DE 29 2000 SE 2000 S

219482.SEQUENCE .ST25 SEQUENCE LISTING

۰.	TRADEME		SEQUENCE	LISTING			
_	<tt0></tt0>	Nelson, Edward Nelson, Peter J.					
	<120>	A VECTOR FOR PO	DLYNUCLEOTIC	E VACCINES			
	<130>	219482					
	<140> <141>	09/242,202 1999-11-01					
	<150> <151>	PCT/US97/14306 1997-08-14					
	<150> <151>	60/023,931 1996-08-14					
	<160>	31					
	<170>	PatentIn version	on 3.1				
	<210> <211> <212> <213>	1 453 DNA Artificial					
	<220> <223>	Synthetic	•				
	<400> ggccgcg	1 gttg ctggcgtttt	tccataggct	ccgccccct	gacgagcatc	acaaaaatcg	60
	acgctca	aagt cagaggtggc	gaaacccgac	aggactataa	agataccagg	cgtttccccc	120
	tggaag	ctcc ctcgtgcgct	ctcctgttcc	gaccctgccg	cttaccggat	acctctccgc	180
	ctttct	ccct tcgggaagcg	tggcgctttc	tcaatgctca	cgctgtaggt	atctcagttc	240
	ggtgtag	ggtc gttcgctcca	agctgggctg	tgtgcacgaa	cccccgttc	agcccgaccg	300
	ctgcgc	ctta tccggtaact	atcgtcttga	gtccaacccg	gtaagacacg	acttatcgcc	360
	actggc	agca gccactggta	acaggattag	cagagcgagg	tatgtaggcg	gtgctacaga	420
	gttctt	gaag tggtggccta	actacggcta	cac			453
	<210> <211> <212> <213>	2 453 DNA Artificial					
	<220> <223>	Synthetic					
	<400> gtgtage	2 ccgt agttaggcca	ccacttcaag	aactctgtag	caccgcctac	atacctcgct	60
	ctgctaa	atcc tgttaccagt	ggctgctgcc	agtggcgata	agtcgtgtct	taccgggttg	120
	gactca	agac gatagttacc	ggataaggcg	cagcggtcgg	gctgaacggg	gggttcgtgc	180

Page 1

. 219482.SEQUENC	E .ST25
acacagccca gcttggagcg aacgacctac accgaactga ga	atacctaca ccgtgagcat 240
tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca gg	gtatccggt aagcggcagg 300
gtcggaacag gagagcgcac gagggagctt ccagggggaa ac	cgcctggta tctttatagt 360
cctgtcgggt ttcgccacct ctgacttgag cgtcgatttt tg	gtgatgctc gtcagggggg 420
cggagcctat ggaaaaacgc cagcaacgcg gcc	453
<210> 3 <211> 209 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 3 gaattctttc ggacttttga aagtgatggt ggtggccgaa gg	gattogaac ottogaagto 60
gatgacggca gatttagagt ctgctccctt tggccgctcg gg	3 3
gcttttactg gcctgctccc ttatcgggaa gcggggcgca to	
ctgtaaagtg ttacgttgag aaagaattc	209
<210> 4 <211> 209 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 4 gaattette teaaegtaae aetttaeage ggegegteat ti	tgatatgat gcgccccgct 60
tcccgataag ggagcaggcc agtaaaagca ttacccgtgg tg	ggggttccc gagcggccaa 120
agggagcaga ctctaaatct gccgtcatcg acttcgaagg t	tcgaatcct tcccccacca 180
ccatcacttt caaaagtccg aaagaattc	209
<210> 5 <211> 6 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 5 aataaa	6
<210> 6 <211> 6 <212> DNA <213> Artificial	

<220> <223>	Synthetic	
<400> attaaa	6	6
<210> <211> <212> <213>	7 6 DNA Artificial	
<220> <223>	Synthetic	
<400> agtaaa	7	6
<210> <211> <212> <213>	8 6 DNA Artificial	
<220> <223>	Synthetic	
<400> aagaac	8	6
<210> <211> <212> <213>	9 6 DNA Artificial	
<220> <223>	Synthetic	
<400> aataca	9	6
<210> <211> <212> <213>	10 227 DNA Artificial	
<220> <223>	Synthetic	
<400> gcctta	10 aggg ccatatggtg agtggatccc ttgaccccag gcggggatgg ggagacctgt	60
agtcag	agcc cccgggcagc acaggccaat gcccgtcctt cccctgcagg atgagtagtg	120
agtgcc	tctc ctggccctgg aagttgccac tccagtgccc accagccttg tcctaataaa	180
attaag	ttgc atcattttgt ctgactaggt gtcctctata atattat	227
~210 >	11	

