Examenul de bacalaureat național 2017 Proba E. c)

Matematică *M_tehnologic*

Clasa a XII-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(2+\sqrt{3}\right)^2 = 7+4\sqrt{3}$	2p
	$\left(1 - 2\sqrt{3}\right)^2 = 13 - 4\sqrt{3} \Rightarrow \left(2 + \sqrt{3}\right)^2 + \left(1 - 2\sqrt{3}\right)^2 = 7 + 4\sqrt{3} + 13 - 4\sqrt{3} = 20$	3 p
2.	f(3) = 0	3p
	$f(1) \cdot f(2) \cdot f(3) \cdot f(4) = 0$	2p
3.	$2^{3x} = 2^{4x+2} \Leftrightarrow 3x = 4x + 2$	3p
	x = -2	2p
4.	$p + \frac{25}{100} \cdot p = 250$, unde p este prețul obiectului înainte de scumpire	2p
	p = 200 de lei	3 p
5.	AB = 4	2 p
	$AC = 4 \Rightarrow AB = AC$, deci triunghiul ABC este isoscel	3 p
6.	$\sin 60^{\circ} = \cos 30^{\circ}$	2 p
	$tg 45^{\circ} = ctg 45^{\circ} \Rightarrow \sin 60^{\circ} + tg 45^{\circ} = \cos 30^{\circ} + ctg 45^{\circ}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(3) = \begin{pmatrix} 3 & 2 \\ 3 & 3 \end{pmatrix} \Rightarrow \det(A(3)) = \begin{vmatrix} 3 & 2 \\ 3 & 3 \end{vmatrix} = 3 \cdot 3 - 3 \cdot 2 =$	3p
	=9-6=3	2p
b)	$A(2017+x)+A(2017-x) = \begin{pmatrix} 2017+x & 2 \\ 2017+x & 2017+x \end{pmatrix} + \begin{pmatrix} 2017-x & 2 \\ 2017-x & 2017-x \end{pmatrix} = \begin{pmatrix} 4034 & 4 \\ 4034 & 4034 \end{pmatrix} = \begin{pmatrix} 4034 & 4 \\ 4034 & 4 \end{pmatrix} = \begin{pmatrix} 4034 & 4 \\ 4034 $	3p
	$=2\begin{pmatrix} 2017 & 2\\ 2017 & 2017 \end{pmatrix} = 2A(2017)$, pentru orice număr real x	2p
c)	$A(2) + mA(1) = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} + \begin{pmatrix} m & 2m \\ m & m \end{pmatrix} = \begin{pmatrix} 2+m & 2+2m \\ 2+m & 2+m \end{pmatrix} \Rightarrow \det(A(2) + mA(1)) = -m(m+2)$	3p
	$m(m+2) = 0 \Leftrightarrow m = -2 \text{ sau } m = 0$	2p
2.a)	x * y = 2xy + 6x + 6y + 18 - 3 =	2p
	=2x(y+3)+6(y+3)-3=2(x+3)(y+3)-3, pentru orice numere reale x şi y	3p
b)	$7*98 = 2(7+3)(98+3) - 3 = 2 \cdot 10 \cdot 101 - 3 =$	3p
	=2020-3=2017	2p
c)	$2(x+3)(x+2+3)-3=3 \Leftrightarrow x^2+8x+12=0$	3p
	x = -6 sau x = -2	2p

SUBIECTUL al III-lea (30 de puncte)

	(ev de panete)		
1.a)	$\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = f'(3)$	2p	
	$f'(x) = 1 - \frac{1}{(x-2)^2}$, $x \in (2,+\infty) \Rightarrow f'(3) = 0$, deci $\lim_{x \to 3} \frac{f(x) - f(3)}{x-3} = 0$	3 p	
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{x} + \frac{1}{x(x-2)} \right) = 1$	2p	
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \left(1 + \frac{1}{x - 2} \right) = 1, \text{ deci dreapta de ecuație } y = x + 1 \text{ este asimptotă}$	3 p	
	oblică spre $+\infty$ la graficul funcției f		
c)	$f''(x) = \frac{2}{(x-2)^3}, x \in (2,+\infty)$	3p	
	$f''(x) > 0$, pentru orice $x \in (2, +\infty)$, deci funcția f este convexă pe intervalul $(2, +\infty)$	2 p	
2.a)	$\int_{1}^{e} (f(x) - \ln x) dx = \int_{1}^{e} 1 dx = x \Big _{1}^{e} = 1$	3p	
	=e-1	2p	
b)	F este derivabilă și $F'(x) = (x \ln x)' = \ln x + x \cdot \frac{1}{x} =$	3p	
	= $\ln x + 1 = f(x)$, pentru orice $x \in (0, +\infty)$, deci F este o primitivă a funcției f	2p	
c)	$\int_{1}^{e} f(x) F(x) dx = \frac{1}{2} F^{2}(x) \Big _{1}^{e} =$	3p	
	$= \frac{1}{2}F^{2}(e) - \frac{1}{2}F^{2}(1) = \frac{e^{2}}{2}$	2p	