PLSC 504 – Fall 2024 Endogenous Selection and Potential Outcomes

September 18, 2024

Sample Selection In Theory

- Challenge: Inference to a Population from a Non-Random Sample
- Widespread Problem...
 - Heckman's wage equations...
 - Self-selection (e.g., into groups)
 - Surveys: "Screening" questions (sometimes...)
- Parallels in Missing Data, Causal/Counterfactual Inference

Sample Selection Basics

Consider latent Y^*s :

$$Y_{1i}^* = \mathbf{X}_i \boldsymbol{\beta} + u_{1i}$$

 $Y_{2i}^* = \mathbf{Z}_i \gamma + u_{2i}$

Observe:

$$Y_{1i} = \begin{cases} Y_{1i}^* & \text{if } Y_{2i}^* > 0\\ \text{missing if } Y_{2i}^* \le 0 \end{cases}$$

- Y_{2i}^* unobserved (except for sign);
- X_i observed iff Y_{1i} is observed;
- **Z**_i observed in every case.

Sample Selection Basics

When do we observe Y_1 ?

$$Pr(Y_{2i}^* \le 0 | \mathbf{X}, \mathbf{Z}) = Pr(u_{2i} \le -\mathbf{Z}_i \gamma)$$

$$= 1 - Pr(u_{2i} \ge -\mathbf{Z}_i \gamma)$$

$$= 1 - Pr(-u_{2i} \le \mathbf{Z}_i \gamma)$$

$$= 1 - \int_{-\infty}^{\mathbf{Z}_i \gamma} f(u_2) du_2$$

$$= 1 - F_{u_2}(\mathbf{Z}_i \gamma)$$

Define:

$$D_i = \begin{cases} 1 & \text{if } Y_{1i} \text{ is observed.} \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$\Pr(D_i = 1) = F_{u_2}(\mathbf{Z}_i \gamma).$$

An Assumption

Assume:

$$\{u_1,u_2\} \sim \mathcal{BVN}(0,0,\sigma_1^2,1,\sigma_{12})$$

This means that:

$$\Pr(D_i = 1 | \mathbf{Z}_i, \mathbf{X}_i) = \Phi(\mathbf{Z}_i \gamma).$$

Now define:

$$\rho = \operatorname{corr}(u_1, u_2).$$

Selection Bias

What we get:

$$\mathsf{E}(Y_{1i}|\mathbf{X}_i,\mathbf{Z}_i,D_i=1) = \mathbf{X}_ioldsymbol{eta} +
ho\sigma_1\left[rac{\phi(\mathbf{Z}_i\gamma)}{\Phi(\mathbf{Z}_i\gamma)}
ight]$$

Without conditioning on **Z**:

$$\mathsf{E}(Y_{1i}|\mathbf{X}_i,D_i=1) = \mathbf{X}_i\boldsymbol{\beta} + \mathsf{E}\left\{\rho\sigma_1\left[\frac{\phi(\mathbf{Z}_i\gamma)}{\Phi(\mathbf{Z}_i\gamma)}\right]\bigg|\mathbf{X}_i\right\}$$

Truncation Bias

Sample Selection Bias

Selection Bias: Substantive Effects

- Specification Error (unless $\rho = 0$)
- Indeterminate bias in $\hat{\beta}$
- Including **Z**_i will not generally* remove the bias:

"With quasi-experimental data derived from nonrandomized assignments, controlling for additional variables in a regression may worsen the estimate of the treatment effect, even when the additional variables improve the specification." – Achen (1986, p. 27)

• Bias remains even if inference is limited to the "selected" group. [This point is made nicely in Berk (1983)...]

^{*}Unless sample selection is completely deterministic (i.e., determined perfectly by X, Z) (Heckman & Robb 1985).

