

1
SEQUENCE LISTING

<110> G2M Cancer Drugs AG
Forschungszentrum Karlsruhe GmbH

<120> The use of molecular markers for the preclinical and clinical profiling of inhibitors of enzymes having histone deacetylase activity

<130> molecular markers

<160> 8

<170> PatentIn version 3.1

<210> 1

<211> 488

<212> PRT

<213> homo sapiens

<400> 1

Met Ala Tyr Ser Gln Gly Gly Lys Lys Lys Val Cys Tyr Tyr Tyr
1 5 10 15

Asp Gly Asp Ile Gly Asn Tyr Tyr Gly Gln Gly His Pro Met Lys
20 25 30

Pro His Arg Ile Arg Met Thr His Asn Leu Leu Leu Asn Tyr Gly Leu
35 40 45

Tyr Arg Lys Met Glu Ile Tyr Arg Pro His Lys Ala Thr Ala Glu Glu
50 55 60

Met Thr Lys Tyr His Ser Asp Glu Tyr Ile Lys Phe Leu Arg Ser Ile
65 70 75 80

Arg Pro Asp Asn Met Ser Glu Tyr Ser Lys Gln Met His Ile Phe Asn
85 90 95

Val Gly Glu Asp Cys Pro Ala Phe Asp Gly Leu Phe Glu Phe Cys Gln
100 105 110

Leu Ser Thr Gly Gly Ser Val Ala Gly Ala Val Lys Leu Asn Arg Gln
115 120 125

Gln Thr Asp Met Ala Val Asn Trp Ala Gly Gly Leu His His Ala Lys
 130 135 140

Lys Tyr Glu Ala Ser Gly Phe Cys Tyr Val Asn Asp Ile Val Leu Ala
 145 150 155 160

Ile Leu Glu Leu Leu Lys Tyr His Gln Arg Val Leu Tyr Ile Asp Ile
 165 170 175

Asp Ile His His Gly Asp Gly Val Glu Glu Ala Phe Tyr Thr Thr Asp
 180 185 190

Arg Val Met Thr Val Ser Phe His Lys Tyr Gly Glu Tyr Phe Pro Gly
 195 200 205

Thr Gly Asp Leu Arg Asp Ile Gly Ala Gly Lys Gly Lys Tyr Tyr Ala
 210 215 220

Val Asn Phe Pro Met Cys Asp Gly Ile Asp Asp Glu Ser Tyr Gly Gln
 225 230 235 240

Ile Phe Lys Pro Ile Ile Ser Lys Val Met Glu Met Tyr Gln Pro Ser
 245 250 255

Ala Val Val Leu Gln Cys Gly Ala Asp Ser Leu Ser Gly Asp Arg Leu
 260 265 270

Gly Cys Phe Asn Leu Thr Val Lys Gly His Ala Lys Cys Val Glu Val
 275 280 285

Val Lys Thr Phe Asn Leu Pro Leu Leu Met Leu Gly Gly Gly Tyr
 290 295 300

Thr Ile Arg Asn Val Ala Arg Cys Trp Thr Tyr Glu Thr Ala Val Ala
 305 310 315 320

Leu Asp Cys Glu Ile Pro Asn Glu Leu Pro Tyr Asn Asp Tyr Phe Glu
 325 330 335

Tyr Phe Gly Pro Asp Phe Lys Leu His Ile Ser Pro Ser Asn Met Thr
 340 345 350

Asn Gln Asn Thr Pro Glu Tyr Met Glu Lys Ile Lys Gln Arg Leu Phe
 355 360 365

Glu Asn Leu Arg Met Leu Pro His Ala Pro Gly Val Gln Met Gln Ala
 370 375 380

Ile Pro Glu Asp Ala Val His Glu Asp Ser Gly Asp Glu Asp Gly Glu
 385 390 395 400

