CH2基の配向とSFGテンソル

\ >
<i>//</i>

1.オイラー角	1
2.メチレン基の配向とオイラー角	2
3.メチレン基の β _{abc} (分子固定系)	3
4.配向メチレン基の β _{xyz} (表面固定系)	4
4a. 一般式	4
4b. 自由回転・ランダムなねじれ角	10
4c. 2個の H 原子が等価な時(回転は凍結されている)	13
5.表面配向による SFG テンソルの違い	16
5a.ランダム (2 次元) 配向表面の SFG テンソル	17
$5b \cdot C_{3v}$ 配向表面の SFG テンソル	19
$5c\cdot C_{4v}$ 配向、 C_{6v} 配向表面の SFG テンソル	21
$5\mathrm{d}$. C_s 配向表面の SFG テンソル	21
$5e\cdot C_{2v}$ 配向表面の SFG テンソル	22
6.表面電場から SFG 分極へ	25
7.SFG 分極から SFG 電場へ	25

(始めに)

本稿では、メチレン基の CH_2 あるいはビニル基の CH_2 の SFG スペクトルから、 CH_2 基の配向 に関する情報を得る際に必要となる事項を記す。 $\bf 1$ 節の内容は、 CH_3 基に関するファイルの記述と重複する。

1. オイラー角

原点を共有する2つの直交座標系、(xyz) 系と (abc) 系の関係を指定する際には、回転操作を重ねることで一方の座標系を他方に重ねるときに必要な3つの角で定義する。この3つの角をオイラー角と言い、次のように定義する。(ここでは、(abc) 軸を (xyz) 軸に重ねる作業を想定し、回転軸のマイナス側からプラス方向を向いたときの回転が時計回りのときを正の回転角に取る。)

- (1) ab 面と xy 面の交線 (原点を通る) beads new を new 配と名付け、この new 軸のまわりの回転で new new
- (2) c 軸まわりの回転で b 軸を N 軸に重ねるための回転角を ϕ とする $(0 \le \phi < 2\pi)$ 。 N 軸は xy 面と ab 面の両方に乗っており、a' 軸、c 軸、z 軸はどれも N 軸に垂直である。 よって、a'、c、z 軸は同一平面上にある。そして、a'c 面は xy 面に垂直である。また、この回転操作によって z 軸の ab 面への射影に a 軸が重なる。(方向については 180° の任意性が残されるが・・・)
- (3) N 軸まわりの回転で c 軸を z 軸に重ねる角を θ とする $(0 \le \theta < \pi)$ 。 この操作によって、ab 面が xy 面に重なる。
- (4) z 軸まわりの回転で N 軸を y 軸に重ねる角を χ とする $(0 \le \chi < 2\pi)$ 。 この操作によって、xy 面への c 軸の射影が x 軸に重なる。また、a"z 面が zx 面に重なる。

(abc) 系に対してまず (2) の操作を行い、次いで (3) を行ってから (4) を行うと、(abc) 系が (xyz) 系に重なる。

なお、(2) と (4) で採用した、b 軸を N 軸に重ねる操作と N 軸を y 軸に重ねる操作のかわりに、a 軸を N 軸に重ねる操作と N 軸を x 軸に重ねる操作を採用する定義もある。両者では座標成分の 変換係数が違うので、注意しなければならない。また、本稿ではしばしば負の回転角を使うが、これ は、回転が 2π の周期を持っていることにより、 2π - α の回転が $-\alpha$ の回転と同じであることによっている。(上の定義につきあわせると、この議論は θ に対しては間違っている。オイラー角 $(\chi, -\theta, \phi)$ による回転は $(\pi + \chi, \theta, \pi + \phi)$ による回転に一致する。)

ベクトル及びテンソルの座標成分の間の変換係数は別ファイル「変換行列 (xyz)」に表として示した $(Appl.\ Spectrosc.\$ にも掲載してある)。SFG テンソルの座標成分については、表に与えた変換係数 $U_{ik:abc}$ を用いて下の変換式により (abc) 系で表した成分を (xyz) 系での成分に変換する。

$$\chi_{ijk} = \sum U_{ijk:abc} \chi_{abc}$$
, $(i, j, k = a, b, c)$

2. メチレン基の配向とオイラー角

表面座標系は、基板内部に向けた法線方向を z 軸とし、表面の上に x 軸と y 軸を取る。(たとえば、SFG 光の「入射面」と表面の交線を x 軸とし、光の進行方向を x 軸の正方向に取る。また、LB 膜作成時の引き上げ方向や結晶面の長軸方向を x 軸にする。)Born & Wolf、Bloembergen、あるいは Shen による光学関係の表式では、基板の内部に向けて z 軸を取っている。表面科学の世界では、z 軸を表面から外向きに取るのが一般的である。しかし本稿では、光学の世界で用いられる表式に合わせることにする。表面の tilt 角を定義する場合には逆に外向きの法線からの角で表すことが多いので注意したい。

一方、メチレン基に固定した座標系として、C 原子から 2 個の H 原子に向け C_2 対称軸を c 軸を取り、 2 個の CH 結合が含まれる面 (分子面)内に a 軸を取る。そして、メチレン基の配向を次のように 3 つの角で定義する。

- (1) 内部回転角 ϕ : メチレン基の(表面に対する)ねじれ角である。c 軸まわりの回転で分子面を表面と垂直にするために必要な回転角、あるいは ab 面への -z 軸の射影に a 軸を重ねるための回転角でもある。(a) ここでの z 軸の向きでは、x 軸をみて b 軸が左側に来るようにするので、分子面が右上がりになっている場合がプラス(90° <)回転になる。(a 軸に沿ったベクトルと x 軸に沿ったベクトルの内積がプラスになる方向で重ねる。)分子面が表面に垂直なときには $\phi=0$ or π 、分子面が表面と向き合っているときには、 $\phi=\pi/2$ or $3\pi/2$ である。(b) 2個の CH が等価な場合は、内部回転角が ϕ のメチレン基と部回転角が ϕ のメチレン基が同数存在ずつする。(c) メチレン基が自由回転をしているかあるいはランダムな内部回転角を取っている場合には、 ϕ が $0\sim2\pi$ の任意の値を同じウェイトで取る。
- (2) **傾き角・tilt 角** θ_{til} : 通常の定義に合わせて、c 軸 (C_2 軸) と外向きの法線の間の角とし、N 軸 まわりの回転で c 軸を外向きの法線に重ねる方向をプラス回転とする。本稿で用いる表面座標系では、z 軸が下向きの法線である。よって、オイラー角 θ は π θ_{til} である。また、メチレン基が 2 個

- の H 原子を真空側に向けているときには、 $\theta_{tilt} < \pi/2$ である。
- (3) **面内配向角** $\chi_{\text{in-plane}}$ (χ_{ip} と略記する): z 軸まわりの回転で c 軸の xy 面への射影を x 軸に重ねるための回転角とする。本稿では z 軸を基板の内部に受けて取っている。よって、本稿の表面座標系では、x 軸の方向に見て表面への z 軸の射影が左側にあるときが正の回転角になる。また、対応するオイラー角 χ は $\pi/2+\chi_{\text{ip}}$ である。(a) 射影した C_2 軸が x 軸から角 α だけずれているときには b 軸と y 軸がなす角も α である。射影した C_2 軸が八の字形に x 軸から左右交互にずれているときには χ_{ip} は x も x である。(b) 面内配向がランダムなときには、x は x の任意の値を同じウェイトで取る。

なお、上で言うプラス回転に対するマイナス回転とは、オイラー角の定義で言えばその回転角を 2π から差し引いた分だけプラス方向に回転することを意味する。

メチレン基の配向をこのように定義するときには、これから示す表式に出てくるオイラー角が下式 のようになることを確認しておこう。

$$\phi = \phi, \quad \theta = \pi - \theta_{\text{tilt}}, \quad \chi = \pi/2 + \chi_{\text{ip}} \tag{2-1}$$

3. メチレン基の β_{abc} (分子固定系)

変換表の使い方の練習をかねて、CH 結合あたりの SFG テンソル成分からメチレン基のテンソル成分を求めてみよう。CH 結合に固定した座標系を $(\xi\eta\zeta)$ 系と表し、 ζ 軸を C 原子から H 原子に向けた結合軸に、 $\eta\zeta$ 面が ab 面 (分子面) に垂直になるように η 軸を取ると、2 個の CH 結合のいずれについても η 軸は分子面に垂直になる。そこで、 η 軸まわり $\theta < \pi$ の回転で ζ 軸を z 軸に重ねるように η 軸の正方向を定める。

我々は、c 軸として CH_2 基の C_2 軸を外向きに取り、2 つの H 原子に平行な分子面内の軸を a 軸 としているから 2 個の CH 結合のそれぞれに付随する $(\xi\eta\zeta)$ 系をメチレン基に固定の (abc) 系に重ねるためのオイラー角 (χ,θ,ϕ) は、下のようになる。 (まず CH 軸すなわち ζ 軸を c 軸に重ねてから η 軸を b 軸に重ねる。)

CH(1):
$$(0, \alpha, 0)$$
,
CH(2): $(\pi, \alpha, 0)$ (3-1)

ここで、 α は HCH 結合角の 1/2 である。変換に際して必要な三角関数は、次の通りになる。

$$\begin{split} \sin \varphi &= 0, & \sin 2\varphi &= 0, & \sin 3\varphi &= 0, & \cos \varphi &= 1, & \cos 2\varphi &= 1, & \cos 3\varphi &= 1 \\ \sin \chi &= 0, & \sin 2\chi &= 0, & \sin 3\chi &= 0, & \cos \chi &= 1, & \cos 2\chi &= 1, & \cos 3\chi &= 1 : & \text{for CH(1)} \\ \sin \chi &= 0, & \sin 2\chi &= 0, & \sin 3\chi &= 0, & \cos \chi &= -1, & \cos 2\chi &= 1, & \cos 3\chi &= -1 : & \text{for CH(2)} \end{split}$$

HCH 結合角を T_d 角に取ると $\cos\alpha=1/\sqrt{3}$ 、 $\sin\alpha=\sqrt{2}/\sqrt{3}$ であるから、下式が得られる。 $\sin\theta=\sqrt{2}/\sqrt{3}$ 、 $\sin2\theta=2\sqrt{2}/\sqrt{3}$ 、 $\sin3\theta=-\sqrt{2}/3\sqrt{3}$ 、 $\cos\theta=1/\sqrt{3}$ 、 $\cos2\theta=-1/3$ 、 $\cos3\theta=-5\sqrt{3}/3$ (3-2a)

一方、HCH 結合角を sp^2 軌道の結合角(エチレン、ビニル基)に取ると、 $\mathrm{cos}\alpha=1/2$ 、 $\mathrm{sin}\alpha=\sqrt{3}/2$ であるから、下式が得られる。

$$\sin\theta = \sqrt{3}/2$$
, $\sin 2\theta = \sqrt{3}/2$, $\sin 3\theta = -0$, $\cos \theta = 1/2$, $\cos 2\theta = -1/2$, $\cos 3\theta = -1$ (3-2b)

CH 結合の伸縮振動は ζ 軸方向に沿っているから、振動 SFG テンソルの成分は $\beta_{\xi\xi\zeta}$ 、 $\beta_{\eta\eta\zeta}$ 、 $\beta_{\zeta\zeta\zeta}$ であると考えられる (CH 結合まわりの軸対称があるときには、 $\beta_{\xi\xi\zeta}=\beta_{\eta\eta\zeta}$ になる)。ファイル「変換行列 (xyz)」および Appl. Spectrosc. の論文に示されている表で、(abc) 系と (xyz) 系をそれぞれ $(\xi\eta\zeta)$ 系と (abc) 系に置き換え、3つの CH 結合の $\beta_{\xi\xi\zeta}$ 、 $\beta_{\eta\eta\zeta}$ 、 $\beta_{\zeta\zeta\zeta}$ について、上の関係式を使って β_{aaa} 、 β_{aab} 等を求めた上で、結果の和を取ったものがゼロにならない成分を出すと、下の結果が得られる。和を取るということは、3個の CH 結合の分極のベクトル和がメチレン基としての分極になると考え、さらに $\beta_{\xi\xi\zeta}$ 、 $\beta_{\eta\eta\zeta}$ 、 $\beta_{\zeta\zeta\zeta}$ がすべての CH 結合で等しいと仮定することを意味する。

 $eta_{\mbox{\scriptsize EEX}} = eta_{\mbox{\scriptsize Inft}}$ と仮定して、上に示した三角関数から以下が得られる。

$$\beta_{ax} = \beta_{EE} \cos^3 \alpha + \beta_{CCC} (\cos \alpha - \cos^3 \alpha) \tag{3-3a}$$

$$\beta_{bbc} = \beta_{\eta\eta\zeta} cos\alpha$$
 (3-3b)

$$\beta_{cc} = \beta_{\xi\xi\zeta}(\cos\alpha - \cos^3\alpha) + \beta_{\zeta\zeta\zeta}\cos^3\alpha \tag{3-3c}$$

$$\beta_{aca} = -(\beta_{\xi\xi\zeta} - \beta_{\zeta\zeta\zeta})(\cos\alpha - \cos^3\alpha) \tag{3-4a}$$

$$\beta_{\text{caa}} = -(\beta_{\xi\xi\zeta} - \beta_{\zeta\zeta\zeta})(\cos\alpha - \cos^3\alpha) \tag{3-4b}$$

もし、 $\beta_{\zeta\zeta\zeta} >> \beta_{\xi\xi\zeta} \sim \beta_{\eta\eta\zeta}$ とおけるときには、下式が得られる。

$$\beta_{aac} = \beta_{\zeta\zeta\zeta}(\cos\alpha - \cos^3\alpha), \quad \beta_{bbc} \sim 0, \quad \beta_{ccc} = \beta_{\zeta\zeta\zeta}\cos^3\alpha$$
 (3-5a)

$$\beta_{aca} = \beta_{caa} = \beta_{\zeta\zeta\zeta}(\cos\alpha - \cos^3\alpha) \tag{3-5b}$$

 $(\cos\alpha = 1/\sqrt{3}, 1/2, \text{ and } (\cos\alpha - \cos^3\alpha) = 2\sqrt{3}/9, 3/8 \text{ for } \text{Td and sp}^2 \text{ angles, respectively.})$

 CH_2 基は 2 個の伸縮振動モードを持つ。対称 CH 伸縮振動は、c 軸に沿った振動で対称種は a_i であり、逆対称 CH 伸縮振動は、a 軸に沿った振動で対称種は b_i である。(面外振動が b 軸に沿った振動になり、対称種は b_2 である。)よって、次のような結果を得る。なお、テンソル成分の下付きは、左から順に SFG 光、VIS 光、IR 光に対する遷移モーメントの方向又は射影成分を表す約束にする。よって、振動共鳴を与える SFG テンソルの成分は次のようになる。

対称振動モードに対する SFG テンソルの成分は、 β_{aac} 、 β_{bbc} 、 β_{ccc} 逆対称振動モードに対する SFG テンソルの成分は、 $\beta_{aca} = \beta_{caa}$ 面外振動モードに対する SFG テンソルの成分は、 $\beta_{bcb} = \beta_{cbb}$

メチル基と違って、 $\beta_{aac} \neq \beta_{bbc}$ である。

4.配向メチレン基の β_{xvz} (表面固定系)

4a. 一般式

表面固定 (xyz) 系に対するメチレン基の配向をオイラー角 (χ, θ, ϕ) で表すときに、表面系でのテンソル成分は、ファイル「変換行列 (xyz)」または *Appl. Spectrosc.* に示されている表を使って次のように求められる。但し、傾き角 θ に関しては、表で使っている $\sin\theta$ 、 $\sin2\theta$ 、 $\sin3\theta$ の形の三角関数ではなく、下の関係式で変換した $\sin\theta$ 、 $\cos\theta$ のべき乗による表式にした。

$$\sin 2\theta = 2\sin\theta\cos\theta$$
, $\cos 2\theta = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$
 $\sin 3\theta = 3\sin\theta - 4\sin^3\theta$, $\sin \theta + \sin 3\theta = 4(\sin\theta - \sin^3\theta)$
 $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$, $\cos \theta - \cos 3\theta = 4(\cos\theta - \cos^3\theta)$

