HSPICE[®] Elements and Device Models Manual

Version X-2005.09, September 2005

Copyright Notice and Proprietary Information

Copyright © 2005 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

"This document is duplicated with the permission of Sy	ynopsys, Inc., for the exclusive use of
	and its employees. This is copy number"

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)

Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CSim, Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSPICE, Hypermodel, iN-Phase, in-Sync, Leda, MAST, Meta, Meta-Software, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler, PowerMill, PrimeTime, RailMill, RapidScript, Saber, SiVL, SNUG, SolvNet, Superlog, System Compiler, Testify, TetraMAX, TimeMill, TMA, VCS, Vera, and Virtual Stepper are registered trademarks of Synopsys, Inc.

Trademarks (™)

abraCAD, abraMAP, Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, Astro, Astro-Rail, Astro-Xtalk, Aurora, AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit Analysis, Columbia, Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, Cyclelink, Davinci, DC Expert, DC Expert *Plus*, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Vision, DesignerHDL, DesignTime, DFM-Workbench, Direct RTL, Direct Silicon Access, Discovery, DW8051, DWPCI, Dynamic-Macromodeling, Dynamic Model Switcher, ECL Compiler, ECO Compiler, EDAnavigator, Encore, Encore PQ, Evaccess, ExpressModel, Floorplan Manager, Formal Model Checker, FoundryModel, FPGA Compiler II, FPGA *Express*, Frame Compiler, Galaxy, Gatran, HDL Advisor, HDL Compiler, Hercules, Hercules-Explorer, Hercules-II, Hierarchical Optimization Technology, High Performance Option, HotPlace, HSPICE-Link, iN-Tandem, Integrator, Interactive Waveform Viewer, i-Virtual Stepper, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, JVXtreme, Liberty, Libra-Passport, Library Compiler, Libra-Visa, Magellan, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture, Metacircuit, Metamanager, Metamixsim, Milkyway, ModelSource, Module Compiler, MS-3200, MS-3400, Nova Product Family, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLlint, Optimum Silicon, Orion_ec, Parasitic View, Passport, Planet, Planet-RTL, Polaris, Polaris, Polaris-CBS, Polaris-MT, Power Compiler, PowerCODE, PowerGate, ProFPGA, ProGen, Prospector, Protocol Compiler, PSMGen, Raphael, Raphael-NES, RoadRunner, RTL Analyzer, Saturn, ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, Silicon Blueprint, Silicon Early Access, SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire, Source-Level Design, Star, Star-DC, Star-MS, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-SimXT, Star-Time, Star-XP, SWIFT, Taurus, TimeTracker, Timing Annotator, TopoPlace, Topo

Service Marks (SM)

MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license. ARM and AMBA are registered trademarks of ARM Limited. All other product or company names may be trademarks of their respective owners.

Printed in the U.S.A.

HSPICE® Elements and Device Models Manual, X-2005.09

	Inside This Manual	xi
	The HSPICE Documentation Set	xii
	Searching Across the Entire HSPICE Documentation Set	xiii
	Other Related Publications	xiv
	Conventions	xiv
	Customer Support	XV
1.	Overview of Models	1
	Using Models to Define Netlist Elements	2
	Supported Models for Specific Simulators	3
	Selecting Models	3
	Subcircuits	3
2.	Passive Device Models	7
	Resistor Device Model and Equations	8
	Wire RC Model	8
	Wire RC Model Parameter Syntax	10
	Wire RC Model Parameter Syntax	10 11
	Wire RC Model Parameter Syntax	10 11 11
	Wire RC Model Parameter Syntax	10 11 11 12
	Wire RC Model Parameter Syntax	10 11 11
	Wire RC Model Parameter Syntax Resistor Syntax Resistor Model Selector Resistor Model Equations Wire Resistance Calculation Wire Capacitance Calculation Resistor Noise Equation	10 11 11 12 12 13
	Wire RC Model Parameter Syntax Resistor Syntax Resistor Model Selector Resistor Model Equations Wire Resistance Calculation Wire Capacitance Calculation Resistor Noise Equation Resistor Temperature Equations	10 11 11 12 12 13 14 15
	Wire RC Model Parameter Syntax Resistor Syntax Resistor Model Selector Resistor Model Equations Wire Resistance Calculation Wire Capacitance Calculation Resistor Noise Equation	10 11 11 12 12 13
	Wire RC Model Parameter Syntax Resistor Syntax Resistor Model Selector Resistor Model Equations Wire Resistance Calculation Wire Capacitance Calculation Resistor Noise Equation Resistor Temperature Equations	10 11 11 12 12 13 14 15

	Capacitor Device Equations Effective Capacitance Calculation	17 18 19
	Inductor Device Model and Equations Inductor Core Models. Inductor Device Equations Checking Parameter Limits Inductor Temperature Equation Jiles-Atherton Ferromagnetic Core Model Input File. Plots of the b-h Curve. Discontinuities in Inductance Due to Hysteresis Input File. Plots of the Hysteresis Curve and Inductance Optimizing the Extraction of Parameters Input File.	19 20 23 24 25 27 27 28 29 29 29
3.	Diodes	31
	Diode Types	32
	Using Diode Model Statements	33
	Setting Control Options	33
	Bypassing Latent Devices	34
	Setting Scaling Options	34
	Using the Capacitor Equation Selector Option — DCAP	34
	Using Control Options for Convergence	34
	Specifying Junction Diode Models	35
	Using the Junction Model Statement	36
	Using Junction Model Parameters	37
	Geometric Scaling for Diode Models	43
	LEVEL=1 Scaling	43
	LEVEL=3 Scaling	43
	Defining Diode Models	45
	Diode Current	45
	Using Diode Equivalent Circuits	45
	Determining Temperature Effects on Junction Diodes	47
	Using Junction Diode Equations	50
	Using Junction DC Equations	51
	Forward Bias: vd > -10 · vt	51
	Reverse Bias: BVeff < vd < -10 · vt	52
	Breakdown: vd < - BV	52

	Forward Bias	53 53
	Using Diode Capacitance Equations Using Diffusion Capacitance Equations Using Depletion Capacitance Equations Metal and Poly Capacitance Equations (LEVEL=3 Only) Using Noise Equations Temperature Compensation Equations Energy Gap Temperature Equations Leakage Current Temperature Equations	54 54 54 55 55 56 56
	Tunneling Current Temperature Equations Breakdown-Voltage Temperature Equations Transit-Time Temperature Equations Junction Built-in Potential Temperature Equations Junction Capacitance Temperature Equations Grading Coefficient Temperature Equation Resistance Temperature Equations	57 57 57 57 58 59
	Using the JUNCAP Model	59 63
	JUNCAP Model Equations Nomenclature ON/OFF Condition DC Operating Point Output. Temperature, Geometry and Voltage Dependence JUNCAP Capacitor and Leakage Current Model	65 67 67 68 69
	Using the Fowler-Nordheim Diode	72 72 73 73
	Converting National Semiconductor Models	73 74 74
4.	JFET and MESFET Models	75
	Overview of JFETs	76
	Specifying a Model	77 77
	Overview of Capacitor Model	79 79 80

Capacitor Equations	80
JFET and MESFET Equivalent Circuits Scaling JFET Current Conventions JFET Equivalent Circuits Transconductance Output Conductance	80 81 81 82 82
JFET and MESFET Model Statements JFET and MESFET Model Parameters ACM (Area Calculation Method) Parameter Equations JFET and MESFET Capacitances Gate Capacitance CAPOP=0. Gate Capacitance CAPOP=1. Gate Capacitance CAPOP=2. Capacitance Comparison (CAPOP=1 and CAPOP=2) JFET and MESFET DC Equations. DC Model Level 1. DC Model Level 2. DC Model Level 3.	86 94 96 96 98 99 100 101 102 102
JFET and MESFET Noise Models	104 104 105
JFET and MESFET Temperature Equations Temperature Compensation Equations Energy Gap Temperature Equations Saturation Current Temperature Equations Gate Capacitance Temperature Equations Threshold Voltage Temperature Equation Mobility Temperature Equation Parasitic Resistor Temperature Equations	106 108 108 109 110 111
TriQuint (TOM) Extensions to Level=3	111
Level 7 TOM3 (TriQuint's Own Model III) Using the TOM3 Model Model Description DC Equations Capacitance Equations	113 113 114 114 116
Level 8 Materka Model	119 119

	Gate Capacitance Model	120 122
5.	BJT Models	125
	Overview of BJT Models	126
	Selecting Models	126
	BJT Control Options	127
	Convergence	127
	BJT Model Statement	127
	BJT Basic Model Parameters	128
	Bypassing Latent Devices	129
	Parameters	129
	BJT Model Temperature Effects	137
	BJT Device Equivalent Circuits	143
	Scaling	143
	BJT Current Conventions	144
	BJT Equivalent Circuits	144
	BJT Model Equations (NPN and PNP)	155
	Transistor Geometry in Substrate Diodes	155
	DC Model Equations	156
	Substrate Current Equations	157
	Base Charge Equations	158
	Variable Base Resistance Equations	159
	BJT Capacitance Equations	159
	Base-Emitter Capacitance Equations	159
	Determining Base-Emitter Diffusion Capacitance	160
	Determining Base-Emitter Depletion Capacitance	160
	Determining Base Collector Capacitance	161
	Determining Base Collector Diffusion Capacitance	161
	Determining Base Collector Depletion Capacitance External Base — Internal Collector Junction Capacitance	161 162
		163
	Substrate Capacitance	163
	Substrate Capacitance Equation: Vertical	163
	Excess Phase Equation	164
	Defining BJT Noise Equations	164
	Defining Noise Equations	164
	BJT Temperature Compensation Equations	166
	Energy Gap Temperature Equations	166

Saturation/Beta Temperature Equations, TLEV=0 or 2 Saturation and Temperature Equations, TLEV=1. Saturation Temperature Equations, TLEV=3. Capacitance Temperature Equations. Parasitic Resistor Temperature Equations. BJT Level=2 Temperature Equations.	166 167 168 169 172 172
BJT Quasi-Saturation Model	172 174 175
Converting National Semiconductor Models	176 176
VBIC Bipolar Transistor Model History of VBIC VBIC Parameters Noise Analysis Self-heating and Excess Phase Notes on Using VBIC	178 178 178 179 180 185
Level 6 Philips Bipolar Model (MEXTRAM Level 503)	186 187 189
Level 6 Philips Bipolar Model (MEXTRAM Level 504)	193 195 196 203 203 203
Level 8 HiCUM Model HiCUM Model Advantages HSPICE HiCUM Model vs. Public HiCUM Model Level 8 Element Syntax HiCUM Level 2 Circuit Diagram Input Netlist Level 8 Model Parameters Internal Transistors Peripheral Elements External Elements	203 203 205 205 207 207 209 214 215
Level 9 VBIC99 Model	219 220

	Level 9 Element Syntax	220
	Effects of VBIC99	221 221
	Model Implementation	221
	Level 10 Phillips MODELLA Bipolar Model	228
	Equivalent Circuits	233 234
	DC Operating Point Output	234
	Early Factors	236
	Currents	237
	Base Current	238
	Substrate current	239
	Charges	240 243
	Noise Equations	243
	Temperature Dependence of Parameters	244
	Series Resistance	244
	Depletion Capacitances	245
	Temperature Dependence of Other Parameters	245
	Level 11 UCSD HBT Model	246
	Usage Notes	246
	Level 11 Element Syntax	247
	Model Equations	253
	Current Flow	253 256
	Noise	262
	Equivalent Circuit	263
	Example Model Statement for BJT Level 11	264
	Level 13 HiCUM0 Model	265
	HiCUM0 Model Advantages	265
	HiCUM0 Model vs. HiCUM Level 2 Model	265
	Level 13 Element Syntax	266
	Level 13 Model Parameters	267
Α.	Finding Device Libraries	273
	Overview of Library Listings	274
	Analog Device Models	274
	Behavioral Device Models	278

Inc	dex	287
	JFET and MESFET Models	283
	Diode Models	280
	Bipolar Transistor Models	279

About This Manual

The manual describes standard models that you can use when simulating your circuit designs in HSPICE or HSPICE RF:

- Passive devices
- Diodes
- JFET and MESFET devices
- BJT devices

Inside This Manual

This manual contains the chapters described below. For descriptions of the other manuals in the HSPICE documentation set, see the next section, The HSPICE Documentation Set.

Chapter	Description
Chapter 1, Overview of Models	Describes the elements and models you can use to create a netlist in HSPICE.
Chapter 2, Passive Device Models	Describes passive devices you can include in an HSPICE netlist, including resistor, inductor, and capacitor models.
Chapter 3, Diodes	Describes model parameters and scaling effects for geometric and nongeometric junction diodes.
Chapter 4, JFET and MESFET Models	Describes how to use JFET and MESFET models in HSPICE circuit simulations.

Chapter	Description
Chapter 5, BJT Models	Describes how to use BJT models in HSPICE circuit simulations.
Appendix A, Finding Device Libraries	Lists device libraries you can use in HSPICE.

The HSPICE Documentation Set

This manual is a part of the HSPICE documentation set, which includes the following manuals:

Manual	Description
HSPICE Simulation and Analysis User Guide	Describes how to use HSPICE to simulate and analyze your circuit designs. This is the main HSPICE user guide.
HSPICE Signal Integrity Guide	Describes how to use HSPICE to maintain signal integrity in your chip design.
HSPICE Applications Manual	Provides application examples and additional HSPICE user information.
HSPICE Command Reference	Provides reference information for HSPICE commands.
HPSPICE Elements and Device Models Manual	Describes standard models you can use when simulating your circuit designs in HSPICE, including passive devices, diodes, JFET and MESFET devices, and BJT devices.
HPSPICE MOSFET Models Manual	Describes standard MOSFET models you can use when simulating your circuit designs in HSPICE.
HSPICE RF Manual	Describes a special set of analysis and design capabilities added to HSPICE to support RF and high-speed circuit design.

Manual	Description
AvanWaves User Guide	Describes the AvanWaves tool, which you can use to display waveforms generated during HSPICE circuit design simulation.
HSPICE Quick Reference Guide	Provides key reference information for using HSPICE, including syntax and descriptions for commands, options, parameters, elements, and more.
HSPICE Device Models Quick Reference Guide	Provides key reference information for using HSPICE device models, including passive devices, diodes, JFET and MESFET devices, and BJT devices.

Searching Across the Entire HSPICE Documentation Set

Synopsys includes an index with your HSPICE documentation that lets you search the entire HSPICE documentation set for a particular topic or keyword. In a single operation, you can instantly generate a list of hits that are hyperlinked to the occurrences of your search term. For information on how to perform searches across multiple PDF documents, see the HSPICE release notes (available on SolvNet at http://solvnet.synopsys.com) or the Adobe Reader online help.

Note: To use this feature, the HSPICE documentation files, the Index directory, and the index.pdx file must reside in the same directory. (This is the default installation for Synopsys documentation.) Also, Adobe Acrobat must be invoked as a standalone application rather than as a plug-in to your web browser.

Other Related Publications

For additional information about HSPICE, see:

The HSPICE release notes, available on SolvNet (see Accessing SolvNet on page xv)

- Documentation on the Web, which provides HTML and PDF documents and is available through SolvNet at http://solvnet.synopsys.com
- The Synopsys MediaDocs Shop, from which you can order printed copies of Synopsys documents, at http://mediadocs.synopsys.com

You might also want to refer to the documentation for the following related Synopsys products:

- CosmosScope
- Aurora
- Raphael
- VCS

Conventions

The following conventions are used in Synopsys documentation:

Convention	Description		
Courier	Indicates command syntax.		
Italic	Indicates a user-defined value, such as object_name.		
Bold	Indicates user input—text you type verbatim—in syntax and examples.		
[]	Denotes optional parameters, such as write_file [-f filename]		
•••	Indicates that a parameter can be repeated as many times as necessary: pin1 [pin2 pinN]		
I	Indicates a choice among alternatives, such as low medium high		
\	Indicates a continuation of a command line.		
/	Indicates levels of directory structure.		

Convention	Description
Edit > Copy	Indicates a path to a menu command, such as opening the Edit menu and choosing Copy.
Control-c	Indicates a keyboard combination, such as holding down the Control key and pressing c.

Customer Support

Customer support is available through SolvNet online customer support and through contacting the Synopsys Technical Support Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles and answers to frequently asked questions about Synopsys tools. SolvNet also gives you access to a wide range of Synopsys online services, which include downloading software, viewing Documentation on the Web, and entering a call to the Support Center.

To access SolvNet:

- 1. Go to the SolvNet Web page at http://solvnet.synopsys.com.
- 2. If prompted, enter your user name and password. (If you do not have a Synopsys user name and password, follow the instructions to register with SolvNet.)

If you need help using SolvNet, click SolvNet Help in the Support Resources section.

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the Synopsys Technical Support Center in the following ways:

- Open a call to your local support center from the Web by going to http://solvnet.synopsys.com (Synopsys user name and password required), then clicking "Enter a Call to the Support Center."
- Send an e-mail message to your local support center.
 - E-mail support_center@synopsys.com from within North America.
 - Find other local support center e-mail addresses at http://www.synopsys.com/support/support_ctr.
- Telephone your local support center.
 - Call (800) 245-8005 from within the continental United States.
 - Call (650) 584-4200 from Canada.
 - Find other local support center telephone numbers at http://www.synopsys.com/support/support_ctr.

Overview of Models

Describes the elements and models you can use to create a netlist in HSPICE.

A circuit *netlist* describes the basic functionality of an electronic circuit that you are designing. In HSPICE format, a netlist consists of a series of *elements* that define the individual components of the overall circuit. You can use your HSPICE-format netlist to simulate your circuit to help you verify, analyze, and debug your design, before you turn that design into an actual electronic circuit.

Your netlist can include several types of elements:

- Passive elements, see Chapter 2, Passive Device Models:
 - Resistors
 - Capacitors
 - Inductors
 - Mutual Inductors
- Active elements:
 - Diodes, see Chapter 3, Diodes
 - Junction Field Effect Transistors (JFETs), see Chapter 4, JFET and MESFET Models

1: Overview of Models

Using Models to Define Netlist Elements

- Metal Semiconductor Field Effect Transistors (MESFETs), see Chapter
 4, JFET and MESFET Models
- Bipolar Junction Transistors (BJTs), see Chapter 5, BJT Models
- Transmission lines (see the HSPICE Signal Integrity Guide):
 - S element
 - T element
 - U element
 - W element
- Metal Oxide Semiconductor Field Effect Transistors (MOSFETs), see the HSPICE MOSFET Models Manual.

Using Models to Define Netlist Elements

A series of standard models have been provided with the software. Each model is like a template that defines various versions of each supported element type used in an HSPICE-format netlist. Individual elements in your netlist can refer to these standard models for their basic definitions. When you use these models, you can quickly and efficiently create a netlist and simulate your circuit design.

Eight different versions (or *levels*) of JFET and MESFET models for use with HSPICE are supplied. An individual JFET or MESFET element in your netlist can refer to one of these models for its definition. That is, you do not need to define all of the characteristics (called *parameters*) of each JFET or MESFET element within your netlist.

Referring to standard models in this way reduces the amount of time required to:

- Create the netlist.
- Simulate and debug your circuit design.
- Turn your circuit design into actual circuit hardware.

Within your netlist, each element that refers to a model is known as an *instance* of that model. When your netlist refers to predefined device models, you reduce both the time required to create and simulate a netlist, and the risk of errors, compared to fully defining each element within your netlist.

Supported Models for Specific Simulators

This manual describes individual models that have been provided. HSPICE supports a specific subset of the available models. This manual describes the Synopsys device models for passive and active elements. You can include these models in HSPICE-format netlists.

Selecting Models

To specify a device in your netlist, use both an element and a model statement. The element statement uses the simulation device model name to reference the model statement. The following example uses the MOD1 name to refer to a BJT model. The example uses an NPN model type to describe an NPN transistor.

```
Q3 3 2 5 MOD1 
capameters>
.MODEL MOD1 NPN 
capameters>
```

You can specify parameters in both element and model statements. If you specify the same parameter in both an element and a model, then the element parameter (local to the specific instance of the model) always overrides the model parameter (global default for all instances of the model, if you do not define the parameter locally).

The model statement specifies the type of device—for example, for a BJT, the device type might be NPN or PNP.

Subcircuits

X<subcircuit_name> adds an instance of a subcircuit to your netlist. You must already have defined that subcircuit in your netlist by using a .MACRO or .SUBCKT command.

If you initialize a non-existent subcircuit node, HSPICE or HSPICE RF generates a warning message. This can occur if you use an existing .ic file (initial conditions) to initialize a circuit that you modified since you created the .ic file.

1: Overview of Models

Subcircuits

Syntax

X<subcircuit_name> n1 <n2 n3 ...> subnam
<parnam = val &> <M = val> <S=val> <DTEMP=val>

Argument	Definition		
X <subcircuit_name></subcircuit_name>	Subcircuit element name. Must begin with an X, followed by up to 15 alphanumeric characters.		
n1	Node names for external reference.		
subnam	Subcircuit model reference name.		
parnam	A parameter name set to a value (val) for use only in the subcircuit. It overrides a parameter value in the subcircuit definition, but is overridden by a value set in a .PARAM statement.		
M	Multiplier. Makes the subcircuit appear as M subcircuits in parallel. You can use this multiplier to characterize circuit loading. HSPICE or HSPICE RF does not need additional calculation time to evaluate multiple subcircuits. Do not assign a negative value or zero as the M value.		
S	Scales a subcircuit. For more information about the S parameter, see "S Parameter" in the HSPICE Simulation and Analysis User Guide. This keyword works only if you set .OPTION HIER_SCALE.		
DTEMP	Element temperature difference with respect to the circuit temperature in Celsius. Default=0.0. This argument sets a different temperature in subcircuits than the global temperature. This keyword works only when the you set .OPTION XDTEMP.		

Example 1

The following example calls a subcircuit model named MULTI. It assigns the WN = 100 and LN = 5 parameters in the .SUBCKT statement (not shown). The subcircuit name is x1. All subcircuit names must begin with x.

X1 2 4 17 31 MULTI WN = 100 LN = 5

Example 2

This example defines a subcircuit named YYY. The subcircuit consists of two 1-ohm resistors in series. The <code>.IC</code> statement uses the VCC passed parameter to initialize the <code>NODEX</code> subcircuit node.

```
.SUBCKT YYY NODE1 NODE2 VCC = 5V
.IC NODEX = VCC
    R1 NODE1 NODEX 1
    R2 NODEX NODE2 1
.EOM
XYYY 5 6 YYY VCC = 3V
```

1: Overview of Models

Subcircuits

2

Passive Device Models

Describes passive devices you can include in an HSPICE netlist, including resistor, inductor, and capacitor models.

You can use the set of passive model definitions in conjunction with element definitions to construct a wide range of board and integrated circuit-level designs. Passive device models let you include the following in any analysis:

- Transformers
- PC board trace interconnects
- Coaxial cables
- Transmission lines

The wire element model is specifically designed to model the RC delay and RC transmission line effects of interconnects, at both the IC level and the PC board level.

To aid in designing power supplies, a mutual-inductor model includes switching regulators, and several other magnetic circuits, including a magnetic-core model and element. To specify precision modeling of passive elements, you can use the following types of model parameters:

- Geometric
- Temperature

2: Passive Device Models

Resistor Device Model and Equations

Parasitic

This chapter describes:

- Resistor Device Model and Equations
- Capacitor Device Model and Equations
- Inductor Device Model and Equations

Resistor Device Model and Equations

This section describes equations for Wire RC and Resistor models.

Wire RC Model

You can use the .MODEL statement to include a Wire RC model in your HSPICE netlist. For a general description of the .MODEL statement, see the HSPICE Command Reference manual.

Syntax

.MODEL MNAME R keyword=value <CRATIO=val>

The wire element RC model is a CRC (pi) model. Use the CRATIO wire model parameter to allocate the parasitic capacitance of the wire element (between the input capacitor and the output capacitor of the model). This allows for symmetric node impedance for bidirectional circuits, such as buses.

Parameter	Description
mname	Model name. Elements use this name to reference the model.
R	Specifies a wire model.
keyword	Any model parameter name.

CRATIO

Ratio to allocate the total wire element parasitic capacitance. This is the capacitance between the capacitor connected to the input node, and the capacitor connected to the output node of the wire element pi model.

You can assign a value between 0 and 1 to CRATIO. Default=0.5

- 0 Assigns all of the parasitic capacitance (CAPeff) to the output node.
- 0.5 Assigns half of the parasitic capacitance to the input node, and half

to the output node.

- 1 Assigns all of the parasitic capacitance to the input node.
- CRATIO values smaller than 0.5 assign more of the capacitance to the output node than to the input node.
- Values greater than 0.5 assign more of the capacitance to the input node than to the output node.

If you set a CRATIO value outside the 0 to 1.0 range, simulation shows a warning, sets CRATIO to 0.5, and continues the analysis.

Figure 1 Wire Model Example

A wire-model resistor behaves like an elementary transmission line (see the HSPICE Signal Integrity Guide), if the .MODEL statement specifies an optional capacitor (from the n2 node to a bulk or ground node). The bulk node functions as a ground plane for the wire capacitance.

A wire has a drawn length and a drawn width. The resistance of the wire is the effective length, multiplied by RSH, then divided by the effective width.

To avoid syntactic conflicts, if a resistor model uses the same name as a parameter for rval in the element statement, then the simulation uses the model name. In the following example, R1 assumes that REXX refers to the model, and not to the parameter.

Resistor Device Model and Equations

Wire RC Model Parameter Syntax

.PARAMETER REXX=1 R1 1 2 REXX

.MODEL REXX R RES=1

Table 1 Wire Model Parameters

Name (Alias)	Units	Default	Description	
BULK	gnd		Default reference node for capacitance.	
CAP	F	0	Default capacitance.	
CAPSW	F/m	0	Sidewall fringing capacitance.	
COX	F/m2	0	Bottomwall capacitance.	
DI		0	Relative dielectric constant.	
DLR	m	0	Difference between the drawn length and the actual length (for resistance calculation only). The capacitance calculation uses DW. DLReff=DLR · SCALM	
DW	m	0	Difference between the drawn width and the actual width. DWeff=DW · SCALM	
L	m	0	Default length of the wire. Lscaled=L · SHRINK · SCALM	
LEVEL			Model selector (not used).	
RAC	ohm		Default AC resistance (the RACeff default is Reff).	
RES	ohm	0	Default resistance.	
RSH		0	Sheet resistance/square.	
SHRINK		1	Shrink factor.	
TC1C	1/deg	0	First-order temperature coefficient for capacitance.	

Table 1 Wire Model Parameters (Continued)

Name (Alias)	Units	Default	Description	
TC2C	1/deg2	0	Second-order temperature coefficient for capacitance.	
TC1R	1/deg	0	First-order temperature coefficient for resistance.	
TC2R	1/deg2	0	Second-order temperature coefficient for resistance.	
THICK	m	0	Dielectric thickness.	
TREF	deg C	TNOM	Temperature reference for model parameters.	
W	m	0	Default width of the wire. Wscaled=W \cdot SHRINK \cdot SCALM	

Resistor Syntax

```
R xxx n1 n2 <mname> <R =>resistance <<TC1 = > val>
+ <<TC2 = > val> <SCALE = val> <M = val> <AC = val>
+ <DTEMP = val> <L = val> <W = val> <C = val> <NOISE = val>
```

Resistor Model Selector

For multiple resistor models, you can use the automatic model selector in HSPICE to find the proper model for each resistor.

The model selector syntax is based on a common model root name with a unique extension for each model.

Example

```
.model REXX.1 R LMIN=0.5 LMAX=0.7 WMIN=0.1 WMAX=0.5 RES=1.2
.model REXX.2 R LMIN=0.7 LMAX=0.9 WMIN=0.1 WMAX=0.5 RES=1.3
```

You can then use the standard resistor model call to map the models to an element declaration:

```
R1 1 2 REXX L=0.6 W=0.5
```

Resistor Device Model and Equations

The resistor model selector uses the following criteria:

LMIN <= L < LMAX WMIN <= W < WMAX

Resistor Model Equations

This section contains equations for different characteristics of resistors.

Wire Resistance Calculation

You can specify the wire width and length in both the element and model statements. The element values override the model values.

- To scale the element width and length, use .OPTION SCALE and the SHRINK model parameter.
- To scale the model width and length, use .OPTION SCALM and the SHRINK model parameter.

The following equations calculate the effective width and length:

$$Weff = Wscaled - 2 \cdot DWeff$$
 $Leff = Lscaled - 2 \cdot DLReff$

If you specify element resistance:

$$Reff = \frac{R \cdot SCALE(element)}{M}$$

Otherwise, if $(Weff \cdot Leff \cdot RSH)$ is greater than zero, then:

$$Reff = \frac{Leff \cdot RSH \cdot SCALE(element)}{M \cdot Weff}$$

If $(Weff \cdot Leff \cdot RSH)$ is zero, then:

$$Reff = \frac{RES \cdot SCALE(element)}{M}$$

If you specify AC resistance in the element, then:

$$RACeff = \frac{AC \cdot SCALE(element)}{M}$$

Otherwise, if the model specifies RAC, the RACeff equation uses RAC:

$$RACeff = \frac{RAC \cdot SCALE(element)}{M}$$

If the model does not specify either AC resistance or RAC, then the equation defaults to:

$$RACeff = Reff$$

If the resistance is less than the RESMIN option, then the RACeff equation resets it to the RESMIN value, and issues a warning message.

$$RESMIN = \frac{1}{GMAX \cdot 1000 \cdot M}$$

Wire Capacitance Calculation

The effective length is the scaled drawn length, less (2 DLeff).

- Leff represents the effective length of the resistor, from physical edge to physical edge.
- DWeff is the distance from the drawn edge of the resistor to the physical edge of the resistor.

The effective width is the same as the width used in the resistor calculation.

$$Leff = Lscaled - 2 \triangleright DLeff$$

$$Weff = Wscaled - 2 \triangleright DWeff$$

If you specify the element capacitance, C:

$$CAPeff = C \cdot SCALE(element) \cdot M$$

Otherwise, the equation calculates the capacitance from the Leff, Weff, and COX values:

$$CAPeff = M \cdot SCALE(element) \cdot [Leff \cdot Weff \cdot COX] + 2 \cdot (Leff + Weff) \cdot CAPSW]$$

Computing the bottom-wall capacitance, COX, is based on a hierarchy of defaults and specified values, involving:

- dielectric thickness (THICK)
- relative dielectric constant (DI)

Resistor Device Model and Equations

Whether you specify a COX value affects how HSPICE uses the equation:

- If you specify COX=value, then the equation uses the value.
- If you do not specify COX, but you do specify a value other than zero for THICK (the dielectric thickness):
 - If you specify a non-zero value for DI=*value*, then:

$$COX = \frac{DI \cdot \varepsilon o}{THICK}$$

If you do not specify a DI value or if the value is zero, then:

$$COX = \frac{\varepsilon ox}{THICK}$$

The following values apply to the preceding equation:

$$\varepsilon o = 8.8542149e-12$$
 F/meter

$$\varepsilon ox = 3.453148e-11$$
 F/meter

- If you do not specify COX, and THICK = 0, this is an error.
 - If you specify only the model capacitance (CAP), then:

$$CAPeff = CAP \cdot SCALE(element) \cdot M$$

If you specify the capacitance, but you do not specify the bulk node, then the resistor model does not evaluate the capacitance, and issues a warning message.

Resistor Noise Equation

The following equation models the thermal noise of a resistor:

$$inr = \left(NOISE \cdot \frac{4kT}{Rval}\right)^{1/2}$$

In the preceding equation, NOISE is a model parameter (default=1). To eliminate the contribution of resistor noise, specify the NOISE parameter in a resistor model.

Parameter	Description
RX	Transfer the function of thermal noise to the output. This is not noise, but is a transfer coefficient, which reflects the contribution of thermal noise to the output.
TOT, V ² /Hz	Total output noise: $TOT = RX^2 \cdot inr^2$

Resistor Temperature Equations

You can use temperature values to set resistor and capacitor values:

$$R(t) = R \cdot (1.0 + TC1 \cdot \Delta t + TC2 \cdot \Delta t^{2})$$

$$RAC(t) = RAC \cdot (1.0 + TC1 \cdot \Delta t + TC2 \cdot \Delta t^{2})$$

$$C(t) = C \cdot (1.0 + TC1 \cdot \Delta t + TC2 \cdot \Delta t^{2})$$

Parameter	Description
Δt	t - tnom
t	Element temperature in °K: t = circuit temp + DTEMP + 273.15
tnom	Nominal temperature in °K: tnom = 273.15 + TNOM

Noise Parameter for Resistors

Resistor models generate electrical thermal noise. However, some tasks, such as macro modeling, require noiseless resistor models.

- If you set noise=1 (default) or if you do not specify the noise parameter, HSPICE models a resistor that generates noise.
- If you do not want the resistor model to generate thermal noise, set *noise*=0 in the instance statement (noiseless resistor model).

2: Passive Device Models

Capacitor Device Model and Equations

Example

This example is located in the following directory:

\$installdir/demo/hspice/apps/noise.sp

In this example, rd is a 1-ohm noiseless resistor that connects between node 1 and node 6.

Capacitor Device Model and Equations

This section describes capacitor models and their equations.

Capacitance Model

You can use the .MODEL statement to include a capacitance model in your HSPICE netlist. For a general description of the .MODEL statement, see the HSPICE Command Reference.

Syntax

.MODEL mname C parameter=value

Parameter	Description
mname	Model name
С	Specifies a capacitance model
parameter	Any model parameter name

Table 2 Capacitance Parameters

Name (Alias)	Units	Default	Description
CAP	F	0	Default capacitance value.
CAPSW	F/m	0	Sidewall fringing capacitance.
COX	F/m ²	0	Bottomwall capacitance.

Table 2 Capacitance Parameters (Continued)

Name (Alias)	Units	Default	Description
DEL	m	0	Difference between the drawn width and the actual width or length. DELeff = DEL · SCALM
DI		0	Relative dielectric constant.
L	m	0	Default length of the capacitor. Lscaled = L · SHRINK · SCALM
SHRINK		1	Shrink factor.
TC1	1/deg	0	First temperature coefficient for capacitance.
TC2	1/deg ²	0	Second temperature coefficient for capacitance.
THICK	m	0	Insulator thickness.
TREF	deg C	TNOM	Reference temperature.
W	m	0	Default width of the capacitor. Wscaled = W · SHRINK · SCALM

Parameter Limit Checking

If a capacitive element value exceeds 0.1 Farad, then the output listing file receives a warning message. This feature helps you to identify elements that are missing units or have incorrect values, particularly if the elements are in automatically-produced netlists.

Capacitor Device Equations

Capacitor equations include effective capacitance and capacitance temperature.

Capacitor Device Model and Equations

Effective Capacitance Calculation

You can associate a model with a capacitor. You can specify some of the parameters in both the element and the model descriptions. The element values override the model values.

- To scale the element width and length, use .OPTION SCALE and the SHRINK model parameter.
- To scale the model width and length, use .OPTION SCALM and the SHRINK model parameter.

The following equations calculate the effective width and length:

$$Weff = Wscaled - 2 \triangleright DELeff$$

$$Leff = Lscaled - 2 \triangleright DELeff$$

If you specify the element capacitance:

$$CAPeff = C \cdot SCALE(element) \cdot M$$

Otherwise, the equation calculates the capacitance from the Leff, Weff, and COX values:

$$CAPeff = M \cdot SCALE(element) \cdot [Leff \cdot Weff \cdot COX + 2 \cdot (Leff + Weff) \cdot CAPSW]$$

If you do not specify COX, but THICK is not zero, then:

$$COX = \frac{DI \cdot \epsilon_O}{THICK}$$
 if DI not zero

$$COX = \frac{\varepsilon o x}{THICK}$$
 if DI=0

The following values apply to the preceding equation:

$$\varepsilon o = 8.8542149e-12 \quad \frac{F}{meter}$$

$$\varepsilon ox = 3.453148e-11 \frac{F}{meter}$$

If you specify only the model capacitance (CAP), then:

$$CAPeff = CAP \cdot SCALE(element) \cdot M$$

Capacitance Temperature Equation

The following equation calculates the capacitance as a function of temperature:

$$C(t) = C \cdot (1.0 + TC1 \cdot \Delta t + TC2 \cdot \Delta t^2)$$

Parameter	Description
Δt	t - tnom
t	Element temperature in degrees Kelvin. t=circuit_temp + DTEMP + 273.15
tnom	Nominal temperature in degrees Kelvin. tnom+273.15 + TNOM

Inductor Device Model and Equations

You can use several elements and models to analyze:

- Switching regulators
- Transformers
- Mutual inductive circuits

These elements include:

- Magnetic winding elements
- Mutual cores
- Magnetic core models

You can use the saturable core model for:

- Chokes
- Saturable transformers
- Linear transformers

2: Passive Device Models

Inductor Device Model and Equations

To use the model, you must:

- 1. Provide a mutual core statement.
- 2. Use a .MODEL statement to specify the core parameters.
- 3. Use a magnetic winding element statement to specify the windings around each core element.

Inductor Core Models

Syntax

Magnetic Core

```
.MODEL mname L ( ral1>...)
```

Jiles-Atherton Ferromagnetic Core

Level=3 Resistor Model

.MODEL mname L level=3 <scale=val> <tnom=val>

Parameter	Description
mname	Model name. Elements use this name to refer to the model.
L	Identifies a saturable core model.
CORE	Identifies a Jiles-Atherton Ferromagnetic Core model.
level=x	Equation selection for a Jiles-Atherton model.
pname1=val1	Value of the model parameter. Each core model can include several model parameters.

Example 1

```
.MODEL CHOKE L(BS=12K BR=10K HS=1 HCR=.2 HC=.3 AC=1. LC=3.)
```

To use this example, obtain the core model parameters from the manufacturer's data. Figure on page 21 illustrates the required b-h loop parameters for the model.

The model includes:

- Core area
- Length
- Gap size
- Core growth time constant

Example 2

This example is located in the following directory:

\$installdir/demo/hspice/mag/bhloop.sp

Table 3 Magnetic Core Model Parameters

Name (Alias)	Units	Default	Description
AC	cm · 2	1.0	Core area.
BS	Gauss	13000	Magnetic flux density, at saturation.
BR	Gauss	12000	Residual magnetization.
HC	Oersted	0.8	Coercive magnetizing force.
HCR	Oersted	0.6	Critical magnetizing force.
HS	Oersted	1.5	Magnetizing force, at saturation.
LC	cm	3.0	Core length.
LG	cm	0.0	Gap length.
тс	S	0.0	Core growth time constant.

Figure 2 Magnetic Saturable Core Model

Table 4 Jiles-Atherton Core Model Parameters

Name (Alias)	Units	Default	Description
LEVEL		2	Model selector.
			 For the Jiles-Atherton model, LEVEL=1. LEVEL=2 (default) selects the Pheno model, which is the original model.
AREA, (AC)	cm ²	1	Mean of the cross section for the magnetic core. AC is an alias of AREA.
PATH, (LC)	cm	3	Mean of the path length for the magnetic core. LC is an alias of PATH.
MS	amp/meter	1e6	Magnetization saturation.
Α	amp/meter	1e3	Characterizes the shape of anhysteretic magnetization.

Table 4 Jiles-Atherton Core Model Parameters (Continued)

Name (Alias)	Units	Default	Description
ALPHA		1e-3	Coupling between the magnetic domains.
С		0.2	Domain flexing parameter.
K	amp/meter	500	Domain of an isotropy parameter.

Table 5 Magnetic Core Element Outputs

Output Variable	Description
LX1	magnetic field, h (oersted)
LX2	magnetic flux density, b (gauss)
LX3	slope of the magnetization curve, $\frac{dm}{dh}$
LX4	bulk magnetization, m (amp/meter)
LX5	slope of the anhysteretic magnetization curve, $\frac{dm_{an}}{dh}$
LX6	anhysteretic magnetization, m _{an} (amp/meter)
LX7	effective magnetic field, h _e (amp/meter)

Inductor Device Equations

This section contains equations for inductors.

Checking Parameter Limits

If an inductive element value exceeds 0.1 Henry, the output listing file receives a warning message. This feature helps you identify elements that are missing

2: Passive Device Models

Inductor Device Model and Equations

units or that have incorrect values, particularly if the elements are in automatically-produced netlists.

Inductor Temperature Equation

The following equation provides the effective inductance as a function of temperature:

$$L(t) = L \cdot (1.0 + TC1 \cdot \Delta t + TC2 \cdot \Delta t^{2})$$

Parameter	Description
Δ t	t - tnom
t	Element temperature in degrees Kelvin. t=circuit_temp + DTEMP + 273.15
tnom	Nominal temperature in degrees Kelvin. tnom=273.15 + TNOM

- 1. To create coupling between inductors, use a separate coupling element.
- 2. To specify mutual inductance between two inductors, use the coefficient of coupling, kvalue. The following equation defines kvalue:

$$K = \frac{M}{(L_1 \cdot L_2)^{1/2}}$$

Parameter	Description
L1, L2	Inductances of the two coupled inductors.
M	Mutual inductance, between the inductors.

The linear branch relation for transient analysis, is:

$$v_1 = L_1 \cdot \frac{di_1}{dt} + M \cdot \frac{di_2}{dt} \qquad v_2 = M \cdot \frac{di_1}{dt} + L_2 \cdot \frac{di_2}{dt}$$

The linear branch relation for AC analysis, is:

$$V_1 = (j \cdot \omega \cdot L_1) \cdot I_1 + (j \cdot \omega \cdot M) \cdot I_2$$

$$V_2 = (j \cdot \omega \cdot M) \cdot I_1 + (j \cdot \omega \cdot L_2) \cdot I_2$$

Note: If you do not use a mutual inductor statement to define an inductor reference, then an error message appears, and simulation terminates.

Jiles-Atherton Ferromagnetic Core Model

The Jiles-Atherton ferromagnetic core model is based on domain wall motion, including both bending and translation. A modified Langevin expression describes the hysteresis-free (anhysteretic) magnetization curve. This leads to:

$$m_{an} = M\dot{S} \cdot \left(\coth\left(\frac{h_e}{A}\right) - \frac{A}{h_e} \right)$$

$$h_e = h + ALPHA \cdot m_{an}$$

Parameter	Description
m _{an}	Magnetization level, if the domain walls could move freely.
h _e	Effective magnetic field.
h	Magnetic field.
MS	This model parameter represents the saturation magnetization.

2: Passive Device Models

Inductor Device Model and Equations

A	This model parameter characterizes the shape of anhysteretic magnetization.
ALPHA	This model parameter represents the coupling between the magnetic domains.

The preceding equation generates anhysteretic curves, if the ALPHA model parameter has a small value. Otherwise, the equation generates some elementary forms of hysteresis loops, which is not a desirable result.

The following equation calculates the slope of the curve, at zero (0):

$$\frac{dm_{an}}{dh} = \frac{1}{3 \cdot \frac{A}{MS} - ALPHA}$$

The slope must be positive; therefore, the denominator of the above equation must be positive. If the slope becomes negative, an error message appears.

Anhysteretic magnetization represents the global energy state of the material, if the domain walls could move freely, but the walls are displaced and bent in the material.

If you express the bulk magnetization (m) as the sum of an irreversible component (due to wall displacement), and a reversible component (due to domain wall bending), then:

$$\frac{dm}{dh} = \frac{(m_{an} - m)}{K} + C \cdot \left(\frac{dm_{an}}{dh} - \frac{dm}{dh}\right)$$

or

$$\frac{dm}{dh} = \frac{(m_{an} - m)}{(1 + C) \cdot K} + \frac{C}{1 + C} \cdot \frac{dm_{an}}{dh}$$

Solving the above differential equation obtains the bulk magnetization value, m. The following equation uses m to compute the flux density (b):

$$b = \mu_0 \cdot (h+m)$$

The following values apply to the preceding equation:

- μ_0 , the permeability of free space, is $4\pi \cdot 10^{-7}$.
- The units of h and m are in amp/meter.
- The units of b are in Tesla (Wb/meter²).

Example

This example demonstrates the effects of varying the ALPHA, A, and K model parameters, on the b-h curve.

- Figure 3 shows b-h curves for three values of ALPHA.
- Figure 4 shows b-h curves for three values of A.
- Figure 5 shows b-h curves for three values of K.

Input File

This input file is located in the following directory: \$installdir/demo/hspice/mag/jiles.sp

Plots of the b-h Curve

Figure 3 Anhysteretic b-h Curve Variation: Slope and ALPHA Increase

Figure 4 Anhysteretic b-h Curve Variation: Slope Decreases, A Increases

Figure 5 Variation of Hysteretic b-h Curve: as K Increases, the Loop Widens and Rotates Clockwise

Discontinuities in Inductance Due to Hysteresis

This example creates multi-loop hysteresis b-h curves for a magnetic core. Discontinuities in the inductance, which are proportional to the slope of the b-h curve, can cause convergence problems. Figure 6 demonstrates the effects of hysteresis on the inductance of the core.

Input File

This input file is located in the following directory:

\$installdir/demo/hspice/mag/tj2b.sp

Plots of the Hysteresis Curve and Inductance

Figure 6 Hysteresis Curve and Inductance of a Magnetic Core

Optimizing the Extraction of Parameters

This example demonstrates how to optimize the process of extracting parameters from the Jiles-Atherton model. Figure 7 shows the plots of the core output, before and after optimization.

Input File

This input file is located in the following directory:

\$installdir/demo/hspice/mag/tj_opt.sp

The tj_opt.sp file also contains the analysis results listing.

Figure 7 Output Curves, Before Optimization (top), and After Optimization (bottom)

Diodes

Describes model parameters and scaling effects for geometric and nongeometric junction diodes.

You use diode models to describe pn junction diodes within MOS and bipolar integrated circuit environments and discrete devices. You can use four types of models (as well as a wide range of parameters) to model standard junction diodes:

- Zener diodes
- Silicon diffused junction diodes
- Schottky barrier diodes
- Nonvolatile memory diodes (tunneling current)

Note: See the *HSPICE MOSFET Models Manual* for other MOSFET and standard discrete diodes.

Diode model types include the junction diode model, and the Fowler-Nordheim model. Junction diode models have two variations: geometric and nongeometric.

3: DiodesDiode Types

This chapter is an overview of model parameters and scaling effects for geometric and nongeometric junction diodes. It describes:

- Diode Types
- Using Diode Model Statements
- Specifying Junction Diode Models
- Determining Temperature Effects on Junction Diodes
- Using Junction Diode Equations
- Using the JUNCAP Model
- Using the Fowler-Nordheim Diode
- Converting National Semiconductor Models

Diode Types

Use the geometric junction diode to model:

- IC-based, standard silicon-diffused diodes.
- Schottky barrier diodes.
- Zener diodes.

Use the geometric parameter to specify dimensions for pn junction poly and metal capacitance for a particular IC process technology.

Use the non-geometric junction diode to model discrete diode devices, such as standard and Zener diodes. You can use the non-geometric model to scale currents, resistances, and capacitances by using dimensionless area parameters.

The Fowler-Nordheim diode defines a tunneling current-flow, through insulators. The model simulates diode effects in nonvolatile EEPROM memory.

Using Diode Model Statements

Use model and element statements to select the diode models. Use the LEVEL parameter (in model statements) to select the type of diode model:

- LEVEL=1 selects the non-geometric, junction diode model.
- LEVEL=2 selects the Fowler-Nordheim diode model.
- LEVEL=3 selects the geometric, junction diode model.

To design Zener, Schottky barrier, and silicon diffused diodes, alter the model parameters for both LEVEL 1 and LEVEL 3. LEVEL 2 does not permit modeling of these effects. For Zener diodes, set the BV parameter for an appropriate Zener breakdown voltage.

If you do not specify the LEVEL parameter in the .MODEL statement, the model defaults to the non-geometric, junction diode model, LEVEL 1.

Use control options with the diode model, to:

- Scale model units.
- Select diffusion capacitance equations.
- Change model parameters.

Setting Control Options

To set control options, use the .OPTION statement.

