

- Part 1: Concepts & Representation -

Administrivia

- ▶ Exam 2 Wednesday, November 5
 - Make-up exams must be scheduled before the exam is given in class; no make-ups afterward
- > Study Guide will be posted today/tonight
- ▶ HW5 solutions will be posted Sunday after the 48-hour late window closes
- ▶ **Lab** Monday (2119/2122 Shelby)
 - Ask questions about exam and homework then

Place Values & Radix Point

- Place values for decimal numbers with a fractional part:
 - **2 0 1 4 . 5 1 0**... 10³ 10² 10¹ 10⁰ . 10⁻¹ 10⁻² 10⁻³ ...
 ... 1000 100 10 1 . . 1/10 1/100 1/1000
- Place values for binary numbers with a fractional part:
 - 1 0 1 1 . 0 0 1 1 ... 2³ 2² 2¹ 2⁰ . 2⁻¹ 2⁻² 2⁻³ 2⁻⁴ 8 4 2 1 . 1/2 1/4 1/8 1/16 ...
 - So $1011.0011_2 = 2^3 + 2^1 + 2^0 + 2^{-3} + 2^{-4} = 8 + 2 + 1 + 1/8 + 1/16 = 11^3/16$
- ▶ Terminology: the "." is called a
 - b decimal point when you're writing a decimal number (2014.51)
 - binary point when you're writing a binary number (1011.0011₂)
 - radix point in general

Activity 16 #1

Converting Unsigned Decimal to Binary

- ▶ Integer part: (we did this back in Lecture 2)
 - ▶ Divide by 2 until quotient is 0
 - Write remainders in reverse
- Fractional part:
 - Multiply fractional part by 2 (ignoring integer part) until product is 0 or sufficient digits have been obtained
 - Write integer parts in order

Activity 16 #2

Finite Binary Representation

- Recall that 1/3 does not have a finite decimal representation (1/3 = 0.3333333333...)
- > Some numbers do not have a finite binary representation
 - Example: 1/10 = 0.0<u>0011</u>00110011...₂

 $.1 \times 2 = 0.2$ $.2 \times 2 = 0.4$ $.4 \times 2 = 0.8$ $.8 \times 2 = 1.6$ $.6 \times 2 = 1.2$ $.2 \times 2 = 0.4$

 In general, a fraction has a finite binary representation if the denominator has 2 as the only prime factor

Activity 16 #3

Fixed-Point Representation

- A fixed-point binary representation uses a fixed number of bits f after the radix point to represent approximations to real numbers (actually, rational numbers)
 - Store integers in registers/memory, but treat the value as though the low f bits are fractional bits
 - Example: Suppose AL contains 001110112
 - ▶ The **underlying integer** value is $59 = 00111011_2$
 - ▶ If f = 4, pretend there's a radix point to the right of bit 4, so AL represents $0011.1011_2 = 3^{11}/_{16}$
 - If f = 2, pretend there's a radix point to the right of bit 2, so AL represents $001110.11_2 = 14^{3}/4$
 - Note: float/double variables in C/Java are different: use floating-point representation (future lecture)
- Fixed-point arithmetic can be done using integer arithmetic and bitwise operations
 - ▶ Useful for performance integer operations are faster than floating-point operations
 - Also useful on processors that do not have a floating point unit
 - > E.g., low-cost embedded microprocessors and microcontrollers

Q-Notation for Fixed Point Numbers

- ightharpoonup Notation: $\mathbf{Q}\mathbf{f}$ denotes a representation with f fractional bits
 - ▶ Q31 indicates a representation with 31 fractional bits (Q = "quantity of fractional bits")
 - > Q15 indicates a representation with 15 fractional bits
- ▶ Alternative Notation:* Qm.f denotes a representation with
 - ▶ one sign bit
 - ▶ m integer ("magnitude") bits
- ▶ f fractional bits
- \therefore Total number of bits is 1 + m + f
- ▶ Examples: Suppose AL contains 001110112
- Q4 or Q3.4 Pretend there's a radix point to the right of bit 4, so AL represents 0011.1011₂ = 3¹¹/₁₆
- ▶ Q2 or Q5.2 Pretend there's a radix point to the right of bit 2, so AL represents 001110.11₂ = 14³/₄

letely standard. Some people include the sign bit in m, so you might see Q16.16 instead of Q15.16. It's usually easy to figure out from conte

