ЛАБОРАТОРНАЯ РАБОТА

Приближение функций

Цель: сформировать практические навыки описания и анализа используемых алгоритмов; создания программной реализации системы с заданными свойствами

Задачи: восстановления (доопределения) функции, заданной на дискретном множестве точек

Задание 4.1.

Дана функция y = f(x), узлы.

Требуется построить аналитическое выражение интерполяционного многочлена $P_n(x)$ (n = 0, 1, 2, 3) для функции f(x) в форме Ньютона по заданным узлам. Вычислить приближенное значение функции в заданной точке x^* , фактическую погрешность, оценить

теоретическую.

- 1) Заполняем таблицу разделенных разностей.
- 2) Получаем аналитические выражения для интерполяционных многочленов и погрешности.
- 3) Заполняем таблицу результатов.

i	0	1	2	3
Узлы в порядке очередности их использования				
Pi(x*) — значение многочлена в точке				
интерполирования				
$f(x^*) - P_i(x^*)$ — фактическая погрешность				
${ m M_{i+1}}$ — оценка модуля произв.				
R _i (x*) — оценка погрешности				

Задание 4.2.

1) Дана функция y = f(x), узлы, значение функции \bar{y} . Получить таблицу значений функции в узлах.

Требуется приближенно найти такое \bar{x} , что $f(\bar{x}) = \bar{y}$ тремя способами:

- а) "точно", используя аналитическое выражение обратной функции. Обозначим x st .
- б) аппроксимацией функции f(x) интерполяционным многочленом $P_n(x)$ ($n \ge 2$) в форме Лагранжа и приближенным решением уравнения $P_n(x) = \bar{y}$ методом итераций или методом секущих. Обозначим решение уравнения $P_n(x) = \bar{y}$ через x_{iter} .
- в) если существует однозначная обратная функция $f^{-1}(y)$, то поменять ролями узлы и значения функции и приближенно заменить обратную функцию интерполяционным многочленом $Q_m(y)$ ($m=0,1,2,\ldots$) в форме Лагранжа и вычислить $x_m=Q_m(\bar{y})$.

Результаты привести в таблицах вида

m	$X_{\rm m}$	$X_m - X_{m-1}$	$X_m - X*$
0			
1			
2			
•••			

Задание 4.3.

Дана функция y = f(x), [a, b] = [-1, 1].

Требуется построить при различных п интерполяционные многочлены Pn (x) в форме Лагранжа по равноотстоящим узлам и по узлам многочлена Чебышева. Сравнить на графике с функцией в одних осях координат.

Указание

Составить подпрограмму с параметрами:

- интерполируемая функция;
- степень многочлена;
- массив узлов.

Подпрограмма должна возвращать аналитическое выражение интерполяционного многочлена в форме Лагранжа заданной степени по заданной таблице узлов для заданной функции.

Рассмотреть функции: a) $\sin(x)$; б) |x|; в) $\frac{1}{1+25x^2}$.

ПРИЛОЖЕНИЕ 1 Схема вариантов к лабораторной работе

N	Выполняемые задачи	N	Выполняемые задачи
1	4.1.1	16	4.1.7
2	4.2.1	17	4.2.7
3	4.1.2	18	4.1.8
4	4.2.2	19	4.2.8
5	4.3.	20	4.3.
6	4.1.3	21	4.1.9
7	4.2.3	22	4.2.9
8	4.1.4	23	4.1.10
9	4.2.4	24	4.2.10
10	4.3.	25	4.3.
11	4.1.5	26	4.1.11
12	4.2.5	27	4.2.11
13	4.1.6	28	4.1.12
14	4.2.6	29	4.2.12
15	4.3.	30	4.3.

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ

Таблица к задаче 4.1

Номер	Функция	Узлы	Точка интер-
варианта			полирования
1	$\sin(x)$	-0.6, -0.5, -0.3, -0.2, 0, 0.2	-0.4
2	$\arccos(x)$	0, 0.1, 0.2, 0.3, 0.5, 0.6	0.35
3	$\sqrt[4]{x+2}$	0, 2, 4, 5, 7, 10	3
4	$\sin(x)$	-0.6, -0.5, -0.3, -0.2, 0, 0.1	-0.4
5	$\cos(x)$	-0.6, -0.5, -0.3, -0.2, -0.1, 0	-0.4
6	$\sqrt[4]{x+2}$	0, 3, 5, 7, 8, 9	4
7	$\arcsin(x)$	-0.6, -0.5, -0.4, -0.2, 0, 0.1	-0.3
8	e^x	-0.30.2, -0.1, 0, 0.1, 0.3	0.2
9	ln(x)	1, 3, 5, 6, 8, 10	4
10	ln(x)	1, 3, 5, 6, 8, 10	7
11	$\arcsin(x)$	-0.6, -0.5, -0.30.2, 0, 0.2	0.6
12	$\sin(x)$	0, 0.1, 0.2, 0.4, 0.5, 0.8	0.4
13	$\arccos(x)$	0, 0.1, 0.2, 0.3, 0.5, 0.6	0.35
14	$\sqrt[4]{x+2}$	0, 2, 4, 5, 7, 10	3
15	$\sin(x)$	-0.6, -0.5, -0.3, -0.2, 0, 0.1	-0.4

Таблица к задаче 4.2

Номер	Функция	Узлы	Значение
варианта			функции
1	$\sin(x)$	-0.6, -0.5, -0.3, -0.2, 0, 0.2	-0.56
2	$\arccos(x)$	0, 0.1, 0.2, 0.3, 0.5, 0.6	0.75
3	$\sqrt[4]{x+2}$	0, 2, 4, 5, 7, 10	1.6
4	$\sin(x)$	-0.6, -0.5, -0.3, -0.2, 0, 0.1	-0.6
5	cos(x)	-0.6, -0.5, -0.3, -0.2, -0.1, 0	0.8
6	$\sqrt[4]{x+2}$	0, 3, 5, 7, 8, 9	1.3
7	$\arcsin(x)$	-0.6, -0.5, -0.4, -0.2, 0, 0.1	-0.8
8	e^x	-0.30.2, -0.1, 0, 0.1, 0.3	0.8
9	ln(x)	1, 3, 5, 6, 8, 10	2
10	ln(x)	1, 3, 5, 6, 8, 10	2.5
11	$\arcsin(x)$	-0.6, -0.5, -0.30.2, 0, 0.2	0.8
12	sin(x)	0, 0.1, 0.2, 0.4, 0.5, 0.8	0.56
13	$\arccos(x)$	0, 0.1, 0.2, 0.3, 0.5, 0.6	0.75
14	$\sqrt[4]{x+2}$	0, 2, 4, 5, 7, 10	1.6
15	$\sin(x)$	-0.6, -0.5, -0.3, -0.2, 0, 0.1	-0.6