BLAST BIFX-550

S. <u>Ravi</u>chandran, Ph.D. Biology, Hood College, Frederick, MD 21701

Goals

- Explore BLAST from NCBI
- How to carry out BLAST searches?
- Explain the BLAST search in detail.
- BLAST specific inputs/outputs
 - E-values & scores
- Discuss strategies for carrying out BLAST

Drawbacks of Dynamic Programming & lead into Word-based methods

- BLAST, FASTA commonly used today for sequence alignment
 - Heuristic and word-based
 - No guarantee we will find the optimum alignment
 - But, they will find multiple possible solutions <u>quickly</u>

Basic terminology

- Query: your sequence
 - ID, FASTA, Range of residues/nucleotides
- Database: search against your query
 - Typically millions of sequences
- Default method for searching is local alignment
 - Not global alignment
 - Not the local alignment adopted by Smith Waterman
 - BLAST does accomplish using different methodology
 - Original method is computationally too expensive

Basic Local Alignment Search Tool

- What is BLAST?
 - A query tool to retrieve similar (homologous) sequences from a DB
- Flavors
 - Blastp; blastn; Blastx; tblastn; Tblastx
 - BLAST2

Web BLAST

blastx translated nucleotide ▶ protein

tblastn
protein ▶ translated nucleotide

What is BLAST used for?

- Identifying homologs for proteins/DNA
 - Orthologs & paralogs
- May have a sequence and would like to identify the identity
 - SMART BLAST

- Discover new genes
 - Genomic BLAST

What is BLAST used for?

Discovering proteins that have similar domains

 Searching EST database to find out the alternative splicing mechanisms

 Finally functionally relevant amino acid residues either in a protein DB or a PDB database

Summary: Goals of BLAST

- Search for high-scoring pairs (HSPs)
 - Aligned segment score that cannot be extended or trimmed to increase the score
 - Both gapped/ungapped
 - Score must be above score threshold

Step1

- Sequence of interest
 - Query
 - DNA/Protein
- Input
 - Sequence or Accession number
 - FASTA
 - Etc.

Step 2

What Flavor of BLAST?

Fig 3.12 from the **Pevsner Book III Edition PLEASE** DO NOT DISTRIBUTE Copyright figure

UniGene Uses all nucleotides in its DB to search against all known Protein sequences

reading frames, and then compares each of these proteins to a protein database.

TBLASTN is used to translate every DNA sequence in a database into six potential proteins, and then to compare your protein query against each of those translated proteins.

TBLASTX is the most computationally intensive BLAST algorithm. It translates DNA from both a query and a database into six potential proteins, then performs 36 protein-protein database searches.

BLASTX

Translation of a DNA to a protein and searched against a Protein DB. What is a translation?

LCT Gene → Protein 6 Frames of Translation

MELSWHVVFI ALLSFSCWGS DWESDRNFIS TAGPLTNDLL HNLSGLLGDQ

20

30

40

10

50

Step 3: Selecting a DB

- Protein
 - nr database
 - GenBank, PDB, SwissProt, PIR & PRF
 - RefSeq
- DNA
 - BLASTN, TBLASTN, TBLASTX
 - nr/nt (GenBank, EMBL,DDBJ, PDB & RefSeq)
 - Note that nr does not include, EST, STS, WGS, GSS, TSA, Patents or HTGS databases

Table 4.1 from Pevsner III Edition

Database	Title	# sequences
nr	All nonredundant GenBank CDS translations + PDB + SwissProt + PIR + PRF excluding environmental samples from WGS projects	65 million ~146M
Reference proteins	NCBI protein reference sequences	50 million ~102M
UniProtKB/SwissProt	Nonredundant UniProtKB/SwissProt sequences	450,000 ~468K
Patented protein sequences	Protein sequences derived from the Patent division of GenBank	1.3 million ~2.2M
Protein Data Bank	PDB protein database	77,000 ~97K
Metagenomic proteins	Proteins from WGS metagenomic projects (env_nr)	6.5 million ~6.9M
Transcriptome	Transcriptome Shotgun Assembly (TSA) sequences	770,000 ~2.42M

Accessed Date (2018/02/25)

nr: formed by merging several main protein/DNA DBs
These often contain many identical sequences. Generally only
one copy if kept during merging

