Getting Started With the R Commander*

John Fox

22 April 2005

1 Starting the R Commander

Once R is running, simply loading the Rcmdr package by typing the command library(Rcmdr) into the R Console starts the R Commander graphical user interface ("GUI"). To function properly under Windows, the R Commander requires the single-document interface (SDI) to R.¹ After loading the package, R Console and R Commander windows should appear more or less as in Figures 1 and 2. These and other screen images in this document were created under Windows XP; if you use another version of Windows (or, of course, another computing platform), then the appearance of the screen may differ.²

The *R Commander* and *R Console* windows float freely on the desktop. You will normally use the menus and dialog boxes of the R Commander to read, manipulate, and analyze data.

- R commands generated by the R Commander GUI appear in the upper text window (labelled *Script Window*) within the main *R Commander* window. You can also type R commands directly into the script window or at the > (greater-than) prompt in the *R Console*; the main purpose of the R Commander, however, is to avoid having to type commands.
- Printed output appears by default in the second text window (labelled *Output Window*).
- The lower, gray window (labelled *Messages*) displays error messages, warnings, and some other information ("notes"), such as the start-up message in Figure 2.

^{*}This manual is adapted from part of a paper to be published in the Journal of Statistical Software. Please address correspondence to jfox@mcmaster.ca. The work described in this paper was supported by a grant from the Social Science Research Board of McMaster University. I am grateful to Michael Ash, Philippe Grosjean, Martin Maechler, Dan Putler, and Peter Wolf, who have contributed code to the Rcmdr package described in this paper. Many individuals — too numerous to name here — have assisted me with suggestions and bug reports; they are acknowledged in the CHANGES file distributed with the package. I am also grateful to Tony Christensen for research assistance; to Bob Andersen for comments on a draft of this paper; and to two anonymous reviewers of an earlier version of the paper for their incisive criticisms and constructive suggestions. Finally, I wish to thank Peter Dalgaard for the tcltk package on which the Rcmdr package is based, and the other members of the R core team and the several package authors on whose work the statistical functionality of the R Commander rests. This is a revised version of a paper presented at the useR! Conference, Vienna, May 2004.

¹The Windows version of R is normally run from a multiple-document interface ("MDI"), which contains the R Console window, Graphical Device windows created during the session, and any other windows related to the R process. In contrast, under the single-document interface ("SDI"), the R Console and Graphical Device windows are not contained within a master window. There are several ways to run R in SDI mode — for example, by editing the Rconsole file in R's etc subdirectory, or by adding --sdi to the Target field in the Shortcut tab of the R desktop icon's Properties. This limitation of the Rcmdr package is inherited from the tcltk package, on which Rcmdr depends.

²Notice that Rcmdr requires some packages in addition to several of the "recommended" packages that are normally distributed with R, and loads these packages at startup. Rcmdr, the required packages, and many other contributed packages are available for download from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/>.

If these packages are not installed, the Rcmdr will offer to install them from the Internet or from local files (e.g., on a CD/ROM). If you install the Rcmdr package via the Windows "R GUI," the packages on which the Rcmdr depends should be installed automatically. More generally, you can install the Rcmdr package and all of the packages on which it depends via the install.packages function, setting the argument dependencies = TRUE.

Thanks to Dirk Eddelbuettel, Debian Linux users need only issue the command \$ apt-get install r-cran-rcmdr to install the Rcmdr package along with all of the packages that it requires. In any event, building and installing the Rcmdr package on Linux systems is typically straightforward. The task can be more formidible under OS/X on Macinstosh systems, since the tcltk package on which the Rcmdr depends requires that Tcl/Tk be installed and that R is running under X-Windows.

Figure 1: The R Console window after loading the Rcmdr package.

• When you create graphs, these will appear in a separate *Graphics Device* window.

There are several menus along the top of the R Commander window:

File Menu items for loading and saving script files; for saving output and the R workspace; and for exiting.

