Solutions to HW3 of Math 103A, Fall 2018

P.38 Q4

 \mathscr{G}_3 is the first axiom that does not hold. Because clearly the product in \mathbb{Q} is associative and has identity 1. But $0 \in \mathbb{Q}$ does not have an inverse since for any $x \in \mathbb{Q}, 0 \cdot x = 0$.

Q19

a. To show that * gives a binary operation on S, we only need to show that for any $a, b \in S$, $a*b \in S$. Suppose not, then $a*b \notin S$ for some $a,b \in S$, which means $a,b \neq -1$ are real numbers but -1 = a*b = a+b+ab. Then

$$0 = a + b + ab + 1 = (a+1)(b+1).$$

Thus either a = -1 or b = -1, a contradiction. So * gives a binary operation on S.

b. For \mathscr{G}_1 , $\forall a, b, c \in S$,

$$(a * b) * c = (a + b + ab) * c$$

= $(a + b + ab) + c + (a + b + ab)c$
= $a + b + c + ab + ac + bc + abc$.

$$a * (b * c) = a * (b + c + bc)$$

= $a + (b + c + bc) + a(b + c + bc)$
= $a + b + c + ab + bc + ac + abc$.

Thus (a * b) * c = a * (b * c), and \mathcal{G}_1 holds. For \mathcal{G}_2 , $\forall a \in S$,

$$0 * a = 0 + a + 0 \cdot a = a.$$

As * is clearly commutative, a*0=0*a=a, and thus (S,*) has identity 0. For \mathcal{G}_3 , $\forall a \in S$, we try to solve $b \in S$ so that

$$0 = a * b = a + b + ab.$$

So

$$b(1+a) = -a, \quad b = -\frac{a}{1+a}.$$

Thus a has inverse $-\frac{a}{1+a}$, which makes sense as $a \neq -1$. Therefore (S,*) is a group.

$\mathbf{Q30}$

a. Clearly for nonzero $a, b \in \mathbb{R}$, $a * b = |a|b \neq 0$. So * gives a binary operation on \mathbb{R}^* . For any $a, b, c \in \mathbb{R}^*$,

$$(a*b)*c = (|a|b)*c = ||a|b|c = |ab|c = |a|(|b|c) = a*(|b|c) = a*(b*c).$$

Thus * is associative.

b. 1 is a left identity as for any $a \in \mathbb{R}^*$,

$$1 * a = |1|a = 1 \cdot a = a.$$

For any $a \in \mathbb{R}$, 1/|a| is its right inverse since

$$a * \frac{1}{|a|} = |a| \frac{1}{|a|} = 1.$$

c. $(\mathbb{R}^*,*)$ is not a group since if it is, then 1 should be a right identity. But for a=-2,

$$a * 1 = |a| \cdot 1 = 2 \neq a$$
,

a contradiction. Thus $(\mathbb{R}^*,*)$ is not a group.

d. We can prove that if (S, *) is associative and has a left (resp. right) identity and for any element there is a left (resp. right) inverse, then (S, *) is a group. But if we only have a left identity and right inverses for any elements, we cannot say (S, *) is a group.

Q32

For any $a, b \in G$,

$$e = (a * b) * (a * b).$$

So

$$(a*b)^{-1} = a*b.$$

By Corollary 4.18,

$$(a*b)^{-1} = b^{-1} * a^{-1} = b * a.$$

Thus

$$a * b = (a * b)^{-1} = b * a.$$

Or we can still start from the equation

$$e = (a * b) * (a * b) = a * (b * a) * b.$$

And then multiply a on the left for both sides

$$a = (b * a) * b.$$

Multiplying b on the right for both sides, we have

$$a * b = b * a$$
.

