Lifecycle mental health and earnings inequality

Ben Boyajian

Vanderbilt University

November 5, 2024

Roadmap

Introduction & Data

Lifecycle mode

Model estimation and validation

Counterfactuals

.

Motivation

Why mental health (MH)?

- Prevalent and costly (Direct costs, Indirect costs)
- US: 20% adults experience mental illness each year (NSDUH) (NIMH)
- UK: 65% of adults in the UK have experienced some mental health problem (UKMHF)
 - 40% of adults have experienced depression, 25% a panic attack
 - Notably 85% of adults out of work have experienced a mental health problem,
 - 65% of the in work, 50% of the retired

Why MH and labor?

- Policy makers care but difficult to evaluate (WHO, 2023), (OECD)
- Evaluate policy by health and labor outomces
 - mean levels and spread or inequality.
- Large (mostly physical) health and lifecycle labor literature

:

Health and labor literature

- Physical health and labor: empirical
 - Health effects labor, justify single index: Bound et al. (1999), Blundell et al. (2023)
 - Labor effects PH somewhat (mostly risky behavior & MH) Schaller and Stevens (2015)
- Large physical health and the lifecycle
 - Health, wealth and retirement: French (2005)
 - Continuous PH: Hosseini et al. (2021), Dal Bianco and Moro (2022)
 - Unobserved types: De Nardi et al. (2021)
- Mental health and labor: empirical
 - MH effects employment, maybe in NLSY79: Germinario et al. (2022)
 - MH effects career trajectory: Biasi et al. (2021)
 - Work autonomy effects MH: Spearing (2024)
- Newer mental health and labor: structural
 - Macro of mental health: Abramson et al. (2024)
 - MH treatment: Cronin et al. (2023)
 - Job search, stress and MH: Jolivet and Postel-Vinay (2020)

Questions and methods

How much does mental health (MH) inequality matter for lifetime earnings inequality?

- Estimate a life-cycle model of consumption, labor, wealth with heterogeneous MH
- Run counterfactuals with no MH inequality, compare earnings inequality

Eventually:

- How much does lifetime earnings inequality matter for mental health inequality?
 - Run counterfactuals with no lifetime earnings/labor inequality, compare mental health inequality
- How does physical health fit in?

Note:

Earnings = Employed * Hours * Wage

SF12 and UKHLS Panel

Table 12: SF-12 Questionnaire

- 1 How is your health in general?
- 2 Does your health limit moderate activities?
- 3 Does your health limit walking up flights of stairs?
- 4 Did your physical health limit the amount of work you do?
- 5 Did your physical health limit the kind of work you do?
- 6 Did your mental health mean you accomplish less?

- 7 Did your mental health mean you work less carefully?
- 8 Did the pain interfere with your work?
- 9 Did you feel calm and peaceful?
- 10 Did you have a lot of energy?
 11 Did you feel downhearted and depressed?
- 2 Did you health interfere with your social life?

- UKHLS: United Kingdom Household Longitudinal Survey
- Nationally representative panel survey with health, income, employment, hours, demographics, time use etc.
- Sample is individuals aged 25-75 in the UK between 2009 and 2021
- SF-12 constructs mental health and physical health indices using principal component analysis
 - shown to be predictive of diagnosis and other health outcomes: Yu et al. (2015), Ohrnberger et al. (2020), Soh et al. (2021).

Mean Health Over the Lifecycle

- Index is standardized to a 50 pt. mean and 10 pt. standard deviation
- MH increases by about 1 std. dev., while PH decreases by about 1.5 std. dev. from 25-75

