

ভাপগভিবিদ্যা

Thermodynamics

WRITTEN

বিগত সালে BUET-এ আসা প্রশ্নাবলী

- 1. একটি কার্নো ইঞ্জিন যখন 27° C তাপমাত্রায় তাপ গ্রাহকে থাকে তখন এর কর্মদক্ষতা 50%। একে 60% কর্মদক্ষ করতে হলে এর উৎসের তাপমাত্রা কত বাড়াতে হবে? [BUET 21-22; BUTex 18-19; RUET 07-08] উত্তর: 150 K
- 2. একটি ইলেকট্রিক কেটলির সাহায্যে $2~{
 m kg}$ পানির তাপমাত্রা $25^{\circ}{
 m C}$ থেকে $80^{\circ}{
 m C}$ এ উন্নীত করলে এনট্রপির পরিবর্তন বের করো। [BUET 20-21] উত্তর: $1422.746392~{
 m JK}^{-1}$
- 3. সমান ভরের তিনটি ভিন্ন তরল পদার্থ A, B, C এর তাপমাত্রা যথাক্রমে $12^{\circ}C$, $19^{\circ}C$ এবং $28^{\circ}C$ । A কে যদি B এর সাথে মেশানো হয় তাহলে তাপমাত্রা হয় $16^{\circ}C$ । B কে যদি C এর সাথে মেশানো হয় তাহলে তাপমাত্রা হয় $23^{\circ}C$ । A কে যদি C এর সাথে মেশানো হয় তাহলে তাপমাত্রা কত হবে? [BUET 20-21] উত্তর: 20.258° C
- 4. একটি প্রত্যাবর্তী ইঞ্জিন তাপের $1/6^{th}$ অংশকে কাজে রূপান্তর করে। যখন উৎসের তাপমাত্রা ঠিক রেখে গ্রাহকের তাপমাত্রা 62° C কমানো হয়, তখন ইঞ্জিনের দক্ষতা দ্বিগুণ হয়। গ্রাহক এর তাপমাত্রা নির্ণয় করো।

[BUET 19-20]

উত্তর: 37°C

- 5. T_1 আদি তাপমাত্রার একটি আদর্শ গ্যাসের আদি আয়তন $2\ m^3$ । রুদ্ধতাপীয় প্রসারণের ফলে এর আয়তন $4\ m^3$ হয়। তারপর সমোস্ক প্রক্রিয়ায় প্রসারিত করায় আয়তন $10\ m^3$ হয়, পরবর্তী ধাপে রুদ্ধতাপীয় প্রক্রিয়ায় সংকোচনের ফলে এর তাপমাত্রা পুনরায় T_1 হয়। এর চূড়ান্ত আয়তন কত? [BUET 18-19] উত্তর: $5\ m^3$
- 6. একটি সিলিভারে $300~{\rm K}$ তাপমাত্রায় ও $10^6~{\rm Pa}$ চাপে $0.001~{\rm m}^3$ গ্যাস আছে। গ্যাসটিকে প্রথমে সমোষ্ণ প্রসারণ করা হল এবং পরে রুদ্ধতাপীয় প্রক্রিয়ায় আবারও প্রসারণ করা হল, প্রতি ক্ষেত্রেই প্রসারণের অনুপাত 1:2। প্রসারণে মোট কাজের পরিমাণ বের করো। $[{\rm BUET~17-18}]$ উত্তর: $1297.1~{\rm J}$
- 7. এনট্রপি বলতে কী বুঝ? $100^{\circ}\mathrm{C}$ তাপমাত্রার 4 kg পানিকে বাষ্প্রেপরিণত করা হল । এনট্রপির বৃদ্ধি বের কর । [BUET 17-18] উত্তর: $24.2359 \times 10^3 \ \mathrm{JK}^{-1}$

8. 10 g ওজনের একটি লোহার পেরেককে কিছুক্ষণ একটি বার্নার শিখায় উত্তপ্ত করা হল। উত্তপ্ত পেরেকটিকে 10°C তাপমাত্রায় 100 g পানিতে ছুবানো হল। এতে পানির তাপমাত্রা বৃদ্ধি পেয়ে 20°C হল। পানিতে ছুবানোর পূর্বে পেরেকের তাপমাত্রা নির্ণয় করো।

[লোহার আপেক্ষিক তাপ $= 0.11 \text{ kcal/kg}^{\circ}\text{C}$] [BUET 16-17]

উত্তর: 929.09°C

9. এক পরমাণুবিশিষ্ট একটি আদর্শ গ্যাসকে 17°C তাপমাত্রায় হঠাৎ এর মূল আয়তনের এক-দশমাংশ আয়তনে সংকৃচিত করা হল। সংকোচনের পর তাপমাত্রা কত হবে? [BUET 16-17]

উত্তর: 1083.432°C

10. 1.2 atm চাপ এবং 310 K তাপমাত্রায় কোন গ্যাসের আয়তন 4.3~L। রুদ্ধতাপীয় প্রক্রিয়ায় গ্যাসকে সংকুচিত করে আয়তন 0.76~L করা হল। গ্যাসটির (i) চূড়ান্ত চাপ এবং (ii) চূড়ান্ত তাপমাত্রা নির্ণয় কর। [গ্যাসটিকে আদর্শ গ্যাস হিসাবে বিবেচনা করা যায় যার $\gamma=1.4$]

[BUET 14-15]

উত্তর: (i) 13.58 atm; (ii) 620.0456 K

- $11. 0 ^{
 m o}{
 m C}$ তাপমাত্রায় $1~{
 m kg}$ বরফকে $100 ^{
 m o}{
 m C}$ তাপমাত্রার পানিতে পরিণত করতে এনট্রেপির বৃদ্ধি নির্ণয় করো। $[{
 m BUET}~13\text{-}14]$ উত্তর: $2541.617~{
 m JK}^{-1}$
- 12. একটি পারমাণবিক বোমা বিস্ফোরিত হলে সৃষ্ট আগুনের গোলকের ব্যাসার্ধ হয় $100~\mathrm{m}$ এবং এর তাপমাত্রা $10^5~\mathrm{K}$ । যদি গোলকটি রূদ্ধতাপ পদ্ধতিতে $1000~\mathrm{m}$ ব্যাসার্ধে বর্ধিত হয় তবে এর সম্ভাব্য তাপমাত্রা কত

হবে?
$$\left($$
আপেক্ষিক তাপদ্বয়ের অনুপাত, $\frac{C_P}{C_V} = 1.66
ight)$

[BUET 13-14; CUET 05-06]

উত্তর: 1047.128548 K

- $13.~~10^{\circ}\mathrm{C}$ তাপমাত্রার $5~\mathrm{kg}$ পানিকে $100^{\circ}\mathrm{C}$ তাপমাত্রায় উন্নীত করতে এনট্রপির বৃদ্ধি নির্ণয় করো। [BUET 11-12; CUET 08-09] উত্তর: $5798.76~\mathrm{JK}^{-1}$
- 14. একটি কার্নো ইঞ্জিনের তাপ উৎস ও তাপ গ্রাহকের তাপমাত্রা যথাক্রমে $500~{
 m K}$ ও $375~{
 m K}$ । যদি ইঞ্জিনটি প্রতি চক্রে $252\times 10^4~{
 m J}$ তাপ শোষণ করে তবে,
- (i) ইঞ্জিনের দক্ষতা,
- (ii) প্রতিচক্রে কাজের পরিমাণ ও
- (ii) প্রতিচক্রে বর্জিত তাপের পরিমাণ নির্ণয় করো।

[RUET 08-09; BUET 03-04, 01-02]

উত্তর: (i) 25%; (ii) $6.3 \times 10^5 \,\mathrm{J}$; (iii) $1.89 \times 10^6 \,\mathrm{J}$

15. একটি কার্নো চক্র প্রাথমিক 327°C তাপমাত্রায় কাজ সম্পন্ন করে। প্রতিটি ধাপে সংকোচন বা প্রসারণের অনুপাত 1:6 হলে কার্নো চক্রের সর্বনিমু তাপমাত্রা এবং দক্ষতা নির্ণয় করো । $[\gamma = 1.4]$ [BUET 07-08] উত্তরঃ

 (P_1, V_1, T_1) A $B (P_2, V_2, T_1)$

উত্তর: 293.015 K; 51.2%

16. এক রোগীর দেহের তাপমাত্রা একটি ক্রটিপূর্ণ থার্মোমিটারের সাহায্যে মেপে 45°C পাওয়া গেল। যদি এই থার্মোমিটারে বরফ বিন্দু এবং বাষ্পবিন্দু যথাক্রমে 3°C এবং 107°C তে পাওয়া যায়, তাহলে রোগীর দেহের প্রকৃত তাপমাত্রা ফারেনহাইট স্কেলে বের করো। [BUET 04-05]

উত্তর: 104.692°F

17. একটি মোটর টায়ারকে 15°C তাপমাত্রায় 2 বায়ুমণ্ডলীয় চাপে পাম্প করায় টায়ারটি হঠাৎ ফেটে গেলো। এর ফলে, তাপমাত্রা কত কমে যাবে তা বের করো। [γ = 1.4] [BUET 02-03]

উত্তর: 51.74°C

18. একটি কার্নো ইঞ্জিনের দক্ষতা $\frac{1}{6}$ । তাপ গ্রাহকের তাপমাত্রা $65^{\circ}\mathrm{C}$ কমালে দক্ষতা $\frac{1}{3}$ হয়। তাপ উৎস ও তাপ গ্রাহকের তাপমাত্রা নির্ণয় করো। [BUET 02-03]

উত্তর: 325 K

19. স্বাভাবিক তাপমাত্রা ও চাপে হিলিয়ামের এক কিলোমোল অণুর আয়তন $22.42~\mathrm{L}$ । স্থির আয়তনে হিলিয়ামের আপেক্ষিক তাপ যদি $3.0~\mathrm{calmol}^{-1}\mathrm{K}^{-1}$ ¹ হয় তবে স্থির চাপে হিলিয়ামের আপেক্ষিক তাপ নির্ণয় করো।

(দেওয়া আছে, পারদের ঘনত্ব = $13.6 \times 10^3 \text{ kgm}^{-3}$; J = 4200 J/kcal) [BUET 01-02]

উত্তর: 20.91 Jmol⁻¹K⁻¹

- 20. একটি আদর্শ কার্নো ইঞ্জিনের উৎস এবং সিঙ্কের তাপমাত্রা 450 K এবং 350 K। প্রতি সাইকেলে ইঞ্জিনটি যদি উৎস হতে 1 kcal তাপ গ্রহণ করে তাহলে-
- প্রতি সাইকেলে সিঙ্কে বর্জিত তাপ
- (ii) ইঞ্জিনটির দক্ষতা এবং
- (iii) প্রতি সাইকেলে সম্পাদিত কাজের পরিমাণ নির্ণয় করো।

[J = 4.184 kJ/kcal][BUET 01-02]

