

planetmath.org

Math for the people, by the people.

stationary process

Canonical name StationaryProcess
Date of creation 2013-03-22 15:22:42
Last modified on 2013-03-22 15:22:42

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771) Entry type Definition Classification msc 60G10

Defines strictly stationary process
Defines covariance stationary process

Defines evolutionary process

Let $\{X(t) \mid t \in T\}$ be a stochastic process where $T \subseteq \mathbb{R}$ and has the property that $s+t \in T$ whenever $s,t \in T$. Then $\{X(t)\}$ is said to be a strictly stationary process of order n if for a given positive integer $n < \infty$, any t_1, \ldots, t_n and $s \in T$, the random vectors

$$(X(t_1), \ldots, X(t_n))$$
 and $(X(t_1 + s), \ldots, X(t_n + s))$ have identical joint distributions.

 $\{X(t)\}\$ is said to be a *strictly stationary process* if it is a strictly stationary process of order n for all positive integers n. Alternatively, $\{X(t) \mid t \in T\}$ is strictly stationary if $\{X(t)\}$ and $\{X(t+s)\}$ are identically distributed stochastic processes for all $s \in T$.

A weaker form of the above is the concept of a covariance stationary process, or simply, a stationary process $\{X(t)\}$. Formally, a stochastic process $\{X(t) \mid t \in T\}$ is stationary if, for any positive integer $n < \infty$, any t_1, \ldots, t_n and $s \in T$, the joint distributions of the random vectors

$$(X(t_1), \ldots, X(t_n))$$
 and $(X(t_1 + s), \ldots, X(t_n + s))$ have identical means (mean vectors) and identical covariance matrices.

So a strictly stationary process is a stationary process. A non-stationary process is sometimes called an *evolutionary process*.