Test Plot 1#: FM_12.5kHz_143MHz_Face Up

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 143 MHz; Duty Cycle: 1:1

Medium parameters used: f = 143 MHz; $\sigma = 0.776$ S/m; $\varepsilon_r = 53.936$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 143 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.46 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 64.96 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 4.05 W/kg

SAR(1 g) = 3.26 W/kg; SAR(10 g) = 2.63 W/kg

Maximum value of SAR (measured) = 3.38 W/kg

0 dB = 3.38 W/kg = 5.29 dBW/kg

SAR Plots Plot 1#

Test Plot 2#: FM_25kHz_136.0125MHz_Face Up

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 136.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 136.012 MHz; $\sigma = 0.743$ S/m; $\varepsilon_r = 54.354$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 136.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.08 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 36.05 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.31 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.834 W/kg

Maximum value of SAR (measured) = 1.03 W/kg

0 dB = 1.03 W/kg = 0.13 dBW/kg

SAR Plots Plot 2#

Test Plot 3#: FM_25kHz_143MHz_Face Up

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 143 MHz; Duty Cycle: 1:1

Medium parameters used: f = 143 MHz; $\sigma = 0.776$ S/m; $\varepsilon_r = 53.936$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 143 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.77 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 68.23 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 4.36 W/kg

SAR(1 g) = 3.48 W/kg; SAR(10 g) = 2.81 W/kg

Maximum value of SAR (measured) = 3.61 W/kg

0 dB = 3.61 W/kg = 5.58 dBW/kg

SAR Plots Plot 3#

Test Plot 4#: FM_25kHz_149.9875MHz_Face Up

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 149.988 MHz; Duty Cycle: 1:1

Medium parameters used: f = 149.988 MHz; $\sigma = 0.762 \text{ S/m}$; $\varepsilon_r = 53.766$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 149.988 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.13 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 36.82 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.864 W/kg

Maximum value of SAR (measured) = 1.12 W/kg

0 dB = 1.12 W/kg = 0.49 dBW/kg

SAR Plots Plot 4#

Test Plot 5#: 4FSK_12.5kHz_143MHz_Face Up

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: 4FSK; Frequency: 143 MHz; Duty Cycle: 1:2

Medium parameters used: f = 143 MHz; $\sigma = 0.776$ S/m; $\varepsilon_r = 53.936$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 143 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.73 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 45.35 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 2.13 W/kg

SAR(1 g) = 1.63 W/kg; SAR(10 g) = 1.28 W/kg

Maximum value of SAR (measured) = 1.73 W/kg

0 dB = 1.73 W/kg = 2.38 dBW/kg

SAR Plots Plot 5#

Test Plot 6#: FM_12.5kHz_136.0125MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 136.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 136.012 MHz; $\sigma = 0.743$ S/m; $\varepsilon_r = 54.354$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 136.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 7.08 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 68.98 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 7.36 W/kg; SAR(10 g) = 4.22 W/kg

Maximum value of SAR (measured) = 7.52 W/kg

0 dB = 7.52 W/kg = 8.76 dBW/kg

SAR Plots Plot 6#

Test Plot 7#: FM_12.5kHz_143MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 143 MHz; Duty Cycle: 1:1

Medium parameters used: f = 143 MHz; $\sigma = 0.776$ S/m; $\varepsilon_r = 53.936$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 143 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 4.85 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 64.99 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 9.93 W/kg

SAR(1 g) = 4.71 W/kg; SAR(10 g) = 2.88 W/kg

Maximum value of SAR (measured) = 4.83 W/kg

0 dB = 4.83 W/kg = 6.84 dBW/kg

SAR Plots Plot 7#

Test Plot 8#: FM_12.5kHz_149.9875MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 149.988 MHz; Duty Cycle: 1:1

Medium parameters used: f = 149.988 MHz; $\sigma = 0.762 \text{ S/m}$; $\varepsilon_r = 53.766$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 149.988 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.07 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 45.24 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 3.99 W/kg

