

Practitioner's Docket No. MPI01-019P1RNM

PATENT

In re application of:	Curtis, Rory A.J.		
Application No.:	10/074,547	Group No.:	1647
Filed:	February 12, 2002	Examiner:	Kapust, Rachel B.
For:	25466, A HUMAN TRANSPORTER FAMILY MEMBER AND USES THEREFOR		

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

DECLARATION UNDER 37 C.F.R. § 1.131

Sir:

I, Rory A.J. Curtis, hereby declare and state:

1. I am the inventor of the subject matter described and claimed in the above-identified application.
2. I was in possession of the complete nucleic acid sequence of 25466 in the United States and had determined its identity as a monocarboxylate transporter before January 30, 2001.
3. Evidence is provided by the following:
 - a) Prior to January 30, 2001, I had completed the sequencing of full length human 25466. Exhibit A is a copy of an electronic printout of the nucleic acid sequence from Millennium's sequence database. The printout bears the automatically embedded date on which I entered the sequence into the database. On the original printout, this sequence bears a date prior to January 30, 2001. In accordance with accepted practice, the dates on the copy of the electronic printout have been masked (M.P.E.P. § 715.07).

The top sections of the printout bear reference information for accessing the 25466

CERTIFICATION UNDER 37 C.F.R. SECTIONS 1.8(a) and 1.10*

I hereby certify that, on the date shown below, this correspondence is being:

MAILING

deposited with the United States Postal Service in an envelope addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

37 C.F.R. SECTION 1.8(a)

37 C.F.R. SECTION 1.10*

with sufficient postage as first class mail.

as "Express Mail Post Office to Addressee"
Mailing Label No.

TRANSMISSION

transmitted by facsimile to the Patent and Trademark Office.

Signature

Sean Hunziker/Beverly Sotiropoulos

Date: July 8, 2004

(type or print name of person certifying)

*WARNING: Each paper or fee filed by "Express Mail" must have the number of the "Express Mail" mailing label placed thereon prior to mailing. 37 C.F.R. section 1.10(b). "Since the filing of correspondence under section 1.10 without the Express Mail mailing label thereon is an oversight that can be avoided by the exercise of reasonable care, requests for waiver of this requirement will not be granted on petition." Notice of Oct. 24, 1996, 60 Fed. Reg. 56,439, at 56,442.

sequence in the Millennium database. The remainder of the printout bears the entire 25466 nucleotide sequence ("Fbh25466pat"), known in the application as SEQ ID NO:1.

b) Prior to January 30, 2001, I had determined that the 25466 nucleotide sequence of SEQ ID NO:1 encodes a monocarboxylate transporter based on the results of analyses of the nucleotide sequence and the encoded polypeptide. Exhibits B, C and D are evidence of this determination. Exhibit B is a copy of the first page of a BLAST analysis of SEQ ID NO:1. The top hit in this BLAST result is human monocarboxylate transporter 3 (Genbank Accession No. U81800). Exhibit C is a copy of several analyses of the 25466 polypeptide, with the sequence displayed on page 1. Page 4 of Exhibit C shows the alignment of a portion of the polypeptide with the MCT (monocarboxylate transporter) domain in Pfam. Exhibit D is a pairwise alignment of the 25466 polypeptide with human monocarboxylate transporter 4 (SwissProt Accession No. O15374). I performed my analyses and reached the conclusion that SEQ ID NO:1 encodes a monocarboxylate transporter prior to January 30, 2001.

The original printouts of Exhibits B and C bear automatically embedded dates on which I performed these analyses. In accordance with accepted practice, the dates on the copies of the electronic printouts have been masked (M.P.E.P. § 715.07).

