Lezione 10

- Semantica: Interpretazione dei termini chiusi
- Semantica: Interpretazione degli enunciati
- Le quattro forme aristoteliche
- Traduzione passo-passo

Semantica: Interpretazione dei termini chiusi

L-strutture

- **Def:** Sia L un linguaggio (dato da C(L), F(L), P(L)).
 - Allora una L-struttura è una coppia (U,I), dove
 - U è un insieme non vuoto (universo del discorso).
 - l è la funzione «interpretazione», definita come segue:
 - Per ogni $c \in C(L)$, $I(c) \in U$ (I(c) è un elemento di U).
 - Per ogni simbolo di funzione n-ario f ∈ F(L),
 I(f): Uⁿ→U (I(f) è una funzione n-aria su U).
 - Per ogni predicato n-ario P ∈ P(L),
 I(P) ⊆ Uⁿ (I(P) è una relazione n-aria su U).

Enunciati e termini chiusi su L

• Dato un linguaggio L, il nostro interesse precipuo è definire la semantica degli enunciati (o proposizioni) su L.

 Per «ragioni tecniche» dovute alla presenza di variabili libere nelle fbf che compongono gli enunciati, una volta che fissiamo S = (U,I), al posto di L consideriamo l'ampliamento L_U, determinato da

$$C(L_U) = C(L) \cup \{c_a : a \in U\}, F(L_U) = F(L), P(L_U) = P(L).$$

 Per dare la semantica degli enunciati su L_U, ci basta dare prima la semantica dei termini chiusi (o ground) su L_U.

Termini chiusi su Lu

Sia L un linguaggio. Sia S = (U,I) una L-struttura.

- L'insieme GT(L_U) dei termini chiusi di L_U è definito induttivamente, come segue:
 - Ogni variabile x è un termine di L. ← rimossa
 - Ogni costante c in $C(L_U) = C(L) \cup \{c_a : a \in U\}$, è un termine chiuso di L_U .
 - Se f è un simbolo di funzione n-ario in F(L) e t_1 , t_2 , ..., t_n sono termini chiusi di L_U , allora anche $f(t_1, t_2, ..., t_n)$ è un termine chiuso di L_U .
 - Null'altro è un termine chiuso di L_{II}.

Interpretazione dei termini chiusi

Sia L un linguaggio, e sia S = (U,I) una L-struttura.

Allora, l'interpretazione I(t) di ogni termine $t \in GT(L_U)$, è data induttivamente:

• Per ogni $c \in C(L)$, I(c) è già definita.

• Per ogni $a \in U$, si pone $I(c_a) := a$.

• Se $f \in F(L)$, e t_1 , t_2 , ..., $t_n \in GT(L_U)$, allora $I(f(t_1, t_2, ..., t_n)) := (I(f))(I(t_1), I(t_2), ..., I(t_n)).$

Interpretazione dei termini chiusi

Sia L un linguaggio, e sia S = (U,I) una L-struttura.

 La definizione induttiva di I(t) garantisce che per ogni termine t ∈ GT(L_{II}):

$$I(t) \in U$$
.

• t denota l'oggetto I(t).

Si consideri questo linguaggio L adeguato al contesto dell'Aritmetica:

- $C(L) = \{0, 1\},$
- $F(L) = \{+, \times\}$ con entrambi i simboli di arità 2.
- Sia N = (\mathbb{N} ,I) una L-struttura ($\mathbb{N} = \{0,1,2,...\}$, proprio i numeri naturali), dove:
- I(0) = 0, I(1) = 1, $I(+) = \{(a,b,a+b) : a,b \in \mathbb{N}\}$, $I(\times) = \{(a,b,ab) : a,b \in \mathbb{N}\}$.
- $(1+0) \times (1+(1+1))$ è un termine ground (\in GT(L)).
 - $I((1+0)\times(1+(1+1)))=3$ $(3\in\mathbb{N}).$
- $c_{12} + (c_{15} \times c_2)$ è un termine ground ($\in GT(L_N)$).
 - $I(c_{12} + (c_{15} \times c_2)) = 42 \quad (42 \in \mathbb{N}).$

Si consideri questo linguaggio L adeguato al contesto dell'Aritmetica:

- $C(L) = \{0, 1\},$
- $F(L) = \{+, \times\}$ con entrambi i simboli di arità 2.
- Sia V = ({pippo, pluto, topolino}, J) una L-struttura, dove:
- $J(0) = pippo, J(1) = pluto, J(+) = \{(a,b,a) : a,b \in V\}, J(\times) = \{(a,b,b) : a,b \in V\}.$
- $(1+0) \times (1+(1+1))$ è un termine ground (\in GT(L)).
 - $J((1+0)\times(1+(1+1))) = pluto (pluto \in V).$
- $c_{pippo} + (c_{pluto} \times c_{topolino})$ è un termine ground ($\in GT(L_V)$).
 - $J(c_{pippo} + (c_{pluto} \times c_{topolino})) = pippo \quad (pippo \in V).$

Semantica: Interpretazione degli enunciati

Enunciati su L_U

Sia L un linguaggio, e sia S = (U,I) una L-struttura.

