- Agresti, A., 1984, Analysis of Ordinal Categorical Data: Wiley & Sons, New York 287 p.
- Aitchison, J. and Brown, J.A.C., 1981, *The Lognormal Distribution*: Cambridge Univ. Press, Cambridge, England, 176 p.
- Alley, W. M., 1988, Using exogenous variables in testing for monotonic trends in hydrologic time series: *Water Resources Research 24*, 1955-1961.
- Amemiya, T., 1981, Qualitative response models: a survey: J. Economic Literature 19, 1483-1536.
- Anscombe, F. A., 1973, Graphs in Statistical Analysis: Amer. Statistician. 27, 17-21.
- ASTM, 1983, Interlaboratory quality control procedures and a discussion on reporting low-level data: *Annual Book of ASTM Standards 11.01*, Chapter D, 4210-4283.
- Atkinson, A. C., 1980, A note on the generalized information criterion for choice of a model: *Biometrika 67*, 413-418.
- Bachman, L. J., 1984, Field and laboratory analyses of water from the Columbia Aquifer in Eastern Maryland: *Ground Water 22*, 460-467.
- Beckman, R.J. and R. D. Cook, 1983, Outlier....s: Technometrics 25, 119-149.
- Bedinger, M. S., 1963, Relation between median grain size and permeability in the Arkansas River Valley, Arkansas: U. S. Geological Survey Professional Paper 424-C, 31-32.
- Belsley, D. A.; E. Kuh; and R. E. Welsch, 1980, Regression Diagnostics: John Wiley, New York, 292 p.
- Bhattacharyya, G.K., and R. A. Johnson, 1977, *Statistical Concepts and Methods*: John Wiley, New York, 639 p.

- Blair, R. C. and J. J. Higgins, 1980, A comparison of the power of Wilcoxon's rank-sum statistic to that of student's t statistic under various nonnormal distributions: *J. Educ. Statistics 5*, 309-335.
- Blom, G., 1958, Statistical Estimates and Transformed Beta Variables: John Wiley, New York, 68-75, 143-146.
- Bloyd, R. M., P. B. Daddow, P. R. Jordan, and H. W. Lowham, 1986, Investigation of possible effects of surface coal mining on hydrology and landscape stability in part of the Powder River structural basin, Northeastern Wyoming: *U.S. Geological Survey Water-Resources Investigations Report 86-4329*, 101 p.
- Boudette, E. L., F. C. Canney, J. E. Cotton, R. I. Davis, W. H. Ficklin, and J. M. Matooka, 1985, High levels of arsenic in the groundwaters of southeastern New Hampshire: *U.S. Geological Survey Open-File Report 85-202*, 23 p.
- Box, G.E.P. and G. M., Jenkins, 1976, *Time Series Analysis: Forecasting and Control*: Holden Day, San Francisco, 575 p.
- Bradley, J. V., 1968, *Distribution-Free Statistical Tests*: Prentice-Hall, Englewood Cliffs, NJ, 388 p.
- Bradu, D., and Y. Mundlak, 1970, Estimation in lognormal linear models: J. Amer. Statistical. Assoc., 65, 198-211.
- Bras, R.L. and Rodriguez-Iturbe, I., 1985, Random Functions in Hydrology: Addison-Wesley, Reading, MA, 559 p.
- Breen, J. J. and P. E. Robinson, Eds., *Environmental Applications of Chemometrics*, ACS Symposium Series 292, Amer. Chemical Soc., Washington, D. C. 280 p.
- Campbell, G. and J. H. Skillings, 1985, Nonparametric Stepwise Multiple Comparison Procedures: *J. Am. Stat. Assoc.* 80, 998-1003.
- Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey, 1983, *Graphical Methods for Data Analysis*: PWS-Kent Publishing Co., Boston, 395 p.
- Christensen, R., 1990, Log-Linear Models: Springer-Verlag, New York, NY, 408 p.

Cleveland, W.S., 1979, Robust Locally Weighted Regression and Smoothing Scatterplots: *J. Am. Stat. Assoc.* 74, 829-836.

- Cleveland, W.S., 1984, Graphical methods for data presentation: full scale breaks, dot charts, and multibased logging: *American Statistician 38*, 270-280.
- Cleveland, W.S., 1985, *The Elements of Graphing Data*: Wadsworth Books, Monterey, CA, 323 p.
- Cleveland, W.S., and S. J. Devlin, 1988, Locally weighted regression: an approach to regression analysis by local fitting: *J. Am. Stat. Assoc.* 83, 596-610.
- Cleveland, W.S., and R. McGill, 1983, A color-caused optical illusion on a statistical graph: American Statistician 37, 101-105.
- Cleveland, W.S., and R. McGill, 1984a, Graphical perception: theory, experimentation, and application to the development of graphical methods: *J. Am. Stat. Assoc.* 79, 531-554.
- Cleveland, W.S., and R. McGill, 1984b, The Many Faces of a Scatterplot: J. Am. Stat. Assoc. 79, 807-822.
- Cleveland, W.S., and R. McGill, 1985, Graphical perception and graphical methods for analyzing scientific data: *Science 229*, 828-833.
- Cohen, A.C., 1950, Estimating the mean and variance of normal populations for singly truncated and doubly truncated samples: *Annals of Mathematical Statistics 21*, 557-69.
- Cohen, A. C., 1959, Simplified estimators for the normal distribution when samples are singly censored or truncated: *Technometrics 1*, 217-213.
- Cohen, A.C., 1976, Progressively censored sampling in the three parameter log-normal distribution, *Technometrics* 18, 99-103.
- Cohn, T. A., 1988, Adjusted maximum likelihood estimation of the moments of lognormal populations from type I censored samples: *U. S. Geological Survey Open-File Report 88-350,* 34 p.

- Colby, B. R., C. H. Hembree, and F. H. Rainwater, 1956, Sedimentation and chemical quality of surface waters in the Wind River Basin, Wyoming: *U.S. Geological Survey Water-Supply Paper 1373*, 336 p.
- Conover, W. J. and R. L. Iman, 1981, Rank transformation as a bridge between parametric and nonparametric statistics: *The Am. Stat. 35*, 3, 124-129.
- Conover, W. L., 1980, *Practical Nonparametric Statistics, Second Edition*: John Wiley and Sons, New York, 493 p.
- Conover, W. L., 1999, *Practical Nonparametric Statistics, Third Edition*: John Wiley and Sons, New York, 584 p.
- Crabtree, R. W., I. D. Cluckie, and C. F. Forster, 1987, Percentile estimation for water quality data: *Water Research 21*, 583-590.
- Crawford, C.G., J. R. Slack, and R. M. Hirsch, 1983, Nonparametric tests for trends in water-quality data using the Statistical Analysis System: *U.S. Geological Survey, Open-File Report 83-550*, 102 p.
- Cunnane, C., 1978, Unbiased plotting positions a review: J. of Hydrology 37, 205-222.
- Davis, Robert E., and Gary D. Rogers, 1984, Assessment of selected ground-water-quality data in Montana: U.S. Geological Survey Water-Resources Investigations Report 84-4173, 177 p.
- Dietz, E. J., 1985, The rank sum test in the linear logistic model: *American Statistician 39*, 322-325.
- Donoho, Andrew, David L. Donoho, and Miriam Gasko, 1985, MACSPIN Graphical Data Analysis Software: D² Software, Inc., Austin, Texas, 185 p.
- Doornkamp, J. C., and C. A. M. King, 1971, Numerical Analysis in Geomorphology, An Introduction: St. Martins Press, New York, NY, 372 p.
- Draper, N. R. and Smith, H., 1981, *Applied Regression Analysis, Second Edition*: John Wiley and Sons, New York, 709 p.
- Drieger, C. L., and P. M. Kennard, 1986, Ice volumes on Cascade volcanoes: Mount Ranier, Mount Hood, Three Sisters, and Mount Shasta: *U.S. Geological Survey Professional Paper* 1365, 28 p.

Duan, N., 1983, Smearing Estimate: A nonparametric retransformation method: *J._Am. Stat. Assoc.*, 78, 605-610.

- DuMouchel, W. H., and G. J. Duncan, 1983, Using sample survey weights in multiple regression analyses of stratified samples: *J. Am. Stat. Assoc.*, 78, 535-543.
- Durbin, J., and G. S. Watson, 1951, Testing for serial correlation in least squares regression, I and II: *Biometrika 37*, 409-428, and 38, 159-178.
- Eckhardt, D.A., W.J. Flipse and E.T. Oaksford, 1989, Relation between land use and ground-water quality in the upper glacial aquifer in Nassau and Suffolk Counties, Long Island NY: U.S. Geological Survey Water Resources Investigations Report 86-4142, 26 p.
- Everitt, B., 1978, *Graphical Techniques for Multivariate Data*: North-Holland Pubs, New York, 117 p.
- Exner, M. E. and Spalding, R. F., 1976, Groundwater quality of the Central Platte Region, 1974: *Conservation and Survey Division Resource Atlas No. 2*, Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, Nebraska, 48 p.
- Exner, M. E., 1985, Concentration of nitrate-nitrogen in groundwater, Central Platte Region, Nebraska, 1984: *Conservation and Survey Division*, Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, Nebraska, 1 p. (map).
- Fawcett, R.F. and Salter, K.C., 1984, A Monte Carlo Study of the F Test and Three Tests Based on Ranks of Treatment Effects in Randomized Block Designs: *Communications in Statistics B13*, 213-225.
- Fent, K., and J. Hunn, 1991, Phenyltins in water, sediment, and biota of freshwater marinas: *Environmental Science and Technology 25*, 956-963.
- Ferguson, R. I. 1986, River loads underestimated by rating curves: *Water Resources Research 22*, 74-76.
- Feth, J. H., C. E. Roberson, and W. L. Polzer, 1964, Sources of mineral constituents in water from granitic rocks, Sierra Nevada California and Nevada: *U.S. Geological Survey Water Supply Paper 1535-I*, 70 p.

- Fisher, R. A., 1922, On the mathematical foundations of theoretical statistics, as quoted by Beckman and Cook, 1983, Outlier.....s: *Technometrics* 25, 119-149.
- Foster, S. S. D., A. T. Ellis, M. Losilla-Penon, and J. V. Rodriguez-Estrada, 1985, Role of volcanic tuffs in ground-water regime of Valle Central, Costa Rica: *Ground Water 23*, 795-801.
- Frenzel, S. A., 1988, Physical, chemical, and biological characteristics of the Boise River from Veterans Memorial Parkway, Boise to Star, Idaho, October 1987 to March 1988: *U.S. Geological Survey Water Resources Investigations 88-4206*, 48 p.
- Frigge, M., D. C. Hoaglin, and B. Iglewicz, 1989, Some implementations of the boxplot: *American Statistician*, 43, 50-54.
- Fusillo, T. V., J. J. Hochreiter, and D. G. Lord, 1985, Distribution of volatile organic compounds in a New Jersey coastal plain aquifer system, *Ground Water 23*, 354-360.
- Gilbert, R. O., 1987, *Statistical Methods for Environmental Pollution Monitoring*: Van Nostrand Reinhold Co., New York, 320 p.
- Gilliom, R. J., R. M. Hirsch, and E. J. Gilroy, 1984, Effect of censoring trace-level water-quality data on trend-detection capability: *Environ. Science and Technol.*, 18, 530-535.
- Gilliom, R. J., and D. R. Helsel, 1986, Estimation of distributional parameters for censored trace level water quality data, 1. Estimation techniques: *Water Resources Research 22*, 135-146.
- Gleit, A., 1985, Estimation for small normal data sets with detection limits, *Environ. Science and Technol.*, 19, 1201-1206.
- Greek, B. F., 1987, Supply problems loom for big-volume adhesive monomers: *Chemical and Engineering News 65(16)*, April 20, 1987, p. 9.
- Gringorten, I. I., 1963, A plotting rule for extreme probability paper: *J. of Geophysical Research* 68, 813-814.
- Groggel, D.J. and J.H. Skillings, 1986, Distribution-Free Tests for Main Effects in Multifactor Designs: *The American Statistician, May, 40*, 99-102.

Groggel, D.J., 1987 A Monte Carlo Study of Rank Tests For Block Designs: *Communications in Statistics 16*, 601-620.

- Grygier, J. C., J. R. Stedinger, and H.Yin, 1989, A Generalized Maintenance of Variance Extension Procedure for Extending Correlated Series: *Water Resources Research 25*, 345-349.
- Haan, C. T., 1977. *Statistical Methods in Hydrology*: Iowa State University Press, Ames, Iowa, 378 p.
- Hakanson, L., 1984, Sediment sampling in different aquatic environments: statistical aspects, Water Resources Research 20, 41-46.
- Hald, A., 1949, Maximum likelihood estimation of the parameters of a normal distribution which is truncated at a known point: *Skandinavisk Aktuarietidskrift 32*, 119-34.
- Halfon, E., 1985, Regression method in ecotoxicology: A better formulation using the geometric mean functional regression: *Environ. Sci. and Technol. 19*, 747-749.
- Hazen, A., 1914, Storage to be provided in the impounding reservoirs for municipal water supply: *Trans. Am. Soc. of Civil Engineers* 77, 1547-1550.
- Helsel, D. R., 1983, Mine drainage and rock type influences on Eastern Ohio streamwater quality: *Water Resources Bulletin 19*, 881-887.
- Helsel, D.R., 1987, Advantages of nonparametric procedures for analysis of water quality data: *Hydrological Sciences Journal 32*, 179-190.
- Helsel, D.R. 1990, Less than obvious: Statistical treatment of data below the detection limit: *Environmental Science and Technology 24*, pp.1766-1774.
- Helsel, D.R. 1992, Diamond in the rough: Enhancements to Piper diagrams: submitted to *Ground Water*.
- Helsel, D.R. and T. A. Cohn, 1988, Estimation of descriptive statistics for multiply censored water quality data: *Water Resources Research 24*, 1997-2004.
- Helsel, D.R. and R. J. Gilliom, 1986, Estimation of distributional parameters for censored trace level water quality data, 2. Verification and applications: Water Resources Research 22, 147-155.

- Helsel, D.R. and R. M. Hirsch, 1988, Discussion of Applicability of the t-test for detecting trends in water quality variables: *Water Resources Bulletin 24*, 201-204.
- Hem, J. D., 1985, Study and interpretation of the chemical characteristics of natural water: U. S. Geological Survey Water Supply Paper 2254, 263 p.
- Henderson, Thomas, 1985, Geochemistry of ground-water in two sandstone aquifer systems in the Northern Great Plains in parts of Montana and Wyoming: *U.S. Geological Survey Professional Paper 1402-C*, 84 p.
- Hirsch, R.M., 1982, A comparison of four record extension techniques: *Water Resources Research* 15, 1781-1790.
- Hirsch, R. M., 1988, Statistical methods and sampling design for estimating step trends in surface-water quality: *Water Resources Bulletin*, 24, 493-503.
- Hirsch, R.M. and J. R. Slack, 1984, A nonparametric trend test for seasonal data with serial dependence: *Water Resources Research 20*, 727-732.
- Hirsch, R.M., J. R. Slack, and R. A. Smith, 1982. Techniques of trend analysis for monthly water quality data: *Water Resources Research* 18, 107-121.
- Hirsch, R.M., and E. J. Gilroy, 1984, Methods of fitting a straight line to data: examples in water resources: *Water Resources Bulletin 20*, 705-711.
- Hirsch, R.M., Alexander, and R. A. Smith, 1991, Selection of methods for the detection and estimation of trends in water quality: *Water Resources Research* 27, 803-813.
- Hoaglin, D.C., 1983, Letter values: a set of order statistics: Chapter 2 in Hoaglin, D.C., F.Mosteller, and J.W. Tukey, eds., 1983. *Understanding Robust and Exploratory Data Analysis*,John Wiley, New York, NY, 447 p.
- Hoaglin, D.C., F. Mosteller, and J.W. Tukey, eds., 1983. *Understanding Robust and Exploratory Data Analysis*, John Wiley, New York, NY, 447 p.
- Hoaglin, David C., 1988, Transformations in everyday experience: Chance 1, 40-45.
- Hodges, J.L., Jr. and E. L. Lehmann, 1963, Estimates of location based on rank tests, *Annals Mathematical Statistics* 34, 598-611.

Hoerl, A.E. and R. W. Kennard, 1970. Ridge regression: biased estimation for nonorthogonal problems: *Technometrics* 12, 55-67.

