Note per il corso di *Geometria e algebra lineare* 2024-25 LT in Informatica

5 Basi

5.1 Coordinate

Sia V uno spazio vettoriale e $\mathcal{B}=\{v_1,\ldots,v_n\}$ una base (ordinata) di V. Sia $v\in V$. Si ha allora $v=\sum_{i=1}^n x_iv_i$. I coefficienti x_i sono le *coordinate* di v rispetto alla base ordinata \mathcal{B} .

Indicheremo con $T_{\mathcal{B}}(v)$ la n-upla delle coordinate di v rispetto alla base \mathcal{B} (talvolta si usa anche il simbolo $(x_1,\ldots,x_n)_{\mathcal{B}}$ per indicare il vettore v). Si osservi che al cambiare della base le coordinate dello *stesso* vettore, in generale, cambiano.

Esempio. I vettori $v_1=(2,-1,0)$, $v_2=(-1,2,1)$, $v_3=(0,0,1)$ formano una base di \mathbb{R}^3 . Infatti la matrice

$$M = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

ha rango 3. Dunque le sue colonne v_1,v_2,v_3 sono linearmente indipendenti. Come vedremo nella prossima sezione, 3 vettori indipendenti di \mathbb{R}^3 formano una base di \mathbb{R}^3 . Il vettore v=(5,-4,2) ha coordinate rispetto a $\mathcal{B}=\{v_1,v_2,v_3\}$ gli scalari x_1,x_2,x_3 tali che $x_1v_1+x_2v_2+x_3v_3=v$. Dunque $x=(x_1,x_2,x_3)$ è la soluzione del sistema lineare non omogeneo

$$Mx = v$$
.

L'unica soluzione è (2,-1,3). Quindi $T_{\mathcal{B}}(v)=(2,-1,3)$ e $v=(2,-1,3)_{\mathcal{B}}=2v_1-v_2+3v_3$. Rispetto alla base canonica di \mathbb{R}^3

$$\mathcal{E} = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}\$$

il vettore v ha coordinate uguali alle sue componenti: $T_{\mathcal{E}}(v)=(5,-4,2)$.

5.2 Proprietà delle basi di \mathbb{R}^n

Si è visto negli esempi che lo spazio di n-uple \mathbb{R}^n ha molte basi. Tuttavia, con gli enunciati seguenti si dimostra che le basi di \mathbb{R}^n hanno tutte lo stesso numero n di vettori.

Proposizione 1. In \mathbb{R}^n m vettori, con m > n, sono sempre linearmente dipendenti.

Dimostrazione. Si consideri la matrice M, di tipo (n,m), le cui colonne sono gli m vettori. Essendo $rg(M) \leq n$, si ha null(M) = m - rg(M) > 0 e quindi il sistema Mx = 0 ha soluzioni non nulle: le colonne di M sono dipendenti.

Proposizione 2. Qualunque n-upla di vettori indipendenti di \mathbb{R}^n è una base di \mathbb{R}^n .

Dimostrazione. Basta considerare la matrice M, di tipo (n,n+1), che ha come prime n colonne i vettori indipendenti, e come (n+1)-esima colonna un qualunque altro vettore $v \in \mathbb{R}^n$, e ridurre M per righe. L'ultima colonna della matrice rref(M) contiene i coefficienti della combinazione lineare degli n vettori che genera il vettore v.

Proposizione 3. Un insieme $\{v_1, \ldots, v_m\}$ di vettori indipendenti di \mathbb{R}^n , con m < n, può sempre essere completato a una base di \mathbb{R}^n aggiungendo n-m vettori.

