1

Liczby rzeczywiste

W rozdziale tym przedstawimy definicję, konstrukcję oraz podstawowe własności liczb rzeczywistych.

1.1 Liczby naturalne, całkowite i wymierne

Zbiór liczb naturalnych oznaczamy jako $\mathbb N$ i jego definicja jest jak następuje

$$\mathbb{N} := \{1, 2, 3, \ldots\}.$$

Liczby całkowite oznaczamy jako $\mathbb Z$ i definiujemy jako sume liczb naturalnych, liczb przeciwnych do naturalnych oraz zera

$$\mathbb{Z} := \mathbb{N} \cup \{a | -a \in \mathbb{N}\} \cup \{0\}.$$

Liczby wymierne oznaczamy jako $\mathbb Q$ i definiujemy następująco

$$p \in \mathbb{Q} \iff p = \frac{n}{m} \quad \text{gdzie} \quad n, m \in \mathbb{Z}, m \neq 0.$$

1.1.1 Własności liczb wymiernych

Poniżej wypiszemy podstawowe własności liczb wymiernych

1. prawo przemienności: $\forall p, q \in \mathbb{Q}$

$$p + q = q + p$$
, $p \cdot q = q \cdot p$

2. prawo łączności: $\forall p,q,r \in \mathbb{Q}$

$$(p+q) + r = p + (q+r)$$
$$(p \cdot q) \cdot r = q \cdot (q \cdot r)$$

3. prawo rozdzielności dodawania względem mnożenia: $\forall p,q,r\in\mathbb{Q}$

$$(p+q) \cdot r = p \cdot r + q \cdot r$$

4. relacja porządku $\forall p, q \in \mathbb{Q}$

$$p = q \lor p < q \lor p > q$$

5. węwnętrzność działania dodawania i mnożenia dla liczb dodatnich Niech $p>0 \land q>0$, wówczas

$$p + q > 0$$
$$p \cdot q > 0$$

6. warunek równości dwóch liczb wymiernych Niech $a,b\in\mathbb{Q}$ oraz niech $a=rac{p}{q}$ oraz $b=rac{p'}{q'},$ wówczas

$$a = b \iff p \cdot q' = p' \cdot q$$

Ponadto, zakładając q, q' > 0 otrzymujemy

$$a < b \iff p \cdot q' < p' \cdot q$$

 $a > b \iff p \cdot q' > p' \cdot q$

1.1.2 Niewymierność $\sqrt{2}$

Pokażemy, że pierwiastek z dwóch nie jest liczbą wymierną, tj. $\sqrt{2} \notin \mathbb{Q}$.

Dowód. Dowód będziemy prowadzić nie wprost. Przypuśćmy nie wprost, że $\sqrt{2} \in \mathbb{Q}$, wówczas muszą istnieć $p,q \in \mathbb{N}$, że

$$\sqrt{2} = \frac{p}{q},$$

a ułamek ten jest nieskracalny.

Równoważnie możemy napisać

$$q\sqrt{2}=p~$$
podnosząc do kwadratu stronami
$$2q^2=p^2$$

Zauważmy, że wynika stąd, że p^2 jest parzyste, to oznacza, że także p jest parzyste, czyli $\exists n \in \mathbb{N}$, że p = 2n. Wstawiając, otrzymujemy

$$2q^2 = 4n^2$$
$$q^2 = 2n^2$$

Stosując powyższe rozumowanie otrzymujemy, że $\exists m \in \mathbb{N}$, że q=2m. Widzimy więc sprzeczność z założeniem, że ułamek $\frac{p}{q}$ był nieskracalny (jako, że zarówno licznik jak i mianownik są podzielne przez 2). Sprzeczność ta dowodzi tezy.

1.2. PRZEKROJE 3

1.1.3 Niewymierność $\log_{10} 5$

Pokażemy, że liczba $\log_{10} 5$ jest niewymierna. Podobnie jak powyżej, dowód będzie prowadzony nie wprost.

Dowód. Przypuśćmy, że $\log_{10} 5 = \frac{p}{q},$ gdzie $p,q \in \mathbb{N}.$ Jest to równoważne następującemu wyrażeniu

$$5 = 10^{\frac{p}{q}}$$
$$5^q = 10^p.$$

Zauważmy, że powyższa równość jest niemożliwa pośród liczb naturalnych (ze względu na podzielność przez 2).

1.2 Przekroje

Niech $A,\,B$ będą zbiorami liczb. Niech a,b,p,q będą liczbami, elementami zbiorów.

Równość zbiorów A i B definiujemy następująco

$$A = B \iff (a \in A \implies a \in B) \land (a \in B \implies a \in A),$$

mówimy, że dwa zbiory nie są równe, gdy

$$A \neq B \iff \exists a \in A | a \notin B \lor \exists a \in B | a \notin A$$

Niech Abędzie zbiorem liczb wymiernych mniejszych niż $\sqrt{2},$ zauważmy, że wówczas

$$A=\{p\in\mathbb{Q}|p<\sqrt{2}\}$$
nie ma liczby największej
$$B=\{p\in\mathbb{Q}|p>\sqrt{2}\}$$
nie ma liczby najmniejszej.

