

Engenharia de Computação Redes de Computadores

Aula 2 – parte 1

Prof. Fernando Barreto

informatica-ap@utfpr.edu.br

Acesso a Rede

- Equivale à camada Física e Enlace do modelo OSI
- Padronização: IEEE, EIA, ITU-T, ISO, ANSI
- Funções diferenciadas se for LAN, MAN ou WAN
- Funções da camada Física:
 - Transmitir/Receber bits no meio físico usando técnicas de sinalização/codificação de sinais
- Funções da camada de Enlace:
 - Organizar os bits em Frames/Quadros, definindo um início/ cabeçalho e um trailer (fim do frame/quadro)
 - Endereçamento físico
 - Pode fornecer controle de erros, controle de fluxo, ser orientado ou não a conexão, confirmação de mensagens ou não.

Padrões IEEE 802

- IEEE 802 estabelece padrões para comunicação de equipamentos em LANs, tanto camada física quanto camada de enlace.
- Mais comuns em LANs:
 - 802.1 VLAN, Bridging, Spanning Tree
 - 802.2 Link Logical Control
 - 802.3 Ethernet
 - 802.11 Wireless LAN
 - 802.15 Personal Area Network (PAN)
- Implementado pelas Network Interface Cards (NIC) e Drivers de Rede.

Padrões IEEE 802

Camada de enlace subdividida em:

LLC (Logical Link Control) 802.2:

- Subcamada comum entre redes IEEE 802 osi Layers
- Prevê Identificação/Tipo do Protocolo da camada superior (extensão SNAP), e serviços pouco usados (orientado a conexão, controle de fluxo e sequência, pois a camada de transporte fica responsável...)
 - Redes variantes de Ethernet (802.3) em geral não adotam
 - Tipo do Protocolo já está no cabeçalho do Frame/Quadro (Ethernet II)
 - Redes IEEE 802.11 adotam 802.2 SNAP para Tipo do Protocolo

MAC (Media Access Control):

- Endereçamento físico
- Gerenciamento de Frame/Quadro
 - Cada IEEE 802.?? tem um Quadro/Frame especificado
- Controle de Acesso ao meio conforme a tecnologia de rede local
- Pode oferecer controle de erros, controle de fluxo não confiável

Ethernet II – DIX Xerox e IEEE 802.3 (1997)

Preamble: 56 bits of alternating 1s and 0s. **SFD**: Start frame delimiter, flag (10101011)

- Preâmbulo+SFD: sincronizar clock no destino + início do Quadro
- MAC Destino e MAC Origem em hexa com 6 bytes cada
- **Length / Type:** 2 bytes (IEEE 802.3 se < 0x0600 [1536]) (EtherType se >= 0x0600)
 - EtherType: https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
 - 0x0800 (IPv4), 0x86DD (IPv6), 0x0806 (ARP), 0x88CC (LLDP),
- Data: de 46 bytes (padding com 0s) até máximo 1500 bytes
 - Tam. mín. do Frame é 64 bytes, máx. (MTU) 1518 bytes (Headers, CRC)
 - Uso de extensões podem aumentar (suporte VLANs 802.1q: 1522 bytes)
- CRC: 4 bytes somente para detecção de erros

OBS: Final de Quadro: Ausência de sinal da portadora ou gerar símbolo especial (end of stream delimiter)

Ethernet II – DIX Xerox e IEEE 802.3 (1997)

802.2 LLC e SNAP

- DSAP (Dest. Service Access Point), SSAP (Source Service A. P.) e Control
 - São de 1 byte cada e sem ID de protocolos da camada superior (IPv4 seria 0x6 – não adotado..., IPv6 nem possui).
 - Solução: extensão SubNetwork Access Protocol (SNAP)
 - LLC DSAP e SSAP em 0xAA → indica extensão SNAP
 - LLC Control com 1 byte em **0x03** → indica sem conexão, sem confirmação e sem controle fluxo (padrão implementado nas NICs)
 - SNAP OUI em 0x000000 → campo TYPE é interpretado como EtherType

