M - 74 - 2011

KOSHA GUIDE

M - 74 - 2011

스테인리스강의 아크 용접에서 발생되는 흄의 제어에 관한 기술지침

2011. 12.

한국산업안전보건공단

- o 작성자 : 한국안전학회 박재학 교수
- o 제·개정 경과
 - 2011년 11월 기계안전분야 제정위원회 심의(제정)
- o 관련규격 및 자료
 - HSE 668/29: Control of fume arising from electric arc welding of stainless steels
- o 관련법규·규칙·고시 등
- o 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2011년 12 월 26 일

제 정 자 : 한국산업안전보건공단 이사장

스테인리스강의 아크 용접에서 발생되는 흄의 제어에 관한 기술지침

1. 목 적

이 지침은 스테인리스강의 아크 용접에서 발생되는 흄의 건강상 유해요인에 대한 정보를 제공하고 용접 시 발생되는 흄의 제어관한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 기술지침은 스테인리스강 용접으로 인하여 발생되는 흄에 대한 근로자의 보호에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다.
 - (가) "용접(Welding)"이라 함은 2개 이상의 고체금속을 하나로 접합시키는 금속가공 기술을 말한다.
 - (나) "용접 흄(Welding fume)"이라 함은 용접 작업 시 발생하는 금속의 증기가 응축 되거나 산화되는 등의 화학반응에 의해 형성된 고체상 미립자를 말한다.
 - (다) "밀폐공간(Confined space)"이라 함은 환기가 잘되지 않는 장소로서 부식성물질이 들어 있거나 질식성 가스가 발생하는 등 산소결핍위험이 있는 장소 또는 유해가스로 인한 화재, 폭발 등의 위험이 있는 장소 등을 말한다.
 - (라) "부스(Booth)"라 함은 실험실 등에서 유해물질 취급 시에 발생하는 증기, 가스, 흄, 분진 등을 제거하기 위한 설비를 말한다.

M - 74 - 2011

- (마) "위험요소"(Hazard)"라 함은 어떠한 기회에 사람에게 상해를 입히거나 또는 건축물, 설비 등에 손상을 주는 원인이 되는 잠재적이거나 위험한 요소 또는 유인을 말한다.
- (바) "리스크 평가(Risk assessment)"라 함은 위험성을 사전에 평가하여 상해나 손상을 가져오지 않도록 예방하기 위한 활동을 말한다.
- (사) "분진등(Dust lamp)"이란 잘 보이지 않는 미세한 분진이나 흄을 관찰하기 위해 사용되는 등이다. 확산된 분진이나 흄의 부피와 범위 및 움직임의 방향을 관찰할 수 있는 유용한 보조도구이다.
- (아) "최대노출한계(Maximum exposure limit, MEL)"란 작업자가 흡입하는 공기 중부유물질의 최대 농도이다. 기준 시간에 대한 평균값으로 표시된다. 사업주는 노출을 MEL보다 아주 낮게 유지하기 위하여 예방조치를 하고 모든 노력을 할 의무를 가진다.
- (자) "산업노출표준(Occupational exposure standard, OES)"이란 매일 흡입하는 사람의 건강에 해가 된다는 과학적인 증거가 없는 공기 중 부유물질의 농도이다. 기준 시간에 대한 평균값으로 표시된다. 노출을 OES 값 이하로 제어하는 것이 필요하다.
- (차) "시간가중 평균(Time weighted average, TWA)"이라 함은 1 일 8 시간 동안의 평균으로, 시간가중 평균 농도는 유해인자의 측정 농도에 발생시간을 곱하고 8 시간으로 나는 값이다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙, 산업안전보건기준에 관한 규칙에서 정하는 바에 의한다.

4. 스테인리스강 용접 흄의 성분

(1) 스테인리스강의 용접작업은 미세한 부유 미립자의 복잡한 혼합물을 만들어 낸다.