SAR(1 g) = 2.01 W/kg; SAR(10 g) = 1.29 W/kg

Maximum value of SAR (measured) = 2.04 W/kg

0 dB = 2.04 W/kg = 3.10 dBW/kg

SAR Plots Plot 8#

Test Plot 9#: FM_25kHz_136.0125MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 136.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 136.012 MHz; $\sigma = 0.743 \text{ S/m}$; $\varepsilon_r = 54.354$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 136.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 6.99 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 77.53 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 14.6 W/kg

SAR(1 g) = 6.87 W/kg; SAR(10 g) = 4.05 W/kg

Maximum value of SAR (measured) = 7.10 W/kg

0 dB = 7.10 W/kg = 8.51 dBW/kg

SAR Plots Plot 9#

Test Plot 10#: FM_25kHz_143MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 143 MHz; Duty Cycle: 1:1

Medium parameters used: f = 143 MHz; $\sigma = 0.776$ S/m; $\varepsilon_r = 53.936$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 143 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 4.33 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 72.02 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 7.17 W/kg

SAR(1 g) = 3.99 W/kg; SAR(10 g) = 2.68 W/kg

Maximum value of SAR (measured) = 4.16 W/kg

0 dB = 4.16 W/kg = 6.19 dBW/kg

SAR Plots Plot 10#

Test Plot 11#: FM_25kHz_149.9875MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 149.988 MHz; Duty Cycle: 1:1

Medium parameters used: f = 149.988 MHz; $\sigma = 0.762 \text{ S/m}$; $\varepsilon_r = 53.766$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 149.988 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.37 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 62.43 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 6.44 W/kg

SAR(1 g) = 2.91 W/kg; SAR(10 g) = 1.80 W/kg

Maximum value of SAR (measured) = 2.96 W/kg

0 dB = 2.96 W/kg = 4.71 dBW/kg

SAR Plots Plot 11#

Test Plot 12#: 4FSK_12.5kHz_136.0125MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: 4FSK; Frequency: 136.012 MHz; Duty Cycle: 1:2

Medium parameters used: f = 136.012 MHz; $\sigma = 0.743 \text{ S/m}$; $\varepsilon_r = 54.354$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 136.012 MHz; Calibrated: 2019/9/25

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn471; Calibrated: 2018/12/3
- Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 4.33 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 63.89 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 7.84 W/kg

SAR(1 g) = 4.02 W/kg; SAR(10 g) = 2.47 W/kg

Maximum value of SAR (measured) = 4.16 W/kg

0 dB = 4.16 W/kg = 6.19 dBW/kg

SAR Plots Plot 12#

Test Plot 13#: FM_12.5kHz_158.0125MHz_Face Up

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 158.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 158.012 MHz; $\sigma = 0.765$ S/m; $\varepsilon_r = 52.73$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 158.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.47 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 68.44 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.83 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 2.97 W/kg

0 dB = 2.97 W/kg = 4.73 dBW/kg

SAR Plots Plot 13#

Test Plot 14#: FM_25kHz_150.0625MHz_Face Up

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 150.063 MHz; Duty Cycle: 1:1

Medium parameters used: f = 150.063 MHz; $\sigma = 0.759$ S/m; $\varepsilon_r = 52.982$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 150.063 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (71x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.89 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.69 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 2.17 W/kg

SAR(1 g) = 1.76 W/kg; SAR(10 g) = 1.42 W/kg

Maximum value of SAR (measured) = 1.82 W/kg

0 dB = 1.82 W/kg = 2.60 dBW/kg

SAR Plots Plot 14#

Test Plot 15#: FM_25kHz_158.0125MHz_Face Up

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 158.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 158.012 MHz; $\sigma = 0.765$ S/m; $\varepsilon_r = 52.73$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 158.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (71x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.33 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 64.24 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 3.85 W/kg

