Analisis Deskriminan

Ide Dasar

- Sudah ada pengelompokan objek
- Mencari fungsi yang bisa dijadikan dasar membedakan (mendiskriminankan) objek ke dalam kelompok-kelompok
- Menentukan ke kelompok mana suatu objek baru
- Peubah pembeda adalah Peubah yang ragamnya besar
- Pembedaan seringkali memerlukan kombinasi beberapa Peubah (satu peubah tidak cukup)

Memperoleh fungsi diskriminan, yaitu fungsi yang mampu digunakan membedakan suatu objek masuk ke dalam populasi tertentu berdasarkan pengamatan terhadap objek tersebut

Penerapan

Face recognition

Marketing

Biomedical studies

Earth science

berfokus pada memaksimalkan keterpisahan di antara kategori yang diketahui dengan membuat sumbu linier baru dan memproyeksikan titik data pada sumbu tersebut.

ANALISIS DISKRIMINAN

LINIER

PCA: component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

Fungsi Diskriminan

- Bisa memisahkan kelompok-kelompok dengan salah klasifikasi paling kecil
- Mirip fungsi model regresi
- Bisa juga menggunakan analisis regresi logistik

$$D = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + \dots + b_k X_k$$

Dimana:

D = skor diskriminan

 b_i = koefisien diskriminan atau bobot

 X_i = predictor atau variable independen

Aturan Fungsi Diskriminan Fisher

AN ALLOCATION RULE BASED ON FISHER'S DISCRIMINANT FUNCTION®

Allocate \mathbf{x}_0 to π_1 if

$$\hat{y}_0 = (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)' \mathbf{S}_{\text{pooled}}^{-1} \mathbf{x}_0$$

$$\geq \hat{m} = \frac{1}{2} (\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2)' \mathbf{S}_{\text{pooled}}^{-1} (\overline{\mathbf{x}}_1 + \overline{\mathbf{x}}_2)$$

or

(11-35)

$$\hat{y}_0 - \hat{m} \ge 0$$

Allocate x_0 to π_2 if

 $\hat{y}_0 < \hat{m}$

OI

$$\hat{y}_0 - \hat{m} < 0$$

Ilustrasi

Exercises 11.19

a) Using the original data sets X_1 and X_2 given in Example 11.6, calculate \bar{x}_i , S_i , i=1,2, and $S_{\rm pooled}$, verifying the results provided for these quantities in the example.

Example 11.6.

Consider the following data matrices. We shall assume that the $n_1=n_2=3$ bivariate observations were selected randomly from two populations π_1 and π_2 with a common covariate matrix.

$$\mathbf{X}_1 = \begin{bmatrix} 2 & 12 \\ 4 & 10 \\ 3 & 8 \end{bmatrix} \quad \text{dan} \quad \mathbf{X}_2 = \begin{bmatrix} 5 & 7 \\ 3 & 9 \\ 4 & 5 \end{bmatrix}$$

$$\mathbf{X}_{1} = \begin{bmatrix} 2 & 12 \\ 4 & 10 \\ 3 & 8 \end{bmatrix}; \qquad \mathbf{\bar{x}}_{1} = \begin{bmatrix} 3 \\ 10 \end{bmatrix}, \qquad \mathbf{S}_{1} = \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix}$$

$$\mathbf{X}_{2} = \begin{bmatrix} 5 & 7 \\ 3 & 9 \\ 4 & 5 \end{bmatrix}; \qquad \mathbf{\bar{x}}_{2} = \begin{bmatrix} 4 \\ 7 \end{bmatrix},$$

$$\mathbf{S}_{2} = \begin{bmatrix} 1 & -1 \\ -1 & 4 \end{bmatrix}$$

Menghitung $\mathbf{S}_{\mathrm{pooled}}$ dapat menggunakan persamaan berikut:

$$\mathbf{S}_{\text{pooled}} = \left[\frac{\mathbf{n}_1 - 1}{(\mathbf{n}_1 - 1) + (\mathbf{n}_2 - 1)} \right] \mathbf{S}_1 + \left[\frac{\mathbf{n}_2 - 1}{(\mathbf{n}_1 - 1) + (\mathbf{n}_2 - 1)} \right] \mathbf{S}_2$$

sehingga matriks kovarian gabungannya adalah

$$\begin{split} \mathbf{S}_{\text{pooled}} \\ &= \left[\frac{3-1}{(3-1)+(3-1)} \right] \left[\frac{1}{-1} \quad \frac{-1}{4} \right] \\ &+ \left[\frac{3-1}{(3-1)+(3-1)} \right] \left[\frac{1}{-1} \quad \frac{-1}{4} \right] \\ &+ \left[\frac{3-1}{(3-1)+(3-1)} \right] \left[\frac{1}{-1} \quad \frac{-1}{4} \right] \\ \mathbf{S}_{\text{pooled}} &= \frac{1}{2} \left[\frac{1}{-1} \quad \frac{-1}{4} \right] + \frac{1}{2} \left[\frac{1}{-1} \quad \frac{-1}{4} \right] = \left[\frac{1}{-1} \quad \frac{-1}{4} \right] \end{split}$$

 Using calculation in Part a, compute Fisher's linear discriminant function, and use it to classify the sample observation according to Rule (11.25).

