

18MAB302T-DISCRETE MATHEMATICS

UNIT-4: Group Theory and Group Codes

Topics

- Binary operation on a set- Groups and axioms of groups
- Properties of groups
- Permutation group, equivalence classes with addition modulo m and multiplication modulo m
- Cyclic groups and properties
- Subgroups and necessary and sufficiency of a subset to be a subgroup
- Group homomorphism and properties
- Rings- definition and examples-Zero devisors
- Integral domain- definition , examples and properties.
- Fields definition, examples and properties
- Coding Theory Encoders and decoders- Hamming codes
- Hamming distance-Error detected by an encoding function
- Error correction using matrices
- Group codes-error correction in group codes-parity check matrix.
- Problems on error correction in group codes

INTRODUCTION

- INTRODUCTION
- BASIC ALGEBRA
- ALGEBRAIC SYSTEM
- PROPERTIES OF ALGEBRAIC SYSTEM

MODULE-1

SETS

- A Set is a well defined collection of objects. These objects are otherwise called members or elements of the set. The set is denoted by capital letters A, B,C...
- Examples: A The set of all colors in rainbow, S the set of even numbers
- **Notations:** Sets are represented in two ways.
- Roster form : All the elements are listed. Ex. $A = \{1,3,5,7,9\}$
- Set builder form: Defining the elements of the set by specifying their common property.
- Example: $V = \{ x / x \text{ is vowel} \}$
- [the elements of V are a,e,i,o,u]
- $S = \{ x / x = n^2, n \text{ is positive integer less than } 30 \}$
- $S=\{1,4,9,16,25\}$

BASIC ALGEBRA

Number system

There are common notations for the number system which are

R – the set of all Real numbers, R⁺ - the set of Positive real numbers.

Z, Z⁺, Z⁻ - set of all Integers, Positive integers, Negative integers.

C, C⁺, C⁻ - set of all Complex, Positive complex, Negative complex numbers.

 $N - set of all Natural numbers i.e <math>N = \{1,2,3,\ldots\}$

Q, Q⁺, Q⁻ - set of rational, positive rational, negative rational numbers

BASIC ALGEBRA-Number system

Congruence modulo n

Let n be a positive integer. If a and b are two integers and n divides a - b then we say that "a is congruent to b modulo n" and we write $a \equiv b \pmod{n}$. The integer n is called modulus.

Example: $23 \equiv 3 \pmod{5}$; $16 \equiv 0 \pmod{4}$

Congruence classes modulo n

Let a be an integer. Let [a] denote the set of all integers congruent to a (mod n)

i.e [a] = $\{x : x \in Z, x \equiv a \mod(n)\} = \{x : x \in Z, x = a + kn \}$ for some integer k, then [a] is said to be equivalence class, modulo n, represented by [a]. The set of all congruence classes modulo n is denoted by Z_n . $Z_n = \{[0], [1], [2], ..., [n-1]\}$

BASIC ALGEBRA-Number system

Addition of residue classes

Let [a], [b] $\in \mathbb{Z}_n$ then their sum is denoted by $+_n$ and is defined as follows:

[a]
$$+_n$$
 [b] =
$$\begin{cases} [a+b] & \text{if } a+b < n \\ [r] & \text{if } a+b \ge n \end{cases}$$
 where r is the least non negative remainder when a+b is

divided by n. hence $0 \le r \le n$

Ex.
$$[1] +_5 [2] = [1+2] = 3$$

 $[3] +_5 [4] = [2]$ for $3+4=7 > 5$, $7=1x5+2$
 $[3] +_5 [2] = [0]$

Multiplication of residue classes

Let [a], [b] $\in Z_n$ then their product is denoted by \times_n and is defined as follows:

[a]
$$\times_n$$
 [b] =
$$\begin{cases} [ab] & \text{if } ab < n \\ [r] & \text{if } ab \ge n \end{cases}$$
 where r is the least non negative integer when ab is divided by

n. hence $0 \le r \le n$

Ex. [2]
$$\times_5$$
 [2] =[4] ; [2] \times_5 [4] =[3] .
$$Z_n = \{[0], [1], [2], \dots [n-1]\}$$

Algebraic systems

- A binary operation * on a set A is defined as a function from AxA into the set A itself. .
- A non empty set A with one or more binary operations on it is called an algebraic system.

Examples.

- Set : $N = \{1,2,3...\}$ the set of natural numbers, Operation : the usual addition '+' which is a binary operation on N, then (N, +) is an algebraic system.
- Similarly, (Q, +), (Z, .), (R, +), (C, +) ... are algebraic systems

General properties of algebraic system

Let (S, *) be an algebraic system, * is the binary operation on S.

