Answer Key

- 1. a. Vertices: 6
 - b. Edges: 6
 - c. Write down the degree of each node:

Vertex v	deg(v)
a	2
b	2
c	2
d	2
e	3
f	1

- d. Maximum degree: 3
- e. Minimum degree: 1
- 2. a. $a \to b \to c$ (2) or $a \to d \to c$ (2) or $a \to c$ (1).
 - b. Example: $a \to b \to c \to a$
 - c. Example: $a \to b \to c \to d$
- 3. a. Trail:

Example: $KC \rightarrow Independence \rightarrow Lee's Summit$

b. Circuit:

Example: KC \to Independence \to Lee's Summit \to Grandview \to KC \to Overland Park \to Olathe \to Grandview \to KC

c. Cycle:

Example: KC \rightarrow Independence \rightarrow Lee's Summit \rightarrow Grandview \rightarrow KC

d. Eulerian Trail:

Example: Olathe \to Overland Park \to Olathe \to Grandview \to KC \to Grandview \to Lee's Summit to Independence \to KC \to Overland Park

e. Parallel Edges:

Yes: Olathe \rightarrow Overland Park, KC \rightarrow Grandview

4. Many solutions. Example:

5. Many solutions. Example:

Graph:

Subgraph:

