	What You Will Need To Know For This Lab: • Eigendecomposition • Singular Value Decomposition • Principal Component Analysis Preamble (Don't change this): *pylab inline import numpy as np from sklearn import neighbors
?]:	enable_interactive=False # If you want to rotate plots, set this to True. # When submitting your notebook, enable_interactive=False and run the whole notebook. # The interactive stuff can be a bit glitchy, so if you're having trouble, turn them off. if enable_interactive: # These packages allow us to rotate plots and what not. from IPython.display import display from IPython.html.widgets import interact Problem 1: Visualizing Principal Components (50 points)
33]:	In this problem, you will be implementing PCA, visualizing the principal components and using it to perform dimensionality reduction. Do not use a pre-written implementation of PCA for this problem (e.g. sklearn.decomposition.PCA). You should assume that the input of has been appropriately pre-processed to have zero-mean features. # We will generate some data. numpy.random.seed(seed=2232017) true_cov = np.array([[1,.5,.2],[.5,1,.3],[.2,.3,1]]) #This is the true covariance matrix # of the data. Do not use it in your code! data=(np.random.randn(1000,3)).dot(np.linalg.cholesky(true_cov).T)
1]:	First, we visualize the data using a 3D scatterplot. Our data is stored in a variable called data where each row is a feature vector (with three features). fig = plt.figure() ax = Axes3D(fig) ax.scatter(data[:,0],data[:,1],data[:,2]) if enable_interactive: @interact(elev=(-90, 90), azim=(0, 360)) def view(elev, azim): ax.view_init(elev, azim) display(ax.figure)
	3 2 1 0 -1 -2 -3
	Write a function which implements PCA via the eigendecomposition. (10 points) You will be given as input: • A \$(N,d)\$ numpy array of data (with each row as a feature vector)
	Your function should return a tuple consisting of the PCA transformation matrix (which is \$(d,d)\$), and a vector consisting of the amount variance explained in the data by each PCA feature. Note that the PCA features are ordered in decreasing amount of variance explained, by convention. Hints: The function numpy.linalg.eigh will be useful. Note that it returns its eigenvalues in ascending order. numpy.fliplr or similar may be as well. You can calculate the covariance matrix of the data by multiplying the data matrix with its transpose in the appropriate order, and so it. Do not use numpy.cov we are assuming the data has zero mean beforehand, so the number of degrees of freedom is different (so
5]:	<pre>the covariance estimate knows the mean in our case). def pcaeig(data): #Put your code here cov = (1/data.shape[0])*(data.T).dot(data) eigen_val, eigen_vect = np.linalg.eigh(cov) eigen_vect = np.fliplr(eigen_vect).T eigen_val = eigen_val[::-1] return eigen_val, eigen_vect</pre>
5]:	Now, run PCA on your data. Store your PCA transformation in a variable called w, and the amount of variance explained by each PCA feature in a variable called s. Print out on each line the principal components (i.e. the rows of w) along with the corresponding amount variance explained. (5 points) # Put your code here s, w = pcaeig(data) print("PCA Transformation: \n {} \n".format(w)) print("Variance: \n {}".format(s)) PCA Transformation: [[-0.58522166 -0.68258448 -0.43771457] [-0.43983688 -0.18627811 0.87854652]
	[-0.68121886 0.70666746 -0.19121184]] Variance: [1.64258547 0.81658979 0.48669754] We can visualize the principal components on top of our data. The first principal component is in red, and captures the most variance. second principal component is in green, while the last principal component is in yellow. We generated our data from am <i>elliptical distribution</i> , so it should be easy to visualize these components as the axes of the data (which looks like an ellipsoid).