- Hollander, M. and D. A. Wolfe, 1973, *Nonparametric Statistical Methods*: John Wiley and Sons, New York, 503 p.
- Hollander, M. and D. A. Wolfe, 1999, *Nonparametric Statistical Methods, Second Edition*: John Wiley and Sons, New York, 787 p.
- Holtschlag, D. J., 1987, Changes in water quality of Michigan streams near urban areas, 1973-84: U.S. Geological Survey Water Resources Investigations 87-4035, 120 p.
- Hren, J., K. S. Wilson, and D. R. Helsel, 1984, A statistical approach to evaluate the relation of coal mining, land reclamation, and surface-water quality in Ohio: *U.S. Geological Survey Water Resources Investigations 84-4117*, 325 p.
- Hull, L. C., 1984, Geochemistry of ground water in the Sacramento Valley, California: U.S. Geological Survey Professional Paper 1401-B, 36 p.
- Iman, R. L., and J. M. Davenport, 1980, Approximations of the critical region of the Friedman statistic: *Communications in Statistics A*, 9, 571-595.
- Iman, R. L., and W. J. Conover, 1983, *A Modern Approach to Statistics*: John Wiley and Sons, New York, 497 p.
- Inman, D. L., 1952, Measures for describing the size distribution of sediments: *J._Sedimentary Petrology 22*, 125-145.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: *Bulletin 17B of the Hydrology Subcommittee, U. S. Geological Survey*, Reston, VA., 185 p.
- Janzer, V. J., 1986, Report of the U.S. Geological Survey's Analytical Evaluation Program -- Standard Reference Water Samples M6, M94, T95, N16, P8, and SED3: *Branch of Quality Assurance Report*, U. S. Geological Survey, Arvada, CO.
- Jensen, A. L., 1973, Statistical analysis of biological data from preoperational-postoperational industrial water quality monitoring: *Water Research 7*, 1331-1347.

- Johnson, N. M., G. F. Likens, F. H. Borman, D. W.Fisher, and R. S. Pierce, 1969, A working model for the variation in stream water chemistry at the Hubbard Brook Experimental Forest, New Hampshire: *Water Resources Research*, *5*, 1353-1363.
- Johnson, Richard A. and Dean W. Wichern, 1982, *Applied Multivariate Statistical Analysis*: Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 594 p.
- Johnston, J., 1984, Econometric Methods: McGraw Hill, New York, 568 p.
- Jordan, P. R., 1979, Relation of sediment yield to climatic and physical characteristics in the Missouri River basin: *U.S. Geological Survey Water-Resources Investigations* 79-49.
- Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lutkepohl, and T. C. Lee, 1985, Qualitative and limited dependent variable models: Chap. 18 in *The Theory and Practice of Econometrics*: John Wiley and Sons, New York, 1019 p.
- Junk, G. A., R.F. Spalding, and J.J. Richard, 1980, Areal, vertical, and temporal differences in ground-water chemistry: II. Organic constituents: *Journal of Environmental Quality 9*, 479-483.
- Keith, L. H., Crummett, W., Deegan, J., Libby, R. A., Taylor, J. K., Wentler, G., 1983, Principles of environmental analysis: *Analytical Chemistry* 55, 2210-2218.
- Kendall, M.G., 1938, A new measure of rank correlation: *Biometrika 30*, 81-93.
- Kendall, M.G., 1975, Rank Correlation Methods, 4th edition: Charles Griffin, London. 202 p.
- Kendall, M. G. and A. Stuart, *The Advanced Theory of Statistics*, vol. 2: Oxford University Press, New York, 748 p.
- Kenney, J. F., and E. S. Keeping, 1954, *Mathematics of Statistics Part One*: D. Van Nostrand, New York, 102 p.
- Kermack, K. A. and J. B. S. Haldane, 1950, Organic correlation and allometry: *Biometrika 37*, 30-41.
- Kirby, W., 1974, Straight line fitting of an observation path by least normal squares: U.S. Geological Survey Open-File Report 74-197, 11p.

Kleiner, B., and T. E. Graedel, 1980, Exploratory data analysis in the geophysical sciences: Reviews of Geophysics and Space Physics 18, 699-717.

- Knopman, D. S., 1990, Factors related to the water-yielding potential of rocks in the Piedmont and Valley and Ridge provinces of Pennsylvania: *U.S. Geological Survey Water-Resources Investigations Report 90-4174*, 52 p.
- Kritskiy, S. N. and J. F. Menkel, 1968, Some statistical methods in the analysis of hydrologic data: *Soviet Hydrology Selected Papers 1*, 80-98.
- Kruskal, W. H., 1953, On the uniqueness of the line of organic correlation, *Biometrics 9*, 47-58.
- Kupper, L. L., and K. B. Hafner, 1989, How appropriate are popular sample size formulas?: *American Statistician 43*, 101-105.
- Land, C. E., 1971, Confidence intervals for linear functions of the normal mean and variance: *Annals Mathematical Statistics* 42, 1187-1205.
- Land, C. E., 1972, An evaluation of approximate confidence interval estimation methods for lognormal means: *Technometrics* 14, 145-158.
- Langbein, W.B., 1960, Plotting positions in frequency analysis: in Dalrymple, T., Flood-frequency analysis: U.S. Geological Survey Water-Supply Paper 1543-A, p. 48-51.
- Larsen, W.A. and S. J. McCleary, 1972. The use of partial residual plots in regression analysis: *Technometrics* 14, 781-790.
- Latta, R., 1981, A monte carlo study of some two-sample rank tests with censored data: *Jour. American Statistical Association 76*, 713-719.
- Lehmann, E.L., 1975. *Nonparametrics, Statistical Methods Based on Ranks*: Holden-Day, Oakland, CA, 457 p.
- Lettenmaier, D.P., 1976, Detection of trends in water quality data from records with dependent observations: *Water Resources Research 12*, 1037-1046.
- Lewandowsky, S. and I. Spence, 1989, Discriminating strata in scatterplots: *Jour. American Statistical Assoc.*, 84, 682-688.

- Liebermann, T., D. Mueller, J. Kircher, and A. Choquette, 1989, Characteristics and trends of streamflow and dissolved solids in the Upper Colorado River Basin: *U.S. Geological Survey Water-Supply Paper 2358*, 99 p.
- Lin, S.D., and R. L. Evans, 1980, Coliforms and fecal streptococcus in the Illinois River at Peoria, 1971-1976: *Illinois State Water Survey Report of Investigations No. 93*, Urbana, IL, 28 p.
- Lins, H., 1985, Interannual streamflow variability in the United States based on principal components: *Water Resources Research 21*, 691-701.
- Looney, S. W., and T. R. Gulledge, 1985a, Use of the correlation coefficient with normal probability plots: *The American Statistician. 39*, 75-79.
- Looney, S.W., and T. R. Gulledge, 1985b, Probability plotting positions and goodness of fit for the normal distribution: *The Statistician 34*, 297-303.
- Maddala, G. S., 1983, *Limited-Dependent and Qualitative Variables in Econometrics*: Cambridge Univ. Press, Cambridge, U.K., 401 p.
- Mann, H. B., 1945, Nonparametric test against trend: Econometrica 13, 245-259.
- Marquardt, D.W., 1970. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation: *Technometrics* 12, 591-612.
- Martin, L., Leblanc, R. and N.K. Toan, 1993, Tables for the Friedman rank test: *Canadian Journal of Statistics 21, 1,* 39-43.
- Matalas, N.C. and W. B. Langbein, 1962, Information content of the mean: *J.Geophysical. Res.* 67, 9, 3441-3448.
- McCornack, R. L., 1965, Extended tables of the Wilcoxon matched pair signed rank statistic: Journal of the American Statistical Association 60, 864 – 871.
- McCullagh, P., 1980, Regression Models for Ordinal Data: *Jour. Royal Stat. Soc. B*, 42, 109-142.
- McGill, R., Tukey, J.W., and Larsen, W.A., 1978, Variations of box plots: *The American Statistician.* 32, 12-16.

McKean, J. W. and G. L. Sievers, Rank scores suitable for analyses of linear models under asymmetric error distributions: *Technometrics 31*, 207-218.

- Meglen, R. R. and R. J. Sistko, 1985, Evaluating data quality in large data bases using pattern-recognition techniques: in Breen, J. J. and P. E. Robinson, Eds., *Environmental Applications of Chemometrics*, ACS Symposium Series 292, Amer. Chemical Soc., Washington, D. C. p. 16-33
- Miesch, A., 1967, Methods of computation for estimating geochemical abundance: U.S. Geological Survey Professional Paper 574-B, 15 p.
- Millard, S. P., and S. J. Deverel, Nonparametric statistical methods for comparing two sites based on data with multiple nondetect limits: *Water Resources Research 24*, 2087-98.
- Miller, C. R., 1951, Analysis of flow-duration, sediment-rating curve method of computing sediment yield: *U. S. Bureau of Reclamation* unnumbered report, 65 p.
- Miller, D. M., 1984, Reducing transformation bias in curve fitting: *The American Statistician. 38*, 124-126.
- Miller, Timothy L., and Gonthier, Joseph B., 1984, Oregon ground-water quality and its relation to hydrogeological factors--a statistical approach: *U.S. Geological Survey Water Resources Investigations Report 84-4242*, 88 p.
- Montgomery, D. C., 1991, *Introduction to Statistical Quality Control*: John Wiley, New York, NY, 674 p.
- Montgomery, D. C., and E. A. Peck, 1982, *Introduction to Linear Regression Analysis*: John Wiley, New York, NY, 504 p.
- Moody, D. W., E. W. Chase, and D. A. Aronson, compilers, 1986, National Water Summary 1985 -- Hydrologic events and surface-water resources: *U.S. Geological Survey Water-Supply Paper 2300*, p. 128.
- Mosteller, F., and J. W. Tukey, 1977, *Data Analysis and Regression*: Addison-Wesley Publishers, Menlo Park, CA, 588 p.

- Mustard, M.H., N.E. Driver, J. Chyr, and B.G. Hansen, 1987, U.S. Geological Survey urban stormwater data base of constituent storm loads: *U. S. Geological Survey Water Resources Investigation 87-4036*, 328 p.
- Neter, J., W. Wasserman, and M. H. Kutner, 1985, *Applied Linear Statistical Models*, 2nd edition: Irwin Publishers, Homewood, Illinois, 1127 p.
- Newman, M. C. and P. M. Dixon, 1990, UNCENSOR: A program to estimate means and standard deviations for data sets with below detection limit observations: *American Environmental Laboratory* 4/90, 26-30.
- Noether, G. E., 1987, Sample size determination for some common nonparametric tests: *Journal American Statistical Assoc.*, 82, 645-647.
- Oltmann, R. N. and M. V. Shulters, 1989, Rainfall and Runoff Quantity and Quality Characteristics of Four Urban Land-Use Catchments in Fresno, California, October 1981 to April 1983: U. S. Geological Survey Water-Supply Paper 2335, 114 p.
- Owen, W., and T. DeRouen, 1980, Estimation of the mean for lognormal data containing zeros and left-censored values, with applications to the measurement of worker exposure to air contaminants: *Biometrics* 36, 707-719.
- Person, M., R. Antle, and D. B. Stephens, 1983, Evaluation of surface impoundment assessment in New Mexico: *Ground Water 21*, 679-688.
- Piper, A. M., 1944, A graphic procedure in the geochemical interpretation of water analyses: *Transac. Amer. Geophysical Union 25*, p. 914-923.
- Ponce, V. M., 1989, Engineering Hydrology -- Principles and Practices: Prentice-Hall, Englewood Cliffs, N.J., 640 p.
- Porter, P. S., R. C. Ward, and H. F. Bell, 1988, The detection limit: *Environmental Science and Technol.*, 22, 856-861.
- Press, S. J. and S. Wilson, 1978, Choosing between logistic regression and discriminant analysis: *Journal American Statistical Assoc.*, 73, 699-705.
- Robertson, W. D., J. F. Barker, Y. LeBeau, and S. Marcoux, 1984, Contamination of an unconfined sand aquifer by waste pulp liquor: A case study: *Ground Water 22*, 191-197.

Rousseeuw, P. J., and A.M. Leroy, 1987, Robust Regression and Outlier Detection: John Wiley, New York, NY, 329 p.

- Sanders, T. G., R. C. Ward, J.C. Loftis, T. D. Steele, D. D. Adrian, and V. Yevjevich, 1983, Design of Networks for Monitoring Water Quality: Water Resources Publications, Littleton, Colorado, 328 p.
- SAS Institute, 1985, SAS User's Guide: Statistics: Version 5 Edition, SAS Institute Pub., Cary, NC, 470-476.
- Sauer, V. B., W. O. Thomas, V. A. Stricker, and K. V. Wilson, 1983, Flood characteristics of urban watersheds in the United States: U.S. Geological Survey Water-Supply Paper 2207, 63 p.
- Schertz, T.L., 1990, Trends in water quality data in Texas: U.S. Geological Survey Water Resources Investigations Report 89-4178, 177p.
- Schertz, T.L., and R. M. Hirsch, 1985, Trend analysis of weekly acid rain data -- 1978-83: U.S. Geological Survey Water Resources Investigations Report 85-4211, 64 p.
- Schmid, C. F., 1983, Statistical Graphics: John Wiley and Sons, New York, 212p.
- Schroeder, L. J., M. H. Brooks, and T. C. Willoughby, 1987. Results of intercomparison studies for the measurement of pH and specific conductance at National Atmospheric Deposition Program/National Trends Network monitoring sites, October 1981-October 1985: U.S. Geological Survey Water Resources Investigations Report 86-4363, 22 p.
- Sen, P.K., 1968. Estimates of regression coefficient based on Kendall's tau: *J. Am. Stat. Assoc.*, 63, 1379-1389.
- Shapiro, S. S., M. B. Wilk, and H. J. Chen, 1968, A comparative study of various tests for normality: *J. Amer. Stat. Assoc.*, 63, 1343-1372.
- Shapiro, S. S. and R. S. Francia, 1972, An approximate analysis of variance test for normality: *J. Amer. Stat. Assoc.*, 67, 215-216.
- Smith, R.A., R.B. Alexander, and M.G. Wolman, 1987, Analysis and interpretation of water quality trends in major U.S. rivers, 1974-81: *U.S. Geological Survey Water-Supply Paper 2307*, 25 p.

- Sokal, R. R. and F. J. Rohlf, 1981, *Biometry*, 2nd Ed.: W. H. Freeman and Co., San Francisco, 776 p.
- Solley, W. B., E. B. Chase, and W.B. Mann, 1983, Estimated use of water in the United States in 1980: *U.S. Geological Survey Circular 1001*, 56 p.
- Solley, W. B., C. F. Merck, and R. R. Pierce, 1988, Estimated use of water in the United States in 1985: U.S. Geological Survey Circular 1004, 82 p.
- Sorenson, S. K., 1982, Water-quality management of the Merced River, California: U.S. Geological Survey Open-File Report 82-450, 46 p.
- Stedinger, J. R., 1983, Confidence intervals for design events: *Journal of Hydraulic Eng., ASCE* 109, 13-27.
- Stedinger, J. R., and G. D. Tasker, 1985, Regional hydrologic analysis: 1. Ordinary, weighted and generalized least squares compared: *Water Resources Research 21*, 1421-1432.
- Stoline, M. R., 1981, The status of multiple comparisons: simultaneous estimation of all pairwise comparisons in one-way ANOVA designs: *The American Statistician*, 35, 134-141.
- Tasker, G. D., 1980, Hydrologic regression with weighted least squares: *Water Resources Research* 16, 1107-1113.
- Teissier, G., 1948, La relation d'allometrie sa signification statistique et biologique, *Biometrics 4*, 14-53.
- Theil, H., 1950. A rank-invariant method of linear and polynomial regression analysis, 1, 2, and 3: *Ned. Akad. Wentsch Proc.*, 53, 386-392, 521-525, and 1397-1412.
- Travis, C.C., and M. L. Land, 1990, Estimating the mean of data sets with nondetectable values: *Environ. Sci. Technol. 24*, 961-962.
- Tsiatis, A. A., 1980, A note on a goodness-of-fit test for the logistic regression model: *Biometrika* 67, 250-251.
- Tufte, E. R., 1983, *The Visual Display of Quantitative Information*: Graphics Press, Cheshire, Connecticut., 197p.
- Tukey, J. W., 1977, Exploratory Data Analysis: Addison-Wesley Pub., Reading MA, 506 p.

van Belle, G., and Hughes, J.P., 1984, Nonparametric tests for trend in water quality: *Water Resources Research 20*, 127-136.

