

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
—— КАФЕДРА	Прикладная математика

Лабораторная работа №1

Прямые методы решения СЛАУ

Студент	ФН2-52Б		Г.А. Швецов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			С.А. Конев
- ""		(Подпись, дата)	(И.О. Фамилия)

Оглавление 2

Оглавление

1. Общие сведения о прямых методах решения СЛАУ			
2. Метод Гаусса (с полным или частичным выбором главного элемента)	3		
2.1. Метод Гаусса	3		
2.2. Выбор главного элемента	3		
3. Метод QR-разложения	4		
4. Контрольные вопросы	6		
5. Результаты	13		
Список использованных источников	16		

1. Общие сведения о прямых методах решения СЛАУ

Прямыми называют методы решения СЛАУ, которые позволяют получить точное решение за конечное число действий при условии, что все арифметические действия выполняются точно (без погрешностей). В данной лабораторной работе рассмотрим два прямых метода: метод Гаусса и метод QR-разложения.

2. Метод Гаусса (с полным или частичным выбором главного элемента)

2.1. Метод Гаусса

Метод Гаусса заключается в последовательном исключении неизвестных x_j , $j=1,2,\ldots,n-1$, из системы:

$$\sum_{j=1}^{n} a_{ij} x_j = b_j, \ i = 1, 2, \dots, n.$$

В результате она преобразуется, пересчитав коэффициенты $a_{ij}^{(k)}$ и $b_i^{(k)}$, к эквивалентной системе с треугольной матрицей. Такой процесс называется **прямым ходом метода Гаусса.** Затем неизвестные x_i последовательно, начиная с x_n , определяются по формулам:

$$x_i = \left(b_i^{(i-1)} - \sum_{j=i+1}^n a_{ij}^{(i-1)} x_j\right) / a_{ij}^{(i-1)}, \qquad i = n, n-1, \dots, 1.$$

Вычисления по этим формулам называются обратным ходом метода Гаусса.

Для реализации прямого хода метода Гаусса требуется порядка $O(\frac{n^3}{3})$ операций умножения и деления чисел с плавающей точкой, для обратного — порядка $O(\frac{n^2}{2})$ операций.

2.2. Выбор главного элемента

Невырожденность матрицы A из условия ($\det A \neq 0$) не гарантирует возникновение нулевых или малых величин по абсолютной величине элементов на главной диагонали во время приведения матрицы к треугольному виду. В таких случаях метод Гаусса неприменим, поэтому используется вариант алгоритма Гаусса с частичным либо полным выбором главного элемента. Основная идея метода состоит

в том, чтобы на очередном шаге исключать не следующее по номеру неизвестное, а то неизвестное, коэффициент при котором является наибольшим по модулю. Этот коэффициент называется ведущим (главным) элементом.

При **частичном выборе** поиск главного элемента ведется только по столбцу (или только по строке).

Вариант с **полным выбором** главного элемента отличается тем, что поиск главного элемента ведется по строке и по столбцу одновременно.

3. Метод QR-разложения

В основе многих методов решения СЛАУ лежит факторизация матрицы исходной системы уравнений, то есть ее представление в виде произведения матриц, удобных для обращения.

Рассмотрим метод QR-разложения, основанный на представлении матрицы системы в виде произведения ортогональной матрицы Q и верхней треугольной матрицы R. Один из способов получения такого разложения — метод вращений.

На первом этапе этого метода неизвестное x_1 исключается из всех уравнений, кроме первого. Это производится с помощью следующего алгоритма. Для исключения x_1 из второго уравнения вычисляются коэффициенты

$$c_{12} = \frac{a_{11}}{\sqrt{a_{11}^2 + a_{21}^2}}, \quad s_{12} = \frac{a_{21}}{\sqrt{a_{11}^2 + a_{21}^2}}$$

затем первое уравнение системы заменяется линейной комбинацией первого и второго уравнений с коэффициентами c_{12} и s_{12} , а второе уравнение — линейной комбинацией тех же уравнений, но уже с коэффициентами $(-s_{12})$ и c_{12} . Так как $-s_{12}a_{11}+c_{12}a_{21}=0$, коэффициент во втором уравнении при x_1 обратится в нуль.

