Honors Mathematics IV RC 6

CHEN Xiwen

UM-SJTU Joint Institute

November 3, 2018

Table of contents

Residue Calculus

The Complex Logarithm Contours

Transforms

The Heaviside Operator Method The Laplace Transform Convolution

Residue Calculus

The Complex Logarithm

Contours

Transforms

The Heaviside Operator Method The Laplace Transform Convolution

Theorem. Suppose that Ω is simply connected with $1 \in \Omega$, and $0 \notin \Omega$. Then in Ω there is a branch of the logarithm $F(z) = \ln_{\Omega}(z)$ so that

- 1. F is holomorphic in Ω .
- 2. $e^{F(z)} = z$ for all $z \in \Omega$.
- 3. $F(x) = \ln x$ whenever $x \in \mathbb{R}$ and near 1.

Proof. Define

$$ln_{\Omega}(z) = F(z) = \int_{\mathcal{C}} f(w) dw, \qquad f(z) = \frac{1}{z},$$

where C is any curve in Ω connecting 1 to z. We show that

- 1. F is holomorphic and F'(z) = 1/z for all $z \in \Omega$.
- 2. $e^{F(z)} = z$ for all $z \in \Omega$:

$$\frac{d}{dz} \left(z e^{-F(z)} \right) = e^{-F(z)} - z F'(z) e^{-F(z)}$$
$$= (1 - z F'(z)) e^{-F(z)} = 0.$$

Therefore, $ze^{-F(z)} = \text{constant}$. Evaluating at 1 gives the constant 1, meaning $e^{F(z)} = z$.

Proof. Define

$$ln_{\Omega}(z) = F(z) = \int_{\mathcal{C}} f(w) dw, \qquad f(z) = \frac{1}{z},$$

where C is any curve in Ω connecting 1 to z. We show that

3. Finally, if $x \in \mathbb{R}$ and close to 1,

$$F(x) = \int_1^x \frac{ds}{s} = \ln x.$$

Definition. On any simply connected set Ω and any simple curve joining 1 and z,

$$\ln z := \int_{\mathcal{C}} \frac{dz}{z}.$$

Let

$$\mathbb{R}^0_- := \{ x \in \mathbb{R} : x \le 0 \}, \qquad \mathbb{R}^0_+ := \{ x \in \mathbb{R} : x \ge 0 \}.$$

▶ Principle branch: In : $\mathbb{C} \setminus \mathbb{R}^0_- \to \mathbb{C}$.

$$ln(re^{i\varphi}) = ln r + \varphi i, \qquad r > 0, -\pi < \varphi < \pi.$$

▶ In : $C \setminus \mathbb{R}^0_+ \to \mathbb{C}$.

$$\ln(re^{i\varphi}) = \ln r + \varphi i, \qquad r > 0, 0 < \varphi < 2\pi.$$

Note. This branch is not the analytic expansion of the logarithm in \mathbb{R} .

The principle branch. In : $\mathbb{C} \setminus \mathbb{R}^0_- \to \mathbb{C}$.

$$\ln(re^{i\theta}) = \ln r + \theta i, \qquad r > 0, -\pi < \theta < \pi.$$

Proof. Using the path below, if $|\theta| < \pi$, then

$$\ln z = \int_{1}^{r} \frac{dx}{x} + \int_{\eta} \frac{dw}{w}$$
$$= \ln r + \int_{0}^{\theta} \frac{ire^{it}}{re^{it}} dt$$
$$= \ln r + i\theta.$$

Complex Power and Roots

Complex power.

$$z^{\alpha} := e^{\alpha \ln z}, \qquad \alpha \in \mathbb{C}.$$

► Complex root.

$$\sqrt[n]{z} := z^{1/n}$$
.

Note. For $n \in \mathbb{N}$,

$$(z^{1/n})^n = \prod_{k=1}^n e^{\frac{1}{n} \ln z} = e^{\sum_{k=1}^n \frac{1}{n \ln z}} = e^{\frac{n}{n} \ln z} = e^{\ln z} = z.$$

Residue Calculus

The Complex Logarithm

Contours

Transforms

The Heaviside Operator Method The Laplace Transform Convolution

Contours — Semi-circle

Semi-circle.

indented semicircie

Integrals. We have used this contour to find

- $1. \int_0^\infty \frac{\sin x}{x} dx,$
- $2. \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx,$
- 3. $\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + a^2} dx,$

Contours — Semi-circle

Semi-circle.

