补充题 1: 图 1 所示电路中,二极管导通电压 $U_D=0.6$ V。根据以下条件分别求解 V_O 、I、 I_{D1} 、 I_{D2} 、 I_{D3} 。(1) $V_1=V_2=0$; (2) $V_1=5$ V, $V_2=2$ V。

图 1

补充题 2:

(1) 图 3 所示电路中增强型 PMOS 管参数为 $U_{GS(th)}$ = -1.5V, k'_p =25 μ A/V²,L=4 μ m。求使 I_D =1mA 同时 U_{SD} =2.5V 的沟道宽度 W 和电阻 R。

(2)图 4 电路中,耗尽型 PMOS 管参数为 $U_{GS(off)}=1.5$ V, $K_p=0.5$ mA/V²。设计电路使得静态时 $U_{SD}=2.5$ V,要求偏置电阻 R_1 、 R_2 中的电流不能超过漏极电流的 10%。

(3)图 5 电路中,已知恒流源 $I_{Q}=2$ mA, $U_{GS(off)}=2.5$ V, $I_{DSS}=6$ mA。(1)确定使 P 沟道 JFET 工作在恒流区的 V_{DD} 的范围。(2)求 V_{S} 。

补充题 3: PNPN 管组成的电路如图 6 所示,回答下列问题:

- (1) 输出信号 u_o与输入信号 u_i 反相吗?
- (2) 减小 R_{b1} 易出现何种失真? 减小 R_{b2} 呢? 增大 R_c 呢?
- (3) 若输出信号出现顶部失真,则是饱和失真还是截止失真?
- (4) 若出现饱和失真,如何消除?截止失真呢?

补充题 4: 针对图 7 所示电路分析以下问题:

- (1) 分别写出 A_u 表达式,并分析,若要增大 $|A_u|$,当 R_L 、 β 一定时应如何调节电路其余 参数(分析 2 个参数即可)?
- (2) 若输出波形出现顶部失真,则分别判断是截止失真还是饱和失真?

补充题 5: 电路如图 8 所示,已知场效应管的低频跨导为 $g_{\rm m}$,试写出 \dot{A}_{u} 、 $R_{\rm i}$ 和 $R_{\rm o}$ 的表达式。

补充题 6: 图 9 电路中,增强型 NMOS 管参数为 $U_{GS(th)}$ =0.8V, K_n =0.85mA/V²,耦合电容和 旁路电容对交流信号可视为短路。(1)为使 I_{DQ} =0.1mA 且最大不失真输出电压峰值为 1V,试求 R_S 、 R_D 的值。(2)求电压放大倍数 A_u 。

补充题 7: 电路如图 10 所示,已知场效应管的低频跨导为 $g_{\rm m}$,试写出 \dot{A}_{u} 、 $R_{\rm i}$ 和 $R_{\rm o}$ 的表达式。

补充题 8:

电路如图 2 所示,已知晶体管的 $U_{\rm BE}\!=\!0.7{
m V}$, $\beta\!=\!300$, $r_{\rm bb}{}'\!=\!200\Omega$ 。 $V_{\rm CC}\!=\!12{
m V}$ 。

- (1) 当开关 K 位于 1 位置时,求解静态工作点 I_{BQ} 、 I_{CQ} 和 U_{CEQ} ;
- (2) 分别求解开关 K 位于 1、2、3 位置时的电压放大倍数 A_u ,比较这三个电压放大倍数,并说明发射极电阻是如何影响电压放大倍数的。

补充题 9: 判断图 所示各两级放大电路中, T_1 和 T_2 管分别组成哪种基本接法的放大电路。设图中所有电容对于交流信号均可视为短路。

补充题 10: 设图 12 所示各电路的静态工作点均合适,分别画出它们的交流等效电路,并写出 \dot{A}_u 、 R_i 和 R_o 的表达式。

图 12

补充题 11:

基本放大电路如图 13 (a) (b) 所示,图 (a) 方框内为共射放大电路I,图 (b) \bullet 方框内为共集放大电路II,其开路 (不带负载) 电压放大倍数 A_{uo} 及输入电阻 R_i 、输出电阻 R_o 如图中所示,设 $R_L=1$ k Ω 。由电路I、II组成的多级放大电路如图 (c)、(d)、(e) 所示,它们均正常工作。试说明通常情况下图 (c)、(d)、(e) 所示电路中

- (1) 哪些电路的输入电阻比较大;
- (2) 哪些电路的输出电阻比较小;
- (3) 哪个电路的 $\begin{vmatrix} \mathbf{A}_{us} \\ \mathbf{A}_{us} \end{vmatrix} = \begin{vmatrix} \mathbf{U}_{o} / \mathbf{U}_{s} \\ \mathbf{U}_{s} \end{vmatrix}$ 最大。

(说明:以上三问不需要计算即可判断出来结果)

补充题 12: 图 14 所示 BiCMOS 电路中,电路参数 V ⁺=10V, V_{GG} = 4.5V, R_{D1} = R_{E2} =10k Ω , R_{L} =1.8 k Ω 。已知增强型 NMOS 管 M_1 参数为 $U_{\text{GS(th)}}$ =1V, K_{n} =0.4mA/V²;晶体管 Q_2 参数为 β =100, U_{BE} =0.7V。(1)求静态时 NMOS 管参数 U_{DSQ} 、 I_{DQ} ,晶体管参数 I_{CQ} 、 U_{ECQ} 。(2) 求电压放大倍数 A_u 、输出电阻 R_0 。

补充题 13: 图 15 所示差分放大电路中,漏极电阻失配。已知增强型 NMOS 管参数为 $U_{GS(th)}$ =1V, K_n =0.15mA/V²。 电路参数 V^+ =10V, V^- =-10V, R_S =75k Ω , R_D =50 k Ω 。 设静态时 v_1 = v_2 =0, Δ R=500 Ω 。 (1)求静态时 NMOS 管的 U_{GSQ} 、 I_{DQ} 。 (2)求 A_d 、 A_c 、 K_{CMR} 。

补充题 14: 电路如图 16 所示, $T_1 \sim T_2$ 的跨导均为 g_m , $T_3 \sim T_5$ 的电流放大系数分别为 $\beta_3 \sim \beta_5$,b-e 间动态电阻分别为 $r_{be3} \sim r_{be5}$,写出输入为差模信号时的 A_u 、 R_i 和 R_o 的表达式。

补充题 15: 图 17 所示电流源电路中,JFET 参数为 $U_{GS(off)}=$ - 4V, $I_{DSS}=4$ mA。(1)为使电流 $I_O=2$ mA,求 R 的阻值。(2)求使 JFET 工作在恒流区的 V_D 的范围。

补充题 16: 图 18 所示电流源电路中,电路参数 V^+ =2.5V,R=15k Ω 。已知增强型 NMOS 管 M_1 、 M_2 参数均为 $U_{GS(th)}$ =0.5V, k'_n =0.08mA/ V^2 ,W/L=6。求电流 I_{REF} 、 I_O 。

补充题 17: 图 19 示运算电路中,三极管 VT₁、VT₂ 特性对称, $i_{\rm C} \approx I_{\rm S} e^{u_{\rm BE}/U_{\rm T}}$, $U_{\rm T} \approx 26 {\rm mV}$,

集成运算放大器 A_1 、 A_2 具有理想特性, $u_1 > 0$ 。试选择正确答案填空:

- (1) i_{C1}/u_{I} 约为_____; i_{C2}/V_{R} 约为_____;
- A. $1/R_1$ B. $1/R_{P1}$ C. $1/R_2$ D. $1/R_{P2}$
- (2) $u_0 \approx _{---};$
- A. $u_{BE1} + u_{BE2}$ B. $u_{BE1} u_{BE2}$ C. $-u_{BE1} + u_{BE2}$ D. $-u_{BE1} u_{BE2}$
- (3) 电路的运算关系约为____。

A.
$$u_{\rm O} \approx -U_{\rm T} \ln \frac{R_2 u_{\rm I}}{I_s R_{\rm I} V_{\rm R}}$$
 B. $u_{\rm O} \approx -U_{\rm T} \ln \frac{R_2 u_{\rm I}}{R_{\rm I} V_{\rm R}}$ C. $u_{\rm O} \approx -U_{\rm T} \ln \frac{I_s R_2 u_{\rm I}}{R_{\rm I} V_{\rm R}}$ D.

C.
$$u_{\rm O} \approx -U_{\rm T} \ln \frac{I_s R_2 u_{\rm I}}{R_{\rm I} V_{\rm R}}$$
 D

$$u_{\rm O} \approx -U_{\rm T} \ln \frac{R_{\rm I} u_{\rm I}}{R_{\rm 2} V_{\rm R}}$$

$$u_{\rm O} \approx -U_{\rm T} \ln \frac{R_{\rm I} u_{\rm I}}{R_{\rm 2} V_{\rm R}} \qquad \qquad \text{E.} \quad u_{\rm O} \approx -U_{\rm T} \ln \frac{R_{\rm 2} V_{\rm R}}{R_{\rm I} u_{\rm I}} \qquad \qquad \text{F.} \quad u_{\rm O} \approx -U_{\rm T} \ln \frac{R_{\rm I} V_{\rm R}}{R_{\rm 2} u_{\rm I}}$$

F.
$$u_{\rm O} \approx -U_{\rm T} \ln \frac{R_{\rm I} V_{\rm R}}{R_{\rm 2} u_{\rm I}}$$

(4) 若需减小 U_{T} 对运算关系的影响,则可选_____为负温度系数的热敏电阻,或者 选____为正温度系数的热敏电阻。

- A. R_1 B. R_{P1} C. R_2 D. R_{P2} E. R_3

补充题 18:

图 20 所示电路中,已知 R_1 =10k Ω , R_2 =20k Ω ,R=10k Ω ,C=0.01 μ F,稳压管 的稳压值为 6V, $U_{REF}=0$ 。

- (1) 分别求输出电压 uo 和电容两端电压 uc 的最大值和最小值。
- (2) 计算输出电压 u_0 的周期,对应画出 u_0 和 u_C 的波形,标明幅值和周 期。
 - (3) 若增大 R_1 的阻值,将如何影响 u_0 的幅值和周期。
 - (4) 若增大 R 的阻值,将如何影响 u_0 的幅值和周期。
 - (5) 若增大 Uz, 将如何影响 uo的幅值和周期。
 - (6) 若 $U_{REF}=3V$,将如何影响 u_{O} 的幅值和周期。

补充题 19:

图 21 所示电路中,已知 Rw的滑动端位于中点。选择填空:

A. 增大

B. 不变

C. 减小

当 R_1 增大时, u_{01} 的占空比将____,振荡频率将____, u_{02} 的幅值将____;当 R_2 增大时, u_{01} 的占空比将____,振荡频率将____, u_{02} 的幅值将____;当 U_z 增大时, u_{01} 的占空比将____,振荡频率将____, u_{02} 的幅值将____;若 R_W 的滑动端向上移动,则 u_{01} 的占空比将____,振荡频率将____, u_{02} 的幅值将____。

补充题 20: 石英晶体正弦波振荡电路如图 22 所示, C_b 、 C_e 为旁路电容, C_c 、 C_l 为耦合电容,RFC 为高频扼流圈。选择填空:

- (1)图(a)所示电路若能产生正弦波振荡,则振荡时石英晶体呈现_____性;图
 - (b) 所示电路若能产生正弦波振荡,则振荡时石英晶体呈现 性。

A. 电阻

B. 电容

C. 电感

(2)图(a)所示电路 产生正弦波振荡;图(b)所示电路 产生正弦波

振荡;

A.不能 B.可能

(3)图(a)所示电路若能产生正弦波振荡,则为____型石英晶体振荡电路;图(b)所示电路若能产生正弦波振荡,则为____型石英晶体振荡电路;

A. 串联

B. 并联

图 22

补充题 21: 图 23 所示由互补 MOSFET 组成的乙类输出级电路中,电路参数 $V^+=10V$, $V^-=-10V$, $R_L=5k\Omega$ 。已知增强型 NMOS 管 M_n 参数为 $U_{GS(th)}=0V$, $K_n=0.4$ mA/ V^2 ,增强型 PMOS 管 M_p 参数为 $U_{GS(th)}=0V$, $K_p=0.4$ mA/ V^2 。(1)求最大输出电压 U_{om} ,并求此时的 i_L 和 v_i 的值。(2)求最大输出功率和效率。

图 23