

10/046,616

C of C

HESLIN ROTHENBERG FARLEY & MESITI P.C.

Robert E. Heslin
Jeff Rothenberg
Kevin P. Radigan
Susan E. Farley
Nicholas Mesiti
Philip E. Hansen*
Blanche E. Schiller
Wayne F. Reinke
David P. Miranda

* patent Agent

INTELLECTUAL PROPERTY LAW PATENTS • TRADEMARKS • COPYRIGHTS

Attorneys at Law
5 Columbia Circle
Albany, New York 12203
Telephone: (518) 452-5600
Facsimile: (518) 452-5579
www.hrfmlaw.com

August 23, 2005

Kathy Smith Dias
David A. Pasarella
Victor A. Cardona
Lee Palmateer
John Pietrangelo*
Brett M. Hutton
Stephen M. Hladik
Edward Timmer
Alana M. Fuierer
John W. Boger

Of Counsel
Martha L. Boden
Jill M. Breedlove

Joseph L. Spiegel
Poughkeepsie, NY

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Re: Correction of Mistake in Printed Patent
Under §1480 of the Manual of Patent
Examining Procedures
U.S. Patent No.: 6,919,347
Date of Patent: July 19, 2005
Inventor(s): Ohlmeyer et al.
Our File No.: 1073.035A

*Certificate
AUG 29 2005
of Correction*

Dear Sir:

Upon proofreading the sealed patent, we noticed errors made by the Patent Office.

Transmitted herewith is a proposed Certificate of Correction effecting a corrective amendment.

The patentee respectfully solicits the granting of the requested Certificate of Correction.

Respectfully submitted,

Edward Timmer, Esq.
Registration No. 46,248
Attorney for Applicants

ET/cma
Enclosure

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 6,919,347
DATED July 19, 2005
INVENTOR(S) Ohlmeyer et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Claim 13

Col. 282, line 26, delete "A is R⁴R⁵N-(O)-;" and insert --A is R⁴R⁵N-C(O)--

Claim 14

Col. 283, lines 26 thru 32 structure

Delete current structure and replace with

Claim 15

Col. 284, lines 5 thru 10 structure

Delete current structure and replace with

Claim 16

Col. 284, line 28, delete “A¹ is R⁴R⁵N—C(O)—;” and insert --A¹ is R⁴R⁵N—C(O)—--

Claim 19

Col. 286, line 21, delete “C—C₃” in the second instance and insert —C₁—C₃

Claim 26

Col. 288, lines 3 thru 10 structure

Delete current structure which has a “.” after the letter “Q”, and replace with

Claim 31

Col. 288, lines 57 thru 64

Delete current structure which has a “.” after the letter “Q”, and replace with

Claim 62

Col. 295, lines 41 thru 48

Delete current structure and replace with

MAILING ADDRESS OF SENDER:

Edward Timmer, Esq.
Heslin Rothenberg Farley & Mesiti P.C.
5 Columbia Circle
Albany, New York 12203
Telephone: (518) 452-5600
Facsimile: (518) 452-5579

PATENT NO.:

No. of add'l copies
@ .50 per page

281

⁵
R⁹ is

282

wherein J¹ and J² are independently chosen from H, F, Cl, CN, NO₂ and CH₃, and G is chosen from —CH₂—, 10 —CH₂CH₂—, —CH₂CH₂CH₂—, —OCH₂—, —CH₂O—, —CH₂CH₂O—, —OCH₂CH₂—, —O—, —N(lower alkyl)–, —N(lower alkyl)CH₂—, —CH₂N(lower alkyl)–, —S—, —SO—, —SO₂—, —CH₂S—, —SCH₂—, —CH₂SO—, —SOCH₂—, —CH₂SO₂—, and 15 —SO₂CH₂—;

R⁵ is H or C₁–C₃-alkyl, with the proviso that both R³ and R⁵ cannot be alkyl; 20

R⁶ is aryl;

