Illumina Sequencing Overview: Library Prep to Data Analysis Noel Lenny, PhD Sr. Clinical Field Applications Scientist 28-SEP-2020

QB7845

For Research Use Only. Not for use in diagnostic procedures.

Session Objectives

By the end of this training, you will be able to:

- List the major steps in the Illumina sequencing workflow
 - Library Preparation
 - Cluster Generation
 - Sequencing
 - Data Analysis
- Discuss the sequencing by synthesis process
 - 4-Channel Chemistry
 - 2-Channel Chemistry
 - 1-Channel Chemistry

Illumina Sequencing Workflow

Library Prep is Critical for Successful Sequencing

For clustering:

Libraries must have P5 and P7 binding regions on either end of a library

For sequencing:

Libraries must have sequencing primer binding regions

For mixing samples:

Libraries must have a unique index or barcodes sequence

Illumina Sequencing Workflow

What is a Cluster?

Clusters are a group of DNA strands positioned closely together

Each cluster represents thousands of copies of the same DNA strand in a 1–2 micron spot

An image of fluorescently labelled clusters on a flow cell

Single DNA Library

Amplified Clonal Cluster

What is a flow cell?

Cluster generation occurs on a flow cell

A flow cell is a thick glass slide with channels or lanes

Each lane is coated with a lawn of oligos complementary to library adapters

Flow cell Architecture

Random vs Patterned

Random Flow Cell

- HiSeq[™] 2500, MiSeq[™], NextSeq[™], MiniSeq[™]
- Randomly spaced clusters
- Variable Insert Sizes
- Lower Duplication Rates

Patterned Flow Cell

- HiSeq 3K/4K/X, NovaSeq™ 6000, iSeq™ 100
- Defined size and spacing
- Increased Cluster density
- Simplified imaging

Patterned flow cells

Complete control of pitch & feature size

Random

Patterned

Rigid registration reduces time by skipping template generation

Traditional Cluster Generation

Hybridize Fragment & Extend

Single-stranded DNA libraries are hybridized to primer lawn

Bound libraries are then extended by polymerases

Surface of flow cell coated with a lawn of oligo pairs

3' extension

Singlestranded

DNA

library template

molecule

Denature Double-Stranded DNA

Double-stranded molecule is denatured

Original template washed away

Newly synthesized strand is covalently attached to flow cell surface

Single-Stranded DNA

Bridge Amplification

Single-stranded molecule flips over and forms a bridge by hybridizing to adjacent, complementary primer

Hybridized primer extends by polymerases

Bridge Amplification

Double-stranded bridge is formed

Denature Double-Stranded Bridge

Bridge Amplification

Single-stranded molecules flip over to hybridize to adjacent primers

Bridge Amplification

Linearization

dsDNA bridges are denatured

Reverse Strand Cleavage

Reverse strands are cleaved and washed away, leaving a cluster with forward strands only

Read 1 Primer Hybridization

Sequencing primer is hybridized to Read 1 sequencing primer binding site

Patterned Flow Cell and ExAmp Technology

 ExAmp technology creates clonal clusters in each well from individual library molecules

IIIumina

This process continues until no unused oligos are left on the flow cell surface

linearization is performed

Sequencing primer is hybridized to Read 1 sequencing primer binding site

Illumina Sequencing Workflow

Illumina Sequencing Systems

4-Channel SBS Chemistry:

HiSeq, MiSeq

Each of the four DNA bases emits an intensity of a unique wavelength

Collects four images:

 During each cycle, each cluster appears in only one of four images

A Closer Look At 4-Dye Chemistry

4-channel chemistry

2-Channel SBS Chemistry:

NextSeq 550, MiniSeq, NovaSeq 6000

- 2-channel SBS uses two images:
- Clusters appearing in green only are T
- Clusters appearing in red only are C
- Clusters appearing in both images are A
- Clusters not present/dark are G

After imaging, cluster intensities are plotted and bases called accordingly

Illumina Two-Channel SBS Sequencing Technology Technote

41

A Closer Look At 2-Dye Chemistry

2-channel chemistry

1-Channel SBS Chemistry:

iSeq 100

SBS chemistry combined with Complementary Metal-Oxide-Semiconductor (CMOS) technology

- The system uses a patterned flow cell with nanowells fabricated over a CMOS chip
- Each sequencing cycle has two chemistry steps in order to determine bases
- Two images are captured within one cycle of sequencing run

Based on the signal pattern across two images, base calls can be determined

 Intensities extracted from one image and compared to a second image result in four distinct populations, each corresponding to a nucleotide.

A Closer Look At 1-Dye Chemistry

1-channel chemistry

Sequencing by synthesis with CMOS detection

1-channel chemistry

Base	Image 1	Image 2
Т	ON	ON
А	ON	OFF
С	OFF	ON
G	OFF	OFF

 The iSeq 100 System uses 1-dye sequencing, which requires one dye and two images to encode data for the four bases

Illumina Chemistry Comparison

Intermediate chemistry step

4-channel SBS

 Bases are identified using four different fluorescent dyes, one for each base and four images per sequencing cycle

2-channel SBS

 Simplified nucleotide detection by using two fluorescent dyes and two images to determine all four base calls

1-channel SBS

 Base calling uses one fluorescent dye and two images, with chemistry step in between, to determine all four base calls

Single-stranded template loops over to form a bridge by hybridizing with a lawn primer

Bridges are linearized and the original forward template is cleaved

Sequencing with Index Reads

Single Index Reads

All Platforms

Dual Index Reads

MiSeq, HiSeq 2500, NovaSeq 6000

Dual indexed sequencing utilizes four sequencing reads

Dual Index Reads

iSeq 100, MiniSeq, NextSeq, HiSeq 3000/4000

Illumina Sequencing Workflow

Analysis Overview

Analysis Type Software Outputs Control Software Images, Intensities and Base Calls BaseSpace **Analysis Software Alignments, Variant Detection Visualization** BaseSpace **Software** Annotation, Filtering, Reports

Questions?

