MATH 1060 Calculus of One Variable I

Test 2 – Answer Key Version A

Fall 2014 Sections 3.4 – 3.11

Student's Printed Name:		CUID:
Instructor	:	Section:
allowed to us	*	lator on any portion of this test. You are not o, PDA, or any technology on either portion are in the testing room.
-	ny form, including written, signed, verba	(other than the instructor or a designated l, or digital, is understood to be a violation
No part of th	is test may be removed from the examina	ation room.
Read each quhe test, you 1.	must:	full credit for the free response portion of stification which supports your final answer.
2.	Use complete and correct mathematica	
3. 4.	Include proper units, if necessary. Give exact numerical values whenever	possible.
You have 90	minutes to complete the entire test.	
•	or, I have neither given nor received in before or during this test.	appropriate or unauthorized information
Student's	Signature:	
	Do not write below this	line.

Free Response Problem	Possible Points	Points Earned	Free Response Problem	Possible Points	Points Earned
1.a.	7		5.a.	4	
1.b.	7		5.b.	8	
1.c.	7		6.a.	6	
1.d.	7		6.b.	6	
2.a.	11		7.	8	

1.α.	,	J.a.	7
1.b.	7	5.b.	8
1.c.	7	6.a.	6
1.d.	7	6.b.	6
2.a.	11	7.	8
2.b.	3	Test Total	100
3.	14		
4.a.	6		
4.b.	·		

Read each question carefully. In order to receive full credit you must show legible and logical (relevant) justification which supports your final answer. Give answers as exact answers. You are NOT permitted to use a calculator on any portion of this test.

- 1. **(7 pts. each)** Find the indicated derivatives. Assume g(x) is a differentiable function wherever it appears. Cancel common factors wherever appropriate.
- a) Find f'(x) if $f(x) = x^2 g(\sin(\cos(x)))$.

$$f(x) = x^2 g(\sin(\cos x))$$

$$f'(x) = x^2 g'(\sin(\cos x))\cos(\cos x)(-\sin x) + 2xg(\sin(\cos x))$$

Work on Problem:	Points
Uses Product Rule	2 points
$x^2g'(x)$	3 points
2xg(x)	2 points
Notes:	
•	

b) Find
$$\frac{dy}{dx}$$
 if $\sin(5y) = ye^{x^2}$.

$$\sin(5y) = ye^{x^{2}}$$

$$\cos(5y)(5)\frac{dy}{dx} = y(2xe^{x^{2}}) + e^{x^{2}}\frac{dy}{dx}$$

$$5\cos(5y)\frac{dy}{dx} - e^{x^{2}}\frac{dy}{dx} = 2xye^{x^{2}}$$

$$\frac{dy}{dx}\left(5\cos(5y) - e^{x^{2}}\right) = 2xye^{x^{2}}$$

$$\frac{dy}{dx} = \frac{2xye^{x^{2}}}{5\cos(5y) - e^{x^{2}}}$$

Work on Problem:	Points
Derivative of left side	2 points
Derivative of right side	3 points
Solves for $\frac{dy}{dx}$	2 points

Notes:

• Other equivalent forms of the answer obtained with logarithmic differentiation can get full credit.

c) Find
$$h'(x)$$
 if $h(x) = \ln \left(g \left(\frac{3^x}{e^{x-1}} \right) \right)$.

$$h(x) = \ln\left(g\left(\frac{3^{x}}{e^{x-1}}\right)\right)$$

$$h'(x) = \frac{1}{g\left(\frac{3^{x}}{e^{x-1}}\right)}g'\left(\frac{3^{x}}{e^{x-1}}\right)\frac{(e^{x-1})(3^{x})\ln 3 - (3^{x})(e^{x-1})}{(e^{x-1})^{2}}$$

$$h'(x) = \frac{1}{g\left(\frac{3^{x}}{e^{x-1}}\right)}g'\left(\frac{3^{x}}{e^{x-1}}\right)\frac{(e^{x-1})(3^{x})[\ln 3 - 1]}{(e^{x-1})^{2}}$$

$$h'(x) = \frac{1}{g\left(\frac{3^{x}}{e^{x-1}}\right)}g'\left(\frac{3^{x}}{e^{x-1}}\right)\frac{(3^{x})[\ln 3 - 1]}{e^{x-1}}$$

Work on Problem:	Points
Derivative natural log function	1 point
Derivative of function <i>g</i>	1 point
Derivative of argument for function g	4 points
Factor and reduce	1 point
Notes:	

Subtract ½ for missing derivative notation

d) Find
$$\frac{dy}{dx}$$
 if $y = x^{(x^3)}$.

$$y = x^{(x^3)}$$
(logaritmic differentiation)
$$\ln(y) = \ln(x^{(x^3)})$$

$$\ln(y) = x^3 \ln x$$

$$\frac{1}{y} \frac{dy}{dx} = x^3 \left(\frac{1}{x}\right) + (\ln x)(3x^2)$$

$$\frac{dy}{dx} = \left[x^2 + 3x^2 \ln x\right] y$$

$$\frac{dy}{dx} = \left[x^2 + 3x^2 \ln x\right] x^{(x^3)}$$

,
;
S

Notes:

Subtract ½ for missing derivative notation

2. You are adding a layer of special insulating material to the outer surface of the **hemispherical** dome of a large building. The radius of the dome is 50 feet and the insulating material will have a thickness of 0.10 feet.

