

Carátula para entrega de prácticas

Facultad de Ingeniería

Laboratorios de docencia

Laboratorio de Computación

Salas A y B

Profesor(a):	César Fabián Domínguez Velasco		
Asignatura:	Fundamentos de Programación		
Grupo:	15		
No de Práctica(s):	4		
Integrante(s):	Camacho Duarte Héctor Enrique		
	Gutiérrez Esquivel Giovani Emiliano		
	Flores Jiménez Diego		
	Moreno Chapan Amilet		
	Reyes García Raúl de Jesús		
No. de lista	06,11,15,16,25,33		
o brigada:			
Semestre:	2024-02		
Fecha de entrega:	6/03/24		
Observaciones:			
CALIFICACIÓ	N:		

Objetivo: El alumno elaborará diagramas de flujo que representen soluciones algorítmicas vistas como una serie de acciones que comprendan un proceso.

Desarrollo

Heración	P	salida
1	a= S	salida "al es menor"
	b=9	
	ab to the	9 1 500
Heración	P	Salida
1	0=583	
	6-201	à es mayor

Heración	P	Salida 'a es igual a b'
1	a= 60	a es igual
	b= 60	a 6"
	children	1 001000
Heración	P	Salida
1	9=671	Salida "a es mayor"
	6=253	
Heración	P	Solida
1	a= 75	Salida "b es mayor"
		C Co mayor
	b=318	

ROSES TO		
1 Heración	a=1	Salida "Iniciar sesion"
1 teración 1	P q=2	Salida "Registrar"
1 Heración	q=3	Salida "Salir"
1 Heración	P R=7	Salida "Opcion invalida"

Heración	P	Salida
1	a= 1	
	(Sumar)	m+n es 19"
	m = 13	
and the last of th	n= 6	The second like to
	(13+6=?)	In the case of the last

Heración	P	Salida
1	9= 2	
	(restar)	m-n es 22"
	m = 37	
	n= 15	
	(37-15-?)	

1 teración	P	Salida
1	a= 3 (Multiplicar) m= 11 n= 53 (11 * 53 =?)	`m * n es S83'

Heración	P	Salida
1	a= 4	"m/n es 21"
Bernary Co.	(Dividir)	
	m= 105	
	n= 5	Carle Charle Little
	(105/5 =?)	

Iteración P		Salida	
1	Q=5	Fin Proceso	

HILIBRETAS

ITERACION	Media	Desviacion estandar	n	Salida
1	105	0	105	/
2	112.5	7.5	120	/
3	114	6.4807407	117	/
4	112.75	6.01560471	109	/
5	111	6.41872261	104	/
6	113.333333	7.84573486	125	/
6	116.666667	7.84573486	125	La media es 116.6666667 La desviacion estandar es 7.845734864

Conclusiones

En conclusión, hemos alcanzado con éxito el objetivo de la práctica que consistía en elaborar diagramas de flujo representativos de soluciones algorítmicas. Durante este proceso, hemos adquirido una comprensión más profunda de cómo descomponer problemas en una serie de acciones lógicas y secuenciales, lo que nos ha permitido desarrollar soluciones algorítmicas de manera estructurada y eficiente.

Elaborar diagramas de flujo nos ha proporcionado una herramienta visual poderosa para entender y comunicar nuestros algoritmos de manera clara y concisa. Hemos aprendido a identificar patrones comunes, a diseñar flujos de trabajo eficientes y a abordar problemas desde una perspectiva algorítmica.

Bibliografía

Laboratorio Salas A y B. (n.d.). http://lcp02.fi-b.unam.mx/

PSEInt. (n.d.). https://sourceforge.net/p/pseint/discussion/23683254