SOLUTION

(a) The speed of the magnetic fields is

$$n_{\text{sync}} = \frac{120 f_{2e}}{P} = \frac{120 (50 \text{ Hz})}{6} = 1000 \text{ r/min}$$

(b) The speed of the rotor is

$$n_m = (1-s) n_{\text{sync}} = (1-0.035)(1000 \text{ r/min}) = 965 \text{ r/min}$$

(c) The slip speed of the rotor is

$$n_{\text{slip}} = s n_{\text{sync}} = (0.035)(1000 \text{ r/min}) = 35 \text{ r/min}$$

(d) The rotor frequency is

$$f_{re} = \frac{n_{\text{slip}}P}{120} = \frac{(35 \text{ r/min})(6)}{120} = 1.75 \text{ Hz}$$

2.

SOLUTION

(a) The synchronous speed of this machine is

$$n_{\text{sync}} = \frac{120 f_{\text{se}}}{P} = \frac{120 (50 \text{ Hz})}{2} = 3000 \text{ r/min}$$

Therefore, the shaft speed is

$$n_m = (1-s) n_{\text{sync}} = (1-0.05)(3000 \text{ r/min}) = 2850 \text{ r/min}$$

- (b) The output power in watts is 50 kW (stated in the problem).
- (c) The load torque is

$$\tau_{\text{load}} = \frac{P_{\text{OUT}}}{\omega_m} = \frac{50 \text{ kW}}{(2850 \text{ r/min}) \left(\frac{2\pi \text{ rad}}{1 \text{ r}}\right) \left(\frac{1 \text{ min}}{60 \text{ s}}\right)} = 167.5 \text{ N} \cdot \text{m}$$

(d) The induced torque can be found as follows:

$$P_{\rm conv} = P_{\rm OUT} + P_{\rm F\&W} + P_{\rm core} + P_{\rm misc} = 50~{\rm kW} + 700~{\rm W} + 600~{\rm W} + 0~{\rm W} = ~51.3~{\rm kW}$$

$$\tau_{\text{ind}} = \frac{P_{\text{conv}}}{\omega_m} = \frac{51.3 \text{ kW}}{(2850 \text{ r/min}) \left(\frac{2\pi \text{ rad}}{1 \text{ r}}\right) \left(\frac{1 \text{ min}}{60 \text{ s}}\right)} = 171.9 \text{ N} \cdot \text{m}$$

(e) The rotor frequency is

$$f_r = sf_a = (0.05)(50 \text{ Hz}) = 2.5 \text{ Hz}$$

p.s. for a motor, the rated power is the output power