Aplicación de un método de interpolación, basado en índices de solapamiento, a la detección de riesgos ambientales

Mikel Pintor Araus

Universidad Pública de Navarra Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación

23 de julio 2014

Tutores: Humberto Bustince Francisco Javier Fernández

Índice

- Teoría de conjuntos difusos
 - Conjuntos difusos
 - T-normas y operadores de agregación
 - Funciones de solapamiento
 - Índices de solapamiento
- 2 Lógica difusa
 - Sistemas difusos basados en reglas
 - Método de Mamdani
 - Método de interpolación
- 3 Aplicación práctica: riesgo de incendios forestales
- Conclusiones

Conjuntos difusos

Definición: Conjunto difuso

Dado un conjunto de referencia (o universo) U, un conjunto difuso A sobre U es un conjunto tal que:

$$A = \{(u_i, \mu_A(u_i)) | u_i \in U\}$$
 (1)

donde $\mu_A: U \to [0,1]$ es la función de pertenencia (o grado de pertenencia) de A.

- Introducidos por L.A. Zadeh en 1965.
- Extensión de los conjuntos clásicos.
- Permiten modelar información vaga o imprecisa.
- Nota: Se puede utilizar también la notación $A(u_i)$ para referirse al valor de la función de pertenencia del elemento u_i en $A(\mu_A(u_i) = A(u_i))$.

T-normas

Las *t-normas* son una clase de funciones que generalizan el mínimo $(\min(x,y))$ y ,por tanto, la conjunción clásica $(x \land y)$:

Definición: T-norma

Una t-norma es una operación binaria T en el intervalo [0,1] que es conmutativa, asociativa, monótona y tiene el valor I como elemento neutro. Es decir, una función $T:[0,1]^2 \to [0,1]$ tal que $\forall x,y,z \in [0,1]$:

- T(x,y) = T(y,x) (Conmutatividad)
- 2 T(x, T(y, z)) = T(T(x, y), z) (Asociatividad)
- **3** $T(x,y) \le T(x,z)$ cuando $y \le z$ (Monotonía)
- T(x,1) = x (Elemento neutro)

T-normas: algunos ejemplos

• **Mínimo:** $T_G(x, y) = \min\{x, y\}$

• **Producto:** $T_P(x, y) = x \cdot y$

• Łukasiewicz: $T_L(x,y) = \max\{x+y-1,0\}$

Operadores de agregación

Definición: operador de agregación

Una función $M:[a,b]^n \to [a,b]$ es un operador de agregación si es monótona y no decreciente en cada una de sus componentes y además cumple que $M(a,a,\cdots,a)=a$ y $M(b,b,\cdots,b)=b$.

Algunos ejemplos de operadores de agregación:

- Media aritmética: $M(x_1, x_2, \dots, x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Media geométrica: $M(x_1, x_2, \dots, x_n) = (\prod_{i=1}^n x_i)^{\frac{1}{n}}$
- Mediana: Se toma el elemento central del conjunto ordenado de argumentos.
- **Máximo:** $M(x_1, x_2, \dots, x_n) = \max(x_1, x_2, \dots, x_n)$
- Mínimo: $M(x_1, x_2, \dots, x_n) = \min(x_1, x_2, \dots, x_n)$

Funciones de solapamiento

Definición: función de solapamiento

Una función de solapamiento es una función $G_O:[0,1]^2 \to [0,1]$ que cumple:

- **1** $G_O(x,y) = G_O(y,x) \ \forall \ x,y \in [0,1]$
- $G_O(x,y) = 0 si y sólo si x \cdot y = 0$
- $G_O(x,y) = 1 si y sólo si x \cdot y = 1$
- \bigcirc G_O es creciente
- \odot G_O es continua

Funciones de solapamiento (cont.)

Algunos ejemplos de funciones de solapamiento:

(a)
$$G_O(x, y) = \min\{x, y\}$$

$$0.5 \quad 0.5 \quad 0.$$

Índices de solapamiento

Definición: índice de solapamiento

Un índice de solapamiento es una función $O: FS(U) \times FS(U) \rightarrow [0,1]$ (donde FS(U) es el conjunto de todos los conjuntos difusos sobre U) tal que:

1 O(A, B) = 0 si y sólo si A y B tienen soportes disjuntos, es decir:

$$A(u_i) \cdot B(u_i) = 0 \qquad \forall u_i \in U$$
 (2)

- **2** O(A, B) = O(B, A)
- **3** Si $B \leq C$, entonces $O(A, B) \leq O(A, C)$
 - Los índices de solapamiento proporcionan una medida del solapamiento entre dos conjuntos difusos.
 - Muy útiles para determinar "cómo de coincidentes" son dos conjuntos difusos.

