OFDM with a Fading Channel

Table of Contents

Housekeeping and Constant Assignment	. 1
(a) Generate Input Bit Sequence	. 1
(b) Convert Bit Sequence to Bit Group Sequence	. 2
(c) Convert Bit Group Sequence into Constellation Symbol Group	2
(d) Apply Constellation Symbol Groups to IFFT	. 2
(e) Calculate Gaussian Noise and Rayleigh Fading for Signal	
(ea) Fading Scenario 1 SingleCarrier Modulation, fading Channel	3
(eb) Fading Scenario 2 Multicarrier Modulation, fading channel	
(ec) Noise Scenario 3 MultiCarrier Modulation, AWGN channel	. 3
(f) Use FFT to Recover Constellation Symbol	3
(g) Implement Demapping to Return Received Symbols to Bit Stream	
(h) Convert From Integer Symbols to Binary	. 4
(i) Calculate Bit Error Rates and display	
(j) Graphs	
Clean Up for next run	

Housekeeping and Constant Assignment

```
close all
clc

for L=[16 64 256] %size of IFFT/FFT

   if L==16
        m=4; %m = log2(M) is the number bits per symbol or M = 2^m
        M=2^m; %number of symbols in M-ary modulation
   elseif L==64
        m=6; %m = log2(M) is the number bits per symbol or M = 2^m
        M=2^m; %number of symbols in M-ary modulation
   else
        m=8; %m = log2(M) is the number bits per symbol or M = 2^m
        M=2^m; %number of symbols in M-ary modulation
   end

N=200; %number of OFDM symbols
```

(a) Generate Input Bit Sequence

Generate a random sequence bk of 1s and 0s with equal probability of length m×L×N. Suggested values are: m = 2; L = 16 (64 and 256 are optional); and N = 200 or more.

(b) Convert Bit Sequence to Bit Group Sequence

Let us consider QPSK, i.e., m=2 or M=4. A higher order modulation is an option. Convert groups of m bits mk into a sequence of unsigned decimal values.

(c) Convert Bit Group Sequence into Constellation Symbol Group

Use the constellation diagram below to map mk into constellation symbol sequence Xk. These are complex values (I-Q data).

(d) Apply Constellation Symbol Groups to IFFT

Take a block of size L constellation symbols and apply the IFFT algorithm. Repeat this N times. These are complex valued too.

SymbolsIFFT = ifft(Symbols_Xk);

(e) Calculate Gaussian Noise and Rayleigh Fading for Signal

Simulate the channel as appropriate for each scenario. For AWGN, add (I-Q) white Gaussian noise with zero mean; suggested standard deviation values are ? = 0, 0.02, 0.08. The fading cannel can be realized in a number of ways with Rayleigh being the simplest. Here are two models to consider (the second is optional).

```
sigmaValues = [0.0, 0.02, 0.08];
                                  %Standard Deviation
randQ=randn(length(Symbols_Xk),1)*i;
                                       %Creates random variations of O
randI=randn(length(Symbols_Xk),1);
                                        %Creates random variations of I
Noise=(randQ+randI)*sigmaValues;
                                       %Imposes Noise to the signal vector
% Add Stanford University Interium Model Fading to
SUI channel y(n)=x(n)+0.5x(n-1)+0.25x(n-2)
% Add Rayleigh Fading to the Signal
% Rayleigh (statistical model). The effect of fading is realized as a
% scalar h, given by h= sqrt(abs(wI+jwQ)) where wI and wQ are independent
% white Gaussian random variables with unit variance. Hint: compute a
% new h value for each message symbol period.
h=sqrt(abs(Noise));
```