- Velleman, P. (1980), Definition and Comparison of Robust Nonlinear Data Smoothers, J. Amer. Statistical. Assoc. 75, 609-615.
- Velleman, P. F. and D. C. Hoaglin, 1981, *Applications, Basics, and Computing of Exploratory Data Analysis*: Duxbury Press, Boston, MA, 354 p.
- Vogel, R. M., 1986, The probability plot correlation coefficient test for the normal, lognormal, and gumbel distributional hypotheses: *Water Res. Research 22*, 587-590.
- Vogel, Richard M., and Charles N. Kroll, 1989, Low-flow frequency analysis using probability-plot correlation coefficients: *J. of Water Resources Planning and Management, ASCE, 115*, 338-357.
- Vogel, R.M. and J.R. Stedinger, 1985, Minimum variance streamflow record augmentation procedures: *Water Resources Research 21*, 715-723.
- Walker, S. H., and D. B. Duncan, 1967, Estimation of the probability of an event as a function of several independent variables: *Biometrika 54*, 167-179.
- Walpole, R. E. and R. H. Myers, 1985, *Probability and Statistics for Engineers and Scientists*, 3rd ed.: MacMillan Pub., New York, 639 p.
- Walton, W. C., 1970, Groundwater Resource Evaluation: McGraw-Hill, New York, 664 p.
- Weibull, W., 1939, *The Phenomenon of Rupture in Solids*: Ingeniors Vetenskaps Akademien Handlinga 153, Stockholm, p. 17.
- Welch, A. H., M. S. Lico, and J. L. Hughes, 1988, Arsenic in ground water of the western United States: *Ground Water 26*, 333-338.
- Wells, F. C., J. Rawson, and W. J. Shelby, 1986, Areal and temporal variations in the quality of surface water in hydrologic accounting unit 120301, Upper Trinity River basin, Texas: U.S. Geological Survey Water-Resources Investigations Report 85-4318, 135 p.
- Wilcoxon, F., 1945, Individual comparisons by ranking methods: *Biometrics*, 1, 80-83.

- Wilk, M. B. and H. J. Chen, 1968, A comparative study of various tests for normality: *J. Amer. Stat. Assoc.* 63, 1343-72.
- Williams, G. P., and Wolman, M.G., 1984, Downstream effects of dams on alluvial rivers: U.S. Geological Survey Professional Paper 1286, 83 p.
- Wright, W. G., 1985, Effects of fracturing on well yields in the coal field areas of Wise and Dickenson Counties, Southwestern Virginia: U.S. Geological Survey Water-Resources Investigations Report 85-4061, 21 p.
- Xhoffer, C., P. Bernard, and R. Van Grieken, Chemical characterization and source apportionment of individual aerosol particles over the North Sea and the English Channel using multivariate techniques: *Environmental Science and Technology 24*, 1470-1478.
- Yee, J. J. S., and C. J. Ewart, 1986, Biological, morphological, and chemical characteristics of Wailuku River, Hawaii: *U.S. Geological Survey Water Resources Investigations Report 86-4043*, 69 p.
- Yorke, T. H., J. K. Stamer, and G. L. Pederson, G.L., Effects of low-level dams on the distribution of sediment, trace metals, and organic substances in the Lower Schuylkill River Basin, Pennsylvania: *U.S. Geological Survey Water-Supply Paper 2256-B*, 53 p.
- Zar, Jerrold H., 1999, *Biostatistical Analysis*, Fourth Edition. Prentice-Hall, Saddle River, New Jersey, 663 p.
- Zelen, N., and N. C. Severo, 1964, Probability Functions: Chapter 26 in Abramowitz, M. and I.
 A. Stegun, eds., *Handbook of Mathematical Functions*: U.S. National Bureau of Standards,
 Applied Mathematics Series No. 55, Wash, D.C., 1045 p.

Appendix A

Construction of Boxplots

The upper and lower limits of the central box are defined using either quartiles or hinges. These definitions are clarified below. Then the influence of each definition on the position of the whiskers is demonstrated. Definitions used by commercial software packages are listed, including one non-conventional form called a "box graph".

Quartiles

Quartiles are the 25th, 50th and 75th percentiles of a data set, as defined in chapter 1. Consider a data set X_i , i=1,...n. Computation of percentiles follows the equation

$$p_j = X_{(n+1)\bullet j}$$

where n is the sample size of X_i,

j is the fraction of data less than or equal to the percentile value (for the 3 quartiles, j= .25, .50, and .75).

Non-integer values of (n+1)•j imply linear interpolation between adjacent values of X. Computation of quartiles for two small example data sets is illustrated in Table 1.

Hinges

Tukey (1977) used values for the ends of the box which, along with the median, divided the data into four equal parts. These "fourths" or "hinges" are defined as:

Lower hinge h_L = median of all observations less than or equal to the sample median. Upper hinge h_U = median of all observations equal to or greater than the overall sample median.

They may also be defined as:

Lower hinge
$$h_L = X_L$$
, where $L = \frac{\text{integer } [(n+3)/2]}{2}$, and Upper hinge $h_U = X_U$, where $U = (n+1) - L$.

where "integer []" is the integer portion of the number in brackets. For example, integer [5.7] = 5. Again, non-integer values of L and U imply interpolation. With hinges, however, this will always

be halfway between adjacent data points. Therefore, hinges are always either data values themselves, or averages of two data points, and so are easier to compute by hand than are percentiles. Hinges will generally be similar to quartiles for large (n> 30) sample sizes. For smaller data sets, differences will be more apparent. For example, when n=12 the lower hinge is halfway between the 3rd and 4th data points, while the lower quartile is one-quarter of the way between the two points (see Table 1). Both measures split the data into one-fourth below and three fourths above their value. Either are acceptable for use in boxplots.

Table A1

A. For the following data X_i of sample size n=11:

```
lower quartile =
                                 X_{(n+1)}•.25
                                                 =X_3
                                                                = 5.
p_{.25} =
                                 X_{(n+1)}•.75
                                                 = X_9
          upper quartile =
                                                                = 90.
p_{.75} =
p_{.50} =
          median =
                         X_{(n+1)} \cdot .50 = X_6
                                                                = 47.
 h_1 =
          lower hinge = median [2 3 5 45 46 47]
                                                                = 25.
 h_u =
          upper hinge = median [47 48 50 90 151 208]
                                                                = 70.
```

B. For sample size n=12, and data X_i , i=1,...n equal to:

```
X_{(n+1)\bullet.25} = X_{3.25} = X_3 + 0.25 \bullet (X_4 - X_3)
p_{25} = lower quartile =
                                                                                           = 15.
                             X_{(n+1)\bullet.75} = X_{9.75} = X_9 + 0.75 \bullet (X_{10} - X_9)
p_{75} = upper quartile =
                                                                                           = 80.
p_{50} = median =
                              X_{(n+1)} \cdot .50
                                               = X_{6.5} = X_6 + 0.50 \cdot (X_7 - X_6)
                                                                                           = 47.5.
h_1 =
                              median [2 3 5 45 46 47]
                                                                                           = 25.
        lower hinge =
                              median [48 49 50 90 151 208]
                                                                                           = 70.
h_{ij} =
        upper hinge =
```


Figure A1. Boxplots for the Table A1 data

Figure A1 shows standard boxplots for the Table 1 data using both percentiles and hinges. Data in Table 1 were designed to maximize differences between the two measures. Real data, and larger sample sizes, will evidence much smaller differences. Note that the definitions of the box boundaries directly affect whisker lengths, and also determines which data are plotted as "outside" values.

It would be ideal if all software used the same conventions for drawing boxplots. However, that has not happened. Software written by developers who stick to the original definitions prefer hinges; those who want box boundaries to agree with tabled percentiles use quartiles. The Table 1 data can be used to determine which convention is used to produce boxplots.

Non-conventional definitions

Other statistical software use another (non-conventional) value for the box boundaries (Frigge and others, 1989). They use the next highest data value for the lower box boundary whenever n/4 is not an integer. This avoids all interpolation. Note that n, not n+1, is used.

StatView uses a percentile-type boxplot similar to the truncated boxplot, except that the upper and lower 10 percent of data are plotted as individual points. The weakness of this scheme is that 10 percent of the data will always be plotted individually at each end of the plot, and so it is less effective for defining and emphasizing unusual values. Also important is that StatView uses yet another definition for the box boundaries, $X_{(n+2)\bullet j}$, in calculating the quartiles. This non-conventional boxplot was called a "box graph" by Cleveland (1985).

Therefore some statistical software will produce boxes differing from conventional boxplots, particularly for small data sets.

Boxplots for Censored Data

Data sets whose values include some observations known only to be below (or above) a limit or threshold can also be effectively displayed by boxplots. First set all values below the threshold to some value less than (not equal to) the reporting limit. The actual value is not important, and could be 0, one-half the reporting limit, etc. Produce the boxplot. Then draw a line across the graph at the value of the threshold, and erase all lines below this value from the graph.

This procedure was used for data in figure A2. If less than 25 percent of the data are below the threshold, this procedure will affect at most only the lower whisker (as in the Hoover Dam through Morelos Dam boxplots). If between 25 and 75 percent are below the threshold, the box will be partially hidden below the threshold (as in the CO-UT Line and Cisco boxes). If more than 75 percent of the data are below the threshold, part of the upper whisker and outside values will be visible above the threshold, as in the Lees Ferry box. In each case, these boxplots accurately and fairly illustrate both the distribution of data above the threshold, and the percentage of data below the threshold.

Figure A2. Dissolved solids concentrations along the Colorado River, artificially censored at a threshold of 600 mg/L.

A second alternative for boxplots of censored data is to estimate the percentiles falling below the threshold, and drawing dashed portions of the box below the threshold using these estimates. Helsel and Cohn (1988) have compared methods for estimating these percentiles. When multiple thresholds occur, such as thresholds which have changed over time or between laboratories, a solid line can be drawn across the plot at the <u>highest</u> threshold. Portions of the boxes above the highest threshold will be correct as long as each censored observation is assigned some value below its threshold. Quartiles falling below the highest threshold should be determined by using the methods recommended by Helsel and Cohn (1988). All lines below the highest threshold are only estimates, and should be drawn as dashed lines on the plot.

Displaying confidence intervals

As an aid for displaying whether two groups of data have different medians, confidence intervals for the median as defined in chapter 3 can be added to boxplots. When boxplots are placed side by side, their medians are significantly different if the confidence intervals do not overlap. Three methods of displaying these intervals are shown in figure A3. In the first method (A), the box is "notched" at both upper and lower limits, making the box narrower for all values within the interval. In the second (B), parentheses are drawn within the box at each limit. Shading is used in (C) to illustrate interval width. If displaying differences in medians is not of primary interest, these

methods add visual confusion to boxplots and are probably best avoided. Confusion is compounded when the interval width falls beyond the 25th or 75th percentiles. Of the three, shading seems the easiest to visualize and least confusing.

Figure A3. Methods for displaying confidence interval of median using a boxplot.

A. Notched boxplots B. Parentheses C. Shaded boxplot

Appendix B

Tables

Table B1	Cunnane plotting positions for $n = 1$ to 20
Table B2	Normal quantiles for Cunnane plotting positions of Table Ba
Table B3	Critical values for the PPCC test for normality
Table B4	Quantiles (p-values) for the rank-sum test
Table B5	Quantiles (p-values) for the sign test
Table B6	Critical test statistic values for the signed-rank test
Table B7	Critical test statistic values for the Friedman test
Table B8	Quantiles (p-values) for Kendall's tau (T)

Table B1. Cunnane plotting positions for sample sizes n = 1 to 20 10 11 12 13 14 15 16 17 18 19 20 9 5 6 8 N=5.12 .31 .50 .69 .88 N=6.10 .26 .42 .58 .74 .90 N=7.08 .22 .36 .50 .64 .78 .92 N=8.07 .20 .32 .44 .56 .68 .80 .93 N=9.07 .17 .28 .39 .50 .61 .72 .83 .93 N = 10.06 .16 .25 .35 .45 .55 .65 .75 .84 .94 N = 11.05 .14 .23 .32 .41 .50 .59 .68 .77 .86 .95 N = 12.05 .13 .21 .30 .38 .46 .54 .62 .70 .79 .87 .95 N = 13.05 .12 .20 .27 .35 .42 .50 .58 .65 .73 .80 .88 .95 N = 14.04 .11 .18 .25 .32 .39 .46 .54 .61 .68 .75 .82 .89 .96 N = 15

.04 .11 .17 .24 .30 .37 .43 .50 .57 .63 .70 .76 .83 .89 .96

N=16

.04 .10 .16 .22 .28 .35 .41 .47 .53 .59 .65 .72 .78 .84 .90 .96

N = 17

 $.03 \ .09 \ .15 \ .21 \ .27 \ .33 \ .38 \ .44 \ .50 \ .56 \ .62 \ .67 \ .73 \ .79 \ .85 \ .91 \ .97$

N = 18

.03 .09 .14 .20 .25 .31 .36 .42 .47 .53 .58 .64 .69 .75 .80 .86 .91 .97

N-19

.03 .08 .14 .19 .24 .29 .34 .40 .45 .50 .55 .60 .66 .71 .76 .81 .86 .92 .97

N=20

 $.03 \quad .08 \quad .13 \quad .18 \quad .23 \quad .28 \quad .33 \quad .38 \quad .43 \quad .48 \quad .52 \quad .57 \quad .62 \quad .67 \quad .72 \quad .77 \quad .82 \quad .87 \quad .92 \quad .97$

Table B2. Upper tail normal quantiles for the plotting positions of Table B1 (for lower tail quantiles, multiply all nonzero quantiles by -1)

0.000	N= 5 0.502	1.198							
0.203	N= 6 0.649	1.300							
0.000	N= 7 0.355	0.765	1.383						
0.153	N= 8 0.475	0.859	1.453						
0.000	N= 9 0.276	0.575	0.939	1.513					
0.123	N= 10 0.377	0.659	1.007	1.565					
0.000	N= 11 0.225	0.463	0.732	1.067	1.611				
0.103	N= 12	0.538							
0.000	N= 13	0.389				1 601			
	N= 14								
0.088		0.456	0.663	0.904	1.212	1./25			
0.000	N= 15 0.165	0.336	0.517	0.716	0.950	1.252	1.757		
0.077	N= 16 0.234	0.397	0.571	0.765	0.992	1.289	1.787		
0.000	N= 17 0.146	0.295	0.452	0.620	0.809	1.031	1.323	1.814	
0.069	N= 18 0.208	0.351	0.502	0.666	0.849	1.067	1.354	1.839	
0.000	N= 19 0.131	0.264	0.402	0.548	0.707	0.887	1.101	1.383	1.864
0.062	N= 20 0.187	0.315	0.449	0.591	0.746	0.922	1.133	1.411	1.886

Table B3. Critical r* values for the probability plot correlation coefficient test of normality (from Looney and Gulledge, 1985a)

© American Statistical Association. Used with permission.

[reject H₀: data are normal when PPCC $r < r^*$]

α-level									
<u>n</u>	.005	.010	.025	.050	.100	.250			
3	.867	.869	.872	.879	.891	.924			
4	.813	.824	.846	.868	.894	.931			
5	.807	.826	.856	.880	.903	.934			
6	.820	.838	.866	.888	.910	.939			
7	.828	.850	.877	.898	.918	.944			
8	.840	.861	.887	.906	.924	.948			
9	.854	.871	.894	.912	.930	.952			
10	.862	.879	.901	.918	.934	.954			
11	.870	.886	.907	.923	.938	.957			
12	.876	.892	.912	.928	.942	.960			
13	.885	.899	.918	.932	.945	.962			
14	.890	.905	.923	.935	.948	.964			
15	.896	.910	.927	.939	.951	.965			
16	.899	.913	.929	.941	.953	.967			
17	.905	.917	.932	.944	.954	.968			
18	.908	.920	.935	.946	.957	.970			
19	.914	.924	.938	.949	.958	.971			
20	.916	.926	.940	.951	.960	.972			
21	.918	.930	.943	.952	.961	.973			
22	.923	.933	.945	.954	.963	.974			
23	.925	.935	.947	.956	.964	.975			
24	.927	.937	.949	.957	.965	.976			
25	.929	.939	.951	.959	.966	.976			
26	.932	.941	.952	.960	.967	.977			
27	.934	.943	.953	.961	.968	.978			
28	.936	.944	.955	.962	.969	.978			
29	.939	.946	.956	.963	.970	.979			
30	.939	.947	.957	.964	.971	.979			
31	.942	.950	.958	.965	.972	.980			
32	.943	.950	.959	.966	.972	.980			
33	.944	.951	.961	.967	.973	.981			
34	.946	.953	.962	.968	.974	.981			
35	.947	.954	.962	.969	.974	.982			
36	.948	.955	.963	.969	.975	.982			
37	.950	.956	.964	.970	.976	.983			
38	.951	.957	.965	.971	.976	.983			
39	.951	.958	.966	.971	.977	.983			
40	.953	.959	.966	.972	.977	.984			

Table B3. Cont.

