16-350 Spring'17 Planning Techniques for Robotics

Introduction; What is Planning for Robotics?

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

About Me

- My Research Interests:
 - Planning, Decision-making, Learning
 - Applications: planning for complex robotic systems including aerial and ground robots, manipulation platforms, small teams of heterogeneous robots
- More info: http://www.cs.cmu.edu/~maxim
- Search-based Planning Lab: http://www.sbpl.net

What is Planning?

• According to Wikipedia: "Planning is the process of thinking about an organizing the activities required to achieve a desired goal."

What is Planning for Robotics?

• According to Wikipedia: "Planning is the process of thinking about an organizing the activities required to achieve a desired goal."

• Given

- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- -a model of the world M^W
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- cost function C of robot actions
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

• Given

- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- a model of the world M^{W}
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- *− cost function C of robot actions*
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

Planning for omnidirectional robot:

What is M^R ?

What is M^{W} ?

What is $s^{R}_{current}$?

What is $s^{W}_{current}$?

What is C?

What is G?

• Given

- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- -a model of the world M^W
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- *− cost function C of robot actions*
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

Planning for omnidirectional drone:

What is M^R ?

What is M^{W} ?

What is $s^R_{current}$?

What is $s^{W}_{current}$?

What is C?

What is G?

MacAllister et al., 2013

• Given

- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- -a model of the world M^W
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- *− cost function C of robot actions*
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

Planning for autonomous navigation:

What is M^R?
What is M^W?
What is s^R_{current}?
What is s^W_{current}?
What is C?
What is G?

Likhachev & Ferguson, '09; part of Tartanracing team from CMU for the Urban Challenge 2007 race

• Given

- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- a model of the world M^{W}
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- *− cost function C of robot actions*
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

Planning for autonomous flight among people :

Narayanan et al., 2012

What is M^R ?
What is M^W ?
What is $s^R_{current}$?
What is $s^W_{current}$?
What is C?
What is G?

• Given

- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- a model of the world M^{W}
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- *− cost function C of robot actions*
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

Planning for a mobile manipulator robot opening a door:

What is M^R ?

What is M^{W} ?

What is $s^R_{current}$?

What is $s^{W}_{current}$?

What is C?

What is G?

• Given

- model (states and actions) of the robot(s) $M^R = \langle S^R, A^R \rangle$
- a model of the world M^{W}
- current state of the robot $s^{R}_{current}$
- current state of the world $s^{W}_{current}$
- *− cost function C of robot actions*
- -desired set of states for robot and world G

• Compute a plan π that

- prescribes a set of actions $a_1, ... a_K$ in A^R the robot should execute
- reaches one of the desired states in G
- (preferably) minimizes the cumulative cost of executing actions $a_1, ... a_K$

Planning for a mobile manipulator robot assembling a birdcage: Cohen et al., 2015

What is M^R ?
What is M^W ?
What is $s^R_{current}$?
What is $s^W_{current}$?
What is C?
What is G?

Planning within a Typical Autonomy Architecture

Planning vs. Trajectory Following vs. Control

Class Logistics

• Instructor:

Maxim Likhachev – <u>maxim@cs.cmu.edu</u>

• Website:

http://www.cs.cmu.edu/~maxim/classes/robotplanning

Mailing List for Announcements and Questions:

I will set it up shortly

Class Logistics

- Books (optional):
- Planning Algorithms by Steven M. LaValle
- Heuristic Search, Theory and Applications by Stefan Edelkamp and Stefan Schroedl
- Principles of Robot Motion, Theory, Algorithms, and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun
- Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig

Class Prerequisites

- Knowledge of programming (e.g., C, C++)
- Knowledge of data structures
- Some prior exposure to robotics (e.g., Intro to Robotics class)

Class Objectives

- Understand and learn how to implement most popular planning algorithms in robotics including heuristic search-based planning algorithms, sampling-based planning algorithms, task planning, planning under uncertainty and multi-robot planning
- Learn basic principles behind the design of planning representations
- Understand core theoretical principles that many planning algorithms rely on and learn how to analyze theoretical properties of the algorithms
- Understand the challenges and basic approaches to interleaving planning and execution in robotic systems
- Learn common uses of planning in robotics

Tentative Class Schedule

Data	Day	Tonic	HW out	HW due
Date	Day	Topic Topic	HW out	Hw due
17-Jan 19-Jan		Introduction; What is Planning?		
	_	planning representations: grid-based graphs		
24-Jan	_	search algorithms: A*		
26-Jan		heuristics, weighted A*, Backward A*	1.04/4	
31-Jan 2-Feb		interleaving planning and execution: Anytime heuristic search	HW1	
7-Feb		interleaving planing and execution: Freespace assumption, Incremental heuristic search		
9-Feb		interleaving planning and execution: Limited Horizon search, LRTA* planning representations: lattice-based graphs, explicit vs. implicit graphs		
14-Feb				
16-Feb		case study: planning for autonomous driving planning representations: PRM for continuous spaces		HW1
	_		LIWA	HMI
21-Feb	_	planning representations/search algorithms: RRT, RRT-Connect	HW2	
23-Feb	_	planning representations/search algorithms: RRT*		
28-Feb		case study: planning for mobile manipulation and articulated robots		
2-Mar		search algorithms: IDA*, Beam Search, Multi-goal A*		
7-Mar	_	case study: planning for exploration and surveillance tasks	1042	LIMO
9-Mar		search algorithms: Markov Property, dependent vs. independent variables, Dominant Relationship	HW3	HW2
14-Mar		SPRING BREAK - NO CLASS		
16-Mar	_	SPRING BREAK - NO CLASS		
21-Mar		planning representations: state-space vs. symbolic representation for task planning		
23-Mar		search algorithms: symbolic task planning algorithms		
28-Mar		planning under uncertainty: Minimax formulation		
30-Mar		planning under uncertainty: Markov Decision Processes		HW3
4-Apr	_	planning under uncertainty: VI, RTDP for solving Markov Decision Processes		
6-Apr		final project proposals		
11-Apr	_	case study: planning for landing under uncertainty		
13-Apr		planning under uncertainty: Rewards version of Markov Decision Processes		
18-Apr		exam review		
20-Apr		SPRING CARNIVAL - NO CLASS		
25-Apr		exam		
27-Apr		multi-robot planning: centralized planning		
2-May		multi-robot planning: decentralized planning		
4-May	Thu	final project presentations		

Three Homeworks + Final Project

- All homeworks and the final project are individual (no groups)
- Homeworks are programming assignments based on the material
- Final project is a research-like project. For example:
 - to develop and implement a planner for a robot planning problem of your choice
 - to extend a particular planning algorithm to improve its running time or to handle additional conditions
 - to prove novel properties of a planning algorithm

Class Structure

Grading

Three homeworks	33%
Exam	20%
In-class pop quizzes	10%
Final project	32%
Participation	5%

• Exam is tentatively scheduled for April 25 (no final exam)

Late Policy

- 3 free late days
- No late days may be used for the final project!
- Each additional late day will incur a 10% penalty

Questions about the class?