1 Utilisation d'intégrales définies

Calculez les intégrales suivantes :

1.
$$\int_{x=0}^{\infty} x^3 \exp^{(-2x^2)} dx$$

2.
$$\int_{\theta=0}^{\infty} \frac{\exp^{(-5\theta)} - \exp^{(-\pi\theta)}}{\theta} d\theta$$

3.
$$\int_{r=0}^{\infty} r^n \exp^{(-1.902r)} dr$$

Calculez les intégrales suivantes en fonction de α :

1.
$$\int_{y=0}^{\infty} y^7 \exp^{(-\alpha y^2)} dy$$

$$2. \int_{\phi=0}^{\infty} \phi^5 \exp^{(-\alpha\phi^2)} d\phi$$

$$3. \int_{r=0}^{\infty} r^n \exp^{(-\alpha r)} dr$$

4.
$$\int_{r=0}^{\infty} \int_{\theta=0}^{\infty} \int_{\phi=0}^{\infty} \phi^5 \exp^{(-\alpha\phi^2)} r^n \exp^{(-\beta r)} \frac{\exp^{(-5\theta)} - \exp^{(-\pi\theta)}}{\theta} dr d\theta d\phi$$

Données :

$$\bullet \int_{t=0}^{\infty} t^{2n+1} \exp^{-at^2} dt = \frac{n!}{2a^{n+1}}$$

$$\bullet \int_{t=0}^{\infty} \frac{\exp^{-at} - \exp^{-bt}}{t} dt = \ln \frac{b}{a}$$

$$\bullet \int_{t=0}^{\infty} t^n \exp^{-at} dt = \frac{n!}{a^{n+1}}$$

2 Coordonnées sphériques

Le passage des coordonnées cartésiennes (x,y,z) aux coordonnées sphériques (r,θ,ϕ) se fait selon les formules suivantes :

- $x = r \sin \theta \cos \phi$
- $y = r \sin \theta \sin \phi$
- $z = r \cos \theta$
- $\bullet \ r = \sqrt{x^2 + y^2 + z^2}$
- $\phi = \arctan \frac{y}{x}$
- $\theta = \arccos \frac{z}{r}$

Soient les points suivants en coordonnées cartésiennes, calculez leur coordonnées sphériques :

- $M_x(1,0,0), M_y(0,1,0), M_z(0,0,1)$
- $P_{x,y}(1,1,0)$ $P_{x,z}(1,0,1)$ $P_{y,z}(0,1,1)$ et $P_{x,y,z}(1,1,1)$
- $Q_{x,y}(1,-1,0)$ $Q_{x,z}(1,0,-1)$ $Q_{y,z}(0,-1,1)$ et $Q_{x,y,z}(-1,-1,-1)$

Lesquels de ces points sont-ils sur la même sphère?

3 Soit un objet sphérique dont la densité massique ρ varie en fonction de r

En coordonnées sphériques (r,θ,ϕ) l'élément de volume sur lequel on intègre s'écrit $dV=r^2\sin(\theta)drd\theta d\phi$.

Calculez sa masse si :

- 1. $\rho(r) = 1$;
- 2. $\rho(r) = r^2$; r <= 3cm;
- 3. $\rho(r) = 5 r;$
- 4. $\rho(r) = 5 r^2$;
- 5. $\rho(r)=\exp^{(-\zeta r)}$ sachant que $\int_0^\infty x^n \exp^{-ax} dx = \frac{n!}{a^{n+1}};$
- 6. $\rho(r) = \exp^{(-\alpha r^2)}$ sachant que $\int_0^\infty x^2 \exp^{-ax^2} dx = \frac{\sqrt{\pi}}{4\sqrt{a}}$;

 $\rho(r)$ ne peut pas être négative.