Control options, related to the analysis of diode circuits and other models, include:

- DCAP
- DCCAP
- GMIN
- GMINDC
- SCALE
- SCALM

Bypassing Latent Devices

Use .OPTION BYPASS (latency) to decrease simulation time in large designs. To speed simulation time, this option does not recalculate currents, capacitances, and conductances, if the voltages at the terminal device nodes have not changed. .OPTION BYPASS applies to MOSFETs, MESFETs, JFETs, BJTs, and diodes. Use .OPTION BYPASS to set BYPASS.

BYPASS might reduce simulation accuracy for tightly-coupled circuits such as op-amps, high gain ring oscillators, and so on. Use .OPTION MBYPAS MBYPAS to set MBYPAS to a smaller value for more accurate results.

Setting Scaling Options

- Use the SCALE element option to scale LEVEL 2 and LEVEL 3 diode element parameters.
- Use the SCALM (scale model) option to scale LEVEL 2 and LEVEL 3 diode model parameters.

LEVEL 1 does not use SCALE or SCALM.

Include SCALM=<*val*> in the .MODEL statement (in a diode model) to override global scaling that uses the .OPTION SCALM=<*val*> statement.

Using the Capacitor Equation Selector Option — DCAP

- Use the DCAP option to select the equations used in calculating the depletion capacitance (LEVEL 1 and LEVEL 3).
- Use the DCCAP option to calculate capacitances in DC analysis.

Include DCAP= $<\!val\!>$ in the .MODEL statement for the diode to override the global depletion capacitance equation that the .OPTION DCAP= $<\!val\!>$ statement selects.

Using Control Options for Convergence

Diode convergence problems often occur at the breakdown voltage region when the diode is either overdriven or in the OFF condition.

To achieve convergence in such cases, do either of the following:

- Include a non-zero value in the model for the RS (series resistor) parameter.
- Increase GMIN (the parallel conductance that HSPICE automatically places in the circuit). You can specify GMIN and GMINDC in the .OPTION statement.

Table 6 shows the diode control options:

Table 6 Diode Control Options

Function	Control Options
Capacitance	DCAP, DCCAP
Conductance	GMIN, GMINDC
Geometry	SCALM, SCALE
	•

Specifying Junction Diode Models

Use the diode element statement to specify the two types of junction diodes: geometric or non-geometric. Use a different element type format for the Fowler-Nordheim model.

Use the parameter fields in the diode element statement to define the following parameters of the diode model, specified in the .MODEL statement for the diode:

- Connecting nodes
- Initialization
- Temperature
- Geometric junction
- Capacitance parameters

Both LEVEL 1 and LEVEL 3 junction diode models share the same element parameter set. Poly and metal capacitor parameters of LM, LP, WM and WP, do not share the same element parameter.

Element parameters have precedence over model parameters, if you repeat them as model parameters in the .MODEL statement.

3: Diodes

Specifying Junction Diode Models

Parameters common to both element and model statements are:

AREA, PJ, M, LM, LP, WM, WP, W, and L.

Table 7 Junction Diode Element Parameters

Function	Parameters
Netlist	Dxxx, n+, n-, mname
Initialization	IC, OFF
Temperature	DTEMP
Geometric junction	AREA, L, M, PJ, W
Geometric capacitance (LEVEL=3 only)	LM, LP, WM, WP

Using the Junction Model Statement

You can use the .MODEL statement to include a junction model in your HSPICE netlist. For a general description of the .MODEL statement, see the HSPICE Command Reference.

Syntax

.MODEL mname D <LEVEL = val> <keyword = val> ...

Parameter	Description
mname	Model name. The diode element uses this name to refer to the model.
D	Symbol that identifies a diode model.
LEVEL	Symbol that identifies a diode model. LEVEL=1 =junction diode. LEVEL=2 =Fowler-Nordheim diode. LEVEL=3 =geometric processing for junction diode.
keyword	Model parameter keyword, such as CJO or IS.

Example

```
.MODEL D D (CO=2PF, RS=1, IS=1P)
.MODEL DFOWLER D (LEVEL=2, TOX=100, JF=1E-10, EF=1E8)
.MODEL DGEO D (LEVEL=3, JS=1E-4, JSW=1E-8)
.MODEL d1n750a D
+ LEVEL=1 XP =0.0 EG =1.1
+ XOI =0.0 XOM =0.0 XM =0.0
+ WP =0.0 WM =0.0 LP =0.0
+ LM =0.0 AF =1.0 JSW =0.0
+ PB =0.65 PHP =0.8 M =0.2994
+ FC =0.95 FCS =0.4 MJSW=0.5
+ TT =2.446e-9 BV =4.65 RS =19
+ IS =1.485e-11 CJO =1.09e-9 CJP =0.0
+ PJ =0.0 N =1.615 IK =0.0
+ IKR =1.100e-2 IBV =2.00e-2
```

Using Junction Model Parameters

The diode element statement references the .MODEL statement. The .MODEL statement contains parameters that specify:

- Type of diode model (LEVEL 1, 2, or 3)
- DC
- Capacitance
- Temperature
- Resistance
- Geometry
- Noise

Table 8 Junction Diode Model Parameters (LEVEL 1 and LEVEL 3)

Function	Parameters
model type	LEVEL
DC parameters	IBV, IK, IKR, IS, ISW, N, RS, VB, RS
geometric junction	AREA, M, PJ
geometric capacitance (LEVEL=3 only)	L, LM, LP, SHRINK, W, WM, WP, XM, XOJ, XOM, XP, XW

Table 8 Junction Diode Model Parameters (LEVEL 1 and LEVEL 3)

Function	Parameters
capacitance	CJ, CJP, FC, FCS, M, MJSW, PB, PHP, TT
noise	AK, KF

Table 9 Junction DC Parameters in Level 1 and 3

Name (Alias)	Units	Default	Description
AREA		1.0	Junction area. • For LEVEL=1 AREAeff = AREA · M, unitless • For LEVEL=3 AREAeff=AREA · SCALM ² · SHRINK ² · M unit = meter ² • If you specify W and L: AREAeff = Weff · Leff · M unit = meter ²
EXPLI	amp/ AREAe ff	0	Current-explosion model parameter. The PN junction characteristics (above the explosion current) are linear with the slope at the explosion point. This speeds up the simulation and improves convergence. EXPLIeff = EXPLI · AREAeff
EXPLIR	amp/ AREAe ff	EXPLI	Reverse mode current explosion model parameter. EXPLIReff = EXPLIR · AREAeff
IB	amp/ AREAe ff	1.0e-3	Current, at breakdown voltage. For LEVEL=3: IBVeff = IBV · AREAeff / SCALM ²
IBV	amp/ AREAe ff	1.0e-3	Current, at breakdown voltage: For LEVEL=3: IBVeff = IBV · AREAeff / SCALM ²

Table 9 Junction DC Parameters in Level 1 and 3 (Continued)

Name (Alias)	Units	Default	Description
IK (IKF, JBF)	amp/ AREAe ff	0.0	Forward-knee current (intersection of the high- and low-current asymptotes). IKeff = IK · AREAeff
IKR (JBR)	amp/ AREAe ff	0.0	Reverse-knee current (intersection of the high- and low-current asymptotes). IKReff = IKR · AREAeff
JSW (ISP)	amp/ PJeff	0.0	Sidewall saturation current, per unit junction periphery. • For LEVEL=1: JSWeff = PJeff · JSW • For LEVEL=3: JSWeff = PJeff · JSW/SCALM
IS (JS)	amp/ AREAe ff	LEVEL 1= 1.0e- 14 LEVEL 3= 0.0	Saturation current per unit area. If the IS value is less than EPSMIN, the program resets the value of IS to EPSMIN, and shows a warning message. EPSMIN default=1.0e-28
		J= 0.0	If the value of IS is too large, the program displays a warning. • For LEVEL=1: ISeff = AREAeff · IS • For LEVEL=3: ISeff = AREAeff · IS/SCALM ²
L			Default length of the diode. Leff = L · SHRINK · SCALM + XWeff
LEVEL		1	 Diode model selector. LEVEL=1 or LEVEL=3 selects the junction diode model. LEVEL=2 selects the Fowler-Nordheim model.
N		1.0	Emission coefficient.

Table 9 Junction DC Parameters in Level 1 and 3 (Continued)

Name (Alias)	Units	Default	Description
RS	ohms or ohms/ m ² (see note below)	0.0	Ohmic series resistance. • For LEVEL=1: RSeff = RS/AREAeff • For LEVEL=3: RSeff= RS · SCALM2/AREAeff
PJ		0.0	Junction periphery. • For LEVEL=1: PJeff = PJ · M, unitless • For LEVEL=3: PJeff = PJ · SCALM · M · SHRINK, meter • If you specify W and L: PJeff = (2 · Weff + 2 · Leff) · M, meter
SHRINK		1.0	Shrink factor.
VB (BV, VAR, VRB)	V	0.0	Reverse breakdown voltage. 0.0 indicates an infinite breakdown voltage.
XW			Accounts for masking and etching effects. XWeff = XW · SCALM
JTUN	amp/ AREAe ff	0.0	 Tunneling saturation current per area. For LEVEL=1: JTUNeff = AREAeff · JTUN For LEVEL=1: JTUNeff = AREAeff · JTUN/SCALM²
JTUNSW	amp/ PJeff	0.0	Sidewall tunneling saturation current per unit junction periphery. • For LEVEL=1: JTUNSWeff = PJeff · JTUNSW • For LEVEL=1: JTUNSWeff = PJeff · JTUNSW/SCALM
NTUN		30	Tunneling emission coefficient.

Note: If you use a diode model than does not specify an AREA, then AREA defaults to 1, and RS is in units of ohms. If you specify the AREA in square meters (m²) in the netlist, then the units of RS are ohms/m².

Table 10 Junction Capacitance Parameters

Name (Alias)	Units	Default	Description
CJ (CJA, CJO)	F/ AREAeff	0.0	Zero-bias junction capacitance, per unit- junction bottomwall area. • For LEVEL=1: CJOeff = CJO · AREAeff • For LEVEL=3: CJeff = CJ · AREAeff/SCALM ²
CJP (CJSW)	F/PJeff	0.0	 Zero-bias junction capacitance, per unit-junction periphery (PJ). For LEVEL=1: CJPeff = CJP · PJeff For LEVEL=3: CJPeff = CJP · PJeff/SCALM
FC		0.5	Coefficient for the formula that calculates the capacitance for the forward-bias depletion area.
FCS		0.5	Coefficient for the formula that calculates the capacitance for the forward-bias depletion periphery.
M (EXA, MJ)		0.5	Grading coefficient at area junction.
MJSW (EXP)		0.33	Grading coefficient at periphery junction.
PB (PHI, VJ, PHA)	V	0.8	Contact potential at area junction.
PHP	V	PB	Contact potential at periphery junction.
TT	S	0.0	Transit time.

Table 11 Metal and Poly Capacitor Parameters, Level=3

Name (Alias)	Units	Default	Description
LM	m	0.0	Default length of metal. Use this parameter if the element statement does not specify LM.
			LMeff = LM · SCALM · SHRINK
LP	m	0.0	Default length of polysilicon. Use this parameter if the element statement does not specify LP.
			LPeff = LP · SCALM · SHRINK
WM	m	0.0	Default width of metal. Use this parameter if the element statement does not specify WM.
			WMeff = WM · SCALM · SHRINK
WP	m	0.0	Default width of polysilicon. Use this parameter if the element statement does not specify WP.
			WPeff = WP · SCALM · SHRINK
XM	m	0.0	Accounts for masking and etching effects in metal layer: XMeff = XM · SCALM
XOI		10k	Thickness of the poly to bulk oxide.
XOM	Å	10k	Thickness of the metal to bulk oxide.
XP	m	0.0	Accounts for masking and etching effects in poly layer: XPeff = XP · SCALM

Table 12 Noise Parameters for Level=1 and 3

Name (Alias)	Units	Default	Description
AF		1.0	Flicker noise exponent.
KF		0.0	Flicker noise coefficient.

Geometric Scaling for Diode Models

LEVEL=1 Scaling

LEVEL 1 uses the AREA and M Element parameters to scale the following element and model parameters: IK, IKR, JS, CJO, and RS. For AREA and M, default=1.

This element is not geometric, because it uses dimensionless values to measure both the area (AREA) and the periphery (PJ). .OPTION SCALE and .OPTION SCALM do not affect these parameters.

1. Diode models multiply the periphery junction parameter by M (the multiplier parameter) to scale a dimensionless periphery junction:

```
PJeff = PJ \cdot M
```

2. The diode models then use PJeff to scale CJP (the zero-bias junction capacitance), and the sidewall saturation current (JSW).

```
CJPeff = PJeff · CJP
JSWeff = PJeff · JSW
```

3. The models use the AREA and M values to obtain AREAeff.

```
AREAeff = AREA \cdot M
```

4. Models multiply CJO, IK, IKR, IBV, and IS by AREAeff to obtain their effective scaled values. However, diode models *divide* RS by AREAeff.

```
IKeff = AREAeff · IK
IKReff = AREAeff · IKR
IBVeff = AREAeff · IBV
ISeff = AREAeff · IS
RSeff = RS/AREAeff
CJOeff = CJO · AREAeff
```

LEVEL=3 Scaling

The SCALM, SCALE, SHRINK, and M parameters affect LEVEL 3 scaling.

SCALE affects the following LEVEL 3 element parameters:

```
AREA, LM, LP, PJ, WM, WP, W, L
```

SCALM affects the following model parameters:

```
AREA, IBV, IK, IKR, IS, PJ, JSW, RS, CJO, CJP, LM, LP, WP, XM, XP, W, L, XW
```

If you include AREA as either an element parameter or a model parameter, then the program uses SCALE or SCALM. The following equations use the AREA element parameter, instead of the AREA model parameter.

If you specified the AREA and PJ model parameters, but not the element, then use SCALM as the scaling factor, instead of SCALE.

The following equations determine the parameters of the scaled effective area, and of the periphery junction element:

$$AREA_{eff} = AREA \cdot M \cdot SCALE^2 \cdot SHRINK^2$$

PJeff = PJ · SCALE · M · SHRINK

If you specified W and L:

$$\begin{aligned} \mathsf{AREA}_{\mathsf{eff}} &= \mathsf{W}_{\mathsf{eff}} \cdot \mathsf{L}_{\mathsf{eff}} \cdot \mathsf{M} \\ \mathsf{PJ}_{\mathsf{eff}} &= (2 \cdot \mathsf{W}_{\mathsf{eff}} + 2 \cdot \mathsf{L}_{\mathsf{eff}}) \cdot \mathsf{M} \end{aligned}$$

The following values apply to the preceding equations:

$$W_{eff} = W \cdot SCALE \cdot SHRINK + XW_{eff}$$

 $L_{eff} = L \cdot SCALE \cdot SHRINK + XW_{eff}$

To find the value of JSWeff and CJPeff, use the following formula:

$$JSW_{eff} = PJ_{eff} \cdot (JSW/SCALM)$$

 $CJP_{eff} = PJ_{eff} \cdot (CJP/SCALM)$

To determine the polysilicon and metal capacitor dimensions, multiply each by SCALE or by SCALM if you used model parameters to specify these dimensions.

```
\begin{split} \mathsf{LM}_{eff} &= \mathsf{LM} \cdot \mathsf{SCALE} \cdot \mathsf{SHRINK} \\ \mathsf{WM}_{eff} &= \mathsf{WM} \cdot \mathsf{SCALE} \cdot \mathsf{SHRINK} \\ \mathsf{LP}_{eff} &= \mathsf{LP} \cdot \mathsf{SCALE} \cdot \mathsf{SHRINK} \\ \mathsf{WP}_{eff} &= \mathsf{WP} \cdot \mathsf{SCALE} \cdot \mathsf{SHRINK} \\ \mathsf{XP}_{eff} &= \mathsf{XP} \cdot \mathsf{SCALM} \\ \mathsf{XM}_{eff} &= \mathsf{XM} \cdot \mathsf{SCALM} \end{split}
```

Use the following formulas to determine the effective scaled model parameters (IBeff, IKReff, IBVeff, RSeff, and CJO):

```
\begin{split} & \text{IK}_{\text{eff}} = \text{AREA}_{\text{eff}} \cdot \text{IK} \\ & \text{IKR}_{\text{eff}} = \text{AREA}_{\text{eff}} \cdot \text{IKR} \\ & \text{IBV}_{\text{eff}} = (\text{AREA}_{\text{eff}} \cdot \text{IBV})/\text{SCALM}^2 \\ & \text{IS}_{\text{eff}} = \text{IS} \cdot (\text{AREA}_{\text{eff}}/\text{SCALM}^2) \\ & \text{RS}_{\text{eff}} = \text{RS}/(\text{AREA}_{\text{eff}} \cdot \text{SCALM}^2) \\ & \text{CJO}_{\text{eff}} = \text{AREA}_{\text{eff}} \cdot (\text{CJO/SCALM}^2) \end{split}
```

Defining Diode Models

This section describes diode current, and diode-equivalent circuits.

Diode Current

Figure 8 shows the direction of current flow through the diode. Use either I(D1) or I1(D1) syntax to print the diode current.

If the voltage on node1 is 0.6V greater than the voltage on node2, then the diode is forward biased or turned on. The anode is the p-doped side of a diode, and the cathode is the n-doped side.

Figure 8 Diode Current Convention

Using Diode Equivalent Circuits

Synopsys diode device models provide three equivalent circuits for diode analysis: transient, AC, and noise circuits. Components of these circuits form the basis for all element and model equations.

The fundamental component in the DC-equivalent circuit is the DC diode current (id). Noise and AC analyses do not use the actual id current; instead,

these analyses use the partial derivative of id with respect to the vd terminal voltage.

The conductance equation for this partial derivative is:

$$gd = \frac{\partial id}{\partial vd}$$

The drain current (id) equation accounts for all basic DC effects of the diodes. The diode device models assume that capacitance effects are separate from the id equations.

Figure 9 Equivalent Circuit for Diode in Transient Analysis

Figure 10 Equivalent Circuit for Diode in AC Analysis

Figure 11 Equivalent Circuit for Diode in AC Noise Analysis

Determining Temperature Effects on Junction Diodes

LEVEL 1 and LEVEL 3 model statements contain parameters that calculate temperature effects. TLEV and TLEVC select different temperature equation to calculate temperature effects on:

- Energy gap
- Leakage current
- Breakdown voltage
- Contact potential
- Junction capacitance
- Grading

Table 13 Junction Diode Temperature Parameters (Level 1 and 3)

Variable	Parameter
Resistance coefficient	TRS
Capacitance coefficient (area)	CTA
Capacitance coefficient (periphery)	СТР

Table 13 Junction Diode Temperature Parameters (Level 1 and 3) (Continued)

Variable	Parameter
Energy gap (pn junction)	EG
Energy gap (bandgap corrections)	GAP1, GAP2
Transit time coefficient	TTT1, TTT2
Reference temperature	TREF
Temperature selectors	TLEV, TLEVC
Miscellaneous	TM1, TM2, TPB, TPHP
Saturation current temperature	XTI

Table 14 Junction Diode Temperature Effects, Level 1 and 3

Name (Alias)	Unit s	Default	Description
CTA (CTC)	1/°	0.0	Temperature coefficient for area junction capacitance (CJ). If you set the TLEVC parameter to 1, CTAI overrides the default temperature coefficient.
CTP	1/°	0.0	Temperature coefficient for periphery junction capacitance (CJP). If you set TLEVC to 1, CTP overrides the default temperature coefficient.
EG	eV		 Energy gap for pn junction diode. For TLEV=0, 1, default=1.11. For TLEV=2, default=1.16 1.17 - silicon 0.69 - Schottky barrier diode 0.67 - germanium 1.52 - gallium arsenide

Table 14 Junction Diode Temperature Effects, Level 1 and 3 (Continued)

Name (Alias)	Unit s	Default	Description
GAP1	eV/°	7.02e-4	First bandgap correction factor. From Sze, alpha term.
			7.02e-4 - silicon (old value) 4.73e-4 - silicon 4.56e-4 - germanium 5.41e-4 - gallium arsenide
GAP2	×	1108	Second bandgap correction factor. From Sze, beta term.
			1108 - silicon (old value) 636 - silicon 210 - germanium 204 - gallium arsenide
PT		3.0	PT is an alias for XTI.
TCV	1/°	0.0	Temperature coefficient of breakdown voltage.
TLEV		0.0	Diode temperature equation selector. Interacts with TLEVC.
TLEVC		0.0	Level selector for diode temperature, junction capacitances, and contact potentials. Interacts with TLEV.
TM1	1/°	0.0	First-order temperature coefficient for MJ.
TM2	1/° ²	0.0	Second-order temperature coefficient for MJ.
TPB (TVJ)	V/°	0.0	PB temperature coefficient. If you set the TLEVC parameter to 1 or 2, TPB overrides default temperature compensation.
TPHP	V/°	0.0	PHP temperature coefficient. If you set the TLEVC parameter to 1 or 2, TPHP overrides default temperature compensation.
TREF	×c	25.0	Model reference temperature (LEVEL 1 or 3 only).

Table 14 Junction Diode Temperature Effects, Level 1 and 3 (Continued)

Name (Alias)	Unit s	Default	Description
TRS	1/°	0.0	Resistance temperature coefficient.
TTT1	1/°	0.0	First-order temperature coefficient for TT.
TTT2	1/° ²	0.0	Second-order temperature coefficient for TT.
XTI		3.0	 Exponent for the saturation-current temperature. Set XTI=3.0 for a silicon-diffused junction. Set XTI=2.0 for a Schottky barrier diode. PT is an alias for XTI.
XTITUN		3.0	Exponent for the tunneling current temperature.

Using Junction Diode Equations

Table 15 shows the definitions of variables in diode equations.

Table 15 Equation Variable Definitions

Variable	Definition
cd	total diode capacitance
f	frequency
gd	diode conductance
id	diode DC current
id1	current, without high-level injection
ind	equivalent noise current for a diode
inrs	equivalent noise current for a series resistor
vd	voltage, across the diode

Table 16 shows the definitions of equation quantities.

Table 16 Equation Quantity Definition

Quantity	Definition
tox	3.453143e-11 F/m
k	1.38062e-23 (Boltzmann's constant)
q	1.60212e-19 (electron charge)
t	temperature in °Kelvin
Δt	t - tnom
tnom	nominal temperature of parameter measurements in °Kelvin
vt(t)	k · t/q: thermal voltage
vt(tnom)	k · tnom/q: thermal voltage

Using Junction DC Equations

A basic diode device model contains three regions:

- Forward bias
- Reverse bias
- Breakdown regions

For a forward-bias diode, the anode is more positive than the cathode. The diode is turned *on*, and conducts above 0.6 volts. Set the RS model parameter to limit conduction current. As the forward-bias voltage increases past 0.6 volts, the limiting resistor prevents the value of the diode current from becoming too high, and prevents the solution from converging.

Forward Bias: vd > -10 vt

$$id = ISeff \cdot \left(e^{\frac{vd}{N \cdot vt}} - 1\right)$$
$$vd = v_{node1} - v_{node2}$$

In reverse-bias, the anode (node1) is more negative than the cathode. The diode is turned *off* and conducts a small leakage current.

Reverse Bias: BVeff < vd < -10 vt

$$id = -ISeff - TJUNeff \cdot \left(e^{\frac{-vd}{NTUN \cdot vt}} - 1\right)$$

For breakdown, set the BV (VB) parameter, which induces reverse-breakdown (or avalanche). You can see this effect in Zener diodes. It occurs when anode-cathode voltage is less than the breakdown voltage (BV). To model this action, measure the voltage (BV) and the current (IBV), at the reverse-knee or at the onset of avalanche.

Note: BV must be a positive number.

Breakdown: vd < - BV

$$id = -ISeff \cdot e^{-\left(\frac{vd + BVeff}{N \cdot vt}\right)} - JTUNeff \cdot \left(e^{\frac{-vd}{NTUN \cdot vt}} - 1\right)$$

The device model adjusts the BV parameter to obtain BVeff:

$$ibreak = -ISeff \cdot \left(e^{\frac{-BV}{N \cdot vt}} - 1\right)$$

If IBVeff > ibreak, then:

$$BVeff = BV - NBV \cdot vt \cdot \ln\left(\frac{IBVeff}{ibreak}\right)$$

Otherwise:

$$IBVeff = ibreak$$

Most diodes do not behave as ideal diodes. The IK and IKR parameters are called *high-level injection* parameters. They tend to limit the exponential increase in current.

Note: Diode models use the exponential equation in both the forward and reverse regions.

Forward Bias

$$id = \frac{id1}{1 + \left(\frac{id1}{IKeff}\right)^{1/2}}$$

Reverse Bias

$$id = \frac{id1}{1 + \left(\frac{id1}{IKReff}\right)^{1/2}}$$

For $vd \ge -BV_{eff}$:

$$id1 = 1Seff \cdot \left(e^{\frac{vd}{N \cdot vt}} - 1\right) - JTUNeff \cdot \left(e^{\frac{-vd}{NTUN \cdot vt}} - 1\right)$$

Otherwise:

$$id1 = -ISeff \cdot \left(e^{\frac{vd}{N \cdot vt}} - 1\right) - ISeff \cdot e^{-\left(\frac{vd + BVeff}{NBV \cdot vt}\right)} - JTUNeff \cdot \left(e^{\frac{-vd}{NTUN \cdot vt}} - 1\right)$$

From DC measurements of the forward-biased diode characteristics, you can estimate:

- Reverse-saturation current (IS)
- Emission coefficient (N)
- Model parameter (RS)

You can determine N from the slope of the diode characteristic in the ideal region. In most cases, the emission coefficient is the value of the unit, but is closer to 2 for MOS diodes.

At higher bias levels, the diode current deviates from the ideal exponential characteristic, due to ohmic resistance in the diode, and the effects of high-level injection. The deviation of the actual diode voltage (from the ideal exponential characteristic), at a specific current, determines the value of RS. In practice, simulation of diode device models estimates RS at several values of id, and averages them, because the value of RS depends upon diode current.

Using Diode Capacitance Equations

In Figure 9 on page 46, *cd* models the diode capacitance. The *cd* capacitance is a combination of diffusion (cdiff), depletion (cdep), metal (cmetal), and poly (cpoly) capacitances.

$$cd = cdiff + cdep + cmetal + cpoly$$

Using Diffusion Capacitance Equations

The transit time (TT) models the diffusion capacitance, caused by injected minority carriers. In practice, simulation of diode models estimates TT, from pulsed time-delay measurements.

$$cdiff = TT \cdot \frac{\partial id}{\partial vd}$$

Using Depletion Capacitance Equations

To model depletion capacitance, diode device models use the junction bottom and junction periphery capacitances. The formula for both bottom area and periphery capacitances is similar, but each has its own model parameters. To select either of the two equations for forward-bias junction capacitance, use .OPTION DCAP.

DCAP = 1

The capacitance formula for the junction bottom area is:

$$cdepa = CJeff \cdot \left(1 - \frac{vd}{PB}\right)^{-MJ}$$

 $vd \ge FC \cdot PB$

$$cdepa = CJeff \cdot \frac{1 - FC \, \mathbb{P}(1 + MJ) + MJ \cdot \frac{vd}{PB}}{(1 - FC)^{(1 + MJ)}}$$

The capacitance formula for the junction periphery is: vd < FCS · PHP

$$cdepp = CJPeff \cdot \left(1 - \frac{vd}{PHP}\right)^{-MJSW}$$

vd ≥ FCS · PHP

$$cdepp = CJPeff \cdot \frac{1 - FCS P(1 + MJSW) + MJSW \cdot \frac{vd}{PHP}}{(1 - FCS)^{(1 + MJSW)}}$$

$$cdep = cdepa + cdepp$$

DCAP = 2 (default)

The capacitance formula for the total depletion is:

vd < 0

$$cdep = CJeff \cdot \left(1 - \frac{vd}{PR}\right)^{-MJ} + CJPeff \cdot \left(1 - \frac{vd}{PHP}\right)^{-MJSW}$$

 $vd \ge 0$

$$cdep = CJeff \cdot \left(1 + MJ \cdot \frac{vd}{PB}\right) + CJPeff \cdot \left(1 + MJSW \cdot \frac{vd}{PHP}\right)$$

DCAP = 3

Limits peak depletion capacitance to FC \cdot CGDeff or FC \cdot CGSeff with proper fall-off when the forward bias exceeds PB (FC \geq 1).

Metal and Poly Capacitance Equations (LEVEL=3 Only)

To determine the metal and poly capacitances, use the following equations:

$$cmetal = \left(\frac{\varepsilon_{ox}}{XOI}\right) \cdot (WPeff + XPeff) \cdot (LPeff + XPeff) \cdot M$$

$$cpoly = \left(\frac{\varepsilon_{ox}}{XOM}\right) \cdot (WMeff + XMeff) \cdot (LMeff + XMeff) \cdot M$$

Using Noise Equations

Figure 11 shows the noise model for a diode. An independent current source (inrs) in parallel with the resistor, models the thermal noise that a resistor generates. To determine the value of *inrs*, use the following equation:

$$inrs = \left(\frac{4 \cdot k \cdot t}{RSeff}\right)^{1/2}$$

The unit of *inr*s is $Amp/(Hz)^{1/2}$.

The *ind* current source models the shot and flicker noise of the diode. The following equation defines *ind*:

$$ind = \left(2 \cdot q \cdot id + \frac{KF \cdot id^{AF}}{f}\right)^{1/2}$$

Temperature Compensation Equations

This section describes the temperature-compensation equations.

Energy Gap Temperature Equations

Use the following equations to determine the energy gap for temperature compensation.

TLEV = 0 or 1

$$egnom = 1.16 - 7.02e-4 \cdot \frac{tnom^2}{tnom + 1108.0}$$

$$eg(t) = 1.16 - 7.02e - 4 \cdot \frac{t^2}{t + 1108.0}$$

TLEV = 2

$$egnom = EG - GAP1 \cdot \frac{tnom^2}{tnom + GAP2}$$

$$eg(t) = EG - GAP1 \cdot \frac{t^2}{t + GAP2}$$

Leakage Current Temperature Equations

$$JS(t) = JS \cdot e^{\frac{facln}{N}}$$

$$JSW(t) = JSW \cdot e^{\frac{facln}{N}}$$

TLEV = 0 or 1

$$facln = \frac{EG}{vt(tnom)} - \frac{EG}{vt(t)} + XTI \cdot \ln\left(\frac{t}{tnom}\right)$$

$$TLEV = 2$$

$$facln = \frac{egnom}{vt(tnom)} - \frac{eg(t)}{vt(t)} + XTI \cdot \ln\left(\frac{t}{tnom}\right)$$

Tunneling Current Temperature Equations

TLEV = 0 or 1

$$facInt = \frac{EG}{vt(tnom)} - \frac{EG}{vt(t)} + XTITUN \cdot \ln\left(\frac{t}{tnom}\right)$$

TLEV = 2

$$facInt = \frac{egnom}{vt(tnom)} - \frac{eg(t)}{vt(t)} + XTITUN \cdot \ln\left(\frac{t}{tnom}\right)$$

Breakdown-Voltage Temperature Equations

TLEV = 0

$$BV(t) = BV - TCV \cdot \Delta t$$

TLEV = 1 or 2

$$BV(t) = BV \cdot (1 - TCV \cdot \Delta t)$$

$$JTUN(t) = JTUN \cdot e^{facInt}$$
 $JTUNSW(t) = JTUNSW \cdot e^{facInt}$

Transit-Time Temperature Equations

$$TT(t) = TT \cdot (1 + TTT1 \cdot \Delta t + TTT2 \cdot \Delta t^2)$$

Junction Built-in Potential Temperature Equations

TLEVC = 0

$$PB(t) = PB \cdot \left(\frac{t}{tnom}\right) - vt(t) \cdot \left[3 \cdot \ln\left(\frac{t}{tnom}\right) + \frac{egnom}{vt(tnom)} - \frac{eg(t)}{vt(t)}\right]$$

$$PHP(t) = PHP \cdot \frac{t}{tnom} - vt(t) \cdot \left[3 \cdot \ln\left(\frac{t}{tnom}\right) + \frac{egnom}{vt(tnom)} - \frac{eg(t)}{vt(t)} \right]$$

3: Diodes

Using Junction Diode Equations

$$TLEVC = 1 \text{ or } 2$$

$$PB(t) = PB - TPB \cdot \Delta t$$

$$PHP(t) = PHP - TPHP \cdot \Delta t$$

TLEVC = 3

$$PB(t) = PB + dpbdt \cdot \Delta t$$

$$PB(t) = PB + dpbdt \cdot \Delta t$$
 $PHP(t) = PHP + dphpdt \cdot \Delta t$

If TLEVC = 3 and TLEV = 0 or 1, then:

$$dpbdt = \frac{-\left[egnom + 3 \cdot vt(tnom) + (1.16 - egnom) \cdot \left(2 - \frac{tnom}{tnom + 1108}\right) - PB\right]}{tnom}$$

$$dphbdt = \frac{-\left[egnom + 3 \cdot vt(tnom) + (1.16 - egnom) \cdot \left(2 - \frac{tnom}{tnom + 1108}\right) - PHB\right]}{tnom}$$

If TLEV = 2:

$$dpbdt = \frac{-\left[egnom + 3 \cdot vt(tnom) + (EG - egnom) \cdot \left(2 - \frac{tnom}{tnom + GAP2}\right) - PB\right]}{tnom}$$

$$dphpdt = \frac{-\left[egnom + 3 \cdot vt(tnom) + (EG - egnom) \cdot \left(2 - \frac{tnom}{tnom + GAP2}\right) - PHP\right]}{tnom}$$

Junction Capacitance Temperature Equations

TLEVC = 0

$$CJ(t) = CJ \cdot \left[1 + MJ \cdot \left(4.0e - 4 \ P\Delta t - \frac{PB(t)}{PB} + 1\right)\right]$$

$$CJSW(t) = CJSW \cdot \left[1 + MJSW \cdot \left(4.0e - 4 \cdot \Delta t - \frac{PHP(t)}{PHP} + 1\right)\right]$$

TLEVC = 1

$$CJ(t) = CJ \cdot (1 + CTA \cdot \Delta t)$$
 $CJSW(t) = CJSW \cdot (1 + CTP \cdot \Delta t)$

TLEVC = 2

$$CJ(t) = CJ \cdot \left(\frac{PB}{PB(t)}\right)^{MJ}$$

Note: In the previous equation, MJ is not MJ(t).

$$CJSW(t) = CJSW \cdot \left(\frac{PHP}{PHP(t)}\right)^{MJSW}$$

TLEVC = 3

$$CJ(t) = CJ \cdot \left(1 - 0.5 \cdot dpbdt \, P \frac{\Delta t}{PB}\right)$$

$$CJSW(t) = CJSW \cdot \left(1 - 0.5 \cdot dphpdt \cdot \frac{\Delta t}{PHP}\right)$$

Grading Coefficient Temperature Equation

$$MJ(t) = MJ \cdot (1 + TM1 \cdot \Delta t + TM2 \cdot \Delta t^2)$$

Resistance Temperature Equations

$$RS(t) = RS \cdot (1 + TRS \cdot \Delta t)$$

Using the JUNCAP Model

You can use the .MODEL statement to include a JUNCAP (junction capacitance) model in your HSPICE netlist. For a general description of the .MODEL statement, see the HSPICE Command Reference.

3: Diodes

Using the JUNCAP Model

Input Syntax

Dxxx nodeplus nodeminus modelname <<area=>val>
+ <<peri=>val> <<pgate>=val> <<dtemp>=val>
+ <<off>=val> <<IC=>val> <<m=>val>

Parameter	Description
Dxxx	Diode element name. Must begin with D, followed by up to 1023 alphanumeric characters.
nodeplus	Positive terminal (anode) node name. The series resistor for the equivalent circuit is attached to this terminal.
nminus	Negative terminal (cathode) node name.
mname	Diode model name reference.
area	Diode area. In the model card, AB can use this value.
peri	Length of the side-wall in the AB diffusion area, which is not under the gate. In the model card, LS uses this value.
pgate	Length of the side-wall in the AB diffusion area, which is under the gate. In the model card, LG uses this value.
off	Sets initial conditions for this element to OFF in DC analysis. Default=ON.
M	Multiplier to simulate multiple diodes in parallel. The M setting affects all currents, capacitances, and resistances. Default=1
ic	Initial voltage across a diode element. Use this value when you specify the UIC option in the . ${\tt TRAN}$ statement. The . ${\tt IC}$ statement overrides this value.
Dtemp	The difference between the element temperature and the circuit temperature in degrees celsius. Default=0.0
.option list	Prints the updated temperature parameters for the <i>juncap</i> diode model.

JUNCAP Model Syntax

.MODEL modelname D level=4 <keyword=val>

Parameter	Description
modelname	Model name. The diode element uses this name to refer to the model.
D	Symbol that identifies a diode model.
LEVEL	Symbol that identifies a diode model.
keywords	Model parameter keywords, listed below in the examples.

Example

- .model MD D level=4
- + AB=2E-12 LS=2E-6 LG=1.3E-6 DTA=0 TR=30 VR=0.3 JSGBR=1.2e-3
- + JSDBR=1.3e-3 JSGSR=1.1e-3 JSDSR=1.3e-3 JSGGR=1.4e-3
- + JSDGR=1.4e-3 NB=1.6 NS=1.3 NG=1.3 VB=0.9 CJBR=1.2e-12
- + CJSR=1.2e-12 CJGR=1.3e-12 VDBR=1.6 VDSR=1.3 VGDR=1.2 PB=0.5
- + PS=0.6 PG=0.4

Table 17 JUNCAP Model Parameters

Name	Units	Defaul t	Clip Low	High	Description
AB	M^2	1e-12	0.0		Diffusion area.
LS	M	0.0	0.0		Length of the side-wall for the AB diffusion area, which is not under the gate. (Default deviates from Philips JUNCAP =1.0e-6).
LG	M	0.0	0.0		Length of the side-wall for the AB diffusion area, which is under the gate. (Default deviates from Philips JUNCAP =1.0e-6).
DTA	С	0.0			Temperature offset of Juncap element with respect to TA.

Table 17 JUNCAP Model Parameters (Continued)

Name	Units	Defaul t	Clip Low	High	Description
TR	С	25	-273.15		Temperature at which simulation finds parameter values.
VR	V	0.0			Voltage at which simulation finds parameter values.
JSGB R	Am ⁻²	1.0E-3	0.0		Bottom saturation-current density, due to generating electron holes at V=VR.
JSDB R	Am ⁻²	1.0E-3	0.0		Bottom saturation-current density, due to diffusion from back-contact.
JSGS R	Am ⁻²	1.0E-3	0.0		Sidewall saturation-current density, due to generating electron holes at V=VR
JSDS R	Am ⁻²	1.0E-3	0.0		Sidewall saturation-current density, due to diffusion from back-contact.
JSGG R	Am ⁻²	1.0E-3	0.0		Gate-edge saturation-current density, due to generating electron holes at V=VR.
JSDG R	Am ⁻²	1.0E-3	0.0		Gate-edge saturation-current density, due to diffusion from back-contact.
NB		1.0	0.1		Emission coefficient of the bottom forward current.
NS		1.0	0.1		Emission coefficient of the sidewall forward current.
NG		1.0	0.1		Emission coefficient of the gate- edge forward current.
VB	V	0.9			Reverse breakdown voltage.

Table 17 JUNCAP Model Parameters (Continued)

Name	Units	Defaul t	Clip Low	High	Description
CJBR	Fm ⁻²	1.0E- 12	0.0		Bottom junction capacitance, at V=VR.
CJSR	Fm ⁻²	1.0E- 12	0.0		Sidewall junction capacitance, at V=VR.
CJGR	Fm ⁻²	1.0E- 12	0.0		Gate-edge junction capacitance, at V=VR.
VDBR	V	1.00	0.05		Diffusion voltage of the bottom junction, at T=TR.
VDSR	V	1.00	0.05		Diffusion voltage of the sidewall junction, at T=TR.
VDGR	V	1.00	0.05		Diffusion voltage of the gate-edge junction.
PB		0.40	0.05		Grading coefficient of the bottom junction.
PS		0.40	0.05		Grading coefficient of the sidewall junction.
PG		0.40	0.05		Grading coefficient of the gate- edge junction.

Theory

This section summarizes the elementary physics of a junction diode. Refer to semiconductor textbooks for additional information.

You can represent the current voltage characteristics as follows:

$$J = \{J_d(n_i^2 + (J_g(n_i, V)))\} \cdot \left[\exp\left(\frac{qv}{kT}\right) - 1\right]$$

3: Diodes

Using the JUNCAP Model

$$ni \quad T^{\frac{3}{2}} \cdot \exp\left(\frac{-E_g}{2kT}\right)$$

Quantity	Units	Description
J	Am ⁻²	Total reverse-current density.
J_d	Am ⁻²	Diffusion saturation-current density.
J_g	Am ⁻²	Generation-current density.
n _i	m ⁻³	Intrinsic carrier concentration.
V	V	Voltage, across the diode.
E_g	J	Energy gap.
k	JK ⁻¹	Boltzmann constant.
Т	K	Temperature.

For $V < V_D$, this equation describes the charge of the junction capacitance:

$$Q = Q_j \left[1 - \left(1 - \frac{V}{V_D} \right)^{1-P} \right]$$

Quantity	Units	Description
Q	С	Total diode-junction charge.
Q_{j}	С	Junction charge, at built-in voltage.
V	V	Voltage, across the diode.
Vd	V	Diffusion voltage at the junction.
Р		Grading coefficient for the junction.

JUNCAP Model Equations

The JUNCAP model describes reverse-biasing of source, drain or well-to-bulk junction devices. Similar to the MOS model, this model uses quasi-static approximations (in charge equations) to formulate current equations and to model AC effects.

To include the effects from differences in the sidewall, bottom, and gate-edge junction profiles, the JUNCAP model calculates these three contributions separately.

JUNCAP also models both the diffusion and the generation currents, each with individual temperature and voltage dependence.

In the JUNCAP model, the gate-edge junction (very close to the surface) provides a part of the total charge. The MOS model charge equations also includes this charge so simulation counts it twice. However, this results in only a very minor error.

The next section shows the model equations. For the model to operate correctly in a circuit simulator environment, you must specify some numerical additions (see the Nomenclature section). You must include any fixed capacitance that is present on a node (such as metal-1-to-substrate capacitance) in either a fixed capacitor statement or INTCAP. These capacitances are not part of the JUNCAP model as they were in the old NODCAP model.

Nomenclature

Table 18 lists the electrical variable parameters:

Table 18 JUNCAP Model Electrical Variable Parameters

No	Variable	Program Name	Units	Description
1	V _a	VA	V	Potential, applied to the anode.
2	$V_{\mathbf{k}}$	VK	V	Potential, applied to the cathode.
3	l _a	IA	Α	DC current, into the anode.
4	l _k	IK	Α	DC current, into the cathode.

Table 18 JUNCAP Model Electrical Variable Parameters (Continued)

No	Variable	Program Name	Units	Description
5	Qa	QA	С	Charge in a device, attributed to the anode.
6	Q_k	QK	С	Charge in a device, attributed to the cathode.

Note: The model card lists the parameters. See JUNCAP model syntax earlier in this chapter.

Table 19 lists internal variables and parameters:

Table 19 JUNCAP Model Internal Variables and Parameters

No	Variable or Parameter	Program Name	Units	Description
1	V_{db}	VDB	V	Diffusion voltage of the AB bottom area.
2	V_{ds}	VDS	V	Diffusion voltage of the LS Locos-edge.
3	V_{dg}	VDG	V	Diffusion voltage of the LG gate-edge.
4	C _{jb}	CJB	F	Capacitance of the AB bottom area.
5	C _{js}	CJS	F	Capacitance of the LS Locos-edge.
6	C _{jg}	CJG	F	Capacitance of the LG gate-edge.
7	I _{sdb}	ISDB	Α	Diffusion saturation current of AB bottom area.
8	I _{sds}	ISDS	Α	Diffusion saturation current of LS Locos-edge.
9	I _{sdg}	ISDG	Α	Diffusion saturation current of LG gate-edge.
10	I _{sgb}	ISGB	Α	Generation saturation current of AB bottom area.

Table 19 JUNCAP Model Internal Variables and Parameters (Continued)

No	Variable or Parameter	Program Name	Units	Description
11	I _{sgs}	ISGS	А	Generation saturation current of LS Locosedge.
12	I _{sgg}	ISGG	Α	Generation saturation current of LG gate-edge.
13	T _a	TA	С	Ambient circuit temperature.
14	T_kd	TKD	K	Absolute temperature of the junction/device.
15	V	V	V	Diode bias voltage (V=VA - VK).
16	I	1	Α	Total DC current, from anode to cathode: (I = IA = -IK)
17	Q	Q	С	Total junction charge: (Q = QA = - QK)

ON/OFF Condition

Solving a circuit involves successive calculations. The calculations start from a set of initial guesses for the electrical quantities of the non-linear elements. The devices start in the default state.

Example

DC Operating Point Output

The output of a DC operating point calculation contains information about the state of a device, at its operation point.

Note: G min conductance connects in parallel to the G conductance. This conductance influences the DC operating output.

Temperature, Geometry and Voltage Dependence

The general scaling rules, which apply to all three components of the JUNCAP model, are:

$$\begin{split} T_{KR} &= T_0 + T_R & T_{KD} &= T_0 + T_A + DT_A \\ V_{TR} &= k \cdot \frac{T_{KR}}{q} & V_{TD} &= K \cdot \frac{T_{KD}}{q} \\ V_{gR} &= 1.16 - \frac{(7.02 \cdot 10e - 4 \cdot T_{KR} \cdot T_{KR})}{(1108.0 + T_{KR})} \\ V_{gD} &= 1.16 - \frac{(7.02 \cdot 10e - 4 \cdot T_{KR} \cdot T_{KD})}{(1108.0 + T_{KD})} \\ F_{TD} &= \left(\frac{T_{KD}}{T_{KR}}\right)^{1.5} \cdot \exp\left(\frac{V_{gR}}{(2 \cdot V_{TD})} - \frac{V_{gD}}{(2 \cdot V_{TD})}\right) \end{split}$$

Internal Reference The following equations specify the internal reference parameters for the bottom component:

$$\begin{split} &\left(V_{DB} = \frac{V_{DBR} \cdot T_{KD}}{T_{KR} - 2 \cdot V_{TD} \cdot 1nF_{TD}}\right) \\ &C_{JB} = C_{JBR} \cdot A_B \cdot \left(\frac{(V_{DBR} - V_R)}{V_{DB}}\right)^{P_B} \\ &I_{SGB} = J_{SGBR} \cdot F_{TD} \cdot A_B \cdot \left(\frac{V_{DB}}{(V_{DBR} - V_R)}\right)^{P_B} \\ &I_{SDR} = J_{SDBR} \cdot F_{TD} \cdot F_{TD} \cdot A_B \end{split}$$

Locos-edge and gate-edge components use similar formulations:

- Replace the B (bottom) index with S (locos-edge) or G (gate-edge).
- Replace the AB (bottom) area with LS (locos-edge) or LG (gate-edge).

For the locos-edge:

$$V_{DS} = \frac{V_{DSR} \cdot T_{KR}}{T_{KR} - 2 \cdot V_{TD} \cdot 1nF_{TD}}$$

$$C_{JS} = C_{JSR} \cdot L_S \cdot \left(\frac{(V_{DSR} - V_R)}{V_{DS}}\right)^{P_S}$$

$$I_{SGS} = J_{SGSR} \cdot F_{TD} \cdot L_{S} \cdot \left(\frac{V_{DS}}{(V_{DSR} - V_{R})}\right)^{P_{S}}$$

$$I_{SDS} = J_{SDSR} \cdot F_{TD} \cdot F_{TD} \cdot L_S$$

For the gate-edge:

$$V_{DG} = \frac{V_{DGR} \cdot T_{KD}}{T_{KR} - 2 \cdot V_{TD} \cdot 1nF_{TD}}$$

$$C_{JG} = C_{JGR} \cdot L_G \cdot \left(\frac{(V_{DGR} - V_R)}{V_{DG}}\right)^{P_G}$$

$$I_{SGS} = J_{SGGR} \cdot F_{TD} \cdot L_G \cdot \left(\frac{V_{DG}}{(V_{DGR} - V_R)}\right)^{P_G}$$

$$I_{SDS} = J_{SDGR} \cdot F_{TD} \cdot F_{TD} \cdot L_G$$

Note: The remainder of this section shows the equations only for the bottom component.

