Séries

Marc SAGE

15 novembre 2005

Table des matières

1	Un classique des séries pour commencer	2
2	Mise en jambe sur les complexes	2
3	Un lemme d'Abel	2
4	Variante sur les suite d'entiers injectives	3
5	Série des inverses des ppcm d'une suite injective	3
6	Une série de complexes bien espacés	4
7	Théorème taubérien faible	4
8	Un calcul de série	5
9	De l'art de couper les sommes en trois	6

1 Un classique des séries pour commencer

Soit (u_n) une suite positive décroissante de limite nulle telle que $\sum u_n$ converge. Montrer que $u_n = o\left(\frac{1}{n}\right)$, i.e. que $nu_n \longrightarrow 0$.

Solution proposée.

Soit $\varepsilon > 0$. La suite $S_n := \sum_{i=1}^n u_i$ est convergente de limite $S = \sum_{i=1}^\infty u_i$, donc il y a un rang N au-delà duquel $|S - S_n| < \varepsilon$, ce qui implique en particulier $\sum_{i>N} u_i < \varepsilon$. Pour n > 2N, on écrit

$$\frac{n}{2}u_n \le (n-N)u_n \le u_{N+1} + \dots + u_n \le \sum_{i>N} u_i < \varepsilon,$$

d'où le résultat.

Remarque. On pourrait en déduire la divergence de la série harmonique $\sum \frac{1}{n}$.

2 Mise en jambe sur les complexes

Soit (z_n) une suite de complexes de partie réelle positive. On suppose que $\sum z_n$ et $\sum z_n^2$ convergent. Montrer que $\sum |z_n|^2$ converge.

Solution proposée.

Écrivons $z_n = x_n + iy_n$. Les données nous permettent d'établir la convergence de $\sum x_n$ et $\sum x_n^2 - y_n^2$. Puisque les x_i sont positifs et tendant vers 0 (car $\sum x_n$ converge), à partir d'un certain rang on a $x_n < 1$ et donc $x_n^2 < x_n$, d'où la convergence de $\sum x_n^2$ (on aurait également pu écrire $\sum_{i=1}^n x_i^2 \le (\sum_{i=1}^n x_i)^2$). On obtient ensuite $\sum |z_n|^2 = \sum x_n^2 + y_n^2$ par une combinaison linéaire subtile dont je ne révélerai le secret à personne.

3 Un lemme d'Abel

Soit (u_n) une suite de réels positifs décroissant strictement vers 0. Étudier la convergence de $\sum u_n e^{in\theta}$ où θ est un réel hors de $2\pi\mathbb{Z}$.

Solution proposée.

Un croquis rapide nous montre que les sommes partielles, vues dans le plan complexe, tournent autour de zéro en ralentissant, ce qui permet raisonnablement d'intuiter la convergence de $\sum u_n e^{in\theta}$.

Pour montrer cela, on va utiliser une transformation d'Abel, analogue de l'intégration par parties pour évaluer l'intégrale d'un produit. Les conditions sur u_n donnent des informations sur la "dérivée" $u_{n+1} - u_n$ (elle est positive et majorée par u_n), et "intégrer" les $e^{in\theta}$ (i.e. les sommer) se fera facilement car il s'agit de calculer la série géométrique $S_n = \sum_{p=0}^n e^{ip\theta} = \frac{1-e^{i(n+1)\theta}}{1-e^{i\theta}}$. Pour faire apparaître S_n , on télescope :

$$\sum_{n=0}^{N} u_n e^{in\theta} = \sum_{n=0}^{N} u_n (S_n - S_{n-1}) = \sum_{n=0}^{N} u_n S_n - \sum_{n=0}^{N} u_n S_{n-1} = \sum_{n=0}^{N} u_n S_n - \sum_{n=0}^{N-1} u_{n+1} S_n$$

$$= u_N S_N + \sum_{n=0}^{N-1} (u_n - u_{n+1}) S_n.$$

En observant que S_n est bornée par $M := \frac{2}{|1-e^{i\theta}|}$, on voit que le premier terme tend vers 0. Quant au second, on utilise la décroissance des u_n pour faire sauter les valeurs absolues et tout télescoper :

$$\sum_{n=0}^{N-1} |u_n - u_{n+1}| M = M \sum_{n=0}^{N-1} (u_n - u_{n+1}) = M (u_0 - u_N) \le M u_0.$$

En notant $a_n = (u_n - u_{n+1}) S_n$, on vient de montrer que la série $\sum a_n$ est absolument convergente, donc convergente.