M - 74 - 2011

용접 아크는 모재와 용가재를 녹인다. 많은 열이 발생하고, 소모재 중 일부는 기화하여 부유물이 된다. 이 부유물은 냉각됨에 따라 미립자를 형성하고 호흡으로 폐에들어갈 수 있게 된다.

- (2) 흄의 성분은 다음에 의해 변한다.
 - (가) 사용되는 소모재
 - (나) 용접작업의 종류
 - ① 수동 금속 아크용접(Manual metal arc welding, MMA)
 - ② 플럭스 코어 아크용접(Flux cored arc welding, FCA)
 - ③ 금속 불활성 가스 아크용접(Metal inert gas arc welding, MIG)
 - ④ 텅스텐 불활성 가스 아크용접(Tungsten inert gas arc welding, TIG)
 - (다) 모재의 구성성분

5. 건강 유해요인

- (1) 스테인리스강 용접 흄에 노출되는 경우의 유해성은 단기적 영향과 장기적 영향으로 나눌 수 있다.
 - (가) 단기적 영향: 눈과 기도의 자극이 나타나며, 농도가 특별히 높은 경우 가슴의 뻐근함과 호흡곤란이 나타날 수 있다.
 - (나) 장기적 영향: 6가 크롬과 니켈은 직업성 천식의 발병 가능성을 가지고 있고 두 물질 모두 스테인리스강 용접 흄에서 발견된다.
- (2) 천식의 특징은 호흡곤란, 색색거림, 기침이다. 비염과 눈의 자극 등도 천식의 특징이 될 수 있다. 짧은 시간 고농도의 흄에 대한 노출은 직업성 천식의 유발에 중요한 영향을 줄 수 있다. 한번 천식이 발병되면 차후에 낮은 농도의 유발물질에 노출되어도 천식이 재발할 수 있다.
- (3) 스테인리스강 용접 흄의 장기 노출은 폐암 유발 유해성을 가지고 있다. 이러한 관

M - 74 - 2011

점은 다음에 기초한다.

- (가) 용접 작업자들의 건강기록은 스테인리스강 용접 작업자와 일반 용접 작업자의 높을 폐암 발병률을 보여준다. 그러나 건강기록에서 용접과정에서 발생되어 흡입되는 흄이 명확하게 폐암의 원인이 된다고 확인할 수는 없다.
- (나) 스테인리스강 용접 흄에 존재하는 복잡한 금속 화합물(특히 6가 크롬과 니켈을 함유한)은 다른 산업에서 발암 물질로 여겨지는 화합물과 관련이 있다.

6. 노출 한계

- (1) 용접 흄의 경우 산업노출표준은 5 mg/m²(8 시간 시간가중평균)이다.
- (2) 스테인리스강의 용접으로 발생되는 흄은 6가 크롬과 니켈 등의 원소를 포함하고 있다. 크롬의 최대노출한계는 0.05 mg/m³(8 시간 시간가중평균), 비수용성 니켈의 경우 최대노출한계는 0.5 mg/m³, 수용성 니켈의 경우 0.1 mg/m³이다. 이 값들은 GN EH40/2001에서 주고 있는 값들이다.
- (3) 우선적으로 노출이 최대노출한계보다 아주 낮게 되도록 하여야 한다. 산업노출표준 은 스테인리스강의 흄에 대한 노출을 제어하는 기준이 된다.
- (4) 6가 크롬과 니켈이 용접 소모재에 사용되는 경우는 비록 흄에 대한 노출이 산업노 출표준 이하라고 하더라도 가능한 6가 크롬과 니켈에 대한 노출을 감소시켜야 한 다.

7. 건강 유해성 평가

- (1) 노출을 적절히 조절하기 위하여 어떤 조치가 필요한지 알기위하여 건강 유해성 평가가 필요하다.
- (2) 야외 용접을 포함한 모든 용접작업을 평가하여야 한다. 다양한 장소에서 용접을 하는 경우 모든 노출에 대한 정확한 평가가 어려울 수도 있다. 이러한 경우 '가장 나쁜 상황 시나리오'에 기초하여 노출 평가를 한다.

