## ECON 4360: Empirical Finance

Captial Asset Pricing Model (CAPM)

Sherry Forbes

University of Virginia

Theory Lecture #11

## What are we doing today?

• CAPM - Capital Asset Pricing Model

#### Introduction to CAPM

- Portfolio Theory provides a natural introduction to CAPM
  - Continuation of mean-variance analysis
- Recall, when we use Portfolio Theory, we take prices and returns as givens
- Now, we're going to introduce the CAPM, which is a model of asset pricing
  - It is an equilibrium model we can derive equilibrium prices, returns, and risk-premiums
  - It relates the expected return of a stock to its risk

### CAPM: A Simple Asset Pricing Model

- The CAPM is a very simple model of asset pricing.
  - But that simplicity comes at a cost...
  - And there are a number of assumptions that we need to keep in mind.

### Assumptions for CAPM

- Investors are risk-averse
- All investors have homogeneous expectations about means and variances
- Either
  - Investors only care about mean and variance
  - Stock returns are normally distributed (I.e., Returns only have a mean and variance)
- All investors can invest in the same risk-free asset
- Assets are infinitely divisible
- Investors have a one-period time-horizon
- Perfect Markets: E.g., no taxes, no transactions costs, have access to short sale proceeds, etc.

#### Recall...

- The Efficient Frontier for 1 Risk-Free asset and N Risky Assets
  - Portfolio T is the portfolio with the highest Sharpe ratio

$$\left(E\left[\tilde{R}^{p}\right]-R^{f}\right)/\sigma^{p}$$



### As a Consequence of Our Assumptions...

- Since all investors have the same expectations, they all want to hold the same tangency portfolio
- Since the CAPM is an equilibrium model
  - Prices, and therefore expected returns, adjust until supply = demand
  - This is the equilibrium condition for the model: supply = demand for the market portfolio

#### Result: Two Fund Separation

- Though investors may have different utility functions and levels of risk-aversion, they all choose the same 2 assets
  - ullet The risk-free asset and the tangency portfolio T.
- Powerful result: We don't need to determine 100 million utility functions

## Two Fund Separation

 Two investors with difference levels of risk aversion have different optimal portfolios, but they are composed of the same two assets



#### What does this tell us?

- We know that all investors want to hold 2 assets in their portfolio
  - ullet The market portfolio, call its return  $R^m$ , and the risk-free asset  $R^f$
- Because of this, all risk-return combinations can be plotted on a straight line that goes through these two assets
  - This line is called the Capital Market Line (CML)

## What do we already know?

- We already know
  - How to find the efficient portfolio frontier of N risky assets.
  - Given the Risk-Free rate, how to solve for the tangency portfolio or market portfolio
- Do we know the slope of the CML? Sure we do.
  - It's easy to read this off the graph

slope 
$$=\frac{E[R^m]-R^f}{\sigma_m}$$

 $\bullet$  As well, the y-intercept of the CML is just  $R^f$ 

# Yay.

So we actually already know the equation for the CML

$$E[R^{p}] = R^{f} + \left(\frac{E[R^{m}] - R^{f}}{\sigma_{m}}\right)\sigma_{p}$$

- Where  $E[R^p]$  = The expected return on an efficient portfolio
- ullet And where  $\sigma_p=$  The standard deviation of an efficient portfolio
- ullet The quantity  $E\left[R^{m}
  ight]-R^{f}$  is called the *market risk premium*

### So where does that get us?

- The CML relates the expected return of any efficient portfolio to the portfolio's "risk" - i.e., standard deviation.
  - But the CML says nothing about risk and return for individual securities
- To relate risk and return for individual securities, we have to use the Security Market Line, or SML...
  - Reminder of where we're trying to go: Asset Pricing

### **SML**

ullet Claim: If portfolio M is on the mean-variance frontier, then

$$E\left[R^{i}\right] = R^{f} + \left(\frac{E\left[R^{m}\right] - R^{f}}{\sigma_{m}^{2}}\right)\sigma_{im}$$

- (The converse is also true.)
- Proof: Say you hold M. Consider making a small change to your portfolio composition.
  - Let's add a fraction  $\varepsilon$  of your wealth into asset i by selling  $\varepsilon$  of the risk-less asset.
  - Call this new portfolio p...