IP em Frame Ethernet II

Type: 0x0800 = IPv4 ou 0x86DD = IPv6 Data: pacote IP (de 46 <u>até 1500 bytes</u>)

IP em Frame 802.3 + LLC SNAP

Length: tamanho Data < 0x05D4

DSAP: $0xAA = SSAP: 0xAA \rightarrow SNAP$

Control: 0x03 (1 byte apenas)

SNAP:

- OUI: 0x000000 (3 bytes) → TYPE é EtherType

- TYPE: **0x0800** = IPv4 , **0x86DD** = IPv6 (2 bytes)

Data: pacote IP (de 38 até 1492 bytes)

UTEPR Endereços MAC [RFC 7042]

- Endereço de Destino e Origem Unicast
 - Normalmente identifica uma única NIC na rede local
 - 3 bytes iniciais é do fabricante
 - Organizational Unique Identifier OUI http://standards-oui.ieee.org/oui/oui.txt
 - 3 últimos bytes gerados pelo fabricante
 - Exemplo de um OUI pertencente à Cisco: 00-60-2F-3A-07-BC
 - Analise o endereço MAC da NIC de seu computador e celular !!!
 - OBS sobre o 1º byte (da esquerda p/ direita):
 - 1° bit menos significativo é Individual/Group Bit: se 0 indica Unicast, se 1 indica Multicast
 - 2° bit menos significativo é Local/Global Bit : 0 é Universal (fábrica), 1 é Local (sobrepõe...)
- Endereço de Destino Broadcast
 - Todos bits em 1 (FF-FF-FF-FF-FF) todas as NICs da rede local processam
- Endereços de Destino Multicast (1º bit menos significativo em 1)
 - NICs processam endereço MAC especial + últimos bits do endereço IP
 - IPv4: 01-00-5E-0x-xx-xx até 01-00-5E-7x-xx-xx (23 bits IP Multicast 224.0.0.0 a 239.255.255.255)
 - IPv6: 33-33-xx-xx-xx (últimos 32 bits de IPv6 Multicast FF00::/8)

- Combinações dos 2 bits do 1º byte
 - IEEE aloca 3 primeiros bytes para fabricantes com bit universal e bit de grupo, ambos em 0
 - IEEE (https://standards.ieee.org/wp-content/uploads/import/documents/tutorials/eui.pdf): "NOTE –
 Approximately 18 organizational identifiers assigned to early Ethernet implementers, before IEEE
 802.3 standards have the (universal) bit equal to one", ou seja Local...

Universal/Local and Individual/Group bits in MAC addresses		
U/L I/G	Universally administered	Locally administered
Unicast (individual)	x0-xx-xx-xx-xx-xx x4-xx-xx-xx-xx-xx x8-xx-xx-xx-xx-xx xC-xx-xx-xx-xx-xx	x2-xx-xx-xx-xx x6-xx-xx-xx-xx-xx xA-xx-xx-xx-xx-xx xE-xx-xx-xx-xx
Multicast (group)	x1-xx-xx-xx-xx-xx x5-xx-xx-xx-xx-xx x9-xx-xx-xx-xx-xx xD-xx-xx-xx-xx-xx	x3-xx-xx-xx-xx x7-xx-xx-xx-xx-xx xB-xx-xx-xx-xx-xx xF-xx-xx-xx-xx-xx

Universal/Local and Individual/Group bits in MAC addresses

Fonte: wikipedia

- Endereços MAC de grupo padronizados:
 - https://standards.ieee.org/products-programs/regauth/grpmac/public/
- Endereços MAC randomizados (geralmente usados em hosts WiFi):
 - Possuem os bits Unicast em 0 e Locally administered em 1
 - Privacidade e evitar rastreamento (porém não uma padronização: https://www.cisco.com/c/en/us/products/collateral/wireless/randomized-changing-mac-dg.html)

