13.1. VECTOR FUNCTIONS

If to each value of a scalar variable t, there corresponds a value of a vector \overrightarrow{r} , then \overrightarrow{r} is called a vector function of the scalar variable t and we write $\overrightarrow{r} = \overrightarrow{r}(t)$ or $\overrightarrow{r} = \overrightarrow{f}(t)$.

For example, the position vector \overrightarrow{r} of a particle moving along a curved path is a vector function of time t, a scalar.

Since every vector can be uniquely expressed as a linear combination of three fixed non-coplanar vectors, therefore, we may write $\vec{f}(t) = f_1(t) \, \hat{i} + f_2(t) \, \hat{j} + f_3(t) \, \hat{k}$ where $\hat{i}, \hat{j}, \hat{k}$ denote unit vectors along the axis of x, y, z respectively, $f_1(t), f_2(t)$ and $f_3(t)$ are called the components of the vector $\vec{f}(t)$ along the coordinate axes.

13.2. DERIVATIVE OF A VECTOR FUNCTION WITH RESPECT TO A SCALAR

Let $\vec{r} = \vec{f}(t)$ be a vector function of the scalar variable t. Let δt be a small increment in t and $\overset{\rightarrow}{\delta r}$, the corresponding increment in \vec{r} .

Then
$$\overrightarrow{r} + \delta \overrightarrow{r} = \overrightarrow{f} (t + \delta t)$$
 so that $\delta \overrightarrow{r} = \overrightarrow{f} (t + \delta t) - \overrightarrow{f} (t)$

$$\frac{\delta \overrightarrow{r}}{\delta t} = \frac{\overrightarrow{f} (t + \delta t) - \overrightarrow{f} (t)}{\delta t}$$

If $\lim_{\delta t \to 0} = \frac{\delta \overrightarrow{r}}{\delta t} = \lim_{\delta t \to 0} \frac{\overrightarrow{f}(t + \delta t) - \overrightarrow{f}(t)}{\delta t}$ exists, then the value of this limit is denoted by $\frac{d\overrightarrow{r}}{dt}$

and is called the derivative of r with respect to t.

and

Since $\frac{d\vec{r}}{dt}$ is itself a vector function of t, its derivative is denoted by $\frac{d^2\vec{r}}{dt^2}$ and is called

the second derivative of r with respect to t. Similarly, we can define higher order derivatives of r.

If \vec{a} , \vec{b} and \vec{c} are vector functions of a scalar t and ϕ is a scalar function of t, then

(i)
$$\frac{d}{dt}(\vec{a} \pm \vec{b}) = \frac{d\vec{a}}{dt} \pm \frac{d\vec{b}}{dt}$$
 (ii) $\frac{d}{dt}(\vec{a} \cdot \vec{b}) = \vec{a} \cdot \frac{d\vec{b}}{dt} + \frac{d\vec{a}}{dt} \cdot \vec{b}$ (iii) $\frac{d}{dt}(\vec{a} \times \vec{b}) = \vec{a} \times \frac{d\vec{b}}{dt} + \frac{d\vec{a}}{dt} \times \vec{b}$ (iv) $\frac{d}{dt}(\vec{\phi}\vec{a}) = \phi \frac{d\vec{a}}{dt} + \frac{d\vec{\phi}}{dt} = \frac{d\vec{a}}{dt} \times \vec{b}$ (iv) $\frac{d}{dt}(\vec{\phi}\vec{a}) = \phi \frac{d\vec{a}}{dt} + \frac{d\vec{\phi}}{dt} = \frac{d\vec{\phi}}{dt} = \frac{d\vec{\phi}}{dt} \times \vec{b}$ (iv) $\frac{d}{dt}(\vec{a} \times (\vec{b} \times \vec{c})) = \frac{d\vec{a}}{dt} \times (\vec{b} \times \vec{c}) + \vec{a} \times (\frac{d\vec{b}}{dt} \times \vec{c}) + \vec{a} \times (\frac{d\vec{b$

Note. Since $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$, while evaluating $\frac{d}{dt} (\vec{a} \cdot \vec{b})$, the order of factors is immaterial.

$$-(iii)\frac{d}{dt}(\overrightarrow{a} \times \overrightarrow{b}) = \lim_{\delta t \to 0} \frac{(\overrightarrow{a} + \delta \overrightarrow{a}) \times (\overrightarrow{b} + \delta \overrightarrow{b}) - \overrightarrow{a} \times \overrightarrow{b}}{\delta t}$$

$$= \lim_{\delta t \to 0} \frac{\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \delta \overrightarrow{b} + \delta \overrightarrow{a} \times \overrightarrow{b} + \delta \overrightarrow{a} \times \delta \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{b}}{\delta t}$$

