Vorname Name:	Klasse: FoTa	a Auflage:
		· ·
Physik-Lehrkraft in der 2. Klasse:		Viel Erfolg!

Querschnittsprüfung Wärme

2. September 2011

	Hilfsmittel: Taschenrechner, FoTa, ein A4-Blatt Spick Darstellung: formale Lösung herleiten - einsetzen mit Einheiten - ausrechnen, runden, Einheit dazu	frei lassen
1	Der eiserne Radreifen einer Bahn habe 90 cm Durchmesser. Wie viel nimmt der Durchmesser zu, wenn der Reifen um 500 °C erhitzt wird?	
2	Das Blut von Schweizer Kindern enthält 14.7 Mikrogramm Blei pro Liter.	
2a	Wie viele Bleiatome enthält ein Liter Blut?	
2b	Welchen Druck erzeugen diese Atome, wenn man sie wie ein ideales Gas behandelt? (sogenannter osmotischer Druck)	
3	Auf einer Party werden 3.0 kg Eistee von 20 °C mit einem 500 g schweren Eisbrocken von -10 °C gekühlt. Welche minimale Temperatur nimmt die Mischung an?	
4	Ein Marathonläufer habe eine Stoffwechselrate von 4 MJ/h. Wie viel Schweiss könnte der Läufer auf einem 2.5 h dauernden Lauf damit verdampfen?	
5	In der Feuerwehr wird die Typ 4 Motorspritze der Armee für Wassertransporte eingesetzt. Der 6-Zylinder Saurer-Dieselmotor verbraucht 25 Liter Treibstoff pro Stunde. Diesel hat einen Energieinhalt von 36 MJ pro Liter.	
5a	Welche Leistung wird der Motorspritze zugeführt?	/4
5b	Welche Leistung kann die Motorspritze bei einem Wirkungsgrad von 26 % abgeben?	
5c	Die Abgase haben eine Temperatur von ca. 800 °C, wenn sie den Zylinder verlassen. Welche minimale Temperatur herrscht im Brennraum?	
6	Ein Pferd habe eine Körpertemperatur von 38 °C und atme 12 mal pro Minute jeweils 10 Liter ein und aus. Die Ausatmungsluft ist mit Wasserdampf gesättigt. Wie viel Wasserdampf (kg) verliert es dadurch maximal in einer Stunde?	/5
7	Ein nackter Mensch (Körpertemperatur 37 °C, Hauttemperatur 33 °C, Körperoberfläche 1.5 m², Dicke des Unterhautfettgewebes 0.5 cm) befindet sich in einem Zimmer mit der Temperatur 17 °C.	
	Die mittlere Wärmeleitfähigkeit des Fettes beträgt 0.2 W/(m·K). Die äussere Haut ist so dünn, dass ihre Isolierungswirkung vernachlässigt werden kann.	
7a	Wie viel Leistung geht durch Wärmeleitung verloren?	/4
7b	Wie viel Leistung geht durch Strahlung verloren?	
7c	Wie viel Energie verbraucht dieser Mensch dadurch in einer Stunde?	
8	Ein Dampfkochtopf wird irrtümlich leer (mit 7.2 g Luft bei Normdruck) erhitzt.	
8a	Wie viel Wärme ist ungefähr nötig, um diese Luft von 20 auf 120 °C zu erhitzen?	
8b	Auf welchen Wert stiege der Druck im Innern des Topfes bei luftdichtem Abschluss?	/4

Lösungen zur Querschnittsprüfung Wärme 2. September 2011

1)
$$\Delta l = \alpha l \Delta \vartheta = 12 \cdot 10^{-6} \text{ K}^{-1} \cdot 0.90 \text{ m} \cdot 500 ^{\circ}\text{C} = 5.4 \text{ mm}$$

2a)
$$N = \frac{m}{m_a} = \frac{14.7 \cdot 10^{-9} \text{ kg}}{207.2 \text{ u} \cdot 1.6605 \cdot 10^{-27} \text{ kg/u}} = \underline{4.27 \cdot 10^{16}} \text{ oder } N = \frac{m}{M} N_A$$

2b)
$$pV = nRT \Rightarrow p = \frac{mRT}{MV} = \frac{14.7 \cdot 10^{-6} \text{ g} \cdot 8.314 \text{ Jmol}^{-1}\text{K}^{-1} \cdot (273.15 + 37) \text{ K}}{207.2 \text{ g/mol} \cdot 10^{-3} \text{ m}^3} = \underline{0.183 \text{ Pa}}$$

