

1

Outline

- Propositional logic
 - □ Syntax
 - □ Semantics
- Truth table based inference
- Proof methods
 - □ Resolution
 - ☐ Forward chaining
 - ☐ Backward chaining

Propositional logic: Syntax

- Propositional logic is the simplest logic illustrates basic ideas
- The proposition symbols S, P₁, P₂ etc are sentences
 - \square If S is a sentence, \neg S is a sentence (negation)
 - \square If S₁ and S₂ are sentences, S₁ \wedge S₂ is a sentence (conjunction)
 - \square If S₁ and S₂ are sentences, S₁ \vee S₂ is a sentence (disjunction)
 - \square If S₁ and S₂ are sentences, S₁ \Rightarrow S₂ is a sentence (implication)
 - \square If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

3

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

7

Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in [i, j]. Let $B_{i,j}$ be true if there is a breeze in [i, j].

$$\alpha_1 = \neg P_{1,1}$$
 $\alpha_2 = \neg B_{1,1}$
 $\alpha_3 = B_{2,1}$

■ "Pits cause breezes in adjacent squares"

$$\begin{array}{ll} \square & \alpha_4\text{=} \ B_{1,1} \Leftrightarrow & (P_{1,2} \vee P_{2,1}) \\ \\ \square & \alpha_5\text{=} \ B_{2,1} \Leftrightarrow & (P_{1,1} \vee P_{2,2} \vee P_{3,1}) \end{array}$$

■ $KB = \{ \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5 \}.$

Truth tables for inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_1
false	true							
false	false	false	false	false	false	true	false	true
:	÷	:	:	:	:	:	:	:
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	\underline{true}	\underline{true}
false	true	false	false	false	true	false	\underline{true}	\underline{true}
false	true	false	false	false	true	true	\underline{true}	\underline{true}
false	true	false	false	true	false	false	false	true
:	:	:	:	:	:	:	:	:
true	false	false						

9

Inference by enumeration

- Depth-first enumeration of all models is sound and complete
- function TT-Entalls?(KB, α) returns true or false $symbols \leftarrow \text{a list of the proposition symbols in } KB \text{ and } \alpha$ $return \ \text{TT-CHeck-All}(KB, \alpha, symbols, [])$ function TT-CHeck-All($KB, \alpha, symbols, model$) returns true or false $if \ \text{Empty?}(symbols) \text{ then}$ $if \ \text{PL-True?}(KB, model) \text{ then return PL-True?}(\alpha, model)$ $else \ \text{return } true$ $else \ \text{do}$ $P \leftarrow \text{First}(symbols); \ rest \leftarrow \text{Rest}(symbols)$ $return \ \text{TT-CHeck-All}(KB, \alpha, rest, \text{Extend}(P, true, model) \text{ and}$ $\text{TT-CHeck-All}(KB, \alpha, rest, \text{Extend}(P, false, model)$
- For *n* symbols, time complexity is $O(2^n)$, space complexity is O(n)

Logical equivalence

■ Two sentences are logically equivalent iff true in same models: $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$

```
\begin{array}{c} (\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{array}
```


11

Validity and satisfiability

- A sentence is valid if it is true in all models, e.g., True, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$
- Validity is connected to inference via the Deduction Theorem: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid
- A sentence is satisfiable if it is true in some model e.g., A∨B, C
- A sentence is unsatisfiable if it is true in no models e.g., A∧¬A
- Satisfiability is connected to inference via the following:
 KB ⊨ α if and only if (KB ∧¬α) is unsatisfiable

Proof methods

- Proof methods divide into (roughly) two kinds:
 - □ Application of inference rules
 - ☐ Legitimate (sound) generation of new sentences from old
 - □ Proof = a sequence of inference rule applications Can use inference rules as operators in a standard search algorithm
 - ☐ Typically require transformation of sentences into a normal form
 - □ Model checking
 - \square truth table enumeration (always exponential in n)
 - ☐ If implemented correctly, give you're the standard entailment |=
 - □ improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)
 - □ heuristic search in model space (sound but incomplete)
 - e.g., min-conflicts-like hill-climbing algorithms

13

Resolution

Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals

clauses

E.g.,
$$(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$$

Resolution inference rule (for CNF):

where l_i and m_i are complementary literals.

where
$$I_i$$
 and m_j are complement
E.g., $P_{1,3} \vee P_{2,2}$, $P_{2,3} \vee P_{2,3}$

