

X-Pack Machine Learning: Workshop

Rich Collier
Solutions Architect
@richcollier

Extensions for the Elastic Stack

Security	Alerting	Monitoring
Reporting	Graph Analytics	Machine Learning

Anomaly Detection: Concept of Anomaly

Terminology

Machine Learning

 Broad term, but X-Pack Machine Learning is automated anomaly detection for time-series data (for now).

Anomaly Detection (not "bad activity")

Discovery of what's "weird" or "different", not what's "bad"

Unsupervised Learning

Learning without human-labeled examples (without being "taught"). Rely only on the data

Distributed Bayesian

 An approach based on probability in which prior results are used to calculate probabilities of certain present or future events

What's abnormal here?

Why?

What's abnormal here?

Why?

What is "Normal"?

In general, this question can be answered in two ways:

1) Something behaves in a consistent way with respect to itself, over time

2) Something behaves in a consistent way compared against similar entities

1) If something changes its behavior, compared to its own history – that change is **anomalous**.

2) If something is drastically different that others within a population, then that entity is **anomalous**.

2) If something is drastically different that others within a population, then that entity is **anomalous**.

There's also the concept of being "somewhat anomalous"

In Summary, Anomalousness is:

1) When an entities' *behavior changes* significantly and suddenly

2) When an entity is drastically *different than others* within a population

How to Learn "Normal"

How does one pick a model?

source: "Doing Data Science O'Neil & Schutt

Machine Learning picks it for you

 ML uses sophisticated machinelearning techniques to best-fit the right statistical model for your data.

Better models = better outlier detection
 less false alarms

 Anomalies occur when observation is in low probability area

The Model's Evolution in Time

After 2 full days, daily periodicity has been learned.

After 2 full weeks, weekly periodicity has been learned.

Process Deep dive

Sequence Diagram

Analysis, by "bucket"

- The time span between t_n and t_{n-1} is called the "bucket_span"
- ML queries Elasticsearch every bucket_span for the last bucket_span's worth of data*
- Anomalies, if found, are produced in increments of bucket_span, but given a timestamp of t_{n-1}

^{*}unless a large chunk of historical data is being analyzed

Analysis, by "bucket"

Analysis, by "bucket"

3가지 타입의 이상 징후를 탐지 (Important)

- Time series 과거와 다른 행동 패턴 (by)
- Profiling Outliers in population (using entity profiling) : 비슷한 다른 것들에 비교해서 다른 행동 패턴 (over)
- Rare / unusual rates in "categories" of events : 보기 드문 행동 패턴 (rare)

* 몇 십년 경험을 가진 시스템 아키텍트/관리자 및 보안 전문가의 노우하우(Know-How)를 시뮬레이션

Time – Single Metric

Recap:

- We have two relevant definitions of anomalousness.
 - change with respect to self as a function of time
 - relative difference compared to peers within a population

 We know that we can "learn" normal merely by observing data over time and building a probabilistic model

- The accuracy of the model is important, but fortunately, ML can do the hard work of proper model selection for you
 - But, you need to first select the features of the data to model

Situation:

Your data:

```
2016/02/08 06:20:43 INFO [http-8680]: FareQuoteImpl - FareQuoteImpl.getFare(AAL): exiting: 92.5638
2016/02/08 06:20:44 INFO [http-8680]: FareQuoteImpl - FareQuoteImpl.getFare(JZA): exiting: 990.4628
2016/02/08 06:20:46 INFO [http-8680]: FareQuoteImpl - FareQuoteImpl.getFare(JBU): exiting: 877.5927
...
```

Question: How can we use ML to find out what's unusual in this data?

Feature Selection

 Which attributes of a this data could be used to judge its unusualness?

raw logs

2016/02/08 06:20:43 INFO [http-8680]: FareQuoteImpl - FareQuoteImpl.getFare(AAL): exiting: 92.5638

2016/02/08 06:20:44 INFO [http-8680]: FareQuoteImpl - FareQuoteImpl.getFare(JZA): exiting: 990.4628

2016/02/08 06:20:46 INFO [http-8680]: FareQuoteImpl - FareQuoteImpl.getFare(JBU): exiting: 877.5927

feature 1 (categorical)

feature 2 (metric)

ingest

document

```
"_index": "farequote",
"_type": "response",
"_id": "AVNQ1__XRcuaRiYtw-jH",
"_score": 3.290889,
"_source": {
  "sourcetype": "farequote",
  "airline": "AAL",
  "responsetime": "92.5638",
  "time": "2016-02-08T06:20:43+0000"
```


What Kinds of Questions Can be Answered?

