ority Queues 1/22

EE360C: Algorithms
Priority Queues

Pedro Santacruz

Department of Electrical and Computer Engineering University of Texas at Austin

Fall 2014

Priority Ouous

Heaps

HeapSor

Motiva

Priority Queue

Heaps

. ..

The stable marriage algorithm needs a data structure that maintains the dynamically changing set of all free men. The algorithm needs to be able to:

- add elements to the set
- delete elements from the set
- select an element from the set, based on some assigned *priority*

Sort

Instance: Nonempty list $x_1, x_2, ..., x_n$ of integers

Solution: A permutation $y_1, y_2, \dots y_n$ of x_1, x_2, \dots, x_n such

that $y_i \le y_{i+1}$ for all $1 \le i < n$

Priority Queue

ricups

.

MOTIVATION: SORT A LIST OF NUMBERS

Sort

Instance: Nonempty list $x_1, x_2, ..., x_n$ of integers

Solution: A permutation $y_1, y_2, \dots y_n$ of x_1, x_2, \dots, x_n such that $y_i \le y_{i+1}$ for all $1 \le i < n$

Possible Algorithm

- Store all of the numbers in a data structure *D*
- Repeatedly find the smallest number in *D*, output it, and remove it

Motiva

Priority Queu

ricaps

•

Motiva

Priority Queu

ricups

Questions

Sort

Instance: Nonempty list x_1, x_2, \dots, x_n of integers

Solution: A permutation $y_1, y_2, \dots y_n$ of x_1, x_2, \dots, x_n such that $y_i \le y_{i+1}$ for all $1 \le i < n$

Possible Algorithm

- Store all of the numbers in a data structure *D*
- Repeatedly find the smallest number in *D*, output it, and remove it

To get $O(n \log n)$ running time, each "find minimum" step must take $O(\log n)$ time

CANDIDATE DATA STRUCTURES FOR SORTING

The data structure we select must support inserting a new element, finding the minimum element, and deleting the minimum element. Priority Queues 4/22

Motivation

Priority Queu

ieaps

-leapSort

CANDIDATE DATA STRUCTURES FOR SORTING

The data structure we select must support inserting a new element, finding the minimum element, and deleting the minimum element.

List Insertion and deletion take O(1) time, but finding the minimum requires scanning the list and takes $\Omega(n)$ time

Priority Queues 4/22

Priority Queue

----F-

HeapSort

Motivat

Priority Queu

Heap

HeapSor

Questions

The data structure we select must support inserting a new element, finding the minimum element, and deleting the minimum element.

List Insertion and deletion take O(1) time, but finding the minimum requires scanning the list and takes $\Omega(n)$ time

Sorted array Finding the minimum takes O(1) time, but insertion and deletion take $\Omega(n)$ time in the worst case

ENTER THE PRIORITY QUEUE

Priority Queues 5/22

Motivation

Priority Queue

Heaps

HeapSort

uestions

• Store a set S of elements, where each element v has a priority value key(v)

Priority Queu

rieaps

Ougotions

• Store a set S of elements, where each element v has a priority value key(v)

• Smaller key values denote higher priorities

- Store a set S of elements, where each element v has a priority value key(v)
- Smaller key values denote higher priorities
- Operations supported:

Priority Queu

ricaps

Ouestions

- Store a set S of elements, where each element v has a priority value key(v)
- Smaller key values denote higher priorities
- Operations supported:
 - find the element with the smallest key

• Store a set S of elements, where each element v has a priority value key(v)

- Smaller key values denote higher priorities
- Operations supported:
 - find the element with the smallest key
 - remove the element with the smallest key

Priority Queu

icups

Ougation

HeapSort

- Store a set S of elements, where each element v has a priority value key(v)
- Smaller key values denote higher priorities
- Operations supported:
 - find the element with the smallest key
 - remove the element with the smallest key
 - insert a new element

