

Optimización de colocación en campañas telefónicas por medio de sistemas inteligentes

SISTEMAS INTELIGENTES

- Edison Leonardo Neira Espitia
 - Sergio Andrés Rairán
- **S**ebastián **H**errera **M**onterrosa

Agenda

- Contextualización
- > Estado del Arte
- Solución del Problema
- Herramientas de Implementación
- Protocolo Experimental
- > Resultados
- > Conclusiones

CDT manejo de rentabilidad [1] [3] [17]

- CDT, la inversión más rentable en épocas de incertidumbre.
- Se recomienda el uso del CDT (Certificado de Depósito a Término) por sus bajos niveles de riesgo, plazos de inversión más cortos y buenos niveles de rentabilidad.
- Los niveles de inflación han favorecido las tasas de los CDT

Base de datos para investigación[2]

- •UCI Machine Learning Repository "Bank Marketing Data Set"
- •https://archive.ics.uci.edu/ml/datasets/bank+marketing

Base de datos para investigación

45,211 clientes con aplicación de la campaña telefónica

16 variables analizadas

100% completitud de la base

Artículo 1 – Artículo científico[16]

A data-driven approach to predict the success of bank telemarketing

Sérgio Moro a,*, Paulo Cortez b, Paulo Rita a

^{*} ISCTE-IUL, Business Research Unit (BRU-IUL), Lisboa, Portugal

b ALGORITMI Research Centre, Univ. of Minho, 4800-058 Guimarães, Portugal

Puntos clave

Trabajan los algoritmos de árboles de decisión, regresión logística, support-vector machines y redes neuronales artificiales. Concluyen que las redes neuronales son la mejor técnica obteniendo un 74,78% de precisión y un 65,29% de sensibilidad.

(ROC point for D=0.5):

	Predicted						
Target	failure	success					
failure	617 (48%)	140 (11%)					
success	186 (14%)	350 (27%)					

Artículo 2 – Artículo científico[13]

Evaluating Marketing Campaigns of Banking Using Neural Networks

Qeethara Kadhim Al-Shayea, Member, IAENG

Puntos clave

Trabajan el problema mediante las redes de propagación retroalimentadas y las redes neuronales artificiales.

Redes neuronales artificiales

28	17	62,22%			
2,75%	1,67%	37,78%			
93	881	90,45%			
9,13%	86,46%	9,55%			
23,14%	98,11%	89,21%			
76,86%	1,89%	10,79%			
Prec	Precisión				
Sensik	Sensibilidad				

Redes de propagación retroalimentadas

90	62	59,21%
2,57%	1,77%	40,79%
310	3037	90,74%
8,86%	86,80%	9,26%
22,50%	98,00%	89,37%
77,50%	2,00%	10,63%
Prec	89,3684%	
Sensik	59,2105%	

Artículo 3 – Artículo científico[18]

Evaluation of Classification and Ensemble Algorithms for Bank Customer Marketing Response Prediction

Olatunji Apampa Tilburg University The Netherlands

ABSTRACT

This article attempts to improve the performance of classification algorithms used in the bank customer marketing response prediction of an unnamed Portuguese bank using the Random Forest ensemble.

Puntos clave

- Se encontró que el algoritmo del árbol de decisiones (CART) se desempeñó mejor que los algoritmos de regresión logística (LR) y Naïve Bayes (NB) y arrojó un área bajo la curva (AUC) y un valor de precisión de clasificación (CA) de 76.6 %.
- Balancear los datos proporciona mejores resultados.

