Communication Complexity

by Omid Yaghoubi on February 6, 2023

0

» Two-Party Communication Complexity

- * X, Y, Z are finite
- * $f: X \times Y \rightarrow Z$
- * (alice) $x \in X$ and (bob) $y \in Y$
- * f(x, y) = ?

$$\downarrow 0 \uparrow 1 \downarrow 1 \uparrow 0 \downarrow 1$$

» Protocol

- * Specifies whether the execution terminated
- * Specifies what is the output
- Specifies the sender (Alice or Bob)
- * Specifies what message the sender should send next [1]
- * Transcript: The sequence of bits sent back and forth
- * Let $s_{\pi}(x,y)$ denote the transcript $\pi(x,y)$

$$\begin{array}{ll} \textit{A}: & \textit{X} \times \underbrace{\{0,1\}^*}_{\text{Transcript}} \rightarrow \{0,1\} \\ \\ \textit{B}: & \textit{Y} \times \underbrace{\{0,1\}^*}_{\text{Transcript}} \rightarrow \{0,1\} \\ \\ \textit{N}: & \underbrace{\{0,1\}^*}_{\text{Transcript}} \rightarrow \{\textit{A},\textit{B},\textit{STOP}\} \end{array}$$

» Example: Naïve or

OR function

$$OR(x, y) = 1 \Leftrightarrow (x_1 \lor x_2 \lor \dots \lor x_n) \lor (y_1 \lor y_2 \lor \dots \lor y_n) = True$$

- * Alice sends x to Bob
- * Bob computes z = f(x, y) and send z to Alice
- (1) $N(\epsilon) = A$ $\Rightarrow A(00, \epsilon) = 0$
- (2) N(0) = A $\Rightarrow A(00,0) = 0$
- (3) N(00) = B $\Rightarrow B(01,00) = 1$
- (4) $N(001) = STOP \Rightarrow A(00,001) = B(01,001) = 1 = \pi(00,01)$

- * π computes f iff $\forall (x, y) : f(x, y) = \pi(x, y)$
- * Cost: Worst case (over all $(x, y) \in X \times Y$) of $|s_{\pi}(x, y)|$
- * Communication complexity of f: The cost of best π which computes f

$$cost(\pi) \ \coloneqq \ \max_{\{(\pmb{\mathit{x}}.\pmb{\mathit{y}})\in \pmb{\mathit{X}} imes\pmb{\mathit{Y}}:|\pmb{\mathit{x}}|=|\pmb{\mathit{y}}|=\pmb{\mathit{n}}\}} |\pmb{s}_{\pi}(\pmb{\mathit{x}},\pmb{\mathit{y}})|$$

$$D(f) := \min_{\{\pi:\pi \text{ computes } f\}} cost(\pi)$$

» Naïve solution

For every $f: X \times Y \rightarrow Z$:

$$D(f) \leq \lceil \log X \rceil + \lceil \log Z \rceil$$

$$D(f) \le \lceil \log Y \rceil + \lceil \log Z \rceil$$

Upper bound

* Median

 $*P^{cc}$

Upper bound

* Median

* Pcc

» Median problem

* Characteristic vector: $s_i = 1 \Leftrightarrow i \in [s]$

* Input: $[x] \subseteq \{2, 4, \dots, \overline{2n}\}$

* Input: $[y] \subseteq \{1, 3, ..., 2n - 1\}$

* Goal: Median $\{[x] \cup [y]\}$

* Note: $x, y \in \{0, 1\}^n$ (Real inputs!)

* Note: $[x] \cup [y] \subseteq \{1, 2, \dots, 2n\}$

* Naïve : $D(MED) < n + \lceil \log 2n \rceil$

» Median protocol

Claim: $D(MED) \leq O(\log^2 n)$!

Idea: Binary search!

Protocol:

- 1. Suppose $MED(x, y) \in [i, j]$
- 2. $mid = \lfloor \frac{i+j}{2} \rfloor$
- 3. Alice: $R_x = |[mid + 1, j] \cap [x]|$ and $L_x = |[i, mid] \cap [x]|$
- 4. Bob : $R_y = |[mid + 1, j] \cap [y]|$ and $L_y = |[i, mid] \cap [y]|$
- $_{5.}$ Alice $\stackrel{L_{x}, R_{x}}{\longrightarrow}$ Bob
- 6. Bob $\stackrel{L_y, R_y}{\longrightarrow}$ Alice
- 7. Update [i,j] to [i,mid] or [mid+1,j]
- [2]

» Cost of protocol

- * $|L_x| + |R_x| + |L_y| + |R_y| \le 4. \lceil \log 2n \rceil$
- * Number of iterations $\leq O(\log 2n)$
- * Hence $D(MED) < O(\log^2 n)$

Upper bound

* Median

* Pcc

» Pcc

$$P^{cc} \coloneqq \{f : D(f) = O(poly(\log n))\}$$
 $MED \in P^{cc}$

Lower bound

- * EQUALITY
- * Fooling set method

Lower bound

- * EQUALITY
- * Fooling set metho

» EQUALITY

- * $EQ(x, y) = 1 \Leftrightarrow x = y$
- * $D(EQ) \le n+1$ (Naïve)
- * Claim: $D(EQ) \ge n$

» Mix and match lemma

If

$$s_{\pi}(x,y) = s_{\pi}(x',y')$$

then

$$s_{\pi}(x,y) = s_{\pi}(x',y') = s_{\pi}(x,y') = s_{\pi}(x',y)$$

Proof: By induction on length of the transcript.

Intuition: 🙂

» Lower bound for *EQ*

Claim: $D(EQ) \ge n$

- * Assume D(EQ) < n
- * $|\{s : |s| < n\}| = 2^n 1$
- * $2^{n}-1$ distinct transcripts
- * $FS := \{(x, x) : x \in \{0, 1\}^n\}$
- * $|FS| = 2^n$
- * By Pigeonhole Principle: $\exists \{(x,x),(y,y)\} \subseteq FS \text{ s.t } x \neq y \text{ and } s_{\pi}(x,x) = s_{\pi}(y,y)$
- * By previous lemma $\overline{s_{\pi}(\mathsf{x},\mathsf{x})} = \overline{s_{\pi}(\mathsf{y},\mathsf{y})} = \overline{s_{\pi}(\mathsf{x},\mathsf{y})} = \overline{s_{\pi}(\mathsf{y},\mathsf{x})}$
- * Hence EQ(x, x) = EQ(x, y) which is a contradiction

Lower bound

- st Equality
- $* \ \ \text{Fooling set method}$

» Fooling set

$$* FS \subseteq X \times Y$$

- * For all $\{(x, y), (x', y')\} \subseteq FS \Rightarrow f(x, y) = f(x', y')$
- * $f(x,y) \neq f(x',y) \vee f(x,y) \neq f(x,y')$
- $* cost(\pi) \ge \lceil \log |FS| \rceil$

Applications

* Turing machines

Applications

* Turing machines

» **PAL** lowerbound

$$PAL \coloneqq \{ \mathbf{w} \in \{0,1\}^* : \mathbf{w} = \mathbf{w}^R \}$$

Claim: $PAL \in \Omega(n^2)$ (one-tape TM)

Idea: $D(EQ) \ge n \Rightarrow PAL \in \Omega(n^2)$ [1]

» $\mathit{PAL} \in \Omega(\mathit{n}^2)$

$X_1 \dots X_{\frac{n}{3}}$		$X_{\frac{2n}{3}+1}$ X_n	□
First	Middle	Last	
	$\frac{n}{3}$ $\leq i \leq \frac{2n}{3}$		

- $\overline{* EQ(x,y) = 1} \Leftrightarrow x0^m y^R \in PAL$
- * Suppose cross(i) = k
- * Claim: $\exists \pi$ s.t. computes *EQ* and $cost(\pi) \leq k \cdot \lceil \log |Q| \rceil + 1$
- * $D(EQUALITY) \ge m$
- * Hence $k \cdot \lceil \log |Q| \rceil + 1 \ge m$
- * $m = \frac{n}{3} \Rightarrow k \in \Omega(n)$
- * $\frac{n}{3}$ different choices for *i*
- * Hence $PAL \in \Omega(n^2)$

Thank you!

- E. Kushilevitz, "Communication complexity," in *Advances in Computers*, vol. 44, pp. 331–360, Elsevier, 1997.
- A. Rao and A. Yehudayoff, *Communication Complexity:* and *Applications*.

 Cambridge University Press, 2020.