CH 伸縮振動以外の振動モードさらには C_{2v} 対称を持つ分子一般にも当てはまるように、面外 (b_2) 振 動に対する表式も示しておく。

分子面と xy 面の間の角 (内部回転角) を ϕ c 軸の外向き法線からの傾き角を θ_{nin} c 軸の射影と x軸の間の角 (面内配向角) を $\chi_{
m ip}$ とするとき、以下に出てくる表式に使われているオイラー角は、 $\phi = \pi/2 + \phi$ 、 $\theta = \pi - \theta_{\text{tilt}}$ 、 $\chi = \pi/2 + \chi_{\text{ip}}$ である。

面内配向がランダムなときにも、逆対称振動バンドの SFG は (ppp)、(ssp)、(sps)、(pss) 信号しか 出ないが、メチル基と違って、対称振動バンドの SFG は ϕ が 0 または $\pi/2$ でないかぎり、 $\theta_{nl} \neq 0$ な ら、(spp)、sp)、pps)、sss) 信号も出ることに注意しよう。

一般式

変換表により β_{ax} 、 β_{bbc} 等に対する変換を各テンソル成分について求めてから、対称振動モードに ついては、 $\beta_{aac}+\beta_{bbc}$ 、 $\beta_{aac}+\beta_{bbc}$ - $2\beta_{ccc}$ 及び β_{aac} - β_{bbc} でまとめた式に書き換えた。

[対称 (a₁) 振動モード]

```
\chi_{\text{vxx}} = -(1/8)(\beta_{\text{aac}} + \beta_{\text{bbc}} - 2\beta_{\text{cc}})\sin^3\theta(\sin\chi + \sin3\chi)
(spp)
                           + (1/8)(\beta_{ac} - \beta_{bbc})[\cos 2\phi(2\sin\theta - \sin^3\theta)(\sin\chi + \sin 3\chi) + 2\sin 2\phi\sin\theta\cos\theta (\cos\chi + \cos 3\chi)]
                   \chi_{\rm vzz} = -(1/2)(\beta_{\rm aac} + \beta_{\rm bbc} - 2\beta_{\rm ccc})(\sin\theta - \sin^3\theta)\sin\chi
                           -(1/2)(\beta_{aac} - \beta_{bbc})[\cos 2\phi(\sin \theta - \sin^3 \theta)\sin \chi + \sin 2\phi \sin \theta \cos \theta \cos \chi]
                   \chi_{yzx} = (1/4)(\beta_{ax} + \beta_{bbc} - 2\beta_{cc})(\cos\theta - \cos^3\theta)\sin 2\chi
                           + (1/4)(\beta_{aac} - \beta_{bbc})[\cos 2\phi(\cos \theta - \cos^3 \theta)\sin 2\chi + \sin 2\phi \sin^2 \theta (1 + \cos 2\chi)]
                   \chi_{\rm vxz} = (1/4)(\beta_{\rm aac} + \beta_{\rm bbc} - 2\beta_{\rm ccc})(\cos\theta - \cos^3\theta)\sin 2\chi
                           -(1/4)(\beta_{ax} - \beta_{bbc})[\cos 2\phi(\cos \theta + \cos^3 \theta)\sin 2\chi + 2\sin 2\phi\cos^2 \theta\cos 2\chi]
(ssp)
                   \chi_{\rm vvx} = -(1/2)(\beta_{\rm aac} + \beta_{\rm bbc})\sin\theta\cos\chi
                           + (1/8)(\beta_{ax} + \beta_{bbc} - 2\beta_{cx})\sin^3\theta (\cos\chi - \cos3\chi)
                           + (1/8)(\beta_{aac} - \beta_{bbc})\{\cos 2\phi[\sin\theta (3\cos\chi + \cos 3\chi) - (\sin\theta - \sin^3\theta)(\cos\chi - \cos 3\chi)]
                                             -2\sin 2\phi \sin \theta \cos \theta (\sin \chi + \sin 3\chi)
                   \chi_{\rm vyz} = (1/2)(\beta_{\rm aac} + \beta_{\rm bbc})\cos\theta
                           -(1/4)(\beta_{aac}+\beta_{bbc}-2\beta_{ccc})(cos\theta-cos^3\theta)(1-cos2\chi)
                           -(1/4)(\beta_{aac} - \beta_{bbc})\{\cos 2\phi[(\cos\theta - \cos^3\theta) + (\cos\theta + \cos^3\theta)\cos 2\chi] - 2\sin 2\phi\cos^2\theta\sin 2\chi)\}
                   \chi_{xyx} = -(1/8)(\beta_{ax} + \beta_{bbc} - 2\beta_{cx})\sin^3\theta(\sin\chi + \sin3\chi)
(psp)
                           +(1/8)(\beta_{ac}-\beta_{bbc})[\cos 2\phi(2\sin\theta-\sin^3\theta)(\sin\chi+\sin 3\chi)+2\sin 2\phi\sin\theta\cos\theta(\cos\chi+\cos 3\chi)]
                   \chi_{\rm avz} = -(1/2)(\beta_{\rm asc} + \beta_{\rm bbc} - 2\beta_{\rm ccc})(\sin\theta - \sin^3\theta)\sin\chi
                           -(1/2)(\beta_{aac} - \beta_{bbc})[\cos 2\phi(\sin \theta - \sin^3 \theta)\sin \chi + \sin 2\phi \sin \theta \cos \theta \cos \chi]
                   \chi_{xyz} = (1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)\sin 2\chi
                           -(1/4)(\beta_{ax} - \beta_{bbc})[\cos 2\phi(\cos \theta + \cos^3 \theta)\sin 2\chi + 2\sin 2\phi\cos^2 \theta\cos 2\chi]
                   \chi_{zvx} = (1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)\sin 2\chi
                           + (1/4)(\beta_{aac} - \beta_{bbc})[\cos 2\phi(\cos \theta - \cos^3 \theta)\sin 2\chi + \sin 2\phi \sin^2 \theta (1 + \cos 2\chi)]
                   \chi_{yxy} = (1/8)(\beta_{ax} + \beta_{bbc} - 2\beta_{cx})\sin^3\theta (\cos\chi - \cos3\chi)
(sps)
                           -(1/8)(\beta_{aac} - \beta_{bbc})[\cos 2\phi(2\sin\theta - \sin^3\theta)(\cos\chi - \cos 3\chi) - 2\sin 2\phi\sin\theta\cos\theta(\sin\chi - \sin 3\chi)]
                   \chi_{yzy} = -(1/4)(\beta_{ax} + \beta_{bbc} - 2\beta_{cx})(\cos\theta - \cos^3\theta)(1 - \cos2\chi)
                             -(1/4)(\beta_{ax} - \beta_{bbc})[\cos 2\phi(\cos \theta - \cos^3 \theta)(1 - \cos 2\chi) + \sin 2\phi \sin^2 \theta \sin 2\chi]
                   \chi_{xxy} = (1/2)(\beta_{aac} + \beta_{bbc})\sin\theta\sin\chi
(pps)
                           -(1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})\sin^3\theta(\sin\chi + \sin3\chi)
                           -(1/8)(\beta_{aac} - \beta_{bbc})\{\cos 2\phi[\sin \theta(3\sin \chi - \sin 3\chi) - (\sin \theta - \sin^3 \theta)(\sin \chi + \sin 3\chi)]
                                                + 2\sin 2\phi \sin \theta \cos \theta (\cos \chi - \cos 3\chi)
                   \chi_{zzy} = (1/2)(\beta_{aac} + \beta_{bbc})\sin\theta\sin\chi
                           -(1/2)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(\sin\theta - \sin^3\theta)\sin\chi
                           + (1/2)(\beta_{aac} - \beta_{bbc})\cos 2\phi \sin^3\theta \sin \chi
                   \chi_{xzy} = (1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)\sin 2\chi
                           + (1/4)(\beta_{aac} - \beta_{bbc})[\cos 2\phi(\cos \theta - \cos^3 \theta)\sin 2\chi - \sin 2\phi \sin^2 \theta(1 - \cos 2\chi)]
```

$$\begin{split} \chi_{zxy} &= (1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)\sin2\chi \\ &+ (1/4)(\beta_{aac} - \beta_{bbc})[\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi - \sin2\phi\sin^2\theta(1 - \cos2\chi)] \end{split}$$

$$\begin{split} (pss) \qquad & \chi_{xyy} = (1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) sin^3 \theta (cos\chi - cos3\chi) \\ & - (1/8)(\beta_{aac} - \beta_{bbc}) [cos2\phi (2sin\theta - sin^3\theta) (cos\chi - cos3\chi) - 2sin2\phi sin\theta cos\theta (sin\chi - sin3\chi)] \\ & \chi_{zyy} = - (1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) (cos\theta - cos^3\theta) (1 - cos2\chi) \\ & - (1/4)(\beta_{aac} - \beta_{bbc}) [cos2\phi (cos\theta - cos^3\theta) (1 - cos2\chi) + sin2\phi sin^2\theta sin2\chi] \end{split}$$

$$\begin{split} (sss) & \chi_{yyy} = (1/2)(\beta_{a\alpha} + \beta_{bbc}) sin\theta sin\chi \\ & - (1/8)(\beta_{a\alpha} + \beta_{bbc} - 2\beta_{cc}) sin^3\theta (3sin\chi - sin3\chi) \\ & - (1/8)(\beta_{a\alpha} - \beta_{bbc}) \{ cos2\phi [sin\theta (sin\chi + sin3\chi) - (sin\theta - sin^3\theta) (3sin\chi - sin3\chi)] \\ & - 2sin2\phi \ sin\theta cos\theta (cos\chi - cos3\chi) \} \end{split}$$

$$\begin{split} &\chi_{xxx} + \chi_{yyx} + \chi_{zzx} = -(\beta_{a\alpha} + \beta_{bbc} + \beta_{c\alpha})sin\theta cos\chi \\ &\chi_{xxy} + \chi_{yyy} + \chi_{zzy} = +(\beta_{a\alpha} + \beta_{bbc} + \beta_{c\alpha})sin\theta sin\chi \\ &\chi_{xxz} + \chi_{vvz} + \chi_{zzz} = +(\beta_{a\alpha} + \beta_{bbc} + \beta_{c\alpha})cos\theta \end{split}$$

[逆対称 (b₁) 振動モード]

$$\beta_{\xi\xi\zeta} >> \beta_{\xi\xi\zeta} \sim \beta_{\eta\eta\zeta}$$
 とすると、 $\beta_{caa} = \beta_{\zeta\zeta\zeta}(\cos\alpha - \cos^3\alpha) \approx 2\sqrt{3}/9\beta_{\zeta\zeta\zeta}$ (Td), $3/8$ $\beta_{\zeta\zeta\zeta}$ (sp²)

$$\begin{split} (ppp) \qquad & \chi_{xxx} = -(1/4)\beta_{caa}\{[(1+\cos2\varphi)(\sin\theta-\sin^3\theta)(3\cos\chi+\cos3\chi)+(1-\cos2\varphi)\sin\theta(\cos\chi-\cos3\chi)]\\ & -2\sin2\varphi\sin\theta\cos\theta(\sin\chi+\sin3\chi)\}\\ \chi_{xzz} = & (1/2)\beta_{caa}[(1+\cos2\varphi)(\sin\theta-2\sin^3\theta)\cos\chi-\sin2\varphi\sin\theta\cos\theta\sin\chi]\\ \chi_{zxz} = & (1/2)\beta_{caa}[(1+\cos2\varphi)(\sin\theta-2\sin^3\theta)\cos\chi-\sin2\varphi\sin\theta\cos\theta\sin\chi]\\ \chi_{zzz} = & \beta_{caa}[(1+\cos2\varphi)(\sin\theta-\sin^3\theta)\cos\chi-\sin2\varphi\sin\theta\cos\theta\sin\chi]\\ \chi_{zxx} = & (1/4)\beta_{caa}\{2[\cos\theta(1+\cos2\varphi\cos2\chi)-(1+\cos2\varphi)(\cos\theta-\cos^3\theta)(1+\cos2\chi)]\\ & +\sin2\varphi(1-3\cos^2\theta)\sin2\chi\}\\ \chi_{xzz} = & (1/4)\beta_{caa}\{2[\cos\theta(1+\cos2\varphi\cos2\chi)-(1+\cos2\varphi)(\cos\theta-\cos^3\theta)(1+\cos2\chi)]\\ & +\sin2\varphi(1-3\cos^2\theta)\sin2\chi\}\\ \chi_{xxz} = & (1/2)\beta_{caa}[-(1+\cos2\varphi)(\cos\theta-\cos^3\theta)(1+\cos2\chi)+\sin2\varphi\sin^2\theta\sin2\chi]\\ \chi_{xzz} = & (1/2)\beta_{caa}[-(1+\cos2\varphi)(\cos\theta-\cos^3\theta)(1+\cos2\chi)+\sin2\varphi\sin^2\theta\sin2\chi]\\ \chi_{zzz} = & \beta_{caa}(1+\cos2\varphi)(\cos\theta-\cos^3\theta) \end{split}$$

$$\begin{split} (spp) \qquad & \chi_{yxx} = (1/4)\beta_{cas}\{[(1+\cos2\varphi)(\sin\theta-\sin^3\theta)(\sin\chi+\sin3\chi) + (1-\cos2\varphi)\sin\theta(\sin\chi-\sin3\chi)] \\ & + 2\sin2\varphi\sin\theta\cos\theta\cos3\chi\} \\ \chi_{yzz} = -(1/2)\beta_{cas}[(1+\cos2\varphi)(\sin\theta-2\sin^3\theta)\sin\chi + \sin2\varphi\sin\theta\cos\theta\cos\chi] \\ \chi_{yzx} = (1/4)\beta_{cas}\{2[(1+\cos2\varphi)(\cos\theta-\cos^3\theta) - \cos2\varphi\cos\theta]\sin2\chi \\ & + \sin2\varphi[-\sin^2\theta + (1-3\cos^2\theta)\cos2\chi]\} \\ \chi_{yxz} = (1/2)\beta_{cas}[(1+\cos2\varphi)(\cos\theta-\cos^3\theta)\sin2\chi + \sin2\varphi\sin^2\theta\cos2\chi] \end{split}$$

$$(ssp) \qquad \chi_{yyx} = (1/4)\beta_{caa}\{[-(1+\cos 2\phi)(\sin \theta - \sin^3 \theta) + (1-\cos 2\phi)\sin \theta](\cos \chi - \cos 3\chi)\}$$

$$+ 2 \sin 2 \phi \sin \theta \cos \theta (\sin \chi - \sin 3 \chi) \}$$

$$\chi_{yyz} = -(1/2) \beta_{cm} \{ (1 + \cos 2 \phi) (\cos \theta - \cos^3 \theta) (1 - \cos 2 \chi) + \sin 2 \phi \sin^2 \theta \sin 2 \chi]$$

$$(psp) \qquad \chi_{xyx} = (1/4) \beta_{cm} \{ [(1 + \cos 2 \phi) (\sin \theta - \sin^3 \theta) (\sin \chi + \sin 3 \chi) + 1 - \cos 2 \phi) \sin \theta (\sin \chi - \sin 3 \chi)]$$

$$+ 2 \sin 2 \phi \sin \theta \cos \theta \cos 3 \chi \}$$

$$\chi_{yyz} = -(1/2) \beta_{cm} \{ (1 + \cos 2 \phi) (\sin \theta - 2 \sin^3 \theta) \sin \chi + \sin 2 \phi \sin \theta \cos \theta \cos \chi]$$

$$\chi_{xyz} = (1/2) \beta_{cm} \{ (1 + \cos 2 \phi) (\cos \theta - \cos^3 \theta) \sin 2 \chi + \sin 2 \phi \sin^2 \theta \cos 2 \chi]$$