R⁷ is aryl or C₁–C₃-alkylaryl;

R⁸ is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C₁–C₄-alkylaryl, C₁–C₄-alkylheterocycl and C₁–C₄-alkylheteroaryl; 25

R⁹ is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C₁–C₄-alkylcycloalkyl, (C₁–C₄-alkoxy)alkyl, (C₁–C₄-alkoxycarbonyl)alkyl, (C₁–C₄-alkylthio)alkyl, 30 heterocycl, C₁–C₄-alkylheterocycl, C₁–C₄-alkylaryl, and C₁–C₄-alkylheteroaryl;

R¹⁰ is H or C₁–C₃-alkyl; or

R⁹ and R¹⁰ taken together may form a 5- to 7-membered 35 ring structure optionally containing O, S, SO, SO₂ or NR¹², said ring optionally substituted with —OH, CN, —COOH or —COOCH₃;

R¹¹ is aryl;

R¹² is chosen from H, C₁–C₃-alkyl, alkoxy carbonyl, methoxyacetyl and aryl; 40

R¹³ is chosen from —OH, —OTHP, 1-imidazolyl, and 1-pyrrolyl;

m is zero or one; and 45

n is zero or one, with the proviso that when A is A², m and n cannot both be zero.

10. A 2-pyrimidinamine according to claim 9 wherein Q is chosen from imidazolyl, pyrrolyl, pyridinyl, fluorophenyl and 50 2-thienyl.

11. A 2-pyrimidinamine according to claim 10 wherein

A is R⁴R⁵N—C(O)—;

W is H, Cl, NHR⁹ or OR⁸;

R¹ is chosen from alkyl and C₁–C₃-alkylcycloalkyl; 55

R², R³ and R⁵ are H;

R⁴ is C₁–C₄-alkylaryl or C₁–C₄-alkylheteroaryl;

R⁸ is C₁–C₄-alkylaryl;

R⁹ is chosen from hydrogen, alkyl, fluoroalkyl, (C₁–C₄-alkoxy)alkyl, (C₁–C₄-alkylthio)alkyl, C₁–C₄-alkylcycloalkyl, C₁–C₄-alkylaryl, heterocycl, C₁–C₄-alkylheteroaryl, C₁–C₄-alkylheterocycl; and 60

m and n are zero.

12. A 2-pyrimidinamine according to claim 11 wherein W is NHR⁹ and 65

wherein

R¹⁴ is chosen from H, F, Cl, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and

R¹⁵ is chosen from H, OCH₃ and Cl.

13. A compound of formula

wherein:

A is R⁴R⁵N—(O)—;

Q is chosen from imidazolyl and pyrrolyl;

W is NHR⁹;

R¹ is chosen from cyclohexylmethyl; 2-methylpropyl and 3-methyl-1-butyl;

R², R³ and R⁵ are H;

R⁴ and R⁹ are benzyl or substituted benzyl;

m is zero; and

n is zero.

14. A compound of formula

wherein:

two of X, Y and Z are N and the other of X, Y and Z is CH;

A is A¹ or A²;

A¹ is R⁴R⁵N—C(O)—,

A² is chosen from R⁷C(O)NH—, R⁷S(O)₂NH—, R⁴NH—, and R⁴O—;

Q is chosen from heteroaryl, aryl, —CH₂R¹³, —CH=NR¹³—OCH₃ and

283

W is chosen from H, Cl, F, R⁸, C₁-C₄-alkylaryl, —OR⁸, —SR⁸, —NR⁹R¹⁰ and —NHC(O)R¹¹, with the proviso that when Q is imidazolyl, W is not H, Cl, F or R⁸;