Asp Pro Asp Lys Arg Ile Ser Ile Arg Ala Ser Asp Lys Arg Ile Ala
405 410 415

Cys Asp Glu Glu Phe Ser Asp Ser Glu Asp Glu Gly Glu Gly Arg
420 425 430

Arg Asn Val Ala Asp His Lys Lys Gly Ala Lys Lys Ala Arg Ile Glu
435 440 445

Glu Asp Lys Lys Glu Thr Glu Asp Lys Lys Thr Asp Val Lys Glu Glu
450 455 460

Asp Lys Ser Lys Asp Asn Ser Gly Glu Lys Thr Asp Thr Lys Gly Thr
465 470 475 480

Lys Ser Glu Gln Leu Ser Asn Pro
485

<210> 2

<211> 183

<212> PRT

<213> homo sapiens

<400> 2

Met Ser Ser Pro Ser Pro Gly Lys Arg Arg Met Asp Thr Asp Val Val
1 5 10 15

Lys Leu Ile Glu Ser Lys His Glu Val Thr Ile Leu Gly Gly Leu Asn
20 25 30

Glu Phe Val Val Lys Phe Tyr Gly Pro Gln Gly Thr Pro Tyr Glu Gly
35 40 45

Gly Val Trp Lys Val Arg Val Asp Leu Pro Asp Lys Tyr Pro Phe Lys
50 55 60

Ser Pro Ser Ile Gly Phe Met Asn Lys Ile Phe His Pro Asn Ile Asp
65 70 75 80

Glu Ala Ser Gly Thr Val Cys Leu Asp Val Ile Asn Gln Thr Trp Thr
85 90 95

Ala Leu Tyr Asp Leu Thr Asn Ile Phe Glu Ser Phe Leu Pro Gln Leu
100 105 110

Leu Ala Tyr Pro Asn Pro Ile Asp Pro Leu Asn Gly Asp Ala Ala Ala
115 120 125

Met Tyr Leu His Arg Pro Glu Glu Tyr Lys Gln Lys Ile Lys Glu Tyr
130 135 140

Ile Gln Lys Tyr Ala Thr Glu Glu Ala Leu Lys Glu Gln Glu Glu Gly
145 150 155 160

Thr Gly Asp Ser Ser Ser Glu Ser Ser Met Ser Asp Phe Ser Glu Asp
165 170 175

Glu Ala Gln Asp Met Glu Leu
180

<210> 3

<211> 624

<212> PRT

<213> homo sapiens

<400> 3

Met Glu Asn Ser Asp Ser Asn Asp Lys Gly Ser Gly Asp Gln Ser Ala
1 5 10 15

Ala Gln Arg Arg Ser Gln Met Asp Arg Leu Asp Arg Glu Glu Ala Phe
20 25 30

Tyr Gln Phe Val Asn Asn Leu Ser Glu Glu Asp Tyr Arg Leu Met Arg
35 40 45

Asp Asn Asn Leu Leu Gly Thr Pro Gly Glu Ser Thr Glu Glu Glu Leu
50 55 60

Leu Arg Arg Leu Gln Gln Ile Lys Glu Gly Pro Pro Pro Gln Asn Ser
65 70 75 80

Asp Glu Asn Arg Gly Gly Asp Ser Ser Asp Asp Val Ser Asn Gly Asp
85 90 95

Ser Ile Ile Asp Trp Leu Asn Ser Val Arg Gln Thr Gly Asn Thr Thr
100 105 110

Arg Ser Gly Gln Arg Gly Asn Gln Ser Trp Arg Ala Val Cys Arg Thr
115 120 125

Asn Pro Asn Ser Gly Asn Phe Arg Phe Ser Leu Glu Ile Asn Val Tyr
130 135 140

Ser Asn Asn Gly Ser Gln Asn Ser Glu Asn Glu Asn Glu Pro Ser Ala
145 150 155 160

Arg Arg Ser Ser Gly Glu Asn Val Glu Asn Asn Ser Gln Arg Gln Val

5

165 170 175

Glu Asn Pro Arg Ser Glu Ser Thr Ser Ala Arg Pro Ser Arg Ser Glu
180 185 190

Arg Asn Ser Thr Glu Ala Leu Thr Glu Val Pro Pro Thr Arg Gly Gln
195 200 205

Arg Arg Ala Arg Ser Arg Ser Pro Asp His Arg Arg Thr Arg Ala Arg
210 215 220

Ala Glu Arg Ser Arg Ser Pro Leu His Pro Met Ser Glu Ile Pro Arg
225 230 235 240

Arg Ser His His Ser Ile Ser Ser Gln Thr Phe Glu His Pro Leu Val
245 250 255

Asn Glu Thr Glu Gly Ser Ser Arg Thr Arg His His Val Thr Leu Arg
260 265 270

Gln Gln Ile Ser Gly Pro Glu Leu Leu Ser Arg Gly Leu Phe Ala Ala
275 280 285

Ser Gly Thr Arg Asn Ala Ser Gln Gly Ala Gly Ser Ser Asp Thr Ala
290 295 300

Ala Ser Gly Glu Ser Thr Gly Ser Gln Arg Pro Pro Thr Ile Val
305 310 315 320

Leu Asp Leu Gln Val Arg Arg Val Arg Pro Gly Glu Tyr Arg Gln Arg
325 330 335

Asp Ser Ile Ala Ser Arg Thr Arg Ser Arg Ser Gln Thr Pro Asn Asn
340 345 350

Thr Val Thr Tyr Glu Ser Glu Arg Gly Gly Phe Arg Arg Thr Phe Ser
355 360 365

Arg Ser Glu Arg Ala Gly Val Arg Thr Tyr Val Ser Thr Ile Arg Ile
370 375 380

Pro Ile Arg Arg Ile Leu Asn Thr Gly Leu Ser Glu Thr Thr Ser Val
385 390 395 400

Ala Ile Gln Thr Met Leu Arg Gln Ile Met Thr Gly Phe Gly Glu Leu
405 410 415

Ser Tyr Phe Met Tyr Ser Asp Ser Asp Ser Glu Pro Thr Gly Ser Val
420 425 430

Ser Asn Arg Asn Met Glu Arg Ala Glu Ser Arg Ser Gly Arg Gly Gly
435 440 445

Ser Gly Gly Gly Ser Ser Ser Gly Ser Ser Ser Ser Ser Ser Ser
450 455 460

Ser Ser Ser Ser Ser Ser Ser Ser Ser Pro Ser Ser Ser
465 470 475 480

Ser Gly Gly Glu Ser Ser Glu Thr Ser Ser Asp Leu Phe Glu Gly Ser
485 490 495

Asn Glu Gly Ser Ser Ser Ser Gly Ser Ser Gly Ala Arg Arg Glu Gly
500 505 510

Arg His Arg Ala Pro Val Thr Phe Asp Glu Ser Gly Ser Leu Pro Phe
515 520 525

Leu Ser Leu Ala Gln Phe Phe Leu Leu Asn Glu Asp Asp Asp Asp Gln
530 535 540

Pro Arg Gly Leu Thr Lys Glu Gln Ile Asp Asn Leu Ala Met Arg Ser
545 550 555 560

Phe Gly Glu Asn Asp Ala Leu Lys Thr Cys Ser Val Cys Ile Thr Glu
565 570 575

Tyr Thr Glu Gly Asn Lys Leu Arg Lys Leu Pro Cys Ser His Glu Tyr
580 585 590

His Val His Cys Ile Asp Arg Trp Leu Ser Glu Asn Ser Thr Cys Pro
595 600 605

Ile Cys Arg Arg Ala Val Leu Ala Ser Gly Asn Arg Glu Ser Val Val
610 615 620

<210> 4

<211> 281

<212> PRT

<213> homo sapiens

<400> 4

Met Ala Met Met Glu Val Gln Gly Gly Pro Ser Leu Gly Gln Thr Cys
1 5 10 15

Val Leu Ile Val Ile Phe Thr Val Leu Leu Gln Ser Leu Cys Val Ala
