Vovk's algorithm Mixable and unmixable loss functions

Yoav Freund

February 2, 2006

Review

Review

The general prediction game

Review

The general prediction game

Some useful loss functions

Review

The general prediction game

Some useful loss functions

Vovk's algorithm

Review

The general prediction game

Some useful loss functions

Vovk's algorithm

mixable loss functions

Review

The general prediction game

Some useful loss functions

Vovk's algorithm

mixable loss functions

The convexity condition

Review

The general prediction game

Some useful loss functions

Vovk's algorithm

mixable loss functions

The convexity condition

Log loss

Review

The general prediction game

Some useful loss functions

Vovk's algorithm

mixable loss functions

The convexity condition

Log loss

Square loss

Square loss using simple averaging

Review

The general prediction game

Some useful loss functions

Vovk's algorithm

mixable loss functions

The convexity condition

Log loss

Square loss

Square loss using simple averaging

Summary table

▶ Prediction algorithm *A* has access to *N* experts.

- Prediction algorithm A has access to N experts.
- ▶ The following is repeated for t = 1, ..., T

- Prediction algorithm A has access to N experts.
- ▶ The following is repeated for t = 1, ..., T
 - **Experts** generate predictive distributions: $\mathbf{p}_1^t, \dots, \mathbf{p}_N^t$

- Prediction algorithm A has access to N experts.
- ▶ The following is repeated for t = 1, ..., T
 - **Experts** generate predictive distributions: $\mathbf{p}_1^t, \dots, \mathbf{p}_N^t$
 - Algorithm generates its own prediction p^t_A

- Prediction algorithm A has access to N experts.
- ▶ The following is repeated for t = 1, ..., T
 - \triangleright Experts generate predictive distributions: $\mathbf{p}_1^t, \dots, \mathbf{p}_N^t$
 - Algorithm generates its own prediction \mathbf{p}_A^t
 - c^t is revealed.

- Prediction algorithm A has access to N experts.
- ▶ The following is repeated for t = 1, ..., T
 - **Experts** generate predictive distributions: $\mathbf{p}_1^t, \dots, \mathbf{p}_N^t$
 - Algorithm generates its own prediction p^t_A
 - c^t is revealed.
- ► Goal: minimize regret:

$$-\sum_{t=1}^{T} \log p_{\mathcal{A}}^{t}(c^{t}) + \min_{i=1,\dots,N} \left(-\sum_{t=1}^{T} \log p_{i}^{t}(c^{t}) \right)$$

► Total loss of expert i

$$L_i^t = -\sum_{s=1}^t \log p_i^s(c^s); \quad L_i^0 = 0$$

Total loss of expert i

$$L_i^t = -\sum_{s=1}^t \log p_i^s(c^s); \quad L_i^0 = 0$$

Weight of expert i

$$w_i^t = w_i^1 e^{-L_i^{t-1}} = w_i^1 \prod_{s=1}^{t-1} p_i^s(c^s)$$

Total loss of expert i

$$L_i^t = -\sum_{s=1}^t \log p_i^s(c^s); \quad L_i^0 = 0$$

Weight of expert i

$$w_i^t = w_i^1 e^{-L_i^{t-1}} = w_i^1 \prod_{s=1}^{t-1} p_i^s(c^s)$$

Freedom to choose initial weights.

$$w_t^1 \ge 0, \sum_{i=1}^n w_i^1 = 1$$

Total loss of expert i

$$L_i^t = -\sum_{s=1}^t \log p_i^s(c^s); \quad L_i^0 = 0$$

Weight of expert i

$$w_i^t = w_i^1 e^{-L_i^{t-1}} = w_i^1 \prod_{s=1}^{t-1} p_i^s(c^s)$$

Freedom to choose initial weights.