R¹ is chosen from alkyl, cycloalkyl, alkenyl, C₁-C₃-alkylcycloalkyl, heterocyclyl, C₁-C₃-alkylheterocyclyl, aryl, C₁-C₃-alkylaryl, heteroaryl, C₁-C₃-alkylheteroaryl, (C₁-C₃-alkyloxy)alkyl, (C₁-C₃-alkyloxy)cycloalkyl, (C₁-C₃-alkylthio)alkyl, (C₁-C₃-alkylthio)cycloalkyl and (C₁-C₃-alkylsulfonyl)alkyl;

R² is H or C₁-C₃-alkyl, or R¹ and R² taken together form a 5- to 7-membered ring structure optionally containing O, S or NR¹²;

R³ is H or C₁-C₆-alkyl, or, when n is zero, R² and R³ taken together may form a 6-membered ring, which may be fused to a six-membered saturated or aromatic carbocycle;

R⁴ is

having the R configuration at the carbon indicated with an asterisk, wherein J¹ and J² are independently chosen from H, F, Cl, CN, NO₂ and CH₃, and G is chosen from —CH₂—, —CH₂CH₂—, —CH₂CH₂CH₂—, —OCH₂—, —CH₂O—, —CH₂CH₂O—, —OCH₂CH₂—, —O—, —N(lower alkyl)—, —N(lower alkyl)CH₂—, —CH₂N(lower alkyl)—, —S—, —SO—, —SO₂—, —CH₂S—, —SCH₂—, —CH₂SO—, —SOCH₂—, —CH₂SO₂—, and —SO₂CH₂—;

R⁵ is H or C₁-C₃-alkyl, with the proviso that both R³ and R⁵ cannot be alkyl;

R⁶ is aryl;

R⁷ is aryl or C₁-C₃-alkylaryl;

R⁸ is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C₁-C₄-alkylaryl, C₁-C₄-alkylheterocyclyl and C₁-C₄-alkylheteroaryl;

R⁹ is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C₁-C₄-alkylcycloalkyl, (C₁-C₄-alkyloxy)alkyl, (C₁-C₄-alkoxycarbonyl)alkyl, (C₁-C₄-alkylthio)alkyl, heterocyclyl, C₁-C₄-alkylheterocyclyl, C₁-C₄-alkylaryl, and C₁-C₄-alkylheteroaryl;

R¹⁰ is H or C₁-C₃-alkyl; or

R⁹ and R¹⁰ taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO₂ or NR¹², said ring optionally substituted with —OH, —CN, —COOH or —COOCH₃;

R¹¹ is aryl;

R¹² is chosen from H, C₁-C₃-alkyl, alkoxy carbonyl, methoxyacetyl and aryl;

R¹³ is chosen from —OH, —OTHP, 1-imidazolyl, and 1-pyrrolyl;

m is zero or one; and

284

n is zero or one, with the proviso that when A is A², m and n cannot both be zero.

15. A pyrimidine according to claim 9 wherein R⁴ is

having the R configuration at the carbon indicated with an asterisk.

16. A compound of formula

wherein:

two of X, Y and Z are N and the other of X, Y and Z is CH;

A is A¹ or A²;

A¹ is R⁴R⁵N—C(O)—;

A² is R⁷C(O)NH—, R⁷S(O)₂NH—,

R⁴NH—, and R⁴O—;

Q is chosen from aryl, —CH₂R¹³, —CH=N—OCH₃ and

A² is chosen from R⁷C(O)NH—, R⁷S(O)₂NH—,

R⁴NH—, and R⁴O—;

Q is chosen from aryl, —CH₂R¹³, —CH=N—OCH₃ and

heteroaryl other than 1-imidazolyl and 1-triazolyl;

W is chosen from H, Cl, F, R⁸, C₁-C₄-alkylaryl, —OR⁸, —SR⁸, —NR⁹R¹⁰ and —NHC(O)R¹¹, with the proviso that when Q is imidazolyl, W is not H, Cl, F or R⁸;

