Теоремы по матану, семестр 4

16 июня 2018 г.

Содержание

1	Характеризация измеримых функций с помощью ступенчатых (формулировка). Следствия	6
2	Измеримость монотонной функции	7
3	Теорема Лебега о сходимости почти везде и сходимости по мере	8
4	Теорема Рисса о сходимости по мере и сходимости почти везде	Q
5	Простейшие свойства интеграла Лебега 5.1 Для определения (5), ступенчатые функции	
6	Счетная аддитивность интеграла (по множеству)	13
7	Теорема Леви	15
8	Линейность интеграла Лебега	16
9	Теорема об интегрировании положительных рядов	17
10	Теорема о произведении мер	18

11	Абсолютная непрерывность интеграла	19
	11.1 Следствие	20
12	Теорема Лебега о мажорированной сходимости для случая сходимости по мере.	20
13	Теорема Лебега о мажорированной сходимости для случая сходимости почти везде.	22
14	Теорема Фату. Следствия.	23
	14.1 Следствие 1	24
	14.2 Следствие 2	24
15	Теорема о вычислении интеграла по взвешенному образу	
	меры	25
	15.1 Лемма	25
	15.2 Следствие	25
	15.3 Теорема	25
16	Критерий плотности	26
17	Лемма о единственности плотности	27
18	Лемма о множестве положительности	28
19	Теорема Радона-Никодима	29
20	Лемма об оценке мер образов кубов из окрестности точ- ки дифференцируемости	30
21	Лемма «Вариации на тему регулярности меры Лебега»	31
22	Теорема о преобразовании меры при диффеоморфизме	33
23	Теорема о гладкой замене переменной в интеграле Лебега	34

24	Теорема (принцип Кавальери)	35
25	Теорема Тонелли	37
26	Формула для Бета-функции	38
27	Объем шара в \mathbb{R}^m	39
28	Теорема о вложении пространств L^p	39
29	Теорема о сходимости в L_p и по мере	40
30	Полнота L^p	41
31	Лемма Урысона	42
32	Плотность в L^p непрерывных финитных функций	42
33	Теорема о непрерывности сдвига	43
34	Теорема об интеграле с функцией распределения	44
35	Теорема о свойствах сходимости в гильбертовом про- странстве	44
36	Теорема о коэффициентах разложения по ортогональной системе	45
37	Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя	46
38	Теорема Рисса – Фишера о сумме ряда Фурье. Равенство Парсеваля	47
39	Теорема о характеристике базиса $39.1 \ 1 \Rightarrow 2 \dots \dots$	47 48 48 48

	$39.4 \ 4 \Rightarrow 1 \dots \dots$	48
	$39.5 \ 4 \Rightarrow 5 \dots \dots$	49
	$39.6 \ 5 \Rightarrow 4 \dots \dots$	49
40	Лемма о вычислении коэффициентов тригонометриче-	
	ского ряда	49
41	Теорема Римана-Лебега	50
42	Принцип локализации Римана	50
43	Признак Дини. Следствия	51
44	Корректность свертки	52
45	Свойства свертки функции из L^p с фукнцией из L^q	53
46	Формула Грина	54
47	Формула Стокса	56
48	Формула Гаусса-Остроградского	57
49	Соленоидальность бездивергентного векторного поля. ТС	DO.
50	Предельный переход под знаком интеграла при наличии	
	равномерной сходимости или L_{loc}	58
	50.1 При равномерной сходимости	58
	50.2 При L_{loc}	59
51	Правило Лейбница дифференцирования интеграла по па-	<u>-</u>
	раметру	59
52	Теорема о свойствах аппроксимативной единицы	60
53	Теорема Фейера. TODO	61

54	Свойства преобразования Фурье: непрерывность, ограниченность, сдвиг. TODO	61
55	Преобразование Фурье свертки. TODO	61
56	Преобразование Фурье и дифференцирование. TODO	61
57	Лемма об оценке интеграла ядра Дирихле	61
58	Теорема об интегрировании ряда Фурье	62
59	Лемма о сходимости сумм Фурье в смысле обобщенных функций	63
60	Следствие о преоборазовании Фурье финитных функций	64
61	Лемма "о ядре Дирихле". Следствие. TODO	65
62	Теорема о равносходимости ряда Фурье и интеграла Фу- рье	65
63	Признак Дирихле-Жордана. ТОDO	66
64	Лемма к теореме о формуле обращения. TODO	66
65	Формула обращения преобразования Фурье. TODO	66
66	Свойства свертки. Deprecated	66
67	О локальной суммируемости. Deprecated	67
68	Лемма : а.е. Веерштрасса - а.е	67
69	Теорема (формула обращения)	68

1 Характеризация измеримых функций с помощью ступенчатых (формулировка). Следствия

 (X, \mathbb{A}, μ) — пространство с мерой. f — измеримая функция на $X, \ \forall x \ f(x) \geq 0$. Тогда \exists ступенчатые функции f_n , такие что:

- 1. $\forall x \ 0 \le f_n(x) \le f_{n+1}(x) \le f(x)$.
- 2. $f_n(x)$ поточечно сходится к f(x).

Следствие 1:

 $f:X \to \overline{\mathbb{R}}$ измеримая. Тогда \exists ступенчатая $f_n: \forall x: lim f_n(x) = f(x)$ и $|f_n(x)| \leq |f(x)|$.

Доказательство:

- 1. Рассмотрим $f=f^+-f^-.f^+=max(f,0), f^-=max(-f,0)$. Срезки измеримы: $E(f^+< a)=E(f< a)\cap E(0< a),$ при этом f и $g\equiv 0$ измеримы $(f^-$ измерима аналогично).
- 2. Срезки измеримы и неотрицательны, тогда по теореме существуют ступенчатые функции $f_n^+ \to f^+, f_n^- \to f^-$. Тогда и $f_n^+ f_n^-$ это ступенчатая функция, при этом по свойству пределов: $f_n^+ f_n^- \to f^+ f^- = f$. $|f_n| = |f_n^-| + |f_n^+|, |f| = |f^-| + |f^+|$ (так как одновременно только одна срезка может быть неотрицательно), поэтому $|f_n| \leq |f|$

Следствие 2:

f,g — измеримые функции. Тогда fg — измеримая функция. При этом считаем, что $0\cdot\infty=0$.

Доказательство:

1. Рассмотрим $f_n \to f: |f_n| \le |f|, g_n \to g: |g_n| \le |g|$ из первого следствия. Тогда $f_n g_n \to f g$ и f g измерима по теореме об измеримости пределов и супремумов (произведение ступенчатых функций – ступенчатая функция, значит, измеримая)

Следствие 3:

f,g — измеримые функции. Тогда f+g — измеримая функция. При этом считаем, что $\forall x$ не может быть, что $f(x)=\pm\infty, g(x)=\mp\infty$ Доказательство:

Доказывается как следствие 2.

2 Измеримость монотонной функции

Пусть $E \subset \mathbb{R}^m$ — измеримое по Лебегу, $E' \subset E$, $\lambda_m(E \setminus E') = 0$, $f: E \to \mathbb{R}$. Пусть сужение $f: E' \to \mathbb{R}$ непрерывно. Тогда f измерима на E. Доказательство:

- 1. $E(f < a) = E'(f < a) \cup e(f < a), e := E \setminus E', \lambda_m(e) = 0.$
- 2. E'(f < a) открыто в E', так как f непрерывна (прообраз открытого множества открыт). $E'(f < a) = E' \cap F$, где F открыто в \mathbb{R}^m (теорема об открытых множествах в пространстве и подпространстве). F измеримо, поскольку открытые множества измеримы. E' измеримо. Поэтому E'(f < a) измеримо как пересечение измеримых.
- 3. e(f < a) подмножество e, а $\lambda_m(e) = 0$, поэтому $\lambda_m(e(f < a)) = 0 \Rightarrow e(f < a)$ измеримо
- 4. Следовательно E(f < a) измеримо как объединение измеримых множеств, следовательно, f измерима на E.

Следствие:

 $f:< a,b>
ightarrow \mathbb{R}$ монотонна. Тогда f измерима.

Доказательство:

Множество разрывов монотонной функции не более чем счётно, поэтому можно воспользоваться доказанной теоремой.

3 Теорема Лебега о сходимости почти везде и сходимости по мере

 (X, \mathbb{A}, μ) - пространство с мерой, $\mu \cdot X < +\infty$ $f_n, f : X \to \overline{\mathbb{R}}$ - п.в. конечны, измеримы $f_n \to f$ (поточечно, п.в.) Тогда $f_n \stackrel{\mu}{\Rightarrow} f$ Доказательство:

1. подменим значения f_n и f на некотором множестве меры 0 так, чтобы сходимость $f_n \to f$ была всюду. (Так можно сделать. Действительно, $f_n \to f$ на $X \setminus e$, $\mu e = 0$ f_n - конечно на $X \setminus e_n$, f - конечно на $X \setminus e_0$.

Тогда на $(X \setminus \bigcup_{n=0}^{+\infty} e_n)$ функции конечны и есть сходимость $f_n \to f$. По

свойствам меры $\mu \bigcup_{n=0}^{+\infty} e_n = 0$. Тогда определим на $\bigcup_{n=0}^{+\infty} e_n \ f_n = f = 0$. Это очевидно даст нам необходимую конечность и поточечную сходимость.

2. (частный случай) $f_n \to f \equiv 0$. Тогда пусть $\forall x f_n(x)$ - монотонно (по n). $|f_n(x)|$ - убывает с ростом n и $X(|f_n| \ge \epsilon) \supset X(|f_{n+1}| \ge \epsilon)$. А также $\bigcap_{n=0}^{+\infty} X(|f_n| \ge \epsilon) = \emptyset$.

$$\begin{cases} \mu X < +\infty \\ \dots \supset E_n \supset E_{n+1} \supset \dots \end{cases}$$

 $\Rightarrow \mu E_n \to \mu \cap E_n$ - Th о непрерывности меры сверху. $\Rightarrow \mu X(|f_n \ge \epsilon|) \to \mu \emptyset = 0$

3. (общий случай) $f_n \to f$. Рассмотрим $\phi_n(x) := \sup_{k \ge n} |f_k(x) - f(x)|$. Заметим свойства ϕ :

$$\begin{cases} \phi_n(x) \to 0\\ \phi_n \downarrow_n \end{cases}$$

 $X(|f_n-f| \geq \epsilon) \subset X(\phi_n \geq \epsilon) \Rightarrow$ по монотонности меры имеем $\mu X(|f_n - f| \ge \epsilon) \le \mu X(\phi_n \ge \epsilon) \stackrel{part.case}{\longrightarrow} 0$, ч.т.д.

4 Теорема Рисса о сходимости по мере сходимости почти везде

 (X, \mathbb{A}, μ) - пространство с мерой

 $f_n, f: X \to \overline{\mathbb{R}}$ - п.в. конечны, измеримы

 $f_n \stackrel{\mu}{\Rightarrow} f$.

Тогда $\exists n_k \uparrow : f_{n_k} \to f$ п.в.

Доказательство: $\forall k \ \mu X(|f_n - f| \ge \frac{1}{k}) \stackrel{n \to +\infty}{\to} 0$

Тогда $\exists n_k : \forall n \geq n_k : \mu X(|f_n - f| \geq \frac{1}{k}) < \frac{1}{2^k}$ (можно считать $n_1 < n_2 < \frac{1}{k}$

Проверим $f_{n_k} o f$ п.в. :

$$E_k := \bigcup_{j=k}^{+\infty} X(|f_{n_j} - f| \ge \frac{1}{j})$$

$$E_1 \supset E_2 \supset E_3 \supset \dots$$

$$E_0 := \bigcap_{k \in N} E_k.$$

 $E_0:=\bigcap_{k\in N}E_k.$ $\mu E_k\le \sum_{j=k}^{+\infty}\mu X(|f_{n_j}-f|\ge \frac1j)\le \sum_{j=k}^{+\infty}\frac1{2^j}=\frac2{2^k}=2^{1-k}$ - конечно, убывает $\Rightarrow \mu E_k \rightarrow \mu E_0 \Rightarrow \mu E_0 = 0 \text{ (T.K. } \mu E_k \rightarrow 0).$

Рассмотрим $x \notin E_0$, т.е. $\exists k : x \notin E_k$. Тогда $\forall j \geq k |f_n(x) - f(x)| < \frac{1}{i}$ при $n \ge n_j$, т.е. $f_{n_k} \to f$, ч.т.д.

Следствие: Если $f_n \Rightarrow f$ и $|f_n| \leq g$ п.в., то $|f| \leq g$ п.в.

Доказательство: Рассмотрим последовательность f_{n_k} где $f_{n_k} o f$ п.в. и вдоль нее применим Th о двух городовых.

$$\begin{cases} f_{n_k}(x) \to f(x) \ \forall x \in X \setminus e_1 \\ |f_n(x)| \le g(x) \ \forall x \in X \setminus e_2 \end{cases}$$

5 Простейшие свойства интеграла Лебега

5.1 Для определения (5), ступенчатые функции

1. $\int_{\mathbb{X}} f$ не зависит от представления f как ступенчатой функции, то есть если f реализуется как $f = \sum_{k} (\lambda_k \cdot \chi_{E_k})$ и как $f = \sum_{l} (\alpha_l \cdot \chi_{G_l})$, то интегралы по этим функциям равны

Доказательство:

Выпишем общее разбиение для этих двух разбиений

Пусть
$$F_{ij} = E_i \cap G_j$$

Тогда
$$f = \sum_k (\lambda_k \cdot \chi_{E_k}) = \sum_l (\alpha_l \cdot \chi_{G_l}) = \sum_{i,j} (\lambda_i (= \alpha_j) \cdot \chi_{F_{i,j}})$$

$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) = \sum_i (\lambda_i \cdot \sum_j (\mu F_{i,j})) = \sum_i (\lambda_i \cdot \mu E_i) = \int f$$
 для первого разбиения

Аналогично для второго разбиения получаем

$$\int f = \sum_{i,j} (\alpha_j \cdot \mu F_{i,j}) = \sum_j (\alpha_j \cdot \sum_i (\mu F_{i,j})) = \sum_j (\lambda_j \cdot \mu G_j) = \int f$$
 для второго разбиения, что и требовалось доказать

2. f,g -измеримые ступенчатые функции, $f\leqslant g$, тогда $\int\limits_{\mathbb{X}}f\leqslant\int\limits_{\mathbb{X}}g$

Доказательство:

Пусть
$$f = \sum_{k} (\lambda_k \cdot \chi_{E_k}), g = \sum_{l} (\alpha_l \cdot \chi_{G_l})$$

Аналогично доказательству предыдущей теоремы, строим общее ступенчатое разбиение

Пусть
$$F_{ij} = E_i \cap G_j$$

Тогда
$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) \leqslant \sum_j (\alpha_j \cdot \mu F_{i,j}) = \int g$$
, что и требовалось доказать

5.2 Для окончательного определения

1. Монотонность $f \leqslant g \Rightarrow \int\limits_{\mathbb{X}} f \leqslant \int\limits_{\mathbb{X}} g$

Доказательство:

(а) $f,g\geqslant 0$, тогда доказательство тривиально (по свойствам супремума)

(b)
$$\int_{\mathbb{X}} f = \int_{\mathbb{X}} f^+ - \int_{\mathbb{X}} f^-$$

$$\int_{\mathbb{X}} g = \int_{\mathbb{X}} g^+ - \int_{\mathbb{X}} g^-$$
Из того, что $\int_{\mathbb{X}} f^+ \leqslant \int_{\mathbb{X}} g^+$, а $\int_{\mathbb{X}} f^- \geqslant \int_{\mathbb{X}} g^-$ следует, что $\int_{\mathbb{X}} f \leqslant \int_{\mathbb{X}} g$

$$2. \int_{\mathbb{E}} 1 \cdot d\mu = \mu E$$

$$\int_{\mathbb{E}} 0 \cdot d\mu = 0$$

Очевидно из определения интеграла ступенчатой функции

3. $\mu E=0, f$ -измерима, тогда $\int\limits_{\mathbb{E}}f=0$, даже если $f=\infty$ на \mathbb{E}

Доказательство:

(a) f-ступенчатая \Rightarrow ограниченная

$$f=\sum_{k=1}^n(\lambda_k\cdot\chi_{E_k})$$
, тогда $\int\limits_{\mathbb E}f=\sum\lambda_k\cdot\mu(E\cap E_k)$
Но $\mu(E\cap E_k)=0$ (так как $\mu E=0$), тогда $\int\limits_{\mathbb E}f=0$

11

(b)
$$f$$
 - измеримая, $f\geqslant 0$.
$$\int\limits_{\mathbb{E}} f=\sup(\int\limits_{\mathbb{E}} g), \ \text{где}\ 0\leqslant g\leqslant f,\ g$$
 - ступенчатая Тогда $\int\limits_{\mathbb{E}} f=\sup(0)=0$

(c) f - произвольная измеримая

Тогда
$$\int_{\mathbb{E}} f = \int_{\mathbb{E}} f^+ - \int_{\mathbb{E}} f^- = 0 - 0 = 0$$

4.(a)
$$\int_{\mathbb{E}} -f = -\int_{\mathbb{E}} f$$

(b)
$$\forall c \in \mathbb{R} : \int_{\mathbb{E}} (c \cdot f) = c \cdot \int_{\mathbb{E}} f$$

Доказательство:

(a)
$$(-f)^+=f^ (-f)^-=f^+$$
 Тогда $\int_{\mathbb{E}} -f = \int_{\mathbb{E}} (-f)^+ - \int_{\mathbb{E}} (-f)^- = \int_{\mathbb{E}} f^- - \int_{\mathbb{E}} f^+ = -\int_{\mathbb{E}} f$

