Διαγώνισμα στο μη πεπερασμένο όριο και συνέχεια συνάρτησης

1. α) Να κυκλώσετε το Σ (σωστό) ή Λ (λάθος) ανάλογα στα παρακάτω:

i. An
$$\lim_{x \to \alpha} f(x) = 0$$
, the $\lim_{x \to \alpha} \frac{1}{f(x)} = +\infty$

ii. Av
$$\lim_{x \to +\infty} \alpha^x = 0$$
, tóte) $0 < \alpha < 1$

- iii. Αν η f είναι συνεχής στο x_0 , τότε και οι f,g είναι συνεχείς στο x_0
- iv. Αν η f είναι συνεχής στο x_0 , τότε το x_0 είναι στοιχείο του πεδίου ορισμού της
- v. Αν η f είναι συνεχής στο διάστημα Δ και παίρνει τις τιμές κ και λ , τότε παίρνει όλες τις τιμές του διαστήματος [κ,λ]
- β) Να κυκλώσετε το γράμμα της ορθής απάντησης στα παρακάτω:

i. Av
$$\lambda = \lim_{x \to 2} \frac{1-x}{|x-2|}$$
 τότε: A. $\lambda = 0$

B.
$$\lambda = -\infty$$

$$\Gamma$$
. $\lambda = +\infty$

i. An
$$\lambda = \lim_{x \to 2} \frac{1-x}{|x-2|}$$
 τότε: A. $\lambda = 0$ B. $\lambda = -\infty$ Γ. $\lambda = +\infty$ Δ. $\lambda = 2$ Ε. Δεν υπάρχει το όριο ii. An $\mu = \lim_{x \to +\infty} \left(x \cdot \eta \mu \frac{2}{x} \right)$ τότε: A. $\mu = 1$ B. $\mu = 2$ Γ. $\mu = 0$ Δ. $\mu = -1$ Ε. $\mu = +\infty$

E.
$$\mu = +\infty$$

- iii. Αν η f είναι συνεχής στο 2 και f(2) = 2002 τότε το $\lim_{h \to 0} f(2+h)$ είναι:
- A. 0
- B. 2002
- Γ. 1
- Δ. 2
- Ε. Δεν γνωρίζουμε
- iv. Αν η f είναι συνεχής στο $[\alpha,\beta]$ και $f(x)\neq 0$, για κάθε $x\in [\alpha,\beta]$ και $f(\frac{\alpha+\beta}{2})>0$ τότε:
- Α. f(x)>0 για κάθε x στο διάστημα [α,β]
- Β. Υπάρχει ξ στο διάστημα (α,β) τέτοιο ώστε: $f(\xi) = 0$
- Γ . f(x) < 0 για κάθε x στο διάστημα $[\alpha, \beta]$
- Δ. Υπάρχει ξ στο διάστημα (α,β) τέτοιο ώστε: $f(\xi) < 0$
- Ε. Η εξίσωση f(x) = 0 έχει τουλάχιστον μία ρίζα στο $[\alpha, \beta]$
- v. Αν η f είναι συνεχής στο R και ρ₁, ρ₂ 2 διαδοχικές ρίζες της, τότε:
- A. f(x)>0 για κάθε $x \in (\rho_1, \rho_2)$
- B. f(x)<0, για κάθε $x \in (\rho_1, \rho_2)$
- Γ. Η f διατηρεί πρόσημο στο

- (ρ_1, ρ_2)
- Δ. υπάρχει ρίζα της f στο (ρ_1, ρ_2)
- Ε. Τίποτα από τα παραπάνω

- 2. Av $f(x) = \frac{x-4}{(\sqrt{x}-2)^3}$ να βρεθεί το $\lim_{x\to 4} f(x)$
- 3. Να βρεθεί το: $\lim_{x \to +\infty} (\sqrt{x^2+2x+3} + \sqrt{4x^2+4x+3} \sqrt{9x^2+6x+2})$
- 4. Να βρεθούν τα α,β,γ ώστε η δίκλαδη συνάρτηση $f(x) = \frac{\alpha x^3 + \beta x^2 \gamma x + 1}{x^2 2 x + 1}$, $x \ne 1$ και f(x) = -1, x = 1

να είναι συνεχής στο πεδίο ορισμού της

5. Αν η f είναι συνεχής στο $[\alpha,\beta]$ με $f(\alpha)+f(\beta)=0$ ν.δ.ο. η εξίσωση f(x)=0 έχει μία τουλάχιστον ρίζα στο $[\alpha,\beta]$.