Linear Algebra

Abhijit Amrendra Kumar

August 2023

Chapter 1

Introduction

1.1 Definitions

• Matrix: A matrix $A_{m \times n}$ is a rectangular array of real/complex numbers. More precisely,

$$A_{m\times n}=[a_{j,k}], 1\leq j\leq m, 1\leq k\leq n$$

- **Tensors**: A tensor $A_{i_1 \times i_2 \times ... i_k}$ is a k-dimensional array of real/complex numbers.
- Transpose: A matrix $B_{n\times m}=[b_{rs}]$ is the transpose of matrix $A_{m\times n}=[a_{jk}]$ iff

$$b_{rs} = a_{sr}; 1 \le r \le n, 1 \le s \le m$$

- Denoted by $B = A^T$
- Symmetric Matrix: A matrix $A_{m \times m} = [a_{jk}]$ is symmetric iff

$$a_{jk} = a_{kj}, \ \forall j, k \ 1 \le j, k \le m$$

- Equivalently, $A = A^T$
- Skew-Symmetric Matrix: $A = -A^T$
- Scalar Multiplication: $\lambda A = [\lambda a_{ik}]$
- **Dot Product**: Given column vectors $v_{n\times 1}, w_{n\times 1}$, the dot product is defined as

$$\langle v, w \rangle = \sum_{i} v_i w_i$$

- Also denoted by $v \cdot w$
- Matrix Product: Given matrices $A_{p\times q}, B_{q\times r}$, the matrix product $C_{p\times r}$ is defined as

$$c_{i,k} = \sum_{j} a_{i,j} b_{j,k}; \quad 1 \leq i \leq p, 1 \leq j \leq q, 1 \leq k \leq r$$

- Denoted by C = AB
- Hadamard Product: Given matrices $A_{p\times q}, B_{p\times q}$, the hadamard product $C=A\odot B$ is defined as

$$c_{i,j} = a_{i,j}b_{i,j}; \quad 1 \le i \le p, 1 \le j \le q$$

• Matrix Inverse: Given a square matrix A, the matrix inverse A^{-1} is defined such that $A^{-1}A = I_n$

1.2 Theorems

• Associativity: Given matrices $A_{p\times q}, B_{q\times r}, C_{r\times s},$

$$A(BC) = (AB)C$$

• **Distributive**: Given matrices $A_{p\times q}, B_{q\times r}, C_{q\times r}$,

$$A(B+C) = AB + AC$$

• Transpose of a Product: $(AB)^T = B^T A^T$

•