

Introduction

Definition

Control theory refers to methods for regulating the behavior of dynamical systems.

Introduction

Definition

Control theory refers to methods for regulating the behavior of dynamical systems.

We could do a whole course minor on control.

Notation

Notation:

- X: state space
- x(t): state at time t
- ullet U: input space / action space / control space
- u(t): input / action / control at time t

The **system model** describes how the state changes:

$$\dot{x}=f(x,u)$$

Example

A differential drive robot rotating in place:

- $X=[0,2\pi)$ (all orientations)
- x(t) (orientation at time t)
- $U = \mathbb{R}$ (all possible angular velocities)
- u(t) (angular velocity at time t)
- \bullet $\dot{x}=u$

Goal

The goal is to **stabilize** the state to a **set point**.

The **error** is the difference between the state and the set point:

$$e(t) = x(t) - s$$

We want to choose actions that drive the state to the set point and keep it there.

Is this easy?

In the rotation example, suppose:

- Starting state: $x(0)=\pi/2$
- Set point: s=0
- ullet System model: $\dot{x}=u$

Is this easy?

In the rotation example, suppose:

- Starting state: $x(0)=\pi/2$
- Set point: s=0
- ullet System model: $\dot{x}=u$

Choose an open loop control law:

$$u(t) = egin{cases} -\pi/4 & ext{if } t < 2 \ 0 & ext{if } t \geq 2 \end{cases}$$

Is this easy?

In the rotation example, suppose:

- ullet Starting state: $x(0)=\pi/2$
- Set point: s=0
- ullet System model: $\dot{x}=u$

Choose an open loop control law:

$$u(t) = egin{cases} -\pi/4 & ext{if } t < 2 \ 0 & ext{if } t \geq 2 \end{cases}$$

Result:

After t=2, the system stays at the set point x(t)=0.

Does this work?

Maybe, if the system is perfectly modeled and very predictable.

Does this work?

Maybe, if the system is perfectly modeled and very predictable.

But usually, we don't fully trust the system to obey the system model, due to unmodeled disturbances.

Does this work?

Maybe, if the system is perfectly modeled and very predictable.

But usually, we don't fully trust the system to obey the system model, due to unmodeled disturbances.

In our example:

- acceleration
- wheel slip
- miscalibration of the motors
- mismeasurement of the wheels
- uneven floor
- small delays executing the command
- ...

Feedback

Feedback controllers can respond to states that we didn't expect to reach.

Basic idea: Actions depend on states:

Back to our example

In the rotation example, suppose:

- Starting state: $x(0)=\pi/2$
- Set point: s=0
- System model: $\dot{x}=u$

Choose an **closed loop control law**:

$$u(x) = -x$$

Result:

Result: From **any** state, the system moves toward the set point.

PID control

One simple and commonly used type of feedback controller is the **proportional-integral-derivative (PID) controller**:

$$u(t) = K_p e(t) + K_i \int_0^t e(au) \mathrm{d} au + K_d rac{\mathrm{d}e}{\mathrm{d}t}$$

This consists of:

- A proportional term to account for present errors.
- An integral term to account for past errors.
- An **derivative term** to account for future errors.
- A gain parameter for each term to calibrate the behavior.

Various special cases, such as P or PD controllers, can be formed by setting one or more of the gains to 0.

Discrete time PID

A **discrete-time system** is one in which we can only measure the state at fixed intervals.

In that case, we can use discrete approximations:

$$u_k = K_p e_k + K_i \left(\Delta t \sum_{i=1}^k e_i
ight) + K_d \left(rac{e_k - e_{k-1}}{\Delta t}
ight)$$

PID Tuning

PID Tuning

PID Tuning