Database	Title	# sequences	
Human Genomic + Transcript	Homo sapiens NCBI Annotation Release 104 RNAs; Homo sapiens all assemblies	55,000	
Mouse Genomic + Transcript	Mus musculus NCBI Annotation RNAs; Mus musculus all assemblies	N/A	
nr/nt	All GenBank+EMBL+DDBJ+PDB+RefSeq sequences, but excludes EST, STS, GSS, WGS, TSA, patent sequences as well as phase 0, 1, and 2 HTGS sequences	25 million	
refseq_rna	NCBI transcript reference sequences	3.5 million	
refseq_genomic	NCBI genomic reference sequences	2.7 million	
NCBI Genomes	NCBI chromosome sequences	28,000	
Expressed sequence tags (EST)	Database of GenBank+EMBL+DDBJ sequences from EST Divisions	75 million	Table 4.0 from
Genomic survey sequences (gss)	Genome survey sequence, includes single-pass genomic data, exon-trapped sequences, and Alu PCR sequences	36 million	Table 4.2 from Pevsner III Edition
High-throughput genomic sequences (HTGS)	Unfinished high-throughput genomic sequences; sequences: phases 0,1 and 2	153,000	
Patent sequences	Nucleotide sequences derived from the Patent division of GenBank	21 million	
Protein Data Bank	PDB nucleotide database	8000	
alu	Human Alu repeat elements	325	
Sequence tagged sites (STS)	Database of GenBank+EMBL+DDBJ sequences from STS Divisions	1.3 million	
Whole-genome shotgun (wgs)	Whole-genome-shotgun contigs	116 million	
Transcriptome Shotgun Assembly (TSA)	Transcriptome shotgun assembly (TSA) sequences	15 million	40
16S ribosomal RNA sequences (Bacteria and Archaea)	16S ribosomal RNA sequences (bacteria and archaea)	7500	16

Why is this task difficult?

- Sep 2018
- nrDB
 - □ ~171M sequences Protein
- □ RefSeq
 - □~118M Sequences Protein
- Query

```
RID 96CT7C3E014 (Expires on 02-27 05:05 am)
```

Title: All non-redundant GenBank CDS

Number of sequences: 171418145

environmental samples from WGS projects

translations+PDB+SwissProt+PIR+PRF excluding

Query ID NP 000509.1

Description hemoglobin subunit beta [Homo sapiens]

Molecule Type:Protein Update date:2018/10/11

Molecule type amino acid

Query Length 147

RefSeq

- Difference between RefSeq and nr?
 - RefSeq is also nr (DNA/Protein DB)
 - RefSeq has curation (manual)
 - Genome annotation; gene characterization etc.
 - High quality
 - Maintained by NCBI (derived)

Step 4a: Optional Search Parameters

- Limit by Entrez Query
 - "perutz mf[Author]"
 - Check by running through Entrez
- Max Target sequences (default 100)
 - How many do you hits do you want to see?
- Short queries
 - Short sequences, parameters are adjusted for the special case

You can restrict your search. Using the Entrez query. Test your query in Entrez before using it in BLAST

Homo sapiens[Orgn] AND 1000:10000[molwt]

Human retinal guanylyl cyclase 1 isoform X1

Enter Query Seq	quence	BLASTP	programs search pr	otein databases u	sing a protein query. <u>more</u>
Enter accession num	nber(s), gi(s	s), or FASTA seque	nce(s) 😡	<u>Clear</u>	Query subrange 😡
XP_011522118.1		XP_0115	22118.1	4	From To
Or, upload file Job Title	Choose F	ile No file chosen	ST search		
☐ Align two or more	esequences	• 😥			
Choose Search	Set				
Database	Protein Da	ita Bank proteins(po	lb)	▼	
Organism Optional	Enter organis	sm common name, bino	omial, or tax id. Only 2	20 top taxa will be s	Exclude +
Exclude Optional	✓ Models ((XM/XP) ✓ Uncultur	red/environmental s	sample sequence	es
Entrez Query Optional	Enter an Entr	rez query to limit searcl	n 🚱	You	Create custom database
Program Selection	on				
Algorithm	O PSI-BLA O PHI-BLA O DELTA-	orotein-protein BLAS AST (Position-Specif AST (Pattern Hit Initi BLAST (Domain En AST algorithm ()	ic Iterated BLAST) ated BLAST)		BLAST)

A new BLAST Flavor

- QuickBLASTP is an accelerated version of BLASTP
 - Contains a new pre-processing step
 - Words of length five in the protein-nr (nonredundant) to identify candidate sequences
 - These candidate sequences are aligned and scored with the standard BLASTP algorithm
 - Adv: seconds rather than minutes
 - Limitations: Limited DB and sequence length< 10K

A new BLAST Flavor

- QuickBLASTP is an accelerated version of BLASTP
 - Advantage: seconds rather than minutes
 - Limitations: Limited DB and sequence length <
 10K
 - QuickBLASTP will find around 97% of the database sequences with 70% or more identity to your query and around 98% of the database sequences with 80% or more identity to your query

 $E = kmne^{-\lambda S}$

Advanced Options

- Expected Threshold (E-value)
 - "Number of different alignments with scores equal or greater than some score S that are expected to occur in a DB search by chance"
 - Short queries
 - Score is inversely prop to E-value

Query human insulin
Hit: insulin-like peptide3 from
Drosophila

E value means that to get a score of 31.6 bits or better is expected by chance 1 in 20 times (for a given DB/choice of parameters)

E-values

 $E = kmne^{-\lambda S}$

- Default value is 10
- Expect threshold 10
- What this means is, At this E-value, 10 hits with score or better than the alignment score S are expected by chance.
 - Also assumes that you search using a random query with similar length of your actual query

 >Query
- When you have a small query,
 - Your search parameters were adjusted to search for a short input sequence.

