Computer Vision (for Autonomous Driving)

Raoul de Charette

Texture segmentation

Data representation

- Find the richest most compact representation
 - Texture, Chromacity, Motion, Frequency, Entropy, etc.
- Solution is data-dependent

• Usually dealing with low saliency data

• Naïve solution: pixel-wise Euclidean distance (obviously fails)

RGB [50 71 28] HSV [90 154 71]

Single point model

• Naïve solution: pixel-wise Euclidean distance (obviously fails)

1. - RGBEuclideanDistance

Single point model

• Naïve solution: pixel-wise Euclidean distance (obviously fails)

1. - RGBEuclideanDistance

1. - HSVEuclideanDistance

Single point model

Naïve solution: pixel-wise Euclidean distance (obviously fails)

1. - RGBEuclideanDistance

1. - HSVEuclideanDistance

1. - HSEuclideanDistance

- Models the texture as a Multivariate Normal (3D Gaussian)
 - Advantage: models the signal variance
- Probability Density Function (PDF) allows computation of pixel-wise probability

$$\mathsf{PDF:} \quad f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^k |\mathbf{\Sigma}|}} \exp \left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\mathrm{T} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)$$

- Models the texture as a Multivariate Normal (3D Gaussian)
 - Advantage: models the signal variance
- Probability Density Function (PDF) allows computation of pixel-wise probability

$$\mathsf{PDF:} \quad f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^k |\mathbf{\Sigma}|}} \exp \left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\mathrm{T} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)$$

PDF of RGB Normal

PDF of HSV Normal

- Models the texture as a Multivariate Normal (3D Gaussian)
 - Advantage: models the signal variance
- Probability Density Function (PDF) allows computation of pixel-wise probability

$$\mathsf{PDF:} \quad f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^k |\mathbf{\Sigma}|}} \exp \left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\mathrm{T} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)$$

• Why does it work so well?

PDF of RGB Normal

PDF of HSV Normal

- Models the texture as a Multivariate Normal (3D Gaussian)
 - Advantage: models the signal variance
- Probability Density Function (PDF) allows computation of pixel-wise probability

$$\mathsf{PDF:} \quad f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^k |\mathbf{\Sigma}|}} \exp \left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\mathrm{T} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)$$

- Why does it work so well?
- How will it perform to find these:

PDF of RGB Normal

PDF of HSV Normal

Histograms

- Building histograms
 - Choose the right dimension-space
 - Usually no more than 2D for histograms
- Let's consider Histogram $\mathcal{H}(...)$ with h bins
- Bin stores number of occurrences

$$\mathcal{H}(\mathbf{x}) = |\{p \ \forall \ p = \mathbf{x}, p \in I\}|$$

• Size matters for histograms.

- ullet Back projection: likelihood of pixels to image histogram ${\mathcal H}$
- Assume a normalized histogram: $\sum_{\mathbf{x}} \mathcal{H}(\mathbf{x}) = 1$ The normalized bins can be considered likelihood

Hence likelihood of pixel p to belong to histogram is:

$$\mathcal{H}(\underbrace{f(I(p))})$$
 Mapped value

Referred as: probability histogram

Back projection of grass Histogram

A words on histograms

- Bins can be asymmetrical => generally a bad idea
- Optimal bin size (h)
 - Square root

$$n_h = \sqrt{n}$$

Naïve estimator

• Scott rule $h = \sigma \sqrt[3]{\frac{24*\sqrt{\pi}}{n}}$

Usually considered for large datasets. Not robust to outliers

• Freedman Diaconis Estimator (FD estimator)

$$h = 2\frac{IQR}{n^{1/3}}$$

Using Interquartile Range (IQR). Optimal for large datasets. Robust to outliers.

Gaussian Mixture Models (GMM)

• GMM are really useful to represent mix of signals

$$\mathsf{GMM} = \sum_{i} w_{i} \mathcal{N}(\mu_{i}, \sigma_{i}) \qquad \qquad \underbrace{\qquad \qquad \qquad \mathsf{Model}}_{\overset{\bullet}{\dots} \dots \overset{\bullet}{\dots} \overset{\dots$$

- Where the set of data X is supposed to be a partial image of the GMM
 - Models more complex signal

- Problem how to estimate the set of parameters $\{w_i, \mu_i, \sigma_i\}$?
 - Expectation Maximization, k-Means

Expectation-Maximization (Arthur P. Dempster)

 $\{w_i, \mu_i, \sigma_i\}$ Gaussian Mixture Models (inc. noise)

- Estimates parameters of a statistical models partially observed
- How does it work?
 - Tries to map a data to N Gaussians through maximization of likelihood
 - Randomly initialize a set of parameters (random Gaussians)
 - E-Step: For each point compute the probability to be generated by Gaussians
 - M-Step: Update parameters to maximize the (log) likelihood of the data
 - Iterate E and M until convergence

Expectation-Maximization (Arthur P. Dempster)

 $\{w_i, \mu_i, \sigma_i\}$ Gaussian Mixture Models (inc. noise)

- Estimates parameters of a statistical models partially observed
- How does it work?
 - Tries to map a data to N Gaussians through maximization of likelihood
 - Randomly initialize a set of parameters (random Gaussians)
 - E-Step: For each point compute the probability to be generated by Gaussians
 - M-Step: Update parameters to maximize the (log) likelihood of the data
 - Iterate E and M until convergence

(Mohand Saïd Allili, Tutorial, 2010)

Expectation-Maximization (Arthur P. Dempster)

 $\{w_i, \mu_i, \sigma_i\}$ Gaussian Mixture Models (inc. noise)

- Estimates parameters of a statistical models partially observed
- How does it work?
 - Tries to map a data to N Gaussians through maximization of likelihood
 - Randomly initialize a set of parameters (random Gaussians)
 - E-Step: For each point compute the probability to be generated by Gaussians
 - M-Step: Update parameters to maximize the (log) likelihood of the data
 - Iterate E and M until convergence

(Mohand Saïd Allili, Tutorial, 2010)

Expectation Maximization (EM)

Suppose all parameters estimated $\{w_i, \mu_i, \sigma_i\}$

- The probability that a point belong to a Gaussian \mathcal{N} is: $p(x|\mathcal{N}) = \mathcal{N}_{PDF}(x)$
- Suppose n Gaussians, the class is the Gaussian with highest probability label(x) = $\operatorname{argmax}_i p(x|\mathcal{N}_i)$

Suppose all parameters estimated $\{w_i, \mu_i, \sigma_i\}$

- The probability that a point belong to a Gaussian \mathcal{N} is: $p(x|\mathcal{N}) = \mathcal{N}_{PDF}(x)$
- Suppose n Gaussians, the class is the Gaussian with highest probability label(x) = $\operatorname{argmax}_i p(x|\mathcal{N}_i)$

Suppose all parameters estimated $\{w_i, \mu_i, \sigma_i\}$

- The probability that a point belong to a Gaussian \mathcal{N} is: $p(x|\mathcal{N}) = \mathcal{N}_{PDF}(x)$
- Suppose n Gaussians, the class is the Gaussian with highest probability label(x) = $\operatorname{argmax}_i p(x|\mathcal{N}_i)$

Suppose all parameters estimated $\{w_i, \mu_i, \sigma_i\}$

- The probability that a point belong to a Gaussian \mathcal{N} is: $p(x|\mathcal{N}) = \mathcal{N}_{PDF}(x)$
- Suppose n Gaussians, the class is the Gaussian with highest probability label(x) = $\operatorname{argmax}_i p(x|\mathcal{N}_i)$

Suppose all parameters estimated $\{w_i, \mu_i, \sigma_i\}$

- The probability that a point belong to a Gaussian \mathcal{N} is: $p(x|\mathcal{N}) = \mathcal{N}_{PDF}(x)$
- Suppose n Gaussians, the class is the Gaussian with highest probability label(x) = $\operatorname{argmax}_i p(x|\mathcal{N}_i)$

- Point Model are very naïve
- Gaussian Model can work well (e.g. keying)
- Histograms works well for texture with a few modes
- Gaussian Mixture Models are very powerful with distinct modes

- Point Model are very naïve
- Gaussian Model can work well (e.g. keying)
- Histograms works well for texture with a few modes
- Gaussian Mixture Models are very powerful with distinct modes

- But... Can you see a problem with all these methods?
 - They all think at a pixel level
 - Spatial information is lost

- Point Model are very naïve
- Gaussian Model can work well (e.g. keying)
- Histograms works well for texture with a few modes
- Gaussian Mixture Models are very powerful with distinct modes

- But... Can you see a problem with all these methods?
 - They all think at a pixel level
 - Spatial information is lost

- Point Model are very naïve
- Gaussian Model can work well (e.g. keying)
- Histograms works well for texture with a few modes
- Gaussian Mixture Models are very powerful with distinct modes

- But... Can you see a problem with all these methods?
 - They all think at a pixel level
 - Spatial information is lost

- Point Model are very naïve
- Gaussian Model can work well (e.g. keying)
- Histograms works well for texture with a few modes
- Gaussian Mixture Models are very powerful with distinct modes

- But... Can you see a problem with all these methods?
 - They all think at a pixel level
 - Spatial information is lost

- Point Model are very naïve
- Gaussian Model can work well (e.g. keying)
- Histograms works well for texture with a few modes
- Gaussian Mixture Models are very powerful with distinct modes

- But... Can you see a problem with all these methods?
 - They all think at a pixel level
 - Spatial information is lost

Interactive segmentation

- What is it ?
- When to use interactive segmentation?

- Region growing
 - Start from a seed
 - And iteratively grow if criteria is still valid

- Usual criteria:
 - Distance to seed < threshold
 - Distance to neighbor < threshold
 - Region (max-min) < threshold
- Very sensitive to parameters
- Still used in 3D

• Grab cut

Watershed

Image segmentation

Segment the **brick walls** (and else) with a histogram back projection

Guidelines

K Figure 6

- Once walls are segmented continue with: grass, roof, pathway
- Finished ? 1) Build a real segmentation map where 0=void, 1=brick, 2=roof, 3=grass, 4=path. 2) Apply Gaussian model segmentation for sky.
- You're really good ? 1) Code your own back projection, start using calcHist. 2) Use a FD estimator for hist (yes, you need to recode calcHist). Helps others ©
- You're even better? Cluster the image with a GMM model (say: 20 Gaussians) and assign grass/roof/wall/pathway/sky label to each.