<211> <212> <213>	227 DNA Artificial		·			
<220> <223>	Synthetic					
<400> ataatat	11 ttat agaggacacc	tagtcagaac	aaatgatgca	acttaatttt	attaggacaa	60
ggctggt	tggg cactggagtg	gcaacttcca	gggccaggag	aggcactcac	tactcatcct	120
gcagggg	gaag gacgggcatt	ggcctgtgct	gcccgggggc	tctgactaca	ggtctcccc	180
atccccg	gcct ggggtcaagg	catccactca	ccatatggcc	cttaagg		227
<210> <211> <212> <213>	12 252 DNA Artificial			·		
<220> <223>	Synthetic					
<400> cctcggt	12 tacc tgccatggcg	cggattcttt	atcactgata	agttggtgga	catattatgt	60
ttatcag	gtga taaagtgtca	agcatgacaa	agttgcagcc	gaatacagtg	atccgtgccg	120
gccctg	gact gttgaacgag	gtcggcgtag	acggtctgac	gacacgcaaa	ctggcggaac	180
ggttggg	gggt gcagcagccg	gcgctttact	ggcacttcag	gaacaagcgg	gcgccttaag	240
ggccata	atgc cg					252
<210> <211> <212> <213>	13 35 DNA Artificial					
<220> <223>	Synthetic					
<400> cctcgg	13 tacc tgccaccatg	gcgcggattc	tttat			35
<210> <211> <212> <213>	14 38 DNA Artificial					
<220> <223>	Synthetic					
<400> cggcata	14 atgg ccttaaggcg	cccgcttgtt	cctgaagt			38
<210>	15 228					

219482.SEQUENCE .ST25	
<212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 15 gccttaaggg ccatatggtg agtggatgcc ttgaccccag gcggggatgg gggagacctg	60
tagtcagagc ccccgggcag cacaggccaa tgcccgtcct tcccctgcag gatgagtagt	120
gagtgcctct cctggccctg gaagttgcca ctccagtgcc caccagcctt gtcctaataa	180
aattaagttg catcattttg tctgactagg tgtcctctat aatattat	228
autiaugity cutoutting tolgatings typestine memories	
<210> 16 <211> 1425 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 16 tgccatggcg cggattcttt atcactgata agttggtgga catattatgt ttatcagtga	60
taaagtgtca agcatgacaa agttgcagcc gaatacagtg atccgtgccg gccctggact	120
gttgaacgag gtcggcgtag acggtctgac gacacgcaaa ctggcggaac ggttgggggt	180
gcagcagccg gcgctttact ggcacttcag gaacaagcgg gcgccttaag ggccatatgg	240
tgagtggatg ccttgacccc aggcggggat gggggagacc tgtagtcaga gcccccgggc	300
agcacaggcc aatgcccgtc cttcccctgc agtgagtagt gactgcccgg gtgggatccc	360
tgtgacccct ccccagtgcc tctcctggcc ctggaagttg ccactccagt gcccaccagc	420
cttgtcctaa taaaattaag ttgcatcatt ttgtctgact aggtgtcctc tataatatta	480
taagcttgat atcgaattct ttctcaacgt aacactttac agcggcgcgt catttgatat	540
gatgcgcccc gcttcccgat aagggagcag gccagtaaaa gcattacccg tggtggggtt	600
cccgagcggc caaagggagc agactctaaa tctgccgtca tcgacttcga aggttcgaat	660
ccttcccca ccaccatcac tttcaaaagt ccgaaagaat tcctgcagcc cgtgtagccg	720
tagttaggcc accacttcaa gaactctgta gcaccgccta catacctcgc tctgctaatc	780
ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc ttaccgggtt ggactcaaga	840
cgatagttac cggataaggc gcagcggtcg ggctgaacgg ggggttcgtg cacacagccc	900
agcttggagc gaacgaccta caccgaactg agatacctac agcgtgagca ttgagaaagc	960
gccacgcttc ccgaagggag aaaggcggac aggtatccgg taagcggcag ggtcggaaca	1020
ggagagcgca cgagggagct tccaggggga aacgcctggt atctttatag tcctgtcggg	1080
tttcgccacc tctgacttga gcgtcgattt ttgtgatgct cgtcaggggg gcggagccta	1140