Higher E values (200,000) are set because shorter query cannot get larger scores

Short queries	Automatically adjust parameters for short in	nput sequences
2/21/202	o s.	Ravichandran,

	Search Parameters				
Program blastp					
Word size	2				
Expect value	200000				
Hitlist size	100				
Gapcosts	9,1				
Matrix	PAM30				
Filter string	F				
Genetic Code	1				
Window Size	40				
Threshold	11				

FLVIS

Word size

- Protein (default, 3); DNA (default size 11)
- What is word size? (more on this later)
 - Smaller subsequence of length equal to the word size
- Impact of word size on sequences
 - Protein: 3→2 little effect unless a short query
 - DNA: Will have an impact
 - Lower: (11→7) accurate but slow
 - Higher: Longer sequence search; fast
 - » Used in MegaBlast

Max matches

 "Matches to one region of interest can be obscured by frequent matches to a different region of a protein. This feature offers a solution in which redundant database hits are discard"

Matrix

- BLASTP: PAM30/70/250;BLOSUM45/50/62(default)/80/90
- Switch to different flavors to see how the scoring system vary

- Gap Penalty:
 - ☐ Biology: Mutational events can either cause an insertion or deletion; is an important event
 - ☐ So, to get the alignment right, we have to penalize heavily the insertion and less so for further extension
 - □ G + L* n

Affine: penalty for introducing is much greater than extension

- Affine Gap (bigger constant term + linear term)
- G = 10-15; L = 1-2

- Gap Penalty (affine)
 - \Box G + L * n
 - ☐ High penalty should help reduce gap openings
 - Low penalty will help us find far diverged match

- Compositional Adjustments
 - BLAST matrices use an important quantity target frequencies
 - If the target frequencies of the query are different then the matrices and scoring scheme have to be adjusted as well
 - Malaria parasite Plasmodium falciparum is 80% AT (amino acids rich in turn AT-rich codons)

Low-complexity Regions

Rules for identities

>= 25% for proteins

>= 70% for nucleotides

Range 1: 317 to 1004	GenPept	Graphics
----------------------	---------	----------

Kange	1: 31/	to 1004 Ge	enPept Graphics			▼ Next Ma	atch _	Previous Match
Score		Expect	Method		Identities	Positives		Gaps
944 b	its(244	0.0	Compositional r	natrix adjust.	688/688(100%)	688/688(1	L00%)	0/688(0%)
Query	17				ovsgassasslltaaF PVSGASSASSLLTAAF		76	
Sbjct	317				PVSGASSASSLLTAAF		376	
Query	77				TATSAELLIGSLNSTS TATSAELLIGSLNSTS		136	
Sbjct	377				TATSAELLIGSLNSTS		436	
Query	137				GSRRVSACSDRSLE GSRRVSACSDRSLE		196	
Sbjct	437				KGSRRVSACSDRSLE		496	
Query	197				RNILQGKKELMQLDQE RNILQGKKELMQLDQE		256	
Sbjct	497				RNILQGKKELMQLDQE		556	
Query	257				INLIDDSEMADIKIKS INLIDDSEMADIKIKS		316	
Sbjct	557				INLIDDSEMADIKIKS		616	
Query	317				ldsHGaqddaqdeeda LDSHGAQDDAQDEEDA		376	
Sbjct	617				LDSHGAQDDAQDEEDA		676	
2/	21/2020)	S.	Ravichandr	an, Ph.D			33

▼ Next Match A Previous Match

Figure 4.5 from Book

Invoking comp.
Statistics we can see that E-value is reduced from 0.05 to 0.0001

(a) Default: conditional compositional score matrix adjustment

Insulin-like peptide 3 [Drosophila melanogaster]

Sequence ID: ref[NP 648360.2] Length: 120 Number of Matches: 1

```
Range 1: 32 to 114 GenPept Graphics
Score
             Expect Method
                                                Identities
                                                            Positives
                                                                         Gaps
                     Compositional matrix adjust. 21/88(24%)
31.6 bits(70)
                                                            40/88(45%)
                                                                        12/88(13%
Query
                                        T+R
Sbjct
             KLCGRKLPETLSKLCV---YGFNAMTKRTLDPVNFNOID--GFEDRSLLERLLSDSSVOM
                    + G+ ++CC
                                C++ ++ YC
             LKTRRLRDGVFDECCLKSCTMDEVLRYC
                                             114
```

(b) No adjustment (by default, filter low complexity regions)

Insulin-like peptide 3 [Drosophila melanogaster]

