Minimizzazione del costo di reti livelli a 2 livelli tramite mappe di Karnaugh

Architettura degli elaboratori

M. Favalli

Engineering Department in Ferrara

Sommario

Rappresentazione grafica di funzioni

Mappe di Karnaugh

Copertura

Funzioni non completamente specificate

Funzioni a piú uscite

Mappe di Karnaugh

- L'applicazione delle tecniche di espansione e idempotenza porta a una riduzione del costo dell'espressione
- I risultati sono dipendenti dall'ordine delle operazioni (euristiche)
- Abbiamo bisogno di un metodo sistematico che garantisca alcune rilevanti proprietá del risultato
- Vedremo il metodo basato sulle mappe di Karnaugh che sfrutta un analogia fra le proprietá utilizzate nell'espansione e le proprietá della rappresentazione geometrica delle funzioni
- Il metodo puó minimizzare sia il numero di letterali che quello di porte logiche o termini prodotto

Sommario

Rappresentazione grafica di funzioni

Mappe di Karnaugh

Copertura

Funzioni non completamente specificate

Funzioni a piú uscite

Rappresentazione geometrica di \mathbb{B}^n

Lo spazio delle possibili configurazioni delle variabili di una funzione $f:\mathbb{B}^n\to\mathbb{B}$ puó essere rappresentato in un sistema di n coordinate cartesiane come un n-cubo

Vediamo il caso n=3

Si definiscono come sottocubi i vertici (dimensione 1) e le faccie (dimensione 2) Si rappresentino i casi n = 1 e n = 2

Rappresentazione di una funzione

- Si consideri la funzione f(x, y, z) = xy'z + x'y'z + xyz + x'y'z'
- La si puó rappresentare in \mathbb{B}^3

Distanza Hamming

- Si definisce distanza Hamming il numero di bit in cui due configurazioni di n bit differiscono
- Esempi
 - 0100 e 0110 hanno distanza Hamming pari a 1
 - 0111 e 1011 hanno distanza Hamming pari a 2

Rappresentazione grafica e minimizzazione

La rappresentazione grafica ha alcune proprietá interessanti

Adiacenza \Leftrightarrow distanza Hamming unitaria Due mintermini a distanza Hamming unitaria, corrispondono a vertici adiacenti nella rappresentazione grafica di f

Espansione

Tutti i mintermini (2^k) che appartengono a un sottocubo di dimensione $k \le n$ sono espandibili (iterativamente) in un termine prodotto con n-k letterali

• Nel caso n=3 i sottocubi con k=0 corrispondono a vertici del cubo; quelli con k=1 a spigoli; con k=2 a faccie

Esempio

I mintermini x'y'z' e x'y'z appartengono a un sottocubo con k=1 e si espandono in x'y' (che ha n-k=3-1 letterali)

Rappresentazione grafica e minimizzazione

- La rappresentazione grafica risolve il problema della selezione dei mintermini durante l'espansione
- Se si ammette che ciascun vertice sia utilizzabile in più espansioni, anche il problema dell'identificazione dei mintermini da duplicare sfruttando l'idempotenza é risolto

Esempi

Si consideri il caso n=4

Sommario

Rappresentazione grafica di funzioni

Mappe di Karnaugh

Copertura

Funzioni non completamente specificate

Funzioni a piú uscite

Mappe di Karnaugh

- La difficoltá nel rappresentare cubi per n > 3, impone di utilizzare rappresentazioni a due dimensioni
- Le mappe di Karnaugh sono rappresentazioni a 2 dimensioni ottenute proiettando un cubo a n dimensioni sul piano
- Questo implica l'accorpamento di alcune coordinate le cui configurazioni devono costituire un codice ciclico
- In pratica, questa operazione puó essere fatta "tagliando" il cubo e stendendolo sul piano
- L'operazione mantiene le proprietá di adiacenza del cubo di partenza (con qualche accorgimento) che ora diventano adiacenze fra celle

Esempio (n = 3)

Rappresentazioni di funzioni su mappe

Ciascuna cella della mappa contiene il valore della funzione per la configurazione di variabili corrispondente

Esempi di mappe di Karnaugh e di relazioni di adiacenza fra celle

Rappresentazione di sottocubi su mappe

- Per l'espansione, bisogna identificare sulle mappe di Karnaugh il corrispondente di un sottocubo di dimensione k
- Si tratta di un insieme rettangolare di 2^k celle tale che ciascuna cella al suo interno é adiacente a k celle dello stesso insieme
- Esempio

Esempi di proiezioni di sottocubi

Ragruppamenti rettangolari

- I sottocubi contenenti mintermini (o maxtermini) vengono proiettati su ragruppamenti rettangolari nella mappa
- Esempio

 Quindi tutti i mintermini contenuti in un ragruppamento rettangolare possono essere semplificati per espansione

