## ACTIVITÉ 1 📐

Voici un programme de calcul.

Choisir un nombre Prendre son inverse Multiplier le résultat par 2 Ajouter 10

1. Tester ce programme de calcul avec les nombres 3 et 5.

Le nombre choisi au départ n'est pas toujours le même : il varie. On dit que c'est une variable.

**2.** Si on note *x* le nombre choisi au départ, quelle formule permet de calculer facilement le résultat final du programme?

On note f(x) le résultat de ce programme pour un nombre de départ x. f est le procédé de calcul que l'on appelle une **fonction**.

3. Compléter le tableau ci-dessous.

| Nombre de départ x                     | -1 | 0 | 1 | 2 |
|----------------------------------------|----|---|---|---|
| Résultat du programme de calcul $f(x)$ |    |   |   |   |

**4.** Sur quel ensemble de nombres la formule de la question **2.** est-elle valable?

Voici un relevé météorologique des températures de Caen du 20 septembre 2024.



1. Dans le repère ci-dessous, placer les points dont l'abscisse est l'heure et l'ordonnée correspondante est la température.



Le premier point a été placé à titre d'exemple.

2. Relier les points précédemment placés.

On appelle T la fonction qui a une heure de la journée y associe sa température. Nous venons ainsi de tracer la **courbe représentative** de T.

## ACTIVITÉ 3

Le but de cette activité est d'apprendre à utiliser la représentation graphique de fonctions pour résoudre des équations ou des inéquations simples.



- **b.** En déduire les solutions à l'équation  $0.5x^2 1 = 1$  pour  $x \in [-4, 4]$ .
- **2. a.** Sur quels intervalles la fonction f est-elle positive?
  - **b.** En déduire la solution à l'inéquation  $0,5x^2 \ge 1$  pour  $x \in [-4,4]$ .
- **3.** Pourriez-vous résoudre approximativement l'inéquation  $0,5x^2 1 \le x$  à l'aide de la représentation graphique ci-contre?



## ACTIVITÉ 4

1. Pour chaque ligne du tableau, compléter la dernière case en vérifiant si la fonction donnée est paire, impaire ou ni l'un ni l'autre.

| Numéro | Fonction                      | Parité |
|--------|-------------------------------|--------|
| 1      | $x \mapsto x^3$               |        |
| 2      | $x \mapsto x^2$               |        |
| 3      | $x \mapsto x^2 + x$           |        |
| 4      | $x \mapsto -x$                |        |
| 5      | $x \mapsto -2x^4 + 5$         |        |
| 6      | $x \mapsto x^3 + 1$           |        |
| 7      | $x \mapsto 2x^3$              |        |
| 8      | $x \mapsto x^4 + 5x^2 - 3$    |        |
| 9      | $x \mapsto x^2 + 2x$          |        |
| 10     | $x \mapsto \frac{1}{x+3}$     |        |
| 11     | $x \mapsto x$                 |        |
| 12     | $x \mapsto -x^3 + x$          |        |
| 13     | $x \mapsto -x^6 + 3x^4 + x^2$ |        |
| 14     | $x \mapsto \frac{1}{x}$       |        |
| 15     | $x \mapsto \sqrt{x}$          |        |

2. Au verso de la page, en se référant au tableau, colorier la grille de façon à obtenir un pixel art.



| Parité de la fonction        | Paire | Impaire | Ni l'un ni l'autre |
|------------------------------|-------|---------|--------------------|
| <b>Couleur</b> Entre 1 et 5  | Noir  | Beige   | Magenta Magenta    |
| <b>Couleur</b> Entre 6 et 10 | Noir  | Violet  | ☐ Blanc            |
| <b>Couleur</b> Après 11      | Cyan  | Marron  | Beige              |

Dessin original:pngwing.com.