Physics 30 Electric Forces & Fields

Jad Chehimi

May 5, 2021

Unfinished!

Contents

Electric Fields	2
Micheal Faraday	2
Gravitational Fields	2
Drawing Electric Field Lines	3
Rules	3
Electric Field Around A Positive v/s Negative Source Charge	3
Electric Field Interactions	4
Particles	4
Electric Field Strength	4
Electric Field Around A Producer (Source Charge)	4
Electric Field Experienced By A Charge	5
Example	5
Example II	5
Example III	6
Electric Field Around A Producer in Two Dimensions	7
Example I	7
Electric Field Between Plates	8
Example	8
Example II	9
Flectric Field as a Function of r Graph	g

Electric Fields

Micheal Faraday

- Developed the idea of "lines of force" to describe electric fields
- A field is a "sphere of influence" in which a force can affect an object at a distance without contact
- There are electric, gravitational, and magnetic fields
- \bullet The symbol for electric field is $|\vec{E}|$

Gravitational Fields

$$\vec{g} = 9.81 \, \frac{\mathsf{m}}{\mathsf{s}^2}$$

$$\vec{g} = \frac{Gm}{r^2}$$

- • G= gravitational constant (6.67 imes $10^{-11}\,\mathrm{N}\cdot\mathrm{m}^2/\mathrm{kg}^2$)
- $\bullet \ m = {\rm mass \ of \ planet}$
- \bullet r = radius of the planet

Drawing Electric Field Lines

- Like charges repel, opposite charges attract
- The field is stronger the closer to the source charge it is
- We always use a small positive test charge to map/draw the electric field

Rules

- The lines must originate on a positive charge and end on a negative charge (positive to negative)
- The electric field line must be perpendicular to the surface of the charge
- The number of lines drawn leaving a positive charge or approaching a negative charge is proportional to the magnitude of the charge
- No two field lines can cross each other

Electric Field Around A Positive v/s Negative Source Charge

Electric Field Interactions

Use this theory with a test particle to determine the direction of an electric field. NOT signs.

Particles

	charge 1	mass
Alpha particles	+3.20×10-19c	6.65×10-27kg
Electron S		9.11×10-31kg
Protons	+1.60×10-19C	1.67×10-27 10
Neutrons	OC	1.67×10-27/15

Electric Field Strength

Electric Field Around A Producer (Source Charge)

$$|\vec{E}| = \frac{kq}{r^2}$$
 Units: $\frac{\text{N}}{\text{C}}$ or $\frac{\text{V}}{\text{m}}$

- $k = \text{Coulomb's Constant } (8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2)$
- q = Value of the source charge (C)
- ullet r= Distance from the source charge (m)

Electric Field Experienced By A Charge

$$\vec{E} = \frac{\vec{F}_e}{q}$$

- $\vec{E} = \text{Electric Field } (\frac{N}{C})$
- ullet $ec{F}_e = ext{Electrostatic Force (N)}$
- ullet q= Test Charge (in a field question, its not source charge) (C)

Example

Calculate the electric field 2.00 cm from an alpha particle.

$$|\vec{E}| = \frac{(8.99 \times 10^9 \, \mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2) (3.20 \times 10^{-19} \, \mathrm{C})}{(2.00 \times 10^{-2} \, \mathrm{m})^2}$$

$$|\vec{E}| = 7.19 \times 10^{-6} \frac{N}{C}$$
 radially outward

Example II

Calculate the electric field strength at a point in space where a $3.24\times10^{-6}\,\text{C}$ charge experiences an electrostatic force of $5.29\times10^{-3}\,\text{N}$.

$$\vec{E} = \frac{\vec{F}_e}{q}$$
$$5.29 \times 10^{\circ}$$

$$\vec{E} = \frac{5.29 \times 10^{-3} \, \mathrm{N}}{3.24 \times 10^{-6} \, \mathrm{C}}$$

$$\vec{E} = 1.63 \times 10^3 \, \frac{\mathsf{N}}{\mathsf{C}}$$

Example III

Calculate the electric field midway between the two charges below if they are 5.00 cm apart.

$$|\vec{E}_{net}| = |\vec{E}_1| + |\vec{E}_2|$$

$$|\vec{E}_{net}| = 34521600 \frac{N}{C}, \text{ west} + 77673600 \frac{N}{C}, \text{ west}$$

$$|\vec{E}_{net}| = 1.12 \times 10^8 \frac{N}{C}, \text{ west}$$

Electric Field Around A Producer in Two Dimensions

- ullet Calculate $ec{E}$ of the hypotenuse
- Use trig to get the components of the electric field vector on each side
- Direction of the vector is determined by the source charge like before
 - if positive, towards test charge/point (repel)
 - if negative, from test charge/point to source charge (attract)
- ullet Add the x and y components, positive or negative depending on direction
- You are left with the components of the net electric field vector

Example I

Calculate the net electric field at point P, which is 0.100 m from two similar spheres with positive charges of 2.00 C and separated by a distance of 0.0600 m, as shown in the figure below.

$$=3.43\times10^{12}\,\frac{N}{C}$$

Electric Field Between Plates

$$\vec{E} = \frac{V}{d}$$

- V = total voltage across the plate (V)
- d = total distance between the plates (m)

- The electric field between charged parallel plates is uniform identical at any point
- To determine the direction of the electrical field between charged parallel plates, use a small positive test charge
- ullet Don't forget that work is equal to 0 J if the F_e and d are not along the same line
 - θ (in $W=Fd\cos\theta)$ must be either
 - 0° (force and distance same direction) or
 - 180° (force and distance opposite directions)

Example

Two parallel plates are connected to a 12.0 V battery. If the plates are $6.00 \times 10^{-2}\,\text{m}$ apart, calculate the electric field strength between them.

$$\vec{E} = \frac{12.0 \,\mathrm{V}}{6.00 \times 10^{-2} \,\mathrm{m}} = 200 \,\frac{\mathrm{V}}{\mathrm{m}}$$

Example II

Electric Field as a Function of r Graph

• Make sure all values are times ten to the power of the same exponent before you plot

In order to get a graph that is a straight line, set the x to whatever is proportional to y. In this case, $E \propto \frac{1}{r^2}$

	τ²
$\frac{1}{r^2}\left(\frac{1}{m^2}\right)$	$\vec{E} \left(\frac{N}{C} \right)$
2.50×10° 2500	$7.19 \times 10^{-6} (71.9 \times 10^{-7})$
625 625	$1.80 \times 10^{-6} (18.0 \times 10^{-7})$
278 277 .77777	7.99 x 10 ⁻⁷
156.25	4.50×10^{-7}
100 100	2.88×10^{-7}
69.4 69.444444	2.00×10^{-7}
	•