Ragruppamenti rettangolari ⇔ termini prodotto

- Tutti i mintermini di un ragruppamento rettangolare di dimensione k possono essere espansi fino ad avere un termine prodotto con n – k letterali
- La rappresentazione grafica ci consente di individuare direttamente tale termine prodotto (implicante)
- Si nota che gli n-k letterali che rimangono dopo la semplificazione corrispondono a quelle variabili che non cambiano di valore nelle diverse configurazioni contenute nel ragruppamento
- Tali variabili compaiono in forma vera se il loro valore nel ragruppamento rettangolare é 1 e negata se il loro valore é 0
- Esempio

$$x'y'z' + x'y'z + xy'z' + xy'z = y'$$

x \	/Z 00	01	11	10
0	1	1	0	0
1	1	1	0	0

Esempi

Si supponga che i ragruppamenti contengano degli 1

Sommario

Rappresentazione grafica di funzioni

Mappe di Karnaugh

Copertura

Funzioni non completamente specificate

Funzioni a piú uscite

Problema

- Come ottenere una espressione piú semplice delle formed canoniche che sia equivalente a f?
- Si seleziona un insieme di ragruppamenti rettangolari $\mathcal{R} = \{R_1, R_2,, R_C\}$ sulla mappa tale da coprire tutti e soli gli 1 della funzione
- L'insieme degli implicanti $\mathcal{P} = \{P_1, P_2,, P_C\}$ corrispondenti a tali ragruppamenti costituisce una copertura della funzione

Esempi

Esempi di coperture

Vediamo alcuni semplici esempi che non sono rappresentativi dei casi generali

g=a'b'+b'c+a'c'

Esempi

Utilizzo di implicanti primi

- Poiché l'obbiettivo é quello di minimizzare il numero di letterali, conviene sfruttare in pieno l'espansione e quindi utilizzare implicanti primi
- Sulla mappa questo puó essere fatto individuando i ragruppamenti rettangolari che non possono essere contenuti in altri ⇒ in pratica si sfrutta la proprietá di espansione fino a quando non é piú possibile applicarla
- L'utilizzo di tutti gli implicanti primi da luogo a coperture valide, ma non é detto che siano minime
- In molti casi i problemi di copertura sono molto piú complessi

Esempio

L'utilizzo di tutti gli implicanti primi porta all'espressione f = a'c'd' + a'bc' + bc'd + bcd' + acd' + a'bd' ove si puó notare che a'bc' e a'bd' possono essere eliminati pur continuando a verificare la condizione di copertura

cd ab 00 01 11 10						
00	1	0	0	0		
01	1)	1	0	1		
11	0	1	0	1		
10	0	0	0	1		

Ridondanza

Definizione

Un implicante si dice ridondante se puó essere eliminato da un espressione SP senza che cambi la funzione associata all'espressione.

P_i é ridondante se

$$f = P_1 + P_2 + \dots + P_{i-1} + P_i + P_{i+1} + \dots + P_C = P_1 + P_2 + \dots + P_{i-1} + P_{i+1} + \dots + P_C$$
(1)

Definizione

Una forma normale non ridondante é una forma normale che non contiene implicanti ridondanti

Implicanti primi essenziali

Definizione

Un implicante primo (P_i) si dice essenziale se corrisponde a un ragruppamento rettangolare che é l'unico a coprire un 1 della funzione

Proprietá

In una copertura contenente solo implicanti primi, un implicante primo essenziale non puó mai essere ridondante

Esempi

Condizioni necessarie per avere un espressione minima

Condizioni necessarie per avere un espressione di costo minimo tramite l'utilizzo delle mappe di Karnaugh

- 1. Si utilizzano implicanti primi
- 2. Si utilizza un espressione non ridondante
- 3. Si utilizzano tutti gli implicanti primi essenziali

Nel caso piú generale, queste condizioni non consentono di ottenere una copertura di costo minimo

Esempio di problemi nella copertura

Si consideri la funzione f, per la quale sono stati rappresentati tutti gli implicanti primi denotando quelli essenziali

L'utilizzo degli implicanti essenziali da luogo a f = a'c'd' + acd + ...

Per avere una coperura rimangono gli uni corrispondenti alle configurazioni 0101 e 1101

Esempio di problemi nella copertura

Per coprire tali configurazioni, esistono due modi diversi che utilizzano implicanti primi non essenziali e che danno luogo a espressioni non ridondanti con costi diversi

ab cd

00 | 1

01 11

1. Utilizzo di
$$a'bc'$$
 e acd

$$\Rightarrow f = a'c'd + acd + a'bc' + abd$$

$$(I = 12)$$

Si vede quindi come il problema della copertura abbia bisogno di un approccio sistematico 34

Euristico basato sulle mappe di Karnaugh

Si fornisce un semplice euristico per la sintesi di funzioni mediante mappe di Karnaugh (tale metodo puó non dare luogo a espressioni di costo minimo)