Edit Menu items (*Cut*, *Copy*, *Paste*, etc.) for editing the contents of the script and output windows. Right clicking in the script or output window also brings up an edit "context" menu.

Data Submenus containing menu items for reading and manipulating data.

Statistics Submenus containing menu items for a variety of basic statistical analyses.

Graphs Menu items for creating simple statistical graphs.

Models Menu items and submenus for obtaining numerical summaries, confidence intervals, hypothesis tests, diagnostics, and graphs for a statistical model, and for adding diagnostic quantities, such as residuals, to the data set.

Distributions Probabilities, quantiles, and graphs of standard statistical distributions (to be used, for example, as a substitute for statistical tables).

Tools Menu items for loading R packages unrelated to the Rcmdr package (e.g., to access data saved in another package), and for setting some options.

Help Menu items to obtain information about the R Commander (including this manual). As well, each R Commander dialog box has a *Help* button (see below).

The complete menu "tree" for the R Commander (version 1.0-0) is shown below. Most menu items lead to dialog boxes, as illustrated later in this paper. Menu items are inactive ("grayed out") if they are inapplicable to the current context.

Figure 2: The R Commander window at start-up

```
File - Open script file
    |- Save script
    |- Save script as
    |- Save output
    |- Save output as
    |- Save R workspace
    |- Save R workspace as
    |- Exit - from Commander
           |- from Commander and R
Edit - Clear Window
    |- Cut
    |- Copy
    |- Paste
    |- Delete
    |- Find
    |- Select all
Data - New data set
    |- Import data - from text file
                  |- from SPSS data set
                  |- from Minitab data set
                  |- from STATA data set
    |- Data in packages - List data sets in packages
                       |- Read data set from attached package
    |- Active data set - Select active data set
                      |- Help on active data set (if available)
                      |- Variables in active data set
                      I- Set case names
                      |- Subset active data set
                      |- Remove cases with missing data
                      |- Export active data set
    |- Manage variables in active data set - Recode variable
                                           |- Compute new variable
                                           |- Standardize variables
                                           |- Convert numeric variable to factor
                                           |- Bin numeric variable
                                           |- Reorder factor levels
                                           |- Define contrasts for a factor
                                           |- Rename variables
                                           |- Delete variables from data set
Statistics - Summaries - Active data set
                      |- Numerical summaries
                      |- Frequency distribution
                      |- Table of statistics
                      |- Correlation matrix
          |- Contingency Tables - Two-way table
                               |- Multi-way table
                               |- Enter and analyze two-way table
          |- Means - Single-sample t-test
                  |- Independent-samples t-test
                  |- Paired t-test
```

```
|- One-way ANOVA
                  |- Multi-way ANOVA
          |- Proportions - Single-sample proportion test
                        |- Two-sample proportions test
          |- Variances - Two-variances F-test
                      |- Bartlett's test
                      |- Levene's test
          |- Nonparametric tests - Two-sample Wilcoxon test
                                |- Paired-samples Wilcoxon test
                                |- Kruskal-Wallis test
          |- Dimensional analysis - Scale reliability
                                 |- Principal-components analysis
                                 |- Factor analysis
                                 |- Cluster analysis - k-means cluster analysis
                                                     |- Hierarchical cluster analysis
                                                     |- Summarize hierarchical clustering
                                                     |- Add hierarchical clustering to data set
          |- Fit models - Linear regression
                       |- Linear model
                       |- Generalized linear model
                       |- Multinomial logit model
                       |- Proportional-odds logit model
Graphs - Index plot
      |- Histogram
      |- Stem-and-leaf display
      |- Boxplot
      |- Quantile-comparison plot
      |- Scatterplot
      |- Scatterplot matrix
      |- 3D scatterplot
      |- Line graph
      |- Plot of means
      |- Bar graph
      |- Pie chart
      |- Save graph to file - as bitmap
                           |- as PDF/Postscript/EPS
                           |- 3D RGL graph
Models - Select active model
      |- Summarize model
      |- Add observation statistics to data
      |- Confidence intervals
      |- Hypothesis tests - ANOVA table
                         |- Compare two models
                         |- Linear hypothesis
      |- Numerical diagnostics - Variance-inflation factors
                              |- Breusch-Pagan test for heteroscedasticity
                              |- Durbin-Watson test for autocorrelation
                              |- RESET test for nonlinearity
                              |- Bonferroni outlier test
      |- Graphs - Basic diagnostic plots
               |- Residual quantile-comparison plot
               |- Component+residual plots
```

```
|- Added-variable plots
               |- Influence plot
               |- Effect plots
Distributions - Normal distribution - Normal quantiles
                                   |- Normal probabilities
                                    |- Plot normal distribution
             |- t distribution - t quantiles
                              |- t probabilities
                              |- Plot t distribution
             |- Chi-squared distribution - Chi-squared quantiles
                                         |- Chi-squared probabilities
                                         |- Plot chi-squared distribution
             |- F distribution - F quantiles
                              |- F probabilities
                               |- Plot F distribution
             |- Binomial distribution - Binomial quantiles
                                     |- Binomial tail probabilities
                                     |- Binomial probabilities
                                     |- Plot binomial distribution
             |- Poisson distribution - Poisson probabilities
                                     |- Plot Poisson distribution
Tools - Load package(s)
     |- Options
Help - Commander help
    |- About Rcmdr
    |- Introduction to the R Commander
    |- Help on active data set (if available)
```

