

Implementation of Kernel Segregated Transpose Convolution

Operation

Vijay Srinivas Tida[†], Thomas VanDenEinde[†], Sai Venkatesh Chilukoti^{*}, Md. Imran Hossen^{*}, Liqun Shan^{*}, Sonya Hsu^{*} and Xiali Hei^{*}

Introduction

- The Convolution Layer will compress the output feature map.
- The Transpose Convolution (TC) layer enhances the feature map.
- TC layer in deep learning is considered a combination of upsampling layer and convolution operation.
- The upsampling layer is formed by inserting zeros along both rows and columns after each value.
- Applications: Image super-resolution, Generative Adversarial Networks (GANs).

Fig: Convolution vs Transpose Convolutuon

Overview

- •These four computation patterns will help to form four subkernels.
- •Thus, transpose convolution can be treated as four internal convolution operations.
- •Red squares represent inactive elements, and green squares represent active elements.

Fig: Computation pattern for Transpose Convolution

Normal vs Segregated TC

- Normal TC operation requires 25 multiplications and 24 additions.
- Proposed Segregated TC operation only requires the utmost 9 multiplications and 8 additions.

Segregated kernels Fig: Normal vs Segregated TC

Results

Table: Power, area and delay using Synopsys DC Compiler

45nm t	echnology	
Delay (ns)	Area (cell units)	Power (mW)
3×3	kernel	
1.53	29413.37	19.23
1.31	29019.63	19.91
4×4		
1.66	54174.12	31.90
1.35	51217.06	37.57
1.77	78509.66	46.48
1.52	71270.24	56.38
	Teach at	
0.49	3105.55	2.93
0.44	2070 52	2.96
0.44	3070.52	2.96
1~1	kornol	
		F 10
0.52	5055.09	5.19
0.44	5645 68	5.70
0.44	3043.08	5.70
	kornol	
		7.77
0.54	3500.00	/.//
Ω //9	85/19 79	8.31
0.42	0545.75	0.51
	Delay (ns) 3×3 1.53 1.31 4×4 1.66 1.35 5×5 1.77 1.52 14nm to 3×3 0.49 0.44 0.52 0.44	3×3 kernel 1.53 29413.37 1.31 29019.63 4×4 kernel 1.66 54174.12 1.35 51217.06 5×5 kernel 1.77 78509.66 1.52 71270.24 14nm technology 3×3 kernel 0.49 3105.55 0.44 3070.52 4×4 kernel 0.52 5835.89 0.44 5645.68 5×5 kernel 0.54 8966.66

Discussion and Limitations

- The delay, area and power requirements are noted for 45nm and 14nm technology nodes using Synopsys DC Compiler.
- The implemented design considers the input size of 8 bits and the kernel size of 32 bits.
- The proposed method showed more efficiency in terms of delay, area and power consumption.
- The power consumption for the proposed method is for generating four pixels.
- The average power consumption is very low when compared to the original method for writing a single element in the output feature map.
- The proposed method reduces the computation load up to nearly 3.8× compared to the original implementation.
- The proposed method helps to scale the existing deep learning models having TC to implement on handheld devices.

Limitations

- The proposed method produces four pixels at a time, which results in computing the unwanted elements if the output feature is of odd dimensions.
- Thus, the extra elements needed to be avoided for future computations.

Future Works

- Implement the proposed optimized transpose convolution operation on different Field Programmable Field Arrays (FPGAs) from Intel and AMD companies.
- Also, design the simple neural network which uses transpose convolution layer on FPGAs and analyze the performance.

References

- Tida, V. S., Chilukoti, S. V., Hsu, S. H. Y., & Hei, X. (2023). Kernel-segregated transpose convolution operation. In T. X. Bui (Ed.), 56th hawaii international conference on system sciences, HICSS 2023, maui, hawaii, USA, january 3-6, 2023 (pp. 6934–6943). ScholarSpace.https://hdl.handle.net/10125/103035
- Yazdanbakhsh, A., Samadi, K., Kim, N. S., & Esmaeilzadeh, H. (2018). Ganax: A unified mimd-simd acceleration for generative adversarial networks. 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), 650–661.