Theorem (3.2.19b). Let f be the function defined by $f(n) = (n \log n + n^2)(n^3 + 2)$. f(n) is $\mathcal{O}(n^5)$.

Proof. f(n) is the product of functions $(f_1f_2)(n)$, where $f_1(n) = (n \log n + n^2)$ and $f_2(n) = (n^3 + 2)$.

Consider f_1 , which is the sum of functions $(f'_1+f''_1)$, where $f'_1(n)=n\log n$, and $f''_1=n^2$. Since $n\log n \leq n \cdot n$, for all $n\geq 1$, it follows that $f'_1(n)$ is $\mathcal{O}(n^2)$ with constant witnesses C=1 and k=1. Clearly, $f''_1(n)$ is $\mathcal{O}(n^2)$ with constant witnesses in \mathbb{N} . Now, the bounding function for the sum of functions is the maximum of the bounding functions in the addends for the sum of functions. So $(f'_1+f''_1)(n)$ is $\mathcal{O}(n^2)$. Thus, f_1 is $\mathcal{O}(n^2)$.

We now turn our attention to f_2 . f_2 is a 3^{rd} degree binomial. Since a k^{th} degree polynomial is $\mathcal{O}(x^k)$, it follows that $f_2(n)$ is $\mathcal{O}(n^3)$.

The bounding function for the product of functions is the product of the bounding functions for each function in the product of functions. So f(n) is $\mathcal{O}(n^2 \cdot n^3)$. This means that f(n) is $\mathcal{O}(n^5)$.