#### Continuation of Proof

• The (random) return of your new portfolio is

$$\tilde{R}^p = \tilde{R}^m + \varepsilon \left( \tilde{R}^i - R^f \right)$$

The expected return of your new portfolio is

$$E\left[\tilde{R}^{p}\right] = E\left[\tilde{R}^{m}\right] + \varepsilon\left(E\left[\tilde{R}\right]^{i} - R^{f}\right)$$

## A Digression...

- We're going to need to figure out the variance of our new portfolio as well.
- So as a reminder, here are some useful math facts:
  - If a and b are constants and x and y are random variables...

$$var(a) = 0$$

$$var(x+b) = var(x)$$

$$var(ax) = a^{2}var(x)$$

$$var(ax+by) = a^{2}var(x) + b^{2}var(y) + 2abcov(x,y)$$

#### Continuation of Proof

• The variance of your new portfolio is

$$\begin{split} \sigma_{p}^{2} &= \operatorname{var}\left(\tilde{R}^{p}\right) \\ &= \operatorname{var}\left(\tilde{R}^{m} + \varepsilon\left(\tilde{R}^{i} - R^{f}\right)\right) \\ &= \sigma_{m}^{2} + \varepsilon^{2}\sigma_{i}^{2} + 2\varepsilon\operatorname{cov}\left(\tilde{R}^{m}, \tilde{R}^{i}\right) \\ &\approx \sigma_{m}^{2} + 2\varepsilon\operatorname{cov}\left(\tilde{R}^{m}, \tilde{R}^{i}\right) \end{split}$$

#### Continuation of Proof

 How much did the expected return and variance change from your old portfolio M?

$$E\left[\tilde{R}^{p}\right] - E\left[\tilde{R}^{m}\right] = \varepsilon\left(E\left[\tilde{R}^{i}\right] - R^{f}\right)$$

and

$$\sigma_p^2 - \sigma_m^2 \approx 2\varepsilon cov\left(\tilde{R}^m, \tilde{R}^i\right)$$

Intuition: When you add a little more of one stock to a
well-diversified portfolio, it's the stock's covariance that is important
in determining the risk of the new portfolio.

#### Reward-to-Risk Ratio?

• The extra return we get for taking on extra portfolio risk is

$$\frac{E\left[\tilde{R}^{p}\right] - E\left[\tilde{R}^{m}\right]}{\sigma_{p}^{2} - \sigma_{m}^{2}} = \frac{\varepsilon\left(E\left[\tilde{R}^{i}\right] - R^{f}\right)}{2\varepsilon cov\left(\tilde{R}^{m}, \tilde{R}^{i}\right)}$$

$$= \frac{\left(E\left[\tilde{R}^{i}\right] - R^{f}\right)}{2cov\left(\tilde{R}^{m}, \tilde{R}^{i}\right)}$$

$$= \frac{\left(E\left[\tilde{R}^{i}\right] - R^{f}\right)}{2\sigma_{im}}$$

• Now, we can also think of a portfolio of stocks as simply another asset. What happens if we sell a small fraction  $\varepsilon$  of the risk-less asset and add a small fraction  $\varepsilon$  of the market portfolio?

$$\frac{E\left[\tilde{R}^{p}\right]-E\left[\tilde{R}^{m}\right]}{\sigma_{p}^{2}-\sigma_{m}^{2}}\approx\frac{\left(E\left[\tilde{R}^{m}\right]-R^{f}\right)}{2\sigma_{m}^{2}}$$

#### Reward-to-Risk Ratio?

• In equilibrium, ratios of extra reward to extra risk should be the same:

$$\frac{\left(E\left[\tilde{R}^{i}\right]-R^{f}\right)}{2\sigma_{im}}=\frac{\left(E\left[\tilde{R}^{m}\right]-R^{f}\right)}{2\sigma_{m}^{2}}$$

Or, re-arranging

$$E\left[\tilde{R}^{i}\right] = R^{f} + \frac{\left(E\left[\tilde{R}^{m}\right] - R^{f}\right)}{\sigma_{m}^{2}}\sigma_{im}$$

And this completes our sketch of the proof...

