Einführung in die Geometrie und Topologie Blatt 6

Jendrik Stelzner

3. Juni 2014

Im Folgenden schreiben wir I := [0, 1].

Aufgabe 6.1: (Freie versus punktierte Schlingen)

(a)

Es sei $x \in X$ beliebig aber fest. Es ist klar, dass die Inklusion

$$\left\{f \,\middle|\, f: \left(S^1,1\right) \to \left(X,x\right) \text{ ist stetig}\right\} \hookrightarrow \left\{g \,\middle|\, g:S^1 \to X \text{ ist stetig}\right\}$$

wohldefiniert ist. Zusammen mit der kanonischen Projektion

$$\left\{g \,\middle|\, g: S^1 \to X \text{ ist stetig}\right\} \to \mathcal{S}(X), g \mapsto [g]$$

ergibt sich damit eine wohldefinierte Abbildung

$$\left\{f \mid f: \left(S^1, 1\right) \to (X, x) \text{ ist stetig}\right\} \to \mathcal{S}(X), f \mapsto [f].$$

Um zu zeigen, dass diese über $\pi_1(X,x)$ faktorisiert, genügt es zu zeigen, dass für stetige Abbildungen $f,g:(S^1,1)\to (X,x)$ mit $f\simeq g$ rel 1 auch $f\simeq g$. Dies ist aber klar.

(b)

Definition. Sei X ein topologischer Raum und seien $v_1,\ldots,v_n:I\to X$ Wege mit $v_i(1)=v_{i+1}(0)$ für alle $i=1,\ldots,n-1$. Dann bezeichnen wir mit $v_1*\cdots*v_n$ den Weg

$$v_{1} * \cdots * v_{n} : I \to X, t \mapsto \begin{cases} v_{1}(nt) & \text{falls } 0 \leq t \leq \frac{1}{n} \\ v_{2}(nt-1) & \text{falls } \frac{1}{n} \leq t \leq \frac{2}{n} \\ v_{3}(nt-2) & \text{falls } \frac{2}{n} \leq t \leq \frac{3}{n} \\ \vdots & \vdots \\ v_{n}(nt-(n-1)) & \text{falls } \frac{n-1}{n} \leq t \leq 1. \end{cases}$$

Bemerkung 1. Es ist bekannt und klar, dass die "Verknüpfung" * assoziativ bis auf Homotopie ist. Es ist auch klar, dass für eine zusammenziehbare Schlinge C und einen Weg v mit entsprechenden Anfangs-, bzw. Endpunkt

$$C*v \simeq v \qquad \text{bzw.} \qquad v*C \simeq v.$$

Lemma 2. Sei X ein topologischer Raum und seien $v_1, \ldots, v_n : I \to X$ Wege, $n \ge 2$, mit $v_i(1) = v_{i+1}(0)$ für alle $i = 1, \ldots, n-1$ und $v_n(1) = v_1(0)$. Dann ist

$$v_1 * v_2 * \cdots * v_n \simeq v_2 * \cdots * v_n * v_1.$$

Beweis. Wir fassen die Schlingen $v_1 * v_2 * \cdots * v_n$ und $v_2 * \cdots * v_n * v_1$ in natürlicher Weise als Abbildungen

$$f:(S^1,1) \rightarrow (X,v_1(0))$$
 und $g:(S^1,1) \rightarrow (X,v_2(0))$

auf. Dann ist $g(z)=f(e^{2\pi i/n}z)$ für alle $z\in S^1$, eine entsprechende Homotopie also gegeben durch

$$F: S^1 \times I \to X, (z,t) \mapsto f\left(e^{t \cdot 2\pi i/n}z\right)$$

Sei nun erneut $x \in X$ beliebig aber fest. Es sei

$$\varphi: \pi_1(X, x) \to \mathcal{S}(X)$$

die Vergiss-Abbildung.

Angenommen, φ ist surjektiv. Dann gibt es für jeden Punkt $y \in X$ eine Schlinge $f:(S^1,1) \to (X,x)$, so dass f homotop zur konstanten Schlinge

$$g: S^1 \to X, z \mapsto y$$

ist. Es gibt also eine Homotopie

$$F:S^1\times I\to X$$

mit F(z,0) = f(z) und F(z,1) = y für alle $z \in S^1$. Es ist daher

$$\gamma: I \to X, t \mapsto F(1,t)$$

eine stetige Abbildung mit

$$\gamma(0) = F(1,0) = f(1) = x \text{ und } \gamma(1) = F(1,1) = y.$$

Das zeigt, dass X wegzusammenhängend ist.

