

Machine Learning And Intelligent Systems

LECTURE SLIDES

PART 2

Prof. Bernard Merialdo Fall 2017

Data ScienceDepartment EURECOM

Neural Network History	219
The Perceptron	225
Multi-Layer Perceptrons MLP	258
MLP Training	282
Deep Learning Networks	325
Associative Memory Networks	337
Self Organizing Maps	374
Simulated Annealing	403
Metropolis Algorithm	421
The Travelling Salesman Problem	440

Neural Networks

Neural Network History

- Perceptrons: 1960's
 - Developped for vision applications
 - Capable of automatic training
 - Limited capability
- Multi-Layer Perceptrons: 1980's
 - New training algorithm: back-propagation
 - Lots of applications
 - Many variants (Hopfield, Boltzman...)
 - Mimic human brain
- Deep Networks: 2010's
 - Outperforms current state-of-the-art systems on pattern recognition tasks

MALIS 2017 219

Human Brain

- 100 billion neurons
- ♦ 1.3 kg

- neuron:
 - dendrites (input)
 - cell (processing)
 - 0.1 mm
 - axon (output)
 - 1 mm 1 m
 - synapse (connection)

Neurones

- Many-inputs / one-output
 - output can be excited or not
 - · incoming signals determine if the neuron shall excite ("fire")
 - · output subject to attenuation in the synapses (junctions)

 If an input of a neuron is repeatedly? and persistently causing the neuron to fire, a metabolic change happens in the synapse of that particular input to reduce its resistance

221 **MALIS 2017**

Artificial Neuron

- A neuron is a processing unit
- ◆ It receives input signals (x₁, x₂, ... xո)
- It produces an output signal y

$$y = f\left(\sum_{i=1}^{n} w_i x_i - b\right)$$

Weights

Activation

Threshold (or bias)

Transfer (activation) function f(t)

b

222

MALIS 2017

Neuron Behaviour

- ◆ Typically f(t)=sign(t) or f(t)=1(t)
 - $sign(t) = \begin{cases} +1 & \text{if } t > 0 \\ 0 & \text{if } t = 0 \\ -1 & \text{if } t < 0 \end{cases}$ $1(t) = \begin{cases} +1 & \text{if } t > 0 \\ 0 & \text{if } t = 0 \\ 0 & \text{if } t < 0 \end{cases}$
- If activation is:
 - Low: $\sum_{i=1}^{n} w_i x_i < b$
 - neuron is not activated
 - output y is -1 (or 0)

High: $\sum_{i=1}^{n} w_i x_i > b$

neuron is activated

output y is +1

MALIS 2017

223

Threshold Simplification

Standard definition

$$y = f(\sum_{i=1}^{n} w_i x_i - b)$$

- Simplified formulation by adding one constant input:
 - $w_0 = b$ and $x_0 = -1$
 - $w_0 = -b \text{ and } x_0 = 1$

$$y = f(\sum_{i=0}^{n} w_i x_i)$$

MALIS 2017

The Perceptron

◆ A perceptron is a single neuron network where

$$y = sign\left(\sum_{i=1}^{n} w_i x_i - b\right)$$

- Its behaviour is defined by its weights and the value of the threshold b.
- It is possible to estimate automatically the parameters based on a set of training examples.

MALIS 2017 225

Perceptron Representation

 The output is the characteristic function of a half-space, which is limited by the hyperplane

Linear Separability

Given two sets of points, is there a perceptron which classifies them ?

◆ True only if sets are linearly separable

MALIS 2017 227

Perceptron Training

- Given a training set:
 - T Training examples
 - For each example, coordinates + class $(x_1^i, x_2^i, \dots x_n^j, t^j)$ $j = 1, 2 \dots T, t^j = \pm 1$
- We want to find the values of weights w_i such that:

$$t^{j} = sign\left(\sum_{i=0}^{n} w_{i} x_{i}^{j}\right)$$
 for all $j = 1,2...T$

Perceptron Training Algorithm

- Iterative algorithm:
- ◆ Initialize weights to random values w⁽⁰⁾;
- For each training vector j:
 - Compute the output:

$$y^{j(k)} = sign\left(\sum_{i=0}^{n} w_i^{(k)} x_i^j\right)$$

If t^j ≠ y^j then update the weights:

$$W_{i}^{(k+1)} = W_{i}^{(k)} + (t^{j} - y^{j(k)})x_{i}^{j}$$

 Continue until no update happens over the whole training set

MALIS 2017 229

Perceptron Training Algorithm

- What is the effect of the update formula:
 - if $y^{j(k)} = t^j$, no change

• if
$$y^{j(k)} \neq t^j$$
: $w_i^{(k+1)} = w_i^{(k)} + (t^j - y^{j(k)})x_i^j$

• if
$$y^{j(k)} = 1$$
, $t^{j} = -1$: $w_i^{(k+1)} = w_i^{(k)} - 2 x_i^{j}$

$$\sum_i w_i^{(k+1)} x_i^j = \sum_i w_i^{(k)} x_i^j - 2 \sum_i \left(x_i^j \right)^2 \text{ Activation decreases}$$

• if
$$y^{j(k)} = -1$$
, $t^j = 1$: $w_i^{(k+1)} = w_i^{(k)} + 2 x_i^j$

$$\sum_i w_i^{(k+1)} x_i^j = \sum_i w_i^{(k)} x_i^j + 2 \sum_i \left(x_i^j \right)^2 \quad \text{Activation increases}$$

Activation is always modified in the direction of the true class

Perceptron Example

- OR function
- training data:

X ₁	X ₂	t
0	0	-1
1	0	1
0	1	1
1	1	1

- initial perceptron
 - $w_1 = 0$, $w_2 = 1$, b = 0.5

(remember that $b=w_0$ with $x_0=-1$)

MALIS 2017

231

232

Perceptron Example

- $W_1 = 0$, $W_2 = 1$, b = 0.5
- ◆ Iteration 1, example 1

X ₁	X ₂	t	activation	threshold	output
0	0	-1	0	0.5	-1

MALIS 2017

Perceptron Example

- $W_1 = 0$, $W_2 = 1$, b = 0.5
- Iteration 1, example 2

X ₁	X ₂	t	activation	threshold	output
1	0	1	0	0.5	-1

- Update
 - $W_1 = 0 + (1+1) * 1 = 2$
 - $W_2 = 1 + (1+1) * 0 = 1$
 - b = 0.5 + (1+1) * (-1) = -1.5

MALIS 2017

Perceptron Example

- $w_1 = 2$, $w_2 = 1$, b = -1.5
- ◆ Iteration 1, example 3

X ₁	X ₂	t	activation	threshold	output
0	1	1	1	-1.5	1

Iteration 1, example 4

X ₁	X ₂	t	activation	threshold	output
1	1	1	3	-1.5	1

Perceptron Example

- $W_1 = 2$, $W_2 = 1$, b = -1.5
- ◆ Iteration 2, example 1

X ₁	X ₂	t	activation	threshold	output
0	0	-1	0	-1.5	1

- Update
 - $W_1 = 2 + (-1-1) * 0 = 2$
 - $W_2 = 1 + (-1-1) * 0 = 1$
 - b = -1.5 + (-1-1) * (-1) = 0.5

MALIS 2017

Perceptron Training Theorem

Theorem:

if the two sets (positive and negative examples) are linearly separable, then the perceptron training algorithm will stop after a <u>finite</u> number of steps.

- Proof:

 - Same update formula: $w_i^{(k+1)} = w_i^{(k)} + (t^j y^j)x_i^j$
 - So we need to find w_i such that $\sum w_i x_i^j > 0 \ \forall j$

Proof (1/3)

- ◆ Let w̄ be a solution
 - It exists, since the sets are separable

◆ Let
$$a = \min_{j} \sum_{i=0}^{n} \overline{w_i} x_i^j > 0$$
 $A = \max_{j} \sum_{i=0}^{n} (x_i^j)^2 > 0$

and:

$$\cos\left(w,\overline{w}\right) = \frac{\sum w_i \overline{w_i}}{\sqrt{\sum w_i^2} \sqrt{\sum \overline{w_i}^2}} \le 1$$

◆ If w_i^(k) is changed:

$$\begin{aligned} w_i^{(k)} &\to w_i^{(k+1)} = w_i^{(k)} + \left(t^j - y^j\right) & x_i^j = w_i^{(k)} + 2x_i^j \\ \text{(because } t = +1) \end{aligned}$$

238

MALIS 2017

Proof (2/3)

$$\sum w_i^{(k+1)} \overline{w_i} = \sum \left[w_i^{(k)} + 2x_i^j \right] \overline{w_i} = \sum w_i^{(k)} \overline{w_i} + 2\sum \overline{w_i} x_i^j$$

$$\geq \sum w_i^{(k)} \overline{w_i} + 2a$$

So:
$$\sum w_i^{(n)} \overline{w_i} \ge \sum w_i^{(0)} \overline{w_i} + 2na$$

$$\sum_{i} w_{i}^{(k+1)2} = \sum_{i} \left(w_{i}^{(k)} + 2x_{i}^{j} \right)^{2} = \sum_{i} w_{i}^{(k)2} + \underbrace{4 \sum_{i} w_{i}^{(k)} x_{i}^{j}}_{\leq 0} + \underbrace{4 \sum_{i} x_{i}^{j2}}_{\leq A}$$

So:
$$\sum w_i^{(n)2} \le \sum w_i^{(0)2} + 4nA$$

Finally:

$$cos\left(w^{(n)},\overline{w}\right) = \frac{\sum w_i^{(n)}\overline{w_i}}{\sqrt{\sum w_i^{(n)2}}\sqrt{\sum \overline{w_i}^2}} \ge \frac{\sum w_i^{(0)}\overline{w_i} + 2na}{\sqrt{\sum w_i^{(0)2} + 4nA}\sqrt{\sum \overline{w_i}^2}}$$

MALIS 2017 239

Proof (3/3)

We have:

$$cos\left(w^{(n)},\overline{w}\right) = \frac{\sum w_i^{(n)}\overline{w_i}}{\sqrt{\sum w_i^{(n)2}}\sqrt{\sum \overline{w_i}^2}} \ge \frac{\sum w_i^{(0)}\overline{w_i} + 2na}{\sqrt{\sum w_i^{(0)2} + 4nA}\sqrt{\sum \overline{w_i}^2}} \to \infty$$

