МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики

Направление подготовки: «Прикладная математика и информатика» Магистерская программа: «Компьютерные науки и приложения»

ОТЧЕТ

Тема:

«Реализация метода обратного распространения ошибки для двухслойной полносвязной сети»

Выполнил(а): студент(ка) группы 381803-4м

Синицкая Олеся Вячеславовна

Содержание

Постановка задачи	3
Метод обратного распространения ошибки	4
Вывод математических формул для вычисления градиентов функции ошибки	6
1. Вычисление производных $\frac{\partial E}{\partial \omega_{js}^{(2)}}$	6
Формулы корректировки весов $\omega_{js}^{(2)}$	
2. Вычисление производных $\frac{\partial E}{\partial \omega_{si}^{(1)}}$	8
Формулы корректировки весов $\omega_{\mathrm{si}}^{(1)}$	10
Программная реализация	.11
1. Инструкция по сборке программного кода и запуску приложения	11
2. Описание разработанного программного кода	11
Эксперименты	13

Постановка задачи

Выполнение практической работы предполагает решение следующих задач:

- 1. Изучение общей схемы метода обратного распространения ошибки.
- 2. Вывод математических формул для вычисления градиентов функции ошибки по параметрам нейронной сети и формул коррекции весов.
- 3. Проектирование и разработка программной реализации.
- 4. Тестирование разработанной программной реализации.
- 5. Подготовка отчета, содержащего минимальный объем информации по каждому этапу выполнения работы.

Метод обратного распространения ошибки

Метод обратного распространения ошибки определяет стратегию выбора параметров сети w с использованием градиентных методов оптимизации в предположении, что целевая функция E(w) непрерывна.

Градиентные методы на каждом шаге уточняют значения параметров, по которым проводится оптимизация, согласно формуле:

$$w(k+1) = w(k) + \Delta w,$$

где $\Delta w = \eta p(w)$ определяет сдвиг значений параметров, η , $0 < \eta < 1$ – *скорость обучения* – параметр обучения, который определяет «скорость» движения в направлении минимального значения функции, p(w) – направление в многомерном пространстве параметров нейронной сети.

В классическом методе обратного распространения ошибки направление движения совпадает с направлением антиградиента $p(w) = -\nabla E(w)$.

Общая схема метода обратного распространения ошибки включает несколько основных этапов. Первоначально синаптические веса сети инициализируются определенным образом, например, нулевыми значениями или случайно из некоторого распределения.

В данной работе была выбрана инициализация весов Ксавье: нужно умножить случайную инициализацию на:

$$\sqrt{\frac{2}{size^{l-1}}},$$

$$W=np.random.rand(size^l,size^{l-1})*\sqrt{\frac{2}{size^{l-1}}}\;,l-$$
слой, $size^l-$ число нейронов в слое l

Далее метод работает для каждого примера обучающей выборки.

- 1. Прямой проход нейронной сети в направлении передачи информации от входного сигнала к скрытым слоям и выходному слою сети. На данном этапе вычисляются значения выходных сигналов нейронов скрытых слоев и выходного слоя, а также соответствующие значения производных функций активации на каждом слое сети.
- 2. Вычисление значения функции ошибки и градиента этой функции.
- 3. Обратный проход нейронной сети в направлении от выходного слоя к входному слою, и корректировка синаптических весов.
- 4. Повторение этапов 1-3 до момента выполнения критериев остановки. В качестве критериев остановки используется число итераций метода (количество проходов), либо достигнутая точность.

В процессе обучения многослойной полносвязной нейронной сети ей многократно предъявляется предопределенное множество обучающих примеров. Один полный цикл предъявления полного набора примеров называется эпохой. В ходе обучения может выполняться несколько таких циклов до момента стабилизации синаптических весов, либо достижения минимального значения функции ошибки.

В данной работе используется стохастический поиск – когда изменяется порядок примеров в обучающей выборке перед каждой эпохой.

Так же используется пакетный режим. В данном режиме корректировка весов осуществляется по всем примерам эпохи. В этом случае используется функция ошибки для всего набора тренировочных данных, нормированная по числу примеров выборки. Корректировка весов также проводится по всему набору данных.