Resolution is sound and complete for propositional logic

Resolution algorithm

- Proof by contradiction, i.e., show *KB*∧¬α unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false clauses \leftarrow \text{the set of clauses in the CNF representation of } KB \wedge \neg \alpha new \leftarrow \{ \} loop \ do for \ each \ C_i, \ C_j \ in \ clauses \ do resolvents \leftarrow \text{PL-RESOLVE}(C_i, C_j) if \ resolvents \ contains \ the \ empty \ clause \ then \ return \ true new \leftarrow new \cup \ resolvents if \ new \ \subseteq \ clauses \ then \ return \ false clauses \leftarrow \ clauses \cup \ new
```


15

Resolution example

- $KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \alpha = \neg P_{1,2}$
- -

Forward and backward chaining

Horn Form (restricted)

KB = conjunction of Horn clauses

- ☐ Horn clause =
 - □ proposition symbol; or
 - \square (conjunction of symbols) \Rightarrow symbol
- \square E.g., $C \land (B \Rightarrow A) \land (C \land D \Rightarrow B)$
- Modus Ponens (for Horn Form): complete for Horn KBs

$$\alpha_1, \ldots, \alpha_n,$$

$$\alpha_1 \wedge ... \wedge \alpha_n \mathop{\Longrightarrow} \beta$$

β

- Can be used with forward chaining or backward chaining.
- These algorithms are very natural and run in linear time

17

Forward chaining

- Idea: fire any rule whose premises are satisfied in the KB,
 - □ add its conclusion to the KB, until query is found

$$\begin{array}{l} P \, \Rightarrow \, Q \\ L \wedge M \, \Rightarrow \, P \\ B \wedge L \, \Rightarrow \, M \\ A \wedge P \, \Rightarrow \, L \\ A \wedge B \, \Rightarrow \, L \\ A \\ B \end{array}$$

Forward chaining example $P \Rightarrow Q$ $L \land M \Rightarrow P$ $B \land L \Rightarrow M$ $A \land P \Rightarrow L$ $A \land B \Rightarrow L$ A B

19

Swinburne University of Technology

Forward chaining example

21

Forward chaining example

SWIN
BUR
* NE *

Forward chaining example

$$\begin{array}{l} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ A \\ B \end{array}$$

23

Forward chaining example

Forward chaining example $P \Rightarrow Q$ $L \land M \Rightarrow P$ $B \land L \Rightarrow M$ $A \land P \Rightarrow L$ $A \land B \Rightarrow L$ A B

25

Swinburne University of Technology

Forward chaining algorithm


```
function PL-FC-Entails?(KB, q) returns true or false
local variables: count, a table, indexed by clause, initially the number of premises inferred, a table, indexed by symbol, each entry initially false agenda, a list of symbols, initially the symbols known to be true while agenda is not empty do p \leftarrow PoP(agenda) unless inferred[p] do inferred[p] \leftarrow true for each Horn clause c in whose premise p appears do decrement count[c] if count[c] = 0 then do if Head[c] = q then return true Push(Head[c], agenda) return false
```

Forward chaining is sound and complete for Horn KB

27

Backward chaining

Idea: work backwards from the query q:

to prove q by BC,

check if q is known already, or prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

- 1. has already been proved true, or
- 2. has already failed

$$\begin{array}{l} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ A \\ B \end{array}$$

20

Backward chaining example

 $\begin{array}{l} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ A \end{array}$

Backward chaining example $P \Rightarrow Q$ $L \land M \Rightarrow P$ $B \land L \Rightarrow M$ $A \land P \Rightarrow L$ $A \land B \Rightarrow L$ A B

BUR * NE *

$$\begin{array}{l} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ A \end{array}$$

33

Backward chaining example

$$\begin{array}{l} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ A \end{array}$$

35

Backward chaining example

 $P \Rightarrow Q$ $L \land M \Rightarrow P$ $B \land L \Rightarrow M$ $A \land P \Rightarrow L$ $A \land B \Rightarrow L$ A

$$\begin{array}{l} P \Rightarrow Q \\ L \wedge M \Rightarrow P \\ B \wedge L \Rightarrow M \\ A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L \\ A \\ B \end{array}$$

37

Backward chaining example

SWIN BUR * NE *

Forward vs. backward chaining

- FC is data-driven, automatic, unconscious processing,
 □ e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,□ e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be much less than linear in size of KB

20

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
 - □ syntax: formal structure of sentences
 - □ semantics: truth of sentences wrt models
 - □ entailment: necessary truth of one sentence given another
 - ☐ inference: deriving sentences from other sentences
 - □ soundness: derivations produce only entailed sentences
 - □ completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Resolution is complete for propositional logic Forward, backward chaining are linear-time, complete for Horn clauses
- Propositional logic lacks expressive power
 - First order logic (FOL) addresses this issue WEEK 8

