15.7 Definition einer Galoiserweiterung

Definition. Sei L eine endliche Körpererweiterung eines Körpers K, und sei G := G(L/K) die Galoisgruppe von L über K. Dann ist |G| ein Teiler von [L:K] nach 15.6, und L heißt Galoiserweiterung von K oder galoissch über K, falls |G| = [L:K] gilt.

Beispiel. \mathbb{C} ist galoissch über \mathbb{R} , denn $|G(\mathbb{C}/\mathbb{R})| = 2$ nach 15.5, und es ist $[\mathbb{C} : \mathbb{R}] = 2$, da $\{1, i\}$ eine Basis von \mathbb{C} als \mathbb{R} -Vektorraum ist.

15.8 Charakterisierung von Galoiserweiterungen

Definition. Eine Körpererweiterung L von K heißt separabel, wenn jedes Element aus L separabel über K ist (vgl. 13.5).

Ein Polynom $f \in K[X]$ heißt separabel, wenn jeder irreduzible Faktor von f keine mehrfachen Nullstellen im Zerfällungskörper von f besitzt.

Satz.

Für eine endliche Körpererweiterung L eines Körpers K sind äquivalent:

- (1) L ist galoissch über K.
- (2) $L^{G(L/K)} = K$.
- (3) L ist normal und separabel.
- (4) L ist $Zerf\"{a}llungsk\"{o}rper$ eines separablen Polynoms aus K[X].

Beweis. $(1) \Leftrightarrow (2)$ wurde in 15.6 gezeigt.

- (2) \Rightarrow (3) Nach 15.2 ist jedes $x \in L$ separabel über $L^{G(L/K)} = K$. Also ist L separabel über K. Sei $p \in K[X]$ irreduzibel, und sei $x \in L$ eine Nullstelle von p. Dann ist $p = cm_x$ mit einem $c \in K^*$ nach 11.9. Aus 15.2 folgt nun, dass p in Linearfaktoren in L[X] zerfällt. Also ist L normal nach 13.3.
- (3) \Rightarrow (4) Da L über K normal ist, ist L Zerfällungskörper eines Polynoms $f \in K[X]$ nach 13.3. Da L separabel über K ist, ist f separabel (denn jeder normierte irreduzible Faktor von f ist Minimalpolynom aller seiner Nullstellen).
- $(4)\Rightarrow (2)$ Sei G:=G(L/K), und sei L Zerfällungskörper eines separablen Polynoms $f\in K[X]$. Es gilt $K\subset L^G\subset L$. **Zeige:** $L^G\subset K$ durch Induktion nach der Anzahl n der nicht in K liegenden Nullstellen von f. Ist n=0, so ist $K=L^G=L$.

Algebra, Universität Göttingen 2006/2007

Sei nun $x \in L \setminus K$ eine Nullstelle von f. Das Minimalpolynom m_x ist ein irreduzibler Faktor von f, hat also lauter verschiedene Nullstellen $x, x_2, \ldots, x_r \in L$. Es folgt $r = \operatorname{grad}(m_x) = [K(x):K] > 1$ nach 11.10. Nach Korollar 13.1 gibt es zu jedem $i = 2, \ldots, r$ einen K-Isomorphismus $\psi_i \colon K(x) \to K(x_i)$ mit $\psi_i(x) = x_i$, und nach 13.2 gibt es dazu jeweils ein $\sigma_i \in G$ mit $\sigma_i(x) = x_i$. Es ist $G(L/K(x)) \subset G$, also $L^G \subset L^{G(L/K(x))} \subset K(x)$ nach Induktionsvoraussetzung (denn betrachtet man f als Polynom in K(x)[X], so bleibt f separabel und L ist Zerfällungskörper von f).

