MEX #7 - Geyzson Kristoffer

SN:2023-21036

https://uvle.upd.edu.ph/mod/assign/view.php?id=547271

Problem #1

```
In []: import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import tqdm as notebook_tqdm

diabetes = pd.read_csv('diabetes_data_upload.csv')
diabetes.head()
```

Out[]:		Age	Gender	Polyuria	Polydipsia	sudden weight loss	weakness	Polyphagia	Genital thrush	visual blurring	Itching	Irritability	delayed healing	partial paresis	s
	0	40	Male	No	Yes	No	Yes	No	No	No	Yes	No	Yes	No	
	1	58	Male	No	No	No	Yes	No	No	Yes	No	No	No	Yes	
	2	41	Male	Yes	No	No	Yes	Yes	No	No	Yes	No	Yes	No	
	3	45	Male	No	No	Yes	Yes	Yes	Yes	No	Yes	No	Yes	No	
	4	60	Male	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	
In []:	di	abete	s.info()												

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 520 entries, 0 to 519
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Age	520 non-null	int64
1	Gender	520 non-null	object
2	Polyuria	520 non-null	object
3	Polydipsia	520 non-null	object
4	sudden weight loss	520 non-null	object
5	weakness	520 non-null	object
6	Polyphagia	520 non-null	object
7	Genital thrush	520 non-null	object
8	visual blurring	520 non-null	object
9	Itching	520 non-null	object
10	Irritability	520 non-null	object
11	delayed healing	520 non-null	object
12	partial paresis	520 non-null	object
13	muscle stiffness	520 non-null	object
14	Alopecia	520 non-null	object
15	Obesity	520 non-null	object
16	class	520 non-null	object
1.1	' ' (4/4) ' '	(46)	

dtypes: int64(1), object(16)

