Introduction to R Programming Data Visualization with ggplot2

Pedro Fonseca

02 Maio 2020

Introduction

- ► In lecture you will learn how to visualize data with the ggplot2 package.
- ggplot2 is one of the most elegant and versatile systems for making graphs.
- ggplot2 implements the grammar of graphics (Wickham 2010), a coherent system for describing and building graphs.

Prerequisites

To access the datasets, help pages, and functions that we will use, load the ggplot2 package.

library(ggplot2)

The mpg dataset

The mpg dataset contains information about 38 models of cars. Among the variables in mpg are:

- displ: engine size, in liters
- cyl: number of cylinders
- cty: fuel efficiency on the city, in miles per gallon (mpg)
- hwy: fuel efficiency on the highway, in mpg.
- class: type of car

View(mpg)

For additional information see ?mpg.

My first ggplot()

Let's build a graph to answer the following questions:

- ▶ Do cars with big engines use more fuel than cars with small engines?
- What does the relationship between engine size and fuel efficiency look like? Is it positive? Negative? Linear? Nonlinear?

We start by plotting engine size (displ) versus fuel efficiency (hwy).

My first ggplot()

```
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))
```


My first ggplot()

- ► The plot shows a negative relationship between engine size and fuel efficiency.
- ▶ In other words: on average, cars with big engines use more fuel.

A simple ggplot() template

```
ggplot(data = <DATA>) +
      <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

- ► The first argument of ggplot() is a dataset
- We complete the graph by adding layers to ggplot()
- geom_point() adds a layer of points, creating scatterplot.
- ggplot2 has many geom functions that each add a different type of layer to a plot.

A simple ggplot() template

- ► Each geom function takes a mapping argument.
- The mapping argument is always paired with aes().
- ► The x and y arguments of aes() specify which variables to map to the x and y axes.

- ▶ A **geom** is the geometrical object that a plot uses to represent data (e.g. points, bars, lines. . .).
- ▶ People often describe plots by the type of **geom** that it uses:
 - Bar charts use bar geoms
 - Line charts use line geoms
 - ► Boxplots use **boxplot** geom
- Scatterplots break the trend: they use the **point** geom.
- In ggplot2, we add geoms to a plot with **geom functions**.

Compare the next two plots. How are they similar?

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy))

ggplot(data = mpg) +
  geom_smooth(mapping = aes(x = displ, y = hwy))
```


Both plots:

- use the same data
- have the same x variable
- have the same y variable

But they are not identical:

- Each plot uses a different **geom**.
- ▶ The plot on the left uses the **point** geom.
- ► The plot on the right uses the **smooth** geom, a smooth line fitted to the data.

The ggplot2 cheat sheet

- ggplot2 provides over 40 geoms
- ► The best way to get a comprehensive overview is the ggplot2 cheatsheet.

Aesthetics

- ► **Aesthetics** are visual properties of the **geoms**.
- ▶ Aesthetics include things like the size, shape, and color of the points in a scatterplot.
- aes() builds aesthetic mappings that define how the variables in the dataset are mapped to aesthetics of the geoms.
- To map an aesthetic to a variable, associate the name of the aesthetic to the name of the variable inside aes().
- ► Every geom function needs an aesthetic mapping, but not every aesthetic works with every geom, for example:
 - We can set the shape of a point, but not of a line.
 - We can set the linetype of a line, but not of a point.

My first ggplot() revisited

One group of points (highlighted in red) seems to fall outside the linear trend. How can we explain these cars?

Figure 1: Some cars have a higher mileage than we might expect

My first ggplot() revisited

- The highlighted cars may have some common characteristic with respect to some other variable (e.g. they might all be hybrids).
- ► Lets try class, a variable that classifies cars into groups such as compact, midsize, and SUV.
- We can add a third variable to a two dimensional scatterplot by mapping it to an aesthetic.

For example, we can map the color of the points to the class variable, so that the graph reveals the class of each car:

```
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy, color = class))
```


Now we know that all but one of the highlighted cars are two-seater cars! Let's find their model and manufacturer:

- These cars are, in fact, sports cars!
- Sports cars have large engines like SUVs and pickup trucks, but small bodies like midsize and compact cars, which improves their gas mileage.