L'insieme $E(L_U)$ degli enunciati su L_U è l'insieme delle fbf su L_U prive di variabili libere: $E(L_U) = \{A \in FBF(L_U) : libere(A) = \emptyset\}$.

Se A e B sono enunciati $(A,B \in E(L_U)$, cioè libere $(A) = libere(B) = \emptyset$) allora anche L, $\neg A$, $A \land B$, $A \lor B$, $A \to B$, $A \leftrightarrow B$ lo sono $(\in E(L_U))$.

Se A è un enunciato, e x una variabile, anche $\forall x A \text{ ed } \exists x A \text{ lo sono:}$ libere($\forall x A$) = libere($\exists x A$) = libere(A) \ $\{x\} = \emptyset \setminus \{x\} = \emptyset$.

Il caso interessante è quando A è una fbf con libere(A) $\subseteq \{x\}$. Allora $\forall x A$ ed $\exists x A$ sono enunciati: libere($\forall x A$) = libere($\exists x A$) = libere(A) \ $\{x\} = \emptyset$.

Sia L un linguaggio, e sia S = (U,I) una L-struttura.

Allora, l'interpretazione I(A) di ogni enunciato $A \in E(L_U)$, è data induttivamente:

```
• Se P \in P(L), e t_1, t_2, ..., t_n \in GT(L_U), allora:

I(P(t_1, t_2, ..., t_n)) := T \text{ se } (I(t_1), I(t_2), ..., I(t_n)) \in I(P);
I(P(t_1, t_2, ..., t_n)) := F \text{ se } (I(t_1), I(t_2), ..., I(t_n)) \notin I(P).
```

Sia L un linguaggio, e sia S = (U,I) una L-struttura.

Se A e B sono enunciati $(A,B \in E(L_U))$ allora:

- I(⊥) := F.
- $I(\neg A) := T \text{ se } I(A) = F; I(\neg A) := F \text{ se } I(A) = T.$
- $I(A \land B) := T \text{ se } I(A) = T \text{ e } I(B) = T; I(A \land B) := F \text{ altrimenti.}$
- $I(A \lor B) := T \text{ se } I(A) = T \text{ o } I(B) = T; I(A \lor B) := F \text{ altrimenti.}$
- $I(A \rightarrow B) := T \text{ se } I(A) = F \text{ o } I(B) = T; I(A \rightarrow B) := F \text{ altrimenti.}$
- $I(A \leftrightarrow B) := T \text{ se } I(A) = I(B); I(A \leftrightarrow B) := F \text{ altrimenti.}$

- Sia L un linguaggio, e sia S = (U,I) una L-struttura.
 - Sia A una formula $(A \in FBF(L_U))$.
 - Sia x una variabile
 - Sia c una costante ($c \in C(L_U)$).
 - Allora con la scrittura A[x:c] intendiamo la formula ottenuta rimpiazzando in A, ogni occorrenza libera di x, con c.
 - $A[x:c] \in FBF(L_{\square})$.
 - x non occorre libera in A[x:c].
 - Se libere(A) $\subseteq \{x\}$, allora A[x:c] è un enunciato, vale a dire che A[x:c] $\in E(L_{\square})$.

Sia L un linguaggio, e sia S = (U,I) una L-struttura.

Se $\forall x \land a$ è un enunciato (libere($\forall x \land a$)= \emptyset , cioè libere($\land a$) $\subseteq \{x\}$) allora:

- I($\forall x A$) := T se per ogni $a \in U$, I(A[x:c_a]) = T;
- I($\forall x A$) := F altrimenti.

Se $\exists x \ A \ e$ un enunciato (libere($\exists \ x \ A$)= \emptyset , cioè, libere(A) \subseteq {x}) allora:

- I($\exists x A$) := T se per almeno un a \in U, I(A[x:c_a]) = T;
- I($\exists x A$) := F altrimenti.