R¹ is chosen from alkyl, cycloalkyl, alkenyl, C₁-C₃-alkylcycloalkyl, heterocyclyl, C₁-C₃-alkylheterocyclyl, aryl, C₁-C₃-alkylaryl, heteroaryl, C₁-C₃-alkylheteroaryl, (C₁-C₃-alkyloxy)alkyl, (C₁-C₃-alkyloxy)cycloalkyl, (C₁-C₃-alkylthio)alkyl, (C₁-C₃-alkylthio)cycloalkyl and (C₁-C₃-alkylsulfonyl)alkyl;

R² is H or C₁-C₃-alkyl, or R¹ and R² taken together form a 5- to 7-membered ring structure optionally containing O, S or NR¹²;

R³ is H or C₁-C₆-alkyl, or, when n is zero, R² and R³ taken together may form a 6-membered ring, which may be fused to a six-membered saturated or aromatic carbocycle;

R⁴ is chosen from H, aryl, heteroaryl, C₁-C₄-alkyl substituted with from one to three aryl or heteroaryl

285

residues,

5

wherein J^1 and J^2 are independently chosen from H, F, Cl, CN, NO_2 and CH_3 , and G is chosen from $-\text{CH}_2-$, $-\text{CH}_2\text{CH}_2-$, $-\text{CH}_2\text{CH}_2\text{CH}_2-$, $-\text{OCH}_2-$, $\text{CH}_2\text{O}-$, $-\text{CH}_2\text{CH}_2\text{O}-$, $-\text{OCH}_2\text{CH}_2-$, $-\text{O}-$, $-\text{N}(\text{lower alkyl})-$, $-\text{N}(\text{lower alkyl})\text{CH}_2-$, $-\text{CH}_2\text{N}(\text{lower alkyl})-$, $-\text{S}-$, $-\text{SO}-$, $-\text{SO}_2-$, $-\text{CH}_2\text{S}-$, $-\text{SCH}_2-$, $-\text{CH}_2\text{SO}-$, $-\text{SOCH}_2-$, $-\text{CH}_2\text{SO}_2-$, and $-\text{SO}_2\text{CH}_2-$;

R^5 is H or C_1-C_3 -alkyl, with the proviso that both R^3 and R^5 cannot be alkyl;

R^6 is aryl;

R^7 is aryl or C_1-C_3 -alkylaryl;

R^8 is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C_1-C_4 -alkylaryl, C_1-C_4 -alkylheterocyclyl and C_1-C_4 -alkylheteroaryl;

R^9 is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C_1-C_4 -alkylcycloalkyl, (C_1-C_4 -alkoxy)alkyl, (C_1-C_4 -alkoxycarbonyl)alkyl, (C_1-C_4 -alkylthio)alkyl, heterocyclyl, C_1-C_4 -alkylheterocyclyl, C_1-C_4 -alkylaryl, and C_1-C_4 -alkylheteroaryl;

R^{10} is H or C_1-C_3 -alkyl, or

R^9 and R^{10} taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO_2 or NR^{12} , said ring optionally substituted with $-\text{OH}$, $-\text{CN}$, $-\text{COOH}$ or $-\text{COOCH}_3$;

R^{11} is aryl;

R^{12} is chosen from H, C_1-C_3 -alkyl, alkoxy carbonyl, methoxyacetyl and aryl;

R^{13} is chosen from $-\text{OH}$, $-\text{OTHP}$, 1-imidazolyl, and 1-pyrrolyl;

m is zero or one; and

n is zero or one, with the proviso that when A is A^2 , m and n cannot both be zero.

17. A 4-pyrimidinamine according to claim 16, wherein Z is CH, having the formula

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

286

19. A 4-pyrimidinamine according to claim 18 wherein:

Q is chosen from pyrrol-1-yl, imidazol-1-yl, furan-3-yl, 2-methylimidazol-1-yl and 4-methylimidazol-1-yl;

A is $R^4R^5\text{N}-\text{C}(\text{O})-$;

W is Cl, NRH^9 , $\text{N}(\text{CH}_3)\text{R}^9$, OR^8 , SR^8 , R^8 , morpholin-4-yl,

R^1 is chosen from alkyl, cycloalkyl, C_1-C_3 -alkylaryl, C_1-C_3 -alkylcycloalkyl, $C-C_3$ -alkylheterocyclyl, C_1-C_3 -alkylheteroaryl;

R^2 , R^3 and R^5 are H;

R^8 is C_1-C_4 -alkylaryl;

R^9 is chosen from hydrogen, alkyl, substituted alkyl, (C_1-C_4)-alkoxy, C_1-C_4 -alkylcycloalkyl, C_1-C_4 -alkylaryl, heterocyclyl, C_1-C_4 -alkylheterocyclyl, C_1-C_4 -alkylheteroaryl, and C_1-C_4 -alkylheterocyclyl; and

m and n are zero.

20. A 4-pyrimidinamine according to claim 19 wherein W is NHR^9 and

R^9 is chosen from hydrogen; methyl; ethyl; 2,2,2-trifluoroethyl; allyl; cyclopropyl; 2-cyanoethyl; propargyl; methoxy; methoxyethyl; cyclopropyl; cyclopropylmethyl; (methylthio)ethyl; 3-methoxypropyl; 3-pyridyl; 2-(3-pyridyl)ethyl; 2-(2-pyridyl)ethyl; 3-pyridylmethyl; 4-pyridylmethyl; 4-pyridylmethyl-N-oxide; 2-pyridazinylmethyl; sulfolan-3-yl; 3-tetrahydrofuranyl; 2-tetrahydrofuranylmethyl; 3-(1-imidazolyl)propyl; 1-t-butoxycarbonyl-4-piperidinylmethyl; 1-t-butoxycarbonyl-4-piperidinylmethyl; 2-(hydroxyimino)propyl; 2-(methoxyimino)propyl; 2-oxo-1-propyl; and

wherein

R^{14} is chosen from H, Cl, F, CN, NO_2 , SO_2NH_2 , CF_3 , COOCH_3 , OCH_3 , OH, SO_2CH_3 , $\text{N}(\text{CH}_3)_2$ and COOH ;

R^{15} is chosen from H, OCH_3 and Cl; and

p is 1 or 2.

21. A 4-pyrimidinamine according to claim 19 wherein W is

R^{12} is t-butoxycarbonyl, methoxyacetyl or phenyl.

22. A 4-pyrimidinamine according to claim 16 wherein Z is CH;

18. A 4-pyrimidinamine according to claim 17 wherein Q is chosen from methylimidazolyl, pyrrolyl, methylpyrrolyl, pyrazolyl, methylpyrazolyl, furanyl, methylfuranyl, thieryl, oxazolyl, thiazolyl, pyridinyl, quinolinyl, 1-methylpyrimidin-2-onyl, phenyl, fluorophenyl, hydroxymethyl, 2-imidazolyl, tetrahydropyranoloxymethyl, imidazolylmethyl, pyrrolylmethyl, $-\text{CH}=\text{N}-\text{OCH}_3$ and

287

A is

R^1 is chosen from n-butyl; cyclohexylmethyl; cyclopentylmethyl; 2-methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl; benzyl; 2-thienylmethyl; 1-t-butoxycarbonyl-4-piperidinyl; 4-chlorobenzyl; 2-pyranyl methyl; 4-pyranyl methyl; 4-pyranyl and 1,1-dimethylethyl;
 R^2 and R^3 are H;
Q is pyrrolyl;
W is NHR^9 ; and
 R^9 is alkyl, cycloalkyl or

wherein

R^{14} is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and
 R^{15} is chosen from H, OCH₃ and Cl.

