MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 22nd February 2018 D1 - Lecture 22

Linear Least Squares and Projections

Suppose system Ax = b is inconsistent, i.e. $b \notin C(A)$. The error E = ||Ax - b|| is the distance from b to $Ax \in C(A)$.

We want the <u>least square solution</u> \hat{x} of Ax = b, which minimizes E, i.e., we want to find \hat{b} closest to b such that $A\hat{x} = \hat{b}$ is a consistent system. Therefore, $\hat{b} = \operatorname{proj}_{C(A)}(b)$ and $A\hat{x} = \hat{b}$.

The error vector
$$e = b - A\hat{x}$$
 must be perpendicular to $C(A)$.
So $e \in C(A)^{\perp}$ = left null space of A , $N(A^{T})$,
i.e.,
$$A^{T}(b - A\hat{x}) = 0 \text{ or } A^{T}A\hat{x} = A^{T}b$$

Therefore, to find \hat{x} , we need to solve $A^T A \hat{x} = A^T b$.

Linear Least Squares and Projections

Let A be $m \times n$. Then $A^T A$ is a symmetric $n \times n$ matrix.

$$\bullet \ \ \, N(A^TA) = N(A) \, .$$

Proof.
$$Ax = 0 \Rightarrow A^T Ax = 0$$
. So, $N(A) \subset N(A^T A)$. For the converse, take $x \in N(A^T A)$. $A^T Ax = 0 \Rightarrow x^T (A^T Ax) = (Ax)^T (Ax) = ||Ax||^2 = 0 \Rightarrow Ax = 0 \Rightarrow x \in N(A)$.

- Since $N(A) = N(A^T A)$, by rank-nullity theorem, rank $(A) = n \dim(N(A)) = \operatorname{rank}(A^T A)$.
- A has linearly independent columns \Leftrightarrow rank(A) = n \Leftrightarrow rank $(A^TA) = n \Leftrightarrow A^TA$ is invertible.
- If rank(A) = n, then the least square solution of Ax = b is given by $A^T A \hat{x} = A^T b \Rightarrow \hat{x} = (A^T A)^{-1} A^T b$ and

the orthogonal projection of b on C(A) is $\hat{b} = A\hat{x} = Pb$, where

 $P = A(A^TA)^{-1}A^T$ is the projection matrix. **Q** Is $P^2 = P$?

Linear Least Squares: Example

Example: Find the least square solution to the system

$$\begin{pmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{pmatrix} x = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} \quad (Ax = b)$$

We need to solve $A^T A \hat{x} = A^T b$. Now $A^T b = \begin{pmatrix} -4 \\ 11 \end{pmatrix}$ and

$$A^{T}A = \begin{pmatrix} -1 & 2 & -1 \\ 2 & -3 & 3 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 6 & -11 \\ -11 & 22 \end{pmatrix}.$$

$$[A^{T}A \mid A^{T}b] = \begin{pmatrix} 6 & -11 & | & -4 \\ -11 & 22 & | & 11 \end{pmatrix} \rightarrow \begin{pmatrix} 6 & -11 & | & -4 \\ 0 & 11/6 & | & 11/3 \end{pmatrix}$$

Therefore $\hat{x_2} = 2$, and $\hat{x_1} = 3$.

Ex: Find the projection matrix P, and check that $Pb = A\hat{x}$.

Exercise: Line of Best Fit

Q: We want to find the best line y = C + Dx which fits the given data and gives least square error.

Data: (x, y) = (-2, 4), (-1, 3), (0, 1), and (2, 0).

The system
$$\begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \\ 0 \end{pmatrix} \quad (Ax = b)$$

is inconsistent.

Find the least square solution by solving $A^T A \hat{x} = A^T b$.

Q: Find the best quadratic curve $y = C + Dx + Ex^2$ which fits the above data and gives least square error.

Hint. The first row of the matrix A in this case will be $\begin{bmatrix} 1 & -2 & 4 \end{bmatrix}$.

5/16

Extra Reading: Inner Product spaces : Definition

We can define inner product spaces in more generality. An **inner product** on a vector space V is which gives a real number $\langle u, v \rangle$ for every pair $u, v \in V$ such that it satisfies the following axioms for all u, v, w in V and c in \mathbb{R} . (or \mathbb{C}).

- $\langle u, v \rangle = \langle u, v \rangle$
- $\langle u, u \rangle \ge 0$ and $\langle u, u \rangle = 0 \iff u = 0$.

This helps us define length of a vector in such spaces Define **length(norm)** of v as $||v|| = \sqrt{\langle v, v \rangle}$.

