UGANDA MARTYRS UNIVERSITY

UNIVERSITY EXAMINATIONS

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES

END OF SEMESTER FINAL ASSESSMENT

SEMESTER I 2023/24

FIRST YEAR EXAMINATIONS FOR BACHELOR OF SCIENCE WITH EDUCATION

(BSc Educ 1 MASAKA CAMPUS)

ELEMENTS OF PROBABILITY AND STATISTICS

MTH 1202

DATE: 14/12/2023

TIME: 2:00 - 5:00pm

TIME: 3 Hours

Instructions

- 1. Carefully read through ALL the questions before attempting.
- 2. ANSWER FOUR (4) Questions (All questions carry equal marks).
- 3. No names should be written anywhere on the examination booklet.
- 4. Ensure that your Reg. number and Course are indicated on all pages of your work.
- 5. Ensure that your work is clear and readable. Untidy work will be penalized.
- 6. Any type of examination Malpractice will lead to automatic disqualification.

QUESTION ONE

(a) Given P(A) = 0.59, P(B) = 0.30 and P(A ∩ B) = 0.21, find

(i) P(A' U B')

4 Marks

(ii) P(A/B')

[4 Marks]

- (b) A, B and C are events in the sample space
 - (i) What is meant by A and B being independent?

2 Marks

(ii) What is meant by conditional probability between A and B?

[2 Marks]

(iii) Show that $P(A \cap B \cap C) = P(A)P(B/A)P(C/A \cap B)$ and what is the expression in case of independence of events? [4 Marks]

(c) A balanced die is rolled. Let A be the event that an even number appears, B the event that a number not greater than 4 shows up and C the event that one of the numbers 2,3 and 4 appears.

(i) Show that A and B are independent.

[5 Marks]

(ii) Are C and A independent?

[4 Marks]

QUESTION TWO

- (a) (i) A random variable X has a Binomial distribution on parameters n and p.
 Write down the probability mass function of X. Show that f(X) satisfies the conditions for a probability mass function.
 [7 Marks]
 - (ii) A fair coin is tossed until a tail appears. Let X denote the number of trials until a tail appears. Show that the probability mass of X is

$$P(X=x)=\frac{1}{2^x},$$

and hence find the distribution function F(X) of X.

[8 Marks]

(b) State the relationship between the distribution function and the probability density function of a random variable. [2 Marks]

The total lifetime (in years) of five-year-old dogs of a certain breed is a random variable whose distribution function is given by

$$F(x) = \begin{cases} 1 - e^{-\frac{1}{12}x} & ; x \ge 0 \\ 0, & \text{elsewhere.} \end{cases}$$

Find the probability that such a five-year-old dog will live anywhere from 12 to 15 years.

Calculate the expected lifetime of such five-year-old dogs.

[8 Marks]

QUESTION THREE

- (a) There are five defective items in a lot of 25 items. A sample of 10 items is taken without replacement. Let X denote the number of defective items in the sample.
 - (i) Write down the probability mass function of X.

[2 Marks]

- (ii) Find the probability that the sample contains exactly two defective items. [4 Marks]
- (iii) Find the probability that the sample contains at most four defective items. [4 Marks]
- (b) A random variable X has a Poisson distribution with probability mass function

$$f(x) = \frac{e^{-\lambda}\lambda^x}{x!}$$
, $x = 0, 1, 2, 3, ...$

Find E[X(X-1)] and hence determine the variance of X.

[7 Marks]

- (c) A certain area in Western Uganda is hit on average by a medium strength earthquake 6 times a year. Assuming the frequency of such earthquakes follows a Poisson distribution, find the probability that the area will be hit by
 - (i) exactly 4 earthquakes.

[4 Marks]

(ii) between 5 and 7 earthquakes.

