

Simulazione di Sistemi Fog N-Tier con Posizionamento Dinamico dei Servizi

Simulation of N-Tier Fog Systems with Dynamic Service Placement

Relatore

Chiar.mo Prof. Michele Amoretti

Correlatore

Dott. Ing. Gabriele Penzotti

Tesi di Laurea di Filippo Scaramuzza

Università degli Studi di Parma

Cloud Computing nell'Era dei Big Data Le Problematiche

«Il Cloud Computing è un modello architetturale che promuove l'accesso globale alle risorse informatiche condivise, tipicamente on-demand.»

- Incremento dei dispositivi connessi in ambito IoT (Internet of Things);
- Incremento dei dati generati nell'edge della rete;
- Tempi di elaborazione dei Big Data e risposta troppo elevati per applicazioni real-time;

Università degli Studi di Parma

Fog Computing

«Il Fog Computing è un'architettura a livello di sistema che distribuisce le funzioni di elaborazione, archiviazione, controllo e rete più vicine agli utenti lungo un Cloud-To-Thing Continuum»

- Il Fog Computing non è una sostituzione, bensì un'estensione del Cloud Computing
- Innumerevoli applicazioni: Smart
 Vehicles, Traffic Control, Smart Cities,
 Smart Buildings
- Altri paradigmi: Mobile Cloud
 Computing, Cloudlet Computing, Multi Access Edge Computing, Mist
 Computing, ...

Descrizione dello Scenario Simulato

- 3 Macro-Entità:
 - Livello IoT
 - Livello Fog
 - Livello Cloud
- Architettura «verticale»
- Ogni livello Fog ha diverse capacità di elaborazione:

Università degli Studi di Parma

- Un nodo a livelli bassi offre pochi servizi ma produce molti dati
- Un nodo a livelli alti non genera dati propri, ma offre una rielaborazione dei dati ricevuti e fornisce molti servizi alla rete.

Sistema Realizzato per Simulazioni ed Analisi

Implementazione del Simulatore Algoritmo di Service Placement

«Algoritmi per il posizionamento dei servizi, improntati a massimizzare il QoS, il bilanciamento del carico o a minimizzare consumo di energia, latenza e costi.

- In questo lavoro di Tesi:
 - Preservare la privacy
 - Applicazioni disponibili il prima possibile
- Utilizzo di un approccio greedy:
 - 1. Ordinamento delle applicazioni secondo il livello di privacy;
 - 2. Posizionamento dei servizi cominciando dalle applicazioni nelle prime posizioni della lista ordinata;
- Se le risorse sono insufficienti, i servizi sono allocati nel Cloud.

$$\operatorname{privacy}(APP_x) \leq \operatorname{privacy}(APP_y)$$
se e soltanto se
$$\min_{S_u \in APP_x} \operatorname{privacy}(S_u) \leq \min_{S_v \in APP_y} \operatorname{privacy}(S_v)$$

Variazione della Distribuzione della Privacy

Conclusioni

- Software flessibile per diverse tipologie di analisi, con algoritmi e topologie differenti.
- Implementazione di *micro-servizi*
- Simulazioni e ricerca hanno dimostrato che il Fog Computing è un paradigma promettente per la gestione dei Big Data.

Grazie per l'attenzione!