Extra Reading: Inner Product spaces: Properties

Let *V* be a vector space with an inner product.

Then it satisfies the Cauchy-Schwartz inequality, that is, for all $u, v \in V$,

$$|\langle u, v \rangle| \leq ||u|| ||v||,$$

and the Pythagores theorem, that is, for $u, v \in V$,

$$\langle u, v \rangle = 0 \iff \|u - v\|^2 = \|u\|^2 + \|v\|^2.$$

We define two vectors $u, v \in V$ to be **orthogonal** to each other if $\langle u, v \rangle = 0$.

Why do we want to talk about these generalities?

Extra Reading: Inner Product spaces: Example

Consider the space $C[0,2\pi]$ of all continuous functions on $[0,2\pi]$. We already saw that $C[0,2\pi]$ is a vector space. We now define an inner product on this space as follows; $f,g\in C[0,2\pi]$

$$\langle f,g\rangle=\int_0^{2\pi}f(t)g(t)\ dt.$$

This satisfies all the axioms of an inner product.

Some of the well understood functions are the cosine and sine functions on $[0,2\pi]$ and it is often useful to write periodic functions in terms of sines and cosines.

This idea is a simple application of taking orthogonal projections in the vector space $C[0,2\pi]$ onto the subspace

 $T = \text{Span}\{\cos nx, \sin mx \mid m, n \in \mathbb{Z}, m, n \geq 0\}.$

In order to do take orthogonal projections we need an orthogonal basis of \mathcal{T} .

8/16

Extra Reading: Fourier Series Expansion

The set $S = \{\cos nx, \sin mx \mid m, n \ge 0, m, n \in \mathbb{Z}\}$ is orthogonal Why?

For example,
$$\langle \cos x, \sin x \rangle = \int_0^{2\pi} \cos t \sin t \ dt = \frac{1}{2} \int_0^{2\pi} \sin 2t \ dt = 0$$
.

$$\langle \cos x, \cos x \rangle = \int_0^{2\pi} \cos^2 t \ dt = \frac{1}{2} \int_0^{2\pi} (1 - \cos 2t) \ dt = 2\pi.$$

Then S is an orthogonal basis of T. Let $f \in C[0, 2\pi]$. Then

$$\operatorname{proj}_T f(x) = a_0 + a_1 \cos x + b_1 \sin x + \ldots + a_k \cos kx + b_k \sin kx + \ldots,$$

where
$$a_0 = \frac{\langle 1, f \rangle}{2\pi}$$
, $a_k = \frac{\langle \cos kx, f \rangle}{2\pi}$, $b_k = \frac{\langle \sin kx, f \rangle}{2\pi}$.

This is exactly the **Fourier series expansion of** f.

Diagonalizing Symmetric matrices: Example

Ex: Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
. Then $A - \lambda I = \begin{bmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{bmatrix}$ and $\det(A - \lambda I) = \begin{bmatrix} (1 - \lambda)(1 - \lambda)($

N(A) is the plane x + y + z = 0. Hence, the associated eigenvectors are $v_1 = (1, 1, 1)^T$, $v_2 = (-1, 0, 1)^T$ and $v_3 = (0, -1, 1)^T$.

Example: $A = Q \Lambda Q^T$

A has eigenvalues $\lambda_1 = 3$, $\lambda_2 = 0$, $\lambda_3 = 0$ with associated eigenvectors $v_1 = (1, 1, 1)^T$, $v_2 = (-1, 0, 1)^T$ and $v_3 = (0, -1, 1)^T$. Note that v_2 and v_3 are linearly independent in N(A). Observe $v_1^T v_2 = 0 = v_1^T v_3$.

How do we get an orthogonal Q such that $A = Q \wedge Q^T$, where Λ is diagonal with entries 3, 0, 0 on the diagonal?

Steps: 1. Let $u_1 = v_1/\|v_1\|$.

2. Start with the basis $\{v_2, v_3\}$ of N(A), and apply the Gram-Schimdt process to get an orthonormal basis $\{u_2, u_3\}$ for N(A),

Note that u_2 and u_3 are eigenvectors of A associated to $\lambda = 0$, and are linearly independent since they are non-zero orthogonal vectors.

- 3. Then $Q = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$ is orthogonal, and $Q^{-1}AQ = \Lambda$.
- 4. Since $Q^{-1} = Q^T$, $A = Q \wedge Q^T$.

Real Symmetric Matrices: Properties

• Let A be a symmetric matrix. Then all its eigenvalues are real. Let $\lambda \in \mathbb{C}$ and $v \in \mathbb{C}^n$ be eigenvalue and eigenvector of A. Then $Av = \lambda v \Rightarrow (\bar{A}\bar{v})^T = \bar{\lambda}\bar{v}^T$.