$$w_t^1 \ge 0, \sum_{i=1}^n w_i^1 = 1$$

Prediction of algorithm A

$$\mathbf{p}_{A}^{t} = \frac{\sum_{i=1}^{N} w_{i}^{t} \mathbf{p}_{i}^{t}}{\sum_{i=1}^{N} w_{i}^{t}}$$

Total weight: $W^t \doteq \sum_{i=1}^N w_i^t$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^N w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^N w_i^t}$$

Total weight:
$$\mathbf{W}^t \doteq \sum_{i=1}^N \mathbf{w}_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t}$$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$

Total weight:
$$W^t \doteq \sum_{i=1}^{N} w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$

$$-\log\frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$

$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

$$-\log \frac{W^{T+1}}{W^1} = -\sum_{i=1}^{T} \log p_A^t(c^t)$$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$

$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

$$-\log \frac{W^{T+1}}{W^t} = -\sum_{i=1}^{T} \log p_A^t(c^t) = L_A^T$$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$
$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

$$-\log W^{T+1} = -\log \frac{W^{T+1}}{W^1} = -\sum_{t=1}^{T} \log p_A^t(c^t) = L_A^T$$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$
$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

$$-\log W^{T+1} = -\log \frac{W^{T+1}}{W^1} = -\sum_{t=1}^{T} \log p_A^t(c^t) = L_A^T$$

EQUALITY not bound!

 Γ - prediction space. Ω - outcome space.

 Γ - prediction space. Ω - outcome space. On each trial t = 1, 2, ...

```
\Gamma - prediction space. \Omega - outcome space. On each trial t = 1, 2, ...
```

1. Each expert $i \in \{1 \dots N\}$ makes a prediction $\gamma_i^t \in \Gamma$

```
\Gamma - prediction space. \Omega - outcome space. On each trial t=1,2,...
```

- 1. Each expert $i \in \{1 \dots N\}$ makes a prediction $\gamma_i^t \in \Gamma$
- 2. The learner, after observing $\langle \gamma_1^t \dots \gamma_N^t \rangle$, makes its own prediction γ^t

```
\Gamma - prediction space. \Omega - outcome space. On each trial t=1,2,\ldots
```

- 1. Each expert $i \in \{1 \dots N\}$ makes a prediction $\gamma_i^t \in \Gamma$
- 2. The learner, after observing $\langle \gamma_1^t \dots \gamma_N^t \rangle$, makes its own prediction γ^t
- 3. Nature chooses an outcome $\omega^t \in \Omega$

 Γ - prediction space. Ω - outcome space. On each trial $t=1,2,\ldots$

- 1. Each expert $i \in \{1 \dots N\}$ makes a prediction $\gamma_i^t \in \Gamma$
- 2. The learner, after observing $\langle \gamma_1^t \dots \gamma_N^t \rangle$, makes its own prediction γ^t
- 3. Nature chooses an outcome $\omega^t \in \Omega$
- 4. Each expert incurs loss $\ell_i^t = \lambda(\omega^t, \gamma_i^t)$ The learner incurs loss $\ell_A^t = \lambda(\omega^t, \gamma^t)$

Achievable loss bounds

► $L_A \doteq \sum_{t=1}^{T} \ell_A^t$ - total loss of algorithm

Achievable loss bounds

- ► $L_A \doteq \sum_{t=1}^{T} \ell_A^t$ total loss of algorithm
- ► $L_i \doteq \sum_{t=1}^{T} \ell_i^t$ total loss of expert i

Achievable loss bounds

- ► $L_A \doteq \sum_{t=1}^{T} \ell_A^t$ total loss of algorithm
- $ightharpoonup L_i \doteq \sum_{t=1}^{T} \ell_i^t$ total loss of expert *i*
- Goal: find an algorithm which guarantees that

$$(a,c) \in [0,\infty), \ L_A \leq aL_{\min} + c \ln N$$

For any sequence of events.