memory usage: 69.2+ KB

```
import optuna
import pandas as pd
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, f1_score
```

```
import xqboost as xqb
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.metrics import make scorer, f1 score, precision score, recall score
from ast import literal eval
df = diabetes.copy()
df['class'] = df['class'].map({'Positive': 1, 'Negative': 0})
X = df.drop('class', axis=1)
y = df['class']
# 1a.
# encoding the labels and splitting the data into train and test sets
le = LabelEncoder()
X = X.apply(lambda col: le.fit transform(col.astype(str)), axis=0, result type='expand')
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# running optuna
def objective(trial):
    classifier_name = trial.suggest_categorical('classifier', ['MLPClassifier', 'RandomForest', 'XGBoost', 'Logi
    if classifier name == 'MLPClassifier':
        hidden layer sizes str = trial.suggest categorical('hidden layer sizes', ['(50, 50, 50)', '(50, 100, 50)
        hidden layer sizes = eval(hidden layer sizes str)
        params = {
            'hidden layer sizes': hidden layer sizes,
            'activation': trial.suggest_categorical('activation', ['tanh', 'relu']),
            'solver': trial.suggest_categorical('solver', ['sgd', 'adam']),
            'max_iter': trial.suggest_int('max_iter', 1000, 2000),
```

```
'batch size': trial suggest int('batch size', 1, 100),
        'learning rate init': trial.suggest float('learning rate init', 1e-5, 1e-2).
        'alpha': trial.suggest float('alpha', 1e-5, 1e-2),
        'shuffle': trial.suggest categorical('shuffle', [True, False]),
        'tol': trial.suggest float('tol', 1e-5, 1e-2),
        'momentum': trial.suggest_float('momentum', 1e-5, 1e-2),
        'early stopping': trial.suggest categorical('early stopping', [True, False]),
   model = MLPClassifier(**params)
elif classifier name == 'RandomForest':
    params = {
        'n estimators': trial.suggest int('n estimators', 10, 1000),
        'max depth': trial.suggest int('max depth', 1, 50),
        'criterion': trial.suggest categorical('criterion', ['gini', 'entropy']),
        'min samples split': trial.suggest int('min samples split', 2, 14),
        'min samples leaf': trial.suggest int('min samples leaf', 1, 14),
        'bootstrap': trial.suggest categorical('bootstrap', [True, False]),
   model = RandomForestClassifier(**params)
elif classifier name == 'XGBoost':
    params = {
        'n estimators': trial.suggest int('n estimators', 10, 1000),
        'max depth': trial.suggest int('max depth', 1, 50),
        'learning_rate': trial.suggest_float('learning_rate', 1e-8, 1.0),
        'booster': trial.suggest_categorical('booster', ['gbtree', 'gblinear', 'dart']),
        'reg alpha': trial.suggest float('reg alpha', 1e-8, 1.0),
        'reg lambda': trial.suggest float('reg lambda', 1e-8, 1.0),
        'scale pos weight': trial.suggest float('scale pos weight', 1e-6, 1e6),
    model = xgb.XGBClassifier(**params)
```

```
elif classifier name == 'LogisticRegression':
    params = {
        'C': trial.suggest float('C', 1e-8, 1e2),
        'max iter': trial.suggest int('max iter', 1000, 2000),
    model = LogisticRegression(**params)
elif classifier name == 'NaiveBayes':
    params = {
        'var smoothing': trial.suggest float('var smoothing', 1e-8, 1e-2),
    model = GaussianNB(**params)
elif classifier name == 'SVM':
    params = {
        'C': trial.suggest_float('C', 1e-8, 1e2),
        'kernel': trial.suggest categorical('kernel', ['linear', 'poly', 'rbf', 'sigmoid']),
        'degree': trial.suggest int('degree', 1, 10),
        'gamma': trial.suggest categorical('gamma', ['scale', 'auto']),
    model = SVC(**params)
elif classifier name == 'kNN':
    params = {
        'n neighbors': trial.suggest int('n neighbors', 1, 50),
        'weights': trial.suggest_categorical('weights', ['uniform', 'distance']),
        'algorithm': trial.suggest_categorical('algorithm', ['auto', 'ball_tree', 'kd_tree', 'brute']),
        'leaf_size': trial.suggest_int('leaf_size', 1, 50),
    model = KNeighborsClassifier(**params)
f1 scorer = make scorer(f1 score, average='weighted')
precision scorer = make scorer(precision score)
recall_scorer = make_scorer(recall_score)
```

```
score = cross_val_score(model, X_train, y_train, n_jobs=-1, cv=10).mean()
return score

study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100)
```

```
[I 2024-01-23 04:13:03,199] A new study created in memory with name: no-name-373802b0-5de5-46d8-a3ba-862fc63116dc
[I 2024-01-23 04:13:04.083] Trial 0 finished with value: 0.9179442508710803 and parameters: {'classifier': 'Rando
mForest', 'n estimators': 714, 'max depth': 13, 'criterion': 'entropy', 'min samples split': 10, 'min samples lea
f': 7, 'bootstrap': True}. Best is trial 0 with value: 0.9179442508710803.
[I 2024-01-23 04:13:04,111] Trial 1 finished with value: 0.870150987224158 and parameters: {'classifier': 'kNN',