(ea) Fading Scenario 1 SingleCarrier Modulation, fading Channel

(eb) Fading Scenario 2 Multicarrier Modulation, fading channel

```
SymbolsOut_rk_woNoise(1)=SymbolsIFFT(1);
SymbolsOut_rk_woNoise(2)=SymbolsIFFT(2)+0.5*SymbolsIFFT(1);
for i=3:N*L
        SymbolsOut_rk_woNoise(i)=SymbolsIFFT(i)+0.5*SymbolsIFFT(i-1)+ ...
        0.25*Symbols_Xk(i-2);
end
```

(ec) Noise Scenario 3 MultiCarrier Modulation, AWGN channel

```
SymbolsOut_rk(:,1)=SymbolsIFFT+Noise(:,1);
SymbolsOut_rk(:,2)=SymbolsIFFT+Noise(:,2);
SymbolsOut_rk(:,3)=SymbolsIFFT+Noise(:,3);
```

(f) Use FFT to Recover Constellation Symbol

```
(fa) N/A (fb) FFT Scenario 2 Multicarrier Modulation, fading channel
```

```
SymbolsInFFT_Rayleigh = fft(SymbolsOut_rk_woNoise);

% (fc) FFT Scenario 3 MultiCarrier Modulation, AWGN channel
SymbolsInFFT_AWGM(:,1) = fft(SymbolsOut_rk(:,1));
SymbolsInFFT_AWGM(:,2) = fft(SymbolsOut_rk(:,2));
SymbolsInFFT_AWGM(:,3) = fft(SymbolsOut_rk(:,3));
```

(g) Implement Demapping to Return Received Symbols to Bit Stream

```
(ga) Demap Scenario 1 SingleCarrier Modulation, fading Channel

SymbolsIn_dk_Single(1,:) = qamdemod(SymbolsOut_rk_SingleCarrier, L, 0, ...
```

```
'gray');
% (gb) Demap Scenario 2 Multicarrier Modulation,Raleigh fading channel
SymbolsIn_dk_Rayleigh(1,:) = qamdemod(SymbolsInFFT_Rayleigh,L,0,...
'gray');
% (gc) Demap Scenario 3 MultiCarrier Modulation, AWGN channel
SymbolsIn_dk(:,1) = qamdemod(SymbolsInFFT_AWGM(:,1),L,0,'gray');
SymbolsIn_dk(:,2) = qamdemod(SymbolsInFFT_AWGM(:,2),L,0,'gray');
SymbolsIn_dk(:,3) = qamdemod(SymbolsInFFT_AWGM(:,3),L,0,'gray');
```

(h) Convert From Integer Symbols to Binary

```
%Rayleigh-Single Carrier
DecimalVector_To_Binary_ck_Single = de2bi(SymbolsIn_dk_Single(:),m);
bitsIn_ck_Single=reshape(DecimalVector_To_Binary_ck_Single,[N*L*m 1]);
%Rayleigh-MultiCarrier
DecimalVector_To_Binary_ck_Rayleigh = de2bi(SymbolsIn_dk_Rayleigh,m);
bitsIn_ck_Rayleigh=reshape(DecimalVector_To_Binary_ck_Rayleigh,[N*L*m 1]);
%AWGM-MultiCarrier
DecimalVector_To_Binary_ck(:,1:m) = de2bi(SymbolsIn_dk(:,1),m);
DecimalVector_To_Binary_ck(:,m+1:2*m) = de2bi(SymbolsIn_dk(:,2),m);
DecimalVector_To_Binary_ck(:,2*m+1:3*m) = de2bi(SymbolsIn_dk(:,3),m);
bitsIn_ck(:,1)=reshape(DecimalVector_To_Binary_ck(:,1:m),[N*L*m 1]);
bitsIn_ck(:,2)=reshape(DecimalVector_To_Binary_ck(:,m+1:2*m),[N*L*m 1]);
bitsIn_ck(:,3)=reshape(DecimalVector_To_Binary_ck(:,2*m+1:3*m),[N*L*m 1]);
```

