# Bias Variance Trade-off

# **Agenda**

- Loss function for regression
- Bias variance trade off
- Debugging variance and bias

#### **Potential Problem – Outliers**

How does outlier influence the regression model?

How do we identify outliers?

Residual plot, Data distribution

How do we deal with outliers?

Delete the outlier
More robust models



# Loss function for regression



$$MAE = \frac{\sum_{i=1}^{n} |y_i - y_i^p|}{n}$$



# **Loss function for regression**

Huber Loss (Smooth Mean Absolute Error)

$$L_\delta(y,f(x)) = egin{cases} rac{1}{2}(y-f(x))^2 & ext{for}|y-f(x)| \leq \delta, \ \delta\,|y-f(x)| - rac{1}{2}\delta^2 & ext{otherwise}. \end{cases}$$



Bias variance trade-off

# **Linear Regression**

Model: 
$$Y = w_0 + w_1 X_1 + \dots + w_p X_p + \varepsilon$$

Given the training data: 
$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
  $X = \begin{pmatrix} -x_1 - \\ \vdots \\ -x_2 - \end{pmatrix} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix}$ 

The model can be written as  $y = Xw + \varepsilon$ 

Least square estimation for the parameters:

$$\widehat{w} = (X^T X)^{-1} X^T y$$

 $\widehat{w}$  is a random variable! Even though ground truth  $w^*$  is not

# Bias and variance in parameter estimation

In general given a model with parameter  $\theta$ , we get an estimator  $\hat{\theta}$ 

- o Bias of the estimator:  $Bias(\hat{\theta}) = E[\hat{\theta} \theta^*]$
- Variance of the estimator:  $Var(\hat{\theta}) = Cov(\hat{\theta})$

If  $Bias(\hat{\theta}) = 0$ , then  $\hat{\theta}$  is an unbiased estimation for  $\theta$ 

$$\begin{split} \operatorname{MSE}(\hat{\theta}_n) &= \mathbb{E}\left[\|\hat{\theta}_n - \theta^*\|^2\right] \\ &= \mathbb{E}\left[\|\hat{\theta}_n - \mathbb{E}[\hat{\theta}_n] + \mathbb{E}[\hat{\theta}_n] - \theta^*\|^2\right] \\ &= \mathbb{E}\left[\|\hat{\theta}_n - \mathbb{E}[\hat{\theta}_n]\|^2 + \underbrace{\|\mathbb{E}[\hat{\theta}_n] - \theta^*\|^2}_{\operatorname{Constant}} + 2\underbrace{(\hat{\theta}_n - \mathbb{E}[\hat{\theta}_n])^T}(\mathbb{E}[\hat{\theta}_n] - \theta^*)\right] \\ &= \mathbb{E}\left[\|\hat{\theta}_n - \mathbb{E}[\hat{\theta}_n]\|^2\right] + \|\mathbb{E}[\hat{\theta}_n] - \theta^*\|^2 \\ &= \mathbb{E}\left[\operatorname{tr}\left[(\hat{\theta}_n - \mathbb{E}[\hat{\theta}_n])(\hat{\theta}_n - \mathbb{E}[\hat{\theta}_n])^T\right]\right] + \|\mathbb{E}[\hat{\theta}_n] - \theta^*\|^2 \\ &= \operatorname{tr}\left[\operatorname{Var}(\hat{\theta}_n)\right] + \|\operatorname{Bias}(\hat{\theta}_n)\|^2. \end{split}$$

#### **Bias-Variance Decomposition**





#### **Bias Variance in Prediction**

We have a dataset  $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$  drawn from a distribution over random variables X and Y, which following the following relation

$$Y = f(X) + \varepsilon$$
$$E(\varepsilon) = 0$$
$$X \perp \varepsilon$$

Suppose  $\hat{f}(x)$  based on the training data D, consider a test point  $(x_*, y_*)$ , the squared loss

is

$$E_{D,\mathcal{E}_*} \left[ \left( y_* - \hat{f}(x_*) \right)^2 \right]$$

$$= E_{D,\mathcal{E}_*} \left[ \left( f(x_*) + \varepsilon_* - \hat{f}(x_*) \right)^2 \right]$$

$$= Var(\varepsilon_*) + \left\{ E[\hat{f}(x_*) - f(x_*)] \right\}^2 + Var[\hat{f}(x_*)]$$

Irreducible error

Bias of  $\hat{f}$ 

Variance of of  $\hat{f}$ 

#### **Bias Variance in Prediction**

$$E_{D,\varepsilon_*} \left[ \left( y_* - \hat{f}(x_*) \right)^2 \right] = Var(\varepsilon_*) + \left\{ E \left[ \hat{f}(x_*) - f(x_*) \right] \right\}^2 + Var \left[ \hat{f}(x_*) \right]$$

$$\begin{split} & = E_{D,\Sigma^{*}} \left[ y_{*} - \hat{f}_{(X^{*})} \right]^{2} \\ & = E_{D,\Sigma^{*}} \left[ f_{(X^{*})} + \Sigma^{*} - \hat{f}_{(X^{*})} \right]^{2} \\ & = E \left[ f_{(X^{*})} - \hat{f}_{(X^{*})} \right]^{2} + E \left[ S^{*2} \right] + E \left[ 2S^{*} \left( f_{(X^{*})} - \hat{f}_{(X^{*})} \right) \right] \\ & = E_{D} \left[ f_{(X^{*})} - \hat{f}_{(X^{*})} \right]^{2} + Var \left( S^{*} \right) \\ & = \left[ E \left( f_{(X^{*})} - \hat{f}_{(X^{*})} \right) \right]^{2} + Var \left( f_{(X^{*})} - \hat{f}_{(X^{*})} \right) + Var \left( S^{*} \right) \\ & = \left[ E \left( f_{(X^{*})} - \hat{f}_{(X^{*})} \right) \right]^{2} + Var \left( f_{(X^{*})} - \hat{f}_{(X^{*})} \right) + Var \left( S^{*} \right) \\ & = \left[ E \left( f_{(X^{*})} - \hat{f}_{(X^{*})} \right) \right]^{2} + Var \left( f_{(X^{*})} - \hat{f}_{(X^{*})} \right) + Var \left( S^{*} \right) . \end{split}$$