Achievable loss bounds

- ► $L_A \doteq \sum_{t=1}^{T} \ell_A^t$ total loss of algorithm
- ► $L_i \doteq \sum_{t=1}^{T} \ell_i^t$ total loss of expert i
- Goal: find an algorithm which guarantees that

$$(a,c) \in [0,\infty), \ L_A \leq aL_{\min} + c \ln N$$

For any sequence of events.

▶ We say that the pair (a, c) is achievable.

The set of achievable bounds

► Fix loss function $\lambda : \Omega \times \Gamma \to [0, \infty)$

The set of achievable bounds

- ► Fix loss function $\lambda : \Omega \times \Gamma \to [0, \infty)$
- ► The pair (a, c) is achievable if there exists some prediction algorithm such that for any N > 0, any set of N prediction sequences and any sequence of outcomes

$$L_A \leq aL_{\min} + c \ln N$$

The set of achievable bounds

- ▶ Fix loss function $\lambda : \Omega \times \Gamma \to [0, \infty)$
- ► The pair (a, c) is achievable if there exists some prediction algorithm such that for any N > 0, any set of N prediction sequences and any sequence of outcomes

$$L_A \leq aL_{\min} + c \ln N$$

Some useful loss functions

▶ Outcomes: $\omega^1, \omega_2, \dots \omega^t \in [0, 1]$

Some useful loss functions

- ▶ Outcomes: $\omega^1, \omega_2, \dots \omega^t \in [0, 1]$
- ▶ Predictions: $\gamma^1, \gamma^2, \dots, \gamma^t \in [0, 1]$

•

$$\lambda_{\mathsf{ent}}(\omega,\gamma) = \omega \ln \frac{\omega}{\gamma} + (1-\omega) \ln \frac{1-\omega}{1-\gamma}$$

$$\lambda_{\mathsf{ent}}(\omega,\gamma) = \omega \ln \frac{\omega}{\gamma} + (1-\omega) \ln \frac{1-\omega}{1-\gamma}$$

▶ When $q_t \in \{0,1\}$ Cumulative log loss = coding length ± 1

$$\lambda_{ ext{ent}}(\omega,\gamma) = \omega \ln rac{\omega}{\gamma} + (1-\omega) \ln rac{1-\omega}{1-\gamma}$$

- ▶ When $q_t \in \{0,1\}$ Cumulative log loss = coding length ± 1
- ▶ If $P[\omega_t = 1] = q$, optimal prediction $\gamma^t = q$

$$\lambda_{\mathsf{ent}}(\omega,\gamma) = \omega \ln \frac{\omega}{\gamma} + (1-\omega) \ln \frac{1-\omega}{1-\gamma}$$

- ▶ When $q_t \in \{0,1\}$ Cumulative log loss = coding length ± 1
- ▶ If $P[\omega_t = 1] = q$, optimal prediction $\gamma^t = q$
- Unbounded loss.

$$\lambda_{ ext{ent}}(\omega,\gamma) = \omega \ln \frac{\omega}{\gamma} + (1-\omega) \ln \frac{1-\omega}{1-\gamma}$$

- ▶ When $q_t \in \{0,1\}$ Cumulative log loss = coding length ± 1
- ▶ If $P[\omega_t = 1] = q$, optimal prediction $\gamma^t = q$
- Unbounded loss.
- ▶ Not symmetric $\exists p, q \ \lambda(p, q) \neq \lambda(q, p)$.

$$\lambda_{ ext{ent}}(\omega,\gamma) = \omega \ln \frac{\omega}{\gamma} + (1-\omega) \ln \frac{1-\omega}{1-\gamma}$$