В качестве функции активации на скрытом слое используется функция LReLU.

$$LReLU(v) = \begin{cases} \alpha v, v < 0, \\ v, v \ge 0 \end{cases}$$

В качестве функции активации на втором слое используется функция softmax.

$$\varphi(u_j) = \frac{e^{u_j}}{\sum_{i=1}^M e^{u_j}}$$

В качестве функции ошибки используется крос-энтропия.

$$E(w) = -\frac{1}{L} \sum_{k=1}^{L} \sum_{j=1}^{M} y_{j}^{k} ln u_{j}^{k}$$

Псевдокод:

}

Back_propagation(){

Инициализировать веса

Для каждой эпохи j=1,epoch

Для каждого батча і=1,размер входных данных

Прямой обход (для каждого объекта из батча):

Вычислить все v, u

Вычислить производные фукций активаций

Обратный проход (для всего батча)

Вычисление целевой функции и ее градиента

Скорректировать веса

Вывод математических формул для вычисления градиентов функции ошибки

Вывод математических формул для вычисления градиентов функции ошибки по параметрам нейронной сети и формул коррекции весов.

Вычисление производных
$$\frac{\partial E}{\partial \omega_{js}^{(2)}}$$

$$\begin{split} E &= -\sum_{k=1}^{M} y_k \ln u_k = -\sum_{k=1}^{M} y_k \ln \frac{e^{g_k}}{\sum_{n=1}^{M} e^{g_n}} \\ g_j &= \sum_{s=0}^{K} \omega_{js}^{(2)} v_s \\ \frac{\partial E}{\partial \omega_{js}^{(2)}} &= \frac{\partial E}{\partial g_j} \frac{\partial g_j}{\partial \omega_{js}^{(2)}} = \frac{\partial E}{\partial g_j} v_s \\ \frac{\partial E}{\partial g_j} &= (-y_1 \ln \frac{e^{g_1}}{\sum_{n=1}^{M} e^{g_n}} - ... - \ln \frac{e^{g_j}}{\sum_{n=1}^{M} e^{g_n}} - ... - y_M \ln \frac{e^{g_M}}{\sum_{n=1}^{M} e^{g_n}} \rangle_{g_j}^{\ell_j} \\ \frac{\partial E}{\partial g_j} &= \frac{\partial}{\partial g_j} \left(-\sum_{k=1}^{M} y_k \ln \frac{e^{g_k}}{\sum_{n=1}^{M} e^{g_n}} \right) = -\sum_{k=1}^{M} y_k \frac{\partial \left(\ln \frac{e^{g_k}}{\sum_{n=1}^{M} e^{g_n}} \right)}{\partial g_j} = \left(\text{обозначим } \frac{e^{g_k}}{\sum_{n=1}^{M} e^{g_n}} = d_k \right) \\ &= -\sum_{k=1}^{M} y_k \frac{1}{d_k} \frac{\partial d_k}{\partial g_j} \left(1 \right) \\ &= -\sum_{k=1}^{M} y_k \frac{1}{d_k} \frac{\partial d_k}{\partial g_j} \left(1 \right) \\ &= -y_j + y_j \varphi^{(2)} (g_j) + \sum_{k=1, k \neq j}^{M} y_k \varphi^{(2)} (g_j) - \sum_{k=1, k \neq j}^{M} y_k \frac{1}{\varphi^{(2)} (g_k)} \left(-\varphi^{(2)} (g_k) \varphi^{(2)} (g_j) \right) = \\ &= -y_j + y_j \varphi^{(2)} (g_j) + \sum_{k=1, k \neq j}^{M} y_k \varphi^{(2)} (g_j) = -y_j + \left(y_j + \sum_{k=1, k \neq j}^{M} y_k \right) \varphi^{(2)} (g_j) = \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \sum_{k=1, k \neq j}^{M} y_k \varphi^{(2)} (g_j) = \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &= -y_j + \varphi^{(2)} (g_j) - \frac{\partial E}{\partial g_j} \\ &$$

Получаем:

$$\frac{\partial E}{\partial \omega_{js}^{(2)}} = \left(-y_j + \varphi^{(2)}(g_j)\right) v_s$$
$$\varphi^{(2)}(g_j^k) = u_j^k$$