Integrals. We have used this contour to find

$$4. \int_{-\infty}^{\infty} \frac{dx}{1+x^4},$$

$$5. \int_0^\infty \frac{x \sin x}{(x^2+4)^2} dx,$$

6.
$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^{n+1}}$$
,

7.
$$\int_{-\infty}^{\infty} \frac{1 - \cos x}{x^2} dx.$$

Contours — Sector

Sector.

Integrals.

- ▶ Integral containing $\sin(x^n)$, $\cos(x^n)$. (choose central angle $\pi/(2n)$.)
- We have used this contour to find

 - 1. $\int_0^\infty \sin x^2 dx,$
2. $\int_0^\infty \cos x^2 dx.$

Contours — Rectangle

Rectangle.

Integrals.

1.
$$\int_0^\infty \frac{e^{ax}}{1 + e^x} dx, 0 < a < 1.$$

Contours — Rectangle

Example 1. Verify

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x \xi}}{\cosh \pi x} dz = \frac{1}{\cosh \pi \xi},$$

where

$$\cosh z = \frac{e^z + e^{-z}}{2}.$$

(This implies that $1/\cosh \pi x$ is its own Fourier transform.)

Contours — (Semi-)Circle without a Half-axis

Contours — (Semi-)Circle without a Half-axis.

Integrals. Integrals containing $x^{1/n}$, $\ln x$ (with branch $\mathbb{C} \setminus \mathbb{R}^0_+$).

$$1. \int_0^\infty \frac{\sqrt{x}}{x^2 + a^2} dx,$$

$$2. \int_0^\infty \frac{\ln x}{x^2 + a^2} dx.$$

Contours — (Semi-)Circle without a Half-axis

Example 2. Show that

$$\int_0^1 \ln(\sin \pi x) dx = -\ln 2$$

using the following contour.

Residue Calculus

The Complex Logarithm Contours

Transforms

The Heaviside Operator Method

The Laplace Transform

The Heaviside Operator Method

Heaviside Operator Method. Treating the operator D as a number so that $D\{f\} = \{f'\}$.

Residue Calculus

The Complex Logarithm Contours

Transforms

The Heaviside Operator Method

The Laplace Transform

Convolution

The Heaviside Function and Delta Function

The Heaviside function.

$$H:\mathbb{R} o \mathbb{R}, \quad H(t) = \left\{ egin{array}{ll} 1, & t>0, \ 0, & t\leq 0. \end{array}
ight.$$

The delta function (not a function in mathematical sense).

 $t \neq 0$,

$$\delta(t) = 0.$$

 $ightharpoonup 0 \in I \subset \mathbb{R}$,

$$\int_{I} \delta(t) f(t) dt = f(0).$$

Definition

Definition. Let $f:[0,\infty)\to\mathbb{R}$ be a continuous function such that

$$\sup_{t\in[0,\infty)}e^{-\beta t}|f(t)|<\infty\qquad\text{for some }\beta\geq0.$$

Then the function $F:(\beta,\infty)\to\mathbb{R}$,

$$F(p) := (\mathcal{L}f)(p) := \int_0^\infty e^{-pt} f(t) dt$$

is called the *(unilateral) Laplace transform* of f. The bilateral Laplace Transform.

$$(\tilde{L}f)(p) := \int_{-\infty}^{\infty} f(t)e^{-pt}dt, \quad \mathcal{L}f = \tilde{L}(Hf).$$

Derivatives

First derivative.

$$(\mathcal{L}f')(p) = p(\mathcal{L}f)(p) - f(0).$$

Second derivative.

$$(\mathcal{L}f'')(p) = p^2(\mathcal{L}f)(p) - pf(0) - f'(0).$$

► Higher-order derivatives.

$$(\mathcal{L}(f^{(n)}))(p) = p^n(\mathcal{L}f)(p) - p^{n-1}f(0) - \cdots - f^{(n-1)}(0).$$

