Notebook Swag

Sam Grayson

April 22, 2015

4.1 Exercise: Write out the powers of 2 mod 7

```
2^{0} \pmod{7} \equiv 1
2^{1} \pmod{7} \equiv 2
2^{2} \pmod{7} \equiv 4
2^{3} \pmod{7} \equiv 1
2^{4} \pmod{7} \equiv 2
2^{5} \pmod{7} \equiv 4
2^{6} \pmod{7} \equiv 1
```

4.2 Theorem: Coprime numbers raised to any power are still coprime.

Let $a, n \in \mathbb{Z}$ where $\gcd(a, n) = 1$. This proof applies for all $j \in \mathbb{N}$. Show $\gcd(a^j, n) = 1$

Proof: I will begin by using the tools developed in chapter 2, $\operatorname{pf}(a) \cap \operatorname{pf}(n) = \{\}$. $\min(x \# \operatorname{pf}(a), x \# \operatorname{pf}(b)) = 0$. Since $\min(a, b) = a \vee \min(a, b) = b$, $0 = \operatorname{pf}(a) \vee 0 = \operatorname{pf}(b)$. If $0 = \operatorname{pf}(a)$, then $x \# \operatorname{pf}(a) = 0$, furthermore no matter how many a's $x \# \operatorname{pf}(a^j) = 0$ (since $x \# \operatorname{pf}(a) = 0 = j(x \# \operatorname{pf}(a)) = x \# \operatorname{pf}(a^j)$). Thus $\min(x \# \operatorname{pf}(a^j), x \# \operatorname{pf}(b)) = 0$. Otherwise $0 = \operatorname{pf}(b)$, then no matter what $x \# \operatorname{pf}(a^j)$ is, $\min(x \# \operatorname{pf}(a^j), x \# \operatorname{pf}(b)) = 0$. Thus $\operatorname{gcd}(a^j, n) = 1$. This conditional proof shows $\operatorname{gcd}(a, n) = 1 \to \operatorname{gcd}(a^j, n) = 1$.

This proof can also be written using 1.43.

4.3 Theorem: If b is congruent to a coprime of $n \mod n$, then b is a coprime of n.

```
Let b \equiv a \pmod{n} and \gcd(a, n) = 1. Show \gcd(a, b) = 1
```

Proof: Assume for contradiction b = nc for some c. Then $b \equiv a \pmod{n}$ means n | (nc - a). This is problematic because then nj = nc - a, and then n(c - j) = a. Therefore $b \neq nc$. Therefore by definition of greatest common divisor $\gcd(b, n) = 1$. In conclusion $(\gcd(a, n) = 1 \land b \equiv a \pmod{n}) \to \gcd(a, b) = 1$.

4.4 Theorem: All numbers have at least two different exponents that give the same result.

Let $a, n \in \mathbb{N}$. Assume $\neg \exists a^i \not\equiv a^j \pmod{n}$ for contradiction.

Proof: For $i \in \{1, 2, ..., n\}$, $\neg \exists a^i \not\equiv a^j \pmod n$. These n noncongruent integers form a CRS by Theorem 3.17. a^{n+1} must be congruent to something in the CRS by the definition of CRS. Therefore $\exists j (a^{n+1} \equiv a^j \pmod n)$. This can not be the case since it denies the contradictive assumption. Therefore $\exists i, j \in \mathbb{N} (i \neq j \land a^i \equiv a^j \pmod n)$.

4.5 Theorem: The converse of Theorem 1.14 is true if gcd(c, n) = 1.

Let $a, b, c, n \in \mathbb{N}$. Let $ac \equiv bc \pmod{n}$. Show $a \equiv b \pmod{n}$

Proof: The first congruence translates to n|(ac-bc) or n|c(a-b). By Theorem 1.41, n|(a-b) (since $\gcd(a,n)=1$, no factor of c can be divided by n). Therefore $a\equiv b\pmod{n}$. In conclusion $ac\equiv bc \wedge \gcd(c,n)=1 \rightarrow a\equiv b$.

4.6 Theorem: If a number is coprime to the modulo, it has at least one power congruent to one.

Let gcd(a, n) = 1. Show $\exists k \in \mathbb{N} (a^k \equiv 1 \pmod{n})$

Proof: $a^i \equiv a^j \pmod n$ WLOG $i \geq j$ by 4.4. $\frac{a^i}{a^j} \equiv \frac{a}{\operatorname{gcd}}(a,n) = 1 \to \exists k \in \mathbb{N} (a^k \equiv 1 \pmod n)$.