Now
$$\bar{\mathbf{v}}^T A \mathbf{v} = \lambda \bar{\mathbf{v}}^T \mathbf{v}$$

Alternately, $A = A^T$ and $\bar{A}^T = A^T$ implies

$$\bar{\mathbf{v}}^T \mathbf{A} \mathbf{v} = \bar{\mathbf{v}}^T \bar{\mathbf{A}}^T \mathbf{v} = \bar{\lambda} \bar{\mathbf{v}}^T \mathbf{v}.$$

Since $\bar{v}^T v > 0$ for a v non-zero, we have,

$$\lambda = \bar{\lambda} \Rightarrow \lambda$$
 is real.

Real Symmetric Matrices: Properties

- λ has an associated eigenvector with real entries. If $x \notin \mathbb{R}^n$, write x = u + iv, where $u, v \in \mathbb{R}^n$. Then $\lambda \in \mathbb{R} \Rightarrow u$ and v are also eigenvectors associated to λ .
- Let A be a symmetric $n \times n$ matrix with real entries, λ_1 and λ_2 are distinct eigenvalues of A, with associated eigenvectors v_1 and $v_2 \in \mathbb{R}^n$. Then v_1 and v_2 are orthogonal.

Want to prove:
$$v_1^T v_2 = 0$$
. Now $\lambda_1 (v_1^T v_2) = (\lambda_1 v_1)^T v_2 = (Av_1)^T v_2 = (v_1^T A^T) v_2 = v_1^T (Av_2) = v_1^T (\lambda_2 v_2) = \lambda_2 (v_1^T v_2)$. Since $\lambda_1 \neq \lambda_2, v_1^T v_2 = 0$.

Real Symmetric Matrices

• If A is a real symmetric matrix with n distinct eigenvalues, then there is an orthogonal matrix Q and a diagonal matrix Λ such that $A = Q\Lambda Q^T$.

If A has n distinct eigenvalues, then A is diagonalizable, i.e., there is an invertible P and a diagonal Λ such that $P^{-1}AP = \Lambda$.

The matrix P has eigenvectors of A as its columns. Choose $v_1, \ldots, v_n \in \mathbb{R}^n$, respective eigenvectors associated to the n distinct eigenvalues.

Let $Q = \left[\frac{v_1}{\|v_1\|} \cdots \frac{v_n}{\|v_n\|}\right]$. Then Q is orthogonal, i.e., $Q^{-1} = Q^T$ and $Q^{-1}AQ = \Lambda \Rightarrow A = Q\Lambda Q^T$.

14 / 16

Spectral Theorem for a Real Symmetric Matrix

Theorem Every real symmetric matrix A can be diagonalised. In particular, there is an orthogonal matrix Q and a diagonal matrix Λ such that $A = Q\Lambda Q^T$.

Given that A can be diagonalised, then $A = Q \wedge Q^T$ follows from the previous slide (+ Gram-Schmidt process applied to each eigenspace of A).

Extra Reading - Application: SVD

Singular Value Decomposition: Given an $m \times n$ matrix A, there exists an $m \times n$ "diagonal" matrix Σ , orthogonal matrices U ($m \times m$) and V ($n \times n$), such that $A = U \Sigma V^T$.

Note: If U, V and Σ are as above, they satisfy:

$$AA^T = (U\Sigma V^T)(V\Sigma^T U^T) = U\Sigma^2 U^T$$
, and $A^T A = V\Sigma^2 V^T$. Thus:

- 1. The non-zero diagonal entries in Σ , called the singular values of A, are the square roots of the common eigenvalues of AA^T and A^TA , .
- 2. Columns of U are eigenvectors of AA^T , and those of V are eigenvectors of A^TA .
- 3. If the first r columns of Σ are non-zero, then $\{U_{*1},\ldots,U_{*r}\}$ and $\{V_{*1},\ldots,V_{*r}\}$ are orthonormal bases for the column space of A, C(A) and the row space of A, $C(A^T)$, respectively.

Furthermore, $AV = U\Sigma \Rightarrow AV_{*j} = \sigma_j U_{*j}$ for each $j \leq r$.

Importance: Used in image compression, e.g.,

If an image is represented by A, find U, Σ , V as in SVD. Replace "small" singular values in Σ by 0 to $\widetilde{\Sigma}$. Then $\widetilde{A} = U\widetilde{\Sigma}V^T$ represents the compressed image.