The R Commander interface includes a few elements in addition to the menus and dialogs:

- Below the menus is a "toolbar" with a row of buttons.
 - The left-most (flat) button shows the name of the active data set. Initially there is no active data set. If you press this button, you will be able to choose among data sets currently in memory (if there is more than one). Most of the menus and dialogs in the R Commander reference the active data set. (The *File*, *Edit*, and *Distributions* menus are exceptions.)
 - Two buttons allow you to open the R data editor to modify the active data set or a viewer to examine it. The data-set viewer can remain open while other operations are performed.³
 - A flat button indicates the name of the active statistical model a linear model (such as a linear regression model), a generalized linear model, a multinomial logit model, or a proportional-odds model.⁴ Initially there is no active model. If there is more than one model in memory, you can choose among them by pressing the button.
- Immediately below the toolbar is the script window (so labelled), a large scrollable text window. As mentioned, commands generated by the GUI are copied into this window. You can edit the text in

³The data viewer, provided by the showData function from David Firth's relimp package, can be slow for data sets with large numbers of variables. When the number of variables exceeds a threshold (initially set to 100), the R data editor is used instead to display the data set. To use the data editor regardless of the number of variables, set the threshold to 0. See the R Commander help file for details. A disadvantage of using the data editor to display the current data set is that the editor window cannot continue to be displayed while other operations are performed.

⁴Users can provide additional classes of statistical models by adding the necessary dialog boxes and menu items, and editing the model-classes.txt file in R's etc directory.

the script window or even type your own R commands into the window. Pressing the *Submit* button, which is at the right below the script window (or, alternatively, the key combination *Ctrl-r*, for "run"), causes the line containing the cursor to be submitted (or resubmitted) for execution. If several lines are selected (e.g., by left-clicking and dragging the mouse over them), then pressing *Submit* will cause all of them to be executed. Commands entered into the script window can extend over more than one line, but if they do, lines after the first must be indented with one or more spaces or tabs.

- Below the script window is a large scrollable and editable text window for output. Commands echoed to this window appear in red, output in dark blue (as in the *R Console*).
- At the bottom is a small gray text window for messages. Error messages are displayed in red text, warnings in green, and other messages in dark blue. Errors and warnings also provide an audible cue by ringing a bell. Messages are cleared at the next operation, but a 'note' does not clear an error message or a warning.