Table of Laplace Transform

f(t)	$(\mathcal{L}f)(p)$	Comment / Domain of $\mathscr{L}f$
1	$\frac{1}{p}$	ho > 0
t ⁿ	$\frac{n!}{p^{n+1}}$	$n \in \mathbb{N}, \ p > 0$
e^{at}	$\frac{1}{p-a}$	p > a
sin(bt)	$\frac{b}{p^2+b^2}$	$b\in\mathbb{R},\ p>0$
cos(bt)	$\frac{p}{p^2+b^2}$	$b\in\mathbb{R},\ p>0$

Table of Laplace Transform

f(t)	$(\mathscr{L}f)(p)$	Comment
H(t-a)	e^{-ap}/p	a, p > 0
g(t-a)H(t-a)	$e^{-ap}(\mathscr{L}g)(p)$	<i>a</i> > 0
$e^{at}g(t)$	$(\mathscr{L}g)(p-a)$	$a\in\mathbb{R}$
g(at)	$\frac{1}{a}(\mathscr{L}g)\left(\frac{p}{a}\right)$	<i>a</i> > 0
$g^{(n)}(t)$	$p^{n}(\mathscr{L}g)(p)-p^{n-1}f(0)-\cdots-f^{(n-1)}(0)$	$n \in \mathbb{N}$
$(-t)^n g(t)$	$(\mathscr{L}g)^{(n)}(p)$	$n \in \mathbb{N}$

Laplace Transform

Example 3. Find the inverse Laplace transform of the function

$$F(p) = \frac{2p^2 + 3}{(p^2 + 4)(p^2 + 1)}.$$

Laplace Transform

Example 3. Find the inverse Laplace transform of the function

$$F(p) = \frac{2p^2 + 3}{(p^2 + 4)(p^2 + 1)}.$$

Solution. The function can be converted to

$$F(p) = \frac{5}{3(p^2+4)} + \frac{1}{3(p^2+1)}.$$

Looking up the transform table, the inverse Laplace function is

$$f(t) = \frac{5}{6}\sin(2t) + \frac{1}{3}\sin(t).$$

The Bromwich Integral

Definition. $\Omega \subset \mathbb{C}$ is an open set, $\beta \in \mathbb{R}$, $F : \Omega \to \mathbb{C}$ is analytic for all $z \in \mathbb{C}$ with $\operatorname{Re} z \geq \beta$. Then the *Bromwich integral* of F is

$$(\mathcal{M}F)(t) = \frac{1}{2\pi i} \int_{\mathcal{C}^*} e^{pt} F(p) dp,$$

where $C = \{z \in \mathbb{C} : \operatorname{Re} z = \beta\}$ is the *Bromwich contour*.

Often, the integral is written as

$$(\mathcal{M}F)(t) = \frac{1}{2\pi i} \int_{\beta - i\infty}^{\beta + i\infty} e^{pt} F(p) dp.$$

Mellin Inversion Formula

2.6.8. Theorem. The Bromwich integral is the inverse of the Laplace transform. In particular, if f is continuous on $[0,\infty)$, continuously differentiable on $(0,\infty)$ and has Laplace transform $\mathcal{L}f$, then

$$f(s) = [\mathcal{M}(\mathcal{L}f)](s)$$
 for all $s \in [0, \infty)$.

- 1. Choose contour for t > 0 and t < 0.
- 2. Find poles and residue contained in the contour. Usually, the contour is chosen as a semi-circle oriented to the left or right.
- 3. Write out residue theorem.
- 4. Save the part for Bromwich integral and evaluate other parts (which usually goes to zero).

ightharpoonup t > 0. Use contour

$$\gamma_{eta,R}(s)=eta+Re^{is}, \qquad rac{\pi}{2}\leq s\leq rac{3\pi}{2}.$$

ightharpoonup t > 0. Then

$$\begin{split} &\int_{\Gamma_{\beta,R}} e^{pt} F(p) dp \\ &= \int_{\pi/2}^{3\pi/2} e^{t(\beta+R\exp(is))} F(\beta+Re^{is}) iRe^{is} ds \\ &= e^{\beta t} \int_{0}^{\pi} e^{tR\exp(is+i\pi/2)} F(\beta+Re^{i(s+\pi/2)}) iRe^{is+i\pi/2} ds \\ &= ie^{\beta t} \int_{0}^{\pi} e^{itR\exp(is)} F(\beta+iRe^{is}) iRe^{is} ds \\ &= ie^{\beta t} \int_{C_R} e^{itp} F(\beta+ip) dp \qquad \xrightarrow{R\to\infty} 0, \end{split}$$

where C_R is a semi-circle of radius R in the upper half-plane.

