

O1
Problem
&
Objective

The Business Problem and Objective

- **Business Problem**: According to research¹, 91 percent of people regularly or occasionally read online reviews, and 84 percent trust online reviews as much as personal recommendations. Amazon's customers rely on them to ensure that they're getting what they're paying for. However, not all reviews are legitimate or add value to their decision-making process.
- Business Objective: How can Amazon accurately identify and leverage helpful reviews to improve customer experience and maintain customer loyalty?

02 Exploratory Data Analysis

EDA – Target Class Split

- Highly imbalanced 18% of total reviews were helpful
- By category, 14%, 22.7%, and 22.0% from home and kitchen, books and videogames reviews were voted helpful by users respectively

EDA – Video Reviews

Video Url Flag	Count	%		
1	1,876	0.05%		
0	3,485,455	99.95%		

Insights:

- About 0.05% of reviews contained video links
- About 70% of the reviews with videos were helpful
- Videos and actual images of products from unbiased users can help other users to make purchase decisions

EDA – Unverified Reviews

Insights:

- Most accounts tend to give 5 stars to ratings
- Unverified accounts tend to review 5 stars the most: participative reviewers or bots?
- Sellers need to double think of their CRM strategy to deal with non-buyer reviewers; amazon needs to handle review bots at the same time

EDA – Helpful reviews per rating

- On the scale 1 to 5, the lower the rating, the higher the % of helpful reviews
- Potential skewness as users tend to write more about their negative experience when they are dissatisfied
- Higher ratings tend to have the least % of helpful reviews as users tend to spend less time writing reviews when their experience is positive

EDA-Text Length of Helpful Reviews

- On average, helpful reviews have higher text length both for review & summary
- Reviews that are not voted as 'helpful' are concentrated within the 1,000 characters in terms of text length

Label	Average Text Length		
1	1,047		
0	298		

03 Modelling Journey

Data Cleaning and Feature Engineering

- Sourced datafiles from the server
- Merged three files
- Removed rows with < 10 characters in "reviewText"
- Merged text from "reviewText" and "summary"
- Removed special characters, weblink and numbers
- Converted text to lowercase
- Removed non-English instances

Introduced following new features:

- # of characters in review text
- # of words in review text
- Flag for review with more than 1000 characters
- Flag for reviews with video and image URLs

Machine Learning Pipeline

Transformers

- BERT
- XL Net
- ELMo

Annotators

- ClassifierDL
- NorvigSweeting Spellchecker
- Sentiment Detector

Estimator

- RandomForest
- Gradient Boost
- Factorization Machines

Modelling Process – Model + Pipeline Results Comparisons

Model + Pipeline Comparison

Top Performing Model

 Logistic Regression with Universal Sentence Encoder Pipeline

Key Observations

 Significant overfitting of all models

Modelling Process – Best Model Performance

Classification Report

Class	Precision	Recall	F1-Score	Support
Non-Helpful (0)	0.87	0.96	0.91	57,152
Helpful (1)	0.64	0.34	0.45	12,579
Accuracy			0.85	69,731
Macro Avg	0.75	0.65	0.68	69,731
Weighted Avg (Micro)	0.83	0.85	0.83	69,731

Confusion Matrix

Predicted Class					
uth ass	54,726	2,426			
T _r	8,265	4,314			

Current Kaggle Score/Position

AUC: 0.7299Position: 13

04 Project Cost Estimate

Project Cost Estimate

Compute Costs

- Price/Hour = \$1.173
- Hours used = 300
- Total Cost
- = \$351.90

People Costs

- Data Scientist: \$120k | 20hrs
- Data Engineer: \$100k | 30hrs
- Analyst: \$80k | 80hrs
- Total Wages = **\$5,673**

Infrastructure Costs

- Azure Data Lake Storage
- 5GB Data
- \$0.2304/GB
- Total Cost = **\$1.15**

Grand Total Cost: \$6,026.13

05 Conclusion & Next Steps

Conclusion & Next Steps

In Summary

- Helpful reviews often come from unhappy customers
- Length of reviews matter!
- Best Model: Logistic Regression with USE

What's Next?

