

Spatial vs. Transform Domain Processing

Spatial Domain Input Image Output Image Processing Inverse **Transform Processing** Transform

Transform Domain

Simple periodic signals

- $x(t) = A\cos(t)$
- $x(t) = A\cos(2t)$
- $x(t) = A\cos(t/2)$

•
$$x(t) = A\cos(\omega t) = A\cos(2\pi f t) = A\cos(\frac{2\pi}{T}t)$$

Angular frequency

Signal and Frequency Domains

Periodic Images

$I(x, y) = 128 \sin(2\pi x/16)$

Sinusoid patternrepeats every 16 pixels f = 1/16 cycles/pixel

Periodic Images

Spatial period = Minimal # of pixels between two identical patterns in a "periodic" image

Sinusoid pattern repeats every 16 pixels f = 1/16 cycles/pixel

Spatial domain

Frequency domain

Sinusoid pattern repeats every 4 pixels f = 1/4 cycles/pixel

Spatial domain

Frequency domain

Sinusoid patternrepeats every 16 pixels f = 1/16 cycles/pixel

Spatial domain

Frequency domain

Sinusoid pattern repeats every 16 pixels f = 1/16 cycles/pixel

Spatial domain

Frequency domain

Intensity images for $s(x,y) = \sin[2\pi(u_0x + v_0y)]$

Many natural phenomena (signals) are periodic but not necessarily sinusoidal

https://commons.wikimedia.org/wiki/File:Cardiac-Cycle-Animated.gif

Fourier Series

Approximate **periodic signals** with sines and cosines

Fourier Series

Fourier Series

Image Courtesy: https://mathworld.wolfram.com/FourierSeries.html

http://ceng.gazi.edu.tr/dsp/fourier_series/description.aspx

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Complex sinusoid

$$e^{j2\pi f_0 t} = \cos(2\pi f_0 t) + j\sin(2\pi f_0 t)$$

$$\cos(\omega t) = \frac{e^{j\omega t} + e^{-j\omega t}}{2}$$

$$\sin(\omega t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2j}$$

Fourier Series in terms of complex coefficients

$$f(t) = a_0 + \sum_{m=1}^{\infty} a_m \cos\left(\frac{2\pi mt}{T}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nt}{T}\right)$$
$$= \sum_{m=0}^{\infty} a_m \cos\left(\frac{2\pi mt}{T}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nt}{T}\right)$$

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{i\frac{2\pi nt}{T}}$$

$$a_0 = \frac{1}{T} \int_0^T f(t) dt$$

$$a_m = \frac{2}{T} \int_0^T f(t) \cos\left(\frac{2\pi mt}{T}\right) dt$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

$$c_n = \frac{1}{T} \int_0^T f(t) e^{-i\frac{2\pi nt}{T}} dt$$

What if f(t) is non-periodic?

Fourier Transform

Approximate non-periodic signals with complex sinusoids

Definition: Fourier Transform

• the Fourier Transform of a function f(t) is defined by:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

The result is a function of ω (frequency).

Fourier Transform and Inverse Fourier Transform

Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt \qquad F(\omega) = \mathcal{F}[f(t)]$$

Inverse Fourier Transform

$$f(t) = \int_{\omega = -\infty}^{\omega = \infty} \frac{1}{2\pi} F(\omega) e^{i\omega t} d\omega \qquad f(t) = \mathcal{F}^{-1} [F(\omega)]$$

Fourier Transform vs Series

Fourier Transform

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

Fourier Series (periodic only)

Unit Impulse Function

$$\delta(t) = 0$$
, for $t \neq 0$.

$$\delta\left(0\right) = +\infty$$

$$\int_{-\infty}^{\infty} \delta(t)dt = 1$$

Discrete Impulse Function

Scaled Impulse Function

Image courtesy: https://lpsa.swarthmore.edu/BackGround/ImpulseFunc/ImpFunc.html

Unit Impulse Function – Some properties

$$\delta\left(t\right)=0,\ for\ t\neq0.$$

$$\delta(0) = +\infty$$

$$\int_{-\infty}^{\infty} \delta(t) dt =$$
Note: height= ∞ , value shown is area.

$$\int_{a}^{b} \delta(t)dt = \begin{cases} 1, & a < 0 < b \\ 0, & otherwise \end{cases}$$

