Warm-up question:

• the linear program for the general problem written as an objective and set of constraints

objective:

min M

set of constraints:

for i in range (1, n):

$$ax(i) + b - y(i) > = -M$$

$$ax(i) + b - y(i) <= M$$

• The best solution for the problem

Variable	Value	
M	0.5714286	
a	1.714286	
b	1.85714	

• The output from the solver I used (Lingo)

Nonlinear nonzeros:

Global optimal solution found. Objective value: Infeasibilities: Total solver iterations: Elapsed runtime seconds:		0.5714286 0.000000 5 0.13
Model Class:		LP
Total variables: Nonlinear variables: Integer variables:	3 0 0	
Total constraints: Nonlinear constraints:	15 0	
Total nonzeros:	43	

Plots

Warming-up question:

• A description for a linear program for finding the best fit curve for temperature data

objective:

min M

set of constraints:

similar to the previous one, only the function changes to T(d)

• The best solution for the problem

M = 14.23554x0 = 8.0214197

x1 = 0.00010694836

x2 = 4.2808907

x3 = 8.1868578

Plots

• Based on the value x1 how many degrees Celcius per century is Corvallis changing and is it a warming or cooling trend?

About 4 degrees.