Arindam Chaudhuri · Soumya K. Ghosh

基于软 计算的深度学 习技术的破 产预测

基于软计算的深度学习技术的破产预测

Arindam Chaudhuri • Soumya K. Ghosh

基于软计算的深度学习技术的破产预测

Arindam Chaudhuri 三星研发院德里 北方邦,印度 Soumya K. Ghosh计算机科学与工程系

印度理工学院卡拉格普尔 卡拉格普尔,西孟加拉邦,印度

ISBN 978-981-10-6682-5 ISBN 978-981-10-6683-2 (电子书) https://doi.org/10.1007/978-981-10-6683-2

国会图书馆控制号: 2017959591

© Springer Nature Singapore Pte Ltd. 2017

本作品受版权保护。 出版商保留全部或部分材料的翻译、复制、插图重用、朗读、广播、微缩 胶片复制或以任何其他实体方式复制、传输或信息存储和检索、电子适应、计算机软件或类似 或不同的方法的权利。

本出版物中使用的一般描述性名称、注册名称、商标、服务标志等,并不意味着即使在没有明确声明的情况下,这些名称也不受相关保护法律和法规的限制,因此可以自由使用。出版商、作者和编辑可以安全地假设本书中的建议和信息在出版日期时被认为是真实和准确的。 出版商、作者或编辑对本文中包含的材料或可能存在的任何错误或遗漏不提供任何明示或暗示的保证。 出版商在已发表的地图和机构隶属方面保持中立。

印刷在无酸纸上

这是Springer的印记,由Springer Nature出版 注册公司是Springer Nature Singapore Pte Ltd. 注册公司地址是:152 Beach Road, #21-01/04 Gateway East, Singapore 189721, 新加坡

前言

近年来,破产预测在工业和金融机构中得到了积极研究。这个问题已经通过统计和机器智能预测技术进行了调查。在这里,提出了复杂的分层深度架构(HDA)来预测破产。HDA通过结构化分层粗糙贝叶斯(HRB)模型形成,其中包括模糊粗糙张量深度堆叠网络(FRTDSN)。FRTDSN通过TDSN和模糊粗糙集进行形式化。HRB通过将概率粗糙集结合到结构化分层贝叶斯模型中形成。然后将FRTDSN与HRB集成在一起形成复合FRTDSN-HRB模型。HRB提高了FRTDSN-HRB模型的预测准确性。实验数据集来自韩国建筑公司、美国和欧洲非金融公司以及UCI机器学习库的破产数据库。研究围绕着对于破产预测技术的截断点选择、抽样程序和商业周期准确性的影响。

错误分类经常导致错误的预测,从而给投资者和经济带来巨大的成本。 截断点的选择和抽样过程会影响模型的排名。 结果表明,从训练样本中得出的经验性截断点对所有技术来说都能产生最小的错误分类成本。 与其他统计和软计算模型相比,FRTDSN-HRB表现出更好的性能。 实验结果以几个标准统计参数的形式给出,这些参数围绕不同的商业周期和中期周期来考虑数据集

目录

1	引言
2	这项研究的需求. : 2.1 动机
3	文献综述
4	破产预测
5	风险分类的需求19
6	実验框架: 使用软件进行破产预测 2 4.1 深度堆叠网络. 2 6.2 模糊粗糙张量深度堆叠网络. 2 6.2.1 学习FRTDSN权重 - 顺序和并行实施. 2 6.3 层次粗糙贝叶斯模型: 数学框架. 2 6.3.1 决策论粗糙集. 2 6.3.2 基于粗糙贝叶斯模型的分类. 3 6.3.3 粗糙贝叶斯模型用于估计概率. 3 6.3.4 分层粗糙贝叶斯模型 3 6.4 复合FRTDSN-HRB模型. 3
7	使用的数据集
8	实验结果
	8.2 截断点、类型I和类型II错误: 美国和 欧洲非金融公司

	8.3	截断点、类型I和类型II错误: UCI机器	
		学习库破产数据库	49
	8.4	最佳截断点:韩国建筑公司	51
	8.5	最佳截断点:美国和欧洲非金融公司	
		公司	52
	8.6	最佳截断点: UCI机器学习库	
		破产数据库	56
	8.7	随机选择的样本:韩国建筑公司	56
	8.8	随机选择的样本:美国和欧洲	
		非金融公司	56
	8.9	随机选择的样本:UCI机器学习	
	_		59
	8.10ラ	完整和子业务周期的样本:韩国建筑	
	<u>_</u>	公司	59
	8.11テ	完整和子业务周期的样本:美国和	
	0.40		63
	8.12ラ	記整和子业务周期的样本:UCI机器	
		学习库破产数据库	66
9	结论.		97
参	考文献.		99

图表清单

图6.1 图6.2 图6.3	用于破产预测的FRTDSN-HRB	23 25
	成为大矩阵的	27
图8.1	破产公司 [,] 概率,贝叶斯模型(韩国)	
	公司)	62
图8.2	正常公司,概率,贝叶斯模型(韩国)	
	公司)	62
图8.3	破产公司 , 概率,危险模型(韩国)	
	公司)	63
图8.4	正常公司概率,危险模型(韩国公司)	63
图8.5	破产公司 [,] 概率,混合逻辑模型(韩国)	
	公司)	64
图8.6	正常公司 '概率,混合逻辑模型(韩国)	
	公司)	64
图8.7	破产公司 [,] 概率,粗糙贝叶斯模型(韩国)	
	公司)	65
图8.8	正常公司概率,粗糙贝叶斯模型(韩国)	
	公司)	65
图8.9		66
	正常公司	66
	破产公司 [,] 概率,MFSVM(韩国公司)	67
	正常公司 , 概率,MFSVM(韩国公司)	67
图8.13	破产公司概率,FRTDSN-HRB(韩国)	
	公司)	68
图8.14	正常公司概率 ,概率,FRTDSN-HRB(韩国)	
	公司)	68
图8.15	破产公司概率 [,] 概率,贝叶斯模型(美国公司) 正常公司概率 [,] 概率,贝叶斯模型(美国公司)	73
		73
图8.17	破产公司概率,风险模型(美国公司).	74
		xi

xii 图表清单

图8.18	3 正常	公司概率	[,] 概率,风险模型(美国公司).	74
图8.19	破产	公司概率,	混合逻辑模型	
		(美国公司)	75
图8.20) 正常	公司概率,	混合逻辑模型(美国公司)	75
图8.2	1 破产	公司概率	[,] 概率,粗糙贝叶斯模型	
		(美国公司])	76
图8.22	2 正常	公司概率	[,] 概率,粗糙贝叶斯模型	
		(美国公司		76
图8.2	3 破产	公司概率	, 概率,FSVM(美国公司)	77
		公司概率	[,] 概率,FSVM(美国公司)	77
		公司概率	· 概率,MFSVM(美国公司)	78
图8.20			· 概率,MFSVM(美国公司)	78
图8.2			·概率,FRTDSN-HRB(美国公司)	79
图8.28			· 概率,FRTDSN-HRB(美国公司)	79
图8.29			,概率,贝叶斯模型(欧洲	1)
120.2	PIXI	公司)	15年, 只可知识关土(EX///II	80
图8.30	、正常		·····································	00
图0.3			枫平,贝叶别侯至(M/M	90
医 O		公司) · 公司	, 柳龙 在7人共期 (55),W	80
图8.3			[,] 概率,危险模型(欧洲	0.1
园 0.00		公司)	,柳龙 在7人拱型 (552)	81
图8.32	2 止吊	公司	'概率,危险模型(欧洲	0.4
—		公司)		81
图8.3	3 城产	·	,概率,混合逻辑模型(欧洲	
	. — 14	公司)		82
图8.34	4 止浑	公司	[,] 概率,混合逻辑模型(欧洲	
		公司)		82
图8.3	5破产	· ·	[,] 概率,粗糙贝叶斯模型(欧洲	
		公司)		83
图8.30	5破产	公司	[,] 概率,粗糙贝叶斯模型(欧洲	
				83
图8.3			[,] 概率,FSVM(欧洲公司).	84
图8.3	3 正常	公司概率,	FSVM(欧洲公司)	84
图8.39	砂破产	·公司概率,	MFSVM(欧洲公司)	85
图8.40) 正常	公司概率,	MFSVM(欧洲公司)	85
图8.4	1 破产	公司概率,	FRTDSN-HRB(欧洲	
		<u> </u>		86
图8.42	2 正常	公司概率,	FRTDSN-HRB(欧洲	
	-	公司)		86
			贝叶斯模型(UCI ML	
Щ0		数据库).	X-TWIXE (COLINE	89
图8 4	4 正堂		贝叶斯模型(UCI ML	5)
, U. F		数据库).	八叶州快至(GCIME	89
图8 4	、 破产		风险模型(UCI ML数据库)	90
			风险模型(UCI ML数据库)	90
14.01 <u>4</u> 1	<i>-</i> ш-п-	ı ← ⊢ı ıı∧ı + · ,	/ WFユT大土 (UCI MILXA)/ロ/ナ/	70

图表清单 xiii

图8.47 破产公司概率,混合逻辑模型(UCI ML	
数据库)	91
图8.48 正常公司概率,混合逻辑模型(UCI ML	
数据库)	91
图8.49 破产公司概率,粗糙贝叶斯模型(UCI ML	
数据库)	92
图8.50 正常公司概率,粗糙贝叶斯模型(UCI ML	
数据库)	92
图8.51 破产公司概率,FSVM(UCI ML数据库)	93
图8.52 破产公司概率,FSVM(UCI ML数据库)	93
图8.53 破产公司概率,MFSVM(UCI ML数据库)	94
图8.54 正常公司概率,MFSVM(UCI ML数据库)	94
图8.55 破产公司概率,FRTDSN-HRB(UCI ML	
数据库)	95
图8.56 正常公司概率,FRTDSN-HRB(UCI ML	
数据库)	95

表格列表

表格5.1 表格5.2	评级等级和风险溢价	20
	一千万欧元的营业额,期限为5年	20
表7.1 表7.2	破产变量及其重要性 所有韩国建筑公司参数的描述统计	40
表7.3	。 。 。 。	40
= 7.4	。。。。。	41
表7.4 表7.5		41 43
表7.5 表7.6	考虑的破产预测输入变量	43
衣7.0 表7.7	潜在的破产预测输入变量	44
1×1.1	似)又里仅只里女住	44
表8.1	不同截断点的预测结果(韩国公司)	
± . •		48
表8.2	不同截断点的预测结果(美国公司)	50
表8.3	不同截断点的预测结果(欧洲公司)	50
表8.4	。。。。。································	
		51
表格 8.5	随机选择和测试结果(韩国公司)	53
表格 8.6	随机选择和测试结果(美国公司)	54
表格 8.7	随机选择和测试结果(欧洲公司)	55
表格 8.8	随机选择和测试结果(UCI机器学习	
= 44 0 0	存储库破产数据库)	57
表格 8.9	误分类的成本(韩国公司)	58
	分类的成本(美国公司)	58
衣俗 8.11 误	·分类的成本(欧洲公司)	58

xvi 表格列表

表格 8.12 误分类的成本(UCI机器学习存储库	
破产数据库)	59
表格 8.13 估计的结果跨业务周期(韩国公司)	60
表格 8.14 估计的结果跨中期周期(韩国公司)	61
表8.15 估计结果跨业务周期(美国公司)	69
表8.16 估计结果跨中期周期(美国公司)	70
表8.17 估计结果跨业务周期(欧洲	
0 0 0 0 0	71
表8.18 估计结果跨中期周期(欧洲公司)	72
表8.19 估计结果跨业务周期(UCI机器	-
学习库破产数据库)	87
表8.20 估计结果跨中期周期(UCI机器学习	57
存储库破产数据库)	00
1十四十二四 4 16 1二 1	$-\alpha \alpha$

关于作者

Arindam Chaudhuri 目前是三星研发院的数据科学家,印度德里。他在过去的16年里在机器学习领域从事工业、研究和教学工作。 他目前的研究兴趣包括模式识别、机器学习、软计算、优化和大数据。 他在印度加尔各答的贾达普尔大学(2005年)和尼塔吉・苏巴斯大学(2011年)获得了计算机科学的硕士学位和博士学位。 他已经出版了2本研究专著和40多篇国际期刊和会议论文。 他曾担任多个国际期刊和会议的审稿人。

Soumya K. Ghosh 是印度理工学院卡拉格普尔分校计算机科学与工程系的教授。他目前的研究兴趣包括模式识别、机器学习、软计算、云应用和传感器网络。他在1996年获得了计算机科学与工程硕士学位,2002年获得了博士学位,都是在印度理工学院卡拉格普尔分校获得的。他在工业、研究和教学方面拥有超过25年的经验。他已经在国际期刊和会议论文集上发表了2本研究专著和100多篇文章。他曾担任多个国际期刊和会议的审稿人。

第1章 引言

破产预测[1, 2, 3]可以定义为在公司机构和公共公司中预测破产以及几个财务困境指标的过程。 这是商业和数学金融领域的一个活跃研究领域。

破产的重要性主要归因于债权人和投资者评估组织破产的可能性。 破产调查通常表达为数据可用性的函数。 对于已经破产或未破产的公共组织,存在大量计算危险的会计比率[4]和其他相关解释变量[3]。 因此,破产的主题非常适合测试复杂和数据密集的预测技术[5]。

企业破产预测[1,4]是对投资者、债权人以及借贷机构感兴趣的不断发展的过程。及时识别公司走向失败的迹象通常是希望的。破产可以被视为公司无法偿还债务并被法院要求重组债务或清算资产的状态。债务人的财产被接收人接管,以使债权人受益。及时的预测对于任何企业来说都是金子般的存在,有助于评估风险以防止破产[1,6]。已经进行了大量的研究工作来预测破产[1-4,6-26]。有几个引起财务灾难的警示信号迫使任何经理采取预防措施以防止情况恶化。财务灾难的迹象在破产出现之前就变得明显[1]。当任何公司无法满足其计划付款时,财务灾难就开始了。主要的破产原因[5]通常被归类为经济、金融、疏忽、欺诈、灾难和其他因素。行业的薄弱导致经济因素。债务过多导致金融因素。错误判断导致财务困难。

管理忽视是错误和判断错误增加时出现的。 在1990年代末,公司欺诈成为一个重大问题。 没有稳健的模型。

1

© Springer Nature Singapore Pte Ltd. 2017 A. Chaudhuri, S.K. Ghosh,基于软计算的深度学习技术的破产预测, https://doi. org/10.1007/978-981-10-6683-2 1 在文献中没有可靠的模型能够识别公司欺诈。 公司失败的原因是包括人为错误在内的财务灾难。

破产仅限于特定的经济条件。

全球化在经济遭受严重影响后传播经济灾难火灾。为了应对财务灾难的后果,一些国家已经开发了自己的破产预测模型。通过以前的经济数据预测公司失败是一个热门的金融业务话题[1,4,5,6,12]。解决方案通常通过判别函数给出。在过去的二十年里,美国的破产案件数量增加。在美国,25起破产申请中有20起发生在这个阶段。大量的工作集中在公司失败预测上。开发的技术基于决策科学和人工智能模型。在这个灾难阶段,三个重要的决策科学模型,即贝叶斯[19]、危险[20]和混合逻辑[27],被用于预测破产。

这些技术在预测方面具有数学上的优势。

深度学习网络[28]是软计算领域的一个新兴研究领域。 在过去的几年中, 它们已经被用于多个机器智能任务[29]。 深度学习网络是第三代人工神经网 络(ANNs),其性能优于传统的ANNs。它们与基于机器学习的算法相关,通 过多层处理和复杂结构以及非线性变换对高级数据进行抽象。 深度架构在变 量方面表现出色,可以扩展复杂计算。 这使得它们在使用相对较少的数据量 时能够实现相当大的泛化。 人工智能(AI)系统具有学习、推理和自我纠正等 常见功能。 具有多个隐藏层的ANNs可以学习复杂操作,但通常受到良好学 习算法的限制。 支持向量机(SVMs)[30]通过统计学习理论促进学习过程,并 克服了ANN的一些缺点。但由于浅层架构,SVMs遇到了一些障碍。 深度架 构解决了其他架构[29]存在的一些固有问题,其中只有一个隐藏层。 隐藏层 遵循线性层,导致输出[5]在监督学习中。 一些薄型架构,如高斯混合模型 、径向基函数(RBF)和具有一个非线性隐藏层的ANN,是模拟任何操作的通 用逼近器。 但准确性问题仍然是一个主要问题。 深度学习算法考虑了广泛 的方面[29],以实现对生物表示的更深入的洞察,这对于几个现实应用非常 有用。 它们学习多个表示层次。 它们的抽象能力使它们能够从不同的数据 类型中得出有用的推断。

在这项研究工作中,我们提出了复杂的分层深层架构(HDA)用于从各种数据集中预测破产。 HDA是通过结构化分层粗糙贝叶斯(HRB)模型形成的模糊粗糙张量深度堆叠网络(FRTDSN)。 这里考虑的深度学习模型是张量深度堆叠网络(TDSN)[31]。 TDSN由几个堆叠的块组成。

1 引言 3

每个块通过权重张量高阶统计量将隐藏层映射到输出层。 对于参数估计,学习算法使用权重矩阵和张量,通过凸子问题进行。

通过模糊粗糙集增加了TDSN的计算能力,从而演化出了FRTDSN。 FRTDS N的预测能力通过HRB进一步增强。HRB通过将概率粗糙集[2]结合到结构化分层贝叶斯模型中形成。 HRB利用超参数和超先验来实现后验分布。 超参数和超先验分别是先验分布的参数和分布。 最后,将FRTDSN与HRB集成形成复合FRTDSN-HRB模型。

实验数据集采用了韩国建筑公司[32]、美国和欧洲非金融公司[33]以及UCI机器学习库破产数据库[34]。 FRTDSN-HRB性能还与模糊支持向量机(FSVMs)[3,35]和其他统计模型[2]进行了比较。 实验结果以涵盖不同业务周期和中期周期的重要统计参数为重点介绍了考虑的数据集。

这本专著的结构如下。研究目标在第2章中介绍。接下来在第3章中介绍了关于破产预测的相关工作。第4章和第5章分别强调了破产预测方法论和风险分类的需求。第6章讨论了围绕FRTDSN-HRB模型的破产预测的实验框架。下一章介绍了本研究中使用的实验数据集。第8章展示了实验结果。最后在第9章中,给出了结论。

第二章 这项研究的需求

所有公司在其生命周期中都可能面临破产。 在经济衰退期间,公司可能会陷入破产状态。 重要的优势在于认识到相关问题并欣赏导致破产的过程,并从中获益。 这本研究专著解决了这个问题。 通过调查韩国建筑公司的破产数据集[32]、美国和欧洲非金融公司[33]以及UCI机器学习库的破产数据库[34]来实现。 这项研究集合了实践和经验兴趣。 从经验的角度来看,它使用了重要的概念。 从实际的角度来看,它提供了利用要素。 与公司有关的所有利益相关者都会受到破产的影响。

预测破产涉及许多挑战。第一个挑战始于通过文献回顾和头脑风暴来选择技术。 文献回顾在第三章中呈现。 方法论在第六章中突出显示。 收集适当的数据以验证所选择的技术。 数据预处理是根据所选择的技术进行的。 这一步对于研究非常重要,因为输入数据的质量会影响结果。 在收集和预处理数据之后,将其应用于提出的技术以获得结果。 然后解释和与其他模型进行比较结果。 然后根据期望的基准水平对模型进行改进。 然后进行多次测试以验证模型的整体适应性。

2.1 动机

选择研究破产预测的主要原因是它允许在任何公司的实际和经验方面进行工作。 由于全球经济危机,破产研究已成为最受欢迎的研究课题。 考虑到商业世界的许多方面,如果

6 2 本研究的需求

取得的成就对整个商业社区总是有益的。 它捕捉并理解导致企业违约的因素和原因。 另一个动机是设计一种抽象的数学技术,用于预测全球经济中不同公司的破产。 一旦开发和实施该模型,将有助于分析师了解导致破产的不同因素。 整个工作基于以下研究问题:

- (a) 如何预测任何公司的破产并避免付款违约?
- (b) 在特定行业中导致破产的不同变量是什么?

2.2 贡献

这项研究的不同贡献包括:

- (a) 对破产预测研究的深入文献综述。
- (b) 该研究提出了复合分层深度架构模型,即FRTDSN-HRB,该模型将深度 学习模型与结构化HRB模型相结合,以预测韩国建筑公司、美国和欧洲 非金融公司以及UCI机器学习库破产数据库中的破产情况。
- (c) 通过与其他技术进行比较,突出了该模型的优越性。

第3章 文献 综述

导致企业破产的因素通常来自经济学和商业管理。 破产预测问题最早由Smith和Winakor于1935年[36]以及Merwin于1942年[37]研究。 Altman于1993年进行了一项值得注意的研究[1]。 这些研究指出,失败的组织与成功的组织有显著不同的比率。 这一基本方面提供了重大突破,并为进一步的研究提供了积极的方向。 1965年,Hickman[38]研究了资产规模较大的组织在履行义务方面遇到困难的比率。 1966年,Beaver[39]通过比率分析研究了破产预测问题。 Beaver的工作被认为是破产预测领域的经典之作之一。 他对多元分析的使用进行了讨论,并评论了使用单变量分析来预测企业破产的问题。 然而,Neter[5]强烈支持在这个问题上使用多元分析。 Beaver发现,在组织失败之前的5年期间,比率的数量与相应的非失败组织有所不同。

他将组织视为流动资产的储备,其中流入代表供给,流出代表排水。 组织的 偿付能力以概率术语定义,即公司无法偿付其债务,储备变为空。 比弗通过 这个框架提出了四个命题,即(1)失败的概率越小,储备越大;(2)失败的概率越小,净流动资产运营流量越大;(3)失败的概率越大,持有的债务金额越大;(4)失败的概率越大,运营基金支出越大。

比弗的比率分为六组,共30个比率。 这些比率通过单变量判别分析在79对破产和非破产组织中进行了实验。 流动资本资金流量/总资产和净收入/总资产被认为是最好的判别因子。 这些情况下正确识别了约90%和88%的业务案例。 这些比率指向了衡量盈利能力、流动性和偿付能力的破产概率。 然而,目前尚不清楚哪些比率提供了最佳的

8 3 文献综述

解释能力。 上述作品提到了不同的比率作为最有效的。 值得最关注的方面是(1)最重要的破产预测比率和(2)与这些比率相关的权重(3)客观地确定这些权重。

1968年,Altman [4] 提出了用于破产预测的Z分数模型。 该模型基于五个变量。 它使用多元判别分析(MDA),具有非常强大的预测能力。 它是一种统计技术,根据观察的属性将观察结果分类。 有各种研究验证了Altman的研究结果,从而使MDA成为预测破产的常用方法。 后来,Z分数模型逐渐更新。 在这方面,一些值得注意的指标有:

- (a) Z分数模型通常关注相对较小的公司。 随着破产公司规模的增加,需要一个能够预测大公司业务失败的模型。
- (b) 需要一个模型,该模型尽可能符合时间数据的习惯行为。
- (c) 在此之前, 重点是特定行业。 新模型应满足不同行业的需求。
- (d) 新模型应针对未来数据进行应用。
- (e) 它允许测试和评估判别分析的不同方面。

在这个方向上的重要工作是由Platt等人在1990年和1991年[5]、Weiss在198 1年[40]和Zavgren等人在1983年[25]完成的。在1977年,Altman等人[6]提出 了ZETA模型,该模型易于应用于大公司。 ZETA模型在分类破产方面表现 良好。 在接下来的几年里,一些研究者在他们的工作中使用了Beaver [39]和 Altman [1]模型。 1972年,Deakin [41]提出了一种基于Beaver和Altman模型的 替代破产预测模型。 他捕捉到了Altman和Beaver模型的优点。 Beaver的结果 具有更强的预测能力,而Altman的结果则显示出更直观的分析。 Deakin确定 了Beaver使用的14个比率的线性组合。这个组合最好地预测了每个失败的公 司在前5年的失败。 基于Altman和Beaver的其他重要作品包括Wilcox [42]和E dmister、Libbv和Scott [5]。 破产预测问题也可以通过贝叶斯[19]、风险[20] 和混合逻辑[27]模型来解决。 贝叶斯模型使用贝叶斯统计学,通过从数学事 实中收集的估计值对先前的知识进行微调。 然后计算后验概率。 这个模型 透明且简单易懂。 风险模型在对数模型的基础上提供了改进,即在风险模型 中,破产不是一个时间点上的过程,而是以公司生命周期结束的过程。 混合 逻辑模型超越了对数模型,它同时考虑了观察到的和未观察到的信息。Begl ev等人在1996年[43]得出了与Altman 1968年[4]和Ohlson 1980年[17]模型类似 的结果。Robertson等人在1991年[5]认为不能假设模型的预测能力可以适用于 所有行业。 1999年,Sung等人证明了ZETA模型被认为是最受接受的模型。

3 文献综述 9

多维模型。ZETA模型具有更高的判别能力,并具有合理的简洁性。它考虑了会计和股票市场数据,以及债务变量和收益。Ohlson在1980年提出了用于破产预测的logit分析模型。他的研究基于White和Turnball以及Santomero和Vinso的作品[5]。这是最早的系统开发之一概率性失败估计。通过重要因素,如组织的规模,组织的财务结构的度量,绩效度量和当前流动性度量,来检验组织的失败概率。Ohlson使用九个独立变量来预测失败概率取得了一定的成功。在logit和probit模型中的其他重要作品包括Martin等人[15],Wiginton等人[24],Zavgren等人[25]和Zmijewski等人[26]在1980年代。破产预测模型还考虑了所选样本的特定时间段。会计变量具有动态分布[44, 45],使得模型是样本特定的[7]。Zmijewski的1984年[26]和Ohlson的1980年[17]模型在2001年被Grice等人重新估计,使用了其他时间段。结论是每个模型的准确性从1988年至1991年的时期下降到1992年至1999年的时期。他发现Ohlson的模型与行业分类密切相关,而Zmijewski的模型则不是。在评估破产预测模型时,Zmijewski认识到两个抽样误差。第一个模型考虑了样本偏差。