(b) Пусть c>0. Если c<0, то по предыдущему случаю можем рассматривать для -c<0. Если c=0, то по пункту $2\int_{\mathbb{T}} (0\cdot f) =$

$$\smallint_{\mathbb{E}} 0 = 0 = 0 \cdot \smallint_{\mathbb{E}} f$$

i. Пусть $f \geqslant 0$

$$\int_{\mathbb{E}} (c \cdot f) = \sup(\int_{\mathbb{E}} g), \text{ где } 0 \leqslant g \leqslant c \cdot f, g \text{ - ступенчатая}$$
 Пусть $g = c \cdot \widetilde{g}$, тогда $\int_{\mathbb{E}} (c \cdot f) = \sup(\int_{\mathbb{E}} (c \cdot \widetilde{g})), \text{ где } 0 \leqslant c \cdot \widetilde{g} \leqslant c \cdot f,$ \widetilde{g} - ступенчатая

Тогда
$$\int_{\mathbb{E}} (c \cdot f) = \sup(\int_{\mathbb{E}} (c \cdot \widetilde{g})) = \sup(c \cdot \int_{\mathbb{E}} \widetilde{g}) = c \cdot \sup(\int_{\mathbb{E}} \widetilde{g}) = c \cdot \int_{\mathbb{E}} f$$

ii. Если <math>f - произвольная:

$$\begin{split} & \int\limits_{\mathbb{E}} (c \cdot f) = \int\limits_{\mathbb{E}} (c \cdot f)^+ - \int\limits_{\mathbb{E}} (c \cdot f)^- = \int\limits_{\mathbb{E}} c \cdot f^+ - \int\limits_{\mathbb{E}} c \cdot f^- = c \cdot \int\limits_{\mathbb{E}} f^+ - c \cdot \int\limits_{\mathbb{E}} f^- = c \cdot \int\limits_{\mathbb{E}} f^+ - \int\limits_{\mathbb{E}} f^- = c \cdot \int\limits_{\mathbb{E}} f^- =$$

5. Если существует $\int\limits_{\mathbb{E}} f d\mu$, то $|\int\limits_{\mathbb{E}} f| \leqslant \int\limits_{\mathbb{E}} |f|$

Доказательство:

$$-|f| \leqslant f \leqslant |f|$$

$$\int_{\mathbb{E}} -|f| \leqslant \int_{\mathbb{E}} f \leqslant \int_{\mathbb{E}} |f|$$
 $-\int_{\mathbb{E}} |f| \leqslant \int_{\mathbb{E}} f \leqslant \int_{\mathbb{E}} |f|$
Тогда $|\int_{\mathbb{E}} f| \leqslant \int_{\mathbb{E}} |f|$

6. f - измеримая на $\mathbb{E},\ \mu\mathbb{E}<\infty$ $a\leqslant f\leqslant b,\$ тогда $a\cdot\mu E\leqslant \int\limits_{\mathbb{E}}f\leqslant b\cdot\mu E$

Доказательство:

$$a \leqslant f \leqslant b \Rightarrow \int_{\mathbb{E}} a \leqslant \int_{\mathbb{E}} f \leqslant \int_{\mathbb{E}} b$$
$$a \cdot \int_{\mathbb{E}} 1 \leqslant \int_{\mathbb{E}} f \leqslant b \cdot \int_{\mathbb{E}} 1$$
$$a \cdot \mu \mathbb{E} \leqslant \int_{\mathbb{E}} f \leqslant b \cdot \mu \mathbb{E}$$

Следствие:

Если f - Измеримая и ограниченная на $\mathbb{E}, \mu \mathbb{E} < \infty$, тогда f - суммируемая на \mathbb{E}

7. f - суммируемая на $\mathbb{E} \Rightarrow f$ почти везде конечная на \mathbb{E} (то есть $f \in \alpha^0(\mathbb{E})$)

Доказательство:

(а) Пусть $f\geqslant 0$ Пусть $f=+\infty$ на A и пусть $\mu A>0$ Тогда $\forall n\in\mathbb{N}: f\geqslant n\cdot\chi_A$ Тогда $\forall n\in\mathbb{N}: \int\limits_{\mathbb{E}} f\geqslant n\cdot\int\limits_{\mathbb{E}} \chi_A=n\cdot\mu A\Rightarrow \int\limits_{\mathbb{E}} f=+\infty$

(b) f любого знака Распишем $f = f^+ - f^-$, по предыдущему пункту f^+, f^- конечны почти везде $\Rightarrow f$ тоже конечно почти везде

6 Счетная аддитивность интеграла (по множеству)

 (X,\mathbb{A},μ) — пространство с мерой, $A=\coprod_{i=1}^\infty A_i$ — измеримы. $f:X\to\overline{\mathbb{R}}$ — изм., $f\geqslant 0$

$$ext{ ext{ iny Toгдa:}} \int\limits_A f = \sum_{i=1}^\infty \int\limits_{A_i} f$$

Доказательство:

1. Для начала докажем это для ступенчатых функций. Пусть $f = \sum\limits_k (\lambda_k \cdot \chi_{E_k})$

$$\int_{A} f d\mu = \sum_{k} (\lambda_{k} \cdot \mu(E_{k} \cap A)) = \sum_{k} (\lambda_{k} \cdot (\sum_{i} \mu(E_{k} \cap A_{i}))) = \sum_{i} (\sum_{k} (\lambda_{k} \cdot \mu(E_{k} \cap A_{i})) = \sum$$

- 2. Докажем, что $\int\limits_A f \leqslant \sum\limits_i \int\limits_{A_i} f$
 - (a) Рассмотрим $0 \leqslant g \leqslant f$ ступенчатая. $\int\limits_A g = \sum\limits_i \int\limits_{A_i} g \leqslant \sum\limits_i \int\limits_{A_i} f$
 - (b) Переходя к *sup* получаем желаемое
- 3. Теперь докажем, что $\int_A f \geqslant \sum_i \int_{A_i} f$
 - (a) $A = A_1 \sqcup A_2$
 - і. Рассмотрим g_1, g_2 ступенчатые такие, что $0 \leqslant g_i \leqslant f \cdot \chi_{A_i}$
 - іі. Рассмотрим их общее разбиение E_k : $g_i = \sum_k (\lambda_k^i \cdot \chi_{E_k})$
 - ііі. g_1+g_2 ступенчатая и $0\leqslant g_1+g_2\leqslant f\cdot\chi_A$

iv.
$$\int_{A_1} g_1 + \int_{A_2} g_2 \stackrel{lemma}{=} \int_A (g_1 + g_2) \stackrel{iii}{\leqslant} \int_A f$$

- v. Поочерёдно переходя к sup по g_1 и g_2 получаем: $\int\limits_{A_1} f + \int\limits_{A_2} f \leqslant \int\limits_A f$
- (b) $\forall n \in \mathbb{N},$ что $A = \bigsqcup_{i=1}^n A_i$ будем последовательно отщеплять последнее множество по (a)

(c)
$$A = \bigsqcup_{i=1}^{\infty} A_i$$

i. Фиксируем $n \in \mathbb{N}$

іі.
$$A=(\coprod_{i=1}^n A_i)\sqcup B$$
, где $B=\coprod_{i=n+1}^\infty A_i$

ііі. $\int_A f = \sum_{i=1}^n \int_{A_i} f + \int_B f \geqslant \sum_{i=1}^n \int_{A_i} f$ (равенство, поскольку мы рассматриваем A как конечное объединение A_1, \ldots, A_n и B).

iv. Переходим к lim по n

Следсвие 1: $0\leqslant f\leqslant g$ - измеримы и $A\subset B$ - измеримы $\Rightarrow\int\limits_A f\leqslant\int\limits_B g$ $\int\limits_B g\geqslant\int\limits_B f=\int\limits_A f+\int\limits_{B\backslash A} f\geqslant\int\limits_A f$

Следствие 2: f - суммируема на $A \Rightarrow \int\limits_A f = \sum\limits_i \int\limits_{A_i} f$

Достаточно рассмотреть срезки f^+ и f^-

<u>Следствие 3:</u> $f\geqslant 0$ - изм. $\delta:\mathbb{A}\to\overline{\mathbb{R}}(A\longmapsto\int\limits_A fd\mu)\Rightarrow \delta$ - мера

7 Теорема Леви

 $(X, \mathbb{A}, \mu), \ f_n \geqslant 0$ - изм. $f_1(x) \leqslant ... \leqslant f_n(x) \leqslant f_{n+1}(x) \leqslant ...$ при почти всех x $f(x) = \lim_{n \to \infty} f_n(x)$ при почти всех x (считаем, что при остальных $x: f \equiv 0$)

Тогда:
$$\lim_{n\to\infty} \int\limits_X f_n(x) d\mu = \int\limits_X f(x) d\mu$$

Доказательство:

$$\overline{N.B. \int_{X} f_n} \leqslant \int_{X} f_{n+1} \Rightarrow \exists \lim$$

f - измерима как предел последовательности измеримых функций

 $1. \leqslant$

Очевидно: $f_n\leqslant f$ при п.в $x\Rightarrow\int\limits_X f_n\leqslant\int\limits_X f$. Делаем предельный переход по n.

- $2. \geqslant$
 - (a) Логичная редукция: хочется доказать, что $\lim_{n\to\infty}\int\limits_X f_n(x)\geqslant \int\limits_X g$, где $0\leqslant g\leqslant f,\ g$ ступенчатая.
 - (b) Наглая редукция: докажем, что $\forall c \in (0,1): \lim \int\limits_X f_n(x) \geqslant c \cdot \int\limits_X g$

i.
$$E_n = \{x \mid f_n(x) \geqslant c \cdot g\}$$
. Очевидно $E_1 \subset ... \subset E_n \subset E_{n+1} \subset ...$

ii.
$$\bigcup_{n=1}^{\infty} E_n = X$$
 t.k. $c < 1$

ііі.
$$\int\limits_X^{n-1} f_n \geqslant \int\limits_{E_n} f_n \geqslant \int\limits_{E_n} c \cdot g$$
 (по определению E_n) $\Rightarrow \lim \int\limits_X^{n-1} f_n \geqslant c \cdot \lim \int\limits_{E_n} g = c \cdot \int\limits_X^{n-1} g$

- iv. Последний знак равно обусловлен тем, что интеграл неотрицательной и измеримой функции по множеству мера (см. следствие 3 предыдущей теоремы), и мы используем неперрывность меры снизу
- v. Устремляем c к 1.

8 Линейность интеграла Лебега

$$f,g\geqslant 0$$
, измеримые Тогда $\int\limits_{\mathbb{E}}(f+g)=\int\limits_{\mathbb{E}}f+\int\limits_{\mathbb{E}}g$ Доказательство:

1. Пусть f,g - ступенчатые, тогда у них имеется общее разбиение

$$f = \sum_{k} (\lambda_k \cdot \chi_{E_k})$$

$$g = \sum_{k} (\alpha_k \cdot \chi_{E_k})$$

$$\int\limits_{\mathbb{E}} (f+g) = \sum\limits_k (\lambda_k + \alpha_k) \cdot \mu E_k = \sum\limits_k \lambda_k \cdot \mu E_k + \sum\limits_k \alpha_k \cdot \mu E_k = \int\limits_{\mathbb{E}} f + \int\limits_{\mathbb{E}} g,$$
что и требовалось доказать

2. $f, g \ge 0$, измеримые

Тогда
$$\exists h_n: 0\leqslant h_n\leqslant h_{n+1}\leqslant f,\ h_n$$
 ступенчатые $\exists \widetilde{h_n}: 0\leqslant \widetilde{h_n}\leqslant \widetilde{h_{n+1}}\leqslant g,\ \widetilde{h_n}$ ступенчатые $\lim_{n\to+\infty}h_n=f$
$$\lim_{n\to+\infty}\widetilde{h_n}=g$$

$$\int\limits_{\mathbb{E}}(h_n+\widetilde{h_n})=\int\limits_{\mathbb{E}}h_n+\int\limits_{\mathbb{E}}\widetilde{h_n}$$

$$\int\limits_{\mathbb{E}}(h_n+\widetilde{h_n})\to\int\limits_{\mathbb{E}}(f+g)$$

$$\int\limits_{\mathbb{E}}h_n\to\int\limits_{\mathbb{E}}f$$

$$\int\limits_{\mathbb{E}}\widetilde{h_n}\to\int\limits_{\mathbb{E}}g$$
 Тогда $\int\limits_{\mathbb{E}}(f+g)=\int\limits_{\mathbb{E}}f+\int\limits_{\mathbb{E}}g,$ что и требовалось доказать

3. Если f,g - любые измеримые, распишем обе через срезки и докажем для них

9 Теорема об интегрировании положительных рядов

$$u_n(x) \ge 0$$
 почти всюду на \mathbb{E} , тогда $\int_{\mathbb{E}} (\sum_{n=1}^{+\infty} u_n(x)) d\mu(x) = \sum_{n=1}^{+\infty} \int_{\mathbb{E}} u_n(x) d\mu(x)$ Доказательство:

$$\overline{S_N(x)} = \sum_{n=1}^{N} u_n(x); S(x) = \sum_{n=1}^{+\infty} u_n(x)$$

1.
$$S_N$$
 - возрастает к S при почти всех х $\xrightarrow{\mathrm{T. \ Леви}} \int_{\mathbb{E}} S_N \xrightarrow[N \to +\infty]{} \int_{\mathbb{E}} S = \int_{n=1}^{+\infty} u_n(x)$

2. С другой стороны
$$\int_{\mathbb{E}} S_N = \int_{\mathbb{E}} \sum_{n=1}^N u_n = \sum_{n=1}^N \int_{\mathbb{E}} u_n(x) d\mu \xrightarrow[N \to +\infty]{+\infty} \sum_{n=1}^{+\infty} \int_{\mathbb{E}} u_n(x) d\mu$$

3. Найденные пределы совпадают в силу единственности предела последовательности, что и требовалось доказать.

10 Теорема о произведении мер

$$< X, A, \mu >, < Y, B, \nu >$$
 - пространства с мерой $A \times B = \{A \times B \subset X \times Y : A \in A, B \in B\}$ $m_0(A \times B) = \mu A \cdot \nu B$

Тогда:

- 1. m_0 мера на полукольце $\mathbb{A} \times \mathbb{B}$
- $2.~\mu,~
 u$ σ -конечны $\Rightarrow m_0$ σ -конечна

Доказательство:

1. Неотрицательность m_0 очевидна. Необходимо доказать счетную аддитивность

Пусть
$$P = \coprod_{i=1}^{\infty} P_k$$
, где $P \in \mathbb{A} \times \mathbb{B}$ $P = A \times B$; $P_k = A_k \times B_k$ Заметим, что:

• $\chi_P(x,y) = \sum \chi_{P_k}(x,y)$, в силу дизъюнктности P_k ((x, y) входит максимум в одно множество из всех P_k)

• $\chi_{A\times B}(x,y)=\chi_A(x)\cdot\chi_B(y)$, так как $(x,y)\in A\times B\Leftrightarrow x\in A$ И $y \in B$

Воспользовавшись вышесказанным получим:

$$\chi_P(x,y) = \chi_{A\times B}(x,y) = \chi_A(x) \cdot \chi_B(y)$$

$$\chi_P(x,y) = \sum \chi_{P_k}(x,y) = \sum \chi_{A_k\times B_k}(x,y) = \sum \chi_{A_k}(x) \cdot \chi_B(y)$$

Имеем следующее равенство:

$$\chi_A(x) \cdot \chi_B(y) = \sum \chi_{A_k}(x) \cdot \chi_B(y)$$

Проинтегрируем его по мере μ по x, затем по мере ν по y, получим:

 $\mu A \cdot \nu B = \sum \mu A_k \cdot \nu B_k$, то есть $m_0(P) = \sum m_0(P_k)$, что и требовалось доказать.

2.
$$\mu$$
, ν - σ -конечны $\Rightarrow X = \bigcup_{k=1}^{\infty} A_k$, где $\mu A_k < +\infty$; $Y = \bigcup_{k=1}^{\infty} B_k$, где $\nu B_k < +\infty$

$$X \times Y = \bigcup_{i,j} (A_i \times B_j)$$

 $m_0(A_i \times B_j) = \mu A_i \cdot \nu B_j < +\infty$, так как $\mu A_i < +\infty$ и $\nu B_j < +\infty$ все $(A_i \times B_j) \in \mathbb{A} \times \mathbb{B}$ по определению

Что и требовалось доказать.

11 Абсолютная непрерывность интеграла

$$< X, \mathbb{A}, \mu >$$
 - пространство с мерой $f: X \to \overline{\mathbb{R}}$ - суммируема

Тогда
$$\forall \epsilon > 0 \; \exists \delta > 0 : \; \forall E$$
 — измеримое $\mu E < \delta \; |\int\limits_E f d\mu| < \epsilon$

$$\frac{\text{Доказательство:}}{X_n := X(|f| \ge n)}$$

$$X_n \supset X_{n+1} \supset \dots$$

 $\mu(\cap X_n) = 0$, т.к. f — суммируема и потому почти везде конечна.

- 1. Мера : $(A \mapsto \int\limits_A |f|)$ также равна 0 на $\cap X_n$. По непрерывности сверху: $\forall \epsilon > 0 \; \exists \; n_\epsilon \int\limits_{X_{n_\epsilon}}^A |f| < \epsilon/2$
- 2. Зафиксируем ϵ в доказываемом утверждении, возьмем $\delta:=\frac{\epsilon/2}{n_\epsilon}$

3.
$$\left| \int_{E} f d\mu \right| \leq \int_{E} |f| = \int_{E \cap X_{n_{\epsilon}}} |f| + \int_{E \cap X_{n_{\epsilon}}^{c}} |f| \stackrel{*}{\leq} \int_{X_{n_{\epsilon}}} |f| + n_{\epsilon} \cdot \mu(E \cap X_{n_{\epsilon}}^{c}) \stackrel{**}{<} \epsilon/2 + n_{\epsilon} \cdot \mu E < \epsilon/2 + n_{\epsilon} \cdot \frac{\epsilon/2}{n_{\epsilon}} < \epsilon$$

* - В первом слагаемом увеличили множество, во втором посмотрели на определние X_n , взяли дополнение, воспользовались 6-м простейшим свойством интеграла

** - Воспользовались непрерывностью сверху

11.1 Следствие

f — суммируема e_n — измеримые множества

Тогда если $\mu e_n \to 0$, то $\int\limits_{e_n} f \to 0$

12 Теорема Лебега о мажорированной сходимости для случая сходимости по мере.