E(Y) Under Selection

Conditional Density:

$$h(Y|\mathbf{X},\mathbf{Z},\boldsymbol{\beta},\gamma,\sigma_1,\rho) = \frac{\phi\left(\frac{Y_{1i}-\mathbf{X}_{i}\boldsymbol{\beta}}{\sigma_1}\right)}{\sigma_1\Phi(\mathbf{Z}_{i}\gamma)} \cdot \Phi\left[\frac{\frac{\rho(Y_{1i}-\mathbf{X}_{i}\boldsymbol{\beta})}{\sigma_1} + \mathbf{Z}_{i}\gamma}{\sqrt{1-\rho^2}}\right]$$

Note: $\rho = 0$ yields

$$h(Y|\mathbf{X}, \mathbf{Z}, \boldsymbol{\beta}, \gamma, \sigma_1, \rho = 0) = \frac{\phi\left(\frac{Y_{1i} - \mathbf{X}_{i}\boldsymbol{\beta}}{\sigma_1}\right)}{\sigma_1 \Phi(\mathbf{Z}_{i}\gamma)} \cdot \Phi\left[\frac{0 + \mathbf{Z}_{i}\gamma}{1}\right]$$
$$= \frac{\phi\left(\frac{Y_{1i} - \mathbf{X}_{i}\boldsymbol{\beta}}{\sigma_1}\right)}{\sigma_1}.$$

Likelihood Under Selection

Under sample selection, the full likelihood is:

$$\begin{split} \ln \textit{L}(\boldsymbol{\beta}, \gamma, \sigma_{1}, \rho | \textit{Y}_{1}) &= \sum_{i=1}^{N} (1 - \textit{D}_{i}) \ln[1 - \Phi(\mathbf{Z}_{i}\gamma)] \\ &+ \sum_{i=1}^{N} \textit{D}_{i} \ln[\Phi(\mathbf{Z}_{i}\gamma)] \\ &+ \sum_{i=1}^{N} \textit{D}_{i} \ln \left\{ \frac{\phi\left(\frac{\mathbf{Y}_{1i} - \mathbf{X}_{i}\beta}{\sigma_{1}}\right)}{\sigma_{1}\Phi(\mathbf{Z}_{i}\gamma)} \cdot \Phi\left[\frac{\frac{\rho(\mathbf{Y}_{1i} - \mathbf{X}_{i}\beta)}{\sigma_{1}} + \mathbf{Z}_{i}\gamma}{\sqrt{1 - \rho^{2}}}\right] \right\} \end{split}$$

Model Fitting

Estimation can be via:

- MLE (above)
- Or, reconsider:

$$\mathsf{E}(Y_{1i}|\mathbf{X}_i,\mathbf{Z}_i,D_i=1) = \mathbf{X}_i\boldsymbol{\beta} + \rho\sigma_1 \left[\frac{\phi(\mathbf{Z}_i\boldsymbol{\gamma})}{\Phi(\mathbf{Z}_i\boldsymbol{\gamma})}\right]$$

- Note that $\Phi(\mathbf{Z}_i \gamma) = \Pr(D_i = 1)$
- Suggests a two-step approach...

Heckman's Two-Step Estimator

1. Estimate $\hat{\gamma}$ from

$$Pr(D_i = 1) = \Phi(\mathbf{Z}_i \gamma)$$

and calculate the estimated inverse Mills' ratio:

$$\hat{\lambda}_i = \frac{\phi(\mathbf{Z}_i \hat{\gamma})}{\Phi(\mathbf{Z}_i \hat{\gamma})}$$

2. Estimate β , $\theta (\equiv \rho \sigma_1)$ as:

$$Y_{1i} = \mathbf{X}_i \boldsymbol{\beta} + \theta \hat{\lambda}_i + u_{1i}$$

What exactly is an "inverse Mills' ratio," anyway?

A Few Things...

In the two-step approach:

- Since $\sigma_1 > 0$, $\hat{\theta} = 0 \implies \rho = 0$
- Two-step approach:
 - Is "Limited Information Maximum Likelihood" ...
 - Consistent for $\hat{\beta}$, but
 - Inconsistent estimating $\widehat{\mathbf{V}(\beta)}$; so
 - Standard errors require correction (e.g., bootstrap)
 - Can yield $\hat{\rho} \notin [-1,1]$ (because $\hat{\rho} = \hat{\theta}/\hat{\sigma}_1$)
 - Sensitive to prediction of D_i (better prediction = better precision)

Identification, etc.

