Movimiento Browniano

Ejercicios entregables - Lista 3

Lucio Santi lsanti@dc.uba.ar

15 de mayo de 2017

Ejercicio. (2.6 - Mörters y Peres) Sea $(B(t), 0 \le t \le 1)$ un movimiento browniano lineal y

$$\tau = \sup \{ t \in [0,1] : B(t) = 0 \}$$

Probar que, casi seguramente, existen tiempos $t_n < s_n < \tau$ con $t_n \uparrow \tau$ tales que $B(t_n) < 0$ y $B(s_n) > 0$.

Resolución. Consideremos el proceso $(\tilde{B}(t), 0 \le t \le \tau)$ en donde $\tilde{B}(t) = B(\tau - t)$. Es evidente que \tilde{B} es un movimiento browniano como consecuencia de que B lo sea. Además, \tilde{B} es un movimiento browniano standard puesto que $\tilde{B}(0) = B(\tau) = 0$ (esto último vale por definición de τ y continuidad de B). Luego, valiéndonos del resultado estudiado en clase (que de hecho es enunciado en el Teorema 2.8 del libro), tenemos que $\mathbb{P}_0 \{ \sigma = 0 \} = 1$, siendo

$$\sigma = \inf \left\{ 0 < t \le \tau : \tilde{B}(t) < 0 \right\}$$

De esto sigue que, casi seguramente, podemos encontrar una sucesión de tiempos $t'_n > 0$ tales que $t'_n \downarrow 0$ y $\tilde{B}(t'_n) < 0$ para todo n. Ahora bien, utilizando el mismo resultado, tenemos que $\mathbb{P}_0 \{ \phi_n = 0 \} = 1$, con

$$\phi_n = \inf \{ 0 < t < t'_n : \tilde{B}(t) > 0 \}$$

Por ende, podemos afirmar que, casi seguramente, existe una sucesión de tiempos $r_k^n > 0$ tales que $r_k^n < t_n'$, $r_k^n \downarrow 0$ y $\tilde{B}(r_k^n) > 0$ para todo k. Sea $s_n' = r_0^n$ y sean $t_n = \tau - t_n'$ y $s_n = \tau - s_n'$. De esta forma,

- $t_n < s_n$ puesto que $t'_n > s'_n$.
- $s_n < \tau$ al ser $s'_n > 0$.
- $t_n \uparrow \tau$ puesto que $t'_n \downarrow 0$.
- $B(t_n) = \tilde{B}(\tau t_n) = \tilde{B}(t'_n) < 0.$
- $B(s_n) = \tilde{B}(\tau s_n) = \tilde{B}(s'_n) > 0.$

Consecuentemente, las sucesiones t_n , s_n propuestas satisfacen lo solicitado en el enunciado.

Ejercicio. (2.8 - Mörters y Peres) Probar que, para cualquier x > 0 y $A \subset [0, \infty)$ medible,

$$\mathbb{P}_{x} \{ B(s) \ge 0 \ \forall \ 0 \le s \le t, B(t) \in A \} = \mathbb{P}_{x} \{ B(t) \in A \} - \mathbb{P}_{-x} \{ B(t) \in A \}$$

Resolución.