DIHEDRAL GROUPS

- A **isometry** of \mathbb{R}^2 is a bijective function $f: \mathbb{R}^2 \to \mathbb{R}^2$ that preserves distances between pairs of points; these include rotations around a point, translations, and reflections over a line.
- Let $X \subseteq \mathbb{R}^2$. A symmetry of X is an isometry of \mathbb{R}^2 such that f(X) = X as a set.
- The **dihedral group** D_n is the group of symmetries of a regular n-gon P_n in the plane, with composition of functions as the group operation.

THEOREM: The dihedral group D_n is indeed a group. It has exactly 2n elements consisting of:

- The identity map e,
- n-1 rotations r, r^2, \ldots, r^{n-1} , where r is counterclockwise rotation by $2\pi/n$ (so r^i is counterclockwise rotation by $2\pi i/n$),
- n reflections. More precisely,
 - when n is odd, there are n distinct reflections over a line between a vertex and an opposite edge;
 - when n is even, there are n/2 distinct reflections between opposite pairs of vertices, and another n/2 distinct reflections between opposite pairs of edges.
- (1) Orders of these elements?
- **(2)** Proof

LEMMA: Let $v \in P_n$ be a vertex, and $s \in D_n$ the reflection through the axis containing s. Let $r \in D_n$ be counterclockwise rotation by $2\pi/n$. Then $srs^{-1} = r^{-1}$.

THEOREM: Let $v \in P_n$ be a vertex, and $s \in D_n$ the reflection through the axis containing s. Let $r \in D_n$ be counterclockwise rotation by $2\pi/n$.

(1) Every element of D_n can be written uniquely in the form

$$r^{j}$$
 for $j = 0, ..., n - 1$, or $r^{j}s$ for $j = 0, ..., n - 1$.

- (2) D_n is generated by r, s.
- (3) D_n has the group presentation $\langle r, s \mid r^n = e, s^2 = e, srs^{-1} = r^{-1} \rangle$.

Symmetries of the circle.

Symmetries of a line.