End Semester Examination 2023

Name of the program: MCA Semester: 2 Name of the course: Machine Learning Using Python Course Code: TMC-205 Time: 3 Hour Maximum Marks: 100 Note:

All questions are compulsory,

- Answer any two sub questions among a, b and c in each main question. ii.
- Total marks in each main question are twenty. iii.
- Each question carries 10 marks. iv.

a. Des	cribe the steps inv	olved in the ma	chine learning	20 ma		COI
	xplanation of the			R MAIN	LALD WY. YV ELLER	COI
						COI
	e height details of table 1: Sample Data		are given in t	he table 1	lt .	
	Height of the Boys	s(x _i) 65	70	75	78	
	Height of the Girls	s(yi) 63	67	70	73	
Fit a Sui	table line of best fi	for the above da	ta.	-		
The) instances and 3 at target attribute 'Re				n Linicht.	
	aining Dataset					
S.Na.	Assessment	Assignment	Project		ult(%)	
S.No. 1	Assessment Good	Yes	Yes	95	ult(%)	
S.No. 1 2	Assessment Good Average	Yes Yes	Yes No	95 70	ult(%)	
S.Na. 1 2 3	Assessment Good Average Good	Yes Yes No	Yes No Yes	95 70 75	ult(%)	
S.Na. 1 2 3	Assessment Good Average Good Poor	Yes Yes No	Yes No Yes No	95 70 75 45	ult(%)	
S.No. 1 2 3 4	Assessment Good Average Good Poor Good	Yes Yes No No Yes	Yes No Yes No Yes	95 70 75 45 98	ult(%)	
S.No. 1 2 3 4 5	Assessment Good Average Good Poor Good Average	Yes Yes No No No Yes No	Yes No Yes No	95 70 75 45	ult(%)	
S.No. 1 2 3 4 5	Assessment Good Average Good Poor Good	Yes Yes No No Yes	Yes No Yes No Yes	95 70 75 45 98	ult(%)	
S.No. 1 2 3 4 5 6 7	Assessment Good Average Good Poor Good Average	Yes Yes No No Yes No No Yes No No Yes	Yes No Yes No Yes Yes No Yes	95 70 75 45 98 80	ult(%)	
S.Ng. 1 2 3 4 5 6 7 8	Assessment Good Average Good Poor Good Average Good Average Good Poor Average	Yes Yes No No Yes No	Yes No Yes No Yes Yes No Yes No	95 70 75 45 98 80 75	ult(%)	
S.No. 1 2 3 4 5 6 7	Assessment Good Average Good Poor Good Average Good Poor	Yes Yes No No Yes No No Yes No No Yes	Yes No Yes No Yes Yes No Yes	95 70 75 45 98 80 75 65	ult(%)	
S.Ng. 1 2 3 4 5 6 7 8	Assessment Good Average Good Poor Good Average Good Average Good Poor Average	Yes Yes No No Yes No	Yes No Yes No Yes Yes No Yes No	95 70 75 45 98 80 75 65 58	ult(%)	
S.Ng. 1 2 3 4 5 6 7 8	Assessment Good Average Good Poor Good Average Good Average Good Poor Average	Yes Yes No No Yes No	Yes No Yes No Yes Yes No Yes No	95 70 75 45 98 80 75 65 58		

