Іспит з Математичної Статистики

Захаров Дмитро 10 грудня, 2024

Варіант 5

Зміст

1	Питання 1. Багатовимірний нормальний розподіл	2
2	Питання 2. Довірчий інтервал	4
3	Питання 3. Статистична значущість кореляції	5
4	Питання 4. Рівність середніх	6

1 Питання 1. Багатовимірний нормальний розподіл

Умова. Багатовимірний нормальний закон розподілу: теорема про щільність розподілу. Приклад.

Відповідь. В попередніх курсах ми вивчали одновимірний нормальний розподіл $\mathcal{N}(\mu,\sigma)$, що задано згідно густині $f_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$. Проте, природа багатьох задач багатовимірна, тому природньо розширити цей розподіл на багатовимірний випадок. Як і з одновимірним випадком, спочатку розглянемо *стандартний* багатовимірний нормальний розподіл.

Definition 1.1. Випадковий вектор $\boldsymbol{\xi} = (\xi_1, \xi_2, \dots, \xi_n)$ має *стандартний багатовимірний нормальний розподіл*, якщо випадкові величини ξ_1, \dots, ξ_n є незалежними в сукупності випадковими величинами, що мають стандартний нормальний розподіл: $\xi_i \sim \mathcal{N}(0, 1)$.

Для такого випадку, за допомогою критерія незалежності неперервних випадкових величин, щільність розподілу $\boldsymbol{\xi}$ можна легко подати у вигляді:

$$f_{\xi}(x_1,\ldots,x_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{x_i^2}{2}} = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2}x^{\top}x}.$$

В таку випадку, ми формально записуємо $\boldsymbol{\xi} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{E}_{n \times n})$, щоб підкреслити, що вектор $\boldsymbol{\xi}$ має нульовий вектор середніх та одиничну коваріаційну матрицю — тобто має стандартний багатовимірний нормальний розподіл. Введемо поняття загального багатовимірного нормального розподілу.

Definition 1.2. Вважаємо, що *п*-вимірний випадковий вектор $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)$ має нормальний розподіл, якщо існують вектор $\boldsymbol{\beta} \in \mathbb{R}^n$ та невироджена квадратна матриця $\boldsymbol{P} \in \mathbb{R}^{n \times n}$ така, що $\boldsymbol{\xi} = \boldsymbol{\beta} + \boldsymbol{P} \boldsymbol{\eta}$, де $\boldsymbol{\eta} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{E}_{n \times n})$.

Проте, яка густина буде у такого розподілу? Для цього наводимо **теорему про щіль- ність багатовимірного нормального розподілу**.

Theorem 1.3. Випадковий вектор $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)$ має нормальний розподіл тоді і тільки тоді, коли його щільність має вигляд:

$$f_{\xi}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} \cdot (\det \Sigma)^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}.$$

Тут, $\Sigma \in \mathbb{R}^{n \times n}$ — симетрична додатно визначена матриця. Причому, якщо $\pmb{\xi} = \pmb{\beta} + \pmb{P} \pmb{\eta}$, то $\pmb{\mu} = \pmb{\beta}$ та $\Sigma = \pmb{P} \pmb{P}^{\top}$. Більш того, $\mathsf{Cov}[\pmb{\xi}] = \Sigma$ та $\pmb{\mu} = \mathbb{E}[\pmb{\xi}]$.

Доведення. Доведемо **необхідність**. Отже нехай $\boldsymbol{\xi} = \boldsymbol{\beta} + \boldsymbol{P}\boldsymbol{\eta}$, де $\boldsymbol{\eta} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{E}_{n \times n})$. Для обчислення щільності $\boldsymbol{\xi}$, розглянемо множину $\Pi(\mathbf{x}) = (-\infty, x_1) \times \cdots \times (-\infty, x_n)$ і множину $\Pi(\mathbf{x}) - \boldsymbol{\beta} = \{\mathbf{z} - \boldsymbol{\beta} : \mathbf{z} \in \Pi(\mathbf{x})\}$. Побудуємо функцію розподілу $\boldsymbol{\xi}$:

$$F_{\boldsymbol{\xi}}(\mathbf{x}) = \Pr[\boldsymbol{\xi} \in \Pi(\mathbf{x})] = \Pr[\boldsymbol{\beta} + \boldsymbol{P}\boldsymbol{\eta} \in \Pi(\mathbf{x})] = \Pr[\boldsymbol{\eta} \in \boldsymbol{P}^{-1}(\Pi(\mathbf{x}) - \boldsymbol{\beta})]$$