JUNCAP Capacitor and Leakage Current Model

The charge description defines the following internal parameter:

$$Q_{JDB} = C_{JB} \cdot V_{DB} (1 - P_B)$$

To prevent an unlimited increase in the voltage derivative of the charge, the charge description consists of two parts:

- Original power function
- Supplemented quadratic function

The cross-over point between these regions (indicated as VI) defines the following parameters:

$$F_{CB} = 1 - \left(\frac{(1 + P_B)}{3}\right)^{\frac{1}{P_B}}$$

$$V_{LB} = F_{CB} \cdot V_{DB}$$

$$C_{LB} = C_{JB} (1 - F_{CB})^{-P_B}$$

$$Q_{LB} = Q_{JDB} (1 - (1 - F_{CB})^{(1 - P_B)})$$

$$Q_{JBV} = Q_{JCB} \cdot \left(\frac{(1 - (1 - V))}{V_{DB}}\right)^{(1 - P_B)} \quad V < V_{LB}$$

$$Q_{LB} + C_{LB} (V - V_{LB}) \cdot \left(\frac{1 + (P_B (V - V_{LB}))}{2 \cdot V_{DB} \cdot (1 - F_{CB})}\right) \quad V >= V_{LB} \quad (12.63)$$

Use similar expressions for the locos-edge (Q_{JSV}) and gate-edge (Q_{JGV}) charges.

The following equation describes the total charge characteristic:

$$Q = Q_{JBV} + Q_{JSV} + Q_{JGV}$$

From Equation 12.63 (above), you can use elementary mathematics to derive simple equations for the capacitance of the bottom area:

$$C_{JBV} = C_{JB} \cdot \left(1 / \left(\frac{1 - v}{V_{DB}} \right) \right)^{P_B} \quad V < V_{LB}$$

$$C_{LB} + C_{LB} \cdot P_B \cdot \left(\frac{(V - V_{LB})}{V_{DB} \cdot (1 - F_{CB})} \right) \qquad V \ge V_{LB}$$

Similar expressions exist for C_{JSV} and C_{JGV}.

Total capacitance:

$$C = C_{JBV} + C_{JSV} + C_{JGV}$$

Diffusion and Generation Currents Using the scaled parameters from the preceding section, you can express the diffusion and generation current components as:

$$I_{DB} = I_{SDB} \cdot \exp\left(\frac{V}{(N_B \cdot V_{TD})} - 1\right)$$

$$I_{GB} = I_{SGB} \cdot \left(\frac{(V_{DB} - V)}{V_{DB}}\right)^{P_B} \cdot \left(\exp\left(\left(\frac{V}{N_B \cdot V_{TD}}\right) - 1\right)\right) \quad V \leq V_{DB}$$

$$0 V > V_{DB}$$

The first relation, concerning the diffusion component, is valid over the whole operating range. The second relation, describing the generation current, shows an unlimited increase in the derivative of this function, at V=V_{DB}.

Therefore, the power function merges at V=0.0 with a hyperbolic function in the forward-bias range. Simulating the model then divides the exponential part by $\exp(V/(N_B \cdot V_{TD}))$. This enables a gradual decrease in the generation-current component.

This calculation uses the hyperbolic function:

$$I_{HYP} = F_{SB}(V + V_{AB})^{-B}$$
.

The B parameter controls the decrease in current for voltages V>0.0 for all generation components. The model sets B to a fixed value of 2. The continuity constraints of the function and derivative in the merge point lead to the following relations for F_{SB} and V_{AB} :

$$V_{AB} = B \cdot \frac{V_{DB}}{P_R}$$

$$F_{SB} = I_{SGB} \cdot V_{AB}B$$

The generation current voltage characteristic in the forward region, becomes:

$$I_{GB} = F_{SB}/((V + V_{AB})^B) \cdot (1 - \exp(-v)/(N_B \cdot V_{TD}))$$

Final Model Equations The final model equations for the currents of the bottom area, are:

$$I_{DB} = I_{SDB} \cdot (\exp(V/(N_B \cdot V_{TD})) - 1)$$

$$I_{GB} = I_{SGB} \cdot \left(\frac{V_{DB} - V}{V_{DB}}\right)^{P_B} \cdot \exp\left(\frac{V}{(N_B \cdot V_{TD})}\right) - 1 \qquad V \le 0$$

$$Isgb \cdot \left(\frac{Vab}{(V+Vab)}\right)^{B} \cdot \left(1 - \exp\left(\frac{-V}{(Nb \cdot Vtd)}\right)\right) \qquad V > 0.0$$

Use similar expressions for the locos-edge and gate-edge components.

The following equation expresses the total junction current:

$$I = (I_{DB} + I_{GB}) + (I_{DS} + I_{GS}) + (I_{DG} + I_{GG})$$

Using the Fowler-Nordheim Diode

The LEVEL=2 diode model parameter selects the Fowler-Nordheim model. Fowler-Nordheim diodes can be either a metal-insulator-semiconductor or a semiconductor-insulator-semiconductor layer device. The insulator is sufficiently thin (100 Angstroms) to permit tunneling of carriers. It models:

- Electrically-alterable memory cells
- Air-gap switches
- Other insulation-breakdown devices

Fowler-Nordheim Diode Model Parameters LEVEL=2

Table 20 shows the Fowler-Nordheim diode model parameters for LEVEL=2.

Table 20 Fowler-Nordheim Diode Model Parameters

Name (alias)	Units	Default	Description
EF	V/cm	1.0e8	Forward critical electric field.
ER	V/cm	EF	Reverse critical electric field.
JF	amp/V ²	1.0e-10	Forward current coefficient for Fowler-Nordheim.
JR	amp/V ²	JF	Reverse current coefficient for Fowler- Nordheim.
L	m	0.0	Length of the diode for calculating the current in Fowler-Nordheim. Leff = L \cdot SCALM \cdot SHRINK + XWeff
TOX	Å	100.0	Thickness of the oxide layer.
W	m	0.0	Width of the diode for calculating the current in Fowler-Nordheim. Weff = W · SCALM · SHRINK + XWeff
XW	m	0.0	XWeff = XW · SCALM

Using Fowler-Nordheim Diode Equations

The following forward and reverse non-linear current source equations model the DC characteristics of the Fowler-Nordheim diode. In these equations:

$$AREAeff = Weff \cdot Leff \cdot M$$

Forward Bias

 $vd \ge 0$

$$id = AREAeff \cdot JF \cdot \left(\frac{vd}{TOX}\right)^2 \cdot e^{\frac{-EF PTOX}{vd}}$$

Reverse Bias

$$vd < 0$$
 $id = -AREAeff \cdot JR \cdot \left(\frac{vd}{TOX}\right)^2 \cdot e^{\frac{ER \cdot TOX}{vd}}$

Fowler-Nordheim Diode Capacitances

The Fowler-Nordheim diode capacitance is a constant, derived from:

$$cd = AREAeff \cdot \frac{\varepsilon_{ox}}{TOX}$$

Converting National Semiconductor Models

National Semiconductor's circuit simulator provides a scaled diode model, which is not the same as the diode device model. To use National Semiconductor circuit models, do the following:

- 1. For a subcircuit that consists of the scaled diode model, make sure that the subcircuit name is the same as the model name.
- Add a scaled diode model inside the subcircuit, then change the .MODEL mname mtype statement to a .PARAM statement.

The . PARAM statement, inside the subcircuit, specifies the parameter values for the scaled diode model.

- 3. Ensure that the letter X precedes the names of all scaled diode elements.
- 4. Check that every parameter used in the .MODEL statement, inside the subcircuit, also has a value in the .PARAM statement.

Using the Scaled Diode Subcircuit Definition

The scaled diode subcircuit definition converts the National Semiconductor scaled diode model to a model that you can use in HSPICE. The .PARAM parameter, inside the .SUBCKT, represents the .MODEL parameter in the National circuit simulator.

- 1. Replace the .MODEL mname statement with a .PARAM statement.
- 2. Change the model name to SDIODE.

Example

The following is an example of a scaled-diode subcircuit definition.

```
.SUBCKT SDIODE NP NN SF=1 SCJA=1 SCJP=0 SIS=1 SICS=1
+ SRS=1
D NP NN SDIODE
.PARAM IS=1.10E-18 N=1.03 EG=0.8 RS=20.7E3
+ CJA=0.19E-15 PHI=0.25 CJP=0.318E-15
+ EXA=0.5 EXP=0.325 CTC=6E-4
+ TRS=2.15M M=2
*
.MODEL SDIODE D
+ IS='IS*SIS*SF' CJA='CJA*SF*SCJA' CJP='CJP*SF*SCJP'
+ RS='RS*SRS/SF' EXA=EXA EXP=EXP
+ N=N CTA=CTC CTP=CTC
+ TRS=TRS TLEV=1 TLEVC=1 xti='m*n'
.ENDS SDIODE
```

You must define the values for all parameters used in this model in either a .PARAM statement or the .SUBCKT call. Circuit simulation then replaces the diode statements with the call to the SDIODE subcircuit; for example,

```
XDS 14 1048 SDIODE SIS=67.32 SCJA=67.32 SRS=1.2285E-2
```

DC Operating Point Output of Diodes

id : current across the diode.vd : voltage across the diode.

reg : equivalent resistance (1 / equivalent conductance).

cap: total diode capacitance.

JFET and MESFET Models

Describes how to use JFET and MESFET models in HSPICE circuit simulations.

Three JFET/MESFET DC model levels have been provided for IC circuit simulation. These models use the same equations for gallium arsenide MESFETs and silicon-based JFETs. This is possible because these models include materials definition parameters. You can also use these models to model indium phosphide MESFETs.

This chapter describes the following topics:

- Overview of JFETs
- Specifying a Model
- Overview of Capacitor Model
- JFET and MESFET Equivalent Circuits
- JFET and MESFET Model Statements
- JFET and MESFET Noise Models
- JFET and MESFET Temperature Equations
- TriQuint (TOM) Extensions to Level=3

- Level 7 TOM3 (TriQuint's Own Model III)
- Level 8 Materka Model

Overview of JFETs

JFETs form by diffusing a gate diode between the source and drain. MESFETs form by applying a metal layer over the gate region, and creating a Schottky diode. To control the flow of carriers, both technologies modulate the gate diode depletion region. These field effect devices are called bulk semiconductors and are in the same category as bipolar transistors. Compared to surface effect devices such as MOSFETs, bulk semiconductors have higher gain, because bulk semiconductor mobility is always higher than surface mobility.

Enhanced characteristics of JFETs and MESFETs, relative to surface effect devices, include lower noise generation rates and higher immunity to radiation. These advantages have created the need for newer and more advanced models.

Features for JFET and MESFET modeling include:

- Charge-conserving gate capacitors
- Backgating substrate node
- Mobility degradation due to gate field
- Computationally efficient DC model (Curtice and Statz)
- Subthreshold equation
- Physically correct width and length (ACM)

GaAs model Level=3¹ assumes that GaAs device velocity saturates at very low drain voltages. This model includes drain voltage induced threshold modulation and user-selectable materials constants. These features let you use the model for other materials, such as silicon, indium phosphide, and gallium aluminum arsenide. The models that have been provided include a revised Curtice model², and a TriQuint model (TOM) that extends the earlier Statz model.

- 1. GaAs FET Device and Circuit Simulation in SPICE, *IEEE Transactions on Electron Devices*, Vol. ED-34.
- 2. A MESFET Model for Use in the Design of GaAs Integrated Circuits, *IEEE Transactions on Microwave Theory*, Vol. MTT-28 No. 5.

Specifying a Model

To specify a JFET or MESFET model, use a JFET element statement and a JFET model statement. The model parameter Level selects either the JFET or MESFET model. Level=1 and Level=2 select the JFET, and Level=3 selects the MESFET. Different submodels for the MESFET Level=3 equations are selected using the parameter SAT.

Bypassing Latent Devices

Use the BYPASS (latency) option to decrease simulation time in large designs. To speed simulation time, this option does not recalculate currents, capacitances, and conductances, if the voltages at the terminal device nodes have not changed. The BYPASS option applies to MOSFETs, MESFETs, JFETs, BJTs, and diodes. Use .OPTION BYPASS to set BYPASS.

BYPASS might reduce simulation accuracy for tightly-coupled circuits such as op-amps, high gain ring oscillators, and so on. Use .OPTION MBYPASS to set MBYPASS to a smaller value for more accurate results.

Parameter	Description			
Level=1	SPICE model			
Level=2	Modified SPICE model, gate modulation of LAMBDA			
Level=3	Hyperbolic tangent MESFET model (Curtice, Statz, Meta, TriQuint Models)			
SAT=0	Curtice model (Default)			
SAT=1	Curtice model with user defined VGST exponent			
SAT=2	Cubic approximation of Curtice model with gate field degradation (Stamodel)			
SAT=3	HSPICE variable saturation model			

Specifying a Model

The CAPOP model parameter selects the type of capacitor model:\

Parameter	Description
CAPOP=0	SPICE depletion capacitor model
CAPOP=1	Charge conserving, symmetric capacitor model (Statz)
CAPOP=2	HSPICE improvements to CAPOP=1

You can use CAPOP=0, 1, 2 for any model level. CAPOP=1 and 2 are most often used for the MESFET Level 3 model.

The ACM model parameter selects the area calculation method:

Parameter	Description
ACM=0	SPICE method (default)
ACM=1	Physically based method

Example 1

The following example selects the n channel MESFET model, Level=3. It uses the SAT, ALPHA, and CAPOP=1 parameter:

```
J1 7 2 3 GAASFET
.MODEL GAASFET NJF Level=3 CAPOP=1 SAT=1 VTO=-2.5
+ BETA=2.8E-3 LAMBDA=2.2M RS=70 RD=70 IS=1.7E-14
+ CGS=14P CGD=5P UCRIT=1.5 ALPHA=2
```

Example 2

The following example selects an n-channel JFET:

```
J2 7 1 4 JM1
.MODEL JM1 NJF (VTO=-1.5, BETA=5E-3, CGS=5P, CGD=1P,
+ CAPOP=1 ALPHA=2)
```

Example 3

The following example selects a p-channel JFET:

```
J3 8 3 5 JX
.MODEL JX PJF (VTO=-1.2, BETA=.179M, LAMBDA=2.2M
+ CGS=100P CGD=20P CAPOP=1 ALPHA=2)
```

Overview of Capacitor Model

The SPICE depletion capacitor model (CAPOP=0) uses a diode-like capacitance between source and gate, where the depletion region thickness (and therefore the capacitance) is determined by the gate-to-source voltage. A similar diode model is often used to describe the normally much smaller gate-to-drain capacitance.

These approximations have serious shortcomings such as:

- Zero source-to-drain voltage: The symmetry of the FET physics gives the conclusion that the gate-to-source and gate-to-drain capacitances should be equal, but in fact they can be very different.
- 2. Inverse-biased transistor: Where the drain acts like the source and the source acts like the drain. According to the model, the large capacitance should be between the original source and gate; but in this circumstance, the large capacitance is between the original drain and gate.

When low source-to-drain voltages inverse biased transistors are involved, large errors can be introduced into simulations. To overcome these limitations, use the Statz charge-conserving model by selecting model parameter CAPOP=1. The model selected by CAPOP=2 contains further improvements.

Model Applications

Use MESFETs to model GaAs transistors for high speed applications. Using MESFET models, transimpedance amplifiers for fiber optic transmitters up to 50 GHz can be designed and simulated.

Parameter	Description
DCAP	Capacitance equation selector
GMIN, GRAMP, GMINDC	Conductance options: transient or DC analysis, DC autoconvergence
SCALM	Model scaling option
DCCAP	Invokes capacitance calculation in DC analysis

JFET and MESFET Equivalent Circuits

Table 21 JFET Options

Function	Control Options
capacitance	DCAP, DCCAP
conductance	GMIN, GMINDC, GRAMP
scaling	SCALM

To override a global depletion capacitance equation selection that uses the .OPTION DCAP = < val > statement in a JFET or MESFET model, include DCAP=< val > in the device's .MODEL statement.

Convergence

Enhance convergence for JFET and MESFET by using the GEAR method of computation (.OPTION METHOD = GEAR) when you include the transit time model parameter. Use the GMIN, GMINDC, and GRAMP options to increase the parasitic conductance value in parallel with pn junctions of the device.

Capacitor Equations

The DCAP option selects the equation used to calculate the gate-to-source and gate-to-drain capacitance for CAPOP=0. DCAP can be set to 1, 2 or 3. Default is 2.

JFET and MESFET Equivalent Circuits

Scaling

The AREA and M Element parameters, together with the SCALE and SCALM control options, control scaling. For all three model levels, the model parameters IS, CGD, CGS, RD, RS, BETA, LDEL, and WDEL, are scaled using the same equations.

The SCALM option affects A, L, W, LDEL, and WDEL scaled parameters. SCALM defaults to 1.0. For example, to enter the W parameter with micron

units, set SCALM to 1e-6 then enter W=5. The default setting is W=5e-6 meters or 5 microns.

To override global scaling that uses the .OPTION SCALM = <val> statement in a JFET or MESFET model, include SCALM=<val> in the .MODEL statement.

JFET Current Conventions

Figure 12 on page 81 assumes the direction of current flow through the JFET. You can use either I(Jxxx) or I1(Jxxx) syntax when printing the drain current. I2 references the gate current and I3 references the source current. Jxxx is the device name. Figure 12 on page 81 represents the current convention for an n channel JFET.

Figure 12 JFET Current Convention, N-Channel

For a p-channel device, the following must be reversed:

- Polarities of the terminal voltages vgd, vgs, and vds
- Direction of the two gate junctions
- Direction of the nonlinear current source id

JFET Equivalent Circuits

Circuit simulation uses three equivalent circuits to analyze JFETs: transient, AC, and noise circuits. The components of these circuits form the basis for all element and model equation discussion.

The fundamental component in the equivalent circuit is the drain to source current (ids). For noise and AC analyses, the actual ids current is not used. Instead, the partial derivatives of ids with respect to the terminal voltages, vgs, and vds are used.

JFET and MESFET Equivalent Circuits

The names for these partial derivatives are:

Transconductance

$$gm = \left. \frac{\partial (ids)}{\partial (vgs)} \right|_{vds = const.}$$

Output Conductance

$$gds = \left. \frac{\partial (ids)}{\partial (vds)} \right|_{vgs = const.}$$

The ids equation accounts for all DC currents of the JFET. Gate capacitances are assumed to account for transient currents of the JFET equations. The two diodes shown in Figure 13 on page 82 are modeled by these ideal diode equations:

$$\begin{split} igd &= \mathit{ISeff} \cdot \left(e^{\frac{\mathit{vgd}}{N \cdot \mathit{vt}}} - 1\right) \qquad \mathit{vgd} > -10 \cdot \mathit{N} \cdot \mathit{vt} \\ igd &= -\mathit{ISeff} \qquad \mathit{vgd} \leq -10 \cdot \mathit{N} \cdot \mathit{vt} \\ igs &= \mathit{ISeff} \cdot \left(e^{\frac{\mathit{vgs}}{N \cdot \mathit{vt}}} - 1\right) \qquad \mathit{vgs} > -10 \cdot \mathit{N} \cdot \mathit{vt} \\ igs &= -\mathit{ISeff} \qquad \mathit{vgs} \leq -10 \cdot \mathit{N} \cdot \mathit{vt} \end{split}$$

Figure 13 JFET/MESFET Transient Analysis

Note: For DC analysis, the capacitances are not part of the model.

Source rs cgd ggd rd Drain gm(vgs vbs) gds

Figure 14 JFET/MESFET AC Analysis

Figure 15 JFET/MESFET AC Noise Analysis

Table 22 Equation Variable Names and Constants

Variable/ Quantity	Definitions
cgd	Gate to drain capacitance
cgs	Gate to source capacitance
ggd	Gate to drain AC conductance
ggs	Gate to source AC conductance

4: JFET and MESFET Models

JFET and MESFET Equivalent Circuits

Table 22 Equation Variable Names and Constants (Continued)

Variable/ Quantity	Definitions			
gds	Drain to source AC conductance controlled by vds			
gm	Drain to source AC transconductance controlled by vgs			
igd	Gate to drain current			
igs	Gate to source current			
ids	DC drain to source current			
ind	Equivalent noise current drain to source			
inrd	Equivalent noise current drain resistor			
inrs	Equivalent noise current source resistor			
rd	Drain resistance			
rs	Source resistance			
vgd	Internal gate-drain voltage			
vgs	Internal gate-source voltage			
f	Frequency			
$\epsilon_{\scriptscriptstyle O}$	Vacuum permittivity = 8.854e-12 F/m			
k	1.38062e-23 (Boltzmann's constant)			
q	1.60212e-19 (electron charge)			
t	Temperature in °K			
Dt	t - tnom			
tnom	Nominal temperature of parameter measurements in ${}^{\circ}K$ (user-input in ${}^{\circ}C$). Thom = 273.15 + TNOM			

Table 22 Equation Variable Names and Constants (Continued)

Variable/ Quantity	Definitions
vt(t)	k · t/q
vt(tnom)	k · tnom/q

Table 23 JFET DC Operating Point Output

Quantities	Definitions		
ids	D-S current		
igs	G-S current		
igd	G-D current		
vgs	G-S voltage		
vds	D-S voltage		
gm	transconductance		
gmbs	drain-body (backgate) transconductance		
gds	Drain-source transconductance		
cgs	G-S capacitance		
cgd	G-D capacitance		

JFET and MESFET Model Statements

You can use the .MODEL statement to include a JFET or MESFET model in your HSPICE netlist. For a general description of the .MODEL statement, see the HSPICE Command Reference.

Syntax

```
.MODEL mname NJF <Level = val> <pname1 = val1> ...
.MODEL mname PJF <Level = val> <pname1 = val1> ...
```

Parameter	Description			
mname	Model name. Elements refer to the model by this name.			
NJF	Identifies an N-channel JFET or MESFET model			
Level	The Level parameter selects different DC model equations.			
pname1=val1	Each JFET or MESFET model can include several model parameters.			
PJF	Identifies a P-channel JFET or MESFET model			

JFET and MESFET Model Parameters

DC characteristics are defined by the model parameters VTO and BETA. These parameters determine the variation of drain current with gate voltage. LAMBDA determines the output conductance, and IS, the saturation current of the two gate junctions. Two ohmic resistances, RD and RS, are included. The charge storage is modeled by nonlinear depletion-layer capacitances for both gate junctions that vary as the -M power of junction voltage, and are defined by the parameters CGS, CGD, and PB.

KF and AF parameters model noise, which is also a function of the series source and drain resistances (RS and RD) in addition to temperature. Use the parameters ALPHA and A to model MESFETs.

The AREA model parameter is common to both element and model parameters. The AREA element parameter always overrides the AREA model parameter.

Table 24 JFET and MESFET Model Parameters

Model Parameters Common to All Levels

Geometric ACM, ALIGN, AREA, HDIF, L, LDEL, LDIF, RD, RG, RS, RSH, RSHG,

RSHL, W, WDEL

Capacitanc CAPOP, CGD, CGS, FC, M, PB, TT

е

Subthresho ND, NG

ld

Noise AF, KF

Level=1 Model Parameters (JFET)

DC BETA, IS, LAMBDA, N, VTO

Level=2 Model Parameters (JFET)

DC BETA, IS, LAMBDA, LAM1, N, VTO

Level=3 Model Parameters (MESFET)

DC ALPHA, BETA, D, GAMDS, IS, N, K1, LAMBDA, NCHAN, SAT,

SATEXP, UCRIT, VBI, VGEXP, VP, VTO

The following tables provide information about:

- Gate Diode DC Parameters
- DC Model Level 1 Parameters
- DC Model Level 2 Parameters
- DC Model Level 3 Parameters

JFET and MESFET Model Statements

Table 25 Gate Diode DC Parameters

Name (Alias)	Units	Default	Description
ACM			Area calculation method. Use this parameter to select between traditional SPICE unitless gate area calculations, and the newer style of area calculations (see the ACM section). If W and L are specified, AREA becomes:
			ACM=0 AREA=Weff/Leff ACM=1 AREA=Weff · Leff
ALIGN	m	0	Misalignment of gate
AREA			Default area multiplier. This parameter affects the BETA, RD, RS, IS, CGS, and CGD model parameters. AREAeff=M · AREA Override this parameter using the element effective area.
HDIF	m	0	Distance of the heavily diffused or low resistance region from source or drain contact to lightly doped region
IS	amp	1.0e-14	Gate junction saturation current ISeff = IS · AREAeff
L	m	0.0	Default length of FET. Override this parameter using the element L. Leff = L · SCALM + LDELeff
LDEL	m	0.0	Difference between drawn and actual or optical device length LDELeff = LDEL · SCALM
LDIF	m	0	Distance of the lightly doped region from heavily doped region to transistor edge

Table 25 Gate Diode DC Parameters (Continued)

Name (Alias)	Units	Default	Description
N		1.0	Emission coefficient for gate-drain and gate-source diodes
RD	ohm	0.0	Drain ohmic resistance (see the ACM section) RDeff = RD /AREAeff, ACM=0
RG	ohm	0.0	Gate resistance (see the ACM section) RGeff = RG · AREAeff, ACM=0
RS	ohm	0.0	Source ohmic resistance (see the ACM section) RSeff = RS/AREAeff, ACM=0
RSH	ohm/sq	0	Heavily doped region, sheet resistance
RSHG	ohm/sq	0	Gate sheet resistance
RSHL	ohm/sq	0	Lightly doped region, sheet resistance
W	m	0.0	Default FET width. The We element overrides this parameter. Weff = W · SCALM + WDELeff
WDEL	m	0.0	Difference between drawn and actual or optical device width WDELeff = WDEL · SCALM

JFET and MESFET Model Statements

Table 26 Gate Capacitance Level 1, 2, and 3 Parameters

Name (Alias)	Units	Default	Description
CAPOP		0.0	Capacitor model selector: • CAPOP=0 – default capacitance equation
			 based on diode depletion layer CAPOP=1 – symmetric capacitance equations (Statz) CAPOP=2 – HSPICE improvement to CAPOP=1
CALPHA	ALPHA		Saturation factor for capacitance model (CAPOP=2 only)
CAPDS	F	0	Drain to source capacitance for TriQuint model
			$CAPDSeff \texttt{=} CAPDS \cdot \frac{\mathit{Weff}}{\mathit{Leff}} \cdot \mathit{M}$
CGAMDS	GAMDS		Threshold lowering factor for capacitance (CAPOP=2 only)
CGD	F	0.0	Zero-bias gate-drain junction capacitance
			CGDeff = CGD · AREAeff
			Override this parameter by specifying GCAP.
CGS	F	0.0	Zero-bias gate-source junction capacitance CGSeff = CGS · AREAeff
			Override this parameter by specifying GCAP
CRAT		0.666	Source fraction of gate capacitance (used with GCAP)
GCAP	F		Zero-bias gate capacitance. If specified,
			CGSeff = GCAP · CRAT · AREAeff
			$CGDeff = GCAP \cdot (1-CRAT) \cdot AREAeff$
FC		0.5	Coefficient for forward-bias depletion capacitance formulas (CAPOP=0 and 2 only)

Table 26 Gate Capacitance Level 1, 2, and 3 Parameters (Continued)

Name (Alias)	Units	Default	Description
CVTO	VTO		Threshold voltage for capacitance model (CAPOP=2 only)
M (MJ)		0.50	Grading coefficient for gate-drain and gate- source diodes (CAPOP=0 and 2 only)
			0.50 - step junction 0.33 - linear graded junction
РВ	V	0.8	Gate junction potential
TT	S	0	Transit time – use option METHOD=GEAR when using transit time for JFET and MESFET

Note: Many DC parameters (such as VTO, GAMDS, ALPHA) can also affect capacitance.

Table 27 DC Model Level 1 Parameters

Name (Alias)	Units	Default	Description
Level		1.0	Level=1 invokes the SPICE JFET model
ВЕТА	amp/ V ²	1.0e-4	Transconductance parameter, gain $BETAeff = BETA \cdot \frac{Weff \cdot M}{Leff}$
LAMBDA	1/V	0.0	Channel length modulation parameter
ND	1/V	0.0	Drain subthreshold factor (typical value=1)
NG		0.0	Gate subthreshold factor (typical value=1)
VTO	V	-2.0	Threshold voltage. If set, it overrides the internal calculation. A negative VTO is a depletion transistor, regardless of NJF or PJF. A positive VTO is always an enhancement transistor.

JFET and MESFET Model Statements

Table 28 DC Model Level 2 Parameters

Name (Alias)	Units	Default	Description
Level		1.0	Level of FET DC model. Level=2 is a modification of the SPICE model for gate modulation of LAMBDA.
ВЕТА	amp / V ²	1.0e-4	Transconductance parameter, gain $BETAeff = BETA \cdot \frac{Weff \cdot M}{Leff}$
LAMBDA	1/V	0.0	Channel length modulation parameter
LAM1	1/V	0.0	Channel length modulation gate voltage parameter
ND	1/V	0.0	Drain subthreshold factor (typical value=1)
NG		0.0	Gate subthreshold factor (typical value=1)
VTO	V	-2.0	Threshold voltage. When set, VTO overrides the internal calculation. A negative VTO is a depletion transistor, regardless of NJF or PJF. A positive VTO is always an enhancement transistor.

Table 29 DC Model Level 3 Parameters

Name (Alias)	Units	Default	Description
Level		1.0	Level of FET DC model. Level=3 is the Curtice MESFET model.
Α	m	0.5μ	Active layer thickness: Aeff = A · SCALM
ALPHA	1/V	2.0	Saturation factor
ВЕТА	amp / V ²	1.0e-4	Transconductance parameter, gain $BETAeff = BETA \cdot \frac{Weff \cdot M}{Leff}$

Table 29 DC Model Level 3 Parameters (Continued)

Name (Alias)	Units	Default Description	
D		11.7	Semiconductor dielectric constant: Si=11.7, GaAs=10.9
DELTA		0	lds feedback parameter of TriQuint model
GAMDS (<i>GAMMA</i>)		0	Drain voltage, induced threshold voltage lowering coefficient
LAMBDA	1/V	0.0	Channel length modulation parameter
K1	V ^{1/2}	0.0	Threshold voltage sensitivity to bulk node
NCHAN	atom/ cm ³	1.552e 16	Effective dopant concentration in the channel
ND	1/V	0.0	Drain subthreshold factor
NG		0.0	Gate subthreshold factor (typical value=1)
SAT		0.0	 SAT=0 (standard Curtice model) SAT= (Curtice model with hyperbolic tangent coefficient) SAT=2 (cubic approximation of Curtice model (Statz))
SATEXP		3	Drain voltage exponent
UCRIT	V/cm	0	Critical field for mobility degradation
VBI		1.0	Gate diode built-in voltage
VGEXP (Q)		2.0	Gate voltage exponent

JFET and MESFET Model Statements

Table 29 DC Model Level 3 Parameters (Continued)

Name (Alias)	Units	Default	Description
VP			Dinch-off voltage (default is calculated)
VTO	V	-2.0	Threshold voltage. If set, it overrides internal calculation. A negative VTO is a depletion transistor regardless of NJF or PJF. A positive VTO is always an enhancement transistor.

ACM (Area Calculation Method) Parameter Equations

Use the ACM model parameter to select between traditional SPICE unitless gate area calculations, and the newer style of area calculations.

- The ACM=0 method (SPICE) uses the ratio of W/L to keep AREA unitless.
- The ACM=1 (HSPICE) model requires that parameters (such as IS, CGS, CGD, and BETA) have proper physics-based units.

In the following equations, *m* indicates the element multiplier.

ACM=0

SPICE model, parameters determined by element areas.

$$AREAeff = \frac{Weff}{Leff} \cdot m$$
 $RDeff = \frac{RD}{AREAeff}$
 $RSeff = \frac{RS}{AREAeff}$
 $RGeff = RG \cdot \frac{AREAeff}{m^2}$

ACM=1

ASPEC model, parameters function of element width.

$$AREAeff = Weff \cdot Leff \cdot m$$

$$RDeff = \frac{RD}{m}$$

Or if RD=0:

$$RDeff = RSH \cdot \frac{HDIF}{Weff \cdot m} + RSHL \cdot \frac{LDIF + ALIGN}{Weff \cdot m}$$

$$RGeff = \frac{RG}{m}$$

or if RG=0:

$$RGeff = RSHG \cdot \frac{Weff}{Leff \cdot m}$$

$$RSeff = \frac{RS}{m}$$

or if RS=0:

$$RSeff = RSH \cdot \frac{HDIF}{Weff \cdot m} + RSHL \cdot \frac{LDIF - ALIGN}{Weff \cdot m}$$

ACM=2

HSPICE model, combination of ACM=0,1 and provisions for lightly doped drain technology.

ACM=3

Extends ACM=2 model to deal with stacked devices (shared source/drains) and source/drain periphery capacitance along a gate edge.

Resulting calculations:

$$ISeff = IS \cdot AREAeff$$

$$CGSeff = CGS \cdot AREAeff$$

$$CGDeff = CGD \cdot AREAeff$$

$$BETAeff = BETA \cdot \frac{Weff}{Leff} \cdot m$$

Note: The model parameter units for IS, CGS, and CGD are unitless in ACM=0 and per square meter for ACM=1.

Example

JFET and MESFET Model Statements

```
j1 10 20 0 40 nj_acm0 w=10u l=1u
j2a 10 20 0 41 nj_acm1 w=10u l=1u
.model nj_acm0 njf Level=3 capop=1 sat=3 acm=0
+ is=1e-14 cgs=1e-15 cgd=.3e-15
$$$note different units for is,cgs,cgd
+ rs=100 rd=100 rg=5 beta=5e-4
+ vto=.3 n=1 ng=1.4 nd=1
+ k1=.2 vgexp=2 alpha=4 ucrit=1e-4 lambda=.1
+ satexp=2
+ eg=1.5 gap1=5e-4 gap2=200 d=13
.model nj_acm1 njf Level=3 capop=1 sat=3 acm=1
+ is=1e-2 cgs=1e-3 cgd=.3e-3
$$$note different units for is,cgs,cgd
+ rs=100 rd=100 rg=5 beta=5e-4
+ vto=.3 n=1 ng=1.4 nd=1
+ k1=.2 vgexp=2 alpha=4 ucrit=1e-4 lambda=.1
+ satexp=2
+ eg=1.5 gap1=5e-4 gap2=200 d=13
```

JFET and MESFET Capacitances

Gate Capacitance CAPOP=0

The DCAP option switch selects the diode forward bias capacitance equation:

DCAP=1

Reverse Bias:

$$vgd < FC \cdot PB$$

$$cgd = CGDeff \cdot \left(1 - \frac{vgd}{PB}\right)^{-M}$$

$$vgs < FC \cdot PB$$

$$cgs = CGSeff \cdot \left(1 - \frac{vgs}{PB}\right)^{-M}$$

Forward Bias:

$$cgd = TT \cdot \frac{\partial igd}{\partial vgd} + CGDeff \cdot \frac{1 - FC \cdot (1 + M) + M \cdot \frac{vgd}{PB}}{(1 - FC)^{M+1}}$$

$$cgs = TT \cdot \frac{\partial igs}{\partial vgs} + CGSeff \cdot \frac{1 - FC \cdot (1 + M) + M \cdot \frac{vgs}{PB}}{(1 - FC)^{M+1}}$$

DCAP=2 (Default)

Reverse Bias:

$$cgd = CGDeff \cdot \left(1 - \frac{vgd}{PB}\right)^{-M}$$

$$cgs = CGSeff \cdot \left(1 - \frac{vgs}{PB}\right)^{-M}$$

Forward Bias:

$$vgd \ge 0$$

$$cgd = TT \cdot \frac{\partial igd}{\partial vgd} + CGDeff \cdot \left(1 + M \cdot \frac{vgd}{PB}\right)$$

$$vgs \ge 0$$

$$cgs = TT \cdot \frac{\partial igs}{\partial vgs} + CGSeff \cdot \left(1 + M \cdot \frac{vgs}{PB}\right)$$

DCAP=3

Limits peak depletion capacitance to FC \cdot CGDeff or FC \cdot CGSeff with proper fall-off when forward bias exceeds PB (FC \geq 1).

JFET and MESFET Model Statements

Gate Capacitance CAPOP=1

Gate capacitance CAPOP=1 is a charge conserving symmetric capacitor model most often used for MESFET model Level 3.

$$Cgs = \frac{CGS}{4\sqrt{1 - \frac{vnew}{PB}}} \cdot \left[1 + \frac{veff - vte}{\sqrt{(veff - vte)^2 + (0.2)^2}}\right] \cdot \left[1 + \frac{vds}{\sqrt{vds^2 + \left(\frac{1}{ALPHA}\right)^2}}\right]$$

$$\left[\frac{CGD}{2} \cdot \left(1 - \frac{vds}{\sqrt{vds^2 + \left(\frac{1}{ALPHA}\right)^2}}\right)\right]$$

$$Cgd = \left[\frac{CGS}{4\sqrt{1 - \frac{vnew}{PB}}} \cdot \left[1 + \frac{veff - vte}{\sqrt{\left(veff - vte\right)^2 + \left(0.2\right)^2}}\right] \cdot \left[1 - \frac{vds}{\sqrt{vds^2 + \left(\frac{1}{ALPHA}\right)^2}}\right]\right] + \frac{vds}{\sqrt{vds^2 + \left(\frac{1}{ALPHA}\right)^2}}$$

$$\left(\frac{CGD}{2} \cdot \left[1 + \frac{vds}{\sqrt{vds^2 + \left(\frac{1}{ALPHA}\right)^2}}\right]\right)$$

The following equations calculate values for the preceding equations:

$$vte = VTO + GAMDS \cdot vds + K1(vbs) = effective$$
threshold

$$veff = \frac{1}{2} \left[vgs + vgd + \sqrt{vds^2 + \left(\frac{1}{ALPHA}\right)^2} \right]$$

$$vnew = \frac{1}{2}[veff + vte + \sqrt{(veff - vte)^2 + (0.2)^2}]$$

$$CGS = High - vds Cgs at vgs = 0$$

Gate Capacitance CAPOP=2

Statz capacitance equations¹ (CAPOP=1) contain mathematical behavior that can be problematic when trying to fit data.

- For vgs below the threshold voltage and Vds>0 (normal bias condition), Cgd is greater than Cgs and rises with Vds, while Cgs drops with Vds.
- Cgd properly goes to a small constant representing a sidewall capacitance.
 However, as Vgs decreases, the Cgs curve drops along an asymptote line to zero.
- (For the behavior for Vds<0, interchange Cgs and Cgd and replace Vds with -Vds in the above descriptions.)
- It can be difficult to simultaneously fit the DC characteristics and the gate capacitances (measured by S-parameters) with the parameters that are shared between the DC model and the capacitance model.
- The capacitance model in the CAPOP=1 implementation also lacks a junction grading coefficient and an adjustable width for the Vgs transition to the threshold voltage. The width is fixed at 0.2.
- Finally, an internal parameter for limiting forward gate voltage is set to 0.8 · PB in the CAPOP=1 implementation. This is not always consistent with a good fit.

CAPOP=2 capacitance equations help to solve the previously-described problems.

Parameter	Default	Description	
CALPHA	ALPHA	Saturation factor for capacitance model	
CGAMDS	GAMDS	Threshold lowering factor for capacitance	
CVTO	VTO	Threshold voltage for capacitance model	
FC	0.5	PB multiplier – typical value 0.9 gate diode limiting voltage=FC · PB.	

1. H. Statz, P.Newman, I.W.Smith, R.A. Pucel, and H.A. Haus, *GaAs FET Device and Circuit Simulation in Spice*.

JFET and MESFET Model Statements

Figure 16

Parameter	Default	Description	
M (MJ)	0.5	Junction grading coefficient	
VDEL	0.2	Transition width for Vgs	

Capacitance Comparison (CAPOP=1 and CAPOP=2)

Figure 16 and Figure 17 on page 101 show comparisons of CAPOP=1 and CAPOP=2. In Figure 16, below the (-0.6 v) threshold, Cgs for CAPOP=2 drops towards the same value as Cgd, while for CAPOP=1, CGS \rightarrow 0.

CAPOP=1 vs. CAPOP=2. Cgs, Cgd vs. Vgs for Vds=0, 1, 2, 3, 4

In Figure 17, the Cgs-Cgd characteristic curve "flips over" below the threshold for CAPOP=1, whereas for CAPOP=2, it is well-behaved.

Figure 17 CAPOP=1 vs. CAPOP=2. Cgs, Cgd vs. Vds for Vgs=-1.5, -1.0, -0.5, 0

JFET and MESFET DC Equations

DC Model Level 1

JFET DC characteristics are represented by the nonlinear current source (ids). The value of ids is determined by the equations:

$$vgst = vgs - VTO$$

vast< 0 Channel pinched off

$$ids = 0$$

0<vgst<vds Saturated region

$$ids = BETAeff \cdot vgst^2 \cdot (1 + LAMBDA \cdot vds)$$

<u>0<vds<vgst</u> Linear region

$$ids = BETAeff \cdot vds \cdot (2 \cdot vgst - vds) \cdot (1 + LAMBDA \cdot vds)$$

JFET and MESFET Model Statements

The drain current at zero vgs bias (ids) is related to VTO and BETA by the equation:

$$idss = BETAeff \cdot VTO^2$$

At a given vgs, LAMBDA can be determined from a pair of drain current and drain voltage points measured in the saturation region where vgst<vds:

$$LAMBDA = \left(\frac{ids2 - ids1}{ids1 \cdot vds2 - ids2 \text{ P}vds1}\right)$$

DC Model Level 2

The DC characteristics of the JFET Level 2 model are represented by the nonlinear current source (ids). The value of ids is determined by the equations:

$$vgst = vgs - VTO$$

vgst<0 Channel pinched off

$$ids = 0$$

 $0 < vgst \le vds$, $vgs \ge 0$ Saturated region, forward bias

$$ids = BETAeff \cdot vgst^2 \cdot [1 + LAMBDA \cdot (vds - vgst) \cdot (1 + LAM1 \cdot vgs)]$$

0<vgst<vds, vgs<0</pre> Saturated region, reverse bias

$$ids = BETAeff \cdot vgst^2 \cdot \left[1 - LAMBDA \cdot (vds - vgst) \cdot \frac{vgst}{VTO}\right]$$

<u>0<vds<vgst</u>Linear region

$$ids = BETAeff \cdot vds(2 \cdot vgst - vds)$$

DC Model Level 3

The DC characteristics of the MESFET Level 3 model are represented by the nonlinear hyperbolic tangent current source (ids). The value of ids is determined by the equations:

vds>0 Forward region

If model parameters VP and VTO are not specified they are calculated as:

$$VP = -\frac{q \cdot NCHAN \cdot Aeff^2}{2 \cdot D \cdot \varepsilon_o}$$

$$VTO = VP + VBI$$

then:

$$vgst = vgs - [VTO + GAMDS \cdot vds + K1(vbs)]$$

$$beteff = \frac{BETAeff}{(1 + UCRIT \cdot vgst)}$$

vgst<0 Channel pinched off

ids = idsubthreshold(N0, ND, vds, vgs)

vast>0. SAT=0 On region

$$ids = beteff \cdot (vgst^{VGEXP}) \cdot (1 + LAMBDA \cdot vds) \cdot tanh(ALPHA \cdot vds)$$

idsubthreshold(N0, ND, vds, vgs)

vgst>0, SAT=1 On region

$$ids = beteff \cdot (vgst^{VGEXP}) \cdot (1 + LAMBDA \cdot vds) \cdot \tanh\left(ALPHA \cdot \frac{vds}{vgst}\right)$$

idsubthreshold(N0, ND, vds, vgs)

vgst>0, SAT=2, vds<3/ALPHA On region

$$ids = beteff \cdot vgst^2 \cdot (1 + LAMBDA \cdot vds) \cdot \left[1 - \left(1 - ALPHA \cdot \frac{vds}{3}\right)^3\right]$$

idsubthreshold(N0, ND, vds, vgs)

vgst>0, SAT=2, vds>3/ALPHA On region

$$(ids = beteff \cdot vgst^2 \cdot (1 + LAMBDA \cdot vds)) + idsubthreshold(N0, ND, vds, vgs)$$

If vgst >0, SAT=3 is the same as SAT=2, except exponent 3 and denominator 3 are parameterized as SATEXP, and exponent 2 of vgst is parameterized as VGEXP.

Note: *idsubthreshold* is a special function that calculates the subthreshold currents from the N0 and ND model parameters

JFET and MESFET Noise Models

Name (Alias) Default	Description
AF	1.0	Flicker noise exponent
KF	0.0	Flicker noise coefficient. Reasonable values for KF are in the range 1e-19 to 1e-25 $\ensuremath{\text{V}}^2$ F.
NLEV	2.0	Noise equation selector
GDSNOI	1.0	Channel noise coefficient. Use with NLEV=3.

Noise Equations

Figure 15 shows the JFET noise model. Thermal noise generation in the drain and source regions (RD and RS resistances) is modeled by the two current sources, *inrd* and *inrs*. The inrd and inrs units are:

$$inrd = \left(\frac{4 \cdot k \cdot t}{rd}\right)^{1/2}$$

$$inrs = \left(\frac{4 \cdot k \cdot t}{rs}\right)^{1/2}$$

Channel thermal and flicker noise are modeled by the current source *ind* and defined by the equation:

 $ind \, = \, channel thermal noise + flicker noise$

If the model parameter NLEV is less than 3, then:

channelthermalnoise =
$$\left(\frac{8 \cdot k \cdot t \cdot gm}{3}\right)^{1/2}$$

The previous formula, used in both saturation and linear regions, can lead to wrong results in the linear region. For example, at VDS=0, channel thermal noise is 0, because gm=0. This is physically impossible. If you set the NLEV parameter to 3, simulation uses an equation that is valid in both linear and saturation regions¹.

For NLEV = 3

$$channel thermal noise = \left(\frac{8kt}{3} \cdot BETAeff \cdot (vgs - VTO) \cdot \frac{1 + a + a^2}{a} \cdot GDSNOI\right)$$

The following equations calculate values for the preceding equation:

$$\alpha = 1 - \frac{vds}{vgs - VTO}$$
, Linear region

 $\alpha = 0$ Saturation region

The flicker noise is calculated as:

$$flickernoise = \left(\frac{KF \cdot ids^{AF}}{f}\right)^{1/2}$$

Parameter	Description
RD, V ² /HZ	output thermal noise due to drain resistor
RS, V ² /HZ	output thermal noise due to source resistor
RG, V ² /HZ	output thermal noise due to gate resistor
ID, V ² /HZ	output thermal noise due to channel
FN, V ² /HZ	output flicker noise
TOT, V ² /HZ	total output noise (TOT = RD + RS + RG + ID + FN)
ONOISE	output noise
INOISE	input noise

^{1.} Tsivids, Yanis P., *Operation and Modeling of the MOS Transistor*, McGraw-Hill, 1987, p. 340.

JFET and MESFET Temperature Equations

Table 30 lists temperature effect parameters. The temperature effect parameters apply to Levels 1, 2, and 3. They include temperature parameters for the effect of temperature on resistance, capacitance, energy gap, and a number of other model parameters. The temperature equation selectors, TLEV and TLEVC, select different temperature equations for the calculation of energy gap, saturation current, and gate capacitance. TLEV is either 0, 1, or 2 while TLEVC is either 0, 1, 2, or 3.

Table 30 Temperature Parameters (Levels 1, 2, and 3)

Function	Parameter
capacitance	CTD, CTS
DC	M, TCV, XTI
energy gap	EG, GAP1, GAP2
equation selections	TLEV, TLEVC
grading	M
mobility	BEX
resistance	TRD, TRS

Table 31 Temperature Effect Parameters (Sheet 1 of 3)

Name (Alias)	Units	Default	Description	
BETATCE	1/°	0.0	0.0 Beta temperature coefficient for TriQuint model	
BEX		0.0	Mobility temperature exponent, correction for low field mobility	
CTD	1/°	0.0	Temperature coefficient for gate-drain junction capacitance. TLEVC=1 enables CTD to override the default temperature compensation.	

