

What is Pneumonia?

- Pneumonia is a lung infection causing inflamed air sacs filled with fluid or pus.
- Caused by germs like bacteria, viruses, or fungi, which enter through the air or spread from other infections.
- Germs multiply in the lungs, causing inflammation and reducing oxygen flow to the blood.
- Risk factors include weak immune systems, smoking, and pre-existing lung problems.
- Diagnosis is based on clinical exams: chest X-ray, blood count, and blood culture.

MAYO COUNDATION FOR MEDICAL EDUCATION AND DESCAPOUL ALL DIGUTS DESCRIVE

Introduction and Motivation

- Pneumonia caused over 15% of global deaths among children under 5 in 2015, totaling 920,000 deaths.
- In 2015, pneumonia led to 500,000 ER visits and over 50,000 deaths in the U.S., ranking among the top 10 causes of death.
- The U.S. sees over 1 million hospitalizations and 50,000 deaths annually due to pneumonia.
- The project aims to classify pediatric chest X-rays as "Pneumonia" or "Normal" using a deep learning model while leveraging explainable AI to identify contributing factors to the classifications.

Data Source

- Kaggle Data set- Chest X-Ray Images (Pneumonia) was leveraged for this project.
- 5,863 X-ray images (JPEG format) of pediatric patients (1-5 years), classified into Pneumonia and Normal categories.
- X-rays from pediatric patients at Guangzhou Women and Children's Medical Center, collected during routine clinical care.
- Images were screened for quality, ensuring only high-datasets quality scans were included.
- For this project we have implemented the models using PyTorch

- M chest-xray-pneumonia
- Chest_xray
- - ▶ □ NORMAL
 - PNEUMONIA
- NORMAL
- PNEUMONIA

Data Visualization

- NORMAL images show a sharp peak in low intensity (0–50) for dark lung areas and fewer bright pixels (100–150) for bones and tissues.
- PNEUMONIA images have a broader intensity range, reflecting variability from inflammation, with some overlap in patterns between classes.

•Normal X-rays show uniform, darker regions with less variation in pixel intensity.

•Pneumonia X-rays display brighter areas from fluid buildup, inflammation, and consolidation.

Data Cleansing

DATASETS

- ▼ M chest-xray-pneumonia
- ▼ ☐ chest_xray
- ▼

 test

 test
- ▶ □ NORMAL
- PNEUMONIA
- ▼ 🗀 train
- ▶ □ NORMAL
- ▶ □ PNEUMONIA
- ▼ □ val
- ▶ □ NORMAL
- PNEUMONIA

Uneven split

Total Images: 5856

Training Set: 5216 images (89.07% of total) Validation Set: 16 images (0.27% of total)

Test Set: 624 images (10.66% of total)

Redistributed to correct the split ratios

Redistributed Data Ratios:

Data

Redistribution

Training Set: 4099 images (70.00% of total) Validation Set: 878 images (14.99% of total)

Test Set: 879 images (15.01% of total)

- ▼ 🗀 test
 - NORMAL
 - ▶ ☐ PNEUMONIA

chest_xray_redistributed

- - ▶ 🗀 NORMAL
 - ► □ PNEUMONIA
- 🕶 🗀 val
 - ▶ ☐ NORMAL
 - PNEUMONIA

Class Imbalance

For NORMAL:

$$w_{ ext{NORMAL}} = rac{4,099}{2 imes 1,108} = rac{4,099}{2,216} pprox 1.8497$$

For PNEUMONIA:

$$w_{ ext{PNEUMONIA}} = rac{4,099}{2 imes 2,991} = rac{4,099}{5,982} pprox 0.6852$$

Still Classes are Imbalanced!

- To mitigate the Class Imbalance, we assign Class weights.
- Assign higher importance to the underrepresented class by adjusting the loss function to penalize incorrect predictions on the minority class more heavily.)
- class weights were calculated as:

$$w_c = rac{ ext{total number of samples}}{ ext{number of classes} imes ext{number of samples in class } c}$$

Class weights: tensor([1.8497, 0.6852]

Feature Engineering/Data Transformation

Data Transformations improve the model's generalization and help it learn robust features before training.

