

From automatic differentiation to message passing

Tom Minka Microsoft Research

What I do

Algorithms for probabilistic inference

Expectation Propagation

 Non-conjugate variational message passing

A* sampling

TrueSkill

Machine Learning Language

 A machine learning language should (among other things) simplify implementation of machine learning algorithms

Machine Learning Language

 A general-purpose machine learning language should (among other things) simplify implementation of all machine learning algorithms

Roadmap

- 1. Automatic Differentiation
- 2. AutoDiff lacks approximation
- 3. Message passing generalizes AutoDiff
- 4. Compiling to message passing

1. Automatic / algorithmic differentiation

Recommended reading

 "Evaluating derivatives" by Griewank and Walther (2008)

Programs are the new formulas

- Programs can specify mathematical functions more compactly than formulas
- Program is not a black box: undergoes analysis and transformation
- Numbers are assumed to have infinite precision

Multiply-all example

As formulas:

•
$$f = \prod_i x_i$$

•
$$df = \sum_{i} dx_{i} \prod_{j \neq i} x_{j}$$

Multiply-all example

Input program

$$f = \prod_{i} x_i$$

Derivative program

$$df = \sum_{i} dx_{i} \prod_{j \neq i} x_{j}$$

Phases of AD

- Execution
 - Replace every operation with a linear one
- Accumulation
 - Collect linear coefficients

Execution phase

Accumulation phase

dx*y + x*dy + dy*z + y*dz (Forward)

(Reverse)

coefficient of dx = 1*y

coefficient of dy = 1*x + 1*z

coefficient of dz = 1*y

Gradient vector = (1*y, 1*x + 1*z, 1*y)

Linear composition

$$e^*(a^*x + b^*y) + f^*(c^*y + d^*z)$$

$$(e^*a)^*x +$$

$$(e*b + f*c)*y +$$

$$(f*d)*z$$

Dynamic programming

 Reverse accumulation is dynamic programming

 Backward message is sum over paths to output

Source-to-source translation

- Tracing approach builds a graph during execution phase, then accumulates it
- Source-to-source produces a gradient program matching structure of original

Multiply-all example

Input program

Derivative program

$$dc[1] = dx[1]$$
for i = 2 to n
$$dc[i] = dc[i-1]*x[i] + c[i-1]*dx[i]$$
return dc[n]

Multiply-all example

Derivative program

Gradient program

General case

$$c = f(x,y)$$

dc = df1(x,y) * dx + df2(x,y) * dy

$$dxB = dcB * df1(x,y)$$

$$dyB = dcB * df2(x,y)$$

Fan-out

- If a variable is read multiple times, we need to add its backward messages
- Non-incremental approach: transform program so that each variable is defined and used at most once on every execution path

Fan-out example

Input program

Edge program

Gradient program

Summary of AutoDiff

	AD	Message passing
Programs not formulas	Yes	Yes
Graph structure / sparsity	Yes	Yes
Source-to-source	Yes	Yes
Only one execution path	Yes	Not always
Single forward-backward sweep	Yes	Not always
Exact	Yes	Not always

2. AutoDiff lacks approximation

Approximate gradients for big models

- Mini-batching
- User changes input program to be approximate, then computes exact gradient

$$\nabla \sum_{i=1}^{n} f_i(\theta) \approx$$

$$\nabla \frac{n}{m} \sum_{S \sim (1:n)} f_S(\theta) =$$

$$\frac{n}{m} \sum_{S \sim (1:n)} \nabla f_S(\theta) \qquad \text{(AutoDiff)}$$

Black-box variational inference

- 1. Approximate the marginal log-likelihood with a lower bound
- $\int p(x,D)dx \\ \ge -KL(q \mid\mid p)$

- 2. Approximate the lower bound by importance sampling
- 3. Compute exact gradient of approximation

AutoDiff in Tractable Models

- AutoDiff can mechanically derive reverse summation algorithms for tractable models
 - Markov chains, Bayesian networks (Darwiche, 2003)
 - Generative grammars, Parse trees (Eisner, 2016)
- Posterior expectations are derivatives of marginal log-likelihood, which can be computed exactly
 - User must provide forward summation algorithm

Approximation in Tractable Models

- Approximation is useful in tractable models
 - Sparse forward-backward (Pal et al, 2006)
 - Beam parsing (Goodman, 1997)
- Cannot be obtained through AutoDiff of an approximate model
- Neither can Viterbi

MLL should facilitate approximations

- Expectations
- Fixed-point iteration
 - Optimization
 - Root finding
- Should all be natively supported

3. Message-passing generalizes autodiff

Message-passing

- Approximate reasoning about exponential state space of a program, along all execution paths
- Propagates state summaries in both directions
- Forward can depend on backward and vice versa
- Iterate to convergence

Interval constraint propagation

- What is largest and smallest value each variable could have?
- Each operation in program is interpreted as a constraint between inputs and output
- Propagates information forward and backward until convergence

Circle-parabola example

Find (x, y) that satisfies $x^2 + y^2 = 1$ and $y = x^2$

Circle-parabola program

Input program

Interval propagation program

Input program

$$y = x^2$$

Edge program

Interval propagation program

Running ^2 backwards

$$yy = y1^2$$
 \Rightarrow $y1B = sqrt(y1F, yyB)$
= project[y1F \cap sqrt(yyB)]

```
yyB = [2, 4]

sqrt(yyB) = [-2, -1] \cup [1, 2]

y1F = [0, 10]

y1F \cap sqrt(yyB) = [] \cup [1, 2]

project[ y1F \cap sqrt(yyB) ] = [1, 2]

y1F \cap project[ sqrt(yyB) ] = [0, 2]
```


Results

- If all intervals start $(-\infty, \infty)$ then $x \to (-1,1)$ (overestimate)
- Apply subdivision
- Starting at x = (0.1,1) gives $x \to (0.786, 0.786)$

Interval propagation program

Until convergence:

$$yF = xF^2$$

$$xB = sqrt(xF, yB)$$

$$yB = y1B \cap y2B$$

$$y1F = yF \cap y2B$$

$$y2F = yF \cap y1B$$

• • •

$$zB = [1,1]$$

$$yF = xF^2$$

$$zB = [1,1]$$

Until convergence: (perform updates)

$$yB = y1B \cap y2B$$

$$xB = sqrt(xF, yB)$$

Typical message-passing program

- 1. Pass messages into the loopy core
- 2. Iterate
- 3. Pass messages out of the loopy core

Analogous to Stan's "transformed data" and "generated quantities"

Simplifications of message-passing

- Message dependencies dictate execution
- If forward messages do not depend on backward, becomes non-iterative
- If forward messages only include single state, only one control path is explored
- AutoDiff has both properties

Other message-passing algorithms

Probabilistic Programming

- Probabilistic programs are the new Bayesian networks
- Using a program to specify a probabilistic model
- Program is not a black box: undergoes analysis and transformation to help inference

Loopy belief propagation

- Loopy belief propagation has same structure as interval propagation, but using distributions
 - Gives forward and backward summations for tractable models
- Expectation propagation adds projection steps
 - Approximate expectations for intractable models
 - Parameter estimation in non-conjugate models

Gradient descent

 Parameters send current value out, receive gradients in, take a step

Gradients fall out of EP equations

Part of the same iteration loop

Gibbs sampling

- Variables send current value out, receive conditional distributions in
- Collapsed variables send/receive distributions as in BP
 - No need to collapse in the model

Thanks!

Model-based machine learning book: http://mbmlbook.com/

Infer.NET is open source: http://dotnet.github.io/infer