### Fontes principais

- 1. J. Jaja, An introduction to Parallel Algorithms, Addison Wesley, 92
  - > Algoritmos paralelos
- 2. E. Cáceres, H. Mongeli, S. Song: Algoritmos paralelos usando CGM/PVM/MPI: uma introdução http://www.ime.usp.br/~song/papers/jai01.pdf

## Algoritmos Paralelos em Grafos

- ightharpoonup Um grafo direcionado é euleriano se e somente se, para cada vértice v do grafo, o grau de entrada(v) é igual ao grau de saída(v)

- $\triangleright$  Dada uma árvore T qualquer, T pode ser transformado em um grafo direcionado D, substituindo-se cada aresta da árvore por duas arestas direcionadas anti-paralelas.

- $\triangleright$  Para cada vértice v da árvore existe uma lista de arestas adjacentes a v.
- ▷ Esta representação já transforma a árvore no grafo direcionado.

#### Entrada:

- $\triangleright n$ : número de vértices de T
- $\triangleright inicio[i]$ : ponteiro para o início da lista de arestas adjacentes ao vértice.
- $\triangleright prox[(i,j)]$ : ponteiro para a aresta seguinte à aresta (i,j) na lista de arestas adjacentes ao vértice i. Se (i,j) é a última aresta da lista, prox[(i,j)] = nil.
- ightharpoonup reverso[(i,j)]: ponteiro para (j,i), a aresta reversa de (i,j), na lista de arestas adjacentes ao vértice j.

#### Saída:

ho proxCircuito[(i,j)]: ponteiro para a aresta seguinte a aresta (i,j), no circuito de Euler

Exemplo: Árvore T, n = 7





Exemplo: Grafo Direcionado D, n = 7 e o Reverso





### **Algoritmo**

```
para cada aresta direcionada (i, j) faça em paralelo
se prox[(i, j)] = nil então
prox[(i, j)] := inicio[i]
```

```
para cada aresta direcionada (i, j) faça em paralelo proxCircuito[(i, j)] = prox[reverso(i, j)]
```

### proxCircuito



Submodelo e complexidades:

Submodelo: EREW

### Complexidades

- $\triangleright$  Tempo: O(1)
- $\triangleright$  Processador: número de arestas do grafo direcionado, O(n)

Obs.: Assumimos que o reverso é dado.

- DO circuito de Euler fornece o percurso de uma busca em profundidade na árvore.
- Dado o circuito, conseguimos realizar várias operações sobre a árvore.

Orientação de uma árvore (determinar o vértice pai de cada vértice)

 $\triangleright$  Dada uma árvore T, e um vértice escolhido para ser raiz de T, deseja-se orientar T das folhas para a raiz (transformá-la em uma "in-tree". Para isso, determinamos o vértice pai de cada vértice de T.

#### Idéia:

- a) Obter circuito de Euler de T
- b) Quebrar o circuito na raiz
- c) Numerar as arestas dos circuitos (usando duplicação recursiva)
- d) Determinar pai usando esta numeração.

#### Entrada:

- $\triangleright inicio[i]$ : ponteiro para o início da lista de arestas adjacentes ao vértice.
- $\triangleright prox[(i,j)]$ : ponteiro para a aresta seguinte à aresta (i,j) na lista de arestas adjacentes ao vértice i. Se (i,j) é a última aresta da lista, prox[(i,j)] = nil.
- $\triangleright reverso[(i,j)]$ : ponteiro para (j,i), a aresta reversa de (i,j), na lista de arestas adjacentes ao vértice j.
  - r: vértice escolhido para ser a raiz de T.

#### Estruturas auxiliares:

```
ho proxCircuito[(i,j)]: ponteiro para a aresta seguinte a aresta (i,j), no circuito de Euler
```

```
\triangleright p[(i,j)]: inicialmente terá cópia de proxCircuito[(i,j)]
```

 $\triangleright dist[(i,j)]$ : numeração da aresta (i,j) na lista proxCircuito.

#### Saída:

 $\triangleright pai[i]$ : o pai de cada vértice de T

```
Passo (a): já visto 

para cada aresta direcionada (i, j) faça em paralelo 

se prox[(i, j)] = nil então 

prox[(i, j)] := inicio[i]
```

```
para cada aresta direcionada (i, j) faça em paralelo proxCircuito[(i, j)] := prox[reverso(i, j)]
```

```
Passo (b): 

para cada aresta direcionada (i,j) faça em paralelo 

se prox[(i,j)] = inicio[r] então
```

proxCircuito[reverso(i, j)] := nil

Obs: Agora proxCircuito forma uma lista encadeada aberta de aresta, sendo que a primeira aresta é da forma (r, -). Esta lista representa o percurso de uma busca em profundidade em T, partindo de r.

```
Passo (c):
    para cada aresta direcionada (i,j) faça em paralelo dist[(i,j)] := 1
    p[(i,j)] := proxCircuito[(i,j)]

para cada aresta direcionada (i,j) faça em paralelo enquanto p[(i,j)] \neq nil faça dist[(i,j)] := dist[(i,j)] + dist[p(i,j)]
    p[(i,j)] := p[p(i,j)]

dist[(i,j)] := E(D) - dist[(i,j)] + 1
```

