See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/235960441

Photomediated Oxidation of Atomically Precise Au 25 (SC 2 H 4 Ph) 18 – Nanoclusters

ARTICLE in JOURNAL OF PHYSICAL CHEMISTRY LETTERS · JANUARY 2013 Impact Factor: 7.46 · DOI: 10.1021/jz302056q	
CITATIONS 17	READS 95

5 AUTHORS, INCLUDING:

Gao L

Dalian Institute of Chemical Physics

47 PUBLICATIONS 1,215 CITATIONS

SEE PROFILE

Photomediated Oxidation of Atomically Precise Au₂₅(SC₂H₄Ph)₁₈⁻ **Nanoclusters**

Douglas R. Kauffman,*,†,‡ Dominic Alfonso,† Christopher Matranga,† Gao Li,§ and Rongchao Jin§

Supporting Information

ABSTRACT: The anionic charge of atomically precise Au₂₅(SC₂H₄Ph)₁₈ nanoclusters (abbreviated as Au_{2.5}⁻) is thought to facilitate the adsorption and activation of molecular species. We used optical spectroscopy, nonaqueous electrochemistry, and density functional theory to study the interaction between Au_{25}^- and O_2 . Surprisingly, the oxidation of Au_{25}^- by O₂ was not a spontaneous process. Rather, Au₂₅ –O₂ charge transfer was found to be a photomediated process dependent on the relative energies of the Au₂₅⁻ LUMO and the O₂ electron-accepting level. Photomediated charge transfer was not restricted to one particular

electron accepting molecule or solvent system, and this phenomenon likely extends to other Au₂₅-adsorbate systems with appropriate electron donor-acceptor energy levels. These findings underscore the significant and sometimes overlooked way that photophysical processes can influence the chemistry of ligand-protected clusters. In a broader sense, the identification of photochemical pathways may help develop new cluster-adsorbate models and expand the range of catalytic reactions available to these materials.

SECTION: Physical Processes in Nanomaterials and Nanostructures

tomically precise, ligand-protected Au₂₅(SC₂H₄Ph)₁₈ Aclusters (abbreviated as Au₂₅⁻) are a fascinating class of nanomaterials because they bridge the size-gap between molecules and traditional nanoparticles, they have a precisely known surface structure, and they possess an inherent negative charge. 1,2 Au₂₅ also differs from traditional nanoparticles because quantum confinement leads to significant energy level quantization and the development of a molecule-like electronic structure.^{3–5} These characteristics make Au₂₅⁻ a unique system for studying molecular adsorption and chemical reactions.

Ligand-protected Au₂₅ clusters have shown exceptional catalytic activity and product selectivity for the oxidation of styrene⁶ and CO,⁷ the hydrogenation of ketones and aldehydes, 6,8,9 and the electrochemical reduction of CO2 10 and O_2 . The cluster's inherent negative charge is thought to facilitate the adsorption and activation of various molecules, and this hypothesis has been a central feature in mechanistic descriptions of $\mathrm{Au_{25}}^-$ reactivity. $^{6-10,12}$ In general, computational models have had difficulty capturing the apparent catalytic activity of ligand-protected Au₂₅-, and studies often require the partial or complete removal of ligand groups to promote molecular adsorption and chemical reactions. 13-15 Removing ligands from such small clusters will significantly impact their electronic structure, 13 and the resulting computational models or experimental samples 16,17 will differ from the ligand-protected clusters most often used in experiments. The discrepancy between the experimentally observed and computationally predicted reactivity of ligand-protected clusters illustrates a gap in our understanding of Au₂₅⁻ chemistry, and

the precise reaction sites, the role of ligands, and the associated reaction pathways are not well-defined in the literature. As such, new experimental and computational studies aimed at probing realistic cluster models are needed to advance the field.

O₂ was used as a molecular probe to study the surface chemistry of Au₂₅-. Not only is O₂ a prototypical electronaccepting molecule, but understanding O2 adsorption and charge-transfer processes is fundamentally important for catalytic oxidation reactions and fuel cell applications. A combination of optical spectroscopy, nonaqueous electrochemistry, and density functional theory (DFT) was used to investigate the interaction between Au_{25}^{-} and O_2 . The DFT calculations specifically considered fully ligand-protected Au₂₅ clusters to address the binding sites and energetics associated with O_2 adsorption.

We show that typical room light can have an unexpectedly large impact on Au₂₅⁻ chemistry. Our results reveal that the cluster's negative charge contributes very little (if at all) to its ground-state interaction with O2. Rather, we found that ambient room light photoexcited the Au₂₅ cluster and promoted photomediated charge transfer. This phenomenon was not restricted to one particular electron accepting molecule or solvent system, and it is likely a general chemical process for Au₂₅ -adsorbate systems with appropriate electron donor-

Received: December 12, 2012 Accepted: December 19, 2012 Published: December 19, 2012

[†]National Energy Technology Laboratory (NETL), United States Department of Energy, Pittsburgh, Pennsylvania 15236, United

[‡]URS, P.O. Box 618, South Park, Pennsylvania 15129, United States

[§]Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States

acceptor energy levels. These findings illustrate the important but sometimes overlooked role that photophysical processes can have on the chemistry of ligand-protected clusters. In fact, significant chemical insight can be gained from simple reactions like Au_{25}^- oxidation by O_2 when photoaccessible charge-transfer pathways are considered. In a broader sense, these findings have practical implications for the synthesis, handling, and study of ligand-protected metal clusters in typical, well-lit laboratory settings.