Angenommen, X ist wegzusammenhängend. Sei dann $f:I\to X$ eine Schlinge, also insbesondere f(0)=f(1), beliebig aber fest. Da X wegzusammenhängend ist, gibt es einen Weg $\gamma:I\to X$ von x nach f(0). Es sei $\gamma^{-1}:I\to X$ der umgekehrte Weg von f(1) nach x, d.h. $\gamma^{-1}(t)=\gamma(1-t)$ für alle $t\in I$. Dann ist

$$g := \gamma * f * \gamma^{-1}$$

eine Schlinge mit g(0) = g(1) = x, und nach Lemma 2 ist

$$g = \gamma * f * \gamma^{-1} \simeq f * \gamma^{-1} * \gamma \simeq f * (\gamma^{-1} * \gamma) \simeq f,$$

da $\gamma^{-1} * \gamma$ offenbar zusammenziehbar ist. Also ist

$$\varphi([g]_{\pi_1}(X,x)) = [g] = [f].$$

Wegen der Beliebigkeit von f zeigt dies die Surjektivität von φ .

(c)

Auch hier sei $x\in X$ beliebig aber fest. Es seien $f,g:(I,\partial I)\to (X,x)$, so dass $[f]_{\pi_1(X,x)}$ und $[g]_{\pi_1(X,x)}$ konjugiert zueinander sind, d.h. dass es eine Schlinge $h:(I,\partial I)\to (X,x)$ gibt mit

$$[f]_{\pi_1(X,x)} = [h]_{\pi_1(X,x)}[g]_{\pi_1(X,x)}[h]_{\pi_1(X,x)}^{-1} = [h * g * h^{-1}]_{\pi_1(X,x)}.$$

Es ist dann nach Lemma 2

$$\begin{split} [f] &= \varphi([f]_{\pi_1(X,x)}) = \varphi\left(\left[g*h*g^{-1}\right]_{\pi_1(X,x)}\right) = \left[h*g*h^{-1}\right] \\ &= \left[g*h^{-1}*h\right] = [g]. \end{split}$$

Andererseits seien $f,g:(I,\partial I)\to (X,x)$ Schlingen, so dass $f\simeq g$. Dann gibt es eine Homotopie $F:I\times I\to X$ mit F(t,0)=f(t) und F(t,1)=g(t) für alle $t\in I$, wobei zusätzlich

$$F(0,s) = F(1,s)$$
 für alle $s \in I$.

Für alle $s \in I$ definieren wir

$$\gamma_s: I \to X \text{ mit } \gamma_s(t) := F(0, ts).$$

Für alle $s \in I$

$$\gamma_s(0) = F(0,0) = f(0) = x \text{ und } \gamma_s(1) = F(0,s),$$

also γ_s ein Weg von x zu F(0,s). Auch ist

$$\gamma_1(1) = F(0,1) = g(1) = x,$$

also γ_1 eine Schlinge mit $\gamma_1(0)=\gamma_1(1)=x$. Für alle $s\in I$ definieren wir auch

$$\gamma_s^{-1}: I \to X, t \mapsto \gamma_s(1-t).$$

Wir betrachten die Homotopie $G:I\times I\to X$ mit

$$G(t,s) := \begin{cases} \gamma_s \left(\frac{3}{s}t\right) & \text{für } 0 \leq t < \frac{s}{3} \\ F\left(\frac{3t-s}{3-2s},s\right) & \text{für } \frac{s}{3} \leq t \leq 1 - \frac{s}{3} \\ \gamma_s^{-1} \left(\frac{3}{s}(t-1)+1\right) & \text{für } 1 - \frac{s}{3} < t \leq 1. \end{cases}$$

Für alle $t \in I$ ist

$$G(t,0) = F(t,0) = f(t) \text{ und } G(t,1) = (\gamma_1 * g * \gamma_1^{-1}) (t).$$

Außerdem ist G(0,s)=G(1,s)=x für alle $s\in I$. Das zeigt, dass

$$f \simeq \gamma_1 * g * \gamma_1^{-1} \operatorname{rel} \partial I$$
,

also dass

$$[f]_{\pi_1(X,x)} = \left[\gamma_1 * g * \gamma_1^{-1}\right]_{\pi_1(X,x)} = \left[\gamma_1 g \gamma_1^{-1}\right]_{\pi_1(X,x)}.$$

Aufgabe 6.2:

(a)

Da A und B wegzusammenhängend sind, und $A\cap B\neq\emptyset,$ ist $X=A\cup B$ wegzusammenhängend. Insbesondere ist daher

$$\pi_1(X,x) \cong \pi_1(X,x')$$
 für alle $x,x' \in X$.