Table 31 Temperature Effect Parameters (Sheet 2 of 3)

Name (Alias)	Units	Default	Description	
CTS	1/°	0.0	Temperature coefficient for gate-source junction capacitance. TLEVC=1 enables CTS to override the default temperature compensation.	
EG	eV	1.16	Energy gap for the gate to drain and gate to source diodes at 0 °K • 1.17 - silicon • 0.69 - Schottky barrier diode • 0.67 - germanium • 1.52 - gallium arsenide	
GAP1	eV/°	7.02e-4	First bandgap correction factor, from Sze, alpha term • 7.02e-4 - silicon • 4.73e-4 - silicon • 4.56e-4 - germanium • 5.41e-4 - gallium arsenide	
GAP2	x	1108	Second bandgap correction factor, from Sze, beta term 1108 - silicon 636 - silicon 210 - germanium 204 - gallium arsenide	
M (MJ)		0.50	Grading coefficient for gate-drain and gate-source diodes • 0.50 - step junction • 0.33 - linear graded junction	
N		1.0	Emission coefficient for gate-drain and gate-source diodes	
TCV (VTOTC)	1/°	0.0	Temperature compensation coefficient for VTO (threshold voltage)	
TLEV		0.0	Temperature equation selector for junction diodes. Interacts with the TLEVC parameter.	
TLEVC		0.0	Temperature equation selector for junction capacitances and potential. Interacts with the TLEV parameter.	

Table 31 Temperature Effect Parameters (Sheet 3 of 3)

Name (Alias)	Units	Default	Description	
ТРВ	V/°	0.0	Temperature coefficient for PB. TLEVC=1 or 2 overrides the default temperature compensation.	
TRD (TDR1)	1/x	0.0	Temperature coefficient for drain resistance	
TRG (TRG1)	1/x	0	Temperature coefficient for gate resistance	
TRS (TRS1)	1/x	0.0	Temperature coefficient for source resistance	
XTI		0.0	Saturation current temperature exponent XTI=3 for silicon diffused junction or XTI=2 for Schottky barrier diode	

Temperature Compensation Equations

The following subsections described various types of temperature equations for JFET/MESFET models.

Energy Gap Temperature Equations

To determine energy gap for temperature compensation, use the equations shown:

TLEV = 0 or 1

$$egnom = 1.16 - 7.02e - 4 \cdot \frac{tnom^2}{tnom + 1108.0}$$

$$eg(t) = 1.16 - 7.02e - 4 \cdot \frac{t^2}{t + 1108.0}$$

TLEV = 2

$$egnom = EG - GAP1 \cdot \frac{tnom^2}{tnom + GAP2}$$

$$eg(t) = EG - GAP1 \cdot \frac{t^2}{t + GAP2}$$

Saturation Current Temperature Equations

The saturation current of the gate junctions of the JFET varies with temperature according to the equation:

$$is(t) = IS \cdot e^{\frac{facln}{N}}$$

TLEV = 0 or 1

$$facln = \frac{EG}{vt(tnom)} - \frac{EG}{vt(t)} + XTI \cdot \ln\left(\frac{t}{tnom}\right)$$

TLEV = 2

$$facln = \frac{egnom}{vt(tnom)} - \frac{eg(t)}{vt(t)} + XTI \cdot \ln\left(\frac{t}{tnom}\right)$$

Gate Capacitance Temperature Equations

Temperature equations calculate the gate capacitances. The CTS and CTD parameters are the linear coefficients. If you set TLEVC to zero, simulation uses these equations. To achieve a zero capacitance variation, set the coefficients to a very small value (such as 1e-6), and set TLEVC=1 or 2.

TLEVC = 0

$$CGS(t) = CGS \cdot \left[1 + M \cdot \left(4.0e - 4 \cdot \Delta t - \frac{PB(t)}{PB} + 1 \right) \right]$$

$$CGD(t) = CGD \cdot \left[1 + M \cdot \left(4.0e - 4 \cdot \Delta t - \frac{PB(t)}{PB} + 1\right)\right]$$

The next equation calculates values for the preceding equations:

$$PB(t) = PB \cdot \left(\frac{t}{tnom}\right) - vt(t) \, \, \Phi \left[3\ln\left(\frac{t}{tnom}\right) + \frac{egnom}{vt(tnom)} - \frac{eg(t)}{vt(t)} \right]$$

TLEVC = 1

$$CGS(t) = CGS \cdot (1 + CTS \cdot \Delta t)$$

4: JFET and MESFET Models

JFET and MESFET Temperature Equations

$$CGD(t) = CGD \cdot (1 + CTD \cdot \Delta t)$$

The next equation calculates values for the preceding equations:

$$PB(t) = PB - TPB \, \Phi \Delta t$$

TLEVC = 2

$$CGS(t) = CGS \cdot \left(\frac{PB}{PB(t)}\right)^{M}$$

$$CGD(t) = CGD \cdot \left(\frac{PB}{PB(t)}\right)^{M}$$

The next equation calculates values for the preceding equations:

$$PB(t) = PB - TPB \, P\Delta t$$

TLEVC = 3

$$CGS(t) = CGS \cdot \left(1 - 0.5 \text{ } Pdpbdt \text{ } P\frac{\Delta t}{PB}\right)$$

$$CGD(t) = CGD \cdot \left(1 - 0.5 \, Pdpbdt \, P\frac{\Delta t}{PB}\right)$$

The next equation calculates values for the preceding equations:

$$PB(t) = PB + dpbdt \cdot \Delta t$$

TLEV = 0 or 1

$$dpbdt = \frac{-\left[egnom + 3 \cdot vt(tnom) + (1.16 - egnom) \cdot \left(2 - \frac{tnom}{tnom + 1108}\right) - PB\right]}{tnom}$$

TLEV = 2

$$dpbdt = \frac{-\left[egnom + 3 \cdot vt(tnom) + (EG - egnom) \cdot \left(2 - \frac{tnom}{tnom + GAP2}\right) - PB\right]}{tnom}$$

Threshold Voltage Temperature Equation

The threshold voltage of the JFET varies with temperature according to the equation:

$$VTO(t) = VTO - TCV \, \Phi \Delta t$$

$$CVTO(t) = CVTO - TCV \cdot \Delta t$$

Mobility Temperature Equation

The mobility temperature compensation equation is updated as:

$$BETA(t) = BETA \cdot \left(\frac{t}{tnom}\right)^{BEX}$$
 If BETATCE=0

Otherwise (TriQuint model):

$$BETA(T) = BETA \cdot 1.01^{BETATCE(t-tnom)}$$

Parasitic Resistor Temperature Equations

The RD and RS resistances in JFET vary with temperature according to the equations:

$$RD(t) = RD \cdot (1 + TRD \cdot \Delta t)$$

$$RS(t) = RS \cdot (1 + TRS \cdot \Delta t)$$

$$RG(t) = RG \cdot (1 + TRG \cdot \Delta t)$$

TriQuint (TOM) Extensions to Level=3

TOM "TriQuint's Own Model" is implemented as part of the existing GaAs Level 3 model. ². It has a few differences from the original implementation.

The HSPICE version of the TOM model takes advantage of existing Level 3 features to provide:

- Subthreshold model (NG, ND)
- Channel and source/drain resistances, geometrically derived from width and length (RD, RG, RS, RSH, RSHG, RSHL, HDIF, LDIF) (ACM=1)
- Photolithographic compensation (LDEL, WDEL, ALIGN)
- 1. A.J. McCamant, G.D. Mc Cormack, and D.H.Smith, *An Improved GaAs MESFET Model for SPICE*, IEEE.
- W.Curtice, "A MESFET Model for Use in the Design of GaAs Integrated Circuits," *IEEE Tran, Microwave*, and H.Statz, P.Newman, I.W.Smith, R.A. Pucel, and H.A. Haus, "GaAs FET Device And Circuit Simulation in SPICE".

4: JFET and MESFET Models

TriQuint (TOM) Extensions to Level=3

- Substrate terminal
- Geometric model with width and length specified in the element (ACM=1)
- Automatic model selection as a function of width and length (WMIN, WMAX, LMIN, LMAX)
- User-defined band-gap coefficients (EG, GAP1, GAP2)

Several alias TOM parameters are defined for existing Level 3 parameters to make the conversion easier. An alias allows the original name or the alias name to be used in the .MODEL statement. However, the model parameter printout is in the original name. Please note that in two cases, a sign reversal is needed, even when using the TOM parameter name.

Alias	Printout Name	Note
Q	VGEXP	
GAMMA	GAMDS	sign opposite of TriQuint's original
VTOTC	TCV	sign opposite of TriQuint's original
TRG1	TRG	
TRD1	TRD	
TRS1	TRS	

Table 32 TOM Model Parameters

Name (Alias)	Description
BETATCE	Temperature coefficient for BETA. If betatce is set to a nonzero value:
	$BETA(temp) = BETA(tnom) \cdot 1.01^{(BETATCE \cdot (temp - tnom))}$
	The more common Beta temperature update is:
	$BETA(temp) = BETA(tnom) \cdot \left(\frac{temp}{tnom}\right)^{BEX}$
DELTA	Ids feedback parameter of the TOM model. This parameter is not used if its value is zero. DELTA can be negative or positive.
	$i_{ds} \Rightarrow \frac{i_{ds}}{max[(-1+v_{ntol}),(DELTA+v_{ds}\cdot i_{ds})]}$
CAPDS	Drain-to-source capacitance: $CAPDSeff = CAPDS \cdot \frac{Weff}{Leff} \cdot M$

In the original TriQuint TOM implementation, LAMBDA and UCRIT parameters do not exist. Therefore, they must remain zero (their default value) in Level 3 to reproduce the TOM model. Using non-zero values for these parameters with nonzero BETATCE, DELTA, or CAPDS, results in a hybrid model.

Level 7 TOM3 (TriQuint's Own Model III)

TOM3 (TriQuint's Own Model III) is available as the JFET/MESFET Level 7 device model. TriQuint developed it to improve the accuracy of capacitance equations by using quasi-static charge conservation in the implanted layer of a MESFET.

Using the TOM3 Model

- 1. Set Level=7 to identify the model as TOM3.
- 2. The default room temperature is 25 in HSPICE, but is 27 in most other simulators. When comparing to other simulators, set the simulation temperature to 27 by using either .TEMP 27 or .OPTION TNOM=27.

Level 7 TOM3 (TriQuint's Own Model III)

- The set of model parameters must include the model reference temperature, TNOM, which corresponds to TREF in other levels in the JFET/MESFET device models. The default for TR is 25.
- 4. TOM3 has its own charge-based capacitance model so it ignores the capacitance model set in the CAPOP parameter.
- 5. The model uses analytical derivatives for conductances. This model ignores the DERIV parameter, which selects the finite difference method.
- You can use DTEMP with this model. DTEMP increases the temperature of individual elements, relative to the circuit temperature. Set DTEMP on the element line.
- The general syntax for this element is the same as the other standard JFET/ MESFET models.
- 8. The model is defined by a specific sub-circuit, and a set of device equations. The topology uses local feedback, decreasing the DC output conductance to model drain, model dispersion, and self-heating effects.

Note: For more informations, refer to "TOM3 Equations, Revised: 2 December 1999" by Robert B. Hallgren and David S. Smith.

Model Description

This section describes the DC and Capacitance equations for the HSPICE Level 7 JFET model.

DC Equations

The DC equations for the HSPICE Level 7 JFET model are:

Drain to Source Current (IDS)

$$I_{DS} = I_O \cdot (1 + LAMBDA \cdot V_{DS})$$

$$I_O = \beta \cdot V_G^Q \cdot f_K$$

$$f_K = \frac{\alpha \cdot V_{DS}}{\left[1 + (\alpha \cdot V_{DS})^K\right]^{1,1/K}}$$

$$V_G = Q \cdot V_{ST} \cdot \log[\exp(u) + 1]$$

$$u = \frac{V_{GS} - V_{TO} + \gamma \cdot V_{DS}}{Q \cdot V_{ST}}$$
$$V_{ST} = V_{STO} \cdot (1 + M_{STO} \cdot V_{DS})$$

Transconductance

$$G_{M} = \left(\frac{Q \cdot \beta \cdot f_{K} \cdot V_{G}^{Q-1}}{1 + \exp(-u)}\right) \cdot (1 + LAMBDA \cdot V_{DS})$$

Output Conductance

$$\begin{split} G_{DS} &= LAMBDA \cdot I_0 + G_M \cdot \gamma - \left(\frac{(V_{GS} - V_{TO} + \gamma \cdot V_{DS}) \cdot M_{ST0}}{1 + M_{ST0} \cdot V_{DS}}\right) \\ &+ \left[\left(\frac{Q \cdot I_0 \cdot M_{ST0}}{1 + M_{ST0} \cdot V_{DS}}\right) + \left(\frac{\alpha \cdot \beta \cdot V_G^Q}{\left[1 + (\alpha \cdot V_{DS})^K\right]^{1 + 1/K}}\right)\right] \cdot (1 + LAMBDA \cdot V_{DS}) \end{split}$$

Gate Leakage Diode Current

ILK and PLK have no temperature dependence.

$$I_{LS} = ILK \cdot \left(1 - \exp\frac{-V_{GS}}{PLK}\right) \qquad G_{LS} = \left(\frac{ILK}{PLK}\right) \cdot \left(\exp\frac{-V_{GS}}{PLK}\right)$$

$$I_{LD} = ILK \cdot \left(1 - \exp\frac{-V_{GD}}{PLK}\right) \qquad G_{LD} = \left(\frac{ILK}{PLK}\right) \cdot \left(\exp\frac{-V_{GD}}{PLK}\right)$$

Temperature and Geometry Dependence

$$\beta = AREA \cdot BETA \cdot 1.01^{BETATCE \cdot (T - T_{NOM})}$$

$$\alpha = ALPHA \cdot 1.01^{ALPHATCE \cdot (T - T_{NOM})}$$

$$V_{TO} = VTO + VTOC \cdot (T - T_{NOM})$$

$$\gamma = GAMMA + GAMMATC \cdot (T - T_{NOM})$$

$$V_{STO} = VST + VSTTC \cdot (T - T_{NOM})$$

$$V_{MTO} = MST + MSTTC \cdot (T - T_{NOM})$$

Capacitance Equations

The capacitance equations for the HSPICE Level 7 JFET model are.

Combined Gate Charge

$$\begin{split} Q_{GG} &= Q_{GL} \cdot f_T + Q_{GH} \cdot (1 - f_T) + QGGO \cdot (V_{GSI} + V_{GDI}) \\ C_{GS} &= C_{GSL} \cdot f_T + C_{GSH} \cdot (1 - f_T) + (Q_{GL} - Q_{GH}) \cdot \frac{\partial f_T}{\partial V_{GSI}} + QGGO \\ C_{GD} &= C_{GDL} \cdot f_T + C_{GDH} \cdot (1 - f_T) + (Q_{GL} - Q_{GH}) \cdot \frac{\partial f_T}{\partial V_{GDI}} + QGGO \\ f_T &= \exp(-QGGB \cdot I_{DS} \cdot V_{DS}) \\ \frac{\partial f_T}{\partial V_{GDI}} &= -QGGB \cdot [I_{DS} + (g_m + g_{ds}) \cdot V_{DS}] \cdot f_T \\ \frac{\partial f_T}{\partial V_{GDI}} &= -QGGB \cdot [I_{DS} + g_{ds} \cdot V_{DS}] \cdot f_T \end{split}$$

Lower Power Gate Charge

$$\begin{split} Q_{GL} &= qgI + QGCL \cdot (V_{GS} + V_{GD}) \\ qgl &= QGQL \cdot \exp[QGAG \cdot (V_{GS} + V_{GD})] \cdot \cosh(QGAD \cdot V_{DS}) \\ C_{GSL} &= qgl \cdot [QGAG + QGAD \cdot \tanh(QGAD \cdot V_{DS})] + QGCL \\ C_{GDL} &= qgl \cdot [QGAG + QGAD \cdot \tanh(QGAD \cdot V_{DS})] + QGCL \end{split}$$

High Power Gate Charge

$$\begin{split} Q_{GH} &= QGQH \cdot \log \left(1 + \frac{I_{DS}}{QGI0} \right) + QGSH \cdot V_{GS} + QGDH \cdot V_{GD} \\ \\ C_{GSH} &= \left(G_M + G_{DS} \right) \cdot \left(\frac{QGQH}{I_{DS} + QGI0} \right) + QGSH \\ \\ C_{GDH} &= G_{DS} \cdot \left(\frac{QGQH}{I_{DS} + QGI0} \right) + QGDH \end{split}$$

Table 33 TOM3 Parameters

Name (Alias)	Description		Defaul t
LEVEL	Model Index (7 for TOM3)		1
TNOM	Reference temperature		25
VTO	Threshold voltage	V	-2
VTOTC	Threshold voltage temperature coefficient	V/K	0
ALPHA	Saturation factor	1/V	2
ВЕТА	Transconductance parameter	A/V ^{-Q}	0.1
LAMBDA	Channel length modulation parameter	1/V	0
VBI	Gate diode built-in potential	V	1
CDS	Drain to source capacitance	F	1E-12
IS	Forward gate diode saturation current		1E-14
KF	Flicker noise coefficient		0
AF	Flicker noise exponent		1
GAMMA	Drain voltage-induced threshold voltage lowering coefficient		0
Q	Parameter Q to model non-square-law of drain current		2
EG	Barrier height at 0K(used for capacitance model)		1.11
XTI	Diode saturation current temperature coefficient		0
VST	Sub-threshold slope		1
ALPHATCE	ALPHA temperature coefficient (exponential)		0
ILK	Leakage diode current parameter		0

4: JFET and MESFET Models

Level 7 TOM3 (TriQuint's Own Model III)

Table 33 TOM3 Parameters (Continued)

Name (Alias)	Description	Units	Defaul t
PLK	Leakage diode potential parameter		1
К	Knee-function parameter	-	2
VSTTC	Linear temperature coefficient of VST	VK ⁻¹	0
QGQL	Charge parameter	FV	5E-16
QGQH	Charge parameter	FV	-2E-16
QGI0	Charge parameter	А	1E-6
QGAG	Charge parameter	V ⁻¹	1
QGAD	Charge parameter	V ⁻¹	1
QGGB	Charge parameter	A ⁻¹ V ⁻	100
QGCL	Charge parameter		2E-16
QGSH	Sidewall capacitance	F	1E-16
QGDH	Sidewall capacitance	F	0
QGG0	Charge parameter	F	0
MST	Sub-threshold slope – drain parameter		0
N	Forward gate diode ideality factor	-	1
GAMMATC	Linear temperature coefficient for GAMMA	K ⁻¹	0
VBITC	Linear temperature coefficient for VBI		0
CGSTCE	Linear temperature coefficient for C _{GS}	K ⁻¹	0
CGDTCE	Linear temperature coefficient for C _{GD}		0

Table 33 TOM3 Parameters (Continued)

Name (Alias)	Description	Units	Defaul t
MSTTC	Linear temperature coefficient for MST	V ⁻¹ K ⁻	0
BETATCE	Linear temperature coefficient for BETA	K ⁻¹	0

Level 8 Materka Model

This section describes the JFET/MESFET Level=8 device model.

For more information about this model, see Compact dc Model of GaAs FETs for Large-Signal Computer Calculation, *IEEE Journal of Solid-State Circuits*, Vol, SC-18, No.2, April 1983, and Computer Calculation of Large-Signal GaAs FET Amplifier Characteristics, *IEEE Transactions on Microwave Theory and Techniques*, Vol. MTT-33, No. 2, February 1985.

Using the Materka Model

- 1. Set Level=8.
- 2. The default room temperature is 25 in HSPICE, but is 27 in most other simulators. When comparing to other simulators, set the simulation temperature to 27 by using either .TEMP 27 or .OPTION TNOM=27.
- The model has its own charge-based capacitance model. This model ignores the CAPOP parameter, which selects difference capacitance.
- 4. The ACM parameter is not supported.

DC Model

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 \tanh \left(\frac{\alpha 1 * V_{DS}}{V_{GS} - V_P} \right)$$

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = I_{DSS} \left[-\frac{2}{V_P} \left(1 - \frac{V_{GS}}{V_P} \right) \cdot \tanh \left(\frac{\alpha 1 \cdot V_{DS}}{V_{GS} - V_P} \right) \right]$$

4: JFET and MESFET Models

Level 8 Materka Model

$$\begin{split} &\left(1 - \frac{V_{GS}^2}{V_P}\right) \cdot \operatorname{sech}^2\left(\frac{\alpha 1 \cdot V_{DS}}{V_{GS} - V_P}\right) \cdot \frac{-\alpha 1 \cdot V_{DS}}{V_{GS} - V_P^2} \\ &g_{DS} = \frac{\partial I_D}{\partial V_{DS}} = I_{DSS} \cdot \left(1 - \frac{V_{GS}}{V_P}\right) \cdot \left[-\frac{2\gamma V_{GS}}{V_P^2} \cdot \tanh\left(\frac{\alpha 1 \cdot V_{DS}}{V_{GS} - V_P}\right) \right. \\ &\left. + \left(1 - \frac{V_{GS}}{V_P}\right) \cdot \operatorname{sech}^2\left(\frac{\alpha 1 \cdot V_{DS}}{V_{GS} - V_P}\right) \cdot \frac{\alpha 1 \cdot (V_{GS} - V_{PO})}{(V_{GS} - V_P)^2} \right] \\ &V_P = V_{TO} + \gamma V_{DS} \end{split}$$

Table 34 DC Model Parameters

Name (Alias)	Units	Defaul t	Description
LEVEL		1.0	Level=8 is the Materka MESFET model.
ALPHA1			Empirical constant
VTO	V	-2.0	Threshold voltage. If set, it overrides internal calculation. A negative VTO is a depletion transistor regardless of NJF or PJF. A positive VTO is always an enhancement transistor.
VP	V		Pinch-off voltage (default is calculated)
IDSS	А	0.1	Drain saturation current for Vgs=0
GAMMA	1/V	0.0	Voltage slope parameter of pinch-off voltage

Gate Capacitance Model

$$C_{GS} = \frac{CGS}{4\sqrt{1 - \frac{vnew}{PB}}} \left[1 + \frac{veff - vte}{\sqrt{\left(veff - vte\right)^2 + \left(0.2\right)^2}} \right] \cdot \left[1 + \frac{vds}{\sqrt{vds^2 + \left(\frac{1}{ALPHA1}\right)^2}} \right]$$

$$+ \left[\frac{CGD}{2} \left(1 - \frac{vds}{\sqrt{vds^2 + \left(\frac{1}{ALPHA1}\right)^2}} \right) \right]$$

$$C_{GD} = \frac{CGS}{4\sqrt{1 - \frac{vnew}{PB}}} \left[1 + \frac{veff - vte}{\sqrt{\left(veff - vte\right)^2 + \left(0.2\right)^2}} \right] \cdot \left[1 - \frac{vds}{\sqrt{vds^2 + \left(\frac{1}{ALPHA1}\right)^2}} \right]$$

$$+ \left[\frac{CGD}{2} \left(1 + \frac{vds}{\sqrt{vds^2 + \left(\frac{1}{ALPHA1}\right)^2}} \right) \right]$$

$$vte = VTO + GAMMA \cdot vds = effective$$
threshold

$$veff = \frac{1}{2} \left[vgs + vgd + \sqrt{vds^2 + \left(\frac{1}{ALPHAI}\right)^2} \right]$$
$$vnew = \frac{1}{2} \left[veff + vte + \sqrt{\left(veff - vte\right)^2 + \left(0.2\right)^2} \right]$$

Table 35 Gate Capacitance Model Parameters

Name (Alias)	Units	Defaul t	Description
CGS	F	0.0	Zero-bias gate-source junction capacitance
CGD	F	0.0	Zero-bias gate-drain junction capacitance
РВ	V	0.8	Gate Junction Potential
N		1.0	Emission coefficient for gate-drain and gate-source diodes

Noise Model

Two current sources model the thermal noise generation in the drain and source regions (RD and RS resistances):

- inrd
- inrs

inrd and inrs are modeled by:

$$inrs = \left(\frac{4kt}{rs}\right)^{1/2}$$
 $inrd = \left(\frac{4kt}{rd}\right)^{1/2}$

Channel thermal and flicker noise are modeled by the *ind* current source, and defined by the equation:

ind = channel thermal noise+ flicker noise

channel thermal noise =
$$\left(\frac{8kt \cdot g_m}{3}\right)^{1/2}$$

$$flicker noise = \left(\frac{KF \cdot ids^{AF}}{f}\right)^{1/2}$$

Table 36 Noise Model Parameters

Name (Alias)	Units	Default	Description
AF		1.0	Flicker noise exponent
KF		0.0	Flicker noise coefficient. Reasonable values for KF are in the range 1e-19 to 1e-25 V2 F.

Example

4: JFET and MESFET Models Level 8 Materka Model

4: JFET and MESFET Models

Level 8 Materka Model

5

BJT Models

Describes how to use BJT models in HSPICE circuit simulations.

The bipolar-junction transistor (BJT) model is an adaptation of the integral charge control model of Gummel and Poon.

The HSPICE BJT model extends the original Gummel-Poon model to include several effects at high bias levels. This model automatically simplifies to the Ebers-Moll model if you do not specify the VAF, VAR, IKF, and IKR parameters.

This chapter describes the following topics:

- Overview of BJT Models
- BJT Model Statement
- BJT Device Equivalent Circuits
- BJT Model Equations (NPN and PNP)
- BJT Capacitance Equations
- Defining BJT Noise Equations
- BJT Temperature Compensation Equations
- BJT Quasi-Saturation Model
- Converting National Semiconductor Models
- VBIC Bipolar Transistor Model

5: BJT Models

Overview of BJT Models

- Level 6 Philips Bipolar Model (MEXTRAM Level 503)
- Level 6 Philips Bipolar Model (MEXTRAM Level 504)
- Level 8 HiCUM Model
- Level 9 VBIC99 Model
- Level 10 Phillips MODELLA Bipolar Model
- Level 11 UCSD HBT Model

Overview of BJT Models

You can use the BJT model to develop BiCMOS, TTL, and ECL circuits.

Note: To modify high-injection effects for BiCMOS devices, use the IKF and IKR high-current Beta degradation parameters.

The SUBS model parameter facilitates the modeling of both vertical and lateral geometrics.

Selecting Models

To select a BJT device, use a BJT element and model statement. The element statement uses the name of the simulation device model to reference the model statement. The following example uses the reference name MOD1. This example uses an NPN model type to describe an NPN transistor.

```
Q3 3 2 5 MOD1 
// Operameters

MODEL MOD1 NPN 
// Operameters
```

You can specify parameters in both element and model statements. If you specify the same parameter in both an element and a model, then the element parameter (local to the specific instance of the model) always overrides the model parameter (global default for all instances of the model, if you did not define the parameter locally). The model statement specifies the type of device—for example, for a BJT, the device type might be NPN or PNP.

BJT Control Options

The following control options affect the BJT model:

DCAP	Selects the equation that determines the BJT capacitances
DCCAP	Invokes capacitance calculations in DC analysis
GRAMP GMIN GMINDC	Place a conductance in parallel with both the base-emitter and the base-collector pn junctions

You can override global depletion capacitance equation selection that uses the .OPTION DCAP=<val> statement in a BJT model by including DCAP=<val> in the BJTs .MODEL statement.

Convergence

Adding a base, collector, and emitter resistance to the BJT model improves its convergence. The resistors limit the current in the device so that the forward-biased pn junctions are not overdriven.

BJT Model Statement

You can use the .MODEL statement to include a BJT model in your HSPICE netlist. For a general description of the .MODEL statement, see the HSPICE Command Reference manual.

Syntax

```
.MODEL mname NPN <(> <pname1 = val1> ... <)>
.MODEL mname PNP <pname1 = val1> ...
```

Parameter	Description
mname	Model name. Elements refer to the model by this name.
NPN	Identifies an NPN transistor model
pname1	Each BJT model can include several model parameters.
PNP	Identifies a PNP transistor model

Example

```
.MODEL t2n2222a NPN
+ ISS= 0. XTF= 1. NS = 1.00000
+ CJS= 0. VJS= 0.50000 PTF= 0.
+ MJS= 0. EG = 1.10000 AF = 1.
+ ITF= 0.50000 VTF= 1.00000
+ BR = 40.00000 IS = 1.6339e-14 VAF=103.40529
+ VAR= 17.77498 IKF= 1.00000
+ NE = 1.31919 IKR= 1.00000 ISC= 3.6856e-13
+ NC = 1.10024 IRB= 4.3646e-05 NF = 1.00531
+ NR = 1.00688 RBM= 1.0000e-02 RB = 71.82988
+ RC = 0.42753 RE = 3.0503e-03 MJE= 0.32339
+ MJC= 0.34700 VJE= 0.67373 VJC= 0.47372
+ TF = 9.693e-10 TR =380.00e-9 CJE= 2.6734e-11
+ CJC= 1.4040e-11 FC = 0.95000 XCJC= 0.94518
```

BJT Basic Model Parameters

To permit the use of model parameters from earlier versions of HSPICE, many model parameters have aliases, which are included in the model parameter list in BJT Basic Model Parameters on page 128. The new name is always used on printouts, even if the model statement uses an alias.

BJT model parameters are divided into several groups. The first group of DC model parameters includes the most basic Ebers-Moll parameters. This model is effective for modeling low-frequency large-signal characteristics.

Low-current Beta degradation effect parameters ISC, ISE, NC, and NE aid in modeling the drop in the observed Beta, caused by the following mechanisms:

- Recombination of carriers in the emitter-base space charge layer
- Recombination of carriers at the surface
- Formation of emitter-base channels

Low base and emitter dopant concentrations, found in some BIMOS type technologies, use the high-current Beta degradation parameters, IKF and IKR.

Use the base-width modulation parameters, that is, early effect parameters VAF and VAR to model high-gain, narrow-base devices. The model calculates the slope of the I-V curve for the model in the active region with VAF and VAR. If VAF and VAR are not specified, the slope in the active region is zero.

The RE, RB, and RC parasitic resistor parameters are the most frequently used second-order parameters, because they replace external resistors. This simplifies the input netlist file. All resistances are functions of the BJT multiplier M value. Dividing resistances by M simulates parallel resistances. The base resistance is a function of base current as is often the case in narrow-base technologies.

Bypassing Latent Devices

Use the BYPASS (latency) option to decrease simulation time in large designs. To speed simulation time, this option does not recalculate currents, capacitances, and conductances, if the voltages at the terminal device nodes have not changed. The BYPASS option applies to MOSFETs, MESFETs, JFETs, BJTs, and diodes. Use .OPTION BYPASS to set BYPASS.

BYPASS might reduce simulation accuracy for tightly-coupled circuits such as op-amps, high gain ring oscillators, and so on. Use .OPTION MBYPAS to set MBYPAS to a smaller value for more-accurate results.

Parameters

Transient model parameters for BJTs are composed of two groups: junction capacitor parameters and transit time parameters.

- CJE, VJE, and MJE model the base-emitter junction.
- CJC, VJC, and MJC model base-collector junction capacitance.
- CJS, VJS, and MJS model the collector-substrate junction capacitance.

TF is the forward transit time for base charge storage. TF can be modified to account for bias, current, and phase, by XTF, VTF, ITF, and PTF. The base charge storage reverse transit time is set by TR. To select from several sets of temperature equations for the BJT model parameters, set TLEV and TLEVC.

Table 37 BJT Model Parameters

Parameter	Description	
DC	BF, BR, IBC, IBE, IS, ISS, NF, NR, NS, VAF, VAR	
beta degradation	ISC, ISE, NC, NE, IKF, IKR	
geometric	SUBS, BULK	

Table 37 BJT Model Parameters (Continued)

Parameter	Description	
resistor	RB, RBM, RE, RC, IRB	
junction capacitor	CJC, CJE, CJS, FC, MJC, MJE, MJS, VJC, VJE, VJS, XCJC	
parasitic capacitance	CBCP, CBEP, CCSP	
transit time	ITF, PTF, TF, VT, VTF, XTF	
noise	KF, AF	

Table 38 DC Parameters for BJT Models

Name (Alias)	Unit	Default	Description
BF (BFM)		100.0	Ideal maximum forward Beta.
BR (BRM)		1.0	Ideal maximum reverse Beta.
BULK (NSUB)		0.0	Sets the bulk node to a global node name. A substrate terminal node name (ns) in the element statement overrides BULK.
IBC	amp	0.0	Reverse saturation current between base and collector. If you specify both IBE and IBC, simulation uses them in place of IS to calculate DC current and conductance; otherwise, the simulator uses IS.
			IBCeff = IBC · AREAB · M AREAC replaces AREAB, depending on vertical or lateral geometry.
EXPLI	amp	0	Current explosion model parameter. The PN junction characteristics above the explosion current area linear with the slope at the explosion point. This speeds up simulation and improves convergence. EXPLIEFF = EXPLI · AREAeff

Table 38 DC Parameters for BJT Models (Continued)

Name (Alias)	Unit	Default	Description
IBE	amp	0.0	Reverse saturation current between base and emitter. If you specify both IBE and IBC, simulation uses them in place of IS to calculate DC current and conductance; otherwise, the simulator uses IS. IBEeff = IBE · AREA · M
IS	amp	1.0e-16	Transport saturation current. If you specify both IBE and IBC, simulation uses them in place of IS to calculate DC current and conductance; otherwise, simulation uses IS. ISeff = IS · AREA · M
ISS	amp	0.0	Reverse saturation current bulk-to-collector or bulk-to-base, depending on vertical or lateral geometry selection. SSeff = ISS · AREA · M
Level		1.0	Model selector.
NF		1.0	Forward current emission coefficient.
NR		1.0	Reverse current emission coefficient.
NS		1.0	Substrate current emission coefficient.
SUBS			Substrate connection selector: +1 for vertical geometry -1 for lateral geometry Default=1 for NPN Default=-1 for PNP
UPDATE		0	UPDATE=1 uses alternate base charge equation.

Overview of BJT Models

Table 39 Low-Current Beta Degradation Parameters

Name (Alias)	Unit	Default	Description
ISC (C4, JLC)	amp	0.0	Base-collector leakage saturation current. If ISC is greater than 1e-4, then: ISC = IS · ISC otherwise: ISCeff = ISC · AREAB · M AREAC replaces AREAB, depending on vertical or lateral geometry.
ISE (C2, JLE)	amp	0.0	Base-emitter leakage saturation current. If ISE is greater than 1e-4, then: ISE = IS · ISE otherwise: ISEeff = ISE · AREA · M
NC (NLC)		2.0	Base-collector leakage emission coefficient.
NE (NLE)		1.5	Base-emitter leakage emission coefficient.

Table 40 Base Width Modulation Parameters

Name (Alias)	Unit	Default	Description
VAF (VA, VBF)	V	0.0	Forward early voltage. Zero=infinite value.
VAR (VB, VRB, BV)	V	0.0	Reverse early voltage. Zero=infinite value.

Table 41 High-Current Beta Degradation Parameters

Name (Alias)	Unit	Default	Description
IKF (IK, JBF)	amp	0.0	Corner for forward Beta high-current roll-off. Use zero to indicate an infinite value. IKFeff = IKF · AREA · M
IKR (JBR)	amp	0.0	Corner for reverse Beta high-current roll-off. Use zero to indicate an infinite value. IKReff = IKR · AREA · M
NKF		0.5	Exponent for high-current Beta roll-off.

Table 42 Parasitic Resistance Parameters

Name (Alias)	Unit	Default	Description
IRB (JRB, IOB)	amp	0.0	Base current, where base resistance falls half-way to RBM. Use zero to indicate an infinite value. IRBeff = IRB · AREA · M
RB	ohm	0.0	Base resistance: RBeff = RB / (AREA · M)
RBM	ohm	RB	Minimum high-current base resistance: RBMeff = RBM / (AREA · M)
RE	ohm	0.0	Emitter resistance: REeff = RE / (AREA · M)
RC	ohm	0.0	Collector resistance: RCeff = RC / (AREA · M)

Table 43 Junction Capacitor Parameters

Name (Alias)	Unit	Default	Description
(Allas)	Offic	Delault	
CJC	F	0.0	Base-collector zero-bias depletion capacitance
			 Vertical: CJCeff = CJC · AREAB · M Lateral: CJCeff = CJC · AREAC · M if you specify a value other than zero for ibc and ibe.
CJE	F	0.0	Base-emitter zero-bias depletion capacitance (vertical and lateral):
			CJEeff = CJE · AREA · M
CJS (CCS,	F	0.0	Zero-bias collector substrate capacitance
CSUB)			 Vertical: CJSeff = CJS · AREAC · M Lateral:
			CJSeff = CJS · AREAB · M
			If you specify a value other than zero for ibc and ibe.
FC		0.5	Coefficient for forward bias depletion capacitance formula for DCAP=1
			DCAP Default=2 and FC are ignored.
MJC (MC)		0.33	Base-collector junction exponent (grading factor).
MJE (ME)		0.33	Base-emitter junction exponent (grading factor).
MJS(ESUB)		0.5	Substrate junction exponent (grading factor).
VJC (PC)	V	0.75	Base-collector built-in potential.
VJE (PE)	V	0.75	Base-emitter built-in potential.
VJS (PSUB)	V	0.75	Substrate junction built in potential.
XCJC (CDIS)		1.0	Internal base fraction of base-collector depletion capacitance.

Table 44 Parasitic Capacitances Parameters

Name (Alias)	Unit	Default	Description
CBCP	F	0.0	External base-collector constant capacitance: CBCPeff = CBCP · AREA · M
СВЕР	F	0.0	External base-emitter constant capacitance: CBEPeff = CBEP · AREA · M
CCSP	F	0.0	External collector substrate constant capacitance (vertical) or base substrate (lateral): CCSPeff = CCSP · AREA · M

Table 45 Transit Time Parameters

Name (Alias)	Unit	Default	Description
ITF (JTF)	amp	0.0	TF high-current parameter: ITFeff = ITF · AREA · M
PTF	x	0.0	Frequency multiplier to determine excess phase.
TF	S	0.0	Base forward transit time.
TR	S	0.0	Base reverse transit time.
VTF	V	0.0	TF base-collector voltage dependence coefficient. Zero indicates an infinite value.
XTF		0.0	TF bias dependence coefficient.

Table 46 Noise Parameters

Name (Alias)	Unit	Default	Description
AF		1.0	Flicker-noise exponent.
KF		0.0	Flicker-noise coefficient.

Table 47 Level=2 Parameters

Name (Alias)	Unit	Default	Description
BRS		1.0	Reverse beta for substrate BJT.
GAMMA		0.0	Epitaxial doping factor: GAMMA = $(2 \cdot ni / n)^2$ In this equation, n is epitaxial impurity concentration.
NEPI		1.0	Emission coefficient.
QCO	Coul	0.0	 Epitaxial charge factor: Vertical: QCOeff=QCO · AREAB · M Lateral: QCOeff=QCO · AREAC · M if you specify a value other than zero for ibc and ibe.
RC	ohm	0.0	Resistance of epitaxial region under equilibrium conditions: RCeff=RC/(AREA · M)
VO	V	0.0	Carrier velocity saturation voltage. Use zero to indicate an infinite value.

BJT Model Temperature Effects

Several temperature parameters control derating of the BJT model parameters. They include temperature parameters for junction capacitance, Beta degradation (DC), and base modulation (Early effect) among others.

Table 48 BJT Temperature Parameters

Fun ction	Parameter
base modulation	TVAF1, TVAF2, TVAR1, TVAR2
capacitor	CTC, CTE, CTS
capacitor potentials	TVJC, TVJE, TVJS
DC	TBF1, TBF2, TBR1, TBR2, TIKF1, TIKF2, TIKR1, TIKR2, TIRB1, TIRB2, TISC1, TISC2, TIS1, TIS2, TISE1, TISE2, TISS1, TISS2, XTB, XTI
emission coefficients	TNC1, TNC2, TNE1, TNE2, TNF1, TNF2, TNR1, TNR2, TNS1, TNS2
energy gap	EG, GAP1, GAP2
equation selectors	TLEV, TLEVC
grading	MJC, MJE, MJS, TMJC1, TMJC2, TMJE1, TMJE2, TMJS1, TMJS2
resistors	TRB1, TRB2, TRC1, TRC2, TRE1, TRE2, TRM1, TRM2
transit time	TTF1, TTF2, TTR1, TTR2

Table 49 Temperature Effect Parameters.

Name (Alias)	Unit	Default	Description
BEX		2.42	VO temperature exponent (Level 2 only).
BEXV		1.90	RC temperature exponent (Level 2 only).
CTC	1/°	0.0	Temperature coefficient for zero-bias base collector capacitance. TLEVC=1 enables CTC to override the default temperature compensation.
CTE	1/°	0.0	Temperature coefficient for zero-bias base emitter capacitance. TLEVC=1 enables CTE to override the default temperature compensation.
CTS	1/°	0.0	Temperature coefficient for zero-bias substrate capacitance. TLEVC=1 enables CTS to override the default temperature compensation.
EG	eV		Energy gap for pn junction diode for TLEV=0 or 1, default=1.11; for TLEV=2, default=1.16: 1.17 - silicon 0.69 - Schottky barrier diode 0.67 - germanium 1.52 - gallium arsenide
GAP1	eV/°	7.02e-4	First bandgap correction factor (from Sze, alpha term): • 7.02e-4 - silicon • 4.73e-4 - silicon • 4.56e-4 - germanium • 5.41e-4 - gallium arsenide

Table 49 Temperature Effect Parameters. (Continued)

Name (Alias)	Unit	Default	Description
GAP2	Х	1108	Second bandgap correction factor (Sze, beta term):
			1108 - silicon636 - silicon210 - germanium204 - gallium arsenide
MJC(MC)		0.33	Base-collector junction exponent (grading factor).
MJE(ME)		0.33	Base-emitter junction exponent (grading factor).
MJS (ESUB)		0.5	Substrate junction exponent (grading factor).
TBF1	1/°	0.0	First-order temperature coefficient for BF.
TBF2	1/° ²	0.0	Second-order temperature coefficient for BF.
TBR1	1/°	0.0	First-order temperature coefficient for BR.
TBR2	1/° ²	0.0	Second-order temperature coefficient for BR.
TIKF1	1/°	0.0	First-order temperature coefficient for IKF.
TIKF2	1/° ²	0.0	Second-order temperature coefficient for IKF.
TIKR1	1/°	0.0	First-order temperature coefficient for IKR.
TIKR2	1/° ²		Second-order temperature coefficient for IKR.
TIRB1	1/°	0.0	First-order temperature coefficient for IRB.
TIRB2	1/° ²	0.0	Second-order temperature coefficient for IRB.
TISC1	1/°	0.0	First-order temperature coefficient for ISC TLEV=3 enables TISC1.

Table 49 Temperature Effect Parameters. (Continued)

Name (Alias)	Unit	Default	Description
TISC2	1/° ²	0.0	Second-order temperature coefficient for ISC TLEV=3 enables TISC2.
TIS1	1/°	0.0	First-order temperature coefficient for IS or IBE and IBC TLEV=3 enables TIS1.
TIS2	1/° ²	0.0	Second-order temperature coefficient for IS or IBE and IBC TLEV=3 enables TIS2.
TISE1	1/°	0.0	First-order temperature coefficient for ISE TLEV=3 enables TISE1.
TISE2	1/° ²	0.0	Second-order temperature coefficient for ISE. TLEV=3 enables TISE2.
TISS1	1/°	0.0	First-order temperature coefficient for ISS TLEV=3 enables TISS1.
TISS2	1/° ²	0.0	Second-order temperature coefficient for ISS TLEV=3 enables TISS2.
TITF1			First-order temperature coefficient for ITF.
TITF2			Second-order temperature coefficient for ITF.
TLEV		1	Temperature equation level selector for BJTs (interacts with TLEVC).
TLEVC		1	Temperature equation level selector: BJTs, junction capacitances, and potentials (interacts with TLEV).
TMJC1	1/°	0.0	First-order temperature coefficient for MJC.
TMJC2	1/° ²	0.0	Second-order temperature coefficient for MJC.
TMJE1	1/°	0.0	First order temperature coefficient for MJE.

Table 49 Temperature Effect Parameters. (Continued)

Name (Alias)	Unit	Default	Description
TMJE2	1/° ²	0.0	Second-order temperature coefficient for MJE.
TMJS1	1/°	0.0	First-order temperature coefficient for MJS.
TMJS2	1/° ²	0.0	Second-order temperature coefficient for MJS.
TNC1	1/°	0.0	First-order temperature coefficient for NC.
TNC2		0.0	Second-order temperature coefficient for NC.
TNE1	1/°	0.0	First-order temperature coefficient for NE.
TNE2	1/° ²	0.0	Second-order temperature coefficient for NE.
TNF1	1/°	0.0	First-order temperature coefficient for NF.
TNF2	1/° ²	0.0	Second-order temperature coefficient for NF.
TNR1	1/°	0.0	First-order temperature coefficient for NR.
TNR2	1/° ²	0.0	Second-order temperature coefficient for NR.
TNS1	1/°	0.0	First-order temperature coefficient for NS.
TNS2	1/° ²	0.0	Second-order temperature coefficient for NS.
TRB1 (TRB)	1/°	0.0	First-order temperature coefficient for RB.
TRB2	1/° ²	0.0	Second-order temperature coefficient for RB.
TRC1 (TRC)	1/°	0.0	First-order temperature coefficient for RC.
TRC2	1/° ²	0.0	Second-order temperature coefficient for RC.
TRE1 (TRE)	1/°	0.0	First-order temperature coefficient for RE.
TRE2	1/° ²	0.0	Second-order temperature coefficient for RE.

Table 49 Temperature Effect Parameters. (Continued)

Name (Alias)	Unit	Default	Description
TRM1	1/°	TRB1	Firs-order temperature coefficient for RBM.
TRM2	1/° ²	TRB2	Second-order temperature coefficient for RBM.
TTF1	1/°	0.0	First-order temperature coefficient for TF.
TTF2	1/° ²	0.0	Second-order temperature coefficient for TF.
TTR1	1/°	0.0	First-order temperature coefficient for TR.
TTR2	1/° ²	0.0	Second-order temperature coefficient for TR.
TVAF1	1/°	0.0	First-order temperature coefficient for VAF.
TVAF2	1/° ²	0.0	Second-order temperature coefficient for VAF.
TVAR1	1/°	0.0	First-order temperature coefficient for VAR.
TVAR2	1/° ²	0.0	Second-order temperature coefficient for VAR.
TVJC	V/°	0.0	VJC temperature coefficient. TVJC uses TLEVC= 1 or 2 to override default temperature compensation.
TVJE	V/°	0.0	VJE temperature coefficient. TVJE uses TLEVC= 1 or 2 to override default temperature compensation.
TVJS	V/°	0.0	VJS temperature coefficient. TVJS uses TLEVC= 1 or 2 to override default temperature compensation.

Name (Alias)	Unit	Default	Description
XTB(TBTCB)		0.0	Forward and reverse Beta temperature exponent (used with TLEV=0, 1, or 2).
XTI		3.0	 Saturation current temperature exponent: Use XTI=3.0 for silicon diffused junction. Set XTI=2.0 for Schottky barrier diode.

Table 49 Temperature Effect Parameters. (Continued)

BJT Device Equivalent Circuits

This section describes BJT scaling, current conventions, and equivalent circuits.

Scaling

Scaling is controlled by the element parameters AREA, AREAB, AREAC, and M. The AREA parameter, the normalized emitter area, divides all resistors and multiplies all currents and capacitors. AREAB and AREAC scale the size of the base area and collector area. Either AREAB or AREAC is used for scaling, depending on whether vertical or lateral geometry is selected (using the SUBS model parameter). For vertical geometry, AREAB is the scaling factor for IBC, ISC, and CJC. For lateral geometry, AREAC is the scaling factor. The scaling factor is AREA for all other parameters.