The $\mathrm{Au_{25}}^-$ crystal structure has been theoretically predicted and experimentally solved. The cluster contains a $\mathrm{Au_{13}}$ core within a shell of six $-\mathrm{S-Au-S-Au-S-}$ semiring structures (Figure 1a). This atomic arrangement provides $\mathrm{Au_{25}}^-$ with

Figure 1. (a) Structure of the $Au_{25}(SC_2H_4Ph)_{18}^-$ cluster (abbreviated as Au_{25}^-) shown here without the organic ligands to emphasize the Au_{13} core and the six -S-Au-S-Au-S- semirings in the shell. ^{1,2} (b) Space-filled model of the Au_{25}^- cluster with the $-C_2H_4Ph$ organic ligands; the proposed active site is circled and red and the individual atoms are highlighted with yellow crosshatches. The anionic cluster is accompanied by a tetraoctylammonium counterion (TOA^+) and the $Au_{25}^--TOA^+$ couple is presented in Figure S1 in the Supporting Information. The cluster structures were created using the crystallographic information files published in refs 1 and 2. (c) Simplified Au_{25}^- energy level diagram that was created from the data in ref 1. The electronic transitions correspond to the labeled absorbance peaks in Figure 2a.

unique stability, and its structure persists even after chemical treatment with $Ce(SO)_4$, H_2O_2 , or $NaBH_4$, 12,19,20 ligand exchange, 21 or the application of electrochemical potentials. 10 The stability of the Au_{25}^- structure is quite remarkable considering that thiolate monolayers (ligands) can desorb from traditional Au surfaces under much milder conditions. 22

Figure 1b presents a space-filled model of the Au_{25}^- cluster including the organic $-C_2H_4Ph$ ligands. The ligand orientation leaves an accessible surface site on the Au_{25}^- cluster that has been identified in the adsorption of a variety of molecular species. The active site is composed of a "pocket" of three core Au atoms, three shell Au atoms, and three shell S atoms; the general area of the adsorption site is circled in red,

and the specific atoms are highlighted with yellow cross-hatches. The anionic cluster is accompanied by a single tetraoctylammonium counterion (TOA $^+$), and the Au $_{25}^-$ – TOA $^+$ couple is shown in Figure S1 in the Supporting Information.

The quantum confinement of electrons within the small cluster leads to significant energy level quantization and the development of several molecule-like optical transitions. Figure 1c presents a simplified energy level diagram for Au₂₅⁻ (ref 1). The a' and a transitions represent the photoexcitation of Au₂₅ electrons from the HOMO into the LUMO with a computationally predicted energy gap (E_g) of 1.37 eV. Experimentally, the Au₂₅ absorbance onset occurred at 1.36 eV (Figure S2 in the Supporting Information), and splitting of the degenerate HOMO separated and blue-shifted the a' and a transitions. $^{24-26}$ Transition b corresponds to HOMO-2 \rightarrow LUMO and HOMO → LUMO+1,+2 photoexcitations, and transition c represents a HOMO-5 \rightarrow LUMO photoexcitation. 1 Au_{25}^{-} also demonstrates a broad photoluminescence (PL) profile that stems from the relaxation of photoexcited electrons into emissive midgap states.²⁷

Figure 2a contains the optical absorbance and PL spectra of $\mathrm{Au_{25}}^-$ dissolved in dimethylformamide (DMF); the labeled absorbance peaks correspond to the transitions defined in Figure 1c. The black curves in Figure 2a represent the absorbance and PL spectra of an initially $\mathrm{N_2}$ purged $\mathrm{Au_{25}}^-$

Figure 2. Spectroscopic response of Au_{25}^- to O_2 in ambient room light. (a) Absorbance and photoluminescence (PL) spectra of Au_{25}^- in DMF that was initially purged with N_2 (black curves), saturated with O_2 in ambient room light (red curves), and subsequently purged with N_2 (blue curves). The absorbance spectra were normalized at 3.3 eV to standardize the spectral background, and the raw absorbance spectra are plotted in Figure S3 in the Supporting Information for comparison. (b) PL intensity of Au_{25}^- in DMF that was repeatedly purged with N_2 and saturated with O_2 in ambient room light; 1 h N_2 and O_2 gas exposure cycles.

solution; the absorbance spectra were normalized at 3.3 eV to standardize the background, and the raw spectra are plotted in Figure S3 in the Supporting Information for comparison. The PL spectra in Figure 2a were collected with a liquid N₂-cooled InGaAs detector, and they are consistent with other reports of near-infrared (NIR) LUMO \rightarrow HOMO photoemission. ^{27–29} Some researchers have reported higher energy PL that likely originates from states above the Au₂₅ LUMO. ^{21,30–33} The detectors used in these reports were not necessarily optimized for the NIR spectral region, and the reported PL maxima typically contained energy greater than the Au₂₅ $^ E_{\rm g}$.

Au $_{25}^-$ is sensitive to the local chemical environment, and charge transfer or charge rearrangement will impact the absorbance and PL spectra in characteristic ways. The red curves in Figure 2a represent the Au $_{25}^-$ solution after it was bubbled with O $_2$ for 1 h in ambient room light; this O $_2$ exposure time was chosen to ensure solution saturation. Depopulation of the Au $_{25}^-$ HOMO partially bleached the a, a', and b absorbance peaks, and an oxidation-based change in cluster geometry increased the peak area of transition c and the absorbance at 2.04 eV. 12 These changes were reproducible from sample to sample (Table S1 in the Supporting Information), and they were consistent with previous examples of Au $_{25}^-$ oxidation with O $_{20}^{12,30}$ dissolved cations, 29,34,35 peroxide species, 36 or electrochemical potentials.

