Hypothesis testing 1

Independent t-test

Two samples: goal

- We want to test if systolic blood pressure (sbp) is significantly different between boys and girls (sex)
- You need to determine if independent t-test or Mann-Whitney-U test is appropriate. Which data characteristics do you need to check?

In the *t*-test comparing the means of two independent samples, the following assumptions should be met:

NOT the means of the two samples!!!

- The means of the two populations being compared should follow normal distributions. Under weak assumptions, this follows in large samples from the central limit theorem, even when the
- distribution of observations in each group is non-normal.[19]
- If using Student's original definition of the *t*-test, the two populations being compared should have the same variance (testable using *F*-test, Levene's test, Bartlett's test, or the Brown–Forsythe test; or assessable graphically using a Q–Q plot). If the sample sizes in the two groups being compared are equal, Student's original *t*-test is highly robust to the presence of unequal variances. Welch's *t*-test is insensitive to equality of the variances regardless of whether the sample sizes are similar.
- The data used to carry out the test should either be sampled independently from the two populations being compared or be fully paired. This is in general not testable from the data, but if the data are known to be dependent (e.g. paired by test design), a dependent test has to be applied. For partially paired data, the classical independent *t*-tests may give invalid results as the test statistic might not follow a *t* distribution, while the dependent *t*-test is sub-optimal as it discards the unpaired data.^[21]

Most two-sample t-tests are robust to all but large deviations from the assumptions. [22]

Describe data

Let's also describe the data using numbers.

Statistics...

Plots...

Options...

OK

Normality check: test results

Tests of Normality										
	Kolmogorov–Smirnov ^a						Shapiro-Wilk			
		sex	Statistic	df	Sig.	Statistic	df	Sig.		
۴	sbp	0	.091	56	.200*	.968	56	.146		
		1	.143	44	.025	.938	44	.020		
	*. This is a lower bound of the true significance.									
	a. Lilliefors Significance Correction									

If the p-value of either test is < 0.05 (typical alpha level), the interpretation is: **normality assumption violated**

Do check other means to check the normality – tests are sensitive to outliers.

Normality check: Q-Q plot

 Can you use q-q plots to tell if data of each sample (approximately) follow a normal distribution?

Describe data

• Your potential audience may be more familiar with histograms

Extreme value

Chart Builder

If you want both histograms in one figure

Describe data

 What's the sample size for sex=0 and sex=1?

 What's the variance/SD value of each sample? Are the two samples similar in the variance value?

Descriptives

					De	escripti	ves			
			sex						Statistic	Std. Error
		sbp	0	Mean					46.46	1.489
				95% Confi	dence Int	erval	Lower Bour	nd	43.48	
			_	for Mean			Upper Bou	nd	49.45	
sex									46.72	
									47.00	
		C	ase Proc	essing Sun	nmary				124.217	
				Cas		_			11.145	
	sex	Va N	lid Percent	Miss N	ing Percent	N T	otal Percent		19	
sbp	0	56	100.0%	0	0.0%	56			67	
	1	44	100.0%	0	0.0%	44			48	
	interquartie range						13			
	- L		_	Skewness					282	.319
	7	-		Kurtosis					071	.628
			1	Mean					47.86	1.780
				95% Confi	dence Int	erval	Lower Bour	nd	44.27	
			_	for Mean			Upper Bou	nd	51.45	
			_	5% Trimm	ed Mean				47.14	
			_	Median					46.00	
			_	Variance					139.376	
			_	Std. Devia	tion				11.806	
			_	Minimum					27	
			_	Maximum					87	
			_	Range					60	
			_	Interquart	ile Range				12	
			_	Skewness					1.038	.357
				Kurtosis					1.909	.702

You can run independent sample t-test

• Sample distribution of Sbp when sex = 1 is not following a normal distribution, mostly because of the two outliers. The sample size of n=44 also supports the idea that the *sampling distribution* of the sample mean will be a normal distribution (central limit theorem).

Proceed with conducting the t-test

T-test results

Equal variances assumed

Equal variances not

assumed

T-Test

sbp

Group Statistics

	sex	N	Mean	Std. Deviation	Std. Error Mean
sbp	0	56	46.46	11.145	1.489
	1	44	47.86	11.806	1.780

In the *t*-test comparing the means of two independent samples, the following assumptions should be met:

- The means of the two populations being compared should follow normal distributions. Under weak assumptions, this follows in large samples from the central limit theorem, even when the distribution of observations in each group is non-normal.^[19]
- If using Student's original definition of the *t*-test, the two populations being compared should have the same variance (testable using *F*-test, Levene's test, Bartlett's test, or the Brown–Forsythe test; or assessable graphically using a Q–Q plot). If the sample sizes in the two groups being compared are equal, Student's original *t*-test is highly robust to the presence of unequal variances. [20] Welch's *t*-test is insensitive to equality of the variances regardless of whether the sample sizes are similar.
- The data used to carry out the test should either be sampled independently from the two populations being compared or be fully paired. This is in general not testable from the data, but if the data are known to be dependent (e.g. paired by test design), a dependent test has to be applied. For partially paired data, the classical independent *t*-tests may give invalid results as the test statistic might not follow a *t* distribution, while the dependent *t*-test is sub-optimal as it discards the unpaired data. [21]

t-test for Equality of Means

Significance Mean Std. Error
t df One-Sided p Two-Sided p Difference

.545

.548

-1.399

-1.399

2.305

2.321

.273

.274

Most two-sample *t*-tests are robust to all but large deviations from the assumptions.^[22]

p < 0.05 (typical alpha level) indicates equal variance assumption violated

Sig.

.779

-.607

-.603

98

89.858

Levene's Test for Equality of Variances

F

.079

T-test results: effect size

Independent Samples Effect Sizes

				95% Confidence Interval	
		Standardizer ^a	Point Estimate	Lower	Upper
sbp	Cohen's d	11.440	122	517	.273
	Hedges' correction	11.528	121	513	.271
	Glass's delta	11.806	119	513	.278

a. The denominator used in estimating the effect sizes.

Cohen's d uses the pooled standard deviation.

Hedges' correction uses the pooled standard deviation, plus a correction factor.

Glass's delta uses the sample standard deviation of the control (i.e., the second) group.

Most common statistic reported. You can report the absolute value of the point estimate (again, that's more common). In doing so, confidence intervals also need to be 'flipped' (ex. -.273 ~ .517.

You can try checking the above statement by conducting t-test again with different group levels.

Practice reporting results

• Please write a paragraph to report the statistical analysis results you generated so far.

• You can simulate the sampling distributions by bootstrapping.

If "Simple", resample from the entire sample If "Stratified", resample with respect to strata variable(s) Sampling Simple Stratified Variables: Strata Variables: 🧳 sbp 💑 sex გ tox გ grmhem 🥜 gestage 🚜 apgar5

• Simple vs. Stratified re-sampling

Simple: does not account for the strata variable (sex); the new sample's sbp values for sex = 0 can be resampled from the original sample's sbp values of either sex = 0 or sex = 1.

Stratified: maintains the original distribution of the strata variable (sex); the new sample's sbp values for sex = 1 are resampled only from the original sample's sbp values of sex = 1, and the same applies for sex = 0.

Bootstrap

Sampling = Simple

Bootstrap Specifications

Sampling Method	Simple
Number of Samples	1000
Confidence Interval Level	95.0%
Confidence Interval Type	Percentile

T-Test

Group Statistics

	от от при от того от т								
					Bootstrap ^a				
						95% Confide	nce Interval		
	sex		Statistic	Bias	Std. Error	Lower	Upper		
sbp	1	N	44						
		Mean	47.86	02	1.78	44.54	51.52		
		Std. Deviation	11.806	211	1.650	8.427	14.950		
		Std. Error Mean	1.780						
	0	N	56						
		Mean	46.46	.00	1.53	43.35	49.33		
		Std. Deviation	11.145	151	.995	8.966	12.801		
		Std. Error Mean	1.489						

a. Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples

Bootstrap

Sampling = Stratified by Sex

Bootstrap Specifications

Sampling Method	Stratified
Number of Samples	1000
Confidence Interval Level	95.0%
Confidence Interval Type	Percentile
Strata Variables	sex

T-Test

Group Statistics

					Bootstrap ^a				
							95% Confide	nce Interval	
		sex		Statistic	Bias	Std. Error	Lower	Upper	
	sbp	1	N	44					
			Mean	47.86	04	1.78	44.55	51.52	
			Std. Deviation	11.806	224	1.673	8.498	14.827	
			Std. Error Mean	1.780					
		0	N	56					
			Mean	46.46	.03	1.50	43.66	49.50	
			Std. Deviation	11.145	160	1.008	8.969	12.869	
			Std. Error Mean	1.489					

a. Unless otherwise noted, bootstrap results are based on 1000 stratified bootstrap samples

Sampling = "Stratified"

Bootstrap for Independent Samples Test

			Bootstrap ^a				
	Me					95% Confide	nce Interval
		Difference	Bias	Std. Error	Sig. (2-tailed)	Lower	Upper
sbp	Equal variances assumed	1.399	071	2.311	.557	-3.111	5.851
	Equal variances not assumed	1.399	071	2.311	.557	-3.111	5.851

a. Unless otherwise noted, bootstrap results are based on 1000 stratified bootstrap samples

Bootstrap for Independent Samples Test

Sam	pling = "Simple"		Bootstrap ^a			
Sairi	pting – Simple	Mean			95% Confide	nce Interval
		Difference	Bias	Std. Error	Lower	Upper
sbp	Equal variances assumed	1.399	024	2.325	-3.139	5.908
	Equal variances not assumed	1.399	024	2.325	-3.139	5.908

Independent Samples Test

a. Unless otherwise noted, bootstrap results are based on 1000 bootstrap samples

_	_			_
Para	metri	ctes	t resi	ılts

				t–test f	or Equality of Me	ans		
	Significance		95% Confidence Mean Std. Error Differe					
	t	df	One-Sided p	Two-Sided p	Difference	Difference	Lower	Upper
)	.607	98	.273	.545	1.399	2.305	-3.174	5.973
	.603	89.858	.274	.548	1.399	2.321	-3.211	6.010

Practice reporting results

 Please write a paragraph to report the statistical analysis results you generated using bootstrapping method (either simple or stratified method).