Figure 2: 2008 Chevrolet Corvette

The size aesthetic

Now let's map class to the size aesthetic:

```
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy, size = class))
```

The size aesthetic

The size aesthetic

- ▶ Each level of the class variable is assigned to a different size.
- ▶ This plot, however, came with a warning message:
- #> Using size for a discrete variable is not advised.
 - ► This is because mapping an unordered variable (class) to ordered aesthetic (size) is not a good idea.
 - Ordered aesthetics, like size and alpha, are more appropriate for continuous variables.

The alpha aesthetic

The alpha aesthetic changes the transparency of the points:

```
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy, alpha = class))
```

The alpha aesthetic

The shape aesthetic changes the shape of the points:

```
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy, shape = class))
```


- What happened to the SUVs?
- By default ggplot2 uses only up to six shapes at a time.
- ► This is because points become difficult to discriminate if we use too many shapes.
- We can, however, use more than six shapes if we set them "manually" with scale_shape_manual().

We can choose the following shapes of points by their number:

Figure 3: R Built in shapes

Let's choose the first 7 shapes:

```
ggplot(data = mpg) +
  geom_point(aes(x = displ, y = hwy, shape = class)) +
  scale_shape_manual(values = 0:6)
```


Mapping one variable to two aesthetics

- Mapping a single variable to multiple aesthetics is redundant, and should be avoided in most cases.
- ► In this case, however, since we have many categories, it can improving visual discrimination.
- Let's map class to color and shape:

Mapping one variable to two aesthetics

Mapping continuous variables to aesthetics

- ➤ So far we mapped class, a categorical variable, to the color, size, shape and alpha aesthetics of geom_point().
- Now let's map continuous variables to these aesthetics and see how they behaves differently for categorical versus continuous variables.
- ► The variable cty (city miles per gallon) is a continuous variable.

Let's map cty to the color aesthetic:

```
ggplot(mpg) +
geom_point(aes(x = displ,y = hwy, color = cty))
```


Now let's map cty to the size aesthetic:

```
ggplot(mpg) +
geom_point(aes(x = displ, y = hwy, size = cty))
```


Now let's map cty to the alpha aesthetic:

```
ggplot(mpg) +
geom_point(aes(x = displ, y = hwy, alpha = cty))
```


And finally let's map cty to the shape aesthetic:

```
ggplot(mpg) +
  geom_point(aes(x = displ, y = hwy, shape = cty))
#> Error: A continuous variable can not be mapped to
#> shape
```

Aesthetic mappings: categorical vs continuous variables

Color and alpha aesthetics:

- Each level of a categorical variable is assigned to a different (discrete) color.
- ► The color of the points vary continuously from light to dark as a function of the values of a continuous variables.

Size aesthetic:

- Each level of a categorical variable is assigned to a different (discrete) size.
- ► The size of the points vary continuously as a function of the values of a continuous variables.

Aesthetic mappings: categorical vs continuous variables

Shape aesthetic:

- ▶ A different shape is assigned to each level of a categorical value.
- ► The shape aesthetic can not be mapped to continuous variables.

The linetype aesthetic

geom_smooth() draws a different type of line for each level of the variable that is mapped to the linetype aesthetic:

```
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy, linetype = drv))
```

The linetype aesthetic

The linetype aesthetic

- ▶ The linetype aesthetic automatically adds a legend.
- ► The linetype aesthetic can not be mapped to continuous variables.

The group aesthetic

- ► The group aesthetic also draws a separate object for each level of a discrete variable.
- The group aesthetic does not add a legend or any other distinguishing feature.

The group aesthetic

```
p1 <- ggplot(data = mpg) +
   geom_smooth(aes(x = displ, y = hwy))

p2 <- ggplot(data = mpg) +
   geom_smooth(aes(x = displ, y = hwy, group = drv))</pre>
```

The group aesthetic

group vs linetype

```
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy, group = drv))

ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy, linetype = drv))
```

group vs linetype

group vs color

```
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy, group = drv))

ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy, color = drv))
```

group vs color

Aesthetics can be mapped to logical expressions. For example, if we map an aesthetic to displ < 5:

- ggplot() creates a temporary variable with values equal to the result displ < 5.</p>
- ▶ The result of displ < 5 is a logical variable.
- ggplot() then maps the aesthetic to the temporary variable.

