الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي دورة: جوان 2012

الشعبة: رياضيات

المدة: 04 ساعات ونصف اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (04 نقاط)

- $z^2 \sqrt{2}z + 1 = 0$: z = 1 المعادلة ذات المجهول z = 1 المعادلة ذات المجهول عند الأعداد المركبة
- 2) المستوي المركب منسوب إلى المعلم المتعامد والمتجانس (v, \vec{u}, \vec{v}) B ، A و v نقط المستوي التي الحقاتها $Z_C = Z_A + Z_B$ و $Z_B = \overline{Z_A}$ ، $Z_A = \frac{1+i}{\sqrt{2}}$ على الترتيب:

أ- اكتب على الشكل الأسي الأعداد المركبة: Z_B ، Z_B و $\frac{Z_A}{Z_B}$.

O مين لاحقة كل من A' من B' ، A' صور النقط A ، B و A' على الترتيب بالدوران الذي مركزه $\frac{\pi}{6}$ وز اویته

ج- بيّن أن الرباعي 'OA'CB مربع.

 $|z-z_A|=|z-z_B|$ نسمى (Δ) مجموعة النقط M من المستوي ذات اللاحقة Z حيث: (Δ) مجموعة النقط أ- بيِّن أن (Δ) هو محور الفواصل.

(لا يطلب حساب الحلين) عددان حقيقيان. (لا يطلب حساب الحلين) عددان عني أن حلي المعادلة: i = i

التمرين الثاني: (04 نقاط)

. 2011x - 1432y = 31 ... (1) نعتبر في \mathbb{Z}^2 المعادلة ذات المجهول (x;y) التالية: (1

أ- أثبت أن العدد 2011 أولى.

. (1) عين حل المعادلة (1)، ثم حل المعادلة (x_0 ; y_0) للمعادلة المعادلة المعادلة (1)، ثم حل المعادلة (1)

2) أ- عيّن، حسب قيم العدد الطبيعي n، باقي القسمة الإقليدية للعدد 2^n على 7، ثم جد باقي القسمة الإقليدية .7 على $2011^{1432^{2012}}$ على .7

 $-2010^n + 2011^n + 1432^n \equiv 0$ [7] التي من أجلها يكون: n التي من أجلها يكون: n

عدد طبیعی یکتب $\overline{2\gamma\alpha\beta}$ فی نظام التعداد الذي أساسه 9 حیث : $\gamma \cdot \beta \cdot \alpha$ بهذا الترتیب تشکل حدودا Nمتتابعة من متتالية حسابية متزايدة تماما و $(\beta; \gamma)$ حل للمعادلة (1).

عيّن β ، α و γ ، ثم اكتب γ في النظام العشري.

التمرين الثالث: (04 نقاط)

 $.C\left(2;2;2
ight)$ و $B\left(0;4;0
ight)$ ، $A\left(3;0;0
ight)$ ، النقط $\left(O;\vec{i},\vec{j},\vec{k}
ight)$ و المعلم المتعامد والمتجانس والمت

- \overrightarrow{AC} و \overrightarrow{AB} : عمودي على كل من الشعاعين: $\overrightarrow{n}(4;3;-1)$ وأن الشعاعين: $C \cdot B \cdot A$ عمودي على كل من الشعاعين (1
 - $C \cdot B \cdot A$ الذي يشمل النقط (P) الذي يشمل النقط (2)
 - من الفضاء M(x;y;z) مجموعة النقط (P') مجموعة النقط (Bx;y;z) معادلة ديكارتية للمستوي (AM = BM : AM = BM)
- ب- بيِّن أنّ: 2x 4y 4z + 3 = 0 معادلة ديكارتية للمستوي (P'') مجموعة النقط 2x 4y 4z + 3 = 0 من الفضاء حيث: AM = CM
 - ج- بيِّن أن (P') و (P'') يتقاطعان وفق مستقيم (Δ) يطلب تعيين تمثيل وسيطى له.
 - ABC احسب إحداثيات النقطة ω مركز الدائرة المحيطة بالمثلث (4

التمرين الرابع: (08 نقاط)

- $g(x) = 2 xe^x$ كما يلى: \mathbb{R} كما الدالة المعرفة على g(I)
 - 1) ادرس تغيرات الدالة g، ثم شكل جدول تغيراتها.
- $0.0,8<\alpha<0.9$: نم تحقق أن g(x)=0 تقبل حلا وحيدا α على β ثم تحقق أن γ
 - g(x) عيِّن، حسب قيم x، إشارة (3
 - $f\left(x\right) = \frac{2x+2}{e^x+2}$ كما يلي: \mathbb{R} كما يلي الدالة المعرفة على $f\left(II\right)$
- . (2cm وحدة الطول (C_{f}) وحدة الطول (C_{f})
 - ا بيِّن أن: 0 = 0 $\int_{x \to +\infty} f(x) = 0$ ، ثم فسرّ النتيجة هندسيا.
 - $\lim_{x \to -\infty} f(x) = -1$ (2)

- y=x ادرس وضعیة (C_f) بالنسبة إلى كل من (Δ) و (Δ)، حیث (Δ) هو المستقیم ذو المعادلة (Δ
 - $f'(x) = \frac{2g(x)}{(e^x + 2)^2}$ ، $f'(x) = \frac{2g(x)}{(e^x + 2)^2}$

f الدالة $f(\alpha) = \alpha$: أن أن $f(\alpha) = \alpha$

- $\cdot \left(C_f \,
 ight)$ و $\left(\Delta'
 ight)$ ، $\left(\Delta
 ight)$ و -5
- $f\left(x\right)=f\left(m\right)$ عدد حلول المعادلة m عدد حلول المعادلة -6
- $.U_{n+1}=f\left(U_{n}
 ight):n$ هي المتتالية العددية المعرفة على \mathbb{N} كما يلي $U_{0}=0$ ومن أجل كل عدد طبيعي $\left(U_{n}
 ight)$
 - $0 \leq U_n < \alpha$ ، n بر هن بالتراجع أنه من أجل كل عدد طبيعي (1
- $.(U_n)$ باستعمال (C_f) و (C_f) مثّل على محور الفواصل الحدود: (U_n) باستعمال (Δ) ثم خمّن اتجاه تغير (Δ)
 - 3) برهن أن المتتالية (U_n) متقاربة، ثم احسب نهايتها.

الموضوع الثانى

التمرين الأول: (04 نقاط)

- . $(z^2+4)(z^2-2\sqrt{3}z+4)=0$ المعادلة ذات المجهول z التالية: z المعادلة ذات المجهول z المعادلة ذات المحبول z المعادلة z المعادلة ذات المحبول z المعادلة ألم المعادلة ألم المعادلة z
 - D و C ، B ، A النقط $(O;\vec{u},\vec{v})$ النقط و المتجامد و المتجانس $z_D=\overline{z_C}$ و $z_C=-2i$ ، $z_B=\overline{z_A}$ ، $z_A=\sqrt{3}+i$ التي لواحقها على الترتيب:
 - بيّن أن النقط A ، B ، A و C تتمي إلى دائرة (γ) يطلب تعيين مركزها ونصف قطرها، ثم أنشئ النقط C ،
 - . O النسبة إلى المبدأ E النقطة النقطة E النسبة إلى المبدأ E

$$.rac{Z_A - Z_C}{Z_E - Z_C} = e^{i(-rac{\pi}{3})}:$$
اً بيِّن أن أن

ب- بيِّن أن النقطة A هي صورة النقطة E بدوران R مركزه C يطلب تعيين زاويته.

ج- استنتج طبيعة المثلث AEC.

د- H هو التحاكي الذي مركزه O ونسبته 2.

- عيّن طبيعة التحويل $R \ o H$ وعناصره المميزة، ثم استنتج صورة الدائرة (γ) بالتحويل $R \ o H$.

التمرين الثاني: (04 نقاط)

 $.C\left(2;0;1
ight)$ و $B\left(1;-1;0
ight)$ ، $A\left(1;1;1
ight)$ ، النقط $\left(O;\vec{i},\vec{j},\vec{k}
ight)$ و المتعامد والمتجانس والمتحانس والمتجانس والمتحانس والمتجانس والمتحانس و

- ا بيّن أن النقط A ، B و C تعين مستويا (P_1) يطلب تعيين تمثيل وسيطي له.
 - له ديكارتية له. x-2y-2z+6=0 المستوي الذي: (2 معادلة ديكارتية له.

- بيّن أن (P_1) و (P_2) يتقاطعان وفق مستقيم (Δ) يطلب تعيين تمثيل وسيطي له.

- $\{(A;1),(B;1),(C;-1)\}$: هي مرجح الجملة O هي النقطة O بيّن أن النقطة النقطة O
- . $\|\overline{MA} + \overline{MB} \overline{MC}\| = 2\sqrt{3}$: قق تحقق النقط M(x;y;z) مجموعة النقط (S) محموعة (S) محموعة النقط (S) محموعة (S

 (Δ) و (S) تقاطع (S) و عنقطتي تقاطع (S) و (Δ)

 (Δ) و O بين O بين O و استنتج المسافة بين O و O

التمرين الثالث: (04 نقاط)

$$u_{n+1}=6u_n-9$$
، $u_n=6u_n-9$ ، عدد طبيعي المنتالية العددية المعرفة على $u_n=16$ كما يلى: $u_n=16$

.7 على
$$u_4$$
 ، u_3 ، u_2 ، u_1 ، u_0 على أ- احسب بواقي قسمة كل من الحدود (1

$$u_{2k+1}\equiv b$$
 [7] وقيمة للعدد a وقيمة للعدد b بحيث: a وقيمة للعدد a

$$u_{n+2} \equiv u_n$$
 [7] ، من أجل كل عدد طبيعي أ-أ (2

$$.u_{2k+1}\equiv 3\,$$
ر]: ثم استنج أنَّه من أجل كل عدد طبيعي $u_{2k}\equiv 2\,$ ر] ، $u_{2k+1}\equiv 3\,$ من أجل كل عدد طبيعي $u_{2k+1}\equiv 3\,$

$$v_n = u_n - \frac{9}{5}$$
، نضع من أجل كل عدد طبيعي (3

أ- بيّن أن المتتالية (v_n) هندسية، يطلب تعيين أساسها وحدها الأول.

 $S_n = u_0 + u_1 + \dots + u_n$: حيث $S_n = u_0 + u_1 + \dots + u_n$ علا من u_n علا من u_n علا من u_n

التمرين الرابع: (08 نقاط)

$$g(x) = 2\ln(x+1) - \frac{x}{x+1}$$
: كما يلي المجال [3] المعرفة على المجال المعرفة على المجال [4] و المعرفة على المجال المعرفة على المعرفة على المجال المعرفة على الم

- 1) ادرس تغيرات الدالة g، ثم شكّل جدول تغيراتها.
- $-0.8 < \alpha < -0.7$ يحقق: g(x) = 0 تقبل حلين أحدهما معدوم والآخر α يحقق: g(x) = 0
 - .g(x) عيِّن، حسب قيم x، إشارة (3
 - $h(x) = \left[g(x)\right]^2$ بـــ: $\left[-1; 3\right]$ المعرفة على المجال المعرفة على المجال h

g'(x) و g(x) و g(x) بدلالة كل من g(x) و g(x)

h'(x) ب عين إشارة h'(x)، ثم شكّل جدول تغيرات الدالة

.
$$\begin{cases} f(x) = \frac{x^2}{\ln(x+1)}; x \neq 0 \\ f(0) = 0 \end{cases}$$
 is a function of the function

- $\cdot \left(O~; \vec{i}~, \vec{j}~
 ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس $\left(C_{f}~
 ight)$
- . 0 بيّن أن الدالة f تقبل الاشتقاق عند الصفر ، ثم اكتب معادلة لِـــ (T) مماس (T) في النقطة ذات الفاصلة (T
- . $f'(x) = \frac{xg(x)}{\left[\ln(x+1)\right]^2}$ ، $f'(x) = \frac{1}{\left[\ln(x+1)\right]^2}$.

 $f(\alpha)$ ب - بیّن أن $f(\alpha) = 2\alpha(\alpha+1)$ ، ثم عیّن حصر ا

f الدالة f و f الدالة f و الدالة f f و الدالة f f و الدالة f

 $x - \ln(x+1) \ge 0$: فإن]-1; 3] من المجال <math>x من أَجْل كل x من أَجْل كل x من المجال (3

 $\cdot(T)$ بالنسبة إلى المماس $\cdot(C_f)$ بالنسبة الح

- .3 عيّن معادلة للمستقيم (T) الموازي للمماس (T) والذي يتقاطع مع (C_f) في النقطة ذات الفاصلة (4
 - $\cdot (C_f)$ و (T') ، (T) ارسم (5
 - f(x) = x + m : عدد حلول المعادلة: m وسيط الحقيقي m عدد علول المعادلة: (6)

صفحة 4 من 4

الإجابه النمودجيه وسلم التنفيط

امتحان شهادة البكالوريا دورة: 2012

المادة: رياضيات الشعبة: رياضيات

دمة ال		عناصر الإجابة (الموضوع الأول)	
المجموع	مجزأة	التمرين الأول: (04 نقاط)	الموضوع
04	0.25×3	$z_{2} = \frac{\sqrt{2} - i\sqrt{2}}{2} \cdot z_{1} = \frac{\sqrt{2} + i\sqrt{2}}{2} \cdot \Delta = \left(i\sqrt{2}\right)^{2} (1)$	
	0.25×3	$\frac{z_A}{z_B} = e^{i\left(\frac{\pi}{2}\right)}, z_B = e^{i\left(-\frac{\pi}{4}\right)}, z_A = e^{i\left(\frac{\pi}{4}\right)} -1 $ (2	
	0.25×4	$z_{C'}=1+i$ ' $z_{B'}=1$ ' $z_{A'}=i$ ' $z'=e^{i\left(\frac{\pi}{4}\right)}z$ ۔	
	0.75 0.25	$(3)^{1-(\Delta B)}$ هو محور (AB)	
	0.25	$(\Delta) = (x'Ox) \text{oth} z_B = \overline{z}_A$	
	0.25	$M(z) \in (\Delta)$ يستلزم $ z-z_A = z-z_B $ يستلزم $\left(\frac{z-z_1}{z-z_2}\right)^2 = i$	
		التمرين الثاني: (04 نقاط)	
		1/ أ- العدد 2011 أولي لأنه لا يقبل القسمة على 2، 3، 7، 5، 11، 13، 17، 19، 23، 29،	
	0.5	$47^{2} > 2011 23 \cdot 41 \cdot 37 \cdot 31$ $579 = 274 \times 2 + 31 \cdot 1432 = 579 \times 2 + 274 \cdot 2011 = 1432 \times 1 + 579$	
	0.5×2	$3/9 = 2/4 \times 2 + 31/1432 = 3/9 \times 2 + 2/4 \times 2011 = 1+32 \times 1 + 3/9$ $2011 \times 5 - 1432 \times 7 = 31$	
04		$k \in \mathbb{Z}$ حیث: $y = 2011k + 7$ ، $x = 1432k + 5$ ، $(x_0; y_0) = (5; 7)$ ومنه	
	0.5	$2^{3k+2} \equiv 4[7] \cdot 2^{3k+1} \equiv 2[7] \cdot 2^{3k} \equiv 1[7] - \sqrt{2}$	
	0.5	باقي قسمة $2011^{1432^{2012}}$ على 7 هو 2 لأن: $[7] = 2011$ و $[8] = 1132^{2012}$	
		$2010^{n} + 2011^{n} + 1432^{n} \equiv 1 + 2^{n} + 4^{n} [7] - 4$	
	0.75	قيم n هي: $n=3k+1$ او $n=3k+2$ حيث: $n=3k+1$	
	0.75	$N = 2057 (\alpha; \beta; \gamma) = (3; 5; 7) / 3$	-
		التمرين الثالث: (04 نقاط)	~
	0.5	عير مرتبطين خطيا $\overline{AC}(-1;2;2)$ عير مرتبطين خطيا $\overline{AC}(-1;2;2)$	
	0.5	$ \overline{n}\overline{AC} = 0 \overline{n}\overline{AB} = 0 $ $ (P):4x + 3y - z - 12 = 0 (2) $	
	0.5	(P'') : 2x - 4y - 4z + 3 = 0 (P') : 6x - 8y + 7 = 0 (3)	5 LA
04	0.5×2		
		$x = -\frac{1}{6} + 4t$	
	0.75	$x = -\frac{7}{6} + 4t$	
		$\begin{cases} z = +\frac{1}{6} - i \end{cases}$	8
	0.75	$\omega\left(\frac{37}{26};\frac{101}{52};-\frac{25}{52}\right) \text{easy} (P)\cap (P')\cap (P'')=\{\omega\} (4)$	-

العلامة		عنام الأمانة (المراجية المعلودية المعلودية الأمانة (المراجية المعلودية الأمانة المعلودية المعل	محاور
المجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	الموضوع
		التمرين الرابع: (08 نقط)	
	0.25×2	$\lim_{x \to +\infty} g(x) = -\infty \cdot \lim_{x \to -\infty} g(x) = 2 (1-I)$	
	0.25×2	$g'(x) = -(x+1)e^x$ و اشارته	
	0.25	جدول التغيرات g(0,8)×g(0,9)<0، [1+-] وتقبل حلا وحيدا في]0+(-] والتغيرات g(0,8)×g(0,9) × (0,9) × (0,9)	
	3×0.25	ع الاسلام (x) المسلام (x) المسلام (على المسلمة (على المس	
	0.25		
		g(x) + 0 -	
	0.25	$y=0$ ، $\lim_{x\to +\infty} f(x)=0$ (1 - II	
	0.25	$\lim_{x \to \infty} f(x) = -\infty (1/2)$	
	0.25	$\lim_{x \to -\infty} \left[f(x) - (x+1) \right] = 0 (\because$	
	0.25	$f(x)-(x+1)=-\frac{(x+1)e^x}{e^x+2}$ (3	
00	0.25	(Δ') أعلى (C_f) أعلى (Δ') وإذا كان (C_f) فإن (C_f) أسفل (C_f) أسفل (Δ') أسفل أ	
08		$f(x)-x=\frac{g(x)}{x^{2}+2}$	
	0.25	e +2	
	0.50	(Δ) أعلى (C_f) أعلى (Δ) وإذا كان α ; $+\infty$ فإن (C_f) أعلى (Δ) أعلى (Δ) أعلى (Δ)	
	2×0.25	$[\alpha;+\infty[$ ومنه f ومنه f متزایدة تماما علی $[\alpha;+\infty[$ ومتناقصة تماما علی $f'(x)=\frac{2g(x)}{(e^x+2)^2}$ (أ	
	0.50 0.50	ب $f(\alpha) = \alpha$ ، جدول تغیرات $f(\alpha) = \alpha$	
		5) الرسم	
		6) المناقشة: إذا كان $[-\infty, -1]$ للمعادلة حل واحد.	
	0.50	$m\in]-1;lpha[\cup]lpha;+\infty[$ إذا كان	
		إذا كان $m=\alpha$ للمعادلة حل مضاعف.	
		$U_0=0$ کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - III) کن: $0 \le U_0 < \alpha$ (1 - IIII) کن: $0 \le U_0 < \alpha$ (1 - IIII) کن: $0 \le U_0 < \alpha$ (1 - IIII) کن: $0 \le U_0 < \alpha$	
	0.50	$[0;\alpha]$ نفرض $\alpha \geq U_n < \alpha$ ومنه $\alpha \leq U_n < f(\alpha)$ نفرض $\alpha \leq U_n < \alpha$ نفرض $\alpha \leq U_n < \alpha$	
		أي: $\alpha \leq \frac{2}{3} \leq U_{n+1} < \alpha$ ومنه الخاصية محققة دوما	
	0.50	تمثیل الحدود ، التخمین (U_n) متز ایدة تماما	
		اذن (U_n) متزایدة تماما $U_n < \alpha$: لأن $U_{n+1} - U_n > 0$ ، $U_{n+1} - U_n = \frac{g(U_n)}{e^{U_n} + 2}$ (3)	
	0.50	ومحدودة من الأعلى فهي متقاربة	
	0.25	نهایتها l تحقق $f(l)=l$ ومنه $l=\alpha$	

العلامة		نابع الإجابة النموذجية الماده: رياضيات الشعبة: رياضيات	4 -
المجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	محاور الموضوع
<u>.</u> .	J	التمرين الأول: (04 نقاط)	<u></u>
	5×0.25	$z_{2} = -2i z_{1} = 2i z'' = \sqrt{3} - i z' = \sqrt{3} + i \Delta = (2i)^{2} (1)$	
		النقط A ، B ، A تتتمى إلى الدائرة (γ) التي مركزها D ، C	
	0.05		
	0.25	المبدأ 0 ونصف قطرها 2	
	0.25	إنشاء النقط	
04	0.50	$\frac{z_A - z_C}{z_E - z_C} = \frac{1}{2} - \frac{\sqrt{3}}{2}i = e^{i\left(-\frac{\pi}{3}\right)} $ († (3)	
	0.25	ب) A صورة E بالدوران R الذي مركزه C وزاويته A	
	0.25	ج) AEC مثلث متقايس الأضلاع	
	0.75	$-\frac{\pi}{3}$ د) التحویل RoH تشابه مباشر مرکزه $\omega\left(-\frac{\sqrt{3}}{3};-1\right)$ ، نسبته 2 وزاویته RoH د	
ref.	0.50	صورة (γ) هي الدائرة (γ') التي مركزها $\Omega(\sqrt{3};-1)$ ونصف قطرها 4	
		التمرين الثاني: (04 نقاط)	
	0.25	الن \overline{AC} غير مرتبطين خطيا (P_1) لان \overline{AC} الن \overline{AC} غير مرتبطين خطيا B ، A (1)	
		$x=1+\mu$ (یقبل أي تمثیل وسیطي آخر) $y=1-2\lambda-\mu$; $\mu\in\mathbb{R},\lambda\in\mathbb{R}$ (P_1)	
04	0.50	يقبل أي تمثيل وسيطي اخر) يقبل $y=1-2\lambda-\mu$; $\mu\in\mathbb{R},\lambda\in\mathbb{R}$: (P_1) $z=1-\lambda$	
		x = -2t	
	0.75		
		z = 1 - t	
	0.50	$\{(A;1),(B;1),(C;-1)\}$ هي مرجح الجملة: $\{(A;1),(B;1),(C;-1)\}$	
	0.50	ك) أ) (S) هي سطح كرة مركزها O و نصف قطرها \sqrt{S}	jto n.
	0.75	$D\left(-\frac{14}{5};2;-\frac{2}{5}\right)$ و $E\left(2;2;2\right)$ ب	1909
	0.5+0.25	ج) ODE مثلث متساوي الساقين والمسافة بين O و O هي O مثلث متساوي الساقين والمسافة بين	
		التمرين الثالث: (04 نقاط)	
		u_{4} ، u_{2} ، u_{1} ، u_{0} على u_{1} : (1) أ- بواقي قسمة كل من الحدود u_{1} ، u_{2} ، u_{1} ، u_{2} ، الحدود	
	0.5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	0.5	ب = 2 م البواقي ا ب = 2 م و = 3 م البواقي ا	
0.4	0.75	$u_{n+2} \equiv u_n[7]$ $u_{n+2} = 36u_n - 63 - 1$ (2)	
04	0.25+0.75	2[2] 1 -1 -122 2[2] 1 -1 -1 -1	
	0.5	$(v_n)^{-1}$ (3) متتالية هندسية أساسها 6 وحدها الأول $(v_n)^{-1}$	
	0.5+0.25	$S_n = \frac{71}{25}(6^{n+1} - 1) + \frac{9}{5}(n+1) u_n = \frac{71}{5}6^n + \frac{9}{5} - \cdots$	
-			

ع الإجابة النمو ذجية المادة: رياضيات الشعبة: رياضيات	رياضيات	الشعبة:	المادة: رياضيات	تابع الإجابة النموذجية
--	---------	---------	-----------------	------------------------

مة	العلا	تابع الإجابة النمودجية المادة: رياضيات السعبة: رياضيات	محاور
المجموع	مجزاة	عناصر الإجابة (الموضوع الثاني)	الموضوع
	0.75	$g'(x) = \frac{2x+1}{(x+1)^2}$ و $g(3) = -\frac{3}{4} + 2\ln 4 \lim_{x \to -1} g(x) = +\infty$ (1 - I جدول التغيرات:	
	0.25		
"Notice of the second of the s	0.5+0.25	(2) لدينا $g(0) = g(0) = 0$ و $g(\alpha) = 0$ حيث $g(\alpha) = 0$ حسب مبر هنة القيم المتوسطة) (3) إشارة $g(x)$	
10 20	0.25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
08		$h'(x) = 2g'(x) \times g(x)$ (أ (4 با إشارة ($h'(x) = 2g'(x) \times g(x)$) الشارة ($h'(x) = 2g'(x) \times g(x)$ ($h'(x) = 2g'(x) \times g(x)$	
	0.5+0.25 0.25		
		$\lim_{x \to 0} \frac{f(x)}{x} = 1 \qquad (1 - II)$	
	0.25	y = x : (T)	
	0.50	$f'(x) = \frac{xg(x)}{\ln^2(x+1)} (1)$	
	0.50	متناقصة تماما على $[\alpha;3]$ و متزايدة تماما على $[\alpha;3]$	
	2×0.25	ب) $f(\alpha) = 2\alpha(\alpha+1)$ وتعيين حصر لـ $f(\alpha) = 2\alpha(\alpha+1)$	
	3×0.25	ج) $f(3) = \frac{9}{\ln 4}$ ، جدول التغیرات	
	0.50	$(x \mapsto x - \ln(x+1))$ در اسة اتجاه تغیر $(x \mapsto x - \ln(x+1)) \ge 0$ در اسة اتجاه تغیر $(x \mapsto x - \ln(x+1)) \ge 0$	
	0.25	(T) اعلی (C_f) اعلی $f(x) - x = \frac{x(x - \ln(x+1))}{\ln(x+1)} \ge 0$ (ب	
	0.50	$ (T'): y = x + \frac{9}{\ln 4} - 3 $ (4	
	0.50	رسم (T) ، (T) و (C_f) و (T) (T) رسم (5) الما (T) و (T) الما $($	
	- 100 cm	CONTRACTOR OF THE STATE OF THE	
	0.50	لما $3 - \frac{9}{\ln 4}$ للمعادلة حل واحد	
		لما $3 - \frac{9}{1} = m$ ليس للمعادلة حلول.	
		ln 4	

140

الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات

امتحان بكالوريا التعليم الثانوي

دورة: جوان 2012

الشعب: علوم تجريبية ، رياضيات ، تقني رياضي

المدة: 03 ساعات و نصف

اختبار في مادة: التاريخ و الجغرافيا

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

مادة التاريخ:

الجزء الأول: (06 نقاط)

"... أرى بالنسبة لمؤتمر طرابلس أنه كان قد عقد من أجل دراسة وضعية قائمة و على أساس هذه الوضعية يمكن الخروج بخطة مستقبلية ولذا نجده في أول نقطة يركز على قضية السيادة الوطنية، بطبيعة الحال أنه أشار إليها بأنها قد تحققت باتفاقية إيفيان، وإن كان ينقصها ما ينقصها ... المرجع: الدكتور الجنيدي خليفة /حوار حول الثورة / ج 347. ص 347.

المصطلحات التي تحتها خط. -1

2-عرتف بالشخصيات الآتية:

* جوزيف بروز تيتو

* مصطفى بن بولعيد

*هاري ترومان - أكول حدول الأوداث التال

3- أكمل جدول الأحداث التالية :

تاریخـــه	الحددث
1949-04-04	
	سلم الشجعان
1961-09-01	

الجزء الثاني: (04 نقاط)

إن السياسة التوسعية للولايات المتحدة الأمريكية تهدف إلى الهيمنة العسكرية والإستراتيجية والاقتصادية من خلال المساعدات التي تؤدي بالضرورة إلى تغيير الخط السياسي للبلد المستفيد من المساعدة.

المطلوب:

انطلاقًا من الفقرة واعتمادا على ما درست، اكتب مقالًا تاريخيا تبين فيه:

- 1- أسباب التوتر بين المعسكرين.
- 2- دور حركة عدم الانحياز في التخفيف من حدة الصراع.

مادة الجغرافيا:

الجزء الأول: (06 نقاط)

"... يشكلُ الخط الفاصل بين الدول المصنعة والدول النامية في الوقت الراهن شرخا كبيرا من حيث التفاوت في الدخل بالنسبة للدول الغنية والدول الفقيرة ... ويرتبط مستوى الناتج الداخلي الخام بالنسبة للفرد بمؤشرات مثل الاستفادة من المياه والتربية والصحة وتكنولوجيات الإعلام والاتصال كالهاتف و الانترنيت ... "

المرجع: كتاب الجغرافيا، السنة الثالثة ثانوي. ص 112

- 1- حدّد مفهوم المصطلحات التي تحتها خط.
- 2- الجدول الآتي يمثل أكبر البورصات في العالم:

الوحدة: مليار دو لار

فرانكفورت	باريس	لندن	طوكيو	وول ستريت	البورصة
630	750	1750	2600	7500	رأسمالها

المرجع: كتاب الجغرافيا، السنة الثالثة ثانوي. ص 60

المطلوب:

أ / مثل الجدول بأعمدة بيانية، بمقياس: 1 سم — → 1000 مليار دولار 1 سم — → بورصة

ب / على خريطة العالم المرفقة وقّع البورصات الواردة في الجدول.