The following formula scales the DC model parameters (IBE, IS, ISE, IKF, IKR, and IRB) for both vertical and lateral BJT transistors:

$$Ieff = AREA \cdot M \cdot I$$

In the preceding equation, I can be IBE, IS, ISE, IKF, IKR, or IRB.

For both the vertical and lateral, the resistor model parameters, RB, RBM, RE, and RC are scaled by the following equation.

$$Reff = \frac{R}{AREA \cdot M}$$

In the preceding equation, R can be RB, RBM, RE, or RC.

BJT Current Conventions

The example in Figure 18 assumes the direction of current flow through the BJT. Use either I(Q1) or I1(Q1) syntax to print the collector current.

- I2(Q1) refers to the base current.
- I3(Q1) refers to the emitter current.
- I4(Q1) refers to the substrate current.

Figure 18 BJT Current Convention

BJT Equivalent Circuits

IC circuit simulation uses four equivalent circuits to analyze BJTs: DC, transient, AC, and AC noise circuits. The components of these circuits form the basis for all element and model equations. Because these circuits represent the entire BJT during simulation, every effort has been made to demonstrate the relationship between the equivalent circuit and the element/model parameters.

The fundamental components in the equivalent circuit are the base current (ib) and the collector current (ic). For noise and AC analyses, the actual ib and ic currents are not used. Instead, the partial derivatives of ib and ic with respect to the terminal voltages vbe and vbc are used. The names for these partial derivatives are:

Reverse Base Conductance

$$g\mu = \left. \frac{\partial ib}{\partial vbc} \right|_{vbe = const.}$$

Forward Base Conductance

$$g\pi = \left. \frac{\partial ib}{\partial vbe} \right|_{vbc = const.}$$

Collector Conductance

$$g_o = \frac{\partial ic}{\partial vce}\Big|_{vbe = const.} = -\frac{\partial ic}{\partial vbc}\Big|_{vbe = const.}$$

Transconductance

$$gm = \frac{\partial ic}{\partial vbe} \bigg|_{vce = const.}$$
$$gm = \frac{\partial ic}{\partial vbe} + \frac{\partial ic}{\partial vbc}$$

 $gm = \frac{\partial ic}{\partial yhe} - g_o$

The ib and ic equations account for all DC effects of the BJT.

Figure 19 Lateral Transistor, BJT Transient Analysis

Figure 20 Vertical Transistor, BJT Transient Analysis

Figure 21 Lateral Transistor, BJT AC Analysis

Figure 22 Vertical Transistor, BJT AC Analysis

Figure 23 Lateral Transistor, BJT AC Noise Analysis

Figure 24 Vertical Transistor, BJT AC Noise Analysis

Table 50 Equation Variable Names

Variable	Definitions
cbc	Internal base to collector capacitance
cbcx	External base to collector capacitance
cbe	Internal base to emitter capacitance
csc	Substrate to collector capacitance (vertical transistor only)
cbs	Base to substrate capacitance (lateral transistor only)
f	Frequency
gbc	Reverse base conductance

Table 50 Equation Variable Names (Continued)

Variable	Definitions
gbe	Forward base conductance
gm	Transconductance
gsc	Substrate to collector conductance (vertical transistor only)
go	Collector conductance
gbs	Base to substrate conductance (lateral transistor only)
ib	External base terminal current
ibc	DC current base to collector
ibe	DC current base to emitter
ic	External collector terminal current
ice	DC current collector to emitter
inb	Base current equivalent noise
inc	Collector current equivalent noise
inrb	Base resistor current equivalent noise
inrc	Collector resistor equivalent noise
inre	Emitter resistor current equivalent noise
ibs	DC current base to substrate (lateral transistor only)
isc	DC current substrate to collector (vertical transistor only)
qb	Normalized base charge
rb	Base resistance
rbb	Short-circuit base resistance

Table 50 Equation Variable Names (Continued)

Variable	Definitions
vbs	Internal base substrate voltage
VSC	Internal substrate collector voltage

Table 51 Equation Constants

Quantities	Definitions
k	1.38062e-23 (Boltzmann's constant)
q	1.60212e-19 (electron charge)
t	temperature in °Kelvin
Δt	t - tnom
tnom	tnom = 273.15 + TNOM in °Kelvin
vt(t)	$\mathbf{k}\cdot\mathbf{t}/\mathbf{q}$
vt(tmon)	k · tnom/q

Table 52 BJT DC Operating Point Output

Quantities	Definitions
ib	base current
ic	collector current
is	substrate current
vbe	B-E voltage
vbc	B-C voltage
vcs	C-S voltage
VS	substrate voltage

Table 52 BJT DC Operating Point Output (Continued)

Quantities	Definitions
power	power
betad(betadc)	beta for DC analysis
gm	transconductance
rpi	B-E input resistance
rmu(rmuv)	B-C input resistance
rx	base resistance
ro	collector resistance
срі	internal B-E capacitance
cmu	internal B-C capacitance
cbx	external B-C capacitance
ccs	C-S capacitance
cbs	B-S capacitance
CXS	external substrate capacitance
betaac	beta for AC analysis
ft	unity gain bandwidth
*tolcc	Collector current tolerance
*tolcb	Base current tolerance

BJT Model Equations (NPN and PNP)

This section describes the NPN and PNP BJT models.

Transistor Geometry in Substrate Diodes

The substrate diode is connected to either the collector or the base depending on whether the transistor has a lateral or vertical geometry. Lateral geometry is implied when the model parameter SUBS=-1, and vertical geometry when SUBS=+1. The lateral transistor substrate diode is connected to the internal base and the vertical transistor substrate diode is connected to the internal collector. Figure 25 and Figure 26 show vertical and lateral transistor geometries.

Figure 25 Vertical Transistor (SUBS = +1)

Figure 26 Lateral Transistor (SUBS = -1)

In Figure 27, the views from the top demonstrate how IBE is multiplied by either base area, AREAB or collector area, AREAC.

Figure 27 Base, AREAB, Collector, AREAC

DC Model Equations

DC model equations are for the DC component of the collector current (ic) and the base current (ib).

Current Equations: IS Only

If you specify only IS, without IBE and IBC:

$$\begin{split} ⁣ \ = \frac{\mathit{ISeff}}{\mathit{qb}} \cdot \left(e^{\frac{\mathit{vbe}}{\mathit{NF} \cdot \mathit{vt}}} - e^{\frac{\mathit{vbc}}{\mathit{NR} \cdot \mathit{vt}}}\right) - \frac{\mathit{ISeff}}{\mathit{BR}} \cdot \left(e^{\frac{\mathit{vbc}}{\mathit{NR} \cdot \mathit{vt}}} - 1\right) - \mathit{ISCeff} \cdot \left(e^{\frac{\mathit{vbc}}{\mathit{NC} \cdot \mathit{vt}}} - 1\right) \\ &ib \ = \ \frac{\mathit{ISeff}}{\mathit{BF}} \cdot \left(e^{\frac{\mathit{vbe}}{\mathit{NF} \cdot \mathit{vt}}} - 1\right) + \frac{\mathit{ISeff}}{\mathit{BR}} \cdot \left(e^{\frac{\mathit{vbc}}{\mathit{NR} \cdot \mathit{vt}}} - 1\right) \\ &+ \mathit{ISEeff} \ \mathsf{P}\!\left(e^{\frac{\mathit{vbe}}{\mathit{NE} \cdot \mathit{vt}}} - 1\right) + \mathit{ISCeff} \cdot \left(e^{\frac{\mathit{vbc}}{\mathit{NC} \cdot \mathit{vt}}} - 1\right) \end{split}$$

Current Equations: IBE and IBC

If you specify IBE and IBC, instead of IS:

$$ic = \frac{IBEeff}{qb} \cdot \left(e^{\frac{vbe}{NF \cdot vt}} - 1\right) - \frac{IBCeff}{qb} \cdot \left(e^{\frac{vbc}{NR \cdot vt}} - 1\right)$$
$$-\frac{IBCeff}{RR} \cdot \left(e^{\frac{vbec}{NR \cdot vt}} - 1\right) - ISCeff \cdot \left(e^{\frac{vbe}{NC \cdot vt}} - 1\right)$$

$$ib = \frac{IBEeff}{BF} \cdot \left(e^{\frac{vbe}{NF \cdot vt}} - 1\right) + \frac{IBCeff}{BR} \cdot \left(e^{\frac{vbc}{NR \cdot vt}} - 1\right)$$

$$+ISEeff \cdot \left(e^{\frac{vbe}{NE \cdot vt}} - 1\right) + ISCeff \cdot \left(e^{\frac{vbc}{NC \cdot vt}} - 1\right)$$

 $IBCeff = IBC \cdot AREAB \cdot M$ Vertical

 $IBCeff = IBC \cdot AREAC \cdot M$ Lateral

 $IBEeff = IBE \cdot AREA \cdot M$ Vertical or Lateral

 $ISCeff = ISC \cdot AREAB \cdot M$ Vertical

 $ISCeff = ISC \cdot AREAC \cdot M$ Lateral

 $ISEeff = ISE \cdot AREA \cdot M$ Vertical or Lateral

The last two base-current terms represent components, due to recombining the base-emitter and base-collector space charge regions, at low injection.

Substrate Current Equations

The substrate current is substrate to collector for vertical transistors and substrate to base for lateral transistors.

Vertical Transistors

$$isc = ISSeff \cdot \left(e^{\frac{vsc}{NS \cdot vt}} - 1\right)$$
 $vsc > -10 \cdot NS \cdot vt$

$$isc = -ISSeff$$
 $vsc \le -10 \cdot NS \cdot vt$

Lateral Transistors

$$ibs = ISSeff \cdot \left(e^{\frac{vbs}{NS \cdot vt}} - 1\right)$$
 $vbs > -10 \cdot NS \cdot vt$

$$ibs = -ISSeff$$
 $vbs \le -10 \cdot NS \cdot vt$

If you do not specify either IBE or IBC:

$$ISSeff = ISS \cdot AREA \cdot M$$

If you specify both IBE and IBC:

$$ISSeff = ISS \cdot AREAC \cdot M$$
 vertical

$$ISSeff = ISS \cdot AREAB \cdot M$$
 lateral

Base Charge Equations

VAF and VAR are, respectively, forward and reverse early voltages. IKF and IKR determine the high-current Beta roll-off. ISE, ISC, NE, and NC determine the low-current Beta roll-off with ic.

If UPDATE=0 or
$$\frac{vbc}{VAF} + \frac{vbe}{VAR} < 0$$
, then

$$q1 = \frac{1}{\left(1 - \frac{vbc}{VAF} - \frac{vbe}{VAR}\right)}$$

Otherwise, if UPDATE=1 and $\frac{vbc}{VAF} + \frac{vbe}{VAR} \ge 0$, then

$$q1 = 1 + \frac{vbc}{VAF} + \frac{vbe}{VAR}$$

$$q2 = \frac{ISeff}{IKFeff} \cdot \left(e^{\frac{vbe}{NF \cdot vt}} - 1\right) + \frac{ISeff}{IKReff} \cdot \left(e^{\frac{vbc}{NR \cdot vt}} - 1\right)$$

With IBE and IBC, the preceding equation is:

$$q2 = \frac{IBEeff}{IKFeff} \cdot \left(e^{\frac{vbe}{NF \cdot vt}} - 1\right) + \frac{IBCeff}{IKReff} \cdot \left(e^{\frac{vbc}{NR \cdot vt}} - 1\right)$$

In the preceding equation:

- IBE=IS if IBE=0
- IBC=IS if IBC=0

$$qb = \frac{q1}{2} \cdot [1 + (1 + 4 \cdot q2)^{NKF}]$$

Variable Base Resistance Equations

A variable base resistance BJT model consists of a low-current maximum resistance (set using RB), and a high-current minimum resistance (set using RBM). IRB is the current when the base resistance is halfway to its minimum value. If you do not specify RBM, it is set to RB.

If you do not specify IRB:

$$rbb = RBMeff + \frac{RBeff - RBMeff}{qb}$$

If you specify IRB:

$$rbb = RBMeff + 3 \cdot (RBeff - RBMeff) \cdot \frac{\tan(z) - z}{z \cdot \tan(z) \cdot \tan(z)}$$

$$z = \frac{-1 + [1 + 144 \cdot ib /(\pi^2 \cdot IRBeff)]^{1/2}}{\frac{24}{\pi^2} \cdot \left(\frac{ib}{IRBeff}\right)^{1/2}}$$

BJT Capacitance Equations

This section describes BJT capacitances.

Base-Emitter Capacitance Equations

The base-emitter capacitance contains a complex diffusion term with the standard depletion capacitance formula. The diffusion capacitance is modified by model parameters TF, XTF, ITF, and VTF.

Determine the base-emitter capacitance cbe by the following formula:

$$cbe = cbediff + cbedep$$

In the preceding equation, *cbediff* is the base-emitter diffusion, and *cbedep* is the depletion capacitance.

Note: When you run a DC sweep on a BJT, use .OPTION DCCAP to force evaluation of the voltage-variable capacitances during the DC sweep.

Determining Base-Emitter Diffusion Capacitance

Determine diffusion capacitance as follows:

ibe ≤ 0

$$cbediff = \frac{\partial}{\partial vbe} \left(TF \cdot \frac{ibe}{qb} \right)$$

ibe > 0

$$cbediff = \frac{\partial}{\partial vbe} \left[TF \cdot (1 + argtf) \cdot \frac{ibe}{qb} \right]$$

The following equation calculates the *argtf* value for the preceding equation:

$$argtf = XTF \cdot \left(\frac{ibe}{ibe + ITF}\right)^2 \cdot e^{\frac{vbc}{1.44 \cdot VTF}}$$

The forward part of the collector-emitter branch current is determined as follows (IBE=IS if IBE=0):

$$ibe = ISeff \cdot \left(e^{\frac{vbe}{NF \cdot vt}} - 1\right)$$

Determining Base-Emitter Depletion Capacitance

There are two different equations for modeling the depletion capacitance. Select the proper equation by specifying .OPTION DCAP.

DCAP = 1

The base-emitter depletion capacitance is determined as follows:

$$cbedep = CJEeff \cdot \left(1 - \frac{vbe}{VJF}\right)^{-MJE}$$

 $vbe \geq FC \cdot VJE$

$$cbedep = CJEeff \cdot \frac{1 - FC P(1 + MJE) + MJE \cdot \frac{vbe}{VJE}}{(1 - FC)^{(1 + MJE)}}$$

DCAP = 2

The base-emitter depletion capacitance is determined as follows:

vbe < 0
$$cbedep = CJEeff \cdot \left(1 - \frac{vbe}{VJE}\right)^{-MJE}$$

vbe Š 0
$$cbedep = CJEeff \cdot \left(1 + MJE \cdot \frac{vbe}{VJE}\right)$$

DCAP = 3

Limits peak depletion capacitance to FC \cdot CJCeff or FC \cdot CJEeff with proper fall-off when forward bias exceeds PB (FC \geq 1).

Determining Base Collector Capacitance

Determine the base collector capacitance cbc as follows:

$$cbc = cbcdiff + cbcdep$$

In the preceding equation, cbcdiff is the base-collector diffusion, and cbcdep is the depletion capacitance.

Determining Base Collector Diffusion Capacitance

$$cbcdiff = \frac{\partial}{\partial vbc}(TR \cdot ibc)$$

In the preceding equation, the internal base-collector current (ibc) is (IBC=IS if IBC=0):

$$ibc = ISeff \cdot \left(e^{\frac{vbc}{NR \cdot vt}} - 1\right)$$

Determining Base Collector Depletion Capacitance

There are two different equations for modeling the depletion capacitance. Select the proper equation by specifying .OPTION DCAP.

DCAP = 1

Specify DCAP=1 to select one of the following equations:

$$cbcdep = XCJC \cdot CJCeff \cdot \left(1 - \frac{vbc}{VJC}\right)^{-MJC}$$

 $vbc \ge FC \cdot VJC$

$$cbcdep = XCJC \cdot CJCeff \cdot \frac{1 - FC \cdot (1 + MJC) + MJC \cdot \frac{vbc}{VJC}}{(1 - FC)^{(1 + MJC)}}$$

DCAP = 2

Specify DCAP=2 to select one of the following equations:

vbc < 0

$$cbcdep = XCJC \cdot CJCeff \cdot \left(1 - \frac{vbc}{VJC}\right)^{-MJC}$$

vbc ≥ 0

$$cbcdep = XCJC \cdot CJCeff \cdot \left(1 + MJC \cdot \frac{vbc}{VJC}\right)$$

External Base — Internal Collector Junction Capacitance

The base-collector capacitance is modeled as a distributed capacitance when the model parameter XCJC is set. Since the default setting of XCJC is one, the entire base-collector capacitance is on the internal base node cbc.

DCAP = 1

Specify DCAP=1 to select one of the following equations:

vbcx < FC · VJC

$$cbcx = CJCeff \cdot (1 - XCJC) \cdot \left(1 - \frac{vbcx}{VJC}\right)^{-MJC}$$

 $vbcx \ge FC \cdot VJC$

$$cbcx = CJCeff \cdot (1 - XCJC) \cdot \frac{1 - FC \, P(1 + MJC) + MJC \cdot \frac{vbcx}{VJC}}{(1 - FC)^{(1 + MJC)}}$$

DCAP = 2

Specify DCAP=2 to select one of the following equations:

vbcx < 0

$$cbcx = CJCeff \cdot (1 - XCJC) \cdot \left(1 - \frac{vbcx}{VJC}\right)^{-MJC}$$

 $vbcx \ge 0$

$$cbcx = CJCeff \cdot (1 - XCJC) \cdot \left(1 + MJC \cdot \frac{vbcx}{VIC}\right)$$

In the preceding equation, *vbcx* is the voltage between the external base node and the internal collector node.

Substrate Capacitance

The function of substrate capacitance is similar to that of the substrate diode. To switch it from the collector to the base, set the SUBS model parameter.

Substrate Capacitance Equation: Lateral

Base to Substrate Diode

Reverse Bias vbs < 0

$$cbs = CJSeff \cdot \left(1 - \frac{vbs}{VJS}\right)^{-MJS}$$

Forward Bias vbs ≥ 0

$$cbs = CJSeff \cdot \left(1 + MJS \cdot \frac{vbs}{VJS}\right)$$

Substrate Capacitance Equation: Vertical

Substrate to Collector Diode

Reverse Bias vsc < 0

$$\csc = CJSeff \cdot \left(1 - \frac{vsc}{VIS}\right)^{-MJS}$$

Forward Bias vsc ≥ 0

$$csc = CJSeff \cdot \left(1 + MJS \cdot \frac{vsc}{VJS}\right)$$

Excess Phase Equation

The model parameter, PTF, models excess phase. It is defined as extra degrees of phase delay (introduced by the BJT) at any frequency and is determined by the equation:

excess phase =
$$\left(2 \cdot \pi \cdot PTF \cdot \frac{TF}{360}\right) \cdot \left(2 \cdot \pi \cdot f\right)$$

In the preceding equation, f is in hertz, and you can set PTF and TF. The excess phase is a delay (linear phase) in the transconductance generator for AC analysis. Use it also in transient analysis.

Defining BJT Noise Equations

Equations for modeling BJT thermal, shot, and flicker noise are as follows.

Defining Noise Equations

The mean square short-circuit base resistance noise current equation is:

$$inrb = \left(\frac{4 \cdot k \cdot t}{rbb}\right)^{1/2}$$

The mean square short-circuit collector resistance noise current equation is:

$$inrc = \left(\frac{4 \cdot k \cdot t}{RCeff}\right)^{1/2}$$

The mean square short-circuit emitter resistance noise current equation is:

$$inre = \left(\frac{4 \cdot k \cdot t}{REeff}\right)^{1/2}$$

The noise associated with the base current is composed of two parts: shot noise and flicker noise. Typical values for the flicker noise coefficient, KF, are 1e-17 to 1e-12. They are calculated as:

$$2 \cdot q \cdot fknee$$

In the preceding equation, fknee is the noise knee frequency (typically 100 Hz to 10 MHz), and q is electron charge.

$$inb^2 = (2 \cdot q \cdot ib) + \left(\frac{KF \cdot ib^{AF}}{f}\right)$$

$$inb^2$$
 = shot noise² + flicker noise²

shot noise =
$$(2 \cdot q \cdot ib)^{1/2}$$

flicker noise =
$$\left(\frac{KF \cdot ib^{AF}}{f}\right)^{1/2}$$

The noise associated with the collector current is modeled as shot noise only.

$$inc = (2 \cdot q \cdot ic)^{1/2}$$

Parameter	Description
RB, V ² /Hz	output thermal noise due to base resistor
RC, V ² /Hz	output thermal noise due to collector resistor
RE, V ² /Hz	output thermal noise due to emitter resistor
IB, V ² /Hz	output shot noise due to base current
FN, V ² /Hz	output flicker noise due to base current
IC, V ² /Hz	output shot noise due to collector current
TOT, V ² /Hz	total output noise: TOT= RB + RC + RE + IB + IC + FN

BJT Temperature Compensation Equations

This section describes temperature compensation equations.

Energy Gap Temperature Equations

To determine energy gap for temperature compensation, use the equations below:

TLEV = 0, 1 or 3

$$egnom = 1.16 - 7.02e-4 \cdot \frac{tnom^2}{tnom + 1108.0}$$

$$eg(t) = 1.16 - 7.02e - 4 \cdot \frac{t^2}{t + 1108.0}$$

TLEV = 2

$$egnom = EG - GAP1 \cdot \frac{tnom^2}{tnom + GAP2}$$

$$eg(t) = EG - GAP1 \cdot \frac{t^2}{t + GAP2}$$

Saturation/Beta Temperature Equations, TLEV=0 or 2

The basic BJT temperature compensation equations for beta and the saturation currents when TLEV=0 or 2 (default is TLEV=0):

$$BF(t) = BF \cdot \left(\frac{t}{tnom}\right)^{XTB}$$
 $BR(t) = BR \cdot \left(\frac{t}{tnom}\right)^{XTB}$

$$ISE(t) = \frac{ISE}{\left(\frac{t}{tnom}\right)^{XTB}} \cdot e^{\frac{facln}{NE}}$$

$$ISC(t) = \frac{ISC}{\left(\frac{t}{tnom}\right)^{XTB}} \cdot e^{\frac{facln}{NC}}$$

$$ISS(t) = \frac{ISS}{\left(\frac{t}{tnom}\right)^{XTB}} \cdot e^{\frac{facln}{NS}}$$

The parameter XTB usually should be set to zero for TLEV=2.

$$IS(t) = IS \cdot e^{facln}$$

$$IBE(t) = IBE \cdot e^{\frac{facln}{NF}}$$
 $IBC(t) = IBC \cdot e^{\frac{facln}{NR}}$

TLEV = 0, 1 or 3

$$facln = \frac{EG}{vt(tnom)} - \frac{EG}{vt(t)} + XTI \cdot \ln\left(\frac{t}{tnom}\right)$$

TLEV = 2

$$facln = \frac{egnom}{vt(tnom)} - \frac{eg(t)}{vt(t)} + XTI \cdot \ln\left(\frac{t}{tnom}\right)$$

Saturation and Temperature Equations, TLEV=1

The basic BJT temperature compensation equations for beta and the saturation currents when TLEV=1:

$$BF(t) = BF \cdot (1 + XTB \cdot \Delta t)$$
 $BR(t) = BR \cdot (1 + XTB \cdot \Delta t)$

$$ISE(t) = \frac{ISE}{1 + XTB \cdot \Delta t} \cdot e^{\frac{facln}{NE}}$$

$$ISC(t) = \frac{ISC}{1 + XTB \cdot \Delta t} \cdot e^{\frac{facln}{NC}} \qquad ISS(t) = \frac{ISS}{1 + XTB \cdot \Delta t} \cdot e^{\frac{facln}{NS}}$$

$$IS(t) = IS \cdot e^{facln}$$

$$IBE(t) = IBE \cdot e^{\frac{facln}{NF}}$$
 $IBC(t) = IBC \cdot e^{\frac{facln}{NR}}$

The following equation calculates the *facIn* value for the preceding equations:

$$facln = \frac{EG}{vt(tnom)} - \frac{EG}{vt(t)} + XTI \cdot \ln\left(\frac{t}{tnom}\right)$$

TLEV = 0, 1, 2

The IKF, IKR, and IRB parameters are also modified as:

$$IKF(t) = IKF \cdot (1 + TIKF1 \cdot \Delta t + TIKF2 \cdot \Delta t^{2})$$

$$IKR(t) = IKR \cdot (1 + TIKR1 \cdot \Delta t + TIKR2 \cdot \Delta t^{2})$$
$$IRB(t) = IRB \cdot (1 + TIRB1 \cdot \Delta t + TIRB2 \cdot \Delta t^{2})$$

Saturation Temperature Equations, TLEV=3

The basic BJT temperature compensation equations for the saturation currents when TLEV=3:

$$IS(t) = IS^{(1 + TIS1 \cdot \Delta t + TIS2 \cdot \Delta t^{2})}$$

$$IBE(t) = IBE^{(1 + TIS1 \cdot \Delta t + TIS2 \cdot \Delta t^{2})}$$

$$IBC(t) = IBC^{(1 + TIS1 \cdot \Delta t + TIS2 \cdot \Delta t^{2})}$$

$$ISE(t) = ISE^{(1 + TISE1 \cdot \Delta t + TISE2 \cdot \Delta t^{2})}$$

$$ISC(t) = ISC^{(1 + TISC1 \cdot \Delta t + TISC2 \cdot \Delta t^{2})}$$

$$ISS(t) = ISS^{(1 + TISS1 \cdot \Delta t + TISS2 \cdot \Delta t^{2})}$$

The IKF, IKR, and IRB parameters are also modified as:

$$IKF(t) = IKF^{(1 + TIKF1 \cdot \Delta t + TIKF2 \cdot \Delta t^{2})}$$

$$IKR(t) = IKR^{(1 + TIKR1 \cdot \Delta t + TIKR2 \cdot \Delta t^{2})}$$

$$IRB(t) = IRB^{(1 + TIRB1 \cdot \Delta t + TIRB2 \cdot \Delta t^{2})}$$

The following parameters are also modified when you specify corresponding temperature coefficients, regardless of TLEV value.

$$BF(t) = BF \cdot (1 + TBF1 \cdot \Delta t + TBF2 \cdot \Delta t^{2})$$

$$BR(t) = BR \cdot (1 + TBR1 \cdot \Delta t + TBR2 \cdot \Delta t^{2})$$

$$VAF(t) = VAF \cdot (1 + TVAF1 \cdot \Delta t + TVAF2 \cdot \Delta t^{2})$$

$$VAR(t) = VAR \cdot (1 + TVAR1 \cdot \Delta t + TVAR2 \cdot \Delta t^{2})$$

$$ITF(t) = ITF \cdot (1 + TITF1 \cdot \Delta t + TITF2 \cdot \Delta t^2)$$

$$TF(t) = TF \cdot (1 + TTF1 \cdot \Delta t + TTF2 \cdot \Delta t^2)$$

$$TR(t) = TR \cdot (1 + TTR1 \cdot \Delta t + TTR2 \cdot \Delta t^2)$$

$$NF(t) = NF \cdot (1 + TNF1 \cdot \Delta t + TNF2 \cdot \Delta t^2)$$

$$NR(t) = NR \cdot (1 + TNR1 \cdot \Delta t + TNR2 \cdot \Delta t^2)$$

$$NE(t) = NE \cdot (1 + TNE1 \cdot \Delta t + TNE2 \cdot \Delta t^2)$$

$$NC(t) = NC \cdot (1 + TNC1 \cdot \Delta t + TNC2 \cdot \Delta t^2)$$

$$NS(t) = NS \cdot (1 + TNS1 \cdot \Delta t + TNS2 \cdot \Delta t^2)$$

$$MJE(t) = MJE \cdot (1 + TMJE1 \cdot \Delta t + TMJE2 \cdot \Delta t^{2})$$

$$MJC(t) = MJC \cdot (1 + TMJC1 \cdot \Delta t + TMJC2 \cdot \Delta t^{2})$$

$$MJS(t) = MJS \cdot (1 + TMJS1 \cdot \Delta t + TMJS2 \cdot \Delta t^{2})$$

Capacitance Temperature Equations

TLEVC = 0

$$CJE(t) = CJE \cdot \left[1 + MJE \cdot \left(4.0e-4 \cdot \Delta t - \frac{VJE(t)}{VJE} + 1\right)\right]$$

$$CJC(t) = CJC \cdot \left[1 + MJC \cdot \left(4.0e - 4 \cdot \Delta t - \frac{VJC(t)}{VJC} + 1\right)\right]$$

$$CJS(t) = CJS \cdot \left[1 + MJS \cdot \left(4.0e - 4 \cdot \Delta t - \frac{VJS(t)}{VJS} + 1 \right) \right]$$

The following equations calculate values for the preceding equations:

$$VJE(t) = VJE \cdot \frac{t}{tnom} - vt(t) \cdot \left[3 \cdot \ln \left(\frac{t}{tnom} \right) + \frac{egnom}{vt(tnom)} - \frac{eg(t)}{vt(t)} \right]$$

$$VJC(t) = VJC \cdot \frac{t}{tnom} - vt(t) \cdot \left[3 \cdot \ln\left(\frac{t}{tnom}\right) + \frac{egnom}{vt(tnom)} - \frac{eg(t)}{vt(t)} \right]$$

$$VJS(t) = VJS \cdot \frac{t}{tnom} - vt(t) \cdot \left[3 \cdot \ln\left(\frac{t}{tnom}\right) + \frac{egnom}{vt(tnom)} - \frac{eg(t)}{vt(t)} \right]$$

TLEVC = 1

$$CJE(t) = CJE \cdot (1 + CTE \cdot \Delta t)$$

$$CJC(t) = CJC \cdot (1 + CTC \cdot \Delta t)$$

$$CJS(t) = CJS \cdot (1 + CTS \cdot \Delta t)$$

The following equations calculate the built-in potentials:

$$VJE(t) = VJE - TVJE \cdot \Delta t$$

$$VJC(t) = VJC - TVJC \cdot \Delta t$$

$$VJS(t) = VJS - TVJS \cdot \Delta t$$

TLEVC = 2

$$CJE(t) = CJE \cdot \left(\frac{VJE}{VJE(t)}\right)^{MJE}$$

$$CJC(t) = CJC \cdot \left(\frac{VJC}{VJC(t)}\right)^{MJC}$$

$$CJS(t) = CJS \cdot \left(\frac{VJS}{VJS(t)}\right)^{MJS}$$

The following equations calculate values for the preceding equations:

$$VJE(t) = VJE - TVJE \cdot \Delta t$$

$$VJC(t) = VJC - TVJC \cdot \Delta t$$

$$VJS(t) = VJS - TVJS \cdot \Delta t$$

TLEVC = 3

$$CJE(t) = CJE \cdot \left(1 - 0.5 \cdot dvjedt \cdot \frac{\Delta t}{VJE}\right)$$

$$CJC(t) = CJC \cdot \left(1 - 0.5 \cdot dvjcdt \cdot \frac{\Delta t}{VJC}\right)$$

$$CJS(t) = CJS \cdot \left(1 - 0.5 \cdot dvjsdt \cdot \frac{\Delta t}{VJS}\right)$$

$$VJE(t) = VJE + dvjedt \cdot \Delta t$$

$$VJC(t) = VJC + dvjcdt \cdot \Delta t$$

$$VJS(t) = VJS + dvjsdt \cdot \Delta t$$

If TLEV= 0, 1, or 3, then:

$$dvjedt = -\frac{egnom + 3 \cdot vt(tnom) + (1.16 - egnom) \cdot \left(2 - \frac{tnom}{tnom + 1108}\right) - VJE}{tnom}$$

$$\frac{egnom + 3 \cdot vt(tnom) + (1.16 - egnom) \cdot \left(2 - \frac{tnom}{tnom + 1108}\right) - VJC}{dvjcdt} = -\frac{tnom}{tnom}$$

$$dvjsdt = -\frac{egnom + 3 \cdot vt(tnom) + (1.16 - egnom) \cdot \left(2 - \frac{tnom}{tnom + 1108}\right) - VJS}{tnom}$$

If TLEV=2:

$$dvjedt = -\frac{egnom + 3 \cdot vt(tnom) + (EG - egnom) \cdot \left(2 - \frac{tnom}{tnom + GAP2}\right) - VJE}{tnom}$$

$$\frac{egnom + 3 \cdot vt(tnom) + (EG - egnom) \cdot \left(2 - \frac{tnom}{tnom + GAP2}\right) - VJC}{tnom}$$

$$dvjsdt = -\frac{egnom + 3 \cdot vt(tnom) + (EG - egnom) \cdot \left(2 - \frac{tnom}{tnom + GAP2}\right) - VJS}{tnom}$$

Parasitic Resistor Temperature Equations

The following equations determine the parasitic resistors as a function of temperature regardless of the TLEV value:

$$RE(t) = RE \cdot (1 + TRE1 \cdot \Delta t + TRE2 \cdot \Delta t^{2})$$

$$RB(t) = RB \cdot (1 + TRB1 \cdot \Delta t + TRB2 \cdot \Delta t^{2})$$

$$RBM(t) = RBM \cdot (1 + TRM1 \cdot \Delta t + TRM2 \cdot \Delta t^{2})$$

$$RC(t) = RC \cdot (1 + TRC1 \cdot \Delta t + TRC2 \cdot \Delta t^{2})$$

BJT Level=2 Temperature Equations

The model parameters of BJT Level 2 model are modified for temperature compensation as:

$$GAMMA(t) = GAMMA \cdot e^{(facln)}$$

$$RC(t) = RC \cdot \left(\frac{t}{tnom}\right)^{BEX}$$

$$VO(t) = VO \cdot \left(\frac{t}{tnom}\right)^{BEXV}$$

BJT Quasi-Saturation Model

Use the BJT quasi-saturation model (Level=2), an extension of the Gummel-Poon model (Level 1 model) to model bipolar junction transistors that exhibit quasi-saturation or base push-out effects. When a device with lightly doped collector regions operates at high injection levels, the internal base-collector junction is forward biased, while the external base-collector junction is reverse biased; DC current gain and the unity gain frequency fT falls sharply. Such an operation regime is referred to as quasi-saturation, and its effects have been included in this model.

Figure 28 and Figure 29 show the additional elements of the Level 2 model. The current source lepi and charge storage elements Ci and Cx model the quasi-saturation effects. The parasitic substrate bipolar transistor is also included in the vertical transistor by the diode D and current source lbs.

Figure 28 Vertical npn Bipolar Transistor (SUBS=+1)

Figure 29 Lateral npn Bipolar Transistor (SUBS=-1)

Epitaxial Current Source lepi

The following equation determines the epitaxial current value, lepi:

$$Iepi = \frac{ki - kx - \ln\left(\frac{1 + ki}{1 + kx}\right) + \frac{vbc - vbcx}{NEPI \cdot vt}}{\left(\frac{RCeff}{NEPI \cdot vt}\right) \cdot \left(1 + \frac{|vbc - vbcx|}{VO}\right)}$$

The following equations calculate values for the preceding equations:

$$ki = [1 + GAMMA \cdot e^{\text{vbc}/(NEPI \cdot vt)}]^{1/2}$$

$$kx = [1 + GAMMA \cdot e^{\text{vbcx}/(NEPI \cdot vt)}]^{1/2}$$

If you set the GAMMA model parameter to zero, then the ki and kx values both become one, and:

$$Iepi = \frac{vbc - vbcx}{RCeff \cdot \left(1 + \frac{|vbc - vbcx|}{VO}\right)}$$

Epitaxial Charge Storage Elements Ci and Cx

The following equations calculate the epitaxial charges:

$$qi = QCOeff \cdot \left(ki - 1 - \frac{GAMMA}{2}\right)$$

$$qx = QCOeff \cdot \left(kx - 1 - \frac{GAMMA}{2}\right)$$

The corresponding capacitances are calculated as:

$$Ci = \frac{\partial}{\partial vbc}(qi) = \left(\frac{GAMMA \cdot QCOeff}{2 \cdot NEPI \cdot vt \cdot kx}\right) \cdot e^{vbc/(NEPI \cdot vt)}$$

$$Cx = \frac{\partial}{\partial vbcx}(qx) = \left(\frac{GAMMA \cdot QCOeff}{2 \cdot NEPI \cdot vt \cdot kx}\right) \cdot e^{vbcx/(NEPI \cdot vt)}$$

If GAMMA=0, then the Ci and Cx values become zero.

Example

This example is located in the following directory:

\$installdir/demo/hspice/bjt/quasisat.sp

Figure 30 Comparing BJT Level 1 and Level 2 Models

Converting National Semiconductor Models

National Semiconductor's SNAP circuit simulator has a scaled BJT model that is not the same as the HSPICE BJT models. To use this model, make the following changes.

For a subcircuit that consists of the scaled BJT model, the subcircuit name must be the same as the name of the model. Inside the subcircuit there is a .PARAM statement that specifies the scaled BJT model parameter values. Put a scaled BJT model inside the subcircuit, then change the .MODEL mname mtype statement to a .PARAM statement. Ensure that each parameter in the .MODEL statement within the subcircuit has a value in the .PARAM statement.

Defining Scaled BJT Subcircuits

The following subcircuit definition converts the National Semiconductor scaled BJT model to a form usable in HSPICE. The .PARAM parameter inside the .SUBCKT represents the .MODEL parameter in the National circuit simulator. Therefore, replace the .MODEL mname statement with a .PARAM statement. Change the model name to SBJT.

Note: All parameter values in the following model must come from either a .PARAM statement or the subcircuit call.

Example

The following is a subcircuit definition that converts the National Semiconductor scaled BJT model to a form usable in HSPICE.

```
.SUBCKT SBJT NC NB NE SF=1 SCBC=1 SCBE=1 SCCS=1 SIES=1 SICS=1
+ SRB=1 SRC=1 SRE=1 SIC=0 SVCE=0 SBET=1
Q NC NB NE SBJT IC=SIC VCE=SVCE
NE=1.02 NC=1.03
+ PSUB=0.698 RE=75 RC=0.0 RB=1.0
+ TRE=2E-3 TRC=6E-3 TRB=1.9E-3 VA=25
+ FTF=2.8E9 FTR=40E6 BR=1.5 TCB=5.3E-3
+ TCB2=1.6E-6 BF1=9.93 BF2=45.7 BF3=55.1
+ BF4=56.5 BF5=53.5 BF6=33.8 + IBF1=4.8P IBF2=1.57N IBF3=5
.MODEL SBJT NPN
+ IBE='IES*SF*SIES' IBC='ICS*SF*SICS'
+ CJE='CJE*SF*SCBE' CJC='CJC*SF*SCBC'
+ CJS='CSUB*SF*SCCS' RB='RB*SRB/SF'
+ RC='RC*SRC/SF' RE='RE*SRE/SF'
+ TF='1/(6.28*FTF)' TR='1/(6.28*FTR)'
+ MJE=EXE MJC=EXC
+ MJS=ESUB VJE=PE
+ VJC=PC VJS=PSUB
+ NF=NE NR=NC
+ EG=EG BR=BR VAF=VA
+ TRE1=TRE TRC1=TRC TRB1=TRB
+ TBF1=TCB TBF2=TCB2
+ BF0=BF1 IB0=IBF1
+ BF1=BF2 IB1=IBF2
+ BF2=BF3 IB2=IBF3
+ BF3=BF4 IB3=IBF4
+ BF4=BF5 IB4=IBF5
+ BF5=BF6 IB5=IBF6
+ NSUB=0 sbet=sbet
+ TLEV=1 TLEVC=1
+ XTIR='MC*NC' XTI='ME*NE'
.ENDS SBJT
```

The following replaces the BJT statement:

```
XQ1 1046 1047 8 SBJT SIES=25.5 SICS=25.5 SRC=3.92157E-2
+ SRE=3.92157E-2 SBET=3.92157E-2 SRB=4.8823E+2 SCBE=94.5234
+ SCBC=41.3745 SCCS=75.1679 SIC=1M SVCE=1
```

VBIC Bipolar Transistor Model

The VBIC (Vertical Bipolar Inter-Company) model is a bipolar transistor model. To use VBIC, specify the Level=4 parameter for the bipolar transistor model.

VBIC addresses many problems of the Gummel-Poon model:

- More accurate modeling of Early effect
- Parasitic substrate transistor.
- Modulation of collector resistance
- Avalanche multiplication in collector junction, parasitic capacitances of base-emitter overlap in double poly BJTs, and self heating.

History of VBIC

VBIC was developed by engineers at several companies. The detailed equations¹ for all elements are given in the referenced publication. Recent information and source code can be found on the web site:

http://www-sm.rz.fht-esslingen.de/institute/iafgp/neu/VBIC/index.html

The HSPICE implementation complies with standard VBIC. Starting in release 2001.4 of the VBIC model, self-heating and excess phase have been implemented or enabled.

The large signal equivalent circuit for VBIC is shown in Figure 31. Capacitors CBCO, CBEO and resistors RCX, RBX, RE, and RS are linear elements, all other elements of the equivalent circuit are nonlinear.

VBIC Parameters

Figure 31 lists the parameters that you can set for the model, and shows the default values for each parameter. The same parameter names are used in the table and the previous referenced publication.

Starting in Version 2003.03, the BJT Level 4 model prints FT in the .OP output.

C. McAndrew, J. Seitchik, D. Bowers, M. Dunn, M. Foisy, I. Getreu, M. McSwain, S. Moinian, J. Parker, D. Roulston, M. Schroter, P. van Wijnen, and L. Wagner, "VBIC95: The vertical bipolar intercompany model," *IEEE Journal of Solid State Circuits*, vol.31, p.1476-1483, 1996.

Figure 31 Transient Analysis

If values of parameters given by the user are beyond their ranges, those parameters will be reset to new values and warnings will be printed unless you set .OPTION NOWARN.

Noise Analysis

The following sources of noise are taken into account:

- The thermal noise of resistors RBX, RCX, RE, RS, RBP, RCI, RBI
- Shot noise of currents IBE, IBEP, ICC, ICCP
- Flicker noise due to currents IBE, IBEP

Noise due to IBEX and IGC is not included.

Self-heating and Excess Phase

After a self-heating effect is accounted for, the device element syntax becomes:

Qxxx nc nb ne <ns> <nt> mname <regular parameters> <tnodeout>

In the preceding syntax, nt is the temperature node. If you specify this node, but not ns, then you must specify the tnodeout parameter to indicate that the fourth node is the temperature node and not the substrate node. To turn on self-heating in addition to specifying the temperature node, the RTH (thermal resistance) model parameter must be not zero in the model card.

Excess phase affects only AC and transient characteristics analysis. To turn on this effect, the TD (forward excess-phase delay time) model parameter must be non-zero. But for transient analysis, turning on excess phase is not recommended, because the model's convergence is very sensitive to the TD value.

Example 1

This example with a no self-heating effect is located in the following directory: \$installdir/demo/hspice/bjt/vbic.sp

Example 2

This example with self-heating effects is located in the following directory: \$installdir/demo/hspice/bjt/self_heat.sp

In the preceding example, v(t) uses the T node to print the device temperature.

Table 53 BJT Level 4 Default Model Parameters

Name (Alias)	Unit	Default	Description
AFN		1	Flicker noise exponent for current
AJC		-0.5	Base-collector capacitance switching parameter
AJE		-0.5	Base-emitter capacitance switching parameter
AJS		-0.5	Substrate-collector capacitance switching parameter

Table 53 BJT Level 4 Default Model Parameters (Continued)

Name			
(Alias)	Unit	Default	Description
AVC1	V ⁻¹	0	Base-collector weak avalanche parameter 1
AVC2	V ⁻¹	0	Base-collector weak avalanche parameter 2
BFN		1	Flicker noise exponent for 1/f dependence
CBCO (CBC0)	F	0	Extrinsic base-collector overlap capacitance
CBEO (CBE0)	F	0	Extrinsic base-emitter overlap capacitance
CJC	F	0	Base-collector intrinsic zero bias capacitance
CJCP	F	0	Substrate-collector zero bias capacitance
CJE	F	0	Base-emitter zero bias capacitance
CJEP	F	0	Base-collector extrinsic zero bias capacitance
CTH	J/K	0	Thermal capacitance
EA	eV	1.12	Activation energy for IS
EAIC	eV	1.12	Activation energy for IBCI/IBEIP
EAIE	eV	1.12	Activation energy for IBEI
EAIS	eV	1.12	Activation energy for IBCIP
EANC	eV	1.12	Activation energy for IBCN/IBENP
EANE	eV	1.12	Activation energy for IBEN
EANS	eV	1.12	Activation energy for IBCNP
FC		0.9	Forward bias depletion capacitance limit
GAMM		0	Epi doping parameter

Table 53 BJT Level 4 Default Model Parameters (Continued)

-			
Name (Alias)	Unit	Default	Description
HRCF		1	High-current RC factor
IBCI	Α	1e-16	Ideal base-collector saturation current
IBCIP	Α	0	Ideal parasitic base-collector saturation current
IBCN	Α	1e-15	Non-ideal base-collector saturation current
IBCNP	Α	0	Non-ideal parasitic base-collector saturation current
IBEI	Α	1e-18	Ideal base-emitter saturation current
IBEIP	Α	0	Ideal parasitic base-emitter saturation current
IBEN	Α	1e-15	Non-ideal base-emitter saturation current
IBENP	Α	0	Non-ideal parasitic base-emitter saturation current
IKF	Α	2e-3	Forward knee current
IKP	Α	2e-4	Parasitic knee current
IKR	Α	2e-4	Reverse knee current
IS	Α	1e-16	Transport saturation current
ISMIN	Α	1.0e-19	Parameter for extending the minimum value of is
ISP	Α	1e-16	Parasitic transport saturation current
ISPMIN	Α	1.0e-19	Parameter for extending the minimum value of isp
ITF	Α	1e-3	Coefficient of TF dependence in Ic
KFN		0	Base-emitter flicker noise constant

Table 53 BJT Level 4 Default Model Parameters (Continued)

Name (Alias)	Unit	Default	Description
MC		0.33	Base-collector grading coefficient
MCMIN	-	1.0d-2	Parameter for extending the minimum value of mc
ME		0.33	Base-emitter grading coefficient
MEMIN	-	1.0d-2	Parameter for extending the minimum value of me
MS		0.33	Substrate-collector grading coefficient
MSMIN	-	1.0d-2	Parameter for extending the minimum value of ms
NCI		1	Ideal base-collector emission coefficient
NCIP		1	Ideal parasitic base-collector emission coefficient
NCN		2	Non-ideal base-collector emission coefficient
NCNP		2	Non-ideal parasitic base-collector emission coefficient
NEI		1	Ideal base-emitter emission coefficient
NEN		2	Non-ideal base-emitter emission coefficient
NF		1	Forward emission coefficient
NFP		1	Parasitic forward emission coefficient
NR		1	Reverse emission coefficient
PC	V	0.75	Base-collector built-in potential
PE	V	0.75	Base-emitter built-in potential
PS	V	0.75	Substrate-collector built-in potential

Table 53 BJT Level 4 Default Model Parameters (Continued)

Name (Alias)	Unit	Default	Description
QCO (QC0)	С	0	Epi charge parameter
QTF		0	Variation of TF with base-width modulation
RBI	Ohm	1e-1	Intrinsic base resistance
RBP	Ohm	1e-1	Parasitic base resistance
RBPMIN	Α	1.0e-3	Parameter for extending the minimum value of rbp.
RBX	Ohm	1e-1	Extrinsic base resistance
RCI	Ohm	1e-1	Intrinsic collector resistance
RCX	Ohm	1e-1	Extrinsic collector resistance
RE	Ohm	1e-1	Emitter resistance
RS	Ohm	1e-1	Substrate resistance
RTH	K/W	0	Thermal resistance
TAVC	1/K	0	Temperature coefficient of AVC2
TD	S	0	Forward excess-phase delay time
TF	S	1e-11	Forward transit time
TNF	1/K	0	Temperature coefficient of NF
TR	S	1e-11	Reverse transit time
TREF (TNOM)	°C	27	Nominal measurement temperature of parameters (do not use TNOM alias)
VEF	V	0	Forward Early voltage
VER	V	0	Reverse Early voltage

Table 53 BJT Level 4 Default Model Parameters (Continued)

Name (Alias)	Unit	Default	Description
VO (V0)	V	0	Epi drift saturation voltage
VTF	V	0	Coefficient of TF dependence on Vbc
WBE		1	Portion of IBEI from Vbei, 1-WBE from Vbex
WSP		1	Portion of ICCP from Vbep, 1-WSP from Vbci
XII		3	Temperature exponent of IBEI/IBCI/IBEIP/IBCIP
XIN		3	Temperature exponent of IBEN/IBCN/IBENP/IBCNP
XIS		3	Temperature exponent of IS
XRB		1	Temperature exponent of base resistance
XRC		1	Temperature exponent of collector resistance
XRE		1	Temperature exponent of emitter resistance
XRS		1	Temperature exponent of substrate resistance
XTF		0	Coefficient of TF bias dependence
XVO (XV0)		0	Temperature exponent of VO

Notes on Using VBIC

- 1. If Level=4, the model is a VBIC bipolar junction transistor.
- 2. The Level 4 model supports Area and M factor scaling.
- 3. Setting these parameters to zero infers a value of infinity: HRCF, IKF, IKP, IKR, ITF, VEF, VER, VO, VTF.

