Tarragona, March 20, 2019

Link weights recovery in heterogeneous information networks

Hông-Lan Botterman¹, Robin Lamarche-Perrin²

¹Sorbonne Université (LIP6)

²Institut des Systèmes Complexes Paris Île de France

Link weights recovery: an illustrative example

Expressing the UH link weights using other links/link weights

For some users, recovering their UH link weights, knowing some other links/link weights.

heterogeneous information network

$$H := (V, E, w, \mu_s, \mu_t, \mathcal{V}, \mathcal{E}, \phi, \psi)$$
 path

network schema

$$T_H := (\mathcal{V}, \mathcal{E}, \nu_s, \nu_t)$$

metapath: $\blacksquare \rightarrow \bullet \rightarrow \blacktriangleright$

path-constrained random walk

$$\begin{split} \mathcal{V} &= \{V_1, \cdots, V_m\} \text{ and } \mathcal{E} = \{E_1, \cdots, E_r\} \\ \mathcal{P} &= V_1 \xrightarrow{E_{j_1}} V_{i_2} \dots V_{i_{n-1}} \xrightarrow{E_{j_{n-1}}} V_n, \ i_2, \dots, i_{n-1} \in \{1, \dots, m\}, \\ &\qquad \qquad j_1, \dots, j_{n-1} \in \{1, \dots, r\}. \end{split}$$

$$\mathbb{P}((v_n|v_1) \mid \mathcal{P}) = \sum_{v_{n-1} \in V_{i_{n-1}}} \frac{w_{E_{j_{n-1}}}(v_{n-1}, v_n) f_{v_n}^{\alpha}}{\sum_k w_{E_{j_{n-1}}}(v_{n-1}, v_k) f_{v_k}^{\alpha}} \mathbb{P}\left((v_{n-1}|v_1) \mid \mathcal{P}^{1, i_{n-1}}\right)$$

C. Shi, Y. Li, J. Zhang, Y. Sun, and P. S. Yu. 2017. A Survey of Heterogeneous Information Network Analysis. IEEE Trans. on Knowl. and Data

Linear combination of PCRW

Dependent variable: result w.r.t. a target link type - PCRW(E^*) Independent variables: results of random walks w.r.t. particular link types - PCRW(\mathcal{P}), $\mathcal{P} \in \mathcal{E}_{\mathcal{P}}$

Selection by a forward linear regression

1. Least squares problem:

Let
$$S = \sum r_i^2$$
: $\frac{\partial S}{\partial \beta_j} = 2 \sum r_i \frac{\partial r_i}{\partial \beta_j} = 0$ $\longrightarrow \hat{\beta} = (X^T X)^{-1} X^T y$

2. Forward linear regression:

- starting with no variables in the model
- testing the addition of each variable using a chosen model fit criterion: p-value and t-test: $t^* = (\bar{x} - \mu_0)/(s/\sqrt{n})$
- adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit:
- coef. of determination $R^2 = 1 \sum_{i=1}^{n} (y_i \hat{y}_i)^2 / \sum_{i=1}^{n} (y_i \bar{y}_i)^2$ repeating this process until there is no further improvement

Twitter data related to FIFA World Cup 2014

From June 12 to July 13, 2014 32 teams - 64 matches played

HIN with $V = \{\text{users, hashtags}\}\$ and $\mathcal{E} = \{\text{retweet, reply, mention, post}\}.$

Describing UH from other link types (locally)

```
10<sup>0</sup>
\mathcal{E}_{\mathcal{P}} = \{ \text{ Metapaths of length } < 4 \}
                                                               10^{-2}
UH = 0.1974 MT-UH
                                         (iter 1)
                                                           Estimated
                                                               10^{-4}
         + 0.5556 RP-UH
                                         (iter 2)
         + 0.0650 RT-RP-UH
                                         (iter 3)
                                                               10^{-6}
         + 0.1591 RP-MT-UH
                                         (iter 4)
         + 0.0074 MT-RT-UH (iter 5)
                                                                                                                      20
                                                               10^{-8}
                                                                                                                      10
with r^2 = 0.7129
                                                              10^{-10}
                                                                  10-5
                                                                           10^{-4}
                                                                                    10-3
                                                                                            10-2
                                                                                                     10-1
                                                                                                               100
```

Observed

Recovering UH from other link types and other users

Training set 80% - Test set: 20% of users Overfitting

Summary

Main idea

Adequate linear combination of path-constrained random walks results to describe and, to some extent, retrieve the strength of the links between different entities.

Several improvements

Temporal aspects
Searching for candidate metapaths

Tarragona, March 20, 2019

Link weights recovery in heterogeneous information networks

Hông-Lan Botterman¹, Robin Lamarche-Perrin²

¹Sorbonne Université (LIP6)

²Institut des Systèmes Complexes Paris Île de France