	2194	82.SEQUENCE	E .ST25		
tggaaaaacg ccagcaa	cgc ggccggggga tc	cggagagc tca	actctaga	tgagagagca	1200
gtgagggaga gacagag	act cgaatttccg ga	gctatttc ag	ttttcttt	tccgttttgt	1260
gcaatttcac ttatgat	acc ggccaatgct tg	gttgctat tt	tggaaact	ccccttaggg	1320
gatgcccctc aactggc	cct ataaagggcc ag	cctgagct gc	agaggatt	cctgcagagg	1380
atcaagacag cacgtgg	acc tcgcacagcc tc	tcccacag gt	acc		1425
<210> 17 <211> 719 <212> DNA . <213> Artificial					
<220> <223> Synthetic					
<400> 17 atgagcaagg gcgagga	act gttcactggc gt	ggtcccaa tt	ctcgtgga	actggatggc	60
gatgtgaatg ggcacaa	att ttctgtcagc gg	agagggtg aa	ggtgatgc	cacatacgga	120
aagctcaccc tgaaatt	cat ctgcaccact gg	aaagctcc ct	gtgccatg	gccaacactg	180
gtcactacct tcaccta	tgg cgtgcagtgc tt	ttccagat ac	ccagacca	tatgaacgag	240
catgactttt tcaagag	cgc catgcccgag gg	ctatgtgc ag	gagagaac	catctttttc	300
aaagatgacg ggaacta	caa gacccgcgct ga	agtcaagt to	gaaggtga	caccctggtg	360
aatagaatcg agttgaa	ggg cattgacttt aa	ggaagatg ga	aacattct	cggccacaag	420
ctggaataca actataa	ctc ccacaatgtg ta	catcatgg cc	gacaagca	aaagaatggc	480
atcaaggtca acttcaa	gat cagacacaac at	tgaggatg ga	tccgtgca	gctggccgac	540
cattatcaac agaacac	tcc aatcggcgac cg	ccctgtgc tc	ctcccaga	caacaattac	600
ctgtccaccc agtctgc	cct gtctaaagat cc	caacgaaa ag	agagacca	catggtcctg	660
ctggagtttg tgaccgc	tgc tgggatcaca ca	tggcatgg ac	gagctgta	caagtgagc	719
<210> 18 <211> 1911 <212> DNA <213> Artificial					
<220> <223> Synthetic					
<400> 18 tatgagcaag ggcgagg	aac tgttcactgg cg	tggtccca at	tctcgtgg	aactggatgg	60
cgatgtgaat gggcaca	aat tttctgtcag cg	gagagggt ga	aggtgatg	ccacatacgg	120
aaagctcacc ctgaaat	tca tctgcaccac tg	gaaagctc cc	tgtgccat	ggccaacact	180
ggtcactacc ttcacct	atg gcgtgcagtg ct	tttccaga ta	cccagacc	atatgaagca	240
gcatgacttt ttcaaga	gcg ccatgcccga gg	gctatgtg ca Page 6	iggagagaa	ccatctttt	300

