SC435 Introduction to Complex Networks Mathematics of Networks-1

Representation of networks

- The network consist of entities connected with each other
- The structure of these connections are represented through graphs.
- A graph is represented by two sets
 - A vertex set V of the entities participating in the network. The size of the network n(N) is the cardinality of this set.
 - An edge set E (also called link or tie set) of the connections between vertices. Usually, m(L) denotes the number of edges.

Graph Terminology

Types of graphs

- Simple graph: don't have loops/multiple edges
- Multigraph: have multiple edges
- Pseudograph: multiple edges and self-loops
- Simple-directed graph: simple but directed
- Directed multigraph: directed with multiple edges and loops
- Mixed graphs: Directed and Undirected (enzymes/metabolic network)

Special Graphs

- complete graph (K_n)
- cycles (C_n)
- Wheel (W_n)
- n-cube (hypercube) (Q_n)
- Complete Bipartite graphs $(K_{n,m})$

Adjacency Matrix

- Mathematically convenient way of representing a network.
- Adjacency matrix of a simple graph (boolean matrix)

$$A_{ij} = egin{cases} 1 & ext{if there is an edge between vertices } i ext{ and } j \ 0 & ext{otherwise} \end{cases}$$

For directed graph (digraph)

$$A_{ij} = egin{cases} 1 & ext{if there is an edge from } j ext{ and } i \ 0 & ext{otherwise} \end{cases}$$

example

/0	1	1	0	0	٥١
1	0	0	1		0 0 0 1 1 0
1	0	0		1	0
0	1	0	0	0	1
0	0	1	0	0	1
/0	0	0	1	1	0/

	/0	1	0	0	0	0\
ı	0	0	0	1	0	0
	1	0	0	0	1	0
	0	0	0	0	0	1
	0	0	0	0	0	1
	0/	0	0	0	0	0/

/0	2	1	0	0	0 \
2	0	0	0.5	0	0
1	0	0	0	2	0
0	0.5	0	0	0	1.5
0	0	2	0	0	1
/0	0	0	1.5	1	0 /

Adjacency Matrix

- For the case of no self loops, the diagonal of the matrix is all 0.
- For undirected networks, since the existence of edge (i,j) assumes the existence of the edge (j,i), matrix A is symmetric. For undirected graph A is in general not symmetric.
- If node *i* has a self edge then we set $A_{ii} = 2$ for undirected graph and $A_{ii} = 1$ for directed graphs.
- Multiedges are represented by setting the corresponding entry equal to the number of distinct edges.

Symmetric Adjacency matrix

- The adjacency matrix for simple undirected network is real and symmetric. $(A^T = A)$
- Eigenvalues are all real.
- Eigenvectors are necessarily perpendicular
- Always diagonalizable $A = VDV^T$
- For repeated eigenvalues orthonormal basis of eigenvectors can still be found (Gram-Schmidt Process)
- Principal Axis Theorem: If A is a real symmetric $n \times n$ matrix, there is always an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A.

Other representations

• Incidence Matrix (includes info about the edges): The incidence matrix with respect to ordering V and E is the $n \times m$ matrix $M = \{m_{ij}\}$, where

$$m_{ij} = egin{cases} 1 & ext{when edge } e_i ext{ is incident with vertex } v_i \ 0 & ext{otherwise} \end{cases}$$

- Adjacency list: specify the vertices that are adjacent to each vertex in the graph.
- Functional representation: useful for multigraph and some special graphs such as weighted and signed graphs.
- Graph Laplacian: $L_{ij} = \delta_{ij} k_i A_{ij}$

Nodes and Links

Fundamental question ⇒ Definition of nodes and links

Network	Node	Edge
Internet	Computer or Router	cable or wireless data
		connection
World Wide Web	Web page	hyperlink
Citation Network	Article Patent	Citation
Friendship Network	Person	Friendship
Twitter	Users	hashtags
Metabolic Network	Metabolite	Metabolic Reaction
Neural Network	Neuron	Synapse
Food web	Species	Predation