Transmissão do Frame

- 1º é o Preâmbulo + SFD (ordem da seta na imagem acima...)
- Seguido dos campos: Destination Address, Source Address, Length/Type, Data, CRC
 - Byte/Octeto mais significativo de cada campo é transmitido primeiro
 - De cada byte/octeto a ser transmitido, o bit menos significativo é transmitido primeiro [seções 3.1.1, 3.2.3, 3.2.6 e 3.3 da IEEE 802.3]
 - Exemplo de Destination Address: <a>91-00-5E-01-23-45
 - Transmissão dos bits: 10000000-00000000-01111010-10000000-11000100-10100010
 - Observe que o 1º bit menos significativo do 0x01 da estrutura do MAC address é transmitido primeiro, já sinalizando ao receptor se é unicast/multicast, e o 2º bit indica global/local
 - InterPacket Gap
 - Intervalo entre transmissões de frame: 96bits (tempo que levaria para transmitir 96 bits no meio - conforme velocidade da tecnologia...)

Campus Apucarana

Preamble

Serve as a clock syncrhonisation mechanism and demonstrates the pace of arriving data. Repeats seven 10101010 (0xAA) patterns long enough for the receiver to set it's clock. Ends with a Start Frame Delimiter 10101011 (0xAB) pattern which informs the physical layer that a data-link layer frame "is coming".

Payload & Padding

Contains upper layer (layers 3 through 7) protocol data. Padding is required if payload < 46 bytes to ensure a 64 byte frame in order for CSMA/CD to function correctly. n = 42 – 1500 when 802.1q tag is present and 46 – 1500 when not present.

Trailer

Error Checking. Ethernet uses Cyclical Redundancy Check (CRC).

Interframe Gap

Pause between frames. Used for receiver clock recovery. Varies between standards but min. gap is 96 bit times (Time it takes to transfer 96 bits/12 bytes of data).

Min. Frame Size

Total	64 bytes
Trailer	4 bytes
Payload/Padding	46 bytes
Header	14 bytes

Max. Frame Size

Total	1522 bytes
Trailer	4 bytes
Payload	1500 bytes
Header w/802.1q tag	18 byte:

MAC Fields

Type / Length

If value of field is < 1500 (0x5DC) then 802.3 frame is assumed and field value specifies true length of frame. If value of field is >= 1536 (0x0600) then Ethernet II or DIX frame is assumed and field value specifies type of upper layer protocol expected in payload. Common Values are IPv4 - 0x0800 (2048), IPv6 - 0x86DD (34525), and ARP - 0x0806 (2054).

Tag Protocol Identifier

Always set to 0x8100 to identify that 802.1Q tag is present.

Tag Control Information

Universal/Local (UL) Bit

0: Universally Administered 1: Locally Administered

Individual/Group (IG) Bit

0: Individual (Unicast)
1: Group (Multicast/Broadcast)

Priority Code Point

802.1p (CoS) value. Indicates the frame priority level. 7 = highest, 0 = lowest.

Drop Eligibility Indicator

Indicate whether frame is eligible to be dropped in times of congestion. Always set to '0' on Ethernet only networks.

VLAN ID

Specifies which VLAN the frame belongs to. Permitted values are 1-4095 (0 & 4096 are reserved).

Comandos para Informações Placa de Rede

- Informações sobre a placa de rede:
 - sudo Ishw -class network
- Para alterar alguma configuração da placa de rede Ethernet:
 - sudo ethtool enp1s0

Wireshark

- Analisar tráfego na interface de placa de rede do laboratório: enp1s0
 - Como são apresentadas as estruturas dos Frames ?
 - Quais os Frames identificados/classificados ?
 - Como o Wireshark realiza essa classificação ?
 - Há Frames de Broadcast e Multicast ?
 - Há Frames direcionados ao MAC address de sua placa de rede ?
 - Testes: geração de Frames Ethernet com PackETH

Cisco

- OUI proprietário do vendedor com registro 00:00:0C
- Ex: protocolo CDP, que serve para descobrir informações do hardware, software e outros detalhes de dispositivos Cisco vizinhos.
 - show cdp neighbors
- Usa 802.2 LLC e SNAP:
 - DSAP e SSAP: 0xAA
 - Controle: 0x03
 - SNAP:

Observar com Wireshark

MAC Multicast: **01:00:0C**:CC:CC;CC, onde **00:00:00C** é um OUI da Cisco. Ao ativar o bit menos significativo no 1° byte: 0x01, indica ser multicast.