- Store a set S of elements, where each element v has a priority value key(v)
- Smaller key values denote higher priorities
- Operations supported:
 - find the element with the smallest key
 - remove the element with the smallest key
 - insert a new element
 - delete an element

Priority Queu

ricaps

Ouestion

- Store a set S of elements, where each element v has a priority value key(v)
- Smaller key values denote higher priorities
- Operations supported:
 - find the element with the smallest key
 - remove the element with the smallest key
 - insert a new element
 - delete an element
- Key update and element deletion require knowledge of the position of the element in the priority queue

AN EXAMPLE APPLICATION

processes on a computer

Consider the problem of real-time scheduling of

Priority Queues 6/22

Motivation

Priority Queu

Heaps

.

AN EXAMPLE APPLICATION

6/22

Motivation

1 Horny Queur

Heaps

. ..

Consider the problem of real-time scheduling of processes on a computer

• each process has a priority

Priority Queu

1 leaps

-leapSort

Questions

Consider the problem of real-time scheduling of processes on a computer

- each process has a priority
- processes *do not* arrive in order of their priorities

Thomy Quet

ricaps

Questions

Consider the problem of real-time scheduling of processes on a computer

- each process has a priority
- processes *do not* arrive in order of their priorities
- we need to maintain a set of active processes with the ability to quickly extract the one with the highest priority so it can be scheduled

----F-

Questions

Consider the problem of real-time scheduling of processes on a computer

- each process has a priority
- processes *do not* arrive in order of their priorities
- we need to maintain a set of active processes with the ability to quickly extract the one with the highest priority so it can be scheduled
- using a priority queue keyed by process priority, scheduling the highest priority process entails simply finding the one with the lowest priority key

• Combine the benefits of both lists and sorted arrays

viotivation Priority Queu

Heaps

HeapSort

- Combine the benefits of both lists and sorted arrays
- Conceptually, a heap is a balanced binary tree

Dui o mitra Ossosa

Teaps

HeapSort

- Combine the benefits of both lists and sorted arrays
- Conceptually, a heap is a balanced binary tree
- Heap order: For every element v at node i, the element w at i's parent satisfies $key(w) \le key(v)$

Priority Queu

Heaps

Ticupoort

- Combine the benefits of both lists and sorted arrays
- Conceptually, a heap is a balanced binary tree
- Heap order: For every element v at node i, the element w at i's parent satisfies $key(w) \le key(v)$
- We can implement a heap in a pointer-based data structure

Priority Queu

Heaps

HeapSort

- Combine the benefits of both lists and sorted arrays
- Conceptually, a heap is a balanced binary tree
- Heap order: For every element v at node i, the element w at i's parent satisfies $key(w) \le key(v)$
- We can implement a heap in a pointer-based data structure
- Alternatively, assume a maximum number *N* of elements is known in advance

Aotivation

Priority Que

пеарѕ

пеарэоп

- Combine the benefits of both lists and sorted arrays
- Conceptually, a heap is a balanced binary tree
- Heap order: For every element v at node i, the element w at i's parent satisfies $key(w) \le key(v)$
- We can implement a heap in a pointer-based data structure
- Alternatively, assume a maximum number *N* of elements is known in advance
- Store nodes of the heap in an array

Aotivation

Priority Que

пеарѕ

HeapSor

- Combine the benefits of both lists and sorted arrays
- Conceptually, a heap is a balanced binary tree
- Heap order: For every element v at node i, the element w at i's parent satisfies $key(w) \le key(v)$
- We can implement a heap in a pointer-based data structure
- Alternatively, assume a maximum number *N* of elements is known in advance
- Store nodes of the heap in an array
 - Node at index i has children at indices 2i and 2i + 1 and parent at index $\lfloor i/2 \rfloor$

