1

Linear Equations in Linear Algebra

1.3

VECTOR EQUATIONS

VECTOR EQUATIONS

Vectors in \mathbb{R}^2

- A matrix with only one column is called a column vector, or simply a vector.
- An example of a vector with two entries is

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix},$$

where w_1 and w_2 are any real numbers.

• The set of all vectors with two entries is denoted by \mathbb{R}^2 (read "r-two").

VECTOR EQUATIONS

- The ℝ stands for the real numbers that appear as entries in the vector, and the exponent 2 indicates that each vector contains two entries.
- Two vectors in \mathbb{R}^2 are **equal** if and only if their corresponding entries are equal.
- Given two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 , their \mathbf{sum} is the vector $\mathbf{u} + \mathbf{v}$ obtained by adding corresponding entries of \mathbf{u} and \mathbf{v} .
- Given a vector **u** and a real number c, the **scalar multiple** of **u** by c is the vector c**u** obtained by multiplying each entry in **u** by c.

VECTOR EQUATIONS

Example 1: Given
$$u = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 and $v = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$, find

$$4\mathbf{u}$$
, $(-3)\mathbf{v}$, and $4\mathbf{u} + (-3)\mathbf{v}$.

Solution:
$$4\mathbf{u} = \begin{bmatrix} 4 \\ -8 \end{bmatrix}$$
, $(-3)\mathbf{v} = \begin{bmatrix} -6 \\ 15 \end{bmatrix}$ and

$$4\mathbf{u} + (-3)\mathbf{v} = \begin{bmatrix} 4 \\ -8 \end{bmatrix} + \begin{bmatrix} -6 \\ 15 \end{bmatrix} = \begin{bmatrix} -2 \\ 7 \end{bmatrix}$$

GEOMETRIC DESCRIPTIONS OF \mathbb{R}^2

Consider a rectangular coordinate system in the plane. Because each point in the plane is determined by an ordered pair of numbers, we can identify a geometric point (a, b) with the column vector [a].

• So we may regard \mathbb{R}^2 as the set of all points in the plane.

PARALLELOGRAM RULE FOR ADDITION

If \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are \mathbf{u} , $\mathbf{0}$, and \mathbf{v} . See Fig. 3 below.

VECTORS IN \mathbb{R}^3 and \mathbb{R}^n

- Vectors in \mathbb{R}^3 are 3×1 column matrices with three entries.
- They are represented geometrically by points in a three-dimensional coordinate space, with arrows from the origin sometimes included for visual clarity.
- If *n* is a positive integer, \mathbb{R}^n (read "r-n") denotes the collection of all lists (or *ordered n-tuples*) of *n* real numbers, usually written as $n \times 1$ column matrices,

such as

 $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$

ALGEBRAIC PROPERTIES OF \mathbb{R}^n

- The vector whose entries are all zero is called the zero vector and is denoted by 0.
- For all **u**, **v**, **w** in \mathbb{R}^n and all scalars c and d:

(i)
$$u + v = v + u$$

(ii)
$$(u + v) + w = u + (v + w)$$

(iii)
$$u + 0 = 0 + u = u$$

(iv)
$$u + (-u) = -u + u = 0$$
,
where $-u$ denotes $(-1)u$

(v)
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

(vi)
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

(vii)
$$c(d\mathbf{u}) = (cd)(\mathbf{u})$$

(viii) $1\mathbf{u} = \mathbf{u}$

• Given vectors \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_p in \mathbb{R}^n and given scalars c_1 , c_2 , ..., c_p , the vector \mathbf{y} defined by

$$y = c_1 V_1 + \dots + c_p V_p$$

is called a **linear combination** of $v_1, ..., v_p$ with weights $c_1, ..., c_p$.

The weights in a linear combination can be any real numbers, including zero.

■ Example 5: Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$.

Determine whether **b** can be generated (or written) as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 . That is, determine whether weights x_1 and x_2 exist such that

$$x_1 a_1 + x_2 a_2 = b (1)$$

If vector equation (1) has a solution, find it.

Solution: Use the definitions of scalar multiplication and vector addition to rewrite the vector equation

$$\begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix},$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \qquad b$$

which is same as

$$\begin{bmatrix} x_1 \\ -2x_1 \\ -5x_1 \end{bmatrix} + \begin{bmatrix} 2x_2 \\ 5x_2 \\ 6x_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$$

and
$$\begin{bmatrix} x_1 + 2x_2 \\ -2x_1 + 5x_2 \\ -5x_1 + 6x_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}.$$
 (2)

The vectors on the left and right sides of (2) are equal if and only if their corresponding entries are both equal. That is, x_1 and x_2 make the vector equation (1) true if and only if x_1 and x_2 satisfy the following system. $x_1 + 2x_2 = 7$

$$-2x_{1} + 5x_{2} = 4$$

$$-5x_{1} + 6x_{2} = -3$$
(3)

■ To solve this system, row reduce the augmented matrix of the system as follows:

$$\begin{bmatrix} 1 & 2 & 7 \\ -2 & 5 & 4 \\ -5 & 6 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 9 & 18 \\ 0 & 16 & 32 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 1 & 2 \\ 0 & 16 & 32 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

• The solution of (3) is $x_1 = 3$ and $x_2 = 2$. Hence **b** is a linear combination of \mathbf{a}_1 and \mathbf{a}_2 , with weights $x_1 = 3$ and

$$x_2 = 2$$
. That is,

$$3 \begin{vmatrix} 1 \\ -2 \\ -5 \end{vmatrix} + 2 \begin{vmatrix} 2 \\ 5 \\ 6 \end{vmatrix} = \begin{vmatrix} 7 \\ 4 \\ -3 \end{vmatrix}.$$

Now, observe that the original vectors \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{b} are the columns of the augmented matrix that we row reduced:

$$\begin{bmatrix} 1 & 2 & 7 \\ -2 & 5 & 4 \\ -5 & 6 & -3 \end{bmatrix}$$
a₁ a₂ b

Write this matrix in a way that identifies its columns.

$$\begin{bmatrix} a_1 & a_2 & b \end{bmatrix} \tag{4}$$

A vector equation

$$x_1 a_1 + x_2 a_2 + \dots + x_n a_n = b$$

has the same solution set as the linear system whose augmented matrix is

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n & b \end{bmatrix} \tag{5}$$

In particular, **b** can be generated by a linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_n$ if and only if there exists a solution to the linear system corresponding to the matrix (5).

■ **Definition:** If $\mathbf{v}_1, ..., \mathbf{v}_p$ are in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, ..., \mathbf{v}_p$ is denoted by Span $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ and is called the **subset of** \mathbb{R}^n **spanned** (or **generated**) by $\mathbf{v}_1, ..., \mathbf{v}_p$. That is, Span $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ is the collection of all vectors that can be written in the form $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + ... + c_p\mathbf{v}_p$

with $c_1, ..., c_p$ scalars.

A GEOMETRIC DESCRIPTION OF SPAN (V)

Let v be a nonzero vector in \mathbb{R}^3 . Then Span $\{v\}$ is the set of all scalar multiples of v, which is the set of points on the line in \mathbb{R}^3 through v and 0. See Fig. 10 below:

A GEOMETRIC DESCRIPTION OF SPAN {U, V}

- If **u** and **v** are nonzero vectors in \mathbb{R}^3 , with **v** not a multiple of **u**, then Span {**u**, **v**} is the plane in \mathbb{R}^3 that contains **u**, **v**, and **0**.
- In particular, Span {u, v} contains the line in ℝ³ through u and 0 and the line through v and 0. See Fig. 11 below:

