

Coimisiún na Scrúduithe Stáit State Examinations Commission

LEAVING CERTIFICATE EXAMINATION, 2011

MATHEMATICS - ORDINARY LEVEL

	PAPER 1 (300 marks)
FRID	AY, 10 JUNE – AFTERNOON, 2:00 to 4:30
	Attempt SIX QUESTIONS (50 marks each).
WARNING:	Marks will be lost if all necessary work is not clearly shown. Answers should include the appropriate units of measurement, where relevant.

- 1. (a) Aoife and Brian share a prize fund in the ratio 4:3. Aoife gets $\in 56$.
 - (i) Find the total prize fund.
 - (ii) How much does Brian get?
 - **(b)** The cost of staying for three nights in a hotel in England is £231 sterling.
 - (i) Find that cost in euro, given that $\pounds 1 = \pounds 0.88$ sterling?
 - (ii) This cost is 5% more than the cost a year ago. Find, in euro, the cost a year ago.
 - (c) The speedometer in a car is faulty. When the car is actually travelling at 57 km/h, the speedometer reads 60 km/h.
 - (i) Calculate the percentage error, correct to one decimal place.
 - (ii) If the percentage error is the same at all speeds, at what speed is the car actually travelling when the speedometer reads 110 km/h?

 Give your answer correct to one decimal place.
 - (iii) The driver is not aware of the fault. He calculates that if he travels at an average speed of 80 km/h as shown on the speedometer, he will reach his destination in four hours.

 How long, correct to the nearest minute, will it actually take him to reach his destination?
- 2. (a) Given that 3a(x+5) = 114, find the value of x when a = 4.
 - **(b)** (i) Find A, the solution set of 3x 5 < 7, $x \in \mathbb{Z}$.
 - (ii) Find B, the solution set of $\frac{-2-3x}{4} \le 1$, $x \in \mathbb{Z}$.
 - (iii) List the elements of $A \cap B$.
 - (c) Let $f(x) = x^3 2x^2 + cx + d$.
 - (i) Given that f(0) = 6, find the value of d.
 - (ii) Given that f(3) = 0, find the value of c.
 - (iii) Hence, solve the equation f(x) = 0.

- 3. (a) Multiply $(3x 1)(2x^2 + 5x 4)$ and simplify your answer.
 - **(b) (i)** Solve for x and y

$$2x = 13 + 3y$$
$$\frac{x}{2} = \frac{2 - y}{5}.$$

- (ii) Hence, find the value of $4(x-y^2)$.
- (c) (i) Solve for x $\frac{x-1}{x} + \frac{x}{x+1} = \frac{1}{2}, \quad x \neq 0, \ x \neq -1.$
 - (ii) Verify one of your solutions.
- 4. (a) Let u = 1 + 2i, where $i^2 = -1$. Plot on an Argand diagram
 - **(i)** *u*
 - (ii) u-3.
 - **(b)** Let z = 2 + 3i.
 - (i) Find z^2 in the form x + yi, where $x, y \in \mathbb{R}$.
 - (ii) Show that $z^2 = 4z 13$.
 - (iii) Show that $\bar{z}^2 + 13 = 4\bar{z}$, where \bar{z} is the complex conjugate of z.
 - (c) (i) Express $\frac{4+2i}{3-i}$ in the form x+yi, where $x,y \in \mathbb{R}$.
 - (ii) Hence, or otherwise, find the real numbers k and t such that

$$\left|\frac{4+2i}{3-i}\right|(k+5i) = \frac{1}{\sqrt{2}}(7+(t-1)i).$$

- 5. (a) The first term of a geometric sequence is 5 and the common ratio is 2. Find the first four terms of the sequence.
 - **(b)** The first three terms of an arithmetic series are $7 + 4 + 1 + \dots$
 - (i) Find d, the common difference.
 - (ii) Find T_{15} , the fifteenth term of the series.
 - (iii) Find S_{15} , the sum of the first fifteen terms of the series.
 - (c) The first three terms of a geometric sequence are

$$h-1$$
, $2h$ and $5h+3$,

where h is a real number greater than 1.

- (i) Find the value of h.
- (ii) The kth term of the sequence is 486. Find k.
- **6.** (a) $f: x \to f(x)$ is a periodic function defined for $x \in \mathbb{R}$. The period is as indicated in the diagram.

- (i) Write down the period and the range of the function.
- (ii) Find f(71).
- **(b)** (i) Differentiate $(4x-1)(3-2x^2)$ with respect to x and simplify your answer.
 - (ii) Given that $y = \frac{1}{x^2 3x}$, $x \ne 3$, find the range of values of x for which $\frac{dy}{dx} < 0$.
- (c) Let $f(x) = 2x + \frac{1}{x}$, where $x \in \mathbb{R}$ and $x \neq 0$.
 - (i) Find the equation of the tangent to the curve y = f(x) at the point P(1, 3).
 - (ii) Q is another point on the curve y = f(x) such that the tangent at Q is parallel to the tangent at P. Find the co-ordinates of Q.

- 7. (a) Differentiate $x^3 7x^2 + 6x$ with respect to x.
 - **(b) (i)** Differentiate $\frac{3x+1}{x-2}$ with respect to x.

Write your answer in the form $\frac{k}{(x-2)^n}$, where $k, n \in \mathbb{Z}$.

- (ii) Given that $y = (x^2 2x 9)^4$, find the value of $\frac{dy}{dx}$ when x = -2.
- (c) A ball is rolled in a straight line along a surface. The distance, *s* metres, the ball travels is given by

$$s = 18t - 2t^2$$

where t is the time in seconds from the instant the ball begins to move.

- (i) Find the speed of the ball after 3 seconds.
- (ii) How far is the ball from the starting point when it stops moving?
- (iii) Show that the speed of the ball decreases at a constant rate while it is moving.

- 8. Let $f(x) = \frac{1}{x+2}$, where $x \in \mathbb{R}$ and $x \neq -2$.
 - (i) Copy and complete the following table:

x	-5	-4	-3	-2.5	-1.5	-1	0	1
f(x)		-0.5	-1	-2				

(ii) The diagram shows part of the graph of the function f. Copy and complete the graph from x = -5 to x = 1.

- (iii) On the same diagram, draw the graph of the function g(x) = x + 2 in the domain $-5 \le x \le 1$, where $x \in \mathbb{R}$.
- (iv) Use your graphs to estimate the range of values of x for which $f(x) \le g(x)$.
- (v) Prove that the curve y = f(x) has no turning points.

Blank Page

Blank Page