LaPIS Diagnostic Test Workbook - Mathematics

Name : Deepak S T

Class: 7

Section : B

School : AKV Public School

Login ID : AKV135

Deepak S T's Performance Report

Score: 22/40 Percentage: 55.0%

Deepak S T's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S			ipal Signature	

Basic arithmetic

	Topics to be Improved
LCM	Finding LCM

Hi, here in this video you will learn LCM

Question: 1

Fill the hexagon with factors and multiples of 10.

.....

Answer:

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

Therefore, factors of 10 are _____ and multiples of 10 are ____.

 $\underline{Question:\ 2}$

Find the LCM of 50, 100.

Answer:

Complete the division using least common multiple.

50	, 100	

The LCM of 50, 100 is 2 x 2 x ____ x ___.

Question: 3

Every number is the multiple of _____

Answer:

Let's find the first ten multiple of random numbers,

Multiple of $1 = \underline{\hspace{1cm}}$

Multiple of $2 = \underline{\hspace{1cm}}$

Multiple of 13 =

Multiple of 20 = _____

Here, _____ is the common factor of every number.

Data handling

		T	opics to	be Imp	roved		
Arithmetic me and median	ean, mode	Mean,	Median a	nd Mode	,		
Hi, here in thi	s video you	ı will le	earn Me	an, M	${ m edian,\ N}$	Iode	
Question: 4							
Find the mode of	the following	data: 5	, 15, 23, 5	, 32, 44,	72, 55, 6, 3	8, 5, 65, 45,	67, 24, 19 and 98.
$\underline{Answer:}$							
Mode is the numb Arranging the dat	a in ascendin	g order:					list of observations.
$\overline{Question: 5}$				•			
_	1	\	5		6	9	
$\underline{Answer:}$							
Median is the ascending or desce Arrange the given Central value of the	ending order. data in ascer	nding or	der :				
Question: 6				•••••		• • • • • • • • • • • • • • • • • • • •	
	Marks scored	d	100	90	80	70	
	Number of st	udents	4	5	2	1	

 $Mean = \underline{\hspace{1cm}} , \, Median = \underline{\hspace{1cm}} \text{ and } Mode = \underline{\hspace{1cm}} .$

Answer:	,

Mean = ______ of all observation ______, number of observation = ______, number of observation = ______, number of observation = ______.

Therefore, mean = ______, mode = ______.

Here, median = ______, mode = _____.

Geometry

Topics to be Improved					
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle				
Right angle triangle and pythagoras property	Basics of Pythagoras property				
Related angles	Basic of angles				
Faces vertex and edges	Idenfication of faces, edges and vertices				

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 7

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are ______.

The possible way to reach point C from point A are ______ and AB then to _____.

Side AC = ______.

Side AB + BC = _____ + ____ = ____.

Therefore, the greatest distance to reach C from A in the given diagram is _____.

Question: 8 ______ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

Answer:

There are _____ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

 ${\bf Example:}\ {\bf In}\ {\bf triangle}\ {\bf XYZ},$

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = ____ + ___ = ___ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn Pythagoras property

Question: 10	<u> </u>	 	 	 	 	 	 	

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that _____ ...

Question: 11

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

Given: Base = _____, Altitude = _____,

Base and altitude are _____ (hypotenuse/legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

 $= ___ + ___$

Therefore, hypotenuse of the triangle is _____.

Question: 12

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem, $(____)^2 = (___)^2 + (___)^2$ $= __ + ___$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Related Angles

Question: 13

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a $\underline{\hspace{1cm}}$ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

A ______ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a ______ (straight / perpendicular) line. The measure of the angle formed is _____ and it is called _____ angles.

Question: 14

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Find the complementary angles in the given diagram.

Two angles are said be complementary if sum of their angles is equal to $\angle AOB =$, and its complement angle is $\angle BOC =$, and its complement angle is $\angle COD =$, and its complement angle is $\angle DOE =$, and its complement angle is Therefore, in the given figure the complementary angles are $\angle AOB$, and $\angle BOC$,
Hi, here in this video you will learn Basics of 3D model
$\underline{Question:\ 16}$
A point at which two or more lines segments meet is called(Vertex/ edges/ faces).
$\underline{Answer:}$
has two end point (line/line segment/ray). A is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,

Question: 17

Mark and find the number of vertices, edges and faces in a cube.

Mark the vertex, edges and faces in a cube.

Count the number of vertex, edges and faces in a cube.
Cube have vertices, edges and faces.
$Question: \ 18$

How many vertices, edges and faces does dices have?

Answer:			
The shape of d	ice is		
Dices have	vertices,	edges and	faces.