For any estimation approach:

- If $\mathbf{X}=\mathbf{Z}$, then $\boldsymbol{\beta}, \gamma, \rho$ (formally) identified by nonlinearity of $\Phi(\cdot)$
- (Much) better: ≥ one covariate in **Z** not in **X**
- But...
 - Factors causing Y_1 also (often) cause D
 - → X, Z highly correlated
 - ...just makes things worse (Stolzenberg and Relles 1997)

Some Practical Things

A few key points:

- In practice, few people use two-step anymore
- Model is always sensitive to joint normality of $\{u_i, u_2\}$
- It is also very sensitive to model specification...
- Key issue: endogeneity of selection...

Simulated Example I: Cov(X, Z) = 0

```
> set.seed(7222009)
> N <- 1000 # N of observations
> # Bivariate normal us, correlated at r=0.7
> us <- rmvnorm(N,c(0,0),matrix(c(1,0.7,0.7,1),2,2))
> Z <- runif(N) # Sel. variable
> Sel<- Z + us[,1]>0 # Selection eq.
> X <- runif(N) # X
> Y < - X + us[,2]  # B0=0, B1=1
> Yob<- ifelse(Sel==TRUE,Y,NA) # Selected Y</pre>
>
> # OLSs:
>
> NoSel<-lm(Y~X) # all data</pre>
> WithSel<-lm(Yob~X) # sample-selected data
```

Simulation I (continued)

Simulation I (continued)

```
> # Two-Step:
>
> probit<-glm(Sel~Z,family=binomial(link="probit"))</pre>
> IMR<-((1/sqrt(2*pi))*exp(-((probit$linear.predictors)^2/2))) /</pre>
    pnorm(probit$linear.predictors)
>
  OLS2step<-lm(Yob~X+IMR)
>
>
 # FIML:
>
> FIML<-selection(Sel~Z,Y~X,method="ml")
```

Simulation I (continued)

	OLS-AII	OLS-Selected	Two-Stage	FIML
X (true OLS = 1)	1.000***	0.947***	0.948***	0.939***
,	(0.106)	(0.114)	(0.114)	(0.112)
IMR			0.428*	
			(0.223)	
Constant (true = 0)	-0.011	0.360***	0.152	-0.007
, ,	(0.062)	(0.068)	(0.128)	(0.092)
Observations	1,000	691	691	1,000
R^2	0.083	0.091	0.096	
Adjusted R ²	0.082	0.089	0.093	
Log Likelihood				-1,479.000
ρ				0.742*** (0.088)

Note: *p<0.1; **p<0.05; ***p<0.01

Simulated Example II: Cov(X, Z) > 0

```
> set.seed(9021970)
> N <- 1000 # N of observations
>
> # Bivariate normal us & Xs, correlated at r=0.7 / 0.8
> us <- rmvnorm(N,c(0,0),matrix(c(1,0.7,0.7,1),2,2))
> Xs < rmvnorm(N,c(0,0),matrix(c(1,0.8,0.8,1),2,2))
> Z <- Xs[.1]
> X <- Xs[.2]
> Sel<- Z + us[,1]>0 # Selection eq.
> Y <- X + us[,2] # B0=0, B1=1
> Yob<- ifelse(Sel==TRUE,Y,NA) # Selected Y
>
> # OLSs:
>
> NoSel2<-lm(Y~X) # all data</pre>
> WithSel2<-lm(Yob~X) # sample-selected data
```

Simulation II (continued)

Simulation II (continued)