Формулы корректировки весов

$$\begin{split} &\omega_{js}^{(2)} = \omega_{js}^{(2)} - \frac{\eta}{L} \sum_{k=1}^L \left(-y_j^k + \varphi^{(2)} \big(g_j^k \big) \right) v_s^k \text{ или } \omega_{js}^{(2)} = \omega_{js}^{(2)} - \frac{\eta}{L} \sum_{k=1}^L \left(-y_j^k + u_j^k \right) v_s^k \\ &\Delta \omega_{js}^{(2)} = -\frac{\eta}{L} \sum_{k=1}^L \left(-y_j^k + \varphi^{(2)} \big(g_j^k \big) \right) v_s^k \\ &\omega_{js}^{(2)} = \omega_{js}^{(2)} + \Delta \omega_{js}^{(2)} \end{split}$$

В матричном виде:

$$\Delta W^{(2)} = -\frac{\eta}{L} (U - Y)^T V$$
$$W^{(2)} = W^{(2)} + \Delta W^{(2)}$$

Вычисление производных $\frac{\partial E}{\partial \omega_{si}^{(1)}}$

$$E = -\sum_{k=1}^{M} y_k \ln u_k = -\sum_{k=1}^{M} y_k \ln \frac{e^{g_k}}{\sum_{n=1}^{M} e^{g_n}}$$

$$g_j = \sum_{s=0}^{K} \omega_{js}^{(2)} v_s = \sum_{s=0}^{K} \omega_{js}^{(2)} \varphi^{(1)}(f_s) = \sum_{s=0}^{K} \omega_{js}^{(2)} \varphi^{(1)}(\sum_{i=0}^{N} \omega_{si}^{(1)} x_i)$$

Вычислим производные

Коротко

$$\frac{\partial E}{\partial \omega_{Si}^{(1)}} = \sum_{k=1}^{M} \frac{\partial E}{\partial g_{j}} \frac{\partial g_{j}}{\partial v_{s}} \frac{\partial v_{s}}{\partial f_{s}} \frac{\partial f_{s}}{\partial \omega_{Si}^{(1)}} = \sum_{k=1}^{M} \frac{\partial E}{\partial g_{j}} \frac{\partial g_{j}}{\partial v_{s}} \frac{\partial v_{s}}{\partial f_{s}} x_{i} = \sum_{k=1}^{M} (-y_{j} + \varphi^{(2)}(g_{j})) \omega_{js}^{(2)} \frac{\partial \varphi^{(1)}(f_{s})}{\partial f_{s}} x_{i} = \frac{\partial g_{j}}{\partial v_{s}} \frac{\partial g_{j}}{\partial v_{s}} \frac{\partial g_{j}}{\partial v_{s}} \frac{\partial v_{s}}{\partial f_{s}} x_{i} = \sum_{k=1}^{M} (-y_{j} + \varphi^{(2)}(g_{j})) \omega_{js}^{(2)} \frac{\partial \varphi^{(1)}(f_{s})}{\partial f_{s}} x_{i} = \frac{\partial g_{j}}{\partial v_{s}} \frac{\partial g_{j}}{\partial v_{s}} \frac{\partial v_{s}}{\partial f_{s}} x_{i} = \sum_{k=1}^{M} (-y_{j} + \varphi^{(2)}(g_{j})) \omega_{js}^{(2)} \frac{\partial \varphi^{(1)}(f_{s})}{\partial f_{s}} x_{i} = \frac{\partial g_{j}}{\partial v_{s}} \frac{\partial g_{j}}{\partial v_{s}} \frac{\partial v_{s}}{\partial f_{s}} x_{i} = \sum_{k=1}^{M} (-y_{j} + \varphi^{(2)}(g_{j})) \omega_{js}^{(2)} \frac{\partial \varphi^{(1)}(f_{s})}{\partial f_{s}} x_{i} = \frac{\partial g_{j}}{\partial v_{s}} \frac{\partial g_{j}}{\partial v_{s}} \frac{\partial g_{j}}{\partial v_{s}} \frac{\partial g_{j}}{\partial v_{s}} x_{i} = \sum_{k=1}^{M} (-y_{j} + \varphi^{(2)}(g_{j})) \omega_{js}^{(2)} \frac{\partial \varphi^{(1)}(f_{s})}{\partial f_{s}} x_{i} = \frac{\partial g_{j}}{\partial v_{s}} x_{i} = \frac{\partial g_{j}}{\partial v_{s}} \frac{\partial g$$