- ▶ When $q_t \in \{0,1\}$ Cumulative log loss = coding length ± 1
- ▶ If $P[\omega_t = 1] = q$, optimal prediction $\gamma^t = q$
- Unbounded loss.
- ▶ Not symmetric $\exists p, q \ \lambda(p, q) \neq \lambda(q, p)$.
- No triangle inequality $\exists p_1, p_2, p_3 \ \lambda(p_1, p_3) > \lambda(p_1, p_2) + \lambda(p_2, p_3)$

$$\lambda_{sq}(\omega, \gamma) = (\omega - \gamma)^2$$

$$\lambda_{sq}(\omega,\gamma) = (\omega - \gamma)^2$$

► $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 - q$, optimal prediction $\gamma^t = q$

$$\lambda_{\mathsf{sq}}(\omega,\gamma) = (\omega - \gamma)^2$$

- ► $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 q$, optimal prediction $\gamma^t = q$
- Bounded loss.

$$\lambda_{\mathsf{sq}}(\omega,\gamma) = (\omega - \gamma)^2$$

- ► $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 q$, optimal prediction $\gamma^t = q$
- Bounded loss.
- Defines a metric (symmetric and triangle ineq.)

$$\lambda_{\mathsf{sq}}(\omega,\gamma) = (\omega - \gamma)^2$$

- ► $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 q$, optimal prediction $\gamma^t = q$
- Bounded loss.
- Defines a metric (symmetric and triangle ineq.)
- Corresponds to regression.

>

$$\lambda_{\mathsf{hel}}(\omega,\gamma) = \frac{1}{2} \bigg(\big(\sqrt{\omega} + \sqrt{\gamma} \big)^2 + \Big(\sqrt{1-\omega} + \sqrt{1-\gamma} \Big)^2 \bigg)$$

$$\lambda_{\mathsf{hel}}(\omega,\gamma) = \frac{1}{2} \bigg(\big(\sqrt{\omega} + \sqrt{\gamma} \big)^2 + \Big(\sqrt{1-\omega} + \sqrt{1-\gamma} \Big)^2 \bigg)$$

▶ If $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 - q$, optimal prediction $\gamma^t = q$

$$\lambda_{\mathsf{hel}}(\omega,\gamma) = \frac{1}{2} \bigg(\big(\sqrt{\omega} + \sqrt{\gamma} \big)^2 + \Big(\sqrt{1-\omega} + \sqrt{1-\gamma} \Big)^2 \bigg)$$

- ▶ If $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 q$, optimal prediction $\gamma^t = q$
- Loss is bounded.

$$\lambda_{\mathsf{hel}}(\omega,\gamma) = \frac{1}{2} \bigg(\big(\sqrt{\omega} + \sqrt{\gamma} \big)^2 + \Big(\sqrt{1-\omega} + \sqrt{1-\gamma} \Big)^2 \bigg)$$

- ▶ If $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 q$, optimal prediction $\gamma^t = q$
- Loss is bounded.
- Defines a metric.

$$\lambda_{\mathsf{hel}}(\omega,\gamma) = \frac{1}{2} \bigg(\big(\sqrt{\omega} + \sqrt{\gamma} \big)^2 + \Big(\sqrt{1-\omega} + \sqrt{1-\gamma} \Big)^2 \bigg)$$

- ▶ If $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 q$, optimal prediction $\gamma^t = q$
- Loss is bounded.
- Defines a metric.
- ▶ $\lambda_{\text{hel}}(p,q) \approx \lambda_{\text{ent}}(p,q)$ when $p \approx q$ and $p,q \in (0,1)$

Absolute loss

$$\lambda(\omega,\gamma) = |\omega - \gamma|$$

Absolute loss

$$\lambda(\omega,\gamma) = |\omega - \gamma|$$

 Probability of making a mistake if predicting 0 or 1 using a biased coin

Absolute loss

$$\lambda(\omega, \gamma) = |\omega - \gamma|$$

- Probability of making a mistake if predicting 0 or 1 using a biased coin
- ▶ If $P[\omega^t = 1] = q$, $P[\omega^t = 0] = 1 q$, then the optimal prediction is

$$\gamma^t = \begin{cases} 1 & \text{if } q > 1/2, \\ 0 & \text{otherwise} \end{cases}$$