Далі скористаємось означенням функції розподілу:

$$F_{\xi}(\mathbf{x}) = \int_{\mathbf{P}^{-1}(\Pi(\mathbf{x}) - \boldsymbol{\beta})} f_{\eta}(\mathbf{y}) d\mathbf{y} = \int_{\Pi(\mathbf{x})} f_{\eta} \left(\mathbf{P}^{-1}(\mathbf{u} - \boldsymbol{\beta}) \right) |\det \mathbf{P}^{-1}| d\mathbf{u}$$

Тут ми використали заміну змінних $\mathbf{u} = \boldsymbol{\beta} + \boldsymbol{P}\mathbf{x}$ з Якобіаном det \boldsymbol{P}^{-1} . Далі залишається лише продиференціювати вираз:

$$\begin{split} f_{\xi}(\mathbf{x}) &= \frac{\partial F_{\xi}}{\partial \mathbf{x}} = f_{\eta}(\mathbf{P}^{-1}(\mathbf{x} - \boldsymbol{\beta})) |\det \mathbf{P}^{-1}| \\ &= \frac{1}{|\det \mathbf{P}|(2\pi)^{n/2}} \exp\left\{-\frac{1}{2}(\mathbf{P}^{-1}(\mathbf{x} - \boldsymbol{\beta}))^{\top} \mathbf{P}^{-1}(\mathbf{x} - \boldsymbol{\beta})\right\} \\ &= \frac{1}{|\det \mathbf{P}|(2\pi)^{n/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\beta})^{\top} (\mathbf{P}^{-1})^{\top} \mathbf{P}^{-1}(\mathbf{x} - \boldsymbol{\beta})\right\} \\ &= \frac{1}{(2\pi)^{n/2} (\det \Sigma)^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\beta}) \Sigma^{-1}(\mathbf{x} - \boldsymbol{\beta})\right\}, \end{split}$$

де $\Sigma = \boldsymbol{P}\boldsymbol{P}^{\top}$. Симетричність матриці Σ очевидна з її представлення, а додатна визначеність з того, що $\mathbf{x}^{\top}\Sigma\mathbf{x} = \mathbf{x}^{\top}\boldsymbol{P}\boldsymbol{P}^{\top}\mathbf{x} = (\boldsymbol{P}^{\top}\mathbf{x})^{\top}\boldsymbol{P}^{\top}\mathbf{x} = \|\boldsymbol{P}^{\top}\mathbf{x}\|_{2}^{2} > 0$.

Доведемо **достатність**. Нехай **ξ** має щільність $f_{\xi}(\mathbf{x})$ з вигляду, як в теоремі. Діагоналізуємо матрицю коваріації: $\mathbf{U}^{\top} \Sigma \mathbf{U} = \Lambda$, де $\Lambda = \operatorname{diag}\{\lambda_1, \ldots, \lambda_n\}$. Нехай $\Lambda^{1/2} := \operatorname{diag}\{\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n}\}$. В такому разі, $\Sigma = \mathbf{U} \Lambda^{1/2} \mathbf{U}^{\top} = \mathbf{P} \mathbf{P}^{\top}$, де $\mathbf{P} = \mathbf{U} \Lambda^{1/2}$.

