```
In [35]:
          import pandas as pd
          import yaml
          import matplotlib.pyplot as plt
          from IPython.display import display, HTML
In [36]:
          from modules.data import Data
          from modules.search import Search
          from modules.video import Video
          from modules.analyze import Analyze
In [37]:
          data obj = Data()
          analyze obj = Analyze()
In [38]:
          df video labeled = pd.read csv("unique id map/videos anonymized.csv", dtype={"al
          df comments = pd.read csv("unique id map/comments anonymized.csv", dtype={"vided")
In [39]:
          # Display duration in a readable format
          df video labeled["video duration"] = df video labeled["video duration"].apply(ar
          df video labeled.head()
          # Get engagement metrics
          df_video_labeled["likes_to_dislikes"] = df_video_labeled.apply(lambda row: analy
          df_video_labeled["dislikes_to_likes"] = df_video_labeled.apply(lambda row: analy
          df video labeled["engagement score"] = df video labeled.apply(lambda row: analyz
          # Get unique commenters for every video
          df comments unique commenters = df comments.groupby("video number")[["comment nu
          df_video_labeled = pd.merge(left=df_video_labeled, right=df_comments_unique_comm
          # Factor in for videos without any comments
          df video labeled["num unique commenters"].fillna(0, inplace=True)
In [40]:
          dict variables = data obj.load yaml("variables.yaml")
          list category = dict variables["category"]
          list theme = dict variables["theme"]
In [41]:
          # Get dataframes per category and label
          list df video category, list df video theme = analyze obj.splice by labels(df vi
In [42]:
          display(list df video category[0].head())
             video_title video_description view_count like_count dislike_count favorite_count comment_cou
              Redwood
                  City
                       The Redwood City
                School
          31
                          School District
                                         1105372
                                                    24119
                                                                 1104
                                                                                 0
                                                                                            41:
              District To
                         Board of Trus...
                 Install
               Vape D...
```

	video_title	video_description	view_count	like_count	dislike_count	favorite_count	comment_cou
40	Vaping / E- Cigarette Associated Lung Injury: C	An important update on E- Cigarette / Vaping pr	17800	459	10	0	1(
41	Vaping / E- Cigarette Lung Failure, Illness, Di	Please see our most recent update to vaping as	147156	1335	422	0	8:
43	The dangers of vaping CBD oil	Dr. Cass Ingram, author of "The Hemp Oil Mirac	39012	285	421	0	1.
44	Vaping vs. Smoking	What are the effects of smoking in the lungs?	471	5	3	0	
4							>

Stats on views

Descriptive statistics on view count per label

```
In [43]:
```

```
df_view_count_category_describe = analyze_obj.describe_df(list_df=list_df_video_display(df_view_count_category_describe)
df_view_count_theme_describe = analyze_obj.describe_df(list_df=list_df_video_thedisplay(df_view_count_theme_describe)

fig, axes = plt.subplots(nrows=2, ncols=1)
fig.suptitle("Number of views per label", fontsize=20)
df_view_count_category_describe.plot.barh(x="category", y="count", ax=axes[0])
```

df_view_count_theme_describe.plot.barh(x="theme", y="count", ax=axes[1])

	category	count	mean	std	median
0	Protective	132	8.415775e+05	3.478989e+06	46437.5
1	Risky	276	1.492521e+06	4.123480e+06	148152.5
2	Neutral	43	5.698636e+05	1.644923e+06	87154.0
3	Potential misinformed claims	5	1.631372e+05	9.440142e+04	203830.0

	theme	count	mean	std	median
0	Vaping tricks	102	2.972450e+06	6.252307e+06	652430.5
1	Marketing	135	3.542647e+05	7.795443e+05	91488.0
2	Harmful health consequences	150	7.757108e+05	3.277054e+06	47379.0
3	Promotion/Celebration	27	1.965180e+06	2.740716e+06	612535.0
4	Comparative health effects with smoking	91	1.045678e+06	4.185862e+06	33146.0
5	News report	47	6.001753e+05	1.638318e+06	56047.0

	theme	count	mean	std	median
6	N.A.	15	3.093649e+05	7.285282e+05	51524.0

Out[43]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4572549f10>

Number of views per label


```
In [44]:
    list_view_count_category = [list_df_video_category[index]["view_count"] for index
    df_view_count_category_boxplot = pd.concat(list_view_count_category, axis=1, key

    list_view_count_theme = [list_df_video_theme[index]["view_count"] for index, __i
    df_view_count_theme_boxplot = pd.concat(list_view_count_theme, axis=1, keys=list)

    fig, axes = plt.subplots(nrows=2, ncols=1)
    fig.suptitle("Boxplot of views per label", fontsize=20)
    df_view_count_category_boxplot.boxplot(column=list_category, ax=axes[0], vert=Fate)

df_view_count_theme_boxplot.boxplot(column=list_theme, ax=axes[1], vert=Fatse)
```

