

INDEX

l. Arduino 개발 환경 구축

- HW Setting
- SW Setting

II. F/W Library – AT Parser 란?

- Parser Send()
- Parser Recv()
- Parser Flush()
- 공통 수행 절차 및 AT Parser 사용 예시

III. Arduino 기반 WIoT Cat.M1 Shield 활용과 실습 (1)

- LTE Cat.M1 Attach & Ping TEST
- SMS Send CDS Triggering
- SMS Recv Device Reset

IV. Arduino 기반 WIoT Cat.M1 Shield 활용과 실습 (2)

- MQTT 이론
- MQTT Local 테스트
- MQTT Publish Temperature
- MQTT Subscribe Device Reset

IoT Openhouse

아두이노 환경 구축

- H/W Setting
 S/W Setting

>> Arduino Mega2560

MCU: Atmega2560

Operating Voltage: 5V

• Digital/Analog Pin: 54/16

• SRAM/Flash: 8K/256K

• UART: 4

Microcontroller	ATmega2560
Operating Voltage	5V
Input Voltage (recommended)	7-12V
Input Voltage (limit)	6-20V
Digital I/O Pins	54 (of which 15 provide PWM output)
Analog Input Pins	16
DC Current per I/O Pin	20 mA
DC Current for 3.3V Pin	50 mA
Flash Memory	256 KB of which 8 KB used by bootloader
SRAM	8 KB
EEPROM	4 KB
Clock Speed	16 MHz
LED_BUILTIN	13
Length	101.52 mm
Width	53.3 mm
Weight	37 g

>> Arduino와 LTE 연결하기

- 스타터 키트 점퍼캡 USB 부분 제거
- 아두이노 MEGA 위에 Start Kit Stacking
- 점퍼 케이블 연결
 - D8열 오른쪽(TXD) → Pin15(RX3)
 - D2열 오른쪽(RXD) → Pin14(TX3)

점퍼 Wiring

아두이노 환경 구축

- H/W Setting
 S/W Setting

>> Arduino IDE 설치

https://www.arduino.cc/

>> Arduino IDE 설치

- https://www.arduino.cc/
- 강의 자료₩2. Arduino기반의 Cat.M1 디바이스 구현\Tool/ arduino-1.8.9-windows.exe 설치

>> Arduino IDE Driver

- Arduino를 연결 하고, 장치관리자에서 확인
- 장치관리자는 내 컴퓨터 속성 → 장치관리자 클릭

>> Arduino 보드 선택

IoT Openhouse

>> Arduino가 연결된 포트 선택

>> Arduino IDE 사용방법

- **확인:**내가 작성한 소스가 정상적으로 작성되었는지 확인!
- **업로드:** 내가 작성한 소스를 디바이스에서 동작 가능하도록 업로드
- **시리얼 모니터:**내가 작성한 소스가 잘 동작하는지 모니터링

>> 강의자료₩Example₩a_WIoT-Shield_SENSOR_TEMP

실행 결과

>> 강의자료₩Example₩b_WIoT-Shield_SENSOR_CDS

실행 결과

• CDS를 가리면 MEGA LED 점등

<u> </u>	
(MAIN)	WIZnet IoT Shield for Arduino
[MAIN]	LTE Cat.M1 Version
[MAIN]	
[MAIN]	>> Sample Code: CDS Test
[MAIN]	
[MAIN]	WIZnet loT Shield for Arduino
[MAIN]	LTE Cat.M1 Version
[MAIN]	
[MAIN]	>> Sample Code: CDS Test
[MATN]	

- 1) Parser Send()
- 2) Parser Recv()
- 3) Parser Flush()
- 4) 공통 수행 절차 및 AT Parser 사용 예시

>> Arduino Serial 함수

- Serial.println("AT")
- stringBuffer = Serial.readString()
- Strstr()함수를 이용해서 stringBuffer 중에 원하는 문자열이 있는지 체크

:

- >> m_parser.send()
 - m_parser.send("AT+CPIN?")

