STATISTICAL BIASES OF SPECTRAL ANALYSIS WITH THE ON-OFF LIKELIHOOD STATISTIC

Lea Jouvin, Anne Lemière and Regis Terrier

ON-OFF spectral Analysis

Typical source observation covers wide range of observational parameters (e.g. efficiency, zenith, offset)

- Strong IRFs (Instrument Response Function) dependence with the observational parameters and energy → IRFs are calculated for each observation.
- Strong Background event distribution dependence with the observational parameters:
 - ON, OFF (reflected background) → background spectrum for each observation
- ▶ But Low counts → Maximum Likelihood (M.L.) method taking into account the Poissonian statistic
- ➤ Background: no satisfactory background model so far → marginalize the background ("profile likelihood"):
 - interest parameters: spectral model parameters
 - nuisance parameters: Background (from ON and OFF)

Motivation

> In order to keep all the information related to the observation conditions:

- → processes all the observations individually for the likelihood maximization
- →estimators of the number of events in the ON and OFF regions for each reconstructed energy bin.
- → <u>Issue:</u> Where there is as many nuisance parameters as observations: estimators can be inconsistent (i.e. do not converge to the right value even for an infinite number of observations)
- Observation grouping require to limit the number of nuisance parameters. How much grouping is needed to have negligible biases?
- ➤ To test the impact of observation grouping on the estimators biases → MC (Monte Carlo) tool that simulate ON & OFF spectra

MCs tool in the H.E.S.S. analysis framework

 For each observation (given set of observational parameters: zenith angle Z, offset θ and optical efficiency ϵ): simulation of the ON and OFF data.

For each run i and enrgy bin i:

Intrinsic source spectrum

• Signal:
$$\overline{S_{i,j}} = \Delta T \int\limits_{E_{m_i}}^{E_{m_{i+1}}} dE_m \int\limits_{E=0}^{\infty} \phi(E) A(E,Z_j,\theta_j,\epsilon_j) R(E,E_m,Z_j,\theta_j,\epsilon_j) dE$$

$$S_{i,j}=P(\overline{S_{i,j}})$$

MCs tool in the H.E.S.S. analysis framework

 For each run (given set of observational parameters: zenith angle Z, offset θ and optical efficiency ε): simulation of the ON and OFF data.

• Signal:
$$\overline{S_{i,j}} = \Delta T \int_{E_{m_i}}^{E_{m_{i+1}}} dE_m \int_{E=0}^{\infty} \phi(E) A(E, Z_j, \theta_j, \epsilon_j) R(E, E_m, Z_j, \theta_j, \epsilon_j) dE$$

Background:

$$\overline{B_{i,j}}_{E<1 \, TeV} = N_{OFFi,j} \qquad N_{OFFi,j} = \overline{B_{i,j}} \qquad (E < 1 TeV)
\overline{B_{i,j}}_{E>1 \, TeV} = \int_{E_i}^{E_{i+1}} \phi_j \times E^{-2.7} dE \qquad N_{OFFi,j} = P(\overline{B_{i,j}}) \quad (E > 1 TeV)$$

MC simulation for bright and faint sources

> 250h of observation with a large variation of the observational parameters

We generate 150 simulated spectra and apply each time the fitting procedure to these individual fake data

Distribution of the spectral index Γ fitted on 150 simulated spectra

Processes all the observations individually for the likelihood maximization

- Bright source: estimators consistent and not biased
- For faint sources: Necessity of spectral grouping to avoid inconsistency

15/04/2015 **7**

No grouping: Inconsistent estimators

- Several observations time: 24h, 50h, 100h, 150h
- Power-law: Γ =2.3 and ϕ_0 = 2% ϕ_{0Crab} *

Mean value of the adjusted parameters. distribution on the 150 simulated spectra.

Observations grouping

- The IRFs and OFF event distribution: large variations depending on the observational parameters
- The observation grouping combines the observations with similar observational conditions in various bands of zenith, offset and efficiency. `
- The maximization of the likelihood function is done band by band with this observations grouping option.

Without any observation grouping

Power-law (Γ =2.3) : impact of the differential flux normalization ϕ_0

Mean value of the adjusted parameters. distribution on the 150 simulated spectra.

Power-law with an exponential cutoff (Γ =2.3 and ϕ_0 =5% ϕ_{0Crab}): impact of the cutoff E_c

15/04/2015 **11**

Conclusion

- ON-OFF likelihood can lead to bias spectral parameters especially for faint sources.
- Combining the observations greatly improves the reconstruction of the spectral parameters.
- MC simulation is necessary to test the consistency of the fitted spectral parameters.
 - Spectral analysis package must provide the ability to fake a data set
- Using a hadronic background model remove this issue but introduce a systematic effect

15/04/2015 **12**

Thanks for your attention