Введение в теорию Галуа - семинар 3

29 сентября 2025

- (1) Пусть $f \in F[X]$ и F это поле характеристики 0. Пусть $d(X) = \gcd(f, f')$. Покажите, что многочлен $g(X) = f(X)d(X)^{-1}$ имеет такие же корни, как f(X), и все корни g(X) являются простыми.
- (2) Постройте поле разложения многочлена X^5-2 над полем \mathbb{Q} . Чему равна степень этого расширения над \mathbb{Q} ?
- (3) Постройте поле разложения многочлена $X^{p^m} 1 \in \mathbb{F}_p[X]$. Чему равна степень этого расширения над \mathbb{F}_p ?
- (4) (а) Докажите, что любое конечное поле совершенно.
 - (b) Пусть $F\subset E$ алгебраическое расширение полей. Докажите, что если F совершенно, то E тоже совершенно.
 - (с) Докажите, что алгебраически замкнутое поле совершенно.
- (5) Пусть F это поле, чья характеристика не равна 2.
 - (a) Пусть E это квадратичное расширение F (то есть, [E:F]=2); покажите, что

$$S(E) = \{ a \in F^{\times} \mid a$$
 — является квадратом в $E \}$

является подгруппой в F^{\times} , содержащей $F^{\times 2}$.

- (b) Пусть E и E' это квадратичные расширения F. Покажите, что F-изоморфизм $\varphi: E \to E'$ существует тогда и только тогда, когда S(E) = S(E').
- (c) Покажите, что существует бесконечный набор полей E_1, E_2, \ldots , где E_i это квадратичное расширение \mathbb{Q} , и E_i не изоморфно E_j для любых $i \neq j$.
- (d) Пусть p это нечетное простое число. Покажите, что с точностью до изоморфизма существует единственное поле из p^2 элементов.
- (6) (а) Пусть F это поле характеристики p > 0. Покажите, что если $X^p X a$ это приводимый многочлен в F[X], то он разложим в F[X].
 - (b) Для любого простого числа p покажите, что $X^p X 1$ это неприводимый многочлен в $\mathbb{Q}[X]$.
- (7) Пусть $P \in \mathbb{Q}[X]$ неприводимый многочлен степени n над $\mathbb{Q}, P = \prod_{i=1}^{n} (X \alpha_i)$ его разложение над $\mathbb{C}, \alpha = \alpha_1 \in \mathbb{C}$ один из его корней.
 - (a) Выразим произвольный элемент $\beta \in \mathbb{Q}(\alpha) \subset \mathbb{C}$ как $\beta = a_0 + a_1\alpha + \ldots + a_{n-1}\alpha^{n-1}$, где $a_0, \ldots, a_{n-1} \in \mathbb{Q}$. Определим норму Галуа элемента β по формуле:

$$Nm(\beta) = \prod_{i=1}^{n} (a_0 + a_1 \alpha_i + ... + a_{n-1} \alpha_i^{n-1})$$

Докажите, что $Nm(\beta) \in \mathbb{Q}$

(b) Покажите, что отображение $\operatorname{Nm}:\mathbb{Q}(\alpha)\to\mathbb{Q}$ является мультипликативным гомоморфизмом, т.е. что для любых $\beta,\beta'\in\mathbb{Q}(\alpha)$ выполняется $\operatorname{Nm}(\beta\beta')=\operatorname{Nm}(\beta)\operatorname{Nm}(\beta')$.

- (c) Докажите, что число $\gamma = \prod_{i=2}^n \left(a_0 + a_1\alpha_i + \ldots + a_{n-1}\alpha_i^{n-1}\right) \in \mathbb{C}$ принадлежит полю $\mathbb{Q}(\alpha)$, и что $\alpha^{-1} = \gamma/\operatorname{Nm}(\alpha)$.

 (d) Проверьте равенство $\operatorname{Nm}(\beta) = \det\left(M_{\beta}\right)$, где $M_{\beta}: \mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha)$ \mathbb{Q} -линейный
- оператор умножения на β , т.е. $M_{\beta}(x) = \beta x$. (8) Пусть $\alpha \in \mathbb{C}$ это корень неприводимого многочлена $\sum_{i=0}^{n} a_i X^i \in \mathbb{Q}[X]$. Постройте явно минимальные многочлены для $-\alpha$ и α^{-1} .