- So there may not exist an infinity of values of n for which the update occurs
- There exists some N such that there is no update for steps where n>N
- After step N, all training data is correctly classified

Non-Separable Case

- Assume now that examples are not separable
- Then no perfect perceptron exist
 - Perceptron Training is not applicable
- Does there exist a "good" perceptron?
 - Define error as distance between the output and desired values:

$$E(w_1, w_2, ... w_n) = \frac{1}{2} \sum_{j} (t^j - y^j)^2$$

A "good" perceptron is:

$$\min_{(w_1, w_2, ... w_n)} E(w_1, w_2, ... w_n)$$

MALIS 2017

241

Remember Gradient Descent

• f: $\mathbb{R}^n \to \mathbb{R}$ differentiable

$$f(x_1, x_2, \dots x_n) \qquad df(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots \frac{\partial f(x)}{\partial x_n}\right)$$

• If $\|\mathbf{h}\| = \varepsilon$ small:

$$f(x+h) \approx f(x) + df(x).h$$

↑ Minimum value for $h = -\varepsilon \frac{df(x)}{\|df(x)\|}$

$$f(x+h) \approx f(x) - \varepsilon df(x) \cdot \frac{df(x)}{\|df(x)\|} = f(x) - \varepsilon \|df(x)\| < f(x)$$

 We can decrease f by moving in the opposite direction of the gradient

Gradient Training

- Problem: $y = f\left(\sum_{i} w_{i} x_{i}\right)$
- If f is a step function, f is not differentiable and gradient optimization cannot be applied
- ◆ Solution: replace f with linear function: f(t) = t

$$E(w_1, w_2, ... w_n) = \frac{1}{2} \sum_{i} \left(t^{i} - \sum_{i} w_i x_i^{i} \right)^2$$

Gradient:

$$\frac{\partial E}{\partial w_I} = -\sum_j \left(t^j - \sum_i w_i x_i^j \right) x_I^j$$

MALIS 2017 243

Gradient Training

- Algorithm:

 - Iterate:

$$w_{\scriptscriptstyle I}^{\scriptscriptstyle (k+1)} = w_{\scriptscriptstyle I}^{\scriptscriptstyle (k)} - \lambda \frac{\partial E}{\partial w_{\scriptscriptstyle I}} = w_{\scriptscriptstyle I}^{\scriptscriptstyle (k)} + \lambda \sum_j \Biggl(t^j - \sum_i w_i^{\scriptscriptstyle (k)} x_i^j \Biggr) x_i^j$$

- Notes:
 - Since we chose f(t)=t, the update formula is

$$w_{\scriptscriptstyle I}^{\scriptscriptstyle (k+1)} = w_{\scriptscriptstyle I}^{\scriptscriptstyle (k)} + \lambda \sum_{\scriptscriptstyle i} \left(t^{\scriptscriptstyle j} - y^{\scriptscriptstyle j(k)}\right) \! x_{\scriptscriptstyle I}^{\scriptscriptstyle j}$$

• Compare with the Perceptron Training formula:

$$W_{i}^{(k+1)} = W_{i}^{(k)} + (t^{j} - y^{j(k)})X_{i}^{j}$$

Gradient Training

Matrix form:

W = vector of weights: $W^T = (w_1, w_2, ... w_n)$

 $X = \text{vector of inputs: } X^T = (x_1, x_2, ... x_n)$

 $y = output: y = f(W^T X)$

E(X) = output error for X, total error $E = \sum_{X} E(X)$

Gradient:
$$\nabla E(X)^T = \left(\frac{\partial E(X)}{\partial w_1}, \frac{\partial E(X)}{\partial w_2}, \dots \frac{\partial E(X)}{\partial w_n}\right)$$

Gradient training:

$$W \leftarrow W - \lambda \nabla E = W - \lambda \sum_{X} \nabla E(X)$$

MALIS 2017 245

Stochastic Gradient Training

- Computing $\sum_{X} \nabla E(X)$ requires to process all the training samples for one iteration
- This can be a huge computation for a single step of the training algorithm
- In Stochastic gradient, we split the training set into minibatches of size k (k=1, or 10, or 100...)
- We update:

$$W \leftarrow W - \lambda \sum_{X \in minibatch} \nabla E(X)$$

Stochastic Gradient Training

- Stochastic gradient allows for faster convergence with less computation
- Normal gradient

Stochastic gradient

$$w^{(k+1)} = w^{(k)} - \lambda \sum_{X \in T} \nabla E(X)$$

$$w^{(k+1)} = w^{(k)} - \lambda \sum_{x \in T} \nabla E(x) \qquad w^{(k+1)} = w^{(k)} - \lambda \sum_{x \in minibatch} \nabla E(x)$$

MALIS 2017

247

Training Algorithms Comparison

- Perceptron training:
 - no parameters,
 - convergence in a finite number of iterations,
 - BUT: works only for linearly separable problems.
- Gradient descent:
 - 2 alternatives: Global vs Stochastic
 - choice of parameter λ
 - converges at infinity
 - works even for non linearly separable training sets

Rosenblatt's Mark I Perceptron

- Early vision system (1957/58)
 - 20x20 sensors
 - 1 layer random association units
 - 1 perceptron layer
 - 8 outputs

◆ Able to automatically learn to recognize simple

249

250

Perceptron Limitations

Perceptrons can generate AND

MALIS 2017

Perceptron Limitations

Perceptrons can generate OR

Perceptron Limitations

Perceptrons can generate NOT

MALIS 2017

252

Perceptron Limitations

Perceptrons cannot generate XOR:

x ₁	X ₂	XOR
0	0	0
1	0	1
0	1	1
1	1	0

MALIS 2017

253

Perceptron Limitations

- Perceptrons cannot generate XOR:
- $y = sign(w_1 x_1 + w_2 x_2 b)$

MALIS 2017

 Perceptrons with bounded associative units cannot decide about shape connectedness

This is equivalent to the XOR problem

MALIS 2017 255

Perceptron Limitations

- Single Perceptrons cannot model XOR
- Combinations of perceptrons can model any boolean function (why?)

Neural Networks

- Need for more complex networks of perceptrons (neurons): Neural Networks
- Problem: no training algorithm existed before 80'
- ♦ 80': Several types of networks:
 - Multi-Layer (also called Feed-Forward)
 - Hopfield (Boltzmann)
- Various training algorithms
- Networks can be fully connected or not

257 **MALIS 2017**

Multi-Layer Perceptrons MLP

- outputs of neurons on layer i are connected to the inputs of neurons on layer i+1
- most common form of Neural Net (feed-forward)

258 **MALIS 2017**

Neurons

★ differentiable activation function: sigmoïd

MALIS 2017 259

Other activation functions

hyperbolic tangent:

$$f_1(t) = tanh(t) = \frac{1 - e^{-t}}{1 + e^{-t}}$$

quadratic function:

$$f_2(t) = \frac{t}{\sqrt{t^2 + 1}}$$

• arctangent:

$$f_3(t) = atan(t)$$

---f3

-f1

MALIS 2017

Other activation functions

ReLU PReLU

261

--- ELU

- ReLU (Rectified Linear Unit)
 - $f(t) = \begin{cases} 0 & \text{for } t < 0 \\ t & \text{for } t \ge 0 \end{cases}$
- Parametric ReLU
 - $f(t) = \begin{cases} \alpha t & \text{for } t < 0 \\ t & \text{for } t \ge 0 \end{cases}$
- ◆ ELU (Exponential Linear Unit

•
$$f(t) = \begin{cases} \alpha(e^t - 1) & \text{for } t < 0 \\ t & \text{for } t \ge 0 \end{cases}$$

MALIS 2017

NN Applications

Application: set of examples

$$(x_{1}^{j}, x_{2}^{j}, \dots x_{n}^{j}, t_{1}^{j}, t_{2}^{j}, \dots t_{m}^{j})$$
 $j = 1,2...T$

- ◆ Training: find the best values for w_i
 If (x^j₁,x^j₂,...x^j_n) as input, (y₁,y₂,...y_m) close to (t^j₁,t^j₂,...t^j_m)
- ◆ Test: compute output for new input x₁,x₂,...x_n

NN Applications

Example: NN to invent binary representation

- n samples: inputs are 0 except x_i=1, for i=1, 2, ... n
 1=10000, 2=01000, 3=00100, 4=00010, ...
- desired output: identity $y_i = x_i \quad \forall i$
- u_i should code binary representation of input

MALIS 2017 263

Can This Be Learned?

Input X		Output Y
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Learned Hidden Layer Representation

Experimental result:

Input X		u ₁ u ₂ u ₃		Output Y
10000000	\rightarrow	.89 .04 .08	\rightarrow	10000000
01000000	\rightarrow	.01 .11 .88	\rightarrow	01000000
00100000	\rightarrow	.01 .97 .27	\rightarrow	00100000
00010000	\rightarrow	.99 .97 .71	\rightarrow	00010000
00001000	\rightarrow	.03 .05 .02	\rightarrow	00001000
00000100	\rightarrow	.22 .99 .99	\rightarrow	00000100
0000010	\rightarrow	.80 .01 .98	\rightarrow	0000010
0000001	\rightarrow	.60 .94 .01	\rightarrow	0000001

265

MALIS 2017

NN Applications

Encoder-decoder:

- desired output: identity $y_i = x_i \quad \forall i$
- u_i extracts relevant features of input samples
- use to reduce data dimensionality (aka PCA)

NN Character Recognition

- Input: binary image pattern
- Output: character number
- Recognition: $\underset{i=1...m, y_i>\theta}{argmax} y_i$

MALIS 2017

Face Orientation

◆ Head pose: left, straight, right, up

Typical input images

MALIS 2017

268

Face Recognition

using face database

MALIS 2017

Speech Recognition

 Vowel classification based on formants F1 and F2

MALIS 2017

NetTalk

- Talking Network: read sentences
 - input: character sequence
 - 26 characters + punctuation (total 29)
 - current character + context of 3 left-right
 - output: phonetic parameters to speech synthetizer
 - ~ 30 phonemes
 - 26 characteristics (tongue, mouth position...)
 - 1 phoneme = 1 characteristics vector

ALVINN

- Autonomous Land Vehicle In a Neural Network
- ◆ CMU project 1998
- Purpose: drive standard vehicle on public highways
- Learning by observing human driving

- input:
 - 30x32 from video camera
- output: steering control

ALVINN

- Learning: about 5 minutes of human driving
- Test: successfully drive at speeds up to 70 miles per hour and for distances of 90 miles on public highways

NeuralTalk • (Stanford 2015) Recurrent Neural Network | Value | Val

MLP Feed-forward Computation

- For neuron j of layer I:
 - Inputs: x^(l)
 ii from neuron i at level I-1
 - Activation: $u^{(l)}_{i}$
 - Output: o^(l)
 i to all neurons at level l+1

- Inputs: $x^{(l)}_{ii} = o^{(l-1)}$
 - Activation: $u_j^{(l)} = \sum w_{ij}^{(l)} x_{ij}^{(l)}$
- Output: $o^{(l)}_{j} = f(u^{(l)}_{j})$

MALIS 2017 279

MLP Feed-forward Computation

- Assume MLP is given (layers, weights)
 - Assume inputs $(x_1, x_2, ... x_n)$ are known
 - How to compute output values $(y_1, ... y_m)$?

