

Presented by : P.A.G.D. Balasuriya (170057U)

Supervisors : Dr. Piyaruwan Perera

Dr. Kasun Kariyawasam

Co-Supervisor : Prof. (Mrs.)Chintha Jayasinghe

Content

- > Introduction
- Problem statement
- Scope of the study
- Objectives of the research
- Literature review
- Methodology
- Case study
- > Results
- Validation
- Contribution to the research
- > Time plan
- > Reference

Introduction

In Sri Lanka, the building sector consumes about 35% of total energy (ADB and UNDP, 2017) with a growth rate.

> BIM based energy performance assessment in the design stage is essential for the green building design (Moakher and Pimplikar, 2012)

> The life cycle cost also can be evaluated with BIM based web solutions or softwares (Moakher and Pimplikar, 2012)

Problem Statement

- Software assess the energy and cost for the materials that assigned in the BIM model
- How to select materials and systems both energy efficient and cost effective?

> This research will give optimum material combination considering both cost and energy

Scope of the study

> Conventional and alternative materials available in the local market and different systems(HVAC) are considered (Heating process is not assessed)

Multi-storey multi-family residential buildings in Sri Lanka and related data are considered in the study

Energy and cost components which will vary with the building envelope materials are assessed

Main objective

Develop a practically applicable tool, which can be used to plan energy efficient and cost-effective apartment buildings

Sub objectives

Analyze the model with various upgrades and their combinations

Assess results using MCDM
 approach and develop an automated tool to select optimal upgrades for building

Literature review

Authors	Key points
Yang & Wang, (2013)	 Different LCA and LCC tools developed for specific regions North America – Athena Eco Calculator Germany – LEGEP software
Marzouk et al., (2018) Moakher & Pimplikar, (2012)	Database development in Autodesk RevitMaterial data extraction from the model
Moakher & Pimplikar, (2012) Nawarathna. & Fernando, (2017)	 Building life cycle stages for analysis purposes Carbon emission during different stages
Rodrigues et al., (2020) Lu et al., (2017)	 BIM based energy and carbon analysis methods Comparison of available methods for analyzing
Rodrigues et al., (2020)	Building envelope upgrade options

Methodology

Selection of upgradable options (Pre defined)

- The upgradable options are selected by the major components in the building envelope (*Yang & Wang, 2013*)
 - External walls
 - External windows
 - External doors
 - External floors
 - Roof
 - Air conditioning systems
 - Building orientation

Phase 1 – Assessing energy, cost and carbon footprint

> This automated tool is developed with 2 software and can do the following steps by executing the developed Dynamo and VBA code

Data extraction from BIM model (Real time)

Dynamo code (With case study model data)

Dynamo code

Dynamo Coding

Summary of the dynamo coding output

14

Excel & VBA coding

Creating combinations and analyze each combination for energy and cost

(Extracted data)

(Excel VBA script) 5524 lines

(Simulation output)

Excel VBA code structure (With case study model data)

1. Formatting Exported Data

Doors Total area

Floors Total floor area, Avg. area, Population calculation, Building height

Walls Area by wall facing direction. (N, NE, E, SE, S, SW, W, NW)

Windows Area by window facing direction. (N, NE, E, SE, S, SW, W, NW)

2. <u>Database development</u>

Alternative material details

Windows -

Window Name 💌	Shading Coefficier 💌	U Value (W/m²K) ▼	imbodiedEnergy (MJ/ 🔻	Embodied Carbon (kg/💌	Rate per sq.m 💌
Window 1	0.7	0.2	4.5	4	1000
Window 2	0.9	0.4	3.5	3	800
Window 3	0.8	0.6	3	2	600

Doors -

Door Name 💌	U Value (W/m²K)	:mbodied Energy (MJ/ *	Embodied Carbon (kg/💌	Rate per sq.m 💌
Door 1	0.1	2	1.5	250
Door 2	0.15	1	0.75	200