$$\frac{\partial v_s}{\partial f_s} = \frac{\partial \varphi^{(1)}(f_s)}{\partial f_s} = \begin{cases} \alpha, f_s < 0\\ 1, f_s \ge 0 \end{cases}$$

$$\varphi^{(1)}\left(\sum_{i=0}^{N}\omega_{si}^{(1)}x_{i}\right) = \varphi^{(1)}(f_{s}) = \begin{cases} \alpha f_{s}, f_{s} < 0 \\ f_{s}, f_{s} \geq 0 \end{cases} = \begin{cases} \alpha \sum_{i=0}^{N}\omega_{si}^{(1)}x_{i}, \sum_{i=0}^{N}\omega_{si}^{(1)}x_{i} < 0 \\ \sum_{i=0}^{N}\omega_{si}^{(1)}x_{i}, \sum_{i=0}^{N}\omega_{si}^{(1)}x_{i} \geq 0 \end{cases}$$

x — входной слой

N – число нейронов на входном слое

 $\omega_{si}^{(1)}$ - веса от входных нейронов к нейронам скрытого слоя

v – скрытый слой

К - число нейронов на скрытом слое

 $\omega_{is}^{(2)}$ – веса от скрытых нейронов к нейронам выходного слоя

 $arphi^{(1)}$ – функция активации на скрытом слое

u — выходной слой

М - число нейронов на выходном слое

 $arphi^{(2)}$ - функция активации на выходном слое

$$f_s = \sum_{i=0}^{N} \omega_{si}^{(1)} x_i$$

Подробнее

$$\frac{\partial E}{\partial \omega_{si}^{(1)}} = \frac{\partial (-\sum_{k=1}^{M} y_k \ln u_k)}{\partial \omega_{si}^{(1)}} = -\sum_{k=1}^{M} y_k \frac{\partial (\ln u_k)}{\partial \omega_{si}^{(1)}} = -\sum_{k=1}^{M} \frac{y_k}{u_k} \frac{\partial (\frac{e^{gk}}{\sum_{n=1}^{M} e^{g_n}})}{\partial \omega_{si}^{(1)}} = \frac{e^{gk}}{\sum_{n=1}^{M} e^{g_n}} = \frac{e^{\sum_{s=0}^{K} \omega_{ks}^{(2)} \varphi^{(1)} \left(\sum_{i=0}^{N} \omega_{si}^{(1)} x_i\right)}}{\sum_{n=1}^{M} e^{g_n}} = \frac{a}{b}$$