	Consider a feed-forward neural network	with the following details:	CO2
	- Input layer: 3 neurons (x1, x2, x3) - Hidden layer: 4 neurons (h1, h2, h3, h4		
	- Output layer: 2 neurons (o1, o2)	, , ,	
	Given the following inputs and biases:		
	Inputs:		
	x1 = 0.2, x2 = 0.5, x3 = 0.8	(4:	
	Biases:		
	Bias_h1 = -0.3, Bias_h2 = 0.1, Bias_h3 = Bias_o1 = 0.4, Bias_o2 = 0.6	0.5,Bias_h4 = -0.2	
	Assume the following weights:		
	Weights:		
	$wI_h1 = 0.6$, $wI_h2 = 0.3$, $wI_h3 = 0.8$	wl h4 = -0.5	
	W2 h1 = -0.2, $w2 h2 = 0.7$, $w2 h3 = 0.0$	107 h4 0.1	
	$W_1 = 0.4 \text{ w}_3 \text{ h}_2 = -0.6 \text{ w}_3 \text{ h}_3 = 0.5$	m2 h4 05	
	$W1 \ 01 = 0.3 \ W1 \ 02 = -0.1 \ W2 \ 01 = -0.2$	1 107 2 - 02	
	w3_01 = 0.7, w3_02 = 0.5, w4_01 = -0.6	,w4_o2 = 0.8	
C	lastata the nature with a transfer		
O.B	liculate the output values (o1, o2) for the given	ven inputs.	•
MA	the Man martinest "		
No	ote: The activation function used in this que	stion is the sigmoid	
No fur	te: The activation function used in this question.	stion is the sigmoid	
1,111	Consider a dataset containing the following		
1,111	Consider a dataset containing the following 25, 30, 35, 40	g values: 10, 15, 18, 22,	
1,111	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max or the containing the following the containing the containing the containing the containing the following the containing	g values; 10, 15, 18, 22,	
1,111	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max mormalized values will be scaled between	g values; 10, 15, 18, 22, cormalization, where the	
1,111	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max mormalized values will be scaled between Suppose we have a new data point with	g values: 10, 15, 18, 22. cormalization, where the sen 0 and 1.	
1,111	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max mormalized values will be scaled between Suppose we have a new data point with Normalize this data point using the same	g values: 10, 15, 18, 22. cormalization, where the sen 0 and 1.	
c.	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max normalized values will be scaled betwee Suppose we have a new data point with Normalize this data point using the sam normalization technique.	g values: 10, 15, 18, 22. cormalization, where the sen 0 and 1.	*
c.	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max normalized values will be scaled betwee Suppose we have a new data point with Normalize this data point using the sam normalization technique.	g values: 10, 15, 18, 22, cormalization, where the sen 0 and 1, a value of 28, se min-max	
c. Q	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max normalized values will be scaled betwee Suppose we have a new data point with Normalize this data point using the sam normalization technique.	g values: 10, 15, 18, 22, cormalization, where the sen 0 and 1, a value of 28, se min-max	CO3
c. Q	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max mormalized values will be scaled betwee Suppose we have a new data point with Normalize this data point using the sam normalization technique. What is an agent in the context of Reinford Describe the algorithm of Q-Learning.	g values: 10, 15, 18, 22, cormalization, where the ten 0 and 1, a a value of 28, the min-max 20 marks ement Learning?	
c. Q	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max mormalized values will be scaled betwee Suppose we have a new data point with Normalize this data point using the sam normalization technique. What is an agent in the context of Reinford Describe the algorithm of Q-Learning.	g values: 10, 15, 18, 22, cormalization, where the sen 0 and 1. a a value of 28. at min-max 20 marks ement Learning?	
Q a. b.	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max mormalized values will be scaled betwee Suppose we have a new data point with Normalize this data point using the sam normalization technique. What is an agent in the context of Reinford Describe the algorithm of Q-Learning. Consider the following training dataset of 10 in Table 3 which describes the award performance.	g values; 10, 15, 18, 22. cormalization, where the sen 0 and 1. a value of 28. te min-max 20 marks ement Learning?	CO3
c. Q	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max is normalized values will be scaled betwee Suppose we have a new data point with Normalize this data point using the sam normalization technique. What is an agent in the context of Reinford Describe the algorithm of Q-Learning. Consider the following training dataset of 10 in Table 3 which describes the award performance students based on the Grand no of projects.	g values: 10, 15, 18, 22, cormalization, where the sen 0 and 1, a value of 28, se min-max 20 marks ement Learning?	CO3
Q a, b,	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max is normalized values will be scaled betwee Suppose we have a new data point with Normalize this data point using the sam normalization technique. What is an agent in the context of Reinford Describe the algorithm of Q-Learning. Consider the following training dataset of 10 in Table 3 which describes the award performance students based on the 15 ft and no. of projects is 'Award' which is a discrete valued variable the	g values: 10, 15, 18, 22, cormalization, where the sen 0 and 1, a value of 28, se min-max 20 marks ement Learning?	CO3
Q a, b,	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max is normalized values will be scaled betwee Suppose we have a new data point with Normalize this data point using the sam normalization technique. What is an agent in the context of Reinford Describe the algorithm of Q-Learning. Consider the following training dataset of 10 in Table 3 which describes the award performance students based on the Grand no of projects.	g values: 10, 15, 18, 22, cormalization, where the sen 0 and 1, a value of 28, se min-max 20 marks ement Learning?	CO3
c. Q a, b,	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max is normalized values will be scaled betwee Suppose we have a new data point with Normalize this data point using the same normalization technique. What is an agent in the context of Reinford Describe the algorithm of Q-Learning. Consider the following training dataset of 10 in Table 3 which describes the award performance students based on the FA and no. of projects is 'Award' which is a discrete valued variable the 'No'.	g values: 10, 15, 18, 22, cormalization, where the sen 0 and 1, a a value of 28, se min-max 20 marks ement Learning? Instances shown in the se of the individual done. The target variable seat takes 2 values 'Yes' or	CO3
c. Q a, b, ble 3	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max is normalized values will be scaled between Suppose we have a new data point with Normalize this data point using the same normalization technique. What is an agent in the context of Reinford Describe the algorithm of Q-Learning. Consider the following training dataset of 10 in Table 3 which describes the award performance students based on the Fig. and no. of projects is 'Award' which is a discrete valued variable the 'No. GPA No. of Projects Done	g values: 10, 15, 18, 22, cormalization, where the sen 0 and 1, a a value of 28, se min-max 20 marks ement Learning? Instances shown in the se of the individual done. The target variable sat takes 2 values 'Yes' or	CO3
c. Q a, b,	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max mormalized values will be scaled between Suppose we have a new data point with Normalize this data point using the same normalization technique. 3. What is an agent in the context of Reinford Describe the algorithm of Q-Learning. Consider the following training dataset of 10 in Table 3 which describes the award performance students based on the GPA and no. of projects is 'Award' which is a discrete valued variable the No. GPA No. of Projects Done 9.5	g values: 10, 15, 18, 22, cormalization, where the ten 0 and 1, a a value of 28, the min-max 20 marks the ement Learning? Instances shown in the ten of the individual done. The target variable that takes 2 values 'Yes' or Award Yes	CO3
Q a.	Consider a dataset containing the following 25, 30, 35, 40 Normalize the dataset using min-max is normalized values will be scaled between Suppose we have a new data point with Normalize this data point using the same normalization technique. What is an agent in the context of Reinford Describe the algorithm of Q-Learning. Consider the following training dataset of 10 in Table 3 which describes the award performance students based on the Fig. and no. of projects is 'Award' which is a discrete valued variable the 'No. GPA No. of Projects Done	g values: 10, 15, 18, 22, cormalization, where the sen 0 and 1, a a value of 28, se min-max 20 marks ement Learning? Instances shown in the se of the individual done. The target variable sat takes 2 values 'Yes' or	CO3

