

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
IČO:	47813121
Projekt:	OP VK 1.5
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	TEK I IT
Popis sady vzdělávacích materiálů:	Technické kreslení I pro obor IT, 1. ročník
Sada číslo:	F-16
Pořadové číslo vzdělávacího materiálu:	17
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_F-16-17
Název vzdělávacího materiálu:	Ohnisková definice hyperboly
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Mgr. Zuzana Vildomcová

Ohnisková definice hyperboly

Hyperbola je množina bodů **M** roviny, které mají konstantní rozdíl vzdáleností od dvou pevných bodů **E, F** (ohnisek), menší než jejich vzdálenost.

Matematicky lze tuto definici vyjádřit takto: ||ME| - |MF|| = 2a.

Obrázek: Hyperbola.

Pojmy a označení

o, o' hlavní, vedlejší osa hyperboly;

s střed hyperboly;

A, B vrcholy hyperboly;

E, F ohniska hyperboly;

M obecný bod hyperboly.

 $\mathbf{u_1}$, $\mathbf{u_2}$ asymptoty hyperboly.

Asymptoty jsou přímky, ke kterým se hyperbola přibližuje, ale nikdy se jich nedotkne, říká se jim "tečny v nekonečnu". Objevují se v případě různých křivek, nejen u hyperboly.

Rozměry hyperboly

• $\mathbf{a} = |\mathbf{S}\mathbf{A}| = |\mathbf{S}\mathbf{B}|$ hlavní poloosa = vzdálenost hlavních vrcholů od středu hyperboly;

• $\mathbf{b} = |\mathbf{A}\mathbf{U}_1| = |\mathbf{A}\mathbf{U}_2|$ vedlejší poloosa, její délka vyplývá z charakteristického trojúhelníku hyperboly, viz. dále;

• $\mathbf{e} = |\mathbf{S}\mathbf{E}| = |\mathbf{S}\mathbf{F}|$ ohnisková vzdálenost, výstřednost, excentricita = vzdálenost ohnisek od středu hyperboly.

Rozměry jsou stranami tzv. charakteristického trojúhelníku hyperboly, např. ΔASU_1 . Charakteristický trojúhelník hyperboly je pravoúhlý a platí v něm Pythagorova věta ve tvaru $\mathbf{e}^2 = \mathbf{a}^2 + \mathbf{b}^2$, nejdelším rozměrem je teda excentricita \mathbf{e} . Hyperbola je jednoznačně určena dvojicí svých rozměrů, třetí rozměr je jimi určený a lze jej sestrojit.

Bodová konstrukce hyperboly podle definice

Hyperbola je určena hlavní poloosou **a** a excentricitou **e**.

- 1) Narýsujeme osový kříž se středem S. Na hlavní ose vyznačíme hlavní vrcholy A, B (jejich vzdálenost od středu S je rovna hlavní poloose a) a ohniska E, F (jejich vzdálenost od středu S je rovna excentricitě e).
- 2) Ohnisky **E, F** narýsujeme pomocnou kružnici se středem **S**. Ve vrcholu **A** vztyčíme kolmici, která protíná pomocnou kružnici v bodech **U**₁, **U**₂. Spojením těchto bodů se středem **S** hyperboly dostaneme její asymptoty **u**₁, **u**₂. Asymptoty mají pro hyperbolu obrovský význam. Přestože zatím známe pouze dva body hyperboly (vrcholy), můžeme již nyní podle sklonu asymptot odhadnout tvar hyperboly.

- 3) Zvolíme libovolný tzv. dělící bod tak, aby byl od středu **S** vzdálenější než ohnisko **F**, označíme ho číslem **1**. Pro tento bod platí vztah $|\mathbf{A1}| |\mathbf{1B}| = 2a$, proto jej dále využijeme pro konstrukci bodů hyperboly.
- 4) Do kružítka odměříme velikost úsečky |A1|, zapíchneme jej postupně do obou ohnisek a nakreslíme oblouk kružnice v místech, kde očekáváme body hyperbol, ve výseku určeném asymptotami. |A1| je větší z obou úseček, proto rýsujeme kružnice v opačné polorovině ohraničené vedlejší osou, než ve které leží střed dané kružnice (ohnisko).
- 5) Do kružítka odměříme velikost úsečky |**1B**|, opět zapíchneme postupně do obou ohnisek. Narýsujeme oblouky kružnice tak, aby protínaly oblouky kružnic z bodu 4). Tentokrát je úsečka |**1B**| ta kratší, proto rýsujeme kružnice ve stejné polorovině, ve které leží střed každé kružnice (ohnisko).
- 6) Pro průsečíky sestrojené v bodě 5) platí, že jejich vzdálenost od jednoho ohniska je rovna |**A1**| a od druhého ohniska |**1B**|. Jejich rozdíl je roven **2a**, splňují definici hyperboly a jedná se tedy o body hyperboly. Z dělícího bodu **1** takto díky souměrnosti elipsy sestrojíme 4 body hyperboly.
- 7) Další body hyperboly získáme zvolením dalších dělících bodů **2, 3** ... a zopakováním konstrukce podle bodů **3**) až 6).

Obrázek: Konstrukce bodů hyperboly podle definice.

Námět k zamyšlení: vyjmenujte všechny možnosti zadání hyperboly. Jak v těchto případech sestrojíte vrcholy, ohniska a asymptoty hyperboly?

Hyperoskulační kružnice hyperboly

- 1) V bodě **U**₁ sestrojíme přímku **r**, která je kolmá k asymptotě **u**₁.
- 2) Průsečík přímky ${\bf r}$ s hlavní osou ${\bf o}$ je střed ${\bf S}_{\bf A}$ hyperoskulační kružnice ${\bf k}_{\bf A}$ pro vrchol ${\bf A}$, poloměr této kružnice je roven $|{\bf A}{\bf S}_{\bf A}|$.
- 3) Střed S_B a kružnici \mathbf{k}_B sestrojíme použitím středové souměrnosti se středem \mathbf{S} .

Obrázek: Hyperoskulační kružnice hyperboly.

Při rýsování hyperboly se bodová konstrukce (při vhodném počtu dělících bodů) kombinuje s použitím hyperoskulačních kružnic.

Seznam použité literatury

• ŠVERCL, J., LEINVEBER J. a kol.: *Technické kreslení a základy deskriptivní geometrie*. Praha: Scientia, 1999. ISBN 80-7183-162-X.