1 Breve Histórico

Segundo (Bratko, 1990), a idéia de usar lógica como formalismo executável em um computador surgiu nos anos 70. Os primeiros desenvolvedores da linguagem foram Robert Kowalski, responsável pela parte teórica: o projeto, Maarten, que elaborou uma demonstração experimental da idéia, e Alain Colmerauer, que realizou a implementação do primeiro interpretador Prolog (PROgramação LÓGica).

A popularidade da linguagem é atribuída a David Warren que fez uma versão mais eficiente do Prolog.

2 Características

"O Prolog é uma linguagem de programação que gira em torno de um conjunto pequeno de mecanismos, tais como: casamento de padrões (*pattern matching*), estruturas de dados baseadas em árvores e retrocesso (*backtracking*) automático." (Bratko, 1990),

Dentre as suas características, pode-se destacar:

- Orientada a processamento simbólico;
- Implementa lógica como linguagem de programação;
- Permite a definição de programas inversíveis, ou seja, programas que não distinguem entre argumentos de entrada e saída. Permite a definição de um programa com mais de uma finalidade que pode ser chamado de formas diferentes;
- Permite respostas alternativas;
- Suporta estruturas de dados similares a registros ou listas;
- Permite recuperação dedutiva de informação;
- Suporta codificações recursivas e dispensa os mecanismos tradicionais de controle como for e while;
- Representa programas e dados com o mesmo formalismo.

3 Sintaxe

A sintaxe da linguagem é muito simples. Ela possui um alfabeto básico e essencialmente três tipos de objetos: constantes, variáveis e predicados.

3.1 Alfabeto

O alfabeto da linguagem é constituído de alfanuméricos e de alguns caracteres especiais. Dentre os caracteres especiais, pode-se destacar:

- Parênteses () Usados para formar um predicado.
- o Ponto (.) Usado ao final de toda linha.
- o Ponto-e-vírgula (;) tem a função do operador lógico **ou**. Algumas versão implementam a barra vertical com esta função (|).
- Vírgula (,) tem a função do operador lógico e.
- Exclamação (!) representa o operador cut.
- Dois Pontos seguido de hífen (:-) representa o operador de implicação. Normalmente utilizado em regras Prolog.
- o Underline (_) : variável anônima.

3.2 Objetos Prolog

Sintaticamente todos os objetos em Prolog são **termos**. O conjunto de termos Prolog é o menor conjunto que satisfaz às seguintes condições:

- Toda constante é um termo;
- Toda variável é um termo;
- o Se t_1 , t_2 , ..., t_n são termos e f é um nome de função, então $f(t_1,\,t_2,\,\dots$, $t_n)$ também é um termo.

3.2.1 Variáveis

As variáveis sempre devem começar com letras maiúsculas. Não há declaração de variáveis e nem qualquer informação adicional sobre seus tipos. O identificador de uma variável não deve conter caracteres especiais, exceto o "_" (underscore). Uma variável identificada apenas pelo "_" é dita "variável anônima" e é utilizada quando não há interesse por algum objeto de um predicado.

Exemplos de variáveis: Nome, N, Ana, NOME, _.

3.2.2 Constantes

As constantes são constituídas pelos valores numéricos, strings e caracteres.

Os caracteres e as strings devem obrigatoriamente iniciar por letra minúscula e não podem conter caracteres especiais (exceto o *underline* ou no caso de estarem entre apostrófos). Para defini-las com letras maiúsculas ou com espaços em branco, é necessário colocar a string ou o caracter entre apóstrofos. As strings ainda podem ser "ligadas" pelo caracter especial *underline*.

Os tipos numéricos implementados compreendem os inteiros e ponto-flutuante. Dentre os operadores aritméticos, pode-se destacar: is (unifica uma variável a um valor), + (adição), *(multiplicação), - (subtração), / (divisão), // (divisão inteira) e mod (resto da divisão inteira). Dentre os operadores relacionais, citam-se: >= (maior ou igual), =< (menor ou igual), /= (diferente), etc.

Exemplos: a, ana, 'Ana', 12, 12.45, joao_batista, 'João Batista'.

3.2.3 Predicados

Predicados ou estruturas são objetos que possuem vários componentes. Os próprios componentes, por sua vez, podem ser também estruturas. Por exemplo, uma data pode ser vista com o uma estrutura de 3 componentes: dia, mês e ano. Mesmo que as estruturas sejam formadas por diversos componentes, elas são tratadas no programa como objetos simples.

Para combinar os componentes em uma estrutura é necessário empregar um functor. Functor é um símbolo funcional (um nome de função) que permite agrupar diversos objetos em um único objeto estruturado.

Cabe ressaltar que o nome do predicado segue as regras de definição de uma constante string, ou seja, deve ser iniciar por letra minúscula, não pode conter caracteres especiais, exceto o *underline*.

Exemplos: pai(joao, maria).

livro(assunto(prolog), autor(bratko)).

conceito(Nota, aprovado) :- Nota >=6.

4 Unificação

A operação mais importante entre 2 termos Prolog é a Unificação. A unificação é responsável pelo casamento de padrões. É através dela, por exemplo, que um valor é associado a uma variável. Entretanto, ela não deve ser confundida com a operação de atribuição usual das linguagens procedurais.