 $\therefore \frac{d\vec{a}}{dt} \cdot \vec{0} = 0$

$$= \lim_{\delta t \to 0} \frac{\overrightarrow{a} \times \delta \overrightarrow{b} + \delta \overrightarrow{a} \times \overrightarrow{b} + \delta \overrightarrow{a} \times \delta \overrightarrow{b}}{\delta t} = \lim_{\delta t \to 0} \left\{ \overrightarrow{a} \times \frac{\delta \overrightarrow{b}}{\delta t} + \frac{\delta \overrightarrow{a}}{\delta t} \times \overrightarrow{b} + \frac{\delta \overrightarrow{a}}{\delta t} \times \delta \overrightarrow{b} \right\}$$

$$= \overrightarrow{a} \times \frac{d\overrightarrow{b}}{dt} + \frac{d\overrightarrow{a}}{dt} \times \overrightarrow{b} + \frac{d\overrightarrow{a}}{dt} \times \overrightarrow{0} \quad \text{since } \delta \overrightarrow{b} \to \overrightarrow{0} \text{ as } \delta t \to 0$$

$$= \overrightarrow{a} \times \frac{d\overrightarrow{b}}{dt} + \frac{d\overrightarrow{a}}{dt} \times \overrightarrow{b}$$

$$\left[\because \frac{d\overrightarrow{a}}{dt} \times \overrightarrow{0} = \overrightarrow{0} \right]$$

Note. Since $\overrightarrow{a} \times \overrightarrow{b} \neq \overrightarrow{b} \times \overrightarrow{a}$, while evaluating $\frac{d}{dt}(\overrightarrow{a} \times \overrightarrow{b})$, the order of factors \overrightarrow{a} and \overrightarrow{b} must be maintained.

(iv)
$$\frac{d}{dt}(\phi \vec{a}) = \lim_{\delta t \to 0} \frac{(\phi + \delta \phi)(\vec{a} + \delta \vec{a}) - \phi \vec{a}}{\delta t} = \lim_{\delta t \to 0} \frac{\phi \vec{a} + \phi \delta \vec{a} + \delta \phi \vec{a} + \delta \phi \delta \vec{a} - \phi \vec{a}}{\delta t}$$

$$= \lim_{\delta t \to 0} \frac{\phi \delta \vec{a} + \delta \phi \vec{a} + \delta \phi \delta \vec{a}}{\delta t} = \lim_{\delta t \to 0} \left\{ \phi \frac{\delta \vec{a}}{\delta t} + \frac{\delta \phi}{\delta t} \vec{a} + \frac{\delta \phi}{\delta t} \delta \vec{a} \right\}$$

$$= \phi \frac{d\vec{a}}{dt} + \frac{d\phi}{dt} \vec{a} + \frac{d\phi}{dt} \vec{0}, \quad \text{since } \delta \vec{a} \to \vec{0} \text{ as } \delta t \to 0$$

$$= \phi \frac{d\vec{a}}{dt} + \frac{d\phi}{dt} \vec{a} = \frac{d\phi}{dt}$$

Note. ϕa is the product of a vector by a scalar. We usually write the scalar in the first position and the vector in the second position.

$$(v) \frac{d}{dt} [\vec{a} \ \vec{b} \ \vec{c}] = \frac{d}{dt} [\vec{a} \ . (\vec{b} \times \vec{c})] = \vec{a} \ . \frac{d}{dt} (\vec{b} \times \vec{c}) + \frac{d\vec{a}}{dt} . (\vec{b} \times \vec{c})$$

$$= \vec{a} \ . \left(\vec{b} \times \frac{d\vec{c}}{dt} + \frac{d\vec{b}}{dt} \times \vec{c} \right) + \frac{d\vec{a}}{dt} . (\vec{b} \times \vec{c})$$

$$= \vec{a} \ . \left(\vec{b} \times \frac{d\vec{c}}{dt} + \frac{d\vec{b}}{dt} \times \vec{c} \right) + \frac{d\vec{a}}{dt} . (\vec{b} \times \vec{c})$$

$$= \vec{a} \ . \left(\vec{b} \times \frac{d\vec{c}}{dt} \right) + \vec{a} \ . \left(\frac{d\vec{b}}{dt} \times \vec{c} \right) + \frac{d\vec{a}}{dt} . (\vec{b} \times \vec{c})$$

$$= \left[\vec{a} \ \vec{b} \ \frac{d\vec{c}}{dt} \right] + \left[\vec{a} \ \frac{d\vec{b}}{dt} \ \vec{c} \right] + \left[\vec{a} \ \vec{d} \ \vec{b} \ \vec{c} \right] + \left[\vec{a} \ \vec{d} \ \vec{d} \ \vec{c} \right] + \left[\vec{a} \ \vec{d} \ \vec{d} \ \vec{c} \right] + \left[\vec{a} \ \vec{d} \ \vec{c} \right] + \left[\vec{a} \ \vec{d} \ \vec{c} \right] + \left[\vec{a} \ \vec{c} \ \vec{c} \right] + \left[\vec{c} \ \vec{c}$$

Note. $[\vec{a} \ \vec{b} \ \vec{c}]$ is the scalar product of three vectors \vec{a} , \vec{b} and \vec{c} . While evaluating $\frac{d}{dt} [\vec{a} \ \vec{b} \ \vec{c}]$, the cyclic order of factors must be maintained.