			α-le	evel		
<u>n</u>	.005	.010	.025	.050	.100	.250
41	.953	.960	.967	.973	.977	.984
42	.954	.961	.968	.973	.978	.984
43	.956	.961	.968	.974	.978	.984
44	.957	.962	.969	.974	.979	.985
45	.957	.963	.969	.974	.979	.985
46	.958	.963	.970	.975	.980	.985
47	.959	.965	.971	.976	.980	.986
48	.959	.965	.971	.976	.980	.986
49	.961	.966	.972	.976	.981	.986
50	.961	.966	.972	.977	.981	.986
55	.965	.969	.974	.979	.982	.987
60	.967	.971	.976	.980	.984	.988
65	.969	.973	.978	.981	.985	.989
70	.971	.975	.979	.983	.986	.990
75	.973	.976	.981	.984	.987	.990
80	.975	.978	.982	.985	.987	.991
85	.976	.979	.983	.985	.988	.991
90	.977	.980	.984	.986	.988	.992
95	.979	.981	.984	.987	.989	.992
100	.979	.982	.985	.987	.989	.992

Table B4. Quantiles (p-values) for the rank-sum test statistic W_{rs} $p = \text{Prob } [W_{rs} \ge x] = \text{Prob } [W_{rs} \le x^*]$

		n [sm	aller sample siz	[ze] = 3		
m=4	m=5	m=6	m=7	m=8	m=9	m=10
<u>x p x*</u>						
16 .114 8	18 .125 9	20 .131 10	22 .133 11	24 .139 12	27 .105 12	29 .108 13
17 .057 7	19 .071 8 20 .036 7	21 .083 9 22 .048 8	23 .092 10	25 .097 11	28 .073 11 29 .050 10	30 .080 12
18 .029 6 19 0 5	20 .036 7 21 .018 6	22 .048 8 23 .024 7	24 .058 9 25 .033 8	26 .067 10 27 .042 9	30 .032 9	31 .056 11 32 .038 10
19 0 3	22 0 5	24 .012 6	26 .017 7	28 .024 8	31 .018 8	33 .024 9
	22 0 3	25 0 5	27 .008 6	29 .012 7	32 .009 7	34 .014 8
			28 0 5	30 .006 6	33 .005 6	35 .007 7
		n [sm	aller sample siz	ze] = 4		
m=4	m=5	m=6	m=7	m=8	m=9	m=10
<u>x p x*</u>						
22 .171 14	25 .143 15	28 .129 16	31 .115 17	34 .107 18	36 .130 20	39 .120 21
23 .100 13	26 .095 14	29 .086 15	32 .082 16	35 .077 17	37 .099 19	40 .094 20
24 .057 12 25 .029 11	27 .056 13	30 .057 14 31 .033 13	33 .055 15 34 .036 14	36 .055 16 37 .036 15	38 .074 18	41 .071 19
26 .014 10	28 .032 12 29 .016 11	32 .019 12	35 .021 13	38 .024 14	39 .053 17 40 .038 16	42 .053 18 43 .038 17
27 0 9	30 .008 10	33 .010 11	36 .012 12	39 .014 13	41 .025 15	44 .027 16
27 0)	31 0 9	34 .005 10	37 .006 11	40 .008 12	42 .017 14	45 .018 15
			38 .003 10	41 .004 11	43 .010 13	46 .012 14
					44 .006 12	47 .007 13
		n [sm	aller sample siz	ze] = 5		
	m=5	m=6	m=7	m=8	m=9	m=10
	<u>x p x*</u>					
	34 .111 21	37 .123 23	41 .101 24	44 .111 26	47 .120 28	51 .103 29
	35 .075 20	38 .089 22	42 .074 23	45 .085 25	48 .095 27	52 .082 28
	36 .048 19	39 .063 21	43 .053 22	46 .064 24	49 .073 26	53 .065 27
	37 .028 18	40 .041 20	44 .037 21 45 .024 20	47 .047 23	50 .056 25	54 .050 26 55 .038 25
	38 .016 17 39 .008 16	41 .026 19 42 .015 18	46 .015 19	48 .033 22 49 .023 21	51 .041 24 52 .030 23	56 .028 24
	40 .004 15	43 .009 17	47 .009 18	50 .015 20	53 .021 22	57 .020 23
	10 .004 13	44 .004 18	48 .005 17	51 .009 19	54 .014 21	58 .014 22
		11 .001 10	10 .003 17	52 .005 18	55 .009 20	59 .010 21
				02 1000 10	56 .006 19	60 .006 20
		n [sm	aller sample siz	zel = 6		
		m=6	m=7	m=8	m=9	m=10
		<u>x p x*</u>				
		47 .120 31	51 .117 33	55 .114 35	59 .112 37	63 .110 39
		48 .090 30	52 .090 32	56 .091 34	60 .091 36	64 .090 38
		49 .066 29	53 .069 31	57 .071 33	61 .072 35	65 .074 37
		50 .047 28	54 .051 30	58 .054 32	62 .057 34	66 .059 36
		51 .032 27 52 .021 26	55 .037 29 56 .026 28	59 .041 31	63 .044 33	67 .047 35 68 .036 34
		52 .021 26 53 .013 25	56 .026 28 57 .017 27	60 .030 30 61 .021 29	64 .033 32 65 .025 31	69 .028 33
		54 .008 24	58 .011 26	62 .015 28	66 .018 30	70 .021 32
		5T .000 2T	59 .007 25	63 .010 27	67 .013 29	70 .021 32
			22 .007 23	00 .010 27	68 .009 28	72 .011 30
						73 .008 29

TABLE B4 continued

	n [sma	ller sample size] = 7	n [smalle	er sample size]
					= 9
m=7	m=8	m=9	m=10	m=9	m=10
<u>x p x*</u>	<u>x p x*</u>	<u>x p x*</u>	<u>x p x*</u>	<u>x p x*</u>	<u>x p x*</u>
61 .159 44	65 .168 47	70 .150 49	74 .15752	98 .149 73	104 .13976
62 .130 43	66 .140 46	71 .126 48	75 .13551	99 .129 72	105 .12175
63 .104 42	67 .116 45	72 .105 47	76 .11550	100 .111 71	106 .10674
64 .082 41	68 .095 44	73 .087 46	77 .09749	101 .095 70	107 .09173
65 .064 40	69 .076 43	74 .071 45	78 .08148	102 .081 69	108 .07872
66 .049 39	70 .060 42	75 .057 44	79 .06747	103 .068 68	109 .06771
67 .036 38	71 .047 41	76 .045 43	80 .05446	104 .057 67	110 .05670
68 .027 37	72 .036 40	77 .036 42	81 .04445	105 .047 66	111 .04769
69 .019 36	73 .027 39	78 .027 41	82 .03544	106 .039 65	112 .03968
70 .013 35	74 .020 38	79 .021 40	83 .02843	107 .031 64	113 .03367
71 .009 34	75 .014 37	80 .016 39	84 .02242	108 .025 63	114 .02766
72 .006 33	76 .010 36	81 .011 38	85 .01741	109 .020 62	115 .02265
	77 .007 35	82 .008 37	86 .01240	110 .016 61	116 .01764
		83 .006 36	87 .00939	111 .012 60	117 .01463
				112 .009 59	118 .01162
				113 .007 58	119 .00961
x p x* 79 .13957 80 .11756 81 .09755 82 .08054 83 .06553 84 .05252 85 .04151 86 .03250 87 .02549 88 .01948 89 .01447 90 .01046 91 .00745 92 .00544	x p x* 84 .138 60 85 .118 59 86 .100 58 87 .084 57 88 .069 56 89 .057 55 90 .046 54 91 .037 53 92 .030 52 93 .023 51 84 .018 50 95 .014 49 96 .010 48 97 .008 47	x p x* 89 .137 63 90 .118 62 91 .102 61 92 .086 60 93 .073 59 94 .061 58 95 .051 57 96 .042 56 97 .034 55 98 .027 54 99 .022 53 100 .017 52 101 .013 51 102 .010 50		x p x 119 .157 9 120 .140 90 121 .124 8 122 .109 8 123 .095 8 124 .083 8 125 .072 8 126 .062 8 127 .053 8 128 .045 8 129 .038 8 130 .032 8 131 .026 7 132 .022 7	1 0 9 8 7 6 6 5 4 3 2 1 0 9
				133 .018 7' 134 .014 7' 135 .012 7' 136 .009 7' 137 .007 7' 138 .006 7'	6 5 4 3

Table generated by D. Helsel

Table B5. -- Quantiles (p-values) for the sign test statistic S⁺

Quantiles for the sign test are identical to quantiles of the binomial distribution with percentile p=0.5. The approximation given in chapter 6 and used by most statistical software packages can be used for $n \ge 20$. Statistics textbooks that contain a table of exact quantiles for the binomial distribution for sizes below 20 include Hollander and Wolfe (1999) and Zar (1999).

An online table of exact quantiles for the binomial distribution can be found as of 5/2002 at: http://faculty.vassar.edu/lowry/binomial01.html

An example of using this online table:

Enter n (the number of data pairs) and p (=0.5). An exact table will be printed. P-values are cumulative probabilities, or values of the cumulative distribution function (cdf). For small values of the test statistic S^+ (called k in the online table) – values below n/2, use the "Down" column to read off a one-sided p-value for the sign test. For S^+ larger than n/2, use the "Up" column. The example output below is for n=13. A one-sided p-value for $S^+=4$ (the probability of getting an $S^+\leq 4$) is 0.133. The p-value for $S^+=9$ (the probability of getting an $S^+\geq 9$) also equals 0.133. For a two-sided test, p=0.266.

```
Cumulative Probability
  Exact Probability
k
                            Down
     0.000122070313 0.000122070313 1.0
0
1
     0.001586914063 0.001708984375 0.999877929688
2
     0.009521484375 0.01123046875
                                    0.998291015625
3
     0.034912109375 0.046142578125 0.98876953125
4
     0.087280273438 0.133422851563 0.953857421875
5
     0.157104492188 0.29052734375
                                    0.866577148438
6
     0.20947265625
                    0.5
                                    0.70947265625
7
                                    0.5
     0.20947265625
                    0.70947265625
8
     0.157104492188 0.866577148438 0.29052734375
9
     0.087280273438 0.953857421875 0.133422851563
10
     0.034912109375 0.98876953125
                                    0.046142578125
11
     0.009521484375 0.998291015625 0.01123046875
12
     0.001586914063 0.999877929688 0.001708984375
13
     0.000122070313 1.0
     0.000122070313
```


Figure B1. Two-sided critical region (p-values), shaded, for the sign test. n=13, $S^+=4$ or 9.

Table B6 – Critical test statistic values for the signed-rank statistic W⁺ (from McCornack, 1965)

© American Statistical Association. Used with permission.

The approximation given in chapter 6, used by most statistics software packages, can be used for n > 15 and $\alpha \ge 0.025$. For $\alpha < 0.025$, see exact tables in the McCornack paper or a textbook such as Hollander and Wolfe (1999), even for large sample sizes.

[reject H_0 : at one-sided α when $W+ \leq$ table entry (small W)]

[reject H_0 : at one-sided α when $W+ \geq$ table entry (large W)]

α-level							α-level		
n	.005	.010	.025	.050	<u>n</u>	.005	.010	.025	.050
5				0	5				15
6			0	2	6			21	19
7		0	2	3	7		28	26	25
8	0	1	3	5	8	36	35	33	31
9	1	3	5	8	9	44	42	40	37
10	3	5	8	10	10	52	50	47	45
11	5	7	10	13	11	61	59	56	53
12	7	9	13	17	12	71	69	65	61
13	9	12	17	21	13	82	79	74	70
14	12	15	21	25	14	93	90	84	80
15	15	19	25	30	15	105	101	95	90
16	19	23	29	35	16	117	113	107	101
17	23	27	34	41	17	130	126	119	112
18	27	32	40	47	18	144	139	131	124
19	32	37	46	53	19	158	153	144	137
20	37	43	52	60	20	173	167	158	150

Table B7 – Critical test statistic values for the Friedman statistic Xf (from Martin, Leblanc and Toan, 1993)

© The Canadian Journal of Statistics. Used with permission.

The chi-square approximation given in chapter 7 is used by most statistics software packages. For comparing 3 to 5 groups of data with sample sizes (blocks) n <10 in each group, an exact table should be used.

[reject H_0 : at α when $Xf \ge table entry]$

k = 3 growth	oups		α-level		
<u>n</u>	.005	.010	.025	.050	.10
3				6.00	6.00
4	8.00	8.00	8.00	6.50	6.00
5	10.00	8.40	7.60	6.40	5.20
6	10.33	9.00	8.33	7.00	5.33
7	10.29	8.86	7.71	7.14	5.43
8	9.75	9.00	7.75	6.25	5.25
9	10.67	8.67	8.00	6.22	5.56
10	10.40	9.60	7.80	6.20	5.00
k = 4 gr	oups	(α-level		
<u>n</u>	.005	.010	.025	.050	.10
2	·			6.00	6.00
3	9.00	9.00	8.20	7.40	6.60
4	10.20	9.60	8.40	7.80	6.30
5	10.92	9.96	8.76	7.80	6.36
6	11.40	10.20	8.80	7.60	6.40
7	11.40	10.37	9.00	7.80	6.43
8	11.85	10.50	9.00	7.65	6.30
9	12.07	10.87	9.13	7.80	6.47
10	12.00	10.80	9.12	7.80	6.36
k = 5 gr	nuns	(α-level		
<u>n</u>	.005	.010	.025	.050	.10
2		8.00	8.00	7.60	7.20
3	10.67	10.13	9.60	8.53	7.47
4	12.00	11.20	9.80	8.80	7.60
5	12.48	11.68	10.24	8.96	7.68
6	13.07	11.87	10.40	9.07	7.73
7	13.26	12.11	10.51	9.14	7.77
8	13.50	12.30	10.60	9.30	7.80
9	13.69	12.44	10.67	9.24	7.73
10	13.84	12.48	10.72	9.28	7.76

Table B8 -- Quantiles (p-values) for Kendall's S statistic and tau correlation coefficient

For N>10 use the approximation given in section 8.2.2

One-sided $p = Prob [S \ge x] = Prob [S \le -x]$

	N :	= Numbe	r of data p	airs		N	= Number	r of data p	airs
	4	5	8	9		3	6	7	10
X					X				
0	0.625	0.592	0.548	0.540	1	0.500	0.500	0.500	0.500
2	0.375	0.408	0.452	0.460	3	0.167	0.360	0.386	0.431
4	0.167	0.242	0.360	0.381	5		0.235	0.281	0.364
6	0.042	0.117	0.274	0.306	7		0.136	0.191	0.300
8		0.042	0.199	0.238	9		0.068	0.119	0.242
10		0.0083	0.138	0.179	11		0.028	0.068	0.190
12			0.089	0.130	13		0.0083	0.035	0.146
14			0.054	0.090	15		0.0014	0.015	0.108
16			0.031	0.060	17			0.0054	0.078
18			0.0156	0.038	19			0.0014	0.054
20			0.0071	0.022	21			0.0002	0.036
22			0.0028	0.0124	23				0.023
24			0.0009	0.0063	25				0.0143
26			0.0002	0.0029	27				0.0083
28			< 0.0001	0.0012	29				0.0046
30				0.0004	31				0.0023
32				0.0001	33				0.0011
34				< 0.0001	35				0.0005
36				< 0.0001	37				0.0002
					39				< 0.0001
					41				< 0.0001
					43				< 0.0001
					45				< 0.0001

Table generated by D. Helsel

Appendix C

Data Sets

		Chapter cited
Data Set C1	Annual peak discharges for the Saddle River, NJ	2, 3
Data Set C2	Annual streamflows for the Conecuh River, AL	3, 6
Data Set C3	Daily streamflow for the Potomac River, Wash. D.C.	3
Data Set C4	Atrazine concentrations	6
Data Set C5	Subset of iron concentrations at low flow	7
Data Set C6	Complete set of iron concentrations	7
Data Set C7	Specific capacities of wells in Pennsylvania	7
Data Set C8	Corbicula on the Tennessee River	7
Data Set C9	TDS concentrations for the Cuyahoga River, Ohio	9
Data Set C10	Phosphorus transport, Illinois River at Marseilles	9
Data Set C11	Grain size and permeability of alluvial aquifers	9
Data Set C12	ROE and TDS data,	
	Rappahannock R. near Fredericksburg, Virginia	10
Data Set C13	Streamflow data used for record extension	10
Data Set C14	Mean annual runoff and basin characteristics	11
Data Set C15	Urban total nitrogen loads	11
Data Set C16	Uranium and TDS in groundwaters	11
Data Set C17	Green River, Kentucky sediment transport data	12
Data Set C18	Maumee River, Ohio total P trends data	12
Data Set C19	Water levels, P-R-M system middle aquifer, NJ	12
Data Set C20	Factors affecting contamination from impoundments	15

Data sets are available in both ASCII and MS Excel formats. See the online location from which you obtained this book for the data files HhappC.dat and HhappC.xls.