A seguir, apresentam-se as regras de unificação, que determinam que objetos unificam com outros objetos. Unificam:

- Variáveis com Variáveis : Uma variável sempre unifica com outra variável, independentemente do seu identificador.
- Variáveis com Constantes : Uma variável sempre unifica com uma constante.
- Variáveis com Estruturas: Uma variável sempre unifica com uma estrutura.
- Constantes com Constantes: Uma constante só unifica com outra se forem idênticas.
- Estruturas com Estruturas: Uma estrutura só unifica com outra quando possuem o mesmo nome de função e a mesma quantidade de argumentos. Para a unificação dos argumentos valem todas as regras já definidas.

É importante ressaltar que uma vez que uma variável X de uma cláusula unifica com um determinado valor, todas as ocorrências de X nesta mesma cláusula unificarão com o mesmo valor.

Exemplo: livro(assunto(prolog), autor(bratko)) unifica com livro (X, Y)

X será instanciado com assunto(prolog)

Y **será instanciado com** *autor(batko)*

Exercícios:

1) Associe a coluna da direita com a da esquerda, identificando os termos Prolog, bem como, as representações incorretas.

(P)	Predicado	()	Marcelo
(V)	Variável	()	Endereco
(C)	Constante	()	tipo
(E)	Erro	()	120.70
		()	X
		()	Movimentação(X,dir):- X < 20.
		()	linguagem(prolog).
		()	linguagem(c, paradigma(procedural)).
		()	'Antônia'
		()	João
		()	a
		()	_
		()	-
		()	1_1
		()	luiz serra

- 2) Os termos prolog abaixo unificam ? Se a unificação ocorrer com sucesso, deterrnine o valor das variáveis. O símbolo ~ foi usado para representar a possibilidade de unificação.
 - a. data(8, 3, 2001) ~ data(X, 3, 01)
 - b. data(8, 3, 2001) ~ dia(X, Y, 2001)
 - c. data(D,M,A) ~ data (20, Maio, 2003)
 - d. data(D,M,A) ~ data (10, junho, 1979)
 - e. data(D, junho, A) ~ data(2, Mes, decada(70))
 - f. livro(assunto('Inteligência Artificial'), autor('Elaine Rich')) ~ livro (A, A)
 - g. livro(assunto('Inteligência Artificial'), autor('Elaine Rich')) ~ livro (As, Au)
 - h. livro(assunto('Inteligência Artificial'), autor('E.Rich'))

~ livro (assunto(A), autor(N))

- i. pessoa(Ana, 18, informatica) ~ pessoa(x, 18, Y)
- j. pessoa(ana, 18, informatica) ~ pessoa(x, 18, Y)
- k. pessoa(ana, informatica) ~ pessoa(x, 18, Y)
- l. pessoa(ana, 18, informatica) ~ pessoa(Nome, _, Curso)
- m. pessoa(ana, 18, informatica) ~ pessoas(_, _, Curso)
- n. computador(pentiumIII, 233) ~ computador(pentiumIII,233,ram64)
- o. curso(harware, torres) ~ curso(_, X).

- p. objeto(bola, vermelha, grande) ~ objeto(X, azul, Y).
- q. eventos(simposios, congresso, workshops) ~ evento (X, _, Y).
- r. pessoa (adriano, 21) ~ pessoa(Andre,21).
- s. pessoa(adriano,21,sexo(masc), curso(computacao)) ~ pessoa(adriano, _, sexo(X), curso(Y)).
- t. livro(linux, editora(makron), autor(richard)) ~ livro(linux, X, Y).
- u. endereco(andradas, 1001, andar(7), fone('221-4589'), contato(maria)) ~ endereco(_,_,,X,Y)
- 3) Represente em Prolog as sentenças abaixo:
 - a. O Windows é um sistema operacional.
 - b. O Linux também é um sistema operacional.
 - c. Todo sistema operacional é um software porém básico.
 - d. O Word é um editor de textos.
 - e. O Excel é uma planilha eletrônica.
 - f. Todo o editor de textos ou planilha eletrônica é um software porém aplicativo.
 - g. Quais são os softwares básicos?
 - h. Quais os nomes dos softwares?
 - i. Word é um sistema operacional?
 - j. Excel é um aplicativo ?
- 4) Considere a base Prolog abaixo que representa as relações de família de "Joãozinho".

```
progenitor(antonio, joaozinho).
progenitor(maria,joaozinho).
progenitor(antonio, luis).
progenitor(maria, luis).
progenitor(antonio, cristina).
progenitor(maria, cristina).
progenitor(carlos, antonio).
progenitor(fernanda, antonio).
progenitor(pedro, maria).
progenitor(mariana, maria).
progenitor(jose, mariana).
progenitor(sandra, mariana).
progenitor(carlos, alberto).
progenitor(fernanda, alberto).
progenitor(carlos, marcia).
progenitor(fernanda, marcia).
```

sexo(joaozinho,masc). sexo(antonio,masc). sexo(maria,fem).

. . .

Defina os predicados:

- a. pai
- b. mãe
- c. irmão
- d. irmã
- e. tio
- f. tia
- g. avô
- h. avó
- i. tio-avô
- j. tia-avó
- k. bisavô
- l. bisavó
- m. ancestral