The PL intensity of O₂-saturated Au₂₅⁻ solutions was decreased by 52 \pm 8% and blue-shifted by 131 \pm 8 meV (red curve; Figure 2a). On the outset, this result was unexpected because oxidation tends to increase the Au₂₅ PL, $^{10,28-30}$ but after O_2 was purged from the solution, the PL intensity increased $25 \pm 1\%$ beyond its initial value (blue curve, Figure 2a). This reversible quenching phenomenon allowed modulation of the Au₂₅ PL intensity through repeated N₂ purging and O₂ saturation cycles (Figure 2b). However, the PL intensity gradually increased over subsequent N2/O2 cycles due to apparent cluster oxidation. The origins of the oxidationbased PL increase and blue shift are still unresolved, but oxidation slightly changes the cluster geometry 12 and may further polarize Au-S bonds in the cluster shell.^{28,30} We hypothesize that either phenomena could increase and blue shift PL through a reduction in nonradiative relaxation pathways.

Interestingly, oxidation-like spectral changes were not found after light-free O2 exposures, although solvent evaporation did cause a small 10 \pm 1% increase and 5 \pm 3 meV blue shift in the Au₂₅ PL (Figures S4 and S5 in the Supporting Information). To further explore this apparent photomediated interaction, we used a fiber optic light source and a series of band-pass and lowpass optical filters to illuminate O2 saturated Au25 solutions (see methods section and Figures S6 and S7 in the Supporting Information). This approach allowed us to isolate the sample from ambient light and selectively illuminate solutions with light corresponding to particular Au₂₅ optical transitions. We found equivalent spectral changes after O2-saturated solutions were illuminated with light corresponding to any single peak or combination of peaks within the Au₂₅⁻ absorbance spectrum (Figures S8-S12 in the Supporting Information). However, these changes did not occur if the light contained less energy than the Au₂₅ HOMO-LUMO gap energy (Figure S13 in the Supporting Information).

Figure 3 and Table S1 in the Supporting Information summarize the Au_{25}^- spectral changes following O_2 exposure in the dark, under ambient room light, and under illumination

Figure 3. Spectroscopic changes after Au_{25}^- solutions (in DMF) were bubbled with O_2 for 1 h and then purged with N_2 . Fiber optic illumination was conducted through various band-pass and low-pass optical filters; in all cases the filtered light contained energy greater than the Au_{25}^- HOMO–LUMO gap (Figures S8–S12 in the Supporting Information). The error bars are from three to five runs with freshly prepared Au_{25}^- solutions, and the data are summarized in Table S1 in the Supporting Information. A $10 \pm 1\%$ PL increase in the dark stemmed from solvent evaporation during gas bubbling—this occurred even if the solution was exclusively bubbled with N_2 (Figures S4 and S5 in the Supporting Information).

with a fiber optic light source; these changes were measured after the solution was bubbled with O_2 for 1 h and then purged with N_2 . The small PL increase after dark O_2 exposure stemmed from solvent evaporation (Figures S4 and S5 in the Supporting Information). The higher intensity fiber optic source generally produced larger spectral changes compared with ambient room light, but equivalent PL blue shifts were found after room light and fiber optic illumination. Similar photomediated $Au_{25} - O_2$ charge transfer occurred in *p*-xylene (Figure S14 in the Supporting Information), indicating that this phenomenon is not restricted to one particular solvent.

DFT calculations were carried out to model O2 adsorption on a fully ligand-protected Au₂₅(SCH₃)₁₈ cluster (Figure 4). These computations are a valuable addition to experimental techniques because they provide atomic-level descriptions of surface processes. We identified two weakly bound states between O_2 and the $Au_{25}(SCH_3)_{18}^-$ active site. O_2 was found to bind to three shell S atoms or one shell Au atom within the adsorption pocket. Figure 4a,c presents ball and stick models of the O₂ adsorption configurations. The accompanying spacefilled models (Figure 4b,d) emphasize the position and orientation of the of O2 molecule with respect to the $Au_{25}(SCH_3)_{18}^-$ active site. In both cases, O_2 binding energies were smaller than -0.2 eV (negative binding energies are considered stable), the calculated S-O and Au-O bond distances ranged between 3.4 and 3.5 Å, and the calculated O-O bond distance of adsorbed O2 (1.25 Å) was essentially the same as free O_2 (1.24 Å).¹³

The prediction of weak binding between fully ligand-protected, ground-state $Au_{25}(SCH_3)_{18}^-$ and O_2 is quite important because it suggests that spontaneous $Au_{25}^--O_2$ charge transfer is unlikely. These results support our hypothesis that $Au_{25}^--O_2$ charge transfer is a photomediated process, and they are consistent with the lack of Au_{25}^- spectral changes during light-free O_2 exposure. In comparison, Häkkinen and coworkers theoretically studied strongly bound states between

Figure 4. Optimized structures of O_2 adsorbed on $Au_{25}(SCH_3)_{18}^-$ predicted from density functional theory (DFT). Two weakly bound states were identified: (a,b) a three-fold interaction between O_2 and three S atoms in the ligand shell of ground-state $Au_{25}(SCH_3)_{18}^-$ and (c,d) a one-fold interaction between O_2 and a single Au atom in the ligand shell of ground state $Au_{25}(SCH_3)_{18}^-$. The sizes of the Au, S, C, and H atoms in the space-filled models (panels b and d) were adjusted to emphasize the active site adsorption "pocket".

