1 Integration \$493,507

1.1 Tricks \$495

Linearität \$495

$$\int k(u+v) = k\left(\int u + \int v\right)$$

Partialbruchzerlegung \$15,498

$$\int \frac{f(x)}{P_n(x)} dx = \sum_{k=1}^n \int \frac{A_k}{x - r_k} dx$$

Elementartransformation \$496

$$\int f(\lambda x + \ell) \, \mathrm{d}x = \frac{1}{\lambda} F(\lambda x + \ell) + C$$

Partielle Integration \$497

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

Potenzenregel \$496

$$\int u^n \cdot u' = \frac{u^{n+1}}{n+1} + C \qquad n \neq -1$$

Logaritmusregel \$496

$$\int \frac{u'}{u} = \ln|u| + C$$

Allgemeine Substitution S497 x = g(u), und dx = g'(u)du

$$\int f(x) dx = \int (f \circ g) g' du = \int \frac{f \circ g}{(g^{-1})' \circ g} du$$

Universal substitution \$504

$$t = \tan(x/2)$$
 $\sin(x) = \frac{2t}{1+t^2}$ $dx = \frac{2dt}{1+t^2}$ $\cos(t) = \frac{1-t^2}{1+t^2}$

Womit

$$\int f(\sin(x), \cos(x), \tan(x)) dx = \int g(t) dt$$

1.2 Uneigentliches Integral \$520

$$\int_{a}^{\infty} f \, dx = \lim_{B \to \infty} \int_{a}^{B} f \, dx$$

$$\int_{-\infty}^{b} f \, dx = \lim_{A \to -\infty} \int_{A}^{b} f \, dx$$

$$\int_{A}^{\infty} f \, dx = \lim_{A \to -\infty} \int_{A}^{B} f \, dx$$

Wenn f im Punkt $u \in (a, b)$ nicht definiert ist.

$$\int_{a}^{b} f \, \mathrm{d}x = \lim_{\epsilon \to +0} \int_{a}^{u-\epsilon} f \, \mathrm{d}x + \lim_{\delta \to +0} \int_{a-\epsilon}^{b} f \, \mathrm{d}x \qquad (1.2.1)$$

1.3 Cauchy Hauptwert \$523

Der C.H. (oder PV für *Principal Value* auf Englisch) eines uneigentlichen Integrals ist der Wert, wenn in einem Integral wie (1.2.1) beide Grenzwerte mit der gleiche Geschwindigkeit gegen 0 streben.

C.H.
$$\int_{a}^{b} f \, dx = \lim_{\epsilon \to +0} \left(\int_{a}^{u-\epsilon} f \, dx + \int_{u+\epsilon}^{b} f \, dx \right)$$

Zum Beispiel x^{-1} ist nicht über \mathbb{R} integrierbar, wegen des Poles bei 0. Aber intuitiv wie die Symmetrie vorschlagt

C.H.
$$\int_{-\infty}^{\infty} \frac{1}{x} \, \mathrm{d}x = 0$$

1.4 Majorant-, Minorantenprinzip und Konvergenzkriterien \$521,473,479,481

Gilt für die Funktionen $0 < f(x) \le g(x)$ mit $x \in [a, \infty)$

konvergiert
$$\int_{a}^{\infty} g \, \mathrm{d}x \implies \text{konvergiert } \int_{a}^{\infty} f \, \mathrm{d}x$$

Die selbe gilt umgekehrt für Divergenz. Wenn $0 < h(x) \le f(x)$

divergiert
$$\int_{a}^{\infty} h \, \mathrm{d}x \implies \text{divergiert } \int_{a}^{\infty} f \, \mathrm{d}x$$

g und h heißen Majorant und Minorant bzw.

