Predict Online News Popularity

The News Squad

iii Jingwen Yu, Zhentao Hou, Xiao Chu

Outline

- 1. Ask Why we care?
- 2. Acquire Introduce the dataset
- 3. Process EDA and feature engineering
- 4. Model Choose the model based on the evaluation metric
- 5. Deliver Takeaway

Ask - Why we care about news popularity

News is an important channel for us to learn what is happening in the world.

A piece of popular news could lead to a successful advertising or public relation activity, contributing great business value to companies.

Acquire - Introduce the Dataset

- 1. Number of Features: 58
- 2. Target Column: Number of Shares
- 3. Number of Instances: 39644
- 4. Source: UCI Machine Learning Repository

Process - EDA and Feature Engineering

Target Exploration - Raw Dataset

Target Range from 1 to 843300

Model - Evaluation Metric and Model Selection

Regression Model

- Predict Number of Shares Median Absolute Error (MedAE)
- 1. Create Pipelines
 - scaler StandardScaler()
 - regressor Lasso, Ridge, and Random Forest Regressor
- 2. Fit models
- 3. Evaluation

Model	R ²	Mean Absolute Error	Median Absolute Error	
LassoCV	0.011630	3189.03	1678.44	
RidgeCV	0.011259	3203.89	1681.21	
Random Forest Regressor	-0.052303	3529.62	1597.50	

Summary

- 3 regression algorithms, MedAE as the North Star metric
- Large MedAE (> 1600)
- · Classification might make more sense

Classification Model

• Binary Classification: Predict Popular or Unpopular D F1 Score

Redo the EDA Again 😂

Weekend or Weekday?

Build Pipelines

- scaler StandardScaler()
- · classifier -

LogisticRegressionCV

KNeighborsClassifier

GaussianNB

RandomForestClassifier

Fit Models & Model Evaluation

- F1-score = $\frac{2*precision*recall}{precision+recall}$
- F1-score is used when False Negatives and False Positives are crucial
- F1-score is a better metric when there are imbalanced classes

	model	accuracy	precision	recall	f1 score
0	LogisticRegressionCV	0.653424	0.656876	0.627071	0.653168
1	KNeighborsClassifier	0.599823	0.608570	0.535814	0.598168
2	GaussianNB	0.528062	0.642970	0.103747	0.426353
3	RandomForestClassifier	0.660865	0.664009	0.636758	0.660653

△ Deliver - Takeaway

- Using F1-score as the North Star Metric, Random Forest Classifier is the best model.
- Recommendations for reporters and business entities:
 - (1) Keywords are important.
 - (2) Publication time matters.
 - (3) Reference articles with high popularity would help.