- Closure property For all $a,b \in S$, $a * b \in S$
- Associativity For all a, b, $c \in S$, (a * b) * c = a * (b * c),
- Commutativity For all $a,b \in S$, a * b = b * a
- Identity element There exists an element $e \in S$, such that

for any
$$a \in S$$
, $a * e = e * a = a$

• Inverse element – For every $a \in S$, there exists some $b \in S$ such that

a * b = b * a = e, then b is called the inverse element of a.

MODULE 2

- GROUP
- ABELIAN GROUP
- FINITE AND INFINITE GROUP
- EXAMPLES
- ORDER OF GROUP
- ORDER OF ELEMENT

GROUPS

Definition: Group

If G is a non empty set and * is a binary operation on G, then the algebraic system {G, *} is called a **group** if the following axioms are satisfied:

- 1) For all $a,b \in S$, $a * b \in S$ [Closure property]
- For all $a, b, c \in G$, (a * b) * c = a * (b * c) (Associativity)
- There exists an element $e \in G$ such that, for any $a \in G$, a * e = e * a = a (Existence of identity)
- For every $a \in G$, there exists an element $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$ (Existence of inverse)

Abelian group

The group (G, *) which has commutative property,

for all $a,b \in S$, a * b = b * a, is called an abelian group.

Finite/Infinite group

The group (G, *) is said to be finite or infinite according as the underlying set is finite or infinite.

Order of a group

If (G, *) is a finite group, then the number of elements of G is the order of the group written as O(G) or |G|

Order of an element

Let (G, *) be a group and $a \in G$, the least positive integer m, such that $a^m = e$, the identity element of G, is called order of a and is written as O(a)=m

Examples for Groups

1) The set (Z, +), of all integers under addition forms a group.

- 2) The set of all 2 x 2 non singular matrices over R is an abelian group under matrix addition, but not abelian with respect to matrix multiplication as $AB \neq BA$
- 3) The set $\{1,-1,i,-i\}$ is an abelian group under multiplication of complex numbers.

Permutation group

Let A be a non empty set, then a function $f: A \to A$ is a permutation of A if f is both one to one and onto, that is f is bijective. Let S_A denotes the set of all permutations on A. Let $f: A \to A$ and $g: A \to A$ be two functions. Then their composition, denoted by $f \circ g$, is the function $f \circ g : A \to A$ defined by $(f \circ g)(a) = g(f(a))$, the composition of function is the binary operation on S_A .

If $A = \{1, 2, 3, ...\}$, then the permutation p on A can be written as

$$p = \begin{pmatrix} 1 & 2 & \dots & n \\ p(1) & p(2) & \dots & p(n) \end{pmatrix}$$

For example
$$p = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$$

If A has n elements S_A has n! Permutations.

Permutation group

Let
$$p1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}$$
 and $p2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$, the composition of these two permutations is defined as

$$p1 \, \cdot \, p2 = \, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix} \, \cdot \, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$

$$=\begin{pmatrix}1&2&3&4\\3&1&2&4\end{pmatrix}$$

MODULE 3

PROPERTIES OF GROUPS

PROBLEMS ON GROUPS

PROBLEMS ON ABELIAN GROUPS

Properties of Group

1. The identity element of the group (G, *) is unique.

Proof: If possible, let e1 and e2 be two identities of G.

e1 = e2 * e1 [since e2 is the identity]

=e2 [since e1 is the identity]

i.e e1=e2, the identity element is unique

2. The inverse of each element of (G, *) is unique.

Proof: If possible, let a and a be two inverses for a in G.

a * a' = a' * a = e

a * a'' = a'' * a = e

a'=a'*e=a'*(a*a'')=(a'*a)*a''=e*a''=a''

a'= a" implies the inverse is unique.

Properties of Group

3. The cancellation laws are true in a group

```
Viz, a * b = a * c \Rightarrow b = c [left cancellation law]
        b * a = c * a \Rightarrow b = c [right cancellation law]
and
Proof:
   Let a * b = a * c ----(1)
Since a \in G, a^{-1} \in G exists such that a * a^{-1} = a^{-1} * a = e
 Pre multiplying (1) by a^{-1}, a^{-1} * (a * b) = a^{-1} * (a * c)
                                   (a^{-1}*a)*b = (a^{-1}*a)*c
                                     e * b = e * c => b = c
Let b * a = c * a \Rightarrow b = c -----(2)
Since a \in G, a^{-1} \in G exists such that a * a^{-1} = a^{-1} * a = e
 Post multiplying (2) by a^{-1}, (b * a) * a^{-1} = (c * a) * a^{-1}
                                     b * (a * a^{-1}) = c * (a * a^{-1})
                                     b * e = c * e => h = c
```


4. *Prove* $(a * b)^{-1} = b^{-1} * a^{-1}$, for any $a, b \in G$. **Proof:**

Consider
$$(a * b) * (b^{-1} * a^{-1})$$

= $a * (b * (b^{-1} * a^{-1}))$ [Associativity]
= $a * (b * b^{-1}) * a^{-1} = a * e * a^{-1} = e$
 $\therefore b^{-1} * a^{-1}$ is the inverse of $a * b$.

- 5. If a, b \in G, the equation a * x = b has the unique solution $x = a^{-1} * b$.
- 6. (G, *) cannot have an idempotent element except the identity element.
- 7. If a has inverse b and b has inverse c, then a = c.

Problems on Groups

1. Show that the set of all non zero real numbers namely R- $\{0\}$ forms an abelian group with respect to * defined by a*b=ab/2 for all $a,b \in R-\{0\}$

```
Proof: [To prove all the four axioms]
```

- Closure : if a, b \in R-{0} then , ab/2 is also a non zero real number \in R-{0}
- Associativity: a * (b * c) = a * (bc/2) = abc/4 -----(1) (a * b) * c = ab/2 * c = abc/4 -----(2)From (1) and (2), a * (b * c) = (a * b) * c
- Identity element: a * e = aae/2 = a implies e = 2 is the identity element.
- Inverse element: for $a \in R \{0\}$, $a * a^{-1} = e$ $\frac{aa^{-1}}{2} = 2 = a^{-1} = \frac{4}{a} \text{ is the inverse of a}$

Problems on Groups

2. Prove that the set $R - \{1\}$ forms an abelian group with respect to * defined by

```
\mathbf{a} * \mathbf{b} = (\mathbf{a} + \mathbf{b} - \mathbf{a}\mathbf{b}), \text{ for all } \mathbf{a}, \mathbf{b} \in \mathbb{R} - \{1\}.
```

Proof:

- Closure : If a, b \in R -{1} then, (a + b ab) is also a real number \in R-{1}
- Associativity :

$$a * (b * c) = a * (b + c - bc) = a + b + c - bc - a(b + c - bc)$$

 $= a + b + c - ab - bc - ac + abc$
 $(a * b) * c = (a + b - ab) * c = a + b - ab + c - (a + b - ab)c$
 $= a + b + c - ab - bc - ac + abc$

Hence,
$$a * (b * c) = (a * b) * c$$
.

- Identity element : a * e = aa + e - ae = a = > e = 0 is the identity element .
- Inverse element: For $a \in R \{0\}$, $a * a^{-1} = e$ $a + a^{-1} aa^{-1} = 0$ $a^{-1} = \frac{a}{a-1} \text{ is the inverse of 'a', } (a \neq 1).$

3. Let $G = \{f_1, f_2, f_3, f_4\}$ where $f_1(x) = x$, $f_2(x) = -x$, $f_3(x) = \frac{1}{x}$, $f_4(x) = -\frac{1}{x}$ and • be the composition of functions. Prove that (G, \circ) is a group.

S			

- Closed: From the table it is
- Associativity:

$$f_1*(f_2*f_3)=f_1*f_4=f_4$$

$$(f_1*f_2)*f_3=f_2*f_3=f_4$$
 Hence ,
$$f_1*(f_2*f_3)=(f_1*f_2)*f_3.$$

- Identity element: From the table, we can see that f_1 is the identity element.
- Inverse element : Inverse of every element is the element itself

4 Let $A = \{1,2,3\}$, S_A be the set of all permutations of A, then prove that with respect to right composition of permutations \circ , $\{S_A, \circ\}$ is an abelian group.

Proof:

Let $S_A = \{p_1, p_2, p_3, p_4, p_5, p_6\}$ where

$$p_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad p_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, p_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix},$$
$$p_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, p_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \text{ and } p_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

0	p_I	p_2	p_3	p_4	p_5	p_6
p_1	p_{I}	p_2	p_3	p_4	p_5	p_6
p_2	p_2	p_{I}	$p_{_4}$	p_3	P_{6}	p_5
p_3	p_3	p_4	p_{I}	p_2	P_4	p_{I}
p_4	p_4	p_3	p_2	p_{I}	p_3	p_2
p_5	p_5	p_6	p_4	p_3	p_{I}	p_4
p_6	p_6	p_5	p_{I}	p_2	$p_{_4}$	p_{1}

• From the above table, for any two or three elements we can prove closure and associative property.

• The identity element is p_1 and the inverse of any element is the element itself.

Problems on Groups

4. Let $a \neq 0$ be a fixed real number and $G = \{a^n : n \in Z\}$, Prove that G is an abelian group under nonlinearism.

Proof:

- Closed: if a^{n1} , $a^{n2} \in G$ then $a * b = a^{n1+n2} \in G$ as $n1+n2 \in Z$
- Associativity: For a^{n1} , a^{n2} , $a^{n3} \in G$

$$a^{n1} * (a^{n2} * a^{n3}) = a^{n1} * a^{n2+n3} = a^{n1+n2+n3}$$

 $(a^{n1} * a^{n2}) * a^{n3} = a^{n1+n2} * a^{n3} = a^{n1+n2+n3}$

• Identity element - $a^n * a^e = a^n$

$$a^{n+e} = a^n$$
 implies $e=0$ and $a^e = a^0 = 1$ is the identity element

• Inverse element – for $a \in R$, $a^n * a^{n1} = a^0 => n + n1 = 0 => n1 = -n$ $a^{n1} = a^{-n} \text{ is the inverse of } a^n$

5. For any group (G, *) if $a^2 = e$ with $a \ne e$, then prove that G is abelian [Or, if every element of a group (G, *) is its own inverse, then G is abelian] Proof:

Let
$$a^2 = e$$
.

Then $a^2 * a^{-1} = (a * a) * a^{-1} = e * a^{-1} = a^{-1}$
 $a^2 * a^{-1} = a * (a * a^{-1}) = a * e = a$

implies $a = a^{-1}$

Then for any $a, b \in G$, $(a * b)^{-1} = a * b$
 $b^{-1} * a^{-1} = a * b$
 $b * a = a * b$, G is abelian.

6. Let (G,*) be a group. Prove that G is abelian if and only if $(a*b)^2 = a^2*b^2$ Proof:

Let G be abelian,

Consider
$$(a * b)^2 = (a * b) * (a * b)$$

 $= a * (b * (a * b))$ [Associativity]
 $= a * ((b * a) * b)$
 $= a * (a * b) * b$ [commutativity]
 $= (a * a) * (b * b) = a^2 * b^2$
Now, suppose $(a * b)^2 = a^2 * b^2$
 $(a * b) * (a * b) = (a * a) * (b * b)$
 $a * (b * (a * b)) = a * (a * (b * b))$
 $b * (a * b) = a * (b * b)$
 $(b * a) * b = (a * b) * b$ [Associativity]
 $b * a = a * b ----$ commutative.

Thus G is abelian.

• Exercises :

1. The set $\{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\}$ is an abelian group under matrix multiplication.

2. The set $\{0,1,2,3,4\}$ is a finite abelian group of order 5 under addition modulo 5.

3. The set $\{1,3,7,9\}$ is an abelian group under multiplication modulo 10.

MODULE 4

- SUBGROUPS
- EXAMPLES FOR SUBGROUP
- CONDITIONS FOR SUBGROUP
- PROBLEMS ON SUBGROUPS

Problems on subgroups

1. The intersection of two subgroups of a group G is also a subgroup of G.

Proof:

Let H_1 and H_2 be any two subgroups of G. $H_1 \cap H_2$ is a non-empty set, since, at least the identity element e is common to both H_1 and H_2

Let $a \in H_1 \cap H_2$, then $a \in H_1$ and $a \in H_2$

Let $b \in H_1 \cap H_2$, then $b \in H_1$ and $b \in H_2$

 H_1 is a subgroup of G, $a * b^{-1} \in H_1$ a and $b \in H$

 H_2 is a subgroup of G, $a * b^{-1} \in H_2$ a and $b \in H$

 $\therefore a * b^{-1} \in H_1 \cap H_2$ implies $H_1 \cap H_2$ is a subgroup of G.

SUBGROUPS

If $\{G, *\}$ is a group and $H \subseteq G$ is a non-empty subset of G, called **subgroup** of G, if H itself forms a group.

Theorem:

The necessary and sufficient condition for a non empty subset H of a group $\{G, *\}$ to be a subgroup is, for every $a, b \in H \Rightarrow a * b^{-1} \in H$.

2. Show that the set $\{a+bi \in C | a^2+b^2=1\}$ is a subgroup $f(C, \bullet)$ where \bullet is the multiplication operator.

Proof:

Let
$$H = \{a + bi \in C | a^2 + b^2 = 1\}$$
, consider two elements $x + iy, p + iq \in H$ such that $x^2 + y^2 = 1, p^2 + q^2 = 1$ and the identity element of C is 1+0i
Consider $(x + iy) (p + iq)^{\wedge}(-1) = (x + iy)(p - iq) = xp + yq + i(yp - xq)$
Now $(xp + yq)^2 + (yp - xq)^2 = x^2p^2 + y^2q^2 + 2xpyq + y^2p^2 + x^2q^2 - 2ypxq$
 $= x^2(p^2 + q^2) + y^2(p^2 + q^2) = 1$
 $\therefore (x + iy)(p + iq)^{-1} \in H$, H is a subgroup.

3 Let G be an abelian group with identity e, prove that all elements x of G satisfying the equation $x^2 = e$ form a subgroup H of G

Proof:

$$H = \{x \mid x^2 = e\}$$
 $e^2 = e :$ the identity element e of $G \in H$
 $x^2 = e$
 $x^{-1}.x^2 = x^{-1}.e \implies x = x^{-1}$
Hence, $if \ x \in H, x^{-1} \in H$ [inverse exists]
Let $x, y \in H$, since G is abelian, $xy = yx = y^{-1}x^{-1} = (xy)^{-1}$
 $\therefore (xy)^2 = e$. i.e $xy \in H$
Thus, if $x, y \in H$, we have $xy \in H$ [closed]
Thus H is a subgroup.

4. Union of two subgroups of (G,*) need not be a subgroup of (G,*).

Module 5

- Cyclic groups
- Examples
- Properties
- Problems

Cyclic group

Agroup (G, *) is said to be a cyclic group if there exists an element $a \in G$ such that every element of G can be expressed as some integral power of a, a is called generator of G.

We write G=(a)

Examples:

1. Let G={1,-1, i, -i} and G is a group under multiplication. It is cyclic with the generator i

(i.e.)
$$G=(i)$$
 or $G=(-i)$

2. Let $G=\{1, \omega, \omega^2\}$ is a cyclic group under multiplication generated by ω . ω^2 is also a generator.

3. (Z, +) is a cyclic group with generator 1. Note -1 is also a generator.

Properties of cyclic groups

1 Every cyclic group is abelian

Proof:

Let (G,*) be a cyclic group with generator a. Let $x,y \in G$ such that $x=a^m,y=a^n$ $x*y=a^m*a^n=a^{m+n}=a^{n+m}=a^n*a^m=y*x$ Therefore (G,*) abelian.

2. Let (G, *) be a cyclic group generated by a, then a^{-1} is also a generator of G. Proof:

Let (G, *) be a cyclic group generated by a, then $for \ x \in G$ then $x = a^n$ for some $n \in Z$ $x = (a^{-1})^{-n}, -n \in Z$ a^{-1} is also a generator of G.

3. Any subgroup of a cyclic group is itself a cyclic group.

Proof:

Let (G, *) be a cyclic group generated by a and H be a subgroup of G.

if $a^k \in H$ then $a^{-k} \in H$. Let m be the least positive integer such that $a^k \in H$

we have to prove that $H = (a)^m$. Let $c \in H$. $\therefore c \in G$

$$c = a^n$$
 for some $n \in \mathbb{Z}$

Now $n, m \in \mathbb{Z}$, there exists integers q and r such that n = mq + r, $0 \le r < m$ by division algorithm.

Now
$$c = a^n = a^{mq+r} = a^{mq} * a^r$$

 $a^r = a^{-mq} * c = (a^m)^{-q} * c \in H$

Since $c \in H$, $(a^m)^{-q} \in H$ and H is a subgroup. But $0 \le r < m$ and m is the least positive integer such that $a^m \in H$. Therefore r = 0

$$\therefore c = a^{mq} = (a^m)^q$$

Hence every element of H can be written as an integer power of a^m . $\therefore H = (a^m)$ is a cyclic group.

4. The order of a cyclic group is the same as the order of its generator.

5. A finite group of order n containing an element a of order n is cyclic.

Problems

1. Find the number of generators of a cyclic group of order 5.

Let G = (a) be a cyclic group of order 5. Then G = $\{a, a^2, a^3, a^4, a^5 = e\}$.

Since (1,5)=1, (2,5)=1, (3,5)=1, (4,5)=1.

The generators are a, a^2 , a^3 and a^4 .

The number of generators is 4.

2. Find the number of generators of a cyclic group of order 8.

Let G = (a) be a cyclic group of order 5. Then G= $(a, a^2, a^3, a^4, a^5, a^6, a^7, a^8 = e)$.

Since (1,8)=1, (3,8)=1, (5,8)=1, (7,8)=1.

The generators are a, a^3 , a^5 and a^7 .

The number of generators is 4.