SG & SH - t-distribution & confidence intervals

What assumptions are	The sample is random.
required for the validity of a t-test?	2. The sample is taken from a normally distributed population.
How can you calculate the test statistic for a t-test?	$\frac{\left(\overline{x} - \mu\right)}{\left(\frac{S}{\sqrt{n}}\right)}$
	Where S² is an unbiased estimator of σ^2 which is found using $S^2 = \frac{\sum \left(x_i - \overline{x}\right)^2}{n-1}$
How are degrees of freedom calculated for t-tests?	It has (n - 1) degrees of freedom where n is number of datapoints. The intuitive understanding is, if we have 6 numbers (of which we know 5) and know the mean then we can easily find the 6th. Ultimately, only 5 of these numbers contribute to the standard error.
When is a t-test suitable?	 If the population variance is unknown, t-test is suitable (if it is then use normal distribution). If the sample size is small (ie, n ≤ 30). Unless explicitly stated otherwise, you can always use a t-test. It's just a lack of technology that made it the case of using z-distribution at this cut-off as convention early on.
What happens as the sample size of a t-test increase?	The t-distribution approaches the standard normal distribution.
What is a standard error?	The standard deviation of the sample mean, $\frac{s}{\sqrt{n}}$, is called the standard error .
	Which is

	$\overline{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right)$
How can t-distributions be used to generate a p% confidence interval? And when?	$\overline{x} - t \times \frac{s}{\sqrt{n}} < \mu < \overline{x} + t \times \frac{s}{\sqrt{n}}$ Where t is from a t-distribution of n-1 degrees of freedom: $t = t_{n-1}^{-1} \left(\frac{1+p}{2}\right),$ When sample size is small and population variance is unknown. Example: $A \text{ sample of size 16 is taken, whose mean is 13.6 and whose standard deviation is 20.4, in order to generate a 95% confidence interval for the mean of the population. Find the confidence interval. For \ p = 95\% \text{ and with } 16 - 1 = 15 \text{ degrees of freedom, } t_{15}^{-1}(0.975) = 2.13 The interval 13.6 - 2.13 \times \frac{20.4}{\sqrt{16}} < \mu < 13.6 + 2.13 \times \frac{20.4}{\sqrt{16}} simplifies to 2.74 < \mu < 24.46$
What is the correct interpretation of a p%-confidence interval? What is it generated from? How is a p%-confidence	 It is expected, <i>before generation</i>, the population mean μ will fall into this interval with probability p%. If you take repeated samples and form many confidence intervals, you expect p% of them to contain μ. It's generated from a sample.
interval generated by a sample size n?	$\overline{x}-z\times\frac{s}{\sqrt{n}}<\mu<\overline{x}+z\times\frac{s}{\sqrt{n}}$ Where z is calculated from p.