Artículo 4 – Artículo científico[19]

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma 32, 142-152, 2014

Research Article / Araştırma Makalesi
COMPARISON OF DATA MINING TECHNIQUES FOR DIRECT
MARKETING CAMPAINGS

Esra AKDENİZ DURAN*1, Ayça PAMUKCU2, Hazal BOZKURT2

¹İstanbul Medeniyet University, Faculty of Sciences, Department of Statistics, Üsküdar-İSTANBUL ²Marmara University, Faculty of Arts and Sciences, Department of Statistics, Göztepe-İSTANBUL

Received/Geliş: 27.07.2013 Revised/Düzeltme: 19.11.2013 Accepted/Kabul: 05.02.2014

Puntos clave

- El éxito de los bancos depende del uso eficaz de las estrategias de marketing directo.
- El modelo de red neuronal artificial tiene una precisión de clasificación del 90.8 % y una sensibilidad de 41.3% tanto para el train como para los conjuntos de datos de validación test.

Artículo 5 – Artículo científico[12]

International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-2, Issue-6, August 2013

Bank Direct Marketing Based on Neural Network

Hany, A. Elsalamony, Alaa. M. Elsayad

Puntos clave

Utilizan los mecanismos de redes neuronales de perceptrón multicapa y modelo de árbol de decisiones de Ross Quinlan, obteniendo los siguientes resultados.

Model	Partition	Accuracy	Sensitivity
MI DNN	Training	90.84%	63.64%
MLPNN	Testing	90.32%	60.12%
CEO	Training	93.23%	76.75%
C5.0	Testing	90.09%	59.06%

Artículo 6 – Artículo científico[11]

Targeting direct marketing campaigns by neural networks

Gianluigi Guido, University of Salento, Italy M. Irene Prete, University of Salento, Italy Stefano Miraglia, Imperial College London, UK Irma De Mare, Leroy Merlin, Italy

Puntos clave

- Abordan el problema utilizando técnicas de aprendizaje de máquina como regresión múltiple y regresión logística, y también se desarrolla usando redes neuronales.
- Concluyen que las redes neuronales son una mejor técnica para el problema como una mejor técnica para este problema.

Solución del problema

Metodología

Variable respuesta

- La respuesta se define: toma o no la campaña ofrecida vía telefónica.
- Se manejan variables sociodemográficas, comportamiento financiero y estado de la llamada.
- Las variables caracterizan la respuesta.
- Se realizarán los cambios y transformaciones respectivas a la base.

Proceso de solución

Tratamiento

• Conversión de características

Balanceo

Aplicación técnicas

Estandarización

• Transformación de variables

Entrenamiento RNA

• Pruebas del modelo

Medición resultados

• Cálculo de estadísticos

Tratamiento

 Por medio de la función get_dummies, se transforman variables categóricas a numéricas.

```
python
```

```
[ ] df_piv=pd.get_dummies(df_piv,columns=['job','marital','poutcome'])
```

```
[ ] df_piv=pd.get_dummies(df_piv,columns=['default','housing','loan','contact','y'],drop_first = True)
```

- La base se convierte en un arreglo
- La variable respuesta es expresada en términos de 0 y 1

Tratamiento de característica

De acuerdo al conjunto de datos y posterior al análisis de características aplicamos las siguientes estrategias a cada conjunto de variables:

Variables Nominales

- Job
- Marital
- Default
- Housing
- Loan
- Contact
- Poutcome
- Y (Target)

Estrategia usada

pd.get_dummies

Variables Ordinales

- Education
- Month

Estrategia usada

OrdinalEncoder

Variables Descartadas

Duration

Estrategia usada

Eliminar: Variable que tiene una alta relación con la campaña por lo cual nos puede sobre ajustar el modelo, pues indica tiempo de duración de la llamada y es 0 cuando no ha sido contactado

Variables Estandarizadas

- age
- balance
- day
- campaign
- pdays
- previous

Estrategia usada

StandardScaler()

Redes Neuronales Artificiales

- Se clasifican las personas que adquieren la campaña
- Hay un aprendizaje con cada iteración
- Se balancean los datos de entrada

- Se realiza la búsqueda de los mejores hiper parámetros
- El algoritmo se calibra con los ajustes de la base

Software Matemático

- Python como lenguaje de programación
- Google Collabs como entorno de desarrollo
- Scikit Learn para implementación de redes neuronales
- Librerías Pandas y Numpy para manejo de DataFrame
- Matplotlib para graficar indicadores y resultados

