数学实验 Mathematical Experiments

实验八: 插值与数据拟合实验 Interpolation and fitting

实验背景

• 在工程技术与科学研究中,常遇到考察两个变量间的相互关系问题。两个变量间的关系可以通过函数表示,若x为自变量,y为因变量,则函数关系可描述为y=f(x)。大多数问题中,函数关系式y=f(x)未知,人们通常采用逼近的方法处理:取得一组数据点(x_i,y_i)(i=0,1,2,...,n),数据点可由不同方式取得(例如,可根据工程设计要求得到,也可通过采样或实验取得),然后构造一个简单函数P(x)作为函数y=f(x)的近似表达式,即

$$y = f(x) \approx P(x)$$

• 若满足(要求所求的函数曲线通过已知的数据点) $P(x_i) = f(x_i) = y_i, i = 0,1,2,\dots,n$

这类问题成为插值问题。

• 若不要求P(x)通过所有数据点 $(x_i, y_i)(i = 0,1,2,...,n)$,而是要求 曲线在某种准则下整体与所给的数据点尽量接近,例如 $min \sum_{i=0}^{n} [P(x_i) - y_i]^2$,而得到P(x),此类问题称为**拟合问题**。

实验目的

- (1)理解插值原理,会使用MATLAB进行数据插值。
- (2)理解拟合原理,会使用MATLAB进行数据拟合和回归分析。
- (3) 学习异常数据的处理和非线性回归。
- (4)能够使用MATLAB解决一些关于数据差值与拟合的应用问题。
- (5)了解高维多项式拟合的一些前沿进展。

1. 分段线性插值

这是最通俗的一种插值方法,直观上就是将各数据点用折线连接起来.如果

$$a = x_0 < x_1 < \dots < x_n = b$$

那么分段线性插值公式为

$$P(x) = \frac{x - x_i}{x_{i-1} - x_i} y_{i-1} + \frac{x - x_{i-1}}{x_i - x_{i-1}} y_i, x_{i-1} \le x \le x_i, i = 1, 2, \dots, n$$

可以证明,当分点足够多时,分段线性插值是收敛的.其缺点是不能形成一条光滑曲线.

2. 多项式插值

给定点
$$x_0, x_1, \dots, x_n$$
的值 y_0, y_1, \dots, y_n ,设有m次多项式
$$P(x) = a_0 x^m + a_1 x^{m-1} + \dots + a_{m-1} x + a_m$$

通过所有n+1个点,那么

$$a_0 x_i^m + a_1 x_i^{m-1} + \dots + a_{m-1} x_i + a_m = y_i, i = 0, 1, \dots, n.$$

容易证明当m=n且 x_0, x_1, \dots, x_n 互不相同时,这样的多项式存在且唯一.

Lagrange插值公式

$$P(x) = \sum_{i=0}^{n} y_i (\prod_{j \neq i} \frac{x - x_i}{x_i - x_j}).$$
 (9. 6)

多项式插值光滑但未必收敛(依赖于插值点的选取和目标函数)

3. 样条插值

样条本来是绘图员用于数据放样的工具,在画曲线时要求经过一些设定值且使整条曲线都很光滑.以后逐渐发展成为一个应用极为广泛的数学分支.现在数学上所说的样条,实质上指分段多项式的光滑连接.

给定区间[a,b]的一个划分,称分段函数S(x)为k次样条函数,若满足

- (1) S(x) 在每个小区间上是次数不超过k的多项式;
- (2)S(x)在[a, b]上具有直到k-1阶连续导数.

则用样条函数作出的插值称为**样条插值**.工程上广泛采用三次样条插值.

3. 样条插值(续)

n段三次多项式共有4n个参数,光滑性条件含3(*n* – 1)个约束,插值条件含n+1个约束,从而三次样条插值结果不唯一.另外需要两个定解条件.通常有下列4类条件:

- (1)非扭结:第一、二段多项式三次项系数相同,最后一段和倒数第二段三次项系数相同;
- (2) 一阶导数: $S'(x_0) = y_0', S'(x_n) = y_n';$
- (3) 二阶导数: $S''(x_0) = y_0'', S''(x_n) = y_n''$,特别地, 当 $y_0'' = y_n''$ 时, 称为自然样条;
- (4)周期样条: $S'(x_0) = S'(x_n), S''(x_0) = S''(x_n)$ (前提条件 $S(x_0) = S(x_n)$), 当被插值函数为周期函数或封闭曲线时,宜采用周期样条.

4. 最小二乘拟合

- (1) **原理**. 最小二乘法是数据建模最常用的数学原理,广泛应用于函数拟合、回归分析、方程近似解和最优化设计等问题中. 本质上它是求误差向量在范数 (即向量长度) 意义下的最小化. 设 $\varepsilon(c) = (\varepsilon_1(c), \varepsilon_2(c), \cdots \varepsilon_n(c))$ 为误差向量,求参数c使误差平方和达到最小,即 $minQ(c) = \|\varepsilon(c)\|^2 = \sum_{i=1}^n \varepsilon^2(c)$.
- (2)最小二乘拟合. 假设已知经验公式y = f(c, x)(这里c和x均可为向量),要求根据一批有误差的数据 (x_i, y_i) ,i = 1,2,…,n,确定参数c. 利用最小二乘法原理,归结为

$$minQ(c) = ||F(c,X) - Y||^2 = \sum_{i=1}^{\infty} (f(c,x_i) - y_i)^2$$

这里Y表示变量y的数据构成的列向量,X表示变量x(可能是多变量)的数据构成的矩阵,F(c,X)为将x的各组数据代入函数f后得到的向量值函数.

4. 最小二乘拟合(续)

如果f是x的一元多项式函数,就可用MATLAB函数polyfit求解,一般情况则可用1sqcurvefit求解.

(3) 线性约束最小二乘拟合. 设f是c的线性函数,这时误差函数可表示为

$$Q(c) = ||F(c, X) - Y||^2, \quad s.t.Ac \le b,$$

这里c是m维未知向量,F是由自变量x的数据确定的矩阵. Ac \leq b是c满足的线性等式或不等式约束条件,其中A为矩阵,b为向量. 特别地,当c是非负向量时,称为线性非负最小二乘拟合问题.

