cuFLAVR

Aditya Hota, Richard Chen, Kaan Erdogmus CIS 565 Fall 2021 Milestone 3 Presentation

FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation

Tarun Kalluri *
UCSD

Deepak Pathak CMU Manmohan Chandraker UCSD

Du Tran Facebook AI

https://tarun005.github.io/FLAVR/

(a) Overview of the proposed architecture

(b) Sampling procedure

Milestones

- Milestone 3 (12/06)
 - Finish layers for 3D convolutions and gating
 - Match PyTorch model weights with our cuFLAVR network
 - Convert video into image frames (inference inputs)
- Final Deliverable (12/12)
 - Combine all custom layers together
 - Automated pathway for generating interpolated videos
 - Performance analysis (and potential comparison to PyTorch)

Completed Work

- Milestone 3 (12/06)
 - 🛕 Reviewed network details and noticed discrepancies with paper
 - Diagrams and implementation details in paper are not accurate
 - **V** Understood which convolutions are needed for cuDNN implementation
 - V Implemented 3D convolutions
 - Implemented ReLU and Sigmoid cuDNN layers
- Other progress
 - Created wrapper for NN layers to simplify cuDNN calls
 - Combining layers is in progress

Model Revision (old)

Model Revision (correct)

3D Convolutions using cuDNN

- Implemented all code required to setup and run convolution
- Values match expected outputs from PyTorch!
 - Checked float values for matching; dark color due to PIL in Colab

(a) Original image

(b) PyTorch result

(c) cuDNN result

Model Simplifications

- Streamlined PyTorch model to remove unused code
- Exported info for all layers of model in plain text
- Able to do all convolutions without batch normalizations

Next Milestone

- Final Presentation (12/13)
 - Finish as many remaining CNN layers as possible
 - Integrate into PyTorch if needed
 - Load all weights from PyTorch model
 - Load frames into CUDA application
 - Generate output
 - Performance analysis
 - Update the README

References

Papers:

Kalluri, T., Pathak, D., Chandraker, M., & Tran, D. (2020). Flavr: Flow-agnostic video representations for fast frame interpolation. *arXiv preprint arXiv:2012.08512*.

Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., & Paluri, M. (2018). A closer look at spatiotemporal convolutions for action recognition. In *Proceedings of the IEEE* conference on Computer Vision and Pattern Recognition (pp. 6450-6459).

2D Convolutions Guide:

Peter Goldsborough: 2D Convolutions using cuDNN

Q&A