IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Currently Amended): Bisphosphite(s) A bisphosphite represented by the following general formula (I):

$$R^{1}O$$
 $P^{-}O^{-}CR^{3}R^{4}$
 Ar^{1}
 Ar^{2}
 $CR^{5}R^{6}$
 OR^{8}
 (I)

[[,]] wherein Ar^1 and Ar^2 are each independently a substituted or an unsubstituted arylene group; R^1 , R^2 , R^7 and R^8 are each independently a substituted or an unsubstituted alkyl group, a substituted or an unsubstituted aryl group or a substituted or an unsubstituted heterocyclic group, or R^1 and R^2 or R^7 and R^8 may together form a ring with their associated oxygen atoms and phosphor atom; and R^3 , R^4 , R^5 and R^6 are each independently a hydrogen atom or an alkyl group, with the proviso that the carbon atom bearing R^3 and R^4 and the carbon atom bearing R^5 and R^6 are bound to [[the]] their respective arylene groups at the ortho position to the Ar^1 - Ar^2 bond.

Claim 2 (Currently Amended): A composition containing bisphosphite(s) a bisphosphite and a Group 8 to 10 metal compound, [[the]] said bisphosphite represented by the following general formula (I):

$$R^{1}O$$
 $P^{-}O^{-}CR^{3}R^{4}$
 Ar^{1}
 Ar^{2}
 $CR^{5}R^{6}$
 OR^{8}
(I)

[[,]] wherein Ar^1 and Ar^2 are each independently a substituted or an unsubstituted arylene group; R^1 , R^2 , R^7 and R^8 are each independently a substituted or an unsubstituted alkyl group,

a substituted or an unsubstituted aryl group or a substituted or an unsubstituted heterocyclic group, or R^1 and R^2 or R^7 and R^8 may together form a ring with their associated oxygen atoms and phosphor atom; and R^3 , R^4 , R^5 and R^6 are each independently a hydrogen atom or an alkyl group, with the proviso that the carbon atom bearing R^3 and R^4 and the carbon atom bearing R^5 and R^6 are bound to [[the]] their respective arylene groups at the ortho position to the Ar^1 - Ar^2 bond.

Claim 3 (Currently Amended): A process for producing aldehyde(s) an aldehyde, comprising reacting an olefin with carbon monoxide and hydrogen in the presence of bisphosphite(s) a bisphosphite and a Group 8 to 10 metal compound, the bisphosphite(s) said bisphosphite represented by the following general formula (I):

$$R^{1}O$$
 $P^{-}O^{-}CR^{3}R^{4}$
 Ar^{1}
 Ar^{2}
 $CR^{5}R^{6}$
 OR^{7}
 OR^{8}
(I)

[[,]] wherein Ar^1 and Ar^2 are each independently a substituted or unsubstituted arylene group; R^1 , R^2 , R^7 and R^8 are each independently a substituted or an unsubstituted alkyl group, a substituted or an unsubstituted aryl group or a substituted or an unsubstituted heterocyclic group, or R^1 and R^2 or R^7 and R^8 may together form a ring with their associated oxygen atoms and phosphor atom; and R^3 , R^4 , R^5 and R^6 are each independently a hydrogen atom or an alkyl group, with the proviso that the carbon atom bearing R^3 and R^4 and the carbon atom bearing R^5 and R^6 are bound to [[the]] their respective arylene groups at the ortho position to the Ar^1 - Ar^2 bond.

Claim 4 (Currently Amended): The process for producing aldehyde(s) according to claim 3, wherein [[the]] said Group 8 to 10 metal compound is a rhodium compound selected

Docket No. 295731US Preliminary Amendment

from the group consisting of Rh(acac)(CO)₂, RhCl(CO)(PPh₃)₂, RhCl(PPh₃)₃, RhBr((CO)(PPh₃)₂, Rh₄(CO)₁₂ and Rh₆CO)₁₆.

Claim 5 (Original): The process according to claim 4, carried out at a temperature of 40 to 150°C.

Claim 6 (Currently Amended): The process for producing aldehyde(s) according to any one of claims claim 3 to 5, wherein, for every 1 liter of the reaction mixture, the Group 8 to 10 metal compound is used in an amount of 0.0001 to 1000 mmol as measured by the amount of metal atom[[)] for every 1 liter of the reaction mixture.