

NHD-0108BZ-RN-YBW-3V

Character Liquid Crystal Display Module

NHD- Newhaven Display 0108- 1 line x 8 characters

BZ- Model
R- Reflective
N- No Backlight
Y- STN- Yellow/Green

B- 6:00 view

W- Wide Temperature (-20°C~+70°C)

3V- 3.0 Volt Supply RoHS Compliant

Newhaven Display International, Inc.

2511 Technology Drive, Suite 101 Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

www.newhavendisplay.com

nhtech@newhavendisplay.com nhsales@newhavendisplay.com

Document Revision History

Revision	Date	Description	Changed by
0	12/17/2008	Initial Release	-
1	10/12/2009	User Guide Reformat	BE
2	10/16/2009	Block Diagram Revision	BE
3	12/22/2009	Optical revised	BE
4	6/30/2010	Mechanical Drawing Update	MP

Functions and Features

- 1 line x 8 characters
- Built-in controller (SPLC780D or equivalent)
- +3.0V power supply
- 1/8 duty, 1/4 bias
- RoHS compliant

Mechanical Drawing

Notes:

- 1). Driver Method: 1/8duty, 1/4bias, VDD3.0V VLCD3.0V
- 2). Display Type: STN-YG/Positive/Reflective/6:00 Visual Angle
- 3). Operating Temp: -20°C~70°C/Storage Temp: -30°C~80°C
- 4). Drvier: SPLC780D/4bit or 8bit MPU
- 5). RoHS Compliant

Newhaven Display

Part No. NHD-0108BZ-RN-YBW-3V

Pin Description and Wiring Diagram

Pin No.	Symbol	External	Function Description
		Connection	
1	VSS	Power Supply	Ground
2	VDD	Power Supply	Supply Voltage for logic (+3.0V)
3	V0	Adj Power Supply	Power supply for contrast (approx. 0V)
4	RS	MPU	Register select signal. RS=0: Command, RS=1: Data
5	R/W	MPU	Read/Write select signal, R/W=1: Read R/W: =0: Write
6	E	MPU	Operation enable signal. Falling edge triggered.
7-10	DB0 – DB3	MPU	Four low order bi-directional three-state data bus lines. These four
			are not used during 4-bit operation.
11-14	DB4 – DB7	MPU	Four high order bi-directional three-state data bus lines.

Recommended LCD connector: 2.54mm pitch pins **Backlight connector:** --- **Mates with:** ---

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор	Absolute Max	-20	-	+70	°C
Storage Temperature Range	Tst	Absolute Max	-30	-	+80	°C
Supply Voltage	VDD		2.7	3.0	3.5	V
Supply Current	IDD	Ta=25°C, VDD=3.0V	-	1.5	2.5	mA
Supply for LCD (contrast)	VDD-V0	Ta=25°C	-	3.0	-	V
"H" Level input	Vih		2.2	-	VDD	V
"L" Level input	Vil		0	-	0.6	V
"H" Level output	Voh		2.4	-	-	V
"L" Level output	Vol		-	-	0.4	V
Backlight Supply Voltage	Vled	-	-	-	-	V
Backlight Supply Current	lled	-	-	-	-	mA

Optical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Viewing Angle – Vertical (top)	AV	Cr ≥ 2	-	25	-	0
Viewing Angle -Vertical (bottom)	AV	Cr ≥ 2	-	70	-	0
Viewing Angle – Horizontal (left)	AH	Cr ≥ 2	-	30	-	0
Viewing Angle – Horizontal (right)	AH	Cr ≥ 2	-	30	-	0
Contrast Ratio	Cr		-	2	-	-
Response Time (rise)	Tr	-	-	120	150	ms
Response Time (fall)	Tf	-	-	120	150	ms

Controller Information

Built-in SPLC780D. Download specification at http://www.newhavendisplay.com/app_notes/SPLC780D.pdf