উত্তর: (i) 0.78 kcal; (ii) 22.2%; (iii) 0.92048 kJ

বিগত সালে KUET-এ আসা প্রশ্লাবলী

40 ডিগ্রি সেলসিয়াস তাপমাত্রায় এবং 76 সে. মি. বায়ু চাপে কিছু পরিমাণ বায়ুকে রুদ্ধতাপীয় প্রক্রিয়ায় আয়তন দ্বিগুণ করা হলে তাপমাত্রা কত হবে? আবার যদি পরিবর্তিত তাপমাত্রা থেকে 20 ডিগ্রি সেলসিয়াস বৃদ্ধি করা হয়, তবে এর চাপ কত হবে? [$\gamma=1.4$] [KUET 19-20]

উত্তর: 237.2096 K; 38.23 cm Hg

একটি কার্নো ইঞ্জিন অন্তর্গামী তাপের $rac{1}{4}$ অংশ কাজে রূপান্তর করে। এর তাপ গ্রাহকের তাপমাত্রা আরো $70^{\circ}\mathrm{C}$ ্রাস করলে তার দক্ষতা দিগুণ হয়। উৎসের তাপমাত্রা ও তাপ গ্রাহকের তাপমাত্রা বের করো।

[RUET 12-13, 09-10, KUET 03-04]

উত্তর: 210 K

100°C তাপমাত্রার বায়ুকে রুদ্ধতাপীয় প্রক্রিয়ায় সংকুচিত করে এর অর্ধেক আয়তনে পরিণত করা হল। তাপমাত্রার পরিবর্তন নির্ণয় কর।

[KUET 05-06]

উত্তর: 119.176°C

- "তাপ ও তাপমাত্রা" এর সংজ্ঞা দাও। 4. [KUET 04-05] উত্তর: তাপ হল বস্তুর তাপীয় শক্তি। তাপমাত্রা হল বস্তুর তাপীয় অবস্থা, যা নির্ধারণ করে ঐ বস্তু অন্য কোনো বস্তুর সংস্পর্শে আসলে তাপ গ্রহণ করবে না বর্জন করবে।
- সমোষ্ণ প্রক্রিয়া কী? কোনো নির্দিষ্ট ভরের গ্যাসের তাপমাত্রা 40°C। রূদ্ধতাপ প্রক্রিয়ায় এর আয়তন দিগুণ করলে চূড়ান্ত তাপমাত্রা কত হবে? $(\gamma = 1.4)$ [KUET 04-05] উত্তর: – 35.8°C
- একটি সিলিভারের মধ্যে 3 atm চাপে এবং 300 K উষ্ণতায় 10 litre বায়ু আছে।
- চাপ যদি হঠাৎ করে দ্বিগুণ হয় তাহলে বায়ুর আয়তন ও উষ্ণতা কত হবে?
- (ii) চাপ যদি খুব ধীরে দিগুণ করা হয় তাহলে বায়ুর আয়তন ও উষণতা কত হবে? [KUET 03-04]

উত্তর: (i) 6.095 litre; 365.704 K; (ii) 5 L; যেহেতু সমোষ্ণ পরিবর্তন তাই তাপমাত্রার কোনো পরিবর্তন হবে না।

বিগত সালে RUET-এ আসা প্রশ্নাবলী

100°C তাপমাত্রার 0.02 kg জলীয়বাষ্প ঘনীভূত হয়ে -10°C তাপমাত্রায় পরিণত করতে কত তাপ বর্জন করতে হবে? বাষ্পের ঘনীভবনের আপেক্ষিক সুপ্ততাপ = 2268000 Jkg^{-1} , বরফের আপেক্ষিক তাপ = 2100 $\mathrm{Jkg^{-1}K^{-1}}$ এবং

বরফের গলনের আপেক্ষিক সুপ্ততাপ = 336000 Jkg⁻¹।[RUET 19-20] **উত্তরঃ** 60900 J

27°C তাপমাত্রায় কোন নির্দিষ্ট পরিমাণ গ্যাস হঠাৎ প্রসারিত হয়ে দিগুণ আয়তন লাভ করে। চূড়ান্ত তাপমাত্রা কত? [দেওয়া আছে $\gamma=1.40$] [BUTex 18-19; RUET 10-11]

উত্তরঃ – 45.6425°C

তাপগতিবিদ্যা > ACS/ Engineering Practice Sheet.....

- আদর্শ তাপমাত্রা ও চাপে নির্দিষ্ট আয়তনের শুষ্ক গ্যাসকে
- (i) সমোষ্ণ অবস্থায় এবং
- (iii) রুদ্ধতাপ অবস্থায় তিনগুণ আয়তনে প্রসারিত হতে দেয়া হল। প্রতিক্ষেত্রে চূড়ান্ত চাপ কত হবে নির্ণয় করো। ($\gamma = 1.4$) [RUET 18-19]

উত্তর: (i) 33775 Pa; (ii) 21764.408 Pa

- ফ্রান্সের আইফেল টাওয়ারের উচ্চতা 336 meter। গ্রীম্মকালে সর্বোচ্চ তাপমাত্রা 100°F ও শীতকালে সর্বনিম্ন তাপমাত্রা 0°F। গ্রীম্মকালে টাওয়ারটি শীতকালের চেয়ে কতটা বড় হয়? টাওয়ারটি লোহার তৈরি ও লোহার দৈর্ঘ্য প্রসারণ গুণাঙ্ক, $\alpha = 12 \times 10^{-6} \, {}^{\circ}\mathrm{C}^{-1}$ । [RUET 17-18] উত্তর: 0.224 m
- স্বাভাবিক তাপমাত্রা ও চাপে কিছু শুষ্ক বায়ু সংনমিত করে আয়তন অর্ধেক করা হলো। চূড়ান্ত চাপ নির্ণয় করো। [RUET 12-13] উত্তর: 2.639 atm
- একজন আবিষ্কর্তা দাবি করলো যে তার উদ্ভাবিত ইঞ্জিন 700 K এবং 400 K তাপমাত্রার মধ্যে কার্যরত এবং এর দক্ষতা 48%, তার দাবি কী সঠিক? [RUET 12-13]

উত্তর: দাবি সঠিক নয়।

অক্সিজেনের ধ্রুব আয়তনে মোলার আপেক্ষিক তাপ (C_V) ও ধ্রুব চাপে মোলার আপেক্ষিক তাপ $(\mathbf{C}_{\mathbf{P}})$ নির্ণয় করো। স্বাভাবিক তাপমাত্রা ও চাপে অক্সিজেনের ঘনত্ব $1.43~{
m kgm^{-3}}$, স্বাভাবিক চাপ = $1.01 \times 10^5~{
m Nm^{-2}}$ এবং $\gamma = \frac{C_P}{C_V} = 1.4$ । [RUET 08-09]

উত্তর: 28.9758 Jmol⁻¹K⁻¹

- 127°C তাপমাত্রায় কোনো নির্দিষ্ট গ্যাস হঠাৎ প্রসারিত হয়ে দিগুণ আয়তন লাভ করে। চূড়ান্ত তাপমাত্রার মান নির্ণয় করো। [RUET 07-08] উত্তর: 30.14°C
- 47°C তাপমাত্রায় কোনো নির্দিষ্ট পরিমাণ গ্যাস হঠাৎ প্রসারিত হয়ে দিগুণ আয়তন লাভ করে। চূড়ান্ত তাপমাত্রা কত? [RUET 05-06] উত্তর: – 30.48°C
- 10. m ভরের একটি সীসার গুলি একটি গাছের দিকে ছোঁড়া হল। গাছে ঢোকার ও অপর পার্শ্বে বের হওয়ার সময় গুলিটির বেগ যথাক্রমে $500~\mathrm{ms}^ ^1$ ও $300~\mathrm{ms}^{-1}$ । হারানো শক্তির 50% গুলিতে তাপরূপে জমা হয়েছে ধরে। গুলির তাপমাত্রা বৃদ্ধি নির্ণয় করো।

সীসার আপেক্ষিক তাপ = $0.031 \text{ kcal kg}^{-1} \circ \text{C}^{-1}$;

1 kcal $kg^{-1} \circ C^{-1} = 4.184 kJkg^{-1} \circ C^{-1}$ [RUET 03-04]

উত্তর: 308.4°C

11. একটি কার্নো ইঞ্জিনের উৎসের তাপমাত্রা ও তাপগ্রাহকের তাপমাত্রা যথাক্রমে 227°C ও 27°C। ইঞ্জিনের দক্ষতা নির্ণয় করো। [RUET 02-03] উত্তর: 40%

বিগত সালে CUET-এ আসা প্রশ্নাবলী

যদি 0°C তাপমাত্রার 15 gm বরফকে 60°C তাপমাত্রার 60 gm পানির সাথে মিশানো হয়, তবে মিশ্রণের তাপমাত্রা নির্ণয় করো।

[CUET 13-14]

উত্তর: 32°C

একখণ্ড বরফ উপর হতে ভূমিতে পতিত হলো। এতে পতন শক্তির 50% তাপে রূপান্তরিত হওয়ায় বরফ খণ্ডটির এক চতুর্থাংশ গলে গেল। বরফ খণ্ডটি কত উচ্চতা হতে পতিত হয়েছিল নির্ণয় করো। বরফ গলনের সুপ্ততাপ 80000 calkg^{-1} এবং তাপের যান্ত্রিক সমতা $=4.2 \text{ Jcal}^{-1}$ । [CUET 04-05]

উত্তরঃ 17.143 km

বিগত সালে BUTex-এ আসা প্রশ্লাবলী

একটি পাত্রে রক্ষিত 2 gm অক্সিজেন গ্যাসকে ধীরে ধীরে সমোষ্ণ প্রক্রিয়ায় প্রসারিত করে আয়তন তিনগুণ করা হল। প্রসারণের ফলে গ্যাসটির এনট্রপির পরিবর্তন কত হবে? [BUTex 22-23]

উত্তর: 0.57 JK⁻¹

- $10^5~\mathrm{Pa}$ চাপে এবং $25^{\mathrm{o}}\mathrm{C}$ তাপমাত্রায় বায়ুর আয়তন $1.8~\mathrm{m}^3$ । 2. একে সমোষ্ণ প্রক্রিয়ায় সংকুচিত করে চাপ $5 imes 10^5~{
 m Pa}$ করা হলো। এই প্রক্রিয়ায় নির্গত তাপের পরিমাণ নির্ণয় করো। [BUTex 21-22] উত্তর: 2.897 × 10⁵ J
- 1 মোল কোনো গ্যাসকে 27°C তাপমাত্রায় সমোষ্ণ প্রক্রিয়ায় প্রসারিত হতে দেওয়া হলো যতক্ষণ না পর্যন্ত এর আয়তন দিগুণ হয়। তারপর রুদ্ধতাপীয় প্রক্রিয়ায় গ্যাসটিকে আবার আগের আয়তনে ফিরিয়ে আনা হল। মোট কৃতকাজের পরিমাণ নির্ণয় করো। $[\gamma=1.4,\, R=8.4\,
 m Jmol^{-1}K^{-1}]$ [BUTex 20-21]

উত্তর: – 266.12 J

একটি কার্নো চক্রের দক্ষতা $rac{1}{6}$ । তাপগ্রাহকের তাপমাত্রা 70°C কমানোর ফলে দক্ষতা হয় $\frac{1}{3}$ । কার্নোর চক্রটি এখন কোন প্রারম্ভিক এবং চূড়ান্ত তাপমাত্রাদ্বয়ে কার্যরত? [BUTex 19-20]

উত্তর: 420 K ও 280 K তাপমাত্রাদ্বয়ে কার্যরত।

8 ..