Repositorio GitHub

https://github.com/leonardo-91/sistemas-inteligentes

En nuestra protocolo experimental empezamos la ejecución sin hacer ningún tratamiento adicional a las variables aparte de la conversión de características usando mayormente los hiper-parámetros

por default (distribución 70% Tr -- 30% Ts):

Hiperparametros							
Solver	max-iter	random_state	hidden_layer_sizes	alpha	activation	learning_rate_init	
lhfae	100	1	(2.1)	0.0001 (Default)	relu (Default)	0.001 (Default)	
	Solver Ibfgs		_	Solver max-iter random_state hidden_layer_sizes	Solver max-iter random_state hidden_layer_sizes alpha 0.0001	Solver max-iter random_state hidden_layer_sizes alpha activation 0.0001 relu	

Salida

Accuracy train 0.8827

accuracy score 0.8829

Sensibilidad 0.0006

F1 - Parámetros y salidas

En este caso aunque el modelo tiene una muy buena exactitud vemos muy mala sensibilidad que es nuestra métrica objetivo, adicionalmente con base a las figuras F1 y F3 vemos que el modelo está generalizando y presenta un claro desbalance en las etiquetas tipo 0 (No tomar la campaña).

Dado el desbalance de las clases en nuestro modelo procedemos aplicar 3 técnicas de ML para tratar este caso (distribución 70% Tr -- 30% Ts):

	Hiperparametros						
Cantidad Variables	Solver	max-iter	random_state	hidden_layer_sizes	alpha	activation	learning_rate_init
32	Ibfgs	200	1	(2,1)	0.0001 (Default)	relu (Default)	0.001 (Default)

Undersampling

Distribucion Original Counter({0: 27945, 1: 3702})
Distribucion despuest del subsampling Counter({0: 3702, 1: 3702})

Oversampling

Distribucion Original Counter({0: 39922, 1: 5289})
Distribution despues del oversampling Counter({0: 39922, 1: 39922})

Salida						
Accuracy trai	n accu	ıracy score	Sensibilidad			
0.554	18	0.552	0.9076			
		Valor	Predicho			
	-	no	yes			
Valor	no	2353	9624			
Verdadero	yes	1106	10871			

Distribucion Original Counter({0: 39922, 1: 5289})
Distribution despues smote-Tomek Counter({0: 38900, 1: 38900})

SmoteTomek (Combinada)

Salida

Luego de realizar el tratamiento de desbalanceo de datos decidimos seleccionar **somoteTomek** como mejor estrategia y realizamos un aproximado total de 500 de secciones de ejecución de aprendizaje en las redes neuronales variando cantidad de características e hiperparámetros. Comenzando con un ingenuo y a medida que no se llega al resultado se ajustan los hiperparámetros

			1		Derparar Hiperparametr		3		
Cantidad Variables	Standari zacion	Solver	max-iter	random _state	hidden_ layer_sizes	alpha	activation	learning_ rate_init	
32	No	Ibfgs	100	1	(2,1)	0.0001 (Default)	relu (Default)	0.001 (Default)	
32	No	Ibfgs	200	1	(2,1)	0.0001 (Default)	relu (Default)	0.001 (Default)	
32	No	Ibfgs	200	1	(2,1)	0.0001 (Default)	relu (Default)	0.001 (Default)	Secciones Individuales
32	No	Ibfgs	200	1	(2,1)	0.0001 (Default)	relu (Default)	0.001 (Default)	Sectiones mairiadales
32	SI	Ibfgs	200	1	(2,1)	0.0001 (Default)	relu (Default)	0.001 (Default)	
32	SI (PARCIAL)	Ibfgs	200	1	(2,1)	0.0001 (Default)	relu (Default)	0.001 (Default)	
32	SI	['sgd', 'adam', 'lbfgs']	5000	1	[(10), (10, 12),(10,12,14),(10,10,10)]	[1.e-03, 1., 1.e+03]	['logistic', 'relu', 'tanh', 'identity']	[0.001, 0.01, 0.1]	100 Secciones ejecutadas a través del método - RandomizedSearchCV
32	SI	['sgd', 'adam']	5000	1	[(10,12),(10,1 2,14)]	[1.e-03, 1.]	['relu', 'tanh']	[0.01, 0.1]	16 Secciones ejecutadas a través del método - GridSearchCV