[4 Marks]

QUESTION FOUR

- (i) Consider $x_1, x_2, x_3, \dots, x_n$ to be values of sample random variables $X_1, X_2, X_3, \dots, X_n$ respectively. Given that random variable $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is a sample mean, show that $E(\overline{X}) = \mu$. [5 Marks]
 - (ii) The weights of packages received by a departmental store are normally distributed with mean of 40 kg and standard deviation of 5 kg. What is the probability that a package received at random and put on the shelf will not exceed the safety limit of the shelf which is 42.5 kg? [8 Marks]
- (b) Thirty students in Physics laboratory make determination of the speed of sound. The average of their determinations is 3330 ms^{-1} and sample standard deviation of 61 ms^{-1} . Find a 90% confidence interval for the true speed of sound in the laboratory at that time. [12 Marks]

QUESTION FIVE

(a) Let $x_1, x_2, x_3, \dots, x_n$ be a random sample, define the sample variance S^2 and show that S^2 can be written in the form

$$S^{2} = \frac{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}{n(n-1)}$$

[8 Marks]

- (b) The variable $\overline{X_1} \overline{X_2}$ has a normal distribution with mean $\mu_1 \mu_2$ and variance $\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$ where n_1 and n_2 are the sample sizes from which $\overline{X_1}$ and $\overline{X_2}$ are computed respectively. Establish a $(1-\alpha)100\%$ confidence interval for $\mu_1 - \mu_2$.
- (c) A car manufacturer has found that on average, it took 80 minutes with a standard deviation of 19 minutes to repair a type of engine after having 60 breakdowns. But with type 2 engine, the average is 90 minutes with a standard deviation of 18 minutes after repairing 70 of them. Find the difference in the true average amount of time it takes to repair these engines with 99% confidence. 9 Marks