Nodes and Links

Possible Networks

- undirected (simple): Friendship
- directed acyclic: citation, food webs, epidemiological
- directed: twitter, neuronal, economic
- bipartite: collaboration, rail, airline

Constructing Networks

Brain Network

[DOUBT]

Brain Network

- Multiscale Organization (How to define nodes & links)
- Different experiments: Information (How, What??)

class	Measurement	Type of network
Structural	anatomical connections	directed
Functional	statistical dependence (time do- main)	directed/undirected
Effective	causal relationship	directed
Scale	Structural	Functional
Microscopic	Invasive methods (electron microscopy), (neurons & synapse)	Invasive electrophysiology (neurons & correlations)
Mesoscopic	Invasive tract tracing (parcellation & pathways)	Invasive electrophysiology (electrodes & correlations)
Macroscopic	Diffusion MRI (voxels, sensors)	fMRI, EEG, MEG ((electrodes & correlations))

 $\mathsf{Structural} \Longleftrightarrow \mathsf{Functional}$

 $micro \iff macro$

Constructing Networks

Data: Chennu et. al. PlosOne (2016)

Constructing Networks Brain Network

Cocitation coupling

 The Cocitation of two vertices i and j in a directed network is the number of outgoing edges pointing to both i and j

Cocitation of nodes i and j is

$$C_{ij} = \sum_{k=1}^{n} A_{ik} A_{jk}$$

Cocitation Matrix

$$C = AA^T$$

Bibliographic coupling

The bibliographic coupling of two vertices i and j in a directed network is the number of nodes that they both point to

- In order for node k to contribute to the bibliographic coupling of i and j, the following needs to be true: $A_{ki}A_{kj} = 1$.
- Bibliographic coupling of nodes i and j:

$$B_{ij} = \sum_{k=1}^{n} A_{ki} A_{kj} = \sum_{k=1}^{n} A_{ik}^{T} A_{kj}$$

 The n × n adjacency matrix of the corresponding bibliographic coupling network is:

$$B = A^T A$$

• diagonal elements of $B(B_{ii})$:

Example

Bibliographic vs Cocitation coupling

- While both coupling methods are similar they can give completely different structure: Cocitation is heavily based on incoming edges whereas bibliographic coupling is based on outgoing edges.
- They can be used for vertex similarity, higher the cocitation of two papers in a citation network, the more possible is that these papers deal with similar topic.
- The cocitation and bibliographic coupling matrices are used in search algorithms for directed networks and search engines such as Science citation index, HITS etc.

Acyclic Directed Network

- A cycle in a directed network is a closed loop of edges with arrows on each of the edge pointing in the same direction. (real directed networks such as www have cycles)
- Directed Acyclic network/graph (DAG): directed networks that have no cycles are called acyclic networks or DAG.
 Example, citation network
- self edges also count as cycles.

Determining if a network is acyclic

Algorithm for determining if the network is acyclic

- Find a vertex with no outgoing edges.
- If no such vertex exists, the network is cyclic. Otherwise, if such a vertex does exist remove it and all its incoming edges from the network.
- If all the vertices have been removed, the network is acyclic otherwise go to step 1.

Example

Adjacency matrix for a acyclic graph is strictly triangular.

Example

Theorem: All the eigenvalues of an adjacency matrix is zero if and only if the network is acyclic.

 A bipartite (or bigraph) is a network whose nodes can be divided into two disjoint sets U and V such that each edge connects a U node to a V node.