Это преобразование эквивалентно умножению матрицы системы уравнений Ax=b и вектора правой части слева на ортогональную матрицу T_{12} , имеющую вид

$$T_{12} = \begin{pmatrix} c_{12} & s_{12} & 0 & 0 & \dots & 0 \\ -s_{12} & c_{12} & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Так как коэффициенты c_{12} и s_{12} подобраны таким образом, что $c_{12}^2 + s_{12}^2 = 1$, то можно считать, что

$$c_{12} = \cos \varphi \quad \text{ if } \quad s_{12} = \sin \varphi.$$

Следовательно, матрица T_{12} — это матрица поворота на угол φ по часовой стрелке в плоскости (x_1, x_2) , откуда и появилось название метода.

Аналогичным образом неизвестная x_1 исключается из остальных уравнений, затем переменная x_2 — из всех уравнений, кроме первого и второго, при этом используются матрицы $T_{23}, T_{24}, \ldots, T_{2n}$ и так далее. Процесс продолжается, пока система не будет приведена к верхней треугольной форме. В матричном виде все эти операции можно записать так:

$$T = T_{n-1,n} \cdot \ldots \cdot T_{24} \cdot T_{23} \cdot T_{1n} \cdot \ldots \cdot T_{13} \cdot T_{12},$$

 $R = TA, \quad b^* = Tb,$

где T_{ij} — матрицы поворота, T — матрица результирующего вращения (она также будет ортогональной как произведение ортогональных матриц), R — получающаяся в итоге верхняя треугольная матрица. В результате получается QR-разложение матрицы A, где $Q = T^{-1} = T^{\mathrm{T}}$.

Если известно QR-разложение матрицы A, то решение системы Ax = b сводится к решению более простых систем уравнений:

- 1. решение системы $Qb^* = b$;
- 2. решение системы $Rx = b^*$.

4. Контрольные вопросы

1. Каковы условия применимости метода Гаусса без выбора и с выбором ведущего элемента?

Для методов Гаусса с выбором ведущего и без выбора ведущего элемента необходимым условием будет невырожденность матрицы A, а также достаточным для метода с выбором.

Для того, чтобы $a_{kk}^k \neq 0$ для всех k в методе Гаусса, необходимо и достаточно, чтобы все угловые миноры исходной матрицы A были ненулевыми.

$$\blacktriangleleft$$
 (\Rightarrow)

Пусть на k-ом шаге все элементы $a_{ii}, i = 1, ..., k$ матрицы $A^{(k)}$ ненулевые:

$$A^{(k)} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1(k-1)} & a_{1k} & a_{1(k+1)} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2(k-1)} & a_{2k} & a_{2(k+1)} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{(k-1)(k-1)} & a_{(k-1)k} & a_{(k-1)(k+1)} & \dots & a_{(k-1)n} \\ 0 & 0 & \dots & 0 & a_{kk} & a_{k(k+1)} & \dots & a_{kn} \\ 0 & 0 & \dots & 0 & a_{(k+1)k} & a_{(k+1)(k+1)} & \dots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & a_{nk} & a_{n(k+1)} & \dots & a_{nn} \end{pmatrix}.$$

$$\Delta_1 = a_{11} \neq 0,$$

$$\Delta_2 = a_{11} \cdot a_{22} \neq 0,$$

$$\dots$$

$$\Delta_k = a_{11} \cdot \dots \cdot a_{kk} \neq 0.$$

.

В методе Гаусса без выбора главного элемента осуществляются только элементарные преобразования строк, не меняющие определителя исходной матрицы. Внутри каждой подматрицы

$$\begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{kk} & \dots & a_{kk} \end{pmatrix}$$

также производятся только элементарные преобразования строк, не меняющие определителя. Поэтому Δ_k также не изменяются $\Longrightarrow \Delta_k$ исходной матрицы не равны нулю $\forall \, k=1,...,n$.

