Biomimicking

Wood: Biocarbon Template

Pyrolized pine (biocarbon template)

EW: early wood

LW: late wood

RC: sap channel

P: pit

SiC ceramic made by pyrolizing pine then Si vapor infiltration

Source: Vogli, E., H. Sieber, and P. Griel. "Biomorphic SiC-ceramic prepared by Si-vapor phaseinfiltration of wood." *Journal of the European Ceramic Society* 22 (2002): 2663. Courtesy of Elsevier. Used with permission.

Wood: Si-SiC composites

Source: Zolfrank, Cordt, and Heino Sieber. "Microstructure and phase morphology of wood derived biomorphous SiSiC-ceramics." *Journal of the European Ceramic Society* 24 (2004): 495. Courtesy of Elsevier. Used with permission.

Biocarbon template of beech, pine

Si-SiC composites made by liquid infiltration of Si into the SiC replicas

Printing honeycomb specimens

Courtesy of Brett Compton and Jennifer Lewis. Used with permission.

Honeycomb specimens

Courtesy of Brett Compton and Jennifer Lewis. Used with permission.

Brett Compton, Jennifer Lewis

Fiber reinforced walls

Trabecular Bone: Metal Foam

Image removed due to copyright restrictions. See Figure 8.1: Gibson, L. J., M. Ashby,et al. *Cellular Materials in Nature and Medicine*. Cambridge University Press, 2010. http://books.google.com/books?id=AKxiS4AKpyEC&pg=PA228

Image removed due to copyright restrictions.

Trabecular bone Muller

Tantalum foam Bobyn et al, 1999

Extracellular matrix: Tissue engineering scaffolds

Images removed due to copyright restrictions. See Figure 8.6: Gibson, L. J., M. Ashby, et al. *Cellular Materials in Nature and Medicine*. Cambridge University Press, 2010.

Leaves, skulls: Sandwich panels

Gibson, L. J., and M. F. Ashby. *Cellular Solids: Structure and Properties*. 2nd ed. Cambridge University Press. © 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.

Palm: Density Gradients

- Can replicate structure of plant materials with density gradients using same methods as for woods
- Projects at MIT on density gradients in foamed cements, using either gravity or centrifugal force to produce density gradient

Density Gradients: Concrete

Source: Cooke, T. G. "Lightweight Concrete: Investigations into the Production of Variable Density Cellular Materials." Ph.D. Thesis. MIT Department of Architecture, 2012.

Animal Quills, Plant Stems

Cylindrical shells with foam/honeycomb core

Grass Karam and Gibson 1995 Porcupine quill

Source: Karam, G. N., and L. J. Gibson. *Int. Journal Solids and Structures* 32 (1995): 1259-83. Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/0020768394001470

Meyers, M. A., P. -Y. Chen, et al. *Progress in Materials Science* 53 (2008): 1–206. Courtesy of Elsevier. Used with permission. http://www.sciencedirect.com/science/article/pii/S0079642507000254

the beak (keratin)

Toucan beak (Meyers et al., 2008)

Milkweed stem

Gibson, L. J., M. Ashby, and B. A. Harley. *Cellular Materials in Nature and Medicine*. © 2010 Cambridge University Press. Figure courtesy of Lorna Gibson and Cambridge University Press.

Blue jay feather

Gibson Ashby and Harley, 2010

Gibson, L. J., M. Ashby, and B. A. Harley. *Cellular Materials in Nature and Medicine*. © 2010 Cambridge University Press. Figure courtesy of Lorna Gibson and Cambridge University Press.

Cylindrical shells with compliant cores

Images removed due to copyright restrictions. See Figures 6 and 19: Milwich, M., et al. *American Journal of Botany* 93 (2006): 1455-65. http://www.amjbot.org/content/93/10/1455.abstract

Cylindrical shells with compliant cores

Images removed due to copyright restrictions. See Figures 1 (No. 1c) and 3 (No. 7c) and Utsunomiya, H., H., et al. *Advanced Engineering Matererials* 10 (2008): 826-29. http://onlinelibrary.wiley.com/doi/10.1002/adem.200800084/abstract

MIT OpenCourseWare http://ocw.mit.edu

 $3.054\ /\ 3.36$ Cellular Solids: Structure, Properties and Applications Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.