- A bipartite network is defined by the incidence matrix B.
- Incidence matrix (B)

$$B_{ij} = \begin{cases} 1 & \text{if vertex } j \text{ belongs to group } i \\ 0 & \text{otherwise} \end{cases} B \text{ is of size } (g \times n).$$

One mode projection

- It is often convenient to work with direct connections between vertices of one type.
- Two projections possible
- Total number of groups thati and j belong to

$$P_{ij} = \sum_{k=1}^{g} B_{ki} B_{kj}$$

Find projection matrix for projection on groups

One mode projection

One mode projection

Projection on Food

Projection on nutrients

Bipartite Networks One mode projection

Source: Network Science (Barabasi)

One mode projection

Source: Network Science (Barabasi)

One mode projection

Source: Network Science (Barabasi)

Network Measures

Degree

Undirected

- Degree $k_i = \sum_j A_{ij}$
- Number of edges

$$m = \frac{1}{2} \sum_{i} k_i = \frac{1}{2} \sum_{i} \sum_{j} A_{ij}$$

- Mean degree $c = \frac{1}{n} \sum_{i} k_{i} = \frac{2m}{n}$
- Maximum number of possible edges in a simple graph $m_{max} = \binom{n}{2}$
- Connectance or density of a graph

$$\rho = \frac{m}{m_{\text{max}}} = \frac{2m}{n(n-1)} = \frac{c}{n-1}$$

Directed

- In-degree $k_i^{in} = \sum_j A_{ij}$
- out-degree $k_i^{out} = \sum_i A_{ji}$
- Total number of edges in a directed graph

$$m = \sum_{i} k_{i}^{in} = \sum_{i} k_{i}^{out} = \sum_{ij} A_{ij}$$

- Mean in and out degree $c_{in} = c_{out} = \frac{m}{n}$
- Density

$$\rho = \frac{m}{m_{max}} = \frac{m}{n(n-1)}$$

Degree to degree distribution

Important quantities to characterize a sample of N values x_1, \dots, x_n

Mean or average

$$\langle x \rangle = \frac{1}{N} \sum_{i=1}^{N} x_i$$

pth moment:

$$\langle x^p \rangle = \frac{1}{N} \sum_{i=1}^N x_i^p$$

Standard Deviation

$$\sigma = \sqrt{\frac{1}{N} \left(x_i - \langle x \rangle \right)^2}$$

Distribution of x

$$p_{\mathrm{x}} = rac{1}{N} \sum_{i} \delta_{\mathrm{x},\mathrm{x}_{i}} \qquad \left(\sum_{\mathrm{x}} p_{\mathrm{x}} = 1 \quad \int_{\mathrm{x}} d\mathrm{x} \ p_{\mathrm{x}} = 1
ight)$$

Degree to degree distribution

Random Graph

Number of nodes: 4039Number of edges: 88234Average degree: 43.6910

Scale free Network

Number of nodes: 1000Number of edges: 3984Average degree: 7.9680

plot on linear scale

Towards real networks

Facebook Network

Number of nodes: 4039

Number of edges: 88234

Average degree: 43.6910

Properties of power law distribution

•
$$p(x) = Cx^{-\alpha}$$
 for $x > x_{\min}$

$$C = (\alpha - 1) x_{min}^{\alpha - 1}$$

•
$$p(x) = \frac{\alpha - 1}{x_{min}} \left(\frac{x}{x_{min}}\right)^{-\alpha}$$

Mean

$$\langle x \rangle = C \left[\frac{x_{max}^{2-\alpha} - x_{min}^{2-\alpha}}{2-\alpha} \right]$$

• rth moment

$$\langle x^r \rangle = C \frac{x_{max}^{r-\alpha+1} - x_{min}^{r-\alpha+1}}{r-\alpha+1}$$

• scaling of x_{max}

$$x_{max} \sim N^{1/(\alpha-1)}$$

Top heavy distribution(fat tailed)

Paths

Path in a network

- Path: A sequence of vertices such that every consecutive pair of vertices in the sequence is connected by an edge in the network.
 - Paths that do not intersect with themselves are called *self-avoiding* paths.
 - Length of a path is the number of edges traversed along the path.
- $A_{ij} = 1$ if there is an edge between nodes i and j.
- ullet Total number of paths of length 2 between nodes i and j

$$\mathcal{N}_{ij}^{(2)} = \sum_{k=1}^{n} A_{ik} A_{kj} = [A^2]_{ij}$$

• Total number of paths of length r between nodes i and j

$$\mathcal{N}_{ij}^{(r)} = [A^r]_{ij}$$

Paths

Path in a network

ullet Total number of paths that start and end at the same vertex i (loops)

$$\mathcal{N}_{ii}^{(r)} = [A^r]_{ii}$$

Total number of loops of length r

$$L_r \sum_{i}^{n} = \operatorname{Tr} [A^r]$$

[IMP]