 (\Leftarrow)

Пусть Δ_k исходной матрицы не равны нулю $\forall k = 1, ..., n$. Аналогично предыдущему пункту, внутри каждой подматрицы производятся только элементарные преобразования строк, не меняющие определителя. Поэтому Δ_k не изменяются в ходе прямого хода метода Гаусса без выбора главного элемента $\Longrightarrow \Delta_k$ преобразованной (верхнетреугольной) матрицы не равны нулю $\forall k = 1, ..., n$:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1(k-1)} & a_{1k} & a_{1(k+1)} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2(k-1)} & a_{2k} & a_{2(k+1)} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & a_{kk} & a_{k(k+1)} & \dots & a_{kn} \\ 0 & 0 & \dots & 0 & 0 & a_{(k+1)(k+1)} & \dots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & a_{nk} & a_{n(k+1)} & \dots & a_{nn} \end{pmatrix}.$$

$$\Delta_1 = a_{11} \neq 0,$$

$$\Delta_2 = a_{11} \cdot a_{22} \neq 0 \Longrightarrow a_{22} \neq 0,$$

$$\dots$$

$$\Delta_k = a_{11} \cdot \dots \cdot a_{kk} \neq 0, \Longrightarrow a_{kk} \neq 0$$

 \Longrightarrow на k-ом шаге прямого хода все элементы $a_{ii},\ i=1,...,k$ матрицы $A^{(k)}$ будут ненулевыми.

- 2. Докажите, что если $\det A \neq 0$, то при выборе главного элемента в столбце среди элементов, лежащих не выше главной диагонали, всегда найдется хотя бы один элемент, отличный от нуля.
 - "От противного". Пусть $\det A \neq 0$. Элементарные преобразования строк матрицы не меняют ее определитель. Если на k-ом этапе не получится в столбце выбрать элемент, отличный от нуля, из тех, что лежат не выше диагонали, то это значит, что угловой минор k-го порядка равен нулю. Следовательно, ранг матрицы A меньше ее размерности N, что значит равенство нулю определителя матрицы A. Получили противоречие. Следовательно, утверждение верно.
- 3. В методе Гаусса с полным выбором ведущего элемента приходится не только переставлять уравнения, но и менять нумерацию неизвестных. Предложите алгоритм, позволяющий восстановить первоначальный порядок неизвестных.

Восстановление первоначального порядка можно реализовать хранив некоторый дополнительный массив v, который первоначально заполнен следующим образом: $v_i=i,\ i=0,\ldots,N-1$. Далее в процессе работы алгоритма при перестановки столбцов i и j переставлять соответствующие ячейки массива v. После выполнения алгоритма будет получено решение x с "неправильным" порядком значений. v будет представлять перестановку $\begin{pmatrix} 0 & 1 & \cdots & i & \cdots & N-1 \\ v_0 & v_1 & \cdots & v_i & \cdots & v_{N-1} \end{pmatrix}$. Для восстановления переменных эту перестановку необходимо обратить $\begin{pmatrix} v_{v_i}^{-1} = i, i=0,\ldots,N-1 \end{pmatrix}$ и применить ее к решению x.

4. Оцените количество арифметических операций, требуемых для QR-разложения произвольной матрицы A размера $n \times n$.

В реализованном алгоритме происходить цикл по i от 0 до N-2, в него вложен цикл по j от i+1 до N-1. На каждой итерации цикла тратится 5 операций на вычисление коэффициентов $c_{ij}=\frac{a_{ii}}{\sqrt{a_{ii}^2+a_{ji}^2}}$ и $s_{ji}=\frac{a_{ji}}{\sqrt{a_{ii}^2+a_{ji}^2}}$ (2 возведения в квадрат и извлечение корня в общем знаменателе, два деления). Дополнительно на каждой итерации идут два умножения слева на матрицу T_{ij} : матриц A и T, чтобы получить матрицы R и Q соответственно. Данное умножение можно осуществить, используя только изменяющиеся две строки длиной N, на каждый элемент которых надо затратить два умножения. При этом для матрицы A дополнительно можно найти, что в конце каждой итерации по i i-й столбец становится нулевым. Это позволяет при умножении на матрицу поворота использовать $4 \cdot (N-i)$ операций против 4N для матрицы T. Итого, во время QR-разложения используется

