Streda: 14:00

3. zadanie

SYNTÉZA SEKVENČNÝCH LOGICKÝCH OBVODOV

Navrhnite synchrónny sekvenčný obvod so vstupom x a výstupom y s nasledujúcim správaním: na výstupe Y bude 1 vždy vtedy, ak sa (zo začiatočného stavu) vo vstupnej postupnosti vyskytne postupnosť 100100 (postupnosti sa môžu prekrývať, v tomto prípade 100100100 je možné chápať ako dve postupnosti). Vlastné riešenie overte progr. prostriedkami ESPRESSO a LogiSim (príp LOG alebo FitBoard).

Úlohy:

- 1) V pamäťovej časti použite minimálny počet preklápacích obvodov **JK-PO**.
- 2) Navrhnuté B-funkcie v tvare MDNF overte programom pre ESPRESSO. Pri návrhu B-funkcií klaďte dôraz na skupinovú minimalizáciu funkcií.
- 3) Optimálne riešenie (treba zhodnotiť, ktoré riešenie je lepšie a prečo) vytvorte obvod s členmi NAND (výhradne NAND, t.j. ani žiadne NOT).
- 4) Výslednú schému nakreslite v simulátore LogiSim (príp. LOG alebo FitBoard) a overte simuláciou.
- 5) Riešenie vyhodnoť te (zhodnotenie zadania, postup riešenia, vyjadrenie sa k počtu logických členov).

Streda: 14:00

Riešenie

Zadaná postupnosť: **100100** Prechodová tabuľka pre automat typu Moore

2422	Nový stav		Y	Čo je
stav	x=0	x=1	1	splnené?
S 0	S0	S 1	0	Nič
S 1	S2	S 1	0	"1"
S2	S3	S 1	0	"10"
S 3	S0	S4	0	"100"
S4	S5	S 1	0	"1001"
S5	S6	S 1	0	"10010"
S6	S0	S3	1	"100100"

Prechodový graf typu Moore (hodnota hrany reprezentuje hodnotu vstupnej premennej):

Kódovanie stavov

			z 3		
		z2			
	S0	S2	S3	S1	
z 1	S4	S6	X	S5	

Stav	$\mathbf{Z}_1\mathbf{Z}_2\mathbf{Z}_3$
S0	000
S1	001
S2	010
S 3	011
S4	100
S5	101
S6	110

Streda: 14:00

Prechodová tabuľka pre automat Moore po dosadení zakódovaných stavov.

otoxy	Nový	Y	
stav	x=0	x=1	1
000	000	001	0
001	010	001	0
010	011	001	0
011	000	100	0
100	101	001	0
101	110	001	0
110	000	011	1

Budiace funkcie pre D preklápacie obvody (D-PO) a výstupná funkcia

			z 3	
		z2		
	000	011	000	010
z 1	101	000	XXX	110
	001	100	XXX	001
X	001	001	100	001
		D1,D2	2,D3	
			z 3	

			z3	
		z2		
	0	0	0	0
z 1	1	0	X	1
	0	1	X	0
X	0	0	1	0
		D1		_

			_z3		
		z 2	_		
	0	1	0	1	
z 1	0	0	X	1	
	0	0	X	0	
X	0	0	0	0	
	-	Γ)2		

				Z3	
			z2		
		0	1	0	0
	z 1	1	0	X	0
		1	0	X	1
X		1	1	0	1
			D3		

Streda: 14:00

			z3	
		z2		
_	0	0	0	0
z 1	0	1	X	0
	0	1	X	0
X	0	0	0	0
	_	Y = z1.z2		

Budiace funkcie pre JK preklápacie obvody (JK-PO)

z->Z	J	K
0->0	0	X
0->1	1	X
1-> <u>0</u>	X	1
1-> <u>1</u>	X	0

Streda: 14:00

				Z 3	
			Z2		
	_	0	1	X	X
	Z 1	1	0	X	X
		1	0	X	X
X		1	1	X	X
		J3 =	$\overline{Z1}$. $Z2 + Z1$. $\overline{Z2}$	$\overline{2} + \overline{Z2}.X$	

Espresso – Riešenia sú totožné # JK Preklapaci obvod .i 4 .o 7 .ilb z1 z2 z3 x .ob J1 J2 J3 K1 K2 K3 Y .type fr .p 16 0000 000---0 0010 01---10 0100 0-1-0-0 0110 0---110 1000 -010--0 1010 -1-0-10 1100 --011-1 1110 -----1001 -011--0 1011 -0-1-00 1101 -- 001-1 1111 -----0001 001---0 0011 00---00

