

Theory of Computation SY Btech CSE-AIDS

CONTEXT FREE GRAMMAR(CFG)

Course Objectives & Course Outcomes

Course Objectives:

- •To understand the basics of automata theory and its operations.
- •To understand problem classification and problem solving by machines.
- •To study computing machines by describing, classifying and comparing different types of computational models.
- •To understand the fundamentals of decidability and computational complexity.

Course Outcomes:

- After completion of this course students will be able:
- •To construct finite state machines to solve problems in computing.
- •To write mathematical expressions and syntax verification for the formal languages.
- •To construct and analyze Push Down Automata and Turing Machine for formal languages.
- •To express the understanding of decidability and complexity.

Text Books & Reference Books

Text Books

- •John C. Martin, Introduction to Language and Theory of Computation, TMH, 3rdEdition, ISBN: 978-0-07-066048-9.
- •Vivek Kulkarni, Theory of Computation, Oxford University Press, ISBN-13: 978-0-19-808458-7.

Reference Books

- •K.L.P Mishra,N. Chandrasekaran,Theory of Computer Science (Automata, Languages and Computation), Prentice Hall India, 2nd Edition.
- •Michael Sipser, Introduction to the Theory of Computation, CENGAGE Learning, 3rd Edition, ISBN:13:978-81-315-2529-6.
- •Daniel Cohen, Introduction to Computer Theory, Wiley India, 2nd Edition, ISBN: 9788126513345.
- •Kavi Mahesh, Theory of Computation: A Problem Solving Approach, 1st Edition, Wiley-India, ISBN: 978-81-265-3311-4.

Unit III – Context Free Grammar

CFG

Formal definition of Grammar, Chomsky Hierarchy, **CFG**: Formal definition of CFG, Derivations, Parse Tree, Ambiguity in grammars and languages, Language Specification using CFG, Normal Forms: Chomsky Normal Form and Greibach Normal Form. Closure properties of CFL.

Introduction

- •Finite Automata accept all regular languages and only regular languages
- •Many simple languages are non regular:

```
 \{a^nb^n : n = 0, 1, 2, ... \}
```

- {w : w a is palindrome}

and there is no finite automata that accepts them.

• Context-Free Languages are a larger class of languages that encompasses all regular languages and many others, including the two above.

Context-Free Languages and Regular Languages

Formal Definition of a Grammar

Language for the Grammar

Gramma

r: S\sumaSb

S

Language of the grammar:

$$L = \{a^n b^n : n \ge 0\}$$

A Convenient Notation

We write:
$$S \Rightarrow aaabbb$$

for zero or more derivation steps

Instead of:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$ Generalizing:

$$w_1 \Rightarrow w_2 \Rightarrow w_3 \Rightarrow \square \Rightarrow w_n$$
Trivially:

$$w \Rightarrow w$$

Formal Definition-CFG

Definition: A context-free grammar is a 4-tuple (V, T, P, S), where:

- V is a set (each element in V is called **nonterminal**)
- T is an alphabet (each character in T is called **terminal**)
- P, the set of rules, is a subset of $V \times (T \cup V)^*$ If $(\alpha,\beta) \in P$, we write production $\alpha \supseteq \beta$

 β is called a **sentential form**

• S, the start symbol, is one of the symbols in V

Example of Context-Free Grammar

Context-Free Language

A language L is context-free if there is a context-free grammar G

$$L = L(G)$$

with

Context-Free Language-Example 1

$$L = \{a^n b^n : n \ge 0\}$$

is a context-free language

since context-free grammar : G

$$\{S \Delta aSb \mid \epsilon\}$$

generates
$$L(G) = L$$

Context-Free Language – Example 2

Context-free grammar :

G

$$\{S \Delta aSa \mid bSb \mid \epsilon\}$$

Example derivations:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$$

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaba$$

$$L(G) = \{ww^R : w \in \{a, b\}^*\}$$

Palindromes of even length

Derivation and Parse Trees

Consider the following example grammar with 5 productions:

Leftmost and Rightmost Derivation

Consider the following example grammar with 5 productions:

$$B \longrightarrow Bb | \epsilon$$

Leftmost derivation: for the string aab

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$$

Rightmost derivation: for the string aab

$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$$

Leftmost and Rightmost Derivation

Leftmost derivation:

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$$

Rightmost

$$deSivation \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$$

Give same derivation tree

Context Free Language for a CFG

Find the CFL generated for the given CFG.

1. S**≤**aSb | ab

$$L(G)=\{a^nb^n | n>=1\}$$

2. S►aB|bA
A►a|aS|bAA
B►b|bS|aBB

 $L(G)=\{x|x \text{ containing equal no of a's and b's}\}$

CFG for a CFL

- Write the grammar for generating strings over Σ={a}, containing any(zero or more) number of a's.
 S a | aS | ε
- 2. Find the CFG represented by the RE (a+b)* $S \cong aS \mid bS \mid \epsilon$
- 3. Write the grammar for all strings consisting of a's and b's with atleast 2 a's.

SAaAaA

 $A \triangle aA \mid bA \mid \epsilon$

Ambiguous Grammar

A context-free grammar G is ambiguous if there is a string $w \in L(G)$ hich has:

two different derivation trees or

two leftmost derivations

(Two different derivation trees give two different leftmost derivations and vice-versa)

Ambiguous Grammar – An Example

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

string a + a * a has two derivation trees

Ambiguous Grammar – An Example

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

string a + a * a has two leftmost derivations

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

Removing Ambiguity

Ambiguou s

$$E \rightarrow E * E$$

$$E \rightarrow (E)$$

$$E \rightarrow a$$

Non-Ambiguous

$$E \xrightarrow{Grammar} + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid a$$

generates the same language

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \Rightarrow a + T * F$$
$$\Rightarrow a + F * F \Rightarrow a + a * F \Rightarrow a + a * a$$

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \rightarrow (E) \mid a$$

Unique derivation tree and leftmost derivation
For the string a+a*a

Simplification of Context Free Grammar

A CFG G can be simplified as:

- 1. Each variable and terminal of the CFG should appear in the derivation if at least one word in the L(G).
- 2. There should not be any production of the form A B where A and B are both non-terminals.

Simplification techniques are:

- 1.Removal of Useless Symbols
- 2. Removal of Unit Productions
- 3. Elimination of \in production

Removal of Useless symbol

Ex.1 Consider the following grammar:

$$G=\{(S,A),(1,0),P,S\}$$

Where P consists of the following productions:

Simplify the grammar by removing the useless symbols if any.

Remove SA, as A is useless symbol.

Removal of Useless symbol

Ex.2 Consider the following grammar:

$$G=\{(S,A,B),(a),(1,0),P,S\}$$

Where P consists of the following productions:

$$A \sim a$$

Simplify the grammar by removing the useless symbols if any.

B is useless, Remove B

$$S \triangle A \mid a$$

$$A \ge a$$

Removal of Unit Production

- A production rule of the form A B where A and B are both non-terminals is called a unit production.
- All the other productions (including ∈ productions) are non-unit productions.

Ex.1 Consider the following grammar:

$$G = \{ (A,B),(a,b),P,A \}$$

Where P consists of:

Simplify the grammar by removing the unit productions if any.

On eliminating unit production A B

Removal of Unit Production

Ex.2Consider the following grammar:

$$X \searrow Y$$

Simplify the grammar by removing the unit productions if any.

Simplified grammar is:

Removal of \in - Production

A production of the form $A \supseteq \subseteq \emptyset$ where A is non-terminal is known as \subseteq - Production.

Ex.1 Consider the following grammar,

$$S \blacksquare a S a | b S b | \in$$

Simplify the grammar by eliminating \in - Productions if any.

Simplified grammar is G':

$$L(G')=L(G)-\{\epsilon\}$$

Removal of \in - Production

Ex.2 Consider the following grammar,

$$X Y \in$$

$$Y \triangleright b \mid X$$

Simplify the grammar by eliminating \in - Productions if any.

Simplified grammar is:

$$X \searrow Y$$

- 1. Type 0 grammar (Unrestricted Grammar)
- 2. Type 1 grammar (Context Sensitive Grammar)
- 3. Type 2 grammar (Context Free Grammar)
- 4. Type 3 grammar (Regular Grammar)

• Type 3 grammar:

It is also called as regular grammar.

 $A \sim \alpha$

Recognized by FSM.

Two types of Regular Grammar are:

1. Left Linear Grammar 2. Right Linear Grammar

Type 2 grammar:

It is also called as context free grammar.

A $\square \alpha$ where A is NT and α is sentential form.

Start symbol of the Grammar can also appear on RHS.

Recognized by PDA(Pushdown Automata)

• Type 1 grammar:

It is **context sensitive grammar** or context dependent.

- 1. $\alpha \bowtie \beta$ where length of β is at least as much as the length of α except $S \bowtie \in$.
- 2. The rule $S \subseteq \mathbb{R} \subseteq \mathbb{R}$ is allowed only if start symbol S does not appear on RHS.
- 3. Productions are of the form

$$\alpha_1 A \alpha_2$$
 $\square \alpha 1 \beta \alpha_2 (\beta \neq \epsilon)$

Recognized by TM(Turing Machine).

• Type 0 grammar:

It is unrestricted grammar that is no restriction on production.

$$\alpha \square \beta \quad (\alpha \neq \in)$$

Recognized by TM(Turing machines)

These languages are known as Recursively Enumerable Languages.

Normal Forms

There are certain standard ways of writing CFG.

They satisfy certain restrictions on the productions in the CFG.

Then the G is said to be in **Normal forms**.

- 1. Chomsky Normal Form (CNF)
- 2. Greibach Normal Form (GNF)

Chomsky Normal Form(CNF)

A CFG is in CNF if every production is of the form

A≥ a, where A is NT and a is T

A BC where A,B and C are NTs

 $S \subseteq \text{ is in } G \text{ if } \in \text{ belongs to } L(G).$

When \in is in L(G),

we assume that S does not appear on the RHS of any production.

e.g. G is:

 $S \triangle AB | \in$

 $A \sim a$

 $B \succeq b$

Construction of G in CNF

Step 1. Elimination of null productions and unit productions using

previous method.

Let the G is (V,T,P,S)

Step 2. Elimination of terminals on RHS.

Step 3. Restricting the number of variables on RHS.

Reduce to CNF

1. Convert to CNF, Sasa | bSb | a | b | aa | bb

Adding A and B b we can rewrite the grammar as

SSASA|BSB|a|b|AA|BB

A**≤**a, B**≤**b

Only SASA and SABSB are not in CNF

For SSASA we can write

 $S \triangle AR_1, R_1 \triangle SA$

For SSBSB we can write

 $S \longrightarrow BR_2, R_2 \longrightarrow SB$

Grammar in CNF is

SAR₁ $|BR_2|a|b|AA|BB$

A**∑**a, B**∑**b

 $R_1 \longrightarrow SA$, $R_2 \longrightarrow SB$

Reduce to CNF

2. Convert to CNF,

S\(\sigma bA \| aB, A\(\sigma bA A \| aS \| a, B\(\sigma aBB \| bS \| b

Add $R_1 \blacksquare a$, $R_2 \blacksquare b$

Rewriting the grammar,

 $S = R_2 A | R_1 B$

 $A \blacksquare R_2 AA | R_1 S | a$

 $B \sim R_1 BB | R_2 S | b$

 R_1 Δa , R_2 Δb

 $A \searrow R_2$ AA and $B \searrow R_1$ BB are not in CNF

Converted grammar in CNF is

 $S = R_2 A | R_1 B$

 $A \square R_2 R_3 | R_1 S | a, R_3 \square A A$

 $\mathbf{B} \mathbf{R}_1 \mathbf{R}_4 | \mathbf{R}_2 \mathbf{S} | \mathbf{b}, \mathbf{R}_4 \mathbf{B} \mathbf{B}$

 $D \sim D \sim b$

Greibach Normal Form

A context free grammar is said to be in Greibach Normal Form if all productions are in the following form:

$$A \rightarrow \alpha X$$

- A is a non terminal symbols
- α is a terminal symbol
- X is a sequence of non terminal symbols.

It may be empty.

Closure properties of CFL

CFLs are closed under:

Union

Concatenation

Kleene closure operator

Substitution

Homomorphism, inverse homomorphism

Reversal

CFLs are *not* closed under:

Intersection

Difference

Complementation