BTS INFORMATIQUE ET RESEAUX POUR L'INDUSTRIE ET LES SERVICES TECHNIQUES

Session 2006

EPREUVE E.4 Etude d'un système informatisé

COMMANDE AUTOMATISEE DES CENTRALES HYDRAULIQUES DU RHIN

	Annexes	
Annexe 1 :	formules générales	1
Annexe 2 :	algorithme de répartition	2
Annexe 3 :	Horloge de synchronisation	5
Annexe 4 :	diagramme de classe du PA	7
Annexe 5 :	classes C++	8
Annexe 6 :	trame Ethernet et protocole Modbus	9
Annexe 7 :	carte MVME147	11
Annexe 8 :	carte VIPC610	13
Annexe 9 :	carte IP-Sérial	16
Annexe 10 :	SCC-Z85C30	18

Annexe 1 : Formules générales

Puissance mécanique	Pm=g.H.Q.d	avec	H: hauteur de chute en m
d'une chute	_		Q : débit en m ³ /s
			$g=9.81 \text{ m}^2/\text{s}$
			d : densité de l'eau = 10^3 kg/m^3
			Pm: puissance en W
Débit	$Q = \frac{V}{t}$		V : volume du bief en m ³ ,
	\mathcal{L} t		t : temps en s

Annexe 2 : répartition du débit sur les groupes

Le but de cette fonction est d'affecter aux **groupes** un débit de consigne tel que la somme de ces débits **soit égale au débit de consigne totale** et que la **puissance** de l'usine soit optimale en terme de rendement. Pour le débit à répartir, le **PA** détermine la combinaison de groupes la mieux adaptée.

Tableau des combinaisons

Le PA dispose d'un tableau de combinaisons de groupes organisé en pages.

Il y a autant de pages que de pas de 10 m³ dans le débit maximal du PA.

Chaque page est divisée en lignes représentant chacune une combinaison **techniquement possible** de groupes notés **G1** à **Gn** auxquels correspondent par ligne :

- les quotas de débits de consigne de chaque groupe notés de **D1** à **Dn**,
- la puissance de la combinaison **P**.

Les consignes de débits seront dans cette étude des multiples de 10 m³/s.

Tableau des pages du PA de Kembs:

Le tableau ci-après donne un extrait de la répartition pour les **6** turbines (2 Kaplan et 4 Hélice) du **PA** de Kembs