Roofs -

Roof Name 💌	U Value (Btu/hr.ft2.F▼	imbodiedEnergy (MJ/ 🕶	Embodied Carbon (kg/💌	Rate per sq.m 💌	6 🔻	7 🕶	8 🕶	9 🕶	10 🕶	11 🕶	12 🕶	13 🕶
4In L.W. Concrete	0.213	3	2	150	-3	-3	1	9	20	32	44	55
V. Concrete with 1In. Ins	0.206	3.75	1.75	175	-1	-1	3	11	20	30	41	51
6In L.W. Concrete	0.158	4.2	1.3	130	3	1	1	3	7	15	23	33

AC Systems -

AC System Name	¥	Capacity (kW)	¥	Cost (Rs.)
Wall mounted - Inverter (24000BTU	J)	7.034		372800
Ceiling Mounted - Inverter (48000BT	U)	14.067		780000
Floor mounted - Inverter (48000BTL	J)	14.067		749240

3. Energy Calculation (Cooling Load)

ASHRAE cooling and heating load calculation manual is followed

	Select the nearest city		Colo	ombo		Co2 emiss	ion per U	nit energy	(kg/kWh)	0.299	\											
	Select the environment		Indu	strial		Life cyc	le period	of Building	g (Years)	50												
	Design Temperature (c)		2	26		AC syste	n replace	ment peri	od (Years)	10												
	Design Relative Humidity		0).5		Average	unit ene	rgy cost (L	KR/kWh)	30	D	asic	data	1.								
	Total Floor area		11988	3.08417				, , , , , , , , , , , , , , , , , , ,			D	asic	uetai	.18								
	Avg. Relative Humidity		0.	.74																		
	Atmosperic Pressure		10	0.8																		
	Estimation of External Loads						عأما															
	Sensible Load																					
														Hour								
	Heat transfer through opaque s	urfaces				6am	7am	8am	9am	10am	11am	12am	1pm	2pm	3pm	4pm	5pm	6pm	7pm	8pm	9pm	10
				U	A									CLTD	•							
	External sunlit walls - North			0.05	24975.9	-1.6	-2.6	-2.6	-1.8	-1.8	-2.8	-2.8	-2.8	-2.8	-1	-1	0	-1.8	-0.8	-0.8	-1.6	-1
	External sunlit walls - NE			0.05	0	0.4	-0.6	-1.6	0.2	0.2	0.2	0.2	1.2	1.2	4	5	5	3.2	4.2	4.2	3.4	3
	External sunlit walls - East			0.05	15681.7								8.2	9.2	12	13	14	12.2	13.2	13.2	11.4	11
	External sunlit walls - SE			0.05	0	H	eat	oain	throi	ıgh v	บลไไร	,	13.2	14.2	17	18	19	18.2	18.2	19.2	17.4	1
	External sunlit walls - South			0.05	18491	1	cat	gam	uno	agn v	vans	,	17.2	17.2	19	20	21	20.2	21.2	22.2	20.4	2
	External sunlit walls - SW			0.05	0	16.4	15.4	14.4	15.2	14.2	14.2	13.2	12.2	12.2	14	14	15	14.2	15.2	17.2	16.4	17
	External sunlit walls - West			0.05	14890.4	10.4	10.4	9.4	10.2	9.2	8.2	7.2	7.2	6.2	8	8	8	7.2	8.2	10.2	9.4	11
	External sunlit walls - NW			0.05	0		2.4	1.4	2.2	1.2	1.2	0.2	0.2	-0.8	1	1	2	0.2	1.2	2.2	1.4	2
	Roofs			0.158	11730.9									3.8	-12	-12	-12	-13.8	-13.8	-13.8	-15.6	-1
			U	A	Ti	L	ant	anin	hur	oof, f	loor	Dr A	OOrg	То								
	Floors		0.1	1089.83	26	11	cai	gam	by IC	ю, і	1001	α u	0018	25	26	26	26	25	25	25	24	2
	Doors		0.15	85.9825	26	ـــا ــــا			20	20	20	20	20		26	26	26	25	25	25	24	2
	Heat transfer through fenestrat	ion/trans	parent sur																			
	<u></u>																					
	Heat transfer by conduction					LI	ant a	min'	huu	indo	**7	Conc	lucti	οn								_
	Window glass		0.2	1222.48	26	11	cai z	gaiii	uy w	muo	w - '	Conc	iucu	OH	26	26	26	25	25	25	24	2
	<u> </u>																					
			A in ft	SHCE ma	<u> </u>									CLF								
	Heat transfer by solar radiation					1																_
	Windows - North		5048.23	31	0.7	0.34	0.41	0.46	0.53	0.59	0.65	0.7	0.74	0.75	0.76	0.74	0.75	0.79	0.61	0.5	0.42	0.
_	Windows - NE		0	55	0.7	ļ ,						_ 1.			0.28	0.26	0.24	0.21	0.17	0.15	0.13	0.
	Windows - East		2083.52	215	0.7	⊢∎ H	eat 9	rain	by w	indo	W -	Radi	atior	1	0.29	0.26	0.23	0.21	0.17	0.15	0.13	0
	Windows - SE		0	247	0.7		8		~ <i>J</i> ''	-1140		1		-	0.36	0.33	0.29	0.25	0.21	0.18	0.16	0.
	Windows - South		4794.65	179	0.7	0.08	0.11	0.14	0.21	0.31	0.42	0.52	0.57	0.58	0.53	0.47	0.41	0.35	0.29	0.25	0.21	0.

