Groepen theorie

Luc Veldhuis

21 Februari 2016

Groepen theorie

Herhaling

$$|g| = 3$$
, $g = \{e, a, b\}$

Als g een (eindige) groep is, dan komt in de groepstabel elk element van g in elke rij en in elke kolom precies 1 keer voor. Uit $g_ig_i=g_ig_k$ volgt de schrapwet: $g_i=g_k$ dus j=k. Elke rij

bevat elke g_m hooguit 1 keer. g heeft n elementen, de rij heeft n partities dus elk element komt precies 1 keer voor in elke rij. Voor de kolommen geldt het zelfde.

	e	а	b
е	е	а	b
а	a	b	е
b	b	е	a

Dihedrale groep

Voor $n \ge 3$ zij

 $D_{2n} = \{\text{isommetrien van een regelmatige n hoek, dat wil zeggen, afstandsbewarende bijecties}\}$

Voorbeeld

n=4, $\frac{2\pi}{4}i$, $i\in\{0,1,2,3\}$, geeft 4 spiegelingen. n=3, 3 rotaties over $\frac{2\pi}{3}i$ $i\in\{0,1,2\}$, heeft 3 spiegelingen.

Opmerking

 D_{2n} heeft 2n elementen. In veel boeken heet het D_n voor het aantal hoekpunten.

Opgave

 D_{2n} is een groep onder samenstelling van functies.

Na te gaan:

- als f, g in D_{2n} dan is $f \circ g$ dat ook
- Er is een neutraal element, de identieke afbeelding.
- Associativiteit, samenstelling van functies is altijd associatief.
- Als f ∈ D_{2n} dan is f⁻¹ de inverse afbeelding. Ook in D_{2n}:
 de inverse van een bijectie behoudt ook alle afstanden.
 Te controleren: d(f⁻¹(x), f⁻¹(y)) = d(x, y)

Regelmatige n-hoek

Merk op:

Als d(P,Q) met P, Q in de n-hoek, maximaal is dan zijn P en Q hoekpunten. Als $f \in D_{2n}$ is, dan zijn f(P) en f(Q) weer hoekpunten. Als f bekend is op de hoekpunten, dan ligt f vast: Zij r de rotatie over $\frac{2\pi}{n}$ met $r^n = id$ de identiteit. $r^{\circ} = id = e, r, r^2, \dots, r^{n-1}$ zijn alle verschillend. Zij s de spiegeling in lijn door 1 en het centrum C. $s \neq id$ want s(1) = 1, $s(2) = n \ge 3$. Dan is $D_{2n} = \{e, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\}$ Dan (1) zijn die elementen s, r verschillend en (2) dit is heel D_{2n} . Voor (1): de r^i (0 > i > n - 1) zijn verschillend. Stel $sr^i = sr^j \text{ met } 0 > i < j > n-1 \text{ dus } r^i = r^j \text{ kan niet.}$ Stel $r^i = sr^j$, dan $s = r^i r^{-j} = r^{i-j}$ maar s(1) = 1 en $r^{i-j} = 1 + i + j \mod n$, maar $i - j \in \{-(n-1), \dots, n-1\}$ dan is s = e kan niet.

Regelmatige n-hoek (vervolg)

Voor (2) neem $\sigma \in D_{2n}$ dan is er een $i \in \{0, 1, ..., n-1\}$ zodat $\sigma \circ r^{-i}$ 1 op 1 afbeeldt. Dus $\sigma \circ r^{-i} = e$ of s en $\sigma = r^{-i}$ of sr^i .

Hoe reken je in D_{2n} ?

 D_{2n} is niet commutatief. $r^i s = sr^{-i}$ $s = s^{-1}$ Neem n = 7, dan geldt: $r^3 sr^6 = sr^{-3}r^6 = sr^3$ $(sr^2)^{-1} = (r^2)^{-1}s^{-1} = r^{-2}s^{-1} = s^{-1}r^2 = sr^2$

Symmetriegroepen

Permutatie groepen

```
\boldsymbol{\Omega} een niet lege verzameling
```

$$S_{\Omega} = \{ \text{bijecties met } f : \Omega \to \Omega \}$$

 S_{Ω} is een groep onder samenstelling van functies.

Als $\Omega = \{1, ..., n\}$, dan heet de groep S_n de permutatie groep op n elementen. $|S_n| = n!$

Cycles

```
Als a_1, a_2, \ldots, a_m \in \{1, 2, \ldots, n\} verschillend zijn, dan is (a_1 \ a_2 \ \ldots \ a_m) de permutatie van \{1, 2, \ldots, n\} met: a_1 \mapsto a_2 \ldots a_m \mapsto a_1  (a_1 \ a_2 \ \ldots \ a_m) heet de m-cycle.
```

Symmetriegroepen

Waarschuwing

Een 1-cycle is de identieke afbeelding e.

Rekenregels

- $(a_1 \ldots a_m)^{-1} = (a_m \ldots a_1)$
- $(a \ldots a_m) = (a_1 \ldots a_k)(a_k a_{k+1} a_m) \text{ voor } 0 \leq k \leq n$
- $\bullet \ \sigma(a_1 \ldots a_m)\sigma^{-1} = (\sigma(a_1) \ldots \sigma(a_m))$
- Een m-cycle heeft orde *m*.