Um zu zeigen, dass $\pi_1(X,x)$ für alle $x\in X$ trivial ist, genügt es daher zu zeigen, dass $\pi_1(X,x)$ für irgendeine $x\in X$ trivial ist. Sei hierfür $x\in A\cap B\neq\emptyset$.

Es sei $f:(I,\partial I) \to (X,x)$ eine Schlinge. Da A und B offen sind, und $X=A \cup B$, ist $\{f^{-1}(A),f^{-1}(B)\}$ wegen der Stetigkeit von f eine offene Überdeckung von I. Da I ein kompakter metrischer Raum ist, gibt es nach dem Lemma von Lebesgue ein $\delta>0$, so dass jede Teilmenge $M\subseteq I$ mit diam $M<\delta$ komplett in $f^{-1}(A)$ oder $f^{-1}(B)$ enthalten ist. Sei $m\in\mathbb{N}, m\geq 1$ groß genug, dass die Teilintervalle

$$I_k := \left\lceil \frac{k-1}{m}, \frac{k}{m} \right\rceil \subseteq I \text{ für } k = 1, \dots, m$$

je komplett in $f^{-1}(A)$ oder $f^{-1}(B)$ enthalten ist. Dann ist $f(I_k) \subseteq A$ oder $f(I_k) \subseteq B$ für alle $k = 1, \ldots, m$.

Wir definieren

$$x_k := f\left(\frac{k}{m}\right)$$
 für alle $k = 0, \dots, m$.

Inbesondere ist

$$x_0 = x_m = x.$$

Da A,B und $A\cap B$ wegzusammenhängend sind, gibt es für alle $k=1,\dots,m-1$ einen Weg

$$\lambda_k:[0,1]\to X$$

von x nach x_k , der je komplett in A verläuft, wenn $x_k \in A$, komplett in B verläuft, wenn $x_k \in B$, bzw. komplett in $A \cap B$ verläuft, wenn $x_k \in A \cap B$. Für alle $k = 1, \ldots, m$ definieren wir außerdem den Weg

$$f_k:[0,1]\to X$$
 mit $f_k(t):=f\left(rac{k-1}{m}+rac{t}{m}
ight).$

Man bemerke, dass Im $f_k = f(I_k)$ für alle k = 1, ..., m, sowie $f_k(0) = x_{k-1}$ und $f_k(1) = x_k$ für alle k = 1, ..., m. Es ist nun offenbar

$$f = f_1 * f_2 * \dots * f_m$$

$$\simeq f_1 * (\lambda_1^{-1} \lambda_1) * f_2 * (\lambda_2^{-1} \lambda_2) * f_3 * \dots * f_{m-1} * (\lambda_{m-1}^{-1} \lambda_{m-1}) * f_m$$

$$\simeq (f_1 \lambda_1^{-1}) * (\lambda_1 * f_2 * \lambda_2^{-1}) * \dots * (\lambda_{m-2} * f_{m-1} * \lambda_{m-1}^{-1}) * (\lambda_{m-1} * f_m)$$

relativ zu x. Nun sind die Wege $f_1 * \lambda_1^{-1}, \lambda_1 * f_2 * \lambda_2^{-1}, \ldots, \lambda_{m-2} * f_{m-1} \lambda_{m-1}^{-1}$ und $\lambda_{m-1} * f_m$ jeweils Schleifen, die von x ausgehen, und sich jeweils komplett in A oder B befinden. Daher sind sie alle zusammenziehbar relativ zu x, denn A und B sind einfach zusammenhängend. Daher ist auch f relativ zu x zusammenziehbar. (Man fügt die einzelnen Homotopien einfach passend zusammen.)

Aus der Beliebigkeit von f folgt, dass $\pi_1(X, x)$ trivial ist.