$$(vi) \frac{d}{dt} \{ \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) \} = \overrightarrow{a} \times \frac{d}{dt} (\overrightarrow{b} \times \overrightarrow{c}) + \frac{d\overrightarrow{a}}{dt} \times (\overrightarrow{b} \times \overrightarrow{c})$$

$$= \overrightarrow{a} \times \left(\overrightarrow{b} \times \frac{d\overrightarrow{c}}{dt} + \frac{d\overrightarrow{b}}{dt} \times \overrightarrow{c} \right) + \frac{d\overrightarrow{a}}{dt} \times (\overrightarrow{b} \times \overrightarrow{c})$$

$$= \frac{d\overrightarrow{a}}{dt} \times (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{a} \times \left(\frac{d\overrightarrow{b}}{dt} \times \overrightarrow{c} \right) + \overrightarrow{a} \times \left(\overrightarrow{b} \times \frac{d\overrightarrow{c}}{dt} \right).$$

13.4. DERIVATIVE OF A CONSTANT VECTOR

A vector is said to be constant if both its magnitude and direction are fixed. If either of these changes, the vector is not constant.

Let \vec{r} be a constant vector function of the scalar variable t.

Let
$$\overrightarrow{r} = \overrightarrow{f}(t)$$
, then $\overrightarrow{r} = \overrightarrow{f}(t + \delta t)$ so that $\overrightarrow{f}(t + \delta t) - \overrightarrow{f}(t) = \overrightarrow{0}$

$$\frac{d\overrightarrow{r}}{dt} = \lim_{\delta t \to 0} \frac{\overrightarrow{f}(t + \delta t)}{\delta t} = \lim_{\delta t \to 0} \overrightarrow{0} = \overrightarrow{0}$$

Thus, the derivative of a constant vector is equal to the null vector.

Note. \hat{i} , \hat{j} , \hat{k} being fixed unit vectors are constant vectors.

$$\frac{d\hat{i}}{dt} = \frac{d\hat{j}}{dt} = \frac{d\hat{k}}{dt} = \stackrel{\rightarrow}{0}.$$

13.5. DERIVATIVE OF A VECTOR FUNCTION IN TERMS OF ITS COMPONENTS

Let \overrightarrow{r} be a vector function of the scalar variable t.

Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, where the components x, y, z are scalar function of t.

$$\frac{d\vec{r}}{dt} = \frac{d}{dt}(x\hat{i}) + \frac{d}{dt}(y\hat{j}) + \frac{d}{dt}(z\hat{k}) = x\frac{d\hat{i}}{dt} + \frac{dx}{dt}\hat{i} + y\frac{d\hat{j}}{dt} + \frac{dy}{dt}\hat{j} + z\frac{d\hat{k}}{dt} + \frac{dz}{dt}\hat{k}$$

$$= \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} + \frac{dz}{dt}\hat{k}, \text{ since } \frac{d\hat{i}}{dt} = \frac{d\hat{k}}{dt} = 0.$$

If
$$x = f_1(t), y = f_2(t), z = f_3(t)$$
; then $\vec{r} = f_1(t) \hat{i} + f_2(t) \hat{j} + f_3(t) \hat{k}$

$$\Rightarrow \frac{d\vec{r}}{dt} = f_1'(t) \hat{i} + f_2'(t) \hat{j} + f_3'(t) \hat{k}$$

Therefore to differentiate a vector, differentiate its components.

13.6. IF \vec{F} (t) HAS A CONSTANT MAGNITUDE, THEN \vec{F} . $\frac{d\vec{F}}{dt} = 0$

 $\vec{F}(t)$ has a constant magnitude $\Rightarrow |\vec{F}(t)| = constant$

$$\overrightarrow{F}(t) \cdot \overrightarrow{F}(t) = |\overrightarrow{F}(t)|^2 = \text{constant} \implies \frac{d}{dt} (\overrightarrow{F} \cdot \overrightarrow{F}) = 0$$

$$\Rightarrow \vec{F} \cdot \frac{d\vec{F}}{dt} + \frac{d\vec{F}}{dt} \cdot \vec{F} = 0 \Rightarrow 2\vec{F} \cdot \frac{d\vec{F}}{dt} = 0 \Rightarrow \vec{F} \cdot \frac{d\vec{F}}{dt} = 0$$
Note.
$$\vec{F} \cdot \frac{d\vec{F}}{dt} = 0 \Rightarrow \frac{d\vec{F}}{dt} \perp \vec{F}.$$

13.7. IF \vec{F} (t) HAS A CONSTANT DIRECTION, THEN $\vec{F} \times \frac{dF}{dt} = \vec{0}$

Let $|\vec{F}(t)| = f(t)$. Let $\hat{G}(t)$ be a unit vector in the direction of $\vec{F}(t)$ so that $\vec{F}(t) = f(t) \hat{G}(t)$

$$\therefore \frac{d\overrightarrow{F}}{dt} = f \frac{d\widehat{G}}{dt} + \frac{df}{dt} \widehat{G} \qquad \dots (1)$$

If $\vec{F}(t)$ has constant direction, so has $\hat{G}(t)$. Thus, $\hat{G}(t)$ is a constant vector and $\frac{dG}{dt} = \vec{0}$