7]:	<pre>figb = plt.figure() axb = Axes3D(figb) axb.scatter(data[:,0],data[:,1],data[:,2],alpha=0.1) c=['r-','g-','y-'] for var, pc,color in zip(s, W,c): axb.plot([0, 2*var*pc[0]], [0, 2*var*pc[1]], [0, 2*var*pc[2]], color, lw=2) if enable_interactive: @interact(elev=(-90, 90), azim=(0, 360)) def view(elev, azim): axb.view_init(elev, azim) display(axb.figure)</pre>
	3 2 1 0 -1 -2 -3
	If done correctly, the red line should be longer than the green line which should be longer than the yellow line. Now, you will implement functions to generate PCA features. Write a function which implements dimension reduction via PCA. It takes in three inputs: • A \$(N,d)\$ numpy array, data, with each row as a feature vector
[8]:	 A \$(d,d)\$ numpy array, W, the PCA transformation matrix (e.g. generated from pcaeig or pcasvd) A number k, which is the number of PCA features to retain It should return a \$(N,k)\$ numpy array, where the \$i\$-th row contains the PCA features corresponding to the \$i\$-th input feature vector points) def pcadimreduce (data, W, k):
	feat [n] = w.dot (data[n]) return feat Write a function which reconstructs the original features from the PCA features. It takes in three inputs: • A \$(N,k)\$ numpy array, pcadata, with each row as a PCA feature vector (e.g. generated from pcadimreduce) • A \$(d,d)\$ numpy array, W, the PCA transformation matrix (e.g. generated from pcaeig or pcasvd) • A number k, which is the number of PCA features It should return a \$(N,d)\$ numpy array, where the \$i\$-th row contains the reconstruction of the original \$i\$-th input feature vector (in data to the content of the original \$i\$-th input feature vector (in data to the content of the original \$i\$-th input feature vector (in data to the content of the original \$i\$-th input feature vector (in data to the content of the original \$i\$-th input feature vector (in data to the content of the original \$i\$-th input feature vector (in data to the content of the original \$i\$-th input feature vector (in data to the content of the original \$i\$-th input feature vector (in data to the content of the original \$i\$-th input feature vector (in data to the content of the original \$i\$-th input feature vector (in data to the content of the original \$i\$-th input feature vector (in data to the content of the original \$i\$-th input feature vector (in data to the content of the content of the content of the original \$i\$-th input feature vector (in data to the content of the
)]:	<pre>def pcareconstruct(pcadata, W, k): # Put your code here w = W[0:k,:].T org = np.zeros((pcadata.shape[0], W.shape[0])) for i in range(pcadata.shape[0]): org[i] = w.dot(pcadata[i]) return org</pre>
)]:	As a sanity check, if you take \$k=3\$, perform dimensionality reduction then reconstruction, you should get the original data back: # Reconstructed data using all the principal components reduced_data=pcadimreduce(data,W,3) reconstructed_data=pcareconstruct(reduced_data,W,3) print ("This should be small:",np.max(np.abs(data-reconstructed_data))) This should be small: 3.9968028886505635e-15 One use of PCA is to help visualize data. The 3-D plots above are a bit hard to read on a 2-D computer screen or when printed out.
	Use PCA to to reduce the data to two dimensions. Visualize the first two PCA features with a scatter plot. Also, construct an approximate of the original features using the first two principal components into a \$(N,d)\$ array called reconstructed_data.(10 points) #Put your code here reduced_data = pcadimreduce(data, W, 2) reconstructed_data = pcareconstruct(reduced_data, W, 2) We can now visualize the data using two principal components in the original feature space.