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Rory Curtis

Rory A.J. Curtis

6/12/2004

Date

Sample Information

name: Fbh25466pat
type: Plain DNA Sequence
submitted on:
NC project: Bayer
species: Human
tissue: unspecified
internal id: 107698647
restrictions: none

Exhibit A to Accompany Declaration under
37 CFR §1.131 for US Appln. No. 10/074,547

Sequences Information

creation method: Loading
name: Load
created on:
created by: Rory Curtis
accession number: 107698648

> Fbh25466pat - Import - complete

```

1      GTCGACCCAC GCGTCCGCAA GAGTGTGCAT GTGAGGTGAC TGCATTTTT TTCCCTGCCA
61     AACCAAAATT AGCCGGTATA GGAATGAACG AGCATGAAGA TTTGAAATTG CTCCGATTGG
121    AAGGAAGCCC AGGTTAGGTT TGGGCACCTC CAAACGCACC CGTTTTAAAG CCACCTGGAC
181    TGAGGCCCTCG AGCTTTCAGC TCCACCAAAC GCTCACCTGG CCTGGCAGCG AGCGGCGGAA
241    GAGCCCCGGA GCCCCTCACA GAGCGCACCG AGCCGGCGG AGAGCTGAGC CGCAGGCACC
301    CGCGTCTCCA GGATGATAGG CGACATTGCA ACAAAATCTCT ACACCCAGCA GCTCAGGGGG
361    CTCCAAGCAG AGCAGCAAGT TCGAGGATCC GGGCGTGGAG CCGAGTGAGG CCCAGGCCA
421    GCGGGCCTCG GGCAGAAAAT CTTGGAAAAT GTATAACCAAGT CATGAAGATA TTGGGTATGA
481    TTTTGAAGAT GGGCCCAAAG ACAAAAAGAC ACTGAAGCCC CACCCAAACA TTGATGGCGG
541    ATGGGCTTGG ATGATGGTGC TCTCCTCTT CTTTGTGCAC ATCCTCATCA TGGGCTCCCA
601    GATGGCCCTG GGTGTCCCTCA ACGTGGAAATG GCTGGAAGAA TTCCACCAAGA GCCGCGGCCT
661    GACCGCCTGG GTCAGCTCCC TCAGCATGGG CATCACCTTG ATAGTGGGCC CTTTCATCGG
721    CTTGTTCAATT AACACCTGTG GGTGCCGCCA GACTGCGATC ATTGGAGGGC TCGTCAACTC
781    CCTGGGCTGG GTGTTGAGTG CCTATGCTGC AAACGTGCAT TATCTCTCA TTACTTTGG
841    AGTCGCAGCT GGCCTGGGCA GCGGGATGGC CTACCTGCCA GCGGTGGTCA TGGTGGGCAG
901    GTATTTCCAG AAGAGACCGG CCCTCGCCCA GGGCCTCAGC ACCACGGGA CGGGATTCCG
961    TACGTTCCCTA ATGACTGTGC TGCTGAAGTA CCTGTGCGCA GAGTACGGCT GGAGGAATGC
1021   CATGTTGATC CAAGGTGCCG TTTCCCTAAA CCTGTGTGTT TGTGGGGCGC TCATGAGGCC
1081   CCTCTCTCCT GGTAAAAAAC CAAACGACCC AGGAGAGAAA GATGTGCGTG GCCTGCCAGC
1141   GCACTCCACA GAATCTGTGA AGTCAACTGG ACAGCAGGGGA AGAACAGAAAG AGAAGGATGG
1201   TGGGCTCGGG AACGAGGAGA CCCTCTGCGA CCTGCAAGCC CAGGAGTGCC CCGATCAGGC
1261   CGGGCACAGG AAAAACATGT GTGCCCTCCG GATTCTGAAG ACTGTCAGCT GGCTCACCAT
1321   GAGAGTCAGG AAGGGCTTCG AGGACTGGTA TTCGGGCTAC TTTGGGACAG CCTCTCTATT
1381   TACAAATCGA ATGTTTGATG CCTTTATTTT CTGGGCTTTG TTTGCATACA GCAGCTTTGT
1441   CATCCCCCTTC ATTCAACCTCC CAGAAATCGT CAATTGTAT AACTTATCGG AGCAAAACGA
1501   CGTTTCCCT CTGACGTCAA TTATAGCAAT AGTCACATC TTTGGAAAAG TGATCCTGGG