الجزء الثاني: (04 نقاط)

تعتبر آسيا الشرقية والجنوبية الشرقية قوة ديمغرافية وفضاء قويا للنمو الاقتصادي وقطبا اقتصاديا ضمن الثالوث العالمي.

المطلوب:

انطلاقا من الفقرة واعتمادا على ما درست، اكتب موضوعا جغر افيا تبين فيه:

- 1- دور استثمار العنصر البشري في تحقيق التطور الاقتصادي.
 - 2- مكانة المنطقة في الاقتصاد العالمي.

الموضوع الثاني

* المنظمات غير الحكومية

* أحمد سوكار نو

مادة التاريخ:

الجزء الأول: (06 نقاط)

1-حدد مفهوم المصطلحات التالية:

* الستار الحديدي * القوة الثالثة

2-عرّف بالشخصيات الآتية:

* زيغود يوسف * ميخائيل غور باتشوف

3-أكمل جدول الأحداث:

تاریخه	الحدث
1955/05/14	
	توحيد الألمانيتين
1958/09/19	

الجزء الثاني: (04 نقاط)

إن إعادة بعث الدولة الجزائرية استلهمت أسسه من مواثيق الثورة التحريرية، وخاصة ميثاق طرابلس الذي تضمن برنامجا يرسم الخطوط العريضة للجزائر المستقلة.

المطلوب:

انطلاقًا من الفقرة واعتمادا على ما درست، اكتب مقالا تاريخيا تبين فيه:

- 1- ظروف قيام الدولة الجزائرية السياسية والاجتماعية.
 - 2- الاختيارات السياسية التي أقرَّها ميثاق طرابلس.

مادة الجغرافيا:

الجزء الأول: (06 نقاط)

1-حدد مفهوم المصطلحات التالية:

* التنينات الأربعة

* تبييض الأموال

* التكتل الاقتصادي

2-الجدول الآتي يمثل نسب إنتاج الأرز لبعض الدول في العالم:

الفيتنام	بنغلاديش	اندونيسيا	الهند	الصبين	الدولة
05.68	06.96	09.40	19.51	28.70	النسبة %

المصدر: منظمة الأغذية و الزراعة (F. A.O) 2009

المطلوب:

أ- مثل نسب الجدول بأعمدة بيانية، بمقياس: 1 سم → 5 % ، 1 سم → دولة ب- علق على الجدول.

الجزء الثاني: (04 نقاط)

إن تقسيم العالم إلى شمال وجنوب هو في الأساس تقسيم اقتصادي، يرتبط ارتباطا وثيقا بالنظام الاقتصادي العالمي الذي يتكون من دول المركز الرأسمالية الصناعية والتي تحقق تقدمها على حساب استغلال وتخلف الأطراف الأخرى.

المطلوب:

انطلاقا من الفقرة واعتمادا على ما درست، اكتب مقالا جغرافيا تبين فيه:

-1 عوامل التفاوت بين الشمال والجنوب.

2- مظاهر التخلف باعتماد مؤشرات اقتصادية.

الإجابة النموذجية وسلالم التنقيط لموضوع امتحان: البكــــالوريا لمادة: التاريخ و الجغرافيا لشعبة: العلوم تجريبية ، رياضيات ، تقني رباضي

دمة	العا		NI die
مجموع	مجزأة	عناصر الإجابة	
		رول	الموضوع الالتاريخ (06 نقاط)
	0.75		1- مفاهيم المصطلحات: *- مؤتمر طرابلس: ثاني مؤتمر للثورة الجزائرية امن 27 ماي إلى 04 جوان 1962 حضره معظم قاد و حدد معالم الدولة الجزائرية المستقلة.
	0.75		*- السيادة الوطنية: هي السلطة الفعلية للدولة على الحرية في المواقف و الاختيارات .
06	0.75	1. The state of th	*- اتفاقية ايفيان: وقعت في 18 مارس 1962 بمد و الفرنسي احتوت على العديد من النقاط أهمها وقف 2- التعريف بالشخصيات:
	0.75		*- هاري ترومان (1884 – 1972): رئيس و م بضرب اليابان بالقنبلة الذرية ، صاحب المبدأ الذي ،
13 13	0.75	جري الثورة و قائد المنطقة الأولى .	*- مصطفى بن بولعيد (1917 – 1956): مناضه من مؤسسي اللجنة الثورية للوحدة و العمل ، أحد مف
	0.75	ي يوغسلافي رئيس جمهورية يوغسلافيا	*- جوزيف بروز تيتو (1892 - 1980): سياسر و من مؤسسي حركة عدم الانحياز .
			3 - جدول الأحداث:
	0.50	تاريخـــه	الحدث
	0.50	1949-04-04	تأسيس حلف شمال الأطلسي
	0.50	1958 – 10 – 23	سلم الشجعان
		1961-09-01	المؤتمر التأسيسي لحركة عدم الانحياز

العلامة		
مجموع	مجزأة	عناصر الإجابة
		الجزء الثاتى: (04 نقاط)
	0.50	المقدمة : العالم في ظل القطبية الثنائية 1945 – 1989 و دور حركة عدم الانحياز
		العرض:
		1- أسباب التوتر بين المعسكرين:
	0.50	*- الاختلاف الأيديولوجي بين الرأسمالية و الاشتراكية .
	0.25	*- تصادم مصالح المعسكرين .
	0.25	*- النظرة التوسعية للإتحاد السوفياتي و رغبته في نشر الشيوعية .
	0.25	*- خروج و م أ من العزلة السياسية و تصميمها على تطويق الشيوعية
04	0.50	2 - دور حركة عدم الانحياز في التخفيف من حدة الصراع:
	0.50	*- محاربة سياسة الأحلاف العسكرية (حلف جنوب شرق آسيا و حلف بغداد)
	0.25	*- محاربة القواعد العسكرية .
	0.50	*- انتهاج سياسة الحياد الايجابي .
	0.50	*- مساندة حركات التحرر في ألعالم الثالث .
	0.50	الخاتمة : نهاية الحرب الباردة لا يعني انتهاء دور حركة عدم الانحياز .
	0.50	
		الجغرافيا:
		الجزء الأول: (06 نقاط)
		1 – مفهوم المصطلحات:
	0.75	*- الناتج الداخلي الخام : هو الثروة المنتجة في دولة ما داخليا خلال سنة واحدة .
		*- مؤشرات: جمع مؤشر و هو رقم إحصائي يمثل ظاهرة معينة في فترة زمنية محددة
	0.75	لقياس متغيرات كمية أو نوعية اقتصادية ، اجتماعية و ثقافية (ايجابي – سلبي)
		*- الانترنيت: هي عبارة عن شبكة حاسوبية عملقة تتكون من شبكات أصغر بحيث يمكن
	0.75	لأي شخص متصل بها أن يتجول في هذه الشبكة و أن يحصل على المعلومات
06		 2− التمثيل البيائي:
	105	أ- رسم بياني:
	1.25	• الانجاز
	0.25 0.25	● المفتاح
	0.25	• العنوان
	0.23	● المقياس
		ب- التعبين على الخريطة:
	1.25	• الانجاز
	0.25	• العنوان
	0.25	● المفتاح
		المفعاح
		2
	2	

العلامة		71-NI 11-		
مجموع	مجزأة	عناصر الإجابة		
	0.50	الجزء الثاني : (04 نقاط) المقدمة: الظاهرة الآسيوية بين القوة الديموغرافية و النطور الاقتصادي . العرض:		
	0.50 0.25	سرس. 1- دور استثمار العنصر البشري في تحقيق التطور الاقتصادي : *- وفرة اليد العاملة المؤهلة . *- سوق استهلاكية واسعة .		
04	0.50 0.25	سنوى المسهوني والمنت . *- حركة الهجرة و دورها في تدفق رؤوس الأموال . *- ارتفاع ميز انية التعليم و الاهتمام بالبحث العلمي و الباحثين الأجانب .		
	0.50	2- مكانة المنطقة في الاقتصاد العالمي: * *- ثالث قطب اقتصادي .		
	0.25 0.25	*- تعدد أقطابها الصناعية .		
	0.25 0.25	 *- قوة الأسطول التجاري (يساهم ب30 % من الأسطول العالمي) . *- انفتاح المنطقة على الاستثمارات الأجنبية . 		
	0.50	 *- قوة أسواقها المالية . الخاتمة: حسن استغلال العنصر البشري مكن دول شرق و جنوب شرق آسيا من بناء قوتها الاقتصادية . 		
		الموضوع الثاني		
	#	تاريخ : الجزء الأول : (06 نقاط)		
	0.75	1- مفهوم المصطلحات:		
	0.75	 الستار الحديدي: مفهوم استعمله ونستون تشرشل رئيس وزراء بريطانيا للتعبير عن أطماع الاتحاد السوفياتي التوسعية لعزل أوروبا الشرقية عن الغربية . 		
06	0.75	*- القوة الثالثة: قوة أنشأتها فرنسا من الموالين لها (العملاء ، القياد ، بعض المنتخبين) الهدف منها تظليل الرأي العام العالمي .		
00		*- المنظمات غير الحكومية: هي منظمات خيرية تعرف بالمجتمع المدني موظفوها متطوعون تنشط في كافة الميادين كالبيئة ، حقوق الإنسان ، الإغاثة ، الرعاية الصحية ، الطفولة		
	0.75			
	0.75	عضو في اللجنة الثورية للوحدة و العمل قائد المنطقة الثانية بعد استشهاد ديدوش مراد ، منظم و منفذ هجومات الشمال القسنطيني 20 أوت 1955 .		
	0.75	*- ميخائيل غورباتشوف (1931): آخر رؤساء الاتحاد السوفياتي 1985 – 1991 صاحب فكرتي البريسترويكا و الغلاسنوست ، و قع العديد من الاتفاقيات التي أدت إلى إنهاء الحرب الباردة .		
¥		*- أحمد سوكارنو (1901 - 1970) : سياسي و زعيم اندونيسي تزعم حركة تحرير بلاده ضد الهولنديين رئيسا لاندونيسيا حتى عام 1967 من مؤسسي حركة عدم الانحياز .		

مة	العلا		المع الرجابة المودجية موضوع ماده،القاريم والمعودي السبه ح			
مجموع	مجزأة	عناصر الإجابة				
		تاریخــه	3- جدول الأحداث:			
	0.50	1955/05/14	حلف وارسو			
	0.50	1990/10/03	توحيد الألمانيتين			
		1958/09/19	تأسيس الحكومة المؤقتة للجمهورية الجزائرية			
	0.50	دة بناء دولة ذات سيادة .	الجزء الثاني: (04 نقاط) المقدمة: الجزائر بين الموروث الاستعماري و إعاد			
			العرض:			
	0.25	جتماعیه:	1 – ظروف قيام الدولة الجزائرية السياسية و الا أ – السياسية:			
	0.25	· (O.A.S	 نشاط منظمة الجيش السري الإرهابية (
	0.25 0.25	e ² a	 قيود إتفاقيات إيفيان 3/18/0962. 			
	0.23		• مؤتمر طرابلس و قراراته .			
	0.25	الت أعانت قيام الجمهورية الجزائرية	استفتاء تقرير المصير 1962/07/01. تكوين الجمعية التأسيسية سبتمبر 1962.			
			الديمقر اطية الشعبية في 1962/09/26			
	0.25		ب - الاجتماعية:			
04	0.50		• ضحايا الثورة التحريرية و مخلفاتها .			
04	0.25		 ● الثالوث الأسود (فقر ، جهل ، مرض 2 – الاختيارات السياسية التي أقرها ميثاق طرا 			
		ؤولية السياسية فيهآ على التحليل	• تشييد دولة عصرية تعتمد ممارسة المس			
	0.25 0.25		الموضوعي ، و تتحقق الفكرة الديمقرا			
	0.25		 رفض كل أشكال النزعة الذاتية و الارت اتباع سياسة خارجية متحررة و رافضة 			
	0.50		العمل على تجسيد الوحدة المغاربية و ال			
	0.50		الخاتمة: إعادة بناء الدولة الجزائرية تجسيد لمواثيق			
			الجغرافيا:			
			الجزء الأول: (06 نقاط) 1- مفهوم المصطلحات:			
	0.75	بة له هياكل عضوية تنظيمية موحدة يتمتع	*- التكتل الاقتصادي: اتحاد مجموعة دول موثق في اتفاقه			
	0.75	جمركية بين الدول الاعضاء. مه الى مشه ه عة عبر عمليات بنكية وتجارية.	بالشخصية القانونية له مجال جغرافي تلغى فيه الحواجز اله *- تبييض الأموال: تحويل الأموال غير المشروعة إلى أه			
	0.75	على أربع دول آسيوية: كوريا	*- التنينات الأربعة: مصطلح جغر افي اقتصادي يطلق			
			الجنوبية، هونغ كونغ، سنغافورة ، تايوان ، تتميز بنمو			

دورة: جوان 2012		تابع الإجابة النموذجية لموضوع مادة:التاريخ والجغرافيا الشعبة علوم تجريبية ، رياضيات ، تقني رياضي				
العلامة		عناصر الإجابة				
مجموع	مجزأة					
	01 0.25 0.25 0.25	2- التمثيل البياني: أ- الرسم البياني: - الانجاز - المقياس - المفتاح - العنوان				
06	0.50 0.50 0.50 0.50	 ب- التعليق: *- هيمنة البلدان الأسيوية على إنتاج الأرز . *- احتلال الصين الشعبية للمرتبة الأولى عالميا في إنتاجه . *- اهتمام هذه الدول بهذا المحصول كونه الغذاء الرئيسي للسكان . *- ملاءمة الظروف الطبيعية لزراعته. 				
04	0.50 0.25 0.25 0.25 0.25 0.25 0.25 0.25	الجزء الثاني: (04 نقاط) المقدمة: النظام الاقتصادي العالمي و انعكاساته . *- الاستعمار . *- الاستقرار السياسي في الشمال و انعدامه في الجنوب . *- بجحاف النظام الاقتصادي العالمي القائم . *- نجاح السياسات الاقتصادية في الشمال و فشلها في الجنوب . *- تشجيع العلم و البحث العلمي في الشمال عكس الجنوب . *- تحكم الشمال في التكنولوجيا عكس الجنوب . *- مظاهر التخلف باعتماد مؤشرات اقتصادية : *- ضعف نسبة المساهمة في الإنتاج الزراعي العالمي 35 % . *- ضعف نسبة المساهمة في الإنتاج الصناعي العالمي 30 % . *- ضعف نسبة المساهمة في الإنتاج الصناعي العالمي 10 % . *- الاعتماد على تصدير المواد الأولية . *- المساهمة في الدخل الخام العالمي بـ 20 % . *- المساهمة في الدخل الخام العالمي بـ 20 % . *- المساهمة في الدخل الخام العالمي القائم .				

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2012

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعب: جميع الشعب

المدة: ساعتان ونصف

اختبار في مادة: العلوم الإسلامية

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

الجزء الأول: [14 نقطة]

قال الله تعالى:

وَتَعَاوَنُواْ عَلَى أَلِيرِ وَالنَّقَبُوىٌ وَلَا تَعَاوَنُواْ عَلَى أَلِاثِمْ وَالْعُدُوانِ وَتَعَاوَنُواْ عَلَى أَلِاثِمْ وَالْعُدُوانِ وَاللَّهُ اللَّهُ اللْمُعَالِمُ اللَّهُ اللَّهُ الْمُعَالِمُ اللْمُعَالِمُ اللْمُعَالِمُ اللَّهُ اللْمُعَالِمُ اللْمُعَالِمُ اللْمُعَالِمُ اللَّهُ اللِّهُ اللَّهُ اللَّهُ اللَّهُ اللْمُعَالِمُ اللْمُواللَّهُ اللَّهُ الْ

سورة المائدة / 02

المطلوب

1/ ورد في الآية أساس من أسس علاقة المسلمين بغيرهم.

استخرجه، ثم اذكر بقية الأسس، مما درست.

2/ قد يتعاون بعض النّاس على الإثم والعدوان فيشكلون مجموعات إجرامية.

أ _ عرّف الجريمة.

ب _ اذكر الوسائل التي شرعها الله تعالى لمكافحة الجريمة.

3/ من حقوق الإنسان في الإسلام الحق في الأمن.

بيّن أهميته في استقرار المجتمعات وازدهارها.

4/ استخرج من الآية ثلاث فوائد.

الجزء الثاني: [06 نقاط]

بعث الله تعالى الرسل برسالات لهداية عباده، ولكن بعض أُتْباع هذه الرسالات حرّفوها.

1/ اذكر عقائد اليهود والنصارى المحرَّفة.

2/ اذكر فِرق النصارى.

الموضوع الثاني

الجزء الأول: [14 نقطة]

قال الله تعالي:

يَّا أَيُّهَا الذِينَ اَمَنُواْ أَطِيعُواْ اللَّهَ وَأَطِيعُواْ الرَّسُولَ وَاثْفِلِ الْاَمْرِ مِنكُمِّ فَإِن اللَّهُ وَالرَّسُولِ إِن كُنتُمْ فَا فَهُوْهُ إِلَى أَللَّهِ وَالرَّسُولِ إِن كُنتُمْ فَا فَهُوهُ إِلَى أَللَّهِ وَالرَّسُولِ إِن كُنتُمْ فَا وَعَنْهُ وَالْمَوْمِ اللَّهُ وَالْمُؤْمِ اللَّهُ وَالْمُؤْمِ اللَّهُ وَالْمُؤْمِ اللَّهُ وَالْمَوْمِ اللَّهُ وَالْمُؤْمِ اللَّمُ وَالْمُؤْمِ اللَّهُ وَالْمُوالِمُؤْمِ اللَّهُ وَالْمُؤْمِ اللَّهُ وَالْمُؤْمِ اللَّهُ وَالْمُؤْمِ اللَّهُ وَالْمُؤْمِ اللَّهُ وَالْمُؤْمِ اللَّهُ وَالْمُؤْمِ اللْمُؤْمِ اللَّهُ وَالْمُؤْمِ اللَّهُ وَالْمُؤْمِ اللَّهُ وَالْمُؤْمِ اللَّهُ وَالْمُؤْمِ اللَّهُ وَالْمُؤْمِ اللْمُؤْمِ الْمُؤْمِ الْمُؤْمِ الْمُؤْمِ اللْمُؤْمِ اللْمُؤْمِ الْمُؤْمِ الْمُؤْمِ الْمُؤْمِ اللْمُؤْمِ الْمُؤْمِ الْمُومِ الْمُؤْمِ الْمُؤْمِ

سورة النساء / 59

المطلوب:

1/ دلّت الآية على قيمة قرآنية، اذكرها وصنّفها.

2/ اذكر بقية القيم التي تشترك مع هذه القيمة.

3/ شرع الله تعالى الحدود وجعل تنفيذها من صلاحيات الحاكم.

أ_عرف الحد.

ب _ عرّف التّعزير.

ج ـ بين الحكمة من تشريع الحدود.

4) استخرج من الآية أربع فوائد.

الجزء الثاني: [06 نقاط]

في الشريعة الإسلامية مصادر يعتمد عليها المجتهد لاستنباط الأحكام.

1/ اذكر المصادر الثلاثة التي درست.

2/عرّف مصدرًا واحدًا منها، لغة واصطلاحًا، مبيّنا دليل حجيته.

الإجابة النموذجية وسلم التنقيط لموضوع امتحان: البكالوريا اختبار مادة: العلوم الإسلامية الشعبة: جميع الشعب

العلامة		/ + Eu = - +1\ 1 + au
مجزأة مجموع		عناصر الإجابة (الموضوع الأول)
		الجزء الأول:
0.5	0.5	1 / علاقة المسلمين بغيرهم: - ذكر الأساس: النعاون.
0.5	0.5	- ذكر بقية الأسس:
	01	- التعارف. - التعارف.
03	01	– التعايش.
	01	 الروابط الاجتماعية. (رابطة: الإنسانية، القومية، العائلة، الإقامة)
	0.1	2 / الجريمة ووسائل مكافحتها:
01	01	- تعريف الجريمة: هي فعل يُلحِق ضررا محضورا شرعا، زجر الله عنه بحد أو تعزير أو
01		قِصاص.
- 1		- الوسلَال التي شرعها الله تعالى لمكافحة الجريمة:
** *******		أ- وسائل تشريعية قانونية وتشمل:
	ent e a	- الحدود القصاص التعزير.
V 14		ب- وسيلة الإيمان والعبادة:
		- العبادات: تُهدف إلى إبعاد المؤمن عن الفحشاء والمنكر كالصلاة، والزكاة تُقلل من نِسبة
		الفقر الذي هو سبب الجرائم، والصيام الذي يكبح الشهوات التي هي سبب الجرائم.
0.5	5×0.5	- الإيمان: يربي العبد على دوام مراقبة الله: فالإيمان باليوم الآخر يدفع المؤمن إلى الامتناع
2.5		عن كل ما يُقرِبُ من النار ويبعد عن الجنة. أما الإيمان بالقدر فيدفع المؤمن إلى الرضا بقسة
		الله ويكبح نوازع الطمع والجشع الذي يكون سبب الآفات.
. 5		ملحظة: تحسب العلامة كاملة للتلميذ إذا اكتفى بذكر الوسائل دون شرح، أي:
	e e _n eû	- الحدود - القصاص - التعزير - الإيمان - العبادات.
		3 / بيان أهمية الأمن في استقرار المجتمعات وازدهارها:
1 P	01	- الأمن على الدين والنفس والعرض والمال من مقاصد الشريعة الإسلامية المعتبرة.
5 m i. j	01	 ممارسة الشعائر بكل أمان يدفع صاحبه إلى الشعور بالأمن والثقة.
04	01	 الأمن على العرض يجعل المجتمع تسوده العفة والطهارة ويحصنه من كل الآفات
. Y.	01	الني تهدّد أمن وصحّة الفرد والمجتمع.
e-by-c-	01	- الأمن على المال يشجع الاستثمار ويزدهر فيه الاقتصاد.

 3. 33	
	4 / ثلاث فوائد:
01	 دعوة القرآن الكريم الأفراد إلى التعاون، ومد يد المساعدة إلى المحتاجين.
01	- فعل الخير والبر يؤدي إلى اطمئنان القلوب.
01	- تقوى الله تعالى من صفات المؤمنين المتعاونين.
	الجزء الثاني:
	1 / ذكر عقائد اليهود والنصارى وانحرافاتهم:
	أولا: أهم عقائد النصارى وانحرافاتهم:
	- عقيدة التَّتَايث.
105	- عقيدة الخطيئة والفداء.
4×0.5	- محاسبة المسيح للنَّاس.
	- غفران الذَّنوب.
	ثانيا : أهم عقائد اليهود وانحرافاتهم:
	- عقيدتهم في الإله وانحرافهم:
	1) ميل اليهود (بنو إسرائيل) وحبهم للوثنية جعلهم يبتعدون عن عبادة الله وحده.
	2) جعلوا لهم إلها خاصاً بهم يُطلق عليه اسم "يهْوَه" ثمّ وصفوه بصفات لا تليق به، وهو ليس
	معصوماً، بل يخطئ ويثور ويقع في النَّوم، وهو يأمر بالسَّرقة، وهو قاس، متعصب، مدمرٌ
5×0.5	اشعبه، إنه إله بني إسرائيل فقط، وهو بهذا عدو للآخرين.
3.0.5	3) قالوا إنّ عُزيرا ابن الله.
	4) عبدوا العجل والحَمل والكبش وقدّسوا الحية لدهائها.
	5) أنَّهم أبناء الله وأحباؤه
	- و من معتقداتهم وانحرافاتهم أيضا:
	1) عقيدتهم المحرفة لا تتكلم عن اليوم الآخر ولا البعث والحساب
	2) ديانة اليهود خاصة بهم، فلا يُنسب إليها من اعتنقها من غيرهم، بل و لا يُعترف بمن ولد
	من أمّ غير يهودية وإن كان أبوه يهودياً.
	3) يعتقد بنو إسرائيل في (تابوت العهد) الذي صنعه أسلافهم أن (موسى) وضع فيه
	اللوحين، ووضع فيه الذّهب والفضة وبعض المواثيق، وقال لبني إسرائيل: "إنّه في هذا
	الصندوق توجد روح الإله يهوه"، ولم يكن يُسمح الأحد أن يَمسَّه.
	ملاحظة: يذكر التلميذ خمسة من عقائد اليهود وإن كانت غير مرتبة.
3×0.5	2 / فرق النصارى: _ الأرثوذكس البرونستانت الكاثوليك

العلامة		/ 151 - 1 1 1 1 1 1
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		الجزء الأول:
	01	1 / القيمة الواردة في الآية الكريمة هي: الطاعة.
	01	- تصنيفها: القيم السياسية.
04		2 / القيم السياسية الأخرى:
	01	- العدل.
	01	– الشورى.
01	01	8 /أ- تعريف الحدود: هي محظورات شرعية زجر الله عنها بعقوبة مقدرة تجب حقا لله
		تعالى.
01	01	ب- تعريف التعزير: هي عقوبة غير مقدّرة شرعا، يجتهد القاضي في تقديرها.
		أو هي التأديب على نَّنُوب لم تُشرع فيها الحدود.
		ج- الحكمة من تشريع الحدود:
		- تساهم في القضاء على الجرائم.
	4×1	- تُحافظ على مقاصد الشريعة .
		- تردع المجرمين.
n e		– تحفظ أمن المجتمع واستقراره.
		4 / أربع قوائد :
		- وجوب طاعة الله عزّ وجلّ.
	4 × 1	 وجوب طاعة الرسول صلى الله عليه وسلم.
		- وجوب طاعة أولي الأمر في غير معصية الله تعالى.
11		 في حال التنازع ترجع الأمور إلى كتاب الله وسنة نبيه صلى الله عليه وسلم.
		الجزء الثاني:
		1 / ذكر المصادر:
1.5	3×0.5	- الإجماع القياس المصالح المرسلة.
		2 / تعريف أحد المصادر:
		أولا: الإجماع:
		1 - تعریفـــه:
	0.5	أ ــ لغة: يأتي بمعنى العزم على الشّيء والتّصميم عليه، أو الاتفاق على شيء.
	01	ب _ اصطلاحا: هو اتفاق جميع المجتهدين من المسلمين، في عصر من العصور بعد وفاة
8		الرسول صلى الله عليه وسلم، على حكم من الأحكام الشّرعية العملية.

		2 - أدلة حجية الإجماع الصريح:
	(6	
01	01	اتفق جمهور المسلمين على أن الإجماع حجة، وأنّه دليل من أدلة الشّريعة الإسلامية. وقد السندلوا لحجية الإجماع بأدلة كثيرة:
	-	
		* من القرآن الكريم: وردت آيات كثيرة تُفيد كلها وجوبَ احترام اتفاق المسلمين والمنع من
		مخالفتهم، ومن هذه الآيات الكريمة قوله تعالى:
		وَمَنْ يُشَاقِقِ أَلْزَسُولَ مِنْ بَعْدِ مَا تَبَـّيَنَ لَهُ الْهُذِي وَيَشَّبِغَ غَيْرَ سَبِيلِ
=		الْلُومِنِينَ نُولِهِ عِمَا تَوَتِي وَنُصُمِلِهِ عَهَنَمٌ وَسَآءَتْ مَسِيرًا ۞ [النّساء/115]
01	01	ووجه الاستدلال بهذه الآية الكريمة: أن الله جمع بين مشاقة الرّسول صلى الله عليه وسلم
01	01	وإنباع غير سبيل المؤمنين في الوعيد، ولا شك أن سبيل المؤمنين هو ما اتفقوا عليه، فكان
		ما اتفقوا عليه واجب الإتباع لذلك.
		* من السَّنَّة المطهّرة: ثبتت عن النَّبي صلى الله عليه وسلم أحاديث تفيد بمجموعها عِصمة
01	01	هذه الأمة عن الخطأ والزّلل، واستحالة اجتماعها على غير الحق. ومن هذه الأحاديث: "لا
		تجتمع أمتي على ضلالة". [رواه ابن ماجه]، وعن عبد الله بن مسعود رضي الله عنه: "ما
		رآه المسلمون حسنا فهو عند الله حسن" [رواه أحمد]، وقوله صلى الله عليه وسلم: "فإنّ يد
		الله مع الجماعة" [رواه النّسائي]، وقوله صلى الله عليه وسلم: "من خالف الجماعة قدر شيبر
	12	فقد مات ميتة جاهلية". [رواه أحمد].
		ثانيا: القياس
		1 - تعريف القياس:
	01	أ- لْغَة: بمعنى التَّقدير والمساواة.
	01	ب- اصطلاحا: هو مساواة أمر لأمر آخر في الحكم الثّابت له لاشتراكهما في علة الحكم.
		2 - حجية القياس:
		جمهور العلماء على أنّ القياس دليل من أدلة الأحكام وهو يفيد غَلبَة الظّن، فيكون حُجّة يجب
		العمل به، واستدلوا على حجيته بما يلي:
	01	أ- من القرآن الكريم: الكثير من الآيات التي تأمرنا بالتدبر والاعتبار وإعمال العقل ومنها:
=	01	قُولُهُ اللهُ تَعَالَى: فَاغْتَكِرُواْ بَثَا تُوْلِي إِلَا بَصِبْرٌ ۞ [الحشر/02]
° 6 4		ووجه الاستدلال: أن الله تعالى أمر بالاعتبار، والقياس نوع من الاعتبار، وعليه فالقياس مأمور به.
	0.5	ب- من السنة: ثبت أنّ النبي صلى الله عليه وسلم استعمل القياس في استنباط الحكم
	101	والإجابة على تساؤلات الصحابة، ومن ذلك أن امرأة خثعمية جاءت إلى الرسول صلى الله
	01	عليه وسلم وقالت له: (إنّ أبي أدركته فريضة الحج، أفأحج عنه؟ فقال لها: "أرأيت لو كان
	01	على أبيك دين فقضيته أكان ينفعه ذلك؟" قالت: نعم، قال: "فدَينُ الله أحق بالقضاء". [رواه
		الإمام مالك]. فإنّه صلى الله عليه وسلم قاس مشروعية قضاء دَين الله الّذي هو الحج على
		مشروعية قضاء دَين العباد.

