In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\ma

Out[2]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	TCH	TOL
0	2011-11-01 01:00:00	NaN	1.0	NaN	NaN	154.0	84.0	NaN	NaN	NaN	6.0	NaN	NaN
1	2011-11-01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8.7
2	2011-11-01 01:00:00	2.9	NaN	3.8	NaN	96.0	99.0	NaN	NaN	NaN	NaN	NaN	7.2
3	2011-11-01 01:00:00	NaN	0.6	NaN	NaN	60.0	83.0	2.0	NaN	NaN	NaN	NaN	NaN
4	2011-11-01 01:00:00	NaN	NaN	NaN	NaN	44.0	62.0	3.0	NaN	NaN	3.0	NaN	NaN
209923	2011-09-01 00:00:00	NaN	0.2	NaN	NaN	5.0	19.0	44.0	NaN	NaN	NaN	NaN	NaN
209924	2011-09-01 00:00:00	NaN	0.1	NaN	NaN	6.0	29.0	NaN	11.0	NaN	7.0	NaN	NaN
209925	2011-09-01 00:00:00	NaN	NaN	NaN	0.23	1.0	21.0	28.0	NaN	NaN	NaN	1.44	NaN
209926	2011-09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	15.0	48.0	NaN	NaN	NaN	NaN	NaN
209927	2011-09-01 00:00:00	NaN	NaN	NaN	NaN	4.0	33.0	38.0	13.0	NaN	NaN	NaN	NaN

209928 rows × 14 columns

In [3]:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 209928 entries, 0 to 209927 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype		
0	date	209928 non-null	object		
1	BEN	51393 non-null	float64		
2	CO	87127 non-null	float64		
3	EBE	51350 non-null	float64		
4	NMHC	43517 non-null	float64		
5	NO	208954 non-null	float64		
6	NO_2	208973 non-null	float64		
7	0_3	122049 non-null	float64		
8	PM10	103743 non-null	float64		
9	PM25	51079 non-null	float64		
10	S0_2	87131 non-null	float64		
11	TCH	43519 non-null	float64		
12	TOL	51175 non-null	float64		
13	station	209928 non-null	int64		
dtype	es: float	64(12), int64(1),	object(1		

utypes: +loat64(12), int64(1), object(1) memory usage: 22.4+ MB

In [4]: b=a.fillna(value=226)

Out[4]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн
0	2011-11-01 01:00:00	226.0	1.0	226.0	226.00	154.0	84.0	226.0	226.0	226.0	6.0	226.00
1	2011-11-01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54
2	2011-11-01 01:00:00	2.9	226.0	3.8	226.00	96.0	99.0	226.0	226.0	226.0	226.0	226.00
3	2011-11-01 01:00:00	226.0	0.6	226.0	226.00	60.0	83.0	2.0	226.0	226.0	226.0	226.00
4	2011-11-01 01:00:00	226.0	226.0	226.0	226.00	44.0	62.0	3.0	226.0	226.0	3.0	226.00
209923	2011-09-01 00:00:00	226.0	0.2	226.0	226.00	5.0	19.0	44.0	226.0	226.0	226.0	226.00
209924	2011-09-01 00:00:00	226.0	0.1	226.0	226.00	6.0	29.0	226.0	11.0	226.0	7.0	226.00
209925	2011-09-01 00:00:00	226.0	226.0	226.0	0.23	1.0	21.0	28.0	226.0	226.0	226.0	1.44
209926	2011-09-01 00:00:00	226.0	226.0	226.0	226.00	3.0	15.0	48.0	226.0	226.0	226.0	226.00
209927	2011-09-01 00:00:00	226.0	226.0	226.0	226.00	4.0	33.0	38.0	13.0	226.0	226.0	226.00

209928 rows × 14 columns

In [6]: c=b.head(11)

Out[6]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	0_3	PM10	PM25	SO_2	TCH	TC
0	2011-11-01 01:00:00	226.0	1.0	226.0	226.00	154.0	84.0	226.0	226.0	226.0	6.0	226.00	226
1	2011-11-01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8
2	2011-11-01 01:00:00	2.9	226.0	3.8	226.00	96.0	99.0	226.0	226.0	226.0	226.0	226.00	7
3	2011-11-01 01:00:00	226.0	0.6	226.0	226.00	60.0	83.0	2.0	226.0	226.0	226.0	226.00	226
4	2011-11-01 01:00:00	226.0	226.0	226.0	226.00	44.0	62.0	3.0	226.0	226.0	3.0	226.00	226
5	2011-11-01 01:00:00	0.5	0.8	0.3	226.00	102.0	75.0	2.0	35.0	226.0	5.0	226.00	4
6	2011-11-01 01:00:00	0.7	0.3	1.1	0.16	17.0	66.0	7.0	22.0	16.0	2.0	1.36	1
7	2011-11-01 01:00:00	226.0	226.0	226.0	0.36	83.0	78.0	6.0	226.0	226.0	226.0	1.80	226
8	2011-11-01 01:00:00	226.0	0.7	226.0	226.00	80.0	91.0	5.0	226.0	226.0	8.0	226.00	226
9	2011-11-01 01:00:00	226.0	0.6	226.0	226.00	63.0	71.0	226.0	33.0	226.0	6.0	226.00	226
10	2011-11-01 01:00:00	0.3	226.0	1.4	226.00	77.0	81.0	226.0	41.0	23.0	5.0	226.00	6