#### **Bias Variance Trade off**

$$E_{D,\varepsilon_*}\left[\left(y_* - \hat{f}(x_*)\right)^2\right] = Var(\varepsilon_*) + \left\{E\left[\hat{f}(x_*) - f(x_*)\right]\right\}^2 + Var\left[\hat{f}(x_*)\right]$$

$$E_{X \in D_{test}}(squared\ loss) = E_X\left\{\left[E_D\left(f(X) - \hat{f}(X)\right)\right]^2 + Var_D\left[\hat{f}(X)\right] + Var_\varepsilon(\varepsilon)\right\}$$

Bias of  $\hat{f}$ 

Variance of of  $\hat{f}$  Irreducible error

# Illustrated Example

# **Example: Approximate a sine function**

True function  $f(x) = \sin(\pi x)$ ,  $f:[-1, 1] \rightarrow R$ 



You are given two hypotheses of the function to fit:

$$H_0: f(x) = c$$
  
 $H_1: f(x) = w_0 + w_1 x$ 

Which leads to better results?

#### Learning $H_0$ vs $H_0$

Data simulation with M=50

$$H_0: f(x) = c$$



$$H_1$$
:  $f(x) = w_0 + w_1 x$ 



# Learning $H_0$ vs $H_0$

$$H_0$$
:  $f(x) = c$ 



$$H_1$$
:  $f(x) = w_0 + w_1 x$ 



#### Bias



$$E_X(squared\ loss) = E_X\left\{ \left[ E_D(f(X) - \hat{f}(X)) \right]^2 + Var_D[\hat{f}(X)] + Var_{\varepsilon}(\varepsilon) \right\}$$

Bias of  $\hat{f}$ 

Variance of of  $\hat{f}$ 

Irreducible error

# What if you are only given two points?

$$H_0$$
:  $f(x) = c$ 

$$H_1$$
:  $f(x) = w_0 + w_1 x$ 



# What if you are only given two points?

$$H_0$$
:  $f(x) = c$ 



$$H_1$$
:  $f(x) = w_0 + w_1 x$ 



# Let us repeat the experiment



#### **Variance**



$$E_X(squared\ loss) = E_X \left\{ \left[ E_D \left( f(X) - \hat{f}(X) \right) \right]^2 + Var_D \left[ \hat{f}(X) \right] + Var_{\varepsilon}(\varepsilon) \right\}$$

Bias of  $\hat{f}$ 

Variance of of  $\hat{f}$ 

Irreducible error

#### The winner is?



Bias = 0.50Variance = 0.25

#### **Lesson learned**

Math the model complexity to

Data resources not the response complexity

# Debugging variance bias

#### **Bias – Variance Trade-off**



As we increase model complexity, bias decrease and the variance increase

#### **Bias – Variance Trade-off**



As we increase model complexity, bias decrease and the variance increase

Regime 1: high bias Low but consistent performance Trian MSE ≈ Test MSE

Regime 2: good trade-off Acceptable MSE Consistent MSE

Regime 2: high variance MSE all over the place Trian MSE << Test MSE

#### **Model complexity**

The representational capacity of a set of functions is an indicator of the representational richness within this set of functions.

• It's usually quite easy to compare different models of the same "type". For instance, consider the following two hypothesis sets of functions:

$$\mathcal{F}_1 = \{ w \to w \cdot x | ||w||_2 \le W \}$$
  
$$\mathcal{F}_2 = \{ w \to w \cdot x | ||w||_2 \le 2W \}$$

A function family with low capacity, is more likely to underfit. A function family with high capacity, is more likely to overfit.



# **Experiment with two samples**



# **Adding more data**



As we increase the sample size, the variance decreases!

# Theoretical results for linear regression

In linear regression

$$y = x^{T}\beta + \varepsilon$$
$$\hat{\beta} = (X^{T}X)^{-1}X^{T}$$

In-sample error:  $\sigma^2 \left(1 - \frac{p+1}{N}\right)$ 

Out-of-sample error:  $\sigma^2 \left(1 + \frac{p+1}{N}\right)$ 





p=1 (with one predictor and the intercept)

#### Test on a hold-out set





|                   | Underfit | Good fit | Overfit |
|-------------------|----------|----------|---------|
| Training MSE      | Bad      | Good     | Perfect |
| Validation<br>MSE | Bad      | Good     | Bad     |



# **Solution for high variance**

- Add more training data
- Reduce model complexity
- Bagging

# Solution for high bias

- Use a more complex model
- Add extra features
- Boosting

# **Functional View**

#### **Bias-Variance Trade-off**



- Black curve is truth. Grey curve on right is training MSE, red curve is testing MSE.
- Orange, blue and green curves/squares correspond to fits different flexibility

#### **Bias-Variance Trade-off**



Which is more complex?
Which includes most bias/variance?