Assignment 3

60-473/574

Dr. Rueda

Joel Rorseth

November 20, 2017

For this assignment, I have utilized several clustering algorithms from the *Scikit* library, specifically the *KMeans* and *GaussianMixture* clustering models from the *sklearn.cluster* and *sklearn.mixture* classes respectively.

To accomplish successful and efficient clustering, KMeans and GaussianMixture objects are instantiated to determine clusters by means of the K-Means and Expectation Maximization clustering algorithms. Both clustering models are created whilst specifying the value of k in their respective constructor. This is seen below in Figure 1.1, where the KMeans algorithm takes a parameter specifying the number of clusters (k), with GaussianMixture similarly accepting k in an equivalent manner via its parameterized number of components. After both objects request identification of two clusters, they are fit to the unlabeled sample data, and as such appease their underlying unsupervised learning algorithms. At this point, the clustering models have now been established, determined k clusters, and possess the ability to categorize unlabeled samples by cluster.

```
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

# Create a KMeans clustering object where k=2
def kmeans(samples):
    return KMeans(n_clusters=2).fit(samples)

# Create an Expectation Maximization object that uses Gaussian models
def em(samples):
    return GaussianMixture(n_components=2).fit(samples)
```

Figure 1.1

To illustrate the performance and clustering results of the KMeans and Expectation Maximization algorithms, a graph is rendered in the script for question two. As seen in Figure 1.2, the clustering model objects previously instantiated are fed the original unlabeled sample dataset, and asked to predict the cluster of each sample. The returned array contains cluster predictions, where the prediction at index i corresponds to the sample at index i in the input dataset.

```
# Instantiate classifier, calculate and print efficiency
kmeans_classifier = kmeans(samples)
em_classifier = em(samples)

# Predict cluster for each sample (k=2 derived 2 classes essentially)
kmeans_pred = kmeans_classifier.fit_predict(samples)
em_pred = em_classifier.predict(samples)

# Plot the clustered samples

graph_samples("K-Means (K=2) on " + filename, samples, labels, kmeans_pred)
graph_samples("EM (K=2) on " + filename, samples, labels, em_pred)
```

Figure 1.2

A simple Python plotting library, *matplotlib.pyplot*, is then used to plot the sample dataset in its native two dimensional (feature) space.

```
# Graph samples
def graph_samples(name, samples, given_labels, clustered_labels):
    for i in range(0, len(samples)):
        color = 'b' if given_labels[i] == 1 else 'r'
        marker = '>' if clustered_labels[i] == 1 else 'o'
        plt.scatter(samples[i, 0], samples[i, 1], c=color, marker=marker)
    plt.title(name)
    plt.show()
```

Figure 1.3

As evident in Figure 1.3, the plotting procedure utilizes the original unlabeled sample dataset, original dataset labels, and the predicted clusters of each sample in the original dataset. Each sample from the original dataset, belonging to one of two distinct classes, is plotted as a blue or red point if originally labeled as being 1 or 2 respectively. To distinguish between determined clusters, a unique point shape is given to samples clustered into cluster 1 and 2 respectively. The resulting plot for each dataset over K-Means and Expectation Maximization is shown below in Figure 2.1.

```
# Determine the Calinski-Harabaz (CH) Index
def ch_index(samples, clustered_labels):
    return calinski_harabaz_score(samples, clustered_labels)
```

Figure 1.4

To compare the accuracy and general performance of both clustering models, the CH Index was calculated using *sklearn.metrics calinski_harabaz_score* function, as seen above in Figure 1.4. This takes dispersion into account, using original samples and predicted clusters from those to produce a score.

At a quick glance, the clustering results of K-Means and Expectation Maximization are notably similar. More specifically, it appears as though they are near identical, with the small amount of difference typically occurring near the obvious, linear decision boundary. Considering the fact that K-Means is a variant or specific case of Expectation Maximization, this is exactly the behaviour we should expect. The contested samples near the boundary are due to the nature of EM, which associates a (cluster) membership probability to these samples, which are thus designated as being *fuzzy*.