Finalement, $\sum u_n e^{in\theta}$ converge comme intuité.

Remarque. La transformation d'Abel est à retenir. C'est vraiment une méthode efficace à employer lorsque l'on sent que la dérivée ou la primitive d'une suite est plus agréable : penser aux multiples vertus de l'intégration par parties!

4 Variante sur les suite d'entiers injectives

Soit $u: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ injective. Etudier la convergence de $\sum \frac{u_n}{n^2}$. (on pourra regarder les cas $u = \operatorname{Id}$, u strictement croissante, puis s'y ramener).

Solution proposée.

Pour $u_n = \text{Id}$, on obtient la série harmonique, qui diverge.

Pour (u_n) strictement croissante, on a $u_n \ge n$ pour tout n, d'où

$$\sum_{i=1}^{n} \frac{u_i}{i^2} \ge \sum_{i=1}^{n} \frac{i}{i^2} \longrightarrow \infty$$

et on a encore divergence.

Dans le cas général, réordonnons les n premiers termes de (u_n) , mettons

$$1 \le u_{\varphi(1)} < u_{\varphi(2)} < \dots < u_{\varphi(n)}.$$

On peut alors écrire $u_{\varphi(i)} \geq i$ pour i=1,...,n. Pour conclure, on rappelle l'inégalité du réordonnement : si (a_n) et (b_n) sont deux suites finies, la somme $\sum_{i=1}^n a_i b_i$ est maximale quand les a_i et les b_i sont rangés dans le même ordre, et minimale s'ils sont rangés en ordre inverse (cette inégalité se comprend bien si l'on imagine que les a_i sont les prix d'un article A_i et les b_i le nombre d'article A_i vendus; il vaut mieux vendre les prix forts en grande quantité que l'inverse...). On en déduit, en considérant les suites $(u_{\varphi(1)},...,u_{\varphi(n)})$ et $(\frac{1}{12},...,\frac{1}{n^2})$, que

$$\sum_{i=1}^n \frac{u_i}{i^2} \geq \frac{u_{\varphi(1)}}{1^2} + \frac{u_{\varphi(2)}}{2^2} + \ldots + \frac{u_{\varphi(n)}}{n^2} \geq \frac{1}{1^2} + \frac{2}{2^2} + \ldots + \frac{n}{n^2} = \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{n} \longrightarrow \infty.$$

5 Série des inverses des ppcm d'une suite injective

Soit $u: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ injective. On pose $\mu_n = a_1 \vee ... \vee a_n$ (ppcm de $a_1, ..., a_n$). Étudier la convergence de $\sum \frac{1}{\mu_n}$.

Solution proposée.

Essayons des cas simples, par exemple $a_n = 2^n$, ce qui donne $\mu_n = 2 \vee 2^2 \vee ... \vee 2^n = 2^n$ et la série $\sum \frac{1}{2^n}$ converge trivialement. Montrons que c'est toujours le cas, et même que la convergence sera toujours géométrique.

Une idée pour controler la croissance des μ_n est de raisonner par paliers où μ_n est constant. On peut toujours construire une extractrice φ commençant à $\varphi(0)=0$ et telle que (μ_n) est constant chaque palier $\{\varphi(i-1)+1,...,\varphi(i)\}$ de hauteur $h_i:=\mu_{\varphi(i)}$ et de largeur $l_i:=\varphi(i)-\varphi(i-1)$. On peut alors réécrire la série sous la forme

$$\sum_{i=1}^{\varphi(n)} \frac{1}{\mu_i} = \sum_{i=1}^n \frac{l_i}{h_i}.$$

Le point à comprendre est que, lorsque l'on passe d'un palier à un autre, la hauteur est au moins doublée. En effet, on peut toujours écrire $\mu_{n+1} = \mu_n \vee a_n = \mu_n k$ où $k \geq 1$ est un entier; au passage entre deux paliers succesifs, on a $\mu_{n+1} \neq \mu_n$, d'où $k \neq 1$ et $k \geq 2$ car k est entier; ceci montre que $h_{n+1} \geq 2h_n$ et

