Chapter 9

Complex Analysis (Appendix A)

A.1 Express each of the following complex numbers in Cartesian form: (a) $2e^{j2\pi/3}$; (b) $\sqrt{2}e^{j\pi/4}$; (c) $2e^{j7\pi/6}$; and (d) $3e^{j\pi/2}$.

Solution.

(a)

$$2e^{j2\pi/3} = 2\left(\cos\frac{2\pi}{3} + j\sin\frac{2\pi}{3}\right)$$
$$= 2\left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right)$$
$$= -1 + j\sqrt{3}.$$

(b)

$$\sqrt{2}e^{j\pi/4} = \sqrt{2}\left(\cos\frac{\pi}{4} + j\sin\frac{\pi}{4}\right)$$
$$= \sqrt{2}\left(\frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}}\right)$$
$$= 1 + j.$$

(c)

$$2e^{j7\pi/6} = 2\left(\cos\frac{7\pi}{6} + j\sin\frac{7\pi}{6}\right)$$
$$= 2\left(-\frac{\sqrt{3}}{2} - j\frac{1}{2}\right)$$
$$= -\sqrt{3} - j.$$

A.2 Express each of the following complex numbers in polar form: (a) $-\sqrt{3}+j$; (b) $-\frac{1}{2}-j\frac{\sqrt{3}}{2}$; (c) $\sqrt{2}-j\sqrt{2}$; (d) $1+j\sqrt{3}$; (e) $-1-j\sqrt{3}$; and (f) -3+4j. In each case, plot the value in the complex plane, clearly indicating its magnitude and argument. State the principal value for the argument (i.e., the value θ of the argument that lies in the range $-\pi < \theta \le \pi$).

Solution.

(a)

(b)

$$|z| = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2} = 1$$

$$\arg z = \arctan\left(\left[-\frac{\sqrt{3}}{2}\right] / \left[-\frac{1}{2}\right]\right) - \pi = \arctan\left(\sqrt{3}\right) - \pi = \frac{\pi}{3} - \pi = -\frac{2\pi}{3}$$

$$z = e^{j(-2\pi/3)}.$$

(c)

$$|z| = \sqrt{(\sqrt{2})^2 + (\sqrt{2})^2} = 2$$

 $\arg z = \arctan(-\frac{\sqrt{2}}{\sqrt{2}}) = \arctan(-1) = -\frac{\pi}{4}$
 $z = 2e^{j(-\pi/4)}$.

- **A.3** Evaluate each of the expressions below, stating the final result in the specified form. When giving a final result in polar form, state the principal value of the argument (i.e., choose the argument θ such that $-\pi < \theta \le \pi$).
 - (a) $2\left(\frac{\sqrt{3}}{2} j\frac{1}{2}\right) + j\left(\frac{1}{\sqrt{2}}e^{j(-3\pi/4)}\right)$ (in Cartesian form);
 - (b) $\left(\frac{\sqrt{3}}{2} j\frac{1}{2}\right) \left(\frac{1}{\sqrt{2}}e^{j(-3\pi/4)}\right)$ (in polar form);

(c)
$$\left(\frac{\sqrt{3}}{2} - j\frac{1}{2}\right)/(1+j)$$
 (in polar form);

(d) $e^{1+j\pi/4}$ (in Cartesian form);

(e)
$$\left(\left(-\frac{1}{2} + j\frac{\sqrt{3}}{2}\right)^*\right)^8$$
 (in polar form);
(f) $(1+j)^{10}$ (in Cartesian form); and

(f)
$$(1+j)^{10}$$
 (in Cartesian form); and

(g)
$$\frac{1+j}{1-j}$$
 (in polar form).

Solution.