802.2 LLC com SNAP

- Org ID da Cisco **0x00000C** (IANA OID Cisco https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml)
- TYPE **0x2000** (https://wiki.wireshark.org/CDP)
- https://learningnetwork.cisco.com/s/article/cisco-discovery-protocol-cdp-x

- Link Layer Discovery Protocol (LLDP)
 - Alternativa padronizada de descobrimento das informações dos ativos de rede em relação aos protocolos proprietários (ex: CDP da Cisco)
 - Frame:
 - MAC destino multicast: 01:80:c2:00:00:0e
 - EtherType: 0x88cc
 - Contém informações sobre o equipamento (desde hardware, software, configuração de portas,...) e de qual porta recebeu o Frame


```
Ethernet II, Src: Cisco_64:c4:91 (0c:d0:f8:64:c4:91), Dst: LLDP_Multicast (01:80:c2:00:00:0e)

✓ Destination: LLDP Multicast (01:80:c2:00:00:0e)
        Address: LLDP Multicast (01:80:c2:00:00:0e)
        .... .0. .... = LG bit: Globally unique address (factory default)
        .... = IG bit: Group address (multicast/broadcast)

✓ Source: Cisco 64:c4:91 (0c:d0:f8:64:c4:91)
        Address: Cisco 64:c4:91 (0c:d0:f8:64:c4:91)
        .... .0. .... = LG bit: Globally unique address (factory default)
        .... ...0 .... .... = IG bit: Individual address (unicast)
     Type: 802.1 Link Layer Discovery Protocol (LLDP) (0x88cc)
     Trailer: 100000

▼ Link Layer Discovery Protocol

     Chassis Subtype = MAC address, Id: 0c:d0:f8:64:c4:80
     Port Subtype = Interface name, Id: Fa0/17
     Time To Live = 120 sec
     System Name = Switch
     [truncated]System Description = Cisco IOS Software, C2960 Software (C2960-LANBASEK9-M), Version 15.2(4)E8, RELEASE SOF1
        0000 110. .... = TLV Type: System Description (6)
        .... ...0 1111 0010 = TLV Length: 242
        System Description [truncated]: Cisco IOS Software, C2960 Software (C2960-LANBASEK9-M), Version 15.2(4)E8, RELEASE SC
     Port Description = FastEthernet0/17
     Capabilities
     Telecommunications Industry Association TR-41 Committee - Media Capabilities
     Telecommunications Industry Association TR-41 Committee - Inventory - Hardware Revision
     Telecommunications Industry Association TR-41 Committee - Inventory - Software Revision
     Telecommunications Industry Association TR-41 Committee - Inventory - Manufacturer Name
     Telecommunications Industry Association TR-41 Committee - Inventory - Model Name
     Telecommunications Industry Association TR-41 Committee - Network Policy
     Telecommunications Industry Association TR-41 Committee - Network Policy
     Telecommunications Industry Association TR-41 Committee - Extended Power-via-MDI
     IEEE - Port VLAN ID
     Ieee 802.3 - MAC/PHY Configuration/Status
        1111 111. .... = TLV Type: Organization Specific (127)
        .... ...0 0000 1001 = TLV Length: 9
        Organization Unique Code: 00:12:0f (Ieee 802.3)
        IEEE 802.3 Subtype: MAC/PHY Configuration/Status (0x01)
     > Auto-Negotiation Support/Status: 0x03
     > PMD Auto-Negotiation Advertised Capability: 0x6c00
     > Same in inverse (wrong) bitorder
        Operational MAU Type: 100BaseTXFD - 2 pair category 5 UTP, full duplex mode (0x0010)
   End of LLDPDU
```


Wireshark

- Análise de tráfego CDP e LLDP gerado por equipamentos da CISCO
 - Como ele aparece ?
- Apareceu algum tráfego diferente do professor ?

