

SGM3005 Ultra Low ON-Resistance, Low Voltage, Dual, SPDT Analog Switch

GENERAL DESCRIPTION

The SGM3005 is a dual, low on-resistance, low voltage, bidirectional, single-pole/double-throw (SPDT) CMOS analog switch designed to operate from a single 1.8V to 5.5V power supply. Targeted applications include battery powered equipment that benefit from low R_{ON} (0.5 Ω) and fast switching speeds (t_{ON} = 50ns, t_{OFF} = 15ns).

The on resistance profile is very flat over the full analog signal range. This ensures excellent linearity and low distortion when switching audio signals.

The SGM3005 is a committed dual single-pole/double-throw (SPDT) that consist of two normally open (NO) and two normally close (NC) switches. This configuration can be used as a dual 2-to-1 multiplexer.

SGM3005 is available in Green TDFN-3×3-10L and MSOP-10 packages.

APPLICATIONS

Battery-powered, Handheld, and Portable Equipment Cellular/Mobile Phones Laptops, Notebooks, Palmtops

Communication Systems Sample-and-Hold Circuits

Audio Signal Routing

Audio and Video Switching

Portable Test and Measurement

Medical Equipment

FUNCTION TABLE

LOGIC	NC1, NC2	NO1, NO2
0	ON	OFF
1	OFF	ON

FEATURES

Low Voltage Operation: 1.8V to 5.5V

• Low On-Resistance: 0.5Ω (TYP)

• Low On-Resistance Flatness

• -3dB Bandwidth: 15MHz

Fast Switching Times

ton 50ns

toff 15ns

• Rail-to-Rail Operation

Typical Power Consumption (< 0.01μW)

• TTL/CMOS Compatible

Microsize Packages

PIN CONFIGURATIONS (TOP VIEW)

SGM3005XD

PACKAGE/ORDERING INFORMATION

MODEL	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
SGM3005	MSOP-10	-40℃ to +125℃	SGM3005XMS/TR	SGM3005XMS	Tape and Reel, 3000
3GIVI3005	TDFN-3×3-10L	-40℃ to +125℃	SGM3005XD/TR	SGM3005D	Tape and Reel, 3000

ABSOLUTE MAXIMUM RATINGS

V+ to GND0.3V to 6V	Package Thermal Resistance @ T _A = 25°C
Analog, Digital voltage range $^{(1)}$ 0.3V to (V_+) + 0.3V	TDFN-3×3-10L, θ _{JA} 33°C/W
Continuous Current NO, NC, or COM±300mA	MSOP-10, θ _{JA} 205°C/W
Peak Current NO, NC, or COM±500mA	Lead Temperature (soldering, 10s)260°C
Operating Temperature Range40°C to +125°C	ESD Susceptibility
Junction Temperature150°C	HBM2000V
Storage Temperature Range65°C to +150°C	MM400V

NOTES:

- 1. Signals on NC, NO, or COM or IN exceeding V₊ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

PIN DESCRIPTION

NAME	PIN	FUNCTION
V ₊	1	Power Supply.
GND	6	Ground.
IN1, IN2	4, 8	Digital Control Pin to Connect the COM Terminal to the NO or NC Terminals.
COM1, COM2	3, 9	Common Terminal.
NO1, NO2	2, 10	Normally-Open Terminal.
NC1, NC2	5, 7	Normally-Closed Terminal.

NOTE: NO, NC and COM terminals may be an input or output.

SGM3005

ELECTRICAL CHARACTERISTICS

 $(V_+ = +5V \pm 10\%, GND = 0V, T_A = -40^{\circ}C$ to $+125^{\circ}C$, typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

