

Lecture#3:

## **Purpose**



### **Photolithography (1): Microlithography**

### Photolithography

- Photolithography encompasses all the steps involved in transferring a pattern for a mask to the surface of the silicon wafer.
- Ultra-clean conditions must be maintained during the lithography process; clean-rooms have evolved from the Class 10,000 to Class 1 for VLSI (ULSI) processing.
   \* Class: number of particle exceeding a size of 0.5 μm per ft³

| Class   | # 0.5<br>µm<br>particles<br>per ft <sup>3</sup> | # 5.0<br>µm<br>particles<br>per ft <sup>3</sup> | air<br>changes<br>per hour | ceiling<br>filter<br>coverage<br>(%) | air<br>velocity<br>(fpm) | max.<br>vibration<br>(μin/s) | temp.<br>tolerance | RH<br>tolerance | approx.<br>capital cost<br>per ft <sup>2</sup> |
|---------|-------------------------------------------------|-------------------------------------------------|----------------------------|--------------------------------------|--------------------------|------------------------------|--------------------|-----------------|------------------------------------------------|
| office  |                                                 |                                                 | 12-18                      |                                      |                          |                              |                    |                 | \$10                                           |
| 100,000 | 100,000                                         | 650                                             | 18-30                      | 10                                   |                          |                              |                    |                 | \$50                                           |
| 10,000  | 10,000                                          | 65                                              | 40-60                      | 30                                   | 10                       |                              | ±3.0°F             | ±5%             | \$200-250                                      |
| 1,000   | 1,000                                           | 6.5                                             | 150-300                    | 50                                   | 30-50                    |                              | ±2.0°F             | ±5%             | \$350-400                                      |
| 100     | 100                                             | 0.65                                            | 400-540                    | 80-100                               | 75-90                    | 500                          | ±1.0°F             | ±5%             | ~\$1200                                        |
| 10      | 10                                              | 0.065                                           | 400-540                    | 100                                  | 75-90                    | 250                          | ±0.5°F             | ±3%             | ~\$3500                                        |
| 1       | 1                                               | 0.0065                                          | 540-600                    | 100                                  | 90-100                   | 250                          | ±0.3°F             | ±2%             | ~\$10,000+                                     |
| .5      | .5                                              | 0.0033                                          | 540-600                    | 100                                  | 100-110                  | 125                          | ±0.1°F             | ±1%             | ~\$25,000+                                     |

## **General Step**





## **Wafer Cleaning & Barrier layer**



### **Photolithography (1): Microlithography**





### Wafer Cleaning

- Prior to use, wafers are chemically cleaned to remove particulate matter on the surface as well as any traces of organic, ionic, and metallic impurities.

#### \* Deionized (DI) water:

- highly purified and filtered
- resistivity: 18 M-ohm-cm@25 C,
- no particles larger than 0.25 μm

### Barrier Layer

- SiO<sub>2</sub>, Si<sub>3</sub>N<sub>4</sub>, Polysilicon, Metal, etc.

## PR Coating (1)





## PR Coating (2)



### **Photolithography (1): Microlithography**

### Spin Coating











- Thickness depends on its viscosity and is inversely proportional to the square root of the spinning speed, typically 0.5 - 2.5  $\mu$ m thickness.

#### - Various cases



edge position



PR is not enough



Pinholes



Air bubble



**Particles** 



Swirl pattern

## PR Coating (3)



#### **Photolithography (1): Microlithography**



- Residual ridge in resist at edge of wafer
- Can be up to 20~30 times thinker than the nominal thickness of the resist

### Roll/Die Coating

: large size substrate (LCD,PDP)



### Spray Coating



### **Soft Bake**





## Align & Exposure (1)





## **Example: Alignment**





## Align & Exposure (2)





## Align & Exposure (3)



### Photolithography (1): Microlithography

### Shadow Printing



- Minimum pattern size
- :~1um
- Simple & Easy
- Mask contamination
- Mask damage