Розглянемо випадковий вектор $\boldsymbol{\eta} = -\boldsymbol{P}^{-1}\boldsymbol{\mu} + \boldsymbol{P}^{-1}\boldsymbol{\xi}$. Щільність $\boldsymbol{\xi}$ ми знаємо, потрібно знайти щільність $\boldsymbol{\eta}$. Для цього, достатньо провести ті самі викладки, що і у випадку необхідності, себто:

$$F_{\eta}(\mathbf{x}) = \Pr[\boldsymbol{\xi} \in \boldsymbol{P}(\Pi(\mathbf{x}) + \boldsymbol{P}^{-1}\boldsymbol{\mu})] = \int_{\Pi(\mathbf{x})} f_{\boldsymbol{\xi}}(\boldsymbol{P}(\mathbf{u} + \boldsymbol{P}^{-1}\boldsymbol{\mu})) |\det \boldsymbol{P}| d\mathbf{u}$$

В такому разі густина:

$$f_{\eta}(\mathbf{x}) = \frac{\partial F_{\eta}}{\partial \mathbf{x}} = f_{\xi}(\mathbf{P}\mathbf{x} + \boldsymbol{\mu})|\det \mathbf{P}|$$

Після підстановки відомої щільності, отримаємо:

$$f_{\eta}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}} \exp\left\{-\frac{1}{2}\mathbf{x}^{\top} \Lambda^{1/2} \Lambda^{-1} \Lambda^{1/2} \mathbf{x}\right\} = \frac{1}{(2\pi)^{n/2}} e^{-\mathbf{x}^{\top} \mathbf{x}/2},$$

звідки $\eta \sim \mathcal{N}(\mathbf{0}, \mathbf{\textit{E}}_{n \times n})$. Нарешті, залишилось знайти математичне сподівання і коваріаційну матрицю:

$$\mathbb{E}[\boldsymbol{\xi}] = \boldsymbol{\mu} + \mathbb{E}[\boldsymbol{P}\boldsymbol{\eta}] = \boldsymbol{\mu} + \boldsymbol{P}\mathbb{E}[\boldsymbol{\eta}] = \boldsymbol{\mu},$$
 $\mathsf{Cov}[\boldsymbol{\xi}] = \mathsf{Cov}[\boldsymbol{\mu} + \boldsymbol{P}\boldsymbol{\eta}] = \mathsf{Cov}[\boldsymbol{P}\boldsymbol{\eta}] = \boldsymbol{P}\mathsf{Cov}[\boldsymbol{\eta}]\boldsymbol{P}^{\top} = \boldsymbol{P}\boldsymbol{P}^{\top} = \boldsymbol{\Sigma}.$

Example. Для двовимірного випадкового вектора $\boldsymbol{\xi}=(\xi_1,\xi_2)$ з математичними сподіваннями μ_1 , μ_2 та дисперсіями σ_1^2 , σ_2^2 і коефіцієнтом кореляції ρ , маємо матрицю коваріації $\Sigma=\begin{bmatrix}\sigma_1^2&\rho\sigma_1\sigma_2\\\rho\sigma_1\sigma_2&\sigma_2^2\end{bmatrix}$ та вектор $\boldsymbol{\mu}=(\mu_1,\mu_2)$. Густина:

$$f_{\xi}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{z_1^2 - 2\rho z_1 z_2 + z_2^2}{2(1-\rho^2)}\right\}, \quad z_i = \frac{x_i - \mu_i}{\sigma_i}, \quad i = 1, 2.$$

2 Питання 2. Довірчий інтервал

Умова. При N=1000 випробуваннях Бернуллі подія E відбулась m=40 разів. Для довірчої ймовірності $\alpha=0.9$ побудувати довірчий інтервал \mathcal{I}_{α} для ймовірності p події.

Відповідь. Як було доведено на лекціях, довічний інтервал для ймовірності p настання події E в схемі Бернуллі з N випробуваннями має вигляд:

$$\mathcal{I}_{\alpha} = \left(\frac{N\hat{\rho} + \frac{1}{2}z_{\alpha/2}^{2} - z_{\alpha/2}\sqrt{N\hat{\rho}(1-\hat{\rho}) + \frac{1}{4}z_{\alpha/2}^{2}}}{N + z_{\alpha/2}^{2}}, \frac{N\hat{\rho} + \frac{1}{2}z_{\alpha/2}^{2} + z_{\alpha/2}\sqrt{N\hat{\rho}(1-\hat{\rho}) + \frac{1}{4}z_{\alpha/2}^{2}}}{N + z_{\alpha/2}^{2}}\right),$$