جـ _ عمل الصّحابة رضى الله عنهم، والأمثلة على ذلك كثيرة، نذكر منها:

أو لا: ما روي عن أبي بكر الصديق رضي الله عنه أنه سئل عن معنى الكلالة، فتلمس الدليل على ذلك من القرآن الكريم والسنة فلم يجد، فقال: "أقول فيها برأيي، فإن يكن صوابا فمن الله، وإن يكن خطأ فمني ومن الشيطان، الكلالة: ما عدا الوالد والولد". ومعلوم أنّ الرّأي أصل القياس، والقياس فرع منه.

ثانيا: ما روي عن عمر بن الخطاب رضي الله عنه بعد أن أرسل أبا موسى الأشعري رضي الله عنه والياً على البصرة، وكتب إليه كتابا طويلاً فيه كثير من الحكم والأسس، جاء فيه قوله: "اعرف الأشباه والأمثال وقِس الأمور برأيك"، فهو دليل ظاهر على أمره له بالقياس.

ثالثا: ما روي عن ابن عباس رضي الله عنهما من إنزاله الجد منزلة الأب في حجب الإخوة من الميراث، ورده على زيد بن ثابت رضي الله عنه الذي يشرك الجد مع الإخوة ولا يحجبهم به خلافاً للأب، وقوله رضي الله عنه: "يجعل ابن الابن ابناً ولا يجعل أبا الأب أباً"، وهو يشير بذلك إلى أن ابن الابن يحجب كلّ من يحجب بالابن، سواء بسواء في مذهب زيد رضي الله عنه.

ملاحظة: يكتفي المترشح بدليل من القرآن وآخر من السنة، أما إذا نكر دليلا من الأثر عوض السنة فتحسب له علامة الدليل من السنة.

ثالثا: المصالح المرسلة:

1 - تعريف المصالح المرسلة:

هي استنباط الحكم في واقعة لا نصّ فيها ولا إجماع، بناء على مصلحة لا دليل من الشّارع على اعتبارها ولا على الغائها.

2 - حجية المصالح المرسلة وأدلة اعتبارها:

اتفق العلماء على العمل بالمصالح واستدلوا بأدلة منها:

أولا: شرع الله الأحكام لتحقيق مصالح العباد، ودفع المضار عنهم؛ ولأن الرسول صلى الله عليه وسلم أرسل رحمة للعالمين، وإنه لم يُخيَّر بين أمرين إلاّ اختار أيسرهما ما لم يكن إثما، وبيّن بأنّ الدّين يُسر ولا عسر فيه.

ثانيا: الحوادث تتجدّد، والمصالح تتغيّر بتجدّد الزّمان والظّروف، وتطرأ على المجتمعات ضرورات وحاجات جديدة تستدعي أحكاما معينة، لذلك من الضيّروري أخذ هذه الأمور بعين الاعتبار وفسح المجال أمام المجتهدين لاستنباط الأحكام وفق المصالح، وإلاّ ضاقت الشّريعة بمصالح العباد وقصرت.

ثالثا: روعيت المصلحة في اجتهادات الصتحابة والتابعين وأئمة الاجتهاد، بدليل جمع أبي بكر رضي الله عنه القرآن الكريم في مصحف واحد، قائلا: "إنّه والله خير ومصلحة للإسلام". ومحاربته مانعي الزّكاة، وتدوين عمر رضي الله عنه الدّواوين وصك النّقود واتخاذ السّجون. فلا سند لذلك إلا المصلحة.

1.5

01

01

01

الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: الرياضيات و التقني رياضي

سبب برياسي وياسي

اختبار في مادة: العلوم الفيزيائية

المدة: أربع ساعات ونصف

دورة: جوان 2012

الديوان الوطني للامتحانات والمسابقات

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأول: (03,5 نقاط)

اقترح أستاذ على تلامذته تعيين سعة مكثفة C بطريقتين مختلفتين : الطريقة الأولى: شحن المكثفة بتيار مستمر ثابت الشدة.

الطريقة الثانية: تفريغ المكثفة في ناقل أومي.

لهذا الغرض تمُّ تحقيق التركيب المقابل.

أولاً: المكثفة في البداية فارغة. نضع في اللحظة t=0 البادلة K في الوضع t=0 فتشحن المكثفة بالمولد t=0 الذي يعطي تيارا ثابتا شدته t=0,31 m تمكنًا من مشاهدة المنحنى البياني لتطور التوتر t=0 بين طرفي المكثفة بدلالة الزمن t=0 (الشكل t=0).

أ- أعط عبارة التوتر u_{AB} بدلالة شدة التيار i المار في الدارة ، وسعة المكثفة C و الزمن t .

- ب حد قيمة C سعة المكثفة

ثانياً: عندما يصبح التوتر بين طرفي المكثفة مساويا إلى القيمة $U_0 = 1,6V$ نضع البادلة K في الوضع (2) في لحظة نعتبرها من جديد t=0 ، فيتم تغريغ المكثفة في ناقل أومي مقاومته t=0 .

. u_{AB} التفاضلية التي يحققها -1

 $u_{AB} = U_0 e^{\frac{1}{\tau}}$: علماً أن حلها

- اثناء تغريغ المكثفة، سمح جهاز ExAO من متابعة تطور التوتر الكهربائي u_{AB} بين طرفي المكثفة بدلالة الزمن t. بواسطة برمجية مناسبة تمكنا من الحصول على المنحنى البياني (الشكل-1ب). جد بيانيا قيمة ثابت الزمن t للدارة ، ثم استنتج قيمة سعة المكثفة t.

التمرين الثاني: (03 نقاط)

1- التفاعل بين الدوتريوم و التريتيوم ينتج نواة ⁴He ونيترون وتحرير طاقة.

E, (MeV /nucléon)

 E_{ℓ} النواة الربط النووي E_{ℓ} للنواة E_{ℓ} النواة E_{ℓ}

ب- الطاقة المحررة
$$|\Delta E|$$
 بدلالة طاقات الربط النووى تعطى بالعبارة:

$$|\Delta E| = |E_{\ell}({}_{2}^{4}He) - E_{\ell}({}_{1}^{2}H) - E_{\ell}({}_{1}^{3}H)|$$

احسب قيمة هذه الطاقة المحررة مقدرة بـ MeV.

المعطيات:

النواة	² ₁ H	³ H	⁴ ₂ He
طاقة الربط (MeV)	2,22	8,48	28,29

التمرين الثالث: (03,5 نقطة)

تتكون دارة كهربائية (الشكل-3) مما يلي:

$$E=6.0V$$
 مولد توتر مستمر قوته المحركة الكهربائية

- قاطعة -
- $r=10~\Omega$ وشیعهٔ ذاتیتها L و مقاومتها
 - . $R=200~\Omega$ ناقل أومي مقاومته

ExAO في اللحظة t=0 نغلق القاطعة K ، فبو اسطة ال

 u_{BC} و u_{AB} يمكن معاينة التوتر الكهربائي

(الشكل-4) و (الشكل-5).

ExAO ما هو الجهاز الذي يمكن وضعه بدلا من -1

لتسجيل المنحنيات البيانية السابقة؟

.
$$\frac{di}{dt}$$
 و $i(t)$ بدلالة u_{AB} عبارة عبارة u_{AB}

. i(t) بدلالة u_{BC} عبارة عبارة -3

الشكل- 4

. برتر. u_{BC} و u_{AB} له الموافق له u_{BC} و برتر.

5-اكتب المعادلة التفاضلية التي تحققها شدة التيار الكهربائي i(t) مع إعطاء حل لها.

 I_0 جد عبارة شدة التيار الكهربائي الأعظمي-6

الذي يجتاز الدارة عند الوصول الى النظام الدائم،

ثم احسب قيمته .

auجد قيمة ثابت الزمن au بطريقتين مختلفتين مع الشرح.

احسب L ذاتية الوشيعة.

التمرين الرابع: (03,75 نقطة)

في فبراير 2012، هبت عاصفة ثلجية على شمال شرق الجزائر، فاستعملت الطائرات المروحية للجيش الوطني الشعبي لإيصال المساعدات للمتضررين خاصة في المناطق الجبلية منها.

10 K:

 $v_0 = 50m \cdot s^{-1}$ تطير المروحية على ارتفاع ثابت h من سطح الأرض بسرعة أفقية ثابتة قيمتها يُترك صندوق مواد غذائية مركز عطالته G يسقط في اللحظة t=0 انطلاقا من النقطة O مبدأ الإحداثيات وبالسرعة الابتدائية الأفقية v_0 ليرتطم بسطح الأرض في النقطة M (الشكل-6).

> $(O; \vec{i}, \vec{j})$ ندرس حركة G في المعلم المتعامد و المتجانس المرتبط بسطح الأرض الذي نعتبره غاليليا، نهمل أبعاد الصندوق و تؤثر عليه قوة وحيدة هي قوة ثقله.

> > 1- بتطبيق القانون الثاني لنيوتن جد:

 $\cdot z(t)$ و x(t) و المعادلتين الزمنيتين

z(x) ب- معادلة المسار

ج- إحداثيتي نقطة السقوط M.

د- الزمن اللازم لوصول الصندوق إلى الأرض.

الشكل-6

ثانيا:

لكي لا تتلف المواد الغذائية عند الارتطام بسطح الأرض، تم ربط الصندوق بمظلة تمكنه من النزول شاقولياً ببطء. تبقى المروحية على نفس الارتفاع h السابق في النقطة O ، ليترك الصندوق يسقط شاقوليا دون سرعة $\vec{f} = -100 \times \vec{v}$ الشكل t = 0 . يخضع الصندوق لقوة احتكاك الهواء نعبر عنها بالعلاقة t = 0حيث: \vec{v} يمثّل شعاع سرعة الصندوق في اللحظة t مع إهمال دافعة أرخميدس خلال السقوط.

الشكل-7

1- جد المعادلة التفاضلية التي تحققها سرعة مركز عطالة الصندوق.

t سرعة مركز عطالة الصندوق بدلالة الزمن -2 سرعة مركز عطالة الصندوق بدلالة الزمن -2

أ- جد السرعة الحدية ٧.

t=10s و t=0s و التسارع في اللحظتين: t=0s و و t=0s

m=150~kg الصندوق و المظلة h=405~m ، $g=9.8~m\cdot s^{-2}$

التمرين الخامس: (02,75 نقطة)

 $\Theta Zn \left| Zn^{2+} \right| \left| Cu^{2+} \right| Cu \oplus :$ نحقق عمود دانيال

E = 1,10 V القوة المحركة الكهربائية:

R = 20 ارسم بشكل تخطيطي عمود دانيال موصو لا بناقل أومي مقاومته R = 20، موضحا عليه جهة التيار الكهربائي و اتجاه حركة الالكترونات و الشوارد.

2-اكتب المعادلتين النصفيتين للأكسدة و الإرجاع، ثم استنتج معادلة التفاعل المنمذج للتحول الذي يحدث أثناء اشتغال العمود.

3- ماذا يحدث للمسريين عند حالة التوازن ؟

4- احسب شدة التيار الذي يجتاز الدارة.

5- احسب Q كمية الكهرباء التي ينتجها العمود بC بعد ساعتين من الاشتغال.

التمرين التجريبي: (03,5 نقطة)

تؤخذ كل المحاليل في 25°C.

الإيبوبروفين حمض كربوكسيلي صيغته الجزيئية الإجمالية $C_{13}H_{18}O_2$ ، دواء يعتبر من المضادات للالتهابات، شبيه بالأسبرين، مسكن للآلام و مخفض للحرارة .تباع مستحضرات الإيبوبروفين في الصيدليات على شكل مسحوق في أكياس تحمل المقدار mg يذوب في الماء. في كل هذا النشاط نرمز لحمض الإيبوبروفين ب $M(RCOOH) = 206g \cdot mol^{-1}$. $RCOO^{-1}$

 S_0 في بيشر به ماء فنحصل على محلول مائي محلول مائي $V_0 = 0$ من الحمض في بيشر به ماء فنحصل على محلول مائي $V_0 = 0$ تركيزه المولى $v_0 = 0$ و حجمه $v_0 = 0$

. $c_0 \approx 0{,}002 \; mol \cdot L^{-1}$: تأكد من أن

pH = 3.5 القيمة S_0 المحلول المحلول أعطى قياس

أ- تحقق باستعانتك بجدول التقدم أن تفاعل حمض الإيبوبروفين مع الماء محدود.

ب-اكتب كسر التفاعل Q_r لهذا التحول.

$$Q_{r,eq} = rac{x_{max} \cdot { au_f}^2}{V_0 \cdot (1 - { au_f})}$$
 : الشكل على الشكل عند التوازن تكتب على الشكل Q_r عند التوازن تكتب على الشكل

 au_{max} عنه بـ عنه بـ مسبة التقدم النهائي للتفاعل و au_{max} : التقدم الأعظمي و يعبر عنه بـ au_f

د-استنتج قيمة ثابت التوازن K.

ثانياً: للتحقق من صحة المقدار المسجل على الكيس ، نأخذ S_b حجما $V_b = 100,0 \ mL$ من محلول مائي S_b من محلول مائي $V_b = 100,0 \ mL$ لهيدروكسيد الصوديوم $(aq) + HO^-(aq) + HO^-(aq)$ تركيزه المولي $C_b = 2,0 \times 10^{-2} \ mol \cdot L^{-1}$ و نذيب فيه كليا محتوى الكيس فنحصل على محلول مائي S (نعتبر أن حجم المحلول S هو S_b) . نأخذ S_b من المحلول S_b و ونضعه في بيشر ونعايره بمحلول حمض كلور الهيدروجين تركيزه المولي S_b بيشر ونعايره بمحلول حمض كلور الهيدروجين تركيزه المولي S_b المنحنى المولي S_b الشكل S_b معادلة تفاعل المعايرة هي :

$$H_3O^+(aq) + HO^-(aq) = 2H_3O(\ell)$$

1-ارسم بشكل تخطيطي عملية المعايرة.

2- عرّف نقطة التكافؤ، ثم حدّد إحداثيتي هذه النقطة E.

 $+ 0^{-}$ التي تمت معايرتها $+ 0^{-}$ التي تمت معايرتها $+ 0^{-}$

4-جد كمية المادة الأصلية لشوار د $HO^-(aq)$ ، ثم استنتج تلك التي تفاعلت مع الحمض RCOOHالمتواجد في الكيس. m كتلة حمض الإيبوبروفين المتواجدة في الكيس، ماذا تستنتج؟

الموضوع الثاتي

التمرين الأول: (03 نقاط)

نسكب في بيشر حجما $V_1=50mL$ من محلول يود البوتاسيوم $K^+(aq)+I^-(aq)$ تركيزه المولي $V_1=50mL$ تركيزه المولي بيشر حجما $V_1=50mL$ نم نضيف له حجما $V_2=50mL$ من محلول بيروكسوديكبريتات البوتاسيوم $C_1=3,2\times 10^{-1}mol\cdot L^{-1}$ البوتاسيوم $C_1=3,2\times 10^{-1}mol\cdot L^{-1}$ تركيزه المولي $C_2=0,20mol\cdot L^{-1}$ نركيزه المولي $C_2=0,20mol\cdot L^{-1}$ تركيزه المولي $C_2=0,20mol\cdot L^{-1}$ وأن الثنائيتين المشاركتين في التفاعل هما: $C_2=0,20mol\cdot L^{-1}$

- 1- اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث.
 - 2- أنشئ جدو لا لتقدم التفاعل، ثم عين المتفاعل المحد.
- $I_{2}\left(aq \right)$ بيّن أن التركيز المولى لثنائي اليود المتشكل $I_{2}\left(aq \right)$ في كل لحظة t يعطى بالعلاقة:

$$V = V_1 + V_2$$
 $= \frac{c_1 V_1}{2 V} - \frac{[I^-(aq)]}{2}$

 I^{-} سمحت إحدى طرق متابعة التحول الكيميائي بحساب التركيز المولي لشوارد اليود $I^{-}(aq)$ كل I^{-} في المزيج التفاعلي ودوّنت النتائج في الجدول التالي:

t (min)	0	5	10	15	20	-25
$[I^{-}(aq)](10^{-2} mol \cdot L^{-1})$	16,0	12,0	9,6	7,7	6,1	5,1
$[I_2(aq)](10^{-2} mol \cdot L^{-1})$	يلا علي				4	

أ-أكمل الجدول، ثم ارسم المنحنى البياني f(t) = f(t) على ورقة ميليمترية ترفق مع ورقة الإجابة. $t_{1/2}$ عرق زمن نصف التفاعل $t_{1/2}$ ، ثم عين قيمته.

t = 20 min ، ثم استنتج سرعة اختفاء شوارد اليود في نفس اللحظة t = 20 min

التمرين الثاني: (03,25 نقطة)

1-النشاط الإشعاعي ظاهرة عفوية لتفاعل نووي.

- أ- البيكرال هي وحدة القياس المستعملة في النشاط الإشعاعي ، عرّف البيكرال.
- . γ عفكك نواة الإيريديوم $rac{192}{77}Ir$ يعطي نواة البلاتين $rac{192}{78}Pt$ المشعة أيضا. يصاحب هذا التفكك إصدار للإشعاع
 - اكتب معادلة تفكك نواة الإيريديوم، موضّحا النمط الإشعاعي الموافق لهذا التحول النووي.
 - فسر إصدار الإشعاع م خلال هذا التحول.
 - A=3, 4×10^{14} Bq من الإيريديوم هو Ig من الإيريديوم هو
 - جد عدد أنوية الإيريديوم N الموجودة في m = 1g من العينة.
 - احسب $t_{1/2}$ نصف العمر للإيريديوم.

2- إن الاندماج النووي هو مصدر الطاقة كما في الشمس و النجوم. تحدث تفاعلات متسلسلة في الشمس والتي $4^{1}_{1}H \rightarrow {}^{4}_{2}He + 2^{0}_{1}e$ يمكن نمذجتها بالمعادلة التالية:

MeV لهذا التفاعل بوحدة الكتل الذرية u وكذا الطاقة المحررة لتشكل نواة الهيليوم بـ Δm $c=3\times 10^8 m/s$: الفراغ: $u=1.66\times 10^{-27} kg$ ، سرعة الضوء في الفراغ: $u=1.66\times 10^{-27} kg$

 $1eV = 1.6 \times 10^{-19} J$ ، $N_A = 6.02 \times 10^{23} \, mol^{-1}$: ثابت أفو غادرو

النواة	⁴ He	¹ ₁ p	$\frac{1}{0}n$	0 1
الكتلة بــ (u)	4,0015	1,0073	1,0087	0,0005

التمرين الثالث: (03,5 نقطة)

نحقق الدارة الكهربائية (الشكل-1) المكونة من:

- . $E=2\ V$ مولد توتر كهربائى ثابت قوته المحركة الكهربائية -
 - . R=100 Ω ناقل أومى مقاومته
 - وشيعة ذاتيتها L ومقاومتها r
 - قاطعة K

1- نغلق القاطعة X-1

أ- اكتب العلاقة التي تربط التوتر الكهربائي بين طرفي الوشيعة $u_b(t)$ والتوتر الكهربائي بين طرفي E و $u_R(t)$ المقاومة

 $u_{B}(t)$ به بدلالة شدة التيار الكهربائي i(t) ، ثم بدلالة $u_{b}(t)$ ب

 $u_{R}(t)$ المعادلة التفاضلية التي يحققها $u_{R}(t)$ للدارة.

2- يعطى حل المعادلة التفاضلية بالشكل التالي:

. و س توابت یطلب تعیینها $B \cdot A$ حیث $u_R(t) = A + Be^{-mt}$

3- يسمح تجهيز الـ ExAO بمتابعة التطور الزمنى لشدة التيار الكهربائى i(t) المار في الدارة فنحصل على

المنحنى البياني (الشكل-2).

لتكن 10 شدة التيار الكهربائي الأعظمي في النظام الدائم.

 I_0 أ-جد العبارة الحرفية للشدة

 $t\left(\mathbf{s}
ight)$. r جد بيانيا قيمة الشدة، I_{0} ، ثم استنتج مقاومة الوشيعة

 τ المنابعدي أن τ المناب مع الزمن المنابعدي أن τ متجانس مع الزمن.

د - جد بیانیا قیمهٔ τ ، ثم استنتج قیمهٔ ذاتیهٔ الوشیعهٔ L

التمرين الرابع: (03,5 نقطة)

نحضر محلولاً مائياً S_1 حجمه V=200~mL حجمه S_1 بتركيز مولي البنزويك $C_6H_5\,COOH$ ابتركيز مولي

 $pH_1=3.1$ هذا المحلول فنجده $c_1=1.00 imes 10^{-2}~mol \cdot L^{-1}$

أ- اكتب معادلة تفاعل حمض البنزويك مع الماء.

ب- أنشئ جدو لا لتقدم هذا التفاعل.

ج- احسب نسبة التقدم النهائي au_{If} لهذا التفاعل . ماذا تستنتج؟

 $C_6H_5COOH(aq)/C_6H_5COO^-(aq)$ د - اكتب عبارة ثابت الحموضة K_{al}

هـ أثبت أن $K_{al}=c_{l} imesrac{ au_{lf}^{2}}{1- au_{lf}}$: هـ أثبت أن $K_{al}=c_{l} imesrac{ au_{lf}^{2}}{1- au_{lf}}$

 S_1 على محلول S_1 لحمض البنزويك – S_2 و نمدّده S_3 مرات بالماء فنحصل على محلول S_1 لحمض البنزويك – $pH_1'=3,6$ هذا المحلول فنجده $pH_2'=3,6$

 $.c_{I}^{'}=1,00 \times 10^{-3} \ mol \cdot L^{-1}$:أبيت أن

 au_{-} احسب القيمة الجديدة لنسبة التقدم النهائي au_{2f} لتفاعل حمض البنزويك مع الماء.

ج- ما هو تأثير تخفيف المحاليل على نسبة التقدم النهائي؟

التمرين الخامس: (03,25 نقطة)

يتصور العلماء في الرحلات المستقبلية نحو كوكب المريخ M وضع محطة لأجهزة الاتصالات مع الأرض على أحد أقمار هذا الكوكب، مثلا على القمر فوبوس (P) Phobos.

 $\cdot G = 6,67 \times 10^{-11} \ N \cdot m^2 \cdot kg^{-2}$ المعطيات: - ثابت التجاذب الكوني:

- $r=9,38 imes10^3~km~:P$ و القمر $M=0,38 imes10^3~km$
 - m_p : Phobos و كتلة المريخ $m_M=6,44 imes10^{-23}~kg$ و كتلة المريخ m_p
 - $T_M=24h$ 37 m in 22 s حول نفسه: M=24h 37 m in 22 s

نفرض أن هذه الأجسام كروية الشكل وكتلها موزعة بانتظام على حجومها وأن حركة هذا القمر دائرية وتنسب إلى مرجع غاليلي مبدؤه O مركز كوكب المريخ (الشكل-3).

الشكل -3

P القوة التي يطبقها الكوكب M على القمر فوبوس -1

2- أ- بتطبيق القانون الثاني لنيوتن، بين أن حركة مركز عطالة هذا القمر دائرية منتظمة.

P استنتج عبارة سرعة دوران القمر P حول المريخ.

 m_M و G ، r عبارة دور حركة القمر T_{p} حول المريخ بدلالة المقادير G ، G و

4- اذكر نص القانون الثالث لكبلر و بيّن أن النسبة :

$$T_P$$
 مثم استنتج قیمهٔ $T_P^2 = 9,21 \times 10^{-13} \, \mathrm{s}^2 \cdot m^{-3}$

حاين يجب وضع محطة الاتصالات S لتكون مستقرة بالنسبة للمريخ؟ ما قيمة T_s دور المحطة في مدارها حينئذ؟

التمرين التجريبي: (03,5 نقاط)

1 - لغرض حساب زاوية الميل α لمستو يميل عن الأفق. قام فوج من التلاميذ بقذف جسم صلب (S) كتلته

m=1~kgفي اللحظة t=0 من النقطة m=1~kg

x'______ (S) مرابع على الشكل - 4 - الشكل - 4

 u_0 نحو الأعلى وفق خط الميل الأعظم لمستو أملس (الشكل-4).

باستعمال تجهيز مناسب ، تمكن التلاميذ من دراسة حركة مركز عطالة (S) والحصول على أحد مخططات السرعة v = f(t) التالية :

O . O بتطبيق القانون الثاني لنيوتن، ادرس طبيعة حركة الجسم O بعد لحظة قذفه من

-ىن بين المخططات الأربعة (1)،(2) ،(3) و(4)، ما هو المخطط الموافق لحركة الجسم (S)؛ برر.

 α احسب قيمة الزاوية

t=2s و t=0 و المصافة المقطوعة بين اللحظتين: t=2s

f في الحقيقة يخضع الجسم أثناء انزلاقه على المستوي المائل إلى قوة احتكاك شدتها ثابتة -2

أ- أحص و مثل القوى الخارجية المؤثرة على الجسم (S).