▶ Prediction is a distribution $\gamma = \langle p_1, \dots, p_N \rangle$, $p_i \ge 0$, $\sum_{i=1}^{N} p_i = 1$

- ► Prediction is a distribution $\gamma = \langle p_1, \dots, p_N \rangle, p_i \ge 0,$ $\sum_{i=1}^{N} p_i = 1$
- ▶ Outcome is a loss vector $\omega = \langle \omega_1, \dots, \omega_N \rangle$, $0 \le \omega_i \le 1$

- ▶ Prediction is a distribution $\gamma = \langle p_1, \dots, p_N \rangle$, $p_i \ge 0$, $\sum_{i=1}^{N} p_i = 1$
- ▶ Outcome is a loss vector $\omega = \langle \omega_1, \dots, \omega_N \rangle$, $0 \le \omega_i \le 1$
- ▶ Loss is the dot product: $\lambda_{dot}(\omega, \gamma) = \gamma \cdot \omega$

- ► Prediction is a distribution $\gamma = \langle p_1, \dots, p_N \rangle$, $p_i \ge 0$, $\sum_{i=1}^{N} p_i = 1$
- ▶ Outcome is a loss vector $\omega = \langle \omega_1, \dots, \omega_N \rangle$, $0 \le \omega_i \le 1$
- ▶ Loss is the dot product: $\lambda_{dot}(\omega, \gamma) = \gamma \cdot \omega$
- Corresponds to the hedging game.

- ▶ Prediction is a distribution $\gamma = \langle p_1, \dots, p_N \rangle$, $p_i \ge 0$, $\sum_{i=1}^{N} p_i = 1$
- ▶ Outcome is a loss vector $\omega = \langle \omega_1, \dots, \omega_N \rangle$, $0 \le \omega_i \le 1$
- ▶ Loss is the dot product: $\lambda_{dot}(\omega, \gamma) = \gamma \cdot \omega$
- Corresponds to the hedging game.
- ▶ For hedge loss the regret is $\Omega(\sqrt{T \log N})$.

- ▶ Prediction is a distribution $\gamma = \langle p_1, \dots, p_N \rangle$, $p_i \ge 0$, $\sum_{i=1}^{N} p_i = 1$
- ▶ Outcome is a loss vector $\omega = \langle \omega_1, \dots, \omega_N \rangle$, $0 \le \omega_i \le 1$
- ▶ Loss is the dot product: $\lambda_{dot}(\omega, \gamma) = \gamma \cdot \omega$
- Corresponds to the hedging game.
- ▶ For hedge loss the regret is $\Omega(\sqrt{T \log N})$.
- ► For the log loss the regret is O(log N)

- ▶ Prediction is a distribution $\gamma = \langle p_1, \dots, p_N \rangle$, $p_i \ge 0$, $\sum_{i=1}^{N} p_i = 1$
- ▶ Outcome is a loss vector $\omega = \langle \omega_1, \dots, \omega_N \rangle$, $0 \le \omega_i \le 1$
- ▶ Loss is the dot product: $\lambda_{dot}(\omega, \gamma) = \gamma \cdot \omega$
- Corresponds to the hedging game.
- ▶ For hedge loss the regret is $\Omega(\sqrt{T \log N})$.
- ► For the log loss the regret is O(log N)
- Which losses behave like entropy loss and which behave like hedge loss?

Some technical requirements

► There should be a topology on the prediction set Γ such that

Some technical requirements

- ► There should be a topology on the prediction set Γ such that
- ▶ Г is compact.

