Lecture 12. Training Deep Networks & Autoencoders

COMP90051 Statistical Machine Learning

Lecturer: Dr Christine de Kock

This lecture

- Training DNNs
 - * SGD
 - * Regularisation
- Autoencoders
 - * Learning efficient coding
 - * Use in pre-training pipelines

Training DNNs

Techniques specific to non-convex objectives, largely based on gradient descent.

How to train your dragon network?

 You know the drill: Define the loss function and find parameters that minimise the loss on training data

Adapted from Movie Poster from Flickr user jdxyw (CC BY-SA 2.0)

 In the following, we are going to use stochastic gradient descent with a batch size of one. That is, we will process training examples one by one

Example: univariate regression

- Consider regression
- Moreover, we'll use identity output activation function

$$z = h(s) = s = \sum_{j=0}^{p} u_j w_j$$

 This will simplify description of backpropagation. In other settings, the training procedure is similar

Loss function for NNet training

- Need loss between training example $\{x, y\}$ & prediction $\hat{f}(x, \theta) = z$, where θ is parameter vector of v_{ij} and w_j
- As regression, can use squared error

$$L = \frac{1}{2} (\hat{f}(x, \theta) - y)^2 = \frac{1}{2} (z - y)^2$$

(the constant is used for mathematical convenience, see later)

- Decision-theoretic training: minimise L w.r.t $oldsymbol{ heta}$
 - * Fortunately $L(\theta)$ is differentiable
 - Unfortunately no analytic solution in general

Stochastic gradient descent for NNet

Choose initial guess $\boldsymbol{\theta}^{(0)}$, k=0

Here $oldsymbol{ heta}$ is a set of all weights form all layers

For i from 1 to T (epochs)

For j from 1 to N (training examples – could shuffle)

Consider example
$$\{x_j, y_j\}$$

Update:
$$\theta^{(k+1)} = \theta^{(k)} - \eta \nabla L(\theta^{(k)}); k \leftarrow k+1$$

$$L = \frac{1}{2} \left(z_j - y_j \right)^2$$

Need to compute partial derivatives $\frac{\partial L}{\partial v_{ij}}$ and $\frac{\partial L}{\partial w_{i}}$

Recap: Gradient descent vs SGD

- 1. Choose $\boldsymbol{\theta}^{(0)}$ and some T
- 2. For i from 0 to T-1

1.
$$\boldsymbol{\theta}^{(i+1)} = \boldsymbol{\theta}^{(i)} - \eta \nabla L(\boldsymbol{\theta}^{(i)})$$

3. Return $\widehat{\boldsymbol{\theta}} \approx \boldsymbol{\theta}^{(T)}$

$\theta^{(0)}$ = 0

Stochastic G.D.

- 1. Choose $\boldsymbol{\theta}^{(0)}$ and some T, k=0
- 2. For i from 1 to T
 - 1. For j from 1 to N (in random order)

1.
$$\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} - \eta \nabla L(y_i, \boldsymbol{x}_i; \boldsymbol{\theta}^{(k)})$$

- 2. k++
- 3. Return $\widehat{\boldsymbol{\theta}} \approx \boldsymbol{\theta}^{(k)}$

Wikimedia Commons. Authors: Olegalexandrov, Zerodamage

Mini-batch SGD

- SGD works on single instances
 - * high variance in gradients
 - many, quick, updates

- GD works on whole datasets
 - * stable update, but slow
 - * computationally expensive

- * process batches of size 1 < b < N, e.g., b = 100
- balances computation and stability
- parallelise over cluster of GPUs (size batch for GPU)

(non-)Convex objective functions

- Recall linear regression, convex 'Bowl shaped' objective
 - gradient descent finds a global optimum

 In contrast, most DNN objectives are not convex

 gradient methods get trapped in local optima or saddle points

Importance of learning rate

- Choice of η has big effect on quality of final parameters
- Each SGD step:

*
$$\boldsymbol{\theta}^{(i)} = \boldsymbol{\theta}^{(i-1)} - \eta \nabla L(\boldsymbol{\theta}^{(i-1)})$$

- Choosing η :
 - * Large η fluctuate around optima, even diverge
 - * Small η barely moves, stuck at local optima