Number system

Topics to be Improved		
Integers	Basics of integers	
Fractions	Multiplication of fractions	
Operations on rational numbers	Subtraction of rational numbers	
Exponents	Solving exponents	
Introduction to rational numbers	Basics of rational numbers	
Positive and negative rational numbers	Identification of positive rational numbers	

Hi, here in this video you will learn Basics of integers

Question: 19

Highlight the ring that contains whole numbers.

Α	$\mathbf{l} n$	si	ve	r:

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are _____ numbers.

The numbers inside the middle ring are _____ numbers.

The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as ______.

Question: 20

Colour the frame of the box which contains the number $1,\,4$ and -10

Whole numbers

Negative numbers

Integers

Naturals numbers

Answer:

Whole number consists of 0,1,2,3,4,.... Negative number consists of ______. Natural numbers consists of ______. Integers consists of ______.

Question: 21

State whether the statement is true or false.

Every positive number is an integer.

Answer:

Positive numbers are ______. Integers consists of _____. Therefore, positive numbers are ______ (in/not in) integers.

Hi, here in this video you will learn Multiplication on fractions

Question: 22

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as ____ in fraction.

4 can be written as ____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 23

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____ Fraction of students who are girls = _____

Number of girls $=$	×		=	
---------------------	---	--	---	--

Question: 24

Solve : $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is ____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

Hi, here in this video you will learn **Operation on rational numbers**

Question: 25

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$$

Question: 26

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$.

Shaded part of box A in fraction = _____ Total number of square in box $B = \underline{\hspace{1cm}}$. Number of shaded square in box $B = \underline{\hspace{1cm}}$. Shaded part of box B in fraction = _____. Shaded part of box A + Shaded part of box B = $___$ + $___$ = $___$ Question: 27 Find the missing values in the given figure. Answer: One litre = $_$ ml $\frac{7}{10}$ of one liter $=\frac{7}{10}$ x ___ ml = __ ml Given: $1 = \frac{7}{10} +$ _____ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} =$ ______ Therefore, result is _ Hi, here in this video you will learn Exponents and power Question: 28 Find the exponential form of 1000. Answer: (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as _____ (Base / Power). 1000 can be written as = $10 \times$ ____ × ___ 10 is raised to the power of $\underline{\hspace{1cm}} = (10)^{\underline{\hspace{1cm}}}$

www.learnbasics.fun

Find the value of $(-2)^3$.

Question: 29

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
 , base = ____, power = ____. $(-2)^3$ = ____ × ___ = ___.

.....

Question: 30

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is ____ ($(k)^5$ or $(5)^k$).

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn Basics of rational numbers

Question: 31

The numbers in the diagram represents_____.

.....

Answer:
21100 WC1 •

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as ______ numbers.

Question: 32

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer),

.....

......

denominator is equal to ______(zero/ one/ any integer other than zero).

$Question:\ 33$

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$

$$\frac{-3}{2}$$

$$\frac{12}{-6}$$

$$\frac{0}{-0}$$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, _____ is/are rational number and _____ is/are not a rational number.

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 34

Segregate positive and negative rational number.

- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _______ and negative rational numbers are ______.

Question: 35 ______ is a ______ (positive / negative / neither positive nor negative) rational number.

Answer:

-3 is a ______ number, -4 is a ______ number.

Division of ______ and this ______ rational number.

(Positive / Negative / Neither positive nor negative rational number)

Question: 36

The product of a positive rational number and a negative rational number is ________rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers: ______ Examples for negative rational numbers: _____ Positive rational number × Negative rational number = ____ × ___ = ___ and this is _____ rational number

Comparing Quantities

Topics to be Improved		
Simple interest	Calculation of simple interest	
Hi, here in this video you Question: 37	will learn Simple Interest	
Match the following.		

	Column A
i	Principle(P)
ii	Amount (A)
iii	Rate (R)
iv	Time period (T)

	Column B
a	Interest calculated based on this
b	Total sum you borrow
c	Number of years
d	Total sum with interest

Answer:
Formula for calculating simple interest = Interest calculated based on Total sum you borrow is known as Number of years is Total sum with interest is
Question: 38
Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.
Answer:
Given: Amount =, Principle =, Time period = If Amount and principle is given, then formula for calculating interest is Interest = =
Question: 39
The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.
Answer:
$Interest = \underline{\hspace{1cm}} , \ Time \ period = \underline{\hspace{1cm}} , \ Principal = \underline{\hspace{1cm}} .$
Rate of interest $=\frac{x \cdot 100}{\text{Principal x}}$

Substituting values in the formula,

Rate of interest $= \frac{\underline{\qquad} x \ 100}{\text{Principal } x \ \underline{\qquad}}$

 ${\rm Rate\ of\ interest} = \underline{\hspace{1cm}}$

Therefore, the rate of interest is ______ %

Algebra

	Topics to be Improved
Basics of simple equation	Formating of simple equation, Solving of simple equation
Monomials, binomials, trinomials and polynomials	Types of algebraic expression
Addition and subtraction of algebraic expressions	Like terms and Unlike terms
subtraction of algebraic expressions	subtraction of algebraic expressions

Hi, here in this video you will learn Solving an equation using application

Question: 40

Box B contains	\longrightarrow times the nu	mber of cho	colates in Bo	vΔ

Answer:

Box A contains _____ chocolates.

