

Practical Introduction to Hardware Security

Lecture 7: Hardware Trojan

Instructors: Mehdi Tahoori, Dennis Gnad, Jonas Krautter

INSTITUTE OF COMPUTER ENGINEERING (ITEC) – CHAIR FOR DEPENDABLE NANO COMPUTING (CDNC)

Threats

all stages

What is Hardware Trojan?

Hardware Trojan:

A malicious addition or modification to the existing circuit elements.

What hardware Trojans can do?

- Change the functionality
- Reduce the reliability
- Leak valuable information

Applications that are likely to be targets for attackers

- Military applications
- Aerospace applications
- Civilian security-critical applications
- Financial applications
- Transportation security
- IoT devices
- Commercial devices
- More

IC/IP Trust Problem

 Chip design and fabrication has become increasingly vulnerable to malicious activities and alterations with globalization.

IP Vendor and System Integrator:

- IP vendor may place a Trojan in the IP
- IP Trust problem

Designer and Foundry:

- Foundry may place a Trojan in the layout design.
- IC Trust problem

Hardware Trojan Threat

Any of these steps can be untrusted

Hardware Trojan Threat

Untrusted

Issues with Third IP Design

Issues with Third IP Design

Hardware Trojan Threat

Untrusted

Hardware Trojan Threat

ASIC Design Process – Untrusted Foundry

Untrusted Designer and Foundry

HW Trojan Examples / Models

Comb. Trojan Example

Seq. Trojan Example

MOLES*: Info Leakage Trojan

Comb. Trojan model

Seq. Trojan Model

*Lin et al, ICCAD 2009

By Aden Revenley of 24.21 12:00 FM Follow

and allows an everything from anothe definite systems to people that tall freezil from the The delpt turned out to be constricted; turn Chias, but it could have been even some. Instead of croppy Chiases that being per law for Novy vengous; options, the delpt could have been lacked, shie to that off a missile in the event of vox or be assumed but working to mailtranties. HW Trojan evidence!

Why is detection of hardware Trojans very difficult?

Bug vs. Malicious Change

Trojan Attacks → **BIGGER verification challenge!**

Silicon Back Door

- Adversary can send and receive secret information
- Adversary can disable the chip, blowup the chip, send wrong processing data, impact circuit information etc.

Adversary can place an Antenna on the fabricated chip

Such Trojan cannot be detected since it does not change the functionality of the circuit.

Silicon Time Bomb

Untrusted Hardware

Counter

Finite state machine (FSM)

Wires/transistors that violate design rules

- ➤ Such Trojan cannot be detected since it does not change the functionality of the circuit.
- ➤ In some cases, adversary has little control on the exact time of Trojan action
- Cause reliability issue

Applications and Threats

Thousands of chips are being fabricated in untrusted foundries

Comprehensive Attack Model

Model	Description	3PIP Vendor	SoC Developer	Foundry
A	Untrusted 3PIP vendor	Untrusted	Trusted	Trusted
В	Untrusted foundry	Trusted	Trusted	Untrusted
С	Untrusted EDA tool or rogue employee	Trusted	Untrusted	Trusted
D	Commercial-off-the-shelf component	Untrusted	Untrusted	Untrusted
Е	Untrusted design house	Untrusted	Untrusted	Trusted
F	Fabless SoC design house	Untrusted	Trusted	Untrusted
G	Untrusted SoC developer with trusted IPs	Trusted	Untrusted	Untrusted

Trojan Taxonomy

Trojan Taxonomy

Examples for Layout Level Trojans

Example: Type

Functional

Functional

- Addition or deletion of components
- Sequential circuits
- Combinational circuits
- Modification to function or no change

Parametric

Parametric

- Modifications of existing components
 - Wire: e.g. thinning of wires
 - Logic: Weakening of a transistor, modification to physical geometry of a gate
 - Modification to power distribution network
- Sabotage reliability or increase the likelihood of a functional or performance failure

Example: Size

Big

Size:

- Number of components added to the circuit
 - Small transistors
 - Small gates
 - Large gates