'n neighbors': 28, 'weights': 'uniform', 'algorithm': 'kd tree', 'leaf size': 8}. Best is trial 0 with value: 0.9
179442508710803.
[I 2024-01-23 04:13:04.124] Trial 2 finished with value: 0.92061556329849 and parameters: {'classifier': 'Logisti
cRegression', 'C': 27.595157339340947, 'max iter': 1996}. Best is trial 2 with value: 0.92061556329849.
[I 2024-01-23 04:13:09,391] Trial 3 finished with value: 0.5986062717770034 and parameters: {'classifier': 'XGBoo
st', 'n estimators': 334, 'max depth': 24, 'learning rate': 0.0012840005839864727, 'booster': 'dart', 'reg alph
a': 0.9937318537545634, 'reg lambda': 0.42952362274475325, 'scale pos weight': 462376.23478665506}. Best is trial
2 with value: 0.92061556329849.
[I 2024-01-23 04:13:09,420] Trial 4 finished with value: 0.5986062717770034 and parameters: {'classifier': 'XGBoo
st', 'n estimators': 87, 'max depth': 33, 'learning rate': 0.012497103059991016, 'booster': 'gbtree', 'reg alph
a': 0.6783680116086803, 'reg lambda': 0.21517235739232524, 'scale pos weight': 917579.8056591077}. Best is trial
2 with value: 0.92061556329849.
[I 2024-01-23 04:13:14,958] Trial 5 finished with value: 0.9591173054587688 and parameters: {'classifier': 'XGBoo
st', 'n estimators': 338, 'max depth': 23, 'learning rate': 0.9940632260094652, 'booster': 'dart', 'reg alpha':
0.5798397611120658, 'reg lambda': 0.4914104804487928, 'scale pos weight': 633309.4550088117}. Best is trial 5 wit
h value: 0.9591173054587688.
[I 2024-01-23 04:13:15,882] Trial 6 finished with value: 0.9179442508710803 and parameters: {'classifier': 'Rando
mForest', 'n estimators': 870, 'max depth': 30, 'criterion': 'gini', 'min samples split': 6, 'min samples leaf':
8, 'bootstrap': True}. Best is trial 5 with value: 0.9591173054587688.
[I 2024-01-23 04:13:15,905] Trial 7 finished with value: 0.8990127758420442 and parameters: {'classifier': 'kNN',
'n neighbors': 22, 'weights': 'uniform', 'algorithm': 'brute', 'leaf size': 45}. Best is trial 5 with value: 0.95
91173054587688.
[I 2024-01-23 04:13:15,919] Trial 8 finished with value: 0.9686411149825783 and parameters: {'classifier': 'SVM',
'C': 73.51594749868863, 'kernel': 'poly', 'degree': 5, 'gamma': 'scale'}. Best is trial 8 with value: 0.968641114
```

```
M'. 'C': 27.704642683069313, 'kernel': 'poly', 'degree': 7, 'gamma': 'scale'}. Best is trial 72 with value: 0.973
4610917537747.
[I 2024-01-23 04:13:27.853] Trial 91 finished with value: 0.96869918699187 and parameters: {'classifier': 'SVM'.
'C': 29.41524851447025, 'kernel': 'poly', 'degree': 5, 'gamma': 'scale'}. Best is trial 72 with value: 0.97346109
17537747.
[I 2024-01-23 04:13:27,871] Trial 92 finished with value: 0.96869918699187 and parameters: {'classifier': 'SVM',
'C': 32.428161703792775, 'kernel': 'poly', 'degree': 5, 'gamma': 'scale'}. Best is trial 72 with value: 0.9734610
917537747.
[I 2024-01-23 04:13:27.891] Trial 93 finished with value: 0.96869918699187 and parameters: {'classifier': 'SVM'.
'C': 24.70164581031176, 'kernel': 'poly', 'degree': 5, 'gamma': 'scale'}. Best is trial 72 with value: 0.97346109
17537747.
[I 2024-01-23 04:13:27,975] Trial 94 finished with value: 0.9639372822299652 and parameters: {'classifier': 'XGBo
ost', 'n estimators': 459, 'max depth': 20, 'learning rate': 0.21262116901970451, 'booster': 'gbtree', 'reg alph
a': 0.004478368589993398, 'reg lambda': 0.7087295921203218, 'scale pos weight': 995491.8979060121}. Best is trial
72 with value: 0.9734610917537747.
[I 2024-01-23 04:13:28.104] Trial 95 finished with value: 0.9182346109175377 and parameters: {'classifier': 'SV
M', 'C': 38.30714314119352, 'kernel': 'linear', 'degree': 6, 'gamma': 'scale'}. Best is trial 72 with value: 0.97
34610917537747.
[I 2024-01-23 04:13:29.151] Trial 96 finished with value: 0.9253193960511034 and parameters: {'classifier': 'Rand
omForest', 'n_estimators': 959, 'max_depth': 36, 'criterion': 'gini', 'min_samples_split': 8, 'min_samples_leaf':
8, 'bootstrap': True}. Best is trial 72 with value: 0.9734610917537747.
[I 2024-01-23 04:13:29.168] Trial 97 finished with value: 0.96869918699187 and parameters: {'classifier': 'SVM'.
'C': 6.736812205057969, 'kernel': 'poly', 'degree': 5, 'gamma': 'scale'}. Best is trial 72 with value: 0.97346109
17537747.
[I 2024-01-23 04:13:29,188] Trial 98 finished with value: 0.9567363530778163 and parameters: {'classifier': 'SV
M', 'C': 86.71665705653152, 'kernel': 'poly', 'degree': 4, 'gamma': 'auto'}. Best is trial 72 with value: 0.97346
10917537747.
[I 2024-01-23 04:13:29,207] Trial 99 finished with value: 0.9400696864111499 and parameters: {'classifier': 'kN
N', 'n neighbors': 33, 'weights': 'distance', 'algorithm': 'brute', 'leaf size': 32}. Best is trial 72 with valu
e: 0.9734610917537747.
```

```
print(f"Best trial final score: {best_trial.value}")
for key, value in best_trial.params.items():
    print(f"{key}: {value}")
```

