Лекция 1: Реални числа – първа част

За да можем да правим математически анализ, се нуждаем от знания за обекта, върху който работим: реалните числа. Това за съжаление е доста трудна задача. Строгото изграждане на тази теория и доказателството на двете теореми, с които ще започне следващата лекция, излизат извън този курс. Ще се задоволим със строга формулировка на основните свойства на реалните числа и интуитивно обяснение на тяхната природа.

1 Основни понятия

множества, означения, квантори – ще ги оставим на курса по Дискретни структури изображения (графика, инекция, сюрекция, биекция) – оставяме ги на упражненията

2 Множеството от безкрайните десетични дроби

Понятието за число се изгражда постепенно с развитието на човечеството като цяло и на всеки индивид в частност. От училище сте запознати с рационалните числа и можете да смятате с тях. Да фиксираме следните стандартни означения:

- множеството на естествените числа $\mathbb{N} = \{1, 2, 3, 4, \dots\}.$
- множеството на целите числа $\mathbb{Z} = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}.$
- множеството на рационалните числа $\mathbb{Q} = \{ \frac{m}{n} : m \in \mathbb{Z}, \ n \in \mathbb{N} \}.$

Също от училище сте свикнали с подреждането на числата, с които се запознавате, върху "числовата права". По този начин се получава съответствие между геометрични обекти (точки върху правата) и числа. Естествено е да очаквате, че трябва да можете да "мерите" дължината на дадена отсечка, тоест да ѝ съпоставите някакво неотрицателно число по един разумен начин, съгласуван с опита. Още в древна Гърция е забелязано, че дължината на диагонала на квадрат "не е съизмерима" с дължината на неговата страна, тоест не е рационално число, умножено по дължината на квадрата. Ако квадратът е със страна едно, от теоремата на Питагор знаем, че дължината на диагонала, повдигната на квадрат, трябва да е две.

Пример 2.1. Числото $\sqrt{2}$ (дължината на диагонала на квадрат със страна 1) не е рационално, т.е. $\sqrt{2} \notin \mathbb{Q}$.

Доказателство. Допускаме противното, че $\sqrt{2} \in \mathbb{Q}$, по-точно $\sqrt{2} = \frac{p}{q}$ за $p,q \in \mathbb{N}$. Без ограничение на общността (б.о.о.) считаме, че $\mathrm{HOД}(p,q)=1$, т.е. числата p,q са взаимно прости. Тогава $\sqrt{2}q=p$ и $\left(\sqrt{2}q\right)^2=p^2\Rightarrow 2q^2=p^2$. Понеже $2\mid p^2$, то значи $2\mid p$ или p=2r за някое $r\in \mathbb{N}$. Заместваме p: $2q^2=(2r)^2=4r^2$, следователно сега $q^2=2r^2$. Сега имаме $2\mid q^2\Rightarrow 2\mid q$. Оказва се, че p,q са четни, което е противоречие с нашето допускане.

Примери като този демонстрират необходимостта от разширяване на понятието за число. Надявам се, че този курс ще покаже, че тази необходимост далеч не се изчерпва с възможността да намираме корени на полиноми с цели коефициенти (например $x^2-2=0$). Като най-близък до интуцията, която имате от досегашния си опит, е моделът на реалните числа като множеството $\mathbb R$ от всички безкрайни десетични дроби. От физическа гледна точка, ако "мерим" някаква физическа величина, това винаги става с някаква (все по-голяма с развитието на технологиите) точност. Нека мерим величината a (дължина, тегло, време или нещо друго):

- 1. Ако мерим с точност до 1, то съществува $a_0 \in \mathbb{N} \cup \{0\}$, такова че: $a_0 \le a \le a_0 + 1$
- 2. Ако мерим с точност до 0.1, то съществува $a_1 \in \{0,1,2,\dots,9\}$, такова че $a_0.a_1 \leq a \leq a_0.a_1 + 0.1$
- 3. Ако мерим с точност до 0.01, то същестува $a_2 \in \{0,1,2,\ldots,9\}$, такова че $a_0.a_1a_2 \le a \le a_0.a_1a_2 + 0.01$ и т.н.

