

بسمهتعالي

انجام این تمرین بهصورت انفرادی میباشد

هدف از انجام این تمرین

هدف این تمرین مرور برخی از مفاهیم پایه مطرح شده در کلاس درس و همچنین آشنایی با مفاهیم پایه کنترل ربات است.

الله الله الله الله الول

برای ربات SCARA در شکل زیر یک بار مسئله سینماتیک مستقیم و یک بار مسئله سینماتیک معکوس را حل نمایید.

توجه: مقادیر l_0 و l_1 و l_2 انمایانگر طولهای ثابت اند که مقادیر آنها مشخص میباشد. مقدار l_2 بیانگر طول متغیر در راستای محور مفصل پریزماتیک میباشد و مانند θ_1 و θ_2 جزء پارامترهای مسئله میباشد.

يادآورى (قانون كسينوس):

$$c^2 = a^2 + b^2 - 2ab\cos(\theta)$$

🌣 سوال دوم

فرض کنید یک ربات سریال به صورت زیر داریم.

الف) باتوجه به شکل و مفاهیم درس هریک از تبدیلهای T_1 و T_2 و T_3 را به صورت پارامتری به دست آورید.

 $oldsymbol{\psi}$) باتوجه به ماتریسهای تبدیل به دست آمده در قسمت قبل، تبدیل T_3 را به دست آورید.

ج) فرض کنید که یک شیء با فریم g داریم. همچنین فرض شود که ماتریس دوران R_g^0 و سایر پارامترها به صورت زیر است:

$${}^{0}R_{g} = \begin{vmatrix} 0.707 & -0.707 & 0 \\ 0.707 & 0.707 & 0 \\ 0 & 0 & 1 \end{vmatrix} \text{ , } L_{1} = 0.5, \ L_{2} = 0.4, \ L_{3} = 0.3 \text{ , } \theta_{1} = 10^{\circ}, \ \theta_{2} = 15^{\circ}$$

مقدار θ_3 را به گونهای تعیین نمایید که ربات بتواند شیء مورد نظر را با end-effector بردارد. همچنین موقعیت مکانی end-effector را به دست آورید.

🌣 سوال سوم

با توجه به شکل زیر ماتریسهای دوران R_1^0 و R_2^1 و R_2^0 را به دست آورید.

💠 سوال چهارم

به سوالات مفهومی زیر پاسخ دهید:

الف) نشان دهید که ماتریس R یک ماتریس دوران است:

$$R = \begin{bmatrix} \frac{1}{\sqrt{\tau}} & \cdot & \frac{1}{\sqrt{\tau}} \\ -\frac{1}{\tau} & \frac{1}{\sqrt{\tau}} & \frac{1}{\tau} \\ -\frac{1}{\tau} & -\frac{1}{\sqrt{\tau}} & \frac{1}{\tau} \end{bmatrix}$$

ب) نشان دهید که فاصله بین دو نقطه تحت دوران تغییر نمیکند:

$$||Rp_1 - Rp_2|| = ||p_1 - p_2||$$

🌣 سوال پنجم

فرض کنید یک روبات چرخ دیفرانسیلی با دو چرخ به شعاع ۵ سانتیمتر و با فاصله ۱۵ سانتیمتر از یکدیگر در اختیار دارید که و روبات با زاویه ۹۰ درجه نسبت به دستگاه مختصات جهانی قرار گرفته است. درصورتی که سرعت چرخ چپ و راست به ترتیب ۶ سانتیمتر بر ثانیه و ۱۲ سانتیمتر بر ثانیه باشد، سرعت خطی و زاویهای روبات را محاسبه نمایید.

🌣 سوال ششم

فرض کنید مدل سه چرخه زیر را با استفاده مدل دو چرخه معادل سازی کنیم. در آن صورت زاویه φ را بر حسب زاویه چرخ چپ و راست محاسبه کنید. سپس معادلات حرکت ربات را محاسبه کنید. معادلات کامل سینماتیک مستقیم روبات را به دست بیاورید.

نکات تکمیلی در باب تحویل تمرین

- ۱. تحویل تمرین در یک فایل pdf با نام گذاری HW3_StudentNumber می بایست تحویل داده شود.
- ۲. استثنائا برای قسمت تئوری تمرین سوم می توانید از قالب قرار گرفته در سایت استفاده نکنید و با خط خوانا و مرتب جواب سوالات را بر روی کاغذ تحویل دهید.
 - $^{, au}$. افراد میبایست تمارین را به صورت انفرادی انجام دهند.
- ۴. تاریخ تحویل تمرین ۱۴۰۳/۲/۲۱، ۱۱:۵۹ شب، میباشد و سیاستهای تاخیر مطابق با موراد ذکر شده در شیوهنامه لحاظ خواهد شد.