as
$$h \to 0$$
, $\hat{f}_{h}(y) \to \frac{1}{h} \stackrel{?}{\underset{i=1}{\sum}} \mathbb{I}(Y_{i} \leq y) \leftarrow \text{this is the empirical dentity!} \to \text{MLE!}$

23

1 Likelihood Construction and E...

1.2.7 Censored Data

Censored data occur when the value is only partially known. This is different from truncation, in which the data does not include any values below (or above) a certain limit.

truncation:

For example, we might sample only hourseholds that have an income above a limit, L_0 . If all incomes have distribution $F(x; \theta)$, then for $y > L_0$,

$$P(Y_1 \leq y | Y_1 > L_0) = \frac{P(Y_1 \leq y, Y_1 > L_0)}{P(Y_1 \geq L_0)} = \frac{P(y; \theta) - F(L_0; \theta)}{1 - F(L_0; \theta)}$$

The likelihood is then

$$L(\theta|X) = \prod_{i=1}^{n} \left\{ \frac{f(Y_i;\theta)}{1 - F(L_0;\theta)} \right\}$$
This is just on iid likelihood w/ Lensites adjusted to take into account that $Y_{-} = L_0$.

1.2.7.1 Type I Censoring

Suppose a random variable X is normally distributed with mean μ and variance σ^2 , but whenever $X \leq 0$, all we observe is that it is less than or equal to 0. If the sample is set to 0 in the censored cases, then define consoning & truncation.

$$Y = \begin{cases} 0 & \text{if } X \leq 0 \\ X & \text{if } X > 0. \end{cases}$$
 $X = \begin{cases} 0 & \text{if } X \leq 0 \\ X & \text{other } X > 0. \end{cases}$
 $X = \begin{cases} 0 & \text{if } X \leq 0 \\ X & \text{other } X > 0. \end{cases}$

The distribution function of Y is

ribution function of Y is
$$\times N(\mu, \delta^2)$$
.

at
$$\gamma = 0$$
: $F_{y}(0) = P(Y \le 0) = P(X \le 0)$

$$= P(6 \ge +\mu \le 0)$$

$$= P(2 \le -\frac{\mu}{\sigma}) = \Phi(-\frac{\mu}{\sigma}) \text{ where } \mathbb{Z}^{N}(0, 1)$$

$$\Phi \text{ st. normal cdf}$$

for
$$y > 0$$
: $F_y(y) = P(y \le y) = \mathbb{P}\left(\frac{y-n}{s}\right)$

for
$$\gamma < 0$$
: $F_{\gamma}(\gamma)$: $P(\gamma \leq \gamma) = 0$

1.2 Construction 24

Suppose we have a sample Y_1, \ldots, Y_n and let n_0 be the number of sample values that are 0. Then $m = n - n_0$ and

$$L_{h}(\underline{\theta}|\underline{y}) = \left(\frac{1}{2h}\right)^{m} \frac{1}{1!} \left\{ F_{y}(\underline{y}_{i} + h_{j}\underline{\theta}) - F_{y}(\underline{y}_{i} - h_{j}\underline{\theta}) \right\}$$

$$= \left\{ \underbrace{\overline{\Psi}\left(\frac{h - \mu}{6}\right)}_{F_{y}(\underline{y}_{i} + h_{j}\underline{\theta})} - o \underbrace{\overline{\Psi}\left((\underline{y}_{i} + h_{i} - \mu)/\delta\right)}_{Y_{i} \ge 0} \right\}$$

$$L(\theta|x) = \lim_{h \to 0^{+}} L_{h}(\theta|x)$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i} \neq 0}$$

$$= \underbrace{\left\{ \frac{1}{6} \left(\frac{y_{i} - \mu}{6} \right) \right\}}_{y_{i}$$

We might have censoring on the left at L_0 and censoring on the right at R_0 , but observe all values of X between L_0 and R_0 . Suppose X has density $f(x; \theta)$ and distribution function $F(x; \theta)$ and

$$Y_i = \left\{egin{array}{ll} L_0 & ext{if } X_i \leq L_0 \ X_i & ext{if } L_0 < X_i < R_0 \ R_0 & ext{if } X_i \geq R_0 \end{array}
ight.$$