Diketahui nilai $\overline{x}_1, \overline{x}_2$ dan S_{pooled} dibagian (a). Kemudian hitung S_{pooled}^{-1} dimana

$$\mathbf{S}_{pooled}^{-1} = \begin{bmatrix} 1.333 & 0.333 \\ 0.333 & 0.333 \end{bmatrix}$$

Fungsi diskriminan prior yang sama adalah

$$\hat{\mathbf{y}} = \hat{\mathbf{a}}' \mathbf{x} = [\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2]' \mathbf{S}_{\text{pooled}}^{-1} \mathbf{x}$$

$$= [-1 \quad 3] \begin{bmatrix} 1.333 & 0.333 \\ 0.333 & 0.333 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

$$= -0.333 \mathbf{x}_1 + 0.667 \mathbf{x}_2$$

dengan

$$(\bar{\mathbf{y}}_1) = \hat{\mathbf{a}}' \bar{\mathbf{x}}_1 = [-0.333 \quad 0.667] \begin{bmatrix} 3 \\ 10 \end{bmatrix} = 5.667$$
 $(\bar{\mathbf{y}}_2) = \hat{\mathbf{a}}' \bar{\mathbf{x}}_2 = [-0.333 \quad 0.667] \begin{bmatrix} 4 \\ 7 \end{bmatrix} = 3.333$

dan titik tengah rata-ratanya

$$\overline{m} = \frac{1}{2}(\overline{y}_1 + \overline{y}_2) = \frac{1}{2}(5.667 + 3.333) = 4.5$$

- Alokasikan $\underline{x_0}$ ke π_1 jika $-0.333x_1 + 0.667x_2 4.5 \ge 0$ dan
- alokasikan x_0 ke π_2 jika $-0.333x_1+0.667x_2-4.5<0$ sehingga diperoleh

=(-0.333*2)+(0.667*12)-4.5
=(-0.333*4)+(0.667*10)-4.5
=(-0.333*3)+(0.667*8)-4.5

π_1		π_2	
$\hat{\mathbf{a}}'\mathbf{x} - \overline{\mathbf{m}}$	klasifikasi	$\hat{a}'x - \bar{m}$	klasifikasi
2.838	π_1	-1.496	π_2
0.838	π_1	0.505	π_1
-0.163	π_2	-2.497	π_2

dan titik tengah rata-ratanya

$$\overline{m} = \frac{1}{2}(\overline{y}_1 + \overline{y}_2) = \frac{1}{2}(5.667 + 3.333) = 4.5$$

• Alokasikan
$$\underline{x_0}$$
 ke π_1 jika $-0.333x_1 + 0.667x_2 - 4.5 \ge 0$ dan

• alokasikan x_0 ke π_2 jika $-0.333x_1 + 0.667x_2 - 4.5 < 0$ sehingga diperoleh

=(-0.333*2)+(0.667*12)-4.5	
=(-0.333*4)+(0.667*10)-4.5	
=(-0.333*3)+(0.667*8)-4.5	

1	τ_1	π_2		
$\hat{\mathbf{a}}'\mathbf{x} - \overline{\mathbf{m}}$	klasifikasi	â'x− m̄	klasifikasi	
2.838	π ₁ ✓	-1.496 -	\checkmark π_2	
0.838	π_1	0.505	π_1	
-0.163	π_2	-2.497	$\sqrt{\pi_2}$	

=(-0.333*5)+(0.667*7)-4.5

=(-0.333*3)+(0.667*9)-4.5

=(-0.333*4)+(0.667*5)-4.5

200

ATURAN smallest squared distance $D_i^2(x)$

- Hitung $D_i^2(x)=(x-\bar{x}_i)'S_{pooled}^{-1}(x-\bar{x}_i)$, i=1,2 untuk semua kelompok
- · Nilai Di yang terkecil merupakan lokasi dari kelompoknya

c) Classify the sample observation on the basis of smallest squared distance $D_i^2(x)$ of the observation from the group means \overline{x}_1 and \overline{x}_2 . [See (11.54).] Compare the results with those in Part b. $D_i^2(x) = (x - \overline{x}_i)' S_{\text{pooled}}^{-1}(x - \overline{x}_i), i = 1,2$