In [16]: d=c[['BEN','CO','EBE','NMHC','NO_2','O_3']]

Out[16]:

	BEN	CO	EBE	NMHC	NO_2	O_3
0	226.0	1.0	226.0	226.00	84.0	226.0
1	2.5	0.4	3.5	0.26	92.0	3.0
2	2.9	226.0	3.8	226.00	99.0	226.0
3	226.0	0.6	226.0	226.00	83.0	2.0
4	226.0	226.0	226.0	226.00	62.0	3.0
5	0.5	8.0	0.3	226.00	75.0	2.0
6	0.7	0.3	1.1	0.16	66.0	7.0
7	226.0	226.0	226.0	0.36	78.0	6.0
8	226.0	0.7	226.0	226.00	91.0	5.0
9	226.0	0.6	226.0	226.00	71.0	226.0
10	0.3	226.0	1.4	226.00	81.0	226.0

In [17]:

Out[17]: <AxesSubplot:>


```
In [24]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[24]:
                   Co-efficient
            BEN -2.292249e-17
             CO 1.000000e+00
            EBE -1.529799e-16
           NMHC -6.182170e-16
           NO_2 -4.434283e-16
In [25]: prediction=lr.predict(x_test)
Out[25]: <matplotlib.collections.PathCollection at 0x24c9d1ba580>
           200
           150
           100
            50
                         50
                                 100
                                           150
                                                    200
In [26]:
          1.0
In [27]:
In [28]: rr=Ridge(alpha=10)
Out[28]: Ridge(alpha=10)
In [29]:
Out[29]: 0.9999983133518464
In [30]: la=Lasso(alpha=10)
Out[30]: Lasso(alpha=10)
In [31]: ___
Out[31]: 0.9999988983354677
```

Out[32]:											a1=b.head(6000)										
date B	date BEN CO EBE NMHC NO NO_2 O_3 PM10 PM25 SO_2 TCH																				
0 2011-11-01 220	.0 1.0	226.0	226.00	154.0	84.0	226.0	226.0	226.0	6.0	226.00	2										
1 2011-11-01 01:00:00	.5 0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54											
2 2011-11-01 01:00:00	.9 226.0	3.8	226.00	96.0	99.0	226.0	226.0	226.0	226.0	226.00											
3 2011-11-01 220	.0 0.6	226.0	226.00	60.0	83.0	2.0	226.0	226.0	226.0	226.00	2										
4 2011-11-01 01:00:00 220	.0 226.0	226.0	226.00	44.0	62.0	3.0	226.0	226.0	3.0	226.00	2										
5995 2011-11-11 10:00:00 220	.0 0.6	226.0	226.00	133.0	81.0	8.0	226.0	226.0	226.0	226.00	2										
5996 2011-11-11 10:00:00 220	.0 0.6	226.0	226.00	112.0	86.0	226.0	41.0	226.0	8.0	226.00	2										
5997 2011-11-11 10:00:00 220	.0 226.0	226.0	0.39	34.0	21.0	2.0	226.0	226.0	226.0	1.99	2										
5998 2011-11-11 10:00:00 220	.0 226.0	226.0	226.00	88.0	59.0	9.0	226.0	226.0	226.0	226.00	2										
5999 2011-11-11 10:00:00 220	.0 226.0	226.0	226.00	116.0	81.0	3.0	44.0	226.0	226.0	226.00	2										
6000 rows × 14 colun	6000 rows × 14 columns																				
In [39]: e=a1[['BEN', 'CO'	'EBE',	'NMHC'	', 'NO_	2','0	_3',																
In [40]: f=e.iloc[:,0:14]																					
In [41]:	· · · ·		(6)																		
In [42]: logr=LogisticRegr	ession(m	nax_ite	er=1000	0)																	
Out[42]: LogisticRegressio																					
In [43]: from sklearn.mode	_select	ion in	mport t	rain_t	test_s	plit															
In [49]:		22 22	44	-																	
<pre>In [50]: prediction=logr.p</pre>	edict(i	.)																			
[28079050]																					