End

		-									ADD								
0.0	0.0000	0040	0080	0120	4	_ 5_	- 6	7	8	9	1	2	3	4	5	6	7	8	9
0.1	0.0398	0438	0478	0517	0160	0133	0539	0279	0319	0359	4	8	12	16	20	24	38	32	36
0.2	0.0793	0832	0871	0910	0557	0596	0636	0675	0714	0753	4	8	12	16	20	24	76	32	36
0.3	0.1179	1217	1255	0310	0943	0987	1026	1064	1103	1141	4	8	12	15	19	22	27	31	35
0.4	0.1554	1591	1628	1293	1331	1368	1406	1443	1480	1517	4	8	11	15	19	22	26	30	34
			1020	1664	1700	1736	1772	1806	1844	1879	4	7	11	14	18	22	25	29	32
0.5	0.1915	1950	***	_					4644	100.3	١,	4	**	**	10		-3	-3	34
0.6	0.2257	2291	1985	2019	2054	2088	2123	2157	2190	2224	١.								
0.7	0.2580		2324	2357	2389	2422	2454				3	7	10	14	17	21	24	20	31
	0.2300	2611	2642	2673			2434	2486	2517	2549	3	5	10	13	16	19	23	26	29
0.8					2704	2734	****				3	5	9	12	15	19	22	25	25
v.0	0.2881	2910	2939	2967	2995		2764	2794	2623	2652	3	5	9	12	15	18	21	24	20
					4993	3023					3	5	8	11	14	1.7	20	22	25
0.9	0.3159	3185	3212	3238			3051	3078	3106	3133	3	5	S	11	13	16	19	22	24
				3430	3264	3269					3	5	8	10	13	16	18	21	2/3
							3315	3340	3365	3389	2	5	7	10	12	15	17	20	20
1.0	0.3413	3438	3404	_							1 -	-		1			-		-
	0.0 .20	3430	3461	3485	3508						2	5	7	10	12	14	17	19	20
1.1	0.3643					3531	3554	3577	3599	3621		3	7						
	0.3643	3665	3686	3708			2004	3300	27222	3041	3	•		9	11	13	15	18	20
1					3729	3749	3770		****		2	4	6	8	11	13	15	17	13
1.2	0.3849	3869	3888	3907	3925	3/45	3//0	3790	3810	3530	2	4	6	8	10	12	24	16	13
- 1					2243	****					2	4	6	S	10	11	13	15	1
1.3	0.4032	4049	4066	4082	+222	3944	3962	3980	3997	4015	2	4	5	7	9	11	13	14	I
1.4	0.4192	4207	4222		4099	4115	4131	4147	4162	4177	12	3	5	6	S	10	111	13	1
- 1		1207	7222	4236	4251	4265	4279	4292	4306	4319	1	3	4	6	7	8	10	11	1
1.5	0.4332	4345							0.000		1 -	-		1		-	1		-
1.6	0.4452		4357	4370	4382	4394	4406	4418	4429	4441	1	2	4	5	6	7	s	10	
1.7		4463	4474	4484	4495	4505	4515	4525	4535	4545	li	2	3	4	5	6	1 7		
	0.4554	4564	4573	4582	4591	4599	4608	4616	4625	4633	li	2	3		4		8 "	s	9
1.8	0.4641	4649	4656	4664	4671	4578	4686	4693	4699					3		5	6	7	\$
1.9	0.4713	4719	4726	4732	4738	4744	4750			4706	1	1	2	3	+	*	5	6	4
- 1						42.44	4730	4756	4761	4767	1	1	2	2	3	4		5	1
101	0.4772	4778	4783	4788	4793	4700					1			1			1		
1.1	0.4821	4826	4830	4834		4798	4803	4806	4812	4817	0	1	1	2	2	3	3	4	
1.2	0.4861	4864			4838	4842	4846	4850	4854	4957	0	1	1	2	2 2 2	2	3	3	
.3	0.4893		4868	4871	4875	4878	4881	4884	4337	4890	0	1	1	1	- 3	2	1 2	3	
4		4896	4898	4901	4904	4906	4909	4911.	4913	4915	0	ō	-1	i	ī	2	1 2		
-	0.4918	4920	4922	4925	4927	4929	4931	4932	4934	4936	10	õ						2	
- 1					ŀ				1201	1300	1	0	1	1	1	1	1	2	
.5	0.4938	4940	4941	4943	4945	4946	4948	4949	4054	40.00	ŧ.						1		
.6	0.4953	4955	4956	4957	4959	4960			4951	4952	1			1			1		
.7	0.4965	4966	4967	4968			4961	4962	4963	4964				1			1		
.8	0.4974	4975			4969	4970	4971	4972	4973	4974	1			1			1.		
.9			4976	4977	4977	4978	4979	4979	4980	4981	1			1			1		
	0.4981	4982	4982	4983	4984	4984	4985	4985	4986	4986				1			1		
_		0.000					Control of				1			1			1		
.0	0.4987	4990	4993	4995	4997	4998	4998	4999	4999	5000	1			1					

The table gives $P(z) = \int_0^z \phi(z)dz$

If the random variable Z is distributed as the standard normal distribution N(0,1) then:

- 1. $P(o < Z < z_p) = P(Shaded Area)$
- 2. $P(Z > Z_p) = Q = \frac{1}{2} \cdot P$
- 3. $P(Z > |Z_p|) = 1 2P = 2Q$

Powered by CamScan

The function tabulated is tQ defined by

$$\int_{t_{0}}^{\infty} f(t)dt = Q; \quad f(t) = \frac{(\frac{1}{2}v - \frac{1}{2})!}{\sqrt{(v\pi)(\frac{1}{2}v - 1)!}} \cdot \frac{1}{(1 + \frac{1}{2}\frac{1}{2})^{(v+1)/2}}$$

where f(t) is the probability density of the t-distribution. Interpolation ν -wise should be linear in 120/ ν for ν > 30. Use (i) upper row for one tail-tests

(i) lower row for two tail-tests

If x is a random variable with the t-probability distribution for ν degrees of freedom, the probability that $x > t_Q$ is Q and the probability that $|x| > t_Q$ is 2Q.

The graph shows the form of the distribution for v = 2. The shaded area represents the probability Q. For large v the distribution approximates to the normal distribution N(0,1), shown by the dotted line.

Powered by G CamScan