1.1.1. Параболічне рівняння: задача Коши та граничні умови.

Розглянемо розв'язки $u = u(t, \mathbf{x})$ рівняння параболічного типу

$$\frac{\partial u}{\partial t} = \sum_{i=1}^{r} \sum_{j=1}^{r} A_{ij}(t, \mathbf{x}) u_{,ij} + \sum_{j=1}^{r} B_{j}(t, \mathbf{x}) u_{,j} + C(t, \mathbf{x}) u + F(t, \mathbf{x}), \quad \mathbf{x} \equiv (x_{1}, \dots, x_{r}), \quad (12)$$

де $A_{ij}(t,\mathbf{x})$ — додатно визначена матриця, причому функції $u\in C^1_{\bar{H}}\cap C^2_H$ задовольняють початковим умовам

$$u(0,\mathbf{x}) = u_0(\mathbf{x}), \quad \mathbf{x} \in G; \tag{13}$$

 $u_0 \in C^1_{\bar{G}}$, а також крайовим умовам (11) для усіх $t \in [0,T]$.

У деяких випадках вимоги щодо неперервності чи гладкості початкових або крайових умов можуть не виконуватися. У цьому разі задача має бути модифікована. Наприклад, можливий варіант, коли рівняння (3),(4),(5) виконані лише для внутрішніх точок області G, а замість початкових та граничних умов (6) та (9) розглядають певні граничні переходи, коли \mathbf{x} прямує до будь-якої точки на межі області, де розглядається рівняння, за винятком скінченного числа точок, де є розриви функцій, що входять в (6),(9).

1.2. Коректність задач математичної фізики.

Важливим елементом розгляду задач математичної фізики ε аналіз їх коректності. Задача поставлена коректно, якщо розв'язок існу ε і він ε єдиним для заданих початкових та граничних умов, а також він неперервно залежнить від малих змін початкових та граничних умов, а також інших функцій, що входять в рівняння. Ці властивості аналізують в рамках певних загальних вимог, таких, як порядок гладкості, обмеженість тощо, які накладають на розв'язок.

• Наведемо **приклад Адамара**, який ілюструє некоректну постановку класичної задачі Коші. Розглянемо рівняння для функції двох змінних u = u(t, x), t > 0:

$$u_{tt} = -u_{xx} \tag{14}$$

з початковими умовами $u(0,x)=0, \quad u_t(0,x)=\frac{1}{n}\sin(nx), \quad n=1,2,...$ Можна ще накласти граничну умову $u(t,0)=0, u(t,\pi)=0$, якщо ϵ бажання розглянути задачу на скінченному відрізку $[0,\pi]$. Легко перевірити, що розв'язок

$$u(t,x,n) = n^{-2} \sinh(nt) \sin(nx)$$

задовольняє усім поставленим вимогам.

Для нульових початкових умов розв'язок рівняння (14) є тривіальним. У разі неперервної залежності від початкових умов розв'язок мав би мало відрізнятися від нульового при $n \to \infty$, оскільки $n^{-1} \sin(nx) \Rightarrow 0, n \to \infty$. Але для фіксованого t > 0 бачимо, що $\sup\{u(t,x,n), x \in [0,\pi]\}$ прямує до нескінченності при $n \to \infty$, а не до нуля. Таким чином, неперервної залежності від початкових умов тут немає, задача поставлена некоректно.

А) Приклад розв'язання задачі параболічного типу.

$$u_t = u_{rr}, \tag{\pi.1}$$

u(t,0) = u(t,1) = 0 (умови Діріхлє), $t \ge 0$, $x \in [0,1]$.

Початкова умова:
$$u(0, x) = \sin(\pi n x)$$
, $n = 1, 2, 3, ...$ (п.2)

Зазначимо, що система функцій $\sin(\pi nx)$ для усіх n=1,2,3,... є повною на [0,1], причому вони є власними функціями оператора правої частини рівняння (п.1). Розв'язок: $u(0,x) = \sin(\pi nx) \exp(-\pi^2 n^2 t)$.

