Algoritmi per la trasformata di Burrows-Wheeler posizionale con compressione run-length

Davide Cozzi

Relatore: Prof ssa Raffaella Rizzi Correlatore: Dr Yuri Pirola

Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo) Università degli Studi di Milano Bicocca

26 Ottobre 2022

Outline

- 1 Introduzione e scopo della tesi
- Run-length encoded PBWT
- Risultati sperimentali
- 4 Conclusioni e sviluppi futuri

II pangenoma

Un cambio di paradigma

- singolo genoma ⇒ insieme di genomi
- studio delle varianti geniche tra genomi di diversi individui

Rappresentazioni del pangenoma

- grafo del pangenoma
- pannello di aplotipi

Un aplotipo è l'insieme di alleli, ovvero di varianti che, a meno di mutazioni, un organismo eredita da ogni genitore.

Il pangenoma

Trasformata di Burrows-Wheeler posizionale

PBWT - Durbin, Bioinformatics, 2014

Dato pannello di M aplotipi, lunghi N siti (biallelici: $\Sigma = \{0, 1\}$), si definisce PBWT del pannello una collezione di N+1 coppie di array $(a_k, d_k), 0 \le k \le N$, dove:

- \blacksquare a_k è il **prefix array** della colonna k
- \mathbf{I} d_k è il **divergence array** della colonna k
- la PBWT è basata sul riordinamento co-lessicografico a ogni colonna
- \blacksquare il pannello, riordinato in ogni colonna k con a_k , è detto matrice PBWT
- \blacksquare aplotipi simili, riordinati consecutivamente alla colonna k, è molto probabile presentino il medesimo carattere in colonna k+1

Trasformata di Burrows-Wheeler posizionale

i	d_5	a ₅	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	05	14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
01	00	15	0_	1	0	0	0	0	0	0	1	0	0	0	1	0	1
02	01	17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
03	04	00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
04	02	04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	00	05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	00	06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	00	07	0	1	0	1	0	$\lfloor 1 \rfloor$	0	0	0	0	0	0	1	0	1
08	00	09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
09	00	10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	00	16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
11	05	08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
12	00	11	0	1	0	0	_1	0	0	0	0	0	1	1	0	0	0
13	00	12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	00	13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
15	03	18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
16	00	19	0_	1	1	0	1	0	1	0	0	0	0	0	1	0	1
17	04	01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
18	00	02	_1_	0	0	1	1	0	0	1	0	0	0	1	0	0	1
19	00	03	1	0	0	1	1	$\begin{bmatrix} 0 \end{bmatrix}$	0	1	0	0	0	1	0	0	1

Scopo della tesi

Lo scopo di questa tesi è stato quello di creare una variante run-length encoded della PBWT (RLPBWT) che permettesse, in modo efficiente dal punto di vista della memoria richiesta, il calcolo degli SMEM con aplotipo esterno.

Complessità calcolo degli SMEM con un algoritmo naïve: $\mathcal{O}(N^2M)$

Calcolo degli SMEM con aplotipo esterno per Durbin:

- tempo: $\mathcal{O}(NM) + \text{Avg. } \mathcal{O}(N+c)$
- spazio: $\mathcal{O}(NM) \implies 13NM$ byte

Sottostrutture e strutture dati composte per la RLPBWT

Qualche confronto in spazio

Algoritmi per la RLPBWT

Calcolo degli SMEM

Matching statistics per la PBWT

Dato un pannello $X = \{x_0, \dots, x_{M-1}\}$, $x_i = N$, e un aplotipo esterno z, tale che |z| = N, si definisce **matching statistics** di z su X un array MS di coppie (row, len), $|\mathsf{MS}| = N$, tale che:

- $x_{MS[i].row}[i MS[i].len + 1, i] = z[i MS[i].len + 1, i]$, ovvero si ha che l'aplotipo esterno ha un match, lungo MS[i].len, terminante in colonna i, con la riga MS[i].row-esima del pannello
- z[i MS[i]].len, i] non è un suffisso terminante in colonna i di un qualsiasi sottoinsieme di righe di X

8 / 15

Calcolo degli SMEM

Matching statistics per la PBWT

Dato un pannello $X = \{x_0, \dots, x_{M-1}\}$, $x_i = N$, e un aplotipo esterno z, tale che |z| = N, si definisce **matching statistics** di z su X un array MS di coppie (row, len), $|\mathsf{MS}| = N$, tale che:

- $x_{MS[i].row}[i MS[i].len + 1, i] = z[i MS[i].len + 1, i]$, ovvero si ha che l'aplotipo esterno ha un match, lungo MS[i].len, terminante in colonna i, con la riga MS[i].row-esima del pannello
- z[i MS[i]].len, i] non è un suffisso terminante in colonna i di un qualsiasi sottoinsieme di righe di X

SMEM da MS

Dato un array di matching statistics MS si ha che z[i-l+1,i] presenta uno SMEM di lunghezza l con la riga MS[i].row-esima del pannello X sse: MS[i].len $= l \land (i = N-1 \lor MS[i]$.len $\geq MS[i+1]$.len)

Pavide Cozzi Algoritmi per la RLPBWT 26/10/2022 8 / 15

Matching statistics

	Χ	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	Mapping con bitvector (MAP-BV)
	00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1	
	01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1	*
	02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1	Threshold con bitvector (THR-BV)
	03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1	
	04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1	
	05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1	Longest Comm
	06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1	Extension (LCE)
	07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1	
	08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1	Random Access con bitvector (RA-BV)
	09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1	
	10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1	Sample Prefix A
	11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0	(PERM)
	12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1	
	13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1	
	14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1	
	15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1	
	16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1	
	17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1	
	18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1	
	19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1	
		-															
	\mathbf{z}	0	1	0	0	1	0]	1	[0	0	0]	1	[1]	1	0	1	
	k	1	00		01	0	2	03		04	0!	5	06	(07	08	3 09 10 11 1
_	- ' \		- 50		<u> </u>			- 55		<u> </u>	- 0.	_			· ·	- 00	, 05 10 11 .

row len

Struttura per le funzioni φ e φ^{-1}

Dati di input

Pannelli di varianti reali

- dati reali relativi alla phase 3 del 1000 Genome Project
- numero variabile di siti
- numero costante di aplotipi: 5008
- estrazione di 100 query ⇒ pannelli con 4908 aplotipi

Chr	#Siti	Media run				
chr22	1.055.454	14				
chr20	1.739.315	11				
chr18	2.171.378	11				
chr16	2.596.072	12				
chr1	6.196.151	11				

Costo in memoria delle componenti

Performance calcolo degli SMEM con 100 query

Considerazioni e sviluppi futuri

Alcune considerazioni

- le strutture dati e gli algoritmi proposti hanno confermato la potenzialità dell'uso di strutture run-length encoded in pangenomica
- l'obbiettivo della tesi, ovvero lo sviluppo di un algoritmo, efficiente in spazio, per il calcolo degli SMEM di un aplotipo esterno contro un pannello, è stato raggiunto con risultati molto interessanti

Sviluppi futuri

- ottimizzazioni per pannelli di query
- SMFM internicon RIPBWT

- RI PBWT con dati mancanti
- RI PBWT multiallelica
- calcolo K-SMEM con RLPBWT

Algoritmi per la RLPBWT

Ulteriori dettagli

Bonizzoni, Boucher, Cozzi, Gagie, Kashgouli, Köppl e Rossi:

Compressed data structures for population-scale positional Burrows–Wheeler transforms, bioRxiv, 2022

17th Workshop on Compression, Text and Algorithms (WCTA), 11 Novembre 2022

Grazie per l'attenzione

Mapping e threshold

Colonna matrice PBWT

$$y^5 = 00101111000000000000$$

intvector compressi

$$ho_5 = [0, 2, 3, 4, 8]$$
 $uv_5 = [0, 2, 1, 3, 5], \quad c[5] = 15, \quad start_5 = \top$
 $t_5 = [0, 3, 3, 4, 11]$

bitvector sparsi

$$h_5=0111000100000000001$$
 $u_5=01100000000001, \quad v_5=10001, \quad c[5]=15, \quad \textit{start}_5=\top$ $t_5=1011100000010000000$

Performance costruzione strutture dati

Performance calcolo degli SMEM con 100 query

Performance calcolo degli SMEM per singole query

- PBWT MatchIndexed

 MAP-BV + THR-BV + RA-BV
- ♦ MAP-BV + THR-BV + RA-BV + PERM + PHI
- MAP-BV + THR-BV + RA-SLP + PERM + PHI
- MAP-BV + LCE + PERM + PHI
- Y MAP-INT + THR-INT + RA-BV + PERM + PHI
- $^{\perp}$ MAP-INT + THR-INT + RA-SLP + PERM + PHI
- → MAP-INT + LCE + PERM + PHI

Performance calcolo degli SMEM per singole query

Struttura per le funzioni φ e φ^{-1}

 $\Phi_j = [0, 0, 0, 1, 0, \ldots], \quad \Phi_m^{-1} = [0, 0, 0, 1, 0, \ldots], \quad \Phi_{supp} = [i, \ldots], \quad \Phi_{supp}^{-1} = [n, \ldots]$

$$\varPhi_{supp}^{j}[{\rm rank}_{j}^{\varphi}(0)] = \varPhi_{supp}^{j}[0] = i, \quad \varPhi_{supp}^{-1}{}^{m}[{\rm rank}_{m}^{\varphi^{-1}}(0)] = \varPhi_{supp}^{-1}{}^{m}[0] = n$$