```

1561 CGTCATAGCC GACTTGCCTT GCATTAGTGT TTGGAATGTC TTCCTGTTGG CCAACTTCAC
1621 CCTTGTCCCTC AGTATTTTA TTCTGCCGTT GATGCACACG TACGCTGGCC TGGCGGTCA
1681 CTGTGCGCTG ATAGGGTTTT CCAGTGGTTA TTTCTCCCTA ATGCCCGTAG TGACTGAAGA
1741 CTTGGTTGGC ATTGAACACC TGGCCAATGC CTACGGCATC ATCATCTGTG CTAATGGCAT
1801 CTCTGCATTG CTGGGACCAC CTTTGCAAG GTGGATCTAT GACATCACGC AAAAATATGA
1861 TTTTCCCTTC TACATATGTG GTTTGTTTA CATGATAGGA ATACTCTTT TACTTATTCA
1921 GCCGTGCATT CGAATTATAG ACAATCCAG AAGAAAATAC ATGGATGGTG CACATGTTA
1981 GTATCATGTA ATGTTCCGTG TAGGTTTCAT TGTAATACTC ATGCCTACCT CGCATGGTTG
2041 CTGTGAGGCA CCTATGACAG GACGTGGAA AGCATTGTG ACGGTAACGT GCACGTGTCAT
2101 TTGTAAATGC CATTGTACA GCCTCATTG TAAGCAGCAC TGCCCTCTG TTTGGGGAGA
2161 TGTAATGCTG GAAGATCTTA AGGACTACAT ACATTCTAGA GATGACAGTG TTGTTCAAAG
2221 ACAGCCTAGT AAGTAATTGG TAGAAATGCC CTTATAAAAA CCATTCTCTT GTCATCTACT
2281 GGGACTAGGG TTTTAAATAC AGCTTTAAA ACAAAAAACA GGGAAATAAA GCTTTCAAC
2341 TCAACCACCTT CTTTGTAAAGA CAAAAGTGA GTATCTGTG GCTTCCAGAA AGCTTACAGA
2401 TAAATGGGTT TCAAGCACAA GAATATGACT AGATTTCAGA AATTAATTAT TACAGGGAGC
2461 TATTGATCTA CTAGCATCAA ACAAAGGCAA GCTCTAAATTC CACAGGTAAT ACAATTTAGT
2521 GCAATTAAAG AAACACGGCT TGTATTTTA TGAGGGATT CTGCAGCTAG GGATTGTGAC
2581 TCCTAAATCC TCCTCTAAAA GAAGGCACCTT GCCATTAATC CTAATTCAAGT GCTATCCAGT
2641 TATAAATGGA ATCTTGAGAC AAAACCTAA CAAAGAAATA ACAGTAATGA TTTCTTAGC
2701 AGAACCGTA TTTGTACGCA CAACATTAA TCAAGGGCTA CAATTCAAGC ACTTTTATTC
2761 GTATCATTGG CCTCTTAGAT GATATAAGCA TGAGGTGGGG CCTGTAATAT TTTTTCTGA
2821 GTTTCTCTG CCCAAAAATA TAATATAGAA CTAATTGCTA ACTGACAAAT AAAGTTAATA
2881 GTTAAATCAT CTCCAAGGAA TGTTGCTAAT CCAAAGTATA ACACTATCAA TTTGTGAGGA
2941 TAATAATGG AATGCCATTA GTGTAGATGT CTGTGCCACA TCTGACACTG GAGTAGTGAT
3001 AACAAATAGC CCATCTCTAG ACTCTCGTGT TGTTATATAG ACCATTCAATT TGCCCTGAGCG
3061 TGGCACAGTT TTAAAAATAG TTCTCTTGAT TGATTTCTATA CAGAAGATGA CTGTGATCCA
3121 TGACATCTAA TAATGCCCTT TCTTTATCTG AGATGTCTAT TTTTCTAAAGC CAAACGTTT
3181 TCAGACTGCA GAATGTTCTT CCCAGATCAT TTGAAATTTC TGGCTGCCTT ACTGTTTAC
3241 AGATAGTTA AGACTATTTA AATTCTACT CACAATTGTA TCATCACACA CACACAAATC
3301 CTTGAATATC ATTGCCAGTG TCTTAGGTCA AATTACCTA AAGTGAATAC AGCCCATTCT
3361 CAATTATCCT TCACAATTAG ACGCAGGAAT GCTACTAGGA ATTGGAATCA AACAAATGCCA
3421 CCCCCAAGCGT AATTCTAGGC AGCAGTTCA GTTATACTCA ACCATGTCCT TCTGAGCTGT
3481 TAACAAGTGA TTCAATGGAC AAGTTCTCTT TTTGTTCCAT CTCCATTATT TCCCTGCTCTA
3541 ATGTATAGTG GGAGTGGTTG TGTAATGAAA GGACCACCAA AATAATAAA GGCAGCTAAT
3601 GGAAAGGAGA GACAAAGCA TGGTTAATAT ATATACTTAA TATTACCTCC AATGACTCGG
3661 GAATTGCCCTG TAAATTATTA TAGACAATAG ATTGCATGTC ATACTCCATT TGGTTCAACA
3721 CAACAACCTA TGTGTTATCA TTACAGCTTT GGCTGCTGTT AAAGAATCCA GCTCTCTATT
3781 TTGATAAAGA TAATCTTAA GCTGAGGCAA TGCTCCCTCC CCTATCTCTC TCTGTTAAT
3841 TTACCATAGA ATTAGGATGAA TTAGATTGAA ACACATGTT TATGTTTAA AACTACATT
3901 GCTTCATTAC TTTCATTTC CGACAACATC AACTAACAA GAGGCAGTGT TAAATATTT
3961 AAATGGTGCT ATAGCCAATG TATTGAAATG CTTGCACTGC TGGTTGTGTA TCATCAATAT
4021 GAACTTTTTA TCCAATGACT CAACTCTAAAT TACATCTAAAG TTAGACTTGC TCACGTTCA
4081 TTTGTACAGT TGTGTGTTGA CTTACTATGT TTTGAAAGTG GTGACTTCTA CCGAATGAGT
4141 GGAAGTTCCC ATTGTCAAAA AAAATAAGA CCTGCTTGCA GTATTCAATGT TGACAACAGA
4201 GTAAAAGAGA ATACTGTAAA GAATTACTGC AAATATTCC TGTGTTATGTT ATTGCCGTT
4261 GTTTGAAGAT ATTATAAAGG GTTAATTGTA TATTATATC ATGTGTTTA TCGTTTCCCC
4321 CTCATGTATC CAAGTAATT TTATTACAT ACAACTAAAT AAATGTTGTC CTCTTTGAAA

