

TP-2: Automatique (Notés) Simulation du pendule inversé contrôlé par retour d'état et de sortie

1 Simulation du pendule inversé contrôlé

1.1 Problème

L'objectif de ce TP est de simuler le pendule inversé contrôlé par retour de d'état. On rappelle que ce système s'écrit

$$(S) \begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = \frac{g}{l} \sin(x_1(t)) - \frac{\cos(x_1(t))u(t)}{l} \\ x_1(0) = x_{0,1} = \alpha_0 \\ x_2(0) = x_{0,2} = \dot{\alpha}_0, \end{cases}$$

avec, attention ce sont ici les notations mathématiques.

- -g = 9.81;
- -l = 10;
- $-t_0=0$;
- $-x_e = (0,0);$
- $-u_e = 0;$
- $u(t) = u_e + K(x(t) x_e)$
- $-K = (k_1, k_2).$

1.2 Contrôle par retour d'état

On rappelle que pour contrôler asymptotiquement le système, si $(\alpha_0, \dot{\alpha_0})$ est suffisamment proche de x_e , il suffit que :

- $-k_1 > g;$
- $-k_2 > 0.$

Réaliser le schéma SIMULINK de la figure 1.

Visualiser les résultats pour les données de la table 1.

AUTOMATIQUE

Figure 1 – Schéma Simulink pour le contrôle par retour d'état.

Cas	x_0	t_f	K	Intégrateur
Cas 1.1	$(\pi/20,0)$	10	(30, 10)	ode45
Cas 1.2	$(\pi/20,0)$	100	(10, 1)	ode45
Cas 1.3	$(\pi/20,0)$	100	(10,1)	Euler, ode1
Cas 1.4	$(\pi/20,0)$	1000	(10, 1)	Euler, ode1
Cas 1.5	$(\pi/10,0)$	100	(10, 1)	ode45
Cas 1.6	$(\pi/10,0)$	100	(30, 10)	ode45

Table 1 – Données pour le contrôle par retour d'état.

1.3 Capteurs

On suppose maintenant que l'on n'a accès qu'à $\dot{\alpha}$. On introduit donc dans le schéma deux sous systèmes : un capteur et un prédicteur (on utilisera un intégrateur continu pour la prédiction) pour reconstruire α , voir la figure 2. Réaliser le schéma Simulink de la figure 2.

FIGURE 2 – Schéma SIMULINK d'un contrôle par retour de sortie avec prédiction de l'état.

Visualiser les résultats pour les données de la table 2.

Cas	x_0	t_f	K	pas	Intégrateur
Cas 1	$(\pi/20,0)$	100	(10, 1)	par défaut	ode45
Cas 2	$(\pi/20,0)$	100	(10, 1)	0.001	Euler, ode1
Cas 3	$(\pi/20,0)$	100	(10,1)	5	Euler, ode1

Table 2 – Données pour le contrôle par retour de sortie.