(4) 非线性约束最小二乘拟合. 如果f(c,x)或者约束条件是c的非线性函数,就可归结为非线性规划问题(后面我们会讨论).

主要相关的MATLAB指令

指令	意义	指令	意义
polyfit polyval interp1 spline ppval unmkpp mkpp csape fnplt csaps lsqlin lsgnonneg	多项式拟合与插值多项式 求值 一元插值 样条插值 PP样条求值 PP样条展开 形成PP式 各种边界条件的样条插值 样条结构的图形 样条光滑拟合 约束线性拟合 非负线性拟合	interp2 interp3 griddata isqnonlin isqcurvefit regress nlinfit trimmean nNanmean nanstd rstool stepwise nlintool	二元插值 三元插值 杂乱数据插值 杂乱数据乘法 最小二乘拟合 最小二乘拟合 线性回归分析 剔除Pan的均值 剔除Pan的均值 剔除Pan的方差 线性或二次回归图形工具 非线性回归图形工具 非线性回归图形工具

实验1: 多项式插值和拟合

p=polyfit(x, y, k)用k次多项式拟合向量数据(x, y),返回多项式的降幂系数. 当 $k \ge n-1$ 时,polyfit实现多项式插值.

例1 拟合下列数据:

х	0.1	0.2	0.15	0.0	-0.2	0.3
У	0.95	0.84	0.86	1.06	1.50	0.72

实验1:多项式插值和拟合

• p=polyfit(x, y, k)用k次多项式拟合向量数据(x, y), 返回 **多项式的降幂系数**. 当k≥n-1时, polyfit实现多项式插值.

例1 拟合下列数据:

х	0.1	0.2	0.15	0.0	-0.2	0.3
У	0.95	0.84	0.86	1.06	1.50	0.72

程序Exp8 1a.m

yi=interp1(x, y, xi) 根据数据(x, y)给出在xi的分段线性插值结果yi

yi=interpl(x, y, xi, 'spline') 使用三次样条插值

例1 拟合下列数据:

X	0.1	0.2	0.15	0.0	-0.2	0.3
У	0.95	0.84	0.86	1.06	1.50	0.72

程序Exp8 2a.m

样条插值和拟合

YI=spline(x, y, xi) 等价于YI=interpl(x, y, xi, 'spline')
pp=spline(x, y) 返回样条插值的分段多项式(pp)形式结构("非扭结"端点条件)

pp=csape(x, y, '边界类型', 边界值)生成各种边界条件的三次样条插值.其 中边界类型可为: 'complete'或'clamped',给定边界一阶导数;'second', 给定边界二阶导数; 'not-a-knot', 非扭结条件; 'periodic', 周期性边界 条件; 'variational', 自然样条(边界二阶导数为0), 后三种不用给边界 值.'default'为Lagrange边界条件(默认,可省略),即端点的一阶导数等于 临近4点所确定的三次Lagrange插值的一阶导数 pp=csaps(x,y,p) 实现光滑拟合,其中p为权因子,0<p<1,p值越大,与数据越 接近. 特别地, 若p=0, 则为线性拟合, 若p=1, 则为自然样条 yi=ppval(pp, xi)) pp样条在xi的函数值 fnplt(pp) 画出PP样条的图

考虑例9.1的数据

```
clear;
x=[0, 1, 0, 2, 0, 15, 0, -0, 2, 0, 3];
y=[0.95, 0.84, 0.86, 1.06, 1.50, 0.72];
pp=spline(x, y)
pp=
form:'pp'
breaks: [-0.2000 0 0.1000 0.1500 0.2000 0.3000]
coefs: [5x4 double]
pieces:5
order:4
dim:1
```

注意, spline使用"非扭结"端点条件,即强迫第一、二段多项式三次项系数相同,最后一段和倒数第二段三次项系数相同.

```
>>p. coefs
```

```
ans=
-36.3850 21.8592 -5.1164 1.5000
-36.3850 0.0282 -0.7390 1.0600
227.6995 -10.8873 -1.8249 0.9500
-143.0047 23.2676 -1.2059 0.8600
-143.0047 1.8169 0.0484 0.8400
```

```
S(x) = \begin{cases} -36.385(x+0.2)^3 + 21.8592(x+0.2)^2 - 0.51164(x+0.2) + 1.5, \\ -0.2 \le x \le 0, \\ -36.385x^3 + 0.0282x^2 - 0.739x + 1.06, 0 \le x \le 0.1, \\ 227.6995(x-0.1)^3 - 10.8873(x-0.1)^2 - 1.8249(x-0.1) + 0.95, \\ 0.1 \le x \le 0.15, \\ -143.0047(x-0.15)^3 + 23.2676(x-0.15)^2 - 1.2059(x-0.15) + 0.86, \\ 0.15 \le x \le 0.2, \\ -143.0047(x-0.2)^3 + 1.8169(x-0.2)^2 + 0.0484(x-0.2) + 0.84, \\ 0.2 \le x \le 0.3. \end{cases}
```

xi=-0.2:0.01:0.3; yi=ppval(pp, xi) %所得结果与上述yi=interpl(x, y, xi, 'spline')一致 fnplt(pp) %画出PP样条的图


```
若边界条件S''(-0.2) = 1.0, S''(0.3) = 0.5, 则
\Rightarrowpp2=csape(x, y, 'second', [1.0, 0.5]);
pp2. coefs
ans=
11, 9962 0, 5000
                     -2.7798
                                 1.5000
-72. 9468 7. 6977 -1. 1403
                                 1.0600
279. 3923 -14. 1863 -1. 7892
                                 0.9500
-269.5085 27. 7225 -1.1124
                                 0.8600
43. 1792 -12. 7038
                     -0.3614
                                 0.8400
```