Out[44]: <matplotlib.axes. subplots.AxesSubplot at 0x7f4573ba7760>

Boxplot of views per label

Stats on duration

Descriptive statistics on video duration per label

In [45]:

df_video_duration_category_describe = analyze_obj.describe_df(list_df=list_df_vi
display(df_video_duration_category_describe)
df_video_duration_theme_describe = analyze_obj.describe_df(list_df=list_df_video
display(df_video_duration_theme_describe)

	category	mean	std	median
0	Protective	568.469697	818.485433	283.5
1	Risky	387.420290	256.083333	325.0
2	Neutral	423.232558	407.279057	303.0
3	Potential misinformed claims	584.400000	344.558123	644.0

	theme	mean	std	median
0	Vaping tricks	307.990196	178.662384	242.0
1	Marketing	452.829630	278.239603	401.0
2	Harmful health consequences	552.100000	775.215828	290.5
3	Promotion/Celebration	375.962963	282.919325	294.0
4	Comparative health effects with smoking	481.582418	649.459691	260.0
5	News report	341.553191	361.091028	241.0
6	N.A.	465.600000	459.109511	396.0

```
In [46]:
```

```
list_video_duration_category = [list_df_video_category[index]["video_duration"]
df_video_duration_category = pd.concat(list_video_duration_category, axis=1, key
list_video_duration_theme = [list_df_video_theme[index]["video_duration"] for ir
df_video_duration_theme = pd.concat(list_video_duration_theme, axis=1, keys=list
fig, axes = plt.subplots(nrows=2, ncols=1)
df_video_duration_category.boxplot(column=list_category, ax=axes[0], vert=False)
df_video_duration_theme.boxplot(column=list_theme, ax=axes[1], vert=False)
```

Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4574d939a0>

Stats on engagement

There are three metrics on display here:

- 1. Likes to dislikes ratio: likes/dislikes * 1000
- 2. Dislikes to likes ratio: dislikes/likes * 1000
- 3. Engagement score: (likes + dislikes + comment count)/view count * 1000

```
In [47]:
          list df video category likes dislikes = [
              list df video category[index][
                  (list df video category[index]["comment count"] > 0) &
                  (list df video category[index]["like count"] > 0)
              for index in range(len(list category))
          list_df_video_theme_likes_dislikes = [
              list df video theme[index][
                  (list df video theme[index]["comment count"] > 0) &
                  (list_df_video_theme[index]["like_count"] > 0)
              for index in range(len(list theme))
          1
          # Likes to dislikes
          print("Likes to dislikes")
          list likes to dislikes category = [list df video category likes dislikes[index]|
          df likes to dislikes category = pd.concat(list likes to dislikes category, axis
          list_likes_to_dislikes_theme = [list_df_video_theme_likes_dislikes[index]["likes
          df_likes_to_dislikes_theme = pd.concat(list_likes_to_dislikes_theme, axis=1, key
          fig, axes = plt.subplots(nrows=2, ncols=1)
          fig.suptitle("Boxplot of Likes to dislikes ratio (multipled by 1000) per label",
          df likes to dislikes category.boxplot(column=list category, ax=axes[0], vert=Fal
          df likes to dislikes theme.boxplot(column=list theme, ax=axes[1], vert=False)
          # Dislikes to likes
          print("Dislikes to likes")
```

```
list dislikes to likes category = [list df video category likes dislikes[index]|
df dislikes to likes category = pd.concat(list dislikes to likes category, axis=
list dislikes to likes theme = [list df video theme likes dislikes[index]["disli
df dislikes to likes theme = pd.concat(list dislikes to likes theme, axis=1, key
fig, axes = plt.subplots(nrows=2, ncols=1)
fig.suptitle("Boxplot of Dislikes to likes ratio (multipled by 1000) per label",
df dislikes to likes category.boxplot(column=list category, ax=axes[0], vert=Fal
df dislikes to likes theme.boxplot(column=list theme, ax=axes[1], vert=False)
# Engagement score
print("Engagement score")
list engagement score category = [list df video category likes dislikes[index]['
df engagement score category = pd.concat(list engagement score category, axis=1)
list engagement score theme = [list df video theme likes dislikes[index]["engage"
df engagement score theme = pd.concat(list engagement score theme, axis=1, keys=
fig, axes = plt.subplots(nrows=2, ncols=1)
fig.suptitle("Boxplot of Engagement score (multipled by 1000) per label", fontsi
df engagement score category.boxplot(column=list category, ax=axes[0], vert=Fals
df engagement score theme.boxplot(column=list theme, ax=axes[1], vert=False)
```

