Lecture 9:

Inference About Independence

Inference About Independence

In this lecture, we address the following questions:

- 1) How do we test if two random variables are independent?
- 2) How do we estimate the strength of dependence between them?

When Y and Z are not independent, we say that they are **dependent** or **associated** or **related**.

If Y and Z are associated, it does **not** imply that Y causes Z or that Z causes Y. Causation will be the subject of the next lecture.

We'll write: $Y \perp Z = Y$ and Z are independent (\perp in LaTeX, compare it to $\coprod = \$ \text{amalg from the book)} and $Y \asymp Z = Y$ and Z are dependent (\asymp symbol, different from the coil in the book)

Suppose that Y and Z are both binary and consider data $(Y_1, Z_1), \ldots, (Y_n, Z_n)$. We can represent it as a table:

	Y=0	Y=1	
Z =0	X ₀₀	X ₀₁	X ₀ .
Z =1	X ₁₀	X ₁₁	X ₁ .
	X. ₀	X. ₁	n=X

Where $X_{ij} = \#$ of observations for which Y = i and Z = j

Dotted subscripts denote sums: $X_{i\cdot} = \sum_{j} X_{ij}, \ X_{\cdot j} = \sum_{i} X_{ij}$

and
$$n = X_{..} = \sum_{i,j} X_{ij}$$

Denote the corresponding probabilities $p_{ij} = \mathbb{P}(Z = i, Y = j)$

	Y=0	Y=1	
Z =0	p ₀₀	p ₀₁	p ₀ .
Z =1	p ₁₀	p ₁₁	p ₁ .
	p. ₀	p. ₁	1

Let $X=(X_{00},X_{01},X_{10},X_{11})$ denote the vector of counts. Then $X\sim \text{Multinomial}(n,p)$ where $p=(p_{00},p_{01},p_{10},p_{11})$. Introduce

Definition: The odds ratio is $\psi = \frac{p_{00}p_{11}}{p_{01}p_{10}}$ and the \log odds ratio

is $\gamma = \log \psi$.

Theorem: The following statements are equivalent:

$$Y \perp Z$$
 and $\psi = 1$ and $\gamma = 1$ and $p_{ij} = p_{i\cdot}p_{\cdot j}$

Now consider testing $H_0: Y \perp Z$ versus $H_1: Y \simeq Z$.

First consider the likelihood ratio test:

Under H_1 , we have $X \sim \text{Multinomial}(n, p)$ and the MLE is $\hat{p} = X/n$.

Under H_0 , we again have $X \sim \text{Multinomial}(n,p)$ but the restricted MLE is computed under $p_{ij} = p_{i\cdot}p_{\cdot j}$ – a constraint.

So:

Theorem: The likelihood ratio test statistic for the above is

$$T = 2 \sum_{i=0}^{1} \sum_{j=0}^{1} X_{ij} \log \left(\frac{X_{ij} X_{..}}{X_{i.} X_{.j}} \right)$$

under H_0 , $T \stackrel{d}{\to} \chi_1^2$. So, the approx. level- α test is obtained by rejecting H_0 when $T > \chi_{1,\alpha}^2$

Another popular test for independence is Pearson's χ^2 test

Theorem: Pearson's χ^2 test statistic for independence is

$$U = \sum_{i=0}^{1} \sum_{j=0}^{1} \frac{(X_{ij} - E_{ij})^2}{E_{ij}} \quad \text{where } E_{ij} = \frac{X_{i} \cdot X_{\cdot j}}{n}$$

Under H_0 , $U \stackrel{d}{\to} \chi_1^2$. So, an approx. level- α test is obtained by rejecting H_0 when $U > \chi_{1,\alpha}^2$

Some intuition this: Under H_0 , $p_{ij} = p_{i\cdot}p_{\cdot j}$, so the MLE of p_{ij} under H_0 is $\hat{p}_{ij} = \hat{p}_{i\cdot}\hat{p}_{\cdot j} = \frac{X_{i\cdot}}{n}\frac{X_{\cdot j}}{n}$. So the expected # of observations in

(i,j)-th cell is $E_{ij}=n\hat{p}_{ij}$, and U compares observed to expected.

We can also estimate the strength of dependence by estimating the odds ratio ψ and the log-odds ratio γ .

Theorem: The MLEs of
$$\psi$$
 and γ are $\widehat{\psi} = \frac{X_{00}X_{11}}{X_{01}X_{10}}$ and $\widehat{\gamma} = \log \widehat{\psi}$.

The asymptotic (delta-method) standard errors are

$$\hat{\text{se}}(\hat{\gamma}) = \sqrt{\frac{1}{X_{00}} + \frac{1}{X_{01}}} + \frac{1}{X_{10}} + \frac{1}{X_{11}} \text{ and } \hat{\text{se}}(\hat{\psi}) = \hat{\psi} \hat{\text{se}}(\hat{\gamma})$$

Remark: For small sample sizes, $\widehat{\psi}$ and $\widehat{\gamma}$ can have very large variance, so a modified estimator $\widehat{\psi} = \frac{(X_{00}+1/2)(X_{11}+1/2)}{(X_{01}+1/2)(X_{10}+1/2)}$

can be used.

