Pumping lemmas for weighted automata

Filip Mazowiecki¹ and Cristian Riveros²

¹University of Bordeaux

²Pontificia Universidad Católica de Chile

Oxford verification seminar 2018

Introduction

Weighted automata

 $f:\Sigma^*\to\{0,1\}$

$$f:\Sigma^*\to\{0,1\}$$

Weighted automata

 $f:\Sigma^*\to \text{``some numbers''}?$

$$f:\Sigma^*\to\{0,1\}$$

Weighted automata

$$f: \Sigma^* \to$$
 "some numbers"? \mathbb{N} ?

 $\mathbb{S}(\oplus,\odot,\mathbb{O},\mathbb{1})$ with some axioms $s\oplus\mathbb{0}=s,\ s\odot\mathbb{1}=s,\ \dots$

$$\mathbb{S}(\oplus,\odot,\mathbb{O},\mathbb{1})$$
 with some axioms $s\oplus\mathbb{0}=s,\ s\odot\mathbb{1}=s,\ \dots$

Examples:

- $S = N(+, \cdot, 0, 1)$
- $\oplus = +, \ \odot = \cdot, \ \mathbb{0} = 0, \ \mathbb{1} = 1$

$$\mathbb{S}(\oplus,\odot,\mathbb{O},\mathbb{1})$$
 with some axioms $s\oplus\mathbb{O}=s,\ s\odot\mathbb{1}=s,\ \dots$

Examples:

- $S = N(+, \cdot, 0, 1)$
- $\oplus = +$, $\odot = \cdot$, 0 = 0, 1 = 1

Could be $\mathbb Z$ or $\mathbb R$ instead of $\mathbb N$

$$\mathbb{S}(\oplus,\odot,\mathbb{O},\mathbb{1}) \quad \text{with some axioms} \quad s\oplus\mathbb{O}=s, \ s\odot\mathbb{1}=s, \ \dots$$

Examples:

•
$$S = N(+, \cdot, 0, 1)$$

$$\oplus = +, \ \odot = \cdot, \ \mathbb{0} = 0, \ \mathbb{1} = 1$$

Could be $\mathbb Z$ or $\mathbb R$ instead of $\mathbb N$

•
$$\mathbb{S} = \mathbb{N}_{\infty}(\min, +, \infty, 0)$$

$$\oplus = \min, \ \odot = +, \ \mathbb{0} = \infty, \mathbb{1} = 0$$

$$\mathbb{S}(\oplus,\odot,\mathbb{O},\mathbb{1}) \quad \text{with some axioms} \quad s\oplus\mathbb{O}=s, \ s\odot\mathbb{1}=s, \ \dots$$

Examples:

•
$$S = N(+, \cdot, 0, 1)$$

$$\oplus = +, \ \odot = \cdot, \ \mathbb{0} = 0, \ \mathbb{1} = 1$$

Could be \mathbb{Z} or \mathbb{R} instead of \mathbb{N}

•
$$\mathbb{S} = \mathbb{N}_{\infty}(\min, +, \infty, 0)$$

$$\oplus = \min, \odot = +, 0 = \infty, 1 = 0$$

$$n \oplus \mathbb{O} = n$$
 becomes $\min(n, \infty) = n$

$$n \odot \mathbb{1} = n$$
 becomes $n + 0 = n$

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$ $a, b \neq 0$ $b \neq 1$ $a, b \neq 0$ $b \neq 1$ $a \neq 0$ $a \neq 0$

b b a b
$$1+1+0+0=2$$

Consider w = bbab

Output: $\min\{2, 1\} = 1$

Consider w = bbab

Output: $\min\{2, 1\} = 1$

In general: \odot transitions, \oplus accepting runs

Consider w = bbab

Output: $\min\{2, 1\} = 1$

In general: \odot transitions, \oplus accepting runs

① if there is no accepting run

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Consider w = bbab

b b a b b b a b
$$1+1+0+0=2$$
 $0+0+0+1=1$

b b a b
$$0+0+0+1=1$$

Output: $\min\{2, 1\} = 1$

In general: ⊙ transitions, ⊕ accepting runs

0 if there is no accepting run

"smallest block of b's"

Semiring:
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

Consider w = bbab

b b a b b a b
$$1+1+0+0=2$$
 $0+0+0+1=1$

Output: $\min\{2, 1\} = 1$

In general: ⊙ transitions, ⊕ accepting runs

O if there is no accepting run

"smallest block of b's" $(\infty \text{ if there is no } b)$

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot) \text{ or } \mathbb{Z}(+, \cdot)$$

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+,\cdot) \text{ or } \mathbb{Z}(+,\cdot)$$

Words: a^3, a^7, a^{18}, \dots

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+,\cdot) \text{ or } \mathbb{Z}(+,\cdot)$$

Words: a^3, a^7, a^{18} , ... or 3, 7, 18, ...

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot) \text{ or } \mathbb{Z}(+, \cdot)$$

Words: a^3, a^7, a^{18}, \ldots or 3, 7, 18, ...

WA are $f: \mathbb{N} \to \mathbb{N}$ (or $f: \mathbb{N} \to \mathbb{Z}$)

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot) \text{ or } \mathbb{Z}(+, \cdot)$$

Words: a^3, a^7, a^{18}, \ldots or 3, 7, 18, ...

 $\mathsf{WA} \ \mathsf{are} \ f: \mathbb{N} \to \mathbb{N} \quad \big(\mathsf{or} \ f: \mathbb{N} \to \mathbb{Z}\big)$

Fact

WA over unary alphabet = Linear Recurrence Sequences

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot) \text{ or } \mathbb{Z}(+, \cdot)$$

Words: a^3, a^7, a^{18}, \ldots or 3, 7, 18, ...

WA are $f: \mathbb{N} \to \mathbb{N}$ (or $f: \mathbb{N} \to \mathbb{Z}$)

Fact

WA over unary alphabet = Linear Recurrence Sequences

Example: Fibonacci sequence f(n)

$$f(n+2) = f(n+1) + f(n), f(0) = f(1) = 1$$

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot) \text{ or } \mathbb{Z}(+, \cdot)$$

Words: a^3, a^7, a^{18}, \ldots or 3, 7, 18, ...

WA are $f: \mathbb{N} \to \mathbb{N}$ (or $f: \mathbb{N} \to \mathbb{Z}$)

Fact

WA over unary alphabet = Linear Recurrence Sequences

Example: Fibonacci sequence f(n)

$$f(n+2) = f(n+1) + f(n), f(0) = f(1) = 1$$

$$\mathcal{A}(a^n) = F_n$$

What is the number of accepting runs?

What is the number of accepting runs?

 2^n accepting runs for a^n

What is the number of accepting runs?

• "smallest block of b's"

What is the number of accepting runs?

"smallest block of b's"

runs: number of block of b's (linear)

What is the number of accepting runs?

- "smallest block of b's" runs: number of block of b's (linear)
- $\min_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$?

What is the number of accepting runs?

- "smallest block of b's" runs: number of block of b's (linear)
- $\min_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \} ?$

What is the number of accepting runs?

"smallest block of b's"

runs: number of block of b's (linear)

• $\min_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \} ?$

runs: $|\Sigma|$ (constant)

What is the number of accepting runs?

"smallest block of b's"

runs: number of block of b's (linear)

• $\min_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \} ?$

runs: $|\Sigma|$ (constant)

WA

$$a / 0$$
, $b / 1$

What is the number of accepting runs?

• "smallest block of b's"

runs: number of block of b's (linear)

• $\min_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$?

runs: $|\Sigma|$ (constant)

WA

polynomially ambiguous WA

What is the number of accepting runs?

• "smallest block of b's"

runs: number of block of b's (linear)

• $\min_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$?

runs: $|\Sigma|$ (constant)

WA

U

polynomially ambiguous WA

U

finitely ambiguous WA

What is the number of accepting runs?

"smallest block of b's"

runs: number of block of b's (linear)

• $\min_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$?

runs: $|\Sigma|$ (constant)

WA

U

polynomially ambiguous WA

U

finitely ambiguous WA

1 14

unambiguous WA

What is the number of accepting runs?

"smallest block of b's"

runs: number of block of b's (linear)

• $\min_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$?

runs: $|\Sigma|$ (constant)

WA

Û,

polynomially ambiguous WA

U

finitely ambiguous WA

l Jk

unambiguous WA

J

deterministic WA

What is the number of accepting runs?

"smallest block of b's"

runs: number of block of b's (linear)

• $\min_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \} ?$

runs: $|\Sigma|$ (constant)

WA

polynomially ambiguous WA

finitely ambiguous WA

unambiguous WA

deterministic WA

What is this talk about?

Separating fragments of weighted automata

Fix $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Fix
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

Recall

WA
∪⅓
polynomially ambiguous WA
∪⅓
finitely ambiguous WA
∪⅓
unambiguous WA
∪⅓
deterministic WA

Fix
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

Fix
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

Fix
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

Fix
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

Recall

Strictness shown by examples

Fix
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

- Strictness shown by examples
- Papers are about determinization

Boolean world

Boolean world

• Finite automata

Show that $L=\{a^nb^n\mid n\in\mathbb{N}\}$ is not regular.

Boolean world

Finite automata

Show that $L = \{a^nb^n \mid n \in \mathbb{N}\}$ is not regular.

Solution: pumping lemma

Boolean world

• Finite automata

Show that $L = \{a^nb^n \mid n \in \mathbb{N}\}$ is not regular.

Solution: pumping lemma

Take $w \in L$ big enough

Boolean world

Finite automata

Show that $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Solution: pumping lemma

Take $w \in L$ big enough

exists a decomposition w=xyz, $\left|y\right|>0$

s.t. $xy^nz \in L$ for all n

Boolean world

Finite automata

quick case analysis

Show that $L = \{a^nb^n \mid n \in \mathbb{N}\}$ is not regular.

Solution: pumping lemma

Take $w\in L$ big enough exists a decomposition w=xyz, |y|>0 s.t. $xy^nz\in L$ for all n

Boolean world

Finite automata

Show that $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Solution: pumping lemma

Take $w\in L$ big enough exists a decomposition w=xyz, |y|>0 s.t. $xy^nz\in L$ for all n quick case analysis

- Context-free languages pumping lemmas
- First order logic Ehrenfeucht-Fraïssé games

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Three fragments

WA

LJI

polynomially ambiguous WA

Į.

finitely ambiguous WA

Uł

unambiguous WA

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Three fragments

WA ∪∤

polynomially ambiguous WA

Ú,

finitely ambiguous WA

Uł

unambiguous WA

Semiring:
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

Three fragments

Semiring:
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

Three fragments

Semirings: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$, $\mathbb{N}(+, \cdot, 0, 1)$

Semirings: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$, $\mathbb{N}(+, \cdot, 0, 1)$

WA over $\mathbb{N}(+,\cdot,0,1)$ – clearly no \min

Semirings: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$, $\mathbb{N}(+, \cdot, 0, 1)$

WA over $\mathbb{N}(+,\cdot,0,1)$ – clearly no \min

Fact

Unambiguous WA over $\mathbb{N}_\infty(\min,+,\infty,0)$ are contained in WA over $\mathbb{N}_\infty(+,\cdot,0,1).$

Semirings: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$, $\mathbb{N}(+, \cdot, 0, 1)$

WA over $\mathbb{N}(+,\cdot,0,1)$ – clearly no \min

Fact

Unambiguous WA over $\mathbb{N}_\infty(\min,+,\infty,0)$ are contained in WA over $\mathbb{N}_\infty(+,\cdot,0,1).$

Example: f longest suffix of a's; f(aaababaa) = 2, f(aaab) = 0

Semirings: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$, $\mathbb{N}(+, \cdot, 0, 1)$

WA over $\mathbb{N}(+,\cdot,0,1)$ – clearly no \min

Fact

Unambiguous WA over $\mathbb{N}_\infty(\min,+,\infty,0)$ are contained in WA over $\mathbb{N}_\infty(+,\cdot,0,1).$

Example: f longest suffix of a's; f(aaababaa) = 2, f(aaab) = 0

U-WA over $(\min, +)$

Semirings: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$, $\mathbb{N}(+, \cdot, 0, 1)$

WA over $\mathbb{N}(+,\cdot,0,1)$ – clearly no \min

Fact

Unambiguous WA over $\mathbb{N}_\infty(\min,+,\infty,0)$ are contained in WA over $\mathbb{N}_\infty(+,\cdot,0,1).$

Example: f longest suffix of a's; f(aaababaa) = 2, f(aaab) = 0

Semirings: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$, $\mathbb{N}(+, \cdot, 0, 1)$

WA over $\mathbb{N}(+,\cdot,0,1)$ – clearly no \min

Fact

Unambiguous WA over $\mathbb{N}_{\infty}(\min,+,\infty,0)$ are contained in WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$.

Example: f longest suffix of a's; f(aaababaa) = 2, f(aaab) = 0

strictly

The no min fragment

WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

Let $u \cdot v \cdot w \in \Sigma^*$

WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

Let $u \cdot v \cdot w \in \Sigma^*$

WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

Let $u \cdot v \cdot w \in \Sigma^*$

A refinement is $\hat{u}\cdot \hat{\underline{v}}\cdot \hat{w}=u\cdot \underline{v}\cdot w$ s.t. $\hat{\underline{v}}$ is a fragment of \underline{v}

WA over
$$\mathbb{N}_{\infty}(+,\cdot,0,1)$$

Let
$$u \cdot v \cdot w \in \Sigma^*$$

A refinement is $\hat{u}\cdot\underline{\hat{v}}\cdot\hat{w}=u\cdot\underline{v}\cdot w$ s.t. $\underline{\hat{v}}$ is a fragment of \underline{v}

e.g. $aaa\underline{bbbb}aa$ is refined by $aaab\underline{bb}baa$

WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

Let $u \cdot \underline{v} \cdot w \in \Sigma^*$

A refinement is $\hat{u}\cdot\underline{\hat{v}}\cdot\hat{w}=u\cdot\underline{v}\cdot w$ s.t. $\underline{\hat{v}}$ is a fragment of \underline{v} e.g. aaabbbbaa is refined by aaabbbbaa

Theorem (Pumping Lemma 1)

Let f be a WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u}\cdot\hat{v}\cdot\hat{w}$ and either:

WA over
$$\mathbb{N}_{\infty}(+,\cdot,0,1)$$

Let
$$u \cdot \underline{v} \cdot w \in \Sigma^*$$

A refinement is $\hat{u}\cdot\hat{\underline{v}}\cdot\hat{w}=u\cdot\underline{v}\cdot w$ s.t. $\hat{\underline{v}}$ is a fragment of \underline{v} e.g. $aaa\underline{b}b\underline{b}baa$ is refined by $aaab\underline{b}b$ aa

Theorem (Pumping Lemma 1)

Let f be a WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

there exists N s.t. for every $u\cdot\underline{v}\cdot w$ with $|v|\geq N$

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$;
- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.

WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

Let $u \cdot v \cdot w \in \Sigma^*$

A refinement is $\hat{u}\cdot\underline{\hat{v}}\cdot\hat{w}=u\cdot\underline{v}\cdot w$ s.t. $\underline{\hat{v}}$ is a fragment of \underline{v} e.g. aaabbbbaa is refined by aaabbbbaa

Theorem (Pumping Lemma 1)

Let f be a WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

there exists N s.t. for every $u\cdot\underline{v}\cdot w$ with $|v|\geq N$

there is a refinement $\hat{u}\cdot\hat{\underline{v}}\cdot\hat{w}$ and either:

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$;
- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.

Example: f – longest suffix of a's

WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

Let $u \cdot v \cdot w \in \Sigma^*$

A refinement is $\hat{u} \cdot \hat{\underline{v}} \cdot \hat{w} = u \cdot \underline{v} \cdot w$ s.t. $\hat{\underline{v}}$ is a fragment of \underline{v} e.g. aaabbbbaa is refined by aaabbbbaa

Theorem (Pumping Lemma 1)

Let f be a WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u}\cdot\hat{v}\cdot\hat{w}$ and either:

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$;
- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$. $\longleftarrow v, w \in a^*$

Example: f – longest suffix of a's

WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

Let
$$u \cdot v \cdot w \in \Sigma^*$$

A refinement is $\hat{u}\cdot\underline{\hat{v}}\cdot\hat{w}=u\cdot\underline{v}\cdot w$ s.t. $\underline{\hat{v}}$ is a fragment of \underline{v} e.g. aaabbbbaa is refined by aaabbbbaa

Theorem (Pumping Lemma 1)

Let f be a WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u}\cdot\hat{v}\cdot\hat{w}$ and either:

- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ = \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \text{ for every } i \geq N; \ \longleftarrow \ \text{otherwise}$
- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ < \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \ \text{for every } i \geq N. \ \longleftarrow v, w \in a^*$

Example: f – longest suffix of a's

WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

Let
$$u \cdot v \cdot w \in \Sigma^*$$

A refinement is $\hat{u}\cdot\underline{\hat{v}}\cdot\hat{w}=u\cdot\underline{v}\cdot w$ s.t. $\underline{\hat{v}}$ is a fragment of \underline{v} e.g. aaabbbbaa is refined by aaabbbbaa

Theorem (Pumping Lemma 1)
$$\leftarrow$$
 easy for U-WA over $(\min, +)$

Let f be a WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

there exists N s.t. for every $u\cdot\underline{v}\cdot w$ with $|v|\geq N$

there is a refinement $\hat{u}\cdot\underline{\hat{v}}\cdot\hat{w}$ and either:

- $f(\hat{u} \cdot \hat{\underline{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \hat{\underline{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$; \longleftarrow otherwise
- $f(\hat{u} \cdot \hat{\underline{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \hat{\underline{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$. $\longleftarrow v, w \in a^*$

Example: f – longest suffix of a's

Theorem (Pumping lemma 1)

Let f be a WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.

Theorem (Pumping lemma 1)

Let f be a WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

- $f(\hat{u} \cdot \hat{\underline{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \hat{\underline{v}}^{i+1} \cdot \hat{w})$ for every $i \geq N$.
- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ < \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \ \text{for every } i \geq N.$

Let
$$f(w) = \min(\#_a(w), \#_b(w))$$
 $(f \in \mathsf{FA-WA})$

Theorem (Pumping lemma 1)

Let f be a WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ < \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \ \text{for every } i \geq N.$

Let
$$f(w) = \min(\#_a(w), \#_b(w))$$
 ($f \in \mathsf{FA-WA}$)

Let
$$u \cdot v \cdot w = a^{(N+1)^2} \underline{b^N}$$
, $f(u \cdot v \cdot w) = N$

Theorem (Pumping lemma 1)

Let f be a WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u} \cdot \hat{\underline{v}} \cdot \hat{w}$ and either:

- $f(\hat{u} \cdot \hat{\underline{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \hat{\underline{v}}^{i+1} \cdot \hat{w})$ for every $i \geq N$.
- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ < \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \ \text{for every} \ i \geq N.$

Let
$$f(w) = \min(\#_a(w), \#_b(w))$$
 $(f \in \mathsf{FA}\text{-WA})$

Let
$$u \cdot v \cdot w = a^{(N+1)^2} \underline{b^N}$$
, $f(u \cdot v \cdot w) = N$

Any refinement $\hat{u}\cdot\hat{v}\cdot\hat{w}=a^{(N+1)^2}\cdot b^n\underline{b^m}b^l$, $1\leq m\leq N$

Theorem (Pumping lemma 1)

Let f be a WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ < \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \ \text{for every} \ i \geq N.$

Let
$$f(w) = \min(\#_a(w), \#_b(w))$$
 $(f \in \mathsf{FA-WA})$

Let
$$u \cdot v \cdot w = a^{(N+1)^2} \underline{b^N}$$
, $f(u \cdot v \cdot w) = N$

Any refinement
$$\hat{u} \cdot \hat{v} \cdot \hat{w} = a^{(N+1)^2} \cdot b^n \underline{b^m} b^l$$
, $1 \le m \le N$

$$f(\hat{u}\cdot\underline{\hat{v}}^i\cdot\hat{w})=(N+1)^2$$
 for i big enough

Theorem (Pumping lemma 1)

Let f be a WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u} \cdot \hat{\underline{v}} \cdot \hat{w}$ and either:

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.

Let
$$f(w) = \min(\#_a(w), \#_b(w))$$
 ($f \in \mathsf{FA-WA}$)

Let
$$u \cdot v \cdot w = a^{(N+1)^2} \underline{b^N}$$
, $f(u \cdot v \cdot w) = N$

Any refinement $\hat{u}\cdot\hat{v}\cdot\hat{w}=a^{(N+1)^2}\cdot b^n\underline{b^m}b^l$, $1\leq m\leq N$

$$f(\hat{u}\cdot\underline{\hat{v}}^i\cdot\hat{w})=(N+1)^2$$
 for i big enough

but take i=N, then $f(\hat{u}\cdot\hat{\underline{v}}^i\cdot\hat{w})\leq N+mN\leq N+N^2<(N+1)^2$

Theorem (Pumping lemma 1)

Let f be a WA over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u}\cdot \underline{\hat{v}}\cdot \hat{w}$ and either:

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.

Let
$$f(w) = \min(\#_a(w), \#_b(w))$$
 ($f \in \mathsf{FA}\text{-WA}$)

Let
$$u \cdot v \cdot w = a^{(N+1)^2} \underline{b^N}$$
, $f(u \cdot v \cdot w) = N$

Any refinement $\hat{u}\cdot\hat{v}\cdot\hat{w}=a^{(N+1)^2}\cdot b^n\underline{b^m}b^l$, $1\leq m\leq N$

$$f(\hat{u}\cdot\underline{\hat{v}}^i\cdot\hat{w})=(N+1)^2$$
 for i big enough

but take
$$i=N$$
, then $f(\hat{u}\cdot \hat{\underline{v}}^i\cdot \hat{w})\leq N+mN\leq N+N^2<(N+1)^2$

Corollary: U-WA \subseteq FA-WA over $(\min, +)$

$$f(w) = \min\{f_1(w), \dots, f_m(w)\}, f_i \text{ in WA over } \mathbb{N}_{\infty}(+, \cdot, 0, 1)$$

$$f(w) = \min\{f_1(w), \dots, f_m(w)\}, f_i \text{ in WA over } \mathbb{N}_{\infty}(+, \cdot, 0, 1)$$

Example: $f(w) = \min(\#_a(w), \#_b(w))$

$$f(w) = \min\{f_1(w), \dots, f_m(w)\}, f_i \text{ in WA over } \mathbb{N}_{\infty}(+, \cdot, 0, 1)$$

Example: $f(w) = \min(\#_a(w), \#_b(w))$

Another example: $f(w) = \min(|w|, 2^{\#_a(w)})$

$$f(w) = \min\{f_1(w), \dots, f_m(w)\}, f_i \text{ in WA over } \mathbb{N}_{\infty}(+, \cdot, 0, 1)$$

Example: $f(w) = \min(\#_a(w), \#_b(w))$

Another example: $f(w) = \min(|w|, 2^{\#_a(w)})$

 \longleftarrow WA over $(+,\cdot)$

$$f(w) = \min\{f_1(w), \dots, f_m(w)\}, f_i \text{ in WA over } \mathbb{N}_{\infty}(+, \cdot, 0, 1)$$

Example: $f(w) = \min(\#_a(w), \#_b(w))$

Another example: $f(w) = \min(|w|, 2^{\#_a(w)})$

Negative examples: \bullet "smallest block of b's",

$$f(w) = \min\{f_1(w), \dots, f_m(w)\}, f_i \text{ in WA over } \mathbb{N}_{\infty}(+, \cdot, 0, 1)$$

Example: $f(w) = \min(\#_a(w), \#_b(w))$

Another example: $f(w) = \min(|w|, 2^{\#_a(w)})$

Negative examples: • "smallest block of b's",

•
$$f(w) = \min_{0 \le k \le |w|} (\#_a(w[1, k]) + \#_b(w[k+1, |w|]))$$

Word n-representation: $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$

Word n-representation: $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots \cdot u_{n-1} \cdot \underline{v_n} \cdot u_n$

(n, N)-representation: $|v_i| \geq N$ for all i

Word *n*-representation: $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$

(n,N)-representation: $|v_i| \ge N$ for all i

A refinement is $w = u_0' \cdot \underline{y_1} \cdot u_1' \cdot \underline{y_2} \cdot \dots u_{n-1}' \cdot \underline{y_n} \cdot u_n'$ if y_i refine v_i

Word *n*-representation: $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots \cdot u_{n-1} \cdot \underline{v_n} \cdot u_n$

(n,N)-representation: $|v_i| \ge N$ for all i

A refinement is $w=u_0'\cdot\underline{y_1}\cdot u_1'\cdot\underline{y_2}\cdot\ldots u_{n-1}'\cdot\underline{y_n}\cdot u_n'$ if y_i refine v_i

Let $S\subseteq\{1,\ldots,n\}$, $\underline{v_k}(S,i)=v_k^i$ if $k\in S$ and $\underline{v_k}(S,i)=v_k$ otherwise.

Word *n*-representation: $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots \cdot u_{n-1} \cdot \underline{v_n} \cdot u_n$

(n,N)-representation: $|v_i| \ge N$ for all i

A refinement is $w=u_0'\cdot\underline{y_1}\cdot u_1'\cdot\underline{y_2}\cdot\ldots u_{n-1}'\cdot\underline{y_n}\cdot u_n'$ if y_i refine v_i

Let $S \subseteq \{1,\ldots,n\}$, $\underline{v_k}(S,i) = v_k^i$ if $k \in S$ and $\underline{v_k}(S,i) = v_k$ otherwise. $w(S,i) = u_0 \cdot \underline{v_1}(S,i) \cdot u_1 \cdot \underline{v_2}(S,i) \cdot \ldots u_{n-1} \cdot \underline{v_n}(S,i) \cdot u_n$

Word *n*-representation: $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$

(n,N)-representation: $|v_i| \geq N$ for all i

A refinement is $w=u_0'\cdot\underline{y_1}\cdot u_1'\cdot\underline{y_2}\cdot\ldots u_{n-1}'\cdot\underline{y_n}\cdot u_n'$ if y_i refine v_i

Let $S \subseteq \{1,\ldots,n\}$, $\underline{v_k}(S,i) = v_k^i$ if $k \in S$ and $\underline{v_k}(S,i) = v_k$ otherwise. $w(S,i) = u_0 \cdot \underline{v_1}(S,i) \cdot u_1 \cdot \underline{v_2}(S,i) \cdot \ldots u_{n-1} \cdot \underline{v_n}(S,i) \cdot u_n$

Example, a (3,2)-representation

 $w = a\underline{b^3}aa\underline{b^2}a\underline{b^2}aa$

Word *n*-representation: $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots \cdot u_{n-1} \cdot \underline{v_n} \cdot u_n$

(n,N)-representation: $|v_i| \ge N$ for all i

A refinement is $w=u_0'\cdot\underline{y_1}\cdot u_1'\cdot\underline{y_2}\cdot\dots u_{n-1}'\cdot\underline{y_n}\cdot u_n'$ if y_i refine v_i

Let $S\subseteq \{1,\ldots,n\}$, $\underline{v_k}(S,i)=v_k^i$ if $k\in S$ and $\underline{v_k}(S,i)=v_k$ otherwise. $w(S,i)=u_0\cdot\underline{v_1}(S,i)\cdot u_1\cdot\underline{v_2}(S,i)\cdot \ldots u_{n-1}\cdot\underline{v_n}(S,i)\cdot u_n$

Example, a (3,2)-representation

$$w = a\underline{b^3}aa\underline{b^2}a\underline{b^2}aa$$
$$w(\{1,3\},3) = ab^9aab^2ab^6aa$$

Theorem (Pumping Lemma 2)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be finite-min over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

Theorem (Pumping Lemma 2)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be finite-min over $\mathbb{N}_{\infty}(+,\cdot,0,1)$

there exists N s.t. for all (n,N)-representations $(n \ge N)$

Theorem (Pumping Lemma 2)

```
Let f: \Sigma^* \to \mathbb{N}_{\infty} be finite-min over \mathbb{N}_{\infty}(+,\cdot,0,1) there exists N s.t. for all (n,N)-representations (n \geq N) exists refinement w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots u'_{n-1} \cdot \underline{y_n} \cdot u'_n s.t. given S_1, \ldots, S_N \subseteq \{1 \ldots n\} (nonempty, different) either:
```

Theorem (Pumping Lemma 2)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be finite-min over $\mathbb{N}_{\infty}(+,\cdot,0,1)$ there exists N s.t. for all (n,N)-representations $(n \geq N)$ exists refinement $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots u'_{n-1} \cdot \underline{y_n} \cdot u'_n$ s.t. given $S_1, \ldots, S_N \subseteq \{1 \ldots n\}$ (nonempty, different) either:

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i+1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Theorem (Pumping Lemma 2)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be finite-min over $\mathbb{N}_{\infty}(+,\cdot,0,1)$ there exists N s.t. for all (n,N)-representations $(n \geq N)$ exists refinement $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots u'_{n-1} \cdot \underline{y_n} \cdot u'_n$ s.t. given $S_1, \ldots, S_N \subseteq \{1 \ldots n\}$ (nonempty, different) either:

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i + 1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Example: f – "smallest block of b's"

Theorem (Pumping Lemma 2)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be finite-min over $\mathbb{N}_{\infty}(+,\cdot,0,1)$ there exists N s.t. for all (n,N)-representations $(n \geq N)$ exists refinement $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots u'_{n-1} \cdot \underline{y_n} \cdot u'_n$ s.t. given $S_1, \ldots, S_N \subseteq \{1 \ldots n\}$ (nonempty, different) either:

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i + 1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Example: f – "smallest block of b's" Let $w = (\underline{b^N}a^N)^N$ (n = N)

Theorem (Pumping Lemma 2)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be finite-min over $\mathbb{N}_{\infty}(+,\cdot,0,1)$ there exists N s.t. for all (n,N)-representations $(n \geq N)$ exists refinement $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots u'_{n-1} \cdot \underline{y_n} \cdot u'_n$ s.t. given $S_1, \ldots, S_N \subseteq \{1 \ldots n\}$ (nonempty, different) either:

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i+1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Example: f – "smallest block of b's" Let $w=(\underline{b^N}a^N)^N$ (n=N) Let $S_j=\{1,\ldots,N\}\setminus\{j\}$, $f(w(S_j,i))=N$ for all i,j

Theorem (Pumping Lemma 2)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be finite-min over $\mathbb{N}_{\infty}(+,\cdot,0,1)$ there exists N s.t. for all (n,N)-representations $(n \geq N)$ exists refinement $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots u'_{n-1} \cdot \underline{y_n} \cdot u'_n$ s.t. given $S_1, \ldots, S_N \subseteq \{1 \ldots n\}$ (nonempty, different) either:

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i + 1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Example:
$$f$$
 – "smallest block of $b's$ " Let $w=(\underline{b^N}a^N)^N$ $(n=N)$ Let $S_j=\{1,\ldots,N\}\setminus\{j\}, \quad f(w(S_j,i))=N$ for all i,j But $S_{j_1}\cup S_{j_2}=\{1,\ldots,N\}$ for $j_1\neq j_2$

Theorem (Pumping Lemma 2)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be finite-min over $\mathbb{N}_{\infty}(+,\cdot,0,1)$ there exists N s.t. for all (n,N)-representations $(n \geq N)$ exists refinement $w = u'_0 \cdot y_1 \cdot u'_1 \cdot y_2 \cdot \dots \cdot u'_{n-1} \cdot y_n \cdot u'_n$

s.t. given $S_1,\ldots,S_N\subseteq\{1\ldots n\}$ (nonempty, different) either:

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i + 1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Example:
$$f$$
 - "smallest block of $b's$ "

Let $w = (\underline{b}^N a^N)^N$ $(n = N)$

Let $S_j = \{1, \dots, N\} \setminus \{j\}$, $f(w(S_j, i)) = N$ for all i, j

But $S_{j_1} \cup S_{j_2} = \{1, \dots, N\}$ for $j_1 \neq j_2$

Hence $f(w(S_{j_1} \cup S_{j_2}, i)) < f(w(S_{j_1} \cup S_{j_2}, i + 1))$

Theorem (Pumping Lemma 2)

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i + 1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Theorem (Pumping Lemma 2)

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i+1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Example 2:
$$f(w) = \min_{0 \le k \le |w|} (\#_a(w[1, k]), \#_b(w[k+1, |w|]))$$

Theorem (Pumping Lemma 2)

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i+1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

$$\begin{split} & \text{Example 2: } f(w) = \min_{0 \leq k \leq |w|} (\#_a(w[1,k]), \#_b(w[k+1,|w|])) \\ & w = (\underline{b^N} \ \underline{a^N})^N \quad n = 2N \text{, } \{1,\dots,n\} = \{(1,1),(2,1)\dots(1,N),(2,N)\} \end{split}$$

Theorem (Pumping Lemma 2)

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i+1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Example 2:
$$f(w) = \min_{0 \le k \le |w|} (\#_a(w[1,k]), \#_b(w[k+1,|w|]))$$

 $w = (\underline{b^N} \ \underline{a^N})^N \quad n = 2N, \{1,\ldots,n\} = \{(1,1),(2,1)\ldots(1,N),(2,N)\}$
 $f(b^N a^N) = 0, \quad f(w) = N \cdot (N-1)$

Theorem (Pumping Lemma 2)

- exists j s.t. $f(w(S_i, i)) < f(w(S_i, i+1))$;
- exists $j_1 \neq j_2$ s.t. $f(w(S_{i_1} \cup S_{i_2}, i)) = f(w(S_{i_1} \cup S_{i_2}, i+1))$.

Example 2:
$$f(w) = \min_{0 \le k \le |w|} (\#_a(w[1,k]), \#_b(w[k+1,|w|]))$$

 $w = (\underline{b^N} \ \underline{a^N})^N \quad n = 2N, \ \{1,\dots,n\} = \{(1,1),(2,1)\dots(1,N),(2,N)\}$
 $f(b^N a^N) = 0, \quad f(w) = N \cdot (N-1)$
(choose $k =$ choose block and choose $k =$ inside the block)

Theorem (Pumping Lemma 2)

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i+1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Example 2:
$$f(w) = \min_{0 \le k \le |w|} (\#_a(w[1,k]), \#_b(w[k+1,|w|]))$$
 $w = (\underline{b}^N \underline{a}^N)^N \quad n = 2N, \ \{1,\dots,n\} = \{(1,1),(2,1)\dots(1,N),(2,N)\}$ $f(b^N a^N) = 0, \quad f(w) = N \cdot (N-1)$ (choose $k =$ choose block and choose $k =$ inside the block)

Let
$$S_j = \{(1, j), (2, j)\}, \quad f(w(S_j, i)) = N \cdot (N - 1) \text{ for all } i, j$$

Theorem (Pumping Lemma 2)

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i+1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Example 2:
$$f(w) = \min_{0 \le k \le |w|} (\#_a(w[1,k]), \#_b(w[k+1,|w|]))$$
 $w = (\underline{b}^N \ \underline{a}^N)^N \quad n = 2N, \ \{1,\dots,n\} = \{(1,1),(2,1)\dots(1,N),(2,N)\}$ $f(b^N a^N) = 0, \quad f(w) = N \cdot (N-1)$ (choose $k =$ choose block and choose $k =$ inside the block)

Let
$$S_j = \{(1, j), (2, j)\}, \quad f(w(S_j, i)) = N \cdot (N - 1) \text{ for all } i, j$$

$$f(w(S_{j_1} \cup S_{j_2}, i)) < f(w(S_{j_1} \cup S_{j_2}, i + 1)) \text{ for } j_1 \neq j_2$$

Theorem (Pumping Lemma 2)

 (\dots) given $S_1, \dots, S_N \subseteq \{1 \dots n\}$ either:

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i+1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Example 2:
$$f(w) = \min_{0 \leq k \leq |w|} (\#_a(w[1,k]), \#_b(w[k+1,|w|]))$$

$$w = (\underline{b^N} \ \underline{a^N})^N \quad n = 2N, \ \{1,\dots,n\} = \{(1,1),(2,1)\dots(1,N),(2,N)\}$$

$$f(b^N a^N) = 0, \quad f(w) = N \cdot (N-1)$$
 (choose $k =$ choose block and choose $k =$ inside the block)

Let
$$S_j = \{(1, j), (2, j)\}, \quad f(w(S_j, i)) = N \cdot (N - 1) \text{ for all } i, j$$

$$f(w(S_{j_1} \cup S_{j_2}, i)) < f(w(S_{j_1} \cup S_{j_2}, i + 1)) \text{ for } j_1 \neq j_2$$

Corollary: FA-WA \subseteq PA-WA over $(\min, +)$

Only the semiring $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Only the semiring $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Examples: "smallest block of b's",

$$f(w) = \min_{0 \le k \le |w|} (\#_a(w[1, k]), \#_b(w[k+1, |w|]))$$

Only the semiring $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Examples: "smallest block of b's",

$$f(w) = \min_{0 \le k \le |w|} (\#_a(w[1, k]), \#_b(w[k+1, |w|]))$$

Negative example: let $w=w_0\#w_1\#\ldots\#w_m$, where $w_i\in\{a,b\}^*$ $f(w)=\sum\limits_{i=0}^m\min(\#_a(w_i),\#_b(w_i))$

Only the semiring $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Examples: "smallest block of b's",

$$f(w) = \min_{0 \le k \le |w|} (\#_a(w[1, k]), \#_b(w[k+1, |w|]))$$

Negative example: let $w = w_0 \# w_1 \# \dots \# w_m$, where $w_i \in \{a, b\}^*$ $f(w) = \sum_{i=1}^{m} \min(\#_a(w_i), \#_b(w_i))$

Only the semiring $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Examples: "smallest block of b's",

$$f(w) = \min_{0 \leq k \leq |w|} (\#_a(w[1,k]), \#_b(w[k+1,|w|]))$$

Negative example: let $w = w_0 \# w_1 \# \dots \# w_m$, where $w_i \in \{a, b\}^*$ $f(w) = \sum_{i=1}^{m} \min(\#_a(w_i), \#_b(w_i))$

Number of runs: 2^m

Only the semiring $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Examples: "smallest block of b's",

$$f(w) = \min_{0 \le k \le |w|} (\#_a(w[1,k]), \#_b(w[k+1,|w|]))$$

Negative example: let $w = w_0 \# w_1 \# \dots \# w_m$, where $w_i \in \{a, b\}^*$ $f(w) = \sum_{i=0}^m \min(\#_a(w_i), \#_b(w_i))$

Number of runs: 2^m

Another example: $f(w) = \sum\limits_{i=0}^m g(w_i)$, where g – "smallest block of b's"

First, some notation

First, some notation

Let $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$

First, some notation

Let
$$S_1,\ldots,S_m\subseteq\{1,\ldots,n\}$$
 A partition if $\bigcup_{j=1}^m S_j=\{1,\ldots,n\}$, S_j nonempty, $S_{j_1}\cap S_{j_2}=\emptyset$

First, some notation

Let
$$S_1,\ldots,S_m\subseteq\{1,\ldots,n\}$$
 A partition if $\bigcup\limits_{j=1}^mS_j=\{1,\ldots,n\},\quad S_j$ nonempty, $S_{j_1}\cap S_{j_2}=\emptyset$ $S\subseteq\{1,\ldots,n\}$ is a selector if $|S\cap S_j|=1$ for all j

First, some notation

Let
$$S_1,\ldots,S_m\subseteq\{1,\ldots,n\}$$
 A partition if $\bigcup\limits_{j=1}^mS_j=\{1,\ldots,n\},\quad S_j$ nonempty, $S_{j_1}\cap S_{j_2}=\emptyset$ $S\subseteq\{1,\ldots,n\}$ is a selector if $|S\cap S_j|=1$ for all j

Theorem (Pumping lemma 3)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be PA-WA over $\mathbb{N}_{\infty}(\min, +)$ there exists N s.t. for all (n, N)-representations

First, some notation

Let
$$S_1,\ldots,S_m\subseteq\{1,\ldots,n\}$$
 A partition if $\bigcup\limits_{j=1}^mS_j=\{1,\ldots,n\},\quad S_j$ nonempty, $S_{j_1}\cap S_{j_2}=\emptyset$ $S\subseteq\{1,\ldots,n\}$ is a selector if $|S\cap S_j|=1$ for all j

Theorem (Pumping lemma 3)

Let $f:\Sigma^* \to \mathbb{N}_\infty$ be PA-WA over $\mathbb{N}_\infty(\min,+)$

there exists N s.t. for all (n, N)-representations

there exists refinement $w=u_0'\cdot \underline{y_1}\cdot u_1'\cdot \underline{y_2}\cdot \dots u_{n-1}'\cdot \underline{y_n}\cdot u_n'$

First, some notation

Let
$$S_1,\ldots,S_m\subseteq\{1,\ldots,n\}$$
 A partition if $\bigcup\limits_{j=1}^mS_j=\{1,\ldots,n\},\quad S_j$ nonempty, $S_{j_1}\cap S_{j_2}=\emptyset$ $S\subseteq\{1,\ldots,n\}$ is a selector if $|S\cap S_j|=1$ for all j

Theorem (Pumping lemma 3)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be PA-WA over $\mathbb{N}_{\infty}(\min, +)$ there exists N s.t. for all (n, N)-representations there exists refinement $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots \cdot u'_{n-1} \cdot \underline{y_n} \cdot u'_n$ s.t. for every partition S_1, \ldots, S_m of $\{1, \ldots, n\}$ either:

First, some notation

Let
$$S_1,\ldots,S_m\subseteq\{1,\ldots,n\}$$
 A partition if $\bigcup\limits_{j=1}^mS_j=\{1,\ldots,n\},\quad S_j$ nonempty, $S_{j_1}\cap S_{j_2}=\emptyset$ $S\subseteq\{1,\ldots,n\}$ is a selector if $|S\cap S_j|=1$ for all j

Theorem (Pumping lemma 3)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be PA-WA over $\mathbb{N}_{\infty}(\min, +)$ there exists N s.t. for all (n,N)-representations there exists refinement $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots u'_{n-1} \cdot \underline{y_n} \cdot u'_n$ s.t. for every partition S_1, \ldots, S_m of $\{1, \ldots, n\}$ either:

• there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i+1))$

First, some notation

Let
$$S_1,\ldots,S_m\subseteq\{1,\ldots,n\}$$
 A partition if $\bigcup\limits_{j=1}^mS_j=\{1,\ldots,n\},\quad S_j$ nonempty, $S_{j_1}\cap S_{j_2}=\emptyset$ $S\subseteq\{1,\ldots,n\}$ is a selector if $|S\cap S_j|=1$ for all j

Theorem (Pumping lemma 3)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be PA-WA over $\mathbb{N}_{\infty}(\min, +)$ there exists N s.t. for all (n, N)-representations there exists refinement $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots u'_{n-1} \cdot \underline{y_n} \cdot u'_n$ s.t. for every partition S_1, \ldots, S_m of $\{1, \ldots, n\}$ either:

- there exists j s.t. $f(w(S_i, i)) = f(w(S_i, i+1))$
- there exists a selector S s.t. f(w(S,i)) < f(w(S,i+1))

Theorem (Pumping lemma 3)

- there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i+1))$
- there exists a selector S s.t. f(w(S,i)) < f(w(S,i+1))

Theorem (Pumping lemma 3)

- there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i+1))$
- there exists a selector S s.t. f(w(S, i)) < f(w(S, i + 1))

Example:
$$f(w) = \sum_{i=0}^{m} \min(\#_a(w_i), \#_b(w_i))$$

Theorem (Pumping lemma 3)

- there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i+1))$
- there exists a selector S s.t. f(w(S, i)) < f(w(S, i + 1))

Example:
$$f(w) = \sum_{i=0}^{m} \min(\#_a(w_i), \#_b(w_i))$$

 $w = (\underline{a}^N \underline{b}^N \#)^m, \quad \{1 \dots n\} = \{(1, 1), (2, 1) \dots (1, m), (2, m)\}$

Theorem (Pumping lemma 3)

- there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i+1))$
- there exists a selector S s.t. f(w(S, i)) < f(w(S, i + 1))

Example:
$$f(w) = \sum_{i=0}^{m} \min(\#_a(w_i), \#_b(w_i))$$

 $w = (\underline{a}^N \underline{b}^N \#)^m, \quad \{1 \dots n\} = \{(1,1), (2,1) \dots (1,m), (2,m)\}$
 $S_j = \{(1,j), (2,j)\}, \quad f(w(S_j,i)) < f(w(S_j,i+1))$

Theorem (Pumping lemma 3)

- there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i+1))$
- there exists a selector S s.t. f(w(S, i)) < f(w(S, i + 1))

Example:
$$f(w) = \sum_{i=0}^{m} \min(\#_a(w_i), \#_b(w_i))$$

 $w = (\underline{a^N} \ \underline{b^N} \#)^m, \quad \{1 \dots n\} = \{(1,1), (2,1) \dots (1,m), (2,m)\}$
 $S_j = \{(1,j), (2,j)\}, \quad f(w(S_j,i)) < f(w(S_j,i+1))$
for every selector $f(w(S,i)) = f(w(S,i+1))$

Theorem (Pumping lemma 3)

(...) s.t. for every partition $S_1, ..., S_m$ of $\{1, ..., n\}$ either:

- there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i+1))$
- there exists a selector S s.t. f(w(S, i)) < f(w(S, i + 1))

Example:
$$f(w) = \sum_{i=0}^{m} \min(\#_a(w_i), \#_b(w_i))$$

 $w = (\underline{a}^N \underline{b}^N \#)^m, \quad \{1 \dots n\} = \{(1,1), (2,1) \dots (1,m), (2,m)\}$
 $S_j = \{(1,j), (2,j)\}, \quad f(w(S_j,i)) < f(w(S_j,i+1))$
for every selector $f(w(S,i)) = f(w(S,i+1))$

Example 2: $f(w) = \sum_{i=0}^{m} g(w_i)$, where g – "smallest block of b's"

Theorem (Pumping lemma 3)

(...) s.t. for every partition $S_1, ..., S_m$ of $\{1, ..., n\}$ either:

- there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i+1))$
- there exists a selector S s.t. f(w(S,i)) < f(w(S,i+1))

Example:
$$f(w) = \sum_{i=0}^{m} \min(\#_a(w_i), \#_b(w_i))$$

 $w = (\underline{a}^N \underline{b}^N \#)^m, \quad \{1 \dots n\} = \{(1,1), (2,1) \dots (1,m), (2,m)\}$
 $S_j = \{(1,j), (2,j)\}, \quad f(w(S_j,i)) < f(w(S_j,i+1))$
for every selector $f(w(S,i)) = f(w(S,i+1))$

Example 2: $f(w) = \sum_{i=0}^{m} g(w_i)$, where g – "smallest block of b's"

The same but take $w = (\underline{b}^N a \underline{b}^N \#)^m$

Theorem (Pumping lemma 3)

 (\dots) s.t. for every partition S_1, \dots, S_m of $\{1, \dots, n\}$ either:

- there exists j s.t. $f(w(S_i, i)) = f(w(S_i, i+1))$
- there exists a selector S s.t. f(w(S,i)) < f(w(S,i+1))

Example:
$$f(w) = \sum_{i=0}^{m} \min(\#_a(w_i), \#_b(w_i))$$

 $w = (\underline{a}^N \underline{b}^N \#)^m, \quad \{1 \dots n\} = \{(1,1), (2,1) \dots (1,m), (2,m)\}$
 $S_j = \{(1,j), (2,j)\}, \quad f(w(S_j,i)) < f(w(S_j,i+1))$
for every selector $f(w(S,i)) = f(w(S,i+1))$

Example 2: $f(w) = \sum_{i=0}^{m} g(w_i)$, where g – "smallest block of b's"

The same but take $w = (b^N a b^N \#)^m$

Corollary: PA-WA \subseteq WA over $(\min, +)$

Some remarks

• We proved U-WA \subsetneq FA-WA \subsetneq PA-WA \subsetneq WA over $(\min, +)$ (only the last one is new)

Some remarks

- We proved U-WA \subsetneq FA-WA \subsetneq PA-WA \subsetneq WA over $(\min, +)$ (only the last one is new)
- Pumping Lemma 3 should hold for more (WA over $\mathbb{N}(+,\cdot,0,1)$)

Some remarks

- We proved U-WA \subsetneq FA-WA \subsetneq PA-WA \subsetneq WA over $(\min, +)$ (only the last one is new)
- Pumping Lemma 3 should hold for more (WA over $\mathbb{N}(+,\cdot,0,1)$)
- Is there a Pumping Lemma 4 for WA over $(\min, +)$?

Some remarks

- We proved U-WA \subsetneq FA-WA \subsetneq PA-WA \subsetneq WA over $(\min, +)$ (only the last one is new)
- Pumping Lemma 3 should hold for more (WA over $\mathbb{N}(+,\cdot,0,1)$)
- Is there a Pumping Lemma 4 for WA over $(\min, +)$? Easy asymptotic arguments for $f(w) = 2^{|w|}$

Some remarks

- We proved U-WA \subsetneq FA-WA \subsetneq PA-WA \subsetneq WA over $(\min, +)$ (only the last one is new)
- Pumping Lemma 3 should hold for more (WA over $\mathbb{N}(+,\cdot,0,1)$)
- Is there a Pumping Lemma 4 for WA over $(\min,+)$? Easy asymptotic arguments for $f(w)=2^{|w|}$ But how to deal with $f(w)=\min(|w|,2^{\#_a(w)})$?

What next?

Beyond weighted automata

Semiring: $\mathbb{N}(+,\cdot,0,1)$

Semiring: $\mathbb{N}(+,\cdot,0,1)$

Cost register-automata (CRA)

Semiring: $\mathbb{N}(+,\cdot,0,1)$

Cost register-automata (CRA)

 $\mathsf{WA} \subsetneq \mathsf{CRA} \ (\subseteq \mathsf{over} \ \mathsf{any} \ \mathsf{semiring})$

Semiring: $\mathbb{N}(+,\cdot,0,1)$

Cost register-automata (CRA)

 $WA \subsetneq CRA (\subseteq over any semiring)$

Over unary alphabet: WA = Linear Recurrence Sequences

Semiring: $\mathbb{N}(+,\cdot,0,1)$

Cost register-automata (CRA)

 $WA \subsetneq CRA (\subseteq over any semiring)$

Over unary alphabet: WA = Linear Recurrence Sequences

 $\mathsf{CRA} = \mathsf{nonlinear} \ \mathsf{recurrence} \ \mathsf{systems}$

Semiring: $\mathbb{N}(+,\cdot,0,1)$

Cost register-automata (CRA)

 $WA \subsetneq CRA (\subseteq over any semiring)$

Over unary alphabet: WA = Linear Recurrence Sequences

CRA = nonlinear recurrence systems

Example:
$$f(n) = n!$$

$$\begin{cases} f(n+1) = f(n) \cdot g(n) \\ g(n+1) = g(n) + 1 \end{cases}$$

23 / 25

Semiring: $\mathbb{N}(+,\cdot,0,1)$

Cost register-automata (CRA)

 $WA \subsetneq CRA (\subseteq over any semiring)$

Over unary alphabet: WA = Linear Recurrence Sequences

CRA = nonlinear recurrence systems

Example:
$$f(n) = n!$$

$$f(n+1) - f(n)$$

$$\begin{cases} f(n+1) = f(n) \cdot g(n) \\ g(n+1) = g(n) + 1 \end{cases}$$

Example 2:
$$f(n) = 2^{2^n}$$

$$f(n+1) = f(n) \cdot f(n)$$

Semiring: $\mathbb{N}(+,\cdot,0,1)$

Semiring: $\mathbb{N}(+,\cdot,0,1)$

Cost register-automata (CRA)

Semiring: $\mathbb{N}(+,\cdot,0,1)$

- Cost register-automata (CRA)
- Weighted logic (WL)

Semiring: $\mathbb{N}(+,\cdot,0,1)$

- Cost register-automata (CRA)
- Weighted logic (WL)

Quantifiers are sum and product

Semiring: $\mathbb{N}(+,\cdot,0,1)$

- Cost register-automata (CRA)
- Weighted logic (WL)

Quantifiers are sum and product

Examples:
$$\sum_{x} 1(w) = |w|$$
, $\prod_{x} 2(w) = 2^{|w|}$ (x over positions in w)

Semiring: $\mathbb{N}(+,\cdot,0,1)$

- Cost register-automata (CRA)
- Weighted logic (WL)

Quantifiers are sum and product

Examples:
$$\sum_{x} 1(w) = |w|$$
, $\prod_{x} 2(w) = 2^{|w|}$ (x over positions in w)

More interesting:
$$\prod\limits_{x}\sum\limits_{y}1(w)=|w|^{|w|}$$

over unary alphabet $f(n) = n^n$

Semiring: $\mathbb{N}(+,\cdot,0,1)$

- Cost register-automata (CRA)
- Weighted logic (WL)

Quantifiers are sum and product

Examples:
$$\sum_{x} 1(w) = |w|$$
, $\prod_{x} 2(w) = 2^{|w|}$ (x over positions in w)

More interesting:
$$\prod\limits_{x}\sum\limits_{y}1(w)=|w|^{|w|}$$
 over unary alphabet $f(n)=n^n$

Conjecture (Riveros conjecture)

CRA and WL are incomparable

Semiring: $\mathbb{N}(+,\cdot,0,1)$

- Cost register-automata (CRA)
- Weighted logic (WL)

Quantifiers are sum and product

Examples:
$$\sum_{x} 1(w) = |w|$$
, $\prod_{x} 2(w) = 2^{|w|}$ (x over positions in w)

More interesting:
$$\prod\limits_{x}\sum\limits_{y}1(w)=|w|^{|w|}$$
 over unary alphabet $f(n)=n^n$

Conjecture (Riveros conjecture)

CRA and WL are incomparable

Candidate for WL $\not\subseteq$ CRA is $f(n) = n^n$

Main contribution: formulating the Pumping Lemmas

- Main contribution: formulating the Pumping Lemmas
- Can we hope for characterizations?

- Main contribution: formulating the Pumping Lemmas
- Can we hope for characterizations?

Not for free. For every $f:\Sigma^* \to \mathbb{N}$ consider g(w)=f(w)+|w|

- Main contribution: formulating the Pumping Lemmas
- Can we hope for characterizations?

Not for free. For every $f: \Sigma^* \to \mathbb{N}$ consider g(w) = f(w) + |w| f and g should be in the same class

- Main contribution: formulating the Pumping Lemmas
- Can we hope for characterizations?

Not for free. For every $f: \Sigma^* \to \mathbb{N}$ consider g(w) = f(w) + |w| f and g should be in the same class but g satisfies all lemmas.

- Main contribution: formulating the Pumping Lemmas
- Can we hope for characterizations? Not for free. For every $f: \Sigma^* \to \mathbb{N}$ consider g(w) = f(w) + |w| f and g should be in the same class but g satisfies all lemmas.
- What about CRA vs WL?