# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

## 命日本国特許庁(JP)

00 特許出職公

#### ⊕公開特許公報(A) 平4-27887

**@公開** 平成 4年(1992) 1 月30日 庁内整理番号 地外配号 Sint. Cl. 1 8113-5 J 8113-5 J Z 5/02 G 01 S H 04 B 8523-5K 6942-5K 106 Z H 04 B 7/15 事査整象 未請求 請求項の数 1 (全6更)

伝送システム の発明の名称

> 64 ■ 平2-133231

■ 平2(1990)5月25日

東京都品川区津島間6丁目7番35号 ソニー株式会社庁 東京都品川区北岳附 6丁目 7 番35号

ソニー株式会社 の出属人

弁理士 松陽 芳鉴 **郊代 理 人** 

伝送システム 発明の名称

特許禁求の差距

**歩動局から第1の衛星を介して盟定局に制位局** 始信号を伝送し、

上記器定局がこの機位開始信号を受信すると、 第1及び第2の基準信号を伝送し、

上記事務局が上記第1の寄呈を介した上記第1 の基準信号と第2の衛星を介した上記第2の基準 独号とを受信し、

上記事動馬で、上記製位開始信号を伝送してか ら上記録1の基準信号を受信するまでの時間と、 上記載位間始信号を伝送してから上記第2の基準 信号を受信するまでの時間とを計劃し、

放計測したそれぞれの時間情報を上記移動局か ら上記憶定局に伝送し、上記器定局で伝送される 上記それぞれの時間情報に基づいて上記事務局の 位置を測位するようにした伝送システム。

発明の詳細な異明

(産業上の利用分野)

本発療は、遺化器器を用いて多動体の製位を行 う伝送システムに関する。

#### (発情の報酬を

|本立事観念 温信器量を用いて多数外の製造を行 う伝送システムにおいて、多動作からの1個の部 呈を介した 1 国籍の勘定為への伝送と、固定局か らの2個の製造を介した2回線の多効体への伝送: とで、変色ができるようにし、多角体が1日接際: だけの送信装置を搭載する簡単な構成で製位がで **きるようにしたものである。** 

#### (従来の技術)

従来、自動車。船舶等の移動件の位置を開位す るときに、通信衛星を用いて異位することが行わり れている。この場合、例えば3個以上の毎旦を使 男すれば、それぞれの猫星からの信号を移動体で 受信し、受信タイミングより得られる情報に基づ いて4元の一次方理式を輝くことで、多額件の位 置が算由される。この間位システムは、数多くの

着星を必要とすると共に、それに対応した数の受 信装置が夢動体器に必要で、さらに関位のための 正確な演算を夢動体器で行う必要があった。

これに対し、2個の参上衛星だけを使用すると 共に、地上の勝定局で領位のための複算を行うよ うにした事情体の位置側位システムが、特別認61 -48781号公領等に記憶されているように豊富され ている。

この位置機能システムは、ジオスターシステム 等と称され、例えば第3間に示す伝送システムに より開催が行われる。即ち、トラック等の移動体 (1)の現在位置を開催する場合、この移動体(1)に、 第1の移止器風間からの電波の受信装置と、この 第1の砂止器風間からの電波の受信装置と、第2の 砂止器風間への電波の送信装置とを設ける。そして、地上の勘定局間には、第1の砂止器皿間への電波の送信装置との表 で、地上の勘定局間には、第1の砂止器皿間への 電波の送信装置と、第2の砂止器温間からの電波の受信装置とを設ける。また、固定局値とは都れた位置 変に位置校正用器定器定局位を設ける。この位置 校正用語定語定局(3)は、第1の静止等重色からの 電域の受信装置と、この第1の静止等重色への電 域の送信装置と、第2の静止等重偽への電視の送 信整置とも構える。

次に、このシステムにより減位する手順を集4 因を参照して説明すると、まず間定局(のからは、 正確に時間管理された問題は号を第1の節止新具 切に向けて送出する。この問題は号は、額位を行 うときに、第1の節止無量ので中継されて、移動 体(1)に搭載された受整整により受像される。こ こで、問題な号の間定局(のから第1の節止新星の への伝送に要する時間を1,とし、第1の節止新 星のから移動体(1)への伝送に要する時間を1,と