Sequence ID: refINP 648360.2 Length: 120 Number of Matches: 1

Sbjct	33	LCGRKLPETLSKLCVYGFNAMTKRT	LDPV
Query	88	KRGIVEQCCTSICSLYQLENYC	109
1		+ G+ ++CC C++ ++ YC	
out to	200	TORREST DE OFFICE E CONTRE DE LA CONTRE DELICA DE LA CONTRE DE LA CONT	

LCG L E L +C

(c) Composition-based statistics

Insulin-like peptide 3 [Drosophila melanogaster]

Sequence ID: refINP 648360.2| Length: 120 Number of Matches: 1

Range 1: 33 to 114 GenPept Graphics

Score	Expect	Method	Identities		Gaps
30.4 bits(67)	1e-04	Composition-based stats.	21/87(24%)	40/87(45%)	12/87(13%)

Query	30	LCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQ 87	1
		LCG L E L +C + + T+R + + Q++ G L+ L + S+Q	
Sbjct	33	LCGRKLPETLSKLCVYGFNAMTKRTLDPVNFNQIDGFEDRSLLERLLSDSSVQML 87	1

Gaps

NFNQID--GFEDRSLLERLLSDSSVQML

Q++ G

12/87(13%)

Filters

- What are low-complexity or highly biased compositions
 - Dinucleotide repeats CACACACA
 - Alu repeats or TM region or Hydrophobic amino acid stretches, proline rich regions etc.
- A mask (only to query) is applied
 - Done to avoid finding another sequence with repeats
- Proteins: SEG program is used
- DNA: DUST is employed

Masking

- Mask for lookup table only
- BLAST searches consist of two phases, finding hits based upon a lookup table and then extending them. <u>This option masks only for purposes of constructing the lookup table used by BLAST</u> so that no hits are found based upon low-complexity sequence or repeats (if repeat filter is checked). The BLAST extensions are performed without masking and so they can be extended through low-complexity sequence.
- Mask Lower Case
- With this option selected you can cut and paste a FASTA sequence in upper case characters and denote areas you would like filtered with lower case. This allows you to customize what is filtered from the sequence during the comparison to the BLAST databases.

Step 4b: Formatting Options

Query: ref|NP_000509 with Entrez query perutz mf[Author] Others: Default

Database Name nr

Description All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF excluding environmental

samples from WGS projects

Program BLASTP 2.3.1+ ▶ Citation

Search Parameters				
Program	blastp			
Word size	6			
Expect value	10			
Hitlist size	100			
Gapcosts	11,1			
Matrix	BLOSUM62			
Filter string	F			
Genetic Code	1			
Window Size	40			
Threshold	21			
Composition-based stats	2			

Database				
Posted date	May 12, 2016 5:27 PM			
Number of letters	32,001,496,977			
Number of sequences	87,229,180			
Entrez query	perutz mf[Author]			

Karlin-Altschul statistics				
Lambda	0.320339	0.267		
K	0.136843	0.041		
Н	0.422367	0.14		
Alpha	0.7916	1.9		
Alpha_v	4.96466	42.6028		
Sigma		43.6362		

RID <u>KD1Z145G014</u> (Expires on 05-15 10:05 am)

Query ID <u>qi|4504349|ref|NP 000509.1|</u>
Description hemoglobin subunit beta [Homo sapiens]

Molecule type amino acid Query Length 147

Database Name nr

Description All non-redundant GenBank CDS

translations+PDB+SwissProt+PIR+PRF excluding

environmental samples from WGS projects

Program BLASTP 2.3.1+ ▷ Citation

Description	Max score	Total score	Query cover	E value	Ident	Accession
RecName: Full=Hemoglobin subunit beta; AltName: Full=Beta-globin; AltName: Full=Hemoglobin leads to the subunit beta; AltName: Full=Beta-globin; AltName: Full=Hemoglobin leads to the subunit beta; AltName: Full=Beta-globin; AltName: Full=Hemoglobin leads to the subunit beta; AltName: Full=Beta-globin; AltName: Full=Hemoglobin leads to the subunit beta; AltName: Full=Beta-globin; AltName: Full=Hemoglobin leads to the subunit beta; AltName: Full=Beta-globin; AltName: Full=Hemoglobin leads to the subunit beta; AltName: Full=Beta-globin; AltName: Full=Hemoglobin leads to the subunit beta; AltName: Full=Beta-globin; AltName: Full=Hemoglobin leads to the subunit beta; AltName: Full=Beta-globin; AltName: Full=Hemoglobin leads to the subunit beta; AltName: Full=Beta-globin; AltName: Full=Hemoglobin leads to the subunit beta; AltName: Full=Beta-globin; Al	301	301	100%	1e-110	100%	P68871.2
Chain B, Structure Of Haemoglobin In The Deoxy Quaternary State With Ligand Bound At The Alg	298	298	99%	1e-109	100%	100H B
Chain B, High-Resolution X-Ray Study Of Deoxyhemoglobin Rothschild 37beta Trp-> Arg: A Mutat	295	295	99%	3e-108	99%	1HBA B
Chain B, Three Dimensional Fourier Synthesis Of Horse Deoxyhaemoglobin At 2.8 Angstroms Res	247	247	99%	3e-89	82%	2DHB B
hemoglobin subunit gamma-2 [Homo sapiens]	235	235	100%	2e-84	73%	NP 000175.1
hemoglobin subunit beta [Bos taurus]	234	234	97%	5e-84	85%	NP 776342.1
Chain G, Structure Of Human Foetal Deoxyhaemoglobin	234	234	98%	5e-84	74%	1FDH G
hemoglobin subunit beta [Equus caballus]	233	233	100%	1e-83	84%	NP 001157490.
hemoglobin subunit gamma-1 [Homo sapiens]	232	232	100%	2e-83	73%	NP 000550.2