Appendix D

Answers to Selected Exercises

Chapter 1

- 1.1 For the well yield data:
 - a) mean = 0.19
 - b) trimmed mean = 0.05
 - c) geometric mean = 0.04
 - d) median = 0.04
 - e) They differ because the data are skewed. The estimates which are more robust are similar, while the mean is larger.
- 1.2 a) standard deviation = 0.31
 - b) interquartile range = 0.36
 - c) MAD = 0.04
 - d) skew = 2.07. quartile skew = 0.83.

Because the data are asymmetric, the median difference is small, but the IQR and standard deviation are not.

1.3 mean = 1.64 std. dev. = 2.85 median = 0.80 IQR = 0.61 geometric mean = 0.04 MAD = 0.25 skew = 3.09 quartile skew =
$$-0.10$$

The largest observation is an outlier. Though the skew appears to be strongly positive, and the standard deviation large, this is due only to the effect of that one point. The majority of the data are not skewed, as shown by the more resistant quartile skew coefficient.

- a) assuming the outlying observation is accurate, representing some high-nitrogen location which is important to have sampled, the mean must be used to compute the mass of nitrogen falling per square mile. It would probably be computed by weighting concentrations by the surface area represented by each environment. The median would under-represent this mass loading.
- b) the median would be a better "typical" concentration, and the IQR a better "typical" variability, than the mean and standard deviation. This is due to the strong effect of the one unusual point on these traditional measures.

Chapter 2

Either a cube root or logarithmic transform would increase symmetry.

2.2 a)

The data are strongly right-skewed. A log transformation makes these data more symmetric.

2.3 Q-Q plot.

The granodiorite shows higher chloride concentrations than does the quartz monzonite. This can be seen with any of the three graphs, but most easily with the boxplot. From the Q-Q plot, the relationship does not look linear.

Appendix D Answers 473

2.4 There appears to be no effect of the waste treatment plant.

Chapter 3

3.1 nonparametric: x' = 4 ($\alpha/2 = .0154$). $R_l = 5$, $R_u = 14$. $0.4 \le Cl_{0.5} \le 3.0$ at $\alpha = 0.031$. This is as close to 0.05 as the table allows.

parametric: Using the natural logs of the data,
$$\exp\left(-0.045 - 2.11 \bullet \sqrt{1.63/18} \right) \leq GM_X \leq \exp\left(-0.045 + 2.11 \bullet \sqrt{1.63/18} \right).$$

$$0.51 \leq GM_X \leq 1.80.$$

Either of intervals is reasonable. The logs of the data still retain some skewness, so the nonparametric interval may be more realistic. The parametric interval might be preferred to obtain an alpha of 0.05. The choice would depend on whether the assumption of lognormality was believed.

3.2 symmetric:
$$0.706 - 2.12 \cdot \sqrt{0.639/17} \le \mu \le 0.706 + 2.12 \cdot \sqrt{0.639/17}$$

 $0.30 \le \mu \le 1.12$

Point estimates: mean = 0.705 (assuming normal distribution). mean = $\exp(-0.849 + 0.5 \cdot 1.067)$ = 0.73 (assuming a lognormal distribution).

As the logs of the data are more symmetric than the data prior to transformation, the lognormal (2nd) estimate is preferred.

3.3 Parametric 95% prediction interval:

$$0.19 - 2.20 \cdot \sqrt{0.0975 + (0.0975/12)}$$
 to $0.19 + 2.20 \cdot \sqrt{0.0975 + (0.0975/12)}$ or -0.53 to 0.91 gallons/min/foot. Includes 0.85 , so same distribution.

Nonparametric 95% prediction interval:

 $X[0.025 \bullet 13]$ to $X[0.975 \bullet 13]$ X0.325 to X12.675

The sample size is too small to produce such a wide (95%) nonparametric prediction interval. Therefore a parametric interval must be used. However, the negative lower end of the parametric prediction interval indicates that a symmetric interval is not appropriate. So an asymmetric interval resulting from taking logarithms should be used instead of the one above.

3.4 The data look relatively symmetric, so no logs taken.

mean: 683 ± 126 , or 557->809 $\alpha = .05$. median: $R_1=6$, $R_{11}=15$ 524->894 $\alpha = .041$.

3.5 The 90th percentile = 2445 cfs. A one-sided 95% confidence interval for the 90th percentile (an upper confidence limit to insure that the intake does not go dry) is found using the large-sample approximation of equation 3.17:

$$R_{\rm u} = 365 \cdot 0.1 + z_{[0.95]} \cdot \sqrt{365 \cdot 0.1 \cdot (0.9)} + 0.5$$

= 36.5 + 1.645 \cdot 5.73 + 0.5 = 46.4

The 46th ranked point is the upper CI, or 2700 cfs.

Chapter 4

- 4.1 For the before-1969 data, PPCC r=0.986. For the after-1969 data, PPCC r=0.971. Critical values of r are 0.948 and 0.929, respectively. Therefore normality cannot be rejected for either period at $\alpha = 0.05$.
- 4.2 For the arsenic data, PPCC r=0.844. The critical r* from Appendix table B3 is r*=0.959. Therefore reject normality. For log-transforms of the data, PPCC r=0.973. Normality of the transformed data is not rejected.

Chapter 5

- 5.1 The p-value remains the same.
- 5.2 Given that we wish to test for a <u>change</u> in concentration, but the direction of the change is not specified in the problem, this should be a two-sided test. If it had stated we were looking for an increase, or a decrease, the test would have been a one-sided test.
- 5.3 a. Quantiles are the 12 "after" data, and 12 quantiles computed from the 19 "before" data:

<u>i</u>	i	"after"	"before"
1	1.34	1350.00	1222.13
2	2.92	2260.00	1715.25
3	4.49	2350.00	1739.84
4	6.06	2870.00	1900.82
5	7.64	3060.00	2506.23
6	9.21	3140.00	2614.92
7	10.79	3180.00	2717.21
8	12.36	3430.00	2873.61
9	13.93	3630.00	3375.24
10	15.51	3780.00	3591.15
11	17.08	3890.00	3922.29
12	18.66	5290.00	4617.37

Appendix D Answers

The relationship appears additive. The Hodges-Lehmann estimate (median of all possible after—before differences) = 480 cfs.

b. After regulation, the reservoir appears to be filling. Any test for change in flow should omit data during the transition period of 1969-1970. Plots of time series are always a good idea. They increase the investigator's understanding of the data. Low flows after regulation are not as low as those before. This produces the pattern seen in the Q-Q plot of the low quantiles being lower after regulation. while the upper quantiles appear the same, as shown by the drift closer to the x=y line for the higher values.

c. With 1969 and 70 included, $W_{rs} = 273.5 \ p=0.22$. The after flows are not significantly different. With 1969 and 70 excluded, $W_{rs} = 243.5 \ p=0.06$. The after flows are close to being significantly different -- more data after regulation is needed.

5.4	Exact test	
	X	

$\underline{\mathbf{X}}$	$\underline{\mathbf{Y}}$	<u>R(Y)</u>	$\underline{R(X)}$
1			1
	1.5	2	
2			3
	2.5	4	
3			5
	3.5	6	
4			7
	4.5	8	
	5.5	9	
	7.0	10	
	10.0	11	
	20.0	12	
	40.0	13	
	100.0	14	

$$n = 4 \ m = 10$$

$$W_{rs} = \Sigma R_x = 16$$

From table B4, $Prob(W_{rs} \le 16) = .027$. The two-sided exact p-value = 0.054

Large-sample approximation

The mean is
$$\mu_W = \frac{n^{\bullet}(N+1)}{2} = \frac{4^{\bullet}15}{2} = 30$$

The standard deviation is given by
$$\sigma_W = \sqrt{\frac{n^\bullet m^\bullet (N+1)}{12}} = 7.0711$$

$$Z_{rs} = \frac{16 - \mu_W + 1/2}{\sigma_{w}} = -1.909$$

Using linear interpolation between -1.9110 and -1.8957 in a table of the standard normal distribution gives the one-tail probability of 0.028. So the two-sided approximate p-value is 0.056.

t-test on the ranks

Replacing variable values by ranks gives

The pooled variance is:

$$S^{2} = \frac{3S_{x}^{2} + 9S_{y}^{2}}{12} = 13.2386$$

S = 3.639

$$t = \frac{\overline{x} - \overline{y}}{S\sqrt{(1/n + 1/m)}} = -2.27610$$

Linear interpolation for a student's t with 12 degrees of freedom gives

$$.975 + \frac{(2.27610 - 2.1788)}{(2.6810 - 2.1788)} \cdot .015 = .97791$$
 $1.0 - .97791 = .022$

The two-sided rank transform p-value is .044.

Sum	mary	
Approach	p-value	
Rank-Sum Exact	0.054	
Rank-Sum Approx.	0.056	
t test on ranks	0.044	

To compute $\hat{\Delta}$, the (n•m)=40 differences (X_i-Y_j=D_j) are:

	, I	,	/		\ 1))	,			
(Y_1)	0.5	1.5	2.5	3.5	4.5	6	9	19	39	99
(Y_2)	-0.5	0.5	1.5	2.5	3.5	5	8	18	38	98
(Y_3)	-1.5	-0.5	0.5	1.5	2.5	4	7	17	37	97
(Y_4)	-2.5	-1.5	-0.5	0.5	1.5	3	6	16	36	96

$$\hat{D} = \text{median of } 40 \text{ D}_{i}'\text{s} (D_{\text{rank } 20} + D_{\text{rank } 21})/2 = 3.75$$

5.5 Yields with fracturing
$$r_{crit} = .932$$
, accept normality

<u>Yields without</u> r_{Crit} = .928, reject normality

Because one of the groups is non-normal, the rank-sum test is performed. $W_{rs} = \Sigma R_{without} = 121.5. \quad \text{The one-sided p-value from the large-sample approximation} \\ p = 0.032. \quad \text{Reject equality.} \quad \text{The yields from fractured rocks are higher.}$

5.6 The test statistic changes very little (W_{rs} = 123), indicating that most information contained in the data below detection limit is extracted using ranks. Results are the same (one-sided p-value = 0.039. Reject equality). A t-test could not be used without improperly substituting some contrived values for less-thans which might alter the conclusions.

Chapter 6

6.1 The sign test is computed on all data after 683 cfs is subtracted. $S^+ = 11$. From table B5, reject if $S^+ \ge 14$ (one-sided test). So do not reject. p > 0.25.

- 6.2 c is not a matched pair.
- 6.3 a. H₀: μ (South Fork) μ (North Fork) = 0. H₁: μ (South Fork) – μ (North Fork) \neq 0.
 - b. A boxplot of the differences shows no outliers, but the median is low. Conductance data are usually not skewed, and the PPCC r=0.941, with normality not rejected. So a t-test on the differences is computed (parametric).

- c. t = -4.24 p = 0.002 Reject H₀.
- d. Along with the boxplot above, a scatterplot shows that the South Fork is higher only once:

- e. The mean difference is -64.7.
- 6.4 Because of the data below the reporting limit, the sign test is performed on the differences Sept–June. The one-sided p-value = 0.002. Sept atrazine concentrations are significantly larger than June concs before application.
- 6.5 For the t-test, t=1.07 with a one-sided p-value of 0.15. The t-test cannot reject equality of means because one large outlier in the data produces violations of the assumptions of normality and equal variance.

Chapter 7

7.1 As a log-transformed variable, pH often closely follows a normal distribution. See the following boxplots:

pH for three piezometer groups (from Robertson et al., 1984)

The PPCC for the three groups (0.955 for BP-1, 0.971 for BP-2, and 0.946 for BP-9) cannot disprove this assumption. Therefore ANOVA will be used to test the similarity of the three groups.

Anova Table:

Source	df	SS	MS	F	p-value
Piez Gp	2	7.07	3.54	9.57	0.002
Error	<u>15</u>	<u>5.54</u>	0.37		
Total	17	12.61			

The groups are declared different. Statistics for each are:

GP	N	Mean	Std. Dev.	Pooled Std. Dev = 0.608
BP-1	6	7.65	0.596	
BP-2	6	6.68	0.279	
BP-9	6	8.20	0.822	

A Tukey's test on the data is then computed to determine which groups are different. The least significant range for Tukey's test is

LSR =
$$q_{(0.95, 2, 15)} \cdot \sqrt{0.37/6}$$
 = 3.01 \cdot 0.248
= 0.75

Any group mean pH which differs by more than 0.75 is significantly different by the Tukey's multiple comparison test. Therefore two piezometer groups are contaminated, significantly higher than the uncontaminated BP-2 group:

$$BP-9 \cong BP-1 > BP-2$$

Since the sample sizes are small (n=6 for each group) one might prefer a Kruskal-Wallis test to protect against any hidden non-normality:

GP	N	MEDIAN	$\overline{R_j}$
BP-1	6	7.60	11.3
BP-2	6	6.75	3.6
BP-9	6	8.00	13.6

Overall Median = 9.5

$$K = 11.59$$
 $\chi^2_{0.95,(2)} = 5.99$. Reject H₀, with p = 0.003. ANOVA and Kruskal-Wallis tests give identical results.

7.2 Boxplots of the data indicate skewness. Therefore the Kruskal-Wallis test is computed:

$$K = 7.24$$
 Corrected for ties, $K = 7.31$. $p = 0.027$

Reject that all groups have the same median chloride concentration.

granodiorite
$$\cong$$
 qtz monzonite (p = 0.086)
qtz monzonite \cong ephemeral (p = 0.27). So:

granodiorite	qtz monzonite	ephemeral	

7.3 Median polish for the data of strata 1:

1	Winter	Spring	Summer	Fall	Year median
1969	25.25	11.25	10.25	10.75	8.75
1970	16.5	2.5	1.5	2	0.00
1971	15	1	0	0.5	-1.5 0
Season median	14.25	0.25	-0.75	-0.25	2.25

Corbicula densities were 14 units higher in winter than in other seasons, and 9 to 10 units higher in 1969 than 1970 or 1971. Those effects dominated all others. This is shown by a plot of the two-way polished medians:

481

The residuals are skewed, as shown in a boxplot:

However, a residuals plot of cell residuals versus the comparison value shows outliers, but an overall slope of zero, stating that no power transformation will improve the situation very much.

7.4	Due to the outliers noted above, ranks of the Corbicula data were used to test the effects
	of season and year on the number of organisms.

Source	df	SS	MS	F	p-value
Year	2	1064.7	532.33	13.78	0.000
Season	3	1300.7	433.57	11.23	0.000
Year*Season	6	560.8	93.46	2.42	0.057
Error	<u>24</u>	<u>926.8</u>	38.62		
Total	35	3853.0			

A two-way ANOVA on the ranks indicates that both season and year are significant influences on the density of Corbicula, and that there is no interaction. This is illustrated well by the plot of polished medians above.

7.5 Not answered.

Chapter 8

8.1 The plot of uranium versus total dissolved solids looks like it could be nonlinear near the 0 TDS boundary. So Spearman's rho was computed, and rho = 0.72 with $t_r = 4.75$ and p<0.001.

- Pearson's r = 0.637 with $t_r = 3.79$ and p < 0.001. Kendall's tau = 0.53 with p < 0.001. The suggestion of nonlinearity would favor either rho or tau, though the nonlinearity is not serious in this case.
- 8.3 Not answered.

Chapter 9

9.1 A residuals plot for the untransformed variables shows strong curvature. A log-log regression gives an acceptable plot, with one outlier not influencing the line:

$$log(Yield) = 6.74 + 1.39 \cdot log(Grain Size)$$
 $t = 8.14$ $p < 0.001$

9.2 The overall mean yield will be the average of estimates of mean yield for the four wells from the regression equation. Applying the 1/2 s² correction factor to obtain the mean yield rather than the median, the estimated mean yields are:

```
46.104 120.830 316.669 556.380 with overall mean = 260 \text{ gal/day/ft}^2.
```

9.3 Here are some possible transformations, including the log. Can logQ be improved on?

explanatory variable	<u>R</u> ² _
Q	40.8%
$Q^{0.5}$	51.1%
log Q	57.3%
Q -0.25	57.4%
Q -0.5	55.4%
Q -1	47.9%
1/(1+0.00001Q)	41.8%
1/(1+0.0001Q)	47.6%
1/(1+0.001Q)	58.5%
1/(1+0.01Q)	52.4%
1/(1+0.1Q)	48.5%

There are perhaps two other good candidate explanatory variables on this list, $Q^{-0.25}$, and 1/(1+0.001Q). Neither improve significantly over logQ, based on R^2 or on residuals plots. A residuals plot and probability plot of residuals for the hyperbolic transformation having b=0.001 are below.

