Problem Set #1

Boot Camp 2018

Name: Zunda Xu

Email: zunda@uchicago.edu

Exercise 1.3.

Proof:

(1) \mathcal{G}_1 is not algebra. Since for $\forall A \in \mathcal{G}_1$, A is open, then A^c is closed in R. Thus $A^c \notin \mathcal{G}_1$. Hence \mathcal{G}_1 is not algebra.

(2) \mathcal{G}_2 is algebra. First we check \emptyset , since interval $(a, a] = \emptyset$ and $(a, a] \in \mathcal{G}_2$, thus $\emptyset \in \mathcal{G}_2$. Then we check its closeness. the complements of the intervals $(a, b], (-\infty, b]$ and (a, ∞) are the intervals $(-\infty, a] \cup (b, \infty), (b, \infty)$ and $(-\infty, a]$ respectively, and obviously they all belong to \mathcal{G}_2 , thus for $\forall A \in \mathcal{G}_2$, A^c is also a finite union of intervals of the form $(a, b], (-\infty, b]$ and (a, ∞) , which means $A^c \in \mathcal{G}_2$, similarly, for $\forall A_1, A_2, \ldots, A_n \in \mathcal{G}_2, \cup_{n=1}^N A_n \in \mathcal{G}_2$ too. Hence, \mathcal{G}_2 is algebra. However, \mathcal{G}_2 is not σ -algebra, since we can not determine whether $\forall A \in \mathcal{G}_2$ is a countable union or not.

(3) \mathcal{G}_3 is not only algebra, but also σ -algebra. Same to the proof in (2), we can easily know \mathcal{G}_3 is algebra. Also for $\forall A_1, A_2, \dots \in \mathcal{G}_3$, they are all countable unions of $(a, b], (-\infty, b]$ and (a, ∞) , thus $\bigcup_{n=1}^{\infty} A_n$ is a countable union of $(a, b], (-\infty, b]$ and $(a, \infty) \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{G}_3$. Therefore, \mathcal{G}_3 is also closed under countable unions $\Rightarrow \mathcal{G}_3$ is σ -algebra.

Exercise 1.7.

Proof:

- (1) First, we will show the left part. Since $\forall \sigma$ -algebra $\mathcal{A}, \emptyset \in \mathcal{A}$. Also, $X = (\emptyset)^c$, according to the definition of σ -algebra, $\forall \sigma$ -algebra $\mathcal{A}, X \in \mathcal{A}$. Hence, $\{\emptyset, X\} \subset \mathcal{A}$.
 - (2) Second, we will show the right part. Since $P(X) = \{A : A \subset X\}$, also for \forall

σ-algebra \mathcal{A} , $\forall A \in \mathcal{A}$, $A \subset X \Rightarrow A \in P(X)$. Hence, $\mathcal{A} \subset P(X)$.

In all, we have shown that $\{\emptyset, X\} \subset \mathcal{A} \subset P(X)$.

Exercise 1.10.

Proof:

Let $\mathcal{F} = \cap_{\alpha} \mathcal{S}_{\alpha}$, then if $A \in \mathcal{F} \Rightarrow A \in \mathcal{S}_{\alpha}$ for $\forall \alpha$. Since \mathcal{S}_{α} is σ -algebra for $\forall \alpha$, we have $A^c \in \mathcal{S}_{\alpha}$. Similarly, if $An \in \mathcal{F}$ for $\forall n = 1, 2, ...$, then $An \in \mathcal{S}_{\alpha}$ for every $n, \alpha \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{S}_{\alpha}$ for every $\alpha \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$. Hence, $\cap_{\alpha} \mathcal{S}_{\alpha}$ is also σ -algebra.

Exercise 1.17.

