AUR 😂 RA

German Renewables Week

Virtual 2021

Is hydrogen an upside for renewables?

Alexander Esser, Lisa Langer

On the pathway to net zero: What roadblocks will we hit?

	Roadblocks (Selection)	Details
Society	Acceptance for renewables deployment	 NIMBY concerns towards hydro and wind power and grid extensions are growing
	Equitable distribution	 Redistributional effect from end-consumers to energy corporates Carbon pricing can lead to increase in inequality
	Required lifestyle change	Drastic changes in diet and transport required
Market & policy design	Incentive for green investments	Policy certainty required to avoid first mover problem
	Carbon leakage	 Risk that emission intensive industry moves to less ambitious regions
Technology	Seasonal storage of energy	 Options for seasonal storage of electricity are either expensive or hard to scale Molecules instead of electrons provide alternative
	Sectors that are hard to electrify	 Industrial processes with fossil feedstock require clean alternative High temperature heat and long-distance transport classes are expensive to electrify
	Carbon sequestration	 Scalable solutions are either expensive (Direct air capture) or still in early development (biochar, ocean alkalinity)

Source: Aurora Energy Research

Many sectors are difficult to decarbonize via green electricity – such as steel making or long distance transport

Hard-to-abate emissions in 2014, Gt CO2e

Industry will become the first demand sector with large potential – high penetration in heat and transport at question

- 1a) !!!! Industry
- Growth of sectors and higher H₂ penetration
- H₂ used also for low temperature processes with dedicated networks
- **1b** Transport
- Higher H₂ penetration for goods vehicles
- Liquid H₂ or H₂ derivatives to replace fossil fuels in aviation & waterway transport
- (1c) 🔥 Buildings Heat
- H₂ is used for district heating from 2030
- Gas boilers start to use green CH₄ in 2030, avoiding the high upfront costs of heat pumps

Note: H2 demand from the power sector (power-to-power) is an output of Aurora's power & hydrogen market model. Hence, not part of the assumptions.

□ Grey Chemical feedstock

We identified four upsides for renewables

- Increase of capture prices
- PPA potential
- Global hydrogen usage as a driver for accelerated renewable deployment
- Capture otherwise curtailed power

Deployment of electrolysers along the German strategy can improve renewables economics by ~12%

The recent German hydrogen strategy envisions to ramp up domestic green H2 production, ...

Electrolyser capacity and storage

..., which soaks up low prices when RES generate resulting in significant upward pressure on capture prices – on average 12%

Average capture price between 2030-2040

The volume of the German PPA market could grow – but questions on power procurement for electrolysis remain

But how much will be produced in Germany, if imports can be cheaper?

Levelised cost of delivered hydrogen to Germany in 2030 € (MAN/b ☐ (☐☐)()

- Blue H₂ by autothermal reformer with CCS
- Green H₂ by alkaline electrolysis
- Continental H₂ transported in greenfield pipelines
- Otherwise, by sea transport as ammonia

Source: Aurora Energy Research

Bringing down electricity costs through load factor optimisation will be key for competitive domestic production

Flexible electrolysers can optimise their load factor to produce the cheapest hydrogen

LCOH for a grid-connected alkaline electrolyser in Germany in 2030, by component $\in\!/\mathsf{MWh}\;\mathsf{H}_2(\mathsf{HHV})$

