

## APLICACIÓN DE PROGRAMA "metodo\_nodal.m"

Encuentre los valores de las tensiones en los nodos V<sub>1</sub>, V<sub>2</sub>, V<sub>3</sub> y V<sub>4</sub>, aplicando método nodal en el circuito de la figuara.



Valor de Y11? 5

Valor de Y12? 2

Valor de Y13? 0

Valor de Y14? 1

Valor de Y22? 5

Valor de Y23? 2

Valor de Y24? 1

Valor de Y33? 5

Valor de Y34? 1

Valor de Y44? 4

Corriente en el nudo 1? -2

Corriente en el nudo 2? -1

Corriente en el nudo 3 ? 4

Corriente en el nudo 4? -1



 $DET_P = 225.000000000$ 

 $DET_S1 = -120.000000000$ 

 $DET_S2 = -45.000000000$ 



 $DET_S3 = 150.000000000$ 

DET S4 = -60.000000000

La Tension V1 es: -0.53333333 Voltios

La Tension V2 es: -0.20000000 Voltios

La Tension V3 es : 0.66666667 Voltios

La Tension V4 es : -0.26666667 Voltios

La siguiente figura muestra la solución aplicando EWB-5.





## APLICACIÓN DE PROGRAMA "metodo\_mallas.m"

Dado el mismo circuito, cambiamos las fuentes de 2 Amperes y de 1 Amper por un circuito equivalente para poder transformar luego a fuentes de tensión aplicando Thevenin.



El circuito modificado para aplicar método de mallas será como el que muestra la siguiente figura.

Número de mallas ? Valor de Z11 ? 2.5 Valor de Z12 ? Valor de Z13 ? Valor de Z14 ? Valor de Z22 ? Valor de Z23 ? Valor de Z24 ? Valor de Z33 ? 2.5 Valor de Z34 ? Valor de Z44 ? 2.5 Tensión de la malla 1 ? -1 Tensión de la malla 2 ? 1 Tensión de la malla 3 ? 1.5-2 Tensión de la malla 4 ? 2+0.5+1



La corriente I3 es :

La corriente I4 es :



| DET_P =  <br>        | 2.5000<br>-1.0000<br>0.0000<br>-1.0000 | -1.0000<br>2.5000<br>-1.0000<br>0.0000 | 0.0000<br>-1.0000<br>2.5000<br>-1.0000 | -1.0000<br>0.0000<br>-1.0000<br>2.5000 |           |
|----------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-----------|
| DET_P =              | 14.0625                                |                                        |                                        |                                        |           |
| DET_S1=  <br>        | -1.0000<br>1.0000<br>-0.5000<br>3.5000 | -1.0000<br>2.5000<br>-1.0000<br>0.0000 | 0.0000<br>-1.0000<br>2.5000<br>-1.0000 | -1.0000<br>0.0000<br>-1.0000<br>2.5000 |           |
| DET_S1 =             | 15.0000                                |                                        |                                        |                                        |           |
| DET_S2=  <br> <br>   | 2.5000<br>-1.0000<br>0.0000<br>-1.0000 | -1.0000<br>1.0000<br>-0.5000<br>3.5000 | 0.0000<br>-1.0000<br>2.5000<br>-1.0000 | -1.0000<br>0.0000<br>-1.0000<br>2.5000 | <br> <br> |
| DET_S2 =             | 18.7500                                |                                        |                                        |                                        |           |
| DET_S3=  <br> <br>   | 2.5000<br>-1.0000<br>0.0000<br>-1.0000 | -1.0000<br>2.5000<br>-1.0000<br>0.0000 | -1.0000<br>1.0000<br>-0.5000<br>3.5000 | -1.0000<br>0.0000<br>-1.0000<br>2.5000 |           |
| DET_S3 =             | 17.8125                                |                                        |                                        |                                        |           |
| DET_S4=  <br>        | 2.5000<br>-1.0000<br>0.0000<br>-1.0000 | -1.0000<br>2.5000<br>-1.0000<br>0.0000 | 0.0000<br>-1.0000<br>2.5000<br>-1.0000 | -1.0000<br>1.0000<br>-0.5000<br>3.5000 | <br> <br> |
| DET_S4 =             | 32.8125                                |                                        |                                        |                                        |           |
| La corriente I1 es : |                                        | 1.0667                                 | Amperes                                |                                        |           |
| La corriente I2 es : |                                        | 1.3333                                 | Amperes                                |                                        |           |

1.2667 Amperes

2.3333 Amperes

PÁGINA 4 DE 5



Smulando los circuitos mediante EWB-5 tendremos:



Circuito con modificación de fuentes de corriente.



Circuito con modificación de fuentes de corriente a fuentes de tensión aplicando Thevenin.