

LOG2810 STRUCTURES DISCRÈTES

TD 4 : **ENSEMBLES ET FONCTIONS** É2022

SOLUTIONNAIRE

Exercice 1. Soit A, B et C trois sous-ensembles d'un ensemble E. Simplifier chacune des expressions.

a)
$$\overline{A \cup B} \cap \overline{C \cup \overline{A}}$$

Réponse :

$$\overline{A \cup B} \cap \overline{C \cup \overline{A}} = (\overline{A} \cap \overline{B}) \cap (\overline{C} \cap A)$$

$$\overline{A \cup B} \cap \overline{C \cup \overline{A}} = (\overline{A} \cap A) \cap (\overline{B} \cap \overline{C})$$

$$\overline{A \cup B} \cap \overline{C \cup \overline{A}} = \emptyset \cap (\overline{B} \cap \overline{C})$$

$$\overline{A \cup B} \cap \overline{C \cup \overline{A}} = \emptyset$$

b)
$$\overline{A \cap B} \cup \overline{C \cap \overline{A}}$$

Réponse :

$$\overline{A \cap B} \cup \overline{C \cap \overline{A}} = (\overline{A} \cup \overline{B}) \cup (\overline{C} \cup A)$$

$$\overline{A \cap B} \cup \overline{C \cap \overline{A}} = (\overline{A} \cup A) \cup (\overline{B} \cup \overline{C})$$

$$\overline{A \cap B} \cup \overline{C \cap \overline{A}} = E \cup (\overline{B} \cup \overline{C})$$

$$\overline{A \cap B} \cup \overline{C \cap \overline{A}} = E$$

c)
$$(A \cap B) \cap \overline{A \cap C}$$

Réponse :

$$(A \cap B) \cap \overline{A \cap C} = (A \cap B) \cap (\overline{A} \cup \overline{C})$$

$$(A \cap B) \cap \overline{A \cap C} = [(A \cap B) \cap \overline{A}] \cup [(A \cap B) \cap \overline{C}]$$

$$(A \cap B) \cap \overline{A \cap C} = (A \cap \overline{A} \cap B) \cup [(A \cap B) \cap \overline{C}]$$

$$(A \cap B) \cap \overline{A \cap C} = \emptyset \cup [(A \cap B) \cap \overline{C}]$$

$$(A \cap B) \cap \overline{A \cap C} = (A \cap B) \cap \overline{C}$$

$$(A \cap B) \cap \overline{A \cap C} = A \cap B \cap \overline{C}$$

Exercice 2. Soit A et B deux sous-ensembles d'un ensemble E. On pose :

$$A \triangle B = (A - B) \cup (B - A)$$

Montrez que A \triangle B = \overline{A} \triangle \overline{B}

Réponse :

```
Soit x un élément de E. x \in \overline{A} \ \Delta \ \overline{B} \Leftrightarrow (x \in (\overline{A} - \overline{B})) \ \lor \ (x \in (\overline{B} - \overline{A})) \Leftrightarrow [(x \in \overline{A}) \ \land \ (x \notin \overline{B})] \ \lor \ [(x \in \overline{B}) \ \land \ (x \notin \overline{A})] \Leftrightarrow [(x \notin A) \ \land \ (x \in B)] \ \lor \ [(x \notin B) \ \land \ (x \notin A)] \Leftrightarrow [(x \in B) \ \land \ (x \notin A)] \ \lor \ [(x \in A) \ \land \ (x \notin B)] \Leftrightarrow (x \in (B - A)) \ \lor \ (x \in (A - B)) \Leftrightarrow x \in ((B - A)) \ \lor \ (A - B) \Leftrightarrow x \in ((A - B) \ \cup \ (B - A)) \Leftrightarrow x \in A \ \Delta \ B D'où A \ \Delta \ B = \overline{A} \ \Delta \ \overline{B}
```

Exercice 3. Soit les ensembles $E = \{a, b, c, d, e\}$ et $F = \{1, 2, 3, 4, 5\}$.

Dans chacun des cas, dites s'il s'agit d'une fonction, d'une fonction injective, d'une fonction surjective ou d'une fonction bijective. Justifiez votre réponse.

Réponse:

- f n'est pas une fonction, car plus d'un élément de F sont affectés à a, notamment les deux images 3 et 5.
- b) {(a, 3), (b, 3), (d, 5), (c, 4), (e, 1)}

Réponse :

- f est une fonction, car au plus un élément de F est affecté à chaque élément de E.
- f n'est pas injective car 3 = f(a) = f(b) et $a \ne b$.
- f n'est pas surjective car 2 n'a pas d'antécédent.
- f n'est pas bijective car n'étant ni injective, ni surjective.
- c) {(a, 3), (b, 5), (c, 4), (e, 1)}

Réponse:

- f est une fonction, car au plus un élément de F est affecté à chaque élément de E.
- f est injective car chaque image a un antécédent distinct.
- f n'est pas surjective car 2 n'a pas d'antécédent.
- f n'est pas bijective car n'étant pas surjective.
- d) {(d, 2), (a, 3), (b, 5), (c, 4), (e, 1)}

Réponse :

- f est une fonction, car au plus un élément de F est affecté à chaque élément de E.
- f est injective car chaque image a un antécédent distinct.
- f est surjective car chaque image a un antécédent.
- f est bijective car étant à la fois injective et surjective.

e) {(d, 2), (a, 3), (b, 5), (c, 4), (e, 2)}

Réponse:

- f est une fonction, car au plus un élément de F est affecté à chaque élément de E.
- $f n'est pas injective car 2 = f(d) = f(e) et d \neq e$.
- f n'est pas surjective car 1 n'a pas d'antécédent.
- f n'est pas bijective car n'étant ni injective, ni surjective.

