8-Bit Serial or Parallel-Input/Serial-Output Shift Register with 3-State Output

High-Performance Silicon-Gate CMOS

The MC74HC589A device consists of an 8-bit storage latch which feeds parallel data to an 8-bit shift register. Data can also be loaded serially (see the Function Table). The shift register output, $Q_{\rm H}$, is a 3-state output, allowing this device to be used in bus-oriented systems.

The HC589A directly interfaces with the SPI serial data port on CMOS MPUs and MCUs.

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 526 FETs or 131.5 Equivalent Gates
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

PDIP-16 N SUFFIX CASE 648

SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

SOEIAJ-16 F SUFFIX CASE 966

A = Assembly Location

WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G = Pb-Free Package
Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Figure 1. Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC589ANG	PDIP-16 (Pb-Free)	25 Units / Rail
MC74HC589ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC589ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74HC589ADTR2G	TSSOP-16*	2500 Tape & Reel
MC74HC589AFELG	SOEIAJ-16 (Pb-Free)	2000 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}This package is inherently Pb-Free.

MAXIMUM RATINGS

Symbol	P	arameter	Value	Unit
V _{CC}	DC Supply Voltage	(Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage	(Referenced to GND)	$-0.5 \le V_{CC} + 0.5$	V
V _{out}	DC Output Voltage	(Referenced to GND)	$-0.5 \le V_{CC} + 0.5$	V
I _{in}	DC Input Current, per Pin		±20	mA
I _{out}	DC Output Current, per Pin		±35	mA
I _{CC}	DC Supply Current, V_{CC} and GND Pin	s	± 75	mA
I _{GND}	DC Ground Current per Ground Pin		± 75	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for	or 10 Seconds	260	°C
TJ	Junction Temperature Under Bias		+ 150	°C
$\theta_{\sf JA}$	Thermal Resistance	PDIP SOIC TSSOP	78 112 148	°C/W
P _D	Power Dissipation in Still Air at 85°C	PDIP SOIC TSSOP	750 500 450	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	> 4000 > 200 > 1000	V
I _{Latchup}	Latchup Performance	Above V _{CC} and Below GND at 85°C (Note 4)	±300	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Tested to EIA/JESD22-A114-A.

- 2. Tested to EIA/JESD22-A115-A.
- 3. Tested to JESD22-C101-A.
- 4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	DC Supply Voltage	(Referenced to GND)	2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage	(Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types		- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time (Figure 3)	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 3.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	0 0 0	1000 800 500 400	ns

5. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND, Note NO TAG)

			V _{CC}	Guaran	teed Limi	t	
Symbol	Parameter	Test Conditions	V	-55°C to 25°C	≤ 85°C	≤125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
V _{IL}	Maximum Low-Level Input Voltage	V_{out} = 0.1 V or V_{CC} - 0.1 V $ I_{out} \le 20 \mu A$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}}$ $ I_{\text{out}} \leq 2.4 \text{ mA}$ $ I_{\text{out}} \leq 6.0 \text{ mA}$ $ I_{\text{out}} \leq 7.8 \text{ mA}$	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IH}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$\begin{array}{c c} V_{in} = V_{IH} \text{ or } V_{IL} & \qquad & I_{out} \leq 2.4 \text{ mA} \\ I_{out} \leq 6.0 \text{ mA} \\ I_{out} \leq 7.8 \text{ mA} \end{array}$	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
I _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
I _{OZ}	Maximum Three-State Leakage Current	Output in High-Impedance State $V_{in} = V_{IL}$ or V_{IH} $V_{out} = V_{CC}$ or GND	6.0	±0.5	±5.0	±10	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} &V_{in} = V_{CC} \text{ or GND} \\ &I_{out} = 0 \mu\text{A} \end{aligned}$	6.0	4	40	160	μΑ

$\textbf{AC ELECTRICAL CHARACTERISTICS} \ (C_L = 50 \ \text{pF, Input} \ t_f = t_f = 6 \ \text{ns, Notes NO TAG and NO TAG)}$