As a preliminary judgement, we may evaluate the clustering performance across clustering models and datasets by the shape and colour of the points. Given this limited information, we know that a perfect clustering would strive for a plot where samples with different colours (original class) are all of the same shape (cluster), implying a perfect one to one mapping from class to cluster. The only dataset where exemplary clustering has taken place is *twogaussians.csv*. This is primarily due to the linear nature of the K-Means and EM clustering algorithms, where due to the fact that two clusters were requested, yields a single linear decision boundary.

Moreover, it is clear that if only two clusters may be formed, it would be impossible to achieve reasonably accurate clustering for the remaining datasets. As depicted in Figure 2.1, *halfkernel.csv*, *twospirals.csv* and *clusterincluster.csv* cannot be accurately discriminated into two clusters about a single line. The K-Means and EM backing algorithms internally produce a *Voronoi Diagram*, consisting of *k*-1 linear decision boundaries (lines) where *k* is the number of clusters requested. The linear decision boundaries are also consequential of specifying the use of *Euclidean* distance as a distance metric between samples / clusters. Thus, the clustering appears to split the samples belonging to each original class, spreading them roughly evenly (due to their relatively *normal* distribution) among the two clusters formed in these three datasets.

To facilitate an opportunity to better demonstrate the power of clustering, a proper heuristic experiment was performed, testing many values of k. Displayed in Figure 3.1 below, the results of K-Means and EM clustering are recorded when asked to discriminate many different numbers of clusters. To offer a sufficient performance metric for comparison, the displayed scores are the Calinski-Harabasz (CH) indices for each respective clustering model over each dataset and k value.