Dimostrazione. Si consideri la matrice M, di tipo (n,m+n), con colonne gli m vettori v_1,\ldots,v_m e gli n elementi e_1,\ldots,e_n della base canonica di \mathbb{R}^n . Abbiamo visto che il rango di M coincide col massimo numero di colonne indipendenti di M. Quindi la matrice M ha rango n, poiché contiene n colonne indipendenti e lo spazio delle colonne di M è tutto \mathbb{R}^n . La forma ridotta rref(M) ha e_1,\ldots,e_m nelle prime m colonne, poiché le prime m colonne di M sono indipendenti, ed esistono altre n-m colonne di M (corrispondenti ai pivot di rref(M)) che sono indipendenti da v_1,\ldots,v_m . Aggiungendo all'insieme $\{v_1,\ldots,v_m\}$ questi n-m elementi della base canonica, si ottiene un insieme indipendente e quindi una base per la proposizione precedente.

Esempio. Per completare l'insieme indipendente

$$\{v_1 = (1, 0, 2, 1), v_2 = (1, 1, -2, -1)\}\$$

a una base di \mathbb{R}^4 , basta considerare la riduzione per righe

$$rref \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 2 & -2 & 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -2 \end{bmatrix}$$

Le colonne 1,2,3,5 sono indipendenti. Quindi l'insieme

$$\{v_1, v_2, e_1, e_3\}$$

forma una base di \mathbb{R}^4 . Si osservi che è sufficiente ottenere una qualsiasi matrice a scalini (non necessariamente ridotta) per individuare le colonne indipendenti e quindi gli elementi da aggiungere per ottenere una base.

Teorema 1. Ogni base di \mathbb{R}^n contiene n vettori.

Dimostrazione. Per la Proposizione 1, rimane solo da stabilire che non può esistere una base formata da m vettori, con m < n. Supponiamo che v_1, \ldots, v_m siano m vettori indipendenti, con m < n. Per la proposizione precedente esistono vettori v_{m+1}, \ldots, v_n tali che l'insieme $\{v_1, \ldots, v_n\}$ sia una base di \mathbb{R}^n . Ma allora $v_{m+1}, \ldots, v_n \notin \langle v_1, \ldots, v_m \rangle$ e i vettori v_1, \ldots, v_m non possono essere generatori e quindi non sono una base di \mathbb{R}^n . \square

Lo stesso procedimento seguito sopra per \mathbb{R}^n mostra che in ogni spazio di n-uple \mathbb{K}^n ogni base ha n elementi.

5.3 Dimensione degli spazi vettoriali

Sia V uno spazio vettoriale sul campo \mathbb{K} , che possiede una base $\mathcal{B} = \{e_1, \dots, e_n\}$. Attraverso la funzione $T_{\mathcal{B}}$ che fa corrispondere a ogni vettore le sue coordinate rispetto a \mathcal{B} , tutte le proprietà dimostrate per le basi di \mathbb{K}^n si dimostrano per lo spazio V.

Proposizione 4. La funzione $T_{\mathcal{B}}: V \to \mathbb{K}^n$ ha le seguenti proprietà:

- (i) è iniettiva e suriettiva (cioè biunivoca);
- (ii) è lineare: $T_{\mathcal{B}}(a_1v_1+a_2v_2)=a_1T_{\mathcal{B}}(v_1)+a_2T_{\mathcal{B}}(v_2)$, per ogni $a_1,a_2\in\mathbb{K}$, $v_1,v_2\in V$. In particolare, ponendo $a_1=a_2=0$, si ha $T_{\mathcal{B}}(0)=0$.

Dimostrazione. (i) è immediata dalla definizione, essendo $T_{\mathcal{B}}$ invertibile:

$$T_{\mathcal{B}}^{-1}(x_1,\ldots,x_n)=\sum_i x_i e_i$$
.

(ii) se
$$v_1=\sum_i x_ie_i$$
 e $v_2=\sum_i y_ie_i$, si ha
$$a_1v_1+a_2v_2=\sum_i (a_1x_i+a_2y_i)e_i.$$

Definizione 1. Una funzione lineare biunivoca è detta isomorfismo tra i due spazi vettoriali.