5. 0° C তাপমাত্রার 1 kg বরফকে 100° C তাপমাত্রার বাম্পে পরিণত করা হলো। এনট্রপির পরিবর্তন নির্ণয় করো। [BUTex 19-20] উত্তরঃ $8600.598~\mathrm{JK}^{-1}$

6. একটি ক্রটিপূর্ণ থার্মোমিটারে বরফবিন্দু 5°C এবং স্টীম বিন্দু 115°C তাপমাত্রা নির্দেশ করে। কোন বস্তুর প্রকৃত তাপমাত্রা 40°C হলে ঐ ক্রটিপূর্ণ থার্মোমিটারে কত তাপমাত্রা নির্দেশ করবে?

[BUTex 11-12]
উত্তর: 49°C তাপমাত্রা নির্দেশ করবে।

7. কার্নো ইঞ্জিন বরফবিন্দু ও বাষ্পবিন্দুর মধ্যে কাজ করলে তার দক্ষতা নির্ণিয় করো। [BUTex 10-11]

উত্তর: 26.8%

8. আলোকীয় পাইরোমিটার এর তাপমাত্রার পরিসর কত?

[BUTex 09-10]

উত্তর: 600°C-1500°C

 কোন তাপমাত্রায় ফারেনহাইট স্কেলের পাঠ সেলসিয়াস স্কেলের পাঠের বিশুণ হবে? [BUTex 09-10]

উত্তর: 160°C এবং 320°F

10. একটি কার্নো ইঞ্জিন 0°C এবং 100°C উষ্ণতায় রয়েছে। এর তাপীয় কার্য দক্ষতা (সর্বোচ্চ) কত? [BUTex 06-07]

উত্তর: 26.8 %

11. 285 K তাপমাত্রা ও 100 kPa চাপের 20 ${
m m}^3$ আয়তনের এক পারমাণবিক গ্যাসকে হঠাৎ করে $0.5~{
m m}^3$ আয়তনে সংকৃচিত করা হলে, নতুন তাপমাত্রা ও চাপ কত? (এক পারমাণবিক গ্যাসের জন্য $\gamma=1.67$) [BUTex 03-04]

উত্তর: 3374.62 K: 47.363 × 10⁶ Pa

12. 167° C এবং 37° C উষ্ণতাদ্বয়ের মধ্যে কার্যরত একটি কার্নো ইঞ্জিনে $2 \times 10^4 \; \mathrm{cal}$ তাপ সরবরাহ করা হয়। ইঞ্জিনটি কতটুকু উপযোগী কাজ করতে সমর্থ হবে? [BUTex 02-03]

উত্তর: 5909.09 cal

13. একটি ফ্রিজের মোটরের ক্ষমতা 200 W। যদি ঠাণ্ডা প্রকোষ্ঠের তাপমাত্রা 270 K এবং বাহিরের তাপমাত্রা 300 K হয় তাহলে 100 min এ ঠাণ্ডা প্রকোষ্ঠ থেকে সর্বোচ্চ কী পরিমাণ তাপ পাওয়া যাবে?

[BUTex 01-02]

উত্তর: 1.08 × 10⁷ J

MCQ

বিগত সালে BUET-এ আসা প্রশ্নাবলী

1. সমোষ্ণ প্রক্রিয়ায় কোনটি ধ্রুবক?

[BUET Preli 22-23]

ক) আয়তন

খ) চাপ

গ) তাপমাত্রা

খি তাপ

₹ 114.3°C

ᢀ −158.7 K

গ 114.333 K

 কোন রেফ্রিজারেটর 700 J তাপ তাপাধারে বর্জন করে এবং ঠান্ডা প্রকোষ্ঠ থেকে 400 J তাপ অপসারণ করলে কার্য সম্পাদন সহগ কত?
[BUET Preli 21-22]

1.83

ৠ 1.15

1 0.55

থ 1.33

4. কোনো সিস্টেম 900 J তাপ শোষণ করে 300 J কাজ সম্পাদন করে। অন্তঃস্থ শক্তির পরিবর্তন কত? [BUET Preli 21-22]

→ −600 J

(4) 600 J

Ϡ 300 J

থ None

5. 127°C এবং 427°C তাপমাত্রার মধ্যে কার্যরত একটি ইঞ্জিনের সম্ভাব্য সর্বোচ্চ দক্ষতা কত হবে? [CUET 15-16; RUET 13-14; BUTex 13-14; BUET 09-10, 06-07]

3.62%

(4) 42.86%

গু 50%

খি 70.25%

6. 87.23°C এর কোনো নির্দিষ্ট পরিমাণ গ্যাস হঠাৎ প্রসারিত করে এর আয়তন দ্বিগুণ করা হলো। চূড়ান্ত তাপমাত্রা হবে−

[KUET 14-15; BUET 09-10]

⊕ 0°C

(३) 45°C

গ্ 10°C

থ 25°C

7. গরম বস্তু ঠান্ডা করতে কোনটি অধিক উপযোগী? [BUET 12-13]

ক) শীতল বাতাস

খ) শীতল পানি

গ) বরফ

(ছ) সবগু**লো** সমান

8. 501.85°C তাপমাত্রার সমতুল্য থার্মোডাইনামিক তাপমাত্রা কত? [BUET 11-12]

₹ 775.01 K

থ 774.85- K

例 775.00 K

(च) 228.85 K

9. রুদ্ধতাপীয় প্রক্রিয়ায় γ = 1.4 । দ্বি-পরমাণুক গ্যাসের চাপ 0.5% বৃদ্ধি করা হলে গ্যাসের আয়তন কমবে− [BUET 11-12]

1 0.5%

∢ 0.70%

গু 1.0%

(1) 0.36%

তাপগতিবিদ্যা > ACS/ Engineering Practice Sheet ৫

10. স্বাভাবিক তাপমাত্রা ও চাপে 1 mole আদর্শ গ্যাসের তাপমাত্রা 1 K | 4. একটি কার্নো ইঞ্জিনের কর্মদক্ষতা 50% যখন ইহার তাপগ্রাহকের বাড়ালে যে কাজ সম্পন্ন হয় তা হল-[BUET 10-11]

₹ 8.314 J

③ 4200 J

(1) $3.36 \times 10^5 \,\mathrm{J}$

(1) 4.2 J

11. যখন $10~\mathrm{g}$ পানিকে $0^{\circ}\mathrm{C}$ থেকে $40^{\circ}\mathrm{C}$ তাপমাত্রায় উত্তপ্ত করা হয় তখন এনট্রপির পরিবর্তন হবে–

3 2.83 cal K^{-1}

গি 1.37 cal K⁻¹

(₹) 10.58 calK⁻¹

12. পানিকে 7°C থেকে 1°C এ ঠাভা করলে কী ঘটে? [BUET 10-11]

- 爾 এটি শুধুমাত্র সংকুচিত হয়
- খ এটি শুধুমাত্র প্রসারিত হয়
- এটি প্রথমে সংকুচিত হয় এবং পরে প্রসারিত হয়
- ্ছ্য এটি প্রথমে প্রসারিত হয়, তারপর সংকুচিত হয় এবং পরে আবার প্রসারিত হয়

ANSWER BOX

 10
 2
 3
 3
 4
 3
 5
 3
 6
 6
 7
 3
 8
 9
 9
 10
 6

বিগত সালে CKRUET-এ আসা প্রশ্নাবলী

- $1. \quad 29^{\circ}\mathrm{C}$ তাপমাত্রার একটি গ্যাস চেম্বারে $1 \; \mathrm{atm} \; \mathrm{birM} \; 100 \; \mathrm{kgm}^{-3}$ ঘনত্বের CO_2 গ্যাস আছে। চেম্বারটিতে গ্যাসের চাপ $2 ext{ atm }$ করা হলে চেম্বারটি ফেটে যায়। চেম্বারটির চূড়ান্ত তাপমাত্রায় গ্যাসের ঘনত্বের পরিবর্তন কত হবে? (γ = 1.33) [CKRUET 23-24]
 - **→** 68.4 kgm⁻³

(₹) 69.4 kgm⁻³

168.4 kgm⁻³

₹ 85.6 kgm⁻³

[™] 78.4 kgm⁻³

- 2. জনাব রফিক 225 gm ভরের এবং 0°C তাপমাত্রার এক খণ্ড বরফ একটি নির্দিষ্ট উচ্চতা থেকে ফেলে দিল। মাটিতে পড়ার পর শক্তির সংরক্ষণ নীতির কারণে বরফ খণ্ডটি 10% গলে গেল। এই বরফ খণ্ডটিকে যদি $100^{\circ}\mathrm{C}$ তাপমাত্রার বাম্পে পরিণত করতে চাই, তবে সেখানে এন্ট্রপির পরিবর্তন কত হবে? (বরফ গলনের সুপ্ততাপ এবং পানির আপেক্ষিক তাপ যথাক্রমে 336 kJkg^{-1} এবং $4.2 \text{ kJkg}^{-1}\text{K}^{-1}$) [CKRUET 23-24]
 - \odot 2150.16 JK⁻¹

³ 2193.04 JK^{−1}

গ) 2195.04 JK⁻¹

(₹) 1514.74 JK⁻¹

(8) 1822.5 JK⁻¹

- 3. একটি কার্নো ইঞ্জিন 237°C এবং 139°C তাপমাত্রায় কার্যরত। উচ্চ তাপমাত্রায় এটি যদি $2.54 \times 10^6 \, \mathrm{J}$ তাপ শোষণ করে, প্রতি সাইকেলে ইঞ্জিনটি কী পরিমাণ কাজ করছে? [CKRUET 22-23]
 - \odot 50.4 × 10⁸ J

◀ 450 kJ

 \mathfrak{I} 4.8 × 10⁴ J

(1) 488 kJ

(8) $6.04 \times 10^{3} \text{ J}$

- তাপমাত্রা $27^{\circ}\mathrm{C}$ । ইঞ্জিনটির কর্মদক্ষতা 60% করতে উৎসের তাপমাত্রা কত বাড়াতে হবে? [CKRUET 21-22; KUET 11-12]

(4) 120 K (9) 160 K

何 150 K

® 200 K

-10°C তাপমাত্রার 10 gm বরফকে 0°C তাপমাত্রার পানিতে পরিণত করতে এনট্রপির পরিবর্তন নির্ণয় করো। বরফের আপেক্ষিক তাপ = 0.5 cal/gm এবং বরফ গলনের সুপ্ত তাপ = 80 cal/gm।

[CKRUET 21-22]

● 0.373 cal/K

^③ 0.1866 cal/K

1 0.0373 cal/K

3 2.930 cal/K

(8) 3.120 cal/K

0°C তাপমাত্রায় 5 kg বরফকে 0°C তাপমাত্রার পানিতে পরিণত করতে এনট্রপির পরিবর্তন কত হবে? [CKRUET 21-22]

♠ 4153.85 J/K

(4) 5361.13 J/K

旬 6053.13 J/K

(च) 6153.85 J/K

® 5153.85 J/K

7. একজন রোগীর দেহের তাপমাত্রা একটি ক্রটিপূর্ণ থার্মোমিটারের সাহায্যে মেপে 45°C পাওয়া গেল। যদি এই থার্মোমিটারের বরফ বিন্দু এবং বাষ্পবিন্দু यथाक्रारम 3°C এবং 107°C পাওয়া যায়, তাহলে রোগীর দেহের প্রকৃত তাপমাত্রা ফারেনহাইট স্কেলে বের করো। [CKRUET 21-22]