例2 某城市一天从0时到24时,每隔2h测得温度如下 ($^{\circ}$ C):22,21,19,18,20,24.27.32.31.28.26.23.22。使用三次样条插值方法绘制此城市该日的温度变化曲线,并估测午时三刻(12:45)时的温度值。

程序Exp8 1b.m

与一元函数类似,可以建立多元函数插值方法.设给定二元函数y=f(x,y)在平面矩形格点上的函数值

$$z_{ij} = f(x_i, y_i), i = 0, 1, \dots, n, j = 0, 1, \dots, m,$$

二元双线性插值公式为

$$P(x,y) = \sum_{i=p}^{p+1} \sum_{j=q}^{q+1} (\prod_{\substack{k=p \ k \neq i}}^{p+1} \frac{x - x_k}{x_i - x_k}) (\prod_{\substack{l=q \ l \neq j}}^{q+1} \frac{y - y_i}{y_j - y_l}) z_{ij},$$

$$x_p < x < x_{p+1}, y_q < y < y_{q+1}, p = 0, 1, \dots, m-1.$$

1. interp2 函数

interp2函数用以处理插值基点为网格节点的插值问题,使用格式: zi=interp2(x,y,z,xi,yi,'method'): x、y分别表示给定数据点的横坐标与纵坐标向量(x、y分量数值单调),z表示给定数据点的数值矩阵,xi为待插值点横坐标向量,yi为待插值点纵坐标向量,x为根据插值方法得到的插值结果,method为字符串变量,用来设置插值方法;

Zi=interp2(X, Y, Z, Xi, Yi, 'method'): X、Y、Z为大小相同矩阵, X、Y表示网格点, Z表示给定数据点的数值矩阵, Xi、Yi为插值网格点, Zi为根据插值方法得到的插值结果,

method为字符串变量,用来设置插值方法。

对于插值方法, interp2函数与interp1函数的标识类似: nearest表示最近邻点插值; linear表示双线性插值(method 选项缺省时,系统默认方式); spline表示三次样条函数插值; cubic表示双立方插值。

例3 测得平板表面5×3网格点处的温度分别为

82 81 80 82 84

79 63 61 65 81

84 84 82 85 86

作出平板表面温度分布曲面。

例3 测得平板表面5×3网格点处的温度分别为

```
79 63 61 65 81
                       84 84 82 85 86
作出平板表面温度分布曲面。
x=1:5; y=1:3;
z = [82 \ 81 \ 80 \ 82 \ 84; 79 \ 63 \ 61 \ 65 \ 81; 84 \ 84 \ 82 \ 85 \ 86];
mesh(x, y, z);
方法1:
xi=1:0.2:5; yi=1:0.2:3;
zi=interp2(x, y, z, xi', yi, 'cubic');
mesh(xi, yi, zi)
```

82 81 80 82 84

例3 测得平板表面5×3网格点处的温度分别为

```
82 81 80 82 84
79 63 61 65 81
84 84 82 85 86
```

作出平板表面温度分布曲面。

```
x=1:5;y=1:3;

z=[82 81 80 82 84;79 63 61 65 81;84 84 82 85 86];

mesh(x, y, z);

方法2:

[X, Y]=meshgrid(1:5, 1:3);

[Xi, Yi]=meshgrid(1:0.2:5, 1:0.2:3);

Zi=interp2(X, Y, z, Xi, Yi, 'cubic'); mesh(Xi, Yi, Zi);
```

以下使用griddedInterpolant 指令可求得网格化的插值函数 类.注意由于griddedInterpolant 使用ndgrid 网格数据,故 需要将meshgrid得到的矩阵全部转置:

```
>>zfun=griddedInterpolant(X', Y', z', 'spline');
```

>>zfun(2.5, 3.5) %点(2.5, 3.5)的插值

ans=

67.6406

MATLAB的 "APP"工具条还提供了曲面拟合的图形工具,直观地实现二元插值或拟合. 方法是在 "APP"工具条选 "Curve Fitting",进入图形界面,在下拉框中选变量x,y,z的数据和适当的方法参数,就可得到相应的插值结果和图形.

2. griddata 函数

若数据是不规则的,即数据不能构成矩阵形式,则不能直接用interp2插值.

griddata函数用以处理插值基点为散乱节点的插值问题,使用格式:

zi=griddata(x, y, z, xi, yi, 'method'): 指令中的变量含义与interp2相同,但不要求x、y分量数值单调,所用插值方法也有所不同,主要有: nearest(最近邻点插值); linear(双线性插值); v4(MATLAB中所提供的插值方法); cubic(双立方插值)。

WI=griddata(x, y, z, w, XI, YI, ZI, …) 三元函数w(x, y, z) 散乱数据插值 F=scatteredInterpolant(x, Y, …, V) 得到散乱数据插值函数类. 注意scatteredInterpolant大小写

例4 如果数据残缺不全:

			X		
У	0	1	2	3	4
2	*	*	80	82	84
3	79	*	61	65	*
4	84	84	*	*	86

例5 某海域测得一些点(x,y)处的水深z(m)由下表给出,在矩形区域(75,200)×(-90,150)内画出海底曲面图形,并标识出吃水线分别为4m、5m的船只禁入区。

х	129	140	103.5	88	185.5	195	105
У	7.5	141.5	23	147	22.5	137.5	85.5
Z	4	8	6	8	6	8	8
X	157.5	107.5	77	81	162	162	117.5
У	-6.5	-81	3	56.5	-66.5	84	-33.5
Z	9	9	8	8	9	4	9

WI=interp3 (X, Y, Z, W, XI, YI, ZI, …) 三元函数w (x, y, z) 插值

VI=interpn(X1, X2, X3, ···, V, Y1, Y2, Y3, ···) 任意维函数 V(x1, x2, x3, ···) 插值. 这里X1, X2, X3, ···, V是原始数据, Y1, Y2, Y3是插值点. 与interp2, interp3主要区别是其网格数据是ndgrid产生的,构成不同于meshgrid 网格 F=gridedInterpolant(X1, X2, X3, ···, V) 得到网格化数据插值函数类,然后用F(Y1, Y2, Y3, ···) 可求得插值. 也用ndgrid网格数据.

