

Lattice-based Homomorphic Encryption

Chun-Yu Lin (NCHC)

Jul 6, 2021 @ NCHC NVIDIA Joint-Lab

Homomorphic Encryption

- A privacy-enhanced tech (PET) that allows computation of encrypted data without decryption → f (Enc(x), Enc(y),...) = Enc (f(x,y,...))
- Scenario: computation outsourcing

- E.g. : Private information retrieval
 - Secret database query, to get a raw of DB = {A,B,C,D,E,F,G,......}
 - Calculate Enc(DB * {0,0,0,1,0,0,0,....})

Types of HE shemes

```
    Partially HE (only + or ×): El Gamal(*), Paillier(+)...
```

- Somewhat HE (only **finite** steps)
- Fully HE

Raw RSA as a multiplicative-HE

- Choose coprime p, q, N=pq, and e coprime to $\phi(N)=(p-1)(q-1)$
- Secret key: d, the inverse of e (d*e=1 mod φ(N).)
- Public key: (e,N)
- Encrypt: $c \equiv Enc(m) = m^e \mod N$
- Decrypt: $Dec(c) = c^d \mod N$

$$Enc(m_1) \times Enc(m_2) = (m_1 m_2)^e = Enc(m_1 m_2)$$

- Based on the hardness of factorization. (Not quantum-safe)
- Not semantic secure ! \rightarrow If $m_1 = m_2$, then $c_1 = c_2$ (not IND-CPA)

Applications

- (Modern) HE supports many algorithm:
 - Linear algebra, kNN clustering, FFT, and **limited** order statistics (sorting, comparison)
 - Logistic regression, ANN, CNN, and possibly more complicated DL model
 - ... inversion and nonlinear functions approximated by polynomials.

Extension:

- Multipartite HE (Threshold HE),
- Proxy Re-Encryption,
- Attribute-based/Identity base HE....

Scenarios:

- E-voting (Helios).
- Private information retrieval,
- Secure info aggregation
- Medical data analysis

Application: GWAS for iDASH'18 competition

GWAS (Genome Wide Association Studies) for the age-related macular degeneration (AMD)

- 27 k samples * 263 k SNP markers
- Computing tasks
 - allelic chi-square test
 - logistic regression with covariates (sex, age, ...)
- HE ~6x faster than SMPC reported

https://eprint.iacr.org/2020/563

Homomorphic Encryption based on Lattice

- Lattice problem can be reduced to learning-with-error (LWE) problem...
 - Each operations increase noise in ciphertexts
- Proper noise management become crucial:
 - Bootstrapping:
 - Homomorphically decrypt with encrypted secret key and re-encrypt
 - w/o bootstrapping for finite level scheme:
 - Modulus switching + key switching
- Fully HE proposed by Gentry 2009
 - → Bootstrappable somewhat HE + Bootstrapping (decryptable within capacity)
- Proposed tech standard by community (2019)

Example: Noise in the simple integer-based HE

- Key: odd, large q
- Plaintext m in [0,1]
- Enc(m) = $c = \frac{kq+2e}{m}$
- $Dec(c) = m = c \mod q \mod 2$

• Eval(c1 + c2) =
$$q(k1+k2) + 2(e1+e2)$$
 + $m1+m2$
• Eval(c1*c2) = $q(...)$ + $2(e1*e2+e1*m2+e2*m1) + $m1*m2$$

Decryption works for noise < q

Fully Homomorphic Encryption over the Integers, van Dijk, Gentry, Halevi and Vaikuntanathan (2009)

If too much noise in ciphertext...

- Bootstrapping
- Reduce "capacity" dropping (HE w/ high a level)

```
Round: 0
multiplication: 0
                       ctxt.bitCapacity: 332
multiplication: 1
                       ctxt.bitCapacity: 320
multiplication: 2
                       ctxt.bitCapacity: 308
 multiplication: 3
                       ctxt.bitCapacity: 296
multiplication: 4
                       ctxt.bitCapacity: 284
 multiplication: 5
                       ctxt.bitCapacity: 271
multiplication: 6
                       ctxt.bitCapacity: 259
multiplication: 7
                       ctxt.bitCapacity: 247
multiplication: 8
                       ctxt.bitCapacity: 235
multiplication: 9
                       ctxt.bitCapacity: 223
 multiplication: 10
                        ctxt.bitCapacity: 211
multiplication: 11
                        ctxt.bitCapacity: 198
 multiplication: 12
                        ctxt.bitCapacity: 186
 multiplication: 13
                        ctxt.bitCapacity: 173
multiplication: 14
                        ctxt.bitCapacity: 161
 multiplication: 15
                        ctxt.bitCapacity: 149
multiplication: 16
                        ctxt.bitCapacity: 137
multiplication: 17
                        ctxt.bitCapacity: 125
multiplication: 18
                        ctxt.bitCapacity: 113
multiplication: 19
                        ctxt.bitCapacity: 101
Before recryption, capacity=88.9707, p^r=2
After recryption, capacity=332.265, p^r=2
```


What's the scheme "w/o bootstrapping" ...

