

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:		(11) International Publication Number	r: WO 00/57361
G06T 7/20	A1	(43) International Publication Date:	28 September 2000 (28.09.00)

(21) International Application Number:

PCT/GB00/01020

(22) International Filing Date:

17 March 2000 (17.03.00)

(81) Designated States: JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(30) Priority Data:

9906420.6

GB 19 March 1999 (19.03.99)

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments

(71) Applicant (for all designated States except US): ISIS INNO-VATION LIMITED [GB/GB]; Ewert House, Ewert Place, Summertown, Oxford OX2 7BZ (GB).

(72) Inventors; and

10

17

0

ı,

1 6

100

(75) Inventors/Applicants (for US only): BRADY, John, Michael [GB/GB]; Dept. of Engineering Science, University of Oxford, 19 Parks Road, Oxford OX1 3PJ (GB). HAYTON, Paul, Michael [GB/GB]; Dept. of Engineering Science, University of Oxford, 19 Parks Road, Oxford OX1 3PJ (GB). SMITH, Stephen, Mark [GB/GB]; Oxford University Centre for Functional Magnetic Resonance Imaging of the Brain, John Radcliffe Hospital, Headington, Oxford OX3 9DU (GB).

(74) Agents: NICHOLLS, Michael, John et al.; J.A. Kemp & Co., 14 South Square, Gray's Inn, London WC1R 5LX (GB).

(54) Title: METHOD AND APPARATUS FOR IMAGE PROCESSING

150

100

50

(57) Abstract

A method of detecting and correcting non-rigid body motion in a sequence of images, for instance MRI images of the human breast. The method uses a similarity measure, such as mutual information, to estimate the probabilities of a plurality of candidate movements for each of a plurality of sampling points in the image. The probabilities of the candidate movements are refined in an iterative process by multiplying them with weighted probabilities of the most probable motions for the neighbouring sampling points. After iteration the motion field is generated by taking the movement of the sampling point the candidate movement with the highest probability after the iteration process. The sequence of images can be corrected by the motion field and then the process repeated using different, for instance more closely spaced, sampling points for further refinement. The process is particularly advantageous for detecting and correcting for non-rigid movements in images which do not contain recognisable geometric features and in images which are non-conservative i.e. the total amount of brightness in the image changes with time, for instance as a result of the introduction of contrast agent and its dynamic take-up by the tissue being imaged.

150

100

20 25 30 35

-Contrast Image