Application 0 Stabilité des systèmes – Sujet

Exercice 1 – Réponse impulsionnelle (entrée Dirac)

Question 1 Pour chaque cas déterminer si la réponse est celle d'un système stable, instable ou juste (quasi) stable.

C1-01

C2-03

Exercice 2 – Pôles de la FTBF

On donne les pôles des FTBF de plusieurs systèmes :

4.
$$-2+3j$$
, $-2-3j$, -2 ; 7. $-1+j$, $-1-j$; 5. $-j$, j , -1 , 1 ; 8. 2 , -1 , -3 ;

7.
$$-1+j$$
, $-1-j$;

$$2. -3, -2, 0;$$

$$5, -i, i, -1, 1$$
:

3.
$$-2+j$$
, $-2-j$, $2j$, $-2j$; 6. -1 , $+1$;

6.
$$-1$$
, $+1$:

9.
$$-6$$
, -4 , 7 .

Question 1 Pour chaque cas déterminer si la réponse est celle d'un système stable, instable ou juste (quasi) stable.

Exercice 3 – Applications du critère du Revers

Question 1 On donne ci-dessous les lieux de transferts de plusieurs FTBO. Déterminer, à l'aide du critère du Revers si les systèmes sont stables en BF.

Question 2 Pour les systèmes stables déterminer les marges de gain et de phase.

Exercice 4 – Étude de la stabilité

Objectif

- ► Caractériser la stabilité d'un système à partir de la FTBO.
- ▶ La marge de gain est supérieure à $10 \, dB$ et que la marge de phase est supérieure à $45 \, ^{\circ}$.

On donne le schéma ci-contre.

On a
$$K = 1$$
, $\tau = 0$, 1 et $G = 20$.

Question 1 Déterminer l'erreur statique et l'erreur de traînage.

Question 2 Effectuer les tracés des diagrammes de Bode de la FTBO.

Question 3 Déterminer graphiquement les marges de gains et de phase.

Question 4 Confirmer ces résultats par le calcul.

Question 5 Conclure par rapport au cahier des charges.