MH affects labor outcomes

Mental and Physical Health Indices and Labor Outcomes

		Year	FE	Individ and Year FE				
	Employment	ln(Earnings)	ln(Wage)	ln(Hours)	Employment	ln(Earnings)	ln(Wage)	ln(Hours)
Mental Health	0.01677***	0.00212	0.00263**	-0.00050	0.00338***	-0.00090	0.00111	-0.00201***
	(0.000)	(0.001)	(0.001)	(0.001)	(0.000)	(0.001)	(0.001)	(0.001)
Physical Health	0.01923***	0.00630***	0.00584***	0.00046	0.00387***	-0.00080	0.00094	-0.00175**
	(0.000)	(0.001)	(0.001)	(0.001)	(0.000)	(0.001)	(0.001)	(0.001)
$MH \times PH$	-0.00023***	0.00001	-0.00001	0.00002	-0.00004***	0.00001	-0.00001	0.00003**
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
female	-0.08798***	-0.41398***	-0.14776***	-0.26622***	0.00214	0.20999*	0.10675*	0.10324
	(0.002)	(0.004)	(0.003)	(0.002)	(0.050)	(0.082)	(0.052)	(0.062)
College	0.06733***	0.36049***	0.30941***	0.05108***	0.09178***	0.06414**	0.01899	0.04514**
	(0.002)	(0.004)	(0.003)	(0.002)	(0.019)	(0.021)	(0.018)	(0.015)
Observations	142,051	76,849	76,849	76,849	136,648	73,068	73,068	73,068
R-Square	0.40755	0.31907	0.26407	0.19929	0.80956	0.88147	0.82475	0.79041
Adj. R-Square	0.40737	0.31869	0.26366	0.19884	0.77397	0.85690	0.78843	0.74698

All models control for race, marital status, urban location, and an age cubic.

- PH and MH deferentially effect labor market outcomes
- Individual FE: unobserved fixed heterogeneity seems important

Roadmap

Introduction & Data

Lifecycle model

Model estimation and validation

Counterfactuals

Model in one slide: words

- Households (HH) live J periods and derive utility from consumption and leisure
- Continuous choices in labor n (switch to discrete), consumption c, and future assets a'
- Constrained by expendable income and time endowment
- Exogenous wage and health process
- Wage is quadratic in age and linear in health
- Two health states $H \in \{Bad, Good\}$: effects wage w_H
- ullet Permanent labor productivity type γ effects the wage process

Utility and time endowment

Individuals derive period utility from consumption and leisure

$$u(c_j, l_j) = \frac{\left(c_j^{\alpha} l_j^{1-\alpha}\right)^{1-\sigma}}{1-\sigma}$$

where the time endowment is s.t.

$$I_j = 1 - \phi_n n_j$$

 ϕ_n the time cost of work > 1 to account for commuting etc, ϕ_H is the time cost of bad health.

Consumption constraints

Choices must be s.t.

$$c + a' = z(\gamma, j, H) \cdot n + a(1+r); \forall j$$

$$a_0 = a_{J+1} = 0;$$

and

$$a_j > -\kappa$$
, and $c_j, n_j \ge 0$; $\forall j$.

With $\ln z (\gamma, j, H) = w_{0\gamma_i} + w_1 j + w_2 j^2 + w_H 1_{H=Good}$ where the linear coefficient depends on productivity type γ_i .

Model in one slide: math

$$V_{j}(a, \gamma, H) = \max_{c, n, a'} \{ u(c, 1 - \phi_{n}n) + \beta \mathbb{E}_{H'} V_{j+1}(a', \gamma, H') \}$$
s.t. $c + a' = z(\gamma, j, H) \cdot n + a(1+r); \forall j$

$$\ln z(\gamma_{i}, j, H_{ij}) = w_{0\gamma_{i}} + w_{1}j + w_{2}j^{2} + w_{H}1_{H_{ij} = Good}$$
(1)

$$H' \sim \Pi^H$$
 (2)

 $w_{0\gamma_i}$ depends on productivity type γ_i .

Standard: $a_0 = a_{J+1} = 0$ and $a_j > -\kappa$,; $c_j, n_j \ge 0$; $\forall j$.