23. A pyrimidine according to claim 16 wherein:

A is $R^4R^5N-C(O)-$;
 R^1 is chosen from isopropyl; n-butyl; cyclohexylmethyl; cyclopentylmethyl; naphthylmethyl; cyclohexylethyl; 2-methylpropyl; 3-methyl-1-butyl; cyclohexyl; 2,2-dimethylpropyl; benzyl; 2-thienylmethyl; 1-t-butoxycarbonyl-4-piperidinyl; 4-methoxybenzyl; 4-chlorobenzyl; 3,4-dichlorobenzyl; 2-pyranyl methyl; 4-pyranyl methyl; 4-pyranyl and 1,1-dimethylethyl;
 R^2 , R^3 and R^5 are H;
 R^4 is pyridinyl, pyridinylmethyl, indanyl methyl, furanyl methyl, tetrahydronaphthalenyl, substituted phenyl, or

R^{16} is chosen from H, Cl, F, CN, NO₂, SO₂NH₂, CF₃, CH₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and

 R^{17} is chosen from H, OCH₃, F and Cl.24. A pyrimidine according to claim 16 wherein R^4 is

25. A pyrimidine according to claim 24, wherein one of J¹ and J² is H and the other is H, Cl or CN and G is chosen from —CH₂—, —CH₂CH₂—, —OCH₂—, —O— and —CH₂N(lower alkyl)—.

288

26. A 2-pyrimidinamine according to claim 16, wherein Y is CH, having the formula

10 27. A 2-pyrimidinamine according to claim 26 wherein Q is chosen from pyrrolyl, pyridinyl, fluorophenyl and 2-thienyl.

28. A 2-pyrimidinamine according to claim 27 wherein

A is $R^4R^5N-C(O)-$;W is H, Cl, NHR^9 or OR⁸;R¹ is chosen from alkyl and C₁-C₃-alkylcycloalkyl;R², R³ and R⁵ are H;R⁴ is C₁-C₄-alkylaryl or C₁-C₄-alkylheteroaryl;R⁸ is C₁-C₄-alkylaryl;R⁹ is chosen from hydrogen, alkyl, fluoroalkyl, (C₁-C₄-alkoxy)alkyl, (C₁-C₄-alkylthio)alkyl, C₁-C₄-alkylcycloalkyl, C₁-C₄-alkylaryl, heterocyclyl, C₁-C₄-alkylheteroaryl, C₁-C₄-alkylheterocyclyl; and

m and n are zero.

29. A 2-pyrimidinamine according to claim 28 wherein W is NHR^9 andR⁹ is

wherein

R^{14} is chosen from H, F, Cl, CN, NO₂, SO₂NH₂, CF₃, COOCH₃, OCH₃, SO₂CH₃, N(CH₃)₂ and COOH; and

 R^{15} is chosen from H, OCH₃ and Cl.30. A 2-pyrimidineamine according to claim 26 wherein R⁴ is

50 one of J¹ and J² is H and the other is H, Cl or CN and G is chosen from —CH₂—, —CH₂CH₂—, —OCH₂—, —O— and —CH₂N(lower alkyl)—.

31. A 4-pyrimidinamine according to claim 16, wherein X is CH, having the formula

65 32. A 4-pyrimidinamine according to claim 31 wherein Q is pyrrolyl and m and n are zero.

295

60. The method of treating pain or hyperalgesia according to claim 59 wherein said cyclooxygenase inhibitor is a selective cyclooxygenase-2 inhibitor.

61. The method of treating pain or hyperalgesia according to claim 59 wherein said cyclooxygenase inhibitor is a selective cyclooxygenase-1 inhibitor.

