Rozkłady ciągłe

Joanna Czarnowska¹

¹Uniwersytet Gdański Instytut Informatyki joanna.czarnowska@ug.edu.pl

Rozkład zmiennej losowej typu ciagłego – gestość

Rozkład zmiennej losowej, dla której dystrybuanta ma postać

$$F(x) = \int_{-\infty}^{x} f(t)dt,$$

gdzie $f:\mathbb{R} \to \mathbb{R}$ jest funkcją nieujemną taką, że pole pomiędzy wykresem tej funkcji, a osią OX jest równe jeden

$$\forall_x \ f(x) \geqslant 0, \quad \int_{-\infty}^{\infty} f(x) dx = 1,$$

nazywamy rozkładem typu ciągłego lub krótko ciągłym. Funkcję f nazywamy gestościa rozkładu.

Gęstość rozkładu normalnego standardowego:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, x \in \mathbb{R}.$$

$$F(1) = P(X \le 1) = P(X < 1) = \int_{-\infty}^{1} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 0.84.$$

"Czytanie" gęstości

Pole pod gęstością od punktu a do b to prawdopodobieństwo, że zmienna losowa X przyjmuje wartości z przedziału o takich końcach

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a) = \int_a^b f(x).$$

Dystrybuanta zmiennej losowej ciągłej

Dla zmiennej losowej X ciągłej, zachodzi równość

$$F(x) = P(X \leqslant x) = P(X < x) = \int_{-\infty}^{x} f(t)dt.$$

Stąd mamy

$$P(a < X \leqslant b) = P(a \leqslant X < b) = P(a < X < b) = P(a \leqslant X \leqslant b) = F(b) - F(a).$$

"Czytanie" gęstości – przykłady

Patrząc na wykresy gęstości odpowiedz na pytanie, dla którego z poniższych trzech rozkładów, prawdopodobieństwo przyjęcia wartości z przedziału (1,2) jest największe?

rozkład jednostajny U(0,1) $f(x) = e^{-x}, x > 0$ $f(x) = 1, x \in (0,1)$

rozkład wykładniczy Exp(1)

rozkład log-normalny LN(0,1)

$$f(x) = \frac{1}{x\sqrt{2\pi}}e^{-\frac{(\ln x)^2}{2}}, \ x > 0$$

"Czytanie" gęstości – przykłady

Obliczmy teraz prawdopodobieństwo $P(X \in \{1,2\})$, dla każdego z trzech powyższych rozkładów. W przypadku rozkładu jednostajnego odpowiedź jest oczywista – wynosi ono zero. Dla rozkładów wykładniczego i log-normalnego mamy odpowiednio

$$P(X \in (1,2)) = \int_{1}^{2} e^{-x} dx = -e^{-x} \Big|_{1}^{2} dx = e^{-1} - e^{-2} \approx 0.23$$
$$P(X \in (1,2)) = \int_{1}^{2} \frac{1}{x\sqrt{2\pi}} e^{-\frac{(\ln x)^{2}}{2}} dx \approx 0.26.$$

"Czytanie" dystrybuanty

Z definicji dystrybuanty wynika, że jest to funkcja niemalejąca, przyjmująca wartości z przedziału [0,1]. Analiza wykresu nie jest tak oczywista jak w przypadku gestości.

rozkład jednostajny
$$U(0,1)$$

rozkład jednostajny U(0,1) rozkład wykładniczy Exp(1)
$$F(x)=x, x \in (0,1)$$
 $F(x)=1-e^{-x}, x>0$

rozkład log-normalny LN(0,1)

$$F(x) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{\ln(x) - \mu}{\sigma\sqrt{2}}\right), \ x > 0$$

Uwaga. erf(x) = $\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ – funkcja błędu (error function) – więcej o niej np. na

https://en.wikipedia.org/wiki/Error_function

Parametry rozkładu

W nawiasach dla porównania podane są definicje parametrów dla zmiennej losowej dyskretnej X, przyjmującej wartośći x_1, x_2, \ldots

Wartość oczekiwana

$$m = E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
 $(EX = \sum_{n} x_{n} P(X = x_{n}))$

Wariancja

$$Var(X) = E(X - m)^2 = \int_{-\infty}^{\infty} (x - m)^2 f(x) dx$$
 $(Var(X) = \sum_{n} (x_n - m)^2 P(X = x_n))$

k-ty moment zwykły

$$E(X^k) = \int_{-\infty}^{\infty} x^k f(x) dx$$
 $(E(X^k) = \sum_n x_n^k P(X = x_n))$

k-ty moment centralny

$$E(X-m)^k = \int_{-\infty}^{\infty} (x-m)^k f(x) dx$$
 $(E(X-m)^k = \sum_n (x_n-m)^k P(X=x_n))$

Przykłady rozkładów ciągłych

Zobacz: 02RozkładyCiagle.pdf