- Si cercano sulla mappa quegli 1 che possono dare luogo a condizioni di essenzialità
- Si tracciano i ragruppamenti rettangolari corrispondenti a tali implicanti primi e si eliminano da ulteriori considerazioni gli 1 coperti da tali implicanti
- Se rimangono degli 1 da coprire, si selezionano degli implicanti primi non essenziali utilizzando la seguente regola euristica (greedy):

A ogni passo si cerca di utilizzare l'implicante primo non essenziale che copre il maggior numero di 1 non ancora coperti, a paritá di questo numero, si utilizza il ragruppamento piú grande

Esempio

Passo 1

Passo 2 (ci sono due alternative, conviene utilizzare quella con il ragruppamento piú grande)

Stoop numero di implicanti ma diverse costo

36

Esempi

Copertura degli 0

- Coprendo gli 0, si ottiene una forma normale PS
- In questo caso, si considerano ragruppamenti rettangolari che contengono 0 della funzione e che corrispondono a implicati
- Il termine somma corrispondente a un implicato si calcola considerando le variabili di ingresso che non cambiano di valore nel ragruppamento
- Tali variabili vengono inserite nel termine somma in forma vera se il loro valore all'interno del ragruppamento é 0 e negata se é 1
- Le proprietá di implicati primi, implicati primi essenziali e di copertura sono le stesse valutate nel caso di espressioni SP
- Lo stesso vale per l'approccio euristico alla minimizzazione

Esempio

In questo caso la copertura é costituita dai soli implicati primi essenziali e l'espressione PS é sicuramente quella minima

Sommario

Rappresentazione grafica di funzioni

Mappe di Karnaugh

Copertura

Funzioni non completamente specificate

Funzioni a piú uscite

Condizioni di indifferenza

- Alcune configurazioni di ingresso possono non essere presenti a causa della logica che sta a monte della rete considerata
- Il valore di f per tali configurazioni di ingresso non interessa
- Questa condizione viene indicata con il simbolo nella tabella di veritá e la funzione viene definita come non completamente specificata
- Nel processo di sintesi queste condizioni dette di indifferenza possono essere sfruttate per espandere implicanti (implicati)
- Quindi un ragruppamento rettangolare puó contenere sia 1 (0) che simboli –
- Un ragruppamento di sole indifferenze non ha senso

Esempio

Funzione che riceve in ingresso una parola del codice BCD e che produce un 1 se il numero di 1 in tale parola é dispari (in pratica calcola il bit di paritá)

Si verifichi che il costo é inferiore a quello ottenibile ignorando le indifferenze (ovvero considerandole uguali a 0)

Sintesi con condizioni di indifferenza

- Una volta ottenuta l'espressione di tipo SP (PS), le indifferenze contenute in ragruppamenti sono assegnate al valore 1 (0), mentre quelle esterne sono assegnate al valore 0 (1)
- In pratica, le indifferenze sono dei gradi di libertá da sfruttare nella sintesi
- Dal punto di vista computazionale, le indifferenze rendono il problema della ricerca della rete di costo minimo piú complesso
- Una funzione non completamente specificata (con δ indifferenze) rappresenta in realtá 2^{δ} diverse possibili funzioni
- In questo modo lo spazio di ricerca del minimo si espande notevolmente

Esempi

Sommario

Rappresentazione grafica di funzioni

Mappe di Karnaugh

Copertura

Funzioni non completamente specificate

Funzioni a piú uscite

Funzioni a piú uscite

- Nella maggior parte dei casi le funzioni da considerare hanno piú uscite
- Si consideri $F: \{0,1\}^n \to \{0,1\}^m$ di cui $f_i, i = 1..m$ siano le componenti scalari
- Quindi

$$F(x_1, x_2, ..., x_n) = [f_1(x_1, x_2, ..., x_n), ..., f_m(x_1, x_2, ..., x_n)]$$

- L'ottimizzazione separata delle funzioni a uscita singola non porta, in generale, a un risultato ottimale perché trascura la possibilitá che piú uscite condividano lo stesso termine prodotto
- Gli AND infatti possono avere fan-out > 1

Problemi nella sintesi di funzioni a più uscite

Ottimizzazione separata delle due funzioni f e g

xy é un implicante primo di g, ma non di f, comunque puó essere utilizzato per coprire gli 1 di f non coperti da y'. In questo modo la porta AND che realizza xy avrá fan-out=2 e il costo dei letterali é inferiore

Copertura

Le espressioni delle singole uscite possono essere ricavate da quelle dei singoli implicanti.

Nella figura si evidenziano i termini prodotto con fan-out > 1

Conclusioni

- Il metodo che utilizza le mappe di Karnaugh é un approccio euristico molto comodo per funzioni di piccole dimensioni
- Non é peró in grado di garantire sempre il calcolo dell'espressione di costo minimo e dipende in parte dall'abilitá del progettista
- Puó essere reso esatto utilizzando opportune tecniche per la valutazione della copertura