Differentiable Neural Computers

Hybrid Computing using a neural network with dynamic external memory (Graves et al. 2016)

Konstantinos Kogkalidis

May 28, 2018

Logic and Computation

Differentiable Neural Computer

Differentiable Neural Computer

A recurrent neural network coupled with an external memory.

• Extension of NTMs

Differentiable Neural Computer

- Extension of NTMs
 - End-to-end differentiable

Differentiable Neural Computer

- Extension of NTMs
 - End-to-end differentiable
 - Auto-associative memory

Differentiable Neural Computer

- Extension of NTMs
 - End-to-end differentiable
 - Auto-associative memory
 - Turing complete

Differentiable Neural Computer

- Extension of NTMs
 - End-to-end differentiable
 - Auto-associative memory
 - Turing complete
 - + Memory attention mechanisms

Differentiable Neural Computer

- Extension of NTMs
 - End-to-end differentiable
 - Auto-associative memory
 - Turing complete
 - + Memory attention mechanisms
- Mimic mammalian biological memory
- Employ classical concepts of computation

Introduction: Motivation

Von Neumann architecture

Introduction: Motivation

Simple Neural Net

$$y = g(h), h = f(x)$$

No memory

Introduction: Motivation

Simple Neural Net

$$y = g(h), h = f(x)$$
No memory

Recurrent Neural Net

$$h(t) = f([x(t); h(t-1)])$$

Finite, non-contiguous memory

Allow an RNN to act as a controller to interact with a memory matrix of N (arbitrary many) addresses.

Allow an RNN to act as a controller to interact with a memory matrix of N (arbitrary many) addresses.

1. Content Lookup

- Attention over memory defined by weightings $W \in \mathbb{R}^N$
- Compare controller output with memory objects (auto-associative memory)
- Allow partial matches (pattern completion)

Allow an RNN to act as a controller to interact with a memory matrix of N (arbitrary many) addresses.

- 1. Content Lookup
 - Attention over memory defined by weightings $W \in \mathbb{R}^N$
 - Compare controller output with memory objects (auto-associative memory)
 - Allow partial matches (pattern completion)
- 2. Sequential Retrieval
 - Fill $L \in \{0,1\}^{2N}$ indexing temporal transitions
 - Shift operations defined by LW, L^TW

Allow an RNN to act as a controller to interact with a memory matrix of N (arbitrary many) addresses.

1. Content Lookup

- Attention over memory defined by weightings $W \in \mathbb{R}^{N}$
- Compare controller output with memory objects (auto-associative memory)
- Allow partial matches (pattern completion)

2. Sequential Retrieval

- Fill $L \in \{0,1\}^{2N}$ indexing temporal transitions
- Shift operations defined by LW, L^TW

3. Dynamic Allocation

- Mark memory locations with $\{0,1\}$ to signal usage
- Manipulate signals during R/W operations to enable reallocation
- Generalization to unbounded memory

Controller

A deep long-short term memory unit receiving

$$\boldsymbol{\mathcal{X}}_t = [\boldsymbol{x}_t; \boldsymbol{r}_{t-1}^1; \dots \boldsymbol{r}_{t-1}^R]$$

and producing

a