Data Structures and Algorithms – (COMP SCI 2C03) Winter 2021 Tutorial - 10

April 12, 2021

1. Give a trace for MSD string sort for the keys **Answer:**

no is th ti fo al go pe to co to th ai	Keys after sorting characters in the second last place al ai co fo go is no of pe pa th ti to	Sorted keys ai al co fo go is no of pa pe th th th

2. How many letter comparisons would Boyer-Moore algorithm (with only the bad character rule) perform on the text a^n and pattern $a^{m-1}b$.

Answer: For the text a^n and pattern $a^{m-1}b$, Boyer-Moore algorithm (with only the bad character rule) would perform n-(m-1)=n-m+1 letter comparisons. This is because every time a pattern is aligned (starting at index=0), the letter comparisons take place from right to left. As a result, the last character b would be compared against an a, and would result in a mismatch. However, since the rightmost a in the pattern is at position m-1, the number of alignments skipped = m-1-(m-1) = 0. Hence, the pattern is aligned at the next index position, and this is done for a total of n-m+1 alignments, resulting in a total of n-m+1 comparisons of b with a's in the text.

3. Give an example of a text and pattern that would result in the Boyer-Moore algorithm (with only the bad character rule) to perform N/M letter comparisons.

Answer: The Boyer-Moore algorithm (with only the bad character rule) performs N/M letter comparisons for the text = c c c c c c c c c c c and the pattern = a b d.

4. Give an example of a text and pattern that would result in the worst case performance of the Rabin-Karp algorithm.

Answer: The Rabin-Karp algorithm results in the worst case performance NM when the hash value computed for each x_i of the text, is the same and is also equal to hash computed for the pattern. The following example of text = 1 1 1 1 1 1 1 1 and the pattern = 1 1 results in the worst case performance for Rabin-Karp algorithm.

- 5. Perform substring search using the Rabin-Karp algorithm on the following the text = 7 5 4 3 7 8 5 3 9 2 1 7, and pattern = 3 9 2. The algorithm uses the following hash function: $h(x) = x \mod 23$.
 - (a) When performing the substring search compute the hash functions for $x_4, \ldots x_{11}$ using rolling hash.
 - (b) How many letter comparisons would the algorithm perform in this case?

Answer: This is the details of running Rabin-Karp algorithm:

Pattern Hash: 16 Text Hash at 0: 10 Text Hash = (10 + 23 - ((8 * 7) % 23))) % 23 = 7

```
Text Hash = ((7 * 10 + 3) \% 23) = 6
Text Hash at 1: 6
Text Hash = (6 + 23 - ((8 * 5) \% 23))) \% 23 = 19
Text Hash = ((19 * 10 + 7) \% 23) = 15
Text Hash at 2: 15
Text Hash = (15 + 23 - ((8 * 4) \% 23))) \% 23 = 13
Text Hash = ((13 * 10 + 8) \% 23) = 2
Text Hash at 3: 2
Text Hash = (2 + 23 - ((8 * 3) \% 23))) \% 23 = 8
Text Hash = ((8 * 10 + 5) \% 23) = 18
Text Hash at 4: 18
Text Hash = (18 + 23 - ((8 * 7) \% 23))) \% 23 = 15
Text Hash = ((15 * 10 + 3) \% 23) = 17
Text Hash at 5: 17
Text Hash = (17 + 23 - ((8 * 8) \% 23))) \% 23 = 6
Text Hash = ((6 * 10 + 9) \% 23) = 2
Text Hash at 6: 2
Text Hash = (2 + 23 - ((8 * 5) \% 23))) \% 23 = 15
Text Hash = ((15 * 10 + 2) \% 23) = 16
Text Hash at 7: 16 Match!
Text Hash = (16 + 23 - ((8 * 3) \% 23))) \% 23 = 22
Text Hash = ((22 * 10 + 1) \% 23) = 16
Text Hash at 8: 16
Text Hash = (16 + 23 - ((8 * 9) \% 23))) \% 23 = 20
Text Hash = ((20 * 10 + 7) \% 23) = 2
Text Hash at 9: 2
```

text: 754378539217 pattern: 392

We would do 10 hash comparison in this case and then we 3 letter comparisons after we have the same hash for the pattern and the text at position 7.

6. What is the LZW encoding of the following input: T O B E O R N O T T O B E? You may assume that the input contains 7-bit ASCII characters and the output is in 8 bit codewords in hexadecimal. Provide the trie representing the symbol table. What is the compression ratio

achieved?

Answer: The results of the encoding is as follow:

Number of bits required to represent the encoding: 8 * 12 = 96. Number of bits required to represent the original data: 12 * 13 = 156.

Compression rate: $\frac{96}{156} = 61\%$

Trie of the symbol table is as follow:

$$T(54) \rightarrow TO(80) \rightarrow TOB(89)$$

$$T(54) \rightarrow TT(88)$$

$$O(4f) \rightarrow OB(81)$$

$$O(4f) \rightarrow OR(84)$$

$$O(4f) \rightarrow OT(87)$$

$$B(42) \rightarrow BE(82)$$

$$E(45) \rightarrow EO(83)$$

$$R(52) \rightarrow RN(85)$$

$$N(4e) \rightarrow NO(86)$$