Remember

- Quantified sentences make claims about some non-empty intended domain of discourse.
- \circ A sentence of the form $\forall x S(x)$ is true if and only if the wff S(x) is satisfied by every object in the domain of discourse.
- \circ A sentence of the form $\exists x S(x)$ is true if and only if the wff S(x) is satisfied by some object in the domain of discourse.

Sia L un linguaggio, e sia S = (U,I) una L-struttura.

• La definizione induttiva di I(A) garantisce che per ogni enunciato $A \in E(L_{\square})$:

$$I(A) \in \{ F, T \}.$$

• A è vera nella struttura S = (U,I), sse I(A) = T.

- In particolare, siamo interessati solo agli enunciati $A \in E(L)$:
 - Li possiamo scrivere per ogni L-struttura;
 - Gli enunciati in $E(L_U)$ sono solo strumentali a dare la semantica di quelli in E(L).

Sia L un linguaggio, e sia S = (U,I) una L-struttura.

• La definizione induttiva di I(A) garantisce che per ogni enunciato $A \in E(L_{\square})$:

$$I(A) \in \{ F, T \}.$$

• A è vera nella struttura S = (U,I), sse I(A) = T.

• In ogni fissata L-struttura S, ogni L-enunciato ha un preciso valore di verità: o è vero oppure è falso.

Vista «concreta»: un mondo dei blocchi

∃x Tet(x) è vera?

- $Tet(c_0) = Tet(x)[x:c_0]$ è vera.
- Infatti $I(c_0) = a_0 \in a_0 \in I(Tet)$.

∃x Tet(x) è vera perché è soddisfatta da almeno un oggetto di U.

«Vista astratta»: L-struttura: S = (U,I), dove: $U = \{ a_0, a_1 \},$ $I(a) = a_0$, $I(b) = a_0$, $I(c_0) = a_0, I(c_1) = a_1,$ $I(Tet) = \{a_0\},\$ $I(Cube) = \{a_1\},\$ $I(Dodec) = \emptyset$, $I(BackOf) = \{ (a_1, a_0) \},$ $I(FrontOf) = \{ (a_0, a_1) \},$ I(SameShape) = $\{(a_0,a_0),(a_1,a_1)\},\$

Vista «concreta»: un mondo dei blocchi

∃x BackOf(x,a) è vera?

- BackOf(c_1 ,a) = BackOf(x,a)[x: c_1] è vera.
- Infatti $I(c_1) = a_1$, $I(a) = a_0$ e $(a_1, a_0) \in I(BackOf)$.

∃x BackOf(x,a) è vera perché è soddisfatta da almeno un oggetto di U.

«Vista astratta»: L-struttura: S = (U,I), dove: $U = \{ a_0, a_1 \},$ $I(a) = a_0$, $I(b) = a_0$, $I(c_0) = a_0, I(c_1) = a_1,$ $I(Tet) = \{a_0\},\$ $I(Cube) = \{a_1\},\$ $I(Dodec) = \emptyset$, $I(BackOf) = \{ (a_1, a_0) \},$ $I(FrontOf) = \{ (a_0, a_1) \},$ I(SameShape) = $\{(a_0,a_0),(a_1,a_1)\},\$

Vista «concreta»: un mondo dei blocchi

 $\forall x \; BackOf(x,a) \; e \; vera?$

- BackOf(c₁,a) = BackOf(x,a)[x:c₁] è vera;
- BackOf(c_0 ,a) = BackOf(x,a)[x: c_0] è falsa.

∀x BackOf(x,a) è falsa perché non è soddisfatta da tutti gli oggetti di U.

«Vista astratta»: L-struttura: S = (U,I), dove: $U = \{ a_0, a_1 \},$ $I(a) = a_0$, $I(b) = a_0$, $I(c_0) = a_0, I(c_1) = a_1,$ $I(Tet) = \{a_0\},\$ $I(Cube) = \{a_1\},\$ $I(Dodec) = \emptyset$, $I(BackOf) = \{ (a_1, a_0) \},$ $I(FrontOf) = \{ (a_0, a_1) \},$ I(SameShape) = $\{(a_0,a_0),(a_1,a_1)\},\$

Esercizio: completare.


```
I(SameSize) = ?
I(RightOf) = ?
I(LeftOf) = ?
I(Larger) = ?
I(Smaller) = ?
```

```
\forall x \text{ SameSize}(x, b) \text{ è vera?}

\forall x \exists y \text{ SameSize}(x, y) \text{ è vera?}

\forall x \forall y \text{ SameSize}(x, y) \text{ è vera?}

\forall x \text{ SameSize}(x, x) \text{ è vera?}
```

Interpretazione delle formule aperte

Sia L un linguaggio, e sia S = (U,I) una L-struttura.