M - 74 - 2011

- (3) 사용빈도에 상관없이 모든 용접과정이 평가에 포함되어야 한다. 또한 용접 작업자 주변에서 일하는 노출 가능성이 있는 작업자도 평가에 포함하여야 한다.
- (4) 용접 소모재 제조자와 공급자는 소모재의 흄에 포함되어 있는 크롬, 니켈과 같은 물질에 대한 화학적 분석 등의 유해성 정보를 제공하여야 한다. 용접 흄의 90% 이상이 소모재의 기화에 의해 발생되기 때문이다.
- (5) 유해성 정보의 검토와 함께 용접이 실행되는 환경이 주는 건강 유해성과 기존 제어 방법의 타당성도 평가에 포함되어야 한다.
- (6) 스테인리스강은 보통 코팅되지 않는다. 하지만 코팅이 모재에 행해졌다면 평가에서 고려되어야 한다.
- (7) 흄을 강조하거나 가시적이지 않은 미세한 흄을 관찰하기 위해 분진등(Dust lamp) 이 사용될 수 있다. 분진등으로 확산된 흄의 부피와 범위 및 움직임의 방향을 관찰할 수 있다. 따라서 분진등은 해당 장소에서 용접 작업자가 높은 노출위험에 있는지 여부를 알 수 있는 유용한 보조도구가 된다.
- (8) 분진등은 제한적인 정보만 제공하기 때문에 흄의 정량적인 노출수준 평가 역시 필요하다.
- (9) 산업노출한계 아래로 조절 되는지 의심되는 지역은 흄의 구성요소 각각에 대한 샘플링이 필요하다. 적절한 제어 방법이 시행됨에도 불구하고 여전히 건강 유해성이 남아있는 곳은 각 용접 작업자들의 노출을 관찰하는 것 또한 필요하다.
- (10) 용접 흄의 포집장치를 용접 작업자의 머리 보호구 뒤에 설치할 수 있다. 측정된 흄 수치는 용접 작업자의 머리가 흄 안에 또는 밖에 있는 상대적이 시간의 영향을 받게 된다. 개인 노출측정 장비에서 한번 측정된 값은 노출 한계를 준수하고 있는 지 판단하는데 충분하지 않으므로 여러 번의 측정이 필요하다.

8. 휶의 제어

M - 74 - 2011

- (1) 평가 결과에 상관없이 보통 스테인리스강에서 발생하는 용접 흄의 제어는 필요하다.
- (2) 비록 8 시간 시간가중 평균으로 스테인리스강 용접 흄의 노출이 측정되더라도 단기 최대노출은 제어되어야 한다. 이것은 눈과 기도의 즉각적인 자극을 방지하고 직업 성 천식의 유해성을 방지하기 위해 필요하다.
- (3) 노출의 조절을 위한 조건들을 다음의 우선순위에 따라 고려하여야 한다.
 - (가) 용접법의 선택
 - (나) 작업 실행의 향상
 - (다) 공학적인 제어와 자연환기
 - (라) 호흡 보호구의 사용

8.1 용접법의 선택

(1) 용접법은 보통 용접의 질, 경제성과 장비 가용성에 기초하여 선택한다. 그러나 용접법은 배출되는 흄의 양과 구성요소에 영향을 준다.

(2) MMA 용접

- (가) 전형적인 용접작업에서 부가적인 제어 장치가 없는 경우 흄 노출은 산업노출기 준의 5 mg/m³을 초과한다.
- (나) 스테인리스강의 MMA용접에서 나오는 흄은 MIG용접, TIG용접 보다 높은 퍼센트의 6가 크롬을 포함한다. 그러므로 국소배기가 필요할 수 있다.

(3) FCA 용접

- (가) FCA용접에서 일반적으로 사용되는 높은 용접전류 수준과 높은 사용률은 MMA용접보다 높은 흄 수준을 보인다.
 - (나) 세밀한 사전 주의가 있다면 흄 제거 장치 없이 야외에서 실행될 수 있다. 그

M - 74 - 2011

러나 건물 안의 가스 실드 용접은 국소배기와 같은 MMA용접에서와 유사한 대책이 요구 된다.

