

1 - Système manivelle-coulisse

Sachant que la manivelle tourne à ω rad / s = constante et que le rayon OA = R

Le repère R_0 (\mathbf{O} , $\overrightarrow{\mathbf{x_0}}$, $\overrightarrow{\mathbf{y_0}}$, $\overrightarrow{\mathbf{z_0}}$) est fixe

Le repère R_1 ($m{O}$, $\ensuremath{\overrightarrow{x_1}}$, $\ensuremath{\overrightarrow{y_1}}$, $\ensuremath{\overline{z_1}}$) est lié la manivelle (OA)

Le repère R_2 (B, $\overrightarrow{\textbf{x_2}}$, $\overrightarrow{\textbf{y_2}}$, $\overrightarrow{\textbf{z_2}}$) est lié à la coulisse

1 – Quelle est la trajectoire de $A_{\epsilon 1/\theta}$

2 - DETERMINEZ la vitesse du point A par rapport à R $_0$ $\stackrel{\Longrightarrow}{V_A}$ / R_0 en fonction de R et ω

3 – DETERMINEZ \overrightarrow{V}_A / $R_{ heta}$ et \overrightarrow{V}_A / R_2

4 – DETERMINEZ $\overrightarrow{V}_{A\;\epsilon}\;R_2/R_{\;\theta}$

5 – DETERMINEZ \overrightarrow{V}_B / R_θ

6 – DETERMINEZ \overrightarrow{r}_{B} / $R_{ heta}$

2 - Chariot filoguidé

Schéma cinématique du système d'orientation de la roue d'un chariot filoguidé

Le repère R_0 ($oldsymbol{O}$, $\overline{oldsymbol{x}}$, $\overline{oldsymbol{y}}$, $\overline{oldsymbol{z}}$) est lié au bati (S)

Le bras (S_1) est en liaison pivot d'axe (\mathbf{O} , \mathbf{z}) avec (S)

Le repère R_1 ($oldsymbol{O}$, $\overline{oldsymbol{x_1}}$, $\overline{oldsymbol{y_1}}$, $\overline{oldsymbol{z_1}}$) est au solide (S_1)

On pose α = ($\overrightarrow{\mathbf{x}}$, $\overrightarrow{\mathbf{x}_1}$) angle contrôlé par le moteur d'orientation

La roue (S2) de centre B est en pivot d'axe (A, $\overrightarrow{\textbf{y}_1}$) avec le solide (S1)

Le repère $R_2(\ \textbf{B},\ \overrightarrow{\textbf{x_2}}\ ,\ \overrightarrow{\textbf{y_2}}\ ,\ \overrightarrow{\textbf{z_2}}\)\ \text{ est lié au solide (}\ S_2\,)$

On pose $\overrightarrow{OA} = -h \overrightarrow{z} + a \overrightarrow{y_2}$ avec a et h constantes positives et $\beta(t) = (\overrightarrow{x_1}, \overrightarrow{x_2})$ angle du moteur d'avance.

On observe un point C de la roue dont la position est donnée par $\overrightarrow{AC} = -a \ \overrightarrow{\mathbf{y_2}} + \mathbf{r} \ \overrightarrow{\mathbf{z_2}}$

- 1 REPRESENTER sur un schéma plan la position du repère R_1 par rapport au repère R_0 et sur un autre schéma plan la position du repère R_2 par rapport au repère R_1
- 2 **DETERMINER** la vitesse du point C appartenant à S_2 dans son mouvement par rapport à $S_{C_{\epsilon}}$ S_2/S en exprimant ses composantes dans le repère $R_2(\mathbf{C}, \overline{\mathbf{x}_2}, \overline{\mathbf{y}_2}, \overline{\mathbf{z}_2})$
- 3 **DETERMINER** l'accélération du point C appartenant à S_2 dans son mouvement par rapport à $S_{C_{c}} = S_2/S$ en exprimant ses composantes dans le repère $R_2(\mathbf{C}, \mathbf{x}_2)$, \mathbf{z}_2