Pedro Ferreira

Royal Brompton Hospital London United Kingdom

MRI DATA: K-SPACE AND SAMPLING ARTEFACTS

Imperial College London

Royal Brompton & Harefield

NHS Foundation Trust

CONTENTS

k-space

2

- k-space properties
- k-space sampling artefacts
 - Wrap-around or aliasing
 - Gibbs ringing

MRI

k-space:

- MRI raw data.
- The imaged object is in the frequency domain.
- Oth frequency in the centre.
- k-space values are complex:
 - magnitude and phase.

Phase-encode

4

Frequency-encode

Wrap-around artefact

Image courtesy of Dr. Michael D. Noseworthy, McMaster University, Toronto Canada

$$f(x,y) = \left(\frac{1}{2\pi}\right)^{2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(k_{x}, k_{y}) e^{i2\pi(k_{x}x + k_{y}y)} dk_{x} dk_{y}$$

6

2D inverse Fourier Transform

$$f(x,y) = \left(\frac{1}{2\pi}\right)^{2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(k_{x}, k_{y}) e^{i2\pi(k_{x}x + k_{y}y)} dk_{x} dk_{y}$$

k-space:

represents a large collection of many sinusoidal oscillations with weights given by the magnitude.

p.ferreira@rbht.nhs.uk

8

2D inverse Fourier Transform

K-SPACE :: CARTESIAN SAMPLING

20

k-space region covered by mask: 2.8% k-space signal covered by mask: 38.0%

K-SPACE :: RADIAL ACQUISITION

K-SPACE :: SAMPLING ARTEFACTS

k-space sampling artefacts:

- finite sampling
- discrete sampling

K-SPACE :: SAMPLING ARTEFACTS

$$\times \qquad H_{ws}(k) \equiv \mathrm{rect}\left(\frac{k+\frac{1}{2}\Delta k}{W}\right) \Delta k \sum_{p=-\infty}^{\infty} \delta(k-p\Delta k) \qquad \qquad \text{k-space filter}$$

ideal infinite continuous k-space

K-SPACE :: SAMPLING ARTEFACTS

$$imes H_{ws}(k) \equiv \mathrm{rect}\left(rac{k+rac{1}{2}\Delta k}{W}
ight)\Delta k\sum_{p=-\infty}^{\infty}\delta(k-p\Delta k)$$
 finite k-space discrete sampling

24

k-space filter

FOURIER TRANSFORM MATHS

$$\mathcal{F}^{-1}(H(k) \times G(k)) = h(x) * g(x)$$

FT of the product of two functions is the convolution of the FT of each function

p.ferreira@rbht.nhs.uk

25

FOURIER TRANSFORM MATHS

$$\mathcal{F}^{-1}(H(k) \times G(k)) = h(x) * g(x)$$

$$\operatorname{rect}\left(\frac{x}{W}\right) < = \mathcal{F} = > W \frac{\sin(\pi W k)}{\pi W k}$$

FT of the product of two functions is the convolution of the FT of each function

Fourier transform pair: Rectangular function & sinc function

FOURIER TRANSFORM MATHS

$$\mathcal{F}^{-1}(H(k) \times G(k)) = h(x) * g(x)$$

FT of the product of two functions is the convolution of the FT of each function

$$\operatorname{rect}\left(\frac{x}{W}\right) < = \mathcal{F} = > W \frac{\sin(\pi W k)}{\pi W k}$$

Fourier transform pair: Rectangular function & sinc function

$$\operatorname{comb}\left(\Delta k\right) <=\mathscr{F}=>\operatorname{comb}\left(\frac{1}{\Delta k}\right) \text{ Fourier transform pair: }$$

27

K-SPACE SAMPLING ARTEFACTS

 $\times H_{ws}(k) \equiv \operatorname{rect}\left(\frac{k + \frac{1}{2}\Delta k}{W}\right) \Delta k \sum_{p = -\infty}^{\infty} \delta(k - p\Delta k)$

discrete sampling

finite k-space

k-space filter

image-space

 $* h_{ws}(x)$

point spread function

$$\times \operatorname{rect}\left(\frac{k + \frac{1}{2}\Delta k}{W}\right)$$

*
$$W \operatorname{sinc}(\pi W x) =$$

$$\times \operatorname{rect}\left(\frac{k + \frac{1}{2}\Delta k}{W}\right)$$

p.ferreira@rbht.nhs.uk

32

33

K-SPACE SAMPLING ARTEFACTS :: GIBBS

K-SPACE SAMPLING ARTEFACTS

 $\times H_{ws}(k) \equiv \operatorname{rect}\left(\frac{k + \frac{1}{2}\Delta k}{W}\right) \Delta k \sum_{p = -\infty}^{\infty} \delta(k - p\Delta k)$

discrete sampling

k-space filter

 \mathcal{F}^{-1}

Gibbs ringing

finite k-space

 $h_{ws}(x)$

point spread function

36

40

Frequency-encode

Wrap-around artefact

ALIASING ARTEFACT

ALIASING ARTEFACT

Aliasing of the arms from other replicas

SUMMARY

- MRI raw-signal is known as k-space
 - It is in the frequency domain.
 - It allows for clever k-space under sampling tricks.
 - But its also creates very characteristic image artefacts.

LITERATURE

MATERIAL

- Github:
 - Jupyter notebook
 - Slides

https://github.com/Pedro-Filipe/k-space_simulations

THANK YOU