caaagatgac	gggaactaca	agacccgcgc	tgaagtcaag	ttcgaaggtg	acaccctggt	360
gaatagaatc	gagttgaagg	gcattgactt	taaggaagat	ggaaacattc	tcggccacaa	420
gctggaatac	aactataact	cccacaatgt	gtacatcatg	gccgacaagc	aaaagaatgg	480
catcaaggtc	aacttcaaga	tcagacacaa	cattgaggat	ggatccgtgc	agctggccga	540
ccattatcaa	cagaacactc	caatcggcga	cggccctgtg	ctcctcccag	acaaccatta	600
cctgtccacc	cagtctgccc	gtctaaagat	cccaacgaaa	agagagacca	catggtcctg	660
ctggagtttg	tgaccgctgc	tgggatcaca	catggcatgg	acgagctgta	caagtgagcc	720
atatggtgag	tggatgcctt	gaccccaggc	ggggatgggg	gagacctgta	gtcagagccc	780
ccgggcagca	caggccaatg	cccgtccttc	ccctgcagtg	agtagtgact	gcccgggtgg	840
gatccctgtg	acccctcccc	agtgcctctc	ctggccctgg	aagttgccac	tccagtgccc	900
accagccttg	tcctaataaa	attaagttgc	atcattttgt	ctgactaggt	gtcctctata	960
atattataag	cttgatatcg	aattctttct	caacgtaaca	ctttacagcg	gcgcgtcatt	1020
tgatatgatg	cgccccgctt	cccgataagg	gagcaggcca	gtaaaagcat	tacccgtggt	1080
ggggttcccg	agcggccaaa	gggagcagac	tctaaatctg	ccgtcatcga	cttcgaaggt	1140
tcgaatcctt	ccccaccac	catcactttc	aaaagtccga	aagaattcct	gcagcccgtg	1200
tagccgtagt	taggccacca	cttcaagaac	tctgtagcac	cgcctacata	cctcgctctg	1260
ctaatcctgt	taccagtggc	tgctgccagt	ggcgataagt	cgtgtcttac	cgggttggac	1320
tcaagacgat	agttaccgga	taaggcgcag	cggtcgggct	gaacgggggg	ttcgtgcaca	1380
cagcccagct	tggagcgaac	gacctacacc	gaactgagat	acctacagcg	tgagcattga	1440
gaaagcgcca	cgcttcccga	agggagaaag	gcggacaggt	atccggtaag	cggcagggtc	1500
ggaacaggag	agcgcacgag	ggagcttcca	gggggaaacg	cctggtatct	ttatagtcct	1560
gtcgggtttc	gccacctctg	acttgagcgt	cgatttttgt	gatgctcgtc	aggggggcgg	1620
agcctatgga	aaaacgccag	caacgcggcc	gggggatccg	gagagctcac	tctagatgag	1680
agagcagtga	gggagagaca	gagactcgaa	tttccggagc	tatttcagtt	ttcttttccg	1740
ttttgtgcaa	tttcacttat	gataccggcc	aatgcttggt	tgctattttg	gaaactcccc	1800
ttaggggatg	cccctcaact	ggccctataa	agggccagcc	tgagctgcag	aggattcctg	1860
cagaggatca	agacagcacg	tggacctcgc	acagcctctc	ccacaggtac	С	1911

<210> 19 <211> 69 <212> PRT <213> Artificial

<220> <223> .Synthetic

<400>

Pro Asp Leu Ser Tyr Met Pro Ile Trp Lys Phe Pro Asp Glu Glu Gly 10 15

Ala Cys Gln Pro Cys Pro Ile Asn Cys Thr His Ser Cys Val Asp Leu 20 25 30

Asp Asp Lys Gly Cys Pro Ala Glu Gln Arg Ala Ser Pro Leu Thr Ser 40 45

Ile Ile Ser Ala Val Val Gly Ile Leu Leu Val Val Val Leu Gly Val 50 60

Val Phe Gly Ile Leu

<210> 20

<211> <212> 287

PRT

Artificial <213>

<220>

Synthetic <223>

<400> 20

Pro Ala Pro Gly Ala Gly Gly Met Val His His Arg His Arg Ser Ser 10 15

Ser Thr Arg Ser Gly Gly Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser 20 25 30

Glu Glu Glu Ala Pro Arg Ser Pro Leu Ala Pro Ser Glu Gly Ala Gly 35 40 45

Ser Asp Val Phe Asp Gly Asp Leu Gly Met Gly Ala Ala Lys Gly Leu 50 60

Ser Leu Pro Thr His Asp Pro Ser Pro Leu Gln Arg Tyr Ser Glu Asp 65 . 70 75 80

Pro Thr Val Pro Leu Pro Ser Glu Thr Asp Gly Tyr Val Ala Pro Leu 85 90 95

Thr Cys Ser Pro Gln Pro Glu Tyr Val Asn Gln Pro Asp Val Arg Pro
100 105 110

Pro Pro Ser Pro Arg Glu Gly Pro Leu Pro Ala Ala Arg Pro Ala Gly 115 120 125 Page 8

Ala Thr Leu Glu Arg Pro Lys Thr Leu Ser Pro Gly Lys Asn Gly Val · 130 140 Val Lys Asp Val Phe Ala Phe Gly Gly Ala Val Glu Asn Pro Glu Tyr 145 150 155 160