	OLS-All	OLS-Selected	Two-Stage	FIML
X (true OLS = 1)	0.991***	0.853***	1.020***	1.010***
,	(0.029)	(0.046)	(0.061)	(0.056)
IMR			0.533***	
			(0.133)	
Constant (true = 0)	-0.005	0.412***	0.041	0.045
, ,	(0.030)	(0.046)	(0.103)	(880.0)
Observations	1,000	511	511	1,000
R^2	0.533	0.403	0.421	
Adjusted R ²	0.532	0.401	0.419	
Log Likelihood				-1,146.000
ρ				0.560*** (0.097)

Note: *p<0.1; **p<0.05; ***p<0.01

Extensions: "Probit-Probit"

Consider:

- Selection + binary second stage $(Y_i \in \{0,1\})$ (a/k/a "Heckit").
- Assume errors are bivariate <u>standard</u> Normal [so, $\{u_1, u_2 \sim \mathcal{BVN}(0, 0, 1, 1, \rho) \equiv \Phi_2(\cdot)]$
- Log-Likelihood:

$$\begin{array}{ll} \ln \textit{L}(\boldsymbol{\beta}, \boldsymbol{\gamma}, \sigma_1, \boldsymbol{\rho} | \textit{Y}_1) & = & \displaystyle \sum_{\textit{Y}_{1i} = 1, \textit{D}_i = 1} \ln[\Phi_2(\mathbf{X}_i \boldsymbol{\beta}, \mathbf{Z}_i \boldsymbol{\gamma}, \boldsymbol{\rho})] \\ & + \sum_{\textit{Y}_{1i} = 0, \textit{D}_i = 1} \ln[\Phi_2(-\mathbf{X}_i \boldsymbol{\beta}, \mathbf{Z}_i \boldsymbol{\gamma}, -\boldsymbol{\rho})] \\ & + \sum_{\textit{D}_i = 0} \ln \Phi(-\mathbf{Z}_i \boldsymbol{\gamma}) \end{array}$$

More Extensions

- Different outcome stages:
 - Poisson (Greene 1995; Cameron & Trivedi 2013, Ch. 10)
 - Durations (Boehmke et al. 2006)
 - Count/binary/ordinal (Mirand and Rabe-Hesketh 2005)
 - Quantile regression (Arellano and Bonhomme 2017)
- Selection stage is <u>ordered</u> (Chiburis & Lokshin 2007)
- Multiple-stage models (not much... work in finance + Signorino and others)
- Semi- and non-parametric variants (e.g., Liu and Yu (2019) on monotone control functions)

Sample Selection: Software

- R (selection and heckit in sampleSelection; robust estimation via ssmrob)
 - Binary selection
 - Continuous/binary outcomes
 - Also tobit, etc. models

Stata

- heckman (binary-continuous model)
- heckprob (binary-binary model)
- heckoprobit (ordinal Y)
- heckpoisson (Poisson)
- dursel (binary-duration model)
- xtheckman (selection models for panel data)
- Also Bayesian versions, using the bayes: prefix

Further Readings: References

Articles by Heckman (1974, 1976, 1979).

Breen, Richard. 1996. Regression Models for Censored, Sample Selected, or Truncated Data. Thousand Oaks, CA: Sage.

Dong, Yingying. 2019. "Regression Discontinuity Designs With Sample Selection." *Journal of Business & Economic Statistics* 37:171-186.

Stolzenberg, Ross M. and Daniel A. Relles. 1997. "Tools for Intuition about Sample Selection Bias and Its Correction." <u>American Sociological Review</u> 62:494-507.

Vella, Francis. 1998. "Estimating Models with Sample Selection Bias: A Survey." The Journal of Human Resources 33:127-169.

Winship, Christopher and Robert D. Mare. 1992. "Models for Sample Selection Bias." Annual Review of Sociology 18:327-350.