Тук идва абстракцията: мислим, че можем да продължаваме този процес до безкрайност, и да представим величината a като безкрайната десетична дроб $a_0.a_1a_2\cdots a_n\cdots$.

И тъй, означаваме множеството от всички бекрайни десетични дроби с

$$\mathbb{R} = \{ s \, a_0 \, a_1 a_2 \, \cdots : \ s \in \{+, -\}, \ a_0 \in \mathbb{N} \cup \{0\}, \ a_n \in \{0, 1, \dots, 9\}, n \in \mathbb{N} \}$$

Горното означение не е съвсем точно: възможно е две различни бекрайни десетични дроби да представят едно и също число (такъв ефект има и при \mathbb{Q} : 1/2=3/6). Първият пример е $0.999\cdots=1.000\cdots$. Опитайте се да се убедите в това. Формално, две различни бекрайни десетични дроби $a,b\in\mathbb{R}$ представят едно и също число, ако имаме

Дефиниция 2.2. Равенство на $a, b \in \mathbb{R}$

Нека $a=a_0.a_1a_2\cdots$ и $b=b_0.b_1b_2\cdots$. Казваме, че a и b са равни като реални числа, ако имат еднакви знаци (знаците могат да са различни само ако и двете дроби са нулеви) и или $a_i=b_i$ за всички $i\in\{0,1,2,\ldots\}$ (тоест десетичните им представяния съвпадат), или съществува $n\in\mathbb{N}\cup\{0\}$ такова, че $a_i=b_i$ за всички $i\in\{0,1,2,\ldots,n-1\}$, $a_n=b_n+1$ и $a_j=0,\,b_j=9$ за всички $j\in\{n+1,n+2,\ldots\}$ (тоест $a_0.a_1a_2\cdots a_{n-1}a_n000\cdots=a_0.a_1a_2\cdots a_{n-1}(a_n-1)999\cdots$).

От училище ви е известно, че всяко рационално число може да бъде представено като крайна или безкрайна периодична дроб, значи имаме $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

Дефиниция 2.3. Сравняване на $a, b \in \mathbb{R}$

1. Ако $a \ge 0, b \ge 0$, то

$$a \leq b \iff egin{cases} a_i = b_i, & \forall \, i \in \{0,1,2\dots\} \\ \text{или} \\ \exists \, n \in \mathbb{N} \cup \{0\}, & a_i = b_i \, \forall \, i \in \{0,1,\dots,n-1\} \, \, \text{и} \, \, a_n < b_n \end{cases}$$

2. Ако $a \leq 0, b \geq 0$, то $a \leq b$

3. Ако
$$a \le 0, b \le 0$$
, то $a \le b \iff |a| \ge |b|$

Ако $a \leq b$ и a, b не са равни, то пишем a < b. По този начин вече можем да сравняваме бекрайни десетични дроби или, иначе казано, в множеството \mathbb{R} има дефинирана наредба.

За да говорим за безкрайните десетични дроби като за числа, е важно и да можем да извършваме алгебричните операции събиране и умножение с тях (и при това основните закони за събирането и умножението да остават в сила). Да, това може да се направи, и тези, които се интересуват, могат да намерят съответните формални дефиниции и строго проверка на законите в учебника на Садовничий и Сендов. Доста е дълго, защото винаги може да има пренос, който да промени десетичния запис на началото. Неформалната идея обаче е ясна: "отрязваме" безкрайните десетични дроби, които ще събираме (или умножаваме) до n-тия знак след десетичната точка и събираме (или умножаваме) получените крайни десетични дроби. Идеята е, че сумата на крайните десетични дроби е близо (колко близо зависи от n) до сумата на безкрайните десетични дроби.