Auto-negociação: velocidade e qual padrão duplex...

- Half-Duplex (redes multiacesso Repetidor/Hub)
 - Carrier Sense Media Access/Collision Detection (CSMA/CD)
 - Verificar se o meio físico está ocupado, se estiver deve esperar até que fique ocioso para então transmitir. Se houver uma colisão (pelo menos duas máquinas detectaram que o meio está ocioso e transmitiram) as estações continuam transmitindo (JAM) até atingir o tamanho mínimo do Frame, interrompem a transmissão, esperam um tempo aleatório e começam novamente.
 - Tamanho mínimo do Frame em 64 bytes: tempo para todas as máquinas detectarem uma colisão. Limita o tamanho da rede.
 - 10Base[2, 5, T, FL]: máximo 5 segmentos de rede, 4 Hubs (IEEE 802.3-2018 section 1, pg. 379)
 - 100BaseT: máximo 2 Hubs com máximo de 205 metros entre dispositivos finais ou intermediários (IEEE 802.3-2018 section 2, pg. 336, tabela 29-2)
 - 1000BaseT: máximo 1 Hub com máximo de 200 metros entre dispositivos finais ou intermediários (IEEE 802.3-2018 section 3, pg. 320, tabela 42-2)

802.3 MAC

- Half-Duplex (10Base[2,5,T, FL])
 - Máximo 2500m

- Half-Duplex (100BaseT 802.3u)
 - Máximo 205m

802.3 MAC

- Mais informações sobre cabeamento 802.3, pinos, conectores/plugs podem ser encontradas nesse site:
- https://www.cisco.com/c/en/us/support/docs/ routers/10000-series-routers/46792-ethbase.html

Full-Duplex

- Padrão adotado pelas variações IEEE 802.3 atuais
- Não é necessário adotar CSMA/CD
 - Tamanho limite da rede: uso de switches especificação do cabo ou padrão adotado de fibra
- Padrão inicial Full-Duplex foi IEEE 802.3x
 - Controle de Fluxo: MAC Control Frame (EtherType 0x8808)
 - Endereço de Destino Multicast especial: 01-80-C2-00-00-01,
 switch recebe e não é repassado a outras portas
 - » Útil entre switches com múltiplos tráfegos (portas como tronco de dados...)
 - MAC Control Opcode: 2 bytes (permite usos no futuro...)
 - » Opcode de Controle de Fluxo PAUSE 0x0001
 - » Seguido de 2 bytes: informa quanto tempo de PAUSE
 - » Switch que foi sinalizado atrasará o envio dos frames...

- Opera na camada 2 (exceção sw3)
 - Converte entre tecnologias MACs diferentes (ex: 802.3 ↔ 802.11)

- Geralmente mantém equipamentos em Full-duplex
- Mantém uma tabela que relaciona 1 ou + endereços MAC com uma porta do switch
- Gerencia tabela de MAC address para comutar/encaminhar
 - Se Frame com MAC destino não existente na tabela, ou Broadcast, ou Multicast, comuta-se para todas as portas do switch (exceto <u>para</u> <u>a porta que o Frame chegou</u>)
 - Aprendizado por demanda (todo Frame que chega, o switch analisa o MAC origem para registrar na tabela em que porta está)
 - Tempo de permanência na tabela (geralmente 5min se não atualizar..)
 - Recursos: definir entrada explicitamente, filtros (se hardware permitir...)
 - Se Frame com MAC destino existente na tabela, encaminha para a porta registrada