4381 AAAAAAAA AAAAAAAA AAAAAAAGG GGCGGCCGC

Fbh25466pat (4419 bases) -

Exhibit B to Accompany Declaration under
37 CFR §1.131 for US Appln. No. 10/074 547

Nucleic Acid Db Check - All Database Hits

```

gb|U81800|HSU81800 Homo sapiens monocarboxylate transporter... 384 8.4e-20 1
gb|U15685|GGU15685 Gallus gallus retinal epithelial membr... 376 4.0e-19 1
gb|AJ238706|DME238706 Drosophila melanogaster mRNA for ca... 292 3.9e-12 1
gb|AF178954|AF178954 Mus musculus monocarboxylate transpo... 280 4.0e-11 1
gb|AL009193|DMC103B4 Drosophila melanogaster cosmid clone... 292 2.4e-10 2
gb|AE003423|AE003423 Drosophila melanogaster genomic scaf... 292 1.3e-09 2
gb|AE003469|AE003469 Drosophila melanogaster genomic scaf... 271 3.5e-09 2
gb|AR083262|AR083262 Sequence 9 from patent US 5976837. 231 4.9e-07 1
>gb|U81800|HSU81800 Homo sapiens monocarboxylate transporter (MCT3) mRNA,
      complete cds.
Length = 1982

```

Plus Strand HSPs:

Score = 384 (108.6 bits), Expect = 8.4e-20, P = 8.4e-20

Identities = 288/552 (52%), Positives = 288/552 (52%), Strand = Plus / Plus

Query: 532 TGATGGCGGATGGGCTGGATGATGGTGCCTCCTCTTCTTGACATCCTCATCAT 591
 ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| ||||| |||||
Sbjct: 110 TGACGGGGGCTGGGGCTGGGGCTGGCTCTGGCTGTCTGGCTGATGACTGGCTGCTA 169

Query: 592 GGGCTCCCAGATGGCCCTGGGTGCTCAACGTGGAATGGCTGGAAGAATTCCACCAAGAG 651
 |
Sbjct: 178 GGGCTCCCAGATGGCCCTGGGTGCTCAACGTGGAATGGCTGGAAGAATTCCACCAAGAG 239