Activity

Scaling Factor

- The value of a fixed point data type is the value of the underlying integer, multiplied by a constant scaling factor (sometimes denoted by S)
 - Example: $1.110_2 = 1110_2 \times 2^{-3}$
- ▶ A Qm.f fixed-point number has f fractional bits \Rightarrow scaling factor $S = 2^{-f}$
- ▶ Examples: Suppose AL contains 00111011₂
- Q4/Q3.4: Scaling factor is 2^{-4} , so AL represents $00111011_2 \times 2^{-4} = 0011.1011_2 = 3^{11}/_{16}$
- Q2/Q5.2: Scaling factor is 2^{-2} , AL represents $00111011_2 \times 2^{-4} = 001110.11_2 = 14^{3}/4$
- Scaling factor applies to negative numbers too
 - ▶ The 8 bits 11111111 form the 8-bit two's complement representation of -1
 - The 8 bits 11111111 form the 8-bit Q5.2 representation of $-1/4 = -1 \times 2^{-2}$

Example: Q1.2

- Example:
 - O1.2 ⇒ 4 total bits with 2 fractional bits
 - ▶ So scaling factor is $2^{-2} = \frac{1}{4}$
- ▶ 4-bit two's complement integers and Q1.2 values shown:
- \blacktriangleright Each Q1.2 integer is the corresponding integer value \times 2⁻²

4	0100	ı	= 4/4
3	0011	3/4	$= \frac{3}{4}$
2	0010	1/2	$= \frac{2}{4}$
1	1000	1/4	= 1/4
0	0000	0	= 0/4
-1	1111	$-^{1}/_{4}$	$= -\frac{1}{4}$
-2	1110	-1/2	= -2/4
-3	1101	-3/4	= -3/4
-4	1100	-1	= -4/4
-5	1011	-11/4	= -5/4
-6	1010	$-1^{1}/_{2}$	= -6/4
-7	1001	$-1^{3}/_{4}$	= -7/4
-8	1000	-2	= -8/4
_			1
× scaling factor = 1/4			

Resolution & Range

- One way to find the range of representable values (minimum/maximum values):
 - Find minimum and maximum for underlying integer type
 - Multiply by scaling factor
- The **resolution** ε is the smallest positive magnitude that can be represented
 - Example: Smallest Q2-representable positive number is $\varepsilon = .01_2 = 0.25$, so Q2 has a resolution of $^{1}/_{4}$
- In general, Om.f has
 - $[-2^m, 2^m 2^{-f}]$ Range:
 - Resolution: 2-f

- 0111 0110 1 1/2 1 1/4 $\begin{array}{rcl} = & 6/_4 \\ = & 5/_4 \\ = & 4/_4 \\ = & 3/_4 \\ = & 2/_4 \\ = & 1/_4 \\ = & 0/_4 \\ = & -1/_4 \\ = & -2/_4 \end{array}$ 0010 0001 0000
- = -3/4 $= -\frac{4}{4}$ $= -\frac{5}{4}$ 1010 $-1^{1}/_{2} = -6/_{4}$ -1³/₄
 -2
 - Activity 16 #5

Rounding Fixed-Point Numbers (1)

- To pearest 1/10: 3.75 ⇒ 3.8 3.64 ⇒ 3.6
- > Identify place you want to round to Add 1 in that position if next digit is ≥ 5
- Drop subsequent digits
- Rounding binary numbers is similar
 - > Identify place you want to round to
 - > Add 1 in that position if the next bit is 1
 - Drop subsequent bits
 - To nearest integer: 010.1 ⇒ 011 010.0 ⇒ 010
- ► To nearest 1/2: 011.01 ⇒ 011.1 011.11 ⇒ 100.0

