On the power of oritatami cotranscriptional folding with unary bead sequence ⁰

Szilárd Zsolt Fazekas¹, Kohei Maruyama², Reoto Morita², Shinnosuke Seki²

¹Akita University, ²University of Electro-Communications

TAMC2019

科学技術振興機構

O Supported by KAKENHI Grant-in-Aid for Challenging Research(Exploratpry) No. 18K19779 and JST Program to Disseminate Tenure Tracking System No. 6F36

What is oritatami system?

Oritatami system is a mathematical model for cotranscriptional folding(CF). (Geary, Meunier, Schabanel and Seki. MFCS 2016.)

Figure: RNA tile is self-assembled (RNA Origami)

(Geary, Rothemund and Andersen. Science 345(6198), 2014)

An example

 $\Sigma = \{a, b, c, d\}, R = \{(a, a), (b, b), (c, c), (d, d)\},$ arity $\alpha = 2$, delay $\delta = 3$, $w = \underline{bac}$ bcadbcbab

An example

 $\Sigma = \{a, b, c, d\}, R = \{(a, a), (b, b), (c, c), (d, d)\},$ arity $\alpha = 2$, delay $\delta = 3$, $w = \underline{bac}$ bcadbcbab

An example

 $\Sigma = \{a, b, c, d\}, R = \{(a, a), (b, b), (c, c), (d, d)\},$ arity $\alpha = 2$, delay $\delta = 3$, $w = \underline{bac}$ bcadbcbab

An example

 $\Sigma = \{a, b, c, d\}, R = \{(a, a), (b, b), (c, c), (d, d)\},$ arity $\alpha = 2$, delay $\delta = 3$, $w = b\underline{acb}$ cadbcbab

An example

 $\Sigma = \{a, b, c, d\}, R = \{(a, a), (b, b), (c, c), (d, d)\},$ arity $\alpha = 2$, delay $\delta = 3$, w = bacbcadbcbab

An example

 $\Sigma = \{a, b, c, d\}, R = \{(a, a), (b, b), (c, c), (d, d)\},$ arity $\alpha = 2$, delay $\delta = 3$, w = bacbcadbcbab

An example

 $\Sigma = \{a, b, c, d\}, R = \{(a, a), (b, b), (c, c), (d, d)\},$ arity $\alpha = 2$, delay $\delta = 3$, $w = ba\underline{cbc}$ adbcbab

An example

 $\Sigma = \{a, b, c, d\}, R = \{(a, a), (b, b), (c, c), (d, d)\},$ arity $\alpha = 2$, delay $\delta = 3$, $w = bac\underline{bca}dbcbab$

An example

 $\Sigma = \{a, b, c, d\}, R = \{(a, a), (b, b), (c, c), (d, d)\},$ arity $\alpha = 2$, delay $\delta = 3$, $w = bacb\underline{cad}bcbab$

An example

 $\Sigma = \{a, b, c, d\}, R = \{(a, a), (b, b), (c, c), (d, d)\},$ arity $\alpha = 2$, delay $\delta = 3$, $w = bacbc\underline{adb}cbab$

An example

 $\Sigma = \{a, b, c, d\}, R = \{(a, a), (b, b), (c, c), (d, d)\},$ arity $\alpha = 2$, delay $\delta = 3$, $w = bacbca\underline{dbc}bab$

A deterministic oritatami system

An example

 $\Sigma = \{a, b, c, d\}, R = \{(a, a), (b, b), (c, c), (d, d)\},$ arity $\alpha = 2$, delay $\delta = 3$, $w = bacbcadbc\underline{bab}$

A deterministic oritatami system

An example

 $\Sigma = \{a, b, c, d\}, R = \{(a, a), (b, b), (c, c), (d, d)\},$ arity $\alpha = 2$, delay $\delta = 3$, $w = bacbcadbc\underline{bab}$

A deterministic oritatami system

An example

 $\Sigma = \{a, b, c, d\}, R = \{(a, a), (b, b), (c, c), (d, d)\},$ arity $\alpha = 2$, delay $\delta = 3$, $w = bacbcadbc\underline{bab}$

Turing universal

Theorem (C. Geary et al. ISAAC, 2018)

Oritatami system at *delay* $\delta = 3$ which employs 542 types of beads is Turing universal.

Theorem

Polynomial length of conformations → Non-Turing-universal

Problem

Problem

Give an upper bound on the length of a transcript of a *delay* δ , *arity* α deterministic oritatami system by a function in δ , α , and seed n.

Oritatami System

input : delay δ , arity α , seed, rule, transcript

output: conformation

Why unary?

Because we considered the unary oritatami system is good for a first step towards the characterization of non-Turing-universal oritatami systems.

Cases of non-Turing-universal oritatami systems

Cases of non-Turing-universal oritatami systems

Oritatami systems at delay 1

The two ways for a bead stabilization at delay 1

- To be bound to another bead.
- Through a 1-in-1-out structure called the tunnel section.

Oritatami systems at delay 1

The two ways for a bead stabilization at delay 1

- To be bound to another bead.
- Through a 1-in-1-out structure called the tunnel section.

Results $\delta = 1$

$$\alpha=4$$
 $3n^2+3n+1$
 $\alpha=3$ $4n+14$
 $\alpha=2$ ∞ but zigzag after $(27n^2+9n+1)$

^ac.f. $\alpha = 1$: 10*n* (Demaine et al. 2018 DNA24)

Deterministic unary oritatami system at $\delta=$ 1 and at $\alpha=$ 2 can make zig-zag but cannot at larger arity

$$\alpha = 2$$

Deterministic unary oritatami system at $\delta=$ 1 and at $\alpha=$ 2 can make zig-zag but cannot at larger arity

$$\alpha = 2$$

Deterministic unary oritatami system at $\delta=1$ and at $\alpha=2$ can make zig-zag but cannot at larger arity

$$\alpha = 2$$

Deterministic unary oritatami system at $\delta=$ 1 and at $\alpha=$ 2 can make zig-zag but cannot at larger arity

$$\alpha = 2$$

Deterministic unary oritatami system at $\delta=1$ and at $\alpha=2$ can make zig-zag but cannot at larger arity

$$\alpha = 3$$

Deterministic unary oritatami system at $\delta=$ 1 and at $\alpha=$ 2 can make zig-zag but cannot at larger arity

Results $(\delta = 1)$

$$\alpha = 4$$
 $3n^2 + 3n + 1$
 $\alpha = 3$ $4n + 14$
 $\alpha = 2$ ∞ but zigzag after $(27n^2 + 9n + 1)$

^ac.f. $\alpha = 1$: 10*n* (Demaine et al. 2018 DNA24)

$$\alpha = 4$$

The terminal conformation at $\alpha = 4$ is of length at most $3n^2 + 3n + 1(\bigcirc_O^n)$.

15/29

$$\alpha = 4$$

The terminal conformation at $\alpha = 4$ is of length at most $3n^2 + 3n + 1(\bigcirc_O^n)$.

$$\alpha = 4$$

The terminal conformation at $\alpha = 4$ is of length at most $3n^2 + 3n + 1(\bigcirc_O^n)$.

$$\alpha = 2 (\delta = 1)$$

A transcript folds into the zig-zag conformation after its $(27n^2 + 9n + 1)$ -th bead (\bigcirc_O^{3n}) .

$$\alpha = 2 (\delta = 1)$$

A transcript folds into the zig-zag conformation after its $(27n^2 + 9n + 1)$ -th bead (\bigcirc_O^{3n}) .

zig-zag conformation

free hands ≤ 2

$\alpha = 2 (\delta = 1)$

A transcript folds into the zig-zag conformation after its $(27n^2 + 9n + 1)$ -th bead (\bigcirc_O^{3n}) .

free hands =
$$\pm 0$$

free hands = -2

free hands
$$\leq +2$$

$\alpha = 2 (\delta = 1)$

A transcript folds into the zig-zag conformation after its $(27n^2 + 9n + 1)$ -th bead (\bigcirc_O^{3n}) .

Troll

free hands =
$$\pm 0$$

free hands =
$$-2$$

free hands
$$\leq +2$$

Tunnel Troll Theorem

Illustrated by Gido

Tunnel Troll Theorem

- $\alpha \ge 4$ # of free hands does not increase / tunnel section.
- $\alpha = 3$ Troll consumes bonds / tunnel section.
- $\alpha = 2$ Troll consumes bonds / tunnel.

Tunnel section

Tunnel

Tunnel Troll Theorem

 $\alpha \ge 4$ Any hands are not supplied with using a tunnel section.

Tunnel Troll Theorem

 $\alpha \ge 4$ Any hands are not supplied with using a tunnel section.

Tunnel Troll Theorem

Tunnel Troll Theorem

 $\alpha = 3$ At least one free hand is decreased / tunnel section.

free hands ≤ -1

Tunnel Troll Theorem

 $\alpha = 3$ At least one free hand is decreased / tunnel section.

free hands ≤ -1

Tunnel Troll Theorem

Tunnel Troll Theorem

Tunnel Troll Theorem

Tunnel Troll Theorem

Tunnel Troll Theorem

Tunnel Troll Theorem

Jordan curve theorem

A closed curve which is a non-self-intersecting divides into inside and outside.

At $\alpha = 2$, Troll consumes free hands an entrance of tunnel, too.

Thank you for listening!!

Tunnel Troll Theorem ($\alpha = 2$)

If this orange bead is stabilized by bonds, total bonds decrease.

References I