• **Resizing**: Standardizes image size (256x256) for consistent input to the model.

```
Average Image Sizes for Train, Validation, and Test Sets:
Training Set - NORMAL: (1692, 1382), PNEUMONIA: (1198, 822)
Validation Set - NORMAL: (1662, 1356), PNEUMONIA: (1195, 819)
Test Set - NORMAL: (1682, 1382), PNEUMONIA: (1179, 803)
```


Shape of one batch of images: torch.Size([32, 3, 256, 256])
Number of images in the batch: 32
Image dimensions (C x H x W): 3 x 256 x 256

- Resize to 256x256: Ensures consistent input size, simplifies computation, and enables efficient batching by standardizing dimensions across all images.
- Grayscale to 3 Channels: Converts grayscale to 3 channels for compatibility with models expecting RGB input.
- **Normalization**: Scales pixel values to [-1, 1] for faster, stable training and improved model convergence.

Proposed Solutions

- By leveraging Deep Learning technologies like data augmentation, transfer learning, and hyperparameter tuning to develop an accurate and robust classifier that aids in early diagnosis of pneumonia, especially in pediatric patients.
- We implemented below models:
 - CNN

CNN Advanced

ResNet50

InceptionNet

CheXNet

Ensemble Model

Models and Justifications

- CNN: Chosen for its ability to automatically learn spatial hierarchies of features in images, making it ideal for classifying medical images like X-rays with clear patterns for pneumonia.
- CNN Advanced: Utilized advanced CNN architectures to improve performance by capturing more complex patterns and enhancing generalization, especially for medical image classification
- ResNet50: Deep architecture with residual connections, avoiding vanishing gradients and enabling learning of fine-grained X-ray features.
- **CheXNet:** Pre-trained, optimized architecture specifically fine-tuned for pneumonia classification in X-rays. (Andrew NG)
- **InceptionNet:** Uses multiple kernel sizes per layer, capturing features at different scales to detect subtle differences in X-rays.
- **Ensemble Model**: Combines predictions from multiple models, improving classification robustness and reducing overfitting risk.

Convolutional Neural Networks (CNN)

- Input Layer: Accepts 256x256 RGB images for consistent input size and efficient training.
- Convolutional Layers: Conv1 (32 filters), Conv2 (64 filters), Conv3 (128 filters) with 3x3 kernels, stride 1, padding 1 for progressive feature extraction.
- Activation: ReLU activation for efficient gradient flow and non-linearity.
- **Pooling**: MaxPooling with 2x2 kernels to reduce spatial dimensions, prevent overfitting, and improve efficiency.

• **Fully Connected Layers**: FC1 (512 neurons) for feature aggregation and FC2 (2 neurons) for binary classification (Pneumonia vs. Normal).

	precision	recall	f1-score	support
NORMAL	0.93	0.94	0.94	238
PNEUMONIA	0.98	0.98	0.98	641
accuracy			0.97	879
macro avg	0.96	0.96	0.96	879
weighted avg	0.97	0.97	0.97	879

CNN Enhanced

- Activation Functions: Experimented with different activations (e.g., ReLU, Leaky ReLU) for better feature extraction and non-linearity.
- **Dropout & Regularization**: Applied dropout (0.3) and **weight decay** to prevent overfitting while maintaining model capacity.
- Batch Normalization & Optimizer: Implement batch normalization to reduce training time and improve generalization; use AdamW optimizer for better weight updates and optimization.
- **High Resolution & Larger Kernels**: Retain higher image resolution for nuanced X-ray features, and use larger kernels (e.g., 7x7) with padding for better initial feature capture.

• Gradient Clipping: Used gradient clipping to handle high-contrast regions and subtle differences between normal and pneumonia X-rays.

True: PNEUMONIA True: NORM True: PNEUMONIA True: NORMAL

	precision	recall	f1-score	support
NORMAL	0.51	0.71	0.59	238
NONIAL	0.51	0.71	0.55	250
PNEUMONIA	0.87	0.75	0.80	641
accuracy			0.73	879
-				
macro avg	0.69	0.73	0.70	879
weighted avg	0.77	0.73	0.75	879

ResNet50

- **Transfer Learning**: Utilizes a pre-trained ResNet50 model for effective knowledge transfer, enabling accurate pneumonia classification with a smaller dataset.
- Model Architecture: ResNet50, with 50 layers and residual connections, addresses the vanishing gradient problem and enhances training efficiency.
- **Fine-tuning**: Fine-tuned the last few layers of ResNet50 while freezing earlier layers to adapt the model to perform binary classification (Pneumonia vs. Normal) on chest X-ray features.
- Optimization & Early Stopping: Uses Adam optimizer, binary cross-entropy loss, and early stopping with dynamic learning rate adjustments for optimal training.