Obs.: E(D) = 2(n-1)

- $\triangleright$  Número de arestas na lista proxCircuito é E(D).
- ightharpoonup Estamos numerando as arestas na lista proxCircuito de 1 a E(D), do início para o fim da lista.

```
Passo (d): 

para cada aresta direcionada (i,j) faça em paralelo 

se dist[(i,j)] < dist[reverso[(i,j)]] então 

pai[j] := i 

pai[r] := -1
```

Obs.: Usando o percurso da busca em profundidade, determinamos se cada aresta é de avanço ou recuo, baseado na numeração. No percurso passamos sempre na aresta de avanço antes de passar na aresta de recuo reversa. Logo a aresta de avanço terá uma numeração menor do que a de recuo.

#### Obs.:

```
se dist[(i,j)] < dist[reverso[(i,j)]] então aresta(i,j) é de avanço senão aresta(i,j) é de recuo
```

Ex.: n = 7, r = 0





### Ex.: Início



## Passo (a)



## Passo (b)



## Passo (c)



## Passo (d)



Submodelo e complexidades:

Submodelo: CREW (leitura concorrente em n no passo (c))

### Complexidades

- $\triangleright$  Passo (a): EREW, t = O(1), p = O(n)
- $\triangleright$  Passo (b): EREW, t = O(1), p = O(n)
- $\triangleright$  Passo (c): CREW,  $t = O(\log n)$ , p = O(n)
- $\triangleright$  Passo (d): EREW, t = O(1), p = O(n)

- 1) Orientação de uma árvore
- 2) Determinar o número de descendentes de cada vértice

# Determinar o número de descendentes de cada vértice

## Determinar o número de descendentes de cada vértice

Dada uma árvore T enraizada, determinar para cada vértice i de T, o número de descendentes de i.

#### Idéia:

- > c) Numerar arestas do circuito
- ▷ e) Determinar o número de descendentes de cada vértice, usando a numeração das arestas e pai.

## Entrada:

- $\triangleright n$ : número de vértices de T
- $\triangleright inicio[i]$ : ponteiro para o início da lista de arestas adjacentes ao vértice.
- ho prox[(i,j)]: ponteiro para a aresta seguinte à aresta (i,j) na lista de arestas adjacentes ao vértice i. Se (i,j) é a última aresta da lista, prox[(i,j)] = nil.
- ightharpoonup reverso[(i,j)]: ponteiro para (j,i), a aresta reversa de (i,j), na lista de arestas adjacentes ao vértice j.
  - $\triangleright r$ : vértice escolhido para ser a raiz de  $\top$ .

## Estruturas auxiliares:

- ho proxCircuito[(i,j)]: ponteiro para a aresta seguinte a aresta (i,j), no circuito de Euler
  - $\triangleright p[(i,j)]$ : inicialmente terá cópia de proxCircuito[(i,j)]
  - $ho \ dist[(i,j)]$ : numeração da aresta (i,j) na lista proxCircuito.
  - $ho \ pai[i]$ : o pai de cada vértice de T

## Saída:

 $\triangleright ND[i]$ : número de descendentes do vértice i

```
Passos (a), (b), (c), (d), já vimos
Passo (e)
```

```
para cada aresta direcionada (i,j) faça em paralelo se j = pai[i] então \triangleright (i,j) é aresta de recuo e (j,i) é aresta de avanço ND[i] := \frac{(dist[(i,j)] - dist[reverso[(i,j)]] - 1)}{2}
```

$$ND[r] := n - 1$$



Submodelo: CREW

## Complexidades:

 $\triangleright$  Tempo:  $O(\log n)$ 

 $\triangleright$  Processadores: O(n)

Dada uma árvore T, determinar para cada vértice i de T, a ordem de i no percurso em pré-ordem (ou pós-ordem) de T, enraizada.

Numeração pré-ordem:

- > numera raiz
- > numera as subárvores em pré-ordem

## Idéia

- ⊳ Passos (a), (b), (c), já vimos
- ▷ (e) Numerar as arestas de avanço do circuito, usando a duplicação recursiva

### Entrada:

- $\triangleright n$ : número de vértices de T
- $\triangleright inicio[i]$ : ponteiro para o início da lista de arestas adjacentes ao vértice.
- $\triangleright prox[(i,j)]$ : ponteiro para a aresta seguinte à aresta (i,j) na lista de arestas adjacentes ao vértice i. Se (i,j) é a última aresta da lista, prox[(i,j)] = nil.
- ightharpoonup reverso[(i,j)]: ponteiro para (j,i), a aresta reversa de (i,j), na lista de arestas adjacentes ao vértice j.
  - $\triangleright r$ : vértice escolhido para ser a raiz de T.