3 Ограничени множества от реални числа, горна и долна граница, супремум и инфимум

Сега можем да забравим за природата на елементите на \mathbb{R} и да работим само с тяхната наредба. Основните свойства на наредбата са описани в началото на следващата лекция.

Дефинициите от тази секция са първото ново знание, което ще бъде постоянно използвано през целия курс по ДИС1 (също и ДИС2). В тези дефиниции A е подмножество на \mathbb{R} (и е важна само наредбата в \mathbb{R}).

Дефиниция 3.1. Множество, ограничено отгоре. Множество, ограничено отдолу

Казваме, че A е ограничено отгоре, ако съществува $M \in \mathbb{R}$ такова, че всички елементи a на A са по-малки или равни на M ($\exists \ M \in \mathbb{R} \ \forall \ a \in A: \ a \leq M$). Ако $M \geq a$ за всяко $a \in A$, то M се нарича горна граница (мажоранта) на A. Друг начин да запишем същото е $A \subset (-\infty, M]$.

Съвсем аналогично се дефинира множество, ограничено отдолу: A е ограничено отдолу, ако съществува $M \in \mathbb{R}$ такова, че всички елементи a на A са по-големи или равни на M ($\exists M \in \mathbb{R} \ \forall a \in A : a \geq M$). Всяко $M \in \mathbb{R}$, за което $A \subset [M, +\infty)$, се нарича долна граница (миноранта) на A.

Едно от нещата, на които ще се учим, е умението за отрицание (negation) на формални твърдения. В следващите няколко реда ще упражним именно него.

Пример 3.2. A не е ограничено отгоре точно когато за всяко реално число съществува елемент на A, който е по-голям от числото:

$$\neg (\exists M \in \mathbb{R} \ \forall a \in A : a \leq M) \equiv$$

$$\equiv \forall M \in \mathbb{R} \ \neg (\forall a \in A : a \leq M) \equiv$$

$$\equiv \forall M \in \mathbb{R} \ \exists a \in A : \neg (a \leq M) \equiv$$

$$\equiv \forall M \in \mathbb{R} \ \exists a \in A : a > M.$$

Дефиниция 3.3. Ограничено множество

A се нарича ограничено, ако A е ограничено отгоре и A е ограничено отдолу.

Следната дефиниция е централната за тази лекция:

Дефиниция 3.4. Точна горна граница. Точна долна граница

Нека $A \subset \mathbb{R}$ е непразно множество, ограничено отгоре. Точна горна граница или супремум на A (sup A) наричаме най-малката от всички горни граници на A, т.е.

- 1. $a \leq \sup A \, \forall \, a \in A \, (\sup A \in \operatorname{Горна} \Gamma)$ граница на A).
- 2. $\forall c < \sup A \exists a \in A : a > c$ (няма по-малка горна граница от $\sup A$).

Нека $A \subset \mathbb{R}$ е непразно множество, ограничено отдолу. Точна долна граница или инфимум на A (inf A) наричаме най-голямата от всички долни граници на A.

Пример 3.5. Да видим някои примери за супремуми на множества:

- Супремумът на [0,1] е $\sup [0,1]=1$
- $\sup (0,1) = 1$
- $\sup\left\{1-\frac{1}{n}:n\in\mathbb{N}\right\}=1$
- $\sup \left[(-2,0) \cup \left\{ \frac{1}{2} \right\} \right] = \frac{1}{2}$

Пример 3.6. Какво означава, че c не е $\sup A$? Това е вярно точно когато $\exists a \in A : a > c$ (c не е горна граница за A) или $\exists d < c \ \forall a \in A : a \leq d$ (съществува по-малка горна граница). Използвахме

$$\neg (\forall c < \sup A \exists a \in A : a > c) \equiv$$

$$\equiv \exists c < \sup A \forall a \in A : a < c.$$

Упражнение 3.7. Докажете, че $\sup (A + B) = \sup A + \sup B$, където сме дефинирали $A + B \coloneqq \{a + b : a \in A, b \in B\}$.

