B2B17TBK

Technika bezdrátové komunikace

Pavel Pechač FEL ČVUT v Praze Katedra elektromagnetického pole

ÚVOD DO ŠÍŘENÍ VLN PRO RÁDIOVÉ SPOJE

Slidy byly vytvořeny jako podpora při sledování výkladu přednášky. Proto je jejich využití pro samostudium či jako podklad k přípravě na zápočtový text velmi omezené, neboť některé klíčové poznatky a ukázkové příklady jsou vysvětlovány na tabuli a většina obrázků vyžaduje slovní doprovod. Pro samostudium je na Moodlu k dispozici samostatný učební text.

Volný prostor

Přenosové prostředí

$$S_{vyz} = \frac{P_{vyz}}{4\pi d^2}$$

$$S_{vyz} = \left| \mathbf{E} \times \mathbf{H} \right| = \frac{\left| E_{ef} \right|^2}{120\pi}$$

$$S_{vyz} = \frac{P_{vyz}D_{v}(\vartheta_{v},\varphi_{v})}{4\pi d^{2}} = \frac{\eta_{v}P_{v}D_{v}(\vartheta_{v},\varphi_{v})}{4\pi d^{2}} = \frac{P_{v}G_{v}(\vartheta_{v},\varphi_{v})}{4\pi d^{2}}$$

$$S_{vyz} = \frac{P_{vyz}}{4\pi d^2} = \frac{E_{ef}^2}{120\pi} \Rightarrow E_{ef} = \frac{\sqrt{30}P_{vyz}}{d}$$

$$E_{ef} = \frac{\sqrt{30P_{v}G_{v}}}{d}$$

B2B17TBK - Pavel Pechač - FEL ČVUT v Praze, elmag.or

Volný prostor

Přenosové prostředí

$$S_{vyz} = \frac{P_{vyz}}{4\pi d^2}$$

$$S_{vyz} = \left| \mathbf{E} \times \mathbf{H} \right| = \frac{\left| E_{ef} \right|^2}{120\pi}$$

$$S_{vyz} = \frac{P_{vyz}}{4\pi d^2} = \frac{E_{ef}^2}{120\pi} \Rightarrow E_{ef} = \frac{\sqrt{30}P_{vyz}}{d}$$

$$S_{vyz} = \frac{P_{vyz}D_{v}(\vartheta_{v},\varphi_{v})}{4\pi d^{2}} = \frac{\eta_{v}P_{v}D_{v}(\vartheta_{v},\varphi_{v})}{4\pi d^{2}} = \frac{P_{v}G_{v}(\vartheta_{v},\varphi_{v})}{4\pi d^{2}}$$

$$E_{ef} = \frac{\sqrt{30P_{v}G_{v}}}{d}$$

$$P_P = S_V A_P = \frac{P_V G_V}{4\pi d^2} G_P \frac{\lambda^2}{4\pi} = P_V G_V G_P \left(\frac{\lambda}{4\pi d}\right)^2$$

$$A_p = G_p \frac{\lambda^2}{4\pi}$$

B2B17TBK - Pavel Pechač - FEL ČVUT v Praze, elmag.o

Ideální přenosová rovnice (Friisův vztah)

$$E = \frac{\sqrt{30P_vG_v}}{d} \qquad \frac{P_p}{P_v} = G_vG_p \left(\frac{\lambda}{4\pi d}\right)^2 = G_vG_p \frac{1}{L_o}$$

$$L_o = FSL = \left(\frac{4\pi d}{\lambda}\right)^2$$

$$P_p = P_v + G_v + G_p - L_o = EIRP + G_p - L$$

$$L_0 = 20\log\left(\frac{4\pi d}{\lambda}\right) = 32.4 + 20\log(f_{MHz}) + 20\log(d_{km})$$

B2B17TBK - Pavel Pechač - FEL ČVUT v Praze, elmag.org

$$L_{odB} = FSL_{dB} = 10 \log \left(\frac{4\pi d}{\lambda}\right)^2 = 32,44 + 20 \log f_{MHz} + 20 \log d_{km}$$

Příklad – FSL (dB)

$$L_{FSL} = 20 \log \left(\frac{4\pi d}{\lambda} \right) = 32,4 + 20 \log (f_{MHz}) + 20 \log (d_{km})$$

d (m) / f (MHz)	450	900	1800	2500	5000	10000	20000	40000	
1	26	32	38	40	46	52	58	64	+20 dI
10	46	52	58	60	66	72	78	84	+20 ui
100	66	72	78	80	86	92	98	104	
1000	86	92	98	100	106	112	118	124	
5000	99	106	112	114	120	126	132	138	
10000	106	112	118	120	126	132	138	144	+6 dB
30000	115	121	127	130	136	142	148	154	
750000	143	149	155	158	164	170	176	182	
36000000	177	183	189	192	198	204	210	216	+34 dl

lΒ

lΒ

Výkonová bilance rádiového spoje

$$\begin{split} P_{P \min} &\leq P_{p} = P_{V} + G_{V} + G_{P} - L_{c} - L_{ost} \\ SNR_{\min} &\leq SNR = P_{P} - 10 \log(kTB) = P_{V} + G_{V} + G_{P} - L_{c} - L_{ost} - 10 \log(kTB) \end{split}$$

$$L_c = L_z + L_f$$
 $P_{P0} = P_V + G_V + G_P - L_z - L_{ost}$ $A = P_{p0} - P_{p \min}$

