

Deep Learning Research on Knee Osteoarthritis

Introduction

According to WHO \rightarrow KOA is degradation of joints in knee with loss of cartilage, joint space narrowing, osteophytes, and sometimes joint inflammation, resulting in pain and decreased function with worldwide Prevalence in 2024: 364.58 million.

Figure: Schematic of Knee Anatomy(source-internet)

Figure: Pictorial Representation of KL grades in KOA (Kellergen et al., 1957)

Ground Truth

Unet

SAMed

Current Research Direction of Our Team

Diffusion based Shape-aware Learning with Multi-resolution Context for Segmentation of Tibiofemoral Knee Joint Tissues: An End-toend Approach (Accepted in ICIP-25)

Challenges: High variability in knee tissues, information dilution, heterogeneous scanning parameters, low signal-to-noise ratio (SNR). and motion artifacts.

Architecture

Fig: Schematic of the proposed Multi Scale-Attentive Unet (MiSA-Unet) model

- A Single-stage and end-to-end segmentation network with a focus only on critical slices with time reduction.
- Improvement of average DSC by 2.33% (on critical slices) with post-processing it further improved by 1% for all slices.

Figure: Quantitative comparison of the proposed MtSA-Unet with SOTA

P	Knee MRI Segme	ntation			
2D and 3D CNN + SSM [2]	DSC (%) ↑	89.9	85.6	98.5	98.5
	VOE (%) ↓	18.1	24.9	2.8	2.9
	HD (mm) ↓	5.35	6.35	2.93	3.16
*Modified cGAN [3]	DSC (%)	89.5	83.9	98.5	98.5
	VOE (%)	18.92	27.55	_	_
2D-3D ensemble Unet [4]	DSC (%)	90.3	86.5	98.6	98.8
	VOE (%)	17.5	23.6	2.8	2.4
*Modified Unet++ [1]	DSC (%)	90.9	85.8	99.1	98.2
nnUnet + Entropy	DSC (%)	89.8	86.4	98.6	98.6
Distance Maps [5]	HD (mm)	5.22	4.70	11.82	5.30
Unet-S [7]	DSC (%)	89.7	89.8	98.7	98.7
	HD(mm)	5.58	4.74	4.05	3.82
*Modified Source-free UDA [8]	DSC (%)	74.7	59.4	93.7	94.7
Otl	ner Network Arcl	nitectures			
Unet [14]	DSC (%)	88.6	87.0	98.3	98.3
	VOE (%)	20.06	22.41	3.34	3.29
	HD (mm)	6.69	5.23	6.12	4.05
Attention Unet [22]	DSC (%)	88.7	87.1	98.3	98.2
	VOE (%)	19.62	22.16	3.33	3.24
	HD (mm)	6.88	5.56	6.00	6.46
HRnet [23]	DSC (%)	88.9	86.5	98.2	98.2
	VOE (%)	18.67	22.11	3.19	3.78
	HD (mm)	6.28	5.94	7.10	6.99
SAMed [24]	DSC (%)	89.0	87.1	98.6	98.5
	VOE (%)	17.89	22.89	2.12	2.90
	HD (mm)	5.28	3.94	5.90	3.64
Proposed MiSA-Unet	DSC (%)	89.8	88.0	98.5	98.5
(Critical slices only)	VOE (%)	18.76	20.94	2.76	3.08
	HD (mm)	6.41	4.95	5.47	3.89
Proposed MiSA-Unet [⊖]	DSC (%)	90.4	90.1	98.7	98.6
(All slices)	VOE (%)	17.22	18.97	4.09	2.9
	HD (mm)	4.74	3.11	2.54	4.32

Figure: Qualitative comparison of proposed with MtSA-Unet

MedCAM-OsteoCls: Medical Context Aware Multimodal Classification of Knee Osteoarthritis (Accepted at ICASSP-25)

Challenges: Overlap between KOA stages, and progression heterogeneity.

Figure: Overall schematic of the proposed MedCAM-OsteoCls model with (a) VGG-19-TE +Fully Connected (FC) Network, (b) the CG-SSP, (c) the XMRCA module.

Integrating critical MRI slice features with X-ray features enhanced recall, thus reducing the risk of missing treatment for RKOA patients.

Unimodal SOTA: X-Ray Unimodal SOTA: MRI DBI: 26.79 DBI: 1.87 VGG-19 (Chen OsteoHRNet (Jain et al., 2022) ELNet (Tsai et al., 2020) MRNet (Bien et al., 2018) et al., 2019) Multimodal SOTA: X-Ray+MRI MedCAM-OsteoCls **DBI: 0.83**

Figure: Visualization of tSNE plots for Unimodal and Multimodal schemes with the MedCAM-OsteoCls model.

CustomModel (Guida et al., 2023) DeepKneeExplainer (Karim et al., 2021)

- Proposed model is computationally efficient in terms of GPU utilization by 64.64% compared to SOTA.
- The improved performance is achieved by cross-attending critical MRI slice features with the X-ray as a query vector.

Selected References

Our Team

• Kellgren, J. H., & Lawrence, J. S. (1957). Radiological assessment of osteo-arthrosis. *Ann Rheum Dis*, 16(4), 494-502.

• Ambellan, F., Tack, A., Ehlke, M., & Zachow, S. (2019). Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative. *Medical image analysis*, 52, 109-118.

• Daydar, A., Pramanick, A., Sur, A., & Kanagaraj, S. (2024). Segmentation of tibiofemoral joint tissues from knee MRI using MtRA-Unet and incorporating shape information: Data from

the Osteoarthritis Initiative. arXiv preprint arXiv:2401.12932... • Bien, N., Rajpurkar, P., Ball, R. L., Irvin, J., Park, A., Jones, E., ... & Lungren, M. P. (2018). Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS medicine, 15(11), e1002699.