In []: best trial = study.best trial

```
best classifier = best trial.params['classifier']
       Best trial final score: 0.9734610917537747
       classifier: SVM
       C: 2.9090105588450754
       kernel: poly
       degree: 5
       gamma: scale
In []: best params = study.best trial.params
        best params
Out[]: {'classifier': 'SVM',
          'C': 2.9090105588450754.
          'kernel': 'poly',
          'degree': 5,
          'gamma': 'scale'}
In []: if best params['classifier'] == 'MLPClassifier':
            model = MLPClassifier(**{k: v for k, v in best params.items() if k != 'classifier'})
        elif best params['classifier'] == 'RandomForest':
            model = RandomForestClassifier(**{k: v for k, v in best params.items() if k != 'classifier'})
        elif best params['classifier'] == 'XGBoost':
            model = xgb.XGBClassifier(**{k: v for k, v in best_params.items() if k != 'classifier'})
        elif best params['classifier'] == 'LogisticRegression':
            model = LogisticRegression(**{k: v for k, v in best params.items() if k != 'classifier'})
        elif best params['classifier'] == 'NaiveBayes':
            model = GaussianNB()
        elif best_params['classifier'] == 'SVM':
            model = SVC(**{k: v for k, v in best_params.items() if k != 'classifier'})
        elif best params['classifier'] == 'kNN':
            model = KNeighborsClassifier(**{k: v for k, v in best_params.items() if k != 'classifier'})
        model.fit(X train, y train)
```

```
v pred = model.predict(X test)
        accuracv = accuracv score(v test, v pred)
        f1 = f1 score(y test, y pred, average='weighted')
        precision = precision score(y test, y pred, average='weighted')
        recall = recall score(y test, y pred, average='weighted')
        print('The accuracy of the and F1-score of the best model in the test data ')
        print(f"Test Set Evaluation Metrics:\nAccuracy: {accuracy}\nF1 Score: {f1}\nPrecision: {precision}\nRecall: {rec
       The accuracy of the and F1-score of the best model in the test data
       Test Set Evaluation Metrics:
       Accuracy: 0.9807692307692307
       F1 Score: 0.980602297008547
       Precision: 0.9812961011591148
       Recall: 0.9807692307692307
In [ ]: def objective2(trial):
            params = {
                'n estimators': trial.suggest int('n estimators', 10, 1000),
                'max depth': trial.suggest int('max depth', 1, 50),
                'criterion': trial.suggest categorical('criterion', ['gini', 'entropy']),
                'min samples split': trial.suggest int('min samples split', 2, 14),
                'min_samples_leaf': trial.suggest_int('min_samples_leaf', 1, 14),
                'bootstrap': trial.suggest categorical('bootstrap', [True, False]),
            model = RandomForestClassifier(**params)
            f1_scorer = make_scorer(f1_score, average='weighted')
            precision_scorer = make_scorer(precision_score)
            recall scorer = make scorer(recall score)
            score = cross val score(model, X train, y train, n jobs=-1, cv=10, scoring=f1 scorer).mean()
            return score
```

```
study2 = optuna.create_study(direction='maximize')
study2.optimize(objective2, n_trials=100)

best_trial2 = study2.best_trial
print(f"Best trial final score: {best_trial2.value}")
for key, value in best_trial2.params.items():
    print(f"{key}: {value}")
```