QUESTION	ANSWERABLE?
Is there an unusual amount of requests per unit time (total)?	Yes
Is there any particular airlines with unusual amounts of requests per unit time?	Yes
Is the <i>total</i> response time of <i>all</i> API calls unusually long?	Yes
Is the response time of API calls <i>per airline</i> unusually long?	Yes
Are there any airlines with excessive take- off delays?	No Let's
	OI

In Kibana: How to Answer that Question

"I want to know unusual high response times per airline"

In ML: Very similar

"I want to know

Exploring Results with Anomaly Explorer View

Explorer View of a Job

click here

or here

Anomaly Explorer

Concept: What is an Influencer?

- An Influencer is a field, selected at configuration time, that would be a logical entity "to blame" if an anomaly were to exist
- Doesn't have to be a field in the actual detector, but fields used to split the data are often good candidates
- Will get its own score based upon how influential that entity is on the anomaly

Scoring

- Overall Job score is 90
 - How unusual is that bucket, given all airlines?
- Detector score is 98
 - How unusual is the response time of airline=AAL?
- airline=AAL is the top influencer in this time range
 - 98 is the max anomaly score
 - 102 is the sum of anomaly scores in this time range

Anomaly Details

view of

response

Time: Multi-Metric

1) Create new job

2) Choose multi metric

3) pick farequote index

From a New Search, Select Index

- 4) choose
- event rate, count
- responsetime, max
- 5) select 10m for bucket span
- 6) Split Data by airline (influencer for airline is chosen for you)
- 7) click "use full farequote data"
- 8) name job "farequote_multi"

10) See animated learning

11) click "View Results"

12) Result:

anomalies for AAL in both count and response time

Rare / Population Cases

Rare Analysis

- Finding items that rarely occur is also often useful
 - Rarely occurring log messages
 - Rare running process names
 - Rare connection destinations
- ML has a rare function, but it should be noted that:
 - It is relative, i.e. it takes into account the frequency of other field values, and
 is not an absolute measure of rarity based on, for example, the bucket length.
 - If rare was an absolute measure regardless of other field values, the result would be excessively noisy if there were many sparse field values per bucket length.
 - Therefore it works best when there are plenty of routine messages to contrast the rare ones

Example of Rare Analysis

- Use Case: Security team @ services company
- Wanted to profile typical processes on each host using netstat

```
Active Internet connections (servers and established)
(index=netstat host="ids01-dc2" State=LISTEN (7/16/13 1:32:51AM))
                                                                                          PID/Program name
Proto Recv-O Send-O Local Address
                                                 Foreign Address
                                                        0.0.0.0:*
                    0 10.220.174.41:561
                                                                             LISTEN
                                                                                         8776/argus
                    0 0.0.0.0:22
                                                        0.0.0.0:*
                                                                             LISTEN
                                                                                         2033/sshd
tcp
                    0 0.0.0.0:1241
                                                        0.0.0.0:*
                                                                             LISTEN
                                                                                         4472/nessusd
                                                        0.0.0.0:*
                    0 0.0.0.0:8089
                                                                             LISTEN
                                                                                         4238/splunkd
                    0 127.0.0.1:25
                                                        0.0.0.0:*
                                                                             LISTEN
                                                                                         4194/master
tcp
                                                                                         4361/python
tcp
                    0 0.0.0.0:8000
                                                        0.0.0.0:*
                                                                             LISTEN
                                                        0.0.0.0:*
                    0 0.0.0.0:8834
                                                                             LISTEN
                                                                                         4472/nessusd
                                                        0.0.0.0:*
                                                                                         2022/snmpd
```

 Goal was to identify rare processes that "start up and communicate" for each host, individually

Example of Rare Analysis

detector: rare by ProgramName partition_field=host

Categorization

- Application log events are often unstructured and contain variable data
- Example:
 - 07 Oct 2014 11:02:12 BST [qtp1362038001-155]
 INFO com.prelert.rs.resources.Data Decompressing post data in job = 20141007104700-00016
- Categorization uses machine learning to observe the static parts of the message, cluster similar messages together, and classify (categorize) them in to message categories.
- Knowing the type of the message enables anomaly detection based on count or rarity of the message type.

Categorization Example

Given the following log messages, indexed:

```
"_index": "it_ops_logs",
"_type": "logs",
' id": "AVkDPcnTt9AfBqqy7XyS",
 score": 1,
" source": {
 "@timestamp": "2016-02-08T15:21:06.000Z",
  "message": "Opening Database = DRIVER={SQL Server}; SERVER=127.0.0.1; network=dbmssocn; address=127.0.0.1 1433; DATABASE=svc prod; Trusted Connection=Yes; AnsiNFW=No; dbhost=dbserver.a
" index": "it ops logs",
' type": "logs",
"_id": "AVkDPcnTt9AfBggy7XyU",
 score": 1.
" source": {
 "@timestamp": "2016-02-08T15:21:23.000Z",
 "message": "REC Not INSERTED [DB TRAN] Table; dbhost=dbserver.acme.com; physicalhost=esxserver1.acme.com; vmhost=app1.acme.com\r"
"_index": "it_ops_logs",
" type": "logs",
" id": "AVkDPcnmt9AfBqqy7X0P",
 score": 1,
" source": {
 "@timestamp": "2016-02-02T07:36:00.0002",
  "message": "Using: sssvcdbjl.acme.com/svc prod#uid=dbadminl;pwd=####;dbhost=dbserver.acme.com;physicalhost=esxserverl.acme.com;vmhost=appl.acme.com\r"
```