#### Think about this...

- What if I get more return for the extra portfolio risk with the market portfolio than for asset *i*?
  - I.e., what if

$$\frac{\left(E\left[\tilde{R}^{i}\right]-R^{f}\right)}{2\sigma_{im}}<\frac{\left(E\left[\tilde{R}^{m}\right]-R^{f}\right)}{2\sigma_{m}^{2}}?$$

## SML Logic

- Investors all hold M (The Market Portfolio), so they are concerned with the variance of M.
- The contribution of each security to the variance of *M* is directly proportional to the covariance of the security with the market.
  - Therefore, the relevant measure of risk for stock i is the covariance of its returns with those of the market,  $\sigma_{im}$ .
- Securities with larger covariances with M contribute more to the risk of the market portfolio, and must provide investors with larger expected returns

$$E\left[\tilde{R}^{i}\right] = R^{f} + \frac{\left(E\left[\tilde{R}^{m}\right] - R^{f}\right)}{\sigma_{m}^{2}}\sigma_{im}$$

• Therefore, the equation for the SML provides an answer to the question: How much extra return over and above the risk-free rate we should expect, given a security's covariance with the market?

### Questions...

Using the equation for the SML

$$E\left[\tilde{R}^{i}\right] = R^{f} + \frac{\left(E\left[\tilde{R}^{m}\right] - R^{f}\right)}{\sigma_{m}^{2}}\sigma_{im}$$

- What happens in the special case where  $\sigma_{im} = \sigma_m^2$ ?
- What about where  $\sigma_{im} = 0$ ?

#### CAPM Derivation from the Mean-Variance Frontier

- The CAPM follows directly from the SML
- Let's rewrite the equation for the SML

$$E\left[\tilde{R}^{i}\right] = R^{f} + \frac{\left(E\left[\tilde{R}^{m}\right] - R^{f}\right)}{\sigma_{m}^{2}}\sigma_{im}$$

As follows

$$E\left[\tilde{R}^{i}\right] = R^{f} + \frac{\sigma_{im}}{\sigma_{m}^{2}} \left( E\left[\tilde{R}^{m}\right] - R^{f} \right)$$

- Where we define "Beta" as  $eta_{\it im} = rac{\sigma_{\it im}}{\sigma_m^2}$
- We can see that betas represents the sensitivity of expected individual asset returns to the expected market premium

#### SML in CAPM Form

Now, we can write the SML in CAPM form

$$E\left[\tilde{R}^{i}\right] = R^{f} + \beta_{im}\left(E\left[\tilde{R}^{m}\right] - R^{f}\right)$$

- We can easily see here how higher expected returns go with higher risk, defined as its risk in a portfolio context
  - An asset's contribution to portfolio risk matters, idiosyncratic risk does not
- Now, we can plot the SML relating expected individual asset returns to their risk, i.e., their covariance with the market.

#### SML in CAPM Form

• Say we have a risk-free rate of 4% per year and the expected return on the market is 12% per year.



#### **CAPM**

- Now we have an asset pricing model
  - ullet The CAPM relates expected return to risk we just need to find the eta's
- What do the  $\beta$ 's tell you?
  - A  $\beta$  larger than 1.0 signifies more than "average" riskiness its covariance with the market is higher, so its expected return must be raised
  - ullet Note that the market itself has a eta=1
    - What is the "market" portfolio? Stock indices like the S&P are often used as proxies.

### Negative Betas?

• What about a stock that has a negative beta?

## Negative Betas?

- What about a stock that has a negative beta?
  - It moves opposite to the market's direction. A negative beta stock has an expected return of less than the risk-free rate, but it is still desirable for its potential to reduce risk.

## Question for understanding: The Slope of the SML

- Think about the significance of the slope of the SML. What might change its slope over time?
  - Since the SML is a graph of expected return v. beta

$$E\left[\tilde{R}^{i}
ight]=R^{f}+eta_{im}\left(E\left[\tilde{R}^{m}
ight]-R^{f}
ight)$$
,

the slope of the SML is the market risk premium:  $\left(E\left[\tilde{R}^{m}\right]-R^{f}\right)$ , which represents the reward that investors get per unit of systematic risk.