[I 2024-01-23 04:17:31,795] A new study created in memory with name: no-name-041dc1fb-a486-4389-b543-b6fe4a02ac25 [I 2024-01-23 04:17:31.914] Trial 0 finished with value: 0.9468575229369947 and parameters: {'n estimators': 69. 'max depth': 16, 'criterion': 'entropy', 'min samples split': 13, 'min samples leaf': 5, 'bootstrap': False}. Bes t is trial 0 with value: 0.9468575229369947. [I 2024-01-23 04:17:32,922] Trial 1 finished with value: 0.8937037041242073 and parameters: {'n estimators': 969, 'max depth': 1, 'criterion': 'gini', 'min samples split': 7, 'min samples leaf': 13, 'bootstrap': True}. Best is trial 0 with value: 0.9468575229369947. [I 2024-01-23 04:17:33,295] Trial 2 finished with value: 0.915081379664103 and parameters: {'n estimators': 400, 'max depth': 21, 'criterion': 'entropy', 'min samples split': 2, 'min samples leaf': 14, 'bootstrap': False}. Bes t is trial 0 with value: 0.9468575229369947. [I 2024-01-23 04:17:33,429] Trial 3 finished with value: 0.9420767735497775 and parameters: {'n estimators': 90, 'max depth': 49, 'criterion': 'gini', 'min samples split': 3, 'min samples leaf': 5, 'bootstrap': True}. Best is trial 0 with value: 0.9468575229369947. [I 2024-01-23 04:17:34,023] Trial 4 finished with value: 0.9444386624438087 and parameters: {'n estimators': 660, 'max depth': 50, 'criterion': 'gini', 'min samples split': 4, 'min samples leaf': 5, 'bootstrap': False}. Best is trial 0 with value: 0.9468575229369947. [I 2024-01-23 04:17:34,087] Trial 5 finished with value: 0.9153006353294927 and parameters: {'n estimators': 52, 'max_depth': 29, 'criterion': 'entropy', 'min_samples_split': 7, 'min_samples_leaf': 14, 'bootstrap': False}. Bes t is trial 0 with value: 0.9468575229369947. [I 2024-01-23 04:17:34,870] Trial 6 finished with value: 0.9156571237145148 and parameters: {'n estimators': 693, 'max_depth': 24, 'criterion': 'gini', 'min_samples_split': 8, 'min_samples_leaf': 9, 'bootstrap': True}. Best is trial 0 with value: 0.9468575229369947. [I 2024-01-23 04:17:35,308] Trial 7 finished with value: 0.9250992205872816 and parameters: {'n estimators': 481, 'max depth': 35, 'criterion': 'entropy', 'min samples split': 4, 'min samples leaf': 11, 'bootstrap': False}. Bes t is trial 0 with value: 0.9468575229369947. [I 2024-01-23 04:17:35,973] Trial 8 finished with value: 0.9395264252291453 and parameters: {'n estimators': 697, 'max_depth': 12, 'criterion': 'entropy', 'min_samples_split': 7, 'min_samples_leaf': 8, 'bootstrap': False}. Best

