NAME:				
-------	--	--	--	--

Problem	Points
1	/16
2	/13
3	/13
4	/20
5	/19
6	/19
BONUS	/10
Total	/100

INSTRUCTIONS:

- 1. Answer the following 6 problems. If you have time, attempt the bonus problem.
- 2. Write your answers in the space provided. If you do not have enough space, continue on the back side of the *previous* page.
- 3. Show all details of your work. Answers without justification will receive zero points.
- 4. Neither notes, books nor calculators are allowed in the exam. You may use a $3'' \times 5''$ notecard.
- 5. Relax. Think before (and after) doing.

1.	Find the area of the parallelogram with vertices $A(-2,1),\ B(0,4),\ C(4,2),$ and $D(2,-1).$
2.	Find an equation of the plane through the point $(1, -1, -1)$ and parallel to the plane $5x - y - z = 6$

3. Classify and sketch the surface $y^2 = x^2 + \frac{1}{9}z^2$.

4. For the curve

$$\mathbf{r}(t) = \cos t \,\mathbf{i} + 3t \,\mathbf{j} + 2\,\sin 2t \,\mathbf{k}$$

- (a) Find the unit tangent vector $\mathbf{T}(t)$ at the point where t = 0.
- (b) Find the parametric equations for the tangent line to the curve at t=0.

5. The hypocycloid (shown below) is the curve parametrized by $x = \cos^3 t$, $y = \sin^3 t$. Find the length of the curve.

(b) The curve $y = x e^{-x}$ and the curvature of this curve are shown on the graph below. Identify (with reasons) which is which.

(c) At what point does the curve $y = x e^{-x}$ have minimal curvature?

BONUS Given nonzero vectors \mathbf{a} and \mathbf{b} , do the equations $\mathbf{a} \times \mathbf{c} = \mathbf{b}$ and $\mathbf{a} \cdot \mathbf{c} = |\mathbf{a}|$ uniquely determine the vector \mathbf{c} ?