$$\chi_{xyx} = (1/4) \beta_{cm} \{ 2[(1 + \cos 2 \phi) (\cos \theta - \cos^3 \theta) - \cos 2 \phi \cos \theta] \sin 2 \chi$$

$$+ \sin 2 \phi [-\sin^2 \theta + (1 - 3\cos^2 \theta) \cos 2 \chi] \}$$

$$(sps) \qquad \chi_{yxy} = -(1/4) \beta_{cm} \{ [-(1 + \cos 2 \phi) (\sin \theta - \sin^3 \theta) (\cos \chi - \cos 3 \chi) + (1 - \cos 2 \phi) \sin \theta (\cos \chi + \cos 3 \chi)]$$

$$+ 2 \sin 2 \phi \sin \theta \cos \theta \sin 3 \chi \}$$

$$\chi_{yxy} = (1/4) \beta_{cm} \{ 2[\cos \theta (1 - \cos 2 \phi \cos 2 \chi) - (1 + \cos 2 \phi) (\cos \theta - \cos^3 \theta) (1 - \cos 2 \chi)]$$

$$- \sin 2 \phi (1 - 3\cos^2 \theta) \sin 2 \chi \}$$

$$(pps) \qquad \chi_{xxy} = (1/4) \beta_{cm} \{ [(1 + \cos 2 \phi) (\sin \theta - \sin^3 \theta) - (1 - \cos 2 \phi) \sin \theta] (\sin \chi + \sin 3 \chi)$$

$$+ 2 \sin 2 \phi \sin \theta \cos \theta (\cos \chi + \cos 3 \chi) \}$$

$$\chi_{xxy} = -\beta_{cm} [(1 + \cos 2 \phi) (\sin \theta - 2 \sin^3 \theta) \sin \chi + \sin 2 \phi \sin \theta \cos \theta \cos \chi]$$

$$\chi_{xxy} = (1/4) \beta_{cm} \{ 2[(1 + \cos 2 \phi) (\cos \theta - \cos^3 \theta) - \cos 2 \phi \cos \theta] \sin 2 \chi$$

$$+ \sin 2 \phi [\sin^2 \theta + (1 - 3\cos^2 \theta) \cos 2 \chi] \}$$

$$\chi_{xxy} = (1/4) \beta_{cm} \{ 2[(1 + \cos 2 \phi) (\cos \theta - \cos^3 \theta) - \cos 2 \phi \cos \theta] \sin 2 \chi$$

$$+ \sin 2 \phi [\sin^2 \theta + (1 - 3\cos^2 \theta) \cos 2 \chi] \}$$

$$\chi_{xxy} = (1/4) \beta_{cm} \{ 2[(1 + \cos 2 \phi) (\cos \theta - \cos^3 \theta) - \cos 2 \phi \cos \theta] \sin 2 \chi$$

$$+ \sin 2 \phi [\sin^2 \theta + (1 - 3\cos^2 \theta) \cos 2 \chi] \}$$

$$\chi_{xxy} = (1/4) \beta_{cm} \{ 2[(1 + \cos 2 \phi) (\cos \theta - \cos^3 \theta) - \cos 2 \phi \cos \theta] \sin 2 \chi$$

$$+ \sin 2 \phi [\sin^2 \theta + (1 - 3\cos^2 \theta) \cos 2 \chi] \}$$

$$\chi_{xxy} = (1/4) \beta_{cm} \{ 2[(1 + \cos 2 \phi) (\cos \theta - \cos^3 \theta) - \cos 2 \phi \cos \theta] \sin 2 \chi$$

$$+ \sin 2 \phi [\sin^2 \theta + (1 - 3\cos^2 \theta) \cos 2 \chi] \}$$

$$\chi_{xxy} = (1/4) \beta_{cm} \{ 2[(1 + \cos 2 \phi) (\cos \theta - \cos^3 \theta) - \cos 2 \phi \cos \theta] \sin 2 \chi$$

$$+ \sin 2 \phi [\sin \theta + (1 - 3\cos^2 \theta) \cos 2 \chi] \}$$

$$\chi_{xxy} = (1/4) \beta_{cm} \{ 2[(1 + \cos 2 \phi) (\cos \theta - \cos^3 \theta) - \cos 2 \phi \cos \theta] \sin 2 \chi$$

$$+ \sin 2 \phi [\cos \theta + \cos^2 \theta + \cos$$

$$\begin{split} \chi_{xyy} &= -(1/4)\beta_{caa}\{[-(1+\cos2\varphi)(\sin\theta-\sin^3\theta)(\cos\chi-\cos3\chi)+(1-\cos2\varphi)\sin\theta(\cos\chi+\cos3\chi)]\\ &+2\sin2\varphi\sin\theta\cos\theta\,\sin3\chi\}\\ \chi_{zyy} &= (1/4)\beta_{caa}\{2[\cos\theta(1-\cos2\varphi\cos2\chi)-(1+\cos2\varphi)(\cos\theta-\cos^3\theta)(1-\cos2\chi)]\\ &-\sin2\varphi(1-3\cos^2\theta)\sin2\chi\} \end{split}$$

$$\begin{split} \chi_{yyy} &= (1/4)\beta_{caa}\{[(1+cos2\phi)(\sin\theta - \sin^3\theta)(3\sin\chi - \sin3\chi) + (1-cos2\phi)\sin\theta(\sin\chi + \sin3\chi)] \\ &+ 2\sin2\phi\sin\theta\cos\theta(\cos\chi - \cos3\chi)\} \end{split}$$

$$\chi_{xxx} + \chi_{yyx} + \chi_{zzx} = \chi_{xxy} + \chi_{yyy} + \chi_{zzy} = \chi_{xxz} + \chi_{yyz} + \chi_{zzz} = 0$$

[面外 (b₂) 振動モード]

$$\begin{split} (ppp) \qquad & \chi_{xxx} = -(1/4)\beta_{cbb}\{[(1+\cos2\varphi)\sin\theta(\cos\chi-\cos3\chi)+(1-\cos2\varphi)(\sin\theta-\sin^3\theta)(3\cos\chi+\cos3\chi)] \\ & + 2\sin2\varphi\sin\theta\cos\theta(\sin\chi+\sin3\chi)\} \\ \chi_{xzz} = & (1/2)\beta_{cbb}[(1-\cos2\varphi)(\sin\theta-2\sin^3\theta)\cos\chi+\sin2\varphi\sin\theta\cos\theta\sin\chi] \\ \chi_{zxz} = & (1/2)\beta_{cbb}[(1-\cos2\varphi)(\sin\theta-2\sin^3\theta)\cos\chi+\sin2\varphi\sin\theta\cos\theta\sin\chi] \\ \chi_{zzx} = & \beta_{cbb}[(1-\cos2\varphi)(\sin\theta-\sin^3\theta)\cos\chi+\sin2\varphi\sin\theta\cos\theta\sin\chi] \\ \chi_{zxx} = & \beta_{cbb}[(1-\cos2\varphi)(\sin\theta-\sin^3\theta)\cos\chi+\sin2\varphi\sin\theta\cos\theta\sin\chi] \\ \chi_{zxx} = & (1/4)\beta_{cbb}\{2[\cos\theta(1-\cos2\varphi\cos2\chi)-(1-\cos2\varphi)(\cos\theta-\cos^3\theta)(1+\cos2\chi)] \\ & - \sin2\varphi(1-3\cos^2\theta)\sin2\chi\} \end{split}$$

```
\chi_{xzx} = (1/4)\beta_{cbb} \{ 2[\cos\theta(1 - \cos2\phi\cos2\chi) - (1 - \cos2\phi)(\cos\theta - \cos^3\theta)(1 + \cos2\chi) \}
                                             -\sin 2\phi(1 - 3\cos^2\theta)\sin 2\chi
                  \chi_{xxz} = -(1/2)\beta_{cbb}[(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta)(1 + \cos 2\chi) + \sin 2\phi \sin^2 \theta \sin 2\chi]
                   \chi_{zz} = \beta_{cbb}(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta)
                  \chi_{vxx} = (1/4)\beta_{cbb}\{[(1+\cos 2\phi)\sin\theta(\sin\chi - \sin 3\chi) + (1-\cos 2\phi)(\sin\theta - \sin^3\theta)(\sin\chi + \sin 3\chi)]
(spp)
                                             -2\sin 2\phi \sin \theta \cos \theta \cos 3\gamma
                   \chi_{vzz} = -(1/2)\beta_{cbb}[(1 - \cos 2\phi)(\sin \theta - 2\sin^3 \theta)\sin \chi - \sin 2\phi \sin \theta \cos \theta \cos \chi]
                   \chi_{\text{vzx}} = (1/4)\beta_{\text{cbb}} \{ 2[(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta) + \cos 2\phi \cos \theta] \sin 2\chi \}
                                         +\sin 2\phi [\sin^2\theta - (1 - 3\cos^2\theta)\cos 2\chi]
                  \chi_{\text{vxz}} = (1/2)\beta_{\text{cbb}}[(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta)\sin 2\chi - \sin 2\phi \sin^2 \theta \cos 2\chi]
                  \chi_{\text{vvx}} = (1/4)\beta_{\text{cbb}} \{ [(1 + \cos 2\phi)\sin\theta - (1 - \cos 2\phi)(\sin\theta - \sin^3\theta)](\cos\chi - \cos 3\chi) \}
(ssp)
                                             -2\sin 2\phi \sin \theta \cos \theta (\sin \chi - \sin 3\chi)
                  \chi_{\text{vvz}} = -(1/2)\beta_{\text{cbb}}[(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta)(1 - \cos 2\chi) - \sin 2\phi \sin^2 \theta \sin 2\chi]
                  \chi_{xyx} = (1/4)\beta_{cbb}\{[(1 + \cos 2\phi)\sin\theta(\sin\chi - \sin 3\chi) + (1 - \cos 2\phi)(\sin\theta - \sin^3\theta)(\sin\chi + \sin 3\chi)]
(psp)
                                             -2\sin 2\phi \sin \theta \cos \theta \cos 3\chi
                  \chi_{zvz} = -(1/2)\beta_{cbb}[(1 - \cos 2\phi)(\sin \theta - 2\sin^3 \theta)\sin \chi - \sin 2\phi \sin \theta \cos \theta \cos \chi]
                   \chi_{xvz} = (1/2)\beta_{cbb}[(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta)\sin 2\chi - \sin 2\phi \sin^2 \theta \cos 2\chi]
                   \chi_{\text{zvx}} = (1/4)\beta_{\text{cbb}} \{2[(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta) + \cos 2\phi \cos \theta]\sin 2\chi
                                         + \sin 2\phi [\sin^2 \theta - (1 - 3\cos^2 \theta)\cos 2\chi]
                  \chi_{vxv} = -(1/4)\beta_{cbb}\{[(1 + \cos 2\phi)\sin\theta(\cos\chi + \cos 3\chi) - (1 - \cos 2\phi)(\sin\theta - \sin^3\theta)](\cos\chi - \cos 3\chi)\}
(sps)
                                             -2\sin 2\phi \sin \theta \cos \theta \sin 3\chi
                  \chi_{\rm vzv} = (1/4)\beta_{\rm cbb} \{ 2[\cos\theta(1 + \cos2\phi\cos2\chi) - (1 - \cos2\phi)(\cos\theta - \cos^3\theta)(1 - \cos2\chi) \}
                                             +\sin 2\phi(1-3\cos^2\theta)\sin 2\chi
(pps)
                  \chi_{xxy} = (1/4)\beta_{cbb}\{[-(1+\cos 2\phi)\sin\theta + (1-\cos 2\phi)(\sin\theta - \sin^3\theta)](\sin\chi + \sin 3\chi)
                                             -2\sin 2\phi \sin \theta \cos \theta (\cos \chi + \cos 3\chi)
                  \chi_{zzy} = \beta_{cbb} [-(1 - \cos 2\phi)(\sin \theta - \sin^3 \theta) \sin \chi + \sin 2\phi \sin \theta \cos \theta \cos \chi]
                   \chi_{\text{zxy}} = (1/4)\beta_{\text{cbb}} \{2[(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta) + \cos 2\phi \cos \theta]\sin 2\chi
                                         -\sin 2\phi[\sin^2\theta + (1 - 3\cos^2\theta)\cos 2\chi]
                  \chi_{xzy} = (1/4)\beta_{cbb}\{2[(1-\cos 2\phi)(\cos\theta-\cos^3\theta)+\cos 2\phi\cos\theta]\sin 2\chi
                                         -\sin 2\phi [\sin^2 \theta + (1 - 3\cos^2 \theta)\cos 2\gamma]
                  \chi_{xyy} = -(1/4)\beta_{cbb}\{[(1+\cos 2\phi)\sin\theta(\cos\chi+\cos 3\chi)+(1-\cos 2\phi)(\sin\theta-\sin^3\theta)(\cos\chi-\cos 3\chi)]
(pss)
                                             - 2\sin 2\phi \sin \theta \cos \theta \sin 3\chi
                  \chi_{zyy} = (1/4)\beta_{cbb}\{2[cos\theta(1+cos2\phi cos2\chi) - (1-cos2\phi)(cos\theta-cos^3\theta)(1-cos2\chi)]
                                             +\sin 2\phi(1-3\cos^2\theta)\sin 2\chi
```

(sss)
$$\chi_{yyy} = (1/4)\beta_{cbb}\{[(1 + \cos 2\phi)\sin\theta(\sin\chi + \sin 3\chi) + (1 - \cos 2\phi)(\sin\theta - \sin^3\theta)(3\sin\chi - \sin 3\chi)] - 2\sin 2\phi\sin\theta\cos\theta (\cos\chi - \cos 3\chi)]\}$$

$$\chi_{xxx} + \chi_{yyx} + \chi_{zzx} = \chi_{xxy} + \chi_{yyy} + \chi_{zzy} = \chi_{xxz} + \chi_{yyz} + \chi_{zzz} = 0$$

4b. 自由回転・ランダムなねじれ角

メチレン基の内部回転 (torsion) が自由回転になっている場合には、内部回転角 ϕ が 0 から 2π の間の任意の値を同じ確率で取り得る。 $\int_0^{2\pi}\cos(n\phi)d\phi=\int_0^{2\pi}\sin(n\phi)d\phi=0$ (n=1,2,3) であるから、縮重振動のテンソル成分は大幅に整理されて下のようになる。 (回転が凍結されて ϕ が 0 あるいは π に固定されている状態とは違った表式になることに注意したい。)

なお、分子面と xy 面の間の角(内部回転角)を ϕ 、c 軸の外向き法線からの傾き角を θ_{til} 、c 軸の射影と x 軸の間の角(面内配向角)を χ_{ip} とするとき、下のテンソル成分の表式に使われているオイラー角は、 $\phi=\pi/2+\phi$, $\theta=\pi-\theta_{til}$, $\chi=\pi/2+\chi_{ip}$ である。

