```
10
                           ADD R1, R2, R3
                 LT1
                           SUB R4, R5, R6
                                                Scalar Code
                 i+2
                                R7 (R3)
                           LD
                                                     12
                 i+3
                           BRA IF R4>0
                 しナム
                           FLOAD FR1 (R32)
                 i+5
i+6
                                                     Floating Point Code
                           FLADD FR1, FR2, FR3
                           FLMUL FR7, FR8, FR9
                                                         14
                            :
                             FIG. 1
```


FIG. 2

Fig. 4

32-bit Encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 87 65 4 3 2 1 0 Group S/P Unit MAUopcode Rte 0 Rxe 0 Rye 0	Ω,						
262524232221201918171615141312111099876 MAUopcode Rt Rx Ry Rte 0 Rxe 0	003	2 1 0 SumpExt					
262524232221201918171615141312111099876 MAUopcode Rt Rx Ry Rte 0 Rxe 0		543	Ω Ε3				
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 Group S/P Unit MAUopcode Rte 0 Rxe 0 Rye		76		0			
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 1 Group S/P Unit MAUopcode Rte 0 Rxe 0		10 9 8	Ry	Rye			
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 Aroup S/P Unit MAUopcode Rte 0 Rxe		П		0			
31 [30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Group S/P Unit MAUopcode Rte 0		15 14 13 12	Rx	Rxe			
31 [30 29 28 27 26 25 24 23 22 21 20 19 18 17 Aroup S/P Unit MAUopcode Rte		91		0			
31 [30 29 28 27 26 25 24 23 22 21 Group S/P Unit MAUopcode		20[19[18[17]]	Rt	Rte			
31 30 29 28 27 26 25 24 23 Group S/P Unit MAUopo		22 21	ajo	3			
31 [30 29 28 27 26 2 Group S/P Unit M		5 24 23	2 9 28 27 26 25 24 23 8/P Unit MAUopc				
31 [30 29 28 27]. Group S/P Unit		<u> 26</u> 5					
31 30 29 Group S/P		2827					
31 30 Group		29					
1 1 1 1 -		31 30	dnox				

Fig. 6A PRIOR ART

SLAMDunk 40-bit Encoding Example

TATE	. Allin d	1	ALAMANA WATA TAKONING KASIMPIN	ard in				9	070	
39 38	37 36	353	39 38 37 363534333231302928	029282726252423222120191817161514131211109876543211 0	2 21 2	20 19 18 17 16 1	514	1312111098	3765	43210
	Constant	-	MAITomoodo,	Rt'		Rx'		Ry'		CE3 SumpExt'
dnoro		=	anoodoo ww	Rte'	0	Rxe'	0	Rye'	0	o dime
7	7	14			Fig.	Fig. 6 B				

32-bit Mapping to SLAMDunk 40-bit Encoding Example

3 2 1 0	0 SumpExt				
5543	CE3				
11109876	Ry	Rye 0			
13 12 11	00				
413	0 0				
191817[16]15[14]	Rx	Rxe			
191	0	0			
120	0	0 (
25 24 23 22 21 20	Rt	Rte (0			
26	00				
827	00				
39 38 37 3635343332313029282726	MAUopcode				
34	0				
3635	Group S/P Unit 0 N				
37	S/P				
39 38	Group				

Fig. **6**C

fruction Format 23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 76 54 3 2 10	15-bit Instruction $0-\% \%$	dings — 722		950	Instruction Encodings -8%	
ssor Instruction Format 26 25 24 23 22 21 20 19 18 17 16 15	15-bit Instruction $1-9\%$	Instruction Encodings — 82.2.	A	ormat	Instruction E	B
SP Control Processor Inst 31 30 29 28 27 26 25 24	1t / 9/2 =0	=0 =1 C/A	026 216 016	PE Instruction Format	S/P XV/LV/Cntl =1 Opcode	796 096

Fig. 9

.. 10 B

9-bit VIMBoffs

 $\nabla_{\mathbf{X}}$

UAF

Fig.

Fig. 11C

Fig. 13

Fig. 14

Fig. 15

Fig. 16

502/1/

	14 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2	16-bit Ry	16-bit Immediate	32-bit Immediate
7. K.	3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 1	16-bit Rx	3/2/2	32-bit I
1727 1727 1727 1727 1727	333333 876543		M 4-bit sel DtypeCE3	
3	143		M Sel	
2/2/	555554444444		16-bit Rt	
	66665555 32109876	6-bit Op1	6-bit Op2	6-bit Op3
		7.07	1730	-CH21

Fig. 17

Fig. 18

C &

PE, VIMB VLIW Execution

	1 cycles	Mpy.4H 2Add.2W 2Add.2W Mpy.4H ->31 cycles	,		4 cycles	
X0i	Mpy.4H	Mpy.4H				
Y3i, Y2i Y1i, Y0i		2Add.2W	2Add.2W	►2Add.2W	Add.2W	→ Add.1W
Y3i, Y2i		2Add.2W	+ 2Add.2W 2Add.2W		1	A
X1i	Mpy.4H	Mpy.4H	1 1 1 1 1 1	! ! ! !	1 1 5 1 1 1 1 1	1 1 1 1
8	/ 7.7 / j: XV1,E=1001-→	(A) C Loop j+1: XV1,E=1111-→	1750 j+2: XV1,E=0110	/7 >	$_{j,\alpha\mu_{0,0}}$ j+4: XV1'', E=0010-	', '', $'$ j+5: XV1''', E=0010-

Fig. 19

36 cycles