

CHANDIGARH UNIVERSITY UNIVERSITY INSTITUTE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Submitted By: Lipakshi	Submitted To: Navneet Kaur
Subject Name	Machine Learning Lab
Subject Code	20CSP-317
Branch	Computer Science
Semester	5th

UNIVERSITY INSTITUTE OF ENGINEERING

Department of Computer Science & Engineering

Subject Name: Machine Learning Lab

Subject Code: 20CSP-317

Submitted to: Submitted by:

Faculty name: Navneet Kaur Name: Lipakshi

UID: 20BCS5082

Section: 607

Group: B

Ex. No	List of Experiments	Date	Condu c t (MM: 12)	Viva (MM : 10)	Record (MM: 8)	Total (MM: 30)	Remarks/Signature
1.1	Implement Exploratory Data Analysis on any data set.						
1.2	Implement Data Visualization.	23-08-2 022					
1.3	Data analysis of any data set via graphs using linear regression.						
1.4	Implement support Vector machine on any data set and analyse the accuracy with logistic regression.	10-10-2 022					

2.2	Implement Naive Bayes on any Data Set.	10-10-2 022			
2.3					
2.4					
3.1	Implement K-Means	07-11-2 022			
3.2					
3.3					

Experiment 8

Q1. Task to be done/ Which logistics used: Implement K-Means

Code:

import matplotlib.pyplot as plt

plt.scatter(x, y)

plt.show()

```
In [1]: import matplotlib.pyplot as plt

x = [4, 5, 10, 4, 3, 11, 14, 6, 10, 12]|
y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

plt.scatter(x, y)
plt.show()

from sklearn.cluster import KMeans
data = list(zip(x, y))
inertias = []

for i in range(1,10): kmeans =

KMeans(n_clusters=i)
```

for i in range(1,10): kmeans =
KMeans(n_clusters=i)
kmeans.fit(data)
inertias.append(kmeans.inertia_
)

plt.plot(range(1,10), inertias, marker='o')
plt.title('Elbow method')
plt.xlabel('Number of clusters')
plt.ylabel('Inertia') plt.show()

```
In [2]: from sklearn.cluster import KMeans

data = list(zip(x, y))
    inertias = []

for i im range(1,10):
    kmeans = KMeans(n_clusters=i)
    kmeans = (if(data)
    inertias.append(kmeans.inertia_)

plt.plot(range(1,10), inertias, marker='o')
    plt.title('Elbow method')
    plt.xlabel('Number of clusters')
    plt.ylabel('Inertia')

Elbow method

Elbow method
```

kmeans = KMeans(n_clusters=2)
kmeans.fit(data)

plt.scatter(x, y, c=kmeans.labels_)
plt.show()

faculty):

CHANDIGARH UNIVERSITY Discover. Learn. Empower.

Evaluation Grid (To be created as per the SOP and Assessment guidelines by the

Sr. No. Parameters	Marks Obtained	Maximum Marks
1		
2		
3		
4		