Some examples of homogeneous derivations

Yassine Ait Mohamed

A ring R is G-graded if there is a family $\{R_g, g \in G\}$ of additive subgroups R_g of (R, +) such that $R = \bigoplus_{g \in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for every $g, h \in G$. The additive subgroup R_g called the homogeneous component of R. The set $\mathcal{H}(R) = \bigcup_{g \in G} R_g$ is the set of homogeneous elements of R. Throughout this note, R is assumed to be graded by an abelian group G.

Definition 1. Let R be a G-graded ring. An additive mapping $d: R \longrightarrow R$ is called homogeneous derivation if

- (i) d(xy) = d(x)y + xd(y) for all $x, y \in R$.
- (ii) $d(r) \in \mathcal{H}(R)$ for all $r \in \mathcal{H}(R)$.

Examples 1. 1) Let k be a field and k[X] be a polynomial ring. Then k[X] is \mathbb{Z} -graded by:

$$K[X]_n := span_k\{X^n\} \ if \ n \ge 0 \ and \ k[X]_n := \{0_{k[X]}\} \ if \ n < 0.$$

Set $D := \frac{d}{dX}$ the usual derivation, then D is a homogeneous derivation.

2) Let $R = \begin{pmatrix} k & k \\ k & k \end{pmatrix}$ (with matrix addition and matrix multiplication), where k is a field. Then R is \mathbb{Z}_4 -graded ring by:

$$R_0 = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$$
, $R_1 = \begin{pmatrix} 0 & 0 \\ k & 0 \end{pmatrix}$, $R_2 = 0$ and $R_3 = \begin{pmatrix} 0 & k \\ 0 & 0 \end{pmatrix}$.

Consider the mapping

$$d: \qquad \begin{matrix} R & \longrightarrow & R \\ \begin{pmatrix} a & b \\ c & d \end{matrix} \end{pmatrix} \longmapsto \begin{pmatrix} 0 & b \\ -c & 0 \end{pmatrix}$$

Then d is a homogeneous derivation of R.

3) Let
$$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$$
. Then R is \mathbb{Z}_2 -graded by
$$R_0 = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in \mathbb{R} \right\} \text{ and } R_1 = \left\{ \begin{pmatrix} 0 & c \\ 0 & 0 \end{pmatrix} \mid c \in \mathbb{R} \right\}.$$

Consider the following mappings:

Then d_1 and d_2 are homogeneous derivations of R.

4) Consider $R = \mathbb{C}[X] \times M_2(\mathbb{C})$. R is a \mathbb{Z} -graded by

$$R_0 = \mathbb{C} \times \left\{ \left(\begin{array}{cc} z & 0 \\ 0 & z' \end{array} \right) \, \middle| \, z, z' \in \mathbb{C} \right\}, \quad R_1 = span_{\mathbb{C}}(X) \times \left\{ \left(\begin{array}{cc} 0 & z \\ z' & 0 \end{array} \right) \, \middle| \, z, z' \in \mathbb{C} \right\},$$

$$R_n = \left\{ \left(0, \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \right) \right\} \; if \; n < 0 \; \; and \; \; R_n = span_{\mathbb{C}}(X^n) \times \left\{ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \right\} \; if \; n \geq 2. \; \; Define \; a \; map \; d : R \longrightarrow R \; by:$$

$$d\left(P, \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)\right) = \left(D(P), \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)\right) \text{ for all } P \in \mathbb{C}[X] \text{ and } \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in M_2(\mathbb{C}),$$

where $D:=\frac{d}{dX}$ the usual derivation of $\mathbb{C}[X]$. Then d is a homogeneous derivation of R.

5) Let
$$R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \middle| a, b \in \mathbb{R} \right\} \times \mathbb{R}[X]$$
. Then R is \mathbb{Z} -graded by

$$R_0 = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array} \right) \middle| a \in \mathbb{R} \right\} \times \mathbb{R}, \ R_1 = \left\{ \left(\begin{array}{cc} 0 & b \\ 0 & 0 \end{array} \right) \middle| b \in \mathbb{R} \right\} \times span_{\mathbb{R}}(X)$$

$$R_n = \left\{ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \right\} \times span_{\mathbb{R}}(X^n) \ if \ n \geq 2 \ and \ R_n = \left\{ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \right\} \times \left\{ 0_{\mathbb{R}[X]} \right\} \ if \ n < 0.$$
 Consider the following mappings:

$$\begin{array}{ccc} d_1: & R & \longrightarrow & R \\ & \left(\left(\begin{array}{cc} a & b \\ 0 & 0 \end{array} \right), P \right) & \longmapsto & \left(\left(\begin{array}{cc} 0 & 5b \\ 0 & 0 \end{array} \right), \frac{dP}{dX} \right) \end{array}$$

and

$$d_2: \qquad R \qquad \longrightarrow \qquad R \\ \left(\left(\begin{array}{cc} a & b \\ 0 & 0 \end{array} \right), P \right) & \longmapsto & \left(\left(\begin{array}{cc} 0 & a+2b \\ 0 & 0 \end{array} \right), 0_{\mathbb{R}[X]} \right)$$

Then d_1 and d_2 are homogeneous derivations of R.

6) Let $R=M_2(\mathbb{C})\times M_2(\mathbb{C})$, where \mathbb{C} is the field of complex numbers. Then R is \mathbb{Z}_4 -graded by

$$R_{0} = \left\{ \left(\left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right), \left(\begin{array}{cc} c & 0 \\ 0 & d \end{array} \right) \right) \mid a, b, c, d \in \mathbb{C} \right\}, R_{1} = \left\{ \left(\left(\begin{array}{cc} 0 & 0 \\ e & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ f & 0 \end{array} \right) \right) \mid e, f \in \mathbb{C} \right\},$$

$$R_{3} = \left\{ \left(\left(\begin{array}{cc} 0 & g \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & h \\ 0 & 0 \end{array} \right) \right) \mid g, h \in \mathbb{C} \right\} \ and \ R_{2} = \left\{ \left(\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \right) \right\}.$$

Consider the following mappings:

$$\delta_1: R \longrightarrow R$$
 and $\delta_2: R \longrightarrow R$ $(x,y) \longmapsto (d_1(x),0)$

where
$$d_1\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & b \\ -c & 0 \end{pmatrix}$$
 and $d_2\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & -ib \\ ic & 0 \end{pmatrix}$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{C})$.

- 7) Let R be a G-graded ring. For each For each $r \in \mathcal{H}(R)$, the map $d_r := [r,.]$ is a homogeneous derivation of R.
- 8) If d_1 and d_2 are two homogeneous derivations of a G-graded ring R, then $[d_1, d_2]$ is also a homogeneous derivation of R.
- 9) Let R and S be graded rings, where R is G_1 -graded and S is G_2 -graded. Then the direct product $R \times S$ admits a natural $G_1 \times G_2$ -grading. Moreover, if d_1 and d_2 are homogeneous derivations on R and S respectively, then the mapping (d_1, d_2) defined of $R \times S$ is also a homogeneous derivation. Conversely, every homogeneous derivation of $R \times S$ arises in this manner.