- ► To change a default aesthetic property, set the aesthetic by name as an argument of the geom function.
 - Names of colors should be indicated as character strings.
 - Size of points should be indicated in mm.
 - Shapes are identified by the numbers in figure 3.

- ► There are some seeming duplicate shapes (e.g. 0, 15, and 22 are all squares).
- The difference comes from the interaction of the color and fill aesthetics:
 - ► The hollow shapes (0-14) have a border determined by the color aesthetic
 - ▶ The solid shapes (15–18) are filled with the color aesthetic
 - ► The filled shapes (21–24) have a border set by the color aesthetic and are filled with the fill aesthetic

For example, we can make all of the points blue:

```
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy),
color = "blue")
```


Now let's change the size of the points:

```
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy),
color = "blue",
size = 6)
```


We can also change the default shape of the points:

```
ggplot(data = mpg) +
  geom_point(aes(x = displ, y = hwy),
    color = "blue",
    size = 5,
    shape = 6)
```


- Shape 6 is a hollow shape, it interacts only with the color aesthetic.
- ▶ If we want triangles filled with color, we must use shape 24, which interacts both with the color and fill aesthetics:

```
ggplot(data = mpg) +
  geom_point(
    mapping = aes(x = displ, y = hwy),
    color = "blue",
    size = 5,
    shape = 24,
    fill = "red"
)
```


The stroke aesthetic changes the thickness of the border of the points:

```
ggplot(data = mpg) +
  geom_point(aes(x = displ, y = hwy),
    color = "blue",
    size = 5,
    shape = 24,
    fill = "red",
    stroke = 2
)
```


We can also use colors like dark blue and light blue:

```
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy),
    color = "darkblue",
    fill = "lightblue",
    shape = 21,
    size = 5,
    stroke = 1
)
```



```
ggplot(data = mpg) +
  geom_point(aes(x = displ, y = hwy),
    color = "darkblue",
  fill = "lightblue",
    shape = 21,
    size = 5,
    stroke = 3
)
```


► For a list of available colors and their names see: http://sape.inf.usi.ch/quick-reference/ggplot2/colour

- Alternatively, we can use RGB codes.
- ► The RGB model reproduces a broad array of colors by mixing together red, green, and blue in different proportions.
- We can specify colors like in HTML/CSS, using the hexadecimal values (00 to FF) for red, green, and blue, concatenated into a string, prefixed with a "#".
- ▶ A pure red color this is represented with "#FF0000".

See:

- https://www.rapidtables.com/web/color/RGB_Color.html
- https://htmlcolorcodes.com

We can change the default line type of geom functions like geom_smooth().

Figure 4: Built in line types

```
ggplot(data = mpg) +
  geom\_smooth(aes(x = displ, y = hwy))
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy),
    linetype = "dotted")
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy),
    linetype = "twodash")
```


We can also change the thickness of the lines:

```
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy))

ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy), size = 2)

ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy), size = 5)
```



```
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy),
              linetype = "dotted")
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy),
              linetype = "dotted", size = 2)
ggplot(data = mpg) +
  geom smooth(aes(x = displ, y = hwy),
              linetype = "dotted", size = 5)
```


- ▶ By default, geom_smooth() displays confidence intervals around the smoothed line.
- Confidence intervals may be disabled by setting the se (standard error) aesthetic to FALSE:

```
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy))

ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy),
    se = FALSE)
```



```
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy, linetype = drv))
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy, linetype = drv),
    se = FALSE)
```



```
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy, color = drv))

ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy, color = drv),
    se = FALSE)
```


- ► The default smoothing method of geom_smooth can be changed.
- ► The default method ("auto") depends on the size of the largest group.
- ► For less than 1000 observations the method is "loess" (a local polynomial regression).
- Admissible methods are: "auto", "lm", "glm", "gam" and "loess".