SAR(1 g) = 3.1 W/kg; SAR(10 g) = 2.52 W/kg

Maximum value of SAR (measured) = 3.21 W/kg

0 dB = 3.21 W/kg = 5.07 dBW/kg

SAR Plots Plot 15#

Test Plot 16#: FM_25kHz_166..0125MHz_Face Up

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 166.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 166.012 MHz; $\sigma = 0.774 \text{ S/m}$; $\varepsilon_r = 52.626$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 166.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (71x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.60 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 55.54 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 3.14 W/kg

SAR(1 g) = 2.52 W/kg; SAR(10 g) = 2.04 W/kg

Maximum value of SAR (measured) = 2.61 W/kg

0 dB = 2.61 W/kg = 4.17 dBW/kg

SAR Plots Plot 16#

Test Plot 17#: FM_25kHz_173.9875MHz_Face Up

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 173.988 MHz; Duty Cycle: 1:1

Medium parameters used: f = 173.988 MHz; $\sigma = 0.806$ S/m; $\varepsilon_r = 51.933$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 173.988 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (71x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.09 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 34.65 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.991 W/kg; SAR(10 g) = 0.803 W/kg

Maximum value of SAR (measured) = 1.03 W/kg

0 dB = 1.03 W/kg = 0.13 dBW/kg

SAR Plots Plot 17#

Test Plot 18#: 4FSK_12.5kHz_158.0125MHz_Face Up

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: 4FSK; Frequency: 158.012 MHz; Duty Cycle: 1:2

Medium parameters used: f = 158.012 MHz; $\sigma = 0.765$ S/m; $\varepsilon_r = 52.73$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 158.012 MHz; Calibrated: 2019/9/25

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn471; Calibrated: 2018/12/3
- Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.56 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 43.72 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 1.46 W/kg; SAR(10 g) = 1.18 W/kg

Maximum value of SAR (measured) = 1.54 W/kg

0 dB = 1.54 W/kg = 1.88 dBW/kg

SAR Plots Plot 18#

Test Plot 19#: FM_12.5kHz_150.0625MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 150.063 MHz; Duty Cycle: 1:1

Medium parameters used: f = 150.063 MHz; $\sigma = 0.759$ S/m; $\varepsilon_r = 52.982$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 150.063 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 7.35 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 89.11 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 13.7 W/kg

SAR(1 g) = 6.85 W/kg; SAR(10 g) = 4.32 W/kg

Maximum value of SAR (measured) = 6.87 W/kg

0 dB = 6.87 W/kg = 8.37 dBW/kg

SAR Plots Plot 19#

Test Plot 20#: FM_12.5kHz_158.0125MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 158.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 158.012 MHz; $\sigma = 0.765$ S/m; $\varepsilon_r = 52.73$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 158.012 MHz; Calibrated: 2019/9/25

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn471; Calibrated: 2018/12/3
- Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 4.59 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 70.38 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 8.12 W/kg

SAR(1 g) = 4.35 W/kg; SAR(10 g) = 2.87 W/kg

Maximum value of SAR (measured) = 4.45 W/kg

0 dB = 4.45 W/kg = 6.48 dBW/kg

SAR Plots Plot 20#

Test Plot 21#: FM_12.5kHz_166.0125MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 166.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 166.012 MHz; $\sigma = 0.774$ S/m; $\varepsilon_r = 52.626$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 166.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.74 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 62.29 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 6.34 W/kg

SAR(1 g) = 3.55 W/kg; SAR(10 g) = 2.39 W/kg

Maximum value of SAR (measured) = 3.72 W/kg

0 dB = 3.72 W/kg = 5.71 dBW/kg

SAR Plots Plot 21#

Test Plot 22#: FM_12.5kHz_173.9875MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 173.988 MHz; Duty Cycle: 1:1

Medium parameters used: f = 173.988 MHz; $\sigma = 0.806 \text{ S/m}$; $\varepsilon_r = 51.933$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 173.988 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.43 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.06 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 8.98 W/kg

