

Inventariamos stock

Hacemos balance de caja

Ajustamos los precios

Gestionamos pedidos

Pagamos nóminas

Organizamos turnos

Las empresas en su día a día manejan multitud de información relativa a su actividad.

Nuestros sistemas actuales son herencia de la evolución de estos desde sus inicios.

Nuestros sistemas actuales son herencia de la evolución de estos desde sus inicios.

En sus inicios los sistemas eran muy básicos, de bajo nivel, operando sobre los recursos más crudos en las máquinas.

En sus inicios los sistemas eran muy básicos, de bajo nivel, operando sobre los recursos más crudos en las máquinas.

Se buscaban abstracciones que permitieran un acceso y operación más sencilla a la información existente.

Edgar F. Codd (1923 - 2003)

[...] Publicó Un modelo relacional de datos para grandes bancos de datos compartidos (título original: A Relational Model of Data for Large Shared Data Banks) en 1970.

[...] <u>Larry Ellison</u> diseñó la base de datos <u>Oracle</u> basándose en las ideas de Codd.

Base de datos: Conjunto de datos estructurados pertenecientes a un contexto.

Sistema gestor de base de datos: Software que gestiona y opera una base de datos.

Sistema gestor de base de datos relacional (RDBMS)

La unidad base es la **tabla** (relation)

Se dividen en columnas, llamadas atributos o campos.

Y en filas de datos acorde a esas columnas, también llamadas tuplas.

Clave primaria: Identifica unívocamente cada fila de nuestra tabla.

PhoneNumber
PhoneNumberTypelD
ModifiedDate

PersonPhone (Person)

Clave foránea: La relación existente entre distintas entidades a través de las claves primarias de estas.

Además del formato lógico de los sistemas, se definieron ciertas prácticas de cómo la información debería estar almacenada para evitar inconsistencias y duplicidades de la información.

Esto dio como origen a las formas normales en las que nos encontramos la información y los sistemas tradicionales.

Data Analysis

Primera forma normal: No pueden existir campos compuestos o multivalor

Segunda forma normal: No pueden existir dependencias parciales

Tercera forma normal: No pueden existir dependencias transitivas (A implica B y B implica C)

Esto permite resolver las distintas formas en las que la información se referencia, manteniendo la consistencia de los datos y su rendimiento en general.

1NF

Students							
FName	SName	Class					
Timothy	Smith	Computer Science					
Jessica	Green	Computer Science					
Jessica	Green	Maths					
Mark	Lynch	Maths					

2NF

				~		
Students				Class		
ID	FName	SName	Class		ID	Class
1	Timothy	Smith	1	\vee	. 1	Computer Science
2	Jessica	Green	1]	2	Maths
3	Jessica	Green	2			
4	Mark	Lynch	2			

3NF

Nos solemos referir a los comandos del *Structured Query Language* (SQL) como queries. Las opciones más comunes son la definición (*Data Definition Language*):

- CREATE: Creación de un elemento con un nombre dado.
- ALTER: Alterar su estructura
- **TRUNCATE**: Vaciar su contenido
- **DROP**: Eliminar por completo

Y la manipulación (Data Manipulation Language):

- SELECT: Obtener un subconjunto de los datos
- INSERT: Insertar nuevos datos
- **UPDATE**: Actualizar campos concretos
- **DELETE**: Eliminar tuplas

Iniciaremos el diseño de nuestra base de datos con un modelo entidad/relación.

Este primer trabajo permite identificar la **cardinalidad** y cómo deberá traducirse el **esquema de datos** para no generar problemas de rendimiento en el normalizado de los datos.

JOIN!

Se emplea una sintaxis estándar para indicar esta relacionalidad.

Product Name		Supplier ID		Supplier ID		Supplier Name	
Planet Oat Oatmilk		1		1		John	
Honey Nut Frosted Flakes		2		2		Anne	
Magnum Double Tub		5		3		Robert	
Sour Patch Marshmallows		3		4		Jerry	
Ferrero Eg	Ferrero Eggs			5		Tim	
	Product Name				Supplier Name	, <u>. </u>	1
•					S		l
					+		
	Planet Oat Oatmilk				John		
	Honey Nut Frosted Flakes				Anne		
	Sour Patch Marshmallows				Robert		
	Ferrero Eggs				Jerry		
Magnum Double Tub					Tim		

JOIN!

Select student.name, COUNT(class.class)
from student
join class on ...

join subject on ...
where subject.name = "Math"
group by student.name

https://www.w3schools.com/sql/sql_join.asp

El **modelo lógico**, identifica una estructura base de cómo se deberán implementar las tablas en base a la relacionalidad anteriormente vista.

Solo ahora podemos empezar a usar nuestro sistema y generar datos en él. El **modelo físico** implementa los tipos de datos necesario y expresa el código que construirá el modelo objetivo.

Deberemos identificar el tipo de dato en base al sistema gestor de base de datos que empleemos.

- Oracle
- PostgreSQL
- MySQL

Dividiremos las bases de datos relacionales (RDBMS) en dos tipologías:

- **Operacionales** (transaccionales): Destinadas a actividades clave de nuestro negocio
- Informacionales (analíticas): Destinadas a realizar nuestras tareas de análisis

OLTP vs OLAP

- · High volume of transactions
- Fast processing
- Normalized data
- Many tables
- "Who bought X?"

Transacciones (operacionales)

ACID Properties

Atomicity Each transaction is "all or nothing" Consistency Data should be valid according to all defined rules Isolation Transactions do not affect each other Durability Committed data would not be lost, even after power failure.

Transacciones (operacionales)

Representan la lógica de operación de la entidad y tienen que ofrecer garantías para asegurar que nuestros negocios funcionen de forma correcta.

Índices

Buscar en tablas puede ser costoso. Los índices nos ayudan a prepararnos algunas de las consultas más habituales.

Para no tener que realizarlo desde cero, existen soluciones de mercado ya preparadas.

Realizar operaciones pesadas sobre nuestros sistemas críticos puede poner en riesgo el buen funcionamiento de nuestra empresa.

Realizar operaciones pesadas sobre nuestros sistemas críticos puede poner en riesgo el buen funcionamiento de nuestra empresa.

Bill Inmon (1945 -)

- [...] el padre del concepto del <u>data warehousing</u>.
- [...] creó la definición más aceptada de del data warehouse:

un sistema de soporte a las decisiones unificado, no volátil, cambiante en el tiempo y orientado a aspectos concretos de negocio.

Ralph Kimball

- [...] promotor también de conceptos como el <u>data warehousing</u> o el <u>business intelligence</u>.
- [...] su metodología, también conocida como modelado dimensional o la metodología Kimball, se ha convertido en el estándar de los sistemas de soporte a las decisiones.

ETL

Modelo dimensional o star schema

[...] Un cliente compró un producto de una tienda ayer

Cubos OLAP

Se conoce como cubos a estructuras ya calculadas para un uso ágil por parte de los sistemas de cuadro de mando.

Business Intelligence

Existen soluciones que nos permiten crear cuadros de mando con esta información.

Business Intelligence

Existen soluciones que nos permiten crear cuadros de mando con esta información.