	precision	recall	f1-score	support
NORMAL	0.96	0.91	0.94	238
PNEUMONIA	0.97	0.99	0.98	641
accuracy			0.97	879
macro avg	0.97	0.95	0.96	879
weighted avg	0.97	0.97	0.97	879

CheXNet

CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning

Pranav Rajpurkar *1 Jeremy Irvin *1 Kaylie Zhu 1 Brandon Yang 1 Hershel Mehta 1 Tony Duan 1 Daisy Ding 1 Aarti Bagul 1 Robyn L. Ball 2 Curtis Langlotz 3 Katie Shpanskaya 3 Matthew P. Lungren 3 Andrew Y. Ng 1

- CheXNet is a DenseNet-121 model fine-tuned specifically for chest X-ray classification. It was trained on the NIH ChestX-ray14 dataset and performs well on tasks like pneumonia detection
- Requires fewer parameters than models like ResNet, making it computationally efficient.
- **Final Layer**: Replaces the final layer with a fully connected network and sigmoid activation for binary classification (Pneumonia vs. Normal).
- Loss Function & Optimizer: Uses binary cross-entropy loss and Adam optimizer with a learning rate of 0.001, with decay when validation loss

plateaus.

p 10.10 0.1				
	precision	recall	f1-score	support
NORMAL	0.92	0.97	0.95	238
PNEUMONIA	0.99	0.97	0.98	641
accuracy			0.97	879
macro avg	0.96	0.97	0.96	879
weighted avg	0.97	0.97	0.97	879

Input Chest X-Ray Image

CheXNet 121-layer CNN

Output Pneumonia Positive (85%)

InceptionNet

- **Transfer Learning**: Utilizes a pre-trained **Inception V3** model for effective pneumonia classification using chest X-ray images by leveraging prior ImageNet knowledge.
- Model Architecture: Inception V3's modular structure enhances efficiency with inception modules.
 Custom top layers include a fully connected layer (2 units) and an auxiliary classifier for multi-output learning.
- Data Augmentation: Applies transformations like resizing (299x299), random flips, rotations, affine transforms and normalization to boost generalization.
- **Fine-tuning**: Fine-tunes later layers while freezing earlier layers to adapt to domain-specific

features.

	precision	recall	f1-score	support
NORMAL	0.96	0.92	0.94	238
PNEUMONIA	0.97	0.99	0.98	641
accuracy			0.97	879
macro avg	0.97	0.96	0.96	879
weighted avg	0.97	0.97	0.97	879

Ensemble

- Ensembling is a technique where we combine two or more models to make more accurate and robust predictions
- This approach leverages the strength of individual models while reducing overfitting and biases. There are multiple approaches for ensembling of deep learning models in increasing order of complexity:
 - Majority voting
 - Average probabilities
 - Weighted voting we used this
 - Stacking
 - Bagging
- For our project, we considered two models for ensemble modeling Enhanced CNN and ResNet50 (trained using transfer learning) using an accuracy-based weighting scheme
- We observed slightly higher weightage of 51% was given to the ResNet model while 49% weightage was with the CNN model since Resnet was the better performing model

Ensemble modeling - results

Model Evaluation & Result analysis

Model	Precision	Recall	F1-Score	Accuracy	
CNN	N: 0.93, P: 0.98	N: 0.94, P: 0.98	N: 0.94, P: 0.98	0.97	
CNN Advanced	N: 0.51, P: 0.87	N: 0.71, P: 0.75	N: 0.59, P: 0.80	0.73	Overfitting!
ResNet50	N: 0.96, P: 0.97	N: 0.91, P: 0.99	N: 0.94, P: 0.98	0.97	Train Accuracy: 98.55
CheXNet	N: 0.92, P: 0.99	N: 0.97, P: 0.97	N: 0.95, P: 0.98	0.97	Post
InceptionNet	N: 0.96, P: 0.97	N: 0.92, P: 0.99	N: 0.94, P: 0.98	0.97	Best models
Ensemble Model	N: 0.93, P: 0.98	N: 0.95, P: 0.98	N: 0.94, P: 0.98	0.97	

N-Normal, P - Pneumonia

- Highest Accuracy: CNN, ResNet50, CheXNet, and InceptionNet achieved 0.97 accuracy, with CheXNet and InceptionNet benefiting from transfer learning.
- Highest AUC: InceptionNet led with a ROC AUC of 0.9945, excelling in distinguishing pneumonia cases.
- **Ensemble Performance**: Slightly lower AUC (0.988) than ResNet50 (0.991), showing minor tradeoffs in combining models.