Some technical requirements

- ► There should be a topology on the prediction set Γ such that
- Γ is compact.
- ▶ $\forall \omega \in \Omega$, the function $\gamma \to \lambda(\omega, \gamma)$ is continuous

Some technical requirements

- ► There should be a topology on the prediction set Γ such that
- Γ is compact.
- ▶ $\forall \omega \in \Omega$, the function $\gamma \to \lambda(\omega, \gamma)$ is continuous
- ► There is a universally reasonable prediction $\exists \gamma \in \Gamma, \forall \omega \in \Omega, \lambda(\omega, \gamma) < \infty$

Some technical requirements

- ► There should be a topology on the prediction set Γ such that
- Γ is compact.
- ▶ $\forall \omega \in \Omega$, the function $\gamma \to \lambda(\omega, \gamma)$ is continuous
- ► There is a universally reasonable prediction $\exists \gamma \in \Gamma, \forall \omega \in \Omega, \lambda(\omega, \gamma) < \infty$
- ► There is no universally optimal prediction $\neg \exists \gamma \in \Gamma, \forall \omega \in \Omega, \lambda(\omega, \gamma) = 0$

Fix an achievable pair (a, c) and set $\eta = a/c$

Fix an achievable pair (a, c) and set $\eta = a/c$

- Fix an achievable pair (a, c) and set $\eta = a/c$
- 1.

$$W_i^t = \frac{1}{N} e^{-\eta L_i^t}$$

- Fix an achievable pair (a, c) and set $\eta = a/c$
- 1.

$$W_i^t = \frac{1}{N} e^{-\eta L_i^t}$$

2. Choose γ_t so that, for all $\omega^t \in \Omega$:

$$\lambda(\omega^t, \gamma^t) - c \ln \sum_i W_i^t \le -c \ln \left(\sum_i W_i^t e^{-\eta \lambda(\omega^t, \gamma_i^t)} \right)$$

- Fix an achievable pair (a, c) and set $\eta = a/c$

1.

$$W_i^t = \frac{1}{N} e^{-\eta L_i^t}$$

2. Choose γ_t so that, for all $\omega^t \in \Omega$:

$$\lambda(\omega^t, \gamma^t) - c \ln \sum_i W_i^t \le -c \ln \left(\sum_i W_i^t e^{-\eta \lambda(\omega^t, \gamma_i^t)} \right)$$

▶ If choice of γ^t always exists, then the total loss satisfies:

$$\sum_{t} \lambda(\omega^{t}, \gamma^{t}) \leq -c \ln \sum_{i} W_{i}^{T+1} \leq aL_{\min} + c \ln N$$

- Fix an achievable pair (a, c) and set $\eta = a/c$

1.

$$W_i^t = \frac{1}{N} e^{-\eta L_i^t}$$

2. Choose γ_t so that, for all $\omega^t \in \Omega$:

$$\lambda(\omega^t, \gamma^t) - c \ln \sum_i W_i^t \leq -c \ln \left(\sum_i W_i^t e^{-\eta \lambda(\omega^t, \gamma_i^t)}
ight)$$

▶ If choice of γ^t always exists, then the total loss satisfies:

$$\sum_{t} \lambda(\omega^{t}, \gamma^{t}) \leq -c \ln \sum_{i} W_{i}^{T+1} \leq aL_{\min} + c \ln N$$

Vovk's result: yes! a good choice for γ_t always exists!

Vovk's algorithm is the the highest achiever [Vovk95]

The pair (a, c) is achieved by some algorithm if and only if it is achieved by Vovk's algorithm.

Vovk's algorithm is the the highest achiever [Vovk95]

The pair (a, c) is achieved by some algorithm if and only if it is achieved by Vovk's algorithm.

The separation curve is $\left\{\left.\left(a(\eta),\frac{a(\eta)}{\eta}\right)\right|\eta\in[0,\infty]\right\}$

Vovk's algorithm is the the highest achiever [Vovk95]

The pair (a, c) is achieved by some algorithm if and only if it is achieved by Vovk's algorithm.

The separation curve is $\left\{\left.\left(a(\eta),\frac{a(\eta)}{\eta}\right)\right|\eta\in[0,\infty]\right\}$

▶ A Loss function is mixable if a pair of the form (1, c), $c < \infty$ is achievable.

$$L_A \leq L_{\min} + c \ln N$$

▶ A Loss function is mixable if a pair of the form (1, c), $c < \infty$ is achievable.

$$L_A \leq L_{\min} + c \ln N$$

▶ Vovk's algorithm with $\eta = 1/c$ achieves this bound.