2 Implizite Ableitung s448

$$(af)' = af' \qquad (u(v(x)))' = u'(v)v'$$

$$(uv)' = u'v + uv' \qquad \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$\left(\sum u_i\right)' = \sum u_i' \qquad (\ln u)' = \frac{u'}{u}$$

$$(f^{-1})' = \frac{1}{f'(f^{-1}(x))}$$

Alle normale differenziazions regeln für f(x) gelten. Allgemeiner für die implizite Funktion F(x,y)=0

$$dy = y'dx$$
 $\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y}y' = 0$

3 Differentialgeometrie

3.1 Ebene Kurven \$250

3.1.1 Darstellungen und Umwanldung

Sei $\Lambda: x=\phi(t),\, y=\psi(t), t\in I$ eine glatte Jordankurve. Beispiel in Abb. 1.

Abbildung 1: Die ebene Kurve $\Lambda(t)$ kann Explizit y(x) (in diesem Fall nicht), Implizit $\mathbf{u}(x,y) = 0$, Polar $\mathbf{r}(\varphi)$ oder in Parameterform (x(t),y(t)) dargestellt werden.

Polar zu Kartesian

$$r = \sqrt{x^2 + y^2}$$
 $\tan \varphi = y/x$
 $x = r \cos \varphi$ $y = r \sin \varphi$

Parametrisch zu explizit Sei $\dot{\phi} \neq 0$ oder $\dot{\psi} \neq 0$. Im Falle $\dot{\phi} \neq 0$, wechselt $\dot{\phi}$ in der Umgebung von t das Vorzeichen nicht, ϕ ist dort streng monoton. Daher gilt

$$t = \phi^{-1}(x)$$
 $y = \psi(t) = \psi \circ \phi^{-1}(x) = f(x)$

Wenn $\dot{\psi} \neq 0$ ist dann $x = \phi \circ \psi^{-1}(y)$

3.1.2 Bogenlänge \$251,514

Weitere Formeln (z.B. polar) findet man in Tab. 1.

$$\ell = \int_{a}^{b} \sqrt{1 + (f')^{2}} \, dx = \int_{t_{0}}^{t_{1}} |\dot{\mathbf{c}}| \, dt$$

3.1.3 Umparametrisierung nach Bogenlänge

Sei die Kurve $\Lambda(t), t \in I$ mindestens einmal differenzierbar, und ℓ die Bogenlänge (gemäß §3.1.2) im Intervall. Die Umparametrisierung $\Lambda(s)$ ist dann

$$s = \ell t \implies \mathbf{\Lambda}(s) = \mathbf{\Lambda}(t/\ell)$$

Die neue Parametrisierung hat $\Lambda' = 1$ (nach s differenziert), d.h. die erste Ableitung ist der tangent Einheitsvector!

3.1.4 Tangente und Normalvektor \$251,252

Für eine ebene Kurve $\Lambda(t)$, $\tau, t \in I$, der Vektor $\dot{\Lambda}(\tau)$ ist immer an $\Lambda(\tau)$ tangent. $\ddot{\Lambda}(\tau)$ ist zur Kurve normal.

$$\dot{\mathbf{\Lambda}} = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\dot{y}}{\dot{x}} = \frac{r'\sin\varphi + r\cos\varphi}{r'\cos\varphi - r\sin\varphi}$$

$$\ddot{\mathbf{\Lambda}} = \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{\ddot{y} \dot{x} - \ddot{x} \dot{y}}{\dot{x}^3}$$

Man kann auch die Tangentengleichung und die Normalengleichung zur Zeitpunkt τ finden

$$T: y - \psi(\tau) = \frac{\dot{\psi}}{\dot{\phi}}(x - \phi(\tau))$$

$$N: y - \psi(\tau) = -\frac{\dot{\phi}}{\dot{\psi}}(x - \phi(\tau))$$

3.1.5 Krümmung und Krümmungsradius \$254

Siehe Tab. 1 für die Rechnungsformeln und Abb. 2 für eine graphische Deutung.

$$\kappa = \lim_{\Delta s \to 0} \frac{\Delta \theta}{\Delta s} = \frac{\mathrm{d}\theta}{\mathrm{d}s} \qquad R = 1/\kappa$$

Eine gerade hat $\kappa=0$ und $R=\infty$. Entsprechend der Orientierung der x-Achse, entspricht einer $\kappa>0$ eine Linkskrümmung und $\kappa<0$ eine Rechtskrümmung.