Box B contains _____ chocolates.

No. of chocolates in Box $B = \underline{\hspace{1cm}} \times (No. of chocolates in Box A)$

Question: 41

Write the equation for the following statement.

Subtracting four times of m from 4 is n

Answer:

Four times of $m = \underline{\hspace{1cm}}$

Subtracting four times of m from $4 = \underline{\hspace{1cm}}$

The equation is _____

Question: 42
Compare the given two statements $(<,>,=)$
Sum of $2a$ and $9 \square$ Add 9 to the product of a and 2
Answer:
Sum of $2a$ and $9 = \underline{\hspace{1cm}}$
Product of a and $2 = \underline{\hspace{1cm}}$
Add 9 to the product of a and $2 = \underline{\hspace{1cm}}$
Therefore, sum of $2a$ and 9 \square Add 9 to the product of a and 2
Hi, here in this video you will learn Types of expression
Question: 43
There are terms in the expression $7x + 3y + m + 5$.
Answer:
In algebraic expression, (variables/ terms) are connected together with operations of addition. The terms in the expression are,, and Therefore, there are terms in the expression.
Question: 44
Classify the following expression into monomial, binomial and polynomial.
1. $7m + n + 2$
2. $8x^2 + 0$
3. 7xy + 4m
Answer:
1. The terms in expression $8x^2 + 0$ are Here, expression has term and it is a
2. The terms in expression $7xy + 4m$ are Here, expression has term and it is a
3. The terms in expression $7m + n + 2$ are Here, expression has term and it is a

<u>Question: 45</u>
$5m^2 + m + 0$ is a expression. (Monomial/ Binomial/ Trinomial)
Answer:
The terms in expression $5m^2 + m + 0$ are Here, the expression has terms and it is called a expression.
Hi, here in this video you will learn Addition on expression
Question: 46
Shade the like terms.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Answer:
Given terms are Two or more term have (same/ different) variables is called like terms. Here, like terms are
Question: 47
Complete the expression $7r^2 + r \square - 2 \square = \underline{r^2}$
Answer:
(Like / Unlike) terms can be added or subtracted.
$_{7r^2+ \ r} \square_{-2} \square = (7 + \underline{-2})_{r^2} = \underline{-}$
Overtions 18
Question: 48 Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.
(i) Total chocolates Ram and Sam have :
(ii) How many icecreams Sam have more than Ram :
(11) How many recordants bain have more than rain

	Chocolates	Icecream
Sam		
Ram		

(i)) Total	${\it chocolates}$	Ram	and	Sam	have	:
-----	---------	--------------------	-----	-----	-----	------	---

Ram's chocolate + Sam's chocolates = $___$ + $___$ = $__$

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - __ = ____

......

.....

Hi, here in this video you will learn Solving an equation

Question: 49

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

Question: 50

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

2) 7 + 3 = -4

 $l \sqsubseteq + 3 = -4$

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

7× ____+3= ____

 $7 \times$ _____+3 = _____

 $7 \times __+3 = __$

 $7 \times$ _____+3 = _____

 $7 \times __+3 = __$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 51

Arrange the terms in the descending order when the value of x is 2.

2x $5x \times 1$ x+3 2x-4 $\frac{1}{2}x$

Answer:

The given expression are _____

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \frac{1}{2}x = \frac{1}{2} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

.....

......

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____, _____, _____.

Hi, here in this video you will learn Subtraction on expression

Question: 52

Find the sum of two expressions a + b + c and b + c + d

Answer:

The given two expressions are _____ and ____.

The two terms will get added only if they are _____(Like/ Unlike) terms.

The sum of two expressions = $\underline{\hspace{1cm}}$ + $\underline{\hspace{1cm}}$.

The answer is _____

Question: 53

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

Answer:

- (i) Number of boys in school A = _____,

 Number of boys in school B = _____.

 Total number of boys in school A and school B is _____ + ___ = ____
- (ii) Number of boys in school $B = \underline{\hspace{1cm}}$, Number of girls in school $B = \underline{\hspace{1cm}}$.

 Total number of students in school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 54

Solve the following:

$$\begin{array}{c}
13x + \underline{\hspace{1cm}} \\
(+) \quad 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$