[対称 (a₁) 振動モード]

$$\beta_{\xi\xi\zeta} >> \beta_{\xi\xi\zeta} \sim \beta_{\eta\eta\zeta}$$
 とすると、

$$\begin{split} \beta_{aac} + \ \beta_{bbc} &= (\beta_{aac} - \beta_{bbc}) = \beta_{\zeta\zeta\zeta}(\cos\alpha - \cos^3\alpha) \approx \ 2\sqrt{3} \ / \ 9 \ \beta_{\zeta\zeta\zeta} \ (Td), \quad 3/8 \ \beta_{\zeta\zeta\zeta} \ (sp^2) \\ \beta_{aac} + \ \beta_{bbc} - 2\beta_{ccc} &= \beta_{\zeta\zeta\zeta}(\cos\alpha - 3\cos^3\alpha) \qquad \qquad \sim 0 \ \beta_{\zeta\zeta\zeta} \ (Td), \quad 1/8 \ \beta_{\zeta\zeta\zeta} \ (sp^2) \end{split}$$

$$(ppp) \qquad \chi_{xxx} = (-1/2)(\beta_{aac} + \beta_{bbc}) sinθ cos \chi \\ + (1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) sin^3 \theta (3cos \chi + cos 3 \chi) \\ \chi_{xzz} = (1/2)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) (sin\theta - sin^3 \theta) cos \chi \\ \chi_{zxz} = (1/2)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) (sin\theta - sin^3 \theta) cos \chi \\ \chi_{zzx} = (-1/2)(\beta_{aac} + \beta_{bbc}) sin\theta cos \chi \\ + (1/2)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) (sin\theta - sin^3 \theta) cos \chi \\ \chi_{xzx} = -(1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) (cos \theta - cos^3 \theta) (1 + cos 2 \chi) \\ \chi_{zxx} = -(1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) (cos \theta - cos^3 \theta) (1 + cos 2 \chi) \\ \chi_{xxz} = (1/2)(\beta_{aac} + \beta_{bbc}) cos \theta \\ - (1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) (cos \theta - cos^3 \theta) (1 + cos 2 \chi) \\ \chi_{zzz} = (1/2)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) (cos \theta - cos^3 \theta) (1 + cos 2 \chi) \\ \chi_{zzz} = (1/2)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) cos \theta \\ - (1/2)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) cos \theta \\ - (1/2)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) cos \theta \theta$$
(spp)
$$\chi_{yxz} = -(1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) (sin\theta - sin^3 \theta) sin \chi \\ \chi_{yzz} = -(1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) (cos \theta - cos^3 \theta) sin 2 \chi \\ \chi_{yxz} = (1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) (cos \theta - cos^3 \theta) sin 2 \chi$$

(ssp)
$$\chi_{yyx} = (-1/2)(\beta_{aac} + \beta_{bbc})\sin\theta\cos\chi + (1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})\sin^3\theta(\cos\chi - \cos3\chi)$$

$$\begin{split} \chi_{yyz} &= (1/2)(\beta_{aac} + \beta_{bbc})cos\theta \\ &- (1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(cos\theta - cos^3\theta)(1 - cos2\chi) \end{split}$$

$$(psp) \qquad \chi_{xyx} &= -(1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})sin^3\theta(sin\chi + sin3\chi) \\ \chi_{zyz} &= -(1/2)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(sin\theta - sin^3\theta)sin\chi \end{split}$$

$$\chi_{xyz} = (1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(cos\theta - cos^3\theta)sin2\chi$$

$$\chi_{zyx} = (1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)\sin 2\chi$$

$$\chi_{\text{zyx}} = (1/4)(\beta_{\text{aac}} + \beta_{\text{bbc}} - 2\beta_{\text{ccc}})(\cos\theta - \cos^3\theta)\sin 2\chi$$

(sps)
$$\chi_{yxy} = (1/8)(\beta_{ax} + \beta_{bbc} - 2\beta_{cx})\sin^3\theta(\cos\chi - \cos3\chi)$$
$$\chi_{yzy} = -(1/4)(\beta_{ax} + \beta_{bbc} - 2\beta_{cx})(\cos\theta - \cos^3\theta)(1 - \cos2\chi)$$

$$\begin{split} \text{(pps)} \qquad & \chi_{xxy} = (1/2)(\beta_{a\alpha} + \beta_{bbc}) sin\theta sin\chi \\ & - (1/8)(\beta_{a\alpha} + \beta_{bbc} - 2\beta_{c\alpha}) sin^3\theta (sin\chi + sin3\chi) \end{split}$$

$$\chi_{zzy} = (1/2)(\beta_{aac} + \beta_{bbc})\sin\theta\sin\chi$$

-
$$(1/2)(\beta_{a\alpha} + \beta_{bbc} - 2\beta_{c\alpha})(\sin\theta - \sin^3\theta)\sin\chi$$

$$\chi_{xzy} = (1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(cos\theta - cos^3\theta)sin2\chi$$

$$\chi_{zxy} = (1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)\sin 2\chi$$

(pss)
$$\chi_{xyy} = (1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})\sin^3\theta(\cos\chi - \cos3\chi)$$
$$\chi_{xyy} = -(1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)(1 - \cos2\chi)$$

(sss)
$$\chi_{yyy} = (1/2)(\beta_{aac} + \beta_{bbc})\sin\theta\sin\chi$$
$$- (1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{co})\sin^3\theta(3\sin\chi - \sin3\chi)$$

[逆対称 (b₁) 振動モード]

$$\beta_{\xi\xi\zeta}>>\beta_{\xi\xi\zeta}\sim\beta_{\eta\eta\zeta}$$
 とすると、 $\beta_{caa}=\beta_{\zeta\zeta\zeta}(cos\alpha-cos^3\alpha)\approx 2\sqrt{3}/9\beta_{\zeta\zeta\zeta}$ (Td), $3/8$ $\beta_{\zeta\zeta\zeta}$ (sp²)

$$(ppp) \hspace{1cm} \chi_{xxx} = -(1/4)\beta_{caa}[4sin\theta cos\chi - sin^3\theta(3cos\chi + cos3\chi)]$$

$$\chi_{xzz} = (1/2)\beta_{caa}(\sin\theta - 2\sin^3\theta)\cos\chi$$

$$\chi_{zxz} = (1/2)\beta_{caa}(sin\theta - 2sin^3\theta)cos\chi$$

$$\chi_{zzx} = \beta_{caa}(\sin\theta - \sin^3\theta)\cos\chi$$

$$\chi_{zxx} = (1/2)\beta_{caa}[cos^3\theta(1+cos2\chi)-cos\theta cos2\chi]$$

$$\chi_{xzx} = (1/2)\beta_{caa}[cos^3\theta(1 + cos2\chi) - cos\theta cos2\chi]$$

$$\chi_{xxz} = \text{-}(1/2)\beta_{\text{caa}}(cos\theta \text{-} cos^3\theta)(1+cos2\chi)$$

$$\chi_{zzz} = \beta_{caa}(\cos\theta - \cos^3\theta)$$

$$(spp) \hspace{1cm} \chi_{yxx} = (1/4)\beta_{caa}[2sin\theta sin\chi - sin^3\theta(sin\chi + sin3\chi)]$$

$$\chi_{vzz} = -(1/2)\beta_{caa}(\sin\theta - 2\sin^3\theta)\sin\chi$$

$$\chi_{vzx} = (1/2)\beta_{caa}(\cos\theta - \cos^3\theta)\sin 2\chi$$

$$\chi_{yxz} = (1/2)\beta_{caa}(\cos\theta - \cos^3\theta)\sin 2\chi$$

(ssp)
$$\chi_{yyx} = (1/4)\beta_{caa}\sin^3\theta(\cos\chi - \cos3\chi)$$

$$\chi_{vvz} = -(1/2)\beta_{caa}(\cos\theta - \cos^3\theta)(1 - \cos2\chi)$$

(psp)
$$\chi_{xyx} = (1/4)\beta_{can}[2\sin\theta\sin\chi - \sin^3\theta(\sin\chi + \sin3\chi)]$$

$$\begin{split} &\chi_{zyz} = -(1/2)\beta_{caa}(sin\theta - 2sin^3\theta)sin\chi \\ &\chi_{xyz} = (1/2)\beta_{caa}(cos\theta - cos^3\theta)sin2\chi \\ &\chi_{zyx} = (1/2)\beta_{caa}(cos\theta - cos^3\theta)sin2\chi \end{split}$$

$$\begin{split} (sps) \qquad & \chi_{yxy} = -(1/4)\beta_{caa}[2sin\theta cos\chi - sin^3\theta(cos\chi - cos3\chi)] \\ \chi_{vzv} &= (1/2)\beta_{caa}[cos^3\theta(1 - cos2\chi) + cos\theta cos2\chi] \end{split}$$

(pps)
$$\chi_{xxy} = (-1/4)\beta_{caa}\sin^3\theta(\sin\chi + \sin3\chi)$$

$$\chi_{zzy} = -\beta_{caa}(\sin\theta - \sin^3\theta)\sin\chi$$

$$\chi_{zxy} = (1/2)\beta_{caa}(\cos\theta - \cos^3\theta)\sin2\chi$$

$$\chi_{xzy} = ((1/2)\beta_{caa}(\cos\theta - \cos^3\theta)\sin2\chi$$

$$\begin{split} (pss) \qquad & \chi_{xyy} = (-1/4)\beta_{caa}[2sin\theta cos\chi - sin^3\theta(cos\chi - cos3\chi)] \\ \chi_{zyy} = & (1/2)\beta_{caa}[cos^3\theta(1 - cos2\chi) + cos\theta cos2\chi] \\ (sss) \qquad & \chi_{yyy} = & (1/4)\beta_{caa}[4sin\theta sin\chi - sin^3\theta(3sin\chi - sin3\chi)] \end{split}$$

[面外 (b₂) 振動モード]

(spp)

$$\begin{split} (ppp) \qquad & \chi_{xxx} = -(1/4)\beta_{cbb}[4sin\theta cos\chi - sin^3\theta(3cos\chi + cos3\chi)] \\ & \chi_{zzz} = (1/2)\beta_{cbb}(sin\theta - 2sin^3\theta)cos\chi \\ & \chi_{zxz} = (1/2)\beta_{cbb}(sin\theta - 2sin^3\theta)cos\chi \\ & \chi_{zzx} = \beta_{cbb}(sin\theta - sin^3\theta)cos\chi \\ & \chi_{zxx} = \beta_{cbb}(sin\theta - sin^3\theta)cos\chi \\ & \chi_{zxx} = (1/2)\beta_{cbb}[cos^3\theta(1 + cos2\chi) - cos\theta cos2\chi] \\ & \chi_{xzx} = (1/2)\beta_{cbb}[cos^3\theta(1 + cos2\chi) - cos\theta cos2\chi] \\ & \chi_{xxz} = -(1/2)\beta_{cbb}(cos\theta - cos^3\theta)(1 + cos2\chi) \end{split}$$

$$\chi_{zz} = \beta_{cbb}(\cos\theta - \cos^3\theta)$$

$$\chi_{vxx} = (1/4)\beta_{cbb}[2\sin\theta\sin\chi - \sin^3\theta(\sin\chi + \sin3\chi)]$$

$$\chi_{yzz} = -(1/2)\beta_{cbb}(\sin\theta - 2\sin^3\theta)\sin\chi$$

$$\chi_{yzx} = (1/2)\beta_{cbb}(\cos\theta - \cos^3\theta)\sin2\chi$$

$$\chi_{yxz} = (1/2)\beta_{cbb}(\cos\theta - \cos^3\theta)\sin2\chi$$

(ssp)
$$\chi_{yyx} = (1/4)\beta_{cbb}\sin^3\theta(\cos\chi - \cos3\chi)$$
$$\chi_{vvz} = -(1/2\beta_{cbb}(\cos\theta - \cos^3\theta)(1 - \cos2\chi)$$

$$\begin{split} (psp) \qquad & \chi_{xyx} = (1/4)\beta_{cbb}[2sin\theta sin\chi - sin^3\theta(sin\chi + sin3\chi)] \\ \chi_{zyz} = -(1/2)\beta_{cbb}(sin\theta - 2sin^3\theta)sin\chi \\ \chi_{xyz} = (1/2)\beta_{cbb}(cos\theta - cos^3\theta)sin2\chi \\ \chi_{zvx} = (1/2)\beta_{cbb}(cos\theta - cos^3\theta)sin2\chi \end{split}$$

$$\begin{split} (sps) \qquad & \chi_{yxy} = -(1/4)\beta_{cbb}[2sin\theta cos\chi - sin^3\theta(cos\chi - cos3\chi)] \\ \chi_{yzy} = & (1/2)\beta_{cbb}[cos^3\theta(1 - cos2\chi) + cos\theta cos2\chi] \end{split}$$

$$\begin{array}{ll} \text{(pps)} & \chi_{xxy} = -(1/4)\beta_{cbb} \text{sin}^3 \theta (\text{sin}\chi + \text{sin}3\chi) \\ \\ \chi_{zz} = -\beta_{cbb} (\text{sin}\theta - \text{sin}^3\theta) \text{sin}\chi \end{array}$$

$$\chi_{\text{zxy}} = (1/2)\beta_{\text{cbb}}(\cos\theta - \cos^3\theta)\sin 2\chi$$
$$\chi_{\text{zxy}} = (1/2)\beta_{\text{cbb}}(\cos\theta - \cos^3\theta)\sin 2\chi$$

$$\begin{split} (pss) & \chi_{xyy} = -(1/4)\beta_{cbb}[2sin\theta cos\chi - sin^3\theta(cos\chi - cos3\chi)] \\ \chi_{zyy} = (1/2)\beta_{cbb}[cos^3\theta(1 - cos2\chi) + cos\theta cos2\chi] \\ (sss) & \chi_{yyy} = (1/4)\beta_{cbb}[4sin\theta sin\chi - sin^3\theta(3sin\chi - sin3\chi)] \end{split}$$

4c. 2個の H 原子が等価な時(内部回転は凍結されている)

この場合には、内部回転角が ϕ のメチレン基と $-\phi$ のメチレン基が区別され、テンソルも別物になる。 2 つの配置のテンソル成分を足し合わせると、 $-\phi$ のメチレン基が区別され、テンソルも別物になる。 6 を除いたものになる。

[対称 (a₁) 振動]

$$\begin{array}{ll} \begin{array}{l} (A_{j}) \text{ iff } B \text{ iff } A \text$$

$$-(1/2)(β_{ax} - β_{bxc})\cos 2φ(sinθ - sin^2θ)sinχ$$

$$χ_{yzz} = (1/4)(β_{az} + β_{bxc} - 2β_{cx})(cosθ - cos^2θ)sin2χ$$

$$+(1/4)(β_{az} - β_{bxc})\cos 2φ(cosθ - cos^3θ)sin2χ$$

$$-(1/4)(β_{az} - β_{bxc})\cos 2φ(cosθ - cos^3θ)sin2χ$$

$$-(1/4)(β_{az} - β_{bxc})\cos 2φ(cosθ - cos^3θ)sin2χ$$

$$(ssp)$$

$$χ_{yyz} = (-1/2)(β_{ax} + β_{bxc})sinθcosχ$$

$$+(1/8)(β_{az} - β_{bxc})\cos 2φ(sinθ(3cosχ - cos3χ) - (sinθ - sin^3θ)(cosχ - cos3χ)$$

$$+(1/8)(β_{az} - β_{bxc})\cos 2φ(sinθ(3cosχ + cos3χ) - (sinθ - sin^3θ)(cosχ - cos3χ)$$

$$χ_{yyz} = (1/2)(β_{ax} + β_{bxc})\cos θ$$

$$-(1/4)(β_{ax} - β_{bxc})\cos 2φ(cosθ - cos^3θ)(1 - cos2χ)$$

$$-(1/4)(β_{ax} - β_{bxc})\cos 2φ(cosθ - cos^3θ)(1 - cos2χ)$$

$$-(1/4)(β_{ax} - β_{bxc})\cos 2φ(cosθ - cos^3θ)(sinχ + sin3χ)$$

$$χ_{yyz} = (-1/2)(β_{ax} + β_{bxc} - 2β_{cxc})(sinθ - sin^3θ)sinχ$$

$$χ_{yyz} = (-1/2)(β_{ax} + β_{bxc} - 2β_{cxc})(sinθ - sin^3θ)sinχ$$

$$χ_{yyz} = (-1/4)(β_{ax} - β_{bxc})\cos 2φ(cosθ - cos^3θ)sin2χ$$

$$-(1/4)(β_{ax} - β_{bxc})\cos 2φ(cosθ - cos^3θ)sin2χ$$

$$-(1/4)(β_{ax} - β_{bxc})\cos 2φ(cosθ - cos^3θ)sin2χ$$

$$χ_{yyz} = (1/4)(β_{ax} + β_{bxc} - 2β_{cxc})(cosθ - cos^3θ)sin2χ$$

$$-(1/4)(β_{ax} - β_{bxc})\cos 2φ(cosθ - cos^3θ)sin2χ$$

$$(sps)$$

$$χ_{yyz} = (1/8)(β_{ax} + β_{bxc} - 2β_{cxc})(cosθ - cos^3θ)(1 - cos2χ)$$

$$-(1/4)(β_{ax} + β_{bxc} - 2β_{cxc})(cosθ - cos^3θ)(1 - cos2χ)$$

$$-(1/4)(β_{ax} + β_{bxc} - 2β_{cxc})(cosθ - cos^3θ)(1 - cos2χ)$$

$$-(1/4)(β_{ax} + β_{bxc} - 2β_{cxc})(cosθ - cos^3θ)(1 - cos2χ)$$

$$-(1/4)(β_{ax} + β_{bxc} - 2β_{cxc})(sinθ - sin^3θ)(cosχ - cos3χ)$$

$$-(1/8)(β_{ax} + β_{bxc} - 2β_{cxc})(cosθ - cos^3θ)(1 - cos2χ)$$

$$-(1/4)(β_{ax} + β_{bxc} - 2β_{cxc})(cosθ - cos^3θ)(1 - cos2χ)$$

$$-(1/4)(β_{ax} + β_{bxc} - 2β_{cxc})(cosθ - cos^3θ)(1 - cos2χ)$$

$$-(1/4)(β_{ax} + β_{bxc} - 2β_{cxc})(cosθ - cos^3θ)(1 - cos2χ)$$

$$-(1/4)(β_{ax} + β_{bxc} - 2β_{cxc})(cosθ - cos^3θ)sin2χ$$

$$+(1/4)(β_{ax} - β_{bxc})cos2φ(cosθ - cos^3θ)(1 - cos2χ)$$

$$-(1/4)(β_{ax} - β_{bxc})cos2φ(cosθ - cos^$$

$$\begin{split} \chi_{yyy} &= (1/2)(\beta_{a\alpha} + \beta_{bbc}) sin\theta sin\chi \\ &- (1/8)(\beta_{a\alpha} + \beta_{bbc} - 2\beta_{c\alpha}) sin^3\theta (3sin\chi - sin3\chi) \\ &- (1/8)(\beta_{a\alpha} - \beta_{bbc}) cos2\phi [sin\theta(sin\chi + sin3\chi) - (sin\theta - sin^3\theta)(3sin\chi - sin3\chi)] \end{split}$$

