Assignment 5

Trees and More Graphs

1. We often define graph theory concepts using set theory. For example given a graph G = (V, E) and a vertex $v \in V$, we define

$$N(v) = \{u \in V : v, u \in E\}$$

We define $N[v] = N(v) \cup \{v\}$. The goal of this problem is to figure out what all this means.

- (a) Let G be the graph with $V = \{a, b, c, d, e, f\}$ and $E = \{\{a, b\}, \{a, e\}, \{b, c\}, \{b, e\}, \{c, d\}, \{c, f\}, \{d, f\}, \{e, f\}\}\}$. Find N(a), N[a], N(c), and N[c].
- (b) What is the largest and smallest possible values for |N(v)| and |N[v]| for the graph from part (a)? Explain.
- (c) Give an example of a graph G = (V, E) (Probably different from the one above) for which N[v] = V for some vertex $v \in V$. Is there a graph for which N[v] = V for all $v \in V$? Explain.
- (d) Give an example of a graph G = (V, E) for which $N(v) = \emptyset$ for some $v \in V$. Is there an example of such graph for which N[u] = V for some other $u \in V$ as well? Explain.
- (e) Describe in words what N(v) and N[v] mean in general.
- **2**. Which of the following graphs are trees
 - (a) G = (V, E) with $V = \{a, b, c, d, e\}$ and $E = \{\{a, b\}, \{a, e\}, \{b, c\}, \{c, d\}, \{d, e\}\}\}$
 - (b) G = (V, E) with $V = \{a, b, c, d, e\}$ and $E = \{\{a, b\}, \{b, c\}, \{c, d\}, \{d, e\}\}$
 - (c) G = (V, E) with $V = \{a, b, c, d, e\}$ and $E = \{\{a, b\}, \{a, c\}, \{a, d\}, \{a, e\}\}\}$
 - (d) G = (V, E) with $V = \{a, b, c, d, e\}$ and $E = \{\{a, b\}, \{a, c\}, \{d, e\}\}$
- 3. For each degree sequence below, decide wether it must always, must never, or could possibly be a degree sequence for a tree. Remember, a degree sequence lists out the degrees (number of edges incident to the vertex) of all the vertices in a graph in non-increasing order.
 - (a) (4, 1, 1, 1, 1)
 - (b) (3,3,2,1,1)
 - (c) (2,2,2,1,1)
 - (d) (4,4,3,3,3,2,2,1,1,1,1,1,1,1)
- **4.** Suppose you have a graph with v vertices and e edges that satisfies v = e + 1. Must the graph be a tree? Prove your answer.
- 5. Prove that any graph (not necessarily a tree) with v vertices and e edges that satisfies v > e + 1 will NOT be connected.
- **6**. Let T be a rooted tree that contains vertices v, u, and w (among possibly others). Prove that if w is a descendant of both u and v then u is a descendant of v or v is a descendant of u.
- 7. Prove that every connected graph which is not itself a tree must have at last three different spanning trees.