From (1),
$$\frac{d\overrightarrow{F}}{dt} = \frac{df}{dt} \, \hat{G}$$

$$\vec{F} \times \frac{d\vec{F}}{dt} = f \,\hat{G} \times \left(\frac{df}{dt} \,\hat{G}\right) = f \,\frac{df}{dt} \,\hat{G} \times \hat{G} = \vec{0}.$$

13.8. GEOMETRICAL INTERPRETATION OF $\frac{dr}{dr}$

Let O be the origin of reference. Let the position vector of a point P be given by $\overrightarrow{r} = \overrightarrow{f}(t)$. As t varies continuously, P traces out a curve C as shown in the figure. Thus, a vector function $\overrightarrow{f}(t)$ represents a curve in space.

For example, (i) the vector equation $\vec{r} = at^2\hat{i} + 2at\hat{j}$ represents the parabola $y^2 = 4ax$ in the xy-plane because its parametric equations are

$$x = at^2, \ y = 2at.$$

(ii) the vector equation $\vec{r} = a \cos t \hat{i} + b \sin t \hat{j}$ represents the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the

xy-plane because its parametric equations are x $= a \cos t, y = b \sin t.$

Now, let $\vec{r} = \vec{f}(t)$ be the vector equation of a curve C

in space. Let \overrightarrow{r} and $\overrightarrow{r} + \delta \overrightarrow{r}$ be the position vectors of two neighbouring points P and Q on this curve.

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = (\overrightarrow{r} + \delta \overrightarrow{r}) - \overrightarrow{r} = \delta \overrightarrow{r}$$

 $\therefore \quad \frac{\overrightarrow{\delta r}}{\delta t} \text{ is directed along the chord PQ.}$

As $\delta t \to 0$, $Q \to P$, chord $PQ \to tangent$ to the curve at P.

$$\therefore \lim_{\delta t \to 0} \frac{\delta \vec{r}}{\delta t} = \frac{d\vec{r}}{dt} \text{ is a vector along the tangent to the curve at } P.$$

Suppose the scalar parameter t is replaced by s, where s denotes the arc length from any convenient point A on the curve upto P. Thus, arc AP = s and $AQ = s + \delta s$ so that $\delta s = \text{arc } PQ$. In this case $\frac{d\vec{r}}{ds}$ will be a vector along the tangent at P. Also

$$\left| \frac{\overrightarrow{dr}}{ds} \right| = \lim_{\delta s \to 0} \left| \frac{\overrightarrow{\delta r}}{\delta s} \right| = \lim_{Q \to P} \frac{\text{chord PQ}}{\text{arc PQ}} = 1.$$

Thus, $\frac{d\vec{r}}{ds}$ is the unit vector \hat{T} along the tangent at P.

13.9. VELOCITY AND ACCELERATION

If the scalar variable t denotes the time and \overrightarrow{r} is the position vector of a moving particle \overrightarrow{P} , then $\overrightarrow{\delta r}$ is the displacement of the particle in time δt . The vector $\overrightarrow{\delta r}$ is the average velocity of the particle during the interval δt . If \overrightarrow{v} represents the velocity vector of the particle at \overrightarrow{P} , then $\overrightarrow{v} = \lim_{\delta t \to 0} \overrightarrow{\delta t} = \overrightarrow{dt}$ and its direction is along the tangent at \overrightarrow{P} .

If $\delta \overrightarrow{v}$ be the change in velocity \overrightarrow{v} during the time δt , then $\frac{\delta \overrightarrow{v}}{\delta t}$ is the average acceleration of the particle during the interval δt . If \overrightarrow{a} represents the acceleration of the particle at P, then

$$\overrightarrow{a} = \lim_{\delta t \to 0} \frac{\overrightarrow{\delta v}}{\delta t} = \frac{\overrightarrow{dv}}{dt} = \frac{d}{dt} \left(\frac{\overrightarrow{dr}}{dt} \right) = \frac{d^2 \overrightarrow{r}}{dt^2}.$$

ILLUSTRATIVE EXAMPLES

Example 1. Show that if $\overrightarrow{r} = \overrightarrow{a} \sin \omega t + \overrightarrow{b} \cos \omega t$, where $\overrightarrow{a}, \overrightarrow{b}, \omega$ are constants, then

$$\frac{d^{2}\vec{r}}{dt^{2}} = -\omega^{2}\vec{r} \quad and \quad \vec{r} \times \frac{d\vec{r}}{dt} = -\omega\vec{a} \times \vec{b}.$$
 (U.P.T.U. 2007)

Sol. We know that if $\vec{r} = \phi \vec{f}$, where ϕ is a scalar function of t, then $\frac{d\vec{r}}{dt} = \phi \frac{d\vec{f}}{dt} + \frac{d\phi}{dt} \vec{f}$.

$$\frac{dr}{dt} = \frac{d\phi}{dt} = \hat{\vec{t}}$$

$$\frac{dr}{dt} = \hat{\vec{t}} = \hat{$$

Example 3. If
$$\frac{d\vec{u}}{dt} = \vec{w} \times \vec{u}$$
 and $\frac{d\vec{v}}{dt} = \vec{w} \times \vec{v}$, prove that $\frac{d}{dt}(\vec{u} \times \vec{v}) = \vec{w} \times (\vec{u} \times \vec{v})$.