Likes to dislikes Dislikes to likes Engagement score

Out[47]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4570f23880>

Boxplot of Likes to dislikes ratio (multipled by 1000) per label

Boxplot of Dislikes to likes ratio (multipled by 1000) per label

Boxplot of Engagement score (multipled by 1000) per label

Stats on comments

Descriptive statistics on comments per label

```
In [48]:
          list_df_video_category_comments = [
              list df video category[index][
                  list df video category[index]["comment count"] > 0
              for index in range(len(list category))
          list df video theme comments = [
              list df video theme[index][
                  list df video theme[index]["comment count"] > 0
              for index in range(len(list theme))
          1
          print("Stats on comment count")
          df comment count category describe = analyze obj.describe df(list df=list df vic
          display(df comment count category describe)
          df_comment_count_theme_describe = analyze_obj.describe_df(list_df=list df video
          display(df comment count theme describe)
          fig, axes = plt.subplots(nrows=2, ncols=1)
          fig.suptitle("Average number of comments per label", fontsize=20)
```

```
df_comment_count_category_describe.plot.barh(x="category", y="mean", ax=axes[0])
df_comment_count_theme_describe.plot.barh(x="theme", y="mean", ax=axes[1])

list_comment_count_category = [list_df_video_category_comments[index]["comment_cdf_comment_count_category_boxplot = pd.concat(list_comment_count_category, axis=
list_comment_count_theme = [list_df_video_theme_comments[index]["comment_count"]
df_comment_count_theme_boxplot = pd.concat(list_comment_count_theme, axis=1, key)

fig, axes = plt.subplots(nrows=2, ncols=1)
fig.suptitle("Boxplot of comments per label", fontsize=20)
df_comment_count_category_boxplot.boxplot(column=list_category, ax=axes[0], vertdf_comment_count_theme_boxplot.boxplot(column=list_theme, ax=axes[1], vert=False
```

Stats on comment_count

	category	count	mean	std	median
0	Protective	102	2115.970588	5875.416703	154.0
1	Risky	262	1072.805344	2841.606047	150.5
2	Neutral	38	1260.105263	2659.967718	206.5
3	Potential misinformed claims	5	643.000000	676.753279	198.0

	theme	count	mean	std	median
0	Vaping tricks	100	1364.920000	2868.253700	304.5
1	Marketing	125	286.656000	816.601238	96.0
2	Harmful health consequences	117	1887.094017	5511.675762	162.0
3	Promotion/Celebration	27	3405.629630	5657.203387	694.0
4	Comparative health effects with smoking	79	1871.544304	5853.748862	138.0
5	News report	38	1559.763158	3101.954732	145.0
6	N.A.	13	613.076923	1248.652504	120.0

Out[48]: <matplotlib.axes. subplots.AxesSubplot at 0x7f4574f92be0>

Average number of comments per label

Boxplot of comments per label

In [49]:

```
print("Stats on unique commenters")
df num unique commenters category describe = analyze obj.describe df(list df=lis
display(df num unique commenters category describe)
df num unique commenters theme describe = analyze obj.describe df(list df=list d
display(df num unique commenters theme describe)
fig, axes = plt.subplots(nrows=2, ncols=1)
fig.suptitle("Average number of unique commenters per label", fontsize=20)
df num unique commenters category describe.plot.barh(x="category", y="mean", ax=
df num unique commenters theme describe.plot.barh(x="theme", y="mean", ax=axes[]
list_num_unique_commenters_category = [list_df_video_category_comments[index]["r
df num unique commenters category boxplot = pd.concat(list num unique commenters
list_num_unique_commenters_theme = [list_df_video_theme_comments[index]["num_uni
df num unique commenters theme boxplot = pd.concat(list num unique commenters theme)
fig, axes = plt.subplots(nrows=2, ncols=1)
fig.suptitle("Boxplot of unique commenters per label", fontsize=20)
df num unique commenters category boxplot.boxplot(column=list category, ax=axes)
df num unique commenters theme boxplot.boxplot(column=list theme, ax=axes[1], v€
```

Stats on unique commenters

	category	count		mean	std	median	
0	Protective	102	83.33	33333	53.711981	101.5	
1	Risky	262	87.79	97710	55.178786	102.5	
2	Neutral	38	88.36	68421	52.083831	109.0	
3	Potential misinformed claims	5	128.60	00000	22.478879	115.0	
		then	ne co	unt	mean	std	median
0	Vä	aping tric	ks í	100	79.460000	49.823207	102.0
1		Marketi	ng í	125	89.400000	57.286631	98.0
2	Harmful health con	sequenc	es :	117	84.461538	53.243348	103.0

	theme	count	mean	std	median
3	Promotion/Celebration	27	108.592593	59.609150	106.0
4	Comparative health effects with smoking	79	79.025316	53.275764	105.0
5	News report	38	83.789474	51.929348	102.5
6	N.A.	13	75.307692	56.426035	106.0

Out[49]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4573fd5850>

Average number of unique commenters per label

Boxplot of unique commenters per label

Stats on videos

Descriptive statistics on videos What could be added:

Time taken for a comment to be posted after a video is uploaded.