注意gridedInterpolant大小写

实验4:应用性实验(气旋分布图)

下表是气象学家测量得到的气象资料,它们分别表示南半球地区按不同纬度、不同月份的平均气旋数字。根据这些数字绘制出气旋分布曲面的图形。

		0~10	10~20	20~30	30~40	40~50	50~60	60~70	70~80	80~90
1	月	2.4	18.7	20.8	22.1	37.3	48.2	25.6	5.3	0.3
2	月	1.6	21.4	18.5	20.1	28.8	36.6	24.2	5.3	0
3	月	2.4	16.2	18.2	20.5	27.8	35.5	25.5	5.4	0
4	月	3.2	9.2	16.6	25.1	37.2	40	24.6	4.9	0.3
5	月	1.0	2.8	12.9	29.2	40.3	37.6	21.1	4.9	0
6	月	0.5	1.7	10.1	32.6	41.7	35.4	22.2	7.1	0
7	月	0.4	1.4	8.3	33.0	46.2	35	20.2	5.3	0.1

实验4:应用性实验(气旋分布图)

下表是气象学家测量得到的气象资料,它们分别表示南半球地区按不同纬度、不同月份的平均气旋数字。根据这些数字绘制出气旋分布曲面的图形。

(续)

	0~10	10~20	20~30	30~40	40~50	50~60	60~70	70~80	80~90
8月	0.2	2.4	11.2	31.0	39.9	34.7	21.2	7.3	0.2
9月	0.5	5.8	12.5	28.6	35.9	35.7	22.6	7	0.3
10月	0.8	9.2	21.1	32.0	40.3	39.5	28.5	8.6	0
11月	2.4	10.3	23.9	28.1	38.2	40	25.3	6.3	0.1
12月	3.6	16	25.5	25.6	43.4	41.9	24.3	6.6	0.3

实验4:应用性实验(气旋分布图)

下表是气象学家测量得到的气象资料,它们分别表示南半球地区按不同纬度、不同月份的平均气旋数字。根据这些数字绘制出气旋分布曲面的图形。

(续)

	0~10	10~20	20~30	30~40	40~50	50~60	60~70	70~80	80~90
8月	0.2	2.4	11.2	31.0	39.9	34.7	21.2	7.3	0.2
9月	0.5	5.8	12.5	28.6	35.9	35.7	22.6	7	0.3
10月	0.8	9.2	21.1	32.0	40.3	39.5	28.5	8.6	0
11月	2.4	10.3	23.9	28.1	38.2	40	25.3	6.3	0.1
12月	3.6	16	25.5	25.6	43.4	41.9	24.3	6.6	0.3

实验5: 最小二乘拟合(线性情形)

最小二乘拟合原理

给定平面上的点 $(x_i,y_i)(i=1,2,...,n)$, x_i 互不相同。曲线拟合的实际含义指寻求一个函数y=P(x),使P(x)在某种准则下与所有的数据点最为接近,即曲线拟合的最好。最常用的曲线拟合方法是最小二乘法,该方法原理是寻求曲线y=P(x),使得所有给定点到曲线的距离平方和最小,即使得

$$J = \sum_{i=1}^{n} [P(x_i) - y_i]^2$$

最小。

在进行曲线拟合时,需要选用一些特殊的基函数(幂函数、三角函数等) $r_1(x)$, $r_2(x)$,…, $r_m(x)$,令 $P(x) = a_1r_1(x) + a_2r_2(x) + \cdots + a_mr_m(x)$

 $(x) = u_1 r_1(x) + u_2 r_2(x) + \dots + u_m r_m(x)$

式中: $a_k(k = 1,2,\cdots,m,m < n)$ 为待定系数。

实验5: 最小二乘拟合(线性情形)

带入得

$$J(a_1, a_2, \dots, a_m) = \sum_{i=1}^{n} [\sum_{k=1}^{m} a_k r_k(x_i) - y_i]^2$$

最小二乘问题,即寻求系数 $a_k(k=1,2,\cdots,m)$ 的值,使得J达到最小。

利用极值条件 $\frac{\partial J}{\partial a_k} = 0 (k = 1, 2, \dots, m)$,可得方程组:

$$\begin{cases} \sum_{i=1}^{n} r_1(x_i) [\sum_{k=1}^{m} a_k r_k(x_i) - y_i] = 0\\ \sum_{i=1}^{n} r_2(x_i) [\sum_{k=1}^{m} a_k r_k(x_i) - y_i] = 0\\ \vdots\\ \sum_{i=1}^{n} r_m(x_i) [\sum_{k=1}^{m} a_k r_k(x_i) - y_i] = 0 \end{cases}$$

化简,得

$$R^T R A = R^T Y$$

$$R = \begin{bmatrix} r_1(x_1) & r_2(x_1) & \cdots & r_m(x_1) \\ r_1(x_2) & r_2(x_2) & \cdots & r_m(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ r_1(x_n) & r_2(x_n) & \cdots & r_m(x_n) \end{bmatrix} A = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

当 $r_1(x)$, $r_2(x)$, …, $r_m(x)$ 线性无关时,若 R^TR 可逆,则有唯一解。

特别地,取
$$r_1(x) = 1$$
, $r_2(x) = x$,…, $r_m(x) = x^{m-1}$,即
$$P(x) = a_1x + a_2x + \dots + a_mx^{m-1}$$

则最小二乘拟合称为多项式拟合。

为什么要考虑拟合? (思考)

请注意: 当数据明显有误差时,插值是不合适的.

(思考为什么?)

请注意: 当数据明显有误差时,插值是不合适的.

以下数据是带随机干扰的正弦曲线.

```
>>clear;close;
```

```
>> x=1 inspace (0, 2*pi, 21);
```

```
\Rightarrow y=\sin(x)+(rand(1,21)-0.5)*0.1;
```

>>plot(x, y, 'o'); hold on; fnplt(csape(x, y)); %插值结果光滑性不好(见实线).