				SGM3005			
PARAMETER	SYMBOL	CONDITIONS		+25℃	-40℃ to +125℃	UNITS	MIN/ MAX
ANALOG SWITCH							
Analog Signal Range	Vara Vara Vara				0	٧	MIN
Analog Signal Range	V_{NO}, V_{NC}, V_{COM}				V ₊	٧	MAX
On-Resistance	R _{ON}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+, I$	_{сом} = -10mA,	0.5		Ω	TYP
On-Resistance	IVON	Test Circuit 1		0.9	1.1	Ω	MAX
On-Resistance Match	ΔR_ON	0 = VNO 01 VNC = V+, 1COM 10111/1,		0.05		Ω	TYP
Between Channels	ZIVON	Test Circuit 1	Test Circuit 1		0.12	Ω	MAX
On-Resistance Flatness	R _{FLAT(ON)}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+, I$	_{COM} = -10mA,	0.25		Ω	TYP
On recolutance riatiness	TTFLAT(ON)	Test Circuit 1	Test Circuit 1		0.4	Ω	MAX
LEAKAGE CURRENTS					T		,
Source OFF Leakage	I _{NC(OFF)} , I _{NO(OFF)}	V_{NO} or $V_{NC} = 4.5V/1V$, $V_{COM} = 1V/4.5V$,		±4		nA	TYP
Current	110(011); 110(011)	V_+ = +5.5V, Test Circ	uit 2	±10	±1000	nA	MAX
Channel ON Leakage	$I_{NC(ON)}, I_{NO(ON)},$	V_{NO} or $V_{NC} = V_{COM} = 1$		±4		nA	TYP
Current	I _{COM(ON)}	V ₊ = +5.5V, Test Circuit 3		±10	±1000	nA	MAX
DIGITAL INPUTS		T		I			T
Input High Voltage	V _{INH}				2.4	V	MIN
Input Low Voltage	V _{INL}				0.8	V	MAX
Input Current	I _{INL} or I _{INH}	V _{IN} = V _{INH} or V _{INL}		±0.01		μA	TYP
				±0.1	±1	μA	MAX
DYNAMIC CHARACTERIS	IICS	V_{NO} or $V_{NC} = 3V$,		1			
Turn-On Time	t _{ON}	$R_L = 300\Omega, C_L = 35pF$, Test Circuit 4	50		ns	TYP
Turn-Off Time	t _{OFF}	V_{NO} or $V_{NC} = 3V$, $R_L = 300\Omega$, $C_L = 35pF$		15		ns	TYP
Charge Injection	Q	C_L = 1.0nF, V_G = 0V, Test Circuit 5	$R_G = 0\Omega$,	20		pC	TYP
Break-Before-Make Time Delay	t _D	V_{NO1} or $V_{NC1} = V_{NO2}$ or $R_L = 300\Omega$, $C_L = 35pF$		10		ns	TYP
Off Isolation	O _{ISO}	11 - 3032, OL - 301,	f = 100kHz	-69		dB	TYP
On isolation	OISO	Test Circuit 7	f = 10kHz	-85		dB	TYP
Channel-to-Channel	X _{TALK}	$R_L = 50\Omega$, $C_L = 5pF$,	f = 100kHz	-90		dB	TYP
Crosstalk	/ TALK		Test Circuit 8 f = 10kHz			dB	TYP
Total Harmonic Distortion	THD	f = 20Hz to 20kHz, V_{COM} = 3.5 V_{P-P} , R_L = 600Ω, C_L = 50pF		0.065		%	TYP
-3dB Bandwidth	BW	$R_L = 50\Omega, C_L = 5pF, T$	Test Circuit 9	15		MHz	TYP
Source OFF Capacitance	$C_{NC(OFF)}, C_{NO(OFF)}$			82		pF	TYP
Channel ON Capacitance	$C_{NC(ON)}, C_{NO(ON)}, C_{COM(ON)}$			380		pF	TYP
POWER REQUIREMENTS							
Power Supply Current	I ₊	$V_{+} = +5.5V, V_{IN} = 0V$		0.001		μA	TYP
- Ower Ouppry Ourrent	1+	V+= 10.0V, V _{IN} = 0V (1	μΑ	MAX

ELECTRICAL CHARACTERISTICS

 $(V_+ = +3V \pm 10\%, GND = 0V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ typical values are at } T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