3.1 Basic details

• User should enter relevant values to the highlighted cells

		Cooling_Load_Calculation
Select the nearest city	Colombo	Co2 emission per Unit energy (kg/kWh) 0.299
Select the environment	Industrial	Life cycle period of Building (Years) 50
Design Temperature (c)	26	AC system replacement period (Years) 10
Design Relative Humidity	0.5	Average unit energy cost (LKR/kWh) 30
Total Floor area	11988.08417	
Avg. Relative Humidity	0.74	
Atmosperic Pressure	100.8	

• Selecting city — Import relevant climatic data for calculation

Selecting environment — Alter the variables in the calculation

3.2 Heat gain through walls and roof

													Hour								
A.1	Heat transfer through opaque su	urfaces			6am	7am	8am	9am	10am	11am	12am	1pm	2pm	3pm	4pm	5pm	6pm	7pm	8pm	9pm	10pm
			U	Α									CLTD								
	External sunlit walls - North		0.05	:4975.9	-1.6	-2.6	-2.6	-1.8	-1.8	-2.8	-2.8	-2.8	-2.8	-1	-1	0	-1.8	-0.8	-0.8	-1.6	-1.6
	External sunlit walls - NE		0.05	0	0.4	-0.6	-1.6	0.2	0.2	0.2	0.2	1.2	1.2	4	5	5	3.2	4.2	4.2	3.4	3.4
	External sunlit walls - East		0.05	.5681.7	7.4	6.4	5.4	7.2	6.2	7.2	7.2	8.2	9.2	12	13	14	12.2	13.2	13.2	11.4	11.4
	External sunlit walls - SE		0.05	0	13.4	13.4	12.4	13.2	13.2	13.2	13.2	13.2	14.2	17	18	19	18.2	18.2	19.2	17.4	17.4
	External sunlit walls - South		0.05	18491	19.4	18.4	17.4	19.2	18.2	17.2	17.2	17.2	17.2	19	20	21	20.2	21.2	22.2	20.4	21.4
	External sunlit walls - SW		0.05	0	16.4	15.4	14.4	15.2	14.2	14.2	13.2	12.2	12.2	14	14	15	14.2	15.2	17.2	16.4	17.4
	External sunlit walls - West		0.05	.4890.4	10.4	10.4	9.4	10.2	9.2	8.2	7.2	7.2	6.2	8	8	8	7.2	8.2	10.2	9.4	11.4
	External sunlit walls - NW		0.05	0	2.4	2.4	1.4	2.2	1.2	1.2	0.2	0.2	-0.8	1	1	2	0.2	1.2	2.2	1.4	2.4

Imported by created ASHRAE database

Variation of CLTD values

- Vary with 12 months
- Vary with hour by hour for a given month
- Vary with latitude of the building location
- Vary with Environment type (Industrial, rural)
- Vary with wall material (7 types)