Sol.
$$\frac{d}{dt}(\vec{u} \times \vec{v}) = \vec{u} \times \frac{d\vec{v}}{dt} + \frac{d\vec{u}}{dt} \times \vec{v} = \vec{u} \times (\vec{w} \times \vec{v}) + (\vec{w} \times \vec{u}) \times \vec{v}$$

$$= (\vec{u} \cdot \vec{v}) \vec{w} - (\vec{u} \cdot \vec{w}) \vec{v} + (\vec{v} \cdot \vec{w}) \vec{u} - (\vec{v} \cdot \vec{u}) \vec{w}$$

Sol.
$$\frac{d}{dt}(u \times v) = u \times \frac{d}{dt} + \frac{1}{dt} \times v = u \times (u \times v) + (u \times u) \times v$$

$$= (u \cdot v) \overrightarrow{w} - (u \cdot w) \overrightarrow{v} + (v \cdot w) \overrightarrow{u} - (v \cdot u) \overrightarrow{w}$$

$$= (v \cdot w) \overrightarrow{u} - (u \cdot w) \overrightarrow{v}$$

$$= (v \cdot w) \overrightarrow{u} - (u \cdot w) \overrightarrow{v}$$

$$= (w \cdot v) \overrightarrow{u} - (w \cdot u) \overrightarrow{v} = w \times (u \times v).$$
[: $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$]

Example 4. If \hat{R} is a unit vector in the direction of \vec{r} , prove that $\hat{R} \times \frac{d\hat{R}}{dt} = \frac{\vec{r}}{r^2} \times \frac{d\vec{r}}{dt}$, where $r = |\vec{r}|$.

Sol. We have
$$\overrightarrow{r} = r\widehat{R} \text{ so that } \widehat{R} = \frac{1}{r} \xrightarrow{r} \Rightarrow \frac{d\widehat{R}}{dt} = \frac{1}{r} \frac{dr}{dt} - \frac{1}{r^2} \frac{dr}{dt} \xrightarrow{r}$$

$$\therefore \widehat{R} \times \frac{d\widehat{R}}{dt} = \frac{\overrightarrow{r}}{r} \times \left(\frac{1}{r} \frac{d\overrightarrow{r}}{dt} - \frac{1}{r^2} \frac{dr}{dt} \xrightarrow{r} \right) = \frac{\overrightarrow{r}}{r^2} \times \frac{d\overrightarrow{r}}{dt} - \frac{1}{r^3} \frac{dr}{dt} \xrightarrow{r} \times \overrightarrow{r}$$

$$= \frac{\overrightarrow{r}}{r^2} \times \frac{d\overrightarrow{r}}{dt} \qquad (\because \overrightarrow{r} \times \overrightarrow{r} = 0)$$

Example 5. If \overrightarrow{r} is a vector function of a scalar t and \overrightarrow{a} is a constant vector, differentiate the following with respect to t:

$$(i) \frac{\overrightarrow{r} \times \overrightarrow{a}}{\overrightarrow{r} \cdot \overrightarrow{a}}$$

$$(ii) \frac{\overrightarrow{r} + \overrightarrow{a}}{\overrightarrow{r} \cdot \overrightarrow{a}}.$$

$$r^2 + a^2.$$

Sol. (i) Let
$$\overrightarrow{R} = \frac{\overrightarrow{r} \times \overrightarrow{a}}{\overrightarrow{r} \cdot \overrightarrow{a}}$$

٠.

Here \overrightarrow{r} . \overrightarrow{a} is a scalar function of t and $\frac{\overrightarrow{da}}{\overrightarrow{dt}} = \overrightarrow{0}$

$$\frac{d\vec{R}}{dt} = \frac{1}{r \cdot a} \frac{d}{dt} (\vec{r} \times \vec{a}) + \left\{ \frac{d}{dt} \left(\frac{1}{r \cdot a} \right) \right\} (\vec{r} \times \vec{a})$$

$$= \frac{1}{r \cdot a} \left(\vec{r} \times \frac{d\vec{a}}{dt} + \frac{d\vec{r}}{dt} \times \vec{a} \right) - \frac{d}{dt} (\vec{r} \cdot \vec{a}) (\vec{r} \times \vec{a}) \qquad \left[\cdots \frac{d}{dt} \left(\frac{1}{f(t)} \right) \right] = -\frac{f'(t)}{(f(t))^3}$$

$$= \frac{d\vec{r}}{dt} \times \vec{a} \qquad \vec{r} \cdot \frac{d\vec{a}}{dt} + \frac{d\vec{r}}{dt} \cdot \vec{a} \qquad \vec{r} \cdot \frac{d\vec{a}}{dt} + \frac{d\vec{r}}{dt} \cdot \vec{a} \qquad \vec{r} \cdot \vec{a} \qquad \vec{d} \quad \vec{d} \quad$$