$$\begin{split} \frac{\partial \frac{a}{b}}{\partial \omega_{sl}^{(1)}} &= \frac{\partial a}{\partial \omega_{sl}^{(1)}} b - a \frac{\partial b}{\partial \omega_{sl}^{(1)}} \\ \frac{\partial a}{\partial \omega_{sl}^{(1)}} &= \frac{\partial e^{gk}}{\partial g_k} = e^{gk} \frac{\partial \sum_{s=0}^K \omega_{ks}^{(2)} \varphi^{(1)} \left(\sum_{i=0}^N \omega_{sl}^{(1)} x_i\right)}{\partial v_s} = e^{gk} \omega_{ks}^{(2)} \frac{\partial \varphi^{(1)}(f_s)}{\partial f_s} = \\ &= e^{gk} \omega_{ks}^{(2)} \left\{ \frac{\alpha, f_s < 0}{1, f_s \ge 0} \frac{\partial f_s}{\partial \omega_{sl}^{(1)}} \right\} = e^{gk} \omega_{ks}^{(2)} \left\{ \frac{\alpha, f_s < 0}{1, f_s \ge 0} x_i \right\} \\ \frac{\partial b}{\partial \omega_{sl}^{(1)}} &= \frac{\partial \sum_{n=1}^M e^{gn}}{\partial g_n} = \sum_{n=1}^M \frac{\partial e^{gn}}{\partial g_n} = \sum_{n=1}^M e^{gn} \frac{\partial g_n}{\partial v_s} = \sum_{n=1}^M e^{gn} \frac{\partial \sum_{k=0}^K \omega_{ns}^{(2)} \varphi^{(1)} \left(\sum_{i=0}^N \omega_{sl}^{(1)} x_i\right)}{\partial v_s} \\ &= \sum_{n=1}^M e^{gn} \omega_{ns}^{(2)} \left\{ \frac{\alpha, f_s < 0}{0, f_s} \right\} = \sum_{n=1}^M e^{gn} \omega_{ns}^{(2)} \left\{ \frac{\alpha, f_s < 0}{1, f_s \ge 0} \frac{\partial f_s}{\partial \omega_{sl}^{(1)}} \right\} \\ &= \sum_{n=1}^M e^{gn} \omega_{ns}^{(2)} \left\{ \frac{\alpha, f_s < 0}{1, f_s \ge 0} \frac{\partial \sum_{i=0}^N \omega_{sl}^{(1)} x_i}{\partial \omega_{sl}^{(1)}} \right\} \\ &= \sum_{n=1}^M e^{gn} \omega_{ns}^{(2)} \left\{ \frac{\alpha, f_s < 0}{1, f_s \ge 0} \frac{\partial \sum_{i=0}^N \omega_{sl}^{(1)} x_i}{\partial \omega_{sl}^{(1)}} \right\} \\ &= \sum_{n=1}^M e^{gn} \omega_{ns}^{(2)} \left\{ \frac{\alpha, f_s < 0}{1, f_s \ge 0} \frac{\partial \sum_{i=0}^N \omega_{sl}^{(1)} x_i}{\partial \omega_{sl}^{(1)}} \right\} \\ &= \sum_{n=1}^M e^{gn} \omega_{ns}^{(2)} \left\{ \frac{\alpha, f_s < 0}{1, f_s \ge 0} \frac{\partial \sum_{i=0}^N \omega_{sl}^{(1)} x_i}{\partial \omega_{sl}^{(1)}} \right\} \\ &= \sum_{n=1}^M e^{gn} \omega_{ns}^{(2)} \left\{ \frac{\alpha, f_s < 0}{1, f_s \ge 0} \frac{\partial \sum_{i=0}^N \omega_{sl}^{(1)} x_i}{\partial \omega_{sl}^{(1)}} \right\} \\ &= \sum_{n=1}^M e^{gn} \omega_{ns}^{(2)} \left\{ \frac{\alpha, f_s < 0}{1, f_s \ge 0} \frac{\partial \sum_{i=0}^N \omega_{sl}^{(1)} x_i}{\partial \omega_{sl}^{(1)}} \right\} \\ &= \sum_{n=1}^M e^{gn} \omega_{ns}^{(2)} \left\{ \frac{\alpha, f_s < 0}{1, f_s \ge 0} \frac{\partial \sum_{i=0}^M \omega_{sl}^{(1)} x_i}{\partial \omega_{sl}^{(1)}} \right\} \\ &= \sum_{n=1}^M e^{gn} \omega_{ns}^{(2)} \left\{ \frac{\alpha, f_s < 0}{1, f_s \ge 0} \frac{\partial \sum_{i=0}^M \omega_{sl}^{(1)} x_i}{\partial \omega_{sl}^{(1)}} \right\} \\ &= \sum_{n=1}^M e^{gn} \omega_{ns}^{(2)} \left\{ \frac{\alpha, f_s < 0}{1, f_s \ge 0} \frac{\partial \sum_{i=0}^M \omega_{sl}^{(1)} x_i}{\partial \omega_{sl}^{(1)}} \right\} \\ &= \sum_{n=1}^M e^{gn} \omega_{ns}^{(2)} \left\{ \frac{\alpha, f_s < 0}{1, f_s \ge 0} \frac{\partial \sum_{i=0}^M \omega_{ns}^{(1)} x_i}{\partial \omega_{sl}^{(1)}} \right\} \\ &= \sum_{n=1}^M e^{gn} \omega_{ns}^{(2)} \left\{ \frac{\alpha, f_s < 0}{1, f_s \ge 0} \frac{\partial \sum_{i=0}^M \omega_{ns}^{(1)} x_i}{\partial \omega_{sl}^{(1)}} \right\} \\ &=$$

$$\begin{cases} \alpha \sum_{i=0}^{N} \omega_{si}^{(1)} x_i, \sum_{i=0}^{N} \omega_{si}^{(1)} x_i < 0 \\ \sum_{i=0}^{N} \omega_{si}^{(1)} x_i, \sum_{i=0}^{N} \omega_{si}^{(1)} x_i \ge 0 \end{cases}$$