## Estruturas auxiliares:

- $\triangleright proxCircuito[(i,j)]$ : ponteiro para a aresta seguinte a aresta (i,j), no circuito de Euler
  - $\triangleright p[(i,j)]$ : inicialmente terá cópia de proxCircuito[(i,j)]
  - $\triangleright dist[(i,j)]$ : numeração da aresta (i,j) na lista proxCircuito.
- ightharpoonup avanco[(i,j)]: Vetor de valores lógicos que indicará se a aresta é de avanço ou de recuo

## Saída:

 $\triangleright preOrdem[i]$ : numeração pré-ordem do vértice i

```
Passos (a), (b), (c), já vimos

Passos (d)

para cada aresta direcionada (i,j) faça em paralelo se dist[(i,j)] < dist[reverso[(i,j)]] então avanco[(i,j)] := true senão avanco[(i,j)] := false
```

## Passo (e)

```
para cada aresta direcionada (i,j) faça em paralelo
   se avanco[(i,j)] então
         dist[(i,j)] := 1
   senão
         dist[(i, j)] := 0
   p[(i,j)] := proxCircuito[(i,j)]
   enquanto p[(i,j)] \neq nil faça
         dist[(i,j)] := dist[(i,j)] + dist[p(i,j)]
         p[(i, j)] := p[p[(i, j)]]
   dist[(i,j)] := \frac{E(D)}{2} - dist[(i,j)] + 1
```

```
Passo (f)
```

```
para cada aresta direcionada (i,j) faça em paralelo se avanco[(i,j)] então preOrdem[j] := dist[(i,j)] preOrdem[r] := 0
```







#### Duplicação Recursiva



#### Circuito:







Submodelo: CREW

## Complexidades:

 $\triangleright$  Tempo:  $O(\log n)$ 

 $\triangleright$  Processadores: O(n)

## Numeração pós-Ordem dos vértices

## Observação:

Para obter numeração pós-ordem

- > Numerar arestas de recuo

# Numeração pós-Ordem dos vértices

Passo (f)

```
para cada aresta direcionada (i,j) faça em paralelo se recuo[(i,j)] então posOrdem[j] := dist[(i,j)] - 1 posOrdem[r] := n-1
```

Dada uma árvore  $\mathsf{T}$  enraizada, determinar para cada par de vértices  $i,\ j$  de T, se i é descendente de j

## > Idéia:

- Determinar números de descendentes de cada vértice.
- Determinar a numeração pré-ordem de cada vértice.
- Determinar a relação é descendente para cada par de vértices, usando número de descendentes e pré-ordem.

### Entrada:

- $\triangleright n$ : número de vértices de T
- $\triangleright inicio[i]$ : ponteiro para o início da lista de arestas adjacentes ao vértice.
- $\triangleright prox[(i,j)]$ : ponteiro para a aresta seguinte à aresta (i,j) na lista de arestas adjacentes ao vértice i. Se (i,j) é a última aresta da lista, prox[(i,j)] = nil.
- ightharpoonup reverso[(i,j)]: ponteiro para (j,i), a aresta reversa de (i,j), na lista de arestas adjacentes ao vértice j.
  - $\triangleright r$ : vértice escolhido para ser a raiz de  $\top$ .

## Estruturas auxiliares:

- $\triangleright proxCircuito[(i,j)]$ : ponteiro para a aresta seguinte a aresta (i,j), no circuito de Euler
  - $\triangleright p[(i,j)]$ : inicialmente terá cópia de proxCircuito[(i,j)]
  - $ho \ dist[(i,j)]$ : numeração da aresta (i,j) na lista proxCircuito.
- ightharpoonup avanco[(i,j)]: Vetor de valores lógicos que indicará se a aresta é de avanço ou de recuo
  - $\triangleright ND[i]$ : número de descendentes do vértice vértices i
  - ightharpoonup preOrdem[i]: numeração pré-ordem do vértice i

## Saída:

hd ehDescendente[i,j]: será 1 se i for descendente de j. Senão será 0.

- 1) Obtem número de descendentes: já visto
- 2) Obtem a pré-ordem: já visto
- 3) Obter a relação é descendente

```
para 0 \le i, j \le n-1 faça em paralelo se preOrdem[j] < preOrdem[i] e preOrdem[i] \le preOrdem[j] + ND[j] \text{ então} ehDescendente[i,j] = 1 senão ehDescendente[i,j] = 0
```

|          |   |   |   |   | 1 | 1 |   |
|----------|---|---|---|---|---|---|---|
| PreOrdem | 0 | 2 | 6 | 1 | 4 | 3 | 5 |
|          | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|          |   |   |   |   |   |   |   |
| ND       | 6 | 0 | 0 | 5 | 0 | 3 | 0 |
|          | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| j        | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 0        | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1        | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 2        | 1 | 0 | 0 |   |   |   |   |
| 3        |   |   |   | 0 |   |   |   |
| 4        |   | 0 |   |   | 0 |   |   |
| 5        |   |   |   |   |   | 0 |   |
| 6        |   |   |   |   |   |   | 0 |



Submodelo: CREW

## Complexidades:

 $\triangleright$  Tempo:  $O(\log n)$ 

 $\triangleright$  Processadores:  $O(n^2)$ 

Fim