- 4. The CBC0, CBE0, QC0, TNOM, V0, and XV0 parameters are aliases for CBCO, CBEO, QCO, TREF, VO, and XVO, respectively. Do not use TNOM as a model parameter name, because it is the name of the default room temperature.
- 5. The default room temperature is 25 degrees in HSPICE, but is 27 in some other simulators. If you set the VBIC bipolar junction transistor model parameters to 27 degrees, add TREF=27 to the model so that simulation correctly interprets the model parameters. To set the nominal simulation temperature to 27, add .OPTION TNOM=27 to the netlist. Do this when testing HSPICE versus other simulators that use 27 as the default room temperature.
- 6. Pole-zero simulation of this model is not supported.
- 7. For this version of implementation, all seven internal resistors should have values greater than or equal to 1.0e-3. Values smaller than this will be reassigned a value of 1.0e-3.

Level 6 Philips Bipolar Model (MEXTRAM Level 503)

The Philips bipolar model (MEXTRAM Level 503) is the BJT Level 6 model. MEXTRAM includes effects that are not included in some other BJT models (such as in the original Gummel-Poon model):

- Temperature
- Charge storage
- Substrate
- Parasitic PNP
- High-injection
- Built-in electric field in base region
- Bias-dependent Early effect
- Low-level, non-ideal base currents
- Hard- and quasi-saturation
- Weak avalanche
- Hot carrier effects in the collector epilayer
- Explicit modeling of inactive regions
- Split base-collector depletion capacitance

- Current crowding and conductivity modulation for base resistance
- First order approximation of distributed high frequency effects in the intrinsic base (high frequency current crowding and excess phase shift)

You can use either of the following two parameters to specify the difference between the circuit temperature and the ambient temperatures in the MEXTRAM model:

- DTEMP instance parameter as specified in the element statement.
- DTA (difference between the device temperature and the ambient analysis temperature) global model parameter.

DTA and DTEMP both default to zero. DTEMP overrides DTA locally, if you specify both. Simulation uses the value of DTEMP to derate the temperature in model equations and other parameters.

- If you do not specify either the DTEMP or the DTA parameter, then DTEMP=0.0.
- If you specify DTA but not DTEMP, then DTEMP uses the DTA value.
- If you specify DTEMP, then simulation uses the DTEMP value, and ignores the DTA value.

For a description of the MEXTRAM model, refer to:

http://www-us.semiconductors.com/Philips_Models/

Level 6 Element Syntax

```
Qxxx nc nb ne <ns> <nt> mname <AREA=val>
+ <OFF> <VBE=val> <VCE=val> <M=val>
+ <DTEMP=val> <tnodeout>

Qxxx nc nb ne <nt> mname <AREA=val>
+ <OFF> <VBE=val> <VCE=val> <M=val>
+ <DTEMP=val> <tnodeout>
```

Parameter	Description
Qxxx	BJT element name. Starts with Q, followed by up to 1023 alphanumeric characters.
nc	Collector terminal node name or number.
nb	Base node name or number.
ne	Emitter terminal node name or number.
ns	Substrate node name or number.
nt	Self-heating temperature node name or number. In the second form, nt is used as a self-heating node, but no substrate node is defined.
mname	BJT model name reference.
AREA	Normalized emitter area.
OFF	Sets initial condition to OFF for this element in DC analysis.
VBE	Initial internal base to emitter voltage.
VCE	Initial internal collector to emitter voltage.
M	Multiplier to simulate multiple BJTs in parallel (alias in an instance for the MULT model parameter). If you use MULT, set m to zero. • If (MULT > 0.0 and MULT != 1.0) and (m == 1),
	then HSPICE uses the MULT model parameter and displays a warning message. Otherwise, HSPICE uses the m instance parameter and displays a warning message: MULT=1, m=1 (no warning messages) MULT=1, m=3 MULT=2, m=3 and so on

Parameter	Description
DTEMP	Difference between element and circuit temperature.
tnodeout	Identify self heating node from substrate node.

Level 6 Model Parameters

This section lists MEXTRAM Level 6 model parameters, including parameter names, descriptions, units, default values, and notes.

Table 54 BJT Level 6 MEXTRAM 503 Flags

Name (Alias)	Unit	Default	Description
Level	-	-	Level 6 for MEXTRAM
EXAVL	-	0	Flag for extended modeling of avalanche currents
EXMOD	-	0	Flag for extended modeling of the reverse current gain
EXPHI	-	1	Flag for distributed high frequency effects
SUBS	-	-	Flag for switching substrate effect
OUTFLAG			

Table 55 BJT Level 6 MEXTRAM 503 Basic Parameters

Name (Alias)	Unit	Default	Description
TREF	°C	0.0	Model nominal temperature
IS	Α	5.E-17	Collector-emitter saturation current
BF	Α	140.0	Ideal forward current gain

Table 55 BJT Level 6 MEXTRAM 503 Basic Parameters (Continued)

Name (Alias)	Unit	Default	Description
XIBI	-	0.0	Fraction of ideal base current that belongs to the sidewall
IBF	Α	2.0E-14	Saturation current of the non-ideal forward base current
VLF	V	0.5	Cross-over voltage of the non-ideal forward base current
IK	Α	15.E-3	High-injection knee current
BRI	-	16.0	Ideal reverse current gain
IBR	Α	8.0e-15	Saturation current of the non-ideal reverse base current
VLR	V	0.5	Cross-over voltage of the non-ideal reverse base current
XEXT	-	0.5	Part of I EX,Q EX, Q TEX. and I SUB that depends on the base-collector voltage VBC1
QBO	С	1.2e-12	Base charge at zero bias
ETA	-	4.0	Factor of the built-in field of the base
AVL	-	50.	Weak avalanche parameter
EFI	-	0.7	Electric field intercept (with EXAVL=1)
IHC	Α	3.e-3	Critical current for hot carriers
RCC	ohm	25.	Constant part of the collector resistance
RCV	ohm	750.	Resistance of the unmodulated epilayer
SCRCV	ohm	1000.0	Space charge resistance of the epilayer
SFH	-	0.6	Current spreading factor epilayer

Table 55 BJT Level 6 MEXTRAM 503 Basic Parameters (Continued)

Name (Alias)	Unit	Default	Description
RBC	ohm	50.	Constant part of the base resistance
RBV	ohm	100.	Variable part of the base resistance at zero bias
RE	ohm	2.0	Emitter series resistance
TAUNE	S	3.e-10	Minimum delay time of neutral and emitter charge
MTAU	-	1.18	Non-ideality factor of the neutral and emitter charge
CJE	F	2.5e-13	Zero bias collector-base depletion capacitance
VDE	V	0.9	Emitter-base diffusion voltage
PE	-	0.33	Emitter-base grading coefficient
XCJE	F	0.5	Fraction of the emitter-base depletion capacitance that belongs to the sidewall
CJC	F	1.3e-13	Zero bias collector-base depletion capacitance
VDC	V	0.6	Collector-base diffusion voltage
PC	-	0.4	Collector-base grading coefficient variable part
XP	F	0.2	Constant part of CJC
MC	-	0.5	Collector current modulation coefficient
XCJC	-	0.1	Fraction of the collector-base depletion capacitance under the emitter area
VGE	V	1.01	Band-gap voltage of the emitter

Table 55 BJT Level 6 MEXTRAM 503 Basic Parameters (Continued)

Name (Alias)	Unit	Default	Description
VGB	V	1.18	Band-gap voltage of the base
VGC	٧	1.205	Band-gap voltage of the collector
VGJ	V	1.1	Band-gap voltage recombination emitter- base junction
VI	V	0.040	Ionization voltage base dope
NA	cm^- 3	3.0E17	Maximum base dope concentration
ER	-	2.E-3	Temperature coefficient of VLF and VLR
AB	-	1.35	Temperature coefficient resistivity of the base
AEPI	-	2.15	Temperature coefficient resistivity of the epilayer
AEX	-	1.	Temperature coefficient resistivity of the extrinsic base
AC	-	0.4	Temperature coefficient resistivity of the buried layer
KF	-	2.E-16	Flicker noise coefficient ideal base current
KFN	-	2.E-16	Flicker noise coefficient non-ideal base current
AF	-	1.0	Flicker noise exponent
ISS	Α	6.E-16	Base-substrate saturation current
IKS	Α	5.E-6	Knee current of the substrate
CJS	F	1.e-12	Zero bias collector-substrate depletion capacitance
VDS	V	0.5	Collector-substrate diffusion voltage

Table 55 BJT Level 6 MEXTRAM 503 Basic Parameters (Continued)

Name (Alias)	Unit	Default	Description
PS	-	0.33	Collector-substrate grading coefficient
VGS	V	1.15	Band-gap voltage of the substrate
AS	-	2.15	For a closed buried layer: AS=AC For an open buried layer: AS=AEPI

Example

This example is located in the following directory:

\$installdir/demo/hspice/bjt/mextram.sp

Level 6 Philips Bipolar Model (MEXTRAM Level 504)

Level 504 of the MEXTRAM model is also available as BJT Level 6 as is Level 503 of MEXTRAM. Use the VERS parameter to choose MEXTRAM level 503 or 504. The default value of the VERS parameter is 504.

For first-order and higher-order characteristic derivatives, MEXTRAM 504 returns better results than MEXTRAM 503. This effect is noticeable in output-conductance, cut-off frequency, and low-frequency third-order distortion.

MEXTRAM Level 504 models several effects that are not included in the original Gummel-Poon model.

These effects include:

- Temperature
- Charge storage
- Substrate
- Parasitic PNP
- High-injection
- Bias-dependent early effect
- Low-level, non-ideal base currents
- Hard- and quasi-saturation (including Kirk Effect)

5: BJT Models

Level 6 Philips Bipolar Model (MEXTRAM Level 504)

- Weak avalanche (optionally including snap-back behavior)
- Explicit modeling of inactive regions
- Split base-collector and base-emitter depletion capacitance
- Current crowding and conductivity modulation of the base resistance
- First order approximation of distributed high frequency effects in the intrinsic base (high frequency current crowding and excess phase shift)
- Ohmic resistance of epilayer
- Velocity saturation effects on the resistance of the epilayer
- Recombination in the base (meant for SiGe transistors)
- Early effects in the case of a graded bandgap (SiGe)
- Thermal noise, shot noise, and 1/f-noise
- Self-heating

You can use either of two parameters to specify the difference between the circuit temperature and the ambient temperatures in the MEXTRAM model:

- DTEMP instance parameter as specified in the element statement
- DTA (difference between the device temperature and the ambient analysis temperature) global model parameter.

DTA and DTEMP both default to zero. DTEMP overrides DTA locally, if you specify both. Simulation uses the value of DTEMP to derate the temperature in model equations and other parameters.

- If you do not specify either the DTEMP or the DTA parameter, then DTEMP=0.0.
- If you specify DTA but not DTEMP, then DTEMP uses the DTA value.
- If you specify DTEMP, then simulation uses the DTEMP value, and ignores the DTA value.

This model is described at:

http://www.semiconductors.philips.com/Philips_Models/newsflashmextram504

Notes on Using MEXTRAM 503 or 504 Devices

The following information applies to the HSPICE device model for the MEXTRAM 503 or 504 device:

- Set Level 6 to identify the model as a MEXTRAM bipolar junction transistor model.
- Set VERS parameter to 503 to use MEXTRAM 503 and to 504 to use MEXTRAM 504.
- All internal resistors are limited to greater than or equal to 1.0e-6.
- Reference temperature, TREF, is equal to 25 degrees.
- MEXTRAM does not contain extensive geometrical or process scaling rules (it has a multiplication factor to put transistors in parallel).
- MEXTRAM does not contain a substrate resistance.
- Constant overlap capacitances are not modelled within MEXTRAM.
- MEXTRAM 504 has better convergence than 503.
- MEXTRAM is more complex than Gummel-Poon (the computation time is longer and the convergence is less).
- No reverse emitter-base breakdown mechanism.
- Models the forward current of the parasitic PNP transistor.
- Output conductance dlc/dVce at the point where hard saturation starts seems to be too abrupt for high current levels, compared to measurements.
- Clarity of extrinsic current model describing Xiex and Xisub is improved by adding an extra node and an extra contact base resistance. In this case, parameter extraction would be more difficult.
- Starting in Release 2002.2:
 - self-heating is now enabled for the MEXTRAM 504 model. You can use the RTH (thermal resistance) and CTH (thermal capacitance) model parameters, which had no effect in previous releases.
 - the CBEO capacitance parameter in MEXTRAM 504 models extrinsic B-E charge and capacitance effects. Also, the CBCO capacitance parameter models extrinsic B-C charge and capacitance effects.
 - the SUBS flag models the parasitic substrate effect when set to 1 (the default); SUBS=0 does not model this effect. Both the MEXTRAM 503 and 504 models support the SUBS flag.

Level 6 Philips Bipolar Model (MEXTRAM Level 504)

- the MEXTRAM 504 model supports HSPICE-specific area-scaling and multiplicity (M factor) features.
- the MEXTRAM 503 model includes KN and KFN noise parameters.
- Starting in Release 2003.03, the Mextram BJT (level 6) model supports Philips modelkit 4.3.
- Starting in Release X-2005.09, support for avalanche current shot noise source parameters lavl_cc, lavl_bb, and lavl_bc was added.

Level 6 Model Parameters (504)

The following tables describe MEXTRAM 504 as Level 6 model parameters, including parameter names, units, default values, descriptions, and notes.

- TAUNE in MEXTRAM 503 acts as TAUE in the 504 model.
- Parameters noted with an asterisk (*) are not used in the DC model.

The following parameters used in MEXTRAM 503 are deleted in MEXTRAM 504:

QBO
 VGE
 VLF
 VI
 AVL

• NA

 ETA
 ER
 EFI

The following parameters have been added to MEXTRAM 504:

- VEF TAUE AE VER
- TAUB
 DVGBF
 MLF
 TEPI
- DVGBR WAVL TAUR DVGTE
- VAVL
 DEG
 RTH
 AXI
- XREC CTH

Table 56 BJT Level 6 MEXTRAM 504 Flags

Name			
(Alias)	Unit	Default	Description
Level	-	6	Model level
VERS	-	504	Flag for MEXTRAM model level (503 or 504)
INTVERS	-	4.5	Flag for choosing 504.4 or 504.5
EXMOD	-	1	Flag for extended modeling, reverse current gain
EXPHI	-	1	*Flag for distributed high frequency effects in transient
EXAVL	-	0	Flag for extended modeling of avalanche currents
TREF	°C	25.0	Reference temperature
SUBS	-	-	Flag for switching substrate effect

Table 57 BJT Level 6 MEXTRAM 504 Basic Parameters

Name (Alias)	Unit	Default	Description
IS	Α	2.2e-17	Collector-emitter saturation current
VER		2.5	Reverse early voltage
VEF		44.0	Forward early voltage
BF	-	215.0	Ideal forward current gain
XIBI	-	0.0	Fraction of ideal base current for the sidewall
IBF	Α	2.7e-15	Saturation current, non-ideal forward base current

5: BJT Models

Level 6 Philips Bipolar Model (MEXTRAM Level 504)

Table 57 BJT Level 6 MEXTRAM 504 Basic Parameters (Continued)

Name (Alias)	Unit	Default	Description
MLF	V	2.0	Non-ideal factor of non-ideal forward base current
IK	Α	0.1	Collector-emitter high injection knee current
BRI	-	7.0	Ideal reverse current gain
IBR	Α	1.0e-15	Saturation current, non-ideal reverse base current
VLR	V	0.2	Cross-over voltage, non-ideal reverse base current
XEXT	-	0.63	Part of lex, Qex, Qtex, and Isub that depends on the base-collector voltage Vbc1

Table 58 BJT Level 6 MEXTRAM 504 Avalanche Model Parameters

Name (Alias)	Unit	Default	Description
WAVL	m	1.1e-6	Epilayer thickness in weak-avalanche model
VAVL	V	3.0	Voltage, determines avalanche-current curvature
SFH	-	0.3	Current spreading factor of avalanche model (if EXAVL=1)

Table 59 BJT Level 6 MEXTRAM 504 Base-Emitter Capacitances

Name (Alias)	Unit	Default	Description
CJE	F	7.3e-14	*Zero bias emitter-base depletion capacitance
VDE	V	0.95	Emitter-base diffusion voltage
PE	-	0.4	Emitter-base grading coefficient
XCJE	-	0.4	*Sidewall portion of emitter-base depletion capacitance

Table 60 BJT Level 6 MEXTRAM 504 Base-Collector Capacitances

Name (Alias)	Unit	Default	Description
CJC	F	7.8e-14	*Zero bias collector-base depletion capacitance
VDC	V	0.68	Collector-base diffusion voltage
PC	-	0.5	Collector-base grading coefficient
XP	-	0.35	Constant part of CJC
MC	-	0.5	Coefficient for the current modulation of the collector-base depletion capacitance
XCJC	-	3.2e-2	*Fraction of the collector-base depletion capacitance under the emitter

Table 61 BJT Level 6 MEXTRAM 504 Transit Time Parameters

Name (Alias)	Unit	Default	Description
MTAU	-	1.0	*Non-ideality of the emitter stored charge
TAUE	S	2.0e-12	*Minimum transit time of stored emitter charge
TAUB	S	4.2e-12	*Transit time of stored base charge
TEPI	S	4.1e-11	*Transit time of stored epilayer charge
TAUR	S	5.2e-10	*Transit time, reverse extrinsic stored base charge
DEG	EV	0.0	Bandgap difference over the base
XREC	-	0.0	Pre-factor of the recombination part of lb1

Table 62 BJT Level 6 MEXTRAM 504 Temperature Parameters

Name (Alias)	Unit	Default	Description
AQBO	-	0.3	Temperature coefficient, zero-bias base charge
AE	-	0.0	Temperature coefficient of emitter resistivity
AB	-	1.0	Temperature coefficient of resistivity of base
AEPI	-	2.5	Temperature coefficient of resistivity of epilayer
AEX	-	0.62	Temperature coefficient of resistivity, extrinsic base
AC	-	2.0	Temperature coefficient of resistivity, buried layer
ATH	-	0	Temperature coefficient of the thermal resistance

Table 62 BJT Level 6 MEXTRAM 504 Temperature Parameters (Continued)

Name			
(Alias)	Unit	Default	Description
DVGBF	V	5.0e-2	Bandgap voltage difference, forward current gain
CVGBR	V	4.5e-2	Bandgap voltage difference, reverse current gain
VGB	V	1.17	Bandgap voltage of the base
VGC	V	1.18	Bandgap voltage of the collector
VGJ	V	1.15	Recombined bandgap voltage, emitter-base junction
DVGTE	V	0.05	*Bandgap voltage difference, emitter stored charge

Table 63 BJT Level 6 MEXTRAM 504 Noise Parameters

Name (Alias)	Unit	Default	Description
AF	-	2.0	Exponent of the flicker-noise
KAVL	-	0	Switch for white noise contribution due to avalanche
KF	-	2.0e-11	Flicker-noise coefficient for ideal base current
KFN	-	2.0e-11	Flicker-noise coefficient, non-ideal base current

Table 64 BJT Level 6 MEXTRAM 504 Substrate Parameters

Name (Alias)	Unit	Default	Description
ISS	А	4.8e-17	Base-substrate saturation current
IKS	Α	2.5e-4	Base-substrate high injection knee current
CJS	F	3.15e- 13	*Zero bias collector-substrate depletion capacitance
VDS	V	0.62	*Collector-substrate diffusion voltage
PS	-	0.34	*Collector-substrate grading coefficient
VGS	V	1.2	Bandgap voltage of the substrate
AS	-	1.58	For a closed buried layer: AS=AC For an open buried layer: AS=AEPI

Table 65 BJT Level 6 MEXTRAM 504 Self-Heating Parameters

Name (Alias)	Unit	Default	Description
RTH	°C/ W	0	Thermal (self-heating) resistance
СТН	J/ºC	0	Thermal (self-heating) capacitance

Table 66 BJT Level 6 MEXTRAM 504 Extrinsic Capacitance Parameters

Name (Alias)	Unit	Default	Description
CBEO	F	0	extrinsic Base-Emitter capacitance
СВСО	F	0	extrinsic Base-Collector capacitance

BJT Level 6 MEXTRAM 504 DC OP Analysis Example

This example is located in the following directory:

\$installdir/demo/hspice/bjt/mextram_dc.sp

BJT Level 6 MEXTRAM 504 Transient Analysis Example

This example is located in the following directory:

\$installdir/demo/hspice/bjt/mextram_tran.sp

BJT Level 6 MEXTRAM 504 AC Analysis Example

This example is located in the following directory:

\$installdir/demo/hspice/bjt/mextram_ac.sp

Level 8 HiCUM Model

HiCUM is an advanced transistor model for bipolar transistors with a primary emphasis on circuit design for high-speed/high-frequency applications. HiCUM development was spurred by the SPICE Gummel-Poon model's (SGPM) inadequate level of accuracy for high-speed, large-signal transient applications and the required high-collector current densities. Other major disadvantages of the SGPM are:

- A lack of sufficient physical background
- Poor descriptions of base resistance and junction capacitances in the regions of interest
- Inadequate description of both Si- and III-V material-based HBTs.

The HiCUM model is implemented as Level 8 in the BJT models.

HiCUM Model Advantages

Major features of HiCUM are:

- Accurate description of the high-current operating region (including quasisaturation and saturation).
- Distributed modelling of external base-collector region.
- Proper handling of emitter periphery injection and charge storage.

- Internal base resistance as a function of operating point (conductivity modulation and emitter current crowding), and emitter geometry.
- Sufficiently physical model equations allowing predictions of temperature and process variations, as well as scalability, even at high current densities.
- Parasitic capacitances, independent on operating point, are available in the equivalent circuit, representing base-emitter and base-collector oxide overlaps, that become significant for small-size transistors.
- Weak avalanche breakdown is available.
- Self-heating effects are included. Non-quasi-static effects, resulting in a delay of collector current AND stored minority charge, are modelled as function of bias.
- Collector current spreading is included in minority charge and collector current formulation.
- Extensions for graded-base SiGe HBTs have been derived using the Generalized Integral Charge-Control Relation (GICCR); the GICCR also permits modelling of HBTs with (graded) bandgap differences within the junctions.
- Base-emitter tunneling model is available (for example, for simulation of varactor leakage).
- Simple parasitic substrate transistor is included in the equivalent circuit.
- Simple parallel RC network taking into account the frequency dependent coupling between buried layer and substrate terminal.
- Parameter extraction is closely related to the process enabling parametric yield simulation; parameter extraction procedure and list of test structures are available; HiCUM parameters can be determined using standard measurement equipment and mostly simple, decoupled extraction procedures.
- Simple equivalent circuit and numerical formulation of model equations result in easy implementation and relatively fast execution time.

If you use these features with easily-measurable basic variables (such as junction capacitances and transit time), the results are more accurate than if you use SGPM. This improved accuracy applies to digital circuit, small-signal high-frequency, and especially high-speed large-signal transient simulation. Also, you can laterally scale HiCUM over a wide range of emitter widths and lengths, up to high collector current densities. The scaling algorithm is generic, and has been applied to the SGPM (within its validity limits).

In summary, HiCUM's major advantages over other bipolar compact models are:

- Scalability
- Process-based and relatively simple parameter extraction
- Predictive capability in terms of process and layout variations
- Fairly simple numerical formulation facilitating easy implementation and resulting in still reasonable simulation time compared to the (too) simple SGPM at high current densities

HSPICE HiCUM Model vs. Public HiCUM Model

The HSPICE Level 8 model is based on version 2.1 of the public HiCUM model. To maintain flexibility, the Level 8 HiCUM model uses FBCS, IS, KRBI, MCF, MSR, and ZETACX as additional model parameters. See BJT Level 8 Other Parameters on page 219.

Level 8 Element Syntax

This section provides the syntax for BJT Level 8, and an example of an input netlist and output format.

Syntax

Qxxx nc nb ne <ns> <nt> mname <area> <M=val> <DTEMP=val>
+ <tnodeout>

Parameter	Description
Qxxx	BJT element name
nc	Collector terminal node
nb	Base terminal node, connected to 1 => 2
ne	Emitter terminal node, connected to 1 => 0
ns	Substrate terminal node

5: BJT Models Level 8 HiCUM Model

Parameter	Description
nt	Temperature node
mname	BJT model name reference
area	Emitter area multiplying factor. Affects current, resistance, capacitance. The default is 1.
M	Multiplier to simulate multiple BJTs in parallel. The default is 1.
DTEMP	Difference between the element temperature and the circuit temperature in degrees Celsius. The default is 0.0.
tnodeout	Identify self heating node from substrate node.

Example

The following is an example of a BJT Q1 model:

The preceding example includes the following connections:

- Collector is connected to node 1.
- Base is connected to node 2.
- Emitter is connected to node 0.
- Substrate is connected to node 4.
- QM references the name of the BJT model.

HiCUM Level 2 Circuit Diagram

Large-signal HiCUM Level 2 equivalent circuit Figure 32

- (a) The external BC capacitance consists of a depletion and a bias-independent capacitance (for example, oxide) capacitance with the ratio C'BCx / C"BCx being adjusted with respect to proper modeling of the HF behavior.
- (b) Thermal network used for self-heating calculation.

Input Netlist

.DATA test data vbe vce vsub

0.0 0.0 0.0

0.1 0.0 0.0

0.2 0.0 0.0

0.3 0.0 0.0

0.4 0.0 0.0 0.5 0.0 0.0

0.6 0.0 0.0

0.7 0.0 0.0

0.8 0.0 0.0 0.9 0.0 0.0

5: BJT Models

Level 8 HiCUM Model

```
.ENDDATA
.OPTION
.TEMP 26.85
VIN 2 0 vbe
VC 1 0 vce
VS 4 0 vsub
VE 3 0 0
Q1 1 2 3 4 hicum
.DC data= test data
.PRINT DC I(VIN) i2(q1) I(VC) i1(q1) I(VCS) i4(q1)
.MODEL hicum NPN Level=8
+ tref = 26.85
+ c10=.3760000E-31 qp0=.2780000E-13 ich=.2090000E-01
+ hfc=.1000000E+01
+ hfe=1.0000000E+00 hjei=.000000E+00
+ hjci=.100000E+01 tr=1.0000000E-9
+ cjei0=.81100E-14 vdei=.950000E+00 zei=.5000000E+00
+ aljei=.18000E+01
+ cjci0=.11600E-14 vdci=.800000E+00 zci=.3330000E+00
+ vptci=.41600E+03
+ rci0=.127800E+03 vlim=.700000E+00 vpt=.5000000E+01
+ vces=.100000E+00
+ t0=.47500000E-11 dt0h=.210000E-11 tbvl=.400000E-11
+ tef0=.180000E-11 gtfe=.140000E+01 thcs=.300000E-10
+ alhc=.750000E+00
+ fthc=.600000E+00
+ latb=.376500E+01 latl=.342000E+00 fqi=.9055000E+00
+ alit=.450000E+00 alqf=.225000E+00
+ favl=.118600E+01 qavl=.111000E-13 alfav=.82500E-04
+ algav=.19600E-03
+ ibeis=.11600E-19 mbei=.101500E+01 ibeps=.10000E-29
+ mbep=.200000E+01
+ ireis=.11600E-15 mrei=.200000E+01 ireps=.10000E-29
+ mrep=.200000E+01
+ rbi0=.000000E+00 fdqr0=.00000E+00 fgeo=.730000E+00
+ fcrbi=.00000E+00
+ cjep0=.00000E+00 vdep=.105000E+01 zep=.4000000E+00
+ aljep=.24000E+01
+ ceox=.000000E+00
+ cjcx0=.00000E+00 vdcx=.700000E+00 zcx=.3330000E+00
+ vptcx=.10000E+03
+ ccox=.000000E+00 fbc=.1526000E+00
+ ibcxs=.10000E-29 mbcx=.200000E+01 ibcis=.11600E-19
+ mbci=.101500E+01
+ cjs0=.000000E+00 vds=.6000000E+00 zs=.44700000E+00
+ vpts=.100000E+04
+ rcx=.0000000E+00 rbx=.0000000E+00 re=.00000000E+00
```

```
+ kf=.00000000E+00 af=.00000000E+00
+ vgb=.1170000E+01 alb=.6300000E-02 alt0=.000000E+00
+ kt0=.0000000E+00
+ zetaci=.1600E+01 alvs=.100000E-02 alces=.40000E-03
+ zetarbi=0.5880E+00 zetarcx=0.2230E+00
+ zetarbx=0.2060E+00 zetare=0.0000E+00
+ rth=0.0 cth=0.0
+ ibets=.00000E+00 abet=.000000E+00
+ itss=.000000E+00 msf=.0000000E+00 tsf=0.000000E+00
+ msc=.0000000E+00
+ rsu=.0000000E+00 csu=.0000000E+00
```

Level 8 Model Parameters

This section lists the HiCUM Level 8 model parameters, internal transistor parameters, peripheral element parameters, and external element parameters. This includes parameter names, descriptions, units, default values, factors, and notes.

Table 67 BJT Level 8 Model Parameters

Name (Alias)	Unit	Default	Description
Level		8	HiCUM BJT level
TREF	С	26.85	Temperature in simulation

Internal Transistors

This section lists the HiCUM Level 8 internal transistor parameters. This includes parameter names, descriptions, units, default values, factors, and notes.

Table 68 BJT Level 8 Transfer Current Parameters

Parameter	Unit	Default	Factor	Description
C10	A^2s	2e-30	M^2	Constant. The IS setting determines the C10 parameter value. If IS > 0, then C10 = IS * QP0; otherwise, C10 = C10.
QP0	As	2e-14		Zero-bias hole charge
ICH	Α	1e+20		High-current correction for 2D/3D
HFC	-	1		Weighting factor for Qfc (mainly for HBTs)
HFE	-	1		Weighting factor for Qef in HBTs
HJCI	-	1		Weighting factor for Qjci in HBTs
HJEI	-	1		Weighting factor for Qjei in HBTs
ALIT	-	0		Factor for additional delay time of iT

Table 69 BJT Level 8 BE Depletion Capacitance Parameters

Parameter	Unit	Default	Factor	Description
VDEI	V	0.9		Built-in voltage
CJEI0	F	0		Zero-bias value
ZEI	-	0.5		Exponent coefficient
ALJEI	-	2.5		Ratio of max. to zero-bias value

Table 70 BJT Level 8 BC Depletion Capacitance Parameters

Parameter	Unit	Default	Factor	Description
CJCI0	F	0	М	Zero-bias value
VDCI	V	0.7		Built-in voltage
ZCI	-	0.4		Exponent coefficient
VPTCI	V	1e+20		Punch-through voltage (=q Nci w^2ci / (2epsilion))

Table 71 BJT Level 8 Forward Transit Time Parameters

Parameter	Unit	Default	Factor	Description
ТО	S	0		Low current transit time at V _{B'C'} =0
DT0H	s	0		Time constant for base and BC SCR width modulation
TBVL	S	0		Voltage for modeling carrier jam at low $V_{C'E'}$
TEF0	S	0		Storage time in neutral emitter
GTFE	-	1		Exponent factor for current dep. emitter transit time
THCS	S	0		Saturation time constant at high current densities
ALHC	-	0.1		Smoothing factor for current dep. C and B transit time
FTHC	-	0		Partitioning factor for base and collection portion
ALQF	-	0		Factor for additional delay time of Q_f

5: BJT Models Level 8 HiCUM Model

Table 72 BJT Level 8 Critical Current Parameters

Parameter	Unit	Default	Factor	Description
RCI0	Ohm	150	1/M	Low-field resistance of internal collector region
VLIM	V	0.5		Voltage separating ohmic and SCR regime
VPT	V	1e+20		Epi punch-through vtg. of BC SCR
VCES	V	0.1		Internal CE sat. vtg.

Table 73 BJT Level 8 Inverse Transit Time Parameter

Parameter	Unit	Default	Factor	Description
TR	S	0		Time constant for inverse operation

Table 74 BJT Level 8 Base Current Component Parameters

Parameter	Unit	Default	Factor	Description
IBEIS	Α	1e-18	М	BE saturation current
MBEI	-	1		BE saturation current
IREIS	Α	0	М	BE recombination saturation current
MREI	-	2		BE recombination non-ideality factor
IBCIS	Α	1e-16	М	BC saturation current
MBCI	-	1		BC non-ideality factor

Table 75 BJT Level 8 Weak BC Avalanche Breakdown Parameters

Parameter	Unit	Default	Factor	Description
FAVL	1/V	0		Prefactor for CB avalanche effect
QAVL	С	0	M	Exponent factor for CB avalanche effect

Table 76 BJT Level 8 Internal Base Resistance Parameters

Parameter	Unit	Default	Factor	Description
RBI0	Ohm	0	1/M	Value at zero-bias
FDQR0	-	0		Correction factor for BE and BC SCR modulation
FGEO	-	0.6557		Geometry factor (corresponds to long emitter stripe)
FQI	-	1.0		Ratio of internal to total minority charge
FCRBI	-	0		Ratio of h.f. shunt to total internal capacitance.

Table 77 BJT Level 8 Lateral Scaling

Parameter	Unit	Default	Factor	Description
LATB	-	0		Scaling factor for Qfc in I_E ("I" is the letter L—not the number 1)
LATL	-	0		Scaling factor for Qfc in I_E direction ("I" is the letter L—not the number 1)

Peripheral Elements

This section lists the HiCUM Level 8 model peripheral element parameters. This includes parameter names, descriptions, units, default values, factors, and notes.

Table 78 BJT Level 8 BE Depletion Capacitance

Parameter	Unit	Default	Factor	Description
CJEP0	F	0	М	Zero-bias value
VDEP	V	0.9		Built-in voltage
ZEP	-	0.5		Depletion coeff
ALJEP	-	2.5		Ratio of max. to zero-bias value

Table 79 BJT Level 8 Base Current

Parameter	Unit	Default	Factor	Description
IBEPS	А	0	М	Saturation current
MBEP	-	1		Non-ideality factor
IREPS	Α	0	М	Recombination saturation factor
MREP	-	2		Recombination non-ideality factor

Table 80 BJT Level 8 BE Tunneling

Parameter	Unit	Default	Factor	Description
IBETS	Α	0	М	Saturation current
ABET	-	40		Exponent coefficient

External Elements

This section lists the HiCUM Level 8 model external element parameters. This includes parameter names, descriptions, units, default values, factors, and notes.

Table 81 BJT Level 8 BC Capacitance

Parameter	Unit	Default	Factor	Description
CJCX0	F	0	М	Zero-bias depletion value
VDCX	٧	0.7		Built-in voltage
ZCX	-	0.4		Exponent coefficient
VPTCX	V	1e+20		Punch-through voltage
CCOX	F	0	M	Collector oxide capacitance
FBC	-	0		Partitioning factor for C_BCX =C'_BCx+C"_BCx

Table 82 BJT Level 8 BC Base Current Component

Parameter	Unit	Default	Factor	Description
IBCXS	А	0	М	Saturation current
MBCX	-	1		Non-ideality factor

Table 83 BJT Level 8 Other External Elements

Parameter	Unit	Default	Factor	Description
CEOX	F	0	M	Emitter-base isolation overlap cap
RBX	Ohm	0	1/M	External base series resistance

5: BJT Models Level 8 HiCUM Model

Table 83 BJT Level 8 Other External Elements (Continued)

Parameter	Unit	Default	Factor	Description
RE	Ohm	0	1/M	Emitter series resistance
RCX	Ohm	0	1/M	External collector series resistance

Table 84 BJT Level 8 Substrate Transistor Parameters

Parameter	Unit	Default	Factor	Description
ITSS	Α	0	М	Transfer saturation current
MSF	-	1		Non-ideality factor (forward transfer current)
TSF	S	0		Minority charge storage transit time
ISCS	Α	0	M	Saturation current of CS diode
MSC	-	1		Non-ideality factor of CS diode

Table 85 BJT Level 8 Collector-Substrate Depletion Capacitance

Parameter	Unit	Default	Factor	Description
CJS0	F	0	М	Zero-bias value of CS depletion cap
VDS	V	0.6		Built-in voltage
ZS	-	0.5		Exponent coefficient
VPTS	V	1e+20		Punch-through voltage

Table 86 BJT Level 8 Substrate Coupling Network

Parameter	Unit	Default	Factor	Description
RSU	Ohm	0	1/M	Substrate series resistance
CSU	F	0		Substrate capacitance from permittivity of bulk material

Table 87 BJT Level 8 Noise Parameters

Parameter	Unit	Default	Factor	Description
KF	-	0	M ^{1-AF}	Flicker noise factor (no unit only for AF=2!)
AF	-	2		Flicker noise exponent factor
KRBI	-	1		Factor for internal base resistance

Table 88 BJT Level 8 Temperature Dependence Parameters

Parameter	Unit	Default	Factor	Description
VGB	V	1.17		Bandgap-voltage
ALB	1/K	5e-3		Relative temperature coefficient of forward current gain
ALT0	1/K	0		First-order relative temperature coefficient, TEF0
KT0	1/K ²	0		Second-order relative temperature coefficient, TEF0
ZETACI	-	0		Temperature exponent factor RCI0
ALVS	1/K	0		Relative temperature coefficient of saturation drift velocity
ALCES	1/K	0		Relative temperature coefficient of VCES
ZETARBI	-	0		Temperature exponent factor of RBI0

Table 88 BJT Level 8 Temperature Dependence Parameters (Continued)

Parameter	Unit	Default	Factor	Description
ZETARBX	-	0		Temperature exponent factor of RBX
ZETARCX	-	0		Temperature exponent factor of RCX
ZETARE	-	0		Temperature exponent factor of RE
ALFAV	1/K	0		Relative temperature coefficient for avalanche breakdown
ALQAV	1/K	0		Relative temperature coefficient for avalanche breakdown

To use the self-heating HiCUM feature (in BJT Level 8), set VERS=2.1 and set an RTH parameter value other than 0. If you use vers=2.0 or RTH=0, then self-heating is OFF.

The self-heating effect also applies to the circuit temperature as an increased self-heating temperature. T = Tckt(circuit temperature) + Tsh(self heating temperature) + dtemp (difference between circuit temperature and ambient temperature).

Table 89 BJT Level 8 Self-Heating Parameters

Parameter	Unit	Default	Factor	Description
RTH	K/W	0	1/M	Thermal resistance (not supported in v2000.4)
СТН	Ws/ K	0	М	Thermal resistance (not supported in v2000.4)

Table 90 BJT Level 8 Other Parameters

Parameter	Unit	Default	Factor	Description
FBCS	-	-1.0		Determine external BC capacitance partitioning
IS	Α	-1.0		Ideal saturation current
KRBI	-	1.0		Noise analysis of internal resistance
MCF	-	1.0		Non-ideal factor of reverse current between base and collector. VT=VT*MCF
MSR	-	1		Non-ideal factor of reverse current in substrate transistor. VT=VT*MSR
ZETACX	-	1.0		Temperature exponent factor (epi-layer)

The default parameter values for HiCUM version 2.1 are located in the following directory:

\$installdir/demo/hspice/bjt/hicum.sp

Level 9 VBIC99 Model

The VBIC 95 (Vertical Bipolar Inter-Company Model) for Motorola bipolar transistor device is installed in the device models as BJT level 4. VBIC99 is a newer version of the VBIC model, and is implemented in the device models as BJT level 9.

To use the VBIC99 model, set the LEVEL parameter to 9 for the bipolar transistor model.

The VBIC99 model includes several effects that are improved compared to the VBIC95 model.

- In VBIC99, the temperature coefficients of the base and collector resistances are split.
- The temperature dependence of the built-in potential is also improved.

Usage Notes

The following information applies to the HSPICE device model for the VBIC99 device:

- Set Level to 9 to identify the model as a VBIC99 bipolar junction transistor model.
- The reference temperature, TREF, equals 27 degrees.
- The VBIC99 model supports Area and M factor scaling.
- This model supports self-heating. Model parameters are RTH and CTH.

Level 9 Element Syntax

SYNTAX:

Qxxx nc nb ne <ns> mname

- + <AREA=val><OFF><VBE=val><VCE=val>
- + <M=val><DTEMP=val>

-	
Parameter	Description
Qxxx	BJT element name. Must begin with Q, followed by up to 1023 alphanumeric characters.
Nc	Collector terminal node name or number.
Nb	Base terminal node name and number.
Ne	Emitter terminal node name or number.
Ns	Substrate node name or number.
t	Self heating node name or number.
Mname	BJT model name reference.
AREA	The normalized emitter area. VBIC99 level 9 model has no area effect. Default value=1. Area is used only as an alias of the multiplication factor (M).

Parameter	Description
OFF	Sets the initial condition to OFF for this element in DC analysis. You cannot use OFF with VBE or VCE.
VBE	Initial internal base-emitter voltage.
VCE	Initial internal collector-emitter voltage.
M	Multiplier to simulate multiple BJTs in parallel.
DTEMP	The temperature difference between the element and circuit.

Effects of VBIC99

The VBIC99 model includes several effects that are improved compared to the VBIC95 model:

- Addition of temperature dependency for several parameters.
- Base-emitter breakdown model.
- Reach-through model for base-collector depletion capacitance.
- High-current beta rolloff effect.
- Fixed collector-substrate capacitance,
- Reverse transport saturation current.

Model Implementation

The following parameters were added to the VBIC99 model and are not in the VBIC95 model.

ISRR	IKF	VRT	ART	QBM
DEAR	EAP	VBBE	NBBE	IBBE
TVBBE1	TVBBE2	TNBBE	EBBE	CCSO
XRCX	XRBX	XRBP	XIXF	XISR

Level 9 Model Parameters

The tables below describe VBIC99 as HSPICE BJT level 9 model parameters, including parameter names, descriptions, units, default values, and notes. Parameters with an asterisk (*) are not used in the DC model.

Table 91 Level 9 VBIC99 Basic Parameters

Parameter	Unit	Default	Description
LEVEL	-	9	Model level
TREF	W	27.0	Nominal measurement temperature of parameters
RCX	W	0.0	Extrinsic collector Resistance
RCI	W	0.0	Intrinsic collector Resistance
RBI	W	0.0	Intrinsic collector Resistance
RBX	W	0.0	Extrinsic collector Resistance
RBP	W	0.0	Parasitic base Resistance
RE	W	0.0	Emitter Resistance
RS	W	0.0	Substrate Resistance
IS	Α	1.0e-16	Transport saturation current
IBEI	Α	1.0e-18	Ideal base-emitter saturation current
IBEN	Α	0.0	Non-Ideal base-emitter saturation current
IBCI	Α	1.0e-16	Ideal base-collector saturation current
IBCN	Α	0.0	Non-Ideal base-collector saturation current
ISP	Α	0.0	Parasitic transport saturation current
IBEIP	Α	0.0	Ideal parasitic base-emitter saturation current

Table 91 Level 9 VBIC99 Basic Parameters (Continued)

Parameter	Unit	Default	Description
IBENP	Α	0.0	Non-Ideal parasitic base-emitter saturation current
IBCIP	Α	0.0	Ideal parasitic base-collector saturation current
IBCNP	Α	0.0	Non-Ideal base-collector saturation current
ISRR	Α	1.0	*Reverse transport saturation current
NF	-	1.0	Forward emission coefficient
NR	-	1.0	Reverse emission coefficient
NEI	-	1.0	Ideal base-emitter emission coefficient
NEN	-	2.0	Non-ideal base-emitter emission coefficient
NCI	-	1.0	Ideal base-collector emission coefficient
NCN	-	2.0	Non-ideal base-collector emission coefficient
NFP	-	1.0	Parasitic forward emission coefficient
NCIP	-	1.0	Ideal parasitic base-collector emission coefficient
NCNP	-	2.0	Ideal parasitic base-collector emission coefficient
NKF	-	0.5	*High current beta roll off parameter
ME	-	0.33	Base-emitter Grading coefficient
MC	-	0.33	Base-collector Grading coefficient
MS	-	0.33	Substrate-collector Grading coefficient
PE	V	0.75	Base-emitter built-in potential
PC	V	0.75	Base-collector built-in potential

Table 91 Level 9 VBIC99 Basic Parameters (Continued)

Parameter	Unit	Default	Description
PS	V	0.75	Substrate-collector built-in potential
WBE	-	1.0	Portion of IBEI from Vbei, 1-WBE from Vbex
WSP	-	1.0	Portion of ICCP from Vbep, 1-WBE from Vbci
AVC1	1/V	0.0	Base-collector avalanche parameter 1
AVC2	1/V	0.0	Base-collector avalanche parameter 2
VEF	V	0.0	Forward early voltage, zero means infinity
VER	V	0.0	Reverse early voltage, zero means infinity
IKF	Α	0.0	Forward knee current, zero means infinity
IKR	Α	0.0	Reverse knee current, zero means infinity
IKP	Α	0.0	Parasitic knee current, zero means infinity
TF	S	0.0	Forward transit time
QTF	-	0.0	Variation of TF with base-width modulation
XTF	-	0.0	Coefficient of TF bias dependence
VTF	V	0.0	Coefficient of TF dependence on Vbc
ITF	Α	0.0	Coefficient of TF dependence on Ic
TR	S	0.0	Reverse transit time
EA	EV	1.12	Activation energy for IS
EAIE	EV	1.12	Activation energy for IBEI
EAIC	EV	1.12	Activation energy for IBCI/IBEIP
EAIS	EV	1.12	Activation energy for IBCIP
EANE	EV	1.12	Activation energy for IBEN

Table 91 Level 9 VBIC99 Basic Parameters (Continued)

Parameter	Unit	Default	Description
EANC	EV	1.12	Activation energy for IBCN/IBENP
EANS	EV	1.12	Activation energy for IBCNP
VO	V	0.0	Epi drift saturation voltage
GAMM	-	0.0	Epi doping parameter
HRCF	-	0.0	High current RC factor
VRT	V	0.0	*reach-through voltage for Cbc limiting
ART	-	0.1	*smoothing parameter for reach-through
QBM	-	0.0	*base charge model selection
DEAR	-	0.0	*delta activation energy for ISRR
EAP	-	1.12	*activation energy for ISP
VBBE	-	0.0	*base-emitter breakdown voltage
NBBE	-	1.0	* base-emitter breakdown emission coefficient
IBBE	-	1.0e-6	* base-emitter breakdown current
TVBBE1	-	0.0	*linear temperature coefficient of VBBE
TVBBE2	-	0.0	*quadratic temperature coefficient of VBBE
TNBBE	-	0.0	*temperature coefficient of NBBE
EBBE	-	0.0	exp(-VBBE/(NBBE*Vtv))

Table 92 Level 9 VBIC99 Capacitance/Charge Parameters

Parameter	Unit	Default	Description
FC	-	0.9	Forward bias depletion cap limit
CBEO	F	0.0	Extrinsic base-emitter overlap cap
CJE	F	0.0	Base-emitter zero bias cap
AJE	-	-0.5	Base-emitter cap. Smoothing factor
CBCO	F	0.0	Extrinsic base-collector overlap cap
CJC	F	0.0	Base-collector zero bias cap
QCO	Coul	0.0	Epi charge parameter
CJEP	F	0.0	Base-collector extrinsic zero bias cap
AJC	-	-0.5	Base-collector cap smoothing factor
CJCP	F	0.0	Substrate-collector zero bias cap
AJS	-	-0.5	Substrate-collector cap. Smoothing factor
ccso	F	0.0	*Fixed collector-substrate capacitance

Table 93 Level 9 VBIC99 Temperature Coefficients

Parameter	Unit	Default	Description
XRE	-	0.0	Temperature exponent of emitter resistance
XRBI	-	0.0	Temperature exponent of intrinsic base resistance
XRCI	-	0.0	Temperature exponent, intrinsic collector resistance
XRS	-	0.0	Temperature exponent of substrate resistance

Table 93 Level 9 VBIC99 Temperature Coefficients (Continued)

Parameter	Unit	Default	Description
XRCX	-	0.0	*Temperature exponent of extrinsic base resistance
XRBX	-	0.0	*Temperature exponent, extrinsic collector resistance
XRBP	-	0.0	*Temperature exponent of parasitic base resistance
XIKF	-	0.0	*Temperature exponent of IKF
XISR	-	0.0	*Temperature exponent of ISRR
XVO	-	0.0	Temperature exponent of VO
XIS	-	3.0	Temperature exponent of IS
XII	-	3.0	Temperature exponent of IBEI/IBCI/IBEIP/IBCIP
XIN	-	3.0	Temperature exponent, IBEN/IBCN/IBENP/IBCNP
TNF	1/K	0.0	Temperature exponent of NF
TAVC	1/K	0.0	Temperature coefficient of AVC2

Table 94 Level 9 VBIC99 Noise Parameters

Parameter	Unit	Default	Description
AFN	-	1.0	Base-emitter Flicker noise exponent
KFN	-	0.0	Base-emitter Flicker noise constant
BFN	-	1.0	Base-emitter Flicker noise 1/f dependence

Table 95 Level 9 VBIC99 Self-heating Parameters

Parameter	Unit	Default	Description
RTH	K/W	0.0	Thermal resistance
СТН	J/K	0.0	Thermal capacitance

Table 96 Level 9 VBIC99 Excess Phase Parameter

Parameter	Unit	Default	Description
TD	S	0.0	Forward excess-phase delay time

The VBIC99 level9 AC test example is located in the following directory:

\$installdir/demo/hspice/bjt/vbic99_ac.sp

The VBIC99 level9 DC test example is located in the following directory:

\$installdir/demo/hspice/bjt/vbic99_dc.sp

The VBIC99 level9 transient test example is located in the following directory:

\$installdir/demo/hspice/bjt/vbic99_tran.sp

Level 10 Phillips MODELLA Bipolar Model

The Philips MODELLA, Level 10 provides a highly-accurate compact model for lateral pnp integrated circuit transistors. This model is based directly on device physics. It uses a physical modelling approach where the main currents and charges are independently related to bias-dependent minority carrier concentrations. It also models current crowding effects, high injection effect, and a bias-dependent output impedance. Table 97 describes the transistor parameters for this model.