					SGM3	005	Т
PARAMETER	SYMBOL	CONDIT	IONS	+25℃	-40°C to +125°C	UNITS	MIN/ MAX
ANALOG SWITCH					•		•
Analog Signal Range	V _{NO} , V _{NC} , V _{COM}				0	V	MIN
Trialog Olgridi Range	VNO, VNC, VCOM				V ₊	V	MAX
On-Resistance	Ron	$0 \le V_{NO} \text{ or } V_{NC} \le V_+, I$	$_{COM}$ = -10mA,	0.6		Ω	TYP
OTI-T COIOLATICE	NON	Test Circuit 1		1.0	1.3	Ω	MAX
On-Resistance Match	ΔR _{ON}	$0 \le V_{NO}$ or $V_{NC} \le V_+$, $I_{COM} = -10mA$,		0.05		Ω	TYP
Between Channels	ΔΙΝΟΝ	Test Circuit 1	Test Circuit 1		0.13	Ω	MAX
On-Resistance Flatness	R _{FLAT(ON)}	$0 \le V_{NO}$ or $V_{NC} \le V_+$, I	_{COM} = -10mA,	0.25		Ω	TYP
On-resistance riatiless	TYFLAT(ON)	Test Circuit 1		0.3	0.4	Ω	MAX
LEAKAGE CURRENTS	1				1	T	T
Source OFF Leakage	I _{NC(OFF)} , I _{NO(OFF)}	V_{NO} or $V_{NC} = 3V/1V$, $V_{COM} = 1V/3V$,		±5		nA	TYP
Current	110(011); 110(011)	V_+ = +3.3V, Test Circ	uit 2	±11	±1000	nA	MAX
Channel ON Leakage	I _{NC(ON)} , I _{NO(ON)} ,		V_{NO} or $V_{NC} = V_{COM} = 1V$ or $3V$,			nA	TYP
Current	I _{COM(ON)}	V ₊ = +3.3V, Test Circuit 3		±11	±1000	nA	MAX
DIGITAL INPUTS	T				ı	ı	Т
Input High Voltage	V _{INH}				2.0	V	MIN
Input Low Voltage	V _{INL}				0.4	V	MAX
Input Current	I _{INL} or I _{INH}	V _{IN} = V _{INH} or V _{INL}		±0.01	±1	μA μA	TYP MAX
DYNAMIC CHARACTERIST	ICS			10.1		μπ	10000
Turn-On Time	t _{ON}	V_{NO} or V_{NC} = 2V, R_L = 300 Ω , C_L = 35pF	Test Circuit 4	50		ns	TYP
Turn-Off Time	t _{OFF}	V_{NO} or $V_{NC} = 2V$, $R_{L} = 300\Omega$, $C_{L} = 35pF$		17		ns	TYP
Charge Injection	Q	$C_L = 1.0$ nF, $V_G = 0$ V, Test Circuit 5		25		pC	TYP
Break-Before-Make Time Delay	t _D	V_{NO1} or $V_{NC1} = V_{NO2}$ or $R_L = 300\Omega$, $C_L = 35pF$		11		ns	TYP
-		$R_L = 500\Omega$, $C_L = 5pF$,	f = 100kHz	-69		dB	TYP
Off Isolation	O _{ISO}	Test Circuit 7	f = 10kHz	-85		dB	TYP
Channel-to-Channel		$R_L = 50\Omega$, $C_L = 5pF$,	f = 100kHz	-90		dB	TYP
Crosstalk	X _{TALK}	Test Circuit 8	f = 10kHz	-105		dB	TYP
Total Harmonic Distortion	THD	f = 20Hz to 20kHz, V ₀ R _L = 600Ω, C _L = 50pF	$c_{\text{COM}} = 2V_{\text{P-P}},$	0.06		%	TYP
-3dB Bandwidth	BW	$R_L = 500\Omega$, $C_L = 50$ F $R_L = 50\Omega$, $C_L = 5$ F, Test Circuit 9		15		MHz	TYP
Source OFF Capacitance	C _{NC(OFF)} , C _{NO(OFF)}			82		pF	TYP
Channel ON Capacitance	$C_{NC(ON)}, C_{NO(ON)},$			380		pF	TYP
POWER REQUIREMENTS	C _{COM(ON)}					<u>'</u>	
1 OTTEN INEQUINERIES				0.001		μA	TYP
Power Supply Current	I ₊	$V_{+} = +3.3V$, $V_{IN} = 0V$ or $3V$		0.001	1	μA	MAX
	Í				'	μ/	IVI

TYPICAL PERFORMANCE CHARACTERISTICS

TEST CIRCUITS

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Charge Injection

TEST CIRCUITS (Cont.)

Test Circuit 6. Break-Before-Make Time Delay, t_D

Test Circuit 7. Off Isolation

TEST CIRCUITS (Cont.)

Test Circuit 8. Channel-to-Channel Crosstalk

Test Circuit 9. -3dB Bandwidth

PACKAGE OUTLINE DIMENSIONS

TDFN-3×3-10L

TOP VIEW

BOTTOM VIEW

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimer In In		
	MIN MAX		MIN	MAX	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	REF	0.008 REF		
D	2.900	3.100	0.114	0.122	
D1	2.300	2.600	0.091	0.103	
Е	2.900	3.100	0.114	0.122	
E1	1.500	1.800	0.059	0.071	
k	0.200 MIN		0.008	3 MIN	
b	0.180	0.300	0.007	0.012	
е	0.500) TYP	0.020	TYP	
L	0.300	0.500	0.012	0.020	

PACKAGE OUTLINE DIMENSIONS

MSOP-10

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters		_	nsions nches
	MIN	MIN MAX		MAX
Α	0.820	1.100	0.032	0.043
A1	0.020	0.150	0.001	0.006
A2	0.750	0.950	0.030	0.037
b	0.180	0.280	0.007	0.011
С	0.090	0.230	0.004	0.009
D	2.900	3.100	0.114	0.122
E	2.900	3.100	0.114	0.122
E1	4.750	5.050	0.187	0.199
е	0.500	BSC	0.020 BSC	
L	0.400	0.800	0.016	0.031
θ	0°	6°	0°	6°

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
MSOP-10	13"	12.4	5.2	3.3	1.2	4.0	8.0	2.0	12.0	Q1
TDFN-3×3-10L	13"	12.4	3.35	3.35	1.13	4.00	8.00	2.00	12.00	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)		
13"	386	280	370	5