SAR(1 g) = 3.07 W/kg; SAR(10 g) = 1.69 W/kg

Maximum value of SAR (measured) = 3.02 W/kg

0 dB = 3.02 W/kg = 4.80 dBW/kg

SAR Plots Plot 22#

Test Plot 23#: FM_25kHz_150.0625MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 150.063 MHz; Duty Cycle: 1:1

Medium parameters used: f = 150.063 MHz; $\sigma = 0.759$ S/m; $\varepsilon_r = 52.982$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 150.063 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 6.96 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 90.65 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 14.0 W/kg

SAR(1 g) = 7.01 W/kg; SAR(10 g) = 4.41 W/kg

Maximum value of SAR (measured) = 7.15 W/kg

0 dB = 7.15 W/kg = 8.54 dBW/kg

SAR Plots Plot 23#

Test Plot 24#: FM_25kHz_158.0125MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 158.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 158.012 MHz; $\sigma = 0.765$ S/m; $\varepsilon_r = 52.73$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 158.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 4.48 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 73.69 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 7.38 W/kg

SAR(1 g) = 4.26 W/kg; SAR(10 g) = 2.89 W/kg

Maximum value of SAR (measured) = 4.47 W/kg

0 dB = 4.47 W/kg = 6.50 dBW/kg

SAR Plots Plot 24#

Test Plot 25#: FM_25kHz_166.0125MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 166.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 166.012 MHz; $\sigma = 0.774 \text{ S/m}$; $\varepsilon_r = 52.626$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 166.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 4.45 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 77.11 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 7.01 W/kg

SAR(1 g) = 4.08 W/kg; SAR(10 g) = 2.79 W/kg

Maximum value of SAR (measured) = 4.28 W/kg

0 dB = 4.28 W/kg = 6.31 dBW/kg

SAR Plots Plot 25#

Test Plot 26#: FM_25kHz_173.9875MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: FM; Frequency: 173.988 MHz; Duty Cycle: 1:1

Medium parameters used: f = 173.988 MHz; $\sigma = 0.806$ S/m; $\varepsilon_r = 51.933$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 173.988 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.95 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 68.31 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 7.49 W/kg

SAR(1 g) = 3.42 W/kg; SAR(10 g) = 2.11 W/kg

Maximum value of SAR (measured) = 3.54 W/kg

0 dB = 3.54 W/kg = 5.49 dBW/kg

SAR Plots Plot 26#

Test Plot 27#: 4FSK_12.5kHz_150.0625MHz_Body Back

DUT: Two way radio; Type: DP7000-1; Serial: 19092900220

Communication System: 4FSK; Frequency: 150.063 MHz; Duty Cycle: 1:2

Medium parameters used: f = 150.063 MHz; $\sigma = 0.759$ S/m; $\varepsilon_r = 52.982$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 150.063 MHz; Calibrated: 2019/9/25

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn471; Calibrated: 2018/12/3
- Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.41 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 59.87 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 5.60 W/kg

SAR(1 g) = 3.09 W/kg; SAR(10 g) = 2.04 W/kg

Maximum value of SAR (measured) = 3.33 W/kg

0 dB = 3.33 W/kg = 5.22 dBW/kg

SAR Plots Plot 27#

Test Plot 28#: FM_12.5kHz_143MHz_Face Up

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 143 MHz; Duty Cycle: 1:1

Medium parameters used: f = 143 MHz; $\sigma = 0.776$ S/m; $\varepsilon_r = 53.936$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 143 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.42 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 65.39 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 3.91 W/kg

SAR(1 g) = 3.17 W/kg; SAR(10 g) = 2.56 W/kg

Maximum value of SAR (measured) = 3.29 W/kg

0 dB = 3.29 W/kg = 5.17 dBW/kg

SAR Plots Plot 28#

Test Plot 29#: FM_25kHz_143MHz_Face Up

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 143 MHz; Duty Cycle: 1:1

Medium parameters used: f = 143 MHz; $\sigma = 0.776$ S/m; $\varepsilon_r = 53.936$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 143 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.22 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 61.80 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.92 W/kg