$$\sum_{i=0}^{N-2} \sum_{j=i+1}^{N-1} (5+4(N-i)+4N) = \sum_{i=0}^{N-2} (5+4(N-i)+4N) \cdot (N-1-i-1+1) = \sum_{i=0}^{N-2} \sum_{j=i+1}^{N-2} (5+8N-4i) \cdot (N-1-i) = \sum_{i=0}^{N-2} (5+8N)(N-1) + \sum_{i=0}^{N-2} (-4i(N-i-1)-i(5+8N)) = (5+8N)(N-1) \cdot (N-1) + \sum_{i=0}^{N-2} (-12iN+4i^2-i) \approx 8N^3 + \sum_{i=0}^{N-2} (-i(12N+1)+4i^2) \approx 8N^3 + \sum_{i=0}^{N-2} (-12iN+4i^2) = 8N^3 - 12N \frac{N-2}{2} (N-1) + 4 \sum_{i=0}^{N-2} i^2 \approx 8N^3 - 6N^3 + 4 \cdot \frac{(N-2)(N-1)(2(N-2)+1)}{6} \approx 2N^3 + \frac{4}{3}N^3 = \frac{10}{3}N^3$$

операций. Если же матрицу Т не нужно вычислять (например, для решения

СЛАУ), то используется

$$\sum_{i=0}^{N-2} \sum_{j=i+1}^{N-1} (5 + 4(N-i)) \approx \frac{4}{3} N^3$$

операций. Но в этом случае выгодней использовать метод Гаусса.

5. Что такое число обусловленности и что оно характеризует? Имеется ли связь между обусловленностью и величиной определителя матрицы? Как влияет выбор нормы матрицы на оценку числа обусловленности?

Число $M_A = \|A\| \cdot \|A^{-1}\|$ называют числом обусловленности матрицы A (и A^{-1} в силу симметрии определения). Оно характеризует чувствительность решения СЛАУ с этой матрицей к малым погрешностям начальных условий. Матрицы с большим числом M_A называются плохо обусловленными, при малом изменении входных данных СЛАУ с такими матрицами возможны сильные изменения решения.

Если же число обусловленности достаточно мало, то матрица хорошо обусловлена. Умножение матрицы A на произвольную константу $\alpha \neq 0$ не приведет к изменению ее числа обусловленности, т.к. в этом случае обратная матрица окажется умноженной на величину α^{-1} .

Между величиной определителя и числом обусловленности нет прямой связи. Примеры:

(а) Разные определители, одинаковое число обусловленности.

Пусть есть матрицы:

$$A_1 = \begin{pmatrix} \delta & 0 \\ 0 & \delta \end{pmatrix}, \quad A_2 = \begin{pmatrix} rac{1}{\delta} & 0 \\ 0 & rac{1}{\delta} \end{pmatrix},$$
 где $\delta o \infty$.

Определитель первой матрицы равен $\det A_1 = \delta^2 \to \infty$, а определитель второй матрицы равен $\det A_2 = \frac{1}{\delta^2} \to 0$. Числа обусловленности же у обеих матриц совпадают и равны $M_{A_1,A_2} = 1$.

(b) Одинаковый определитель, разные числа обусловленности.

Пусть есть две матрицы с одинаковыми определителями:

$$A_1 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}, \quad \det A_1 = \det A_2 = 4.$$

Несмотря на одинаковые определители у матриц, они имеют разные числа обусловленности ($M_{A_1}=1, M_{A_2}=4$).

В силу эквивалентности норм выбор нормы не изменит обусловленность матрицы.