$$h_n \ge 2^n h_0.$$

Reste à majorer convenablement la largeur l_i des paliers. Puisque $\mu_{n+1} = \mu_n \vee a_n$, on voit que $\mu_{n+1} = \mu_n$ ssi $a_n \mid \mu_n$, d'où, en notant $\tau(a)$ le nombre de diviseurs d'un entiers a fixé, $l_n \leq \tau\left(\mu_{\varphi(n)}\right) = \tau\left(h_n\right)$. On aimerait garder une puissance de h_n au dénominateur dans $\sum_{i=1}^n \frac{l_i}{h_i}$ afin de conserver du 2^n sous le trait de fraction — ce qui fera converger notre série (géométriquement). Or, cela est possible en bornant $\tau(a)$ à a fixé par $3\sqrt{a}$. En effet, séparons les diviseurs de a entre trois parties : les $d < \sqrt{a}$, les $d > \sqrt{a}$, et (éventuellement si a est un carré) $d = \sqrt{a}$. Les deux premières parties sont en bijection via $d \longmapsto \frac{a}{d}$ et contiennent moins de \sqrt{a} éléments, ce qui montre que $\tau(a) \leq 3\sqrt{a}$. Par conséquent :

$$l_n \leq 3\sqrt{h_n}$$
.

Concluons:

$$\sum_{i=1}^{\varphi(n)} \frac{1}{\mu_i} = \sum_{i=1}^n \frac{l_i}{h_i} \le \sum_{i=1}^n \frac{3\sqrt{h_i}}{h_i} = 3\sum_{i=1}^n \frac{1}{\sqrt{h_i}} \le \frac{3}{\sqrt{h_0}} \sum_{i=1}^n \frac{1}{\sqrt{2}^i} < \infty.$$

La série étant à termes positifs, la suite croissante $\left(\sum_{i=1}^{n} \frac{1}{\mu_i}\right)$ doit converger puisque l'on vient d'en extraire une sous-suite convergente.

6 Une série de complexes bien espacés

Trouver une suite (u_n) de complexes deux à deux distants d'au moins 1 et tels que la série $\sum \frac{1}{|u_n|^2}$ diverge. Étudier le même problème sur la droite réelle.

Solution proposée.

Pour faire diverger $\sum \frac{1}{|u_n|^2}$, on veut prendre les u_n tous petits, mais le disque de sécurité autour de chacun d'eux nous empêche de faire n'importe quoi. Nous allons disposer nos u_n successivement en anneaux selon des cercles C_n de rayon n. Sur un tel cercle, cherchons à mettre le plus de u_n possibles, de façon régulière, disons espacés de 1 en abscisse curviligne. La circonférence de C_n faisant $2\pi n$, on peut mettre au moins $\lfloor 2\pi n \rfloor$ points sur C_n séparés chacun d'une distance d'au moins 1. La contribution à la série est donc d'au moins $\lfloor 2\pi n \rfloor \frac{1}{n^2} \geq \frac{1}{n}$, et en sommant sur n on obtient bien une série divergente.

Dans le cas de la droite réelle, on ne dispose pas d'autant de marge autour de 0, ce qui rend le problème impossible à résoudre. Soit en effet (u_n) une suite vérifiant les conditions de l'énoncé. Ordonnons les termes en séparant les positifs des négatifs :

$$\dots \le u_{\nu(2)} \le u_{\nu(1)} \le u_{\nu(0)} < 0 < u_{\pi(0)} \le u_{\pi(1)} \le u_{\pi(2)} \le \dots$$

(ν pour "négatif" et π pour "positif"). Les conditions d'espacement imposent $\begin{cases} u_{\nu(n)} \leq -n \\ u_{\pi(n)} \geq n \end{cases}$ (récurrence immédiate), ce qui permet de majorer la somme de la série en regroupant par paquets (tout est positif, vive Fubini!) :

$$\sum \frac{1}{|u_n|^2} = \sum_{n \ge 0} \frac{1}{u_{\pi(n)}^2} + \sum_{n \ge 0} \frac{1}{u_{\nu(n)}^2} \le \frac{1}{u_{\nu(0)}^2} + \frac{1}{u_{\pi(0)}^2} + 2\sum_{n \ge 1} \frac{1}{n^2}.$$

La série $\sum \frac{1}{|u_n|^2}$ doit donc converger, vu que $\sum \frac{1}{n^2}$ converge.

