交流谐振电路

姓名:王昱

学号: PB21030814

• 实验数据处理

①RLC串联电路的谐振频率

n	1	2	3	4	5
f_0/kHz	4.940	4.938	4.939	4.940	4.941

由此算得 $f_0=4.940kHz$

②RLC串联谐振电路的幅频特性曲线

 $R=400\Omega\ V_{ipp}=1.80V$ 时的数据:

f/kHz	3. 000	3. 200	3. 400	3. 600	3. 800
V_{Rpp}/V	0.14	0.15	0.17	0.20	0.24
f/kHz	4. 000	4. 200	4. 400	4. 600	4. 800
V_{Rpp}/V	0.29	0.36	0.48	0.72	1.25
f/kHz	4. 850	4. 900	4. 920	4. 940	4. 960
V_{Rpp}/V	1.43	1.58	1.60	1.61	1.60
f/kHz	4. 980	5. 000	5. 050	5. 100	5. 300

f/kHz	3. 000	3. 200	3. 400	3. 600	3. 800
V_{Rpp}/V	1.56	1.50	1.38	1.20	0.76
f/kHz	5. 500	5. 700	5. 900	6. 100	6. 300
V_{Rpp}/V	0.54	0.44	0.34	0.28	0.26
f/kHz	6. 500	6. 700	7. 000		
V_{Rpp}/V	0.22	0.20	0.18		

$R=600\Omega$ $V_{ipp}=1.80V$ 时的数据:

f/kHz	3. 000	3. 200	3. 400	3. 600	3. 800
V_{Rpp}/V	0.19	0.21	0.24	0.29	0.34
f/kHz	4. 000	4. 200	4. 400	4. 600	4. 800
V_{Rpp}/V	0.41	0.52	0.68	1.00	1.50
f/kHz	4. 850	4. 900	4. 920	4. 940	4. 960
V_{Rpp}/V	1.60	1.68	1.72	1.74	1.72
f/kHz	4. 980	5. 000	5. 050	5. 100	5. 300
V_{Rpp}/V	1.70	1.67	1.60	1.50	1.10
f/kHz	5. 500	5. 700	5. 900	6. 100	6. 300
V_{Rpp}/V	0.80	0.60	0.48	0.42	0.36
f/kHz	6. 500	6. 700	7. 000		

f/kHz	3. 000	3. 200	3. 400	3. 600	3. 800
V_{Rpp}/V	0.32	0.30	0.26		

算得 $R=400\Omega$ 时I随频率的变化:

f/kHz	3. 000	3. 200	3. 400	3. 600	3. 800
I/mA	0.35	0.375	0.425	0.5	0.6
f/kHz	4. 000	4. 200	4. 400	4. 600	4. 800
I/mA	0.725	0.9	1.2	1.8	3.125
f/kHz	4. 850	4. 900	4. 920	4. 940	4. 960
I/mA	3.575	3.95	4	4.025	4
f/kHz	4. 980	5. 000	5. 050	5. 100	5. 300
I/mA	3.9	3.75	3.45	3	1.9
f/kHz	5. 500	5. 700	5. 900	6. 100	6. 300
I/mA	1.35	1.1	0.85	0.7	0.65
f/kHz	6. 500	6. 700	7. 000		
I/mA	0.55	0.5	0.45		

算得 $R=600\Omega$ 时I随频率的变化:

f/kHz	3. 000	3. 200	3. 400	3. 600	3. 800
I/mA	0.317	0.35	0.4	0.483	0.567

f/kHz	3. 000	3. 200	3. 400	3. 600	3. 800
f/kHz	4. 000	4. 200	4. 400	4. 600	4. 800
I/mA	0.683	0.867	1.133	1.667	2.5
f/kHz	4. 850	4. 900	4. 920	4. 940	4. 960
I/mA	2.667	2.8	2.867	2.9	2.867
f/kHz	4. 980	5. 000	5. 050	5. 100	5. 300
I/mA	2.833	2.783	2.667	2.5	1.833
f/kHz	5. 500	5. 700	5. 900	6. 100	6. 300
I/mA	1.333	1	0.8	0.7	0.6
f/kHz	6. 500	6. 700	7. 000		
I/mA	0.533	0.5	0.433		

利用ORIGIN作图如下

 $R=400\Omega$ 时, $I_{max}=4.025mA$, $I=rac{I_{max}}{\sqrt{2}}=2.846mA$ 。在曲线上作出I=2.846mA直线之后读取横坐标为4.751kHz、5.134kHz。则通频带宽度 $\Delta f=(5.134-4.751)kHz=383Hz$ 从图中读取到谐振频率 $f_0=4.94kHz$,而理论值 $f_0=rac{1}{2\pi\sqrt{LC}}=rac{1}{2 imes 3.14 imes \sqrt{0.2 imes 5 imes 10^{-9}}}=5035Hz$ 。

由此得到相对误差 $\mid rac{5.035-4.94}{5.035} \mid imes 100\% = 1.89\%$

$$R=600\Omega$$
时, $I_{max}=2.9mA$, $I=rac{I_{max}}{\sqrt{2}}=2.051mA$ 。

在曲线上作出I=2.051mA直线之后读取横坐标为

4.691kHz, 5.227kHz

则通频带宽度 $\Delta f = (5.227 - 4.691)kHz = 536Hz$

从图中读取到谐振频率 $f_0=4.94kHz$, 而理论值 $f_0=rac{1}{2\pi\sqrt{LC}}=$

$$rac{1}{2 imes 3.14 imes \sqrt{0.2 imes 5 imes 10^{-9}}}=5035 Hz$$
 .

由此得到相对误差 $\mid rac{5.035-4.94}{5.035} \mid imes 100\% = 1.89\%$

③测量谐振状态时 V_{cpp} 、 V_{Lpp} 的值

$$R = 400\Omega, V_{Rppmax} = 1.61V, V_{ipp} = 1.80V$$
得到 $V_{cpp} = 21.0V, V_{Lpp} = 22.0V$

$$R=600\Omega, V_{Rppmax}=1.74V, V_{ipp}=1.80V$$
得到 $V_{cpp}=16.4V, V_{Lpp}=16.5V$

④计算Q值

$$R=400\Omega$$
时

$$egin{aligned} Q_1 &= rac{\omega_0 L}{R+R_L} = rac{2\pi imes 4940 imes 0.2}{400+80} = 12.93 \ Q_2 &= rac{1}{\omega_0 (R+R_L)C} = rac{1}{2\pi imes 4940 imes (400+80) imes 5 imes 10^{-9}} = 13.42 \ Q_3 &= rac{V_L}{V_i} = rac{22}{1.80} = 12.22 \ Q_4 &= rac{V_C}{V_i} = rac{21}{1.8} = 11.67 \ Q_5 &= rac{f_0}{\Delta f} = rac{4940}{383} = 12.90 \ Q_6 &= rac{1}{R+R_L} \sqrt{rac{L}{C}} = rac{1}{400+80} \sqrt{rac{0.2}{5 imes 10^{-9}}} = 13.18 \end{aligned}$$

i	1	2	3	4	5	6
Q_i	12.93	13.42	12.22	11.67	12.90	13.18

$$R=600\Omega$$
时

$$egin{align*} R = 600424, \ Q_1 = rac{\omega_0 L}{R+R_L} = rac{2\pi imes 4940 imes 0.2}{600+80} = 9.13 \ Q_2 = rac{1}{\omega_0 (R+R_L)C} = rac{1}{2\pi imes 4940 imes (600+80) imes 5 imes 10^{-9}} = 9.48 \ Q_3 = rac{V_L}{V_i} = rac{16.5}{1.80} = 9.17 \ Q_4 = rac{V_C}{V_i} = rac{16.4}{1.80} = 9.11 \ Q_5 = rac{f_0}{\Delta f} = rac{4940}{536} = 9.22 \ Q_6 = rac{1}{R+R_L} \sqrt{rac{L}{C}} = rac{1}{600+80} \sqrt{rac{0.2}{5 imes 10^{-9}}} = 9.30 \ \end{align}$$

i	1	2	3	4	5	6
Q_i	9.13	9.48	9.17	9.11	9.22	9.30

• 分析可得到如下结论:

- ①Q表征了电路的储能效率,谐振时当L、C相等时,电阻大的电路Q低
- ②Q表征了电路的选频特性,R小的电路I的峰值较大,通带窄,选频特性好

• 误差分析

①测得的谐振频率比理论值低的原因: 电路中存在分布电容、分布电感。电阻器接入电路的阻值均依靠密绕线圈实现, 而密绕线圈在通交流电时会体现出明显的电感阻抗; 同时, 连接信号源及

示波器的同轴线缆也会在交变电路中体现出电容特性。

- ②品质系数Q的不同结果: $Q=rac{\omega_0 L}{R+R_L}$ 得到的结果是较为准确的,可信度高
- ③示波器的测量精度不高,估读误差较大,导致实验数据误差较大