Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-13 (Cancelled)

14. (Currently amended) A polymerization catalyst comprising a combination of at least one activator and a reaction product of a transition metal compound with a tridentate ligand generating composition represented by a formula of:

$$R_2$$
 R_3
 $(R^*)n$
 R_4
 R_5
 R_6
 R_8

or

$$q(R_2)$$
 R_3
 R_4
 R_5
 R_6
 R_7

wherein: R₂ and R₃ are hydrocarbyl radicals or substituted hydrocarbyl radicals, R₅ - R₈ are each, independently, hydrogen, a hydrocarbyl radical or a substituted hydrocarbyl radical; one of R₁, R₂, R₃, R₄, or R₉ is a radical that contains a Group 16 atom and R* is a hydrocarbyl radical or substituted hydrocarbyl radical when R₁ is a radical that contains a Group 16 atom, otherwise R₁, R₂, R₃, R₄, R₉ and R* are each, independently, hydrogen, a hydrocarbyl radical or a substituted hydrocarbyl radical; and for formula (I) m and n are values of 0 or 1, and when m is 0 and n is 0 R₂ and R₃ may be joined together to form an aromatic ring structure, and when n is 0 and m is 1 R₂ and R₃ may be joined together to form ring structures; any two adjacent groups of R₅ to R₉ may be joined together to form ring structures; for formula (II) R₁ through R₉ and R* are as explained above and R₁₀ is hydrogen, a hydrocarbyl radical or a substituted hydrocarbyl radical; and p, q and r are values of 0 or 1 wherein p is 0 only when q is 1 and r is 0; wherein the radical that contains a Group 16 atom is a ketone.

15. (Original) The polymerization catalyst of claim 14 wherein the tridentate ligand generating compound is represented by the formula:

wherein R_4 is a radical that contains an oxygen based functional group selected from an alcohol, an aldehyde, a ketone, or an epoxide and R_5 and R_9 are alkyl radicals.

- 16. (Cancelled)
- 17. (Original) The polymerization catalyst of claim 14 wherein the tridentate ligand generating compound is represented by the formula:

$$R_2$$
 R_{10}
 R_{10}

wherein R_1 is a radical that contains an oxygen based functional group selected from an alcohol, an aldehyde, a ketone, an epoxide and R^* , R_2 , R_4 , R_5 , R_7 , R_9 , and R_{10} are hydrocarbyl radicals.

- 18. (Original) The polymerization catalyst of claim 14 wherein the transition metal compound is of a Group 4 metal.
- 19. (Original) The polymerization catalyst of claim 18 wherein the transition metal is Zr.
- 20. (Currently amended) The polymerization catalyst of claim 14 wherein the <u>radical</u> that contains the Group 16 atom, when bonded to the transition metal, forms a ring of 5 to 8 atoms.
- 21. (Currently amended) The polymerization catalyst of claim 14 wherein the <u>radical</u> that contains the Group 16 atom, when bonded to the transition metal, forms a ring of 5 to 7 atoms.
- 22. (Currently amended) The polymerization catalyst of claim 14 wherein the <u>radical</u> that contains the Group 16 atom, when bonded to the transition metal, forms a ring of 6 atoms.
- 23. (Cancelled)
- 24. (Previously presented) The polymerization catalyst of claim 14 wherein the radical that contains a Group 16 atom is an alcohol.
- 25. (Original) The polymerization catalyst of claim 14 wherein the a Group 16 atom is a sulfur based functional group.
- 26-27 (Cancelled)
- 28. (New) A polymerization catalyst comprising a combination of at least one activator and a reaction product of a transition metal compound with a tridentate ligand generating composition represented by a formula of:

SEP. 17. 2004 10:36AM

wherein: wherein R4 is a radical that contains an oxygen based functional group selected from an alcohol, an aldehyde, a ketone, or an epoxide and R₅ and R₉ are alkyl radicals.

(New) A polymerization catalyst comprising a combination of at least one activator 29. and a reaction product of a transition metal compound with a tridentate ligand generating composition represented by a formula of:

$$R_2$$
 R_1
 R_1
 R_2
 R_3
 R_4
 R_5
 R_7

wherein R₁ is a radical that contains an oxygen based functional group selected from an alcohol, an aldehyde, a ketone, an epoxide and R*, R2, R4, R5, R7, R9, and R₁₀ are hydrocarbyl radicals.

Application No. 10/023,265 Docket No. 2000U057.US

Reply to Office Action Dated August 24, 2004

30. (New) A polymerization catalyst comprising a combination of at least one activator and a reaction product of a transition metal compound with a tridentate ligand generating composition represented by a formula of:

$$R_2$$
 R_3
 $(R^*)n$
 R_4
 R_5
 R_6
 R_8
 R_7
 R_8
 R_8

or

$$q(R_2)$$
 R_3
 R_{10}
 R_{10}

wherein: R₂ and R₃ are hydrocarbyl radicals or substituted hydrocarbyl radicals, R₅ - R₈ are each, independently, hydrogen, a hydrocarbyl radical or a substituted hydrocarbyl radical; one of R₁, R₂, R₃, R₄, or R₉ is a radical that contains a Group 16 atom and R* is a hydrocarbyl radical or substituted hydrocarbyl radical when R₁ is a radical that contains a Group 16 atom, otherwise R₁, R₂, R₃, R₄, R₉ and R* are each, independently, hydrogen, a hydrocarbyl radical or a substituted hydrocarbyl radical; and for formula (I) m and n are values of 0 or 1, and when m

> is 0 and n is 0 R₂ and R₃ may be joined together to form an aromatic ring structure, and when n is 0 and m is 1 R2 and R3 may be joined together to form ring structures; any two adjacent groups of R5 to R9 may be joined together to form ring structures; for formula (II) R1 through R9 and R* are as explained above and R₁₀ is hydrogen, a hydrocarbyl radical or a substituted hydrocarbyl radical; and p, q and r are values of 0 or 1 wherein p is 0 only when q is 1 and r is 0; wherein the a Group 16 atom is a sulfur based functional group.

- (New) The polymerization catalyst of any one of claims 28, 29 or 30, wherein the 31. transition metal compound is of a Group 4 metal.
- (New) The polymerization catalyst of any one of claims 28, 29 or 30, wherein the 32. transition metal is Zr.
- (New) The polymerization catalyst of any one of Claims 14, 28, 29 or 30, further 33. comprising an organic or inorganic support.