而采用拟合

>>fnplt(csaps(x, y, 0.8), 'r:'); hold off;

可以清除噪声干扰(见图中虚线).后者不过数据点,不是插值.

请注意: 当数据明显有误差时,插值是不合适的. 线. 0. 1; t(csape(x,y));%插值结果光 hold off; 」后者不过数据点,不是插值. 程序Exp8 5a.m

1. 多项式拟合

在MATLAB中,polyfit函数实现多项式拟合,调用方式: p=polyfit(x, y, n):表示求已知数据x、y的n阶拟合多项式f(x)系数p, x的分量必须是单调的, 其中 $P = [P_n, P_{n-1}, ..., P_0], P(x) = P_n x^n + P_{n-1} x^{n-1} + ... + P_1 x + P_0$ 。若计算拟合多项式在x点数值,可使用: y=polyval(p, x): p为拟合多项式系数,即 $P(x) = P_n x^n + P_{n-1} x^{n-1} + ... + P_1 x + P_0$ 。

1. 多项式拟合

例 求如表所列数据的二次拟合曲线并绘图。

х	0.5	1.0	1.5	2.0	2.5	3.0
У	1.75	2.45	3.81	4.80	7.0	8.60

$$>> x=[0.5 1.0 1.5 2.0 2.5 3.0];$$

$$>>y=[1.75 2.45 3.81 4.80 7.0 8.60];$$

$$\Rightarrow$$
a=polyfit(x, y, 2)

a=

0.5614 0.8287 1.1560

$$>> xi=0.5:0.05:3.0;$$

$$>> yi=a(1)*xi.^2+a(2)*xi+a(3);$$

>>plot(x, y, '*', xi, yi, 'k'); 计算结果表明所得的二次拟合曲线为 $y = 0.5614x^2 + 0.8287x + 1,1560$

1.1sqcurvefit 函数

在MATLAB中, 1sqcurvefit函数用于进行非线性曲线拟合,对应标准形式:

$$min\frac{1}{2}\sum_{i}[F(x,xdata_{i})]^{2}$$

式中: $xdata = (xdata_1, xdata_2, ..., xdata_n), ydata = (ydata_1, ydata_2, ..., ydata_n)$ 为给定数据。

lsqcurvefit 函数调用格式:

x=lsqcurvefit('fun',x0,xdata,ydata,options)

其中fun为拟合函数(含待求参数,调用前建立),x0为迭代初值,xdata、ydata为已知数据(格式同上),options为优化选项(可默认),输出向量x各分量为fun中待求参数的拟合数值。

1.1sqcurvefit 函数

例使用表中数据拟合函数 $c(t) = a + be^{-0.02kt}$ 中的参数a、b、k。

t_i	100	200	300	400	500	600	700	800	900	1000
$c_i \times 10^3$	4.54	4.99	5.35	5.65	5.90	6.10	6.26	6.39	6.50	6.59

思路: 先编制函数文件:

function $f = Exp8_6fun(x, t)$

f=x(1)+x(2)*exp(-0.02*x(3)*t);%x=[a, b, k]

然后命令窗口下执行:

>>t=100:100:1000;

>>c=1e-3*[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59];

>>x0=[0.2,0.05,0.05];

>>x=lsqcurvefit(@Exp8_6fun,x0,t,c)

拟合结果: a=0.0063,b=-0.0034,k=0.2542。

2.1sqnonlin 函数

在MATLAB中, 1sqnonlin函数用于进行非线性最小二乘拟合,对应标准形式:

$$\frac{\min}{x} f_{1}^{2}(x) + f_{2}^{2}(x) + \cdots f_{m}^{2}(x) + L$$

式中: $f_i(x) = f(x, xdata_i, ydata_i) =$ $F(x, xdata_i) - ydata_i, xdata 、 ydata 为给定数据,$ $xdata = (xdata_1, xdata_2, ..., xdata_n), ydata =$ $(ydata_1, ydata_2, ..., ydata_n); L为常数。$

lsqnonlin 函数调用格式:

x=lsqnonlin('fun',x0,options): fun为拟合函数(含待求参数,调用前建立),x0为迭代初值,options为优化选项(可缺省),输出向量x各分量为fun中待求参数的拟合数值。

例使用lsqnonlin函数求解上一个例子,理解不同之处。

```
编制函数文件:
function f = Exp8_6 fun2(x)
t=100:100:1000;
c=1e-3*[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50
6.59];
f=x(1)+x(2)*exp(-0.02*x(3)*t)-c;
命令窗口下执行:
>> x0 = [0.2, 0.05, 0.05];
>>x=lsqnonlin(@Exp8_6fun2,x0)
a=0.0063,b=-0.0034,k=0.2542
```

一种新药用于临床之前,必须设计给药方案。在快速静脉注射的给药方式下,所谓的**给药方案是指:每次** 注射量多大,间隔时间多长。

药物进入机体后随血液输送到全身,在这个过程中不断地被吸收、分布、代谢,最终排出体外。

药物在血液中的浓度,即单位体积血液中的药物含量,称为血药浓度。在最简单的一室模型中,将整个机体看作一个房室,称为中心室,室内的血药浓度是均匀的。快速静脉注射后,浓度立即上升,然后逐渐下降。当浓度太低时,达不到预期的治疗效果;当浓度太高时,又可能导致药物中毒或副作用太强。临床上,每种药物有一个最小有效浓度 c_1 和一个最大治疗浓度 c_2 。

设计给药方案时,要使血药浓度保持在 $c_1 \sim c_2$ 之间。在本实验中, $c_1 = 10$, $c_2 = 25$ (μ g/mL)。通过实验,对某人用快速静脉注射方式一次性注入该药物300mg后,在一定时刻t(h)采集血药,测得血药浓度c(μ g/mL)见表

t	0.25	0.5	1	1.5	2	3	4	6	8
С	19.21	18.15	15.36	14.10	12.89	9.32	7.45	5.24	3.01

1、问题的分析

要设计给药方案,需要知道给药后血药浓度随时间的

变化规律。

图形绘制命令如下:

```
t=[0.25 0.5 1 1.5 2 3 4 6 8];
```

```
c=[19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01];
plot(t, log(c), 'k*'); xlabel('t'); ylabel('ln(c)');
```