Table of Commands

I a a tomo a tila a				Inst	tructi	on C	ode				Description	Execution time
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	(fosc=270KHz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC	1.52ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Assign cursor moving direction and enable the shift of entire display	38μs
Display ON/ OFF Control	0	0	0	0	0	0	1	D	С	В	Set display(D), cursor(C), and blinking of cursor(B) on/off control bit.	38μs
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	-	-	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	38µs
Function Set	0	0	0	0	1	DL	N	F	-	1	Set interface data length (DL: 8bit/4-bit), numbers of display line (N: 2-line/1-line) and, display font type (F:5x10 dots/5x8 dots)	38µs
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	38µs
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in counter	38µs
Read Busy Flag and Address Counter	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	38µs
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	38µs

DDRAM address:

т.	1	• . •
11.01	n lost	position
וכוכו	nav	DOSILION

1	2	3	4	5	6	7	8
00	01	02	03	04	05	06	07

DDRAM address

Timing Characteristics

6.3.3. Write mode (Writing data from MPU to SPLC780D)

Characteristics	Symbol		Limit		Unit	Test Condition
Characteristics	Symbol	Min.	Тур.	Max.	Unit	lest Condition
E Cycle Time	tc	1000	-	-	ns	Pin E
E Pulse Width	t _{PW}	450	•		ns	Pin E
E Rise/Fall Time	t _R , t _F		-	25	ns	Pin E
Address Setup Time	t _{SP1}	60	•		ns	Pins: RS, R/W, E
Address Hold Time	t _{HD1}	20	•	•	ns	Pins: RS, R/W, E
Data Setup Time	t _{SP2}	195	-	-	ns	Pins: DB0 - DB7
Data Hold Time	t _{HD2}	10	-		ns	Pins: DB0 - DB7

6.5.6. Write mode timing diagram (Writing Data from MPU to SPLC780D)

6.3.4. Read mode (Reading data from SPLC780D to MPU)

Characteristics	Cumbal		Limit		Unit	Test Condition
Characteristics	Symbol	Min.	Тур.	Max.	Unit	rest Condition
E Cycle Time	tc	1000	-	-	ns	Pin E
E Pulse Width	t _w	450	•		ns	Pin E
E Rise/Fall Time	t _R , t _F	-	-	25	ns	Pin E
Address Setup Time	t _{SP1}	60		-	ns	Pins: RS, R/W, E
Address Hold Time	t _{HD1}	20	•	•	ns	Pins: RS, R/W, E
Data Output Delay Time	t⊳	-	-	360	ns	Pins: DB0 - DB7
Data hold time	t _{HD2}	5.0	-	-	ns	Pin DB0 - DB7

6.5.7. Read mode timing diagram (Reading Data from SPLC780D to MPU)

Built-in Font Table

Upper 4																
A Rits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)			0	a	P	`	P				_	9	Ę	œ	þ
xxxx0001	(2)		!	1	A	Q	а	9			0	7	7	4	ä	q
xxxx0010	(3)		11	2	В	R	b	r			Г	1	ij	×	f	Θ
xxxx0011	(4)		#	3	С	5	C	s			L	ゥ	Ŧ	ŧ	8	00
xxxx0100	(5)		\$	4	D	T	d	t			`	I	ŀ	þ	Н	υ
xxxx0101	(6)		7	5	E	U	e	u			•	7	t	l	Œ	ü
xxxx0110	(7)		&	6	F	Ų	f	V			7	Ħ	_	3	ρ	Σ
xxxx0111	(8)		,	7	G	W	9	W			7	#	Z	Ŧ	9	π
xxxx1000	(1)		(8	Н	X	h	X			4	2	礻	IJ	J	\overline{x}
xxxx1001	(2))	9	I	Υ	i	у			÷	ኃ	J	լև	-1	y
xxxx1010	(3)		*	:	J	Z	j	z			I		ıΊ	V	j	¥
xxxx1011	(4)		+	;	K		k	{			#	Ħ	L		×	75
xxxx1100	(5)		,	<	L	¥	1				t	5)	7	7	4	Ħ
xxxx1101	(6)			=	M]	M)			ュ	Z	ኅ	ン	Ł	÷
xxxx1110	(7)		•	>	N	^	n	÷			3	t	#	**	ñ	
xxxx1111	(8)		/	?	0		0	+			·y	y	7		Ö	