-1.	<pre>axc = Axes3D(figc) axc.scatter(reconstructed_data[:,0],reconstructed_data[:,1],reconstructed_data[:,2],alpha=0.1) c=['r-','g-','y-'] for var, pc,color in zip(s, W,c): axc.plot([0, 2*var*pc[0]], [0, 2*var*pc[1]], [0, 2*var*pc[2]], color, lw=2) if enable_interactive: @interact(elev=(-90, 90), azim=(0, 360)) def view(elev, azim): axc.view_init(elev, azim) display(axc.figure)</pre>
	3 2 1 0 -1 -2 -3 -4 3
	If done correctly, you should see no component of the data along the third principal direction, and the data should lie in a plane. This measier to see with the Interactive Mode on. Use PCA to reduce the data to one dimension and store the one dimensional PCA feature in reduced_data_1. Construct an approximation of the original features using the first principal component into a \$(N,d)\$ array called reconstructed data_1. (5 po
	<pre>#Put your code here reduced_data_1 = pcadimreduce(data, W, 1) reconstructed_data_1 = pcareconstruct(reduced_data_1, W, 1) We can now visualize this in the original feature space. figd = plt.figure() axd = Axes3D(figd) axd.scatter(reconstructed_data_1[:,0],reconstructed_data_1[:,1],reconstructed_data_1[:,2],alpha=0.1 c=['r-','g-','y-']</pre>
	<pre>for var, pc,color in zip(s, W,c): axd.plot([0, 2*var*pc[0]], [0, 2*var*pc[1]], [0, 2*var*pc[2]], color, lw=2) if enable_interactive: @interact(elev=(-90, 90), azim=(0, 360)) def view(elev, azim): axd.view_init(elev, azim) display(axd.figure)</pre>
	2.0 1.5 1.0 0.5 0.0 0.0 0.0 0.1.5 1 1
5]:	If done correctly, you should see no component of the data along the second and third principal direction, and the data should lie along line. This may be easier with the Interactive Mode on. We can also visualize the PCA feature as a histogram: n, bins, patches = hist(reduced_data_1,100)
	35 - 30 - 25 - 20 - 15 - 10 - 5 -
	Finally, you will implement PCA via the SVD. (5 points) You will be given as input: • A \$(N,d)\$ numpy array of data (with each row as a feature vector) Your function should return a tuple consisting of the PCA transformation matrix, and a vector consisting of the amount of variance explain the data by each PCA feature. Note that the PCA features are ordered in decreasing amount of variance explained. Hints:
5]:	 The function <u>numpy.linalg.svd</u> will be useful. Use the full SVD (default). Be careful with how the SVD is returned in <u>numpy.linalg.svd</u> (v in numpy is the transpose of what is in the notes).
7]:	If your PCA implementation via the SVD is correct (and your Eigendecomposition implementation is correct), principal components shot match between the SVD and PCA implementations (up to sign, i.e. the i-th principal component may be the negative of the i-th principal component from the eigendecomposition approach). Verify this by printing out the principal components and the corresponding amount of variance explained. You will not get any credit is principal components (up to sign) and variances do not match the eigendecomposition. (5 points) # Put your code here D, W = pcasvd(data) print("D:\n {}".format(D))
	D: [[1.64258547 0.
3]:	In class, you saw an example application of PCA to create eigenfaces. In this part of the lab, we will look at eigenfaces for compression using the Olivetti faces dataset. # First, we load the Olivetti dataset from sklearn.datasets import fetch_olivetti_faces oli = fetch_olivetti_faces() # Height and Width of Images are in h,w. You will need to reshape them to this size to display them h=64
	h=64 w=64 X = oli.data X_t=X[20] X=X[:-1] #This centering is unnecessary. it just makes the pictures a bit more readable. X_m=np.mean(X,axis=0) X=X-X_m # center them X_t=X_t-X_m