ب-ادرس حركة مركز عطالة (S)، ثم استنتج العبارة الحرفية لتسارع حركته.

f=1,8N ج-احسب قيمة التسارع من أجل

 $.g=9.8 \text{ m}\cdot S^2$ يعطى:

·		التمرين الأول (3,5 نقط من)
		ا <u>و لا</u> :أ- عبارة التوتر عبارة التوتر عبارة التوتر عبارة التوتر عبارة التوتر عبارة التوتر
	2x0,25	$q = i.t = C.u_{AB} \Rightarrow u_{AB} = \frac{i}{C}.t$
	0,25	$u_{AB}=a.t$: ب- معادلة المنحنى البياني
	0,25	$a=rac{i}{C}$: بمطابقة العلاقتين نجد: C حساب
	0,25	$a = \frac{i}{C} = \frac{1-0}{17.5-0} = 5.71 \times 10^{-2}$
	0,25	$C = \frac{i}{a} = \frac{0.31 \times 10^{-3}}{5.71 \times 10^{-2}} = 5.4 \times 10^{-3} F = 5.4 \text{ mF}$: each
		$\mathbf{q}_{\max} = \mathbf{i}.\mathbf{t} = \mathbf{C}.\mathbf{U}_0 \Rightarrow \mathbf{C} = \frac{\mathbf{i} \times \mathbf{t}}{\mathbf{U}_0} : \underline{\mathbf{j}}$
		و المان ال
}		$C = 5.4 \times 10^{-3} F$
		: لينك
		أ- المعادلة التفاضلية
	0,25	$u_{AB} + u_R = 0$:من قانون جمع التوترات
03,5	0,25	$u_{AB} + RC \cdot \frac{du_{AB}}{dt} = 0 \implies \frac{du_{AB}}{dt} + \frac{1}{RC}u_{AB} = 0$
		ب أقيمة ثابت الزمن 7 للدارة:
	0,25	$Lnrac{U_0}{u_{AB}}=a.t$:معادلة المنحنى البياني
		$u_{AB} = U_0.e^{-rac{t}{\tau}}$ لدينا:
	0,25	$\frac{U_0}{u_{AB}} = e^{\frac{t}{\tau}} \implies Ln \frac{U_0}{u_{AB}} = \frac{1}{\tau}.t$ و منه:
		قيمة سعة المكثفة C :
	0,25	$\mathbf{a}=rac{1}{ au}$ بمطابقة العلاقتين نجد: $\mathbf{a}=rac{1}{ au}$
	0,25	$a = \frac{1}{\tau} = \frac{2.8 - 0}{15 - 0} = 0.187 s^{-1} \implies \tau = 5.36 s \approx 5.4 s$
	0,25	$\tau = R.C = 5, 4 \text{ s}$
	0,25	$C = \frac{5,4}{1000} = 5,4 \times 10^{-3} \mathrm{F} = 5,4 \mathrm{mF}$

		التمرين الثانى: (03 نقط)
		التعريق التاتي: (30 تعد)
	0,2	1-أ- نوع التفاعل الحادث: تفاعل اندماج .
	0,2	
		و نیتر و نات
	0,5	${}^{2}_{1} H + {}^{3}_{1} H \rightarrow {}^{4}_{2} H e + {}^{1}_{0} n$
03		2- أ- منحنى أستون يمثل تغيرات طاقة الربط لكل نيكليون بدلالة العدد الكتلي A.
	0,5	- الأنوية القابلة للإنشطار A > 180.
	0,5	- الأنوية القابلة للإندماج $A < 50$.
	0,5	- الأنوية المستقرة A < 180
	0,25	3-أ ـ طاقة الربط النووي:
		$E_{\ell} = \left[\left(Z m_p + \left(A - Z \right) m_n - m \left({}_{Z}^{A} X \right) \right] . c^{2} $
		$ \Delta E = E_{\ell}({}_{2}^{4}He) - E_{\ell}({}_{1}^{2}H) - E_{\ell}({}_{1}^{3}H) $
	0,25	
	,,,,,	
		التمرين الثالث: (03,5 نقطة)
	0,25	ExAO راسم الاهتزاز المهبطي ذي ذاكرة هو الجهاز الذي يمكن وضعه بدل -1
	0,25	$u_{AB} = ri + L \frac{di}{dt} - 2$
	0,25	$u_{BC} = Ri - 3$
	0,23	$u_{BC} = 0V$ تكون $i = 0A$ عندما $i = 0$
	0,25	i de la companya de
	,,,,,,	ومنه $u_{AB} = L \frac{di}{dt}$ اما
	0,25	u _{BC} ◄ (1) المنحنى البياني (1)
	0,25 0,25	u _{AB} ← (2) المنحنى البياني (2)
2,50		-5
	0,25	$u_{BC} = Ri$ و $u_{AB} = ri + L\frac{di}{dt}$ بما أن:
		$(B_{i}, A_{i}) = I di$
		$(R+r)i + L\frac{di}{dt} = E$: فإن
	0,25	$R_{i}i + L\frac{di}{dt} = E$:
	0,25	المعادلة التفاضلية
		$i + \frac{L}{R_t} \frac{di}{dt} = \frac{E}{R_t}$
		$R_t \frac{dt}{dt} - R_t$

0,23	، $i=rac{E}{R_{\star}}(1-e^{-rac{t}{r}})$ المعادلة التفاضلية من الرتبة الأولى حلها أسي:
0,25	$I_0 = \frac{E}{R+r} = \frac{6.0}{210} = 28.6 \text{ mA} - 6$
0,25	7 من البيان (1) إما من النسبة 63% أو من المماس , $\tau = 2,5 \text{ms}$.
0,25	$\tau = \frac{L}{R+r} - 8$

		التمرين الرابع: (3,75 نقطة)
		<u> ie. W:</u>
		1-في مرجع غاليلي: بتطبيق القانون الثاني لنيوتن .
	0,25	$\sum \overrightarrow{F}_{\text{ext}} = \text{m.a}_{\text{G}}$
		→ →
		mg = ma
	0.25	g = a
	0,25	$\left(a_{x}=0\right)$
03,75	5	$\begin{cases} a_x = 0 \\ a_z = g \end{cases}$
05,10		
	•	$\begin{cases} \frac{dv_x}{dt} = 0 \\ \frac{dv_z}{dt} = g \end{cases} \qquad \begin{cases} v_x = v_0 = \frac{dx}{dt} \\ v_z = gt = \frac{dz}{dt} \end{cases} \qquad \begin{cases} x(t) = vt = 50t \\ z(t) = \frac{1}{2}gt^2 = 4,9t^2 \end{cases}$
	3x0,25	$\begin{cases} \frac{d\mathbf{v}_{x}}{dt} = 0 \\ \frac{d\mathbf{v}_{z}}{dt} = g \end{cases} \qquad \begin{cases} \mathbf{v}_{x} = \mathbf{v}_{0} = \frac{d\mathbf{x}}{dt} \\ \mathbf{v}_{z} = \frac{d\mathbf{z}}{dt} \end{cases} \qquad \begin{cases} \mathbf{x}(t) = \mathbf{v}t = 50t \\ \mathbf{z}(t) = \frac{1}{2}\mathbf{g}t^{2} = 4,9t^{2} \end{cases}$
		$\left \frac{dv_z}{dt} = g \right v_z = gt = \frac{dz}{dt}$
		ب- معادلة المسار:
	2x0,25	$\int \mathbf{x}(t) = 50t$
	240,23	$z = 0,002x^{2}$ ومنه: $\begin{cases} x(t) = 50t \\ z(t) = 4.9t^{2} \end{cases}$
	0.25	
	0,25	$x_{M} = \sqrt{\frac{405}{0.002}} = 450 \text{m}$ each $h = 405 \text{m}$
	0,25	$t = \sqrt{\frac{405}{49}} = 9s - 2$
		γ 4,9

	-	ثانيا: 1- تطبيق القانون الثاني لنيوتن:
		الهي مرجع عاليلي:
	0,25	$\vec{P} + \vec{f} = m\vec{a}_G \iff \sum \vec{F}_{ext} = m.\vec{a}_G$
	0,25	$mg - 100v = m \frac{dv_Z}{dt}$.
	0,25	$\frac{dv_z}{dt} = 9,8 - \frac{2}{3}v$ بالتعویض نجد؛ ۷
	0,25	$v_{\ell} = 15 \text{m/s}$. السرعة الحدية $v_{\ell} = 15 \text{m/s}$
	2x0,25	$t = 10s \begin{cases} v = v_{\ell} = 15m \cdot s^{-1} \\ a = 0; v = c^{te} \end{cases}$ $t = 0 \begin{cases} v = 0 \\ v = \frac{dv}{dt} = 9,8 \text{ m.s}^{-2} \end{cases}$
	·	
		التمرين الخامس: (02,75 نقاط) 1- شكل العمود:
	0,75	R CONTROL STANCE OF THE STANCE
02,75	0,25	$Cu^{2+} + 2e^- = Cu$:عند صفيحة النحاس
	0,25 •	$Zn = Zn^{2+} + 2e^{-}$ عند صفيحة الزنك:
	0,25	$Cu^{2+}(aq) + Zn(s) = Cu(s) + Zn^{2+}(aq)$: a solution of the solution of th
		3-تزداد كتلة مسرى النحاس وتقل كتلة مسرى الزنك و يتوقف العمود عن الإشتغال . E 110
•	0,25	$I = \frac{E}{R} = \frac{1,10}{20} = 0,055A = 55mA - 4$
	2x0,25	5-حساب كمية الكهرباء Q:
	0,25 0,25	$Q = I \times \Delta t$ $Q = 400C : Q = 55 \times 10^{-3} \times 3600 \times 2$
1		

	·
0,25	$C_0 = \frac{n}{V_0} = \frac{m}{M.V_0} \Rightarrow C_0 = \frac{0.2}{206 \times 0.5} \approx 0.002 \text{mol.L}^{-1}$ $C_0 = \frac{n}{V_0} = \frac{m}{M.V_0} \Rightarrow C_0 = \frac{0.2}{206 \times 0.5} \approx 0.002 \text{mol.L}^{-1}$
0,25	المائة الثاعل RCOOH (aq) + $H_2O(1)$ = $RCOO^-(aq)$ + $H_3O^+(aq)$
·	بما أن الماء يستعمل بوفرة فإن الحمض هو المتفاعل المحد
0,25	حساب النقدم الأعظمي x_{max} : $ c_0V_0 - x_{max=0} $ ومنه: $C_0V_0 - x_{max=0}$ ومنه: $C_0V_0 - x_{max=0}$
0,25	$x_f = n(H_3O^+) = [H_3O^+].V = 10^{-PH}.V = 10^{-3.5} \times 0,5 = 15,8 \times 10^{-5} \text{ mol}$
0,25	نسبة النقدم النهائي $\tau : \tau = \frac{x_f}{x_{max}} = \frac{15.8 \times 10^{-5}}{10^{-3}} = 15.8 \times 10^{-2}$ و منه: فنفاعل حمض الإيبوبروفين محدود في الماء.
0,25	: Q_r detail $Q_r = \frac{[H_3O^+][RCOO^-]_i}{[RCOOH]_i} = \frac{x^2/V^2_0}{C_0.V_0 - x/V_0} = \frac{x^2}{(C_0V_0 - x.)V_0}$ $Q_r = \frac{x^2}{(C_0V_0 - x.)V_0} \Rightarrow Q_{r,eq} = \frac{x_f^2}{(C_0V_0 - x_f)V_0}$ $Q_{r,eq} = \frac{x^2}{V_0(1-\tau)}$
F1	
	0,25 0,25 0,25

	0,25	د- قيمة ثابت التوازن K :
		$Q_{r,eq} = K = \frac{(15,8 \times 10^{-2})^2 10^{-3}}{0,5(1-15,8 \times 10^{-2})} = 5,9 \times 10^{-5}$
03,5	0,25	ثانياً: الشكل التخطيطي لعملية المعايرة:
	0,25	2- يناسب التكافؤ الحالة النهائية للجملة حيث كميتى المادة للمتفاعلين (معاير و معاير) تزامنيا منعدمين أي يكونا بنسب ستوكيومترية. E(10,3mL; 8,4)
		pH
	0,25 0,25 0,25	$n(HO^{-}) = C_a.V_{Ea} = 2 \times 10^{-2} \times 10,3 \times 10^{-3} = 20,6 \times 10^{-5} \text{ mol } -3$ $n(HO^{-}) = 20,6 \times 10^{-5} \times \frac{100}{20} = 103 \times 10^{-5} \text{ mol } :$ $0 \times 100 \text{ mL}$ $0 \times 10^{-5} \times 100 \times 10^{-3} = 200 \times 10^{-5} \text{ mol } -4$ $0 \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-5}$ $0 \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-5} \times 10^{-5}$
	0,25	$m = 97 \times 10^{-5} \times 206$ ومنه: $n = \frac{m}{M} - 5$ $m = 0,199g \approx 200 \text{mg}$ وهذا يتوافق مع ماهو مكتوب على الكيس.

152

							ناط)	<u>ل : (03 ن</u>	التمرين الأو
					•	$2I^{-}_{(30)} =$	$= I_{2(a0)} + 2\epsilon$? -	-1
						$S_2O_{8~(aq)}^{(aq)}$	$+2e^{-\frac{1}{2}} = 25$	SO _{4 (aq)}	
	0,25		•			$S_2O_8^{2-}$ (aq)	$+2I^{-}_{(aq)} =$	$SO_{4 \text{ (aq)}}^{2^{-}} \dots$ $I_{2(\text{aq)}} + 2SO_{4}^{2^{-}}$	O _{4 (aq)}
		·						تقدم:	2- جدول ال
			المعادلة	S_2O_8	2- (aq) +	$2I_{(aq)}$	$=$ $I_{2(aq)}$	+ 2	2SO _{4 (aq)}
	0,5		ح.ابتدائية	1	10 ⁻²	1,6.10			0
			ح. إنتقالية	10	$^{2}-x$	1,6.10 ⁻² -			2x
			ح. نهائية	10-	$\frac{1}{x_{\text{max}}}$	1,6.10 ⁻² -	$-2x_{\text{max}} x_{\text{max}}$	nx	$2x_{\text{max}}$
						وض) mol			
	0,25		x_1	$_{\text{max}} = \frac{C}{}$	$\frac{1V_1}{2} = 0.8 \times$	(10 ⁻² mol ((مقبول		
·			b	,	_			حد شوارد ا	المتفاعل الم
					(Tm) GH		ن :	: من الجدوا	1- العلاقة
			e e		$(I^{-}) = C_1 V_1$		- -	_	بالقسمة ع
0,3	0,25		I_2	$\frac{c_1V_1}{2N}$	$\frac{I^{-}}{2}_{(t)}$:منه	$ [I_2]_{(t)} =$	$=\frac{c_1V_1}{V}-\frac{x}{V}$	$\frac{x}{v}$ وحيث:	$-=[I_2]_{(t)}$
	0,25	.	£ -2(t)	_ ,	_	$-\frac{1}{2}[I^{-}]_{(i)}$			i
,		[]	t(min)	0	5	10	15	20	25
	0,25	E. COLLEGE	I_2 I_2 I_2 I_3	0	2	3,2	4,15	4,95	5,45
		•	1	-			$[I_2]$	$= f(t)$ \dot{U}	رسم البب
		•				· · · · · · · · · · · · · · · · · · ·	end, wastendarth of the transfer of the	er	Section of Post
			,	4	,] 2/8 ² #4				
			b			717			
	0,25	!							
	0,23								
			·						
	,						regi Pr. Villender de Marie (d. 1943).		•
1	5:	2		7 3	صفحة 1مر				
			à						
L									

الإجابة النموذجية للموضوع الثاني-مادة: العلوم الفيزيائية- شعبة: تقني رياضي+رياضيات.

	ب- زمن نصف التفاعل $(t_{1/2})$:
	هو الزمن اللازم لبلوغ التفاعل نصف تقدمه الأعظمي،
0,25	$x_{t_{1/2}} = \frac{x_{\text{max}}}{2} : 0$ in $t = t_{1/2}$
	$\frac{[I_2]_{\text{max}}}{2} = 4 \times 10^{-2}$ توافق $t_{1/2}$
0,25	($13.5 \le t_{1/2} \le 15 \text{min}$) $t_{1/2} = 14 \text{min}$) من البيان هي البيان على ا
	: $t = 20 \min$
0,25	$v = \frac{dx}{dt} = \frac{d [I_2]V_s}{dt} = V_s \cdot \frac{d [I_2]}{dt} = 0,15 \times 10^{-3} mol / min$ يسرعة إختفاء شوارد I^- يسرعة إختفاء شوارد
0,25	$\frac{V_{I_2}}{1} = \frac{V_{I_2}}{2}$ $\Rightarrow V_{I_2} = 2V_{I_2} = 0.3 \times 10^{-3} \text{mol/min}$ من العلاقة:

L		
		التعرين الثاني: (3,25 نقطة)
	0,25	1-أ- تعريف: البيكريل يوافق تفكك واحد في الثانية.
	0,25	$^{192}_{77}$ المعادلة التفكك: $^{192}_{78}$ + $^{192}_{78}$ Pt + $^{0}_{-1}$ e + γ
	0,25	- النمط الإشعاعي الموافق لهذا التحول النووي هو: -β.
	· · · · · · · · · · · · · · · · · · ·	- تفسير اصدار اشعاع γ: خلال تفكك نواة الايريديوم ينتج نواة البلاتين في حالة مثارة * 192Pt
	0,25	و تفقد إثارتها عند عودتها الى حالتها الأساسية بإصدار γ (موجات كهرمغناطسية)
	0,25	ρ (a) ρ
		78 Pt" $\rightarrow 78$ Pt $+ \gamma$.
		The state of the s
03,25	5	ج- عدد أنوية الإيريديوم الموجودة في $1g$ من العينة:
	2x0,25	$N = \frac{m}{M} \cdot N_A = \frac{1}{192} \cdot 6,02 \times 10^{23} \approx 3,14 \times 10^{21} \text{ noyaux}.$
	240,23	
		$\int_{1}^{\infty} t_{\text{tot}} = \frac{\ln 2^{4}}{2}$
		$t_{1/2} = \frac{\ln 2^{4}}{\lambda}$ $\Rightarrow t_{1/2} = \frac{N \cdot \ln 2}{A} = 6.4 \times 10^{6} \text{ s} \approx 74 \text{ jours}$ خون نصف العمر $t_{1/2}$ للايريديوم: $t_{1/2} = \frac{N \cdot \ln 2}{A}$
	3x0,25	$\lambda = \frac{A}{\lambda}$
		N , Δm , Δm
		$\Delta \mathbf{m} = \mathbf{m}_{i} - \mathbf{m}_{f}$
	0,25	$=4.m({}_{1}^{1}H)-m({}_{2}^{4}He)-2m({}_{1}^{0}e)$
		$\Delta m = 0.0267u = 4.4 \times 10^{-29} \text{kg}$
	0,25	
		- الطاقة المحررة:
	0,25	$E_{IIb} = \Delta m.c^2 = 0.0267u.c^2 \approx 24.87MeV$
ł		

		التمرين الثالث: (3,5 نقطة)
	0,25	$u_{R}(t)$ ، $u_{b}(t)$ ، $u_{b}(t)$ و $u_{c}(t)$. $u_{b}(t)$. $u_$
		$ (1) \cdots E = u_R(t) + u_b(t) \cdot -2 \cdot 2 \cdot $
		and the same of th
	0,25	-عبارة (u _b (t) بدلالة u _b (t): عبارة (t) ط بدلالة (t) بدلالة (t)
	0,25	$u_R(t) = R \cdot i(t) \Rightarrow i(t) = \frac{u_R(t)}{R} \Rightarrow \frac{di(t)}{dt} = \frac{1}{R} \frac{du_R(t)}{dt}$
		$u_b(t) = \frac{L}{R} \frac{du_R(t)}{dt} + r \cdot \frac{u_R(t)}{R}$ بالتعویض فی (2) نجد:
		جـ - المعادلة التفاضلية:
	0,25	$\frac{du_R(t)}{dt} + \frac{r+R}{l}u_R(t) = \frac{R}{l}E$ تصبح العلاقة (1):
		2- تعيين الثوابت B،A و m :
	0,25	$\frac{d u_R(t)}{dt} = -B.m.e^{-m.t} : u_R(t)$
		نعوض $u_R(t)$ و $\frac{d u_R(t)}{dt}$ في المعادلة التفاضلية:
*.		ut.
		$B.e^{-m.t}\left(\frac{r+R}{L}-m\right)+\frac{r+R}{L}A=\frac{R}{L}E$
03,5		حتى تتحقق هذه المساواة يجب أن يكون معامل $e^{-m.t}$ معدوما و منه :
	0,25	$A = \frac{R}{r + R} E \qquad m = \frac{r + R}{L}$
		من الشروط الإبتدائية:
	0,25	$A+B=0 \Rightarrow A=-B$
	0,23	$\Rightarrow B = -\frac{R}{r+R}E$
		I+K
-	0,25	$u_{R}(t') = \frac{R}{R/4} E (1 - e^{-\frac{R+r}{L}t})$
	0,23	$R/+ r$: (I_0) في النظام الدائم :
	0,25	$\frac{di(t)}{dt} = 0$ أي $i(t) = i_{max} = I_0 = C$ ste في النظام الدائم
	0,20	العلاقة (1):
	,	$I_0 = \frac{E}{R + r}$
	0,25	· · · · · · · · · · · · · · · · · · ·
	0,25	ب-الشدة (I _o) بيانيا: I _o = 18 mA بيانيا: E = 5
	0,23	$ angle$ - مقاومة الوشيعة: $ angle r = rac{E}{I_0} - R$ ،
	0,25	$\tau = \frac{L}{R+r}$ الزمن τ : $\frac{L}{R+r}$
	0,25	التحليل البعدي: $s = [T] = [T] = \frac{[U] \times [T] \times [I]}{[R_T]} = \frac{[U] \times [T] \times [I]}{[I] \times [U]} \Rightarrow [T] = [T]$
	,20	, [R ¹] [i]×[n] , , ,

		
		ـ قيمة $_{T}$ بيانيا : من إحدى الطريقتين (طريقة المماس عند $_{t}=0$ أو طريقة 63%) نجد:
		$ au \simeq 4 ext{m s}$. Example 2. Example 1. Example 2. Example 2
	0,25	$L = 0,44H \Leftarrow L = \tau \cdot (R + r)$
	1 .	
	,	تمرين الرابع: (03.5 نقطمة)
		[-أ- معادلة تفاعل حمض البنزويك مع الماء
	0,25	$C_6H_5COOH_{(aq)} + H_2O(l) = C_6H_5COO_{aq}^- + H_3O_{aq}^+$
		ب- جدول تقدم النفاعل
		معادلة الكاعل $C_6 H_5 COOH_{(eq)} + H_2 O(l) = H_3 O_{eq}^+ + C_6 H_5 COO_{eq}^-$
	0,5	ريادة الابتدائية الابتدائية C ₁ V مريادة الابتدائية
		بزيادة جـ بزيادة المسطنة عـ الحالة المسطنة
		ألحالة النهائية $C_1 Y - x_2$ مريادة x_2 x_3 x_4
	.	$x_{ m max}=C_1.V=2 imes10^{-3}mol:x_{ m max}$ بيمة التقدم الأعظمي
	0,25	التقدم النهائي x و نسبة التقدم النهائي $ au_1$ لهذا التفاعل:
		$x_f = 1,59 \times 10^{-4} mol $ ومنه $x_f = [H_3O^+]_f.V = 10^{-pH_1}.V$
	0.25	
	0,25	$ \tau_1 = \frac{x_f}{x_{\text{max}}} = \frac{1,59 \times 10^{-4}}{2 \times 10^{-3}} \iff \tau_1 = 0,08 $
		_
03,5		$ au_1=8\%$ أي:
	0,25	نستنتج أن حمض البنزويك ضعيف في الماء لأن نسبة تقدم تفاعله مع الماء أقل من 1 .
		$C_6H_5COOH_{(aq)}/C_6H_5COO_{(aq)}$ هو ثابت التوازن لتفاعل المعرضية للثنائية ($C_6H_5COOH_{(aq)}/C_6H_5COO_{(aq)}$) هو ثابت التوازن لتفاعل
	-	حمض البنزويك مع الماء.
٠.	0,25-	$K_{A1}=K=rac{[C_6H_5COO_{aq}^-]_{\acute{e}q}.[H_3O_{aq}^+]_{\acute{e}q}}{[C_6H_5COOH_{aa}]_{\acute{e}a}}$ عبارته:
		- "3
		$[C_6 H_5 COO^{aq}]_{\ell q} = [H_3 O^+_{aq}]_{\ell q} = rac{x_f}{V}$ ه- من جدول النقدم نجد: $^+$
	0,25	
		$[C_6H_5COOH_{aq}]_{eq} = \frac{C_1.V - x_f}{V}$
		$K_{A1} = rac{1}{V} imes rac{x_f^2}{C_1 V - x_f}$: نعوض في عبارة ثابت الحموضة نجد
	0,25	
		$x_f = au_1.x_{ ext{max}} = au_1.C_1.V$ من جهة آخرى لدينا:
		$K_{A1}=C_1.rac{ au_1^2}{1- au_2}$: نعوض x بعبارتها نجد
]	$1- au_1$

	0,25	$K_{A1} = 1 \times 10^{-2} \cdot \frac{(0,08)^2}{1 - 0,08} = 6,96 \times 10^{-5} : K_{A1}$ قيمة -
	0,25	$C_1' = \frac{C_1}{10} = 1.0 \times 10^{-3} \text{ mol.} L^{-1} \iff \frac{C_1'}{C_1} = \frac{1}{10} : -1 - 2$
	0,25	$ au_2=rac{10^{-pH_2}}{C_1}$: $ au_{2f}$ النهائي $ au_{2f}$ النهائي : $ au_{2f}$
	0,25	$ \tau_2 = 25\% : \zeta_2 = \frac{10^{-3.6}}{10^{-3}} = 0.25 $
	0,25	ج- تزداد نسبة التقدم النهائي كلما كان المحلول مخفف.
	0,25 0,25 0,25 0,25	التمرين الخامس: $(3,25)$ نقطه التمرين الخامس: $(7,03,25)$ نقطه الكوكب على القمر $\overline{F}_{M/P}$ العماس . $\overline{F}_{M/P}$ العماس . $\overline{F}_{M/P}$ العماس القوة التي يطبقها الكوكب على القمر عطالة القمر بتطبيق القانون الثاني لنيوتن على مركز عطالة القمر $\overline{F}_{M/P} = m_{\rm p} \overline{a}_{\rm g}$ في المرجع الغاليلي: $\overline{F}_{M/P} = m_{\rm p} \overline{a}_{\rm g}$ بالإسقاط على الناظم: $F_{M/P} = m_{\rm p} a_{\rm n}$
	0,25	$G \cdot \frac{\mathbf{m}_{P} \cdot \mathbf{m}_{M}}{\mathbf{r}^{2}} = m_{P} \cdot a_{n} \Rightarrow a_{n} = G \cdot \frac{\mathbf{m}_{M}}{\mathbf{r}^{2}}$ (1) $a_{T} = 0 \Rightarrow \frac{dv}{dt} = 0 \Rightarrow v = Cste$ بالإسقاط على المماس: (2)
	0,25	بما أن المسار دائري و سرعتها ثابتة \Rightarrow الحركة الدائرية المنتظمة.
	2x0,25	$\begin{cases} a_n = G \cdot \frac{m_M}{r^2} \\ a_n = \frac{v^2}{r} \end{cases} \Rightarrow v = \sqrt{G \cdot \frac{m_M}{r}} : \exists v = 1$
03,25		3- عبارة دور الحركة:
	0,25	$T_{p} = \frac{2 \cdot \pi \cdot r}{v} \Rightarrow T_{p} = 2 \pi \sqrt{\frac{r^{3}}{G \cdot m_{M}}}$
		4- نص القانون الثالث لكبلر: « إن مربع الدور الكوكب عن الشمس » ،
1	0,25 57	$\frac{\frac{T_p^2}{r^3} = 9,21 \times 10^{-13} \text{s}^2 .m^{-3}}{\frac{T_p^2}{r^3} = \frac{4\pi^2}{6 \cdot m_M}} = 9,21 \times 10^{-13} \text{s}^2 .m^{-3}}$
		صفحة 5 من 7

A CONTRACTOR OF THE SECOND SEC	استنتاج قیمهٔ $T_{p}=2,76 imes10^{4}s\simeq7,66\mathrm{h}:\mathrm{T_{p}}$ ای $T_{p}=2,76 imes10^{4}s\simeq7,66\mathrm{h}$
0,25	 5- لكي يكون قمر إصطناعي (S) ثابتا بالنسبة لمحطّة في المريخ يجب أن يتواجد مركز
0,25	المريخ في مستوى المسارالذي يكون يعامد محور دوران المريخ و يكون القمر الإصطناعي في المستوي الاستواني للمريخ. وجهد حرر مهم دهميهم و الهمية المستوي الاستواني للمريخ. وجهد حرر مهم المستوي الاستواني للمريخ.
 0,25	المسنوي الاستواني للمريخ. وحرب $T_s = T_M = 24h$ 37 min

رياضي+رياضيات.	مسعبة: تقتى	الفيزيائية-	مادة: العلوم	ع التاني-	للموضو	النمودجيه	لإجاب

		التمرين التجريبي: (03,5 نقطة)
		1- أ- طبيعة حركة الجسم (S)
	0,25	بتطبيق القانون الثاني لنيوتن مركز عطالة على الجسم (S) في المعلم الأرضي
	0,25	$\sum \vec{F}_{dxt} = m \cdot \vec{a}_G \Leftrightarrow \vec{P} + \vec{R} = m \vec{a}_G$: الذي نعتبره غاليليا
		$a_G = -g \sin \alpha$
	0,25	المسار مستقيم $\overline{a}_{G} = Cste\langle 0 \rangle$ حركة مستقيمة متباطئة بانتظام $\overline{a}_{G} \times \overline{V}\langle \overline{0} \rangle$
	0,25	حرکه مستقیمهٔ متباطئهٔ بانتظام $\overline{a_G} \times \overline{V} \setminus 0$
	0,2 5	ب- المخطط الموافق لحركة الجسم (S) : هو المخطط 3
	0,25	في المرحلة الأولى: $t \in [0,1]s \Rightarrow $
	•	في المرحلة الثانية: $t \in [1,2]$ يغير المتحرك اتجاهه و تصبح حركته متسارعة بانتظام (النزول) $= t \in [1,2]$ قيمة زاوية الميل $= t \in [1,2]$
	0,25	في المجال $t \in [0,1]$: تسارع حركة (S):
	0,25	الميل $=a_1 = \frac{\Delta V}{\Delta t} = \frac{0-3,5}{1-0} = -3,5m/s^2$
		$a_1 = -g \sin \alpha \Rightarrow \sin \alpha = \frac{a_1}{-g} = +0,35$
	0,25	$\Rightarrow \alpha \approx 20,9^{\circ} \approx 21^{\circ}$
		د- المسافة المقطوعة بين اللحظتين 0 و 2s:
	0,25	$d = \frac{1 \times 3.5}{2} + \frac{1 \times 3.5}{2} = 3.5 \text{ m}$
		2-أ - القوى الخارجية المؤثرة على الجسم (S): يخضع الجسم (S) إلى القوى التالية:
	0,25 ° 0,25	ا - قوة ثقله P
	0,25	- قوة التي يؤثر بها المستوى على (S) هي: ﴿ جَمَّ اللَّهِ عَلَى (S) هي: ﴿ جَمَّ اللَّهِ اللّ
	0,20	ب- دراسة حركة مركز عطالة (S):
		بتطبيق القانون الثاني لنيوتن على مركز عطالة (S) في المرجع الأرضى الذي نعتبره غاليليا
		بالإسقاط على المحور (x'x). $\overline{P} + \overline{R_N} + \overline{f} = m \cdot \overline{a_G}$
	0,25	$-P \sin \alpha - f = m \cdot a'_{G}$
		$a'_{G} = -g \sin \alpha - \frac{f}{m}$
	0,25	جـ قيمة التسارع:
<u> </u>		$a'_{G} = -5,3m / s^{2}$

الجمهورية الجزائرية الديمقر اطية الشعسة

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

الديوان الوطني للامتحانات والمسابقات دورة: جوان 2012

المدة: ساعتان ونصف

اختبار في مادة: علوم الطبيعة والحياة

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (10 نقاط)

تعتبر البروتينات جزيئات حيوية ذات أهمية بالغة في العضوية نظرًا لتعدّد أدوارها في الخلية. ولغرض تحديد العلاقة بين بنية البروتين ووظيفته نقترح ما يلي:

I − I − يمثّل الشكل "أ" من الوثيقة (1) البنية الفراغية لجزيئة بروتينية وظيفية تتكون من 125 وحدة بنائيـــة تـــم الحصول عليها باستعمال برنامج Rastop، بينما يمثل الجدول "ب" الصيغ المفصلة للجذور (R) لثلاث وحدات بنائية تدخل في تركيب هذه الجزيئة ورقم تسلسلها، والـ pHi الخاص بكل وحدة.

الجذر R	рНі	الوحدات البنائية	الرقم
$-CH_2$ $-CH_3$	5.98	Leu	15
$-(CH_2)_4 - NH_2$	9.74	Lys	07
-СН ₂ -СООН	2.77	Asp	27

الجدول "ب"

الوثيقة (1)

أ- تعرُّف على المستوى البنائي لهذه الجزيئة، علل إجابتك.

ب- ماذا تمثل هذه الوحدات البنائية ؟

ج- اكتب الصيغة الكيميائية المفصلة لكل وحدة من الوحدات الثلاث (الجدول "ب").

