Reinforcement Learning for Goal Recognition

Gabriel Waengertner Henrique

Introduction

- Reinforcement Learning
 - Capable of learning robust policies for environment interaction
 - Policies can be made to follow any desired behavior
- Goal Recognition is an important ability for interaction
 - o Intelligent agents implicitly recognize objectives given a behavior
 - Observations can be noisy

Introduction

Can we learn policies using reinforcement learning in order to recognize goals?

Reinforcement Learning

- ullet A Reinforcement Learning (RL) problem consists of an MDP $~\mathcal{M}~=~\langle \mathcal{S},\,\mathcal{A},\,\mathcal{P},\,\mathcal{R},\,\gamma
 angle$
 - \circ S is a finite set of states
 - \circ \mathcal{A} is a finite set of actions
 - \circ \mathcal{P} is a transition function
 - \circ \mathcal{R} is a reward function
 - $\circ \; \gamma \in [0,\,1]$ is a discounting factor
- ullet Learn a policy π that maximizes the expected discounted reward

Reinforcement Learning

Reinforcement Learning

Goal Recognition

- ullet A Goal Recognition (GR) problem is a tuple $\,P_G = \langle \Xi,\, \mathcal{I},\, \mathcal{G},\, O
 angle$, where
 - **Ξ** is the domain definition
 - \circ \mathcal{I} is an initial state
 - \circ \mathcal{G} is a finite set of candidate goals
 - \circ *O* is a sequence of observations $\langle o_1, o_2, \ldots, o_n \rangle$
- ullet The solution to a GR problem is a goal $\,g \,\in\, {\cal G}\,\,$ that is most consistent with observations O

Goal Recognition

- Observations
 - Noisy
 - Missing
 - Different representations
- Datasets available¹

¹ https://github.com/pucrs-automated-planning/goal-plan-recognition-dataset

Proposal

- Use Reinforcement Learning as a solution to a Goal Recognition Problem
- Initial steps on a larger study
 - Learn domain definitions using Reinforcement Learning

First Steps

- Train a tabular RL method to learn a different policy for each goal
- Find the most likely goal
 - Extract a trajectory using an off-the-shelf planner
 - Measure distance between policies when following a trajectory
 - KL Divergence
- Toy domains
 - Blocksworld

Schedule

- Week 1 Develop tabular Reinforcement Learning methods to learn policies in small state space domains
- Week 2 Start testing Inverse Reinforcement Learning as a solution to Goal Recognition
- Week 3 Use functions approximators, starting with linear ones
- Week 4 Expand to larger state space domains
- Week 5 Compare with other works and write final paper with results

Thank you!

Reinforcement Learning for Goal Recognition Gabriel Waengertner Henrique