Figure 5. (a) Square-wave voltammograms (SWVs) of Au_{25}^- and O_2 in DMF + 0.1 M tetrabutylammonium perchlorate (TBAP). Curves were collected with a scan rate of 50 mV s⁻¹, the O_2 SWV was scaled by 1/5th for comparison to Au_{25}^- , and potentials were calibrated into the standard hydrogen electrode scale (SHE) using ferrocene (Fc/Fc⁺ = 0.7112 V vs SHE in DMF + 0.1 M TBAP).³⁸ (b) Alternative SWV presentation that quantifies the position of the Au_{25}^- HOMO and LUMO in comparison with the O_2 accepting level (the O_2/O_2^- redox couple). The positions of the Au_{25}^- HOMO and LUMO were taken as the formal potential of the $Au_{25}^{-0/1}$ and $Au_{25}^{-1/-2}$ redox peaks. The positions of emissive midgap states, with respect to the $Au_{25}^{-0/1}$ redox peak (Au_{25}^- HOMO), were taken from the PL spectra in Figure 2a. The position of the O_2 accepting level was taken as the formal potential of the O_2/O_2^- redox peak.

 O_2 and *partially* ligand-protected Au_{25}^- clusters.¹³ They found that ligand removal activated the cluster and introduced electron density above the HOMO–LUMO gap. After such treatment, stable O_2 binding energies ranged between 0.62 and 0.72 eV (opposite sign convention), and charge was donated into a $2\pi^*$ orbital of O_2 . The strong O_2 adsorption produced shorter O–Au bond distances (2.24–2.36 Å) and longer O–O

bond distances (1.30–1.31 Å) compared with our results. The contrast between Häkkinen and coworkers' results and our results illustrate the different chemical properties of *partially* ligand-protected cluster models.

Nonaqueous electrochemistry is a powerful complement to optical spectroscopy because it can resolve the redox potentials of molecular energy levels. Figure 5a presents the square-wave voltammogram (SWV) of $\mathrm{Au_{25}}^-$ in $\mathrm{N_2}$ -purged DMF with a supporting electrolyte of 0.1 M tetrabutylammonium perchlorate (TBAP). The $\mathrm{Au_{25}}^-$ SWV contains several redox peaks that correspond to the HOMO and LUMO. The $\mathrm{Au_{25}}^{+1/0}$ and $\mathrm{Au_{25}}^{0/-1}$ redox peaks at +0.54 and +0.34 V represent charge injection into the cluster HOMO. The $\mathrm{Au_{25}}^{-1/-2}$ redox peak at -1.26 V represents charge injection into the LUMO. A so-called charging energy associated with the electrochemical addition or removal of electrons increases the apparent HOMO–LUMO peak separation and splits the HOMO into two redox peaks. The magnitude of the charging energy is typically taken as the HOMO redox peak separation (0.2 V). Murray and coworkers have suggested the $\mathrm{Au_{25}}^ E_{\mathrm{g}}$ can be estimated by subtracting the charging energy from the $\mathrm{Au_{25}}^{0/-1}$ and $\mathrm{Au_{25}}^{-1/-2}$ peak separation. This analysis provides an E_{g} estimate of 1.40 eV that is consistent with the spectroscopically determined and theoretically predicted values. I

Figure 5a also contains the SWV of O_2 in DMF + 0.1 M TBAP, where the one-electron reduction of O_2 into O_2^- occurred at a formal potential of $-0.66~\mathrm{V}.^{39}$ The formal potential is defined as the average peak potential from the anodic and cathodic scans. Molecular O_2 is reduced into the O_2^- anion in aprotic, nonaqueous solvents like DMF. The O_2 reduction reaction does not proceed further in this solvent–electrolyte system because TBA⁺ and other bulky counterions form stable ion pairs with O_2^- , for example, TBA⁺ $-\mathrm{O}_2^{-}$. This nonaqueous process differs from the multielectron reduction of O_2 into $\mathrm{H}_2\mathrm{O}_2$ and $\mathrm{H}_2\mathrm{O}$ that occurs at roughly +1 V in aqueous solvents. Here

Figure 5b contains an alternative presentation of the SWVs and an energy level diagram that compares the Au_{25}^- HOMO and LUMO to the O_2 electron-accepting level ($\mathrm{O}_2/\mathrm{O}_2^-$ redox couple). Here the positions of the Au_{25}^- HOMO and LUMO were taken as the formal potential of the $\mathrm{Au}_{25}^{0/-1}$ and $\mathrm{Au}_{25}^{-1/-2}$ redox peaks. The positions of emissive midgap states, with respect to the $\mathrm{Au}_{25}^{0/-1}$ redox peak (Au_{25}^- HOMO), were taken from the PL spectra in Figure 2a. Finally, the O_2 electron-accepting level was taken as the formal potential of the $\mathrm{O}_2/\mathrm{O}_2^-$ redox couple.

Figure 5b clearly shows the O_2 electron-accepting level sits within the Au_{25}^- HOMO–LUMO gap. Therefore, O_2 cannot spontaneously extract electrons from the lower lying HOMO of ground-state Au_{25}^- . A similar situation occurs during illumination with low-energy NIR light because electrons are not photoexcited into the Au_{25}^- LUMO. However, if Au_{25}^- is illuminated with sufficiently energetic light, then electrons are photoexcited across the HOMO–LUMO gap and subsequent electron relaxation populates midgap states. Energy overlap between these midgap states and the O_2 -accepting level creates a photoaccessible charge-transfer pathway. Sakai and Tatsuma have proposed a similar mechanism to explain the photoelectrochemical behavior of Au_{25}^- -decorated TiO_2 electrodes. In their case, Au_{25}^- photoexcitation leads to charge donation into the conduction band of TiO_2 .

In situ spectroelectrochemistry was used to benchmark the charge-dependent optical properties of $\mathrm{Au_{25}}^-$ and quantify the photomediated electron transfer. This technique is useful because particular $\mathrm{Au_{25}}^z$ charge states (z=-1,0,+1) can be isolated by applying appropriate electrochemical potentials. For example, the application of a potential that is more anodic than the $\mathrm{Au_{25}}^{0/-1}$ redox peak at +0.34 V will produce neutral $\mathrm{Au_{25}}^0$. Similarly, the application of a potential that is more

anodic than the $\mathrm{Au_{25}}^{+1/0}$ redox peak at +0.54 V will produce cationic $\mathrm{Au_{25}}^+$.

Figure 6a contains the in situ spectroelectrochemical modification of Au₂₅ charge states in N₂-purged DMF with a

Figure 6. (a) Normalized absorbance and normalized PL spectra of $Au_{25}^- + 0.1$ M TBAP during in situ electrochemical modification of the charge state. Please see Figure 5a for the position of the applied electrochemical potentials with respect to the Au_{25}^- redox peaks. (b) Normalized absorbance and normalized PL spectra of initially anionic Au_{25}^- in N₂-purged DMF (black curves), after illuminated O₂ exposure (red curves, likely Au_{25}^{0} formation), and after illuminated O₂ exposure in the presence of 195 μ M TBAP (blue curves, likely Au_{25}^+ formation). Solutions were illuminated with a fiber optic light source through a 3.88 eV low-pass optical filter ($h\nu$ < 3.88 eV, λ > 320 nm). Control experiments ruled out cluster oxidation by TBAP (Figure S15 in the Supporting Information).

supporting electrolyte of 0.1 M TBAP. The absorbance and PL spectra of the initially anionic Au_{25}^{-} cluster (black curves) were collected in an open circuit configuration without the application of electrochemical potential. The cluster was oxidized into the neutral Au_{25}^{0} form by applying a potential of +0.44 V (red curves). It was further oxidized into the cationic Au_{25}^{+} form by applying a potential of +0.84 V (blue curves). These spectroscopic assignments are consistent with previous reports of chemical and electrochemical Au_{25}^{-} oxidation. 27,30,35,36

The spectroelectrochemical results in Figure 6a allowed us to assign the photomediated oxidation of Au_{25}^- as an inherently one-electron process. For example, Figure 6b contains the absorbance and PL spectra of a N_2 purged Au_{25}^- solution before (black curves) and after (red curves) 1 h of illuminated O_2 exposure; solutions were illuminated with a fiber optic light

source through a 3.88 eV low-pass optical filter (λ > 320 nm). The resulting spectra were consistent with the conversion of the initially anionic $\mathrm{Au_{25}}^-$ into the neutral $\mathrm{Au_{25}}^0$ form, 12,27,30,35,36 and we propose that the photomediated $\mathrm{Au_{25}}^-$ – $\mathrm{O_2}$ charge transfer produced $\mathrm{Au_{25}}^0$ and $\mathrm{O_2}^-$, as shown in eq 1.

$$Au_{25}^- - TOA^+ + O_2 \xrightarrow{h\nu > E_g} Au_{25}^0 + O_2^- - TOA^+$$
 (1)

We hypothesize the 1:1 cluster to counterion ratio-limited photomediated $Au_{25}^--O_2$ charge transfer to a one-electron process. The initially anionic Au_{25}^- cluster carried a single TOA+ counterion (Figure S1 in the Supporting Information). After the cluster was oxidized into neutral Au_{25}^{0}, it no longer needed a counterion. This left TOA+ free to stabilize the O_2^- reaction product by forming a TOA+-O2- ion pair. Consumption of the TOA+ counterion prevented further O_2^- stabilization, and the cluster remained in a neutral Au_{25}^{0} charge state. In this regard, the cluster counterion was a limiting reagent.

Further Au₂₅⁰-O₂ charge transfer was possible in the presence of excess counterion (in the form of TBAP). TBA+ is similar to the cluster counterion because both are bulky cations that can stabilize ${\rm O_2}^{-40}$ The blue curves in Figure 6b represent a N₂-purged solution of Au₂₅⁻ + 195 μM TBAP after 1 h of illuminated O_2 exposure ($h\nu$ < 3.88 eV). The $Au_{25}^$ concentration was estimated to be $\sim 16 \mu M$ from the raw absorbance spectrum and the reported molar absorptivity (ε = $8.8 \times 10^3 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$ at peak a). ⁴³ The resulting spectral changes were consistent with the formation of cationic Au₂₅⁺, as identified through our spectroelectrochemical experiments and previous literature reports. ^{27,30,35,36} Control experiments ruled out cluster oxidation by TBAP (Figure S15 in the Supporting Information). Rather, the excess counterion stabilized further O₂ production and allowed photomediated charge transfer to proceed past a one-electron process. The perchlorate anion component of TBAP likely stabilized the cationic Au₂₅⁺ cluster. We hypothesize that unfavorable interaction between cationic Au25+ and O2 prevented further charge transfer or oxidative degradation of the cluster. These observations indicate that O₂ can oxidize the cluster past the neutral Au₂₅ form so long as the solution is illuminated with sufficiently energetic light and excess counterion is present.

We point out that singlet oxygen ($^{1}O_{2}$) can be formed during the process of PL quenching⁴⁴ and that $^{1}O_{2}$ can behave as an oxidizing agent in certain situations.⁴⁵ However, the $^{1}O_{2}$ accepting level is shifted approximately +1 V with respect to ground-state (triplet) O₂. 46 On the basis of the electrochemical data in Figure 5, this would place the 1O2 accepting level and the $Au_{25}^{0/21}$ (HOMO) redox peak at nearly identical potentials. As such, and any charge transfer between Au₂₅⁻ and ¹O₂ should be reversible, 39 precluding significant 1O2 contribution to the irreversible cluster oxidation observed in this study. We also note that previous reports of Au₂₅ oxidation with O₂ were accomplished by exposing Au_{25}^{-} to room air under ambient conditions. Exposure to ambient air could potentially affect the O2 redox potential by introducing water into the system, but we did not find evidence of spontaneous charge transfer between Au₂₅ and "wet" O₂ in the absence of light (Figure S16 in the Supporting Information). This result indicates that the previous reports of Au₂₅ oxidation by O₂ were likely photomediated, albeit unrealized at the time.

We tested the generality of our proposed mechanism by investigating the interaction between Au₂₅⁻ and quinoline. Quinoline is a two-ringed, nitrogen-containing molecule that has an electron-accepting level slightly below the Au₂₅ LUMO.⁴⁷ In accordance with our hypothesis, we observed charge transfer only after Au₂₅ photoexcitation (Figure S17 and Table S2 in the Supporting Information). This result shows that photomediated charge transfer is not restricted to O₂, and it likely extends to a broad range of molecules with electronaccepting levels in the proximity of the Au₂₅ LUMO. Finally, we confirmed that spontaneous charge transfer can occur with electron acceptors having levels below the Au₂₅ HOMO. Experiments with $K_3Fe(CN)_6$ illustrate that spontaneous oxidation of Au₂₅ occurs with associated spectral changes (Figure S18 in the Supporting Information), and similar spontaneous charge transfer was previously noted between Au₂₅ and Ce(SO₄)₂, Ag⁺ and oxoammonium cations, ^{29,35} and peroxide species.³⁶ These results further cement the role of the HOMO, LUMO, and excited electronic states in the surface chemistry of atomically precise, ligand-protected Au₂₅⁻ clusters.

In conclusion, we have shown that light can play an important role in the chemistry of Au₂₅⁻ clusters. Our experimental and computational findings refine the suspected role of the Au₂₅⁻ ground state charge. Specifically, we have shown that the Au₂₅⁻ anionic charge does not play a substantial role in charge transfer with O₂ or quinoline. Rather, HOMO-LUMO energies, photoexcitation, and the relative position of electron-acceptor levels more directly impact Au₂₅⁻ chemistry. This phenomenon may apply to other ligand-protected clusters of different size, composition, and charge, so long as they have appropriate HOMO-LUMO energies and counterions are available to stabilize reaction products. The identification of such photochemical processes may help develop new clusteradsorbate models, expand the range of reactions available to these materials, and further our understanding of ligandprotected cluster chemistry.

ASSOCIATED CONTENT

Supporting Information

Experimental and computational methods and additional data and analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: Douglas.Kauffman@contr.netl.doe.gov.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

R.J. acknowledges research support by the Air Force Office of Scientific Research under AFOSR award no. FA9550-11-1-9999 (FA9550-11-1-0147). This technical effort was performed in support of ongoing NETL research under RES contract DE-FE0004000. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

REFERENCES

- (1) Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. Correlating the Crystal Structure of a Thiol-Protected Au₂₅ Cluster and Optical Properties. *J. Am. Chem. Soc.* **2008**, *130*, 5883–5885.
- (2) Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal Structure of the Gold Nanoparticle $[N(C_8H_{17})_4]$ - $[Au_{25}(SCH_2CH_2Ph)_{18}]$. J. Am. Chem. Soc. **2008**, 130, 3754–3755.
- (3) Qian, H.; Zhu, M.; Wu, Z.; Jin, R. Quantum Sized Gold Nanoclusters with Atomic Precision. *Acc. Chem. Res.* **2012**, *45*, 1470–1479.
- (4) Parker, J. F.; Fields-Zinna, C. A.; Murray, R. W. The Story of a Monodisperse Gold Nanoparticle: $Au_{25}L_{18}$. Acc. Chem. Res. **2010**, 43, 1289–1296.
- (5) Maity, P.; Xie, S.; Yamauchi, M.; Tsukuda, T. Stabilized Gold Clusters: from Isolation Toward Controlled Synthesis. *Nanoscale* **2012**, *4*, 4027–4037.
- (6) Zhu, Y.; Qian, H.; Zhu, M.; Jin, R. Thiolate-Protected Au_n Nanoclusters as Catalysts for Selective Oxidation and Hydrogenation Processes. Adv. Mater. 2010, 22, 1915–1920.
- (7) Nie, X.; Qian, H.; Ge, Q.; Xu, H.; Jin, R. CO Oxidation Catalyzed by Oxide-Supported Au₂₅(SR)₁₈ Nanoclusters and Identification of Perimeter Sites as Active Centers. *ACS Nano* **2012**, *6*, 6014–6022.
- (8) Zhu, Y.; Qian, H.; Drake, B. A.; Jin, R. Atomically Precise $Au_{25}(SR)_{18}$ Nanoparticles as Catalysts for the Selective Hydrogenation of α , β -Unsaturated Ketones and Aldehydes. *Angew. Chem., Int. Ed.* **2010**, 49, 1295–1298.
- (9) Zhu, Y.; Wu, Z.; Gayathri, C.; Qian, H.; Gil, R. R.; Jin, R. Exploring Stereoselectivity of Au₂₅ Nanoparticle Catalyst for Hydrogenation of Cyclic Ketone. *J. Catal.* **2010**, *271*, 155–160.
- (10) Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H.; Jin, R. Experimental and Computational Investigation of Au₂₅ Clusters and CO₂: A Unique Interaction and Enhanced Electrocatalytic Activity. *J. Am. Chem. Soc.* **2012**, *134*, 10237–10243.
- (11) Chen, W.; Chen, S. Oxygen Electroreduction Catalyzed by Gold Nanoclusters: Strong Core Size Effects. *Angew. Chem., Int. Ed.* **2009**, 48, 4386–4389.
- (12) Zhu, M.; Eckenhoff, W. T.; Pintauer, T.; Jin, R. Conversion of Anionic [Au₂₅(SCH₂CH₂Ph)₁₈]⁻ Cluster to Charge Neutral Cluster *via* Air Oxidation. *J. Phys. Chem. C* **2008**, *112*, 14221–14224.
- (13) Lopez-Acevedo, O.; Kacprzak, K. A.; Akola, J.; Häkkinen, H. Quantum Size Effects in Ambient CO Oxidation Catalysed by Ligand-Protected Gold Clusters. *Nat. Chem.* **2010**, *2*, 329–334.
- (14) Gao, Y.; Shao, N.; Pei, Y.; Chen, Z.; Zeng, X. C. Catalytic Activities of Subnanometer Gold Clusters (Au₁₆ Au₁₈, Au₂₀, and Au₂₇ Au₃₅) for CO Oxidation. ACS Nano **2011**, 5, 7818–7829.
- (15) Staykov, A.; Nishimi, T.; Yoshizawa, K.; Ishihara, T. Oxygen Activation on Nanometer-Size Gold Nanoparticles. *J. Phys. Chem. C* **2012**, *116*, 15992–16000.
- (16) Liu, Y.; Tsunoyama, H.; Akita, T.; Xie, S.; Tsukuda, T. Aerobic Oxidation of Cyclohexane Catalyzed by Size-Controlled Au Clusters on Hydroxyapatite: Size Effect in the sub-2 nm Regime. *ACS Catal.* **2011**, *1*, 2–6.
- (17) Liu, Y.; Tsunoyama, H.; Akita, T.; Tsukuda, T. Efficient and Selective Epoxidation of Styrene with TBHP Catalyzed by Au₂₅ Clusters on Hydroxyapatite. *Chem. Commun.* **2010**, *46*, 550–552.
- (18) Akola, J.; Walter, M.; Whetten, R. L.; Häkkinen, H.; Grönbeck, K. On the Structure of Thiolate-Protected Au₂₅. *J. Am. Chem. Soc.* **2008**, 130, 3756–3757.