- Main goal: Improve customer experience
- How? A/B test model to determine effectiveness

Feature Engineering

```
#FE
import pyspark.sql.functions as f
#Adding in length of reviewText & Summary as features

df = df.withColumn('rt_length', f.length('reviewText'))
df = df.withColumn('sum_length', f.length('summary'))

df.show(10)
```

Stratified Sampling

Feature Engineering

```
#Adding in rt_length indicator

df = df.withColumn('rt_length_ind', f.when(f.col('rt_length') >= 1000, 1).otherwise(0))

df.show(10)

#df.withColumn('D', f.when(f.col('B') > 0, "Yes").otherwise("No")).show()
```

Feature Engineering

```
#Count total number of sentences
def countWordsInEachSentences(array):
    return [len(x.split()) for x in array]

countWordsSentences = f.udf(lambda x: countWordsInEachSentences(x.split('. ')))

df = df.withColumn("word_count", countWordsSentences(df['reviewText']))

df.show(10)
```

Language Detection Pipeline

```
mport sparknlp
 rom sparknlp.annotator import *
 From sparknlp.common import *
  rom sparknlp.base import *
  rom sparknlp.pretrained import PretrainedPipeline
model_name = 'ld_wiki_tatoeba_cnn_375'
documentAssembler = DocumentAssembler()\
                    .setInputCol("reviewText")\
                    .setOutputCol("document")
sentence_detector = SentenceDetector() \
    .setInputCols(["document"]) \
    .setOutputCol("sentence")
languageDetector = LanguageDetectorDL.pretrained(model_name)\
      .setInputCols("sentence")\
      .setOutputCol("language")\
      .setThreshold(0.5)\
      .setCoalesceSentences(True)
nlpPipeline = Pipeline(stages=[ documentAssembler,
                               sentence_detector,
                                 languageDetector
langpipelineModel = nlpPipeline.fit(df)
```

Universal Sentence Encoder Pipeline 1/2

Universal Sentence Encoder Pipeline 2/2

```
#Creating the pipeline
document_assembler = DocumentAssembler() \
    .setInputCol("reviewText") \
    .setOutputCol("document")

loaded_useEmbeddings = UniversalSentenceEncoder.load('/root/cache_pretrained/tfhub_use_en_2.4.0_2.4_1587136330099')\
    .setInputCols("document")\
    .setOutputCol("use_embeddings")

embeddings_finisher = EmbeddingsFinisher() \
    .setInputCols(["use_embeddings"]) \
    .setOutputCols(["finished_use_embeddings"]) \
    .setOutputAsVector(True)\
    .setCleanAnnotations(False)
```

Extracting Universal Sentence Encoder Embeddings

```
use_df_train.select('finished_use_embeddings').show(3)
(1) Spark Jobs
nished_use_embeddings
 [[-0.056037165224...]
 [[-0.005085167475...]
 [[-0.045702368021...
 showing top 3 rows
nand took 16.38 seconds -- by 20mg46@queensu.ca at 9/30/2021, 4:01:21 PM on MMA2022W-Kipling
use_df_train= use_df_train.withColumn("fue", explode(use_df_train.finished_use_embeddings))
```

Pipeline 2

```
#Now create new pipeline to encode verified and pass fue, overall and verified together into one column called "features"
#Now OHE the Verified feature and add in the overall feature as well

verified_indexer = StringIndexer(inputCol=('verified'), outputCol=('verified_indexer'))

ohe_verified_indexer = OneHotEncoder(inputCol=('verified_indexer'), outputCol=('verified_indexer_vec'))

#overall_indexer = StringIndexer(inputCol=('overall'), outputCol=('verified_overall'))

#ohe = OneHotEncoder()\
# .setInputCols(['verified'])\
# .setOutputCols(['verified_0'])

#assembler = VectorAssembler(inputCols=['fue', 'verified_indexer_vec', 'overall', 'rt_length', 'sum_length', 'rt_length_ind'], outputCol='features')

assembler = VectorAssembler(inputCols=['fue', 'verified_indexer_vec', 'overall', 'rt_length', 'rt_length_ind'], outputCol='features')

pre_proc_pipeline = Pipeline(stages=[verified_indexer, ohe_verified_indexer, assembler])

pre_proc_model = pre_proc_pipeline.fit(use_df_train)
```

Logistic Regression Model

```
mport mlflow
  port mlflow.spark
  rom sklearn.metrics import confusion_matrix, classification_report, accuracy_score, auc
  port pandas as pd
 rom pyspark.ml.classification import LogisticRegression, GBTClassifier
  rom pyspark.ml.evaluation import BinaryClassificationEvaluator
 rom pyspark.ml.tuning import CrossValidator, TrainValidationSplit, ParamGridBuilder
lr = LogisticRegression(labelCol='label', featuresCol='features')
evaluator = BinaryClassificationEvaluator(labelCol='label', metricName='areaUnderROC')
lr_paramGrid = ParamGridBuilder() \
  .addGrid(lr.regParam, [0.0, 0.5, 0.7]) \
  .addGrid(lr.maxIter, [10,25,50,100]) \
  .build()
lr_tvs = TrainValidationSplit(estimator=lr, estimatorParamMaps=lr_paramGrid, evaluator=evaluator,
    parallelism=4, seed=42)
lr_grid_model = lr_tvs.fit(train_preprocessed)
```