8, 'max depth': 31, 'criterion': 'qini', 'min samples split': 6, 'min samples leaf': 2, 'bootstrap': False}. Best is trial 82 with value: 0.9831326497607644. [I 2024-01-23 04:18:05,383] Trial 91 finished with value: 0.9783553974512491 and parameters: {'n estimators': 61 5, 'max_depth': 39, 'criterion': 'entropy', 'min_samples_split': 5, 'min samples leaf': 1, 'bootstrap': False}. B est is trial 82 with value: 0.9831326497607644. [I 2024-01-23 04:18:05,977] Trial 92 finished with value: 0.9783553974512491 and parameters: {'n estimators': 62 8, 'max depth': 33, 'criterion': 'entropy', 'min samples split': 5, 'min samples leaf': 1, 'bootstrap': False}. B est is trial 82 with value: 0.9831326497607644. [I 2024-01-23 04:18:06.575] Trial 93 finished with value: 0.9759284399720268 and parameters: {'n estimators': 61 4, 'max depth': 34, 'criterion': 'entropy', 'min samples split': 5, 'min samples leaf': 1, 'bootstrap': False}. B est is trial 82 with value: 0.9831326497607644. [I 2024-01-23 04:18:07,072] Trial 94 finished with value: 0.9710801316135094 and parameters: {'n estimators': 54 2, 'max_depth': 39, 'criterion': 'entropy', 'min_samples_split': 5, 'min_samples_leaf': 2, 'bootstrap': False}. B est is trial 82 with value: 0.9831326497607644. [I 2024-01-23 04:18:07.727] Trial 95 finished with value: 0.9759284399720268 and parameters: {'n estimators': 68 8, 'max depth': 37, 'criterion': 'entropy', 'min samples split': 4, 'min samples leaf': 1, 'bootstrap': False}. B est is trial 82 with value: 0.9831326497607644. [I 2024-01-23 04:18:08,298] Trial 96 finished with value: 0.9759284399720268 and parameters: {'n estimators': 63 4, 'max depth': 43, 'criterion': 'entropy', 'min samples split': 5, 'min samples leaf': 1, 'bootstrap': False}. B est is trial 82 with value: 0.9831326497607644. [I 2024-01-23 04:18:08,818] Trial 97 finished with value: 0.9759856744042613 and parameters: {'n estimators': 56 2. 'max depth': 33. 'criterion': 'entropy'. 'min samples split': 4. 'min samples leaf': 2. 'bootstrap': False}. B est is trial 82 with value: 0.9831326497607644. [I 2024-01-23 04:18:09,244] Trial 98 finished with value: 0.9759284399720268 and parameters: {'n estimators': 45 5, 'max depth': 30, 'criterion': 'entropy', 'min samples split': 5, 'min samples leaf': 1, 'bootstrap': False}. B est is trial 82 with value: 0.9831326497607644. [I 2024-01-23 04:18:09,866] Trial 99 finished with value: 0.9685385178934836 and parameters: {'n estimators': 66 8, 'max_depth': 40, 'criterion': 'entropy', 'min_samples_split': 6, 'min_samples_leaf': 2, 'bootstrap': False}. B est is trial 82 with value: 0.9831326497607644.

```
n estimators: 209
       max depth: 27
       criterion: entropy
       min samples split: 6
       min_samples_leaf: 1
       bootstrap: False
In [ ]: best classifier2 = best_trial2.params
        best classifier2
Out[]: {'n estimators': 209,
         'max depth': 27,
          'criterion': 'entropy',
          'min_samples_split': 6,
          'min samples leaf': 1,
          'bootstrap': False}
In []: model2 = RandomForestClassifier(**best classifier2)
        model2
Out[]: •
                                     RandomForestClassifier
        RandomForestClassifier(bootstrap=False, criterion='entropy', max_depth=27,
                                min samples split=6, n estimators=209)
In [ ]: model2.fit(X train, y train)
        y pred2 = model2.predict(X test)
        accuracy2 = accuracy_score(y_test, y_pred2)
        f1_2 = f1_score(y_test, y_pred2, average='weighted')
        precision2 = precision_score(y_test, y_pred2, average='weighted')
        recall2 = recall_score(y_test, y_pred2, average='weighted')
```

