# STK2100 Oblig 1

## Håkon Kvernmoen

2/4/2021

## Problem 1

a)

First we need to load the data. The code sample for loading did not work for me (got a 400 bad request error). Assuming the datafile "nuclear.dat" is located in the same folder as this file, we load the data and attach it for easier use.

```
nuclear = read.table("nuclear.dat", sep="\t", header=T)
attach(nuclear)
```

We notice that pr, ne, ct, bw and pt are binary variables, so we set them as factors.

```
nuclear$pr = as.factor(nuclear$pr)
nuclear$ne = as.factor(nuclear$ne)
nuclear$ct = as.factor(nuclear$ct)
nuclear$bw = as.factor(nuclear$bw)
nuclear$pt = as.factor(nuclear$pt)
```

To investigate the data we plot the numerical features against each other. There seems to be some correlation between  $\mathtt{date}$  and  $\mathtt{t1}$ 

```
plot(nuclear[,sapply(nuclear, is.numeric)])
```



## b)

The standard assumption on the noise terms  $\epsilon_i$  are.

- 1. The error terms are normally distributed with a mean of 0
- 2. The variance  $\sigma^2$  of this normal distribution is constant
- 3. The error terms are independent,  $\epsilon_i$  does not influence  $\epsilon_j$

#### Important?

We will now try to fit the model using all the features. As cost is always positive, we fit the log of the cost as a response variable. With  $y_i$  being the i'th observation of the cost, we will try to fit the model.

$$log(y_i) = \beta_0 + \sum_{j=1}^{p} x_{i,j} + \epsilon_i$$

```
all.fit = lm(log(cost)~., data = nuclear)
summary(all.fit)
```

```
##
## Call:
## lm(formula = log(cost) ~ ., data = nuclear)
##
```

```
## Residuals:
##
         Min
                    10
                          Median
                                        30
                                                 Max
                                            0.266548
  -0.284032 -0.081677 0.009502 0.090890
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.063e+01 5.710e+00
                                      -1.862 0.07662 .
## date
                2.276e-01
                           8.656e-02
                                       2.629
                                              0.01567 *
## t1
                5.252e-03
                           2.230e-02
                                       0.236
                                              0.81610
## t2
                5.606e-03
                           4.595e-03
                                       1.220
                                              0.23599
## cap
                8.837e-04
                           1.811e-04
                                       4.878 7.99e-05 ***
## pr1
               -1.081e-01
                           8.351e-02
                                      -1.295
                                              0.20943
                                              0.00362 **
                2.595e-01
                           7.925e-02
                                       3.274
## ne1
## ct1
                1.155e-01
                           7.027e-02
                                       1.644
                                              0.11503
## bw1
                3.680e-02
                           1.063e-01
                                       0.346
                                              0.73261
## cum.n
               -1.203e-02
                           7.828e-03
                                      -1.536
                                              0.13944
                                      -1.702 0.10352
               -2.220e-01
                          1.304e-01
## pt1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1697 on 21 degrees of freedom
## Multiple R-squared: 0.8635, Adjusted R-squared: 0.7985
## F-statistic: 13.28 on 10 and 21 DF, p-value: 5.717e-07
```

 $\mathbf{c}$ 

We will now remove the term with the largest P-value. Observing the summary of the linear model, we see that t1 has the largest P-value at 0.81610. This is sensible to do since the P-value is a measure of the correctness of the null-hypothesis  $(H_0)$ . A large P-value as in this case indicates that there is a very little statistical basis for t1 to be a good predictor for  $\log(\cos t)$  and is thus neglected.

```
all_no_t1.fit = lm(log(cost)~.-t1, data= nuclear)
summary(all_no_t1.fit)
```

```
##
## Call:
## lm(formula = log(cost) ~ . - t1, data = nuclear)
##
## Residuals:
##
       Min
                  1Q
                       Median
                                     3Q
                                             Max
## -0.28898 -0.07856 0.01272 0.08983
                                         0.26537
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                          3.835e+00
## (Intercept) -1.161e+01
                                       -3.027 0.006187 **
                2.431e-01
                           5.482e-02
                                        4.435 0.000208 ***
## date
                           4.449e-03
## t2
                5.451e-03
                                        1.225 0.233451
                8.778e-04
                           1.755e-04
                                        5.002 5.25e-05 ***
## cap
                                       -1.303 0.205922
## pr1
               -1.035e-01
                           7.944e-02
                2.607e-01
                           7.738e-02
## ne1
                                        3.368 0.002772 **
## ct1
                1.142e-01
                          6.853e-02
                                        1.667 0.109715
                2.622e-02 9.423e-02
## bw1
                                        0.278 0.783401
               -1.220e-02 7.626e-03 -1.599 0.124034
## cum.n
```

We observe that there are some change in the P-values for a lot of the features after we excluded t1. This is probably due to correlation between the features. We would ideally have linearly independent explanatory variables. In example a change in cap should not influence any of the other explanatory variables, but this is not the case. On the other hand, the changes in P-values are not huge and the coefficients estimates seems relatively unchanged. In addition the standard error for the coefficients seems to decrease and we continue these modifications.

### d)

We now want to fit our model, remove the explanatory variable with a P-value larger than 0.05 and repeat this until we have a model where all explanatory variables have P-values smaller than 0.05. We then implement a backward substitution algorithm. We note that we do not want to remove the intercept even tough its P-value can be larger than 0.05.

```
nuclear_backwards_sub <- data.frame(nuclear)
for (i in 1:ncol(nuclear)) {
    fit <- lm(log(cost)~., data=nuclear_backwards_sub)
    # -1 since we don't want to remove intercept
    p_vals <- summary(fit)$coefficients[-1,4]
    max_idx <- as.integer(which.max(p_vals))

if(p_vals[max_idx] < 0.05) {
    break
    }
    else {
        # Add one since we don't want to remove targert variable (cost).
        nuclear_backwards_sub <- nuclear_backwards_sub[,-(max_idx+1)]
    }
}
summary(fit)</pre>
```

```
##
## Call:
## lm(formula = log(cost) ~ ., data = nuclear_backwards_sub)
##
## Residuals:
        Min
##
                  1Q
                       Median
                                     3Q
                                             Max
## -0.42160 -0.10554 -0.00070 0.07247
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -4.5035539 2.5022087 -1.800 0.083072 .
                                       3.961 0.000491 ***
## date
                0.1439104 0.0363320
```

```
## cap     0.0008783     0.0001677     5.238     1.61e-05 ***
## ne1     0.2024364     0.0751953     2.692     0.012042 *
## pt1     -0.3964878     0.0963356     -4.116     0.000326 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1767 on 27 degrees of freedom
## Multiple R-squared: 0.8096, Adjusted R-squared: 0.7814
## F-statistic: 28.7 on 4 and 27 DF, p-value: 2.255e-09
```

We are then left with 4 explanatory variables. Two of them continues (date, cap) and two binary (ne, pt). MAKE SOME PLOTS

**e**)

The final