Further Readings: Applications

- Berinsky, Adam J. 1999. "The Two Faces of Public Opinion." American Journal of Political Science 43:1209-1230.
- Blanton, Shannon Lindsey. 2000. "Promoting Human Rights and Democracy in the Developing World: U.S. Rhetoric versus U.S. Arms Exports." American Journal of Political Science 44:123-131.
- Hart, David M. 2001. "Why Do Some Firms Give? Why Do Some Give a Lot?: High-Tech PACs, 1977-1996." The Journal of Politics 63:1230-1249.
- Jensen, Nathan M. 2003. "Democratic Governance and Multinational Corporations: Political Regimes and Inflows of Foreign Direct Investment." International Organization 57:587-616.
- Jo, Hyeran. 2008. "Taming the Selection Bias: An Application to Compliance with International Agreements." 2008 Visions in Methodology conference, Columbus, OH.
- Nooruddin, Irfan. 2002. "Modeling Selection Bias in Studies of Sanctions Efficacy." International Interactions 28: 57-74.
- Timpone, Richard J. 1998. "Structure, Behavior and Voter Turnout in the United States." American Political Science Review 92: 145-158.
- Vance, Colin, and Nolan Ritter. 2014. "Is Peace a Missing Value or a Zero? On Selection Models in Political Science." Journal of Peace Research 51:528-540.
- Von Stein, Jana. 2005. "Do Treaties Constrain or Screen? Selection Bias and Treaty Compliance." American Political Science Review 99:611-622.

Potential Outcomes and Counterfactual Inference

Causation

The goal: Making causal inferences from observational data.

- Establish and measure the causal relationship between variables in a non-experimental setting.
- The fundamental problem of causal inference:
 It is impossible to observe the causal effect of a treatment / predictor on a single unit.
- Specific challenges:
 - Confounding
 - · Selection bias
 - · Heterogenous treatment effects

Causation and Counterfactuals

Causal statements imply counterfactual reasoning.

- "If the cause(s) had been different, the outcome(s) would be different, too."
- Conditioning, probabilistic and causal:

Doob abilitatia annulistantian	Carral and distantan		
Probabilistic conditioning	Causal conditioning		
Pr(Y X=x)	$\Pr[Y do(X=x)]$		
Factual	Counterfactual		
Select a sub-population	Generate a new population		
Predicts passive observation	Predicts active manipulation		
Calculate from full DAG*	Calculate from surgically-altered DAG*		
Always identifiable when X and Y	Not always identifiable even when		
are observable	X and Y are observable		

^{*}See below. Source: Swiped from Shalizi, "Advanced Data Analysis from an Elementary Point of View", Table 23.1.

- Causality (typically) implies / requires:
 - · Temporal ordering
 - · Mechanism
 - Correlation

The Counterfactual Paradigm

Notation

- *N* observations indexed by $i, i \in \{1, 2, ...N\}$
- Outcome variable Y
- Interest: the effect on Y of a treatment variable W:
 - · $W_i = 1 \leftrightarrow \text{observation } i \text{ is "treated"}$
 - · $W_i = 0 \leftrightarrow \text{observation } i \text{ is "control"}$

Potential Outcomes

- Y_{0i} = the value of Y_i if $W_i = 0$
- Y_{1i} = the value of Y_i if $W_i = 1$
- $\delta_i = (Y_{1i} Y_{0i}) = \text{the } \underline{\text{treatment effect }} \text{ of } W$

Treatment Effects

The average treatment effect (ATE) is just:

$$\begin{aligned} \mathsf{ATE} &\equiv \bar{\delta} &=& \mathsf{E}(Y_{1i} - Y_{0i}) \\ &=& \frac{1}{N} \sum_{i=1}^{N} Y_{1i} - Y_{0i}. \end{aligned}$$

BUT we observe only Y_i :

$$Y_i = \begin{cases} Y_{0i} & \text{if } W_i = 0, \\ Y_{1i} & \text{if } W_i = 1. \end{cases}$$

or (equivalently)

$$Y_i = W_i Y_{1i} + (1 - W_i) Y_{0i}.$$

Estimating Treatment Effects

Key to estimating treatment effects: **Assignment mechanism for** W.

Neyman/Rubin/Holland: Treat inability to observed Y_{0i} / Y_{1i} as a missing data problem.