	# In the following, X represents the entire dataset. X_t represents some specific image to compress. We can visualize the Olivetti Faces: We will be making use of Scikit-Learn's PCA functionality. Three functions will be useful for this problem: PCA.fit: Finds the requested number of principal components. PCA.transform: Apply dimensionality reduction (returns the PCA features) PCA.inverse_transform: Go from PCA features to the original features (Useful for visualizing)
	You will also find the following useful: • PCA.explained_variance_ratio_: Percentage of variance explained by each of the principal components
)):	is a scree plot (normalized by the total variance). numpy.cumsum may be useful for this. (10 points)
?)]:	is a scree plot (normalized by the total variance). numpy.cumsum may be useful for this. (10 points)
	<pre>is a scree plot (normalized by the total variance). numpy.cumsum may be useful for this. (10 points) # Put your code here unexpVar = zeros(200) val = np.arange(1,201) for k in val: model = PCA(n_components = k) model.fit(X) reconstructed_X = model.inverse_transform(model.transform(X)) unexpVar[k-1] = 1 - np.sum(model.explained_variance_ratio_) pylab.plot(val, unexpVar) pylab.xlim(0,200) pylab.xlabel('Principle Components') pylab.ylabel('Unexplained Variance') Text(0, 0.5, 'Unexplained Variance')</pre> Text(0, 0.5, 'Unexplained Variance')
	<pre>is a scree plot (normalized by the total variance). numpy.cumsum may be useful for this. (10 points) # Put your code here unexpVar = zeros(200) val = np.arange(1,201) for k in val: model = PCA(n_components = k) model.fit(X) reconstructed_X = model.inverse_transform(model.transform(X)) unexpVar[k-1] = 1 - np.sum(model.explained_variance_ratio_) pylab.plot(val, unexpVar) pylab.xlim(0,200) pylab.xlabel('Principle Components') pylab.ylabel('Unexplained Variance') Text(0, 0.5, 'Unexplained Variance')</pre>
	is a scree plof (normalized by the total variance). **Put your code here underly a consumation may be useful for this. (10 points) **Put your code here underly a consumer across (200) value of the property of the propert
	is a scree plof (normalized by the total variance). Furthy your code here may be useful for this. (10 points) # purt your code here may be useful for this (10 points) # purt your code here may be useful for this (10 points) for x is vai: noded = PCA(n components = k) noded = PCA(n components = k) noded = PCA(n components = k) noted = PCA(n components = k) no
)]:	image_components may be useful for this. (10 points) # mun your mode here # mun your m
)]:	is a sore plot (normalized by the total variance).
)]:	is a society of (promission by the total variance). Interpretation in the control of the contro
)]:	It is a core pot (committee) by the total variance). Company Exemption: may be seed for this (10 points) For a large of the control of this (10 points) For a large of the control of this (10 points) For a large of the control of this (10 points) For a large of the control of this (10 points) For a large of this control of this (10 points) For a large of this control of this (10 points) For a large of this control of this (10 points) For a large of this control of this (10 points) For a large of this control of
)]:	It is about a part (command only the table (see points) Figure 1. The control of the command of