Once you have loaded the Rcmdr package, you can minimize the R Console. The R Commander window can also be resized or maximized in the normal manner. If you resize the R Commander, the width of subsequent R output is automatically adjusted to fit the output window.

The R Commander is highly configurable: I have described the default configuration here. Changes to the configuration can be made via the $Tools \longrightarrow Options...$ menu, or — much more extensively — by setting options in R.⁵ See the Rcmdr help files for details.

2 Data Input

Most of the procedures in the R Commander assume that there is an active data set.⁶ If there are several data sets in memory, you can choose among them, but only one is active. When the R Commander starts up, there is no active data set.

The R Commander provides several ways to get data into R:

- You can enter data directly via Data \longrightarrow New data set.... This is a reasonable choice for a very small data set.
- You can import data from a plain-text ("ascii") file or from another statistical package (Minitab, SPSS, or Stata).
- You can read a data set that is included in an R package, either typing the name of the data set (if you know it), or selecting the data set in a dialog box.

2.1 Reading Data From a Text File

For example, consider the data file Nations.txt.⁷ The first few lines of the file are as follows:

TFR contraception	infant.mortality	GDP r	egion	
Afghanistan	6.90 NA	A 154	2848	Asia
Albania	2.60 NA	A 32	863	Europe
Algeria	3.81 5	2 44	1531	Africa
American-Samoa	NA NA	A 11	NA	Oceania
Andorra	NA NA	A NA	NA	Europe
Angola	6.69 NA	A 124	355	Africa
Antigua	NA 5	3 24	6966	Americas
Argentina	2.62 NA	A 22	8055	Americas

⁵A menu item that terminates in ellipses (i.e., three dots, ...) leads to a dialog box; this is a standard GUI convention. In this document, → represents selecting a menu item or submenu from a menu.

⁶Procedures selected under via the *Distributions* menu are exceptions, as is *Enter and analyze two-way table...* under the $Statistics \longrightarrow Contingency tables$ menu.

⁷This file resides in the etc subdirectory of the Rcmdr package.

Armenia	1.70	22	25	354	Europe
Australia	1.89	76	6 2	20046	Oceania

. . .

- The first line of the file contains variable names: TFR (the total fertility rate, expressed as number of children per woman), contraception (the rate of contraceptive use among married women, in percent), infant.mortality (the infant-mortality rate per 1000 live births), GDP (gross domestic product per capita, in U.S. dollars), and region.
- Subsequent lines contain the data values themselves, one line per country. The data values are separated by "white space" one or more blanks or tabs. Although it is helpful to make the data values line up vertically, it is not necessary to do so. Notice that the data lines begin with the country names. Because we want these to be the "row names" for the data set, there is no corresponding variable name: That is, there are five variable names but six data values on each line. When this happens, R will interpret the first value on each line as the row name.
- Some of the data values are missing. In R, it is most convenient to use NA (representing "not available") to encode missing data, as I have done here.
- The variables TFR, contraception, infant.mortality, and GDP are numeric (quantitative) variables; in contrast, region contains region names. When the data are read, R will treat region as a "factor" that is, as a categorical variable. In most contexts, the R Commander distinguishes between numerical variables and factors.

To read the data file into R, select $Data \longrightarrow Import \ data \longrightarrow from \ text \ file...$ from the R Commander menus. This operation brings up a Read Data From Text File dialog, as shown in Figure 3. The default name of the data set is Dataset. I have changed the name to Nations.

Valid R names begin with an upper- or lower-case letter (or a period, .) and consist entirely of letters, periods, underscores (_), and numerals (i.e., 0-9); in particular, do not include any embedded blanks in a data-set name. You should also know that R is case-sensitive, and so, for example, nations, Nations, and NATIONS are distinguished, and could be used to represent different data sets.

Clicking the *OK* button in the *Read Data From Text File* dialog brings up an *Open* file dialog, shown in Figure 4. Here I navigated to the file Nations.txt. Clicking the *Open* button in the dialog will cause the data file to be read. Once the data file is read, it becomes the active data set in the R Commander. As a consequence, in Figure 5, the name of the data set appears in the data set button near the top left of the *R Commander* window.

