Раздел 4. Отображения метрических пространств

Лекция 6 Непрерывность.

Функция, отображение, оператор.

Будем сейчас рассматривать однозначные полноопределённые функции, элементы Y^X . Иногда под оператором понимают отображение пространства в себя, когда Y=X. Мы не будем придерживаться этого ограничения. Если отображение $X\to\mathbb{R}$ (или $X\to\mathbb{C}$) – функционал.

Композиция отображений. Обратное отображение.

Пусть не просто множества, а МП (X, ρ_X) и (Y, ρ_Y) .

Ограниченность отображения F: F(X) – ограниченное множество в Y.

Ограниченность ператора F: образ любого ограниченного множества в X ограничен в Y. Более слабое свойство.

Замечание: достаточно проверить для шаров.

Пусть у нас не одно отображение, а семейство отображений

 $\{F_{\alpha}: X \to Y\}$, α – некоторый параметр (элемент множества произвольной природы), нумерующий отображения. Семейство равномерно ограничено, если образы $F_{\alpha}(X)$ для всех функций из семейства лежат в одном и том же ограниченном множестве в Y.

Применительно к термину "оператор". Семейство операторов равномерно ограничено, если для произвольного ограниченного в X множества его образы лежат в одном и том же ограниченном множестве в Y.

Замечание: опять достаточно проверить для шаров.

Композиция ограниченных отображений – ограниченное отображение.

Утверждение: конечное семейство ограниченных отображений равномерно ограничено. Конечное семейство ограниченных операторов равномерно ограничено.

Непрерывность отображения. Малые (по метрике X) изменения аргумента приводят к малым (по метрике Y) изменениям функции.

Непрерывность отображения F в точке $x_* \in X$. По Коши (на языке $\varepsilon - \delta$):

```
\forall \varepsilon > 0 \,\exists \delta(\varepsilon) > 0 : \{ \rho_X(x, x_*) < \delta \Rightarrow \rho_Y(F(x), F(x_*)) < \varepsilon \}
```

(Замечание. Строгие неравенства в силу произвольности ε можно заменить нестрогими.)

То же, но немного по-другому:

```
\forall \varepsilon > 0 \,\exists \delta(\varepsilon) > 0 : \{ x \in S_{\delta}(x_*) \Rightarrow F(x) \in S_{\varepsilon}(F(x_*)) \}
```

На языке окрестностей: для любой окрестности $O_Y(y_*)$ точки $y_* = F(x_*)$ в пространстве Y найдётся окрестность $O_X(x_*)$ точки x_* в пространстве X такая, что $\forall x \in O_X(x_*): y = F(x) \in O_Y(y_*)$.

Последняя формулировка пригодна не только для метрических, но и для топологических пространств.

Теперь непрерывность отображения F в точке $x_* \in X$ на языке последовательностей (по Гейне-Борелю):

$$x_k \xrightarrow[k \to \infty]{} x_* \Rightarrow F(x_k) \xrightarrow[k \to \infty]{} F(x_*)$$
 Эквивалентность.

1) Из непрерывности по Коши следует непрерывность по Гейне-Борелю:

Пусть
$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \{x \in S_{\delta}(x_*) \Rightarrow F(x) \in S_{\varepsilon}(F(x_*))\}$$
 Хотим доказать, что $x_k \xrightarrow[k \to \infty]{} x_* \Rightarrow y_k = F(x_k) \xrightarrow[k \to \infty]{} y_* = F(x_*),$

то есть
$$\forall \varepsilon > 0 \,\exists N \,\forall k > N : y_k \in S_{\varepsilon}(y_*)$$

Действительно, найдём $\delta(\varepsilon)$. Поскольку $x_k \to x_*$, найдётся номер N, начиная с которого $x_k \in S_{\delta}(x_*)$. Но тогда при тех же номерах $y_k = F(x_k) \in S_{\varepsilon}(y_*).$

2) Из отсутствия непрерывности по Коши следует отсутствие непрерывности по Гейне-Борелю:

Если непрерывности по Коши нет, то

$$\exists \varepsilon > 0 \, \forall \delta > 0 \, \exists x \in S_{\delta}(x_*) : F(x) \notin S_{\varepsilon}(y_*)$$

Возьмём последовательность $\delta_k \to 0$ и сопоставим ей последовательность $x_k \in X: \{x_k \in S_{\delta_k}(x_*) \land y_k \notin S_{\varepsilon}(y_*)\}$. Это означает, что $x_k \to x_*$, и при этом $y_k = F(x_k) \nrightarrow y_*$.

