Katholieke Universiteit Leuven Departement Wiskunde Nicolas Daans 11.10.2024

Extra oefeningen: kardinaalgetallen

Met $\mathbb N$ bedoelen we de verzameling natuurlijke getallen (inclusief 0) en met $\mathbb R$ de verzameling reële getallen.

Oefening 1. Wat kan je zeggen over de kardinaliteiten van de volgende verzamelingen? Welke hebben dezelfde kardinaliteit, welke hebben een andere kardinaliteit?

- (1) \mathbb{R} , de verzameling van reële getallen,
- (2) de verzameling van continue functies $\mathbb{R} \to \mathbb{R}$,
- (3) de verzameling van alle functies $\mathbb{N} \to \mathbb{N}$,
- (4) de verzameling van alle functies $\mathbb{R} \to \mathbb{R}$,

Oefening 2. Stel V een vectorruimte over een veld (vb. \mathbb{R}). Je zag in je cursus lineaire algebra dat de volgende zaken gelden wanneer V eindig voortgebracht is:

- (1) V heeft een basis (i.e. een voortbrengende, lineair onafhankelijke deelverzameling),
- (2) als \mathfrak{B}_1 and \mathfrak{B}_2 basissen zijn van V, dan is $\operatorname{card}(\mathfrak{B}_1) = \operatorname{card}(\mathfrak{B}_2)$; men noemt deze kardinaliteit de *dimensie van* V.

Toon nu aan dat deze eigenschappen ook gelden wanneer V niet eindig voortgebracht is.

Oefening 3. Toon aan dat er willekeurig grote kardinaalgetallen κ bestaan waarvoor $\kappa = \aleph_{\kappa}$.