Доказателство. Трябва да проверим, че сборът от супремумите на A и B е горна граница на множеството A+B, от една страна, а от друга - да видим, че всяко $c<\sup A+\sup B$ не се явява горна граница на A+B.

Първо ще се убедим, че $\sup A + \sup B$ е горна граница на A + B. Ползваме означенията $a \in A, b \in B$. Нека $x = a + b \in A + B$ е произволен елемент на множеството A + B. Понеже

$$\begin{cases} a \in A, \sup A \ge a \\ b \in B, \sup B \ge b \end{cases} \implies x = a + b \le \sup A + \sup B$$

Следователно $\forall x \in A+B: \sup A+\sup B \geq x$ и значи $\sup A+\sup B$ е горна граница за A+B.

Сега, взимаме произволно $c<\sup A+\sup B$. Да положим $\varepsilon=\sup A+\sup B-c>0$. Тогава $\frac{\varepsilon}{2}=\frac{\sup A+\sup B-c}{2}>0$ и следователно имаме

$$\begin{cases} \sup A - \frac{\varepsilon}{2} < \sup A & \Rightarrow & \exists a_0 \in A, \ a_0 > \sup A - \frac{\varepsilon}{2} \\ \sup B - \frac{\varepsilon}{2} < \sup B & \Rightarrow & \exists b_0 \in B, \ b_0 > \sup B - \frac{\varepsilon}{2} \end{cases}$$

Следователно $a_0 + b_0 > \sup A + \sup B - \varepsilon$. Показахме, че $a_0 + b_0 > c$, $x_0 := a_0 + b_0 \in A + B$ и следователно c няма как да бъде горна граница на A + B.

Ще докажем, че в множеството от безкрайните десетични дроби е в сила следното изключително важно свойство:

Твърдение 3.8. (Принцип за непрекъснатост) Всяко ограничено отгоре непразно множество $A \subset \mathbb{R}$ има супремум. Всяко ограничено отдолу непразно множество $A \subset \mathbb{R}$ има инфимум.

Пример 3.9. Ако
$$A = \{q \in \mathbb{Q} : q \ge 0, q^2 \le 2\}$$
, то $\sup A = \sqrt{2} \notin \mathbb{Q}$.

Дефиниция 3.10. *Цяла част на* $x \in \mathbb{R}$

Нека $x \in \mathbb{R}$ - произволно. Цяла част на числото x наричаме най-голямото цяло число $z \in \mathbb{Z}$, ненадвишаващо x. Бележим го с |x|. Формално,

$$|x| = \max \{ z \in \mathbb{Z} : z \le x \}$$

За тази функция ($\lfloor \cdot \rfloor : \mathbb{R} \to \mathbb{Z}$) могат да се съставят много примери и лесно да се начертае характерната стъпаловидна графика. Така например, $|-\pi| = -4; |\pi| = 3; |0| = 0.$

Доказателство. Първо да разгледаме случая, когато $B:=A\cap [0,+\infty)$ не е празно. Ясно е, че супремумите на A и B, ако съществуват, трябва да съвпадат. Ясно е също, че B е ограничено отгоре. Тогава $\{\lfloor a \rfloor : a \in B\}$ е ограничено отгоре подмножество на $\{0\} \cup \mathbb{N}$, следователно е крайно.