7 Théorème taubérien faible

Pour calculer la somme d'une série $\sum a_n$, il peut être judicieux d'introduire la fonction $f(x) = \sum a_n x^n$, de trouver une formule explicite pour cette dernière, puis d'appliquer cette formule en x = 1. Par exemple, pour $a_n = \frac{1}{n!}$, on aurait $f(x) = e^x$ et $\sum a_n = e$.

Cependant, on se heurte à une impasse lorsque 1 ne fait partie du domaine de définition de f. Les théorèmes taubériens étudient ces impasses en donnant des conditions suffisantes pour écrire

$$\lim_{x \to 1^{-}} \sum a_n x^n = \sum a_n.$$

Ce sont donc des théorèmes d'interversion de limites.

Théorème taubérien faible.

Soit (a_n) une suite réelle telle que la fonction $f(x) = \sum a_n x^n$ soit définie pour tout x de]-1,1[et admette une limite l quand x tend vers 1. Sous l'hypothèse $a_n n \longrightarrow 0$, montrer que la série $\sum a_n$ converge vers l.

On pourra utiliser (et même démontrer!) l'inégalité de Bernouilli :

$$\forall n \in \mathbb{N}, \ \forall x \ge -1, \ (1+x)^n \ge 1 + nx.$$

Solution proposée.

On veut comparer $\sum a_n$ à $l=\lim_1 f$. L'écriture de l ne permettant cependant pas d'exploiter l'expression de f, on va remplacer l par une approximation de l où f apparaît explicitement, mettons $f(x_n)$ où $x_n \longrightarrow 1$; on essaie $x_n=1-\frac{1}{n}$. On aimerait par conséquent que la différence $(\sum_{i=0}^n a_i)-f(x_n)$ soit aussi petite que souhaité pour n assez grand, ce qui permettra de conclure à la convergence de $\sum a_n$ vers $\lim f(x_n)=\lim_1 f=l$.

On est parti pour majorer et découper en petits bouts :

$$\left| \left(\sum_{i=0}^{n} a_i \right) - f(x_n) \right| \le \sum_{i=0}^{n} |a_i| \left| 1 - x_n^i \right| + \sum_{i > n} |a_i| x_n^i.$$

Pour majorer le premier terme, on utilise Bernouilli :

$$1 - x_n^i = 1 - \left(1 - \frac{1}{n}\right)^i \le 1 - \left(1 - \frac{i}{n}\right) = \frac{i}{n}.$$

On obtient:

$$\sum_{i=0}^{n} |a_i| \left| 1 - x_n^i \right| \le \sum_{i=0}^{n} \frac{i |a_i|}{n},$$

qui converge vers 0 en utilisant l'hypothèse (couplée à Césaro).

Pour tuer le second terme, fixons un $\varepsilon > 0$. L'hypothèse $na_n \longrightarrow 0$ nous donne un rang n tel que $|a_i| \leq \frac{\varepsilon}{i}$ pour tout i > n, d'où

$$\sum_{i>n} |a_i| \, x_n^i \le \sum_{i>n} \frac{\varepsilon x_n^i}{i} \le \varepsilon \sum_{i>n} \frac{x_n^i}{n} \le \frac{\varepsilon}{n} \sum_{i>0} x_n^i = \frac{\varepsilon}{n} \frac{1}{1 - x_n} = \varepsilon.$$

Il reste à montrer l'inégalité de Bernouilli. On procède par récurrence sur n. Pour n = 0, c'est trivial. Ensuite, on écrit

$$(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+nx) (1+x) = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x.$$

La condition $x \ge -1$ assure que l'on multiplie les inégalités par des termes positifs.