Categorization Example

- Configure an ML job to use:
 - "message" as the categorization_field_name
 - there will be a new, "magic" field called "mlcategory" that is dynamically created by ML to group similar messages together

Categorization Example – count by mlcategory

Anomaly timeline 19:00 Feb 11 11:00 job ID ▼ (Top 10 by max anomaly score) View by: logs ep 08 03:00 Feb 08 19:00 Feb 09 11:00 Feb 10 03:00 Feb 10 19:00 Feb 11 11:00 Feb 01 11:00 Feb 02 03:00 Feb 02 19:00 Feb 03 11:00 Feb 04 03:00 Feb 04 19:00 Feb 05 11:00 Feb 06 03:00 Feb 06 19:00 Feb Anomalies Severity threshold: Interval: warning • Auto time : max severity

detector found for actual typical \$ description : iob ID @ links category examples February 8th 2016, 10:00 A 66 count by micategory micategory 11 49 0.0820658 ♠ More than 100x higher logs Open link - Fail To Connect Database ReActivate Application / Ch February 8th 2016, 10:00 A 66 ♠ More than 100x higher logs Open link - DBMS ERROR: db=10.16.1.63!svc_prod#uid=dbadmin1;pwd=##### count by micategory micategory 10 49 0.0820658 DBMS ERROR: db=svc_prod Err=-17 [Microsoft][ODBC SQL Server Dri February 8th 2016, 10:00 A 43 count by micategory micategory 9 1 0.00336345 ↑ More than 100x higher logs Open link - DB Not Updated [Master] Table;dbhost=dbserver.acme.com;physicall count by micategory micategory 6 1 ♠ More than 100x higher logs Open link - Transaction Match In DB / Duplicate Transaction;dbhost=dbserver.ac February 8th 2016, 09:00 A 8 count by mlcategory mlcategory 6 1 ♠ More than 100x higher logs Open link - Transaction Match In DB / Duplicate Transaction;dbhost=dbserver.ac February 8th 2016, 10:00 A 4 0.081315 Open link - REC Not INSERTED [DB TRAN] Table; dbhost=dbserver.acme.com; phys count by micategory micategory 2 49 ♠ More than 100x higher logs February 8th 2016, 10:00 2 count by mlcategory mlcategory 5 7 ♠ More than 100x higher logs Open link - Opening Database = DRIVER={SQL Server};SERVER=10.16.1.63;network Opening Database = DRIVER=(SOL Server):SERVER=127.0.0.1:network Opening Database = DRIVER=(SOL Server); SERVER=sssvcdbi1.acme.cc February 8th 2016, 10:00 A 2 count by micategory micategory 3 0.0128763 ↑ 78x higher Open link - Using: 10.16.1.63!svc_prod#uid=dbadmin1;pwd=####;dbhost=dbse Using: sssvcdbj1.acme.com!svc_prod#uid=dbadmin1;pwd=####;db Open link - Actual Transaction Not Found In DB To VOID; dbhost=dbserver.acme. February 8th 2016, 06:00 A 2 count by micategory micategory 7 1 0.013673 ↑ 73x higher

◆ 99x higher

Open link - 012 Head Office Link Active 127.0.0.1;dbhost=dbserver.acme.com;ph

February 8th 2016, 10:00 1

count by micategory micategory 4 2

category name

example matching log messags

Who is the Outlier?

 Which attributes of a dog could be used to judge its unusualness?

Population Analysis

- We have already agreed that there are two relevant definitions of anomalousness
 - change with respect to itself as a function of time (temporal)
 - relative difference compared to peers within a population

- If you want Population Analysis, you must select an "over_field_name"
 - The field chosen defines the population
- If "over_field_name" is not chosen, then population analysis is NOT invoked and thus only temporal analysis is invoked

Population Analysis

- Useful when:
 - Entities have high-cardinality (i.e. external IP addresses)
 - Data for specific entities may be sparse in time (individual customers placing orders)
 - The behavior of the population as a whole is mostly homogeneous
- Not appropriate when:
 - Members of the population have vastly different behavior inherently.

Population Analysis

detector: high_count over clientip partition_field_name=status

Real Usecase: Multi-Job!!!