L'esistenza dell'isomorfismo $T_{\mathcal{B}}$ tra V e \mathbb{K}^n permette di ottenere per V tutti i risultati noti per \mathbb{K}^n . Infatti vale la seguente:

Proposizione 5. I vettori v_1, \ldots, v_m di V sono indipendenti (o generatori, o base di V) se e solo se le immagini $T_{\mathcal{B}}(v_1), \ldots, T_{\mathcal{B}}(v_m)$ sono indipendenti (rispettivamente generatori, base di \mathbb{K}^n).

Ad esempio, se v_1,\ldots,v_m sono indipendenti, e $\sum_i a_i T_{\mathcal{B}}(v_i)=0$, si ha $T_{\mathcal{B}}(\sum_i a_i v_i)=0=T_{\mathcal{B}}(0)$. Per l'iniettività deve essere $\sum_i a_i v_i=0$, e quindi $a_i=0$ $\forall i$ per l'indipendenza dei v_i . Dunque le immagini sono indipendenti. Si procede in modo simile per le altre condizioni.

Esempio. Si considerino i polinomi $p_1(x)=x^2-2x$, $p_2(x)=2x^3-x^2+4x+2$, $p_3(x)=x^3+x+1$ in $\mathbb{R}_3[x]$. Per stabilirne la in/dipendenza lineare basta considerare le quadruple delle coordinate rispetto ad una qualsiasi base di $\mathbb{R}_3[x]$. Scegliendo $\mathcal{B}=\{x^3,x^2,x,1\}$, si ottengono i tre vettori di \mathbb{R}^4

$$T_{\mathcal{B}}(p_1) = (0, 1, -2, 0), \ T_{\mathcal{B}}(p_2) = (2, -1, 4, 2), \ T_{\mathcal{B}}(p_3) = (1, 0, 1, 1)$$

Dalla matrice

$$rref \begin{bmatrix} 0 & 2 & 1 \\ 1 & -1 & 0 \\ -2 & 4 & 1 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

si ottiene che $\,p_1\,$ e $\,p_2\,$ sono indipendenti, e $\,p_3={1\over 2}p_1+{1\over 2}p_2\,.$

La Proposizione 5 permette di dimostrare facilmente il fondamentale Teorema della base, e quindi di definire correttamente la dimensione di uno spazio vettoriale finitamente generato.

Teorema 2. (della base) In uno spazio vettoriale V finitamente generato tutte le basi hanno lo stesso numero (finito) di vettori. Tale numero è la dimensione dello spazio V, indicata con $\dim V$.

Si osservi che uno spazio vettoriale finitamente generato, diverso dallo *spazio nullo* $\{0\}$, ha sempre una base. Infatti, se $V=\langle S \rangle$, $S=\{v_1,\ldots,v_m\}$ e S è dipendente, è sempre possibile, eliminando un vettore alla volta, scegliere in S vettori indipendenti che generano S, e quindi generano tutto lo spazio V.

Lo *spazio nullo*, contenente solo il vettore nullo, non contiene alcun vettore indipendente e quindi non ha basi. Per questo si *conviene* di porre $\dim\{0\} = 0$.

5.4 Somma e intersezione di sottospazi

Dati due sottospazi U,W di uno spazio vettoriale V, l'intersezione $U \cap W$ è ancora un sottospazio (è una facile verifica), mentre l'unione $U \cup W$ in generale non lo è.

Al posto dell'unione di U e W, si può considerare la somma dei due sottospazi:

$$U + W = \{v = u + w \in V \mid u \in U, w \in W\}$$

3

che è un sottospazio di V contenente U e W, generato dall'unione di insiemi di generatori di U e di W. Vale la seguente formula di Grassmann per le dimensioni:

$$\dim(U+W) + \dim(U\cap W) = \dim U + \dim W.$$

Esempio. Siano $V = \mathbb{R}_3[x]$,

$$U = \{ p \in \mathbb{R}_3[x] \mid xp'' = 2p' \}, \quad W = \{ p \in \mathbb{R}_3[x] \mid p(2) = p(4) = 0 \}.$$
$$p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \in U \Leftrightarrow x(2a_2 + 6a_3x) = 2(a_1 + 2a_2x + 3a_3x^2)$$
$$\Leftrightarrow a_1 = a_2 = 0.$$

Dunque $U = \langle 1, x^3 \rangle$ ha dimensione 2.