(b)

Es sei n > 1. Wir schreiben $S^n = A \cup B$ mit

$$A = \{(x_1, \dots, x_{n+1}) \in S^n \mid x_{n+1} \neq -1\} \text{ und}$$

$$B = \{(x_1, \dots, x_{n+1}) \in S^n \mid x_{n+1} \neq 1\}.$$

A und B sind offenbar offen in S^n , und durch die entsprechenden stereografischen Projektionen wissen wir, dass $A\cong\mathbb{R}^n$ und $B\cong\mathbb{R}^n$. Da \mathbb{R}^n offenbar einfach zusammenhängend ist, sind es daher auch A und B (wegen der Funktorialität von π_1). Offenbar ist $A\cap B\neq\emptyset$ wegzusammenhängend (hier benutzen wir, dass n>1). Nach Aufgabenteil (a) ist deshalb auch S^n einfach zusammenhängend.

Aufgabe 6.3:

Es sei $(x,x') \in X \times X'$ beliebig aber fest. Da $p:E \to X$ eine Überlagerung ist, gibt es eine Umgebung $U \subseteq X$ von x, einen diskreten Raum D und einen Homöomorphismus $\phi: p^{-1}(U) \to U \times D$, so dass das Diagramm in Abbildung 1 kommutiert.

Abbildung 1: $p:E\to X$ ist eine Überlagerung.

Analog gibt es, da $p': E' \to X'$ eine Überlagerung ist, eine Umgebung $U' \subseteq X'$ von x', einen diskreten Raum D' und einen Homöomorphismus $\phi': p'^{-1}(U) \to U' \times D'$, so dass das Diagramm in Abbildung 2 kommutiert.

Abbildung 2: $p': E' \to X'$ ist eine Überlagerung.

Es ist nun $U \times U' \subseteq X \times X'$ eine Umgebung von (x, x') in $X \times X'$ mit

$$(p \times p')^{-1} (U \times U') = p^{-1}(U) \times p'^{-1}(U').$$

Die Homö
omorphismen ϕ und ϕ' liefern uns einen Homö
omorphismus

$$\tilde{\phi}: p^{-1}(U) \times p'^{-1}(U') \to (U \times D) \times (U' \times D') \cong (U \times U') \times (D \times D').$$

$$(p \times p')^{-1}(U) \xrightarrow{\tilde{\phi}} (U \times U') \times (D \times D')$$

$$p \times p' \downarrow \qquad \qquad \downarrow \tilde{\pi}_1$$

$$U \times U' \xrightarrow{id_{U \times U'}} U \times U'$$

Abbildung 3: $p': E' \to X'$ ist eine Überlagerung.

Zusammen liefert dies das kommutative Diagramm in Abbildung 3. Wegen der Beliebigkeit von $(x, x') \in X \times X'$ zeigt dies, dass

$$p \times p' : E \times E' \to X \times X'$$

eine Überlagerung ist. Es ist auch klar, dass sich die Blätterzahl von $(x, x') \in X \times X'$ als Produkt der Blätterzahl von x und der Blätterzahl von x' ergibt.

(a)

Aus der Definition von $Y \times_X E$ erhalten wir das kommutative Diagramm in Abbildung 4.

$$\begin{array}{ccc}
Y \times_X E & \xrightarrow{\pi_1} & Y \\
\pi_2 & & \downarrow f \\
E & \xrightarrow{\eta} & X
\end{array}$$

Abbildung 4: Das Faserprodukt $Y \times_X E$.

Se $y\in Y$ beliebig aber fest. Da $p:E\to X$ eine Überdeckung ist, gibt es eine Umgebung $U\subseteq X$ von $f(y)\in X$, einen diskreten Raum D und einen Homöomorphismus $\phi:p^{-1}(U)\to U\times D$, so dass das Diagramm in Abbildung 5 kommutiert.

Abbildung 5: $p:E\to X$ ist eine Überlagerung.

Wir erweitern das Diagramm in Abbildung 5 zu dem Diagramm in Abbildung 6. Dabei wollen wir den Homöomorphismus ϕ zu einem Homöomorphismus Φ liften.

$$\begin{array}{c|c} \pi_2^{-1}(p^{-1}(U)) & -- \overset{\Phi}{---} & f^{-1}(U) \times D \\ \hline \pi_2 & & & \downarrow f \times \operatorname{id}_D \\ p^{-1}(U) & \xrightarrow{\phi} & U \times D \\ \hline p & & \downarrow \operatorname{pr}_1 \\ U & \xrightarrow{\operatorname{id}_U} & U \end{array}$$

Abbildung 6: $p: E \to X$ ist eine Überlagerung.

