

HEART DISEASE ANALYSIS

Context

This data set dates from 1988 and consists of four databases: Cleveland, Hungary, Switzerland, and Long Beach V. It contains 76 attributes, including the predicted attribute, but all published experiments refer to using a subset of 14 of them. The "target" field refers to the presence of heart disease in the patient. It is integer valued 0 = no disease and 1 = disease.

Dataset Link :: https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset

SS

Column Descriptions ::

- age
- sex
- chest pain type (4 values)

- value 0: typical angina
- value 1: atypical angina
- value 2: non-anginal pain
- value 3: asymptomatic
- trestbps: resting blood pressure (in mm Hg on admission to the hospital)
- chol: serum cholestrol in mg/dl
- fbs: (fasting blood sugar> 120 mg/dl)(1 = true; 0 = false)
- restecg: resting electrocardiographic results
 - value 0: normal
 - value 1: having ST-T wave abnormality(T wave inversions and/or ST elevation or depression of> 0.05 mV)
 - value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria
- thalach: maximum heart rate achieved
- exang: exercise induced angina (1=yes; 0=no)
- oldpeak = ST depression induced by exercise relative to rest
- slope: the slope of the peak exercise ST segment
 - value 1: upsloping
 - value 2: flat
 - value 3: downloping
- ca: number of major vessels (0-3) colored by flourosopy
- thal: 3 = normal; 6 = fixed defect; 7 = reversable defect
- target: 0=less chance of heart attack, 1 = more chance of heart attack

This project covers manual exploratory data analysis and using pandas in Jupyter Notebook.

Questions:

- 1. Import The Libraries And Dataset
- 2. Display Top 5 Rows of The Dataset
- 3. Check The Last 5 Rows of The Dataset
- 4. Find Shape of Our Dataset (Number of Rows And Number of Columns)
- Get Information About Our Dataset Like Total Number Rows, Total Number of Columns, Datatypes of Each Column And Memory Requirement
- 6. Check Null Values In The Dataset
- 7. Check For Duplicate Data and Drop Them
- 8. Get Overall Statistics About The Dataset
- 9. Draw Correlation Matrix
- 10. How Many People Have Heart Disease, And How Many Don't Have Heart Disease In This Dataset?
- 11. Find Count of Male & Female in this Dataset
- 12. Find Gender Distribution According to The Target Variable
- 13. Check Age Distribution In The Dataset
- 14. Check Chest Pain Type

- 15. Show The Chest Pain Distribution As Per Target Variable
- 16. Show Fasting Blood Sugar Distribution According To Target Variable
- 17. Check Resting Blood Pressure Distribution
- 18. Compare Resting Blood Pressure As Per Sex Column
- 19. Show Distribution of Serum cholesterol
- 20. Plot Continuous Variables

```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

1. Import the libraries and dataset

In [2]: df=pd.read_csv("heart.csv")

2. Display Top 5 Rows of The Dataset

[3]:	<pre>df.head()</pre>													
:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tha
	0	52	1	0	125	212	0	1	168	0	1.0	2	2	3
	1	53	1	0	140	203	1	0	155	1	3.1	0	0	3
	2	70	1	0	145	174	0	1	125	1	2.6	0	0	3
	3	61	1	0	148	203	0	1	161	0	0.0	2	1	3
	4	62	0	0	138	294	1	1	106	0	1.9	1	3	2
	С													С

3. Check the last 5 rows of the dataset

[4]:	<pre>df.tail()</pre>												
t[4]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
	1020	59	1	1	140	221	0	1	164	1	0.0	2	0
	1021	60	1	0	125	258	0	0	141	1	2.8	1	1
	1022	47	1	0	110	275	0	0	118	1	1.0	1	1
	1023	50	0	0	110	254	0	0	159	0	0.0	2	0
	1024	54	1	0	120	188	0	1	113	0	1.4	1	1
	С												С

4. Find shape of our dataset (number of rows and number of columns)

```
In [5]: df.shape
Out[5]: (1025, 14)
In [6]: print("Number of rows: ", df.shape[0])
    print("Number of columns: ", df.shape[1])

    Number of rows: 1025
    Number of columns: 14
```

5. Get Information About Our Dataset Like Total Number Rows, Total Number of Columns, Datatypes of Each Column And Memory Requirement