Dari persamaan diatas untuk $\bar{\mathbf{x}}_1$ diperoleh hasil

$$\binom{2}{12} - \binom{3}{10}' \begin{bmatrix} 1.333 & 0.333 \\ 0.333 & 0.333 \end{bmatrix} \binom{2}{12} - \binom{3}{10} = 1.333$$

$$D_1^2(\mathbf{x}) = \binom{4}{10} - \binom{3}{10}' \begin{bmatrix} 1.333 & 0.333 \\ 0.333 & 0.333 \end{bmatrix} \binom{4}{10} - \binom{3}{10} = 1.333$$

$$\binom{3}{8} - \binom{3}{10}' \begin{bmatrix} 1.333 & 0.333 \\ 0.333 & 0.333 \end{bmatrix} \binom{3}{8} - \binom{3}{10} = 1.332$$

$$\begin{pmatrix} 5 - 3 \\ 7 - 10 \end{pmatrix}' \begin{bmatrix} 1.333 & 0.333 \\ 0.333 & 0.333 \end{bmatrix} \begin{pmatrix} 5 - 3 \\ 7 - 10 \end{pmatrix} = 4.333$$

$$D_2^2(\mathbf{x}) = \begin{pmatrix} 3 - 3 \\ 9 - 10 \end{pmatrix}' \begin{bmatrix} 1.333 & 0.333 \\ 0.333 & 0.333 \end{bmatrix} \begin{pmatrix} 3 - 3 \\ 9 - 10 \end{pmatrix} = 0.333$$

$$\begin{pmatrix} 4 - 3 \\ 5 - 10 \end{pmatrix}' \begin{bmatrix} 1.333 & 0.333 \\ 0.333 & 0.333 \end{bmatrix} \begin{pmatrix} 5 - 3 \\ 7 - 10 \end{pmatrix} = 6.328$$

untuk
$$\bar{\mathbf{x}}_2$$
 diperoleh hasil
$$\begin{pmatrix} 2 & -4 \\ 12 & 7 \end{pmatrix}' \begin{bmatrix} 1.333 & 0.333 \\ 0.333 & 0.333 \end{bmatrix} \begin{pmatrix} 2 & -4 \\ 12 & 7 \end{pmatrix} = 6,997$$

$$\triangleright D_1^2(\mathbf{x}) = \begin{pmatrix} 4 & -4 \\ 10 & 7 \end{pmatrix}' \begin{bmatrix} 1.333 & 0.333 \\ 0.333 & 0.333 \end{bmatrix} \begin{pmatrix} 4 & -4 \\ 10 & 7 \end{pmatrix} = 2.997$$

$$\begin{pmatrix} 3 & -4 \\ 8 & 7 \end{pmatrix}' \begin{bmatrix} 1.333 & 0.333 \\ 0.333 & 0.333 \end{bmatrix} \begin{pmatrix} 3 & -4 \\ 8 & 7 \end{pmatrix} = 1$$

$$\begin{pmatrix} 5 & -4 \\ 7 & 7 \end{pmatrix}' \begin{bmatrix} 1.333 & 0.333 \\ 0.333 & 0.333 \end{bmatrix} \begin{pmatrix} 5 & -4 \\ 7 & 7 \end{pmatrix} = 1.333$$

$$\triangleright D_2^2(\mathbf{x}) = \begin{pmatrix} 3 & -4 \\ 9 & 7 \end{pmatrix}' \begin{bmatrix} 1.333 & 0.333 \\ 0.333 & 0.333 \end{bmatrix} \begin{pmatrix} 3 & -4 \\ 9 & 7 \end{pmatrix} = 1.333$$

$$\begin{pmatrix} 4 & -4 \\ 5 & 7 \end{pmatrix}' \begin{bmatrix} 1.333 & 0.333 \\ 0.333 & 0.333 \end{bmatrix} \begin{pmatrix} 4 & -4 \\ 5 & 7 \end{pmatrix} = 0.333$$

Hasil tersebut dapat dikelompokan dengan membuat tabel berikut:

π_1		π_2			
$D_1^2(\mathbf{x})$	$D_2^2(\mathbf{x})$	klasifikasi	$D_1^2(\mathbf{x})$	$D_2^2(\mathbf{x})$	klasifikasi
1.333	6.997	π_1	4.333	1.333	π_2
1.333	2.997	π_1	0.333	1.333	π_2
1.332	1	π_2	0.628	0.333	π_1

π_1		π_2	
$\hat{\mathbf{a}}'\mathbf{x} - \overline{\mathbf{m}}$	klasifikasi	$\hat{\mathbf{a}}'\mathbf{x} - \overline{\mathbf{m}}$	klasifikas
2.838	π_1	-1.496	π_2
0.838	π_1	0.505	π_1
-0.163	* π2	-2.497	π_2

Fisher

π_1		π_2			
$D_1^2(\mathbf{x})$	$D_2^2(\mathbf{x})$	klasifikasi	$D_1^2(\mathbf{x})$	$D_2^2(\mathbf{x})$	klasifikasi
1.333	6.997	π_1	4.333	1.333	π ₂
1.333	2.997	π_1	0.333	1.333	π_1
1.332	1	π_2	0.628	0.333	π_2

Smallest squared distance