20 25 30

Val Thr Tyr Val Tyr Phe Thr Asn Glu Leu Lys Gln Met Gln Asp Lys
35 40 45

Tyr Ser Lys Ser Gly Ile Ala Cys Phe Leu Lys Glu Asp Asp Ser Tyr
50 55 60

Trp Asp Pro Asn Asp Glu Glu Ser Met Asn Ser Pro Cys Trp Gln Val
65 70 75 80

Lys Trp Gln Leu Arg Gln Leu Val Arg Lys Met Ile Leu Arg Thr Ser
85 90 95

Glu Glu Thr Ile Ser Thr Val Gln Glu Lys Gln Gln Asn Ile Ser Pro
100 105 110

Leu Val Arg Glu Arg Gly Pro Gln Arg Val Ala Ala His Ile Thr Gly
115 120 125

Thr Arg Gly Arg Ser Asn Thr Leu Ser Ser Pro Asn Ser Lys Asn Glu
130 135 140

Lys Ala Leu Gly Arg Lys Ile Asn Ser Trp Glu Ser Ser Arg Ser Gly
145 150 155 160

His Ser Phe Leu Ser Asn Leu His Leu Arg Asn Gly Glu Leu Val Ile
165 170 175

His Glu Lys Gly Phe Tyr Tyr Ile Tyr Ser Gln Thr Tyr Phe Arg Phe
180 185 190

Gln Glu Glu Ile Lys Glu Asn Thr Lys Asn Asp Lys Gln Met Val Gln
195 200 205

Tyr Ile Tyr Lys Tyr Thr Ser Tyr Pro Asp Pro Ile Leu Leu Met Lys
210 215 220

Ser Ala Arg Asn Ser Cys Trp Ser Lys Asp Ala Glu Tyr Gly Leu Tyr
225 230 235 240

Ser Ile Tyr Gln Gly Gly Ile Phe Glu Leu Lys Glu Asn Asp Arg Ile
245 250 255

Phe Val Ser Val Thr Asn Glu His Leu Ile Asp Met Asp His Glu Ala
260 265 270

Ser Phe Phe Gly Ala Phe Leu Val Gly
275 280

<210> 5

<211> 1985

<212> DNA

<213> homo sapiens

<400>	5					
cgccgagctt	tcggcacctc	tgccgggtgg	taccgagcct	tcccggcgcc	ccctcctctc	60
ctcccacccgg	cctgccccttc	cccgcgggac	tatcgcccc	acgtttccct	cagccctttt	120
ctctcccgcc	cgagccgcgg	cggcagcagc	agcagcagca	gcagcaggag	gaggagcccg	180
gtggcggcgg	tggccgggga	gcccatggcg	tacagtcaag	gaggcggcaa	aaaaaaagtc	240
tgctactact	acgacggtga	tattggaaat	tattattatg	gacagggtca	tcccattgaag	300
cctcatagaa	tccgcatgac	ccataacttg	ctgttaaattt	atggcttata	cagaaaaatg	360
gaaatatata	ggccccataa	agccactgcc	gaagaaatga	caaaatatca	cagtgtatgag	420
tatataaat	ttctacggtc	aataagacca	gataacatgt	ctgagtatag	taagcagatg	480
catatattta	atgttggaga	agattgtcca	gcgttgatg	gactcttga	gtttgtcag	540
ctctcaactg	gcggttcagt	tgctggagct	gtgaagttaa	accgacaaca	gactgatatg	600
gctgttaatt	gggctggagg	attacatcat	gctaagaaat	acgaagcatc	aggattctgt	660
tacgttaatg	atattgtgct	tgccatcctt	gaattactaa	agtatcatca	gagagtctta	720
tatattgata	tagatatca	tcatggtgat	ggtgttgaag	aagctttta	tacaacagat	780
cgtgtaatga	cggtatcatt	ccataaataat	gggaaatact	ttcctggcac	aggagacttg	840