62. A method of treating post-capillary resistance or diabetic symptoms associated with insulitis comprising administering to a subject in need of such treatment a therapeutically effective amount of a compound of formula I

wherein:

two of X, Y and Z are N and the other of X, Y and Z is CH;

A is A¹ or A²;

A¹ is R⁴R⁵N—(O)—,

A² is chosen from R⁷C(O)NH—, R⁷S(O)₂NH—, R⁴NH—, and R⁴O—;

Q is chosen from heteroaryl, aryl, —CH₂R¹³, —CH=N—OCH₃ and

W is chosen from H, Cl, F, R⁸, C₁-C₄-alkylaryl, —OR⁸, —SR⁸, —NR⁹R¹⁰ and —NHC(O)R¹¹, with the proviso that when Q is imidazolyl, W is not H, Cl, F or R⁸;

R¹ is chosen from alkyl, cycloalkyl, alkenyl, C₁-C₃-alkylcycloalkyl, heterocyclyl, C₁-C₃-alkylheterocyclyl, aryl, C₁-C₃-alkylaryl, heteroaryl, C₁-C₃-alkylheteroaryl, (C₁-C₃-alkyloxy)alkyl, (C₁-C₃-alkyloxy)cycloalkyl, (C₁-C₃-alkylthio)alkyl, (C₁-C₃-alkylthio)cycloalkyl and (C₁-C₃-alkylsulfonyl)alkyl;

R² is H or C₁-C₃-alkyl, or R¹ and R² taken together form a 5- to 7-membered ring structure optionally containing O, S or NR¹²;

R³ is H or C₁-C₆-alkyl, or, when n is zero, R² and R³ taken together may form a 6-membered ring, which may be fused to a six-membered saturated or aromatic carbocycle;

R⁴ is chosen from H, aryl, heteroaryl, C₁-C₄-alkyl substituted with one to three aryl or heteroaryl

296

residues,

wherein J¹ and J² are independently chosen from H, F, Cl, CN, NO₂ and CH₃ and G is chosen from —CH₂—, —CH₂CH₂—, —CH₂CH₂CH₂—, —OCH₂—, —CH₂O—, —CH₂CH₂O—, —OCH₂CH₂—, —O—, —N(lower alkyl)-, —N(lower alkyl)CH₂—, —CH₂N(lower alkyl)-, —S—, —SO—, —SO₂—, —CH₂S—, —SCH₂—, —CH₂SO—, —SOCH₂—, —CH₂SO₂—, and —SO₂CH₂—;

R⁵ is H or C₁-C₃-alkyl, with the proviso that both R³ and R⁵ cannot be alkyl;

R⁶ is aryl;

R⁷ is aryl or C₁-C₃-alkylaryl;

R⁸ is chosen from alkyl, aryl, heteroaryl, substituted alkyl, C₁-C₄-alkylaryl, C₁-C₄-alkylheterocycl and C₁-C₄-alkylheteroaryl;

R⁹ is chosen from H, alkyl, alkenyl, substituted alkyl, cycloalkyl, aryl, alkoxy, heteroaryl, fluoroalkyl, C₁-C₄-alkylcycloalkyl, (C₁-C₄-alkoxy)alkyl, (C₁-C₄-alkoxycarbonyl)alkyl, (C₁-C₄-alkylthio)alkyl, heterocyclyl, C₁-C₄-alkylheterocycl, C₁-C₄-alkylaryl, and C₁-C₄-alkylheteroaryl;

R¹⁰ is H or C₁-C₃-alkyl; or

R⁹ and R¹⁰ taken together may form a 5- to 7-membered ring structure optionally containing O, S, SO, SO₂ or NR¹², said ring optionally substituted with —OH, —CN, —COOH or —COOCH₃;

R¹¹ is aryl;

R¹² is chosen from H, C₁-C₃-alkyl, alkoxycarbonyl, methoxyacetyl and aryl;

R¹³ is chosen from —OH, —OTHP, 1-imidazolyl, and 1-pyrrolyl;

m is zero or one; and

n is zero or one, with the proviso that when A is A², m and n cannot both be zero.

63. The method according to claim 62 wherein said diabetic symptoms associated with insulitis comprise hyperglycemia, diuresis, proteinuria and increased nitrile and kallikrein urinary excretion.

64. A method of treating edema comprising administering to a subject in need of such treatment a therapeutically effective amount of a compound of formula I

wherein:

two of X, Y and Z are N and the other of X, Y and Z is CH;

A is A¹ or A²;