Ni-P-Al₂O₃복합체막의 특성

김호남, 리경수, 김명훈

위대한 수령 김일성동지께서는 다음과 같이 교시하시였다.

《새로운 과학분야를 개척하며 최신과학기술의 성과를 인민경제에 널리 받아들이기 위한 연구사업을 전망성있게 하여야 합니다.》(《김일성전집》제72권 292폐지)

현재 우주항공 및 자동차공업, 기계제작공업 등이 발전함에 따라 부분품들의 정밀도와 정결도에 대한 요구성이 더욱 높아지고있으며 따라서 높은 굳기와 내마모성, 내부식성을 가 진 부분품들이나 공구들에 대한 요구성도 높아지고있다. 높은 굳기와 내마모성을 요구하는 재료들의 개발은 여러가지 합금이나 금속분말들과 경질재료분말들을 복합소결 또는 복합 피복의 방법으로 실현하고있다. 복합피복은 PVD, CVD, 전기화학적방법[1-5]으로 실현할 수 있다.

우리는 화학적도금법에 의한 Ni-P-Al₂O₃복합체막을 제조하고 복합체막의 조성과 그 특성을 고찰하였다.

화학적도금법에 의한 Ni-P-Al₂O₃복합체막의 제조방법은 다음과 같다.

시편기판으로서 탄소공구강(HRC60)을 리용하였으며 도금하기 전에 먼저 기판을 겉면세척하였다. 표 1과 같은 조성의 도금용액(pH 5.5, 85℃의 온도)에서 자석교반기로 교반하면서 복합도금을 진행하였다. 경질재료의 하나인 Al₂O₃분말은 행성식볼분쇄기에서 초기 30min동안은 건식분쇄하고 에틸알콜과 시료를 1:1 질량비로 혼합하여 습식분쇄하였다.

표 1. Ni-P-Al ₂ O ₃ 복합	. 1. Ni-P-Al ₂ O ₃ 복합도금액의 조성과 함량			
조성	함량/(g·L ⁻¹)			
NiSO ₄ ·6H ₂ O	30			
CH ₃ COONa·3H ₂ ·	O 17			
$NaH_2PO_2 \cdot H_2O$	20			
Al ₂ O ₃ 분말(100nm°	কী) 20			

그림 1. Al₂O₃분말의 SEM사진

3h동안 습식분쇄하여 얻은 초미세경질분말(Al₂O₃분말) 의 SEM사진은 그림 1과 같다.

그림 1에서 보는바와 같이 $3h동안 습식분쇄한 Al_2O_3$ 분말은 응집상태로서 약 $0.3\mu m$ 이하이다.

크기가 작아질수록 알갱이들의 응집이 강해지므로 분쇄한 Al_2O_3 경질립자분말을 매체교반기에서 증류수와 2mm 크기의 유리알과 섞어서 1h동안 교반하여 응집상태의 알 갱이들을 분산시킨 다음 복합도금을 진행하였다.

Ni-P-Al₂O₃복합체막의 XRD도형은 그림 2와 같다.

그림 2에서 보는바와 같이 표 1의 조건에서 얻어진 도금층은 열처리하지 않았을 때 거의나 무정형상이며 다만 $2\theta=44^\circ$ 근방에서 Ni의 (111)회절선에 대응한 위치에서 약간의 무딘 봉우리가 나타났다. 선행연구결과[2]와 우의 실험결과로부터 도금층속에는 미세한 Ni결정들이 존재한다는것을 알수 있다.

그림 2. Ni-P-Al₂O₃복합체막의 XRD도형 □) 열처리하지 않은 도금시편, ㄴ) 400°C에서 열처리한 시편 1-Ni결정의 회절선, 2-Ni₃P결정의 회절선

또한 400℃의 온도에서 열처리할 때에는 Ni의 (111)회절선과 새로운 경질상인 금속간화합물 Ni₃P의 회절선들이 나타났다. 이로부터 400℃의 열처리에 의하여 무정형상으로부터 Ni의 결정구조(립방구조)와 금속간화합물 Ni₃P의 결정구조(정방구조)로 넘어갔다는것을 알수 있다. 그리고 도금층속에는 Ni가 약 47질량%이며 Ni₃P가 약 53질량% 포함되여있다는것을 알수 있다. Al₂O₃에 해당한 회절선들이 나타나지 않은것은 나노급의 Al₂O₃분말들이 도금층속에 미세하게 분산되여있고 그 포함량이 XRD도형에는 나타나지 않을 정도로 아주 작기(약 3질량%이하)때문이라고 볼수 있다.