 $Dow \acute{o}d.$ Pokażemy najpierw, że nie może w Aistnieć element największy. Niech $p\in A,$ pokażemy, że istnieje k>0, że $(p+k)\in A.$

Zauważmy, że biorąc $k < \min\left(1, \frac{2-p^2}{2p+1}\right)$ otrzymujemy

$$(p+k)^2 < 2$$

$$p^2 + 2pk + k^2 < 2$$

$$p^2 + k(2p+k) < p^2 + \frac{2-p^2}{2p+1} (2p+1) = p^2.$$

Pokażemy teraz, że dla $q \in B$ znajdziemy takie h > 0, że $q - h \in B$. Weźmy $h = \frac{q^2-2}{2q}$. Łatwo możemy zauważyć, że $h \in \mathbb{Q}$ (jako iloraz dwóch liczb wymiernych).

Policzmy wartość

$$(q-h)^2 = q^2 - 2\frac{q^2 - 2}{2q}q + h^2 = 2 + h^2 > 2.$$

Tak więc dobierając h w zadany sposób możemy zawsze wskazać liczbę mniejszą q-h, która także należy do B.

1.2.1 Gęstość liczb wymiernych

Pomiędzy dwiema dowolnymi liczbami wymiernymi zawsze znajdziemy liczbę wymierną.

 $Dow \acute{o}d$. Niech $p, q \in \mathbb{Q}$ wówczas

$$p < \frac{p+q}{2} < q$$

oraz

$$\frac{p+q}{2} \in \mathbb{Q}.$$

1.2.2 Metoda przekrojów Dedekinda

Definicja 1. Zbiór α liczb wymiernych nazywamy przekrojem, jeżeli:

- a) α nie zawiera wszystkich liczb wymiernych oraz α zawiera co najmniej 1 liczbę wymierną,
- b) $p \in \alpha, q ,$
- c) α nie ma liczby największej.

Przekrojem jest na przykład zbiór A z poprzedniego przykładu.

Twierdzenie 1. Jeżeli $p \in \alpha \land q \notin \alpha$, to p < q dla $q \in \square$.

Dowód. Przypuśćmy nie wprost, że q < p, na mocy warunku b) z definicjji przekroju wnioskujemy, że $q \in \alpha$, co jest sprzeczne z założeniem.

Twierdzenie 2. Niech $r \in \mathbb{Q}$ oraz $\alpha = \{p \in \mathbb{Q} | p < r\}$ - wtedy α jest przekrojem.

Dowód. Warunki a), b) są spełnione w sposób oczywisty.

Warunek c) - niech $p \in \alpha$ czyli p < r. Wtedy $p < \frac{p+r}{2} < r$ oraz $\frac{p+r}{2} \in \alpha$.

Definicja 2. Przekrój zadany jak w powyższym twierdzenimu nazywamy przekrojem wymiernym.

5

Zauważmy, że zbiór \mathbb{Q}/α ma liczbę najmniejszą r.

Definicja 3. Niech α , β będą przekrojami.

$$\alpha = \beta \iff p \in \alpha \iff p \in \beta$$

$$\alpha < \beta \iff \exists p \in B : p \notin \alpha$$

$$\alpha > \beta \iff \exists q \in \alpha : q \notin B$$

$$\alpha \le \beta \iff \alpha < \beta \lor \alpha = \beta$$

$$0^* = \{p \in \mathbb{Q} : p < 0\}$$

Mówimy, że

 α jest dodatni, jeżeli $\alpha > 0^*$,

 α jest ujemny, jeżeli $\alpha < 0^*$,

 α jest niejemny, jeżeli $\alpha \geq 0^*$,

 α jest niedodatni, jeżeli $\alpha \leq 0^*$.

Twierdzenie 3. Niech α , β będą przekrojami. Wtedy

$$\alpha = \beta$$
 albo $\alpha < \beta$ albo $\alpha > \beta$.

Dowód. Rozważmy dwa przypadki. Jeżeli każdy element α jest elementem β i na odwrót to w oczywisty sposób przekroje te muszą być równe.

W przeciwnym przypadku istnieje element, który nie należy do jednego z przekrojów, pokażemy, że nie może wówcas równocześnie zachodzić, że $\alpha>\beta\wedge\beta>\alpha$.

Dowód prowadzimy nie wprost

Niech α będzie zbiorem liczb mniejszych od p,a β mniejszych od q. Wówczas

- $(1) \ \alpha > \beta \Rightarrow \exists p' \in \alpha : p' \notin \beta$
- (2) $\beta > \alpha \Rightarrow \exists q' \in \beta : q' \notin \alpha$
- $(1) \Longrightarrow \ p' \in \beta \Rightarrow p' < q \land q' \not \in \beta \implies q' > q \implies p' < q'$
- $(2) \Longrightarrow q' \in \alpha \implies q' p \implies q' < p'.$

Stąd otrzymujemy, że $p' < q' < p' \implies p' < p'$ co jest sprzeczne.

1.3 Section heading

rodzial0X-podrozdzial03