Logistic Regression Model 2

```
t mlflow
     t mlflow.spark
    sklearn.metrics import confusion_matrix, classification_report, accuracy_score, auc
    ort pandas as pd
    pyspark.ml.classification import LogisticRegression, GBTClassifier
   m pyspark.ml.evaluation import BinaryClassificationEvaluator
   m pyspark.ml.tuning import CrossValidator, TrainValidationSplit, ParamGridBuilder
lr = LogisticRegression(elasticNetParam=0.0)
evaluator = BinaryClassificationEvaluator(labelCol='label', metricName='areaUnderROC')
lr_paramGrid = ParamGridBuilder() \
  .addGrid(lr.regParam, [0.0, 0.5, 0.7]) \
  .addGrid(lr.maxIter, [10,25,50,100]) \
lr_grid = CrossValidator(estimator=lr,
                        estimatorParamMaps=lr_paramGrid,
                        evaluator=evaluator,
                        numFolds=5)
  lr_grid_model = lr_grid.fit(train_preprocessed) #Running cv on the training dataset; will return the best model it found
  mlflow.spark.log_model(spark_model=lr_grid_model.bestModel, artifact_path='best-model')
```

Random Forest Model

```
import mlflow
 import mlflow.spark
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, auc
import pandas as pd
from pyspark.ml.classification import LogisticRegression, GBTClassifier, RandomForestClassifier
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.tuning import CrossValidator, TrainValidationSplit, ParamGridBuilder
rf = RandomForestClassifier(labelCol='label', featuresCol='features')
evaluator = BinaryClassificationEvaluator(labelCol='label', metricName='areaUnderROC')
rf_paramGrid = ParamGridBuilder() \
  .addGrid(rf.maxBins, [10,20,30]) \
  .addGrid(rf.maxDepth, [4,6,8]) \
 .addGrid(rf.impurity, ['gini', 'entropy'])\
  .build()
rf_tvs = TrainValidationSplit(estimator=rf, estimatorParamMaps=rf_paramGrid, evaluator=evaluator,
    parallelism=4, seed=42)
rf_grid_model = rf_tvs.fit(train_preprocessed)
```

Gradient Boost Tree Classifier

```
mport mlflow
 mport mlflow.spark
 rom sklearn.metrics import confusion_matrix, classification_report, accuracy_score, auc
 mport pandas as pd
 from pyspark.ml.classification import LogisticRegression, GBTClassifier
 rom pyspark.ml.evaluation import BinaryClassificationEvaluator
 rom pyspark.ml.tuning import CrossValidator, TrainValidationSplit, ParamGridBuilder
gbt = GBTClassifier(labelCol='label', featuresCol='features')
evaluator = BinaryClassificationEvaluator(labelCol='label', metricName='areaUnderROC')
gbt_paramGrid = ParamGridBuilder() \
  .addGrid(gbt.maxDepth, [3,5,10]) \
  .addGrid(gbt.maxBins, [2,12,24,32]) \
  .build()
gbt_tvs = TrainValidationSplit(estimator=gbt, estimatorParamMaps=gbt_paramGrid, evaluator=evaluator,
    parallelism=4, seed=42)
gbt_model = gbt_tvs.fit(train_preprocessed)
```

Compute Cost Calculations

Azure VM									
RAM	vCPUs	DBU Count	VM Price/CPU	VM Price	DBU	J Price	Total Price/Hour	Total Hours Used	Total Cost
28GB	4	:	0.1173	\$ 0.4690	\$	0.7040	\$ 1.173	300	\$ 351.90

Employee Wage Cost Calculations

Employees							
Title	Pay	Hours Used	Hourly Salary		Total Cost		
Data Scientist	\$120,000	20	\$	57.69	\$	1,153.85	
Data Engineer	\$100,000	30	\$	48.08	\$	1,442.31	
Analyst	\$ 80,000	80	\$	38.46	\$	3,076.92	
					\$	5,673.08	

Infrastructure Cost Calculations

Infrastructure			
GBs Used	Price	Total	
5	\$ 0.2304	\$	1.15