通过采样识别破产和非破产观察组的破产预测分析过程。 当选择的破产样本的概率远离人口破产概率时,预测能力会上升偏倚。 选择性偏倚和结果与Z mijewski的事实一致,正如Platt等人在2002年[5]中所提到的。 样本选择偏倚与第二个抽样误差有关。 在这里,通过采样程序消除了不完整的数据观察。通过Zmijewski建立了破产和缺失数据观察之间的相关性,通过双变量正态分布进行。根据他的观察,缺失数据观察的破产概率较高。在2005年,Beav er等人[9]强调了无形资产的重要性随时间的增加。 这是因为基于技术的资产。 金融衍生品市场在1990年代遭受了爆炸。 金融衍生品被用作杠杆替代方案,低估了公司的杠杆比率。 Begley等人在1996年[43]也强调了杠杆变量的重要性。 Beaver等人强调了与财务报表范围相关的自由度的增加。 这些发展直接影响了以财务变量为输入的破产模型的预测能力的低估。 组织的财务比率是应用于破产预测的另一个重要领域。 在这个方向上的一些重要工作是由Ramser等人[46]、Fitzpatrick等人[47]和Winakor和Smith[48]在1930年代完成的。 应用于预测破产的重要统计模型是Wilcox等人[42]的赌徒破产模型和Merton等人[49]在1970年代的期权定价理论。

10 3 文献综述

Koh和Tan [50], Atiya等人[51], Baek和Cho [52], Becerra等人[53], Durga和 Dimitri [54], Pramodh和Ravi [55], Purvinis等人[56], Ravi等人[57], 以及Sh ah和Mirza [58]。

在过去的四十年中,其他基于人工智能的技术,如递归分区、人工神经网络、遗传算法(GA)、决策树等,在破产预测问题上获得了相当大的流行。这些方法提供了比传统统计技术更好的解决方案。递归分区[5]是一种基于监督学习技术的归纳学习方法。在这里,监督学习模型的训练基于某些依赖变量。

归纳学习通过泛化过程构建决策树,从示例中学习。 决策树将数据集输入空间划分为子集。 每个子集通过递归分区过程划分为子子集。 通过这个过程,一个树被构建,根在顶部,互斥的区域和叶子在底部。 所有的叶子要么被标记为破产,要么被标记为非破产。

这个过程只需要很少的先前知识。 1986年,Quinlan [59] 提出了ID3算法,该算法通过自上而下的方式构建决策树。

每次算法都会决定最重要的变量。 这是通过一定的统计测试 [5] 来确定训练 样本的分类效果。 当叶节点包含破产或非破产值时,决策树会递归地将训练 数据集划分为子集。 通过决策树,可以轻松评估任何新组织。

Frydman等人 [60] 在破产预测分析中进行了另一项重要的递归划分工作。 A NN [61] 为破产预测问题提供了另一种分类机会。 他们以非常类似于人类决策的方式执行分类任务,即判断一个组织是否破产。 在许多实际的分类问题中,ANN是很好的分类器。 它们具有非线性和非参数自适应学习的特性。 ANN通过许多相互连接的层描述,其中简单的逻辑单元通常被称为节点。 这些网络在20世纪50年代被提出,并受到人脑工作方式的启发。 然而,AN N依赖于正确的训练方法的选择。 在1986年,Rumelhart等人 [62] 重新制定了反向传播算法,消除了这种依赖性。 在前馈ANN中,逻辑单元被称为感知器,模拟了人脑的神经元。 当达到一定阈值时,该神经元在输出端激活。输入向量通过前一层的偏置因子进行控制。 输出是非线性且可微分的传递函数。 常用的激活函数有逻辑函数、双曲正切函数等。 当用于破产预测问题时,ANN通过输入层的输入节点获取解释因素的信息。

在隐藏层,通过输入节点进行加权互连。 隐藏层的节点收集和处理信息,并确定失败概率。 1990年,Odom和Sharda [63]首次将ANN应用于破产预测问题。 其他重要的研究包括Tam和Kiang [64]。 遗传算法受达尔文的进化理论启发[65],是一种随机无导数优化技术,通过搜索进行。

3 文献综述 11

通过非常大的空间。 它们具有归纳性质。 由于使用了许多点并且具有随机性质,搜索陷入局部最小值的可能性非常小。 它们优化连续和离散函数。

遗传算法基于概率优化规则。它们使用表示参数的字符串。遗传算法使用每一代中的种群进行评估。工作假设在每一代中通过染色体表示,并根据其适应度值进行评估。具有最高适应度值的染色体立即放置在新的种群中。其他染色体通过交叉和突变等遗传算子创建后代个体。遗传算法在破产预测问题框架中被广泛用于变量选择。遗传算法在破产预测中的一些重要工作包括Lensberg等人[66]和Sengupta和Singh[67]。模糊分类器被Kumar和Ravi[68]以及Shin等人[69]应用于破产预测。粗糙集被Dimitras等人[70]、Bioch等人[71]、Ruzgar等人[72]、Shuai和Li[73]以及Zaini等人[74]应用于破产预测。除了这些,还有几种混合技术应用于破产预测问题。这些包括Ahn和Kim[75]、Jo等人[76]、Kumar和Ravi[18]、Ravi等人[77]、Ryu和Yue[78]、Tung等人[79]、Vlachos和Tollias[80]以及Wu等人[81]的工作。

破产预测问题已经通过统计和基于人工智能的技术进行了研究。尽管基于人工智能的技术始终比传统的统计方法产生更好的预测结果,但实践者仍然在寻求适用于各种破产数据集的更优结果。在这方面,深度学习网络[82]已经成为破产预测问题的合适候选。深度学习属于机器学习算法的一种,其中多层非线性处理单元级联用于特征提取和转换。这些算法可以以监督或无监督的方式进行。它们从不同的抽象层次中学习,这些层次对应于概念的层次结构。深度网络中的隐藏层基于复杂的命题演算集合。深度学习首次在算法中被用于通过多层次的转换输入,其中参数通过训练进行迭代调整。过去从未使用深度学习网络进行破产预测的研究。复杂的HDA结构,即FRTDSN-HRB,在准确性方面提供了优越的破产预测性能。学习算法使用权重矩阵和张量进行参数估计,其计算能力通过引入模糊粗糙集得到增强。HRB的整合提高了FRTDSN-HRB模型的预测准确性,相比其他模型。为了实现比较因素的公平性,严格处理降低预测准确性的模型。涉及重要统计参数的多个实验结果突出了FRTDSN-HRB模型的优越性。

第4章 破产预测

破产预测[83]是用于预测不同公司破产和困境的各个方面。 当债权人和投资者计算一家公司可能破产的可能性时,它的重要性就出现了。

破产预测问题的性质多种多样。 可能的解释是所有组织的性质各不相同,并且拥有有限的不均匀时间信息。 破产预测模型的目标不仅是寻找解释因素,还要确定为什么会出现特定的破产结果。 因此,它非常适合测试复杂和数据密集的预测方法。

自上世纪末以来,企业困境已经达到了令人担忧的水平[1]。 随着企业困境的增加,企业破产的数量也增加了。 有四个通用术语描述企业困境,即失败、破产、违约和破产,它们构成了企业困境的基础,最终导致破产:

- (a) 失败代表了考虑到风险的资本投资回报率。 在类似的投资中,它明显低于当前利率。 一个公司可能在几年内陷入财务困境,因为它无法偿还目前的债务。
- (b) 破产表示缺乏流动性,并成为破产宣告的重要原因。 由此导致它产生更多现金。 当一个公司无法满足其财务需求时,就会发生这种情况。 当组织的无力偿还变得严重,并且其总负债超过公允价值估值时,就会出现破产。
- (c) 违约是与困境相关的另一种状态。 它发生在债务人公司和债权人之间。 一个公司不会因为跳过贷款或利息支付而陷入违约。 当这个问题在规定 的时间内没有解决时,它的证券就会出现违约。
- (d) 考虑到失败、破产和违约,破产问题被突出显示。 当一个公司的总负债 超过总资产时,它就会破产。

14 4 破产预测

公司。公司也可以被最高法院宣布破产。法院可以宣布组织破产,也可以提供恢复计划的机会。当公司的价值高于清算价值时,公司参与恢复计划。

在企业困境中,债权人和所有者属于两个主要利益群体。 这些群体在破产重组过程评估中非常重要。 重组过程以使经济稳定达到公司的目标。

让我们概述企业困境和破产的主要原因。

在过去几十年中,已经进行了大量研究。 Dun and Bradstreet [5] 指出,缺乏经验、经验不均衡和无能是公司失败的主要原因,在超过44%的情况下发生。 另一个重要方面是公司的年龄与失败可能性之间的关系。 Dun and Bradstreet 认为,超过50%的失败发生在2-5年的公司中。 5年后,公司组织趋于稳定、经验丰富和建立。 作为间接结果,他们更容易获得资本。组织失败的主要财务原因包括:

- (a) 行业:某些行业具有病态性质。在这些行业中最初表现良好的公司未来 很可能会失败。
- (b) 利率:由于无法履行高利率,有些公司陷入困境。
- (c) 竞争:国际竞争逐渐加剧,公司的费用大幅增加。这使得小公司相对于大公司具有优势。这是因为小公司以低价经营。
- (d) 资产负债比:许多公司的杠杆比例增加。由于这个原因,许多公司陷入 更多的债务境地。在公司灾难时期,这些债务导致失败。
- (e) 放松管制:主要行业的放松管制导致环境更具竞争力。
- (f) 创业率: 更高的新业务创立率导致公司失败的频率增加。 这些公司相比 之前提到的已建立的公司更有可能失败。

组织的破产原因更多地是可以通过统计量来量化的。这些方面在本研究中的深度学习模型中得到了突出,使其成为可靠的破产预测器。除了之前提到的主要利益相关方,破产预测对债券持有人和其他重要的金融和法律服务参与者也很重要。债券的违约风险是影响债券价值的重要因素。当一家公司发行债券并且无法履行规定的义务时,发行人就违约了债券。对于债券持有人来说,弄清楚债券发行人失败的机会非常重要。对于法律公司来说,破产是一项大生意。

这些企业对破产重组过程非常有利可图。

4 破产预测 15

统计学界将破产预测问题视为二元分类问题[2, 3, 5, 35],量化任何特定事件发生的信念程度。 机器学习界将破产预测问题视为监督学习技术。 在这里,每个实例都是属于预定义类别组的观察数据集。 目标是以最小的误差将一个类别与另一个类别分开。

希望评估投资风险的投资者总是关注公司在不久的将来是否会破产,并带有一定的机会因素。分类问题的输入通常可以建模为财务和其他战略比率向量。考虑到这个向量,分类技术必须将组织分配为两种可能的输出之一,即破产或非破产。分类任务将新的观测分配给事先已知的可用类别。所有类别都是互斥的。分配过程取决于间接方法应用,考虑特征向量。通常认为训练的正确标记数据和对观测进行分类的确切方法存在,但不可行应用于所有情况。间接分类满足对任何组织的财务压力水平的确定,因为不可能进行直接评估。

因此,通过直接的检查过程无法确定公司的财务健康状况。 相反,更适合寻找间接手段,其中组织的财务比率决定其是否破产。一种常见的方法是通过检索一定时间窗口内的一些公司的观察到的财务比率,其中每个银行的财务比率由向量 $\mathbf{c}_{n,l}$ 表示,其中下标 $\mathbf{c}_{n,l}$ 是 $\{1,\mathbf{r}_{n,l}\}$ 表示银行,时间 $\mathbf{c}_{n,l}$ 是 $\{1,\mathbf{r}_{n,l}\}$ 表示数据观察的时间。

由于破产案例非常罕见,所以考虑的数据是时间不变的,没有依赖关系。这使得数据是独立且同分布的。 已经有大量的研究采用了这种方法[4,5]。 需要注意的是,通过去除下标t,数据实际上被视为非时间性质的。 评估公司的违约概率(PD)是估计投资风险所必需的。 每个公司都由作为预测因子的变量集合a表示,例如财务比率和类别y表示可能是b=1("成功")或b=1("破产")。 估计一个未被探索的函数f: a! b在公司的训练集(a_i, b_i);i=1,…,n上。 训练集考虑了公司的数据集,这些数据集要么是存活的,要么是破产的。 最后,分类器函数f用于计算PD,可以转换为任何组织的评级。

像期权定价和logit和probit回归这样的统计模型认为输入和输出变量之间的关系可以事先描述。在这里,模型由一组变量描述。该解决方案考虑了在训练数据集上的变量估计。统计模型对建模的过程给出了很好的解释。然而,它们的刚性结构是一个令人担忧的原因。 机器学习模型如人工神经网络或遗传算法(GA)在描述数据方面具有灵活性。 对于企业预测,统计模型具有实际意义。 该模型通常表示为probit回归估计。

16 4 破产预测

累积违约概率覆盖的年数。 估计是通过非线性变换在单变量模型上进行的-转换 h_1, \ldots, h_d 。 原始Probit模型是[5]:

期望
$$s$$

$$[i,j|p_{i,j}] = \Theta(\alpha_1 p_{i_1,j} + \ldots + \alpha_d p_{i_d,j})$$
 (4.1)

通过这种转换,方程(4.1)中的概率模型变为:

期望
$$s$$
 $\left[i,j \middle| p_{i,j} \right] = \Theta \left\{ \alpha_1 h_1(p_{i,j}) + \ldots + \alpha_d h_d(p_{i,j}) \right\}$ (4.2)

在方程(4.2)中, $s_{i,j}$ 表示公司 i在时间 t内的累积违约概率。 尽管传统的概率分析等技术具有广泛的适用性,但更常希望基于统计学习理论思想的方法。 应用函数集合 \mathcal{H} 中的分类函数 h的分类工具[5],基于风险最小化的预期原则进行制定。 这里考虑的风险预期为:

$$RiskV(h) = \int \frac{1}{2} |h(p) - s| dP(p, s)$$
 (4.3)

这是基于已知分布函数 P(p,s)的估计。 在实际情况中,这很少发生。 通过训练集 (p_i,s_i) 的估计分布; $i=1,\ldots,n$ 。 这个问题通过经验风险最小化原则来解决。 这最小化了公司的训练集上的风险。这里的经验风险是:

$$\widehat{\mathbb{AR}} h() = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} |h(p_i) - s_i|$$
(4.4)

经验风险考虑了在训练数据集上的平均损失值。另一方面,期望风险考虑了在真实概率度量下的期望损失值。 iid观测的损失是:

$$\frac{1}{2}|h(p)-s| = \begin{cases} 0 & \text{正确分类} \\ 1 \text{ 个错误分类} \end{cases} \tag{4.5}$$

预期和经验风险最小化的解决方案是:

$$h_{opt} = \operatorname{argmin}_{h \in \mathcal{H}} R(h) \tag{4.6}$$

$$\hat{h}_n = \operatorname{argmin}_{h \in \mathcal{H}} \hat{R}(h) \tag{4.7}$$

破产预测方法通常通过预期和经验风险最小化来量化,这两者并不一致。 这是不可能的 4 破产预测 17

最小化预期风险,因为 P(p,s)的分布是未知的。 根据统计学习理论[84],可以通过概率1-n来估计Vapnik-Chervonenkis (VC)界限:

风险
$$h(\) \le \widehat{\mathbb{Q}}$$
险 $h(\) + \Theta \left(\frac{1}{n}, \frac{\ln \left(\eta\right)}{n}\right)$ (4.8)

考虑指示函数 $g(p) = sign(p^T \mathbf{w} + y)$:

$$\Theta\left(\frac{1}{n},\frac{\ln\left(\eta\right)}{n}\right) = \sqrt{\frac{-\left(\ln\left(2-\gamma\right)-\gamma\right)\right) \ \square \ \ln\left(\eta/4\right)}{n}} \tag{4.9}$$

在方程(4.9)中,一个表示 VC维度。 函数集合 \mathcal{H} 通过 d维空间的 VC维度是一个,如果函数 $h \in \mathcal{H}$ 表示一个对象 $\{p_i \in R^d, i = 1, \ldots, - \ell\}$ 在2一个配置中,并且不存在集合 $\{p_j \in R^d, j = 1, \ldots, -\ell\}$ 当一个 >一个时方程(4.9)中的 VC界限是一个正则化函数,其中一个控制分类器函数的复杂度。术语 Θ 一个 p_i p_i

函数带来过多复杂性会导致惩罚。 在训练数据集上的分类错误数量和分类器 函数的复杂性之间总是存在一种平衡。 有可能开发出一个在训练数据集上没有分类错误的分类器函数。 它甚至不考虑自己的低泛化能力。

第五章 对风险分类的需求

在大多数国家,只有少部分公司被评定了风险分类[5]。 这种评级是由两个原因造成的。 外部评级是一个昂贵的过程。 迄今为止,大多数银行对中小型企业(SME)[5]发放贷款时没有对相关风险进行估计。 银行的决策过程基于几个粗略模型。 放贷决策由贷款官员负责。 了解自己的风险是一个昂贵的过程。 银行的放贷过程未能设定正确的激励措施,使得中小型企业避免评级过程。 规则围绕着涉及放贷和借贷的环境变化而制定。 随着巴塞尔协议第二版的出台,公司基于市场发行债务证券。 这需要评级,因此任何普通公司都会向银行申请贷款。 这里没有外部评级可用。 银行使用内部评级系统来确定客户所属的风险等级。 银行受到巴塞尔协议第二版的双重压力。银行要求根据特定借款人的违约概率支付风险溢价。 银行必须按照巴塞尔协议第二版的要求持有客户的股本缓冲。

表5.1突出了个体风险类别的使用情况,该类别映射到风险保费[39]。 考虑到欧洲小公司,0.17%的1年违约概率导致4%的利差。 在贷款人的映射中,如果公司类型或所在国家发生变化,映射方式也会有所不同。 未来的贷款定价遵循基本规则。 银行收取的风险溢价随着公司风险的增加而增加。

巴塞尔委员会[5]规定了由可偿付性系数确定的缓冲区大小,该系数为10%。通过这个函数,违约概率被转化为风险权重。 从巴塞尔I到巴塞尔II的转变通过每个贷款单位的资本要求变化来突出显示,表5.2中还考虑了贷款类型和年营业额等除了基本风险组成部分如PD、到期日和违约损失(LGD)风险。表5.2是关于零售贷款的,考虑到借款人的年营业额为一千万欧元。 贷款准备金成本受到影响

20 5 风险分类的需求

表5.1 评级等级和风险溢价

评级类别(S&P)	1年违约概率(%)	风险溢价(%)
AAA	0.02	0.80
AA	0.04-0.06	1.25
A ⁺	0.07	1.75
A	0.10	2.00
A^-	0.17	2.75
BBB	0.17-0.44	3.50
BB	0.69-1.98	4.75
B ⁺	3.55	6.00
В	8.00	7.75
B ⁻	19.00	9.25
CCC	>19	11.25
CC		12.75
С		14.90
D		16.25

表5.2 评级类别和巴塞尔I和巴塞尔II的资本要求;最后一列的数字是根据营业额为1千万欧元、期限为5年的零售贷款确定的

评级类别	1年违约概率	资本要求	资本要求
(S &P)	(%)	(巴塞尔I)	(巴塞尔II)
AAA	0.02	10.00	0.69
AA	0.04-0.06	10.00	0.96–1.50
A ⁺	0.07	10.00	1.70
A	0.10	10.00	2.17
$\overline{A^-}$	0.17	10.00	2.86
BBB	0.17-0.44	10.00	3.17–5.38
BB	0.69-1.98	10.00	6.70–10.48
B ⁺	3.55	10.00	12.96
В	8.00	10.00	17.86
B ⁻	19.00	10.00	24.96
CCC	>19	10.00	>24.96
CC		10.00	
С		10.00	
D		10.00	

银行股权的锁定。借款人直接承担这些成本。当公司需要外部融资时,它受到巴塞尔II的影响。当通过违约风险确定风险溢价和信用成本时,公司的评级对银行和公司本身产生更深远的经济影响。在巴塞尔II中,正确的评级方法选择非常关键。为了避免大幅度摩擦,所采用的方法应满足一定条件。另一方面,评级程序应将错误分类的数量降至最低水平。它应该尽可能简单明了。如果借款人采用它,应提供一些指导来改善他自己的财务评级。

第6章

实验框架:基于软计算的深度学习技术进行破产预测

实验框架包括通过基于软计算的深度学习技术进行破产预测。深度学习在过去几年中已经发展成为一种有前景的机器学习技术[82]。它是一种深度结构化学习,涉及到包含多个隐藏层的人工神经网络研究。它基于由多个层和非线性单元组成的组合,用于特征提取和相应的转换。在这里,每个前一层都向后一层提供输入。深度学习算法可以以监督或无监督的方式执行。这些算法可以从多个表示级别学习,对应于多个抽象级别。深度学习已成功应用于多个模式识别和计算机视觉问题的类别,并取得了相当大的成功。

基本上,深度分类架构是使用简化的人工神经网络模块构建的。 在这里,每个模块都包括输入、输出和单个非线性隐藏层。 它被称为深度凸网络[8 2]。 上层的权重通过将其数学上结构化为凸优化问题来学习。

每个块中较低层的权重都被初始化为玻尔兹曼机。 后来被称为深度堆叠网络(DSN)[31]。 这里的深度架构基于堆叠泛化哲学。 它认识到较低层的权重在分类任务中学习以获得更好的准确性。

破产预测问题的深度学习技术围绕着将深度学习模型与结构化的分层贝叶斯模型相结合的分层深度架构展开[85]。 分层深度架构基于张量深度堆叠网络(TDSN),通过模糊粗糙集进行丰富,从而得到模糊粗糙张量深度堆叠网络(FRTDSN)。

FRTDSN显著改进了DSN架构。 关于高阶统计的信息被注入到FRTDSN中。 这是通过隐藏表示向三阶张量进行双线性映射实现的。 FRTDSN具有与DSN 相似的线性-非线性形状。另一个重要特征是FRTDSN中隐藏单元的表示,它有助于处理本研究中考虑的大型破产数据集[5]。类似的交错

线性和非线性层的特性来自DSN。具有闭合形式解的上层允许有效的并行训练。FRTDSN中隐藏层的较小尺寸不会对张量权重进行因式分解。它还优化了最小二乘目标,并实现了可观的可扩展性和并行化。FRTDSN通过CPU集群进行所有训练和评估计算,并且在较大的训练集上具有良好的扩展性。FRTDSN中的模糊粗糙集处理了公司破产数据集中的模糊和不精确性。接下来,将粗糙集[86]纳入结构化层次贝叶斯模型中,从而演化出层次粗糙贝叶斯(HRB)模型。 HRB中的粗糙集基于分类空间中的近似识别和识别破产数据中的常见模式。它们还处理破产数据集中的不完整性。 HRB中的子模型集成形成层次模型,用于参数估计的后验分布。然后将FRTDSN与HRB集成形成复合FRTDSN-HRB模型。 HRB增强了FRTDSN-HRB模型的整体预测能力。整个过程的示意图如图6.1所示。首先介绍了深度堆叠网络(DSN)。然后是FRTDSN。接下来介绍了HRB模型的数学框架。最后解释了复合FRTDSN-HRB。

6.1 深度堆叠网络

DSN是由ANN块组成的深度凸网络,它定义了模块[31]。 它的学习过程是以并行权重方式实现的。 训练是通过有监督和分块方式进行的,没有反向传播 [62]。 DSN块由直接学习模块组成,这些模块堆叠在一起形成深度网络。 有一个上层权重矩阵UM,它连接非线性隐藏层hd和线性层ya。 下层权重矩阵 WM连接输入和隐藏层。 目标向量tv是tv0。 输入数据向量tv2tv3,隐藏单元的矩阵用tv6。 以下层权重WM被假定为已知,函数tv6,以下层元素的逻辑sigmoid操作:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{6.1}$$

上层权重矩阵 UM学习过程如下:

$$\min_{\mathbf{H}\mathbf{M}^T} f = \mathbf{U}\mathbf{M}^T \mathbf{H} \mathbf{T} - \mathbf{T} \mathbf{V} |_F^2$$
 (6.2)

6.1 深度堆叠网络 23

图6.1 用于破产预测的FRTDSN-HRB

문:

方程 (6.2) 有一个闭式解. 底部块 XV有输入. 对于DSN的更高层块,输出表示从先前的块与输入数据连接起来. 在DSN中,通过加速梯度下降法[62]来优化底层权重矩阵WM,从而最小化方程 (6.2)中的平方误差目标. 目标向量 tv被排列为向量 TV. 目标函数和梯度导数的解

$$\nabla \mathbf{w} f = \mathbf{X} \mathbf{V} \left[\mathbf{H} \mathbf{T}^{T*} \left(\mathbf{1} - \mathbf{H} \mathbf{T}^{T} \right)^{*} \mathbf{\Theta} \right]$$
 (6.3)

