

Calvin and Hobbes by Bill Watterson

Exam

7:00 – 8:30 Tuesday (Tomorrow!)

Bring:

- Pencil
- Calculator
- Notes Sheet
 - letter-sized, double sided, 1 sheet

Exam Review

Multi-cycle Datapath

Pipeline Datapath Hazards!

Caches

Multi-Cycle Datapath

Multi-Cycle Datapath

Multi-Cycle Datapath

Frequency as compared to single-cycle?

Do all instructions take the same amount of time?

What is the CPI for a multi-cycle machine?

Multi-Cycle Datapath

Frequency as compared to single-cycle?

Higher

Do all instructions take the same amount of time?
No! (ADD, NAND, SW, BEQ: 4 cycles, LW: 5 cycles)

What is the CPI for a multi-cycle machine?

Depends on the instructions you run through it

Multi-Cycle Datapath

Why doesn't multi-cycle have data hazards or control hazards?

What does the red Control circle on the diagram do?

Multi-Cycle Datapath

Why doesn't multi-cycle have data hazards or control hazards?

Only one instruction is running at a time

What does the red Control circle on the diagram do?

Sets the control signals for muxes, ALU, Memory, and Reg

Multi-Cycle Datapath

Let's run an instruction through the datapath

Pipeline Datapath

Pipeline Datapath

Frequency as compared to single-cycle?

Do all instructions take the same amount of time?

What is the CPI for a pipelined processor?

Pipeline Datapath

Frequency as compared to single-cycle?

Higher

Do all instructions take the same amount of time?
Yes

What is the CPI for a pipelined processor?

1 (over many instructions)

Pipeline Datapath

Timing Example

25% lw

5% sw

1000 Instructions:

50% add/nand

20% beq

6 ns – Register Read/Write

2 ns – ALU Operations

10 ns – Memory Access

What is the total execution time? (No Hazards)

Pipeline Datapath

Timing Example

25% lw

5% sw

1000 Instructions:

50% add/nand

20% beq

6 ns – Register Read/Write

2 ns – ALU Operations

10 ns – Memory Access

What is the total execution time? (No Hazards) 10 * (4+1000) = 10040 ns

Data Hazards

Avoidance

Detect and Stall

Detect and Forward

Pipeline Datapath

Timing Example

25% lw

6 ns – Register Read/Write

1000 Instructions:

5% sw

50% add/nand

2 ns – ALU Operations

20% beq

10 ns – Memory Access

37% of ADD/NAND instructions followed by dependent instruction Detect and forward

What is the total execution time?

Pipeline Datapath

Timing Example

25% lw 5% sw

6 ns – Register Read/Write

1000 Instructions:

50% add/nand

10 ns – Memory Access

2 ns – ALU Operations

20% beq

37% of ADD/NAND instructions followed by dependent instruction Detect and forward

What is the total execution time?

10 * (4+1000) = 10040 ns

Control Hazards

No Branches

Avoid

Detect-and-stall

Speculate-and-squash

Control Hazards

In a 27 stage pipeline, if Branches are resolved in Stage 14: Which stages must be squashed?

Control Hazards

In a 27 stage pipeline, if Branches are resolved in Stage 14: Which stages must be squashed?

Stages 1 through 13

Pipeline Datapath

Timing Example

25% lw

6 ns – Register Read/Write

1000 Instructions:

5% sw

50% add/nand

2 ns – ALU Operations

20% beq

10 ns – Memory Access

10% of BEQ instructions are mispredicted Speculate-and-squash

What is the total execution time?

Pipeline Datapath

Timing Example

25% lw

5% sw

50% add/nand

1000 Instructions:

20% beq

6 ns – Register Read/Write

2 ns – ALU Operations

10 ns – Memory Access

10% of BEQ instructions are mispredicted Speculate-and-squash

What is the total execution time?

10 * (4+1000 + 1000*0.2*0.1*3) = 10640 ns

Branch Predictors

Pattern is:

N N N T (Starting at Strongly Taken)

What is the mispredict rate?

Branch Predictors

Pattern is:

N N N T (Starting at Strongly Taken)

What is the mispredict rate? 25%

Caches

What are the types of Locality?

What's the calculation for Block Index bits?

What's the calculation for Set Index bits?

Caches

What are the types of Locality?

Spatial & Temporal

What's the calculation for Block Index bits? log₂(block size)

What's the calculation for Set Index bits? log₂(number of sets)

Types of Caches

Fully Associative

Blocks map to any cache line

Memory	
0x1000	10
0x1004	20
0x1008	30
0x100C	40
0x1010	50
0x1014	60
0x1018	70
0x101C	80
0x1020	90
0x1024	100
0x1028	110

Types of Caches

Direct Mapped

Types of Caches

Set Associative

iviemory	
0x1000	10
0x1004	20
0x1008	30
0x100C	40
0x1010	50
0x1014	60
0x1018	70
0x101C	80
0x1020	90
0x1024	100
0x1028	110

Caches

What are the Three C's and how do we determine them?

Caches

What are the Three C's and how do we determine them?

Compulsory – if we have never loaded it

Capacity – misses in same size fully associative cache

Conflict – any additional misses in actual cache

Caches

What's the difference between Write Allocate and No Write Allocate?

What's the difference between Write Through and Write Back?

Caches

What's the difference between Write Allocate and No Write Allocate?

Write Allocate – add to cache on write miss No Write Allocate – don't add to cache

What's the difference between Write Through and Write Back?

Write Through – always write to memory

Write Back – just write to cache

Caches

Timing Example

25% lw 5% sw

6 ns – Register Read/Write

1000 Instructions:

50% add/nand

2 ns – ALU Operations

20% beq

10 ns – Memory Access

10% of BEQ instructions are mispredicted, Speculate-and-squash 20% of all memory accesses miss caches. Misses take 20 cycles

What is the total execution time?

Caches

Timing Example

25% lw 5% sw 50% add/nand

1000 Instructions:

20% beq

6 ns – Register Read/Write

2 ns – ALU Operations

10 ns – Memory Access

10% of BEQ instructions are mispredicted, Speculate-and-squash 20% of all memory accesses miss caches. Misses take 20 cycles

What is the total execution time?

= 62640 ns