- Comutação store-and-forward
 - Recebe o Quadro inteiro, calcula o CRC (descarta se tiver erros) para depois encaminhar para a porta correta com base no MAC destino.
 - Útil em cenários com QoS configurado
- Comutação cut-through
 - Recebe parcialmente o Quadro, obtém o MAC destino, e inicia o encaminhamento para a porta correta. Não verifica CRC.
 - Fast-Forward: encaminha imediatamente após ler o MAC de destino.
 Menor latência (mais rápido e o mais adotado)
 - Fragment Free: armazena os primeiros 64bytes do quadro antes de encaminhar (possibilita detectar colisão)
- Possibilidade de Loops em links redundantes
 - Frame com MAC destino n\u00e3o existente na tabela MAC (ou broadcast/multicast) \u00e9 encaminhado para todas as portas (menos a que chegou). Se existe circuito na rede, cria-se um loop
 - Spanning Tree Protocol (STP) ou Shortest Path Bridging (SPB) IEEE 802.1aq

Buffers de memória dos switches

Memory Buffering Methods

Método	Descrição	
Memória por porta	 Os quadros são armazenados em filas vinculadas a entradas e portas de saída. Um quadro é transmitido para a porta de saída somente quando todos os quadros à frente na fila foram transmitidos com sucesso. É possível para um único quadro atrasar a transmissão de todos os os quadros na memória devido a uma porta de destino ocupada. Esse atraso ocorre mesmo que os outros quadros possam ser transmitidos para portas de destino abertas. 	
Memória compartilhada	 Deposita todos os quadros em um buffer de memória comum compartilhado por todos os switches e a quantidade de memória de buffer necessária por uma porta é alocados dinamicamente. Os quadros no buffer são vinculados dinamicamente ao destino permitindo que um pacote seja recebido em uma porta e, em seguida, transmitida em outra porta, sem movê-la para uma fila diferente. 	

Fone: CISCO

UTEPR Medium Dependent Interface (MDI) Campus Apucarana

- Tipo de cabo a ser utilizado para interligar interfaces
- Para Ethernet (MDI-X)
 - Permite ajustar automaticamente a interface conforme o tipo de cabo usado para interligar equipamentos
 - Cisco: na interface utilizar "mdi auto"
 - Cisco: <u>ativado por padrão</u> no IOS 12.2(18)SE ou superior
 - Se não tiver o auto MDI-X definido, atenção:
 - Crossover/Cruzado: 568A 568B
 - Straight/Direto: 568A 568A ou 568B 568B

	Hub	Switch	Router	Workstation
Hub	Crossover	Crossover	Straight	Straight
Switch	Crossover	Crossover	Straight	Straight
Router	Straight	Straight	Crossover	Crossover
Workstation	Straight	Straight	Crossover	Crossover

Pin	Label	1 2 3 4 5 6 7 8
1	TP0+	
2	TP0-	
3	TP1+	14 0000000 14
4	TP2+	
5	TP2-	111 111
6	TP1-	
7	TP3+	
8	TP3-	

Fone: https://www.cisco.com/c/en/us/support/docs/routers/10000-series-routers/46792-ethbase.html

Cabo Rolled/Console RJ45 – todos os pinos invertidos

Exercício LAN

Aula IOS

- Laboratório PacketTracer
 - Criar uma LAN com 2 switches de nomes swA e swB, interligados com 1 cabo gigabit ethernet
 - swA terá IP 192.168.0.1 e netmask 255.255.255.0
 - swB terá IP 192.168.0.2 e netmask 255.255.255.0
 - Senhas (definir por último para facilitar configuração inicial):
 - EXEC do usuário (Console será "cisco" e SSH será user "cisco" e senha "cisco")
 - EXEC privilegiado será "aula"
 - Adicionar mais recursos de segurança, conforme aula de IOS
 - Criar alguns PCs para se conectar a esses switches
 - Cada PC com um IP entre 192.168.0.(10 até 30) netmask 255.255.255.0
 - Práticas:
 - Quais tipos de cabos deverão ser usados ?
 - Como acessar os switches através do console ?
 - Como acessar os switches através de VTY ?