```
In [9]: df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 1025 entries, 0 to 1024
      Data columns (total 14 columns):
          Column
                 Non-Null Count Dtype
          -----
                   -----
       0
                  1025 non-null
                                  int64
         age
                  1025 non-null int64
       1
          sex
                  1025 non-null int64
       2
         ср
       3 trestbps 1025 non-null int64
       4 chol
                  1025 non-null int64
                1025 non-null int64
       5
          fbs
       6 restecg 1025 non-null int64
       7 thalach 1025 non-null int64
                  1025 non-null
                                  int64
       8
          exang
          oldpeak 1025 non-null float64
       9
       10 slope
                 1025 non-null int64
       11 ca
                   1025 non-null
                                  int64
       12 thal
                   1025 non-null
                                  int64
                  1025 non-null
                                  int64
       13 target
      dtypes: float64(1), int64(13)
      memory usage: 112.2 KB
```

6. Check Null Values In The Dataset

```
In [8]: df.isnull().sum()
```

```
Out[8]: age
                     0
                     0
        sex
                     0
        ср
                    0
        trestbps
        chol
        fbs
                     0
        restecg
                     0
        thalach
                     0
        exang
                     0
        oldpeak
        slope
        ca
        thal
                     0
        target
        dtype: int64
```

7. Check For Duplicate Data and Drop Them

8. Get Overall Statistics About The Dataset

In [15]:	df.des	cribe()						
Out[15]:	age		sex	ср	trestbps	chol	fbs	restec
	count	302.00000	302.000000	302.000000	302.000000	302.000000	302.000000	302.0000
	mean	54.42053	0.682119	0.963576	131.602649	246.500000	0.149007	0.5264
	std	9.04797	0.466426	1.032044	17.563394	51.753489	0.356686	0.5260
	min	29.00000	0.000000	0.000000	94.000000	126.000000	0.000000	0.0000
	25%	48.00000	0.000000	0.000000	120.000000	211.000000	0.000000	0.0000
	50%	55.50000	1.000000	1.000000	130.000000	240.500000	0.000000	1.0000
	75%	61.00000	1.000000	2.000000	140.000000	274.750000	0.000000	1.0000
	max	77.00000	1.000000	3.000000	200.000000	564.000000	1.000000	2.0000
	C (С

9. Draw Correlation Matrix

```
In [16]: # to check correlation between different features available in our dataset
             plt.figure(figsize=(13,7))
             sns.heatmap(df.corr(), annot=True)
             # annot=True - parameter of this heatmap method of seaborn
Out[16]:
             <Axes: >
                                                                                                                            - 1.0
               age - 1
                           -0.095
                                                                                         -0.16
                                                                                                             -0.22
                                                                     -0.4
                                                                    -0.046
                                                                                                             -0.28
                                                                                 0.098
               sex -
                                                                                                                            - 0.8
                                   1
                                                                           -0.39
                    -0.063
                                               -0.073
                                                     0.096
                                                             0.042
                                                                                  -0.15
                                                                                                -0.2
                                                                                                      -0.16
           trestbps -
                                  0.046
                                          1
                                                                    -0.048
                                                                                                                            - 0.6
                                                 1
              chol -
                                  -0.073
                                                                  -0.0053 0.064
                                                                                       0.00042 0.087
                                                                                                      0.097
                                                                                                                            - 0.4
                                                       1
                                                             -0.083 -0.0072
                                                                                        -0.059
               fbs -
                                                              1
            restecq -
                                  0.042
                                                                                               -0.083
                                                                                                                             0.2
            thalach -
                     -0.4
                                         -0.048
                                               -0.0053 -0.0072 0.041
                                                                     1
                                                                           -0.38
                                                                                                             -0.44
             exang -
                                  -0.39
                                                                    -0.38
                                                                            1
                                                                                                                             0.0
           oldpeak -
                                                      0.0045 -0.056
                                                                    -0.34
                                                                                   1
                                                                                         -0.58
                                                                                                             -0.43
                                                                                  -0.58
                                         -0.12 0.00042 -0.059
                                                                                          1
                                                                                                       -0.1
                                                                                                                            - -0.2
                ca
                                                                                  0.24
                                                                                                 1
                                                                                                             -0.41
                                                                                                              -0.34
                                                                                                                             -0.4
               thal
                                  -0.16
                                                      -0.033
                                                                                                       1
                                                      -0.027
                                                                           -0.44
                                                                                  -0.43
                                                                                                      -0.34
                                                                                                              1
                                       trestbps chol
                                                       fbs restecg thalach exang oldpeak slope
                            sex
                                                                                                      thal
                                                                                                            target
```

10. How Many People Have Heart Disease, And How Many Don't Have Heart Disease In This Dataset?