 $< X, \mathbb{A}, \mu > -$ пространство с мерой, f_n, f – измеримы, $f_n \stackrel{\mu}{\Rightarrow} f$ (сходится по мере), $\exists g: X \to \overline{\mathbb{R}}$ такая, что:

- \bullet $\forall n$, для «почти всех» $x \mid |f_n(x)| \leq g(x) \ (g$ называется мажорантой)
- g суммируемая

Тогда:

• f_n, f – суммируемы

$$\bullet \int\limits_X |f_n - f| d\mu \to 0$$

$$ullet$$
 $\int\limits_X f_n o \int\limits_X f$ («уж тем более»)

Доказательство:

1. f_n – суммируема, так как существует мажоранта g:

(a)
$$|f_n| \leq g$$
, поэтому $\int_X |f_n| \leq \int_X g$.

- (b) g суммируема и положительна $\Rightarrow \int_X g < +\infty \Rightarrow \int_X |f_n| < +\infty \Rightarrow f_n$ суммируема.
- 2. f суммируема по теореме Рисса ($f_{n_k} \to f$ почти везде, $|f_{n_k}| \le g$, тогда $|f| \le g$ почти везде)
- 3. «уж тем более»:

$$\left| \int_{\mathbb{X}} f_n - \int_{\mathbb{X}} f \right| \le \int_{\mathbb{X}} |f_n - f|$$

Допустим, что $\int\limits_X |f_n-f| d\mu \to 0$ уже доказано.

Тогда «уж тем более» очевидно.

4. Докажем основное утверждение:

Разберем два случая:

(а)
$$\mu X < \infty$$
 Фиксируем $\epsilon \ge 0$ $X_n := X(|f_n - f| \ge \epsilon)$ $\mu X_n \to 0$ (так как $f_n \Rightarrow f$)
$$\int\limits_X |f_n - f| = \int\limits_{X_n} |f_n - f| + \int\limits_{X_n^c} |f_n - f| \le \int\limits_{X_n} 2g + \int\limits_{X_n^c} \epsilon < \epsilon + \epsilon \mu X$$
 (прим. $\int\limits_{X_n} 2g \to 0$ по след. к т. об абс. сходимости)

(b)
$$\mu X = \infty$$

Докажем «Антиабсолютную непрерывность» для g:

$$orall \epsilon \; \exists A \subset X : \mu A$$
 — конечно, $\int\limits_{X \backslash A} g < \epsilon$

доказательство:

ооказательство:
$$\int_{X} g = \sup\{\int_{X} g_{k} \mid 0 \leq g_{k} \leq g\} \ (g_{k} - \text{ступен.})$$

$$\exists g_{n} : \int_{X} g - \int_{X} g_{n} < \epsilon$$

$$A := \operatorname{supp} g_{n} \ (\operatorname{supp} f := \{x \mid f(x) \neq 0\})$$

$$A = \bigcup_{k \mid \alpha_{k} \neq 0} E_{k} \ (\text{где } g_{n} = \sum_{\text{конечная}} \alpha_{k} \chi_{E_{k}})$$

$$\int_{X} g_{n} = \sum_{k \mid \alpha_{k} \neq 0} \alpha_{k} \mu E_{k} < +\infty \ (\mu A - \text{конеч.})$$

$$\int_{X} g = \int_{X \setminus A} (g - g_{n}) \leq \int_{X} (g - g_{n}) < \epsilon$$
 Теперь докажем основное утверждение:
$$\int_{X} |f_{n} - f| = \int_{A} |f_{n} - f| + \int_{X \setminus A} |f_{n} - f| \leq \int_{A} |f_{n} - f| + 2\epsilon < 3\epsilon$$

$$(\int_{A} |f_{n} - f| \to 0 \text{ по п. (a)})$$

13 Теорема Лебега о мажорированной сходимости для случая сходимости почти везде.

 $< X, A, \mu >$ – пространство с мерой, f_n, f – измеримы, $f_n \to f$ почти везде, $\exists g: X \to \overline{\mathbb{R}}$ такая, что:

- \bullet $\forall n$, для «почти всех» $x \mid f_n(x) \mid \leq g(x) \ (g \$ называется мажорантой)
- \bullet q суммируемая

Тогда:

• f_n, f — суммируемы

$$\bullet \int\limits_X |f_n - f| d\mu \to 0$$

$$ullet$$
 $\int\limits_X f_n o \int\limits_X f$ («уж тем более»)

Доказательство:

- 1. Суммируемость и «уж тем более» см. пред. теорему.
- 2. Докажем основное утверждение:

$$h_n(x) := \sup(|f_n - f|, |f_{n+1} - f|, \dots)$$

Заметим, что при фикс. x выпол. $0 \le h_n \le 2g$ почти везде

$$\lim_{n \to +\infty} h_n = \overline{\lim}_{n \to +\infty} |f_n - f| = 0$$
 почти везде

$$2g - h_n \uparrow$$
, $2g - h_n \rightarrow 2g$ почти везде

$$\int\limits_{V}(2g-h_n)d\mu o \int\limits_{V}2g$$
 (по т. Леви)

$$\int\limits_X 2g - \int\limits_X h o \int\limits_X 2g$$
, значит, $\int\limits_X h_n o 0$

$$\int\limits_X |f_n - f| \le \int\limits_X h_n \to 0$$

Теорема Фату. Следствия. 14

$$< X, A, \mu > -$$
 пространство с мерой f_n, f – измеримы, $f_n \ge 0$ $f_n \to f$ «почти везде» $\exists C > 0 \ \forall n \ \int\limits_X f_n d\mu \le C$ $\underline{\mathbf{Tогда:}} \ \int\limits_X f \le C$

Доказательство:

$$g_n := \inf(f_n, f_{n+1}, \dots) \quad (g_n \le g_{n+1} \le \dots)$$

$$\overline{g_n} := \inf(f_n, f_{n+1}, \dots) \quad (g_n \leq g_{n+1} \leq \dots)$$
 $\lim g_n = \underline{\lim}(f_n) \stackrel{noumu}{=} \stackrel{\text{везде}}{=} \lim f_n = f \ (g_n \to f \ \text{почти везде})$

$$\int\limits_X g_n \leq \int\limits_X f_n \leq C$$

$$\int\limits_X f = no \ m. \ \mathcal{I}eeu = \lim \int\limits_X g_n \leq C$$

14.1 Следствие 1

$$f_n, f \geq 0$$
 — измер. $f_n \stackrel{\mu}{\Rightarrow} f$ $\exists C \ \forall n \int\limits_X f_n \leq C$ Тогда:

$$\bullet \int_X f \le C$$

 $\underline{\underline{\mathsf{Д}}}$ оказательство: $\exists f_{n_k} \to f$ почти везде

14.2 Следствие 2

 $f_n \ge 0$ – измер. Тогда:

$$\bullet \int\limits_X \underline{\lim} \, f_n \le \underline{\lim} \int\limits_X f_n$$

Доказательство:

$$\overline{g_n := \inf(f_n, f_{n+1}, \dots)} \quad (g_n \leq g_{n+1} \leq \dots)$$
 $g := \lim g_n = \underline{\lim} f_n$ $\int g_n \leq \int f_n$ по монотонности интеграла. Перейдём к нижнему пределу по n : $\underline{\lim} \int_X g_n \leq \underline{\lim} \int_X f_n$ $\int_X g^{\mathrm{T.}} \stackrel{\mathrm{Леви}}{=} \underline{\lim} \int_X g_n = \underline{\lim} \int_X g_n$

15 Теорема о вычислении интеграла по взвешенному образу меры

15.1 Лемма

Пусть у нас есть $< X, \mathbb{A}, \mu > \mathrm{u} < Y, \mathbb{B}, _ > \mathrm{u} \Phi : X \to Y$ Пусть $\Phi^{-1}(\mathbb{B}) \subset \mathbb{A}$ Пусть для $E \in \mathbb{B} \ \nu(E) := \mu(\Phi^{-1}(E))$ $\frac{\text{Тогда:}}{\nu - \text{мера на } (Y, \mathbb{B}), \ \nu(E) = \int\limits_{\Phi^{-1}(E)} 1 \cdot d\mu$

Доказательство:

Докажем по определению меры:

$$\nu(\bigsqcup E_i) = \mu(\Phi^{-1}(\bigsqcup E_i)) = \mu(\bigsqcup \Phi^{-1}(E_i)) = \sum \mu \Phi^{-1}(E_i) = \sum \nu E_i$$

15.2 Следствие

Из этого следует, что если f — измеримая функция в Y (относительно ν), то $f \circ \Phi$ измерима относительно μ .

15.3 Теорема

Есть пространства $\langle X, \mathbb{A}, \mu \rangle$ и $\langle Y, \mathbb{B}, \nu \rangle$.

 $\Phi: X \to Y \ w \ge 0$ — измеримая, ν — взвешенный образ $\mu \ (w$ — плотность)

Тогда:

Для $\forall f \geq 0$ — измерима на $Y, f \circ \Phi$ - измерима (относительно μ) $\int_Y f d\nu = \int_X f(\Phi(x)) * \omega(x) d\mu(x)$

<u>Замечание:</u> То же верно, если f суммируема.

Доказательство:

• $f \circ \Phi$ - измерима (из леммы)

• Возьмем $f=\chi_E, E\in \mathbb{B}$ $(f\circ\Phi)(x)=\chi_{\Phi^{-1}(E)}$ — определение взвешенного образа меры $\nu(E)=\int\limits_{\Phi^{-1}(E)}\omega d\mu$ — доказали первый пункт

• - f — ступенчатая
$$\Rightarrow f = \sum \alpha_k * \chi_{E_k}$$

$$-\int\limits_Y \sum \alpha_k * \chi_{E_k} d\nu = \sum\limits_Y \sum \alpha_k \chi_{E_k} d\nu \stackrel{nepeuü cayvaŭ}{=} \sum \alpha_k \int\limits_X \chi_{E_k} (\Phi(x)) * \omega(x) dx = \int\limits_X \sum \alpha_k \chi_{E_k} (\Phi(x)) * \omega(x) d\mu(x) = \int f \circ \Phi * \omega d\mu$$

• Если f - произвольная неотрицательная, то будем строить возрастающую последовательность ступенчатых, поточечно сходящихся к f. Тогда $\int_Y f_n d\nu = \int_X f_n(\Phi(x)) *\omega(x) d\mu(x)$. По теореме Леви делаем переход под знаком интеграла и всё доказываем.

16 Критерий плотности

Есть пространство $\langle X, \mathbb{A}, \mu \rangle$

u — еще одна мера.

 $\omega \geq 0$ — измерима на X.

Тогда:

 ω — плотность ν относительно $\mu \Longleftrightarrow$ Для любого $A \in \mathbb{A}: \mu A \cdot \inf_A(\omega) \le \nu(A) \le \mu A \cdot \sup_A(\omega)$

Доказательство:

- ⇒: очевидно из стандартного свойства интеграла
- =

Докажем, что $\nu A = \int_A w \cdot d\mu$

Пусть w=0 на A. Тогда $0\cdot \mu A\leqslant \nu A\leqslant 0\cdot \mu A\Rightarrow \nu A=0$

$$\int_{A} w = \int_{A} 0 = 0$$

Пусть w>0 на A (иначе выделим ту часть, где 0, для неё верно, докажем для остального). Зафиксируем произвольное $q\in(0;1)$

Рассмотрим множества $A_j = \{x \in A : q^j \leqslant w(x) \leqslant q^{j-1}\}$

Из двусторонней оценки следует, что $q^j \cdot \mu A_j \leqslant \nu A_j \leqslant q^{j-1} \cdot \mu A_j$

Интегрируя по μ неравенство в определении A_j , получаем $q^j \cdot \mu A_j \leqslant \int_{A_i} w d\mu \leqslant q^{j-1} \cdot \mu A_j$

Суммируя по j, получаем

$$q \cdot \int_A w d\mu \leqslant \sum_j q^j \nu A_j \leqslant \nu A \leqslant \frac{1}{q} \sum_j q^j \nu A_j \leqslant \frac{1}{q} \int_A w d\mu$$

Отсюда $q\cdot \int_A w d\mu \leqslant \nu A \leqslant \frac{1}{q}\int_A w d\mu$ для любого $q\in (0;1)$. Переходим к пределу при $q\to 1$, получаем что нужно

17 Лемма о единственности плотности

 $f, g \in L(x)$.

Пусть $\forall A$ — измеримо: $\int_A f = \int_A g$.

Тогда:

 $\overline{f=g}$ почти везде

Следствие:

Плостность ν относительно μ определена однозначно с точностью до μ -почти везде.

Доказательство:

- ullet Вместо двух функций давайте рассмотрим одну h=f-g и $\forall \int\limits_A h=0.$ Пусть $A_+=X(h\geq 0)$ и $A_-=X(h<0)$
- $\oint_{A_{+}} |h| = \iint_{A_{+}} h = 0$ $\iint_{A} |h| = -\iint_{A} h = 0$
- $X = A_+ \sqcup A_-$. Тогда $\int\limits_X |h| = \int\limits_{A_+} |h| + \int\limits_{A_-} |h| = 0 \Rightarrow h = 0$ почти везде.

Почему? Ну потому что $\forall \epsilon > 0 : h > 0$ на X_{ϵ} меры 0 (иначе интеграл не 0)

То есть $|h| > \frac{1}{k}$ на X_k меры 0. Используем непрерывность сверху $(X_1 \subset X_2 \subset \ldots)$, поэтому |h| > 0 на X_0 меры 0, поэтому h = 0 пв

18 Лемма о множестве положительности

Пусть есть пространство $< X, \mathbb{A} >$ и ϕ — заряд. Тогда:

 $\forall A \in \mathbb{A} \ \exists B \subset A : \phi(B) \geq \phi(A)$ и В — множество положительности Доказательство:

- ullet Если $\phi(A) \leq 0$, возьмём $B = \emptyset$. Далее $\phi(A) > 0$.
- E множество ϵ -положительности (М $\epsilon\Pi$), если $\forall C \subset E, C$ измеримо: $\phi(C) \geq -\epsilon$
- Утверждение: $\forall \epsilon > 0$ A содержит $M \epsilon \Pi$ C, такое что $\phi(C) \geq \phi(A)$.
 - 1. Если A М $\epsilon\Pi$, то C=A
 - 2. Пусть A не М ϵ П. Тогда существеут $C_1 \subset A : \phi(C_1) < -\epsilon$. Пусть $A_1 = A \setminus C$. $\phi(A_1) > \phi(A)$
 - 3. Если $A_1 M \epsilon \Pi$, то это и есть искомое C. Иначе продолжим строить так A_2, A_3, \ldots и C_2, \ldots
 - 4. Процесс конечен, так как все C_i дизьюнктны, $\phi(C_i) < -\epsilon$, но $\phi(\bigsqcup C_i)$ конечно по определению заряда.
- Построим B: C_1 множество 1-положительности в A. C_2 множество $\frac{1}{2}$ -положительности в C_1 , и т. д. Тогда $B = \bigcap C_i M\epsilon \Pi$ для любого ϵ , значит, это $M\Pi$.
- $\phi(B) = \lim_{i \to \infty} \phi(C_i) \ge \phi(A)$ Это какая-то пародия на непрерывность меры, только для зарядов?

19 Теорема Радона-Никодима

Пусть есть пространство (X, \mathbb{A}, μ) .

 ν — мера на \mathbb{A} .

Обе меры конечные и $\nu \prec \mu$ (абсолютная непрерывность меры: если $\mu E=0,$ то $\nu E=0).$

Тогда:

 $\overline{\exists!f:X} \to \overline{\mathbb{R}}$ (с точностью до почти везде), которая является плотностью ν относительно μ и при этом f суммируема по μ .

Доказательство:

- единственность из леммы
- строим кандидата на роль f. $P=\{p(x)|p\geq 0,$ изм., $\forall E\in\mathbb{A}:\int\limits_E p\cdot d\mu\leq \nu(E)\}$
 - $1. P \neq \emptyset$ и $0 \in P$
 - 2. $p_1,p_2\in P\Rightarrow h=max(p_1,p_2)\in P$ $\forall E\int\limits_E hd\mu=\int\limits_{E(p_1\geq p_2)} hd\mu+\int\limits_{E(p_1< p_2)} hd\mu=\int\limits_{E(p_1\geq p_2)} p_1+\int\limits_{E(p_1< p_2)} p_2\leq \nu(E(p_1\geq p_2))+\nu(E(p_1< p_2))=\nu E$ По индукции $max(p_1...p_n)\in P$
 - 3. $I=\sup_{p\in P}\int_X pd\mu$ \exists последовательсность $f_1\leq f_2\leq\cdots\in P:\int_X f_nd\mu\to I$ докажем, что она существует
 - 4. Рассмотрим $p_1, p_2, \dots : \int\limits_X p_n \to I$ (потому что супремум), а также $f_n = max(p_1 \dots p_n) \in P$
 - 5. $f:=\lim f_n$. Тогда $\int_E f d\mu \stackrel{\text{т. Леви}}{=} \lim \int_E f_n d\mu \leq \nu E$, а следовательно $\int_X f = \lim \int_X f_n = I \leq \nu(X)$ Почему вообще $\int_X f_n d\mu \to I$?
 - 6. Отлично, проверим, что f плотность ν относительно μ .

