Abstracting Causal Models

Fabio Massimo Zennaro fm.zennaro@gmail.com

University of Warwick October 18th, 2021

F.M. Zennaro

Background

• We deal with **SCMs** defined as tuples $\langle \mathcal{X}, \mathcal{E}, \mathcal{F}, \mathcal{P} \rangle$ [1, 2, 3].

• We allow **perfect interventions** with $do(X_0 = x_0)$ operator [1, 2].

 A SCM M serves as a presentation for a set of SCMs generated by interventions [4]:

Notation: we use \mathcal{X} for a set of RV; X for a RV; $\mathcal{M}[X]$ for the domain of X

F.M. Zennaro 2/11

Problem definition

Suppose we are given two models $\mathcal{M}, \mathcal{M}'$ of the same phenomenon:

What does it mean that model \mathcal{M}' is an abstraction of model \mathcal{M} ?

- Desideratum of abstraction
- Formalization of abstraction

F.M. Zennaro 3/11

Desideratum: commutativity

- Abstraction-intervention commutativity: given a model \mathcal{M} , the following two procedures lead to the same distribution $P_{\mathcal{M}',i}$:
 - Intervene on \mathcal{M} and then map to the abstracted model:
 - \bullet Map ${\cal M}$ to the abstracted model and then intervene on it.

F.M. Zennaro 4/11

Formalization: statistical

• Distributional: α as a function mapping joint distributions [4]

$$\tau: \prod_{X \in \mathcal{X}} \mathcal{M}[X] \to \prod_{X' \in \mathcal{X}'} \mathcal{M}[X']$$

then we can assess:

F.M. Zennaro 5/11

Formalization: statistical

• Structural: α as a collection of functions mapping variables [3]

$$R \subseteq \mathcal{X}$$

 $a:R \to \mathcal{X}'$
 $\alpha_{X'}:\mathcal{M}[a^{-1}(X')] \to \mathcal{M}[X']$

then we can assess:

F.M. Zennaro 6/11

Formalization: categorical

• Structural: diagrams such as

$$\mathcal{M}[a^{-1}(X_1')] \xrightarrow{f} \mathcal{M}[a^{-1}(X_2')]$$

$$\alpha_{X_1} \downarrow \qquad \qquad \downarrow \alpha_{X_2}$$

$$\mathcal{M}[X_1'] \xrightarrow{f'} \mathcal{M}[X_2']$$

can live in the **FinStoch** category (*objects*: finite sets; *maps*: stochastic matrices).

FinStoch may be enriched in **Met** allowing for computation of approximation error.

F.M. Zennaro 7/

Relevant research questions

- Formalization: how do different formalizations and perspectives on abstraction relate?
 - Distributional vs structural perspective
 - Preservation of causal structure
 - Furthering categorical formalization
- Estimation: how do we assess abstraction efficiently?
 - Choice of measure
 - Choice of interventions
 - Efficient algorithms

F.M. Zennaro 8 / 11

Further research questions

- Causal representation learning: can we integrate principle of abstraction in learning?
 - Guiding/explaining causal learning
- Extensions: what other aspects of abstractions between SCMs may be relevant?
 - Stochastic abstractions
 - Structure-preserving abstractions
 - Counterfactual consistency

High-level of interdisciplinarity (category theory, physics, graph theory).

Many interesting questions and promising directions!

F.M. Zennaro

Thanks!

Thank you for listening!

If interested in existing approaches, feel free to check tutorials at: https://github.com/FMZennaro/CategoricalCausalAbstraction

F.M. Zennaro 10 / 11

References I

- [1] Judea Pearl. Causality. Cambridge University Press, 2009.
- [2] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: Foundations and learning algorithms. MIT Press, 2017.
- [3] Eigil Fjeldgren Rischel. The category theory of causal models. 2020.
- [4] Paul K Rubenstein, Sebastian Weichwald, Stephan Bongers, Joris M Mooij, Dominik Janzing, Moritz Grosse-Wentrup, and Bernhard Schölkopf. Causal consistency of structural equation models. In 33rd Conference on Uncertainty in Artificial Intelligence (UAI 2017), pages 808–817. Curran Associates, Inc., 2017.

F.M. Zennaro