Tutorial 4 HT

Research Methods for Political Science - PO3110

Andrea Salvi

19 February 2019

Trinity College Dublin,

https://andrsalvi.github.io/research-methods/

Table of contents

1. Multiple Regression

•
$$y = \beta_0 + \beta_1 x + \epsilon$$

- $y = \beta_0 + \beta_1 x + \epsilon$
- We want to estimate the line of best fit using OLS (ordinary least squares).

- $y = \beta_0 + \beta_1 x + \epsilon$
- We want to estimate the line of best fit using OLS (ordinary least squares).
- That is: we want to minimise SS_R (sum of square residuals)

- $y = \beta_0 + \beta_1 x + \epsilon$
- We want to estimate the line of best fit using OLS (ordinary least squares).
- That is: we want to minimise SS_R (sum of square residuals)
- $SS_R = \sum (y_i \hat{y}_i)^2$ (or RSS)

- $y = \beta_0 + \beta_1 x + \epsilon$
- We want to estimate the line of best fit using OLS (ordinary least squares).
- That is: we want to minimise SS_R (sum of square residuals)
- $SS_R = \sum (y_i \hat{y_i})^2$ (or RSS)
- Given that we know how to calculate $\hat{y_i}$, we can rewrite it as: $SS_R = \sum (y_i \beta_0 \beta_1 \times x_i)^2$

- $y = \beta_0 + \beta_1 x + \epsilon$
- We want to estimate the line of best fit using OLS (ordinary least squares).
- That is: we want to minimise SS_R (sum of square residuals)
- $SS_R = \sum (y_i \hat{y}_i)^2$ (or RSS)
- Given that we know how to calculate $\hat{y_i}$, we can rewrite it as: $SS_R = \sum (y_i \beta_0 \beta_1 \times x_i)^2$
- Accordingly: $\hat{eta}_1 = rac{\sigma_{xy}}{\sigma_{x}}$

- $y = \beta_0 + \beta_1 x + \epsilon$
- We want to estimate the line of best fit using OLS (ordinary least squares).
- That is: we want to minimise SS_R (sum of square residuals)
- $SS_R = \sum (y_i \hat{y_i})^2$ (or RSS)
- Given that we know how to calculate $\hat{y_i}$, we can rewrite it as: $SS_R = \sum (y_i \beta_0 \beta_1 \times x_i)^2$
- Accordingly: $\hat{\beta}_1 = \frac{\sigma_{xy}}{\sigma_x}$
- $\cdot \hat{\beta_0} = \bar{y} \beta_1 \times \bar{x}$

- $y = \beta_0 + \beta_1 x + \epsilon$
- We want to estimate the line of best fit using OLS (ordinary least squares).
- That is: we want to minimise SS_R (sum of square residuals)
- $SS_R = \sum (y_i \hat{y_i})^2$ (or RSS)
- Given that we know how to calculate $\hat{y_i}$, we can rewrite it as: $SS_R = \sum (y_i \beta_0 \beta_1 \times x_i)^2$
- Accordingly: $\hat{eta}_1 = rac{\sigma_{xy}}{\sigma_x}$
- $\cdot \hat{\beta_0} = \bar{y} \beta_1 \times \bar{x}$
- This formulas apply when you have ONE independent variable.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.940ª	.883	.863	64.13553

a. Predictors: (Constant), seats

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	185831.801	1	185831.801	45.178	.001 b
	Residual	24680.199	6	4113.367		
	Total	210512.000	7			

a. Dependent Variable: proposals

b. Predictors: (Constant), seats

$$R^2 = 1 - \frac{SS_R}{SS_T} = 1 - \frac{24680.199}{210512} = 0.883$$

•
$$SS_T = SS_R + SS_M$$

- $SS_T = SS_R + SS_M$
- · All info we can get from our ANOVA table!

•
$$SS_T = SS_R + SS_M$$

- · All info we can get from our ANOVA table!
- $R^2 = \frac{SS_M}{SS_T}$

•
$$SS_T = SS_R + SS_M$$

· All info we can get from our ANOVA table!

