

Université Sultan Moulay Slimane Faculté Polydisciplinaire Khouribga

Année Universitaire 2021-2022

Filière : SMIA/S1 Professeur : FAIZ

Thermodynamique 1 1h30

Contrôle final

Durée

Physique 2	(Session de rattrapage)
Nom :	Numéro d'ordre :
Prénom :	Filière :
	Matricule:
Questions de cours:	Tracticule .
Questions de cours.	
Exercice1:	
	ompressibilité isotherme du mercure liquide
	$=$ 3, 8. $10^{-11}P_a^{-1}$ supposée indépendante de la température et de la
pression. $V \stackrel{\wedge}{\partial} P^{\gamma \gamma}$	a suppose independance de la composació et de la
-	Taçon réversible à la température fixe θ_0 = 27 °C du mercure liquide de
volume initial V _i =1litre d	depuis la pression P_i =1bar =10 ⁵ Pa jusqu'à la pression P_f =1000bar ne du mercure V_f en fonction de V_i , P_i , P_f et de χ_T
•••••	
•••••••••••••	
2. Sachant que $\chi_T(P_f -$	P_i) ≈ 0 , calculer la variation $\Delta V = V_f - V_i$ du volume.
. 011	du travail élémentaire δW en fonction de P, V, α et χ_T , dT et dP. Avec icient de dilatation isobare
$\alpha = \frac{1}{V} \left(\frac{\delta T}{\delta T} \right) p$ est le coeff	letent de dilatation isobate
4. Calculer le travail W.	, lors de la compression précédente, reçu par le mercure.

Exercice 2.
On mélange, sous la pression atmosphérique, m ₁ = 10 kg d'eau, à la température
θ_1 =27°C, et m ₂ = 1 kg de glace, à la température θ_2 = - 10 °C. On donne la capacité thermique
nassique de l'eau : $c_1 = 4.2 \text{ J.K}^{-1}.g^{-1}$; la capacité thermique massique de la glace : $c_2 = 2.15$
$J.K^{-1}.g^{-1}$; la chaleur latente de fusion de la glace à $\theta_0 = 273 \text{ K}$: $L_f = 336 \text{ J.g}^{-1}$.
Déterminer littéralement puis numériquement :
a) la température d'équilibre θ_e en fonction de m_1 , m_2 , c_1 , c_2 , L , θ_1 , θ_2 et θ_0 .
b) la variation d'entropie du système que constituent les deux corps en fonction des données
précédentes.
······································
Exercie3:
On fait subir à 1mol de NO (gaz supposé parfait) les transformations successives suivantes :
· Une compression isotherme réversible d'un état initial 1 à un état 2
· Une détente adiabatique réversible de l'état 2 à l'état 3
· Un chauffage isobare qui le ramène à l'état initial
1. Si $P_1 = 2atm = P_3$, $P_2 = 10atm$, $T_1 = 300K$, $\gamma = 1.66$ et $R = 8.32J$.Mol ⁻¹ .K ⁻¹ , calculer:
a) V_1
b) V_2
Δ V-
c) V ₃
c) V ₃
c) V ₃

$d)$ T_3
2. Représenter le cycle de transformations sur un digramme de Clapeyron
3. Calculer pour chaque transformation (en joules) les grandeurs suivantes :
a) Q
b) W
-7

c) ΔU
d) ΔH
·