- (a) Предположим, что это не так: $\exists E_0 : \nu E_0 > \int\limits_{E_0} f d\mu$
- (b) $\mu E_0 > 0$ (иначе интеграл равено нулю и мера ν равна нулю из абсолютной непрерывности)
- (c) Возьмем a > 0 : $\nu E_0 \int_{E_0} f d\mu > a \cdot \mu E_0$
- (d) Рассмотрим заряд $\phi(E) = \nu E \int_E f d\mu a \cdot \mu E$ (это законно, потому что меры конечные)
- (e) $\phi(E_0) > 0$ (пункт **c**). Возьмем МП $B \subset E_0 : \phi(B) \ge \phi(E_0) > 0$. Тогда $\nu(B) = \phi(B) + \int_B f \cdot d\mu + a \cdot \mu B \ge \phi(B) > 0$
- (f) Проверим, что $f + a \cdot \chi_B \in P$. По определению: $\int_E (f + a \cdot \chi_B) d\mu = \int_{E \setminus B} f \cdot d\mu + \int_{E \cap B} f \cdot d\mu + a \cdot \mu(B \cap E) = \int_{E \setminus B} f + \nu(E \cap B) \phi(E \cap B) \stackrel{f \in P}{\leq} \nu(E \setminus B) + \nu(E \cap B) \phi(E \cap B) = \nu E \phi(E \cap B) \stackrel{\phi \geq 0}{\leq} \nu E$ (g) $\int_X f + a \cdot \chi_B = I + a \cdot \mu B > I$, что противоречит определению

20 Лемма об оценке мер образов кубов из окрестности точки дифференцируемости

 $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$ $a \in O, \Phi \in C^1(O)$

Возьмём $c > |\det \Phi'(a)| \neq 0$

тогда $\exists \delta>0$: \forall кубической ячейки $Q,Q\subset B(a,\delta), a\in Q$ выполняется $\lambda\Phi(Q)< c\cdot \lambda Q$

Доказательство

 $\overline{\Phi(Q)}$ измеримо, так как образ измеримого множества при гладком отображении измерим

 $L := \Phi'(a), L$ обратимо, так как $|\det L| \neq 0$.

$$\Phi(x) = \Phi(a) + L(x - a) + o(x - a)$$

$$a + L^{-1}(\Phi(x) - \Phi(a)) = x + o(x - a)$$

30

Можем писать о малое, так как растяжение произошло не более чем в $|\det L^{-1}|$ раз, а $|\det L| \neq 0$

Пусть
$$\Psi(x) := a + L^{-1}(\Phi(x) - \Phi(a))$$

$$\forall \epsilon > 0 \; \exists B(a,\delta), \; \text{такой, что при} \; x \in B(a,\delta) \; |\Psi(x)-x| < \frac{\epsilon}{\sqrt{m}} |x-a| \; (\text{так}) |\Psi(x)-x| < \frac{\epsilon}{\sqrt{m}} |x-a| < \frac{\epsilon}$$

как $\Psi(x)$ это почти x, только плюс o(x-a))

$$a\in Q\subset B(a,\delta)$$
, где Q — куб со стороной h

 $x \in Q,$ тогда $|a-x| < \sqrt{m} \cdot h$ (так как диагональ m-мерного куба со стороной h равна $\sqrt{m} \cdot h)$

Тогда $|\Psi(x) - x| < \epsilon h$

При $x, y \in Q, i \in \{1...m\}$

$$|\Psi(x)_i - \Psi(y)_i| \le |\Psi(x)_i - x_i| + |\Psi(y)_i - y_i| + |x_i - y_i| \le |\Psi(x) - x| + |\Psi(y) - y| + h < (1 + 2\epsilon)h$$

 $\Psi(Q)\subset$ кубу со стороной $(1+2\epsilon)h$

$$\lambda(\Psi(Q)) < (1 + 2\epsilon)^m \lambda Q$$

Ф выражается через Ψ через сдвиги и линейные преобразования. Тогда $\lambda(\Phi(Q)) = |\det L| \cdot \lambda \Psi(Q) \leqslant |\det L| \cdot (1+2\epsilon)^m \cdot \lambda Q$

Возьмём ϵ так, чтобы $|\det L| \cdot (1+2\epsilon)^m$ было меньше c. Тогда при таком ϵ

$$\lambda(\Phi(Q)) < c \cdot \lambda Q$$

21 Лемма «Вариации на тему регулярности меры Лебега»

 $f: O \subset \mathbb{R}^m \to \mathbb{R}^m$

 $A \subset O$, A - открыто.

 $A\subset Q$ (кубическая ячейка) $\subset \overline{Q}\subset O$, то есть граница A не лежит на границе O.

Тогда

$$\inf_{A \subset G \subset O, G-open \ set} (\lambda G \cdot \sup_{G} (f)) = \lambda A \cdot \sup_{A} f$$

Доказательство

Докажем, что левая часть ≥ и ≤ правой

≥ очевидно, так как правая часть - нижняя граница для всего, встречающегося под inf

Докажем

Почему это не очевидно? Может, с формулировкой что-то не так?

1. $\lambda A = 0$. Тогда правая часть = 0.

$$A \subset \overline{Q} \Rightarrow \sup f < +\infty$$

$$\overline{Q}$$
 - компакт, $\alpha:=dist(\overline{Q},\partial O)>0$

Для множества $G:A\subset G\subset \frac{\alpha}{2}$ —окрестности ячейки Q

Назовём Q_1 кубическую ячейку, которая больше Q и у которой каждая сторона отстоит на $\frac{\alpha}{2\sqrt{m}}$ от соответствующей стороны Q.

$$h = \frac{\alpha}{2\sqrt{m}}$$

$$A \subset G \subset Int(Q_1)$$

$$\sup_{G} f \leqslant \sup_{\overline{Q_1}} f < +\infty$$

При этом λG может быть выбрана сколь угодно близко к $\lambda A=0$ по регулярности меры Лебега.

2. $\lambda A > 0$, $\sup_A f < c$

Возьмём c_1 :

$$\sup_A f < c_1 < c$$

Выберем ϵ так чтобы

$$\epsilon \cdot c_1 < \lambda A \cdot (c - c_1)$$
 (*)

 G_{ϵ} - такое множество, что $A \subset G_{\epsilon}, G_{\epsilon}$ -открытое, $\lambda(G_{\epsilon} \setminus A) < \epsilon$

$$G_1 := f^{-1}((-\infty; c_1)) \cap G_{\epsilon}$$
— открытое

$$\lambda(G_1 \setminus A) < \epsilon$$

$$\lambda G_1 \cdot \sup_{G_1} f \leqslant (\lambda A + \epsilon) \cdot c_1 < \lambda A \cdot c$$
 (из (*))

(так как $G \subset f^{-1}(-\infty; c_1)$, то есть f на G_1 не больше c_1)

$$\inf(\lambda G \cdot \sup_G f) < \lambda A \cdot c$$

Переходя к inf по c, получаем что требовалось

22 Теорема о преобразовании меры при диффеоморфизме

 $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$ - Диффеоморфизм, $\forall A \in \mathbb{M}^m, A \subset O$ $\lambda(\Phi(A)) = \int_A |\det \Phi'(x)| d\lambda(x)$

Доказательство:

Пусть $\nu A = \lambda(\Phi(A))$, проверим, что $|\det \Phi'(x)|$ - плотность ν относительно λ .

Обозначим $J(x) = |\det \Phi'(x)|$

Проверим $\forall A : \inf_{x \in A} J(x) \cdot \lambda A \leqslant \nu A \leqslant \sup_{x \in A} J(x) \cdot \lambda A$

Достаточно проверить только правую, так как левая эквивалентна $\lambda A \leq (\inf_{x \in A} J_{\Phi}(x))^{-1} \nu A$, а $(\inf_{x \in A} J_{\Phi}(x))^{-1} = \sup_{x \in A} (J_{\Phi}(x))^{-1} = \sup_{y \in A'} J_{\Phi^{-1}}(y)$ (где $A' = \Phi(A)$, $A = \Phi^{-1}(A')$)

Тогда $\lambda(\Phi^{-1}(A')) \leqslant \sup_{y \in A'} J_{\Phi^{-1}}(y) \cdot \lambda A'$ экваивалентно правому неравенству, но для Φ^{-1}

Докажем правую часть

1. A - кубическая ячейка, $A \subset \overline{A} \subset O$

Пусть это неверно, тогда $\exists Q: \sup_{x\in Q} J(x) \cdot \lambda Q < \nu Q$. Возьмём $c: \sup_{x\in Q} J(x) < c$, тогда $c\cdot \lambda Q < \nu Q$. Разобьём Q на 2^m кубических ячеек, сторона каждой из которых в 2 раза меньше стороны исходной, тогда $\exists Q_1: c\cdot \lambda Q_1 < \nu Q_1$. Аналогично делим Q_1 , по индукции строим вложенную последовательсность таких ячеек. $\forall n: c\cdot \lambda Q_n < \nu Q_n(*)$

Рассмотрим $a = \bigcap Q_n$, при этом $J(a) = |def\Phi'(a)| < c$. Тогда по лемме $\exists B(a,\delta)$: при $Q_n \subset B(a,\delta)$: $\lambda \Phi(Q_n) < c \cdot \lambda Q_n$ - противоречие c (*).

2. A - открытое множество. Тогда $A = \coprod A_i$. (кубические ячейки). Способ разбиения был в прошлом семе.

Тогда
$$\nu A=\sum \nu A_i\leqslant \sum \sup_{A_i} J\cdot \lambda A_i\leqslant \sum \sup_A J\cdot \lambda A_i=\sup_A J\cdot \lambda A$$

3. A - произвольное измеримое.

$$u A \leqslant \nu G \ (A \subset G, G \text{ - открытое}),$$
тогда $u A \leqslant \sup_G J \cdot \lambda G \Rightarrow \nu A \leqslant \inf_{A \subset G-openset} (\sup_G J \cdot \lambda G) \Rightarrow \nu A \leqslant \sup_A J \cdot \lambda A$ (из леммы)

23 Теорема о гладкой замене переменной в интеграле Лебега

 $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$ - диффеоморфизм $O' = \Phi(O)$ — открытое f задана на $O', f \geqslant 0$, измерима по Лебегу, тогда $\int_{O'} f(y) \cdot d\lambda(y) = \int_O f(\Phi(x)) \cdot |\det \Phi'(x)| \cdot d\lambda(x)$ Доказательство:

Изи.

 $u(A) = \lambda \Phi(A), \nu$ имеет плотность $J\Phi$ относително λ . Применить теорему об интеграле по взвешенному образу меры.

24 Теорема (принцип Кавальери)

 (X,α,μ) и (Y,β,ν) — пространства с мерами, причем $\mu,\,\nu$ — σ -конечные и полные

 $m = \mu \times \nu, C \in \alpha \otimes \beta$, тогда:

- 1. При п.в. $x C_x$ измеримо (ν -измеримо), т.е. $C_x \in \beta$
- 2. Функция $x \to \nu C_x$ измеримая (в широком смысле) на X

NB: ϕ — измерима в широком смысле, если она задана при п.в. x, и $\exists f: X \to R'$ — измеримая и $\phi = f$ п.в. При этом $\int_X \phi = \int_X f$ (по опр.)

3.
$$mC = \int_X \nu(C_x) \cdot d\mu(x)$$

<u>Доказательство:</u> Рассмотрим D — совокупность все множеств C, для которых утверждение теоремы верно.

 $\rho = \alpha \times \beta$ — полукольцо измеримых «прямоугольников».

1.
$$\rho \subset D$$

$$C = A \times B. \text{ то есть } \forall x \ C_x = \begin{cases} \emptyset, x \not\in A; \\ B, x \in A \end{cases}$$

$$x \to \nu(C_x), \text{ функция } \nu(B) \cdot \chi_A(x) - \text{изм.}$$

$$\int_{X} \nu(C_x) d\mu = \nu B \int_{X} \chi_A(x) d\mu(x) = \nu B \cdot \mu A = mC$$

2. $E_i \in D$, E_i дизъюнктны $\Rightarrow E := \coprod E_i \in D$ при п.в. x (E_i) $_x$ — измеримы при п.в. x все (E_i) $_x$ — измеримы, $E_x = \coprod (E_i)_x$ — измеримо. $\nu E_x = \sum \nu(E_i)_x$ ($\nu(E_i)_x$ — изм. как функция от x) \Rightarrow функция $x \to \nu E_x$ — измерима

$$\int_X \nu E_x d\mu(x) = \sum_i \int \nu(E_i)_x d\mu(x) = \sum_i m E_i = mE$$

3.
$$E_i \in D, E_1 \supset E_2 \supset \dots; mE_i < +\infty.$$
 Тогда $E := \bigcap E_i \in D$ $\int_X \nu(E_i)_x d\mu = mE_i < +\infty \ (*)$

функция $x \to \nu(E_i)_x$ — суммируема \Rightarrow п.в. конечна. при всех x $(E_i)_x \downarrow E_x$, т.е. $(E_1)_x \supset (E_2)_x \supset \dots$ и $\bigcap (E_i)_x = E_x$ при п.в. x $\nu(E_i)_X$ — конечны (для таких x).

Тогда E_x — измерима и $\lim \nu(E_i)_x = \nu E_x$ по непр-ти меры ν сверху. (Тh. Лебега) $|\nu(E_i)_x| \leq \nu(E_1)_x$ — сумм. \Rightarrow функция $x \to \nu E_x$ — изм. $\int_X \nu E_x d\mu = \lim \int_X \nu(E_i)_x d\mu = \lim m E_i = m E$ (нерп. сверху меры m). Этот предельный переход корректен как раз по теореме Лебега $(f_n \to f \text{ п.в. } g: |f_n| \leq g$ — сумм. Тогда $\int f_n \to \int f$).

NB: мы доказали про пересечения и про объединения (пусть пересечения убывающие, а объединения — дизъюнктные, но это лечится). Поэтому $\bigcap_i(\bigcup_i A_{i,j}) \in D$, если $A_{i,j} \in \rho$ ($\rho \subset D$).

Я точно не уверен, но вроде, дальше написан бред

- 4. $mE=0 \Rightarrow E \in D$ $\exists H \in D, H$ имеет вид $\cap (\cup A_{i,j})$, где все $A_{i,j} \in \rho$ $E \subset H, mH=0$ из п.5 т. о продолжении ЧТО?! поясните плез $0=mH=\int_X \nu H_x d\mu(x) \Rightarrow \nu H_x \ 0 \ (=0$ при п.в. x). $E_x \subset H_x \Rightarrow E_x \nu$ -изм. (из полноты ν) и $\nu E_x = 0$ п.в. x $\int_X \nu E_x d\mu = 0 = mE$
- 5. Неизмерима, но мера меньше ∞? ШТА? C неизм, $mC < +\infty$. Тогда $C \in D$.

 $C = H \setminus e$, где me = 0, H -вида $\cap (\cup A_{i,j})$. $C_x = H_x \setminus e_x -$ изм. при п.в. x $\nu e_x = 0$ п.в.x (проверено в п.4) $\nu C_x = \nu H_x = \nu e_x -$ изм. п.в.x

 $\int_X \nu C_x = \int_X \nu H_x - \int_X \nu e_x = \int \nu H_x = mH = mC.$

6. Что тут вообще написано? Что такое $\subset \cap (X_k \times Y_n)$ C-m-изм. произвольное

 $X=\sqcup X_k, Y=\sqcup Y_n \ (\mu X_k$ — кон, νY_n — кон.). $C=\sqcup_{k,n}(\subset\cap(X_k imes Y_n))\in D \ (\text{по п.2}) \ (\text{т.к.}\ \subset\cap(X_k imes Y_n))\in D \ \text{по п.5})$

25 Теорема Тонелли

< $X, \alpha, \mu>, <$ $Y, \beta, \nu>$ - пространства с мерой μ, ν - σ -конечны, полные $m=\mu\times \nu$ $f: X\times Y\to \overline{R}, \, f\geq 0, \, {\rm f}$ - измерима относительно т Тогда:

- 1. при *почти всех* $x \in X$ f_x измерима на \mathbb{Y} , где $f_x : \mathbb{Y} \to \overline{R}$, $f_x(y) = f(x,y)$ (симметричное утверждение верно для у)
- 2. Функция $x \mapsto \phi(x) = \int\limits_{\mathbb{Y}} f_x d\nu = \int\limits_{\mathbb{Y}} f(x,y) d\nu(y)$ измерима* на \mathbb{X} (симметричное утверждение верно для у)

$$3. \int\limits_{\mathbb{X} \times \mathbb{Y}} f(x,y) dm = \int\limits_{\mathbb{X}} \phi(x) d\mu = \int\limits_{\mathbb{X}} (\int\limits_{\mathbb{Y}} f(x,y) d\nu(y)) d\mu(x) = \int\limits_{\mathbb{Y}} (\int\limits_{\mathbb{X}} f(x,y) d\mu(x)) d\nu(y) d\mu(x) = \int\limits_{\mathbb{X}} (\int\limits_{\mathbb{X}} f(x,y) d\mu(x)) d\mu(x) = \int\limits_{\mathbb{X}} (\int\limits_{\mathbb{X}} f(x,y) d\mu(x) d\mu(x) d\mu(x) = \int\limits_{\mathbb{X}} (\int\limits_{\mathbb{X}} f(x,y) d\mu(x) d\mu$$

Доказательство:

Докажем в 3 пункта, постепенно ослабляя ограничения на функцию f

- 1. Пусть $C \subset \mathbb{X} \times \mathbb{Y}$ измеримо относительно $\mathbf{m}, \, f = \chi_C$
 - (a) $f_x(y) = \chi_{C_x}(y)$, где C_x сечение по х C_x измеримо при noumu всех x, так как это одномерное сечение, таким образом f_x измеримо, при noumu всех x.
 - (b) $\phi(x) = \int_{\mathbb{Y}} f_x d\nu = \nu C_x$ по принципу Кавальери это измеримая* функция.