Der Krümmungskreis hat Maßzahl $\rho=1/|\kappa|$ und Mittelpunkt P_c gemäß

$$P_c = \begin{pmatrix} x_c \\ y_c \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \frac{1}{\kappa} \hat{\mathbf{n}}$$

Wobei $\hat{\mathbf{n}} = \mathbf{\Lambda}^0$ ist der Normalvektor.

3.1.6 Konvexität

Sei die Kurve Λ durch $f \in \mathbb{C}^2$ auf [a, b] gegeben.

- f ist auf (a,b) konvex (bzw. konkav), wenn $\kappa \geq 0$ (bzw. $\kappa \leq 0$) $\forall x \in (a,b)$.
- f ist auf (a,b) streng konvex (bzw. konkav), wenn $\kappa > 0$ (bzw. $\kappa < 0$) $\forall x \in (a,b)$.
- Hat in Λ in P einen Wendepunkt, dann $\kappa(P) = 0$.

3.1.7 Evoluten und Evolventen \$262

Abbildung 2: Krümmung und Krümmungskreisradien

3.2 Raumkurven \$263

Kurven 2. Ordnung – Kegelschnitt 3.3

Die Polarform für die allgemeine Gleichung der Kurver 2. Ordnung ist

$$r = \frac{p}{1 + \varepsilon \cos \varphi} \tag{3.3.1}$$

Der parameter ε ändert die Gestalt folgendermaßen

•
$$\varepsilon = 0$$
 Kreis

•
$$|\varepsilon| = 1$$
 Parabel

•
$$|\varepsilon| \in (0;1)$$
 Ellipse

•
$$|\varepsilon| > 1$$
 Hyperbel

3.3.1 Kreis \$204

Kartesisch
$$(x - C_x)^2 + (y - C_y)^2 = r^2$$

Parameter $x = c_x + R \cos t$ $y = c_y + R \sin t$

3.3.2 Ellipse \$205

Kartesisch
$$\left(\frac{x-C_x}{a}\right)^2 + \left(\frac{y-C_y}{b}\right)^2 = 1$$

Parameter
$$x = a \cos t$$
 $y = b \sin t$

3.3.3 Hyperbel S207

$$\text{Kartesisch} \quad \left(\frac{x-C_x}{a}\right)^2 - \left(\frac{y-C_y}{b}\right)^2 = 1$$

Parameter
$$x = a \cosh t$$
 $y = b \sinh t$

3.3.4 Parabel \$210

3.4 Kurven 4. Ordnung \$98

Kardioide / Herzkurve \$99,100

$$r = a(1 + \cos\varphi)$$

Lemniskate \$101

$$r = a\sqrt{2\cos(2\varphi)}$$

Reihen 4

Bemerkenswerte Rehien \$19,477

Arithmetische Reihe Sei $a_1 \in \mathbb{R}$ und $d \in \mathbb{R} \setminus \{0\}$, dann aus der arithmetischen Folge $\langle a_k \rangle$ mit $a_k = a_1 +$ (k-1)d erhält man die Reihe $\langle A_n \rangle$ mit:

$$A_n = a_1 + \sum_{k=1}^n (k-1)d = a_1 + d + 2d + \dots + (n-1)d$$
$$= \frac{n}{2} (2a_1 + (n-1)d) = \frac{n}{2} (a_1 + a_n)$$

Geometrische Reihe Sei $a_1 \in \mathbb{R}$ und $q \in \mathbb{R} \setminus \{0; 1\}$. Aus der geometrischen Folge $\langle g_k \rangle$ mit $g_k = a_1 q^k$ erhält man die Reihe $\langle G_n \rangle$ mit:

$$G_n = a_1 \sum_{k=1}^n q^{k-1} = a_1 \frac{1 - q^n}{1 - q}$$

Harmonische Reihe Aus der folge $\langle h_k \rangle$ mit $h_k =$ 1/k erhält man die Reihe $\langle H_n \rangle$ mit:

$$H_n = \sum_{k=1}^n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

Potenzreihe Siehe §4.3

Unendlichen \$470,477

Sei $\langle a_n \rangle$ eine Folge die Reihe $\langle S_n \rangle$,

$$S_n = \sum_{k=1}^n a_k \qquad S = \lim_{n \to \infty} S_n$$

4.2.1 Konvergenz \$472,475

Absolute S475 Die Reihe S_n heißt absoulut konvergent wenn

$$\lim_{n\to\infty}\sum_{k=1}^n|a_k| \text{ konvergient}$$

Wenn eine Reihe absolut konvergent ist, dann

- 1. sie ist auch konvergent.
- 2. die Glieder können nach Belieben miteinander vertauscht weden.

3. sei
$$c_n = \sum_{k=1}^n a_k b_{n-k+1} = a_n b_1 + a_{n-1} b_2 + \dots + a_1 b_n$$

$$(a_n \text{ und } b_n \text{ abs. konvergent gegen } a \text{ bzw. } b), \text{ dann}$$

$$\sum_{n=1}^{\infty} c_n = \left(\sum_{n=1}^{\infty} a_n\right) \left(\sum_{n=1}^{\infty} b_n\right)$$

Bedingte Wenn die Reihe S_n nicht abs. konvergiert, aber es eine Umordnung gibt, sodaß die umgeordnete Reihe entweder divergent ist oder gegen eine von verschiedene Summe konvergiert. Dann heißt die Reihe bedingt konvergent.

4.2.2 Konvergenzkriterien \$472

Cauchy'sches \$475

$$\forall \varepsilon > 0 : \forall m, n \in \mathbb{N}, m > n : \left| \sum_{k=n+1}^{m} a_k \right| < \varepsilon$$

Wurzelkriterium von Cauchy \$474

$$\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|} \implies \begin{cases} \alpha < 1 & \text{(abs.) konvergent} \\ \alpha > 1 & \text{divergent} \end{cases}$$

Wenn $\alpha = 1$ man kann nicht direkt eine Konvergenz / Divergenz schliessen.

Quotientenkriterium von d'Alambert \$474

$$\alpha = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \implies \begin{cases} \alpha < 1 & \text{(abs.) konvergent} \\ \alpha > 1 & \text{divergent} \end{cases}$$

Leibniz'sches (für alternierenden Reihen) \$476

Wenn $\langle a_n \rangle$ eine alterniende Folge ist, dann gilt

$$\langle |a_n| \rangle$$
 ist eine monoton fallende Nullfolge
 $\implies \langle s_n \rangle$ konvergiert

Integralkriterium S475 Sei $f(x) \ge 0, x \in [1; \infty)$ und $f \downarrow$. Merkt man dass:

$$\int_{1}^{S} f(x) dx \le \sum_{k=1}^{n} a_k \le \int_{2}^{n} f(x-1) dx$$

Somit folgt:

konvergiert
$$\int_{1}^{\infty} f(x) dx \implies$$
 konvergiert s

4.3 Potenzreihen \$482

$$P = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

= $a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots$

Sei $\lim_{n\to\infty} \sqrt{|a_n|} = a$ (Wurzelkriterium)

 $a = 0 \implies \text{abs. konvergent}$

$$a>0 \implies \forall x\in\mathbb{R}: \begin{cases} |x|<1/a: \text{ abs. konvergent} \\ |x|>1/a: \text{ divergent} \end{cases}$$

4.3.1 Konvergenzradius/-bereich \$482

Sei $\langle \sqrt{|a_n|} \rangle$ nicht beschränkt $(a = \infty)$, so ist P nur für $x = x_0$ konvergent $(r = 1/\infty = 0^+)$. Sonst existiert der Konvergenzradius $r \in \mathbb{R}^+$:

$$r = \limsup_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \qquad r = \left(\limsup_{n \to \infty} \sqrt[n]{|a_n|} \right)^{-1}$$

Innerhalb des Konvergenzbereiches $\{x : |x-x_0| < r\} = (x_0 - r; x_0 + r)$ ist die Reihe absolut konvergent, ausserhalb dessen ist sie divergent. Wenn $r = \infty$ dann ist die Reihe abs. konvergent.