Luego de realizar el tratamiento de desbalanceo de datos decidimos seleccionar **Smote-Tomek** como mejor estrategia y realizamos un aproximado total de 500 de secciones de ejecución de aprendizaje en las redes neuronales variando cantidad de características e hiperparametros .

Características (PCA)

		Hiperparametros						
Cantidad Componentes	Standari zacion	Solver	max-iter	random _state	hidden_ layer_sizes	alpha	activation	learning_ rate_init
2	SI	sgd	2000	1	(10,12)	1	relu	0.01
2	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
4	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
6	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
8	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
10	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
12	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
14	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
16	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
18	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
20	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
22	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
24	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
26	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
28	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
30	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01

		Hiperparametros						
Cantidad Variables	Standari zacion	Solver	max-iter	random _state	hidden_ layer_sizes	alpha	activation	learning_ rate_init
18	SI	sgd	2000	1	(10,12,14)	1	relu	0.01
18	SI	sgd	2000	1	(10,12,14,16)	1	relu	0.01
18	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
19	SI	sgd	2000	1	(10,12,14)	1	relu	0.01
19	SI	sgd	2000	1	(10,12,14,16)	1	relu	0.01
19	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01
32	SI	sgd	2000	1	(10,12,14)	1	relu	0.01
32	SI	sgd	2000	1	(10,12,14,16)	1	relu	0.01
32	SI	sgd	2000	1	(10,12,14,16,18)	1	relu	0.01

Secciones Individuales

Ejecutamos 12 iteraciones de la metodología CRISP DM. En cada iteración ejecutamos modelos distintos hasta llegar al objetivo planteado de precisión y sensibilidad. Las principales técnicas utilizadas son balanceo de datos, combinaciones de hiperparámetros, estandarización de los datos,

análisis PCA.

Iteración 1: ejecución del modelo con características completas sin estandarizar y con datos desbalanceados.

11976	1	99,99%	
88,29%	0,01%	0,01%	
1586	1	0,06%	
11,69%	0,01%	99,94%	
88,31%	50,00%	88,30%	
11,69%	50,00%	11,70%	
Prec	Precisión		
Sensil	Sensibilidad		

Iteración 4: ejecución del modelo con características completas sin estandarizar y con datos balanceados por sobre muestreo en clase minoritaria.

2353	9624	19,65%	
9,82%	40,18%	80,35%	
1106	10871	90,77%	
4,62%	45,38%	9,23%	
68,03%	53,04%.	55,21%	
31,97%	46,96%	44,79%	
Prec	Precisión		
Sensil	Sensibilidad		

Iteración 9: ejecución del modelo con características completas variando hiperparámetros mediante algoritmo de búsqueda exhaustiva

753	305	71,17%
35,59%	14,41%	28,83%
295	763	72,12%
13,94%	36,06%	27,88%
71,85%	71,44%	71,64%
28,15%	28,56%	28,36%
Precisión		71,6446%
Sensibilidad		72,1172%

Iteración 12: ejecución del modelo seleccionando con características completas estandarizadas con los mejores hiperparámetros y con datos balanceados mediante algoritmo Smote-Tomek.

10621	1049	91,01%	
45,51%	4,49%	8,99%	
2081	9589	82,17%	
8,92%	41,08%	17,83%	
83,62%	90,14%	86,59%	
16,38%	9,86%	13,41%	
Precisión		86,5895%	
Sensibilidad		82,1680%	

Con el fin de garantizar la estabilidad del modelo decidimos realizar un análisis final de validación cruzada con dos estrategias: **K iteraciones** y **K iteraciones estratificado**, con los siguientes resultados.

Nota: Es importante aclarar que solo variamos de manera aleatoria el set de datos pero tanto hiperparámetros como características son constantes.

Cross Validation K-Folds

```
[ ] 1 from sklearn.model_selection import cross_val_score
2 from sklearn.model_selection import KFold

[ ] 1 kf = KFold(n_splits=3)
2 scores = cross_val_score(mlp_PRO_FLA, X_trainPF, y_trainPF, cv=kf, scoring="accuracy",n_jobs=-1)
3 sensibilidades = cross_val_score(mlp_PRO_FLA, X_trainPF, y_trainPF, cv=kf, scoring="recall",n_jobs=-1)

[ ] 1 print("Metricas scores", scores)
2 print("Metricas sensibilidades", sensibilidades)

Metricas scores [0.85386141 0.86167576 0.86024349]
Metricas sensibilidades [0.79596561 0.79314917 0.79787 ]
```

Con el fin de garantizar la estabilidad del modelo decidimos realizar un análisis final de validación cruzada con dos estrategias: **K iteraciones** y **K iteraciones estratificado**, con los siguientes resultados.

Nota: Es importante aclarar que solo variamos de manera aleatoria el set de datos pero tanto hiperparámetros como características son constantes.

Cross Validation Stratified K-Fold

Seleccionamos como modelo final el obtenido en la iteración 12 al que le realizamos una prueba de validación cruzada de K iteraciones con 50 muestras, para las que se obtiene un promedio de precisión de 86.66% y un promedio de sensibilidad de 60.9830%. Cuando se prueba el modelo con los datos originales se obtiene la siguiente matriz de confusión y la siguiente curva ROC:

9910	1760	84,92%
42,46%	7,54%	15,08%
2185	9485	81,28%
9,36%	40,64%	18,72%
81,93%	84,35%	83,10%
18,07%	15,65%	16,90%
Precisión		83,0977%
Sensibilidad		81,2768%

Resultados - Topología

F1- Mejores Hiperparámetros

Cantidad de variables	Estandarización	solver	max-iter	Capas(neuronas)	Alpha	Activación	Learning rate	Método balanceo
32	Standart Scaler	sgd	5000	(10,12,14,16,18) 5 capas	1	relu	0,01	smote-Tomek

	Valor		Predicho	
	_	no	yes	
Valor	no	10621	1049	
Verdadero	yes	2081	9589	

F2-Matriz de confusión

Salida				
Accuracy train	accuracy score	Sensibilidad		
0.8649	0.8658	0.9013		

F3 - Scores

Conclusiones

- Logramos indicadores de precisión y sensibilidad superiores a los artículos de la bibliografía.
- Las redes neuronales artificiales son capaces de clasificar de manera efectiva el perfil de los clientes y así aumentar la probabilidad de aceptación del producto o servicio al utilizar una campaña de marketing directo.
- Un análisis previo de las variables para poder identificar posibles problemas que generan sobre ajuste como lo son variables altamente correlacionadas con la variable objetivo o un desbalanceo.
- Es necesario probar diferentes técnicas en cada etapa del desarrollo, a veces los resultados suelen favorecer a una inicialmente, pero al llevar a la evaluación de los resultados no presenta el mejor resultado.
- Cuando se llegan a mínimos locales y no se tiene un incremento en los estadísticos evaluados se debe replantear la cantidad de variables y el ruido que estas puedan estar generando en el modelo.
- El método de Smote Tomek, por ser una técnica que balancea tanto la cantidad de objetos de interés como los de no interés suele tener mejores resultados en este tipo de datos. No obstante, no es bueno trabajar solo con una técnica inicialmente.
- Una buena forma de obtener mejores resultados puede ser la reducción de variables en un modelo evaluado.

