Analyse univariée (partie 2)

Vincent Audigier vincent.audigier@lecnam.net

CNAM, Paris

STA101 2019-2020

Introduction

- Une série statistique peut être présentée par des tableaux ou des représentations graphiques
- La façon de présenter cette série dépend de la nature de la variable
- Ces représentations sont riches, mais peu pratiques quand le nombre de variables devient grand
- Besoin d'une description plus synthétique

Indicateurs

Pour une variables quantitative X, on complète la description de la série par des résumés numériques :

- indicateurs de tendance centrale (ou de position)
- indicateurs de dispersion
- indicateurs de forme

Plan

Introduction

Indicateurs de tendance centrale

Indicateurs de dispersion

Indicateurs de forme

Indicateur de tendance centrale

- ▶ Pour une variable quantitative X, la description de la série de données x₁,...,x_n peut être complétée par des indicateurs de tendance centrale
- Pour définir un indicateur :
 - Choisir une mesure d'erreur locale

$$d(x_i, c)$$

Puis choisir un critère global

$$J(c) = \frac{1}{n} \sum_{i=1}^{n} d(x_i, c)$$

Minimiser ce critère

Moyenne empirique

$$d(x_i, c) = (x_i - c)^2$$
 $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$

► Géométriquement : \bar{x} est le centre de gravité des n points définis par la série, affecté du même poids 1/n

Sensibilité aux valeurs aberrantes¹

Moyenne empirique

On peut généraliser la moyenne empirique au cas où les individus ont des poids différents

Soit $p_1, p_2, ..., p_n$ le poids de chaque individu, alors la moyenne empirique s'écrit

$$\sum_{i=1}^n p_i x_i$$

propriété de linéarité de la moyenne empirique : pour $a,b,\in\mathbb{R}$

$$\overline{ax + b} = a\bar{x} + b$$

Médiane empirique

$$d(x_i,c)=|x_i-c|$$

La médiane empirique, notée \tilde{x} , est définie comme un réel partageant la série en deux groupes de même effectif

- Si n est impair, alors la médiane empirique est l'observation au centre de la série ordonnée
- Si n est pair, alors on peut choisir le milieu de l'intervalle $]x_{(n/2)};x_{(n/2+1)}[$

$$\tilde{X} = \frac{X_{(n/2)} + X_{(n/2+1)}}{2}$$

$$\xrightarrow{1 \quad 3 \quad 5} \quad 8 \quad 10$$

$$\xrightarrow{X_{(1)}} \quad \tilde{X} \quad \tilde{X} \quad X_{(5)}$$

- La moitié des observations sont supérieures (inférieures) à \tilde{x}
- Robuste aux valeurs aberrantes

Quantiles empiriques

On appelle **quantiles empiriques** les valeurs partageant la série ordonnée en un certain nombre de parties de même effectif

- en deux parties : médiane (ou Q(1/2))
- ▶ en 4 parties : les quartiles, notés Q(1/4), Q(1/2), Q(3/4)
- en dix parties : les déciles, notés Q(1/10), Q(2/10),..., Q(9/10)
- en cent parties : les percentiles, notés Q(1/100), Q(2/100),..., Q(9/100)

Pour 0 < q < 1, le **quantile empirique** d'ordre q, noté Q(q), est défini par

$$Q(q) = \left\{egin{array}{ll} rac{x_{(nq)} + x_{(nq+1)}}{2} & ext{si } nq ext{ est un entier} \ x_{(\lceil nq
ceil + 1)} & ext{sinon} \end{array}
ight.$$

Moyenne des valeurs extrêmes

Les valeurs $x_{(1)}$ et $x_{(n)}$ sont respectivement l'observation extrême inférieure et supérieure de l'échantillon.

$$J(c) = \sup_{1 \le i \le n} |x_i - c| \qquad \frac{x_{(1)} + x_{(n)}}{2}$$

 Géométriquement : point au milieu du domaine de variation des observations

Sensible aux valeurs aberrantes

Plan

Introduction

Indicateurs de tendance centrale

Indicateurs de dispersion

Indicateurs de forme

Variance empirique

$$s_X^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

Propriétés : $s_V^2 = \overline{x^2} - \overline{x}$

$$s_X^2 = \overline{x^2} - \overline{x}^2$$
 $s_{aX+b}^2 = a^2 s_X^2$

- $s_X = \sqrt{s_X^2}$ est appelé écart-type (empirique)
- limite : la variance doit toujours se comparer à la valeur moyenne : une variance de 10 pour $\overline{x} = 12$ ou $\overline{x} = 200$ n'a pas la même signification.