Decomposition

If the network is undirected, then A is symmetric. Through eigenvalue decomposition

$$L_r = \operatorname{Tr} \left[\mathbf{A}^r \right] = \operatorname{Tr} \left[\mathbf{U} \mathbf{\Lambda}^r \mathbf{U}^T \right] = \operatorname{Tr} \left[\mathbf{U}^T \mathbf{U} \boldsymbol{\lambda}^r \right] = \sum_i \lambda_i^r$$

If the network is undirected via Schur decomposition

$$\mathcal{L}_r = \operatorname{Tr} \, A^r = \operatorname{Tr} \, Q T^r Q^T = \operatorname{Tr} \, \left[Q^T Q T^r \right] = \sum_i \lambda_i^r$$

- T: upper triangular matrix
- The eigenvalues of T are the same as that of A
- ullet Q orthogonal matrix

Paths

Average Path Length

- A geodesic path is the shortest path between two vertices such that no shorter path exists.
 - The length of this path is called geodesic distance or shortest path.
 - geodesic distance (d_{ij}) between vertex i and j is the smallest value of r such that $[A']_{ii} > 0$
 - If two nodes are not connected by any distance their geodesic distance is infinite.
 - shortest path are self-avoiding.
- Diameter of a graph: length of the longest geodesic path between any pair of vertices in the network (max(d_{ij}))
- ullet Average (shortest) path length $\langle d \rangle$

$$\langle d \rangle = \frac{1}{n(n-1)} \sum_{i \neq j} d_{ij}$$

- ullet complete graph: $\langle d
 angle = 1$
- Random graph: $\langle d \rangle \sim \log n$
- BFS can be used for geodesic distance.

Component and connectedness

- A network for which there exists pairs of vertices that there is no path between them is called disconnected.
- Component is a maximal subset of vertices in a network such that there exists at least one path from every vertex of the subgroup to another.
- The largest connected component in many real networks includes a substantial portion of the network and is called the giant component.
- Adjacency matrix of more than one network can be written in a Block diagonal form
- BFS can be used to check the connectedness of a graph and calculate the number of components.

Component and connectedness

Components in a directed graph

- Weakly connected component: Assuming no direction in the edges we can identify components as in an undirected graph.
- Strongly connected component (GSCC): Maximal subset of vertices such that there is a directed path in both directions between any pair of the vertices.
- Gian in-component: formed by nodes from which it is possible to reach GSCC by means of a directed path.
- Giant out-component. Nodes that can be reached from GSCC by means of a directed path.

Diffusion

- process by which gas moves from a region of high density to low density.
- model of spread of gas, an idea, disease etc on a network
- Suppose we have some commodity on the vertices of a network $(\psi_i$ for vertex i)
- Rate at which the commodity moves along the edges, from a node j to a neighbor node i at a rate C $(\psi_i \psi_i)$
- Rate at which ψ_i is changing in time

$$\frac{d\psi_{i}}{dt} = C \sum_{j} A_{ij} (\psi_{j} - \psi_{i}) = C \sum_{j} A_{ij} \psi_{j} - C \psi_{i} \sum_{j} A_{ij}$$

$$= C \sum_{j} A_{ij} \psi_{j} - C \psi_{i} k_{i} = C \sum_{j} (A_{ij} - \delta_{ij} k_{i}) \psi_{i}$$

[Diffusion vadu bau clear nathi]

Diffusion

In matrix notation

$$\frac{d\psi}{dt} = C(A - D)\psi$$

- D is a diagonal matrix with the vertex degrees along the diagonal.
- Define L = D A,

$$\boxed{\frac{d\psi}{dt} + CL\psi = 0} \left(\frac{d\psi}{dt} + D\frac{\partial^2\psi}{\partial x^2} = 0\right)$$

