Московский политехнический университет Информатика и вычислительная техника Киберфизические системы Технологии визуализации данных систем управления

Лабораторно практическая работа № 1

Тема: Использование графических возможностей С# для визуализации данных стохастических процессов.

Задача: Разработать приложение по генерации стохастических данных с заданным профилем распределения и визуализации распределения случайных величин.

Задача 1. Подготовить приложение на языке С# для статистической обработки и визуализации собранных наборов данных

Реализовать генерацию заданного (через текстовое поле) количества случайных точек (X1, X2), где X1 и X2 — случайные величины, распределенные на диапазоне $[0 \div 1]$. В качестве базового варианта можно рассматривать равномерно распределенные случайные величины. Также реализовать возможность сохранения и загрузки массивов со значениями величин (X1, X2).

Подготовить функционал для настройки профиля преобразования (пересчета) величин Y1 и Y2 из исходных величин X1 и X2 соответственно. Преобразование необходимо выполнять с помощью непрерывных кусочно-линейных функций, переводящих значения X на интервале [0, 1] в значения Y. Функции преобразования рекомендуется задать по пяти точкам – первая и последняя привязаны к границам диапазона, а три средние – равномерно распределены между крайними значениями по X. При этом соответствующие им значения Y должны задаваться пользователем.

Примерный вид функций преобразования приведен на рисунке 1.

Рисунок 1 – Пример визуализации функций преобразования

Реализовать возможность сохранения и чтения данных и настроек функций преоб-

разования.

Реализовать отрисовку наборов данных в виде облака точек, с возможностью выбора пар параметров, используемых как координаты точек. То есть должна существовать возможность отобразить точки, образованные парами (X1, X2), (X1, Y1), (X2, Y2), (Y1, Y2).

Задача 2. Реализовать функции анализа данных

Реализовать расчёт плотности распределения случайных точек и выполнить фоновую окраску области отрисовки случайных точек. При подсчете плотности разделить диапазон отображения по каждой оси на 10 интервалов.

Добавить в приложение расчёт статистических данных (описательной статистики) полученного распределения (среднее, средне-квадратическое отклонение, мода, медиана), а также отображения гистограммы распределения каждой из случайных величин. Расположить оси гистограмм вдоль соответствующих осей на диаграмме облака точек.

Комментарии к выполнению задания

Удобным для пользователя и достаточно наглядным является реализация настройки вида функций преобразования через три подвижные точки (узла), перемещающиеся по вертикали синхронно с положениями движков слайдеров. При этом перемещения по горизонтали не реализуются, чтобы избежать возможной неоднозначности преобразования X в Y. Пример интерфейса настройки функций преобразования приведен на рисунке 2.

Рисунок 2 – Пример настройки функций преобразования

Подсчет статистических характеристик распределения измеряемых величин может дать много полезной информации для исследователя. Учитывая огромный объем данных, собираемых технической системой, зашумленность данных и их, как правило, циклическую природу, отследить некоторые закономерности можно только по результатам накопления данных и анализа совокупных характеристик.

Для визуализации индивидуальных особенностей величин рекомендуется использовать столбиковые диаграммы (гистограммы), а для анализа связей между ними – тепловые карты или многомерные гистограммы. Рисунок 3 показывает применение подобных инструментов анализа.

Рисунок 3 – Пример построения частотных диаграмм

В целях развития компетенций анализа данных, рекомендуется реализовать разные виды случайных распределений. Как независимые равномерно распределенные величины, так и величины имеющие нормальное распределение, а также добавить варианты с наличием зависимостей между X1 и X2.