Leu Thr Pro Gln Gly Thr Cys Ser Pro Gln Pro Glu Tyr Val Asn Gln 165 170 175

Pro Asp Val Arg Pro Gln Pro Pro Ser Pro Arg Glu Gly Pro Leu Pro 180 185 190

Ala Ala Arg Pro Ala Gly Ala Thr Leu Glu Arg Pro Lys Leu Ser Pro 195 200 205

Gly Lys Asn Gly Val Val Lys Asp Val Phe Ala Phe Gly Gly Ala Val 210 215 220

Glu Asn Pro Glu Tyr Leu Thr Pro Gln Gly Gly Ala Ala Pro Gln Pro 225 230 235 240

His Pro Pro Pro Ala Phe Ser Pro Ala Phe Asp Asn Leu Tyr Tyr Trp 245 250 255

Asp Asp Pro Pro Glu Arg Gly Ala Pro Pro Ser Thr Phe Lys Gly Thr 260 265 270

Pro Thr Ala Glu Asn Pro Glu Tyr Leu Gly Leu Asp Val Pro Val 275 280 285

Ile Ile Ser Ala Val Val Gly Ile Leu Leu Val Val Val Leu Gly Val 1 5 10 15

Val Phe Gly Ile Leu Ile 20

²¹ 22 <210>

<211> <212>

PRT Artificial

<220> Synthetic <223>

<400> 21

<210> <211> <212> 22 2125

<213> Artificial

<220>

<223> Synthetic

<400> gccaccatgg cccctgacct ctcctacatg cccatctgga agtttccaga tgaggagggc 60 120 gcatgccagc cttgccccat caactgcacc cactcctgtg tggacctgga tgacaagggc 180 tgcccgccg agcagagag cagcctctg acgtccatca tctctgcggt ggttggcatt ctgctggtcg tggtcttggg ggtggtcttt gggatcctca tcaagcgacg gcagcagaag 240 300 atcacatqtc cagaccctqc cccqggcgct gggggcatgg tccaccacag gcaccgcagc 360 tcatctacca ggagtggcgg tggggacctg acactagggc tggagccctc tgaagaggag gccccaggt ctccactggc accctccgaa ggggctggct ccgatgtatt tgatggtgac 420 ctgggaatgg gggcagccaa ggggctgcaa agcctcccca cacatgaccc cagccctcta 480 540 cagcggtaca gtgaggaccc cacagtaccc ctgccctctg agactgatgg ctacgttgcc cccctgacct gcagcccca gcctgaatat gtgaaccagc cagatgttcg gccccagccc 600 660 ccttcgcccc gagagggccc tctgcctgct gcccgacctg ctggtgccac tctggaaagg 720 cccaagactc tctccccagg gaagaatggg gtcgtcaaag acgtttttgc ctttgggggt gccgtggaga accccgagac ttgacacccc agggaggagc tgcccctcag ccccaccctc 780 840 ctcctqcctt caqcccaqcc ttcqacaacc tctattactg ggaccaggac ccaccagagc ggggggctcc acccagcacc ttcaaaggga cacctacggc agagaaccca gagtacctgg 900 960 gtctggacgt gccagtgtga agccttaagg gccatatggt gagtggatgc cttgacccca 1020 ggcggggatg ggggagacct gtagtcagag cccccgggca gcacaggcca atgcccgtcc 1080 ttcccctgca gtgagtagtg actgcccggg tgggatccct gtgacccctc cccagtgcct 1140 ctcctggccc tggaagttgc cactccagtg cccaccagcc ttgtcctaat aaaattaagt 1200 tgcatcattt tgtctgacta ggtgtcctct ataatattat aagcttgata tcgaattctt 1260 tctcaacqta acactttaca qcqqcqcqtc atttgatatg atgcgccccg cttcccgata agggagcagg ccagtaaaag cattacccgt ggtggggttc ccgagcggcc aaagggagca 1320 1380 gactctaaat ctgccgtcat cgacttcgaa ggttcgaatc cttcccccac caccatcact 1440 ttcaaaaqtc cqaaaqaatt cctgcagccc gtgtagccgt agttaggcca ccacttcaag 1500 aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 1560 agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1620 cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1680 accgaactga gatacctaca gcgtgagcat tgagaaagcg ccacgcttcc cgaagggaga 1740 aaqqcqqaca qqtatccqqt aaqcggcagg gtcggaacag gagagcgcac gagggagctt Page 10

ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag	1800
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg	1860
gccgggggat ccggagagct cactctagat gagagagcag tgaggggagag acagagactc	1920
gaatttccgg agctatttca gttttctttt ccgttttgtg caatttcact tatgataccg	1980
gccaatgctt ggttgctatt ttggaaactc cccttagggg atgcccctca actggcccta	2040
taaagggcca gcctgagctg cagaggattc ctgcagagga tcaagacagc acgtggacct	2100
cgcacagcct ctcccacagg tacct	2125
<210> 23 <211> 27 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 23 gtctgccacc atggcctact cccctgc	27
<210> 24 <211> 36 <212> DNA <213>, Artificial	
<220> <223> Synthetic	
<400> 24 ttctttggtg acctacctct tcggaattgc cgagtc	36
<210> 25 <211> 1242 <212> DNA <213> Artificial	c
<220> <223> Synthetic	
<400> 25 atggaggagc cgcagtcaga tcctagcgtc gagccccctc tgagtcagga aacattttca	60
gacctatgga aactacttcc tgaaaacaac gttctgtccc ccttgccgtc ccaagcaatg	120
gatgatttga tgctgtcccc ggacgatatt gaacaatggt tcactgaaga cccaggtcca	180
gatgaagctc ccagaatgcc agaggctgct ccccgcgtgg cccctgcacc agcagctcct	240
acaccggcgg cccctgcacc agccccctcc tggcccctgt catcttctgt cccttcccag	300
aaaacctacc agggcagcta cggtttccgt ctgggcttct tgcattctgg gacagccaag	300 360

äagatgtttt	gccaactggc	caagacctgc	19482.SEQUE cctgtgcagc	NCE .ST25 tgtgggttga	ttccacaccc	480
ccgcccggca	cccgcgtccg	cgccatggcc	atctacaagc	agtcacagca	catgacggag	540
gttgtgaggc	gctgccccca	ccatgagcgc	tgctcagata	gcgatggtct	ggcccctcct	600
cagcgtctta	tccgagtgga	aggaaatttg	cgtgtggagt	atttggatga	cagaaacact	660
tttcgacata	gtgtggtggt	gccctatgag	ccgcctgagg	ttggctctga	ctgtaccacc	720
atccactaca	actacatgtg	taacagttcc	tgcatgggcg	gcatgaaccg	gaggcccatc	780
ctcaccatca	tcacactgga	agactccagt	ggtaatctac	tgggacggaa	cagctttgag	840
gtgcgtgttt	gtgcctgtcc	tgggagagac	cggcgcacag	aggaagagaa	tctccgcaag	900
aaaggggagc	ctcaccacga	gctgcccca	gggagcacta	agcgagcact	gcccaacaac	960
accagctcct	ctcccagcc	aaagaagaaa	ccactggatg	gagaatattt	cacccttcag	1020
atccgtgggc	gtgagcgctt	cgagatgttc	tttggtgacc	tacctcttcg	gaattgccga	1080
gtcttccgag	agctgaatga	ggccttggaa	ctcaaggatg	cccaggctgg	gaaggagcca	1140
ggggggagca	gggctcactc	cagccacctg	aagtccaaaa	agggtcagtc	tacctcccgc	1200
cataaaaaac	tcatgttcaa	gacagaaggg	cctgactcag	ac	ê	1242
<220>						
<400> 26	gttgctggcg	tttttccata	aactccaccc	ccctgacgag	catcacaaaa	60
	aagtcagagg					120
	ctccctcgtg					180
	cccttcggga					240
	ggtcgttcgc					300
_	cttatccggt					360
	agcagccact					420
	gaagtggtgg					480
	gaagccagtt					540
	tggtagcggt					600
aaggatct						608
-210- 27						

