

3 2,6,c,d & Nt a4 +64+c4=d4

Note & & 3 (for all, there exists): quantifier

Hn €Z (n72) (n2>4) P (=> Q, P of and only of Q. (iff). 1 B PAR B→P P←→B TITIT THET F T T T Note: for P (-) Q is true, provided P&R are both true or both falk. e.g. (n22) (n234) T, when n = 1 7 4 > 7 T, when h = 3 T (+) T P, when n=-3 P (-) T as 2 whole: 7

axioms	
a proposition, assumed to be true because	
ît's somelnow reasonable	
ed if a = b, and b = c, then a = c	
considert: p proposition can be proved	H
axiom (considert: p proposition can be proved both true and false	
Complète: can be proved et disap	
4 H F S S F F F F F F F F F F F F F F F F	
Logical deduction Cinference rules	
- combine axiouns and true propositions	
in order to form more true propositions.	
One fun damental inférence rule: modus ponons.	
if P 15 true and P -> a is true,	
ton & is also true	
1 2 -	
13Q	
Q 3 T	
(8N(8>0))>0	
if P and P - a istace, then a istace	

A Proof by contradiction. (Inderect proof).
idea: to assume that the desired conclusion is Jalx
and then show that that assumption
leades to an absurdity on contradiction.
, meaning: the assumption: wrong, so the desired conclusion is actually true
7 P => False.
P
if 7 P implies some folsehood, Prust actually be the.
p (¬p => False) >p
7 1 1

V2 is an irrational number. assume 1/2 13 rational. 152 = a/b. , a & b integers Np =0. =D the Grachon is in load form 262=22. : a is even, 2 B 2 multiple of 2 22 B 2 multople of 4. because of the equality. 262 = a2, 262 must be 2 miltiple of 4. b2 is even x akb are both even , so the Grachon alb # inlovest terms so the assumption of is rational: F (False)