Доказательство обобщается на топологические пространства.

Непрерывность композиции отображений, непрерывных в соответствующих точках.

 Φ ункция, непрерывная на множестве $A \subset X$ – непрерывная во всех точках множества. (В частном случае – на всём пространстве.) $\forall x_* \in A \,\forall \varepsilon > 0 \,\exists \delta(\varepsilon, x_*) : \{ \rho_X(x, x_*) < \delta \Rightarrow \rho_Y(F(x), F(x_*)) < \varepsilon \}.$

На языке последовательностей:

$$\lim_{k \to \infty} F(x_k) = F\left(\lim_{k \to \infty} x_k\right)$$

(если $x_k \in A$ сходится).

Непрерывность композиции отображений, непрерывных на соответствующих множествах.

Равномерная непрерывность на множестве A: δ зависит только от ε и не зависит от x_* . При этом подходе исчезает разница в ролях x_* и x. Не топологическое, а метрическое свойство.

$$\forall \varepsilon > 0 \,\exists \delta(\varepsilon) \,\forall x', x'' \in A : \{ \rho_X(x', x'') < \delta \Rightarrow \rho_Y(F(x'), F(x'')) < \varepsilon \}.$$

Частный случай – липшицевость:

$$\exists L > 0, \gamma > 0, \forall x', x'' \in A \rho_Y(F(x'), F(x'')) \leq L \rho_X(x', x'')^{\gamma}.$$

Если $X, Y \subset \mathbb{R}$, то достаточное условие липшицевости с $\gamma = 1$ – ограниченность производной (из формулы конечных приращений).

Равномерная непрернывность композиции равномерно непрерывных отображений.

Лемма. Равномерно непрерывное отображение переводит фундаментальную последовательность в фундаментальную. Образами эквивалентных ФП

при равномерно непрерывном отображении также являются эквивалентные $\Phi\Pi.$

Пусть снова у нас не одно отображение, а семейство отображений $\{F_{\alpha}: X \to Y\}$. Семейство равностепенно непрерывно в точке x_* , если $\forall \varepsilon > 0 \, \exists \delta(\varepsilon) > 0 \, \forall \alpha: \{\rho_X(x,x_*) < \delta \Rightarrow \rho_Y(F_{\alpha}(x),F_{\alpha}(x_*)) < \varepsilon\}$ Здесь ключевой момент – независимость δ от α : можно выбрать общее значение $\delta(\varepsilon)$ для всего семейства.

Утверждение: конечное семейство отображений, непрерывных в заданной точке, равностепенно непрерывно в этой точке.

Равностепенная непрерывность семейства функций на множестве $A\subset X$ (равномерная равностепенная непрерывность):

 $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) \ \forall \alpha \ \forall x_*, x \in A : \{ \rho_X(x,x_*) < \delta \Rightarrow \rho_Y(F_\alpha(x),F_\alpha(x_*)) < \varepsilon \}.$ Здесь снова главное – это независимость δ от выбранной функции. Обычно, когда говорят о равностепенной непрерывности, имеют в виду именно это свойство.

Утверждение: конечное семейство равномерно непрерывных отображений равностепенно непрерывно.

Достаточное условие равностепенной непрерывности – равномерная липшицевость (с L, γ общими для всего семейства).

Если $X,Y \subset \mathbb{R}$, то достаточное условие равностепенной непрерывности – равномерная ограниченность производных.

Примеры.

