Classification on Word2Vec / Doc2Vec

Approaches comparison and evaluation

Michal Stefanik

Outline

- 1. Problem (objected use-cases)
- 2. Data and preprocessing
- 3. Approaches
- 4. Evaluation
- 5. Results

1. Use cases:

- Score a relevance of a piece of text (document) towards the known categories
- To categorize the unlabelled documents
- To enable soft match in content search systems

- 2. Recognize some similarity between the trained documents
- Common ground for better content-based future recommenders for customers (e.g. K-NN)

- 50 024 docs (of which 43 478 longer than 10 tokens)
- 137 tokens in average
- Documents can be quite similar with both content and semantics
- Hard to categorize for human observer, relevance to category is fuzzy

Documents origin: Product's Stackoverflow questions, internal issues, guidelines, technical documentations, blog posts, comments...

Preprocessing:

Gensim default (1. x.lower(), 2. strip_tags, 3. strip_punctuation, 4. strip_multiple_whitespaces, 5. strip_numeric, 6. remove_stopwords, 7. strip_short), with stemming persisted (accuracies cca. + 1.5%)

admin shell command ships esb support connect command idea allow script number commands containers root vagrant centos bin admin available commands change rmi registry port changes rmi registry port management layer existing container instance change rmi server port changes rmi server port management layer existing container instance change ssh port changes secure shell port existing container instance create creates new container instance destroy destroys existing container instance list lists existing container instance stop stops existing container instance type command help help specified command

Figure 1: preprocessed document of close-to average size, origin category: fuse

jboss dev studio jboss seam final richfaces want use richfaces components business logic single jar component tool file contain suppose customized data table called application passing parameters sortable skin want work kind api applications includes possible ejb seam project kindly provide reference

Figure 2: preprocessed document, origin category: developer studio

Figure 3: preprocessed training documents distribution by size in no. of tokens

- 14 very unbalanced categories
 - (5 to 18 302 docs, 3105 mean size)
- Each category is a content of one RedHat product
- Categories might have a significant intersection semantically as well as by vocabulary

	label	accuracy	size
11	softwarecollections	0.000000	5
9	developertoolset	0.000000	12
8	cdk	0.111429	72
12	mobileplatform	0.483810	101
3	datagrid	0.417256	314
0	amq	0.420341	654
2	webserver	0.331566	956
6	bpmsuite	0.523567	1123
5	brms	0.475673	1358
7	devstudio	0.842576	3373
13	openshift	0.922969	3492
10	rhel	0.955152	6511
4	fuse	0.875087	7205
1	eap	0.949349	1830

Figure 4: categories with size and LogReg's classifier accuracies

3 Approaches

3.1 Word2Vec

- Independent training (sg or cbow) of 14 models on whole wordlist of given cat.
- Models sharing the same pre-init vocabulary, standalone trainings
- Relavance towards categories by gensim_W2V.score() for each category [0]
- Classification to top-scored categories for each doc

3 Approaches

3.2 Doc2Vec

- Single doc2vec model repeatedly trained on all documents at once
- Documents shuffled in epochs [1] accuracy no longer increases after 10+ epochs
- Vectors inference slight accuracy improvement for 20+ inference epochs
- Classification to categories by selected adjacent classifiers (NN, SVM, LogReg)

3 Approaches

3.2 Doc2Vec

- Hyperparam tuning of d2v brings little accuracy increase (< 1-3% compared to default)
- Changes in [preprocessing, training algo, inference_epochs, training_epochs] affect accuracy similarly for all classifiers
- Classifiers have different optimal length of input vector (e.g. LogReg cca. 800+800, NN cca 500+500)
 - Stil variations from 300 vectors onward is quite small: < 2%

3.2 Doc2Vec

3.2.1 Adjacent classifiers

SVM:

- best linear and radial kernel
- grid searched C and gamma params (C=0.1 for linear kernel, C=8 for radial)
- o radial kernel brings accuracy increase of only cca 0.3%
- sklearn implementations
- o accuracy comparable to LogReg: 14 categories on 83.88% (radial), 83.59% (linear)
- not evaluated with headers