Note: The volume *V* of a **sphere** of radius *r* is $V = \frac{4\pi}{3}r^3$.

a) (11 pts.) Use differentials to estimate how much of the insulating material (in cubic feet) you will have to purchase for the project.

$V = \frac{1}{2} \left(\frac{4\pi}{3} r^3 \right)$ (volume of hemisphere)
2(3) (volume of hemisphere)
$V = \frac{2\pi}{3} r^3$
$\frac{dV}{dr} = \frac{2\pi}{3}(3r^2)$
$dV = 2\pi r^2 dr$
when $r = 50$ and $dr = 0.10$
$dV = 2\pi (50)^2 (0.10)$
$dV = 2\pi(2500)(0.10)$
$dV = 500\pi ft^3$

Work on Problem:	Points	
Volume of hemisphere	1 point	
Differentiates both sides	4 points	
Solves for differential dV	1 point	
Substitutes values for r and dr	2 points	
Calculates dV	2 points	
Units	1 point	
Notes:		
• Subtract 2 points for calculating dV for a		

sphere

b) (3 pts.) Structural engineers estimate the dome of the building can safely support an additional 90,000 pounds. The insulating material you are using weighs 60 pounds per cubic foot. Use your result from part (a) to determine if your insulating project puts the building in jeopardy.

Weight $\approx (500\pi)(60) = 30,000\pi$ pounds $30,000\pi > 90,000$ so the project puts the building in jeopardy.

Work on Problem:	Points
Multiples result from (a) by 60	1 point
Conclusion	2 points
Notoge	

3. (14 pts.) Consider the triangle shown below, with sides of lengths 4 meters, 5 meters, and angle θ .

Find the rate at which the length of side c is changing when angle $\theta = \frac{\pi}{3}$ and θ is **increasing** at 2 radians per second.

Hint: Law of Cosines: $c^2 = a^2 + b^2 - 2ab \cos C$

Work on Problem:	Points
Equation for c^2 with values for a and b	2 points
Derivative of left side	2 points
Derivative of right side	3 points
Calculates c when $\theta = \frac{\pi}{3}$	3 points
Substitutes values for θ and c	1 point
Solves for $\frac{dc}{dt}$	2 points
units	1 point
Notes:	_
•	

4. Let f and g be differentiable functions. Use the values in the table below to answer the questions that follow.

	<i>x</i> =0	<i>x</i> =1	<i>x</i> =2	<i>x</i> =3
f(x)	0	1	8	27
f'(x)	0	3	12	27
g(x)	1	3	9	19
<i>g'</i> (<i>x</i>)	0	2	4	12

a) (6 pts.) Find h'(1) if $h(x) = [f(x)g(x)]^2$.

$$h(x) = [f(x)g(x)]^{2}$$

$$h'(x) = 2f(x)g(x)[f(x)g'(x) + f'(x)g(x)]$$

$$h'(1) = 2f(1)g(1)[f(1)g'(1) + f'(1)g(1)]$$

$$h'(1) = 2(1)(3)[(1)(2) + (3)(3)]$$

$$h'(1) = 6[11]$$

$$h'(1) = 66$$

4 points 2 points
2 points
- F

b) (6 pts.) Find P'(3) if $P(x) = f\left(g\left(\frac{x}{3}\right)\right)$.

$$P(x) = f\left(g\left(\frac{x}{3}\right)\right)$$

$$P'(x) = f'\left(g\left(\frac{x}{3}\right)\right)g'\left(\frac{x}{3}\right)\left(\frac{1}{3}\right)$$

$$P'(3) = f'\left(g\left(\frac{3}{3}\right)\right)g'\left(\frac{3}{3}\right)\left(\frac{1}{3}\right)$$

$$P'(3) = f'(g(1))g'(1)\left(\frac{1}{3}\right)$$

$$P'(3) = f'(3)g'(1)\left(\frac{1}{3}\right)$$

$$P'(3) = (27)(2)\left(\frac{1}{3}\right)$$

$$P'(3) = 18$$

Work on Problem:	Points
Finds $P'(x)$	4 points
Substitutes values and solves	2 points
Notes:	
•	

5. A tank holds 5000 gallons of water which drains from a hole in the bottom. Torricelli's Law gives the volume *V* of water remaining in the tank *t* minutes after it starts draining:

$$V(t) = 5000 \left(1 - \frac{t}{40}\right)^2$$

a) (4 pts.) At what time will the tank be empty?