Small

- In case of layout, depends on availability of:
 - Dead spaces
 - Filler cells
 - Decap cells
 - Change in the structure

Example: Distribution

Tight

- Tight Distribution
 - Trojan components are topologically close in the layout

Loose

- Loose Distribution
 - Trojan components are dispersed across the layout of a chip
- Distribution of Trojans depends on the availability of dead spaces on the layout

Example: Structure

No-change

- The adversary may be forced to regenerate the layout to be able to insert the Trojan, then the chip dimensions change
 - It could result in different placement for some or all the design components

Modified Layout

- A change in physical layout can change the delay and power characteristics of chip
 - It is easier to detect the Trojan

Trojan Taxonomy: Activation

Activation: Internally Activated

Trojan Taxonomy: Action

Example: Action

IP Trust & IP Security

IP Trust

- Detect malicious circuits inserted by IP designers
 - Goal to Verify Trust: Protect IP buyers, e.g., SoC integrators

IP Security

- Information leakage, side-channel leakage, backdoors, functional bugs and flaws, illegal IP use/overuse, etc.
 - Goal to Verify Security: Protect application

IP Trust

IP Trust

- IPs from untrusted vendors need to be verified for trust before use in a system design
- Problem statement: How can one establish that the IP does exactly as the specification, nothing less, nothing more?

IP Cores:

Soft IP, firm IP and hard IP

Challenges:

- No known golden model for the IP
 - Spec could be assumed as golden
- Soft IP is just a code so that we cannot read its implementation

Approaches for Pre-synthesis

Formal verification

- Property checking
- Model checking
- Equivalence checking

Coverage analysis

- Code coverage
- Functional coverage

Formal Verification

Formal verification

- ▶ Ensuring IP core is exactly same as its specification
- Three types of verification methods
 - Property checking: Every requirement is defined as assertion in testbench and is checked
 - ► Equivalence checking: Check the equivalence of RTL code, gate-level netlist and GDSII file
 - Model checking
 - System is described in a formal model (C, HDL)
 - ▶ The desired behavior is expressed as a set of properties
 - The specification is checked against the model

Coverage Analysis

- Code coverage
 - ▶ Line coverage

Show which lines of the RTL have been executed

Statement Coverage

Spans multiple lines, more precise

FSM Coverage

Show which state can be reached

▶ Toggle

Each Signal in gate-level netlist

- Function coverage
 - Assertion

Successful or Failure

Suspicious Parts

 If one of the assertions fails, the IP is assumed untrusted.

 If coverage is not 100%, uncovered parts of the code (RTL, netlist) are assumed suspicious.

IC Trust

IC (System) Trust

Objective:

 Ensure that the fabricated chip/system will carry out only our desired function and nothing more.

Challenges:

- Tiny: several gates to millions of gates
- Quiet: hard-to-activate (rare event) or triggered itself (time-bomb)
- Hard to model: human intelligence
- Conventional test and validation approaches fail to reliably detect hardware Trojans.
 - Focus on manufacture defects and does not target detection of additiona functionality in a design

Classification of Trojan Detection Approaches

- Destructive Approach: Expensive and time consuming
 - Reverse engineering to extract layer-by-layer images by using delayering and Scanning Electron Microscope
 - Identify transistors, gates and routing elements by using a templatematching approach – needs golden IC/layout

Classification of Trojan Detection Approaches

Non-destructive Approach

- Run-time monitoring: Monitor abnormal behavior during run-time
 - Exploit pre-existing redundancy in the circuit
 - Compare results and select a trusted part to avoid an infected part of the circuit.
- Test-time Authentication: Detect Trojans throughout test duration.
 - Logic-testing-based approaches
 - Side-channel analysis-based approaches

Logic Testing Approach

- Logic-testing approach focuses on test-vector generation for
 - Activating a Trojan circuit
 - Observing its malicious effect on the payload at the primary outputs
 - Both functional and structural test vectors are applicable.