「逆対称 (b₁) 振動]

$$\beta_{\text{EEC}} >> \beta_{\text{EEC}} \sim \beta_{\text{nnc}} \ \text{LFS}.$$

$$\beta_{\text{caa}} = \beta_{\text{CCC}}(\cos\alpha - \cos^3\alpha) \approx 2\sqrt{3}/9\beta_{\text{CCC}} (\text{Td}), \quad 3/8 \ \beta_{\text{CCC}} (\text{sp}^2)$$

(ppp)
$$\chi_{xxx} = -(1/4)\beta_{cas}[(1 + cos2\phi)(sin\theta - sin^3\theta)(3cos\chi + cos3\chi) + (1 - cos2\phi)sin\theta(cos\chi - cos3\chi)]$$

 $\chi_{xzz} = (1/2)\beta_{cas}(1 + cos2\phi)(sin\theta - 2sin^3\theta)cos\chi$
 $\chi_{zxx} = (1/2)\beta_{cas}(1 + cos2\phi)(sin\theta - sin^3\theta)cos\chi$
 $\chi_{zxx} = \beta_{cas}(1 + cos2\phi)(sin\theta - sin^3\theta)cos\chi$
 $\chi_{zxx} = (1/4)\beta_{cas}2[cos\theta(1 + cos2\phicos2\chi) - (1 + cos2\phi)(cos\theta - cos^3\theta)(1 + cos2\chi)]$
 $\chi_{xzx} = (1/2)\beta_{cas}[cos\theta(1 + cos2\phicos2\chi) - (1 + cos2\phi)(cos\theta - cos^3\theta)(1 + cos2\chi)]$
 $\chi_{xxz} = -(1/2)\beta_{cas}(1 + cos2\phi)(cos\theta - cos^3\theta)(1 + cos2\chi)$
 $\chi_{zzz} = \beta_{cas}(1 + cos2\phi)(cos\theta - cos^3\theta)$
(spp) $\chi_{yxx} = (1/4)\beta_{cas}[(1 + cos2\phi)(sin\theta - sin^3\theta)(sin\chi + sin3\chi) + (1 - cos2\phi)sin\theta(sin\chi - sin3\chi)]$
 $\chi_{yzz} = -(1/2)\beta_{cas}(1 + cos2\phi)(sin\theta - 2sin^3\theta)sin\chi$
 $\chi_{yzx} = (1/4)\beta_{cas}2[(1 + cos2\phi)(cos\theta - cos^3\theta) - cos2\phicos\theta]sin2\chi$
 $\chi_{yxz} = (1/2)\beta_{cas}(1 + cos2\phi)(cos\theta - cos^3\theta) - cos2\phicos\theta]sin2\chi$
(ssp) $\chi_{yyx} = (1/4)\beta_{cas}[-(1 + cos2\phi)(sin\theta - sin^3\theta) + (1 - cos2\phi)sin\theta](cos\chi - cos3\chi)$

(ssp)
$$\chi_{yyx} = (1/4)\beta_{caa}[-(1 + \cos 2\phi)(\sin \theta - \sin^3 \theta) + (1 - \cos 2\phi)\sin \theta](\cos \chi - \cos 3\chi)$$
$$\chi_{yyz} = -(1/2)\beta_{caa}(1 + \cos 2\phi)(\cos \theta - \cos^3 \theta)(1-\cos 2\chi)$$

$$\begin{split} (psp) \qquad & \chi_{xyx} = (1/4)\beta_{caa}[(1+\cos2\varphi)(\sin\theta-\sin^3\theta)(\sin\chi+\sin3\chi)+1-\cos2\varphi)\sin\theta(\sin\chi-\sin3\chi)] \\ \chi_{zyz} = -(1/2)\beta_{caa}(1+\cos2\varphi)(\sin\theta-2\sin^3\theta)\sin\chi \\ \chi_{xyz} = (1/2)\beta_{caa}(1+\cos2\varphi)(\cos\theta-\cos^3\theta)\sin2\chi \\ \chi_{zyx} = (1/2)\beta_{caa}[(1+\cos2\varphi)(\cos\theta-\cos^3\theta)-\cos2\varphi\cos\theta]\sin2\chi \end{split}$$

$$\begin{split} (sps) \qquad & \chi_{yxy} = -(1/4)\beta_{caa}[-(1+\cos2\varphi)(\sin\theta-\sin^3\theta)(\cos\chi-\cos3\chi) + (1-\cos2\varphi)\sin\theta(\cos\chi+\cos3\chi)] \\ \chi_{yzy} = & (1/2)\beta_{caa}[\cos\theta(1-\cos2\varphi\cos2\chi) - (1+\cos2\varphi)(\cos\theta-\cos^3\theta)(1-\cos2\chi)] \end{split}$$

(pps)
$$\chi_{xxy} = (1/4)\beta_{caa}[(1 + \cos 2\phi)(\sin \theta - \sin^3 \theta) - (1 - \cos 2\phi)\sin \theta](\sin \chi + \sin 3\chi)$$

$$\chi_{zzy} = -\beta_{caa}(1 + \cos 2\phi)(\sin \theta - 2\sin^3 \theta)\sin \chi$$

$$\chi_{zxy} = (1/2)\beta_{caa}[(1 + \cos 2\phi)(\cos \theta - \cos^3 \theta) - \cos 2\phi\cos \theta]\sin 2\chi$$

$$\chi_{xzy} = (1/2)\beta_{caa}[(1 + \cos 2\phi)(\cos \theta - \cos^3 \theta) - \cos 2\phi\cos \theta]\sin 2\chi$$

$$\begin{split} \chi_{xyy} &= -(1/4)\beta_{caa}[-(1+\cos2\phi)(\sin\theta-\sin^3\theta)(\cos\chi-\cos3\chi) + (1-\cos2\phi)\sin\theta(\cos\chi+\cos3\chi)] \\ \chi_{zyy} &= (1/2)\beta_{caa}[\cos\theta(1-\cos2\phi\cos2\chi) - (1+\cos2\phi)(\cos\theta-\cos^3\theta)(1-\cos2\chi)] \\ (sss) \qquad \chi_{vvy} &= (1/4)\beta_{caa}[(1+\cos2\phi)(\sin\theta-\sin^3\theta)(3\sin\chi-\sin3\chi) + (1-\cos2\phi)\sin\theta(\sin\chi+\sin3\chi)] \end{split}$$

[面外 (b₂) 振動]

$$(ppp) \qquad \chi_{xxx} = -(1/4)\beta_{cbb}[(1 + \cos 2\phi)\sin\theta(\cos\chi - \cos 3\chi) + (1 - \cos 2\phi)(\sin\theta - \sin^3\theta)(3\cos\chi + \cos 3\chi)]$$

```
\chi_{xzz} = (1/2)\beta_{cbb}(1 - \cos 2\phi)(\sin \theta - 2\sin^3 \theta)\cos \chi
                  \chi_{\rm zxz} = (1/2)\beta_{\rm cbb}(1 - \cos 2\phi)(\sin \theta - 2\sin^3 \theta)\cos \chi
                  \chi_{xx} = \beta_{cbb}(1 - \cos 2\phi)(\sin \theta - \sin^3 \theta)\cos \chi
                   \chi_{\rm exx} = (1/2)\beta_{\rm cbb}[\cos\theta(1-\cos2\phi\cos2\chi) - (1-\cos2\phi)(\cos\theta-\cos^3\theta)(1+\cos2\chi)]
                  \chi_{xzx} = (1/2)\beta_{cbb}[\cos\theta(1 - \cos2\phi\cos2\chi) - (1 - \cos2\phi)(\cos\theta - \cos^3\theta)(1 + \cos2\chi)]
                  \chi_{xxz} = -(1/2)\beta_{cbb}(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta)(1 + \cos 2\chi)
                  \chi_{zz} = \beta_{cbb} (1 - \cos 2\phi) (\cos \theta - \cos^3 \theta)
                  \chi_{yxx} = (1/4)\beta_{cbb}[(1 + \cos 2\phi)\sin\theta(\sin\chi - \sin 3\chi) + (1 - \cos 2\phi)(\sin\theta - \sin^3\theta)(\sin\chi + \sin 3\chi)]
(spp)
                  \chi_{yzz} = -(1/2)\beta_{cbb}(1 - \cos 2\phi)(\sin \theta - 2\sin^3 \theta)\sin \chi
                   \chi_{\rm vzx} = (1/2)\beta_{\rm cbb}[(1-\cos 2\phi)(\cos\theta-\cos^3\theta)+\cos 2\phi\cos\theta]\sin 2\chi
                  \chi_{\text{vxz}} = (1/2)\beta_{\text{cbb}}(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta)\sin 2\chi
                  \chi_{yyx} = (1/4)\beta_{cbb}[(1 + \cos 2\phi)\sin\theta - (1 - \cos 2\phi)(\sin\theta - \sin^3\theta)](\cos\chi - \cos 3\chi)
(ssp)
                  \chi_{\text{vvz}} = -(1/2)\beta_{\text{cbb}}(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta)(1 - \cos 2\chi)
                  \chi_{xvx} = (1/4)\beta_{cbb}[(1 + \cos 2\phi)\sin\theta(\sin \chi - \sin 3\chi) + (1 - \cos 2\phi)(\sin\theta - \sin^3\theta)(\sin \chi + \sin 3\chi)]
(psp)
                  \chi_{\text{zyz}} = -(1/2)\beta_{\text{cbb}}(1 - \cos 2\phi)(\sin \theta - 2\sin^3 \theta)\sin \chi
                   \chi_{xyz} = (1/2)\beta_{cbb}(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta)\sin 2\chi
                  \chi_{\text{zvx}} = (1/2)\beta_{\text{cbb}}[(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta) + \cos 2\phi \cos \theta]\sin 2\chi
                  \chi_{\text{vxv}} = -(1/4)\beta_{\text{cbb}}[(1 + \cos 2\phi)\sin\theta(\cos\chi + \cos 3\chi) - (1 - \cos 2\phi)(\sin\theta - \sin^3\theta)](\cos\chi - \cos 3\chi)]
(sps)
                  \chi_{\rm vzy} = (1/2)\beta_{\rm cbb}[\cos\theta(1 + \cos2\phi\cos2\chi) - (1 - \cos2\phi)(\cos\theta - \cos^3\theta)(1 - \cos2\chi)]
                  \chi_{xxy} = (1/4)\beta_{cbb}[-(1+\cos 2\phi)\sin\theta + (1-\cos 2\phi)(\sin\theta - \sin^3\theta)](\sin\chi + \sin 3\chi)
(pps)
                  \chi_{zzy} = -\beta_{cbb}(1 - \cos 2\phi)(\sin \theta - \sin^3 \theta)\sin \chi
                   \chi_{\rm zxy} = (1/2)\beta_{\rm cbb}[(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta) + \cos 2\phi \cos \theta]\sin 2\chi
                  \chi_{xzy} = (1/2)\beta_{cbb}[(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta) + \cos 2\phi \cos \theta]\sin 2\chi
                  \chi_{xyy} = -(1/4)\beta_{cbb}[(1 + \cos 2\phi)\sin\theta(\cos\chi + \cos 3\chi) + (1 - \cos 2\phi)(\sin\theta - \sin^3\theta)(\cos\chi - \cos 3\chi)]
(pss)
                  \chi_{\text{zvy}} = (1/2)\beta_{\text{cbb}}[\cos\theta(1 + \cos2\phi\cos2\chi) - (1 - \cos2\phi)(\cos\theta - \cos^3\theta)(1 - \cos2\chi)]
```

5. 表面配向による SFG テンソルの違い

(sss)

(以下に記述で使われる角 χ は、分子面と(xy)面の間の角(内部回転角)を ϕ 、c 軸の外向き法線からの傾き角を θ_{tat} 、c 軸の射影と x 軸の間の角(面内配向角)を χ_{ip} とするときの χ_{ip} にあたる。そうしてテンソル成分の表式に使われているオイラー角とは、 $\phi=\pi/2+\phi$, $\theta=\pi-\theta_{tal}$, $\chi=\pi/2+\chi_{ip}$ の関係になる。)

 $\chi_{yyy} = (1/4)\beta_{cbb}[(1 + \cos 2\phi)\sin\theta(\sin\chi + \sin 3\chi) + (1 - \cos 2\phi)(\sin\theta - \sin^3\theta)(3\sin\chi - \sin 3\chi)]$

メチレン基の面内配向は角 χ で定義される。光の進行方向を正方向に取った入射面と表面の交線 とメチレン基の C_2 軸の表面への射影がなす角をこの配向角と定義することによって、測定データを 解析するためのテンソルを導くことが出来、試料回転に対するシグナルの挙動を調べることが出来る。

一方、表面に固定した軸 — 例えば LB 膜の引き上げ軸や結晶軸 — とメチレン基の軸の射影がなす角を χ と定義すると、表面固有のテンソル成分を求めることになる。但し、5d 節で記す C_s 対称の場合には、2つの角、即ち、入射面と表面の交線が鏡映対称面と表面の交線 (director) に対してなす角及びメチレン基の軸の射影が鏡映面・表面交線に対してなす角の両方を定義した方が、データを解釈する上では分かりやすい。

 C_s 対称を持つ表面の SFG 実験を考えて、入射面が対称面に重なった場合には自由回転メチレンの (spp)、(psp)、(psp)、(sss) 光は生成しない。また、この回転が凍結すると縮重振動のみが現れて、(spp)、(psp)、(psp)、(sss) 光を示す。

以下では、代表的な配向形式におけるテンソル成分を考察してみよう。簡単のためにメチレン基の内部回転は凍結しているが2個の CH 結合が等価であるとする。

5a. ランダム (2次元)配向表面の SFG テンソル

メチレン基の面内配向がランダムになっている場合には、面内配向角 χ が 0 から 2π の間の任意 の値を等しい確率で取り得る。 $\int_0^{2\pi}\cos(n\chi)d\chi=\int_0^{2\pi}\sin(n\chi)d\chi=0$ 、 (n=1,2,3) であるから、テンソル成 分は大幅に整理されて下記のようになる。