IRSI	F C												
DEBIT		LIGNI	FC	1			0	245	245	245	245	0	112.1
0 DEDII	0	DIGNI 0	0	1 0	0	0.0	245	245	245	0	0	245	112.1
	U	U	U	U	U	0.0	0	245	245	245	0	245	112.1
DEBIT	220	LIGNI	re.	15			245	245	0	0	245	245	112.1
160	160	0	0	0	0	31.9	245	0	245	0	245	245	112.1
160	0	160	0	0	0	31.9	0	245	0	245	245	245	112.1
0	160	160	0	0	0	31.9	0	0	245	245	245	245	112.1
160	0	0	160	0	0	31.9	0	245	245	0	245	245	112.0
0	160	0	160	0	0	31.9	85	240	240	175	240	0	111.6
0	0	160	160	0	0	31.9	85	240	240	175	0	240	111.6
320	0	0	0	0	0	31.2	85	240	0	175	240	240	111.6
0	320	0	0	0	0	31.2	85	0	240	175	240	240	111.6
0	0	320	0	0	0	31.2	70	230	230	0	225	225	111.5
0	0	0	320	0	0	31.2	0	230	230	70	225	225	111.5
110	105	105	0	0	0	30.0	70	215	215	70	205	205	107.0
110	105	0	105	0	0	30.0	DEBIT	990	LIGN	ES	7		
110	0	105	105	0	0	30.0	85	240	240	185	240	0	112.8
0	110	105	105	0	0	30.0	85	240	240	185	0	240	112.8
80	80	80	80	0	0	27.5	85	240	0	185	240	240	112.8
							85	0	240	185	240	240	112.8
DEBIT	1 890	LIGNI	ES	21			70	230	230	0	230	230	112.7
190	240	240	220	0	0	101.8	0	230	230	70	230	230	112.7
190	240	0	220	240	0	101.8	70	215	215	70	215	205	109.2
190	0	240	220	240	0	101.8	DEBIT		LIGN	ES	7		
190	240	0	220	0	240	101.8	90	240	240	190	240	0	114.0
190	0	240	220	0	240	101.8	90	240	240	190	0	240	114.0
190	0	0	220	240	240	101.8	90	240	0	190	240	240	114.0
170	240	240	0	240	0	101.8	90	0	240	190	240	240	114.0
0	240	240	170	240	0	101.8	70	235	235	0	230	230	113.9
170	240	240	0	0	240	101.8	0	235	235	70	230	230	113.9
0	240	240	170	0	240	101.8	70	215	215	70	215	215	111.4
170	240	0	0	240	240	101.8							
170	0	240	0	240	240	101.8	DEBIT		LIGN	ES	7		
0	240	0	170	240	240	101.8	240	240	240	240	240	0	137.5
0	0	240	170	240	240	101.8	240	240	240	240	0	240	137.5
0	225	225	0	220	220	101.4	240	240	0	240	240	240	137.5
85	240	240	85	240	0	101.0	240	0	240	240	240	240	137.5
85	240	240	85	0	240	101.0	240	240	240	0	240	240	137.5
85	240	0	85	240	240	101.0	0	240	240	240	240	240	137.5
85	0	240	85	240	240	101.0	120	240	240	120	240	240	136.8
70	205	205	0	205	205	95.1	DEBIT	1210	LIGN	ES	7		
0	205	205	70	205	205	95.1	245		240	245	240	0	138.7
							245	240	240	245	0	240	138.7
DEBIT	970	LIGNI	ES	22			245	240	0	245	240	240	138.7
245	240	240	245	0	0	111.2	245	0	240	245	240	240	138.7
245	240	0	245	240	0	111.2	245	245	240	0	240	240	138.7
245	0	240	245	240	0	111.2	0	245	240	245	240	240	138.7
245	240	0	245	0	240	111.2	70	235	235	200	235	235	137.9
245	0	240	245	0	240	111.2	DEBIT	1220	LIGN	ES	7		
245	0	0	245	240	240	111.2	245	245	245	245	240	0	139.7
245	245	240	0	240	0	111.1	245	245	245	245	0	240	139.7
0	245	240	245	240	0	111.1	245	245	0	245	245	240	139.7
245	245	240	0	0	240	111.1	245	0	245	245	245	240	139.7
0	245	240	245	0	240	111.1	245	245	245	0	245	240	139.6
245	245	0	0	240	240	111.1	0	245	240	245	245	240	139.6
245	0	245	0	240	240	111.1	85	240	240	175	240	240	139.1
0	245	0	245	240	240	111.1	DEBIT	1230	LIGN	ES	1		
0	0	245	245	240	240	111.1	70	240	240	205	240	235	140.3
0	245	245	0	240	240	111.0	DEBIT	1240	LIGN	ES	1		
70	240	235	190	235	0	110.4	85	240	240	205	240	230	141.5
70	240	235	190	0	235	110.4	DEBIT	1250	LIGN	ES	1		
70	240	0	190	235	235	110.4	85	240	240	205	240	240	142.7
70	0	240	190	235	235	110.4	DEBIT		LIGN		1		
70	225	225	0	225	225	110.3	90	240	240	210	240	240	143.8
0	225	225	70 70	225	225	110.3	DEBIT		LIGN		1	-	- • •
70 DED IC	215	205	70	205	205	104.8	120	240	240	190	240	240	145.0
DEBIT		LIGNI		22		110 0	DEBIT		LIGN		1	210	_ 13.0
245	245	245	245	0	0	112.2	110	240	240	210	1 240	240	146.2
245	245	0	245	245	0	112.2	DEBIT		LIGN			2- T U	7 4 O • 7
245	0	245	245	245	0	112.2	DEBI1 140	240	LIGN 240	ES	1 240	240	147.4
245	245	0	245	0	245	112.2	140	∠ 4∪	∠4 U	TA0	∠4 U	∠4 U	14/.4
245	0	245	245	0	245	112.2							
245 245	0 245	0 245	245	245 245	245	112.2							
4 5	443	4 5	0	4 43	0	112.1							

L'algorithme et les combinaisons :

Il consiste à passer d'une combinaison à une autre dans le cas de 2 événements :

- usur N pas de cinq minutes successifs, les pertes calculées excèdent un seuil : ce cas **ne sera pas** traité dans le sujet.
- une nouvelle consigne du **PHV**.

Dans ce dernier cas, la combinaison retenue pourra être :

- un passage à la **combinaison maximale** : c'est la combinaison qui donne le plus de puissance pour le débit à répartir. Cette transition peut provoquer plusieurs arrêts ou démarrages de groupes. Elle a lieu si le **PA** a reçu une commande de début ou de fin de phase d'éclusée.
- un maintien de la **combinaison courante** : dans le cas d'un changement de page, seul le débit **unitaire** des groupes change, ce sont les **mêmes** groupes qui sont utilisés.
- un passage à la une combinaison adjacente : cette transition correspond à l'arrêt ou au démarrage d'un seul groupe en considérant la combinaison courante. Ce cas correspond à un changement de page (suite à un changement de débit ou à la mise en mode arrêt ou manuel d'un groupe) dans laquelle la combinaison courante n'existe pas.

