And what if two musical versions don't share melody, harmony, rhythm or lyrics?

Mathilde Abrassart, Guillaume Doras

Problem

- 1. establish a similarity relationship $S_{ij}=g(f(A_i),f(B_j))$ between a query track A_i and a reference track B_i
- 2. f is a feature extraction function and shall preserve common musical facets between versions
- 3. g is a comparison function and shall allow fast lookup into large music corpora

Proposed method

- Training: Dali (for lyrics representation only), SHS₅₊ (62k versions of ~7.5k works) and SHS_{5+/4-}
- Evaluating with SHS₄₋ (50k covers of ~20k works) and Da-Tacos (13k versions of 1k works & 2k confusing tracks)

(datasets are pruned to avoid overlapping samples - see https://ircam-anasynth.github.io/papers/2022/abrassart)

Comparing with baseline model results [5] *results on Da-Tacos-Vocals (w/o instrumental tracks)

Test set	Pruned SHS ₄₋			Pruned Da-Tacos		
Input features	MAP	MT@10	MR1	MAP	MT@10	MR1
Me+Ha (baseline)	0.693	1.256	453	0.626	6.668	32
				0.717*	6.290*	21*
Me+Ha+Ly	0.800	1.396	291	0.602	6.480	33
				0.818*	7.205*	16*
Me+Ha+Rh+Ly	0.785	1.378	286	0.560	6.054	33
				0 765*	6 71/1*	1/*

- Comparing distribution for lyrics with Da-Tacos and Da-Tacos-Vocals (w/o instrumental tracks)
 - Disappearance of a bump depicting the presence of false negative pairs

Pairwise distances for Me+Ha vs. Ly for 500 pairs from SHS₄-

Positive pairs: samples which are versions, negative pairs: samples which are not versions

 Evidence of complementarity between Me+Ha and Ly

Observing oracle results (considers the best performing feature to compute each pairwise distance)

Test set	Pruned SHS ₄₋			Pruned Da-Tacos			
Input feature	MAP	MT@10	MR1	MAP	MT@10	$\overline{MR1}$	
Me+Ha (baseline)	0.879	1.521	97	0.837	8.709	4	
Me+Ha+Ly	0.963	$\boldsymbol{1.637}$	14	0.918	9.398	1	
Me+Ha+Rh+Ly	0.978	1.658	4	0.951	9.657	$\overline{1}$	

Observing most relevant feature proportions to identify positive and negative pairs on SHS₄-

Comparing SoA results on SHS₄₋ and Da-Tacos

*results on Da-Tacos-Vocals (w/o instrumental tracks)

Test set		SHS_{4-}			Da-Tacos		
Model	Emb.	MAP	MT@10	MR1	MAP	MT@10	MR1
Doras et al. [5]	512	0.660	1.080	657	0.635	6.744	30
Vaglio et al. [6]	n/a	n/a	n/a	n/a	0.804*	n/a	n/a
Du et al. [7]	1536	n/a	n/a	n/a	0.791	n/a	19.2
Me+Ha+Ly	1536 0.8	0.800	1.396	291	0.818*	7.205*	16*
		0.800			0.602	6.480	33

[4] Collobert et al. Wav2Letter: an End-to-End ConvNet-based Speech Recognition System. arXiv:1609.03193, 2016

[6] Vaglio et al. The Words remain the Same: Cover Detection with Lyrics Transcription ISMIR, 2021

[7] Du et al. Bytecover2: Towards dimensionality reduction of latent embedding for efficient cover song identification. ICASSP, 2022