Key-switching: re-linearize ciphertexts (symmetric version in BV11)

https://eprint.iacr.org/2011/344

Let consider the BV scheme

$$c = \mathsf{Encrypt}(m) = (\mathbf{A}, b = \mathbf{A} \cdot \mathbf{s} + 2e + m)$$
 N+1 components
$$m = \mathsf{Decrypt}(c) = (b - \mathbf{A} \cdot \mathbf{s}) \mod q \mod 2.$$
 N+2 components
$$A, s \in \mathbb{Z}_q^n$$

• Under multiplication, Eval(c1*c2): $(b - \mathbf{A} \cdot \mathbf{s})(b' - \mathbf{A}' \cdot \mathbf{s}) = bb' + h_i s_i + h_{ij} s_i s_j$ $= bb' + h_i (b^{(i)} - \mathbf{A}^{(i)} \cdot \mathbf{t}) + h_{ij} (b^{(ij)} - \mathbf{A}^{(ij)} \cdot \mathbf{t})$

$$= bb' + h_i b^{(i)} + h_{ij} b^{(ij)} - (h_i \mathbf{A}^{(i)} + h_{ij} \mathbf{A}^{(ij)}) \cdot \mathbf{t}$$

• Solution: add extra keys: $b^{(i)} = \mathbf{A}^{(i)} \cdot \mathbf{t} + 2e^{(i)} + s_i$

$$b^{(ij)} = \mathbf{A}^{(ij)} \cdot \mathbf{t} + 2e^{(ij)} + s_i s_j$$

- Under L-level *, the key chain $si=\{s0, s1,...,sL\}$ and $ci=(A', b'=A' si+2e'+m) \rightarrow Multiplication key.$
- One can switch any key with the same encrypted message but extra errors. \rightarrow Rotation key

Modular switching: reduce noise

- Consider fixed q and c with noise level B, after L-level multiplication gives B^2^L
 - \rightarrow log q > 2^L log(B) grows exponentially
- Instead, use dynamical $q_{\ell} = \{q_0, q_1, q_2, ..., q_L\}$ and rescale $c' = (q_{\ell+1}/q_{\ell})c$ after each *.
 - \rightarrow Noise level reduced by $q_{\ell+1}/q_{\ell}$
- For example,

$$c = \mathsf{Encrypt}(m) = (\mathbf{A}, b = \mathbf{A} \cdot \mathbf{s} + 2e + m)$$

$$m = \mathsf{Decrypt}(c) = (b - \mathbf{A} \cdot \mathbf{s}) \mod q \mod 2.$$

to reduce $q \rightarrow p$, chose $c' \sim p/q c \pmod{2}$

- \rightarrow same decryption: (b'-A's) (mod p) = (b-As) (mod q) (mod 2)
- → lower noise

d 2)

https://eprint.iacr.org/2011/277

Packed plain/ciphertexts: a performance breakthrough

Plain-/cipher-text space allows 1-to-many mapping to the messages

coefficient-basis ←DFT→ evaluation-basis [1]

- Typically >8k +,* SIMD-style operation at a time.
- Rotation within slot:

Arbitrary permutation = rotation + masking-* + addition.

