

Probabilidade Condicional e Binomial

Resumo

Probabilidade condicional

É a probabilidade de um evento ocorrer (A) sabendo que outro evento já ocorreu B.

Ex.: uma pessoa fará turismo pelos pontos turísticos do sudeste, sabendo que ela veio ao Rio de Janeiro, qual a probabilidade dela ter ido no Pão de Açúcar?

A probabilidade condicional é denotada como P(A|B). A fórmula é: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$.

Probabilidade binomial

Também chamada de distribuição binomial, é a probabilidade com as seguintes características:

- Todos os eventos têm com resultado duas possibilidades: sucesso ou fracasso (estudamos como a probabilidade de acerto e seu complementar);
- Os eventos são independentes.

Ex.: um dado foi jogado 4 vezes, qual a probabilidade que em 2 lançamentos tenha sido tirado um número menor ou igual a 4?

Sucesso: tirar 1,2,3,4: $\frac{4}{6}$

Fracasso: tirar 5,6: $\frac{2}{6}$ (poderia ter sido obtido efetuando 1- $\frac{4}{6}$)

Em 4 lançamentos, considerando que em 2 deles deveremos ter sucesso e em outros dois fracassos.

$$\frac{4!}{2! \cdot 2!} \cdot \frac{4}{6} \cdot \frac{4}{6} \cdot \frac{2}{6} \cdot \frac{2}{6} = \frac{24}{81} = \frac{8}{27}$$

Permutação com repetição de 4 elementos com 2 sucessos e 2 fracassos

2 sucessos 2 fracassos

Exercícios

- **1.** Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a:
 - **a)** $\frac{1}{4}$.
 - **b)** $\frac{3}{8}$.
 - **c)** $\frac{1}{2}$
 - **d)** $\frac{3}{4}$.
- 2. Em uma urna, há bolas amarelas, brancas e vermelhas. Sabe-se que:
 - I. A probabilidade de retirar uma bola vermelha dessa urna é o dobro da probabilidade de retirar uma bola amarela.
 - II. Se forem retiradas 4 bolas amarelas dessa urna, a probabilidade de retirar uma bola vermelha passa a ser $\frac{1}{2}$.
 - III. Se forem retiradas 12 bolas vermelhas dessa urna, a probabilidade de retirar uma bola branca passa a ser $\frac{1}{2}$.

A quantidade de bolas brancas na urna é

- **a)** 8.
- **b)** 10.
- c) 12.
- **d)** 14.
- **e)** 16

3. Cinco cartas de um baralho estão sobre uma mesa; duas delas são Reis, como indicam as imagens.

Após serem viradas para baixo e embaralhadas, uma pessoa retira uma dessas cartas ao acaso e, em seguida, retira outra.

A probabilidade de sair Rei apenas na segunda retirada equivale a:

- a) $\frac{1}{2}$
- **b**) $\frac{1}{3}$
- c) $\frac{2}{5}$
- d) $\frac{3}{10}$

4. A probabilidade de um casal ter um filho de olhos azuis é igual a $\frac{1}{3}$. Se o casal pretende ter 4 filhos, a probabilidade de que no máximo dois tenham olhos azuis é:

- **a**) $\frac{1}{9}$
- b) $\frac{7}{9}$
- **c)** $\frac{8}{9}$
- d) $\frac{2}{3}$
- e) $\frac{1}{2}$

- 5. O controle de qualidade de uma empresa fabricante de telefones celulares aponta que a probabilidade de um aparelho de determinado modelo apresentar defeito de fabricação é de 0,2%.Se uma loja acaba de vender 4 aparelhos desse modelo para um cliente, qual é a probabilidade de esse cliente sair da loja com exatamente dois aparelhos defeituosos?
 - a) $2 \times (0,2\%)^4$.
 - **b)** $4 \times (0,2\%)^{2}$
 - c) $6 \times (0.2\%)^2 \times (99.8\%)^2$.
 - **d)** $4 \times (0,2\%)$.
 - **e)** $6 \times (0,2\%) \times (99,8\%)$.
- **6.** Um candidato foi aprovado no Vestibular da UCS para um dos cursos de Engenharia. Supondo que quatro cursos de Engenharia são oferecidos no Campus de Bento Gonçalves e onze na Cidade Universitária em Caxias do Sul, qual é a probabilidade de o aluno ter sido aprovado para um curso de Engenharia com oferta na Cidade Universitária em Caxias do Sul?
 - **a)** $\frac{1}{15}$
 - **b)** $\frac{1}{11}$
 - c) $\frac{11}{15}$
 - **d)** $\frac{4}{15}$
 - **e)** $\frac{4}{11}$
- 7. Em um pote de vidro não transparente, foram colocados mini sabonetes, todos de mesmo tamanho, sendo 16 deles na cor amarela, 6 na cor verde e 4 na cor azul. Retirando-se aleatoriamente 3 desses mini sabonetes, um após o outro, sem reposição, a probabilidade de saírem pelo menos 2 deles na cor amarela, sabendo que o primeiro mini sabonete retirado era na cor amarela, é:
 - a) $\frac{11}{20}$
 - **b)** $\frac{13}{20}$
 - c) $\frac{15}{20}$
 - d) $\frac{17}{20}$

