POWER SYSTEM ANALYSIS

L T P C 3 0 0 3

OBJECTIVES:

- · To model the power system under steady state operating condition
- . To understand and apply iterative techniques for power flow analysis
- To model and carry out short circuit studies on power system
- To model and analyze stability problems in power system

UNIT I POWER SYSTEM

9

Need for system planning and operational studies - Power scenario in India - Power system components - Representation - Single line diagram - per unit quantities - p.u. impedance diagram - p.u. reactance diagram - Network graph, Bus incidence matrix, Primitive parameters, Bus admittance matrix from primitive parameters - Representation of offnominal transformer - Formation of bus admittance matrix of large power network.

UNIT II POWER FLOW ANALYSIS

9

Bus classification - Formulation of Power Flow problem in polar coordinates - Power flow solution using Gauss Seidel method - Handling of Voltage controlled buses - Power Flow Solution by Newton Raphson method.

UNIT III SYMMETRICAL FAULT ANALYSIS

9

Assumptions in short circuit analysis - Symmetrical short circuit analysis using Thevenin's theorem - Bus Impedance matrix building algorithm (without mutual coupling) - Symmetrical fault analysis through bus impedance matrix - Post fault bus voltages - Fault level - Current limiting reactors.

UNIT IV UNSYMMETRICAL FAULT ANALYSIS

9

Symmetrical components - Sequence impedances - Sequence networks - Analysis of unsymmetrical faults at generator terminals: LG, LL and LLG - unsymmetrical fault occurring at any point in a power system - computation of post fault currents in symmetrical component and phasor domains.

UNIT V STABILITY ANALYSIS

C

Classification of power system stability – Rotor angle stability - Swing equation - Swing curve - Power-Angle equation - Equal area criterion - Critical clearing angle and time - Classical step-by-step solution of the swing equation – modified Euler method.

TOTAL: 45 PERIODS

OUTCOMES:

- Ability to model the power system under steady state operating condition
- Ability to understand and apply iterative techniques for power flow analysis
- Ability to model and carry out short circuit studies on power system
- Ability to model and analyze stability problems in power system
- Ability to acquire knowledge on Fault analysis.
- Ability to model and understand various power system components and carry out power flow, short circuit and stability studies.

TEXT BOOKS:

- John J. Grainger, William D. Stevenson, Jr, 'Power System Analysis', Mc Graw Hill Education (India) Private Limited, New Delhi, 2015.
- Kothari D.P. and Nagrath I.J., 'Power System Engineering', Tata McGraw-Hill Education, Second Edition, 2008.
- Hadi Saadat, 'Power System Analysis', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 21st reprint, 2010.

REFERENCES

- Pai M A, 'Computer Techniques in Power System Analysis', Tata Mc Graw-Hill Publishing Company Ltd., New Delhi, Second Edition, 2007.
- J. Duncan Glover, Mulukutla S.Sarma, Thomas J. Overbye, 'Power System Analysis & Design', Cengage Learning, Fifth Edition, 2012.
- 3. Gupta B.R., 'Power System Analysis and Design', S. Chand Publishing, 2001.
- Kundur P., 'Power System Stability and Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010.