- 1. Избираме $\overline{a_0} = \max \{ \lfloor a \rfloor : a \in B \}$ най-голямата цяла част на число, което е елемент на B.
 - Нека сега означим $B_1 = \{a \in B : a = \overline{a_0} \cdot a_1 a_2 \cdots \} \neq \emptyset$ реалните числа от B с цяла част точно $\overline{a_0}$.
- 2. Избираме $\overline{a_1} = \max \{a_1 \in \{0, 1, \dots, 9\} : \exists a \in B_1, a = \overline{a_0} \cdot a_1 a_2 \cdots \}$ това е максималното такова число измежду $0, 1, \dots, 9$, за което има елемент от B от горния вид. В някакъв смисъл най-голям елемент на множеството, ако сравняваме елементите само по a_0 и a_1 (всички елементи са от вида $a = a_0 \cdot a_1 a_2 \cdots$, като в записа участва десетична точка).
 - Аналогично строим $B_2 = \{a \in B_1 : a = \overline{a_0} \cdot \overline{a_1} a_2 \cdots \} \neq \emptyset$.
- 3. Продължаваме с $\overline{a_2} = \max \{a_2 \in \{0,1,\ldots,9\} : \exists a \in B_2, a = \overline{a_0} \cdot \overline{a_1} a_2 \cdots \}$ и т.н.

Така можем да построим $\overline{a} = \overline{a_0} \cdot \overline{a_1} \ \overline{a_2} \cdots \in \mathbb{R}$. Твърдим, че $\overline{a} = \sup B$.

Първо да проверим, че $\overline{a} \ge a$ за всяко $a \in B$. Фиксираме произволно $a \in B$. Ако $\overline{a}_i = a_i$ за всяко $i \in \{0,1,2\dots\}$, то $\overline{a} = a$. В противен случай съществува $n \in \mathbb{N} \cup \{0\}$ такова, че $a_i = \overline{a}_i$ за всички $i \in \{0,1,\dots,n-1\}$ и $a_n \ne \overline{a}_n$. Случаят $a_n > \overline{a}_n$ е невъзможен от начина на постоение на \overline{a}_n . Следователно $a_n < \overline{a}_n$, откъдето имаме $\overline{a} \ge a$. С това проверихме, че \overline{a} е горна граница за B. Нека сега $d < \overline{a}$ - произволно. Необходимо е да покажем, че d < a за някое $a \in B$, позовавайки се на Дефиниция 1.4.

Тъй като
$$d<\overline{a},$$
 съществува $n\in\mathbb{N}$ такова, че
$$\begin{cases} d_0&=\overline{a_0}\\d_1&=\overline{a_1}\\\dots\\d_n&=\overline{a_n}\\d_{n+1}<\overline{a_{n+1}}. \end{cases}$$

Но $\overline{a_{n+1}} = \max \{a_{n+1} \in \{0,1,\ldots,9\} : \exists \ a \in B_n, a = \overline{a_0} \cdot \overline{a_1} \ \overline{a_2} \cdots \overline{a_n} \ a_{n+1} \cdots \}$ Следователно съществува $a \in B$, за което $a = \overline{a_0} \cdot \overline{a_1} \ \overline{a_2} \cdots \overline{a_n} \ \overline{a_{n+1}} a_{n+2} \cdots$ и значи a > d. Следователно d не е горна граница за B.

Ако $A \subset (-\infty, 0)$, прилагаме подобна конструкция към $\{|a|: a \in A\}$, но вместо максимални вземаме минимални елементи и полученото число вземаме със знак минус.

ЗАДАЧИ ЗА ОБМИСЛЯНЕ ВКЪЩИ (до следващата седмица):

Упражнение 3.11. Да се докаже, че A е ограничено точно тогава, когато съществува $M \geq 0$ такова, че $|a| \leq M$ за всяко $a \in A$.

Упражнение 3.12. (Принцип на трансфинитната индукция) Нека M е непразно множество от реални числа. Нека за всяко $b \ge a$ знаем, че ако $[a,b) \subset M$, то съществува $\varepsilon > 0$ такова, че $[a,b+\varepsilon) \subset M$. Да се докаже, че $M = [a,+\infty)$.

Забележка: В горното при b=a формално получаваме $[a,a)=\emptyset\subset M$ влече $[a,a+\varepsilon)\subset M$ за някое положително $\varepsilon.$