Операции с векторами в пространстве

Скалярное произведение

Правила пользования

- Ввод 2-х векторов осуществляется по координатам (x, y, z).
- Пользователь должен вводить только целые числа или числа с плавающие точкой (при вводе чисел с плавающей точкой использовать вместо точки **запятую**).
- После ввода двух векторов при нажатии на кнопку «Выполнить» калькулятор посчитает скалярное произведение

Теоретическая часть

Скалярным произведением двух векторов а и b будет скаляр, величина которого равна сумме попарного произведения координат векторов а и b.

Например, для векторов $\bar{a} = \{a_x; a_y; a_z\}$ и $\bar{b} = \{b_x; b_y; b_z\}$ скалярное произведение:

$$\bar{a} \cdot \bar{b} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z$$

Угол между векторами

Правила пользования

- Ввод 2-х векторов осуществляется по координатам (x, y, z).
- Пользователь должен вводить только целые числа или числа с плавающие точкой (при вводе чисел с плавающей точкой использовать вместо точки запятую).
- После ввода двух векторов при нажатии на кнопку «Выполнить» калькулятор посчитает угол между векторами

Теоретическая часть

Угол между двумя векторами \bar{a} можно найти использовав следующую формулу:

$$\cos\alpha = \frac{\bar{a}\cdot\bar{b}}{|\bar{a}||\bar{b}|}$$

Векторное произведение

Правила пользования

- Ввод 2-х векторов осуществляется по координатам (x, y, z).
- Пользователь должен вводить только целые числа или числа с плавающие точкой (при вводе чисел с плавающей точкой использовать вместо точки **запятую**).
- После ввода двух векторов при нажатии на кнопку «Выполнить» калькулятор посчитает векторное произведение

Теоретическая часть

Векторное произведение двух векторов $\bar{a} = \{a_x; a_y; a_z\}$ и $\bar{b} = \{b_x; b_y; b_z\}$ в декартовой системе координат - это вектор, значение которого можно вычислить следующим образом:

$$\bar{a} \times \bar{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \mathbf{i} (a_y b_z - a_z b_y) - \mathbf{j} (a_x b_z - a_z b_x) + \mathbf{k} (a_x b_y - a_y b_x)$$

ИЛИ

$$\bar{a} \times \bar{b} = \{a_y b_z - a_z b_y ; a_z b_x - a_x b_z ; a_x b_y - a_y b_x \}.$$

Смешанное произведение

Правила пользования

- Ввод 3-х векторов осуществляется по координатам (x, y, z).
- Пользователь должен вводить только целые числа или числа с плавающие точкой (при вводе чисел с плавающей точкой использовать вместо точки **запятую**).
- После ввода трех векторов при нажатии на кнопку «Выполнить» калькулятор посчитает смешанное произведение

Теоретическая часть

Смешанное произведение векторов - скалярное произведение вектора \bar{a} на векторное произведение векторов \bar{b} и \bar{c} .

Смешанное произведение трех векторов $\bar{a} = \{a_x; a_y; a_z\}$ и $\bar{b} = \{b_x; b_y; b_z\}$ и $\bar{b} = \{c_x; c_y; c_z\}$ в декартовой системе координат - это скаляр, значение которого можно вычислить следующим образом:

$$\overline{a} \cdot (\overline{b} \times \overline{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$