де $z_{\alpha/2}=\Phi_0^{-1}\left(\frac{\alpha}{2}\right)$, $\hat{p}=\frac{m}{N}$. Залишається підставити значення. Маємо $\hat{p}=\frac{40}{1000}=0.04$. Значення $\alpha/2=0.45$, а отже за таблицею $z_{\alpha/2}=\Phi_0^{-1}(0.45)\approx 1.65$. Всі числа є, підставляємо. Якщо $\mathcal{I}_{\alpha}=(\ell_{\alpha},u_{\alpha})$, то:

$$\ell_{\alpha} = \frac{1000 \cdot 0.04 + \frac{1}{2} \cdot 1.65^{2} - 1.65 \cdot \sqrt{1000 \cdot 0.04(1 - 0.04) + \frac{1}{4} \cdot 1.65^{2}}}{1000 + 1.65^{2}} \approx 0.031,$$

$$u_{\alpha} = \frac{1000 \cdot 0.04 + \frac{1}{2} \cdot 1.65^{2} + 1.65 \cdot \sqrt{1000 \cdot 0.04(1 - 0.04) + \frac{1}{4} \cdot 1.65^{2}}}{1000 + 1.65^{2}} \approx 0.052.$$

Таким чином, довірчий інтервал має вигляд $\Pr[0.031 .$ **Відповідь.** $<math>\mathcal{I}_{0.9} = (0.031, 0.052)$.

Коментар. Відмітимо, що $N\gg z_{\alpha/2}$, тому формулу інтервалу можна спростити до:

$$\mathcal{I}_{lpha}pprox \left(\hat{
ho}-z_{lpha/2}\sqrt{rac{\hat{
ho}(1-\hat{
ho})}{N}},\hat{
ho}+z_{lpha/2}\sqrt{rac{\hat{
ho}(1-\hat{
ho})}{N}}
ight)$$

Ідея виведення формули. На лекції доведено, що $\lim_{n\to\infty}\Pr\left[\frac{\hat{p}-p}{\sqrt{p(1-p)/\sqrt{n}}}< x\right]=\Phi(x)$, себто випадкова величина $\xi=\sqrt{n}(\hat{p}-p)/\sqrt{p(1-p)}$ має асимптотичний стандартний нормальний розподіл. Задамо довірчу ймовірність α ; з рівності $\Pr[|\xi|< z_{\alpha/2}]=\alpha$ для $z_{\alpha/2}=\Phi_0^{-1}(\alpha/2)$ по суті все зводиться до перевірки того, що $|\xi|< z_{\alpha/2}$. Або, якщо підставити ξ , то маємо $|\sqrt{n}(\hat{p}-p)/\sqrt{p(1-p)}|< z_{\alpha/2}$. Це аналогічно перевірці $n(\hat{p}-p)^2\leq p(1-p)z_{\alpha/2}^2$, звідки і отримуємо формулу з розв'язання.

3 Питання 3. Статистична значущість кореляції

Умова. З двовимірної генеральної сукупності $(X,Y)^{\top}$ вилучено вибірку об'єму n=20 і одержано вибіркову оцінку коефіцієнту кореляції: $\overline{r}=-0.2$. Перевірити гіпотезу про статистичну значущість коефіцієнту кореляції між випадковими величинами X,Y.

Відповідь. З'ясуємо, чи значуще коефіцієнт кореляції відрізняється від 0. Вводимо у розглядання дві гіпотези:

- 1. \mathcal{H}_0 : r = 0 (основна гіпотеза).
- 2. \mathcal{H}_1 : $r \neq 0$ (альтернативна гіпотеза).

Вводимо статистику:

$$t = \frac{\overline{r}\sqrt{n-2}}{\sqrt{1-\overline{r}^2}}.$$

Якщо справедлива гіпотеза \mathcal{H}_0 , то статистика t розподілена за законом розподілу Стьюдента з n-2 ступенями свободи. Введемо рівень значущості q. Правило перевірки наступне.

