Devoir maison n°11 : Équation de Pell-Fermat

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Partie A - Premières propriétés

$$(E): x^2 - 5y^2 = 1$$

1) Symétries: Les variables x et y sont mises au carré dans (E) et donc toujours positives. Donner un nombre négatif présent dans $\mathbb Z$ est équivalent à donner son opposé qui est dans $\mathbb N$. Il suffit donc de chercher toutes les solutions (x,y) positives qui sont dans $\mathbb N^2$ pour obtenir toutes les solutions dans $\mathbb Z^2$ de (E).

2) Nombre de solutions

а) Soient $a,b\in\mathbb{N}$. L'identité de Вканмадирта est équivalente à :

$$(a^2 + 5b^2)^2 - (a^2 - 5b^2)^2 = 5(2ab)^2$$

En factorisant le côté gauche de l'équation, on trouve :

$$\begin{aligned} \left(a^2 + 5b^2\right)^2 - \left(a^2 - 5b^2\right)^2 &= \left(a^2 + a^2 + 5b^2 - 5b^2\right) \left(a^2 - a^2 + 5b^2 + 5b^2\right) \\ &= \left(2a^2\right) \left(2 \cdot 5b^2\right) \\ &= 5(2ab)^2 \end{aligned}$$

Ce qu'il fallait démontrer.

b) Soient $(x,y) \in \mathbb{N}^2$, tel que $(x,y) \neq (1,0)$ et (x,y) solution de $(E): x^2 - 5y^2 = 1$.

l'identité de Brahmagupta assure que :

$$1 = \left(a^2 + 5b^2\right) - 5(2ab)^2$$

Autrement dit, $(a^2 + 5b^2, 2ab)$ est également une solution de (E). Comme $a^2 + 5b^2 > a$ et 2ab > b, cette solution est également différente de (a,b) et de tout autre solution (x,y) où x < a, y < b. Il existe donc, en itérant ce procédé, une infinité de solutions de (E) dans \mathbb{N}^2 .

c) $(a,b) \in \mathbb{N}^2$ est solution de (E) si et seulement si $a^2 = 1 + 5b^2$. Comme $b^2 \ge 0$ et $a \ge 0$, on trouve que (a,b) est solution si et seulement si $a = \sqrt{1+5b^2}$. On pose donc $f(b) = \sqrt{1+5b^2}$.

TODO: script

d) Supposons que (a,b) et (a',b) soient solutions. Alors a=f(b)=a' et a=a'. On peut donc bien choisir un « couple minimal » comme le couple avec le b minimal.

1

Partie B - L'ensemble $\mathbb{Z} \left[\sqrt{5} \right] = \left\{ a + b \sqrt{5} \mid a, b \in \mathbb{Z} \right\}$

Partie C - Détermination d'un élément générateur de $\mathbb{U}.$