E(n,l) Вівняння E(n,l) з тими ж крайовими умовами, але з більш загальною початковою умовою

$$u(0,x) = \sum_{k=1}^{K} A_k \sin(\pi kx)$$
 (\pi.2)

Розв'язок $u(t,x) = \sum_{k=1}^{K} A_k \sin(\pi kx) \exp(-\pi^2 k^2 t).$

В) Єдиність та стійкість розв'язку задачі (n.1) з граничними умовами (n.2) $u(t,0)=u(t,1)=0; \quad t\geq 0, \quad x\in [0,1];$

загальна початкова умова:

$$u(0,x) = u_0(x)$$
 . (π .3)

Задачу розглядаємо в класі неперервно-диференційовних по (t,x) та двічи неперервно-диференційовних по x.

Припустимо спочатку, що є два розв'язки цієї задачі $u_1(t,x), u_2(t,x)$, для яких $u_1(0,x)=u_{01}(x), \quad u_2(0,x)=u_{02}(x)$, де u_{01},u_{02} задовольняють тим самим крайовим умовам і є також двічи неперервно-диференційовними.

Для різниці $v(t,x) = u_1(t,x) - u_2(t,x)$ в силу лінійності виконуються однорідні крайові умови v(t,0) = v(t,1) = 0 та рівняння

$$v_t = v_{xx}$$
 $\rightarrow vv_t = vv_{xx} \equiv \frac{\partial}{\partial x} \left[v \frac{\partial v}{\partial x} \right] - \left(\frac{\partial v}{\partial x} \right)^2$. Оскільки $vv_t \equiv \frac{\partial}{\partial t} \left(\frac{v^2}{2} \right)$, маємо $\frac{\partial}{\partial t} \left(\frac{v^2}{2} \right) = \frac{\partial}{\partial x} \left[v \frac{\partial v}{\partial x} \right] - \left(\frac{\partial v}{\partial x} \right)^2$.

Проінтегруємо це від 0 до 1:

$$\frac{\partial}{\partial t} \left[\int_{0}^{1} dx \left(\frac{v^{2}}{2} \right) \right] = v \frac{\partial v}{\partial x} \Big|_{0}^{1} - \int_{0}^{1} dx \left(\frac{\partial v}{\partial x} \right)^{2} = -\int_{0}^{1} dx \left(\frac{\partial v}{\partial x} \right)^{2} \le 0 \quad .$$

Звідси $\int_{0}^{1} dx \, v^{2}(t,x)$ — незростаюча функція, тому

$$\int_{0}^{1} dx \, v^{2}(t, x) \le \int_{0}^{1} dx \left(u_{01}(x) - u_{02}(x) \right)^{2}. \tag{\Pi.4}$$

Якщо $u_{01}(x) \equiv u_{02}(x)$, звідси $u_1(t,x) \equiv u_2(t,x)$, тобто розв'язок задачі єдиний. Для різних початкових умов з (п.4) випливає, що розв'язок стійкий при по нормі L^2 : $\|f\| \equiv \sqrt{\int\limits_0^1 dx \ f^2(x)}$, тобто $\|u_1 - u_2\| \leq \|u_{01} - u_{02}\|$. Малим (по цій нормі)

відхиленням початкових умов відповідатимуть малі відхилення розв'язку.

Додаткова вправа.

Нехай існують два розв'язки $u_1(t,x), u_2(t,x)$ $(t \ge 0, x \in [0,1])$ рівняння $u_t = u_{xx}$

з умовами u(t,0)=u(t,1)=0, для яких $u_1(0,x)=u_{01}(x)$, $u_2(0,x)=u_{02}(x)$, причому u_{01},u_{02} ϵ тричі неперервно-диференційовними. Розв'язки $u_1(t,x),u_2(t,x)$ розглядаємо в класі неперервно-диференційовних по сукупності змінних t,x та тричі неперервно-диференційовних по x функцій. Знайти оцінку для $\sup\{|u_1(t,x)-u_2(t,x)|,\,x\in[0,1]\}$, $t\geq 0$ через u_{01},u_{02} .