MLP Feed-forward Computation

- For layer 1:
 - Inputs:
 - Activation:
 - $o^{(1)}_{j} = f(u^{(1)}_{j})$ Output:
- For layer 2:
 - Inputs:
 - Activation: $o^{(2)}_{k} = f(u^{(2)}_{k})$ Output:
- For layer N:
 - Inputs:
 - n: $x^{(N)}_{kh} = o^{(N-1)}_{k}$ $y_{h} = o^{(N)}_{h} = f(u^{(N)}_{h})$ $u_{h}^{(N)} = \sum_{k} w_{kh}^{(N)} x_{kh}^{(N)}$ Activation:
 - Output:

281 **MALIS 2017**

MLP Training

- Training set:
 - $(x_{1}^{j}, x_{2}^{j}, \dots x_{n}^{j}, t_{1}^{j}, t_{2}^{j}, \dots t_{m}^{j})$ j = 1, 2... T
- Assume NN structure is given
 - layers, neurons per layer, possible connections
- Training:
 - find best values of weights w(1);
 - best = minimize error:
 - error for sample j:
 - $\begin{aligned} &\mathsf{E}_j = \sum_k \! \left(\! y^j{}_k t^j{}_k \right)^{\!2} \\ &\mathsf{E} = \sum_j \! \mathsf{E}_j = \sum_j \sum_k \! \left(\! y^j{}_k t^j{}_k \right)^{\!2} \end{aligned}$ total error:

MLP Training

- Find $\min_{\mathbf{w}^{(l)}_{ij}} \mathbf{E}(\mathbf{w}^{(l)}_{ij})$
- Use gradient descent:
 - initialize w^(I)_{ii} randomly
 - iterate $w^{(l)}_{ij} \rightarrow w^{(l)}_{ij} - \lambda \frac{\partial E}{\partial w^{(l)}_{ij}}$ with $\lambda > 0$
 - stop when (for example):
 - max number of iteration is reached
 - max duration is elapsed
 - not enough improvement $\Delta E < \theta$

283 **MALIS 2017**

MLP Training

- ◆ Problem: how to compute _∂E ?

♦ Analytical formulation: too complex
$$E = \sum_{j} \sum_{k} (y^{j}_{k} - t^{j}_{k})^{2}$$

$$y^{j}_{k} = o_{k}^{(N)} = f(u_{k}^{(N)}) = f\left(\sum_{h} w_{hk}^{(N)} x_{hk}^{(N)}\right)$$

$$x_{hk}^{(N)} = o_{h}^{(N-1)} = f(u_{h}^{(N-1)}) = f\left(\sum_{i} w_{ih}^{(N-1)} x_{ih}^{(N-1)}\right)$$
• Intractable problem until a numerical solution was found: the Back-Propagation algorithm

284 **MALIS 2017**

Back-Propagation Notations

• For simplicity, number layers in reverse order:

- For neuron j of layer I:
 - Inputs: $\mathbf{x}^{(l)}_{ij}$, activation: $\mathbf{u}^{(l)}_{j}$, output $\mathbf{o}^{(l)}_{j}$ Network: $\mathbf{u}^{(l)}_{i} = \sum_{i} \mathbf{w}^{(l)}_{ij} \mathbf{x}^{(l)}_{ij}$
- Network:
 - Inputs: $x_i = x^{(N)}_{ij}$
 - Outputs: $y_i = o^{(0)}_i$

285 **MALIS 2017**

Reminder

- Differential of compound functions:

- z = f(y) y = g(x) $\frac{dz}{dx} = \frac{df}{dy}\frac{dg}{dx}$
- $z = f(y_1, y_2)$ $y_1 = g_1(x)$ $y_2 = g_2(x)$
- $\frac{dz}{dx} = \frac{\partial f}{\partial y_1} \frac{dg_1}{dx} + \frac{\partial f}{\partial y_2} \frac{dg_2}{dx}$
- $z = f(y_1, y_2, ... y_n)$ $y_i = g_i(x)$

$$\frac{dz}{dx} = \sum_{i} \frac{\partial f}{\partial y_i} \frac{dg_i}{dx}$$

Back-Propagation Algorithm

- Consider one sample:
 - Inputs $(x_1, x_2, ... x_n)$
 - Expected outputs (t_1, t_2, \ldots, t_m)
 - Real outputs $(y_1, y_2, \dots y_m)$
- ◆ Error for one sample

$$E = \sum_{k} (y_k - t_k)^2$$

- y_k is a function of the weights { w_{ij} }
- we can change the weights to minimize the error

MALIS 2017 287

Back-Propagation: Layer 0

• Computing $\frac{\partial E}{\partial w^{(0)}_{ji}}$

$$\mathsf{E} = \varphi(\mathsf{y}_1, \mathsf{y}_2, ... \mathsf{y}_\mathsf{m})$$

$$y_k = \psi(u^{(0)}_k)$$

 $u^{(0)}_{k} = \zeta(w^{(0)}_{1k}, w^{(0)}_{2k}, ... w^{(0)}_{1k})$

MALIS 2017

Back-Propagation: Layer 0

- Computing ∂E
 - E is a function of all y_k

$$E = \sum_{k} (y_k - t_k)^2$$

$$E = \sum_{k} (y_k - t_k)^2 \qquad \frac{\partial E}{\partial w_{ji}^{(0)}} = \sum_{k} \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial w_{ji}^{(0)}} \qquad \frac{\partial E}{\partial y_k} = 2(y_k - t_k)$$

$$\frac{\partial \mathsf{E}}{\partial \mathsf{y}_{\mathsf{k}}} = 2(\mathsf{y}_{\mathsf{k}} - \mathsf{t}_{\mathsf{k}})$$

• y_k is a function of $u^{(0)}_k$ only

$$y_k = f\!\left(\!u_k^{(0)}\right)$$

$$\frac{\partial y_k}{\partial w_{ii}^{(0)}} = \frac{\partial y_k}{\partial u_k^{(0)}} \frac{\partial u_k^{(0)}}{\partial w_{ii}^{(0)}} \qquad \qquad \frac{\partial y_k}{\partial u_k^{(0)}} = f'(u_k^{(0)})$$

$$\frac{\partial y_k}{\partial u_k^{(0)}} = f'(u_k^{(0)})$$

• $u^{(0)}_{k}$ is a function of $w^{(0)}_{lk}$ for all I $= \sum_{i} w^{(0)}_{lk} o^{(1)}_{i} \qquad \qquad \frac{\partial u^{(0)}_{k}}{\partial w^{(0)}_{ji}} = 0 \text{ if } k \neq i$ $\frac{\partial u^{(0)}_{i}}{\partial w^{(0)}_{ji}} = o^{(1)}_{j}$

$$u_k^{(0)} = \sum_{l} w_{lk}^{(0)} o_l^{(1)}$$

$$\frac{\partial u_{k}^{(0)}}{\partial w_{k}^{(0)}} = 0 \text{ if } k \neq i$$

$$\frac{\partial u_i^{(0)}}{\partial w_{ii}^{(0)}} = o_j^{(1)}$$

MALIS 2017

289

Back-Propagation: Layer 0

◆ Computing <u>∂E</u>

$$\frac{\partial E}{\partial w_{ii}^{(0)}} = \sum_k \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial u_k^{(0)}} \frac{\partial u_k^{(0)}}{\partial w_{ii}^{(0)}} = \frac{\partial E}{\partial y_i} \frac{\partial y_i}{\partial u_i^{(0)}} \frac{\partial u_i^{(0)}}{\partial w_{ii}^{(0)}}$$

So:

$$\frac{\partial E}{\partial w_{ij}^{(0)}} = 2(y_i - t_i) f'(u_i^{(0)}) o_j^{(1)}$$

Note that:

$$\frac{\partial E}{\partial u_i^{(0)}} = \sum_{k} \frac{\partial E}{\partial y_k} \, \frac{\partial y_k}{\partial u_i^{(0)}} = \frac{\partial E}{\partial y_i} \, \frac{\partial y_i}{\partial u_i^{(0)}} = 2 \big(y_i - t_i \big) \, f'(u_i^{(0)})$$

Back-Propagation: Layer 1

Back-Propagation: Layer 1

- Computing ∂E ∂w⁽¹⁾ji
 - The main idea is to note that:

$$\frac{\partial E}{\partial u_i^{(1)}} = \sum_{k} \frac{\partial E}{\partial u_k^{(0)}} \underline{w_{ik}^{(0)}} \underline{f'(u_i^{(1)})}$$

• And then:

◆ The same idea can be applied to layers 2, 3, ...

