CNN基础与LeNet

1. MLP的局限性是什么?如何从MLP联系到CNN?

MLP运用:

	特征	
样本1	M1	
样本2	Ma	

局限性:

2. 为什么CNN能够解决上述MLP的局限性? -----定性分析

3. 为什么CNN能够解决上述MLP的局限性? -----量化分析

3. 为什么CNN能够解决上述MLP的局限性? -----量化分析

回顾卷积公式

卷积操作

4. 二维张量?对于三通道图片怎么办?

隐藏层输出维度

多个通道的卷积层

以上,解析了"卷积层"的原理

简单实践

5. 图像中卷积应用

变小了。。。

6. 还有什么因素会影响输出的大小呢?

padding

stride

7. 那么多通道的图像卷积运算?

8. 有没有1*1大小的卷积核?

输入输出相同宽高,通道数改变 (同一位置的线性组合)

调整通道数目,降低模型的复杂性

9. 多层卷积后如何表达全局抽象意义? ----pooling

组件们over~~~

迎来第一个CNN~~~

LeNet

图6.6.1: LeNet中的数据流。输入是手写数字,输出为10种可能结果的概率。

图6.6.2: LeNet 的简化版。

层与块?