SAR(1 g) = 2.92 W/kg; SAR(10 g) = 2.3 W/kg

Maximum value of SAR (measured) = 3.03 W/kg

0 dB = 3.03 W/kg = 4.81 dBW/kg

SAR Plots Plot 29#

Test Plot 30#: 4FSK_12.5kHz_143MHz_Face Up

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: 4FSK; Frequency: 143 MHz; Duty Cycle: 1:2

Medium parameters used: f = 143 MHz; $\sigma = 0.776$ S/m; $\varepsilon_r = 53.936$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 143 MHz; Calibrated: 2019/9/25

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn471; Calibrated: 2018/12/3
- Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.50 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 39.35 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.92 W/kg

SAR(1 g) = 1.47 W/kg; SAR(10 g) = 1.20 W/kg

Maximum value of SAR (measured) = 1.57 W/kg

0 dB = 1.57 W/kg = 1.96 dBW/kg

SAR Plots Plot 30#

Test Plot 31#: FM_12.5kHz_136.0125MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 136.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 136.012 MHz; $\sigma = 0.743$ S/m; $\varepsilon_r = 54.354$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 136.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 11.8 W/kg

Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 102.4 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 26.0 W/kg

SAR(1 g) = 11.3 W/kg; SAR(10 g) = 6.58 W/kg

Maximum value of SAR (measured) = 11.5 W/kg

0 dB = 11.5 W/kg = 10.61 dBW/kg

SAR Plots Plot 31#

Test Plot 32#: FM_12.5kHz_143MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 143 MHz; Duty Cycle: 1:1

Medium parameters used: f = 143 MHz; $\sigma = 0.776$ S/m; $\varepsilon_r = 53.936$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 143 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.53 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 55.29 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 7.73 W/kg

SAR(1 g) = 3.48 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 3.51 W/kg

0 dB = 3.51 W/kg = 5.45 dBW/kg

SAR Plots Plot 32#

Test Plot 33#: FM_12.5kHz_149.9875MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 149.988 MHz; Duty Cycle: 1:1

Medium parameters used: f = 149.988 MHz; $\sigma = 0.762 \text{ S/m}$; $\varepsilon_r = 53.766$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 149.988 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.12 W/kg

Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 55.25 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 6.14 W/kg

SAR(1 g) = 3.04 W/kg; SAR(10 g) = 1.92 W/kg

Maximum value of SAR (measured) = 3.11 W/kg

0 dB = 3.11 W/kg = 4.93 dBW/kg

SAR Plots Plot 33#

Test Plot 34#: FM_25kHz_136.0125MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 136.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 136.012 MHz; $\sigma = 0.743$ S/m; $\varepsilon_r = 54.354$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 136.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 11.2 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 82.09 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 11.4 W/kg; SAR(10 g) = 6.54 W/kg

Maximum value of SAR (measured) = 11.7 W/kg

0 dB = 11.7 W/kg = 10.68 dBW/kg

SAR Plots Plot 34#

Test Plot 35#: FM_25kHz_143MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 143 MHz; Duty Cycle: 1:1

Medium parameters used: f = 143 MHz; $\sigma = 0.776$ S/m; $\varepsilon_r = 53.936$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 143 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.82 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 49.47 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 8.08 W/kg

SAR(1 g) = 3.67 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 3.77 W/kg

0 dB = 3.77 W/kg = 5.76 dBW/kg

SAR Plots Plot 35#

Test Plot 36#: FM_25kHz_149.9875MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 149.988 MHz; Duty Cycle: 1:1

Medium parameters used: f = 149.988 MHz; $\sigma = 0.762 \text{ S/m}$; $\varepsilon_r = 53.766$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 149.988 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.46 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 47.56 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 5.78 W/kg

SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.45 W/kg

Maximum value of SAR (measured) = 2.41 W/kg

0 dB = 2.41 W/kg = 3.82 dBW/kg

SAR Plots Plot 36#

Test Plot 37#: 4FSK_12.5kHz_136.0125MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: 4FSK; Frequency: 136.012 MHz; Duty Cycle: 1:2

Medium parameters used: f = 136.012 MHz; $\sigma = 0.743$ S/m; $\varepsilon_r = 54.354$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 136.012 MHz; Calibrated: 2019/9/25

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn471; Calibrated: 2018/12/3
- Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.83 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.68 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 8.10 W/kg

SAR(1 g) = 3.56 W/kg; SAR(10 g) = 2.21 W/kg

Maximum value of SAR (measured) = 3.55 W/kg

0 dB = 3.55 W/kg = 5.50 dBW/kg

SAR Plots Plot 37#

Test Plot 38#: FM_12.5kHz_158.0125MHz_Face Up

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 158.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 158.012 MHz; $\sigma = 0.791$ S/m; $\varepsilon_r = 53.241$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 158.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.39 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 63.25 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 3.95 W/kg

SAR(1 g) = 3.19 W/kg; SAR(10 g) = 2.57 W/kg

Maximum value of SAR (measured) = 3.30 W/kg

0 dB = 3.30 W/kg = 5.19 dBW/kg

SAR Plots Plot 38#

Test Plot 39#: FM_25kHz_158.0125MHz_Face Up

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 158.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 158.012 MHz; $\sigma = 0.791$ S/m; $\varepsilon_r = 53.241$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 158.012 MHz; Calibrated: 2019/9/25

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn471; Calibrated: 2018/12/3
- Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.34 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 63.48 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 3.90 W/kg

SAR(1 g) = 3.14 W/kg; SAR(10 g) = 2.53 W/kg

Maximum value of SAR (measured) = 3.25 W/kg

0 dB = 3.25 W/kg = 5.12 dBW/kg

SAR Plots Plot 39#

Test Plot 40#: 4FSK_12.5kHz_158.0125MHz_Face Up

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: 4FSK; Frequency: 158.012 MHz; Duty Cycle: 1:2

Medium parameters used: f = 158.012 MHz; $\sigma = 0.791$ S/m; $\varepsilon_r = 53.241$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 158.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.91 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 46.86 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 2.33 W/kg

SAR(1 g) = 1.8 W/kg; SAR(10 g) = 1.46 W/kg

Maximum value of SAR (measured) = 1.92 W/kg

0 dB = 1.92 W/kg = 2.83 dBW/kg

SAR Plots Plot 40#

Test Plot 41#: FM_12.5kHz_150.0625MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 150.063 MHz; Duty Cycle: 1:1

Medium parameters used: f = 150.063 MHz; $\sigma = 0.786$ S/m; $\varepsilon_r = 53.498$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 150.063 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 9.61 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 101.4 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 8.75 W/kg; SAR(10 g) = 5.56 W/kg

Maximum value of SAR (measured) = 9.05 W/kg

0 dB = 9.05 W/kg = 9.57 dBW/kg

SAR Plots Plot 41#

Test Plot 42#: FM_12.5kHz_158.0125MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 158.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 158.012 MHz; $\sigma = 0.791 \text{ S/m}$; $\varepsilon_r = 53.241$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 158.012 MHz; Calibrated: 2019/9/25

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn471; Calibrated: 2018/12/3
- Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.72 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 62.00 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 6.48 W/kg

SAR(1 g) = 3.61 W/kg; SAR(10 g) = 2.41 W/kg

Maximum value of SAR (measured) = 3.76 W/kg

0 dB = 3.76 W/kg = 5.75 dBW/kg

SAR Plots Plot 42#

Test Plot 43#: FM_12.5kHz_166.0125MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 166.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 166.012 MHz; $\sigma = 0.802 \text{ S/m}$; $\varepsilon_r = 53.066$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 166.012 MHz; Calibrated: 2019/9/25

