Examen 2023/2024

Mercredi 17 janvier 2024, 9h-12h (3h)
Documents et internet non autorisés
Ce sujet vise à sonder votre niveau en topologie et calcul différentiel
Faites ce que vous pouvez, et ne vous en faites pas
Il n'est pas nécessaire de tout traiter pour avoir 20/20

Exercice 1 (Revêtements). Le cercle $S^1 := \{x \in \mathbb{R}^2 : ||x|| = 1\}$ est muni de la topologie trace de \mathbb{R}^2 . On note $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$.

- 1. Montrer que $\pi: \mathbb{R} \to S^1$ définie par $\pi(x) = (\sin(2\pi x), \cos(2\pi x))$ est un revêtement de $B = S^1$ par $X = \mathbb{R}$:
 - $-\pi$ est surjective.
 - pour tout $b \in B$, il existe un voisinage ouvert V de b et une famille au plus dénombrable $(U_i)_{i \in I}$ d'ouverts de X deux à deux disjoints t.q. $\pi^{-1}(V) = \bigcup_{i \in I} U_i$ et $\pi|_{U_i} : U_i \to V$ est un homéomorphisme pour tout $i \in I$.
- 2. Montrer que pour tout entier n, l'application $z \in \mathbb{C}^* \mapsto z^n \in \mathbb{C}^*$ est un revêtement de \mathbb{C}^* par \mathbb{C}^* . Montrer que l'application $z \in \mathbb{C} \mapsto e^z \in \mathbb{C}^*$ est un revêtement de \mathbb{C}^* par \mathbb{C} . Construire un revêtement de la bande de Möbius $[0,1]^2/((0,y) \sim (1,1-y))$ par le cylindre $X = S^1 \times [0,1]$.
- 3. Montrer que si $\pi: X \to B$ est un revêtement alors π est un homéomorphisme local : tout point de X a un voisinage ouvert U tel que $\pi(U)$ est ouvert et $\pi|_U: U \to \pi(U)$ est un homéomorphisme.
- 4. Montrer si $\pi: X \to B$ est un homéomorphisme local alors π est continue et ouverte.
- 5. Montrer que si $\pi: X \to B$ est un homéomorphisme local entre un espace topologique X séparé et quasicompact et un espace topologique B séparé et connexe, alors π est un revêtement de B par X.

Exercice 2 (EDO linéaires: monotonie et stabilité).

Cet exercice ne nécessite pas la connaissance du chapitre du cours sur la stabilité au sens de Lyapunov. Dans \mathbb{R}^n , $n \ge 1$, on considère l'EDOL x'(t) = A(t)x(t), $t \in \mathbb{R}$, où l'application $t \in \mathbb{R} \mapsto A(t) \in \mathcal{M}_n(\mathbb{R})$ est continue.

- 1. Montrer la décroissance de ||x(t)|| si A(t) est symétrique négative.
- 2. Considérons le cas où n=2 et $A=\begin{pmatrix} \lambda_1 & (\lambda_2-\lambda_1)\cot(\theta) \\ 0 & \lambda_2 \end{pmatrix}$ avec $\lambda_1<\lambda_2\leq 0$, et $\theta\in(0,\pi)$. Montrer que $\langle Ax,x\rangle>0$ pour un $x\in\mathbb{R}^2$ ssi $|\theta-\frac{\pi}{2}|>\theta_*$ avec θ_* à préciser en fonction de λ_1 et λ_2 . D'où l'absence de décroissance de $\|x(t)\|$ avec A non-symétrique à valeurs propres négatives.
- 3. Montrer que dans le cas autonome (A ne dépend pas du temps), et si A est diagonalisable dans \mathbb{C} , alors il existe une norme $\|\cdot\|_A$ telle que $\|x(t)\|_A$ ne dépend du spectre de A qu'à travers les parties réelles des valeurs propres de A, et que si ces parties réelles sont < 0 alors $\|x(t)\|_A$ décroît vers 0, exponentiellement, quand $t \to \infty$.
- 4. Montrer que dans le cas autonome général, il existe une norme $\|\cdot\|_A$ t.q. si les parties réelles des valeurs propres de A sont < 0 alors $\|x(t)\|_A \to 0$ exponentiellement quand $t \to \infty$, mais pas forcément de manière monotone.
- 5. On considère à présent le cas non-autonome de dimension n=2 suivant :

$$A(t) = P(t)A(0)P(t)^{-1} \quad \text{où} \quad P(t) = \begin{pmatrix} \cos(\omega t) & -\sin(\omega t) \\ \sin(\omega t) & \cos(\omega t) \end{pmatrix}, \quad \omega \in \mathbb{R}, \quad A(0) \in \mathcal{M}_2(\mathbb{R}).$$

Montrer que

$$P(t)^{-1}x(t) = e^{t(A(0)-Q)}P(t)^{-1}x(0)$$
 où $Q = \begin{pmatrix} 0 & -\omega \\ \omega & 0 \end{pmatrix}$.

Que se passe-t-il pour $\omega = -6$, et A(0) égal au A de la question 2 avec $\lambda_1 = -10$, $\lambda_2 = -1$, et $\cot(\theta) = -4/3$?

Problème 1 (Entre Hahn–Banach et calcul différentiel). Sauf mention explicite du contraire, $(X, \|\cdot\|)$ est un evn réel.

- 1. On dit que X est strictement convexe lorsque pour tous $x \neq y \in X$ tels que ||x|| = ||y|| = 1, on a ||x + y|| < 2. Géométriquement, cela signifie que la sphère unité ne contient aucun segment de longueur non nulle.
 - (a) Montrer que X est strictement convexe ssi la boule unité fermée est strictement convexe : pour tous $x \neq y \in X$ tels que $||x|| \leq 1$, $||y|| \leq 1$, et tout $t \in (0,1)$, on a ||tx + (1-t)y|| < 1. Autrement dit, pour tous $x \neq y \in X$ et tout $z \in (x,y)$, on a $||z|| < \max(||x||, ||y||)$.

- (b) Montrer que X est strictement convexe ssi le cas d'égalité de l'inégalité triangulaire est co-linéaire positif : pour tous $x, y \in X$, ||x + y|| = ||x|| + ||y|| implique qu'il existe $\lambda \ge 0$ tel que $x = \lambda y$ ou $y = \lambda x$. En particulier, l'espace $\ell^p(I,\mathbb{R})$ avec 1 et <math>I au plus dénombrable est strictement convexe.
- (c) Montrer que ce n'est plus vrai quand $p \in \{1, \infty\}$ dès que card $(I) \ge 2$.
- (d) Montrer que tout espace de Hilbert est strictement convexe.
- (e) (Bonus) Montrer que X est strictement convexe ssi il existe p > 1 tel que $\|\cdot\|^p$ est strictement convexe : pour tous $x \neq y \in X$, on a $\|\frac{1}{2}(x+y)\|^p < \frac{1}{2}(\|x\|^p + \|y\|^p)$, et que si cela est vrai pour un p > 1, cela est vrai pour tout p > 1. Que se passe-t-il pour p = 1?
- 2. Cette partie est consacrée à l'<u>unicité dans le théorème de Hahn–Banach</u>. On note $(X', \|\cdot\|)$ le dual topologique de $(X, \|\cdot\|)$. Soit $X_1 \subset X$ un sous-espace et $f \in X_1'$. On dit que $g \in X'$ prolonge f lorsque $g|_{X_1} = f$ et $\|g\| = \|f\|$.
 - (a) Montrer que si g et h sont deux prolongements de f alors $||g + h|| \ge 2||f||$.
 - (b) En déduire que si X' est strictement convexe, alors il y a unicité du prolongement.
 - (c) Montrer que X' est strictement convexe quand X est un espace de Hilbert.
 - (d) Montrer que X' est strictement convexe quand $X = \ell^p(I, \mathbb{R})$ avec 1 et <math>I au plus dénombrable.
 - (e) Construire un contre exemple à l'unicité du prolongement lorsque p = 1 et Card $(I) \ge 2$.
- 3. Cette partie est consacrée à un lien entre Hahn-Banach et Gateaux dérivabilité de la norme.
 - (a) Montrer que pour tout $x \in X$, ||x|| = 1, il existe $g_x \in X'$ tel que $g_x(x) = ||g_x|| = 1$. Montrer que si X' est strictement convexe, alors g_x est unique.
 - (b) Montrer que pour tout $x \in X$ tel que ||x|| = 1, $y \in X$, t > 0, et g_x comme précédemment, on a

$$g_x(y) \leq \frac{\|x + ty\| - \|x\|}{t}.$$

(c) En déduire sous les mêmes hypothèques que (existence des limites et inégalités)

$$\lim_{t \to 0^+} \frac{\|x - ty\| - \|x\|}{-t} \le g_x(y) \le \lim_{t \to 0^+} \frac{\|x + ty\| - \|x\|}{t}.$$

Il en découle le fait remarquable suivant : si la norme $\|\cdot\|$ de X est Gateaux dérivable en tout point de la sphère de X et dans toute direction, alors la forme linéaire g_x est unique pour tout x sur la sphère.

4. Cette partie est consacrée à la <u>dérivée au sens de Carathéodory</u>. Ici $O \subset X$ est un ouvert de X et $(Y, \|\cdot\|)$ est un evn réel. On dit que $f: O \to Y$ est Carathéodory dérivable en $x \in O$ quand il existe $\Phi_x: O \to L(X, Y)$ telle que

$$\Phi_x$$
 est continue en x et $f(y) = f(x) + \Phi_x(y)(y - x)$ pour tout $y \in O$.

Cette notion généralise aux evn le familier <u>taux d'accroissement</u> (f(y) - f(x))/(y - x) du cas unidimensionnel $X = Y = \mathbb{R}$. Le but est d'établir que dérivabilité au sens de Carathéodory et au sens de Fréchet sont équivalentes.

- (a) Montrer que si f est Carathéodory dérivable en x, alors f est continue en x.
- (b) Montrer que si f est Carathéodory dérivable en x, alors elle est Fréchet dérivable en x et $(Df)(x) = \Phi_x(x)$.
- (c) Montrer que si f est Fréchet dérivable en x, alors elle est Carathéodory dérivable en x, et pour tout $z \in X$,

$$\Phi_x(y)(z) := \begin{cases} \ell_{x,y}(z) \frac{f(y) - f(x) - (Df)(x)(y - x)}{\|y - x\|} + (Df)(x)(z) & \text{si } x \neq y \\ (Df)(x)(z) & \text{si } x = y \end{cases},$$

avec $\ell_{x,y} \in X'$ bien choisi et à préciser.

(d) Donner une condition sur *X* qui assure l'unicité de la construction de la dérivée ci-dessus.

Brique d'Escher