I clicked the *View data set* button to bring up the data viewer window, also shown in Figure 5. Notice that the commands to read and view the Nations data set (the R read.table and showData commands) appear, partially obscured by the display of the data set, in the script and output windows. When the data set is read and becomes the active data set, a note appears in the messages window (and this is erased when the subsequent showData command is executed).

The read.table command creates an R "data frame," which is an object containing a rectangular casesby-variables data set: The rows of the data set represent cases or observations and the columns represent variables. Data sets in the R Commander are R data frames.

2.2 Entering Data Directly

To enter data directly into the R spreadsheet-like data editor you can proceed as follows. As an example, I use a very small data set from Problem 2.44 in Moore (2000):

• Select $Data \longrightarrow New\ data\ set...$ from the $R\ Commander\ menus$. Optionally enter a name for the data set, such as Problem2.44, in the resulting dialog box, and click the OK button. (Remember that R names cannot include intervening blanks.) This will bring up a $Data\ Editor$ window with an empty data set.

Figure 3: Reading data from a text file.

Figure 4: Open-file dialog for reading a text data file.

Figure 5: Displaying the active data set.

Figure 6: Data editor after the data are entered.

Figure 7: Dialog box for changing the name of a variable in the data editor.

- Enter the data from the problem into the first two columns of the data editor. You can move from one cell to another by using the arrow keys on your keyboard, by tabbing, by pressing the *Enter* key, or by pointing with the mouse and left-clicking. When you are finished entering the data, the window should look like Figure 6.
- Next, click on the name var1 above the first column. This will bring up a *Variable editor* dialog box, as in Figure 7.
- Type the variable name age in the box, just as I have, and click the X button at the upper-right corner of the *Variable editor* window, or press the *Enter* key, to close the window. Repeat this procedure to name the second column height. The *Data Editor* should now look like Figure 8.
- Select File \longrightarrow Close from the Data Editor menus or click the X at the upper-right of the Data Editor window. The data set that you entered is now the active data set in the R Commander.

2.3 Reading Data from a Package

Many R packages include data. Data sets in packages can be listed in a pop-up window via $Data \longrightarrow Data$ in packages $\longrightarrow List\ data\ sets\ in\ packages$, and can be read into the R Commander via $Data \longrightarrow Data\ in\ packages \longrightarrow Read\ data\ set\ from\ an\ attached\ package.^8$ The resulting dialog box is shown in Figure 9. If you

⁸Not all data in packages are data frames, and only data frames are suitable for use in the R Commander. If you try to read data that are not a data frame, an error message will appear in the messages window.

Figure 8: The Data Editor window after both variable names have been changed.

Figure 9: Reading data from an attached package.

know the name of a data set in a package then you can enter its name directly; otherwise double-clicking on the name of a package displays its data sets in the right list box; and double-clicking on a data set name copies the name to the data-set entry field in the dialog. You can attach additional R packages by $Tools \longrightarrow Load\ packages$.

3 Creating Numerical Summaries and Graphs

Once there is an active data set, you can use the *R Commander* menus to produce a variety of numerical summaries and graphs. I will describe just a few basic examples here. A good GUI should be largely self-explanatory: I hope that once you see how the R Commander works, you will have little trouble using it, assisted perhaps by the on-line help files.

In the examples below, I assume that the active data set is the Nations data set, read from a text file in the previous section. If you typed in the five-observation data set from Moore (2000), or read in the Prestige data set from the car package, as were also described in the previous section, then one of these is the active data set. Recall that you can change the active data set by clicking on the flat button with the

⁹In general in the R Commander, when it is necessary to copy an item from a list box to another location in a dialog, a double-click is required.

Figure 10: Getting variable summaries for the active data set.

active data set's name near the top left of the *R Commander* window, selecting from among a list of data sets currently resident in memory.