- Using the "it_ops_logs" data set:
 - Create a "count by mlcategory" job for the log events
 - use "message" as the categorization_field_name

- Using the "it_ops_metrics" data set:
 - Create a "mean(metricvalue) by metricname" job for the metrics

View both jobs overlaid in the Explorer View

- Answer
 - For index:it_ops_logs
 - create an advanced job

- make sure you choose "message" for categorization_field_name
- detector is: count with by_field_name of "mlcategory"

- Answer
 - For index:it_ops_metrics
 - create multi-metric job
 - mean of metricvalue split on metricname.keyword

 Your goal is to get this View:

Alerting

Alerting on Single/Multi Metric Jobs

After job configuration, see option for creating a "watch" on the live data:

Alerting on Single/Multi Metric Jobs

Clicking "Apply":

API Control

Controlling ML via API

 Full documentation of API available at https://www.elastic.co/guide/en/x-pack/current/ml-api-quickref.html Docs

API Quick Reference

All machine learning endpoints have the following base:

/_xpack/ml/

The main machine learning resources can be accessed with a variety of endpoints:

- /anomaly_detectors/: Create and manage machine learning jobs
- /datafeeds/: Select data from Elasticsearch to be analyzed
- /results/: Access the results of a machine learning job
- /model snapshots/: Manage model snapshots
- /validate/: Validate subsections of job configurations

/anomaly_detectors/

- · POST /anomaly_detectors: Create a job
- POST /anomaly_detectors/<job_id>/_open: Open a job
- POST /anomaly_detectors/<job_id>/_data: Send data to a job
- GET /anomaly_detectors: List jobs
- · GET /anomaly_detectors/<job_id>: Get job details
- GET /anomaly_detectors/<job_id>/_stats: Get job statistics
- POST /anomaly_detectors/<job_id>/_update: Update certain properties of the job configuration
- POST anomaly_detectors/<job_id>/_flush: Force a job to analyze buffered data
- POST /anomaly_detectors/<job_id>/_close: Close a job
- DELETE /anomaly_detectors/<job_id>: Delete a job

/datafeeds/

- PUT /datafeeds/<datafeed id>: Create a datafeed
- POST /datafeeds/<datafeed id>/ start: Start a datafeed
- · GET /datafeeds: List datafeeds
- GET /datafeeds/<datafeed_id>: Get datafeed details
- GET /datafeeds/<datafeed_id>/_stats: Get statistical information for datafeeds
- GET /datafeeds/<datafeed_id>/_preview: Get a preview of a datafeed

On this page

/anomaly_detectors/

/datareed:

/results/

/model_snapshots/

dildate

* X-Pack Reference: 5.4 (current) \$

Introduction

Installing X-Pack

- Migrating to X-Pack
- * Securing Elasticsearch and Kibana
- * Monitoring the Elastic Stack
- * Alerting on Cluster and Index Events
- Reporting from Kibana
- Graphing Connections in Your Data
- * Profiling your Queries and Aggregations
- Machine Learning in the Elastic Stack
 - Outeralinus
- # Catting Started

Configuring Machine Learning

API Ouick Reference

- * X-Pack Settings
- * X-Pack APIs
- * Troubleshooting
- + Limitation
- * License Management
- * Release Notes

Example API Control

- All major operations are available via API
 - Create/Delete jobs and datafeeds
 - Job control (start/stop)
- Plus actions that are ONLY available via API
 - Model snapshot/restore

```
rintf "\n\n== Creating job... \n"
curl -u elastic:changeme -s -X PUT -H 'Content-Type: application/json' ${JOBS}/${JOB_ID}?pretty -d '{
    "description" : "Unusual responsetimes by airlines",
    "analysis_config" : {
        "detectors" :[{"function":"max", "field_name":"responsetime","by_field_name":"airline"}],
       "influencers" : [ "airline" ]
    'data_description" : {
       "time_field": "@timestamp"
 rintf "\n\n== Creating datafeed... \n"
curl -u elastic:changeme -s -X PUT -H 'Content-Type: application/json' ${DATAFEEDS}/datafeed-${JOB_ID}?pretty -d '{
       job_id" : "'"$JOB_ID"'",
      "scroll_size" : 1000
printf "\n\n== Opening job for ${JOB_ID}... "
curl -u elastic:changeme -X POST ${JOBS}/${JOB_ID}/_open
printf "\n\n== Starting datafeed-${JOB_ID}... "
curl -u elastic:changeme -X POST "${DATAFEED$}/datafeed-${JOB_ID}/_start?start=1970-01-02T10:00:00Z&end=2017-01-01T00:00:00Z
 rintf "\n\n== Finished ==\n\n"
```


DEMO 2 : Operational Intelligence