Solve $V(t) = 0$
$5000 \left(1 - \frac{t}{40} \right)^2 = 0$
$\left(1 - \frac{t}{40}\right)^2 = 0$
$1 - \frac{t}{40} = 0$
$\frac{t}{40} = 1$
t = 40 minutes

Work on Problem:	Points
Sets $V(t) = 0$	1 point
Solves for t	3 points
Notes:	
• Subtract 4 points for only solving $V'(t) = 0$	
Subtract 3 points for major algebraic errors	

b) (8 pts.) At what rate is the volume changing when t = 20?

$$V'(t) = 5000 \left(1 - \frac{t}{40}\right)^{2}$$

$$V'(t) = 5000(2) \left(1 - \frac{t}{40}\right) \left(-\frac{1}{40}\right)$$

$$V'(20) = 5000(2) \left(1 - \frac{20}{40}\right) \left(-\frac{1}{40}\right)$$

$$V'(20) = 5000(2) \left(\frac{1}{2}\right) \left(-\frac{1}{40}\right)$$

$$V'(20) = -\frac{5000}{40}$$

$$V'(20) = -125 \text{ gallons/minute}$$

Work on Problem:	Points
Finds $V'(t)$	5 point
Substitutes $t = 20$	1 points
Finds $V'(20)$	1 point
units	1 point
Notes: • No points awarded for finding $V(20)$	

- 6. A sample of Strontium-90 will decay to 25% of its original amount in 56 days.
- a) (6 pts.) A sample has a mass of 60 mg initially. Find the amount remaining after 70 days. Give your final answer in terms of e and natural logarithms.

letting $m = \text{mass of Strontium-90}$	$m(t) = 60e^{\frac{\ln(1/4)}{56}t}$
$m(t) = 60e^{kt}$	$m(70) = 60e^{\frac{\ln(1/4)}{56}70} \text{ mg}$
know $m(56) = 0.25(60) = 15$	
apply $m(56) = 15$	
$15 = 60e^{k(56)}$	
$\frac{1}{4} = e^{k(56)}$	
$ \ln\left(\frac{1}{4}\right) = \ln e^{k(56)} $	
$ \ln\left(\frac{1}{4}\right) = 56k $	
$k = \frac{\ln\left(\frac{1}{4}\right)}{56}$	

Work on Problem:	Points
Solves for <i>k</i>	5 point
Substitutes $t = 70$	1 points
Notes:	
•	

b) (6 pts.) How long will it take the initial amount of 60 mg to decay to 6 mg? Give your final answer in terms of natural logarithms.

$$m(t) = 60e^{\frac{\ln(1/4)}{56}t}$$
solve
$$m(t) = 6$$

$$6 = 60e^{\frac{\ln(1/4)}{56}t}$$

$$\frac{6}{60} = e^{\frac{\ln(1/4)}{56}t}$$

$$\ln(1/10) = \ln e^{\frac{\ln(1/4)}{56}t}$$

$$\ln(1/10) = \frac{\ln(1/4)}{56}t$$

$$t = \frac{56\ln(1/10)}{\ln(1/4)} \text{ days}$$

Work on Problem:	Points
Sets $m(t) = 6$	1 point
Solves for t	5 points
Notes:	
•	

Version A

7. (8 pts.) Prove
$$\frac{1 + \tanh x}{1 - \tanh x} = e^{2x}$$

$$\frac{1 + \tanh x}{1 - \tanh x} = \frac{1 + \frac{\sinh x}{\cosh x}}{1 - \frac{\sinh x}{\cosh x}}$$

$$= \frac{\cosh x + \sinh x}{\cosh x - \sinh x}$$

$$= \frac{\frac{e^x + e^{-x}}{2} + \frac{e^x - e^{-x}}{2}}{\frac{e^x + e^{-x}}{2} - \frac{e^x - e^{-x}}{2}}$$

$$= \frac{e^x + e^{-x} + e^x - e^{-x}}{2}$$

$$= \frac{e^x + e^{-x} + e^x - e^{-x}}{2}$$

$$= \frac{2e^x}{e^x + e^{-x} - e^x + e^{-x}}$$

$$= \frac{2e^x}{e^{-x}}$$

$$= \frac{e^x}{e^{-x}}$$

$$= e^{x - (-x)}$$

$$= e^{2x}$$

Work on Problem:	Points
Converts to sinhx and coshx	2 point
Definitions of $\sinh x$ and $\cosh x$ in terms of e	2 points
Simplification	4 points

Notes:

• Subtract 1 point for improper use of equal signs