Exemple

-		max03	6L	T12	T15	Ne9	Ne12	Ne15	6×A	V×12	Vx15	max03v
_	écart-type	28.2	3.1	4.0	4.5	2.6	2.3	2.3	2.6	2.8	2.8	28.3
	moyenne	90.3	18.4	21.5	22.6	4.9	5.0	4.8	-1.2	-1.6	-1.7	90.6

Coefficient de variation empirique / étendue

Le coefficient de variation empirique

$$CV = \frac{s_{\chi}}{\overline{\chi}}$$

- Il s'agit d'un indicateur sans dimension
- ► En pratique, on utilise le seuil de 0.15 pour établir une faible/forte variabilité

	max03	Т9	T12	T15	Ne9	Ne12	Ne15	6×A	Vx12	Vx15	max03v
écart-type	28.2	3.1	4.0	4.5	2.6	2.3	2.3	2.6	2.8	2.8	28.3
moyenne	90.3	18.4	21.5	22.6	4.9	5.0	4.8	-1.2	-1.6	-1.7	90.6
CV	0.3	0.2	0.2	0.2	0.5	0.5	0.5	-2.2	-1.7	-1.7	0.3

Etendue

L'étendue est la différence des valeurs extrêmes $E = x_{(n)} - x_{(1)}$

- c'est un indicateur très sensible aux valeurs aberrantes
- utilisé en contrôle qualité pour détecter les valeurs aberrantes

Distance inter-quartile

$$Q(3/4) - Q(1/4)$$

► Elle est robuste vis-a-vis des valeurs aberrantes

Exemple:

Table: Indicateurs pour la variable maxO3

Représentation graphique

La boîte à moustaches ou "boxplot"

Figure: Principe de construction de la boîte à moustaches

La boîte correspond à l'intervalle de valeurs [Q(1/4), Q(3/4)]. On y adjoint la valeur de la médiane Q(1/2) (et parfois aussi celle de la moyenne)

Centrage-réduction

Le centrage réduction d'une série est très pratique pour situer une valeur parmi les autres.

$$z_i = \frac{x_i - \bar{x}}{s_x}$$

- le centrage permet de voir directement si une valeur est supérieure ou inférieure à la moyenne
- la réduction permet de voir rapidement les valeurs au-delà de deux écart-type et de comparer les valeurs sur des variables différentes

	max03	6L	T12	T15	max03	6L	T12	T15
20010601	87.00	15.60	18.50	18.40	-0.12	-0.88	-0.75	-0.93
20010602	82.00	17.00	18.40	17.70	-0.29	-0.44	-0.77	-1.09
20010603	92.00	15.30	17.60	19.50	0.06	-0.98	-0.97	-0.69
20010604	114.00	16.20	19.70	22.50	0.84	-0.69	-0.45	-0.03
20010605	94.00	17.40	20.50	20.40	0.13	-0.31	-0.25	-0.49
20010606	80.00	17.70	19.80	18.30	-0.37	-0.21	-0.43	-0.96
moyenne	90.30	18.36	21.53	22.63	0	0	0	0
ecart-type	28.19	3.12	4.04	4.53	1	1	1	1

Table: extrait de ozone : données brutes (à gauche) et centrées réduites (à droite)

Eléments d'interprétation

Inégalité de Bienaymé-Tchebychev

$$P(|z| \ge 2) \le 25\%$$

▶ Pour une loi normale centrée-réduite

$$P(|z| > 1.96) = 5\%$$

 Les valeurs centrées-réduites supérieures à 2 sont remarquables

Plan

Introduction

Indicateurs de tendance centrale

Indicateurs de dispersion

Indicateurs de forme

Coefficient d'asymétrie

Le coefficient d'asymétrie de Fisher

$$\gamma_1 = \frac{1}{n} \sum_{i=1}^n \left(\frac{x_i - \overline{x}}{s_X} \right)^3$$

- 0 pour une série dont la répartition est symétrique (e.g. loi normale)
- > 0 si la queue de la distribution est à droite (e.g. loi exponentielle)
- < 0 si la queue de la distribution est à gauche</p>
- Sensible aux valeurs aberrantes

Coefficient d'aplatissement

Le coefficient d'aplatissement de Fisher

$$\gamma_2 = \frac{1}{n} \sum_{i=1}^n \left(\frac{x_i - \overline{x}}{s_X} \right)^4 - 3$$

- Sert à comparer la concentration des valeurs à celle d'une loi normale centrée pour laquelle ce coefficient vaut 3
- > 0 signifie distribution plus concentrée ou plus pointue que la Gaussienne
- < 0 signifie distribution plus aplatie que la Gaussienne</p>
- Sensible aux valeurs aberrantes

Exemple

	γ_{1}	γ_2
maxO3	1.00	0.29
Т9	0.62	0.18
T12	0.78	0.21
T15	0.59	-0.26
Ne9	-0.50	-1.10
Ne12	-0.68	-0.48
Ne15	-0.49	-0.76
Vx9	-0.17	-0.54
Vx12	0.48	0.18
Vx15	0.08	-0.22
maxO3v	0.97	0.23

Conclusion

- L'analyse univariée permet d'apprécier les caractéristiques de chacune des variables en les résumant
- Elle s'effectue différemment selon la nature des variables
- Cette analyse peut être effectuée sous forme de tableaux, graphiques ou indicateurs
- Elle est indispensable pour pouvoir repérer d'éventuelles anomalies dans les données ou identifier des valeurs particulières