Best trial final score: 0.9831326497607644

```
print('The F1-Score of a better RF model in the test data is \n', f1_2)
print()
print(f"Test Set Evaluation Metrics:\nAccuracy: {accuracy2}\nF1 Score: {f1_2}\nPrecision: {precision2}\nRecall:
```

The F1-Score of a better RF model in the test data is 0.9904222748776574

Test Set Evaluation Metrics: Accuracy: 0.9903846153846154 F1 Score: 0.9904222748776574 Precision: 0.9906674208144797 Recall: 0.9903846153846154

Problem #2

```
In []: import pandas as pd
import lazypredict.
from lazypredict.Supervised import LazyRegressor
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler

In []: from ucimlrepo import fetch_ucirepo
    student_performance = fetch_ucirepo(id=320)
    X_import = student_performance.data.features
    y_import = student_performance.data.targets
    X_import
```

Out[]:		school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	•••	higher	internet	romantic	famrel	free
	0	GP	F	18	U	GT3	А	4	4	at_home	teacher		yes	no	no	4	
	1	GP	F	17	U	GT3	Т	1	1	at_home	other		yes	yes	no	5	
	2	GP	F	15	U	LE3	Т	1	1	at_home	other		yes	yes	no	4	
	3	GP	F	15	U	GT3	Т	4	2	health	services	•••	yes	yes	yes	3	
	4	GP	F	16	U	GT3	Т	3	3	other	other	•••	yes	no	no	4	
	•••														•••		
	644	MS	F	19	R	GT3	Т	2	3	services	other		yes	yes	no	5	
	645	MS	F	18	U	LE3	Т	3	1	teacher	services	•••	yes	yes	no	4	
	646	MS	F	18	U	GT3	Т	1	1	other	other	•••	yes	no	no	1	
	647	MS	М	17	U	LE3	Т	3	1	services	services	•••	yes	yes	no	2	
	648	MS	М	18	R	LE3	Т	3	2	services	other		yes	yes	no	4	

649 rows × 30 columns

```
In []: X = pd.concat([X_import, y_import.iloc[:, :-1]], axis=1)
X
```

Out[]:		school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	•••	romantic	famrel	freetime	goout	Dalc
	0	GP	F	18	U	GT3	А	4	4	at_home	teacher	•••	no	4	3	4	1
	1	GP	F	17	U	GT3	Т	1	1	at_home	other		no	5	3	3	1
	2	GP	F	15	U	LE3	Т	1	1	at_home	other		no	4	3	2	2
	3	GP	F	15	U	GT3	Т	4	2	health	services		yes	3	2	2	1
	4	GP	F	16	U	GT3	Т	3	3	other	other		no	4	3	2	1
	•••	•••			•••	•••	•••	•••	•••		•••	•••		•••		•••	
	644	MS	F	19	R	GT3	Т	2	3	services	other		no	5	4	2	1
	645	MS	F	18	U	LE3	Т	3	1	teacher	services	•••	no	4	3	4	1
	646	MS	F	18	U	GT3	Т	1	1	other	other		no	1	1	1	1
	647	MS	М	17	U	LE3	Т	3	1	services	services	•••	no	2	4	5	3
	648	MS	М	18	R	LE3	Т	3	2	services	other		no	4	4	1	3

649 rows × 32 columns

```
In [ ]: y = y_import.iloc[:, -1]
y
```

```
Out[]: 0
               11
               11
        2
               12
               14
               13
        644
               10
        645
               16
        646
        647
               10
        648
               11
        Name: G3, Length: 649, dtype: int64
In [ ]: le = LabelEncoder()
        X = pd.DataFrame(X)
        X = X.apply(lambda col: le.fit transform(col.astype(str)), axis=0, result type='expand')
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
        scaler = StandardScaler()
        X train = scaler.fit transform(X train)
        X test = scaler.transform(X test)
        rgsr = LazyRegressor(verbose=0,ignore warnings=True, custom metric=None)
        models, predictions = rgsr.fit(X_train, X_test, y_train, y_test)
        98%| 41/42 [00:09<00:00, 4.96it/s]
       [LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000204 seconds.
       You can set `force row wise=true` to remove the overhead.
       And if memory is not enough, you can set `force col wise=true`.
       [LightGBM] [Info] Total Bins 179
       [LightGBM] [Info] Number of data points in the train set: 519, number of used features: 32
       [LightGBM] [Info] Start training from score 11.793834
       [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
       [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain; -inf [LightGBM] [Warning] No further splits with positive gain, best gain; -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain; -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain; -inf [LightGBM] [Warning] No further splits with positive gain, best gain; -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain; -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [LightGBM] [Warning] No further splits with positive gain, best gain: -inf

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain; -inf
[LightGBM] [Warning] No further splits with positive gain, best gain; -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain; -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain; -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
100% | 42/42 [00:09<00:00, 4.33it/s]
```