Popular implementations & their functionality

Projects \ Scheme	BGV [int]	CKKS [real]	BFV [int]	FHEW [bool]	CKKS Bootstrapping	TFHE [bool]
HELib (2013-)	Yes	Yes	No	No	No	No
MS SEAL (2018-)	No	Yes	Yes	No	No	No
Palisade (2017-)	Yes	Yes	Yes	Yes	No	Yes
HEAAN (2016-)	No	Yes	No	No	Yes	No
FHEW (2014-)	No	No	No	Yes	No	No
TFHE (2016-)	No	No	No	No	No	Yes
FV-NFLlib	No	No	Yes	No	No	No
NuFHE	No	No	No	No	No	Yes
Lattigo	No	Yes	Yes	No	No	No

- cuHE (2015-): Accelerate polynomial-based HE with GPU
- Google's transpiler for FHE (2021-): compile user code into encrypted Boolean arithmetic based on TFHE

https://en.wikipedia.org/wiki/Homomorphic_encryption

Squared sum of 8M items: Compare HELib / Palisade / Seal

- HE \sim O(1000x) slower than native computation for this depth-1 multiplication case.
- Palisade marginally beats SEAL's for batch number >128 (BV key switching w/o auto-rescale ~2x than Hybrid key switching).
- HELib is ~3-4x slower! Still under investigation.
- Testing code at https://github.com/chunyulin/he/tree/main/compare_reorder

Further profiling

Accuracy

Still not a complete fair comparison....

HELib combines MultKeyG/RotKeyG

Seal faster in KeyGen, Decoding,

Palisade faster in Encoding, Computing (dominated)

Benchmarks (Palisade)

Measure effective FLOPS per core = Exact flops / evaluation time / core

	BGV: Sum(x^2)	BFV: Sum(x^2)	CKKS: Sum(x^2)	CKKS: Sum(sigmoid(x))
Exact flops	2 N (integer)		2 N	7 N
Walltime HE for 8M terms	30 s	40 s	16 s	91 s
Eval-only performance	HE: 1576 KF Raw: 1379 MF 875x	HE: 668 KF Raw: 1374 MF 2155 x	HE: 9707 KF Raw: 813 MF 84x	HE: 238 KF Raw: 807 MF 3387 x
Note: (-O3 -std=c++17)	Rd=8192 nMult=1 (*), maxdepth=1		Rd = 2*8192 nMult=1 (*), maxdepth=1 APPROXRESCALE, BV, rw=10, sf=39, fb=60	Rd = 2*8192 nMult=3 (*), maxdepth=1 APPROXRESCALE, HYBRID, rw=10, sf=39, fb=60

Raw: native computation w/o HE

MF = Mega FLOPS

KF = Kilo FLOPS

All timing is for 1-core on ThunderX2@2GHz

(nice OpenMP scaling; ~2x faster on Twnia-2)

Sigmoid:
$$\sigma(x) \approx \frac{1}{2} + \frac{x}{4} - \frac{x^3}{48}$$

Example: delayed relineralization and rescaling

•
$$\sigma(x) \approx \frac{1}{2} + \frac{x}{4} - \frac{x^3}{48} = \frac{1}{2} + (\frac{1}{4}x) + (-\frac{1}{48}x)(xx)$$

```
auto bsum = 0 auto bsum = 0;
auto bsum =
for (i: num_ for (i: num_b
                          for (i: num_batch) { // ~8k terms in each batch
 xo48 = Eva
              xo48 = Eval
                            xo48 = Rescale( EvalMult(-0.0208333333333333, ctx[i])); // D1
       = Eva
  x2
              x2
                   = Eval
                                 = Rescale( EvalMult(ctx[i], ctx[i]));
                            x2
                                                                                     // D1
       = Eva
  x3
              x3
                   = Eval
                                 = Rescale( EvalMultNoRelin(xo48, x2) );
                            x3
                                                                                     // D1
       = Eva
  xo4
              xo4
                   = Eval
                            xo4 = Rescale( EvalMult(ctx[i], 0.25) );
                                                                                     // D1
  xo4
       = Eva
              xo4
                   = Eval
                                 = EvalAdd(xo4, x3);
                            xo4
                                                                               // D1+D1
                                                                                        OK
      = Eva
  tmp
              tmp
                   = Eval
                            tmp
                                 = EvalAdd(0.5, xo4);
  bsum = Eva
              bsum = Eval
                            bsum = EvalAdd(bsum, tmp);
            bsum = Reline
                          bsum = Relinearize(bsum);
auto sum = E
            auto sum = Ev
                          auto sum = EvalSum(bsum);
```


Concluding remarks

- Lattice-based HE has almost become usable.
- Leveled HE are widely supported.
- Yet CKKS bootstrapping implementation is still limited.
- Modern schemes mostly includes optimization like Reduce Number System and reduced error approaches
- Performance can vary a lot with order of operation / parameters / schemes.
- HE could be an wide, interesting research topic both from the aspect of fundamental study, computation, and application scenario.

~ Thank you ~