Análisis II - Análisis Matemático II Matemática 3

Examen Final - 14/12/2017

Nombre:

L. U.:

Ej. 1	Ej. 2	Ej. 3	Ej. 4	Nota

1. (Teorema de Green) Sea F=(P,Q) un campo vectorial de clase \mathcal{C}^1 en \mathbb{R}^2 y sea C una curva en \mathbb{R}^2 suave a trozos, cerrada y simple que encierra una región R que es de tipo III. Probar que

$$\iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{C^{+}} P dx + Q dy,$$

donde C^+ indica que C está orientada en sentido antihorario.

2. Sean $\phi: \mathbb{R}^3 \to \mathbb{R}$ una función escalar de clase \mathcal{C}^2 y $F: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vectorial de clase \mathcal{C}^2 . Llamemos W al campo

$$W = \nabla \phi + rot F$$
.

Verificar que:

- a) $\int_{\Omega} \Delta \phi \, dV = \int_{\partial \Omega} W \, dS$ para toda región $\Omega \subset \mathbb{R}^3$, donde $\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$.
- b) $\int_S rot W \, dS = \int_C rot X \, ds$ donde $S \subset \mathbb{R}^3$ es una superficie orientable y $C = \partial S$ su borde recorrido con la orientación inducida por la de S.
- 3. Sea I un intervalo abierto de la recta y $A:I\to\mathbb{R}^{n\times n}$ una función continua a valores matriciales. Probar que las soluciones del sistema lineal homogéneo de n ecuaciones

$$X'(t) = A(t)X(t)$$

forman una espacio vectorial de dimensión n.

4. Considere el sistema

$$\begin{cases} x' = ax - by \\ y' = bx + ay \end{cases}$$

con $a,b\in\mathbb{R}$. Hallar todos los $a,b\in\mathbb{R}$ para los cuales todas las soluciones del sistema se mantienen acotadas.

Justifique todas sus respuestas.