Sei nun $y \in L^G$. Zu zeigen: $y \in K$. Es ist $y = \lambda_0 + \lambda_1 x + \dots + \lambda_{r-1} x^{r-1}$ mit $\lambda_0, \dots, \lambda_{r-1} \in K$ nach 11.10, da $y \in L^G \subset K(x)$ ist. Es folgt $y = \sigma_2(y) = \lambda_0 + \lambda_1 x_2 + \dots + \lambda_{r-1} x_2^{r-1}, \dots, y = \sigma_r(y) = \lambda_0 + \lambda_1 x_r + \dots + \lambda_{r-1} x_r^{r-1}.$

Also hat $h := y - (\lambda_0 + \lambda_1 X + \dots + \lambda_{r-1} X^{r-1}) \in L^G[X]$ die r verschiedenen Nullstellen x, x_2, \dots, x_r und ist vom Grad < r. Es folgt h = 0, also $y - \lambda_0 = 0$ und $\lambda_i = 0$ für $i = 1, \dots, r-1$. Dies ergibt $y = \lambda_0 \in K$.

15.9 Einbettung in eine Galoiserweiterung

Satz. Jede endliche separable Körpererweiterung von K lässt sich in eine Galoiserweiterung von K einbetten.

Beweis. Sei L endlich-separabel über K. Dann ist L = K(u) mit einem separablen $u \in L$ (vgl. Korollar 13.5), und nach 15.8 ist der Zerfällungskörper des Minimalpolynoms m_u galoissch über K.

Lernerfolgstest.

- Sei $L=\mathbb{Q}(\sqrt{2},\sqrt{3})$. Bestimmen Sie das Minimalpolynom m_x in $\mathbb{Q}[X]$ von $x:=\sqrt{2}+\sqrt{3}$ mit der in 15.3 benutzten Methode.
- Verifizieren Sie, dass im Beweis in 15.5 tatsächlich $\sigma = \mathrm{id}$ folgt.
- Jedes $x \in K$ ist Nullstelle eines irreduziblen Polynoms $p \in K[X]$. Wie sieht p aus?

15.10 Übungsaufgaben 70-71

Aufgabe 70. Man bestimme die Galoisgruppe $G(L/\mathbb{Q})$ für

$$L = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) \text{ und } L = \mathbb{Q}(\sqrt[3]{2}).$$

Aufgabe 71. Für $a\in\mathbb{Q}$ sei L_a der Zerfällungskörper des Polynoms X^3-a . Man bestimme die Galoisgruppe $G(L_a/\mathbb{Q})$ in Abhängigkeit von a.

16 Hauptsatz der Galoistheorie

Lernziel.

Fertigkeiten: In gewissen Fällen Schlüsse aus dem Hauptsatz ziehen $\overline{\text{Kenntnisse}}$: Hauptsatz mit Anwendungen für zyklische Erweiterungen und endliche Körper

16.1 Hauptsatz

Definition. Sei K ein Körper, und sei L eine endliche Körpererweiterung von K. Ein $Zwischenkörper\ Z$ ist ein Teilkörper von L mit $K\subset Z\subset L$.

Wenn L galoissch über K ist, liefert der Hauptsatz eine Übersicht über alle Zwischenkörper: Diese entsprechen eineindeutig den Untergruppen der Galoisgruppe $G(L/K) := \operatorname{Aut}_K L$.

Hauptsatz.

Sei L eine Galoiserweiterung eines Körpers K, und sei G := G(L/K) die Galoisgruppe von L über K. Dann ist L galoissch über jedem Zwischenkörper, und man hat eine Bijektion von Mengen

$$\begin{split} \{Zwischenk\"{o}rper\} &\stackrel{\sim}{\longrightarrow} \{Untergruppen\ von\ G\}, \\ Z &\longmapsto G(L/Z) = \{\sigma \in \operatorname{Aut}(L) \mid \sigma(z) = z \ \text{ f\"{u}r alle }\ z \in Z\} \end{split}$$

mit Umkehrabbildung

$$\{ \textit{Untergruppen von } G \} \xrightarrow{\sim} \{ \textit{Zwischenk\"orper} \},$$

$$H \longmapsto L^H := \{ z \in L \mid \sigma(z) = z \text{ f\"ur alle } \sigma \in H \}$$

Dabei gelten

$$(1) \qquad [Z:K] = \frac{|G|}{|G(L/Z)|}$$

(2)
$$Z \subset Z' \Longrightarrow G(L/Z') \subset G(L/Z)$$
 und $H \subset H' \Longrightarrow L^{H'} \subset L^H$.