Conversion Between Scaling Factors

- To convert a fixed-point number with scaling factor R to one with scaling factor S:
 - ▶ Multiply the underlying integer value by $R \div S$
 - I.e., multiply by the ratio R/S
 - May require rounding (when converting to a representation with fewer fractional bits)

Activity 16 #6

- Part 2: Arithmetic -

Addition & Subtraction

Exercise: 000001.01₂ 1¹/₄ 00000101₂ 5 +000000.01₂ + ¹/₄ +00000001₂ + 1 Activity 16 #7

▶ To add/subtract fixed-point numbers, use integer addition/subtraction

- Use add, sub instructions as usual
- Flags represent same conditions (overflow, carry, sign, zero) as for integer arithmetic
- Why does it work?
- Suppose n_1 and n_2 are the underlying integers they represent the values $n_1 \cdot 2^{-f}$ and $n_2 \cdot 2^{-f}$
- $n_1 \cdot 2^{-f} + n_2 \cdot 2^{-f} = (n_1 + n_2) \cdot 2^{-f}$
- > So the sum of the integer values is the representation of the fixed-point sum

Multiplication

► Exercise: 000001.00₂ 00000100₂ 1 × 000001.00₂ × 00000100₂ × 1

Activity 16 #8

- ► To multiply two Qf fixed-point numbers:
 - 1. Multiply the underlying integers (imul), using twice as many bits to store the product
 - 2. If product is nonnegative, add $(1 \ll (f-1))$ to the product to ensure correct rounding
 - 3. Arithmetic right-shift by f bits
- Summary: $((a \times b) + (1 \ll (f-1))) \gg^{s} f$
- Why does it work? (Ignoring rounding)
- Suppose n_1 and n_2 are the underlying integers they represent the values $n_1 \cdot 2^{-f}$ and $n_2 \cdot 2^{-f}$
- $n_1 \cdot 2^{-f} \cdot n_2 \cdot 2^{-f} = n_1 \cdot n_2 \cdot 2^{-f} \cdot 2^{-f}$
- ▶ Right-shift by f bits to multiply by 2^f , giving = $n_1 \cdot n_2 \cdot 2^{-f}$

Activity 16 #9

Division

- ▶ To divide two Qf fixed-point numbers $(a \div b)$:
 - 1. Use twice as many bits to store the dividend (a), and left-shift it by f bits
 - 2. One way to ensure the quotient is correctly rounded (rounding away from 0):
 - If the quotient will be positive, add $b \div 2$ to the dividend
 - If the quotient will be negative, subtract $b \div 2$ from the dividend
 - 3. Perform integer division (idiv), returning the quotient

Summary:
$$((a \ll f) + \operatorname{sgn}(a \div b) \cdot (b \gg 1)) \div b$$

$$\operatorname{sgn}(n) = \begin{cases} -1 & \text{if } n < 0 \\ 0 & \text{if } n = 0 \\ 0 & \text{if } n < 0 \end{cases}$$

- Why does it work? (Ignoring rounding)
- Suppose n_1 and n_2 are the underlying integers they represent the values $n_1 \cdot 2^{-f}$ and $n_2 \cdot 2^{-f}$
- ▶ Left-shifting n_1 by f bits multiplies it by 2^f , so this represents $n_1 \cdot 2^{-2f}$
- $\frac{n_1 \cdot 2^{-2f}}{n_2 \cdot 2^{-f}} = \frac{n_1 \cdot 2^f}{n_2 \cdot 2^{2f}} = \frac{n_1 \cdot 2^f}{n_2 \cdot 2^f} = n_1 \cdot n_2 \cdot 2^{-f}$

Activity 16 #10