Another test for independence is the Wald test for $\gamma = 0$ given by

$$W = (\widehat{\gamma} - 0)/\widehat{\text{se}}(\widehat{\gamma}).$$

A $(1 - \alpha)$ -confidence interval for ψ can be obtained in two ways:

1) Use
$$\widehat{\psi} \pm z_{\alpha/2} \, \widehat{\text{se}}(\widehat{\psi})$$

2) Since
$$\psi = e^{\gamma}$$
, use $\exp\left(\hat{\gamma} \pm z_{\alpha/2} \, \hat{\text{se}}(\hat{\gamma})\right)$

Second method is usually more accurate.

Two Discrete Variables

Two Discrete Variables

Now suppose that $Y \in \{1,...,I\}$ and $Z \in \{1,...,J\}$. The data can be represented as an $I \times J$ table of counts:

$$X_{ij} =$$
 # of observations for which $Z = i$ and $Y = j$

Consider testing $H_0: Y \perp Z$ versus $H_1: Y \simeq Z$

Theorem: The likelihood ratio test statistic for this is

$$T=2\sum_{i,j}X_{ij}\log\left(\frac{X_{ij}X_{..}}{X_{i.}X_{.j}}\right)$$
, the limiting distribution of T under the

null hyp. (of independence) is χ^2_{ν} where $\nu = (I-1)(J-1)$.

Two Discrete Variables

Accordingly,

Theorem: Pearson's χ^2 test statistic is

$$U = \sum_{i,j} \frac{(X_{ij} - E_{ij})^2}{E_{ij}}$$

which, asymptotically, under H_0 , has χ^2_{ν} distribution with

$$\nu = (I - 1)(J - 1)$$

Suppose Y and Z are both continuous. If we assume the joint distribution of (Y,Z) is bivariate Normal, then the measure of dependence is the correlation coeff. $\rho = \frac{\mathbb{E}((Y-\mu_Y)(Z-\mu_Z))}{\sigma_Y \sigma_Z}.$

For testing independence, one has compute the confidence interval for ρ : for that there's 1) Delta-method, 2) a method due to Fischer:

1. Compute $\widehat{\rho}$ – sample correlation coeff. From it, compute

$$\widehat{\theta} = \frac{1}{2} \left(\log(1 + \widehat{\rho}) - \log(1 - \widehat{\rho}) \right)$$

(denote this function
$$f(x) = \frac{1}{2} \log \frac{1+x}{1-x}$$
, then $f^{-1}(x) = \frac{e^{2x}-1}{e^{2x}+1}$)

2. The approx. standard error of $\widehat{\theta}$ is

$$\hat{\text{se}}(\hat{\theta}) = \frac{1}{\sqrt{n-3}}$$
 (where n is the sample size)

3. An approx. $(1 - \alpha)$ -confidence interval for θ is

$$(a,b) = \left(\hat{\theta} - \frac{z_{\alpha/2}}{\sqrt{n-3}}, \hat{\theta} + \frac{z_{\alpha/2}}{\sqrt{n-3}}\right)$$

4. Confidence interval for ρ is $(f^{-1}(a), f^{-1}(b))$

If we do not assume Normality, we can still use this to test correlation.

However, if we conclude that ρ is 0, we can't conclude that Y and Z are independent – only that they are uncorrelated.

Fortunately, the other direction is valid: if Y and Z are correlated, we can conclude they are dependent!

One Continuous, One Discrete

One Continuous, One Discrete

Now $Y \in \{1,...,I\}$ is discrete and Z is continuous. Denote $F_i(z) = \mathbb{P}(Z \le z \mid Y = i)$ the CDF of Z conditional on Y = i.

Theorem: If so, then $Y \perp Z$ iff (= if and only if) $F_1 = \ldots = F_I$!

So, if we need to test for independence, we test

$$H_0: F_1 = ... = F_I$$
 versus $H_1: \text{not } H_0$

For simplicity, let's consider the case I=2. To test the null hypothesis that $F_1=F_2$ we'll use **two sample Kolmogorov-Smirnov test**.

One Continuous, One Discrete

Let n_1 = (# of observations when Y=1) and n_2 – same for Y=2.

Let
$$\widehat{F}_1(z) = \frac{1}{n_1} \sum_{i=1}^n I(Z_i \le z) I(Y_i = 1)$$
 and $\widehat{F}_2(z)$ resp.

The test statistic is
$$D = \sup_{x} |\widehat{F}_{1}(x) - \widehat{F}_{2}(x)|$$

Theorem: Let $H(t) = 1 - 2 \sum_{j=1}^{\infty} (-1)^{j-1} e^{-2j^2t^2}$. Under the null

$$\text{hypothesis that } F_1=F_2, \ \lim_{n\to\infty}\mathbb{P}\left(\sqrt{\frac{n_1n_2}{n_1+n_2}}D\leq t\right)=H(t).$$

So a level- α test is: reject H_0 if $\sqrt{n_1n_2/(n_1+n_2)}\,D>H^{-1}(1-\alpha)$