

planetmath.org

Math for the people, by the people.

invariant subspaces for self-adjoint *-algebras of operators

 ${\bf Canonical\ name} \quad {\bf Invariant Subspaces For Selfadjoint algebras Of Operators}$

Date of creation 2013-03-22 18:40:23 Last modified on 2013-03-22 18:40:23 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 9

Author asteroid (17536)

Entry type Feature Classification msc 46K05 Classification msc 46H35 In this entry we provide few results concerning invariant subspaces of *-algebras of bounded operators on Hilbert spaces.

Let H be a Hilbert space and B(H) its algebra of bounded operators. Recall that, given an operator $T \in B(H)$, a subspace $V \subseteq H$ is said to be invariant for T if $Tx \in V$ whenever $x \in V$.

Similarly, given a subalgebra $\mathcal{A} \subseteq B(H)$, we will say that a subspace $V \subseteq H$ is *invariant* for \mathcal{A} if $Tx \in V$ whenever $T \in \mathcal{A}$ and $x \in V$, i.e. if V is invariant for all operators in \mathcal{A} .

Invariant subspaces for a single operator

Proposition 1 - Let $T \in B(H)$. If a subspace $V \subset H$ is invariant for T, then so is its closure \overline{V} .

Proof: Let $x \in \overline{V}$. There is a sequence $\{x_n\}$ in V such that $x_n \to x$. Hence, $Tx_n \to Tx$. Since V is invariant for T, all Tx_n belong to V. Thus, their limit Tx must be in \overline{V} . We conclude that \overline{V} is also invariant for T. \square

Proposition 2 - Let $T \in B(H)$. If a subspace $V \subset H$ is invariant for T, then its orthogonal complement V^{\perp} is invariant for T^* .

Proof: Let $y \in V^{\perp}$. For all $x \in H$ we have that $\langle x, T^*y \rangle = \langle Tx, y \rangle = 0$, where the last equality comes from the fact that $Tx \in V$, since V is invariant for T. Therefore T^*y must belong to V^{\perp} , from which we conclude that V^{\perp} is invariant for T^* . \square

Proposition 3 - Let $T \in B(H)$, $V \subset H$ a closed subspace and $P \in B(H)$ the orthogonal projection onto V. The following are statements are equivalent:

- 1. V is invariant for T.
- 2. V^{\perp} is invariant for T^* .
- 3. TP = PTP.

Proof: $(1) \Longrightarrow (2)$ This part follows directly from Proposition 2.

 $(2) \Longrightarrow (1)$ From Proposition 2 it follows that $(V^{\perp})^{\perp}$ is invariant for $(T^*)^* = T$. Since V is closed, $V = \overline{V} = (V^{\perp})^{\perp}$. We conclude that V is invariant for T.

- $(1) \Longrightarrow (3)$ Let $x \in H$. From the orthogonal decomposition theorem we know that $H = V \oplus V^{\perp}$, hence x = y + z, where $y \in V$ and $z \in V^{\perp}$. We now see that TPx = Ty and PTPx = PTy = Ty, where the last equality comes from the fact that $Ty \in V$. Hence, TP = PTP.
- $(3) \Longrightarrow (1)$ Let $x \in V$. We have that Tx = TPx = PTPx. Since PTPx is obviously on the image of P, it follows that $Tx \in V$, i.e. V is invariant for T. \square

Proposition 4 - Let $T \in B(H)$, $V \subset H$ a closed subspace and $P \in B(H)$ the orthogonal projection onto V. The subspaces V and V^{\perp} are both invariant for T if and only if TP = PT.

Proof: (\Longrightarrow) From Proposition 3 it follows that V is invariant for both T and T^* . Then, again from Proposition 3, we see that $PT = (T^*P)^* = (PT^*P)^* = PTP = TP$.

 (\longleftarrow) Suppose TP=PT. Then PTP=TPP=TP, and from Proposition 3 we see that V is invariant for T.

We also have that $PT^* = T^*P$, and we can conclude in the same way that V is invariant for T^* . From Proposition 3 it follows that V^{\perp} is also invariant for T. \square

Invariant subspaces for *-algebras of operators

We shall now generalize some of the above results to the case of self-adjoint subalgebras of B(H).

Proposition 5 - Let A be a *-subalgebra of B(H) and V a subspace of H. If a subspace V is invariant for A, then so are its closure \overline{V} and its orthogonal complement V^{\perp} .

Proof: From Proposition 1 it follows that \overline{V} is invariant for all operators in \mathcal{A} , which means that V is invariant for \mathcal{A} .

Also, from Proposition 2 it follows that V^{\perp} is invariant for the adjoint of each operator in \mathcal{A} . Since \mathcal{A} is self-adjoint, it follows that V^{\perp} is invariant for \mathcal{A} . \square

Theorem - Let A be a *-subalgebra of B(H), $V \subset H$ a closed subspace and P the orthogonal projection onto V. The following are equivalent:

1. V is invariant for A.

- 2. V^{\perp} is invariant for \mathcal{A} .
- 3. $P \in \mathcal{A}'$, i.e. P belongs to the commutant of \mathcal{A} .
- *Proof:* (1) \iff (2) This equivalence follows directly from Proposition 5 and the fact that V is closed.
- $(1) \Longrightarrow (3)$ Suppose V is invariant for \mathcal{A} . We have already proved that V^{\perp} is also invariant for \mathcal{A} . Thus, from Proposition 4 it follows that P commutes with all operators in \mathcal{A} , i.e. $P \in \mathcal{A}'$.
- (3) \Longrightarrow (1) Suppose $P \in \mathcal{A}'$. Then P commutes with all operators in \mathcal{A} . From Proposition 4 it follows that V is invariant for each operator in \mathcal{A} , i.e. V is invariant for \mathcal{A} . \square