Anche W ha dimensione 2 (sono due equazioni lineari nelle 4 variabili a_0, a_1, a_2, a_3), con generatori indipendenti (x-2)(x-4) e x(x-2)(x-4).

Un polinomio $p(x)=a_0+a_3x^3\in U$ sta anche in W se $p(2)=a_0+8a_3=0$ e $p(4)=a_0+64a_3=0$. Dunque è p=0 e $U\cap W=\{0\}$. Per la formula di Grassmann si ha $\dim(U+W)=4$ e dunque $U+W=\mathbb{R}_3[x]$.

5.5 Applicazione: l'interpolazione polinomiale

L'uso di basi diverse da quella canonica (in \mathbb{R}^n o in $\mathbb{R}_n[x]$) è conveniente nel caso in cui un problema assuma una forma più semplice quando viene espresso usando le coordinate rispetto alla nuova base.

Esempio. Si voglia studiare il seguente problema di *interpolazione polinomiale*: fissati n punti $(x_1, y_1), \ldots, (x_n, y_n)$ del piano, con ascisse x_i tutte distinte, trovare un polinomio il cui grafico passi per tutti gli n punti.

Il problema ha un'unica soluzione se il polinomio cercato ha grado al più n-1. Per risolverlo, conviene utilizzare, al posto della base canonica $\{1,x,x^2,\ldots,x^{n-1}\}$, la base di Lagrange costituita dai polinomi

$$f_i(x) = \prod_{\substack{j=1 \ j \neq i}}^n \frac{(x-x_j)}{(x_i-x_j)} \quad (i=1,\ldots,n)$$

Il polinomio di Lagrange $f_i(x)$ ha la proprietà di annullarsi in x_j per ogni $j \neq i$ e valere 1 in x_i . L'insieme $\mathcal{B} = \{f_1, \dots, f_n\}$ è una base di $\mathbb{R}_{n-1}[x]$. Mostriamo che è linearmente indipendente: se

$$a_1 f_1(x) + \cdots + a_n f_n(x) = 0,$$

valutando in x_k si ottiene $\sum_i a_i f_i(x_k) = a_k = 0$, per ogni $k = 1, \dots, n$.

Essendo $n = \dim \mathbb{R}_{n-1}[x]$, l'insieme \mathcal{B} è una base di $\mathbb{R}_{n-1}[x]$ (per le Proposizioni 2 e 5).

Data la base di Lagrange, il problema di interpolazione si risolve immediatamente: la combinazione lineare $f(x) = \sum_i y_i f_i(x)$ è un polinomio con grafico passante per i punti (x_i,y_i) . Si noti che la base di Lagrange dipende solo dalle ascisse x_i , non dalle ordinate y_i .

Ad esempio, se le ascisse dei punti sono $\,x_1=2,x_2=4,x_3=5\,$, i polinomi di Lagrange sono

$$f_1(x) = \frac{1}{6}(x-4)(x-5), \ f_2(x) = -\frac{1}{2}(x-2)(x-5), \ f_3(x) = \frac{1}{3}(x-2)(x-4)$$

e il polinomio con grafico passante per i punti (2,1),(4,2),(5,0) è

$$f(x) = 1 \cdot f_1(x) + 2 \cdot f_2(x) + 0 \cdot f_3(x) = \frac{1}{6}(x - 4)(x - 5) - (x - 2)(x - 5)$$
$$= -\frac{1}{6}(x - 5)(5x - 8).$$