Inhaltsverzeichnis

1	Grundbegriffe	3
2	Definitionen	4
	2.1 Definition 2.2 (aktivierte Transition)	4
	2.2 Definition 2.3 (Schaltfolge)	4
3	Übungen	5
	3.1 Übung 1	5

Abkürzungsverzeichnis

- T* akzeptiertes Alphabet
- λ leere Schaltfolge

1 Grundbegriffe

• $t \in T$: Transition aus der Menge aller Transitionen

• $s \in S$: Stelle aus der Menge aller Stellen

• $(x,y) \in F$: Kannte aus der Menge aller Flussrelationen (Kanten)

 \bullet W: Gewichtungs-Funktion

• W(x,y): Kanntengewicht (Gewicht auf den Pfeilen)

- • $x = \{y \mid (y, x) \in F\}$ Der Vorbereich von x Sprich: Vorbereich von x ist y mit der Eigenschaft: Kannte von y nach x ist Element aller Flussrelationen (Pfeile)
- $x^{\bullet} = \{y \mid (x, y) \in F\}$ Der NAchbereich von x Sprich: Nachbereich von x ist y mit der Eigenschaft: Kannte von x nach y ist Element aller Flussrelationen (Pfeile)
- $M: S \mapsto \mathbb{N}$ Markierung Eine Markierung M ist eine Menge von Stellen abgebildet auf \mathbb{N}

2 Definitionen

2.1 Definition 2.2 (aktivierte Transition)

 $t \in T$ ist aktiviert unter Markierung M, M[t), falls $\forall s \in S : W(s,t) \leq M(s)$ Sprich: Transition t ist aktiviert unter Markierung M, falls für alle Stellen aus der Menge S gilt, dass das Kanntengewicht der Kannte von s nach t kleiner oder gleich Anzahl der Marken auf Stelle s (M(s)) ist.

2.2 Definition 2.3 (Schaltfolge)

Sei $w \in$ akzeptiertes Alphabet $(T^*): M[w)$ bzw. M[w)M' falls:

- $w = \text{leere Schaltfolge } (\lambda) \text{ (und } M = M')$
- w = w't mit $t \in T$, $M[w'\rangle M''[t'\rangle$ (und $M''[t\rangle M')$

 $FS(N) = \{w \in T^* | M_N[w]\}$ Menge der Schaltfolgen von N (firing sequence) $w \in T^{\omega}$ unendliche Schaltfolge (falls alle endlichen Präfixe von w Schaltfolgen sind)

3 Übungen

3.1 Übung 1

Aufgabe 1

Abbildung 3.1: Lösung 1

Abbildung 3.2: Lösung 2

Aufgabe 2

a)

 $n=0: M(1,0,0) \in M_N$

n = 1: M(1, 0, 1)

Erreichbar mit:

 $M_N[a] M'[b] M(1,0,1) = M_N[(ab)] M(1,0,1) w = (a,b)$

 $n = n: M_N \left[(ab)^n \right\rangle M(1,0,n)$

b)

Erreichbare Markierungen sind:

$$\begin{aligned} &(0,0,0), (1,0,0), (1,0,1), (1,0,n), (1,0,(n+1)) \\ &(1,0,0) \left[(ab) \right\rangle (1,0,1) \\ &(1,0,0) \left[(ab)^n \right\rangle (1,0,n) \\ &(1,0,0) \left[(ab)^{n+1} \right\rangle (1,0,(n+1)) \\ &(1,0,0) \left[(ab) \right\rangle (1,0,1) \left[(c \right\rangle (0,0,(n-1)) \\ &(1,0,0) \left[(ab)^n c \right\rangle (0,0,n) \end{aligned}$$

d

$$R = (1, 0, n), (0, 1, (n + 1)), (0, 0, n) \mid n \in \mathbb{N} \subseteq [M_N)$$

 $R \supseteq [M_N)$

Behauptung: $M_N[w\rangle M \Rightarrow M \in R$ Induktion über w

Beweis:

- $w = \lambda : M = M_N \in R_{\checkmark}$
- $w = w't : M_N[w'\rangle M'[t\rangle M$ Nach Induktion $M' \in R\checkmark$
- $M' = (1, 0, n) : t = a : M = (0, 1, (n + 1)) \in R \checkmark$

$$t = c \land n >= 1 : M = (0, 0, (n - 1)) \in R \checkmark$$

$$M' = (0, 1, (n + 1)) : t = b : M = (1, 0, (n + 1)) \in R \checkmark$$

$$M' = (0, 0, n) : \neg \exists t \ \frac{4}{3}$$