د- صنِّف الأحماض الأمينية الثلاثة وفق جذورها مع التَّعليل.

2- تُظهر الوثيقة (2) نتيجة فصل خليط من هذه الوحدات البنائية باعتماد تقنية الهجرة الكهربائية ضمن درجة حموضة: pH= 5.98 .

أ- اذكر مبدأ تقنية الهجرة الكهربائية المدروسة.

ب- باستغلالك لنتيجة الوثيقة (2) وباستدلال منطقي أنسب إلى البقع (أ، ب، ج) الوحدات البنائية المدروسة في الجدول "ب" من الوثيقة (1).

ج- اكتب الصيغ الكيميائية المفصلة للوحدات المدروسة ضمن السلسلة البروتينية (الشكل "أ" من الوثيقة(1)) في وسط ذي pH= 7.02.

د- ما علاقة سلوك هذه الوحدات بالبنية الفراغية للبروتين؟

II- انطلاقا ممّا توصلت إليه ومعلوماتك، كيف تسمح الوحدات البنائية بتحديد البنية الفراغية للبروتين وبالتالي وظيفته؟

التمرين الثاني: (10 نقاط)

خلال عملية التطعيم ضد مرض الدفتيريا، يتلقى الفرد أناتوكسين دفتيري، فيُطور مناعته خلال بضعة أيام بإنساج جزيئات دفاعية تعمل على إبطال مفعول التوكسين الدفتيري عند الإصابة.

I- تمثل الوثيقة (1) بنية فراغية لجزيئة دفاعية.

1- تعرَّف على هذه الجزيئة، ثم ترجمها إلى رسم تخطيطي تفسيري يحمل البيانات اللازمة.

2- ما هي الطبيعة الكيميائية لهذه الجزيئة؟

3- حدِّد مصدر هذه الجزيئة ومكان تواجدها في العضوية.

4- لإظهار وجود وتدخل هذه الجزيئات تستعمل عادة تقنية الانتشار المناعى. صف باختصار هذه التقنية.

II- لغرض تحديد دور الجزيئات الدفاعية المدروسة أجريت سلسلة من النجارب، تمثّل الوثيقة (2) الشروط التجريبية ونتائجها.

- 1- فسر النتائج المسجلة.
- 2- استخرج الميزة الأساسية لهذه الجزيئات إلتي تبرزها نتائج التجربتين المنجزتين على الفارين (و ()، علل إجابتك.
 - 3- انطلاقا من نتائج هذه التجارب، اشرح كيف تمّ إبطال مفعول التوكسين الدفتيري.
- III يؤدي تدخل الجزيئات الدفاعية المدروسة في نهاية الاستجابة المناعية إلى تشكّل معقدات مناعية، صف باختصار مراحل الظاهرة المؤدية إلى التخلص منها.

الموضوع الثاني

التمرين الأول: (10 نقاط)

لمعرفة آلية التعبير المورثي والعناصر المتدخلة فيه، نقترح الدراسة التالية:

I- التجربة (1): أنجزت هذه التجربة على الأميبا (كائن وحيد الخلية)، نشاطه الحيوي مرتبط بتركيبه لجزيئات وظيفية من طبيعة بروتينية. الشروط التجريبية والنتائج المحصل عليها ممثلة في الوثيقة (1).

النتائج	الشروط التجريبية	المراحل
توقف النشاط الحيوي للأميبا (أ1).	نزع نواة الأميبا (أ ₁)	01
ظهور الإشعاع على مستوى نواة الأميبا (أ2).	حضن الأميبا (أ2) في وسط به اليور اسيل المشع	02
ظهور الإشعاع في الهيولى وعودة النشاط الله الله الماط الميوي للأميبا (أ1).	زرع النواة المشعة المأخوذة من الأميبا (أ2) في خلية الأميبا (أ1) المنزوعة النواة.	03

الوثيقة (1)

- 1- أعط تفسيرًا لنتائج هذه التجربة.
- 2- استنتج الظاهرة التي تعبِّر عنها نتيجة المرحلة (2) من التجربة، دعِّم إجابتك برسم تخطيطي يحمل جميع البيانات.
 - 3- ماذا تستخلص من نتائج هذه التجربة؟

II التجربة (2): تمّ تحضير مزرعتين خلويتين (م1،م2) انطلاقا من نسيج غدي، وزودت المزرعتان بــنفس كمية ونوع الأحماض الأمينية، ثم أخضعت المزرعتان إلى نفس الشروط التجريبية.

- أضيف في اليوم الأول إلى المزرعة (م1) مادة البيروميسين التي توقف نشاط الـ ARNt.
- أعطت نتائج معايرة كمية الأحماض الأمينية الحرة في هيولى خلايا كل من المزرعتين النتائج المدونة في الشكل "أ" من الوثيقة (2).
- من جهة أخرى مكّنت الملاحظة بالمجهر الإلكتروني لهيولى خلية مأخوذة من المزرعة (م2) من الحصول على الشكل "ب" من الوثيقة (2).

	25	20	15	10	05	01	الزمن بالأيام
	1.75	1.5	1	0.9	0.7	0.5	مية الأحماض الأمينية الحرة , هيولى الخلايا المأخوذة من المزرعة (م1) بــ(µg)
	0.10	0.10	0.15	0.2	0.3	0.5	ية الأحماض الأمينية الحرة ي هيولى الخلايا المأخوذة ن المزرعة (م2) بــ(µg)
الشكل "ب"		(0)	الوثيقة		"f	الشكل "	ART WAR

- 1- انطلاقا من نتائج الشكل "أ" من الوثيقة (2).
- أ- مثّل تطور كمية الأحماض الأمينية الحرّة في هيولى خلايا المزرعتين (م1،م2) بدلالة الزمن على نفس المعلم. ب- حلّل المنحنيين المتحصل عليهما.
 - ج- كيف تفسر هذه النتائج؟
 - 2- انطلاقا من الشكل "ب" للوثيقة (2).
 - أ- أعط عنوانا مناسبا لهذا الشكل.
 - ب- تعرَّف على الظاهرة المدروسة، مدعِّما إجابتك برسم تخطيطي تفسيري لها يحمل البيانات اللازمة.

التمرين الثاني: (10 نقاط)

أظهرت العديدُ من الدراسات أن للخلايا اللمفاوية T دورا أساسيا في الاستجابة المناعية الخلوية.) ﴿ أَنْ اللَّهُ ف وبهدف التَّعرف على آلية تدخلها، نقترح الدراسة التالية:

> I- بغرض تحديد شروط تدخل الخلايا اللمفاوية T في القضاء على الخلايا المصابة بفيروس التهاب السحايا، أجريت سلسلة تجارب على مجموعة من الفئران تتتمى إلى نفس السلالة.

استعمل في هذه التجارب الكروم المشع (⁵¹Cr) الذي يتثبت على البروتينات الهيولية للخلايا، أمّا الكروم الذي لا يتثبت يمكنه أن يخرج عبر الغشاء الهيولي بظاهرة الانتشار التلقائي، حيث لا تتعدى نسبة خروجه بهذه الظاهرة 30%.

التجارب ونتائجها ملخصة في الوثيقة (1).

1- ما الغرض من تقدير كمية الكروم المشع في نهایة کل تجربة ؟

> 2- حدد نوع اللمفاويات T المستخلصة من الفئران في التجربتين ٥ و ٥.

3- كيف تفسّر النتائج المتحصل عليها ؟

الوثيقة (1)

II- مكنت الملاحظة بالمجهر الإلكتروني لعينة من خلايا الوعاء الأول في بداية الحضن من الحصول على الشكل "أ" من الوثيقة (2) أما الشكل "ب" فيمثل رسما تخطيطيا تفسيريا للشكل "أ".

الوثيقة (2)

- 1- سمِّ هذه المرحلة من الاستجابة المناعية.
- 2- تعرَّف على البيانات المرقمة من 1 إلى 6 في الشكل "ب".
- 3- مثل بواسطة رسم تخطيطي تفسيري يحمل كافة بيانات المرحلة الموالية لها.

الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2012

الشعبة: رياضيات

المادة : علوم الطبيعة والحياة

لامة	العا	(this coincill allast unlic	محاور
المجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	الموضوع
03.75		التمرين الأول : (10 نقاط) 1	- I
	0.50 3x0.25	أ ـ التعرف على المستوى البنائي للجزيئة: بنية ثالثية	500.0
		من سنسلة واحدة α و α و α بنيات ثانوية من النمط α و α و α بها عدة مناطق انعطاف (انطواء)	*)
	0.25 3x0.25	ب ـ تمثّل هذه الوحدات أحماض أمينية	
		Asp : حمض الأسبارتيك Leu : الليزين H ₂ N-CH-COOH	
	6x0.25	د ـ تصنيف الأحماض الأمينية الثلاثة : - اللوسين Leu : ـ حمض أميني متعادل - اللوسين Leu : يمتلك وظيفة حمضية واحدة ووظيفة أمينية (قاعدية) واحدة - الليزين Lys : ـ حمض أميني قاعدي - الليزين المتعلى : يمتلك وظيفتين أمينيتين (قاعديتين) ووظيفة حمضية واحدة - حمض الأسبارتيك Asp : ـ حمض أميني حامضي - التعليل : يمتلك وظيفتين حمضيتين ووظيفة أمينية (قاعدية) واحدة:	
05.25	0.50	 أ - ذكر مبدأ تقنية الهجرة الكهربانية: تعتمد على هجرة الأحماض الأمينية ضمن مجال كهرباني حسب شحنتها الكهربانية الناتجة عن pH الوسط. 	
	3x0.75	ب - نسب الوحدات البنانية إلى البقع: * عدم هجرة الحمض الأميني الممثل بالبقعة (أ) إلى أي من القطبين يدل على أنه متعادل كهربانيا ، يدل على أن pHi هذا الحمض يساوي pH الوسط ، ومن خلال الجدول يتبين أن pHi الحمض الأميني يدل على ال pH الوسط ، وبالتالي البقعة (أ) توافق الحمض الأميني اللوسين Leu * هجرة الحمض الأميني (ب) إلى القطب السالب يدل على أنه يحمل شحنة موجبة ، ومنه pHi هذا الحمض أكبر من pH الوسط ، ومن خلال الجدول يتبين أن الحمض الأميني المعنى بالبقعة (ب) هو حمض الليزين Lys. * هجرة الحمض الأميني (ج) نحو القطب الموجب يدل على أنه يحمل شحنة سالبة ، ومنه pHi هذا الحمض أقل من pH الوسط ، ومن خلال الجدول يتبين أن الحمض الأميني المعنى بالبقعة (ج) يوافق المحمض أقل من pH الوسط ، ومن خلال الجدول يتبين أن الحمض الأميني المعنى بالبقعة (ج) يوافق	
	3x0.50	Asp : حمض الاسبارتيك المفصلة للأحماض الأمينية المدروسة : (مقم 7) الليزين : Lys (مقم 7) حمض الاسبارتيك Asp (مقم 7) حمض الاسبارتيك Leu (مقم 27) -HN-CH-CO- -HN-CH-CO- CH ₂ CH ₂ CH ₂ CH-CH ₃ CH ₃	

141

باة الشعبة	الطبيعة والحا	المادة : علوم	ة النموذجية	تابع الإجاب
------------	---------------	---------------	-------------	-------------

ىمة		عناصر الإجابة (الموضوع الأول)	محاور
المجموع	مجزأة	معاصر (بهجابه (الموطنوع ١٠ون)	لموضوع
01	2x0.50 2x0.50	د ـ علاقة سلوك هذه الوحدات بالبنية الفراغية للبروتين :	- II
1.75	0.25	التمرين الثاني: (10 نقاط) 1	- I
0.50	0.5 01	البيانات : البيانات : 3 1 - جزء متغير 2 - جزء ثابت 4 - جسور ثنائية الكبريت المستضد 5 - مسلمة ثقيلة 6 - ماسلة ثقيلة 7 - منطقة التثبيت على البالعات 7 - الطبيعة الكبيرة من نوع 7 غلوبيلين "IgG"	
01	2x0.50	2 - الطبيعة الخيميانية للجسام المصادة : جريبات من طبيعة برونينية من نوع م طويونين ١٩٥٠ 3 - تحديد مصدر الأجسام المضادة و مكان تواجدها : - المصدر : الخلايا البلازمية " بلاسموسيت " - مكان تواجدها : أساسا في الدم و اللمف	
01	4x0.25	 4 - وصف تقنية الانتشار المناعي: تتم حسب الخطوات التالية	<u>.</u>
02	4x0.50	1 - تفسير النتائج المسجلة: الفأر "1" بقاء الحيوان حيا يفسر بوجود أجسام مضادة للتوكسين الدفتيري في المصل المحقون أدت إلى إبطال مفعول هذا التوكسين. الفأر "2" موت الحيوان نتيجة تأثير التوكسين الدفتيري نظرا لغياب الأجسام المضادة في الرشاحة المحقونة بسبب إرتباطها مع الأناتوكسين الدفتيري المثبت على المسحوق العاطل. الفأر "3" بقاء هذا الحيوان حيا يفسر بوجود أجسام مضادة للتوكسين الدفتيري في الرشاحة المحقونة أدت إلى إبطال مفعول هذا التوكسين. - الفأر "4" بقاء الحيوان حيا يفسر بوجود أجسام مضادة للتوكسين الدفتيري في الرشاحة المحقونة أدت إلى إبطال مفعول هذا التوكسين	- II

	باضيات	بع الإجابة النموذجية المادة : علوم الطبيعة والحياة الشعبة: ريا	تاه
دمة		عناصر الإجابة (الموضوع الأول)	محاور
المجموع	مجزأة	(55- (55-5-) 1.1)	الموضوع
0.75	0.25	2	
01	2x0.50	3 ـ شُرَح كيفية إيطال مفعول التوكسين الدفتيري: ـ يرتبط الجسم المضاد بالمستضد (التوكسين الدفتيري) لوجود تكامل بنيوي عال بين موقع تثبيت المستضد للجسم المضاد و محدد المستضد (التوكسين الدفتيري) ـ ينتج عن هذا الإرتباط (تشكل المعقد المناعي) إبطال مفعول التوكسين الدفتيري و ترسيبه و بالتالي منع إنتشاره	
02	4x0.50	وصف بنعمة المعقد المناعي: يتم حسب المراحل التالية يتثبت المعقد المناعي على المستقبلات الغشائية النوعية للبلعميات الكبيرة بفضل التكامل البنيوي بين هذه المستقبلات و الجزء الثابت من الجسم المضاد يحاط المعقد المناعي بثنية غشائية (أرجل كاذبة) يتشكل حويصل اقتناص يحتوي على المعقد المناعي يغرب المعقد المناعي بالإنزيمات الحالة التي تصبها الليزوزومات في حويصل الاقتناص و التخلص	- III
		من الفضلات عن طريق ظاهرة الإطراح	
14	43		

		بع الإجابة النموذجية المادة: علوم الطبيعة والحياة الشعبة: ريا	تاب
لمة المجموع	العا مجزأة	عناصر الإجابة (الموضوع الثاني)	محاور الموضوع
		التمرين الأول (10 نقاط)	-I
0 2	0.5	1 ـ تفسير نتائج التجربة : ـ المرحلة 01 : توقف النشاط الحيوي للأميبا " أ1" يفسر بعدم قدرته على تركيب البروتينات اللازمة للنشاطات الحيوية التي تتطلب وجود النواة	
	0.5	- المرحلة 02 : ظهور الإشعاع على مستوى نواة الأميبا " أ2" يفسر بدخول اليوراسيل إلى الخلية ودمجه في بناء جزينات ال-ARN على مستوى النواة	
	0.5	ـ المرحلة 03: * ظهور الإشعاع على مستوى الهيولى دليل على هجرة الـARN المصنع من النواة الى الهيولى الى الهيولى	
01.75	0.5	الحيوية إنطلاقا من الـARN	
	1.5	- الرسم التخطيطي لظاهرة الإستنساخ: ARNm بوابعيران عمر المستنسان	
		AZIAZAAKA CONTRACTORIA CONTRACT	
		المراجعة الم	
0.1		اتحاد النبينخ الرسول ARNm	
01	•••••	2- الإستخلاص:	
	0.50	المعلومة الوراثية [ADN] * مرحلة الترجمة و تحدث على مستوى الهيولي و يتم خلالها تركيب بروتينات انطلاقا من الهيولي	
02.75	1	1 - تمثيل تطور كمية الأحماض الأمينية الحرة في هيه لي خلايا المزرعتين:	- II
		لا (μg) من المسلم ال	
		0.50 - الخلاف المنظولاة عن الخلاف المنظولاة عن	
		10 20 30	
			7 /

	ضيات	بع الإجابة النموذجية المادة : علوم الطبيعة والحياة الشعبة: ريا	تا
لامة		عناصر الإجابة (الموضوع الثاني)	محاور
المجموع	مجزأة		الموضوع
02.50	0.5 0.25 1.75	ب - تحليل المنحنيين المحصل عليهما : - في بداية التجرية "اليوم الأول " تقدر كمية الأحماض الأمينية الحرة في هيولى خلايا المزرعين المحصل عليهما : - في م1 نلاحظ تزايد كمية الأحماض الأمينية الحرة في الهيولى تدريجيا مع مرور الزمن حيث بلغت على م2 نلاحظ تناقص كمية الأحماض الأمينية الحرة في الهيولى تدريجيا مع مرور الزمن حيث بلغت على 0.10 بق اليوم 25 . - تقسير النتائج : - تقسير النتائج : - نفسر تزايد الأحماض الأمينية الحرة في خلايا " م1 " بدخولها من الوسط الخارجي و تراكمها في الهيولى لعدم دمجها في السلاسل البروتينية نظرا لغياب الـ ARN۴ . - نفسر تناقص الأحماض الأمينية الحرة في خلايا " م2" بدخولها من الوسط الخارجي و دمجها في السلاسل الببتيدية نظرا لتوفر مستزمات الترجمة منها الـ ARN۴ . - المعوان : صورة مأخوذة عن المجهر الإلكتروني لمتعدد الريبوزوم . الرسم التخطيطي التفسيري : المسلمة التفسيري : المسلمة التفسيري : المسلمة المحلول التفسيري :	
01 01	01 2x0.5	التمرين الثاني (10 نقاط) 1 - الغرض من تقدير كمية الكروم المشع: تقييم مدى فعالية الاستجابة المناعبة المدروسة	- I
04	2 0.50 0.50 0.50 0.50	3 - التفسير: - الوعاء الأول: النسبة المنوية للكروم المشع المحرر في السائل الطافي أكبر من 60% و يفسر ذلك بتخريب الخلايا المصابة بفيروس إنتهاب السحايا مما أدى إلى تحرير الكروم المثبت على البروتينات الهيولية كون الخلايا اللمفوية T المضافة تحتوي على LTC التي سبق لها أن تعرفت على نفس المستضد. - الأوعية 2 و 3 و 4: النسبة المنوية للكروم المشع المحرر في السائل الطافي لا تتعدى 30% و هي الكمية التي تخرج عن طريق الإنتشار التلقائي دلالة على عدم تخريب الخلايا في نفس و نفسر ذلك: - في الوعاء الثاني: عدم تخريب الخلايا بالرغم من وجود LTC لاتها غير مصابة المنافة ملخوذة من الفار © " الشاهد " غير محسسة المضافة ملخوذة من الفار © " الشاهد " غير محسسة في الوعاء الثالث: عدم تخريب الخلايا بالرغم من وجود LTC لاتها غير مصابة	
0.50 01.50	0.50 0.50 6x0.25	ا عبر الرحمة المرحلة : مرحلة التنفيذ " الرد المناعي ". استجابة مناعية ذات وساطة خلوية	- II

	اضيات	ع الإجابة النموذجية المادة: علوم الطبيعة والحياة الشعبة: ريا	تاد
دمة			محاور
المجمو	مجزأة	عناصر الإجابة (الموضوع الثاني)	موضوع
02		3	1 1 3
	01	الرسم التخطيطي :	
	n _e ×		
	100 10 ¹⁷⁰	مر خروج محتویات الخلیة	
	- 2		8
	-1 -1		
		ittelerable an	
	04	تقجير العَلْية بَمَتِمَة طَرِالِيةَ * ﴿	
	01	البياتات :	
		- إفراز بروتين البرفورين - إحداث ثقوب في غشاء الخلايا المصابة	
		al at the same	
		- دخون المعاع - تخريب الخلية المصابة بصدمة حلولية	
-			
		İ	
į.			
	8		
2			
			1 1 10
			16
1	- 8		

لامة	العا	عناصر الإجابة	ور ا	المحا
المجموع	مجزأة			
		الأول: هل يمكن للحادثة التاريخية أن تكون موضوعا للدراسة العلمية ؟	نبوع	موط
		- مدخل: التطور الحاصل في مجالي الفيزياء والبيولوجيا والذي يعزى إلى تطبيق		
	01	المنهج التجريبي، دفع بالدارسين للظواهر الإنسانية إلى محاولة تطبيق المنهج ذاته		ঘ
		على الحادثة التاريخية.		ر ط
04	01	- المسار: إبراز العناد الفلسفي حول إمكانية دراسة الحادثة التاريخية علميا.		المشكاء
	01	- المشكلة: هل يمكن الإرتقاء بالدراسات التاريخية إلى مستوى الدقة العلمية؟	,	7
	01	 إنسجام النقديم مع الموضوع + سلامة اللغة. 		
	01	الأطروحة: لا يمكن إخضاع الحادثة التاريخية للدراسة العلمية.		
		البرهنة: عرض مختلف العوائق الإبستيمولوجية (سواء ما تعلق منها بموضوع		
04	01	الدراسة أو ما تعلق بذات الباحث).	7.	
	0,5	- توظيف الأمثلة والأقوال.	الإول	
	01	نقد: وجود هذه العوائق لم يمنع من فهم طبيعتها ومن ثمة تجاوزها.		a
	0,5	- سلامة اللغة.		محاهلة
	01	النقيض: يمكن در اسة الحوادث التاريخية در اسة علمية.		
	01	البرهنة: تكييف المنهج بما يتوافق والحادثة التاريخية (التحليل والتركيب والبناء).	.	-
04	01	 الأمثلة والأقوال المأثورة + سلامة اللغة. 	175	حسار المشكلة
	01	نقد: تجاوز هذه العوائق لم يُمكِّن من تحقيق الدقة اللازمة المتاحة في علوم الطبيعة.		
	01	التركيب: الإشارة إلى التوفيق بين الرأيين.		
	01	- بناء الموقف الشخصي.	14,3	
04	01	- تبرير الموقف الشخصي.	177	
	01	– الأمثلة والأقوال المأثورة .		53
	01	الاستنتاج: الدقة العلمية ممكنة في التاريخ في حدود طبيعة الحادثة وخصوصياتها.		
	01	- مدى انسجام الحل مع منطوق المشكلة.		4
04	01	- مدى وضوح الحل.		حل المشكلة
	0,5	- الأمثلة والأقوال المأثورة.		1
	0,5	- سلامة اللغة.		
20/20	20/20	رع المالية الم)	مجه

الإجابة النموذجية وسلم التنقيط ــ مادة: الفلسفة ـ شعبة: العلوم التجريبية + الرياضيات بكالوريا دورة: جوان 2012

لمحاور	عناصر الإجابة	العلامة		
		مجزأة	مجموع	
موصو	الثاني: دافع عن صحة الأطروحة القائلة: «إن أصل المفاهيم الرياضية هو العقل».			
-A	الفكرة الشائعة: المفاهيم الرياضية مستوحاة من الواقع الحسي.	01	}	
47	نقيضها: يرى العقليون أن المفاهيم الرياضية صناعة عقلية خالصة.	01		
المشكلة	طرح المشكلة: كيف يمكن الدفاع عن صدق هذه الأطروحة ؟	01	04	
17	- ضبط المشكلة من حيث الصيغة.	0,5		
	- سلامة اللغة.	0,5		
	عرض منطق العقليين: المفاهيم الرياضية إبداع عقلي.	01		
	المسلمات: أصل المعرفة هو العقل.	0,5		
5	البرهنة: التحليل والتركيب والتجريد عمليات عقلية يعتمدها الرياضي.	01.5	04	
3	(أو أي برهان آخر يراه المترشح يخدم الموضوع).	01.5	04	
	- توظيف الأمثلة والأقوال.	0,5		
٠,	- سلامة اللغة.	0,5		
1 1920	الحجة الشخصية: تقديم المترشح لحجج تصب في سياق قَبْلِية المفاهيم الرياضية.	01		
į į	 دور الرياضيات في إثبات الحقائق الميتافيزيقية. 	01		
المريمة	- الاستئناس بمذاهب فلسفية: _ أفلاطون _ ديكارت _ كانط.	01	04	
ار ان	- توظيف الأمثلة والأقوال المأثورة.	01		
	ملحظة: يمكن للمترشح أن يرتب الحجج الشخصية بعد منطق الخصوم.			
	منطق الخصوم: المفاهيم الرياضية مستوحاة من الواقع الحسّي.	01		
5	نقد منطقهم شكلا ومضمونا :الحسيّون لا يفرقون بين المفهوم الرياضي وما يقابله			
1	في الواقع على غرار خلطهم بين مفهومي العدد والمعدود.	01+01	04	
	 توظیف الأمثلة والأقوال. 0.5 سلامة اللغة. 0.5 	01		
	– قابلية الموضوع للدفاع عنه والأخذ به.	01		
4	- انسجام الخاتمة مع منطق التحليل.	01		
حل المشكلة	- مدى تناسق الحل مع منطوق المشكلة.	01	04	
A	– توظيف الأمثلة والأقوال.	0,5		
	- سلامة اللغة.	0,5		
جم_	E. 9	20/20	20/20	

الإجابة النموذجية وسلم التنقيط ـ مادة: الفلسفة ـ شعبة: العلوم التجريبية + الرياضيات بكالوريا دورة: جوان 2012

العلامة		عناصر الإجابة	,,	المحار
مجموع	مجزأة			
		الثالث: (النص) فولكيي	ينوع ا	الموم
	01	السياق الفلسفي: اختلاف الفلاسفة حول حقيقة العلاقة بين الحرية والحتمية.		
	01,5	المشكلة: هل الحرية والحتمية متعارضتان ؟		ا ط
04	0,5	- صحة المادة المعرفية.		طرح المشكلة
	0,5	- انسجام التقديم مع الموضوع.		\frac{1}{2}
	0,5	 سلامة اللغة. 		
A-580-18 1165-	01,5	الموقف: الإقرار بتكامل الحرية مع الحتمية وتلازمهما.	_	
04	01	شكلا: الاستئناس بعبارات النص (يبدو أن الحرية إبطال الأخرى).	4	
04	01	مضمونا: (من وحي روح النص).	الأفيل	
	0,5	– سلامة اللغة.		
	01	الحجة: لأن الحتمية شرط لممارسة الحرية، والحرية شرط الكتشاف قوانين العالم.		3
	0,5	شكلا: (الاستئناس بعبارات النص).	7.	1
04	01	مضمونا: (من وحي روح النص).	الجزء الثاتي	1
	01	التمثيل للحجة: الاستعانة بمثال الحصان والسيارة.	15	محاولة حسل المشكلة
	0,5	– سلامة اللغة.		.
	01,5	نقد وتقويم: بعض الظواهر أقوى من أن تتحكم فيها الحتميات. (ظهور مبدأ	5.	
04		اللاحتمية).	0.000	
	01,5	- تقييد الحرية بالحتميات إفراغ لمحتواها (الحرية).	7	
	01	- تأسيس الرأي الشخصي وتبريره.		
	01	- مدى انسجام الخاتمة مع التحليل.		
	01	 مدى تناسق الحل مع منطوق المشكلة. 		4
04	01	- مدى وضوح حل المشكلة.		حل المشكلة
	0,5	- توظيف الأمثلة والأقوال المأثورة.	,	7
	0,5	– سلامة اللغة.		
20/20	20/20	E 9	<u> </u>	المجم

32

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2012

امتحان بكالوريا التعليم الثانوي

الشعب (ة): علوم تجريبية، رياضيات، تقني رياضي، تسيير واقتصاد

المدة: ساعتان ونصف

اختبار في مادة:اللغة الانجليزية

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

PART ONE: Reading

(15pts)

A/ Comprehension

(08pts)

Read the text carefully then do the activities.

There is a new phrase appearing in business language. It is the concept of Triple Bottom Line, a concept that recognises that there are three legs to the measurement of a company's performance - these being social, environmental and financial. Put in a more friendly way, it is about 'people, planet and profits'. This concept recognises that a company cannot be judged by financial performance alone.

Furthermore, it also recognises that the three legs are linked. It is not sufficient, however, just to talk about Triple Bottom Line as a 'fashionable' concept. For those of us who see this concept as the way of the future, it is also necessary to 'walk the talk' and translate this concept into the reality of running a

business such as ours.

In business, we have traditionally been taught to only present the Company in the best possible light, particularly to that important group of stakeholders - the customer. It's hard to be honest and self critical in a public way. It's easy to highlight your successes but hard to highlight your failures and your areas for improvement. In the case of a private company, it is also hard to publicly reveal <u>its</u> financial information.