Se fossimo proprio interessati ad attribuire un valore di verità a una formula aperta $A \in FBF(L)$?

Si usa, per definizione, la chiusura universale di A:

• I(A) := I(
$$\forall x_1 \forall x_2 ... \forall x_n A$$
) dove libere(A) = { $x_1, x_2, ..., x_n$ }.

Nota: A è vera in S (cioè I(A) = T) sse \neg A è insoddisfacibile, cioè non esiste (a_1 , a_2 ,..., a_n) \in Uⁿ tale che \neg A(c_1 , c_2 ,..., c_n) sia vera (dove c_i è il «nome nuovo» di a_i).

Le quattro forme aristoteliche

Le quattro forme aristoteliche

Le forme aristoteliche sono di fondamentale importanza nella traduzione dal linguaggio naturale:

Ogni P è Q
Qualche P è Q
Nessun P è Q
Qualche P non è Q

$$\forall x (P(x) \rightarrow Q(x))$$

 $\exists x (P(x) \land Q(x))$
 $\forall x (P(x) \rightarrow \neg Q(x))$
 $\exists x (P(x) \land \neg Q(x))$

Le quattro forme aristoteliche

Remember

The four Aristotelian forms are translated as follows:

All P's are Q's.
$$\forall x (P(x) \rightarrow Q(x))$$

Some P's are Q's. $\exists x (P(x) \land Q(x))$
No P's are Q's. $\forall x (P(x) \rightarrow \neg Q(x))$
Some P's are not Q's. $\exists x (P(x) \land \neg Q(x))$

Esempio: Forma 1.

• Tutti i cubi sono piccoli: vera (nel mondo in esempio)

(Hei Hondo III esemplo)

I($\forall x$ (Cube(x) \rightarrow Small(x))) = ? Guardo solo i cubi:

- I(Cube(c_0) \rightarrow Small(c_0)) = T
- I(Cube(c_1) \rightarrow Small(c_1)) = T
- I(Cube(c_2) \rightarrow Small(c_2)) = T Gli altri non stiamo neanche a considerarli, l'antecedente è falso e quindi l'implicazione vera.

Spiegate perché la traduzione $\forall x$ (Cube(x) \land Small(x)) è sbagliata.

Esempio: Forma 1.

- Tutti i cubi sono piccoli:
- Traduzione: $\forall x (Cube(x) \rightarrow Small(x))$.
- Verifica della traduzione con l'interpretazione:
- S = (U,I), con $U = \{a_0, a_1, a_2, a_3, a_4\}$.
- I($\forall x (Cube(x) \rightarrow Small(x))) = T$ se e solo se
 - Per ogni a_i ∈ U:
 - I ((Cube(x) \rightarrow Small(x)) [x:c_i]) = T.
 - a_0 : I(Cube(c_0) \rightarrow Small(c_0)) = T,
 - a_1 : I(Cube(c_1) \rightarrow Small(c_1)) = T,
 - a_2 : I(Cube(c_2) \rightarrow Small(c_2)) = T,
 - a_3 : I(Cube(c_3) \rightarrow Small(c_3)) = T,
 - a_4 : I(Cube(c_4) \rightarrow Small(c_4)) = T.
- I($\forall x (Cube(x) \rightarrow Small(x))) = T, e dunque:$
- $\forall x (Cube(x) \rightarrow Small(x))$ è vera in S.

Esempio: Forma 1.

- Tutti i cubi sono piccoli:
- Traduzione (errata): $\forall x$ (Cube(x) \land Small(x)).
- Verifica della traduzione con l'interpretazione:
- S = (U,I), con U = $\{a_0, a_1, a_2, a_3, a_4\}$.
- I($\forall x$ (Cube(x) \land Small(x))) = T se e solo se
 - Per ogni a_i ∈ U:
 - I ((Cube(x) \land Small(x)) [x:c_i]) = T.
 - a_0 : I(Cube(c_0) \wedge Small(c_0)) = T,
 - a_1 : I(Cube(c_1) \wedge Small(c_1)) = T,
 - a_2 : I(Cube(c_2) \wedge Small(c_2)) = T,
 - a_3 : I(Cube(c_3) \wedge Small(c_3)) = F,
 - a_4 : I(Cube(c_4) \wedge Small(c_4)) = F.
- I($\forall x$ (Cube(x) \land Small(x))) = F, e dunque:
- $\forall x$ (Cube(x) \land Small(x)) è falsa in S.

Esempio: Forma 2.

• Qualche cubo è piccolo: vera

(nel mondo in esempio)

I($\exists x (Cube(x) \land Small(x))) = ?$ Guardo che ci sia almeno un cubo che sia anche piccolo:

• I (Cube(c_1) \wedge Small(c_1)) = T Se c'è, il risultato è T, (se non ce ne sono il risultato è F)

Spiegate perché la traduzione $\exists x (Cube(x) \rightarrow Small(x))$ è sbagliata.

Esempio: Forma 2.

• Qualche cubo è piccolo: falsa (nel mondo in esempio)


```
I(\exists x (Cube(x) \land Small(x))) = ?
```

- I(Cube(c_0) \wedge Small(c_0)) = F
- I (Cube(c_1) \wedge Small(c_1)) = F
- I (Cube(c_2) \land Small(c_2)) = F Dunque il risultato è F.

```
I (\exists x (Cube(x) \rightarrow Small(x))) = ?
```

• I(Cube(c_0) \rightarrow Small(c_0)) = T Dunque il risultato è T. (Questo mostra che la traduzione $\exists x$ (Cube(x) \rightarrow Small(x)) è errata).

Esempio: Forma 3.

• Nessun cubo è grande: vera (nel mondo in esempio)

I ($\forall x$ (Cube(x) $\rightarrow \neg$ Large (x))) = ? Guardo solo i cubi, nessuno deve essere grande:

- I (Cube(c_0) $\rightarrow \neg Large(c_0)$) = T
- I (Cube(c_1) $\rightarrow \neg Large(c_1)$) = T
- I (Cube(c_2) $\rightarrow \neg Large(c_2)$) = T Dunque il risultato è T.

Spiegate perché la traduzione $\forall x$ (Cube(x) $\land \neg Large(x)$) è sbagliata. La traduzione $\neg \exists x (Cube(x) \land Large(x))$ è corretta?

Esempio: Forma 4.

• Qualche cubo non è piccolo: vera (nel mondo in esempio)

I($\exists x (Cube(x) \land \neg Small(x))) = ?$ Guardo che ci sia almeno un cubo e che non sia piccolo:

• I (Cube(c_0) $\land \neg Small(c_0)$) = T Se c'è, il risultato è T; se non ce ne sono il risultato è F.

Spiegate perché la traduzione $\exists x (Cube(x) \rightarrow \neg Small(x))$ è sbagliata.

Esempio: Nella struttura N = (N, I):

- L un linguaggio adeguato per l'Aritmetica.
- $C(L) = \{0\}, F(L) = \{s/1, +/2, \times/2\},$
- P(L) = {=/2, Even/1, Odd/1}.
- N = (\mathbb{N} , I), dove \mathbb{N} = {0,1,2,...}, e
- I(0) = 0,
- $I(s) = \{(a, a+1) : a \in \mathbb{N}\}, I(+) = \{(a,b,a+b) : a,b \in \mathbb{N}\}, I(\times) = \{(a,b,ab) : a,b \in \mathbb{N}\}, I(x) = \{(a,b,ab) : a,b \in \mathbb{$
- $I(=) = \{(a,a) : a \in \mathbb{N}\}, \leftarrow$
- I(Even) = {a : a divisibile per 2},
- I(Odd) = {a : a non divisibile per 2}.

con «simbolo/n» intediamo che simbolo è n-ario.

NB: questa è l'interpretazione fissata di «=» in ogni struttura.

 $\forall x \text{ (Even(x)} \rightarrow \text{Odd(s(x)))}$: Cosa traduce questo enunciato? E' vero o falso in N?

Esempio: Nella struttura N = (N, I):

- L un linguaggio adeguato per l'Aritmetica.
- $C(L) = \{0\}, F(L) = \{s/1, +/2, \times/2\},$
- P(L) = {=/2, Even/1, Odd/1}.
- N = (\mathbb{N} , I), dove \mathbb{N} = {0,1,2,...}, e
- I(0) = 0,
- $I(s) = \{(a, a+1) : a \in \mathbb{N}\}, I(+) = \{(a,b,a+b) : a,b \in \mathbb{N}\}, I(\times) = \{(a,b,ab) : a,b \in \mathbb{N}\}, I(x) = \{(a,b,ab) : a,b \in \mathbb{$
- $I(=) = \{(a,a) : a \in \mathbb{N}\}, \leftarrow$
- I(Even) = {a : a divisibile per 2},
- I(Odd) = {a : a non divisibile per 2}.

con «simbolo/n» intediamo che simbolo è n-ario.

NB: questa è l'interpretazione fissata di «=» in ogni struttura.