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn471; Calibrated: 2018/12/3
- Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.00 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 55.13 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 4.96 W/kg

SAR(1 g) = 2.85 W/kg; SAR(10 g) = 1.94 W/kg

Maximum value of SAR (measured) = 2.98 W/kg

0 dB = 2.98 W/kg = 4.74 dBW/kg

SAR Plots Plot 43#

Test Plot 44#: FM_12.5kHz_173.9875MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 173.988 MHz; Duty Cycle: 1:1

Medium parameters used: f = 173.988 MHz; $\sigma = 0.813$ S/m; $\varepsilon_r = 52.853$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 173.988 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.99 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.56 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 5.29 W/kg

SAR(1 g) = 2.33 W/kg; SAR(10 g) = 1.44 W/kg

Maximum value of SAR (measured) = 2.38 W/kg

0 dB = 2.38 W/kg = 3.77 dBW/kg

SAR Plots Plot 44#

Test Plot 45#: FM_25kHz_150.0625MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 150.063 MHz; Duty Cycle: 1:1

Medium parameters used: f = 150.063 MHz; $\sigma = 0.786$ S/m; $\varepsilon_r = 53.498$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 150.063 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 8.74 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 97.65 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 15.6 W/kg

SAR(1 g) = 8.1 W/kg; SAR(10 g) = 5.19 W/kg

Maximum value of SAR (measured) = 8.38 W/kg

0 dB = 8.38 W/kg = 9.23 dBW/kg

SAR Plots Plot 45#

Test Plot 46#: FM_25kHz_158.0125MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 158.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 158.012 MHz; $\sigma = 0.791 \text{ S/m}$; $\varepsilon_r = 53.241$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 158.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 4.00 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 66.85 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 6.67 W/kg

SAR(1 g) = 3.8 W/kg; SAR(10 g) = 2.56 W/kg

Maximum value of SAR (measured) = 3.98 W/kg

0 dB = 3.98 W/kg = 6.00 dBW/kg

SAR Plots Plot 46#

Test Plot 47#: FM_25kHz_166.0125MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 166.012 MHz; Duty Cycle: 1:1

Medium parameters used: f = 166.012 MHz; $\sigma = 0.802 \text{ S/m}$; $\varepsilon_r = 53.066$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 166.012 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.38 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 63.12 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 5.43 W/kg

SAR(1 g) = 3.08 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 3.22 W/kg

0 dB = 3.22 W/kg = 5.08 dBW/kg

SAR Plots Plot 47#

Test Plot 48#: FM_25kHz_173.9875MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: FM; Frequency: 173.988 MHz; Duty Cycle: 1:1

Medium parameters used: f = 173.988 MHz; $\sigma = 0.813$ S/m; $\varepsilon_r = 52.853$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 173.988 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.38 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 44.83 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 4.48 W/kg

SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.38 W/kg

Maximum value of SAR (measured) = 2.23 W/kg

0 dB = 2.23 W/kg = 3.48 dBW/kg

SAR Plots Plot 48#

Test Plot 49#: 4FSK_12.5kHz_150.0625MHz_Body Back

DUT: Two way radio; Type: DP6000-1; Serial: 19092900221

Communication System: 4FSK; Frequency: 150.063 MHz; Duty Cycle: 1:2

Medium parameters used: f = 150.063 MHz; $\sigma = 0.786$ S/m; $\varepsilon_r = 53.498$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV2 - SN3019; ConvF(7.59, 7.59, 7.59) @ 150.063 MHz; Calibrated: 2019/9/25

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn471; Calibrated: 2018/12/3

• Phantom: ELI v8.0; Type: QDOVA002AA; Serial: TP:2051

• Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (81x171x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.63 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 58.09 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 7.02 W/kg

SAR(1 g) = 3.62 W/kg; SAR(10 g) = 2.37 W/kg

Maximum value of SAR (measured) = 3.64 W/kg

0 dB = 3.64 W/kg = 5.61 dBW/kg

SAR Plots Plot 49#