Exemple : dans la page 97 (qui correspond à un débit de 970 m³/s), les 2 dernières combinaisons sont adjacentes car elles ne diffèrent que sur le groupe G1, qui est arrêté dans l'avant dernière combinaison et démarré dans la dernière.

Combinaisons équivalentes :

Lorsque, dans une page de débit, le **PA** trouve plusieurs combinaisons équivalentes du point de vue des critères de décision pour le changement de combinaison, il choisit celle fournissant le plus de puissance et étant la plus prioritaire, dans la mesure de leur disponibilité.

Mode « manuel »:

Par défaut, les groupes sont en mode **automatique**, c'est à dire qu'ils sont disponibles pour le turbinage. L'opérateur du **PA** peut à tout moment mettre un groupe en mode **arrêt** ou en mode **manuel** : on lui affecte une valeur de consigne ; ce choix est **prioritaire** sur l'algorithme ci-dessus. Au niveau de l'algorithme :

- Dans le cas **d'arrêt** d'un groupe :
 - □ on exclut le groupe
- Dans le cas de la mise en mode **manuel** d'un groupe :
 - on défalque cette valeur du débit total à répartir,
 - on exclut le groupe,
 - on recherche une combinaison **adjacente**.

Annexe 3 : Horloge radiosynchronisée avec interface RS-232, pour ordinateurs

Fiche technique

Horloge radio-synchronisée avec sortie RS-232 (options: RS-485, RS-422, TTY current-loop). Délivre l'heure exacte pour ordinateurs.

Time signals receiver:

RS-DATACLOCK est livré avec un récepteur de signaux horaires (antenne) séparé de haute performance. Le récepteur d'ondes longues (HBG, DCF, MSF ou France Inter) est connecté à RS-DATACLOCK par un câble standard à 2 fils

avec transmission du signal par boucle de courant 20 mA, sauf le GPS qui est connecté par un câble à 3 fils.

Les récepteurs suivants sont disponibles: **HBG**, 75 kHz, Prangins, Suisse; **DCF**, 77.5 kHz, Mainflingen, Allemagne;

MSF, 60 kHz, Rugby, Grande Bretagne; **France Inter**, 162 kHz, Allouis, France; **GPS** Récepteur satellite receiver.

Description technique

RS-DATACLOCK décode le signal horaire venant du récepteur et envoie un message horaire précis à l'ordinateur, en format RS-232 ou RS-485. Plusieurs formats différents sont disponibles. Les messages horaires sont envoyés automatiquement ou sur demande.

Les différents modes de fonctionnement de RS-DATACLOCK sont sélectionnés par 8 commutateurs DIL montés sur le circuits. La position "OFF" sur le commutateur Dil correspond à une logique "0".

Mode de fonctionnement:

Le mode de fonctionnement est sélectionné par les commutateurs 4 et 5:

- 4 5 Mode de fonctionnement
- 0 0 Un message horaire chaque seconde (répétitif)
- 0 1 Un message horaire chaque minute (répétitif)
- 1 0 Un message horaire chaque heure (répétitif)
- 1 Message horaire sur demande (RS-232 seulement. En option pour RS-485, RS-422 ou TTY)

Si l'un des modes répétitifs (ci-dessus) est sélectionné, le
format du message (seulement de I à P) est sélectionné par
commutateurs 6, 7 et 8:

Mode sur demande (request):

Le format du message (A à P) dépend du caractère utilisé pour la requête.

ATTENTION: Pour **RS-485**, **RS-422** ou **TTY**, le **mode sur demande** est seulement disponible en **option**.

