Donnerstag, 24. Oktober 2024 14:22

Aufgabe 1 (45 Minuten):

- bei Hersteller B: 30'000 E, 17'000 T, 3'000 K

		A		В							
	20000	80'000	مص ^ا ه/	5'200'000					52000	к, =	20
λ= 1 21	2 10'000	17 000	6'000	3'000 000	(=)	1/2	2000	1,000	400'000	×2=	80
3=1	40 2 000	3'000	21000	760'000		1/10	G	1000	240,000	×3 =	240
								'			

$$b = \begin{pmatrix} 5'720'000 \\ 3'300'000 \end{pmatrix}$$
 $L \cdot y = P \cdot b$ $y = L \cdot Pb$

$$\begin{pmatrix}
1 & 0 & 0 \\
1/2 & 1 & 0
\end{pmatrix}
\cdot
\begin{pmatrix}
y_1 \\
y_2 \\
1/40 & 0
\end{pmatrix}
\cdot
\begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix}
= \begin{cases}
1/2y_1 + 1y_2 + 0y_3 = 3^{1}300^{1}000 \\
1/40y_1 + 0y_2 + 1y_3 = 836^{1}000$$

$$y_1 = 5+20\cos$$
 $y_2 = 3'300'000 - 2'360'000 = 440'000$
 $y_3 = 836'000 - 572'000 = 264'000$

$$x_4 = (572 - 264 - 3.88)/2 = 22$$
 $x_2 = (440 - 264)/2 = 88$
 $x_3 = 264$

$$A = \begin{pmatrix}
0.8 & 2.2 & 3.6 \\
2.0 & 3.0 & 4.0 \\
1.2 & 2.0 & 5.8
\end{pmatrix}, b = \begin{pmatrix}
2.4 \\
1.0 \\
4.0
\end{pmatrix}$$

$$\begin{pmatrix} a_18 & 2_12 & 3_16 \\ 2_10 & 3_16 & 4_10 \\ 4_12 & 2_10 & 5_18 \end{pmatrix} \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & A \end{pmatrix} \Leftrightarrow \begin{pmatrix} 2_10 & 3_10 & 4_10 \\ 0 & 3_10 & 4_10 \\ 0 & 0 & 5_18 \\ 0 & 0 & A \end{pmatrix} \begin{pmatrix} 0 & A & 0 \\ 0 & 0 & A \\ 0 & 0 & 2 \\ 0 & 0 & A \end{pmatrix} \Leftrightarrow \begin{pmatrix} 2_10 & 3_10 & 4_10 \\ 0 & 0 & A \\ 0 & 0 & A \\ 0 & 0 & 2 \\ 0 & 0 & A \end{pmatrix}$$

$$\begin{pmatrix} 2_{1}0 & 3_{1}0 & 4_{1}0 \\ 0_{1}4 & 4_{1}0 & 2_{1}0 \\ 0_{1}6 & 0_{1}2 & 3_{1}4 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \iff \begin{pmatrix} 2_{1}0 & 3_{1}0 & 4_{0} \\ 0_{1}4 & 4_{1}0 & 2_{0} \\ 0_{1}6 & 0_{1}2 & 3_{1}4 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \implies \begin{bmatrix} 1 & 0 & 0 \\ 0_{1}4 & 1 & 0 \\ 0_{1}6 & 0_{1}2 & 1 \end{pmatrix}, R = \begin{pmatrix} 2_{1}0 & 3_{1}0 & 4_{1}0 \\ 0 & 4_{1}0 & 2_{1}0 \\ 0 & 0 & 3_{1}0 \end{pmatrix}, P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

b) Bestimmen Sie mit Hilfe der Zerlegung aus a) manuell die Lösung von Ax=b

$$Ly = P \cdot b$$

$$P \cdot b = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2_1 4 \\ 1_1 0 \\ 1_1 0 \end{pmatrix} = \begin{pmatrix} 1_1 0 \\ 2_1 4 \\ 1_1 0 \end{pmatrix}$$

Höhere Mathematik Seite 1

$$P \cdot b = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2,4 \\ 1,0 \\ 4,0 \end{pmatrix} = \begin{pmatrix} 1,0 \\ 2,4 \\ 4,0 \end{pmatrix}$$

$$L \cdot y = P \cdot b \implies \begin{pmatrix} 1 & 0 & 0 \\ o_1 4 & 1 & 0 \\ o_1 6 & o_1^2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \implies \begin{cases} y_1 = 1_{10} \\ y_2 = 2_1 4 - o_1 4 \cdot 1_{10} = 2_{10} \\ y_3 = 4_{10} - (o_1 2 \cdot 2 + o_1 6 \cdot 1) = 3_{10} \end{cases}$$

$$Rx = y \Rightarrow \begin{pmatrix} 2_{1}O & 3_{1}O & 4_{1}O \\ O & 1_{1}O & 2_{1}O \\ O & O & 3_{1}O \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 1_{1}O \\ x_{1}O \\ x_{2}O \\ x_{3}O \end{pmatrix} \Rightarrow \begin{cases} x_{1} = (1 - (3 \cdot O + 4 \cdot A))/2 = -1/6 \\ x_{2}O \\ x_{3}O \\ x_{3}O \\ x_{3}O \\ x_{4}O \\ x_{5}O \\ x_$$

c) Vergleichen Sie Ihre Lösung mit dem Resultat der Python-Funktion scipy.linalg.lu(). Importieren Sie dafür die Python Library Scipy. Was stellen Sie bzgl. Vergleich der Resultate $L,\,R,\,P$ fest?

numpy. Polynamial ()