Query: 832 TACCTTTGGAGTCGCAGCTGGCTGGCAGCGGGATGCCCTACCTGCCAGCGGTGGTCAT 891
 || ||| || | ||| | | || ||| || || ||| || |||
 Sbjct: 410 CACCACTGGGTCTATCACGGGCTTCCGTTTCCGACTCACTTCCAGCCCTCCGCTCATGAT 468

[Back to orfanai.cgi](#)

Analysis of 25466 (510 aa)

No Signal Sequence
12 Transmembrane Domains
C-terminal

>25466
MTSHEDEDYGPDEPGPKDDEKTLRKHPNHIDCGWMAMMVLSSPFTVHLIMGSOMALCVANVET
WLEEPHSQRLGTAWSLSSLCMGTIVLCPGLPINTTCCGRDTAICGGLSNSLGVWLYL
ANHYPFLVPTFVGAGLDSGMAYLPAVVMWGRYPOPLRRAALGSLCSTTCGCPFLTMVLUKL
YLCABYVHPTTCAVLLCNCVGCALPDRBPKHGNPKNDMLRKEPLTWSLWTRVKGEDP
QQGRTBEKGRNGLMNEETPLCVDLCSLNCVGCALPDRBPKHGNPKNDMLRKEPLTWSLWTRVKGEDP
YSGYCFATSLPNTSYFVAPIFAPLWPSFVTFIPVHLPEIINVNLNSLQNDVPLTTSIA
VHFHGKLVGVIADALPCLSVWNVFLNPTLVLISLPLHMTYAGLAVIALCIGFS
YPSLMPVTTEDLUGVCIHOSARSKYVMDHGV
THIGILCPTCIRIIHOSARSKYVMDHGV

PSORT Prediction of Protein Localization

MITIDISC: discrimination of mitochondrial targeting sequences
R content: 0 Hyd Moment(75): 6.27
Hyd Moment(95): 6.41 G content: 0
D/B content: 2 S/T content: 2
Score: -6.39

Gavel: prediction of cleavage sites for mitochondrial preseq
cleavage site motif not found

NUCDISC: discrimination of nuclear localization signals
patd: none
pat7: PKDKTTL (5) at 16
bipartite: none
content of basic residues: 6.5%
NLS Score: -0.04

Final Results (k = 9/23):

66.7 %: endoplasmic reticulum
22.2 %: mitochondrial
11.1 %: nuclear

prediction for 29466 is end (k=9)			
Start	End	Feature	Seq
387	408	Leucine zipper pattern (PS00029)	LANFTLVLSI...LPLMHITYAGI

Signal Peptide Predictions for 25466

Method	Predict	Score	Mat@
SignalP (eukaryote)	MAYBE		56

Note: amino-terminal 70aa used for signal peptide prediction

Transmembrane Segments Predicted by MEMSAT

Start	End	Orient	Score
33	57	ins->out	3.1
73	94	out->ins	4.6
103	119	ins->out	2.5
126	149	out->ins	4.2
162	179	ins->out	2.0
191	209	out->ins	2.2
315	335	ins->out	4.5
352	374	out->ins	3.0
381	399	ins->out	3.8
406	428	out->ins	3.9
441	464	ins->out	4.4
472	490	out->ins	5.5

TM1
TM2
TM3
TM4
TM5
TM6
TM7
TM8
TM9
TM10
TM11
TM12

>25466
MTYSHEDIGYDPEGPKDKETLKPYPNIDGGWARRGVLSFFFVHILNGSONALGVLNVE
WLEEFHQSRGLTANVSSLNGITLIVGPIGLFINTCCGRQTAIIIGGLVNSLGWVLSAYA
ANHYHLFTPGVNRAGLGSQMYLPAPVQVGRYFOKRRAALAOQLSTTGTPGTFLMTVLLK
YCAEYGRMRNAMLIQGAVSLNLQVCGALMRPLSPGKPNPDGEKDVRGLPAHSTESVKST
QQQRTEEKDGGLNEETLCDLQAOPCQDAGHRKNCALRLIKTVSMLTRVRKGPEWD
YSGVFTASLPTNNRFVAFIPMAYFSVPVIFHLPFIVNLYNLSEONDWPPLTSIA
IWHFGKVILGVIAIDLPCISVNVNFTLNLPLMHTYAGLAVICALIGPSSG
VSIMPVVTEDLVGIHLANAYIIICANGISALLOPPFAGWIYDITQKYDFSPYICOLL
VHIGILFLLIQPCRIRIIEQSRRKYMGAHV

Transmembrane segments for presumed mature peptide

Start	End	Orient	Score
18	39	out->ins	4.6
48	64	ins->out	2.5
71	94	out->ins	4.2
107	124	ins->out	2.0
136	154	out->ins	2.2
260	280	ins->out	4.5
297	319	out->ins	3.0
326	344	ins->out	3.8
351	373	out->ins	3.9
386	409	ins->out	4.4
417	435	out->ins	5.5

>25466_mature
VLNVBIEEPHOSRGLTAWVSSLNGITLIVGPIGLFINTCCGRQTAIIIGGLVNSLGWV
LSAYAANHYHLFTPGVAAGLGSQMYLPAPVQVGRYFOKRRAALAOQLSTTGTPGTFLM
TVLLKYLCAEYGRMRNAMLIQGAVSLNLQVCGALMRPLSPGKPNPDGEKDVRGLPAHST
SVKSTQQQRTTEKDGGLNEETLCDLQAOPCQDAGHRKNCALRLIKTVSMLTRVRKG
GFEDMKNGYFGCTASLPTNNRFVAFIPMAYFSVPVIFHLPFIVNLYNLSEONDWPPL
TSIIAIWHFGKVILGVIAIDLPCISVNVNFTLNLPLMHTYAGLAVICALIGPSSG
ICGLYIMIGILFLLIQPCRIRIIEQSRRKYMGAHV

Prosite Pattern Matches for 25466

Prosite version: Release 12.2 of February 1995

>PS00001|PDOC00001|ASN_GLYCOSYLATION N-glycosylation site.

Query: 345 NLSE 348

Query: 389 NPTL 392

>PS00005|PDOC00005|PKC_PHOSPHO_SITE Protein kinase C phosphorylation site.

Query: 21 TLK 23

Query: 236 SVK 238

Query: 290 TMR 292

Query: 312 TNR 314

Query: 467 TQK 469

Query: 500 SRR 502

>PS00001|PDOC00006|CK2_PHOSPHO_SITE Casein kinase II phosphorylation site.

Query: 3 TSHE 6

Query: 258 TLCD 261

>PS00007|PDOC00007|TYR_PHOSPHO_SITE Tyrosine kinase phosphorylation site.

Query: 294 RKGPEDWY 301

>PS00008|PDOC00008|MYRISTYL N-myristoylation site.

Query: 49 GSQMAL 54

Query: 91 GLFINT 96

Query: 98 GCRQTA 103

Query: 106 GGLVNS 111

Query: 131 GVAAGL 136

Query: 137 GSGMAY 142

Query: 162 GLSTTC 167

Query: 251 GGIGME 256

Query: 443 GIIICA 448

>PS00029|PDOC00029|LEUCINE_ZIPPER Leucine zipper pattern.

Query: 387 LANPTLVLSIPLILPLMHTYAGL 408

>PS00141|PDOC00299|MICROBODIES_CTER Microbodies C-terminal targeting signal.

Query: 508 AHV 510

Protein Family / Domain Matches, HMMer version 2


```

25466 418 SSGVPSLMPVVTEDLVGIEHHLANAYGIIICANGISALLGPPPAWYDIT 467
      glalgggyflvfragllvlfillffffvPETKGrtLeeieelf<-
      y f ++ + +1 + ++E++ + ++e+ + +
25466 468 Q---KVDPSFYI-CGLLYMIGILFLLIQPCIRIEQSRRKY 504

// Searching for complete domains in SMART
hmmfam - search a single seq against HMM database
HMMER 2.1.1 (Dec 1998)
Copyright (C) 1992-1998 Washington University School of Medicine
HMMER is freely distributed under the GNU General Public License (GPL).
-----
HMM file:          /ddm/robison/smrt/smrt.all.hmm
Sequence file:    /prod/ddm/wspace/orfana1/os-script.8673.seq
-----
Query: 25466

Scores for sequence family classification (score includes all domains):
Model  Description          Score  E-value  N
-----  -----
[no hits above thresholds]

Parsed for domains:
Model  Domain  seq-f seq-t  hmm-f hmm-t  score  E-value
-----  -----  -----  -----  -----  -----  -----
[no hits above thresholds]

Alignments of top-scoring domains:
[no hits above thresholds]
//
```

