AMENDMENTS TO THE CLAIMS

Please amend the claims as follows:

1	1.	(Currently Amended) An electronic device, comprising:
2		a radio unit configured to communicate with a network;
3		at least one memory device configured to store application and system
4	-	programs; and
5		a processing unit coupled to said radio unit and said at least one memory
6		device, said processing unit configured to run the application and
7		system programs;
8		wherein at least one of the application and system programs include a software
9		enabled switch displayed on the device screen for enabling and
10		disabling the radio unit while leaving the processing unit in an
11		operation state.
1	2.	(Previously presented) An electronic device comprising:
2		a radio unit configured to communicate with a network;
3		at least one memory device configured to store application and system
4		programs; and
5		a processing unit couples to said radio unit and said at least one memory
6		device, said processing unit configured to run the application and
7		system programs;
A		wherein

9		at least one of the application and system programs include a software enabled
10		switch for enabling and disabling the radio unit;
11		at least one of said application and system programs is a program that utilizes
12		the radio; and
13		at least one of said application and system programs comprises a notification
14		program configured to notify a user if the radio is disabled upon
15		invoking a program that utilizes the radio.
1	3.	(Original) The electronic device according to Claim 2, wherein said
2	notification p	rogram is further configured to give the user an option to either, continue
3	executing the	application or system program and automatically enable the radio device, or
4	•	discontinue execution of the application or system program and leaving the
5		radio disabled.
1	4.	(Original) The electronic device according to Claim 1, wherein:
2		said device further comprises a display screen; and
3		at least one of said system and application programs are configured to generate
4		a graphical user interface on the display screen having at least one soft
5		button programmed to enable and disable said radio device.
1	5.	(Original) The electronic device according to Claim 4, wherein said graphical
2	user interface	is a GUI having a first soft button entitled "RADIO ON," and a second soft
3	button labeled	"Radio OFF," and an enablement status of the radio device is indicated by the
1	corresponding	soft button highlighted in one of bold, inverse video flashing or other

indicators.

		·
1	6.	(Original) The electronic device according to Claim 1, further comprising a
2	hard button p	programmed to enable and disable the radio device, wherein said hard button is a
3	toggle switch	that is activated by engaging the hard button for a predetermined length of time
1	7.	(Original) The electronic device according to Claim 6, wherein said hard
2	button has at	least one additional program invoked by pressing the hard button for a time
3	period less th	an said predetermined length of time.
1	8.	(Original) The electronic device according to Claim 6, wherein said
2	predetermine	d length of time is approximately 1 second.
2	9.	(Original) The electronic device according to Claim 1, wherein:
2		said software enabled switch includes,
3		a user interface with a drop down menu having user selectable options for
4		Radio On, Radio Off, and Schedule, and
5		programming configured to implement an option selected by the user.
i	10.	(Original) The electronic device according to Claim 1, wherein the application
2	and system pr	ograms include a scheduling application that provides user modifiable start and
3	stop times tha	t indicate when the radio unit is enabled and disabled.
	11.	(Previously presented) A notification mechanism for notifying a user of a
2	status of an R	F device in an RF capable device, wherein the RF capable device includes a
i	processing uni	t for running applications and a user interface, said notification program

comprising:

,	an Kr alarm mechanism that identifies a program that has been invoked that
6	requires the RF capabilities of the RF capable device;
7	a check mechanism configured to check an enablement status of the RF device
8	a user interface mechanism configured to display a status of the RF device and
9	provide the user with an option to continue with the program requiring
10	RF capabilities and automatically enable the RF device or discontinue
11	the program requiring RF capabilities without enabling the RF device;
12	wherein:
13	the RF alarm mechanism wakes the notification mechanism from a "sleep"
14	mode and the notification mechanism checks the enablement status of
15	the RF device using said check mechanism, and
16	if the RF device is not enabled, the notifications program invokes the user
17	interface mechanism.
1	12. (Original) A method of notifying a user of an RF enablement status of a
2	device having RF capabilities, comprising the steps of:
3	identifying the invocation of a mechanism requiring access to the RF
4	capabilities;
5	determining the RF enablement status of the RF device;
6	if the RF device is not enabled:
7	prompting a user of the device if the mechanism is to be granted RF access,
8	and
9	retrieving a user input regarding whether RF access should be granted to the
0	mechanism requiring RF access;

11		if the user input indicates the mechanism is to be granted RF access:
12		automatically enabling the RF device, and
13		allowing the mechanism requiring RF access to continue and access the RF
14		device; and
15		if the user input indicates the mechanism should not be granted RF access,
16		then, shutting down the mechanism requiring RF access without
17		enabling the RF device.
1	13.	(Currently Amended) An electronic device, comprising:
2		a radio unit;
3		at least one of an application and system program configured to access the
4		radio unit;
5		a processing unit coupled to said radio unit and said at least one memory
6	•	device, said processing unit configured to run the at least one
7		application and system program;
8		a software enabled switch displayed on the device screen for enabling and
9		disabling the radio unit while leaving the processing unit in an
10		operational state; and
11 .		said at least one application and system program includes a prompting
12		mechanism configured to display a prompt to a user to determine if the
13		radio unit is to be enabled before enabling the radio unit.
1	14.	(Previously presented) The electronic device according to Claim 13, wherein:
2		said at least one application and system program includes a notification
3		mechanism to identify when the radio unit has been enabled.

- 1 15. (Previously presented) The electronic device according to Claim 14, wherein the notification mechanism comprises display of an airplane icon.
- 1 16. (Previously presented) The electronic device according to Claim 13, further
 2 comprising a shutdown device configured to maintain the radio unit in a non enabled state,
 3 maintain the processing unit in an operational state, and shut down an application program
 4 that utilizes the radio unit upon a negative response to the prompt from the user.
- 1 17. (Previously presented) The electronic device according to Claim 1, further
 2 comprising a status display indicating enablement of the radio unit, wherein the status display
 3 comprises an airplane icon.
- 1 18. (Previously presented) The electronic device according to Claim 2, further
 2 comprising a status display indicating enablement of the radio unit, wherein the status display
 3 comprises an airplane icon.
- 1 19. (Previously presented) The notification mechanism according to Claim 11,
 2 further comprising a display indicating enablement status of the radio unit, wherein the
 3 display comprises an airplane icon.
- 1 20. (Previously presented) The method according to Claim 12, further comprising 2 the step of displaying the enablement status of the RF device using an icon that comprises an 3 airplane.