- Minimum pattern size
- : 2~5um
- Precise gap control
- No contamination
- No damage

$$CD(critical\ demension) \cong \sqrt{\lambda g}$$

 $\begin{array}{l} \lambda{=}0.4\text{ , }g{=}50\text{um} \rightarrow \text{CD 4.5um} \\ \lambda{=}0.25\text{ g}{=}15\text{um} \rightarrow \text{CD 2um} \\ \lambda{=}0.25\text{ g}{=}0.01 \rightarrow \text{CD 0.05um} \end{array} ?$ 

### Projection Printing: Stepper



- Minimum pattern size
- ; ~70nm
- -No contamination
- No damage
- Small exposure area
- Time loss



1X stepper



4X stepper

## Align & Exposure (4)



### **Photolithography (1): Microlithography**

### Exposure Source



G-line stepper: 436nm

H-line stepper: 405nm

I-line stepper: 365nm

;  $5x \rightarrow 300$ nm

KrF eximer laser : 248nm

; 180nm

ArF eximer laser: 193nm

; 100nm

F<sub>2</sub> eximer laser: 157nm

; 70nm





We need new exposure technique

# Align & Exposure (5)





## Align & Exposure (6)



#### **Photolithography (1): Microlithography**

### New Exposure Technique

#### **Electron beam lithography (Text 4.2.1)**



- Condenser lenses are used to focus the electron beam
- Blanking plate: beam On & Off control
- Beam size: 5nm ~500nm
- Beam position is fixed: stage is moved (precision control)
- Disadvantage: Low throughput

#### **Extreme ultraviolet lithography (Text 4.2.2)**



1/4 speed of mask movement (4X case)

Target resolution ~30nm
Wave length (EUV) :10~14nm

Problem: Vacuum state

# Align & Exposure (7)





## Align & Exposure (8)



### **Photolithography (1): Microlithography**

# X-ray (or synchrotron) lithography (Text 4.2.3) X-ray source X-ray mask Low atomic number material Si or SiC High atomic metals (Ta, W, Au) Target resolution 0.4 ~ 5 nm Problem: Fabrication of Mask

#### Two photon lithography system

- 2PA is only observed in intense laser beams, particularly focused pulsed lasers, which generate a very high instantaneous photon density.





# Align & Exposure (9)





## Align & Exposure (10)



### **Photolithography (1): Microlithography**

#### **Laser writer**







## **Development (1)**





## **Development (2)**



#### **Photolithography (1): Microlithography**

### Contrast Ratio; it decides a shape of a pattern









E<sub>T</sub>=Threshold energy to resolve the resist completely

 $E_1$ =Tangent value at  $E_T$  to reach 100% resist thickness

E<sub>T</sub> =Threshold energy to remain the resist from this point

E<sub>1</sub>=Tangent value at 50% resist to reach 100% resist thickness - Positive PR Contrast ratio

$$\gamma \equiv \left[ \ln \left( \frac{E_T}{E_1} \right) \right]^{-1}$$

- Negative PR Contrast ratio

$$\gamma \equiv \left[ \ln \left( \frac{E_1}{E_T} \right) \right]^{-1}$$

Contrast ratio  $\uparrow \rightarrow$  Sharpness  $\uparrow$ : Positive PR shows better sharpness generally

# **Development (3)**





## Hard bake & Removal (1)



#### **Photolithography (1): Microlithography**



#### Hard Bake

- Used to stabilize and harden the developed photoresist; the resist will mask
- Removing any remaining traces of the coating solvent or developer
- Some shrinkage of the photoresist may occur
- Longer or hotter bake makes resist removal much more difficult

## Hard bake & Removal (2)



### **Photolithography (1): Microlithography**

### Lift-Off Technique



- Easy and Simple process
- When it is hard to etch a material, it is useful.
- Film thickness has to be smaller than PR
- Bad step coverage is good for lift-off process
- Positive pattern -> negative pattern (shift)

- PR Removal
  - Chemical (PR stripper)
  - Plasma (PR asher)

# **Photolithography**