		V _{CC}	Guaran	teed Limi	t	
Symbol	Parameter	V	-55°C to 25°C	≤ 85°C	≤125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 4 and10)	2.0 3.0 4.5 6.0	6.0 15 30 35	4.8 10 24 28	4.0 8.0 20 24	MHz
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Latch Clock to Q _H (Figures 3 and 10)	2.0 3.0 4.5 6.0	175 100 40 30	225 110 50 40	275 125 60 50	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Shift Clock to Q _H (Figures 4 and 10)	2.0 3.0 4.5 6.0	160 90 30 25	200 130 40 30	240 160 48 40	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Serial Shift/Parallel Load to Q _H (Figures 6 and 10)	2.0 3.0 4.5 6.0	160 90 30 25	200 130 40 30	240 160 48 40	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Q _H (Figures 5 and 11)	2.0 3.0 4.5 6.0	150 80 27 23	170 100 30 25	200 130 40 30	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Q _H (Figures 5 and 11)	2.0 3.0 4.5 6.0	150 80 27 23	170 100 30 25	200 130 40 30	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 3 and 10)	2.0 3.0 4.5 6.0	60 23 12 10	75 27 15 13	90 31 18 15	ns
C _{in}	Maximum Input Capacitance	-	10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance (Output in High-Impedance State)	-	15	15	15	pF

		Typical @ 25°C, V _{CC} = 5.0 V		ĺ
C_{PD}	Power Dissipation Capacitance (per Package)*	50	pF	ĺ

^{*}Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

TIMING REQUIREMENTS (Input $t_r = t_f = 6$ ns, Note NO TAG)

		V _{CC}	Guaranteed Limit			
Symbol	Parameter	V	-55°C to 25°C	≤ 85°C	≤125°C	Unit
t _{su}	Minimum Setup Time, A-H to Latch Clock (Figure 7)	2.0 3.0 4.5 6.0	100 40 20 17	125 50 25 21	150 60 30 26	ns
t _{su}	Minimum Setup Time, Serial Data Input S _A to Shift Clock (Figure 8)	2.0 3.0 4.5 6.0	100 40 20 17	125 50 25 21	150 60 30 26	ns
t _{su}	Minimum Setup Time, Serial Shift/Parallel Load to Shift Clock (Figure 9)	2.0 3.0 4.5 6.0	100 40 20 17	125 50 25 21	150 60 30 26	ns
t _h	Minimum Hold Time, Latch Clock to A–H (Figure 7)	2.0 3.0 4.5 6.0	25 10 5 5	30 12 6 6	40 15 8 7	ns
t _h	Minimum Hold Time, Shift Clock to Serial Data Input S _A (Figure 8)	2.0 3.0 4.5 6.0	5 5 5 5	5 5 5 5	5 5 5 5	ns
t _w	Minimum Pulse Width, Shift Clock (Figure 4)	2.0 3.0 4.5 6.0	75 40 15 13	95 50 19 16	110 60 23 19	ns
t _w	Minimum Pulse Width, Latch Clock (Figure 3)	2.0 3.0 4.5 6.0	80 40 16 14	100 50 20 17	120 60 24 20	ns
t _w	Minimum Pulse Width, Serial Shift/Parallel Load (Figure 6)	2.0 3.0 4.5 6.0	80 40 16 14	100 50 20 17	120 60 24 20	ns
t _r , t _f	Maximum Input Rise and Fall Times (Figure 3)	2.0 3.0 4.5 6.0	1000 800 500 400	1000 800 500 400	1000 800 500 400	ns

FUNCTION TABLE

			Input	S			F	Resulting Funct	ion
Operation	Output Enable	Serial Shift/ Parallel Load	Latch Clock	Shift Clock	Serial Input S _A	Parallel Inputs A-H	Data Latch Contents	Shift Register Contents	Output Q _H
Force Output into High Impedance State	Н	Х	Х	Х	Х	Х	Х	Х	Z
Load Parallel Data into Data Latch	L	Н		L, H, ∕	Х	a-h	a-h	U	U
Transfer Latch Contents to Shift Register	L	L	L, H, ∕	Х	Х	Х	U	$LR_N \!\to \! SR_N$	LR _H
Contents of Input Latch and Shift Register are Unchanged	L	Н	L, H, <i>`</i>	L, H, ∕	Х	Х	U	U	U
Load Parallel Data into Data Latch and Shift Register	L	L		Х	Х	a-h	a-h	a-h	h
Shift Serial Data into Shift Register	L	Н	Х		D	Х	*	$SR_A = D,$ $SR_N \rightarrow SR_{N+1}$	$SR_G \to SR_H$
Load Parallel Data in Data Latch and Shift Serial Data into Shift Register	L	Н			D	a-h	a-h	$SR_A = D, \\ SR_N \rightarrow SR_{N+1}$	$SR_G \to SR_H$

LR = latch register contents

SR = shift register contents

a-h = data at parallel data inputs A-H D = data (L, H) at serial data input S_A

U = remains unchanged

X = don't careZ = high impedance

* = depends on Latch Clock input

Switching Waveforms

Figure 3. (Serial Shift/Parallel Load = L)

Figure 4. (Serial Shift/Parallel Load = H)

Figure 5.

