Theorem 1 Given a graph in the coordinate plane, coordinate points of the form (x,0) on the curve are x-intercepts, and coordinate points of the form (0,y) on the curve are y-intercepts.

Definition. Given a graph in the coordinate plane, coordinate points of the form (x,0) on the curve are x-intercepts, and coordinate points of the form (0,y) on the curve are y-intercepts.

Definition. Given a graph in the coordinate plane, coordinate points of the form (x,0) on the curve are x-intercepts, and coordinate points of the form (0,y) on the curve are y-intercepts.

Example Definitions

Definition 1 A **prime number** is a natural number greater than 1 that has no positive divisors other than 1 and itself.

Definition 2 An **Euclidean space ** is the fundamental space of geometry, intended to represent the three-dimensional space of ordinary experience.

Definition 3 A **group** is a set of elements together with an operation that combines any two of its elements to form a third element, and that satisfies four conditions called the group axioms.

Example Definitions

Definition A **prime number** is a natural number greater than 1 that has no positive divisors other than 1 and itself.

Definition An **Euclidean space** is the fundamental space of geometry, intended to represent the three-dimensional

Simple Boxed Definition

Definition

A **prime number** is a natural number greater than 1 that has no positive divisors other than 1 and itself.

Definition

An **Euclidean space** is the fundamental space of geometry, intended to represent the three-dimensional space of ordinary experience.

Definition. Given a graph in the coordinate plane, coordinate points of the form (x,0) on the curve are x-intercepts, and coordinate points of the form (0,y) on the curve are y-intercepts.