Hierfür definieren wir

$$\Phi: \pi_2^{-1}(p^{-1}(U)) \to f^{-1}(U) \times D, (y, e) \mapsto (y, \operatorname{pr}_2 \phi(e)),$$

wobei $\operatorname{pr}_2:U\times D\to D$ die kanonische Projektion bezeichnet. Φ ist wohldefiniert, denn für $(y,e)\in\pi_2^{-1}(p^{-1}(U))$ ist

$$f(y) = p(e) = p\pi_2(y, e) \in U.$$

Außerdem definieren wir

$$\Psi: f^{-1}(U) \times D \to \pi_2^{-1}(p^{-1}(U)), (y, d) \mapsto (y, \phi^{-1}(f(y), d)).$$

 Ψ ist wohldefiniert, denn für $(f,d) \in f^{-1}(U) \times D$ ist

$$p\left(\pi_2\left(\left(y,\phi^{-1}(f(y),d)\right)\right)\right) = p\left(\phi^{-1}(f(y),d)\right) = \operatorname{pr}_1((f(y),d)) = f(y) \in U,$$

Es ist klar, dass Φ und Ψ stetig sind. Φ und Ψ sind invers zueinander. Für $(y,e)\in\pi_2^{-1}(p^{-1}(U))$ ist

$$\Psi\Phi(y,e) = \Psi\left(y,\operatorname{pr}_2\phi(e)\right) = \left(y,\phi^{-1}(f(y),\operatorname{pr}_2\phi(e))\right),$$

wobei

$$e = \phi^{-1}\phi e = \phi^{-1}\left(p(e),\operatorname{pr}_2\phi(e)\right) = \phi^{-1}\left(f(y),\operatorname{pr}_2\phi(e)\right).$$

Für $(y,d) \in f^{-1}(U) \times D$ ist

$$\Phi\Psi(y,d) = \Phi\left(y,\phi^{-1}(f(y),d)\right) = \left(y, \operatorname{pr}_2 \phi \phi^{-1}(f(y),d)\right) = (y,d).$$

Also ist Φ ein Homö
omorphismus. Das Diagramm in Abbildung 6 kommutiert auch, denn für $(y,e)\in\pi_2^{-1}(p^{-1}(U))$ ist

$$\begin{split} \phi\pi_2(y,e) &= \phi(e) = (p(e),\operatorname{pr}_2\phi(e)) = (f(y),\operatorname{pr}_2\phi(e)) \\ &= (f\times\operatorname{id}_D)(y,\operatorname{pr}_2\phi(e)) = (f\times\operatorname{id}_D)\Phi(y,e). \end{split}$$

Wegen der Kommutativität des Diagramms in Abbildung 4 ist $p\pi_2=f\pi_1$, also

$$\pi_2^{-1}(p^{-1}(U)) = \pi^{-1}(f^{-1}(U)).$$

$$\begin{array}{c|c} \pi_1^{-1}(f^{-1}(U)) & \xrightarrow{\Phi} & f^{-1}(U) \times D \\ \hline \\ \pi_1 & & & \downarrow \tau_1 \\ \hline \\ f^{-1}(U) & \xrightarrow{\operatorname{id}_{f^{-1}(U)}} & f^{-1}(U) \end{array}$$

Abbildung 7: $\pi_1: Y \times_X E \to Y$ ist eine Überlagerung.

Da f stetig ist und U eine Umgebung von f(y), ist $f^{-1}(U)$ eine Umgebung von y. Damit erhalten wir das Diagramm in 7. Dieses kommutiert, denn für alle $(y,e) \in \pi_1^{-1}(f^{-1}(U))$ ist

$$\pi_1((y,e)) = y = \tau_1((y, \operatorname{pr}_2 \phi(e))) = \tau_1 \Phi((y,e)).$$

Wegen der Beliebigkeit von $y \in Y$ zeigt dies, dass $\pi_1: Y \times_X E \to Y$ eine Überlagerung ist. Aus der obigen Konstruktion geht direkt hervor, dass die Blätterzahl von $y \in Y$ bezüglich dieser Überlagerung der Blätterzahl von $f(y) \in X$ bezüglich der Überdeckung $p: E \to X$ entspricht.