Hubbard Foods Ltd. (New Zealand) 'Chief Executive Officer's Statement'

1. Circle the letter that corresponds to the right answer.

The text is a:

a. newspaper article

b. speech

c. letter

- 2. Are these statements true or false? Write T or F next to the letter corresponding to the statement.
 - a. The Triple Bottom Line is a new concept in today's business.
 - b. Financial profit is the only way to measure a company's performance.
 - c. The three legs of the Triple Bottom Line are inter-related.
 - d. It is not easy for a private company to present publicly its financial situation.
- 3. Answer the following questions according to the text.
 - a. Which aspects does the Triple Bottom Line concept refer to?
 - b. Does the speaker intend to apply the new concept in the management of his company? Justify.
 - c. Why is it easier to highlight successes than failures?
- 4. In which paragraph is it mentioned that:
 - a. The Triple Bottom Line concept should be applied in business management?
 - b. Managers generally show only the positive sides of their companies?
- 5. What or who do the underlined words refer to in the text?
 - a. it (§2)

b. <u>its</u> (§3)

B/Text Exploration

(07pts)

1. Find in the text words that are closest in meaning to the following.

a. idea (§1)

b. enough (§2)

c. client (§3)

2. Complete the chart as shown in the example.

5000-0-00000	Verb	Noun	Adjective
Example:	to perform	performance	performed
	***************************************		financial
		measurement	
	to translate		

3. Join each pair of sentences with one of the connectors from the list. Make any necessary changes.

in order to - therefore - provided that - because

a. -Some companies are unethical.

- It's hard for them to reveal their financial situation.

b. - A company will act responsibly.

-It will gain the confidence of its stakeholders.

4. Classify the following words according to the pronunciation of their final's'.

legs - profits - recognises - failures - groups - judges

/s/	/ z /	/iz/
e: ¥		

5. Reorder the following sentences to make a coherent paragraph.

a. It also contributes to the economic progress of its community.

b. to improve its business performance,

c. Responsible business conduct allows an enterprise

d. make profits, and meet its stakeholders expectations.

PART TWO: Written Expression

(05pts)

Choose **ONE** of the following topics:

Topic One: Using the notes below, write a composition of 120 -150 words on the following:

Social responsibility has become an important factor to judge a company's performance. Being socially responsible involves:

- be ethical/ comply with business regulations

- meet the expectations of the stakeholders (customers, employees, etc.)

- contribute to the general welfare of the community

- preserve the environment

Topic Two: Write a composition of 120-150 words on the following:

Food safety is a major issue in our life.

As a well-informed citizen, what daily precautions should you take to stay healthy and avoid the risk of contamination from the various products you consume?

الموضوع الثانسي

PART ONE: Reading A/ Comprehension

(15pts)

Read the text carefully and do the activities.

(08pts)

Quasars are extremely distant objects in our known universe. They are the furthest objects away from our galaxy that can be seen. Quasars are extremely bright masses of energy and light, but because they are so far away, they appear as faint red stars to us here on Earth. The name quasar is actually short for quasi-stellar object.

A quasar is believed to be a super massive black hole surrounded by an accretion disk, which is a flat, disk-like structure of gas that rapidly spirals around a larger object, like a black hole. A quasar gradually attracts this gas and sometimes other stars or even small galaxies with their super strong gravity. When these objects get sucked into the black hole, the result is a massive collision that causes a gigantic explosive output of radiation energy and light. This results in a flare, which is a distinct characteristic of quasars.

Once the light and radiation from these galaxies and stars are absorbed into a black hole, they travel billions of light years through space. When we look at quasars which are 10-15 billion light years away, we are looking 10-15 billion years into the past.

Astronomyforkids.com

1. Circle the letter that corresponds to the right answer. The text is: a. narrative

b. descriptive

c. argumentative

- 2. Write the letter which corresponds to the right answer.
 - A. Quasars are....
 - a. the nearest objects to our galaxy.
 - b. not very far from our galaxy.
 - c. the most distant objects from our galaxy.
 - B. A quasar..... disk-like structure of gas.
 - a. attracts
- b. releases

c. emits

- C. Quasars are....
 - a. 10 -15 billion miles away.
 - b. 10 -15 million light years away.
 - c. 10 15 billion light years away.
- 3. Answer the following questions according to the text.
 - a. Why do quasars appear to us as faint red stars?
 - b. What effect does the massive collision of matter have?
 - c. How is the distance in the outer space measured?
- 4. Choose the general idea of the text.
 - a. The formation of quasars.
 - b. The location of quasars.
 - c. General description of quasars.
- 5. What or who do the underlined words refer to in the text?
 - a. <u>they(§1)</u>
- b. these objects (§2)
- c. we (§3)

B/	T	ext	Exp	lora	ation

(07pts)

1. Find in	the text words	that are opp	osite to the	e following.
------------	----------------	--------------	--------------	--------------

a. close (§1)

b. weak (§2)

c. tiny (§2)

d. released (§3)

2. Divide the following words into roots and affixes.

disappearance - extremely - radiation - unidentified

prefix	root	suffix

3. Rewrite sentence (b) so that it means the same as sentence (a).

1. a. A quasar is believed to be a super massive black hole.

b. We....

2. a. Quasars are the furthest objects from our galaxy.

b. No other object is....

4. Classify the words according to the number of their syllables.

structure - sucked - gravity - billion

One Syllable	Two Syllables	Three Syllables

5. Imagine what 'A' says and complete the following dialogue.

B: No, quasars are the farthest stars from our galaxy.

A:

B: They are 10-15 billion light years away.

A:

B: They are visible to us as faint red stars.

PART TWO: Written Expression

Choose **ONE** of the following topics:

(05pts)

Topic One: Using the notes below, write a composition of 120-150 words to describe the planet Mercury.

- Mercury: the Roman version of the god Hermes

- very small planet/ the closest to the sun/ the hottest planet
- diameter: 4876 km / orbits the sun: 87.969 days
- looks like the moon/ has craters and basins
- no air/ no water/ presence of hydrogen and helium gases

<u>Topic Two:</u> Young people who are addicted to fast foods are the most likely to become obese. Write a composition of 120-150 words stating the main causes of obesity, its dangers and how to control it.

المدة: ساعتان ونصف.

الشعبة/السلك (*): . ع ت/ريا/ ت ر/ ا ق....

المادة : اللغة الإنجليزية

نمة	العلا		/ h & h				
مجموع	مجزأة		ابة (الموضوع الأول)	عناصر الإج			
•		PART ONE: Reading (15pts) There is a new phrase					
08 pts 01 pt 02 pts 03 pts	01 0.5x4 01x3	 The text is: b. a sp a. True b. False a. It refers to social profits. b. Yes, because for him 	3. a. It refers to social, environmental and financial aspects/ people, planet and				
1 pt	0.5 x 2	c. Because it's hard to	o be honest and self critic	as ours.			
01 pt	0.5x2	b. in §35. a. this concept (Tripleb. a private company					
07 pts	0.5x3	B/ Text Exploration 1. a. concept 2.		c. customer			
01.5 pt	0.25x6	verb	noun	adjective			
		to finance	finance / financier				
		to measure	••••••	measurable/ measured			
			translation/translator	translated/ translatable			
01 pt	0.5 x2	financial situation/ reveal their financi	 3. a. Some companies are unethical; therefore, it's hard for them to reveal their financial situation/ Because some companies are unethical, it's hard for them reveal their financial situation. b. Provided that a company acts responsibly, it will gain the confidence of its stakeholders 				
01.5pts	0.25x6	4.					
		/s/ profits		/iz/			
		groups	legs failures	recognises judges			
01.5pts	0.5x3	5. 1. c 2. b 3. d					
05 pts		PART TWO: Written Expression: (05 pts) Topic 1: form: 03pts. content: 02 pts Topic 2: form: 2.5pts content: 2.5pts.					

العلامة		(121 0 2 2 2 1) 2 1 2 1 2 1 2				
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)				
08 pts	7	PART ONE: Reading (15pts) A/ Comprehension (08pts) Quasars are extremely				
1 pt 1.5pts 3 pts	01 0.5x3 01x3	 b. descriptive A. c B. a C. c a. Because they are so far away/ the furthest objects away from our galaxy. b. The massive collision of matter causes a gigantic explosive output of radiation, energy and light. The result is a massive collision that causes a gigantic explosive output of radiation energy and light. c. The distance in the outer space is measured in light years. c a. they: quasars/distant (furthest objects) b. these objects: gas, other stars and small galaxies. c. we: readers/people/astronomers, etc. 				
1 pt 1.5 pt	01 0.5x3					
07 pts		B/ Text Exploration(07pts)				
1 pt 2 pts	0.25x4 0.5x4	1. a. distant/far b. strong c. gigantic/ massive d. absorbed 2.				
	(each line)		prefix	root	suffix	
			dis	appear	ance	
				extreme	ly	
				radiate/ radiat	ion	_
		KC (C - 2)	un	identify/ identifi	ed	
1.5 pt	0.75x2	 3. b. 1. We believe a quasar to be a super massive black hole. We believe that a quasar is a super massive black hole. b. 2. No object is further /farther/more distant than quasars in our galaxy. 				
1 pt	0.25x4	4. Sound system: - One syllable: sucked - Two syllables: structure, billion - Three syllables: gravity				
1.5 pt	0.5x3	5. A1: Are quasars near /close to our galaxy? A2: How far/distant are they from us? A3: How do they appear to us? (NB. Accept any correct answer)				
05 pts		PART TWO: Written Expression (05 pts) Topic 1: form: 03 pts Content: 02 pts				
		Topic 2: form: 2.5 pts content: 2.5 pts				

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات و المسابقات

امتحان بكالوريا التعليم الثانوي دورة: جوان 2012

الشعب: علوم تجريبية، رياضيات، تقني رياضي، تسيير واقتصاد.

اختبار في مادة : اللغة العربية و آدابها

وزارة التربية الوطنية

المدة : 02 سا و 30 د

على المترشِّح أن يختار أحد الموضوعين التّاليين:

الموضوع الأول

«عابرون في كلام عابر»

النّص:

أيها المارون بين الكلمات العابرة منكم السبّيفُ ، ومنَّا دَمُنَّا منكم الفولاذُ والنَّار ، ومنَّا لحمَّنا منكم دَبَّابِةً أخرى ، ومنَّا حَجَرٌ منكم قنبلة الغاز ، ومنا المطر أ وعلينا ما عليكم من سماء وهواء فخُذُوا حصَّتكم من دمنا، وانصرفوا والخلوا حفلَ عشاء راقص.. وانصرفوا فعلينا ، نحن ، أن نحرُسَ ورَد الشهداءُ وعلينا ، نحن ، أن نحيا كما نحن نشاءً!

أيها المارون بين الكلمات العابرة كالغبار المُرا، مروا أينما شئتم ولكن لا تمروا بيننا كالحشرات الطائرة فلنا في أرضنا ما (نعمل) ولنا قمح (نربيه) و (نسقيه) ندى أجسادنا ولنا ما ليس يرضيكم هنا:

حجرٌ.. أو خجل

فخذوا الماضي، إذا شئتم، إلى سوق التّحف

أيها المارون بين الكلمات العابرة كدّسوا أوهامكم في حفرة مهجورة، وانصرفوا وأعيدوا عقرب الوقت إلى شرعية العجل المقدَّس ،

أو إلى توقيت موسيقى المسدَّسُ فلنا ما ليس يرضيكم هنا، فاتصرفوا ولنا ما ليس فيكم ، وطنّ ينزفُ شعبًا ينزفُ وطنا يصلح للنسيان أو للذاكرة

أيها المارون بين الكلمات العابرة آن أن تنصر فوا وتقيموا أينما شئتم، ولكن لا تقيموا بيننا آن أن تنصرفوا وتموتوا أينما شئتم، ولكن لا تموتوا بيننا فلنا في أرضنا ما نعمل ولنا الماضي هنا ولنا صوت الحياة الأول ولنا الحاضر، والحاضر، والمستقبل ولنا الدَّنيا هنا والآخرَهُ فاخرُجُوا من أرضنا من بَرِيّا.. من بَحرنا من قَمحنا.. من مِلحنا.. من جُرحنا من كلُّ شيء، واخْرُجُوا من مفردات الذَّاكرَهُ

أيها المارون بين الكلمات العابرة!

محمود درويش - الأعمال الكاملة.

الأسئلة:

أولا _ البناء الفكريّ: (12 نقطة)

- 1. مَن المُخاطَبُ في النَّصِّ؟ وما مضمون ذلك الخطاب؟ وما الدَّافع إليه؟
- 2. في النّص حقلان دلاليّان: الأوّل يتعلّق بالجلاد، والثاني بالضّحية. مثّل لكلّ حقل منهما بأربعة ألفاظ من القصيدة.
 - 3. بم يوحى توظيف الشَّاعر الضمير «نحن » في النَّصَّ؟
- 4. في النّص نزعة بارزة، وضّحها مبيّنا علاقتها بظاهرة الالتزام، ومُستنبطًا مظهرين من مظاهر الالتزام من القصيدة.
- 5. واجه الشَّاعر أساليب القمع والاضطهاد المسلَّطة على شعبه بنبرة التّحدي. وضمِّح ذلك من النّص.
 - 6. حدّد النّمط الغالب في النّص، ثم اذكر ثلاثة مؤشّرات له مع التّمثيل من القصيدة.

ثانيا _ البناء اللّغويّ: (08 نقاط)

- 1. تنوّعت أساليب الإنشاء في النّص"، استخرج أسلوبين مختلفين مبيّنا نوعيهما وغرضيهما.
 - 2. في النصِّ مظاهر للاتساق، اذكر اثنين منها مع التَّمثيل.
- 3. أعرب لفظة « منكم » الواردة في السلطر الثاني من المقطع الأول، وكلمة « شعبًا » الواردة في السلطر السادس من المقطع الثالث إعرابًا مفصلًا.
 - 4. بيّن المحلّ الإعرابيّ للجمل المحصورة بين قوسين في المقطع الثاني من النّصّ.
 - 5. في العبارتين الآتيتين صورتان بيانيتان، اشرحهما مبيّنا نوعيهما و وجه بلاغتهما:
 - « لا تمرُّوا بيننا كالحشرات الطائرَهُ »
 - « ولنا قمح نُربّیه »

الموضوع الثاني

النَّـصَّ :

«... ليس الابتكارُ في الأدب والفنّ أن تطرق موضوعًا لم يَسبقك إليه سابقٌ، ولا أن تعثر على فكرة لم تخطر على بال غيرك ... إنّما الابتكار الأدبيّ والفنّيّ، هو أن تتناول الفكرة التي قد تكون مألوفة للنّاس، فتُسكِبَ فيها من أدبك وفنك ما يجعلها تنقلب خَلْقًا جديدًا يُبْهرُ العين ويُدهش العقل... أو أن تعالج الموضوع الذي كاد يَبْلى بين أصابع السّابقين، فإذا هو يُضيءُ بين يديكَ، بروح من عندك..

وإذا تأمّلنا أغلب آيات الفنّ، فإنّنا نجد موضوعاتها منقولةً عن موضوعات سابقة موجودة، فالكثير من موضوعات «شكسبير» نُقل عن « بوكاشيو» وبعض « موليير» عن « سكارون»... فإذا عرّجنا على الأدب العربيّ القديم، فإننا نجد في الشعر معنى البيت الواحد وموضوعه، يتنقلان من شاعر إلى شاعر، ويلبسان في كل زمن حلة وصياغة، حتّى اختلف النقاد والباحثون والأدباء فيمن يفضلون: أهو أوّل من طرق الفكرة والموضوع أم من صاغهما وأجراهما على الألسن وأتاح لهما الذيوع؟... على أنّ أرجَحَ الرّأي هو أنّ الموضوع في الفنّ ليس بذي خطر، وليست الحوادت والوقائع في القصص والشعر والتمثيل بذات قيمة، ولكنّ القيمة والخطر في تلك الأشعة الجديدة التي يستطيع الفنّان أن يستخرجها من هيكل تلك الموضوعات والحوادث والوقائع.

إنّ الفنّ ليس في الهيكل، إنّه في الثّوب، والفنّ هو الثّوبُ الجديد الذي (يُلبسه الفنّان) للهيكل القديم...

فالابتكار إذن لا شأن له بفكرة جديدة أو قديمة، غريبة أو مألوفة، ولا بالموضوع الطّريف أو المطروق... وقد تسألني بعدئذ: ما هو الابتكار الفنّي؟ فأقول لك بسرعة وبساطة: (هو أن تكون أنت)، وهو أن تحقّق نفسك، هو أن تُسمعنا صوتك أنت، ونبرتك أنت...»

توفيق الحكيم « فنَ الأدب » [بتصرف].

الأسئلــة:

أولا _ البناء الفكريّ: (12 نقطة)

- 1. ما القضية التي يعالجها الكاتب في نصِّه؟ وما الغرض من ذلك؟
- 2. ما المفهومُ السّائد للابتكار في الأدب والفنّ ؟ وما رأيُ الكاتب فيه؟ وضِّح.
 - 3. هل تؤيد رأي الكاتب ؟ لماذا؟

- 4. وظَّف الكاتب _ للدّفاع عن رأيه _ جملة من وسائل الإقناع. أذكر ثلاثاً منها، ثم مثل لها من النّص.
 - 5. ضمن أيِّ فن نثريّ تُصنِّفُ هذا النّص؟ عرِّفْه بإيجاز ثم اذكر خاصيتين له.
 - 6. لخص مضمون النّص.

ثانيا _ البناء اللّغوي: (08 نقاط)

- 1. تكررت « إذًا » في النّص بمعنيين مختلفين، بيّن معنى وإعراب كلِّ منهما.
 - 2. أعرب كلمة « الأشعة » في قول الكاتب « في تلك الأشعة الجديدة ».
 - 3. بيّن المحلّ الإعرابيّ للجملتين المحصورتين بين قوسين.
- 4. في العبارتين الآتيتين صورتان بيانيتان، اشرحهما مبيّنا نوعيهما و وجه بلاغتهما:
 - « أن تعالج الموضوع الذي كاد يَبلى بين أصابع السابقين »
 - « الفنّ هو الثوبُ الجديدُ »
 - 5. ما النَّمط الغالبُ على النَّصِّ ؟ علَّل حكمك بمؤشَّرين اثنين.

نة	العلاه	(1 St
المجموع	مجزأة	عناصر الإجابة (الموضوع الاختياري الأول)
		البناء الفكري: (12 نقطة)
	01	1. المخاطب في النّص هو العدو الصّهيونيّ .
	0.5	 مضمون ذلك الخطاب هو رفض المحتل ، وإصرار على إخراجه من أرض فلسطين.
	0.5	- الدافع إلى ذلك هو رغبة الشاعر في تطهير أرض فلسطين من المحتل الصهيوني
		ليعيش شعبه حرًا كريمًا فوق أرضه.
		2. الحقلان الدلاليان:
	4×0,25	أ . الجلاد: (السيف - الفو لاذ - النّار - الدبابة _ قنبلة الغاز).
	4×0,25	ب. الضحيّة: (دمنا - الشهداء - الجرح - أجساد).
		(للمترشح الحرية في اختيار أربع مفردات).
		3. يوحي توظيف الشاعر الضمير «نحن » في النص ب:
	2×01	- إثبات الذَّات والحضور، والتعبير عن انتماء الشاعر إلى شعبه، وإيمانه بقضيته الوطنية
12		العادلة باعتباره لسان قومه المعبّر عن حاله (التعبير عن الضمير الجمعيّ.)
		4. النزعة البارزة في النص هي النزعة الوطنية التحررية.
	2×0,5	علاقتها بالالتزام: هي علاقة ترابط وثيق، فمن شروط الالتزام المساهمة في تحرير
		البلاد من قبضة المحتل، وتسخير الأدب لهذه الغاية.
	2.05	من مظاهر الالتزام في النص: - تبني الشاعر قضية وطنه.
	2×0,5	 الوقوف إلى جانب شعبه للتعبير عن آلامه و آماله.
		- رفض الشاعر الصريح للمحتل.
2		- سعيه إلى تغيير الواقع السياسي لبلاده وتكريس شعره وسيلة لذلك .
8		- تعبير الشاعر عن الضمير الجمعي لشعبه (نا، نحن).
	2×0,75	ملحوظة: يكتفي المترشح باستخراج مظهرين.
		5. من أساليب القمع: استخدام كل أنواع الأسلحة (السيف، النار، الفولاذ)
		عبارات التحدي: - أن نحيا كما نحن نشاء.
		- منكم السيف ومنا دمنا
		- لنا الحاضر، والحاضر والمستقبل
	=	والدنيا والآخرة
	01	منحوظة: يكتفي المترشح بذكر ثلاث عبارات.
		6. النمط الغالب في النص أمري إيعازي. مؤشراته: - النداء: أيها المارون
	6×0,25	موسراته: - النداء: آیها المارون الأمر: انصرفوا، خذوا، ادخلوا
		- الامل. التصرفوا، كدوا، التحلوا - النهى: لا تموتوا، لا تمروا بيننا
		اللهي، د تمونوا، د تسرور بيت.

	T	//
		البناء اللغوي: (08 نقاط)
		1. الأساليب الإنشائية الواردة في النص:
		- أيّها المارون بين: نداء غرضه التهديد والوعيد
	2×0.75	- خذوا حصتتكم وانصرفوا: أمر غرضه التعبير عن الرفض
		- لا تقيموا بيننا: نهي غرضه التعبير عن التذمر والرفض
		ملحوظة: يكتفي المترشح بذكر أسلوبين.
		2. من مظاهر الأنساق في النص:
		- حروف العطف مثل: لنا في أرضنا ما نعمل ولنا قمح نربيه
		 الإحالة بالضمير: منكم السيف (يعود على الصهاينة).
	2×0.75	 حرف الاستدراك (لكن): وتموتوا أينما شئتم ولكن لا تموتوا بيننا
		- حرف التشبيه: كالغبار المرّ
		ملحوظة: يكتفي المترشح بذكر مظهرين فقط.
		3. الإعراب: منكم:
	0.25	- من: حرف جر مبني على السكون لا محل له من الإعراب.
08	0.25	- كم: ضمير متصل مبني على السكون في محل جر اسم مجرور.
	0.5	 وشبه الجملة في محل رفع خبر مقدم.
	0.5	 شعبًا: تمييز منصوب وعلامة نصبه الفتحة الظاهرة على آخره.
	-	4. المحل الإعرابي للجمل:
		- نعمل: جملة صلة الموصول لا محل لها من الإعراب.
	3×0.5	 نربیه: جملة فعلیة في محل رفع نعت.
		- نسقیه: جملة فعلیة معطوفة على جملة نربیه في محل رفع.
		5. الصورتان البيانيتان:
	ā.	«لا تمرّوا بيننا كالحشرات الطائرة »:
	0.25+0.5	 شبّه الصهاينة المحتلين بالحشرات الطائرة وهو تشبيه مرسل.
	0.25	 بلاغته: توضيح المعنى وتقريبه من ذهن المتلقي، لإظهار الاحتقار والسخرية.
111	·	«قمح نربیه »:
	0.5	 - شبّه القمح بالصبّي الّذي يربّى ، فذكر المشبه (القمح) ، وحذف المشبه به (الصبي)
	0.25	وذكر ما يدل عليه «نربيه» ، فهي استعارة مكنيّة.
	0.25	 بالاغتها: تقریب المعنی و إبراز مدی تمسك الشاعر بأرضه

	*						
العلامة المجموع المجموع		عناصر الإجابة (الموضوع الاختياري الثاني)					
<u></u>		البناء الفكري: (12 نقطة)					
		1. يعالج الكاتب قضية الإبداع والابتكار في الأدب والفنّ.					
	2×1	أمّا الغرض منها فهو إبراز حقيقة الإبداع في مجال الأدب والفنّ، وتصحيح بعض المفاهيم					
	95	السائدة لدى بعض الأدباء ورجال الفنّ.					
	01	2. المفهوم السائد للابتكار هو التطرق للمواضيع الجديدة أي التي لم يتناولها السابقون.					
		رأي الكاتب: لا يوافق ذلك حيث يرى أن الابتكار الحق هو الثوب الجديد الذي يُلبسه الفنان					
	2×0.5	الهيكل القديم. أو هو تناول لفكرة مألوفة بأسلوب مستمد من روح الكاتب « فتسكب فيها من					
		أدبك وفنك ما يجعلها تتقلب خلقا جديدا.»					
12	01.5	3. تترك للمترشح حرية إبداء الرأي على أن يُعلّل ما ذهب إليه.					
		4. من وسائل الإقناع في النص:					
	2	 التمثیل و الاستشهاد (شکسبیر و بوکاشیو). 					
	6×0.25	- أساليب التوكيد (فإنّنا نجد، أنّ أرجح الرأي إنّما الابتكار).					
		- توظيف النفي (ليس الابتكار، لم تخطر).					
		- الإحالة بضمير المخاطب (أن تكون أنت).					
		ملحوظة: يكتفي المترشح بذكر ثلاث وسائل فقط.					
	0.5	5. الفنّ النثريّ الذي ينتمي إليه النص هو المقال. وهو مقال نقديّ.					
	0.5	تعريفه: هو عبارة عن بحث قصير يتناول موضوعا ما في مجال من مجالات الحياة.					
		بعض خصائصه:					
	s di Beri	 المنهجية (المقدمة و العرض و الخاتمة). 					
	2×0.5	 وحدة الفكرة أو الموضوع. 					
		- اعتماد وسائل الإقناع.					
		- الأسلوب الواضح المركّز والمباشر.					
		ملحوظة: يكتفي المترشح بذكر خاصيتين فقط.					
	3×01	6. التلخيص: يُراعى فيه: - تقنية التلخيص دلالة المضمون سلامة اللغة.					
		البناء اللغوي: (08 نقاط)					
	0.25	1. وردت «إذا» بمعنى الظرفية الزمانية المتضمنة معنى الشرط في قول الكاتب:					
		« إذا تأملنا» ثم في قوله: « إذا عرجنا».					
	0.5	 إعرابها: مبنية على السكون في محل نصب مفعول فيه، وهي مضاف. 					
	0.25	وردت «إذا» بمعنى الفجائية في قوله: « فإذا هو يضيء بين يديك»					
	0.5	 إعرابها: فجائية، حرف مبني على السكون، لا محل لها من الإعراب. 					

		2. الإعراب:
7/20 = 100	0.5	الأشعةِ: بدل من اسم الإشارة مجرور وعلامة جرّه الكسرة الظاهرة.
08		3. المحل الإعرابي للجمل:
	0.75	- « يلبسه الفنان»: جملة صلة الموصول لا محل لها من الإعراب.
	0.75	«هو أن تكون أنت»: جملة مقول القول في محل نصب مفعول به.
		4. الصورة البيانية:
	0.5	- « الموضوع الذي كاد يبلى»: شبّه الموضوع بشيء مادي يبلى كالثوب. ذكر المشبه
	0.5	وحذف المشبه به الثوب وكنى عنه بقرينة لفظية يبلى. فهي استعارة مكنية.
72	0.25	بلاغتها: تجسيد المعنى في قالب حسيّ.
	2×0.5	- «الفن هو الثوب الجديد»: شبّه الفنّ بالثّوب الجديد، فذكر المشبّه به وحذف الأداة فهو
		تشبيه بليغ .
	0.25	بلاغته: توضيح المعنى وتقريبه من ذهن المتلقي.
	0.5	5. النّمط الغالب على النّص هو النّمط التفسيريّ.
		مؤشراته:
		- نكر الموضوع المراد شرحه (الابتكار في الفن والأدب).
	• .	- تعريف الموضوع.
- 1	2×0.75	- الموضوعية والتدرج في عرض الأفكار.
×	10.00	– استعمال أدوات التوكيد والتفصيل والتفسير
	-	التمثيل.
		ملحوظة: يكتفي المترشح بذكر مؤشّرين فقط.
2 %		
2, 1		
	-	

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2012

امتحان بكالوريا التعليم الثانوي

الشعب: علوم تجريبية، رياضيات، تقني رياضي، تسيير واقتصاد

المدة: 2 سا و 30 د

اختبار في مادة : اللغة الفرنسية

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول:

Guillotine, le prix de la liberté

Elle a été utilisée, pour la première fois, le mardi 19 juin 1956, pour l'exécution des martyrs Mohamed Zabana et Abdelkader Ferradj, dans un intervalle de sept minutes.

Pendant la guerre d'indépendance, plus de 2300 condamnations à mort furent prononcées par la "justice" française. D'après le "registre des grâces", consulté en 2001, on dénombre 217 condamnés qui ont été guillotinés ou fusillés entre 1956 et 1962, dans un contexte où, en vertu des "pouvoirs spéciaux", la justice militaire prenait le pas sur la justice civile. Ce chiffre est de 350 selon l'historienne Sylvie Thénault. A ce sujet, Jean-Jacques de Felice, adversaire infatigable de la peine de mort, avocat des condamnés à mort algériens, affirme qu'en cinq ans, le nombre d'exécutions a été considérable. Ainsi, François Mitterrand a, en tant que ministre de la justice du gouvernement de Guy Mollet, entre 1956 et 1957, donné son accord pour l'exécution de pas moins de 45 nationalistes algériens. "Sous Mitterrand, la guillotine a fonctionné sans relâche", rapportent de nombreux témoignages sur les exécutions d'Algériens. Le 9 octobre 1981, François Mitterrand obtenait l'abolition de la peine de mort en France. Vingt-cinq ans plus tôt, il approuvait les premières exécutions d'Algériens. L'examen d'archives inédites de la chancellerie¹, qui ont pu être consultées, montre que Mitterrand, dans la majorité des cas, donna un avis défavorable à la grâce des condamnés. "Avis défavorable au recours" ou encore "Recours à rejeter".

Benjamin Stora, spécialiste de l'Algérie contemporaine, dit avoir découvert des documents inédits qui expliquent comment, pendant les 16 mois passés à la tête du département de la justice, Mitterrand a laissé sans broncher couper les têtes des nationalistes algériens, qu'ils aient ou non du sang sur les mains, à l'exemple de Fernand Yveton. Seul français parmi les exécutés, Yveton n'avait pas commis de crime de sang mais Mitterrand a quand même exigé sa décapitation.

