

Barak Gonen
Based on "Computer Networks"
Rosenboim, Gonen, Hod

Topics

- Ethernet protocol
- MAC addresses
- ARP

Ethernet

Ethernet packet adds two fields before the actual Ethernet frame

- Preamble 56 bits (7 bytes) of alternating 1's and 0's (10101010...10)
 - Used to synchronize receiving clocks
- SFD Start Frame Delimiter 10101011
 - Makes the last bit 1 instead of 0 to indicate the start of the frame
- FCS Frame Check Sequence

Ethernet Addresses

- MAC (Media Access Control) address
- 6 bytes == 48 bits
 - 01:23:45:67:89:AB
 - 01-23-45-67-89-AB
- 3 MS bytes Vendor ID
 - 01:23:45
- ▶ 3 LS bytes Host ID
 - 67:89:AB

6 bytes	6 bytes	2 bytes	46 – 1500 bytes	4 bytes
Destination Address	Source Address	EtherType	Data / Payload	FCS

MAC Addresses Types

- Unicast only one receiver
- Multicast several receivers
 - First byte LS bit == 1
- Broadcast everyone
 - All bits are 1s

6 bytes	6 bytes	2 bytes	46 – 1500 bytes	4 bytes
Destination Address	Source Address	EtherType	Data / Payload	FCS

Ether Types

- Layer 3 protocol Identifier
- How payload should be processed
- Internet Protocol version 4 (IPv4)
 - 0x0800
- Address Resolution Protocol (ARP)
 - 0x0806
- ▶ IPv6
 - 0x86DD
- etc

6 bytes	6 bytes	2 bytes	46 – 1500 bytes	4 bytes
Destination Address	Source Address	EtherType	Data / Payload	FCS

Data Payload

- The Protocol Data Unit (PDU) of the upper layer
- Minimum 46 bytes
 - What if layer 3 PDU is 1 to 45 byte?
 - Padding of 0 is added
- Maximum 1500 bytes
 - What if layer 3 PDU contains more data?
 - Upper layer responsibility to split it to smaller chunks

6 bytes	6 bytes	2 bytes	46 – 1500 bytes	4 bytes
Destination Address	Source Address	EtherType	Data / Payload	FCS

Data Payload

Minimum size

 For collisions - packet should be long enough so the sender will detect collision while still sending and send jam signal

Maximum Size

- Longer the maximum size > Longer the delay for others on a shared medium
- Increased probability that one or more bits will be received in error
- Bigger frames require the device to have more buffer memory
- Checksum calculations are simpler on smaller amount of bytes

6 bytes	6 bytes	2 bytes	46 – 1500 bytes	4 bytes
Destination Address	Source Address	EtherType	Data / Payload	FCS

ARP

- Address Resolution Protocol
- Goal: match IP to MAC
- Find ARP in Wireshark
- Review own ARP table
 - ∘ arp –a
 - ∘ arp –d IP

ARP Practice

- Create ARP packet
 - P = Ether(...)
 - Use sendp or srp1 (instead of send or sr1)
- Exercise: Map your local network
 - List all IP's and MAC's

ARP Poisoning

Routing under normal operation

Routing subject to ARP cache poisoning