To add a linear regression line use method = "lm":

```
ggplot(data = mpg) +
  geom_point(aes(x = displ, y = hwy))

ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy))

ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy), method = "lm")
```


Legends can also be disabled:

```
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy, linetype = drv),
    se = FALSE)

ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy, linetype = drv),
    se = FALSE, show.legend = FALSE)
```



```
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy, color = drv),
    se = FALSE)

ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = hwy, color = drv),
    se = FALSE, show.legend = FALSE)
```


- One way to add additional variables to a plot is with aesthetics.
- Another way, particularly useful for categorical variables, is to split the plot into facets, subplots that each display one subset of the data.
- ► To facet a plot by a single variable, use facet_wrap().
- ► The first argument of facet_wrap() should be "~" followed the name of a variable.

```
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy)) +
facet_wrap(~ class, nrow = 2)
```



```
ggplot(data = mpg) +
  geom_smooth(aes(x = displ, y = cyl), se = FALSE) +
  facet_wrap(~class, nrow = 2)
```


- To facet a plot on the combination of two variables, use facet_grid().
- ► The first argument of facet_grid() should contain the two variable names separated by "~".

```
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy)) +
facet_grid(drv ~ year)
```


If we prefer to not facet in the rows (or columns), we can use a "." instead of a variable name:

```
ggplot(data = mpg) +
  geom_point(aes(x = displ, y = hwy)) +
  facet_grid(. ~ year)
```



```
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy)) +
facet_grid(drv ~ .)
```

Facets

- ▶ We can add multiple geoms to the same graph.
- For example, we can overlap points and lines.
- ► This is archived by adding multiple geom functions to ggplot().

```
ggplot(data = mpg) +
geom_point(aes(x = displ, y = hwy)) +
geom_smooth(aes(x = displ, y = hwy))
```


- ► This, however, induces duplication in our code.
- ▶ We built the same aesthetic mapping twice in each graph.
- We can avoid this type of repetition by passing a set of mappings to ggplot().
- ggplot2 will treat these mappings as global mappings that apply to each geom in the graph.

These two chunks of code result in the same plot:

```
ggplot(data = mpg) +
  geom_point(aes(x = displ, y = hwy)) +
  geom_smooth(aes(x = displ, y = hwy))

ggplot(data = mpg, aes(x = displ, y = hwy)) +
  geom_point() +
  geom_smooth()
```


- ▶ If we place mappings in a geom function, ggplot2 will treat them as local mappings for that layer.
- ▶ It will use these mappings to extend or overwrite the global mappings for that layer only.
- ► This makes it possible to display different aesthetics in different layers.

```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
geom_smooth(aes(color = drv), se = FALSE) +
geom_point()
```



```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
  geom_smooth(aes(linetype = drv), se = FALSE) +
  geom_point(aes(color = drv))
```



```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth()
```



```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
geom_smooth(aes(linetype = drv)) +
geom_point(aes(color = class))
```



```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
  geom_smooth(aes(linetype = drv), se = FALSE) +
  geom_point(aes(color = class))
```


We can also overlap geoms in grids:

```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
  geom_smooth(se = FALSE) +
  geom_point() +
  facet_wrap(~class, nrow = 2)
```



```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  facet_wrap(~class, nrow = 2)
```


We can use the same logic to specify a different dataset for each layer.

- ► The straight line displays just a subset of the mpg dataset, the subcompact cars.
- ► The local data argument in geom_smooth() overrides the global data argument in ggplot() for that layer only.


```
ggplot(data = mpg, aes(x = displ, y = hwy)) +
    geom_point(aes(color = class)) +
    geom_smooth(
    data = subset(mpg, class != "2seater"),
    se = FALSE,
    method = "lm")
```



```
corvette <- subset(mpg, model == "corvette")
not_corvette <- subset(mpg, model != "corvette")

ggplot(mapping = aes(x = displ, y = hwy)) +
  geom_point(data = not_corvette) +
  geom_point(data = corvette, color = "Red")</pre>
```


We can add labels to a graph with the labs() function:

```
ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth(se = FALSE) +
  labs(
    title = "Efficiency decreases with engine size")
```


The labs() function can also be used to add a subtitle and/or a caption:

```
ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth(se = FALSE) +
  labs(
    title = "Efficiency decreases with engine size",
    subtitle = "Two-seaters are an exception",
    caption = "Data from fueleconomy.gov"
)
```


- ▶ We can also use labs() to replace the axis and legend titles.
- ▶ It's usually a good idea to replace short variable names with more detailed descriptions, and to include the units.

```
ggplot(mpg, aes(displ, hwy)) +
  geom_point(aes(color = class)) +
  geom_smooth(se = FALSE) +
  labs(
    x = "Engine displacement (L)",
    y = "Highway fuel economy (mpg)",
    color = "Car type"
```