Specifický útlum rádiových vln způsobený absorpcí atmosférickými plyny pro T = 286 K a tlak 1013 hPa;

A – referenční atmosféra (7,5 g/m³), B – suchá atmosféra (0 g/m³)

Specifický útlum způsobený molekulami kyslíku v závislosti na nadmořské výšce

Aproximace 1 – 350 GHz

$$\begin{split} \gamma_o &= \left(\frac{7.2r_t^{2.8}}{f^2 + 0.34r_p^2 r_t^{1.6}} + \frac{0.62\xi_3}{(54 - f)^{1.16\xi_1} + 0.83\xi_2}\right) f^2 r_p^2 \times 10^{-3} \\ \xi_1 &= r_p^{0.0717} r_t^{-1.8132} \, \mathrm{e}^{0.0156(1 - r_p) + 1.6515(1 - r_t)} \\ \xi_2 &= r_p^{0.5146} r_t^{-4.6368} \, \mathrm{e}^{-0.192(1 - r_p) + 5.7416(1 - r_t)} \\ \xi_3 &= r_p^{0.3414} r_t^{-6.5851} \, \mathrm{e}^{0.2130(1 - r_p) + 8.5854(1 - r_t)} \\ r_p &= \frac{P}{1013} \\ r_i &= \frac{288}{273 + t} \\ \gamma_w &= \left[\frac{3.98\eta_1 \exp(2.23(1 - r_t))}{(f - 22.235)^2 + 9.42\eta_1^2} g(f, 22) + \frac{11.96\eta_1 \exp(0.7(1 - r_t))}{(f - 183,31)^2 + 11.14\eta_1^2} \right. \\ &\quad + \frac{0.081\eta_1 \exp(6.44(1 - r_t))}{(f - 321,226)^2 + 6.29\eta_1^2} + \frac{3.66\eta_1 \exp(1.6(1 - r_t))}{(f - 325,153)^2 + 9.22\eta_1^2} \\ &\quad + \frac{25.37\eta_1 \exp(1.09(1 - r_t))}{(f - 380)^2} + \frac{17.4\eta_1 \exp(1.46(1 - r_t))}{(f - 448)^2} \\ &\quad + \frac{844.6\eta_1 \exp(0.17(1 - r_t))}{(f - 557)^2} g(f, 557) + \frac{290\eta_1 \exp(0.41(1 - r_t))}{(f - 752)^2} g(f, 752) \\ &\quad + \frac{8,33 \cdot 10^4 \eta_2 \exp(0.99(1 - r_t))}{(f - 1780)^2} g(f, 1780) \right\} f^2 r_t^{2.5} \rho \cdot 10^{-4} \\ \eta_1 &= 0.955 r_p r_t^{0.68} + 0.006 \rho \\ \eta_2 &= 0.735 r_p r_t^{0.5} + 0.0353 r_t^4 \rho \\ g(f, f_t) &= 1 + \left(\frac{f - f_t}{f + f_t}\right)^2 \end{split}$$

Útlum atmosférickými plyny – příklad I

případ standardní atmosféry tlak 1013 hPa teplota 15 °C absolutní vlhkost 7,5 g/m³

délka trasy $d = 100 \text{ km} (A = \gamma d = \gamma_o d + \gamma_w d)$

f(GHz)	A_o (dB/km)	$A_{\scriptscriptstyle W}$ (dB/km)	$A = A_o + A_w$
2,4	0,7	0,03	0,7
10	0,8	0,7	1,5
24	1,4	16,5	18,0
47	13,0	11,0	24,0
76 9,0		27,0	36,0

Útlum atmosférickými plyny – příklad II

případ přízemního vlnovodného kanálu tlak 900 hPa teplota 15 °C absolutní vlhkost 3 g/m³

délka trasy $d = 100 \text{ km} (A = \gamma d = \gamma_o d + \gamma_w d)$

f(GHz)	A_o (dB/km)	A_{w} (dB/km)	$A = A_o + A_w$
2,4	0,6	0,01	0,6
10	0,6	0,2	0,9
24	1,2	6,7	7,9
47	11,0	4,0	15,0
76	6,8	8,6	15,4