Establishing and good and bad mental health

Table 1: Mental and Physical Health Quintile Effects and Labor Outcomes

	Year FE				Individ and Year FE			
	Employment	ln(Earnings)	ln(Wage)	ln(Hours)	Employment	ln(Earnings)	ln(Wage)	ln(Hours)
Fair Mental Health	0.198***	0.006	0.012	-0.006	0.033***	-0.001	0.013	-0.014
	(0.008)	(0.018)	(0.013)	(0.013)	(0.005)	(0.010)	(0.009)	(0.008)
Good Mental Health	0.269***	0.034	0.032*	0.002	0.046***	-0.003	0.016	-0.018*
	(0.009)	(0.020)	(0.014)	(0.014)	(0.006)	(0.010)	(0.009)	(0.008)
Very Good MH	0.305***	0.087***	0.076***	0.011	0.060***	0.002	0.023*	-0.021*
	(0.010)	(0.022)	(0.016)	(0.015)	(0.007)	(0.012)	(0.010)	(0.009)
Excellent Mental Health	0.320***	0.059***	0.060***	-0.001	0.051***	0.002	0.016	-0.014
	(0.007)	(0.017)	(0.013)	(0.012)	(0.006)	(0.010)	(0.009)	(0.008)
Fair Physical Health	0.243***	0.056**	0.047***	0.010	0.044***	0.014	0.017*	-0.003
	(0.009)	(0.017)	(0.013)	(0.012)	(0.007)	(0.009)	(0.008)	(0.008)
Good Physical Health	0.344***	0.073***	0.064***	0.009	0.062***	0.012	0.022*	-0.010
	(0.011)	(0.017)	(0.013)	(0.013)	(0.008)	(0.010)	(0.009)	(0.008)
Very Good PH	0.351***	0.098***	0.080***	0.018	0.038***	0.017	0.024*	-0.008
	(0.013)	(0.019)	(0.015)	(0.014)	(0.010)	(0.011)	(0.010)	(0.009)
Excellent Physical Health	0.398***	0.166***	0.140***	0.026*	0.060***	-0.001	0.019*	-0.020**
	(0.008)	(0.015)	(0.011)	(0.011)	(0.007)	(0.009)	(0.008)	(0.007)
female	-0.090***	-0.416***	-0.150***	-0.266***	0.002	0.210*	0.107*	0.104
	(0.002)	(0.004)	(0.003)	(0.002)	(0.050)	(0.082)	(0.052)	(0.061)
College	0.070***	0.359***	0.308***	0.051***	0.086***	0.066**	0.021	0.045**
	(0.003)	(0.004)	(0.003)	(0.002)	(0.019)	(0.021)	(0.018)	(0.015)
Observations	142055.000	76858.000	76858.000	76858.000	136652.000	73078.000	73078.000	73078.000
R-Square	0.403	0.320	0.266	0.199	0.810	0.881	0.825	0.790
Adj. R-Square	0.402	0.319	0.265	0.198	0.774	0.857	0.788	0.746

All models control for race, marital status, urban location, and an age cubic.

Define good and bad

- For simplicity and congruence with the literature I assume two health states H ∈ {Bad, Good}
- Use regression and Wald tests to inform cutoffs.
- Quantile regressions suggests bottom 40% Bad, top 60% Good
- Other quantile specifications yield low action relative to the increased complexity
 - Might think there are 3 health states G,A,B

Health states and process

Health evolves according to the transition matrix

$$\Pi_j^H = \left[\begin{array}{cc} \pi_j^{BB}, & \pi_j^{BG} \\ \pi_j^{GB}, & \pi_j^{GG} \end{array} \right]$$

where entry $\pi_{B,G}$ is the probability of transitioning from health state H = Bad to H = Good.

- H = Bad if below the 40th percentile of the mental health index.
 H = Good otherwise.
- I estimate the transition probabilities as the fraction of individuals that make the relevant transition.
 - E.g. $\hat{\pi}_{j}^{BG}$ is the fraction of people who transition from bad to good health at age j

Unconditional transitions by age

Figure: 1-Year Mental Health Transitions

Roadmap

Introduction & Data

Lifecycle mode

Model estimation and validation

Counterfactuals

Exogenous parameters

Parameter	Description	Value	Source
\overline{R}	Gross interest rate	1.02	Benchmark
β	Patience	0.9804	1/R
σ	CRRA	0.9999	Benchmark
ϕ_n	Labor time-cost	1.125	Benchmark

Table: Exogenous parameters

Calibrated parameters

Parameter	Description	Par. Value	Target Moment	Target Value	Model Value
α	c utility weight	0.3789	Mean hours worked	33.5	33.48
$\mu_{w_{0,\gamma}}$	Lab. FE mean	2.1423	Mean wage, $j = 0$	2.1986	2.1992
$\sigma_{w_{0,\gamma}}$	Lab. FE SD	0.3288	SD wage, $j = 0$	0.2996	0.299
w_1	Linear wage coeff.	0.0229	Wage growth	29.16%	29.17%
w_2	Quad. wage coeff.	-0.0005	Wage decay	27.32%	27.28%
w_H	Health wage coeff.	0.0562	Healthy wage premium	5.13%	5.11%

Table: Calibrated parameters 1

Targeted hours and wage fit

Unsurprisingly targeted moments fit pretty well.