3.3 Heat gain through floor and doors

3.4 Heat gain through windows - Conduction

3.5 Heat gain through windows - Radiation

	A in ft	IGF, max	SC									CLF								
Heat transfer by solar radiation																				
Windows - North	5048.23	31	0.7	0.34	0.41	0.46	0.53	0.59	0.65	0.7	0.74	0.75	0.76	0.74	0.75	0.79	0.61	0.5	0.42	0.36
Windows - NE	0	55	0.7	0.21	0.36	0.44	0.45	0.4	0.36	0.33	0.31	0.3	0.28	0.26	0.24	0.21	0.17	0.15	0.13	0.11
Windows - East	2083.52	215	0.7	0.18	0.33	0.44	0.5	0.51	0.46	0.39	0.35	0.31	0.29	0.26	0.23	0.21	0.17	0.15	0.13	0.11
Windows - SE	0	247	0.7	0.14	0.26	0.38	0.48	0.54	0.56	0.51	0.45	0.4	0.36	0.33	0.29	0.25	0.21	0.18	0.16	0.14
Windows - South	4794.65	179	0.7	0.08	0.11	0.14	0.21	0.31	0.42	0.52	0.57	0.58	0.53	0.47	0.41	0.35	0.29	0.25	0.21	0.18
Windows - SW	0	247	0.7	0.09	0.1	0.12	0.13	0.15	0.17	0.23	0.33	0.44	0.53	0.58	0.59	0.53	0.41	0.33	0.28	0.24
Windows - West	1232.38	215	0.7	0.09	0.09	0.1	0.11	0.12	0.13	0.14	0.19	0.29	0.4	0.5	0.56	0.55	0.41	0.33	0.27	0.23
Windows - NW	0	55	0.7	0.09	0.1	0.11	0.13	0.15	0.16	0.17	0.18	0.21	0.3	0.42	0.51	0.54	0.39	0.32	0.26	0.22

Imported by created material database

Imported by created ASHRAE database

3.6 Heat gain through ventilation

Vary with : outside hourly temperature, Humidity ratio, air pressure, ventilation rate and relative humidity

3.7 Heat gain by occupants

Vary with: number of people, sensible heat gain per person, building type

3.8 Heat gain due to lighting, conduction through doors, windows and floors

Vary with: heat transfer coefficients, area and temperature differences

4. Results at the end of phase 1

Energy

Peak cooling load
Annual cooling load
Embodied energy
Operational energy (A/C)

Cost

Capital cost
Operational cost (A/C)
A/C system cost

Carbon footrint

Embodied carbon Operational carbon (A/C)

Phase 2 – MCDM approach and orientation analysis

Weightages for TOPSIS and AHP

- 1. Pro economic scenario
 - High weightages to cost components
- 2. Sustainable friendly scenario
 - High weightages to energy and carbon emission components
- 3. Net-zero scenario
 - Operational cost not considered
 - Operational carbon not considered
 - High weightages to energy and carbon emission components

Optimization of orientation

Steps of analysis

- Assign optimum material combination
- Every angle of 360 degree is analyzed for the energy
- Select the most energy-efficient orientation

Case study BIM model

Revit BIM model

- Floors of the building 10
- Residential units 126
- Total floor area 11,076.6 m²

Results

Results generated by the developed Dynamo and Excel VBA code

Maximum Load kWh/hr	460.1984263
No. AC Systems	33
Cooling Load (kWh/year)	1366100.598
Embodied Energy (MJ)	47359.63573
LC Operational Energy (MJ)	245898107.6
Capital Cost (LKR)	6332337.659
Operational Cost (LKR)	2049150896
System Cost (LKR)	123624600
Embodied Carbon (Metric T)	25.9845251
Operational Carbon (Metric T)	20423.20393
Total Energy (MJ)	245945467.2
Total Cost (LKR Million)	2167.869234
Total Carbon (Metric T)	20449.18846

Validation

Validation of results by manual calculation, web services and software

The calculation process	Accuracy percentage	Validation method
Embodied energy	100%	Manual calculation
Operational energy	99.54%	Revit cooling load analysis
Capital cost	100%	Manual calculation
Operational cost	100%	Manual calculation
A/C system cost	100%	Manual calculation
Embodied carbon	100%	Manual calculation
Operational carbon	100%	Manual calculation
AHP	100%	Manual calculation
TOPSIS	100%	Manual calculation
Orientation analysis	100%	Autodesk Insight

Conclusion

- Research aim achieved (Developing of software tool)
- High accuracy of developed software
- Any user can operate the tool
- According to the case study;
 - 20.6% reduction of operational energy and cost
 - 40.7% reduction of embodied energy
 - 18.7% reduction of capital cost
 - 24.2% reduction of A/C system cost
 - 19.9% operational energy reduction due to optimum orientation
 - 6.3% reduction of A/C system cost due to optimum orientation

Contribution for the research (Conference paper)

ICSECM 2021 - 44

 Presenting a research paper titled on "A review on costeffective energy-efficient building planning for urban sectors: A life cycle thinking based approach" at ICSECM 2021

A REVIEW ON COST-EFFECTIVE ENERGY-EFFICIENT BUILDING PLANNING FOR URBAN CENTRES: A LIFE CYCLE THINKING-BASED APPROACH

Balasuriya P.A.G.D.¹, Lakshan D.K.S.², Gurupatham S. V.³, Perera P.^{4*}, Jayasinghe C.⁵

1,2,3,4,5</sup>Department of Civil Engineering, Faculty of Engineering, University of Moratuwa, Sri Lanka

*Correspondence E-mail: piyaruwanh@uom.lk, TP: +94740939114

Abstract: Extensive energy use and resultant greenhouse gas (GHG) emissions in urban centres are rapidly increasing due to the population growth and implications of urban sprawl. Among different energy uses, the building sector energy consumption accounts for 40% of global energy consumption and results in 18% GHG emission. Literature reveals that there is a significant amount of research studies that are focused on building energy efficiency from a global and local perspective. In most of these studies, the authors have identified the life cycle thinking approach as a very important technique to compare different energy-efficient building materials, construction technologies, and practices. However, there is a lack of knowledge on the life cycle thinkingbased building planning approach considering the Sri Lankan context. The objective of this study is to explore and develop a conceptual research framework for planning sustainable buildings for tropical climatic conditions using building planning parameters that are related to costs, emissions, and social impacts, of locally available building materials and technologies. Here, the literature available on life cycle cost, life cycle emissions, and social life cycle impacts were considered. Expert interviews were conducted to develop the above-mentioned methodology using industry norms and locally available construction technologies. The framework developed in this research will help to select construction materials for future sustainable buildings for tropical climatic conditions. BIM software integrated tools that can be used to get a more reliable and quick analysis of buildings were explored in this study.

Time frame

Tools	2020			20	21				20	22					
Task	Dec	Jan	Feb	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul
Literature survey															
Background study															
Research proposal															
Literature review															
Proposal presentation															
Study on materials and practices															
Study on Dynamo															
Study on Excel VBA															
Develop a tool to do the analysis															
Obtain relevant outputs from analysis															
Develop a decision support framework															
Progress presentation															
Initial draft report															
Four page summary															
Presentation slides															
Presentation and viva															
Final draft report															
Final draft submission															

References

- 1. ADB and UNDP (2017) 'Assessment of Sri Lanka's Power Sector-100% Electricity Generation Through Renewable Energy by 2050', p. 122.
- 2. Moakher, P. E., & Pimplikar, S. S. (2012). Building information modeling (BIM) and sustainability—using design technology in energy efficient modeling. IOSR Journal of Mechanical and Civil Engineering, 1(2), 10-21.
- 3. Marzouk, M., Azab, S., & Metawie, M. (2018). BIM-based approach for optimizing life cycle costs of sustainable buildings. Journal of cleaner production, 188, 217-226.
- 4. Yang, W., & Wang, S. S. (2013). A BIM-LCA framework and case study of a residential building in Tianjin. Modeling and Computation in Engineering II, 83.
- 5. Nawarathna, A., Fernando, N. G., & Perera, S. (2017). Estimating whole life cycle carbon emissions of buildings: a literature review. In The 6th World Construction Symposium.

- 6. Rodrigues, F., Isayeva, A., Rodrigues, H., & Pinto, A. (2020). Energy efficiency assessment of a public building resourcing a BIM model. Innovative Infrastructure Solutions, 5(2), 1-12.
- 7. Lu, Y., Wu, Z., Chang, R., & Li, Y. (2017). Building Information Modeling (BIM) for green buildings: A critical review and future directions. Automation in Construction, 83, 134-148.