(c)
$$\int_{\mathbb{X}} \phi(x) d\mu = \int_{\mathbb{X}} \nu C_x d\mu \stackrel{\text{Кавальери}}{=} mc \stackrel{\text{опр.инт}}{=} \int_{\mathbb{X} \times \mathbb{Y}} \chi_C dm = \int_{\mathbb{X} \times \mathbb{Y}} f(x,y) dm$$

- 2. Пусть f ступенчатая, $f \ge 0$, $f = \sum_{\text{кон}} a_k \chi_{C_k}$
 - (a) $f_x = \sum a_k \chi_{(C_k)_x}$ измерима при почти всех х

(b) $\phi(x) = \sum a_k \nu(C_k)_x$ - измерима* как конечная сумма измеримых

(c)
$$\int_{\mathbb{X}} \phi(x) = \int_{\mathbb{X}} \sum_{\text{KOH}} a_k \nu(C_k)_x d\mu = \sum_{\text{KOH } \mathbb{X}} \int_{\mathbb{X}} a_k \nu(C_k)_x d\mu = \sum_{\mathbb{X} \times \mathbb{Y}} a_k m C_k = \int_{\mathbb{X} \times \mathbb{Y}} f dm$$

3. Пусть f - измеримая, $f \ge 0$

 $f = \lim_{n \to +\infty} g_n$, где $g_n \ge 0$ - ступенчатая, g_n - монотонно возрастает к f (из Теоремы об апроксимации измеримой функции ступенчатыми)

- (a) $f_x = \lim_{n \to +\infty} (g_n)_x \Rightarrow f_x$ измерима при *noumu всех* х.
- (b) $\phi(x) = \int\limits_{\mathbb{Y}} f_x d\nu \stackrel{\text{т.Леви}}{=} \lim \int\limits_{\mathbb{Y}} (g_n)_x d\nu$ $\phi_n(x) := \int\limits_{\mathbb{Y}} (g_n)_x d\nu$ измерима по пункту 1 $0 \le (g_n)_x$ возрастает, тогда $\phi(x)$ измерима, $\phi_n(x) \le \phi_{n+1}(x) \le \dots$ и $\phi_n(x) \to \phi(x)$
- (c) $\int_{\mathbb{X}} \phi(x) d\mu \stackrel{\text{т.Леви}}{=} \lim_{n \to +\infty} \int \phi_n(x) d\mu \stackrel{\text{п.2}}{=} \lim_{n \to +\infty} \int_{\mathbb{X} \times \mathbb{Y}} g_n dm \stackrel{\text{т.Леви}}{=} \int f dm$

26 Формула для Бета-функции

$$B(s,t) = \int\limits_0^1 x^{s-1} (1-x)^{t-1},$$
 где s и t > 0 - Бета-функция

$$\Gamma(s)=\int\limits_0^{+\infty}x^{s-1}e^{-x}dx$$
, где s >0 , тогда $B(s,t)=rac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}$

Доказательство:

$$\overline{\Gamma(s)\Gamma(t)} = \int_{0}^{+\infty} x^{s-1} e^{-x} \left(\int_{0}^{+\infty} y^{t-1} e^{-y} dy \right) dx = \left[y \to u \atop y = u - x \right] = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-y} dx \right) dx = \left[y \to u \atop y = u - x \right] = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-y} dx \right) dx = \left[y \to u \atop y = u - x \right] = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-y} dx \right) dx = \left[y \to u \atop y = u - x \right] = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-y} dx \right) dx = \left[y \to u \atop y = u - x \right] = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-y} dx \right) dx = \left[y \to u \atop y = u - x \right] = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-y} dx \right) dx = \left[y \to u \atop y = u - x \right] = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-y} dx \right) dx = \left[y \to u \atop y = u - x \right] = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-y} dx \right) dx = \left[y \to u \atop y = u - x \right] = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-y} dx \right) dx = \left[y \to u \atop y = u - x \right] = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-y} dx \right) dx = \left[y \to u \atop y = u - x \right] = \int_{0}^{+\infty} x^{s-1} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-y} dx \right) dx = \left[y \to u \atop y = u - x \right] = \int_{0}^{+\infty} x^{s-1} e^{-x} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-y} dx \right) dx = \left[y \to u \atop y = u - x \right] = \int_{0}^{+\infty} x^{s-1} e^{-x} \left(\int_{x}^{+\infty} (u - x)^{t-1} e^{-x} dx \right) dx = \left[y \to u \atop y = u - x \right] = \int_{0}^{+\infty} x^{s-1} e^{-x} dx dx$$

$$(x)^{t-1}e^{-u}du)dx =$$

= ∫ ... = меняем порядок интегрирования

$$x \ge 0$$

$$=\int\limits_0^{+\infty} du \int\limits_0^u dx (x^{s-1}(u-x)^{t-1}e^{-u}) = \left[\begin{matrix} x \to v \\ x = uv \end{matrix}\right] = \int\limits_0^{+\infty} e^{-u} (\int\limits_0^1 u^{s-1}v^{s-t}u^{t-1}(1-u)^{t-1}e^{-u}) = \left[\begin{matrix} x \to v \\ x = uv \end{matrix}\right] = \int\limits_0^{+\infty} e^{-u} (\int\limits_0^1 u^{s-1}v^{s-t}u^{t-1}(1-u)^{t-1}e^{-u}) = \left[\begin{matrix} x \to v \\ x = uv \end{matrix}\right] = \int\limits_0^{+\infty} e^{-u} (\int\limits_0^1 u^{s-1}v^{s-t}u^{t-1}(1-u)^{t-1}e^{-u}) = \left[\begin{matrix} x \to v \\ x = uv \end{matrix}\right] = \int\limits_0^{+\infty} e^{-u} (\int\limits_0^1 u^{s-1}v^{s-t}u^{t-1}(1-u)^{t-1}e^{-u}) = \left[\begin{matrix} x \to v \\ x = uv \end{matrix}\right] = \int\limits_0^{+\infty} e^{-u} (\int\limits_0^1 u^{s-1}v^{s-t}u^{t-1}(1-u)^{t-1}e^{-u}) = \left[\begin{matrix} x \to v \\ x = uv \end{matrix}\right] = \int\limits_0^{+\infty} e^{-u} (\int\limits_0^1 u^{s-1}v^{s-t}u^{t-1}(1-u)^{t-1}e^{-u}) = \left[\begin{matrix} x \to v \\ x = uv \end{matrix}\right] = \int\limits_0^{+\infty} e^{-u} (\int\limits_0^1 u^{s-1}v^{s-t}u^{t-1}(1-u)^{t-1}e^{-u}) = \left[\begin{matrix} x \to v \\ x = uv \end{matrix}\right] = \int\limits_0^{+\infty} e^{-u} (\int\limits_0^1 u^{s-1}v^{s-t}u^{t-1}(1-u)^{t-1}e^{-u}) = \left[\begin{matrix} x \to v \\ x = uv \end{matrix}\right] = \int\limits_0^{+\infty} e^{-u} (\int\limits_0^1 u^{s-t}u^{s-t}u^{t-1}(1-u)^{t-1}e^{-u}) = \left[\begin{matrix} x \to v \\ x = uv \end{matrix}\right] = \int\limits_0^{+\infty} e^{-u} (\int\limits_0^1 u^{s-t}u^{s-t}u^{s-t}u^{t-1}(1-u)^{t-1}e^{-u}$$

$$u(v)^{t-1}udv)du=$$
 $=\int\limits_{0}^{+\infty}u^{s+t-1}e^{-u}(\int\limits_{0}^{1}v^{s-1}(1-v)^{t-1}dv)du=B(s,t)\Gamma(s+t),$ чтд.

27 Объем шара в \mathbb{R}^m

$$B(0,R)\subset\mathbb{R}^m\\ \lambda_m(B(0,R))=\int\limits_{B(0,R)}1d\lambda_m=\int\mathcal{J}=\\ =\int\limits_{B(0,R)}^Rdr\int\limits_0^\pi d\phi_1\cdots\int\limits_0^\pi d\phi_{m-2}\int\limits_0^{2\pi}d\phi_{m-1}\cdot r^{m-1}(\sin\phi_1)^{m-2}\dots(\sin\phi_{m-2})=\to\\ \int\limits_0^\pi(\sin\phi_k)^{m-2-(k+1)}=B(\frac{m-k}{2};\frac{1}{2})=\frac{\Gamma(\frac{m-k}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m-k}{2}+\frac{1}{2})}\text{почему так? надо бы попо-}\\ \text{дробней расписать}\\ \to=\frac{R^m}{m}\frac{\Gamma(\frac{m-1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m}{2})}\frac{\Gamma(\frac{m-2}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m-1}{2})}\cdot\cdot\cdot\frac{\Gamma(1)\Gamma(\frac{1}{2})}{\Gamma(\frac{3}{2})}2\pi=\\ =\frac{\pi R^m}{\frac{m}{2}}\frac{\Gamma(\frac{1}{2})^{m-2}}{\Gamma(\frac{m}{2})}=\frac{\pi^{\frac{m}{2}}}{\Gamma(\frac{m}{2}+1)}R^m$$

28 Теорема о вложении пространств L^p

$$\mu E < +\infty, \ 1 \le s < r \le +\infty$$
 Тогда:

1.
$$L_r(E,\mu) \subset \mathcal{L}_s(E,\mu)$$

2.
$$\forall f$$
 — измеримая : $||f||_s \leq \mu E^{1/s-1/r} ||f||_r$

Доказательство:

- 2 \Rightarrow 1 (Это очевидно: достаточно рассмотреть неравенство из пункта 2. Из него следует, что $||f||_s \leq const \cdot ||f||_r$. см. опред. L_p)
- Рассмотрим два случая:

1.
$$r = +\infty$$
 (очев.)

$$||f||_s = (\int |f|^s \cdot 1)^{1/s} \le ((esssup|f|)^s \int 1d\mu)^{1/s} = ||f||_\infty \cdot \mu E^{1/s}$$

(последнее по определению esssup)

 $2. r < +\infty$

$$(||f||_s)^s = \int |f|^s \cdot 1d\mu \le (\int |f|^r)^{\frac{s}{r}} \cdot (\int 1^{\frac{r}{r-s}})^{\frac{r-s}{r}} = (||f||_r)^s \cdot \mu E^{1-\frac{s}{r}}$$

(существенный шаг: применить неравество Гельдера)

29 Теорема о сходимости в L_p и по мере

 $1 \le p < +\infty$
 $f_n \in L_p(\mathbb{X}, \mu)$

- 1. \bullet $f \in L_p$
 - $\bullet \ f_n \to f \ {
 m B} \ L_p$

Тогда: $f_n \stackrel{\mu}{\Rightarrow} f$ (по мере)

- 2. $f_n \stackrel{\mu}{\Rightarrow} f$ (либо если $f_n \to f$ почти везде)
 - $|f_n| \le g$ почти везде при всех $n; g \in L_p$

Тогда: $f_n \to f$ в L_p

Доказательство:

1.

$$X_n(\epsilon) := X(|f_n - f| \ge \epsilon)$$

$$\mu X_n(\epsilon) \overset{\text{\tiny T.K.}}{\leqslant} \overset{\frac{|f_n - f|}{\epsilon} \ge 1}{\underset{X_n}{\leqslant}} \int (\frac{|f_n - f|}{\epsilon})^p = \frac{1}{\epsilon^p} \int_{X_n} |f_n - f|^p \le \frac{1}{\epsilon^p} \int_{X} |f_n - f|^p = \frac{1}{\epsilon^p} (||f_n - f||_p)^p \overset{n \to \infty}{\to} 0$$

2. $f_n \stackrel{\mu}{\Rightarrow} f$ Тогда $\exists n_k \mid f_{n_k} \to f$ почти везде. Тогда $|f| \leq g$ п. в. $|f_n - f|^p \leq (2g)^p$ – сумм. функции т. к. $g \in L_p$ $(||f_n - f||_p)^p = \int\limits_{\mathbb{Y}} |f_n - f|^p d\mu \stackrel{n \to \infty}{\to} 0$ (по теореме Лебега)

30 Полнота L^p

 $L_p(E,\mu)$ $1 \leq p < \infty$ – полное

То есть любая фундаментальная последовательность сходиться по норме $||f||_p$.

$$(\forall \epsilon > 0 \; \exists N \; \forall n, k \; ||f_n - f_k||_p < \epsilon) \Rightarrow (\exists f : ||f_n - f||_p \to 0)$$

Доказательство:

1. Построим f.

Рассмотрим фундаментальную последовательность f_n .

 $\exists N_1$ при $n_1, k > N_1 ||f_{n_1} - f_k|| < \frac{1}{2}$

 $\exists N_2$ при $n_2, k > N_2, N_1 ||f_{n_2} - f_k|| < \frac{1}{4}$

. . .

Тогда: $\sum_{k=1}^{\infty} ||f_{n_{k+1}} - f_{n_k}|| < 1$

$$f = \lim_{k \to \infty} f_{n_k}$$

Докажем, это функция f корректно задана:

• $S_N(x) := \sum_{k=1}^N |f_{n_{k+1}} - f_{n_k}|$ $||S_N||_p \le \sum_{k=1}^N ||f_{n_{k+1}} - f_{n_k}|| < 1$

Тогда по Теореме Фату: $||S||_p \le 1$

Тогда $|S|^p$ – суммируема

Тогда S(x) конечна при п. в. x и ряд $\sum f_{n_{k+1}} - f_{n_k}$ абс. сходитс, а значит и просто сходится при п. в. x

$$f:=f_{n_1}+\sum f_{n_{k+1}}-f_{n_k}$$
 т. е. $f=\pi$. В. $\lim_{k o\infty}f_{n_k}$

2. Проверим, что $f_n \to f$ в L_p

Т. к.
$$f_n$$
 – фунд., то $\forall \epsilon > 0 \; \exists N \; \forall n, n_k > N \; ||f_n - f_{n_k}|| < \epsilon \Rightarrow ||f_n - f_{n_k}||^p = \int_E |f_n - f_{n_k}|^p d\mu < \epsilon^p$

Тогда по теореме Фату: $\int\limits_E |f-f_n|^p \leq \epsilon^p$

Тогда $\forall \epsilon > 0 \; \exists N \; \forall n > N \; ||f - f_n||_p < \epsilon$

Замечание: L_{∞} – полное (упражнение)

31 Лемма Урысона

X — нормальное топологическое пространство, то есть:

- 1. Все одноточечные множества замкнуты.
- 2. Любые два непересекающихся замкнутых множества отделимы окрестностями:

A, B — замкнуты, $A \cap B = \emptyset \Rightarrow \exists A_1, B_1$ — открыты, $A_1 \cap B_1 = \emptyset$, $A \subset A_1, B \subset B_1$.

 F_0, F_1 — замкнуты, $F_0 \cap F_1 = \emptyset$.

<u>Тогда:</u> $\exists f: X \to [0,1]$, непрерывная (в смысле топологического определения непрерывности), равная 0 на F_0 и равная 1 на F_1 .

Доказательство: ТОО!

32 Плотность в L^p непрерывных финитных функций

 $(\mathbb{R}^m, \mathbb{A}, \lambda_m)$

 $E\subset \mathbb{R}^m$ — изм. Тогда множество финитных непрерывных функций плотно в $L_p(E,\lambda_m), p\in [1;+\infty]$

Доказательство:

- 1. Раскроем определение плотности: $\forall f \in L_p(E,\mu) \ \forall \epsilon > 0 \ \exists \varphi \in C_0(\mathbb{R}^m)$: $||f-\varphi|_E||_p < \epsilon$. Таким образом достаточно научиться приближать f и φ ступенчатыми функциями f_n : $||f-f_n||_p < \epsilon/2$ и $||\varphi-f_n||_p < \epsilon/2$
- 2. TODO!

33 Теорема о непрерывности сдвига

Обозначения:

 $f_h := f(x+h)$

 $[0,T]\subset\mathbb{R}$. Будем считать, что $L_p[0,T]$ состоит из T-периодических функций $\mathbb{R}\to\overline{\mathbb{R}}$. Отсюда $\int_0^T f=\int_a^{a+T} f$.

 $\widetilde{C}[0,T] = f \in C[0,T] : f(0) = f(T).||f|| = \max_{x \in [0,T]} |f(x)|$

NB: $f \in \widetilde{C}[0,T] \Rightarrow f$ равномерно непрерывна (по т. Кантора).

Формулировка:

- 1. f— рвим. непр. на \mathbb{R}^m . Тогда $||f-f_h||_{\infty} \to 0$ при $h \to 0$.
- 2. $1 \le p < +\infty \ f \in L_p(\mathbb{R}^m, \lambda_m)$. Тогда $||f f_h||_p \to 0$.
- 3. $f \in \widetilde{C}[0,T]$. Тогда $||f f_h||_{\infty} \to 0$.
- 4. $1 \le p < +\infty$ $f \in L_p[0;T]$. Тогда $||f f_h||_p \to 0$.

Доказательство:

- 1. 1 и 3 свойства следуют из определения рвим. непр-ти: $\forall \epsilon > 0 \; \exists \delta > 0 \; \forall x \in \mathbb{R}^m \; \forall h : |h| < \delta$ верно, что $|f(x) f(x+h)| < \epsilon$, то есть $||f f_h||_{\infty} < \epsilon$ (это для св-ва 1, во втором случае x из [0,T]).
- 2. TODO!

34 Теорема об интеграле с функцией распределения

Проверить формулировку, тут, вроде, какая-то херня написана чё за измеримость по Борелю???

 (\mathbb{R}, B, X)

 $f:\mathbb{R} o \mathbb{R}, f \geq 0$, изм. по Борелю, п.в. конечн.

