Day-Ahead **Electricity**Price Prediction

Carter Bouley

Project Goals

Wholesale Electricity prices change over the course of the day

This provides opportunity to optimize consumption according to prices

Price Prediction

- Electricity prices follow patterns over *daily*, *weekly* and *seasonal* timeframes.
- Machine learning techniques can be utilized to *predict* these patterns effectively

Few electricity providers give their customers access to wholesale prices.

Octopus energy has designed an 'Agile Tariff' which does exactly that.

Data Collection

Electricity

Hourly electricity price data

Commodity

Daily commodity prices

Temperature

Hourly temperature data

- Target is to predict price in 24 hours
- Baseline model uses the price now as the prediction for the price at this time tomorrow
- This provides a *target* to beat

The Mean Absolute Percentage Error of this method is 17.33%

Selecting a **Baseline Model**

Data Shape

Input

Model can 'see' 168 hours into the past # of each of the variables

Process

Predicts hourly electricity price for 24 hours into the future

Output

Hour 24

Machine Learning Methods

1919		
	МАРЕ	Comparison Vs 'Dumb'
Arima	14.43%	+20.09%
Pure Time Series Simple Neural Network	18.85%	-8.77%
Multivariate Recurrent Neural Network	8.13%	+46.91%

Results

Why is this useful?

Load Shifting

Optimizing building electricity *demand* can lead to both monetary and carbon emission savings without sacrificing overall consumption.

Battery Simulation

A similar result can be achieved through storage. I have chosen to model this through a battery simulation.

Using the a popular home battery's parameters (*Tesla Powerwall 2*) I can attribute a value to the price prediction.

Battery Modelling

Battery Capacity

The Tesla Powerwall 2 has a Capacity of 14 kWh

Battery Power

The battery has power of 5kW.

This leads to the full Capacity in just under 3 hours.

Target

The battery target is to charge at the cheapest times, and discharge at the most expensive times, maximizing profit.

Charging Cycle

One-Year Returns

£151.02

Spend on Charging

£280.23

Earned from 'selling' to the Grid

85.55%*

ROI

Simple Neural Network

Recurrent Neural Network

Recurrent network