- 6. Как упрощается оценка числа обусловленности, если матрица является:
 - (а) диагональной;
 - (b) симметричной;
 - (с) ортогональной;
 - (d) положительно определенной;
 - (е) треугольной?
 - (а) У такой матрицы на диагонали находятся собственные числа. Оценку снизу дает модуль отношения максимального собственного числа к минимальному $\left(\frac{\lambda_{max}}{\lambda_{min}}\right)$.
 - (b) Симметричная матрица имеет симметричную обратную матрицу. Пользуясь этим свойством можно сократить количество операций примерно вдвое, вычисляя только элементы, стоящие на диагонали и, например, выше нее. Также можно отметить, что кубическая и октаэдрическая нормы симметричных матриц совпадают.
 - (c) Для ортогональной матрицы обратную матрицу найдем путем транспонирования исходной $(A^{-1} = A^{\mathrm{T}})$.
 - (d) Для положительно определенной матрицы используем метод Гаусса без выбора главного элемента, т.к. все главные миноры по критерию Сильвестра положительны. Считаем обратную матрицу и проводим оценку.
 - (е) Собственные значения стоят на главной диагонали матрицы. См. пункт (а).
- 7. Применимо ли понятие числа обусловленности κ вырожденным матрицам? По свойствам числа обусловленности $M_A \geqslant \frac{|\lambda_{\max}|}{|\lambda_{\min}|}$. Для вырожденной матрицы минимальное по модулю собственное значение является нулем в силу того, что ядро соответствующего линейного оператора ненулевое. Поэтому можно считать, что число обусловленности вырожденной матрицы $M_A = \infty$. Но т.к. для вырожденной матрицы заведомо известно, что ни при какой правой части не будет единственного решения, то обусловленность такой матрицы несет имеет малый практический смысл.
- 8. В каких случаях целесообразно использовать метод Гаусса, а в каких методы, основанные на факторизации матрицы?

Метод Гаусса лучше использовать тогда, когда матрица и правая часть остаются неизменными. Вычислений по сравнению с методом QR-разложения будет намного меньше. Метод Гаусса имеет количество операций порядка $O\left(\frac{n^3}{3}\right)$. Метод же QR-разложения, оптимизированный под решение СЛАУ, имеет количество операций порядка $O\left(\frac{4n^3}{3}\right)$. Таким образом, метод Гаусса при достаточно большом n будет иметь приблизительно в 4 раза меньше операций.

Метод же QR-разложения целесообразно использовать в тех случаях, когда матрица A не изменяется. Методом вращений один раз более затратно вычисляем матрицы Q и R, а далее используем обратный ход метода Гаусса для разных правых частей.

9. Как можно объединить в одну процедуру прямой и обратный ход метода Гаусса? В чем достоинства и недостатки такого подхода?

Объединить прямой и обратный можно, организовав на каждой итерации по столбцам "зануление" не только элементов под диагональную, но и над ней. В итоге после окончании итерации слева будет диагональная матрица и, следовательно, решение можно найти следующим образом: $x_i = \frac{b_i^*}{a_{ii}^*}$, где столбец и матрица со звездой - это изменившиеся в процессе работы исходные столбец B и матрица A.

К достоинствам данного подхода можно отнести простоту реализацию: код для "зануления" элементов выше диагонали аналогичен коду для элементов ниже диагонали. К недостаткам же можно отнести возросшее количество операций (прямой ход самый ресурсоемкий в данном методе, а в подобной реализации его приходится, по сути, проделывать два раза). Также в данной работе обратный ход необходим для решения СЛАУ при помощи QR-разложения, т.е. обратный ход все равно нужно реализовывать.

10. Объясните, почему, говоря о векторах, норму $\|\cdot\|_1$ часто называют октаэдрической, норму $\|\cdot\|_2$ — шаровой, а норму $\|\cdot\|_{\infty}$ — кубической.

Норму $\|\cdot\|_1$ называют октаэдрической, т.к. единичный шар $\{x: \|x\|_1 \leq 1\}$ представляет собой в трехмерном пространстве октаэдр (рис. 1а). Норму $\|\cdot\|_2$ называют шаровой, т.к. единичный шар $\{x: \|x\|_2 \leq 1\}$ представляет собой в трехмерном пространстве шар (рис. 1b). Норму $\|\cdot\|_{\infty}$ называют кубической, т.к. единичный шар $\{x: \|x\|_{\infty} \leq 1\}$ представляет собой в трехмерном пространстве куб (рис. 1c).

dcwds

5. Результаты

Исходные дан	ные: Тест №5			
$\int 28.859 -0.008 2.406$	$19.240 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			
14.436 -0.001 1.203	9.624 , $b = \begin{bmatrix} 18.248 \end{bmatrix}$			
$A = \begin{vmatrix} 120.204 & -0.032 & 10.024 \end{vmatrix}$	80.144 , $v = 128.156$			
$\sqrt{-57.714}$ 0.016 -4.812	-38.478 $\left(-60.908\right)$			
обычная точность	повышенная точность			
Решение мет	годом Гаусса			
(1.49898720 \	(0.999999995029749 \			
1000.24298096	999.999999997534132			
-18.04016495	-20.000000019684592			
2.00656486	3.0000000009915690			
Норма вектора н	левязки $\ b-b_1\ _1$			
$1,526 \cdot 10^{-5}$	$1,07 \cdot 10^{-14}$			
Норма вектора в	иевязки $\ b-b_1\ _2$			
$1,206 \cdot 10^{-5}$	$0.79 \cdot 10^{-14}$			
Норма вектора н				
$1{,}144\cdot 10^{-5}$	$0.71 \cdot 10^{-14}$			
Погрешность	метода Гаусса			
Что-то	написать			
Решение методом	QR-разложения			
(9.18884)	(0.999999982831136)			
2.22287	999.999999991688355			
-1.23578	-20.0000000067030115			
(0.991991)	3.0000000034131191			
матри	нца Q			
$ \begin{pmatrix} 0.21035759 & -0.10577760 & -0.50090319 & 0.83286071 \\ 0.10522618 & 0.97148943 & -0.21036340 & -0.02971083 \end{pmatrix} $	$ \begin{pmatrix} 0.21035761 & -0.1057774 & -0.50100780 & 0.83279768 \\ 0.1052261 & 0.97148953 & -0.21035973 & -0.02973746 \end{pmatrix} $			
0.87618512 0.01047287 0.47717786 0.06701660	0.87618511 0.01047290 0.47716945 0.06707656			
\[\begin{pmatrix} -0.42068607 & 0.21191855 & 0.69075650 & 0.54860663 \end{pmatrix} \]	D			
MATPI (137.19018555 -0.03655699 11.43992901 91.46811676)	Ща К (137.19018692			
0.00000087 0.00293030 -0.00057107 -0.00041090	0.00000000 0.00293029 -0.00057107 -0.00041057			
	$ \begin{bmatrix} 0.00000000 & 0.00000000 & 0.00107070 & 0.00210197 \\ -0.00000000 & 0.00000000 & 0.00000000 & -0.00000557 \end{bmatrix} $			
Норма вектора н				
$0.954 \cdot 10^{-5}$	$9.24 \cdot 10^{-14}$			
Норма вектора в				
$0.572 \cdot 10^{-5}$	$6{,}13\cdot 10^{-14}$			
Норма вектора н	евязки $\ b-b_1\ _\infty$			
$0.381 \cdot 10^{-5}$	$5,68 \cdot 10^{-14}$			
Погрешность мето,	да QR-разложения			
Что-то	написать			
Число обусловлен	ности $(p=1)$, M_A			
$25741978.73944124\leqslant 122414849.8883399\leqslant 321014390.09659916$				
Число обусловленности $(p=\infty),\ M_A$				
$91163201.12185164 \leqslant 109686235$	$.2039425 \leqslant 298220694.33281744$			