Example Initialization Program

```
8-bit Initialization:
void command(char i)
    P1 = i;
                             //put data on output Port
    D I = 0;
                             //D/I=LOW : send instruction
    RW=0;
                             //R/W=LOW : Write
    E = 1;
    Delay(1);
                             //enable pulse width >= 300ns
     E = 0;
                             //Clock enable: falling edge
void write(char i)
    P1 = i;
                             //put data on output Port
                             //D/I=LOW : send data
    D_I = 1;
    R_W = 0;
                             //R/W=LOW : Write
    E = 1;
    Delay(1);
                             //enable pulse width >= 300ns
    E = 0;
                             //Clock enable: falling edge
/**********************
void init()
    E = 0;
    Delay(100);
                             //Wait >15 msec after power is applied
     command(0x30);
                             //command 0x30 = Wake up
    Delay(30);
                             //must wait 5ms, busy flag not available
    command(0x30);
                             //command 0x30 = Wake up #2
                             //must wait 160us, busy flag not available
    Delay(10);
                             //command 0x30 = Wake up #3
    command(0x30);
                            //must wait 160us, busy flag not available
    Delay(10);
                            //Function set: 8-bit/2-line
    command(0x38);
    command(0x10);
                             //Set cursor
                             //Display ON; Cursor ON
    command(0x0c);
                             //Entry mode set
    command(0x06);
            ***************
```

```
4-bit Initialization:
/**********************
void command(char i)
                                //put data on output Port
     P1 = i;
     D_I = 0;
                                //D/I=LOW : send instruction
     R_W = 0;
                                //R/W=LOW : Write
                                //Send lower 4 bits
     Nybble();
     i = i << 4;
                                //Shift over by 4 bits
     P1 = i;
                                //put data on output Port
     Nybble();
                                //Send upper 4 bits
void write(char i)
     P1 = i;
                                //put data on output Port
                                //D/I=HIGH : send data
     D_I = 1;
     R_W = 0;
                                //R/W=LOW : Write
     Nybble();
                                //Clock lower 4 bits
     i = i << 4;
                                //Shift over by 4 bits
     P1 = i;
                                //put data on output Port
     Nybble();
                                //Clock upper 4 bits
/***********************************
void Nybble()
     E = 1;
     Delay(1);
                                //enable pulse width >= 300ns
     E = 0;
                                //Clock enable: falling edge
/***********************************
void init()
     P1 = 0;
     P3 = 0;
     Delay(100);
                                //Wait >15 msec after power is applied
     P1 = 0x30;
                                //put 0x30 on the output port
     Delay(30);
                                //must wait 5ms, busy flag not available
     Nybble();
                                //command 0x30 = Wake up
     Delay(10);
                                //must wait 160us, busy flag not available
                                //command 0x30 = Wake up #2
     Nybble();
                                //must wait 160us, busy flag not available
     Delay(10);
     Nybble();
                                //command 0x30 = Wake up #3
                                //can check busy flag now instead of delay
     Delay(10);
                                //put 0x20 on the output port
     P1 = 0x20;
     Nybble();
                                //Function set: 4-bit interface
     command(0x28);
                                //Function set: 4-bit/2-line
     command(0x10);
                                //Set cursor
                                //Display ON; Blinking cursor
     command(0x0F);
     command(0x06);
                                //Entry Mode set
/**********************
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	+80°C , 48hrs	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30°C , 48hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage & current) and the high thermal stress for a long time.	+70°C 48hrs	2
Low Temperature Operation	Endurance test applying the electric stress (voltage & current) and the low thermal stress for a long time.	-20°C , 48hrs	1,2
High Temperature / Humidity Operation	Endurance test applying the electric stress (voltage & current) and the high thermal with high humidity stress for a long time.	+40°C, 90% RH, 48hrs	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage & current) during a cycle of low and high thermal stress.	0°C,30min -> 25°C,5min -> 50°C,30min = 1 cycle 10 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	10-55Hz , 15mm amplitude. 60 sec in each of 3 directions X,Y,Z For 15 minutes	3
Static electricity test	Endurance test applying electric static discharge.	VS=800V, RS=1.5kΩ, CS=100pF One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms