					5 41		
$ au_1^{\#2}$	0	0	0	- <u>i</u> kr5+2 k³ r5	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$
$\mathfrak{r}_{1^{^{-}}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 \; r_5 + 2 k^4 \; r_5)}$	$\frac{6 k^2 r_5 + t_1}{2 (k + 2 k^3)^2 r_5 t_1}$	0	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2}\;(k^2r_5+2k^4r_5)}$	0	$\frac{i}{kr_5+2k^3r_5}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha\beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\tau_1^{\#1} + \alpha \beta \left \frac{i\sqrt{2}k}{t_1 + k^2 t_1} \right $	0	0	0	0
·	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_{1}^{#2} + \alpha$

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}\dagger$	0	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

	#	<u>ا</u>		٦	m	m	m	2	17
Source constraints	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} == 0$	0 =	$t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha == 0$	$t_{1}^{\#_{1}\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

	$\omega_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^-\alpha}^{\sharp 1}$	$\omega_{1}^{\#2}{}_{\alpha}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\#1}\dagger^{\alpha\beta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$k^2 r_5 + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$\frac{i k t_1}{3}$
$\omega_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$f_1^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}ikt_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$

$\omega_{2}^{\#1}_{+lphaeta}f_{2}^{\#1}_{+lphaeta}\omega_{2}^{\#1}_{-lphaeta\chi}$	0	0	<u>t1</u> 2
$f_{2}^{\#1}\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}{}_{\alpha\beta}$	$\frac{t_1}{2}$	$\frac{i k t_1}{\sqrt{2}}$	0
	$\omega_{2}^{\#1} + ^{lphaeta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

$\sigma_{2^{-}}^{\#1} a eta_{\chi}$	0	0	$\frac{2}{t_1}$
$ au_2^{\#_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\# 1} + \alpha \beta$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
,	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{#1} + \alpha \beta$	$\sigma_{2^-}^{\#1} +^{lphaeta\chi}$

Massive particle			
Pole residue:	$-\frac{1}{r_2} > 0$		
Polarisations:	1		
Square mass:	$\frac{t_1}{r_2} > 0$		
Spin:	0		
Parity:	Odd		
	Pole residue: Polarisations: Square mass: Spin:		