I($\forall x \text{ (Even(x))} \rightarrow \text{Odd(s(x))})) = T$ se e solo se: Per ogni $n \in \mathbb{N}$: I(Even(x) $\rightarrow \text{Odd(s(x))}[x:c_n]) = T$:

Esempio: Nella struttura N = (N, I):

- L un linguaggio adeguato per l'Aritmetica.
- $C(L) = \{0\}, F(L) = \{s/1, +/2, \times/2\},$
- P(L) = {=/2, Even/1, Odd/1}.
- N = (\mathbb{N} , I), dove \mathbb{N} = {0,1,2,...}, e
- I(0) = 0,
- $I(s) = \{(a, a+1) : a \in \mathbb{N}\}, I(+) = \{(a,b,a+b) : a,b \in \mathbb{N}\}, I(\times) = \{(a,b,ab) : a,b \in \mathbb{N}\}, I(x) = \{(a,b,ab) : a,b \in \mathbb{$
- $I(=) = \{(a,a) : a \in \mathbb{N}\}, \leftarrow$
- I(Even) = {a : a divisibile per 2},
- I(Odd) = {a : a non divisibile per 2}.

con «simbolo/n» intediamo che simbolo è n-ario.

NB: questa è l'interpretazione fissata di «=» in ogni struttura.

I($\forall x \text{ (Even(x))} \rightarrow \text{Odd(s(x))}) = T$ se e solo se: Per ogni $n \in \mathbb{N}$: I(Even(c_n) $\rightarrow \text{Odd(s(}c_n)))= T$:

- L un linguaggio adeguato per l'Aritmetica.
- $C(L) = \{0\}, F(L) = \{s/1, +/2, \times/2\},$
- P(L) = {=/2, Even/1, Odd/1}.
- N = (\mathbb{N} , I), dove \mathbb{N} = {0,1,2,...}, e
- I(0) = 0,
- $I(s) = \{(a, a+1) : a \in \mathbb{N}\}, I(+) = \{(a,b,a+b) : a,b \in \mathbb{N}\}, I(\times) = \{(a,b,ab) : a,b \in \mathbb{N}\}, I(x) = \{(a,b,ab) : a,b \in \mathbb{$
- $I(=) = \{(a,a) : a \in \mathbb{N}\}, \leftarrow$
- I(Even) = {a : a divisibile per 2},
- I(Odd) = {a : a non divisibile per 2}.

con «simbolo/n» intediamo che simbolo è n-ario.

NB: questa è l'interpretazione fissata di «=» in ogni struttura.

I($\forall x \text{ (Even(x))} \rightarrow \text{Odd(s(x))}) = T$ se e solo se: Per ogni $n \in \mathbb{N}$: I(Even(c_n) $\rightarrow \text{Odd(c}_{n+1}) = T$:

- L un linguaggio adeguato per l'Aritmetica.
- $C(L) = \{0\}, F(L) = \{s/1, +/2, \times/2\},$
- P(L) = {=/2, Even/1, Odd/1}.
- N = (\mathbb{N}, \mathbb{I}) , dove $\mathbb{N} = \{0, 1, 2, ...\}$, e
- I(0) = 0,
- $I(s) = \{(a, a+1) : a \in \mathbb{N}\}, I(+) = \{(a,b,a+b) : a,b \in \mathbb{N}\}, I(\times) = \{(a,b,ab) : a,b \in \mathbb{N}\}, I(x) = \{(a,b,ab) : a,b \in \mathbb{$
- $I(=) = \{(a,a) : a \in \mathbb{N}\}, \leftarrow$
- I(Even) = {a : a divisibile per 2},
- I(Odd) = {a : a non divisibile per 2}.

con «simbolo/n» intediamo che simbolo è n-ario.

NB: questa è l'interpretazione fissata di «=» in ogni struttura.

I($\forall x \text{ (Even(x))} \rightarrow \text{Odd(s(x))}) = T$ se e solo se: Per ogni $n \in \mathbb{N}$: I(Even(c_n)) = F o I(Odd(c_{n+1})) = T:

- L un linguaggio adeguato per l'Aritmetica.
- $C(L) = \{0\}, F(L) = \{s/1, +/2, \times/2\},$
- P(L) = {=/2, Even/1, Odd/1}.
- N = (\mathbb{N} , I), dove \mathbb{N} = {0,1,2,...}, e
- I(0) = 0,
- $I(s) = \{(a, a+1) : a \in \mathbb{N}\}, I(+) = \{(a,b,a+b) : a,b \in \mathbb{N}\}, I(\times) = \{(a,b,ab) : a,b \in \mathbb{N}\}, I(x) = \{(a,b,ab) : a,b \in \mathbb{$
- $I(=) = \{(a,a) : a \in \mathbb{N}\}, \leftarrow$
- I(Even) = {a : a divisibile per 2},
- I(Odd) = {a : a non divisibile per 2}.

con «simbolo/n» intediamo che simbolo è n-ario.

