Эконометрика 16.01.1973/16.01.2016

Ровно 44 года назад Луноход-2 отправился в путешествие по поверхности Луны. Вперёд :)

1. Эконометресса Луноликая оценила зависимость y от x, $\hat{y} = -6 + 10x$, $R^2 = 0.75$.

Затем она оценила зависимость y от z, $\hat{y} = 8 + 4z$, $R^2 = 0.85$.

В обеих моделях коэффициент наклона был значим. Затем Луноликая оценила регрессиию x на z, и помнит только, что R^2 оказался равным 0.45. Про y она помнит, что выборочная дисперсия равна 1000, а выборочное среднее равно 12.

На самом же деле Луноликая хотела оценить модель множественной регрессии

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + u_i.$$

Помогите Луноликой:)

- а) Найдите оценки коэффициентов
- б) Найдите коэффициент детерминации \mathbb{R}^2
- в) Проверьте значимость оценок $\hat{\beta}_1$ и $\hat{\beta}_2$
- г) Проверьте значимость модели в целом
- 2. Предположим, что истинная зависимость имеет вид $y_i = \beta \cdot i + u_0 + u_i.$

На ошибки u_i выполнены стандартные предпосылки.

- а) Найдите $\hat{\beta}$ с помощью МНК
- б) Является ли полученная оценка несмещённой? состоятельной? эффективной?
- в) Предложите оценку, исправляющую проблемы, найденные в предыдущем пункте.
- 3. Эконометресса Луноликая продолжает терять память! Она оценила две регрессии по 50 наблюдениям и почти ничего не помнит!

Регрессия раз: $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$, $se(\hat{\beta}_2) = 0.42$.

Регрессия два: $\hat{y} = \hat{\gamma}_1 + \hat{\gamma}_2 x_i + 0.1 z_i$, $R^2 = 0.67$ и $se(\hat{\gamma}_3) = 0.066$.

Помогите Луноликой проверить значимость коэффициента \hat{eta}_2 .

Эконометрика 16.01.1973/16.01.2016

4. Докажите теорему Фриша-Во-Ловелла.

Можно использовать или не использовать подсказки.

а) Формулировка теоремы.

Допустим, что матрица X размера $n \times k$ разбита на две части черточкой по вертикали, $X = [X_1|X_2]$. Часть X_1 имеет размер $n \times k_1$, часть X_2 — размер $n \times k_2$, где $k_1 + k_2 = k$. Обозначим $\hat{\beta}$ МНК-оценки коэффициентов в регрессии y на все столбцы матрицы X, и разобъём вектор $\hat{\beta}$ на две части, $\hat{\beta}_1$ размера $k_1 \times 1$, и $\hat{\beta}_2$ размера $k_2 \times 1$.

Также введём обозначения: H — матрица-шляпница, H_i — матрица-шляпница в регрессии на столбцы матрицы $X_i, M = I - H, M_i = I - H_i$.

В указанных обозначениях теорема ФВЛ утверждает, что

$$\hat{\beta}_2 = ((M_1 X_2)' M_1 X_2)^{-1} (M_1 X_2)' M_1 y$$

- б) Упростите формулу для $\hat{\beta}_2$ пользуясь свойствами матрицы M_1 .
- в) Заполните пропуск в конце формулы $y = X_1 \hat{\beta}_1 + X_2 \hat{\beta}_2 + \dots$
- г) Что надо сделать с y, чтобы превратить его в $X_2'M_1y$?