(4) MIG 용접

- (가) 생성되는 흄의 양은 용접 변수와 금속 전달방법에 따라 달라진다. 만약 금속 전달방법의 선택이 가능하다면 아래의 내용을 고려하여야 한다.
 - ① 단락전달법은 낮은 용접전류 수준에서 실행되어지고 짧은 아크 길이를 가진다. 흄의 수준은 MMA보다 낮다.
 - ② 펄스 전달법은 단락전달법과 비슷한 낮은 용접전류 수준에서 실행되지만 단락 전달법보다 긴 아크 길이와 증가된 이동 속도, 높은 용착률을 가진다. 낮은 수준의 흄 발생률이 가능하다.
 - ③ 분사전달법은 훨씬 높은 용접전류 수준과 긴 아크 길이를 가진다. 흄 수준은 높다.
- (나) MIG용접에 의해 발생되는 흄은 MMA용접과 FCA용접에 의해 발생되는 흄보다 낮은 6가 크롬 함유량을 가진다. 그러나 니켈의 함유량은 많으므로 작업은 니켈을 최대노출한계보다 낮게 줄이는 것이 필요하다.

(5) TIG 용접

- (가) 용가재(Filler metal)는 직접적으로 용접 풀에 충전되기 때문에 금속은 아크를 통과하지 않는다. 그 결과 MMA, FCA, MIG 용접보다 적은 흄이 발생된다.
- (나) 용접법의 선택이 자유로울 경우 흄 발생을 줄일 수 있는 용접법을 선택하여야 한다. TIG를 사용한 스테인리스강의 용접 흄의 경우에서는 기술적으로 흄 발생량을 줄일 수 있다. TIG용접이 사용될 수 없는 경우에는 MIG용접으로 발생을줄일 수 있다. 이런 이유로 TIG, MIG용접이 MMA, FCA용접보다 우선적으로 사용되어야 한다.
- (다) 사방이 막혀 있거나 절반만 막혀있는 장소에서는 실드 가스가 모여 질식의 위험이 있기 때문에 MIG나 TIG용접법의 사용을 가능한 피해야 한다.

8.2 작업실행의 향상

- (1) 용접 작업자가 용접면에서 올라오는 연기를 피할 수 있게 공작물을 배치함으로써 흄의 노출을 상당량 감소시킬 수 있다. 규모가 큰 가공의 경우 밀폐된 공간에서의 작업이 최소화 되도록 용접순서를 배치하여야 한다.
- (2) 일반적으로 높은 전기 에너지가 사용되면 많은 양의 흄이 발생된다. 따라서 낮은 에너지 레벨에서도 동등한 용접부를 제작하는 것이 가능한지 살펴보아야 한다. 이때 용접 재료 및 설비 제조자의 권고 사항을 준수하고 또 용접 사양을 만족하여야한다.

8.3 공학적 제어와 자연환기

- (1) 자연환기, 기계식 환기, 국소배기 또는 이 3개의 조합과 같이 작업공간에서 용접 흄을 제거하기 위한 몇 가지 방법들이 있다. 올바른 방법에 의해 적절히 노출을 제어하는 것이 필요하다.
- (2) 부록에 제시된 노출 매트릭스는 이러한 결정을 쉽게 내릴 수 있도록 도와준다. 그러나 작업실행의 향상과 용접법의 변화와 같이 용접 흄을 감소시키기 위한 노력을 경주하고 나서, 매트릭스를 사용하여야 한다.
- (3) 설치된 노출 제어 방법의 효율성을 확인하기 위한 재평가가 필요하다.
- (4) 국소배기가 필요할 것으로 확인되어진 장소에서는 아래의 <표 1>이 적당한 국소배 기 선택에 도움을 줄 것이다

<표 1> 공작물에 따른 국소 배기장치 활용

공작물의 종류	적절한 국소배기	
작업대나 지그 위의 작은 공작물	부스 위 작업대(상단이나 후면에서 배기) 나 작업대 아래에서 배기. 그러나 평판 같 은 공작물은 흡입구를 막을 수 있으므로 다른 형태의 국소배기가 사용되어야 한다.	
지그 위에 두거나 움직일 수 있는 큰 공작물	후면 배기가 되는 부스에서 작업한다. 가장 좋은 용접위치는 기류에 옆으로 서는 것이다. 허용되는 위치는 기류에 등지는 것이다. 회전 지그의 사용은 용접 작업자가 올바르게 위치할 수 있게 도와준다.	
크거나 움직일 수 없는 공작물	조절 가능한 트렁킹(Trunking)을 사용한 국소 배기, 그리고 파이프 또는 휴대용 추 출장치에서 배기	

- (5) 국소배기를 효과적으로 사용하기 위하여 다음 사항들을 고려한다.
 - (가) 용접 작업자들에게 적절한 사용법을 교육하여야 하고 올바르게 사용하는지 확인하여야 한다.
 - (나) 후드나 덕트의 입구는 반드시 용접부에 근접해 있어야 하며 후드나 덕트의 지름보다 멀리 있으면 안 된다. 또한 후드는 열상승기류를 이용하기 위해 용접부의 상부에 위치하여야 한다.
 - (다) 만약 추출 부스를 사용하는 경우 공작물은 완전히 부스 안에 있어야 한다.
 - (라) 추출 방향으로의 공기 흐름은 공작물의 모양이나 용접 작업자에 의해 막혀서는 안 된다.
 - (마) 동일 작업장에서 몇 가지 배기 시스템이 이용될 경우는 시스템들 간의 간섭을 피하기 위해 조심스럽게 선택되고 위치되어야 한다.

M - 74 - 2011

- (6) 만약 제한된 공간에서 용접을 하게 되면 국소배기를 위치시키거나 계획할 시 추가 적인 주의가 필요하게 된다. 배출 지점은 항상 용접장소와 가능한 근접해 있어야 한다. 자유로운 흐름의 보급공기가 그 공간 안에 있어야 하며 공기 공급을 위한 팬이 필요할 수도 있다.
- (7) 국소배기에 의한 흄의 포획은 연관(Smoke tube)의 사용으로 시각화 될 수 있다. 그러나 결과는 세심히 살펴야 한다. 그 이유는 흄의 양, 방향, 속도가 직접적으로 묘사되지는 않기 때문이다. 그 대신에 분진등(Dust lamp)을 흄을 강조하기 위해 사용할 수 있고 그렇게 함으로써 포획된 흄의 정도를 알 수 있다.

8.4 호흡용 보호구

- (1) 흄의 조절이 요구되는 장소에서 환기는 가능한 기계식 환기에 의해서 이루어져야 한다. 그러나 국소배기가 필요하지만 가능하지 않거나, 사용하여도 노출이 적절히 조절되지 않을 때에는 호흡용 보호구가 필요할 수 있다. 그러나 호흡용 보호구는 최후에 실행되어야 할 제어 방법이다. 그 이유는 호흡용 보호구는 착용자만 보호할 수 있고 다른 제어 방법과 함께 사용되어져야 하기 때문이다. 호흡기 보호구 사용시 주의할 점은 다음과 같다.
 - (가) 가스와 미립자 모두로부터 보호할 수 있는 적합한 호흡용 보호구를 선택하여야 한다. 일회용 FFP(Filtering face piece) 호흡기는 용접 시 다른 개인보호장비와 함께 사용할 수 있다.
 - (나) 사람들의 얼굴이 각기 다른 모양과 크기를 가지고 있음에도 불구하고 대부분의 안면 부품(Face piece)은 오직 한 개의 사이즈를 가진다. 호흡용 보호구가 사용 되는 경우 안면 실(Face seal)이 중요한데, 호흡용 보호구가 용접 작업자의 안면 에 밀착되어 적절한 방호가 되는지 확인하는 것이 중요하다.
 - (다) 호흡용 보호구를 올바르게 보관 및 관리하여야 한다.

9. 건강 감시

(1) 전술된 바와 같이 스테인리스강의 용접 흄은 6가 크롬과 니켈을 함유하고 있고, 두

M - 74 - 2011

물질은 직업성 천식의 원인이 되는 가능성을 가지고 있다. 흄에 포함된 6가 크롬과 니켈이 평가의 중심이 된다. 감시의 수준은 천식발생 유해수준에 따라 요구된다.

- (2) TIG용접의 경우 니켈과 6가 크롬의 함유량이 낮으므로 건강 감시가 필요하지 않다. 반면에 기업주들은 TIG용접을 수행한 자세한 작업 이력을 보관하여야 한다.
- (3) 스테인리스강 용접을 가끔 하는 경우는 제한적인 용접 흄 노출이 발생된다. 그러므로 낮은 수준의 건강 감시가 적절하다. 낮은 수준의 감시는 흄에 노출된 작업자들로부터 과거나 현재의 직업성 천식 증상을 알아내기 위한 설문으로 행한다.
- (4) 제한적으로 노출된 작업자들은 발생할 증상들 중에 조심해야 할 증상들을 잘 알아야 하며, 증상들을 보고하여야 한다. 차후 조사에서는 천식, 비염이 있는지 확인하여야 한다.
- (5) 스테인리스강 용접을 자주하는 경우와 천식의 유해성이 확인된 용접과정에 대해서는 높은 수준의 감시가 요구된다. 감시에는 흄에 노출된 작업자들 중에 천식증상의 증거를 능동적으로 찾기 위한 규칙적인 조사도 포함된다.
- (6) 조사는 적절하게 교육된 책임자의 지도에 따라 수행하여야 하고, 천식 증상이 확인 되면 즉시 의사나 간호사에게 보고하여야 한다. 작업 시작 전에 폐기능검사를 하여 앞으로의 검사결과와의 비교를 위한 기준으로 사용한다.

부록: 노출 매트릭스를 이용한 환기방법의 선택

부록에서는 노출 매트릭스를 이용하여 스테인리스강 용접에서의 흄에 대한 노출 정도를 평가하고 이로부터 환기방법을 선택하는 간단한 방법에 대하여 기술한다.

(1) <별표 1>에 기술된 단계에 의하여 환기방법이 선택된다.

<별표 1> 환기방법의 선택 단계

단계	적용	내용
1 []. []	<별표 2>	<별표 2>의 세로단의 영향인자에 a~f의 6 항목이 있다. 각 항
1 단계		목에서 현재 용접상황을 가장 잘 나타내는 노출범위를 찾는다.
	<별표 2>	항목 S는 특별한 상황을 위한 것이다. 만약 S 항목이 하나라도
2 단계		해당되면 노출 매트릭스를 사용할 수 없고 철저한 평가를 실행
		할 필요가 있다.
3 단계	<별표 2>	만약 전체에 S항목이 없다면 노출점수 박스 안에 있는 영향인자
		를 기록한다. 예를 들어 영향인자 'a' 용접전류가 보통이면 이것
		은 "Score 2"의 열에 속하므로 점수 2를 박스 a에 기록한다. 전
		체 노출 점수를 위해 6 개 점수를 더한다.
	<별표 2>	전체 노출점수에 사용하는 용접 방식에 대한 가중치를 곱하여서
4 단계		가중 노출점수를 계산한다. 가중치는 <별표 2>에서 제공된다.
		예를 들어 MIG를 사용하면 전체 노출점수에 2를 곱한다.
E E]. 4]]	<별표 3>	<별표 2>로부터 가중 노출점수를 사용하여 <별표 3>에서 요구
5 단계		되는 환기 시스템을 찾는다.

(2) 노출 점수는 <별표 2>에 의하여 계산된다.

<별표 2> 스테인리스강의 실내 용접용 노출 매트릭스(노출 점수 계산용)

		노출 범위			
영향인자		S	3	2	1
		특별한 상황 철저한 평가가 필요함	최고노출 Score 3	중간 노출 Score 2	최소 노출 Score 1
a	용접 전류	극도로 높음	높음	보통	낮음
b	용접 재료/소모재	코팅된 재료나 다른 유해성 존재	높은 흄 배출량	중간 흄 배출량	낮은 흄 배출량
С	용접 장소	밀폐 공간	나쁜 환기	낮은(저조한)환 기	좋은 환기
d	용접자의 위치	항상 흄 안에 위치함	대부분 흄 안에 위치함	자주 흄 안에 위치함	가끔 흄 안에 위치함
e	용접 시간 (WT)	하루 중 8시간 보다 많음	하루 중 약 8시간	하루 중 약 4시간	하루 중 약 2시간
f	아크 시간 (%of WT)	20% 보다 많음	약 20%	약 10%	약 5%
	a b c d e f 노출 점수 + + + + =				
	TIG 용접 = 1 가중 치 MIG 용접 = 2 FCA 및 MMA 용접 = 3				
ブ	가중 노출 점수 (노출 점수) x (가중치) =				

M - 74 - 2011

- (3) <별표 2>에서 기술하는 각 영향인자에 대한 노출정도는 다음과 같다.
 - (가) 용접전류의 설정은 소모전극의 지름에 의해 좌우되며, 아래에 제시된 전류 값 은 대부분의 용접에서의 전형적 값이다.
 - ① 극도로 높음: 300 A이상이거나 제조회사에서 권유하는 사용범위 이상에서 사용
 - ② 높음: 200-300 A 사이에서 사용되는 전류
 - ③ 보통: 100-200 A 사이에서 사용되는 전류
 - ④ 낮음: 100 A까지 사용되는 전류

(나) 용접 재료/소모재

- ① 높은 흄 배출량: 제조회사의 흄에 대한 정보에서 전체 크롬이 15%보다 많고 니켈이 6%보다 많은 경우
- ② 중간 흄 배출량: 제조회사의 흄에 대한 정보에서 전체 크롬이 5~15%이고 니켈이 3~6%인 경우
- ③ 낮은 흄 배출량: 제조회사의 흄에 대한 정보에서 전체 크롬이 5%보다 적고 니켈이 3%보다 적은 경우

(다) 용접장소

- ① 밀폐된 공간: 주로 사방이 막힌 공간이나 유해 물질이 모이거나 산소결핍의 가능성이 있는 공간. 예를 들면 탱크, 파이프, 사일로 등.
- ② 환기가 나쁜 공간: 예를 들어 자연환기가 없는 아주 작은 공간이나 한정된 공간이어서 급격히 흄의 축적이 일어나는 공간
- ③ 환기가 부족한 공간: 예를 들어 낮은 지붕이나 개방되지 않은 문이나 창문을 가진 작업 공간이나 3면이 막혀있는 부스. 이 때문에 자연공기의 움직임이 제한되는 공간.
- ④ 환기가 잘되는 공간: 높은 지붕, 문과 창문을 통한 좋은 자연환기가 되는 작업 공간.

(라) 용접자 위치

- ① 항상 흄 안에 얼굴이 위치: 모든 아크 시간동안 흄의 통로에 용접자의 얼굴이 있음
- ② 대부분 흄 안에 얼굴이 위치: 아크 시간의 2/3동안 발생되는 흄 연기 위에 얼굴이 근접해 있음
- ③ 자주 흄 안에 얼굴이 위치: 용접자의 위치가 상황에 따라 달라지고 아크 시간의 1/3동안 용접자의 얼굴이 직접적으로 흄의 통로에 있음
- ④ 때때로 흄 안에 얼굴이 위치: 얼굴이 생성되는 흄 근처에 있지 않지만 용접 작업 동안 용접자의 얼굴이 때때로 흄 안에 있음
- (마) 용접시간(Welding time, WT)은 하루 중 용접 또는 용접과 관련된 작업에 사용하는 시간
- (바) 아크 시간(Arc time, % of WT)은 아크 스트라이크에 의한 활동적 용접시간의 사용된 용접시간에 대한 퍼센트. 따라서 5%는 매시간 용접 중 3분간 아크가 켜짐을 의미. 10%는 매시간 용접 중 6분간 아크가 켜짐을 의미.
- (3) 가중 노출 점수를 사용하여 <별표 3>에서 적절한 환기방법을 찾는다.

<별표 3> 가중 노출점수에 기초한 스테인리스강 용접 환기방법의 선택

가중 노출 점수 (<별표 2>에서 계산)	환기제어방법	
10 이하	문과 창문을 통한 자연환기가 적절. 만약 자연환기가 불가능 하면 최소 수준의 환기.	
10 - 19	대부분의 상황에서 자연환기가 적절하고 몇몇의 상황은 기계식 환기가 필요. 기계식 환기는 신선하고 오염되지 않은 공기의 공급으로 작업 공간 주변의 흄을 줄이는 것임. 기계적 환기의 예로 용접 장소의 배기 팬과 작업장 안의 신선한 공기의 주입구 설치가 있음.	
20 - 30	대부분의 상황에서 기계적 환기가 불충분하고 몇몇의 상황은 국소 배기가 필요. 국소배기는 흄이 생성되자마자 배기 팬에 연결되어 있는 덕트 시스템으로 포획하여야 함.	
31-54	국소 배기가 요구됨. 자세한 내용은 본문 참조.	
특별한 경우 (하나이상이 노출범위 S에 속해있을 때)	환기의 철저한 평가가 필요하고 호흡용 보호구가 필요	

- (4) 다음의 경우는 <별표 3>에 기술된 환기방법 외에 호흡용 보호구가 필요할 수 있다.
 - (가) 환기 시스템만으로는 흄이나 각각의 성분(예를 들어 6가 크롬)에 대한 노출을 제어하지 못할 경우
 - (나) 환기 시스템이 실드 가스들에 의한 산소결핍을 막지 못할 경우
 - (다) <별표 2>에서 제시하는 환기방법이 가능하지 않거나 비용에 비하여 효과가 없을 경우
- (5) 특별한 경우
 - (가) 어떤 항목이라도 <별표 2>의 S항목에 있으면 노출 매트릭스는 사용될 수 없

고 자세한 평가가 필요하다.

- (나) 표면이 코팅된 재료의 용접 시 생성되는 오염물질로 인하여 노출위험이 증가한다. 이러한 경우 우선적으로 코팅으로부터의 흄에 대한 노출을 방지하여야 한다. 예를 들어 용접 전 표면코팅을 제거할 수 있다.
- (다) 표면코팅 제거가 가능하지 않는 경우 노출을 최소화 하기위하여 국소배기 등을 하여야 한다.
- (라) <별표 4>는 실드 가스의 리스크에 대한 정보를 준다.

<별표 4> 실드 가스의 리스크

실드 가스	위험요소	리스크	해결책	
아르곤 (Ar)	공기와의 치환에 의 한 질식	탱크, 파이프, 방 등 의 낮은 지점에 모이 는 매우 무거운 가스	환기가 좋은 지역에서 사용	
헬륨 (He)	공기와의 치환에 의 한 질식	탱크, 파이프 등의 높 은 부분에 모이는 아주 가벼운 가스	하고 국소배기 와 같이 사용	
질소 (N ₂)	공기와의 치환에 의 한 질식	탱크, 파이프, 방 등 에 모이는 가스	밀폐공간의 대	
이산화탄소 (CO ₂)	공기와의 치환에 의한 질식. 호흡에 대한 직접적 인 영향	공기보다 무겁고, 탱 크, 파이프, 방 등에 모이는 가스	기 산소 지수 측정	
가스들의 혼합물은 위의 성질들을 조합한 특성을 가짐				