Исходные даны	гые [.] Вариант 1			
/ 16.382 -2.049 -41.829				
	1 1			
$A = \begin{vmatrix} 307.648 & -38.466 & -840.36 \\ 0.456 & -0.057 & -1.177 \end{vmatrix}$	$\begin{bmatrix} 6 & 312.528 \\ & 0.456 \end{bmatrix}, \qquad b = \begin{bmatrix} 710.342 \\ & 0.949 \end{bmatrix}$			
	1			
23.272 -2.909 -66.309	, , ,			
обычная точность	повышенная точность			
Решение мет				
$\begin{pmatrix} -5.03971243 \\ -5.03971243 \end{pmatrix}$	(1.999999949416818)			
-5.47288799	59.999999529556547			
-1.14634335	-1.000000001051392			
(3.47786856 /	(4.999999989063948 /			
Норма вектора н				
$6,485 \cdot 10^{-5}$	$28.5 \cdot 10^{-14}$			
Норма вектора н	· · · · · · · · · · · · · · · · · · ·			
$6,115 \cdot 10^{-5}$	$23{,}18\cdot 10^{-14}$			
Норма вектора н				
$6,104 \cdot 10^{-5}$	$22,74 \cdot 10^{-14}$			
Погрешность	метода Гаусса			
Что-то	написать			
Решение методом	QR-разложения			
$\left(-3.63152623\right)$	$\left(\begin{array}{c} 2.0000000198214503 \end{array}\right)$			
7.62731504	60.0000001843341622			
-1.11702025	-0.999999995881664			
3.78289294	5.0000000042833257			
матри	ща Q			
$ \begin{pmatrix} 0.05302272 & 0.99574733 & 0.00147591 & 0.07532319 \\ -0.68938291 & -0.01808131 & 0.01418723 & 0.72403234 \end{pmatrix} $	$\begin{pmatrix} 0.05302272 & 0.99574737 & 0.00147591 & 0.07532320 \\ -0.68919382 & -0.01810496 & 0.01419047 & 0.59806831 \end{pmatrix}$			
0.63956553 -0.07996984 0.47688016 0.59761691	0.64034437 -0.08004305 0.47525413 0.59806831			
\[\begin{pmatrix} 0.33599940 & -0.04201264 & -0.87885261 & 0.33609143 \end{pmatrix} \]	0.33490232 -0.04186279 -0.87973289 0.33489996			
MATPI (308.96188354 -38.63026047 -844.00646973 313.86688232)	ща К /308.96190016			
0.00000087 0.00104253 -3.99544239 0.33928907	0.00000000 0.00104254 -3.99538137 0.33928294			
$ \begin{bmatrix} 0.00000003 & 0.00000000 & 0.26287937 & -0.02528645 \\ -0.00000038 & 0.00000000 & 0.00000000 & -0.00000655 \end{bmatrix} $	$ \begin{bmatrix} 0.00000000 & 0.00000000 & 0.26380419 & -0.02536564 \\ -0.00000000 & 0.00000000 & 0.00000000 & -0.00000141 \end{bmatrix} $			
Норма вектора н				
$26,774 \cdot 10^{-5}$	$36,52 \cdot 10^{-14}$			
Норма вектора н	тевязки $\ b-b_1\ _2$			
$24,492 \cdot 10^{-5}$	$34{,}14\cdot 10^{-14}$			
Норма вектора н				
$24,414 \cdot 10^{-5}$	$34{,}11\cdot 10^{-14}$			
Погрешность мето;				
Что-то	написать			
Число обусловлен				
$25741978.73944124 \leqslant 28865938619.82852 \leqslant 91055029023.15531921$				
Число обусловленности $(p=\infty),M_A$				
$91163201.12185164 \leqslant 7270921815$				

Список использованных источников

1. Γ аланин М.П., Γ авенков Е.Б. Методы численного анализа математических моделей. М.: Изд-во МГТУ им. Н.Э. Баумана, 2010. 592 с.