3.2 Doc2Vec

3.2.1 Adjacent classifiers

- Logistic Regression:
 - grid searched C (optimal C=0.3)
 - similarly fast as Linear SVM (40k docs in 1000vectors in cca 5min)
 - sklearn implementation
 - o similar accuracy to SVM: 14 categories on 83.12% (v500 no headers), or
 - 87.01% (v800, headers)
 - easy and behaving scoring using native logits

3.2 Doc2Vec

3.2.1 Adjacent classifiers

- Neural Network [1]
 - built with Tensorflow 1.0
 - CPU (no GPU) only, though still faster (2-3x) than all others
 - Architecture inspired by [1]: one fully-connected hidden layer of size [vectors/2]
 - best candidate for biggest 3 categories: accuracy close to 95% (v500, no headers)
 - Better by cca 1.5% than SVM, LogReg
 - but not so good on the whole unbalanced category set:

3.2.2 Evaluation strategies

- Shallow:
 - Training of d2v on whole dataset, d2v used simply as transformer of documents to vectors
 - only train/test of adjacent classifier included in CV cycle
- Deep
 - Train/test of both d2v and adjacent classifier included in CV cycle
 - Yields very similar results to shallow (5-fold CV, LogReg on C=0.3 gives cca. -0.3% in accuracy)

3.3 Common observations

- Default window size (8) worked best (at 10 and 6 accuracy decrease cca. 2%)
- gensim w2v's skip-gram gives very little improvement in score() accuracy if any, but was 11x slower [figure 9], though claimed to work better for small categories [2]
- w2v's score() behave unusably for too little categories' size [figure 12]
 - but might be still good for big enough categories
- d2v accuracy si perhaps independent on deep/shallow training strategy
- Gensim's default preprocessing is not too fast it was a bottleneck while gathering the content from web APIs
- Gensim's default parameters were often the best config, or close to optimum (e.g. window=8)

4.1 Evaluation

Word2Vec:

• Accuracy of the single-target classification based on a selection of top-scored category for each doc

Doc2Vec:

 Accuracy of the classification based on logit/softmax/class_probs top-scored category for each doc (LogReg/NN/SVM)

Accuracy increasing with category size:

	label	accuracy	size
11	softwarecollections	0.000000	5
9	developertoolset	0.333333	12
8	cdk	0.100000	72
12	mobileplatform	0.682143	101
3	datagrid	0.301587	314
0	amq	0.141221	654
2	webserver	0.279355	956
6	bpmsuite	0.351111	1123
5	brms	0.318015	1358
7	devstudio	0.662963	3373
13	openshift	0.731044	3492
10	rhel	0.890979	6511
4	fuse	0.700902	7205
1	eap	0.863425	18302

Figure 7: accuracies of w2v for all 14 categories

	label	accuracy	size
11	softwarecollections	0.000000	5
9	developertoolset	0.000000	12
8	cdk	0.111429	72
12	mobileplatform	0.483810	101
3	datagrid	0.417256	314
0	amq	0.420341	654
2	webserver	0.331566	956
6	bpmsuite	0.523567	1123
5	brms	0.475673	1358
7	devstudio	0.842576	3373
13	openshift	0.922969	3492
10	rhel	0.955152	6511
4	fuse	0.875087	7205
1	eap	0.949349	18302

Figure 8: accuracies of d2v with LogReg

Accuracy of w2v models by training algorithm

figure 9: Skip-gram vs. Continuous Bag of Words training: accuracies

Error rate relative to document length (in tokens) as classified by Logistic Regression

Figure 10: Logreg missclassification rate

Error rate relative to document length (in tokens) as classified by Logistic Regression

Figure 11: Logreg missclassification rate

[Figure 12]: Scoring of docs towards its original category,

- by v2vec's score (left)
- LogReg's logits on d2v docs vectors (right)

Overall accuracies of models for categories of various sizes

Accuracy of models for selected categories

Figure 13: Overall models accuracy

Thank you!

Michal Štefánik

References:

[0]: https://arxiv.org/pdf/1504.07295v3.pdf

[1]: https://deeplearning4j.org/welldressed-recommendation-engine

[2]: http://bit.ly/2p5zV48

[3]: https://github.com/searchisko/project-classifier-poc