₱ 114.69°F

(₹) 100.69°F

์ 104.69°F

থি 102.59°F

(§) 102.69°F

8. আহনাফ 250 gm ভরের 0°C তাপমাত্রার একটি বরফ খণ্ডকে একটি নির্দিষ্ট উচ্চতা থেকে ফেলে দিল। মাটিতে পড়ার পর শক্তির সংরক্ষণশীলতা নীতির কারণে উৎপাদিত তাপের জন্য বরফ খন্ডটি 10% গলে গেল। আহনাফ কত উচ্চতা থেকে বরফ খন্ডটি ফেলেছিল? [IUT 21-22; CKRUET 20-21]

③ 3428.57 m

旬 3227.60 m

₹ 3957.57 m

[™] 3528.9 m

- 9. –10°C তাপমাত্রার 10 kg বরফকে 0°C তাপমাত্রার পানিতে পরিণত করতে এনট্রপির পরিবর্তন কত হবে? বিরফ গলনের আপেক্ষিক সুপ্ততাপ 80000 cal/kg, বরফের আপেক্ষিক তাপ 0.5 cal/gm এবং পানির আপেক্ষিক তাপ $4200 \text{ Jkg}^{-1}\text{K}^{-1}$] [CKRUET 20-21]
 - → 3.12 kcalK⁻¹

গ) 312 JK⁻¹

③ 0.187 kcalK⁻¹

3.12 calK⁻¹

ANSWER BOX

1 1 1 2 | * | 3 | 1 4 | 1 5 | 8 6 | 1 7 | 1 8 | 1 9 | 1

	5 গুণ আয়তন লাভ করল। চূড়ান্ত	তাপমাত্রা কত হবে? [γ = 1.4]		(♠) 4.53 × 10′ J	(1) 1.47×10^7 cal
		[KUET 18-19]		$9.4.53 \times 10^7 \text{ cal}$	\mathfrak{T} 2.78 × 10 ⁷ cal
	→ −215°C	ᢀ −137°C		$3.22 \times 10^5 \mathrm{J}$	
	ரி −58°C	থ 58°C			
	(8) 137°C		9.	100°C তাপমাত্রার 1 gm প	ানি ও 100°C তাপমাত্রার 1 gm
				জলীয়বাম্পের 1 বায়ুমণ্ডলীয় চার্	প এনট্রপির পার্থক্য কত? [100°C
2.	একটি কার্নো (Carnot) ইঞ্জিন 2	7°C এবং 180°C তাপমাত্রার মধ্যে		-	f = 540 cal/gm] [KUET 15-16]
		$ m 8.6 imes 10^4~J$ তাপ গ্রহণ করে।		(₹) −4.45 cal/K	(1.45 cal/K)
	ইঞ্জিন দ্বারা সম্পাদিত কাজের পরি			(9) 540 cal/K	(v) 1.98 cal
		•		(8) 5.4 cal	() 1.96 car
	→ 1687 J →	③ 25.79 kJ		(a) 3.4 car	
		$\mathfrak{T} 2.9 \times 10^6 \mathrm{J}$	10	্যক্তি কার্নো ইঞ্জিন রাষ্প্র বিন্দু (ও বরফ বিন্দুর মধ্যে কাজ করলে এর
	\odot 2.25 × 10 ⁵ J		10.	দক্ষতা কত?	[RUET 14-15; KUET 11-12]
3.		৽ 100°C তাপমাত্রার বাষ্পে পরিণত			④ 62.18%
	করতে এনট্রপির পরিবর্তন কত হে	ব?		(1) 26.18%	₹ 26.81%
	[বাষ্পীভবনের সুপ্ত তাপ = 2.26 ×	$10^6 \mathrm{Jkg}^{-1}$ [KUET 17-18]		S None	
	\bigcirc 1.41 × 10 ⁵ JK ⁻¹	$ 1.26 \times 10^6 \text{JK}^{-1} $	11	00C tatelations 1 les assess	100°C তাপমাত্রার পানিতে পরিণত
	(1) 141.46 JK ⁻¹	($\sqrt{9}$) 1.7 × 10 ⁶ erg K ⁻¹	11.		
	(§) $1.38 \times 10^3 \text{JK}^{-1}$	JIII N TO GIGIT			ন হবে? বিরফ গলনের সুপ্ততাপ
	(a) 1.36 × 10 3K			$3.36 imes 10^5 ext{J/kg}$ এবং পানির স	8 -
4.	100°C ভাপমারের 1 ৮৫ পারি	ক 0°C তাপমাত্রার বরফে পরিণত			UET 14-15, 13-14; KUET 13-14]
٦.		বং বিরফ গলনের আপেক্ষিক সুপ্ততাপ		$ 37.7 \times 10^4 $	\mathfrak{P} 75.4 × 10 ⁴ J
		•		例 113.1 × 1 ⁴ J	\mathfrak{T} 150.8 × 10 ⁴ J
	$336000~{ m Jkg}^{-1}$ এবং পানির আপে	0 -		None	
	O 2541 6 WZ-1	[KUET 16-17]			_
	● -2541.6 JK ⁻¹	③ −1310.85 JK⁻¹○ 1220.75 HV⁻¹	12.	-1	শুষ্ক বায়ুকে আকস্মিকভাবে আয়তনের
	$9 - 1230.77 \text{ JK}^{-1}$	\mathfrak{T} 1230.77 JK ⁻¹		অর্ধেকে সংকুচিত করা হল। চূড়াৎ	ষ্ট তাপমাত্রা কত? [γ = 1.4]
	[™] 2541.6 JK ⁻¹				[KUET 14-15]
					₹ 410 K
5.	127°C তাপমাত্রায় কোনো নির্দিষ্ট	পরিমাণ গ্যাস হঠাৎ সংকুচিত হয়ে $\frac{1}{3}$		📵 126.81°С	₹ 395.6 K
		9		থ 127°C	
	আয়তন লাভ করল। চূড়ান্ত তাপমা	•			
	0.120 = 400	[KUET 16-17]	13.	0.5 kg ভরের ও 0°C তাপমাত্রা	র বরফকে 100°C তাপমাত্রার বাস্পে
	● 620.74°C	^③ 347.74°C		পরিণত করতে কত তাপ প্রয়োজ	N? [RUET 14-15; KUET 13-14]
	Э 220.74°С	₹ 127°C		\odot 1.511 × 10 ⁵ J	(4) $15.12 \times 10^5 \mathrm{J}$
	᠖ –45°C			(9) $1.151 \times 10^5 \mathrm{J}$	$ \boxed{9} 16.15 \times 10^5 \mathbf{J} $
	65.			(8) None	() 10.13 × 10 3
6.		উঁচু। যদি ধরা হয় পুতিত পানির		© Itolic	
	গতিশক্তির অর্ধেক তাপে পরিণত হ	য়ে, তাহলে তাপমাত্রা বৃদ্ধি কত হবে?	17.	কোন তাপমাত্রায় ফারেনহাইট ও বে	pলভিন স্কেলে একই পাঠ পাওয়া যায় ?
		[KUET 16-17]		[R]	UET 13-14, 12-13; KUET 10-11]
	→ 0.1°C			₱ 774.25 F & 774.25 K	③ 674.25 F & 674.25 K
	ரி 1°C	₹ 1.05°C		⑨ 574.25 F & 574.25 K	🕲 474.25 F & 474.25 K
	[®] 10.5°C			S None	
_	1000 statement of the	Partot Mer ata athe contra an	15	একটি সিব জায়তবের হাইয়েব্য	ছন পাঠোগিটার <i>তেবল</i> রাম বরফ ও
7.		রিমাণ শুষ্ক বায়ু হঠাৎ প্রসারিত হয়ে	15.	•	জন থার্মোমিটার তরল বায়ু, বরফ ও
	দিগুণ আয়তন লাভ করে। চূড়ান্ত জ	•		,	3.3 cm, 75.1 cm এবং 102.5 cm
	○ 220 W	[KUET 15-16]			ায়ুর তাপমাত্রা কত? [KUET 13-14]
	→ 229 K	(₹) −53.38°C		→ 189°C	^(∗) −189.05°C
	ூ −53.98°C	₹ 204.35K		⑨ 190 K	₹ -188.4°C
	⑤ −68.65°C			[™] 187.8°C	

বিগত সালে KUET-এ আসা প্রশ্লাবলী

1. 137°C তাপমাত্রায় কোনো নির্দিষ্ট পরিমাণ গ্যাস হঠাৎ প্রসারিত হয়ে

Physics 2nd Paper Chapter-1 ➤ Physics 2nd Paper Chapter-1

8. একটি কার্নো ইঞ্জিনের তাপ উৎস ও তাপ গ্রাহকের তাপমাত্রা যথাক্রমে

229°C এবং 106°C। ইঞ্জিন 600×10^5 cal/cycle তাপ শোষণ

করলে প্রতি সাইকেলে তাপশক্তি বর্জন নির্ণয় করো। [KUET 15-16]

- 16. কোন তাপমাত্রায় সেলসিয়াস ও ফারেনহাইট স্কেলে একই পাঠ পাওয়া যাবে? [BUTex 13-14; RUET 09-10; KUET 06-07]
 - → −40°
- থ 40°

গ্য 4°

- (ঘ) −30°
- (§) −20°
- 17. একটি নির্দিষ্ট গ্যাসের জন্য $P = \frac{K}{V}$ যদি T স্থির থাকে। এখানে P = চাপ, V = আয়তন, T = তাপমাত্রা এবং K = ধ্রুবক। এমতাবস্থায় নিচের কোনটি সঠিক নয়? $[KUET\ 12-13]$

- 18. রুদ্ধতাপীয় প্রক্রিয়ায় বায়ুর আয়তন বৃদ্ধি পেয়ে দ্বিগুণ হল। প্রারম্ভের চাপ এক বায়ুচাপ হলে চূড়ান্ত চাপ কত? [KUET 12-13, 11-12]
 - ҈ 0.49
- **(4)** 0.93
- **1** 0.38
- থ 0.83
- **(8)** 0.15
- 19. একটি স্থির আয়তন হাইড্রোজেন থার্মোমিটারকে তরল বায়ু, বরফ ও বাস্পে স্থাপন করলে যথাক্রমে 23.5 cm, 75.0 cm এবং 102.4 cm পারদ চাপ নির্দেশ করে। তরল বায়ুর তাপমাত্রা কত? [KUET 12-13]
- (₹) -190°C
- 旬 188.25°C
- (च) −187.95°C
- ® −188.25°C
- 20. ফারেনহাইট ক্ষেলের কোন তাপমাত্রা সেন্টিগ্রেড ক্ষেলের দ্বিগুণ? [RUET 11-12; KUET 07-08]
- (₹) 160°F
- গ্ৰ 320°F
- থ 273°F
- (8) 460°F
- 21. 0°C তাপমাত্রায় কোনো নির্দিষ্ট গ্যাসকে হঠাৎ প্রসারিত করে আয়তনে দ্বিগুণ করা হলো। চূড়ান্ত তাপমাত্রা কত? (γ = 1.4) [KUET 11-12]
 - → −88.25°C
- ◀ −166.13°C
- ெ 88.25°C
- অ −66.10°C
- [™] 166.13°C
- 22. একটি জলপ্রপাতে 100 মিটার উপর হতে পানি নিচে পতিত হয়। উপরের ও নিচের পানির তাপমাত্রার পার্থক্য নির্ণয় করো। [KUET 10-11]
- ③ 0.234°C
- গ) 0.234°F
- (₹) 0.564°C
- (₭) 0.123°C
- ANSWER BOX