Evalua	ting 'K' for twoo	aussians csv		509.0422	254.4781	Evalua	ating 'K' for hal	fkernel csv	50	2288.5724	1854.6263
			51	502.0973	283.8793				50 51	2298.1080	1794.5961
K	K-Means Score	EM Score	52	489.8776	339.3648	K	K-Means Score	EM Score	52	2258.1599	1813.2278
			53	507.4830	325.2122				53	2282.5270	1779.3467
2	678.5670	643.1265	54	503.8433	221.3521	2	823.5031	820.6276	54	2300.6615	1753.3436
3	556.1192	482.0792	55	505.9013	346.6888		1188.7766	1169.8788			
4	592.9363	543.1475	56	497.8027	276.8676	4	1132.2765	916.4154	55	2289.9670	2000.9675
5	549.7232	520.6326	56 57			5	1204.6128	1021.2344	56	2242.9702	1864.4882
6	532.1636	503.4361		519.4326	394.1867	6 7	1271.1486	1088.1232	57	2302.4109	1767.4625
7	528.0117	507.8232	58	512.2814	266.0225	8	1303.9545 1322.9455	930.5080 1099.3032	58	2290.6213	1845.0560
8 9	506.9211 506.3088	460.6762 451.3158	59	517.7532	253.0401	9	1384.4268	1119.5087	59	2259.6937	1740.7127
10	510.2294	435.2910	60	510.3287	186.8141	10	1502.9955	1213.1830	60	2287.6517	1914.8422
11	497.4508	442.2747	61	525.8143	305.3342	11	1578.3175	1465.8370	61	2266.0525	1811.2811
12	504.0432	469.7985	62	518.7215	229.5640	12	1719.5058	1283.9941	62	2269.5573	1755.6105
13	494.0984	411.2903	63	514.1063	301.5016	13	1804.2831	1391.0743	63	2297.2857	1737.1976
14	495.9487	426.9520	64	532.9041	181.1774	14	1901.4791	1793.3467	64	2264.3169	1873.0935
15	499.7056	404.5895	65	518.8979	339.9284	15	2035.6342	1653.5096	65	2284.2714	1784.5065
16	487.4393	426.8496	66	521.7147	336.7160	16	2097.3950	1813.5368	66	2279.6267	1692.7896
17	484.9127	401.3002	67	543.5139	335.7798	17	2150.7040	2039.5563	67	2277.0389	2035.7597
18	481.3809	364.8956	68	541.9808	341.4901	18	2182.5294	2123.1533	68	2286.5678	1729.6449
19 20	488.1907 476.4083	389.1160	69	539.6354	340.4748	19 20	2269.3578 2306.5420	2155.1050 2026.4066	69	2257.8170	1654.6964
20	475.9640	411.8737 450.3259	70	528.6089	339.9787	20	2332.6089	2224.2900	70	2287.1715	1460.3423
22	478.5046	351.0935	71	538.2123	304.6528	22	2361.6055	2043.3448	71	2261.2474	1748.1675
23	470.5997	306.5219	72	541.5883	295.6650	23	2376.9543	2210.9434	72	2303.0141	1858.6306
24	476.8818	396.0214	73	551.9645	325.8301	24	2374.3272	2045.8971	73	2275.1234	1919.5425
25	480.0611	354.0374	74	549.6782	144.6778	25	2382.3755	2178.3042	74	2306.3312	1659.4084
26	471.2093	352.7422	75	545.9816	385.2466	26	2371.0232	2206.7023	75	2249.8656	1867.5274
27	478.4050	321.6626	76	558.4288	312.1716	27	2360.9273	2248.1678	76	2280.4081	1660.1077
28	475.6516	379.7300	77	551.6224	341.6125	28	2402.2308	2175.5804	77	2291.2162	1734.8088
29	479.1358	336.3041	78	552.1485	310.3415	29	2341.2017	2050.8998	78	2316.8679	1861.9141
30	475.0460	355.2412	79	569.0315	391.7211	30	2343.2940	2081.4537	79	2324.6491	1682.8383
31 32	471.7255 487.9137	270.3763 289.4717	80	564.5503	345.3102	31 32	2369.8353 2327.0442	2058.9528 1957.1613	80	2292.9991	1842.7306
33	484.7498	266.4010	81	562.9188	377.8837	33	2337.4306	2076.2752	81	2325.0859	2009.0458
34	483.4194	212.1760	82	555.4463	341.6857	34	2343.2661	2005.0669	82	2297.8678	1711.4368
35	478.6107	310.8380	83	562.3706	374.3439	35	2312.1074	1766.6537	83	2288.2102	1771.0978
36	488.8561	242.8053	84	565.4602	382.4809	36	2273.4644	2020.0119	84	2357.9993	1824.8965
37	495.4569	246.0073	85	574.2701	406.0246	37	2301.1987	1957.5774	85	2323.8526	1606.8707
38	484.5067	287.5364	86	575.7152	344.8656	38	2298.6724	1940.5191	86	2336.7462	1607.7686
39	493.8022	306.0565	87	571.1467	382.9899	39	2310.6017	2049.1671	87	2340.8907	1902.5248
40	487.0195	213.6943	88	567.4915	380.3906	40	2305.5014	1657.9445	88	2332.8055	1822.3413
41 42	477.0724	192.8125	89	574.3124	360.6896	41	2292.8681	2000.4228	89	2345.0024	1962.8568
42 43	483.0762 496.0634	337.2817 300.9388	90	578.9145	388.8567	42 43	2259.8778 2276.3134	2057.6546 2055.4193	90	2359.6047	1773.0400
43	502.6140	212.9386	91	580.3518	424.2793	45 44	2330.3614	1877.4369	91	2359.6362	1718.2368
45	485.4045	352.7517	92	580.4553	370.9569	45	2276.1068	1671.4216	92	2363.8273	1893.4663
46	494.7211	254.2441	93	588.6324	365.6001	46	2259.5062	1835.3690	93	2370.0313	1950.8745
47	489.4299	376.7063	94	587.4931	464.8345	47	2327.3941	2062.2349	94	2320.4140	1658.4759
48	499.7347	260.0909	95	593.7360	437.9488	48	2272.3759	1761.1308	95	2361.5376	1875.2013
49	485.9443	229.6844	96	582.3117	404.2574	49	2266.2465	1869.3107	96	2375.8497	1636.0936
50	509.0422	254.4781	97	594.3083	444.3190	50	2288.5724	1854.6263	97	2374.8393	1749.2637
51	502.0973	283.8793	98	589.5367	450.6280	51	2298.1080	1794.5961	98	2363.4732	1295.4374
52 53	489.8776 507.4830	339.3648 325.2122	99	614.8632	427.8025	52 53	2258.1599	1813.2278	99	2362.5110	1826.3576
53 54	507.4830 503.8433	221.3521	100	590.6452	439.3657	53 54	2282.5270 2300.6615	1779.3467 1753.3436	100	2368.8948	2024.1110
- 54	303.0433	221.3321				54	2300.0015	1753.3436	100	2300.0340	2027.1110