なお、分子面と xy 面の間の角 (内部回転角))を ϕ 、c 軸の外向き法線からの傾き角を θ_{talt} 、c 軸の射影と x 軸の間の角 (面内配向角) を χ_{ip} とするとき、下のテンソル成分の表式に使われているオイラー角は、 $\phi=\pi/2+\phi$, $\theta=\pi-\theta_{talt}$, $\chi=\pi/2+\chi_{ip}$ である。

面内配向がランダムなときにも、逆対称振動バンドの SFG には (ppp)、(ssp)、(sps)、(pss) 信号しか出ないが、メチル基と違って対称振動バンドの SFG には、 ϕ が 0 または $\pi/2$ でないかぎり、 $\theta_{tilt} \neq 0$ なら、(spp)、(psp)、(psp)、(sss) 信号も出る。

[対称 (a₁) 振動]

 $\beta_{\xi\xi\zeta} >> \beta_{\xi\xi\zeta} \sim \beta_{\eta\eta\zeta}$ とすると、

$$\begin{split} \beta_{aac} + \ \beta_{bbc} &= (\beta_{aac} - \beta_{bbc}) = \beta_{\zeta\zeta\zeta}(\cos\alpha - \cos^3\alpha) \approx \ 2\sqrt{3} \ / \ 9 \ \beta_{\zeta\zeta\zeta} \ (Td), \quad 3/8 \ \beta_{\zeta\zeta\zeta} \ (sp^2) \\ \beta_{aac} + \ \beta_{bbc} - 2\beta_{ccc} &= \beta_{\zeta\zeta\zeta}(\cos\alpha - 3\cos^3\alpha) \qquad \qquad \sim 0 \ \beta_{\zeta\zeta\zeta} \ (Td), \quad 1/8 \ \beta_{\zeta\zeta\zeta} \ (sp^2) \end{split}$$

(ppp)
$$\chi_{xzx} = -(1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)$$

$$- (1/4)(\beta_{aac} - \beta_{bbc})\cos2\varphi(\cos\theta - \cos^3\theta)$$

$$\chi_{zxx} = -(1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)$$

$$- (1/4)(\beta_{aac} - \beta_{bbc})\cos2\varphi(\cos\theta - \cos^3\theta)$$

$$\chi_{xxz} = (1/2)(\beta_{aac} + \beta_{bbc})\cos\theta$$

$$- (1/4)(\beta_{aac} + \beta_{bbc})\cos\theta$$

$$- (1/4)(\beta_{aac} + \beta_{bbc})\cos2\varphi(\cos\theta - \cos^3\theta)$$

$$- (1/4)(\beta_{aac} - \beta_{bbc})\cos2\varphi(\cos\theta - \cos^3\theta)$$

$$\chi_{zzz} = (1/2)(\beta_{aac} + \beta_{bbc})\cos\theta$$

$$- (1/2)(\beta_{aac} + \beta_{bbc})\cos\theta$$

$$- (1/2)(\beta_{aac} - \beta_{bbc})\cos2\varphi(\cos\theta - \cos^3\theta)$$
(spp)
$$\chi_{yzx} = (1/4)(\beta_{aac} - \beta_{bbc})\sin2\varphi\sin^2\theta$$

$$\begin{split} (ssp) \qquad & \chi_{yyz} = (1/2)(\beta_{aac} + \, \beta_{bbc})cos\theta \\ & - (1/4)(\beta_{aac} + \, \beta_{bbc} - 2\beta_{ccc})(cos\theta - cos^3\theta) \\ & - (1/4)(\beta_{aac} - \, \beta_{bbc})cos2\phi(cos\theta - cos^3\theta) \end{split}$$

(psp)
$$\chi_{zvx} = (1/4)(\beta_{aac} - \beta_{bbc})\sin 2\phi \sin^2 \theta$$

(sps)
$$\chi_{yzy} = -(1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)$$
$$- (1/4)(\beta_{aac} - \beta_{bbc})\cos 2\phi(\cos\theta - \cos^3\theta)$$

$$\begin{split} \text{(pps)} \qquad & \chi_{xzy} = (1/4)(\beta_{aac} - \beta_{bbc}) sin2 \varphi sin^2 \theta \\ & \chi_{zxy} = (1/4)(\beta_{aac} - \beta_{bbc}) sin2 \varphi sin^2 \theta \end{split}$$

$$\begin{split} (pss) \qquad \chi_{zyy} = -(1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(cos\theta - cos^3\theta) \\ - (1/4)(\beta_{aac} - \beta_{bbc})cos2\phi(cos\theta - cos^3\theta) \end{split}$$

[逆対称 (b₁) 振動]

$$\begin{split} (ppp) \qquad & \chi_{zxx} = (1/2)\beta_{caa}[\cos\theta - (1 + \cos2\varphi)(\cos\theta - \cos^3\theta)] \\ \chi_{xzx} = (1/2)\beta_{caa}[\cos\theta - (1 + \cos2\varphi)(\cos\theta - \cos^3\theta)] \\ \chi_{xxz} = -(1/2)\beta_{caa}(1 + \cos2\varphi)(\cos\theta - \cos^3\theta) \\ \chi_{zzz} = & \beta_{caa}(1 + \cos2\varphi)(\cos\theta - \cos^3\theta) \end{split}$$

(ssp)
$$\chi_{yyz} = -(1/2)\beta_{caa}(1 + \cos 2\phi)(\cos \theta - \cos^3 \theta)$$

(psp) (none)

(sps)
$$\chi_{yzy} = (1/2)\beta_{caa}[\cos\theta - (1 + \cos 2\phi)(\cos\theta - \cos^3\theta)]$$

(pps) (none)

(pss)
$$\chi_{\text{zyy}} = (1/2)\beta_{\text{cas}}[\cos\theta - (1 + \cos 2\phi)(\cos\theta - 2\cos^3\theta)]$$

(sss) (none)

[面外 (b₂) 振動]

$$\begin{split} (ppp) \qquad & \chi_{zxx} = (1/2)\beta_{cbb}[\cos\theta - (1 - \cos2\varphi)(\cos\theta - \cos^3\theta)] \\ & \chi_{xzx} = (1/2)\beta_{cbb}[\cos\theta - (1 - \cos2\varphi)(\cos\theta - \cos^3\theta)] \\ & \chi_{xxz} = -(1/2)\beta_{cbb}(1 - \cos2\varphi)(\cos\theta - \cos^3\theta) \\ & \chi_{zzz} = \beta_{cbb}(1 - \cos2\varphi)(\cos\theta - \cos^3\theta) \end{split}$$

(spp) (none)

(ssp)
$$\chi_{vvz} = -(1/2)\beta_{cbb}(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta)$$

(psp) (none)

(sps)
$$\chi_{vzv} = (1/2)\beta_{cbb}[\cos\theta - (1 - \cos 2\phi)(\cos\theta - \cos^3\theta)]$$

(pps) (none)

(pss)
$$\chi_{\text{zyv}} = (1/2)\beta_{\text{cbb}}[\cos\theta - (1 - \cos 2\phi)(\cos\theta - \cos^3\theta)]$$

(sss) (none)

5b. C_{3v}配向表面の SFG テンソル

この場合には、角 χ について 3 つの値、即ち、 χ 、 $\chi+2\pi/3$ 、 $\chi+4\pi/3$ (= $\chi-2\pi/3$) を取るメチレン基が同じ確率で存在する。三角関数の和の法則を使って、3 つの配向のサイン、コサインを χ で表してから足し合わせると下の結果を得る。

$$\Sigma 1 = 3$$
, $\Sigma \sin \chi = \Sigma \cos \chi = \Sigma \sin 2\chi = \Sigma \cos 2\chi = 0$, $\Sigma \sin 3\chi = 3 \sin 3\chi$, $\Sigma \cos 3\chi = 3 \cos 3\chi$

上を 4a 節の表式に代入すると下の結果が得られ、(a) 表面の回転に対して SFG スペクトルが 6 回対称を示すこと、(b) メチレン基が自由回転をしていても (spp)、(psp)、(psp)、(psp)、(psp)、(psp) 信号が得られること、(c) tilt 角が 90° のときにも (spp)、(psp)、(psp)、(sss) 信号が得られることがわかる。

なお、分子面と xy 面の間の角(内部回転角)を ϕ 、c 軸の外向き法線からの傾き角を θ_{tilt} 、c 軸の射影と x 軸の間の角(面内配向角)を χ_{tp} とするとき、下のテンソル成分の表式に使われているオイラー角は、 $\phi=\pi/2+\phi$, $\theta=\pi-\theta_{tilt}$, $\chi=\pi/2+\chi_{tp}$ である。

[対称 (a₁) 振動]

 $\beta_{\xi\xi\zeta} >> \beta_{\xi\xi\zeta} \sim \beta_{\eta\eta\zeta}$ とすると、

$$\beta_{aac} + \beta_{bbc} = (\beta_{aac} - \beta_{bbc}) = \beta_{\zeta\zeta\zeta}(\cos\alpha - \cos^3\alpha) \approx 2\sqrt{3} / 9 \beta_{\zeta\zeta\zeta} \text{ (Td)}, \quad 3/8 \beta_{\zeta\zeta\zeta} \text{ (sp}^2)$$

$$\beta_{aac} + \beta_{bbc} - 2\beta_{ccc} = \beta_{\zeta\zeta\zeta}(\cos\alpha - 3\cos^3\alpha) \qquad \sim 0 \beta_{\zeta\zeta\zeta} \text{ (Td)}, \quad 1/8 \beta_{\zeta\zeta\zeta} \text{ (sp}^2)$$

$$\begin{split} (ppp) \qquad & \chi_{xxx} = (1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{cc}) sin^3 \theta cos 3\chi \\ & - (1/8)(\beta_{aac} - \beta_{bbc}) [cos 2\phi (2sin\theta - sin^3\theta) cos 3\chi - 2sin 2\phi sin \theta cos \theta sin 3\chi] \\ \chi_{xzx} = -(1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{cc}) (cos\theta - cos^3\theta) \\ & - (1/4)(\beta_{aac} - \beta_{bbc}) cos 2\phi (cos\theta - cos^3\theta) \\ \chi_{zxx} = -(1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{cc}) (cos\theta - cos^3\theta) \\ & - (1/4)(\beta_{aac} + \beta_{bbc}) cos 2\phi (cos\theta - cos^3\theta) \\ \chi_{xxz} = (1/2)(\beta_{aac} + \beta_{bbc}) cos\theta \\ & - (1/4)(\beta_{aac} + \beta_{bbc}) cos\theta \\ & - (1/4)(\beta_{aac} + \beta_{bbc}) cos 2\phi (cos\theta - cos^3\theta) \\ \chi_{zzz} = (1/2)(\beta_{aac} + \beta_{bbc}) cos 2\phi (cos\theta - cos^3\theta) \\ \chi_{zzz} = (1/2)(\beta_{aac} + \beta_{bbc}) cos\theta \\ & - (1/4)(\beta_{aac} + \beta_{bbc}) cos\theta \\ & - (1/2)(\beta_{aac} + \beta_{bbc}) cos\theta \end{split}$$

$$\begin{split} &+ (1/2)(\beta_{aac} - \beta_{bbc})cos2\varphi(cos\theta - cos^3\theta) \\ (spp) &\qquad \chi_{yxx} = - (1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})sin^3\theta sin3\chi \\ &\qquad \qquad + (1/8)(\beta_{aac} - \beta_{bbc})[cos2\varphi(2sin\theta - sin^3\theta)sin3\chi + 2sin2\varphi sin\theta cos\theta cos3\chi] \\ &\qquad \chi_{vzx} = (1/4)(\beta_{aac} - \beta_{bbc})sin2\varphi sin^2\theta \end{split}$$

$$\begin{split} (ssp) \qquad & \chi_{yyx} = -(1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})sin^3\theta cos3\chi \\ & - (1/8)(\beta_{aac} - \beta_{bbc})[cos2\phi(2sin\theta - sin^3\theta)cos3\chi + 2sin2\phi sin\theta cos\theta sin3\chi] \\ \chi_{yyz} = (1/2)(\beta_{aac} + \beta_{bbc})cos\theta \\ & - (1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(cos\theta - cos^3\theta) \\ & - (1/4)(\beta_{aac} - \beta_{bbc})cos2\phi(cos\theta - cos^3\theta) \end{split}$$

$$\begin{split} (psp) \qquad & \chi_{xyx} = \text{-}(1/8)(\beta_{aac} + \beta_{bbc} \text{-} 2\beta_{ccc}) sin^3\theta sin3\chi \\ & + (1/8)(\beta_{aac} \text{-} \beta_{bbc}) [cos2\varphi(2sin\theta \text{-} sin^3\theta) sin3\chi + 2sin2\varphi sin\theta cos\theta cos3\chi] \\ & \chi_{zyx} = (1/4)(\beta_{aac} \text{-} \beta_{bbc}) sin2\varphi sin^2\theta \end{split}$$

$$\begin{split} (sps) & \chi_{yxy} = -(1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})sin^3\theta cos3\chi \\ & + (1/8)(\beta_{aac} - \beta_{bbc})[cos2\phi(2sin\theta - sin^3\theta)cos3\chi - 2sin2\phi sin\theta cos\theta sin3\chi] \\ \chi_{yzy} = -(1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(cos\theta - cos^3\theta) \\ & - (1/4)(\beta_{aac} - \beta_{bbc})cos2\phi(cos\theta - cos^3\theta) \end{split}$$

$$\begin{split} (pps) \qquad & \chi_{xxy} = -(1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})sin^3\theta sin3\chi \\ & + (1/8)(\beta_{aac} - \beta_{bbc})[cos2\varphi(2sin\theta - sin^3\theta)sin3\chi + 2sin2\varphi sin\theta cos\theta cos3\chi] \\ \chi_{xzy} &= (1/4)(\beta_{aac} - \beta_{bbc})sin2\varphi sin^2\theta \\ \chi_{zxy} &= (1/4)(\beta_{aac} - \beta_{bbc})sin2\varphi sin^2\theta \end{split}$$

$$\begin{split} (pss) \qquad & \chi_{xyy} = -(1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc}) sin^3\theta cos3\chi \\ & + (1/8)(\beta_{aac} - \beta_{bbc})[cos2\phi(2sin\theta - sin^3\theta)cos3\chi - 2sin2\phi sin\theta cos\theta sin3\chi] \\ \chi_{zyy} = -(1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(cos\theta - cos^3\theta) \\ & - (1/4)(\beta_{aac} - \beta_{bbc})cos2\phi(cos\theta - cos^3\theta) \\ (sss) \qquad & \chi_{vvy} = (1/8)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})sin^3\theta sin3\chi \end{split}$$

(sss)
$$\chi_{yyy} = (1/8)(\beta_{ax} + \beta_{bbc} - 2\beta_{cx})\sin\theta\sin3\chi$$
$$- (1/8)(\beta_{ax} - \beta_{bbc})[\cos2\phi(2\sin\theta - \sin^3\theta)\sin3\chi - 2\sin2\phi\sin\theta\cos\theta\cos3\chi]$$

[逆対称 (b₁) 振動]

