SÉRIES TEMPORELLES LINÉAIRES Examen 2017-2018

Durée : 2 heures. Sans document.

Les exercices sont indépendants. Il est demandé de justifier les réponses de façon concise.

Exercice Soit $(X_t)_{t\in\mathbb{N}}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées.

- 1. Cette suite $(X_t)_{t\in\mathbb{N}}$ est-elle toujours strictement stationnaire? Est-elle ergodique? Est-elle toujours stationnaire au second ordre? Est-elle toujours un bruit blanc?
- 2. On suppose que $EX_t = m$ et $VarX_t = \sigma^2$ existent, avec $\sigma^2 \neq 0$, et on pose $Y_t = X_0 X_t$ pour $t \geq 1$.
 - (a) Calculer EY_t , $VarY_t$ et $Cov(Y_t, Y_s)$ pour $t, s \ge 1$. La suite $(Y_t)_{t \ge 1}$ est-elle stationnaire?
 - (b) Quelle est la limite presque sûre de $\frac{1}{n} \sum_{t=1}^{n} Y_t$ quand $n \to \infty$? La suite $(Y_t)_{t \ge 1}$ est-elle ergodique?

Exercice 2 La figure 1 représente les autocorrélations et autocorrélations partielles empiriques d'une série temporelle $X_1, \ldots X_n$ de longueur n = 300.

- 1. Que représentent les lignes en pointillés dans la figure? Quel modèle proposez-vous pour la série temporelle (X_t) ?
- 2 Calculez les autocorrélations théoriques du modèle

$$X_t = aX_{t-q} + \epsilon_t$$

où (ϵ_t) est un bruit blanc, |a| < 1 et $q \ge 1$. Donner l'estimateur des moindres carrés (MCO) du paramètre a.

Autocorrelations empiriques

Autocorrelations partielles

FIGURE 1 – Corrélogramme et corrélogramme partiel.

Exercice 3 Soit $(\epsilon_{1t}, \epsilon_{2t}, \epsilon_{3t})'$ un bruit blanc, et $X_t = (X_{1t}, X_{2t}, X_{3t})'$ satisfaisant

$$\begin{cases} X_{1t} = aX_{2t} + \epsilon_{1t} \\ X_{2t} = bX_{3t} + \epsilon_{2t} \\ X_{3t} = X_{3, t-1} + \epsilon_{3t} \end{cases}$$

- 1. Pour quelles valeurs de a et b le processus X_t est-il cointégré ? Quel est son rang de cointégration ?
- 2. Ecrire ce système sous forme VAR, puis à correction d'erreur VECM.

Exercice 4 Soit le VAR(1) de dimension 3, $X_t = (X_{1t}, X_{2t}, X_{3t})'$, de la forme

$$X_{t} = \begin{pmatrix} a & 0 & 0 \\ b & c & 0 \\ 0 & 0 & d \end{pmatrix} X_{t-1} + \epsilon_{t}$$

avec (ϵ_t) un bruit blanc de variance Σ . Pour quelles valeurs de a, b, c, d et Σ a-t-on à la fois

- 1. (X_t) est stationnaire non anticipatif;
- 2. $(X_{2t}, X_{3t})'$ ne cause pas (X_{1t}) au sens de Granger;
- 3. $(X_{1t}, X_{3t})'$ cause (X_{2t}) au sens de Granger;
- 4. il n'y a aucune causalité instantanée entre les composantes.