

Compilers

A derivation is a sequence of productions

$$\underline{S} \rightarrow \underline{\dots} \rightarrow \underline{\dots} \rightarrow \underline{\dots} \rightarrow \underline{\dots} \rightarrow \underline{\dots}$$

A derivation can be drawn as a tree

- For a production $X \rightarrow Y_1...Y_n$ add children $Y_1...Y_n$ to node X

• Grammar

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

• String

$$id * id + id$$

F

$$E$$

$$\rightarrow E+E$$

$$\rightarrow E*E+E$$

$$\rightarrow id*E+E$$

$$\rightarrow id*id+E$$

$$\rightarrow id*id+id$$

- A parse tree has
 - Terminals at the leaves
 - Non-terminals at the interior nodes

• An in-order traversal of the leaves is the original input

 The parse tree shows the association of operations, the input string does not

- The example is a <u>left-most</u> derivation
 - At each step, replace the leftmost non-terminal

 There is an equivalent notion of a <u>right-most</u> derivation

F

$$E$$

$$\rightarrow E+E$$

$$\rightarrow E+id$$

$$E$$

$$\rightarrow E+E$$

$$\rightarrow E+id$$

$$\rightarrow E*E+id$$

$$E$$

$$\rightarrow E+E$$

$$\rightarrow E+id$$

$$\rightarrow E*E+id$$

$$\rightarrow E*id+id$$

$$E \rightarrow E+E \rightarrow E+id \rightarrow E*E+id \rightarrow E*id+id \rightarrow id*id+id \rightarrow id*id+id$$

Note that right-most and left-most derivations have the same parse tree

Which of the following is a valid derivation of the given grammar?

S aXa O abYa acXca acca

S

aXa

abYa

abcXcda

abccda

$$S \rightarrow aXa$$

 $X \rightarrow \epsilon \mid bY$

$$Y \rightarrow \varepsilon \mid cXc \mid d$$

Which of the following is a valid parse tree for the given grammar?

 \rightarrow aXa

а

- We are not just interested in whether s ∈ L(G)
 - We need a parse tree for s

- A derivation defines a parse tree
 - But one parse tree may have many derivations

 Left-most and right-most derivations are important in parser implementation