žmogaus rega

pirma dalis

KODĖL TIRIAMA REGA

regos problema

į akį patenkančiame vaizde objektų nėra regos sistema turi pati juos konstruoti konstruojama remiantis prielaidomis

tai yra sunku

akis

Trimatis vaizdas tampa dvimatis akies tinklainėje (kaip ir fotoaparate)
Kaip mes atskiriame objektus vieną nuo kito?

pavyzdys su fotoaparatu

ką turi rega daryti

```
atskirti objektų kategorijas
```

sugrupuoti dalis į objektus (pvz., kanizsa iliuzija)

atskirti objektą nuo fono (pvz., ames room iliuzija)

aptikti kraštus

kanizsa iliuzija

Matote tą juodą trikampį, dengiantį kitas figūras? Tikrai?

ames room iliuzija

(adelbert ames, jr., 1934)

wokka | Flickr

Demo: Ames Room

Raudonasis atrodo mažesnis, nes stovi toliau. Tačiau be trijų matmenų imformacijos atrodo, kad abu žmonės yra tokiu pat atstumu nuo mūsų, bet skirtingo ūgio.

ko reikia

- 1. rasti kraštus
- 2. kraštus sujungti į kontūrus
- 3. atskirti kontūrus vienus nuo kitų ir nuo fono
- 4. atpažinti formas
- 5. (patirties)

regos sistema

(beždžionės)

Carin Cain; iš Thorpe & Fabre-Thorpe, Science (2001)

pirminė regimoji žievė (V1)

neuronai reaguoja tik į tam tikroje vietoje esančias ir tam tikros krypties atkarpas

tokiu būdu gali būti aptinkami kraštai

demo: Hubel & Wiesel

D. Hubel

aukštesnieji regos centrai

1. neuronai reaguoja į vidutinio sudėtingumo objektus

Tanaka, Annual Review of Neuroscience (1996)

2. toliau vidutinio sudėtingumo objektai grupuojami į sudėtingus

o kur kraštai sudedami į formą?

kažkur per vidurį bet kaip?

demo: perceptual grouping, biological motion

antra dalis

GEŠTALTO REIŠKINIAI

geštalto reiškiniai

visuma yra daugiau nei jos dalių suma kur ir kaip tai yra įgyvendinama regos sistemoje?

geštalto reiškiniai

visuma yra daugiau nei jos dalių suma kur ir kaip tai yra įgyvendinama regos sistemoje?

Wagemans et al., Handbook of cognition (2005), p. 22

configural superiority effect

configural superiority effect

configural superiority effect

kur?

MRI skeneris

wikimedia commons

CSE formuojamas LOC

trečia dalis

REGOS MODELIAVIMAS

regos sistema

regos sistemos modelis

- atmintyje saugomi "prototipai"
- 4. vietos invariantiškumas
- 3. nustatomos sudėtingesnės savybės (du kraštai)
- šiek tiek vietos invariantiškumo (nesvarbu, kurioje vietoje yra objektas)

regos modelis

paveikslėlis rodomas 20 ms užduotis: ar paveikslėlyje yra gyvūnas?

šiuo atveju kompiuteris prilygsta žmogui