Figure 3.1

Evalua	iting 'K' for twos	snirals csv	50	1219.5410	891.0750	- Fyalu	ating 'K' for clus	starincluster csv	50	1203.8368	966.8378
			50	1219.5410	908.5446				50 51	1203.8308	949.6752
К	K-Means Score	EM Score				К	K-Means Score	EM Score	52	1220.3204	1011.5360
			52	1221.7713	923.0785				52 53		
2	762.9318	734.2163	53	1222.3257	822.9289	2	595.2088	592.2761		1225.4371	963.3116
3	895.5937	875.6619	54	1194.7660	845.7748	3	769.5106	761.9194	54	1223.9172	1018.3637
4	1081.5092	1064.5025	55	1223.9106	964.2964	4	844.3027	833.1110	55	1213.4265	1015.9343
5	1088.6067	1035.1380	56	1213.6647	938.1644	5	863.7557	857.4494	56	1218.8970	976.5827
6	1098.7412	1076.0370	57	1236.7151	948.1349	6	815.0003	789.2132	57	1228.2238	908.2133
7	1069.2539	1024.5640	58	1232.1198	961.7425		790.6687	753.7189	58	1215.6291	964.7223
8	1051.5303	949.2693	59	1214.5712	978.5104	8	785.9120	714.7381	59	1225.0829	891.4178
9	1065.4122	885.4680	60	1225.7469	797.0694	9	815.1541	759.9858	60	1218.8973	858.9196
10	1049.9948	1005.1689	61	1223.2342	923.2921	10	868.4407	813.6921	61	1216.5105	948.8432
11	1076.4401	925.6497	62	1224.3196	890.8868	11	921.3873	859.3288	62	1232.3437	1031.1219
12	1104.3137	892.0335	63	1231.0861	856.6131	12	977.1613	900.5766	63	1232.6023	919.5168
13	1107.8864	887.5245	64	1231.8303	745.8179	13	1049.2427	917.1680	64	1233.3924	1042.8350
14 15	1102.1118 1120.5782	970.0848 1026.0236	65	1239.4204	876.7805	14 15	1072.6060 1117.7735	935.8710 1046.5660	65	1240.6376	1044.2502
16	1117.5205	1026.0236	66	1245.7383	920.9665	15 16	1163.6388	1098.0569	66	1246.0984	1079.8121
17	1117.3203	1000.7014	67	1244.0347	911.2641	16 17	1172.5210	1138.6346	67	1235.9746	794.5131
18	1147.7129	1046.6666	68	1222.5553	973.2301	18	1199.2599	1141.2402	68	1252.5743	937.2657
19	1152.5047	938.4980	69	1232.0458	878.6551	19	1238.8676	1187.5580	69	1259.5953	894.9320
20	1155.3438	1041.9738				20	1243.0274	1146.4657	70		
21	1143.9331	988.7933	70	1252.8605	818.8939	21	1250.0704	1165.9382		1269.4741	837.5209
22	1155.0784	866.7037	71	1255.3103	887.9635	22	1282.6032	1182.3086	71	1299.7846	1046.9185
23	1151.7771	970.0262	72	1248.1826	888.7260	23	1270.7293	1189.0251	72	1291.1316	951.3456
24	1149.8741	1041.8497	73	1280.6354	777.4300	24	1288.3695	1191.8525	73	1260.0499	881.2846
25	1161.6274	1025.9818	74	1267.6183	883.4346	25	1285.2698	1233.3315	74	1285.6402	1031.4634
26	1151.1154	952.2690	75	1263.0012	810.6029	26	1287.5604	1196.7948	75	1260.5833	955.1760
27	1145.3538	980.4696	76	1252.1199	741.2523	27	1280.5622	1203.5669	76	1283.8469	913.0930
28	1175.3518	980.1709	77	1256.4307	995.2229	28	1291.4434	1151.3639	77	1282.5283	966.4242
