Prop 21

i) Lasso solutions exist

i) X Px is unique

Proof

i) Provided 1 >0

inf
$$Q_{\lambda}(\beta)$$
 $\geq \frac{1}{2n} \|Y\|_{2}^{2} = Q_{\lambda}(0)$
 $\beta: \lambda \|\beta\|_{1} > \frac{1}{2n} \|Y\|_{2}^{2}$
 $\Rightarrow \inf_{\beta: \lambda \|\beta\|_{1} \leq \frac{1}{2n} \|Y\|_{2}^{2}$
 $\Rightarrow \inf_{\beta: \lambda \|\beta\|_{1} \leq \frac{1}{2n} \|Y\|_{2}^{2}$
 $\Rightarrow \inf_{\beta: \lambda \|\beta\|_{1} \leq \frac{1}{2n} \|Y\|_{2}^{2}$

But at (*) we are minimorning the che for Qx over a closed bounded set, so a uninimizer must except.

u) Fix $\lambda \geq 0$ and suppose $\hat{\beta}^{(1)}$ and $\hat{\beta}^{(2)}$ on two Lerro solutions with $Q_{\lambda}(\hat{\beta}^{(1)}) = Q_{\lambda}(\hat{\beta}^{(2)}) = c^*$.

By street conversely 11. 1/2,

 $\|\frac{1}{2}(Y-X\hat{\beta}^{(1)}) + \frac{1}{2}(Y-X\hat{\beta}^{(2)})\|_{2}^{2} \leq \frac{1}{2}\|Y-X\hat{\beta}^{(1)}\|_{2}^{2} + \frac{1}{2}\|Y-X\hat{\beta}^{(2)}\|_{2}^{2}$ with equality iff $X\hat{\beta}^{(1)} = X\hat{\beta}^{(2)}$.

 $c^* \leq Q_{\lambda} \left(\frac{1}{2} \hat{\beta}^{(1)} + \frac{1}{2} \hat{\beta}^{(2)} \right)$

 $\leq \frac{1}{2} \left(\frac{1}{2} \| y - \hat{x} \hat{\beta}^{(1)} \|_{2}^{2} + \frac{1}{2} \| y - \hat{x} \hat{\beta}^{(2)} \|_{2}^{2} \right) + \lambda \| \frac{1}{2} \hat{\beta}^{(1)} + \frac{1}{2} \hat{\beta}^{(2)} \|_{2}^{2}$ (*)

 $\leq \frac{1}{2} Q_{\lambda}(\hat{\beta}^{(1)}) + \frac{1}{2} Q_{\lambda}(\hat{\beta}^{(2)}) = c^*$

Therefore, we want how equality at (t), so $\times \hat{\beta}^{(1)} = \times \hat{\beta}^{(2)}$. \square

Define the agricorvelation set Êx to be the set of variables k 1.t.

 $\frac{1}{n} | \times_{k}^{T} (y - \times_{\hat{S}_{\lambda}^{L}}) | = \lambda$

This is well-defined as it only depends on the (unique) fetted vals. By the KKT conditions, Ex contains the set of non-zeroes of all Lamo rodations (at).

If ronk
$$(Xe_{\lambda}) = |\hat{E}_{\lambda}|$$
, then the Losso solar is unique?

$$Xe_{\lambda}^{(2)}(\hat{e}_{\lambda}^{(2)} - \hat{e}_{\lambda}^{(2)}) = 7 \hat{e}_{\lambda}^{(2)} = \hat{e}_{\lambda}^{(2)} =) \hat{\beta}^{(2)} = \hat{\beta}^{(2)}$$

$$2.2.5 \text{ Variable relation}$$

Noincless linear model $Y = X_{\beta}^{(2)}$

$$5 = \{k : p_{k}^{(2)} \neq 0\} = \{1, ..., e\}$$

$$N = \{1, ..., p_{k}^{(2)} \}$$

Assume varia $(Xs) = s$.

Thus 14

Let $\lambda \neq 0$ and $\Delta = X_{\beta}^{-1} X_{\beta}^{-1} (X_{\beta}^{-1} X_{\beta}^{-1} X_{\beta}^{-1}$

Then II Allow & I as Il sign low & I

λ h x λ x x (h x x x x) - 1 agu (s s) = λ û ν

Now (i). Try $(\hat{\beta}_{5}, \hat{\beta}_{N}) = (\beta_{5}^{\circ} - \lambda(\frac{1}{N}X_{5}^{T}X_{5})^{-1}sgn(\beta_{5}^{\circ}), 0)$ $(\hat{\nu}_{5}, \hat{\nu}_{N}) = (sgn(\beta_{5}^{\circ}), \Delta)$ Only need to check $sgn(\hat{\beta}_{5}) = sgn(\beta_{5}^{\circ})$, but they follows from (*).

2.2.6 Prediction estimation

Now consider $Y = X\beta^0 + \xi - 1\bar{z}$ where ξ ; are independent mean-zero sub-boundar with parameter σ .

Let S, s, N be defined as before

Define $\phi^2 = inf$ $\beta \in \mathbb{R}^p : \|\beta_N\|_1 \le 3\|\beta_S\|_1$ $\|\beta_S\|_1 \ne 0$ $\frac{1}{5}\|\beta_S\|_1^2$

where compatibility factor $\phi \ge 0$. The compatibility condition is that $\phi > 0$.