In []: print(models)

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
GradientBoostingRegressor	0.76	0.82	1.33	0.33
RandomForestRegressor	0.74	0.80	1.38	0.65

XGBRegressor	0.72	0.79	1.43	0.29
ExtraTreesRegressor	0.71	0.78	1.46	0.95
BaggingRegressor	0.71	0.78	1.47	0.08
HistGradientBoostingRegressor	0.69	0.77	1.50	1.43
LGBMRegressor	0.68	0.76	1.54	0.26
AdaBoostRegressor	0.59	0.69	1.73	0.21
DecisionTreeRegressor	0.28	0.46	2.29	0.02
ExtraTreeRegressor	0.24	0.43	2.37	0.09
NuSVR	0.02	0.26	2.68	0.09
SVR	-0.01	0.24	2.72	0.09
KNeighborsRegressor	-0.07	0.20	2.80	0.13
TweedieRegressor	-0.10	0.17	2.84	0.31
HuberRegressor	-0.11	0.16	2.86	0.09
ElasticNetCV	-0.12	0.16	2.86	0.37
LassoCV	-0.13	0.15	2.88	0.24
LassoLarsCV	-0.13	0.15	2.88	0.15
LarsCV	-0.13	0.15	2.88	0.19
LinearSVR	-0.13	0.15	2.88	0.07
BayesianRidge	-0.13	0.15	2.88	0.02
LassoLarsIC	-0.14	0.15	2.89	0.06
PoissonRegressor	-0.14	0.14	2.89	0.34
RidgeCV	-0.16	0.13	2.92	0.07
SGDRegressor	-0.16	0.13	2.92	0.04
Ridge	-0.16	0.12	2.92	0.03
Lars	-0.16	0.12	2.92	0.04
LinearRegression	-0.16	0.12	2.92	0.04
TransformedTargetRegressor	-0.16	0.12	2.92	0.05
ElasticNet	-0.18	0.11	2.95	0.03
OrthogonalMatchingPursuitCV	-0 . 27	0.05	3.05	0.04
OrthogonalMatchingPursuit	-0.28	0.04	3.06	0.02
Lasso	-0.29	0.03	3.07	0.03
LassoLars	-0.29	0.03	3.07	0.03
DummyRegressor	-0 . 37	-0.03	3.17	0.03
MLPRegressor	-0.56	-0.18	3.39	1.94
PassiveAggressiveRegressor	-0.98	-0.49	3.81	0.02

```
RANSACRegressor
                                                   -2.42
                                                             -1.57 5.01
                                                                                 0.46
       KernelRidge
                                                  -20.01
                                                            -14.79 12.41
                                                                                0.06
       GaussianProcessRegressor
                                                  -21.01
                                                            -15.55 12.70
                                                                                0.10
In []: best model name = models.sort values('R-Squared', ascending=False).index[0]
        feature names = X.columns
        X_df = pd.DataFrame(X_test, columns=feature_names)
        best model = rgsr.models[best model name]
        best model
                                   Pipeline
Out[]:
                      preprocessor: ColumnTransformer
                numeric
                             ▶ categorical_low ▶ categorical_high
           ▶ SimpleImputer
                              ▶ SimpleImputer
                                                  ▶ SimpleImputer
           ▶ StandardScaler
                                                 ▶ OrdinalEncoder
                              ▶ OneHotEncoder
                        ► GradientBoostingRegressor
In [ ]: import shap
        explainer = shap.TreeExplainer(best_model.named_steps['regressor'])
        shap_values = explainer(X_df)
        shap.summary plot(shap values, X test, plot type="bar")
                G1
                G2
```


Summary

- According to the plot the most influencial features are G1 and G2 which are expected because these are grades from the previous periods.
- This only means that these past grades are really a high predictor of the G3 grade.
- Another is the absences. This suggest that absences directly impact the performance of the G3 of the students.
- Other factors like traveltime, Medu, romantic, and goout, are not very indicative of the performance of the students.