1、问题的分析

要设计给药方案,需要知道给药后血药浓度随时间的

变化规律。

通过画图分析t与lnc的关系,可以看出两变量之间近似直线关系,说明血药浓度c(t)符合负指数变化规律。

2、数学建模

模型假设:

- (1)药物排出速率与血药浓度成正比,比例系数为k(k>0);
- (2)血液容积为V, t=0时注射剂量为d, 此时血药浓度为 $\frac{a}{v}$ 。由以上假设条件,得

$$\begin{cases} \frac{dc}{dt} = -kc \\ c(0) = \frac{d}{V} \end{cases}$$

求解上述微分方程,得 $c(t) = \frac{d}{v}e^{-kt}$ 式中:d=300;k、V待求。

3、模型求解

$$c(t) = \frac{d}{V}e^{-kt}$$

式中:d=300;k、V待求。

两边取对数,得

4、编程实现

```
d=300;
t=[0.25 \ 0.5 \ 1 \ 1.5 \ 2 \ 3 \ 4 \ 6 \ 8]:
c = | 19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24
3.01];
y=log(c);
a=polyfit(t, y, 1)
                                      a=
                                      -0.2347 2.9943
k = -a(1)
                                      k=
V = d/\exp(a(2))
                                      0.2347
                                      V =
                                      15.0219
```

5、结果分析

计算结果表明: k = 0.2347, V = 15.02(L), $c(t) = \frac{300}{15.0210}e^{-0.2347t} = 19.97e^{-0.2347t}$ 。根据上述结果,绘

制拟合曲线图

```
plot(t, c, 'o')
tt=0:0.01:8;
cc=(300/V)*exp(-k*tt);
hold on
plot(tt, cc, 'k')
```


5、结果分析

计算结果表明: k = 0.2347, V = 15.02(L), $c(t) = \frac{300}{15.0219}e^{-0.2347t} = 19.97e^{-0.2347t}$ 。

给药方案的制定:设初始剂量为 D_0 ,每次注射剂量为 D_t ,间隔时间为 τ ,则

$$D_0 = Vc_2 \qquad D_t = V(c_2 - c_1)$$

$$c_1 = c_2 e^{-k\tau} \qquad \qquad 得$$

$$\tau = \frac{1}{k} \ln \frac{c_2}{c_1}$$

将 c_1 =10, c_2 =25, k=0. 2347, V=15. 02代入式(9. 16)、式(9. 17)、式(9. 19),得 D_0 =375. 5, D_t = 225. 3, τ =3. 9根据上述结果,可制定给药方案: 首次注射375mg,其余每次注射225mg,注射间隔为4h。

在万能拉拨机中有一个圆柱形凸轮,其底圆半径R=300mm,凸轮的上端面不在同一平面上(如图),而要根据从动杆位移变化的需要进行设计制造.根据设计要求,将底部圆周18等分,旋转一周.第i个分点对应柱高 y_i (i = 0,1,2,...,18)数据如下.为了数控加工,需要计算出圆周任一点的柱高.

i	0和18	1	2	3	4	5
y_i	502.8	525	514.3	451.0	326.5	188.6
i	6	7	8	9	10	11
y_i	92.2	59.6	62.2	102.7	147.1	191.6
i	12	13	14	15	16	17
y_i	236.0	280.5	324.9	369.4	413.8	458.3

我们将圆周展开,画出对应的柱高曲线(如图).

```
clear;close;

x=linspace(0,2*pi*300,19);

y=[502.8 525.0 514.3 451.0

326.5 188.6 92.2 59.6 62.2

102.7 147.1 191.6 236.0 280.5

324.9 369.4 413.8 458.3 502.8]

plot(x,y,'o');axis([0,2000,0,550]);
```


我们将圆周展开,画出对应的柱高曲线(如图).

```
clear;close;

x=linspace(0,2*pi*300,19);

y=[502.8 525.0 514.3 451.0

326.5 188.6 92.2 59.6 62.2

102.7 147.1 191.6 236.0 280.5

324.9 369.4 413.8 458.3 502.8]

plot(x,y,'o');axis([0,2000,0,550])
```


可见柱高形成一条V形曲线. 现在的问题是,怎样给出分点之外的柱高呢?

- 由于没有拟合经验公式,又要求严格按设计数据要求(而这些数据应认为是足够精确的),所以应该用插值方法.
- 又由于问题是一条封闭曲线 ,所以考虑使用周期性端点 条件样条插值,它具有较好 的光滑性.

可见柱高形成一条V形曲线. 现在的问题是,怎样给出分点之外的柱高呢?

pp=csape(x,y,'periodic'); fnplt(pp); axis([0,2000,0,550]); %样条插值曲线见图

xi=0:2*pi*300;Yi=ppval(pp,xi)% 插值数值结果

可见柱高形成一条V形曲线. 现在的问题是, 怎样给出分点之外的柱高呢?

以下为美国人口1800—2010年普查的统计数据(数据来源:美国人口普查局),试依此建立美国人口增长的数学模型,并"预测"2020,2030年的美国人口数.

年份	1800	1810	1820	1830	1840	1	850	1860
人口/百万	5.3	7.2	9.6	12.9	12.9 17.1		.3.2	31.4
年份	1870	1880	1890	1900	1910	1	920	1930
人口/百万	38.6	50.2	62.9	76.0	92.0		06.5	123.2
年份	1940	1950	1960	1970	1980	1990	2000	2010
人口/百万	131.7	150.7	179.3	204.0	226.5	251.4	275.0	308.7

我们先作出数据图clear;close;

t=1800:10:2010;

N=[5.3 7.2 9.6 12.9 17.1 23.2 31.4

38.6 50.2 62.9 76.0 92.0 106.5

123.2 131.7 150.7 179.3 204.0

226.5 251.4 275.0 308.7];

plot(t,N,'bo', 'linewidth',1)

可以看见大致接近一个指数函数.

现在来从机理上建立人口问题数学模型.人口的出生率b和死亡率d可设为常数,第t年人口数为N(t),那么在一个较小的时间段 $[t,t+\Delta t]$ 内新增人口

$$N(t + \Delta t) - N(t) = (b - d)N(t)\Delta t,$$

两边除以 Δt , $\Rightarrow r = b - d$, $\Delta t \rightarrow 0$, 得 N'(t) = rN(t)

设 $N(t_0) = N_0$,那么

$$N(t) = N_0 e^{r(t-t_0)}$$

此为人口学马尔萨斯指数增长模型 (Malthusian growth model).可见我们对数据图的推测是有道理的.

现在来从机理上建立人口问题数学模型.人口的出生率b和死亡率d可设为常数,第t年人口数为N(t),那么在一个较小的时间段 $[t,t+\Delta t]$ 内新增人口

$$N(t + \Delta t) - N(t) = (b - d)N(t)\Delta t,$$

两边除以 Δt , $\Rightarrow r = b - d$, $\Delta t \rightarrow 0$, 得 N'(t) = rN(t)

设 $N(t_0) = N_0$,那么

$$N(t) = N_0 e^{r(t-t_0)}$$

此为人口学马尔萨斯指数增长模型 (Malthusian growth model).可见我们对数据图的推测是有道理的.

现在的问题是,模型参数是怎么得到的?

这里我们利用历史数据来确定参数N_0和r.如果只有两个数据,那么N_0和r是唯一的.问题是有很多数据,而这些数据并不在同一条指数曲线上.事实上由于政策、经济、移民和战争等原因,出生率b和死亡率d并不是常数.理论上,用两数据点就可确定未知参数N 0和r,但不可靠,我们要兼顾这些数据.

$$N(t) = N_0 e^{r(t-t_0)}$$

此为人口学马尔萨斯指数增长模型 (Malthusian growth model).

于是这里使用最小二乘拟合法. 由于指数函数exp(t)当t很大时可能会溢出,为了减小数值误差,首先将时间域变换至 [0,21],所用变换为 $t=1800+\frac{t-1800}{10}$.

这样0代表1800年,1代表1810年……20代表2000年,21代表2010年……r表示10年增长率. 另外,我们需要确定 N_0 和r的初值.

$$N(t) = N_0 e^{r(t-t_0)}$$

此为人口学马尔萨斯指数增长模型 (Malthusian growth model).

于是这里使用最小二乘拟合法. 由于指数函数exp(t)当t很大时可能会溢出,为了减小数值误差,首先将时间域变换至 [0,21],所用变换为 $t=1800+\frac{t-1800}{10}$.

这样0代表1800年,1代表1810年······20代表2000年,21代表2010年······r表示10年增长率. 另外,我们需要确定 N_0 和r的初值. N_0 的初值自然应取t=0时的N值5. 3,r的初值取为增长率的平均值mean(diff(N)./diff(t)./N(1:20)).

$$N(t) = N_0 e^{r(t-t_0)}$$

此为人口学马尔萨斯指数增长模型(Malthusian growth model).

于是这里使用最小二乘拟合法. 由于指数函数exp(t)当t很大时可能会溢出,为了减小数值误差,首先将时间域变换至 [0,21],所用变换为 $t=1800+\frac{t-1800}{10}$.

这样0代表1800年,1代表1810年······20代表2000年,21代表2010年······r表示10年增长率. 另外,我们需要确定 N_0 和r的初值. N_0 的初值自然应取t=0时的N值5. 3,r的初值取为增长率的平均值mean(diff(N)./diff(t)./N(1:20)).

讲解程序Exp8_9a.m

$$N(t) = N_0 e^{r(t-t_0)}$$

此为人口学马尔萨斯指数增长模型 (Malthusian growth model).

优化结果见下表:

	初值	拟合结果
1800年人口 <i>N</i> ₀ /百万	5.3	19.05
10年增长率r	0.2174	0.1352
残差平方和	72411	28690
2020年预测 人口数/百万	632	373
2030年预测 人口数/百万	786	427

图形表明中断拟合效果不错,但两头误差较大。

按照Malthus模型,人口数将呈指数增长,其缺点是没有考虑资源对人口增长的限制.logistic模型改进了Malthus模型.设Nm是资源容纳的最大人口数量.logistic模型微分方程为

$$N'(t) = rN(t) \left(1 - \frac{N(t)}{N_m} \right)$$

其中因子 $1 - \frac{N(t)}{N_m}$ 表示资源对人口增长阻滞因素,初值 $N(t_0) = N_0$. 求解微分方程,得

$$N(t) = \frac{N_m}{1 + (\frac{N_m}{N_0} - 1)e^{-r(t - t_0)}}$$

按照Malthus模型,人口数将呈指数增长,其缺点是没有考虑资源对人口增长的限制.logistic模型改进了Malthus模型.设Nm是资源容纳的最大人口数量.logistic模型微分方程为

$$N'(t) = rN(t) \left(1 - \frac{N(t)}{N_m} \right)$$

其中因子 $1 - \frac{N(t)}{N_m}$ 表示资源对人口增长阻滞因素,初值 $N(t_0) = N_0$. 求解微分方程,得

$$N(t) = \frac{N_m}{1 + (\frac{N_m}{N_0} - 1)e^{-r(t - t_0)}}$$

只要对程序Exp8_9. m中函数及初值修改如下:

fun=@(c, x)c(3)./(1+(c(1)-1)*exp(-c(2)*x));

c0(1)=500/5.3;c0(2)=mean(diff(N)./diff(t)./N(1:21));c0(3)=500;%参数初值;