NB: questa è l'interpretazione fissata di «=» in ogni struttura.

I($\forall x \text{ (Even(x))} \rightarrow \text{Odd(s(x))}) = T$ se e solo se: Per ogni $n \in \mathbb{N}$: $I(c_n) \notin I(\text{Even})$ o $I(c_{n+1}) \in I(\text{Odd})$:

- L un linguaggio adeguato per l'Aritmetica.
- $C(L) = \{0\}, F(L) = \{s/1, +/2, \times/2\},$
- P(L) = {=/2, Even/1, Odd/1}.
- N = (\mathbb{N} , I), dove \mathbb{N} = {0,1,2,...}, e
- I(0) = 0,
- $I(s) = \{(a, a+1) : a \in \mathbb{N}\}, I(+) = \{(a,b,a+b) : a,b \in \mathbb{N}\}, I(\times) = \{(a,b,ab) : a,b \in \mathbb{N}\}, I(x) = \{(a,b,ab) : a,b \in \mathbb{$
- $I(=) = \{(a,a) : a \in \mathbb{N}\}, \leftarrow$
- I(Even) = {a : a divisibile per 2},
- I(Odd) = {a : a non divisibile per 2}.

con «simbolo/n» intediamo che simbolo è n-ario.

NB: questa è l'interpretazione fissata di «=» in ogni struttura.

I($\forall x \text{ (Even(x))} \rightarrow \text{Odd(s(x)))}) = T$ se e solo se: Per ogni $n \in \mathbb{N}$: $n \notin \{a : a \text{ divisibile per 2}\}$ o $n+1 \in \{a : a \text{ non divisibile per 2}\}$.

- L un linguaggio adeguato per l'Aritmetica.
- $C(L) = \{0\}, F(L) = \{s/1, +/2, \times/2\},$
- P(L) = {=/2, Even/1, Odd/1}.
- N = (\mathbb{N} , I), dove \mathbb{N} = {0,1,2,...}, e
- I(0) = 0,
- $I(s) = \{(a, a+1) : a \in \mathbb{N}\}, I(+) = \{(a,b,a+b) : a,b \in \mathbb{N}\}, I(\times) = \{(a,b,ab) : a,b \in \mathbb{N}\}, I(x) = \{(a,b,ab) : a,b \in \mathbb{$
- $I(=) = \{(a,a) : a \in \mathbb{N}\}, \leftarrow$
- I(Even) = {a : a divisibile per 2},
- I(Odd) = {a : a non divisibile per 2}.

con «simbolo/n» intediamo che simbolo è n-ario.

NB: questa è l'interpretazione fissata di «=» in ogni struttura.

I($\forall x \text{ (Even(x))} \rightarrow \text{Odd(s(x))})$) = T se e solo se: Per ogni $n \in \mathbb{N}$: n non è divisibile per 2 o n+1 non è divisibile per 2.

Rivediamo i passaggi:

```
\forall x \text{ (Even(x)} \rightarrow \text{Odd(s(x))) vera in } N = (\mathbb{N}, I) \text{ se e solo se}
I( \forall x (Even(x) \rightarrow Odd(s(x))) ) = T se e solo se:
                                         I( Even(x) \rightarrow Odd(s(x))[x:c<sub>n</sub>] )= T:
          Per ogni n \in \mathbb{N}:
          Per ogni n \in \mathbb{N}:
                                         I( Even(c_n) \rightarrow Odd(s(c_n)) )= T:
                                         I( Even(c_n) \rightarrow Odd(c_{n+1}) )= T:
          Per ogni n \in \mathbb{N}:
                                         I(Even(c<sub>n</sub>)) = F o I(Odd(c<sub>n+1</sub>)) = T:
          Per ogni n \in \mathbb{N}:
                                         I(c_n) \notin I(Even) \ o \ I(c_{n+1}) \in I(Odd):
          Per ogni n \in \mathbb{N}:
          Per ogni n \in \mathbb{N}:
                                         n \notin \{a : a \text{ divisibile per 2}\}\ o
                                         n+1 \in \{a : a \text{ non divisibile per 2}\}.
```

Per ogni $n \in \mathbb{N}$: n non è divisibile per 2 o n+1 non è divisibile per 2.

