

Curso: Engenharia Eletrônica

DISCIPLINA: FGA0071 - PRÁTICA DE ELETRÔNICA DIGITAL 1 SEMESTRE/ANO: 01/2025

CARGA HORÁRIA: 30 horas CRÉDITOS: 02

PROFESSOR: Marcelino Monteiro de Andrade

PLANO DE ENSINO

1 Ementa

Portas lógicas e álgebra Booleana, circuitos lógicos combinacionais, aritmética digital, sistemas de numeração e códigos, circuitos lógicos MSI, princípios de sistemas sequenciais, programação VHDL, noções de hardware FPGA.

2 Conteúdo

1. Sistemas de Numeração e Códigos;

2. Portas Lógicas e Álgebra Booleana;

3. Circuitos Lógicos Combinacionais;

4. Princípios de Sistemas Sequenciais;

5. Aritmética Digital;

6. VHDL e FPGA;

7. Circuitos Lógicos MSI.

3 Metodologia

O conteúdo deste curso será compartilhado e/ou desenvolvido mediante:

- 1. Aulas Expositivas por parte do professor, onde se explicarão os conteúdos básicos necessários e as atividades práticas a serem desenvolvidas;
- 2. Aulas Práticas, realizadas pelos alunos sobre a orientação do professor, abordando simulação computacional e implementações em protoboard, VHDL e FPGA;
- 3. Plataformas oficiais da UnB (SIGAA, Aprender 3 e/ou Teams) serão aplicadas para a gestão dos conteúdos e comunicação.

4 Horário das aulas

- 1. **TURMA 06:** quartas-feiras, das 08:00 hrs às 09:50 hrs.
- 2. **TURMA 07:** quartas-feiras, das 10:00 hrs às 11:50 hrs.
- 3. **TURMA 08:** quartas-feiras, das 14:00 hrs às 15:50 hrs.
- 4. **TURMA 09:** quartas-feiras, das 16:00 hrs às 17:50 hrs.

5 Processo Avaliativo

A avaliação do curso será baseada em 8 (oito) experimentos, em grupo, e 1 (uma) avaliação individual. Na **Nota Final** (N_F) , cada **Trabalho Experimental** (TE) e **Avaliação Individual** (AI) possuem 09 e 28 pontos, respectivamente. Para obter a **aprovação** no curso o aluno deve cumprir **duas** exigências: a) ter presença em 75% ou mais das aulas e b) obter N_F igual ou superior a 5.0. A N_F será dada por

$$N_F = \sum_{i=1}^8 TE_i + AI \leq 100, \ \text{ sujeito a } \sum_{i=1}^8 TE_i \leq 72 \quad \text{e} \quad AI \leq 28.$$

6 Cronograma

Aula	Data	Conteúdo
01	26/03	Apresentação do curso
02	02/04	ProntoBoard: implementação de circuitos
03	09/04	Exp01: prática de circuito combinacional
04	16/04	Exp02: prática de circuito combinacional
05	23/04	Exp03: prática de circuito sequencial
06	30/04	Exp04: prática de circuito sequencial
07	07/05	ProntoBoard: Refazer Experimentos
08	14/05	ProntoBoard: Refazer Experimentos
09	21/05	FPGA: implementação de circuitos
10	28/05	Exp05: prática de circuito combinacional
11	04/06	Exp06: prática de circuito combinacional
12	11/06	Exp07: prática de circuito sequencial
13	18/06	Exp08: prática de circuito sequencial
14	25/06	FPGA: Refazer um Experimento
15	02/07	FPGA: Refazer um Experimento
16	09/07	Avaliação Teórica
17	16/07	Revisão de Notas

7 Bibliografia

- 1. Thomas Floyd, Sistemas Digitais: Fundamentos e Aplicações, , 9a Ed., Bookman, Porto Alegre, 2007.
- 2. Volnei A. Pedroni, *Eletrônica Digital Moderna e VHDL*, Campus-Elsevier, Rio de Janeiro, 2010.
- 3. onald J. Tocci, Neal S. Widmer, Gregory L. Moss, *R Sistemas Digitais: Princípios e Aplicações*, 11a Ed., Pearson, São Paulo, 2011.
- 4. James W. Bignell, Robert Donovan, *Eletrônica Digital*, 5a. Ed., Cengage Learning, São Paulo, 2010.
- 5. William Kleitz, Digital Electronics: A Practical Approach with VHDL, 9th Ed., Pearson, USA, 2012.
- 6. M. Morris Mano, Michael D. Ciletti, *Digital Design With an Introduction to the Verilog HDL*, , 5th Ed., Pearson, USA, 2013.
- 7. Randy H. Katz, Gaetano Borriello, *Contemporary Logic Design*, 2nd Ed., Pearson, USA, 2005.
- 8. Roberto d'Amore, VHDL: Descrição e Síntese de Circuitos Digitais, 2a Ed., LTC, Rio de Janeiro, 2012.