					3															
1	1	ৠ	12	(A)	13	ঞ্চ	14	ন্ত	15	ঞ্চ	16	⊕	17	(%)	18	⑦	19	ঘ	20	旬
2	1	খ	22	ঞ্চ																

বিগত সালে RUET-এ আসা প্রশ্নাবলী

- 1. একটি ক্রটিপূর্ণ থার্মোমিটার গলিত বরফে 5°C এবং শুষ্ক বাম্পে 99°C পাঠ দের। থার্মোমিটারটি 52°C পাঠ দিলে ফারেনহাইট স্কেলে প্রকৃত তাপমাত্রা কত? [RUET 14-15]
- (4) 90°F
- 例 100°F
- থি 122°F
- **8** None
- পিষ্টন-সিলিভারের ভিতর আবদ্ধ স্বাভাবিক তাপমাত্রা ও চাপের শুষ্ক বায়ু সংকুচিত করে এর আয়তনের অর্ধেক করা হলো। যদি তাপমাত্রা অপরিবর্তিত থাকে, তবে চূড়ান্ত চাপ কত হবে? [RUET 14-15]
 - \odot 2.026 × 10⁵ Nm⁻²
- $\textcircled{3} 4.12 \times 10^5 \ \text{Nm}^{-2}$
- $\boxed{ \mathfrak{T} } \ 10.026 \times 10^5 \ Nm^{-2}$
- None
- - → 300 J
- ⁽⁴⁾ 600 J
- 例 800 J
- ₹ 500 J
- **§** 100 J

ANSWER BOX

বিগত সালে CUET-এ আসা প্রশ্লাবলী

- একটি কার্নো ইঞ্জিন 500 K তাপমাত্রার তাপ উৎস হতে 1250 J তাপ গ্রহণ করে ও তাপ গ্রাহকে 700 J তাপ বর্জন করে। তাপ গ্রাহকের তাপমাত্রা নির্ণয় করো।
 [CUET 14-15, 13-14, 10-11, 08-09]
- ② 280 K
- 何 0 K

- (1) None of these
- একটি কার্নো ইঞ্জিন 500 K তাপমাত্রার তাপ উৎস থেকে 300 cal তাপ গ্রহণ করে এবং তাপ গ্রাহকে 225 cal তাপ বর্জন করে। তাপ গ্রাহকের তাপমাত্রা কত?
 - ₹ 666.67 K
- (4) 135 K
- **⑨ 300 K**
- (च) 375 K
- 3. প্রত্যাগামী প্রক্রিয়ায় এনট্রপির পরিবর্তন-
- [CUET 13-14]

ক্) কম

- খ) বাড়ে
- १) भृंग
- None of these
- সীসার গলনাংক 327°C এবং সীসা গলনের লীন তাপ 5.86 cal/gm হলে 4 gm-mol সীসা গলাতে এনট্রপির পরিবর্তন কত হবে? (সীসার পারমাণবিক ওজন 207) [CUET 13-14]
- ③ 1.38 calK⁻¹
- **③** 14.8 calK⁻¹
- (1) None of these

ANSWER BOX

1 2 3 3 9 4 3

বিগত সালে IUT-এ আসা প্রশ্লাবলী

- 1. A thermometer is made using a carbon resistor having a temperature coefficient of resistivity of $-0.00050 \Omega^{\circ} C^{-1}$. The variation of resistance with temperature in the linear region is used to measure the temperature. On a cold winter day when the temperature is 8°C, the resistance is 216.8 Ω . What is the temperature on a summer day when the resistance is 213.5 Ω ? [IUT 21-22] 7.

(₹) 36.4°C

গি 34.4°C

থি 38.4°C

2. In one cycle, a heat engine absorbs 500 J from a high temperature rerservoir and expels 300 J to a low temperature reservoir. If the efficiency of this engine is 60% of the efficiency of a Carnot engine, what is the ratio of the low temperature to the high temperature in the Carnot engine? **IIUT 21-221**

 $\mathfrak{P} \frac{1}{2}$

3. In a cylinder there is 0.001 m^3 gas at $300 \text{ K} \mid 9$. temperature and at 10⁵ Pa pressure. The gas is expanded isothermally first and later on it is expanded again adiabatically. In each case ratio of expansion is 1:2. Calculate the total amount of work [IUT 20-21] in expansion. ($\gamma = 1.4$)

(ब) 3172.17 J

গ) 3272.17 J

(च) 3372.17 J

4. Compared to the initial value, what is the resulting pressure for an ideal gas that is compressed isothermally to one-third of its initial volume?

[IUT 20-21]

- **Tequal**
- খে Three times larger
- (1) Larger, but less than three times larger
- (\bar{y}) More than three times larger
- 5. A developed country generates about 5.0×10^{16} J of electrical energy a day. If this energy is generated by a power plant with an average efficiency of 30%, how much heat is dumped into the environment each day? [IUT 19-20]

(南) 1.67×10¹⁶ J

(ब) 1.167 × 10¹⁷ J

গ) 1.87 × 10¹⁶ J

(1) 1.25 × 10¹⁶ J

A student wants to cool 250 g of diet 7-up initially at 27°C by adding ice initially at -18°C. How much ice should he add so that the final temperature will be 0°C with all the ice melted? Assume that the container is not taking any heat and specific heat of 7-up is 4186 $Jkg^{-1} \circ C^{-1}$, specific heat of ice = 2000 $Jkg^{-1} \circ C^{-1}$ and latent heat of ice = $3.34 \times 10^5 \text{ Jkg}^{-1} {}_{0}\text{C}^{-1}$.

₹ 78.4 g

(ब) 73.4 g

ரி 77.5 g

খি 76.4 g

Water has the specific heat 4.186 kJ/kg°C, a boiling point of 100°C, and a heat of vaporization of 2260 kJ/kg. A sealed beaker contains 100 g of water that is initially at 20°C. How much heat is required to bring the water to its boiling point? [IUT 18-19]

(4) 33 kJ

何 226 kJ

(च) 230 kJ

Ice, which has a temperature of 0°C, is added to 500 gm of water that has a temperature of 100°C. Ice is continually added to the system until it has all melted and no more ice will melt. What is the temperature of the water in the system? [IUT 18-19]

গে 1.184°C

থ 0°C

A Carnot engine whose sink is at 300 K has an efficiency of 40%. By how much should the temperature of source be increased, so as to increase its efficiency by 50% of orginal efficiency? [IUT 18-19]

→ 275 K

(₹) 300 K

何 250 K

(च) 380 K

10. A Carnot heat engine operates between a hot reservoir at absolute temperature T_H and a cold reservoir at absolute temperature T_C. Its efficiency is-[IUT 17-18]

 $\textcircled{F} \frac{T_H}{T_C}$

 $\mathfrak{I} - \frac{T_H}{T_C}$

11. A real gas is changed slowly from state 1 to 2. During this process no work is done on or by the gas. This process must be-[IUT 17-18]

(4) Isothermal

(1) Adiabatic

গ) Isovolumic

(ঘ) Isobaric

12. A 750 kg car moving at 23 ms⁻¹ brakes to a stop. The brakes contain about 15 kg of iron, which absorbs the energy. What is the increase in temperature of the brakes? Specific heat of iron is 450 J(kg°C)⁻¹ [IUT 16-17]

(₹) 39.40°C

গি 49.40°C

(च) 19.40°C

- 13. A power station contains a heat engine between two 21. A Carnot engine takes heat at 227°C and releases at heat reservoirs, one containing steam at 100°C and other containing water at 20°C. What is the maximum amount of electrical energy which can be generated for each Joule of the heat extracted from the steam?
 - (4) 0.263 J
- (4) 0.235 J
- গে 0.214 J
- (च) 0.278 J
- 14. A 4.2 g lead bullet moving at 275 ms⁻¹ strikes a steel plate and stops. If all of its kinetic energy is converted to thermal energy and none leaves the bullet, what is its temperature change?

[Specific heat of lead is 130 J/kg°C]

[IUT 14-15]

- (४) 291°C
- 例 300°C
- (च) 272°C
- 15. During one cycle an engine extracts 2.00×10^3 J of energy from a hot reservoir and transfers 1.50×10^3 J to a cold reservoir. How much power does the engine generate if it goes through 4 cycles in 2.5 s? [IUT 14-15]
 - ₹ 750 W
- (4) 800 W
- 何 300 W
- (च) 375 W
- 16. Liquid helium has a very low boiling point of 4.2 K as well as low latent heat of vaporization, equal to 2.09×10^4 Jkg⁻¹. What is the boiling time for 2 kg of liquid helium by a 100 W heater. [IUT 14-15]
 - ₹ 6.97 min
- (4) 5.92 min
- গে 6.35 min
- (च) 6.57 min
- 17. A 6×10^2 g sample of water at 90°C is mixed with 4.00×10^2 g of water at 22°C. Assume no heat loss at the surroundings. What is the final temperature of this mixture? [IUT 14-15]
 - ₹ 66.8°C
- (₹) 62.8°C
- গি 42.5°C
- (च) 52.8°C
- 18. One gram of water becomes 1671 cm³ of steam when boiled at a pressure of 1 atm. The heat of vaporization at this pressure is 2256 Jg⁻¹. What is the [IUT 11-12] external work?
 - ₹ 169 J
- (4) 128 J
- গি 445 J
- (ঘ) 137 J
- 19. In a Carnot's engine the temperature of the source and sink are respectively 500 K and 375 K. If the engine consumes 252×10^4 J per cycle, what is the work done per cycle? [IUT 11-12]
 - \bigcirc 63 × 10⁴ J
- (४) 79 × 10⁴ J
- গ) 53 × 10⁴ J
- (\overline{1}) 89 × 10⁴ J
- 20. When 5 litre water is heated by a 500 W immersion electric water heater for 7 minutes, the temperature | 6. of water is raised from 30°C to 40°C. What is the mechanical equivalent of heat? [IUT 11-12]
 - → 4.2 Jcal⁻¹
- ③ 3.2 Jcal⁻¹
- গ) 6.2 Jcal⁻¹
- (₹) 5.2 Jcal⁻¹

- 77°C. The efficiency of the engine is-
- **(4)** 35%
- গ) 30%
- থি 66%
- [IUT 16-17] 22. A Carnot engine working between 27°C and 127°C takes up 800 J of heat from the reservoir in one cycle. What is the work done by the engine? **IIUT 08-091**
 - (季) 100 J
- খে) 200 J
- গি 300 J
- থি 400 J
- 23. When 20 J of work has been done on a gas, 40 J energy is released. If the initial internal energy of gas was 70 J, what is the final internal energy? [IUT 08-09]