▶ A Loss function is mixable if a pair of the form (1, c), $c < \infty$ is achievable.

$$L_A \leq L_{\min} + c \ln N$$

- ▶ Vovk's algorithm with $\eta = 1/c$ achieves this bound.
- $\triangleright \lambda_{ent}, \lambda_{sq}, \lambda_{hel}$ are mixable

▶ A Loss function is mixable if a pair of the form (1, c), $c < \infty$ is achievable.

$$L_A \leq L_{\min} + c \ln N$$

- ▶ Vovk's algorithm with $\eta = 1/c$ achieves this bound.
- $\triangleright \lambda_{ent}, \lambda_{sq}, \lambda_{hel}$ are mixable
- $\triangleright \lambda_{abs}, \lambda_{dot}$ are not mixable

• requirement for loss to be $(1, 1/\eta)$ mixable

- requirement for loss to be $(1, 1/\eta)$ mixable
- $\forall \langle (\gamma_1, W_1), \dots, (\gamma_N, W_N) \rangle$ $\exists \gamma \in \Gamma$ $\forall \omega \in \Omega:$

$$\lambda(\omega, \gamma) - \frac{1}{\eta} \ln \sum_{i} W_{i} \leq -\frac{1}{\eta} \ln \left(\sum_{i} W_{i} e^{-\eta \lambda(\omega, \gamma_{i})} \right)$$

- requirement for loss to be $(1, 1/\eta)$ mixable
- $\forall \langle (\gamma_1, W_1), \dots, (\gamma_N, W_N) \rangle$ $\exists \gamma \in \Gamma$ $\forall \omega \in \Omega:$

$$\lambda(\omega, \gamma) - rac{1}{\eta} \ln \sum_i W_i \leq -rac{1}{\eta} \ln \left(\sum_i W_i e^{-\eta \lambda(\omega, \gamma_i)}
ight)$$

Can be re-written as:

$$e^{-\eta\lambda(\omega,\gamma)} \geq \sum_{i} \left(\frac{W_{i}}{\sum_{j} W_{j}} \right) e^{-\eta\lambda(\omega,\gamma_{i})}$$

- requirement for loss to be $(1, 1/\eta)$ mixable
- $\forall \langle (\gamma_1, W_1), \dots, (\gamma_N, W_N) \rangle$ $\exists \gamma \in \Gamma$ $\forall \omega \in \Omega:$

$$\lambda(\omega, \gamma) - rac{1}{\eta} \ln \sum_i W_i \leq -rac{1}{\eta} \ln \left(\sum_i W_i e^{-\eta \lambda(\omega, \gamma_i)}
ight)$$

Can be re-written as:

$$e^{-\eta\lambda(\omega,\gamma)} \geq \sum_{i} \left(\frac{W_{i}}{\sum_{j} W_{j}} \right) e^{-\eta\lambda(\omega,\gamma_{i})}$$

► Equivalently - the image of the set Γ under the mapping $F(\gamma) = \langle e^{-\eta \lambda(\omega, \gamma)} \rangle_{\omega \in \Omega}$ is concave.

convexity condition: Pictorially

Example: Suppose $\Omega = \{0, 1\}$, $\Gamma = [0, 1]$. then

$$F(\gamma) = \left\langle e^{-\eta\lambda(0,\gamma)}, e^{-\eta\lambda(1,\gamma)} \right
angle$$

convexity condition: Pictorially

Example: Suppose $\Omega = \{0, 1\}$, $\Gamma = [0, 1]$. then

$$F(\gamma) = \left\langle e^{-\eta\lambda(0,\gamma)}, e^{-\eta\lambda(1,\gamma)} \right\rangle$$

▶ The log loss is mixable with $\eta = 1$

- ▶ The log loss is mixable with $\eta = 1$
- ► The image of [0, 1] through $F(\gamma) = \langle e^{-\eta \lambda(0,\gamma)}, e^{-\eta \lambda(1,\gamma)} \rangle$ is a straight line segment.