Selecting Statistics — Summaries — Active data set produces the results shown in Figure 10. For each numerical variable in the data set (TFR, contraception, infant.mortality, and GDP), R reports the minimum and maximum values, the first and third quartiles, the median, and the mean, along with the number of missing values. For the categorical variable region, we get the number of observations at each "level" of the factor. Had the data set included more than ten variables, the R Commander would have asked us whether we really want to proceed — potentially protecting us from producing unwanted voluminous output.

Similarly, selecting $Statistics \longrightarrow Summaries \longrightarrow Numerical summaries...$ brings up the dialog box shown in Figure 11. Only numerical variables are shown in the variable list in this dialog; the factor region is missing, because it is not sensible to compute numerical summaries for a factor. Clicking on infant.mortality, and then clicking OK, produces the following output (in the output window):¹⁰

> mean(Nations\$infant.mortality, na.rm=TRUE) [1] 43.47761

¹⁰To select a single variable in a variable-list box, simply left-click on its name. In some contexts, you will have to select more than one variable. In these cases, the usual Windows conventions apply: Left-clicking on a variable selects it and de-selects any variables that have previously been selected; *Shift-left-click* extends the selection; and *Ctrl-left-click* toggles the selection for an individual variable.

Figure 11: The Numerical Summaries dialog box.

Figure 12: Selecting a grouping variable in the *Groups* dialog box.

```
> sd(Nations$infant.mortality, na.rm=TRUE)
[1] 38.75604
> quantile(Nations$infant.mortality, c( 0,.25,.5,.75,1 ), na.rm=TRUE)
    0% 25% 50% 75% 100%
    2 12 30 66 169
```

By default, the R commands that are executed print out the mean and standard deviation of the variable, along with quantiles (percentiles) corresponding to the minimum, the first quartile, the median, the third quartile, and the maximum.

As is typical of R Commander dialogs, the *Numerical Summaries* dialog box in Figure 11 includes *OK*, *Cancel*, and *Help* buttons. The *Help* button leads to a help page either for the dialog itself or (as here) for an R function that the dialog invokes.

The Numerical Summaries dialog box also makes provision for computing summaries within groups defined by the levels of a factor. Clicking on the Summarize by groups... button brings up the Groups dialog, as shown in Figure 12. Because there is only one factor in the Nations data set, only the variable region appears in the variable list; selecting this variable and clicking OK changes the Summarize by groups... button to Summarize by region (see Figure 13); clicking OK produces the following results (with most of the output suppressed for brevity):

> by(Nations\$infant.mortality, Nations\$region, mean, na.rm=TRUE)

Figure 13: The Numerical Summaries dialog box after a grouping variable has been selected.

Figure 14: The *Histogram* dialog.

INDICES: Africa
[1] 85.27273

INDICES: Americas
[1] 25.6

INDICES: Asia
[1] 45.65854

INDICES: Europe
[1] 11.85366

INDICES: Oceania
[1] 27.79167

Several other R Commander dialogs allow you to select a grouping variable in this manner.

Making graphs with the R Commander is also straightforward. For example, selecting $Graphs \longrightarrow Histogram...$ from the R Commander menus brings up the Histogram dialog box in Figure 14; and clicking on infant.mortality followed by OK, opens a Graphics Device window with the histogram shown in Figure 15.

If you make several graphs in a session, then only the most recent normally appears in the Graphics

Figure 15: A graphics window containing the histogram for infant mortality.