(a)

$$\begin{split} 2\left(\frac{\sqrt{3}}{2} - j\frac{1}{2}\right) + j\left(\frac{1}{\sqrt{2}}e^{j(-3\pi/4)}\right) &= \sqrt{3} - j + \left(-j\frac{1}{2} + \frac{1}{2}\right) \\ &= \sqrt{3} + \frac{1}{2} - j\left(1 + \frac{1}{2}\right) \\ &= \frac{2\sqrt{3} + 1}{2} - j\frac{3}{2}. \end{split}$$

(b)

(c)

$$\begin{split} \left(\frac{\sqrt{3}}{2} - j\frac{1}{2}\right)/(1+j) &= \left[e^{j(-\pi/6)}\right]/\left[\sqrt{2}e^{j\pi/4}\right] \\ &= \frac{1}{\sqrt{2}}e^{j(-5\pi/12)}. \end{split}$$

(d)

$$e^{1+j\pi/4} = ee^{j\pi/4}$$

$$= e\left(\cos\frac{\pi}{4} + j\sin\frac{\pi}{4}\right)$$

$$= \frac{1}{\sqrt{2}}e + j\frac{1}{\sqrt{2}}e.$$

$$\left(\left(-\frac{1}{2} + j\frac{\sqrt{3}}{2} \right)^* \right)^8 = \left[e^{j(-2\pi/3)} \right]^8$$

$$= e^{j(-16\pi/3)}$$

$$= e^{j2\pi/3}.$$

A.4 Show that the following identities hold, where z, z_1 , and z_2 are arbitrary complex numbers:

- (a) $|z_1/z_2| = |z_1|/|z_2|$ for $z_2 \neq 0$;
- (b) $arg(z_1/z_2) = arg z_1 arg z_2$ for $z_2 \neq 0$;
- (c) $z + z^* = 2 \operatorname{Re} \{z\};$

(d)
$$zz^* = |z|^2$$
; and

(e)
$$(z_1z_2)^* = z_1^*z_2^*$$
.

Solution.

(a) We rewrite z_1 and z_2 in polar form as

$$z_1 = r_1 e^{j\theta_1}$$
 and $z_2 = r_2 e^{j\theta_2}$

where $r_1, r_2, \theta_1, \theta_2$ are real constants such that $r_1, r_2 \ge 0$. Consider the left-hand side of the given equation, which we can manipulate as follows (assuming that $z_2 \neq 0$):

$$\begin{vmatrix} \frac{z_1}{z_2} \end{vmatrix} = \begin{vmatrix} \frac{r_1 e^{j\theta_1}}{r_2 e^{j\theta_2}} \end{vmatrix}$$
$$= \frac{|r_1| |e^{j\theta_1}|}{|r_2| |e^{j\theta_2}|}$$
$$= \frac{r_1}{r_2}$$
$$= \frac{|z_1|}{|z_2|}.$$

Thus, we have that $|z_1/z_2| = |z_1|/|z_2|$.

(d) We express z in Cartesian form as

$$z = x + jy$$

Now, we have

$$zz^* = (x+jy)(x-jy)$$

$$= x^2 - jxy + jxy + y$$

$$= x^2 + y^2 \quad \text{and}$$

$$|z|^2 = \left(\sqrt{x^2 + y^2}\right)^2$$

$$= x^2 + y^2.$$

Therefore, $zz^* = |z|^2$.

A.5 Use Euler's relation to prove the following identities:

(a)
$$\cos \theta = \frac{1}{2} \left[e^{j\theta} + e^{-j\theta} \right];$$

(a)
$$\cos \theta = \frac{1}{2} \left[e^{j\theta} + e^{-j\theta} \right];$$

(b) $\sin \theta = \frac{1}{2j} \left[e^{j\theta} - e^{-j\theta} \right];$ and

(c)
$$\cos^2 \theta = \frac{1}{2} [1 + \cos 2\theta].$$

Solution.