JK Preklapaci obvod
J1 = (z2&z3&x);

J2 = (z3&!x);

J3 = (z1&!z2) | (!z2&x) | (!z1&z2);

K1 = (z2&!x) | (!z2&x);

K2 = (x) | (z3&!x) | (z1&z2);

K3 = (!z1&z2) | (z3&!x);

Y = (z1&z2);

.e

0101 0-1-1-0 0111 1---110

Streda: 14:00

Prepis na NAND s využitím Shefferovej operácie:

$$J1 = Z2.Z3.X = \overline{Z2.Z3.X} = (Z2 \uparrow Z3 \uparrow X) \uparrow (Z2 \uparrow Z3 \uparrow X)$$

$$K1 = \overline{Z2.X} + Z2.\overline{X} = \overline{\overline{Z2}.X} + Z2.\overline{X} = \overline{\overline{Z2}.X} \cdot \overline{Z2.\overline{X}} = ((Z2 \uparrow) \uparrow X) \uparrow (Z2 \uparrow (X \uparrow))$$

$$J2 = \overline{Z3.\overline{X}} = \overline{Z3.\overline{X}} = (Z3 \uparrow (X \uparrow)) \uparrow (Z3 \uparrow (X \uparrow))$$

$$K2 = \overline{Z1.Z2} + \overline{Z3.\overline{X}} + X = \overline{Z1.Z2} + \overline{Z3.\overline{X}} + X = \overline{\overline{Z1.Z2}} \cdot \overline{Z3.\overline{X}} \cdot \overline{X} =$$

$$= (Z1 \uparrow Z2) \uparrow (Z3 \uparrow (X \uparrow)) \uparrow (X \uparrow)$$

$$J3 = \overline{Z1.Z2} + Z1.\overline{Z2} + \overline{Z2.X} = \overline{Z1.Z2} + Z1.\overline{Z2} + \overline{Z2.X} = \overline{Z1.Z2} \cdot \overline{Z1.\overline{Z2}} \cdot \overline{Z2.X} =$$

$$= ((Z1 \uparrow) \uparrow Z2) \uparrow (Z1 \uparrow (Z2 \uparrow)) \uparrow ((Z2 \uparrow) \uparrow X)$$

$$K3 = \overline{Z1.Z2} + \overline{Z3.\overline{X}} = \overline{\overline{Z1.Z2}} + \overline{Z3.\overline{X}} = \overline{\overline{Z1.Z2}} \cdot \overline{Z3.\overline{X}} = ((Z1 \uparrow) \uparrow Z2) \uparrow (Z3 \uparrow (X \uparrow))$$

$$Y = \overline{Z1.Z2} = \overline{Z1.Z2} = (Z1 \uparrow Z2) \uparrow (Z1 \uparrow Z2)$$

Vyjadrenie k počtu logických členov obvodu: 15 členov NAND a 3 preklápacie obvody JK. Vyjadrenie k počtu vstupov do logických členov obvodu: 45 (33 v kombinačnej časti a 12 v pamäťovej časti).

Schéma:

Streda: 14:00

Zhodnotenie

Zadanú postupnosť 100100 som riešil s prekrývaním, teda v postupnosti 100100100 sa nachádza zadaná postupnosť 2krát. Spravil som si prechodový graf typu Moore. Náhodné zakódoval stavy z grafu Moore. Na 7 stavov som použil 3 premenné pretože pre 2 premnné je 2^2 kombinácii a to je málo a 2^3 je dostatočný počet kombinácií. Ďalej som si spravili tabuľku pre automat Moore s dosadením zakódonavých stavov, tabuľky pre budiace funkcie a vystupnú funkciu, z nich odvodil budiace funkcie pre D preklápacie obvody (D-PO) a výstupnú funkciu. Budiace funkcie pre JK preklápacie obvody (JK-PO) som odvodil podľa tabulky pre JK-PO a tabuliek pre D preklápacie obvody. Budiace funkcie pre JK preklápacie obvody (JK-PO) som dal do espressa a výsledok som porovnal s odvodenými funkciami z J a K tabuliek. Zistil som že funkcie sú totožné. Funkcie som upravil na Shefferov tvar funkcie, nakreslil obvod v logisime a odtestoval jeho funkčnosť. Obvod fungoval správne na postupnosť 100100 s prekrývaním. Výsledný obvod obsahuje 15*NAND 3*J-K preklápací obvod a má 45vstupov (33 v kombinačnej časti a 12 v pamäťovej časti).