATCH ADDRESS & DATA PROGRAMING COMMAND Address $t_{AVAV}(t_{WC})$ $t_{AVAV}(t_{RC})$ t_{AVAV} t_{AVAV} t_{AVEL} t_{WLAX} \boldsymbol{t}_{AVEL} t_{ELAX} u ш CE1* or/and CE2* t_{WLEL} t_{EHWH} t_{WLEL} t_{EHWH} t_{WLEL} t_{GHEL} t_{EHEL} t_{EHEH} t_{EHGL} GHQZ (t_{DF}) ш \boldsymbol{t}_{EHQZ} $t_{GLQV}(t_{OE})$ t_{ELEH} t_{ELEH} $\mathbf{t}_{\mathrm{EHDX}}$ $\mathbf{t}_{\mathrm{DVEH}}$ $\boldsymbol{t}_{\mathrm{OH}}$ t_{EHDX} $\boldsymbol{t}_{\text{DVEH}}$ \boldsymbol{t}_{GLQX} (t_{OLZ}) HIGH Z WALID DATA DATA DATA IN IN Data =40H , =C0H TUO $\boldsymbol{t}_{\mathrm{ELQX}}(\boldsymbol{t}_{\mathrm{LZ}})$ (C0C0H in word-wide mode) (4040H in word-wide mode) \boldsymbol{t}_{ELQV} (t_{CE}) 5.0V \boldsymbol{V}_{CC} 0V 12.0V V_{PP} V_{PPL} Figure 13

AC Electrical Characteristics (Attribute Memory)

(recommended operating conditions unless otherwise noted)

Read Cycle (Attribute Memory)

Symbol	Parameter	Min.	Max.	Unit	Test Condition
t _{cr}	Read Cycle Time	300		ns	
t _{a(A)}	Address Access Time		300	ns	
t _{a(CE)}	Card Select Access Time		300	ns	
t _{a(OE)}	Output Enable Access Time		150	ns	
t _{dis(CE)}	Output Disable Time (from CE*)		100	ns	
t _{dis(OE)}	Output Disable Time (from OE*)		100	ns	
t _{en(CE)}	Output Enable Time (from CE*)	5		ns	
t _{en(OE)}	Output Enable Time (from OE*)	5		ns	
t _{v(A)}	Data Hold Time (from address changed)	0		ns	

Table 14

Write Cycle (Attribute Memory)

Symbol	Parameter	Min.	Max.	Unit	Test Condition
t_{cw}	Write Cycle Time		1	ms	
t_{AS}	Address Setup Time	30		ns	
t_{AH}	Address Hold Time	50		ns	
t_{WP}	Write Pulse Width	120		ns	
t_{CS}	Card Enable Time to WE*	15		ns	
t_{CH}	Card Enable Hold Time from WE* High	0		ns	
t_{DS}	Data Setup Time	70		ns	
t_{DH}	Data Hold Time	30		ns	
t_{OES}	OE* Setup Time	30		ns	
t _{OEH}	OE* Hold Time	30		ns	

Table 15

Read Cycle Timing Diagram (Attribute Memory) (REG*=VIL , WE*=VIH)

Figure 14

Write Cycle Timing Diagram (Attribute Memory) (REG*=VIL)

Figure 15

Outline Dimensions (Unit: mm)

FLASH CARD (Write Protect)