Momentum as a solution

- Consider a ball with some mass rolling down the objective surface
 - velocity increases as it rolls downwards
 - * momentum can carry it past local optima
- Mathematically, SGD update becomes

*
$$\theta^{(t+1)} = \theta^{(t)} - v^{(t)}$$

*
$$\boldsymbol{v}^{(t)} = \alpha \boldsymbol{v}^{(t-1)} + \eta \nabla L(\boldsymbol{\theta}^{(t)})$$

- * α decays the velocity, e.g., 0.9
- Less oscillation, more robust

Adagrad: Adaptive learning rates

- Why just one learning rate applied to all params?
 - * some features (parameters) are used more frequently than others → smaller updates for common features vs. rare
- Adagrad tracks the sum of squared gradient perparameter, i.e., for parameter i

$$\begin{split} * & \boldsymbol{g}_i^{(t)} = \boldsymbol{g}_i^{(t-1)} + \boldsymbol{\nabla} L \big(\boldsymbol{\theta}^{(t)}\big)_i^2 \\ * & \boldsymbol{\theta}_i^{(t+1)} = \boldsymbol{\theta}_i^{(t)} - \frac{\eta}{\sqrt{\boldsymbol{g}_i^{(t)} + \epsilon}} \boldsymbol{\nabla} L \big(\boldsymbol{\theta}^{(t)}\big)_i \end{split}$$
 Typically
$$\boldsymbol{\epsilon} = 10^{-8}$$

$$\boldsymbol{\eta} = 0.01$$

No need to tune learning rate! But can be conservative

Adam

 Combining elements of momentum and adaptive learning rates

*
$$\mathbf{m}^{(t)} = \beta_1 \mathbf{m}^{(t-1)} + (1 - \beta_1) \nabla L(\mathbf{\theta}^{(t)})$$

* $\mathbf{v}^{(t)} = \beta_2 \mathbf{v}^{(t-1)} + (1 - \beta_2) \nabla L(\mathbf{\theta}^{(t)})^2$
* $\mathbf{\theta}^{(t+1)} = \mathbf{\theta}^{(t)} - \frac{\eta}{\sqrt{\mathbf{v}^{(t)}/_{1-\beta_2} + \epsilon}} \mathbf{m}^{(t)}/_{1-\beta_1}$
* $\beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}$ element-wise operations

 Good work-horse method, current technique of choice for deep learning

Zoo of optimisation algorithms

- Suite of batch-style algorithms, e.g., BFGS, L-BFGS, Conjugate Gradient, ...
- And SGD style:
 - Nesterov acc. grad.
 - * Adadelta
 - * AdaMax
 - * RMSprop
 - * AMSGrad
 - * Nadam
 - * Adam
 - * ...

 Lots of choice, and rapidly changing as deep learning matures

Mini summary

- Training DNNs
 - * SGD
 - * Mini batch SGD
 - * Momentum, Adagrad, Adam

Next: Regularising DNNs

Regularising Deep Nets

Best practices in preventing overfitting, a big problem for such high capacity and complex models.

Some further notes on DNN training

- DNNs are flexible (recall universal approximation theorem), but the flipside is over-parameterisation, hence tendency to overfitting
- Starting weights usually random distributed about zero
- Implicit regularisation: early stopping
 - * With some activation functions, this shrinks the DNN towards a linear model (why?)

Explicit regularisation

- Alternatively, an explicit regularisation can be used, much like in ridge regression
- Instead of minimising the loss L, minimise regularised function $L + \lambda \left(\sum_{i=0}^{m} \sum_{j=1}^{p} v_{ij}^2 + \sum_{j=0}^{p} w_j^2\right)$
- This will simply add $2\lambda v_{ij}$ and $2\lambda w_j$ terms to the partial derivatives (aka weight decay)
- With some activation functions (e.g. tanh / sigmoid) this also shrinks the DNN towards a linear model

Dropout

- Randomly mask fraction of units during training
 - different masking each presentation
 - promotes redundancy
 in network hidden
 representation (a form of
 regularization)

- * a form of ensemble of exponential space
- no masking at testing (requires weight adjustment)
- Results in smaller weights, and less overfitting
- Used in most SOTA deep learning systems