そして、事動体(1)では、この問題を考を受信してから所定時間も。が経過すると、第1の事止若 且切に向けて、この事動体(1)の確定の3D等号と 受信信号に含まれる情報を含むパケット優等を逃 出する。また、問題信号を受信してかる概念時間 も、が経過して、第2の静止衛星側に発達で、同

様のパケット信号を送出する。この場合、信号を送出するまでの時間も。は、常に一定の値とされ、 間定局40にこの時間も。の情報が記憶されている。 ここで、移動体(1)から第1の静止衛星(2)へのパケット信号の伝送に受する時間をもまっとし、移動体(1)から第2の静止衛星(3)へのパケット信号の伝送に受する時間をもまっとする。

このそれぞれのパケット信号は、第1の静止衛星四及び第2の静止衛星ので中継されて、間定局(ので受信される。ここで、第1の静止衛星のから間定局(のへのパケット信号の伝送に要する時間をしょくとし、第2の静止衛星関から間定局(のへのパケット信号の伝送に要する時間をしょくする。

そして、固定時代では、第1の停止額量図と第2の停止額量図から受信したそれぞれのパケットは今の受信時期と、固定時代自身が送出した問題は今の送信時期と、固定時代と各静止額量図及び図と移動体(I)との距離を算出する。即5、固定時代と各静止額量図及び図との距離は、不要であるので予め額定

駒40で判断できる。このため、各部止機差例及び (3)を介して行われる夢動体(1)と**固定時俗との間**の 伝送時間もょく しょくしじ こしぎ こしょく の内、調定局40と各勢止衡量20及び30との間の伝 送時間しょうしょっしょは距離から判断できる。 この場合、時間も』とも』、及び時間も』とも。 は、同一時間(距離)である。そして、幾りの伝 送時間しょうしょ′。しょは、多数件(1)の位置に より変化するが、時間も。とも。'とは背一種部 の伝送なので第一時間であり、固定幾何が問期値 号を送出してから第1の静止衛星団からのパケッ ト信号を受信するまでに要した時間も。から、既 知の時間は、、しょ、、し。そ雑算することで、 伝送時間 t 。( t s' ) が算出される。そして、 この伝送時間も。 が終ると、固定馬40が問題信号 を送出してから第2の静止衛星図からのパケット 信号を受信するまでに襲した時間し。から、既知 の時間もっ、しょ、しょ、し。を被算することで、 伝送時間し、が算出される。

このようにして伝送時間t。, t。が算出され 🤺

ると、伝送遠度からこの時間情報には、しょが肥 経情報に独算でき、移動体(1)と各部止新重的及び 切との距離が求まる。そして間定期(4)では、さら にこの2つの距離と各部止新重切及び(3)の正確な 位置情報に基づいて、移動体(1)の2次元的な位置 を算出する。

そして、この算出した2次元的な位置情報と、 固定助仏が借える地勢器のデータベースを用いて、 移動体(1)の3次元的な位置を算出する。

ここで、この間定員40での複算により移動体(1) の位置が算出れる状態を、第5回を参照して親 明すると、所定の参止物温も正にある各参止物 呈切及び切と移動体(1)との影腦を、それぞれは、 及びは。とすると、第1の参上物温切から距離は、 だけ離れた地球を上の点は、円c。を描く。また、 第2の参上物温切から距離は。だけ離れた地球と 上の点は、円c。を描く。そして、この円c。 に。との交点は、北半球と南半球とに1箇所でつ 存在し、地勢間のデータベースよりこの交点で、 の度複枚数が割る。

を中継するものが2個必要で、システムの特成に コストがかかる不都合があった。

本発明の目的は、移動体からの1目線の送信に よる簡単なシステム構成により測位ができるよう にすることにある。

# (課題を解決するための手段)

本発明は、例えば第1回に示す如く、移動体
(11)から第1の新星(12)を介して固定局(14)に測
位開始信号を伝送し、羅定局(14)がこの測位開始
信号を受信すると、第1及び第2の基準信号を伝送し、第1及び第2の基準信号を伝送した第2の新星(13)を介した第2の基準信号と乗2の新星(13)を介した第2の基準信号とを受信し、移動体(11)で、測位開始信号を伝送してから第1の基準信号を受信するまでの時間と、測位開始信号を伝送してから第1の基準信号を受信するまでの時間とを計測し、この計測した。現位開始を移動体(11)から固定局
(14)に伝送し、固定局(14)で伝送されるそれぞれの時間情報に基づいて移動体(11)の位置を創位す

なお、この座標位置の検出を行う場合に、各サービスエリア内に位置校正用器定局囚を設け、課定局似と位置校正用器定局囚との関で、各勢止着 里因及び切を介して信号の伝送を行い、選送される信号に基づいて検出した座標位置の校正を行う ようにしても良い。

## (発明が解決しようとする異題)

ところで、この伝送システムによる事情条(1)の 位置検出、等機件側から間定馬に伝送する所謂 インパウンドの2回線の伝送と、間定局から事態 体側に伝送する所謂アウトパウンドの1回線の伝 が必要で、事情体(1)が、第1の事业を展 の電検の送信装置との事业所呈的への電検の 送信装置との2組の場合を増える必要がある。 この場合、静止等日本の電検の必要がある。 大きな送信アンテナ等の大振かりな装置が必要で、 自動車のは、等品ではなかった。また、静止質量体も、事業からの比較的小電力の電検

るようにしたものである。

#### (作用)

このようにしたことで、移動体からの1個の衛星を介した1回線の間定局への伝送と、固定局からの2個の衛星を介した2回線の移動体への伝送とで測位ができ、移動体が1回線用の送信装置だけを搭載する簡単な構成で現位ができる。

#### (実施例)

以下、本発明の一実施例を、第1回及び第2回 を参照して説明する。

本例においては、第1回に示す伝送システムにより例位が行われる。即ち、第1回において(11)にはトラック等の例位を行う移動体を示し、この移動体(11)は、第1の移止衛星(12)からの電波の受は装置と、第2の移止衛星(13)からの電波の受信装置と、第1の移止衛星(12)への電波の透信装置とを投ける。この場合、移動体(11)から第1の移向上衛星(12)への返信は、例えば1.6G Ex 等の開装

取で行われ、各参土番島(12)及び(13)から参議体(11)への送信は、例えば4 GB2等の開後数で行われる。そして、地上の間定局(14)には、第1の参上衛星(12)への電波の送信装置と、第2の参止衛星(13)への電波の送信装置と、第1の砂止衛星(12)からの電波の受信装置とを設ける。

次に、このシステムにより製位する手順を第2 因を参照して製明すると、まず移動体(11)が現在 位置を製位したいときには、移動体(11)から第1 の静止物量(12)に製位関始体号を送出する。この とき、移動体(11)は製位関始体号を送出した時間 を記憶する。ここで、移動体(11)から第1の静止 若星(12)への製位関始体号の伝送に要する時間を tilとする。

そして、第1の停止概量(12)により中継されたこの概数開始信号を、簡定局(14)で受信させる。ここで、第1の停止額量(12)から額定局(14)への、減位開始信号の伝送に要する時間を1:3とする。この機位開始信号を固定局(14)が受信すると、所定時間:1:3位に、所定の銀別信号が含まれた第1

の基準信号を第1の静止衛星(12)に送出する。また、液位開始信号を開定局(14)が受信してから所定時間に14後に、所定の機関信号が含まれた第2の基準信号を第2の静止衛星(13)に送出する。ここで、固定局(14)から第1の静止衛星(12)への存位開始信号の伝送に要する時間を115/とし、確定局(14)から第2の静止衛星(13)への適位開始信号の伝送に要する時間を115とする。

そして、第1の静止衛星(12)により中継された 第1の基準信号を、移動体(11)で受信させる。ま た、第2の静止衛星(13)により中継された第2の 基準信号を、移動体(11)で受信させる。この場合。 移動体(11)では、受信した基準信号に含まれる機等 別信号より、どの衛星で中継された基準信号かが 利別される。ここで、第1の静止衛星(12)から移 動体(11)への第1の基準信号の伝送に要する時間を をしい、とし、第2の静止衛星(13)から移動体(11)への第2の基準信号の伝送に要する時間を でした。

そして、多動体(11)では、悪位関始信号を退伍。

してから第1の静止衛星(12)からの第1の基準信号を受信するまでに要した時間で、と、関位開始信号を送信してから第2の静止衛星(13)からの第2の基準信号を受信するまでに要した時間で、とを計算する。

送水ので同一時間であり、移動体(11)が現故調論が 信号を送信してから第1の静止衡量(12)からの無い 1の基準信号を受信するまでに要した時間がもっかっ ら、気知の時間も12、も12、も12を被算するこ とで、伝送時間も11(も11)が算出される。

また、移動体(11)が例位関始信号を送信してから第2の静止衛星(13)からの第2の基準信号を受信するまでに受した時間に、から、原知の時間には、しょ、しょと算出した時間にはとを確算することで、伝送時間にいが算出される。

このようにして伝送時間 tin. tinが寛出されると、伝送達度からこの時間情報 tin. tinが整理情報に損害でき、移動体(11)と各静止衛星(12)及び(13)との距離が求まる。そして固定馬(14)では、さらにこの 2 つの距離と各静止衛星(12)及び(13)の正確な位置情報に基づいて、移動体(11)の、2 次元的な位置を算出し、この算出した 2 次元的な位置を開出し、この第出した 2 次元的な位置を開出し、この第出した 2 次元的な位置を開いて、移動体(11)の 3 次元的な位置を算出する。このときの位置算出は、使来と開発

に行われる。また、この底板位置の算出を行う場合に、各サービスエリア内に位置校正用鑑定局(図示せず)を設け、調定局(14)と位置校正用鑑定局との関で、各静止審量(12)及び(13)を介して信号の伝送を行い、返送される信号に基づいて検出した底板位置の校正を行い、より正確な例位を行うようにしても良い。

このように本例によると、移動体(11)から静止 新星を介した1回線の伝送と、固定局(14)から静止 非星を介した2回線の伝送とで、移動体(11)の 測位ができる。このため、移動体(11)は静止新星 への送信装置として1回線分だけ装備すれば良く、 移動体(11)が個大る関位のための装置が小型化で きる。特に、新星への送信装置は送信アンテルの の大型の装置が必要で、自動車のような小型の移動体(11)への関位装置の表質が少ないスペースで 出来る。この場合、関位のための資本は固定局 (14)倒で行うので、関位の特度が得ちることはない。なお、移動体(11)が搭載する受信装置は、比 敏的大電力の信号を受信するので、送信装置に比

に、移動体質からの信号を中継する街里も1個で 長く、簡単な構成で正確な測位ができる。 図数の簡単な説明

第1回は本発明の一実施制を示す構成図、第2 国は一実施制の説明に供するタイミング図、第3 図は能未例の構成図、第4回は能未例の説明に供 するタイミング図、第5回は位置の算出状態の説 明図である。

(11)は移動体、(12)は第1の静止衛星、(13)は 第2の静止衛星、(14)は固定局である。

pp ma i iA 医毒块

べて小型に構成でき、2回線分の設置でもスペースを取らない。また、静止新国自体も、移動体(11)からの比較的小電力の信号を中継するものは第1の静止新国(12)だけで良く、第2の静止新星(13)は間定局(14)からの大電力の信号を中継する機能だけで良く、第2の静止新国(13)として視用の遺信新風が使用でき、測位のための専用の毎里として第1の静止新国(12)だけを用意すれば良い。

なお、上述実施例においては、トラック等の自 他車の器位を行う伝送システムとしたが、最適等 他の夢動体の側位を行う伝送システムにも通路で きる。また、上述実施例に示した送信用被数は、 一例を示したもので、使用条件に応じて各種関値。 放を選定すれば良い。さらにまた、本発明は上述 実施例に関もず、その他種々の構成が取り得ることは勿論である。

### (発明の効果)

本売明によると、移動体質が1回線用の通信験 置だけを搭載する簡単な構成で現位ができると失





伝送状態 1示 1 图 第 2 图







算出状態説明图 第 5 図