You can select sequences and send them for multiple sequence alignments

2/21/2020

Important Parameters

- E-value cut-off
 - Low (Example,1E-06)
- Word size (WS)
 - Low WS: Higher sensitivity
 - High WS: Higher Specificity
- Match/mismatch Score and Gap Costs
 - Extension scores
- Filters and masking
 - Substitute for RepeatMasker

NM_000518.4 HBB (homosapiens) with nr and other default optons BLASTN search

Reformatting options

Range 1: 1 to 626 GenBa	ınk <u>Graph</u>	nics .	▼ Next	Match 🛕 Previous M	atch
Score	Expect	Identities	Gaps	Strand	
1157 bits(626)	0.0	626/626(100%)	0/626(0%)	Plus/Plus	
CDS:hemoglobin subun Query	1 1 A0	CATTTGCTTCTGACACAACTGTGTTCAC	ΤΑΘΟΔΑΟΟΤΟΔΔΑΟΔΙ	M V H	60
Sbjct CDS:hemoglobin subun	1 AC	CATTTGCTTCTGACACAACTGTGTTCAC	TAGCAACCTCAAACA	GACACCATGGTGCATC M V H	60
CDS:hemoglobin subun Query	4 L 61 TO	T P E E K S A V T GACTCCTGAGGAGAAGTCTGCCGTTACT	A L W G K	V N V D E GTGAACGTGGATGAAG	120
Sbjct CDS:hemoglobin subun	61 TO	GACTCCTGAGGAGAAGTCTGCCGTTACT T P E E K S A V T	GCCCTGTGGGGCAAGG	TGAACGTGGATGAAG V N V D E	120
		Mismatche	es will be		
CD3.1 KEDICIED. HEIROS	-	in pink		1°1 V 11	
CDS:hemoglobin subun Query	4 L 61 TO	T P E E K S A V T GACTCCTGAGGAGAAGTCTGCCGTTAC	A L W G K TGCCCTGTGGGGCAAG	V N V D E GGTGAACGTGGATGAAG	120
Sbjct CDS:PREDICTED: hemog	186 TO	GACTCCTGAGGAGAAGACTGCCGTTAC T P E E K T A V T	CACCCTGTGGGGCAAG T L W G K	GGTGAACGTGGATGAAG V N V D E	245

Standalone BLAST

Will demo after the lecture

BLAST®

Home

Recent Resul

BLAST documentation

Getting Started

- Guide to BLAST home and search pages
- BLAST interface description
- Blast report description

About BLAST

- Frequently Asked Questions
- NCBI Handbook: BLAST
- The Statistics of Sequence Similarity Scores
- NAR 2004 Web server issue

Getting Help

- Email blast-help
- Mailing list
- You Tube BLAST tutorials

Other BLAST information

- Download BLAST Software and Databases
- · Developer information
- · BLAST Searches at a Cloud Provider

NCBI → BLAST → HELP → Download BLAST Software and Databases

BLAST+ executables

BLAST+ is a suite of command-line tools to run BLAST. For details, please see the <u>BLAST+ user manual</u>, th article in BMC Bioinformatics (<u>PubMed link</u>). BLAST+ is the most current version of BLAST and is the only so

Installers and source code are available from ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/.

BLAST ALGORITHM (using BLASTP as an example)

First Phase

Query

>QUERY

MESADFYEAEPRPPMSSHLQSPPHAPSSAAFGFPRGAGPAQPPAPPAAPEPLGGICEHET SIDI**SAYIDPAAFND**EFLADLFQHSRQQEKAKAAVGPTGGGGGGDFDYPGAPAGPGGAVM PGGAHGPPPGYGCAAAGYLDGRLEPLYERVGAPALRPLVIKQEPREEDEAKQLALAGLFP YQPPPPPSHPHPHPPPAHLAAPHLQFQIAHCGQTTMHLQPGHPTPPPTPVPSPHPAPA LGAAGLPGPGSALKGLGAAHPDLRASGGSGAGKAKKSVDKNSNEYRVRRERNNIAVRKSR DKAKQRNVETQQKVLELTSDNDRLRKRVEQLSRELDTLRGIFRQLPESSLVKAMGNCA

Broken down into word pairs

- NT: 16-256; Proteins: 2-3:

Threshold (T=11)

Sliding window approach

 For each word (ex. SAY), the synonyms were formed and high scoring (BLOSUM matrix) words will be chosen.