(a) From Euler's relation, we know

$$e^{j\theta} = \cos\theta + j\sin\theta.$$

Thus, we can write

$$\frac{1}{2} \left[e^{j\theta} + e^{-j\theta} \right] = \frac{1}{2} [\cos \theta + j \sin \theta + \cos(-\theta) + j \sin(-\theta)].$$

Since $\cos \theta$ and $\sin \theta$ are even and odd functions, respectively, we can simplify the above equation to obtain

$$\begin{split} \frac{1}{2} \left[e^{j\theta} + e^{-j\theta} \right] &= \frac{1}{2} [\cos \theta + j \sin \theta + \cos \theta - j \sin \theta] \\ &= \frac{1}{2} [2 \cos \theta] \\ &= \cos \theta. \end{split}$$

Therefore, $\cos \theta = \frac{1}{2} \left[e^{j\theta} + e^{-j\theta} \right].$

A.6 Consider the rational functions given below, where z is a complex variable. For each function, find the value and order of its poles and zeros. Also, plot the poles and zeros in the complex plane.

(a)
$$F(z) = z^2 + jz + 3$$
;

(b)
$$F(z) = z + 3 + 2z^{-1}$$
;

(a)
$$F(z) = z^2 + jz + 3;$$

(b) $F(z) = z + 3 + 2z^{-1};$
(c) $F(z) = \frac{(z^2 + 2z + 5)(z^2 + 1)}{(z^2 + 2z + 2)(z + 3z + 2)};$
(d) $F(z) = \frac{z^3 - z}{z^2 - 4};$

(d)
$$F(z) = \frac{z^3 - z}{z^2 - 4}$$
;

(e)
$$F(z) = \frac{z + \frac{1}{2}}{(z^2 + 2z + 2)(z^2 - 1)}$$
; and

(d)
$$F(z) = \frac{z + \frac{1}{2}}{(z^2 + 2z + 2)(z^2 - 1)}$$
; and
(f) $F(z) = \frac{z^2(z^2 - 1)}{(z^2 + 4z + \frac{17}{4})^2(z^2 + 2z + 2)}$.

Solution.

(d) First, we factor the numerator polynomial.

$$z^3 - z = z(z^2 - 1) = z(z+1)(z-1).$$

Next, we factor the denominator polynomial.

$$z^2 - 4 = (z+2)(z-2).$$

So, we have

$$F(z) = \frac{z(z+1)(z-1)}{(z+2)(z-2)}.$$

Therefore, F(z) has first order zeros at -1, 0, and 1, and first order poles at -2 and 2.

(f) To find the poles and zeros of a rational function, we must factor the numerator and denominator polynomials. First, we factor $z^2 + 4z + \frac{17}{4}$. The quadratic formula yields

$$\frac{-4 \pm \sqrt{4^2 - 4(1)(\frac{17}{4})}}{2(1)} = -2 \pm j\frac{1}{2}.$$

Thus, we have

$$z^{2} + 4z + \frac{17}{4} = (z + 2 + j\frac{1}{2})(z + 2 - j\frac{1}{2}).$$

Next, we factor $z^2 + 2z + 2$. The quadratic formula yields

$$\frac{-2 \pm \sqrt{2^2 - 4(1)(2)}}{2(1)} = -1 \pm j.$$

So, we have

$$z^2 + 2z + 2 = (z+1+j)(z+1-j).$$

Next, we factor $z^2 - 1$ to obtain

$$z^2 - 1 = (z+1)(z-1).$$

Combining the above factorization results, we have

$$F(z) = \frac{z^2(z+1)(z-1)}{(z+2+j\frac{1}{2})^2(z+2-j\frac{1}{2})^2(z+1+j)(z+1-j)}.$$

Therefore, F(z) has first order zeros at 1 and -1, a second order zero at 0, first order poles at -1+j and -1-j, and second order poles at $-2+j\frac{1}{2}$ and $-2-j\frac{1}{2}$.

- **A.7** Determine the values of *z* for which each of the functions given below is: i) continuous, ii) differentiable, and iii) analytic. Use your knowledge about polynomial and rational functions to deduce the answer. Simply state the final answer along with a short justification (i.e., two or three sentences). (This problem does not require a rigorous proof. In other words, do not use the Cauchy-Riemann equations for this problem.)
 - (a) $F(z) = 3z^3 jz^2 + z \pi$ and

(b)
$$F(z) = \frac{z-1}{(z^2+3)(z^2+z+1)}$$
.

