Study Guide for Midterm 1 for Algebra-Based Physics: Electricity and Magnetism

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy

February 27, 2019

Instructions: Work each problem before looking at the given answer. See if you first understand the problem conceptually, then work out the mathematics, then end with plugging in relevant data.

Memory Bank:

- 1. Coulomb Force: $\vec{F} = k \frac{q_1 q_2}{r^2} \hat{r}$
- 2. $k = 9 \times 10^9 \; {\rm N} \; {\rm C}^{-2} \; {\rm m}^2$
- 3. $q_e = 1.6 \times 10^{-19} \text{ C}$
- 4. Mass of a proton: 1.67×10^{-27} kg
- 5. Electric field and charge: $\vec{F}=q\vec{E}$
- 6. Field of infinite wire of charge density λ : $\vec{E}(z)=\frac{2k\lambda}{z}\hat{z}$
- 7. Field of two oppositely charged infinite planes, with charge density σ : $\vec{E}(z)=\frac{\sigma}{\epsilon_0}\hat{z}$
- 8. $\epsilon_0 \approx 8.85 \times 10^{-12} \text{ F/m}$
- 9. Dipole moment: $\vec{p} = q\vec{d}$
- 10. Torque on dipole moment: $\vec{ au} = \vec{p} \times \vec{E}$
- 11. Electric flux: $\Phi = \vec{E} \cdot \vec{A} = EA \cos \theta$
- 12. Gauss' law: $\Phi = Q_{enc}/\epsilon_0$
- 13. Potential energy and voltage: $U = q\Delta V$
- 14. Voltage of a point charge: $V(r) = k \frac{q}{r}$
- 15. Voltage and E-field: $ec{E} =
 abla V$, single-variable $ec{E} = rac{dV}{dx}$
- 16. Constant E-field: $E = \frac{\Delta V}{\Delta x}$
- 17. E-field and voltage: $\Delta V = -\int \vec{E} \cdot d\vec{x}$
- 18. Capacitance: Q = CV
- 19. Parallel plate capacitor: $C = \frac{\epsilon_0 A}{d}$
- 20. Adding two capacitors in series: $C_{tot}^{-1} = C_1^{-1} + C_2^{-2}$
- 21. Adding two capacitors in parallel: $C_{tot} = C_1 + C_2$
- 22. Definition of current: $I(t) = \frac{dQ}{dt}$
- 23. Drift velocity: $v_d = \frac{I}{nAq}$
- 24. Ohm's law: V = IR
- 25. Adding two resistors in series $R_{tot} = R_1 + R_2$
- 26. Adding two resistors in parallel $R_{tot}^{-1}=R_{1}^{-1}+R_{2}^{-2}$

Figure 1: A constant E-field deflecting a positive charge q.

1. Chapter 18, Electrostatics

- (a) Protons in an atomic nucleus are typically 10^{-15} m apart. What is the electric force of repulsion between nuclear protons?
- (b) A charge $q_1=20\mu\text{C}$ and a charge $q_2=10\mu\text{C}$ are 1.0 m apart. What is the force on a positive test charge halfway between them, and in which direction is the force?
- (c) Suppose the "deflector" in Fig. 1 is d=12 cm long. If a proton (mass given in Memory Bank) has an initial speed of $v=1.5\times 10^7$ m/s, and the field depicted is 4.0×10^5 N/C, by how much has it been deflected? (What is d?).

2. Chapter 19, Voltage

- (a) A lightning bolt strikes a tree, moving 20.0 C of charge through a potential difference of 10^8 Volts. What energy was dissipated?
- (b) Consult again Fig. 1. If the plates are 6 cm apart, and the field is still 4.0×10^5 N/C, what is the voltage difference between the plates?

3. Chapter 19, Capacitance

- (a) Find the charge stored when 5.0 V is applied to an 8.00 pF capacitor.
- (b) Find the charge stored when 5.0 V is applied to two 8.00 pF capacitors in parallel.

Figure 2: Three capacitors connected together.

(d) Find the total capacitance in the circuit diagram of Fig. 2.

4. Chapter 20, Current and Ohm's law

- (a) What current passes through a resistor with $R=1~\mathrm{k}\Omega$, if the voltage applied is 12 V?
- (b) What current passes through two resistors with $R=1~{\rm k}\Omega$, if the voltage applied is 12 V, and the resistors are connected in series? Draw a circuit diagram.
- (c) What current passes through two resistors with $R=1~\mathrm{k}\Omega$, if the voltage applied is 12 V, and the resistors are connected in parallel? Draw a circuit diagram.