EJEMPLO 3.1.8 Seis matrices triangulares

Las matrices
$$A = \begin{pmatrix} 2 & 1 & 7 \\ 0 & 2 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$
 y $B = \begin{pmatrix} -2 & 3 & 0 & 1 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -2 \end{pmatrix}$ son triangulares superiores;

$$C = \begin{pmatrix} 5 & 0 & 0 \\ 2 & 3 & 0 \\ -1 & 2 & 4 \end{pmatrix}$$
 y $D = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ son triangulares inferiores; I (la matriz identidad) y

$$E = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -7 & 0 \\ 0 & 0 & -4 \end{pmatrix}$$
 son diagonales. Observe que la matriz E es también triangular superior y

triangular inferior.

EJEMPLO 3.1.9 El determinante de una matriz triangular inferior

La matriz
$$A = \begin{pmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$
 es triangular inferior. Calcule det A .

SOLUCIÓN \blacktriangleright det $A = a_{11}A_{11} + 0A_{12} + 0A_{13} + 0A_{14} = a_{11}A_{11}$

$$= a_{11} \begin{vmatrix} a_{22} & 0 & 0 \\ a_{32} & a_{33} & 0 \\ a_{42} & a_{42} & a_{44} \end{vmatrix}$$

$$= a_{11} a_{22} \begin{vmatrix} a_{33} & 0 \\ a_{43} & a_{44} \end{vmatrix}$$

El ejemplo 3.1.9 se puede generalizar para probar el siguiente teorema.

Teorema 3.1.1

Sea $A = (a_{ij})$ una matriz de $n \times n$ triangular superior o inferior. Entonces

$$\det A = \sum_{k=1}^{n} a_{kk} = a_{11} a_{22} \dots a_{nn}$$
 (3.1.9)

Esto es: el determinante de una matriz triangular es igual al producto de sus componentes en la diagonal.

Demostración

La parte triangular inferior del teorema se deduce del ejemplo 3.1.9. Se demostrará la parte triangular superior por inducción matemática comenzando con n = 2. Si A es una matriz trian-