It's possible to use mathematical equations instead of text strings:

```
df <- tibble(
 x = runif(10),
 v = runif(10)
ggplot(df, aes(x, y)) +
  geom point() +
  labs(
    x = quote(sum(x[i] ^ 2, i == 1, n)),
    y = quote(alpha + beta + frac(delta, theta))
```


To learn more about the mathematical syntax available see:

?plotmath

The diamonds dataset

- ▶ Diamonds is a dataset included in the ggplot2 package.
- Contains attributes of almost 54000 diamonds.
- ► The variables include price, carat, quality of the cut, color and clarity

Bar charts

```
ggplot(data = diamonds) +
geom_bar(aes(x = cut))
```


- On the y-axis, bar charts displays counts.
- ▶ But counts are not a variable in diamonds dataset!
- Many graphs, like scatterplots, plot the raw values the dataset.
- Other graphs, like bar charts, calculate new values to plot.
- ► The algorithm used to calculate new values for a graph is called a **stat**, short for statistical transformation.

- ▶ Bar charts, histograms, and frequency polygons bin the data and then plot bin counts.
- Smoothers fit a model to the data and then plot predictions from the model.
- Boxplots compute summary statistics and then display them on specially formatted box.

1. **geom_bar()** begins with the **diamonds** data set

carat	cut	color	clarity	depth	table	price	х	у	z
0.23	Ideal	Е	SI2	61.5	55	326	3.95	3.98	2.43
0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31
0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31
0.29	Premium	-1	VS2	62.4	58	334	4.20	4.23	2.63
0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

- ▶ We can learn which stat a geom function uses by inspecting the default value of the stat argument.
- ► For example, with ?geom_bar we learn that the default stat of geom_bar() is count.
- ► This means that geom_bar() uses stat_count() as the default statistical transformation.
- We can generally use geoms and stats interchangeably.
- ► For example, we can recreate the previous plot using stat_count() instead of geom_bar().

```
ggplot(data = diamonds) +
stat_count(aes(x = cut))
```


This works because:

- Every geom has a default stat, and every stat has a default geom.
- ▶ The default stat of geom_bar() is count.
- The default geom of stat_count() is bar.

Overwriting the default stat

What if we want a bar chart that plot data as is?

- ▶ We may have a column with column heights.
- ► In that case, we need to change the default statistical transformation.

Overriding the default stat

```
ggplot(data = tib) +
geom_bar(aes(x = cut, y = freq),
    stat = "identity")
```


Overriding the default stat

The default stat of stat_identity() is point, not bar:

```
ggplot(data = tib) +
stat_identity(aes(x = cut, y = freq))
```



```
geom_col()
```

- ► To plot data as is, we can use geom_col().
- ► The default stat of geom_col() is stat_identity().
- geom_col() expects a column of y values with bar heights.

geom_col()

```
ggplot(data = tib) +
geom_col(aes(x = cut, y = freq))
```


- ► Stat functions calculate more variables than the ones that end up being displayed.
- ➤ To find the variables computed by a stat, look for the help section titled "computed variables".
- From ?stat_count we learn that the computed variables are counts and proportions.
- ggplot_build() let's us see every value that is calculated in the process of building a graph.

```
plt_1 <- ggplot(data = diamonds) +
   geom_bar(aes(x = cut))

plt_1 <- ggplot_build(plt_1)
plt_1$data[[1]][, 1:8]</pre>
```

```
## y count prop x flipped_aes PANEL group ymin
## 1 1610 1610 1 1 FALSE 1 1 0
## 2 4906 4906 1 2 FALSE 1 2 0
## 3 12082 12082 1 3 FALSE 1 3 0
## 4 13791 13791 1 4 FALSE 1 4 0
## 5 21551 21551 1 5 FALSE 1 5
```

- ► We can override the default mapping from transformed variables to aesthetics.
- For example, we might want to display a bar chart of proportions rather than counts.

Let's map proportions, instead of counts, to the y axis:

```
ggplot(data = diamonds) +
geom_bar(aes(x = cut, y = stat(prop)))
```


What went wrong?