MALIS 2017 293

Back-Propagation: Sigmoïd Case

- If $f(t) = \frac{1}{1 + e^{-t}}$ f'(t) = f(t)[1 f(t)] $f'(u_i^{(k)}) = o_i^{(k)}[1 o_i^{(k)}]$
- at layer 0:

$$\begin{split} &\frac{\partial E}{\partial u_{i}^{(0)}} = 2\left(y_{i} - t_{i}\right)o_{i}^{(0)}\left[1 - o_{i}^{(0)}\right] \\ &\frac{\partial E}{\partial w_{ji}^{(0)}} = 2\left(y_{i} - t_{i}\right)o_{i}^{(0)}\left[1 - o_{i}^{(0)}\right]o_{j}^{(1)} \end{split}$$

at layer 1:

$$\frac{\partial E}{\partial w_{ji}^{(1)}} = \sum_k \frac{\partial E}{\partial u_k^{(0)}} \; w_{ik}^{(0)} \; o_i^{(1)} \left[1 - o_i^{(1)} \right] o_j^{(2)} \label{eq:delta_energy}$$

Back-Propagation Training

- Initialize with random weights
- Iterate Back-propagation:
 - Feed-forward pass to compute activations and outputs
 - Back-propagation pass to compute partial derivatives

(be careful about layer numbering)

$$\frac{\partial E}{\partial u_i^{(0)}} = 2(y_i - t_i) f'(u_i^{(0)})$$

$$\frac{\partial E}{\partial u_i^{(l+1)}} = \sum_k \frac{\partial E}{\partial u_k^{(l)}} \cdot w_{ik}^{(l)} \ f' \Big(u_i^{(l+1)} \Big) \qquad \qquad \frac{\partial E}{\partial w_{ji}^{(l)}} = \frac{\partial E}{\partial u_i^{(l)}} o_j^{(l+1)}$$

• Update $w_{ij}^{(l)} \rightarrow w_{ij}^{(l)} - \lambda \frac{\partial E}{\partial w_{ij}^{(l)}}$

MALIS 2017 295

Matrix Form

Neuron:

$$x_1$$
 x_2
 $y = f\left(\sum w_i x_i\right) = f(w^T X)$

Layer

Network

$$X \rightarrow Y_1 = f(W_1 X) \rightarrow Y_2 = f(W_2 Y_1) \dots \rightarrow Y_l = f(W_1 Y_{l-1})$$

Matrix Form

Back-propagation:

$$dY = \left(\frac{\partial E}{\partial y_1}, \frac{\partial E}{\partial y_2}, \dots \frac{\partial E}{\partial y_n}\right)^T$$

Matrix form:

$$\begin{cases} y = f(z) & \frac{\partial E}{\partial z} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial z} = \frac{\partial E}{\partial y} f'(z) \\ Y = f(Z) & dZ = f'(Z) \circ dY \\ (\circ \text{ is the term-by-term matrix multiplication}) \end{cases} \\ z = \sum w_i x_i & \frac{\partial E}{\partial w_i} = \frac{\partial E}{\partial z} \frac{\partial z}{\partial w_i} = \frac{\partial E}{\partial z} x_i \\ Z = WX & dW = dZ X^T & dX = W^T dZ \end{cases}$$

MALIS 2017 297

Back-Propagation Training

- Converges to a local minimum
 - Sometimes, try several random initial points and keep best result overall
- When to stop iterations?
 - Until maximum number of iterations
 - Until error improvement is small
 - Until maximum time is reached
- Problem : overfitting
 - If training size is insufficient with regard to model parameters, the model may overfit to the training data and not generalize well to other test data

Overfitting

- Split the training data into estimation data and validation data
- At each iteration, modify model based on estimation data and validate on validation data
- Stop when improvement on validation is not enough.

Overfitting Summary

- Split training data into:
 - estimation data
 - validation data
- Estimate model from estimation data
- Compute performance on validation data
- Iterate as long as performance on validation data improves (enough)
- Model performance is the score on test data

Representative Power of NN

- Boolean functions:
 - can be represented with one hidden layer (but number of neurons can be very large)
- Continuous functions (Cybenko 1989) :
 - can be approximated with one hidden layer (with sigmoids on hidden layer and linear output)
 - (but two hidden layers maybe more efficient)
- Classifiers:
 - mesurable partition $\{P_i\}$, g(x) = i iif $x \in P_i$
 - g can be approximated with one hidden layer

MALIS 2017 311

Boolean Functions

- ◆ 1 hidden layer is sufficient to represent any boolean function:
 - Use disjunctive normal form $(\overline{a} \wedge c) \vee (a \wedge b \wedge \overline{c})$
 - For each term, create a hidden neuron for AND

$$\overline{a} \wedge \underline{c} \Leftrightarrow -a+c \geq 2$$

 $a \wedge b \wedge \overline{c} \Leftrightarrow a+b-c \geq 3$

• Create one output neuron for the main OR

MALIS 2017

One hidden layer example

• Build one hidden layer network:

MALIS 2017 315

One hidden layer example

Values of activation:

MALIS 2017

One hidden layer example

y ₁	y ₂	y ₃	y ₄	y ₅	y ₆	а
0	0	0	0	0	0	-
1	0	0	0	0	0	-
1	1	0	0	0	0	-
1	1	1	0	0	0	-
1	1	1	1	0	0	-
0	0	0	0	1	0	-
1	0	0	0	1	0	+
1	1	0	0	1	0	-
1	1	1	0	1	0	+
1	1	1	1	1	0	-
0	0	0	0	1	1	-
1	0	0	0	1	1	-
1	1	0	0	1	1	-
1	1	1	0	1	1	-
1	1	1	1	1	1	-

MALIS 2017 317

One hidden layer example

One hidden layer example

```
    For example, choose:
    b = -3
    w<sub>1</sub> = 2
    w<sub>1</sub> + w<sub>2</sub>
    w<sub>1</sub> + w<sub>2</sub>
    w<sub>1</sub> + w<sub>2</sub>
    w<sub>2</sub> = -2
    w<sub>1</sub> + w<sub>2</sub> + w<sub>3</sub>
    w<sub>2</sub> = -2
    w<sub>3</sub> = 2
    w<sub>4</sub> + w<sub>2</sub> + w<sub>3</sub>
    w<sub>4</sub> = -2
```

 $w_1 + w_2 + w_3 + w_4 + w_5 + w_6 - b = -3 < 0$

MALIS 2017 319

Cybenko's weak theorem

- ◆ Let f a continuous function [-1,+1]ⁿ→R

$$\forall x \in [-1,+1]^n |f(x)-N(x)| < \varepsilon$$

- Proof:
 - let A = $(a_1, a_2 ... a_n)$
 - let $C_A(\alpha)$ be the hypercube

$$[a_1,a_1+\alpha]\times[a_2,a_2+\alpha]\times...\times[a_n,a_n+\alpha]$$

• we can partition $[-1,+1]^n$ with such hypercubes $C_A(\alpha)$

Cybenko's weak Theorem

 we can construct the characteristic function of C_A as a neural net N_A:

MALIS 2017 321

Cybenko's weak Theorem

• Build a compound Neural Net N:

- if $x \in C_{Ai}$ then $N(x) = w_i$
- We choose $w_i = f(A_i)$, so $N(x) = f(A_i)$

Cybenko's weak Theorem

• f is uniformly continuous:

```
\forall \epsilon > 0 \ \exists \alpha > 0 \ \forall x_0, x \in [-1, +1]^n \ \| \ x - x_0 \ \|_{\infty} < \alpha \implies |f(x) - f(x_0)| < \epsilon
```

- ◆ Let x∈[-1,+1]ⁿ
 - x belongs to one hypercube $\exists i : x \in C_{Ai}$
 - by construction $\|\mathbf{x} \mathbf{A}_i\|_{\infty} < \alpha$
 - so $|f(x)-N(x)| = |f(x)-f(A_i)| < \varepsilon$
- the network N approximates f with an accuracy of ε
- N has two hidden layers

Note:
$$\|x\|_{\infty} = \max_{i} |x_{i}|$$

MALIS 2017

Summary on MLP

Advantages

- Very general, can be applied in many situations
- Neural interpretation
- Powerful according to theory
- Efficient according to practice

Drawbacks

- Training is often slow
- Choice of optimal number of layers & neurons difficult
- Little understanding of real model

- 2009 DN wins Character Recognition competition
- ◆ 2011 DN wins Traffic Sign Recognition competition
- 2011 Microsoft DN breakthrough in Speech Recognition
- 2012 Google DN recognizes Cats in images (unsupervised)
- ◆ 2012 DN wins ImageNet competition (15% errors, second best is 26%)
- ◆ 2013 G. Hinton hired by Google
- 2013 Y. LeCun hired by Facebook

MALIS 2017 325

Deep Learning Networks

- Shallow architecture:
 - Few layers
 - Many neurons

$$f(x) \approx \sum_{j} g_{j}(x)$$

Combination of simpler functions

Many layers

$$f(x) \approx g_1(g_2(...g_n(x)))$$

• Composition of simpler functions

deep

326

MALIS 2017

Basic idea:

For some problems, composition is more efficient than combination

- Problem: How to train?
 - Random initialization + Backpropagation
 - Numerically unstable when too many layers
 - Random initialization gives poor local minimum
 - Many parameters requires a lot of data
- Idea: train one layer after each other
 - Allows unsupervised training (more data is available)
 - Avoids random initialization
 - Often fine tune with labeled data at the end

MALIS 2017 329

Deep Learning Networks

- One technique: stacking auto-encoders (other techniques exist)
 - Train auto-encoder

- One technique: stacking auto-encoders (other techniques exist)
 - Train auto-encoder on a patch
 - Remove last layer

MALIS 2017

Deep Learning Networks

- One technique: stacking auto-encoders (other techniques exist)
 - Train auto-encoder on a patch
 - Remove last layer
 - Build new auto-encoder on last layer

332

MALIS 2017

- One technique: stacking auto-encoders (other techniques exist)
 - Train auto-encoder on a patch
 - Remove last layer
 - Build new auto-encoder on last layer
 - Remove last layer
 - Etc...

