

An Ab Initio Discussion on Anomalous Nuclear Magnetic Moment

Kuang Yaming Honors School

October 29, 2019

Overview

Introduction

Ab Initio Calculation via QCD

In Chapter 14 of our textbook, a brief introduction of NMR theory is given.

Equation 14.8 gives a naïve magnetic moment

$$\boldsymbol{\mu} = \mu_N \mathbf{I} = \frac{q}{2m_N} \mathbf{I}$$

and Equation 14.9 modifies that by introducing q-factor

$$\boldsymbol{\mu} = g\mu_N \mathbf{I}$$

or

$$\gamma = g\mu_N$$

However, why should we introduce g-factor, and can it be explained physically or calculated ab initio?

Nuclear Magnetic Moment, or g-factor, can be measured by experiment, and won't vary in different chemical environments.

However, why the g-factors look "anomalous"?

	$^{1}\mathrm{H}$	$^{2}\mathrm{H}$	$^7{ m Li}$	19 F
\overline{g}	5.58	0.86	2.17	5.25
$\mu(a.u.)$	2.79	0.86	3.25	2.63

王石嵘 161240065

October 29, 2019

南京大学匡亚明学院

Ab Initio Calculation of Proton Magnetic Moment

王石嵘 161240065 October 29, 2019