(ii) Let
$$\vec{R} = \frac{\vec{r} + \vec{a}}{\vec{r}^2 + \vec{a}^2}$$

Here
$$\overrightarrow{r^2} = |\overrightarrow{r}|^2$$
 is a scalar function of t

$$\overrightarrow{a^2} = |\overrightarrow{a}|^2$$
 is a constant, independent of t

 $\vec{r}^2 + \vec{a}^2$ is a scalar function of t

Also
$$\frac{d}{dt}(\overrightarrow{r^2}) = \frac{d}{dt}(\overrightarrow{r} \cdot \overrightarrow{r}) = \overrightarrow{r} \cdot \frac{d\overrightarrow{r}}{dt} + \frac{d\overrightarrow{r}}{dt} \cdot \overrightarrow{r} = 2\overrightarrow{r} \cdot \frac{d\overrightarrow{r}}{dt}$$

$$\therefore \frac{d\overrightarrow{R}}{dt} = \frac{1}{\overrightarrow{r^2} + \overrightarrow{a^2}} \frac{d}{dt}(\overrightarrow{r} + \overrightarrow{a}) + \left\{ \frac{d}{dt} \left(\frac{1}{\overrightarrow{r^2} + \overrightarrow{a^2}} \right) \right\} (\overrightarrow{r} + \overrightarrow{a})$$

$$= \frac{1}{\overrightarrow{r^2 + a^2}} \left(\frac{\overrightarrow{dr}}{dt} + \frac{\overrightarrow{da}}{dt} \right) - \frac{\overrightarrow{dt} (\overrightarrow{r^2 + a^2})}{(\overrightarrow{r^2 + a^2})^2} (\overrightarrow{r} + \overrightarrow{a}) = \frac{\overrightarrow{dr}}{\overrightarrow{dt}} - \frac{\overrightarrow{2r} \cdot \overrightarrow{dr}}{(\overrightarrow{r^2 + a^2})^2} (\overrightarrow{r} + \overrightarrow{a}).$$

Example 6. Find

(i)
$$\frac{d^2}{dt^2} \left[\vec{r} \frac{d\vec{r}}{dt} \frac{d^2\vec{r}}{dt^2} \right]$$
 (ii) $\frac{d}{dt} \left[\vec{r} \times \left(\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right) \right]$.

Sol. (i) Let R =
$$\begin{bmatrix} \overrightarrow{r} & \overrightarrow{dr} & \overrightarrow{d^2r} \\ \overrightarrow{dt} & \overrightarrow{dt^2} \end{bmatrix}$$
, then R is the scalar triple product of three vectors \overrightarrow{r} , $\frac{\overrightarrow{dr}}{dt} \frac{\overrightarrow{d^2r}}{dt^2}$

$$\frac{d\mathbf{R}}{dt} = \left[\frac{\overrightarrow{dr}}{dt} \frac{\overrightarrow{dr}}{dt} \frac{\overrightarrow{d^2r}}{dt^2} \frac{\overrightarrow{d^2r}}{dt^2} \right] + \left[\overrightarrow{r} \frac{\overrightarrow{d^2r}}{dt^2} \frac{\overrightarrow{d^2r}}{dt^2} \right] + \left[\overrightarrow{r} \frac{\overrightarrow{dr}}{dt} \frac{\overrightarrow{d^3r}}{dt^3} \right] = \left[\overrightarrow{r} \frac{\overrightarrow{dr}}{dt} \frac{\overrightarrow{d^3r}}{dt^3} \right],$$

scalar triple products having two equal vectors vanish.

Differentiating again, we have $\frac{d^2R}{dt^2} = \left| \frac{\overrightarrow{dr}}{dt} \frac{\overrightarrow{dr}}{dt} \frac{\overrightarrow{d^3r}}{dt^3} \right| + \left| \overrightarrow{r} \frac{d^2\overrightarrow{r}}{dt^2} \frac{d^3\overrightarrow{r}}{dt^3} \right| + \left| \overrightarrow{r} \frac{\overrightarrow{dr}}{dt} \frac{\overrightarrow{d^4r}}{dt^4} \right|$

$$= \left[\overrightarrow{r} \frac{d^{2} \overrightarrow{r}}{dt^{2}} \frac{d^{3} \overrightarrow{r}}{dt^{3}} \right] + \left[\overrightarrow{r} \frac{d\overrightarrow{r}}{dt} \frac{d^{4} \overrightarrow{r}}{dt^{4}} \right]$$

(ii) Let
$$\vec{R} = \vec{r} \times \left(\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}\right)$$
, then \vec{R} is the vector triple product of three vectors.