MALIS 2017

555

Deep Learning Networks

- Benefits of layer-wise training
 - Train one layer : gradient optimization works well
 - Initialization: random start on one level only, the other levels are initialized with previously trained values: less risk to get a bad minimum
 - Can use unlabelled data (e.g. millions of images)
- Generally followed by a step of fine tuning with labelled data
 - But the network has been pre-trained, so optimization gives a better mimimum
 - Current architectures: 5 150 « infinite » levels

- Active field of research
- Many new ideas:
 - RELU activation function
 - Drop-out training
 - Contrastive learning
 - Residual networks
 - Long-Short-Term Memory
 - ...
 - And GPUs
- If interested, wait for Deep Network course in Spring

MALIS 2017 335

Hopfield Networks

- Bipolar data representation:
 - Bipolar pattern: $x \in \{-1,+1\}^n$
 - -1 = inactive
 - +1 = active
 - Properties:
 - x = sign(x)
 - $x^Tx = n$
- Bipolar vs binary representation:
 - More orthogonal vector pairs:

bipolar:
$$2^n \binom{n}{n/2} (n \text{ even})$$
 binary: 3^n

Simple example: F: {-1,+1}ⁿ → {-1,+1}^m

$$u_{_{j}}=\sum_{_{i}}w_{_{ij}}x_{_{i}}$$

W weight matrix mxn

$$F(x) = sign(W.x) = y$$

- ◆ Given (a,b) we want to find W s.t. F(a)=b
 - Note that: $(ba^T)a = b (a^Ta) = n b$

$$b = sign(b) = sign\left(\frac{1}{n}(ba^{T})a\right)$$

$$W = \frac{1}{n}ba^T$$

MALIS 2017

339

Associative Memory Networks

- Slightly more complex example:
- ◆ Assume we want to encode a set of T patterns (a_i,b_i), i=1, ... T
- ◆ Also, assume that the a_i are <u>orthogonal</u>: a_i^Ta_i=0
- Let $W = \frac{1}{n} \sum_{i} b_i a_i^T$
- Then

$$Wa_k = \frac{1}{n} \left(\sum_{i} b_i a_i^T \right) a_k = \frac{1}{n} \sum_{i} b_i (a_i^T a_k) = \frac{1}{n} b_k (a_k^T a_k) = b_k$$

$$F(a_k) = sign(Wa_k) = sign(b_k) = b_k$$

Stability: What is the effect if the input is slightly pertubated by a noise vector d: F(a_k+d)?

$$W(a_k + d) = \frac{1}{n} \left(\sum_i b_i a_i^{\mathsf{T}} \right) (a_k + d) = \frac{1}{n} \sum_i b_i (a_i^{\mathsf{T}} a_k) + \frac{1}{n} \left(\sum_i b_i a_i^{\mathsf{T}} \right) d$$
$$= b_k + \frac{1}{n} \left(\sum_i b_i a_i^{\mathsf{T}} \right) d$$

$$F(a_k + d) = sign(W(a_k + d)) = sign\left(b_k + \frac{1}{n}\left(\sum_i b_i a_i^T\right)d\right)$$

• If d is small or uncorrelated with $\sum b_i a_i^T$ then $F(a_k+d) = sign(b_k)^i = b_k$

MALIS 2017

341

Associative Memory Networks

Assume now that the a_i have low correlation

$$\begin{aligned} Wa_k &= \frac{1}{n} \left(\sum_i b_i a_i^T \right) a_k = \frac{1}{n} \sum_i b_i \left(a_i^T a_k \right) \\ &= b_k + \frac{1}{n} \sum_{i \neq k} b_i \left(a_i^T a_k \right) \end{aligned}$$

$$F(a_k) = sign(Wa_k) = sign\left(b_k + \frac{1}{n} \sum_{i \neq k} b_i (a_i^T a_k)\right)$$

• If $(a_i^T a_k)/n \approx 0$ then

$$F(a_k) = sign(b_k) = b_k$$

- Summary up to now:
 - We considered 1 layer network
 - Training patterns (a_i,b_i), i=1, ... T
 - Weight matrix (called Hebbian matrix):

$$W = \frac{1}{n} \sum_{i} b_{i} a_{i}^{T}$$

Properties:

Network associates b_i to a_i when:

- a; orthogonal (uncorrelated)
- Stable under small noise perturbation
- a_i low correlation

MALIS 2017 343

Hopfield Networks

- Hopfield Networks are:
 - Auto-associative networks
 a = b (and m=n)
 - Contains n neurons
 - Each neuron activates all others except itself
 - Weights are symetric
 - Operation:

MALIS 2017

- Network is initialized
- Neurons fire, network evolve
- Until final stable state

Hopfield Networks

- Neuron i: two possible states x_i∈ {-1,+1}
- Network: state $x = (x_1, x_2 ... x_n)$
- ◆ Fully connected with symetric connections wii
 - Hopfield net properties: $w_{ij} = w_{ji}, \ w_{ii} = 0$
- Non-deterministic evolution:
 - Select a neuron k
 - Change state: $x_i^{(t+1)} = \begin{cases} sign(\sum_j w_{kj} x_j^{(t)} \theta_k) & \text{if } i = k \\ x_i^{(t)} & \text{else} \end{cases}$
 - Trajectory: $\mathbf{x}^{(0)} \rightarrow \mathbf{x}^{(1)} \rightarrow \ldots \rightarrow \mathbf{x}^{(t)} \rightarrow$

MALIS 2017 345

Hopfield Net Example

- 2 neurons
 - Weight matrix $\mathbf{w} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ • Thresholds $\theta_i = 0$

	1	\(\int_{n}\)
Π_1		$-(n_2)$

		Next state		
Sta	State		Select n ₂	
S ₁	-1, -1	S ₁	S ₁	
S ₂	+1, -1	S ₁	S ₄	
S ₃	-1, +1	S ₄	S ₁	
S ₄	+1, +1	S ₄	S ₄	

Hopfield Net Example

$$(n_1)$$
 (n_2)

$$w = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Trajectories:

MALIS 2017

347

Hopfield Net Example

- 3 neurons
 - Thresholds $\theta_i = 0.5$
 - 8 states: {±1, ±1, ±1}
 - Assume initial state: (+1,-1,-1) $x_1^{(0)}$ =+1, $x_2^{(0)}$ =-1, $x_3^{(0)}$ =-1

• Non-deterministic evolution: for example, k = 2

$$x_{1}^{(1)} = x_{1}^{(0)} = +1$$

$$x_{2}^{(1)} = sign(\sum_{j} w_{2j} x_{j}^{(0)} - \theta_{2}) = +1$$

$$x_{3}^{(1)} = x_{3}^{(0)} = -1$$

• Next state (+1, +1, -1)

Hopfield Net Example

		Next state		
Sta	State		Select n ₂	Select n ₃
S ₁	-1,-1,-1	S ₁	S ₁	S ₁
S_2	+1,-1,-1	S ₁	S ₄	S_6
S_3	-1,+1,-1	S_3	S ₁	S_3
S_4	+1,+1,-1	S_3	S ₄	S ₄
S_5	-1,-1,+1	S_5	S ₅	S ₁
S_6	+1,-1,+1	S_5	S ₆	S_6
S ₇	-1,+1,+1	S ₈	S ₅	S_3
S ₈	+1,+1,+1	S ₈	S ₆	S ₄

Hopfield Net Trajectories

- 2ⁿ state vectors
- Trajectories may either:
 - 1: converge to a stable point
 - 2: cycle
- Limit in case 1: fundamental memory
- x is a fundamental memory iif

$$\mathbf{x}_{i}^{(t+1)} = sign(\sum_{i} \mathbf{w}_{ij} \mathbf{x}_{j}^{(t)} - \theta_{i}) = \mathbf{x}_{i}^{(t)} \quad \forall i$$

- (we will see that cycles are impossible)
- ♦ We assume that sign(0) = -1

MALIS 2017 351

Hopfield Net Trajectories

- Theorem:
 - all trajectories terminate in a stable point
- ♦ Proof: define energy $E = -\frac{1}{2} \sum_{ij} w_{ij} x_i x_j + \sum_{ij} \theta_i x_i$
 - during evolution, assume neuron k changes: (remember that $w_{kk} = 0$)

$$\begin{split} \mathsf{E}^{(t+1)} - \mathsf{E}^{(t)} &= -\frac{1}{2} \sum_{ij} w_{ij} \Big(x_i^{(t+1)} x_j^{(t+1)} - x_i^{(t)} x_j^{(t)} \Big) + \sum_i \theta_i \Big(x_i^{(t+1)} - x_i^{(t)} \Big) \\ &= -\sum_i w_{ik} x_i^{(t)} \Big(x_k^{(t+1)} - x_k^{(t)} \Big) + \theta_k \Big(x_k^{(t+1)} - x_k^{(t)} \Big) \\ &= - \Big(x_k^{(t+1)} - x_k^{(t)} \Big) \left(\sum_i w_{ik} x_i^{(t)} - \theta_k \right) \end{split}$$

Hopfield Net Trajectories

$$\begin{split} \mathsf{E}^{(t+1)} - \mathsf{E}^{(t)} &= - \Big(x_k^{(t+1)} - x_k^{(t)} \Big) \Bigg(\sum_i w_{ik} x_i^{(t)} - \theta_k \Bigg) \\ &= - \Big(sign(u_k^{(t+1)}) - x_k^{(t)} \Big) u_k^{(t+1)} \end{split}$$

when neuron k changes its state:

X _k ^(t)	x _k ^(t+1)	u _k ^(t+1)	E ^(t+1) - E ^(t)
+1	-1	≤ 0	≤ 0
-1	+1	> 0	< 0

• in all cases: E^(t+1) ≤ E^(t) energy decreases

MALIS 2017 353

Hopfield Net Trajectories

- Energy along a trajectory always decreases
 - there are only finite states,
 - so trajectory ends with constant energy
- Cycles with constant energy are not possible
 - this is true, but why?
- So each trajectory terminates in a single stable state
 - this is a fundamental memory of the network

Hopfield Net Example

- 3 neurons
 - 8 states: {±1, ±1, ±1}
 thresholds = 0.5
 Energy

MALIS 2017 355

Hopfield Net Example

- 3 neurons
 - 8 states: {±1, ±1, ±1}
 - thresholds zero

MALIS 2017

Intuitive Idea

- Fundamental memories are attractors on the energy surface
- A basin is the set of trajectories which end in a given memory
- End of trajectory depends on initial point
- Fundamental memories which are too close are confusable

MALIS 2017

357

Associative Memory

- Example: image restoration
 - assume 1 pixel = 1 neuron
 - assume image I is a fundamental memory
 - assume J is a noisy version of image I
 - then, initialize network state to J, let evolve
 - it is likely that the trajectory will end in I initial degraded restored

MALIS 2017

Synchronous Update

- All neurons fire simultaneously
- The trajectory property does not hold: cycles are possible
 - two neurons
 - threshold zero

$$\mathbf{w} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

Trajectories:

MALIS 2017

359

Hebb Weights

- How to build a network with known fundamental memories?
 - Patterns $p_1, p_2, \dots p_T$ $p_i \in \{-1,+1\}^n$
 - Hebb weights:

$$\begin{aligned} & \text{yhts:} \\ & w_{ij} = \frac{1}{n} \Biggl(\sum_{k=1}^{T} \; p_{ki} \; p_{kj} - T \; \delta_{ij} \Biggr) \end{aligned} \qquad \begin{array}{c} \delta_{ij} \; \text{is the } \; \text{« Kronecker symbol »;} \\ \delta_{ij} \; = 1 \; \text{if } i = j \\ 0 \; \text{else} \end{aligned}$$

$$\delta_{ij} = 1 \text{ if } i=j$$
0 else

- intuitive:
 - if $p_{ki} = p_{kj}$, $p_{ki} p_{kj} = +1$ contributes to $w_{ij} > 0$
 - if $p_{ki} \neq p_{kj}$, $p_{ki} p_{kj} = -1$ contributes to $w_{ij} < 0$

Hebb Weights

- ◆ If we set state to p_k
- activation for neuron i:

$$y_i = \sum_{j} w_{ij} \; p_{kj} = \sum_{j \neq i} \Biggl(\frac{1}{n} \sum_{h} p_{hi} \; p_{hj} \Biggr) p_{kj} = \frac{1}{n} \sum_{h} p_{hi} \; \sum_{j \neq i} p_{hj} \; p_{kj}$$

when h = k, $\sum_{j \neq i} p_{hj} p_{kj} = \sum_{j \neq i} p_{kj}^2 = n - 1$

$$y_i = p_{ki} - \frac{1}{n} p_{ki} + \frac{1}{n} \sum_{h \neq k} p_{hi} \ \sum_{j \neq i} p_{hj} \ p_{kj}$$

• if patterns are not correlated, $\sum_{j\neq i} p_{hj} p_{kj}$ is low so, $p_{ki} = sign(y_i)$

the pattern pk is a fundamental memory

MALIS 2017 361

Hebbian Training

- Iterative training algorithm (heuristic)
 - Patterns $p_1, p_2, \dots p_K$ $p_i \in \{-1, +1\}^n$
 - initialize weights w_{ij}
 - select a pattern p_k
 - update weights (Hebbian rule):

$$w_{ij} \to w_{ij} + \lambda \, p_{ki} \; p_{kj} \quad \text{ with } \lambda > 0$$

- intuitive:
 - if $p_{ki} = p_{kj}$, increase w_{ij}
 - if p_{ki} ≠ p_{kj}, decrease w_{ij}
- iterate -

Hopfield Example

- n = 120 neurons
 n²-n = 12280 weights
- Trained to retrieve 8 digitlike black and white patterns
- Weights computed using the Hebb's rule.

363

MALIS 2017

Hopfield Example

365 **MALIS 2017**

Hopfield Example

- Spurious States:
 - Reversed fundamental memories
 - Mixture states
 - "Spin-glass states"

MALIS 2017

Spurious States

- Training may produce local energy minima which are not patterns: those are spurious states
- Spurious states maybe:
 - opposite of stable states (if zero thresholds)
 - odd mixture of stable states

ex:
$$\pm s_1 \pm s_2 \pm s_3$$

• "spin glass" states

MALIS 2017

367

Capacity of Hopfield Nets

- How many fundamental memories in a net?
- Assuming p random patterns for n neurons:
 - if we want more than 99%bits correct:

• if we want more than 99% patterns correct:

$$p \le \frac{n}{2\text{Log } n}$$

• if we want more than 99% chances that all patterns are correct:

$$p \le \frac{n}{4 \text{ Log } n}$$

Optimization with Hopfield Networks

- Design network for TSP with n cities:
 - N=nxn neurons
 - Neuron ij is 1 if city i was visited at time j, 0 else

MALIS 2017

369

Optimization with Hopfield Networks

- Constraints:
 - At any given time only one town is visited

$$\forall j : \sum_{i=1}^{n} y_{ij} - 1 = 0 \qquad or \qquad \sum_{j=1}^{n} \left(\sum_{i=1}^{n} y_{ij} - 1 \right)^{2} = 0$$

• Each town is visited only once

$$\forall i: \sum_{j=1}^{n} y_{ij} - 1 = 0$$
 or $\sum_{i=1}^{n} \left(\sum_{j=1}^{n} y_{ij} - 1\right)^{2} = 0$

- Cost function:
 - Tour length = sum of distances between towns

 $C(path) = \sum_{i=1}^{n} \sum_{k=1}^{n} \sum_{k\neq i}^{n} c_{ik} y_{ij} (y_{k,j-1} + y_{k,j+1})$

Optimization with Hopfield Networks

- Include constraints in cost function:
 - Constrained optimization:

$$C(Y) = \sum_{i=1}^{n} \sum_{k=1, k \neq i}^{n} \sum_{j=1}^{n} c_{ik} y_{ij} (y_{k,j-1} + y_{k,j+1}) \quad with \quad \sum_{j=1}^{n} \left(\sum_{i=1}^{n} y_{ij} - 1 \right)^{2} = 0$$

and
$$\sum_{i=1}^{n} \left(\sum_{j=1}^{n} y_{ij} - 1 \right)^{2} = 0$$

371

Unconstrained optimization:

$$C*(Y) = \frac{a}{2} \sum_{i=1}^{n} \sum_{k=1, k \neq i}^{n} \sum_{j=1}^{n} c_{ik} y_{ij} (y_{k,j-1} + y_{k,j+1}) + \frac{b}{2} \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{n} y_{ij} - 1 \right)^{2} + \sum_{i=1}^{n} \left(\sum_{j=1}^{n} y_{ij} - 1 \right)^{2} \right)$$

MALIS 2017

Optimization with Hopfield Networks

• Represent cost function as network energy:

$$\begin{split} C*(Y) &= \frac{a}{2} \sum_{i,k,k \neq i} \sum_{j=1}^{n} c_{ik} y_{ij} (y_{k,j-1} + y_{k,j+1}) \\ &+ \frac{b}{2} \Biggl(\sum_{j=1}^{n} \Biggl(\sum_{i=1}^{n} y_{ij} - 1 \Biggr)^{2} + \sum_{i=1}^{n} \Biggl(\sum_{j=1}^{n} y_{ij} - 1 \Biggr)^{2} \Biggr) \\ E &= -\frac{1}{2} \sum_{i,j} \sum_{k,l} w_{ij,kl} y_{ij} y_{kl} + \sum_{i,j} \theta_{ij} y_{ij} \\ \text{Results in: } \begin{cases} w_{ij,kl} = -ac_{ik} \left(\delta_{l,j-1} + \delta_{l,j+1} \right) - b(\delta_{ik} + \delta_{jl} + \delta_{ik} \delta_{jl}) \\ w_{ij,ij} &= 0 \\ \theta_{ij} &= 2b \end{cases} \end{split}$$

SOM: Self Organizing Maps

MALIS 2017

373

Self Organizing Maps

- ◆ SOM: Kohonen (1982)
- Neural networks with 2 layers:
 - Input layer
 - Output layer
- Full connections
- Topology on output layer (generally 2D)
 - Define neighbours of an output neuron
- Specific training algorithm:
 - Called Competitive Learning
 - It is an unsupervised method

Competitive Learning

- Unsupervised training algorithm
 - Training set of input vectors
 - We don't know the corresponding output vectors
- Best Matching Unit:
 - Input vector $x^j = (x^j_1, x^j_2, \dots x^j_m)$
 - Output neuron k: weight vector $w_k = (w_{1k}, w_{2k}, \dots w_{mk})$
 - Distance between output neuron and input vector:

$$\left\|\boldsymbol{w}_{k}-\boldsymbol{x}^{j}\right\|^{2}=\sum_{i}\left(\!\boldsymbol{w}_{ik}-\boldsymbol{x}_{i}^{j}\right)^{\!2}$$

• Closest output neuron: $\underset{k}{\operatorname{argmin}} \|\mathbf{w}_k - \mathbf{x}^j\|^2$

Competitive Learning

- Idea: « Winner Takes All » rule:
 - Initialize random weights w_{ii}(0)
 - Iterate over all training samples: select xi(t)
 - Set input values to $\mathbf{x}^{\mathbf{j}(t)}_1,\,\mathbf{x}^{\mathbf{j}(t)}_2,\,\dots\,\mathbf{x}^{\mathbf{j}(t)}_{\mathbf{m}}$
 - Compute best neuron k*:

$$k^*$$
: $k^* = \underset{k}{\operatorname{argmin}} \| w_k^{(t)} - x^{j(t)} \|^2$

• Update weights for k*:

$$w_{ik^*}^{(t+1)} = w_{ik^*}^{(t)} + \lambda (x_i^{j(t)} - w_{ik^*}^{(t)}) \qquad \lambda > 0 \quad i = 1, 2, ..., n$$

- • Iterate

Note: often, for better convergence, λ decreases with t

MALIS 2017 377

Competitive Learning Illustration

Competitive Learning Illustration

 Weight vectors will converge to center of clusters of input vectors

MALIS 2017 379

Neuronal Interpretation

Distance with input vectors:

$$\|\mathbf{w}_{k} - \mathbf{x}^{j}\|^{2} = \|\mathbf{w}_{k}\|^{2} - 2\sum_{i} \mathbf{w}_{ik} \mathbf{x}_{i}^{j} + \|\mathbf{x}^{j}\|^{2}$$

• If weight vectors are normalized $||w_k|| = 1$, then:

$$k^{\star} = \underset{k}{argmax} \sum_{i} w_{ik} x_{i}^{j} = \underset{k}{argmin} \left\| w_{k} - x^{j} \right\|^{2}$$

- Minimum distance is also maximum activation
- The winner neuron is also the neuron with largest output:

$$y_k^j = f(\sum_i w_{ik} x_i^j)$$

Competitive Learning Example

- 4 input values, 2 output neurons
- 4 input vectors:

initial weights:

x ¹	X ²	x ³	x ⁴
1	0	1	0
1	0	0	0
0	0	0	1
0	1	0	1

w ₁ ⁽⁰	W ₂ ⁽⁰
.2	.8
.6	.4
.5	.7
.9	.3

• Competitive training with $\lambda = 0.6$

MALIS 2017 381

Competitive Learning Example

- $||w_1^{(0)}-x^1||^2 = (.2-1)^2 + (.6-1)^2 + (.5-0)^2 + (.9-0)^2 = 1.86$
- $\|\mathbf{w}_{2}^{(0)} \mathbf{x}^{1}\|^{2} = (.8-1)^{2} + (.4-1)^{2} + (.7-0)^{2} + (.3-0)^{2} = 0.98$
- → w₂⁽⁰⁾ is the winner, update it:

$$W_1^{(1)=} W_1^{(0)}$$

MALIS 2017

Competitive Learning Example

- Sample input vector 2:
- $||w_1^{(1)}-x^2||^2 = 0.66$
- $||w_2^{(1)}-x^2||^2 = 2.28$
- ♦ w₁⁽¹⁾ is the winner, update it:

MALIS 2017

Competitive Learning Example

After 4 samples:

W ₁ ⁽⁴⁾	w ₂ ⁽⁴⁾
.03	.97
.10	.30
.68	.11
.98	.05

- Note: we can reduce λ for example, each time the training set has been entirely processed:
 - $\lambda = \lambda / 2$
 - This gives the sequence $\lambda = 0.6, 0.3, 0.15, \dots$

384

Competitive Learning Example

◆ After 10 x 4 iterations

W ₁ ⁽⁴⁰⁾	W ₂ ⁽⁴⁰⁾
.01	.99
.03	.41
.58	.02
.99	.01

$(x^2+x^4)/2$	$(x^1+x^3)/2$
0.	1.
0.	0.5
.5	0.
1.	0.

x ¹	x ²	x ³	X ⁴
1	0	1	0
1	0	0	0
0	0	0	1
0	1	0	1

- x¹ and x³ belong to class 2
- x² and x⁴ belong to class 1

MALIS 2017 385

Self Organizing Maps

- Output neurons are organized in a topological structure
 - usually 1D, 2D or 3D
- Example of 2D structures:

MALIS 2017 38

Self Organizing Maps

- Neighborhood Functions $\varphi_{k^*}(i)$
- 2-Dimension
 - Gaussian-like

$$\varphi_{\mathsf{k}^*}(\mathsf{i}) = e^{-\frac{\|\mathsf{k}^* - \mathsf{i}\|^2}{2\,\sigma^2}}$$

$$\varphi_{k^*}(i) = \frac{1}{1 + \frac{\left\|\mathbf{k}^* - \mathbf{i}\right\|^2}{\sigma^2}}$$

MALIS 2017

389

Complete SOM Training Algorithm

- Idea:
 - Neighbours of Best Matching Unit are also updated
 - Update depends on neighbooring function:
 - For Best Matching Unit k*

$$\mathbf{W}_{k^*}^{(t+1)} = \mathbf{W}_{k^*}^{(t)} + \lambda \left(\mathbf{X}^{j(t)} - \mathbf{W}_{k^*}^{(t)} \right)$$

• For Neighbours i

$$W_{i}^{(t+1)} = W_{i}^{(t)} + \lambda \varphi_{k^{*}}(i) (x^{j(t)} - W_{i}^{(t)})$$

(note that generally $\varphi_{k^*}(k^*) = 1$)

Complete SOM Training Algorithm

- Algorithm:
 - Initialize random weights $w_{ij}^{(0)}$
 - Iterate over all training samples: select xi(t)
 - Set input values to $x^{j(t)}_1$, $x^{j(t)}_2$, ... $x^{j(t)}_m$
 - Compute best neuron k*:

$$k^{\star} = \underset{k}{argmin} \left\| w_{k}^{(t)} - x^{j(t)} \right\|^{2}$$

• Update weights for k* and neighbours i:

$$W_{i}^{(t+1)} = W_{i}^{(t)} + \lambda \varphi_{k^{*}}(i) (x^{j(t)} - W_{i}^{(t)})$$

Iterate

MALIS 2017 391

1-D Illustration

Peano Curve Example

- ◆ George Cantor [1878]: there exists a bijective function between ℝ and ℝ²
 - also between the unit interval [0,1] and the unit square [0,1] x [0,1]
- Netto [1879]: there is no continuous bijective function beween [0,1] and [0,1] x [0,1]
- ◆ Peano [1890]: there exists a surjective continuous function from [0,1] onto [0,1] x [0,1]
 - Called « space filling curves »

MALIS 2017 393

Peano Curve Example

Peano

Hilbert

SOM Poverty Map

- ◆ 1992 World Bank statistics of countries
- 169 countries
- 39 economic indicators for each country
 - 169 input vectors with dimension 39
- Hexagonal 9x13 2D color output map
 - Train with RGB colors

MALIS 2017

397

SOM Poverty Map

- ◆ 169 countries, input vectors with dimension 39
- ◆ Hexagonal 9x13 2D color output map
 - Train with dim 39 vectors
 - After training, assign each country to closest neuron

 Countries with similar economic vectors are assign the same or neighbour neurons

- ◆ 13 characteristics per animal
 - 16 input vectors with dimension 13
- ◆ Rectangular 10x10 grid of output neurons

		Dove	Hen	Duck	Goose	Owl	Hawk	Eagle	Fox	Dog	Wolf	Cat	Tiger	Lion	Horse	Zebra	Cov
	Small	1	1	1	1	1	1	Lagic 0	0	0	0	1	0	۸	Λ	Λ	000
14	Medium	ò	0	'n	'n	'n	'n	1	1	1	1	'n	0	٥	0	0	0
is	Big	0	0	0	0	0	0	0	0	0	Ö	0	1	1	1	1	1
	2 legs	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	4 legs	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
has	Hair	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
iias .	Hooves	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
	Mane	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	0
	=eathers	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Hunt	0	0	0	0	1	1	1	1	0	1	1	1	1	0	0	0
likes	Run	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0
to	Fly	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0
ıo	Swim	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0

Simulated Annealing

MALIS 2017

403

Heuristic Search

- Used for "difficult" problems, typically NP-hard ones.
- Optimal solutions are very computationally expensive, or impossible to find.
- Use approximation algorithms, "heuristics", to find "good" solutions.
- Many such problems are combinatorial in nature. The solution is a sequence or grouping of discrete objects.

An Example

- Five colleagues (named A, B, C, D and E) enter a pub to celebrate. They seat themselves along the bar to enjoy a drink.
- Unfortunately, they have strong preferences as to whom they sit beside. The friends want to organise themselves to minimise the total dislike.

MALIS 2017 405

Some maths/formalism

- Let S be the set of all possible set of configurations.
- ◆ In our case, S is the set of all possible orderings of the students; S={(A,B,C,D,E), (A,B,C,D,E), (A,B,C,E,D), ..., (E,D,C,B,A)}.
- How many different such solutions are there?

Some maths/formalism (cont.)

- If we consider solutions such as (A,B,C,D,E) and (E,D,C,B,A), what do we see?
- So, what is the real total number of solutions?

MALIS 2017

407

More maths...

- ♦ Let f(x): $x \in S \rightarrow \Re$ be a cost function that assigns a real number to each configuration $x \in S$.
- In our case, let a solution be denoted by x=(x1, x2, x3, x4, x5), where x_q gives the person sitting in seat q. If d(i,j) is the dislike between person i and j, then the cost of solution x is:

$$f(x) = d(x1, x2) + d(x2, x3) + d(x3, x4) + d(x4, x5)$$

Eg, for $x=(A,B,C,D,E)$,

f(x) = d(A,B) + d(B,C) + d(C,D) + d(D,E) = 13+5+5+6 = 29.

- Our goal is to find a configuration x for which f(x) achieves a minimum (or maximum) value, f*
- ie find some optimal configuration x* satisfying: f(x*) = f*

Solution Method One

- Complete enumeration
 - Choose best of every possible solution
- Advantages:
- Disadvantages:
 - How many solutions are there if 20 not-so-good mates go? If 10⁴ solutions are tried each second, how long does it take to try all solutions?

MALIS 2017 409

Solution Method Two

- Greedy sequential algorithm:
 - A greedy sequential algorithm constructs a solution by a series of steps that are 'greedy'.
 - They make a decision that looks like a good thing to do now, and 'sequentially'
 - Makes a sequence of decisions, never reversing an earlier decision.
 - In general, it does not guarantee optimality.

Solution Method Two:

- Greedy sequential algorithm:
 - 1. Pick the best pair and sit them together, call this solution x.
 - 2. Repeat:
 - From the unseated people, find the person y who best fit current solution x, either from left (gives, (y,x)), or from right (gives, (x,y)) which ever gives better objective value.
 - 3. Until all people are seated.
- Try that out now on the colleagues in the bar eg.!

MALIS 2017 411

Solution Method Three:

Random Search:

Choose the best of many random examples

- Advantages
- Disadvantages

Solution Method Four:

- ◆ Local Search (aka Hill Climbing/Steepest Descent)
 - Repeatedly make small changes to the solution, accepting the changes that give improvements.
- Advantage:
- Disadvantage:

MALIS 2017

413

Solution Method Four

- ◆ Local Search:
- Basic algorithm: (steepest descent)
 - initialize i=0, random x₀
 - → search x neighbor of x_i which minimizes f(x)
 - $X_{i+1} = X$
 - iterate

Steepest-Descent

- Also called hill-climbing for maximization
- Gradient search is a special case (if f diff.)
- Problems with steepest descent:
 - · depends on initial point
 - · converges to local minimum

MALIS 2017

415

How to avoid local minima?

- Need to allow up-hill moves
- should be controlled, otherwise process might never converge
 - \rightarrow simulated annealing idea
- inspired from thermodynamics
- introduce temperature parameter
 - $\bullet \ \, \text{high temperature} \to \text{large movements allowed}$
 - $\bullet \ \ \text{low temperature} \to \text{small movements allowed}$
- cool slowly

Thermodynamics

- Dynamical system S with states {x}
- Energy function E(x)
- For temperature T>0, system S converges to thermal equilibrium
- At thermal equilibrium, S randomly fluctuates around average value:

$$P(x) = \lambda e^{-\frac{E(x)}{kT}}$$

- P(x) is the Boltzmann-Gibbs distribution
- · k is the Boltzmann constant

System Evolution

- At thermal equilibrium:
 - at time t, S in state x(t) = x_i
 - at time t+1, S in state x(t+1) = x_i
 - probability to move from x_i to x_j :

$$P(x_{j}|x_{i}) = \frac{P(x(t+1) = x_{j}, x(t) = x_{i})}{P(x(t) = x_{i})}$$

$$= \frac{P(x(t+1) = x_{j})}{P(x(t) = x_{i})} \qquad \text{(Assume system is free to move)}$$

$$= \frac{\lambda e^{\frac{E(x_{j})}{kT}}}{\frac{E(x_{j})}{kT}} = e^{\frac{E(x_{j}) - E(x_{i})}{kT}} = e^{\frac{\Delta E}{kT}}$$

$$\lambda e^{\frac{E(x_{j})}{kT}}$$

Metropolis Algorithm

- How to get a system to thermal equilibrium?
- Metropolis algorithm:
 - put system in initial state x₀, i=0
 - select state x neighbor of x_i
 - compute $\Delta E = E(x) E(x_i)$
 - if $\Delta E < 0$, accept move: $x_{i+1} = x$
 - if $\Delta E > 0$, accept move with probability $p = e^{\frac{\Delta E}{kT}}$
 - iterate __
- converges to thermal equilibrium.