U	/	O	rormat (voir table)
0	0	0	I
0	0	1	J
0	1	0	K
0	1	1	L
1	0	0	M
1	0	1	N
1	1	0	O
1	1	1	P

Format (voir table)

IRSES

Car. request	B.Format	K	HH: MM: SS e.g.: 08: 09: 42
A	SET TIME=DD-MMM-YYYY:HH:MM:SS MMM en anglais e.g.: SET TIME=11-MAR-1993:14:57:42	L	YY MM DD HH MM SS J J : Lundi=1 e.g.: 93 03 11 08 09 42 4
D	SET TIME=DD-MMM-YYYY MMM en anglais e.g.: SET TIME=11-MAR-1993	M	JJJ DD MMM YYYY JJJ en français e.g.: JEU 11 MAR 1993
H	SET TIME=HH:MM:SS e.g.: SET TIME=08:09:42	N	<stx>D:18.11.90;T:5;U:10.48.08; <etx> (SINEC)</etx></stx>
Ι	HHMMSS e.g.: 080942	O	<stx>HH:MM DD.mm.YY0<etx><bcc> (Siemens)</bcc></etx></stx>
J	YYMMDDHHMMSSJ e.g.: 9303110809424	P	à utiliser seulement avec terminal CRT

Notices:

- Pour tout autre caractère request, la réponse est un point d'interrogation (?).
- Tous les formats sauf N sont terminés par un CR et un LF.
- Un caractère request lance un seul message horaire.
- Un caractère request suivi d'un zéro (e.g. A0) lance une suite de messages horaires chaque seconde. Ce mode n'est pas réellement répétitif, puisqu'il cessera en cas de coupure de courant.
- Tous les messages horaires commencent au début d'une seconde, et l'heure indiquée correspond à cette seconde.
- Si le caractère request intervient à plus de 300 ms avant la seconde, le message horaire est délivré au début de la seconde suivante. Si le request intervient à moins de 300 ms avant la seconde, le message est délivré une seconde plus tard.
- En cas de disparition momentanée du signal radio, RS-DATACLOCK continue de fonctionner sur le quartz.
- Au moment de la mise en service, l'heure compte à partir de 00:00:00, jour 00-00-00, jusqu'à ce que le code horaire radio soit lu.

Format de transmission:

Le caractère ASCII est transmis avec un start-bit, 7 data-bits, 1 bit	1	2	3	
supplémentaire and 1 stop-bit. Il n'y a pas de contrôle de parité. Exceptions:	0	0	0	75
Format N: start-bit, 8 bits, 2 stop-bits, pas de parité. Format O: 1 start-bit, 7 data-bits, 1 parity-bit (pair), 1 stop-bit.	0	0	1	150
	0	1	0	300
	0	1	1	600
<u>Vitesse Baud:</u> La vitesse de transmission est définie par les commutateurs 1, 2 et 3:	1	0	0	1200
	1	0	1	2400
	1	1	0	4800
	1	1	1	9600

Annexe 4 : Diagramme de classe du PA

ESI-Annexes

Annexe 5 : Classes C++

Classe ifstream #include <iostream> #include <fstream> using namespace std; int main() { int x,y,z; ifstream entree; entrée.open ("Points.txt"); while (!entree.eof()) { entree >> x >> y >> z; if (!entree.eof())

cout << "x = " << x << " y = " << y << " z = " << z << **endl**;

```
Fichier Points.txt

8000 1000 100
7000 2000 100
6000 3000 100
......

10000 3000 100
9000 2000 100
8000 1000 100
```

Classe string

}

entree.close();

Output

The strings sl is equal to test.

Classe template vector

```
#include <vector>
#include <iostream>
using namespace std;

int main() {
    vector <int> v1;
    v1.push_back(1);
    if ( v1.size() != 0 )
        cout << "Last element: " << v1.back() << endl;
    v1.push_back(2);
    if ( v1.size() != 0 )
        cout << "New last element: " << v1.back() << endl;
}</pre>
```