 $h:X o\overline{\mathbb{R}}$ с функцией распределения H(t)

 μ_H – мера Бореля-Стилтьеса (мера Лебега-Стилтьеса на B)

Тогда
$$\int\limits_X f(h(x))d\mu(x) = \int\limits_{\mathbb{R}} f(t)d\mu_H(t)$$

<u>Доказательство</u>: Следует из теоремы о вычислении интеграла по взвешенному образу меры, положив $< Y, C, \nu > = < \mathbb{R}, B(\mathbb{R}), h(\mu) > , \Phi = h, \omega = 1$

35 Теорема о свойствах сходимости в гильбертовом пространстве

- 1. $x_n \to x, y_n \to y \Rightarrow \langle x_n, y_n \rangle \to \langle x, y \rangle$
- 2. $\sum x_k$ сходится, тогда $\forall y: \sum \langle x_k, y \rangle = \langle \sum x_k, y \rangle$
- 3. $\sum x_k$ ортогональный ряд, тогда $\sum x_k$ $\operatorname{cx} \Leftrightarrow \sum |x_k|^2$ сходится, при этом $|\sum x_k|^2 = \sum |x_k|^2$

Доказательство

- 1. $|\langle x_k, y_k \rangle \langle x, y \rangle| = |\langle x_k, y_k \rangle \langle x_k, y \rangle + \langle x_k, y \rangle \langle x, y \rangle| \le |\langle x_k, y_k y \rangle| + |\langle x_k x, y \rangle| \le |x_k| \cdot |y_k y| + |x_k x| \cdot |y| \to 0$ (так как огр об.м. + б.м. огр $\to 0$)
- 2. $S_n = \sum_{k=1}^n x_k$

$$\langle \sum_{k=1}^{n} x_k, y \rangle = \sum_{k=1}^{n} \langle x_k, y \rangle$$

Устремляя $n \times \infty$, получаем требуемое равенство

3. Обозначим $C_n := \sum_{k=1}^n |x_k|^2$

$$|S_n|^2=\langle\sum_{k=1}^nx_k,\sum_{j=1}^nx_j\rangle=\sum_{k,j}^n\langle x_k,x_j\rangle=\sum_{k=1}^n\langle x_k,x_k\rangle$$
 (так как $k\neq j\Rightarrow$ $\langle x_k,x_j\rangle=0)=\sum_{k=1}^n|x_k|^2=C_n$

Аналогично, $||S_n|^2 - |S_m|^2| = |C_n - C_m|$

Тогда $C_n, |S_n|^2$ фунадментальны одновременно \Rightarrow сходятся одновременно при устремлении $n \ \kappa \ \infty$

36 Теорема о коэффициентах разложения по ортогональной системе

 $\{e_k\}$ — ортогональная система в $\mathbb{H},\ x\in\mathbb{H}, x=\sum_{k=1}^{+\infty}c_k\cdot e_k$ Тогда:

1. $\{e_k\}$ — Л.Н.З.

$$2. c_k = \frac{\langle x, e_k \rangle}{||e_k||^2}$$

3. $c_k \cdot e_k$ — проекция x на прямую $\{te_k \mid t \in \mathbb{R} \ ($ или $\mathbb{C})\}$ Иными словами, $x = c_k \cdot e_k + z$, где $z \bot e_k$

Доказательство:

1. Пусть $\sum\limits_{k=1}^{N} \alpha_k e_k = 0$. Умножим скалярно на $e_m \ (1 \leqslant m \leqslant N)$

Получим: $\alpha_m ||e_m||^2 = 0 \Rightarrow \alpha_m = 0 \Rightarrow$ комб. тривиальная \Rightarrow Л.Н.З.

2.
$$\langle x, e_m \rangle = \sum_{k=1}^{+\infty} \langle c_k e_k, e_m \rangle = c_m \cdot ||e_m||^2$$
 (верно в силу сходимости ряда)

3.
$$x = c_k \cdot e_k + z$$
. Доказать: $z \perp e_k$. $\langle z, e_k \rangle = \langle x - c_k e_k, e_k \rangle = c_k \cdot ||e_k||^2 - c_k \cdot ||e_k||^2 = 0$

37 Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя

 $\{e_k\}$ — ортогональная система в $\mathbb{H}, x \in \mathbb{H}, n \in \mathbb{N}$ $S_n = \sum\limits_{k=1}^n c_k(x)e_k, \ \mathcal{L} = Lin(e_1,e_2,\ldots e_n) \subset \mathbb{H}$ Тогда:

- 1. S_n орт. проекция x на пр-во \mathcal{L} . Иными словами $x=S_n+z,\ z\bot\mathcal{L}$
- 2. S_n наилучшее приближение x в \mathcal{L} ($||x S_n|| = \min_{y \in \mathcal{L}} ||x y||$)
- $|3.||S_n|| \leq ||x||$

Доказательство:

1.(a) $z = x - S_n$

(b) $z \perp \mathcal{L} \Leftrightarrow \forall k = 1, 2...n : z \perp e_k$

(c)
$$\langle z, e_k \rangle = \langle x, e_k \rangle - \langle S_n, e_k \rangle = c_k ||e_k||^2 - c_k ||e_k||^2 = 0$$

2.
$$||x - y||^2 = ||S_n + z - y||^2 = ||(S_n - y) + z||^2 = ||S_n - y||^2 + ||z||^2 \ge ||z||^2 = ||x - S_n||^2$$

3.
$$||x||^2 = ||S_n||^2 + ||z||^2$$
 (теорема о сумме орт. ряда) $\geqslant ||S_n||^2$

Следствие: Неравенство Бесселя

$$\forall \{e_k\} - \text{O.C.} : \sum_{k=1}^{+\infty} |c_k(x)|^2 \cdot ||e_k||^2 \le ||x||^2$$

38 Теорема Рисса – Фишера о сумме ряда Фурье. Равенство Парсеваля

 $\{e_k\}$ – орт. сист. в \mathbb{H} , $x \in \mathbb{H}$

Тогда:

1. Ряд Фурье $\sum\limits_{k=1}^{+\infty}c_k(x)e_k$ сходится в $\mathbb H$

2.
$$x = \sum_{k=1}^{+\infty} c_k e_k + z \Rightarrow \forall k \ z \perp e_k$$

3.
$$x = \sum_{k=1}^{+\infty} c_k e_k \Leftrightarrow \sum_{k=1}^{+\infty} |c_k|^2 ||e_k||^2 = ||x||^2$$

Доказательство:

1. Ряд Фурье – ортогональный ряд его сходимость \Leftrightarrow сходимости $\sum_{k=1}^{+\infty}|c_k|^2\|e_k\|^2$ $\sum_{k=1}^{+\infty}|c_k|^2\|e_k\|^2\leq \|x\|^2$ по неравенству Бесселя

2.
$$\langle z, e_k \rangle = \langle x - \sum_i c_i e_i, e_k \rangle = \langle x, e_k \rangle - \sum_{i=1}^{+\infty} \langle c_i(x) e_i, e_k \rangle = 0$$

3. \Rightarrow - утв. 3 теоремы о св-вах сх-ти в гильбертовом пр-ве \Leftarrow Из п. 2 ряд ортог. $\|x\|^2 = \|\sum c_k e_k\|^2 + \|z\|^2 = \sum |c_k|^2 \|e_k\|^2 + \|z\|^2 = \|x\|^2 + \|z\|^2 \Rightarrow z = 0$

39 Теорема о характеристике базиса

 $\{e_k\}$ — ортогональная система в $\mathbb H$

Тогда эквивалентны следующие утверждения:

- 1. $\{e_1\}$ базис.
- 2. $\forall x,y \in \mathbb{H} \ \langle x,y \rangle = \sum c_k(x) \overline{c_k(y)} \|e_k\|^2$ (обобщенное уравнение замкнутости)
- 3. $\{e_k\}$ замкнутая система.
- 4. $\{e_k\}$ полная система.
- 5. $Lin(e_1,e_2,\ldots)$ плотна в $\mathbb H$

Доказательство:

$39.1 \quad 1 \Rightarrow 2$

 $x=\sum c_k(x)e_k$ — единственно (из геом. соображений: c_ke_k — проекция) $\langle e_k,y\rangle=\overline{\langle y,e_k\rangle}=\overline{c_k(y)}\|e_k\|^2$ $\langle x,y\rangle=\sum c_k(x)\langle e_k,y\rangle=\sum c_k(x)\overline{c_k(y)}\|e_k\|^2$

$39.2 \quad 2 \Rightarrow 3$

y := x $||x||^2 = \sum |c_k(x)|^2 ||e_k||^2$ (см. п. 3 из опр.)

$39.3 \quad 3 \Rightarrow 4$

Пусть $\forall k$ $x_0 \perp e_k$ $c_k(x_0) = \frac{\langle x_0, e_k \rangle}{\|e_k\|^2} = 0$ $\|x_0\|^2 = \sum |c_k(x_0)|^2 \|e_k\|^2 = 0$ (см. п. 2 из опр.)

$39.4 \quad 4 \Rightarrow 1$

 $x = \sum_{k=1}^{+\infty} c_k e_k + z \Rightarrow$ (т. Рисса-Фишера (2)) $\forall k \ z \bot e_k \Rightarrow$ (из полноты) z = 0 (см. п. 1 из опр.)

$39.5 \quad 4 \Rightarrow 5$

Пусть $ClLin(e_1,e_2,\ldots) \neq \mathbb{H}, \ x \in \mathbb{H} \setminus ClLin(e_1,e_2,\ldots)$ из т. Рисса-Фишера (2): $x = \sum_{k=1}^{+\infty} c_k e_k + z \Rightarrow \forall k \ z \bot e_k \Rightarrow x = \sum_{k=1}^{+\infty} c_k e_k \Rightarrow x \in ClLin(e_1,e_2,\ldots)$ Противоречие.

$39.6 \quad 5 \Rightarrow 4$

$$\forall k \ x_0 \bot e_k \Rightarrow x_0 \bot Lin(e_1, e_2, \ldots) \Rightarrow x_0 \bot ClLin(e_1, e_2, \ldots) (= \mathbb{H}) \Rightarrow x_0 \bot x_0 \Rightarrow \|x_0\|^2 = 0 \Rightarrow x_0 = 0$$

40 Лемма о вычислении коэффициентов тригонометрического ряда

Пусть $S_n \to f$ в $L_1(-\pi,\pi]$

Тогда:

$$\overline{a_k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx \quad k = 0, 1, 2, \dots$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx \quad k = 0, 1, 2, \dots$$

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} \, dx \quad k = 0, 1, 2, \dots$$

Доказательство:

Почему нельзя сказать, что коэффициенты — это коэффициенты ряда Фурье, а потому вычисляются как скалярные произведения???

$$S_n = \frac{a_0}{2} + \sum_{j=1}^n a_j \cos jx + b_j \sin jx \ (-\text{ это } T_n)$$
 При $n > k$:

1.
$$\int_{-\pi}^{\pi} S_n(x) \cos kx dx = \int_{-\pi}^{\pi} a_k \cos^2 kx dx = \pi a_k$$
 (в силу ортогональности триг системы)

2.
$$\left| \int_{-\pi}^{\pi} S_n(x) \cos kx dx - \int_{-\pi}^{\pi} f(x) \cos kx dx \right| \le \int_{-\pi}^{\pi} |S_n(x) - f(X)| \cdot |\cos kx| \le \int_{-\pi}^{\pi} |S_n(x) - f(x)| \to 0$$

Из 1 и 2 следует равенство для a_k . Аналогично доказывается и для других.

41 Теорема Римана-Лебега

 $E \subset \mathbb{R}^1$ — измеримо $f \in L_1(E,\lambda), \ \lambda$ - мера Лебега Тогда:

$$\int_{E} f(x)e^{ikx}dx \xrightarrow[k \to +\infty]{} 0$$

$$\int_{E} f(x)cos(kx)dx \xrightarrow[k \to +\infty]{} 0$$

$$\int_{E} f(x)sin(kx)dx \xrightarrow[k \to +\infty]{} 0$$

Доказательство:

Пусть $f\equiv 0$ вне E, тогда можно считать, что $f\in L^1(\mathbb{R}^1)$ Обозначим e(x)=cos(x), или sin(x), или e^{ix} , в зависимости от ситуации. Заметим, что $e(t+\pi)=-e(t)$

$$\int\limits_{\mathbb{R}} f(t)e(kt) \stackrel{t=\tau+\frac{\pi}{k}}{=} \int\limits_{\mathbb{R}} f(\tau+\frac{\pi}{k})e(k\cdot(\tau+\frac{\pi}{k})) = -\int\limits_{\mathbb{R}} f(\tau+\frac{\pi}{k})e(k\tau)$$

$$\int\limits_{\mathbb{R}} f(t)e(kt) = \frac{1}{2}\int\limits_{\mathbb{R}} f(t)e(kt) - \frac{1}{2}\int\limits_{\mathbb{R}} f(\tau+\frac{\pi}{k})e(kt) = \frac{1}{2}\int\limits_{\mathbb{R}} (f(t)-f(t+\frac{\pi}{k}))e(kt)$$

$$|\int\limits_{\mathbb{R}} f(t)e(kt)| \leq \frac{1}{2}\int\limits_{\mathbb{R}} |f(t)-f(t+\frac{\pi}{k})|dt \text{ (так как } |e(kt)| \leq 1) \xrightarrow[k \to +\infty]{} 0,$$
по непрерывности сдвига

42 Принцип локализации Римана

$$f,G \in L_1[-\pi,\pi]$$
 $x_0 \in R, \delta > 0$ $f \equiv g$ на $(x_0 - \delta, x_0 + \delta)$ $\frac{\text{Тогда:}}{S_n(f,x_0)} - S_n(g,x_0) \to 0$ $\frac{\text{Доказательство:}}{h := f - g \equiv 0}$ на $(x_0 - \delta, x_0 + \delta)$ $S_n(h,x_0) \to 0$ $S_n(h,x_0) \to 0$ $S_n(h,x_0) = \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} h(x_0 + t)(ctg(\frac{t}{2})sin(nt) + cos(nt))dt$ Почему так? Откуда взялась эта формула? $a_k(f) = \int\limits_{-\pi}^{\pi} f(x)cos(kx)dx = a_k(h_1) + b_k(h_2)$ $h_1 = \frac{1}{2}h(x_0 + t)$ $h_2 = \frac{1}{2}h(x_0 + t)ctg(\frac{t}{2})$ $|h_2(t)| \le \frac{1}{2}|h(x_0 + t)ctg(\frac{t}{2})| \le \frac{1}{2}|h(x_0 + t)|\frac{\delta}{2}$ $h = 0$ при $t \in (-\delta, \delta)$ $[a,b] \subset (x_0 - \delta, x_0 + \delta)$ $S_n(h,x) \Rightarrow 0$ при $x \in [a,b], n \to +\infty$

43 Признак Дини. Следствия

$$f \in L_1[-\pi, \pi]$$
 $x_0 \in R$ $S \in R$ $(*) \int_0^{\pi} \frac{|f(x_0+t)-2S+f(x_0-t)|}{t} dt$ сходится $\frac{\text{Тогда:}}{S_n(f, x_0)} \to S$ $\frac{\text{Доказательство:}}{\phi(t) = f(x_0+t) - 2S + f(x_0-t)}$

$$\begin{split} S_n(f,x_0) - S^{\int_{-\pi}^{\pi} D_n = 1} \int_{-\pi}^{\pi} (f(x_0 + t) - S) D_n(t) dt = \\ &= \int_{0}^{\pi} (f(x_0 + t) - S) D_n(t) dt + \int_{-\pi}^{0} (f(x_0 + t) - S) D_n(t) dt = \int_{0}^{\pi} \phi(t) D_n(t) dt \end{split}$$

Введём h_1, h_2 :

$$h_1(t) := \begin{cases} \frac{1}{2}\phi(t), t \in [0, \pi] \\ 0, t \in [-\pi, 0) \end{cases}$$

$$h_2(t) := \begin{cases} \frac{1}{2}\phi(t)\operatorname{ctg}(\frac{t}{2}), t \in [0, \pi] \\ 0, t \in (-\pi, 0) \end{cases}$$

Покажем что
$$h_1$$
 суммируема
$$\int_{-\pi}^{\pi} |h_1(t)| dt \leq \frac{1}{2} \int_{-\pi}^{\pi} |\phi(t)| dt \leq \frac{1}{2} \int_{-\pi}^{\pi} (|f(x_0+t)| + 2|S| + |f(x_0-t)|) dt < +\infty$$
 (поскольку f суммируема)

Покажем что h_2 суммируема

$$|\cot(\frac{t}{2})| < \frac{2}{|t|}, t \in [-\pi, \pi]$$
 $\frac{1}{2} \int_{0}^{\pi} |\phi(t)| |\cot(\frac{t}{2})| dt \le \int_{0}^{\pi} \frac{|\phi(t)|}{t} dt < +\infty$ по (*)

$$\int\limits_0^\pi \phi(t) D_n(t) = C \cdot \int\limits_0^\pi \phi(t) (ctg(\frac{t}{2}) sin(nt) + cos(nt)) = (C -$$
хз какая констатна, что-то из ядра Дирихле)

$$=C\cdot\int\limits_{-\pi}^{\pi}h_1\cos(nt)+h_2\sin(nt)\xrightarrow[n\to+\infty]{}0$$
 (по теореме Римана-Лебега)

Следствие1:

∃ 4 предела

$$\lim_{t\to\pm 0} \frac{f(x_0+t)-f(x_0\pm 0)}{t}$$

Тогда:

Ряд фурье сходится в x_0 как $\frac{f(x_0+0)+f(x_0-0)}{2}$

 $\frac{\text{Следствие2:}}{f \in L_1[-\pi,\pi]}$ f непрерывна в x_0 \exists конечные $f'_+(x_0), f'_-(x_0)$ $\frac{\text{Тогда:}}{S_n(f,x_0) \to f(x_0)}$

44 Корректность свертки

 $f, K \in L_1[-\pi, \pi]$ <u>Тогда:</u> (f * K) – корректно заданная фукнция из $L_1[-\pi, \pi]$ Доказательство:

- ullet Докажем, что g(x,t)=f(x-t)K(t) измерима
 - $-\,K(t)$ измерима, как функция из L_1
 - $-\phi(x,t)=f(x-t)$. Это функция принимает одинаковые значения на t=x-C.

Поэтому: $R^2(\phi < a) = V^{-1}(E_{a'} \times R)$, где V(x,t) = (x-t,t) $E_{a'} = V(R(f < a))$ – измеримо, так как f – измеримо. Что за бред, V действует из R^2 , а тут пытаются сделать из R Поэтому $R^2(\phi < a)$ – измеримо.

