6.S085 Statistics for Research Projects

IAP 2014

Lecture 6: January 28

Lecturer: Ramesh Sridharan and George Chen

Notes by: William Li

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Categorical Data

 $\begin{array}{cccc} & & \text{Outcome} \\ & & 1 & 2 \\ \text{Treatment} & 1 & \text{A} & \text{B} \end{array}$

2 C C (table of counts)

Start with inputs and outputs that are categorical

Usually look at two-way table (contingency table)

Risk: of an outcome for a treatment is proportional of data with tha outcome

"risk fo outcome 1 (cancer) for treatment 1 (smoking) is A/(A+B)"

Relative risk: $\frac{A/(A+B)}{C/(C+D)}$

Odds ratio: $\frac{A/B}{C/D}$

6.2 Simpson's Paradox

Data from two hospitals on a risky procedure

Live Die Survival Rate
Hospital A 80 120 40%
B 20 80 20%

Hospital B sees more patients than A

GOOD PATIENTS

Live Die Survival Rate
Hospital A 80 100 44%
B 10 10 50%

BAD PATIENTS

Simpson's paradox

Caused by confounding variable at play

6.3 Testing Significance of Categorical Data

We gathered data and avoided confounds.

Question:

Is there a relationship between input and output?

Are they not independent?

Null hypothesis: treatment and outcome are independent

Test:

$$\chi^2 = \sum_{\substack{entries}} \frac{(\text{observed-expected})^2}{observed}$$

Note: in above example, "hospital" is the treatment and live/die is the outcome

Expected counts for hospitals:

A: 2/3

B: 1/3

L: 1/3

D: 2/3

Expected:

This is how you compute expected counts for independence

Now, we can go back to the χ^2 formula

For hospital example, $\chi^2 = 12$

Lecture 6: January 28 6-3

This test statistic (χ^2) has a chi^2 distribution with (r-1)(c-1) degrees of freedom

We can look it up and see that the p-value is 0.0053; we can reject the null hypothesis that the treatments (hospitals) are independent from the outcome

6.3.1 Why is it χ^2

Each entry is binomial

If the entries are large enough and the samples are independent, each entry is approximately normal

AND the sum of squared standard Gaussians is χ^2

Key assumptions: "entries are large enough" and "samples are independent"

6.3.2 What if the entries are too small?

Fisher's exact test: Works for 2x2 tables

Permutation test

Fisher p-value: $p = \frac{\binom{A+B}{A}\binom{C+D}{C}}{\binom{N}{A+C}}$

Easy if entries are small

Monto Carlo approximation

Yates correction: substract .5 (makes approximation more accurate)

Recall:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

6.4 Categorical Inputs, Numerical Outputs

6.4.1 Vocabulary

Factor: categorical variable (e.g. color)

Level: value that the factor takes (e.g. "red")

6.4.2 ANOVA

Start with one factor, k levels

e.g. input data is color: red/blue/yellow

Data

MM color taste score

Recall, in linear regression:

$$y = X\beta + \epsilon$$

Now, let's have one predictor per level

$$R = (1, 0, 0)$$

$$B = (0, 1, 0)$$

$$Y = (0, 0, 1)$$

$$X = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

$$y = \begin{pmatrix} 8.1 \\ 8.0 \\ 2.1 \\ 0 \\ 1.9 \end{pmatrix}$$

fit linear regression with X,y to get β

$$\beta = \left(\begin{array}{c} 8.05\\ 2.0\\ 0 \end{array}\right)$$

Idea: use F-test ("how good is the model?")

$$SS_{total} = SS_{model} + SS_{error}$$

F-test: how well does the model explain \rightarrow ANOVA!

Is there a relationship between the input and the output?

The question you are asking: Do the categories predict the outcomes? (Not the difference in the categories)

Null hypothesis: $\beta_1 = \beta_2 = \dots = 0$

6.4.3 What assumptions are we making?

- \bullet errors independent \rightarrow data must be independent
- ullet errors must be normally distributed o data in each group must be normally distributed

 \bullet All errors have the same variance rightarrow all groups (categories) have the same variance (homoskedasticity)

$$\hat{\epsilon} = y - \hat{y}$$
 (residual)
 ϵ (error)

6.4.4 Two-Way ANOVA

Two input factors

Additive (no interaction)

$$X = \left(\begin{array}{cccccc} R & B & Y & sq & tr & st \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{array}\right)$$