Mouvation

TT . C

Duestions

- Combine the benefits of both lists and sorted arrays
- Conceptually, a heap is a balanced binary tree
- Heap order: For every element v at node i, the element w at i's parent satisfies $key(w) \le key(v)$
- We can implement a heap in a pointer-based data structure
- Alternatively, assume a maximum number *N* of elements is known in advance
- Store nodes of the heap in an array
 - Node at index i has children at indices 2i and 2i + 1 and parent at index $\lfloor i/2 \rfloor$
 - Index 1 is the root

wiotivation

Heans

HeapSor

- Combine the benefits of both lists and sorted arrays
- Conceptually, a heap is a balanced binary tree
- Heap order: For every element v at node i, the element w at i's parent satisfies $key(w) \le key(v)$
- We can implement a heap in a pointer-based data structure
- Alternatively, assume a maximum number *N* of elements is known in advance
- Store nodes of the heap in an array
 - Node at index i has children at indices 2i and 2i + 1 and parent at index $\lfloor i/2 \rfloor$
 - Index 1 is the root
 - How do you know that a node at index i is a leaf?

Mouvation

Priority Queu

Heaps

- Combine the benefits of both lists and sorted arrays
- Conceptually, a heap is a balanced binary tree
- Heap order: For every element v at node i, the element w at i's parent satisfies $key(w) \le key(v)$
- We can implement a heap in a pointer-based data structure
- Alternatively, assume a maximum number *N* of elements is known in advance
- Store nodes of the heap in an array
 - Node at index i has children at indices 2i and 2i + 1 and parent at index $\lfloor i/2 \rfloor$
 - Index 1 is the root
 - How do you know that a node at index i is a leaf? If
 2i > n, the number of elements in the heap.

viotivation

Priority Que

Heaps

HeapSort

Heaps

HeapSort

2 Fix the heap order using Heapify-up(H, n + 1)

- Priority Queues 9/22
- Mouvation
- Heaps
- HeapSort
- Questions

```
Heapify-up(H,i):
   If i > 1 then
    let j = parent(i) = [i/2]
    If key[H[i]] < key[H[j]] then
        swap the array entries H[i] and H[j]
        Heapify-up(H,j)
        Endif
Endif</pre>
```

• Insert a new element at n+1

oane

HeapSort

Ouestions

CORRECTNESS OF Heapify-Up

• H is almost a heap with key of H[i] too small if there is a value $\alpha \ge \ker(H[i])$ such that increasing $\ker(H[i])$ to α makes H a heap

Priority Queues 11/22

D: : O

Heap

HeapSor

CORRECTNESS OF Heapify-Up

- H is almost a heap with key of H[i] too small if there is a value $\alpha \ge \ker(H[i])$ such that increasing $\ker(H[i])$ to α makes H a heap
- Prove by induction on *i*

Priority Queues 11/22

D: : O

Неар

HeapSor

CORRECTNESS OF Heapify-Up

- H is almost a heap with key of H[i] too small if there is a value $\alpha \ge \ker(H[i])$ such that increasing $\ker(H[i])$ to α makes H a heap
- Prove by induction on *i*
 - Base case: i = 1

Priority Queues 11/22

Mouvation

Heap

HeapSor

CORRECTNESS OF Heapify-Up

- H is almost a heap with key of H[i] too small if there is a value $\alpha \ge \ker(H[i])$ such that increasing $\ker(H[i])$ to α makes H a heap
- Prove by induction on *i*
 - Base case: i = 1
 - Inductive step: if H is almost a heap with key of H[i] too small, after Heapify-up(H,i), H is a heap or almost a heap with the key of H[j] too small.

Motivation

Hoone

HeapSor

CORRECTNESS OF Heapify-Up

- H is almost a heap with key of H[i] too small if there is a value $\alpha \ge \ker(H[i])$ such that increasing $\ker(H[i])$ to α makes H a heap
- Prove by induction on *i*
 - Base case: i = 1
 - Inductive step: if H is almost a heap with key of H[i] too small, after Heapify-up(H,i), H is a heap or almost a heap with the key of H[j] too small.
- The running time of Heapify-up is $O(\log i)$

Motivation

Hear

HeapSor

DELETING AN ELEMENT: Heapify-down

Suppose H has n + 1 elements

Endif

- **①** Delete element at H[i] by moving element at H[n+1] to H[i]
- ② If element at H[i] is too small, fix heap order using Heapify-up(H,i)
- If element at H[i] is too large, fix heap order using Heapify-down(H,i)

```
Heapify-down(H,i):
  Let n = length(H)
  If 2i > n then
    Terminate with H unchanged
  Else if 2i < n then
    Let left = 2i, and right = 2i + 1
    Let i be the index that minimizes kev[H[left]] and kev[H[right]]
  Else if 2i = n then
    Let i = 2i
  Endif
  If key[H[i]] < key[H[i]] then
     swap the array entries H[i] and H[j]
     Heapify-down(H, j)
```

Priority Queues 12/22

Mouvation

Thomas Queu

Heaps

HeapSort

Heapify-down EXAMPLE

D. I. C.

Heaps

HeapSort

Ouestions

• H is almost a heap with key of H[i] too big if there is a value $\alpha \leq \ker(H[i])$ such that decreasing $\ker(H[i])$ to α makes H a heap

Priority Queues 14/22

Wottvation

Heaps

HeapSor

- H is almost a heap with key of H[i] too big if there is a value $\alpha \leq \ker(H[i])$ such that decreasing $\ker(H[i])$ to α makes H a heap
- Proof by reverse induction on *i*

Priority Queues

Wottvation

Heaps

HeapSor

- H is almost a heap with key of H[i] too big if there is a value $\alpha \leq \ker(H[i])$ such that decreasing $\ker(H[i])$ to α makes H a heap
- Proof by reverse induction on *i*
 - Base case: 2i > n

Priority Queues 14/22

Motivation

T.T.

II C

Ouestions

- H is almost a heap with key of H[i] too big if there is a value $\alpha \leq \ker(H[i])$ such that decreasing $\ker(H[i])$ to α makes H a heap
- Proof by reverse induction on *i*
 - Base case: 2i > n
 - Inductive step: after Heapify-down(H,i), H is a heap or almost a heap with the key of H[j] too big

Priority Queues

Motivation

_

- H is almost a heap with key of H[i] too big if there is a value $\alpha \leq \ker(H[i])$ such that decreasing $\ker(H[i])$ to α makes H a heap
- Proof by reverse induction on *i*
 - Base case: 2i > n
 - Inductive step: after Heapify-down(H,i), H is a heap or almost a heap with the key of H[j] too big
- The running time of Heapify-down(H, i) is $O(\log n)$

Priority Queues 14/22

Modvadon

Priority Queues 15/22

Problem

Naively, we can build a heap out of an arbitrary array using successive calls to HEAPIFY-DOWN, starting at element $\lfloor \operatorname{length}[H]/2 \rfloor$ and going down to 1. If each call to HEAPIFY-DOWN takes $O(\log n)$ time and we have O(n/2) such calls, we can build a heap in $O(n\log n)$ time. Prove that this process is actually faster than $O(n\log n)$ (i.e., provide a *tighter* bound on the process's running time).

Motivation

Priority Queu

Heaps

HeapSor

Problem

Naively, we can build a heap out of an arbitrary array using successive calls to HEAPIFY-DOWN, starting at element $\lfloor \operatorname{length}[H]/2 \rfloor$ and going down to 1. If each call to HEAPIFY-DOWN takes $O(\log n)$ time and we have O(n/2) such calls, we can build a heap in $O(n\log n)$ time. Prove that this process is actually faster than $O(n\log n)$ (i.e., provide a *tighter* bound on the process's running time). Starters:

Motivation

Priority Queu

Heaps

HeapSor

Priority Queues 15/22

Problem

Naively, we can build a heap out of an arbitrary array using successive calls to HEAPIFY-DOWN, starting at element $\lfloor \operatorname{length}[H]/2 \rfloor$ and going down to 1. If each call to HEAPIFY-DOWN takes $O(\log n)$ time and we have O(n/2) such calls, we can build a heap in $O(n\log n)$ time. Prove that this process is actually faster than $O(n\log n)$ (i.e., provide a *tighter* bound on the process's running time). Starters:

• What is the height of an *n*-element heap?

Heaps

HeapSort

Priority Queues 15/22

Problem

Naively, we can build a heap out of an arbitrary array using successive calls to HEAPIFY-DOWN, starting at element $\lfloor \operatorname{length}[H]/2 \rfloor$ and going down to 1. If each call to HEAPIFY-DOWN takes $O(\log n)$ time and we have O(n/2) such calls, we can build a heap in $O(n\log n)$ time. Prove that this process is actually faster than $O(n\log n)$ (i.e., provide a *tighter* bound on the process's running time). Starters:

- What is the height of an *n*-element heap?
- How many nodes are there at height h of an n-element heap?

Motivation

Priority Que

Heaps

HeapSor

Priority Queues 16/22

eaps

HeapSor

Questions

What is the height of an *n*-element heap?

Priority Queues 16/22

D. L. C.

eaps

HeapSor

What is the height of an *n*-element heap?

 $O(\log n)$ (it's a (nearly) complete binary tree).

How many nodes are there at height h of an n-element heap?

Priority Queues 17/22

Motivation

Hority Queu

Heaps

reapoor

How many nodes are there at height *h* of an *n*-element heap?

Key Observation

The number of leaves in a complete binary tree is $\lceil n/2 \rceil$.

riority Queues 17/22

Motivation

riority Queu

Tleaps

HeapSort

How many nodes are there at height *h* of an *n*-element heap?

Key Observation

The number of leaves in a complete binary tree is $\lceil n/2 \rceil$.

Proposition

In an *n*-element heap, there are $\lceil n/2^{h+1} \rceil$ nodes at height *h*.

Priority Queues 17/22

Motivation

Thomas Queu

.

. .

How many nodes are there at height *h* of an *n*-element heap?

Key Observation

The number of leaves in a complete binary tree is $\lceil n/2 \rceil$.

Proposition

In an *n*-element heap, there are $\lceil n/2^{h+1} \rceil$ nodes at height *h*.

Proof (by induction on *h*)

Priority Queues 17/22

Mouvation

T.T.

HeapSort

Juestions

How many nodes are there at height *h* of an *n*-element heap?

Key Observation

The number of leaves in a complete binary tree is $\lceil n/2 \rceil$.

Proposition

In an n-element heap, there are $\lceil n/2^{h+1} \rceil$ nodes at height h.

Proof (by induction on *h*)

Base case: h = 0 (the leaves). This is trivially true from the observation above.

Priority Queues 17/22

viouvation

Heaps

HeapSort

Juestions

How many nodes are there at height *h* of an *n*-element heap?

Key Observation

The number of leaves in a complete binary tree is $\lceil n/2 \rceil$.

Proposition

In an n-element heap, there are $\lceil n/2^{h+1} \rceil$ nodes at height h.

Proof (by induction on *h*)

Base case: h = 0 (the leaves). This is trivially true from the observation above.

Inductive step: Suppose that the claim is true for h - 1.

Priority Queues 17/22

Motivation

. .

HeapSort

Juestions

How many nodes are there at height *h* of an *n*-element heap?

Key Observation

The number of leaves in a complete binary tree is $\lceil n/2 \rceil$.

Proposition

In an *n*-element heap, there are $\lceil n/2^{h+1} \rceil$ nodes at height *h*.

Proof (by induction on *h*)

Base case: h = 0 (the leaves). This is trivially true from the observation above.

Inductive step: Suppose that the claim is true for h - 1. Let N_h be the number of ndoes at height h in an n-node tree T.

Priority Queues 17/22

Motivation

Haana

HeapSort

How many nodes are there at height *h* of an *n*-element heap?

Key Observation

The number of leaves in a complete binary tree is $\lceil n/2 \rceil$.

Proposition

In an *n*-element heap, there are $\lceil n/2^{h+1} \rceil$ nodes at height *h*.

Proof (by induction on *h*)

Base case: h = 0 (the leaves). This is trivially true from the observation above.

Inductive step: Suppose that the claim is true for h - 1. Let N_h be the number of ndoes at height h in an n-node tree T. Consider T' formed by removing the leaves of T. T' has $n' = n - \lceil n/2 \rceil = \lfloor n/2 \rfloor$ nodes.

Priority Queues 17/22

Motivation

Priority Quet

Heap

HeapSor

How many nodes are there at height *h* of an *n*-element heap?

Key Observation

The number of leaves in a complete binary tree is $\lceil n/2 \rceil$.

Proposition

In an *n*-element heap, there are $\lceil n/2^{h+1} \rceil$ nodes at height *h*.

Proof (by induction on *h*)

Base case: h = 0 (the leaves). This is trivially true from the observation above.

Inductive step: Suppose that the claim is true for h - 1. Let N_h be the number of ndoes at height h in an n-node tree T. Consider T' formed by removing the leaves of T. T' has $n' = n - \lceil n/2 \rceil = \lfloor n/2 \rfloor$ nodes. Nodes at height h in T are at height h - 1 in T' (because T' is missing the bottom level of T).

Priority Queues 17/22

Motivation 1

Priority Queu

неар

HeapSor

How many nodes are there at height h of an n-element heap?

Key Observation

The number of leaves in a complete binary tree is $\lceil n/2 \rceil$.

Proposition

In an *n*-element heap, there are $\lceil n/2^{h+1} \rceil$ nodes at height *h*.

Proof (by induction on *h*)

Base case: h = 0 (the leaves). This is trivially true from the observation above.

Inductive step: Suppose that the claim is true for h-1. Let N_h be the number of ndoes at height h in an n-node tree T. Consider T' formed by removing the leaves of T. T' has $n' = n - \lceil n/2 \rceil = \lfloor n/2 \rfloor$ nodes. Nodes at height h in T are at height h-1 in T' (because T' is missing the bottom level of T). Let N'_{h-1} denote the number of nodes at height h-1 in T'.

Priority Queues 17/22

Aotivation

Thomas Qui

Treapo

1 leapoor

How many nodes are there at height h of an n-element heap?

Key Observation

The number of leaves in a complete binary tree is $\lceil n/2 \rceil$.

Proposition

In an *n*-element heap, there are $\lceil n/2^{h+1} \rceil$ nodes at height *h*.

Proof (by induction on *h*)

Base case: h = 0 (the leaves). This is trivially true from the observation above.

Inductive step: Suppose that the claim is true for h-1. Let N_h be the number of ndoes at height h in an n-node tree T. Consider T' formed by removing the leaves of T. T' has $n' = n - \lceil n/2 \rceil = \lfloor n/2 \rfloor$ nodes. Nodes at height h in T are at height h-1 in T' (because T' is missing the bottom level of T). Let N'_{h-1} denote the number of nodes at height h-1 in T'.

$$N_h = N'_{h-1} = \lceil n'/2^h \rceil = \lceil \lfloor n/2 \rfloor/2^h \rceil \le \lceil (n/2)/2^h \rceil = \lceil n/2^{h+1} \rceil.$$

Priority Queues 17/22

Motivation

rionty Queu

Heaps

HeapSort

Problem

Naively, we can build a heap out of an arbitrary array using successive calls to HEAPIFY-DOWN, starting at element $\lfloor \operatorname{length}[H]/2 \rfloor$ and going down to 1. If each call to HEAPIFY-DOWN takes $O(\log n)$ time and we have O(n/2) such calls, we can build a heap in $O(n \log n)$ time. Prove that this process is actually faster than $O(n \log n)$ (i.e., provide a *tighter* bound on the process's running time). Starters:

- What is the height of an n-element heap? $O(\log n)$
- How many nodes are there at height h of an n-element heap? $\lceil n/2^{h+1} \rceil$

IN CLASS EXERCISE 1:SOLUTION

Problem

Naively, we can build a heap out of an arbitrary array using successive calls to HEAPIFY-DOWN, starting at element $\lfloor \operatorname{length}[H]/2 \rfloor$ and going down to 1. If each call to HEAPIFY-DOWN takes $O(\log n)$ time and we have O(n/2) such calls, we can build a heap in $O(n \log n)$ time. Prove that this process is actually faster than $O(n \log n)$ (i.e., provide a *tighter* bound on the process's running time).

Priority Queues 19/22

Motivation

Priority Queu

1 leaps

HeapSo

Problem

Naively, we can build a heap out of an arbitrary array using successive calls to HEAPIFY-DOWN, starting at element $\lfloor \operatorname{length}[H]/2 \rfloor$ and going down to 1. If each call to HEAPIFY-DOWN takes $O(\log n)$ time and we have O(n/2) such calls, we can build a heap in $O(n \log n)$ time. Prove that this process is actually faster than $O(n \log n)$ (i.e., provide a *tighter* bound on the process's running time).

Motivation

Priority Queu

пеарѕ

^ ···

Solution

The time required by HEAPIFY-DOWN, when called on a node at height h is O(h). The total cost of building a heap is bounded above by:

$$\sum_{h=0}^{\lfloor \log n \rfloor} \lceil \frac{n}{2^{h+1}} \rceil O(h) = O(n \sum_{h=1}^{\lfloor \log n \rfloor} \frac{h}{2^h}) = O(n)$$

The last step is because (looking up the summation):

$$\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2$$

SORTING WITH A PRIORITY QUEUE

Sort

Instance: Nonempty list $x_1, x_2, ..., x_n$ of integers

Solution: A permutation $y_1, y_2, \dots y_n$ of x_1, x_2, \dots, x_n such

that $y_i \le y_{i+1}$ for all $1 \le i < n$

Priority Queues 20/22

Motivation

Priority Queu

reups

reapoort

Sort

Instance: Nonempty list $x_1, x_2, ..., x_n$ of integers

Solution: A permutation $y_1, y_2, \dots y_n$ of x_1, x_2, \dots, x_n such that $y_i \le y_{i+1}$ for all $1 \le i < n$

Final Algorithm

- Insert each number in a priority queue *H*
- Repeatedly find the smallest number in *H*, output it, and delete it from *H*

Motivation

Priority Queue

JaanCan

Jugetione

Sort

Instance: Nonempty list $x_1, x_2, ..., x_n$ of integers

Solution: A permutation $y_1, y_2, \dots y_n$ of x_1, x_2, \dots, x_n such that $y_i \le y_{i+1}$ for all $1 \le i < n$

Final Algorithm

- Insert each number in a priority queue *H*
- Repeatedly find the smallest number in *H*, output it, and delete it from *H*

Each insertion and deletion takes $O(\log n)$ time for a total running time of $O(n \log n)$

Motivation

riority Queue

HaanSo

Onestions

Priority Queues 21/22

Problem

One of your classmates claims that he built an alternative data structure (other than a heap) for representing a priority queue. He claims that, using his new data structure, INSERT, MAX, and EXTRACTMAX all take constant (O(1)) time in the worst case. Give a very simple proof that he is mistaken.

Motivation

Priority Que

-cupo

. ..

Problem

One of your classmates claims that he built an alternative data structure (other than a heap) for representing a priority queue. He claims that, using his new data structure, INSERT, MAX, and EXTRACTMAX all take constant (O(1)) time in the worst case. Give a very simple proof that he is mistaken.

Solution

If this were true, we could comparison sort in O(n) time. But we've already proven that this is not possible.

Motivation

Priority Queue

HeapSo

?

Priority Queue

..........