- 1. Расстояние $\rho(x,y)$ равномерно непрерывная числовая функция (функционал) по совокупности аргументов (было показано). Ограничена на ограниченных множествах, а для ограниченных МП ограничена на всём пространстве (собственно говоря, ограниченность/неограниченность множеств и всего МП и определяется через ограниченность/неограниченности этой функции).
- 2. На пространстве с дискретной метрикой любое отображение непрерывно (и равномерно непрерывно).
- 3. Изометрия τ ограниченный оператор (для ограниченных МП ограниченное отображение), равномерно непрерывное ($\delta = \varepsilon$).
- 4. Операторы вложения. МП (X_1, ρ_1) , (X_2, ρ_2) : $X_1 \subseteq X_2$, $F: X_1 \to X_2$, F(x) = x. Например: \mathbb{R}^n_{\max} , \mathbb{R}^n_1 , E^n пространства с одним носителем, операторы вложения равномерно непрерывны и ограничены в обе стороны (доказать). $l_1 \subset l_2 \subset l_\infty$ (как множества), операторы вложения из l_1 в l_2 и l_∞ , из l_2 в l_∞ равномерно непрерывны и ограничены (доказать). Пространства C[a,b], $\tilde{L}_1[a,b]$, $\tilde{L}_2[a,b]$ пространства с одним носителем, операторы вложения из C[a,b] в $\tilde{L}_1[a,b]$ и $\tilde{L}_2[a,b]$, а также

из $\tilde{L}_2[a,b]$ в $\tilde{L}_1[a,b]$ равномерно непрерывны и ограничены, обратные операторы непрерывными и ограниченными не являются (доказать).

- 5. Числовая функция $tg: (-\pi/2, \pi/2) \to E^1$ неограничена и непрерывна (но неравномерно).
- 6. Функция Дирихле ограничена, но не является непрерывной.
- 7. Семейство функций $F_{\alpha}(t) = \alpha t$, $\alpha \in \mathbb{R}$ не является равномерно ограниченным ни на каком интервале (отрезке) и не является равностепенно непрерывным ни в одной точке. В то же время любая из функций этого семейства ограничена на любом отрезке и равномерно непрерывна на всей оси.

Часто удобно задать отображение не на всём пространстве, а на некотором плотном множестве (в пространствах последовательностей это могут быть обрывающиеся последовательности; в функциональных пространствах это могут быть бесконечно гладкие функции и т.п.). Возникает вопрос о том, когда можно продолжить это отображение на всё пространство с сохранением свойств (например, непрерывности). Ответ даёт следующая теорема:

Teopema. Пусть $X-\mathrm{MII}$, \tilde{X} — всюду плотное множество, Y — полное MII и $\tilde{F}:\tilde{X}\to Y$ — равномерно непрерывное на \tilde{X} отображение. Тогда существует единственное отображение $F:X\to Y$, являющееся непрерывным продолжением \tilde{F} , т.е. $\forall \tilde{x}\in \tilde{X}: F(\tilde{x})=\tilde{F}(\tilde{x})$, при этом F равномерно непрерывно на X.

Доказательство. Пусть $x_* \in X$. Поскольку \tilde{X} – всюду плотное множество, найдётся последовательность элементов этого множества, сходящаяся к x_* : $\tilde{x}_j \to x_*$. Эта последовательность фундаментальна. Согласно лемме, последовательность $y_j = \tilde{F}(\tilde{x}_j)$ также фундаментальна и в силу полноты Y сходится к некоторому элементу y_* . Тогда мы положим $F(x_*) = y_*$.

Докажем корректность, т.е. незваисимость результата от выбора последовательности. Пусть есть другая последовательность элементов из \tilde{X} , сходящаяся к $x_*\colon \tilde{x}_j'\to x_*$. Тогда $\{\tilde{x}_j\}$ и $\{\tilde{x}_j'\}$ – эквивалентные $\Phi\Pi$. В силу леммы отсюда следует, что $\{y_j\}$ и $\{y_j'\}$, где $y_j'=\tilde{F}(\tilde{x}_j')$ – также эквивалентные $\Phi\Pi$, поэтому они имеют один и тот же предел.

F есть продолжение F (рассмотреть постоянную последовательность). Докажем равномерную непрерывность F. По условию \tilde{F} равномерно непрерывна, т.е.