29	1145.1625	860.1371	78	1282.9668	801.7900	29	1275.2666	1181.3735	78	1276.3089	960.5187
30	1148.2493	976.8480	79	1253.7491	977.5398	30	1278.5601	1201.0228	79	1271.4450	1048.1826
31	1173.7260	879.4731	80	1286.5424	878.0043	31	1301.8436	1094.0052	80	1292.7705	954.1740
32	1167.8332	934.0351	81	1285.3230	904.6796	32	1270.8252	1172.9243	81	1286.9618	1006.3036
33 34	1206.7070	968.6402	82	1270.8595	799.5574	33	1270.5124	1103.3675	82	1286.7389	910.5392
3 4 35	1171.3010 1176.6326	902.9996 994.4207	83	1254.7648	893.5010	34 35	1271.9036 1245.3451	1181.3049 1167.0632	83	1307.4215	1020.5005
36	1176.3033	1041.5604	84	1271.2016	840.0053	36	1237.3965	1119.1835	84	1279.5878	782.0101
37	1190.6330	886.9192	85	1302.7436	790.6704	30 37	1252.0131	1146.5515	85	1286.6265	1008.9783
38	1191.1555	900.3704	86	1275.8549	786.1764	38	1238.4946	962.2246	86	1295.1869	794.5312
39	1214.9811	951.9114	87	1310.9213	949.7547	39	1241.1250	928.5869	87	1292.8874	815.8141
40	1204.2802	895.3899	88	1290.5207	919.9484	40	1228.7150	1062.4291	88	1288.0805	824.0101
41	1193.1121	772.6940	89	1269.8893	841.7093	41	1223.3726	1120.2977	89		
42	1192.1572	824.2827	90	1309.4363	909.3307	42	1232.8168	1102.2018	89 90	1294.9951	1005.7752
43	1220.0377	1003.0968				43	1230.2162	1011.1847		1285.8833	986.2147
44	1191.3710	825.0561	91	1267.6282	846.6954	44	1220.3452	989.9086	91	1300.1202	966.9722
45	1210.1814	915.1621	92	1293.2460	811.3956	45	1209.6746	1001.9531	92	1307.0833	934.9876
46	1206.5002	907.6168	93	1303.5444	748.2352	46	1190.8012	959.2180	93	1316.2598	1068.4787
47	1207.1009	963.0283	94	1303.9221	951.2985	47	1212.6106	921.4513	94	1299.0311	849.8387
48	1209.7835	853.4464	95	1276.7351	879.2751	48	1227.9239	886.4037	95	1306.2296	1051.2084
49	1205.1433	791.8914	96	1285.3179	794.4239	49	1217.1545	963.5158	96	1325.2810	939.0403
50	1219.5410	891.0750	97	1313.2727	849.0661	50	1203.8368	966.8378	97	1313.2284	985.9255
51	1212.7119	908.5446	98	1305.2571	924.6385	51	1203.3478	949.6752	98	1301.8395	893.5401
52 53	1221.7713 1222.3257	923.0785	99	1305.1718	595.0655	52	1220.3204	1011.5360	99	1313.4993	967.2058
53 54	1222.3257	822.9289 845.7748	100	1336.0525	953.1097	53 54	1225.4371	963.3116	100	1305.7355	985.2153
- 74	1137.7000	073.7740				- 5 4	1223.9172	1018.3637			

Combined with the summary of this data in Figure 3.2, a sufficient analysis may now be performed on the clustering models chosen. Generally, it is clear that the three non-linearly separated datasets have a wide, increasing range of indices. Similarly, *twogaussians.csv* shows a stable, slightly decreasing pattern as k becomes larger, with less *variance* than that of the indices across other datasets.