<210> 27 <211> 1547

219482.SEQUENCE .ST25	
<212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 27 ggtacctgcc accatggcgc ggattcttta tcactgataa gttggtggac atattatg	tt 60
tatcagtgat aaagtgtcaa gcatgacaaa gttgcagccg aatacagtga tccgtgcc	gg 120
ccctggactg ttgaacgagg tcggcgtaga cggtctgacg acacgcaaac tggcggaa	cg 180
gttgggggtg cagcagccgg cgctttactg gcacttcagg aacaagcggg cgccttaa	gg 240
gccatatggt gagtggatgc cttgacccca ggcggggatg ggggagacct gtagtcag	ag 300
ccccgggca gcacaggcca atgcccgtcc ttcccctgca ggatgagtag tgagtgcc	tc 360
tcctggccct ggaagttgcc actccagtgc ccaccagcct tgtcctaata aaattaag	tt 420
gcatcatttt gtctgactag gtgtcctcta taatattata agcttgatat cgaattct	tt 480
cggacttttg aaagtgatgg tggtggggga aggattcgaa ccttcgaagt cgatgacg	gc 540
agatttagag tctgctccct ttggccgctc gggaacccca ccacgggtaa tgctttta	ct 600
ggcctgctcc cttatcggga agcggggcgc atcatatcaa atgacgcgcc gctgtaaa	gt 660
gttacgttga gaaagaattc ctgcagcccg ccgcgttgct ggcgtttttc cataggct	cc 720
gccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgac	ag 780
gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttcc	ga 840
ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttc	tc 900
aatgctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctg	tg 960
tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttga	gt 1020
ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac aggattag	ca 1080
gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggcta	ca 1140
ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaag	ag 1200
ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt tttgtttg	ca 1260
agcagcagat tacgcgcaga aaaaaaggat ctgggggatc cggagagctc actctaga	tg 1320
agagagcagt gagggagaga cagagactcg aatttccgga gctatttcag ttttcttt	tc 1380
cgttttgtgc aatttcactt atgataccgg ccaatgcttg gttgctattt tggaaact	cc 1440
ccttagggga tgcccctcaa ctggccctat aaagggccag cctgagctgc agaggatt	cc 1500
tgcagaggat caagacagca cgtggacctc gcacagcctc tcccaca	1547

<210> 28 <211> 1807 <212> DNA

<213> Artificial

<220>

<223> Synthetic

<400> ggtacctgcc accatggcgc ggattcttta tcactgataa gttggtggac atattatgtt 60 tatcagtgat aaagtgtcaa gcatgacaaa gttgcagccg aatacagtga tccgtgccgg 120 ccctggactg ttgaacgagg tcggcgtaga cggtctgacg acacgcaaac tggcggaacg 180 240 gttgggggtg cagcagccgg cgctttactg gcacttcagg aacaagcggg cgccttaagg 300 qccatatggt gagtggatgc cttgacccca ggcggggatg ggggagacct gtagtcagag 360 ccccgggca gcacaggcca atgcccgtcc ttcccctgca ggatgagtag tgagtgcctc 420 tcctgqccct ggaagttgcc actccagtgc ccaccagcct tgtcctaata aaattaagtt gcatcatttt gtctgactag gtgtcctcta taatattata agcttgatat cgaattcttt 480 540 cgqacttttg aaagtgatgg tggtggggga aggattcgaa ccttcgaagt cgatgacggc 600 agatttagag tctgctccct ttggccgctc gggaacccca ccacgggtaa tgcttttact 660 ggcctgctcc cttatcggga agcggggcgc atcatatcaa atgacgcgcc gctgtaaagt 720 gttacgttga gaaagaattc ctgcagcccg ccgcgttgct ggcgtttttc cataggctcc 780 gccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag 840 gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga 900 ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc 960 aatgctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg 1020 tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt 1080 ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca 1140 qaqcqaqqta tgtaqgcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca 1200 ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaagag 1260 ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt tttgtttgca 1320 agcagcagat tacgcgcaga aaaaaaggat ctgggggatc cggagagctc ccaacgcgtt 1380 ggatgcatgg atgagggaaa ggaggtaaga tctgtaatga ataagcagga actttgaaga 1440 ctcagtgact cagtgagtaa taaagactca gtgacttctg atcctgtcct aactgccact 1500 ccttgttgtc ccaagaaagc ggcttcctgc tctctgagga ggaccccttc cctggaaggt 1560 aaaactaagg atgtcagcag agaaattttt ccaccattgg tgcttggtca aagaggaaac 1620 tgatgagctc actctagatg agagagcagt gagggagaga cagagactcg aatttccgga 1680 gctatttcag ttttctttc cgttttgtgc aatttcactt atgataccgg ccaatgcttg gttgctattt tggaaactcc ccttagggga tgcccctcaa ctggccctat aaagggccag 1740