Figure 6.

Switching Waveforms

Figure 7.

Figure 8.

Figure 9.

 $\begin{array}{c|c} & \text{TEST POINT} \\ \hline \\ \text{DEVICE} \\ \text{UNDER} \\ \text{TEST} \end{array} \begin{array}{c} \text{OUTPUT} & \text{1 k}\Omega \\ \text{1 k}\Omega \\ \text{C_L^*} \end{array} \begin{array}{c} \text{CONNECT TO V_{CC} WHEN TESTING t_{PLZ} AND t_{PZH}.} \\ \text{CONNECT TO GND WHEN TESTING t_{PHZ} AND t_{PZH}.} \end{array}$

*Includes all probe and jig capacitance.

Figure 10. Test Circuit

Figure 11. Test Circuit

Pin Descriptions

Data Inputs

A, B, C, D, E, F, G, H (Pins 15, 1, 2, 3, 4, 5, 6, 7)

Parallel data inputs. Data on these inputs are stored in the data latch on the rising edge of the Latch Clock input.

S_A (Pin 14)

Serial data input. Data on this input is shifted into the shift register on the rising edge of the Shift Clock input if Serial Shift/Parallel Load is high. Data on this input is ignored when Serial Shift/Parallel Load is low.

Control Inputs

Serial Shift/Parallel Load (Pin 13)

Shift register mode control. When a high level is applied to this pin, the shift register is allowed to serially shift data. When a low level is applied to this pin, the shift register accepts parallel data from the data latch.

Shift Clock (Pin 11)

Serial shift clock. A low-to-high transition on this input shifts data on the serial data input into the shift register and

data in stage H is shifted out Q_H, being replaced by the data previously stored in stage G.

Latch Clock (Pin 12)

Data latch clock. A low-to-high transition on this input loads the parallel data on inputs A-H into the data latch.

Output Enable (Pin 10)

Active—low output enable A high level applied to this pin forces the Q_H output into the high impedance state. A low level enables the output. This control does not affect the state of the input latch or the shift register.

Output

Q_H (Pin 9)

Serial data output. This pin is the output from the last stage of the shift register. This is a 3–state output.

Figure 12. Timing Diagram

*Stages C thru G (not shown in detail) are identical to stages A and B above.

Figure 13. Logic Detail

PACKAGE DIMENSIONS

PDIP-16 CASE 648-08 **ISSUE T**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54	BSC
Н	0.050	BSC	1.27	BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
М	0°	10 °	0 °	10 °
S	0.020	0.040	0.51	1.01

PACKAGE DIMENSIONS

SOIC-16 CASE 751B-05 ISSUE K

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.010

SOLDERING FOOTPRINT

PACKAGE DIMENSIONS

TSSOP-16 CASE 948F-01 **ISSUE B**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.
 - 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS.
 - FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
 - (0.003) TOTAL IN EXCESS OF THE K
 DIMENSION AT MAXIMUM MATERIAL
 CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR

 - REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.

	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026	BSC	
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
Κ	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007 0.010		
Ĺ	6.40	6.40 BSC 0.252 BSC			
М	0°	8°	0°	8°	

DIMENSIONS: MILLIMETERS

1.26

PACKAGE DIMENSIONS

SOEIAJ-16 CASE 966-01 **ISSUE A**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI DIMENSIONING AND TOLERANCING PER Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- B. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

 THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		S INCHES	
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
Ε	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050	BSC
ΗE	7.40	8.20	0.291	0.323
٦	0.50	0.85	0.020	0.033
π	1.10	1.50	0.043	0.059
M	0 °	10 °	0 °	10 °
Q_1	0.70	0.90	0.028 0.035	
Z		0.78		0.031

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) and the series are injected to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative