

How Can Al Reason Your Character? B IC

Dongsu Lee and Minhae Kwon

movementwater@soongsil.ac.kr, minhae@ssu.ac.kr

Soongsil University, Seoul, Republic of Korea

Motivation & Objectives

- Inferring others' decision preferences helps us to make an adaptive decision in the social context
- Endowing AI agents with this ability is essential for effective human-AI and AI-AI collaboration
 - Finding 1: Human character's stochasticity due to uncertainties → Aim 1: Stochastic character
 - Finding 2: Brain's inference ability to generate a character rapidly and update it gradually Aim 2: Instance inference

Proposed Solution: Instance Inference to Stochastic Character

Aim 1: Stochastic Character in Reward

- Evaluate differently the importance of each reward term
- Make the behavioral pattern diversified

$$r_t = R(s_t, a_t, s_{t+1}; \mathbf{c}_{\mu}, \mathbf{c}_{\sigma}) = \sum_{n=1}^{N} c_n \mathcal{R}_n(s_t, a_t, s_{t+1})$$

Aim 2: Instance Inference Network

- Infer the character by leveraging the target's trajectory
- Update the inferred character gradually using the RNN

$$\hat{\mathbf{c}}_{\mu}, \hat{\mathbf{c}}_{\sigma} = \arg\min_{\mathbf{c}_{\mu}, \mathbf{c}_{\sigma}} \mathcal{L}(f(\mathbf{c}; \mathbf{c}_{\mu}, \mathbf{c}_{\sigma}))$$

Simulation Results

Demonstration Task: Autonomous Driving / **Three characters:** longitudinal control, lateral control, relative distance

Benchmarking Algorithms:

- Inverse Rational Control (IRC): Monte Carlo estimation maximization-based approach
 → High accuracy & High run-time
- Variational Inference (VI): **Baseline** on inference task

rrue c ₂	rrue c ₃			
Algorithm	Inference Accuracy			Run-
	<i>l</i> =10	<i>l</i> =100	l=200	Time
Proposed (LSTM)	0.9564	0.9621	0.9633	0.006s
	± 0.0017	± 0.0007	± 0.0006	
IRC	0.7874	0.9441	0.9604	91.472s
	± 0.0883	± 0.0451	± 0.0344	
Proposed (Feedforward)	0.9533 ± 0.0019			0.003s
VI	$0.8900 + \pm 0.0022$			0.004s

The proposed solution comprehensively outperforms in terms of the inference accuracy and the time-complexity

Conclusion

- We have incorporated the stochastic character concept into reinforcement learning, specifically, the reward function
- Simulation results confirm that the proposed solution instantly infers character with the highest accuracy
- The proposed framework can serve as a helpful guide for achieving Al's social decision-making process