Proof:

- (1) Since $B = (B \setminus A) \cup (A \cap B)$, $A \subset B \Rightarrow A \cap B = A$, $B = (B \setminus A) \cup A$. Also $(B \setminus A) \cup A = \emptyset$, so B is the union of the two disjoint sets $(B \setminus A)$ and A. Since μ is a non-negative additive function, we have $\mu(B) = \mu(B \setminus A) + \mu(A)$. Since $\mu(B \setminus A) \geqslant 0$ $\Rightarrow \mu(B) \geqslant \mu(A)$
- (2) Define a new sequence $(F_n)_{n\in\mathbb{N}}$ in S by: $F_n = \bigcup_{k=1}^n A_n$, then for $\forall n \in \mathbb{N}, F_n \subset F_{n+1}$, also $\bigcup_{n=1}^{\infty} F_n = \bigcup_{n=1}^{\infty} A_n$. Thus, $\mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n\to\infty} \mu(F_n) = \lim_{n\to\infty} \mu(A_1 \cup A_2 \cdots \cup A_n) \leqslant \lim_{n\to\infty} \sum_{k=1}^n \mu(A_k) = \sum_{k\in\mathbb{N}} \mu(A_k)$.

Exercise 1.18.

Proof:

- (1) If $A = \emptyset$, then $A \cap B = \emptyset \Rightarrow \mu(A \cap B) = \mu(\emptyset) = 0 \Rightarrow \lambda(A) = \lambda(\emptyset) = \mu(A \cap B) = 0$. Hence, $\lambda(\emptyset) = 0$.
- (2) $\lambda(\bigcup_{n=1}^{\infty} A_n) = \mu((\bigcup_{n=1}^{\infty} A_n) \cap B) = \mu(\bigcup_{n=1}^{\infty} (A_n \cap B)) = \sum_{n=1}^{\infty} \mu(A_n \cap B) = \sum_{n=1}^{\infty} \lambda(A_n).$

Hence, $\lambda(A)$ is also a also a measure.

Exercise 1.20.

Proof:

Since $\mu(Ai)$ is an decreasing sequence, so the limit exists. Set $C_i = A_1 \setminus A_i$ $\Rightarrow \mu(A_i) + \mu(C_i) = \mu(A_1)$, since $\mu(C_i) \leqslant \mu(A_1) < \infty \Rightarrow \mu(A_i) = \mu(A_1) - \mu(C_i)$, Moreover, the sets C_i form an increasing sequence of sets $\Rightarrow \lim_i \mu(C_i) = \mu(\cup_i C_i)$. Furthermore, $\bigcup_i C_i = \bigcup_i (A_1 \setminus A_i) = A_1 \setminus (\cap_i A_i) \Rightarrow \mu(\cap_i A_i) = \mu(A_1) - \mu(\bigcup_i C_i) = \mu(A_1) - \lim_i \mu(C_i) = \lim_i (\mu(A_1) - \mu(C_i)) = \lim_i \mu(A_i)$.

Exercise 2.10.

Proof:

To proof the statement, we will shown that the \geqslant can be replaced by \leqslant in the Theorem 2.8. Since $B = (B \cap E) \cup (B \cap E^c)$ and μ^* is an outer-measure $\Rightarrow \mu^*$ is countably sub-additive $\Rightarrow \mu^*((B \cap E) \cup (B \cap E^c)) \leqslant \mu^*(B \cap E) + \mu^*(B \cap E^c)$ $\Rightarrow \mu^*(B) \leqslant \mu^*(B \cap E) + \mu^*(B \cap E^c)$. From the Theorem 2.8, we obtain $\mu^*(B) \geqslant \mu^*(B \cap E) + \mu^*(B \cap E^c)$, hence we get the statement $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c)$.

Exercise 2.14.

Proof:

Define $\mathcal{O} = \{A : A \text{ is open, } A \subset \mathbb{R}\}$, ν is a premeasure on \mathbb{R} , denote μ^* as the outer measure generated by ν . Let $\sigma(\mathcal{O})$ be the σ -algebra generated by \mathcal{O} and \mathcal{M} denote the σ -algebra from the Caratheodory construction. By Theorem 2.12, we obtain $\sigma(\mathcal{O}) \subset \mathcal{M}$, since $\sigma(\mathcal{O})$ is the σ -algebra generated by \mathcal{O} , which is the Borel-algebra. Hence, we have shown $\mathcal{B}(\mathbb{R}) \subset \mathcal{M}$.

Exercise 3.1.

Proof:

Let $a \in \mathbb{R}$, then $\{a\} \subset [a - \epsilon/2, a + \epsilon/2]$ for $\forall \epsilon > 0$. Define the Lebesgue Measure λ^* , then we have $\lambda^*(a) \leqslant \lambda^*([a - \epsilon/2, a + \epsilon/2]) = \epsilon$ for $\forall \epsilon > 0 \Rightarrow \lambda^*(a) = 0$, for $\forall a \in \mathbb{R}$. Let $A = \bigcup_{n=1}^{\infty} \{a_n\}$, then A is a countable set, then $\lambda^*(A) \leqslant \sum_{n=1}^{\infty} \lambda^*(a_n) = 0$.

Exercise 3.4.

Proof:

- (1). First, let set $A = \{x \in X : f(x) < a\}$, $\forall a \in \mathbf{R}$. \therefore M is σ -algebra, $\therefore A^C = \{x \in X : f(x) \geqslant a\} \in \mathbb{M}$, $\forall a \in \mathbf{R}$, and the definition still holds.
- (2). Then, we show that set $\{x \in X : f(x) > a\} \in \mathbb{M}$. Define $\{a_n = a + \frac{1}{n}\}_{n \in \mathbb{N}}$ in \mathbb{R} , then $\lim_{n \to \infty} a_n = a$. By the proof above, we know that $A_n = \{x \in X : f(x) \ge a_n\} \in \mathbb{M}$ $\forall a_n \in \mathbb{R}$. Thus $\bigcup_{n=1}^{\infty} A_n \in \mathbb{M} \Rightarrow \bigcup_{n=1}^{\infty} \{x \in X : f(x) \ge a\} = \bigcup_{n=1}^{\infty} \{x \in X : f(x) > \lim_{n \to \infty} a_n\} \Rightarrow \{x \in X, f(x) > a\} \in \mathbb{M}$
- (3). Thus, by the same logic in 1), $\{x \in X, f(x) > a\}$ $\{x \in X, f(x) \le a\}$. Thus we have the sets composed of all four operators belonging to M.

Exercise 3.7.

Proof:

- (1). For case of f + g: Let F(x, y) = x + y, then f + g = F(f, g) and f + g is a continuous function. \Rightarrow By property 4, we show that f + g is measurable.
- (2). For case of $f \cdot g$: Let F(x, y) = xy, then fg = F(f, g) and fg is a continuous function. \Rightarrow By property 4, we show that $f \cdot g$ is measurable.
- (3). Let $f = \sup_{n \in \mathbb{N}} f_n(x)$, $g = \sup_{n \in \mathbb{N}} g_n(x)$. Also, let $\{K_n \mid_{n \in \mathbb{N}}\} = \{\{f_n\}_{n \in \mathbb{N}}, \{g_n\}_{n \in \mathbb{N}}\}$ $\Rightarrow \sup_{n \in \mathbb{N}} K_n(x) = \max(\sup_{n \in \mathbb{N}} f_n(x), \sup_{n \in \mathbb{N}} g_n(x)) = \max(f, g) \Rightarrow \forall n, K_n(x) \text{ is measurable.}$ surable. $\Rightarrow \{K_n(x)\}_{n \in \mathbb{N}}$ is measurable \Rightarrow By property (2) we show that $\max(f, g)$ is measurable.
- (4). Similar to the above proof, change sup to inf, then $\inf_{n\in\mathbb{N}} K_n(x) = \min(f,g)$, $\Rightarrow \min(f,g)$ is measurable.
 - (5). $|f| = \max(f, -f)$ by proof (3) \Rightarrow we know that |f| is measurable.

Exercise 3.14.

Proof:

 $\forall \epsilon > 0$, we constrict intervals and simple function as the proof in note. $\exists N_1 \in \mathbb{N}$, s.t. $\frac{1}{2^{N_1}} < \epsilon$, $\exists N_2 \in \mathbb{N}$, s.t. $f(x) < N_2$. Let $N = \max\{N_1, N_2\}$, for n > N,

 $\forall x \in X, x \in E_i^n \text{ for } 0 \le i \le N, i \in \mathbf{N} \Rightarrow f(x) \in \left[\frac{i-1}{2^n}, \frac{i}{2^n}\right) \text{ and } s_n(x) = \frac{i-1}{2^n} \Rightarrow |f(x) - s_n(x)| < \frac{1}{2^n} < \frac{1}{2^N} < \epsilon \Rightarrow \text{ the convergence in (1) is uniform.}$

Exercise 4.13.

Proof:

Since $0 \leqslant ||f|| < M$ on $E \in \mathbb{M}$, and $\mu(E) < \infty$, by proposition 4.5, $0 \leqslant \int_{E} ||f|| d\mu \leqslant M\mu(E) < \infty \Rightarrow f \in \mathbb{L}^{1}(\mu, E)$.

Exercise 4.14.

Proof:

We will prove by contradiction. Without loss of generality, we just show the condition that $f=\infty$. Suppose $\exists A\subset E$ with positive measure μ , s.t. $f=\infty$ somewhere on A. Then, $\infty=\int_A f d\mu\leqslant \int_E f d\mu\leqslant \int_E ||f||d\mu\Rightarrow f\notin \mathbb{L}^1(\mu,E)$, which contradicts with $f\in \mathbb{L}^1(\mu,E)$.

Exercise 4.15.

Proof:

Let $S(f) = \{s : 0 \leqslant s \leqslant f, \text{ s measurable and simple}\}$. $f < g \Rightarrow f^+ < g^+$ and $f^- > g^- \Rightarrow S(f^+) \subset S(g^+) \Rightarrow \int_E f^+ d\mu \leqslant \int_E g^+ d\mu$. Similarly, $\Rightarrow S(g^-) \subset S(f^-) \Rightarrow \int_E g^- d\mu \leqslant \int_E f^- d\mu \Rightarrow \int_E f d\mu = \int_E f^+ d\mu - \int_E f^- d\mu \leqslant \int_E g^+ d\mu - \int_E g^- d\mu = \int_E g d\mu$. Hence $\int_E f d\mu \leqslant \int_E g d\mu$.

Exercise 4.16.

Proof:

Take an arbitrary simple function $s(x) = \sum_{i=1}^{N} c_i \chi_i E_i$, where E_i is measurable. Then since $A \subset E \Rightarrow A \cap E_i \subset E \cap E_i$ $\forall i \Rightarrow \mu(A \cap E_i) \leq \mu(E \cap E_i)$ $\forall i \Rightarrow \int_A s d\mu = \sum_{i=1}^{N} c_i \mu(A \cap E_i) \leq \sum_{i=1}^{N} c_i \mu(E \cap E_i) = \int_E s d\mu \Rightarrow \int_A ||f|| d\mu \leq \int_E ||f|| d\mu < \infty \Rightarrow f \in \mathbb{L}^1(\mu, A)$.

Exercise 4.21.

Proof:

Let
$$\lambda(\cdot)$$
 be a measure on μ , and $A=(A\backslash B)\cup (A\cap B)$. $\therefore B\subset A, \Rightarrow A=(A\backslash B)\cup B$ $\Rightarrow \lambda(A)=\lambda((A\backslash B)\cup B)=\lambda(A\backslash B)+\lambda(B)\Rightarrow \int_A f d\mu=\int_{A\backslash B} f d\mu+\int_B f d\mu.$ $\therefore \int_{A\backslash B} f d\mu=0 \Rightarrow \int_A f d\mu=\int_B f d\mu \Rightarrow \int_A f d\mu\leqslant \int_B f d\mu$