4.3.2 Funktion darstellen

4.3.3 Ableitung und Integration

Sei P eine Potenzreihe mit dem Konvergenzradius r>0, die eine Funktion f darstellt. Innerhalb des Konvergenzradius gilt:

$$f'(x) = \left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=1}^{\infty} n a_n x^{n-1}$$
$$\int f \, dx = \int \sum_{n=0}^{\infty} a_n x^n \, dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} + C$$

Höhere Ableitungen:

$$f^{(k)}(x) = \left(\sum_{n=0}^{\infty} a_n x^n\right)^{(k)} = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n x^{n-k}$$

4.3.4 Taylor Polynom und Reihe \$484

Der Taylor-Polynom approximiert eine Funktion um einen Entwicklungspunkt a.

$$T_n(x,a) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + R_n$$

= $f(a) + \frac{f'(a)}{1!} (x-a)^1 + \frac{f''(a)}{2!} (x-a)^2 + \cdots$

Die Restgliede sind

$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{(n+1)} \qquad (\xi \in (x;a))$$

Wenn $\lim_{n\to\infty} R_n = 0$ dann f(x) = T(x,a), d.h. die Taylor Rehie zu f identisch ist (Konvergenzradius $r = \infty$). Sonst berechnet man der worst case Fehler $\epsilon \geq |R_n|$ und der dazugehörig $\hat{\xi} = \arg\max |R_n|$:

$$\epsilon = \max |R_n| = \max \left[\frac{|f^{(n+1)}(\xi)|}{(n+1)!} |x - a|^{(n+1)} \right]$$

5 Differentialgleichungen

5.1 Definition

Eine Funktion $y = \varphi(x)$ heißt allgemeine Lösung der n-te Ordnung Differentialgleichung

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

auf dem Intervall I, wenn

- φ auf I n-mal differenzierbar ist
- $\forall x \in I : F(x, \varphi, \varphi', \varphi'', \dots, \varphi^{(n)}) = 0$

Gegeben seien auch der Anfangspunkt x_0 , und die Anfangswerte oder Anfangsbedingungen $y_0 = y(x_0)$, $y_1 = y'(x_0)$, ..., $y_{n-1} = y^{(n-1)}(x_0) \in \mathbb{R}$. Dann hat man ein Anfangswertproblem, der eine spezifische Lösung ergibt.

5.2 DGL 1. Ordnung

Die funktionen f und g seien auf demselben Intervall I stetig. Die Differentialgleichung

$$y' + f(x)y = g(x)$$

heißt homogen, wenn g die Nullfunktion (= 0) auf I ist, sonst inhomogen. g heißt Störglied.

Separation Wenn die DGL die Form y' = g(y)f(x) hat, dann lässt sie sich mit der Umformung

$$\frac{y'}{g(y)} = f(x) \implies \int \frac{\mathrm{d}y}{g(y)} = \int f(x) \,\mathrm{d}x$$

Ein Speziallfall g(y)=y hat die allgemeine Lösung

$$y = k \exp\left(\int f(x) dx\right) = k e^F$$

Substitution Linearterm Hat die DGL die Form y' = f(ax+by+c), dann benutzt man die Substitution

$$z = ax + by + c \iff y(z) = b(z - c)/ax$$

 $z' = a + by' \implies z' = a + by'(z)$ separiert!

Dann soll sie nach z lösen lassen.

Gleichgradigkeit Hat die DGL die Form y' = f(y/x) $x \neq 0$, dann benutzt die Substitution

$$z = y/x \implies y' = z'x + z$$

 $\implies z' = \frac{1}{x}(y'(x) - z)$ separiert!