Enfin, le temps n'est-il pas venu pour l'institution judiciaire française de reconnaître que des fautes très graves ont été commises en son nom et qu'il n'appartient pas aux historiens de rétablir seuls la vérité?

D'après Amar Mansouri dans la revue El Djeich N° 576, juillet 2011

¹Chancellerie: administration centrale de la justice.

OUESTIONS

I. COMPREHENSION: (14 points)

1) "Elle a été utilisée ..."

A quoi renvoie le pronom souligné?

2) Complétez le tableau ci-dessous à partir du texte (que s'est-il passé ?):

Dates	Faits d'histoire
19 juin 1956	
Entre 1956 et 1962	60 - 60
En 1981	

3) "La justice militaire prenait le pas sur la justice civile."

L'expression soulignée signifie : a) dominait.

- b) s'accordait.
- c) entraînait.

Recopiez la bonne réponse.

- 4) Relevez du texte un terme et une expression appartenant au champ lexical de la peine de mort.
- 5) "Sous Mitterrand, la guillotine a fonctionné sans relâche." Retrouvez dans le texte une phrase avant le même sens.
- 6) "François Mitterrand obtenait l'abolition de la peine de mort."

Le terme souligné signifie : a) la suppression.

- b) l'instauration.
- c) l'imposition.
- d) la préparation.

Recopiez la bonne réponse.

- 7) "... il n'appartient pas aux historiens de rétablir seuls la vérité?" Oui avec les historiens doit rétablir la vérité?
- 8) Complétez l'énoncé ci-après par les mots suivants :

Leurs recours – prônera – la guillotine – l'exécution.

Sous Mitterrand, de condamnés par était plus fréquente. Ces derniers ont, très souvent, vu rejetés par celui qui, vingt-cinq ans après, en France, l'abolition de la peine de mort.

9) Dans ce texte, l'auteur veut: a) rendre hommage.

- b) témoigner.
- c) rétablir la vérité.

II. PRODUCTION ECRITE: (06 points)

Traitez l'un des deux sujets suivants :

Sujet 1:

Un de vos camarades doit faire un exposé sur la torture. Vous estimez que ce texte pourrait l'intéresser et enrichir son travail. Pour l'aider, faites-lui le compte-rendu objectif du texte en une centaine de mots.

Sujet 2:

La guillotine n'a pas été le seul prix payé par les Algériens pour la liberté. D'autres pratiques de tortures et d'exécutions sommaires ont été pratiquées et se pratiquent partout dans le monde. Rédigez un texte d'une centaine de mots dans lequel vous dénoncerez ces agissements inhumains.

الموضوع الثاني

Cloner des plantes, personne n'y voit de mal. Le clonage des animaux nous dérange un peu plus, mais on cesse d'y penser dès qu'on parvient à dépasser son anthropomorphisme car c'est bien l'idée du clonage de l'homme qui fait peur. Pourquoi?

"Depuis plusieurs années, nous assistons à la naissance d'une nouvelle utopie²", dit Lucien Sfez, professeur de sciences politiques à la Sorbonne, celle d'une "santé parfaite", d'un corps à jamais purifié de ses mauvais gènes, vivant sur une planète aux équilibres parfaitement contrôlés, un corps immortel ou, du moins, vivant toujours plus vieux mais en pleine santé. Un corps qui retrouverait la pureté d'Adam avant la chute. Dans la logique de cette utopie, le clonage d'un individu génétiquement parfait serait une sorte d'aboutissement, l'achèvement de la maîtrise de l'homme sur la nature, but que la science et la technique se sont assigné depuis leur naissance. Pure fiction, certes, mais la communauté scientifique y travaille très concrètement. La fascination est grande, les enjeux économiques sont énormes. La sécurité sociale ne peut que souhaiter le triomphe de la médecine prédictive, qui empêcherait la naissance de trop d'individus à risque.

Qu'est-ce qui nous retient donc d'adhérer sans réserve à ce projet? Est-ce le sentiment confus d'être en présence d'une vision totalitaire de l'homme – et du monde – d'autant plus ambiguë qu'elle est "objectivement" bonne pour la santé? Pour Lucien Sfez, "l'interdit qui pèse sur le clonage de l'homme est avant tout religieux." Derrière toute position humaine se cache une position religieuse. Malgré les apparences, la religion est restée très forte. Seul Dieu peut créer la vie ou donner la mort. Qui s'aventure à usurper ce pouvoir s'expose à la colère divine.

Le clonage n'est pas seulement la transgression d'un interdit divin. Ses conséquences bouleversent les fondements de la société. "Au niveau anthropologique, on ne sait plus si le clone est le fils ou le frère de l'original, ce qui anéantit la notion même de filiation. C'est la fin de la famille engendrée, portant la fin de l'interdit de l'inceste et de la loi du père."

Le clonage signifierait-il la fin de la société humaine? "Oui, parce qu'il n'en resterait qu'un conglomérat³ d'individus identiques. Mais on peut tempérer ce pessimisme : le clone et l'original peuvent ne pas être semblables, puisque les êtres vivants sont malléables, influencés par l'environnement jusqu'au plus profond de leur corps."

Sciences et Vie N° 956, mai 2007 p. 96

3Cong	omérat : ensemble d'éléments groupés.
	QUESTIONS
ı.	COMPREHENSION : (14 points)
1)	"Personne n' <u>v</u> voit de mal." "On cesse d' <u>v</u> penser" A quoi renvoie chacun des pronoms soulignés?
2)	Faites correspondre les expressions ci-dessous aux mots suivants : toléré – admis – effrayant. Le clonage des plantes

¹Anthropomorphisme: caractéristique de la forme humaine.

²Utopie: projet impossible à réaliser.

Le clonage des animaux Le clonage humain 3) "Un corps qui retrouverait la pureté d'Adam."

Relevez dans le 2^{ème} paragraphe deux expressions de même sens que le mot souligné.

4) "... <u>but</u> que la science et la technique se sont assigné ..."

De quel but s'agit-il?

- 5) Le clonage humain parfait reste, selon le texte, un projet irréel. Relevez du texte l'expression qui le montre.
- 6) "... la médecine prédictive qui <u>empêcherait</u> la naissance ..." Qu'exprime le conditionnel dans cette phrase?
 - a) Un souhait?
 - b) Une éventualité?
 - c) Une certitude?

Recopiez la bonne réponse.

7) Classez les expressions suivantes dans le tableau ci-dessous :

Les êtres vivants influencés par l'environnement – bouleversement des fondements de la société – moins de naissances d'individus à risque – la fin de la famille engendrée – transgression d'un interdit divin.

Arguments pour le clonage	Arguments contre le clonage

8) " qui s'aventure à usurper ce pouvoir ..."

Le mot souligné signifie :

- a) Donner généreusement
- b) Partager équitablement
- c) S'approprier illégalement

Recopiez la bonne réponse.

- 9) Le projet du clonage humain se heurte, selon Lucien Sfez, à un obstacle. Lequel?
- 10) Complétez l'énoncé ci-dessous à l'aide des mots suivants : anthropologues économique scientifique religieuse.

Sur le plan, le clonage humain serait une maîtrise de l'homme sur la nature. Sur le plan, ce serait un gain énorme d'argent. Cependant, selon la position, c'est une transgression d'un interdit divin. Enfin, pour les, le clonage anéantirait la notion de filiation.

II. PRODUCTION ECRITE: (06 points)

Traitez l'un des deux sujets suivants :

Sujet 1:

Dans le cadre d'une journée d'étude sur le clonage, votre professeur vous demande d'y contribuer. Vous jugez ce texte intéressant, faites-en, le compte-rendu objectif, en une centaine de mots.

Sujet 2:

Vous êtes membre d'une association pour la protection du consommateur. Vous avez entendu parler des O.G.M (Organismes Génétiquement Modifiés) et de leurs dangers potentiels sur la santé de l'homme.

Rédigez un texte d'une centaine de mots dans lequel vous sensibiliserez le consommateur sur les risques de ces produits.

الإجابة النموذجية وسلم التنقيط ... مادة: اللغة الفرنسية الشعب العلمية المشتركة بكالوريا دورة: جوان 2012

ره: جوال 2012 العلامة			1:-				
المجموع	مجزأة	عناصر الإجابة					
01 01.5	01 0.5×3	Entre 1956 et 1962 217 condamnés ont					
		1981 François Mitterrand	obtenait l'abolition de la peine de mort.				
02 02	02 01×2	 3) " prenait le pas sur" = dominait. 4) Un terme : exécution, guillotine, (les) et Une expression : martyrs de la guillotine, et condamnations à mort, des condamnés à n 	ont été guillotinés ou fusillés,				
02	02	5) Une phrase de même sens: "Ainsi, François Mitterrand a, en tant que de Guy Mollet, entre 1956 et 1957, donné de 45 nationalistes algériens." « le nombre Ou " Mitterrand, dans la majorité des cas,	son accord pour l'exécution de pas moins d'exécutés a été considérable ».				
01 01.5 02 01	01 01.5 0.5×4 01	condamnés." Ou " Mitterrand a laissé sans broncher co 6) abolition = suppression. 7) C'est l'institution judiciaire française. 8) l'exécution – la guillotine – leurs recour 9) Réponse : rétablir la vérité.					
01	0.5×2	Sujet 2: I. Compréhension. (14 points) 1) "Personne n'y voit de mal"; y = clon "On cesse d'y penser"; y = clonage des an					
01.5 02	0.5×3 01×2	2) a) admis b) toléré c) effrayant 3) "une santé parfaite", "un corps à jamais purifié de ses mauvais gènes. individu génétiquement parfait- en pleine santé.					
01	01	4) le but : - le clonage d'un individu génétiquement parfait serait une sorte d'aboutissement					
01 01	01 01	- l'achèvement de la maîtrise de l'homme sur la nature. Accepter aussi la phrase en entier : Le clonage d'un individu sur la nature. 5) "pure fiction", "nouvelle utopie" 6) a) un souhait, éventualité.					
02.5	0.5×5	Pour le clonage - Les êtres vivants influencés par l'environnement. - Moins de naissances d'individus à risque.	Contre le clonage - Bouleversement des fondements de la société. - La fin de la famille engendrée. - Transgression d'un interdit divin.				
01 01 02	01 01 0.5×4	8) c) s'approprier illégalement 9) l'interdit religieux (divin) 10) scientifique – économique – religieus	se – anthropologues.				

نمة	العلا	71.59
المجموع	مجزأة	عناصر الإجابة
		II/ PRODUCTION ECRITE (06 Pts)
		Compte-rendu
<u>06 Pts</u>	0,25	1- Organisation de la production - Présentation du texte (mise en page)
00 1 13	0,25	- Présence de titre et de sous-titres
	0,25 x 4	- Cohérence du texte :
		- Progression des informations
		- absence de répétitions
		- absence de contre-sens
		- emploi des connecteurs
	0,5	- Structure adéquate (accroche – résumé – commentaire)
		2- Planification de la production
	01	- choix énonciatif (en relation avec la consigne)
	01	- choix des informations (sélection des informations essentielles)
	330024 d	3- Utilisation de la langue de manière appropriée
	01	- correction des phrases au plan syntaxique
	0,25	- adéquation du lexique à la thématique
	0,25	- utilisation adéquate de signes de ponctuation
	0,25	- emploi correct des temps et des modes
	0,25	- orthographe (pas plus de 10 fautes pour un texte de 150 mots environ).
		ESSAI
0 (10)		1-Organisation de la production
<u>06 Pts</u>	0,25	- Présentation du texte (mise en page selon le type d'écrit demandé)
		- Cohérence du texte :
	0,25 x 4	- Progression des informations
		- absence de répétitions
		- absence de contre-sens - emploi des connecteurs
	0,25 x 3	- Structure adéquate (introduction- développement- conclusion)
	,	2- Planification de la production
	1	- choix énonciatif (en relation avec la consigne)
	1 1	- choix enonciam (en relation avec la consigne) - choix des informations (originalité et pertinence des idées)
		3- <u>Utilisation de la langue de manière appropriée</u>
	1	- correction des phrases au plan syntaxique
	0,25	- adéquation du lexique à la thématique
	0,25	- utilisation adéquate de signes de ponctuation
¥	0,25	- emploi correct des temps et des modes
	0,25	- orthographe (pas plus de 10 fautes pour un texte de 150 mots environ).

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2012

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعب: جميع الشعب

اختبار في مادة: اللغة الأمازيغية

المدة: ساعتان ونصف

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

أضريس:

تاجماعث ناث فلان

شفيغاسانتيد تتيدات، لتيغ د اماريان أم وفوس ن وماهراس ماشان سعيغ لأعقال د اماقتران؛ أمين د اهو د اماريان، ثيكوال ناتتغيما جار سأن ن بيمغران تتوثلايان ور تتوادراخش لواقت ن تغيميث نسان؛ رني ماشي د دالت نتيغ د سانت أي ناجًا، ناتش تتوثاوين ئنو نرار باش أنتروح أنتاسغاذ ئ يارقازان. أدبيلي دي لأعمار نتاغ 11 نتيغ 12 الد 13 ن يساقتاسان. ثاماديث أي ثاتشتاراي ثاجماعث ف ثيشت ن لماراث. الد ادوالان نفالاحان سي ثاجما. تتراقاند غار ثاجماعث تتغيمان. ألد ادياهوا وسالاس؛ تتاجان ثيدار ئ لخالاث تساوانت أمانسي. ستانفاوانت بغير أديوث بيض؛ داق بيض ن ثزيري سعادايان نض أل ثنازايث. أدلامداغ تاموستني ألد ادتوثلايان يارقازان.

ذ قيتش ن ثموستني اي ستناغ ذي ثيراكالت (جغرافيا) ئ ييجّين وّضاغ ألد ي دحاًوّساًغ ثامورث ن فرانسا أسّ ثالًا (ؤكّال)[...] تتمورا ن وروبا: لالمان، لاناقليزذ ... يوما أذيروح ويشت نذاس، ذ وين ئ ديأتّعاواذاًن أمّين؛ أذيروح نذاس غار لمارسا، غار لوزين.[...]

يوما أتروحاذ نذاس غار ثمورت ن يوذان، غار لڤاژارنا، غار وانتار ن ومسانغي، غار ولابتات......

يأتتباند لأبطال ن وانقال ور يألتي ور يأزمير أذييلي؛ لأبطال ئ تشاباهأن شرا ن ماس ذ امأقران، ئ سأمناعان سي يال ثاديانت؛ ماس ور يتاقاذان ثيووغا (الماصانب)، أ قوعران، نتيغ ذ اوأزغي (المستحيل).

ذ روس أ فْزَالْتِي وأوال غار تْغاوسيوين نتاغ، ثيبيًا سننان لأعباذ أسّ لآن، ماشا سَأَقْمايانت نماَرْيانان أك تَيتيذين.

ثاويا (الأهل) ن يماريانان تتاكلان ف يماقرانان ن وقاوار ذ وسالماذ ن يماريانان أمين ذي ثاجماعث. نارفاذ س غارسان ا قالان، ناستغاذ ئ وا قالان بلا يافران، ناتتامان أ غاندقاران، غار ثقارا نلامذاد س غار وامي ناسلا.

امًا ذيماً ريانان أفي نروزي س وخامام، ثيمورا ور غارسانتش نقميران. ناتخامام ف ثمادورين ناغ ن واذاتشا، أمين ذي نالا ذيرقازان نماقرانان سي زيك.

ك. بوعمارة اوسان ذي ثمورث 2006، س ب 30، 30

ئسأستانان:

- (06) نیفزی ن وضریس: (06)
- 1. ف ماتا يأتوثلاي ونالاس ذاق وضريس أيا؟
- 2. ماغاف يأتتاجاً ونالاس ذيمادوكتال نتاس نرار مي لان ذيماريانان؟
 - 3. مالمي ثاتشاراي ثاجماعت ن وقاوار ن ايث فلان ؟
 - 4. ماتاً لأمدان نماريانان سي ثوثلايث ن لأجماعث؟
 - 5. كساد ساق وضريس تكنيوان ن واوالأن أيا:
 - ضلّلم:
 - نأستحاستاي:....
 - نأتقاصار ئض:
 - 6. ماتا ذاناون وأضريس أيا؟

II) ئفاردىسان ن ئوئلايث: (06)

- 1. "شفيغاسانتيد تيدات، لتيغ ذ اماريان ماشان تغيميغ جار بيمغار أن سغاذيغ و لأمداغ و الأمداغ و الأمداغ
 - بذو ثینتاوث هامتا: "نآشفاسانتید تیدات"
 - 2. سلاص ثافييرث أيا: "شفيغاسانتيد".
- 3. "ماشي ذ دّالت نتيغ ذ سأنت أي ناجّا، نأتش تتوثاوين ننو نرار باش أنتروح أنتاسغاذ ئ يارڤازان." - سامّاد نسومار ن ثافيير ث أيا.

III) أسانفالي س ثيرا: (08)

ياً لا أوا يالان ياتاويد لفايات سي ثغيميث ئذن يماقرانان أم تموستني (المعرفه) ليغ توستنا (العلم).

أريد أضريس أتوثلاياد ذيس ف ثغاوسا ثاتعاً لأمذيت ساق ومأقران.

Adris

Tajmaet n at Flan

Cfiy-asent-id, d ayen i yellan. Lliy d acawrar, annect n ufus n umehraz, maca tæqqley mačči d kra; akken d aqcic, tikwal nettyimi gar sin n yijaddiwen n wawal mi ara ttemjadalen. Ur zeggley ara tiswicin n unejmuɛ; rnu, mačči d tikkelt ney d snat i neǧǧa, nekk d yimendideniw, turart iwakken ad d-nruḥ ad nesmuzget i yirgazen. Ad nesɛu 11, 12 alamma d 13 n yiseggasen deg læmur-nney. Tameddit i tettaččar Tejmaɛt, deg tegti. Mi ara d-rzun yifellaḥen seg lexlawi, tteffyen-d yer tejmaɛt, ttyimin alamma yeyli-d yid; ttaǧǧan ixxamen i tlawin, ttlawant imensi. Sgunfuyen alamma teyli-d tallast; deg yiḍ n tziri, ttæwazen alamma yettnay yiḍ d wass. Ayen i d-lemmdey d tamussni mi ara ttmeslayen akken yirgazen, d ayen ur tettamneḍ a wa. D cwiṭ n tmussni i ssney kan deg tirakalt i yi-yeǧǧan ssawḍey armi i d-kkiy akk tamiwin n Fransa [...] timura n Lurup am Lalman, Legniz ula d Marikan. Yewwi-d ad yeddu yiwen yid-s, d win i d-yettalsen akken; ad yeddu yid-s yer tyaza (lmina), yer lluzin [...] Ilaq ad tedduḍ yid-s yer tmura n medden, yer lkazirna, yer unnar n yimenyi, yer udmer¹... Yettban-d d asaḍ n kra n wungal werǧin nelli, ur nezmir ad yili; asaḍ yecban kra n Mass meqqren, Mass i yettselliken seg yal tinimert; Mass ur nettkukru igejduren, tikerkas, ney awezyi (ayen ur iqebbel leɛqel).

Ar deqqal ad d-yezzi wawal yer tyawsiwin-nney, ti i ssnen akk medden, d tidet, maca ttrebbint-d ilemziyen, ula d ti.

Imawlan tteklen yef yimeqqranen n taddart d uselmed i sselmaden akken arrac deg tejmaet. Nettaf yur-sen nezzeh, d ayen yellan. Nesmuzgut i yellan – ur nferru ara - nettamen kra i ay-d-qqaren, yer taggara nlemmed kra iwumi nesla. Akken d arrac ya, nettnadi-d s usugen, timura ur nesei tilisa; nettxemmim i tmeddurin-nney n uzekka, amzun akken d irgazen meqqrit ya.

K. Bouamara, Ussan di Tmurt, ENAG, 2006, asebter 30, 31.

Admer : lgirra.

Isestanen:

I) Tigzi n udris : (06)

- 1. Fef wacu i d-yettmeslay unallas deg udris-a?
- 2. I wacu i yettaǧǧa unallas d yimdukkal-is turart mi llan d arrac ?
- 3. Melmi i tettaččar tejmast n taddart n At Flan?
- 4. Dacu i d-lemmden warrac seg umeslay n tejmaet?
- 5. Kkes-d seg uḍris arwasen (iknawen) n wawalen-a :
 - țțlam =.....
 - Netthessis =.....
 - Sehhren =
- 6. D acu-t wanaw n udris-a?

II) Iferdisen n tutlayt: (06)

- « Cfiγ-asent-id, d ayen i yellan. Lliγ d acawrar, annect n ufus n umehraz, maca tεeqqleγ mačči d kra; akken d aqcic, tikwal nettγimi gar sin n yijaddiwen n wawal mi ara ttemjadalen.»
 - Bdu tinawt-a akka : « Necfa-asent-id ... », tbeddled ayen i ilaqen ad ibeddel.
- 2. Sled tiwuriwin n wawalen n tafyirt-a:
 - « Cfiy-asent-id ».
- 3. « Mačči d tikkelt nev d snat i nešša, nekk d yimendiden-iw, turart iwakken ad d-nruḥ ad nesmuzget i yirgazen. »
 - Semmi-d isumar n tefyirt-a.

III) Asenfali s tira: (08)

Izga yella wayen ara d-nagem seg tγimit d yimeqqranen neγ wid i aγ-yugaren deg leεmer, ama d tamussni ama d tussna.

Aru-d adris ideg ara d-talsed kra n taluft i d-tlemded seg tyimit d yimdanen imeqranen.

·E020

+ · I C • * + 1 • + I C E • 1

EJESY-•0+17-2A, A •N+1 & N+UU-1, UUSY A •C•:0•0, •11+C7 1:JE:0 1:E+00•X, E•C• +*** REU.* Y C. 558 A RO. : • RR*1 A • RESE, + SR:• U 1*++ YELS X•O OSI I NSI• AAS: * 1 1:• :• U [8 .0. 44. [1. 40 X. XXXI. 44 .0. 450: 5.5] | 1:14. [1. 6. 6.5] | 1. 14. [1. 6.5] 01.4 & 14XX., 14KK V USC4IV8V41-8: 4:0.04 8:4KK41 .V V-10:V .V 140C:XX44 8 TISOX+X+1. • A 1+0+: 11, 12 • U• CC+ A 13 1 TISO+XX+O+1 A+X U+• C+O-11+Y, +• C+AAS+ S +++JCJCY+1-1 Y+O ++IC++++ ++YECE1 +U+CC+ N+YUE-1 NEE: +++XX+1 EXX+C+1 E +U+E1. ++U•:21+ 20+102. 0x:1JC:n+1 •U•CC• ++YU2-1 +•UU•0+: 1+X n2E 1 +X202. ++*•:•X+1 ·U·CC. N+++1.4 USE V:00. ·U+1 & V-N+CCV+A V-C:0018 C8 ·O· ++C+01.01+1 ·KK+1 TEOX•X+1, A •T+1 :0 ++++• CI+E • :•. A 6:24 1 +C:0012 2 001+4 K+1 V+X +50 • K+11 2 L2-11+XX-1 00-:E+Y -OLS & A-KKSY -KK +-LS:81 1 JEO-10- [...] +8L:0-1 U:O:X U-UL-1, U+XISX :U• A C•OSK•1. N+::2-A •A N+AA: NS:+1 NSA-O, A :S1 S A-N+++•UO+1 •KK+1; •A Π÷ΛΛ: ΠεΛ-Θ Υ÷Ο +Υ•Χ• (UCSI•), Υ÷Ο UU: ΧΕΙ [...] ΕU•V •Λ +÷ΛΛ:Ε ΠεΛ-Θ Υ÷Ο +C:O• 1 :1X·U:+OX21 1+UU2, :O 1+XC2O · A NSU2: ·O·E N+CO·1 KO· 1 C·OO C+CCO+1, C·OO S N+++0+UU2K+1 O+X N•U +212C+O+; C•OO :0 1+++K:KO: EX+IA:O+1, +2K+OK•O, 1+Y •:***YS (•11*1 :O SV*OO*U U**V*U).

•O+AV•U •A A-N+XX8 :•:•U Y+O +Y•:08:81-11+Y, +8 8 001+1 •KK C+AA+1, A +8A++, C•C• ++O+0021+-A 8U+CX8N+1, :U• A +8.

> K. X:*L•O•, *00•1 12 +L*O+, ENAG, 2006, •0+0++O 30,31.

^{1 .} NE+0 : UX200.

20+0+01+1:

I) 75% 1 :EOSO : (06)

- 1- 447 :. 6: 8 V-U++++++01. 11. 11. 10. V+X :E080-. 5
- 2- 2 : · C: 2 N+++ · XX · : 1 · UU · O A N2EA: KK · U-20 +: 0 · O + E2 UU · 1 A · O O · C?
- 3- [+ UES & + + + + 55 0 + + IE + 1 + 1 0 0 + 1 + 1 EU 1 ?
- 4- 1 .C: 8 V-11+EEV+1: 00 .C O+X : E+O11-11++IE ++ 3
- 5- KK+0-1 0+X :E020 .O:.0+1 (2K1.+1) 1:... (1+1-.:
 - YYU•Z =.....
 - 14++740050 =.....
 - 0400041 =....
- 6- 1 · 6:-+ : · 1 · E O 20 ?

II) SJE40ASO4114:48.114: (06)

1- « ENEY-OFIT-EA, A •NT E NTUNI. UNEY A •C•:O•O, •NT I I INIO 1 : [+00•X, L•C• + + + ENUTY L•GGE A RO•; •RR+1 A • EGEG, +ER:•U |+++YELE X•O OEI 1 NEI•AAE:+11:•:•U LE •O• +++LI•A•U+1.»

- On: te10:t-0 ork0: « 14600-00+1t-en ... », to+nnu+e on+1 e euo+1 on eo+nn+u.

2-OUTE 75:05:511: ... UF117-JETISO7- :

- « JEEY- • O+1+-EA ».

3-« L·GGE A YERRANT IAY A OIOT E IAXXO, IARR A MELAINEAAI-EI, TIOOTEIORIA.»

- 04EES-N 20:E.O 1 +4JEN2O+-.

(80): •O&F @ SI-JE-\$0 : (08)

2XX • N+UU • :•N+1 •O • 1-10 X+2 O+X +4828+ V USC+220 •1+1 1+4 :8V 8 •A-U:X•O+1 V+X N++250 •1+ V+05:0015 •2 • V +1001•

•O:-A •E020 2A+X •O• A-+•NO+E RO• 1 +•N:JE+ 2 A-+N+EA+E O+X +Y2E2+ A N2EA-1+1 2E+EO-1+1.

الموضوع الثاني نانا حدجيلا

نـّا حدجيلا ثازداَغ ئ ييمان ناس، ذاق وامّاس ن ثقاوّارث. سي بارّا أم وخـّام ناس، أم ييخـامان يـّيض، ألد اتـّاذفاذ، تـّغاوسا ثيشت. وأر عاذ رُار غيث جار ثيطـّاوين ننو، أخـّام نذين؛ قـّان ذيس نعاجماي. شفيغ ناتـّامسازّال ذين. مي هاذارُراَغ أسّا، قارغاس أثايان تـّارجيت ئ ثورجيغ نيغ هاتايان تـّيمـرُي ننين نالا ذ يمارُيانان ئ قسماغران أخّام نذين جار ن ثيطاوين ناغ.

تاي ذ نانا حدجيلا. كين (نكأن، أعابون) نأس ديما يأتشور ما ور يألي تاحلاويث نيغ تافلوست ن سآكار ذ يحابان ثاز ارث.

ثَاتَتَازُواراي ثازطي زّائس. وين ئ دثاملال ذيناغ، استسالاف (استماساً ح)، اتتارفاذ، استاتشار فوس ثرانتاس: "أ راتي سريث!".

ف وايا، وين يوضين، وين ئ ناعران، وين يانغا ؤسائان يوزال غار طارف ن نانا حدجيلا. ذين ذين، أستاسفاض نماطاوان، أتتهوز ثاتتغانا.

ؤسّان تـّازّالأن أم واضو، وا تقارا ن وا. نرائي، ناتّـقاً عمير، ناتّـاتّـو. ناسعا ئخامان نميرا، ناسعا ثاروا، ناسعا ننازقام. ثروست ن وا يالان وأرعاذ نتماكثيد ذ طارف ن نانا حدجيلا. كيس ناتش، أل نميرا مدا ول طاسّانش فالا يوذان، أساغليغ ذي طارف، أذيلاغ قيتش جار نفاسّان ناس باش أييثماسيّاح ئ وقالقول ننوغ. ريغ، غاروات أيّا ئ ييديسيّالان غار شيب ننو.

نا حدجيلا ألد نميرا ئ بيمان ناس، أم زيك. مدائ دثر أبّا أكر ار أن، أسّا ثاساًر عوفت ناس تاماقر انت، نمي ذ يرقاز أن أي ثر أبّا، أتّايان و آحذاًس.

أسًا و سياقيمش أتنابي ثاعجوجث (ثميط) ئ ويشت. يال ثاناز ايث، أتغاوال أتنارق ساق وانزا ناس، أتناروغار ناس غار ماني تغيمانت تامغارين.

ماتًا هاذيوعان أناحبوس غار لحابس ناس؟ ثاتتاقتاذ أ تتيناقتان، ولاش ن وا يالان ييذاس. ثاررا ثامادورث ثانتابدال، ولاش ن وا هادياسان أذيساقسا فالاس.

