

Machine Learning 410

Lesson 0

Review of Multi-Class Classification

Steve Elston

Background for Deep Learning

- Review of multi-class distributions
- Tensors for deep learning
- Basics of image data
- Introduction to Keras

Bernoulli distribution for probability of success

Observation: v = 1:

$$p(\nu = 1) = \Theta$$

$$where$$

$$\nu = an observation$$

$$\Theta = probability parameter$$

We extend the Bernoulli distribution for multiple trials with the **Binomial distribution** for k successes in n trials:

$$p(\nu = k \mid \Theta) = \binom{n}{k} \Theta^k (1 - \Theta)^{n-k}$$

Were the Binomial coefficient, pronounced n choose k is:

$$\binom{n}{k}$$

How do perform classification with the Bernoulli distribution?

Use the **logistic** or **sigmoid** function

$$\sigma(x) = \frac{L}{1 + e^{-k(x_0 - x)}}$$

$$where$$

$$L = max \ value$$

$$k = slope$$

$$x_0 = sigmoid \ midpoint$$

Simplify the logistic function if k = 1, L = 1 and $x_0 = 0$:

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{1 + e^x}$$

Classification with the Categorical Distribution

- What are the distribution for multi-class problem?
- Use the Categorical distribution with probability mass function:

$$p(x = i \mid \boldsymbol{\theta}) = \theta_i$$

$$\boldsymbol{\theta} = (\theta_1, \dots, \theta_k)$$

$$\sum_{i=1}^{k} \theta_i = 1.0$$

Classification with the Categorical Distribution

- How do we create a categorical classifier?
- Use a softmax function:

$$\sigma(z_i) = \frac{e^{z_i}}{\sum_{k=1}^K e^{z_k}}$$

The normalization, $\sum_{k=1}^{K} e^{z_k}$, ensures the probabilities sum to 1.0

Classification with the Categorical Distribution

- What is the output of softmax?
- One value for each category
 - For example, if we have 10 categories, there are 10 output values
 - Take the max as the most probable category
- Label must be one-hot encoded
 - Binary value for each possible category
 - Only one 1, others 0

For deep learning models we need a way to represent high dimensional values

- Input data
- Model parameters
- Transformations
- Output

Tensors are a generalization of multi-dimensional arrays Not to be confused with tensors in physics and engineering

Zero dimensional tensor = scalar

0

One dimensional tensor = vector

<u>U</u>

1

2

3

•

N-2

N-1

Two dimensional tensor = matrix

0,0	0 ,1		0 ,M-1		
1 ,0	1,1		1 ,M-1		
2 ,0	2 ,1		2 ,M-1		
3 ,0	1, 3		3 ,M-1		
•	•		•		
•	•		•		
•	•		•		
N-2 ,0	N-2 ,1	··· N-2 ,M-			
N-1,0	N-1,1	··· N-1,M-1			

Deep learning has revolutionized image analysis and understanding

Common types of image data:

- Grey scale
- Color images
- Color video

Image data is represented by tensors

A grey scale image is represented as a two dimensional tensor of pixel values

0,0	0 ,1	• • •	0 ,M-1		
1 ,0	1,1		1 ,M-1		
2 ,0	2 ,1		2 ,M-1		
3 ,0	1, 3		3 ,M-1		
•	•		•		
•	•		•		
•	•		•		
N-2 ,0	N-2 ,1	··· N-2 ,M-			
N-1,0	N-1,1		N-1,M-1		

Pixel values have range {0-255}; white-black

A color image is a 3-dimensional tensor representing the three color channels

Kea								
0,0,0	0,1,0		0 ,M	-1,0	Green			
1 ,0,0	1 ,1,0		1 ,M	-1,0	0 ,M-1,1		Blue	
2 ,0,0	2 1,0		2 ,M	-1,0	1 ,M	-1,1	0 ,M-1,2	
3 ,0,0	3 ,1,0		3 ,M	-1,0	2 ,M-1,1		1 ,M-1,2	
•	•	•			3 ,M	-1,1	2 ,M-1,2	
•	•	•			•		3 ,M-1,2	
N-2 ,0,0	N-2 ,1,0		N-2 ,M-1,0		•		•	
N-1,0,0	N-1,1,0		N-1,M-1,0		N-2 ,M-1,1		•	
	N 1 0 1	NI 1	11		N-1,M-1,1		N 2 M 1 2	
	N-1,0,1	1/1	.,1,1		11-1,1	/I-T, T	N-2 ,M-1,2	
		N-:	-1,0,2 N-1		L,1,2	• • •	N-1,M-1,2	

Intensity of color in each channel is on a scale of {0-255}

Video is represented as a 4-dimensional tensor

- 2 dimensions for each color channel
- 3rd dimension is color channel
- 4th dimension is the time sequence of images

Machine learning algorithms use one data sample at a time

For image data, we must **flatten** the image:

0,0

1,0

N-1,M-1

Introduction to Keras

- Keras abstracts common deep learning model definitions and operations
- Use on top of deep learning framework:

• Extensive documentation at www.keras.io