其中参数c(1)表示 $N_m/N_0($ **思考为什么?**),

c(2)表示r, c(3)表示 N_m . 求解得

按照Malthus模型,人口数将呈指数增长,其缺点是没有考虑资源对人口增长的限制.logistic模型改进了Malthus模型.设Nm是资源容纳的最大人口数量.logistic模型微分方程为

$$N'(t) = rN(t) \left(1 - \frac{N(t)}{N_m} \right)$$

其中因子 $1 - \frac{N(t)}{N_m}$ 表示资源对人口增长阻滞因素,初值 $N(t_0) = N_0$. 求解微分方程,得

$$N(t) = \frac{N_m}{1 + (\frac{N_m}{N_0} - 1)e^{-r(t - t_0)}}$$

只要对程序Exp8_9.m中函数及初值修改如下:

$\underline{\text{fun=0}(c, x)c(3)./(1+(c(1)-1)*exp(-c(2)*x))};$

c0(1)=500/5. 3; c0(2)=mean(diff(N)./diff(t)./N(1:21)); c0(3)=500; %参数初值;

其中参数c(1)表示 N_m/N_0 (思考为什么?这样可减低优化函数的非线性复杂度),c(2)表示r, c(3)表示 N_m .求解得

	初值	拟合结果
1800年人口 <i>N</i> ₀ / 百万	5.3	10.55
10年增长率r	0.217	0.2088
最大人口数量 N_m	500	476
残差平方和	2785 4	499
2020年预测人口 数/百万	281	324
2030年预测人口 数/百万	307	345

可见logistic模型结果较为合理(如图).

后面学了统计实验,进一步可以利用nlinfit来作预测值的区间估计

实验8: 最小二乘拟合(线性约束情形)

- [c,Q]=lsqnonneg(F,d) 求解线性非负最小二乘问题 min||Fc-d||^2,c≥0; c返回参数值,Q返回误差平方和
- [c,Q]=lsqlin(F,d,A,b,Aeq,beq,lb,ub)求解线性约束 最小二乘问题

min||Fc−d||^2,约束条件为Ac≤b,Aeq*c=beq,lb≤c≤ub.

无相应条件的选项可用空矩阵[]忽略

• 非线性约束拟合可归结为优化问题(后面会介绍)

实验8: 最小二乘拟合(线性约束情形)

例用二次多项式拟合以下数据

X	0.1	0.2	0.15	0.0	-0.2	0.3
У	0.95	0.84	0.86	1.06	1.50	0.72

• 由于多项式函数关于系数c是线性函数,我们也可以用1sqlin求解.线性方法的优点是无须给定迭代初值.这时,要先写出有关的系数矩阵.

>> x=[0.1 0.2 0.15 0 -0.20.3]: y=[0.950.860.841.061.50 0.72];

>>x=x';y=y';F=[x.^2,x,ones(size(x))];%这里x,y先转置为列向量

>>[c,Q]=1sqlin(F,y) %不带约束条件

• 如果限定二次项系数c(1)非正,

>>[c,Q]=lsqlin(F,y,[],[],[],[],[],[0 inf inf]')

%空矩阵表示对应选项忽略

实验8: 最小二乘拟合(线性约束情形)

例用二次多项式拟合以下数据

X	0.1	0.2	0.15	0.0	-0.2	0.3
У	0.95	0.84	0.86	1.06	1.50	0.72

• 若约束条件比较复杂,如限定 $c(1) \le c(3)$ 且c(1)+c(2)+c(3)=1,那么 lsqcurvefit、lsqnonlin, polyfit都不适用,但仍可用lsqlin解决.

$$>> [c, Q] = 1 sq 1 in (F, y, [1 0 -1], 0, [1 1 1], 1)$$

%加约束条件 $c(1) \le c(3)$, c(1) + c(2) + c(3) = 1

C=

1.0864

-1.1728

1.0864

Q=0.0413

11月15日实验课实验题

上交截止日期:2023年11月15日23:00

共4分

、(1分)用电压W = 10V的电池给电容器充电,电容器上t时刻电压为 $u(t) = W - (W - V_0)\exp(-t/\tau)$,其中 V_0 是电容器的初始电压, τ 是充电常数. 试由下面一组t, u数据确定 V_0 和 τ .

t/s	0.5	1	2	3	4	5	7	9
u/V	6.36	6.48	7.26	8.22	8.66	8.99	9.43	9.63

2、(1分)弹簧在力F的作用下伸长,一定范围内服从Hooke定律: F与x成正比,即F = kx,k为劲度系数现在得到下面一组x,F数据,并在(x,F)坐标下作图(如下图).可以看出,当F大到一定数值后,就不服从这个定律了. 试由数据确定k,并给出不服从Hooke定律时的近似公式.

3、(2分)下面是一山区海拔高度每400m的网格数据(单位: 10m).为了作修建道路的成本预算,需要给出每100m的网格数据.已知山区有一个山峰、一条山谷和一条溪流(其源头约1350m),画出它们的位置.(数据文件见附上的Excel表,请自行查找学习如何用MATLAB命令从Excel表读数据)

480	135	137	139	140	141	96	94	88	80	69	57	43	29	21	15
440	137	139	141	143	144	114	111	105	95	82	69	54	38	30	21
400	138	141	143	145	147	132	128	120	108	94	78	62	46	37	35
360	142	143	145	148	150	155	151	143	130	120	98	85	75	55	50
320	143	145	146	150	160	155	155	160	160	160	155	150	150	155	155
280	95	119	137	150	120	110	155	160	155	138	107	90	105	115	120
240	91	109	127	150	120	110	135	145	120	115	101	88	100	105	110
200	88	106	123	139	150	150	140	90	110	106	95	87	90	93	95
160	83	98	118	132	145	142	140	130	70	90	85	84	38	78	75
120	74	88	108	113	125	128	123	104	90	50	70	78	75	65	55
80	65	76	88	97	102	105	102	83	80	70	30	50	55	48	35
40	51	62	73	80	85	87	85	78	72	65	50	20	30	35	32
0	37	47	55	60	67	69	67	62	58	45	40	30	10	15	25
Y/X	0	40	80	120	160	200	240	280	320	360	400	440	480	520	560