

IMD0033 - Probabilidade Aula 11 - Pandas Avançado

Ivanovitch Silva Setembro, 2018

Agenda

- Estudo de caso: Titanic
- Imputação de dados
- Higienização dos dados
- Pivoteamento de tabelas
- Limpando dados faltantes

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2018_2.git

Ou

git pull

Estudo de Caso: Titanic

https://www.kaggle.com/c/titanic

Estudo de caso: Titanic

	pclass	survived	name	sex	age	sibsp	parch	ticket	fare	cabin	embarked	boat	body	home.dest
0	1	1	Allen, Miss. Elisabeth Walton	female	29.0000	0	0	24160	211.3375	B5	S	2		St Louis, MO
1	1	1	Allison, Master. Hudson Trevor	male	0.9167	1	2	113781	151.5500	C22 C26	S	11		Montreal, PQ / Chesterville, ON
2	1	0	Allison, Miss. Helen Loraine	female	2	1	2	113781	151.5500	C22 C26	S			Montreal, PQ / Chesterville, ON
3	1	0	Allison, Mr. Hudson Joshua Creighton	male	30.0000	1	2	113781	151.5500	C22 C26	S		135	Montreal, PQ / Chesterville, ON
4	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)	female	25	1	2	113781	151.5500	C22 C26	S			Montreal, PQ / Chesterville,

Imputação de dados

O que esses códigos fazem?

```
titanic_survival.loc[~titanic_survival.age.isnull(), "age"].shape
titanic_survival[~titanic_survival["age"].isnull()].shape
```


Qual o ponto de discussão sobre imputação?

```
mean_age = sum(titanic_survival["age"]) / len(titanic_survival["age"])
```

Qual o valor da variável "mean_age" se algum valor da coluna "age" estiver faltando?

Algumas facilidades da API Pandas

correct_mean_age = titanic_survival["age"].mean()

Com sorte, a imputação de dados é bastante comum e uma grande maioria de métodos na API Pandas já realiza o filtro de dados faltantes.

Desafio

Qual o valor médio das passagens por classe?

Exercício seção 5

Qual a idade média dos passageiros por classe?

Pivoteamento de tabelas

	pclass	survived	name	sex	age	sibsp	parch	ticket	fare	cabin	embarked	boat	body	home.dest
0	1	1	Allen, Miss. Elisabeth Walton	female	29.0000	0	0	24160	211.3375	B5	S	2		St Louis, MO
1	1	1	Allison, Master. Hudson Trevor	male	0.9167	1	2	113781	151.5500	C22 C26	S	11		Montreal, PQ / Chesterville, ON
2	1	0	Allison, Miss. Helen Loraine	female	2	1	2	113781	151.5500	C22 C26	S			Montreal, PQ / Chesterville, ON

passenger_class_fares = titanic_survival.pivot_table(index="pclass",
values="fare", aggfunc=np.mean)

Limpando os dados faltantes

print(df.dropna())

	А	В	C	D
W	6.0	3.0	7.0	4.0
У	4.0	3.0	7.0	7.0

print(df.dropna(axis=1))

_	Α	В	D
W	6.0	3.0	4.0
Χ	6.0	2.0	7.0
у	4.0	3.0	7.0
z	2.0	5.0	1.0

22	Α	В	С	D
W	6.0	3.0	7.0	4.0
Χ	6.0	2.0	NaN	7.0
у	4.0	3.0	7.0	7.0
Z	2.0	5.0	NaN	1.0

Desafio

Qual a percentagem de sobreviventes para grupos de diferentes idades?

- 0 5 (infantil)
- 6 10 (criança)
- 11 18 (adolescente)
- 19 30 (adulto jovem)
- 31 50 (adulto pleno)
- 51 65 (adulto senior)
- 66 (idoso)

age

agecat	survived	
Infant	0.0	0.018164
	1.0	0.035373
Child	0.0	0.016252
	1.0	0.012428
Teenager	0.0	0.059273
	1.0	0.043021
Young adult	0.0	0.251434
	1.0	0.146272
Adult	0.0	0.192161
	1.0	0.134799
Senior adult	0.0	0.046845
	1.0	0.034417
Senior	0.0	0.007648
	1.0	0.001912


```
titanic survival["agecat"] = pd.cut(titanic survival.age,
                       bins=[0,5,10,18,30,50,65,100],
                       labels=["Infant", "Child", "Teenager",
                               "Young adult", "Adult", "Senior adult", "Senior"])
      titanic survival.pivot table(index=["agecat", "survived"],
                                       values="age",
                                       aggfunc="count")
aggfunc=lambda x: len(x)/len(titanic survival[~titanic survival.age.isnull()])
```


