算法

Short Name	Full Name	Comments
BrFS(BFS)	Breadth-first-search	- Completeness - Optimality(if costs are uniform)
DFS	Deep-first-search	- Not completeness - Not optimality
ID	Iterative Depening	- Completeness - Optimality
GBFS	Greedy Best-First Search	
BFWS	Best-First Width Search	
h^*		- Optimal one (theoretical)
\$h^+\$		Safe, Admissible (drop deletion)
h^{add}		Safe, not admissible (based on \$h^+\$)
h^{max}		Safe, admissible (based on \$h^+\$)
\$IW(k)\$	- if $novetly(s) > k$, then prune	- try to solve problem first in $IW(1)$, if not solved, then $IW(2)$, novetly: smallest subset of atoms (which is first showing up) size of the new state
MDP	$V(s) = \max_{a \in A(s)} \sum_{s' \in S} P_a(s' s) \left[r(s, a, s') + \gamma V(s') ight]$ Or $Q(s, a) = \sum_{s' \in S} P_a(s' s) \left[r(s, a, s') + \gamma V(s') ight]$ $V(s) = \max_{a \in A(s)} Q(s, a)$	fully observable, probabilistic state models • a state space S • initial state $s_0 \in S$ • a set $G \subseteq S$ of goal states • actions $A(s) \subseteq A$ applicable in each state $s \in S$ • transition probabilities $P_a(s' s)$ for $s \in S$ and $a \in A(s)$ • action costs $c(a,s) > 0$ • value iteration:(update value via last iteration value) $V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s' s) [r(s,a,s') + \gamma V_i(s')]$ • policy iteration:(update policy via existing policy)

Reinforcement Learning Cons

- Unlike Monte-Carlo methods, which reach a reward and then backpropagate this reward, TD methods use bootstrapping (they estimate the future discounted reward using Q(s,a)), which means that for problems with spare rewards, it can take a long time to for rewards to propagate throughout a Q-function.
- Both methods estimate a Q-function Q(s, a), and the simplest way to model this is via a Q-table. However, this requires us to maintain a table of size $|A| \times |S|$, which is prohibitively large for any non-trivial problem.
- Using a Q-table requires that we visit every reachable state many times and apply every action many times to get a good estimate of Q(s, a). Thus, if we never visit a state s, we have no estimate of Q(s, a), even if we have visited states that are very similar to s.
- Rewards can be sparse, meaning that there are few state/actions that lead to non-zero rewards. This is problematic because initially, reinforcement learning algorithms behave entirely randomly and will struggle to find good rewards. Remember the Freeway demo from the previous lecture?