Lets see the computed values:

```
plt_2 <- ggplot(data = diamonds) +
  geom_bar(aes(x = cut, y = stat(prop)))

plt_2 <- ggplot_build(plt_2)
plt_2$data[[1]][, 1:8]</pre>
```

```
##
    y count prop x flipped_aes PANEL group ymin
## 1 1 1610
             1 1
                     FALSE
## 2 1 4906 1 2
                     FALSE
## 3 1 12082 1 3
                     FALSE
                                  3
                                       0
## 4 1 13791 1 4
                     FALSE.
                                       0
## 5 1 21551 1 5
                     FALSE
                             1
                                  5
                                       0
```

- ▶ The prop column is created as count divided by the sum of all of the counts that belong to the same group.
- ▶ By default, ggplot2 created one group for each level of x, so:
 - ► Each proportion is calculated by dividing the count of each group by itself.
 - All the proportions are set to 1.
- ➤ To display proportions instead of counts we have to tell ggplot2 that there is only one group so that it divides the counts by the total number of observations.

```
ggplot(data = diamonds) +
geom_bar(aes(x = cut, y = stat(prop), group = 1))
```



```
plt_3 <- ggplot(data = diamonds) +
  geom_bar(aes(x = cut, y = stat(prop), group = 1))
plt_3 <- ggplot_build(plt_3)
plt_3$data[[1]][, 1:5]</pre>
```

```
## y count prop x flipped_aes
## 1 0.02984798 1610 0.02984798 1 FALSE
## 2 0.09095291 4906 0.09095291 2 FALSE
## 3 0.22398962 12082 0.22398962 3 FALSE
## 4 0.25567297 13791 0.25567297 4 FALSE
## 5 0.39953652 21551 0.39953652 5 FALSE
```

We can map the color aesthetic to a grouping variable:

```
ggplot(data = diamonds) +
geom_bar(aes(x = cut, color = cut))
```


We can also change the default fill color of geom_bar():

```
ggplot(data = diamonds) +
geom_bar(aes(x = cut), fill = "lightblue")
```



```
ggplot(data = diamonds) +
  geom_bar(aes(x = cut, color = cut), fill = "white")
```


And disable the legend:

Stacked bar charts

The fill aesthetic can be mapped to variables other than \times to add a dimension to the plot:

```
ggplot(data = diamonds) +
geom_bar(aes(x = cut, fill = clarity))
```


- Each colored rectangle represents a combination of cut and clarity.
- ► The stacking is performed automatically by the position adjustment specified in the position argument of the geom function.
- ► The default value is stack.

- position = "fill" works like stacking but makes each set of stacked bars the same height.
- ▶ This makes it easier to compare proportions across groups.

Setting position = "dodge" places overlapping objects directly beside one another:


```
ggplot(data = mpg, aes(y = hwy)) +
  geom_boxplot()
```



```
ggplot(data = mpg, aes(x = drv, y = hwy)) +
  geom_boxplot()
```



```
ggplot(data = mpg, aes(x = class, y = hwy)) +
  geom_boxplot()
```


coord_flip() flips the coordinate system:

```
ggplot(data = mpg, aes(x = class, y = hwy)) +
  geom_boxplot() +
  coord_flip()
```


A pie chart is a stacked bar chart with polar coordinates:

```
ggplot(mpg, aes(x = "", fill = drv)) +
  geom_bar()
```



```
ggplot(mpg, aes(x = "", fill = drv)) +
geom_bar() +
coord_polar("y")
```



```
ggplot(mpg, aes(x = "", fill = class)) +
geom_bar() +
coord_polar("y")
```


The ggplot template

Saving plots

Let's build a scatterplot and save it on the working directory:

```
ggplot(mpg, aes(displ, hwy)) +
  geom_point()

ggsave("my-plot.pdf")
```

Saving plots

We can save graphs in other locations by providing the path to ggsave():

```
ggplot(mpg, aes(displ, hwy)) +
  geom_point()

ggsave("outputs/my-plot.pdf")
```

Saving plots

We can use the plot argument of ggsave() to save any graph that is assigned to an objects:

```
my_plot <- ggplot(mpg, aes(displ, hwy)) +
   geom_point()

ggsave("outputs/my-plot-v2.pdf", plot = my_plot)</pre>
```

The default value of the plot argument is last_plot().

Bibliography

Wichkam, Hadley, and Garrett Grolemund. 2016. "R for Data Science." O'Reilly.

Wickham, Hadley. 2010. "A Layered Grammar of Graphics." Journal of Computational and Graphical Statistics 19 (1). Taylor & Francis: 3–28.