Índices de solapamiento (cont.)

Teorema: construcción de índices de solapamiento

- **1** Sea $M: [0,1]^2 \rightarrow [0,1]$ una función de agregación tal que $M(x_1, \dots, x_n) = 0$ si y sólo si $x_1 = \dots = x_n = 0$
- 2 Sea $G_O: [0,1]^2 \to [0,1]$ una función de solapamiento.

Entonces, la función $O: FS(U) \times FS(U) \rightarrow [0,1]$ definida como:

$$O(A, B) = M(G_O(A(u_1), B(u_1)), \cdots, G_O(A(u_n), B(u_n)))$$
 (3)

es un índice de solapamiento.

Índices de solapamiento (cont.)

Algunos ejemplos de construcción de índices de solapamiento:

• Si $M = \text{Media aritm\'etica y } G_O = x \cdot y$:

$$O_{\pi}(A,B) = \frac{1}{n} \sum_{i=1}^{n} \mu_{A}(x_{i}) \cdot \mu_{B}(x_{i})$$
 (4)

• Si $M = \max(x_1, \dots, x_n)$ y $G_O = \min(x, y)$:

$$O_Z(A, B) = \max_{i=1}^{n} (\min(\mu_A(x_i), \mu_B(x_i)))$$
 (5)

• Si $M = \text{Media aritmética y } G_O = \sin(\frac{\pi}{2}(x \cdot y)^{\frac{1}{4}})$:

$$O_{sin}(A,B) = \frac{1}{n} \sum_{i=1}^{n} \sin(\frac{\pi}{2} (\mu_A(x_i) \cdot \mu_B(x_i))^{\frac{1}{4}})$$
 (6)

Lógica difusa

- Introducida por Lofti A. Zadeh en 1965.
- Extensión de la lógica clásica que utiliza conjuntos difusos para modelar conceptos vagos o imprecisos (usando variables lingüísticas).
- En la lógica proposicional clásica (modus ponens):

$$\frac{p}{p \to q} \tag{7}$$

si p es verdadera entonces se da q. Esta regla de inferencia clásica no permite que si la premisa es: p' (aproximadamente p), entonces q' (aproximadamente q):

• Solución: sistemas difusos basados en reglas.

Sistemas difusos basados en reglas

 Los sistemas difusos basados en reglas utilizan estructuras condicionales (reglas) de la forma:

IF
$$x_1$$
 es $A_1 \odot x_2$ es $A_2 \odot ... \odot x_n$ es A_n THEN y es B (8)

donde $x_1 \in U_i, ..., x_n \in U_n, y \in V$ son variables lingüísticas y \odot algún conectivo difuso (AND,OR,AND NOT,etc.).

Ejemplo:

• Las reglas difusas permiten modelar el conocimiento sobre el problema a resolver y calcular las salidas adecuadas para las entradas.

Sistemas difusos basados en reglas (cont.)

- **Entradas**: Entradas escalares (x') en algún universo de referencia (U).
- Fusificador: Transforma las entradas escalares en conjuntos difusos.
- Conjunto de reglas: Reglas IF-THEN que especifican cómo transformar las entradas en salidas (dependiente del problema).
- Sistema de inferencia difusa: Algoritmo que transforma las entradas en salidas, utilizando el conjunto de reglas.
- Defusificador: Transforma el conjunto difuso de salida en un valor escalar.

Sistemas difusos basados en reglas: Fusificadores

• Los fusificadores son funciones que transformas las entradas escalares en conjuntos difusos:

Sistemas difusos basados en reglas: Defusificadores

• Centroide: Obtiene el centro de gravedad de la curva.

$$y^* = \frac{\sum y \mu_{B'}(y)}{\sum \mu_{B'}(y)}$$
 (10)

• **Bisector:** Obtiene el punto por el que pasa la línea que divide la región delimitada por la función de pertenencia de B' y el eje de abscisas, en dos subsecciones de igual área:

$$y^*$$
 tal que:
$$\sum_{y=y_0}^{y=y^*} \mu_{B'}(y) = \sum_{y=y^*}^{y=y_n} \mu_{B'}(y)$$
 (11)

- Menor de máximos (SOM, smallest of maximum).
- Mayor de máximos (LOM, largest of maximum).
- Media de máximos (MOM, mean of maximum).

Inferencia difusa: Método de Mamdani

Propuesto por Mamdani y Assilian en 1975 [3] para realizar el control de un motor de vapor a partir de un conjunto de reglas obtenidas de operadores humanos experimentados:

Algoritmo: Método de Mamdani

```
Input: Un conjunto de reglas R_i (i \in \{1, ..., n\}) con varios antecedentes A_{ij} (j \in \{1, ..., m\}) y entradas escalares x_1, ..., x_m.
```

Output: B'.

1 for
$$i \in \{1, ..., n\}$$
 do

2 Calcular
$$k_i = \min(\mu_{Ai1}(x_1), \dots, \mu_{Aim}(x_m))$$

3 Calcular
$$B'_i = \{(y, \min(B_i(y), k_i)) | y \in Y\}$$

- 4 end
- 5 Construir $B' = \{(y, B'(y)) | y \in Y\}$ dado por:

$$B'(y) = \max_{i=1}^{n} (B'_i).$$

6 return B'

Inferencia difusa: Método de interpolación

- Históricamente uno de los métodos más utilizados para resolver sistemas basados en reglas ha sido el método de interpolación, desarrollado por Kóczy en 1993.
- En este método se utiliza la consistencia de Zadeh $O_Z(A,B) = \max_{i=1}^n (\min(\mu_A(x_i),\mu_B(x_i))).$

Algoritmo: Método de interpolación

Input: Un conjunto de reglas R_j , con $j \in \{1, \ldots, n\}$, un hecho A' y el índice de consistencia O_Z

Output: B'.

₁ for
$$j \in \{1, ..., n\}$$
 do

2 Calcular
$$O_Z(A', A_j) = \max_{x \in X} (\min(A'(x), A_j(x)))$$

3 end

4 Construir $B' = \{(y, B'(y)) | y \in Y\}$ dado por:

$$B'(y) = \max_{i=1}^{n} (\min(B_i(y), O_Z(A', A_i))).$$

5 return B'

Inferencia difusa: Nuevo método de interpolación

Nuevo método: El método de interpolación se puede generalizar para utilizar cualquier índice de solapamiento y reglas con varios antecedentes [2]:

Nuevo método de interpolación basado en índices de solapamiento

Input: Un conjunto de reglas R_j con varios antecedentes, con $j \in \{1, \dots, n\}$ y un hecho A'.

Output: B'.

- ¹ Seleccionar un operador de agregación M, una t-norma T y un índice de solapamiento O.
- ₂ for $i = 1 \rightarrow n$ do
- 3 | Calcular $O(A'_1, A_{i1}), \ldots, O(A'_m, A_{im})$
- 4 Calcular $k_i = T(O(A'_1, A_{i1}), ..., O(A'_m, A_{im}))$
- Construir sobre el universo de referencia Y el conjunto $K_i = \{(y, k_i) | y \in Y\}$
- 6 end
- 7 Construir $B' = \{(y, B'(y)) | y \in Y\}$ dado por:

$$B'(y) = M_1(\min(K_i, B_i)).$$

8 return B'

Riesgo de incendios forestales: Introducción

Caso práctico de aplicación de un sistema difuso basado en reglas aplicado a la detección y determinación del riesgo de incendios forestales [1]:

- Se despliega una *red de sensores inalámbricos* en la zona en la que se quiere monitorizar el riesgo de incendios (bosques, terreno montañoso, zonas rurales, etc.).
- La red de sensores mide magnitudes tales como la temperatura, luminosidad, humedad, presencia de humo etc.
- Estos valores medidos constituyen las entradas del sistema difuso basado en reglas, que debe determinar a partir de ellos el riesgo del incendio.
- El riesgo de incendio calculado es un valor entre 0 % (no existe riesgo) y 100 % (riesgo muy alto).

Riesgo de incendios forestales: Variables lingüísticas

Variables lingüísticas utilizadas por el sistema difuso:

Entradas (medidas por la red de sensores):

- **1** χ_1 **Temperatura:** medida en grados centígrados (0°C a 120°C).
- 2 χ_2 **Humo:** medida en partes por millón (0 a 100ppm).
- $3 \chi_3$ Luz: medida en lux (0 a 1000 lux).
- χ_4 **Humedad:** medida en partes por millón (0 a 100ppm).
- **5** χ_5 **Distancia:** medida en metros (0 a 80m).

Salida:

1 y - **Riesgo de incendio:** porcentaje (0-100 %).

Riesgo de incendios forestales: Conjunto de reglas

Todas las reglas tienen la forma:

```
IF \chi_1:Temperatura es \{L, M, H\} AND \chi_2:Humo es \{L, M, H\} AND \chi_3:Luz es \{L, M, H\} AND \chi_4:Humedad es \{L, M, H\} AND \chi_5:Distancia es \{L, M, H\} THEN y:Riesgo es \{VL, L, M, H, VH\} (12)
```

- Hay que tener en cuenta:
 - El riesgo es directamente proporcional a la temperatura, humo y luz.
 - El riesgo es inversamente proporcional a la humedad y la distancia.
- El conjunto completo de reglas consta de $3^5 = 243$ reglas.
- El sistema de inferencia difusa compara las entradas del sistema con los antecedentes de cada una de estas reglas para producir la salida (el riesgo de incendio).

Riesgo de incendios forestales: resultados

• Riesgos de incendio obtenidos al aplicar el método de Mamdani y el método de interpolación basado en índices de solapamiento (con $M = \text{Media aritmética}, T = T_{min}$ y $O = O_Z$) a las entradas:

Temperatura: 30°C.

4 Humo: 20ppm.3 Luz: 500lux.

4 Humedad: 50ppm.

Distancia: 40m.

(a) Mamdani

(b) Método de interpolación

Riesgo de incendios forestales: resultados (cont.)

Riesgos de incendio para diferentes entradas:

Método de Mamdani

Тетр.	Humo	Luz	Hum.	Dist.	Riesgo (%)					
					centroide (*)	bisector (+)	som (▽)	mom (□)	lom (△)	
25	0	200	20	70	20	18	0	6	12	
30	20	500	50	40	35	33	10	25	40	
40	50	500	30	40	43	45	38	50	62	
80	80	700	20	30	67	69	63	75	87	
100	90	900	10	20	80	82	84	92	100	
120	100	1000	10	10	91	92	92	96	100	

Método de interpolación basado en índices de solapamiento

$$(M = Media aritmética, T = T_{min} y O = O_Z)$$

Тетр.	Humo	Luz	Hum.	Dist.	Riesgo (%)					
					centroide (*)	bisector (+)	som (▽)	mom (□)	lom (△)	
25	0	200	20	70	18	15	8	10	12	
30	20	500	50	40	30	30	32	36	40	
40	50	500	30	40	41	41	38	42	45	
80	80	700	20	30	69	69	63	66	68	
100	90	900	10	20	85	87	84	90	95	
120	100	1000	10	10	91	92	92	96	100	

Riesgo de incendios forestales: resultados (cont.)

• Es posible combinar diferentes índices de solapamiento y t-normas:

Índices de solapamiento:

• Media de productos:

$$O_{\pi}(A, B) = \frac{1}{n} \sum_{i=1}^{n} \mu_{A}(x_{i}) * \mu_{B}(x_{i})$$

Media de mínimos:

$$O_{avgmin}(A, B) = \frac{1}{n} \sum_{i=1}^{n} \min(\mu_A(x_i), \mu_B(x_i))$$

• Máximo de mínimos:

$$O_Z(A, B) = \max_{i=1}^n (\min(\mu_A(x_i), \mu_B(x_i)))$$

Media de raíces cuadradas:

$$O_{\sqrt{}}(A,B) = \frac{1}{n} \sum_{i=1}^{n} \sqrt{\mu_A(x_i) * \mu_B(x_i)}$$

Media del seno:

$$O_{sin}(A, B) = \frac{1}{n} \sum_{i=1}^{n} \sin(\frac{\pi}{2} (\mu_A(x_i) * \mu_B(x_i))^{\frac{1}{4}})$$

T-normas:

Mínimo:

$$T_{min}(x_1, \cdots, x_n) = \min\{x_1, \cdots, x_n\}$$

Producto:

$$T_{prod}(x_1,\cdots,x_n)=x_1*\cdots*x_n$$

Media geométrica:

$$T_{geo}(x_1, \cdots, x_n) = (\prod_{i=1}^n x_i)^{\frac{1}{n}}$$

Media armónica:

$$T_{harm}(x_1, \cdots, x_n) = \frac{n}{\sum_{i=1}^n \frac{1}{x_i}}$$

Seno:

$$T_{sin}(x_1, \cdots, x_n) =$$

$$\frac{1}{n} \sin(\frac{\pi}{2}(x_1 * \dots * x_n))^{\frac{1}{4}}$$

Einstein:

$$T_{einstein}(x_1, \dots, x_n) = \frac{(x_1 * \dots * x_n)}{1 + (1 - x_1) * \dots * (1 - x_n)}$$

Temp. = 30°C, Humo = 20ppm, Luz = 500lux, Humedad = 50ppm y Dist. = 40m

T-norma	Índice de solapamiento	Riesgo (%)						
i -norma	•	cent. (*)	bis. (+)	som (▽)	mom (□)	lom (△)		
T _{prod}	O_{π}	29	29	26	38	49		
	O_{avgmin}	29	29	26	38	49		
	U_7	29	29	28	36	44		
	0_\sqrt	30	30	26	38	49		
	O _{sin}	31	31	26	38	49		
	O_{π}	31	31	26	38	49		
	O _{avgmin}	31	31	26	38	49		
T _{min}	O_Z	30	30	32	36	40		
	0_	31	31	26	38	49		
	O _{sin}	31	31	26	38	49		
	O_{π}	31	31	26	38	49		
	O _{avgmin}	31	31	26	38	49		
T_{geo}	07	31	30	32	32	32		
Ü	0	31	31	26	38	49		
	O _{sin}	31	31	26	38	49		
	O_{π}	31	31	26	38	49		
	O _{avgmin}	31	31	26	38	49		
T _{harm}	O_7	31	30	33	33	33		
	0_\(31	31	26	38	49		
	O _{sin}	31	31	26	38	49		
	O_{π}	31	31	26	38	49		
	O _{avgmin}	31	31	26	38	49		
T _{sin}	()7	31	31	28	37	46		
	0_	31	31	26	38	49		
	O _{sin}	31	31	26	38	49		
T _{einstein}	O_{π}	29	29	26	38	49		
	O _{avgmin}	29	29	26	38	49		
	()7	29	29	28	36	44		
	0,	30	30	26	38	49		
	O _{sin}	31	31	26	38	49		

Riesgo de incendios forestales: resultados (cont.)

- El método de interpolación obtiene resultados similares al método clásico de Mamdani.
- En general, se obtienen resultados similares al utilizar diferentes t-normas e índices de solapamiento en el método de interpolación.
 Los conjuntos de salida pueden diferir, pero los valores defusificados son bastante parecidos.
- Las mayores desviaciones se producen al utilizar los defusificadores basados en el máximo (especialmente en el método de Mamdani).
- Algunas consideraciones a la hora de seleccionar t-normas:
 - T-norma producto: Al multiplicar valores en el intervalo [0,1] se obtienen grados de pertenencia "muy pequeños" (del orden de 10¹⁴ en estos ejemplos). Puede producir problemas de precisión en reglas con muchos antecedentes.
 - 2 Łukasiewicz: No se puede aplicar a reglas de más de 2 antecedentes. Tiende a 0 muy rápidamente.

Conclusiones

- Se ha presentado un nuevo método de inferencia difusa: el *método de interpolación basado en índices de solapamiento*.
- Supone una generalización del método de interpolación clásico.
- Principal característica: Utilización de índices de solapamiento para comparar la premisa con los antecedentes de cada regla.
- Ventaja: permite utilizar diferentes t-normas, índices de solapamiento, y operadores de agregación y comparar los resultados.
- El método basado en índices de solapamiento produce mejores resultados, dado que la combinación convexa de índices de solapamiento es un índice de solapamiento.
- Se ha aplicado este método a un caso práctico: la detección y determinación del riesgo de incendios forestales.
- Se ha comprobado experimentalmente la corrección del método, comparando los resultados obtenidos con el método clásico de Mamdani.

Referencias

- P. Bolourchi and S. Uysal.
 Forest fire detection in wireless sensor network using fuzzy logic.
 In Computational Intelligence, Communication Systems and Networks
 - In Computational Intelligence, Communication Systems and Networks (CICSyN), 2013 Fifth International Conference on, pages 83–87, June 2013.
- [2] H. Bustince, E. Hüllermeier, R. Mesiar, N. Pal, and A. Pradera. Construction of overlap indexes from overlap functions and fuzzy rule-based systems. April 2013.
- [3] E. Mamdani and S. Assilian.
 An experiment in linguistic synthesis with a fuzzy logic controller.
 International Journal of Man-Machine Studies, 7(1):1 13, 1975.