Does $\sum_{n=2}^{\infty} \frac{2n}{n^2+1}$ diverge, converge absolutely, or converge conditionally?

Solution 1

The function $f(x) = \frac{2x}{x^2+1}$ is continuous, positive, and decreasing on $[2, \infty)$.

$$\int_{2}^{\infty} \frac{2x}{x^{2} + 1} dx = \lim_{t \to \infty} \int_{2}^{t} \frac{2x}{x^{2} + 1} dx$$
$$= \lim_{t \to \infty} (\ln|t^{2} + 1| - \ln|2^{2} + 1|)$$
$$= \infty$$

Since the integral $\int_2^\infty \frac{2x}{x^2+1} dx$ diverges, the series $\sum_{n=2}^\infty \frac{2n}{n^2+1}$ diverges by the Integral Test.

Solution 2

Since $n^2 \ge 1$, by adding n^2 to both sides of this inequality

$$2n^2 \ge n^2 + 1$$

Dividing both sides of this inequality by $n(n^2 + 1)$, we get

$$\frac{2n}{n^2+1} \ge \frac{1}{n}$$

Since the series $\sum \frac{1}{n}$ diverges by the *p*-test, the series $\sum \frac{2n}{n^2+1}$ diverges by the Direct Comparison Test.

Solution 3

The series $\sum \frac{1}{n}$ diverges by the *p*-test. Let $a_n = \frac{2n}{n^2+1}$ and $b_n = \frac{1}{n}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^2}{n^2 + 1}$$

$$= \lim_{n \to \infty} \frac{4n}{4n} \text{ by l'hopital}$$

$$= \lim_{n \to \infty} \frac{4}{4} \text{ by algebra}$$

$$= 1$$

The Limit Comparison Test applies, since this limit was a positive, finite number. Therefore, the series $\sum \frac{2n}{n^2+1}$ diverges by the Limit Comparison Test.