If we let n_L and n_R be the number of X_i values $\leq L_0$ and $\geq R_0$ then the likelihood of the observed data Y_1, \ldots, Y_n is

$$L(\underline{\theta}|\underline{Y}) = \underbrace{\left\{F(L_0;\underline{\theta})\right\}^{n_L}}_{\text{cansored port}} \underbrace{\left\{\prod_{b \in Y_i \in R_0} f_y(Y_i;\underline{j}\underline{\theta})\right\}^{n_L}}_{\text{observed}} \underbrace{\left\{\prod_{b \in Y_i \in R_0} f_y(Y_i;\underline{$$

We could also let each X_i be subject to its own censoring values L_i and R_i . For the special case of right censoring, define $Y_i = \min(X_i, R_i)$. In addition, define $\delta_i = \mathbb{I}(X_i \leq R_i)$. Then the likelihood can be written as

$$L(\underline{\theta}|\underline{y}) = \prod_{i=1}^{n} f(\underline{y};\underline{\theta})^{\delta_i} \left[1 - F(\underline{R};\underline{j}\underline{\theta}) \right]^{1-\delta_i}$$
right centered

Example (Equipment failure times): Pieces of equipment are regularly checked for failure (but started at different times). By a fixed date (when the study ended), three of the items had not failed and therefore were censored.

were censored,

$$y = 2.72.51.50.33.27.14.24.4.21$$

delta 1 0 1 0 1 1 1 1 0

Suppose failure times follow an exponential distribution $F(x; \sigma) = 1 - \exp(-x/\sigma), x \ge 0$. Then

$$L(\sigma|\boldsymbol{Y}) = \frac{1}{i} \left[\frac{1}{6} \exp\left(-\frac{\gamma_i}{6}\right) \right]^{\delta_i} \exp\left(-\frac{\gamma_i}{6}\right)^{1-\delta_i}$$
 Let n_k be $\#$ obs. were night cursored.
$$= \left(\frac{1}{6} \right)^{n-n_R} \exp\left(-\frac{n\gamma}{6}\right)$$

$$\frac{dl}{d6} = -\frac{(n-n_R)}{6} \log 6 - \frac{n7}{6}$$

$$\frac{dl}{d6} = -\frac{(n-n_R)}{6} + \frac{n7}{6^2} = 0$$

$$n7 = 6(n-n_R) \Rightarrow \frac{n7}{6} = \frac{n7}{6-n_R}$$

$$= \frac{10.30.8}{7} = 44.0$$

1.2 Construction 26

1.2.7.2 Random Censoring

So far we have considered censoring times to be fixed. This is not required.

This leads to random censoring times, e.g. R_i , where we assume that the censoring times are independent of X_1, \ldots, X_n and iid with distribution function G(t) and density g(t).

Again $Y_i = \min(X_i, R_i)$ and $\delta_i = \mathbb{I}(X_i \leq R_i)$ Let's consider the contributions to the likelihood:

due to
$$(Y_{i,j}, S_{i}=1)$$
:
$$\frac{P(Y_{i} \in (Y_{i}-1, Y_{i}+1), S_{i}=1)}{2h} = P(X_{i} \in (Y_{i}-1, Y_{i}+1), X_{i} \leq P_{i})/2h$$

$$= \frac{1}{2h} \int_{Y_{i}}^{Y_{i}} \left[\int_{Y_{i}}^{Y_{i}} \mathbb{I}(+ \leq Y_{i}) \int_{Y_{i}}^{Y_{i}} \mathbb{I}(+ Y_{i}) \int_{Y_{i}}^{Y_$$

$$L(\boldsymbol{\theta}|\boldsymbol{Y},\boldsymbol{\delta}) = \begin{cases} \underset{i=1}{\overset{n}{+}} & f(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}})^{\delta_{i}} \left[1 - G(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\delta}})^{\delta_{i}} \right] \begin{cases} \underset{i=1}{\overset{n}{+}} & g(\boldsymbol{\gamma}_{i})^{1-\delta_{i}} \left[1 - F(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}}) \right]^{1-\delta_{i}} \end{cases}$$

$$= \underset{i=1}{\overset{n}{+}} f(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}})^{\delta_{i}} \left[1 - F(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}}) \right]^{1-\delta_{i}} g(\boldsymbol{\gamma}_{i})^{1-\delta_{i}} \left[1 - G(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}}) \right]^{\delta_{i}} \end{cases}$$