)]:	The view code Access Language Constraints Transit to end of or this (10 points) Figure view code Access Language Constraints (1, 10 points) Each view code Access Language Constraints (1, 10 points) Each view code Access Language Constraints (1, 10 points) Each view code Access Language Constraints (1, 10 points) Each view code Access Language Constraints (1, 10 points) Each view code Access Language Constraints (1, 10 points) Each view code Access Language Constraints (1, 10 points) Language Constraints (1,
)]:	The control of the co
)]:	Les serves et les manufacts de les San de la fer (figuration) ###################################
)]:	The control of the co
)]:	**Common Common
)]:	**STATE OF THE PROPERTY OF THE
	A SECOND CONTROL OF THE PROPERTY OF THE PROPER
	According to the control of the cont
	Accessed to the control of the contr
	As the content of the
	A content of the Cont
	A content of the Cont
	Note that the content of the content
	A content of the Cont
	A content of the Cont
	Note that the content of the content
	Note that the content of the content
	Section 1. And Compared to the

	<pre># constants begin_1 = 10 begin_2 = 120 end_1 = 110 end_2 = 220 step_1 = 10 step_2 = 20 val = np.concatenate((np.array([1]), np.arange(begin_1, end_1, step_1), np.arange(begin_2, end_2, step_2))) for k, i in enumerate(val):</pre>
	<pre>model = PCA(n_components = i) model.fit(X) restored = model.inverse_transform(model.transform(X_t.reshape(1, -1))) figure() imshow(restored.reshape((h, w)), cmap=cm.Greys_r) plt.title("pca = {}".format(i))</pre> pca = 1
	30 - 40 - 50 - 50 - 60 - 50 - 5
	30 - 40 - 50 - 60 - 0 10 20 30 40 50 60 pca = 20
	20 30 40 50 60 0 10 20 30 40 50 60 pca = 30
	20 - 30 - 40 - 50 - 60 - pca = 40
	10 - 20 - 30 - 40 - 50 - 60 - 20 - 30 - 40 - 50 - 60 - 20 - 20 - 30 - 40 - 50 - 60 - 20 - 20 - 20 - 20 - 20 - 20 - 2
	10 - 20 - 30 - 40 - 50 - 60 - 60 - pca = 60
	10 - 20 - 30 - 40 - 50 - 60
	pca = 70 10 20 30 40 50 60 10 20 30 40 50 60 60 60 60
	pca = 80 10 - 20 - 30 - 40 - 50 - 60 - 60
	0 10 20 30 40 50 60 pca = 90 10
	pca = 100 pca = 100 10 40 50 10 10 10 10 10 10 10 10 1
	60 - 10 20 30 40 50 60 pca = 120 10 - 20 30 40 50 60
	50 - 60 - 60 - 70 - 70 - 70 - 70 - 70 - 7
	50 - 60 - 60 - 70 - 70 - 70 - 70 - 70 - 7
	40 - 50 - 50 - 60 - 60 - 60 - 60 - 60 - 6
	30 - 40 - 50 - 60 - 0 10 20 30 40 50 60 pca = 200
	How many principal components would you keep to compress the image? Why? (You may be qualitative or quantitative) (5 points) [I would pick around 140 principle components to compress the image because, around 140 priciple components, the noisier
	Problem 3: PCA for Classification (20 points) First, we will load a data set of digits drawn from zip codes written on US mail. This data set was designed to help get good algorithms to sort mail by zip code automatically. It has been preprocessed a bit, with details given here. Each feature vector consists of real values representing grayscale values of a 16 by 16 image of a digit. The training data has 7291 samples, while the validation data has 2007 samples. Note that this is not the same dataset built into scikit- learn it is much larger. Use sklearn.decomposition.PCA for this problem.
In [23]:	#Loading the Data #Read in the Training Data traindata_tmp= genfromtxt('zip.train', delimiter=' ') #The training labels are stored in "trainlabels", training features in "traindata" trainlabels=traindata_tmp[:,0] traindata=traindata_tmp[:,1:] #Read in the Validation Data valdata_tmp= genfromtxt('zip.val', delimiter=' ') #The validation labels are stored in "vallabels", validation features in "valdata" vallabels=valdata_tmp[:,0] valdata=valdata_tmp[:,1:] In Lab 2, you found that the validation error on this data set was 0.056 for 1-NN.
In [24]:	Make a plot of the validation error using 1-NN on the PCA features using 1,2,,256 PCA features. What is the minimum validation error, and how many PCA features did you use? (10 points) Note: This should take for a while. #Put your code here # constant pca = 256 features = np.arange(1, pca + 1) err = np.zeros(pca) for feature in features: modelPCA = PCA(n_components = feature) modelPCA.fit(traindata)
	<pre>reduced_train = modelPCA.transform(traindata) reduced_val = modelPCA.transform(valdata) modelNN = neighbors.KNeighborsClassifier(n_neighbors = 1) modelNN.fit(reduced_train, trainlabels) err[feature - 1] = 1 - modelNN.score(reduced_val, vallabels) pylab.plot(features, err) pylab.xlim(1, pca) min_err = (np.argmin(err) + 1) modelPCA = PCA(n_components = min_err)</pre>
	<pre>modelPCA.fit(traindata) reduced_train = modelPCA.transform(traindata) reduced_val = modelPCA.transform(valdata) modelNN = neighbors.KNeighborsClassifier(n_neighbors = 1) modelNN.fit(reduced_train, trainlabels) # print results print("Minimum Validation Error: {}".format(np.min(err))) print("Used PCA features: {}".format(min_err)) Minimum Validation Error: 0.04882909815645242 Used PCA features: 39</pre>
	0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.1 - 50 100 150 200 250
	[Minimum Validation Error: 4.933% Used PCA features: 38] Does PCA+NN give better or worse performance than just NN? Why do you think this is? Which would you choose (and if using PCA, with how many features)? Take into account both computational costs and error in your answer. (10 points) [PCA + NN gave a better performance than NN. This is because to PCA is robust to data loss when performing large reductions in dimensionality. One would choose PCA + NN with around 39 components because the algorithm preserves the data while compressing. However, one drawback is that optimizing the number of components seems to be extremely expensive in terms of time and space, so optimizing the algorithm (by compliling with CPython or Numba, or taking a multithreaded approach) to speed up computation is required]
	Problem 4 (Optional): Spectral Clustering (20 bonus points) In this problem, you will implement a powerful clustering algorithm known as spectral clustering. It can separate data that in some cases, K-means cannot (as you will see in this problem). Spectral clustering works by forming a graph based on similarities between data vectors, and looking for cluster of data vectors such that the similarity between them is high, but the similarity to vectors outisde the clusters is low (and the clusters aren't too small). See Section 4.3 in the notes for details on how it works, or this tutorial. The Spectral Clustering Algorithm (Alg. 9):
	 Let \$\tilde{L} = I - D^{-1/2}\$ where \$D^{-1/2}\$ is a square diagonal matrix with \$\frac{1}{\sqrt{d_i}}\$ as the \$i\$-th entry on the diagonal (where \$\mathbf{d} = S 1\$). Take the eigen-decomposition of \$\tilde{L} = U \Lambda U^\top\$ where \$\Lambda\$ is a diagonal matrix containing the eigenvalues of \$L\$. Let \$U_K\$ be a matrix whose columns are the eigenvectors corresponding to the \$K\$-smallest eigenvalues of \$L\$. Normalize each row of \$U_K\$ (i.e. divide each entry on the \$i\$-th row by the norm of the \$i\$-th row) Apply K-means clustering to the rows of \$U_K\$ (i.e. treat each row of \$U_K\$ as a \$K\$-dimensional feature vector and cluster it). Return the cluster labels from step \$4\$. \$\mathbf{x}_i\$ is assigned to the cluster which the \$i\$-th row of \$U_K\$ was assigned to. \$L\$ is known as the normalized Laplacian of the similarity graph, and has many nice properties for analyzing the similarity graph, most of which are beyond the scope of the course.
