

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

DEPARTAMENTO DE FÍSICA E MATEMÁTICA

ENGENHARIA INFORMÁTICA – 1º ano /2º Semestre ANÁLISE MATEMÁTICA I-deslizante

Exame

02-julho-2014 Duração:2h 30m

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados.

- 1. Considere a função $f(x) = sen(-\frac{\pi}{3}) + cos(2x \frac{\pi}{6})$.
 - a. Determine os zeros da função f(x).
 - b. Caracterize a função inversa de f(x), indicando domínio, contradomínio e expressão analítica.
- 2. Considere a região do plano $B = \{(x, y) \in \Re : x \ge y^2 + 1 \land y \ge x 3\}.$
 - a. Represente graficamente a região B.
 - b. Usando unicamente o cálculo integral, indique expressões simplificadas que lhe permitam calcular:
 - i. a área de B;
 - ii. o volume do sólido de revolução que se obtém pela rotação de *B* em torno do eixo OX.
 - iii. o perímetro de *B*.
- 3. Considere a seguinte função real de variável real $f(x) = \frac{1}{\sqrt[4]{6-3x}}$.
 - a. Identifique, justificando, cada uma das seguintes expressões:

i.
$$\int_{2}^{4} f(x)dx$$

ii.
$$\int_{1}^{2} f(x)dx$$

iii.
$$\int_{-1}^{0} f(x)dx$$

- b. Determine a natureza do integral impróprio.
- 4. Resolva a equação diferencial $xy' 2y = \frac{x^6}{\sqrt{1 x^2}}$.

5. Considere a seguinte função
$$f(x) = \frac{x^3}{\sqrt{4 + x^2}}$$
.

a. Utilizando a técnica de primitivação de funções trigonométricas calcule

$$\int \frac{1}{\cot g^3(x)\cos(x)} dx$$

- b. Considerando a substituição x = 2tg(t), mostre que $\int f(x)dx$ se reduz à primitiva da alínea anterior e estabeleça o respetivo resultado.
- 6. Calcule as seguintes primitivas:

a.
$$\int \frac{x^2 - 4x + 6}{(x - 1)(x^2 + x - 2)} dx$$
 b.
$$\int \frac{e^{4x - 1} - 3e^{2x}}{9 + 4e^{4x}} dx$$

b.
$$\int \frac{e^{4x-1} - 3e^{2x}}{9 + 4e^{4x}} dx$$

Cotação

1a	1b	2a	2bi	2bii	2biii	3a	3b	4	5a	5b	6a	6b
0,75	1,25	1	1	1	1	1	1	4	2	2	2	2