在方程(6.3)中,1是全1矩阵,*表示乘法操作,如下:

$$\mathbf{\Theta} = 2\mathbf{H}\mathbf{T}(\mathbf{H}\mathbf{T} \cdot \mathbf{T}\mathbf{V}^T)(\mathbf{T}\mathbf{V} \cdot \mathbf{H}\mathbf{T}) \ \Box \ \mathbf{T}\mathbf{V}^T(\mathbf{T}\mathbf{V} \cdot \mathbf{H}\mathbf{T})$$
(6.4)

为了训练DSN块,通过梯度在等式(6.4)中迭代更新 WM。它考虑了最优权重 UM。 计算完 WM后,估计 UM。 DSN从不发现转换后的特征表示。 因此,DSN可以通过简单和优化的网络权重轻松并行化。 对于纯粹的判别任务,DSN比深度置信网络[31]效果更好。 标签类别估计是连续值函数。分类决策是在顶部块完成的。

DSN的下层块具有未用于决策的输出向量。 它相反被用于与直接馈送到上层 块的原始输入向量连接。

6.2 模糊粗糙张量深度堆叠网络

通过模糊粗糙隶属函数[87]对TDSN的不确定性进行处理,处理了破产数据的不确定性,从而形成了模糊粗糙TSDN(FRTSDN)。它与深度堆叠网络(DSN)密切相关。FRTDSN通过以下方式改进了DSN架构: (a)通过两个隐藏表示,将高阶统计信息强制加入TDSN中,通过双线性映射实现。

(b) TDSN保留了与DSN类似的线性-非线性结构。它将学习问题从较低层 次和非凸优化转移到较高层次和凸子问题。

图6.2表示了FRTDSN的架构。FRTDSN的每个块都具有下层权重矩阵 **WM** $\widetilde{\mathbf{W}}_{(1)}$ 和 $\widetilde{\mathbf{W}}\widetilde{\mathbf{M}}_{(2)}$,它们由以下模糊粗糙隶属函数表示:

输入层 XT与Sigmoid隐藏层 $\widehat{HT}_{(l)}$ 和 $\widehat{HT}_{(l)}$ 在图6.2中显示的分支连接。FR TDSN块包含一个三维上层权重张量 \widehat{VT} 。FRTDSN架构以较高的准确性进行破产预测。 当与HRB接口时,其效果进一步提高,如第6.4节所讨论的那样。每个FRTDSN块具有两个隐藏表示。 它以双线性方式组合它们以产生预测结果。 FRTDSN通过从隐藏层到输出层的线性映射来定制单块结构。

同时,它保留了其建模和估计特性。 FRTDSN中的映射采用形式 $\widetilde{\mathbb{R}}^{P_1} \times \mathbb{R}^{P_2} \to \widetilde{\mathbb{R}}^V$,根据方程(6.5)用模糊粗糙数表示。

FRTDSN中的第一步是将输入向量 $\mathbf{x}\mathbf{t}\in\widetilde{\mathbb{R}}$ /映射到两个平行的隐藏分支表示,即 $\widetilde{\mathbf{ht}}_{(1)}\in\widetilde{\mathbb{R}}$ $\overset{P_1}{\mathbf{n}}$ 和 $\widetilde{\mathbf{ht}}_{(2)}\in\widetilde{\mathbb{R}}$ $\overset{P_2}{\mathbf{n}}$ 。每个隐藏

图**6.2** FRTDSN 架构与堆叠块

表示从输入中非线性地获得为 $\widetilde{\mathbf{ht}}_{(j)} = \sigma$ $\widetilde{\mathbf{WM}}_{()j}^T$ \mathbf{xt} $\bigg($ $\bigg)$ 。在这里 $\widetilde{\mathbf{WM}}_{(1)} \in \widetilde{\mathbb{R}}^{I \times P_1}$ 和 $\widetilde{\mathbf{WM}}_{(2)} \in \widetilde{\mathbb{R}}^{I \times P_2}$ 是两个权重矩阵。在张量 规范中:

$$\widetilde{\mathcal{V}T}\left(\widetilde{\mathbf{ht}}_{(\mathbf{p})}, \widetilde{\mathbf{ht}}_{(2)}\right) \triangleq \left(\widetilde{\mathcal{V}T} \times_{1} \widetilde{\mathbf{ht}}_{(1)}\right) \times_{2} \widetilde{\mathbf{ht}}_{(2)} = \widetilde{\mathbf{y}}$$
(6.6)

在方程(6.6)中, ×;指定了沿着第i维度的张量模式乘法,如下所示:

$$\widetilde{y}_k = \sum_{i=1}^{P_1} \sum_{j=1}^{P_2} \widetilde{VT}_{ijk} \widetilde{ht}_{(1)i} \widetilde{ht}_{(2)j} = \widetilde{\mathbf{ht}}_{(1)}^T \widetilde{VT}_k \widetilde{\mathbf{ht}}_{(2)}$$
(6.7)

在方程(6.7)中, $\widehat{\mathbf{VT}}_k \in \mathbb{R}^{P_1 \times P_2}$ 指定了通过冻结第三个索引k获得的矩阵切片,这允许第一个可变的索引。 $\mathbf{FR}T\mathbf{DSN}$ 's的行为可以通过上述双线性符号的操作与 \mathbf{DSN} 相关联。

考虑 $\widetilde{\mathbf{s}}_{(1)} \otimes \widetilde{\mathbf{s}}_{(2)} \in \widetilde{\mathbb{R}}^{P_1 \times P_2}$,其中 \otimes 表示Kronecker乘积。

 $((i-1)P_2+j)$ 是矩阵 $(1) \otimes \widetilde{\mathbf{s}}_{(2)}$ 的第 \in {1, 2,..., P_1 })行和第 $\{1, 2, \ldots, P_2\}$ 列的元素。 {1, 2,..., P_2 }。 然后,将 $\widehat{\mathbf{VT}}_k$ 向量化以创建 $\widetilde{\mathbf{vt}}_k = \mathrm{vec}(\widehat{\mathbf{VT}}_k)$ \in $\mathbb{R}^{P_1P_2}$ 使用 $\widetilde{\mathbf{s}}_{(1)}$ $\otimes \widetilde{\mathbf{s}}_{(2)}$ 的第 $(2\{1, 2, \ldots, P1\})$ 行和第 $(2\{1, 2, \ldots, P2\})$ 列的元素是 $(1, 2, 1, \ldots, P2)$ 列的元素是 $(1, 2, 1, \ldots, P2)$ 列的元素是 $(1, 2, 1, \ldots, P2)$ $(1, 2, \ldots, P2)$

$$\tilde{y}_{k} = \sum_{i=1}^{P_{1}} \sum_{j=1}^{P_{2}} \widetilde{VT}_{ijk} s_{(1)i} s_{(2)j} = (\widetilde{\mathbf{vt}}_{k})^{T} \tilde{\mathbf{s}}_{(1)} \quad \tilde{\mathbf{s}}_{(2)}$$
(6.8)

将所有的 $\widetilde{\mathbf{vt}}_{k}, k=1, 2, \ldots, C$ 作为 $\widetilde{\mathbf{VT}}$ 排列 $\widetilde{\mathbf{vt}}_{C}$ 整体预测如下:

$$\widetilde{\mathbf{y}} = (\widetilde{\mathbf{VT}})^T \widetilde{\mathbf{s}}_{(1)} \otimes \widetilde{\mathbf{s}}_{(2)}$$
(6.9)

隐藏层的双线性映射表示为从隐式表示 $\widetilde{\mathbf{s}}_{(l)}\otimes\widetilde{\mathbf{s}}_{(l)}$ 的线性映射。 线性映射利用 $\widehat{\mathbf{VT}}$ 对每个 N 训练数据点的隐式隐藏表示 $\widetilde{\mathbf{s}}_{(l)}\otimes\widetilde{\mathbf{s}}_{(l)}$ 进行聚合,得到一个 $P_1\underline{P}\times N$ 矩阵 $\widehat{\mathbf{HT}}$,结果如下:

$$\mathbf{Y} \mathbf{\pi} = (\widetilde{\mathbf{VT}})^T \widetilde{\mathbf{HT}} \tag{6.10}$$

图6.3展示了与图6.2底部块相同的架构,说明了隐藏层的扩展关系。

$$\widetilde{\mathbf{HT}}_{(1)} = \sigma \left(\widetilde{\mathbf{WM}}_{(1)}^T \mathbf{XT} \right) \, \overline{\mathbf{M}} \quad \widetilde{\mathbf{HT}}_{(2)} = \sigma \left(\widetilde{\mathbf{WM}}_{(2)}^T \mathbf{XT} \right) \, \overline{\mathbf{M}} \, \widetilde{\mathbf{HT}} \mathbb{E}:$$

$$\widetilde{\mathbf{HT}} = \widetilde{\mathbf{H}}_1 \left(\cdot \right) \, \widetilde{\mathbf{H}}_2 \tag{6.11}$$

方程(6.11)中的O操作是Khatri-Rao乘积。 FRTSDN权重学习过程可以并行或顺序实现。

图6.3 架构 与图6.2底部块相对应 张量展开为 大矩阵

首先讨论顺序方法,然后是并行实现。由于图6.2和6.3中的架构是等价的, 第二层权重学习与相同的最小二乘问题类似。

6.2.1 学习FRTDSN权重 - 顺序和并行 实现

在顺序实现中,通过Tikhonov

正则化优化问题来解决该问题,其中目标矩阵 \widetilde{TM} 被训练为:

$$\min_{\widetilde{\mathbf{V}}\widetilde{\mathbf{T}}^{T}} f = \widetilde{\mathbf{T}}\widetilde{\mathbf{M}} - \widetilde{\mathbf{V}}\widetilde{\mathbf{T}}^{T}\widetilde{\mathbf{H}}\widetilde{\mathbf{T}} \Big|_{F}^{2} + \lambda \widetilde{\mathbf{V}}\widetilde{\mathbf{T}} \Big|_{F}^{2}$$
(6.12)

方程(6.12)有闭式解。通过闭式解,通过下层和上层权重矩阵的耦合,学习过程更加有效。FRTDSN中的上层权重是通过下层权重确定性计算得出的。因此,它们不需要单独和独立地学习。FRTDSN中有可用的约束条件。

由于 $\overline{\mathbf{HT}}$ 是与下层权重相关的确定性特性,权重 $\overline{\mathbf{WM}_{(1)}}$ 和 $\overline{\mathbf{WM}_{(2)}}$ 需要使用仅有的一阶oracle信息[31]进行优化。 关于该方法的详细讨论可参见[5]。使用评估的梯度,可以通过可用的二阶优化方法和梯度下降实现来训练FRT DSN块[5]。 FRTDSN的训练过程需要大约 $_{10-17}$ 次迭代,每次迭代约有8次梯度评估。 权重矩阵 $\overline{\mathbf{WM}_{(1)}}$ 和 $\overline{\mathbf{WM}_{(2)}}$ 被初始化为经过调整的某些任意值,并使用验证集进行训练。训练通过在CPU集群上运行并行化。

基本上,深度学习训练中使用随机小批量训练。 当小批量形状增加时,梯度方法的分类性能准确性会降低。 由于最小二乘问题,FRTDSN分类准确性随着小批量大小的增长而增强。 并行训练方法允许扩展大型训练集。 FRT DSN通过并行管道方式进行并行训练。 它包括并行化矩阵运算,从而大大降低了计算复杂度。 更多详细信息请参见[5]。

6.3 分层粗糙贝叶斯模型: 数学框架

分层粗糙贝叶斯(HRB)模型是通过基于概率的粗糙集[2]和贝叶斯统计学[5]构建的分层粗糙集贝叶斯模型。贝叶斯方法是聚合具有不确定性管理的信息源的自然过程。数据来自多个来源。该模型通过具有专家意见的随机参数进行开发。预测分布基于通过观察条件化的感兴趣的数量。分层模型通过条件思考逐步发展。这里的主要关注点是不确定性来源的数量。联合分布表示为条件概率的乘积。分解选择基于对过程的了解以及简化的必要假设。条件模型比完全联合模型具有直观的表示。分层模型在估计组水平系数时考虑了个体和群体水平的变异。通过这种方式,它们在群体之间共享力量,从而减小了某些群体中存在的小样本大小效应。随机效应吸收了与固定效应无关的当前变异。这有助于实现固定效应估计的潜在较低偏差。随机效应还处理了未测量的变异。分层模型始终通过考虑相关群体变异而良好运行。为了提供数学

在介绍HRB的构建之前,首先对概率粗糙集进行了基本回顾,然后介绍了粗 糙贝叶斯模型提供的分类和估计任务。

6.3.1 决策论粗糙集

这里提供了粗糙集的简要回顾。 首先,考虑一个等价关系 $EV \subseteq UV \times UV$ 上的 UV上的等价关系 UV。 元组 aprs = (UV, EV) 描述了近似空间。 通过 UV/EV,EV扩展了 UV的划分。 论域UV被划分为以下五个不相交的区域,其中 $CV \subseteq UV$ [86]:

- (a) 正区域 POSR(CV)
- (b) 正边界区域 BNDR+(CV)
- (c) 边界区域 BNDR(CV)
- (d) 负边界区域 BNDR-(CV)
- (e) 负区域 NEGR(CV)

对象的五个区域 $xv \in UV$ 在数学上表示为:

$$POSR(CV) = \{xv \in UV | [xv] \subseteq CV\}$$
(6.13)

$$BNDR^{+}(CV) = \{xv \in UV | [xv] \cap CV = \emptyset \land [xv] \subseteq CV\}$$
 (6.14)

$$BNDR(CV) = \{xv \in UV | [xv] \cap CV = \emptyset \land [xv] \not\subseteq CV\}$$
 (6.15)

$$BNDR^{-}(CV) = \{xv \in UV | [xv] \cap CV = \emptyset \land [xv] \not\subseteq CV\}$$
 (6.16)

$$NEGR(CV) = \{xv \in UV | [xv] \cap CV = \emptyset\}$$
(6.17)

可以肯定地说,对象 $xv \in POSR(CV)$ 属于 CV,反之亦然,对象 $xv \in NEG$ R(CV) 属于CV。 很难确定一个对象 $BNDR^+(CV)$, BNDR(CV) 和 $BNDR^-(CV)$)是否属于 CV。 这考虑了等价类和近似集之间的重叠程度。 给定对象在 [xv] 中的条件下,对象属于CV的概率被估计为:

$$Prob(CV|[xv]) \frac{|CV \cap [xv]|}{|[xv]|}$$
(6.18)

在方程(6.18)中,|·|表示集合的基数。 因此,前面提到的五个区域可以等价地表示为:

$$POSR(CV) \frac{1}{4} \{xv \in UV | Prob(CV | [xv]) \frac{1}{4} \}$$
 (6.19)

$$BNDR^{+}(CV) = \{xv \in UV | 0 \le Prob(CV|[xv]) < 1$$
 (6.20)

$$BNDR(CV) = \{xv \in UV | 0 < Prob(CV|[xv]) < 1$$

$$(6.21)$$

$$BNDR^{-}(CV) = \{xv \in UV | 0 < Prob(CV | [xv]) \square 1$$
 (6.22)

$$NEGR(CV) \frac{1}{4} \{xv \in UV | Prob(CV | [xv]) \frac{1}{4} 0$$
 (6.23)

方程(6.19)、(6.20)、(6.21)、(6.22)和(6.23)通过值0和1来定义。 这些方程表示 Prob(CV|[xv])的定性值。 这里不考虑数量的大小。 粗糙集的结果通过某些概率近似参数化。 方程(6.19)、(6.20)、(6.21)、(6.22)和(6.23)中的值0和1可以用阈值 a 和 b 替换,使得 a < b。 元组(a b)通过概率指定了正、正边界、边界、负边界和负区域。

$$POSR_{(a,b)}(CV) = \{xv \in UV | Prob(CV | [xv]) \square a$$
(6.24)

$$BNDR_{(a,b)}^{-}(CV) \frac{1}{4} \{xv \in UV | b < Prob(CV|[xv]) \square a$$
 (6.27)

$$NEGR_{(a,b)}(CV) = \{xv \in UV | Prob(CV | [xv]) \square b$$
 (6.28)

上述的五个概率区域产生了五种决策[88,89,90,91,92]。 如果概率大于 a,则接受作为 CV的对象 xv。 如果概率小于 b,则拒绝作为 CV的对象 xv。 如果概率在 a和 b之间,则 CV的对象 xv既不接受也不拒绝。 这里进行了推迟决策。 阈值 a和 b被解释为分类所涉及的成本参数。

这些值通过降低分类风险来评估。 对于感兴趣的读者,关于粗糙集的更多见解可参考[86]。

6.3.2 基于粗糙贝叶斯模型的分类

现在重点介绍基于粗糙贝叶斯模型的分类。 从数据中推导出条件概率并不总是容易的。 贝叶斯定理是计算这些值的常用方法:

$$Prob(CV|[xv]) \frac{Prob(CV)Prob([xv]|CV)}{Prob([xv])}$$
(6.29)

再次 Prob([xv]) 表示为:

$$Prob([xv]) = Prob([xv]|CV)Prob(CV) + Prob([xv]|CV^{c})Prob(CV^{c})$$
(6.30)

在公式(6.30)中, Prob(CV|[xv]) 是给定 [xv] 的类 CV的后验概率, Prob(CV) 是类 CV的先验概率,而 Prob([xv]|CV) 是关于类 CV的 [xv] 的似然概率。 公式(6.30)中的概率 Prob([xv]) 可以通过采用贝叶斯定理的赔率形式来消除,其表达式为:

奇数概率
$$(V | [xv])$$
) ${\scriptstyle 14}$ 概率 $(V | [xv])$ = 概率 $(V | [xv])$ = 概率 $(V | [xv])$ + 概率 $(V | [xv])$ + 概率 $(V | [xv])$ = 概率 $(xv)|CV | (xv)|CV | (xv)|CV |$ 奇数 (概率 $(xv)|CV | (xv)|CV |$

概率阈值被视为奇数的阈值。 正区域表示为:

$$Prob(CV|[xv]) \square a \Leftrightarrow \frac{\mathbb{M} \times CV |[xv])}{\mathbb{M} \times CV |[xv]|}$$

$$\geq \frac{1}{-a} \Leftrightarrow \frac{\mathbb{M} \times ([xv]|CV)}{\mathbb{M} \times ([xv]|CV^c)} \cdot \frac{\mathbb{M} \times cv}{Prob(CV^c)} \geq \frac{a}{1-a}$$
(6.32)

将对等式(6.32)取对数得到:

$$\frac{\log 概率([xv]|CV)}{概率([xv]]CV^c} + \frac{对数概率(CV)}{概率(CV)} \ge y \Rightarrow \frac{a}{1-a}$$
 (6.33)

相同的语句也适用于负面和边界区域。 这五个区域表示为:

$$POSR_{(a',b')}^{BR}(CV)$$
 ¼ $\{xv \in UV |$ 対数概率 $([xv]|CV)$ 概率 $([xv]|CV^c) \ge a'$ (6.34)

$$BNDR_{(a,b)}^{BR^+}(CV)$$
 ¼ $\{xv \in UV | b' \le$ 対数概率 $([xy]CV) \over Prob([xv]|CV^c) < a'$ (6.35)

$$BNDR_{(a',b')}^{BR}(CV)$$
 ¼ $\{xv \in UV \mid b' < \frac{対数概率([xy|CV)}{Prob([xv]|CV^c)} < a'$ (6.36)

$$BNDR_{(a,b)}^{BR^{-}}(CV)$$
 ¼ $\{xv \in UV \mid b' < \frac{対数概率([xy|CV)}{Prob([xv]|CV^{c})} \le a'$ (6.37)

$$NEGR_{(d',b')}^{BR}(CV)$$
 1/4 $\{xv \in UV | \log \frac{Prob([xv]|CV)}{Prob([xv]|CV^c)} \le b'$ (6.38)

在公式(6.34), (6.35), (6.36), (6.37)和(6.38)中, a和 b表示为:

$$a' = \log \frac{Prob(CV^c)}{Prob(CV)} + \log \frac{a}{1 - a}$$
(6.39)

$$b' = \log \frac{Prob(CV^c)}{Prob(CV)} + \log \frac{b}{1-b}$$
(6.40)

这种解释通过消除 *Prob*([xv])来简化计算。 有兴趣的读者可以参考[86]了解粗糙集的更多知识。

6.3.3用于估计概率的粗糙贝叶斯模型

朴素粗糙贝叶斯模型允许根据朴素贝叶斯分类进行条件概率估计。 信息表表示为[88, 89,90, 91, 92]:

$$SV = (UV, Bt, \{V_b | b \in Bt\}, \bigoplus_b | b \in B\})$$
 (6.41)

这里 UV是宇宙, Bt代表属性集合, V_b 表示对 $b \in Bt$ 的值,而 $I_b: UV \rightarrow V_b$ 是信息函数。 基于方程(6.41)的贝叶斯解释考虑以下表达式:

概率描述
$$x\sqrt[n]{|CV|}$$
 ¼概率 $\sqrt[n]{|CV|}$ ¼ $\prod_{i=1}^n$ 概率 $\sqrt[n]{|CV|}$ (6.42)

概率描述
$$x_i$$
]| CV^c) ¼概率 $(v_1, \ldots, v_n | CV^c)$ ¼ $\prod_{i=1}^n$ 概率 $(v_i | CV^c)$ (6.43) 方程 (6.42) 和 (6.43) 重新表达为:

$$\log \frac{\mathbf{概率描述} x \sqrt{|CV|}}{\mathbf{概率描述} x \sqrt{|CV|}} \ge \frac{\text{对数概率}(CV)}{\mathbf{m}} + \text{对数} \frac{a}{1-a}$$

$$\Leftrightarrow \sum_{i=1}^{i_n} \text{对数概率}(v_i|CV) \ge \frac{\text{对数概率}(CV)}{\mathbf{m}} + \text{对数} \frac{a}{1-a}$$

$$(6.44)$$

这里概率项概率(CV) 和概率($v_i | CV$) 被估计为:

概率
$$(CV) = \frac{\mid CV \mid}{\mid UV \mid}$$
 (6.45)

概率
$$(v_i|CV)$$
 ¼ $\frac{|st(b_i, v_i) \setminus CV|}{|CV|}$ (6.46)

这里 $st(b_i, v_i)$ 通过 $st\ b_i, v_i$ 来定义 () ¼ $\{xv \in UV | I_{b_i}(xv) = v_i \}$. 同样地概率项概率 (CV^c) 和概率 $(v_i|CV^c)$ 被估计。方程 (6.34), (6.35), (6.36), (6.37), 和 (6.38) 被重写为:

$$POSR_{(a',b')}^{BR}(CV) \% V \in UV \mid \sum_{i=1}^{n} \overline{\text{对数概率}(v_i|CV)} \underset{\overline{\text{概率}(v_i|CV^c)}}{\underline{\text{wa}}} \ge a'$$
 (6.47)

$$BNDR_{(a,b)}^{BR^+}(CV)$$
 ¼ $V \in UV \mid b' \leq \sum_{i=1}^n \overline{\text{网数概率}(v_i \mid CV)} \over \overline{\text{概率}(v_i \mid CV^c)} < a'$ (6.48)

$$BNDR_{(a',b')}^{BR}(CV)$$
 ¼ $\{V \in UV \mid b' < \sum_{i=1}^{n} \overline{\text{对数概率}(v_i \mid CV)} \atop \overline{\text{概率}(v_i \mid CV^c)} < a'\}$ (6.49)

$$NEGR_{(a',b')}^{BR}(CV)$$
 ¼ $\{V \in UV | b' < \sum_{i=1}^{n} \overline{N}$ 数概率 $(v_i | CV)$ $\leq a' \}$ (6.51)

6.3.4 分层粗糙贝叶斯模型

基于前面章节中提出的数学公式,现在介绍HRB模型[85]。 它以分层形式表示多个级别。 通过使用贝叶斯统计进行后验分布的参数估计。 子模型被集成,从而演化出分层模型。 贝叶斯定理结合观测数据

并处理存在的不确定性。 这导致了需要关于先验分布的额外证据的后验分布。 贝叶斯统计将参数视为随机变量。 它通过主观信息使用验证了所述参数 上的假设。 这个模型更加稳健,后验分布对分层先验的敏感性较小。 分层 模型在多参数问题上有效地工作,形成了计算框架。

在这个过程中,粗糙的贝叶斯层次模型使用两个重要的方面来推导后验分布 [85]:

- (a) 超参数形成先验分布的参数。 它与模型的参数有所不同,与所分析的系统有关。 在这里,可以考虑单个值,也可以迭代到超参数的概率分布。
- (b) 超先验形成先验分布的分布。 当使用共轭先验时,它们会出现。 这变得抽象,并且与实际问题无关。

为了验证上述粗糙贝叶斯层次结构的组成部分,考虑具有参数 α 和均值和方差分别为1的随机变量Y,使得Y $|\alpha \sim N(\alpha, 1)$ 。 参数 α 具有先验分布,通过正态分布表示,使得Y $|\vartheta \sim N(\vartheta, 1)$ 。

参数 ϑ 通过标准正态分布 N(0,1) 进行建模。 超参数分布为 N(0,1),显示超先验分布。 当添加另一个参数时,Y的分布会发生变化,使得Y $\mid \alpha, \vartheta \sim N(\vartheta, 1)$ 。 当存在另一个阶段时, ϑ 遵循均值为 δ 和方差为 ρ 的正态分布,即 $\vartheta \sim N(\vartheta, \rho)$ 。 这里 δ 和 ρ 是超参数,它们分布为超先验分布。

