NYC Property Sale Price Prediction

Congyun Jin(cj2164)
Fan Zhang(fz2068)
Siyu Shen(ss14359)
Yi Wen (yw5280)
Zhuoyuan Xu (zx1137)

Data Understanding/Preprocessing

- The original data comes from the NYC Department of Finance
- It contains 167719 pieces of sales information of properties sold in New York City from January 2018 to December 2019
- After certain data cleaning processes, (drop missing values; duplicates; outliers) the cleaned data contains 81030 rows and 19 columns.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 167719 entries, 0 to 167718
Data columns (total 21 columns):

Data	columns (cocal 21 columns).				
#	Column	Non-Null Count	Dtype		
0	BOROUGH	167719 non-null	int64		
1	NEIGHBORHOOD	167719 non-null	object		
2	BUILDING CLASS CATEGORY	167719 non-null	object		
3	TAX CLASS AS OF FINAL ROLL 18/19	167439 non-null	object		
4	BLOCK	167719 non-null	int64		
5	LOT	167719 non-null	int64		
6	EASE-MENT	0 non-null	float64		
7	BUILDING CLASS AS OF FINAL ROLL 18/19	167439 non-null	object		
8	ADDRESS	167719 non-null	object		
9	APARTMENT NUMBER	36979 non-null	object		
10	ZIP CODE	167710 non-null	float64		
11	RESIDENTIAL UNITS	155411 non-null	float64		
12	COMMERCIAL UNITS	155411 non-null	float64		
13	TOTAL UNITS	155411 non-null	float64		
14	LAND SQUARE FEET	155410 non-null	float64		
15	GROSS SQUARE FEET	155411 non-null	float64		
16	YEAR BUILT	162787 non-null	float64		
17	TAX CLASS AT TIME OF SALE	167719 non-null	int64		
18	BUILDING CLASS AT TIME OF SALE	167719 non-null	object		
19	SALE PRICE	167719 non-null	object		
20	SALE DATE	167719 non-null	object		
d+wpos: float64(8) in+64(4) object(9)					

dtypes: float64(8), int64(4), object(9)
memory usage: 26.9+ MB

EDA: Property Sale Price (Target variable)

- The target variable is the sale price of each property.
- The distribution of raw data is really sparse.
- We set a reasonable range: \$50000 (38% rows dropped) ~ \$12M (0.8% rows dropped)
- Perform log transformation

EDA: Correlational Analysis

Before dropping features

After dropping features

EDA: Predictive features

EDA: Commercial, Residential Units

- The pattern is opaque and there are lots of 0s, 1s in each plot. Hence we will classify them into six groups in *Feature Engineering process*

UNIT TYPE	CRITERIA	
A	Commercial Units > 10	
В	0< Commercial Units <= 10	
С	Commercial Units = 0 and Residential Units = 1	
D	Commercial Units = 0 and 1 < Residential Units < 10	
Е	E Commercial Units = 0 and Residential Units >= 10	
F	Commercial Units = 0 and Residential Units	

Feature Engineering

- Classify Residential Units and Commercial Units (mentioned before)
- One-hot coding on categorical variables
- Log transformation on numerical features (Land square feet, Gross square feet)

Model Performance

Model	MSE	R2
Linear	0.2840	0.5301
Lasso	0.4296	0.2894
Ridge	0.2840	0.5302
Robust	0.3088	0.4891
Elastic Net	0.4180	0.3086

Property Pricing Drivers: Sorted by **Importance**

Discussion

Models Assumptions Check:

- > Normality: normal distribution of the target variable
- No Multicollinearity: heatmap
- Homoscedasticity: normal residual plots
- Independence: feature engineering on dependent variables

Future improvements:

- More precise spatial scales
- Add economic conditions indicator
- More reasonable binning and weighting

THANK YOU! Q&A