다음으로 비커스경도기(《430SVA》)를 리용하여 도금층의 굳기를 측정하고 $Ni-P-Al_2O_3$ 복합체막의 마모특성을 고찰하였다.

마모시험은 SiC연마지(16~13μm)를 붙인 원판을 회전시키면서 복합도금충을 입힌 크기가 10mm×20mm인 시편을 일정한 힘(5N)으로 누르면서 4min동안 갈이시험을 한 후 시편의 마모량을 측정하는 방법으로 진행하였다. 시편의 마모량을 전자천평(《HZK-FA210》)으로 측정하였다.

열처리온도와 분위기에 따르는 Ni-P-Al₂O₃복합체막의 굳기와 마모특성은 표 2와 같다. 시편번호 1-3은 Ni-P도금시편들이며 시편번호 4-6은 Ni-P-Al₂O₃복합체막시편들이다.

시편번호	열처리온도/℃	분위기	비커스굳기(HV) /(kg·mm ⁻²)	록크웰굳기 (HRC)	마모량/(·10 ⁻⁴ g)
1	0		787	64.1	_
2	400	H_2	1 336	73.2	_
3	400	N_2	1 221	72.3	_
4	0	_	853	66.0	_
5	400	H_2	1 546	75.5	54
6	400	N_2	1 312	73.0	25

표 2. 열처리온도와 분위기에 따르는 Ni-P-Al₂O₃복함체막이 굳기와 마모특성

표 2에서 보는바와 같이 Ni-P-Al₂O₃복합체막의 굳기가 Ni-P도금층에서보다 전반적으로 증가하였다. 그것은 경질재료인 나노Al₂O₃분말(수%)의 립자분산강화에 의한것으로 볼수 있다. 한편 질소속에서 열처리한 복합도금층의 마모량은 수소속에서 열처리한것에 비하여 절반이나 작다. 이로부터 수소속에서 열처리하는 경우 굳기가 질소속에서 처리한 경우보다 조금 증가하지만 내마모성은 상당히 낮아진다는것을 알수 있다. 즉 열처리분위기에 따라서 복합체막의 물리력학적특성량들이 변한다.

맺 는 말

열처리하지 않은 Ni-P-Al₂O₃복합체막은 미결정의 Ni를 포함하는 무정형상으로서 400℃에서 열처리하면 미결정의 Ni가 성장하며 경질상의 새로운 Ni₃P금속간화합물상들이 핵형성되고 여기에 미량의 Al₂O₃분말이 분산된 결정구조이다. 열처리하지 않은 Ni-P-Al₂O₃복합체막의 굳기는 HV853kg/mm²(HRC66)이며 질소와 수소속에서 열처리한 경우에 각각 HV1 312kg/mm²(HRC73), HV1 546kg/mm²(HRC75.5)이다.

Ni-P-Al₂O₃복합체막의 내마모성은 질소속에서 열처리한 경우에 수소속에서 열처리한 경우보다 약 2배 높다.

참 고 문 헌

- [1] 김수림 등; 물리, 4, 13, 주체101(2012).
- [2] Tohru Watanabe; Nano-Plating, Elsevier, 430~460, 2004.
- [3] O. Glenn et al.; Electroless Plating, AESF, 210~230, 2000.
- [4] Wei Huang et al.; Surface & Coatings Technology, 18791, 2013.
- [5] H. Yahia et al.; Int. J. Electrochem. Sci., 9, 1942, 2014.

주체106(2017)년 12월 5일 원고접수

On the Properties of Ni-P-Al₂O₃ Composite Film

Kim Ho Nam, Ri Kyong Su and Kim Myong Hun

We manufactured Ni-P-Al₂O₃ composite films by the chemical plating method and experimentally found its properties. The results show that microhardnesses of Ni-P-Al₂O₃ composite films heat-treated in N₂ and H₂ are HV1 312kg/mm²(HRC73) and HV1 546kg/mm²(HRC75.5) respectively, and the wear resistance of the former is 2 times higher than that of the later.

Key words: Ni, Al₂O₃, composite film