ProDom Matches

ProdomId	Start	End	Description	Score
View Prodom 38068 [Boxer] [Showing match] [G65]	345	461	p99.2 (2) O06142(1) O30820(1) // PROTEIN ADENYLYL CYCLASE	73
View Prodom 102799 [Boxer] [Showing match] [G65]	393	467	p99.2 (1) YU45_MYCTU // HYPOTHETICAL 41.9 KD PROTEIN CY339.45C TRANSMEMBRANE	80
View Prodom 84838 [Boxer] [Showing match] [G65]	440	494	p99.2 (1) Q23113_CAEEL // SIMILAR TO SYNAPTIC VESICLE AMINE TRANSPORTER	74
ProdomId	Start	End	Description	Score

View Prodom 84838

```

>84838 p99.2 (1) Q23113_CAEEL // SIMILAR TO SYNAPTIC VESICLE AMINE TRANSPORTER
Length = 85
Score = 74 (31.1 bits), Expect = 0.053, P = 0.052
Identities = 18/57 (31%), Positives = 31/57 (54%)
Query: 440 NAYGIIICANGISALLGPPPAWYDITQKVPDFSPYICGLYMI--GILFLLIQPCI 494
        *M CI + + L+GPPA G +Y + E + F + LL + I P+++OP I
Sbjct: 14 SAMGIAIAGLGLGVLPVPPYGGLLYQMSRK-BLPPVLLALALPDGSIQPMVLQPKI 69

```

View Prodom 102799

```

>102799 p99.2 (1) YU45_MYCTU // HYPOTHETICAL 41.9 KD PROTEIN CY339.45C
TRANSMEMBRANE
Length = 155
Score = 80 (33.2 bits), Expect = 0.55, P = 0.43
Identities = 25/78 (32%), Positives = 37/78 (47%)
Query: 193 VLSIPLPLMHT-YAGLAVICALI-GFSSGYF-SLMPVVTEDLVGIEHHLANAYGIIICAN 449
        +LSI ++ T + VI L+ G + G S + V DLV A+Y+G+
Sbjct: 48 ILSILVVLFAPTDNVIMVIGTLVWCAAVGQESTLRGVVADLVASPRRASAYGVPAAGL 107
Query: 450 GISALLGPPFAWYDIT 467
        G + G GW+YDI+
Sbjct: 108 GAATAGGGALIGNLYDIS 125

```

View Prodom 38068

```

>38068 p99.2 (2) O06142(1) O30820(1) // PROTEIN ADENYLYL CYCLASE
Length = 218
Score = 73 (30.8 bits), Expect = 8.1, P = 1.0
http://tango.mpi.com/seqana/orfana/25466.4670.html

```

Identities = 41/135 (30%), Positives = 62/135 (45%)

Query: 345 NLSEQNDVFPPLTSIIAIVHI--PGKVILGVIADLPCISVWRNPLLANTLV--LSIP--- 397
 +++ + V +T+ +A+V P + L + I + S + N V F P + V L P
Sbjct: 15 SVARRQRVLTITAWLAVVVTGSFALQLATGAGGWYIALINVPTAVTPAIVPPLLHRFCGL 74

Query: 398 ILPLMHTVAGLAVICAL-IGFSSG-----YPSLMPVVTEDLGIEHMLANAYGIIICAN 449
 + PL T+ G A + I G+ G +P + + LGIEH A A G+ A
Sbjct: 75 VAPL--TPIGTAVVAIPIAIGWDVGTDAGAQFFFVAAAALVVLUVGIENTALAVGLAAVA 132

Query: 450 G-ISAL--LGPPPFAG 461
 G + AL L PP G
Sbjct: 133 GLVIALEFLVPPDAG 147

CLUSTAL W (1.74) multiple sequence alignment

**Exhibit D to Accompany Declaration under
37 CFR §1.131 for US Appln. No. 10/074,547**