 $\forall \varepsilon > 0 \,\exists \delta(\varepsilon) \,\forall \tilde{x}, \tilde{x}' \in \tilde{X} : \{ \rho_X(\tilde{x}, \tilde{x}') < \delta \Rightarrow \rho_Y(\tilde{F}(\tilde{x}), \tilde{F}(\tilde{x}')) < \varepsilon \}.$

Пусть теперь $x, x' \in X$ и $\rho_X(x, x') < \delta(\varepsilon)$. Докажем, что $\rho_Y(F(x), F(x')) \le \varepsilon$. Это будет означать равномерную непрерывность F (замена строгого неравенства нестрогим существенной роли не играет).

Рассмотрим аппроксимирующие последовательности из $\tilde{X}: \tilde{x}_j \to x, \tilde{x}'_j \to x'$. Начиная с некоторого номера будут выполнены неравенства

$$\rho_X(\tilde{x}_j, x) < (\delta - \rho_X(x, x'))/2,$$

$$\rho_X(\tilde{x}'_j, x') < (\delta - \rho_X(x, x'))/2,$$

и тогда $\rho_X(\tilde{x}_j, \tilde{x}_j') < \delta$, откуда $\rho_Y(\tilde{F}(\tilde{x}_j), \tilde{F}(\tilde{x}_j')) < \varepsilon$.

Переходя к пределу, получаем искомое неравенство.

Осталось доказать единственность. Она иследует из определения непрерывности по Гейне-Борелю: если $\tilde{x}_j \to x_*$, то

 $F(x_*) = \lim_{i \to \infty} F(\tilde{x}_i) = \lim_{i \to \infty} \tilde{F}(\tilde{x}_i)$. Теорема доказана.

Примеры.

- 1. Оператор вложения из $\tilde{L}_2[a,b]$ в $\tilde{L}_1[a,b]$ равномерно непрерывен. Рассмотрим этот оператор как оператор из $L_2[a,b]$ в $L_1[a,b]$, определённый на плотном множестве $\tilde{L}_2[a,b]$. Тогда, согласно доказанной теореме, его можно продолжить на всё пространство $L_2[a,b]$ с сохранением непрерывности. Отсюда следует, что $L_2[a,b]$ непрерывно вкладывается в $L_1[a,b]$.
 - Такая схема типична для теорем вложения. Устанавливается непрерывность вложения на плотном множестве, затем переностится на их пополнения. Для функциональных пространств теоремы вложения неравенства на градких функциях.
- 2. Числовая функция $tg:(-\pi/2,\pi/2)\to E^1$ непрерывна, но не является равномерно непрерывной. На отрезок $[-\pi/2,\pi/2]$ по непрерывности не продолжается.

Операторные уравнения.

Пусть $F: X \to Y$ и $G: X \to Y$ – отображения (операторы). Пока что не обязательно МП, просто множества. Операторное уравнение:

$$F(x) = G(x)$$

Задача поиска таких элементов $x \in X$, для которых выполняется это равенство. Вопрос о существовании, единственности, числе решений – на всём множестве или его подмножествах, отделение корней (нахождение подмножеств, где решение существует и единственно). Алгоритмы поиска точных или приближённых решений. Если речь о приближённых решениях, то появляется необходимость оценки погрешности, т.е. расстояния от точного решения x до приближённого \hat{x} в X, и невязки, т.е. расстояния от $F(\hat{x})$ до $G(\hat{x})$ в Y. Тогда в X и Y необходимо ввести метрику. Анализ метрических свойств может помочь и при ответе на другие вопросы, напрямую с метрикой не связанные (например, о существование и/или единственности решений).

Два важных частных случая.

1) G(x) = y – фиксированный элемент пространства Y. Операторное уравнение принимает вид

$$F(x) = y$$

Всё те же вопросы о существовании, единственности, числе решений в зависимости от y. Прообраз $F^{-1}(y)$. Поиск решений (всех или некоторых, точный или приближённый, аналитически или численно). Вопрос о корректности задача: задача корректна, если для заданного $y \in Y$ и в некоторой его

окрестности решение существует, единственно и непрерывно зависит от y. Важнейший вопрос о существовании и непрерывности обратного оператора.

2) Y = X, G – тождественный оператор. Операторное уравнение принимает вид

$$F(x) = x$$

Его решение называеют неподвижной точкой оператора F (который отображает пространство X в себя). Существует ряд теорем, позволяющих судить о существовании и/или единственности неподвижной точки и способах её поиска.