8 of 13

```
In [51]: -
Out[51]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
              28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
              28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
              28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
             dtype=int64)
In [52]:
Out[52]: 0.0
In [53]:
Out[53]: 0.0
In [54]:
Out[54]: 0.98277777777778
In [55]: | from sklearn.linear_model import ElasticNet
        en=ElasticNet()
Out[55]: ElasticNet()
In [56]:
        [-0.18268316 0.99988474 0.18344829 0. -0.
                                                             ]
In [57]:
        -0.17135863671397544
In [58]: prediction=en.predict(x_test)
        0.9999989342451869
In [59]: | from sklearn.ensemble import RandomForestClassifier
        rfc=RandomForestClassifier()
Out[59]: RandomForestClassifier()
In [60]: parameters={'max_depth':[1,2,3,4,5],
         'min_samples_leaf':[5,10,15,20,25],
         'n_estimators':[10,20,30,40,50]
```

```
In [64]: from sklearn.tree import plot tree
                      plt.figure(figsize=(80,50))
Out[64]: [Text(2271.8571428571427, 2446.2, 'X[10] <= -0.043\ngini = 0.958\nsamples = 2
                      664\nvalue = [160, 168, 160, 192, 167, 159, 200, 178, 198, 194\n183, 175, 19
                      6, 163, 186, 186, 189, 162, 165, 158\n181, 169, 169, 142]'),
                        Text(1275.4285714285713, 1902.6, 'X[9] <= -0.476 \setminus initial = 0.899 \setminus initial = 0.8
                      31\nvalue = [160, 168, 160, 192, 167, 159, 200, 178, 198, 194\n0, 0, 0, 0, 0,
                      0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                         Text(637.7142857142857, \ 1359.0, \ 'X[3] <= -0.72 \\ lini = 0.747 \\ lnsamples = 436 \\ lnsamples = 43
                      nvalue = [0, 163, 157, 0, 0, 159, 199, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0,
                      0, 0, 0, 0]'),
                        amples = 227\nvalue = [0, 163, 0, 0, 0, 0, 199, 0, 0, 0, 0, 0, 0\n0, 0, 0,
                      0, 0, 0, 0, 0, 0, 0]'),
                        Text(159.42857142857142, 271.79999999997, 'gini = 0.0\nsamples = 120\nvalu
                      Text(478.2857142857142, 271.799999999997, 'gini = 0.012\nsamples = 107\nval
                      0]'),
                        Text(956.5714285714284, 815.3999999999999, 'X[7] <= -0.153  ngini = 0.5  nsamp
                      les = 209\nvalue = [0, 0, 157, 0, 0, 159, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0,
                      0, 0, 0, 0, 0, 0]'),
                        Text(797.1428571428571, 271.799999999997, 'gini = 0.0\nsamples = 107\nvalue
                      = [0, 0, 0, 0, 0, 159, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                      0]'),
                        57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                        Text(1913.1428571428569, 1359.0, 'X[8] <= -0.707 \setminus gini = 0.835 \setminus gini = 69
                      5\nvalue = [160, 5, 3, 192, 167, 0, 1, 178, 198, 194, 0, 0\n0, 0, 0, 0, 0, 0,
                      0, 0, 0, 0, 0, 0]'),
                        amples = 117\nvalue = [0, 5, 0, 0, 0, 0, 1, 178, 0, 0, 0, 0, 0, 0\n0, 0, 0,
                      0, 0, 0, 0, 0, 0, 0]'),
                        Text(1434.8571428571427, 271.79999999997, 'gini = 0.15\nsamples = 41\nvalu
                      0]'),
                         Text(1753.7142857142856, 271.799999999997, 'gini = 0.016\nsamples = 76\nval
                      Text(2232.0, 815.39999999999, 'X[5] <= 0.35\ngini = 0.8\nsamples = 578\nva
                      lue = [160, 0, 3, 192, 167, 0, 0, 0, 198, 194, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0,
                      0, 0, 0, 0]'),
                        Text(2072.5714285714284, 271.79999999997, 'gini = 0.665\nsamples = 356\nva
                      0, 0, 0]'),
                        Text(2391.428571428571, 271.7999999999997, 'gini = 0.504 \nsamples = 222 \nval
                      0, 0]'),
                        Text(3268.285714285714, 1902.6, 'X[7] <= -0.121 \setminus gini = 0.928 \setminus gini = 153
                      3\nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 183, 175, 196\n163, 186, 186, 189,
                      162, 165, 158, 181, 169, 169\n142]'),
                        Text(2710.285714285714, 1359.0, 'X[10] <= 0.071\ngini = 0.666\nsamples = 33
```

81, 0, 0, 0]'),

7\nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 183, 0, 196, 0\n0, 0, 0, 0, 0, 1

 $Text(3826.2857142857138, 1359.0, 'X[5] <= 0.409 \\ ngini = 0.909 \\ nsamples = 119 \\ 6 \\ nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 175, 0, 163 \\ n186, 186, 189, 162, 165, 158, 0, 169, 169, 142]'),$

Text(3347.99999999995, 271.79999999997, 'gini = 0.5\nsamples = 229\nvalu e = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 175, 0, 0\n0, 186, 0, 0, 0, 0, 0, 0, 0, 0]'),

From this observation I had observe that the LASSO is a highest accuracy of 0.9999988983354677

In []: