7630 – Autonomous Robotics Robotic Behaviors and Simple Control

Cédric Pradalier

Today

Introduction

Reactive Rehaviours

Point stabilisation for non-holonomic vehicles

Pose stabilisation for non-holonomic vehicles

Trajectory and Path Following for non-holonomic vehicles

Introduction

Objectives

- ► Examples of Behavior-Based systems
- ► Examples of Simple Control Laws
- Understanding of the advantages and limitations

Topics

- ► Braitenberg vehicles
- ► Point Stabilisation
- ► Pose Stabilisation
- ► Line Following

Introduction

Reactive Behaviours

Point stabilisation for non-holonomic vehicles

Pose stabilisation for non-holonomic vehicles

Trajectory and Path Following for non-holonomic vehicles

What is behavioral robotics?

Concept

Defining a behavior is a way to define how a robotic system will react to a specific set of stimuli, i.e. sensor readings or situations.

Questions

- What is the most appropriate way to define and describe such a behavior?
- ► How to optimise such a behavior?
- ▶ How to combine behaviors, i.e. how to build an architecture?

Advantage and inconvenients

Advantage

- ► No need for models (kinematic, dynamic)
- No need for complex localisation, mapping, environment modelling, control, ...
- ► Can be used to explain/interprete/model animal behavior.

Inconvenients

- ► No standard representation
- ▶ Not always possible to give performance guarantees
- ► Not necessarily very portable

JPL: Tooth and Rocky, '91

Video: videos/vid1016-84-video6.avi

Link with animal behaviors

Video: videos/cockroaches.wmv

Cockroach guide to survival

- ▶ Light goes on, the cockroach turns and runs
- ▶ When it gets to a wall, it follows it
- ▶ When it finds a hiding place, goes in and faces outward
- Wait until not scared, then comes out, even if the lights are turned back off earlier.

Braitenberg vehicles

History

Neuro-biologist Valentino Braitenberg, *Vehicles: Experiments into Synthetic Psychology* (1984). "How sentient creatures might have evolved from simpler organisms".

Concept

A robot is a system with a set of sensors with analog output and motors with analog input (velocity). A behaviour is defined by the connection of the sensor output to the motors, eventually through operators.

Example

Setup

- ► Robot moving on a rail with a single motor
- ► Two light sensors looking left and right, analog output
- ► One light source, possibly moving

Objective: track the light source

Implementation

Application

Setup

- ► Bidirectional robot (same as bubblebot)
- ► Some analog sensors (range or light)

Question

- ► Setup a system seeking for light
- ► Setup a system for obstacle avoidance and exploration
- Setup a system for wall following
- Setup a system for platooning with or without a light beacon on the front vehicle.

Light seeker

Combining behaviours - Architectures

Example: Priority / Subsumption

Behavior 2 is active by default but will be replaced by Behavior 1 if the latter is active.

- ► Works when there is no sequentiality (but sequences can be encoded in the arbitration mechanism).
- Complexity increases when the number of possible behavior increases.

Summary

Advantages of Behavior-Based Robotics

- ▶ Very little computing power required
- ► Intuitive implementation of simple behaviors
- ► Emergent behaviors out of simple behaviors

Challenges

- ► Often difficult to get performance guarantees
- ► Does not necessarily scale very well
- ► Hard to reuse

Ultimately, tools like classical control or sensor-based control are more often used outside of the AI community.

Introduction

Reactive Rehaviours

Point stabilisation for non-holonomic vehicles

Pose stabilisation for non-holonomic vehicles

Trajectory and Path Following for non-holonomic vehicles

Point stabilisation

How to go there?

Objectives and constraints

- ▶ Desired position: (X^*, Y^*) or (X^*, Y^*, θ^*) .
- ▶ Wheel constraints (kinematics) prevent decoupled control.

First approach with infinite curvature

Principle

1. Turn towards target:

$$\omega = k_{\omega} \left[\operatorname{atan2}(Y^* - Y, X^* - X) - \theta \right]$$

2. Go to the target:

$$v = \min(k_v \cdot \operatorname{hypot}(Y^* - Y, X^* - X), v_{\mathsf{max}})$$

3. Eventually align with desired angle:

$$\omega = k_{\omega} \left[\theta^* - \theta \right]$$

Step 2 together with step 1 (σ is another scaling gain):

$$v = \min(k_v \cdot \text{hypot}(Y^* - Y, X^* - X), v_{\text{max}}) \times e^{-\frac{\omega^2}{\sigma^2}}$$

First approach with infinite curvature

Remarks

- ► Works well with differential robots.
- ▶ Requires a state machine to decide when to align (step 3).

Questions

- ► Let's assume we work with a blimp. What is the consequence of wind? How to modify the control to deal with it?
- ▶ Draw the path of car trying to apply step 1 and 2 in a worst case situation.

Introduction

Reactive Rehaviours

Point stabilisation for non-holonomic vehicles

Pose stabilisation for non-holonomic vehicles

Trajectory and Path Following for non-holonomic vehicles

Pose Stabilisation (External)

Source:

- ► Autonomous Mobile Robots, Siegwart et al.
- http://www.asl.ethz.ch/education/master/mobile_ robotics/year2007/S_3b_-_Motion_Control_Wheel.pdf

Questions:

- ▶ Does this solve the problem of curvature constraints?
- ▶ What will be the effect of constant perturbation (e.g. wind)?

Introduction

Reactive Rehaviours

Point stabilisation for non-holonomic vehicles

Pose stabilisation for non-holonomic vehicles

Trajectory and Path Following for non-holonomic vehicles

Paths and Trajectories

Definition: Path

Sequence of position/configuration that the robot must achieve, in general continuous but not necessarily indexed by time. Example, spline X(u), with $u \in [0,1]$

Definition: Trajectory

Path indexed by time. Example X(t), $t \in [0, T]$. If X is a trajectory, \dot{X} is the velocity vector of the system.

Trajectory following

Context

- ▶ Desired trajectory $X^*(t)$. Here $X^*(t) = (x^*(t), y^*(t), \theta^*(t))$.
- ► Current state X(t), here $X(t) = (x(t), y(t), \theta(t))$.

Constraints

- A good trajectory planner will guarantee that there exist a control function u(t) which applied to the model of the vehicle, will make it realise $X^*(t)$.
- ► The vehicle has constraints: maximum velocity, maximum steering, maximum curvature, maximum acceleration...

Trajectory following

▶ Simplest solution (with $\Delta a = a^*(t) - a(t)$):

$$v = k_x \cdot \Delta x$$

$$\omega = k_y \Delta y + k_\theta \Delta \theta \ (+k_\kappa \Delta \kappa)$$

P. Ridley and P. Corke. Load haul dump vehicle kinematics and control. Journal of Dyn. Sys, Measurement and Control, 2003.

Trajectory/Path following: Samson et al.'91

For a path

- \blacktriangleright Reference point X^* is the closest point on the path
- $\triangle x = 0$
- \triangleright v = cste

$$\omega = \omega_{ref} + k_y v_{ref} \frac{\sin \Delta \theta}{\Delta \theta} \Delta y + k_\theta \Delta \theta$$

For a trajectory

- Samson C. and Ait-Abderrahim K. Feedback control of a nonholonomic wheeled cart in cartesian space. ICRA'91.
- Stumm E. et al. Tensor Voting Based Navigation for Robotic Inspection of 3D Surfaces Using Lidar Point Clouds, IJRR'12, pp 13-14

Trajectory/Path following: Samson et al.'91

Questions

- ▶ What is the purpose of ω_{ref} or v_{ref} ? Why are they called feed-forward terms?
- ► How would you tune such a controller?

Introduction

Reactive Rehaviours

Point stabilisation for non-holonomic vehicles

Pose stabilisation for non-holonomic vehicles

Trajectory and Path Following for non-holonomic vehicles

Conclusion

Reactive Behaviour

- Generic term for any control with no memory, no planning, no environment model
- ► Cheap and efficient, when possible.

Non-holonomic control

- ▶ Lot of ad-hoc tools (and only a subset presented).
- Point stabilisation and trajectory following.
- ► Control seen as a reactive behaviour