 $\mathbf{Q35}$

Suppose

$$(a*b)^2 = a^2 * b^2.$$

Then

$$a * (b * a) * a = (a * b) * (a * b) = (a * b)^{2} = a^{2} * b^{2} = a * (a * b) * b.$$

Multiplying a^{-1} on the left and then multiplying b^{-1} on the right, we have

$$b*a = a*b.$$

 $\mathbf{Q36}$

Since a * b * c = e, $b * c = a^{-1}$. By the definition of inverses,

$$e = a^{-1} * a = (b * c) * a = b * c * a.$$

P.55 Q2

 \mathbb{Q}^+ is not a subgroup of $(\mathbb{C}, +)$.

Because for example $x = 1 \in \mathbb{Q}^+$, but the inverse of 1 under addition in \mathbb{C} is -1 which is not in \mathbb{Q}^+ . Thus by Theorem 5.14 (on P.52), \mathbb{Q}^+ is not a subgroup of $(\mathbb{C}, +)$.

$\mathbf{Q3}$

 $7\mathbb{Z}$ is a subgroup of \mathbb{C} under addition.

First, for any $x, y \in 7\mathbb{Z}$, by definition, x = 7k, y = 7l for some integers k, l. Then $x + y = 7k + 7l = 7(k + l) \in 7\mathbb{Z}$ and thus $7\mathbb{Z}$ is closed under addition.

0 is the identity of addition in $\mathbb C$ and is also in $7\mathbb Z$.

For any $x = 7k \in 7\mathbb{Z}$, the inverse of x is -x = 7(-k), which is in $7\mathbb{Z}$. By Theorem 5.14, $7\mathbb{Z}$ is a subgroup of \mathbb{C} under addition.

Q39

- **a.** True
- **b.** False
- c. True
- **d.** False (Consider the group with only one element: $G = \{e\}$.)
- e. False
- **f.** False
- g. False
- **h.** False
- i. True
- j. False

Q41

For every $g', h' \in \phi[H]$, by definition, $g' = \phi(g), h' = \phi(h)$ for some $g, h \in H$. Since $g * h \in H$ and ϕ is a homomorphism,

$$g' *' h' = \phi(g) *' \phi(h) = \phi(g * h) \in H.$$

So $\phi[H]$ is closed under *'. And we have proved that ϕ carries identity e in G to the identity e' in G', i.e., $e' = \phi(e) \in \phi[H]$. For any $h' = \phi(h) \in \phi[H]$, where $h \in H$, since

$$\phi(h^{-1}) *' h' = \phi(h^{-1} * h) = \phi(e) = e' = \phi(h * h^{-1}) = h' *' \phi(h^{-1}),$$

 $\phi(h^{-1})$ is the inverse of h' in G' and $\phi(h^{-1})$ is in $\phi[H]$. Thus by theorem 5.14, $\phi[H]$ is a subgroup.

$\mathbf{Q43}$

First for any $hk, h'k' \in HK$, where $h, h' \in H, k, k' \in K$,

$$(hk)(h'k') = (hh')(kk') \in HK$$

as G is abelian. Thus HK is closed under the binary operation of G. Since H, K are subgroups of G, the identity $e \in H, e \in K$ and thus $e = ee \in HK$. Finally, for any $hk \in HK$, where $h \in H, k \in K$, $h^{-1} \in H$ and $k^{-1} \in K$ as H, K are subgroups. Since

$$(h^{-1}k^{-1})hk = (h^{-1}h)(k^{-1}k) = e,$$

 $(h^{-1}k^{-1})$ is the inverse of hk and is also in HK. By theorem 5.14, HK is a subgroup.

Q51

First, for any $x, y \in H_a$,

$$(xy)a = x(ya) = x(ay) = (xa)y = (ax)y = a(xy).$$

Thus $xy \in H_a$. Since

$$ea = ae = a$$
,

 $e \in H_a$. For any $x \in H_a$, since

$$xa = ax$$

we have

$$ax^{-1} = x^{-1}xax^{-1} = x^{-1}axx^{-1} = x^{-1}a.$$

Thus $x^{-1} \in H_a$. By theorem 5.14, H_a is a subgroup.