Pros & Cons:

- Pros:
 - Straight-forward and easy to differentiate
- Cons:
 - The difficulty in exciting or observing low controllability or low observability nodes.
 - Intentionally inserted Trojans are triggered under rare conditions.
 (e.g., sequential Trojans)
 - It cannot trigger Trojans that are activated externally and can only observe functional Trojans.

Functional Test Deficiency

- Functional patterns could potentially detect a "functional" Trojan.
 - Exhaustive test would be effective, but certainly not applicable for large circuits
 - \square E.g. 64 input adder \rightarrow 2⁶⁵ input combination (including carry in)
 - $2^{65} > 10^{18}$ This is impractical
 - □ 100MHz is used \rightarrow 10¹⁰ s \rightarrow 317 years
 - □ Only a few and more effective patterns are used → Trojan can escape.
 - The fault coverage is low for manufacturing test
- In practice, structural tests are used.

Functional Testing

Feasible Trojan space inordinately large!

Deterministic test generation infeasible

A statistical approach is, more effective

MERO: A <u>Statistical</u> Approach

- Find the rare events in the circuit
- Generate vectors to trigger each rare node *N times*
- Provides high confidence in detecting unknown Trojans!

Trojan Trigger Condition a=0, b=1, c=1

MERO

MERO:

- Generates a set of test vectors that can trigger each rare node to its rare value multiple times (N times)
- It improves the probability of triggering a Trojan activated by a rare combination of a selection of the nodes

Fig. 15.6 Trigger coverage and Trojan coverage and test length for two ISCAS-85 benchmark circuits for different values of "N," using the MERO approach [8]

Challenge: Triggering each net N times in a large circuit is challenging

Comprehensive Attack Model

Model	Description	3PIP Vendor	SoC Developer	Foundry
A	Untrusted 3PIP vendor	Untrusted	Trusted	Trusted
В	Untrusted foundry	Trusted	Trusted	Untrusted
С	Untrusted EDA tool or rogue employee	Trusted	Untrusted	Trusted
D	Commercial-off-the-shelf component	Untrusted	Untrusted	Untrusted
Е	Untrusted design house	Untrusted	Untrusted	Trusted
F	Fabless SoC design house	Untrusted	Trusted	Untrusted
G	Untrusted SoC developer with trusted IPs	Trusted	Untrusted	Untrusted

Side Channel Signal Analysis -- Power

- Hardware Trojans inserted in a chip can change the power consumption characteristics.
- Partial activation of Trojan can be extremely valuable for power analysis.
- The more number of cells in Trojan is activated the more the Trojan will draw current from power grid.

Golden chip required!

Side-Channel Trojan Detection

 Side-Channel Approach for Trojan Detection relies on observing Trojan effect in physical side-channel parameter, such as switching current, leakage current, path delay, electromagnetic (EM) emission

Due to process variations, it is extremely challenging to detect the Trojan by considering F_{max} or I_{DDT} individually.

Side-channel Signals

- All the side-channel analyses are based on observing the effect of an inserted Trojan on a physical parameter such as
 - IDDQ: Extra gates will consume leakage power.
 - IDDT: Extra switching activities will consume more dynamic power.
 - Path Delay: Additional gates and capacitance will increase path delay.
 - EM: Electromagnetic radiation due to switching activity

Pros & Cons

- Pros: It is effective for Trojan which does not cause observable malfunction in the circuits.
- Cons: Large process variations in modern nanometer technologies and measurement noise can mask the effect of the Trojan circuits, especially for small Trojan.

Golden chip required!

Sensitivity Metric

Improving Detection Sensitivity

$$Sensitivity = \frac{I_{tampered} - I_{original}}{I_{original}} \times 100\%$$

Comparing Approaches

	Logic Testing	Side-Channel Analysis
Pros	Robust under process noiseEffective for ultra-small Trojans	Effective for large TrojansEasy to generate test vectors
Cons	 Difficult to generate test vectors Large Trojan detection challenging 	 Vulnerable to process noise Ultra-small Trojan Det. challenging

- A combination of logic testing & side-channel analysis could provide the good coverage!
- Online validation approaches can potentially provide a second layer of defense!

Question?