I($\forall x (Even(x) \rightarrow Odd(s(x)))) = T$ se e solo se:

Per ogni $n \in \mathbb{N}$: n non è divisibile per 2 o n+1 non è divisibile per 2.

Dunque $\forall x$ (Even(x) \rightarrow Odd(s(x))) traduce: «se n è divisibile per 2 allora n+1 non è divisibile per 2», cioè: «se n è pari allora n+1 è dispari».

E' una forma aristotelica del primo tipo: «ogni P è Q». «Ogni x pari è tale che x+1 è dispari».

Esercizio. Nella struttura N = (N, I):

 $\forall x \text{ (Even(x)} \rightarrow \text{Odd(s(x)))} \text{ è vera in N.}$ Traduce «se n è pari allora n+1 è dispari».

 $\forall x (Odd(x) \rightarrow \neg Even(x)))$ è vera in N? Cosa traduce?

 $\exists x (Even(x) \land \neg Odd(s(x))) \ e vera in N?$ Cosa traduce?

Esercizio. Nella struttura N = (N, I):

 $\forall x \text{ (Even(x)} \land \text{Odd(s(x)))} \text{ è vera in N?}$ Cosa traduce?

 $\forall x (Odd(x) \land \neg Even(x)))$ è vera in N? Cosa traduce?

Esercizio. Nella struttura N = (N, I):

Traducete: «se n è pari anche il suo quadrato lo è».

E' vera in N?

Traducete: «se n è dispari il suo doppio non lo è».

E' vera in N?

Traducete: «nessun n pari è tale che il suo successore ne è il doppio».

E' vera in N?

Traducete: «esiste n dispari tale che il suo successore ne è il doppio».

E' vera in N?

Traduzione passo-passo

Forme aristoteliche annidate e traduzione passo-passo

Alcune frasi contengono più quantificazioni annidate, espresse in forme aristoteliche.

Un approccio sistematico consente di tradurle in FOL, trattando una quantificazione alla volta (step-by-step translation method).

Ogni cubo è a sinistra di un tetraedro:

Ogni cubo ha la proprietà (di essere a sinistra di un tetraedro):

 $\forall x (Cube(x) \rightarrow (x \grave{e} \ a \ sinistra \ di \ un \ tetraedro)):$

 $\forall x \text{ (Cube(x)} \rightarrow \text{ (c'è un tetraedro tale che x è alla sua sinistra)):}$

 $\forall x (Cube(x) \rightarrow \exists y (Tet(y) \land LeftOf(x,y))).$

Forme aristoteliche annidate. Esempio

Ogni blocco a destra di un cubo grande è piccolo:

Per ogni blocco x che ha la proprietà di essere a destra di un cubo grande \rightarrow x è piccolo :

 $\forall x (x ha la proprietà di essere a destra di un cubo grande) <math>\rightarrow$ Small(x)):

 $\forall x \ (c'e\ un\ cubo\ grande\ tale\ che\ x\ e\ alla\ sua\ destra) \rightarrow Small(x)):$

 $\forall x (\exists y (Cube(y) \land Large(y) \land RightOf(x,y)) \rightarrow Small(x)).$

Forme aristoteliche annidate. Esempio

Qualche cubo è posto a destra di tutti i tetraedri:

Esiste un cubo x tale che per ogni tetraedro y, x è a destra di y:

Esiste un blocco che è un cubo x e che per ogni tetraedro y, x è a destra di y:

 $\exists x (Cube(x) \land \forall y (Tet(y) \rightarrow RightOf(x,y))).$

Forme aristoteliche annidate. Esempio

Nessun blocco è più grande di ogni blocco:

Ogni blocco è tale che non è vero che sia più grande di ogni blocco:

Ogni blocco x è tale che non è vero che per ogni blocco y, x è più grande di y:

$$\forall x (Blocco(x) \rightarrow \neg \forall y (Blocco(y) \rightarrow Larger(x,y))):$$

Dato che non c'è bisogno del predicato Blocco (ogni elemento di un mondo di blocchi è già un blocco):

 $\forall x \neg \forall y \text{ Larger}(x,y).$

Riferimenti al libro di testo

• Chapter 9: 9.5, 9.6.

• Chapter 11: 11.3. Facoltativi 11.4, 11.5 (ulteriori aspetti del processo di traduzione dal linguaggio naturale).

• L'interpretazione formale degli enunciati nelle L-strutture, chiamate nel testo First-order structures è data, in modo diverso ma equivalente, in Chapter 18, 18.2.