Solution.

- (a) The function F(z) is a polynomial. Polynomials are continuous, differentiable, and analytic everywhere.
- (b) The function F(z) is a rational function. Rational functions are continuous, differentiable, and analytic everywhere, except at points where the denominator polynomial becomes zero. So, we find these points. We factor F(z) as

$$F(z) = \frac{z - 1}{(z + j\sqrt{3})(z - j\sqrt{3})\left(z + \frac{1}{2} - j\frac{\sqrt{3}}{2}\right)\left(z + \frac{1}{2} + j\frac{\sqrt{3}}{2}\right)}.$$

Therefore, the denominator becomes zero for

$$z \in \left\{ -j\sqrt{3}, j\sqrt{3}, -\frac{1}{2} + j\frac{\sqrt{3}}{2}, -\frac{1}{2} - j\frac{\sqrt{3}}{2} \right\}.$$

Therefore, F(z) is continuous, differentiable, and analytic everywhere, except at the points: $-j\sqrt{3}$, $j\sqrt{3}$, $-\frac{1}{2}+j\frac{\sqrt{3}}{2}$, $-\frac{1}{2}-j\frac{\sqrt{3}}{2}$.

A.9 Let $H(\omega)$ be a complex-valued function of the real variable ω . For each of the cases below, find $|H(\omega)|$ and $\arg H(\omega)$.

(a)
$$H(\omega) = \frac{1}{(1+j\omega)^{10}}$$
; and
(b) $H(\omega) = \frac{-2-j\omega}{(3+j\omega)^2}$.

Solution.

(a) First, we compute the magnitude of $H(\omega)$ to obtain

$$|H(\omega)| = \frac{|1|}{|(1+j\omega)^{10}|}$$

$$= \frac{1}{|1+j\omega|^{10}}$$

$$= \frac{1}{(\sqrt{1+\omega^2})^{10}}$$

$$= \frac{1}{(1+\omega^2)^5}.$$

Next, we compute the argument of $H(\omega)$ to obtain

$$\arg H(\omega) = \arg \left(\frac{1}{(1+j\omega)^{10}}\right)$$

$$= \arg 1 - \arg \left([1+j\omega]^{10}\right)$$

$$= -\arg \left([1+j\omega]^{10}\right)$$

$$= -\arg \left([\sqrt{1+\omega^2}e^{j\arctan \omega}]^{10}\right)$$

$$= -10\arctan \omega.$$

Since the argument is not uniquely determined, in the most general case, we have

$$arg H(\omega) = 2\pi k - 10 \arctan \omega$$

for all integer *k*.

(b) First, we compute the magnitude of $H(\omega)$ to obtain

$$|H(\omega)| = \frac{|-2 - j\omega|}{|(3 + j\omega)^2|}$$

$$= \frac{|-2 - j\omega|}{|3 + j\omega|^2}$$

$$= \frac{\sqrt{4 + \omega^2}}{(\sqrt{9 + \omega^2})^2}$$

$$= \frac{\sqrt{4 + \omega^2}}{9 + \omega^2}.$$

Next, we calculate the argument of $H(\omega)$ as

$$\begin{split} \arg H(\omega) &= \arg(-2 - j\omega) - \arg\left([3 + j\omega]^2\right) \\ &= \pi + \arctan \omega/2 - \arg\left(\left[\sqrt{9 + \omega^2}e^{j\arctan \omega/3}\right]^2\right) \\ &= \pi + \arctan \omega/2 - 2\arctan \omega/3. \end{split}$$

Since the argument is not uniquely determined, in the most general case, we have

$$\arg H(\omega) = (2k+1)\pi + \arctan \omega/2 - 2\arctan \omega/3$$

for all integer k.