(ppp)
$$\begin{split} \chi_{xxx} &= -(1/4)\beta_{caa}\{[-\sin^3\theta + (2\sin\theta - \sin^3\theta)\cos 2\phi]\cos 3\chi - 2\sin 2\phi\sin\theta\cos\theta\sin 3\chi\} \\ \chi_{zxx} &= (1/2)\beta_{caa}[\cos\theta - (1 + \cos 2\phi)(\cos\theta - \cos^3\theta)] \\ \chi_{xzx} &= (1/2)\beta_{caa}[\cos\theta - (1 + \cos 2\phi)(\cos\theta - \cos^3\theta)] \\ \chi_{xxz} &= -(1/2)\beta_{caa}(1 + \cos 2\phi)(\cos\theta - \cos^3\theta) \\ c_{zzz} &= \beta_{caa}(1 + \cos 2\phi)(\cos\theta - \cos^3\theta) \\ \chi_{xxz} &= (1/4)\beta_{caa}\{[-\sin^3\theta + (2\sin\theta - \sin^3\theta)\cos 2\phi]\sin 3\chi + 2\sin 2\phi\sin\theta\cos\theta\cos 3\chi\} \end{split}$$

$$\begin{split} (ssp) \qquad & \chi_{yyx} = (1/4)\beta_{caa}\{[-sin^3\theta + (2sin\theta - sin^3\theta)cos2\phi]cos3\chi - 2sin2\phi sin\theta cos\theta sin3\chi\} \\ & \chi_{yyz} = -(1/2)\beta_{caa}(1 + cos2\phi)(cos\theta - cos^3\theta) \end{split}$$

(psp)
$$\chi_{xyx} = (1/4)\beta_{caa}\{[-\sin^3\theta + (2\sin\theta - \sin^3\theta)\cos 2\phi]\sin 3\chi + 2\sin 2\phi\sin\theta\cos 3\chi\}$$

(sps)
$$\begin{split} \chi_{yxy} &= (1/4)\beta_{caa}\{[-\sin^3\theta + (2\sin\theta - \sin^3\theta)\cos2\phi]\cos3\chi - 2\sin2\phi\sin\theta\cos\theta\sin3\chi\} \\ \chi_{yzy} &= (1/2)\beta_{caa}[\cos\theta - (1 + \cos2\phi)(\cos\theta - \cos^3\theta)] \end{split}$$

(pps)
$$\chi_{xxy} = (1/4)\beta_{caa} \{ [-\sin^3\theta + (2\sin\theta - \sin^3\theta)\cos 2\phi]\sin 3\chi + 2\sin 2\phi\sin\theta\cos 6\cos 3\chi \}$$

$$\begin{split} \chi_{xyy} &= (1/4)\beta_{caa}\{[-\sin^3\theta + (2\sin\theta - \sin^3\theta)\cos2\phi]\cos3\chi - 2\sin2\phi\sin\theta\cos\theta\sin3\chi\} \\ \chi_{zyy} &= (1/2)\beta_{caa}[\cos\theta - (1+\cos2\phi)(\cos\theta - \cos^3\theta)] \end{split}$$

$$\chi_{vvv} = -(1/4)\beta_{ca}\{[-\sin^3\theta + (2\sin\theta - \sin^3\theta)\cos 2\phi]\sin 3\chi + 2\sin 2\phi\sin\theta\cos 3\chi\}$$

[面外 (b₂) 振動]

$$\begin{split} (ppp) \qquad & \chi_{xxx} = (1/4)\beta_{cbb}\{[\sin^3\theta + (2\sin\theta - \sin^3\theta)\cos2\phi]\cos3\chi + 2\sin2\phi\sin\theta\cos\theta\sin3\chi\} \\ \chi_{zxx} = (1/2)\beta_{cbb}[\cos\theta - (1 - \cos2\phi)(\cos\theta - \cos^3\theta)] \\ \chi_{xzx} = (1/2)\beta_{cbb}[\cos\theta - (1 - \cos2\phi)(\cos\theta - \cos^3\theta)] \\ \chi_{xxz} = -(1/2)\beta_{cbb}(1 - \cos2\phi)(\cos\theta - \cos^3\theta) \\ \chi_{zzz} = \beta_{cbb}(1 - \cos2\phi)(\cos\theta - \cos^3\theta) \end{split}$$

(spp)
$$c_{yxx} = -(1/4)\beta_{cbb}\{[\sin^3\theta + (2\sin\theta - \sin^3\theta)\cos 2\phi]\sin 3\chi + 2\sin 2\phi\sin\theta\cos 3\chi\}$$

$$\begin{split} (ssp) \qquad & \chi_{yyx} = -(1/4)\beta_{cbb}\{[\sin^3\theta + (2\sin\theta - \sin^3\theta)\cos2\phi]\cos3\chi - 2\sin2\phi\sin\theta\cos\theta\sin3\chi\} \\ \chi_{yyz} = -(1/2)\beta_{cbb}(1 - \cos2\phi)(\cos\theta - \cos^3\theta) \end{split}$$

$$(psp) \qquad \chi_{xvx} = -(1/4)\beta_{cbb}\{[\sin^3\theta + (2\sin\theta - \sin^3\theta)\cos 2\phi]\sin 3\chi + 2\sin 2\phi\sin\theta\cos 9\cos 3\chi\}$$

$$\begin{split} (sps) \qquad & \chi_{yxy} = -(1/4)\beta_{cbb}\{[\sin^3\theta + (2\sin\theta - \sin^3\theta)\cos2\varphi]\cos3\chi - 2\sin2\varphi\sin\theta\cos\theta\sin3\chi\} \\ & \chi_{yzy} = (1/2)\beta_{cbb}[\cos\theta - (1-\cos2\varphi)(\cos\theta - \cos^3\theta)] \end{split}$$

(pps)
$$c_{xxy} = -(1/4)\beta_{cbb}\{[\sin^3\theta + (2\sin\theta - \sin^3\theta)\cos 2\phi]\sin 3\chi + 2\sin 2\phi\sin\theta\cos 3\chi\}$$

$$\begin{split} \chi_{xyy} &= -(1/4)\beta_{cbb}\{[\sin^3\theta + (2\sin\theta - \sin^3\theta)\cos2\varphi]\cos3\chi - 2\sin2\varphi\sin\theta\cos\theta\sin3\chi\} \\ \chi_{zyy} &= (1/2)\beta_{cbb}[\cos\theta - (1-\cos2\varphi)(\cos\theta - \cos^3\theta)] \end{split}$$

(sss)
$$\chi_{vvv} = (1/4)\beta_{cbb} \{ [\sin^3 \theta + (2\sin \theta - \sin^3 \theta)\cos 2\phi]\sin 3\chi + 2\sin 2\phi \sin \theta \cos 3\chi \}$$

5c. C_{4v} 配向、C_{6v} 配向表面の SFG テンソル

この場合には、 $\Sigma \sin \chi = \Sigma \cos \chi = \Sigma \sin 2\chi = \Sigma \cos 2\chi = \Sigma \sin 3\chi = \Sigma \cos \chi = 0$ であるから、**5a** 節で示したものと同じ表式になる。

5d. C。配向表面の SFG テンソル

表面に垂直な面に関して鏡映対称がある場合である。引き上げ方向に関して配向する LB 膜のメチレン基のように、引き上げ方向に関してメチレン基が V 字形に並ぶ場合が当てはまる。鏡映対称面と表面の交線がメチレン軸の表面への射影に対してなす角を $+\beta$ と $-\beta$ とし、交線が x 軸となす配

向角を α とするとき、配向角 χ_{ip} が $\alpha+\beta$ のメチレン基と α - β のメチレン基が同数ずつ存在する。 分子面と xy 面の間の角 (内部回転角)を ϕ 、c 軸の外向き法線からの傾き角を θ_{talt} 、c 軸の射影と x 軸の間の角 (面内配向角)を χ_{ip} とするとき、下のテンソル成分の表式に使われているオイラー角は、 $\phi=\pi/2+\phi$ 、 $\theta=\pi-\theta_{talt}$ 、 $\chi=\pi/2+\chi_{ip}$ である。すなわち、下の関係が成り立つ。

$$\sin \chi = \cos \chi_{ip}$$
, $\cos \chi = -\sin \chi_{ip}$
 $\sin 2\chi = -\sin 2\chi_{ip}$, $\cos 2\chi = -\cos 2\chi_{ip}$
 $\sin 3\chi = -\cos 3\chi_{ip}$, $\cos 3\chi = +\sin 3\chi_{ip}$

これに加えて、三角関数の和の法則を使って 2 つの配置のサイン、コサインを χ で表してから足し合わせると、下式が得られる。

$$\begin{split} \Sigma 1 &= 2, \qquad \Sigma sin\chi_{ip} = 2 sin\alpha cos\beta, \qquad \qquad \Sigma cos\chi_{ip} = 2 cos\alpha cos\beta, \\ \Sigma sin2\chi_{ip} &= 2 sin2\alpha cos2\beta, \qquad \Sigma cos2\chi_{ip} = 2 cos2\alpha cos2\beta, \\ \Sigma sin3\chi_{ip} &= 2 sin3\alpha cos3\beta, \qquad \Sigma cos3\chi_{ip} = 2 cos3\alpha cos3\beta \end{split}$$

上式を 4a 節の結果に代入すると、求める表式が得られる。なお、 $\beta=0$ とすると表面固定系でのテンソル成分になる。また、SFG 実験で入射面が対称面に重なるようにした場合には全対称バンドの (spp)、(psp)、(psp)、(sss) 光が生成しないことがわかる。メチレン基が自由回転をしている場合には、縮重バンドでも (spp)、(psp)、(psp)、(sss) 光が生成しない。

5e . C_{2v} 配向表面の SFG テンソル

この場合には、配向角が χ のメチレン基と $\chi+\pi$ のメチレン基が同数ずつ存在する。三角関数の和の法則を使って、2つの配置のサイン、コサインを χ で表してから足し合わせると下記の結果を得る。

なお、分子面と xy 面の間の角 (内部回転角) を ϕ 、c 軸の外向き法線からの傾き角を θ_{tilt} 、c 軸の射影と x 軸の間の角 (面内配向角) を χ_{ip} とするとき、下のテンソル成分の表式に使われているオイラー角は、 $\phi=\pi/2+\phi$ 、 $\theta=\pi-\theta_{tilk}$ 、 $\chi=\pi/2+\chi_{ip}$ である。

$$\Sigma 1 = 2$$
, $\Sigma \sin \chi = 0$, $\Sigma \cos \chi = 0$, $\Sigma \sin 2\chi = 2 \sin 2\chi$, $\Sigma \cos 2\chi = 2 \cos 2\chi$, $\Sigma \sin 3\chi = 0$, $\Sigma \cos 3\chi = 0$

[対称 (a₁) 振動]

$$\begin{split} \beta_{a\alpha} + & \beta_{bbc} = \beta_{a\alpha} - \beta_{bbc} = \beta_{\zeta\zeta\zeta}(\cos\alpha - \cos^3\alpha) \approx & 2\sqrt{3} / 9 \, \beta_{\zeta\zeta\zeta} \, (Td), \quad 3/8 \, \, \beta_{\zeta\zeta\zeta} \, (sp^2) \\ \beta_{a\alpha} + & \beta_{bbc} - 2\beta_{c\alpha} = \beta_{\zeta\zeta\zeta}(\cos\alpha - 3\cos^3\alpha) & \sim & 0 \, \, \beta_{\zeta\zeta\zeta} \, (Td), \quad 1/8 \, \, \beta_{\zeta\zeta\zeta}(sp^2) \end{split}$$

$$\begin{split} (ppp) \qquad & \chi_{xzx} = -(1/4)(\beta_{a\alpha} + \beta_{bbc} - 2\beta_{cc})(\cos\theta - \cos^3\theta)(1 + \cos2\chi) \\ & - (1/4)(\beta_{a\alpha} - \beta_{bbc})[\cos2\varphi(\cos\theta - \cos^3\theta)(1 + \cos2\chi) - \sin2\varphi\sin^2\theta\sin2\chi] \\ \chi_{zxx} = -(1/4)(\beta_{a\alpha} + \beta_{bbc} - 2\beta_{cc})(\cos\theta - \cos^3\theta)(1 + \cos2\chi) \\ & - (1/4)(\beta_{a\alpha} - \beta_{bbc})[\cos2\varphi(\cos\theta - \cos^3\theta)(1 + \cos2\chi) - \sin2\varphi\sin^2\theta\sin2\chi] \\ \chi_{xxz} = (1/2)(\beta_{a\alpha} + \beta_{bbc})\cos\theta \end{split}$$

$$-(1/4)(\beta_{nac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)(1 + \cos2\chi) \\ - (1/4)(\beta_{nac} - \beta_{bbc})\{\cos2\phi[(\cos\theta - \cos^3\theta) - (\cos\theta + \cos^3\theta)\cos2\chi] + 2\sin2\phi\cos^2\theta\sin2\chi\} \\ \chi_{zzz} = (1/2)(\beta_{nac} + \beta_{bbc})\cos\theta \\ - (1/2)(\beta_{nac} + \beta_{bbc} - 2\beta_{ccc})\cos^3\theta \\ + (1/2)(\beta_{nac} + \beta_{bbc} - 2\beta_{ccc})\cos^3\theta \\ + (1/4)(\beta_{nac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta) \\ \chi_{yzz} = (1/4)(\beta_{nac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)\sin2\chi \\ + (1/4)(\beta_{nac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)\sin2\chi + \sin2\phi\sin^2\theta (1 + \cos2\chi)] \\ \chi_{yxz} = (1/4)(\beta_{nac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)\sin2\chi + \sin2\phi\cos^2\theta\cos2\chi] \\ (ssp) \qquad \chi_{yyz} = (1/2)(\beta_{nac} + \beta_{bbc})\cos\theta \\ - (1/4)(\beta_{nac} + \beta_{bbc})\cos\theta + \cos^3\theta)\sin2\chi \\ + (1/4)(\beta_{nac} + \beta_{bbc})\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi \\ - (1/4)(\beta_{nac} + \beta_{bbc})\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi \\ - (1/4)(\beta_{nac} + \beta_{bbc})\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi \\ + (1/4)(\beta_{nac} + \beta_{bbc})[\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi + \sin2\phi\sin^2\theta (1 + \cos2\chi)] \\ (sps) \qquad \chi_{yzy} = (1/4)(\beta_{nac} + \beta_{bbc})\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi \\ + (1/4)(\beta_{nac} + \beta_{bbc})[\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi + \sin2\phi\sin^2\theta (1 + \cos2\chi)] \\ (sps) \qquad \chi_{yzy} = -(1/4)(\beta_{nac} + \beta_{bbc})\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi \\ + (1/4)(\beta_{nac} + \beta_{bbc})[\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi - \sin2\phi\sin^2\theta (1 + \cos2\chi)] \\ \chi_{zzy} = (1/4)(\beta_{nac} + \beta_{bbc})\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi \\ + (1/4)(\beta_{nac} + \beta_{bbc})[\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi - \sin2\phi\sin^2\theta (1 - \cos2\chi)] \\ \chi_{zzy} = (1/4)(\beta_{nac} + \beta_{bbc})\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi - \sin2\phi\sin^2\theta (1 - \cos2\chi)] \\ \chi_{zzy} = (1/4)(\beta_{nac} + \beta_{bbc})\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi - \sin2\phi\sin^2\theta (1 - \cos2\chi)] \\ \chi_{zzy} = (1/4)(\beta_{nac} + \beta_{bbc})[\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi - \sin2\phi\sin^2\theta (1 - \cos2\chi)] \\ \chi_{zzy} = (1/4)(\beta_{nac} + \beta_{bbc})[\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi - \sin2\phi\sin^2\theta (1 - \cos2\chi)] \\ \chi_{zzy} = (1/4)(\beta_{nac} + \beta_{bbc})[\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi - \sin2\phi\sin^2\theta (1 - \cos2\chi)] \\ \chi_{zzy} = (1/4)(\beta_{nac} + \beta_{bbc})[\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi - \sin2\phi\sin^2\theta (1 - \cos2\chi)] \\ \chi_{zzy} = (1/4)(\beta_{nac} + \beta_{bbc})[\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi - \sin2\phi\sin^2\theta (1 - \cos2\chi)] \\ \chi_{zzy} = (1/4)(\beta_{nac} + \beta_{bbc})[\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi - \sin2\phi\sin^2\theta (1 - \cos2\chi)] \\ \chi_{zzy} = (1/4)(\beta_{nac} + \beta_{bbc})[\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi - \sin2\phi\sin^2\theta (1 - \cos2\chi)] \\ \chi_{zzy} = (1/4)(\beta_{nac} + \beta_{bbc})[\cos2\phi(\cos\theta - \cos^3\theta)\sin2\chi - \sin2\phi\sin^2\theta$$

$$\begin{split} (pss) \qquad & \chi_{zyy} = -(1/4)(\beta_{aac} + \beta_{bbc} - 2\beta_{ccc})(\cos\theta - \cos^3\theta)(1 - \cos2\chi) \\ & - (1/4)(\beta_{aac} - \beta_{bbc})[\cos2\phi(\cos\theta - \cos^3\theta)(1 - \cos2\chi) + \sin2\phi\sin^2\theta\sin2\chi] \end{split}$$