Table 97 BJT Level 10 Transistor Parameters

Name (Alias)	Unit	Default	Description
LEVEL		10	Model level
IS	Α	1.80e- 16	Collector-emitter saturation current
BF		131.00	Ideal forward common-emitter current gain
IBF	Α	2.60e- 14	Saturation current of non-ideal forward base current
VLF	V	0.54	V Cross-over voltage, non-ideal forward base current
IK	Α	1.10e-4	High injection knee current
XIFV		0.43	Vertical fraction of forward current
EAFL	V	20.50	Early voltage of the lateral forward current component at zero collector-base bias
EAFV	V	75.00	Early voltage of the vertical forward current component at zero collector-base bias
BR		25.00	Ideal reverse common-emitter current gain
IBR	Α	1.20e- 13	Saturation current of non-ideal reverse base current
VLR	V	0.48	Cross-over voltage of non-ideal reverse base current
XIRV		0.43	Vertical fraction of reverse current
EARL	V	13.10	Early voltage of the lateral reverse current component at zero emitter-base bias
EARV	V	104.00	Early voltage of the vertical reverse current component at zero emitter-base bias

Table 97 BJT Level 10 Transistor Parameters (Continued)

Name (Alias)	Unit	Default	Description
XES		2.70e-3	Ratio between saturation current of e-b-s transistor and e-b-c transistor
XHES		0.70	Fraction of substrate current of e-b-s transistor subject to high injection
XCS		3.00	Ratio between the saturation current of c-b-s transistor and c-b-e transistor
XHCS		1.00	Fraction of substrate current of c-b-s transistor subject to high injection
ISS	Α	4.00e- 13	Saturation current of substrate-base diode
RCEX	W	5.00	External part of the collector resistance
RCIN	W	47.00	Internal part of the collector resistance
RBCC	W	10.00	Constant part of the base resistance RBC
RBCV	W	10.00	Variable part of the base resistance RBC
RBEC	W	10.00	Constant part of the base resistance RBE
RBEV	W	50.00	Variable part of the base resistance RBE
REEX	W	27.00	External part of the emitter resistance
REIN	W	66.00	Internal part of the emitter resistance
RSB	W	1.00e1 5	Substrate-base leakage resistance
TLAT	S	2.40e-9	Low injection (forward/reverse) transit time of charge stored in epilayer between emitter and collector
TFVR	S	3.00e-8	Low injection forward transit time due to charge stored in the epilayer under the emitter

Table 97 BJT Level 10 Transistor Parameters (Continued)

Name (Alias)	Unit	Default	Description
TFN	S	2.00e- 10	Low injection forward transit time due to charge stored in emitter, and buried layer under the emitter
CJE	F	6.10e- 14	Zero-bias emitter-base depletion capacitance
VDE	V	0.52	Emitter-base diffusion voltage
PE		0.30	Emitter-base grading coefficient
TRVR	S	1.00e-9	Low injection reverse transit time due to charge stored in the epilayer under the collector
TRN	S	3.00e-9	Low injection reverse transit time due to charge stored in collector, and buried layer under collector
CJC	F	3.90e- 13	Zero-bias collector-base depletion capacitance
VDC	V	0.57	Collector-base diffusion voltage
PC		0.36	Collector-base grading coefficient
CJS	F	1.30e- 12	Zero-bias substrate-base depletion capacitance
VDS	V	0.52	Substrate-base diffusion voltage
PS		0.35	Substrate-base grading coefficient
TREF	°С	25.00	Reference temperature of the parameter set
DTA	°C	0.00	Difference between the device temperature and the ambient analysis temperature
VGEB	V	1.206	Bandgap voltage of the emitter-base depletion region

Table 97 BJT Level 10 Transistor Parameters (Continued)

Name (Alias)	Unit	Default	Description
VGCB	V	1.206	Bandgap voltage of collector-base depletion region
VGSB	V	1.206	Bandgap voltage of substrate-base depletion region
VGB	V	1.206	Bandgap voltage, base between emitter and collector
VGE	V	1.206	Bandgap voltage of the emitter
VGJE	V	1.123	Bandgap voltage recombination emitter-base junction
AE		4.48	Temperature coefficient of BF
SPB		2.853	Temperature coefficient, epitaxial base hole mobility
SNB		2.60	Temperature coefficient of epitaxial base electron mobility
SNBN		0.30	Temperature coefficient, buried layer electron mobility
SPE		0.73	Temperature coefficient of emitter hole mobility
SPC		0.73	Temperature coefficient of collector hole mobility
SX		1.00	Temperature coefficient of combined minority carrier mobilities in emitter and buried layer
KF		0.00	Flicker noise coefficient
AF		1.00	Flicker noise exponent
EXPHI		0.00	rad Excess phase shift

Equivalent Circuits

Figure 33 Large-signal Equivalent Circuit

Figure 34 Small-signal Equivalent Circuit

DC Operating Point Output

The DC operating point output facility gives information on the state of a device at its operation point. Figure 1 shows the DC large signal equivalent circuit. Figure 34 shows the small signal equivalent circuit. REEX, REIN, RCIN and RCEX are constant resistors.

 $dILAT = g fL \times dV E1B - g rL \times dV C1B$

dIFVER = g 11x dV E2B1 + g 12 xdVC1B

dIRVER = g 21 xdV E1B + g 22x dV C2B2 dI B1B = G IBE xdV E2B1 dI B2B =G IBC xdV C2B2 dI PL= jw xC IPL xdV C1B dI mL= jwxC ImL xdV E1B dISE =G ISE xdV E2B1 dISC= G ISCx dV C2B2

Table 98 BJT Level 10, DC Operating Point Parameters

Name (Alias)	Description
GFL	Forward conductance, lateral path.: ∂I FLAT /∂V E1B1
GRL	Reverse conductance, lateral path.: ∂I RLAT / ∂V C1B
G11	Forward conductance, vertical path.: $\partial I \ FVER / \partial V \ E2B1$
G12	Collector Early-effect on I FVER: ∂I FVER / ∂V C1B
G21	Emitter Early-effect on I RVER: ∂ I RVER / ∂ V E1B
G22	Reverse conductance, vertical path.: $\partial I \ RVER / \partial V \ C2B2$
GPI	Conductance e-b junction: ∂ (I RE + I LE)/ ∂ V E2B1
GMU	Conductance c-b junction: ∂ (I RC + I LC)/ ∂ V C2B2
GSB	Conductance s-b junction: ∂I SF/ ∂V SB+ 1/R SB
CPIL	Forward diffusion cap., lateral path: ∂Q FLAT / ∂V E1B
CPIV	Forward total capacitance, vertical path: ∂ (Q TE + Q FVER + Q FN) /∂ V E2B1
CMUL	Reverse diffusion capacitance, lateral path: ∂Q RLAT / ∂V C1B

Table 98 BJT Level 10, DC Operating Point Parameters (Continued)

Name (Alias)	Description	
CMUV	Reverse total capacitance, vertical path: ∂ (Q tc + Q $rver$ + Q rn)/ ∂ V C2B2	
CSB	Total capacitance s-b junction: ∂Q TS / ∂V SB + ∂Q SD /∂V SB	

Model Equations

Early Factors

The Early factors for the components of the main current I p are derived from the variation of the depletion widths in the base relative to the base width itself.

Early factor of the lateral current components

$$FLAT = hyp_1 \left\{ 1 - \left(\frac{\sqrt{\left(1 - \frac{V}{VD}\right) + \delta}}{1 + \frac{EARL}{2VD}} - \frac{\sqrt{\left(1 - \frac{V_1}{VD}\right)^2 + \delta}}{1 + \frac{EAFL}{2VD}} \right) \cdot \delta_E \right\}$$

Early factor of the forward vertical current component

$$FFVR = hyp_{1} \left\{ 1 - \left(\frac{\sqrt{\left(1 - \frac{V_{E2B1}}{VD_{T}}\right)^{2} + \delta}}{1 + \frac{EARV}{2VD_{T}}} - \frac{\sqrt{\left(1 - \frac{V_{CLB}}{VD_{T}}\right)^{2} + \delta}}{1 + \frac{EAFV}{2VD_{T}}} \right) \cdot \delta_{E} \right\}$$

Early factor of the reverse vertical current component

$$FRVER = hyp_{1} \left\{ 1 - \left(\frac{\sqrt{\left(1 - \frac{V_{E1B}}{VD_{T}}\right)^{2} + \delta}}{1 + \frac{EARV}{2VD_{T}}} - \frac{\sqrt{\left(1 - \frac{V_{C2B2}}{VD_{T}}\right)^{2} + \delta}}{1 + \frac{EAFV}{2VD_{T}}} \right) \cdot \delta_{E} \right\}$$

Model parameters:

- EAFL
- EAFV
- EARL
- EARV

Currents

The ideal diode equations are as follows.

If
$$1 = I_S(e^{\text{Ve1b/Vt}} - 1)$$

If
$$2 = I_S(e^{\text{Ve2b1/Vt}} - 1)$$

$$Ir 1 = I_S(e^{\text{Vc1b/Vt}} - 1)$$

$$Ir 2 = I_S(e^{\text{Vc2b2/Vt}} - 1)$$

model parameter: Is

The Ip main current is as follows.

$$Ip = I_{flat} + I_{fver} - I_{rlat} - I_{rver}$$

Forward currents—Iflat and Ifver

The main forward current is separated into lateral and vertical components, originating from the emitter-base junction sidewall and bottom, respectively. These formulations include Early and high injection effects. Because the two currents depend on different internal emitter-base junction voltages, emitter current crowding is also modelled.

The lateral forward current component (Iflat) is:

$$I_{flat} = \left(\frac{4 \times (1 - Xifv) \times If \ 1}{3 + \sqrt{1 + 16 \times \frac{If \ 1}{Ik}}}\right) \div Flat$$

The vertical forward current component (I_{fver}) is:

$$I_{fver} = \left(\frac{4 \times Xifv \times \text{If } 2}{3 + \sqrt{1 + 16 \times \frac{\text{If } 2}{Ik}}}\right) \div Ffver$$

Model parameters:

- Xifv
- lk

Reverse currents—Irlat and Irver

The main reverse current contains lateral and vertical components, originating from the collector-base junction sidewall and bottom, respectively. These formulations include Early and high injection effects. The two currents depend on different internal collector-base junction voltages, collector current crowding is also modelled.

The lateral reverse current component (Irlat) is:

$$I_{rlatt} = \left(\frac{4 \times (1 - Xirv) \times \text{Ir } 1}{3 + \sqrt{1 + 16 \times \frac{\text{Ir } 1}{Ik}}}\right) \div Flat$$

The vertical reverse current component (Irver) is:

$$I_{rver} = \left(\frac{4 \times Xirv \times Ir \ 2}{3 + \sqrt{1 + 16 \times \frac{Ir \ 2}{Ik}}}\right) \div Frver$$

Model parameter: Xirv

Base Current

Forward components

The total forward base current is composed of an ideal and a non-ideal component. Both components depend on the bottom part of the emitter-base junction.

Ideal component:

$$Ire = \frac{If 2}{Bf}$$

Non-ideal component:

$$Ile = \frac{Ibf \times (e^{\text{Ve2b1/Vt}} - 1)}{e^{\text{Ve2b1/Vt}} + e^{\text{Vlf/2Vt}}}$$

Model parameters:

- Bf
- Ibf
- Vif

Reverse components

The total reverse base current is composed of an ideal and a non-ideal component. Both components depend on the bottom part of the collector-base junction.

Ideal component:

$$Irc = \frac{Ir 2}{Br}$$

Non-ideal component:

$$Ilc = \frac{Ibr \times (e^{\text{Vc2b2/Vt}} - 1)}{e^{\text{Vc2b2/2Vt}} + e^{\text{Vlt/2Vt}}}$$

Model parameters:

- Br
- Ibr
- VIr

Substrate current

Forward components

The forward substrate component depends on the bottom part of the emitterbase junction. It consists of an ideal component, and a component subject to high injection effects. The XHES parameter determines the fraction that is subject to high injection.

$$Ise = (1 - Xhes) \times Xes \times If 2 + \frac{4 \times Xhes \times Xes \times If 2}{3 + \sqrt{1 + 16 \times \frac{If 2}{Ik}}}$$

Model parameters:

- Xes
- Xhes

Reverse components

The reverse substrate component depends on the bottom part of the collectorbase junction. It consists of an ideal component, and a component subject to high injection effects. The XHCS parameter determines the fraction that is subject to high injection.

$$Isc = (1 - Xhcs) \times Xcs \times Ir 2 + \frac{4 \times Xhcs \times Xcs \times Ir 2}{3 + \sqrt{1 + 16 \times \frac{Ir 2}{Ik}}}$$

Model parameters:

- Xcs
- Xhcs

Additional Substrate and Base current

An ideal diode models the substrate-base junction. You can use the reverse leakage current of this junction to model the zero-crossover phenomena, sometimes observed in the base current at low bias conditions and high temperatures.

$$Isf = Iss \times (e^{Vsb/Vt} - 1)$$

Model parameter: Iss

Charges

Depletion Charges

The Poon-Gummel formulation models the depletion charges.

Emitter-base depletion charge

$$Qte = \frac{-Cje}{1 - Pe} \times \left\{ \frac{Vde - Ve2b1}{\left[\left(1 - \frac{Ve2b1}{Vde}\right)^2 + \delta\right]^{\frac{Pe}{2}}} \right\}$$

Model parameters:

- Cie
- Vde
- Pe

Collector-base depletion charge

$$Qtc = \frac{-Cjc}{1 - Pc} \times \left\{ \frac{Vdc - Vc2b2}{\left[\left(1 - \frac{Vc2b2}{Vdc}\right)^2 + \delta\right]^{\frac{Pc}{2}}} \right\}$$

Model parameters:

- Cjc
- Vdc
- Pc

Substrate-base depletion charge

$$Qts = \frac{-Cjs}{1 - Ps} \times \left\{ \frac{Vds - Vsb}{\left[\left(1 - \frac{Vsb}{Vds} \right)^2 + \delta \right]^{\frac{Ps}{2}}} \right\}$$

Model parameters:

- Cjs
- Vds
- Ps

Forward Stored Charges

Storing forward-active charges consists of three main components.

1. Charge stored in epitaxial base region between emitter and collector:

$$Qflat = Tlat \times Ik \times \left(\sqrt{1 + 16 \times \frac{\text{If }1}{Ik} - 1}\right) \times \frac{Flat}{8}$$

2. Charge stored in epitaxial base region under emitter:

$$Qfver = Tfvr \times Ik \times \left(\sqrt{1 + 16 \times \frac{\text{If } 2}{Ik} - 1}\right) \times \frac{1}{8}$$

3. Charge stored in emitter and buried layer under emitter:

$$Qfn = Tfn \times If 2$$

Reverse Stored Charges

Storing reverse-active charges consists of three main components.

1. Charge stored in epitaxial base region between emitter and collector:

$$Qrlat = Tlat \times Ik \times \left(\sqrt{1 + 16 \times \frac{\operatorname{Ir} 1}{Ik} - 1}\right) \times \frac{Flat}{8}$$

2. Charge stored in epitaxial base region under collector:

$$Qrver = Trvr \times Ik \times \left(\sqrt{1 + 16 \times \frac{\operatorname{Ir} 2}{Ik} - 1}\right) \times \frac{1}{8}$$

3. Charge stored in collector and buried layer under collector:

$$Qrn = Trn \times Ir 2$$

Substrate-base Stored Charge

Charge stored in the substrate and base, due to the substrate-base junction. This charge storage occurs only when the substrate-base junction is forward biased:

$$Qsd = Tsd \times Isf$$

Note: Tsd is a constant.

Series Resistances

The emitter includes the following series resistance:

- Reex—constant
- Rein—constant

The collector includes the following series resistance:

- Rcex—constant
- Rcin—constant

The conductivity modulation of the base resistances is derived from the fact that the voltage drop across the epitaxial layer, is inversely proportional to the electron concentration under the emitter and collector.

Base resistance under the emitter:

$$Rbe = Rbec + \frac{2 \times Rbev}{\sqrt{1 + 16 \times \frac{\text{If } 2}{Ik}}}$$

Base resistance under the collector:

$$Rbc = Rbcc + \frac{2 \times Rbcv}{\sqrt{1 + 16 \times \frac{\operatorname{Ir} 2}{Ik}}}$$

The Rb resistance models the ohmic leakage, across the substrate-base junction.

Noise Equations

For noise analysis current sources are added to the small signal equivalent circuit. In these equations:

- f represents the operation frequency of the transistor.
- Df is the bandwidth.

When measured at 1 Hz, a noise density is obtained.

5: BJT Models

Level 10 Phillips MODELLA Bipolar Model

Thermal Noise

$$\overline{iN^{2}}_{REEX} = \frac{4 \cdot k \cdot Tk}{REEX} \cdot \Delta f$$

$$\overline{iN^{2}}_{REIN} = \frac{4 \cdot k \cdot Tk}{REIN} \cdot \Delta f$$

$$\overline{iN^{2}}_{RCEX} = \frac{4 \cdot k \cdot Tk}{RCEX} \cdot \Delta f$$

$$\overline{iN^{2}}_{RBE} = \frac{4 \cdot k \cdot Tk}{RBE} \cdot \Delta f$$

$$\overline{iN^{2}}_{RBE} = \frac{4 \cdot k \cdot Tk}{RBE} \cdot \Delta f$$

$$\overline{iN^{2}}_{RSB} = \frac{4 \cdot k \cdot Tk}{RSR} \cdot \Delta f$$

Lateral Collector Current Shot Noise

$$\overline{iN^2_{CLA}} = 2 \cdot q \cdot |I_{FLAT} - I_{RLAT}| \cdot \Delta f$$

Vertical Collector Current Shot Noise

$$\overline{iN^2_{CVER}} = 2 \cdot q \cdot |I_{FVER} - I_{RVER}| \cdot \Delta f$$

Forward-base Current Shot Noise and 1/f Noise

$$\overline{iN^{2}}_{B} = 2 \cdot q \cdot \left| I_{RE} - I_{LE} \right| \cdot \Delta f + \frac{KF \cdot MULTI^{1 - AF} \cdot \left| I_{RE} \cdot I_{LE} \right|^{AF}}{f} \cdot \Delta f$$

Temperature Dependence of Parameters

$$Tk = Tref + 273.16$$

$$Tn = \frac{Temp}{Tref + 273.16}$$
 $Ti = \frac{1}{Tref + 273.16} - \frac{1}{Temp}$

Series Resistance

$$RCIN_T = RCIN \times T_N^{SPC}$$
 $RBCC_T = RBCC \times T_N^{SNBN}$
 $RBCV_T = RBCV \times T_N^{SNB}$
 $RBEC_T = RBEC \times T_N^{SNBN}$
 $RBEV_T = RBEV \times T_N^{SNB}$

The BJT Level 10 model assumes that REEX and RCEX are temperature independent.

Depletion Capacitances

$$VDxt = -3k\frac{TEMP}{q} \cdot 1n(T_N) + VDx \cdot T_N + (1 - T_N) \cdot Vgap$$

$$CJ_{XT} = CJx \cdot \left(\frac{VDx}{VD_{XT}}\right)^{PX}$$

Emitter-base Junction

$$Vgap = VGEB, x = E$$

Collector-base Junction

$$Vgap = VGCB, x = C$$

Substrate-base Junction

$$Vgap = VGSB, x = S$$

Temperature Dependence of Other Parameters

$$VD_T = -3k \frac{TEMP}{q} \cdot 1n(T_N) + VD \cdot T_N + (1 - T_N) \cdot VGB$$

$$EAFL_T = EAFL \cdot \sqrt{\frac{VD_T}{VD}}$$
 $EARL_T = EARL \cdot \sqrt{\frac{VD_T}{VD}}$

$$EAFV_T = EAFV \cdot \sqrt{\frac{VD_T}{VD}}$$
 $EARV_T = EARV \cdot \sqrt{\frac{VD_T}{VD}}$

$$IS_T = IS \cdot T_N^{(4.0 - SPB)} \cdot \exp(q \cdot VGB \cdot T_I/k)$$

$$BF_T = BF \cdot T_N^{(AE-SPB)} \cdot \exp\{q \cdot (VGB - VGE) \cdot T_{I/k}\}$$

$$IBF_T = IBF \cdot T_N^2 \cdot \exp\{q \cdot (VGJE/2) \cdot T_I/k\}$$

$$IK_T = IK \cdot T_N^{(1-SPB)}$$

$$BR_T = BR \cdot \frac{BF_T}{BF}$$
 $IBR_T = IBR \cdot \frac{IBF_T}{IBF}$

$$ISS_{T} = ISS \cdot T_{N}^{2} \exp\{q \cdot VGSB \cdot T_{I/k}\}$$
 $TLAT_{T} = TLAT \cdot T_{N}^{(SPB-1.0)}$
 $TFVR_{T} = TFVR \cdot \frac{TLAT_{T}}{TLAT}$
 $TFN_{T} = TFN \cdot T_{N}^{(SX-1.0)}$
 $TRVR_{T} = TRVR \cdot \frac{TLAT_{T}}{TLAT}$
 $TRN_{T} = TRN \cdot \frac{TFN_{T}}{TFN}$

All other model parameters are temperature-independent.

Level 11 UCSD HBT Model

The UCSD High Speed Devices Group in collaboration with the HBT Model Working Group, has been developing better SPICE models for heterojunction bipolar transistors (HBTs). The HSPICE implementation of the UCSD HBT MODEL is based on the website: http://hbt.ucsd.edu

Usage Notes

The following information applies to the HSPICE device model for the UCSD HBT device:

- 1. Set BJT Level=11.
- The default room temperature is 250 C in the HSPICE, but is 270 C in most other simulators. When comparing to other simulators, do one of the following:
 - set the simulation temperature to 27, or
 - set TEMP 27, or
 - set .OPTION TNOM=27
- 3. The set model parameter should always include the model reference temperature, TREF. The default value for TREF is 27.
- You can use DTEMP with this model to increase the temperature of individual elements, relative to the circuit temperature. Set its value on the element line.

5. The HBT (BJT Level 11) model includes self-heating effects. If you turn on self-heating, then set RTH to more than zero and SELFT to 1 in the model card.

Level 11 Element Syntax

Qxxx nc nb ne <ns> mname <AREA=val><OFF><VBE=val>
+ <VCE=val> <M=val><DTEMP=val>

Parameter	Description
Qxxx	BJT element name. Must begin with Q, which can be followed by up to 1023 alphanumeric characters.
nc	Collector terminal node name or number.
nb	Base terminal node name and number.
ne	Emitter terminal node name or number.
ns	Substrate node name or number.
t	Self-heating node name or number.
mname	BJT model name reference.
AREA	Normalized emitter area.
OFF	Sets initial condition to OFF for this element in DC analysis. You cannot use OFF with VBE or VCE.
VBE	Initial internal base-emitter voltage.
VCE	Initial internal collector-emitter voltage.
M	Multiplier to simulate multiple BJTs in parallel.
DTEMP	Difference between the temperature of the element and circuit.

Table 99 BJT Level 11 Parameters

Parameter	Unit	Default	Description
BKDN	logic	false	Flag indicating to include BC breakdown
TREF	С	27	Temperature at which model parameters are given
IS	Α	1e-25	Saturation value for forward collector current
NF	-	1	Forward collector current ideality factor
NR	-	1	Reverse current ideality factor
ISA	Α	1e10	Collector current EB barrier limiting current
NA	-	2	Collector current EB barrier ideality factor
ISB	Α	1e10	Collector current BC barrier limiting current
NB	-	2	Collector current BC barrier ideality factor
VAF	V	1000	Forward Early voltage
VAR	V	1000	Reverse Early voltage
IK	Α	1e10	Knee current for dc high injection effect
BF	-	10000	Forward ideal current gain
BR	-	10000	Reverse ideal current gain
ISE	Α	1e-30	Saturation value for non-ideal base current
NE	-	2	Ideality factor for non-ideal forward base current
ISEX	Α	1e-30	Saturation value for emitter leakage diode
NEX	-	2	Ideality factor for emitter leakage diode

Table 99 BJT Level 11 Parameters (Continued)

Parameter	Unit	Default	Description
ISC	А	1e-30	Saturation value for intrinsic bc junction current
NC	-	2	Ideality factor for intrinsic bc junction current
ISCX	Α	1e-30	Saturation value for extrinsic bc junction current
NCX	-	2	Ideality factor for extrinsic bc junction current
FA	-	0.9	Factor for specification of avalanche voltage
BVC	V	1000	Collector-base breakdown voltage BVcbo
NBC	-	8	Exponent for BC multiplication factor vs voltage
ICS	Α	1e-30	Saturation value for collector-substrate current
NCS	-	2	Ideality factor for collector-substrate current
RE	ohm	0	Emitter resistance
REX	ohm	0	Extrinsic emitter leakage diode series resistance
RBX	ohm	0	Extrinsic base resistance
RBI	ohm	0	Intrinsic base resistance
RCX	ohm	0	Extrinsic collector resistance
RCI	ohm	0	Intrinsic collector resistance
CJE	F	0	BE depletion capacitance at zero bias
VJE	V	1.6	BE diode built-in potential for Cj estimation
MJE	-	0.5	Exponent for voltage variation of BE Cj
CEMIN	F	0	Minimum BE capacitance

Table 99 BJT Level 11 Parameters (Continued)

Parameter	Unit	Default	Description
FCE	-	0.8	Factor for start of high bias BE Cj approximation
CJC	F	0	Intrinsic BC depletion capacitance at zero bias
VJC	V	1.4	Intrinsic BC diode built-in potential for Cj estimation
MJC	-	0.33	Exponent for voltage variation of Intrinsic BC Cj
CCMIN	F	0	Minimum value of intrinsic BC Cj
FC	-	0.8	Factor for start of high bias BC Cj approximation
CJCX	F	0	Extrinsic BC depletion capacitance at zero bias
VJCX	V	1.4	Extrinsic BC diode built-in potential for Cj estimation
MJCX	-	0.33	Exponent for voltage variation, Extrinsic BC Cj
CXMIN	F	0	Minimum extrinsic Cbc
XCJC	-	1	Factor for partitioning extrinsic BC Cj
CJS	F	0	Collector-substrate depletion capacitance (0 bias)
VJS	V	1.4	CS diode built-in potential for Cj estimation
MJS	-	0.5	Exponent for voltage variation of CS Cj
TFB	S	0	Base transit time
TBEXS	S	0	Excess BE heterojunction transit time

Table 99 BJT Level 11 Parameters (Continued)

Parameter	Unit	Default	Description
TBCXS	S	0	Excess BC heterojunction transit time
TFC0	S	0	Collector forward transit time
ICRIT0	Α	1e3	Critical current for intrinsic Cj variation
ITC	Α	0	Characteristic current for TFC
ITC2	Α	0	Characteristic current for TFC
VTC	V	1e3	Characteristic voltage for TFC
TKRK	S	0	Forward transit time for Kirk effect
VKRK	V	1e3	Characteristic Voltage for Kirk effect
IKRK	Α	1e3	Characteristic current for Kirk effect
TR	S	0	Reverse charge storage time, intrinsic BC diode
TRX	S	0	Reverse charge storage time, extrinsic BC diode
FEX	-	0	Factor to determine excess phase
KFN	-	0	BE flicker noise constant
AFN	-	1	BE flicker noise exponent for current
BFN	-	1	BE flicker noise exponent for frequency
XTI	-	2	Exponent for IS temperature dependence
XTB	-	2	Exponent for beta temperature dependence
TNE	-	0	Coefficient for NE temperature dependence
TNC	-	0	Coefficient for NC temperature dependence
TNEX	-	0	Coefficient for NEX temperature dependence

Table 99 BJT Level 11 Parameters (Continued)

Parameter	Unit	Default	Description
EG	V	1.5	Activation energy for IS temperature dependence
EAE	V	0	Activation energy, ISA temperature dependence
EAC	V	0	Activation energy, ISB temperature dependence
EAA	V	0	Added activation energy, ISE temp dependence
EAB	V	0	Added activation energy, ISC temp dependence
EAX	V	0	Added activation energy, ISEX temp dependence
XRE	-	0	Exponent for RE temperature dependence
XREX	-	0	Exponent for REX temperature dependence
XRB	-	0	Exponent for RB temperature dependence
XRC	-	0	Exponent for RC temperature dependence
TVJE	V/C	0	Coefficient for VJE temperature dependence
TVJCX	V/C	0	Coefficient for VJCX temperature dependence
TVJC	V/C	0	Coefficient for VJC temperature dependence
TVJS	V/C	0	Coefficient for VJS temperature dependence
XTITC	-	0	Exponent for ITC temperature dependence
XTITC2	-	0	Exponent for ITC2 temperature dependence
XTTF	-	0	Exponent for TF temperature dependence

Table 99 BJT Level 11 Parameters (Continued)

Parameter	Unit	Default	Description
XTTKRK	-	0	Exponent for TKRK temperature dependence
XTVKRK	-	0	Exponent for VKRK temperature dependence
XTIKRK	-	0	Exponent for IKRK temperature dependence
SELFT	-	0	Flag. Indicates whether to use self-heating. 0 (default) does not use self-heating. 1 turns on the self-heating feature.
RTH	C/W	0	Thermal resistance, device to thermal ground
СТН	C/ Joule	0	Thermal capacitance of device.

Model Equations

This section describes the model equations for the HSPICE BJT Level 11 model.

Current Flow

There are seven different current flow calculations for the BJT Level 11 device model.

Intrinsic collector current contributions. This model computes the electron flow between Ei and Ci nodes by using equations similar to the Gummel-Poon model with modifications to take into account the potential spike that can appear at the base-emitter or base-collector junctions of HBTs. This model separates the electron current into forward and reverse components, Icf and Icr.

lcf = IS * [exp(qVbei/NF/KT) - 1] / D
lcr = IS * [exp(qVbci/NR/KT) -1] / D

In these equations:

```
D= qb + IS* exp(qVbei/NA/KT) / ISA + IS*exp(qVbci/NB/KT)/ISB
```

ISA, ISB, NA and NB are new parameters. ISA and ISB approximate the transition currents, from base-transport controlled to potential-barrier controlled, current flow.

qb partially retains the standard BJT model form (a fractional increase in the base charge associated with the bias changes).

```
qb= q1/2 * [1+(1+4*q2)0.5]
q1=1/ [1 - Vbci/VAF -Vbei/VAR]
q2=IS/IK*[exp(qVbei/NF/KT)-1]
```

In the preceding equations, qb omits the reverse knee current contribution. As noted below, qb is not used to define the ac model in the fashion of the Gummel-Poon model.

The total collector current lcc is:

```
Icc=Icf - Icr
```

This formulation uses the IS, NF, VAF, VAR, and IK parameters, established in the SPICE BJT model in addition to the ISA, ISB, NA, and NB parameters described above.

Intrinsic Base-Emitter Diode. Ideal and non-ideal components are included:

```
Ibei= Icf / BF + ISE * [exp (q Vbei/ NE /KT) - 1]
```

■ Extrinsic Base-Emitter Diode. The Level 11 model includes a diode connected between the Ex and E nodes, and an associated series resistance (Rex). You can use the diode and its resistance to model contributions from emitter edges.

```
lbex = ISEX * [exp (q Vbex/ NEX /KT) - 1]
```

Intrinsic Base-Collector Diode. Ideal and non-ideal components are included:

Intrinsic Base-Collector Breakdown Current. Ibk is current between the collector and base nodes, generated due to avalanche breakdown of the base-collector junction. If you set the BKDN parameter to true, then Ibk is determined according to:

```
Ibk= (Mf -1) * Icf
Otherwise, Ibk=0
```

The preceding equations use the following definitions:

- Mf is the multiplication factor associated with the BC junction at the specified voltage.
- Icf is the forward electron current (as computed above in the absence of multiplication).

Mf is calculated with a physically based expression, modified to avoid the singularity at Vbci=-BVC.

Mf depends exclusively on the intrinsic base-intrinsic collector voltage, Vbci. If -Vbci closely approaches or exceeds BVC

(-Vbci>FA*BVC with FA typically chosen to be 0.95), then the multiplication factor is computed according to a constant slope expression.

```
Mf = 1 / [1- (-Vbci/BVC)^NBC] for KTop/q< -Vbci < FA*BVC
Mf = 1 for -Vbci > KTop/q
Mf = Mfl + gl *(-Vbci-FA*BVC) for -Vbci > FA*BVC
```

In the preceding equations, Mfl and gl are the values of Mf and its derivative with respect to voltage, evaluated at the voltage -Vbci=FA*BVC:

```
Mfl=1 / (1-FA^NBC)

ql = Mfl^*(Mfl-1)^*NBC/(FA^*BVC)
```

Extrinsic Base-Collector Diode. This diode has customary I-V characteristics with its own saturation current and ideality factor.

```
lbcx= ISCX * [exp(q Vbcx/ NCX /KTop) - 1]
```

Substrate-Extrinsic Collector Diode. This diode allows for conducting substrates. Use it primarily for SiGe HBTs.

```
Ics= ICS * [exp(-q Vcs/ NCS /KTop) - 1]
```

In accordance with the model topology, the external currents through the E.B. and C nodes are:

```
lb= lbei + lbex - lbk + lbci + lbcx
lc= lcc + lbk -lbci-lbcx - lcs
```

Charge Storage

This section describes five different charge storage calculations for the HSPICE BJT Level 11 device model.

- Base-Emitter Charge. The overall charge stored at the base-emitter junction has components associated with the base-emitter depletion layer:
 - Qbej, which is current-independent.
 - Qbediff, a collector current-dependent charge. Qbediff corresponds to a portion of the base charge, and the (collector current-dependent) basecollector charge.

Qbe= Qbej + Qbediff

■ Base-Emitter Depletion Charge, Qbej. The depletion charge, Qbej, follows equations standard for SPICE, modified to allow specification of a minimum capacitance CEMIN (corresponding to reach-through to an n+layer).

As studied by Chris Grossman, there is often an extra component of charge storage at the base-emitter heterojunction of HBTs, associated with a minimum in the conduction band energy profile.

Qbej is computed using DepletionCapMod.

Define:

```
Vmin= VJE*[1-(CJE/CEMIN)(1/MJE)]
```

(the critical voltage for attaining the minimum capacitance value)

If Vbei<FCE*VJE and Vbei<Vmin:

```
Qbej=CEMIN*(Vbei-VJE)+CEMIN*VJE*MJE/(MJE-1) * (CJE/CEMIN)(1/MJE)
```

Cbej=dQbej/dVbei=CEMIN

If Vbei<FCE*VJE and Vbei>Vmin:

```
Qbej= -CJE*VJE*(1-Vbei/VJE)(1-MJE) / (1-MJE)
```

Cbej= CJE*(1-Vbei/VJE)(-MJE)

```
If Vbei>FCE*VJE, and CJE>CEMIN*(1-FCE)MJE:

Qbej=-CJE*VJE/(1-FCE)MJE*[(1-FCE)/(1-MJE)+FCE-Vbei/VJE

-MJE*(FCE-Vbei/VJE)2/2/(1-FCE)]

Cbej=CJE/(1-FCE)MJE*[1+MJE*(Vbei/VJE-FCE)/(1-FCE)]

If Vbei>FCE*VJE, and CJE<CEMIN*(1-FCE)MJE,

Qbej=CEMIN*(Vbei-VJE)+CEMIN*VJE*MJE/(MJE-1)

*(CJE/CEMIN)(1/MJE)+CJE*VJE*(Vbei/VJE-FCE)2*MJE/2/(1-FCE)(MJE+1)

Cbej=CEMIN + CJE*VJE*MJE*(Vbei/VJE-FC)/(1-FCE)(MJE+1)
```

- Base-Emitter Diffusion Charge, Qbediff. The diffusion charge in HBTs is associated with contributions from minority carriers in the base, and from mobile charge in the collector depletion region. In homojunction transistors, diffusion charge storage in the emitter is also present. The Level 11 model evaluates the base and collector-depletion region contributions separately (if necessary, the emitter charge storage can be associated with the base contribution).
 - Specify the base charge through the base transit time, TFB. This transit time varies with bias through several mechanisms:
 - The Early effect causes a change in transit time with junction voltage.
 - In heterojunction transistors, there is frequently a minimum in the conduction band, on the base side of the base-emitter (and potentially base-collector) heterojunction. Minority carriers tend to accumulate in these potential wells.

The stored charge adds to the base charge (to a good approximation). In the lowest order, the charge stored is directly proportional to the collector current, and thus contributes to TFB. For a greater degree of accuracy, the depth of the potential well on the emitter side varies with Vbe. Similarly, the amount of charge stored at the base-collector side varies with Vbc.

The equations used to describe the effects are:

```
TFBt=TFB*(1+Vbei/VAR+Vbci/VAF) +
TBEXS*exp(-q(Vbei-VJE)/NA/KTop) +
TBCXS*exp(q(Vbci-VJC)/NB/KTop)
```

Note: Different signs are associated with the BE and BC junction effects. The value of the T temperature to describe these effects is assumed to be Top.

You can use any of these methods to specify collector charge:

- A part is specified by the TFC0 transit time parameter, modified by the qcc velocity modulation factor to account for voltage and current dependences.
- A part of the mobile charge is specified in the calculation of basecollector depletion region charge. To calculate this part, Qbcm, an expression for the collector current-dependent base-collector depletion charge is developed. Then the current-independent part is subtracted off (as discussed in the next section).
- A separate charge term, Qkrk, is associated with the Kirk effect.

ftt=rTXTTF

qcc is a factor describing bias dependence of electron velocity in the BC depletion region:

$$qcc = [1 + (Icf/ITC)2] / [1 + (Icf/ITC2)3 + (VJCI-Vbci)/VTC]$$

- ITC is the threshold current for the velocity profile modulation effect.
- ITC2 is a higher current at which the velocity profile modulation peaks (and the cutoff frequency begins to roll-off).
- VTC provides a voltage (or electric field) dependence of the carrier velocity.

```
ITC=ITC@Tnom* rTXTITC
ITC2=ITC2@Tnom* rTXTITC2
```

The following expression calculates the charge storage associated with the Kirk effect:

Qkrk=TKRK*Icf*exp[Vbci/VKRK+Icf/IKRK]

To account for excess phase, a fraction (1-FEX) of the currentdependent forward charge (Qfdiff) is associated with the BE junction, while the remainder is associated with the intrinsic BC junction.

Qbediff= (1-FEX)*Qfdiff

Note: Qfdiff (and thus Qbediff) depends on Vbci, through the terms involving lcf, qcc, Qkrk and Qbcm. As a result, a trans-capacitance is implied in the ac model. Similarly, Qbcdiff depends on Vbei, implying another trans-capacitance.

- Intrinsic Base-Collector Charge, Qbci. Charge stored at the intrinsic base-collector junction includes:
 - Depletion charge from the junction region.
 - Diffusion charge associated with normal operation of the transistor.
 - Diffusion charge associated with reverse operation of the device.

```
Qbci=Qbcj + TRI* Icr + FEX*Qfdiff
```

Although the charge in the depletion region depends on Ic, this section describes the portion corresponding to the Ic=0 condition. Subsequently, the proper Ic dependent contribution is considered, and included in Qbcm (a charge that is part of Qfdiff).

- Intrinsic base-collector depletion charge, Qbcj. When Ic=0, the depletion charge is calculated using the same algorithm as applied to Qbej (which accounts for a minimum of capacitance when the n- collector is depleted).
- Intrinsic base-collector diffusion charge. For reverse operation, a diffusion capacitance is implied by the TRI term in the Qbci equation. Here TRI is the effective reverse transit time, which is assumed to be biasindependent. The associated reverse diffusion capacitance is:

Cbcrdiff= TRI* dlbci/dVbci

For operation also includes diffusion capacitance in a manner similar to base-emitter capacitance with a partitioning specified by the excess phase factor, FEX.

The terms associated with Icf*ftt*(TFB + TFC0/qcc) + Qkrk have already been discussed above for calculating Qbediff. The next section describes the Qbcm portion.

■ **Qbcm.** This charge is the difference between the "proper" Icf-dependent charge in the BCi depletion region (called Qbcf), and the BCi depletion charge computed above (Qbcj), assuming that Icf=0.

Qbcm=Qbcf - Qbcj

To properly compute Qbcf, a formulation of the depletion region charge (similar to that used above) is used with the modification that the CJ parameter (zero bias capacitance) can depend on the lcf collector current. This corresponds to the physical phenomenon of varying charge density in the depletion region as a result of the mobile electron charge in that region.

The current-dependent CJ parameter is termed CJCH; its form is:

CJCH=CJC*sign(1-Icf/ICRIT)*ABS(1-Icf/ICRIT)MJC

In this equation, ICRIT is a critical current, at which the effective charge density in the BC depletion region vanishes (and the capacitance Cbci drops dramatically). ICRIT is dependent on temperature and bias conditions, according to:

ICRIT=ICRIT0*qcc/ftt

In the preceding equation, ftt and qcc are the temperature-dependence, and lcf and Vcb are the dependence parameters described above.

Using this formulation, the current dependence of the BC capacitance is included (although it is partially assigned to the BE junction charge, and partially to the BC junction, through the FEX excess-phase parameter).

You can extract ICRIT and associated parameters from measurements of Cbc versus Ic.

Note: These parameters also control some of the components of the forward transit time.

A delay time is associated with specifying ICRIT:

TFC1 = CJC*VJC*MJC/(MJC-1)/ICRIT

Use the ICRIT parameter carefully, generally in conjunction with selecting TFC0 and CJCI in such a way that the sum TFB + TFC0 + TFC1 provide a reasonable estimate of charge storage, similar to TF in Gummel-Poon SPICE.

Extrinsic Base-Collector Charge, Qbcx. The Qbcx stored charge consists of a depletion charge and a diffusion charge.

Standard SPICE does not use the diffusion charge component. However, this component can be an important contribution to saturation stored-charge in many HBTs (in addition to the contribution associated with the intrinsic base-collector junction).

The corresponding charge storage time, TRX, might be different from the intrinsic time, TRI. This difference occurs because of implant-induced recombination, surfaces, or other structural changes.

The depletion charge corresponds to a standard depletion region expression (without considering charge density modulation due to current), modified to allow for a minimum value of capacitance under a reach-through condition.

Furthermore, as indicated below, if you assign a value other than unity to the XCJC variable, then the depletion charge is partitioned between the Bx-Cx capacitance and the B-Cx capacitance.

```
Qbcx= TRX*Ibcx + XCJC*Qbcxo
```

In the preceding equation, Qbcxo is the depletion charge.

As a result the dependences of lbcx on Vbcx, a diffusion capacitance results from the formulation:

Cbcxdiff= TRX* dlbcx/dVbcx

Base-Extrinsic Collector Charge (Qbcxx), and Treatment of XCJC

In standard SPICE, XCJC indicates the fraction of overall Cbc depletion capacitance that should be associated with the intrinsic base node. The remaining fraction (1-XCJC) is attached to the base terminal. HBT Spice uses a similar assignment: the depletion charge associated with the extrinsic base-collector junction is partitioned between the Bx node and the B node:

```
Qbcx= TRX*Ibcx + XCJC* Qbcxo
```

has been defined above, between the Bx and Cx nodes, and charge

is assigned between the B and Cx nodes. The Qbcxxo charge is computed with the same algorithm as for Qbcxo by using Vbcxx (rather than Vbcx) as the voltage.

Collector-Substrate Charge, Qcs. This corresponds to a depletion charge, formulated in the standard SPICE fashion:

For Vcs>-FC*VJS.

