Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia - Departamento de Química

Fenómenos de Transferência II

Exame - 4 de Julho de 2022

1. Um tanque com o topo aberto para a atmosfera contém metanol líquido (CH₃OH, peso molecular 32g/mol) no fundo do tanque. O tanque é mantido a 30°C. O diâmetro do tanque cilíndrico é de 1,0 m, a altura total do tanque é de 3,0 m e o nível do líquido no fundo do tanque é mantido em 0,5 m. O espaço de gás dentro do tanque está estagnado e os vapores de CH₃OH são imediatamente dispersos assim que saem do tanque.

A 30°C, a pressão de vapor exercida pelo CH₃OH líquido é de 163 mmHg e a 40°C a pressão de vapor do CH₃OH é de 265 mmHg. O coeficiente de difusão do metanol no ar é $1,66 \ cm^2/s$ e varia com a temperatura $T^{3/2}$.

- a) (**3v**) Qual é a taxa de emissão de vapor de CH₃OH do tanque em kg /dia quando o tanque está a uma temperatura de 30°C? Deduza a equação necessária e as condições fronteira para este problema.
- b) **(1v)** Se a temperatura do tanque for aumentada para 40°C, qual é a % de aumento na taxa de emissão para um aumento de 10°C na temperatura?
- **2.** Um reator de leito fluidizado de carvão foi proposto para uma nova fábrica. Se operado a 1145 K, o processo de combustão em ar (21% O2 e 79% N2) será limitado pela difusão do O2 em contracorrente ao CO2, formado na superfície da partícula. Suponha que o carvão seja carbono sólido puro com densidade de $1,28 \times 103 kg/m^3$ e que a partícula seja esférica com um diâmetro inicial de $1,5 \times 10^{-4} m(150 \mu m)$. Sob as condições do processo de combustão, a difusividade do O2 na mistura gasosa a 1145 K é $1,3 \times 10^{-4} cm^2/s$. A reação na superfície é: $C(s) + O2(g) \rightarrow CO2(g)$ Na superfície da partícula de carvão, a reação é muito rápida.

Se for assumido um processo de estado quase estacionário, calcule:

- a. (3v) O tempo necessário para reduzir o diâmetro da partícula de carbono para $5 \times 10^{-5} m(50 \mu m)$. Deduza as equações necessárias e as condições fronteira para este problema.
- b. (1v) Explique por que razão temos neste caso difusão com reacção química heterogénea.
- **3.** Um tanque de água profundo tem O_2 dissolvido com uma concentração uniforme 1 g/L. Se a concentração de O_2 for subitamente elevada à superfície para 10 g/L, calcule:
 - a) (1v) A concentração de O₂ a 1 mm de profundidade ao fim de 2 horas?
 - b) (1v) O fluxo de O₂ na superfície do tanque para esse tempo?

$$D_{\text{CO2-água}} = 10^{-5} \text{cm}^2/\text{s}.$$

$$\frac{c_{As} - c_{A}}{c_{As} - c_{A0}} = erf \, \xi \qquad \xi = \frac{z}{\sqrt{4Dt}} \qquad J_{A}^{*} = -D \, \frac{\partial c_{A}}{\partial z} = \sqrt{D/\pi \, t} \, e^{-z^{2}/4Dt} (c_{As} - c_{A0})$$

em que C_A é a concentração de O_2 a uma distância (z) da superfície num determinado instante (t), C_{A0} é a concentração inicial, C_{AS} é a concentração na superfície e D o coeficiente de difusão.

Table 7-1. Error function values. For negative a, erf(a) is negative

a	erf(a)	a	erf(a)	a	erf(a)	
0.0	0.0	0.48	0.50275	0.96	0.82542	
0.04	0.04511	0.52	0.53790	1.00	0.84270	
0.08	0.09008	0.56	0.57162	1.10	0.88021	
0.12	0.13476	0.60	0.60386	1.20	0.91031	
0.16	0.17901	0.64	0.63459	1.30	0.93401	
0.20	0.22270	0.68	0.66378	1.40	0.95229	
0.24	0.26570	0.72	0.69143	1.50	0.96611	
0.28	6.30788	0.76	0.71754	1.60	0.97635	
0.32	0.34913	0.80	0.7421	1.70	0.98379	
0.36	0.38933	0.84	0.76514	1.80	0.98909	
0.40	0.42839	0.88	0.78669	2.00	0.99532	
0.44	0.46622	0.92	0.80677	3.24	0.99999	

ext(101) = [1-(1+0.2784/0]+0.23/4/0]+0.0781/014)

4. Ar seco (300 K e 1.013×10^5 Pa) circula a uma velocidade de 1.5 m/s, num tubo com 6 m de comprimento e 0.15m de diâmetro. A superfície interior do tubo está revestida com um material absorvente (com razão diâmetro/rugosidade, d/ ε , de 10,000) que está saturado com água.

Dados: Difusividade da água em ar 300 K = $2.6 \times 10-5$ m^2 s Viscosidade cinemática do ar a 300 K = $1.569 \times 10-5$ m^2 s Pressão de vapor da água a 300 K = 17.5 mm Hg R = 0.08206 $L \cdot atm/mol \cdot K$ Factor de atrito f = 0.00791 $Re^{0.12}$

Determine:

- a) (2v) A concentração de água à saída do tubo.
- b) (2v) A velocidade de transferência de água em kg/h.

$$Re = \frac{\rho \, dV}{\mu} \qquad Sc = \frac{\mu}{\rho \, D_{AB}} \qquad Sh = \frac{k_c \, d}{D_{AB}} \qquad ln\left(\frac{c_{A_s} - c_{A_o}}{c_{A_s} - c_{A_L}}\right) = \frac{4 \, k_c}{dV} L$$

Analogia de Chilton-Coulburn: $\frac{k_c}{V} \operatorname{Sc}^{\frac{2}{3}} = \frac{f}{2}$ $C_{As} = C^* \operatorname{eV}$ - velocidade

5. Pretende-se remover SO₂ de uma mistura gasosa constituída por SO₂ e ar por absorção utilizando água. A constante de Henry é 1.5 atm.

A coluna usada opera a 15°C e 3 atm. Num dado ponto da coluna a % molar de SO_2 na fase gasosa é 20 % e na fase líquida é 1 %. Sabendo que os coeficiente individuais de transferência de massa são ky = 5.6×10^{-4} mol/s m² e k_x = 5.6×10^{-3} mol/s m² .

Determine:

- a) (1v) As composições interfaciais.
- b) (1v) A % da resistência total respeitante a cada uma das fases.
- c) (1v) O coeficiente global de transferência de massa K_x.
- d) (1v) O fluxo de SO_2 .
- e) (2v) O valor do fluxo quando usar usar soluções de NaOH com a concentração crítica de NaOH. Comente.