C'est terminé!

Remarque. Il existe un théorème taubérien fort, où l'hypothèse $na_n \longrightarrow 0$ est remplacée par " na_n bornée". Évidemment, sa démontration est plus ardue...

On notera le parallèle avec les théorèmes taubériens version intégrales portant sur les tranformées de Laplace, cf. feuille sur les intégrales généralisées.

8 Un calcul de série

Calculer

$$\sum_{n>1} (-1)^n \frac{\ln n}{n} = \frac{\ln 2}{2} - \frac{\ln 3}{3} + \frac{\ln 4}{4} - \frac{\ln 5}{5} + \dots$$

Solution proposée.

On commence par regrouper les termes deux par deux pour avoir du positif : en effet, $\frac{\ln x}{x}$ décroît pour x > e. On regarde ensuite les sommes partielles paires :

$$S_{2n} = \ln \frac{2^{\frac{1}{2}}4^{\frac{1}{4}} \dots (2n)^{\frac{1}{2n}}}{3^{\frac{1}{3}}5^{\frac{1}{5}} \dots (2n+1)^{\frac{1}{2n+1}}}.$$

On complète en bas comme on complèterait la factorielle dans le calcul des intégrales de Wallis :

$$S_{2n} = \ln \frac{2 \cdot 4^{\frac{1}{2}} \cdot 6^{\frac{1}{3}} \dots (2n)^{\frac{1}{n}}}{\prod_{p=1}^{2n+1} p^{\frac{1}{p}}} = \ln \frac{2^{1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n}} \cdot 2^{\frac{1}{2}} \cdot 3^{\frac{1}{3}} \dots n^{\frac{1}{n}}}{\prod_{p=1}^{n} p^{\frac{1}{p}} \prod_{p=n+1}^{2n+1} p^{\frac{1}{p}}}$$
$$= \ln \frac{2^{H_n}}{\prod_{p=1}^{n+1} (n+p)^{\frac{1}{n+p}}} = H_n \ln 2 - \sum_{p=1}^{n+1} \frac{\ln (n+p)}{n+p}.$$

On a envie de faire apparaître du $1 + \frac{p}{n}$ pour obtenir une somme de Riemann :

$$= H_n \ln 2 - \sum_{p=1}^{n+1} \frac{\ln n + \ln \left(1 + \frac{p}{n}\right)}{n+p} = H_n \ln 2 - \ln n \left(H_{2n+1} - H_n\right) + \sum_{p=1}^{n+1} \frac{1}{p} \frac{\ln \left(1 + \frac{p}{n}\right)}{1 + \frac{p}{n}}.$$

Compte tenu du DL de la série harmonique

$$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right),$$

le deux premiers termes se calculent aisément :

$$H_n \ln 2 - \ln n \left(H_{2n+1} - H_n \right) = \ln 2 \left(\ln n + \gamma \right) + o \left(1 \right) - \ln n \left(\ln \frac{2n+1}{n} + O\left(\frac{1}{n}\right) \right)$$

$$= \ln 2 \left(\ln n + \gamma \right) - \ln n \left(\ln 2 + \ln \left(1 + \frac{1}{2n} \right) \right) + o \left(1 \right)$$

$$= \gamma \ln 2 + \frac{\ln n}{2n} + o \left(1 \right)$$

$$\longrightarrow \gamma \ln 2.$$

Quant au troisième, c'est une somme de Riemann:

$$\sum_{n=1}^{n+1} \frac{1}{p} \frac{\ln\left(1 + \frac{p}{n}\right)}{1 + \frac{p}{n}} \longrightarrow \int_{1}^{2} \frac{\ln x}{x} dx \stackrel{u = \ln x}{=} \int_{0}^{\ln 2} u e^{-u} e^{u} du = \frac{(\ln 2)^{2}}{2}.$$

Finalement, on trouve

$$\frac{\ln 2}{2} - \frac{\ln 3}{3} + \frac{\ln 4}{4} - \frac{\ln 5}{5} + \dots = \ln 2 \left(\gamma + \frac{\ln 2}{2} \right).$$

9 De l'art de couper les sommes en trois