Lecture 20: Interrupt Devices

Today's Goals

- Use an edged-triggered interrupt capable device to cause interrupts.
- Use a time-based interrupt capable device to cause periodic interrupts.

Edge-triggered Device

- Edge-triggered
 - When using ports as general-purpose I/O, we continuously sample the input value until detecting a transition from one value to another.
- Edge-triggered devices
 - Devices that can be configured to watch for that type of transition in the background.
 - And can generate an interrupt when the transition occurs.

Port H as Edge-triggered

- Port H interrupt
 - Each pin of Port H can be individually configured to generate an interrupt on an edge.
 - However, all pins generate a generic Port H interrupt.
 - Therefore, the ISR needs to determine which of the 8 pins triggered the interrupt.
- Enable/Flag for Port H
 - PIEH
 - PIFH
- Interrupt Vector
 - The address of the ISR for Port H: \$FFCC (\$3E4C for Dragon12+)

Example of an Interrupt-driven Program

- Write an interrupt-driven program that displays a digit on the 7 segment display.
 - Pressing BUTT3 should increment the value by 1.
 - Pressing BUTT2 should decrement the value by 1.
 - Assume the 7-segment subroutines are available.
 - INIT7SEG
 - DISP7SEG

Review: Port H in Dragon 12+

- The port H is used to read the 8-DIP switch and the 4 push buttons
 - 2. Pressing a button/flipping a switch pulls the input voltage low.

Example - constants

```
A Part of "d12plus.inc"
; Interrupts
PIEH equ $0266 ; Port Interrupt Enable for H
PIFH equ $0267 ; Port Interrupt Flag for H
; Interrupt vector table
IVEC PORTH equ $3E4C ; Actual address is $FFCC
#INCLUDE d12plus.inc
; Addresses of the subroutines for 7 segment LED digit display
; Initialize 7 segment LED digits
INIT7SEG EOU PROGSTART+$800
; Display a 7 segment LED digit
; Input:
 A: which of 4 digits
    B: ASCII number
DISP7SEG EQU PROGSTART+$880
; Set an ISR to the interrupt vector table
          ORG IVEC PORTH
          DC.W ISR PSHBUTTN
```


DIGIT3 DIGIT2 DIGIT1 DIGIT(

BUTT3 BUTT2

Example - Main

```
ORG DATASTART
ASCIINUM DS.B 4
       ORG PROGSTART
       LDS #$3600 ; Init Stack
       ;-----
       ; Init ports
       MOVB #DINP, DDRH
       ; Enable interrupts on BUTT3 and BUTT2
       ; Disable interrupts on all other pins
       MOVB # (BUTT3+BUTT2), PIEH
       ; Initialize a number to display
       MOVB #'0', ASCIINUM
       ;-----
       JSR INIT7SEG
       ;-----
       ; Enable interrupts
       CLI
       :-----
       ; and wait for things to happen
LOOP:
       LDAA #DIGIT3
       LDAB ASCIINUM
       JSR DISP7SEG
       BRA LOOP
```

Example – ISR

```
; Interrupt service routine
; ORG PROGSTART+$300

ISR_PSHBUTTN BRCLR PIFH, BUTT3, CHKBUTT2

BSET PIFH, BUTT3

LDAB ASCIINUM

JSR INCASCII

STAB ASCIINUM

CHKBUTT2: BRCLR PIFH, BUTT2, PSHBUTTNEND

BSET PIFH, BUTT2

LDAB ASCIINUM

JSR DECASCII

STAB ASCIINUM

PSHBUTTNEND: RTI
```

Example - Subroutines

```
; Subroutines
; INCASCII
; Input:
; B: ASCII number
; Output:
; B: (B) + 1 if (B) < '9'
INCASCII CMPB #'9'
           BHS ENDINC
           INCB
ENDINC: RTS
; DECASCII
; Input:
; B: ASCII number
; Output:
; B: (B)-1 if (B) > '0'
DECASCII CMPB #'0'
           BLS ENDDEC
           DECB
ENDDEC:
       RTS
```

Periodic Interrupt Device

- Assuming that we display clock on 7-segment LEDs.
 - We have used loops to generate pauses.
 - However, executing these loops also consume the processor.
 - A periodic interrupt allows the processor to work on other tasks.

Real-time Interrupt

- The Real-time Interrupt (RTI) generates hardware interrupt periodically.
- The rate is selected by the RTICTL register.

Real-time Interrupt (cont'd)

- The registers that are used to control the RTI interrupt.
 - CRGINT

– CRGFLG

Real-time Interrupt (cont'd)

- Interrupt vector: \$FFF0 (\$3E70 in Dragon 12+)
- RTICTL register
 - Real Time Interrupt Control register: \$003B
 - The value in RTICTL determines how often the periodic interrupt occurs in terms of external clock periods.
 - See the table in the following slide.
- Note that if the RTICTL register is not configured, the interrupt will not occur even if the RTIE bit is set

Real-time Interrupt (cont'd)

