Computational Theory

MIDTERM EXAMINATION

Instructors: Dr. Manar El-Kady
Winter 2023 – CLOSED Book Exam –Total marks: 20 – Duration: 60 mins
This exam comes in four pages.

NAME	ID	Group	
------	----	-------	--

Question 1 [3 marks] Obtain the regular expressions for the following sets:

(a) The set of all strings over {a, b} beginning and ending with 'a'.

$$a(a+b)^*a$$

(b) $\{b^2, b^5, b^8, \dots\}$

bb(bbb)*

(c) $\{a^{2n+1} | n > 0 \}$

aaa(aa)* OR a(aa)*

Question 2 [4 marks]

For each of the following languages, give two strings that are members and two strings that are *not* members—a total of four strings for each part. Assume the alphabet $\Sigma = \{a,b\}$ in all parts.

- **a.** a(ba)*b
- **b.** a* ∪b*
- **c.** $\sum^* a \sum^* b \sum^* a \sum^*$
- **d.** (a \cup ba \cup bb) \sum^*

Answer: Any string matched each part.

Question 3 [3 marks]

Define the language that can be defined using the alphabet $\Sigma = \{0, 1\}$ and can be represented using the following regular expressions

- a. $\sum^{*} 1 \sum^{*}$
- b. $(\sum \sum \sum)^*$
- c. 1*(01+)*

Answer

 $\Sigma^*\mathbf{1}\Sigma^*=\{w|\ w\ \text{has at least one 1}\}.$ $(\Sigma\Sigma\Sigma)^*=\{w|\ \text{the length of }w\ \text{is a multiple of 3}\}.$ $\mathbf{1}^*(\mathbf{0}\mathbf{1}^+)^*=\{w|\ \text{every 0 in }w\ \text{is followed by at least one 1}\}.$

Question 4 [6 marks]

a. Convert the following FA into regular expressions. [2 marks]

Answer:

b. Construct a DFA for the following languages [4 marks]

i. {w|w has exactly two a's}

ii. {w|w has at least two b's}

Answer

Formal Definition

 $\overline{M1} = \{\{q0, q1,q2,q3\}, \{a,b\}, T1, q0, \{q2\}\}\}$ $M2 = \{\{q0, q1,q2\}, \{a,b\}, T2, q0, \{q2\}\}\}$

OR can define each item in a separate row

T1	Α	В
q0	q1	q0
q1	q2	q1
q2	q3	q2
q3	q3	q3

T2	Α	b
q0	q0	q1
q1	q1	q2
q2	q2	q2

Question 5 [4 marks] Given the following NFA N construct the equivalent DFA D. You must illustrate all the steps in clear way.

Answer:

FIGURE 1.43 A DFA D that is equivalent to the NFA N_4

We may simplify this machine by observing that no arrows point at states $\{1\}$ and $\{1,2\}$, so they may be removed without affecting the performance of the machine. Doing so yields the following figure.

FIGURE **1.44**DFA *D* after removing unnecessary states

End of exam