REGULADOR ZENER Relatório 06 de ELT 315

Wérikson Frederiko de Oliveira Alves - 96708 Universidade Federal de Viçosa (UFV), Viçosa, Brasil e-mails: werikson.alves@ufv.br

28 de outubro de 2020

Introdução:

Este relatório contém uma analise teórica de um circuito Zener, seguidos de dados coletados a partir da simulação realizada pelo Software **Ques**, tendo por objetivo verificar a operação de um circuito regulador Zener, considerando-se os parâmetros V_S e R_S .

Materiais Utilizados:

• 02 Resistor de $1k\Omega$;

• 01 diodo Zener 1N756 (8,2V 400mW).

Parte Teórica:

Para o circuito da Figura 1, considerando $R_S=1$ k $\Omega,\,R_L=1$ k $\Omega,\,V_Z=8,2$ V e $P_{max}=400$ mW, calcule:

Figura 1: Circuito teórico.

1) Quais os valores máximos e mínimos de V_I para o diodo trabalhar na região zener?

O $V_{I_{min}}$ é a tensão miníma de entrada para que o zener comece a conduzir, logo para encontrar o seu valor, apliquemos um divisor de tensão,

$$V_Z = V_L = V_I \cdot \frac{R_L}{R_S + R_L}$$

$$V_{I_{min}} = V_Z \cdot \frac{R_L + R_S}{R_I} = 8, 2 \cdot \frac{1k + 1k}{1k} = 16, 4V$$

Já $V_{I_{max}}$ é a tensão máxima de entrada para que o zener não queime, logo para encontrar seu valor apliquemos LKT,

$$V_{I_{max}} = R_S \cdot I_R + V_Z = R_S \cdot \left(\frac{P_{max}}{V_Z} + \frac{V_Z}{R_L}\right) + V_Z$$
$$V_{I_{max}} = 1k \cdot \left(\frac{400m}{8 \cdot 2} + \frac{8 \cdot 2}{1k}\right) + 8 \cdot 2 = 65 \cdot 18V$$

2) Considerando $V_I=16$ V, quais os valores de R_L para o circuito trabalhar na região zener?

R:

Para o cálculo de $R_{L_{min}}$ utilizaremos novamente um divisor de tensão, temos

$$\begin{split} V_Z = V_L = V_{I_{min}} \cdot \frac{R_L}{R_S + R_L} \\ \\ R_{L_{min}} = V_Z \cdot \frac{R_S}{V_I - V_Z} = 8, 2 \cdot \frac{1k}{16 - 8, 2} \approx 1,05k\Omega \end{split}$$

Para o cálculo de $R_{L_{max}}$, inicialmente utilizaremos LKC, chegando em

$$I_{L_{min}} = I_R - I_{L_{max}}$$

$$I_{L_{min}} = \frac{V_I - V_Z}{R_S} - \frac{P_{max}}{V_Z}$$

agora, para encontrarmos $R_{L_{max}}$, apliquemos a lei de ohm,

$$R_{L_{max}} = \frac{V_Z}{I_{L_{min}}} \approx -200\Omega$$

Como $I_Z \geq I_R$ este resultado é considerado um absurdo, e nos mostra que não existe um valor para $R_{L_{max}}$, ou seja, como $R_{L_{max}} \geq R_{L_{min}}$ existe apenas o mínimo. Sendo assim, para que o Zener esteja em sua faixa de operação $R_L \geq 1050, 3\Omega$.

Teoria - Cálculos Práticos:

Ainda considerando a Figura 1.

3) Qual a corrente máxima no zener?

R:

Considerando $V_Z=8,2~{\rm V}$ e $P_Z=400~{\rm mW}$ (diodo zener), temos,

$$I_{L_{max}} = \frac{P_{max}}{V_Z} \approx 48,78mA$$

4) Qual é a tensão nos terminais a e b suficiente para disparar o diodo zener?

A tensão que aciona o diodo zener é $V_Z \ge 8,2$ V.

5) Qual valor de $R_{L_{min}}$ no circuito da Figura 1 que garanta que $V_L = V_Z$?

R:

Considerando $V_I=16~{\rm V}$ e $R_S=1k\Omega$, temos,

$$R_{L_{min}} = V_Z \cdot \frac{R_S}{V_I - V_Z} \rightarrow R_{L_{min}} = 1051, 3k\Omega$$

.

6) Qual o valor de $R_{L_{max}}$ no circuito da Figura 1 que garanta que $V_L = V_Z$?

R:

Considerando $V_I=16~{\rm V}$ e $R_S=1k\Omega$, temos,

$$R_{L_{max}} = \frac{V_Z}{I_{L_{min}}}$$

e como mencionado anteriormente (na parte teórica) essa equação resulta em um valor absurdo, logo consideremos $R_{L_{max}} = +\infty~\Omega.$

7) Qual o valor de ${\cal V}_{I_{min}}$ no circuito da Figura 1 que garanta que ${\cal V}_L={\cal V}_Z$?