agggatattg	gtgctggaaa	aggcaaatac	tatgctgtca	atttccaat	gtgtatgg	900
atagatgtatg	agtcataatgg	gcagatattt	aagcctatta	tctcaaagg	gatggagatg	960
tatcaaccta	gtgctgttgt	attacagtgt	ggtgcagact	cattatctgg	tgatagactg	1020
ggttgttca	atctaacagt	caaaggtcat	gctaaatgt	tagaagttgt	aaaaactttt	1080
aacttaccat	tactgtatgt	tggaggaggt	ggctacacaa	tccgtaatgt	tgctcgatgt	1140
tggacatatg	agactgcagt	tgcccttgat	tgtgagattc	ccaatgagtt	gccatataat	1200
gattactttg	agtattttg	accagacttc	aaactgcata	ttagtccttc	aaacatgaca	1260
aaccagaaca	ctccagaata	tatggaaaag	ataaaacagc	gtttgtttga	aaatttgcgc	1320
atgttacctc	atgcacctgg	tgtccagatg	caagctattc	cagaagatgc	tgttcatgaa	1380
gacagtggag	atgaagatgg	agaagatcca	gacaagagaa	tttctattcg	agcatcagac	1440
aagcggatag	cttgtatgt	agaattctca	gattctgagg	atgaaggaga	aggaggtcga	1500
agaaatgtgg	ctgatcataa	gaaaggagca	aagaaagcta	gaattgaaga	agataagaaa	1560
gaaacagagg	acaaaaaaaaac	agacgttaag	gaagaagata	aatccaagga	caacagtgg	1620
aaaaaaacag	ataccaaagg	aaccaaatac	gaacagctca	gcaacccctg	aatttgcacag	1680
tctcaccaat	ttcagaaaaat	cattaaaaag	aaaatattga	aaggaaaatg	ttttttttt	1740
gaagacttct	ggcttcattt	tatactactt	tggcatggac	tgtattttt	ttcaaattgg	1800
acttttcgt	ttttgttttt	ctggcaagt	tttattgtga	gattttctaa	ttatgaagca	1860
aaatttcttt	tctccaccat	gctttatgt	atagtatttta	aaattgtatgt	gagttattat	1920
gtcaaaaaaaaa	ctgatctatt	aaagaagtaa	ttggcccttc	tgagctgaaa	aaaaaaaaaa	1980

aaaag 1985

<210> 6

<211> 761

<212> DNA

<213> homo sapiens

<400> 6		
ccggggcgtg acagacggcc ggcagaggaa gggagagagg cggcggcgac accatgtcat	60	
ctccccagtcc gggcaagagg cgatggaca cggacgtggt caagctcatc gagagtaaac	120	
atgagggtac gatcctggga ggacttaatg aatttgttagt gaagttttat ggaccacaag	180	
gaacaccata tgaaggcggg gtatggaaag ttagagtggc cctacctgat aaataccctt	240	
tcaaattctcc atctatagga ttcatgaata aaattttcca tcccaacatt gatgaagcgt	300	
caggaactgt gtgtcttagat gtaattaatc aaacttggac agctctctat gatcttacca	360	
atatatttga gtccttcctg cctcagttat tggcctatcc taaccccata gatcctctca	420	
atggtgacgc tgcagccatg tacctccacc gaccagaaga atacaagcag aaaattaaag	480	
agtacatcca gaaatacgcc acggaggagg cgctgaaaga acaggaagag ggtaccgggg	540	
acagctcatc ggagagctct atgtctgact tttccgaaga tgaggcccag gatatggagt	600	
tgttagtagaa aaagcacctg ctttcagaa agactattat ttccctaacca tgagaagcag	660	
actataatat tcataattaa acaaagcaat ttttttatt actaaacaag gtttttatga	720	
ataatagcat tgatatatat atattatata tcacccttta g	761	

