Animated Face Image Generation using GANs

Research Questions

- To effectively train Generative Adversarial Networks (GANs) to generate animated face images that capture human-like expressions and movements
- To achieve high-quality and diverse generated animated face images in GAN models, by integrating different architectural choices
- To optimize the training of GAN models for generating animated faces using reference images

Objective & Motivation

- The project aimed to create a dynamic animated facial image using deep learning and reference images as input
- Current face animation technologies in the entertainment and gaming industries are inefficient
 - As a result, animations may appear unrealistic
 - Requiring multiple reference images and unable to capture fine details
- GAN architecture can address limitations by generating realistic animated face images from reference images
 - Training on a vast dataset to capture intricate details
 - Accurately represent facial style

Dataset

- CelebFaces Attributes Dataset (CelebA)
 is a large-scale face attributes dataset
 - More than 200K celebrity images, each with 40 attribute annotations
 - 10,177 identities,
 202,599 face images, and
 - 5 landmark locations, 40 binary attributes annotations per image

Wearing Hat

Celeb a Dataset EDA

Bags_Under_Eyes	20.46%
Bald	2.24%
Bangs	15.16%
Big_Lips	24.08%
Big_Nose	23.45%
Black_Hair	23.93%
Blond_Hair	14.80%
Blurry	5.09%
Brown_Hair	20.52%
Bushy_Eyebrows	14.22%
Chubby	5.76%
Double_Chin	4.67%
Eyeglasses	6.51%
Goatee	6.28%
Gray_Hair	4.19%
Heavy_Makeup	38.69%
High_Cheekbones	45.50%
Male	41.68%
Mouth_Slightly_Open	48.34%
Mustache	4.15%
Narrow_Eyes	11.51%
No_Beard	83.49%
Oval_Face	28.41%
Pale_Skin	4.29%
Pointy_Nose	27.74%
Receding_Hairline	7.98%
Rosy_Cheeks	6.57%
Sideburns	5.65%
Smiling	48.21%
Straight_Hair	20.84%
Wavy_Hair	31.96%
Wearing_Earrings	18.89%

EDA

Cartoon Dataset

- Safebooru cartoon dataset used for training
- Safebooru is a tag-based image
- Maintained by anime enthusiasts
- Includes different unique attributes data
 - Golden eyes
 - Brown eyes Blonde hair

 - Smile
 - Red hair

Data Preprocessing

Image Resizing

Image Smoothing

Literature Review

Model	Year	Туре	Dataset	Training Approach	Output Style	Complexity	Advantages	
AnimeGAN	2020	GAN	Content Images-Real World Photos, Style Images- Anime Images	Unsupervised	Anime	Relatively Low Complexity	Low Computational Cost, High Quality Results, Flexibility	
JOJOGAN	2022	GAN	Gan Inversion Produced	Unsupervised	Cartoon	High Complexity	No external dataset required, Produce output using Reference style	
Cartoon StyleGAN-2	2021	Style- based GAN	Webtoon, Disney, Metfaces images	Unsupervised	Cartoon	High Complexity	Can generate high-quality, diverse cartoonish images. Allows control over various image attributes through latent space manipulation.	
CartoonGAN	2018	cGAN	Real World Photos from Coco Dataset, Cartoon Images, Smoothed version of Cartoon Images	Unsupervised	Cartoon	Moderate Complexity	Preserves content while transforming images into cartoon style, Good balance between computational cost and quality results, Flexibility in generating diverse cartoon-like images.	

ArtifyGAN

Model Architecture

ArtifyGAN

- Inspired from CartoonGAN architecture
- Increased the ResNet blocks from 8 to 10 to
 - Improve feature extraction
 - Better representation learning
 - Increase Model capacity
- Removed the Convolution filters after the ResNet blocks to improve the computational efficiency
- Coco Dataset and celeb a was used instead of Flickr data
- Safebooru Cartoon dataset was used instead of extracting images from anime movie "Spirited Away"

Experimental Settings

Category	Requirement
Hardware	GPU (Google Colab)
Software	Google Colab (Jupyter notebook)
Libraries	PyTorch, NumPy, Matplotlib, PIL, OpenCV, tqdm, TensorBoard