(4) 60 J

- গ) 90 J
- (ছ) 110 J

ANSWER BOX

1	(F)	2	(19)	3	*	4	₹	5	₹	6	ছ	7	₹	8	(F)	9	(1)	10 খ
11	প	12	ক	13	গ	14	প্	15	প্	16	ক	17	প্	18	ক	19		20 🕏
21	প্	22	ঞ্চ	23	®													

বিগত সালে BUTex-এ আসা প্রশ্লাবলী

- 100 kg তামার তাপমাত্রা 100°C বাড়লে এর ভর কত বাড়বে? [তামার আপেক্ষিক তাপ = 0.389° kJ/kgK] [BUTex 16-17]
 - \odot 5.33 × 10⁻¹¹ kg
- (4) $4.33 \times 10^{10} \text{ kg}$
- (1) $4.33 \times 10^{-11} \text{ kg}$
- (₹) 6.5 × 10⁻¹¹ kg
- 1 mole গ্যাসের তাপমাত্রা 0°C থেকে 200°C বাড়াতে কাজের পরিমাণ হবে-[BUTex 16-17]
 - ক শৃন্য (Zero)
- (4) 573 × 8.3 J
- গ) 1660 J
- থি None
- একটি রেফ্রিজারেটরের কার্যকৃত সহগ হলো 4.6। ঠান্ডা প্রকোষ্ঠ থেকে প্রতিচক্রে 250 J অপসারণ করলে প্রতিচক্রে কৃতকাজের পরিমাণ কত? [BUTex 16-17]
- (ब) 48 J
- গি 50 J

- থি 54 J
- 4. একটি ইঞ্জিন 4500 J তাপ শোষণ করে এবং 2500 J তাপ বর্জন করে। কাজের পরিমাণ কত? [BUTex 16-17]
 - (4) 1000 J
- (4) 2000 J
- গ) 7000 J
- (च) 1000 J
- 1 kg বরফের তাপমাত্রা 1 K বাড়াতে প্রয়োজনীয় তাপ কত হবে? [BUTex 15-16]
 - (4200 J
- (4) 2100 J
- গ) 210 J
- (च) 336000 J
- রুদ্ধতাপীয় পরিবর্তনের ক্ষেত্রে কোন সম্পর্কটি ধ্রুবক? [BUTex 15-16]

- 7. কোন গ্যাসের $\gamma = \frac{3}{2}$ । উক্ত গ্যাসের জন্য কোনটি সঠিক? [BUTex 13-14]
 - \odot $C_P = 3R$
- $\bigcirc C_P = 5R$
- \bigcirc C_V = 3R
- \mathfrak{T} $C_V = 5R$
- 'তাপ শক্তিকে সম্পূর্ণভাবে কখনই যান্ত্রিক শক্তিতে রূপান্তর সম্ভব নয়– এটি কোন বিজ্ঞানীর বিবৃতি? [BUTex 13-14]
 - ক্ত কেলভিন
- (a) **कार्ता**
- গ) থ্ল্যাংক
- (ঘ) চার্লস
- 9. 1 টি ইঞ্জিন 127°C এবং 27°C তাপমাত্রায় কাজ করে। এর দক্ষতা কত? [BUTex 13-14]
 - **30%**
- **(4)** 25%
- গ) 24%
- খি 28%
- 10. সূর্যের তাপমাত্রা মাপা হয়-

[BUTex 12-13]

- প্লাটিনাম রোধ থার্মোমিটার
- থ গ্যাস থার্মোমিটার
- গ্রি পাইরোমিটার
- (ঘ) বাষ্পচাপ থার্মোমিটার
- 11. একটি জলপ্রপাতে 120 m উপর হতে পানি নিচে পতিত হয়। উপরের ও নিচের তাপমাত্রার পার্থক্য নির্ণয় করো। [BUTex 12-13]
- (₹) 0.26°C
- গি 0.24°C
- (₹) 0.21°C
- 12. একটি গ্লাস হতে 250 mL পানি 1.25 L পানি ভর্তি একটি পাত্রে ঢালা হল। গ্লাস ও পাত্ৰের পানির তাপমাত্রা যথাক্রমে $80^{\circ}\mathrm{C}$ এবং 20°C হলে তাদের মেশানোর পর পানির তাপমাত্রা কত হবে?

[BUTex 12-13]

- (₹) 30°C
- গি 35°C
- (च) 40°C
- 13. একটি চক্রাকার প্রক্রিয়ায় গ্যাসের অভ্যন্তরীণ শক্তি [BUTex 12-13]
 - ক) বৃদ্ধি
- খ হ্রাস পায়
- গ্র ধ্রুব থাকে
- খি শূন্য হয়
- 14. কোন গ্যাস এর আপেক্ষিক তাপ-

[BUTex 11-12]

- ক) একটি
- থ) দুটি
- গে তিনটি
- খ অসংখ্য
- 15. একটি কার্নোচক্রে মোট এনট্রপির পরিবর্তন হল-[BUTex 11-12]
- গ) less than zero
- ছি greater than zero
- 16. স্থিতিস্থাপক সীমার মধ্যে একটি স্প্রিংয়ের সংকোচন প্রসারণ হলে সেটি কী ধরনের প্রক্রিয়া? [BUTex 11-12]
 - ক্ত সমোঞ্চ প্রক্রিয়া
- খ সমচাপ প্রক্রিয়া
- অপ্রত্যাগামী প্রক্রিয়া
- (ঘ) প্রত্যাগামী প্রক্রিয়া

ANSWER BOX

												ক	8	খ	9	(খ)	10 গ্র
11	®	12	ঞ্চ	13	গ	14	ঞ্চ	15	⊕	16	খ						

Engineering Standard Practice Problems

PRACTICE (WRITTEN)

- 1. একটি সুষম রন্ধের থার্মোমিটারের সঙ্গে একটি সেন্টিমিটার স্কেল যুক্ত আছে। বরফে থার্মোমিটারটির পাঠ 7.3 cm, স্টিমে 23.8 cm এবং হিমমিশ্রণে পাঠ হলো 3.5 cm। ওই হিমমিশ্রণের তাপমাত্রা সেলসিয়াসে কত? [Easy] **উত্তর:** – 23.03°C
- 2. বরফ বিন্দু ও স্টিম বিন্দুতে একটি তাপ তড়িৎ থার্মোমিটারের e.m.f যথাক্রমে 1 V ও 5 V। থার্মোমিটারের উত্তপ্ত জাংশনকে কোনো তরলে স্থাপন করলে 3 V তড়িচ্চালক বল পাওয়া যায়। সেলসিয়াস, কেলভিন ও ফারেনহাইট স্কেলে তরলের তাপমাত্রা নির্ণয় কর। [Easy]

উত্তর: C = 50°C; K = 323 K; F = 122°F

- 3. কোনো থার্মোমিটারে স্ফুটনাঙ্ক 160° এবং হিমাঙ্ক 15° দাগ কাটা আছে। এই থার্মোমিটারে কোনো তাপমাত্রা 73° হলে ফারেনহাইটে কত হবে? [Easy] **উত্তর:** 104°F
- 4. কোনো একটি রোধ থার্মোমিটারের রোধ 0°C ও 100°C তাপমাত্রায় যথাক্রমে $8~\Omega$ ও $20~\Omega$ । থার্মোমিটারকে একটি চুল্লিতে স্থাপন করলে রোধ 36 Ω হয়। চুল্লির তাপমাত্রা নির্ণয় কর। [Easy]

উত্তর: 233.33°C

- 5. দুইটি পরম স্কেল ${f A}$ ও ${f B}$ তে জলের ত্রিদশা বিন্দু যথাক্রমে $300~{f A}$ এবং $420~B \mid T_A$ ও T_B এর মধ্যে সম্পর্ক নির্ণয় করো । [Medium] উত্তরঃ $7\mathrm{T_A} = 5\mathrm{T_B}$
- 6. কোন তাপমাত্রায় সেলসিয়াস ও ফারেনহাইট স্কেলের পার্থক্য 10° হবে? [Medium]

উত্তরঃ − 52.5°C; −27.5 °C

- একটি সীসার বুলেট কোথাও বাধাপ্রাপ্ত হয়ে তাপমাত্রা 150 K বৃদ্ধি পেল। যদি অন্য কোনোভাবে তাপ নষ্ট না হয়, তাহলে বুলেটটির প্রাথমিক বেগ কত ছিল? [সীসার আপেক্ষিক তাপ $126~{
 m Jkg^{-1}K^{-1}}$] [Easy] **উত্তরঃ** 194.42 ms⁻¹
- 8. 0°C তাপমাত্রায় 1 g বরফে প্রতি সেকেন্ডে 10 J তাপ প্রদান করা হলে কতক্ষণ পর সম্পূর্ণ বরফ বাষ্পীভূত (Vaporized) হবে। [Medium] **উত্তর:** 302.4 s
- 9. 50 kg ভরের একটি বস্তুর বেগ 30 km/min থেকে 10 km/min করতে কত কাজ করতে হবে? কৃত কাজের সমতুল্য তাপ কত হবে?

[Medium]

উত্তর: $5.56 \times 10^6 \,\mathrm{J}; \, 1.323 \times 10^6 \,\mathrm{cal}$

10. 100 W ক্ষমতা সম্পন্ন একটি হিটারে 2 kg ভরের একটি কপারের | 15. একটি আদর্শ গ্যাস কে ABCA চক্রের মধ্য দিয়ে নিয়ে যাওয়া হলো। খণ্ডকে $40~{
m s}$ যাবৎ তাপ দেওয়া হলে খণ্ডটির তাপমাত্রা কত বৃদ্ধি হবে? কপারের আপেক্ষিক তাপ $400 \text{ Jkg}^{-1}\text{K}^{-1} \mid [\text{Easy}]$

উত্তর: 5 K

11. পিস্টনযুক্ত একটি সিলিভারে কিছু গ্যাস আবদ্ধ আছে। গ্যাসের চাপ 400 Pa এ স্থির রেখে ধীরে ধীরে 800 J তাপ শক্তি সরবরাহ করায় 1200 J কাজ সম্পাদিত হয়। গ্যাসের আয়তন এবং অন্তঃস্থ শক্তির পরিবর্তন নির্ণয় কর। [Easy]

উত্তর: 3 m³; – 400 J

12. P-V লেখচিত্রটি পর্যবেক্ষণ কর। এখানে একটি গ্যাসের P অবস্থা হতে M অবস্থায় পরিবর্তন সংঘটিত হয় দুটি পৃথক পথে। একটি হচ্ছে P-N-M পথ এবং অপরটি P-L-M পথ। P-N-M পথে গ্যাস কর্তৃক 30 J তাপ শোষিত হয়। অপরদিকে P-L-M পথে, $60\ J$ তাপ গ্যাস হতে বর্জিত হয় এবং 40 J পরিমাণ যান্ত্রিক কাজ গ্যাস কর্তৃক সম্পাদিত হয়। P-N-M পথে সম্পন্ন কাজের পরিমাণ নির্ণয় কর। [Medium]

উত্তর: 130 J

13. স্বাভাবিক চাপে 100°C তাপমাত্রার 1 গ্রাম পানিকে বাষ্পে পরিণত করলে এর আয়তন 1650 cm³ হয়। এর অবস্থার পরিবর্তনের জন্য অভ্যন্তরীণ শক্তির পরির্তন নির্ণয় কর। দেওয়া আছে, $J=4.2~Jcal^{-1}$ এবং পানির বাষ্পীভবনের সুপ্ততাপ = 540 calg^{-1} । [Medium]

উত্তর: 2100.92 J

14. চিত্রে দেখানো আয়তাকার আবর্ত প্রক্রিয়ায় কৃতকার্যের মান নির্ণয় করো।

উত্তর: 2P₁V₁

যদি এই প্রক্রিয়ায় গ্যাসটিকে 5 J তাপ সরবরাহ করা হয়ে থাকে, তবে CA প্রক্রিয়ায় গ্যাস দ্বারা কৃতকার্যের মান নির্ণয় করো। [Medium]

উত্তর: – 5 J

16. একটি সংস্থা iaf পদ্ধতিতে i থেকে f অবস্থায় গেলে, Q=50 calএবং W = 20 cal। ibf পদ্ধতিতে Q = 36 cal হলে W এর মান কত? [Medium]

উত্তর: 6 cal

17. চিত্রে কয়েকটি তাপগতীয় পদ্ধতি দেখানো হয়েছে, $P_{
m A}=3 imes10^4\,{
m Pa},$ $P_{B} = 8 \times 10^{4} \text{ Pa}, V_{A} = 2 \times 10^{-3} \text{ m}^{3}$ ও $V_{D} = 5 \times 10^{-3} \text{ m}^{3}$ হলে এবং AB ও BC পদ্ধতিতে সংস্থাটি যথাক্রমে $600~\mathrm{J}$ ও $200~\mathrm{J}$ তাপ গ্রহণ করলে, AC পদ্ধতিতে অভ্যন্তরীণ শক্তির পরিবর্তন কত হবে? [Medium]

উত্তর: 560 J

[Easy]

18. চিত্রে প্রদর্শিত আবর্ত পদ্ধতিতে সংস্থার গৃহীত তাপের পরিমাণ কত? [Medium]

উত্তর: 314 J

19. একটি তাপগতীয় সংস্থার PQRSP চক্রে কৃতকার্যের মান কত?

[Medium]

উত্তর: – 20J

20. ABCA হল একটি আদর্শ আবর্ত পদ্ধতি। এই পদ্ধতিতে কৃতকার্যের মান কত? [Easy]

উত্তর: 3PV

21. কোনো সিস্টেমে গ্যাসের চাপ ও আয়তনের মধ্যে সম্পর্ক $P=aV^2$ যেখানে a=2। গ্যাসটির 100~L থেকে 250~L পর্যন্ত প্রসারণে কৃতকাজ কত?

[Medium]

উত্তর: 9.75 × 10⁻³ J

22. স্থির চাপে $8~{
m gm}$ অক্সিজেনে $100~{
m J}$ তাপ শক্তি সরবরাহ করা হলে গ্যাস কর্তৃক কৃতকাজ ও গ্যাসের অন্তঃস্থ শক্তির পরিবর্তন নির্ণয় কর। স্থির চাপে অক্সিজেনের মোলার তাপ ধারণ ক্ষমতা $29.1~{
m Jmol}^{-1}{
m K}^{-1}$ এবং সার্বজনীন গ্যাস ধ্রুবক $8.314~{
m Jmol}^{-1}{
m K}^{-1}$ । [Medium]

উত্তর: 28.58 J; 71.4 J

23. একটি আদর্শ গ্যাসের ধ্রুব আয়তনে ও ধ্রুব চাপে মোলার তাপধারণ ক্ষমতা যথাক্রমে 20.5 $Jmol^{-1}K^{-1}$ ও 28.8 $Jmol^{-1}K^{-1}$; স্থির চাপে 8 gm হাইড্রোজেন $10^{\circ}C$ থেকে $15^{\circ}C$ তাপমাত্রায় উন্নীত করতে প্রয়োজনীয় তাপের পরিমাণ, অন্তঃস্থ শক্তির পরিবর্তন ও বহিঃস্থ কাজের পরিমাণ নির্ণয় কর। [Medium]

উত্তর: 576 J; 410 J; 166 J

24. স্থির চাপে 2 mol আদর্শ গ্যাসের তাপমাত্রা 32°C হতে 37°C বৃদ্ধি করতে 70 cal তাপের প্রয়োজন হয়। স্থির আয়তনে একই পরিমাণ গ্যাসের তাপমাত্রা একই মাত্রায় বৃদ্ধি করতে কত জুল তাপ লাগবে? [Medium] উত্তর: 209.46 J

25. নাইট্রোজেনের আণবিক ভর 28, স্থির আয়তনে নাইট্রোজেনের আপেক্ষিক তাপ $0.174~calg^{-1}(^{\circ}C)^{-1}$ হলে $C_P,~C_V$ এবং γ এর মান নির্ণয় করো।

 $[R = 1.97 \text{ calmol}^{-1}\text{K}^{-1}]$ [Medium]

উত্তর: 4.872 calmol⁻¹K⁻¹; 6.842 calmol⁻¹K⁻¹; 1.404

26. একটি আদর্শ গ্যাসের ($\gamma=1.4$) নমুনাকে স্থির চাপে উত্তপ্ত করা হলো। গ্যাসে সরবরাহকৃত তাপশক্তি 140~J হলে, গ্যাসের অভ্যন্তরীণ শক্তির পরিবর্তন নির্ণয় কর। [Medium]

উত্তর: 100 J

27. 2 mol He গ্যাস ও 3 mol H_2 গ্যাস মিশ্রণের স্থির আয়তনে মোলার আপেক্ষিক তাপ নির্ণয় করো। [Medium]

উত্তর: 17.4594 Jmol⁻¹K⁻¹

28. এক পরমাণুক কোনো আদর্শ গ্যাসকে স্থির চাপে উত্তপ্ত করলে প্রদত্ত তাপশক্তির কত ভগ্নাংশ গ্যাসের অভ্যন্তরীণ শক্তি বৃদ্ধি করে? [Easy]

উত্তর: $\frac{3}{5}$

29. একটি আদর্শ গ্যাসের $\left(\gamma=rac{5}{3}
ight)4$ মোলের সাথে অন্য একটি গ্যাসের $(\gamma=1.4)~2$ মোলের মিশ্রণ করা হলো। মিশ্রণের তুল্য γ এর মান নির্ণয় করো। $[{
m Medium}]$

উত্তর: $\frac{17}{11}$

30. 27°C তাপমাত্রার কিছু পরিমাণ শুষ্ক বায়ুকে প্রথমে ধীরে ধীরে ও পরে আকস্মিকভাবে আদি আয়তনের এক তৃতীয়াংশে সংকুচিত করা হলো। প্রতিক্ষেত্রে তাপমাত্রার পরিবর্তন নির্ণয় কর। শুষ্ক বায়ুর $\gamma=1.4$]

[Medium]

উত্তর: প্রথম ক্ষেত্রে, সমোষ্ণ প্রক্রিয়ায় সংকুচিত করা হচ্ছে; তাই তাপমাত্রার পরিবর্তন হবে না। দ্বিতীয় ক্ষেত্রে, 165.55 K।

 $31. \ 10^5 \ Pa$ চাপে ও $300 \ K$ তাপমাত্রায় নির্দিষ্ট ভরের অক্সিজেনের আয়তন $10^{-3} \ m^3$ । রুদ্ধতাপীয় প্রক্রিয়ায় এর আয়তন হঠাৎ দ্বিগুণ করা হলে এর অন্তঃস্থ শক্তির কী পরিবর্তন হবে? স্থির চাপে ও স্থির আয়তনে অক্সিজেনের মোলার আপেক্ষিক তাপমাত্রা যথাক্রমে $29.2 \ \mathrm{Jmol}^{-1}\mathrm{K}^{-1}$ ও $20.9 \ \mathrm{Jmol}^{-1}\mathrm{K}^{-1}$ এবং সার্বজনীন গ্যাস ধ্রুবক $= 8.314 \ \mathrm{Jmol}^{-1}\mathrm{K}^{-1}$

[Medium]

উত্তর: - 60.55 J

 $32. \ 3 imes 10^5 \ Pa$ চাপে ও $280 \
m K$ তাপমাত্রায় নির্দিষ্ট ভরের হাইড্রোজেনের 40. একটি আদর্শ গ্যাসের রূদ্ধতাপীয় সংকোচনে P-V গ্রাফের ঢাল আয়তন 10^{-3} m^3 । রুদ্ধতাপীয় প্রক্রিয়ায় এর চাপ হঠাৎ দ্বিগুণ করা হলে এর অন্তঃস্থ শক্তির কী পরিবর্তন হবে? হাইড্রোজেনের $C_{
m V}=20.4~
m Jmol^{-1}K^{-1}$ এবং $R = 8.314 \text{ Jmol}^{-1}\text{K}^{-1} \mid [\text{Medium}]$

উত্তর: 161.38 J

 $33.~27^{\circ}\mathrm{C}$ তাপমাত্রা ও $10^{5}~\mathrm{Pa}$ চাপে নির্দিষ্ট ভরের অক্সিজেনের আয়তন $10^{-2} \; \mathrm{m^3}$ । সমোষ্ণ প্রক্রিয়ায় এতে $500 \; \mathrm{J}$ তাপ সরবরাহ করা হল। এর শেষ আয়তন ও চাপ নির্ণয় করো। অক্সিজেনের আণবিক ভর $=32~\mathrm{gm}$ এবং $R = 8.314 \text{ Jmol}^{-1}\text{K}^{-1} \mid [\text{Medium}]$

উত্তর: $16.5 \times 10^{-3} \text{ m}^3$; $60.606 \times 10^3 \text{ Pa}$

34. 27°C তাপমাত্রায় 0.2 kg হাইড্রোজেন গ্যাসকে সমোষ্ণ প্রক্রিয়ায় সংনমিত করে প্রাথমিক আয়তনের এক-চতুর্থাংশ করা হলো। কৃতকাজ এর মান বের কর। [Medium]

উত্তর: - 345769.5 J

35. রুদ্ধতাপীয় প্রক্রিয়ায় দেখা গেল, কোনো গ্যাসের চাপ তার পরম তাপমাত্রার ত্রিঘাতের সমানুপাতিক। গ্যাসটির ক্ষেত্রে γ-এর মান নির্ণয় কর।

[Medium]

উত্তর: $\frac{3}{2}$

36. 50 g ভরের হিলিয়াম গ্যাসকে 27°C স্থির তাপমাত্রায় আয়তন 0.100 ${f m}^3$ হতে সম্প্রসারিত করে ${f 0.125} \ {f m}^3$ করা হলো। পারিপার্শ্বের ওপর গ্যাস কর্তৃক সম্পন্ন কাজ পরিমাণ করো। [Easy]

উত্তর: 6.95 × 10³ J

37. 27°C তাপমাত্রায় 20 g পরিমাণ গ্যাসকে রুদ্ধতাপীয় প্রক্রিয়ায় সংকোচন করা হলো যতক্ষণ না এর তাপমাত্রা 35°C এ উন্নীত হয়। সংকোচন প্রক্রিয়া শুরুর সময় গ্যাসের চাপ ছিল $1 imes 10^5~ ext{Nm}^{-2}$ । গ্যাসটির মোলার ভর হচ্ছে $44~\mathrm{g}$ এবং $\gamma=1.41$ । গ্যাসটির আদি আয়তন (V_1) এবং শেষ আয়তন (\mathbf{V}_2) নির্ণয় কর। [Medium]