MALIS 2017 421

Annealing

- Metallurgy:
 - metal heated near melting point
 - cooling strategy:
 - if cooled slowly, gives large crystal (global minimum energy)
 - if cooled quickly, gives crystal with imperfection (local minimum)
 - cooling schedule:
 - hard to find the right one

The Annealing Analogy

 Use thermodynamic simulation to solve optimization problems (Kirkpatrik et al., early 80's).

Thermodynamic simulation	Combinatorial Optimization
System States —— Energy ——— Change of State —— Temperature —— Frozen State ——	Feasible Solution Cost Neighboring Solution Control Parameter Heuristic Solution

MALIS 2017 423

Simulated Annealing

- Metropolis with temperature cooling:
 - initialize temperature T₀, point x₀, i=0
 - select x neighbor of x_i
 - compute $\Delta E = f(x) f(x_i)$
 - if $\Delta E < 0$, accept move: $x_{i+1} = x$
 - if $\Delta E > 0$, accept move with probability $\mathbf{p} = \mathbf{e}^{\frac{\Delta E}{kT_i}}$
 - eventually reduce temperature
 - iterate

SA Algorithm Parameters

- Algorithm implementation choices
 - Annealing parameters:
 - initial temperature,
 - cooling schedule: T(t) and nb cycles per temp.
 - stopping condition.
 - Problem specific:
 - choice of the space of feasible solutions,
 - form of the cost function,
 - neighborhood structure employed.

SA Algorithm Parameters

- Influence on:
 - Convergence speed,
 - Quality of the solutions obtained.
- From theoretical research results:
 - to guarantee convergence to a global optimum SA may require more iterations than exhaustive search,
 - good advice as to which factor to take into account for deciding on the algorithm details.

MALIS 2017 431

Choice of Annealing Parameters

- Initial Temperature:
 - "hot" enough to allow an almost free exchange of neighboring solutions.
 - Physical analogy: a material is quickly heated up to its liquid state before being cooled slowly
 - What is "hot" enough? Two methods:
 - Known problem so T can be computed (rare).
 - Decide on proportion of up-hill moves, then heat up the system until de desired proportion of accepted moves is obtained.

Initial Temperature (Example)

- Suppose that N=1000 iterations (moves) are going to be generated per temperature value. Suppose that an initial solution is generated, and from this, 400 of the first 1000 solutions had a cost higher than the solution that generated it.
- Let $\delta(j)$ be the change in cost of the j-th solution from the (j-1)-th, and δ be the average change in cost over the 400 cost-increasing solutions, that is:

$$\delta = (1/400) \sum_{j:\delta(j)>0} \delta(j)$$

433 **MALIS 2017**

Initial Temperature (Example Cont.)

• Choose initial temperature, T, such that 200 of these 400 would be accepted. That is,

$$e^{-\frac{\delta}{T}} = \frac{1}{2},$$

$$T = \frac{\delta}{\ln 2}$$

$$T = \frac{\delta}{\ln 2.}$$

434 **MALIS 2017**

Cooling Schedule

Theory:

To guarantee convergence to global minimum:

- $T(t) = N\Delta/\log t$ [Geman and Geman 1984]
- N∆ generally large ⇒ computationally expensive
- Both empirical evidence and theoretical research show that the combination cooling rate / number of cycles per iteration is the key to optimal convergence.

MALIS 2017

435

Cooling Schedule (in practice)

- Cooling rate
 - Geometric reduction:

$$T(t+1) = aT(t)$$
 with $0.8 \le a \le 0.99$

Slow reduction:

$$T(t+1) = T(t)/(1+\beta T(t))$$
 with $\beta \rightarrow 0$

Logarithmic reduction:

$$T(t+1) = c/log(1+t)$$

- Temperature updates:
 - T changes at every iteration (n = 1),
 - T unchanged for n iterations, as T lowers increase n until local optimum is fully explored.

Stopping Criterion

- As T→0, probability of accepting any up-hill moves is small, therefore chance of a change of local optimum is negligible.
- Possible criterions:
 - Stop iterations when T<threshold,
 - Fix a total number of iterations. (sufficiently large to reach small T to ensure convergence).
 - Stop after no up-hill moves have been accepted for a given number of iterations.

MALIS 2017 437

Problem specific parameters

- Neighborhood Structure:
 - To ensure convergence every solution should be "reachable" from every other.
 - At each iteration, the algorithm requires the generation of a neighboring feasible solution.
 Potentially computationally expensive.
 - Small neighborhoods are to be encouraged.

Problem specific parameters

- The Cost Function: (Energy)
 - Evaluated at every iteration
 quick and efficient computation.
 - Often unnecessary to recalculate the complete cost function for the new solution.
- Solution Space:
 - From empirical results:
 - the number of iterations required depends on the size of the solution space.
 - Solution space should be kept small. (reducing problem to sub-problems)

MALIS 2017 439

The Travelling Salesman Problem

- Simulated annealing has been applied with success to the travelling salesman problem (TSP).
- Aim: to find the shortest path that visits all cities from a given set only once.
- This is a discrete problem
 - (gradient descent cannot be used because there is no way to represent a non-continuous function as ndimensional surfaces)

The Travelling Salesman Problem

- Cities are numbered 1...N
- Any permutation π of the numbers 1...N is a valid route.
- Cost function is the total length of the trip

$$E = c_{\pi(1)\pi(N)} + \sum_{i=1}^{N-1} c_{\pi(i)\pi(i+1)}$$

where $\boldsymbol{c}_{\boldsymbol{i}\boldsymbol{j}}$ is the distance between \boldsymbol{i} and \boldsymbol{j}

MALIS 2017 441

The Travelling Salesman Problem

- A k-neighborhood is defined by removing k links and replacing them by a different set of k links
 - The feasibility of the trip should be maintained
 - k>3
 There are a number of ways of reconnecting.
 - k=2
 There is only one way of reconnecting the links.

The Travelling Salesman Problem

 Links (2,3) and (9,10) are removed, new valid trip iif replaced by (2,9) and (3,10).

 $(\pi(i)\pi(i+1))$ and $(\pi(j)\pi(j+1)) \rightarrow (\pi(i)\pi(j))$ and $(\pi(i+1)\pi(j+1))$

MALIS 2017 443

TSP: 2-Neighborhoods (1/2)

- All 2-neighbors can be completely defined by 2 indices i and j such that i<j
- ◆ The size of the solution space is (N-1)!/2
- ◆ The size of the neighborhood is N(N-1)/2
 - large reduction of neighborhood size.
 - Any tour can be obtained from any other by a sequence of such exchanges.
 - Neighboring solution can be easily generated by randomly selecting values for both i and j.

TSP: 2-Neighborhoods (2/2)

 The computational requirement of the cost function can also be reduced by computing

$$\delta E = c_{\pi(i)\pi(j)} + c_{\pi(i+1)\pi(j+1)} - c_{\pi(i)\pi(i+1)} - c_{\pi(j)\pi(j+1)}$$

instead of

$$\delta E_{\theta} = E_{\theta} - E_{\theta-1} \text{ where } E_{\theta} = c_{\pi_{\theta}(i)\pi_{\theta}(N)} + \sum_{i=1}^{N} c_{\pi_{\theta}(i)\pi_{\theta}(i+1)}$$

 Starting solution for simulated annealing can be obtained by generating a random permutation of the city indices.

MALIS 2017 445

TSP: Remarks

- Alternative neighborhood structures:
 - Path reversal
 - Path replacement
- Although TSP is NP-complete, simulated annealing finds either the global minimum or a local minimum that cannot be significantly improved upon in polynomial time.
- Simulated annealing can incorporate additional constraints by changing the cost function.

SA for constrained problems

- Examples:
 - The colleagues: Guys C and E will pull each other's hair if seated next to each other.
 - The TSP: city 2 has to be visited after city 6, city 7 has to be visited between 7am and 9am, no roads go from city 8 to city 3, etc
- What do we do then?

MALIS 2017 447

Method One: penalty

- How should be penalise infeasibilities?
- What happen if the penalty is too big?
- What happen if the penalty is not big enough?
- ◆ How do we determine what penalty to use?
- What if there are more than one constraints?

The Node Coloring Problem (NCP)

- Well-know problem in graph theory (applications in time-tabling and scheduling)
- Problem: Allocate a "color" (label) to nodes s.t. adjacent nodes have different color.

MALIS 2017 451

The NCP: Variants (1/2)

- Neighborhood of a solution: swapping some nodes between 2 subsets
 - BUT: must be done in a feasible manner.
 - solutions may fall outside the solution space!
- Use Kempe chains to partition the graph into disconnected graphs
 - BUT: computationally expensive process

Blue-Green Kempe Chains

MALIS 2017

453

The NCP: Variants (2/2)

- Use cost functions that ensures feasible solution are CPU expensive.
 - Natural cost function:
 The number of subsets in the partition
 - But: not a good choice since unaffected unless a subset becomes empty!
- The cost function should encourage large sets but discourage infeasible coloring

454

MALIS 2017

Applications

- Simulating thermodynamics
- Finding optimal schedules for classes,
- Locating routers and repeaters for telecommunication networks
- Planning land development (forest, roads,...)
- Determining the best position for equipment (aerials, water-towers, sirens, etc...)
- Computer vision (from low level segmentation to high level matching)
- VLSI design (partitioning, placement,...)

MALIS 2017 455

Pros of Simulated Annealing

- Deals with any cost (energy) function,
 - well suited for large, unstructured problems like Computer Vision and VLSI design.
- Easy to implement, even for complex problems.
- Generally gives a 'good' solution.
- It is possible to give statistical guarantees of finding the optimal solution

Cons of Simulated Annealing

- Speed.
 - Due to the required number of iteration.
- Complexity of the cost (energy) function.
- Random number generator of high quality (i.e. have a very long cycle) is required for good results.