R4.A.13 Apprentissage Profond

Lecture 2 Introduction to Neural Networks

Minh-Tan Pham, Matthieu Le Lain BUT2 INFO, 2023-2024

IUT de Vannes, Université Bretagne Sud

minh-tan.pham@univ-ubs.fr

Planning

- ➤ Image classification
- ➤ Linear Classifier
- ➤ Neural networks
- ➤ Lab Assignments

- Motivation of image classification (recognition): assign one label (from a fixed set of categories) to each input image
- Example: given the following image, assign probabilities to 4 labels {dog, cat, hat, mug}

Image credits: cs231n

Challenges: the task is trivial for human, but very challenging for a computer!

Data-driven approach: learn from a training dataset including labeled images

In practice, we may have thousands of classes and hundreds of thousands of images per class.

Nearest Neighbor classifier

 Principle: compare the test image to each training image → choose the closest one (lowest distance)

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$

ı		test i	mage			training image					pixel-wise absolute value differences						
	56	32	10	18		10	20	24	17		46	12	14	1	→ 456		
	90	23	128	133		8	10	89	100		82	13	39	33			
	24	26	178	200	-	12	16	178	170	=	12	10	0	30			
	2	0	255	220		4	32	233	112		2	32	22	108			

→ It does not work because of the previous challenges !!!!

Linear Classification

• Principle: use the linear mapping $f(x_i,W,b)=Wx_i+b$

- We need to learn the parameters (weights W and bias vector b) using the training dataset.
- Once they are learned, simply pass the test image and compute the class probabilities
- Matrix multiplication and addition → very fast

Linear Classification

Bias trick: in common, we simplify the couple (W,b) as one

0.2	-0.5	0.1	2.0		56		1.1		0.2	-0.5	0.1	2.0	1.1		56
1.5	1.3	2.1	0.0		231	+	3.2	←→	1.5	1.3	2.1	0.0	3.2		231
0	0.25	0.2	-0.3		24		-1.2		0	0.25	0.2	-0.3	-1.2	2	24
	V	\overline{V}		'	2		b			V	V		b		2
					x_i new, single W									1	
														$\overline{x_i}$	

- We extend the vector x_i with one additional dimension (bias dimension)
- Our linear mapping now becomes

$$f(x_i, W) = Wx_i$$

Linear Classification

- **Training:** input each pair of image and label (x_i, y_i) to update weights **W** (by using a loss function). The training objective is to minimize the loss
- Usually, we use the cross-entropy loss.
- Testing: use the computed W to predict a label \hat{y}_k for a test image x_k

• Further reading: loss function, gradient descent, back-propagation

Inspired by the goal of modeling biological neural systems with an activation function :

- Each neuron performs a dot product with the input and its weights, adds the bias and applies the non-linearity (or activation function)
- Biological neuron models are much more complex !!!

Image credits: Efficient Processing of Deep Neural Networks: A Tutorial and Survey

One-layer neural networks

- This network has 4 + 2 = 6 neurons (not counting the inputs), $[3 \times 4] + [4 \times 2] = 20$ weights and 4 + 2 = 6 biases, for a total of 26 learnable parameters.
- Attention: the output layer neuros commonly do not have an activation function !!! It is usually take to represent the class score (i.e. classification layer)

Two-layer neural networks

- The network has 4 + 4 + 1 = 9 neurons, [3 x 4] + [4 x 4] + [4 x 1] = 12 + 16 + 4 = 32 weights and 4 + 4 + 1 = 9 biases, for a total of 41 learnable parameters.
- Also named Multi-Layer Perceptrons (MLPs)

Simplified notations

- **x**: input
- **y**: output
- W_i : set of parameters (weights) of the i^{th} layer
- h^i : output of the i^{th} layer
- hi: activation function of the i^{th} layer (i.e., sigmoid, ReLU, leaky ReLU, etc.)

Visualization of neural networks

https://playground.tensorflow.org/

Lab assignments

<u>Practical lab:</u> Training neural networks on the MNIST dataset (for handwritten digit recognition) using Pytorch.

 Download, complete and submit the notebook from Moodle (R3A13_lab1_assign.ipynb)

Note that you need to submit your compiled notebook with all outputs

References and Sources

Convolutional neural networks for visual recognition - Stanford

https://cs231n.github.io/

Neural networks and deep learning (free online book)

http://neuralnetworksanddeeplearning.com/index.html

Machine learning course – Oxford

https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/

Neural network course - Hugo Larochelle

https://info.usherbrooke.ca/hlarochelle/neural_networks/content.html

Deep learning course – François Fleuret

https://fleuret.org/dlc/