RTR[3:0]	RTR[6:4] =							
	000 (OFF)	001 (2 ¹⁰)	010 (2 ¹¹)	011 (2 ¹²)	100 (2 ¹³)	101 (2 ¹⁴)	110 (2 ¹⁵)	111 (2 ¹⁶)
0000 (÷1)	OFF*	2 ¹⁰	2 ¹¹	2 ¹²	2 ¹³	2 ¹⁴	2 ¹⁵	2 ¹⁶
0001 (÷2)	OFF*	2x2 ¹⁰	2x2 ¹¹	2x2 ¹²	2x2 ¹³	2x2 ¹⁴	2x2 ¹⁵	2x2 ¹⁶
0010 (÷3)	OFF*	3x2 ¹⁰	3x2 ¹¹	3x2 ¹²	3x2 ¹³	3x2 ¹⁴	3x2 ¹⁵	3x2 ¹⁶
0011 (÷4)	OFF*	4x2 ¹⁰	4x2 ¹¹	4x2 ¹²	4x2 ¹³	4x2 ¹⁴	4x2 ¹⁵	4x2 ¹⁶
0100 (÷5)	OFF*	5x2 ¹⁰	5x2 ¹¹	5x2 ¹²	5x2 ¹³	5x2 ¹⁴	5x2 ¹⁵	5x2 ¹⁶
0101 (÷6)	OFF*	6x2 ¹⁰	6x2 ¹¹	6x2 ¹²	6x2 ¹³	6x2 ¹⁴	6x2 ¹⁵	6x2 ¹⁶
0110 (÷7)	OFF*	7x2 ¹⁰	7x2 ¹¹	7x2 ¹²	7x2 ¹³	7x2 ¹⁴	7x2 ¹⁵	7x2 ¹⁶
0111 (÷8)	OFF*	8x2 ¹⁰	8x2 ¹¹	8x2 ¹²	8x2 ¹³	8x2 ¹⁴	8x2 ¹⁵	8x2 ¹⁶
1000 (÷9)	OFF*	9x2 ¹⁰	9x2 ¹¹	9x2 ¹²	9x2 ¹³	9x2 ¹⁴	9x2 ¹⁵	9x2 ¹⁶
1001 (÷10)	OFF*	10x2 ¹⁰	10x2 ¹¹	10x2 ¹²	10x2 ¹³	10x2 ¹⁴	10x2 ¹⁵	10x2 ¹⁶
1010 (÷11)	OFF*	11x2 ¹⁰	11x2 ¹¹	11x2 ¹²	11x2 ¹³	11x2 ¹⁴	11x2 ¹⁵	11x2 ¹⁶
1011 (÷12)	OFF*	12x2 ¹⁰	12x2 ¹¹	12x2 ¹²	12x2 ¹³	12x2 ¹⁴	12x2 ¹⁵	12x2 ¹⁶
1100 (÷ 13)	OFF*	13x2 ¹⁰	13x2 ¹¹	13x2 ¹²	13x2 ¹³	13x2 ¹⁴	13x2 ¹⁵	13x2 ¹⁶
1101 (÷14)	OFF*	14x2 ¹⁰	14x2 ¹¹	14x2 ¹²	14x2 ¹³	14x2 ¹⁴	14x2 ¹⁵	14x2 ¹⁶
1110 (÷15)	OFF*	15x2 ¹⁰	15x2 ¹¹	15x2 ¹²	15x2 ¹³	15x2 ¹⁴	15x2 ¹⁵	15x2 ¹⁶
1111 (÷ 16)	OFF*	16x2 ¹⁰	16x2 ¹¹	16x2 ¹²	16x2 ¹³	16x2 ¹⁴	16x2 ¹⁵	16x2 ¹⁶

Example

- Write an interrupt driven program that increments the value in Port B by 1
 every second and displays the current value to LEDs.
 - There are 8 simple red LEDs on the Dragon12+ board.
 - Note that when the Port J pin 1 is low, the LEDs are enabled to light.
 - The LEDs are showing the value in the Port B, if the LEDs are enabled.

Example – constants

```
A Part of "d12plus.inc"
; -----
; Real time interrupt
CRGFLG equ $0037
RTIF equ $80
CRGINT equ $0038
RTIE equ $80
; Real time interval setting
RTICTL equ $003B
; number of interrupts per second
ONESEC equ 122
;------
; Interrupt vector table
IVEC PORTH equ $3E4C ; Actual address is $FFCC
IVEC RTI equ $3E70
#INCLUDE d12plus.inc
; Set an ISR to the interrupt vector table
      ORG IVEC RTI
      DC.W ISR RTI
```

Example – main

```
; Data section
        ORG DATASTART
RTICOUNT DS.W 1
; Main program
        ORG PROGSTART
        LDS #STACKSTART
        :-----
        ; Init ports
        ; Prevent 7-segments from lighting
        MOVB #DOUT, DDRP
        MOVB #TRUE, PORTP ; disable digits
        ; Init PortB to all outputs
        MOVB #DOUT, DDRB
        ; Enable the 8 single LEDs
        MOVB #%00000010, DDRJ; configure PJ1 pin for output
        BCLR PORTJ, %00000010; enable the LEDs to light
        ; initialize the RTI
        MOVW #ONESEC, RTICOUNT
        MOVB \$$70, RTICTL; 1x2^16; $70 = 0100:0000
        BSET CRGINT, RTIE
        ; initialize the display to 0's
        CLR EIGHTLED
        ;-----
        ; Enable interrupts
        CLI
        ; -----
        ; and wait for things to happen
LOOP:
            BRA LOOP
```

Example – ISR

Questions?

Wrap-up

What we've learned

- Interrupt devices
- Real time interrupt

What to Come