- **8.** Um candidato em um concurso realiza uma prova de múltipla escolha, em que cada questão apresenta 4 alternativas, sendo uma, e apenas uma, correta. Esse candidato sabe 68% das questões da prova; as demais questões, ele marca aleatoriamente uma das alternativas. Então, a probabilidade que represente o número total de acertos na prova é igual a:
 - a) 92%
 - **b)** 76%
 - **c)** 93%
 - **d)** 85%
- **9.** Numa prova de Matemática, 60% dos alunos da turma A foram aprovados, sendo que 48% dos alunos aprovados são mulheres. Se um aluno da turma é selecionado ao acaso, a probabilidade deste aluno ser mulher, considerando que esteja aprovado é:
 - **a)** 40%
 - **b)** 60%
 - **c)** 68%
 - **d)** 88%
 - **e)** 80%
- 10. Carlos sabe que Ana e Beatriz estão viajando pela Europa. Com as informações que dispõe, ele estima corretamente que a probabilidade de Ana estar hoje em Paris é 3/7, que a probabilidade de Beatriz estar hoje em Paris é 2/7, e que a probabilidade de ambas, Ana e Beatriz, estarem hoje em Paris é 1/7. Carlos então recebe um telefonema de Ana, informando que ela está hoje em Paris. Com a informação recebida pelo telefonema de Ana, Carlos agora estima corretamente que a probabilidade de Beatriz também estar hoje em Paris é igual a:
 - **a)** 1/7
 - **b)** 1/3
 - **c)** 2/3
 - **d)** 5/7
 - **e)** 4/7

Gabarito

1. C

Existem $P_4^{(3)} = \frac{4!}{3!} = 4$ modos de obter exatamente 3 três caras em 4 lançamentos. Por outro lado, existem apenas duas maneiras de obter 3 caras consecutivamente: ccck e kccc. Com isso, a probabilidade pedida é $\frac{2}{4} = \frac{1}{2}$.

2. C

Seja a o número bolas amarelas, b o número de bolas brancas e v o número de bolas vermelhas. De (I), temos que v=2a. Além disso, de (II):

$$\frac{v}{a-4+b+v} = \frac{1}{2} \Leftrightarrow \frac{2a}{3a+b-4} = \frac{1}{2}$$
$$\Leftrightarrow a = b-4.$$

Analisando (III):

$$\frac{b}{a+b+v-12} = \frac{1}{2} \Leftrightarrow \frac{b}{b-4+b+2(b-4)-12} = \frac{1}{2}$$

$$\Leftrightarrow b = 12.$$

A quantidade de bolas brancas na urna é 12.

3. D

A probabilidade de não sair um rei na primeira retirada é de $\frac{3}{5}$ e de retirar na segunda retirada é de $\frac{2}{4}$.

Portanto a probabilidade pedida é calculada por $\frac{3}{5} \cdot \frac{2}{4} = \frac{3}{10}$.

4. C

Probabilidade do casal não ter filhos com os olhos azuis: $\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} = \frac{16}{81}$

Probabilidade do casal ter apenas um filho com os olhos azuis: $\binom{4}{1}$. $\frac{1}{3}$. $\left(\frac{2}{3}\right)^3 = \frac{32}{81}$

Probabilidade do casal ter exatamente dois filhos com os olhos azuis:

$$\binom{4}{2} \cdot \left(\frac{1}{3}\right)^2 \cdot \left(\frac{2}{3}\right)^2 = \frac{24}{81}$$

Assim, a probabilidade pedida será: $P = \frac{16}{81} + \frac{32}{81} + \frac{24}{81} = \frac{72}{81} = \frac{8}{9}$.

5. C

A probabilidade de um modelo apresentar defeito é de 0,2%, a probabilidade de não apresentar será de 100% - 0,2% = 99,8%.

Se o cliente comprará 4 aparelhos, sendo exatamente dois aparelhos defeituosos, dois não apresentarão defeitos.

Para calcular o total de maneiras que esses aparelhos defeituosos podem ser comprados, calcula-se:

$$C_{4,2} = 4!/2!(4-2)! = 4.3.2!/2.1.2! = 12/2 = 6$$

Multiplica-se este valor pela probabilidade de serem 2 defeituosos (0,2%)² com a probabilidade de 2 não apresentarem defeitos (99,8%)², assim, teremos:

6. C

A probabilidade pedida é igual a $\frac{11}{4+11} = \frac{11}{15}$.

7. C

A probabilidade de não ser retirado nenhum sabonete na cor amarela nas duas últimas extrações, dado que um sabonete amarelo foi retirado na primeira extração, é igual a: $\frac{10}{25} \cdot \frac{9}{24} = \frac{3}{20}$. O resultado será:

$$1 - \frac{3}{20} = \frac{17}{20}$$

8. E

Supondo uma prova com 100 questões, com 68% de acerto ele acertou 68 questões sobrando 32. Como existe uma correta e três erradas, ele tem $\frac{1}{4}$ de chance de acerto (25%) e $\frac{3}{4}$ de erro (75%). Como tem $\frac{1}{4}$ de acerto, $\frac{1}{4}$.32 = 8. Como já havia acertado 68, seus acertos totais serão 68 + 8 = 76

9. E

$$P(x) = \frac{0.48}{0.60} = 0.8 = 80\%$$

10. B

P(Ana estar hoje em Paris) = 3/7

P(Beatriz estar hoje em Paris) = 2/7

P(Ana e Beatriz estarem hoje em Paris) = 1/7

Sabendo que P(B|A) é a probabilidade de Beatriz estar em Paris sabendo que Ana está em Paris. Podemos usar o conceito da probabilidade condicional:

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

P(B|A) =
$$\frac{P(A \cap B)}{P(A)}$$

P(B|A) = $\frac{1}{3} \frac{1}{7} = \frac{1}{3}$