- Поэтому g измерима, как произведение измеримых
- Проверим, что $g \in L_1([-\pi,\pi] \times [-\pi,\pi])$

$$\iint\limits_{[-\pi,\pi]} |g| d\lambda^2 = \int\limits_{-\pi}^{\pi} (|K(t) \int\limits_{-\pi}^{\pi} |f(x-t)| dx|) dt = ||f||_1 ||K||_1 < +\infty$$

- ullet По теореме Фубини $\int\limits_{-\pi}^{\pi}g(x,t)dt$ суммируемая при в п. в. х
- ullet Тогда свертка лежит в $L_1[-\pi,\pi]$

45 Свойства свертки функции из L^p с фукнцией из L^q

 $f\in L^p;\ K\in L^q$ $1\leqslant p\leqslant +\infty;\ rac{1}{p}+rac{1}{q}=1$ Тогда:

- f*K непр. на $[-\pi,\pi]$
- $\bullet ||f * K||_{\infty} \leq ||K||_q ||f||_p$

Доказательство: Это нер-во Гельдера

п. 2
$$|(f*K)(x)| = |\int_{-\pi}^{\pi} f(x-t)K(t)dt| \leq \sup_{\text{нер-во Гельдера}} ||K||_q ||f||_p$$
 $\sup_{x \in \mathbb{Z}} |f*K| \leq ||f||_p ||K||_q \Rightarrow \text{пунк 2}$ (Причем нер-во Гельдера выполнено и для $p = \infty$)

$$\begin{aligned} & \Pi. \ 1 - p < + \infty \\ & | (f*K)(x+h) - (f*K)(x) | = | \int\limits_{-\pi}^{\pi} (f(x+h-t) - f(x-t))K(t)dt | \leq \sup\limits_{\text{нер-во } \overline{\Gamma} \in \text{Лъдера}} \\ & | (\int\limits_{-\pi}^{\pi} |f(x+h-t) - f(x-t)|^p dt)^{1/p} (\int\limits_{-\pi}^{\pi} |K(t)|^q dt)^{1/q} = ||K||_q (\int\limits_{-\pi}^{\pi} |f(x+h-t) - f(x-t)|^p dt)^{1/p} = ||K||_q (\int\limits_{-\pi}^{\pi} |f(y+h) - f(y)|^p dy)^{1/p} = \\ & \exists \text{TO Hеправда, почему границы интегрирования не сменились?} \\ & = ||K||_q ||f(y+h) - f(y)||_p \longrightarrow 0 \\ & - p = + \infty \\ & |(f*K)(x+h) - (f*K)(x)| = |\int\limits_{-\pi}^{\pi} (f(x+h-t) - f(x-t))K(t)dt| \leq \sup\limits_{\text{Нер-во } \overline{\Gamma} \in \text{Льдера}} \\ & (\int\limits_{-\pi}^{\pi} |K|) \cdot esssup|f(x+h-t) - f(x-t)| = \\ & ||K||_1 \cdot esssup|f(x+h-t) - f(t)| \longrightarrow 0 \\ & t = [x+\pi,x-\pi] \end{aligned}$$

46 Формула Грина

 $D \subset \mathbb{R}^2$ – компакт, связное, одновясвязное, ориентировано $\delta D - C^2$ -гладкая кривая, тоже ориентировано

D и δD ориентированы согласовано

P,Q – функции, гладкие в открытой области $O\supset D$

Тогда:

$$\iint\limits_{D}(\frac{\delta Q}{\delta x}-\frac{\delta P}{\delta y})dxdy=\int\limits_{\delta D}(P(x,y)dx+Q(x,y))dy$$

Доказательство:

Докажем для областей вида "криволинейный четырехугольник" , т.е. $x \in [a;b]$

 $y \in [\phi_1(x); \phi_2(x)]$, где $\phi_2(x) > \phi_1(x)$

Представляется в аналогичном виде, относительно у

Ориентируем обход нашего четырехугольника против часовой стрел-ки.

Назовем пути по сторонам $\gamma_1, \gamma_2, \gamma_3, \gamma_4$ начиная с нижней против часовой стрелки соответсвенно.

Из линейности интеграла по векторному полю следует, что для доказательства достаточно проверить:

$$-\iint\limits_{D} \frac{\delta P}{\delta y} dx dy = \int\limits_{\delta D} P dx$$

Почему второе проверять не нужно?

1. Преобразуем левую часть:

$$-\iint_{D} \frac{\delta P}{\delta y} dx dy = -\int_{a}^{b} dx \int_{\phi_{1}(x)}^{\phi_{2}(x)} P'_{y} dy = -\int_{a}^{b} P(x, y) \Big|_{y=\phi_{1}(x)}^{y=\phi_{2}(x)} dx = \int_{a}^{b} P(x, \phi_{1}(x)) dx - \int_{a}^{b} P(x, \phi_{2}(x))$$

2. Преобразуем правую часть:

$$\int_{\delta D} (Pdx + 0dy) = \int_{\gamma_1} + \int_{\gamma_2} + \int_{\gamma_3} + \int_{\gamma_4}$$

$$= \int_{a}^{b} P(x, \phi_{1}(x))dx + 0 + \int_{b}^{a} P(x, \phi_{2}(x))dx + 0 = \int_{a}^{b} P(x, \phi_{1}(x))dx - \int_{a}^{b} P(x, \phi_{2}(x))$$

Левая и правая части равны.

Если область более сложная - порежем на простые. Зафиксируем направление обхода, посчитаем на каждой.

При фиксированном направлении обхода пути на границах разрезов учитываются дважды с противоположными знаками, то есть в итоге имеем обход границы всей фигуры.

Из компактности и гладкости области следует, что допускается счетное количество разрезов.

47 Формула Стокса

 Ω – эллиптическая, гладкая, двусторонняя поверхность, C^2 – гладкое; n_0 – сторона

 $\delta\Omega$ - ориентирована согласовано с n_0

(P,Q,R) – векторное поле на Ω , заданное в O - откр. : $\Omega\subset O\subset \mathbb{R}^3$ Тогда:

$$\int\limits_{\delta\Omega} (Pdx + Qdy + Rdz) = \iint\limits_{\Omega} ((R_{y}^{'} - Q_{z}^{'})dydz + (P_{z}^{'} - R_{x}^{'})dzdx + (Q_{x}^{'} - P_{y}^{'})dxdy)$$

Доказательство:

Из соображений линейности интеграла по векторному полю достаточно проверить:

$$\int\limits_{\delta\Omega}Pdx=\int\limits_{\Omega}(P_{z}^{'}dzdx-P_{y}^{'}dxdy)$$

Параметризуем область: $\Omega \leftrightarrow \left\langle \begin{matrix} x(u,v) \\ y(u,v) \end{matrix} \right\rangle$

Пусть G — наша область в координатах $(u,v),\ L$ — граница Ω в новых

координатах, тогда:

$$\int\limits_{\delta\Omega} P dx = \int\limits_{L} P(x(u,v),y(u,v),z(u,v)) (x_{u}^{'} du + x_{v}^{'} dv) = \int\limits_{L} P x_{u}^{'} du + P x_{v}^{'} dv \stackrel{\Gamma_{\mathrm{PHH}}}{=} \\ \int\limits_{G} \int\limits_{G} ((P(x,y,z)x_{v}^{'})_{u}^{'} - (P(x,y,z)x_{u}^{'})_{v}^{'}) du dv = \\ \int\limits_{G} \int\limits_{G} (P_{z}^{'} (z_{u}^{'} x_{v}^{'} - z_{v}^{'} x_{u}^{'}) - P_{y}^{'} (y_{v}^{'} x_{u}^{'} - y_{u}^{'} x_{v}^{'})) du dv = \\ \int\limits_{G} \int\limits_{G} P_{z}^{'} \begin{vmatrix} z_{u}^{'} & z_{v}^{'} \\ x_{u}^{'} & x_{v}^{'} \end{vmatrix} du dv - P_{y}^{'} \begin{vmatrix} x_{u}^{'} & x_{v}^{'} \\ y_{u}^{'} & y_{v}^{'} \end{vmatrix} du dv = \\ \int\limits_{G} \int\limits_{G} (P_{z}^{'} dz dx - P_{y}^{'} dx dy)$$

что и требовалось доказать

48 Формула Гаусса-Остроградского

 $V=\{(x,y,z)\in\mathbb{R}^3: (x,y)\in G, f(x,y)\leq z\leq F(x,y)\}, G\subset\mathbb{R}^2, \partial G$ гладкая кривая в $\mathbb{R}^2, F\in "C'(G)"$ (кавычки означают "включая границу, то есть с более широкой гладкой областью"), ∂V — внешняя сторона, $R:O(V)\to\mathbb{R}$. Тогда

$$\iiint\limits_V \frac{\partial R}{\partial z} \, dx \, dy \, dz = \iint\limits_{\partial V} R \, dx \, dy$$

Доказательство:

$$\overline{\partial V} = \Omega_F \cup \Omega_{cil} \cup \Omega_f$$
 (границы графика F, f и цилиндра между ними)

$$\iint\limits_V \frac{\partial R}{\partial z} \, dx \, dy \, dz = \iint\limits_G \, dx \, dy \int\limits_{f(x,y)}^{F(x,y)} \frac{\partial R}{\partial z} \, dz =$$

$$= \iint\limits_G \left(R(x,y,F(x,y)) - R(x,y,f(x,y)) \right) \, dx \, dy = \text{(см. пример после опр. }$$
инт. 2 рода)
$$= \iint\limits_{\Omega_F} R \, dx \, dy - \left(-\iint\limits_{\Omega_f} R \, dx \, dy \right) + 0 = \text{(так как проекция } \Omega_{cil} \text{ лежит в } \partial G \text{)}$$
Откуда эта формула?
$$= \iint\limits_{\Omega_F} R \, dx \, dy + \iint\limits_{\Omega_f} R \, dx \, dy + \iint\limits_{\Omega_{cil}} R \, dx \, dy =$$

$$= \iint\limits_{\partial V} R \, dx \, dy$$

- 49 Соленоидальность бездивергентного векторного поля. TODO.
- 50 Предельный переход под знаком интеграла при наличии равномерной сходимости или L_{loc}

50.1 При равномерной сходимости

$$f: \mathbb{X} \times \mathbb{Y} \to \overline{\mathbb{R}}$$
 $(\mathbb{X}, \mathbb{A}, \mu)$ – простр. с мерой \mathbb{Y} – метр. простр. (или метризуемое) $\forall y \ f^y(x) = f(x,y)$ – сумм. на \mathbb{X} $\mu X < +\infty; \ f(x,y) \underset{y \to a}{\Longrightarrow} \phi(x)$ Тогда:

 $\bullet \phi$ – cymm.

 $\bullet \int\limits_X f(x,y) d\mu(x) \xrightarrow[y \to a]{} \int\limits_X \phi(x) d\mu(x)$

Доказательство: По Гейне: $y_n \to a$ При больших n $\forall x |f(x,y_n) - \phi(x)| < 1$ $\Rightarrow |\phi(x)| \le |f(x,y_n)| + 1 \Rightarrow \int\limits_X |\phi(x)| \le \int\limits_X |f| + \mu X$ Из этого следует, что ϕ – суммир.

$$\left| \int_{X} f(x, y_n) d\mu(x) - \int_{X} \phi \right| \le \int_{X} |f(x, y_n) - \phi(x)| d\mu \le \sup_{x \in X} |f(x, y_n) - \phi(x)| \mu X$$

$$\sup_{x \in X} |f(x, y_n) - \phi(x)| \mu X \xrightarrow[n \to +\infty]{} 0$$

50.2 При L_{loc}

Определение L_{loc}

 $f: \mathbb{X} \times \mathbb{Y} \to \overline{\mathbb{R}}$ $(\mathbb{X}, \mathbb{A}, \mu)$ – простр. с мерой \mathbb{Y} – метр. простр. (или метризуемое); $a \in \mathbb{Y}$ $\forall y \ f^y(x) = f(x,y)$ – сумм. на \mathbb{X} f удовлетворяет $L_{loc}\ (f \in (L_{loc}))$ если:

- $\exists g : \mathbb{X} \to \overline{\mathbb{R}}$ сумм.
- $\exists U(a) \ \forall y \in \dot{U}(a)$ при п. в. $x \in \mathbb{X} \ |f(x,y)| \leq g(x)$

Формулировка в контексте опредления:

 $\phi:=\lim_{y o a}f(x,y)$ — задана при п. в. x f(x,y) удовлетворяет условию L_{loc} в точке a и мажорантой g Тогда:

- ϕ cymm.
- $\bullet \int\limits_X f(x,y) d\mu(x) \xrightarrow[y \to a]{} \int\limits_X \phi(x) d\mu(x)$

Доказательство: На самом деле это переформулировка Теоремы Лебега о мажорированной сходимости для случая сходимости почти везде. (см теор. № 13)

51 Правило Лейбница дифференцирования интеграла по параметру

$$f: \mathbb{X} \times \mathbb{Y} \to \overline{\mathbb{R}}$$
 $(\mathbb{X}, \mathbb{A}, \mu)$ — простр. с мерой \mathbb{Y} — метр. простр. (или метризуемое) $\forall y \ f^y(x) = f(x,y)$ — сумм. на \mathbb{X} $\mathbb{Y} \subset \mathbb{R}$ — промежуток при п. в. $x \ \forall y \ \exists f'_v(x,y)$

 f_y' удовлетворяет усл. L_{loc} в точке $a \in \mathbb{Y}$ Тогда:

$$ullet$$
 $I(y) = \int\limits_X f(x,y) d\mu(x)$ – дифф. в точке a

$$\bullet \ I'(y) = \smallint_X f'_y(x,a) d\mu(x)$$

Доказательство:

$$\overline{F(x,h) = \frac{f(x,a+h) - f(x,a)}{h}} \to f'_y(x,a)$$

$$\underline{f'(x,h) - f(x,a)}_h = \int_X F(x,h) d\mu(x) \to \int_X f'_y(x,a) d\mu$$

чтобы использовать предельный переход нужно проверить $F(x,h) \in L_{loc}$ в точке h=0, т. е. найти локальную мажоранту. (см. теор. о пред. переход. под интегралом)

$$|F(x,h)| \underset{\text{т. Лагранжа}}{=} |f_y'(x,a+\theta h)| \underset{f_y' \in L_{loc} \ in \ a}{\leq} g(x)$$

52 Теорема о свойствах аппроксимативной единицы

1.
$$f \in \widetilde{C}[-\pi,\pi] \Rightarrow (f*K_h) \Rightarrow f(h \to h_0)$$
, где свертка $(f*K)(x) = \int_{-\pi}^{\pi} f(x-t)K(t)dt$

2.
$$f \in L^1[-\pi, \pi] \Rightarrow ||(f * K_h) - f||_1 \to 0(h \to h_0)$$

3. K_h - усил. апрокс ед.

Доказательство:

1. $(f*K)(x)-f(x)=\int_{-\pi}^\pi (f(x-t)-f(x))K_h(t)dt=$ (f рнепр., т.к. f непр на компакте $[-\pi,\pi]\leq \int_{-\pi}^\pi |(f(x-t)-f(x))K_h(t)|dt=\int_{E_\delta}+\int_{(-\delta,\delta)}=I_1+I_2$

Заметим, что $I_1 \leq 2||f||_{\infty} \int_{E_{\delta}} |K_h| < \frac{\epsilon}{2}$, т.к. f - огр, и по 3 а.е. интеграл стремится к 0

Заметим, что $I_2 \leq \frac{\epsilon}{2M} \int_{(-\delta,\delta)} |K_h| dt < \frac{\epsilon}{2}$, т.к. по непрерывности : $\forall \epsilon > 0 \exists \delta : |f(x) - f(x - \delta)| < \epsilon' = \frac{\epsilon}{2M}$

 $t)-f(x)||K_h(t)|dtdx=||K_h||_1\int_{-\pi}^{\pi}g(-t)\frac{K(t)}{||K_h||_1}dt$, где $g(t)=\int_{-\pi}^{\pi}|f(x-t)-f(x)|dx$ $\frac{|K_h|}{||K_h||}$ - а.е. $\Rightarrow \int_{-\pi}^{\pi}g(-t)\frac{|K|}{||K_h||}dt \to g(0)=0(h\to h_0)$. Замечание: последний пределльный переход верен из свойства (1) выше, т.к. $K*g\Rightarrow g$, а $K*g=\int_{-\pi}^{\pi}g(x-t)K(t)dt$ для любого x, в нашем случае в интеграле g(-t), то есть взято x=0

2. $||(f*K_h(x))-f||_1 = \int_{-\pi}^{\pi} |\int_{-\pi}^{\pi} f(x-t)-f(x)K_h(t)dt|dx \le \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |f(x-t)-f(x)K_h(t)|dt$

- 3. = TODO("not implemented")
- 53 Теорема Фейера. TODO
- 54 Свойства преобразования Фурье: непрерывность, ограниченность, сдвиг. ТООО
- 55 Преобразование Фурье свертки. TODO
- 56 Преобразование Фурье и дифференцирование. TODO
- 57 Лемма об оценке интеграла ядра Дирихле
 - 1. $D_n(t) = \frac{\sin nt}{\pi t} + \frac{1}{2\pi}(\cos nt + h(t)\sin nt)$, где h(t) не зависит от n и $|h(t)| \le 1$ на $[-\pi;\pi]$.
 - 2. $\forall x, |x| < 2\pi |\int_0^x D_n(t)dt| < 2$

Доказательство:

1.(a)
$$D_n(t) = \frac{1}{2\pi} \frac{\sin(n + \frac{1}{2})t}{\sin\frac{t}{2}} = \frac{1}{2\pi} \frac{\sin nt \cos\frac{t}{2} + \cos nt \sin\frac{t}{2}}{\sin\frac{t}{2}} = \frac{1}{2\pi} (\frac{\sin nt}{\log\frac{t}{2}} + \cos nt)$$