When b=0.00001 or smaller, the model is virtually identical to the linear model TDS = b_0+b_1Q [a power transformation with θ =1]. When b=0.1 or larger, the model is virtually identical to the inverse model TDS = $b_0+b_1(1/Q)$ [a power transformation with θ =-1]. Values of b in between these provide functions similar to moving down the ladder of powers from θ =1 to θ =-1. The advantage of using the hyperbolic function is its interpretability as a mixing of ground and surface waters (Johnson et al., 1969).

9.4 If the objective is to predict LOAD, then that (or its transform) should be the dependent variable. The regression statistics (especially PRESS) will then tell how well the predictions will do. If ln(C) is used as the dependent variable, the standard error s = 0.3394, exactly

the same as in the equation for $\ln(\text{LOAD})$, but $R^2=17.3$ % rather than 67.9 % for $\ln(\text{LOAD})$. The t statistic on β_1 is -4.43, also significant but not as much as when $y = \ln(\text{LOAD})$. In other words, the error of the $\ln(C)$ values is exactly the same magnitude as the errors of $\ln(\text{LOAD})$. The percent variation explained drops from 67.9 % to 17.3 %, the difference being the strong effect of Q on variation in LOAD. Note the changes in regression coefficients. The previous model was $\ln(\text{LOAD}) = 0.789 + 0.761 \ln(Q)$. This one is $\ln(C) = -.194 - .239 \ln(Q)$. The intercept decreased by an amount equal to $\ln(2.7)$ (the log of the unit conversion coefficient) and the slope decreased by exactly 1 because Q is removed from both sides. The standard errors of the coefficients are both unchanged.

If LOAD were computed by using the regression for ln(C) and then multiplying that result by 2.7 Q, exactly the same estimates would result as when using the equation for ln(LOAD). This is true regardless of which estimation method is employed (median, MLE, or Smearing), and will always be true for log-log regression estimation. The moral of the story is: if your boss thinks that you shouldn't use ln(LOAD) as the dependent variable and you can't convince him or her otherwise, go ahead and predict ln(C), and from that ln(LOAD), and you will still get the results you got doing it the simple way.

Chapter 10

10.1	X	Y		Slopes						
	1	10	30	10	15	13	9.2			
	2	40	-1 0	7.5	7.33	4				
	3	30	25	16	8.67					
	4	55	7	0.5						
	5	62	-6							
	6	56								

Ranked slopes: -10, -6, 0.5, 4, 7, 7.33, 7.55, 8.67, 9.2, 10, 13, 15, 16, 25, 30

a) Median slope =
$$8.67$$
 = Theil slope estimator \hat{b}_1
Median X = 3.5
Median Y = 47.5
 $S = P - M$ = $13 - 2$ = 11

b)
$$\tau = \frac{S}{n(n-1)/2} = \frac{11}{6 \cdot 5/2} = 0.73$$

c) intercept
$$\hat{b}_0 = Y_{med} - \hat{b}_1 \cdot X_{med} = 47.5 - 8.67 \cdot 3.5 = 17.17$$

 $Y = 17.17 + 8.67 \cdot X$ is the Kendall-Theil equation
 $(Y = 10.07 + 9.17 \cdot X)$ is the OLS equation for the same data)

d) from table B8, for S=11 and n=6, two-sided p-value = $2 \cdot 0.028 = 0.056$.

10.2	X	<u>Y</u>	<u></u>	Slopes					
	1	10	30	10	15	47.5	9.2		
	2	40	-1 0	7.5	53.33	4			
	3	30	25	85	8.67				
	4	55	145	0.5					
	5	200	-144						
	6	56							

Ranked slopes -144, -10, 0.5, 4, 7.5, 8.67, 9.2, 10, 15, 25, 30, 47.5, 53.33, 85, 145

- a) Median slope = 10 = Theil slope estimator \hat{b}_1 Median X = 3.5Median Y = 47.5
- b) S and τ are unchanged

c)
$$\hat{b}_0 = 47.5 - 10 \cdot 3.5 = 12.5$$

Y = 12.5 + 10 \cdot X the Kendall-Theil equation is similar to ex. 10.1.
(Y = -8.33 + 21 \cdot X the OLS slope has changed a lot from ex. 10.1)

- d) the p-value is unchanged.
- e) for a 95% confidence interval, the closest entry in table B8 to $\alpha/2$ =0.025 is p=0.028 for X_u =11. From eqs. 10.3 and 10.4, $R_u = \frac{(15+11)}{2} = 13 \text{ for N=15 and } X_u$ =11.

The rank R_I of the pairwise slope corresponding to the lower confidence limit is

$$R_1 = \frac{(15-11)}{2} + 1 = 3.$$

So an $\alpha = 0.054$ confidence limit for $\hat{\beta}_1$ is the interval between the 3rd and 13th ranked pairwise slope (the 3rd slope in from either end), or

$$0.5 \le \hat{\beta}_1 \le 53.3 \ .$$

10.3 The unweighted OLS regression equation is

$$Y = -8.3 + 21.0 \cdot X$$
 $t = 1.41$ $p = 0.23$

The residuals are then divided by 6•(MAD), where the MAD is the median of the absolute values of the residuals. Bisquare weights are computed for each data point:

pt#	1	2	3	4	5	6
weight	0.999	0.996	0.935	0.954	0.179	0.631

A first weighted least squares is then computed:

$$Y = 3.1 + 13.1 X$$
 $t = 1.49$ $p = 0.21$

Bisquare weights are again computed for each data point, using residuals from the first WLS:

pt#	1	2	3	4	5	6
weight	0.984	0.952	0.938	1.000	0.000	0.746

A second WLS is then computed:

$$Y = 10.4 + 8.80 X$$
 $t = 2.73$ $p = 0.07$

Though the slope has diminished from the OLS line, the significance has greatly increased due to the lower weight of the outlier. Note the similarity between this WLS and the Kendall's robust line. A residuals plot shows that the WLS line fits most of the data much better than with OLS. The outlier's influence on the slope has diminished, and its residual remains large.

Some object: "Isn't this WLS line the same as throwing away the outlier -- it has a weight of zero?" The difference is that the outlier was determined to be downweighted to zero by the data itself, not an arbitrary decision by the data analyst. Weighted least squares also allows outliers to have partial weights, not simply a zero or one weight as with discarding the outlier. So WLS is far less arbitrary and far more consistent in its assignment of weights to all data points than is throwing away outliers.

10.4 Lowering =
$$-2.07 - 0.167$$
 •Years $r^2 = 0.76$

OLS does not follow the data as well as the smooth because the data are nonlinear.

10.5 Plotting the 20 years of joint data shows that curvature and heteroscedasticity exist, and transformation is required before regression. Thus the natural logs of both are taken. A linear relation results, as shown in the following plot.

Regression between the 20 year joint record at the two stations is:

$$Ln(Short) = 1.095 + 0.507 \cdot Ln(Base)$$
 $t = 6.00$ $p < 0.001$ $R^2 = 0.67$

Using this equation and the 30 additional years of record at Base, 30 years of simulated flows at Short are generated. Now the LOC is used to generate estimates of the "Short" 30-year record. Summary statistics for the 20 years of joint Ln(Base) and Ln(Short) records are as follows:

	<u>n</u>	<u>Mean</u>	<u>Stdev</u>	<u>Median</u>	<u>P25</u>	<u>P75</u>
Ln(Short)	20	2.319	0.524	2.160	1.862	2.850
Ln(Base)	20	2.414	0.844	2.190	1.802	3.200

From equation 10.10,
$$\begin{array}{ll} Y_i &= \overline{Y} + sign[r] \bullet \frac{sy}{s_X} \bullet (X_i - \overline{X}), \quad \text{or} \\ & Ln(Short) &= 2.319 + (.524/.844) \bullet (Ln(Base) - 2.414) \\ &= 0.820 + .621 \bullet Ln(Base) \end{array}$$

Note how the slope and intercept for LOC differ from the regression coefficients. Summary statistics for the estimated flows at "Short" by the two methods are compared to the true 30-year record from Appendix C13 in the following table.

	<u>n</u>	<u>Mean</u>	<u>Stdev</u>	<u>Median</u>	<u>P25</u>	<u>P75</u>
OLS est.	30	2.2087	0.4975	2.0228	1.7731	2.6249
LOC est.	30	2.184	0.609	1.956	1.651	2.694
true values	30	2.079	0.613	1.930	1.630	2.290

The standard deviation for the regression estimate is too small, as expected.

Boxplots are presented below for three groups: the 30-year estimates using regression and LOC combined with the 20-year record at Short, and the actual 50-year record. LOC comes closer to correctly estimating the lowest and highest flows. The regression estimates are too low for high flows, and too high for low flows. They "regress" toward the mean more than the actual data because the standard deviation of the estimates is too small, as $R^2 < 1$.

10.6 Not answered.

Chapter 11

11.1 The full multiple regression model contains strong multi-collinearity. The VIFs among the four percentage variables are huge:

LOGTN = -1.3 + 0.596 LOGDA + 0.346 LOGIMP + 0.0314 MMJTEMP									
- 0.0494 MSRAIN + 0.040 PRES + 0.035 PNON + 0.037 PCOMM +									
0.024 PIND									
n = 42	s = 0.61	$R^2 = 0.59$							
<u>Parameter</u>	<u>Estimate</u>	$\underline{\operatorname{Std}}.\underline{\operatorname{Err}}(\beta)$	<u>t-ratio</u>	<u> </u>	$\overline{\text{VIF}}$				
Intercept β_0	-1.28	24.60	-0.05	0.959					
Slopes β_k									
LOGDA	0.596	0.121	4.94	0.000	1.8				
LOGIMP	0.346	0.228	1.52	0.138	3.8				
MMJTEMP	0.031	0.019	1.65	0.107	10.1				
MSRAIN	-0.049	0.021	-2.32	0.026	9.1				
PRES	0.040	0.245	0.16	0.873	9227.2				
PNON	0.035	0.246	0.14	0.888	3062.2				
PCOMM	0.037	0.245	0.15	0.882	8311.4				
PIND	0.024	0.246	0.10	0.922	2026.2				
	Table 11.9 Regression statistics and VIF's for Exercise 11.1								
	Table 11.9 Kegi	cssion stausucs	and vii 810.	LEACICISE II.I	<u>L</u>				

To determine why the multi-collinearity is so strong, the correlation matrix is computed.

		LOG	MMJ	MS				
	LOGTN	LOGDA	IMP	ТЕМР	RAIN	PRES	PNON	PCOMM
LOGDA	0.565							
LOGIMP	0.058	-0.382						
MMJTEMP	-0.205	-0.188	0.094					
MSRAIN	-0.259	-0.083	0.018	0.915				
PRES	0.294	0.210	-0.246	0.040	0.003			
PNON	-0.042	0.319	-0.639	0.066	0.065	-0.321		
PCOMM	-0.218	-0.441	0.589	-0.027	0.039	-0.747	-0.206	
PIND	-0.131	0.060	0.114	-0.111	-0.164	-0.226	-0.124	-0.180

Surprisingly, the percentage terms do not have large pair-wise correlation coefficients. Instead, they are strongly related in that the four of them add to 100%, except for rounding error. This is why the VIFs are so large. Therefore at least one of them should be dropped. The variable with the smallest partial F (PIND) could be chosen. This brings the VIF down from over 9000 to 10, still large. In order to save much time the Cp and PRESS statistics can be computed for all possible models. The results below show that the best 5-variable model, containing LOGDA, LOGIMP, MMJTEMP,

MSRAIN, and PIND, is the best in terms of prediction errors (PRESS) and model bias/standard error (Cp). VIFs are below 10 ($R^2 < 0.9$) and so are acceptable.

					X: Varial	ole is i	in the	model
]	M		
					L l	M M		
					LO	J S		P
					0 G '	ΓR	P P	СP
					G I	EΑ	R N	OI
# of		•			D M l	I M	E O	M N
Vars	R-sq	PRESS	C-p	Max VIF	A P	P N	S N	M D
1	32.0	22.9	17.0		X			
1	8.6	30.0	35.8				X	
2	40.7	21.2	11.9	1.2	ХХ			
2	37.5	22.2	14.5	1.1	X		X	
3	46.4	20.2	9.3	1.2	ХХ		X	
3	45.2	19.8	10.3	1.2	ХХ			X
4	51.2	18.9	7.4	1.2	ХХ	X		X
4	50.9	19.8	7.7	1.2	ХХ	X	X	
* 5	57.0	17.8	4.7	6.8	ХХ	ХХ		X
5	56.2	18.0	5.4	7.5	X	ХХ	X	X
6	59.1	18.2	5.1	7.1	ХХ	ХХ	X	X
6	58.6	18.9	5.4	7.1	ХХ	ХХ	X	X
7	59.1	19.4	7.0	10.0	X X	ХХ	ХХ	X
7	59.1	19.4	7.0	13.2	ХХ	ХХ	X	ХХ
8	59.1	20.1	9.0	9227	ХХ	ХХ	ХХ	ХХ

A residuals plot from the minimum PRESS and Cp model shows no hint of curvature or increasing variance. Therefore this model is preferred.

Residuals plot for the regression of Exercise 11.1

11.2 First compare those models which have equal numbers of parameters and eliminate the ones with higher SSE.

Compare 4 to 7, eliminate 4 Compare 3 to 6, eliminate 3 Compare 2 to 5, eliminate 2 Compare 6 to 8, eliminate 6

Now, for the remaining models (1, 5, 7, 8, 9. 10) perform F tests between pairs of nested models. The order in which to proceed is arbitrary.

Compare	F	<u>df_{num}</u>	<u>dfdenor</u>	n <u>Fcrit</u>	conclusion
Models 1 to 5	11.18	1	123	3.9	reject H ₀ ,eliminate model 1
Models 5 to 7	0.28	2	121	3.1	do not reject eliminate model 7
Models 5 to 8	1.39	1	122	3.9	do not reject eliminate model 8
Models 5 to 9	0.77	3	120	2.68	do not reject eliminate model 9
Models 5 to 10	0.88	5	118	2.29	do not reject eliminate model 10

Model 5 is the preferred model.

Another 1	possible app	roach is to us	se either	PRESS o	r Mallows	Cn.
1 III CIICI	possible app.	coucii io co ac	o citirei	THEOLOG	I IIIIII W	\sim_{P} .

<u>Model</u>	<u>p</u>	<u>s</u> 2	<u>Ср</u>
1	3	0.5636	14.29
2	4	0.5350	8.37
3	5	0.5343	9.17
4	6	0.5359	10.51
5	4	0.5183	4.41
6	5	0.5207	5.98
7	6	0.5245	7.84
8	5	0.5166	5.00
9	7	0.5212	8.06
10	9	0.5208	9.95

The results are interpreted as: the transport curve is quadratic with a shift in intercept for the winter months. Only two seasons (not three) can be distinguished. The slope of the curve does not change with season.

- 11.3 Not answered.
- 11.4 Not answered.

Chapter 12

12.1 <u>Regression</u>

load =
$$25,250 - 12.6$$
 year $r^2 = 10.6\%$
(t) (1.53) (-1.50) two-sided p value = 0.134

Multiple regression

load =
$$28,152 - 14.4 \text{ year} + 0.696 \text{ q}$$
 $r^2 = 88.3\%$ (t) (4.69) (-4.60) (10.91) two-sided p value $\cong 0.0001$

Mann-Kendall

$$load = 11,800 - 5.8 \text{ year}$$
 two-sided p value = 0.415

Mann-Kendall on Residuals

Regression model is
$$load = -110 + 0.681 \text{ q } r^2 = 74.5\%$$

(t) (-1.24) (7.44)

Kendall fit: residual =
$$28,250 - 14.4$$
 year two-sided p value = 0.0001 therefore load = $-110 + 0.681q + residual$ = $-110 + 0.681q + 28,250 - 14.4$ year = $28,140 - 14.4$ year + $0.681q$

12.2 Winter:
$$P = 16$$
, $M = 34$, $S = -18$

1 tie of 3, 2 ties of 2 Var[S] = 159.33Z = -1.347

p = 0.18 very little evidence of downtrend in winter lead

Spring: P = 27, M = 38, S = -11

3 ties of 2, 1 tie of 5 Var[S] = 249Z = 0.633

p = 0.53 no evidence of downtrend in spring lead

Summer: P = 16, M = 33, S = -17

1 tie of 4

Var[S] = 156.33Z = -1.28

p = 0.20 very little evidence of downtrend in summer lead

Fall: P = 11, M = 37, S = -26

1 tie of 4, 1 tie of 2 Var[S] = 155.33 Z = 2.005

p = 0.045 fairly strong evidence of downtrend in fall lead

Seasonal Kendall: S = -72

VAR[S] = 720 Z = -2.646p (2-sided)= 0.008

Thus, even though the evidence from no individual season was highly conclusive, the data from all seasons taken together provides highly conclusive evidence of a downtrend in lead.