Scores using Matrix for word pairs F
 are collected

SAYIDPAAFND

SAY Score

AYI Score

YID Score

IDP Score

DPA Score

PAA Score

AAF Score

AFN Score

Score

Word size 3, for 20 aa there can be 203 = 8000 possible words

How does BLAST work?

- -SAY Score: 4+4+7 = 15
- -AYI Score: 4+7+4=15
- YID Score: 7+4+6= 17
- Scoring
 Matrix to
 calculate
 Scores
- Now establish a cut-off (say 15)
 - Then only YID and other words that are above the cutoffs are retained

SAYIDPAAFND

```
SAY
      Score
AYT
      Score
YID
      Score
IDP
      Score
DPA
      Score
PAA
      Score
AAF
      Score
AFN
      Score
FND
      Score
```

BLASTN

- First phase is slightly different than BLASTP
- Algorithm demands exact matches
 - Default word size is 11 (adjustable by user)
- Choosing a lower word length
 - Slower more accurate

Phase 2

- The selected words are now used to search for sequences that contain these words
- Create a hash table index with the locations of the hits for each word
- Perform two more searches
 - Un-Gapped extensions (first)
 - Followed by gapped extensions
 - Hits above certain score are saved

Fig 4.12 from the Pevsner Book III Edition PLEASE DO NOT DISTRIBUTE Copyright figure

BLAST

- Scans the DB for matches to the words that are present above the Threshold Values
- Requires two hits within the target sequence (the new searched sequence)
- BLAST will set aside sequences with matches above Threshold for further analysis

Query 178 AFGWARVALVTAPQDLWVEAGRSLSTALRARGLPVASVTSMEPLDLSGAREALRKVRDGP 237
Sbjct 148 RAR REA

No need for exact match, but have to be in the list

Example:

```
Sequence = gaacgcctgcgcgatcagcataaaaaataa
word length = W = 7 (there are 24 words possible)
```

For 'word' = ctgcgcg, a match in the database is found and then a local alignment done until a gap appears.

So...

query = ctgcgcg 7 ctgcgcgatcag 19

match = ctgcgcg 2598356 ctgcgcgatcag 2598367

Peak will tell us what Length we are going to focus

Based on Andy Baxevanis Book and Seminars

High Scoring Segment

Extension

Three letter scores that are greater than T will be carried over to the next step

We keep adding in both directions, more matches than mismatches, so the score keeps going up

Neighborhood threshold (S) Everything above S will be reported in BLAST results

When the score starts decreasing then we go back and pick a Window (X)

BLAST

Sequence ID: pdb|3MJP|ALength: 141 Number of Matches: 1

Query 178 AFGWARVALVTAPQDLWVEAGRSLSTALRARGLPVASVTSMEPLDLSGAREALRKVRDGP 237 Sbjct 148 RAR REA

Query 178 AFGWARVALVTAPQDLWVEAGRSLSTALRARGLPVASVTSMEPLDLSGAREALRKVRDGP 237
G AR GR RARGLPVA VTSMEP DLSGAREA GP
Sbjct 148 --GAAR------GR----WRARGLPVALVTSMEPSDLSGAREA--SASAGP 184

 \leftarrow

Extension until the score drops

Fig 4.12 from the Pevsner Book III Edition PLEASE DO NOT DISTRIBUTE Copyright figure

Phase 1: Setup: compile a list of words (w=3) above threshold T Query sequence: human beta globin NP_000509.1 (includes ...VTALWGKVNVD...). This sequence is read; low complexity or other filtering is applied; a "lookup" table is built. Words derived from query sequence (HBB): VTA TAL ALW LWG WGK GKV KVN VNV NVD LWG 4+11+6=21 · Generate a list of words matching query IWG 2+11+6=19 (both above and below T). Consider LWG MWG 2+11+6=19 in the guery and the scores (derived from a VWG 1+11+6=18 BLOSUM62 matrix) for various words. examples of FWG 0+11+6=17 words >= AWG 0+11+6=17 · Generate similar lists of words spanning threshold 12 LWS 4+11+0=15 the query (e.g. words for WGW, GWG, WGK...). LWN 4+11+0=15 LWA 4+11+0=15 LYG 4+ 2+6=12 threshold LFG 4+ 1+6=11 examples of FWS 0+11+0=11 words below AWS -1+11+0=10 threshold CWS -1+11+0=10 IWC 2+11-3=10

```
Phase 2: Scanning and extensions
• Select all the words above threshold T (LWG, IWG, MWG, VWG, FWG, AWG, LWS, LWN, LWA, LYG)
. Scan the database for entries ("hits") that match the compiled list
· Create a hash table index with the locations of all the hits for each word
· Perform gap free extensions

    Perform gapped extensions

      LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV HBB
      L+P +K+ V A WGKV + E G EAL R+ + +P T+ +F F
                                                                           G+ +V
      LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-----DLSHGSAOV HBA
                                 extension
        extension
                word pair from
             first phases of search
              "hits" alpha globin,
              triggers extension
```

Phase 3

Traceback

- Identify the locations of INDELS and matches from phase 2
- If applicable, use composition-based statistics (BLASTP, TBLASN)
- Generate final gapped alignment

Summary

BLAST

- Heuristic algorithm (optimized for speed/sensitivity)
- Threshold is increased
 - Speed in increased/fewer hits
 - Distantly related are missed
- Threshold is lowered
 - Speed is lowered/large number of matches
 - Sensitivity is increased

Threshold size
T = 10 (BLASTP)
will compile words
>= 10

Impact of Threshold Score(T)

Fig 4.13 from the Pevsner Book III Edition PLEASE DO NOT DISTRIBUTE Copyright figure

What matrix to pick?

BLOSUM	Suitable For; Based on experience	% similarity
90	Short alignments; highly similar	70-90
80	Best for identifying family members	50-60
62	MOST EFFECTIVE for identifying all potential similarities (default in NCBI)	30-40
30	Longer/weaker local alignments	<30

Is One matrix is enough?

 David Altschul prescribes a "Triple Strategy"

 Pick the default and a higher/lower BLOSUMn

Analyze and pick the appropriate matrix

Statistics of Alignments

Let us begin with a simple diagram that explains global alignment

Global Alignment

- Distribution behavior of global alignments is not known (not Gaussian/normal)
 - Usually approximated using simulations

Local Alignment

- Statistics/distributions are known
 - Altschul many papers
- Start with Ungapped alignments
 - Random
 - Gapped alignments
 - Proteins

Local Alignment

- To access how high a score can occur by chance, we need random sequences and their scores
 - Conditions
 - Expected score for aligning random pair of amino acids has to be NEGATIVE

Expected Score matrix constraints

 For alignment algorithms that seek to capture the local alignments of <u>variable</u> <u>length</u> should have a negative expected score (a necessary condition)

$$\sum_{i,j} p_i p_j s_{i,j} < 0$$

For local alignments of random sequences,
Negative Expected Score

Condition II: At least one of the score has to be positive (s_i,j)

Log-odds Scores

"with the previous two assumptions, the scores of any substitution matrix (with a negative expected value and at least one positive score) can be written in the form" (Karlin & Altschul, PNAS, 872264(1990)

$$s_{i,j} = \frac{\left(\ln \frac{q_{i,j}}{p_i p_j}\right)}{\lambda} = \log \left(\frac{q_{i,j}}{p_i p_j}\right)$$

λ: Scaling Parameter

$$x, a, b$$
 are all positive
 $a \ne 1; b \ne 1$
 $\log_8 x = \frac{\ln x}{\ln 8} = \frac{1}{\ln 8} \ln x$

What is a search space

 "Given a scoring system, how many distinct local alignments with score >= S (S is some number) can one find by chance by comparing two random sequences of length m and n" S. Altschul

> Random Subject or Database (length n residues); concatenating all the DB sequences

Random Query (length m) Search Space, $N = m^*n$

Answer: E(S,m,n), E = expected score will depend on S, m and n

Number of Random High-Scoring Alignments ~ Search Space Size $E(S, m, n) \alpha mn$ Asymptotic result

Double the size then HAS will roughly double.

The # of random alignments with Score >= S should decrease Exponentially with S

Any scoring system, the probability that the optimal local alignment that starts at a particular position has a score ≥ S decreases exponentially with S

$$E(S,m,n) \alpha e^{-\alpha S}$$

Alpha turns out to the same as λ

$$E(S,m,n) \alpha e^{-\alpha S}$$

$$E(S,m,n) \alpha mn$$

$$E = kmne^{-\lambda S}$$

E: "Number of different alignments with scores equal or greater than some score S that are expected to occur in a DB search by chance"

Poisson

• Prob of finding 0 alignments (or none) with score $\geq S$ is $E^{\text{(k events in interval)}} = \frac{e^{-L}L^k}{L^k}$

The average number of events in an interval is designated as L.