Device window. You can recall previous graphs using the Page Up and Page Down keys on your keyboard. 11

4 Statistical Models

Several kinds of statistical models can be fit in the R Commander using menu items under $Statistics \longrightarrow Fit$ models: linear models (by both $Linear\ regression$ and $Linear\ model$), generalized linear models, multinomial logit models, and proportional-odds models [the latter two from Venables and Ripley's (2002) nnet and MASS packages, respectively]. Although the resulting dialog boxes differ in certain details (for example, the generalized linear model dialog makes provision for selecting a distributional family and corresponding link function), they share a common general structure, as illustrated in the $Linear\ Model$ dialog in Figure 16.¹²

- Double-clicking on a variable in the variable-list box copies it to the model formula to the left-hand side of the formula, if it is empty, otherwise to the right-hand side (with a preceding + sign if the context requires it). Note that factors (categorical variables) are parenthetically labelled as such in the variable list.
- The row of buttons above the formula can be used to enter operators and parentheses into the right-hand size of the formula.
- You can also type directly into the formula fields, and indeed have to do so, for example, to put a term such as log(income) into the formula.
- The name of the model, here LinearModel.1, is automatically generated, but you can substitute any valid R name.

 $^{^{11}}$ At start-up, the R Commander turns on the graph history mechanism; this feature is available only in Windows systems. Dynamic three-dimensional scatterplots created by $Graphs \longrightarrow 3D$ scatterplot... appear in a special RGL device window; likewise, effect displays created for statistical models (Fox, 2003) via $Models \longrightarrow Graphs \longrightarrow Effect$ plots appear in individual graphics-device windows.

¹² An exception is the *Linear Regression* dialog in which the response variable and explanatory variables are simply selected by name from list boxes containing the numeric variables in the current data set. The explanation below assumes familiarity with R model formulas; see, for example, the *Introduction to R* manual that comes with R, which may be accessed from the *Help* menu in the *R Console*.

Figure 16: The Linear Model dialog box.

• You can type an R expression into the box labelled *Subset expression*; if supplied, this is passed to the subset argument of the lm function, and is used to fit the model to a subset of the observations in the data set. One form of subset expression is a logical expression that evaluates to TRUE or FALSE for each observation, such as type != "prof" (which would select all non-professional occupations from the Prestige data set).

Clicking the OK button produces the following output (in the output window), and makes LinearModel.1 the active model, with its name displayed in the Model button:

```
> LinearModel.1 <- lm(prestige ~ (education + income )*type , data=Prestige)</pre>
> summary(LinearModel.1)
Call:
lm(formula = prestige ~ (education + income) * type, data = Prestige)
Residuals:
    Min
             1Q
                 Median
                              3Q
                                     Max
-13.462
        -4.225
                  1.346
                           3.826
                                  19.631
Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         2.276e+00
                                    7.057e+00
                                                0.323
                                                         0.7478
education
                         1.713e+00
                                    9.572e-01
                                                 1.790
                                                         0.0769 .
income
                         3.522e-03
                                    5.563e-04
                                                 6.332 9.62e-09 ***
type[T.prof]
                         1.535e+01
                                    1.372e+01
                                                1.119
                                                         0.2660
type[T.wc]
                                                -1.900
                       -3.354e+01
                                    1.765e+01
                                                         0.0607
education:type[T.prof]
                        1.388e+00
                                    1.289e+00
                                                1.077
                                                         0.2844
education:type[T.wc]
                         4.291e+00
                                    1.757e+00
                                                 2.442
                                                         0.0166 *
income:type[T.prof]
                        -2.903e-03
                                    5.989e-04
                                                -4.847 5.28e-06 ***
income:type[T.wc]
                        -2.072e-03
                                    8.940e-04
                                               -2.318
                                                         0.0228 *
               0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
Signif. codes:
Residual standard error: 6.318 on 89 degrees of freedom
Multiple R-Squared: 0.8747, Adjusted R-squared: 0.8634
```

F-statistic: 77.64 on 8 and 89 DF, p-value: < 2.2e-16

Operations on the active model may be selected from the *Models* menu. For example, *Models* \longrightarrow *Hypothesis tests* \longrightarrow *Anova table* produces the following output:

```
> Anova(LinearModel.1)
Anova Table (Type II tests)
Response: prestige
               Sum Sq Df F value
                                    Pr(>F)
education
               1068.0
                      1 26.7532 1.413e-06 ***
                       1 28.3544 7.511e-07 ***
income
               1131.9
                          7.4044 0.001060 **
type
                591.2
                       2
                238.4
                      2
                         2.9859 0.055574 .
education:type
                951.8 2 11.9210 2.588e-05 ***
income:type
               3552.9 89
Residuals
              0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' '1
Signif. codes:
```

5 Odds and Ends

5.1 Saving and Printing Output

You can save text output directly from the *File* menu in the *R Commander*; likewise you can save or print a graph from the *File* menu in an *R Graphics Device* window. It is generally more convenient, however, to collect the text output and graphs that you want to keep in a word-processor document. In this manner, you can intersperse R output with your typed notes and explanations.

Open a word processor such as Word, or even Windows WordPad. To copy text from the output window, block the text with the mouse, select Copy from the Edit menu (or press the key combination Ctrl-c, or right-click in the window and select Copy from the context menu), and then paste the text into the word-processor window via $Edit \longrightarrow Paste$ (or Ctrl-v), as you would for any Windows application. One point worth mentioning is that you should use a mono-spaced ("typewriter") font, such as $Courier\ New$, for text output from R; otherwise the output will not line up neatly.

Likewise to copy a graph, select $File \longrightarrow Copy$ to the clipboard \longrightarrow as a Metafile from the R Graphics Device menus; then paste the graph into the word-processor document via $Edit \longrightarrow Paste$ (or Ctrl-v). Alternatively, you can use Ctrl-w to copy the graph from the R Graphics Device, or right-click on the graph to bring up a context menu, from which you can select Copy as metafile.¹³ At the end of your R session, you can save or print the document that you have created, providing an annotated record of your work.

Alternative routes to saving text and graphical output may be found respectively under the R Commander File and $Graphs \longrightarrow Save\ graph\ to\ file$ menus.

5.2 Terminating the R Session

There are several ways to terminate your session. For example, you can select $File \longrightarrow Exit \longrightarrow From$ Commander and R from the R Commander menus. You will be asked to confirm, and then asked whether you want to save the contents of the script and output windows. Likewise, you can select $File \longrightarrow Exit$ from the R Console; in this case, you will be asked whether you want to save the R workspace (i.e., the data that R keeps in memory); you would normally answer No.

5.3 Entering Commands in the Script Window

The script window provides a simple facility for editing, entering, and executing commands. Commands generated by the R Commander appear in the script window, and you can type and edit commands in the

¹³As you will see when you examine these menus, you can save graphs in a variety of formats, and to files as well as to the clipboard. The procedure suggested here is straightforward, however, and generally results in high-quality graphs. Once again, this description applies to Windows systems.

window more or less as in any editor. The R Commander does not provide a true "console" for R, however, and the script window has some limitations:

- Commands that extend over more than one line should have the second and subsequent lines indented
 by one or more spaces or tabs; all lines of a multiline command must be submitted simultaneously for
 execution.
- Commands that include an assignment arrow (<-) will not generate printed output, even if such output would normally appear had the command been entered in the *R Console* [the command print(x <- 10), for example]. On the other hand, assignments made with the equals sign (=) produce printed output even when they normally would not (e.g., x = 10).
- Commands that produce normally invisible output will occasionally cause output to be printed in the output window. This behaviour can be modified by editing the entries of the log-exceptions.txt file in the R Commander's etc directory.
- Blocks of commands enclosed by braces, i.e., {}, are not handled properly unless each command is terminated with a semicolon (;). This is poor R style, and implies that the script window is of limited use as a programming editor. For serious R programming, it would be preferable to use the script editor provided by the Windows version of R itself, or even better a programming editor.

References

Fox, J. (2003). Effect displays in R for generalised linear models. Journal of Statistical Software, 8(15):1–27.
Moore, D. S. (2000). The Basic Practice of Statistics, Second Edition. Freeman, New York.
Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S, Fourth Edition. Springer, New York.