Polygonal numbers

The triangle numbers:

1,3,6,10,15,... are given by the recurrence relation:

$$T_1 = 1$$
 and $T_{n+1} = T_n + n + 1$

So:

$$T_2 = T_1 + 2$$
 and $T_3 = T_2 + 3$ and $T_4 = T_3 + 4$ etc

So:

$$T_4 = T_3 + 4 = (T_2 + 3) + 4 = ((T_1 + 2) + 3) + 4 = 1 + 2 + 3 + 4$$

In general:

$$T_n = 1 + 2 + 3 + ... + n$$

NEED BETTER DIAGRAM

Theorem:

$$T_n = \frac{1}{2}n(n+1)$$

Proof (by induction)

part 1:

If n=1 then:

$$LHS = T_1 = 1$$
 and $RHS = \frac{1}{2}(1)(2) = 1$ So the formula is true when $n = 1$

part 2:

If
$$T_n = \frac{1}{2}n(n+1)$$
 is true when $n=k$ then:

$$T_k = \frac{1}{2}k(k+1)$$
 but $T_{k+1} = T_k + k + 1$

So:

$$T_{k+1} = \frac{1}{2}k(k+1)+k+1 = ... = \frac{1}{2}(k+1)(k+2)$$

So:

$$T_n = \frac{1}{2}n(n+1)$$
 is true when $n=k+1$

The square numbers:

1,4,9,16,25,... are given by the recurrence relation:

$$S_1 = 1$$
 and $S_{n+1} = S_n + 2n + 1$

So:

$$S_2 = S_1 + 3$$
 and $S_3 = S_2 + 5$ and $S_4 = S_3 + 7$ etc

Show that:

$$S_n=1+3+5+...+(2n-1)$$

NEED BETTER DIAGRAM

Theorem:

$$S_n = \frac{1}{2}n(2n)$$
 or if you prefer $S_n = n^2$

see Exercise 1

The pentagonal numbers:

1,5,12,22,35,... are given by the recurrence relation:

$$P_1 = 1$$
 and $P_{n+1} = P_n + 3n + 1$

So:

$$P_2 = P_1 + 4$$
 and $P_3 = P_2 + 7$ and $P_4 = P_3 + 10$ etc

Show that:

$$P_n = 1 + 4 + 7 + \dots + (3n - 2)$$

NEED BETTER DIAGRAM

Theorem:

$$P_n = \frac{1}{2}n(3n-1)$$

The hexagonal numbers:

1,6,15,28,45,... are given by the recurrence relation:

$$H_1 = 1$$
 and $H_{n+1} = H_n + 4n + 1$

So:

$$H_2 = H_1 + 5$$
 and $H_3 = H_2 + 9$ and $H_4 = H_3 + 13$ etc

Show that:

$$H_n = 1 + 5 + 9 + ... + (4n - 3)$$

NEED BETTER DIAGRAM

Theorem:

$$H_n = \frac{1}{2}n(4n-2)$$

The polygonal number theorem (difficult to prove)

Every positive integer can be written as the sum of:

- 3 (or fewer) triangle numbers
- 4 (or fewer) square numbers
- 5 (or fewer) pentagonal numbers

etc

see Exercise 2

EXERCISE 1

Square numbers:

Show that $S_n = \frac{1}{2}n(2n)$ Use proof by induction

EXERCISE 2

Prove the following:

- 1. The sum of two consecutive triangle numbers is a square number.
- 2. If T is a triangle number then 8T+1 is a square number.
- 3. If T is a triangle number then 9T+1 is a triangle number.
- 4. The difference of the squares of two consecutive triangle numbers is a cube.
- 5. $P_n = T_n + 2T_{n-1}$
- 6. $H_n = T_n + 3T_{n-1}$
- 7. The last digit of a triangle number can't be 2, 4, 7 or 9

SOLUTIONS 1

Proof (by induction)

part 1:

If n=1 then $LHS=S_1=1$ and $RHS=\frac{1}{2}(1)(2)=1$ So the formula is true when n=1 part 2:

If $S_n = \frac{1}{2}n(2n)$ is true when n=k then:

$$S_k = \frac{1}{2}k(2k)$$
 but $S_{k+1} = S_k + 2k + 1$

So
$$S_{k+1} = \frac{1}{2}k(2k) + 2k + 1 = \dots = \frac{1}{2}(k+1)2(k+1)$$

So
$$S_n = \frac{1}{2}n(2n)$$
 is true when $n=k+1$

SOLUTIONS 2

1)
$$T_k + T_{k+1} = \frac{1}{2}k(k+1) + \frac{1}{2}(k+1)(k+2) = \dots = (k+1)^2$$

Or:

In this diagram we have got: $T_{\rm 5}$ Ps and $T_{\rm 6}$ Qs

How many letters have we got?

Q	Q	Q	Q	Q	Q
P	Q	Q	Q	Q	Q
P	P	Q	Q	Q	Q
P	P	P	Q	Q	Q
P	P	P	P	Q	Q
P	P	P	P	P	Q

$$T_5 + T_6 = 6^2$$

In general $T_k + T_{k+1} = (k+1)^2$

2)
$$8T_k+1=8\frac{1}{2}k(k+1)+1=...=(2k+1)^2$$

3)
$$9T_k+1=9\frac{1}{2}k(k+1)+1=...=\frac{1}{2}(3k+1)(3k+2)$$

4)
$$(T_{k+1})^2 - (T_k)^2 = (\frac{1}{2}(k+1)(k+2))^2 - (\frac{1}{2}k(k+1))^2 = \dots = (k+1)^3$$

5)
$$P_n = \frac{1}{2}n(3n-1)$$

$$T_n + 2T_{n-1} = \frac{1}{2}n(n+1) + 2\frac{1}{2}(n-1)n = \dots = \frac{1}{2}n(3n-1)$$

6)
$$H_n = \frac{1}{2}n(4n-2)$$

$$T_n + 3T_{n-1} = \frac{1}{2}n(n+1) + 3\frac{1}{2}(n-1)n = \dots = \frac{1}{2}n(4n-2)$$

7) mod 10:

n	0	1	2	3	4	5	6	7	8	9
n+1	1	2	3	4	5	6	7	8	9	0
n(n+1)	0	2	6	2	0	0	2	6	2	0

now $T = \frac{1}{2}n(n+1)$ so 2T = n(n+1) so the last digit of 2T is 0, 2 or 6

mod 10:

T	0	1	3	5	6	8	
2 <i>T</i>	0	2	6	0	2	6	

If the last digit of 2T is 0, 2 or 6 then the last digit of T must be 0, 1, 3, 5, 6 or 8