Page 14

cctgagctgc agaggattcc tgcagaggat caagacagca cgtggacctc gcacag	cctc 1800
tcccaca	1807
<210> 29 <211> 2308 <212> DNA <213> Artificial	
<220> <223> Synthetic	
<400> 29 ggtacctgcc accatggcga agggcgagga actgttcact ggcgtggtcc caatto	ctcgt 60
ggaactggat ggcgatgtga atgggcacaa attttctgtc agcggagagg gtgaag	ggtga 120
tgccacatac ggaaagctca ccctgaaatt catctgcacc actggaaagc tccctg	gtgcc 180
atggccaaca ctggtcacta ccttcaccta tggcgtgcag tgcttttcca gataco	caga 240
ccatatgaag cagcatgact ttttcaagag cgccatgccc gagggctatg tgcagg	gagag 300
aaccatcttt ttcaaagatg acgggaacta caagacccgc gctgaagtca agttcg	gaagg 360
tgacaccctg gtgaatagaa tcgagttgaa gggcattgac tttaaggaag atggaa	acat 420
tctcggccac aagctggaat acaactataa ctcccacaat gtgtacatca tggccg	gacaa 480
gcaaaagaat ggcatcaagg tcaacttcaa gatcagacac aacattgagg atggat	ccgt 540
gcagctggcc gaccattatc aacagaacac tccaatcggc gacggccctg tgctco	ctccc 600
agacaaccat tacctgtcca cccagtctgc cctgtctaaa gatcccaacg aaaaga	agaga 660
ccacatggtc ctgctggagt ttgtgaccgc tgctgggatc acacatggca tggacg	gagct 720
gtacaagtga gcgccttaag ggccatatgg tgagtggatg ccttgacccc aggcgg	gggat 780
gggggagacc tgtagtcaga gcccccgggc agcacaggcc aatgcccgtc cttccc	cctgc 840
aggatgagta gtgagtgcct ctcctggccc tggaagttgc cactccagtg cccaco	agcc 900
ttgtcctaat aaaattaagt tgcatcattt tgtctgacta ggtgtcctct ataata	attat 960
aagcttgata tcgaattctt tcggactttt gaaagtgatg gtggtggggg aaggat	ttcga 1020
accttcgaag tcgatgacgg cagatttaga gtctgctccc tttggccgct cgggaa	acccc 1080
accacgggta atgcttttac tggcctgctc ccttatcggg aagcggggcg catcat	tatca 1140
aatgacgcgc cgctgtaaag tgttacgttg agaaagaatt cctgcagccc gccgcg	gttgc 1200
tggcgttttt ccataggctc cgccccctg acgagcatca caaaaatcga cgctca	aagtc 1260
agaggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct ggaago	tccc 1320
tcgtgcgctc tcctgttccg accctgccgc ttaccggata cctgtccgcc tttctc	cctt 1380
cgggaagcgt ggcgctttct caatgctcac gctgtaggta tctcagttcg gtgtag	ggtcg 1440
Page 15	

rttcgctccaa gctgggctg	2: gtgcacgaac	19482.SEQUE ccccgttca	NCE .ST25 gcccgaccgc	tgcgccttat	1500
ccggtaacta tcgtcttgag	tccaacccgg	taagacacga	cttatcgcca	ctggcagcag	1560
ccactggtaa caggattage	agagcgaggt	atgtaggcgg	tgctacagag	ttcttgaagt	1620
ggtggcctaa ctacggcta	actagaagga	cagtatttgg	tatctgcgct	ctgctgaagc	1680
cagttacctt cggaaaaaga	gttggtagct	cttgatccgg	caaacaaacc	accgctggta	1740
gcggtggttt ttttgtttg	aagcagcaga	ttacgcgcag	aaaaaagga	tctgggggat	1800
ccggagagct cccaacgcg	tggatgcatg	gatgagggaa	aggaggtaag	atctgtaatg	1860
aataagcagg aactttgaag	actcagtgac	tcagtgagta	ataaagactc	agtgacttct	1920
gatcctgtcc taactgcca	tccttgttgt	cccaagaaag	cggcttcctg	ctctctgagg	1980
aggacccctt ccctggaag	taaaactaag	gatgtcagca	gagaaatttt	tccaccattg	2040
gtgcttggtc aaagaggaaa	ctgatgagct	cactctagat	gagagagcag	tgagggagag	2100
acagagactc gaatttccg	, agctatttca	gttttctttt	ccgttttgtg	caatttcact	2160
tatgataccg gccaatgct	ggttgctatt	ttggaaactc	cccttagggg	atgcccctca	2220
actggcccta taaagggcc	gcctgagctg	cagaggattc	ctgcagagga	tcaagacagc	2280
acgtggacct cgcacagcc	ctcccaca				2308
<210> 30 <211> 12 <212> DNA <213> Artificial <220> <223> Synthetic <400> 30 gccaccatgg cc <210> 31 <211> 11 <212> DNA					12
<213> Artificial <220> <223> Synthetic					
<400> 31 gccttaaggg c					11