Собираем полученные результаты (1):

$$\begin{split} \frac{\partial E}{\partial \omega_{si}^{(1)}} &= \frac{\partial \left(-\sum_{k=1}^{M} y_{k} \ln u_{k}\right)}{\partial \omega_{si}^{(1)}} = -\sum_{k=1}^{M} y_{k} \frac{\partial (\ln u_{k})}{\partial \omega_{si}^{(1)}} = -\sum_{k=1}^{M} \frac{y_{k}}{u_{k}} \frac{\partial \left(\sum_{n=1}^{M} e^{g_{n}}\right)}{\partial \omega_{si}^{(1)}} = \\ &= -\sum_{k=1}^{M} \frac{y_{k}}{u_{k}} \left(\varphi^{(2)}(g_{k})\omega_{ks}^{(2)} \left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right. x_{i} - \frac{e^{g_{k}}\sum_{n=1}^{M} e^{g_{n}}\omega_{ns}^{(2)} \left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right. x_{i}}{\left(\sum_{n=1}^{M} e^{g_{n}}\right)^{2}} \right) = \\ &= -\sum_{k=1}^{M} \left(\frac{y_{k}}{u_{k}}\varphi^{(2)}(g_{k})\omega_{ks}^{(2)} \left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right. x_{i} - \frac{y_{k}}{u_{k}} \frac{e^{g_{k}}\sum_{n=1}^{M} e^{g_{n}}\omega_{ns}^{(2)} \left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right. x_{i}}{\left(\sum_{n=1}^{M} e^{g_{n}}\right)^{2}} \right) = \\ &= -\left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right. x_{i} \sum_{k=1}^{M} (y_{k}\omega_{ks}^{(2)} - \frac{y_{k}}{u_{k}} \frac{e^{g_{k}}\sum_{n=1}^{M} e^{g_{n}}\omega_{ns}^{(2)}}{\left(\sum_{n=1}^{M} e^{g_{n}}\right)^{2}} \right) \\ &= -\left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right. x_{i} \sum_{k=1}^{M} (y_{k}\omega_{ks}^{(2)} - \frac{y_{k}}{u_{k}} \frac{e^{g_{k}}\sum_{n=1}^{M} e^{g_{n}}\omega_{ns}^{(2)}}{\left(\sum_{n=1}^{M} e^{g_{n}}\right)^{2}} \right) \\ &= -\left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right. x_{i} \sum_{k=1}^{M} (y_{k}\omega_{ks}^{(2)} - \frac{y_{k}}{u_{k}} \frac{e^{g_{n}}\omega_{ns}^{(2)}}{\left(\sum_{n=1}^{M} e^{g_{n}}\right)^{2}} \right) \\ &= -\left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right. x_{i} \sum_{k=1}^{M} (y_{k}\omega_{ks}^{(2)} - \frac{y_{k}}{u_{k}} \frac{e^{g_{n}}\omega_{ns}^{(2)}}{\left(\sum_{n=1}^{M} e^{g_{n}}\omega_{ns}^{(2)}\right)} \right) \\ &= -\left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right. x_{i} \sum_{k=1}^{M} (y_{k}\omega_{ks}^{(2)} - \frac{y_{k}}{u_{k}} \frac{e^{g_{n}}\omega_{ns}^{(2)}}{\left(\sum_{n=1}^{M} e^{g_{n}}\omega_{ns}^{(2)}\right)} \right\} \\ &= -\left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right. x_{i} \sum_{k=1}^{M} (y_{k}\omega_{ks}^{(2)} - \frac{y_{k}}{u_{k}} \frac{e^{g_{n}}\omega_{ns}^{(2)}}{\left(\sum_{n=1}^{M} e^{g_{n}}\omega_{ns}^{(2)}\right)} \right\} \\ &= -\left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right. x_{i} \sum_{k=1}^{M} (y_{k}\omega_{ks}^{(2)} - \frac{y_{k}}{u_{k}} \frac{e^{g_{n}}\omega_{ns}^{(2)}}{\left(\sum_{n=1}^{M} e^{g_{n}}\omega_{ns}^{(2)}\right)} \right\} \\ &= -\left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right\} \left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right\} \left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right\} \left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right\} \left\{ \alpha, f_{s} < 0 \atop 1, f_{s} \geq 0 \right\} \left\{ \alpha, f_{s} < 0 \atop 1, f_{s} < 0 \atop 1,$$