Explainable AI

- Most deep-learning models are black-box models – explainability and interpretability of these models is a major area of research
- There have been recent developments to bring explainability to Deep Learning models namely SHAP and LIME
- SHAP calculates each feature's contribution to understanding the input images' influence
 - SHAP values are visualized using a color-coded scheme wherein blue features predict Normal _____ and red features predict Pneumonia _____

R

SHAP: Region Influence Red: Contributing to Pneumonia Blue: Contributing to Normal

SHAP: Region Influence Red: Contributing to Pneumonia Blue: Contributing to Normal

LIME: Region Analysis Yellow Outlines: Important Features Red Areas: Support Pneumonia Green Areas: Support Normal

Yellow Outlines: Important Features Red Areas: Support Pneumonia Green Areas: Support Normal

- LIME generates local explanations for a specific prediction by approximating the model's behavior around that instance
 - Important regions outlined in yellow
 - Green areas support Normal prediction
 Red areas support Pneumonia prediction

SHAP: SHapley Additive exPlanations

LIME: Local Interpretable Model-agnostic Explanations

Explainable AI – Applications

- SHAP and LIME overlays can act as a decision support tool to augment radiologists by highlighting suspicious areas, acting as an Al powered "second opinion" with explanations, potentially reducing the chance of missed diagnoses or incorrect diagnoses
- It can also play a crucial in **medical training and education training new radiologists** by showing what areas of the X-ray to look for before diagnosing the patient
- In emergencies like another pandemic, this approach could be used for emergency diagnosis to provide a quick initial assessment with explanations
 - The doctor will provide human oversight while leveraging AI capabilities but this can help in quickly filtering out healthy cases and focusing on patients that require urgent care.
- Overall, this approach shows how explainable AI can make deep learning more practical and trustworthy in medical applications.

Conclusion

- Pneumonia detection achieved with deep learning models like CNN, ResNet50 and ensemble methods.
- ResNet50 and ensemble model outperformed individual models, providing robust and reliable predictions.
- Explainable AI tools (SHAP, LIME) ensured transparency in model decision-making.
- Addressed class imbalance and standardized data preprocessing for consistent results.
- Future focus: expanding dataset diversity, refining interpretability and clinical integration.

Related Work

- Ensemble Learning: Combined DenseNet169, MobileNetV2, and Vision Transformer to achieve 93.91% accuracy in pneumonia classification.
- **Deep Learning Architectures**: DenseNet169 achieved 95.72% accuracy for binary pneumonia classification.
- Transfer Learning: Pre-trained CNNs like VGG19 and DenseNet121 enhanced pneumonia detection accuracy.
- **Data Augmentation**: Techniques like cropping and histogram equalization improved image quality and model performance.

Deep Learning on Chest X-ray Images to Detect and Evaluate Pneumonia Cases at the Era of COVID-19

Karim Hammoudi ^{1,2,∞}, Halim Benhabiles ³, Mahmoud Melkemi ^{1,2}, Fadi Dornaika ^{4,5}, Ignacio Arganda-Carreras ^{4,5,6}, Dominique Collard ^{7,8}, Arnaud Scherpereel ⁹

Pneumonia Classification from X-ray Images with Inception-V3 and Convolutional Neural Network

Muhammad Mujahid 1,†, Furqan Rustam 2,†, Roberto Álvarez 3,4, Juan Luis Vidal Mazón 3,5, Isabel de la Torre Díez 6,*, Imran Ashraf 7,*

Pneumonia Detection on chest X-ray images Using Ensemble of Deep Convolutional Neural Networks

Alhassan Mabrouk, Rebeca P. Díaz Redondo, Abdelghani Dahou, Mohamed Abd Elaziz, Mohammed Kayed

References

- https://pmc.ncbi.nlm.nih.gov/articles/PMC9140837/
- https://arxiv.org/abs/2312.07965
- https://pmc.ncbi.nlm.nih.gov/articles/PMC8185498/

Thank you