Best k for twogaussians.csv KMeans: 2

EM: 2

Best k for halfkernel.csv

KMeans: 28 EM: 27

Best k for twospirals.csv

KMeans: 100 EM: 6

Best k for clusterincluster.csv

KMeans: 96 EM: 25 Figure 3.2

When run on the *twogaussians.csv* dataset, a significantly small number of clusters has been deemed as ideal for K-Means and EM by the CH Index. As discussed, requesting two clusters to be formed is ideal for this dataset, as the original classes are distinctly linearly separable (Figure 2.1). This specific dataset is a classic example of *overfitting*. Any value of *k* greater than two is simply unnecessary, and the CH Index is a reputable indicator for this condition. The difference in performance between K-Means and EM clustering is marginal, with K-Means being slightly better defined.

The clustering that has taken place on *halfkerrnel.csv* is significantly better in score than any other dataset, with CH Indices approaching 2500. This exemplary score makes perfect sense. The visual representation of the sample data in Figure 2.1 shows how the original classes in this dataset are highly (distinctly) discriminated / separable. The high score for CH Index is logical due, as it essentially measures the average *between* and *within cluster dispersion*. The notion of a good clustering prioritizes such features, specifically the distance between clusters and cluster density (larger distance and more dense being optimal). The optimal *k* value, 28, is sensibly low, as the dispersion will aid in concluding that a given cluster formation is sufficient.

With reasonable means, the analysis of the clustering model performance of *twospirals.csv* and *clusterincluster.csv* can be summarized together with similar explanation. Although *clusterincluster.csv* sports a visually superior dispersion in sample data (Figure 2.1), the CH Indices seem not to reflect this as well as *halfkernel.csv*. Along with *twospirals.csv*, the shape and sample size of the original dataset essentially restrict the better scores to higher values of k relative to the sample size n. The fact that one class is embedded visually within the other in *clusterincluster.csv* will obviously be difficult for K-Means or EM to distinguish without relatively large number of clusters. The optimal k, 96 and 25 for K-Means and EM, suggests that overfitting may be occurring for K-Means, as all scores past k = 32 (the approximate square root of sample size n) begin to converge / round out at this point.

Similarly, *twospirals.csv* will suffer similarly in performing high scoring clustering for small values of k. In particular, the dispersion and complex shape of the samples of this dataset is quite poor, as clear in Figure 2.1. This will inevitably lead to poor clustering. The standard for sufficiently large k is much greater for this dataset than that of any other. The optimal values of k, 100 and 6, attest to this fact. The CH Indices are slightly increasing with larger k, however this is possible overfitting as the ratio of requested clusters to samples is increasing at an alarming rate. Furthermore, however overfit the clustering becomes, the scores of these indices would likely increase marginally across values of k higher than those of the experiment.

It is also worth noting the difference in CH Indices of the K-Means and EM clustering models over the *twospirals.csv* and *clusterincluster.csv* datasets. From Figure 3.1, it is clear that while the scores are nearly equal when k = 2, as k increases, the scores of EM *diverge* by a significant amount to those of the K-Means model. The K-Means model, producing scores around 1300 for both datasets for k = 100, is much larger in comparison to EM, which scores around 900 on both datasets for this k. We may attribute this to the fact that soft assignment is taking place within the EM model, and due to the complexity (embedded/ dispersed shape) of these datasets plot, will take a hit on the score for larger k.

In summary, it is evident that the CH Indices of *both* clustering models are near identical when evaluated heuristically on each dataset. K-Means has proven to be slightly better by measure of CH Index, but also yields higher values of k for the same findings. We may hypothesize that K-Means is slightly more accurate, or practical in terms of clustering performance. Likewise, EM may produce reasonably similar results, yet requiring less testing for larger values of k.