Beweis. Da L galoissch über K ist, ist L Zerfällungskörper eines separablen Polynoms aus $K[X] \subset Z[X]$. Also ist L Zerfällungskörper eines separablen Polynoms aus Z[X], und daher ist L galoissch über Z (vgl.15.8). Zeige nun, dass die Abbildungen $Z \stackrel{\varphi}{\longmapsto} G(L/Z)$ und $H \stackrel{\psi}{\longmapsto} L^H$ invers zueinander sind. Es ist $\psi(\varphi(Z)) = L^{G(L/Z)} = Z$ nach 15.8.2, da L galoissch über Z. Weiter gilt $\varphi(\psi(H)) = G(L/L^H) = H$, denn es ist $H \subset G(L/L^H)$, und da L galoissch über L^H ist, gilt $|H| = [L:L^H] = |G(L/L^H)|$ nach 15.4 und 15.7. Es ist $|G| = [L:K] = [L:Z][Z:K] = |G(L/Z)| \cdot [Z:K]$. Hieraus folgt (1), und (2) ist klar nach Definition.

16.2 Beispiel

Sei $L=\mathbb{Q}(\sqrt[3]{2},\zeta)$ mit $\zeta^2+\zeta+1=0$ und $\zeta^3=1$. Dann ist $[L:\mathbb{Q}]=6$ nach 11.11, und L ist Zerfällungskörper von $f=X^3-2\in\mathbb{Q}[X]$, denn

$$X^3 - 2 = (X - \sqrt[3]{2}) \cdot (X - \zeta\sqrt[3]{2}) \cdot (X - \zeta^2\sqrt[3]{2}).$$

Also ist L galoissch über $\mathbb Q$ nach 15.8, und es folgt $|G(L/\mathbb Q)|=6$ nach Definition 15.7. Dies ergibt $G(L/\mathbb Q)\simeq S_3$ nach 15.5. Betrachte

Setze $\sigma(\sqrt[3]{2}) = \zeta\sqrt[3]{2}$ und $\sigma(\zeta) = \zeta$. Dann ist $\sigma^2(\sqrt[3]{2}) = \zeta^2\sqrt[3]{2}$ und $\sigma^3 = \mathrm{id}$. Es folgt $G(L/\mathbb{Q}(\zeta)) = \{\mathrm{id}, \sigma, \sigma^2\}$.

16.3 Wann ist ein Zwischenkörper galoissch über K?

Seien $K \subset Z \subset L$ endliche Körpererweiterungen, wobei L galoissch über K sei. Dann ist L galoissch über Z nach 16.1, aber Z ist im Allgemeinen nicht galoissch über K. Sei G := G(L/K) die Galoisgruppe von L über K.

Lemma. Für jedes $\sigma \in G$ ist $\sigma(Z) := \{ \sigma(z) \mid z \in Z \}$ ein Zwischenkörper, und es gilt $G(L/\sigma(Z)) = \sigma G(L/Z)\sigma^{-1}$ für alle $\sigma \in G$.

Beweis. Für $\sigma, \tau \in G$ gilt

$$\begin{split} \tau \in G(L/\sigma(Z)) &\iff \tau(\sigma(z)) = \sigma(z) \; \forall z \in Z \\ &\iff \sigma^{-1} \circ \tau \circ \sigma \in G(L/Z) \\ &\iff \tau \in \sigma G(L/Z) \sigma^{-1} \end{split}$$

Satz. Äquivalent sind

- (a) Z ist galoissch über K.
- (b) $\sigma(Z) = Z \text{ für alle } \sigma \in G.$
- (c) G(L/Z) ist Normalteiler in G.

Algebra, Universität Göttingen 2006/2007