# Neural Speech Synthesis with Transformer Network

Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, Ming Liu

University of Electronic Science and Technology of China

Microsoft Research Asia

Microsoft STC Asia

#### Tacotron2

#### A neural network architecture for speech synthesis directly from text

- **3-layer CNN**: extracts a longer-term text context.
- Bi-directional LSTM: encoder.
- Location sensitive attention: connects encoder and decoder.
- **Decoder pre-net**: a 2-layer fully connected network.
- **2-layer LSTM**: decoder.
- Mel linear: a fully-connected layer, generates mel spectrogram frames.
- **Stop linear**: a fully-connected layer, predicts the stop token for each frame.
- **Post-net**: a 5-layer CNN with residual connections, refines the mel spectrogram.



#### Transformer

## A sequence to sequence network based solely on attention mechanisms

Encoder: 6 blocks.

Decoder: 6 blocks.

Positional embeddings: add positional information (PE) to input embeddings

$$PE(pos,2i) = \sin(rac{pos}{10000^{rac{2i}{d_{model}}}}) \ PE(pos,2i+1) = \cos(rac{pos}{10000^{rac{2i}{d_{model}}}}) \ 10000^{rac{2i}{d_{model}}})$$

- (Masked) Multi-head attention:
  - Splits each Q, K and V into 8 heads
  - Calculates attention contexts respectively
  - Concatenates 8 context vectors
- **FFN**: feed forward network, 2 fully connected layers.
- Add & Norm: residual connection and layer normalization.



#### Why apply Transformer in TTS

- Parallel training
  Frames of an input sequence can be provided in parallel.
- Long range dependencies
   Self attention injects global context of the whole sequence into each input frame.







#### **Text-to-Phoneme Converter**

- Difficult to learn all the regularities without sufficient training data
- Some exceptions have too few occurrences for neural networks to learn
- Convert text into phonemes by rule:





#### **Scaled Positional Encoding**

- Transformer adds information about the relative or absolute position by adding a positional embedding (PE) to input embeddings
- In TTS scenario, texts and mel spectrograms may have different scales
  - Scale-fixed positional embeddings may impose heavy constraints on both the encoder and decoder pre-nets
- Add a trainable weight to positional embeddings

$$x_i = prenet(phoneme_i) + \alpha \cdot PE(i)$$

 Positional embeddings can adaptively fit the scales of both encoder and decoder pre-nets' output



#### **Pre-nets of Encoder and decoder**

- Similar structure and function as in Tacotron2
- An additional linear projection is appended
  - Positional embeddings are in [-1, 1]
  - After *relu*, the outputs of pre-nets are in  $[0, +\infty)$
  - Re-center to have a 0-centered range



#### **Encoder and decoder**

- Model the frame relationship in multiple different aspects.
- Inject the global context of the whole sequence into each frames.
- Enable parallel computing to improve training speed.



#### **Stop linear**

- Predicts whether should inference stop at current frame.
- Unstoppable inference may occur
  - During training, each sequence has only one "stop" while hundreds of "continue".
  - Imbalance positive/negative samples result in biased stop linear.
  - Solution: impose a weight (5.0 ~ 8.0) on the "stop" token when calculating binary cross entropy loss during training.

#### Experiment

#### **Training Setup**

- 4 Nvidia Tesla P100
- Internal US English female dataset
  - 25-hour professional speech
  - 17584 text-wave pairs
- Dynamic batch size
  - Various sample number
  - Fixed mel spectrogram frame number

## **Text-to-Phoneme Conversion** and **Pre-process**

- Phoneme type:
  - Normal phonemes
  - Word boundaries
  - Syllable boundaries
  - Punctuations
- Process pipeline:
  - Sentence separation
  - Text normalization
  - Word segmentation
  - Obtaining pronunciation

#### **WaveNet Settings**

- Sample rate: 16000
- Frame rate (frames per second): 80
- 2 QRNN layers
- 20 dilated layers
- Residual and dilation channel size: 256

### Experiment

#### **Training Time Comparison**

|                                 | Tacotron2 | Transformer |
|---------------------------------|-----------|-------------|
| Single step<br>(batch size=~16) | ~ 1.7s    | ~ 0.4s      |
| Total time                      | ~4.5 days | ~3 days     |

#### **Inference Time Comparison**

|                              | Tacotron2 | Transformer |
|------------------------------|-----------|-------------|
| Synthesize<br>1s spectrogram | ~ 0.13s   | ~ 0.36s     |

#### Evaluation

#### **Evaluation setup**

- 38 fixed examples with various lengths
- Each audio is listened to by at least 20 testers (8 testers Shen et al. (2017))
- Each tester listens less than 30 audios

#### **Baseline model**

- Tacotron2
  - Use phone sequence as inputs
  - Other structure are same as Google's version

#### Results

| System                 | MOS                                | CMOS              |
|------------------------|------------------------------------|-------------------|
| Tacotron2<br>Our Model | $4.39 \pm 0.05$<br>$4.39 \pm 0.05$ | 0<br><b>0.048</b> |
| Ground Truth           | $4.44 \pm 0.05$                    | -                 |

CMOS: comparison mean option score. Testers listen to two audios each time and evaluates how the latter feels comparing to the former using a score in [-3, 3] with intervals of 1

#### Evaluation

#### **Generated sample comparison**



More samples at <a href="https://neuraltts.github.io/transformertts/">https://neuraltts.github.io/transformertts/</a>

#### Evaluation

#### Mel spectrogram details

• Our model does better in reproducing high frequency region



#### **Re-centering Pre-net's Output**

- Re-project pre-nets' outputs for consistent center with positional embeddings
- Center-consistent PE performs slightly better

| Re-projection | MOS                                       |  |
|---------------|-------------------------------------------|--|
| No<br>Yes     | $4.32 \pm 0.05$<br><b>4.36</b> $\pm 0.05$ |  |
| Ground Truth  | $4.43 \pm 0.05$                           |  |

#### **Different Positional Encoding Methods**

- Final positional embedding scales of encoder and decoder are different
- Trainable scale performs slightly better.
- Reason:
  - Constraint on encoder and decoder pre-nets are relaxes
  - Positional information are more adaptive for different embedding spaces



| PE Type         | MOS                                       |
|-----------------|-------------------------------------------|
| Original Scaled | $4.37 \pm 0.05$<br><b>4.40</b> $\pm 0.05$ |
| Ground Truth    | $4.41 \pm 0.04$                           |

## **Different Hyper-Parameter: layer number impact**

• For encoder-decoder attention, only alignments from certain heads of the beginning 2 layers' are interpretable diagonal lines



Decoder input time step

 More layers can still refine the synthesized mel spectrogram and improve audio quality



## Different Hyper-Parameter: head number impact

Reducing head numbers harms performance

| Head Number      | MOS                                       |
|------------------|-------------------------------------------|
| 4-head<br>8-head | $4.39 \pm 0.05$<br><b>4.44</b> $\pm 0.05$ |
| Ground Truth     | $4.47 \pm 0.05$                           |

 Comparison of time consuming (in second) per training step of different layer and head numbers

|        | 3-layer | 6-layer |
|--------|---------|---------|
| 4-head | -       | 0.44    |
| 8-head | 0.29    | 0.50    |

(Tested on 4 GPUs with dynamic batch size)

## Thank you!