

Parlor trick or worthwhile?

Ted Kwartler
Data Dude

Interesting Visuals

Good Visuals

- **Simple** to interpret
- Confirm or Elucidate data aspects
- Context for the audience
- Appropriate type e.g. line charts for time, bars for amounts

Bonus:

Avoid word clouds

Tracking Sentiment over Time

Sentiment Timeline - is a way of displaying sentiment values in chronological order. It is typically a graphic design showing time periods, such as months, as the X axis and the sentiment values as Y axis values either as a line or series of bars.

Simple Frequency Analysis

ggplot2 is a popular library based on the "grammar of graphics" for constructing visuals in R.

Let's practice!

Introspection using sentiment analysis

Ted Kwartler
Data Dude

Qdap's Polarity for Subsetting a Corpora

> library(qdap)
> polarity(text.var, grouping.var = NULL)

Comparing frequent words in Plutchik's Framework

Where's Waldo? Where isn't Waldo?

```
> x <- c("Nicole", "Nick", "Waldo")
> grep("Waldo", x)
[1] 3
> grepl("Waldo", x)
[1] FALSE FALSE TRUE
> !grepl("Waldo", x)
[1] TRUE TRUE FALSE
```


Adding an "or" operator

```
> x <- c("Nicole", "Nick", "Waldo")
> grepl("Waldo|Nicole", x)
[1] TRUE FALSE TRUE
> !grepl("Waldo|Nicole", x)
[1] FALSE TRUE FALSE
```


Stacked comparisons for polarity mixture

Let's practice!

Interpreting a kernel density, box plots & radar charts

Ted Kwartler
Data Dude

More Visualizations

- Kernel Density plot
- Box plot
- Radar Chart
- Treemap

Kernel Density Plots Vs Histogram

```
> hist(dist, breaks = 1)
```


> hist(dist, breaks = 10)

Kernel Density Plots Vs Histogram

```
> d_curve <- density(dist)
> plot(d_curve)
```

Histogram of dist

density.default(x = dist)

Box Plot

Radar Wheel of Emotion

Treemaps

- Each block represents a data point like a row
- Each block's size is dictated by another data dimension
- Each block is colored according to another data dimension
- Blocks are arranged into like groups using another data dimension

Let's practice!