(i) Calculate Bit Error Rates and display

```
fprintf('\n%d Bits Per Symbol over %d samples resulted in:\n',L,N)
[numErrors,ber]=biterr(bits_bk,bitsIn_ck_Single);
fprintf('Single Carrier Stanford Model had a bit error rate of:\n')
fprintf('%5.2e(%d errors).\n', ber,numErrors)
[numErrors,ber]=biterr(bits_bk,bitsIn_ck_Rayleigh);
fprintf('Multiple Carrier Stanford Model had a bit error rate of:\n')
fprintf('%5.2e(%d errors).\n', ber,numErrors)
[numErrors, ber]=biterr(bits_bk, bitsIn_ck(:,1));
fprintf('Multiple Carrier AWGN had a bit error rate of:\n')
fprintf('%5.2e(%d errors) with Sigma=0.\n', ber,numErrors)
[numErrors,ber]=biterr(bits_bk,bitsIn_ck(:,2));
fprintf('Multiple Carrier AWGN had a bit error rate of:\n')
fprintf('%5.2e(%d errors) with Sigma=0.02.\n' , ber,numErrors)
[numErrors,ber]=biterr(bits_bk,bitsIn_ck(:,3));
fprintf('Multiple Carrier AWGN had a bit error rate of:\n')
fprintf('%5.2e(%d errors) with Sigma=0.08.\n', ber,numErrors)
        16 Bits Per Symbol over 200 samples resulted in:
       Single Carrier Stanford Model had a bit error rate of:
```

```
1.87e-01(2390 errors).
Multiple Carrier Stanford Model had a bit error rate of:
4.90e-01(6269 errors).
Multiple Carrier AWGN had a bit error rate of:
0.00e+00(0 errors) with Sigma=0.
Multiple Carrier AWGN had a bit error rate of:
1.40e-01(1795 errors) with Sigma=0.02.
Multiple Carrier AWGN had a bit error rate of:
4.02e-01(5150 errors) with Sigma=0.08.
64 Bits Per Symbol over 200 samples resulted in:
Single Carrier Stanford Model had a bit error rate of:
2.87e-01(22068 errors).
Multiple Carrier Stanford Model had a bit error rate of:
4.93e-01(37864 errors).
Multiple Carrier AWGN had a bit error rate of:
0.00e+00(0 errors) with Sigma=0.
Multiple Carrier AWGN had a bit error rate of:
2.38e-01(18284 errors) with Sigma=0.02.
Multiple Carrier AWGN had a bit error rate of:
4.34e-01(33341 errors) with Sigma=0.08.
256 Bits Per Symbol over 200 samples resulted in:
Single Carrier Stanford Model had a bit error rate of:
3.42e-01(139914 errors).
Multiple Carrier Stanford Model had a bit error rate of:
4.99e-01(204315 errors).
Multiple Carrier AWGN had a bit error rate of:
0.00e+00(0 errors) with Sigma=0.
Multiple Carrier AWGN had a bit error rate of:
3.05e-01(125001 errors) with Sigma=0.02.
Multiple Carrier AWGN had a bit error rate of:
4.51e-01(184823 errors) with Sigma=0.08.
```

(j) Graphs

```
splotfig1=scatterplot(SymbolsOut_rk_SingleCarrier,1,0,'g.');
hold on
scatterplot(Symbols_Xk,1,0,'k*',splotfig1);
title(strcat('Single Carrier: L = ', {' '},num2str(L)))
axis([-m m -m m])

splotfig4=scatterplot(SymbolsInFFT_Rayleigh,1,0,'g.');
hold on
scatterplot(Symbols_Xk,1,0,'k*',splotfig4);
title(strcat('Multiple Carrier: L = ', {' '},num2str(L)))
axis([-m m -m m])

splotfig7=scatterplot(SymbolsInFFT_AWGM(:,1),1,0,'g.');
hold on
scatterplot(Symbols_Xk,1,0,'k*',splotfig7);
```


Clean Up for next run

clear all

end

Published with MATLAB® R2014a