12.3 Maumee River Trends in Total Phosphorus

12.3.1 Parametric analysis first: LOAD vs TIME

Simple linear regression: LOAD = 444 - 0.221 TIME

t = -0.42 p = 0.673

s = 20.59 R-sq = 0.1% R-sq(adj) = 0.0%

A boxplot of the residuals shows them to be terribly skewed. A transformation is required. Try logarithms. Then the regression equation is:

$$ln(LOAD) = 117 - 0.0592 \text{ TIME}$$

 $t = -1.32$ $p = 0.189$
 $s = 1.770$ $R-sq = 1.3\%$ $R-sq(adj) = 0.6\%$

There is a fairly normal distribution of residuals, so a test based on regression seems legitimate. Very weak evidence of trend -- (two-sided) p-value of 0.189. But are there strong flow and/or seasonal effects? A plot of the residuals versus log of streamflow (LQ) shows a strong dependence on flow. Removing this should greatly enhance the power to detect any trend which is present.

Boxplots of residuals by month also show a strong seasonal cycle, high in the winter & spring, low in summer. The best model we could find includes time, ln(Q), $ln(Q)^2$, and sine and cosine of $2\pi T$:

 $LLOAD = 83.3 - 0.0425 \text{ TIME} + 1.08 \ln Q + 0.0679 \ln(Q)^2 - 0.0519 \text{ SIN} + 0.141 \text{ COS}$

Predictor	Coef	Stdev	t-ratio	р
Constant	83.32	22.06	3.78	0.000
TIME	-0.04250	0.01115	-3.81	0.000
lnQ	1.08175	0.04947	21.87	0.000
$ln(Q)^2$	0.06789	0.01868	3.63	0.000
SIN	-0.05190	0.06252	-0.83	0.408
COS	0.14058	0.05441	2.58	0.011
s = 0.4398	R-sq =	= 94.1%	R-sq(adj) =	93.9%

This is interpreted as a strong evidence of downtrend, with a p-value <.001 The slope (in log units) = -0.0425 per year. All coefficients are significant at $\alpha = 0.05$ except for sine($2\pi T$). The sine must either be left in, or both it and the cosine taken out. To test whether together they are significant, an F test is performed. The model without these terms, with the standard error s = 0.449, is:

$$LLOAD = 85.1 - 0.0434 \text{ TIME} + 1.06 LQ + 0.0748 LQSQ$$

_	Predictor	Coef	Stdev	t-ratio	р
	Constant	85.09	22.51	3.78	0.000
	TIME	-0.04340	0.01138	-3.81	0.000
	lnQ	1.05921	0.04518	23.44	0.000
	$ln(Q)^2$	0.07481	0.01865	4.01	0.000
	s = 0.4490	R-sq =	93.7%	R-sq(adj) =	93.6%

So the F test to compare these two models is:

$$F = \frac{(26.01 - 24.57) / 2.0}{0.193} = 3.73$$

Comparing to an F distribution with 2 and 127 degrees of freedom, the two-sided p-value is 0.027. Therefore reject the simpler model in favor of including the seasonal sine and cosine terms.

To predict estimates of load for the two times and two flow conditions above, natural logs of these values are input to the regression equation. The third column below reports the predicted logs of Load from the regression equation.

lnQ	Time	Predicted lnL	Bias-Corrected L
2.4	1972.5	2.3356	11.3852
0.0	1972.5	-0.6516	0.574136
2.4	1986.5	1.7406	6.27963
0.0	1986.5	-1.2467	0.316640

These predicitons must be transformed and corrected for bias. Using the Ferguson (MLE) bias correction, $0.5 \cdot s^2 = 0.5 \cdot (0.4398)^2 = 0.097$. So the bias correction equals $\exp(0.097)$, or about 10%. The four predicted total phosphorus loads are given above in the fourth column.

Therefore the percent change at high flow over the 14-year time period is:

$$(6.2763 - 11.3852) / 11.3852 = -0.448732$$

The change in percent per year is

 $-0.448732 \cdot 100 / 14 = -3.205$. That is a -3.2% change in total P per year.

The same analysis at lower flow over the 14 years is:

(0.31664 - 0.574136) / 0.574136 = -0.4485, the same amount as at high flow.

Re-expressing the slope estimate in original units as a percent change, the average change equals -4.2% per year:

$$100 \cdot [\exp(-0.0425) - 1.0] = -4.16096$$

12.3.2 The nonparametric approach

The seasonal-Kendall test on the original observations, using 12 seasons (months): Tau = -0.06 with a p-value of 0.3835.

$$log(Load) = 0.505 - 0.046$$
 •time,

where time = 0 at the beginning of the first year of the record (typically a water year), and time is in units of years.

Residuals from a regression of log(Load) versus logQ and logQ² removes the effect of flow:

$$log(Load) = -0.745 + 1.06 logQ + 0.0758 logQ^2$$

The S-K test on the regression residuals: $tau = -0.25$ with $p = 0.0002$ and $log(Load) = 0.312 - 0.048$ •time

So, if flow is not first removed, the significant trend would be missed. Both the Seasonal Kendall on the residuals and multiple regression give a highly significant p-value. The S-K slope is 4.8% rather than 4.16% because of the effect of the low residuals during 1972-1977.

- 12.4 Not answered.
- 12.5 Nat answered.

Chapter 13

- 13.1 Not answered
- Because there is only one reporting limit, Kendall's tau can easily be computed for this data: tau = -0.40 with p = 0.023. There is a significant decrease in TPT concentrations with depth.
- 13.3 Estimates of the four descriptive statistics for each of 5 multiple-threshold methods (see Helsel and Cohn, 1988) are:

<u>Method</u>	<u>MEAN</u>	<u>ST.DEV.</u>	<u>MEDIAN</u>	<u>IQR</u>
ZE (substitute zero)	12.36	75.48	0.00	1.10
HA (substitute 1/2 dl)	13.91	75.28	1.10	3.30
DL (substitute the dl)	15.45	75.19	1.30	4.10
MR (prob plot regression)	12.57	75.44	0.29	1.54
MM (lognormal MLE)	8.30	61.52	0.34	1.62

Because of the outlier at $560 \,\mu g/L$ the data have more skewness than a lognormal distribution, and methods which assume a lognormal distribution for all the data (MM) would not be expected to estimate moment statistics well. It is not surprising therefore that the MLE method produces moment estimates dissimilar to the other methods. We generally select the MR moment estimates and the MM quantile estimates (those printed in bold), due to the results of Helsel and Cohn (1988).

Chapter 14

14.1 a) Contingency table

Expected values E_{ij} Trend in C1⁻ (1974-81, α =0.1)

Δ road salt appl.	Down	No trend	Up	Totals
Down	5.44	23.84	16.71	46
No change	9.82	43.02	30.15	83
Up	13.73	60.13	42.14	116
Totals	29	127	89	245

Table of
$$\frac{(0-E)^2}{E}$$

Trend in C1⁻ (1974-81, α =0.1)

Δ road salt appl.	Down	No trend	Up	Totals
Down	0.04	2.79	3.56	
No change	1.78	0.02	0.88	
Up	1.01	1.39	3.93	

$$\chi^2 = 15.39$$
 df = 4 p = 0.004

The results indicate that the category of chloride trends is dependent on the category of salt applications, with a p-value of 0.004. Where increases in road salt occurred, there are more up trends and fewer down trends than would be expected from the marginal distributions of up trends and down trends. Where decreases in road salt occurred, there are fewer up trends than would be expected.

b) Kendall's tau

P = no. pluses =
$$5(44+25+51+55) + 32(25+55) + 14(51+55) + 44(55)$$
 = 7339 M = no. minuses = $32(14+10) + 9(14+44+10+51) + 44(10) + 25(10+51)$ = 3804 S = $7339 - 3804$ = 3535 .

$$\tau_b = \frac{3535}{\sqrt{(245^2 - (46^2 + 83^2 + 116^2))(245^2 - (29^2 + 127^2 + 89^2))}}$$
= 3535 /18164 = 0.19

To test for significance,

To test for significance,

$$\sigma_{S} \cong \sqrt{\frac{1}{9} * (1 - (.19^{3} + .34^{3} + .47^{3})) * (1 - (.12^{3} + .52^{3} + .36^{3}))}$$

$$= \sqrt{\frac{(0.85 * 0.81 * 245^{3})}{9}} = 1061$$

and so $Z_S = 3534/1061 = 3.33$ and two-sided p= 0.0008. The two variables are significantly and positively related.

- c) Kendall's tau is more appropriate because
- 1. It includes the information that the variables are ordinal into the test. The p-value for Kendall's tau is lower than that for the contingency table, reflecting this additional information.
- 2. It provides a measure of the direction of association τ_b . Since τ is positive, the trends in Cl⁻ increase with increasing trends in road salt application.

14.2 Based on the tables below, there is a significant association between location of the well and the probability of detecting volatiles. The more protected downdip wells indeed have less chance of being contaminated than do the outcrop wells.

Expected values E:				
<u>Location</u>	Non-detects	Detect VOC	Totals	
Downdip	91.92	23.08	115	
Outcrop	143.08	35.92	179	
Totals	235	59	294	

$$Table of \frac{(0-E)^2}{E}$$
Location Non-detects Detect VOC
Downdip 2.16 8.59
Outcrop 1.39 5.52
$$\chi^2 = 17.647 df = 1 p = <0.0001$$

14.3 To test for association, Kendall's tau-b is used because both time and concentration variables are ordinal. Computations are shown in the boxes below.

	<u>1</u>	B1 Concentration		
<u>Year</u>	≤ 200	> 200	A_1	a_1
1988	2	7	9	0.18
1989	9	13	22	0.43
1990	10	10	20	0.39
Cj	21	30	51	
ci	0.41	0.59		1.0

The number of pluses
$$P = 2(13+10) + 9(10) = 136$$

The number of minuses $M = 7(9+10) + 13(10) = 263$
So $S = 136 - 263 = -127$.

To compute the denominator of
$$\tau_b$$
,
$$SS_a = 9^2 + 22^2 + 20^2 = 965.$$

$$SS_c = 21^2 + 30^2 = 1341.$$
 and
$$\tau_b = \frac{-127}{\sqrt{(51^2 - 965)(51^2 - 1341)}} = \frac{-127}{717.9} = -0.18.$$

From equation 14.9 the approximate value of σ_S is

$$\sigma_{S} \simeq \sqrt{\frac{1}{9} \cdot \left(1 - (0.18^{3} + 0.43^{3} + 0.39^{3})\right) \cdot \left(1 - (0.41^{3} + 0.59^{3})\right) \cdot 51^{3}}$$

$$\simeq \sqrt{\frac{(0.86) \cdot (0.73) \cdot 51^{3}}{9}} = \sqrt{9253} = 96.2$$

$$Z_{S} \simeq \frac{-127 + 1}{96.2} = -1.31$$

and from a table of the normal distribution the one-sided p-value is p = 0.095. Therefore H_0 : $\tau_b = 0$ is not rejected at $\alpha = 0.05$, but is for $\alpha = 0.10$. Thus there is weak evidence of a downtrend in TBT concentrations based on a split at 200 ng/L. Stronger evidence could be obtained by collecting data for subsequent years, or by obtaining better resolution of the data (the original data reported concentration values rather than a split at 200 ng/L).

Chapter 15

15.1 Logistic regression for the full model with four explanatory variables gives:

Variable	Parameter	Standard		
<u>Name</u>	<u>Estimate</u>	<u>Error</u>	Wald's t	<u>p-value</u>
Constant	-13.20539	3.55770	-3.71	0.0002
Thick	0.51527	0.15093	3.41	0.0004
Yields	0.42909	0.27484	1.56	0.0607
GW Qual	0.03035	0.32460	0.09	0.4642
Hazard	1.08952	0.29860	3.65	0.0002

with a likelihood ratio $lr_0 = 49.70$ and p<0.000 as compared to the intercept-only model. However, two of the variables (Yields and GW Qual) have insignificant t-statistics. In the following model they are dropped, and lr_0 recomputed:

Variable	Parameter	Standard		
Name	Estimate	<u>Error</u>	<u>Wald's</u> t	<u>p-value</u>
Constant	-10.89039	2.43434	-4.4 7	< 0.0001
Thick	0.46358	0.13575	3.41	0.0004
Hazard	1.07401	0.28301	3.80	0.0001

with a likelihood ratio $lr_0 = 52.54$ and p<0.000 as compared to the intercept-only model. The partial likelihood ratio to test whether the first model is significantly better than the simpler second model is:

$$lr = lr_{O(simple)} - lr_{O(complex)} = 52.54 - 49.70 = 2.84$$

which for a chi-square distribution with 2 degrees of freedom gives:

$$p = 0.242$$
.

Therefore the two additional variables (Yields and GW Qual) do not appreciably add to the explanatory power of the model.

3-dimensional rotation, 60	bar chart, 62, 206
7-day 10-year low flow, 83	grouped, 422
additive relation, 42, 142	stacked, 421
checking for, 186	bias correction, 258
adjacent values, 26	bisquare weight function, 284
adjusted R ² , 399	block effect, 196
adjusted variable Kendall test, 336	blocking, 181, 197
adjusted variable plots, 301	Blom plotting position, 24
AIC, 399	boxplots, 24, 39, 423
Akaike's information criteria, 399	side-by-side, 129
aligned-ranks, 192	boxplots, 128, 207
alpha level, 107	bulging rule, 230
alpha level, 68	business graphics, 412
alternate hypothesis, 104	categorical variables
analysis of variance, 158	Kruskal-Wallis test for, 382
ANOVA table, 168	categories, 19
assumptions of, 166	censored data, 3, 124, 128
multi-factor, 170	guidelines for use, 373
on the ranks, 163	in trend tests, 353
on within-block ranks, 191	nonparametric tests, 366
one-factor, 164	parametric tests, 366
two-factor ANOVA table, 174	regression, 370
two-way rank tests, 170	characteristics of data, 2
unbalanced design, 179	chemometrics, 372
angles, judgment of on graphs, 417	coefficient of determination, 228
ANOVA. see analysis of variance	coefficient of skewness, 11
area, judgment of on graphs, 416	Cohen's method, 353, 360
assumption of independence, 252	color, use of in graphs, 412
asymmetric confidence intervals, 69	comparing among distributions, 35
for the mean, 76	comparison value, 186
attained significance level, 108	compliance with water quality standards, 83
autocorrelation. see serial correlation	confidence intervals, 66
	for percentiles, 82
	for percentiles (nonparametric), 84

confidence intervals, cont.	dot charts, 423
for percentiles (parametric), 90	Duncan's multiple range test, 199, 200
for regression line, 242	Durbin-Watson statistic, 253
for skewed data, 69	efficiency
for the mean, 75	asymptotic relative, 102
for the median, 70	Kendall vs. OLS, 268
confidence level, 68	equal variance, 124
constant variance assumption, 255	error rate, 107, 110
contingency tables, 378	overall, 199
for censored data, 372	pairwise, 199
continuity correction, 122, 141, 147	error sum of squares, 167, 196
control chart, 93	exogenous variables in trend tests, 330
Cook's D, 250	expected value, 224
correction for ties	explanatory variable, 99, 158, 222
Kendall's tau;, 215	extension of records, 278
rank-sum test, 123	factor, 158
correlation, 209	factorial ANOVA, 170
monotonic, 210	assumptions of, 173
correlation coefficient, 210	far-out values, 26
linear, 218	fixed effects, 180
nonparametric, 212	flood-frequency, 24
critical values	flow-duration, 24
lower, 113	framed rectangle, 421
upper, 113	Friedman test, 170, 187, 192
cumulative distribution function, 23	large sample approximation, 188
cumulative line graph, 419	F-test, 168, 174
cumulative logits, 406	geometric mean, 7, 73
Cunnane plotting position, 22, 24, 114	estimation for censored data, 361
degrees of freedom, 160, 167, 297, 310, 380	geometric mean functional regression, 276
detection limit, 3, 128	graphical analysis, 19
guidelines for use of data, 373	graphical comparisons, 35
more than one, 354	graphical methods, 128
trend tests for data below, 353	graphics, 205
DFFITS, 250	graphs
difference between group means, 135	pie chart, 416
confidence interval for, 135	angle and slope, 417
differences between groups	boxplots, 423
estimators, 132	cumulative line graphs, 419
discriminant function analysis, 402	dot charts, 423
dot and line plot, 36, 38	framed rectangles, 421