```
In [17]:
          df.columns
          Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
Out[17]:
                   'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
                 dtype='object')
In [18]:
          df['target'].value_counts()
Out[18]:
          target
                164
                138
          Name: count, dtype: int64

    1 - heart disease

            • 0 - NA
In [19]:
          sns.countplot(x= df['target'])
```

from this count plot it is clear that half of the people have heart disease

Out[19]: <Axes: xlabel='target', ylabel='count'>

11. Find Count of Male & Female in this Dataset

```
In [20]:
         df.columns
Out[20]: Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
                 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
                dtype='object')
         df['sex'].value_counts()
In [21]:
Out[21]:
          sex
               206
                96
          Name: count, dtype: int64
In [22]: # use countplot to visualize it
          sns.countplot(x = df['sex'])
          # let me change this x labeLS. [0,1] is replaced by ['Female','Male']
          plt.xticks([0,1],['Female','Male'])
          plt.show()
```


From the above count plot it is clear that, approximately 30% of people are female and 70% are male.

12. Find Gender Distribution According to The Target Variable.

```
In [23]: # use "countplot" for distribution

sns.countplot(x='sex',hue='target',data=df)
plt.xticks([1,0],['Male','Female'])
plt.legend(labels=['No-Disease','Disease'])
plt.show()
```


From this count plot, there are more men for disease and non-disease target.

13. Check Age Distribution In The Dataset

From this plot we can see that most of the people in this study aged between 50-60

14. Which Check Chest Pain Type is More Common

- chest pain type (4 values)
 - value 0: typical angina
 - value 1: atypical angina
 - value 2: non-anginal pain
 - value 3: asymptomatic

```
In [25]: sns.countplot(x= df['cp'])
   plt.xticks([0,1,2,3],["typical angina","atypical angina","non-anginal pain","asy
   plt.xticks(rotation=0)
   plt.show()
```


15. Show The Chest Pain Distribution As Per Target Variable

```
In [26]: sns.countplot(x='cp',hue='target', data=df)
  plt.legend(labels=["No-Disease","Disease"])
  plt.show()
```


From this graph we can see that healthy people also have chest pain. Chest pain can be subjective. Due to stress, physical activities etc. It varies between gender

16. Show Fasting Blood Sugar Distribution According To Target Variable.

```
In [27]: sns.countplot(x='fbs',hue='target',data=df)
    plt.legend(labels=['No-Disease','Disease'])
    plt.show()

# fbs is a diabetic indicator
# fbs greater than 120 are diabetics
# higher number of diabetics patient without heart disease
```


17. Check Resting Blood Pressure Distribution

From this histogram we can see that the blood pressure of the people in this study is between 120 and 140

18. Compare Resting Blood Pressure As Per Sex Column

```
In [31]: # lets use "facetgrade class"
          """facetgrade class is useful when you want to visualize the distribution of var
          between multiple variables separately, within subset of your dataset."""
          g = sns.FacetGrid(df,hue="sex", aspect=4)
          g.map(sns.kdeplot, 'trestbps', shade=True)
          plt.legend(labels=['Male','Female'])
          """we're using kdeplot of seaborn, we have to compare Resting BP as per sex colu
          so we have to pass "Resting Blood Pressure" column. Here it is trestbps"""
        C:\Users\sanad\anaconda3\Lib\site-packages\seaborn\axisgrid.py:854: FutureWarnin
        g:
        `shade` is now deprecated in favor of `fill`; setting `fill=True`.
        This will become an error in seaborn v0.14.0; please update your code.
          func(*plot_args, **plot_kwargs)
        C:\Users\sanad\anaconda3\Lib\site-packages\seaborn\axisgrid.py:854: FutureWarnin
        `shade` is now deprecated in favor of `fill`; setting `fill=True`.
        This will become an error in seaborn v0.14.0; please update your code.
          func(*plot_args, **plot_kwargs)
          'we\'re using kdeplot of seaborn, we have to compare Resting BP as per sex colu
              \nso we have to pass "Resting Blood Pressure" column. Here it is trestbps'
         0.025
                                                                                        ■ Male
                                                                                         Female
         0.020
        0.015
         0.010
         0.005
         0.000
                              100
                                        120
                                                           160
                                                                                        220
                                                 140
                                                    trestbps
```

Woman has lower Resting blood pressure compared to men. For women os around 120, while for men it is little less than 140

19. Show Distribution of Serum cholesterol

```
In [33]: # we are using histogram to check distribution of the column

df['chol'].hist()
```

Out[33]: <Axes: >

20. Plot Continuous Variables

In this question, we are gonna plot continuous variables.

```
In [37]: cont_val
Out[37]: ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
In [38]: df.hist(cont_val,figsize=(15,6))
    plt.tight_layout()
    plt.show()
```