Hyper-parameters					
Optimizer	Adam Learning rate: 0.001				
W	0.00001				
Epochs	240				
Batch Size	16				
Loss Function	Adversarial Loss				

AnimeGAN

Pre-trained Model Experimental Setting

Fine Tuning:

• Fine-tuned and trained on preprocessed animated images (maintained the ratio of Anime and celebA)

Reduced the training time by decreasing the size of dataset

AnimeGAN – Pretrained Model	Hyperparameter
Generator – Learning Rate	0.00002
Discriminator – Learning Rate	0.00004
Training Epochs	40
Batch Size	26
Optimizer	Adam
Freezing Generator Layer	Until_layer 5
Freezing Discriminator Layer	Until_layer 5
Real Images : Style Images Ratio	6000:2000

JOJOGAN

Pre-trained Model Experimental Setting

Fine Tuning:

- Fine-tuned and trained on preprocessed 1 cartoon style image
- Reduced the training time(ms) and the memory consumption by using the decreased discriminator channel size.

JOJOGAN – Pretrained Model	Hyperparameter
Generator – Learning Rate	.0002
Discriminator – Learning Rate	0.0003
Training Epochs	50
Batch Size	input.shape[0](training with 1 image at 1 time)
Optimizer	Adam
Added Generator Layer	3
Added Discriminator Layer	3
Channel Size	512

JOJOGAN output

StyleGAN-2

Pre-trained Model Experimental Setting

Fine Tuning:

 Fine-tuned and trained on preprocessed data (Image Upsizing, Face Alignment, Converting 32-bit images to 24-bit images)

StyleGAN-2 ADA	Hyper-parameter tuning
Number of Layers Freezed	4
Learning rate, optimizer	0.002, Adam
Style mixing Probability (gamma)	50
Kimg (Number of images the model will be trained on)	1200

Result Analysis

Original Image

ArtifyGAN

Jojo GAN

StyleGAN 2

AnimeGAN

Result Analysis

Evaluation Metrics FID (Frechet Inception distance)

The key idea behind in FID is to separately embed real and generated images to a vision-relevant feature space, and compute a distance between the two distributions

Step 1. Images passed through a pre-trained classifier network (eg. Inception-V3) to produce feature vectors

Step 2. Both distributions of features are approximated to calculate the distance

Lower is better!!

Evaluation Metrics

FID-Metric

Model	lmage1	Image2	Image3	Image4	Image5	Image6	Mean	Total
AnimeGAN	201.03	212.64	187.43	147.10	210.36	155.08	185.60	1113.64
StyleGAN2	93.14	100.46	137.99	77.84	140.91	137.6262	114.65	687.99
ArtifyGAN	107.10	89.81	96.70	103.16	179.13	135.91	118.63	711.82
JOJOGAN	183	177	170	180	190	173	178.8	1073

Conclusion

ArtifyGAN is less complex as compared to other existing models for generating animated images

Designing the model from scratch allowed us to define the architecture and modify hyperparameters to better suit our specific dataset and target style

Although ArtifyGAN was trained on a smaller dataset and for less training time as compared to other pre-trained models, it is still producing high-quality animated results

Future Works

- Expression transfer: To transfer expressions between different faces in the dataset
- Facial feature modification: To modify other facial features like hairstyle, adding accessories like glasses or hat
- Training on a larger and diverse dataset: To improve its generalization capabilities
- Age progression: To create animated images of faces that look older or younger than the original input.

References

Back, J. (2021). Fine-Tuning StyleGAN2 For Cartoon Face Generation. *arXiv* (*Cornell University*). https://doi.org/10.48550/arxiv.2106.12445

Chen, J., Liu, G., & Chen, X. (2019). AnimeGAN: A Novel Lightweight GAN for Photo Animation. In *Communications in computer and information science* (pp. 242–256). Springer Science+Business Media. https://doi.org/10.1007/978-981-15-5577-0 18

Chong, M. J., & Forsyth, D. (2022, October). Jojogan: One shot face stylization. In *Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XVI* (pp. 128-152). Cham: Springer Nature Switzerland.

Chen, Y., Lai, Y., & Liu, Y. (2018). *CartoonGAN: Generative Adversarial Networks for Photo Cartoonization*.

https://doi.org/10.1109/cvpr.2018.00986

