0.1 Addition

Addition with amounts

When we have an amount and wish to add more, we use the symbol +. If we have 2 and want to add 3, we write

The order in which we add have no impact on the results; starting off with 2 and adding 3 is the same as starting off with 3 and adding 2:

$$3 + 2 = 5$$

The language box

A calculation involving addition includes two or more terms and one sum. In the calculation

$$2 + 3 = 5$$

both 2 and 3 are terms while 5 is the sum.

Common ways of saying 2+3 include

- "2 plus 3"
- "2 added to 3"
- "2 and 3 added"

0.1 Addition is commutative

The order of the terms has no impact on the sum.

Example

$$2+5=7=5+2$$

$$6+3=9=3+6$$

Addition on the number line: moving to the right

On a number line, addition with positive numbers involves moving to the right:

Example 1

Example 2

Interpretation of =

+ brings the possibility of expressing numbers in different ways, for example is 5 = 2 + 3 and 5 = 1 + 4. In this context, = means "has the same value as". This is also the case regarding subtraction, multiplication and division which we'll look at in the next three sections.

0.2 Subtraction

Subtraction with amounts

When removing a part of an amount, we use the symbol -:

$$5 - 3 = 2$$

The language box

A calculation involving subtraction includes one or more terms and one difference. In the calculation

$$5 - 3 = 2$$

both 5 and 3 are terms while 2 is the difference.

Common ways of saying 5-3 include

- "5 minus 3"
- "3 subtracted from 5"

A new interpretation of 0

As mentioned earlier in this book, 0 can be interpreted as "nothing". However, subtraction brings the possibility of expressing 0 by other numbers, for example 7 - 7 = 0 and 19 - 19 = 0. In many practical situations, 0 indicates some form of equilibrium, like two equal but opposite forces.

Subtraction on the number line: Moving to the left

In Section 0.1, we have seen that + (with positive numbers) involves moving to the right on the number line. With - it's the opposite, we move to the left¹:

Example 1

Example 2

Notice

At first it may seem a bit odd moving in the opposite direction of the way in which the arrows point, as in *Example 1* and 2. However, in *Chapter*?? this will turn out to be useful.

¹In figures with number lines, the red colored arrows indicates that you shall start at the arrowhead and move to the other end.

0.3 Multiplication

Multiplication by integers: initial definition

When adding equal numbers, we can use the multiplication symbol • to write our calculations more compact:

Example

$$4 + 4 + 4 = 4 \cdot 3$$

$$8 + 8 = 8 \cdot 2$$

$$1+1+1+1+1=1\cdot 5$$

The language box

A calculation involving multiplication includes several factors and one product. In the calculation

$$4 \cdot 3 = 12$$

both 4 and 3 are factors, while 12 is the product.

Common ways of saying $4 \cdot 3$ include

- "4 times 3"
- "4 multiplied by 3"
- "4 and 3 multiplied together"

A lot of texts use \times instead of \cdot . In computer programming,

* is the most common symbol for multiplication.

Multiplication involving amounts

Let us illustrate $2 \cdot 3$:

Now notice the product of $3 \cdot 2$:

0.2 Multiplication is commutative

The order of the factors has no impact on the product.

Example

$$3 \cdot 4 = 12 = 4 \cdot 3$$

$$6 \cdot 7 = 42 = 7 \cdot 6$$

$$8 \cdot 9 = 72 = 9 \cdot 8$$

Multiplication on the number line

We can also use the number line to calculate multiplications. In the case of $2 \cdot 4$ we can think like this:

"2 · 4 means moving 2 places to the right, 4 times."

We can also use the number line to prove to ourselves that multiplication is commutative:

" $4 \cdot 2$ means moving 4 places to the right, 2 times."

Final definition of multiplication by positive integers

It may be the most intuitive to interpret "2 times 3" as "3, 2 times". Then it follows:

"2 times
$$3$$
" = $3 + 3$

In this section we introduced $2 \cdot 3$, that is "2 times 3", as 2 + 2 + 2. With this interpretation, 3 + 3 corresponds to $3 \cdot 2$, but the fact that multiplication is a commutative operation (*Rule 0.2*) ensures that the one interpretation does not exclude the other; $2 \cdot 3 = 2 + 2 + 2$ and $2 \cdot 3 = 3 + 3$ are two expressions of same value.

0.3 Multiplication as repeated addition

Multiplication involving a positive integer can be expressed as repeated addition.

Example 1

$$4+4+4=4\cdot 3=3+3+3+3$$

$$8+8=8\cdot 2=2+2+2+2+2+2+2$$

$$1+1+1+1+1=1\cdot 5=5$$

Notice

The fact that multiplication with positive integers can be expressed as repeated addition does not exclude other expressions. There's nothing wrong with writing $2 \cdot 3 = 1 + 5$.

0.4 Division

: is the symbol for division. Division has three different interpretations:

0.4 The three interpretations of division

• Distribution of amounts

12:3 = "The number in each group when evenly distributing 12 into 3 groups"

• Number of equal terms

12:3= "The number of 3's added to make 12"

• The inverse operation of multiplication

12:3= "The number which yields 12 when multiplied by 3"

The language box

A calculation involving division includes a *dividend*, a *divisor* and a *quotient*. In the calculation

$$12:3=4$$

12 is the dividend, 3 is the divisor and 4 is the quotient.

Common ways of saying 12:3 include

- "12 divided by 3"
- "12 to 3"

In a lot of contexts, / is used instead of :, especially in computer programming.

Sometimes 12:3 is called "the ratio of 12 to 3".

Distribution of amounts

The calculation 12:3 tells that we shall distribute 12 into 3 equal groups:

We observe that each group contains 4 boxes, which means that

$$12:3=4$$

Number of equal terms

12 equals the sum of 4 instances of 3, that is 12:3=4.

The inverse operation of multiplication

We have just seen that if we divide 12 into 3 equal groups, we get 4 in each group. Hence 12:3=4. The sum of these groups makes 12:

However, this is the same as multiplying 4 by 3, in other words: If we know that $4 \cdot 3 = 12$, we also know that 12 : 3 = 4. As well we know that 12 : 4 = 3.

Example 1

Since
$$6 \cdot 3 = 18$$
,

$$18:6=3$$

$$18:3=6$$

Example 2

Since
$$5 \cdot 7 = 35$$
,

$$35:5=7$$

$$35:7=5$$