R٠

Considerando $R_L=1~{\rm k}\Omega$ e $R_S=1~{\rm k}\Omega$, temos,

$$V_{I_{min}} = V_Z \cdot \frac{R_L + R_S}{R_L} \rightarrow V_{I_{min}} = 16,4V$$

8) Qual o valor de ${\cal V}_{I_{max}}$ no circuito da Figura 1 que garanta que ${\cal V}_L={\cal V}_Z$?

R

Considerando $R_L = 1 \text{ k}\Omega \text{ e } R_S = 1 \text{ k}\Omega$, temos,

$$V_{I_{max}} = R_S \cdot (\frac{P_{max}}{V_Z} + \frac{V_Z}{R_L}) + V_Z \rightarrow V_{I_{max}} = 65,18V$$

9) Qual a especificação de potencia para a fonte?

R:

Considerando $V_I=50$ V, $R_L=1$ k Ω e $R_S=1$ k Ω , temos,

$$P_F = P_{R_S} + P_{R_L} = \frac{(50 - 8, 2)^2}{10^3} + \frac{(8, 2)^2}{10^3} = 1,81W$$

Parte Prática:

a) Monte o circuito da Figura 1 e preencha a tabela com os valores obtidos da simulação.
R:

Figura 2: Cicuito prático.

Tabela 1: Valores Simulados.											
$R_L(\Omega)$	$1 \text{ k}\Omega$										
$V_I(V)$	1	2	4	8	10	12	13	14	15	16	
$V_{R_L}(V)$	0,5	1	2	4	5	6	6,5	7	7,5	8	
$V_{R_S}(V)$	0,5	1	2	4	5	6	6,5	7	7,5	8	
$I_{R_S}(mA)$	0,5	1	2	4	5	6	6,5	7	7,5	8	
$I_{R_L}(mA)$	0,5	1	2	4	5	6	6,5	7	7,5	8	
$I_Z(mA)$	0	0	0	0	0	0	0	0	0	0	

$R_L(\Omega)$	1 kΩ	1 kΩ	$1 \text{ k}\Omega$	1 kΩ	1 kΩ	$1 \text{ k}\Omega$	$1 \text{ k}\Omega$	$1 \text{ k}\Omega$	$1 \text{ k}\Omega$	1 kΩ
$V_I(V)$	17	18	20	22	25	30	35	40	45	50
$V_{R_L}(V)$	8,18	8,21	8,25	8,27	8,29	8,33	8,36	8,38	8,41	8,43
$V_{R_S}(V)$	8,82	9,79	11,8	13,7	16,7	21,7	26,6	31,6	36,6	41,6
$I_{R_S}(mA)$	8,82	9,79	11,8	13,7	16,7	21,7	26,6	31,6	36,6	41,6
$I_{R_L}(mA)$	8,18	8,21	8,25	8,27	8,29	8,33	8,36	8,38	8,41	8,43
$I_Z(mA)$	0,64	1,57	3,51	5,46	8,41	13,3	18,3	23,2	28,2	33,1

b) Conclusão:

R:

De acordo com a tabela,

- $V_{R_L} o C$ resce de forma linear até atingir V_Z , após isso tende-se a ficar fixada nesse valor.
- $V_{R_S} \to C$ resce linearmente também, porém ao ultrapassar V_Z , muda-se a sua taxa de crescimento, ou seja, a inclinação da sua reta aumentou.
- $I_{R_S} o S$ emelhantemente ao V_{R_S} , o valor de I_{R_S} cresce linearmente também, porém quando o circuito passar de V_Z , a inclinação da sua reta aumenta também, tendendo a crescer mais rapidamente.
- $I_{\mathbf{R_L}} \to \acute{\mathbf{E}}$ semelhante a V_{R_L} , crescendo linearmente até o circuito atingir V_Z , depois, tende a fixar neste valor, já que V_{R_L} também se fixou em um valor de tensão, sendo diretamente proporcional a ele.
- $I_Z \to \text{Esta}$ grandeza é dada pela diferença das correntes acimas, $I_Z = I_{R_S} I_{R_L}$, logo com I_{R_L} fixado em um valor especifico, e I_{R_S} aumentando para tensões superiores a V_Z , temos inicialmente (Zener desligado) a sua corrente sendo zero, e depois (Zener ligado) a sua corrente começa a crescer linearmente.

Conclusão:

Portanto, podemos perceber que o diodo zener entrará em funcionamento quando é submetido a uma tensão maior que 17 V, ou seja, uma DDP maior do que sua tensão Zener (V_Z) . Desta forma, a sua tensão é fixada em V_Z , e como ele esta em paralelo com uma carga R_L ele pode fixar uma tensão sobre a mesma, regulando-a.