- (19) Negishi, Y.; Chaki, N. K.; Shichibu, Y.; Whetten, R. L.; Tsukuda, T. Origin of the Magic Stability of Thiolated Gold Clusters: A Case Study on Au₂₅(SC₆H₁₃)₁₈. *J. Am. Chem. Soc.* **2007**, *129*, 11322–11323.
- (20) Wu, Z.; Jin, R. Stability of the Two Au-S Binding Modes in Au₂₅(SG)₁₈ Nanoclusters Probed by NMR and Optical Spectroscopy. ACS Nano **2009**, 3, 2036–2042.
- (21) Shibu, E. S.; Muhammed, M. A. H.; Tsukuda, T.; Pradeep, T. Ligand Exchange of Au₂₅SG₁₈ Leading to Functionalized Gold Clusters: Spectroscopy, Kinetics, and Luminescence. *J. Phys. Chem. C* **2008**, *112*, 12168–12176.
- (22) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. *Chem. Rev.* **2005**, *105*, 1103–1170.
- (23) Zhu, Y.; Qian, H.; Jin, R. Catalysis Opportunities of Atomically Precise Gold Nanoclusters. *J. Mater. Chem.* **2011**, *21*, *6793–6799*.
- (24) Aikens, C. M. Geometric and Electronic Structure of $Au_{25}(SPhX)_{18}^-$ (X = H, F, Cl, BR, CH_3 , OCH_3). *J. Phys. Chem. Lett.* **2010**, 1, 2594–2599.
- (25) Devadas, M. S.; Bairu, S.; Qian, H.; Sinn, E.; Jin, R.; Ramakrishna, G. Temperature-Dependent Optical Absorption Properties of Monolayer-Protected Au_{25} and Au_{38} clusters. *J. Phys. Chem. Lett.* **2011**, 2, 2752–2758.
- (26) Qian, H.; Sfeir, M. Y.; Jin, R. Ultrafast Relaxation Dynamics of $[Au_{25}(SR)_{18}]^q$ Nanoclusters: Effects of Charge State. *J. Phys. Chem. C* **2010**, *114*, 19935–19940.
- (27) Lee, D.; Donkers, R. L.; Wang, G.; Harper, A. S.; Murray, R. W. Electrochemistry and Optical Absorbance and Luminescence of Molecule-Like Au₃₈ Nanoparticles. *J. Am. Chem. Soc.* **2004**, *126*, 6193–6199.
- (28) Wang, G.; Guo, R.; Kalyuzhny, G.; Choi, J.-P.; Murray, R. W. NIR Luminescence Intensities Increase Linearly with Proportion of Polar Thiolate Ligands in Protecting Monolayers of Au₃₈ and Au₁₄₀ Quantum dots. *J. Phys. Chem. B* **2006**, *110*, 20282–20289.
- (29) Choi, J.-P.; Fields-Zinna, C. A.; Stiles, R. L.; Balasubramanian, R.; Dougals, A. D.; Crowe, M. C.; Murray, R. W. Reactivity of [Au₂₅(SCH₂CH₂Ph)₁₈]¹⁻ Nanoparticles with Metal Ions. *J. Phys. Chem. C* **2010**, *114*, 15890–15896.
- (30) Wu, Z.; Jin, R. On the Ligand's Role in the Fluorescence of Gold Nanoclusters. *Nano Lett.* **2010**, *10*, 2568–2573.
- (31) Swanick, K. N.; Hesari, M.; Workentin, M. S.; Ding, Z. Interrogating Near-Infrared Electrogenerated Chemiluminescence of Au₂₅(SC₂H₄Ph)₁₈⁺ Clusters. *J. Am. Chem. Soc.* **2012**, *134*, 15205–15208.
- (32) Devadas, M. S.; Kim, J.; Sinn, E.; Lee, D.; Goodson, T.; Ramakrishna, G. Unique Ultrafast Visible Luminescence in Monolayer-Protected Au₂₅ Clusters. *J. Phys. Chem. C* **2010**, *114*, 22417–22423.
- (33) Wen, X.; Yu, P.; Toh, Y.-R.; Hsu, A.-C.; Lee, Y.-C.; Tang, J. Fluorescence Dynamics in BSA-Protected Au₂₅ Nanoclusters. *J. Phys. Chem. C* **2012**, *116*, 19032–19038.
- (34) Negishi, Y.; Iwai, T.; Ide, M. Continuous Modulation of Electronic Structure of Stable Thiolate-Protected Au₂₅ Cluster by Ag Doping. *Chem. Commun.* **2010**, *46*, 4713–4715.
- (35) Liu, Z.; Zhu, M.; Meng, X.; Xu, G.; Jin, R. Electron Transfer Between $[Au_{25}(SC_2H_4Ph)_{18}]^-TOA^+$ and Oxoammonium Cations. *J. Phys. Chem. Lett.* **2011**, *2*, 2104–2109.
- (36) Venzo, A.; Antonello, S.; Gascón, J. A.; Guryanov, I.; Leapman, R. D.; Perera, N. V.; Sousa, A.; Zamuner, M.; Zanella, A.; Maran, F. Effect of the Charge State (z=-1,0,+1) on the Nuclear Magnetic Resonance of Monodisperse $\operatorname{Au}_{25}[S(CH_2)_2Ph]_{18}^z$ Clusters. *Anal. Chem.* **2011**, 83, 6355–6362.
- (37) Franceschetti, A.; Zunger, A. Pseudopotential Calculations of Electron and Hole Addition Spectra of InAS, InP, and Si Quantum Dots. *Phys. Rev. B* **2000**, *62*, 2614–2623.
- (38) Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. *Chem. Rev.* **1996**, *96*, 877–910.
- (39) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, 2001.

- (40) Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium-Air Battery. *J. Phys. Chem. C* **2010**, *114*, 9178–9186.
- (41) Marković, N. M.; Schmidt, T. J.; Stamenković, V.; Ross, P. N. Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. *Fuel Cells* **2001**, *1*, 105–116.
- (42) Sakai, N.; Tatsuma, T. Photovoltaic Properties of Glutathione-Protected Gold Clusters Adsorbed on TiO₂ Electrodes. *Adv. Mater.* **2010**, 22, 3185–3188.
- (43) Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)—Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. *J. Am. Chem. Soc.* **2005**, 127, 5261–5270.
- (44) Wilkinson, F. Quenching of Electronically Excited States by Molecular Oxygen. *Pure Appl. Chem.* **1997**, *69*, 851–856.
- (45) DeRosa, M. C.; Crutchley, R. J. Photosensitized Singlet Oxygen and its Applications. *Coord. Chem. Rev.* **2002**, 233–234, 351–371.
- (46) Ijeri, V. S.; Daasbjerg, K.; Ogilby, P. R.; Poulsen, L. Spacial and Temporal Electrochemical Control of Singlet Oxygen Production and Decay in Photosensitized Experiments. *Langmuir* **2008**, *24*, 1070–1079.
- (47) Smith, W. H.; Bard, A. J. Electrochemical Reactions of Organic Compounds in Liquid Ammonia. III. Reductive Alkylation of Quinoline. *J. Am. Chem. Soc.* **1975**, *97*, 6491–6495.