- [1]"Invertir en un CDT le puede dejar una rentabilidad hasta de 5,50% según el plazo." https://www.larepublica.co/finanzas/invertir-en-un-cdt-le-puede-dejar-una-rentabilidad-hasta-de-550-segun-el-plazo-3220582 (accessed Mar. 20, 2022).
- [2]"UCI Machine Learning Repository: Bank Marketing Data Set." https://ar-chive.ics.uci.edu/ml/datasets/bank+marketing (accessed Mar. 12, 2022).
- [3] "Depósitos a término fijo Enciclopedia | Banrepcultural." https://enciclopedia.banrepcultural.org/index.php/Dep%C3%B3sitos_a_t%C3%A9rmino_fijo (accessed Mar. 20, 2022).
- [4]X. B. Olabe, "REDES NEURONALES ARTIFICIALES Y SUS APLICACIONES."
- [5]"Conceptos básicos de ayuda de CRISP-DM -Documentación de IBM." https://www.ibm.com/docs/es/spss-modeler/SaaS?topic=dm-crisp-help-over-view (accessed Mar. 20, 2022).
- [6]J. Ariel, C. Ochoa, J. Francisco, and M. Trinidad, "SMOTE-D, UNA VERSIÓN DETERMINISTA DE SMOTE."

- [7]"Acerca de las familias de máquinas | Documentación de ComputeEn-gine | Google Cloud." https://cloud.google.com/compute/docs/machine-types (accessed Mar. 20, 2022).
- [8] "sklearn.neural_network.MLPClassifier —scikit-learn 1.0.2 documentation." https://scikit-learn.org/stable/modules/generated/sklearn.neural_net-work.MLPClassifier.html (accessed Mar. 20, 2022).
- [9]D. P. Kingma and J. L. Ba, "Adam: A method for stochastic optimization," 3rd International Conference on Learning Representations, ICLR 2015 -Conference Track Proceedings, 2015.
- [10] "sklearn.ensemble.RandomForestClassifier —scikit-learn 1.0.2 documenta-tion." https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.Ran-domForestClassifier.html (accessed Mar. 20, 2022).
- [11] Guido, G., Prete, M. I., Miraglia, S., & De Mare, I. (2011). Targeting direct marketing campaigns by neural networks. Journal of Marketing Manage-ment, 27(9-10), 992-1006.
- [12] Elsalamony, H. A., & Elsayad, A. M. (2013). Bank direct marketing based on neural network and C5. 0 Models.International Journal of Engineering and Ad-vanced Technology (IJEAT),2(6).

- [13] Al-Shayea, Q. K. (2013). Evaluating marketing campaigns of banking using neural networks. In Proceedings of the World Congress on Engineering (Vol. 2).
- [14]Liu, H. H., & Ong, C. S. (2008). Variable selection in clustering for marketing segmentation using genetic algorithms. Expert Systems with Applications, 34(1), 502-510.
- [15]Khan, N., & Khan, F. (2013). Fuzzy based decision making for promotional marketing campaigns. International Journal of Fuzzy Logic Systems, 3(1), 64-77.
- [16]Moro, S., Cortez, P., & Rita, P. (2014). A data-driven approach to predict the success of bank telemarketing. Decision Support Systems, 62, 22-31
- [17] "CDT, la inversión más rentable en épocas de incertidumbre | Contenido Patrocinado | Portafolio." https://www.portafolio.co/contenido-patrocinado/cdt-la-inversion-mas-rentable-en-epocas-de-incertidumbre-562982 (accessed Mar. 21, 2022).
- [18] O. Apampa, "Evaluation of Classification and Ensemble Algorithms for Bank Customer O. Apampa Evaluation of Classification and Ensemble Algorithms for Bank Customer Marketing Response Prediction."

• [19] E. A. Duran, A. Pamukcu, and H. Bozkurt, "COMPARISON OF DATA MINING TECHNIQUES FOR DIRECT MARKETING CAMPAINGS."

Redes Neuronales