- ullet $L_{ij} = \delta_{ij} k_i A_{ij}$ is the graph Laplacian
- •

$$L_{ij} = egin{cases} k_i & ext{if } i = j \ -1 & ext{if } i
eq j & ext{and there is an edge } (i,j) \ 0 & ext{otherwise} \end{cases}$$

Solving the Diffusion equation

ullet We can write ψ as the linear combination of the eigenvectors v_i of the Lapacian

$$\psi(t) = \sum_{i} a_i(t)v_i$$
 $a_i(t)$ time varying constant

• In terms of $a_i(t)$,

$$\sum_{i} \left(\frac{da_{i}}{dt} + C\lambda_{i} a_{i} \right) v_{i} = 0$$

• Since v_i is not zero

$$\frac{da_i}{dt} + C\lambda_i a_i = 0$$

Solution

$$\psi(t) = \sum_{i} a_{i}(0)e^{-C\lambda_{i}t}v_{i}$$

Given an initial condition we can solve for diffusion provided we know the eigenvalues and eigenvectors of the graph Laplacian

Eigenvalues of graph Laplacian

- L is symmetric \Rightarrow Eigenvalues are non-negative and real.
- \bullet Consider an undirected network with n vertices and m edges. For each edge designate on one end of the edge as +1 and the other as -1
- Edge incidence matrix

$$B_{ij} = egin{cases} +1 & ext{if end 1 of edge i is connected to vertex j} \ -1 & ext{if end 2 of edge i is connected to vertex j} \ 0 & ext{otherwise} \end{cases}$$

•

$$B_{ij} = egin{cases} \sum_k B_{ki} B_{kj} = 1 & ext{if edge k connects nodes i and j } (i
eq j) \\ \sum_k B_{ki} B_{kj} = k_i & ext{if } i = j \\ 0 & ext{otherwise} \end{cases}$$

• Laplacian $L = B^T B$

Eigenvalues of graph Laplacian

Let v_i be an eigenvector L with eigenvalue λ_i

$$Lv_i = \lambda_i v_i = B^T B v_i$$
$$\lambda_i = \left(v_i^T B^T\right) (B v_i)$$
$$\lambda_i \ge 0$$

Diffusion equation on any network contains only decaying exponentials or constants \Rightarrow solutions tend to an equilibrium value as $t \to \infty$

Components and algebraic connectivity

Laplacian always has atleast one zero eigenvalue

$$\sum_{j} L_{ij} \times 1 = 0$$

- Suppose a network has c components, with size $n_1 \cdots n_c$
- The Laplacian can also be (like adjacency matrix) written in a block diagonal form.
- There are c eigenvectors of L with eigenvalue zero. These eigenvectors have ones in all positions corresponding to vertices in single component and zero elsewhere.
- The number of zero eigenvalues is exactly equal to the number of connected components.

Random Walk on undirected, connected and unweighted graph

- A random walk is a path across a network created by taking repeated random steps
 - Start at a specific vertex
 - Choose uniformly at random one of the edges of this vertex and move along the edge.
 - Arrive at the vertex at the other end of the vertex and repeat the above steps

Random Walk on undirected, connected and unweighted graph

- Let p_i be the probability that the random walk is at vertex i at time t.
- Probability equation

$$p_i(t) = \sum_j \frac{A_{ij}}{k_j} p_j(t-1)$$

Matrix form

$$\bar{p}(t) = AD^{-1}\bar{p}(t-1)$$

• For steady state solution: $\lim_{t\to\infty} \bar{p}(t) = \bar{p}$

$$(I - AD^{-1})\bar{p} = LD^{-1}\bar{p} = 0$$

• For random walk on connected graph:

$$D^{-1}\bar{p} = \alpha \mathbf{1} \Rightarrow \bar{p} = \alpha D \mathbf{1} \Rightarrow p_i = \alpha k_i$$

 In a connected graph the probability that a random walk will be found on a vertex is proportional to its degree.