$$= -\left\{ \begin{matrix} \alpha, f_{s} < 0 \\ 1, f_{s} \geq 0 \end{matrix} \right. x_{i} \sum_{k=1}^{M} \left(y_{k} \, \omega_{ks}^{(2)} - y_{k} \frac{\sum_{n=1}^{M} e^{g_{n}} \, \omega_{ns}^{(2)}}{\sum_{n=1}^{M} e^{g_{n}}} \right) = -\left\{ \begin{matrix} \alpha, f_{s} < 0 \\ 1, f_{s} \geq 0 \end{matrix} \right. x_{i} \left(\sum_{k=1}^{M} y_{k} \, \omega_{ks}^{(2)} - \sum_{k=1}^{M} \left(y_{k} \frac{\sum_{n=1}^{M} e^{g_{n}} \, \omega_{ns}^{(2)}}{\sum_{n=1}^{M} e^{g_{n}}} \right) \right) \\ = \\ = -\left\{ \begin{matrix} \alpha, f_{s} < 0 \\ 1, f_{s} \geq 0 \end{matrix} \right. x_{i} \left(\sum_{k=1}^{M} y_{k} \, \omega_{ks}^{(2)} - 1 * \frac{\sum_{n=1}^{M} e^{g_{n}} \omega_{ns}^{(2)}}{\sum_{n=1}^{M} e^{g_{n}}} \right) = -\left\{ \begin{matrix} \alpha, f_{s} < 0 \\ 1, f_{s} \geq 0 \end{matrix} \right. x_{i} \left(\sum_{k=1}^{M} y_{k} \, \omega_{ks}^{(2)} - \frac{\sum_{k=1}^{M} e^{g_{k}} \omega_{ks}^{(2)}}{\sum_{n=1}^{M} e^{g_{n}}} \right) = \\ -\left\{ \begin{matrix} \alpha, f_{s} < 0 \\ 1, f_{s} \geq 0 \end{matrix} \right. x_{i} \left(\sum_{k=1}^{M} \left(y_{k} \omega_{ks}^{(2)} - \frac{e^{g_{k}} \omega_{ks}^{(2)}}{\sum_{n=1}^{M} e^{g_{n}}} \right) \right) = -\left\{ \begin{matrix} \alpha, f_{s} < 0 \\ 1, f_{s} \geq 0 \end{matrix} \right. x_{i} \left(\sum_{k=1}^{M} \omega_{ks}^{(2)} \left(y_{k} - \frac{e^{g_{k}} \omega_{ks}^{(2)}}{\sum_{n=1}^{M} e^{g_{n}}} \right) \right) = \\ -\left\{ \begin{matrix} \alpha, f_{s} < 0 \\ 1, f_{s} \geq 0 \end{matrix} \right. x_{i} \left(\sum_{k=1}^{M} \omega_{ks}^{(2)} \left(y_{k} - \varphi^{(2)}(g_{k}) \right) \right) = \left\{ \begin{matrix} \alpha, f_{s} < 0 \\ 1, f_{s} \geq 0 \end{matrix} \right. x_{i} \left(\sum_{k=1}^{M} \omega_{ks}^{(2)} \left(\varphi^{(2)}(g_{k}) - y_{k} \right) \right) = \frac{\partial E}{\partial \omega_{ni}^{(1)}}. \end{aligned}$$