Exercice 4. On considère la fonction f

$$f: \mathbb{Z} \to \mathbb{R}$$
$$f(x) = \frac{1}{x^2 - 4}$$

a) f est-elle injective ? Justifiez votre réponse.

Réponse :

Méthode 1 :

Soit x_1 et x_2 deux entiers tel que $x_1 \neq -2$, $x_1 \neq 2$, $x_2 \neq -2$ et $x_2 \neq 2$.

Si f est injective, alors $f(x_1) = f(x_2) \rightarrow x_1 = x_2$.

Supposons que $f(x_1) = f(x_2)$.

$$f(x_1) = f(x_2) \rightarrow (x_1^2 - 4 = x_2^2 - 4)$$

$$f(x_1) = f(x_2) \rightarrow (x_1^2 = x_2^2)$$

$$f(x_1) = f(x_2) \rightarrow (x_1 = x_2 \text{ ou } x_1 = -x_2)$$

 x_1 n'est pas toujours égal à x_2 . f n'est donc pas injective.

Méthode 2 :

La preuve par contre-exemple peut être utilisée. f(-3) = f(3) = 1/5 et $-3 \ne 3$.

b) **f** est-elle surjective ? Justifiez votre réponse.

Réponse:

Soit y un réel. Existe-t-il un entier x tel que y = f(x)?

Lorsque y = 0, aucun entier x ne vérifie l'équation y = f(x).

O n'ayant donc pas d'antécédent, f n'est pas surjective.

c) f est-elle bijective ? Justifiez votre réponse.

Réponse :

f n'est pas bijective car elle n'est ni injective, ni surjective.

Exercice 5. Soit n un entier positif ou nul et (V_n) une suite tel que :

$$V_n = \frac{3^n}{2^{n+1}}$$

a) Montez que (V_n) est une suite géométrique.

<u>Réponse</u>

$$V_0 = \frac{3^0}{2^{0+1}} = \frac{3}{2}$$

$$V_n = \frac{3^n}{2^{n+1}}$$

$$V_{n+1} = \frac{3^{n+1}}{2^{n+1+1}}$$

$$V_{n+1} = \frac{3}{2} \times \frac{3^n}{2^{n+1}}$$

$$V_{n+1} = \frac{3}{2} \times V_n$$

 (V_n) est donc une suite géométrique de raison $\frac{3}{2}$ et de premier terme $V_0=\frac{3}{2}$

b) Calculez la somme des vingt premiers termes de (V_n).

Réponse

Soit S_{19} cette somme. On a : $S_{19} = V_0 + V_1 + V_2 + \cdots + V_{19}$

$$S_{19} = V_0 \times \frac{\left(\frac{3}{2}\right)^{19-0+1} - 1}{\frac{3}{2} - 1} = V_0 \times \frac{\left(\frac{3}{2}\right)^{20} - 1}{\frac{1}{2}}$$

$$S_{19} = 3 \times \left(\left(\frac{3}{2} \right)^{20} - 1 \right)$$

Exercice 6 (facultatif). Soit x un réel. Montrez que :

$$[2x] = [x] + \left[x + \frac{1}{2}\right]$$

Réponse

x étant un réel, il existe un entier positif n et un réel k tel x = n + k, avec $k \in]0, 1[$. Utilisons une preuve pas cas.

• Cas
$$k \in]0, \frac{1}{2}[$$

$$[x] = [n + k] = n$$

$$[x + \frac{1}{2}] = [n + k + \frac{1}{2}] = n, car \frac{1}{2} < k + \frac{1}{2} < 1$$
Ainsi $[x] + [x + \frac{1}{2}] = 2n$
De plus, $[2x] = [2n + 2k] = 2n, car 0 < 2k < 1$
D'où $|2x| = |x| + |x + \frac{1}{2}|$

• Cas $k \in] \frac{1}{2}, 1[$

$$\begin{aligned} \lfloor x \rfloor &= \lfloor n+k \rfloor = n \\ \lfloor x+\frac{1}{2} \rfloor &= \lfloor n+k+\frac{1}{2} \rfloor = n+1, \, \text{car} \, 1 < k+\frac{1}{2} < 1+\frac{1}{2} \\ \text{Ainsi} \, \lfloor x \rfloor &+ \lfloor x+\frac{1}{2} \rfloor = 2n+1 \\ \text{De plus,} \, \lfloor 2x \rfloor &= \lfloor 2n+2k \rfloor = 2n+1, \, \text{car} \, 1 < 2k < 2 \\ \text{D'où} \, \lfloor 2x \rfloor &= |x|+|x+\frac{1}{2}| \end{aligned}$$

• Cas $k = \frac{1}{2}$ [x] = [n + k] = n [x + \frac{1}{2}] = [n + k + \frac{1}{2}] = [n + 1] = n + 1 Ainsi [x] + [x + \frac{1}{2}] = 2n + 1 De plus, [2x] = [2n + 2k] = = [2n + 1] = 2n + 1 D'où |2x| = |x| + |x + \frac{1}{2}|

CQFD