<210> 7

<211> 1875

<212> DNA

<213> homo sapiens

<400> 7		
atggaaaact cagattccaa tgacaaagga agtggtgatc agtctgcagc acagcgcaga	60	
agtccagatgg accgatttggc tcgagaagaa gctttctatc aatttgtaaa taacctgagt	120	
gaagaagatt ataggcttat gagagataac aatttgctag gcacccagg tgaaagtact	180	
gaggaagagt tgctgagacg actacagcaa attaaagaag gcccaccacc gcaaaactca	240	
gatggaaaata gaggaggaga ctcttccat gatgtgtcta atggtgactc tataatagac	300	
tggcttaact ctgtcagaca aactggaaat acaacaagaa gtgggcaaag aggaaaccaa	360	
tcttggagag cagtgtgccg gactaatcca aacagcgta atttcagatt cagtttagag	420	
ataaaatgttt acagtaataa tgggagccaa aattcagaga atgaaaatga gccatctgca	480	
agacgttcta gtggagaaaaa tgggaaaac aacagccaaa ggcaagtggaa aaacccacga	540	

10

tctgaatcaa	catctgcaag	gccatctaga	tcagaacgaa	attcaactga	agcgttaaca	600
gaggcccac	ctaccagagg	tcagaggagg	gcaagaagca	ggagcccaga	ccatcgaga	660
accagagcaa	gagctgaaag	aagttaggtca	cctctgcattc	aatgatgtga	aattccacga	720
agatctcatc	atagtatctc	atctcagact	tttgaacatc	cttggtaaa	tgagacggag	780
ggaagttcta	gaacccggca	ccatgtgaca	ttgaggcagc	aaatatctgg	gcctgagttg	840
ctaagtagag	gtcttttgc	agcttctgga	acaagaaaatg	cttctcaagg	agcaggttct	900
tcagacacag	ctgccagtgg	tgaatctaca	ggatcaggac	agagacctcc	aaccatagtc	960
cttgatcttc	aagtaagaag	agttcgtcct	ggagaatatc	ggcagagaga	tagcatagcc	1020
agcagaactc	ggtcttaggtc	tcagacacca	aacaacactg	tcacctatga	aagtgaacga	1080
ggaggtttta	ggcgtacatt	ttcacgttct	gagcgggcag	gtgtgagaac	ctatgtcagt	1140
accatcagaa	ttcccattcg	tagaatctta	aatactggtt	taagtgagac	tacatctgtt	1200
gcaattcaga	ccatgttaag	gcagataatg	acaggttttgc	gtgagttaag	ctatttatg	1260
tacagtgata	gcgactcaga	gcctactggc	tcagtctcaa	atcgaatata	ggaaagggca	1320
gagtcacgga	gtggaagagg	aggttctgg	ggtggtagta	gttctgggtc	cagttcgagt	1380
tccagttcca	gttcgagttc	cagttccagt	tcaagttcca	gttccagtc	tagttccagt	1440
tccgggtgt	aaagttcaga	aactagctca	gatttatttg	aaggcagtaa	tgaaggaagc	1500
tcatcatcag	gctcatcagg	tgccaggcga	gagggtcgac	atagggcccc	agtcacattt	1560
gatgaaagtg	gctcttgcc	cttccttagc	ctggctcagt	tttcctctt	aatgaggat	1620
gatgatgacc	aacctagagg	actcacaaa	gaacagattg	acaacttggc	aatgagaagt	1680
tttggtaaaa	atgatgcatt	aaaaacctgt	agtgttgca	ttacagaata	tacagaaggc	1740
aacaaacttc	gtaaactacc	ttgttccat	gagtaccatg	tccactgcat	cgatcgctgg	1800
ttatctgaga	attctacctg	tcctatttgc	cgcagagcag	tcttagcttc	tggtaacaga	1860
gaaagtgttg	tgtaa					1875