- Prob. of finding at least one alignment with score \geq S is $p = 1 e^{-E}$
- This is called "p-value" associated with S.
- When E ≤ 0.1, p ~ E

$E = kmne^{-\lambda S}$

Derivation of Normalized Scores

 To calculate E-value associated with a S, we need to know λ and K.

$$S' = \frac{(\lambda S - \ln K)}{\ln 2}$$

- Refer you to Altschul papers on derivation
- But, these values can be wrapped into a reduced form as shown above, then S' can be easily connected to E
- Refer back, N = Search Space

Number of alignments with ≥S

$$E = (kmn)e^{-\lambda S}$$

$$E = Nke^{-\lambda S}$$

$$E = Ne^{-\ln_e k} e^{-\lambda S}$$

$$E = Ne^{-\left[\frac{(\lambda S - \ln_e k)}{\ln_e 2}\right] \ln_e 2}$$

$$E = N2^{-S'}$$

$$E = \frac{N}{2^{S'}}$$

$$S' = \frac{(\lambda S - \ln K)}{\ln 2}$$

Query compared to a set of random seq of same length as query. The alignment scores will take a extreme value distribution (EVD)

Ph.D

76

Ungapped → Gapped

- Everything discussed up to this apply to gapped alignment (as long gap scores are negative enough; not close to zero)
- Not proved up until now!
- According to Altschul, gapped alignments there is no way to statistical theory (?) to calculate the statistical parameters, K and λ but we can estimate them.

$$S' = \frac{(\lambda S - \ln K)}{\ln 2}$$

Local Alignment with Gaps

Simulation:

10,000 pairs of random protein sequence, each of length 1000 were compared using BLOSUM-62 substitution score, gap score of -11-k for a gap of length k

After several simulations, Altschul has plotted a histogram of how many times, he saw the scores. He fitted them to EVD and estimated Lambda and K

Random Sequence, Ungapped to Real proteins

- The theory still holds except for the following cases
 - Low-complexity filtering
 - Mask the sequence segments by giving a negative score
- Let us start with the following equation
 - $-E = kmNe^{-\lambda S}$
 - E gives the # of HSPs found purely by chance

$$E = kmne^{-\lambda S'}$$

$$S' = \frac{(\lambda S - \ln K)}{\ln 2}$$

- Raw score (S)
 - Sub. Matrix (gap penalty etc)
- Bit Score (S', scaled value)
 - Bit scores can be compared even using different scoring matrices
- E values are derived from Bit Scores (S')
- Prob of chance alignment occurring with the score or better

$$p = 1 - e^{-E}$$

Why BLAST doesn't report P? It is easier to think of the number of HSAs rather than the probability values; High-Scoring Alignment (HAS)

E	P
10	0.99995460
5	0.99326205
2	0.86466472
1	0.63212056
0.1	0.09516258
0.05	0.04877058
0.001	0.00099950
0.0001	0.0001000

Fig 4.15 from Pevsner III edition

Fig 4.15 from Pevnsner III edition

Principles of DB searching using Calcin family as an example

- Lipocalcin family proteins in this example share very limited sequence similarity
 - RBP4, NP_006735.2
 - Odorant-binding protein (OBP)
- BLAST
 - DB: nr; organism: Homo sapiens; others: def
 - Restricting the output only to Human RefSeq proteins (how can we do this?)

Too many hits?

- Refseq
 - Nr database
 - Restrict to only specific organisms
 - Restrict to the domain of interest
 - How to find this?
 - UniProt
 - Adjust
 - Scoring matrix
 - Expect value

Too Small hits?

- How can this happen?
 - Exploring microbial/viral genomes
 - Only few are sequenced
 - Reset the BLAST page (to remove prev limits)
 - Matrices
 - High PAM or lower BLOSUM
 - Include all DBs (HTGS/GSS)
 - Search to include model sequences
 - Finally, use HMM based searches (PSI-BLAST etc)

HIV-1 Pol: Second Example

- Mutiple domain protein
- http://www.ncbi.nlm.nih.gov/gene/155348
- http://www.uniprot.org/uniprot/P04585
- 1435 aa
- What will happen when do a blastp search for this query?

NP_057849.4

"New Gene" == discovery of some DNA sequence in a DB that has not been annotated yet

Find-a-Gene Tips

Things to Report

- Query sequence
- TBLASTN
 - What DB? What Matrix; what non-optional parameters?
 - Hits (follow the font and other details as Dr. Pevsner has suggested)

Things to Report

- Use additional BLASTX/BLASTP to confirm that the protein that you had identified is novel
 - (follow the suggestions of Prof. Pevnser on what is novel; page 159 of the book)
 - Again list DB, matrix; hits (top 10)
 - Name your protein, example "Anguilicola Globin"
 - Because of the organism and family it belongs to

Things to Report

- Carry out Multiple sequence alignment
 - Your novel protein + 5 or 10 (max 30) from the novel protein speculated family
- Create a phylogenetic tree
- Secondary/tertiary structure of your novel protein
- Provide whether the gene is under positive/negative selection (optional)
- Significance of the novel gene

Computer Lab

Try the following exercises:

-4-1, 4-2, 4-3, 4-5 and 4-9

Thanks

ravichandran@hood.edu