Contrôle de Mathématiques

Merci de répondre sur la grille fournie et de rendre le sujet avec la grille.

- 1. L'ensemble des solutions de l'inéquation -2x + 2 < 1 est :
 - (a) $]\frac{1}{2}, +\infty[$
 - (b) **ℝ**
 - (c) $]-\infty,-\frac{1}{2}]$
- 2. L'ensemble des solutions de l'inéquation $-2x + 8 \geqslant 9$
 - (a) R
 - (b) $]-\infty,-\frac{1}{2}]$
 - (c) $\left[-\frac{1}{2}, +\infty\right[$
- 2. Le nombre $\frac{1}{2}$
 - (a) est solution de l'équation x + 2 = 0
 - (b) est solution de l'équation 2x + 1 = 0
 - (c) est solution de l'inéquation 3x + 7 > 0
- 3. Le nombre $\sqrt{5}$
 - (a) est solution de l'équation $x^3 5x = 0$
 - (b) est solution de l'inéquation -5x + 2 > 0
 - (c) est solution de l'équation $x^2 + 5 = 0$
- 4. Le nombre $\frac{1}{8}$
 - (a) est solution de l'équation 8x 1 = 0
 - (b) est solution de l'équation 7x + 1 = 0
 - (c) est solution de l'inéquation 2x + 7 < 0

- 5. Le couple solution du système $\left\{ \begin{array}{ll} 5x+5y=10 \\ x-8y=-34 \end{array} \right. \text{ est}$
 - (a) (4;4)
 - (b) (-2;4)
 - (c) (2;-2)
- 6. L'ensemble des solutions de l'équation $x^2 + 4x 32 = 0$ est :
 - (a) Ø
 - (b) $\{4; -8\}$
 - (c) $\{4; 8\}$
- 7. $\frac{15}{2} \frac{3}{8} \times 3 =$
 - (a) $\frac{171}{8}$
 - (b) $\frac{57}{8}$
 - (c) $\frac{51}{8}$
- $8. \ \frac{\frac{5}{7} 1}{\frac{1}{8} + 1} =$
 - (a) $-\frac{16}{63}$ (b) $\frac{40}{7}$

 - (c) $-\frac{9}{28}$
- 9. Dans un triangle ABC rectangle en A, si AB=2 et BC=14, alors
 - (a) $\sin(\hat{B}) = \frac{1}{7}$
 - (b) $AC = \sqrt{192}$
 - (c) $\cos(\hat{C}) = \frac{1}{7}$
- 10. Dans un triangle ABC rectangle en A, si AB=2 et BC=20, alors
 - (a) $\tan(\hat{C}) = \frac{1}{10}$
 - (b) $AC = \sqrt{404}$
 - (c) $\cos(\hat{B}) = \frac{1}{10}$
- 11. Dans un triangle ABC rectangle en A, si AB=2cm et AC=20mm, alors $\hat{B}=1$
 - (a) $20 \times \arctan(20)$
 - (b) $\arctan\left(\frac{20}{20}\right)$
 - (c) $\frac{\arctan(2)}{2}$
- 12. Dans un triangle ABC rectangle en B, si $\widehat{A}=10^{\circ}$ alors
 - (a) $\widehat{C} = 90^{\circ}$
 - (b) $\widehat{C} = 55^{\circ}$
 - (c) $\hat{C} = 80^{\circ}$
- 13. Dans un triangle ABC rectangle en B, si $\widehat{A}=50^{\circ}$ alors
 - (a) $\hat{C} = 50^{\circ}$

- (b) $\hat{C} = 5^{\circ}$
- (c) $\hat{C} = 40^{\circ}$
- 14. Si ABC est un triangle rectangle en B tel que AB = 15cm et BC = 8cm, alors le segment [AC] mesure :
 - (a) 17cm
 - (b) 23cm
 - (c) 7cm
- 15. Si ABC est un triangle rectangle en B tel que AB = 9cm et AC = 41cm, alors le segment [BC] mesure :
 - (a) 23cm
 - (b) 40cm
 - (c) 50cm
- 16. Dans quel cas le triangle ABC est-il rectangle?
 - (a) AB = 24cm, AC = 34cm et BC = 10cm
 - (b) AB = 24cm, AC = 14cm et BC = 10cm
 - (c) AB = 24cm, AC = 26cm et BC = 10cm
- 17. On considère deux triangles non plat ABC et A'B'C' tels que (AB) // (A'B'), (AC) // (A'C') et (CB) // (C'B'). Si on a AB = 6cm, AC = 24cm et A'B' = 4mm, alors A'C' = 4
 - (a) 9cm
 - (b) 16mm
 - (c) 36cm
- 18. On considère deux triangles non plat ABC et A'B'C' tels que (AB) // (A'B'), (AC) // (A'C') et (CB) // (C'B'). Si on a AB = 5mm, AC = 20mm et A'B' = 2cm, alors A'C' = 2
 - (a) 50mm
 - (b) 80mm
 - (c) 50cm
- 19. On considère deux triangles non plat ABC et A'B'C' tels que (AB)//(A'B') et (CB)//(C'B'). On a (AC)//(A'C') si on a :
 - (a) AB = 63m, AC = 42m, A'B' = 147cm et A'C' = 98cm
 - (b) AB = 63m, AC = 42m, A'B' = 147cm et A'C' = 18cm
 - (c) AB = 63m, AC = 42m, A'B' = 147cm et A'C' = 27cm