3) Hypothese:
$$\vartheta_{End} > 0 \ ^{\circ}C \Rightarrow \ c_{E}m_{E}(\vartheta_{f} - \vartheta_{E}) + m_{E}L_{f} + c_{W}m_{E}(\vartheta_{M} - \vartheta_{f}) + c_{W}m_{T}(\vartheta_{M} - \vartheta_{T}) = 0$$

$$\vartheta_{\scriptscriptstyle M} = \frac{c_{\scriptscriptstyle W} m_{\scriptscriptstyle E} \vartheta_{\scriptscriptstyle f} + c_{\scriptscriptstyle W} m_{\scriptscriptstyle T} \vartheta_{\scriptscriptstyle T} - c_{\scriptscriptstyle E} m_{\scriptscriptstyle E} \left(\vartheta_{\scriptscriptstyle f} - \vartheta_{\scriptscriptstyle E}\right) - m_{\scriptscriptstyle E} L_{\scriptscriptstyle f}}{c_{\scriptscriptstyle W} m_{\scriptscriptstyle E} + c_{\scriptscriptstyle W} m_{\scriptscriptstyle T}} = \text{siehe unten} = \underline{5.0 \ ^{\circ}\text{C}}$$

$$0 + 4182 \frac{J}{kgK} \cdot 3.0 kg \cdot 20^{\circ}C - 2100 \frac{J}{kgK} \cdot 0.50 kg \cdot \left(0^{\circ}C - (-10^{\circ}C)\right) - 0.500 kg \cdot 3.338 \cdot 10^{5} \frac{J}{kg}$$

$$4182 \frac{J}{kgK} \cdot 0.500 \text{ kg} + 4182 \frac{J}{kgK} \cdot 3.0 \text{ kg}$$

4)
$$Q = mL_v = P \cdot \Delta t \Rightarrow m = \frac{P \cdot \Delta t}{L_v} \approx \frac{4.0 \text{ MJ/h} \cdot 2.5 \text{ h}}{2.4064 \text{ MJ/kg}} = \frac{4 \text{ kg}}{2.4064 \text{ MJ/kg}}$$

5a)
$$P_1 = \frac{\Delta E}{\Delta t} = \frac{H \cdot \Delta V}{\Delta t} = 36 \cdot 10^6 \text{ } \frac{J}{L} \cdot 25 \text{ } \frac{L}{3600 \text{ s}} = \underline{2.5 \cdot 10^5 \text{ W}}$$

5b)
$$P_2 = \frac{\overline{H} \cdot \Delta V}{\Delta t} \eta = 36 \cdot 10^6 \text{ J} \cdot 25 \frac{L}{3600 \text{ s}} \cdot 0.26 = \underline{65 \text{ kW}}$$

5c)
$$\eta = \frac{T_w - T_k}{T_w} \Rightarrow T_w = \frac{T_k}{1 - \eta} = \frac{(800 + 273.15) \text{ K}}{1 - 0.26} = 1450 \text{ K} = \underline{1.2 \cdot 10^3 \text{ °C}}$$

6)
$$m = \rho_D V = \rho_D \frac{\Delta V}{\Delta t} Nt \approx 0.04595 \frac{\text{kg}}{\text{m}^3} \cdot 10 \cdot 10^{-3} \frac{\text{m}^3}{\text{min}} \cdot 12 \cdot 60 \text{ min} = \underline{0.33 \text{ kg}}$$

7a)
$$P_a = AJ = A\lambda \frac{\Delta \vartheta}{\Delta x} = 1.5 \text{ m}^2 \cdot 0.2 \frac{\text{W}}{\text{m} \cdot \text{K}} \cdot \frac{(37 - 33) \text{ °C}}{0.5 \cdot 10^{-2} \text{ m}} = 0.240 \text{ kW} = \underline{0.2 \text{ kW}}$$

7a)
$$P_a = AJ = A\lambda \frac{\Delta \vartheta}{\Delta x} = 1.5 \text{ m}^2 \cdot 0.2 \frac{\text{W}}{\text{m} \cdot \text{K}} \cdot \frac{(37 - 33) \text{ °C}}{0.5 \cdot 10^{-2} \text{ m}} = 0.240 \text{ kW} = \underline{0.2 \text{ kW}}$$

7b) $P = A\sigma T^4 = 1.5 \text{ m}^2 \cdot 5.670 \cdot 10^{-8} \frac{\text{W}}{\text{m}^2\text{K}^4} \cdot (273.15 + 33)^4 \text{K}^4 = 747 \text{ W} \text{ oder besser}$

$$P_b = A\sigma(T_K^4 - T_Z^4) = 1.5 \text{ m}^2 \cdot 5.670 \cdot 10^{-8} \frac{\text{W}}{\text{m}^2\text{K}^4} \cdot \left\{306.15^4 - 290.15^4\right\} \text{K}^4 = 144 \text{ W} = \underline{0.14 \text{ kW}}$$

7c)
$$E = (P_a + P_b) \cdot t = (240 \text{ W} + 144 \text{ W}) \cdot 3600 \text{ s} = 1.38 \text{ MJ} = 1 \text{ MJ}$$

8a)
$$\Delta Q = cm\Delta \vartheta \approx 1005 \frac{J}{\text{kgK}} 7.2 \cdot 10^{-3} \text{kg} \cdot (120 - 20)^{\circ} \text{C} = \underline{0.72 \text{ kJ}}$$

8b)
$$pV = nRT \Rightarrow \frac{p}{T} = const \Rightarrow p_2 = \frac{p_1 T_2}{T_1} = \frac{1.013 \text{ bar} \cdot (273.15 + 120) \text{ K}}{(273.15 + 20) \text{ K}} = \underline{1.36 \text{ bar}}$$