• t < 0. Use contour

$$\gamma_{eta,R}(s)=eta+Re^{is}, \qquad -rac{\pi}{2}\leq s\leq rac{\pi}{2}.$$

ightharpoonup t < 0. Then

$$\begin{split} &\int_{\Gamma_{\beta,R}^{(2)}} F(p)dp \\ &= -\int_{-\pi/2}^{\pi/2} e^{t\gamma_{\beta,R}(s)} F(\beta + Re^{is}) iRe^{is} ds \\ &= -\int_{0}^{\pi} e^{t\gamma_{\beta,R}(s-\pi/2)} F(\beta + Re^{i(s-\pi/2)}) iRe^{is} ds \\ &= -e^{\beta t} \int_{0}^{\pi} e^{-itR \exp(is)} F(\beta - iR^{is}) iRe^{is} ds \\ &= -e^{\beta s} \int_{C_R} e^{i|t|p} F(\beta - ip) dp \quad \xrightarrow{R \to \infty} 0, \end{split}$$

where C_R is a semi-circle of radius R in the upper half-plane.

In sum, the Bromwich integral gives

▶ When t < 0,

$$f(t)=0.$$

▶ When t > 0,

$$f(t) = \sum_{k=1}^{N} \operatorname{res}_{p_k} \left(e^{pt} F(p) \right),$$

where $F(p) \to 0$ as $|p| \to \infty$.

Example 4. Find the inverse Laplace transform of

$$F(p) = p^{-1/2}$$

using Bromwich integral.

Residue Calculus

The Complex Logarithm Contours

Transforms

The Heaviside Operator Method
The Laplace Transform
Convolution

Convolution

Definition. The *convolution* of f and g is given by

$$(f*g)(t):=\int_0^t f(t-s)g(s)ds.$$

2.6.10. Theorem.

$$\mathcal{L}(f*g)=(\mathcal{L}f)\cdot(\mathcal{L}g).$$

A Green's Function for a 2nd Order Linear ODE

Initial Value Problem. The linear, second order, inhomogeneous ODE with constant coefficients is given by

$$ay'' + by' + cy = f(t), \quad y(0) = y_0, \quad y'(0) = y'_0.$$

1. Take the Laplace transform of both sides.

$$(ap^2 + bp + c)Y - (ap + b)y_0 - ay_1 = F(p).$$

2. Solve for Y.

$$Y(p) = \underbrace{\frac{(ap+b)y_0 + ay_1}{ap^2 + bp + c}}_{\Phi(p)} + \underbrace{\frac{F(p)}{ap^2 + bp + c}}_{\Psi(p)}.$$

A Green's Function for a 2nd Order Linear ODE

Initial Value Problem. The linear, second order, inhomogeneous ODE with constant coefficients is given by

$$ay'' + by' + cy = f(t), \quad y(0) = y_0, \quad y'(0) = y'_0.$$

3. Find the inverse Laplace transform for Y.

$$y_{\mathrm{part}}(t) = \mathcal{L}^{-1}(\Psi)(t)$$

$$= \mathcal{L}^{-1}\left(\frac{F(p)}{ap^2 + bp + c}\right)(t) = f * g(t).$$

where

$$\mathcal{L}g(p) = \frac{1}{ap^2 + bp + c}.$$

Then $y(t) = y_{\text{hom}}(t) + y_{\text{part}}(t)$.

Applying the Laplace Transform

- 1. Apply the Laplace transform to both sides of the ODE/IVP.
- 2. The transformed equation is algebraic; solve for the Laplace transform of the unknown function.
- 3. Find the inverse Laplace transform of the unknown function by looking up the transform table.

Applying the Laplace Transform

Example 5. Solve the initial value problem

$$y'' + \omega^2 y = f(t),$$
 $y(0) = \alpha,$ $y'(0) = \beta,$

where α, β and ω are constants with $\omega \neq 0$ and f is an arbitrary function in $(0, \infty)$.

Applying the Laplace Transform

Laplace Transform for IVP. The steps for applying Laplace Transform to solve initial value problems can be illustrated in the following graph.

Thanks for your attention!