Output

```
Last element: 1
New last element: 2
```

ANNEXE 6: TRAME ETHERNET

LECTURE DU MOT %MW25 : QUESTION PC→API

```
Packet #5, Direction: Out, Time:11:27:45,065
Ethernet II
        Destination MAC: 00:80:F4:01:69:76
        Source MAC: 00:40:D0:4D:C2:89
        Ethertype: 0x0800 (2048) - IP
IΡ
        IP version: 0x04 (4)
        Header length: 0x05 (5) - 20 bytes
        Type of service: 0x00 (0)
                Precedence: 000 - Routine
                Delay: 0 - Normal delay
                Throughput: 0 - Normal throughput
                Reliability: 0 - Normal reliability
        Total length: 0x002F (47)
        ID: 0x00F6 (246)
        Flags
                Don't fragment bit: 1 - Don't fragment
                More fragments bit: 0 - Last fragment
        Fragment offset: 0x0000 (0)
        Time to live: 0x80 (128)
        Protocol: 0x06 (6) - TCP
        Checksum: 0x9C17 (39959) - correct
        Source IP: 192.168.1.129
        Destination IP: 192.168.1.1
        IP Options: None
TCP
        Source port: 1062
        Destination port: 502
        Sequence: 0x3E544F4D (1045712717)
        Acknowledgement: 0x7EBC69D5 (2126277077)
        Header length: 0x05 (5) - 20 bytes
        Flags: PSH ACK
                URG: 0
                ACK: 1
                PSH: 1
                RST: 0
                SYN: 0
                FIN: 0
        Window: 0xFFE8 (65512)
        Checksum: 0xCCD1 (52433) - correct
        Urgent Pointer: 0x0000 (0)
        TCP Options: None
        Data length: 0xC (12)
Raw Data:
0x0000 00 80 F4 01 69 76 00 40-D0 4D C2 89 08 00 45 00
0x0010 00 2F 00 F6 40 00 80 06-9C 17 C0 A8 01 81 C0 A8
0x0020 01 01 04 26 01 F6 3E 54-4F 4D 7E BC 69 D5 50 18
0x0030 FF E8 CC D1 00 00 00 00-00 00 00 06 00 03 00 19
```

```
LECTURE DU MOT %MW25 : REPONSE API→PC
```

```
Packet #11, Direction: In, Time:11:27:45,095
Ethernet II
        Destination MAC: 00:40:D0:4D:C2:89
        Source MAC: 00:80:F4:01:69:76
        Ethertype: 0x0800 (2048) - IP
ΙP
        IP version: 0x04 (4)
        Header length: 0x05 (5) - 20 bytes
        Type of service: 0x00 (0)
                Precedence: 000 - Routine
                Delay: 0 - Normal delay
                Throughput: 0 - Normal throughput
                Reliability: 0 - Normal reliability
        Total length: 0x0033 (51)
        ID: 0x0040 (64)
        Flags
                Don't fragment bit: 0 - May fragment
                More fragments bit: 0 - Last fragment
        Fragment offset: 0x0000 (0)
        Time to live: 0x40 (64)
        Protocol: 0x06 (6) - TCP
        Checksum: 0x1CCA (7370) - correct
        Source IP: 192.168.1.1
        Destination IP: 192.168.1.129
        IP Options: None
TCP
        Source port: 502
        Destination port: 1062
        Sequence: 0x7EBC69D5 (2126277077)
        Acknowledgement: 0x3E544F58 (1045712728)
        Header length: 0x05(5) - 20 bytes
        Flags: PSH ACK
                URG: 0
                ACK: 1
                PSH: 1
                RST: 0
                SYN: 0
                FIN: 0
        Window: 0x1000 (4096)
        Checksum: 0xC9A2 (51618) - correct
        Urgent Pointer: 0x0000 (0)
        TCP Options: None
        Data length: 0xB (11)
Raw Data:
0x0000 00 40 D0 4D C2 89 00 80-F4 01 69 76 08 00 45 00
0x0010 00 33 00 40 00 00 40 06-1C C0 A8 01 01 C0 A8
0x0020 01 81 01 F6 04 26 7E BC-69 D5 3E 54 4F 58 50 18
0x0030 10 00 C9 A2 00 00 00 00-00 00 00 05 00 03 01 00
0x0040 FA
```

0x0040 00 01

Ethernet TCP/IP - Protocole Modbus TCP Analyse de trame : Requête (Query) Couche Application : Données = Protocole Modbus Préfixe: Identificateur de transaction: 0x0000 Identificateur de protocole : 0x0000 = Modbus Longueur: 0x0006 00 00 54 10 ED 00 06 29 15 3A 83 08 00 45 00 34 76 01 80 06 10 AF 8B AO 00 40 AE 6D 8B AO 00 AE 65 04 18 01 F6 24 OB FD 17 5E 6C E9 50 18 00 00||00 21 21 84 OB 00 00 00 00 00||03 00 00 00 01 **Unit Identifier:** 0x00

Pour la réponse le champ indiquant« numéro du premier mot à lire »(sur deux octets) devient « nombre d'octets lus »(sur un octet) et celui « nombre de mot à lire »(sur deux octets) devient « valeur du mot lu »(sur deux octets).

Annexe 7

MOTOROLA COMPUTER GROUP

Board Level Products

MVME147 SINGLE-BOARD COMPUTER

Advantages

The MVME147 series offers one of the world's finest VMEbus single-board computers. The on-board resources and peripheral controllers climinate the need for additional modules in the VMEbus backplane thus reducing costs and freeing up valuable bus slots for additional functions. The MVME147 series features an MC68030 enhanced 32-bit microprocessor. The MC68030 was the first general purpose microprocessor with on-chip cache memory for both instructions and data which increases the processor's efficiency by 20 to 40 percent. The MC68030 features a complete memory management unit (MMU) which provides the software protection and virtual memory functions critical to many applications.