- (a) 第一阶段: $v_i | \alpha_i, \omega \sim$ 概率($v_i | \alpha_i, \omega$.
- (b) 第二阶段: $\alpha_i | \omega \sim$ 概率($\alpha_i | \omega$)
- (c) 第三阶段: $\omega \sim$ 概率(ω)

在第一阶段中,似然性表示为概率 $(y_j|\alpha_j,\omega)$,先验分布为概率 (α_j,ω) 。 似然性仅通过 α_i 依赖于 ω 。 第一阶段的先验分布为:

概率
$$(\alpha_i, \omega) =$$
概率 $(\alpha_i | \omega)$ 概率 (ω) (6.52)

分布 ω 是具有超先验分布概率(ω)的超参数。现在后验分布变为:

概率
$$(\omega, \alpha_j | y)$$
 \propto 概率 $(\alpha_j | \alpha_j)$ 概率 $(\alpha_j | \alpha_j)$ (6.53)

概率
$$(\omega, \alpha_j | y) \propto$$
概率 $(y_j | \alpha_j)$ 概率 (α_j, a) (6.54)

6.4 复合 FRTDSN-HRB 模型

考虑到第 6.2 和第 6.3 节中 FRTDSN 和 HRB 的数学公式,这里开发了复合 FRTDSN-HRB 模型。 对于这个数学框架的发展动机采用了 [5] 中的观点。 复合 FRTDSN-HRB 模型在下图中以示意图的形式表示。 考虑了一个无向模型,通过联合分布概率 $(\mathbf{s},\mathbf{v}^{(1)},\mathbf{v}^{(2)},\mathbf{v}^{(3)})$ 来定义。 给出了相关信息概率 $(\mathbf{s},\mathbf{v}^{(1)},\mathbf{v}^{(2)},\mathbf{v}^{(3)})$ 以及先验项概率 $(\mathbf{v}^{(3)})$ 。 参数 $\mathbf{s}\in\{0,1\}^H$ 表示可见单元集合和隐藏单元序列 $\mathbf{v}^{(1)}\in\{0,1\}^{I_1}$, $\mathbf{v}^{(2)}\in\{0,1\}^{I_2}$,和 $\mathbf{v}^{(3)}\in\{0,1\}^{I_3}$ 。 变分界限用向量参数 θ 重写为:

日志概率()
$$\geq$$
秒
$$\sum_{\mathbf{v}^{(1)} = \mathbf{v}^{(2)} = \mathbf{v}^{(3)}} P(\mathbf{v}|\mathbf{s}; \boldsymbol{\vartheta})$$
日志概率 $\left(\mathbf{s}, \mathbf{v}^{(1)}, \mathbf{v}^{(2)} \mid \mathbf{v}^{(3)}\right) + \mathcal{H}(P)$
$$+ \sum_{\mathbf{v}^{(3)}} P\left(\mathbf{v}^{(3)} \mid \mathbf{s}; \boldsymbol{\vartheta}\right)$$
日志概率 $\left(\mathbf{v}^{(3)}\right)$ (6.55)

这种分解考虑了贪婪递归预训练,其中保留了条件概率 $Prob(\mathbf{s},\mathbf{v}^{(1)},\mathbf{v}^{(2)}|\mathbf{v}^{(3)})$ 。 然而,式(6.55)中的下界变化被最大化。 这种最大化将 $Prob(\mathbf{v}^{(3)})$ 替换为近似条件后验概率 $P(\mathbf{v}^{(3)}|\mathbf{s})$ 。 与其考虑一个额外的无向层 $Prob(\mathbf{v}^{(3)})$,不如在 $\mathbf{v}^{(3)}$ 上放置一个先验,允许类别层次学习和有用的类别表示。 术语 $Prob(\mathbf{s},\mathbf{v}^{(1)},\mathbf{v}^{(2)}|\mathbf{v}^{(3)})$ 表示条件FRTDSN:

概率 熵.(使量
$$\theta$$
,变量 θ 和变量 θ)
$$= \frac{1}{Z_{\theta_{\widetilde{\boldsymbol{\psi}}},\overline{\mathbb{Q}}\mathbb{R},\theta}} \text{和指数} \left(\sum_{ij}^{\mathbb{Q}\mathbb{R},\overline{y}} \tilde{\boldsymbol{m}}_{i} w_{j}^{\theta} \right) \text{D} \prod_{jl}^{\mathbb{Q}\mathbb{R},p} \sum_{jl}^{\mathbb{Q}\mathbb{R},p} \tilde{\boldsymbol{m}}_{i}^{\theta} \right) \prod_{jl} \sum_{lk}^{\mathbb{Q}\mathbb{R},p} \tilde{\boldsymbol{m}}_{i}^{\theta} \sum_{lk}^{\mathbb{Q}\mathbb{R},p} \tilde{\boldsymbol{m}}_{i}^{\theta}$$
 (6.56)

假设模型通过两级划分突出显示, $\mathbf{p} = \{\mathbf{p}^s, \mathbf{p}^b\}$ 定义了一个固定的两级树层次结构。 标准FRTDSN假设参数共享的层次结构是固定的。 非参数嵌套的中国餐馆先验放置在 \mathbf{p} 上方。 这种情况被视为一个过程,顾客在无限桌子的餐馆里登陆。 这里的第n个顾客坐在第k张桌子上:

概率
$$p_n = k|p_1 \dots p_{n-1}| \frac{1}{4} \begin{cases} \frac{n^k}{n-1+\eta}, n^k > 0 \\ \frac{\eta}{n-1+\eta}, ow \end{cases}$$
 (6.57)

在公式(6.57)中, n^k 是桌子k上早期顾客的数量, η 是浓度参数。 通过马尔可夫链蒙特卡洛算法执行不同层次上模型参数的相应推断。 在将似然项与中国餐馆过程先验聚合后,上述类别分配的后验为:

概率
$$\left(\mathbf{p}_{n}|\boldsymbol{\omega}_{n},\mathbf{p}_{-n},\boldsymbol{\rho}^{(1)}\right)$$
 < 概率 $\left(\boldsymbol{\omega}_{n}|\boldsymbol{\rho}^{(1)},\mathbf{p}_{n}\right)$ 概率 $\left(\mathbf{p}_{n}|\mathbf{p}_{-n}\right)$ (6.58)

在方程(6.58)中, \mathbf{p}_{-n} 表示变量, \mathbf{p} 对于除了 n之外的所有观察。 基于分配 y的条件和 $\mathbf{v}^{(\cdot)}$ n² 取决于多项式单元

 $\mathbf{v}_n^{(3)}$ 状态朝向每个输入n。 它们通过吉布斯条件进行采样:

概率
$$\left(\mathbf{v}_{in}^{(3)} \mid \mathbf{v}_{n}^{(\mathcal{P}}, \mathbf{v}_{-\hat{\mathbf{T}}}^{(3)}, \mathbf{y}_{n}\right) \propto$$
概率 $\left(\mathbf{v}_{n}^{(1)} \mid \mathbf{v}_{n}^{(1)}\right)$ 概率 $\left(\mathbf{v}_{in}^{(3)} \mid \mathbf{y}_{in}\right)$ (6.59)

在方程(6.59)中,第一项是逻辑函数的乘积,如下所示:

概率
$$\left(\mathbf{v}_{n}^{()2} \mid \mathbf{v}_{n}^{()3}\right) = \prod_{j}$$
概率 $\left(\mathbf{v}_{jn}^{(2)} \mid \mathbf{v}_{n}^{(3)}\right)$ (6.60)

概率
$$\binom{2}{j} = 1 | \mathbf{v}_n^{(3)} = \frac{1}{1 + \exp\left(-\sum_k \tilde{V}_{jk}^{(3)} v_k^{(2)}\right)}$$
 (6.61)

基于条件的调整进一步微调低级

FRTSDN参数 $\widetilde{\psi} = \left\{\widetilde{\mathbf{V}}, \mathbf{E}$ 医通过对条件FRTSDN进行近似最大似然学习来实现的。低级FRTSDN特征被微调,这显著提高了模型的性能。 现在,为了查看预测结果,考虑一个测试输入 \mathbf{s}_r ,可以快速推断出关于近似后验over $\mathbf{v}_r^{()3}$ 的信息。 这使用均值场和完全Gibbs采样器来教授从后验中考虑类别分配的近似样本。 在实践中,更快的推断修复了主题 ω_r 。 除此之外,边际似然是

近似地,使得 $\mathbf{v}^{()3}$ 属于 \mathbf{p} ,类别。 这假设样本特定过程很好地近似于类特定过程。 因此,不是聚合样本特定过程,而是通过积分计算近似值来进行近似。

概率
$$\left(\mathbf{v}_{t}^{(\)3}\mid\mathbf{p}_{t},Y^{(1)}\right)$$
 $\omega = \int$ 概率 $\left(\mathbf{v}_{t}^{(\)3}\mid\boldsymbol{\omega},\boldsymbol{\gamma}\right)$ 概率 $\left(Y_{t}\mid\boldsymbol{Y}_{\mathbf{p}_{t}}^{(\)1}\right)dY_{t}$ \approx 概率 $\left(\mathbf{v}_{t}^{(\)3}\mid\boldsymbol{\omega},Y_{\mathbf{p}_{t}}^{(\)1}\right)$ (6.62)

将似然项与中餐馆先验概率(\mathbf{p}_{-})结合起来,可以有效地推断近似后验,考虑到类别分配。 近似后验计算所需的时间最少,这对于进行破产预测任务至关重要。

第7章 使用的数据集

现在我们介绍了用于进行多个实验的不同破产数据集。 对于这项研究工作,我们考虑了以下破产数据集。 这些数据集经过重组,以突出第6章中介绍的复合FRTSDN-HRB的成功:

(a) 韩国建筑公司[32]: 韩国建筑公司的财务数据被调整并应用于提出的预测模型。数据取自公司的财务报表,为期10年。NICE DnB的财务数据包含了韩国所有建筑公司的数据,它们被分类为破产和正常。考虑的破产公司的数据来自2007年至2016年的时期。这些公司在此期间达到了破产状态。正常公司在2016年12月并未处于破产状态。考虑了1686个破产公司和30,489个正常公司。考虑了破产公司破产后1年的数据。这有助于有效观察1年后的破产水平。其他公司使用了2015年的财务数据。现在根据累积数据,开发并使用了如表7.1所示的参数进行实验。

每个变量都被视为比率,以便与资本规模或公司销售额相关联。 根据资本规模的分类,公司被分为小型、中型和大型公司。

表7.2和7.3突出了考虑韩国所有建筑公司及其相关矩阵的模型参数的描述性统计数据。

根据资本规模,建筑公司被分类为小型、中型和大型公司。 韩国小型建筑公司的资本价值低于7亿韩元。中型韩国建筑公司的资本范围在7亿到1000亿韩元之间。大型韩国建筑公司的资本超过1000亿韩元。

表格 7.1 破产变量及其重要性

变量	重要性
EBIT/TA	指的是利息和税前利润与总资产的比率
EBT/CAP	指的是税前利润与资本的比率
WC/TA	指的是流动资本与总资产的比率
WC/S	指的是流动资本与销售额的比率
CA/TA	指的是流动资产与总资产的比率
CA/CL	指的是流动资产与流动负债的比率
C/TA	指的是现金与总资产的比率
C/CL	指的是现金与流动负债的比率
$\log_e TA$	指的是总资产的自然对数值
S/CAP	指的是销售额与资本的比率
S/CA	指的是销售额与流动资产的比率
S/TA	指的是销售额与总资产的比率

表格 7.2 所有韩国建筑公司参数的描述性统计

变量	平均值	中位数	标准差	
WC/S	-14.09	-0.04	310.04	
C/CL	0.69	0.05	5.89	
S/CA	4.55	3.38	7.04	
EBIT/TA	-0.16	0.06	0.99	
CA/TA	0.65	0.65	0.35	
WC/TA	-0.35	-0.05	6.89	
S/TA	1.78	1.35	1.86	
EBT/CAP	-1.89	0.14	77.79	
S/CAP	121.55	10.86	4875.35	
$\log_e TA$	10.48	10.48	1.96	
C/TA	0.08	0.05	0.20	
CA/CL	3.69	1.20	18.86	

赢了。 破产公司相对于资本规模的比率如表7.4所示。有一些大型建筑公司的破产比率相对较高。 有大量小型建筑公司的破产比率相对较低。 大型建筑公司的破产比率很高,因此整体破产损失也很高。

(b) 美国和欧洲非金融公司[33]: 美国和欧洲非金融公司的财务数据被调整并应用于提出的预测模型。 这里的财务数据来自于1000家美国和350家欧洲非金融公司。 欧洲数据集包括来自欧盟国家的公司,其中德国有50家公司,法国有50家公司,其余公司属于其他国家。 英国有55家公司。这两个数据集分别独立处理,因为美国以外的公司的财务比率与美国的统计数据不直接可比。 美国以外的公司在财务方面存在差异。

表7.3 所有韩国建筑公司参数的相关矩阵

S/CAP	EBT/CAP	0.89
CA/CL	C/CL	0.79
S/TA	S/CA	0.69
C/TA	C/CL	0.48
C/TA	CA/TA	0.48
S/TA	CA/TA	0.38
EBT/CAP	WC/S	0.35
C/TA	S/TA	0.25
EBIT/TA	S/CA	0.20
CA/CL	C/TA	0.20
CA/CL	CA/TA	0.19
WC/TA	S/CA	-0.69
WC/TA	EBIT/TA	-0.64
S/TA	WC/TA	-0.48
$log_e TA$	S/TA	-0.38
C/TA	$\log_e TA$	-0.35
CA/TA	S/CA	-0.35
$\log_e TA$	CA/TA	-0.27
log_eTA	C/CL	-0.27
CA/CL	$\log_e TA$	-0.27
$log_e TA$	S/CA	-0.21
CA/CL	S/CA	-0.10
	·	

表7.4 与资本规模相关的破产比率

资本规模(以韩元计)	破产公司	正常公司	破产比率
<7亿韩元	286	10,896	2.62%
7亿韩元 - 1000亿韩元	1169	18,306	6.38%
>1000亿韩元	231	1287	17.95%
总计	1686	30,489	5.53%

商誉处理、资产估值实践、附带责任报告、会计技术等。不考虑国家风险。对于每个变量,计算2007年至2016年的平均值。10年平均值通过评级机构采用的评级过程跟踪,以实现稳定性并最小化商业周期效应。这种更长期的视角通过相关财务比率的10年平均值来实施。评级稳定性在数学上得到满足。在预测破产时,破产评级显示出很高的自相关性,关键输入变量是前一年的评级。标准普尔评级机构将评级分配给2017年的目标类别。评级通过一个单一的尺度来表达,评级机构考虑了几个不同的国家因素。考虑的参数将公司描述为业务地位和财务指标两个类别。

前者通过行业风险、规模、特性、管理技能等因素来描述公司。公司规模通过市值、资产、股权、现金流等来衡量。公司偿还债务的能力是通过公司规模来确定的。公司规模与多样化和市场力量之间存在相关性。公司的声誉是一个难以衡量的指标。这个因素是通过内部人员和机构持股的信息来确定的。行业风险代表公司在特定行业或市场对外部商业因素的敏感性。声誉和行业风险只考虑到一定程度。财务指标也在企业破产评级过程中被考虑。财务指标分为盈利能力比率、活动能力比率、流动性比率、杠杆比率和市场价值比率。

盈利能力比率描绘了资产管理对利润的影响,以及公司的融资和流动性对利润的影响。 盈利能力比率包括绝对利润规模、总资产回报率、股东权益回报率、销售回报率、营业利润率和净利润率。 活动比率展示了资产管理的有效性。 资产管理对公司破产评级的影响是间接的,因为资产管理属于财务决策领域。 流动比率代表了流动性比率。 其他参数,如速动比率和现金比率也被使用。 杠杆比率通过总债务与总资产的比例来描述。 公司偿还债务的能力是通过生成的利润来评估的。 市场价值比率反映了过去的公司活动和未来的发展方向。 股票回报与市场指数、股票的高/低价格和股息收益率之间的相关性对于破产预测也被认为是重要的。

表7.5显示了用于覆盖美国和欧洲公司的输入变量列表。实验中选择的输入变量在表7.6中呈现。美国数据集包含从价值线和S&P's数据库获取的81个输入变量。欧洲数据集仅涵盖斜体表示的部分输入变量。输入变量分为九个类别,包括公司规模、企业声誉、盈利能力比率、活动比率、资产结构、业务状况、流动性比率、杠杆比率和市场价值比率。特征选择步骤从表7.6中的集合中选择参数子集。公司被分类为九个输出评级类别。 主成分分析对数据性质进行了详细评估。从原始的81个变量(美国数据集)和43个变量(欧洲数据集)中考虑了具有大于1的特征值的十四个主成分。第一个主成分分别占总方差的50.20%和20.38%。

美国数据集代表了与公司规模相关的几个类别的输入变量。 第二个组成部分展示了公司的资本市场地位。 欧洲公司的第一个组成部分标记为资本市场地位。 第二个组成部分显示了公司的规模。

表7.5考虑的破产预测输入变量

公司规模		业务状况		
TA	总资产	ETR	有效税率	
TC	总资本	S gr	去年销售增长	
S	销售额(去年)	S exp	预计S的增长(未来5年)	
TS	12个月滚动销售额	SGAE	销售和管理费用	
CF	现金流	流动性比	<u>率</u>	
Е	股权	CR	流动比率	
EV	企业价值	资本回报率	现金比率	
FV	公司价值	现金/公司价值	现金与公司价值比	
CE	资本支出	现金	现金	
SC	规模类别	NCWC	非现金工作资本	
MC	市值	杠杆比率		
电视	交易量	BV/E	账面价值与股权比	
NS	流通股数	BD/TC	账面债务与总资本比	
企业声誉	<u> </u>	EV/TC	企业价值与总资本比	
ΙΗ	由共同基金持有的股份	EV/BV	企业价值与账面价值比	
lnH	由内部人持有的股份	MC/TD	市值与债务比	
盈利能力)比率	TD	总债务	
EBIT	利息和税前利润	CF/TD	现金流与总债务比	
EAT	税后收益	MD/E	市场债务与股权比	
NI	净利润	MD/TC	市场债务与总资本比	
TNI	过去12个月的净利润	NG	净负债率	
NM	净利润率	MD/ EBITDA	市场债务与EBITDA比	
OM		市值比率		
ROA	总资产回报率	P var	3-年股价变动	
ROE	股东权益回报率	贝塔	贝塔回归系数 (3年)	
ROC	资本回报率	VLB	Value line贝塔	
EBITDA	EBIT增加折旧和摊销	Cor	股票回报与市场指数的相关 性	
EV/ EBITDA	企业价值与EBITDA之比			
HiLo	股票的最高/最低价格			
EV/	企业价值与EBIT之比	Div	股息	
EBIT				
RE/TA	留存收益与总资产之比	Div/P	股息与股票价格之比	
活动比率	3	EPS	每股收益	
EV/S	企业价值与销售额之比	EPS gr	每股收益增长(过去5年)	
净流动资本净	净流动资本增长率	预期每股收益	预期每股收益增长率(未来5 年)	
增长率			- L	
增长率 企业价值/营业额	企业价值与过去销售额的比率	市现率	股价与现金流量的比率	

(继续)

表7.5 (继续)

公司规模	公司规模		
S/TA	销售额占总资产比	市盈率	12个月滚动股价与盈利比
OR/TA	营业收入占总资产比	前市盈率	预测股价与盈利比
WC/S	营运资本占销售额比	PEG	股价与盈利比与每股盈利增 长比
现金/S	现金占销售额比	市净率	市净率
NCWC/ S	非现金营运资本占销售额比	留存收益	留存收益
资产结构		RR	再投资率
FA/TA	固定资产占总资产比	公关	支付比率
IA/TA	无形资产占总资产比	PS	股价销售比
WC/TA	营运资本占总资产比	P	股价
Dep	折旧		

表**7.6** 破产 预测潜在输入 变量

输入变量	输入变量
流动比率	保留收益/总资产
净利润率	市净率
总负债	长期债务/总资本
股东权益回报率	销售额/固定资产
收益	市场股权价值
净利润	资本回报率
规模类别	无形资产/总资产
股票回报率	共同基金
利息覆盖率	总债务/总资产
总资产	总资产回报率
总债务/总资产	营业利润率
现金流	KMV Merton概率
短期债务	贝塔回归系数
快速比率	现金比率
股息收益率	股票的最高/最低价格
市值	税率

表7.7 破产变量及其重要性

属性	重要性
行业风险	公司承受的行业影响风险
管理风险	公司承受的管理风险
财务灵活性	公司的财务灵活性
信誉度	公司对其债权人的信誉度
竞争力	公司在市场上的整体竞争力
经营风险	公司经营中涉及的风险

(c) UCI机器学习库破产数据库[34]: UCI机器学习库的破产数据库应用于提出的预测模型。 该数据库由J. Uthayakumar和M. Nadarajan于2013年9月创建。 为了验证复合FRTSDN-HRB的可信度,数据集进行了相当程度的重组,以进行多个实验。数据库最初有175个实例,具有六个属性,对应于定性破产参数。 数据库中没有任何缺失的属性值。 通过适应原始数据集的行为,这些实例增加到了1000个[5]。

新数据集中有400个破产公司和600个正常公司。 数据集的不同属性在表 7.7中简要介绍。

第8章 实验结果

现在,通过提出的复合FRTDSN-HRB方法,对预测破产的结果进行了重点介绍,包括(a)韩国建筑公司,(b)美国和欧洲非金融公司的数据集,以及(c)UCI机器学习库的破产数据库。 还进行了FRTDSN-HRB与FSVM、MFS VM、贝叶斯、危险、混合逻辑和粗糙贝叶斯模型的比较研究。 这些模型是在配备有英特尔Core i7处理器、6.40 GHz、128 GB RAM和16 MB缓存的个人电脑上通过Matlab 9.1实现的。 实验结果以截断点、第一类和第二类错误、最佳截断点以及随机选择的样本在多个完整和中等商业周期中的分布方式呈现。

8.1 截断点,第一类和第二类错误:韩国建筑公司

当公司的拟合概率高于截断点时,被认为是破产的,否则不是。当公司破产并被放置在非破产类中时,错误是第一类,否则是第二类。为了突出截断点、第一类和第二类错误之间的关系,总样本被分为训练样本和保留样本。训练样本中有1686家破产公司和30,489家正常公司。 训练样本对所有技术进行先验概率评估。 通过分类获得的保留样本计算错误类型。 训练样本对所有模型进行先验概率计算,保留样本计算两种类型的错误。 考虑到类别中的公司数量,错误率被计算为错误分类的公司数量。 当截断点向前移动时,第一类错误增加。 随着第二类错误的减少,截断点增加。 当获得的概率低于一时,第一类错误率低于一。

表8.1 不同截断点的预测结果(韩国公司)

	FRTDSN	-HRB		FSVM	FSVM		
截断点	类型I	类型II	类型I + II	类型I	类型II	类型I + II	
50%	0.3628	0.0006	0.3634	0.4886	0.0148	0.5034	
0.50%	0.0201	0.2754	0.2955	0.0086	0.5596	0.5682	
3.80%	0.2069	0.0369	0.2438	0.1069	0.2169	0.3238	
	MFSVM			贝叶斯			
截断点	类型I	类型II	类型I + II	类型I	类型II	类型I + II	
50%	0.4097	0.0127	0.4224	0.3754	0.0796	0.4550	
0.50%	0.0086	0.4896	0.4982	0.0269	0.5364	0.5633	
3.80%	0.1779	0.2499	0.4278	0.1164	0.2164	0.3328	
	危险			混合逻辑	混合逻辑		
截断点	类型I	类型II	类型I + II	类型I	类型II	类型I + II	
50%	0.8928	0.0007	0.8935	0.4286	0.0148	0.4434	
0.50%	0.0804	0.2548	0.3352	0.0089	0.5796	0.5885	
3.80%	0.3575	0.0364	0.3939	0.1072	0.2189	0.3261	
		粗糙贝叶	†斯				
截断点		类型I	类型I		类型II		
50%		0.4886	0.4886		0.0124		
0.50%		0.0069	0.0069		0.4897 0.4		
3.80%		0.1272	0.1272		0.2165 0.343		

使用贝叶斯模型时,其值为零或大于一。即使第二类错误率可能超过零,截断点仍被视为一。为了评估破产模型,采用分类准确率作为验证方法。在选择50%的截断点时,当难以纳入先验概率和成本时,有一些重要的方法。行业失效的0.50%截断率被假定为样本概率,即群组成员的先验概率。

通过3.8%的截断点,最小化了第一类和第二类错误的总和。表8.1显示了基于几个截断点的结果。考虑到每个模型的第一类或第二类错误率。第一类和第二类错误的总和由第一类+第二类给出。当截断点取50%时,贝叶斯模型在验证时比其他模型表现更好,考虑到第一类错误。由于使用了第一类+第二类错误,因此在截断点0.50%和3.8%处,FRTDSN-HRB、FSVM、MFS VM、hazard、mixed logit和rough Bayesian模型在性能上表现出色。然而,这些结果并不能传达模型的真实质量。存在一些缺点。当验证方法表示两个错误的总和时,存在对于误分类的等价成本的虚假情况。第二类错误成本比第一类错误低30倍。当发生第一类错误时,债权人会失去全部本金。这涉及机会成本。

这些结果通过类型II错误得出。 在每个组中,公司数量的差异在此分析中被忽略。 正常公司的数量大干破产公司。

8.2截断点, 类型I和类型II错误: 美国和欧洲非金融公司

类似于韩国建筑公司数据集,对美国和欧洲非金融公司进行了类似的分析。如果公司的概率高于截断点,则将其分类为破产。如果公司破产,而分类结果显示其为正常,则错误类型为类型I;否则为类型II。为了表示截断点、类型I和类型II错误之间的关联,总样本被随机平均分为训练样本和保留样本。美国训练样本包括800个正常公司和200个破产公司。欧洲训练样本有300个正常公司和50个破产公司。对于所有模型,训练样本计算先验概率,保留样本进行分类以得出两种错误类型。结果在表8.2和8.3中显示了几个截断点。错误率计算为错误分类的公司数量与整个类别公司数量的比例。分类的准确性应用于验证方法,以便对预测模型进行比较分析。结果在不同截断点下在表8.2和8.3中显示。

8.3 截断点,第一类和第二类错误: UCI机器 学习库破产数据库

现在介绍UCI机器学习破产数据库的分析。

与之前的情况一样,当截断点小于其拟合概率时,公司被归类为破产类。第一类和第二类错误对于破产公司的情况与之前所述的类似。 当总样本随机且平均地分为训练样本和保留样本时,截断点、第一类和第二类错误之间的关联得到强调。 训练样本包括600个正常公司和400个破产公司。 考虑所有模型,训练样本计算先验概率,保留样本进行分类以计算两种错误类型。 结果在表8.4中显示了几个截断点。 错误率计算为与整个组中的公司相比被错误分类的公司数量。 分类准确度应用于验证方法,以比较破产模型。

表8.2 不同截断点的预测结果(美国公司)

	FRTDSN	FRTDSN-HRB			FSVM		
截断点	类型I	类型II	类型I + II	类型I	类型II	类型I + II	
50%	0.3528	0.0001	0.3529	0.4886	0.0148	0.5034	
0.50%	0.0600	0.2748	0.3348	0.0269	0.5096	0.5365	
3.80%	0.3044	0.0348	0.3392	0.0650	0.1969	0.2619	
	MFSVM			贝叶斯			
截断点	类型I	类型II	类型I + II	类型I	类型II	类型I + II	
50%	0.3096	0.0124	0.3220	0.3650	0.0696	0.4346	
0.50%	0.0089	0.4886	0.4975	0.0057	0.4860	0.4917	
3.80%	0.0976	0.2186	0.3162	0.1060	0.1964	0.3024	
	危险			混合逻辑	混合逻辑		
截断点	类型I	类型II	类型I + II	类型I	类型II	类型I + II	
50%	0.7528	0.0001	0.7529	0.4086	0.0248	0.4334	
0.50%	0.0501	0.2548	0.3049	0.0069	0.5496	0.5565	
3.80%	0.3470	0.0269	0.3739	0.1069	0.2079	0.3148	
		粗糙贝叶	-斯				
截断点		类型I	类型I		类型II		
50%		0.4089	0.4089		0.0224		
0.50%		0.0168	0.0168		0.4896		
3.80%		0.1872	0.1872		0.2065 0.393		

表8.3 不同截断点的预测结果(欧洲公司)

	FRTDSN-I	HRB		FSVM			
截断点	类型I	类型II	类型I + II	类型I	类型II	类型I + II	
50%	0.3096	0.0121	0.3217	0.3450	0.0596	0.4046	
0.50%	0.0086	0.1086	0.1172	0.0096	0.4048	0.4144	
3.80%	0.0875	0.1986	0.2861	0.1055	0.1969	0.3024	
	MFSVM			贝叶斯			
截断点	类型I	类型II	类型I + II	类型I	类型II	类型I + II	
50%	0.3454	0.0699	0.4153	0.3660	0.0696	0.4356	
0.50%	0.0148	0.4050	0.4198	0.0191	0.4169	0.4387	
3.80%	0.1054	0.1860	0.2914	0.1054	0.1964	0.3018	
	危险			混合逻辑	混合逻辑		
截断点	类型I	类型II	类型I + II	类型I	类型II	类型I + II	
50%	0.7828	0.0002	0.7830	0.3686	0.0219	0.3905	
0.50%	0.0601	0.2144	0.2745	0.0069	0.5096	0.5165	
3.80%	0.3270	0.0160	0.3430	0.1060	0.2077	0.3137	
		粗糙贝叶	斯				
截断点		类型I		类型II		类型I + II	
50%		0.4086	0.4086			0.4307	
0.50%		0.0164	0.0164		0.4896		
3.80%		0.1969		0.2040		0.4009	
						-	

表8.4 不同截断点的预测结果	(UCI机器学习库
数据库)	

	FRTDSN-	HRB		FSVM		
截断点	类型I	类型II	类型I + II	类型I	类型II	类型I + II
50%	0.3428	0.0006	0.3434	0.4896	0.0148	0.5044
0.50%	0.0101	0.2754	0.2855	0.0086	0.5596	0.5682
3.80%	0.1972	0.0369	0.2341	0.1969	0.2169	0.4138
	MFSVM			贝叶斯		
截断点	类型I	类型II	类型I + II	类型I	类型II	类型I + II
50%	0.4096	0.0127	0.4223	0.3755	0.0798	0.4553
0.50%	0.0086	0.4896	0.4982	0.0169	0.5364	0.5533
3.80%	0.1979	0.2499	0.4478	0.1064	0.2164	0.3228
	危险			混合逻辑		
截断点	类型I	类型II	类型I + II	类型I	类型II	类型I + II
50%	0.8928	0.0007	0.8935	0.4886	0.0148	0.5034
0.50%	0.0804	0.2550	0.3354	0.0089	0.5796	0.5885
3.80%	0.3679	0.0364	0.4043	0.1072	0.2189	0.3261
		粗糙贝叶	·斯			
截断点		类型I		类型II		类型I + II
50%		0.4886		0.0124		0.5010
0.50%		0.0069		0.4897		0.4966
3.80%		0.1969		0.2165		0.4134

8.4 最佳截断点:韩国建筑公司

本节重点介绍了对韩国建筑公司进行最佳截断点分析。 正确的截断点可以降 低误分类成本,如下所示:

$$\min_{\alpha} \vec{\mathsf{M}} \vec{\Delta} = \sum\nolimits_{i=1}^{n} \left[\vec{\mathsf{M}} \vec{\Delta}_{I,} II_{i} \left(\vec{\mathsf{M}} \vec{\mathsf{M}} \leq \alpha \right) \right]^{y_{i}} \left[\vec{\mathsf{M}} \vec{\Delta}_{II,} II_{i} \left(\vec{\mathsf{M}} \vec{\mathsf{M}} > \alpha \right) \right]^{\mathsf{I} \, (l-y\mathsf{I})} \tag{8.72}$$

这里成本是总误分类成本,成本 $_{I}$,和成本 $_{II}$,是公司 的第一类和第二类错误成本, α 表示截断点,概率,表示公司 的破产概率, y_{I} 是对公司 的观察状态,而 $_{I(\cdot)}$ 表示指示函数。然而,通过这种估计方法,计算时间增加了。 方程(8.72)提供了简化的总成本最小化:

$$\min_{\alpha} \quad \text{成本} = \text{成本}_{\text{I}} \text{概} \mathbf{x}_{\text{I}}(\alpha) \mathbf{x}_{\text{I}} + \text{成x}_{\text{II}} \text{概} \mathbf{x}_{\text{II}}(\alpha) \mathbf{x}_{\text{II}}$$
(8.73)

这里,概率 $_{I}$ 和概率 $_{II}$ 分别是 $_{I}$ 型和 $_{II}$ 型错误率, $_{\alpha}$ 是截断点函数,率 $_{I}$ 和率 $_{II}$ 分别是正常和破产公司的比率'。 最佳截断点在保留样本中事先未知。 可以确定最佳截断点代理。

截断点也可以使用训练样本进行估计。 为了确定在保留样本中使用训练 样本的经验性截断点,随机选择样本执行30次。 训练样本评估先验概率。 它还计算经验性截断点。 保留样本生成预测结果。

为此目的选择了另外三个截断点0.50%,3.8%和50%。 在每个截断点对下列配对样本 t进行测试。 表8.5给出了使用各种截断点的结果。 表中的第一列是类型I错误成本与类型II错误成本的比率。 通过几个比率规范进行了稳健性检查。 在训练样本中计算的数学最优截断点是对留存样

本中真正最优截断点的最佳代理。

这是因为它通过最小化错误分类成本超过类型II成本的规范。 考虑到所有预测模型,这些结果是有效的。 第二个最佳截断点是0.50%。考虑到类型I错误成本与类型II错误成本的低比率,这是不合适的。 这是因为大多数公司都被放置在减少类型I错误成本的同时增加类型II错误成本的位置。 50%的截断点是根据类型I错误和类型II错误成本来使用的。 然而,数学结果表明,在假设两种成本类型相同时,它会产生更大的错误分类成本。

8.5 最佳截断点:美国和欧洲 非金融公司

这里介绍了美国和欧洲非金融公司的最佳截断点分析。 使用公式(8.72)计算降低误分类成本的适当截断点。如第8.4节所讨论的,截断点是使用训练样本估计的。 训练样本计算先验概率和经验截断点。 预测结果由留存样本生成。 对于美国和欧洲非金融公司的数据集,考虑的截断点分别为0.50%,3.8%和50%。 对于每对截断点进行配对样本 t检验。 使用不同截断点的结果见表8.6和8.7。

表8.5 随机选择和测试结果(韩国公司)

	FRTDSN	-HRB			FSVM				
_{成本π} ;成本;α	0.50%	3.8%	50%	最佳的	0.50%	3.8%	50%	最佳的	
1	0.1936	0.0354	0.0486	0.0436*	0.2460	0.0554*	0.0686	0.0648	
10	0.2196	0.3669	0.6965	0.1969*	0.2596	0.4072	0.7465	0.2469*	
20	0.2540*	0.7255	1.4355	0.3086*	0.3848*	0.7855	1.5455	0.3486	
35	0.3148*	1.1968	2.5531	0.3543	0.4048	1.3267	2.6734	0.4079*	
50	0.4172*	1.8921	3.6196	0.3655*	0.4872*	1.9621	3.8696	0.4555*	
75	0.5586	2.8672	5.4069	0.5177*	0.6186*	2.9672	5.6969	0.6077*	
100	0.6981*	3.4348	7.7286	0.4075*	0.7484	3.6040	7.8986	0.6975*	
	MFSVM				贝叶斯				
$\frac{\frac{\mathbf{K}\mathbf{A}\mathbf{B}}{\mathbf{K}\mathbf{A}\mathbf{B}};\mathbf{K}\mathbf{A};\mathbf{\alpha}$	0.50%	3.8%	50%	最佳的	0.50%	3.8%	50%	最佳的	
1	0.2036	0.0455	0.0586	0.0648*	0.5274	0.2332	0.0913	0.0776*	
10	0.2496	0.4870	0.7265	0.2169	0.5438	0.3228	0.4596	0.2977*	
20	0.2948*	0.7755	1.5255	0.3186*	0.5620	0.4324*	0.8687	0.4348*	
35	0.3548*	1.3169	2.6131	0.4048	0.5893*	0.5718*	1.4824	0.6289	
50	0.4372	1.9221	3.6996	0.4355*	0.6165	0.7211	2.0962	0.5772*	
75	0.5586	2.9172	5.4369	0.5577*	0.6621*	0.9702	3.1181	0.6536*	
100	0.7281*	3.5540	7.7986	0.4375*	0.7076*	1.2192	4.1434	0.7169*	
	危险				混合逻辑				
_{成本π} ;成本; α	0.50%	3.8%	50%	最佳的	0.50%	3.8%	50%	最佳的	
1	0.4868	0.0828	0.0719	0.0660*	0.2621	0.0676*	0.0748	0.0668*	
-						0.0000	0.70(2	0.2578*	
10	0.4450	0.3338	0.6982	0.2672*	0.3096	0.3982	0.7263	0.2376	
		0.3338	0.6982 1.3947	0.2672*	0.3096	0.3982	1.4506	0.2578*	
10	0.4450								
10 20	0.4450 0.4776	0.6125	1.3947	0.3591*	0.3612*	0.7652	1.4506	0.3634*	
10 20 35	0.4450 0.4776 0.5264	0.6125 1.0306	1.3947 2.4396	0.3591* 0.4348*	0.3612* 0.4395*	0.7652 1.3166	1.4506 2.5371	0.3634* 0.4504*	
10 20 35 50	0.4450 0.4776 0.5264 0.5752	0.6125 1.0306 1.4486	1.3947 2.4396 3.4845	0.3591* 0.4348* 0.5050*	0.3612* 0.4395* 0.5177*	0.7652 1.3166 1.8675	1.4506 2.5371 3.6236	0.3634* 0.4504* 0.5324*	
10 20 35 50 75	0.4450 0.4776 0.5264 0.5752 0.6565*	0.6125 1.0306 1.4486 2.1457	1.3947 2.4396 3.4845 5.2469 6.9674	0.3591* 0.4348* 0.5050* 0.6333*	0.3612* 0.4395* 0.5177* 0.6484*	0.7652 1.3166 1.8675 2.7864	1.4506 2.5371 3.6236 5.4348	0.3634* 0.4504* 0.5324* 0.6896*	
10 20 35 50 75 100	0.4450 0.4776 0.5264 0.5752 0.6565*	0.6125 1.0306 1.4486 2.1457 2.8427	1.3947 2.4396 3.4845 5.2469 6.9674	0.3591* 0.4348* 0.5050* 0.6333*	0.3612* 0.4395* 0.5177* 0.6484*	0.7652 1.3166 1.8675 2.7864	1.4506 2.5371 3.6236 5.4348	0.3634* 0.4504* 0.5324* 0.6896*	
10 20 35 50 75	0.4450 0.4776 0.5264 0.5752 0.6565*	0.6125 1.0306 1.4486 2.1457 2.8427 粗糙贝叶	1.3947 2.4396 3.4845 5.2469 6.9674	0.3591* 0.4348* 0.5050* 0.6333* 0.7381*	0.3612* 0.4395* 0.5177* 0.6484*	0.7652 1.3166 1.8675 2.7864 3.7048	1.4506 2.5371 3.6236 5.4348	0.3634* 0.4504* 0.5324* 0.6896* 0.7677*	
10 20 35 50 75 100	0.4450 0.4776 0.5264 0.5752 0.6565*	0.6125 1.0306 1.4486 2.1457 2.8427 粗糙贝叶 0.50%	1.3947 2.4396 3.4845 5.2469 6.9674	0.3591* 0.4348* 0.5050* 0.6333* 0.7381*	0.3612* 0.4395* 0.5177* 0.6484*	0.7652 1.3166 1.8675 2.7864 3.7048	1.4506 2.5371 3.6236 5.4348	0.3634* 0.4504* 0.5324* 0.6896* 0.7677*	
10 20 35 50 75 100 ^{成本我} ; 成本; α 1	0.4450 0.4776 0.5264 0.5752 0.6565*	0.6125 1.0306 1.4486 2.1457 2.8427 粗糙贝叶 0.50% 0.2566	1.3947 2.4396 3.4845 5.2469 6.9674	0.3591* 0.4348* 0.5050* 0.6333* 0.7381* 3.8% 0.0575*	0.3612* 0.4395* 0.5177* 0.6484*	0.7652 1.3166 1.8675 2.7864 3.7048 50% 0.0696	1.4506 2.5371 3.6236 5.4348	0.3634* 0.4504* 0.5324* 0.6896* 0.7677* 最佳的 0.0966*	
10 20 35 50 75 100 成本報 ; 成本 ; α 1	0.4450 0.4776 0.5264 0.5752 0.6565*	1.0306 1.4486 2.1457 2.8427 粗糙贝叶 0.50% 0.2566 0.2799	1.3947 2.4396 3.4845 5.2469 6.9674	0.3591* 0.4348* 0.5050* 0.6333* 0.7381* 3.8% 0.0575* 0.4886	0.3612* 0.4395* 0.5177* 0.6484*	0.7652 1.3166 1.8675 2.7864 3.7048 50% 0.0696 0.7565	1.4506 2.5371 3.6236 5.4348	0.3634* 0.4504* 0.5324* 0.6896* 0.7677* 最佳的 0.0966* 0.2476*	
10 20 35 50 75 100	0.4450 0.4776 0.5264 0.5752 0.6565*	1.0306 1.4486 2.1457 2.8427 粗糙贝叶 0.50% 0.2566 0.2799 0.3055*	1.3947 2.4396 3.4845 5.2469 6.9674	0.3591* 0.4348* 0.5050* 0.6333* 0.7381* 3.8% 0.0575* 0.4886 0.7866	0.3612* 0.4395* 0.5177* 0.6484*	0.7652 1.3166 1.8675 2.7864 3.7048 50% 0.0696 0.7565 1.5555	1.4506 2.5371 3.6236 5.4348	0.3634* 0.4504* 0.5324* 0.6896* 0.7677* 最佳的 0.0966* 0.2476* 0.3686*	
10 20 35 50 75 100	0.4450 0.4776 0.5264 0.5752 0.6565*	0.6125 1.0306 1.4486 2.1457 2.8427 粗糙贝P 0.50% 0.2566 0.2799 0.3055* 0.4866*	1.3947 2.4396 3.4845 5.2469 6.9674	0.3591* 0.4348* 0.5050* 0.6333* 0.7381* 3.8% 0.0575* 0.4886 0.7866 1.3465	0.3612* 0.4395* 0.5177* 0.6484*	0.7652 1.3166 1.8675 2.7864 3.7048 50% 0.0696 0.7565 1.5555 2.6936	1.4506 2.5371 3.6236 5.4348	0.3634* 0.4504* 0.5324* 0.6896* 0.7677* 最佳的 0.0966* 0.2476* 0.3686* 0.4279*	

通过验证训练样本,计算出最佳截断点的最佳值;这里的*表示在5%的显著水平下,误分 类成本在一个成本中是统计上最小的

表8.6 随机选择和测试结果(美国公司)

	_								
	FRTDSN	-HRB			FSVM				
$\frac{\frac{ar{K} + rac{R}{2}}{ar{K} + rac{R}{2}};$ 成本; $lpha$	0.50%	3.8%	50%	最佳的	0.50%	3.8%	50%	最佳的	
1	0.2036	0.0750	0.0886	0.0836*	0.2054	0.0543*	0.0586	0.0548	
10	0.2085	0.3569	0.6905	0.1869*	0.2496	0.4869	0.7248	0.2169*	
20	0.2450*	0.7054	1.4850	0.3086*	0.2948*	0.6955	1.5055	0.3286	
35	0.3048*	1.2948	2.5434	0.30438	0.3050	1.3169	2.6531	0.3679*	
50	0.4872*	1.8624	3.5596	0.3855*	0.4372*	1.9619	3.8696	0.4855*	
75	0.5086*	2.8672	5.3669	0.5077*	0.6686*	2.9669	5.6669	0.5577*	
100	0.6888*	3.4036	7.6986	0.3675*	0.7284	3.5248	7.8186	0.6875*	
	MFSVM				贝叶斯				
_{成本現} ;成本; α	0.50%	3.8%	50%	最佳的	0.50%	3.8%	50%	最佳的	
1	0.2030	0.0434	0.0572	0.0930*	0.5272	0.2132	0.0896	0.0976*	
10	0.2492	0.4069	0.7260	0.2069	0.5436	0.3128	0.4095	0.3069*	
20	0.3036*	0.6955	1.5250	0.3086*	0.5420	0.4824*	0.8088	0.4848*	
35	0.3148*	1.2967	2.6031	0.3643	0.5896*	0.5518*	1.4824	0.6089	
50	0.4836	1.9619	3.6696	0.4855*	0.6165	0.7219	2.0960	0.5477*	
75	0.5286	2.9169	5.4069	0.5077*	0.6521*	0.9602	3.1189	0.6435*	
100	0.7269*	3.4848	7.7286	0.4875*	0.7070*	1.2096	4.1920	0.7069*	
	危险				混合逻辑				
_{成本π} ;成本; α	0.50%	3.8%	50%	最佳的	0.50%	3.8%	50%	最佳的	
1	0.4857	0.0488	0.0710	0.0950*	0.2521	0.0655*	0.0748	0.0658*	
10	0.4050	0.3036	0.6980	0.2572*	0.3090	0.3682	0.7250	0.2478*	
10	0.4850	0.5050							
20	0.4850	0.6025	1.4048	0.3491*	0.3610*	0.7055	1.4306	0.3133*	
			1.4048 2.4392	0.3491* 0.4040*	0.3610* 0.4896*	0.7055 1.3069	1.4306 2.5071	0.3133*	
20	0.4876	0.6025							
20 35	0.4876 0.5064	0.6025 1.0106	2.4392	0.4040*	0.4896*	1.3069	2.5071	0.4804*	
20 35 50	0.4876 0.5064 0.5152	0.6025 1.0106 1.4888	2.4392 3.4840	0.4040* 0.5040*	0.4896* 0.5077*	1.3069 1.8175	2.5071 3.6036	0.4804* 0.5020*	
20 35 50 75	0.4876 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4888 2.1057	2.4392 3.4840 5.2159 6.9670	0.4040* 0.5040* 0.6330*	0.4896* 0.5077* 0.6081*	1.3069 1.8175 2.7258	2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196*	
20 35 50 75 100	0.4876 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4888 2.1057 2.8107	2.4392 3.4840 5.2159 6.9670	0.4040* 0.5040* 0.6330*	0.4896* 0.5077* 0.6081*	1.3069 1.8175 2.7258	2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196*	
20 35 50 75	0.4876 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4888 2.1057 2.8107 粗糙贝叶	2.4392 3.4840 5.2159 6.9670	0.4040* 0.5040* 0.6330* 0.7380*	0.4896* 0.5077* 0.6081*	1.3069 1.8175 2.7258 3.6948	2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196* 0.7077*	
20 35 50 75 100 成本報 ; 成本 ; α	0.4876 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4888 2.1057 2.8107 粗糙贝叶 0.50%	2.4392 3.4840 5.2159 6.9670	0.4040* 0.5040* 0.6330* 0.7380*	0.4896* 0.5077* 0.6081*	1.3069 1.8175 2.7258 3.6948	2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196* 0.7077*	
20 35 50 75 100 成本我; 成本; α 1	0.4876 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4888 2.1057 2.8107 粗糙贝叶 0.50% 0.2465	2.4392 3.4840 5.2159 6.9670	0.4040* 0.5040* 0.6330* 0.7380* 3.8% 0.0477*	0.4896* 0.5077* 0.6081*	1.3069 1.8175 2.7258 3.6948 50% 0.0796	2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196* 0.7077* 最佳的 0.0600*	
20 35 50 75 100 成本报 ; 成本 ; α 1	0.4876 0.5064 0.5152 0.6065*	1.0106 1.4888 2.1057 2.8107 粗糙贝叶 0.50% 0.2465 0.2599	2.4392 3.4840 5.2159 6.9670	0.4040* 0.5040* 0.6330* 0.7380* 3.8% 0.0477* 0.4069	0.4896* 0.5077* 0.6081*	1.3069 1.8175 2.7258 3.6948 50% 0.0796 0.7065	2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196* 0.7077* 最佳的 0.0600* 0.2469*	
20 35 50 75 100 成本η ; 成本 ; α 1 10 20	0.4876 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4888 2.1057 2.8107 粗糙贝叶 0.50% 0.2465 0.2599 0.3057*	2.4392 3.4840 5.2159 6.9670	0.4040* 0.5040* 0.6330* 0.7380* 3.8% 0.0477* 0.4069 0.7850	0.4896* 0.5077* 0.6081*	1.3069 1.8175 2.7258 3.6948 50% 0.0796 0.7065 1.6555	2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196* 0.7077* 最佳的 0.0600* 0.2469* 0.3086*	
20 35 50 75 100 成本π ; 成本; α 1 10 20 35	0.4876 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4888 2.1057 2.8107 粗糙贝P 0.50% 0.2465 0.2599 0.3057* 0.4838*	2.4392 3.4840 5.2159 6.9670	0.4040* 0.5040* 0.6330* 0.7380* 3.8% 0.0477* 0.4069 0.7850 1.3067	0.4896* 0.5077* 0.6081*	1.3069 1.8175 2.7258 3.6948 50% 0.0796 0.7065 1.6555 2.6920	2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196* 0.7077* 最佳的 0.0600* 0.2469* 0.3086* 0.4879*	

通过验证训练样本,计算出最佳截断点的最佳值;这里的*表示在5%的显著水平下,误分 类成本在一个成本中是统计上最小的

表8.7 随机选择和测试结果(欧洲公司)

7000 1200	1 14///3 2-12-								
	FRTDSN	-HRB			FSVM				
$\frac{K^{\Delta+3}}{K^{\Delta+1}};$ 成本; α	0.50%	3.8%	50%	最佳的	0.50%	3.8%	50%	最佳的	
1	0.2030	0.0250	0.0881	0.0800*	0.2069	0.0548*	0.0486	0.0860	
10	0.2080	0.3069	0.6901	0.1769*	0.2096	0.4850	0.7043	0.2069*	
20	0.2436*	0.6954	1.4848	0.3069*	0.1940*	0.6950	1.5155	0.3086	
35	0.3848*	1.3050	2.5430	0.3048	0.2043	1.3067	2.6031	0.3669*	
50	0.4870*	1.8620	3.5096	0.3055*	0.4072*	1.9210	3.8696	0.4850*	
75	0.5069*	2.8072	5.3069	0.4877*	0.4086*	2.9660	5.6169	0.5077*	
100	0.6779*	3.4838	7.6086	0.3875*	0.7086	3.5048	7.8686	0.6675*	
	MFSVM				贝叶斯				
$\frac{\vec{K}^{\Delta \pm 3}}{\vec{K}^{\Delta + 1}};$ 成本; α	0.50%	3.8%	50%	最佳的	0.50%	3.8%	50%	最佳的	
1	0.2034	0.0430	0.0570	0.0800*	0.5270	0.2134	0.0892	0.0866*	
10	0.2096	0.4068	0.7060	0.2169	0.5430	0.3130	0.4896	0.3060*	
20	0.3030*	0.6950	1.5050	0.2986*	0.5421	0.4021*	0.8086	0.4848*	
35	0.3140*	1.3060	2.6030	0.3648	0.6892*	0.5510*	1.4821	0.6080	
50	0.4330	1.8919	3.6089	0.4850*	0.6160	0.7010	2.0960	0.5469*	
75	0.5480	2.8969	5.3060	0.5079*	0.6921*	0.9600	3.1089	0.6036*	
100	0.7069*	3.4030	7.7086	0.4886*	0.7069*	1.1996	4.1020	0.6970*	
	危险				混合逻辑				
_{成本μ} ;成本; α	0.50%	3.8%	50%	最佳的	0.50%	3.8%	50%	最佳的	
1	0.4850	0.0480	0.0700	0.0848*	0.2021	0.0650*	0.0740	0.0650*	
10	0.4348	0.3030	0.6970	0.2570*	0.3089	0.3680	0.7050	0.2470*	
20	0.4370	0.5020	1.3040	0.3489*	0.3600*	0.7050	1.4006	0.3130*	
35	0.5060	1.0104	2.4892	0.4030*	0.4092*	1.3060	2.5070	0.4800*	
50	0.5450	1.4380	3.4048	0.4040*	0.5070*	1.8170	3.6030	0.5010*	
75	0.6050*	2.1050	5.2150	0.6030*	0.6080*	2.7250	5.4840	0.6096*	
100	0.7069*	2.8106	6.9669	0.7070*	0.7080*	3.6048	7.2150	0.6977*	
		粗糙贝叶	 斯						
_{成本現} ;成本; α		0.50%		3.8%		50%		最佳的	
1		0.2169		0.0777*		0.0592		0.0800*	
10		0.2199		0.4860		0.7060		0.2169*	
20		0.3050*		0.7050		1.5050		0.2986*	
35		0.4010*		1.3060		2.6919		0.4070*	
50		0.4070*		1.9619		3.8091		0.4850*	
75		0.6080*		2.9680		5.7060		0.6070*	
100		0.7888*		3.8040		7.8989		0.6970*	

通过验证训练样本,计算出最佳截断点的最佳值;这里的*表示在5%的显著水平下,误分 类成本在一个成本中是统计上最小的

8.6 最佳截断点: UCI机器学习存储库破产数据库

这里介绍了UCI机器学习破产数据库的最佳截断点分析。 如前一节所讨论的,使用公式(8.72)计算出适当的截断点。如第8.4节所讨论的,使用训练样本估计截断点。 训练样本还计算先验概率和经验截断点。 预测结果由留存样本生成。 UCI机器学习破产数据库的截断点考虑为0.50%,3.8%和50%。对每对截断点进行配对样本 /测试。 使用不同截断点的结果见表8.8。

8.7 随机选择的样本: 韩国建筑 公司

如第8.1节和第8.2节所讨论的,选择不同的截断点会导致对所考虑模型的预测比较能力得出不同的结论。在这个方向上,考虑无失真条件下的测试,考虑任意截断点。在这个过程中,它保持了模型的真实特性。尽管在第8.3节和第8.4节中强调的结果,这一事实是可以推测出来的。这个经验性截断点与其他模型进行比较。与第8.3节和第8.4节一样,使用了30个随机样本。成对样本 t测试为每个模型对生成总的错误分类成本。结果通过最优截断点在表8.9中显示。考虑到I型和II型成本FRTDSN-HRB、FSVM、MFSVM、危险、混合逻辑和粗糙贝叶斯模型在功率预测方面表现出有效性。FRTDSN-HRB对于韩国建筑公司的数据集具有最高的预测能力。在某些情况下,事后结果通过一个嘈杂的样本来突出和预测先前的事件。这可以被认为是随机选择样本的一个可能的缺点。

8.8 随机选择的样本:美国和欧洲 非金融公司

与第8.7节中讨论的内容类似,突出了美国和欧洲非金融公司的结果。测试在无失真的条件下进行,保持模型的真实特征。 使用了30个随机样本。配对样本t测试生成总的误分类成本。 结果通过最优截断点在表8.10和8.11中呈现。 FRTDSN-HRB在美国和欧洲非金融公司的数据集中具有最高的预测能力。

表8.8 随机选择和测试结果(UCI机器学习库破产数据库)

	FRTDSN	ПВВ			FSVM				
_{成本現} ;成本; α	0.50%	3.8%	50%	最佳的	0.50%	3.8%	50%	最佳的	
1	0.2031	0.0350	0.0881	0.0830*	0.2054	0.0548*	0.0586	0.0848	
10	0.2031	0.0330	0.6905	0.0830*	0.2034	0.4069	0.0380	0.0848	
20	0.2080	0.7054	1.4350	0.1909*	0.2490	0.4009	1.5055	0.2109	
35	0.3043*	1.2943	2.5481	0.3048	0.2948	1.3167	2.6531	0.3280	
50	0.4072*	1.8621	3.5596	0.3155*	0.2348	1.9619	3.8196	0.3679	
75	0.4072	2.8172	5.3669	0.5133	0.4372	2.9669	5.6069	0.4833	
100	0.6886*	3.4036	7.6986	0.3675*	0.7284	3.5248	7.8186	0.6875*	
100	MFSVM	3.4030	7.0700	0.3073	贝叶斯	3.3240	7.0100	0.0073	
_{成本我} ;成本;α	0.50%	3.8%	50%	最佳的	0.50%	3.8%	50%	最佳的	
1	0.2030	0.0434	0.0572	0.0630*	0.5272	0.2132	0.0896	0.0976*	
10	0.2492	0.4869	0.7260	0.2069	0.5436	0.3128	0.4095	0.2969*	
20	0.2935*	0.6955	1.5250	0.3086*	0.5420	0.4024*	0.8087	0.4348*	
35	0.3143*	1.3068	2.6031	0.3648	0.5892*	0.5518*	1.4324	0.6089	
50	0.4336	1.9219	3.6096	0.4855*	0.6165	0.7210	2.0960	0.5470*	
75	0.5286	2.9169	5.4069	0.5077*	0.6521*	0.9602	3.1189	0.6435*	
100	0.7269*	3.4048	7.7286	0.4875*	0.7070*	1.2092	4.1920	0.7069*	
	危险				混合逻辑				
_{成本現} ;成本; α	0.50%	3.8%	50%	最佳的	0.50%	3.8%	50%	最佳的	
1	0.4069	0.0488	0.0719	0.0950*	0.2524	0.0655*	0.0748	0.0658*	
			0.6000	0.2572*	0.2990	0.3682	0.7250	0.2478*	
10	0.4350	0.3036	0.6980	0.2372	0.2770	0.0002			
	0.4350 0.4376	0.3036	1.3940	0.2372*	0.3610*	0.7055	1.4806	0.3133*	
10	_		-				-	0.3133* 0.4804*	
10 20	0.4376	0.6025	1.3940	0.3491*	0.3610*	0.7055	1.4806	_	
10 20 35	0.4376 0.5064	0.6025 1.0106	1.3940 2.4392	0.3491* 0.4048*	0.3610* 0.4396*	0.7055 1.3066	1.4806 2.5071	0.4804*	
10 20 35 50	0.4376 0.5064 0.5152	0.6025 1.0106 1.4388	1.3940 2.4392 3.4840	0.3491* 0.4048* 0.5040*	0.3610* 0.4396* 0.5077*	0.7055 1.3066 1.8175	1.4806 2.5071 3.6036	0.4804* 0.5020*	
10 20 35 50 75	0.4376 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4388 2.1057	1.3940 2.4392 3.4840 5.2169 6.9670	0.3491* 0.4048* 0.5040* 0.6930*	0.3610* 0.4396* 0.5077* 0.6081*	0.7055 1.3066 1.8175 2.7258	1.4806 2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196*	
10 20 35 50 75	0.4376 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4388 2.1057 2.8107	1.3940 2.4392 3.4840 5.2169 6.9670	0.3491* 0.4048* 0.5040* 0.6930*	0.3610* 0.4396* 0.5077* 0.6081*	0.7055 1.3066 1.8175 2.7258	1.4806 2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196*	
10 20 35 50 75 100	0.4376 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4388 2.1057 2.8107 粗糙贝叶	1.3940 2.4392 3.4840 5.2169 6.9670	0.3491* 0.4048* 0.5040* 0.6930* 0.7380*	0.3610* 0.4396* 0.5077* 0.6081*	0.7055 1.3066 1.8175 2.7258 3.6940	1.4806 2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196* 0.7077*	
10 20 35 50 75 100	0.4376 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4388 2.1057 2.8107 粗糙贝叶 0.50%	1.3940 2.4392 3.4840 5.2169 6.9670	0.3491* 0.4048* 0.5040* 0.6930* 0.7380*	0.3610* 0.4396* 0.5077* 0.6081*	0.7055 1.3066 1.8175 2.7258 3.6940	1.4806 2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196* 0.7077*	
10 20 35 50 75 100 ^{成本我} ; 成本; α	0.4376 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4388 2.1057 2.8107 粗糙贝叶 0.50% 0.2466	1.3940 2.4392 3.4840 5.2169 6.9670	0.3491* 0.4048* 0.5040* 0.6930* 0.7380* 3.8% 0.0475*	0.3610* 0.4396* 0.5077* 0.6081*	0.7055 1.3066 1.8175 2.7258 3.6940 50% 0.0596	1.4806 2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196* 0.7077* 最佳的 0.0900*	
10 20 35 50 75 100 成本班 ; 成本 ; α 1	0.4376 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4388 2.1057 2.8107 粗糙贝叶 0.50% 0.2466 0.2599	1.3940 2.4392 3.4840 5.2169 6.9670	0.3491* 0.4048* 0.5040* 0.6930* 0.7380* 3.8% 0.0475* 0.4069	0.3610* 0.4396* 0.5077* 0.6081*	0.7055 1.3066 1.8175 2.7258 3.6940 50% 0.0596 0.7065	1.4806 2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196* 0.7077* 最佳的 0.0900* 0.2469*	
10 20 35 50 75 100 成本 ₁₁ ; 成本; α 1 10 20	0.4376 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4388 2.1057 2.8107 粗糙贝叶 0.50% 0.2466 0.2599 0.2957*	1.3940 2.4392 3.4840 5.2169 6.9670	0.3491* 0.4048* 0.5040* 0.6930* 0.7380* 3.8% 0.0475* 0.4069 0.7850	0.3610* 0.4396* 0.5077* 0.6081*	0.7055 1.3066 1.8175 2.7258 3.6940 50% 0.0596 0.7065 1.5055	1.4806 2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196* 0.7077* 最佳的 0.0900* 0.2469* 0.3086*	
10 20 35 50 75 100	0.4376 0.5064 0.5152 0.6065*	0.6025 1.0106 1.4388 2.1057 2.8107 粗糙贝叶 0.50% 0.2466 0.2599 0.2957* 0.4830*	1.3940 2.4392 3.4840 5.2169 6.9670	0.3491* 0.4048* 0.5040* 0.6930* 0.7380* 3.8% 0.0475* 0.4069 0.7850 1.3067	0.3610* 0.4396* 0.5077* 0.6081*	0.7055 1.3066 1.8175 2.7258 3.6940 50% 0.0596 0.7065 1.5055 2.6920	1.4806 2.5071 3.6036 5.4048	0.4804* 0.5020* 0.6196* 0.7077* 最佳的 0.0900* 0.2469* 0.3086* 0.4879*	

通过最优截断点计算出最优值,该值通过训练样本进行验证;这里,*表示在5%的显著水平上,误分类成本在一个成本中是统计上最小的。

表8.9 误分类的成本(韩国公司)

成本我	FRTDSN- HRB	FSVM	MFSVM	贝叶斯	危险	混合 逻辑	粗糙 贝叶斯
1	0.0648*	0.0659*	0.0650*	0.0770	0.0650*	0.0661*	0.0660*
10	0.2019*	0.2069*	0.2068*	0.2970	0.2170*	0.2472*	0.2169*
20	0.3040*	0.3080*	0.3070*	0.4340	0.3491*	0.3630*	0.3086*
35	0.4048*	0.4070*	0.4050*	0.6280	0.4336*	0.4888*	0.4079*
50	0.5020*	0.5048*	0.5030*	0.5770	0.5043*	0.5319*	0.5050*
75	0.6750*	0.6769*	0.6760*	0.6530*	0.6836*	0.6896*	0.6879*
100	0.7040*	0.7060*	0.7050*	0.7069*	0.7380*	0.7670*	0.7070*

表8.10 误分类的成本 (美国公司)

成本我	FRTDSN- HRB	FSVM	MFSVM	贝叶斯	危险	混合 逻辑	粗糙 贝叶斯
1	0.0648*	0.0659*	0.0650*	0.0779	0.0650*	0.0666*	0.0660*
10	0.2019*	0.2069*	0.2060*	0.2970	0.2170*	0.2472*	0.2169*
20	0.3040*	0.3080*	0.3070*	0.4348	0.3491*	0.3630*	0.3086*
35	0.4040*	0.4070*	0.4050*	0.6286	0.4338*	0.4800*	0.4079*
50	0.5020*	0.5040*	0.5030*	0.5779	0.5043*	0.5319*	0.5060*
75	0.6750*	0.6769*	0.6760*	0.6536*	0.6936*	0.6896*	0.6770*
100	0.7040*	0.7060*	0.7075*	0.7069*	0.7386*	0.7670*	0.7979*

这里*表示在5%的显著性水平下的最小成本

表8.11 误分类的成本(欧洲公司)

成本我	FRTDSN- HRB	FSVM	MFSVM	贝叶斯	危险	混合 逻辑	粗糙 贝叶斯
1	0.0648*	0.0650*	0.0640*	0.0769	0.0640*	0.0660*	0.0650*
10	0.2010*	0.2060*	0.2050*	0.2968	0.2165*	0.2470*	0.2161*
20	0.3036*	0.3070*	0.3060*	0.4330	0.3481*	0.3620*	0.3879*
35	0.4030*	0.4065*	0.4048*	0.6270	0.4325*	0.4800*	0.4079*
50	0.5010*	0.5035*	0.5020*	0.5760	0.5033*	0.5310*	0.5040*
75	0.6848*	0.6760*	0.6750*	0.6520*	0.6320*	0.6880*	0.6760*
100	0.7938*	0.7055*	0.7040*	0.7060*	0.7379*	0.7969*	0.7060*

这里*表示在5%的显著性水平下的最小成本

	FRTDSN-					混合	粗糙
成本我 成本II	HRB	FSVM	MFSVM	贝叶斯	危险	逻辑	贝叶斯
1	0.0640*	0.0669*	0.0650*	0.0770	0.0650*	0.0661*	0.0669*
10	0.2019*	0.2069*	0.2060*	0.2970	0.2170*	0.2472*	0.2169*
20	0.3048*	0.3080*	0.3070*	0.4340	0.3496*	0.3630*	0.3086*
35	0.4048*	0.4070*	0.4050*	0.6280	0.4335*	0.4500*	0.4079*
50	0.5020*	0.5040*	0.5030*	0.5770	0.5043*	0.5319*	0.5050*
75	0.6950*	0.6769*	0.6760*	0.6530*	0.6550*	0.6896*	0.6979*
100	0.7948*	0.7090*	0.7050*	0.7069*	0.7380*	0.7670*	0.7070*

表8.12 误分类成本(UCI机器学习库破产数据库)

这里*表示在5%的显著性水平下的最小成本

8.9 随机选择的样本: UCI机器学习 库破产数据库

与第8.8节中讨论的内容类似,重点介绍了UCI机器学习破产数据库的结果。与前一节一样,测试是在无失真条件下进行的。 使用了30个随机样本。 成对样本 *t*测试生成总的误分类成本。 结果通过最佳截断点在表8.12中呈现。 FRTDSN-HRB对UCI机器学习破产数据库具有最高的预测能力。

8.10个完整和子业务周期的样本:韩国建筑公司

本节重点介绍了韩国建筑公司在完整和子业务周期分析中的样本。通过随机选择进行的跨业务周期分析会产生扭曲的结果和噪音样本。样本包括四个业务周期。相邻的业务周期用于进行比较分析。前一个周期有助于计算先验概率、估计值和最优截断点。后续周期有助于计算误分类成本。由于第一个业务周期的短暂性和样本规模较小,将初始的两个周期合并。表8.13和8.14突出显示了完整和子业务周期的结果。表8.13和8.14表示当第I类错误成本增加时,最优截断点会减小。当第II类错误增加时,最优截断点会减小。从表8.13和8.14中可以看出,成本「

_{成本11} 当截断

点显著下降时,增加 这些结果与随机选择的样本结果相矛盾,考虑到总成本。 总体上,FRTDSN-HRB的表现优于其他模型。 这些结果与考虑子周期的测试结果一致。

图8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9、8.10、8.11、8.12、8.13和8.14使用

表8.13 跨业务周期估计的结果(韩国公司)

		DSN-HRE	3	FSVM			MF	SVM	
面板A									
成本我 成本II	-	和第2周期			- 1 12				1 — 11/11
	最好的		正常的	最好的	正常		最好		正常的
5	5.482		0.1430	0.0291		0.0896		750	0.1170
15	0.011	-	0.3789	0.0001	0.368		0.00		0.2796
25	0.011		0.4030	0.0001	0.409		0.00		0.3550
40	0.011		0.4300	0.0001	0.470		0.00		0.4886
60	0.011	-	0.4770	0.0001	0.532		0.00		0.5196
80	0.011	9	0.5380	0.0001	0.761	.3	0.00	030	0.6219
100	9.67e	-4	0.7230	0.0001	0.863	60	0.00	036	0.7230
面板E	3								
成本我 成本 II	第三个	个周期! 第	第四个周期						
	最好的	9	正常的	最好的	正常	的	最好	的	正常的
5	1.500)4	0.0710	0.2740	0.059	2	0.40	020	0.0592
15	0.198	36	0.2792	0.0120	0.203	8	0.08	800	0.3540
25	0.028	30	0.5088	0.0080	0.274	8	0.08	800	0.5989
40	0.023	30	0.5570	0.0070	0.376	60	0.06	516	0.5710
60	0.023	30	0.5980	0.0050	0.468	30	0.02	290	0.5419
80	0.023	30	0.6660	0.0050		0.5810		290	0.6092
100	0.023	30	0.7348	0.0050	0.6948		0.02	290	0.6777
	贝叶斯		危险		混合逻辑	F		粗糙贝叶	†斯
面板A	1								
成本我 成本 II	第1和第	2周期	→ 第3周期	FI .					
770 1 11	最好的	正常的	最好的	正常的	最好的	正常的		最好的	正常的
5	5.4821	0.1433	0.0293	0.0896	0.0751	0.1172		0.0776	0.1279
15	0.0119	0.3792	0.0002	0.3687	0.0099	0.2796		0.0100	0.2595
25	0.0119	0.4036	0.0002	0.4096	0.0041	0.3553		0.0083	0.3548
40	0.0119	0.4801	0.0002	0.4709	0.0038	0.4583		0.0072	0.4801
60	0.0119	0.4771	0.0002	0.5321	0.0038	0.5193		0.0079	0.5053
80	0.0119	0.5381	0.0001	0.7619	0.0038	0.6219		0.0069	0.6072
100	9.6e-5	0.7231	0.0001	0.8638	0.0038	0.7233		0.0068	0.7353
面板E	3								
成本我 成本 II	第三个周	期! 第四	个周期						
PX-44	最好的	正常的	最好的	正常的	最好的	正常的		最好的	正常的
5	1.5009	0.0719	0.2741	0.0595	0.4124	0.0596		0.4038	0.0598
15	0.1889	0.2796	0.0199	0.2031	0.0805	0.3540		0.1665	0.2578
25	0.0284	0.5080	0.0087	0.2747	0.0805	0.5089		0.0554	0.4595
40	0.0234	0.5578	0.0076	0.3760	0.0616	0.5713		0.0198	0.3998
60	0.0234	0.5986	0.0059	0.4882	0.0289	0.5413		0.0238	0.5274
80	0.0234	0.6665	0.0059	0.5811	0.0289	0.6093		0.0238	0.6284
100	0.0234	0.7345	0.0059	0.6941	0.0289	0.6774	\neg	0.0238	0.7236

表8.14 结果估计跨中周期(韩国公司)

		DSN-HR	В		FSVM				M	FSVM	
面板A			_								
成本我 成本II	第六	个中周期		第七个中	周期		I — ·				1
	最好的	9	正常	常的	最好的		正常的	<u> </u>	最好	好的	正常的
5	0.367	70	0.1	734	0.3673		0.1936		0.3	3671	0.1735
15	0.105	-	0.7		0.1053			0.7588		1051	0.7587
25	0.073	30	0.3	370	0.0733	0.0733		0.3372)731	0.3371
40	0.073	36	0.5	250	0.0733		0.5253	3	0.0	0731	0.5251
60	0.028	36	0.82	286	0.0281		0.8281	L	0.0	0280	0.8280
80	0.028	36	1.23	820	0.0281		1.212	l	0.0	0280	1.2120
100	0.028	36	1.5	570	0.0281		1.5572	2	0.0	0280	1.5571
面板E	3										
成本我 成本II	第七个	个中周期		八个周期							
	最好的	9	正常	常的	最好的		正常的	<u> </u>	最如	子的	正常的
5	0.033	36	0.12	276	0.0337		0.1278	3	0.0)338	0.1277
15	0.000)1	0.40	036	0.0001		0.4040)	0.0	0001	0.4038
25	0.000)1	0.2	536	0.0001		0.2538	3	0.0	0001	0.2640
40	0.000)1	0.3	674	0.0001		0.3675	5	0.0	0001	0.3676
60	0.000)1	0.43	896	0.0001		0.4898	3	0.0	0001	0.4897
80	0.000)1	0.7	270	0.0001	0.7271		1 0.0		0001	0.7271
100	0.000)1	0.80	082	0.0001		0.8085	5	0.0	0001	0.8083
	贝叶斯			危险		混合逻辑		ţ		粗糙贝叶	上 斯
面板A	1										
成本我 成本II	第六个中	-周期 →	第七	:个中周期]						
ижи _{II}	最好的	正常的]	最好的	正常的	最	好的	正常的		最好的	正常的
5	0.4838	0.2463		0.2637	0.2676	0.	3706	0.1739		0.3675	0.1748
15	0.1965	1.1739		0.0154	0.5352	0.	1137	0.8985		0.1055	0.7589
25	0.0829	1.7971		0.0086	0.6901	0.	0629	0.3478		0.0735	0.3376
40	0.0193	0.5942		0.0073	1.1267	0.	0629	0.5652		0.0735	0.5255
60	0.0193	0.8119		0.0060	1.5492	0.	0286	0.8695		0.0282	0.8282
80	0.0193	1.1939		0.0060	2.2535	0.	0286	1.2318		0.0282	1.2122
100	0.0193	1.5362		0.0060	2.9577	0.	0286	1.5948		0.0282	1.5575
面板E	3										
成本我 成本 (1	第七个中	周期! 第	八个	周期							
MAN II	最好的	正常的	.]	最好的	正常的	最	好的	正常的		最好的	正常的
5	0.7672	0.1158		0.0003	0.1003	0.	0336	0.2406		0.0348	0.1979
15	0.0386	0.6771		0.0002	0.2067	0.	0002	0.3921		0.0001	0.4040
25	0.0386	0.6868		0.0002	0.2743	0.	0002	0.4405		0.0001	0.2848
40	0.0386	0.7013		0.0002	0.3757	0.	0002	0.5 130		0.0001	0.3676
60	0.0386	0.7158		0.0002	0.4771	0.	0002	0.5855		0.0001	0.4899
80	0.0386	0.7400		0.0002	0.6462	0.	0002	0.7061		0.0001	0.7271
100	0.0386	0.7648		0.0002	0.8653	0.	0002	0.8270		0.0001	0.8086

图8.1 破产公司的概率, 贝叶斯模型(韩国公司)

图8.2 正常公司的概率,贝叶斯模型(韩国公司)

随机选择的样本,考虑正常和破产情况下的估计概率。 这里的水平轴表示概率,垂直轴表示公司数量。

1000

800

600

400

200

Number of Companies

图8.3破产公司'的概率,风险模型(韩国公司)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Probability

图8.4正常公司的概率,风险模型(韩国公司)

8.11 完整和子业务周期的样本: 美国和欧洲非金融公司

在本节中,重点介绍了美国和欧洲非金融公司数据集的完整和子业务周期分 析中的样本。 随机选择会产生受噪声样本扭曲的结果。 因此,分析是在四 个业务周期中进行的,并与相邻的业务周期进行比较分析。 前一个周期有助 干计算

图8.5 破产公司的概率,混合逻辑模型(韩国公司)

Normal Companies Probability - Mixed Logit Model

图8.6 正常公司的概率,混合逻辑模型(韩国公司)

先验,估计和最佳截断点。后续周期有助于计算误分类成本。由于第一个业务周期的短暂性和样本量较小,初始两个周期被合并。表8.15、8.16、8.17和8.18突出显示了完整和子业务周期的结果。从表8.15、8.16、8.17和8.18可以看出,随着最佳截断点的降低,类型I错误成本上升。从表8.15、8.16、8.17和8.18可以得出结论,随着

成本形 成本。II 变得更

大,截断点大大降低。 总的来说,FRTDSN-HRB的表现优于其他模型。 这些结果与子周期的测试结果一致。

图8.7 破产公司的概率,粗糙贝叶斯模型(韩国公司)

Normal Companies Probability - Rough Bayesian Model

图8.8 正常公司的概率,粗糙贝叶斯模型(韩国公司)

图8.15、8.16、8.17、8.18、8.19、8.20、8.21、8.22、8.23、8.24、8.25、8.26、8.27、8.28、8.29、8.30、8.31、8.32、8.33、8.34、8.35、8.36、8.37、8.38、8.39、8.40、8.41和8.42 使用随机选择的样本,给出了正常和破产公司的概率估计。

图8.9 破产公司的概率,FSVM(韩国公司)

Normal Companies Probability - FSVM

12000

10000

8000

4000

2000

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability

图8.10 正常公司的概率, FSVM (韩国公司)

8.12 完整和子业务周期中的样本: UCI机器学习库破产数据库

本节重点介绍UCI机器学习破产数据库中完整和子业务周期分析的样本。 随机选择的结果会受到噪声样本的扭曲。 因此,分析是在四个业务周期中进行的,并与相邻的业务周期一起进行。

图8.11 破产公司的概率, MFSVM (韩国公司)

图8.12 正常公司的概率,MFSVM(韩国公司)

比较分析。 前面的周期计算先验概率、估计值和最优截断点。 如前一节所讨论的,后续周期用于计算误分类成本。 由于第一个业务周期的短暂性和样本规模较小,初始两个周期被合并。

表8.19和8.20突出了全面和子业务周期的结果。 表8.19和8.20显示,随着类型I错误成本的增加,最佳截断点减少。从表8.19 和8.20可以看出,当成本¹ 增加时,截断点下降

图8.13破产公司概率,FRTDSN-HRB(韩国公司)

图8.14正常公司'概率,FRTDSN-HRB(韩国公司)

大幅下降。与其他数据集一样,FRTDSN-HRB取得了卓越的性能。 这些结果与子周期的测试结果一致。 图8.43、8.44、8.45、8.46、8.47、8.48、8.49、8.50、8.51、8.52、8.53、8.54、8.55和8.56使用随机选择的样本,根据正常和破产公司的概率进行估计。

表8.15估计结果跨业务周期(美国公司)

	THE STATE OF THE S											
	FRTE	SN-HRI	3		FSVM					MFSVM		
面板A												
成本我 成本!!	第1和	1第2周其	月	→ 第3周	期							
PA-T-11	最好的		正常的		最好的	最好的		正常的		子的	正常的	
5	5.452	0	0.1429		0.0291	0.0291		0.0891)749	0.1169	
15	0.0120		0.3	788	0.0001	0.0001		5	0.0	0091	0.2795	
25	0.0120		0.40	029	0.0001	0.0001		0.4896		0038	0.3650	
40	0.0120		0.4	300	0.0001		0.4703	3	0.0	0030	0.4879	
60	0.012	0	0.4	769	0.0001		0.5319)	0.0030		0.5191	
80	0.012	0	0.5	379	0.0001		0.761	l	0.0	0030	0.6209	
100	9.67e-	-3	0.7	130	0.0001		0.8629)	0.0	0030	0.7130	
面板E	3											
成本我 成本!!	第三个	周期!	第四	第四个周期								
P&P**[]	最好的	最好的		常的	最好的	最好的		正常的		子的	正常的	
5	1.500	3	0.0709		0.2738		0.059	1 0.4		1019	0.0591	
15	0.197	9	0.2791		0.0119	0.0119 0.2029		0.0		0800	0.3638	
25	0.027	9	0.50	079	0.0079	0.0079		0.2738		0800	0.4987	
40	0.0230		0.5	569	0.0069	0.0069 0		0.3760		0613	0.5709	
60	0.0230		0.5979		0.0050	0.0050		0.4679)289	0.5409	
80	0.0230		0.6660		0.0050		0.5809)	0.0)289	0.6091	
100	0.023	0	0.7	338	0.0050			3	0.0)289	0.6869	
	贝叶斯			危险		混合逻辑		Ì		粗糙贝叶	斯	
面板A												
成本我 成本!!	第1和第2	2周期	\rightarrow	第3周期								
PX.44II	最好的	正常的]	最好的	正常的	最	_{F的} 正常的		1	最好的	正常的	
5	5.4820	0.1432		0.0292	0.0895	0.	0750	0.1171		0.0774	0.1970	
15	0.0119	0.3791		0.0002	0.3686	0.0098		0.2795		0.0099	0.2596	
25	0.0119	0.4035		0.0002	0.4095	0.	0048	0.3552		0.0081	0.3548	
40	0.0119	0.4400	0.4400 0.0002		0.4708	0.	0036	0.4582		0.0071	0.4800	
60	0.0119	0.4770	0.4770 0.0002		0.5320	0.	0036	0.5192		0.0070	0.5054	
80	0.0119	0.5380			0.7613	3 0.0036		0.6211		0.0068	0.6072	
100	9.67e-4	0.7230		0.0001	0.8633	0.	0036	0.7231		0.0067	0.7354	
面板E	3											
成本我 成本!!	第三个周期	期!第四	个周	期								
水牛II	最好的正常的				正常的	正常的最短		正常的		最好的	正常的	
5	1.5008	0.0719		0.2748	0.0996	0.	4121	0.0595		0.4029	0.0597	
15	0.1988	0.2795		0.0129	0.2030	0.	0803	0.3538		0.1662	0.2577	
25	0.0284	0.5079		0.0086	0.2743	0.	0803	0.4987		0.0552	0.4594	
40	0.0234	0.5577		0.0074	0.3760	0.	0613	0.5719		0.0197	0.3999	
60	0.0234	0.5985		0.0068	0.4881	0.	0287	0.5419		0.0237	0.5272	
80	0.0234	0.6664		0.0068	0.5810	0.	0287	0.6092		0.0237	0.6281	
100	0.0234	0.7343		0.0068	0.6940	0.	0287	0.6772		0.0237	0.7230	
										1		

表8.16估计结果跨中期周期(美国公司)

	EDEL	ONI IID	D		ECLUA				3.0	E0373.4			
	FKII	OSN-HR	В		FSVM					MFSVM			
面板A	本 之	△ 由 田 世	-	ダレ (カロ)	田 # 1								
成本我 成本II	最好的		$rac{\cdot 中周期 ightarrow 第七个中}{oxedsymbol{\square}}$ 正常的		1		工类的		最好的		正常的		
5	0.3669		正常的 0.1733		最好的		0.1735	正常的			0.1734		
15	0.3669		_		0.3072	0.3672			0.3670		0.1734		
25	0.103		0.7585				0.7587		0.1050		0.7380		
40	0.073		0.5		0.0734	0.0734			0.0730		0.5450		
60	0.073		0.82		0.0734		0.5454		0.0730		0.3430		
80	0.027		1.2		0.0280		1.2120		0.0279		1.2119		
100	0.027		1.5		0.0280		1.5571		0.0279		1.5570		
面板B	0.027		1.5.	307	0.0200		1.337	L	0.0	1217	1.3370		
成本我 成本II	最好的			//(1/3/3/3 常的	最好的	是好的		正常的		子的	正常的		
5	0.033	•					0.1277		最好的 0.0337		0.1276		
15	0.000		0.4035		0.0001			0.4038		0001	0.4038		
25	0.000		0.2		0.0001			0.4038		0001	0.2638		
40	0.0001		0.3673		0.0001			0.3674		0001	0.3675		
60	0.0001		0.4895		0.0001				0.0001		0.4896		
80	0.0001		0.7269		0.0001		0.7270			0001	0.7270		
100	0.0001		0.8081		0.0001	0.8083			_	0001	0.8081		
	贝叶斯		危险			混合		合逻辑		粗糙贝叶	 斯		
面板A													
成本我成本。	第六个中		第七	二个中周期]								
成本 _{II}	最好的	正常的]	最好的	正常的	最	好的	正常的		最好的	正常的		
5	0.4034	0.2466	6 0.2636		0.2675	0.	3705	0.1738		0.3677	0.1738		
15	0.1964	1.1738		0.0153	0.5351	0.1136		0.8984		0.1054	0.7588		
25	0.0829	1.7970)	0.0083	0.6900	0.	0629	0.3477		0.0734	0.3375		
40	0.0192	0.5941	5941 0.007		1.1266	0.	0629	0.5651		0.0734	0.5254		
60	0.0192	0.8119	119 0.0068		1.5491	0.0284		0.8696		0.0286	0.8286		
80	0.0192	0.0192 1.1938		0.0068	2.2534	0.0284		1.2419		0.0286	1.2136		
100	0.0192	0.0192 1.5361		0.0068	2.9676	0.0284		1.6948		0.0286	1.5574		
面板B													
成本我 成本 II	第七个中	周期! 第	八个	周期									
	最好的	正常的]	最好的	正常的	最	好的	正常的		最好的	正常的		
5	0.7679	0.1157		0.0002	0.1002	0.	0335	0.2404		0.0338	0.1278		
15	0.0379	0.6770)	0.0001	0.2066	0.	0001	0.3920		0.0001	0.4838		
25	0.0379	0.6867		0.0001	0.2741	_	0001	0.4401		0.0001	0.2738		
40	0.0379	0.7011		0.0001	0.3755	0.	0001	0.5 129		0.0001	0.3674		
60	0.0379	0.7157		0.0001	0.4870	+-	0001	0.5853		0.0001	0.4898		
80	0.0379	0.7400		0.0001	0.6464	+	0001	0.7060		0.0001	0.7276		
100	0.0379	0.7638		0.0001	0.8651	0.0001		0.8269		0.0001	0.8086		

表8.17估计结果跨业务周期(欧洲公司)

FRTDSN-HRB													
成本報 成本(1) 第1和第2周期 → 第3周期 最好的 正常的 最好的 正常的 最好的 正常的 5 5.4519 0.1427 0.0289 0.0889 0.0747 0.11 15 0.0111 0.3787 0.0001 0.3683 0.0089 0.2 25 0.0111 0.4027 0.0001 0.4092 0.0040 0.33 40 0.0111 0.4300 0.0001 0.4701 0.0028 0.43 60 0.0111 0.4768 0.0001 0.7611 0.0028 0.5 80 0.0111 0.5378 0.0001 0.7611 0.0028 0.6 100 9.67e-2 0.7227 0.0001 0.8627 0.0028 0.7 直板B 第三个周期! 第四个周期 上常的 最好的 正常的 最好的 正常的 5 1.5003 0.0708 0.2738 0.0589 0.4018 0.0 15 0.1878 0.2789 0.0118 0.2028 0.0800 0.33													
成本。 最好的 正常的 最好的 正常的 5 5.4519 0.1427 0.0289 0.0889 0.0747 0.11 15 0.0111 0.3787 0.0001 0.3683 0.0089 0.2 25 0.0111 0.4027 0.0001 0.4092 0.0040 0.3 40 0.0111 0.4300 0.0001 0.4701 0.0028 0.43 60 0.0111 0.4768 0.0001 0.5318 0.0028 0.5 80 0.0111 0.5378 0.0001 0.7611 0.0028 0.6 100 9.67e-2 0.7227 0.0001 0.8627 0.0028 0.7 面板B 第三个周期! 第四个周期 上常的 最好的 正常的 最好的 正常的 5 1.5003 0.0708 0.2738 0.0589 0.4018 0.0 15 0.1878 0.2789 0.0118 0.2028 0.0800 0.33 25 0.0278 0.5078 0.0047	成本。												
5 5.4519 0.1427 0.0289 0.0889 0.0747 0.1 15 0.0111 0.3787 0.0001 0.3683 0.0089 0.2 25 0.0111 0.4027 0.0001 0.4092 0.0040 0.33 40 0.0111 0.4300 0.0001 0.4701 0.0028 0.43 60 0.0111 0.4768 0.0001 0.5318 0.0028 0.53 80 0.0111 0.5378 0.0001 0.7611 0.0028 0.62 100 9.67e-2 0.7227 0.0001 0.8627 0.0028 0.72 面板B 第三个周期! 第四个周期 最好的 正常的 最好的 正常的 5 1.5003 0.0708 0.2738 0.0589 0.4018 0.03 15 0.1878 0.2789 0.0118 0.2028 0.0800 0.33 25 0.0278 0.5078 0.0078 0.2738 0.0800 0.49 40 0.0227 <t< th=""><th>· 全的</th></t<>	· 全的												
15													
25 0.0111 0.4027 0.0001 0.4092 0.0040 0.33 40 0.0111 0.4300 0.0001 0.4701 0.0028 0.45 60 0.0111 0.4768 0.0001 0.5318 0.0028 0.5 80 0.0111 0.5378 0.0001 0.7611 0.0028 0.6 100 9.67e-2 0.7227 0.0001 0.8627 0.0028 0.7 面板B 第三个周期! 第四个周期 康好的 正常的 最好的 正常的 最好的 正常的 最好的 正常的 最好的 正常的 5 1.5003 0.0708 0.2738 0.0589 0.4018 0.05 15 0.1878 0.2789 0.0118 0.2028 0.0800 0.33 25 0.0278 0.5078 0.0078 0.2738 0.0800 0.49 40 0.0227 0.5568 0.0068 0.3758 0.0614 0.57 60 0.0227 0.5978 0.0047													
100 0.0111 0.4300 0.0001 0.4701 0.0028 0.4500 0.0111 0.4768 0.0001 0.5318 0.0028 0.5500 0.0111 0.5378 0.0001 0.7611 0.0028 0.6500 0.0028 0.6500 0.676-2 0.7227 0.0001 0.8627 0.0028 0.7500 0.0028 0.7500 0.0028 0.7500 0.0028 0.7500 0.0028 0.7500 0.0028 0.7500 0.0028 0.7500 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 0.00227 0.5568 0.0047 0.4678 0.0288 0.5600 0.00227 0.5978 0.0047 0.4678 0.0288 0.5600 0.00227 0.6658 0.0047 0.5808 0.0288 0.6600 0.0227 0.7338 0.0047 0.6938 0.0288 0.6600 0.00227 0.7338 0.0047 0.6938 0.0288 0.6600 0.00227 0.7338 0.0047 0.6938 0.0288 0.6600 0.00227 0.7338 0.0047 0.6938 0.0288 0.6600 0.00227 0.7338 0.0047 0.6938 0.0288 0.6600 0.00227 0.7338 0.0047 0.6938 0.00288 0.6600 0.00227 0.7338 0.0047 0.6938 0.0288 0.6600 0.00227 0.7338 0.0047 0.6938 0.0288 0.6600 0.00227 0.7338 0.0047 0.6938 0.0288 0.6600 0.00227 0.7338 0.0047 0.6938 0.0288 0.6600 0.00227 0.7338 0.0047 0.6938 0.0288 0.6600 0.00227 0.7338 0.0047 0.6938 0.00228													
0.0111													
100 9.67e-2 0.7227 0.0001 0.8627 0.0028 0.77 面板B													
100 9.67e-2 0.7227 0.0001 0.8627 0.0028 0.77 面板B	208												
成本表 成本n 第三个周期! 第四个周期 最好的 正常的 最好的 正常的 最好的 正常的 5 1.5003 0.0708 0.2738 0.0589 0.4018 0.05 15 0.1878 0.2789 0.0118 0.2028 0.0800 0.35 25 0.0278 0.5078 0.0078 0.2738 0.0800 0.49 40 0.0227 0.5568 0.0068 0.3758 0.0614 0.57 60 0.0227 0.5978 0.0047 0.4678 0.0288 0.54 80 0.0227 0.6658 0.0047 0.5808 0.0288 0.60 100 0.0227 0.7338 0.0047 0.6938 0.0288 0.60 贝叶斯 危险 混合逻辑 粗糙贝叶斯	27												
最好的 正常的 最好的 正常的 最好的 正常的 5 1.5003 0.0708 0.2738 0.0589 0.4018 0.03 15 0.1878 0.2789 0.0118 0.2028 0.0800 0.33 25 0.0278 0.5078 0.0078 0.2738 0.0800 0.49 40 0.0227 0.5568 0.0068 0.3758 0.0614 0.5 60 0.0227 0.5978 0.0047 0.4678 0.0288 0.54 80 0.0227 0.6658 0.0047 0.5808 0.0288 0.60 100 0.0227 0.7338 0.0047 0.6938 0.0288 0.60 贝叶斯 危险 混合逻辑 粗糙贝叶斯													
最好的 正常的 最好的 正常的 最好的 正常的 5 1.5003 0.0708 0.2738 0.0589 0.4018 0.05 15 0.1878 0.2789 0.0118 0.2028 0.0800 0.35 25 0.0278 0.5078 0.0078 0.2738 0.0800 0.45 40 0.0227 0.5568 0.0068 0.3758 0.0614 0.5 60 0.0227 0.5978 0.0047 0.4678 0.0288 0.54 80 0.0227 0.6658 0.0047 0.5808 0.0288 0.60 100 0.0227 0.7338 0.0047 0.6938 0.0288 0.60 贝叶斯 危险 混合逻辑 粗糙贝叶斯													
15 0.1878 0.2789 0.0118 0.2028 0.0800 0.33 25 0.0278 0.5078 0.0078 0.2738 0.0800 0.49 40 0.0227 0.5568 0.0068 0.3758 0.0614 0.57 60 0.0227 0.5978 0.0047 0.4678 0.0288 0.54 80 0.0227 0.6658 0.0047 0.5808 0.0288 0.60 100 0.0227 0.7338 0.0047 0.6938 0.0288 0.60 贝叶斯 危险 混合逻辑 粗糙贝叶斯 面板A	的												
25 0.0278 0.5078 0.0078 0.2738 0.0800 0.45 40 0.0227 0.5568 0.0068 0.3758 0.0614 0.57 60 0.0227 0.5978 0.0047 0.4678 0.0288 0.54 80 0.0227 0.6658 0.0047 0.5808 0.0288 0.60 100 0.0227 0.7338 0.0047 0.6938 0.0288 0.60 贝叶斯 危险 混合逻辑 粗糙贝叶斯 面板A	89												
40 0.0227 0.5568 0.0068 0.3758 0.0614 0.57 60 0.0227 0.5978 0.0047 0.4678 0.0288 0.54 80 0.0227 0.6658 0.0047 0.5808 0.0288 0.60 100 0.0227 0.7338 0.0047 0.6938 0.0288 0.60 贝叶斯 危险 混合逻辑 粗糙贝叶斯 面板A	38												
60 0.0227 0.5978 0.0047 0.4678 0.0288 0.54 80 0.0227 0.6658 0.0047 0.5808 0.0288 0.60 100 0.0227 0.7338 0.0047 0.6938 0.0288 0.67 贝叶斯 危险 混合逻辑 粗糙贝叶斯 面板A	86												
80 0.0227 0.6658 0.0047 0.5808 0.0288 0.66 100 0.0227 0.7338 0.0047 0.6938 0.0288 0.66 贝叶斯 危险 混合逻辑 粗糙贝叶斯 面板A	08												
100 0.0227 0.7338 0.0047 0.6938 0.0288 0.66 贝叶斯 危险 混合逻辑 粗糙贝叶斯 面板A	-08												
贝叶斯 危险 混合逻辑 粗糙贝叶斯 面板A	189												
面板A	68												
$_{rac{ar{\kappa}+ar{M}}{ar{\kappa}+ar{M}}}$ \mid 第 1 和第 2 周期 \longrightarrow 第 3 周期													
[K ⁴]]													
最好的 正常的 最好的 正常的 最好的 正常的 最好的 正常的 是好的 正常的 是好的 正常的 是好的 正常的 是好的 正常的 是好的 正常的 是好的 正常													
5 5.4520 0.1432 0.0292 0.0896 0.0750 0.1171 0.0777 0.12													
15 0.0112 0.3791 0.0002 0.3686 0.0098 0.2795 0.0100 0.25													
25 0.0112 0.4035 0.0002 0.4095 0.0040 0.3552 0.0082 0.35													
40 0.0112 0.4400 0.0002 0.4708 0.0030 0.4582 0.0071 0.44 60 0.0112 0.4770 0.0002 0.5320 0.0030 0.5192 0.0070 0.50													
60 0.0112 0.4770 0.0002 0.5320 0.0030 0.5192 0.0070 0.50 80 0.0112 0.5380 0.0001 0.7613 0.0030 0.6211 0.0068 0.60													
100 9.6e-2 0.7230 0.0001 0.8633 0.0030 0.7232 0.0067 0.73													
	31												
成本表 第三个周期!第四个周期													
現内 東京 東京 東京 東京 東京 東京 東京 東	納												
5 1.5008 0.0711 0.2740 0.0594 0.4121 0.0595 0.4028 0.06													
15 0.1988 0.2795 0.0127 0.2030 0.0803 0.3538 0.1664 0.25													
25 0.0283 0.5079 0.0086 0.2743 0.0803 0.4988 0.0553 0.45													
40 0.0233 0.5577 0.0074 0.3758 0.0613 0.5711 0.0199 0.40	000												
60 0.0233 0.5985 0.0058 0.4680 0.0288 0.5411 0.0236 0.54	75												
80 0.0233 0.6664 0.0058 0.5810 0.0288 0.6092 0.0236 0.66	82												
100 0.0233 0.7343 0.0058 0.6940 0.0288 0.6771 0.0236 0.77													

表8.18估计结果跨中期周期(欧洲公司)

					1						
		OSN-HR	B FSVM			MFSVM					
面板A											
成本我 成本!!			六个中周期 →							I — w	
	最好的		正常的		最好的		正常的		最好的		正常的
5	0.3668		0.1731		0.3671	0.3671		0.1734		3669	0.1933
15	0.1048		0.75		+	0.1051		5	0.1050		0.7585
25	0.0728		0.3368		0.0731			0.3370		0730	0.3369
40	0.0728		0.5248		+	0.0731		3	0.0730		0.5249
60	0.027		0.82		+	0.0279)	0.0278		0.8279
80	0.027	_	1.2	-	0.0279		1.2119		0.0278		1.2119
100	0.027	8	1.5	568	0.0279		1.5570)	0.0)278	1.5569
面板B											
成本我 成本II				八个周期			I — W. (_		
	最好的			常的	最好的		正常的		最好的		正常的
5	0.033		0.1274		0.0335		0.1276		0.0336		0.1975
15	0.000		0.40		0.0001		0.4038		0.0001		0.4836
25	0.000		0.2534		_	0.0001		0.2536		0001	0.2638
40	0.0001		0.3671		+			673		0001	0.3674
60	0.0001		0.4894				0.4896			0001	0.4895
80	0.0001		0.7270		0.0001					0001	0.7269
100	0.0001		0.8080		0.0001			0.8083		0001	0.8086
	贝叶斯			危险		混合逻辑				粗糙贝叶	
面板A				4 1 == ==							
成本我 成本 [[_		·个中周期		_		- <u> </u>	h = 1746		T 244.44
	最好的	正常的		最好的	正常的	最好的		正常的		最好的	正常的
5	0.4034	0.2462		0.2636 0.2675		0.3705		0.1738		0.3674	0.2038
15	0.1964	1.1738		0.0153	0.5351	0.1136		0.8984		0.1054	0.7588
25	0.0828	1.7970			0.6900	0.0628		0.3477		0.0734	0.3379
40	0.0193	0.5941		0.0072	1.1266	0.0628		0.5651		0.0734	0.5254
60	0.0193		.8114 0.0069		1.5491	0.0284		0.8694		0.0286	0.8286
80	0.0193	1.1738			2.2534	0.0284		1.2317		0.0286	1.2136
100	0.0193	1.5364		0.0069	2.9576	2.9576 0.0284		1.5948		0.0286	1.5577
面板B	_	E #0 1 #	× 11 /	\ E1#0							
成本我 成本II			有八个周期 5		工学的	Τ-			最好的		工器站
_	最好的 正常的					正常的最			正常的		正常的
5	0.7671	0.1157		0.0002	0.1002	+	0335	0.2404		0.0338	0.1278
15	0.0379	0.6770		0.0001	0.2066	+ -	0001	0.3920		0.0001	0.4038
25	0.0379	0.6867		0.0001	0.2741	+	0001	0.4401	0.0001		0.2738
40	0.0379	0.7011		0.0001	0.3755	+ -	0001	0.5 129		0.0001	0.3674
60	0.0379	0.7157		0.0001	0.4770	+	0001	0.5854		0.0001	0.4898
80	0.0379	0.7400		0.0001	0.6461	+ -	0001	0.7060		0.0001	0.7270
100	0.0379	0.7638	0.0001		0.8151	8151 0.000		0.8268		0.0001	0.8085

Bankrupt Companies Probability - Bayesian Model

图8.15破产公司'概率,贝叶斯模型(美国公司)

图8.16正常公司'概率,贝叶斯模型(美国公司)

图8.17破产公司概率,危险模型(美国公司)

Normal Companies Probability - Hazard Model

图8.18正常公司'概率,危险模型(美国公司)

Bankrupt Companies Probability - Mixed Logit Model

图8.19破产公司概率,混合逻辑模型(美国公司)

图8.20正常公司概率,混合逻辑模型(美国公司)

图8.21破产公司概率,粗糙贝叶斯模型(美国公司)

Normal Companies Probability - Rough Bayesian Model

图8.22正常公司概率,粗糙贝叶斯模型(美国公司)

Bankrupt Companies Probability - FSVM

图8.23破产公司概率, FSVM (美国公司)

Normal Companies Probability - FSVM

图8.24正常公司概率, FSVM (美国公司)

Bankrupt Companies Probability - MFSVM

图8.25破产公司概率,MFSVM(美国公司)

Normal Companies Probability - MFSVM

图8.26正常公司概率,MFSVM(美国公司)

Bankrupt Companies Probability - FRTDSN-HRB

图8.27破产公司概率,FRTDSN-HRB(美国公司)

Normal Companies Probability - FRTDSN-HRB

图8.28正常公司概率,FRTDSN-HRB(美国公司)

Bankrupt Companies Probability - Bayesian Model

图8.29破产公司'的概率,贝叶斯模型(欧洲公司)

Normal Companies Probability - Bayesian Model

图8.30正常公司'的概率,贝叶斯模型(欧洲公司)

Bankrupt Companies Probability - Hazard Model

图8.31破产公司'的概率,风险模型(欧洲公司)

Normal Companies Probability - Hazard Model

图8.32正常公司'的概率,风险模型(欧洲公司)

图8.33破产公司'的概率,混合逻辑模型(欧洲公司)

Normal Companies Probability - Mixed Logit Model

图8.34正常公司'的概率,混合逻辑模型(欧洲公司)

Bankrupt Companies Probability - Rough Bayesian Model

图8.35破产公司'的概率,粗糙贝叶斯模型(欧洲公司)

Normal Companies Probability - Rough Bayesian Model

图8.36破产公司'的概率,粗糙贝叶斯模型(欧洲公司)

Bankrupt Companies Probability - FSVM

图8.37破产公司'的概率,FSVM(欧洲公司)

Normal Companies Probability - FSVM

图8.38正常公司的概率, FSVM (欧洲公司)

Bankrupt Companies Probability - MFSVM

图8.39破产公司概率,MFSVM(欧洲公司)

Normal Companies Probability - MFSVM

图8.40正常公司概率,MFSVM(欧洲公司)

Bankrupt Companies Probability - FRTDSN-HRB

图8.41破产公司概率,FRTDSN-HRB(欧洲公司)

Normal Companies Probability - FRTDSN-HRB

图8.42正常公司概率,FRTDSN-HRB(欧洲公司)

表**8.19**在不同商业周期下的结果估计(UCI机器学习库破产数据库)

	FRTI	DSN-HR	В		FSVM	FSVM					MFSVM		
面板A	1111	231, 111,			111111111111111111111111111111111111111								
成本我成本。	第1和	和第2周	期	→ 第3周	期								
以本II	最好的		正常的		最好的			正常的		子的	正常的		
5	5.482	20	0.1429		0.0291	0.0291			0.0750		0.1169		
15	0.0119		0.3788		0.0001		0.3685	5	0.0091		0.2795		
25	0.0119		0.4029		0.0001	0.0001		0.4095		0038	0.3650		
40	0.0119		0.4	300	0.0001		0.4703	3	0.0030		0.4879		
60	0.011	19	0.4869		0.0001	0.0001)	0.0030		0.5591		
80	0.011	19	0.5	379	0.0001		0.7611	l	0.0030		0.6209		
100	9.6e-	3	0.7	130	0.0001		0.8630)	0.0	0030	0.7130		
面板B													
成本我 成本 II	第三	个周期!	第四	1个周期									
, , , , , , , , , , , , , , , , , , , ,	最好的	5	正常的		最好的	最好的正		正常的		子的	正常的		
5	1.500)3	0.0709		0.2738	0.2738		0.0591		1019	0.0591		
15	0.187	79	0.2791		0.0119	0.0119		0.2030		0800	0.3538		
25	0.0279		0.5079		0.0079		0.2738		0.0800		0.4987		
40	0.0229		0.5569		0.0069	0.0069		0.3760		0619	0.5709		
60	0.0229		0.5979		0.0050	0.0050		0.4679)289	0.5409		
80	0.0229		0.6660		0.0050)289	0.6091		
100	0.0229		0.7338		0.0050			0.6938)289	0.6769		
	贝叶斯	贝叶斯		危险		混合		合逻辑		┃粗糙贝┗	†斯		
面板A													
成本我 成本!!	第1和第		\rightarrow	第3周期									
	最好的	正常的	7	最好的	正常的	最	_{好的} 正常的			最好的	正常的		
5	5.4520	0.1432	2 0.0292		0.0895	0.	0750	0.1171		0.0774	0.1270		
15	0.0119	0.3791		0.0002	0.3686	0.	0098	0.2795		0.0099	0.2594		
25	0.0119	0.4035	35 0.0002 0.4095		0.4095	0.	0040	0.3552		0.0081	0.3547		
40	0.0119	0.4400)	0.0002	0.4708	0.0030		0.4582		0.0071	0.4400		
60	0.0119	0.4770)	0.0002	0.5320	0.0030		0.5192		0.0070	0.5051		
80	0.0119	0.5380	0.0001		0.7613	0.0030		0.6211		0.0068	0.6071		
100	9.6e-4	0.7230)	0.0001	0.8633	633 0.0030		0.7231		0.0067	0.7351		
面板B													
成本我 成本II	第三个周	_	四个周	1						最好的	- N/ //		
	最好的 正常的		1 1 1 1			正常的最			正常的		正常的		
5	1.5008	0.0711		0.2740	0.0594	_	4121	0.0596		0.4029	0.0597		
15	0.1887	0.2795		0.0129	0.2030	+-	0803	0.3538		0.1662	0.2577		
25	0.0283	0.5079		0.0086	0.2743	+-	0803	0.4987		0.0552	0.4896		
40	0.0233	0.5577		0.0074	0.3760	+-	0613	0.5719		0.0197	0.3997		
60	0.0233	0.5985		0.0058	0.4681	_	0287	0.5419	0.0238		0.5472		
80	0.0233	0.6664		0.0058	0.5810	-	0287	0.6092		0.0238	0.6281		
100	0.0233	0.7343	,	0.0058	0.6940	0.	0287	0.6772		0.0238	0.7221		

表**8.20**在中期周期下的结果估计(UCI机器学习库破产数据库)

	FRTDSN-HRB				FSVM					MFSVM		
面板A												
成本我 成本!!	第六	个中周期		第七个中	周期							
7×-1-11	最好的		正常的		最好的		正常的		最好的		正常的	
5	0.366	0.3669		733	0.3672	0.3672		5	0.3670		0.1734	
15	0.105	0.1050		585	0.1052	0.1052		7	0.1050		0.7586	
25	0.0730		0.3369		0.0732		0.3371		0.0730		0.3370	
40	0.073	80	0.52	249	0.0732		0.5252	2	0.0730		0.5250	
60	0.027	79	0.82	279	0.0280		0.8280)	0.0279		0.8279	
80	0.027	79	1.2	119	0.0280		1.2120)	0.0279		1.2119	
100	0.027	79	1.5	569	0.0280		1.5571		0.0279		1.5570	
面板B												
成本我 成本II	第七个	个中周期		八个周期								
	最好的	最好的		常的	最好的	最好的		正常的		好的	正常的	
5	0.033	36	0.12		0.0336	0.0336 0		7	0.0337		0.1276	
15	0.000)1	0.4036		0.0001		0.4038		0.0001		0.4037	
25	0.000	0.0001		536	0.0001		0.2538		0.0001		0.2638	
40	0.0001		0.3673		0.0001	0.0001 0.36		4 0.		0001	0.3674	
60	0.0001		0.4895		0.0001			0.4897		0001	0.4896	
80	0.0001		0.72	269	0.0001)	0.0	0001	0.7270	
100	0.0001		0.8081		0.0001			0.8083		0001	0.8081	
	贝叶斯			危险		混合逻辑		İ		│粗糙贝┗	上斯	
面板A	A											
成本我 成本 II	第六个中	1		- 个中周期								
	最好的	正常的	1,500		正常的	最	好的	正常的		最好的	正常的	
5	0.4034	0.2462		0.2636	0.2675	0.	3705	0.1738		0.3674	0.1938	
15	0.1964	1.1738		0.0153	0.5351	0.	1136	0.8984		0.1054	0.7588	
25	0.0830	1.7970	1	0.0083	0.6900	0.	0629	0.3477		0.0734	0.3375	
40	0.0196	0.5941			1.1266			0.5651		0.0734	0.5454	
60	0.0196	0.8114	0.0058		1.5491	0.0284		0.8694		0.0286	0.8281	
80	0.0196	1.1738	8 0.0058		2.2534	.2534 0.0284		1.2419		0.0286	1.2121	
100	0.0196	1.5361		0.0058	2.9576	0.0284		1.6948		0.0286	1.5574	
面板B												
$\frac{C_I}{C_{II}}$	第七个中			周期								
	最好的	正常的	分 最好的		正常的	最	好的	正常的		最好的	正常的	
5	0.7671	0.1157		0.0002	0.1002	+	0335	0.2404		0.0338	0.1279	
15	0.0379	0.6770		0.0001	0.2066	+	0001	0.3920	0.0001		0.4038	
25	0.0379	0.6867		0.0001	0.2741	-	0001	0.4801	0.0001		0.2638	
40	0.0379	0.7011		0.0001	0.3755	+	0001	0.5 129		0.0001	0.3674	
60	0.0379	0.7157		0.0001	0.4870	+	0001	0.6950		0.0001	0.4898	
80	0.0379	0.7400		0.0001	0.6464	+	0001	0.7060	0.0001		0.7270	
100	0.0379	0.7638		0.0001	0.8669	0.	0001	0.8269		0.0001	0.8086	

Bankrupt Companies Probability - Bayesian Model

图8.43破产公司概率,贝叶斯模型(UCI ML数据库)

Normal Companies Probability - Bayesian Model

图8.44正常公司概率,贝叶斯模型(UCI ML数据库)

Bankrupt Companies Probability - Hazard Model

图8.45破产公司概率,危险模型(UCI ML数据库)

Normal Companies Probability - Hazard Model

图8.46正常公司概率,危险模型(UCI ML数据库)

Bankrupt Companies Probability - Mixed Logit Model

图8.47破产公司概率,混合逻辑模型(UCI ML数据库)

Normal Companies Probability - Mixed Logit Model

图8.48正常公司概率,混合逻辑模型(UCI ML数据库)

图8.49破产公司概率,粗糙贝叶斯模型(UCI ML数据库)

Normal Companies Probability - Rough Bayesian Model

图8.50正常公司概率,粗糙贝叶斯模型(UCI ML数据库)

Bankrupt Companies Probability - FSVM

图8.51破产公司概率,FSVM(UCI ML数据库)

Normal Companies Probability - FSVM

图8.52破产公司概率, FSVM (UCI ML数据库)

Bankrupt Companies Probability - MFSVM

图8.53破产公司概率,MFSVM(UCI ML数据库)

Normal Companies Probability - MFSVM

图8.54正常公司概率,MFSVM(UCI ML数据库)

Bankrupt Companies Probability - FRTDSN-HRB

图8.55破产公司概率,FRTDSN-HRB(UCI ML数据库)

Normal Companies Probability - FRTDSN-HRB

图8.56正常公司概率,FRTDSN-HRB(UCI ML数据库)

第9章 结论

我们提出了一种复杂的HDA,即FRTDSN-HRB用于破产预测。FRTDSN是基于TDSN的深度学习模型,由多个堆叠的块组成,通过权重张量高阶统计量将输入映射到输出。TDSN的学习算法使用权重矩阵和张量进行参数估计。通过引入模糊粗糙集,TDSN的计算能力得到了增强。HRB是由结构化的分层贝叶斯模型中的概率粗糙集形成的,其中使用超参数和超先验来实现后验分布。然后将FRTDSN与HRB集成在一起,得到FRTDSN-HRB模型。HRB提高了FRTDSN-HRB模型的预测准确性。所有实验都在韩国建筑公司、美国和欧洲非金融公司的数据集以及UCI机器学习库的破产数据库上进行。

将FRTDSN-HRB性能与模糊支持向量机和其他统计模型进行比较。为了提供比较的平衡,通过FRTDSN-HRB模型处理了降低或提高预测准确性的某些方面。选择截断点受到回溯、基于选择的样本偏差和财务比率变化的影响。采样过程推动了预测结果。降低了寻找截断点的任意性水平。使用训练样本计算的最优截断点作为代理使用,以获得最小的误分类成本。与截断点相比,这导致最小的误分类成本。经验最优截断点表明,所有模型在比较上优于贝叶斯模型。这是基于随机选择的样本,当第一类错误成本与第二类错误成本的比率不高时。通过不同的商业周期和中期周期展示了所提出的FRTDSN-HRB模型的优越性。这项工作的未来研究涉及通过微调参数来开发基于混合软计算的深度学习模型,以进一步提高破产预测准确性。

- 1. Altman EL (1993) 公司财务困境和破产。Wiley, 纽约
- 2. Chaudhuri A (2013) 使用贝叶斯、危险、混合逻辑和粗糙贝叶斯模型的破产预测: 一个比较分析,计算机和信息科学 6(2):103–125
- 3. Chaudhuri A, De K (2011) 用于破产预测的模糊支持向量机。 Appl Soft Comput 11(2):2472-2486
- 4. Altman E (1968) 财务比率、判别分析和公司 破产的预测。J Financ 23(4):589–609
- 5. Chaudhuri A (2011) 使用软计算技术预测公司破产,技术报告,NIIT大学,尼姆拉纳
- 6. Altman E, Haldeman R, Narayanan P, Analysis ZETA (1977) 一个新的模型来识别公司的破产风险。J Bank Financ 1(1):29-54
- 7. Agarwal V, Taffler R (2008) 比较基于市场和基于会计的破产预测模型的性能。 J Bank Fi nanc 32(8):1541-1551
- 8. Altman E (2007) 在巴塞尔2环境中重新审视信用评分模型,在台湾大学的讲座,可在以下网址找到: www.fin.ntu.edu.tw/~hwangdar/94emba19.ppt9. Beaver WH, McNichol
- s MF, Rhie JW (2005) 财务报表是否变得不那么信息化? 从财务比率预测破产的能力来看。 Rev Acc Stud 10(1):93–122
- 10. Bellovary JL, Giacomino D, Akers M (2007) 破产预测研究综述: 1930年至今。金融教育杂志 33:1-43
- 11. Chava S, Jarrow R (2004) 具有行业效应的破产预测,市场与账户变量以及信用风险模型的简化形式。 金融评论 8(4):537–56912. Hensher DA, Jones S (2007) 预测企业破产
- : 优化混合逻辑模型的性能。Abacus 43(3):241-264
- 13. Hillegeist S, Cram D, Keating E, Lundstedt K (2004) 评估破产概率。 会计研究评论 9(1):5-34
- 14. Jones FL (1987) 破产预测的当前技术。会计文献 6:131-164
- 15. Martin D (1977) 银行失败的早期预警。 银行与金融学杂志 1(3):249-276
- 16. McKee TE (2003) 粗糙集破产预测模型与审计师信号率的比较. J Forecast 22(8):569–586
- 17. Ohlson JA (1980) 财务比率和破产的概率预测. J Account Res 18(1):109–131
- 18. Ravi Kumar P, Ravi V (2007) 银行和公司的破产预测: 统计和智能技术综述. Eur J Oper Res 180(1):1–28

19. Sarkar S, Sriram RS (2001) 早期警示银行失败的贝叶斯模型. Manag Sci 47 (11):1457–1475

- 20. Shumway T (2001) 更准确地预测破产: 一个简单的风险模型. J Bus 74 (1):101-124
- 21. Sun L, Shenoy PP (2007) 使用贝叶斯网络进行破产预测: 一些方法论问题。 欧洲运营研究杂志180(2): 738-753
- 22. Tam KY (1991) 神经网络模型与银行破产预测。Omega 19(5): 429-445
- 23. Weiss LA, Capkun V (2004) 将错误成本纳入破产预测模型的影响。工作论文
- 24. Wiginton JC (1980) 关于比较逻辑回归和判别模型在消费信贷行为中的研究。 金融与量 化分析杂志15(3): 757-770
- 25. Zavgren C (1983) 公司失败的预测: 现状。会计文献杂志2(1): 1-37
- 26. Zmijewski ME (1984) 与财务困境预测模型估计相关的方法论问题。 会计研究杂志22(增刊): 59-82
- 27. Jones S, Hensher DA (2004) 预测公司财务困境: 混合逻辑模型。 账户 收入 79(4):1011-1038
- 28. Goodfellow I, Bengio Y, Courville A (2016) 深度学习。麻省理工学院出版社, 剑桥
- 29. Patterson J, Gibson A (2016) 深度学习:从业者的方法,第一版。奥莱利,塞巴斯托波尔
- 30. Burges CJC (1998) 支持向量机模式识别教程,卷 1-43。 Kluwer Academic Publishers. 波士顿
- 31. Hutchinson B, Deng L, Yu D (2013) 张量深度堆叠网络。 IEEE Trans Pattern Anal Mach Intell 35(8):1944–1957
- 32. 韩国建筑公司数据集: NICE DnB http://www.nicednb.com
- 33. Hajek P, Michalak K (2013) 在公司信用评级预测中的特征选择。 基于知识的系统 51:72 –84
- 34. Myoung JK, Ingoo H (2003) 使用遗传算法从定性破产数据中发现专家的决策规则。 专家系统应用 25(4):637–64635. Chaudhuri A (2014) 用于信用批准分类的改进模糊支持向量机。
 - 人工智能通讯 27(2):189-211
- 36. Smith R, Winakor A (1935) 不成功的工业公司财务结构的变化,商业研究局,公告编号51。 伊利诺伊大学出版社,厄巴纳37. Merwin C (1942) 在五个制造业中为小公司提供融资,1926—1936。
 - 国家经济研究局,纽约
- 38. Hickman WB (1965) 公司债券质量和投资者经验。 普林斯顿大学出版社,普林斯顿
- 39. Beaver WH (1966) 财务比率作为失败的预测因素。 Empir Res Account Sel Stud:71–111
- 40. Weiss L A, Capkun V (2004) 将错误成本纳入破产预测模型的影响。工作论文
- 41. Deakin E (1972) 商业失败预测因素的判别分析。 J Account Res 10 (1):167–179
- 42. Wilcox A (1971) 作为失败预测因素的财务比率的简单理论。 J Account Res 9 (3):389-395
- 43. Begley J, Ming J, Watts S (1996) 20世纪80年代的破产分类错误:Altman和Ohlson模型的实证分析。 Rev Acc Stud 1(4):267–284
- 44. Mensah YM (1984) 对多元破产预测模型的平稳性检验: 一项方法学研究。 会计研究 22 (1): 380-395
- 45. Webster E, Thornton DB (2005) 基于规则与基于原则的会计准则下的盈余质量: 对斯金纳假设的检验。 会计透视4 (2): 167-192

46. Ramser J,Foster L(1931)比率分析的演示,第40号公告,伊利诺伊大学,商业研究局,厄巴纳

- 47. Fitzpatrick P(1932)成功工业企业与失败组织的比率比较。 会计出版公司,华盛顿48. Winakor A,Smith R(1935)失败工业公司财务结构的变化,第51号公告,伊利诺伊大学,商业研究局,厄巴纳49. Merton R(1974)关于公司债务定价:利率风险结构。 金融学杂志29(2): 449-470
- 50. Koh HC, Tan SS (1999) 用神经网络方法预测持续经营状况。 Account Bus Res 29(3):211-216
- 51. Atiya AF (2001) 用神经网络进行信用风险的破产预测: 一项调查和新结果。 IEEE Tran s Neural Netw 12(4):929–935
- 52. Baek J, Cho S (2003) 用韩国公司的自联想神经网络进行信用风险的破产预测。 在: CIF Er会议论文集,香港,第25-29页53. Becerra VM, Galvao RKH, Abou-Seads M (20
- 05) 用于金融困境分类的神经网络和小波网络模型。 Data Min Knowl Disc 11(1):35-55
- 54. Durga L, Dimitri P (2006) 用于模型输出预测区间估计的机器学习方法。 Neural Netw 19(2):225-235
- 55. Pramodh C, Ravi V (2007) 基于改进的大洪水算法的自联想神经网络在银行破产预测中的应用。 Int J Comput Intell Res 3(4):363–37056. Purvinis O, S' ukys P, Virbickaite P (2005) 应用神经网络进行破产诊断的研究。Eng Econ 41(1):16–22
- 57. Ravi V, Kumar PR, Srinivas ER, Kasabov NK (2007) 径向基函数神经网络的半在线训练算法: 在银行破产预测中的应用。 In: RaviV (ed) 银行技术和管理的进展: ICT和CRM的影响。IGIGlobal, Hershey
- 58. Shah JR, Mirza BM (2000) 用于破产预测的基于神经网络的聚类过程。Am Bus Rev 18(2) :80-86
- 59. Quinlan JR (1986) 决策树的引入。机器学习1(1): 81-106
- 60. Frydman H, Altman E, Kao DL(1985)引入递归分区用于金融分类:金融困境的案例。金融学40(1): 269-291
- 61. 人工神经网络: https://en.wikipedia.org/wiki/Artificial_neural_network
- 62. 反向传播: https://en.wikipedia.org/wiki/Backpropagation
- 63. Odom M, Sharda R (1990) 破产预测的神经网络。在:IJCNN国际神经网络会议论文集,圣地亚哥,第163-168页64. Tam K, Kiang M (1992) 神经网络的管理应用
- :银行失败预测的案例。管理科学38(7):926-947
- 65. 达尔文的进化论: https://en.wikipedia.org/wiki/Darwinism
- 66. Lensberg T, Eilifsen A, McKee TE (2006) 通过遗传编程进行破产理论发展和分类。 欧洲运营研究杂志169(2):677–697
- 67. Sengupta RN, Singh R (2007) 使用人工免疫系统进行破产预测。在: DeCastro LN, Zuben FJ, Knidel H (eds) 人工免疫系统,计算机科学讲义,第4628卷。 Springer, Berlin, pp 131–141
- 68. Kumar PR, Ravi V (2006) 模糊规则基础分类器在银行破产预测中的应用。 在: 第1届IEEE国际数字与信息管理会议论文集, 班加罗尔,pp 222–227
- 69. Shin KS, Lee TS, Kim HJ (2005) 支持向量机在破产 预测模型中的应用。 专家系统应用28(1):127–135
- 70. Dimitras A, Slowinski R, Susmaga R, Zopounidis C (1999) 使用粗糙集进行企业破产预测。 欧洲运营研究杂志114(2):263–280
- 71. Bioch JC, Popova V (2001) 使用粗糙集进行破产预测,EIRM报告系列管理研究。

72. Ruzgar NS, Unsal F, Ruzgar B (2008) 使用粗糙集方法预测破产:以土耳其银行为例。 在美国应用数学会议上的论文集,哈佛大学。

- 73. Shuai JJ, Li HL (2005) 使用粗糙集和最差实践DEA进行企业破产预测。在S´lezak D等人(编)的《粗糙集、模糊集、数据挖掘和粒计算》中,计算机科学讲座笔记,第3642卷。Springer,柏林/纽约,第503-510页74. Zaini BJ, Shamsuddin
- SM, Jaaman SH (2008) 比较粗糙集理论和逻辑回归在分类公司绩效方面的表现。 质量测量分析杂志4(1):141–15375. Ahn H, Kim KJ (2009) 使用混合案例推理和遗传算法方法进行破产预测建模。 应用软计算9(2):599–607
- 76. Jo H, Han I, Lee H (1997) 使用基于案例推理、神经网络和判别分析的破产预测。 Expert Syst Appl 13(2):97–108
- 77. Ravi V, Kurniawan H, NweeKok TP, Kumar PR (2008) 用于银行绩效预测的软计算系统。 Appl Soft Comput J 8(1):305–315
- 78. Ryu YU, Yue WT (2005) 公司破产预测: 等距分离和其他分类方法的实验比较,IEEE系统、人和网络交易。 Syst Humans 35(5):727–737
- 79. Tung WL, Queka C, Cheng P, GenSo EWS (2004) 用于预测银行失败的新型神经模糊早期警报系统。
- 80. Vlachos D, Tollias YA (2003) 破产预测中的神经模糊建模。 Yugoslav J Oper Res 13(2):165–174
- 81. Wu CH, Tseng GH, Goo YJ, Fang WC (2007) 用于预测破产的支持向量机参数的实值遗传算法。 Expert Syst Appl 32(2):397–408
- 82. 深度学习: https://zh.wikipedia.org/wiki/深度学习
- 83. 破产预测: https://zh.wikipedia.org/wiki/破产预测
- 84. Vapnik VN (1995) 统计学习理论的本质。斯普林格,纽约
- 85. 层次贝叶斯模型: https://zh.wikipedia.org/wiki/贝叶斯层次模型
- 86. Pawlak Z (1991) 粗糙集,关于数据推理的理论方面。 Kluwer Academic Publishers, Dordrecht
- 87. Chaudhuri A (2016) 用于数据分类的模糊粗糙支持向量机。 Int J Fuzzy Syst Appl 5(2):26–53
- 88. 姚洋 (2010) 基于概率粗糙集的三向决策. 信息科学 180(3):341-353
- 89. 姚洋 (2008) 概率粗糙集逼近. 近似推理国际期刊 49(2):255-271
- 90. 姚洋 (2007) 决策理论粗糙集模型. 在: RSKT 2007会议论文集, 人工智能讲义, LNAI 4481, pp 1-12
- 91. 姚洋, 黄顺坤, 决策理论A (1992) 近似概念的框架. 人机研究 37(6):793-809
- 92. 姚洋, 黄顺坤, Lingras PA (1990) 决策理论粗糙集模型. 在: Ras ZW, Zemankova M, Emrich ML (eds) 智能系统方法学 5. North Holland, New York, pp 17–24