•
$$R^2 = \frac{SS_M}{SS_T}$$

•
$$\frac{185831.8}{210512} = 0.883$$

F-test

 \cdot Helps us to assess the overall fit of the model

F-test

- · Helps us to assess the overall fit of the model
- Tests H_0 that all slopes in the model = 0

•
$$F = \frac{ModelMeanSquares}{ResidualMeanSquares} = \frac{MS_M}{MS_R}$$

F-test

- · Helps us to assess the overall fit of the model
- Tests H_0 that all slopes in the model = 0
- $F = \frac{ModelMeanSquares}{ResidualMeanSquares} = \frac{MS_M}{MS_R}$
- SPSS provide us with the exact p value. If significant we reject H_0 .

F-test

- · Helps us to assess the overall fit of the model
- Tests H_0 that all slopes in the model = 0
- $F = \frac{ModelMeanSquares}{ResidualMeanSquares} = \frac{MS_M}{MS_R}$
- SPSS provide us with the exact p value. If significant we reject H_0 .
- If we have a model with only one independent variable, the F
 test and the t-test give the same result, because both test the
 null hypothesis that the one slope in the model is equal to zero
 (see slides from Stat HT3 lecture to review t-tests in regression
 analysis).

The equation would look like this:

The equation would look like this:

•
$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon_i$$

The equation would look like this:

•
$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_2 + ... + \beta_k x_k + \epsilon_i$$

This allows you to "control" for things!

The equation would look like this:

- $y_i = \beta_0 + \beta_1 x_i + \beta_2 x_2 + ... + \beta_k x_k + \epsilon_i$
- · This allows you to "control" for things!
- Remember the example from the lecture with Happiness as a DV and "Work Hours" as an IV. When introducing "Education" in the model, the effect of "Work Hours" was no longer significant.

6

The equation would look like this:

- $y_i = \beta_0 + \beta_1 x_i + \beta_2 x_2 + ... + \beta_k x_k + \epsilon_i$
- This allows you to "control" for things!
- Remember the example from the lecture with Happiness as a DV and "Work Hours" as an IV. When introducing "Education" in the model, the effect of "Work Hours" was no longer significant.
- Slightly different interpretation. We look at the change in Y when X changes by 1 unit CETERIS PARIBUS.

6

The equation would look like this:

- $y_i = \beta_0 + \beta_1 x_i + \beta_2 x_2 + ... + \beta_k x_k + \epsilon_i$
- · This allows you to "control" for things!
- Remember the example from the lecture with Happiness as a DV and "Work Hours" as an IV. When introducing "Education" in the model, the effect of "Work Hours" was no longer significant.
- Slightly different interpretation. We look at the change in Y when X changes by 1 unit CETERIS PARIBUS.
- Let's look at an example using "Norris.sav" (http://tinyurl.com/norris-ht4).

Multiple Regression: an example

What predicts wealth (measured as GDP per capita)?

- Dependent variable: GDP per capita (US\$) 2002 (UNDP 2004)
- · Independent variables:
 - FM_Lit2002: Adult illiteracy rate (% ages 15 and above) 2002 (UNDP 2004)
 - F_Work2002: Female economic activity rate (% ages 15 and above) 2002 (UNDP 2004)
 - · SDI: Social Diversity Index, primary data source 2001 (Okediji 2005)

Multiple Regression: an example

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-1052.329	3854.899		273	.786
	Adult literacy rate (female rate as % of male rate) 2002 (UNDP 2004)	72.153	28.127	.276	2.565	.012
	Female economic activity rate (% ages 15 and above) 2002 (UNDP 2004)	-89.083	34.071	302	-2.615	.011
	Social Diversity Index, primary data source 2001 (Okediji 2005)	3266.519	2976.317	.126	1.098	.276

a. Dependent Variable: GDP per capita (US\$) 2002 (UNDP 2004)

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	-1615.23	6343.40	2927.33	2056.694	84
Residual	-5941.399	23353.250	.000	4386.110	84
Std. Predicted Value	-2.209	1.661	.000	1.000	84
Std. Residual	-1.330	5.227	.000	.982	84

a. Dependent Variable: GDP per capita (US\$) 2002 (UNDP 2004)

Diagnostics

- 1. Influential data points/outliers
- 2. Independence/autocorrelation (errors associated with one observation not correlated with errors in any other observation)
- 3. Linearity (relationship should be linear)
- 4. Homoscedasticity (constant error variance)
- 5. Normality (errors should be normally distributed)
- 6. Model specification
- 7. Multicollinearity (predictors are highly correlated)
- 8. Leverage (extent to which predictor differs from mean of predictor)

Let's have a look at some of them!