

properties of the adjoint operator

 ${\bf Canonical\ name} \quad {\bf Properties Of The Adjoint Operator}$

Date of creation 2013-03-22 13:48:14 Last modified on 2013-03-22 13:48:14

Owner Koro (127) Last modified by Koro (127)

Numerical id 12

Author Koro (127) Entry type Theorem Classification msc 47A05 Let A and B be linear operators in a Hilbert space, and let $\lambda \in \mathbb{C}$. Assuming all the operators involved are densely defined, the following properties hold:

- 1. If A^{-1} exists and is densely defined, then $(A^{-1})^* = (A^*)^{-1}$;
- $2. \ (\lambda A)^* = \overline{\lambda} A^*;$
- 3. $A \subset B$ implies $B^* \subset A^*$;
- 4. $A^* + B^* \subset (A+B)^*$;
- 5. $B^*A^* \subset (AB)^*$;
- 6. $(A + \lambda I)^* = A^* + \overline{\lambda}I$;
- 7. A^* is a closed operator.

Remark. The notation $A \subset B$ for operators means that B is an of A, i.e. A is the http://planetmath.org/RestrictionOfAFunctionrestriction of B to a smaller domain.

Also, we have the following

Proposition 1 If A admits a http://planetmath.org/ClosedOperatorclosure \overline{A} , then A^* is densely defined and $(A^*)^* = \overline{A}$.