Wireless Ad Hoc Networks Lab 3

Network Simulator

NS3 Experiment (II) – RTS & CTS

Introduction

- Goal
 - To investigate the impact of hidden terminal problem in ad hoc network and familiar with RTS/CTS mechanism
- Modify the .cc code to meet the scenario we specified in the next slide
- Run simulation and write the analysis to compute
 - System throughput
 - Packet loss ratio

- Set node distance
 - $d_{01}=170 \text{m}$; $d_{23}=170 \text{m}$;
 - Change d₁₂ from 50 to 100, 150, 190, 220, 280, 320 (totally 7 scenario)

Simulation environment – Wifi Channel

- CS_Threshold_dBm = value1
- RX_Threshold_dBm = value2
 - Set proper value for value1 and value2
- Carrier sensing range: 300m
- Transmission range: 200m

Simulation environment – Wifi Channel

Two-Ray Ground Propagation:

$$P_r(d) = \frac{P_t G_t G_r h_t^2 h_r^2}{d^4 L}$$

- C function (TwoRayGround CS/RX Calculator) is provided
 - compute the receiving threshold

Simulation environment – Wifi Channel

- set RTS/CTS Threshold = value ??
- Q. How to set proper value to turn on RTS/CTS mechanism?
- → RtsCtsThreshold = ??

- Network scenario part 1
 - Set the position of four nodes
 - Example:

- Network scenario part 2
 - Implement the following four functions
 - LinearScale2dB
 - dB2LinearScale
 - dBm2Watt
 - Watt2dBm

- Network scenario part 3
 - Simulation time = 4
 - simulation area = 800(x)*800(y) (m2)
 - CSThresh= value
 - RXThresh= value
 - According to carrier sensing range 300m and transmission range 200m, set proper value
 - CWMin=20
 - CWMax=20
 - RTS/CTS Threshold= value
 - turn on RTS/CTS mechanism

- Network scenario part 4
 - CBR packet size = 1024 (bytes)
 - □ CBR rate = 800kbps
 - CBR traffic
 - start at 1.0
 - stop at 3.0

Please Make sure flow configuration is correct!!

After Simulation

- Analysis
 - a. Average system throughput
 - b. Average packet loss ratio

Analysis

total received data size (bytes) x 8 (bits)

a. throughput = ------simulation time

total lost packets

b. packet loss ratio = ------ # total packets sent

Report

- Deadline is 2019/12/03
- Put the result and explain in your own words.
- Email the report to adhocta@bun.cm.nctu.edu.tw