Tutorial 3

SC-220 Groups and Linear Algebra Autumn 2019 (Products, Group Isomorphism)

(1) Let \mathbb{Z}_n^* be set of integers that are less than n and relatively prime to n. For example $\mathbb{Z}_8^* = \{1, 3, 5, 7\}$. In class we saw that \mathbb{Z}_n^* is a group under multiplication modulo n. $|\mathbb{Z}_n^*| = \phi(n)$ and its not always cyclic like \mathbb{Z}_n .

Show that \mathbb{Z}_9^* is isomorphic to \mathbb{Z}_6 .

- (2) Show that \mathbb{Z}_{20}^* is not isomorphic to \mathbb{Z}_8 .
- (3) An isomorphism of a group onto itself is called an automorphism. Let G be a group and let g be an element of G. Show that the mapping $x \mapsto gxg^{-1}$ is an automorphism of G.
- (4) Let G be a group. Show that the mapping $x \mapsto x^{-1}$ is an automorphism G iff G is abelian.
- (5) Show that if G and H are groups and if $G \times H$ is cyclic then G and H are both cyclic.
- (6) Show that $\mathbb{Z} \times \mathbb{Z}$ is not isomorphic to \mathbb{Z}
- (7) How many different isomorphisms are there from S_3 to D_3 ?
- (8) **Fact**: $\mathbb{Z}_m^* \times \mathbb{Z}_n^*$ is isomorphic to \mathbb{Z}_{mn}^* if m,n are relatively prime. Use this fact to show that \mathbb{Z}_{20}^* is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_4$
- (9) Show that if G is a group of order 4 that is not cyclic then it is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.