(b) Добавим и вычтем
$$\frac{\sin nt}{\pi t}$$
:
$$\frac{\sin nt}{\pi t} + \frac{1}{2\pi} (\cos nt + (\underbrace{\frac{1}{\lg \frac{t}{2}} - \frac{1}{\frac{t}{2}}}_{h(t)}) \sin nt)$$

- (c) Докажем, что $|h(t)| \leq 1$. Найдём знак производной на $[0;\pi]$: $h'(t) = -\frac{1}{2\sin^2\frac{t}{2}} + \frac{2}{t^2} = \frac{4\sin^2\frac{t}{2} t^2}{2t^2\sin^2\frac{t}{2}}$. Знаменатель неотрицателен. $4\sin^2\frac{t}{2} t^2 = (2\sin\frac{t}{2} t)(2\sin\frac{t}{2} + t)$. Вторая скобка ≥ 0 . Первая скобка ≤ 0 , так как $\sin x \leq x$ при $x \geq 0$.
- (d) Знак производной h(x) на $[0;\pi]$ постоянен, значит, h монотонна. h(0)=0 (в пределе), $h(\pi)=\frac{2}{\pi}<1$. Значит, |h(x)|<1. Аналогично для $[-\pi;0]$.
- $2.(a) D_n$ чётная. Считаем, что x > 0.
 - (b) Пусть $x \in [0; \pi]$.
 - (c) $\left| \int_0^x D_n(t) dt \int_0^x \frac{\sin nt}{\pi t} dt \right| = \left| \int_0^x \frac{1}{2\pi} (\cos nt + h(t) \sin nt) \right|$ (пункт 1) $\leq \frac{1}{2\pi} \int_0^x 2 = \frac{x}{\pi} \leq 1$
 - (d) $\int_0^x \frac{\sin nt}{\pi t} = \int_0^{nx} \frac{\sin v}{\pi v} dv$ (v = nt). $0 \le \int_0^{nx} \frac{\sin v}{\pi v} dv \le \int_0^\pi \frac{\sin v}{\pi v} dv$. Доказательство методом пристального взгляда на график подынтегральной функции. $\int_0^\pi \frac{\sin v}{\pi v} dv \le \pi \frac{1}{\pi} = 1$
 - (e) $|\int_0^x D_n(t)dt I| \le 1$, $0 \le I \le 1$, значит, $\int_0^x D_n(t)dt \in [-1; 2]$.
 - (f) Пусть $x \in [\pi; 2\pi]$. $\int_0^{2\pi} D_n(t) dt = 1$. $\int_0^x = \int_0^{2\pi} \int_x^{2\pi} = 1 \int_{x-2\pi}^0 = 1 \int_0^{2\pi-x} \in [-2; 1]$ Какая-то странная перестановка пределов интегрирования, надо бы ещё пояснить

58 Теорема об интегрировании ряда Фурье $f \in L_1[-\pi;\pi].$

Тогда $\forall a, b \in \mathbb{R}$:

$$\int_{a}^{b} f(x)dx = \sum_{k \in \mathbb{Z}} c_{k}(f) \int_{a}^{b} e^{ikx} dx$$

Сумма по $k \in \mathbb{Z}$ понимается в смысле главного значения $(\lim_{n\to\infty}\sum_{k=-n}^n)$. Замечание: Ряд Фурье f может всюду расходиться, но ряд интеграла всегда сходится.

Доказательство:

- 1. Пусть $-\pi \le a < b \le \pi$. Если это не так всегда можно разбить интеграл на такие отрезки в силу периодичности функции.
- 2. Пусть $\chi(x) = \chi[a;b]$ (характеристическая функция отрезка [a;b]).
- 3. Рассмотрим частичную сумму ряда интегралов:

$$\sum_{k=-N}^{N} c_k(f) \underbrace{\int_a^b e^{ikx} dx}_{2\pi c_{-k}(\chi)} = \sum_{k=-N}^{N} \frac{1}{2\pi} (\int_{-\pi}^{\pi} f(t) e^{-ikt} dt) 2\pi c_{-k}(\chi).$$

Сумма конечная, поэтому это равно $\int_{-\pi}^{\pi} f(t) S_N(\chi, t) dt$.

- 4. $S_N(\chi) \to \chi$ везде, кроме a и b (не шарю почему, помогите)
- 5. $|S_N(\chi,t)| = |\int_{-\pi}^{\pi} \chi(x) D_N(t-x) dx| = |\int_a^b D_N(t-x) dx| = |\int_0^{t-a} D_N \int_0^{t-b} D_N| \le 4$ (по лемме об оценке интеграла D_N).
- 6. $\int_{-\pi}^{\pi} f(t) S_N(\chi, t) dt \to \int_{-\pi}^{\pi} f(t) \chi(t) dt$ по теореме Лебега о мажорированной сходимости.

59 Лемма о сходимости сумм Фурье в смысле обобщенных функций

$$f \in L_1[-\pi;\pi]$$

Что это за обозначение?

Тогда $\forall u \in \widetilde{\mathbb{C}}^{\infty}$

$$\int_{-\pi}^{\pi} S_n(f, x) u(x) dx \to \int_{-\pi}^{\pi} f(x) u(x) dx$$

Доказательство: // TODO - нужно больше пояснений

1.
$$f*u$$
 - непр. и гладкая (т.к. $u \in L_{\infty}[-\pi,\pi]$)
$$((f*u)(x))' = (\int_{-\pi}^{\pi} f(t)u(x-t)dt)'_x = \int_{-\pi}^{\pi} f(t)u'(x-t)dt$$

$$\frac{d}{dt}(\int_X f(x,t)d\nu(x)) = \int_X f'_x(x,t)d\nu(x)$$

$$L_{loc}(t_0): \quad \exists u(t_0): |f'_t(x,t)| \leq g(x), g(x) \text{ - сумм. при } x \in X, t \in u(t_0)$$

$$|f(t)u'(x-t)| \leq \max |u'(y)| \cdot |f(t)|, y \in [-\pi,\pi]$$

$$\int_{-\pi}^{\pi} e^{ikx} u(x) dx = \int_{-\pi}^{\pi} e^{-ikx} u(-x) dx = 2\pi c_k(\underline{u})$$
Так как сумма конечная,
$$\int_{-\pi}^{\pi} S_n(f,x) u(x) dx = \sum_{k=-n}^{n} (c_k(f) \int_{-\pi}^{\pi} e^{ikx} u(x) dx) = 2\pi \sum_{k=-n}^{n} c_k(f) c_k(\underline{u}) = \sum_{k=-n}^{n} (f * \underline{u}) e^{ikx} \Big|_{x=0} \to (f' * \underline{u})(0) = \int_{-\pi}^{\pi} f(t) \underline{u}(0 - t) dt$$

$$t)dt = \int_{-\pi}^{\pi} f(t)u(t)dt$$

 $\underline{\text{Определение:}}\ f$ — обобщенная функция, если задан непрерывный функционал $\mathbb{C}^\infty \to \mathbb{R}$.

Определение: f, f_n – последовательность обобщенных функций: $f_n \to f$, если $\forall u \in \mathbb{C}^{\infty}$ $\int_{-\pi}^{\pi} f_n u \to \int_{-\pi}^{\pi} f u$.

60 Следствие о преоборазовании Фурье финитных функций

(Следствие из теоремы "56. Преобразование Фурье и дифференцирование".)

1. $f \in L_1(\mathbb{R}^m)$ — финитная (= 0 вне некоторой окрестности). <u>Тогда</u> $\widehat{f} \in \mathbb{C}^{\infty}(\mathbb{R}^m)$

Что это за обозначение?

2.
$$f \in \mathbb{C}_0^{\infty}(\mathbb{R}^m)$$

Тогда $\forall p > 0 \quad |y|^p \widehat{f}(y) - \text{сумм}.$

Доказательство:

1. Из финитности следует $\forall p \mid |x|^p f(x)$ – сумм.

$$\frac{\partial \widehat{f}}{\partial y} = -2\pi i \widehat{(x_k f)}$$

$$\frac{\partial^2 \widehat{f}}{\partial y_k \partial y_l} = -2\pi i \frac{\partial}{\partial y_l} \widehat{(x_k f)} = -2\pi i (-2\pi i) \widehat{(x_l x_k f)}$$

2. из п.1 теоремы (56) следует:

(a)
$$\widehat{(\frac{\partial f}{\partial x_k})} = 2\pi i y_k \widehat{f}(y)$$

(b) $\forall \alpha$ – мультииндексы:

$$(\widehat{\frac{\partial^{|\alpha|} f}{\partial x^{\alpha}}}) = (2\pi i)^{|\alpha|} y^{\alpha} \widehat{f}(y)$$

$$(\frac{\widehat{\partial x_l} \cdot \widehat{\partial f}}{\partial x_l}) = 2\pi i y_l \frac{\widehat{\partial f}}{\partial x_k}(y) \; // \; \text{TODO}$$
 - тут вроде надо будет пояснить, почему левая часть ограничена

61 Лемма "о ядре Дирихле".

Если:

1.
$$f \in L^1(\mathbb{R})$$

$$2. x \in \mathbb{R}$$

Тогда: $\forall A>0$ $I_A(f,x)=\int_{-A}^A \widehat{f}(y)e^{2\pi ixy}dy=\int_{-\infty}^\infty f(x-t)\frac{\sin(2\pi At)}{\pi t}dt$. Доказательство:

$$\chi_A := \chi_{[-A;A]}$$

$$I_A(f,x) = \int_{\mathbb{R}} \widehat{f}(y)(\chi_A(y)e^{2\pi ixy})dy = \int_{\mathbb{R}} f(y)(\widehat{\chi_A}e^{2\pi ixy})dy = \int_{\mathbb{R}} f(y)\widehat{\chi_A}(y-x) dy = \int_{\mathbb{R}} f(y)\frac{\widehat{f}(y)}{\pi(y-x)}dy$$

Следствие: $f \in L^1(\mathbb{R})$, $x \in \mathbb{R}$, A > 0

Тогда
$$\forall \delta > 0I_A(f,x) = \int_{-\delta}^{\delta} f(x-t) \frac{\sin 2\pi At}{\pi t} dt + o(1), A \to \infty$$

Доказательство:

$$\int_{|t|>\delta}f(x-t)rac{sin2\pi At}{\pi t}dt o 0$$
 по теореме Римана-Лебега $rac{f(x-t)}{\pi t}$ - сумм в $\{t:|t|>\delta\}$ $|rac{f(x-t)}{\pi t}|\leq rac{1}{\pi\delta}|f(x-t)|$

Замечание: $D_n(t) = \frac{sint}{t} + \frac{1}{2\pi}(cos(nt) + h(t)sin(nt))$

62 Теорема о равносходимости ряда Фурье и интеграла Фурье

Если:

$$1. f \in L^1(R)$$

2.
$$f_0 \in L^1[-\pi;\pi]$$

3.
$$f = f_0$$
 в $U(x)$, где $x \in R$

Тогда в точке x: сходимость интеграла Фурье \Leftrightarrow сходимость ряда Фурье и в случае сходимости $\int_{-\infty}^{\infty} \hat{f}(y)e^{2\pi ixy}dy = \sum_{n=-\infty}^{\infty} c_n(f_0)e^{i\pi x}$ Доказательство:

Проверим: $I_A(f,x) - S_{[2\pi A]}(f,x) \to 0A \to \infty$

1.
$$I_A(f,x) = \int_{-\delta}^{\delta} f(x-t) \frac{\sin(2\pi At)}{\pi t} dt + o(1), A \to \infty$$

2.
$$S_n(f, x) = \int_{-\delta}^{\delta} f(x - t) \frac{\sin(nt)}{\pi t} dt$$

 $2\pi A=n$ - целое, тогда проверять и ничего $2\pi A$ - нецелое. $n=[2\pi A]$ $|I_A(f,x)-I_{\frac{n}{2\pi}}(f,x)|=|\int_{-A}^A-\int_{-\frac{\pi}{2n}}^{\frac{\pi}{2n}}|\leq \int_{A-\frac{1}{2\pi}}^A+\int_{-A}^{-A+\frac{1}{2\pi}}\leq 2*\frac{1}{2\pi}\max_{|y|>A-\frac{1}{2\pi}|\hat{f}(y)|} o 0$, как суммируемая функция.

- 63 Признак Дирихле-Жордана. TODO
- 64 Лемма к теореме о формуле обращения. TODO
- 65 Формула обращения преобразования Фурье. TODO
- 66 Свойства свертки. Deprecated
 - 1. Коммутативность: f * K = K * f
 - 2. $c_k(f*K) = 2\pi c_k(f)c_k(K)$ (c_k коэф. ряда фурье)
- 3. $f \in L^p$; $K \in L_1([-\pi, \pi])$

$$1 \leqslant p \leqslant +\infty$$

Тогда:

- $\bullet \ f * K \in L([-\pi,\pi])$
- $||f * K||_p \le ||K||_1 ||f||_p$

Доказательство: ТООО

67 О локальной суммируемости. Deprecated

$$\int_{a}^{\to b} f - \text{abc. cx} \iff f - \text{cymm.}$$

Доказательство: ТООО

68 Лемма: а.е. Веерштрасса - а.е

1. w_t - а.е. при t - > 0

2.
$$w_t(x) = \int_{R^m} e^{-\pi t^2|y|^2} e^{-2\pi \langle x,y \rangle} dy$$
, т.е $w_t = (\hat{V}_t)$, где $V_t(x) = e^{-\pi t^2|x|^2}$

Доказательство:

- 1. $w_t > 0$
- 2. $\int_{R^m} w_t(x) dx = \frac{1}{t^m} \int_{-\infty}^{+\infty} dx_1 \int_{-\infty}^{+\infty} dx_2 \cdots \int_{-\infty}^{+\infty} e^{-\frac{\pi}{t^2} \sum (x_i)^2} dx_m = \prod_{k=1}^m \frac{1}{t} \int_{-\infty}^{+\infty} e^{\frac{-\pi x_k^2}{t^2}}$ 1, т.к. это интеграл Эйлера-Пуассона с заменой $x := \sqrt{\pi} x/t$
- 3. $\int_{|x|>\delta} w_t \leq e^{\frac{-\delta^2\pi}{2t^2}} \frac{1}{t^m} \int_{|x|>\delta} e^{\frac{-\pi|x|^2}{2t^2}} \leq e^{\frac{-\delta^2\pi}{2t^2}} \frac{1}{t^m} \int_{R^m} e^{-\frac{pi|x|^2}{2t^2}}$. Экспонента $\to 0$, а интеграл ограничен. Значит $\int_{|x|>\delta} w_t \to 0$ $f_a(x) = e^{-\pi a^2 x^2}, x \in R, a > 0, (\hat{f}_a) = \frac{1}{a} f_{\frac{1}{a}}$ (ребята ТОДОООО не шарю к чему это тут ????) $\int_{R^m} e^{-\pi t^2|y|^2} e^{-2\pi i \langle x,y \rangle} dy = \prod_{k=0}^{m-1} \int_R e^{-\pi t^2 y_k^2} e^{-2\pi i \langle x_k,y_k \rangle} dy_k = \prod_{k=0}^{m-1} \frac{1}{t} e^{\frac{-\pi x_k^2}{t^2}} = \frac{1}{t^m} e^{\frac{-\pi|x|^2}{t^2}}$ (и это вообще тут зачем, помогите плиз. Казалось бы это должно доказывать что $w_t * f \to f$, но я тут этого не вижу явно...)

69 Теорема (формула обращения)

 $f \in L^1(R^m)$ Если $\hat{f} \in L^1(R^m)$, то при п.в. х $f(x) = \int_{R^m} f(\hat{y}) e^{2\pi i < x,y>} dy$ Замечания:

- 1) П.Ч.: подынт.ф. непр. по х есть сумм. мажоранта: $|\hat{f(y)}| \Rightarrow \Pi$.Ч. непрерывна по х
- 2) ПЧ. непр по х и при этом ф-ла вып. п.в. \Rightarrow ф-ла верна в точке непрсти f

Итого: Если $f \in C(R^m), f \in L^1(R^m), \hat{f} \in L^1(R^m)$, то ф-ла обращения вып. при всех x. Доказательство: Пусть $w_t(x) = \frac{1}{t^m} e^{\frac{-\pi |x|^2}{t^2}}, \ x \in R^m \ (t > 0)$

$$f*w_t(x) = \int_{R^m} f(y)w_t(x-y)dy = \int_{R^m} f(y)w_t(y-x)dy$$
 (w_t - четная)

$$= \int_{R^m} f(y+x) w_t(y) = \int_{R^m} f(x+y) (\hat{V}_t) dy = \int_{R^m} (f(\hat{y+x})) V_t(y) dy = \int_{R^m} e^{2\pi i \langle x,y \rangle} f(\hat{y}) V_t(y) dy$$
 Итак : $f * w_t(x) = \int_{R^m} e^{-pit^2|y|^2} e^{2\pi i \langle x,y \rangle} f(\hat{y}) dy = I$ (замечание: т.к. w_t четное, то в интеграле, равном w_t мы можем менять знак перед x и он останется тем же. этим мы и пользовались) $e^{-pit^2|y|^2} e^{2\pi i \langle x,y \rangle} f(\hat{y}) \to e^{2\pi i \langle x,y \rangle} f(\hat{y})$ при $t \to 0$. И есть сумм. мажоранта $|f(\hat{y})|$. Значит интеграл I стремится к $\int_{R^m} e^{2\pi i \langle x,y \rangle} f(\hat{y})$ Берем $t_n \to 0$ $f * w_t \to f$ в $L^1 \Rightarrow f * w_{t_n} \Rightarrow f$ (по мере) $\Rightarrow \exists n_k : f * w_{t_{n_k}} \to f$ п.в. (т. Рисса) Поэтому $f(x) = \lim_{t_{n_k} \to 0} f * f * w_{t_{n_k}} = \int \cdots \to \int_{R^m} e^{2\pi i \langle x,y \rangle} f(\hat{y})$, чтд