A8 TRIGONOMETRY QUESTIONS

1	Solve	the	eq	uation

 $\tan x \tan 2x = 1$,

giving all solutions in the interval $0^{\circ} < x < 180^{\circ}$.

9709/03/O/N/06

[4]

- It is given that $\cos a = \frac{3}{5}$, where $0^{\circ} < a < 90^{\circ}$. Showing your working and without using a calculator to evaluate a,
 - (i) find the exact value of $\sin(a-30^\circ)$, [3]
 - (ii) find the exact value of $\tan 2a$, and hence find the exact value of $\tan 3a$. [4]

9709/32/M/J/10

3 Solve the equation

$$\cos\theta + 4\cos 2\theta = 3,$$

giving all solutions in the interval $0^{\circ} \le \theta \le 180^{\circ}$.

9709/32/M/J/11

[5]

[2]

[3]

Solve the equation $\tan 2x = 5 \cot x$, for $0^{\circ} < x < 180^{\circ}$.

[5]

9709/33/M/J/13

- 5 (i) Simplify $\sin 2\alpha \sec \alpha$.
 - (ii) Given that $3\cos 2\beta + 7\cos \beta = 0$, find the exact value of $\cos \beta$.

9709/31/M/J/14

6 (i) By first expanding $\sin(2\theta + \theta)$, show that

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta.$$
 [4]

- (ii) Show that, after making the substitution $x = \frac{2\sin\theta}{\sqrt{3}}$, the equation $x^3 x + \frac{1}{6}\sqrt{3} = 0$ can be written in the form $\sin 3\theta = \frac{3}{4}$.
- (iii) Hence solve the equation

$$x^3 - x + \frac{1}{6}\sqrt{3} = 0,$$

giving your answers correct to 3 significant figures.

9709/31/O/N/14

[4]

[6]

7 Solve the equation $\cot 2x + \cot x = 3$ for $0^{\circ} < x < 180^{\circ}$.

9709/33/M/J/15

8 By expressing the equation $\csc \theta = 3 \sin \theta + \cot \theta$ in terms of $\cos \theta$ only, solve the equation for $0^{\circ} < \theta < 180^{\circ}$. [5]

9709/31/M/J/16

9 Express the equation $\sec \theta = 3 \cos \theta + \tan \theta$ as a quadratic equation in $\sin \theta$. Hence solve this equation for $-90^{\circ} < \theta < 90^{\circ}$. [5]

9709/31/O/N/16

Express the equation $\cot 2\theta = 1 + \tan \theta$ as a quadratic equation in $\tan \theta$. Hence solve this equation for $0^{\circ} < \theta < 180^{\circ}$.

9709/33/O/N/16

- 11 (i) Express the equation $\cot \theta 2 \tan \theta = \sin 2\theta$ in the form $a \cos^4 \theta + b \cos^2 \theta + c = 0$, where a, b and c are constants to be determined. [3]
 - (ii) Hence solve the equation $\cot \theta 2 \tan \theta = \sin 2\theta$ for $90^{\circ} < \theta < 180^{\circ}$.

9709/32/M/J/17

[2]

12 Showing all necessary working, solve the equation $\cot 2\theta = 2 \tan \theta$ for $0^{\circ} < \theta < 180^{\circ}$. [5]

9709/32/M/J/19