

- 1) Any numerical measure or quantity which is calculated from a sample data is known as STATISTIC
- 2) Any numerical measure or quantity which is calculated from a population data is known as Parameter?
- 3) Subset of population which is selected for making inference about the respective population is
- 4) To check the average response of patient about some medicine Ali records the data from patients of a hospital. The collected data is called PRIMORY DATA.
- 5) To calculate the average for data which is about the wind speed, the mean is calculated is known
- 7) To calculate the average for data 12, 10,-13, 20, 10. The ______ mean is can be calculated but gives incorrect interpretation but the _____ G___ M___ mean is can't be calculated.
- 8) To calculate the average for data which is about the chance of defective item in a particular stock, the mean is calculated is known as G-M
- 9) To calculate the average for data 22, 14, 0, 60, 10. The _____ mean is can be calculated but gives incorrect interpretation but the _______ mean is can't be calculated.
- 10) If class marks of 4 students are given as: 7, 6, 8, 2.

Then calculate the following.	Modian
H.M $M = \overline{X} \ge \frac{m}{\overline{s}(\frac{1}{\alpha_i})} \qquad \frac{\alpha_i}{7} \frac{y_{\alpha_i}}{0.143}$ $= \frac{4}{0.935} \qquad \frac{90.167}{60.125}$	Median $M = 4$ $M = 4$ $M = (1)^{m} \text{ voh}$ $M = (1)^{m} vo$
= 4.278 <u>2 0.5</u> That 0.935	$= (2.5)^{m} veh$ $= 2rdveh + 0.5 (3rdveh - 2rdveh)$ $= 6 + 0.5 (4-6)$ $= 6 + 0.5$

11) The	frequency dis	tribution is give	n as:		Longy of		1 2 3
LASSES	C.B	Mid point(X)	f	c.f.		108x;	- y
39	2.5-9.5	6	8	8 -12	Madi	1.114	6.552 Bag
1016	9.5-16.5	13	2	10	1	1.301	3.605
\723	16-5-28-5	20	2	12		1.431	2.862
2430	23.5-30-5	97	2	14	7520		13.917
COTAL			14				
	2	Andi-lo	F[]	sf; log x; sf; sf; sq. 917] =	- Andi	9	7 . []]
MEDIAN	I:	2 4	5/	<u>~</u> _ ()	- 4	20 1	ch
	2 2 Medi	2 2.5	+ 78	- (7-0)		Section	
		2 2.52 2.5= 8.	+6	.128			