[press "pause"]

Missing Data Review

Notation:

$$\mathbf{X}_{i} \cup \{\mathbf{W}_{i}, \mathbf{Z}_{i}\}$$

 \mathbf{W}_i have some missing values, \mathbf{Z}_i are "complete"

$$R_{ik} = \begin{cases} 1 & \text{if } W_{ik} \text{ is missing,} \\ 0 & \text{otherwise.} \end{cases}$$

$$\pi_{ik} = \Pr(R_{ik} = 1)$$

Missing Data (continued)

Rubin's flavors of missingness:

• Missing completely at random ("MCAR") (= "ignorable"):

$$R \perp \{Z, W\}$$

Missing at random ("MAR") (conditionally "ignorable"):

$$\mathbf{R} \perp \mathbf{W} | \mathbf{Z}$$

Anything else is "informatively" (or "non-ignorably") missing.

Estimating Treatment Effects

Key to estimating treatment effects: **Assignment mechanism for** W.

Neyman/Rubin/Holland: Treat inability to observed Y_{0i} / Y_{1i} as a missing data problem.

• If the "missingness" due to the value of W_i is orthogonal to the values of Y, then it is ignorable. Formally:

$$\Pr(W_i|\mathbf{X}_i, Y_{0i}, Y_{1i}) = \Pr(W_i|\mathbf{X}_i)$$

- If that "missingness" is non-orthogonal, then it is not ignorable, and can lead to bias in estimation
- ullet Non-ignorable assignment of W requires understanding the mechanism by which that assignment occurs

One more thing: the stable unit-treatment value assumption ("SUTVA")

- Requires that there be two and only two possible values of Y
 for each observation i...
- "the observation (of Y_i) on one unit should be unaffected by the particular assignment of treatments to the other units."
- the "assumption of no interference between units," meaning:
 - · Values of Y for any two i, j ($i \neq j$) observations do not depend on each other
 - · Treatment effects are homogenous within categories defined by \ensuremath{W}

Treatment Effects Under Randomization of W

If W_i is assigned randomly, then:

$$Pr(W_i) \perp Y_{0i}, Y_{1i}$$

and so:

$$Pr(W_i|Y_{0i}, Y_{1i}) = Pr(W_i) \forall Y_{0i}, Y_{1i}.$$

This means that the "missing" data on Y_0/Y_1 are <u>ignorable</u> (here, in the special case where the \mathbf{X}_i on which W_i depends is <u>null</u>). This in turn means that:

$$f(Y_{0i}|W_i=0) = f(Y_{0i}|W_i=1) = f(Y_i|W_i=0) = f(Y_i|W_i=1)$$

and

$$f(Y_{1i}|W_i=0)=f(Y_{1i}|W_i=1)=f(Y_i|W_i=0)=f(Y_i|W_i=1)$$

Randomized W (continued)

Implication: Y_{0i} and Y_{1i} are (not identical but) exchangeable...

This in turn means that:

$$E(Y_{0i}|W_i) = E(Y_{1i}|W_i)$$

and so

$$\widehat{ATE} = E(Y_i|W_i = 1) - E(Y_i|W_i = 0)$$

= $\bar{Y}_{W=1} - \bar{Y}_{W=0}$.

will be an unbiased estimate of the ATE.

Observational Data: W Depends on X

Formally,

$$Y_{0i}, Y_{1i} \perp W_i | \mathbf{X}_i$$
.

Here,

- **X** are *known confounders* that (stochastically) determine the value of W_i ,
- Conditioning on **X** is necessary to achieve exchangeability.

So long as W is entirely due to \mathbf{X} , we can condition:

$$f(Y_{1i}|\mathbf{X}_i, W_i = 1) = f(Y_{1i}|\mathbf{X}_i, W_i = 0) = f(Y_i|\mathbf{X}_i, W_i)$$

and similarly for Y_{0i} .