- ▶ The log loss is mixable with $\eta = 1$
- ► The image of [0, 1] through $F(\gamma) = \langle e^{-\eta \lambda(0,\gamma)}, e^{-\eta \lambda(1,\gamma)} \rangle$ is a straight line segment.
- ► The only satisfactory prediction is

$$\gamma = \frac{\sum_{i} W_{i} \gamma_{i}}{\sum_{i} W_{i}}$$

- ▶ The log loss is mixable with $\eta = 1$
- ► The image of [0, 1] through $F(\gamma) = \langle e^{-\eta \lambda(0,\gamma)}, e^{-\eta \lambda(1,\gamma)} \rangle$ is a straight line segment.
- ► The only satisfactory prediction is

$$\gamma = \frac{\sum_{i} \mathbf{W}_{i} \gamma_{i}}{\sum_{i} \mathbf{W}_{i}}$$

We are back to the online Bayes algorithm.

Vovk algorithm for square loss

▶ The square loss is mixable with $\eta = 2$.

Vovk algorithm for square loss

- ▶ The square loss is mixable with $\eta = 2$.
- Prediction must satisfy

$$1 - \sqrt{-\frac{1}{2}\ln\sum_{i}V_{i}^{t}e^{-2(1-\rho_{i}^{t})^{2}}} \leq p^{t} \leq \sqrt{-\frac{1}{2}\ln\sum_{i}V_{i}^{t}e^{-2(\rho_{i}^{t})^{2}}}$$

where
$$V_i^t = \frac{W_i^t}{\sum_s W_i^s}$$
.

Vovk algorithm for square loss

- ▶ The square loss is mixable with $\eta = 2$.
- Prediction must satisfy

$$1 - \sqrt{-\frac{1}{2}\ln\sum_{i}V_{i}^{t}e^{-2(1-\rho_{i}^{t})^{2}}} \leq p^{t} \leq \sqrt{-\frac{1}{2}\ln\sum_{i}V_{i}^{t}e^{-2(\rho_{i}^{t})^{2}}}$$

where
$$V_i^t = \frac{W_i^t}{\sum_s W_i^s}$$
.

$$L_A \leq L_{\min} + \frac{1}{2} \ln N$$

Simple prediction for square loss

▶ We can use the prediction

$$\gamma = \frac{\sum_{i} \mathbf{W}_{i} \gamma_{i}}{\sum_{i} \mathbf{W}_{i}}$$

Simple prediction for square loss

We can use the prediction

$$\gamma = \frac{\sum_{i} \mathbf{W}_{i} \gamma_{i}}{\sum_{i} \mathbf{W}_{i}}$$

▶ But in that case we must use $\eta = 1/2$ when updating the weights.

Simple prediction for square loss

We can use the prediction

$$\gamma = \frac{\sum_{i} \mathbf{W}_{i} \gamma_{i}}{\sum_{i} \mathbf{W}_{i}}$$

- ▶ But in that case we must use $\eta = 1/2$ when updating the weights.
- Which yields the bound

$$L_A \leq L_{\min} + 2 \ln N$$

Summary of bounds for mixable losses

TRACKING THE BEST EXPERT

Loss	c values: $(\eta = 1/c)$	
Functions:	$\mathbf{pred}_{\mathrm{wmean}}(v,x)$	$\operatorname{pred}_{\operatorname{Vovk}}(v,x)$
$L_{\text{Sq}}(p,q)$	2	1/2
$L_{\mathbf{ent}}(p,q)$	1	1
$L_{\mathbf{hel}}(p,q)$	1	$1/\sqrt{2}$

Figure 2. (c, 1/c)-realizability: c values for loss and prediction function pairing