$$\frac{d\vec{R}}{dt} = \frac{d\vec{r}}{dt} \times \left(\frac{d\vec{r}}{dt} \times \frac{d^{2}\vec{r}}{dt^{2}}\right) + \vec{r} \times \left(\frac{d^{2}\vec{r}}{dt^{2}} \times \frac{d^{2}\vec{r}}{dt^{2}}\right) + \vec{r} \times \left(\frac{d\vec{r}}{dt} \times \frac{d^{3}\vec{r}}{dt^{3}}\right)$$

$$= \frac{d\vec{r}}{dt} \times \left(\frac{d\vec{r}}{dt} \times \frac{d^{2}\vec{r}}{dt^{2}}\right) + \vec{r} \times \left(\frac{d\vec{r}}{dt} \times \frac{d^{3}\vec{r}}{dt^{3}}\right) \quad \text{since } \frac{d^{2}\vec{r}}{dt^{2}} \times \frac{d^{2}\vec{r}}{dt^{2}} = \vec{0}.$$

Example 7. Find the unit tangent vector at any point on the curve $x = t^2 + 2$, y = 4t - 5, $z = 2t^2 - 6t$, where t is any variable. Also determine the unit tangent vector at the point t = 2.

Sol. If \vec{r} is the position vector of any point (x, y, z) on the given curve, then $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$

$$\Rightarrow \qquad \overrightarrow{r} = (t^2 + 2)\hat{i} + (4t - 5)\hat{j} + (2t^2 - 6t)\hat{k}$$

and

The vector $\frac{\overrightarrow{dr}}{dt}$ is along the tangent at the point (x, y, z) to the given curve.

Now
$$\frac{d\vec{r}}{dt} = 2t\hat{i} + 4\hat{j} + (4t - 6)\hat{k}$$

$$\begin{vmatrix} \vec{dr} \\ dt \end{vmatrix} = \sqrt{(2t)^2 + (4)^2 + (4t - 6)^2} = \sqrt{20t^2 - 48t + 52} = 2\sqrt{5t^2 - 12t + 13}$$

$$\therefore \text{ The unit tangent vector } \hat{\mathbf{T}} = \frac{\frac{d\vec{r}}{dt}}{\left|\frac{d\vec{r}}{dt}\right|} = \frac{t\hat{i} + 2\hat{j} + (2t - 3)\hat{k}}{\sqrt{5t^2 - 12t + 13}}.$$

Also the unit tangent vector at the point t = 2 is $\frac{2\hat{i} + 2\hat{j} + (2 \times 2 - 3)\hat{k}}{\sqrt{5 \times 4 - 12 \times 2 + 13}} = \frac{1}{3}(2\hat{i} + 2\hat{j} + \hat{k})$.

Example 8. Find the angle between the tangents to the curve $\vec{r} = t^2\hat{i} + 2t\hat{j} - t^3\hat{k}$ at the points $t = \pm 1$.

Sol. $\frac{d\vec{r}}{dt} = 2t\hat{i} + 2\hat{j} - 3t^2\hat{k}$ is a vector along the tangent at any point 't'.

If \vec{T}_1 and \vec{T}_2 are the vectors along the tangents at t=1 and t=-1 respectively, then

$$\vec{T}_1 = 2\hat{i} + 2\hat{j} - 3\hat{k}$$
 and $\vec{T}_2 = -2\hat{i} + 2\hat{j} - 3\hat{k}$

If θ is the angle between $\overrightarrow{T_1}$ and $\overrightarrow{T_2}$, then

$$\cos \theta = \frac{\overrightarrow{T_1} \cdot \overrightarrow{T_2}}{|\overrightarrow{T_1}||\overrightarrow{T_2}|} = \frac{2(-2) + 2(2) - 3(-3)}{\sqrt{4 + 4 + 9} \cdot \sqrt{4 + 4 + 9}} = \frac{9}{17}$$
$$\theta = \cos^{-1} \left(\frac{9}{17}\right).$$

Example 9. A particle moves on the curve $x = 2t^2$, $y = t^2 - 4t$, z = 3t - 5 where t is the time. Find the components of velocity and acceleration at time t = 1 in the direction $\hat{i} - 3\hat{j} + 2\hat{k}$.

Sol. If \overrightarrow{r} is the position vector of any point (x, y, z) on the given curve, then

$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} = 2t^2\hat{i} + (t^2 - 4t)\hat{j} + (3t - 5)\hat{k}$$

Velocity

$$\vec{v} = \frac{\vec{dr}}{dt} = 4t\hat{i} + (2t - 4)\hat{j} + 3\hat{k} = 4\hat{i} - 2\hat{j} + 3\hat{k}$$
 at $t = 1$

Acceleration

$$\vec{a} = \frac{d^2 \vec{r}}{dt^2} = 4\hat{i} + 2\hat{j} = 4\hat{i} + 2\hat{j}$$
 at $t = 1$

Now the unit vector in the given direction $\hat{i} - 3\hat{j} + 2\hat{k}$

$$=\frac{\hat{i}-3\hat{j}+2\hat{k}}{|\hat{i}-3\hat{j}+2\hat{k}|} = \frac{\hat{i}-3\hat{j}+2\hat{k}}{\sqrt{14}} = \hat{n}$$
 (say)

:. The component of velocity in the given direction

$$= \vec{v} \cdot \hat{n} = (4\hat{i} - 2\hat{j} + 3\hat{k}) \cdot \frac{\hat{i} - 3\hat{j} + 2\hat{k}}{\sqrt{14}}$$
$$= \frac{4(1) - 2(-3) + 3(2)}{\sqrt{14}} = \frac{16\sqrt{14}}{14} = \frac{8\sqrt{14}}{7}$$

and the component of acceleration in the given direction

$$= \vec{a} \cdot \hat{n} = (4\hat{i} + 2\hat{j}) \cdot \frac{\hat{i} - 3\hat{j} + 2\hat{k}}{\sqrt{14}} = \frac{-2}{\sqrt{14}} = -\frac{\sqrt{14}}{7}.$$

1. If
$$\vec{r} = \sin t\hat{i} + \cos t\hat{j} + t\hat{k}$$
, find $\left| \frac{d^2 \vec{r}}{dt^2} \right|$.

2. If
$$\vec{r} = (\cos nt)\hat{i} + (\sin nt)\hat{j}$$
, where n is a constant and t varies, show that $\vec{r} \times \frac{d\vec{r}}{dt} = n\hat{k}$.

3. Show that $\overrightarrow{r} = \overrightarrow{a} e^{mt} + \overrightarrow{b} e^{nt}$ is the solution of the differential equation

$$\frac{d^2 \overrightarrow{r}}{dt^2} - (m+n) \frac{\overrightarrow{dr}}{dt} + \overrightarrow{mnr} = \overrightarrow{0}.$$

[Hint. \overrightarrow{a} and \overrightarrow{b} are constant vectors.]

4. If \overrightarrow{r} is a vector function of a scalar t and \overrightarrow{a} is a constant vector, differentiate the following with respect to t:

$$(i)\stackrel{\rightarrow}{r},\stackrel{\rightarrow}{a}$$
 $(ii)\stackrel{\rightarrow}{r}\times\stackrel{\rightarrow}{a}$ $(iii)\stackrel{\rightarrow}{r}\times\frac{d\stackrel{\rightarrow}{r}}{dt}$ $(iv)\stackrel{\rightarrow}{r},\frac{d\stackrel{\rightarrow}{r}}{dt}$

5. Prove the following:

$$(i) \frac{d}{dt} \left[\overrightarrow{a} \cdot \frac{\overrightarrow{db}}{dt} - \frac{\overrightarrow{da}}{dt} \cdot \overrightarrow{b} \right] = \overrightarrow{a} \cdot \frac{d^2 \overrightarrow{b}}{dt^2} - \frac{d^2 \overrightarrow{a}}{dt^2} \cdot \overrightarrow{b} \quad (ii) \frac{d}{dt} \left[\overrightarrow{a} \times \frac{\overrightarrow{db}}{dt} - \frac{\overrightarrow{da}}{dt} \times \overrightarrow{b} \right] = \overrightarrow{a} \times \frac{d^2 \overrightarrow{b}}{dt^2} - \frac{d^2 \overrightarrow{a}}{dt^2} \times \overrightarrow{b} .$$

6. (a) Verify the formula, $\frac{d}{dt}(\vec{A} \cdot \vec{B}) = \vec{A} \cdot \frac{d\vec{B}}{dt} + \frac{d\vec{A}}{dt} \cdot \vec{B}$ for $\vec{A} = 5t^2\hat{i} + t\hat{j} - t^3\hat{k}$, $\vec{B} = \sin t\hat{i} - \cos t\hat{j}$.

(b) If
$$\overrightarrow{A} = 2t\hat{i} - t^2\hat{j} + t^3\hat{k}$$
, $\overrightarrow{B} = -t\hat{i} + t^2\hat{k}$, $\overrightarrow{C} = t^3\hat{i} - 2t\hat{k}$, find $\frac{d}{dt}(\overrightarrow{A} \cdot \overrightarrow{B} \times \overrightarrow{C})$ at $t = 1$.

(c) If
$$\overrightarrow{A} = \sin t \, \hat{i} - \cos t \, \hat{j} + t \, \hat{k}$$
, $\overrightarrow{B} = \cos t \, \hat{i} - \sin t \, \hat{j} - 3 \, \hat{k}$ and $\overrightarrow{C} = 2\hat{i} + 3\hat{j} - \hat{k}$, find $\frac{d}{dt} [\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C})]$ at $t = 0$.

7. Find the unit tangent vector at any point on the curve $x = 3 \cos t$, $y = 3 \sin t$, z = 4t.

Find the angle between the tangents to the curve x = t, $y = t^2$, $z = t^3$, at $t = \pm 1$.

A particle moves along the curve $x = e^{-t}$, $y = 2 \cos 3t$, $z = 2 \sin 3t$, where t is the time. Determine its velocity and acceleration vectors and also the magnitudes of velocity and acceleration at t = 0.

The position vector of a particle at time t is $r = \cos(t-1)\hat{i} + \sinh(t-1)\hat{j} + \alpha t^3\hat{k}$. Find the condition imposed on α by requiring that at time t=1, the acceleration is normal to the position vector.

A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 5 where t is the time. Find the components of its velocity and acceleration at t = 1 in the direction $\hat{i} - \hat{j} + 3\hat{k}$.