Existence of primitive roots modulo a prime

Learning Objectives. By the end of class, students will be able to:

- Find the number of roots of unity modulo m
- Prove primitive roots exist modulo a prime.

We will now prove the existence of primivitive roots modulo a prime combining the two methods from the reading: we will show that when $d \mid p-1$, there are $\phi(d)$ incongruent integers of order d modulo p, like Strayer. However, we will prove this using the method from Reading Lemma 10.3.4 instead of results from Chapter 3.

Theorem 1. Let p be a prime and let $d \in \mathbb{Z}$ with d > 0 and $d \mid p-1$. Then there are exactly $\phi(d)$ incongruent integers of order d modulo p.

Proof Let p be a prime and let $d \in \mathbb{Z}$ with d > 0 and $d \mid p - 1$. First we will prove the theorem for $d = q^s$ modulo p where q is prime and s is a nonnegative integer.

By ??, there are exactly q^s incongruent solutions to

$$x^{q^s} \equiv 1 \pmod{p} \tag{1}$$

and exactly q^{s-1} incongruent solutions to

$$x^{q^{s-1}} \equiv 1 \pmod{p}. \tag{2}$$

Since $(x^{q^{s-1}})^q = x^{q^s}$, all solutions to $(\ref{eq:conditions})$ are solutions to $(\ref{eq:conditions})$. Thus, there are exactly $q^s - q^{s-1} = q^{s-1}(q-1)$ integers a where $a^{q^s} \equiv 1 \pmod{p}$ and $a^{q^{s-1}} \not\equiv 1 \pmod{p}$. Thus, by $\ref{eq:conditions}$, ord_p $a \mid q^s$ and ord_p $a \nmid q^{s-1}$. Since q is prime, ord_p $a = q^s$. By $\ref{eq:conditions}$, $\phi(q^s) = q^s - q^{s-1} = q^{s-1}(q-1)$, so we have shown there are $\phi(q^s)$ incongruent integers with order q^s modulo p.

Now we will prove the general case. Let

$$d = q_1^{s_1} q_2^{s_2} \cdots q_k^{s_k}$$

for distinct primes q_1, q_2, \ldots, q_k and positive integers s_1, s_2, \ldots, s_k . Let a_1, a_2, \ldots, a_k be elements of order $q_1^{s_1}, q_2^{s_2}, \ldots, q_k^{s_k}$ respectively. Consider $a = a_1 a_2 \cdots a_k$ and a^2, a^3, \ldots, a^d . By Homework 6, Problem 6, a has order $q_1^{s_1} q_2^{s_2} \cdots q_k^{s_k} = d$. By ??, there are exactly d solutions to $x^d \equiv 1 \pmod{p}$. Thus, a, a^2, \ldots, a^d are all incongruent solutions to $x^d \equiv 1 \pmod{p}$ by ??. By ??, ord_p $a^i = \frac{d}{(d,i)} = d$ if and only if (d,i) = 1. Since there are $\phi(d)$ such integers i, there are in fact $\phi(d)$ incongruent integers with order d modulo p.

Corollary 1. Let p be prime. There are exactly $\phi(p-1)$ primitive roots modulo p.