- >> m_parser.recv()
 - m_parser.recv(F("OK") (Serial 데이터를 읽고 저장하고 비교하고!!)
 - 대부분의 Connectivity 모듈은 AT Command 절차가 중요
 - Ex) 유심 개통 확인 → 망 접속 확인 → 데이터 송수신
 - 만약, 모듈의 response를 확인하지 않고 시간에 따라 순서대로 진행 하면 망 접속이 안되었는데도 불구하고 데이터 송수신을 수행하는 경우 발생

>> F() 매크로

- m_parser.send(F("AT+CPIN?"))
- m_parser.recv(F("OK")
- 문자열은 SRAM에 복사되어 사용됨
- F() 매크로를 사용하면 문자열을 SRAM에 복사 하지 않고, 플래시 메모리에 저장된 문자열에 접근하여 사용할 수 있음

Arduino	Processor	Flash	SRAM	EEPROM
UNO, Uno Ethernet, Menta, Boarduino	Atmega328	32K	2K	1K
Leonardo, Micro, Flora, 32U4 Breakout, Teensy, Esplora	Atmega 32U4	32K	2.5K	1K
Mega, MegaADK	Atmega2560	256K	8K	4K

>> m_parser.flush()

- m_parser.recv("BG96") 하고 버퍼에 남은 Serial 데이터를 모두 비움
- Ex) 공공 API 서버에 날씨를 요청하고 많은 양의 데이터 중 필요한 데이터만 추출하고 나머지는 Flush() 함수로 버퍼에 남은 Serial 데이터를 비움

:

>> 공통 수행 절차

>> waitCatM1Ready()

가장 기본적인 형태 → if(명령어 && 응답)

```
int8_t waitCatM1Ready()
 while (1)
   if (m_parser.recv(F("RDY"))) {
     MYPRINTF("BG96 ready#r#n");
     return RET_OK;
   else if (m_parser.send(F("AT")) && m_parser.recv(F(RESP_OK)))
     MYPRINTF("BG96 already available\"\");
     return RET_OK;
```

>> getNetworkStatus_BG96()

• 명령어에 대한 응답의 규칙이 있다면, 다음과 같이 문자열 추출 가능

```
int8_t getNetworkStatus_BG96(void)
 char mode[10], stat[10];
 char buf[10];
  if ( m_parser.send(F("AT+CEREG?")) &&
      m_parser.recv(F("+CEREG: %[^,],%[^\#n]\#n"), mode, stat) &&
      m_parser.recv(F(RESP_OK)) ) {
   if ( (atoi(mode) == 0) && (atoi(stat) == 1) ) {
     LOGDEBUG("Network Status: Attach#r#n");
     return RET_OK;
   else if (( atoi(stat) != 1 )) {
     sprintf((char *)buf, "Network Status: %d, %d", atoi(mode), atoi(stat));
     LOGDEBUG(buf);
     return RET_NOK;
```

"%[^a]": a라는 글자 전까지 추출

"%[abc]": abc문자만 추출

"%[a-z]": a-z문자만 추출

"%[0-9A-Za-z]": 대소문자 및 숫자만
추출

AT+CEREG?
+CEREG: 0,1
OK

"Not Attached"

>> getNetworkStatus_BG96()

- QUIZ 1
 - 그렇다면, 다음과 같은 응답을 받는 명령어는 어떻게 처리할 수 있을까?

```
AT+QCDS
+QCDS: "SRV", "CAT-M", 45012, 2500, 13BD0B, R13, 3, 368, 2058, -83, -106, -6, 3, 128, 0, 0, 0

OK

AT+QCDS
+QCDS: "NO_SRV"

OK
```

HINT

- if (m_parser.send(F(" ")) && m_parser.recv(F("+QCDS: % "), mode) && m_parser.recv(F(RESP_OK)))
- 문자열 비교 함수는 strcmp() 함수를 사용
- " "안에 "를 삽입하려면, ₩" 으로 표현 가능

- 1) LTE Cat.M1 Attach & Ping TEST
- 2) SMS Send CDS Triggering
- 3) SMS Recv Device Reset

>> LTE Cat.M1 Attach & Ping TEST

• 강의 자료₩Example₩c_WIoT-QC01_Arduino_Ping

>> LTE Cat.M1 Attach & Ping TEST


```
void printPingToHost_BG96(char * host, int timeout, int pingnum)
 char buf [100];
  int i:
 char resp_str[100] = \{0, \};
  if ((timeout < 1) || (timeout > 255)) {
   LOGDEBUG("Ping timeout range is 1-255, and the default value is 4 (unit: sec)₩r₩n");
   return:
                                          예외 처리
  if ((pingnum < 1) || (pingnum > 10)) {
   LOGDEBUG("The maximum number of sending Ping request range is 1-10, and the default value is 4\pmr\n");
   return:
  m_parser.set_timeout((1000 * timeout) + 2000);
  if (m_parser.send("AT+QPING=%d,\"%s\",%d,%d", 1, host, timeout, pingnum) && m_parser.recv("OK")) {
   for (i = 0; i < (pingnum); i++) {
     m_parser.recv("+QPING: %s\n", resp_str);
     sprintf((char *)buf, "%s: %s\r\n", host, resp_str);
     LOGDEBUG(buf):
  m_parser.set_timeout(BG96_DEFAULT_TIMEOUT);
  m_parser.flush();
```

>> QUIZ1

- 강의 자료₩Example₩QUIZ1
 - getNetworkStatus_BG96() 함수를 24p의 HINT를 참고하여
 기존과 같이 동작하도록 수정
 - 정상 동작하면, PING TEST하는 것을 확인 가능

- 1) LTE Cat.M1 Attach & Ping TEST
- 2) SMS Send CDS Triggering
- 3) SMS Recv Device Reset

- >> Send SMS CDS Triggering
 - 강의 자료₩Example₩d_WIoT-QC01_Arduino_SMS_SEND
 - 번호 및 메시지 수정 필요

Send SMS – CDS Triggering


```
void loop() {
    // put your main code here, to run repeatedly:
    //map : 특정 범위에 속하는 값을 다른 범위의 값으로 변환해주는 명령어
    curr_cdsValue = map(analogRead(IOTSHIELD_SENSOR_CDS), 0, 1023, 0, 256);
    //curr_cdsValue = (analogRead(IOTSHIELD_SENSOR_CDS) * 5v); // 다른 계산 방법

if ( curr_cdsValue < 64) { // 손가락으로 가리면 조도 저항값이 높아지기 때문에 아날로그 값이 낮아진다 if (sendSMS_B696(phone_number, send_message, strlen(send_message)) == RET_OK) {
        MYPRINTF("SEND [OK]");
        delay(5000);
    }

}
```

- Send SMS CDS Triggering
 - ・ 강의 자료₩Example₩d_WIoT-QC01_Arduino_SMS_SEND

- 1) LTE Cat.M1 Attach & Ping TEST
- 2) SMS Send CDS Triggering
- 3) SMS Recv Device Reset

- >> SMS Recv Device Reset
 - 강의 자료₩Example₩e_WIoT-QC01_Arduino_SMS_RECV
 - 휴대폰 번호 수정 필요

>> SMS Recv - Device Reset

• 강의 자료₩Example₩e_WIoT-QC01_Arduino_SMS_RECV


```
// put your main code here, to run repeatedly:
                               +CMTI: "ME",1 ← 문자 알림 체크
if (msg_idx > RET_NOK) { // SMS received
 if (recvSMS_BG96(msg_idx, recv_message, dest_addr, date_time) == RET_OK) {
   sprintf((char *)sms_buf, "[SMS Recv] from %s, %s, \#"%s\#"\#n", dest_addr, date_time, recv_message);
                                            // 문자열 비교를 위해 c_str --> String 으로 캐스팅
   memset(recv_message, 0, sizeof(recv_message)); // recv_message 초기화, 만약 하지 않으면 메시지가 '덮
                                             // Msg1: 'Hello', Msg2: 'Hi' --> Msg2: 'Hillo'로 표시
```

Arduino 기반 WIoT Cat.M1 Shield 활용과 실습 (1)

- >> SMS Recv Device Reset
 - 강의 자료₩Example₩e_WIoT-QC01_Arduino_SMS_RECV

Arduino 기반 WIoT Cat.M1 Shield 활용과 실습 (2)

- 1) MQTT 이론 및 환경 설정
- 2) MQTT Local 테스트
- 3) MQTT Publish Temperature
- 4) MQTT Subscribe Device Reset

MQTT 이론 및 환경 설정

- >> MQTT(Message Queue Telemetry Transport) 란
 - 경량화 프로토콜 이므로 M2M, IoT분야에 적합
 - Topic 기반의 Publish/subscribe
 - QoS 0~2 지원
 - 대표적인 사용 예: Facebook messenger

MQTT 이론 및 환경 설정

MQTT 브로커 - Mosquitto 설치

http://mosquitto.org/download/

Source

- mosquitto-1.6.2.tar.gz (319kB) (GPG signature)
- Git source code repository (github.com)

Older downloads are available at https://mosquitto.org/files/

Binary Installation

The binary packages listed below are supported by the Mosquitto project. In many cases Mosquitto is also available directly from official Linux/BSD distributions.

Windows

- mosquitto-1.6.2-install-windows-x64.exe (~360 kB) (64-bit build, Windows Vista and up, built with Visual Studio Community 2017)
- mosquitto-1.6.2-install-windows-x32.exe (~360 kB) (32-bit build, Windows Vista and up, built with Visual Studio Community 2017)

Mac

Mosquitto can be installed from the homebrew project. See brew.sh and then use brew install mosquitto

MQTT 이론 및 환경 설정

- >> MQTT 클라이언트 MQTT fx 설치
 - https://mqttfx.jensd.de/index.php/download

Latest Release

MQTT.fx Version 1.7.1 (more information)

✓

Arduino 기반 WIoT Cat.M1 Shield 활용과 실습 (2)

- 1) MQTT 이론 및 환경 설정
- 2) MQTT Local 테스트
- 3) MQTT Publish Temperature
- 4) MQTT Subscribe Device Reset

>> Local 실습 환경

MQTT 동작 이해

>> MQTT 브로커 실행

- 설치된 곳으로 이동
 - 일반적으로 program files → mosquitto

>> MQTT 브로커 실행

mosquitto –v

```
C:\Windows\System32\cmd.exe - mosquitto -v
licrosoft Windows [Version 10.0.17763.475]
[c) 2018 Microsoft Corporation. All rights reserved.
 :\Program Files (x86)\mosquitto>mosquitto -v
558607311: mosquitto version 1.4.9 (build date 08/06/2016 11:59:29.51) starting
558607311: Using default config.
558607311: Opening ipv6 listen socket on port 1883.
558607311: Opening ipv4 listen socket on port 1883.
```

>> MQTT 클라이언트(1) 실행

• 윈도우 --> mqttfx 검색

>> MQTT 클라이언트(1) 실행

Broker Address: 127.0.0.1

>> MQTT 클라이언트(1) 실행

Subscribe Topic: [Input Topic]

>> MQTT 클라이언트(2) 실행

• 윈도우 --> mqttfx 검색

>> MQTT 클라이언트(2) 실행

Broker Address: 127.0.0.1

>> MQTT 클라이언트(2) 실행

- Publish Topic: [Input Topic]
- Message: [Input Message]

>> MQTT 클라이언트 실행

>> MQTT 클라이언트 실행

>> MQTT 클라이언트 실행

Received PINGREQ from

>> MQTT 클라이언트 실행

• Public 브로커 사용

IoT 디바이스

Arduino 기반 WIoT Cat.M1 Shield 활용과 실습 (2)

- 1) MQTT 이론 및 환경 설정
- 2) MQTT Local 테스트
- 3) MQTT Publish Temperature
- 4) MQTT Subscribe Device Reset

MQTT Publish – Temperature

>> 주기적으로 온도를 측정하여 Publish

- 강의 자료₩Example₩f_WIoT-QC01_Arduino_MQTT_SEND
- 토픽 수정 필요

MQTT Publish – Temperature

>> Subscribe

Subscribe – "InputTopic" (수정한 토픽)

MQTT Publish – Temperature

>> MQTT Publish Flow Chart


```
switch (mgtt_state) {
    case MQTT_STATE_OPEN:
      if (openMqttBroker_BG96(mqtt_broker_url, mqtt_broker_port) == RET_OK) {
        MYPRINTF("[MQTT] Socket open success\"r\"n");
        mqtt_state = MQTT_STATE_CONNECT;
        MYPRINTF("[MQTT] Socket open failed\"r\"n");
        mqtt_state = MQTT_STATE_DISCON;
      break:
    case MQTT_STATE_CONNECT:
      if (connectMqttBroker_BG96(MQTT_CLIENTID, MQTT_USERID, MQTT_PASSWORD) == RET_OK) {
        mqtt_state = MQTT_STATE_CONNECTED;
     } else {
        MYPRINTF("[MQTT] Connect failed\"r\"n");
        mqtt_state = MQTT_STATE_DISCON;
      break:
    case MQTT_STATE_DISCON:
      if (closeMqttBroker_BG96() == RET_OK) {
        MYPRINTF("[MQTT] Disconnected\"r\"n");
      mgtt_state = MQTT_STATE_OPEN;
      break:
    default:
      mqtt_state = MQTT_STATE_OPEN;
      break:
} while (mqtt_state != MQTT_STATE_CONNECTED);
```

Arduino 기반 WIoT Cat.M1 Shield 활용과 실습 (2)

- 1) MQTT 이론 및 환경 설정
- 2) MQTT Local 테스트
- 3) MQTT Publish Temperature
- 4) MQTT Subscribe Device Reset

MQTT Subscribe – Device Reset

- >> "RESET" 메시지를 받으면 아두이노 재부팅
 - 강의 자료₩Example₩g_WIoT-QC01_Arduino_MQTT_RECV
 - 토픽 수정 필요

MQTT Subscribe – Device Reset

>> MQTTfx Message Publish

MQTT Subscribe – Device Reset

>> MQTTfx Message Publish

Publish- "InputTopic" (수정한 토픽)

Message – RESET

🔯 COM24 (Arduino/Genuino Mega or Mega 2560)

 \times

AT Command Parser

>> 공통 수행 절차

SESSION 3, Q&A

자유롭게 질문 부탁 드립니다.

WIZnet

