Интеграл локального потенциального векторного поля по непрерывному пути

Лемма 1 (о гусенице).

•
$$\gamma: [a,b] \to O \subset \mathbb{R}^m$$
 — μ enp.

Тогда \exists дробление $a=t_0 < t_1 < \dots < t_n=b$ и \exists шары $B_1\dots B_n \subset O: \gamma[t_{k-1},t_k] \subset B_k.$

Рис. 1: "Гусеница" — покрытие пути шарами

Доказательство. $\forall c \in [a,b]$ возьмём $B_c := B(\gamma(c),\underbrace{r_c}_{\text{произвольн.}}) \subset O.$

$$\overline{\alpha_c} := \inf\{\alpha \in [a, b] : \gamma[\alpha, c] \subset B_c\}$$

 $\overline{\beta_c}:=\inf\{\alpha\in[a,b]:\gamma[c,\beta]\subset B_c\}$ — момент первого выхода после посещения точки $\gamma(c)$

Возьмём
$$(\alpha_c, \beta_c)$$
 : $\overline{\alpha}_c < \alpha_c < c < \beta_c < \overline{\beta}_c$

Таким образом $c\mapsto (\alpha_c,\beta_c)$ — открытое покрытие [a,b], если для c=a или c=b вместо α_c,β_c брать $[a,\beta_a),(\alpha_b,b]$

$$[a,b]$$
 — компактно $\implies [a,b] \subset \bigcup_{\text{кон.}} (\alpha_c,\beta_c)$

??? ни один интервал не накрывается целиком остальными $\Leftrightarrow \forall (\alpha_c, \beta_c) \; \exists d_c$, принадлежащая "только этому" интервалу.

Рис. 2: Выбор точек t_k

Точка t_k выбирается на d_k, d_{k+1} и $t_k \in (\alpha_k, \beta_k) \cap (\alpha_{k+1}, \alpha_{k+1})$.

$$\gamma([t_{k-1}, t_k]) = \gamma(\alpha_k, \beta_k) \subset B_k$$

Примечание. $\forall \delta > 0$ мы можем требовать, чтобы все $r_k < \delta$

Примечание. В силу произвольности r_c можно требовать, чтобы шары B_c удовлетворяют некоторому локальному условию.

Например пусть V — локально потенциальное поле в O. Мы можем требовать, чтобы во всех шарах существовал потенциал V. Тогда будем называть $\{B_k\}$ V-гусеницей.

Определение.

• V — локально потенциальное поле в $O \subset \mathbb{R}^m$

 $\gamma, \tilde{\gamma}: [a,b] o O$ называются похожими (V-похожими), если у них есть общая V-гусеница: $\exists t_0 = a < t_1 < t_2 < \dots < t_n = b \ \exists \ \text{шары} \ B_k \subset O:$

$$\gamma[t_{k-1}, t_k] \subset B_k, \tilde{\gamma}[t_{k-1}, t_k] \subset B_k$$

Следствие.

• V — локально потенциальное поле в $O \subset \mathbb{R}^m$

Тогда любой путь V-похож на ломаную:

Рис. 3: Построение ломаной (розовая) по пути (чёрный) с помощью V-гусеницы (круги)

Пемма 2 (о равенстве интегралов локально-потенциальных векторных путей по похожим путям).

- V- локально-потенциальное векторное поле в $O\subset\mathbb{R}^m$
- $\gamma, \tilde{\gamma}: [a,b] \to O V$ -похожие, кусочно гладкие
- $\gamma(a) = \tilde{\gamma}(a), \gamma(b) = \tilde{\gamma}(b)$

Тогда $\int_{\gamma} \sum V_i dx_i = \int_{\tilde{\gamma}} \sum V_i dx_i$

Доказательство. Рассмотрим общую V-гусеницу. Пусть f_k — потенциал V в шаре B_k , $a=t_0 < t_1 < \cdots < t_n = b$

Сдвинем потенциалы прибавлением константы, так что $f_k(\gamma(t_k)) = f_{k+1}(\gamma(t_k))$ при k=1

Тогда

$$\int_{\gamma} \sum_{i} V_{i} dx_{i} = \sum_{t_{k-1}, t_{k}} \int_{[t_{k-1}, t_{k}]} \dots$$

$$= \sum_{t_{k}} f_{k}(\gamma(t_{k})) - f_{k}(\gamma(t_{k-1}))$$

$$= f_{n}(\gamma(b)) - f_{1}(\gamma(a))$$
(1)

1: По обобщенной формуле Ньютона-Лейбница.

Для $\tilde{\gamma}$ воспользуемся свойством: $f_k\Big|_{B_k\cap B_{k+1}}=f_{k+1}\Big|_{B_k\cap B_{k+1}}$ и тогда аналогично

$$\int_{\tilde{\gamma}} \sum v_i dx_i = f_n(\tilde{\gamma}(b)) - f_1(\tilde{\gamma}(a))$$

Примечание. Вместо условия " $\gamma(a)=\tilde{\gamma}(a), \gamma(b)=\tilde{\gamma}(b)$ " можно взять условие: $\gamma, \tilde{\gamma}-$ петли. Тогда утверждение леммы тоже верно.

Лемма 3.

- $\gamma: [a,b] \rightarrow O \text{Henp.}$
- V- локально-потенциальное векторное поле в $O\subset\mathbb{R}^m$

Тогда $\exists \delta>0:$ если $\tilde{\gamma},\tilde{\tilde{\gamma}}:[a,b]\to O$ таковы, что:

$$\forall t \in [a,b] \ |\gamma(t) - \tilde{\gamma}(t)| < \delta, |\gamma(t) - \tilde{\tilde{\gamma}}(t)| < \delta$$

Тогда $\gamma, \tilde{\gamma}, \tilde{\tilde{\gamma}} V$ -похожи.

Доказательство. Берём V-гусеницу для γ .

 δ_k -окрестность множества $A:=\{x:\exists a\in A\ \ \rho(a,x)<\delta\}=\bigcap_{a\in A}B(a,\delta)$

$$\forall k \; \exists \delta_k > 0 : (\delta_k$$
-окрестность $\gamma[t_{k_1}, t_k]) \subset B_k$

Это следует из компактности:

Пусть $B_k=B(w,r)$, функция $t\in [\gamma_{k-1}m\,\gamma_k]\mapsto \rho(\gamma(t),w)$ непрерывна \Rightarrow достигается $\max,\,\rho(\gamma(t),w)\leq r_0< r$

$$\delta_k := \frac{r-r_0}{2}, \delta := \min(\delta_1 \dots \delta_k)$$

Рис. 4: δ_k -окрестность множества $\gamma[t_{k-1},t_k]$

Определение (Интеграл локального потенциального векторного поля V по непрерывному пути γ). Возьмём $\delta>0$ из леммы 3.

Пусть $\tilde{\gamma}-\delta$ -близкий кусочно-гладкий путь, т.е. $\forall t \;\; |\gamma(t)-\tilde{\gamma}(t)|<\delta.$

Полагаем $I(V,\gamma) := I(V,\tilde{\gamma}).$

Корректность (нет произвольности) следует из лемм 3 и 2