Couse Information

Course Code	ROB5002-41	Course Title	SLAM (Simultaneous Localization and Mapping)
Year/Semester	2024 / 1 st Semester	School	Department of Intelligent Robotics
Class Time/Classroom	Tue 10:30-11:45 Thu 09:00-10:15	Grading Type	Letter grade

Instructor Information

Instructor	Office	Tel.	E-mail	Office Hours
Hyeonwoo Yu 유현우	#23338		hwyu@skku.edu	

Course Objectives & Description

This course introduces classical and modern topics in Simultaneous Localization and Mapping (SLAM) to graduate level students. Since SLAM is based on the traditional probabilistic estimation theory for modeling measurement models and dynamic models of sensors and mobile robots, topics include the concepts of robot observations, measurements and dynamic models, MLE, Bmse, Sequential models, Markov chain, Bayesian Linear Filter, Nonlinear Filter, Graph optimization, Least square and Manifold, Filter-based SLAM and Graph SLAM.

Textbook & Reference

Introduction to Simultaneous Localization and Mapping I; Author, Hyeonwoo Yu, Publisher, Sungkyunkwan University Probabilistic Robotics; Author, Sebastian Thrun, Wolfram Burgard and Deiter Fox, Publisher, The MIT Press

Attendance (%)	Midterm Exam (%)	Final Exam (%)	Quizzes (%)	Individual Assignments (%)
10.0	25.0	25.0		
Reports (%)	Presentations (%)	Etc1 (%)	Etc2 (%)	Total (100%)
40.0				100.0

Weekly Schedule (can be changed)

•		
Week 1	Introduction and review of the robot perception and SLAM	
Week 2	Review of Probability and Estimation	
Week 3	Maximum Likelihood Estimation and Bayesian Mean Square Error	
Week 4	Sequential Measurement and Posterior	
Week 5	Markov Chain and Dynamic Model	
Week 6	Bayesian Linear Filter	
Week 7	Nonlinear Filter: EKF and Particle Filter	
Week 8	Midterm Exam	
Week 9	Measurement and Landmark	
Week 10	Filter-based SLAM: EKF SLAM	
Week 11	Filter-based SLAM: Fast SLAM	
Week 12	Least Squares and Manifold	
Week 13	Graph Optimization	
Week 14	Graph SLAM	
Week 15	Final Exam	

Notes and Remarks

Remarks		