

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ **ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ**КАФЕДРА **КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)**

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 ИНФОРМАТИКА И ВЫЧ. ТЕХНИКА

ОТЧЕТ

по лабораторной работе № 1

Название: <u>Программирование портов ввода-вывода</u> <u>микроконтроллеров AVR</u>

Дисциплина: Микропроцессорные системы

Студент	ИУ6-62Б		Н.А. Жаров
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Б.И. Бычков
		(Подпись, дата)	(И.О. Фамилия)

Вариант 8

Цель работы:

- изучение системы команд микроконтроллеров AVR и приемов программирования на языке AVR Ассемблер;
- получение навыков отладки программ в среде отладки AVR Studio 4 и VMLab;

Задание 1. Проверить работу программы в шаговом режиме работы с помощью симулятора AVR Studio 4. Убедившись в правильной работе программы, измените параметры циклов задержки, чтобы длительность задержки составила 0,5с. Проверьте время задержки с помощью симулятора.

```
; *** Задержка (3 вложенных цикла) ***
ldi r19, 10
d0: ldi r17,255
d1: ldi r18,255
d2: dec r1
brne d2
dec r17
brne d1
dec r1
brne d0
```

Листинг 1 — Исходный код базовой программы с задержкой 0,5 с

б

Рисунок 1 — Выполнение программы: а - до первой точки останова, б: - до второй точки останова

Таком образом,

 $489611.25~{
m MKc}-3.75~{
m MKc}=~489~607$,5 мкс $\approx 0.5*10^6~{
m MKc}=0.5~{
m c}$

Отсюда можно сделать вывод, что задание выполнено верно, и достигнута требуемая длительность задержки в 0.5 с. Также выполнена проверка работы программы на плате STK500.

Рисунок 2 — Схема алгоритма базовой программы

Задание 2. Проверить работу программы в среде VMLab. Внести в проект директивы, обеспечивающие контроль работы с помощью логического анализатора (Scope), указав все выходы порта PB. Настроить Scope так, чтобы увидеть полный цикл осциллограммы.

Выполнение задания 2:

Рисунок 3 — Замер времени задержки на осциллограмме

Рисунок 4 — Полный цикл осциллограммы исходной программы

Задание 3. По заданию своего варианта изменить программу для переключения светодиодов в заданной последовательности. Отладив программу с помощью симулятора AVR Studio, загрузить ее в микроконтроллер и проверить ее работу на плате STK500.

Таблица 1 — Условие задания по вариантам

No	Последовательность переключения	Порт	Время
	светодиода на линейке (включенного	индикации	переключения,
	светодиода - ВКЛ, выключенного –		мс
	ВЫКЛ)		
1	Непрерывно, уменьшая количество ВКЛ	PB	300
	светодиодов (начальное состояние – все		
	ВКЛ),		
	начиная с 7 разряда, затем увеличивая в		
	обратном		
	направлении		

```
·*****<del>*****************</del>
*****
;Программа 1.1 для микроконтроллеров АТх8515:
;переключение светодиодов (СД) при нажатии на кнопку START (SW0),
;после нажатия кнопки STOP (SW1) переключение прекращается и
;возобновляется с места остановки при повторном нажатии на кнопку
START
*****
;.include "8515def.inc" ;файл определений для AT90S8515
.include "m8515def.inc" ;файл определений для ATmega8515
.def temp = r16
                   ;временный регистр
.def reg_led = r20
                   ;регистр состояния светодиодов
.def left_wall = r21
                   ;левый край
.def right_wall = r22
                   ;правый край
.equ START = 0
                       ;0-ой вывод порта
```

.equ STOP = 1 ;1-ый вывод порта .org \$000 rjmp init ;***Инициализация*** INIT: ldi reg_led,0x80 ;сброс reg_led.0 для включения LED0 :00000000 ldi left_wall,0x00 ldi right_wall,0xFF ;11111111 :C=0sec ;Т=0 – флаг направления clt ;регистр r20 который в темп - в 11111111 ser temp out DDRB, temp ;инициализация п орта РВ на вывод ;регистр r20 который в темп - в 00000000 clr temp out PORTB, temp ;зажечь СД ;инициализация порта PD на ввод out DDRD,temp ldi temp,0x03 ;включение 'подтягивающих' out PORTD, temp резисторов порта РD (0-й, 1-й разряды) **WAITSTART:** ;ожидание sbic PIND,START нажатия rjmp WAITSTART кнопки START LOOP: out PORTB,reg_led; вывод на индикаторы ;***Задержка (два вложенных цикла)*** ldi r17,100 d1: ldi r18,101 d2: ldi r19,39 d3: dec r19

Листинг 2 — Исходный код разработанной программы

Рисунок 5 — Выполнение программы до первой точки останова

Рисунок 6 — Выполнение программы до второй точки останова Найдем разность:

 $303079 \text{ мкс} - 4 \text{ мкс} \approx 300 \text{ мс.}$

Таким образом, время задержки составляет 300 мс.

Рисунок 7 — Схема алгоритма разработанной программы

Задание 4. Проверить работу подготовленной программы в VMLab. Запротоколировать работу программы в виде «скриншота» осциллограммы.

Рисунок 9 — Полный цикл осциллограммы разработанной программы

Вывод

В ходе выполнения данной лабораторной работы были получены базовые навыки:

- программирования микропроцессора ATmega8515 на ассемблере;
- отладки программ в среде отладки AVR Studio 4 и VMLab;
- работы с платой STK500.

Была исследована работа базовой программы переключения светодиодов в обоих средах отладки и на реальной плате, достигнута и зафиксирована задержка в 0.5 с. Разработана программа согласно варианту, исследована ее работа в обоих средах и на плате, достигнута и зафиксирована задержка в 200 мс.

Разработаны схемы алгоритмов для обеих программ.

Построены осциллограммы в VMLab, иллюстрирующую работу порта управления светодиодами для обеих программ.