various binning techniques and show the result. c. Consider the following dataset. S={12,14,19,22,24,26,28,31,34}. Apply closest clusters based on the complete linkage eriterion Perform agglomerative clustering step by step, merging the two Data points: (1, 1), (2, 2), (2, 4), (3, 3), (4, 3), (4, 4), (5, 4) b. Consider the following dataset with seven data points: closest centroid. Calculate the final cluster centroids. randomly. Iterate until convergence and assign each data point to its Perform k-means clustering with $k=\Sigma$. Initialize the cluster centroids Dafa points: (2, 4), (3, 6), (4, 8), (7, 3), (8, 5) CO2 a. Consider the following dataset with five data points: 20 marks C, Explain SARSA learning and SARSA algorithm . bagging algorithm. ensemble learning and describe the key steps involved in the b. Define bagging and explain how it works in the context of and John & Joan (s) Employee ID: 1000 and 1001 (b) Employee Name: John & John (ii) Find the distance between (9 & 7) bns (9 \$ \$) (d) bns (0 \$ 1) bns (4 \$ 5) (e) CO4 Chebyshev distances. (i)Consider the following data and calculate the Euclidean, Manhattan and CO¢ Discuss the difference between hard margin and soft margin SVM. c. Describe the concepts of support vectors and margin in SVM and Nearest Centroid Classifier Weighted k-Nearest Neighbor Classifier k-Nearest Neighbor Classifier classify the test instance. Choose k=3 Given a test instance (GPA- 7.8, No. of projects done- 4), use the training set to 2,7 'OT ε 68 6 ON 4.2 'S' '9 ON τ 9'9 ON T 3.2 Yes 5'6

*