$$= \underset{i=1}{\overset{n}{+}} f(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}})^{\delta_{i}} \left[1 - F(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}}) \right]^{1-\delta_{i}} g(\boldsymbol{\gamma}_{i})^{1-\delta_{i}} \left[1 - G(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}}) \right]^{\delta_{i}} \end{cases}$$

$$= \underset{i=1}{\overset{n}{+}} f(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}})^{\delta_{i}} \left[1 - F(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}}) \right]^{1-\delta_{i}} g(\boldsymbol{\gamma}_{i})^{1-\delta_{i}} \left[1 - G(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}}) \right]^{\delta_{i}} \end{cases}$$

$$= \underset{i=1}{\overset{n}{+}} f(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}})^{\delta_{i}} \left[1 - F(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}}) \right]^{1-\delta_{i}} g(\boldsymbol{\gamma}_{i})^{1-\delta_{i}} \left[1 - G(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}}) \right]^{1-\delta_{i}} g(\boldsymbol{\gamma}_{i})^{1-\delta_{i}} \left[1 - G(\boldsymbol{\gamma}_{i};\underline{\boldsymbol{\theta}}) \right]^{1-\delta_{i}} g(\boldsymbol{\gamma}_{i})^{1-\delta_{i}} g(\boldsymbol{$$

1.3 Likelihoods for Regression Models

We will start with linear regression and then talk about more general models.

1.3.1 Linear Model

Consider the familiar linear model

$$Y_i = oldsymbol{x}_i^ op oldsymbol{eta} + \epsilon_i, \qquad i = 1, \dots, n,$$
 where $i = 1, \dots, n$

where $\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n$ are known nonrandom vectors.

$$E[\Sigma_i] = 0$$
 $Var[\Sigma_i] = \delta^2$

often we estimate β by $\hat{\beta}_{ols}$, which does not require a distribution for Σ_i .

For likelihood-based estimation, we need a distribution for
$$\mathcal{E}_i$$
! Namely start $V/\mathcal{E}_i NN(0, 6^2)$.
$$= \prod_{i=1}^n \left(\frac{1}{12\pi 6^2}\right) \exp\left(-\frac{(Y_i - Z_i^T E)^2}{26^2}\right)$$

$$= \left(\frac{1}{12\pi 6^2}\right)^n \exp\left(-\frac{1}{26^2} \frac{z}{iz_1} \left(\frac{Y_i - Z_i^T E}{2}\right)^2\right)$$

$$+ \text{the log}_i$$

$$+ \text{$$

What do you do when ϵ_i are not Gaussian?

Example (Venice sea levels): The annual maximum sea levels in Venice for 1931–1981 are:

We know maxina not braussian!

Approach 1: OLS
$$E[\xi_i] = 0$$
, $V_{cr}[\xi_i] = \varepsilon^2$ no distribution assumption. Approach 2: Assume ξ_i N Gumbel, use ML

$$f_{\varepsilon}(y) = \frac{1}{6} \exp\left(-\frac{y}{\delta}\right) \exp\left(-\exp\left(-\frac{y}{\delta}\right)\right)$$

$$= L\left(\beta_{i,6} \mid \S_{i,1}^{\gamma_{i,1}} \ge_{i=1}^{\gamma_{i,1}}\right) = \prod_{i=1}^{n} f_{\varepsilon}\left(\gamma_{i} - \mathbb{E}^{T} \beta\right) = \prod_{i=1}^{n} f_$$

YOUR TURN: Fit both approaches to venice data!

OLS:
$$\frac{\text{ML, brumbel}}{\hat{\beta}_0 = 10^4.8, \, \hat{\beta}_1 = .567 \, \left(\frac{\text{Se}}{.177}\right)} = \frac{\text{ML, brumbel}}{\hat{\beta}_0 = 96.8, \, \hat{\beta}_1 = .569 \, \left(\frac{\text{Se}}{.136}\right)}$$
Difference in $\hat{\beta}_0$? $E[\mathcal{E}_1] = 0.5776 = 0.5776_{\text{MLE}} \neq 0 \, \left(96.8 + .577 \left(14.5\right) = 105.1\right)$
OLS or ML? If EV model is correct, more efficient (note: \$4.2005).