Labor earnings and employment

• Earning fit is not great since I entirely miss the extensive margin.

Shares in bad mental health

Earnings by health

Figure: Mean earnings by mental health

• My health states are more different than the data conditional on

Wages and hours by health

Fit persistence

Fit inequality in log earnings

Roadmap

Introduction & Data

Lifecycle mode

Model estimation and validation

Counterfactuals

Counterfactuals

Consider a counter factual where we turn off the mental health channel

• Set $w_H = 0$. Since MH only effects wages, all mental health channels are turned off.

Variance of log earnings current counterfactuals

Figure: Variance of log earnings counterfactuals

Decomposing the variance of log earnings

Lifetime earnings

Define annualized lifetime earnings in the model as in Guvenen et al. (2022)

$$\bar{Y}^i \equiv \frac{1}{31} \times \sum_{j=25}^{55} Y_j^i = \frac{1}{31} \times \sum_{j=25}^{55} n_j * z_j$$

Lifetime Earnings Comparison

	Summary		Percentiles P10 P25 P50 P75 P90				Ratios			
Source	Mean	Std. Dev.	P10	P25	P50	P75	P90	P90/P10	P90/P50	P50/P10
Baseline Model	19.35	5.94	13.25	17.61	17.77	35.22	40.24	3.04	2.26	1.34
No MH Inequality	19.37	5.94	13.34	17.11	17.11	34.22	37.98	2.85	2.22	1.28

Table: Lifetime earnings statistics

Lifetime earnings in the data

Define annualized lifetime earnings in the data as

$$ar{Y} \equiv rac{1}{31} imes \sum_{j=25}^{55} ar{Y}_j$$

where $\bar{Y}_j = \sum_{i=1}^l Y_j^i$. Similarly we could define an annualized X percentile as

$$P^{x} \equiv \frac{1}{31} \times \sum_{j=25}^{55} P_{j}^{x}$$

where P_j^x is the percentile at that age. And could do the same thing in the model... this would give comparable statistics for both.

Conclusion and next steps

- Developed a simple lifecycle model with mental health
- Matches some important moments, misses others
- Previewed some results
- Mechanical next steps
 - Match the extensive margin employment and retirement
- More interesting but later..
 - Endogenize mental health (e.g. treatment decisions)
 - Add physical health. How does it effect mental health and vice versa?
 - Are my symptoms caused by stress?

Thank You!

Thank you!

Any questions? I appreciate your feedback!

Mean Health Over the Lifecycle

- Index is standardized to a 50 pt. mean and 10 pt. standard deviation
- MH increases by about 1 std. dev., while PH decreases by about 1.5 std. dev. from 25-75

References

Abramson, Boaz, Job Boerma, and Aleh Tsyvinski (Apr. 11, 2024). Macroeconomics of Mental Health, DOI: 10.2139/ssrn.4793015.

URL: https://papers.ssrn.com/abstract=4793015 (visited on 04/17/2024). Pre-published.

Biasi, Barbara, Michael S. Dahl, and Petra Moser (July 1, 2021).

Career Effects of Mental Health, URL:

https://papers.ssrn.com/abstract=3889138 (visited on 12/07/2023). Pre-published.

Blundell, Richard et al. (Jan. 2023). "The Impact of Health on Labor Supply near Retirement". In: Journal of Human Resources 58.1,

pp. 282-334. ISSN: 0022166X. DOI:

10.3368/jhr.58.3.1217-9240r4. URL:

http://proxy.library.vanderbilt.edu/login?url=https:

//search.ebscohost.com/login.aspx?direct=true&db=bth&

AN=161035389&site=ehost-live&scope=site (visited on 11/29/2023)