Exercícios Propostos¹

Ângulo entre retas e planos

1. Seja $\theta = \arg(r, s)$. Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d):

(a)
$$r: X = \left(-5, \frac{2}{3}, 0\right) + \lambda\left(\frac{1}{2}, 1, 1\right), \quad s: z = 3x = 2y - 16$$

(b)
$$r: X = (1,1,0) + \lambda(0,-1,1)$$
, $s: x-y+3=z=4$

(c)
$$r: \begin{cases} x+3z=7 \\ y=0 \end{cases}$$
, $s: \begin{cases} x-4y-2z=5 \\ y=0 \end{cases}$

(d)
$$r: x = \frac{1-y}{2} = \frac{z}{3}, \quad s: \begin{cases} 3x+y-5z=0\\ x-2y+3z+1=0 \end{cases}$$

- 2. Determine o ponto P na reta $r: X = (0,2,0) + \lambda(0,1,0)$ e o ponto Q na reta $s: X = (1,2,0) + \mu(0,0,1)$, tais que a reta PQ forme ângulos de 45° com r e de 60° com s.
- 3. Obtenha o ângulo em radianos entre a reta r e o plano π .

(a)
$$r: x = y - z = 0$$
, $\pi: z = 0$

(b)
$$r: -x = y = \frac{z-1}{2}, \quad \pi: 2x - y = 0$$

(c)
$$r: X = (1,0,0) + \lambda(1,1,-2), \quad \pi: x+y-z-1=0$$

- 4. Obtenha um vetor diretor *unitário* da reta que é paralela ao plano π_1 : x+y+z=0 e forma ângulo de 45° com o plano π_2 : x-y=0.
- 5. Calcule o ângulo entre os planos π_1 e π_2

(a)
$$\pi_1: 2x + y - z - 1 = 0$$
, $\pi_2: x - y + 3z - 10 = 0$

(b)
$$\pi_1: X = (1,0,0) + \lambda(1,0,1) + \mu(-1,0,0), \quad \pi_2: x+y+z=0$$

(c)
$$\pi_1: X = (0,0,0) + \lambda(1,0,0) + \mu(1,1,1), \quad \pi_2: X = (1,0,0) + \lambda(-1,2,0) + \mu(0,1,0)$$

6. Encontre o ângulo entre o plano 2x-y+z=0 e o plano que passa pelo ponto P=(1,2,3) e é perpendicular ao vetor $\vec{i}-2\vec{j}+\vec{k}$.

Distância entre ponto, reta e plano

7. Calcule a distância do ponto P à reta r.

(a)
$$P = (-2,0,1)$$
, $r: X = (1,-2,0) + \lambda(3,2,1)$

(b)
$$P = (1, -1, 4)$$
, $r: \frac{x-2}{4} = \frac{y}{-3} = \frac{1-z}{2}$

(c)
$$P = (0, -1, 0)$$
, $r : x = 2y - 3 = 2z - 1$

¹Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. **Data máxima de entrega: 17/07/2023 até 14:00 horas**

- 8. Obtenha os pontos da intersecção dos planos $\pi_1: x+y=2$ e $\pi_2: x=y+z$ que distam $\sqrt{\frac{14}{2}}$ da reta s: x=y=z+1.
- 9. Calcule a distância do ponto P ao plano π .
 - (a) P = (1,3,4), $\pi: X = (1,0,0) + \lambda(1,0,0) + \mu(-1,0,3)$
 - (b) P = (0, 0, -6), $\pi : x 2y 2z 6 = 0$
 - (c) P = (1, 1, 1), $\pi : 2x y + 2z 3 = 0$
- 10. Obtenha os pontos da reta r: x=2-y=y+z que distam $\sqrt{6}$ do plano $\pi: x-2y-z=1$.
- 11. Calcule a distância entre as retas $r \in s$.
 - (a) $r: X = (2,1,0) + \lambda(1,-1,1), s: x+y+z=2x-y-1=0$
 - (b) $r: \frac{x+4}{3} = \frac{y}{4} = \frac{z+5}{-2}$, $s: X = (21, -5, 2) + \lambda(6, -4, -1)$
 - (c) $r: \frac{x-1}{-2} = 2y = z$, $s: X = (0,0,2) + \lambda(-4,1,2)$
- 12. Calcule a distância entre a reta r e o plano π .
 - (a) $r: X = (1,9,4) + \lambda(3,3,3)$, $\pi: X = (5,7,9) + \lambda(1,0,0) + \mu(0,1,0)$
 - (b) r: x-y+z=0=2x+y-z-3, y-z=4
 - (c) r: x = y 1 = z + 3, $\pi: 2x + y 3z 10 = 0$
- 13. Calcule a distância entre os planos π_1 e π_2 .
 - (a) π_1 : 2x y + 2z + 0 = 0, π_2 : 4x 2y + 4z 21 = 0
 - (b) $\pi_1: 2x + 2y + 2z = 5$, $\pi_2: X = (2,1,2) + \lambda(-1,0,3) + \mu(1,1,0)$
 - (c) π_1 : x + y + z = 0, π_2 : 2x + y + z + 2 = 0