So for example, if investors become more risk averse over time, they
will require more compensation for bearing a given amount of risk, and
the slope of the SML would increase.

### Asset Pricing using the CAPM

- Let's think about how we might price an asset using the CAPM.
- Recall that our central asset pricing equation

$$p_t = E_t \left[ m_{t+1} x_{t+1} \right]$$

is really just a very general way of mapping future payoffs into today's price.

 This equation is just a generalization of standard discount factor ideas...

## Recall: Standard Concept of Present Value

- Consider an environment where there is no uncertainty.
- What is the price (i.e., present value) of a payoff tomorrow of  $x_{t+1}$  if the interest rate is  $R^f = (1 + r^f)$ ?
  - Using standard PV ideas,

$$p_t = \frac{1}{R^f} x_{t+1}$$

- Here, the discount factor is  $\frac{1}{R^f}$ 
  - See how the payoff tomorrow sells "at a discount"

### Recall: Present Value with Risky Assets

- Now generalize this idea to risky assets, i.e., where there is some uncertainty about the payoffs
- We could price an asset using

$$p_t^i = \frac{1}{R^i} E_t \left( x_{t+1}^i \right)$$

where  $R^{i}$  is an asset-specific risk-adjusted discount factor

ullet This is a traditional view of asset pricing that uses  $R^i$  as a risk-adjusted rate of return particular to each asset i from a model like the CAPM

- You expect a stock i to sell for \$100 a year from now and pay a \$5 dividend during the year.
- Suppose the stock's correlation coefficient with the market portfolio is  $\rho_{im}=0.4$  and  $\sigma_i=0.5$ .
- You also know that  $E\left[R^m\right]=15\%$  and  $\sigma_m=0.3$ ; and you know that  $R^f=6\%$ .
- At what price should the stock sell for today?

• First, find the beta of the stock

$$\beta_{im} = \frac{\sigma_{im}}{\sigma_m^2} = \frac{\rho_{im}\sigma_i\sigma_m}{\sigma_m^2} = \frac{(0.4)(0.5)(0.3)}{(0.3)^2} = 0.67$$

• First, find the beta of the stock

$$\beta_{im} = \frac{\sigma_{im}}{\sigma_m^2} = \frac{\rho_{im}\sigma_i\sigma_m}{\sigma_m^2} = \frac{(0.4)(0.5)(0.3)}{(0.3)^2} = 0.67$$

Next find the expected rate of return

$$E\left[\tilde{R}^{i}\right] = R^{f} + \beta_{im}\left(E\left[\tilde{R}^{m}\right] - R^{f}\right)$$
  
= 1.06 + (0.67) (1.15 - 1.06)  
= 1.12

• First, find the beta of the stock

$$\beta_{im} = \frac{\sigma_{im}}{\sigma_m^2} = \frac{\rho_{im}\sigma_i\sigma_m}{\sigma_m^2} = \frac{(0.4)(0.5)(0.3)}{(0.3)^2} = 0.67$$

Next find the expected rate of return

$$E\left[\tilde{R}^{i}\right] = R^{f} + \beta_{im}\left(E\left[\tilde{R}^{m}\right] - R^{f}\right)$$
  
= 1.06 + (0.67) (1.15 - 1.06)  
= 1.12

 Now, we have a number that we can use as a risk-adjusted rate of return for asset i, so

$$p_t^i = \frac{1}{R^i} E_t \left( x_{t+1}^i \right) = \frac{100+5}{1.12} = \$93.75$$

## Where we're going...

- What we're going to see in the upcoming lectures is how CAPM fits into our discount factor framework...
  - Factor pricing models, like the CAPM, simply replace the consumption-based expression for marginal utility growth with something that looks like

$$\mathit{m}_{t+1} = \beta \frac{\mathit{u}'\left(\mathit{c}_{t+1}\right)}{\mathit{u}'\left(\mathit{c}_{t}\right)} \approx \mathit{a} + \mathit{b}'\mathit{f}_{t+1}$$

- The questions we're going to be asking are
  - How reasonable are the proxies for marginal utility growth?
  - Can we abide the assumptions like the ones we listed earlier as necessary for the CAPM - to be comfortable using those models?

### End of Today's Lecture.

That's all for today.