Qcs= - CJS*VJS*(1+Vcs/VJS)(1-MJS) / (1-MJS) Ccs=CJS*(1+Vcs/VJS)(-MJS)

5: BJT Models

Level 11 UCSD HBT Model

```
For Vcs<-FC*VJS,

Qcs= -CJS*VJS/(1-FC)MJS*

[(1-FC)/(1-MJS) + FC +Vcs/VJS -MJS/2/(1-FC) *(FC+Vcs/VJS)2]

Ccs=CJS*(1-FC)(-MJS)*[1-MJS/(1-FC)*(FC+Vcs/VJS)}
```

Noise

The Level 11 model includes noise current generators, similar to those in standard Spice. The noise current generators have magnitudes in units of A2/Hz, and are computed based on 1Hz bandwidth. The noise sources are placed in parallel with corresponding linearized elements in the small signal model. Sources of 1/f noise have magnitudes that vary with the frequency (f); you can use a BFN exponent, if you do not see the exact f-1 behavior.

```
inc2 = 2*q*Icc
inb2= 2 * q *Ibe + KFN * IbeAFN / f BFN
inre2= 4 * K* Td / RE
inrbx2= 4 * K * Td / RBX
inrbi2= 4 * K * Td / RBI
inrcx2= 4 * K * Td / RCX
inrci2= 4 * K * Td / RCX
inrci2= 4 * K * Td / RCI
inrex2= 4 * K * Td / REX
```

Equivalent Circuit

Figure 35 Circuit Diagram for Large-signal HBT Model

Figure 36 Circuit Diagram for Small-signal HBT Model

Example Model Statement for BJT Level 11

```
.model hbt npn level=11
        1.2E-18 NF =
+ IS =
                       1
                                1
                                   BF =
                                         200
                          NR =
                  60 VAR =
        5 VAF =
                             20
+ BR =
                                ISE =
                                        1E - 17
        1.4 ISEX =
                    4E-24 NEX =
                                                1E-14
                                   1.3
                                        ISCX =
                                2
+ NCX =
         2
            ISC =
                   1E-16
                         NC =
                                   NA =
                                         10
         2.18E-10 NB =
                         10
                             ISB =
 ISA =
                                    1E10
                                          RE
                                                 16
+ REX =
         20 RBI =
                    20 BVC =
                               28 NBC =
                                          6
                                  20
+ FA = 0.995
              RCX
                       30
                          RCI =
                                      CJE =
                                             1.8E-14
                    =
        1.45
              CXMIN =
                        1E-16
                              MJE =
                                      0.5
                                           FC =
                                                 0.8
+ VJE =
                                  TR =
+ ICRITO =
            0.23
                  CCMIN =
                           3E-15
                                        3.5E-10
                                                 VJCX =
+ CJCX =
          8E-15
                 MJCX =
                        0.35
                               XCJC =
                                       1
         5E-16 MJS =
                       0.01
                             CTH =
                                    1E-6
                                          RTH =
+ CJS =
                                -1.8
+ EG =
       1.645 XTI =
                     0
                         XTB =
                                      EAA =
                                             -0.495
                                       EAC =
                                             0.34
+ EAB = -0.1
               EAE =
                      0.105
                             TNE =
                                    0
                      1E-30
+ XTTF =
          1.5
               ICS =
                             NCS =
                                    2
                                       CEMIN = 1E-15
                                     2.5E-11
         0.8 \text{ TFB} = 2E-12
                                              TBEXS =
+ FCE =
                             TFC0 =
         7E-3
               ITC2 =
                       0.014
                             VTC =
                                     40
                                         TKRK =
                                                 5E-13
+ ITC =
              IKRK =
                      0.012
                             TRX =
                                    3.5E-10 FEX =
+ VKRK = 10
           1.5 \quad XTITC2 = 1
                             TREF =
+ XTITC =
                                     25 CJC =
+ VJC = 1.4 MJC = 0.35
```

Level 13 HiCUM0 Model

HiCUM0 is a simplified bipolar transistor model that combines the simplicity of the SPICE Gummel-Poon Model (SGPM) with various improvements from HiCUM. The HiCUM0 model is implemented as Level 13 in the BJT models.

HiCUM0 Model Advantages

Major features of HiCUM0 are:

- strongly circuit-design oriented and easy to understand for circuit designers
- sufficiently accurate for many applications
- computationally efficient and fast
- allows a fast parameter extraction for single transistors
- makes use of the advanced capabilities of HICUM Level 2 and the related knowledge base for generating geometry scalable and statistical models
- offers an easy migration path from a conventional, single-transistor-based, to a process-based geometry scalable parameter extraction and model usage to meet today's requirements for advanced integrated circuit design.

The model parameters have a clear (physical) meaning and many of them are similar to HICUM Level 2 parameters.

HiCUM0 Model vs. HiCUM Level 2 Model

The differences between HICUM0 and HICUM Level 2:

- The perimeter base node has been eliminated by properly merging the respective internal and external counterparts of the BE depletion capacitance(C_{JE}), the base resistance(R_B), the BC depletion capacitance(C_{JC}), and the base current components across the BE and BC junction
- BE tunneling current, substrate coupling network, parasitic substrate transistor, and capacitance for modeling AC emitter current crowding in HICUM Level 2 have been omitted.

Level 13 Element Syntax

Syntax

Qxxx nc nb ne <ns> <nt> mname <area> <M=val> <DTEMP=val>

Parameter	Description
Qxxx	BJT element name
nc	Collector terminal node name or number
nb	Base terminal node name or number
ne	Emitter terminal node name or number
ns	Substrate terminal node name or number
nt	Self-heating node name or number
mname	BJT model name reference
area	Emitter area multiplying factor. Affects current, resistance, capacitance. Default is 1.
M	Multiplier to simulate multiple BJTs in parallel. Default is 1.
DTEMP	Difference between the element temperature and the circuit temperature in degrees Celsius. Default is DTA (difference between the device temperature and the ambient analysis temperature). If you do not specify DTEMP, then DTEMP uses the DTA value.

Level 13 Model Parameters

Table 100 lists the HiCUM0 Level 13 model parameters.

Table 100 BJT Level 13 Model Parameters

Parameter	Unit	Default	Description
IS	А	1e-16	Transfort sautration current
MCF	-	1	Non-ideality coefficient of forward collector current
MCR	-	1	Non-ideality coefficient of inverse collector current
VEF	V	∞	Forward Early voltage
IQF	Α	∞	Forward DC high-injection roll-off current
IQR	Α	∞	Inverse DC high-injection roll-off current
IQFH	Α	∞	High-injection correction current
TFH	-	∞	High-injection correction factor
CJE0	F	0	BE zero-bias depletion capacitance
VDE	V	0.9	BE built-in voltage
ZE	-	0.5	BE exponent factor
AJE	-	2.5	BE ratio of maximum to zeor-bias value
CJCI0	F	0	BC total zero-bias depletion capacitance
VDCI	V	0.7	BC built-in voltage
ZCI	-	0.4	BC exponent factor
VPTCI	V	1e+20	BC punch-through voltage
Т0	sec	0	Low current transit time at V _{BC} =0
DT0H	sec	0	Base width modulation contribution

Table 100 BJT Level 13 Model Parameters (Continued)

Parameter	Unit	Default	Description
TBVL	sec	0	SCR width modulation contribution
TEF0	sec	0	Storage time in neutral emitter
GTE	-	1	Exponent factor for emitter transit time
THCS	sec	0	Saturation time at high current densities
AHC	-	0.1	Smoothing factor for current dependence
TR	sec	0	Storage time at invese operation
RCI0	Ohm	150	Low-field collector resistance under emitter
VLIM	V	0.5	Voltage dividing ohmic and saturation region
VPT	V	∞	Punch-through voltage
VCES	V	0.1	Saturation voltage
IBES	Α	1e-18	BE saturation current
MBE	-	1	BE non-ideality factor
IRES	Α	0	BE recombination saturation current
MRE	-	2	BE recombination non-ideality factor
IBCS	Α	0	BC saturation current
MBC	-	1	BC non-ideality factor
KAVL	-	0	Avalanche prefactor
EAVL	-	1	Avalanche exponent factor
RBI0	Ohm	0	Internal base resistance value at zero-bias
VR0E	V	2.5	Forward Early voltage(nomalization voltage)
VR0C	V	∞	Reverse Early voltage(nomalization voltage)

Table 100 BJT Level 13 Model Parameters (Continued)

Parameter	Unit	Default	Description
FGEO	-	0.656	Geometry factor
RBX	Ohm	0	External base series resistance
CJCX0	F	0	Zero-base external BC depletion capacitance
VDCX	V	0.7	External BC built-in voltage
ZCX	-	0.4	External BC exponent factor
VPTX	V	1e+20	Punch-through voltage
FBC	-	1	Split factor=C _{JCI0} /C _{JC0}
RE	Ohm	0	Emitter series resistance
RCX	Ohm	0	External collector series resistance
CBEPAR(CEOX)	F	0	Emitter-base isolation(overlap) capacitance
CBCPAR(CCOX)	F	0	Collector-base oxide capacitance
ISCS	Α	0	SC saturation current
MSC	-	1	SC non-ideality factor
CJS0	F	0	Zero-bias SC depletion capacitance
VDS	V	0.3	SC built-in voltage
ZS	-	0.3	External SC exponent factor
VPTS	V	1e+20	SC punch-through voltage
KF	M ^{1-AF}	0	Flicker noise coefficient(no unit only if AF=2)
AF	-	2	Flicker noise exponent factor
VGB	V	1.2	Bandgap voltage
VGE	V	1.2	Effective emitter bandgap voltage

Table 100 BJT Level 13 Model Parameters (Continued)

Parameter	Unit	Default	Description
VGC	V	1.2	Effective collector bandgap voltage
VGS	V	1.2	Effective substrate bandgap voltage
F1VG	V/K	-8.46e-5	Coefficient K1 in temperature-dependent bandgap equation
F2VG	V/K	3.042e-4	Coefficient K2 in temperature-dependent bandgap equation
ALB	1/K	0	Relative temperature coefficient of forward current gain
ALT0	1/K	0	First-order relative temperature coefficient of T0
KT0	1/K	0	Second-order relative temperature coefficient of T0
ZETACT	-	4.5	Exponent coefficient in transfer current temperature depedence
ZETABET	-	5	Exponent coefficient in BE junction current temperature depedence
ZETACI	-	0	Temperature coefficient of epi-collector diffusivity
ALVS	1/K	0	Relative temperature coefficient of saturation drift velocity
ALCES	1/K	0	Relative temperature coefficient of VCES
ZETARBI	-	0	Temperature coefficient of internal base resistance
ZETARBX	-	0	Temperature coefficient of external base resistance
ZETARCX	-	0	Temperature coefficient of external collector resistance
ZETARE	-	0	Temperature coefficient of emitter resistance
ALKAV	1/K	0	Temperature coefficient of avalanche prefactor

Table 100 BJT Level 13 Model Parameters (Continued)

Parameter	Unit	Default	Description
ALEAV	1/K	0	Temperature coefficient of avalanche exponent factor
TNOM	°C	27	Temperature for which parameters are valid
DT	°C	0	Temperature change for particular transistor
RTH	K/W	0	Thermal resistance
СТН	Ws/K	0	Thermal capacitance

For a complete description of the HiCUM0 model, see: http://www.iee.et.tu-dresden.de/iee/eb/comp_mod.html

5: BJT Models

Level 13 HiCUM0 Model

A

Finding Device Libraries

Lists device libraries you can use in HSPICE.

For libraries with multiple models of a specific active or passive device element, you can use the automatic model selector in HSPICE to automatically find the proper model for each transistor size.

This chapter lists device libraries that you can use. It includes the following topics:

- Overview of Library Listings
- Analog Device Models
- Behavioral Device Models
- Bipolar Transistor Models
- Diode Models
- JFET and MESFET Models

Overview of Library Listings

The following sections list the names of models provided with HSPICE. Each model type is stored in a directory that has a name indicating the type of models it contains, such as dio for diodes and bjt for bipolar junction transistors. The directory path is shown for each model type.

Specify this path in a .OPTION SEARCH statement, such as:

```
.OPTION SEARCH `$installdir/96/parts/dio'
```

In the preceding syntax, \$installdir is the environment variable set to the path to the software installation directory and 96 is the HSPICE release number. All model directories are under the parts directory.

Analog Device Models

Search path: \$installdir/parts/ad

Table 101 Analog Model Names (Sheet 1 of 5)

AD581	ad581j	ad581k	ad581I	ad581s	
ad581t	ad581u	ad584	ad584j	ad584k	
ad584l	ad584s	ad584t	ad587	ad587j	
ad587k	ad587l	ad587s	ad587t	ad587u	
ad600	ad600j	ad602	ad602j	ad620	
ad620a	ad620b	ad620s	ad624	ad624a	
ad624b	ad624c	ad624s	ad630	ad630a	
ad630b	ad630j	ad630k	ad630s	ad633	
ad633j	ad645	ad645a	ad645b	ad645j	
ad645k	ad645s	ad704	ad704a	ad704b	
ad704j	ad704k	ad704t	ad705	ad705a	
ad705b	ad705j	ad705k	ad705t	ad706	

Table 101 Analog Model Names (Sheet 2 of 5)

ad706a	ad706b	ad706j	ad706k	ad706t
ad711	ad711a	ad711b	ad711c	ad711j
ad711k	ad711s	ad711t	ad712	ad712a
ad712b	ad712c	ad712j	ad712k	ad712s
ad712t	ad713	ad713a	ad713b	ad713j
ad713k	ad713s	ad713t	ad734	ad734a
ad734b	ad734s	ad743	ad743a	ad743b
ad743j	ad743k	ad743s	ad744	ad744a
ad744b	ad744c	ad744j	ad744k	ad744s
ad744t	ad745	ad745a	ad745b	ad745j
ad745k	ad745s	ad746	ad746a	ad746b
ad746j	ad746s	ad780	ad780a	ad780b
ad780s	ad797	ad797a	ad797b	ad797s
ad810	ad810a	ad810s	ad811	ad812
ad812a	ad813	ad813a	ad817	ad817a
ad818	ad818a	ad820	ad826	ad826a
ad828	ad828a	ad829	ad829a	ad829j
ad829s	ad830	ad830a	ad830j	ad830s
ad840	ad840j	ad840k	ad840s	ad843
ad843a	ad843b	ad843j	ad843k	ad843s
ad844	ad844a	ad844b	ad844s	ad845
ad845a	ad845b	ad845j	ad845k	ad845s

Table 101 Analog Model Names (Sheet 3 of 5)

ad846	ad846a	ad846b	ad846s	ad847
ad847a	ad847j	ad847s	ad848	ad848a
ad848j	ad848s	ad9617	ad9618	ad9621
ad9622	ad9623	ad9624	ad9630	adg411
adg411b	adg411t	adg412	adg412b	adg412t
adg413	adg413b	adg413t	amp01	amp02
buf04	mat02	mat03	mat04	mlt04
mlt04g	op160	ор160а	op160f	op160g
op176	op176g	op177	ор177а	op177b
op177e	op177f	op177g	op20	op200
op200a	op200e	op200f	op200g	op20b
op20c	op20f	op20g	op20h	op21
op213	op215	op215a	op215b	op215c
op215e	op215f	op215g	op21a	op21e
op21f	op21g	op21h	op220	op220a
op220c	op220e	op220f	op220g	op221
op221a	op221b	op221c	op221e	op221g
op249	op249a	op249e	op249f	op249g
op260	op27	op275	op275g	op27a
op27b	op27c	op27e	op27f	op27g
op282	op282g	op283	op285	op285g
op290	op290a	op290e	op290f	op290g

Table 101 Analog Model Names (Sheet 4 of 5)

op292	op295	op297	ор297а	op297e
op297f	op297g	op37	op37a	op37b
op37c	op37e	op37f	op37g	op400
op400a	op400e	op400f	op400g	op400h
op41	op41a	op41b	op41e	op41f
op41g	op42	op420	op420b	op420c
op420f	op420g	op420h	op421	op421b
op421c	op421f	op421g	op421h	op42a
op42e	op42f	op42g	op43	op43a
op43b	op43e	op43f	op43g	op44
op467	op467g	op470	op482	op482g
op490	op490a	op490e	op490f	op490g
op492	op497	ор497а	op497b	op497c
op497f	op497g	op61	op64	op77
op77a	op77b	op77e	op77f	op77g
op80	op80b	op80e	op80f	op80g
op90	op90a	op90e	op90f	op90g
op97	op97a	op97e	op97f	pm1012
ref01	ref01a	ref01c	ref01e	ref01h
ref02	ref02a	ref02c	ref02d	ref02e
ref02h	ref05	ref05a	ref05b	ref10

Table 101 Analog Model Names (Sheet 5 of 5)

ref10a	ref10b	ssm2017	ssm2017p	ssm2131
ssm2210	ssm2220			

Behavioral Device Models

Required element syntax: Xyyyyy in- in+ out vcc vee modelname

- Search path: \$installdir/parts/behave
- Optional parameters: vos=value, ibos=value, av=value

Table 102 Behavioral Model Names

ad4bit	ad8bit	alf155	alf156	alf157
alf255	alf347	alf351	alf353	alf355
alf356	alf357	alf3741	alm101a	alm107
alm108	alm108a	alm111	alm118	alm124
alm124a	alm139a	alm1458	alm1558	alm158
alm158a	alm201a	alm207	alm208	alm208a
alm224	alm258	alm258a	alm2901	alm2902
alm2904	alm301a	alm307	alm308	alm308a
alm318	alm324	alm3302	alm339	alm358
alm358a	alm725	alm741	alm747	alm747c
amc1458	amc1536	amc1741	amc1747	ane5534p
anjm4558	anjm4559	anjm4560	aop04	aop07
aop14	aop15b	aop16b	at094cns	atl071c
atl072c	atl074c	atl081c	atl082c	atl084c

Table 102 Behavioral Model Names (Continued)

atl092cp	atl094cn	aupc1251	aupc358	ga201
rcfilt	tline			

Bipolar Transistor Models

Required element syntax: Xyyyy coll base emit modelname

- Search path: \$installdir/parts/bjt
- Optional parameters: betaf=value, tauf=value

Table 103 Bipolar Transistor Model Names

t2n1132a	t2n2102	t2n2219a	t2n2222	t2n2222a
t2n2369	t2n2369a	t2n2501	t2n2605	t2n2642
t2n2857	t2n2894	t2n2904	t2n2904a	t2n2905
t2n2905a	t2n2906	t2n2907	t2n2907a	t2n2945a
t2n3013	t2n3227	t2n3250	t2n3250a	t2n3251
t2n3251a	t2n3467	t2n3501	t2n3546	t2n3637
t2n3742	t2n3743	t2n3866	t2n3904	t2n3906
t2n3946	t2n3947	t2n3962	t2n4261	t2n4449
t2n5058	t2n5059	t2n5179	t2n6341	t2n6438
t2n706	t2n708	t2n869	t2n869a	t2n918
t2n930	t2sa1015	t2sa950	t2sa965	t2sa970
t2sc1815	t2sc1923	t2sc2120	t2sc2235	t2sc2669
tmps6595	tne741	tne901		

Diode Models

Required element syntax: Xyyyyy anode cathode modelname

Search path: \$installdir/parts/dio

Optional parameters: isat=value, tt=value

Table 104 Diode Model Names (Sheet 1 of 4)

d12bg11	d12bh11	d12dg11	d12dh11	d12fg11
d12fh11	d12gg11	d12gh11	d12jg11	d12jh11
d1n3016	d1n3017	d1n3018	d1n3019	d1n3020
d1n3021	d1n3022	d1n3023	d1n3024	d1n3025
d1n3026	d1n3027	d1n3028	d1n3029	d1n3030
d1n3031	d1n3032	d1n3033	d1n3034	d1n3035
d1n3036	d1n3037	d1n3038	d1n3039	d1n3040
d1n3041	d1n3042	d1n3043	d1n3044	d1n3045
d1n3046	d1n3047	d1n3048	d1n3049	d1n3050
d1n3051	d1n3821	d1n3822	d1n3823	d1n3824
d1n3825	d1n3826	d1n3827	d1n3828	d1n3829
d1n3830	d1n4001	d1n4002	d1n4003	d1n4004
d1n4005	d1n4006	d1n4007	d1n4148	d1n4149
d1n4150	d1n4370	d1n4371	d1n4372	d1n4446
d1n4447	d1n4448	d1n4449	d1n4728	d1n4729
d1n4730	d1n4731	d1n4732	d1n4733	d1n4734
d1n4735	d1n4736	d1n4737	d1n4738	d1n4739
d1n4740	d1n4741	d1n4742	d1n4743	d1n4744

Table 104 Diode Model Names (Sheet 2 of 4)

d1n4745	d1n4746	d1n4747	d1n4748	d1n4749
d1n4750	d1n4751	d1n4752	d1n4753	d1n4754
d1n4755	d1n4756	d1n4757	d1n4758	d1n4759
d1n4760	d1n4761	d1n4762	d1n4763	d1n4764
d1n5221	d1n5222	d1n5223	d1n5224	d1n5225
d1n5226	d1n5227	d1n5228	d1n5229	d1n5230
d1n5231	d1n5232	d1n5233	d1n5234	d1n5235
d1n5236	d1n5237	d1n5238	d1n5239	d1n5240
d1n5241	d1n5242	d1n5243	d1n5244	d1n5245
d1n5246	d1n5247	d1n5248	d1n5249	d1n5250
d1n5251	d1n5252	d1n5253	d1n5254	d1n5255
d1n5256	d1n5257	d1n5258	d1n5259	d1n5260
d1n5261	d1n5262	d1n5263	d1n5264	d1n5265
d1n5266	d1n5267	d1n5268	d1n5269	d1n5270
d1n5271	d1n5272	d1n5333	d1n5334	d1n5335
d1n5336	d1n5337	d1n5338	d1n5339	d1n5340
d1n5341	d1n5342	d1n5343	d1n5344	d1n5345
d1n5346	d1n5347	d1n5348	d1n5349	d1n5350
d1n5351	d1n5352	d1n5353	d1n5354	d1n5355
d1n5356	d1n5357	d1n5358	d1n5359	d1n5360
d1n5361	d1n5362	d1n5363	d1n5364	d1n5365
d1n5366	d1n5367	d1n5368	d1n5369	d1n5370

A: Finding Device Libraries Diode Models

Table 104 Diode Model Names (Sheet 3 of 4)

d1n5371	d1n5372	d1n5373	d1n5374	d1n5375
d1n5376	d1n5377	d1n5378	d1n5379	d1n5380
d1n5381	d1n5382	d1n5383	d1n5384	d1n5385
d1n5386	d1n5387	d1n5388	d1n5817	d1n5818
d1n5819	d1n5913	d1n5914	d1n5915	d1n5916
d1n5917	d1n5918	d1n5919	d1n5920	d1n5921
d1n5922	d1n5923	d1n5924	d1n5925	d1n5926
d1n5927	d1n5928	d1n5929	d1n5930	d1n5931
d1n5932	d1n5933	d1n5934	d1n5935	d1n5936
d1n5937	d1n5938	d1n5939	d1n5940	d1n5941
d1n5942	d1n5943	d1n5944	d1n5945	d1n5946
d1n5947	d1n5948	d1n5949	d1n5950	d1n5951
d1n5952	d1n5953	d1n5954	d1n5955	d1n5956
d1n746	d1n747	d1n748	d1n749	d1n750
d1n751	d1n752	d1n753	d1n754	d1n755
d1n756	d1n757	d1n758	d1n759	d1n914
d1n957	d1n958	d1n959	d1n960	d1n961
d1n962	d1n963	d1n964	d1n965	d1n966
d1n967	d1n968	d1n969	d1n970	d1n971
d1n972	d1n973	d1n974	d1n975	d1n976
d1n977	d1n978	d1n979	d1n980	d1n981
d1n982	d1n983	d1n984	d1n985	d1n986

Table 104 Diode Model Names (Sheet 4 of 4)

d1s1585	d1s1586	d1s1587	d1s1588	d1sv147
d1sv149	dmbr115p	dmbr120p	dmbr130p	dmbr140p
dsk4a3				

JFET and MESFET Models

Required element syntax: Xyyyy drain gate source modelname

- Search path: \$installdir/parts/fet
- Optional parameters: vt = value, betaf = value

Table 105 FET Model Names

J108	J109	J110	J111	J112
j113	j2n3330	j2n3460	j2n3824	j2n4391
j2n4392	j2n4393	j2n4856	j2n4857	j2n5457
j2n5458	j2n5459	j2n5460	j2n5461	j2n5462
j2n5463	j2n5465	j309	j511	j557
jsj74	jsk170	m2n6755	m2n6756	m2n6757
m2n6758	m2n6759	m2n6760	m2n6761	m2n6762
m2n6763	m2n6764	m2n6765	m2n6766	m2n6767
m2n6768	m2n6769	m2n6770	m2n6787	m2n6788
m2n6789	m2n6790	m2n6791	m2n6792	m2n6793
m2n6794	m2n6795	m2n6796	m2n6797	m2n6798
m2n6799	m2n6800	m2n6801	m2n6802	mbuz10
mbuz20	mbuz23	mbuz24	mbuz32	mbuz35

A: Finding Device LibrariesJFET and MESFET Models

Table 105 FET Model Names (Continued)

mbuz36	mbuz42	mbuz45	mbuz46	mbuz60
mbuz63	mbuz64	mbuz71	mbuz72a	mbuz74
mbuz76	mirf120	mirf121	mirf122	mirf123
mirf130	mirf131	mirf132	mirf133	mirf140
mirf141	mirf142	mirf143	mirf150	mirf151
mirf152	mirf153	mirf220	mirf221	mirf222
mirf223	mirf230	mirf231	mirf232	mirf233
mirf240	mirf241	mirf242	mirf243	mirf250
mirf251	mirf252	mirf253	mirf320	mirf321
mirf322	mirf323	mirf330	mirf331	mirf332
mirf333	mirf340	mirf341	mirf342	mirf343
mirf350	mirf351	mirf352	mirf353	mirf420
mirf421	mirf422	mirf423	mirf430	mirf431
mirf432	mirf433	mirf440	mirf441	mirf442
mirf443	mirf450	mirf451	mirf452	mirf453
mirf510	mirf511	mirf512	mirf513	mirf520
mirf521	mirf522	mirf523	mirf530	mirf531
mirf532	mirf533	mirf540	mirf541	mirf542
mirf543	mirf610	mirf611	mirf612	mirf613
mirf620	mirf621	mirf622	mirf623	mirf630
mirf631	mirf632	mirf633	mirf640	mirf641
mirf642	mirf643	mirf710	mirf711	mirf712

Table 105 FET Model Names (Continued)

mirf713	mirf720	mirf721	mirf722	mirf723
mirf730	mirf731	mirf732	mirf733	mirf740
mirf741	mirf742	mirf743	mirf810	mirf811
mirf812	mirf813	mirf820	mirf821	mirf822
mirf823	mirf830	mirf831	mirf832	mirf833
mirf840	mirf841	mirf842	mirf843	mirf9020
mirff110	mirff111	mirff112	mirff113	mirff120
mirff121	mirff122	mirff123	mirff130	mirff131
mirff132	mirff133	mirff210	mirff211	mirff212
mirff213	mirff220	mirff221	mirff222	mirff223
mirff230	mirff231	mirff232	mirff233	mirff310
mirff311	mirff312	mirff313	mirff320	mirff321
mirff322	mirff323	mirff330	mirff331	mirff332
mirff333	mirff430	mirff431	mirff432	mirff433

A: Finding Device LibrariesJFET and MESFET Models

Index

A	behavioral device models 278
A model parameter 26	beta degradation 129
AB model parameter 61	BiCMOS
ACM 78	circuits 126
model parameter 78	devices 126
parameter equations 94	bidirectional circuits, wire RC model 8
ALPHA model parameter 26	BJT Level 10 228
•	charges 240
analog device models 274	circuit schematics 233
analysis, noise 179	current 237
area calculation method See ACM	depletion capacitance 245
JFETs and MESFETs	equations 236
equations 94–96	noise equations 243
units 94, 95	operating point 234
AREA capacitor parameter 36	series resistance 243, 244
	temperature 244, 245
В	transistor process parameters 229
	BJT Level 9, syntax 220
base	BJTs
charge equations 158	base
collector capacitance 161	charge equations 158
resistance equations 159	push-out effects 172
base-collector	width modulation model parameters 129
charge 259, 260, 261	base-collector
depletion charge 259	depletion capacitance equations 161
diffusion charge 259	diffusion capacitance equations 161 base-emitter
base-collector diode 254	depletion capacitance equations 160
base-collector junction 129	diffusion capacitance equations 160
base-emitter	beta
capacitance equations 159	degradation 129
charge 256	temperature equations 166–169
depletion charge 256	capacitance temperature equations 169
diffusion charge 257	conductance 144, 145
junction 129	current equations 156
base-emitter diode 254	DC models 129
basic model parameters	equations 156
JFETs TOM model 112	narameters 129

energy gap temperature equations 166	compensation equations 166
equations 155	effect parameters 138
equivalent circuits 143, 144	parasitic resistor 172
excess phase equation 164	saturation equations 167
geometric 129	transit time 130
high current Beta degradation parameters 129	model parameters 129
junction capacitance	variable base resistance equations 159
equations 162	breakdown current 255
model parameters 129	bulk semiconductor devices 76
junction capacitor 130	BULK wire model parameters 10
LEVEL 2 model parameters 129	BUS wire RC model 8
temperature equations 172	BV diode model parameter 33
LEVEL 4, model parameters 180–185	BYPASS option 34, 77, 129
LEVEL 8 HICUM	5117.00 opuon 6 1, 77, 120
parameters 209	С
LEVEL 8, HiCUM 203	capacitance
low current Beta degradation parameters 129	base collector 161
.MODEL statement 127	DCAP 35, 127
models	DCCAP 35, 127
constants (table) 85, 153	diode, Fowler-Nordheim 73
convergence 127	distribution for wire RC model 9
names 127	effective 18
parameters 129, 180–185	equations
quasi-saturation 172	BJTs 160, 161, 162
statement 127	depletion 54
transistor 279	diffusion 54
variables (table) 151	diode 54
noise 130	metal and poly 55
equations 164	GMIN 127
model parameters 129	GMINDC 127
summary printout 165	input-output ratio 9
npn identifier 127	JFETs 80
parasitic capacitance 130	JFETs and MESFETs 79, 96–100
parasitics	CAPOP=2 parameters 99
capacitance model parameters 129	equations 80
resistance model parameters 129	gate to drain 79
resistor temperature equations 172	· ·
pnp identifier 127	source to gate 79
quasi-saturation model 172	junction, internal collector 162 model 16
resistor 130	
saturation temperature equations 166–169	parameters 16
scaling 143	parameters 16
subcircuits, scaled 176	BJTs 129
substrate	junction 41
capacitance equations 163	parasitic 9, 129
current equation 157	substrate 163
temperature	temperature 19
capacitance equations 169	equations 19

BJTs 169	convergence 34
VBIC99 226	setting 33
wire, equations 13	convergence
capacitance equations, TOM3 116	BJT model 127
capacitor	JFETs and MESFETs 80
BJT 130	problems
DC sweep evaluation 159	diodes 34
device	core
equations 17	Jiles-Atherton 20
model 16	ferromagnetic 25
element 16	model parameters 22
equation selector option 34	magnetic 20
equations 80	element output 22
models, SPICE 79	model parameters 21
parameters	model parameters 22
junction 129	A 26
metal and poly 41	ALPHA 26
temperature, equations 15	MS 25
CAPOP model parameter 78	current
charge	BJT Level 10 237
base-collector 259, 260, 261	breakdown 255
base-emitter 256	collector 253
substrates 261	convention BJTs 144
VBIC99 226	JFETs 81
charge stoarge, HBT model 256	diodes 45
charges, BJT Level 10 240	epitaxial 174
circuit schematics	HBT model 253
BJT Level 10 233	
HBT model 263	Curtice model 77, 92, 93
circuits	_
BiCMOS 126	D
BJT 143, 144	DC
ECL 126	BJT 129
TTL 126	equations
CJBR model parameter 63	JFETs and MESFETs 101–103
CJGR model parameter 63	equations, BJTs 156
CJSR model parameter 63	parameters JFETs
collector current 253	LEVEL 1 91
collector diode, substarte 255	
collector-substrate junction 129	LEVEL 2 91–92
conductance	LEVEL 3 91–94
BJTs 144, 145	DC equations, TOM3 114
diodes 46	DC model, JFET Level 8 119
GMIN 35	DC operating point, BJT Level 10 234
GMINDC 35	DCAP 34, 127
JFETs 80	equation selector 127
JFETs and MESFETs 79, 82	option 34
control options ??-79	JFETs and MESFETs

capacitance 79	DC equations 51
models 80	equations 50
overriding in BJTs models 127	geometric 32
DCCAP 34, 127	model 36
option 34, 159	capacitance parameters 41
JFETs and MESFETs capacitance 79	DC parameters 37
depletion	parameters 37
capacitance	temperature 47
DCAP equation selector 34, 80, 127	Junction Cap Model 59
equations 54	metal model capacitance parameters (table) 41
depletion capacitance, BJT Level 10 245	models 280
depletion charge	define 45
base-collector 259	levels 33
base-emitter 256	noise parameters (table) 41
device	regions 51
capacitor, equations 17	statements 33
inductor, equations 23	using 31
dielectric constant 13	variables (table) 50
thickness, wire model parameters 11	noise equations 55
·	nongeometric junction 32
diffusion capacitance equations 54 diffusion charge	nonvolatile memory 31
base-collector 259	poly model capacitance parameters (table) 41
base-emitter 257	scaling
diodes	options 34 parameters 43–45
barrier 31	Schottky, barrier 31
base collector 254	series resistance units 41
base emitter 254	temperature
capacitance 54	compensation equations 56
calculations 34	effects 47
equations 54	equations
depletion capacitance 54	breakdown voltage 57
diffusion capacitance 54	contact potential 57
LEVEL 3 metal 55	energy gap 56
LEVEL 3 poly 55	grading coefficient 59
Fowler-Nordheim 73	junction capacitance 58
collector 255	leakage current 56
conductance 46	resistance 59
control options 33	transit time 57
convergence problems 34	
current 45	types 32
DC parameters 88	Zener 31, 33 See also junction diodes
equations 50–59	DTA model parameter 61
Fowler-Nordheim diodes 73	DIA model parameter of
equivalent circuits 45, 45–47	_
Fowler-Nordheim 32, 72	E
equations 73	Ebers-Moll model 125, 128
junction 31	ECL

circuits 126	junction 50
devices 126	HBT model 253
effective capacitance calculation 18	inductor
effects, VBIC99 221	device 19, 23
element	temperature 24
capacitors 16	noise 104
linear inductors 19	BJTs 164
statements	junction diode 55
capacitor 16	resistor
linear inductor 19	device 8
subcircuits 4	model 12
element parameters	noise 14
capacitors 16–19	temperature 15
diodes 36	substrate current 157
AREA 43	temperature
M 43	BJTs 167
element statements, BJT 143	parasitic resistor 172
energy gap temperature equations	capacitance 19, 169
BJTs 166	compensation 56, 166
JFETs and MESFETs 108	inductor 24
epitaxial	JFETs and MESFETs 106
charge 175	variable
current source 174	definitions 50
equations	names 151
ACM parameters 94	names and constants 83
BJT Level 10 236	wire
BJTs	capacitance 13
DC models 156	resistance 12
noise 164	equivalent
parasitic resistor temperature 172	circuit
temperature 166, 167	BJTs 144
capacitance	JFETs 80, 81
depletion 54	MESFETs 80
diffusion 54	errors
diode 54	bulk node not specified 14
effective 18	negative slope for magnetization level 26
metal and poly 55	reference to undefined inductor 25
temperature 19, 169	example
capacitor 80	hysteresis 28
device 16, 17	parameter extraction 29
DC	subcircuit 4
JFETs and MESFETs 101	examples
junction 51	HBT model 264
device	VBIC99 228
capacitor 17	excess phase 164
inductor 23	
diodes	F
capacitance 54	•
Fowler-Nordheim 73	ferromagnetic core 20 model 25

field effect transistor, models 283	hysteresis, Jiles-Atherton example 28
Fowler-Nordheim diodes 32, 35	
capacitances 73	I
equations 73	IKF model parameter 126
model parameters 72	IKR model parameter 126
using 72	implementation, VBIC99 221
frequency, low model parameters 128	improved effects, VBIC99 221
G	inactive devices See latent devices
gate capacitance	inductance
diode DC parameters, JFETs 88–89	mutual 24
equations, JFETs and MESFETs 96–100	temperature equation 24
parameters	inductors
JFETs 88–91	core models 20
temperature equations, JFETs and MESFETs	coupling 24
109	device
gate capacitance model, JFET Level 8 120	equations 23
geometric model parameter 129	model 19
geometry	linear 19
ACM 94	branch relations 25
JFETs and MESFETs parameters 80	temperature, equation 24
SCALE 35	insulation breakdown devices 72
SCALM 35	
substrate diode 155	J
global scaling, overriding 34, 81	JFET Level 7 113
GMIN 34, 127	JFET Level 8 119
option 79	DC model 119
GMINDC 34, 127	example 122
option, JFETs and MESFETs conductance 79	gate capacitance model 120
GRAMP conductance option 79	noise model 122
Gummel-Poon model 125, 172	parameters 119
	JFETs
Н	capacitance
HBT model 246	equations 80, 96
charge storgae 256	parameters 99
circuit schematics 263	CAPOP=2 model parameters 99
current 253	convergence 80
equations 253	current convention 81
example 264	DC model
noise 262	equation selector 86 LEVEL 1 parameters 91
parameters 248	LEVEL 1 parameters 91–92
temperature 246	LEVEL 2 parameters 91–92
UCSD 246	voltage equations 101
HiCUM model	equivalent circuits 80, 81
BJT level 13 265	gate
BJT level 8 203	capacitance parameters 88–91
HiCUM model, BJT parameters 209	diode DC parameters 88–89
•	•

model	Silicon diffused 31
constants 83	temperature 47
names 86	modeĺ
parameters 86, 87	parameters 37
specifying 77	statement 36
statements 86	parameters
variables 83	setting
n-channel specification 86	capacitance 41
noise	DC LEVEL 1 and 3 37
equations 104	Junction Cap Model 59
parameters 104	Junction diode, ON/OFF 67
summary printout 105	
output conductance 82	K
overview 76	
p-channel specification 86	K model parameters 27
scaling 80 temperature	_
equations 106, 108–111	L
parameters 106	L capacitor parameter 36
TOM model parameters 112	latency option 34, 77, 129
transconductance 82	latent devices
Jiles-Atherton	BYPASS option 34, 77, 129
example	bypassing 34, 77, 129
hysteresis 28	LEVEL
parameter extraction 29	diode parameter 33
model 20, 25	model selector 77
parameters 22	Level 10 228
JSDBR model parameter 62	charges 240
JSDGR model parameter 62	circuit schematics 233
JSDSR model parameter 62	current 237
JSGBR model parameter 62	depletion capacitance 245
JSGGR model parameter 62	equations 236
JSGSR model parameter 62	noise equations 243
Juncap diode	operating point 234
electrical variable 65	series resistance 243, 244
leakage 69	temperature 244, 245
Juncap diodes	transistor process parameters 229
equations 65	Level 11 model 246
model parameters 61	Level 7 113
junction	Level 8 119
capacitance 130	DC model 119
capacitor parameters 129	example 122
DC 51	gate capacitance model 120
diodes	noise model 122
element parameters 36 equations 50	parameters 119
geometric 35	LG model parameter 61
nongeometric 35	libraries
parameters 36	device 273
paramotoro oo	listings 274

Index

Μ

LM capacitor parameter 35	mobility temperature equations, JFETs and MESFETs 111
low-frequency large-signal characteristics 128	model parameters
LP capacitor parameter 35	BJT level 13
LS model parameter 61	Level 13, HiCUM 267
	BJT level 8
M	Level 8, HiCUM 209
M	BJTs ??-136
capacitor parameter 36	base width modulation 129
element parameter 43	beta degradation 128
magnetic core 20	high current Beta degradation 129
element outputs 22	junction capacitance 129
models	LEVEL 2 129
ferromagnetic core 25	low current Beta degradation 129
names 20	model name 127
parameters 21, 22	noise 129
saturable core 20	parasitics
statement 20	capacitance 129
outputs (table) 22	resistance 129
Materka model 119	temperature
MBYPASS option 34, 77, 129	effects 138–143
MESFETs	parameters 137
capacitance equations 80, 96	transistor 127
CAPOP=2 model parameters 99	transit time 129
control options 79	BV 33
convergence 80	capacitance 16
DC	DCAP 80
model equation selector 86	diodes 36
voltage equations 101	junction 36, 37
equivalent circuits 80	AREA 38
models	BV 40
constants 83 names 86	capacitance 41
	DC 38–40
parameters 86, 87 specifying 77	diodes
statements 86	
variables 83	model 36, 39
n-channel specification 86	LEVEL 36, 39
noise	model names 36
equations 104	level 33
parameters 104	noise 42
summary printout 105	scaling 44
overview 76	temperature 48–50
p-channel specification 86	Ebers-Moll 128
scaling 80	Fowler-Nordheim diodes 72
temperature	geometry, JFETs and MESFETs 80
equations 106, 108–111	IKF 126
metal and poly capacitance equations 55	IKR 126
	JFETs 99–100, ??–104, 113

ACM 94	diode 33
capacitance 99	define 45
DĊ	junction 36
LEVEL 1 91	scaling 43
LEVEL 2 91–92	statements 33
LEVEL 3 91–94	Ebers-Moll 125, 128
gate capacitance 88–91	ferromagnetic cores 25
gate diode DC 88–89	Gummel-Poon 125
noise 104	HBT 246
temperature 106–108	JFETs and MESFETs
JFETs and MESFETs 87	capacitor 79
DCAP 80, 96	DC models 75
GMIN 80	Jiles-Atherton core 25
LEVEL 86	junction
level selector 77	parameters 37
NIF 86	statement 36
PIF 86	Level 11 246
See also model parameters, JFETs or model	magnetic core 20
parameters, MESFETs	National Semiconductor 73, 176
magnetic cores 21–23	parameters, Fowler-Nordheim 72
MEŠFETs	passive device 7
noise 104	quasi-saturation 172
See also model parameters, JFETs	resistor equations 12
metal and poly capacitors 42	scaling, diode 43
SUBS 126	selecting 77
TOM model 112	SPICE capacitor 79
wire models 9, 10–11	Statz 77
table 12	subcircuit MULTI 4
.MODEL statement 35	transient 129
BJTs 127	VBIC bipolar transistor 178
capacitance 16	VBIC99 219
diode junction 36	wire
ferromagnetic cores 20	parameters 10
magnetic core 20	RC 8
wire RC 8	MS model parameter 25
.MODEL statements and MESFETs 86	MULTI 4
models	multiply parameter 4
ACM selector 78	mutual inductor coupling coefficient 24
BJTs	
HiCUM 203	N
quasi-saturation 172	
statement 127	National Semiconductor model 176
capacitance 16	converting 73
capacitors, model selector 78	NB model parameter 62
Curtice 77	NG model parameter 62
device	noise
capacitor 16	analysis 179
inductor 19	BJTs 130
resistor 8	equations

BJTs 164	capacitor
JFETs and MESFETs 104	junction 129
junction diode 55	metal and poly 41
resistor 14	DC model 128
HBT model 262	Ebers-Moll 128
JFETs and MESFETs	extraction example 29
equations 104	HBT model 248
summary printout 105	high-current beta degradation 129
parameters 41, 129	JFET Level 8 119
BJTs 129	junction
resistor 14	capacitor 129
equation 14	diode 36
thermal 14	setting
VBIC99 227	capacitance 41
noise equations, BJT Level 10 243	DC LEVEL 1 and 3 37
noise model, JFET Level 8 122	limit checking
	capacitor device 17
nonvolatile memory diodes 31	magnetic core 23
notes for VBIC99 220	low-current beta degradation 129
NS model parameter 62	model
	BJT LEVEL 2 129
0	Fowler-Norheim 72
	Jiles-Atherton core 22
ON/OFF Condition 67	Juncap 61
operating point, BJT Level 10 234	junction 37
OPTION	magnetic core 21
DCAP 34, 127	wire 10
DCCAP 34	noise 41
GMIN 34, 127	BJTs 129
GMINDC 34, 127	resistance 129
GRAMP 127	temperature, JFETs and MESFETs 106
MBYPAS 34, 77, 129	TOM3 117
SCALE 34, 43	transient model 129
SCALM 34, 43	transistor process 229
SHRINK 43	transit time 129
options	VBIC 178
control, setting 33	VBIC99 222
convergence 34	parasitic
output	capacitance 129
magnetic core 22	BJT parameters 129, 130
LX1 - LX7 23	RC wire model 9
	resistance
P	parameters, BJTs 129
.PARAM statement 4	temperature equations
parameters	BJTs 172
AREA 36	JFETs and MESFETs 111
base width 129	
BJT LEVEL 2 129	passive device models 7
capacitance 16	PB model parameter 63
capacitatice 10	PG model parameter 63

Phillips MODELLA 228	SCALM 34
PJ capacitor, parameter 36	option 12, 18, 34, 43
PS model parameter 63	JFETs and MESFETs scaling 79
•	parameter in a diode model statement 34
Q	schematics
	BJT Level 10 233
Qbci 259	HBT mode 263
Qbcj 259	Schottky barrier diodes 31
Qbcm 259	self-heating, VBIC99 228
Qbcx 260	series resistance, BJT Level 10 243, 244
Qbcxx 261	SHRINK
Qbediff 257	model parameter 12, 18
Qbej 256	option 43
Qcs 261	SPICE
quasi-saturation BJT model 172	compatibility 94
	depletion capacitor model 79
D	statements
R	call subcircuit 4
RC wire model 8	model 7
resistance parameters 129	BJTs 127
resistor	junction 36
BJTs 130	X 4
device model 8	Statz model 76, 77, 93
model equations 12	capacitance equations 99
noise 14	storing charges 256
equation 14	subcircuits
temperature 15	BJTs 176
equations 15	call statement 4
wire model parameters 12	calling 3
	element names 4
S	model names 4
saturable core models 20	multiply parameter 4 node names 4
saturation	parameter 4
current temperature equations, JFETs and	•
MESFETs 109	SUBS model parameter 126 substrate
temperature equations, BJTs 166	capacitance equations 163
SCALE 34	current equations 157
option 12, 18, 34, 43	diodes 143
scale	substrates
diode parameters 44	charge 261
JFETs and MESFETs 79	collector diode 255
parameters 80	syntax, BJT Level 9 220
scaling	Syritax, Bor Level 5 225
BJTs 143	-
diode model 43	Т
global vs model 34	temperature
JFETs 80	BJT Level 10 244, 245
options 34	BJTs

beta equations 166–169	TOM3
capacitance equations 169	capacitance equations 116
energy gap equations 166	DC equations 114
LEVEL 2 equations 172	parameters 117
parameters 137	TOM3 model 113
parasitic resistor equations 172	TR model parameter 62
saturation equations 166–169	transconductance, JFETs and MESFETs 82
capacitor equations 15	transient
compensation	lateral 146
equations 56	vertical 147
diodes 47	transistor process parameters
effect parameters	BJT Level 10 229
BJTs 138	transistors
junction diodes 47	BJTs
equations	AC analysis 148, 149
BJTs 166	AC noise analysis 150, 151
LEVEL 2 172	transient analysis 146, 147
breakdown voltage 57	lateral 148, 150, 155
capacitance 58	geometry 155, 174
contact potential 57	substrate diodes 143
energy gap 56	geometry 155
FJET's and MESFETs 106	vertical 149, 151, 155
grading coefficient 59	geometry 155, 173
leakage 56	VBIC 178
resistance 59	transit time
resistor 15	BJTs 130
transit time 57	parameters 129
HBT model 246	TriQuint model 76
inductor 24	extensions 111
JFETs	LEVEL 3 parameters 112
equations 106, 108–111	See also TOM model
TLEV parameter 106	TriQuint TOM3 113
TLEVC parameter 106	TTL
junction diodes 47	circuits 126
MESFETs equations 106, 108–111	devices 126
parameters 106	
JFETs 106	U
JFETs and MESFETs 106	UCSD, HBT model 246
reference	OCSD, FIBT Model 240
model parameters 11	
resistor equations 15	V
VBIC99 226	VB model parameter 62
thermal noise 14	VBIC
threshold temperature equations, JFETs and	model (vertical bipolar inter-company) 178
MESFETs 110	noise analysis 179
TOM model 111	parameters 178
LEVEL 3 parameters 112	VBIC99
parameters 112	capacitance 226
See also TriQuint model	charge 226

wire example 228 capacitance 13 implementation 221 model improved effects 221 effective length and width 12 noise 227 parameters 8, 12 notes 220 resistance calculation 12 parameters 222 model capacitance self-heating 228 calculation 13 temperature 226 distribution 9 VBIC99 model 219 model RC 8 VDBR model parameter 63 resistance 12 VDGR model parameter 63 WM capacitor parameter 35 VDSR model parameter 63 WP capacitor parameter 35 voltage, JFETs and MESFETs DC models 101 VR model parameter 62 X X statement 4 W **XCJC 261** W capacitor parameter 36 warnings Ζ capacitance too large 17, 24 invalid value for CRATIO 9 Zener diodes 33 IS parameter too small 39

resistance smaller than RESMIN 13

Index

Ζ