Ch. 40 Quantum Physics

⇒ Understanding of matter on the atomic scale.

40.1 Blackbody radiation and Planck's hypothesis

• Thermal radiation : An object at any *T* emits radiation.

The characteristic of the radiation depends on *T*.

• Blackbody radiation (W. Herschel, 1800):

Distribution of I for $T_1 < T_2 < T_3$.

Intensity of blackbody radiation versus wavelength at three different temperatures. →

• Planck's formula for blackbody radiation (1900)

$$I(\lambda, T) = 2\pi hc^2 / \{ \lambda^5 \left[exp(hc / \lambda k_B T) - 1 \right] \}$$

At long wavelength

$$I(\lambda, T) = 2\pi c k_{\rm B} T / \lambda^4$$
 (R-J's law)

- Two assumptions for Planck's theory:
- 1) The molecules can have only discrete values of energy E_n .

Quantized energy:
$$E_n = nhf$$

with n Quantum number, $h (= 6.626 \times 10^{-34} \text{ J} \cdot \text{s})$ Planck's constant $(fundamental\ constant\ of\ nature),$ f Natural frequency of oscillations of molecules, hf Quantum of energy.

2) The molecules emit or absorb energy in discrete packets (*photons*).

40.2 The photoelectric effect (Heinrich Hertz, 1887)

• Light \rightarrow metal surface \rightarrow photoelectrons.

Maximum *KE* of photoelectrons :

$$K_{max} = e \Delta V_s$$

- Several features of the photoelectric effect :
 - 1) For $f < f_c$ (cutoff frequency), no photoelectrons are emitted.
 - 2) Maximum *KE* of the photoelectrons is independent of light intensity.
 - 3) Maximum *KE* of the photoelectrons increasing with increasing light frequency.

The photoelectric effect

- 1) $f_c = \phi / h$. If $hf < \phi$, the electrons are never ejected from the metal surface, regardless of light intensity.
- 2) $K_{max}(f, \phi)$, not on the light intensity.

3) $K_{max} \propto f$

Work Functions of Selected Metals ^a		
Metal	φ (eV)	
Na	2.46	
Al	4.08	
Cu	4.70	
Zn	4.31	
Ag	4.73	
Pt	6.35	
Pb	4.14	
Fe	4.50	

 \rightarrow Nobel prize (1921)

The greater the work function, the higher the minimum frequency needed to emit photoelectrons.

40.3 The Compton effect

 \rightarrow Scattering of short λ light (X-rays) with electrons of material.

- Momentum of a photon : $p = E / c = hf / c = h / \lambda$
- \rightarrow Shift of λ to a longer λ' indicating a loss of energy.

$$\lambda' = \lambda_o + (h/m_e c)(1 - \cos\theta)$$
$$= \lambda_o + \lambda_c (1 - \cos\theta)$$

with Compton wavelength $\lambda_c = h / m_e c = 2.426 \text{ pm}$

Compton shift: $\Delta \lambda = \lambda' - \lambda$ = $\lambda_c (1 - \cos \theta)$