উত্তর: $1.13 \times 10^{-2} \text{ m}^3$; $1.06 \times 10^{-2} \text{ m}^3$

38. কোনো টিউবের অভ্যন্তরে বায়ুর আয়তন $200 imes 10^{-3} \; ext{m}^3$, তাপমাত্রা $27^{\circ}\mathrm{C}$ ও চাপ $2~\mathrm{atm}$ । টিউবটি হঠাৎ ফেটে গেলে এর চূড়ান্ত তাপমাত্রা ও আয়তন নির্ণয় কর। $(\gamma = 1.4)$ [Easy]

উত্তর: 328.13 × 10⁻³m³; – 26.9°C

39. একটি চোঙের মধ্যে ঘর্ষণহীন পিস্টন সংযুক্ত আছে। এর মধ্যে T_1 উষ্ণতায় একটি এক পরমাণুক আদর্শ গ্যাস রক্ষিত আছে। পিস্টনটি হঠাৎ খুলে দিয়ে গ্যাসটিকে রুদ্ধতাপ প্রক্রিয়ায় \mathbf{T}_2 উষ্ণতায় প্রসারিত করা হল। প্রসারণের পূর্বে ও পরে গ্যাস স্তম্ভের দৈর্ঘ্য যথাক্রমে \mathbf{L}_1 ও \mathbf{L}_2 হলে, $\frac{\mathbf{T}_1}{\mathbf{T}_2}$ হয়– [Medium]

উত্তর:
$$\left(\frac{L_2}{L_1}\right)^{\frac{2}{3}}$$

 $\frac{dP}{dV} = -\frac{5P}{3V}$ । গ্যাস অণুতে পরমাণু সংখ্যা কত? [Medium] **উত্তর:** গ্যাসটি একপরমাণুক।

41. রুদ্ধতাপীয় প্রক্রিয়ায় গ্যাসের চাপ $rac{2}{3}\%$ বৃদ্ধি করা হলো। আয়তনের শতকরা হ্রাস নির্ণয় করো। $\gamma = \frac{3}{2}$ [Medium] উত্তর: $-\frac{4}{9}$ %

42. বায়ুর একটি রুদ্ধতাপ প্রসারণে আয়তন 5% বাড়ে। চাপের শতকরা কত পরিবর্তন হবে? [Medium] উত্তরঃ 7%

43. একটি কার্নো ইঞ্জিন 427°C তাপমাত্রায় তাপ গ্রহণ করে এবং 177°C তাপমাত্রায় তাপ বর্জন করে। ইঞ্জিনটি প্রতি চক্রে 1 kcal তাপ গ্রহণ করলে প্রতি চক্রে সম্পাদিত কাজের পরিমাণ নির্ণয় কর। [Easv]

উত্তর: 0.357 kcal

44. একটি ইঞ্জিন উৎস থেকে তাপ গ্রহণ করে 1500 J কাজ করে এবং তাপ গ্রাহকে 2000~
m J তাপ বর্জন করে। ইঞ্জিন দ্বারা গৃহীত তাপ ও ইঞ্জিনের দক্ষতা নির্ণয় কর। [Easy]

উত্তর: 3500 J; 42.86%

45. একটি আদর্শ ইঞ্জিনের কার্যকর বস্তু যত ক্যালরি তাপ উৎস থেকে গ্রহণ করে, কাজ সম্পন্ন হবার পর তার 70% তাপ বর্জন করে। ইঞ্জিনটির কর্মদক্ষতা নির্ণয় কর। [Easy]

উত্তর: 30%

46. একটি ইঞ্জিনের দক্ষতা 80%। এটি সিংকে 400~
m J তাপ বর্জন করলে উচ্চ তাপমাত্রার তাপাধার থেকে কী পরিমাণ তাপ গ্রহণ করবে? [Easy] উত্তর: 2000 J

47. 40% দক্ষতাবিশিষ্ট একটি আদর্শ ইঞ্জিনের তাপ গ্রাহকের তাপমাত্রা $7^{
m oC}$ । ইঞ্জিনের দক্ষতা 50% এ উন্নীত করতে তাপ উৎসের তাপমাত্রা কত বৃদ্ধি করতে হবে? [Medium]

উত্তর: 93.34°C

48. একটি প্রত্যাগামী ইঞ্জিন প্রতি চক্রে তাপাধার থেকে $200~\mathrm{J}$ তাপ গ্রহণ করে এবং তাপ গ্রাহকে 110 J তাপ বর্জন করে। তাপ গ্রাহকের তাপমাত্রা 320 K হলে তাপাধারের তাপমাত্রা ও ইঞ্জিনের দক্ষতা এবং 50 চক্রে ইঞ্জিন কর্তৃক কৃতকাজ নির্ণয় করো। [Medium]

উত্তর: 581.82 K; 45%; 4500 J

49. একটি ইঞ্জিন 800 K ও 400 K তাপমাত্রায় যে দক্ষতায় কাজ করে, ঠিক সম দক্ষতায় কাজ করে T K এবং 900 K তাপমাত্রায়। তাপমাত্রা T এর মান বের কর। [Easy]

উত্তর: 1800 K

50. চিত্রে দেওয়া ABCDA বদ্ধ পথ বরাবর প্রক্রিয়ায় মোট কার্যের | 56. একটি রেফ্রিজারেটর চালানোর জন্য প্রতি চক্রে 54 J কাজ সম্পাদন পরিমাণ কত? (আদর্শ গ্যাসের মোল সংখ্যা n) [Medium]

উত্তর: 2nRT₀ ln3

51. ${f n}$ মোল আদর্শ গ্যাস একটি আয়তাকার চক্র সম্পন্ন করে। $\gamma=rac{5}{3}$ হলে, এই চক্র দ্বারা চালিত তাপ ইঞ্জিনের দক্ষতা কত? [Medium]

উত্তর: 15.4%

52. একটি কার্নো রেফ্রিজারেটর -5° C থেকে 100° C তাপমাত্রার মধ্যে কাজ করে। যদি এটি শীতল আধার থেকে 1000 J তাপ শোষণ করে, তাহলে এটি কী পরিমাণ তাপ উষ্ণ আধারে ত্যাগ করবে? [Easy] উত্তর: 1391.8 J

53. একটি হিমায়কের 1200 ওয়াট ক্ষমতা সম্পন্ন একটি মোটরের দক্ষতা 50%। হিমায়কটি 0° C ও 27° C তাপমাত্রার মধ্যে কাজ করে। 0° C তাপমাত্রায় থাকা 10~kg পানিকে বরফে পরিণত করতে হিমায়কটির কত সময় লাগবে? [Medium]

উত্তর: 9 min 10 sec

54. কোনো রেফ্রিজারেটরের উচ্চ তাপমাত্রা $73^{\circ}\mathrm{C}$ ও নিম্ন তাপমাত্রা $27^{\circ}\mathrm{C}$ । এর কার্যকৃত সহগ নির্ণয় কর। $[\mathrm{Easy}]$ উত্তরঃ 6.52

55. একটি কার্নো ইঞ্জিনের উৎস 627°C তাপমাত্রায় প্রতি সেকেন্ডে 600 J তাপ সরবরাহ করে। পরিবেশের তাপমাত্রা 27°C হলে এবং কার্নো ইঞ্জিন প্রদন্ত সমপরিমাণ ক্ষমতায় যদি কোনো কার্নো রেফ্রিজারেটর চালানো যায়, তাহলে তা বরফকে -10.5°C তাপমাত্রায় শীতল করতে পারবে। রেফ্রিজারেটরটি প্রতি সেকেন্ডে কত তাপ নিষ্কাশন করবে? [Hard] উত্তর: রেফ্রিজারেটরটি প্রতি সেকেন্ডে 2800 J তাপ নিষ্কাশন করবে।

56. একটি রেফ্রিজারেটর চালানোর জন্য প্রতি চক্রে 54 J কাজ সম্পাদন করতে হয় এবং এর জন্য শীতলীকরণ প্রকোষ্ঠ হতে প্রতি চক্রে 250 J তাপ নিষ্কাশনের প্রয়োজন হয়। রেফ্রিজারেটরের কার্যকৃত সহগ এবং প্রতি চক্রে বর্জিত তাপ নির্ণয় কর। [Easy]

উত্তর: 4.6; 304 J

57. একটি রেফ্রিজারেটর শীতল তাপাধার থেকে 450 J তাপ গ্রহণ করে উষ্ণ তাপাধারে 600 J তাপশক্তি বর্জন করে। রেফ্রিজারেটরটির কর্মসম্পাদন সহগ কত? [Easy]

উত্তর: 3

58. একটি প্রত্যাবর্তী প্রক্রিয়ার এনট্রপি বনাম তাপমাত্রার লেখচিত্র নিম্নরূপ। ইঞ্জিনটির কর্মদক্ষতা নির্ণয় কর। [Medium]

উত্তর: 33.33%

59. দেখাও যে, m ভর ও C স্থির আপেক্ষিক তাপের কোনো পদার্থের তাপমাত্রা T_1 K হতে T_2 K-এ পরিবর্তিত হলে এনট্রপির পরিবর্তন $S_2-S_1=mC$ $\ln \frac{T_2}{T_1}$ \mid [Easy]

উত্তর: mC $ln \frac{T_2}{T_1}$ (Showed)

60. $-10^{\circ}\mathrm{C}$ তাপমাত্রার $20~\mathrm{g}$ বরফকে $100^{\circ}\mathrm{C}$ তাপমাত্রার বাষ্পে পরিণত করলে এনট্রপির পরিবর্তন নির্ণয় করো। $[\mathrm{Easy}]$

উত্তর: 174 JK⁻¹

61. 7°C তাপমাত্রার 1 kg পানি, 37°C তাপমাত্রার 2 kg পানির সাথে মেশানো হলে এন্ট্রপির পরিবর্তনের মান কত? [Medium]

উত্তর: 14.34 JK⁻¹

62. 0°C তাপমাত্রার 5 g বরফে প্রতি সেকেন্ডে 100 J তাপ প্রদান করা হলে কতক্ষণ পর সম্পূর্ণ বরফ বাষ্পীভূত হবে? [Easy]

উত্তর: 151.2 s

63. –2°C তাপমাত্রার 5 kg বরফকে 110°C তাপমাত্রার বাষ্পে পরিণত করতে কি পরিমাণ তাপ লাগবে?

িবরফ গলনের আপেক্ষিক সুপ্ততাপ $L_f=3.36\times 10^5~Jkg^{-1};$ পানির বাম্পীতবনের সুপ্ততাপ $L_v=2.268\times 10^6~Jkg^{-1};$ পানির আপেক্ষিক তাপ, $S_w=4200~Jkg^{-1}K^{-1};$ বরফের আপেক্ষিক তাপ, $S_i=2100~Jkg^{-1}K^{-1};$ বাম্পের আপেক্ষিক তাপ, $S_s=2000~Jkg^{-1}K^{-1}]$ [Easy]

উত্তর: 1.52 × 10⁷ J