Mini summary

- Regularised training of (overparameterised) DNNs
 - Early stopping
 - Explicit L₂ regularisation / weight decay / shrinkage
 - * Dropout

Next: Autoencoders

Autoencoders

A DNN training setup that can be used for unsupervised learning, initialisation, or just efficient coding

Autoencoding idea

- Supervised learning:
 - * Univariate regression: predict y from x
 - * Multivariate regression: predict y from x
- Unsupervised learning: explore data $x_1, ..., x_n$
 - No response variable
- For each x_i set $y_i \equiv x_i$
- Train a NNet to predict y_i from x_i i.e., model p(x|x)
- Pointless?

Autoencoder topology

• Given data without labels $x_1, ..., x_n$, set $y_i \equiv x_i$ and train a DNN to predict $z(x_i) \approx x_i$

Set bottleneck layer u in middle "thinner" than

input, and/or

corrupt input xwith noise

regularise s.t.u is sparse

regularise to contract inputs

adapted from: Chervinskii at Wikimedia Commons (CC4)

Introducing the bottleneck

• Suppose you managed to train a network that gives a good restoration of the original signal $z(x_i) \approx x_i$

 This means that the data structure can be effectively described (encoded) by a lower dimensional

representation \boldsymbol{u}

adapted from: Chervinskii at Wikimedia Commons (CC4)

Under-/Over-completeness

- Manner of bottleneck gives rise to:
 - undercomplete: model with thinner bottleneck than input forced to generalise
 - overcomplete: wider bottleneck than input, can just "copy" input directly to output
- Even undercomplete models can learn trivial codes, given complex non-linear encoder and decoder
- Various methods to ensure learning

Dimensionality reduction

- Autoencoders can be used for
 - * compression
 - dimensionality reduction
 - unsupervised pre-training
 - finding latent feature space
 - ...via a non-linear transformation
- Related to principal component analysis (PCA)...

Principal component analysis

- Principal component analysis (PCA) is a popular method for dimensionality reduction and data analysis in general
- Given a dataset $x_1, ..., x_n, x_i \in \mathbb{R}^m$, PCA aims to find a new coordinate system such that most of the variance is concentrated along the first coordinate, then most of the remaining variance along the second (orthogonal) coordinate, etc.
- Dimensionality reduction is then based on discarding coordinates except the first l < m. Coordinates = axes of data = principal components

PCA: Solving the optimisation

- PCA aims to find principal component p_1 that maximises variance of data projected onto the PC, $p_1'\Sigma_X p_1$,
 - * Subject to $\|p_1\| = p_1'p_1 = 1$
 - * Have to first subtract the centre of the data from the data
- Constrained \rightarrow Lagrange mulitipliers. Introduce multiplier λ_1 ; set derivatives of Lagrangian to zero, solve
- $L = p_1' \Sigma_X p_1 \lambda_1 (p_1' p_1 1)$
- $\frac{\partial L}{\partial \boldsymbol{p}_1} = 2\boldsymbol{\Sigma}_X \boldsymbol{p}_1 2\lambda_1 \boldsymbol{p}_1 = 0$
- $\boldsymbol{\Sigma}_{X}\boldsymbol{p}_{1}=\lambda_{1}\boldsymbol{p}_{1}$
- Precisely defines p_1 as an eigenvector of covariance Σ_X with λ_1 being the corresponding eigenvalue

PCA vs Autoencoding

- If you use linear activation functions and only one hidden layer, then the setup becomes almost that of Principal Component Analysis (PCA)
 - * PCA finds orthonormal basis where axes are aligned to capture maximum data variation
 - NNet might find a different solution, doesn't use eigenvalues (directly)

Uses of Autoencoders

- Data visualisation & clustering
 - Unsupervised first step towards understanding properties of the data
- As a feature representation
 - * Allowing the use of off-the-shelf ML methods, applied to much smaller and informative representations of input
- Pre-training of deep models
 - Warm-starting training by initialising model weights with encoder parameters
 - In some fields like vision, mostly replaced with supervised pre-training on very large datasets

This lecture

- Training DNNs as optimisation
- Regularisation
- Autoencoders

Next: Convolutional neural networks