ناتا حدجيــــلا ,حسان حلوان دي تسغونث ثيموزغا، اوطون 19 H.C.A., 2008 الجزائر، س ب 119-116

ئسآستانان:

I) ئيڤزي ن وضريس: (06)

- 1. لأغروز ن وقاو الشاتان أماك لأن نانا حدجيلا. تنيد ماغار؟
 - 2. أنالاس ذأق وضريس ذ المآنساي.

كساد سى نسادارث ثامازواروث ماتا ئ ثيديامالان (ئ ثيدياسانعاثان).

- 3. أنالاس بأستاتام (بأستارام) أذيتأكا ذي طأرف ن نا حدجيلا. وشد ستأبّأت ن وايا.
- 4. وثلاياد ماماك ثاتادار ناتا حدجيلا ذي ثوسارث (ذي ثماغري) ناس. ماغف هاما؟
 - أويد س غرآك سأتات ن تأفيار س واوالأن أيا: زيك، نراتي.

II) نفار دیسان ن توتلایت: (06)

- 1. بضا ثافييرث أيا تساميذاد نسومار ناس:
- " مدا ول طأستانش فألا يوذان، أسأغليغ ذي طأرف"
 - 2. سلاص تافييرت أيا: ثاتازواراي ثارضي زائس.

III) أسأنفالي س ثيرا: (08)

نانا حدجيلا ثاقيم ئ ييمان ناس (و أحذاس). أي ثر آبا ؤكال دجينيت و روحان.

ألساد شان ثاديانث ف لخير و ديتوالانش.

Adris

Nna Ḥğila.

Nna Ḥǧila tezdey iman-is, deg tlemmast n taddart. Γas akken seg berra, am uxxam-is, am yixxamen n wiyaḍ, mi ara tkecmeḍ, d ayen-nniḍen. Mazal ttwaliɣ-t gar wallen-iw [...]; γas qqen deg-s izgaren. Cfiɣ nettemsazzal dinna. Mi ara muqleɣ ass-a, qqareɣ-as ahat d targit i t-urgaɣ neɣ ahat d temzi-nni i nella mezziyit i yesmeɣren axxam-nni gar wallen-nneɣ.

D tayi i d Nna Ḥǧila. Iciwi-s yezga yeɛmer : Ma mačči d taḥlawat neɣ d taḥjurt n ssker, d iniɣman.

Tezwaray tizedt zdat-s. Win i d-temlal deg-ney, ad as-teslef, ad t-terfed, ad as-teččar afus-is ternu-as: "Rebbi hrez!".

Day netta ula d nekkni, win yeylin, win yennuynan, win iwumi i yedda usennan, yazzel s irebbi n Nna Ḥǧila. Din din, ad as-tesfeḍ imeṭṭawen, ad t-tezzuzen.

Ussan ttazzalen am waḍu, wa yettdeggir wa. Nettnerni, nettimyur, ntettu. Nesɛa ixxamen tura, nesɛa dderya, nesɛa iyeblan-nney. Xaṭi mexṭa n win mazal yettmekti-d irebbi n Nna Ḥǧila. Fas ma nekk, ar tura, lemmer ur ttaḍsan ara fell-i medden, ad as-yliy deg yirebbi, ad ruy cwiṭ gar yifassen-is, akken ad iyi-teslef i uqerruy-iw. Zriy, yurwet wi iyi-d-isellen yer ccibiw!

Nna Ḥǧila mazal-itt weḥd-s, am zik. Lemmer i d-trebba akraren, ass-a tajlibt-is meqqret, imi d irgazen i trebba, ha-tt-an iman-is.

Ass-a, ur mazal ad tegzem timiṭ i yiwen. Yal sbeḥ, ad tyiwel ad d-teffey seg "uzekka-s", ad tezzuyer iman-is yer wanida ttyimint temyarin.

D acu ara yerren ameḥbus yer lqefs-is? Tettaggad i tt-yettayen, ulac win yellan yid-s. Teẓra ddunit tbeddel, ulac anwa ara d-yasen ad yesteqsi fell-as.

Hacène Halouane, Nna Ḥǧila, deg tesyunt TIMMUZΓA, uṭṭun 19, H. C. A., 2008, Alger, sb. 116- 119.

Isestanen:

I) Tigzi n udris: (06)

- 1) Arrac n taddart ḥemmlen akken ma llan Nna Ḥǧila. Ini-d acuyer?
- 2) Anallas deg udris-a d agensay (d asad).
- -Kkes-d seg tseddart tamezwarut ayen i t-id-yemmalen.
- 3) Anallas yessaram ad as-yeyli i Nna Ḥǧila deg yirebbi-s. Efk-d ssebba n waya.
- 4) Mmeslay-d amek i tettidir Nna Hğila tewser-ines. Acuyer akken?
- 5) Awi-d syur-k snat n tefyar s wawalen-a: Zik, ttnerni.

II) Iferdisen n tutlayt: (06)

- 1) Semmi-d isumar n tefyirt-a: "Lemmer ur ttaḍsan ara medden, ad as-yliy deg yirebbi."
- 2) Sled tiwuriwin n wawalen n tafyirt-a: Tezwaray tizedt zdat-s.

III) Asenfali s tira: (08)

Nna Ḥǧila teqqim-d iman-is. Wid akk i d-trebba ǧǧan-tt, ruḥen.

Ales-d kra n tedyant, ama tesliḍ-as ama teḍra deg temnaḍt anida i tettidireḍ, ɣef lxir ur nettuɣal.

11. CXSI.

Λ ተ•Π2 2 Λ 11• ΛΧ2Ν•. 262:2-0 Π፥ЖΧ• Π፥•፫፥Ο : ፫• ፫•ፚፚ2 Λ ተ•ΛΝ•፡•ት Ι፥Ψ Λ ተ•ΛΙ:Οት 1 ΘΘΚ÷Ο, Λ 212ΨΓ•1.

^ ·C፡ ·O· Π∻OO÷1 ·C÷ ΛΦ፡⊙ Ψ÷Ο ઘ∇÷ΙΣ⊙-2⊙ ? ተ∻ተተ•ΧΧ•Λ ይ ተተ-Π÷ተተ•Ψ÷1, :U·C ፡21
Π÷Ш•1 Π2Λ-⊙. ተ÷ΚΟ• ΛΛ:12ተ ተወ÷ΛΛ÷ሀ, :U·C •1:• ·O• Λ-Π•⊙÷1 •Λ Π÷⊙ተ÷Σ⊙ይ ፲፫÷ሀሀ-•⊙.

20+0+1+1:

I) +2XX21 :EO20 : (06)

- 1) .00.61 +. AM. O+ K+EEU+1 . KK+1 E. UU.1 11. KX2U. 212-A . 6:440 ?
- 2) •1• LLL O 1+X = EOSO • 1 X +10 11 (1 0 E).
- -KK+O-1 0+X +O+11-0+ + · [+X: · O: + · [] 2 +-21-[] +[[· U+].
- 3) •1•UU•0 11+000•0•C A •0-11+412 & 11• VX811• V+X USO+008-0. +7CK-V 00+000• 1 :•U•.
- 5) •: 2-1 04: 0-k 01. + 1 + 7 ETI 0 0 : •: 11 +1 : * EK, ++1+018.

II) SJE+OASO+11++#•11+: (06)

- 1) OFFE-1 80: [O 1 + FIFTSO+ : "UFFF O : O ++ E0 1 O FF111-1, 1 O YUSY 14X 1120+008."
- 2) OUZE 78:08:81 1:0:04:11 7:35(180+-0: +:**:00-17 +8x2/1 **/0+-0.

11. KX21. +*KK21-1 21.1-20. :E1 .KK & 1-+0.00. XX.1-++, O:K.1.

•U+O-1 KO• 1 ++111-11, •C• ++0USE-•O •C• ++EO• 1+2 ++C1•E+ •121. 20++1+2120+E, 4+11-UXSO :0 1+++:4•U.

العلامة			
المجموع	مجزأة	عناصر الإجابة " ثأجماعث "	محاور الموضوع
<u> </u>	J.J.		7
	01	1" 1" 1 12 ·	ثيڤزي ن
	01	1. يأتوثلاي ونالاس ذاق وضريس ف ثاجماعث ن وقاوّار.	وضريس
	01	2. يأتتاجاً ونالاس ذ يمادوكال ناس نرار مي لان ذ يمار انان باش	0.5
	01	أذلامذان ثاموستني سي ثاجماعث.	7
	01	3. ثاتشاراي ثاجماعت ن وقاوار ن ايث فلان ذاق يط الد ادياهوا	
		وسالاس.	
06	01	وسعامن. 4. لأمتذآن نمآريانأن سي ثوثلايث ن لأجماعث ثموستني توستنا.	
	OI		
		5. نكنيوأن ن واوالأن:	
	0.5	- ضِتَلامٍ: سالاً سِ.	
	0.5	- نأستحاستاي: نأستغاذا.	-
	0.5	- ناتقاصتار ئض: ناستعادّاي نط.	
	0.5	6. أناو ن وأضريس ذ وليس.	
	0.5	ان الماق ال والمعطريات و المعطريات الماق	
		1. نأشفاسأنتيد تيدأت نألا ذيمأريانأن ماشان نأتعيما جارييمغارأن	п
	1.5	ناستغادا و نلامتاذ ول ناتتو آدارش.	ئفآرديسآن
		<u></u> و <u></u>	ن توتلايت
	0.5	غ: ذ اسآنتال	
06	0.5	شفیر: ذ اسآغرو	
	1 0.5	أسآنت: ذ اسآمـّاد أروسريد	
	0.5	د: تـّـاز آلغا ن ثنيلاً	
as E	01	 ماشى ذ دالت نتيغ ذ سأنت أي ناجا، نأتش توثاوين ننو ئرار: 	
		أسومار افاجدان.	
	01	باش أنتروح أنتاسغاذ ئ يارڤازان: أسومارئمسانتال (ن ييسوي).	
		* أضريس أذييلي ذ ولتيس.	III
	01	* وُلْيس أَذْ يَبَأَدْ فَ كُرَادُ نَ يُمُورِ أَنْ.	أسأنفالي
		1- أذ ييلى وفاريس يأحلا؛ ما:	س ثیرا
	6.4		س بیر،
	01	- يأتواغراي س وأسهال أَــــُـــُـــُـــُـــُـــُـــُـــُـــُـ	
	0.5	- أسآبتآر يآزديق (ثالتونين، ثيسآدارين) ؛	
	0.5	- أسيڤآز ئواڤا ؟ شند أنشنا الثارية أنسا	.00
	0.5	- ثیفیار رسآنث ف یلوقان ن تجآر ومث ؟	
	0.5	- أماوال يوڤير ئذ ن وسأنتأل ؟	
	0.5	 نلوڤان ن ٹیرا تواضآفرآن. 	

دورة: 2012	الشعب	الشعب(ة): جميع	ة الأمازيغية	مادة: اللغة	اختبار	النموذجية	تابع الإجابة
------------	-------	----------------	--------------	-------------	--------	-----------	--------------

للامة المجموع	الع مجزأة	عناصر الإجابة " ثأجماعث "	محاور لموضوع
08	0.5 0.5 0.5 0.5 0.5	2- يأزضا أماك ئلاق - ثودسان وأضريس تسادارين ؟ - ثوقتنا جار ثسادارين ثأتساهال ثيڤزي ؟ - ثيمآرران يآمياڦان وڤيرانث ئذن ثيلاوث ؛ - أسآمراس ن ينامالآن ن واكوذ ذيا ن واذاق بانان أسريس ن ولتيا ع ديتواوشان - أضريس ذوليس يآمدان ؛ - أضريس يأتوابنا ف ثغاسان ووليس ؛ - أضريس أذيوڤير ئذن وسانتال.	
		¥	
2			
		HI	-
	*		

ة: 2012 لامة		النموذجية اختبار مادة: اللغة الأمازيغية الشعب(ة): جميع الشعب عناصر الإجابة	تابع الإجابة
المجموع	مجزأة	*Tajmaɛt n at Flan*	محاور الموضوع
	01	1. Anallas deg udris-a yettmeslay-d yef tejmaet n at Flan d wazal i	I
		tessa deg tudert-is. Akken i d-yemmeslay yef temzi-s.	Tigzi n
	01	2. Yettaǧǧa unallas d yimedukkal-is turart iwakken ad ruḥen ad	udris
	01	smuzegten i yirgazen,	•
06		3. Tettaččar tejmast n taddart n at Flan tameddit ney deg yiḍ.	
•	01	4. Arrac lemmden tamussni d wayen yelhan seg umeslay n tejmast.	
		5. arwasen n wawalen-a :	
	0,5	- ttlam = tallast	
	0,5	- netthessis = nesmuzgut	
	0,5	- sehhren = ttɛawazen	
	0,5	6. Anaw n uḍris-a d ullis.	i i
A Section 1		1. « Necfa-asent-id, d ayen i yellan, nella d icawraren annect n	II
9	1,5	yifassen n umehraz, maca netteeqqel mačči d kra ; akken d	Tutlayt
	307	arrac, tikwal nettyimi gar sin n yijaddiwen n wawal mi ara	Tuttayt
		ttemjadalen. »	
	0,5	2. Tasledt n tefyirt: « cfiy-asent-id »	
	0,5	⇒ -y: asentel (ameskar/amigaw)	
06	0,5	⇒ Cfi-: aseyru	
		⇒ -asent : amqim awsil asemmad arusrid	
	0,5	⇒ -id:tazelya n tnila	
	01	3. Asemmi n yisumar n tefyirt:	
	01	- Asumer agejdan : Mačči d tikkelt nev d snat i ne <u>š</u> ša,	
	01	nekk d yimendiden-iw, turart	
	01	 Asumer amsentel (n yiswi): iwakken ad d-nruḥ ad nesmuzget i yirgazen 	
		Aḍris ad yili d ullis. Aktazal ad ibedd yef yisefranen-a:	III
		- Taferkit:	
	0.5	-Asebter zeddig	Asenfali
1	0.5	-Tira tettwayar	s tira
	3.0	- Afares :	
	1,5		
	, in 19	- Asentel iban	
	1,5	-Aḍris d ullis (tayessa n wullis tefrez).	
		- Tutlayt :	
08	0.5	- Asemres n yinamalen n wakud / adeg.	
00	0.5	- Asemres n yimyagen d tmeẓra	
1	0.5	- Asemres n umawal	
1	0.5	- Aqader n yilugan n tira	
	0.5	- Asigez n udris	
1	0,0	- Taseddast / Tazdawt	
	0.5	- Lebni n tefyar tummidin	
İ	0.5	- Tuqna gar tefyar d tseddarin	
	0.5	-Aqader n yilugan n tezḍawt taḍrisant	

2012 :	دورة	النموذجية اختبار مادة: اللغة الأمازيغية الشعب(ة): جميع الشعب	تابع الإجابة
لامة		عناصر الإجابة	محاور
المجموع	مجزاة	*Tajmaɛt n at Flan*	الموضوع
	01	1. •1•UU•0 A+X :E020-• N+++C+0U•N-A Y+JC ++IC•++ 1 •+ JCU•1 A :•X•U 2 ++0*• A+X +:A+O+-20. •KK+1 2 A-	I 12%%21
	01	□ □ で □ で □ で □ で □ で □ で □ で □ で □ で □	:E020
06	01	3. ++++•55•0 ++IC•++ 1+• 1 1+• 1+• 1 1 1 1 +• 1+• 1 1 1 1	
	01	4. •00 • & U+CEA+1 + • E:0018 A : • N+1 N+UØ • 1 0+X : E+0U • N 1 ++ IE• • +.	
		5. •O•⊙∻1 1 ••U∻1-• :	
	0,5	- AAN•E = 4.0N.0+	=
	0,5	- 1474 C40020 = 140C:XX:7	
	0,5	- 0+000+1 = ++*•:•***1	95
	0,5	6. •1•: 1 :E020-• A :UU20.	
		1. « 14CIL •-• 0417-20, 1 • 1141 2 11411 • 1, 1411 • 1 26 • : 0 • 041	II
	1.5	11:00 - 1 11:00 - 1:00 - X . C - X - C - 1:11 + 5 - C - X - 1 1:00 - X - C - X - X - X - X - X - X - X - X	+ः+ ॥• ॥+
	1000.70	KO.; •KK+1 1 •OO.6, +2K:•U 1+++42E2 X.•O 021 1	
		NSI. VVS: 41 1:0:00 ES . O. +++EI. V. N. 1. »	
	0,5	2. +•OLEET 1 TENEOT : « CIET-•OE1T-EA »	
06	0,5	⇒ -Y: •⊙∻17÷N (•C÷⊙K•O/•C2X•³)	
	0,5	⇒ CJC2-: •0*YO:	
	0,5	→ -•0+17: • LISE •:081 • 0+LE•V • 0:005V	
	, ,,,	⇒ -2Λ: +•Ж÷ШΥ• 1 +12U•	
		3. •O+EE2 1120:E•O ++JEN20+ : •O=E+O •X+IA-1 : E•552 A +2KK+U+ +4 A 0 •+ 2	
	01	1488. 1488 V LISE 41V5V41-8: 4:0.04	
		• 0:240 • 20+17+8 (1720:2): 2:• KK+1 • 1 1-10: 1 • 1	
	01	1+0E:*X*+ & NSOX**+1	
		• = 030 • A TISE A : LUSO, • K+ X • L • A SO+ AA Y+ JE TISO+ JEO • 1+1-• :	III
а		- + • IC + OKE+ :	31.1C+0.
	0.5	- •O÷O+÷O %÷AASX	0 120.
	0.5	- +20. +4++:• 4.0	
	0.5	- • JE • O • O :	
	1.5	- · • • • • • • • • • • • • • • • • • •	
	1.5		
	1.5	- • EO 20 1 : UU 20 (+ • Y + O 0 • 1 : UU 20 + + ICO + X). - + = + U • N + :	
08	0.5	- • O + L O + O 1 1121 • L • U + 1 1 : • K : 1 / • 1 + X.	
	0.5	- •0+E0+0 1 NSEN•X+1 1 7E+XO•	
	0.5	- • O * E O * O 1 : E • • · · · · · · · · · · · · · · · · ·	
	0.5	- • Z • A ÷ O 1 11211: X • 1 1 + 2 O •	
	0.5	- •08X*X 1 :E080	
		- +•0+11+•XE•:+	
	0.5	- U+O12 1 ++JEN+O +: EESAS1	
	0.5	- +: ZI • X • O ++ JEN • O + A + O + A A • O ≥ 1	
è	0.5	- · E · A + O 1 TEU: X • 1 1 + * X E • : + + • E O 2 O • 1 +	AFP

دورة: 2012	ع الشعب	الشعب(ة): جمي	الأمازيغية	مادة: اللغة	ذجية اختبار	الإجابة النمو	تابع
------------	---------	---------------	------------	-------------	-------------	---------------	------

العلامة		* N 1 11:# 5	محاور
المجموع	مجزأة	عناصر الإجابة "ثانا حدجيلا "	موضوع
06	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.1 01	1. لأغروز ن وقاوار شاتان أماك لأن نانا حدجيلا جاماك: - كين(نكان، أعابون) ناس ديما ياتشور ما ؤر يالي تاحلاويث نيغ تنافلوست ن ستاكار ذيحابان ثازارث وين ع دثاملال ذيناغ، أستسالأف (أستماستاح)، أتتار فأذ، أسئاتشار فوس ثراناس: "أرابي سريث!". 2. ماتا ع ثيديامالأن(ع ثيدياستانعاثان): أ أسانتال: رُاراغ، شفيغ، نتامسازال، قارغ، ورجيغ ب) أمقيم أوصيل: ثيطاوين بنو، ثيطاوين ناغ ب) أمقيم أوصيل: ثيطاوين أنو، ثيطاوين ناغ - باش أسئماستاح (أسئاسلاف) في بيخاف ناس باش أدياماكثي تامري باش أدياماكثي تامري. وأحذاس) ولاش ن وائ قروزين فالاس ولاش ن وائ قروزين فالاس نرقازان ع دشرابا دجينيت ع بيمان ناس (واحذاس) رائين لأغروز.	فري ن ضريس
06	01 0.5 01 01 0.5 0.5 01.5	1. "مدا ول طاستانش فالا يوذان، اساغليغ ذي طارف" مدا ول طاستانش فالا يوذان: اسومار امسانتال ن ثورذا. اساغليغ ذي طارف: اسومار اقاجذان. 2. تاسلاط: ثاتتازواراي ثازضي زائس ث: د اماسكار (اسانتال، اميقاو) تازواراي: د اساغرو تازضي: د اساماد وسريد زاث: تانزاغت س: د امقيم اوصيل اساماد اروسريد (س تانزاغت)	II اردیسان ن وثلایث

أمازيغية الشعب(ة): جميع الشعب دورة: 2012	اختبار مادة: اللغة ا	تابع الإجابة النموذجية
--	----------------------	------------------------

للمة	-)	3 1-3115n	محاور	
المجموع	مجزأة	عناصر الإجابة	الموضوع	
N.	01	* أضريس أذييلي ذ ولتيس. * وُليس أذ يباد ف كراد ن يمور أن. 1- أذ يبلي وفاريس يأحلا؛ ما:	III أسأنفالي س ثير ا	
, P	01	- يأتواغراي س وأسهال		
	0.5	- أسابتار يازديق (ثالتونين، ئيسادارين) ؛		
	0.5	- أسيقار نواتا ؟		
	0.5	- ثیفیار رسانث ف یلوفان ن تجار ومث ؛		
	0.5	- أماوال يوڤير ئذن وسآنتال ؟		
00	0.5	- نلوڤانِ نِ ثیرا تـواضاًفران.		
08		2- يأزضا أمأك ثلاق		
	0.5 0.5	- ثودّسان وأضريس تــسآدّارين ؛		
	0.5	 ثوقتنا جار ٹسادارین ٹائتساھال ٹیٹزی ؛ 		
	0.5	- ثیمآرران یآمیاقآن وقیرآنث نذن ثیلاوث ؟		
		- أسآمراًس ن ينامّالأن ن واكوذ ذياً ن واذاق باناًن.		
	0.5	3- یو قیر نذ ن وسآنتآل ئ دیتواوشآن أن سر ذرات مراد ا		
	0.5	- أضريس ذوليس يأمدان ؟ - أضريس يأتوابنا ف ثغاسان ووليس ؟		
	0.5			
	U.O	/	1	
	0.5	- أضريس أذيو ڤير نذ ن وسأنتأل.		
	0.5	- اصریس ادیوفیر ندن و سانتان.		
	0.3	- اصریس ادیوفیر ندن و ساندان.		
	0.3	- اصریس ادیوقیر ندن و سانتان.		
	0.3	- اصریس ادیوقیر ندن و ساندان.		
	0.3	- اصریس ادیوقیر ندن و ساندان.		
	0.3	- اصریس ادیوقیر ندن و ساندان.		
	0.3	- اصریس ادیوقیر ندن و ساندان.		
	0.3	- اصریس ادیوقیر ندن و ساندان.		
	0.3	- اصریس ادیوقیر ندن و ساندان.		
	0.5	- اصریس ادیوقیر ندن و ساندان.		
	0.5	- اصریس ادیوقیر ندن و سانتان.		
	0.5	- اصریس ادیوقیر ند ن وساندان.		
	0.5	ـ اصریس ادیوقیر ندن وساندان.		
	0.5	- اصریس آدیوقیر ندن وساندان.		

تابع الإجابة النموذجية اختبار مادة: اللغة الأمازيغية الشعب(ة): جميع الشعب دورة: 2012

العلامة		عناصر الإجابـــة	
المجموع	مجزأة	(Nna Ḥǧila)	لموضوع
0.5 0.5 0.5 0.5 0.5 0.5 0.5		Tigzi 1) Arrac n taddart ḥemmlen Nna Ḥjila acku: - Iciw-is yezga yeččur d tiquqac, yeččur d tiḥluqin. - Win i d-temlal ad as-teslef, ad t-terfed, ad as-teččar afus-is ternu-as «Rebbi ḥerz». 2) Ayen i t-id-yemmalen: a) Asentel: ttwaliy, cfiy, nettemsazzal b) Amqim awsil: wallen-iw, wallen-nney. 3) - Akken ad as-teslef - Akken ad d-yemmekti temzi-ines.	I Tigzi r uḍris
	0.5 0.5 01 01	4) - Nna Ḥǧila tegra-d iman-is Ulac anwa i irezzun fell-as Irgazen i d-trebba ǧǧan-tt iman-is. 5) - Zik ilemziyen ttqadaren imeqqranen Ttnernin warrac.	
	01 0,5	Iferdisen n tutlayt : 1) - Lemmer ur ttaḍsan ara medden fell-i : Asumer amsentel (n turda). - Ad as-yliy deg yirebbi : Asumer agejdan.	II Tutlay t
		2) Tasledt : Tezwaray tizedt zdat-s.	
06	01	T : amatar udmawan, d ameskar (asentel, amigaw).	
	01	Zwaray : d amyag yefti yer wurmir ussid, d aseyru.	
	0,5	Tizedt: asemmad usrid.	
	0,5	Zdat: d tanzeyt.	
	01,5	-S: d amqim awsil n tenzeyt, d asemmad arusrid neys tenzeyt.	
	01,5	Aḍris ad yili d ullis. Aktazal ad ibedd ɣef yisefranen-a :	III
		- Taferkit:	Asenfa
	0.5	-Asebter zeddig	i s tira
	0.5	-Tira tettwayar	
	500 50000	- Afares :	
	1,5	-Asentel iban	
	1,5	-Aḍris d ullis (taγessa n wullis tefrez).	
08		- Tutlayt :	
UO	0.5	-Asemres n yinamalen n wakud / adeg.	
	0.5	-Asemres n yimyagen d tmezra	
	0.5	-Asemres n umawal	
	0.5	-Aqader n yilugan n tira -Asigez n uḍris	
	0.5	- Taseddast / Tazḍawt	
	0.5	- Lebni n tefyar tummidin	
	0.5	-Tuqna gar tefyar d tseddarin	
	0.5	-Aqader n yilugan n tezdawt tadrisant	

تابع الإجابة النموذجية اختبار مادة: اللغة الأمازيغية الشعب(ة): جميع الشعب دورة: 2012

علامة	اك مجزأة	عناصر الإجابــة	محاور لموضوع
المجموح	مجراه		
		1)•00•61+•11•0+ K*EEU*111• KX8U• •CK::	I
	0.5	- 868:8-0 N+XX• N+65:0 A +22:2•6, N+65:0 A +2 AL:221.	42XX2
	0.5	- :21 2 A-++[U•U•A•O-++OU+]E, •A+-++O]E+A, •A•O-++55•O •JE:O-80	
		7+01:-0 « O+008 R+0#!».	:E086
81		2) •N+1 & 7-8A-N+EE•U+1 :	
	0.5	a) • © ÷1 + ÷1 : + † • USY, CIEY, 1 ÷ † + † E © • ЖЖ • U	
	0.5	b) •EVSE •:OSU : :•UU+1-S:, :•UU+1-11+Y. 3) - •KK+1 •A •O-++OU+JE	
	0.5	- • K K + 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1	
		4) - 11. KX211. ++XO1 2[.1-20.	
06	0.5	-:U•C•1:• & 80+XX:1 JL+UU-•O.	
70	0.5	- 80X·X+1 8 1-40+000 XX-1-4+ 8E-1-80.	8
	01	5) - X2R 211+CX211+1 ++V•10+0+1 2C+VVO+1+1. - ++1+0121 :•00+6.	
Section 2015 10000 - 7		-1717-012100-6.	
	01 0.5	1) - U+EE+O :O +++EO+I +O + E+AA+I JE+UU-E: +O +EO+I++U (1 +:OA+).	
06	0.5	- • A • © OU E O A TE O & O O E : • O I E & O • X & I A • I.	
00		2) **••****	II
	01	t: • [* ○ [* ○ K • ○ (• ○ * 1 + * 11 , • [2 X • *) .	14774
	01	※:• ○•Π : Λ •Θ÷ΨΟ:.	+:+U•T
	0.5	₹2 % ÷Λ†: Λ •Θ÷Ε Γ •Λ •ΘΟ2Λ.	
	0.5	፠ Λ•ት: Λ ተ• ነ ፠÷የት.	
	1.5	0: A • EZZE •: 021 • 0+ EE • A • O : 002A, 1+4 1 ++ 1 X+4+.	
		•E020 •A TISUS A :UUSO. •K+•X•U •A SO+AA Y+JE TISO+JEO•1+1-•:	
		- + · JC + O K 2 + :	***
08	0.5	- •0+0++0 X+AASX	·O+IJE·
1. The state of th	0.5	- 150. 141:00	0 750
*		- •JE•O+• :	
	01.5	- •O+17+1 20•1	
	0.000		
	01.5	- • EOSO A : ULSO (+ • Y + OO • 1 : ULSO + + ICO+X).	
		- +:+lent:	
	0.5	- • O + C O + O 1 1121 • C • U + 1 1 : • K • A / • A + X.	
	0.5	- •0+00+0 1 112EN•X+1 1 + 1+XO•	
	0.5	- • • • • • • • • • • • • • • • • • • •	
	0.5	- · E · A ÷ O 1 1181: X • 1 1 + 2 O •	
	0.5	- •0803: 1 X*X80• -	
		- +.0+10.0+/+.XE.+	
	0782000770000	- U+O18 1 ++JE11 • O +: EE8A81	
	0.5	- 4:21. X.O 4.211.0 V 40.4VV.081	
	0.5		£
	0.5	- • E • V • V • O 1 USU: X • 1 1 + * * E • E • E • O • O • O • O • O • O • O •	