Program and Data Address Spaces

The memory map of devices that respond in user data, user program, supervisor data, and super prog spaces is shown in the following tables. The entire map from \$00000000 to \$FFFFFFFF is shown in the next table. The I/O devices are further defined in Table 3-4.

Table 3-3. MC68030 Main Memory Map

Address Range	Devices Accessed	Port Size	Size	H/W Cache Inhibit	Notes
00000000- DRAMsize	Onboard DRAM	D32	4-32MB	No	1,2
DRAMsize- EFFFFFFF	VMEbus A32/A24	D32	3GB	Yes	3,4
F0000000- F0FFFFFF	VMEbus A24	D16	16MB	Yes	
F1000000- FF7FFFFF	VMEbus A32	D16	232MB	Yes	
FF800000- FF9FFFFF	ROM/EEPRO M bank 1	D16	2MB	Yes	
FFA00000- FFBFFFFF	ROM/EEPRO M bank 2	D16	2MB	Yes	
FFC00000- FFFDFFFF	Reserved	N/A	4MB	Yes	3
FFFE0000- FFFE4FFF	Local I/O devices	D8/D16/D32	20KB	Yes	
FFFE5000- FFFEFFFF	Reserved	N/A	44KB	Yes	
FFFF0000- FFFFFFFF	VMEbus short I/O	D16	64KB	Yes	
Notes:		•	<u> </u>	'	-

Quad IndustryPack® Carrier for 6U VMEbus Systems

Product Description

The VIPC610 VMEbus IP carrier is part of the IndustryPack® family of modular I/O components. As a carrier board, the VIPC610 provides mechanical support and the electrical interfaces to four single high IndustryPacks, or two double high IPs.

Input/output, memory, and interrupt functions are supported. Battery backup is provided on board.

The VIPC610 conforms to the IndustryPack Logic Interface Specification. This guarantees compatibility with the wide range of IndustryPacks currently available and planned.

IRSES

Each of the IndustryPacks interfaces with a 50-pin flat cable header accessible through the front panel of the VIPC610. The four IP positions are generally called slots, and are identified by the letters A, B, C, and D. The interfaces to the A and C packs mate with a straight receptacle connector; the interfaces to the B and D packs mate with a right angle connector. This arrangement provides for inherent strain relief. The interface connectors are mounted directly on the VME board (not on the IPs), providing a modular and reliable cabling system. Interface cable may be inserted or removed without removing the VIPC610 from the VME chassis. IPs may be snapped in or out without interfering with the I/O cabling.

IndustryPack I/O is mapped into the VMEbus A16/D16 space. Both user and supervisor accesses are supported, as are read-modify-write ("test and set") operations. The size of I/O on each IP is fixed by the IP Specification at 64 16-bit words. In addition each IP has an identification PROM which occupies 64 words. Thus the four IPs occupy 1024 bytes out of the VMEbus' 64 Kbyte "short I/O" space. The VIPC610 occupies a total of 2048 bytes in the short I/O space.

I/O Addressing

I/O addressing on the VIPC610 is determined by two elements. The first is the base address of the board. Second is the offset of the specific IP. The setting of the base address is explained below, followed by a map showing the offsets for the four IPs. Each IP has 64 16-bit words in its I/O space. Each IP also has an ID PROM that occupies another 64 words.

The VIPC610 occupies 1024 bytes in the VMEbus "short I/O," or A16/D16 space. This consists of 64 16-bit words for each IP's I/O and ID space. The board's base address is set with six shunts, or "jumpers." The location of this E3-E7 configuration block is shown in Figure 19 near the end of this manual.

An installed shunt selects a given address line as zero. A removed shunt selects the address line as a one. Thus a base address of \$0000 (in A16) is created when all six shunts are installed. A base address of \$FC00 (in A16) is created when all six shunts are removed. (For many host CPU boards the A16 space is accessed by beginning a 24-bit address with \$FF, or a 32-bit address with \$FFF. See your CPU's User Manual for more information on address space mapping.) The relationship of shunt locations to address lines is shown in the chart below in Figure 1. E7 and E3 may be located on the board from Figure 19 near the end of this manual. Pin one of all configuration blocks is identified with a square pin, observable on the solder side of VIPC610.

The I/O base address shunts are also used to select the memory base address for the VIPC610, if memory is enabled. As an example, if the I/O base address is \$6000 (in A16 space), then the memory base address is \$600000 (in the A24 space). See the section following, Memory Addressing, for more information.