Формулы корректировки весов

$$\omega_{si}^{(1)} = \omega_{si}^{(1)} - \frac{\eta}{L} \sum_{k=1}^{L} \frac{\partial \varphi^{(1)}(f_s)}{\partial f_s} \bigg|_{x^k} x_i^k \left(\sum_{j=1}^{M} \omega_{js}^{(2)} \left(\varphi^{(2)}(g_j^k) - y_j^k \right) \right), \quad \frac{\partial \varphi^{(1)}(f_s)}{\partial f_s} = \begin{cases} \alpha, f_s < 0 \\ 1, f_s \ge 0 \end{cases}$$

$$\varphi^{(1)}(g_i^k) = v_i^k$$

$$\Delta \omega_{si}^{(1)} = -\frac{\eta}{L} \sum_{k=1}^{L} \frac{\partial \varphi^{(1)}(f_s)}{\partial f_s} \bigg|_{x^k} x_i^k \left(\sum_{j=1}^{M} \omega_{js}^{(2)} \left(\varphi^{(2)}(g_j^k) - y_j^k \right) \right)$$

$$\omega_{si}^{(1)} = \omega_{si}^{(1)} + \Delta \omega_{si}^{(1)}$$

В матричном виде:

$$\Delta W^{(2)} = -\frac{\eta}{L} (\left[(U-Y) \cdot W^{(2)} \right] * \Phi)^T \cdot X$$
, где * — поэлементное умножение. $W^{(2)} = W^{(2)} + \Delta W^{(2)}$

Программная реализация

Инструкция по сборке программного кода и запуску приложения на данных базы MNIST

Перед запуском необходимо установить пакеты tensorflow, keras, numpy, sklearn. Помощь по установке этих и других пакетов для Windows вы можете найти здесь: https://github.com/jeffheaton/t81 558 deep learning/blob/master/t81 558 class 01 1 overview.ipyn b.

Для запуска приложения можно воспользоваться Jupyter Notebook (файл backpropagation.ipynb). Для запуска с Anaconda Prompt нужно создать окружение(environment), перейти в него и запустить backpropagation.py.

Описание разработанного программного кода

Рассмотрим класс network. Для того, чтобы обучить сеть, необходимо создать экземпляр класса network. Экземпляр класса содержит:

- self.speed скорость обучения
- self.batch батч

#число нейронов входного слоя

self.num_input_neurons_x

#число нейронов скрытого слоя

- self.num_hidden_neurons_v = num_hidden_neurons_v
- self.V нейроны скрытого слоя

#число нейронов выходного слоя

- self.num_output_neurons_u = num_output_neurons_u
- self.U нейроны выходного слоя
- self.w2 веса от скрытого слоя к выходному
- self.w1 веса от входного слоя к скрытому
- self.der_LReLU производные от функции LReLU скрытого слоя

Функция *run* – пример использования класса network.

Функция run создает экземпляр класса network и вызывает функцию обучения fit.

Функция run(num_hidden_neurons_v, epoch, batch, speed_train) показывает как можно обучить нейронную сеть, используя данные MNIST и проверить результат на тренировочной и тестовой выборках. Функция run принимает на вход:

- num_hidden_neurons_v число нейронов на скрытом слое
- epoch чило эпох
- batch размер батча
- speed_train скорость обучения

Функция fit обеспечивает обучение и тестирование сети, получая на вход выборки, размер пачек, скорость обучения и количество эпох.

fit реализует стохастический пакетный режим обучения и выбор весов с помощью метода обратного распространения ошибки.

Функция fit принимает на вход:

- x_train входные данные
- y_train правильные ответы(метки)
- batch размер пачки
- speed_train скорость обучения
- epoch количество эпох

Эксперименты

Скорос	батч	Колич	Число	Время	Тренирово	Тренировоч	Тестовая	Тестовая
ТЬ		ество	скрытых	(сек)	чная	ная выборка	выборка	выборка
обучен		эпох	нейронов		выборка	Потери	Точность	Потери
ия					Точность			
0.1	10	10	80	93	99.05	0.03	97.57	0.09
0.1	10	20	80	185	99.91	0.004	97.96	0.09
0.1	120	20	80	105	98.32	0.06	97.19	0.09
0.1	32	20	300	510	99.96	0.006	98.23	0.06
0.1	128	20	300	383	98.86	0.05	97.83	0.07