graphs, cont.	interquartile range, 9, 24
grouped bar charts, 422	interval estimates, 66
hidden scale breaks, 428	invariance to rotation, 280
judgments of length, 420	IQR, 9
misleading, 424	iteratively weighted least squares, 283
overlapping histograms, 429	joint probability, 379
precision of, 411	Kendall's nonparametric line;, 370
stacked bar charts, 422	Kendall's nonparametric line; .i.Sen slope
use of color, 412	estimate; .regression
use of numbers on, 427	nonparametric;, 266
use of perspective, 424	Kendall's S statistic, 272
use of shading, 413	Kendall's tau, 326
Gringorten plotting position, 24	for categorical variables., 386
Gumbel distribution, 90	for censored data, 372
harmonic mean, 199	large sample approximation;, 213
Hazen plotting position, 24	tie correction;, 215
heavy tails, 2	Kendall's tau; .i.tau;, 212
heteroscedasticity, 124, 230, 255, 280	Kendall's tau-b;)., 386
hinges, 25	kite diagram, 54
histograms, 206, 429	Kruskal-Wallis test, 158, 159
histograms, 19, 36	for categorical variables, 382
Hodges-Lehmann estimator, 132, 155	large sample approximation, 160
confidence interval for, 133, 155	rank transform approximation, 163
for step trend, 349	ladder of powers, 14, 15, 31, 119, 230
homoscedasticity, 51	large sample approximation, 103, 121
homoscedasticity, 13	least normal squares, 279
hypothesis tests, 97, 109	least significant range, 198
choice of, 101	least squares, 228
classification, 99	length, judgment of on graphs, 420
classification of, 106	leverage, 248
exact, 103	likelihood ratio, 397
with censored data, 365	likelihood-R ² , 398
independent groups, 117	line of organic correlation, 276
inequality of variance, 124	linear regression. see regression
influence, 4, 248, 250	linearity, 13
interaction, 172	linearity, 46
intercept, 226	LOC, 276
confidence interval for, 240	log likelihood, 397
deletion of, 240	
nonparametric, 268	

logistic regression, 395	monotonic trend, 327
for censored data, 371	MOVE, 276
for multiple responses, 403	moving average, 286
logistic transformation, 396	moving medians, 286
logit, 396	multiple comparison test
loglinear models, 390	graphical display of, 208
lognormal, 2	multiple comparison tests, 197
lognormal distribution, 73	for categorical variables, 385
LOWESS, 47, 288	nonparametric, 198, 203
use in trend tests, 335	multiple regression, 237
LOWESS, 325	use as a trend test, 337
MAD, 10, 284	multiplicative relation, 43
Mann-Kendall trend test, 326	multiply-censored data, 353
with censored data, 354	hypothesis tests for, 368
Mann-Whitney test, 118	nonparametric tests for, 368
MARA, 192	multivariate graphical methods, 52
marginal probability, 379	nominal response variables, 406
mass transport, 258	non-normality, 92, 124
matched-pair tests	nonparametric interval estimate, 70
graphical presentation of, 152	nonparametric prediction intervals, 77
maximum-likelihood, 360	nonparametric test for percentiles, 86
tobit regression, 370	nonparametric tests, 101
mean	comparison to parametric, 102
asymmetric confidence interval for, 76	for censored data, 366
confidence interval for, 75	normal distribution, 2, 26, 31, 113
mean difference, 157	normal probability plot, 24, 114
mean square error, 228	normal quantiles, 28, 114
mean squares, 167, 174	normal scores, 114
measures of location, 3	normality
median, 6	of test statistics, 121
confidence interval for, 70	test of, 102, 113, 166
test for differences in, 118, 159	normality assumption, 150
Median Aligned-Ranks ANOVA, 192	null hypothesis, 104, 107, 108
median difference, 154	not rejecting, 109
median polish, 182	rejecting, 109
mixed effects, 181	odds ratio, 396
MLE, 360	OLS, 222
tobit regression, 370	one-sided p-value, 112
mode, 7	one-sided tests, 105, 109
monotonic correlation, 210	ordinal variables, 386

ordinary least squares, 222	power, 102
outliers, 12, 92	power transformation
tests for, 92	effect on paired t-test, 151
outliers, 2, 31, 38, 127, 250	effect on rank-sum test, 118
outside values, 26	effect on signed-rank test, 144
overall error rate, 199	power transformations, 177
paired observations, 138	avoiding, 265
paired t-test, 148	effect on t-test, 128
assumptions of, 148	invariance to, 327
computation, 149	WLS as an alternative, 282
pairwise comparisons, 199	PPCC test, 113
pairwise error rate, 199	precision of graphs, 411
parametric c. i. for the median, 73	prediction interval, 66, 243
parametric prediction intervals, 80	asymmetric, 81
parametric tests, 100	nonparametric, 77, 79, 81, 244
comparison with nonparametric, 102	one-sided, 79
with censored data, 365, 366	parametric, 80, 81
partial likelihood ratio, 398	symmetric, 81
Pearson Type III distribution,, 90	two-sided, 78
Pearson's r, 218	prediction residual, 249
	DD ECC 040
percent exceedance, 30	PRESS statistic, 249
percentiles	principal components analysis, 59
-	
percentiles	principal components analysis, 59
percentiles confidence interval for, 83	principal components analysis, 59 probability paper, 29
percentiles confidence interval for, 83 parametric tests for, 91	principal components analysis, 59 probability paper, 29 probability plot, 27, 31, 35, 41
percentiles confidence interval for, 83 parametric tests for, 91 water quality, 83	principal components analysis, 59 probability paper, 29 probability plot, 27, 31, 35, 41 probability plot correlation coefficient, 35
percentiles confidence interval for, 83 parametric tests for, 91 water quality, 83 percentiles, 9	principal components analysis, 59 probability paper, 29 probability plot, 27, 31, 35, 41 probability plot correlation coefficient, 35 probability plot correlation coefficient, 113
percentiles confidence interval for, 83 parametric tests for, 91 water quality, 83 percentiles, 9 perceptual tasks for interpreting graphs, 412	principal components analysis, 59 probability paper, 29 probability plot, 27, 31, 35, 41 probability plot correlation coefficient, 35 probability plot correlation coefficient, 113 profile plot, 53
percentiles confidence interval for, 83 parametric tests for, 91 water quality, 83 percentiles, 9 perceptual tasks for interpreting graphs, 412 perspective, use of in graphs, 424	principal components analysis, 59 probability paper, 29 probability plot, 27, 31, 35, 41 probability plot correlation coefficient, 35 probability plot correlation coefficient, 113 profile plot, 53 p-value, 108, 111
percentiles confidence interval for, 83 parametric tests for, 91 water quality, 83 percentiles, 9 perceptual tasks for interpreting graphs, 412 perspective, use of in graphs, 424 pie chart, 62	principal components analysis, 59 probability paper, 29 probability plot, 27, 31, 35, 41 probability plot correlation coefficient, 35 probability plot correlation coefficient, 113 profile plot, 53 p-value, 108, 111 one-sided, 113
percentiles confidence interval for, 83 parametric tests for, 91 water quality, 83 percentiles, 9 perceptual tasks for interpreting graphs, 412 perspective, use of in graphs, 424 pie chart, 62 pie charts, 416	principal components analysis, 59 probability paper, 29 probability plot, 27, 31, 35, 41 probability plot correlation coefficient, 35 probability plot correlation coefficient, 113 profile plot, 53 p-value, 108, 111 one-sided, 113 two-sided, 112, 113
percentiles confidence interval for, 83 parametric tests for, 91 water quality, 83 percentiles, 9 perceptual tasks for interpreting graphs, 412 perspective, use of in graphs, 424 pie chart, 62 pie charts, 416 Piper diagram, 58, 59	principal components analysis, 59 probability paper, 29 probability plot, 27, 31, 35, 41 probability plot correlation coefficient, 35 probability plot correlation coefficient, 113 profile plot, 53 p-value, 108, 111 one-sided, 113 two-sided, 112, 113 Q-Q plot, 42, 43, 128, 129
percentiles confidence interval for, 83 parametric tests for, 91 water quality, 83 percentiles, 9 perceptual tasks for interpreting graphs, 412 perspective, use of in graphs, 424 pie chart, 62 pie charts, 416 Piper diagram, 58, 59 Piper smooth, 59	principal components analysis, 59 probability paper, 29 probability plot, 27, 31, 35, 41 probability plot correlation coefficient, 35 probability plot correlation coefficient, 113 profile plot, 53 p-value, 108, 111 one-sided, 113 two-sided, 112, 113 Q-Q plot, 42, 43, 128, 129 construction, 45
percentiles confidence interval for, 83 parametric tests for, 91 water quality, 83 percentiles, 9 perceptual tasks for interpreting graphs, 412 perspective, use of in graphs, 424 pie chart, 62 pie charts, 416 Piper diagram, 58, 59 Piper smooth, 59 plotting position, 22, 23, 30, 114	principal components analysis, 59 probability paper, 29 probability plot, 27, 31, 35, 41 probability plot correlation coefficient, 35 probability plot correlation coefficient, 113 profile plot, 53 p-value, 108, 111 one-sided, 113 two-sided, 112, 113 Q-Q plot, 42, 43, 128, 129 construction, 45 quality control, 93
percentiles confidence interval for, 83 parametric tests for, 91 water quality, 83 percentiles, 9 perceptual tasks for interpreting graphs, 412 perspective, use of in graphs, 424 pie chart, 62 pie charts, 416 Piper diagram, 58, 59 Piper smooth, 59 plotting position, 22, 23, 30, 114 point estimates, 66	principal components analysis, 59 probability paper, 29 probability plot, 27, 31, 35, 41 probability plot correlation coefficient, 35 probability plot correlation coefficient, 113 profile plot, 53 p-value, 108, 111 one-sided, 113 two-sided, 112, 113 Q-Q plot, 42, 43, 128, 129 construction, 45 quality control, 93 quantile plot, 22, 206
percentiles confidence interval for, 83 parametric tests for, 91 water quality, 83 percentiles, 9 perceptual tasks for interpreting graphs, 412 perspective, use of in graphs, 424 pie chart, 62 pie charts, 416 Piper diagram, 58, 59 Piper smooth, 59 plotting position, 22, 23, 30, 114 point estimates, 66 polar smooth, 48, 292	principal components analysis, 59 probability paper, 29 probability plot, 27, 31, 35, 41 probability plot correlation coefficient, 35 probability plot correlation coefficient, 113 profile plot, 53 p-value, 108, 111 one-sided, 113 two-sided, 112, 113 Q-Q plot, 42, 43, 128, 129 construction, 45 quality control, 93 quantile plot, 22, 206 quantile-quantile plot, 129
percentiles confidence interval for, 83 parametric tests for, 91 water quality, 83 percentiles, 9 perceptual tasks for interpreting graphs, 412 perspective, use of in graphs, 424 pie chart, 62 pie charts, 416 Piper diagram, 58, 59 Piper smooth, 59 plotting position, 22, 23, 30, 114 point estimates, 66 polar smooth, 48, 292 population, 2	principal components analysis, 59 probability paper, 29 probability plot, 27, 31, 35, 41 probability plot correlation coefficient, 35 probability plot correlation coefficient, 113 profile plot, 53 p-value, 108, 111 one-sided, 113 two-sided, 112, 113 Q-Q plot, 42, 43, 128, 129 construction, 45 quality control, 93 quantile plot, 22, 206 quantile-quantile plot, 129 quantiles, 22, 83
percentiles confidence interval for, 83 parametric tests for, 91 water quality, 83 percentiles, 9 perceptual tasks for interpreting graphs, 412 perspective, use of in graphs, 424 pie chart, 62 pie charts, 416 Piper diagram, 58, 59 Piper smooth, 59 plotting position, 22, 23, 30, 114 point estimates, 66 polar smooth, 48, 292 population, 2 positive skewness, 10	principal components analysis, 59 probability paper, 29 probability plot, 27, 31, 35, 41 probability plot correlation coefficient, 35 probability plot correlation coefficient, 113 profile plot, 53 p-value, 108, 111 one-sided, 113 two-sided, 112, 113 Q-Q plot, 42, 43, 128, 129 construction, 45 quality control, 93 quantile plot, 22, 206 quantile-quantile plot, 129 quantiles, 22, 83 quantiles, 42

random effects, 180	resistant, 6
randomized complete block design, 182, 187	response variable, 99, 222
rank transform test, 194	rho, 217
rank transformation test, 123, 170, 203	risk tolerance, 108
ranks, 7	RMSE, 358
ranks, 104	robust, 11
rank-sum test, 110, 118	robust regression, 269
an alternative to logistic regression, 402	root mean squared error, 358
as a test for trend, 349	sample, 2
rating curve, 258	sample size, estimating, 95
record extension, 278	sampling design, 95
regression, 221	Satterthwaite's approximation, 126
for censored data, 369	scale breaks, 428
regression	scatterplot matrix, 61
as a test for trend, 328	scatterplots, 46, 423
assumptions, 224	schematic plot, 26
confidence interval on mean response,	seasonal Kendall test, 339
242	seasonal rank-sum test, 350
diagnosing problems, 232	seasonal variation, 234
guide to model selection, 263, 316	differences among seasons, 345
hypothesis testing, 238	graphics for display of, 344
non-normal residuals, 268	modeling, 338
nonparametric, 266	use of periodic functions, 342
normality assumption, 236	Sen slope estimate, 266
robust, 269, 283	serial correlation, 252
validation of equation, 249	remedies, 254
regression diagnostics, 238, 246	shading on graphs, 413
rejection region, 113	Shapiro-Wilk test, 115
reliability, 66	sign test, 138, 187
replicates, 194	computation, 138
replication	large sample approximation, 141
ANOVA without, 194	signed-rank test, 142, 192
residuals, 31, 226	large sample approximation, 146
prediction, 249	rank transform approximation, 148
standardized, 249	significance level, 107, 110
studentized, 249	simple boxplot, 25
testing for normality, 236	skew, 10
use in trend tests, 332	skewed data, 124
residuals plot, 187, 232	skewness, 2, 31, 69
trend, 234	skewness, 38, 40, 127

slope, 226	tails of the distribution, 10, 31
confidence interval for, 240	target population, 2
judgment of on graphs, 417	tau, 212
test of significance, 238	t-distribution
smearing estimator, 259	noncentral, 90
smooth, 46, 47, 48	test statistic, 108
lower, 292	Theil slope estimate
LOWESS, 286	computation, 266
middle, 286	confidence interval for, 273
outer, 293	efficiency, 268
upper, 292	for trends, 330
smooth, 47	with censored data, 354
smoothing, 286	tie correction
smoothness factor, 289	for tests with censored data, 354
spatial trend, 326	tobit regression, 366, 370
Spearman's rho, 217	tolerance intervals, 83
spread, 8, 51	tolerance probability, 96
stacked bar chart, 62	transformation bias
standard deviation, 9, 36	in regression, 258
standard error, 36, 228	of MLE, 360
standardized residual, 249	transformations, 31, 103, 166, 177, 255
star diagram, 54, 58	consequences in regression, 256
statistical maps, 413	transformations, 13, 230
statistical tables, 113	t-ratio, 232
stem and leaf diagram, 20	trend
step trend, 349	exponential change, 347
when to test for, 351	trend analysis
Stiff diagram, 53, 58	including exogenous variables, 330
studentized range, 198	nonparametric, 335
student's t statistic, 75	step trends, 349
sum of squares, 196	use of transformations, 347
summary statistics, 10	with censored data, 353
for censored data, 358	trend slope, 330
with multiple reporting limits, 364	seasonal, 341
sums of squares, 173	trilinear diagram, 57
symmetric confidence intervals, 68, 75	trimmed mean, 7
symmetry, 13	truncated boxplot, 26
assumption of, 151	
table of test statistic quantiles, 110	
tables, deficiencies of, 410	

as a test for trend, 349
assumptions of, 124
computation of, 125
for multiple comparisons, 199
on ranks, 127
problems with, 124
violation of assumptions, 127
Tukey's multiple comparison test, 199, 201
two-factor ANOVA, 193, 194
two-sided tests, 105, 111
Type I error, 107
Type II error, 107

unequal sample sizes, 179
unequal variances, 126
variance, 9
confidence interval for, 240
violation of test assumptions, 150
Wald's t-statistic;, 398
Weibull plotting position, 24
weight function, 288
weighted least squares, 281
whisker, 25
WLS, 281