Shunt Location	Corresponding Address Line	
E7-7 to E3-7	A15	
E7-6 to E3-6	A14	
E7-5 to E3-5	A13	
E7-4 to E3-4	A12	
E7-3 to E3-3	A11	
E7-2 to E3-2	A10	

Figure 1 I/O Base Address Shunt Assignment

Figure 2 Default jumper setting for I/O Address of \$6000.

The four IP slots are addressed on the VIPC610 as shown below in Figure 3.

Address Offset	Assignment
I/O Base + \$0000	IP A, I/O Space
I/O Base + \$0080	IP A, ID Space
I/O Base + \$0100	IP B, I/O Space
I/O Base + \$0180	IP B, ID Space
I/O Base + \$0200	IP C, I/O Space
I/O Base + \$0280	IP C, ID Space
I/O Base + \$0300	IP D, I/O Space
I/O Base + \$0380	IP D, ID Space

Figure 3: IP I/O Address Offset Assignment

Each IndustryPack has a fixed size I/O space of 64 16-bit words, which is 128 bytes (\$80 bytes in hexadecimal). Many IPs use only the low order, or odd byte. In this case bytes are accessed at location offsets of \$1, \$3, etc. This odd byte I/O convention is a 68000 family processor and VMEbus standard. Most IPs do not use all 64 words of their allotted I/O space.

If multiple VIPC610 are used in a system they are commonly addressed in increments of \$800 hex. Thus the first VIPC610 might have the factory default I/O address of \$6000, the second starts at \$6800, the third at \$7000, etc.

Annexe 9

User Manual

IP-Serial

Dual Channel RS-232 / RS-422/RS-485 Multi-mode Serial Interface IndustryPack®

Product Description

IP-Serial is part of the Industryrack® family of modular 1/0 components. It provides two channels of high performance multi-mode serial communication. RS-232-D, RS-422, and RS-485 are fully supported. (For RS-485 support, order the -485 option.)

Features include programmable baud rates to 2 Mbit/sec; asynchronous or synchronous protocols including NRZ, NRZI, FM, Tl, SDLC/HDLC.

IP-Serial supports full modem control lines, including RTS, CTS, DTR, DCD, Clock Out and Clocking.

The communications controller used is the industry standard 85C30. This controller chip includes enhanced functionality for synchronous protocols, such as loop mode, frame control, CRC-16 and CCITI generators and a 10 x 19 SDLC/HDLC Frame Status FIFO.

A block diagram of the IP-Serial is shown in Figure 1 below.

VMEbus Addressing

IP-Serial is programmed entirely through the on board Z85C30 Serial Communications Controller (SCC). Users will find both programming and applications easier if they have reference to the Z85C30 Data Sheet. This data sheet is available from Zilog Corporation or GreenSpring Computers as part of the IP-Serial Engineering Kit.

IP-Serial is a straight-forward implementation of the 85C30 SCC. The two channels, called A and B, are substantially independent. Each channel has II read registers and 16 write registers. Registers are selected primarily by the least four bits written to write register O. This register selection process is referred to as "internal addressing."

There are four "external" addresses that are used to talk to the SCC. These select channels A or B, and data or control. These addresses are shown in Figure 2, below. Sec the next section for Nubus addressing.

All programmed communication with the SCC occurs in the IndustryPack I/O space.

Address	Function
base + 1	Channel B, Control
base + 3	Channel B, Data
base + 5	Channel A, Control
base + 7	Channel A, Data

Figure 2: VMEbus Address Map

3.2 BAUD RATE GENERATOR

The Baud Rate Generator (BRG) is essential for asynchronous communications. Each channel in the SCC contains a programmable baud rate generator. Each generator consists of two 8-bit, time-constant registers forming a16-bit time constant, a 16-bit down counter, and a flip-flop on the output so that it outputs a square wave. On start-up, the flip-flop on the output is set High, so that it starts in a known state, the value in the time-constant register is loaded into the counter, and the counter begins counting down. When a count of zero is reached, the output of the baud rate generator toggles, the value in the time-constant register is loaded into the counter, and the process starts over. The programmed time constant is read from RR12 and RR13. A block diagram of the baud rate generator is shown in Figure 3-1.

Figure 3-1. Baud Rate Generator

The formulas relating the baud rate to the time-constant and vice versa are shown below.

IRSES

5.1 INTRODUCTION

This section describes the functions of the various bits in the registers of the SCC (Tables 5-1 and 5-2). Reserved bits are not used in this implementation of the device and may or may not be physically present in the device. For the register addresses, also refer to Tables 2-1, 2-2 and 2-5 in Chapter 2. Reserved bits that are physically present are readable and writable but reserved bits that are not present will always be read as zero. To ensure compatibility with future versions of the device, reserved bits should always be written with zeros. Reserved commands are not used for the same reason.

