

Lesson 1: Introduction to Rocket System

李易 博士

Dr.-Ing LI Yi

School of Astronautics

How can a rocket fly?

Propulsion Motor

Where is it? Navigation

Where should it fly? — Guidance

How can it fly somewhere? —— Control

How can a rocket fly?

Propulsion

Navigation Guidance Control Aerodynamics

Flight mechanics

Structure

Avionics

Materials

Manufacture

Source: wiki

How can a rocket fly?

Propulsion

Motor

Where is it?

Navigation

Where should it fly?

Guidance

How can it fly somewhere?

Control

How can a rocket fly?

Propulsion

Motor

Avionics

sounding rocket: uncontrolled rocket

Materials

Manufacture

How can a rocket fly?

Avionics

Mainframe

Manufacture

sounding rocket: uncontrolled rocket

The name "sounding rocket" comes from the nautical term "to sound," which means to throw a weighted line from a ship into the water to measure the water's depth.

The term itself has its etymological roots in the Portuguese / Italian / Spanish and French words for *probe*, which are "sonda" and "sonde", respectively.

- Wiki

In Chinese, the "sounding rocket" is called "探空火箭"

"探(Tan)" means "to probe".

"空(Kong)" means "space" or "sky".

"火(Huo)箭(Jian)" means "rocket".

Why sounding rocket?

Place instruments directly into **any regions** in the atmosphere or the space near the earth with a **low cost**.

- Space environment
- Micro-gravity experiment
- Biology experiment
- As a testbed for new scientific techniques, scientific instrumentation, and spacecraft technology.

thermal conductivity k [10^2 J / m s K] dynamic viscosity μ [10^5 N s / m²]

The earth atmosphere

Balloon altitude record: 53.0 km

source: wiki

11

Why sounding rocket?

Place instruments directly into **any regions** in the atmosphere or the space near the earth with a **low cost**.

- Suborbital flight (vs. space orbit)
 - low velocity
 - low cost booster
- Uncontrolled or with less control
- Smaller size, launching from temporary sites possible

2. Classification of sounding rockets

Classified by missions

- Space environment
- Micro-gravity experiment
- Biology experiment
- As a testbed for new scientific techniques...

Classified by the propulsion system:

- Liquid
- Solid
- Hybrid

- > Rocket
- > Payload
- Ground facilities

Rocket

- Propulsion system
 - case, propellant feed system, tank, nozzle...
- Electronic system
- Recovery system
- Structure system (Airframe)

<u>Payload</u>

experiment instruments

Propulsion system

Propulsion system

Structure

Payload

Payload

Ground facilities

- Launch pad
- Tracking system
- > Recovery

4. Overview of sounding rocket

- Wac Corporal, 09.16.1945, by JPL, US
 D=304.8 mm, L=4.88 m, m=313.4 kg, Payload
 11.34kg, Apogee 70 km
- > 1946-1952, 64 V2 are launched, White Sand Range
- > 1945-1957, Aerobee, Viking, Deacon, Cajun...
- ➤ Since 1975, SPAR program, US
- Since 1976, Texus program, Germany
- ➤ Since 1977, TT-500A, Japan
- ➤ China, since 1958

5. Design of sounding rocket

- > Tradeoffs
- Conceptual design
- Preliminary design
- Detailed design
- Manufacture
- System integration
- Verification
- Operation