In "	Note: You don't really need to know why spectral clustering works to do this problem (though it would be nice) you just need to be able to implement the algorithm. First, I'll make a data set based on the Illinois logo.
. [25]	<pre>tmp=np.nonzero(np.asarray([[1,1,1,1,1,1,1,1,1,1], [1,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,1], [1,0,0,1,1,1,1,1,1,0,0,1], [1,0,0,0,0,1,1,0,0,0,0,1], [1,0,0,0,0,1,1,0,0,0,0,1], [1,0,0,0,0,1,1,1,1,1,1,1,0,0,1], [1,0,0,1,1,1,1,1,1,1,0,0,1],</pre>
	[[1,1,1,1,1,1,1,1,1,1], [1,0,0,0,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0,0], [1,0,0,1,1,1,1,1,0,0,1], [1,0,0,0,0,1,1,0,0,0,0], [1,0,0,0,0,1,1,0,0,0,0]],
	[[1,1,1,1,1,1,1,1,1,1,1], [1,0,0,0,0,0,0,0,0,0,1], [1,0,0,0,0,0,0,0,0,0,0], [1,0,0,1,1,1,1,1,1,0,0,1], [1,0,0,0,0,1,1,0,0,0,0,1], [1,0,0,0,0,1,1,0,0,0,0,1], [1,0,0,0,0,1,1,1,1,1,1,0,0,1], [1,0,0,0,0,0,0,0,0,0,0], [1,1,1,1,1,1,1,1,1])) illcmap=ListedColormap(['#131F33','#FA6300']) data=np.c_[tmp[1],tmp[0]] figure() scatter(data[:,0],data[:,1]) **Matplotlib.collections.PathCollection at 0x29d2c6bce88>
Out[25]	[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Out[25]	[[[1,1,1,1,1,1,1,1,1,1,1,1,1,1], [[1,1,1], [1,1], [1,1,0,0,0,0,0,0,0,0,0,0,0,0], [1,1,0,0,0,0], [1,1,0,0,0,0], [1,1,0,0,0], [1,1,1,1,1,1,0,0], [1,1,1,1,1,0,0], [1,1,1,1,1,0,0], [1,1,1,1,1,1,0,0], [1,1,0,0,0,0,1], [1,0,0,0,0,1,1,0,0,0,0], [1,1,0,0,0,0,0], [1,1,0,0,0,0,0,0], [1,1,0,0,0,0,0], [1,1,0,0,0,0,0], [1,1,1,1,1,1,1,1,1,1]]]]]]]]]]]]]]]]]
Out[25]	[[1,1,1,1,1,1,1,1,1,1,1,1],]] [[1,0,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0]], [[1,0,0,0,0,1,1,0,0,0,0]], [[1,0,0,0,0,1,1,0,0,0,0]], [[1,0,0,0,0,1,1,0,0,0,0]], [[1,0,0,0,0,1,1,0,0,0,0]], [[1,0,0,0,0,1,1,0,0,0,0]], [[1,0,0,0,0,1,1,0,0,0,0]], [[1,0,0,0,0,0,0,0,0,0,0]], [[1,1,1,1,1,1,1,1,1,1,1]]]]] datasemp.c_[twp[[1],twp[[0]]] figure() seatter(data(;,0),data(;,1)) ### The seatter (data(;,0),data(;,1)) ### Put your code here Xmenan = Rifleans (n_clusters = Nelsons to cluster these points using K-means clustering as a scatter plot, with casp=illonap. (§ points) ### Put your code here Xmenan = Rifleans (n_clusters = 1, fit (data) ### Togure() #### To
Out[25] In [26]	[[[1,1,1,1,1,1,1,1,1,1,1,1],]] [[1,0,0,0,0,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0,0,0,0]] [[1,0,0,0,0,1,0,0,0,0]] [[1,0,0,0,0,1,1,0,0,0,0,0]] [[1,0,0,0,0,1,1,0,0,0,0,0]] [[1,0,0,0,0,1,1,0,0,0,0,0]] [[1,0,0,0,0,1,1,0,0,0,0]] [[1,0,0,0,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0,0,0,0]] [[1,1,1,1,1,1,1,1,1,1,1]] [[1,1,1,1,1,1,1,1,1,1,1]] [[1,0,0,0,0,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0,0]] [[1,0,0,0,0,0,0]] [[1,0,0,0,0,0,0]] [[1,0,0,0,0,0,0]] [[1,0,0,0,0,0,0]] [[1,0,0,0,0,0,0]] [[1,0,0,0,0,0,0]] [[1,0,0,0,0,0]] [[1,0,0,0,0]] [[1,0,0,0,0]] [[1,0,0,0,0]] [[1,0,0,0,0]] [[1,0,0,0,0]] [[1,0,0,0,0]] [[1,0,0,0,0]] [[1,0,0,0,0]] [[1,0,0,0,0]] [[1,0,0,0,0]] [[1,0,0,0,0]] [[1,0,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,0,0]] [[1,0,
Out[25] In [26] In [27]	In the control of t
Out[25] In [26] In [27]	If close correctly, you should see something like the right half of the points are in one cluster, and the left half are in the other. The millions including a security of the segmentation are to distance and become characters (and in particular to the content of the particular to the content of the particular to the
Out[25] In [26] In [27]	