(sss) (none)

[逆対称 (b₁) 振動]

(ppp)
$$\chi_{zxx} = (1/4)\beta_{caa} \{2[\cos\theta(1 + \cos2\phi\cos2\chi) - (1 + \cos2\phi)(\cos\theta - \cos^3\theta)(1 + \cos2\chi)] + \sin2\phi(1 - 3\cos^2\theta)\sin2\chi\}$$

$$\chi_{xzx} = (1/4)\beta_{caa} \{2[\cos\theta(1 + \cos2\phi\cos2\chi) - (1 + \cos2\phi)(\cos\theta - \cos^3\theta)(1 + \cos2\chi)] + \sin2\phi(1 - 3\cos^2\theta)\sin2\chi\}$$

$$\chi_{xxz} = (1/2)\beta_{caa}[-(1 + \cos2\phi)(\cos\theta - \cos^3\theta)(1 + \cos2\chi) + \sin2\phi\sin^2\theta\sin2\chi]$$

$$\chi_{zzz} = \beta_{caa}(1 + \cos2\phi)(\cos\theta - \cos^3\theta)$$
(spp)
$$\chi_{yzx} = (1/4)\beta_{caa} \{2[(1 + \cos2\phi)(\cos\theta - \cos^3\theta) - \cos2\phi\cos\theta]\sin2\chi + \sin2\phi[-\sin^2\theta + (1 - 3\cos^2\theta)\cos2\chi]\}$$

$$\chi_{xxz} = (1/2)\beta_{cm}[(1 + \cos 2\phi)(\cos \theta - \cos^3 \theta)\sin 2\chi + \sin 2\phi \sin^2 \theta \cos 2\chi]$$

$$(ssp) \qquad \chi_{yyz} = -(1/2)\beta_{can}[(1 + \cos 2\phi)(\cos \theta - \cos^3 \theta)(1 - \cos 2\chi) + \sin 2\phi \sin^2 \theta \sin 2\chi]$$

$$\begin{split} (psp) \qquad & \chi_{xyz} = (1/2)\beta_{caa}[(1+\cos2\phi)(\cos\theta-\cos^3\theta)\sin2\chi+\sin2\phi\sin^2\theta\cos2\chi] \\ \chi_{zyx} = (1/4)\beta_{caa}\{2[(1+\cos2\phi)(\cos\theta-\cos^3\theta)-\cos2\phi\cos\theta]\sin2\chi \\ & +\sin2\phi[-\sin^2\theta+(1-3\cos^2\theta)\cos2\chi]\} \end{split}$$

(sps)
$$\chi_{yzy} = (1/4)\beta_{caa} \{ 2[\cos\theta(1 - \cos 2\phi \cos 2\chi) - (1 + \cos 2\phi)(\cos\theta - \cos^3\theta)(1 - \cos 2\chi) \}$$
$$-\sin 2\phi(1 - 3\cos^2\theta)\sin 2\chi \}$$

(pps)
$$\chi_{zxy} = (1/4)\beta_{caa} \{ 2[(1 + \cos 2\phi)(\cos \theta - \cos^3 \theta) - \cos 2\phi \cos \theta] \sin 2\chi + \sin 2\phi [-\sin^2 \theta + (1 - 3\cos^2 \theta)\cos 2\chi] \}$$
$$\chi_{xzy} = (1/4)\beta_{caa} \{ 2[(1 + \cos 2\phi)(\cos \theta - \cos^3 \theta) - \cos 2\phi \cos \theta] \sin 2\chi + \sin 2\phi [-\sin^2 \theta + (1 - 3\cos^2 \theta)\cos 2\chi] \}$$

$$\begin{split} \chi_{zyy} &= (1/4)\beta_{caa} \{ 2[\cos\!\theta (1 - \cos\!2\!\phi\!\cos\!2\!\chi) - (1 + \cos\!2\!\phi)(\cos\!\theta - \cos^3\!\theta)(1 - \cos\!2\!\chi)] \\ &- \sin\!2\!\phi (1 - 3\!\cos^2\!\theta)\!\sin\!2\!\chi \} \end{split}$$

(sss) (none)

[面外 (b₂) 振動]

$$\begin{split} (ppp) \qquad & \chi_{zxx} = (1/4)\beta_{cbb}\{2[\cos\theta(1-\cos2\phi\cos2\chi)-(1-\cos2\phi)(\cos\theta-\cos^3\theta)(1+\cos2\chi)] \\ & -\sin2\phi(1-3\cos^2\theta)\sin2\chi\} \\ \chi_{xzx} = (1/4)\beta_{cbb}\{2[\cos\theta(1-\cos2\phi\cos2\chi)-(1-\cos2\phi)(\cos\theta-\cos^3\theta)(1+\cos2\chi)] \\ & -\sin2\phi(1-3\cos^2\theta)\sin2\chi\} \\ \chi_{xxz} = -(1/2)\beta_{cbb}[(1-\cos2\phi)(\cos\theta-\cos^3\theta)(1+\cos2\chi)+\sin2\phi\sin^2\theta\sin2\chi] \\ \chi_{zzz} = \beta_{cbb}(1-\cos2\phi)(\cos\theta-\cos^3\theta) \\ (spp) \qquad \chi_{yzx} = (1/4)\beta_{cbb}\{2[(1-\cos2\phi)(\cos\theta-\cos^3\theta)+\cos2\phi\cos\theta]\sin2\chi \\ & +\sin2\phi[\sin^2\theta-(1-3\cos^2\theta)\cos2\chi]\} \\ \chi_{yxz} = (1/2)\beta_{cbb}[(1-\cos2\phi)(\cos\theta-\cos^3\theta)\sin2\chi-\sin2\phi\sin^2\theta\cos2\chi] \end{split}$$

(ssp)
$$\chi_{vvz} = -(1/2)\beta_{cbb}[(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta)\sin 2\chi - \sin 2\phi \sin^2 \theta \cos 2\chi]$$

$$\begin{split} \chi_{xyz} &= (1/2)\beta_{cbb}[(1-\cos2\phi)(\cos\theta-\cos^3\theta)\sin2\chi-\sin2\phi\sin^2\theta\cos2\chi] \\ \chi_{zyx} &= (1/4)\beta_{cbb}\{2[(1-\cos2\phi)(\cos\theta-\cos^3\theta)+\cos2\phi\cos\theta]\sin2\chi \\ &+ \sin2\phi[\sin^2\theta-(1-3\cos^2\theta)\cos2\chi]\} \end{split}$$

(sps)
$$\chi_{yzy} = (1/4)\beta_{cbb}(1/4)\beta_{caa} \{2[\cos\theta(1 + \cos2\phi\cos2\chi) - (1 - \cos2\phi)(\cos\theta - \cos^3\theta)(1 - \cos2\chi)] + \sin2\phi(1 - 3\cos^2\theta)\sin2\chi\}$$

(pps)
$$\chi_{zxy} = (1/4)\beta_{cbb} \{ 2[(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta) + \cos 2\phi \cos \theta] \sin 2\chi \\ + \sin 2\phi [\sin^2 \theta - (1 - 3\cos^2 \theta)\cos 2\chi] \}$$

$$\chi_{xzy} = (1/4)\beta_{cbb} \{ 2[(1 - \cos 2\phi)(\cos \theta - \cos^3 \theta) + \cos 2\phi \cos \theta] \sin 2\chi \\ + \sin 2\phi [\sin^2 \theta - (1 - 3\cos^2 \theta)\cos 2\chi] \}$$

(pss)
$$\chi_{\text{zyy}} = (1/4)\beta_{\text{cbb}}\{2[\cos\theta(1+\cos2\phi\cos2\chi) - (1-\cos2\phi)(\cos\theta-\cos^3\theta)(1-\cos2\chi)] + \sin2\phi(1-3\cos^2\theta)\sin2\chi\}$$

(sss) (none)

6. 表面電場から SFG 分極へ

SFG 分極 $P(\omega_{SF})$ は、下式によって入射光の表面電場(入射光の電場 $E^{(i)}(\omega_{ir})$ および $E^{(i)}(\omega_{vis})$ に反射光の電場 $E^{(r)}(\omega_{ir})$ および $E^{(r)}(\omega_{vis})$ を加えたベクトル和)と、下式で関係付けられる。

$$P_{i}(\omega_{SF}) = \sum_{j,k} \chi^{SF}_{ijk} E_{j}(\omega_{vis}) E_{k}(\omega_{ir})$$
(6.1)

式中、下付きの i、j、k は、左から順に SFG 光、vis 光、ir 光の電場に対する座標軸成分の方向を表す (i,j,k=x,y,z)。一般に、入射角 θ_i を持つ入射光の電場 $E^{(i)}$ を p 偏光成分と s 偏光成分に分けて区別する $(E^{(i)}=E^{(i)}_{\ p}+E^{(i)}_{\ s})$ 。このとき、光電場の振幅の x、y、z 成分を偏光成分の電場振幅で表すと、下のようになる。

$$E_{x}^{(i)} = E_{p}^{(i)} \cos \theta_{i}, \quad E_{y}^{(i)} = E_{s}^{(i)}, \quad E_{z}^{(i)} = -E_{p}^{(i)} \sin \theta_{i}$$
 (6.2)

同様に、反射角 θ , の反射光 $E^{(r)}$ については下式になる。

$$E_{x}^{(r)} = -E_{p}^{(r)}\cos\theta_{r}, \quad E_{y}^{(r)} = E_{s}^{(r)}, \quad E_{z}^{(r)} = -E_{p}^{(r)}\sin\theta_{r}$$
 (6.3)

また、 $E^{(r)}$ と $E^{(i)}$ はフレネルの反射係数を通して次のような関係にある。

$$E_{s}^{(r)} = \frac{n_{1} \cos \theta_{i} - n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i} + n_{2} \cos \theta_{t}} E_{s}^{(i)}, \quad E_{p}^{(r)} = \frac{n_{2} \cos \theta_{i} - n_{1} \cos \theta_{t}}{n_{2} \cos \theta_{i} + n_{1} \cos \theta_{t}} E_{p}^{(i)}$$
(6.4)

 n_1 と n_2 は入射側及び透過側の屈折率、 θ_t は屈折角である。よって、表面電場 $E^{ ext{(surf)}}$ の座標成分は下式で表される。

$$E_{x}^{(\text{surf})} = \frac{2n_{1}\cos\theta_{i}\cos\theta_{t}}{n_{2}\cos\theta_{i} + n_{1}\cos\theta_{t}} E_{p}^{(i)}$$
(6.5a)

$$E_{y}^{(surf)} = \frac{2n_{1}\cos\theta_{i}}{n_{1}\cos\theta_{i} + n_{2}\cos\theta_{t}} E_{s}^{(i)}$$
(6.5b)

$$E_{\rm z}^{\rm (surf)} = -\frac{2n_1 \cos \theta_{\rm i} \sin \theta_{\rm t}}{n_2 \cos \theta_{\rm i} + n_1 \cos \theta_{\rm t}} (\frac{n_1 n_2}{n'})^2 E_{\rm p}^{\rm (i)}$$
(6.5c)

(6.5c) 式で、n' は SFG 信号を出す表面層の屈折率である。赤外光および可視光電場の座標成分を (6.5) 式によって求め、それを (6.1) 式に代入すれば、分極ベクトルの大きさが得られる。

7. SFG 分極から SFG 電場へ

SFG 分極 $P(\omega_{SF})$ がもとになって生成する SFG 電場 $E(\omega_{SF})$ は、「反射方向」と「透過方向」の 2 方向に伝播する。そして、反射方向に出て行く SFG 光の電場 $E^{(r)}(\omega_{SF})$ と透過方向に出て行く SFG 光の電場 $E^{(r)}(\omega_{SF})$ の振幅に対しては、下式が成り立つ。

$$E_s^{(r)}(\omega_{SF}) = 4\pi i \frac{\omega_{SF}}{c} \frac{P_y(\omega_{SF})}{n_1 \cos \theta_i + n_2 \cos \theta_t}$$

$$(7.1a)$$

$$E_{p}^{(r)}(\omega_{SF}) = -4\pi i \frac{\omega_{SF}}{c} \frac{P_{x}(\omega_{SF})\cos\theta_{t} - (\frac{n_{2}}{n'})^{2} P_{z}(\omega_{SF})\sin\theta_{t}}{n_{2}\cos\theta_{t} + n_{1}\cos\theta_{t}}$$
(7.1b)

$$E_s^{(t)}(\omega_{SF}) = 4\pi i \frac{\omega_{SF}}{c} \frac{P_y(\omega_{SF})}{n_1 \cos \theta_i + n_2 \cos \theta_t}$$
(7.2a)

$$E_{p}^{(t)}(\omega_{SF}) = -4\pi i \frac{\omega_{SF}}{c} \frac{P_{x}(\omega_{SF})\cos\theta_{i} + (\frac{n_{1}}{n'})^{2} P_{z}(\omega_{SF})\sin\theta_{i}}{n_{2}\cos\theta_{i} + n_{1}\cos\theta_{t}}$$
(7.2b)

フレネルの L 係数を次のように導入すると、式の表現が簡単化される。

$$E_{s}^{(r)}(\omega_{SF}) = L_{s,y}^{(r)} P_{y}(\omega_{SF}), \quad E_{p}^{(r)}(\omega_{SF}) = L_{p,x}^{(r)} P_{x}(\omega_{SF}) + L_{p,z}^{(r)} P_{z}(\omega_{SF})$$
 (7.3a)

$$E_{s}^{(t)}(\omega_{SF}) = L_{s,y}^{(t)} P_{y}(\omega_{SF}), \quad E_{p}^{(t)}(\omega_{SF}) = L_{p,x}^{(t)} P_{x}(\omega_{SF}) + L_{p,z}^{(t)} P_{z}(\omega_{SF})$$
(7.3b)

L係数の表式は下の通りである。

$$L_{s,y}^{(r)} = -4\pi i \frac{\omega_{SF}}{c} \frac{1}{n_1 \cos \theta_i + n_2 \cos \theta_t}$$

$$(7.4a)$$

$$L_{p,x}^{(r)} = -4\pi i \frac{\omega_{SF}}{c} \frac{\cos\theta_t}{n_2 \cos\theta_t + n_1 \cos\theta_t}$$
(7.4b)

$$L_{pz}^{(r)} = 4\pi i \frac{\omega_{SF}}{c} \frac{(\frac{n_2}{n'})^2 P_z(\omega_{SF}) \cos\theta_t}{n_2 \cos\theta_t + n_1 \cos\theta_t}$$
(7.4c)

$$L_{sy}^{(t)} = -4\pi i \frac{\omega_{SF}}{c} \frac{1}{n_1 \cos \theta_i + n_2 \cos \theta_t}$$

$$(7.5a)$$

$$L_{p,x}^{(t)} = -4\pi i \frac{\omega_{SF}}{c} \frac{\cos\theta_i}{n_2 \cos\theta_i + n_1 \cos\theta_i}$$
(7.5b)

$$L_{pz}^{(t)} = -4\pi i \frac{\omega_{SF}}{c} \frac{(\frac{n_1}{n'})^2 P_z(\omega_{SF}) \cos \theta_i}{n_2 \cos \theta_i + n_1 \cos \theta_i}$$
(7.5c)

なお、(7.1b) 式および (7.4b) 式の分極の成分にかかる係数の符号については、z 軸の取り方で変わってしまうため、不確定性が残っている。

おわり