小课题 1

$$\begin{split} &\frac{T}{\rho}\Delta u + \mu^2 u = 0\\ &T = T_0 = 1, \rho = \rho_0 + \rho_1, \rho_0 = 1, u|_{\partial D} = 0 \end{split}$$

在一维情况下,分别用有限差分法和谐方法讨论 $ho_1=0$ and $ho_1=0.3\sin{\pi(x-a)\over b-a}$ 情况下的本征值和本征向量并进行比较。为了方便起见,我们令a = 0, b = 1,即length = 1。

结果与讨论

a. 有限差分法($ho_1 = 0$)

为了增加数值稳定性,我们将 δx^2 分别作用在矩阵元和特征值上面:

也就是说:

8

$$\frac{1}{\delta x} \begin{bmatrix} 2f_1 & -f_1 & & & \\ -f_2 & 2f_2 & -f_2 & & \\ & \ddots & & \\ & -f_{N-1} & 2f_{N-1} & -f_{N-1} \\ & & -f_N & 2f_N \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N \end{bmatrix} = \delta x * k^2 * \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N \end{bmatrix}$$

eigenvalue\N	9	29	59	99	299	599	999	1999
1	3.128689	3.140157	3.141234	3.141463	3.141578	3.141589	3.141591	3.141592
2	6.180340	6.271708	6.280315	6.282152	6.283070	6.283157	6.283175	6.283183
3	9.079810	9.386068	9.415091	9.421290	9.424390	9.424681	9.424743	9.424769
4	11.755705	12.474701	12.543416	12.558104	12.565452	12.566141	12.566288	12.566350
5	14.142136	15.529143	15.663143	15.691819	15.706169	15.707515	15.707802	15.707923
6	16.180340	18.541020	18.772136	18.821663	18.846455	18.848781	18.849277	18.849486
7	17.820130	21.502077	21.868263	21.946862	21.986225	21.989918	21.990705	21.991038

通过改变格点N的大小,可以给出该方法的收敛速度,如上表;对于基态其收敛速度还是比较慢的,后面的态就更不用说了。如果用直接对角化的方式,计算机的极限应该也就是一万左右,应该可以精确到小数点后7、8位这样。 下面给几个图,空间有限剩下的可以在该目录下/pic看到。

25.066647

19.021130

24.404199

24.949403

25.130904

25.132080

25.125392

25.132576

b. 有限差分法($ho_1 = 0.3 \sin \pi x$)

由于非线性Laplace方程的有限元矩阵形式不是对角的,因此我们不能使用LAPACKE_dsyev进行对角化,只能用LAPACKE_dgeev来对角化,特征值也是混乱排序的,因此需要我们来排序。

为了得到一些规律,我们还算了 $\rho_1=\pm 0.3*\cos(\pi x)$, $-0.3*\sin(\pi x)$ 的情况,和我们能从理论上得到的一样,对于cos函数,由于其在区间上不具有轴对称性,因此其对特征向量的影响是轴对称的,对特征值的影响相同;与此相反,sin 函数对特征值的影响是轴对称的,同时对特征向量的影响也不太相同。

下面给出cos函数作为非线性项的特征值和特征向量。由于正负不影响特征值,因此我们只给出一组。

eigenvalue\N	9	29	59	99	299	599	999	1999
1	3.116741	3.128509	3.129613	3.129849	3.129967	3.129978	3.129980	3.129981
2	6.212084	6.307349	6.316305	6.318216	6.319171	6.319261	6.319280	6.319288
3	9.120041	9.440439	9.470657	9.477108	9.480334	9.480637	9.480701	9.480728
4	11.788711	12.544789	12.616368	12.631656	12.639303	12.640020	12.640173	12.640238
5	14.142136	15.613447	15.753119	15.782973	15.797908	15.799308	15.799607	15.799733
6	16.094036	18.637678	18.878761	18.930333	18.956138	18.958557	18.959074	18.959292
7	17.618985	21.608708	21.991042	22.072905	22.113878	22.117721	22.118540	22.118886
8	19.253639	24.517839	25.087722	25.209868	25.271021	25.276757	25.277981	25.278497

 $\rho_1 = 0.3 * \cos(\pi x)$:

下面给出sin函数作为非线性项的特征值和特征向量。

 $\rho_1 = 0.3 * \sin(\pi x)$:

eigenvalue\N	9	29	59	99	299	599	999	1999
1	2.792852	2.803143	2.804106	2.804312	2.804414	2.804424	2.804426	2.804427
2	5.630320	5.714135	5.722005	5.723684	5.724524	5.724603	5.724619	5.724627
3	8.300479	8.582815	8.609472	8.615163	8.618010	8.618276	8.618333	8.618357
4	10.756756	11.421203	11.484415	11.497922	11.504678	11.505312	11.505447	11.505504
5	12.941011	14.225515	14.348884	14.375272	14.388476	14.389714	14.389978	14.390089
6	14.797137	16.989327	17.202209	17.247804	17.270625	17.272766	17.273222	17.273415
7	16.264939	19.705556	20.042974	20.115352	20.151593	20.154993	20.155718	20.156024
8	17.413524	22.366964	22.869489	22.977473	23.031568	23.036643	23.037726	23.038183

 $\rho_1 = -0.3 * \sin(\pi x)$:

eigenvalue\N	9	29	59	99	299	599	999	1999
1	3.622867	3.636142	3.637394	3.637661	3.637795	3.637808	3.637810	3.637811
2	6.919410	7.021892	7.031594	7.033666	7.034702	7.034799	7.034820	7.034828
3	10.136179	10.479211	10.511878	10.518858	10.522349	10.522676	10.522746	10.522775
4	13.105994	13.910814	13.988109	14.004637	14.012906	14.013681	14.013846	14.013916
5	15.755801	17.307041	17.457751	17.490009	17.506152	17.507665	17.507988	17.508125
6	18.025863	20.656758	20.916702	20.972409	21.000295	21.002910	21.003468	21.003704
7	19.905438	23.950053	24.361976	24.450379	24.494649	24.498802	24.499688	24.500062
8	21.508557	27.177432	27.790883	27.922752	27.988818	27.995017	27.996339	27.996897

no1

$$\rho_1 = 0.3 * \sin(\pi x) :$$

$$\rho_1 = -0.3 * \sin(\pi x)$$
:

c. 谱方法($\rho_1 = 0$)

对于谱方法,一维固定边界条件下Laplace方程的解是正弦函数,我们可以直接给出积分的通式:

$$\begin{split} M_{mn} &= \langle \varphi_m, f(x) \varphi_n(x) \rangle \\ &= \int_0^1 \sin(m\pi x) * 1 * sin(n\pi x) dx \\ &= -\frac{1}{2} (\delta_{m,n} - \delta_{m,-n}) \\ N_m &= \langle \varphi_m, \varphi_m \rangle \\ &= \int_0^1 \sin(m\pi x) * sin(m\pi x) dx \\ &= \frac{1}{2} \end{split}$$

我们将使用上面的表达式。Romberg积分分别计算;并以此为依据来判断Romberg积分方法的数值稳定性。**注意,从上面的式子我们还可以观察出来——** $ho_1=0$ **时谐方法的矩阵形式一定是对角的,这样我们就可以方便地使用LAPACKE_dsyev函数来进行对角化了**。另外由于romberg积分的不稳定性以及时间复杂度,我们会减少点的个数。

eigenvalue\N	9	29	59	99	299
1	3.141593	3.141593	3.141593	3.141593	3.141593
2	6.283185	6.283185	6.283185	6.283185	6.283185
3	9.424778	9.424778	9.424778	9.424778	9.424778
4	12.566371	12.566371	12.566371	12.566371	12.566371
5	15.707963	15.707963	15.707963	15.707963	15.707963
6	18.849556	18.849556	18.849556	18.849556	18.849556
7	21.991149	21.991149	21.991149	21.991149	21.991149
8	25.132741	25.132741	25.132741	25.132741	25.132741

d. 谱方法($\rho_1 = 0.3 \sin \pi x$)

$$\begin{split} M_{mn} &= \langle \varphi_m, f(x) \varphi_n(x) \rangle \\ &= \int_0^1 \sin(m\pi x) * 0.3 * \sin \pi x * \sin(n\pi x) \, dx \\ & \text{这个结果需要分类讨论 , 写起程序来比较费劲 , 我们就直接使用romberg积分算了} \\ N_m &= \langle \varphi_m, \varphi_m \rangle \\ &= \int_0^1 \sin(m\pi x) * \sin(m\pi x) \, dx \\ &= \frac{1}{-} \end{split}$$

需要注意的是上面的结果说明矩阵不是对称的,不能是使用LAPACKE_dayev来对角化。 另外由于romberg积分的不稳定性以及时间复杂度,我们会减少点的个数。

eigenvalue\N	9	29	59	99	299
1	3.011534	3.003449	3.002611	3.002427	3.002333
2	5.753933	5.666533	5.658036	5.656199	5.655273
3	8.380866	8.129817	8.099802	8.092860	8.089231
4	11.317230	10.599504	10.517187	10.498008	10.487922
5	14.210133	13.087753	12.932862	12.893849	12.872325
6	17.942712	15.652621	15.365144	15.291548	15.250223
7	21.136939	18.228709	17.809262	17.693631	17.625083
8	26.480638	20.935607	20.288576	20.108438	19.999166

从上面的对比中我们可以看出,两种方法给出的解果还是有比较大的区别的,但是大体的形式都是一样的,不一样的是具体的值。