软件理论基础第三次作业

黄国鹏

2022年10月7日

1. 利用 L 的完备性定理证明以下各式成立

$$(1)$$
 $\vdash \neg (A \to B) \to (B \to A)$ 证: 由逻辑等价:
$$\neg (A \to B) \to (B \to A)$$

$$= \neg \neg (A \to B) \lor (B \to A)$$

$$= (\neg A \lor B) \lor (\neg B \lor A)$$

$$= \neg A \lor A \lor B \lor \neg B$$

$$= 1$$

任取
$$v \in \Omega$$
, 有 $v(\neg(A \to B) \to (B \to A)) = 1$
因此 $\models \neg(A \to B) \to (B \to A)$
由完备性定理 $\vdash \neg(A \to B) \to (B \to A)$

(2) $((A \lor B) \to C) \approx (A \to C) \land (B \to C)$ 证: 由逻辑等价:

$$(A \lor B) \to C$$

$$= \neg (A \lor B) \lor C$$

$$= (\neg A \land \neg B) \lor C$$

$$= (\neg A \lor C) \land (\neg B \lor C)$$

$$= (A \to C) \land (B \to C)$$

任取
$$v \in \Omega$$
, 有 $v((A \lor B) \to C) = v((A \to C) \land (B \to C))$
因此 $\models ((A \lor B) \to C) \to (A \to C) \land (B \to C)$
由完备性定理 $\vdash ((A \lor B) \to C) \to (A \to C) \land (B \to C)$
同理可得 $\vdash ((A \to C) \land (B \to C)) \to ((A \lor B) \to C)$
因此可得 $((A \lor B) \to C) \approx (A \to C) \land (B \to C)$ 证毕

(3) $((A \land B) \to C) \approx (A \to C) \lor (B \to C)$ 证: 由逻辑等价:

$$\begin{split} (A \wedge B) &\to C \\ &= (\neg (A \wedge B) \vee C) \\ &= \neg A \vee \neg B \vee C \\ &= \neg A \vee \neg B \vee C \vee C \\ &= \neg A \vee C \vee \neg B \vee C \\ &= (A \to C) \vee (B \to C) \end{split}$$

任取 $v \in \Omega$, 有 $v((A \land B) \to C) = v((A \to C) \lor (B \to C))$ 因此 $\models ((A \land B) \to C) \to ((A \to C) \lor (B \to C))$ 由完备性定理 $\vdash ((A \land B) \to C) \to ((A \to C) \lor (B \to C))$ 同理可得 $\vdash ((A \to C) \lor (B \to C)) \to ((A \land B) \to C)$ 因此可得 $((A \land B) \to C) \approx (A \to C) \lor (B \to C)$ 证毕

2.