

Methods for Fitness and Language Structure for Musical Composition

—— Andrew Pozzuoli, Liam McDevitt ——

Kanae, Yu, Masami, Kazuki, 2015

Overview

- The Music Problem
 - O What is Music?
- How a Human Writes Music
 - Rules and Theory
- Music in GP
- Kanae et al., 2015
 - Model/GP Language
 - Fitness
 - Music Composition Process
 - Problems
 - Future Applications / Discussion

The Music Problem

- What is music?
 - DUMB QUESTION
- How could we define music so that a computer can understand?
 - Series of frequencies?
 - Too Vague
 - o Melody, Harmony, Rhythm?
 - What does that mean to a computer?
- Good start is to look at how people do it

How a Human Writes Music

- Listen to music
 - Foundation of musical expectations
 - Different cultures have different music
 - Different people like different music
- Musical Language
 - Instrument
 - Scales
 - Chords
 - Rules
- Evaluate your music quality based on your own musical expectations
 - "Fitness"

Music in GP (1)

- Need to create some goal
- "Make music" is highly abstract
- Fitness becomes difficult to evaluate
 - Need people to rate each individual
 - Tedious
 - Early generations don't sound pleasing

Music in GP (2)

- Could apply restrictions
 - Music theory
 - Scales
 - Chords
 - Time signature
 - Genre conventions
 - Blues
 - Electronic
 - Orchestral
 - Subgenre conventions
 - Jazz-blues
 - Dubstep
 - Classical

Music in GP (3)

- Composer/Artist
 - Style
 - Techniques
- Restrictions give GP a possible language to work with
 - Theory and style inform melody and harmony
 - Genre conventions give a framework for fitness evaluation
 - Automatic fitness evaluation

A Music Composition Model with GP

- Kanae et al., 2015
- Restrict GP language to a specific genre
 - Use Jazz-Blues conventions
 - Structure language from Jazz-Blues conventions
 - Evaluate based on those conventions
- Independent but cooperative models
 - Split parts up
 - Chord progression
 - Melody
 - Bassline

Models & GP Language - Melody

Fig. 2: An example of genetic individuals.

Fig. 3: Difference of expression by the number of branches.

Models and GP Language - Chords

Table 2: An example of 4-way spread voicing

	pattern1	pattern2
Top note	A tension note	A chord tone
Middle notes	7th	3rd
	3rd	7th
Bottom note	Root	

Fitness

Melody

- Note integrity with the previous 12 bars of melody (partial melody)
- Rhythm integrity with the previous partial melody
- Entropy function
 - 0 Highly similar melody
 - 1 Completely random melody
 - Considered similar if each note and note value from the previous partial melody appears the same number of times in the new melody
- Used to avoid abrupt differences across partial melodies

Fitness

Chords

- Percentage satisfying the blues chord progression
- Integrity with partial melody
 - Want to avoid dissonant notes clashing with the melody
- Integrity with previous partial chord progression
 - 0 None of the notes change across the progression
 - 1 Completely random notes in the new chord
 - Used to avoid abrupt changes in the chord progression inconsistent with previous partial chord progression
 - This is evaluated every 4 bars instead of every 12

Fitness

Bassline

- Integrity with partial chord progression
 - Bass notes chosen that belong to the chord played on strong beats are highly rewarded
 - Aims to avoid dissonant semitone interval between bass and chords
- Integrity with previous partial bassline
 - Want to avoid abrupt changes in the bassline
 - This is evaluated every 4 bars instead of every 12

Overview of The Model

Fig. 4: Overview of the model.

- Individuals
 - 3 nodes at depth 0
 - Terminal nodes restricted to be deeper than depth 4
 - 4 bars/tree
 - 3 trees/individual
 - 12 bars/individual
- Chords
 - Half notes
- Bassline
 - Quarter notes

Original Melody

• Billie's Bounce by Charlie Parker (1945)

Fig. 5: Original melody

First Four Bars of Example Partial Score

Dissonant Halftone Collision Problem

- Due to the number of different fitness evaluations, impossible to avoid semitone collision
- Possible solutions:
 - Better fitness evaluation
 - Drop the bottom chord note (similar to human jazz players)

Future Applications / Discussion

- Improvise in real time with human players
- Can't be used to create new music
- Can be applied to other genres based on their own conventions
- No "general solution" or "ideal solution"
 - More of a structure for making music similar to other music
 - Fitness based on following genre rules rather than meeting a specific goal

Questions?

References

Kunimatsu, K., Ishikawa, Y., Takata, M., & Joe, K. (2015). A Music Composition Model with Genetic Programming-A Case Study of Chord Progression and Bassline. In *Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA)* (p. 256). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).

Parker, C. (1945). Billie's Bounce [Recorded by Charlie Parker]