W Depends on X (continued)

Estimands:

• the average treatment effect for the treated (ATT):

$$ATT = E(Y_{1i}|W_i = 1) - E(Y_{0i}|W_i = 1).$$

• the average treatment effect for the controls (ATC):

$$ATC = E(Y_{1i}|W_i = 0) - E(Y_{0i}|W_i = 0).$$

Corresponding estimates:

$$\widehat{\mathsf{ATT}} = \mathsf{E}\{[\mathsf{E}(Y_i|\mathbf{X}_i,W_i=1) - \mathsf{E}(Y_i|\mathbf{X}_i,W_i=0)]|W_i=1\}.$$

and

$$\widehat{\mathsf{ATC}} = \mathsf{E}\{[\mathsf{E}(Y_i|\mathbf{X}_i,W_i=1) - \mathsf{E}(Y_i|\mathbf{X}_i,W_i=0)]|W_i=0\}.$$

Note that in both cases the expectation of the whole term is conditioned on W_i .

Confounding

Confounding occurs when one or more observed or unobserved factors X affect the causal relationship between W and Y.

Formally, confounding requires that:

- $Cov(X, W) \neq 0$ (the confounder is associated with the "treatment")
- Cov(X, Y) ≠ 0 (the confounder is associated with the outcome)
- **X** does not "lie on the path" between W and Z (that is, **X** is not affected by either W or Y).

Digression: DAGs

<u>Directed acyclic graphs</u> (DAGs) are a tool for visualizing and interpreting structural/causal phenomena.

- DAGs comprise:
 - · Nodes (typically, variables / phenomena) and
 - · Edges (or lines; typically, relationships/causal paths).
- Directed means each edge is unidirectional.
- Acyclical means exactly what it suggests: If a graph has a "feedback loop," it is not a DAG.
- Read more at the Wikipedia page, or at this useful page.

Know your DAG

DAGs and Confounding

$$W \longrightarrow Y \longleftarrow X$$
No Confounding

Confounding Bias: Some Toy Examples

Example One: $Cov(W, Y) = 0$ (ATE=2)

			1		, -	()
i	W_i	Y_{0i}	Y_{1i}	$Y_{1i} - Y_{01}$	Y_i	$(\bar{Y} W=1)-(\bar{Y} W=0)$
1	0	8	(10)	(2)	8	-
2	0	10	(12)	(2)	10	-
3	0	12	(14)	(2)	12	-
4	1	(8)	10	(2)	10	-
5	1	(10)	12	(2)	12	-
6	1	(12)	14	(2)	14	-
Mean _{obs}	-	10	12	-	11	2
Mean _{all}	-	(10)	(12)	(2)	-	<u>-</u>

$$t = -1.22$$
, $p = 0.14$

Confounding Bias: Some Toy Examples

				- ' () /		()
i	W_i	Y_{0i}	Y_{1i}	$Y_{1i} - Y_{01}$	Y_i	$(\bar{Y} W=1)-(\bar{Y} W=0)$
1	0	8	(10)	(2)	8	-
2	0	8	(10)	(2)	8	-
3	0	10	(12)	(2)	10	-
4	1	(10)	12	(2)	12	-
5	1	(12)	14	(2)	14	-
6	1	(12)	14	(2)	14	-
Mean _{obs}	-	8.67	13.33	-	11	4.67
Mean _{all}	-	(10)	(12)	(2)	-	-

$$t = -4.95$$
, $p < 0.001$

Confounding Bias: Some Toy Examples

Example Three: Cov(W, Y) < 0 (ATE=2)

						· /
i	W_i	Y_{0i}	Y_{1i}	$Y_{1i} - Y_{01}$	Yi	$(\bar{Y} W=1)-(\bar{Y} W=0)$
1	0	12	(14)	(2)	12	-
2	0	12	(14)	(2)	12	-
3	0	10	(12)	(2)	10	-
4	1	(10)	12	(2)	12	-
5	1	(8)	10	(2)	10	-
6	1	(8)	10	(2)	10	-
Mean _{obs}	-	11.33	10.67	-	11	-0.67
Mean _{all}	-	(10)	(12)	(2)	-	-

$$t = 0.71, p = 0.74$$

Next time: How to make causal(-ish) inferences from observational data...