Правило перевірки. Якщо $|t| < t_{n-2,q}$, то з довірчою ймовірністю $\alpha = 1 - q$ приймаємо гіпотезу \mathcal{H}_0 про те, що коефіцієнт кореляції r = 0. Якщо ж $|t| \ge t_{n-2,q}$, то на рівні значущості q відхиляємо цю гіпотезу та приймаємо альтернативну гіпотезу \mathcal{H}_1 $(r \ne 0)$.

Обрахуємо значення статистики t:

$$t = \frac{-0.2\sqrt{20-2}}{\sqrt{1-0.2^2}} \approx -0.866, \quad t_{18,0.05} = 2.1.$$

Отже, |t|=0.866<2.1. Отже, з довірчою ймовірністю 0.95 ми приймаємо гіпотезу \mathcal{H}_0 про те, що коефіцієнт кореляції r=0.

4 Питання 4. Рівність середніх

Умова. З генеральної сукупності X, яка має нормальний закон розподілу з дисперсією $\sigma_X^2=4$, вилучено вибірку об'єму $n_X=20$ і підраховано вибіркове середнє $\overline{\mu}_X=-2$. З генеральної сукупності Y, яка має нормальний закон розподілу зі середньоквадратичним відхиленням $\sigma_Y=1$, вилучено вибірку об'єму $n_Y=10$ і підраховано вибіркове середнє $\overline{\mu}_Y=-2.5$. Перевірити гіпотезу про рівність середніх сукупностей X,Y.

Відповідь. Нехай μ_X , μ_Y — середні сукупностей X, Y. Висуваємо дві гіпотези:

- 1. \mathcal{H}_0 : $\mu_X = \mu_Y$ (основна гіпотеза).
- 2. \mathcal{H}_1 : $\mu_X \neq \mu_Y$ (альтернативна гіпотеза).

Маємо випадок відомих дисперсій σ_X^2 , σ_Y^2 . Введемо випадкову величину:

$$\xi = \overline{\mu}_X - \overline{\mu}_Y$$

На лекції було доведено, що $\xi \sim \mathcal{N}\left(\mu_X - \mu_Y, \frac{1}{n_X}\sigma_X^2 + \frac{1}{n_Y}\sigma_Y^2\right)$. Таким чином, розглядаємо величину

 $z = \frac{\overline{\mu}_X - \overline{\mu}_Y - (\mu_X - \mu_Y)}{\sqrt{\frac{1}{n_X}\sigma_X^2 + \frac{1}{n_Y}\sigma_Y^2}} \sim \mathcal{N}(0, 1).$

Отже, якщо гіпотеза \mathcal{H}_0 правильна, то $z=\frac{\overline{\mu}_X-\overline{\mu}_Y}{\sqrt{\frac{1}{n_X}\sigma_X^2+\frac{1}{n_Y}\sigma_Y^2}}\sim \mathcal{N}(0,1)$. Отже правило гіпотези наступне.

Правило гіпотези. Якщо $|z| < \Phi_0^{-1}(\alpha/2)$, то з довірчою ймовірністю α приймаємо гіпотезу \mathcal{H}_0 про те, що $\mu_X = \mu_Y$. Якщо ж $|z| \ge \Phi_0^{-1}(\alpha/2)$, то на рівні значущості $q = 1 - \alpha$ відхиляємо цю гіпотезу та приймаємо альтернативну гіпотезу \mathcal{H}_1 про те, що $\mu_X \ne \mu_Y$.

Оберемо довірчу ймовірність $\alpha = 0.95$. Для нашого конкретного випадку, маємо:

$$z = \frac{-2 + 2.5}{\sqrt{\frac{4}{20} + \frac{1}{10}}} \approx 0.913, \quad \Phi_0^{-1}\left(\frac{\alpha}{2}\right) = \Phi_0^{-1}(0.475) = 1.96.$$

Отже, $|z|=0.913<\Phi_0^{-1}(0.475)=1.96$. Отже, з довірчою ймовірністю 0.95 ми приймаємо гіпотезу \mathcal{H}_0 про рівність середніх сукупностей X, Y.