5.3 DGL 2. Ordnung

5.3.1 Lineare DGL 2. Ordnung

$$y'' + a_1 y' + a_0 y = f(x)$$

Versuch mit $y = Ae^{\lambda x}$

$$0 = A\lambda^2 e^{\lambda x} + a_1 A\lambda e^{\lambda x} + a_0 A e^{\lambda x}$$
$$0 = \lambda^2 + a_1 \lambda + a_0$$

Der charakteristische Polynom hat die Lösungen

$$\lambda_{12} = \frac{1}{2} \left(-a_1 \pm \sqrt{a_1^2 - 4a_0} \right)$$

Falls $\lambda \in \mathbb{R}$, dann heißt er *Dämpfung*. Sonst ist $\mathbb{C} \ni \lambda = k \pm j\alpha$, α nennt man *Frequenz*. Daher hat die Lösung die Form:

$$Ce^{k\pm\jmath\alpha} = A\exp\left(\frac{a_1}{2}x\right)\cos(\alpha x) + B\exp\left(\frac{a_1}{2}x\right)\sin(\alpha x)$$

Literatur

- [1] An2E Vorlesungen an der Hochschule für Technik Rapperswil und der dazugehörige Skript, *Dr. Bern*hard Zgraggen, Frühlingssemester 2020
- [2] Taschenbuch der Mathematik, 10. überarbeitete Auflage, 2016 (1977), Bronstein, Semendjajew, Musiol, Mühlig, ISBN 978-3-8085-5789-1
- [3] Mathematik 2: Lehrbuch für ingenieurwissenschaftliche Studiengänge, 2012, 7. Auflage, XII, Springer Berlin, Albert Fetzer, Heiner Fränkel, ISBN-10 364224114X, ISBN-13 9783642241147

Notation

Rot markierte Zahlen wie zB \$477 sind Hinweise auf die Seiten im "Bronstein" [2]

- C^n ist der Menge der glatten n-mal differenzierbären Funktionen.
- Das Zeichen ∀ bedeutet "für alle"

License

An2E-ZF (c) by Naoki Pross

An2E-ZF is licensed under a Creative Commons Attribution-ShareAlike 4.0 Unported License.

You should have received a copy of the license along with this work. If not, see

http://creativecommons.org/licenses/by-sa/4.0/

 $\pi \left| \int r^2 \sin^2 \varphi(r' \cos \varphi - r \sin \varphi) \, \mathrm{d}\varphi \right|$ $\int\limits_{0}^{t_{1}}x\dot{y}-\dot{x}y\,\mathrm{d}t=rac{1}{2}\int\limits_{t_{0}}^{t_{1}}\det(\mathbf{c},\dot{\mathbf{c}})\,\mathrm{d}t$ Parameter $\mathbf{c}(t) = (x(t), y(y))$ $\sqrt{\dot{x}^2+\dot{y}^2}\,\mathrm{d}t=\int |\dot{\mathbf{c}}|\,\mathrm{d}t$ $\frac{\ddot{y}\dot{x} - \ddot{x}\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2}} = \frac{\det(\dot{\mathbf{c}}, \ddot{\mathbf{c}})}{|\dot{\mathbf{c}}|^3}$ Rotationsoberfläche um x S515 $2\pi \int |y|\sqrt{1+(y')^2}\,\mathrm{d}x$ $2\pi \int |r\sin(\varphi)|\sqrt{(r')^2+r^2}\,\mathrm{d}\varphi$ $2\pi \int |y|\sqrt{\dot{x}^2+\dot{y}^2}\,\mathrm{d}t$ Tabelle 1: Rechnungen bez. ebene Kurven $\frac{r'\sin\varphi + r\cos\varphi}{r'\cos\varphi - r\sin\varphi}$ $\sqrt{(r')^2 + r^2} \, \mathrm{d}\varphi$ $\frac{1}{2} \int_{-\infty}^{\beta} r(\varphi)^2 \, \mathrm{d}\varphi$ $2(r')^2 - rr'' + r^2$ $\sqrt{r^2 + (r')^2}$ ³ Polar $\mathbf{r}(\varphi)$ **Kartesich** y = f(x) $\sqrt{1+(f')^2}\,\mathrm{d}x$ |f(x)| dx $\sqrt{1 + (f')^2}^3$ $\int y^2 dx$ Rotationsvolumen um x **S516** Bogenlänge S251,514 Krümmung κ S254 Ebene Kurven Anstieg S448 Fläche \$493