Практическое занятие «Пролог—2» 22 сентября 2020 года

Задачи, помеченные звёздочкой, являются бонусными: стоят 5 баллов, не теряют ценности со временем и не входят в тот набор задач, которые определяют баллы на аттестацию/допуск к зачету/автомат.

- 1. Напишите предикат toSquares/3(+integer,+integer,?integer), истинный, если третий аргумент есть количество квадратных кусков, на которые можно разрезать прямоугольник, размеры которого передаются первыми двумя аргументами, если от него каждый раз отрезается квадрат максимально большой площади. Например:
 - toSquares(2,1,2) \rightarrow true;
 - toSquares(3,5,X) \rightarrow true, X = 4;
 - toSquares(3,1,2) \rightarrow false.
- 2. Напишите предикат qntDigit/4(+integer,+integer,+integer,?integer), истинный, если последний аргумент есть количество целых чисел, содержащих в своей десятичной записи цифру, переданную третьим аргументом, выбираемых из диапазона, заданного первыми двумя аргументами (включительно). Диапазон может включать кроме положительных и отрицательные числа, и ноль. Например:
 - qntDigit(11,23,2,5) \rightarrow true; в интервале [11,23] имеется пять целых чисел, в десятичной записи которых имеется цифра 2: 12, 20, 21, 22, 23;
 - qntDigit(-10,10,0,X) \rightarrow true, X = 3.

Разумно написать вспомогательный предикат, который истинен, если в десятичной записи данного числа содержится данная цифра.

- 3. Напишите предикат fact/2(?integer,?integer), истинный, если второй аргумент есть факториал первого. Считаем, что факториал не определён для отрицательных чисел. Продумайте аккуратно поведение предиката в случае работы в режиме поиска по первому аргументу или по обоим аргументам: fact(N,120) и fact(N,F).
- 4. Бинарное (двоичное) дерево можно хранить в виде рекурсивной структуры данных. Например, дерево

можно представить в виде терма

tr(8, tr(3,tr(1,nil,nil),tr(6,nil,nil)), tr(10,nil,nil))

Первый аргумент тернарного терма tr — это число, хранящееся в узле, второй и третий аргументы представляют собой левое и правое поддеревья в том же виде. В случае отсутствия того или иного поддерева указывается атом nil.

Деревом поиска называется бинарное дерево такое, что любой элемент левого поддерева некоторого узла меньше элемента, хранящегося в этом узле, а любой элемент правого поддерева — больше.

Напишите следующие предикаты:

- а) предикат insert/2(+tree,+integer,?tree), истинный, если третий аргумент есть дерево поиска, полученное вставкой элемента, переданного вторым аргументом, в дерево поиска, переданное первым элементом. Если элемент уже имеется в дереве, то при его вставке дерево не изменяется.
- б) предикат contains/2(+tree,?integer), истинный, если целое число, переданное вторым аргументом, содержится в дереве поиска, переданном в первом аргументе. Если второй аргумент есть свободная переменная, то предикат должен поочередно сопоставлять с этой переменной все элементы переданного дерева. Например,

```
| ?- contains(tr(2,tr(0,nil,tr(1,nil,nil)),tr(4,nil,nil)),1).
yes
| ?- contains(tr(2,tr(0,nil,tr(1,nil,nil)),tr(4,nil,nil)),3).
yes
| ?- contains(tr(2,tr(0,nil,tr(1,nil,nil)),tr(4,nil,nil)),El).
El = 0 ?;
El = 1 ?;
El = 2 ?;
El = 4 ?;
no
```

- в) предикат isSearchTree/1(+tree), истинный, если дерево, переданное в него, является деревом поиска.
- г*) предикат remove/2(+tree,+integer,?tree), истинный, если третий аргумент есть дерево поиска, полученное удалением элемента, переданного вторым аргументом, из дерева поиска, переданного первым элементом. Если элемент отсутствует в дереве, то при его удалении дерево не изменяется.

д*) предикат printTree/1(+tree), «красиво» выводящий на экран переданное дерево. Например, «красиво» выведенное дерево с вышеприведённой картинки может выглядеть следующим образом:

Впрочем, разумный формат вывода можно придумать самому.