<210> 8

<211> 1769

<212> DNA

<213> homo sapiens

<400>	8					
cctcaactgac	tataaaagaa	tagagaagga	agggcttcag	tgaccggctg	cctggctgac	60
ttacagcagt	cagactctga	caggatcatg	gctatgtgg	aggtccaggg	gggacccagc	120
ctgggacaga	cctgcgtgct	gatcgtgatc	ttcacagtgc	tcctgcagtc	tctctgtgt	180
gctgttaactt	acgtgtactt	taccaacgag	ctgaagcaga	tgcaggacaa	gtactccaaa	240
agtggcattt	ttgtttctt	aaaagaagat	gacagttatt	gggaccccaa	tgacgaagag	300

11

agtatgaaca	gcccctgctg	gcaagtcaag	tggcaactcc	gtcagctcgt	tagaaagatg	360
attttgagaa	cctctgagga	aaccatttct	acagttcaag	aaaagcaaca	aatatttct	420
cccctagtga	gagaaagagg	tcctcagaga	gtgcagctc	acataactgg	gaccagagga	480
agaagcaaca	cattgtcttc	tccaaactcc	aagaatgaaa	aggctctggg	ccgcaaaata	540
aactcctggg	aatcatcaag	gagtgggcat	tcattcctga	gcaacttgca	ctttaggaaat	600
ggtaactgg	tcatccatga	aaaagggttt	tactacatct	attcccaaac	atactttcg	660
tttcaggagg	aaataaaaga	aaacacaaag	aacgacaaac	aatggtcca	atatatttac	720
aaatacacaa	gttattcctga	ccctatatattg	ttgatgaaaa	gtgctagaaa	tagttgttgg	780
tctaaagatg	cagaatatgg	actctattcc	atctatcaag	ggggaatatt	tgagcttaag	840
aaaaatgaca	gaatttttgt	ttctgtaca	aatgagcact	tgatagacat	ggaccatgaa	900
gccagtttt	tcggggcctt	tttagttggc	taactgacct	ggaaagaaaa	agcaataacc	960
tcaaagtgac	tattcagttt	tcaggatgat	acactatgaa	gatgtttcaa	aaaatctgac	1020
aaaaacaaac	aaacagaaaa	cagaaaacaa	aaaaacctct	atgcaatctg	agttagagcag	1080
ccacaaccaa	aaaattctac	aacacacact	gttctgaaag	tgactcactt	atcccaagaa	1140
aatgaaaattg	ctgaaagatc	tttcaggact	ctacctata	tcagtttgc	agcagaaatc	1200
tagaagactg	tcagcttcca	aacattaatg	caatggtaa	catcttctgt	ctttataatc	1260
tactccttgc	aaagactgta	gaagaaagcg	caacaatcca	tctctcaagt	agtgtatcac	1320
agtagtagcc	tccaggttcc	cttaaggac	aacatcctt	agtcaaaaga	gagaagaggc	1380
accactaaaa	gatcgcagtt	tgcctggtgc	agtggctcac	acctgtatc	ccaacattt	1440
gggaacccaa	ggtgggtaga	tcacgagatc	aagagatcaa	gaccatagt	accaacatag	1500
tgaaacccaa	tctctactga	aagtgcaaaa	attagctggg	tgtgttggc	catgcctgta	1560
gtcccgacta	cttgagaggc	tgaggcagga	gaatcgtttgc	aacccgggag	gcagaggttg	1620
cagtgtggtg	agatcatgcc	actacactcc	agcctggcga	cagagcgaga	cttggttca	1680
aaaaaaaaaa	aaaaaaaaaa	cttcagtaag	tacgtgttat	tttttcaat	aaaattctat	1740
tacagtatgt	aaaaaaaaaa	aaaaaaaaaa				1769