Table 5-1. SCC Write Registers

Reg	Description
WR0	Reg. pointers, various initialization commands
WR1	Transmit and Receive interrupt enables,
	WAIT/DMA commands
WR2	Interrupt Vector
WR3 ²	Receive parameters and control modes
WR4 ²	Transmit and Receive modes and parameters
WR5 ²	Transmit parameters and control modes
WR6	Sync Character or SDLC address
WR7	Sync Character or SDLC flag
WR7' ¹	Extended Feature and FIFO Control
	(WR7 Prime)
WR8	Transmit buffer
WR9	Master Interrupt control and reset commands
WR10 ²	Miscellaneous transmit and receive control bits
WR11	Clock mode controls for receive and transmit
WR12	Lower byte of baud rate generator
WR13	Upper byte of baud rate generator
WR14	Miscellaneous control bits
WR15	External status interrupt enable control

Notes for Tables 5-1 and 5-2:

- 1. ESCC and 85C30 only.
- On the ESCC and 85C30, these registers are readable as RR9, RR4, RR5, and RR11, respectively, when WR7' D6=1. Refer to the description of WR7 Prime for enabling the extended read capability.
- 3. This feature is not available on NMOS.

Table 5-2. SCC Read Registers

Reg	Description
RR0	Transmit and Receive buffer status and external status
RR1	Special Receive Condition status
RR2	Modified interrupt vector (Channel B only),
	Unmodified interrupt vector (Channel A only)
RR3	Interrupt pending bits (Channel A only)
RR4 ²	Transmit and Receive modes and parameters (WR4)
RR5 ²	Transmit parameters and control modes (WR5)
RR6 ³	SDLC FIFO byte counter lower byte (only when
	enabled)
RR7 ³	SDLC FIFO byte count and status (only when enabled)
RR8	Receive buffer
RR9 ²	Receive parameters and control modes (WR3)
RR10	Miscellaneous status bits
RR11 ²	Miscellaneous transmit and receive control bits (WR10)
RR12	Lower byte of baud rate generator time constant
RR13	Upper byte of baud rate generator time constant
RR14 ²	Extended Feature and FIFO Control (WR7 Prime)
RR15	External Status interrupt information

5.2.5 Write Register 4 (Transmit/Receive Miscellaneous Parameters and Modes)

WR4 contains the control bits for both the receiver and the transmitter. These bits should be set in the transmit and receiver initialization routine before issuing the contents of WR1, WR3, WR6, and WR7. Bit positions for WR4 are shown in Figure 5-6. On the ESCC and 85C30, with the Extended Read option enabled, this register is read as RR4.

Figure 5-6. Write Register 4

5.2.6 Write Register 5 (Transmit Parameters and Controls)

WR5 contains control bits that affect the operation of the transmitter. D2 affects both the transmitter and the receiver. Bit positions for WR5 are shown in Figure 5-7. On the 85X30 with the Extended Read option enabled, this register is read as RR5.

Figure 5-7. Write Register 5

5.2.15 Write Register 12 (Lower Byte of Baud Rate Generator Time Constant)

WR12 contains the lower byte of the time constant for the baud rate generator. The time constant can be changed at any time, but the new value does not take effect until the next time the time constant is loaded into the down counter. No attempt is made to synchronize the loading of the time constant into WR12 and WR13 with the clock driving the down counter. For this reason, it is advisable to disable the baud rate generator while the new time constant

is loaded into WR12 and WR13. Ordinarily, this is done anyway to prevent a load of the down counter between the writing of the upper and lower bytes of the time constant. The formula for determining the appropriate time constant for a given baud is shown below, with the desired rate in bits per second and the BR clock period in seconds. This formula is derived because the counter decrements from N down to zero-plus-one-cycle for reloading the time constant.

This is then fed to a toggle flip-flop to make the output a square wave. Bit positions for WR12 are shown in Figure 5-15.

$$\frac{\text{Time}}{\text{Constant}} = \frac{\text{Clock Frequency}}{2 \text{ x (Desired Rate) x (BR Clock Period)}} - 2$$

Figure 5-15. Write Register 12

5.2.16 Write Register 13 (Upper Byte of Baud Rate Generator Time Constant)

WR13 contains the upper byte of the time constant for the baud rate generator. Bit positions for WR13 are shown in Figure 5-16.

Figure 5-16. Write Register 13