Integral property

$$\int_{a}^{b} \delta(t) \cdot f(t) dt = \int_{a}^{b} \delta(t) \cdot f(0) dt$$

$$= f(0) \cdot \int_{a}^{b} \delta(t) dt$$

$$= \begin{cases} f(0), & a < 0 < b \\ 0, & \text{otherwise} \end{cases}$$

Sifting property

Shifted Unit Impulse Function – Some

$\delta(t-\lambda) = +\infty at t = \lambda$ properties

$$\int\limits_{a}^{b} \delta(t-\lambda) dt = \left\{egin{array}{ll} 1, & a < \lambda < b \ 0, & otherwise \end{array}
ight.$$

Integral property

$$\int\limits_{a}^{b} \delta(t-\lambda) \cdot f(t) dt = \left\{egin{array}{ll} f(\lambda), & a < \lambda < b \ 0, & otherwise \end{array}
ight.$$

Sifting property

FT of impulse function

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

FT of time-shifted impulse

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$
$$= e^{-i\omega T}$$

$$\int_{a}^{b} \delta(t - T) x(t) dt = x(T), \quad a < T < b$$

$$= 0 \text{ otherwise}$$

Duality property of FT

$$\mathcal{F}[f(t)] = F(\omega)$$

$$\Longrightarrow \mathcal{F}[F(t)] = 2\pi f(-\omega)$$

$$f(t) = \frac{1}{2\pi} \int_{\omega = -\infty}^{\omega = \infty} F(\omega) e^{i\omega t} d\omega$$

Duality property of FT

$$\mathcal{F}[f(t)] = F(\omega)$$

$$\Rightarrow \mathcal{F}[F(t)] = 2\pi f(-\omega)$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

$$f(t) = \frac{1}{2\pi} \int_{\omega = -\infty}^{\omega = \infty} F(\omega) e^{i\omega t} d\omega$$

FT of complex exponential

$$e^{i\omega_0 t} \stackrel{\mathcal{F}}{\leftrightarrow} 2\pi\delta(\omega - \omega_0)$$

Symmetry Property of FT

Input Domain

Frequency Domain

Real, even Real, even

Real, odd Imaginary, odd

Real, no symmetry Hermitian

Imaginary, even Imaginary, even

Imaginary, odd Real, odd

Imaginary, no symmetry Anti-Hermitian

Hermitian Real, no symmetry

Anti-Hermitian Imaginary, no symmetry

Complex, even Complex, even

Complex, odd Complex, odd

Complex, no symmetry Complex, no symmetry

- The integral of product of an odd and even function over a symmetric interval is zero
- Product of functions (NOT NUMBERS):
 - Even x Even : Even
 - Odd x Even : Odd
 - Odd x Odd : Even

Even Functions

Theorem 5.3 The Fourier transform of a real even function is real.

$$F(s) = \int_{-\infty}^{\infty} f(t)e^{-j2\pi st}dt$$

$$= \int_{-\infty}^{\infty} f(t) \left[\cos(2\pi st) - j\sin(2\pi st)\right]dt$$

$$= \int_{-\infty}^{\infty} f(t) \cos(2\pi st)dt$$

which is real.

FT of cosine

$$e^{j\omega_0 t} \Leftrightarrow 2\pi \,\delta(\omega - \omega_0)$$

 $e^{-j\omega_0 t} \Leftrightarrow 2\pi \,\delta(\omega + \omega_0)$

$$\cos \omega_0 t = \frac{1}{2} (e^{-j\omega_0 t} + e^{j\omega_0 t})$$

$$\mathcal{F}\big(x_1(t)\big) + \mathcal{F}\big(x_2(t)\big) = \mathcal{F}\big(x_1(t) + x_2(t)\big)$$

$$\mathcal{F}(cos\omega_0 t) = \frac{1}{2} \left[\mathcal{F}(e^{-j\omega_0 t}) + \mathcal{F}(e^{j\omega_0 t}) \right]$$
$$= \pi \delta(\omega + \omega_0) + \pi \delta(\omega - \omega_0)$$

FT of impulse train(G&W, 4.2.4)

FT of impulse train

7/4/2016

Sampling = f(t) x Impulse Train

Sampling = f(t) x Impulse Train

FT of sampled function

$$\tilde{F}(\mu) = \sum_{n=0}^{n=(M-1)} f_n e^{-j2\pi\mu n\Delta T}$$

FT of sampled function (G&W 4.2.4)

$$\tilde{f}(t) = \sum_{n=-\infty}^{\infty} f_n \, \delta(t - n\Delta T)$$

$$\tilde{F}(\mu) = \frac{1}{\Delta T} \sum_{n=-\infty}^{n=\infty} F\left(\mu - \frac{n}{\Delta T}\right)$$

Periodic (copies of f(t)'s FT)

FT of sampled function

Digital processing of frequencies

- Need discrete frequency samples, but FT of sampled function is continuous
- OBSERVATION: Characterizing one period $(\frac{1}{\Lambda T})$ is enough
- How do we get frequency 'samples' ?

FT of sampled function (G&W 4.4.1)

$$\tilde{F}(\mu) = \sum_{n=0}^{n=(M-1)} f_n e^{-j2\pi\mu n\Delta T}, \mu \in R$$

$$m = 0, \mu = 0$$

$$\mu = \frac{m}{(M-1)\Delta T} \quad m = (M-1), \mu = \frac{1}{\Delta T}$$

Discrete Fourier Transform

(Some) Properties of FT

FT Theorems and Properties

Property/Theorem	Time Domain		Frequency Domain
Notation:	g(t)	\rightleftharpoons	G(f)
	$g_1(t)$	\rightleftharpoons	$G_1(f)$
	$g_2(t)$	\rightleftharpoons	$G_2(f)$
Linearity:	$c_1g_1(t)+c_2g_2(t)\\$	\rightleftharpoons	$c_1 G_1(f) + c_2 G_2(f)$
Dilation:	g(at)	\rightleftharpoons	$\frac{1}{ a }G\left(\frac{f}{a}\right)$
Conjugation:	$g^*(t)$	\rightleftharpoons	$G^*(-f)$
Duality:	G(t)	\rightleftharpoons	g(-f)
Time Shifting:	$g(t-t_0)$	$\overline{}$	$G(f)e^{-j2\pi ft_0}$
Frequency Shifting:	$e^{j2\pi f_c t}g(t)$	\rightleftharpoons	$G(f-f_c)$
Area Under $G(f)$:	g(0)	=	$\int_{-\infty}^{\infty} G(f)df$
Area Under $g(t)$:	$\int_{-\infty}^{\infty} g(t)dt \ rac{d}{dt}g(t)$	=	G(0)
Time Differentiation:	$\frac{d}{dt}g(t)$	\rightleftharpoons	$j2\pi fG(f)$
Time Integration :	$\int_{-\infty}^{t} g(au) d au$	\rightleftharpoons	$\frac{1}{j2\pi f}G(f)$
Modulation Theorem:	$g_1(t)g_2(t)$	\rightleftharpoons	$\int_{-\infty}^{\infty} G_1(\lambda)G_2(f-\lambda)d\lambda$
Convolution Theorem:	$\int_{-\infty}^{\infty} g_1(\tau)g_2(t-\tau)d\tau \ \int_{-\infty}^{\infty} g_1(t)g_2^*(t-\tau)dt$	\rightleftharpoons	$G_1(f)G_2(f)$
Correlation Theorem:	$\int_{-\infty}^{\infty}g_1(t)g_2^*(t- au)dt$	\rightleftharpoons	$G_1(f)G_2^*(f)$
Rayleigh's Energy Theorem:	$\int_{-\infty}^{\infty} g(t) ^2 dt$	=	$\int_{\infty}^{\infty} G(f) ^2 df$

References & Fun Reading/Viewing

- GW DIP textbook, 3rd Ed.
 - 4.1 to 4.2
 - 4.2.4, 4.2.5, 4.3.1, 4.3.2, 4.4.1
- https://betterexplained.com/articles/intuitive-understanding-of-sine-waves/
- A visual introduction to Fourier Transform: https://www.youtube.com/watch?v=spUNpyF58BY
- Fourier Transform, Fourier Series and Frequency Spectrum: <u>https://www.youtube.com/watch?v=r18Gi8lSkfM</u>
- Fourier Transform (CFT, DFT): https://blog.endaq.com/fourier-transform-basics
- LoG and DoG: https://medium.com/jun-devpblog/cv-3-gradient-and-laplacian-filter-difference-of-gaussians-dog-7c22e4a9d6cc
- FOURIER TRANSFORM PROPERTIES: https://ethz.ch/content/dam/ethz/special-interest/baug/ibk/structural-mechanics-dam/education/identmeth/fourier.pdf